DPENCLASSROOMS

Projet 6

-

Classifiez automatiquement des biens de consommation

Pierrick BERTHE

Formation Expert en Data Science Openclassrooms – CentraleSupélec

L'entreprise de e-commerce indien « Flipkart » permet à des vendeurs de proposer des articles à des acheteurs en postant une photo et une description.

=> automatiser l'attribution de la catégorie des articles mis en ligne par les utilisateurs pour améliorer l'expérience client (acheteur et vendeur).

Missions:

- 1. Faire une étude de la faisabilité d'un moteur de classification automatique
- 2. Réaliser une classification supervisée à partir des images
- Collecte de produits « champagne » sur une API

Présentation du jeu de données

> Descriptif des produits :

- Des informations **textuelles**: description, marque, etc.
- Des informations de visuelles : image, url, etc.
- Des informations financières : prix, promotion, etc.
- Des informations d'appréciation: note produit, note globale, etc.
- Des informations **temporelles**: récupération des données

➤ Valeurs manguantes :

- 2% de Nan (30% des marques)
- tous les prix d'1 seul produit

> Doublons

Pas de doublons sur la colonne de l'identifiant unique des produits.

Nettoyage et EDA

1. Sélection des features

product name

2. Détermination catégories

Home Furnishing Baby Care Baby Care

product_name labe

Home Furnishing 4

Baby Care 0

Baby Care 0

3. LabelEncoder

Nettoyage et EDA

5

Missions:

1. Faire une étude de la faisabilité d'un moteur de classification automatique

Computer vision

WORDS TF-IDF learn

ARI = 0,31

ARI = 0,30

ARI = 0.24

Home Furnishing

1. Lecture de l'image

2. Conversion en gris

1000 - 1500 - 1000 1500 2000 2500 3000 3500

3. Filtre bruit « poivre et sel »

4. Flou (réduction bruit HF)

5. Egalisation histo. (amélioration contraste)

6. Réduction taille /2

7. Extraction Keypoints & Calcul des descripteurs SIFT

250 500 750 1000 1250 1500 1750

8. Création des visuals words

9/ Bag-visual-words

SCALE-Invariant Feature Transform

PRE PROCESSING

ARI = 0.01

2. Réaliser une classification supervisée à partir des images

3. Test de différents modèles

Convolutional Neural Network (CNN)

Validation Accuracy 0.146497 Dummy

5 couches (27 neurones):

- Input
- Flatten
- Dense (10 neurones) avec fonction ReLu
- Dense (10 neurones) avec fonction ReLu
- Dense (7 neurones) avec fonction Softmax

Validation Accuracy 0.146497 Dummy

10

Epochs

12

Convolutional Neural Network (CNN)

5 couches (63 neurones):

- Convolution 2D
- MaxPooling 2D
- Flatten
- Dense (56 neurones) avec fonction ReLu
- Dense (7 neurones) avec fonction Softmax

10

Epochs

12

14

Validation Accuracy Dummy 0.146497

22 couches (≈14,7M neurones):

- Modèle VGG16: 5 blocs de convolution/Max pooling (14,7 M neurones)
- GlobalAveragePooling 2D (≈ 25 000 neurones)
- Dense (256 neurones) avec fonction ReLu
- Dropout (0,5)
- Dense (7 neurones) avec fonction Softmax

DATA AUGMENTATION


```
# Créer un générateur de données avec Data Augmentation
datagen = ImageDataGenerator(
    featurewise center=True,
   featurewise_std_normalization=True,
   rotation_range=20,
   width_shift_range=0.2,
   height_shift_range=0.2,
   horizontal_flip=True,
   brightness_range=(0.5, 1.),
    zoom range=(0.3, 1.5)
```


Missions:

3. Collecte de produits « champagne » sur une API.

Voici les 5 grand principe RGPD (Règlement sur la Protection des Données Personnelles) :

- 1. Finalité
- 2. Pertinence
- 3. Durée limitée de conservation
- 4. Sécurité
- 5. Droits des personnes

19/07/2024


```
"text": "champagne",
```

```
EDAMAM
```



```
• food

    foodld
    label
    knownAs
    nutrients
    category
    categoryLabel
    foodContentsLabel
    image

• measure
    uri
    label
    weight
```


	foodId	label	category	foodContentsLabel	image
(food_a656mk2a5dmqb2adiamu6beihduu	Champagne	Generic foods	NaN	https://www.edamam.com/food-img/a71/a718cf3c52
1	food_b753ithamdb8psbt0w2k9aquo06c	Champagne Vinaigrette, Champagne	Packaged foods	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	NaN
2	food_b3dyababjo54xobm6r8jzbghjgqe	Champagne Vinaigrette, Champagne	Packaged foods	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	https://www.edamam.com/food-img/d88/d88b64d973
3	food_a9e0ghsamvoc45bwa2ybsa3gken9	Champagne Vinaigrette, Champagne	Packaged foods	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	NaN
4	food_an4jjueaucpus2a3u1ni8auhe7q9	Champagne Vinaigrette, Champagne	Packaged foods	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	NaN
	food_bmu5dmkazwuvpaa5prh1daa8jxs0	Champagne Dressing, Champagne	Packaged foods	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	https://www.edamam.com/food-img/ab2/ab2459fc2a
6	food_alpl44taoyv11ra0lic1qa8xculi	Champagne Buttercream	Generic meals	sugar; butter; shortening; vanilla; champagne;	NaN
7	food_byap67hab6evc3a0f9w1oag3s0qf	Champagne Sorbet	Generic meals	Sugar; Lemon juice; brandy; Champagne; Peach	NaN
8	food_am5egz6aq3fpjlaf8xpkdbc2asis	Champagne Truffles	Generic meals	butter; cocoa; sweetened condensed milk; vanil	NaN
9	food_bcz8rhiajk1fuva0vkfmeakbouc0	Champagne Vinaigrette	Generic meals	champagne vinegar; olive oil; Dijon mustard; s	NaN

Nom du fichier
export_nom_fichier = 'berthe_pierrick_5_export_api_122023.csv'

Missions:

Faire une étude de la faisabilité d'un moteur de classification automatique.

2. Réaliser une classification supervisée à partir des images

3. Collecte de produits « champagne » sur une API

Limites:

- Problèmes de puissance de calcul pour tester correctement la data augmentation
- Coupler l'analyse du texte et des images combinés peut-être plus performant

DPENCLASSROOMS

Merci pour votre attention

