Donnerstag, 1. Juli 2021

Prof. Dr. Ingo Claßen

Mittwoch, 30. Juni 2021 11:5

Feature space:

- 2 features: x1, x2: plane
- 3 features: x1, x2, x3: cube
- n features: x1, ..., xn: n-dimensional cube

Find rectangular non-overlapping decomposition of space

- Leads to n-dimensional sub-cubes (regions)
- Each region should be as "uniform" as possible
- Average value of all records in region (regression)
- Majority vote in region (classification)

Instances

Finding an optimal decomposition automatically is infeasable (combinatorical explosion)

Simplification for presentation purposes

- Only two features: x1, x2
- Regions are rectangles

x1

General idea of decision trees:

- Gready decomposition of feature space by recursive binary splitting
- Stop splitting according to criterion, e.g.
 - o minimal numbers of instances in region
 - o max depth of tree
 - o minimal performance gain

Finding splits

- Search through all features
- For each feature: consider all split values
- Take "best" (feature, splitval) combination

Mittwoch, 30. Juni 2021 14

14:39

No stop criterion holds: Go ahead with splitting

split feature	split value
x1	v1

Mittwoch, 30. Juni 2021

14:39

Stop criterion holds: do not further split

split feature	split value
x2	v2

Mittwoch, 30. Juni 2021 14:39

Mittwoch, 30. Juni 2021 14:39

split feature	split value
x1	v5

Freitag, 18. Juni 2021 10:32

Split on best combination of feature and split point

Mittwoch, 30. Juni 2021

$$MSE(R) = \frac{1}{\text{count}(y_i)} \sum_{\mathbf{x}_i \in R} (y_i - \text{avg}(y_i))^2$$

	x1	x2	У
x1	1	1	20
x2	1	2	30
х3	2	3	20
х4	3	1	10
х5	4	2	20

$$avg(y_i) = 20$$

$$MSE(R) = \frac{1}{5} ((20 - 20)^{2} + (30 - 20)^{2} + (20 - 20)^{2} + (10 - 20)^{2} + (20 - 20)^{2})$$

$$= \frac{1}{5} (0 + 100 + 0 + 100 + 0)$$

$$= \frac{1}{5} * 200$$

$$= 40$$

Mittwoch, 30. Juni 2021 18:11

SplitVariance =
$$\frac{1}{\text{count}(R_1)} \text{MSE}(R_1) + \frac{1}{\text{count}(R_2)} \text{MSE}(R_2)$$

Donnerstag, 1. Juli 2021

Base

bedrooms

bathrooms

latitude

Prediction: 2607.8296004300305

DecisionTrees Seite 13

Prof. Dr. Ingo Claßen

Analysis of Single Instance 2

Donnerstag, 1. Juli 2021 17:45

Prediction: 2104.545399698341

Tree depth 2

W

d

t h

length

Tree depth 3

Gini Value of Region

Mittwoch, 30. Juni 2021

 $Gini(R) = 1 - \sum_{c \in C} Prob(c, R)^2$

R	Region
Prob	Probability
Gini	Gini Value
С	Set of all classes
С	Single class

Class tags:

• Class1: orange

• Class2: blue

$$Gini(R) = 1 - \left(\left(\frac{2}{6}\right)^2 + \left(\frac{4}{6}\right)^2\right)$$

$$= 1 - \left(\left(\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2\right)$$

$$= 1 - \left(\frac{1}{9} + \frac{4}{9}\right)$$

$$= 1 - \frac{5}{9}$$

$$= \frac{4}{9}$$

Mittwoch, 30. Juni 2021 18:11

$$InformationGain = Gini(R) - \left(\frac{1}{count(R_1)}Gini(R_1) + \frac{1}{count(R_2)}Gini(R_2)\right)$$

Mittwoch, 30. Juni 2021 18:30

See:

https://towardsdatascience.com/decision-tree-an-algorithm-that-works-like-the-human-brain-8bc0652f1fc6

Freitag, 18. Juni 2021 15:23

Problems of trees

- Too specific
- Overfit on trainings data

Assume leafs only contain one record

Trainings error would get zero

Train many tree models

- Randomly select subset of training data (with replacement, bootstrapping)
- Randomly select subset of features

Prediction - Regression

- Ask all trees for prediction
- Average results
- Two levels of averaging
 - Leaf level of each singular tree
 - Average of all trees

Prediction - Classification

- Ask all trees for prediction
- Majority vote
- Two levels of voting
 - Leaf level of each singular tree
 - Combining votes of all trees

Donnerstag, 1. Juli 2021 15:31

DecisionTrees Seite 21

Donnerstag, 1. Juli 2021 14:34

Permutation Importance

