

WORLD TUBERCULOSIS 2023

Correlation and prediction of Tuberculosis incidences and severity level according to health, socio-economic and environmental factors

CONTENT

- 1. introduction and TB burden data set overview
- 2. additional data acquistion for data set enrichment (web scraping)
- 3. data cleaning and wrangling
- 4. exploratory data analysis
- 5. feature engineering: correlation of features with TB severity
- 6. data model preparation: splitting, normalization, balance check
- 7. supML model implementation: predict TB severity according added data
- 8. HGBC: hyperparameter tuning, RFC: CW + NaN imputing/SMOTE-balancing
- 9. model evaluation: classification, feature importance, confusion matrices
- 10. unsupervised ML models: Kmeans & hierarchical clustering
- 11 tableau visualizations
- 12. conclusion: key findings, application, challenges & outlook

WHO TUBERCULOSIS REPORT 2024

Tuberculosis (TB) = contagious lung infection caused by

Mycobacterium tuberculosis (MTB) bacteria.

TB was the world's leading infectious disease killer in 2023.

Worldwide 1.25 million people died due to TB in 2023. Worldwide 10.8 million people fell ill with TB in 2023.

TB incidence rates per country over time reported.

Still no effective prevention (vaccine) available.

Bacillus Calmette-Guérin (BCG) subopt. vaccine statistics reported.

Only suboptimal treatment options available.

https://www.who.int/teams/global-tuberculosis-programme/data

DATA ACQUISITION & ENRICHMENT

Investigate correlation of TB incidences / severity level with:

- further disease-related information (treat.res. & BCG vac. rate)
- other health indicators (HIV, smoking rates)
- socio-economic (population density, multidim. poverty index)
- environmental (air pollution) circumstances

-> data obtained mostly via web scraping

DATA CLEANING AND WRANGLING

Preprocessing of data for modelling:

- all column names conclusive & lower case
- some columns dropped
- all values numerical
- · still many null values, replaced with NaN
- no duplicated values
- country iso2 and iso3 codes introduced

-> Extensive cleaning needed before table merging

EXPLORATORY DATA ANALYSIS

Top 5 countries per world region displayed according to:

- TB incidences
- treatment resistance
- BCG vaccination rate
- population density
 poverty index
- poverty indexsmoking rates
- air pollution
- TB severity

Three-letter code of the 6 WHO regions:

- AFR → African Region
- **AMR** → Region of the Americas
- EMR → Eastern Mediterranean Region
 EUR → European Region
- SEA → South-East Asia Region
- WPR → Western Pacific Region

EDA: TB INCIDENCES

African & Asian countries have highest TB incidences

EDA: TREATMENT RESISTANCE

Resistance to rifampicin treatment highest in post-Soviet states

EDA: BCG VACCINATION COVERAGE

BCG vaccination rates generally high & highest in developing countries

EDA: POPULATION DENSITY

Population density highest in city states

EDA: MULTIDIMENSIONAL POVERTY INDEX

Central Africa, Central America, & South/South East Asia have highest poverty

EDA: SMOKING RATE

Pacific, South East Asian, Eastern European & Arab countries have highest smoking rates

EDA: AIR POLLUTION

South Asian, Arab & Central African countries have highest air pollution

TB INCIDENCES -> TB SEVERITY LEVEL

TB severity level defined as target

Based on SD intervals: 0.1% (Mean), 0.244% (Mean + 1 SD), 0.388% (Mean + 2 SD)

Levels of TB severity: Very Low ≤0.05% Low ≤ 0.1% Moderate ≤ 0.244% High ≤ 0.388% Critical > 0.388%

FEATURE ENGINEERING AND SELECTION

Correlation of features with TB incidence:

3 features from TB

burden data set,7 enriched features ->

drop % pop in pov

DATA PREPARATION FOR PREDICTION MODELLING

total 214 countries: train & test split = 171 (80%) & 43 (20%) normalization: Min/Max scaling, tuning: hyperparameters balancing: impute NaN -> SMOTE, class weighting

Range	eIndex: 214 entries, 0 to 213	
Data	columns (total 9 columns):	
#	Column	Non-Null Count
0	e_tbhiv_prct	214 non-null
1	cfr_pct	196 non-null
2	c_cdr	192 non-null
3	e_rr_pct_new	214 non-null
4	BCG_coverage	156 non-null
5	population_density	214 non-null
6	MPI_value	109 non-null
7	total_smokers_2022_percent	164 non-null
8	avg air pollution PM2-5 in 2023	131 non-null

PREDICTION OF TB SEVERITY USING ML MODELS

Implement supervised ML models to predict TB severity levels

Ensemble prediction model testing:

- HistGradientBoostingClassifier
- RandomForestClassifier (DecTree + RandPatch)
 Model optimization:
 - hyperparameter tuning for HGBC model
 - impute missing NaN using KNN
 - target parameter balancing using SMOTE or Class Weight balancing on RFC model

EVALUATION

FEATURE IMPORTANCE

MPI highest importance

Feature Importance Score

EVALUATE PREDICTION MODEL'S PERFORMANCE

	model	precision	recall	F1-score	accuracy	
	HistGradBoost	0.59	0.56	0.54	0.56	
	Random Forest	0.48	0.63	0.54	0.63	
	RFC + CW	0.47	0.65	0.54	0.65	
	RFC + SMOTE	0.58	0.49	0.47	0.49	
	RFC(CW)+SMOTE	0.38	0.40	0.38	0.40	
	HGBC_HT	0.47	0.65	0.54	0.65	

EVALUATION

CONFUSION MATRICES

HGBC improved after HT RFC improved with CW

PREDICTION OF TB SEVERITY USING ML MODELS

Implement unsupervised ML models to predict TB severity levels

Clustering prediction model testing:

- no train/test split, use whole data for clustering
- impute missing NaN using KNN, Min/Max norm.
- KMeans clustering (not useful)
 - Adjusted Rand Index (ARI): -0.0361 (similarity)
 Normalized Mutual Information (NMI): 0.0378 (dep.)
- create dendrogram to determine cluster no.
 - Hierarchical clustering (not useful either)
 - o Adjusted Rand Index (ARI): 0.1552 (similarity)
 - Normalized Mutual Information (NMI): 0.1043 (dep.)

TABLEAU VISUALIZATIONS

Cloropleth world maps of TB incidence, BCG vaccination coverage & MPI.
Stacked bar chart of TB severity level, box-whiskers of MPI in 6 world regions.

https://public.tableau.com/app/profile/timo.lischke/viz/TB severity level Timo/TB severity

KEY FINDINGS AND INSIGHTS

Key Findings:

- TB remains to be a severe global health problem
- TB severity: EUR = AMR < EMR < WPR < SEA = AFR
- MPI is feature showing highest correlation with TB severity
 AVG MPI: FLIR < AMR < WPR < FMR < SEA < AFR

Insights:

- selected features do not correlate strongly with target
- ML prediction models work poorly
 - RFC + CW and HGBC + HT work best

REAL WORLD APPLICATION AND IMPACT

Aiming to predict TB severity for future years (not accomplished yet) in order to take preventive measures

Impact:

- Need to reduce poverty
- Need to develop an effective vaccine
- Need to develop new treatment options

CHALLENGES AND LEARNINGS

Challenges:

- · define & find meaningful data for enrichment
- · frequent null values / incomplete data
- · low number of rows, i.e. countries

- Learnings:
 - · take good care when selecting data
 - biological/medical data are often incomplete

FUTURE WORK & IMPROVEMENTS

Improve data set:

- fill in / impute missing values for 2023
- include data of years before 2023
- find other data for enrichment with higher correlation to target (gender, age, malnutrition, diabetes, alcoholism, urbanization rate, health care access & quality index, ...)

Improve supervised ML models:

• run time corrleated predictions

Improve unsupervised clustering models:

- Perform PCA before running unsupervised clustering models to reduce noise and redundant features.
- Experiment with different values of K for Kmeans (e.g., using the Elbow Method or Silhouette Score).
- Consider other clustering algorithms like DBSCAN.

THANK YOU!

Correlation and prediction of Tuberculosis incidences and severity level according to health, socio-economic and environmental factors (based on WHO Tuberculosis report 2024)

