

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II
Peak Velocity Pressure, q _z =	15.70 psf	Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.05 (Proceure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.05 1.65 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	1		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>75</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.81	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.739	k-ft
$M_z =$	0.130	k-ft
$M_{y \text{ allowable}} =$	1.226	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>75%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

$Brace Type = \\ Aluminum Type = \\ F_{ty} = \\ \Phi = \\ S_y = \\ E = \\ I_y = \\$	1.5x0.25 6061-T6 35 0.90 0.02 10100 33.25	ksi
A = g =	0.38 0.45	in² lbs/ft
$\begin{aligned} M_y &= \\ P_n &= \\ M_{y \text{ allowable}} &= \\ P_{n \text{ allowable}} &= \\ \text{Utilization} &= \end{aligned}$	0.004 0.046 0.046 11.813 <u>9%</u>	k k-ft

A cross brace kit is required every 21 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	342.84	1621.75	k
Compressive Load =	<u>1667.55</u>	1301.07	k
Lateral Load =	<u>2.81</u>	<u>745.16</u>	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24024.7 in-lbs Resisting Force Required = 800.82 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1334.71 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 179.08 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 447.70 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 179.08 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 $P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W											
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	598 lbs	598 lbs	598 lbs	598 lbs	543 lbs	543 lbs	543 lbs	543 lbs	811 lbs	811 lbs	811 lbs	811 lbs	-163 lbs	-163 lbs	-163 lbs	-163 lbs
F _B	436 lbs	436 lbs	436 lbs	436 lbs	478 lbs	478 lbs	478 lbs	478 lbs	653 lbs	653 lbs	653 lbs	653 lbs	-778 lbs	-778 lbs	-778 lbs	-778 lbs
F_V	52 lbs	52 lbs	52 lbs	52 lbs	320 lbs	320 lbs	320 lbs	320 lbs	275 lbs	275 lbs	275 lbs	275 lbs	-358 lbs	-358 lbs	-358 lbs	-358 lbs
P _{total}	3028 lbs	3118 lbs	3209 lbs	3300 lbs	3015 lbs	3105 lbs	3196 lbs	3287 lbs	3457 lbs	3547 lbs	3638 lbs	3729 lbs	255 lbs	310 lbs	364 lbs	418 lbs
M	386 lbs-ft	386 lbs-ft	386 lbs-ft	386 lbs-ft	610 lbs-ft	610 lbs-ft	610 lbs-ft	610 lbs-ft	721 lbs-ft	721 lbs-ft	721 lbs-ft	721 lbs-ft	577 lbs-ft	577 lbs-ft	577 lbs-ft	577 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.20 ft	0.20 ft	0.19 ft	0.19 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.26 ft	1.86 ft	1.59 ft	1.38 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	279.7 psf	277.0 psf	274.5 psf	272.3 psf	249.0 psf	247.6 psf	246.3 psf	245.2 psf	282.7 psf	279.9 psf	277.3 psf	274.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	380.9 psf	373.8 psf	367.3 psf	361.3 psf	408.8 psf	400.5 psf	392.9 psf	385.8 psf	471.5 psf	460.5 psf	450.3 psf	441.0 psf	388.9 psf	169.5 psf	132.8 psf	119.5 psf

Ballast Width

1994 lbs 2084 lbs 2175 lbs 2266 lbs

24 in

25 in

23 in

<u>22 in</u>

Maximum Bearing Pressure = 472 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 =$ 242.4 ft-lbs

Resisting Force Required = 264.39 lbs S.F. = 1.67 Weight Required = 440.65 lbs

Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E					
Width		22 in			22 in		22 in					
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer			
F _Y	72 lbs	194 lbs	68 lbs	279 lbs	843 lbs	275 lbs	21 lbs	57 lbs	20 lbs			
F _V	1 lbs	1 lbs	0 lbs	7 lbs	7 lbs	1 lbs	0 lbs	0 lbs	0 lbs			
P _{total}	2540 lbs	2662 lbs	2536 lbs	2628 lbs	3192 lbs	2624 lbs	743 lbs	778 lbs	742 lbs			
M	2 lbs-ft	2 lbs-ft	0 lbs-ft	13 lbs-ft	10 lbs-ft	1 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft			
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft			
L/6	0.31 ft	1.83 ft	1.83 ft	1.82 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft			
f _{min}	276.4 sqft	289.7 sqft	276.6 sqft	282.0 sqft	344.6 sqft	286.0 sqft	80.8 sqft	84.7 sqft	80.9 sqft			
f _{max}	277.9 psf	291.1 psf	276.8 psf	291.4 psf	351.9 psf	286.6 psf	81.3 psf	85.1 psf	80.9 psf			

Maximum Bearing Pressure = 352 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.283 k	Maximum Axial Load =	1.172 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>23%</u>	Utilization =	<u>21%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.334 k	Maximum Axial Load =	0.046 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.050 L	Strut Bearing Capacity =	7.952 k
Strut bearing Capacity =	7.952 k	Strut bearing Capacity =	7.952 K
Utilization =	7.952 K <u>6%</u>	Utilization =	7.952 K <u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.024 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 75.00 \text{ in}$$

$$J = 0.255$$

$$195.296$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$31 = 0.3140$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 28.8 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 75.00 \text{ in}$$

$$J = 0.255$$

$$202.803$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.7$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.8 \text{ ksi}$$

$$1x = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.226 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L {= \phi y F c y}$

 $\phi F_L = 33.3 \text{ ksi}$

b/t = 23.9 S1 = 12.21S2 = 32.70

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L = 28.5 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.13 \\ & 23.1371 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.5 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.13 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 = & 29.5 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\theta_{v}$$
 2

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L St =$	29.5 ksi
lx =	364470 mm
	0.876 in ⁴
y =	37.77 mm
Sx =	0.589 in ³
$M_{max}St =$	1.446 k-ft

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$by = 217168 \text{ mm}^4$$

x = Sy =

 $M_{max}Wk =$

0.522 in⁴ 29 mm

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi \varphi F c y$$

 $\varphi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b \, \text{J}}{Dt}\right)$$
 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi \text{J} \text{Fcy}$
 $\phi F_L = 33.25 \, \text{ksi}$
 $\phi F_L = 14.29 \, \text{ksi}$
 $A = 576.21 \, \text{mm}^2$
 $0.89 \, \text{in}^2$
 $P_{\text{max}} = 12.76 \, \text{kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

3.4.18

h/t =

S1 = 36.9
m = 0.65

$$C_0$$
 = 15
 C_0 = 15
 $S2 = \frac{k_1 Bbr}{mDbr}$
S2 = 77.3
 ϕF_L = 1.3 $\phi y F c y$
 ϕF_L = 43.2 ksi
 ϕF_L = 31.2 ksi

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 18.00 \text{ in} \\ J &= & 0.16 \\ & 47.2194 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.2 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$C_0 = 15$$
 $Cc = 15$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 0.096 in^4
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 15 \text{ mm$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\theta_{b}}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$\begin{aligned} \text{h/t} &= & 7.75 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 15 \\ \text{Cc} &= & 15 \\ S2 &= & \frac{k_1 Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \phi \text{F}_{\text{L}} &= & 1.3\phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &= & 43.2 \text{ ksi} \end{aligned}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.404 \text{ k-ft}$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$
 $ly = 39958.2 \text{ mm}^4$
 0.096 in^4
 $x = 15 \text{ mm}$
 $Sy = 0.163 \text{ in}^3$

 $M_{max}Wk =$

0.450 k-ft

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi V F c V$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.4 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

0.096 in⁴

0.163 in³

15 mm

h/t =

7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$CC = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 33.3 \text{ ksi}$$

 $ly = 39958.2 \text{ mm}^4$

 $Sy = 0.163 \text{ in}^3$

x =

 $M_{max}Wk =$

0.096 in⁴

0.450 k-ft

15 mm

y = Sx =

 $M_{max}St = 0.411 \text{ k-ft}$

SCHLETTER

Compression

$$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.41804 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.77853 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{cc} \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 13.5508 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 13.55 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 6.80 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	1	M13	Υ	-8.366	-8.366	0	0
2	2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-45.975	-45.975	0	0
2	M16	V	-72.246	-72.246	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	92.825	92.825	0	0
2	M16	V	43.785	43.785	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	139.323	2	278.782	1	.008	11	0	1	0	1	0	1
2		min	-180.405	3	-379.273	3	127	3	0	3	0	1	0	1
3	N7	max	0	15	444.462	1	036	15	0	15	0	1	0	1
4		min	141	2	-72.808	3	935	1	002	1	0	1	0	1
5	N15	max	0	15	1282.728	1	.485	1	0	1	0	1	0	1
6		min	-1.535	2	-263.723	3	362	3	0	3	0	1	0	1
7	N16	max	531.583	2	1000.826	1	0	10	0	1	0	1	0	1
8		min	-573.201	3	-1247.497	3	-40.818	3	0	3	0	1	0	1
9	N23	max	0	15	444.235	1	2.161	1	.004	1	0	1	0	1
10		min	141	2	-72.398	3	.078	15	0	15	0	1	0	1
11	N24	max	139.59	2	283.401	1	41.159	3	.001	1	0	1	0	1
12		min	-180.545	3	-377.139	3	.008	10	0	3	0	1	0	1
13	Totals:	max	808.679	2	3734.435	1	0	1						
14		min	-934.467	3	-2412.838	3	0	10						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	315.486	1	.646	4	.506	1	0	15	0	3	0	1
2			min	-359.55	3	.153	15	073	3	0	1	0	1	0	1
3		2	max	315.593	1	.604	4	.506	1	0	15	0	1	0	15
4			min	-359.47	3	.143	15	073	3	0	1	0	10	0	4
5		3	max	315.699	1	.563	4	.506	1	0	15	0	1	0	15
6			min	-359.39	3	.133	15	073	3	0	1	0	10	0	4
7		4	max	315.806	1	.522	4	.506	1	0	15	0	1	0	15
8			min	-359.31	3	.123	15	073	3	0	1	0	3	0	4
9		5	max	315.913	1	.48	4	.506	1	0	15	0	1	0	15
10			min	-359.23	3	.114	15	073	3	0	1	0	3	0	4
11		6	max	316.019	1	.439	4	.506	1	0	15	0	1	0	15
12			min	-359.15	3	.104	15	073	3	0	1	0	3	0	4
13		7	max	316.126	1	.398	4	.506	1	0	15	0	1	0	15
14			min	-359.07	3	.094	15	073	3	0	1	0	3	0	4
15		8	max	316.232	1	.357	4	.506	1	0	15	0	1	0	15
16			min	-358.99	3	.085	15	073	3	0	1	0	3	0	4
17		9	max	316.339	1	.315	4	.506	1	0	15	0	1	0	15
18			min	-358.91	3	.075	15	073	3	0	1	0	3	0	4
19		10	max	316.445	1	.274	4	.506	1	0	15	0	1	0	15
20			min	-358.83	3	.065	15	073	3	0	1	0	3	0	4
21		11	max	316.552	1	.233	4	.506	1	0	15	0	1	0	15
22			min	-358.75	3	.056	15	073	3	0	1	0	3	0	4
23		12	max	316.658	1	.192	4	.506	1	0	15	0	1	0	15
24				-358.671	3	.046	15	073	3	0	1	0	3	0	4
25		13	max	316.765	1	.15	4	.506	1	0	15	0	1	0	15
26			min	-358.591	3	.036	15	073	3	0	1	0	3	0	4
27		14	max	316.871	1	.109	4	.506	1	0	15	0	1	0	15
28				-358.511	3	.026	15	073	3	0	1	0	3	0	4
29		15	max	316.978	1	.075	2	.506	1	0	15	.001	1	0	15
30			min	-358.431	3	.014	12	073	3	0	1	0	3	0	4
31		16	max	317.084	1	.043	2	.506	1	0	15	.001	1	0	15
32			min	-358.351	3	005	3	073	3	0	1	0	3	0	4
33		17	max		1	.011	2	.506	1	0	15	.001	1	0	15
34				-358.271	3	029	3	073	3	0	1	0	3	0	4
35		18		317.298	1	012	15	.506	1	0	15	.001	1	0	15
36			min		3	056	4	073	3	0	1	0	3	0	4
37		19	max		1	022	15	.506	1	0	15	.001	1	0	15
					•				•				<u> </u>		

Model Name

: Schletter, Inc. : HCV

псу

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

38		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft	1 LC \	/-y Mome		z-z Mome	<u>. LC</u>
A0	38			min	-358.111		097		073	3				3	0	
42		M3	1	max							0	15			0	
42				min		3					0			15	0	15
43			2													
44																
46			3												_	
46			.													
47			4													
48			-													
49			5													
So																
ST			Ь													
Second Color			7										-			
S3																
55			Ω													
556			0												_	
Second Color			a													_
57			- 3													
58			10													
59			10											-		
60			11													_
61															_	
62			12										-			
63 13 max 74.87 2 078 15 015 15 0 1 0 15 001 4 65 14 max 74.802 2 12 15 015 15 0 15 0 1 0 15 001 4 66 min -85.672 3 513 4 436 1 0 1 0 12 001 4 67 15 max 74.734 2 162 15 015 15 0 15 0 1 0 12 001 4 69 16 max 74.666 2 203 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15			·-											15	_	
64 min -85.621 3 335 4 436 1 0 1 0 15 001 4 65 14 max 74.802 2 12 15 015 15 0 15 0 1 0 15 66 min 78.673 3 513 4 436 1 0 1 0 15 67 15 max 74.734 2 162 15 015 15 0 15 0 1 0 15 0 </td <td></td> <td></td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>15</td> <td></td> <td>15</td> <td>0</td> <td></td> <td></td> <td>15</td>			13					15		15		15	0			15
65											0		0	15	001	
67 15 max 74.734 2 162 15 015 15 0 1 0 15 68 min -85.723 3 69 4 436 1 0 1 0 3 0 4 69 16 max 74.666 2 203 15 015 15 0 15 0 15 0 14 0 1 0 1 0 4 4 4 4 4 4 1 0 1 0 1 0 1 0 4			14	max	74.802	2		15	015	15	0	15	0	1	0	15
68	66			min	-85.672	3	513	4	436	1	0	1	0	12	001	4
69 16 max 74.666 2 203 15 015 15 0 15	67		15	max	74.734	2	162	15	015	15	0	15	0		0	15
TO				min		3					0		0		0	_
71 17 max 74.598 2 245 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 4 0 4 0 1 0 1 0 4 0 4 0 1 0 1 0 4 0 4 0 1 0 1 0 1 0 4 4 4 4 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			16	max	74.666	2		15		15	0	15	0	15	0	15
72 min -85.825 3 -1.046 4 436 1 0 1 0 4 73 18 max 74.531 2 287 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 4 0 1				min		3					0		0	_	0	
73 18 max 74.531 2 287 15 015 15 0 1 0<			17													
74 min -85.876 3 -1.223 4 436 1 0 1 0 1 0 4 75 19 max 74.463 2 329 15 015 15 0 15 0 1 76 min -85.927 3 -1.401 4 436 1 0																
75 19 max 74.463 2 329 15 015 15 0 15 0 15 0 1 76 min -85.927 3 -1.401 4 436 1 0 1 0 1 0 1 77 M4 1 max 443.297 1 0 1 036 15 0 1 0 3 0 1 78 min -73.681 3 0 1 -1.011 1 0 <t< td=""><td></td><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></t<>			18												_	
76 min -85.927 3 -1.401 4 436 1 0 1 0 1 77 M4 1 max 443.297 1 0 1 -0.36 15 0 1 0 3 0 1 78 min -73.681 3 0 1 -1.011 1 0 1			10											_		
77 M4 1 max 443.297 1 0 1 036 15 0 1 0 3 0 1 78 min -73.681 3 0 1 -1.011 1 0 1 0 1 0 1 79 2 max 443.362 1 0 1 -0.36 15 0 1 0 1 0 1 80 min -73.633 3 0 1 -1.011 1 0 1 0 1 0 1 81 3 max 443.427 1 0 1 -0.36 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			19													
78 min -73.681 3 0 1 -1.011 1 0 1 0 1 0 1 79 2 max 443.362 1 0 1 -0.36 15 0 1 0 12 0 1 80 min -73.633 3 0 1 -1.011 1 0 1 <td></td>																
79 2 max 443.362 1 0 1 036 15 0 1 0 12 0 1 80 min -73.633 3 0 1 -1.011 1 0 <td< td=""><td></td><td><u>M4</u></td><td>1</td><td></td><td>443.297</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u>M4</u>	1		443.297			1								
80 min -73.633 3 0 1 -1.011 1 0 1 0 1 0 1 81 3 max 443.427 1 0 1 036 15 0 1 0 1 0 1 82 min -73.584 3 0 1 -1.011 1 0 1 0 1 83 4 max 443.491 1 0 1 -0.36 15 0 1 0			2													$\overline{}$
81 3 max 443.427 1 0 1 036 15 0 1 0															_	
82 min -73.584 3 0 1 -1.011 1 0 1 0 1 83 4 max 443.491 1 0 1 036 15 0 1 0			2										-	_		-
83 4 max 443.491 1 0 1 036 15 0 1 0 15 0 1 84 min -73.536 3 0 1 -1.011 1 0 1 0 1 0 1 85 5 max 443.556 1 0 1 036 15 0 1 0 15 0 1 86 min -73.487 3 0 1 -1.011 1 0 1 0 1 87 6 max 443.621 1 0 1 036 15 0 1 0 1 88 min -73.439 3 0 1 -1.011 1 0 1 0 1 89 7 max 443.685 1 0 1 036 15 0 1 0 1 0 1 90 min -73.39 3 0 1 -1.011 1 0			3					_							-	
84 min -73.536 3 0 1 -1.011 1 0 1 0 1 0 1 85 5 max 443.556 1 0 1 036 15 0 1 0			1				_									
85 5 max 443.556 1 0 1 036 15 0 1 0 15 0 1 86 min -73.487 3 0 1 -1.011 1 0 <td< td=""><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>			+					_								_
86 min -73.487 3 0 1 -1.011 1 0 1 0 1 0 1 87 6 max 443.621 1 0 1 -0.36 15 0 1 0			5													
87 6 max 443.621 1 0 1 036 15 0 1 0 15 0 1 88 min -73.439 3 0 1 -1.011 1 0																
88 min -73.439 3 0 1 -1.011 1 0 1 0 1 0 1 89 7 max 443.685 1 0 1 036 15 0 1 0			6											-		
89 7 max 443.685 1 0 1 036 15 0 1 0 15 0 1 90 min -73.39 3 0 1 -1.011 1 0 1 0 1 0 1 91 8 max 443.75 1 0 1 036 15 0 1 0 15 0 1 92 min -73.342 3 0 1 -1.011 1 0 1 0 1 0 1 93 9 max 443.815 1 0 1 036 15 0 1 0 15 0 1																
90 min -73.39 3 0 1 -1.011 1 0 1 0 1 0 1 91 8 max 443.75 1 0 1 036 15 0 1 0 1 0 1 92 min -73.342 3 0 1 -1.011 1 0 1 0 1 93 9 max 443.815 1 0 1 036 15 0 1 0 15 0 1			7													
91 8 max 443.75 1 0 1 036 15 0 1 0 15 0 1 92 min -73.342 3 0 1 -1.011 1 0 1 0 1 0 1 93 9 max 443.815 1 0 1 036 15 0 1 0 15 0 1							_								_	
92 min -73.342 3 0 1 -1.011 1 0 1 0 1 0 1 93 9 max 443.815 1 0 1 036 15 0 1 0 15 0 1			8										-	_		-
93 9 max 443.815 1 0 1036 15 0 1 0 15 0 1			Ť													
			9				_	1		15		1		15		1
						3		1				1	0			1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
95		10	max	443.88	_1_	0	1	036	15	0	1	0	15	0	1
96			min	-73.245	3	0	1	-1.011	1	0	1	0	1	0	1
97		11	max		_1_	0	1	036	15	0	1	00	15	0	1
98			min	-73.196	3	0	1	-1.011	1	0	1	0	1	0	1
99		12	max	444.009	1_	0	1	036	15	0	1	0	15	0	1
100		40	min	-73.148	3	0	1	-1.011	1	0	1	001	1	0	1
101		13	max		1	0	1	036	15	0	1	0	15	0	1
102		4.4	min		3	0	1	<u>-1.011</u>	1	0	1	<u>001</u>	1	0	1
103		14	max		1	0	1	036	15	0	1	0	15	0	1
104		15	min	-73.051	3_1	0	1	<u>-1.011</u>	1	0	1	001	15	0	1
105		15	max	444.203	1	0	1	036	15	0	1	0 001		0	1
106 107		16	min	-73.002 444.268	<u>3</u> 1	0	1	-1.011 036	15	0	1	<u>001</u> 0	15	<u> </u>	1
107		10	max min		3	0	1	-1.011	1	0	1	001	1	0	1
109		17	max	444.333	<u> </u>	0	1	036	15	0	1	<u>001</u> 0	15	0	1
110		17	min		3	0	1	-1.011	1	0	1	001	1	0	1
111		18		444.397	1	0	1	036	15	0	1	0	15	0	1
112		10		-72.856	3	0	1	-1.011	1	0	1	002	1	0	1
113		19	max		1	0	1	036	15	0	1	0	15	0	1
114		10	min	-72.808	3	0	1	-1.011	1	0	1	002	1	0	1
115	M6	1		1023.778	1	.641	4	.236	1	0	1	0	3	0	1
116			min		3	.152	15	169	3	0	10	0	1	0	1
117		2		1023.885	1	.599	4	.236	1	0	1	0	3	0	15
118				-1172.224	3	.142	15	169	3	0	10	0	1	0	4
119		3		1023.991	1	.558	4	.236	1	0	1	0	3	0	15
120				-1172.144	3	.132	15	169	3	0	10	0	1	0	4
121		4	max	1024.098	1	.517	4	.236	1	0	1	0	11	0	15
122			min	-1172.064	3	.123	15	169	3	0	10	0	10	0	4
123		5	max	1024.204	1	.475	4	.236	1	0	1	0	1	0	15
124			min	-1171.984	3	.113	15	169	3	0	10	0	3	0	4
125		6		1024.311	_1_	.434	4	.236	1	0	1	0	1	0	15
126			min	-1171.905	3	.103	15	169	3	0	10	0	3	0	4
127		7		1024.417	_1_	.393	4	.236	1	0	1	0	1	0	15
128				-1171.825	3	.094	15	169	3	0	10	0	3	0	4
129		8		1024.524	1	.352	4	.236	1	0	1	0	1	0	15
130				-1171.745	3	.084	15	169	3	0	10	0	3	0	4
131		9		1024.63	1_	.319	2	.236	1	0	1	0	1	0	15
132		40	min		3	.074	15	<u>169</u>	3	0	10	0	3	0	4
133		10		1024.737 -1171.585	1	.287	2	.236	1	0	1	0	1	0	15
134 135		11	min	1024.843	<u>3</u>	.064 .255	1 <u>5</u>	169 .236	3	<u> </u>	10	0	3	0	15
136		11		-1171.505	3	.051	12		3	0	10	0	3	0	4
137		12		1024.95	<u>ა</u> 1	.222	2	169 .236	1	0	1	0	1	0	15
138		14		-1171.425	3	.035	12	169	3	0	10	0	3	0	4
139		13		1025.057	<u> </u>	.035	2	.236	1	0	1	0	1	0	15
140		13		-1171.345	3	.019	12	169	3	0	10	0	3	0	4
141		14		1025.163	1	.158	2	.236	1	0	1	0	1	0	15
142		17		-1171.265	3	0	3	169	3	0	10	0	3	0	4
143		15		1025.27	1	.126	2	.236	1	0	1	0	1	0	15
144				-1171.185	3	023	3	169	3	0	10	0	3	0	4
145		16		1025.376	1	.094	2	.236	1	0	1	0	1	0	15
146				-1171.105	3	047	3	169	3	0	10	0	3	0	2
147		17		1025.483	1	.062	2	.236	1	0	1	0	1	0	15
148				-1171.026	3	072	3	169	3	0	10	0	3	0	2
149		18		1025.589	1	.029	2	.236	1	0	1	0	1	0	15
150			min	-1170.946	3	096	3	169	3	0	10	0	3	0	2
151		19	max	1025.696	1	003	2	.236	1	0	1	0	1	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
152			min	-1170.866	3	12	3	169	3	0	10	0	3	0	2
153	M7	1	max	333.603	2	1.796	4	.007	1	0	1	0	1	0	2
154			min	-254.434	3	.423	15	007	2	0	3	0	3	0	12
155		2	max	333.535	2	1.618	4	.007	1	0	1	0	1	0	2
156			min	-254.484	3	.381	15	007	2	0	3	0	3	0	12
157		3	max	333.468	2	1.44	4	.007	1	0	1	0	1	0	2
158			min	-254.535	3	.339	15	007	2	0	3	0	3	0	3
159		4	max	333.4	2	1.263	4	.007	1	0	1	0	1	0	2
160			min	-254.586	3	.298	15	007	2	0	3	0	3	0	3
161		5	max	333.332	2	1.085	4	.007	1	0	1	0	1	0	15
162			min	-254.637	3	.256	15	007	2	0	3	0	3	0	4
163		6	max	333.264	2	.908	4	.007	1	0	1	0	1	0	15
164			min	-254.688	3	.214	15	007	2	0	3	0	3	0	4
165		7	max	333.196	2	.73	4	.007	1	0	1	0	1	0	15
166			min	-254.739	3	.172	15	007	2	0	3	0	3	0	4
167		8	max	333.128	2	.552	4	.007	1	0	1	0	1	0	15
168			min	-254.79	3	.131	15	007	2	0	3	0	3	0	4
169		9	max	333.06	2	.375	4	.007	1	0	1	0	1	0	15
170			min	-254.841	3	.089	15	007	2	0	3	0	3	001	4
171		10	max	332.993	2	.217	2	.007	1	0	1	0	1	0	15
172		10	min	-254.892	3	.043	12	007	2	0	3	Ö	3	001	4
173		11	max	332.925	2	.078	2	.007	1	0	1	0	1	0	15
174			min	-254.943	3	042	3	007	2	0	3	0	3	001	4
175		12	max	332.857	2	036	15	.007	1	0	1	0	1	0	15
176		12	min	-254.993	3	158	4	007	2	0	3	0	3	001	4
177		13	max	332.789	2	078	15	.007	1	0	1	0	1	0	15
178		10	min	-255.044	3	336	4	007	2	0	3	0	3	001	4
179		14	max	332.721	2	12	15	.007	1	0	1	0	1	0	15
180		14	min	-255.095	3	514	4	007	2	0	3	0	3	001	4
181		15	max	332.653	2	162	15	.007	1	0	1	0	<u> </u>	0	15
182		13	min	-255.146	3	691	4	007	2	0	3	0	3	0	4
183		16	max	332.585	2	204	15	.007	1	0	1	0	1	0	15
184		10	min	-255.197	3	869	4	007	2	0	3	0	3	0	4
185		17	max	332.517	2	245	15	.007	1	0	1	0	<u> </u>	0	15
186		17	min	-255.248	3	-1.047	4	007	2	0	3	0	3	0	4
187		18		332.45	2	287	15	.007	1	0	1	0	<u> </u>	0	15
188		10	max min	-255.299	3	-1.224	4	007	2	0	3	0	3	0	4
189		19		332.382	2	329	15	.007	1		1	0	<u> </u>	0	1
190		19	max min	-255.35		-1.402	4	007	2	0	3	0	3	0	1
191	M8	1		1281.563	<u>3</u> 1		1	.613	1	0	1	0	10		1
192	IVIO			-264.596		0	1	347	3	0	1	0	1	0	1
193		2		1281.628	<u> </u>	0	1	.613	1	0	1		1	0	1
							1		3		1	0	3		
194		2	min		3_	0	1	347		0		0		0	1
195		3		1281.693	2	0	-	.613	1	0	1	0	1	0	1
196		1	min	-264.499	3_	0	1	347	3	0	1	0	3	0	1
197		4		1281.757	1	0	1	.613	1	0	1	0	1	0	1
198		-			3	0	1	347	3	0	1	0	3	0	1
199		5		1281.822	1_	0	1	.613	1	0	1	0	1_	0	1
200				-264.402	3	0	1	347	3	0	1	0	3	0	1
201		6		1281.887	1_	0	1	.613	1	0	1	0	1_	0	1
202		_	min	-264.354	3	0	1	347	3	0	1	0	3	0	1
203		7		1281.952	_1_	0	1	.613	1	0	1	0	1_	0	1
204				-264.305	3_	0	1	347	3	0	1	0	3	0	1
205		8		1282.016	_1_	0	1	.613	1	0	1	0	1_	0	1
206			min	-264.257	3	0	1	347	3	0	1	0	3	0	1
207		9		1282.081	_1_	0	1	.613	1	0	1_	0	_1_	0	1
208			min	-264.208	3	0	1	347	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
209		10	max	1282.146	1	0	1	.613	1	0	1	0	1	0	1
210			min	-264.16	3	0	1	347	3	0	1	0	3	0	1
211		11	max	1282.21	1	0	1	.613	1	0	1	0	1	0	1
212			min	-264.111	3	0	1	347	3	0	1	0	3	0	1
213		12	max	1282.275	1	0	1	.613	1	0	1	0	1	0	1
214			min	-264.063	3	0	1	347	3	0	1	0	3	0	1
215		13	max	1282.34	1	0	1	.613	1	0	1	0	1	0	1
216			min	-264.014	3	0	1	347	3	0	1	0	3	0	1
217		14	max	1282.404	1	0	1	.613	1	0	1	0	1	0	1
218			min	-263.965	3	0	1	347	3	0	1	0	3	0	1
219		15	max	1282.469	1	0	1	.613	1	0	1	0	1	0	1
220			min	-263.917	3	0	1	347	3	0	1	0	3	0	1
221		16	max	1282.534	1	0	1	.613	1	0	1	0	1	0	1
222				-263.868	3	0	1	347	3	0	1	0	3	0	1
223		17		1282.599	1	0	1	.613	1	0	1	0	1	0	1
224			min		3	0	1	347	3	0	1	0	3	0	1
225		18	max	1282.663	1	0	1	.613	1	0	1	0	1	0	1
226				-263.771	3	0	1	347	3	0	1	0	3	0	1
227		19		1282.728	1	0	1	.613	1	0	1	0	1	0	1
228			min	-263.723	3	0	1	347	3	0	1	0	3	0	1
229	M10	1		319.514	1	.637	4	003	15	0	1	0	1	0	1
230				-340.203	3	.151	15	088	1	0	3	0	3	0	1
231		2	max	319.62	1	.596	4	003	15	0	1	0	1	0	15
232				-340.123	3	.142	15	088	1	0	3	0	3	0	4
233		3	max	319.727	1	.554	4	003	15	0	1	0	1	0	15
234				-340.043	3	.132	15	088	1	0	3	0	3	0	4
235		4	max		1	.513	4	003	15	0	1	0	1	0	15
236			1	-339.964	3	.122	15	088	1	0	3	0	3	0	4
237		5	max	319.94	1	.472	4	003	15	0	1	0	1	0	15
238			min	-339.884	3	.112	15	088	1	0	3	0	3	0	4
239		6	max		1	.43	4	003	15	0	1	0	1	0	15
240				-339.804	3	.103	15	088	1	0	3	0	3	0	4
241		7	max	320.153	1	.389	4	003	15	0	1	0	1	0	15
242			min	-339.724	3	.093	15	088	1	0	3	0	3	0	4
243		8	max	320.26	1	.348	4	003	15	0	1	0	1	0	15
244				-339.644	3	.083	15	088	1	0	3	0	3	0	4
245		9	max		1	.307	4	003	15	0	1	0	1	0	15
246				-339.564	3	.074	15	088	1	0	3	0	3	0	4
247		10	max		1	.265	4	003	15	0	1	0	15	0	15
248		10	min	-339.484	3	.064	15	088	1	0	3	0	3	0	4
249		11		320.579	1	.224	4	003	15	0	1	0	15	0	15
250				-339.404	3	.054	15	088	1	0	3	0	3	0	4
251		12		320.686	1	.183	4	003	15	0	1	0	15	0	15
252		14		-339.324	3	.045	15	088	1	0	3	0	3	0	4
253		13		320.792	<u>ა</u> 1	.142	4	003	15	0	1	0	15	0	15
254		13		-339.244	3	.035	15	003	1	0	3	0	3	0	4
255		14		320.899	1	.107	2	003	15	0	1	0	15	0	15
256		14		-339.164	3	.025	15	003	1	0	3	0	3	0	4
257		15		321.006	-	.025	2	003	15	0	1	0	15		15
		13		-339.085	1		1		1	0		0	3	0	
258 259		16		321.112	<u>3</u> 1	003 .043	2	088 003	15	0	1	0	15	0	15
		10					1				_	0	3		
260		17		-339.005	3	035	2	088	1_	0	3			0	4
261		17		321.219	1	.011	1	003	15	0	1	0	15	0	15
262		10		-338.925	3	068	-	088	1	0	3	0	3	0	4
263		18	max		1	011	12	003	15	0	1	0	15	0	15
264		10		-338.845	3	1	1	088	1	0	3	0	3	0	4
265		19	max	321.432	1	023	15	003	15	0	1	0	15	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]			LC		LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
266			min	-338.765	3	132	1	088	1	0	3	0	3	0	4
267	M11	1	max	75.343	2	1.801	4	.535	1	0	1	0	3	0	4
268			min	-85.614	3	.424	15	0	3	0	15	001	1	0	15
269		2	max	75.276	2	1.624	4	.535	1	0	1	0	3	0	4
270			min	-85.665	3	.382	15	0	3	0	15	001	1	0	12
271		3	max	75.208	2	1.446	4	.535	1	0	1	0	3	0	2
272			min	-85.716	3	.34	15	0	3	0	15	001	1	0	3
273		4	max	75.14	2	1.268	4	.535	1	0	1	0	3	0	15
274			min	-85.767	3	.298	15	0	3	0	15	001	1	0	3
275		5	max	75.072	2	1.091	4	.535	1	0	1	0	3	0	15
276		5	min	-85.817	3	.257	15	0	3	0	15	001	1	0	4
								_							_
277		6	max	75.004	2	.913	4	.535	1	0	1	0	3	0	15
278		_	min	-85.868	3	.215	15	0	3	0	15	0	1	0	4
279		7	max	74.936	2	.735	4	.535	1	0	1	0	3	0	15
280			min	-85.919	3	.173	15	0	3	0	15	0	1	0	4
281		8	max	74.868	2	.558	4	.535	1	0	1	0	3	0	15
282			min	-85.97	3	.131	15	0	3	0	15	0	1	0	4
283		9	max	74.801	2	.38	4	.535	1	0	1	0	3	0	15
284			min	-86.021	3	.089	15	0	3	0	15	0	1	001	4
285		10	max	74.733	2	.202	4	.535	1	0	1	0	3	0	15
286			min	-86.072	3	.048	15	0	3	0	15	0	1	001	4
287		11	max	74.665	2	.032	2	.535	1	0	1	0	3	0	15
288			min	-86.123	3	022	3	0	3	0	15	0	1	001	4
289		12	max	74.597	2	036	15	.535	1	0	1	0	3	0	15
290		12	min	-86.174	3	153	4	0	3	0	15	0	1	001	4
291		13	max	74.529	2	078	15	.535	1	0	1	0	3	0	15
292		13	min	-86.225	3	331	4	0	3		15	0	1	001	
		4.4						_		0			_		4
293		14	max	74.461	2	119	15	.535	1	0	1	0	3	0	15
294		4.5	min	-86.276	3	508	4	0	3	0	15	0	10	001	4
295		15	max	74.393	2	161	15	.535	1	0	1	0	3	0	15
296			min	-86.326	3	686	4	0	3	0	15	0	10	0	4
297		16	max	74.326	2	203	15	.535	1_	0	1	0	1	0	15
298			min	-86.377	3	864	4	0	3	0	15	0	15	0	4
299		17	max	74.258	2	245	15	.535	1	0	1	0	1	0	15
300			min	-86.428	3	-1.041	4	0	3	0	15	0	15	0	4
301		18	max	74.19	2	286	15	.535	1	0	1	0	1	0	15
302			min	-86.479	3	-1.219	4	0	3	0	15	0	15	0	4
303		19	max	74.122	2	328	15	.535	1	0	1	0	1	0	1
304			min	-86.53	3	-1.397	4	0	3	0	15	0	15	0	1
305	M12	1	max	443.071	1	0	1	2.332	1	0	1	0	1	0	1
306	2		min	-73.272	3	0	1	.078	15		1	0	3	0	1
307		2		443.135	1	0	1	2.332	1	0	1	0	1	0	1
308		_	min	-73.223	3	0	1	.078	15	0	1	0	15	0	1
309		3	max	443.2	1	0	1	2.332	1	0	1	0	1	0	1
310		3	min	-73.175	3	0	1	.078	15	0	1	0	15	0	1
311		4			<u> </u>	0	1	2.332	1	0	1	0	1	0	1
		4	max												
312		_	min	-73.126	3	0	1	.078	15	0	1	0	15	0	1
313		5	max		1	0	1	2.332	1	0	1	0	1	0	1
314			min	-73.078	3	0	1	.078	15	0	1	0	15	0	1
315		6	max		1	0	1	2.332	1	0	1	.001	1	0	1
316			min	-73.029	3	0	1	.078	15	0	1	0	15	0	1
317		7	max	443.459	1	0	1	2.332	1_	0	1	.001	1	0	1
318			min	-72.981	3	0	1	.078	15	0	1	0	15	0	1
319		8	max	443.524	1	0	1	2.332	1	0	1	.001	1	0	1
320			min	-72.932	3	0	1	.078	15	0	1	0	15	0	1
321		9	max		1	0	1	2.332	1	0	1	.002	1	0	1
322			min	-72.884	3	0	1	.078	15	0	1	0	15	0	1
U-2				7 2.00 /			_	1010							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	443.653	1	0	1	2.332	1	0	1	.002	1	0	1
324			min	-72.835	3	0	1	.078	15	0	1	0	15	0	1
325		11	max	443.718	1	0	1	2.332	1	0	1	.002	1	0	1
326			min	-72.787	3	0	1	.078	15	0	1	0	15	0	1
327		12	max	443.782	1	0	1	2.332	1	0	1	.002	1	0	1
328			min	-72.738	3	0	1	.078	15	0	1	0	15	0	1
329		13	max	443.847	1	0	1	2.332	1	0	1	.003	1	0	1
330			min	-72.69	3	0	1	.078	15	0	1	0	15	0	1
331		14	max	443.912	1	0	1	2.332	1	0	1	.003	1	0	1
332			min	-72.641	3	0	1	.078	15	0	1	0	15	0	1
333		15	max	443.976	1	0	1	2.332	1	0	1	.003	1	0	1
334			min	-72.592	3	0	1	.078	15	0	1	0	15	0	1
335		16	max	444.041	1	0	1	2.332	1	0	1	.003	1	0	1
336			min	-72.544	3	0	1	.078	15	0	1	0	15	0	1
337		17	max	444.106	1	0	1	2.332	1	0	1	.003	1	0	1
338			min	-72.495	3	0	1	.078	15	0	1	0	15	0	1
339		18	max	444.171	1	0	1	2.332	1	0	1	.004	1	0	1
340			min	-72.447	3	0	1	.078	15	0	1	0	15	0	1
341		19	max		1	0	1	2.332	1	0	1	.004	1	0	1
342			min	-72.398	3	0	1	.078	15	0	1	0	15	0	1
343	M1	1	max	104.435	1	339.402	3	-1.563	15	0	1	.091	1	0	1
344			min	3.475	15	-316.57	1	-46.293	1	0	3	.003	15	0	3
345		2	max	104.53	1	339.205	3	-1.563	15	0	1	.081	1	.069	1
346			min	3.504	15	-316.833	1	-46.293	1	0	3	.003	15	074	3
347		3	max	87.439	1	5.945	9	-1.547	15	0	12	.07	1	.136	1
348			min	2.838	10	-19.981	3	-46.026	1	0	1	.002	15	146	3
349		4	max	87.535	1	5.726	9	-1.547	15	0	12	.06	1	.137	1
350			min	2.917	10	-20.177	3	-46.026	1	0	1	.002	15	142	3
351		5	max	87.63	1	5.508	9	-1.547	15	0	12	.05	1	.137	1
352			min	2.997	10	-20.374	3	-46.026	1	0	1	.002	15	137	3
353		6	max	87.726	1	5.289	9	-1.547	15	0	12	.04	1	.138	1
354		_ <u> </u>	min	3.076	10	-20.571	3	-46.026	1	0	1	.001	15	133	3
355		7	max	87.821	1	5.07	9	-1.547	15	0	12	.03	1	.138	1
356		'	min	3.156	10	-20.768	3	-46.026	1	0	1	.001	15	128	3
357		8	max	87.917	1	4.852	9	-1.547	15	0	12	.02	1	.139	1
358			min	3.236	10	-20.965	3	-46.026	1	0	1	0	15	124	3
359		9	max	88.012	1	4.633	9	-1.547	15	0	12	.01	1	.14	1
360		-	min	3.315	10	-21.161	3	-46.026	1	0	1	0	15	119	3
361		10	max	88.108	1	4.414	9	-1.547	15	0	12	0	3	.14	1
362		10	min	3.395	10	-21.358	3	-46.026	1	0	1	0	15	115	3
363		11	max		1	4.196	9	-1.547	15	0	12	0	3	.143	2
364		- 1 1	min	3.437	15	-21.555	3	-46.026	1	0	1	01	1	11	3
365		12			1	3.977	9	-1.547	15	0	12	0	12	.147	2
366		12	min	3.466	15	-21.752	3	-46.026	1	0	1	02	1	105	3
367		13		88.394	1	3.758	9	-1.547	15	0	12	0	12	.151	2
368		13	min	3.495	15	-21.949	3	-46.026	1	0	1	03	1	1	3
369		1/	max		1	3.54	9	-1.547	15	0	12	001	15	.155	2
370		14	min	3.523	15	-22.145	3	-46.026	1	0	1	001 04	1	096	3
		15				3.321									
371 372		15	max min	88.585 3.552	1	-22.342	9	-1.547 -46.026	15 1	0 0	12	002 05	15	.16 091	3
373		16	max		1 <u>5</u>	33.66	2	-46.026 -1.562	15	0	1	002	15	.163	2
374		10									12				
		17	min	-30.916	3	-84.97	3	<u>-46.412</u>	1 1 5	0		06	1 1 5	085	3
375		17	max		2	33.398	2	-1.562	15	0	1	002	15	.157	1
376		40	min	-30.844	3	-85.167	3	-46.412	1	0	12	07	1	067	3
377		18	max	-3.496	15	365.672	1	-1.598	15	0	3	003	15	.08	1
378		40	min	-104.425	1	-154.669	3	-47.478	1	0	1	081	1	034	3
379		19	max	-3.467	15	365.409	1	-1.598	15	0	3	003	15	0	1

Model Name

Schletter, Inc. HCV

. : Standard PVMini Racking System Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
380			min	-104.33	1	-154.865	3	-47.478	1	0	1	091	1	0	3
381	M5	1	max	233.307	1	1119.431	3	0	10	0	1	.004	3	0	3
382			min	5.698	12	-1044.151	1	-36.724	3	0	3	0	10	0	1
383		2	max	233.402	1	1119.234	3	0	10	0	1	0	1_	.226	1
384			min	5.746	12	-1044.414	1	-36.724	3	0	3	004	3	242	3
385		3	max	176.832	1	7.388	9	4.191	3	0	3	0	11	.448	1
386			min	1.752	10	-71.012	3	388	1	0	1	011	3	48	3
387		4	max	176.928	1	7.17	9	4.191	3	0	3	0	11	.453	1
388			min	1.831	10	-71.209	3	388	1	0	1	01	3	465	3
389		5	max	177.023	1	6.951	9	4.191	3	0	3	0	11	.458	1
390			min	1.911	10	-71.405	3	388	1	0	1	009	3	449	3
391		6	max	177.119	1	6.732	9	4.191	3	0	3	0	11	.463	1
392			min	1.991	10	-71.602	3	388	1	0	1	009	3	434	3
393		7	max	177.214	1	6.514	9	4.191	3	0	3	0	11	.468	1
394			min	2.07	10	-71.799	3	388	1	0	1	008	3	418	3
395		8	max	177.31	1	6.295	9	4.191	3	0	3	0	11	.473	1
396			min	2.15	10	-71.996	3	388	1	0	1	007	3	402	3
397		9	max	177.405	1	6.076	9	4.191	3	0	3	0	11	.479	1
398			min	2.229	10	-72.193	3	388	1	0	1	006	3	387	3
399		10	max	177.501	1	5.858	9	4.191	3	0	3	0	10	.484	1
400			min	2.309	10	-72.389	3	388	1	0	1	005	3	371	3
401		11	max	177.596	1	5.639	9	4.191	3	0	3	0	10	.489	1
402			min	2.389	10	-72.586	3	388	1	0	1	004	3	355	3
403		12	max	177.692	1	5.42	9	4.191	3	0	3	0	10	.496	2
404			min	2.468	10	-72.783	3	388	1	0	1	003	3	34	3
405		13	max	177.787	1	5.202	9	4.191	3	0	3	0	10	.51	2
406			min	2.548	10	-72.98	3	388	1	0	1	002	3	324	3
407		14	max	177.883	1	4.983	9	4.191	3	0	3	0	10	.524	2
408			min	2.627	10	-73.177	3	388	1	0	1	001	3	308	3
409		15	max	177.978	1	4.764	9	4.191	3	0	3	0	10	.538	2
410			min	2.707	10	-73.373	3	388	1	0	1	0	1	292	3
411		16	max	280.147	2	176.603	2	4.16	3	0	1	0	3	.55	2
412			min	-100.302	3	-257.408	3	379	1	0	10	0	1	275	3
413		17	max	280.243	2	176.341	2	4.16	3	0	1	.001	3	.516	1
414			min	-100.231	3	-257.605	3	379	1	0	10	0	1	219	3
415		18	max	-6.666	12	1201.513	1	3.814	3	0	3	.002	3	.26	1
416			min	-233.544	1	-507.222	3	072	11	0	1	0	1	11	3
417		19	max	-6.618	12	1201.251	1	3.814	3	0	3	.003	3	0	3
418			min	-233.448	1	-507.418	3	072	11	0	1	0	1	0	1
419	M9	1	max	104.016	1	339.376	3	49.776	1	0	3	003	15	0	1
420			min	3.46	15	-316.566	1	1.875	15	0	1	09	1	0	3
421		2	max	104.111	1	339.18	3	49.776	1	0	3	001	12	.069	1
422			min	3.488	15	-316.828	1	1.875	15	0	1	079	1	074	3
423		3	max	87.487	1	5.922	9	44.574	1	0	1	.007	3	.136	1
424			min	3.281	10	-19.916	3	347	3	0	15	067	1	146	3
425		4	max	87.582	1	5.703	9	44.574	1	0	1	.007	3	.137	1
426			min	3.361	10	-20.112	3	347	3	0	15	058	1	141	3
427		5	max	87.678	1	5.485	9	44.574	1	0	1	.006	3	.137	1
428			min	3.407	15	-20.309	3	347	3	0	15	048	1	137	3
429		6	max	87.773	1	5.266	9	44.574	1	0	1	.006	3	.138	1
430		Ť	min	3.436	15	-20.506	3	347	3	0	15	038	1	133	3
431		7	max		1	5.047	9	44.574	1	0	1	.006	3	.138	1
432			min	3.465	15	-20.703	3	347	3	0	15	029	1	128	3
433		8	max	87.964	1	4.829	9	44.574	1	0	1	.006	3	.139	1
434		Ĭ	min	3.494	15	-20.9	3	347	3	0	15	019	1	124	3
435		9	max	88.06	1	4.61	9	44.574	1	0	1	.006	3	.14	1
436			min	3.523	15	-21.096	3	347	3	0	15	009	1	119	3
										•					

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
437		10	max	88.155	_1_	4.391	9	44.574	1	0	1	.006	3	.14	1
438			min	3.551	15	-21.293	3	347	3	0	15	0	2	11 <u>5</u>	3
439		11	max	88.251	_1_	4.173	9	44.574	1	0	1	.01	1	.143	2
440			min	3.58	15	-21.49	3	347	3	0	15	0	15	11	3
441		12	max	88.346	_1_	3.954	9	44.574	1	0	1	.02	1	.147	2
442			min	3.609	<u>15</u>	-21.687	3	347	3	0	15	0	15	105	3
443		13	max	88.442	_1_	3.735	9	44.574	1	0	1	.029	1	<u>.151</u>	2
444		4.4	min	3.638	<u>15</u>	-21.884	3	347	3	0	15	.001	15	<u>1</u>	3
445		14	max	88.537	1_	3.517	9	44.574	1	0	1	.039	1	.155	2
446		4.5	min	3.667	<u>15</u>	-22.08	3	347	3	0	15	.001	15	096	3
447		15	max	88.633	1_	3.298	9	44.574	1	0	1	.049	1	.159	2
448		4.0	min	3.695	<u>15</u>	-22.277	3	347	3	0	15	.002	15	091	3
449		16	max	80.287	2	33.404 -85.352	2	45.07	3	0	15 1	.059 .002	15	.163	2
450 451		17	min	-31.156	<u>3</u> 2	33.141	2	338 45.07	1	0	15	.002	1	086 .157	1
452		17	max min	80.382 -31.085	3	-85.549	3	338	3	0	1	.002	15	067	3
453		18	max	-31.065	15	365.673	1	47.377	1	0	2	.079	1	.08	1
454		10	min	-104.075	1	-154.666	3	.017	3	0	3	.003	15	034	3
455		19	max	-3.457	15	365.411	1	47.377	1	0	2	.09	1	<u>054</u> 0	1
456		13	min	-103.979	1	-154.862	3	.017	3	0	3	.003	15	0	3
457	M13	1	max	49.894	1	316.203	1	-3.46	15	0	1	.09	1	0	1
458	IWITO		min	1.875	15	-339.38	3	-104.006	1	0	3	.003	15	0	3
459		2	max	49.894	1	223.232	1	-2.648	15	0	1	.026	1	.201	3
460		_	min	1.875	15	-239.488	3	-79.464	1	0	3	0	15	187	1
461		3	max	49.894	1	130.262	1	-1.836	15	0	1	.003	3	.333	3
462			min	1.875	15	-139.595	3	-54.922	1	0	3	021	1	31	1
463		4	max	49.894	1	37.291	1	-1.024	15	0	1	0	3	.395	3
464			min	1.875	15	-39.703	3	-30.38	1	0	3	05	1	368	1
465		5	max	49.894	1	60.19	3	.033	10	0	1	0	12	.388	3
466			min	1.875	15	-55.679	1	-5.838	1	0	3	063	1	362	1
467		6	max	49.894	_1_	160.082	3	18.704	1	0	1	0	12	.311	3
468			min	1.875	15	-148.65	1_	401	3	0	3	058	1	291	1
469		7	max	49.894	_1_	259.975	3	43.246	1	0	1	0	12	.165	3
470			min	1.875	15	-241.621	1_	.573	12	0	3	037	1	155	1
471		8	max	49.894	_1_	359.867	3	67.789	1	0	1	.002	2	.045	1
472			min	1.875	15	-334.591	1_	1.361	12	0	3	0	3	05	3
473		9	max	49.894	_1_	459.76	3	92.331	1	0	1	.057	1	.309	1
474		4.0	min	1.875	<u> 15</u>	-427.562	1_	2.149	12	0	3	.001	12	334	3
475		10	max	49.894	1_	559.652	3	116.873	1	0	1	.13	1	.639	1
476		4.4	min	1.875	<u>15</u>	-520.532	1_	2.936	12	0	3	.003	12	688	3
477		11	_	46.407			1	-1.971	12	0	3	.056	1	.309	1
478		40	min	1.563	<u>15</u>	-459.76	3	-91.911	1	0	1	002	3	334	3
479 480		12			1	334.591	1	-1.183	12	0	3	.002	2	.045	1
481		13	min	1.563 46.407	<u>15</u> 1	-359.867 241.62	<u>3</u> 1	-67.369	1 12	0	3	004 001	3 15	05 .165	3
482		13	max min	1.563	15	-259.975	3	395 -42.827	1	0	1	037	1	155	3
483		1.1	max		1	148.65	1	.683	3	0	3	002	15	.311	3
484		14	min	1.563	15	-160.082	3	-18.285	1	0	1	059	1	291	1
485		15	max	46.407	1	55.679	1	6.257	1	0	3	002	15	.388	3
486		13	min	1.563	15	-60.19	3	033	10	0	1	063	1	362	1
487		16	max	46.407	1 1	39.703	3	30.799	1	0	3	003 001	12	.395	3
488		10	min	1.563	15	-37.291	1	1.04	15	0	1	05	1	368	1
489		17	max		1	139.595	3	55.342	1	0	3	<u>05</u>	3	.333	3
490		17	min	1.563	15	-130.262	1	1.852	15	0	1	02	1	31	1
491		18	max	46.407	1	239.488	3	79.884	1	0	3	.027	1	.201	3
492			min	1.563	15	-223.233	1	2.664	15	0	1	0	15	187	1
493		19	max		1	339.38	3	104.426	1	0	3	.091	1	0	1
							<u> </u>		•				•		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
494			min	1.563	15	-316.203	1	3.475	15	0	1	.003	15	0	3
495	M16	1	max	015	3	365.794	1	-3.457	15	0	3	.09	1	0	2
496			min	-47.255	1	-154.879	3	-103.989	1	0	1	.003	15	0	3
497		2	max	015	3	258.229	1	-2.645	15	0	3	.026	1	.092	3
498			min	-47.255	1	-109.475	3	-79.447	1	0	1	0	15	217	1
499		3	max	015	3	150.663	1	-1.833	15	0	3	0	12	.152	3
500			min	-47.255	1	-64.071	3	-54.905	1	0	1	021	1	359	1
501		4	max	015	3	43.098	1	-1.021	15	0	3	002	15	.181	3
502			min	-47.255	1	-18.668	3	-30.363	1	0	1	05	1	426	1
503		5	max	015	3	26.736	3	.031	10	0	3	002	15	.178	3
504			min	-47.255	1	-64.468	1	-5.82	1	0	1	063	1	418	1
505		6	max	015	3	72.139	3	18.722	1	0	3	002	15	.144	3
506			min	-47.255	1	-172.034	1	.005	3	0	1	059	1	336	1
507		7	max	015	3	117.543	3	43.264	1	0	3	001	15	.078	3
508			min	-47.255	1	-279.599	1	.827	12	0	1	037	1	18	1
509		8	max	015	3	162.946	3	67.806	1	0	3	.002	2	.052	1
510			min	-47.255	1	-387.165	1	1.615	12	0	1	003	3	02	3
511		9	max	015	3	208.35	3	92.348	1	0	3	.057	1	.358	1
512			min	-47.255	1	-494.73	1	2.403	12	0	1	0	3	149	3
513		10	max	-1.598	15	-12.492	15	116.89	1	0	15	.13	1	.739	1
514			min	-47.367	1	-602.296	1	-5.113	3	0	1	.003	12	309	3
515		11	max	-1.598	15	494.73	1	-2.64	12	0	1	.057	1	.358	1
516			min	-47.367	1	-208.35	3	-91.998	1	0	3	.001	12	149	3
517		12	max	-1.598	15	387.165	1	-1.852	12	0	1	.002	2	.052	1
518			min	-47.367	1	-162.946	3	-67.456	1	0	3	0	3	02	3
519		13	max	-1.598	15	279.599	1	-1.065	12	0	1	001	15	.078	3
520			min	-47.367	1	-117.543	3	-42.913	1	0	3	037	1	18	1
521		14	max	-1.598	15	172.033	1	277	12	0	1	002	12	.144	3
522			min	-47.367	1	-72.139	3	-18.371	1	0	3	058	1	336	1
523		15	max	-1.598	15	64.468	1	6.171	1	0	1	002	12	.178	3
524			min	-47.367	1	-26.736	3	031	10	0	3	063	1	418	1
525		16	max	-1.598	15	18.668	3	30.713	1	0	1	001	12	.181	3
526			min	-47.367	1	-43.098	1	1.031	15	0	3	05	1	426	1
527		17	max	-1.598	15	64.071	3	55.255	1	0	1	0	3	.152	3
528			min	-47.367	1	-150.663	1	1.843	15	0	3	02	1	359	1
529		18	max	-1.598	15	109.475	3	79.797	1	0	1	.027	1	.092	3
530			min	-47.367	1	-258.229	1	2.655	15	0	3	0	15	217	1
531		19	max	-1.598	15	154.879	3	104.339	1	0	1	.091	1	0	1
532			min	-47.367	1	-365.795	1	3.467	15	0	3	.003	15	0	3
533	M15	1	max	0	2	2.183	4	.051	3	0	1	0	1	0	1
534			min	-44.512		0	2	054	1	0	3	0	3	0	1
535		2	max	0	2	1.941	4	.051	3	0	1_	0	1	0	2
536			min	-44.572	3	0	2	054	1	0	3	0	3	0	4
537		3	max	0	2	1.698	4	.051	3	0	1	0	1	0	2
538			min	-44.631	3	0	2	054	1	0	3	0	3	001	4
539		4	max	0	2	1.456	4	.051	3	0	1	0	1	0	2
540			min	-44.691	3	0	2	054	1	0	3	0	3	002	4
541		5	max	0	2	1.213	4	.051	3	0	1_	0	1	0	2
542			min	-44.751	3	0	2	054	1	0	3	0	3	003	4
543		6	max	0	2	.97	4	.051	3	0	1	0	1	0	2
544			min	-44.81	3	0	2	054	1	0	3	0	3	003	4
545		7	max	0	2	.728	4	.051	3	0	1	0	3	0	2
546			min	-44.87	3	0	2	054	1	0	3	0	1	003	4
547		8	max	0	2	.485	4	.051	3	0	1	0	3	0	2
548			min	-44.93	3	0	2	054	1	0	3	0	1	004	4
549		9	max	0	2	.243	4	.051	3	0	1	0	3	0	2
550			min	-44.989	3	0	2	054	1	0	3	0	1	004	4

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

FF4	Member	Sec	I	Axial[lb]							LC	y-y Mome		I -	
551 552		10	max	0 -45.049	3	0	1	.051 054	3	0	3	0	<u>3</u> 1	004	2
		11	min		2	0	_	.051	<u>1</u> 3	0	<u>ာ</u> 1	0	3	004 0	4
553			max	0 -45.109	3	243	4	054	<u> </u>	0	3	0	1	004	2
554		12	min	-45.109 0	2			.051	3		<u>ာ</u> 1	0		004	4
555 556		12	max min	-45.168	3	485	4	054	<u> </u>	0	3	0	<u>3</u>	004	4
		12							3	_	<u>ာ</u> 1				_
557		13	max	0 -45.228	3	728	2	.051 054	<u> </u>	0	3	0	<u>3</u>	0	2
558		11	min		2		2		•	0	<u>ာ</u> 1	0		003	4
559		14	max	<u> </u>		0	4	.051	3	0		0	3	0	2
560		15	min	-45.288	3	97		054	3	_	<u>3</u> 1	0	-	003	4
561		15	max	0 -45.347	2	0	2	.051	<u> </u>	0			<u>3</u>	0	2
562		16	min		2	-1.213	4	054	3	0	<u>3</u>	0	3	003	4
563		10	max	0	3	0	2	.051	<u> </u>	0		0	1	002	2
564		47	min	-45.407		-1.456	4	054		0	3	_			4
565		17	max	<u>0</u>	2	1 600	2	.051	<u>3</u>	0	<u>1</u> 3	0	<u>3</u>	001	2
566		4.0	min	-45.467	3	-1.698	4	054	3	0		0			4
567		18	max	0	2	0	2	.051		0	1	0	3	0	2
568		40	min	-45.526	3	-1.941	4	054	1_	0	3	0	1	0	4
569		19	max	0	2	0	2	.051	3	0	1	0	3	0	1
570	NA4CA	4	min	-45.586	3	-2.183	4	054	1_	0	3	0	1	0	1
571	M16A	1	max	0	10	2.183	4	.027	1	0	3	0	3	0	1
572			min	-44.865	3	0	10	02	3	0	1	0	1	0	1
573		2	max	0	10	1.941	4	.027	1_	0	3	0	3	0	10
574			min	-44.806	3	0	10	02	3	0	1	0	1	0	4
575		3	max	0	10	1.698	4	.027	1_	0	3	0	3	0	10
576			min	-44.746	3	0	10	02	3	0	1	0	1	001	4
577		4	max	0	10	1.456	4	.027	1_	0	3	0	3	0	10
578		_	min	-44.686	3	0	10	02	3	0	1	0	1	002	4
579		5	max	0	10	1.213	4	.027	1	0	3	0	3	0	10
580			min	-44.627	3	0	10	02	3	0	1	0	1	003	4
581		6	max	0	10	.97	4	.027	1_	0	3	0	3	0	10
582		_	min	<u>-44.567</u>	3	700	10	02	3	0	1	0	1	003	4
583		7	max	0	10	.728	4	.027	1_	0	3	0	3	0	10
584			min	-44.507	3	0	10	02	3	0	1	0	1	003	4
585		8	max	0	10	.485	4	.027	1_	0	3	0	3	0	10
586			min	<u>-44.448</u>	3	0	10	02	3	0	1	0	1	004	4
587		9	max	0	10	.243	4	.027	1	0	3	0	3	0	10
588		40	min	-44.388	3	0	10	02	3	0	1	0	1	004	4
589		10	max	0	10	0	1	.027	1_	0	3	0	3	0	10
590		4.4	min	-44.328	3	0	1	02	3	0	1_	0	1	004	4
591		11	max	0	10	0	10	.027	1	0	3	0	3	0	10
592		40	min	-44.269	3	243	4	02	3	0	1	0	1	004	4
593		12	max	0	10	0	10	.027	1	0	3	0	3	0	10
594		40	min	-44.209	3	485	4	02	3	0	1	0	1	004	4
595		13	max	0	10	720	10	.027	1	0	3	0	2	0	10
596		4.4	min	-44.149	3	728	4	02	3	0	1	0	4	003	4
597		14	max	0	10	0	10	.027	1	0	3	0	1	0	10
598		4.5	min	-44.09	3	97	4	02	3	0	1	0	3	003	4
599		15	max	0	10	0	10	.027	1	0	3	0	1	0	10
600		40	min	-44.03	3	-1.213	4	02	3	0	1_	0	3	003	4
601		16	max	0	10	0	10	.027	1_	0	3	0	1	0	10
602			min	<u>-43.97</u>	3	-1.456	4	02	3	0	1_	0	3	002	4
603		17	max	0	10	0	10	.027	1_	0	3	0	1	0	10
604		4.0	min	-43.911	3	-1.698	4	02	3	0	1	0	3	001	4
605		18	max	.015	2	0	10	.027	1_	0	3	0	1	0	10
606			min	<u>-43.851</u>	3	-1.941	4	02	3	0	1	0	3	0	4
607		19	max	.095	2	0	10	.027	_1_	0	3	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-43.791	3	-2.183	4	02	3	0	1	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) I /v Ratio	LC	(n) I /z Ratio	IC
1	M2	1	max	.003	1	.007	2	.009	1	-2.287e-5		NC NC	3	NC NC	2
2			min	003	3	006	3	0	3	-6.723e-4	1	4957.802	2	3553.315	1
3		2	max	.002	1	.006	2	.009	1	-2.194e-5	15	NC	3	NC	2
4		_	min	003	3	006	3	0	3	-6.453e-4	1	5391.368	2	3846.571	1
5		3	max	.002	1	.006	2	.008	1	-2.101e-5	15	NC	3	NC	2
6			min	003	3	006	3	0	3	-6.182e-4	1	5903.705	2	4192.164	
7		4	max	.002	1	.005	2	.007	1	-2.008e-5	15	NC	1	NC	2
8		_	min	002	3	005	3	0	3	-5.912e-4	1	6513.401	2	4602.853	
9		5	max	.002	1	.005	2	.007	1	-1.914e-5	15	NC	1	NC	2
10		J	min	002	3	005	3	0	3	-5.642e-4	1	7245.111	2	5095.681	1
11		6	max	.002	1	.004	2	.006	1	-1.821e-5	15	NC	1	NC	2
12		0	min	002	3	005	3	<u>.006</u>	3	-5.371e-4	1	8132.083	2	5693.841	1
13		7		.002	1	.004	2	.005	1	-1.728e-5	15	NC	1	NC	2
14			max	002	3		3		3		1	9220.011		6429.558	
15		0	min		1	005		<u> </u>		-5.101e-4			2		
		8	max	.002		.003	2		1	-1.635e-5	<u>15</u>	NC NC	1	NC 7040.7	2
16			min	002	3	004	3	0	3	-4.831e-4	1_	NC NC		7348.7	2
17		9	max	.001	1	.003	2	.004	1	-1.541e-5	<u>15</u>	NC NC	1	NC 0540,440	
18		40	min	002	3	004	3	0	3	-4.56e-4	1_	NC NC	1_	8518.419	1
19		10	max	.001	1	.002	2	.003	1	-1.448e-5	<u>15</u>	NC	1	NC NC	1
20		4.4	min	001	3	004	3	0	3	-4.29e-4	1_	NC NC	1_	NC NC	1
21		11	max	.001	1	.002	2	.003	1	-1.355e-5	<u>15</u>	NC	1	NC	1
22		40	min	001	3	003	3	0	3	-4.02e-4	1_	NC	1_	NC	1
23		12	max	.001	1	.002	2	.002	1	-1.262e-5	<u>15</u>	NC	1	NC NC	1
24			min	001	3	003	3	0	3	-3.749e-4	_1_	NC	1_	NC	1
25		13	max	0	1	.001	2	.002	1	-1.168e-5	<u>15</u>	NC	1_	NC	1
26			min	0	3	003	3	0	3	-3.479e-4	_1_	NC	1_	NC	1
27		14	max	0	1	0	2	.001	1	-1.075e-5	<u>15</u>	NC	_1_	NC	1
28			min	0	3	002	3	0	3	-3.209e-4	_1_	NC	_1_	NC	1
29		15	max	0	1	0	2	0	1	-9.817e-6	15	NC	1	NC	1
30			min	0	3	002	3	0	3	-2.938e-4	_1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-8.885e-6	<u>15</u>	NC	1	NC	1
32			min	0	3	001	3	0	3	-2.668e-4	1_	NC	1_	NC	1
33		17	max	0	1	0	2	0	1	-7.952e-6	<u>15</u>	NC	_1_	NC	1
34			min	0	3	0	3	0	3	-2.398e-4	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-7.02e-6	15	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-2.127e-4	1_	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-5.751e-6	12	NC	_1_	NC	1
38			min	0	1	0	1	0	1	-1.857e-4	1_	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	8.526e-5	_1_	NC	_1_	NC	1
40			min	0	1	0	1	0	1	2.778e-6	12	NC	1	NC	1
41		2	max	0	3	0	2	0	12	1.065e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	3.523e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12	1.278e-4	1	NC	1	NC	1
44			min	0	2	001	3	0	1	4.249e-6	15	NC	1	NC	1
45		4	max	0	3	0	2	0	12	1.491e-4	1	NC	1	NC	1
46			min	0	2	002	3	0	1	4.976e-6	15	NC	1	NC	1
47		5	max	0	3	0	2	0	3	1.704e-4	1	NC	1	NC	1
48			min	0	2	003	3	0	1	5.703e-6	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3	1.917e-4	1	NC	1	NC	1
50			min	0	2	004	3	0	1	6.429e-6	15	NC	1	NC	1
51		7	max	0	3	0	2	0	3	2.13e-4	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
52			min	0	2	004	3	0	1	7.156e-6	15	NC	1	NC	1
53		8	max	0	3	0	2	0	3	2.343e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	005	3	0	1	7.882e-6	15	NC	1	NC	1
55		9	max	0	3	.001	2	0	3	2.556e-4	1	NC	1	NC	1
56			min	0	2	005	3	0	1	8.609e-6	15	NC	1	NC	1
57		10	max	0	3	.001	2	0	1	2.769e-4	1_	NC	1	NC	1
58			min	0	2	006	3	0	15	9.336e-6	15	NC	1	NC	1
59		11	max	0	3	.002	2	0	1	2.982e-4	1	NC	1	NC	1
60			min	0	2	006	3	0	15	1.006e-5	15	NC	1	NC	1
61		12	max	0	3	.002	2	.001	1	3.195e-4	1	NC	1_	NC	1
62			min	0	2	006	3	0	15	1.079e-5	15	NC	1	NC	1
63		13	max	0	3	.003	2	.002	1	3.408e-4	1	NC	1	NC	1
64			min	0	2	007	3	0	15	1.152e-5	15	NC	1	NC	1
65		14	max	0	3	.004	2	.002	1	3.62e-4	1	NC	1	NC	1
66			min	0	2	007	3	0	15	1.224e-5	15	NC	1	NC	1
67		15	max	0	3	.005	2	.003	1	3.833e-4	1	NC	1	NC	1
68			min	0	2	007	3	0	15	1.297e-5	15	9851.229	2	NC	1
69		16	max	0	3	.006	2	.003	1	4.046e-4	1	NC	1	NC	1
70			min	0	2	007	3	0	15	1.37e-5	15	8295.427	2	NC	1
71		17	max	0	3	.006	2	.003	1	4.259e-4	1	NC	3	NC	1
72			min	0	2	007	3	0	15	1.442e-5	15	7102.038	2	NC	1
73		18	max	0	3	.007	2	.004	1	4.472e-4	1	NC	3	NC	1
74			min	0	2	007	3	0	15	1.515e-5	15	6175.267	2	NC	1
75		19	max	0	3	.008	2	.004	1	4.685e-4	1	NC	3	NC	1
76			min	0	2	007	3	0	15		15	5448.539	2	NC	1
77	M4	1	max	.002	1	.008	2	0		-1.926e-5	15	NC	1	NC	2
78			min	0	3	006	3	003	1	-5.786e-4	1	NC	1	5881.548	
79		2	max	.002	1	.007	2	0	15		15	NC	1	NC	2
80			min	0	3	006	3	003	1	-5.786e-4	1	NC	1	6417.642	1
81		3	max	.002	1	.007	2	0	15	-1.926e-5	15	NC	1	NC	2
82			min	0	3	006	3	003	1	-5.786e-4	1	NC	1	7055.613	1
83		4	max	.002	1	.006	2	0	15		15	NC	1	NC	2
84			min	0	3	005	3	002	1	-5.786e-4	1	NC	1	7822.347	1
85		5	max	.002	1	.006	2	0	15	-1.926e-5	15	NC	1	NC	2
86			min	0	3	005	3	002	1	-5.786e-4	1	NC	1	8754.469	
87		6	max	.002	1	.006	2	0	15	-1.926e-5	15	NC	1	NC	2
88			min	0	3	004	3	002	1	-5.786e-4	1	NC	1	9902.921	1
89		7	max	.001	1	.005	2	0		-1.926e-5	15	NC	1	NC	1
90			min	0	3	004	3	002	1	-5.786e-4	1	NC	1	NC	1
91		8	max	.001	1	.005	2	0		-1.926e-5		NC	1	NC	1
92			min	0	3	004	3	001		-5.786e-4		NC	1	NC	1
93		9	max	.001	1	.004	2	0		-1.926e-5		NC	1	NC	1
94		Ť	min	0	3	003	3	001	1	-5.786e-4	1	NC	1	NC	1
95		10	max	.001	1	.004	2	0	15	-1.926e-5	15	NC	1	NC	1
96		10	min	0	3	003	3	001	1	-5.786e-4	1	NC	1	NC	1
97		11	max	0	1	.003	2	0		-1.926e-5	15	NC	1	NC	1
98			min	0	3	003	3	0	1	-5.786e-4	1	NC	1	NC	1
99		12	max	0	1	.003	2	0	15		15	NC	1	NC	1
100		12	min	0	3	002	3	0	1	-5.786e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0		-1.926e-5		NC	1	NC	1
102		13	min	0	3	002	3	0	1	-5.786e-4	1	NC	1	NC	1
103		14	max	0	1	.002	2	0	15		•	NC	1	NC	1
104		14	min	0	3	002	3	0	1	-5.786e-4	1	NC	1	NC	1
105		15		0	1	.002	2	0	15		15	NC NC	1	NC NC	1
106		10	max	0	3	002 001	3	0	1	-1.926e-5 -5.786e-4	1 <u>1</u>	NC NC	1	NC NC	1
107		16	min	0	1	.001	2	0		-5.786e-4 -1.926e-5		NC NC	1	NC NC	1
		10	max								<u>15</u>				
108			min	0	3	001	3	0	1	-5.786e-4	<u>1</u>	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	0	2	0	15	-1.926e-5	<u>15</u>	NC	_1_	NC	1_
110			min	0	3	0	3	0	1	-5.786e-4	1_	NC	1_	NC	1
111		18	max	00	1	00	2	0	15	-1.926e-5	<u>15</u>	NC	_1_	NC	1_
112			min	0	3	0	3	0	1	-5.786e-4	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-1.926e-5	<u>15</u>	NC	1_	NC	1
114	140		min	0	1	0	1	0	1	-5.786e-4	1_	NC	1_	NC	1
115	<u>M6</u>	1_	max	.008	1	.024	2	.004	1	2.435e-4	3	NC 4000 000	3	NC	2
116			min	01	3	<u>019</u>	3	003	3	-6.118e-8		1382.269	2	8751.789	
117		2	max	.008	1	.023	2	.004	1	2.371e-4	3	NC	3	NC 044C OFF	2
118 119		2	min	009	3	018 .021	2	003	3	-5.787e-8	10	1475.854 NC	2	9446.255 NC	1
120		3	max	.007	3		3	.003	3	2.306e-4 -5.457e-8	3	1582.69	3	NC NC	1
121		4	min	009 .007	1	<u>017</u> .019	2	003 .003	1	2.242e-4	<u>10</u>	NC	3	NC NC	1
122		4	max min	008	3	016	3	003	3	-5.126e-8	10	1705.426	2	NC NC	1
123		5		.007	1	.018	2	.003	1	2.177e-4	3	NC	3	NC NC	1
124			max min	007	3	015	3	002	3	-4.137e-7	2	1847.476	2	NC	1
125		6	max	.006	1	.017	2	.002	1	2.112e-4	3	NC	3	NC	1
126			min	007	3	014	3	002	3	-2.485e-6	2	2013.309	2	NC	1
127		7	max	.006	1	.015	2	.002	1	2.048e-4	3	NC	3	NC	1
128			min	006	3	013	3	002	3	-4.556e-6	2	2208.885	2	NC	1
129		8	max	.005	1	.014	2	.002	1	1.983e-4	3	NC	3	NC	1
130			min	006	3	012	3	002	3	-6.627e-6	2	2442.338	2	NC	1
131		9	max	.005	1	.012	2	.002	1	1.919e-4	3	NC	3	NC	1
132			min	005	3	011	3	001	3	-8.698e-6	2	2725.06	2	NC	1
133		10	max	.004	1	.011	2	.001	1	1.854e-4	3	NC	3	NC	1
134			min	005	3	01	3	001	3	-1.172e-5	11	3073.506	2	NC	1
135		11	max	.004	1	.009	2	.001	1	1.79e-4	3	NC	3	NC	1
136			min	004	3	009	3	001	3	-1.518e-5	1	3512.364	2	NC	1
137		12	max	.003	1	.008	2	0	1	1.725e-4	3	NC	3	NC	1
138			min	004	3	008	3	0	3	-2.211e-5	1	4080.426	2	NC	1
139		13	max	.003	1	.007	2	0	1	1.661e-4	3	NC	3	NC	1
140			min	003	3	007	3	0	3	-2.905e-5	1_	4842.348	2	NC	1
141		14	max	.002	1	.006	2	0	1	1.596e-4	3_	NC	3_	NC	1
142			min	003	3	006	3	0	3	-3.598e-5	1_	5914.504	2	NC	1
143		15	max	.002	1	.004	2	0	1	1.532e-4	3	NC	3_	NC	1
144			min	002	3	005	3	0	3	-4.292e-5	1_	7529.629	2	NC	1
145		16	max	.001	1	.003	2	0	1	1.467e-4	3	NC	1_	NC	1
146			min	002	3	003	3	0	3	-4.985e-5	1_	NC	1_	NC NC	1
147		17	max	0	1	.002	2	0	1	1.402e-4	3_	NC	_1_	NC NC	1
148		40	min	001	3	002	3	0	3	-5.679e-5	1_	NC NC	1_	NC NC	1
149		18	max	0	1	.001	2	0	1	1.338e-4		NC NC	1_	NC NC	1
150		40	min	0	3	<u>001</u>	3	0	3	-6.372e-5	1_	NC NC	1_	NC NC	1
151 152		19	max	0	1	0	1	0 0	1	1.273e-4	3_	NC NC	1	NC NC	1
	M7	1	min	0	1	0	1		1	-7.066e-5	1	NC NC	1	NC NC	1
153 154	IVI /		max min	0	1	0	1	<u> </u>	1	3.204e-5 -5.825e-5	3	NC NC	1	NC NC	1
155		2		0	3	.001	2	0	3	2.708e-5	<u> </u>	NC	1	NC	1
156			max min	0	2	002	3	0	1	-4.403e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	2.213e-5	<u> </u>	NC	1	NC	1
158		<u> </u>	min	0	2	003	3	0	1	-2.98e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	0	3	1.717e-5	1	NC	1	NC	1
160			min	0	2	005	3	0	1	-1.558e-5	3	NC	1	NC	1
161		5	max	0	3	.005	2	.001	3	1.221e-5	1	NC	1	NC	1
162			min	0	2	007	3	0	1	-1.354e-6	3	8719.243	2	NC	1
163		6	max	0	3	.007	2	.001	3	1.287e-5	3	NC	3	NC	1
164			min	001	2	008	3	0	1	0		6987.727	2	NC	1
165		7	max	0	3	.008	2	.001	3	2.71e-5	3	NC	3	NC	1
		<u> </u>				.555		.001		,					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
166			min	001	2	01	3	0	1	0	10	5803.399	2	NC	1
167		8	max	.001	3	.009	2	.002	3	4.132e-5	3	NC	3	NC	1
168			min	001	2	011	3	001	1	-2.662e-6	1	4935.04	2	NC	1
169		9	max	.001	3	.011	2	.002	3	5.555e-5	3	NC	3	NC	1
170			min	002	2	012	3	001	1	-7.619e-6	1	4267.451	2	NC	1
171		10	max	.001	3	.012	2	.002	3	6.977e-5	3	NC	3	NC	1
172		1	min	002	2	014	3	001	1	-1.258e-5	1	3736.779	2	NC	1
173		11	max	.002	3	.014	2	.002	3	8.399e-5	3	NC	3	NC	1
174		+ ' '	min	002	2	015	3	001	1	-1.753e-5	1	3304.675	2	NC	1
175		12	max	.002	3	.016	2	.002	3	9.822e-5	3	NC	3	NC	1
176		12	min	002	2	016	3	002	1	-2.249e-5	1	2946.588	2	NC	1
		40									•				_
177		13	max	.002	3	.017	2	.002	3	1.124e-4	3_	NC 0045 040	3	NC	1
178			min	003	2	<u>017</u>	3	002	1	-2.745e-5	1_	2645.948	2	NC	1
179		14	max	.002	3	.019	2	.002	3	1.267e-4	3	NC	3_	NC	1
180			min	003	2	018	3	002	1	-3.241e-5	1_	2391.069	2	NC	1
181		15	max	.002	3	.021	2	.002	3	1.409e-4	3	NC	3	NC	1
182			min	003	2	019	3	002	1	-3.737e-5	1_	2173.395	2	NC	1
183		16	max	.002	3	.023	2	.002	3	1.551e-4	3	NC	3	NC	1
184			min	003	2	02	3	002	1	-4.232e-5	1	1986.471	2	NC	1
185		17	max	.003	3	.025	2	.002	3	1.693e-4	3	NC	3	NC	1
186			min	003	2	021	3	002	1	-4.728e-5	1	1825.304	2	NC	1
187		18	max	.003	3	.027	2	.002	3	1.836e-4	3	NC	3	NC	1
188		1	min	004	2	022	3	002	1	-5.224e-5	1	1685.958	2	NC	1
189		19	max	.003	3	.029	2	.002	3	1.978e-4	3	NC	3	NC	1
190		13	min	004	2	022	3	002	1	-5.72e-5	1	1565.285	2	NC	1
191	M8	1	max	.006	1	.027	2	.002	1	-7.356e-8	10	NC	1	NC	2
	IVIO	+-			3		3		3			NC	1		
192			min	001		02		001		-1.543e-4	3			9990.108	
193		2	max	.006	1	.026	2	.002	1	-7.356e-8	10	NC	1	NC	1
194		_	min	001	3	<u>019</u>	3	001	3	-1.543e-4	3	NC	1_	NC	1
195		3	max	.005	1	.024	2	.002	1	-7.356e-8	10	NC	1_	NC	1
196			min	001	3	018	3	0	3	-1.543e-4	3	NC	1	NC	1
197		4	max	.005	1	.023	2	.001	1	-7.356e-8	<u>10</u>	NC	_1_	NC	1
198			min	001	3	016	3	0	3	-1.543e-4	3	NC	1_	NC	1
199		5	max	.005	1	.021	2	.001	1	-7.356e-8	10	NC	1	NC	1
200			min	0	3	015	3	0	3	-1.543e-4	3	NC	1	NC	1
201		6	max	.004	1	.02	2	.001	1	-7.356e-8	10	NC	1	NC	1
202			min	0	3	014	3	0	3	-1.543e-4	3	NC	1	NC	1
203		7	max	.004	1	.018	2	.001	1	-7.356e-8	10	NC	1	NC	1
204			min	0	3	013	3	0	3	-1.543e-4	3	NC	1	NC	1
205		8	max	.004	1	.017	2	0	1	-7.356e-8		NC	1	NC	1
206		+ -	min	0	3	012	3	0	3	-1.543e-4	3	NC	1	NC	1
207		0					2		1	-7.356e-8		NC	1	NC	1
		9	max	.003	3	.015		0		-1.543e-4		NC NC	1		1
208		10	min	0		011	3	0	3		3			NC NC	
209		10	max	.003	1	.014	2	0	1	-7.356e-8		NC	1	NC	1
210		1.4	min	0	3	01	3	0	3	-1.543e-4	3_	NC	1_	NC	1
211		11	max	.003	1	.012	2	0	1	-7.356e-8	<u>10</u>	NC	_1_	NC	1
212			min	0	3	009	3	0	3	-1.543e-4	3_	NC	_1_	NC	1
213		12	max	.002	1	.011	2	0	1	-7.356e-8	<u>10</u>	NC	_1_	NC	1
214			min	0	3	008	3	0	3	-1.543e-4	3	NC	1_	NC	1
215		13	max	.002	1	.009	2	0	1	-7.356e-8	10	NC	1	NC	1
216			min	0	3	007	3	0	3	-1.543e-4	3	NC	1	NC	1
217		14	max	.002	1	.008	2	0	1	-7.356e-8	10	NC	1	NC	1
218			min	0	3	005	3	0	3	-1.543e-4	3	NC	1	NC	1
219		15	max	.001	1	.006	2	0	1	-7.356e-8	10	NC	1	NC	1
220		10	min	0	3	004	3	0	3	-1.543e-4	3	NC	1	NC	1
221		16	max	.001	1	.005	2	0	1	-7.356e-8	10	NC	1	NC	1
222		10	min	0	3	003	3	0	3	-1.543e-4	3	NC	1	NC	1
222			111111	U	J	003	J	U	J	1.3436-4	J	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.003	2	0	1	-7.356e-8	10	NC	1_	NC	1
224			min	0	3	002	3	0	3	-1.543e-4	3	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-7.356e-8	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-1.543e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228			min	0	1	0	1	0	1	-1.543e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.007	2	0	3	7.029e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	003	3	006	3	001	1	-2.848e-4	3	4965.322	2	NC	1
231		2		.002	1	.006	2	0	3	6.689e-4	1	NC	3	NC	1
232		-	max		3		3	001	1				2	NC NC	1
		-	min	003		006				-2.764e-4	3	5399.734			_
233		3	max	.002	1	.006	2	0	3	6.349e-4	1	NC TO 10 1	3	NC	1
234			min	002	3	006	3	001	1	-2.68e-4	3	5913.104	2	NC	1
235		4	max	.002	1	.005	2	0	3	6.01e-4	_1_	NC	_1_	NC	1
236			min	002	3	005	3	001	1	-2.596e-4	3	6524.073	2	NC	1
237		5	max	.002	1	.005	2	0	3	5.67e-4	1	NC	1	NC	1
238			min	002	3	005	3	001	1	-2.512e-4	3	7257.37	2	NC	1
239		6	max	.002	1	.004	2	0	3	5.33e-4	1	NC	1	NC	1
240			min	002	3	005	3	0	1	-2.428e-4	3	8146.34	2	NC	1
241		7	max	.002	1	.004	2	0	3	4.991e-4	1	NC	1	NC	1
242			min	002	3	005	3	0	1	-2.344e-4	3	9236.822	2	NC	1
243		8		.002	1	.003	2	0	3		1	NC	1	NC	1
		-	max							4.651e-4					
244		<u> </u>	min	002	3	004	3	0	1	-2.26e-4	3	NC	1_	NC NC	1
245		9	max	.001	1	.003	2	0	3	4.311e-4	1_	NC	_1_	NC	1
246			min	002	3	004	3	0	1	-2.176e-4	3	NC	1_	NC	1
247		10	max	.001	1	.002	2	0	3	3.972e-4	_1_	NC	_1_	NC	1
248			min	001	3	004	3	0	1	-2.092e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	3.632e-4	1	NC	1_	NC	1
250			min	001	3	003	3	0	1	-2.008e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	3.292e-4	1	NC	1	NC	1
252			min	001	3	003	3	0	1	-1.923e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	2.953e-4	1	NC	1	NC	1
254			min	0	3	003	3	0	1	-1.839e-4	3	NC	1	NC	1
255		14		0	1	<u>005</u>	2	0	3	2.613e-4	1	NC	1	NC	1
256		14	max	0	3	002	3	0	1		3	NC NC	1	NC NC	1
		4.5	min							-1.755e-4			•		-
257		15	max	0	1	0	2	0	3	2.273e-4	1_	NC	1_	NC NC	1
258		1.0	min	0	3	002	3	0	1	-1.671e-4	3	NC	1_	NC NC	1
259		16	max	0	1	0	2	0	3	1.934e-4	1_	NC	_1_	NC	1
260			min	0	3	001	3	0	1	-1.587e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.594e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-1.503e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.254e-4	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.419e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	9.147e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	-1.335e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	6.148e-5	3	NC	1	NC	1
268	IVIII		min	0	1	0	1	0	1	-4.298e-5	1	NC	1	NC	1
		2							-		_		•		
269		2	max	0	3	0	2	0	1	4.661e-5	3	NC	1_	NC NC	1
270		-	min	0	2	0	3	0	3	-7.817e-5	1_	NC	1_	NC NC	1
271		3	max	0	3	0	2	0	1	3.173e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-1.134e-4	1_	NC	1_	NC	1
273		4	max	0	3	0	2	0	1	1.685e-5	3	NC	1_	NC	1
274			min	0	2	002	3	0	3	-1.486e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	1.972e-6	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-1.837e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	10		15	NC	1	NC	1
278			min	0	2	004	3	001	3	-2.189e-4	1	NC	1	NC	1
279		7		0	3	0	2	<u>001</u> 0	10		15	NC	1	NC	1
219		<u> </u>	max	U	ວ	U	<u> </u>	U	l IU	-0.4496-0	ıυ	INC		INC	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
280			min	0	2	004	3	001	3	-2.541e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	-9.696e-6	15	NC	_1_	NC	1
282			min	0	2	005	3	002	3	-2.893e-4	<u>1</u>	NC	<u>1</u>	NC	1
283		9	max	0	3	.001	2	0	10		<u>15</u>	NC	_1_	NC	1
284		40	min	0	2	005	3	002	1_	-3.245e-4	1_	NC	1_	NC	1
285		10	max	0	3	.001	2	0	15	-1.219e-5	<u>15</u>	NC	1	NC NC	1
286		4.4	min	0	2	006	3	003	1_	-3.597e-4	1_	NC	1_	NC NC	1
287		11	max	0	3	.002	2	0	15	-1.343e-5	<u>15</u>	NC	1_	NC NC	1
288		40	min	0	2	006	3	003	1_45	-3.949e-4	1_	NC NC	1_	NC NC	1
289		12	max	0	3	.002	3	0 004	15	-1.468e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min		3	<u>007</u>	2	004 0	15	-4.301e-4	1_	NC NC	1	NC NC	2
291		13	max	0	2	.003 007	3	005	1	-1.593e-5 -4.653e-4	<u>15</u>	NC NC	1	9697.117	1
293		14		0	3	.007	2	<u>005</u> 0	15	-4.653e-4 -1.717e-5	<u>1</u> 15	NC NC	1	NC	2
294		14	max min	0	2	007	3	005	1	-5.005e-4	1	NC NC	1	8402.069	1
295		15	max	0	3	.005	2	- <u>005</u> 0	15	-1.842e-5	15	NC	1	NC	2
296		13	min	0	2	007	3	006	1	-5.357e-4	1	9867.28	2	7414.971	1
297		16	max	0	3	.006	2	<u>.000</u>	15	-1.967e-5	15	NC	1	NC	2
298		10	min	0	2	007	3	007	1	-5.708e-4	1	8307.489	2	6648.768	
299		17	max	0	3	.006	2	0	15	-2.091e-5	15	NC	3	NC	2
300		<u> </u>	min	0	2	007	3	008	1	-6.06e-4	1	7111.374	2	6046.271	1
301		18	max	0	3	.007	2	0	15	-2.216e-5	15	NC	3	NC	2
302			min	0	2	007	3	008	1	-6.412e-4	1	6182.697	2	5568.769	
303		19	max	0	3	.008	2	0	15	-2.34e-5	15	NC	3	NC	2
304			min	0	2	007	3	009	1	-6.764e-4	1	5454.611	2	5189.486	1
305	M12	1	max	.002	1	.008	2	.007	1	5.706e-4	1	NC	1	NC	3
306			min	0	3	006	3	0	15	2.026e-5	15	NC	1	2591.551	1
307		2	max	.002	1	.007	2	.007	1	5.706e-4	1	NC	1	NC	3
308			min	0	3	006	3	0	15	2.026e-5	15	NC	1	2826.517	1
309		3	max	.002	1	.007	2	.006	1	5.706e-4	1_	NC	1_	NC	3
310			min	0	3	006	3	0	15	2.026e-5	15	NC	1	3106.194	
311		4	max	.002	1	.006	2	.006	1	5.706e-4	1_	NC	_1_	NC	2
312			min	0	3	005	3	0	15	2.026e-5	15	NC	1_	3442.37	1
313		5	max	.002	1	.006	2	.005	1	5.706e-4	_1_	NC	_1_	NC	2
314			min	0	3	005	3	0	15	2.026e-5	15	NC	_1_	3851.103	1
315		6	max	.002	1	.006	2	.004	1	5.706e-4	1_	NC	_1_	NC	2
316		<u> </u>	min	0	3	004	3	0	15	2.026e-5	15	NC	1_	4354.727	1
317		7	max	.001	1	.005	2	.004	1	5.706e-4	1_	NC	1	NC 4005.050	2
318			min	0	3	004	3	0	15	2.026e-5	15	NC	_1_	4985.058	
319		8	max	.001	1	.005	2	.003	1	5.706e-4	1_	NC NC	1	NC F700 COF	2
320			min		3	004	3	0		2.026e-5			1	5788.685	
321		9	max	.001	1	.004	2	.003	1	5.706e-4	1_	NC NC	1	NC cose oos	2
322		10	min	.001	3	003 .004	2	0 .002	1 <u>5</u>	2.026e-5	<u>15</u>	NC NC	<u>1</u> 1	6836.083 NC	
		10	max		3		3	_		5.706e-4	1_	NC NC	1		2
324 325		11	min max	0	1	003 .003	2	<u> </u>	1 <u>5</u>	2.026e-5 5.706e-4	<u>15</u> 1	NC NC	1	8238.052 NC	1
326			min	0	3	003	3	0	15	2.026e-5	15	NC	1	NC	1
327		12	max	0	1	.003	2	.001	1	5.706e-4	1	NC	1	NC	1
328		12	min	0	3	002	3	0	15	2.026e-5	15	NC	1	NC	1
329		13	max	0	1	.002	2	.001	1	5.706e-4	1	NC NC	1	NC NC	1
330		13	min	0	3	002	3	0	15	2.026e-5	15	NC NC	1	NC NC	1
331		14	max	0	1	.002	2	0	1	5.706e-4	1	NC	1	NC	1
332		T'-	min	0	3	002	3	0	15	2.026e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	5.706e-4	1	NC	1	NC	1
334		'	min	0	3	001	3	0	15	2.026e-5	15	NC	1	NC	1
335		16	max	0	1	.001	2	0	1	5.706e-4	1	NC	1	NC	1
336		· Ŭ	min	0	3	001	3	0	15		15	NC	1	NC	1
					_				- 10				_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	5.706e-4	1_	NC	1_	NC	1
338			min	0	3	0	3	0	15	2.026e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	5.706e-4	1	NC	1	NC	1
340			min	0	3	0	3	0	15	2.026e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	5.706e-4	1	NC	1	NC	1
342		10	min	0	1	0	1	0	1	2.026e-5	15	NC	1	NC	1
343	M1	1	max	.006	3	.022	3	.002	3	1.719e-2	1	NC	1	NC	1
344	IVII	<u> </u>	min	007	2	023	1	004	1	-1.83e-2	3	NC	1	NC	1
345		2		.006	3	.012	3	.004	3	8.301e-3	<u> </u>	NC	4	NC	1
346		-	max		2	012	1		1	-9.047e-3	3	4507.234	1	NC	1
		2	min	007				007					4		2
347		3	max	.006	3	.003	3	0	3	3.355e-5	3	NC	4_	NC 0040,004	
348		-	min	007	2	003	1	009	1	-4.209e-4	1_	2325.107	1_	8042.894	
349		4	max	.006	3	.006	1	0	3	3.475e-5	3	NC	4	NC	2
350			min	007	2	004	3	011	1	-3.541e-4	<u> 1</u>	1642.947	1_	6665.189	
351		5	max	.006	3	.013	1	0	3	3.594e-5	3	NC	5_	NC	2
352			min	007	2	01	3	011	1	-2.874e-4	1	1315.087	1	6413.207	1
353		6	max	.006	3	.018	1	0	3	3.714e-5	3	NC	5	NC	2
354			min	007	2	015	3	01	1	-2.206e-4	1	1129.692	1	6882.937	1
355		7	max	.006	3	.023	1	0	3	3.833e-5	3	NC	5	NC	2
356			min	007	2	019	3	009	1	-1.539e-4	1	1017.326	1	8235.894	1
357		8	max	.006	3	.026	1	0	3	3.953e-5	3	NC	5	NC	1
358			min	007	2	021	3	007	1	-8.711e-5	1	949.116	1	NC	1
359		9	max	.006	3	.028	1	0	3	4.072e-5	3	NC	5	NC	1
360		+ -	min	007	2	023	3	005	1	-2.036e-5	1	911.575	1	NC	1
361		10		.006	3	.028	1	003	3	4.64e-5	1	NC		NC	1
362		10	max	007	2	023	3	003	1	1.869e-6	15	898.467	<u>5</u> 1	NC NC	1
		4.4	min										•		
363		11	max	.006	3	.028	1	0	3	1.132e-4	1_	NC	5_	NC NC	1
364		10	min	007	2	022	3	0	1	4.089e-6	15	907.869	_1_	NC	1
365		12	max	.006	3	.026	2	0	1	1.799e-4	_1_	NC	_5_	NC	1
366			min	007	2	02	3	0	15	6.31e-6	15	940.881	2	NC	1
367		13	max	.006	3	.023	2	.003	1	2.467e-4	_1_	NC	5	NC	2
368			min	007	2	018	3	0	15	8.531e-6	15		2	8652.234	1
369		14	max	.006	3	.018	2	.004	1	3.134e-4	1_	NC	5	NC	2
370			min	007	2	014	3	0	15	1.075e-5	15	1097.446	2	7140.234	1
371		15	max	.006	3	.012	2	.005	1	3.802e-4	1	NC	5	NC	2
372			min	007	2	009	3	0	15	1.297e-5	15	1265.676	2	6601.811	1
373		16	max	.006	3	.005	2	.004	1	4.289e-4	1	NC	4	NC	2
374		1	min	007	2	004	3	0	15	1.46e-5	15	1568.07	2	6821.288	
375		17	max	.006	3	.002	3	.003	1	4.886e-5	1	NC	4	NC	2
376		17	min	007	2	004	2	0	15	2.158e-6		2208.526	2	8198.64	1
377		18	max	.006	3	.009	3	.001	1	9.861e-3	1	NC	4	NC	1
		10													
378		10	min	007	2	015	2	0		-4.246e-3		4270.442	2	NC NC	1
379		19	max	.006	3	.016	3	0	3	1.987e-2	1_	NC NC	1	NC NC	1
380			min	007	2	026	2	002	1	-8.605e-3	3	NC NC	1_	NC NC	1
381	<u>M5</u>	1_	max	.018	3	.071	3	.002	3	1.235e-6	3_	NC	1	NC	1
382			min	024	2	076	1	004	1	3.484e-8	15	NC	<u>1</u>	NC	1
383		2	max	.018	3	.039	3	.002	3	6.409e-5	3_	NC	<u>5</u>	NC	1
384			min	024	2	041	1	004	1	-7.396e-5	1	1331.205	1	NC	1
385		3	max	.018	3	.01	3	.003	3	1.258e-4	3	NC	5	NC	1
386			min	024	2	009	1	004	1	-1.466e-4	1	686.031	1	NC	1
387		4	max	.018	3	.019	1	.004	3	1.238e-4	3	NC	5	NC	1
388			min	024	2	014	3	004	1	-1.393e-4	1	483.851	1	NC	1
389		5	max	.018	3	.043	1	.004	3	1.218e-4	3	NC	5	NC	1
390		Ť	min	024	2	034	3	003	1	-1.32e-4	1	386.551	1	NC	1
391		6	max	.018	3	.063	1	.004	3	1.199e-4	3	NC	5	NC	1
392			min	024	2	05	3	003	1	-1.247e-4	1	331.426	1	NC	1
		7			3										
393		7	max	.018	_ ა	.078	1	.004	3	1.179e-4	3	NC	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
394			min	024	2	062	3	003	1	-1.174e-4	1	297.911	1	NC	1
395		8	max	.018	3	.089	1	.004	3	1.16e-4	3	NC	15	NC	1
396			min	024	2	07	3	003	1	-1.101e-4	<u>1</u>	277.445	<u>1</u>	NC	1
397		9	max	.018	3	.096	1	.004	3	1.14e-4	3	NC	15	NC	1
398		40	min	024	2	<u>074</u>	3	003	1	-1.028e-4	1_	266.023	1_	NC	1
399		10	max	.018	3	.098	1	.004	3	1.121e-4	3	NC	<u>15</u>	NC NC	1
400		44	min	024	2	075	3	003	1	-9.554e-5	1_	261.784	1_	NC NC	1
401		11	max	.018	3	.096	1	.004	3	1.101e-4	3	NC OC4 400	15	NC NC	1
402		40	min	024	2	072	3	003	1	-8.825e-5	1_	264.138	1_	NC NC	1
403		12	max	.018	3	.089	3	.003 002	3	1.081e-4	<u>3</u> 1	NC	<u>15</u> 1	NC NC	1
404		13	min	024 .018	3	066		.002	3	-8.095e-5 1.062e-4		273.531 NC	15	NC NC	1
406		13	max min	024	2	.078 057	3	002	1	-7.366e-5	<u>3</u>	291.642	1	NC NC	1
407		14	max	.018	3	.062	1	.002	3	1.042e-4	3	NC	5	NC NC	1
408		14	min	024	2	045	3	002	1	-6.636e-5	1	322.194	1	NC	1
409		15	max	.018	3	.043	1	.002	3	1.023e-4	3	NC	5	NC	1
410		10	min	024	2	03	3	002	1	-5.906e-5	1	373.218	1	NC	1
411		16	max	.018	3	.017	1	.002	3	9.758e-5	3	NC	5	NC	1
412		10	min	024	2	013	3	002	1	-5.578e-5	1	464.039	1	NC	1
413		17	max	.018	3	.008	3	.001	3	2.785e-5	3	NC	5	NC	1
414			min	024	2	014	2	002	1	-1.479e-4	1	654.126	1	NC	1
415		18	max	.018	3	.03	3	0	3	1.33e-5	3	NC	5	NC	1
416			min	024	2	049	2	002	1	-7.553e-5	1	1265.725	1	NC	1
417		19	max	.018	3	.053	3	0	3	0	1	NC	1	NC	1
418			min	024	2	087	2	002	1	-2.102e-7	3	NC	1	NC	1
419	M9	1	max	.006	3	.021	3	.001	3	1.83e-2	3	NC	1	NC	1
420			min	007	2	023	1	005	1	-1.719e-2	1	NC	1	NC	1
421		2	max	.006	3	.012	3	0	3	9.068e-3	3	NC	4	NC	1
422			min	007	2	012	1	0	1	-8.479e-3	1	4508.518	1	NC	1
423		3	max	.006	3	.003	3	.001	1	6.889e-5	1_	NC	4	NC	2
424			min	007	2	003	1	0	3	2.54e-6	15	2325.789	1_	8499.025	
425		4	max	.006	3	.006	1	.003	1	2.311e-5	2	NC	4	NC	2
426			min	007	2	004	3	0	3	-3.786e-6	3	1643.427	1_	7080.685	
427		5	max	.006	3	.013	1	.003	1	8.939e-6	10	NC	5_	NC	2
428		_	min	007	2	011	3	001	3	-3.909e-5	_1_	1315.45	_1_	6858.181	1
429		6	max	.006	3	.018	1	.003	1	4.688e-6	10	NC	5	NC	2
430			min	007	2	015	3	002	3	-9.308e-5	1_	1129.982	_1_	7430.954	1
431		7	max	.006	3	.023	1	.002	1	4.381e-7	<u>10</u>	NC	5	NC	2
432			min	007	2	019	3	002	3	-1.471e-4	1_	1017.563	1_	9031.936	
433		8	max	.006	3	.026	1	0	2	-3.812e-6		NC 040.044	5	NC NC	1
434			min		2	022	3	003		-2.011e-4			1	NC NC	1
435		9	max	.006	3	.028	1	0		-8.062e-6		NC	5_4	NC NC	1
436 437		10	min	007 .006	3	023 .028	1	003 0	10	-2.551e-4	1_	911.743 NC	<u>1</u> 5	NC NC	1
		10	max		2		3		1	-1.028e-5			<u> </u>		1
438 439		11	min max	007 .006	3	023 .028	1	003 0		-3.09e-4 -1.212e-5	<u>1</u> 15	898.61 NC	5	NC NC	1
440		11	min	007	2	022	3	005	1	-3.63e-4	1	907.989	1	NC	1
441		12		.006	3	.026	2	<u>005</u> 0	15			NC	5	NC	1
441		12	max min	007	2	026	3	007	1	-4.17e-4	1	941.334	2	NC NC	1
443		13	max	.006	3	.023	2	<u>007</u> 0	15		15	NC	5	NC NC	2
444		13	min	007	2	023 018	3	008	1	-4.71e-4	1	998.62	2	8390.898	
445		14	max	.006	3	.018	2	008 0		-4.7 1e-4 -1.761e-5		NC	5	NC	2
446		14	min	007	2	014	3	009	1	-5.25e-4	1	1097.948	2	7029.195	
447		15	max	.006	3	.012	2	<u>009</u> 0		-1.945e-5	15	NC	5	NC	2
448		13	min	007	2	009	3	009	1	-5.79e-4	1	1266.237	2	6556.657	1
449		16	max	.006	3	.005	2	009	15		15	NC	4	NC	2
450		10	min	007	2	004	3	009	1	-6.2e-4	1	1568.738		6812.241	1
- 500			111011	.007		.00+	J	.003		0.26-4		1000.700		0012.241	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r I	LC	(n) L/y Ratio	LC		LC
451		17	max	.006	3	.002	3	0	15 -5.491e-6	12	NC	4	NC	2
452			min	007	2	004	2	007	1 -3.509e-4	1	2209.402	2	8217.994	1
453		18	max	.006	3	.009	3	0	15 4.259e-3	3	NC	4	NC	1
454			min	007	2	015	2	005	1 -1.001e-2	1	4272.078	2	NC	1
455		19	max	.006	3	.016	3	0		3	NC	1	NC	1
456			min	007	2	026	2	001		1	NC	1	NC	1
457	M13	1	max	.005	1	.021	3	.006		3	NC	1	NC	1
458	IVITO		min	001	3	023	1	007	2 -3.893e-3	1	NC	1	NC	1
459		2	max	.004	1	.169	3	.019		3	NC	5	NC	2
460			min	001	3	161	1	002		1	1018.578	3	6480.253	
		2				.289	3	.05		•	NC	5	NC	3
461		3	max	.004	1					3				
462		-	min	001	3	274	1	0		1_	559.983	3_	2769.704	
463		4	max	.004	1	.365	3	.076		3_	NC	5	NC	3
464			min	001	3	346	1	0	10 0.01 00 0	1_	436.272	3	1881.851	1
465		5	max	.004	1	.388	3	.087		3_	NC	5_	NC	3
466			min	002	3	369	1	0		<u>1</u>	409.131	3	1642.122	1
467		6	max	.004	1	.359	3	.081		3_	NC	5_	NC	3
468			min	002	3	342	1	001	10 -9.031e-3	1	444.756	3	1754.867	1
469		7	max	.004	1	.288	3	.059	1 9.128e-3	3	NC	5	NC	3
470			min	002	3	277	1	004		1	563.555	3	2366.746	1
471		8	max	.004	1	.195	3	.027	1 1.004e-2	3	NC	5	NC	2
472			min	002	3	191	1	008		1	865.719	3	4809.033	1
473		9	max	.004	1	.11	3	.017		3	NC	5	NC	1
474			min	002	3	112	1	018		1	1674.854	1	NC	1
475		10	max	.002	1	.071	3	.018		3	NC	4	NC	1
476		10	min	002	3	076	1	024		1	2800.723	1	8804.989	
477		11		.004	1	<u>076</u> .11	3	.021		3	NC	5	NC	1
			max											
478		40	min	002	3	112	1	017		1_	1674.855	1_	NC NC	1
479		12	max	.004	1	.195	3	.028		3_	NC	5	NC 4000 000	2
480		4.0	min	002	3	<u>191</u>	1	008	10 111000 =	1_	865.719	3	4662.022	1
481		13	max	.004	1	.288	3	.06		3	NC	5_	NC	5
482			min	002	3	277	1	004	10 -1.006e-2	1_	563.555	3	2329.436	
483		14	max	.004	1	.359	3	.082		3	NC	5_	NC	5
484			min	002	3	342	1	001	10 0.0020 0	1_	444.756	3	1737.575	
485		15	max	.004	1	.388	3	.088		3	NC	5	NC	3
486			min	002	3	369	1	0	10 -8.004e-3	1	409.131	3	1631.878	1
487		16	max	.004	1	.365	3	.076	1 6.384e-3	3	NC	5	NC	3
488			min	002	3	346	1	0	10 -6.976e-3	1	436.272	3	1875.579	1
489		17	max	.004	1	.29	3	.05		3	NC	5	NC	3
490			min	002	3	274	1	0		1	559.983	3	2769.026	
491		18	max	.004	1	.169	3	.019		3	NC	5	NC	2
492		10	min	002	3	161	1	002		1	1018.578	3	6509.308	
493		19	max	.004	1	.022	3	.006		3	NC	1	NC	1
494		13	min	002	3	023	1	007		1	NC	1	NC	1
495	M16	1	max	.002	1	.016	3	.006		2	NC	1	NC	1
496	IVITO	-		0	3	026	2	007		3	NC NC	1	NC NC	1
		2	min											
497		2	max	.001	1	.086	3	.019		2	NC 000,000	5_	NC 0400 000	2
498			min	0	3	185	1	002		3	938.098	1_	6409.902	
499		3	max	.002	1	.143	3	.05		2	NC	5	NC	3
500			min	0	3	316	1	0		3	515.372	<u>1</u>	2748.093	
501		4	max	.002	1	.18	3	.076		2	NC	<u>5</u>	NC	3
502			min	0	3	399	1	0		3	400.998	1_	1869.678	
503		5	max	.002	1	.192	3	.088		2	NC	5	NC	3
504			min	0	3	425	1	0	10 -5.462e-3	3	375.232	1	1632.53	1
505		6	max	.002	1	.18	3	.082		2	NC	5	NC	5
506			min	0	3	394	1	001		3	406.368	1	1745.015	
507		7	max	.002	1	.15	3	.059		2	NC	5	NC	5

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	318	1	004	10	-6.822e-3	3	511.253	<u>1</u>	2353.373	
509		8	max	.002	1	.109	3	.027	1	1.206e-2	2	NC	5	NC	2
510			min	0	3	219	1	008	10	-7.502e-3	3	773.22	_1_	4782.55	1
511		9	max	.002	1	.07	3	.02	3	1.317e-2	2	NC	5_	NC	1
512		10	min	0	3	128	2	018	2	-8.181e-3	3	1462.833	1_	NC	1
513		10	max	.002	1	.053	3	.018	3	1.428e-2	2	NC	_4_	NC	1
514			min	0	3	087	2	024	2	-8.861e-3	3	2464.399	1_	8732.938	
515		11	max	.002	1	.07	3	.017	3	1.317e-2	2	NC	5	NC	1
516		10	min	0	3	1 <u>28</u>	2	018	2	-8.181e-3	3	1462.834	_1_	NC	1
517		12	max	.002	1	.109	3	.027	1	1.206e-2	2	NC	5_	NC 4704 F04	2
518		10	min	0	3	219	1	008	10	-7.5e-3	3	773.22	1_	4781.584	
519		13	max	.002	1	.15	3	.059	1	1.094e-2	2	NC 544.050	5	NC	3
520			min	0	3	318	1	004	10	-6.82e-3	3	511.253	_1_	2360.792	1
521		14	max	.002	1	.18	3	.081	1	9.83e-3	2	NC	_5_	NC 1771	3
522		4.5	min	0	3	394	1	001	10	-6.14e-3	3	406.368	_1_	1754.283	1
523		15	max	.002	1	.192	3	.087	1	8.717e-3	2	NC 075 000	5_	NC	3
524		40	min	0	3	425	1	0	10	-5.459e-3	3	375.232	1_	1644.806	
525		16	max	.002	1	.18	3	.075	1	7.605e-3	2	NC	_5_	NC 1000 110	3
526			min	0	3	399	1	0	10	-4.779e-3	3	400.998	_1_	1889.119	
527		17	max	.002	1	.143	3	.049	1	6.492e-3	2	NC 545,070	5_	NC 0700 404	3
528		40	min	0	3	316	1	0	10	-4.099e-3	3	515.373	1_	2789.191	1
529		18	max	.002	1	.086	3	.018	1	5.379e-3	2	NC 000,000	5	NC 0504.047	2
530		40	min	0	3	185	1	002	10	-3.418e-3	3	938.099	1_	6564.817	1
531		19	max	.002	1	.016	3	.006	3	4.267e-3	2	NC	1_	NC NC	1
532	N445	4	min	0	3	026	2	007	2	-2.738e-3	3	NC NC	1_	NC NC	1
533	M15	1	max	0	1	0	1	0	1	3.201e-4	3	NC	1_	NC NC	1
534			min	0	1	0	1	0	1	-6.109e-5	2	NC NC	1_	NC NC	1
535		2	max	0	3	002	15	.001	1	8.146e-4	3	NC 0400 404	1_	NC NC	1
536			min	0	2	01	4	0	3	-6.393e-4	1_	8402.101	4_	NC NC	1
537		3	max	0	3	005	15	.004	1	1.309e-3 -1.226e-3	3	NC	5_4	NC NC	1
538		4	min	0	3	019	4	003	3		1	4275.543 NC	<u>4</u> 15	NC NC	4
539		4	max	0	2	007	15	.008 007	3	1.804e-3 -1.812e-3	3			7336.254	4
540		-	min	0		028	15				1	2933.272	<u>4</u>		1
541		5	max	0	3	008		.012	1	2.298e-3	3	9737.147	<u>15</u>	NC 4000 FOC	4
542 543		6	min	<u> </u>	3	036 01	15	011 .017	1	-2.398e-3 2.793e-3	1	2288.862 8194.839	<u>4</u> 15	4838.526 NC	4
544		0	max	0	2	013	4	01 <i>7</i>	3	-2.984e-3	<u>3</u> 1	1926.319	4	3534.957	1
545		7	min	0	3	043 011	15	.023	1		3		15	NC	4
546			max min		2	011 048	4	023	3	3.287e-3 -3.57e-3	1	7267.343 1708.298	4	2770.212	4
547		8		<u> </u>	3	046 012	15	.028	1	3.782e-3	3	6710.707	15	NC	4
548		0	max min	0	2	012 052	4	025		3.702E-3		1577.452		2288.389	
549		9	max	0	3	032 013	15	.032	1	4.276e-3	3	6411.092	15	NC	4
550		9	min	0	2	055	4	029	3	-4.743e-3	1	1507.023		1972.637	1
551		10	max	0	3	033 013	15	.036	1	4.771e-3	3	6316.308	15	NC	5
552		10	min	0	2	056	4	032	3	-5.329e-3	1	1484.743	4	1764.118	
553		11	max	0	3	030 013	15	.039	1	5.266e-3	3	6411.092	15	NC	5
554			min	0	2	055	4	035	3	-5.915e-3	1	1507.023	4	1631.91	1
555		12	max	0	3	012	15	.04	1	5.76e-3	3	6710.707	15	NC	5
556		12	min	001	2	053	4	036	3	-6.501e-3	1	1577.452	4	1560.704	
557		13	max	<u>001</u> 0	3	033 011	15	.039	1	6.255e-3	3	7267.343	15	NC	5
558		13	min	001	2	049	4	035	3	-7.088e-3	1	1708.298	4	1546.169	
559		14	max	<u>001</u> 0	3	049 01	15	.036	1	6.749e-3	3	8194.839	15	NC	5
560		14	min	001	2	013	4	032	3	-7.674e-3	1	1926.319		1595.204	
561		15	max	<u>001</u> 0	3	043 009	15	.031	1	7.244e-3	3	9737.147	15	NC	4
562		13	min	001	2	037	4	028	3	-8.26e-3	1	2288.862	4	1732.725	
563		16	max	<u>001</u> 0	3	037 007	15	.023	1	7.738e-3	3	NC	15	NC	4
564		10	min	001	2	029	4	02	3	-8.846e-3	1	2933.272		2026.219	
JU4			1111111	001		029	7	02	J	0.0406-3		2300.212	7	2020.219	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	3	005	15	.012	1	8.233e-3	3	NC	5	NC	4
566			min	002	2	02	4	01	3	-9.432e-3	1	4275.543	4	2687.281	1
567		18	max	0	3	002	12	.004	3	8.727e-3	3	NC	1_	NC	4
568			min	002	2	011	4	008	2	-1.002e-2	1	8402.101	4	4786.146	1
569		19	max	0	3	.004	3	.021	3	9.222e-3	3	NC	1	NC	1
570			min	002	2	003	1	025	2	-1.06e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.007	3	2.739e-3	3	NC	1	NC	1
572			min	0	3	001	1	007	2	-2.837e-3	1	NC	1	NC	1
573		2	max	0	10	002	15	.003	1	2.622e-3	3	NC	1	NC	1
574			min	0	3	01	4	001	10	-2.704e-3	1	8402.101	4	NC	1
575		3	max	0	10	005	15	.009	1	2.505e-3	3	NC	5	NC	4
576			min	0	3	02	4	004	3	-2.57e-3	1	4275.543	4	6095.921	1
577		4	max	0	10	007	15	.014	1	2.389e-3	3	NC	15	NC	4
578			min	0	3	028	4	007	3	-2.436e-3	1	2933.272	4	4631.484	1
579		5	max	0	10	008	15	.017	1	2.272e-3	3	9737.147	15	NC	4
580			min	0	3	036	4	01	3	-2.303e-3	1	2288.862	4	3995.086	1
581		6	max	0	10	01	15	.019	1	2.155e-3	3	8194.839	15	NC	4
582			min	0	3	043	4	011	3	-2.169e-3	1	1926.319	4	3714.767	1
583		7	max	0	10	011	15	.019	1	2.039e-3	3	7267.343	15	NC	4
584			min	0	3	048	4	012	3	-2.041e-3	2	1708.298	4	3642.343	1
585		8	max	0	10	012	15	.019	1	1.922e-3	3	6710.707	15	NC	4
586			min	0	3	052	4	012	3	-1.914e-3	2	1577.452	4	3726.682	1
587		9	max	0	10	013	15	.018	1	1.805e-3	3	6411.092	15	NC	4
588			min	0	3	055	4	011	3	-1.787e-3	2	1507.023	4	3959.992	1
589		10	max	0	10	013	15	.016	1	1.689e-3	3	6316.308	15	NC	4
590			min	0	3	056	4	01	3	-1.66e-3	2	1484.743	4	4365.098	1
591		11	max	0	10	013	15	.014	1	1.572e-3	3	6411.092	15	NC	4
592			min	0	3	055	4	009	3	-1.533e-3	2	1507.023	4	5000.061	1
593		12	max	0	10	012	15	.012	1	1.455e-3	3	6710.707	15	NC	4
594			min	0	3	052	4	007	3	-1.406e-3	2	1577.452	4	5980.2	1
595		13	max	0	10	011	15	.009	1	1.339e-3	3	7267.343	15	NC	2
596			min	0	3	048	4	006	3	-1.279e-3	2	1708.298	4	7534.52	1
597		14	max	0	10	01	15	.007	1	1.222e-3	3	8194.839	15	NC	1
598			min	0	3	043	4	004	3	-1.152e-3	2	1926.319	4	NC	1
599		15	max	0	10	008	15	.004	1	1.105e-3	3	9737.147	15	NC	1
600			min	0	3	036	4	002	3	-1.025e-3	2	2288.862	4	NC	1
601		16	max	0	10	007	15	.002	1	9.885e-4	3	NC	15	NC	1
602			min	0	3	028	4	001	3	-8.978e-4	2	2933.272	4	NC	1
603		17	max	0	10	005	15	0	1	8.718e-4	3	NC	5	NC	1
604			min	0	3	019	4	0	10	-7.708e-4	2	4275.543	4	NC	1
605		18	max	0	10	002	15	0	4	7.551e-4	3	NC	1_	NC	1
606			min	0	3	01	4	0	2	-6.437e-4	2	8402.101	4	NC	1
607		19	max	0	1	0	1	0	1	6.384e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.167e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.