Docking and virtual screening

- What is virtual screening?
- Pharmacophore searching
- Shape-based searching
- Docking
- Estimating model quality

What is virtual screening (VS)?

- Identification of interesting molecules out of a database of (virtual) molecules
- Ligand-based VS
 - Chemo-informatics
 - Pharmacophore searching
 - Shape-based searching
- Protein structure-based VS
 - Docking

Docking and virtual screening

- What is virtual screening?
- Pharmacophore searching
- Shape-based searching
- Docking
- Estimating model quality

What is a pharmacophore?

Pharmacophore types

Code	Description	Normal
AROM	Aromatic ring	Yes
HDON	Hydrogen bond donor	Yes
HACC	Hydrogen bond acceptor	Yes
LIPO	Lipophilic (hydrophobic) region	No
POSC	Positive charge center	No
NEGC	Negative charge center	No
НҮВН	Hydrogen bond donor and hydrogen bond acceptor	Yes
HYBL	Aromatic and lipophilic ring	Yes
EXCL	Exclusion sphere	No

Gaussian representation of points

$$V = \int p \, e^{\left(-\frac{|m-r|^2}{\sigma}\right)} dr$$

With:

p: scaling constant

m: position in space

 σ . spread

Feature mapping

$$\varepsilon = \frac{|d_{ab} - d_{cd}|}{\sigma_a + \sigma_b + \sigma_c + \sigma_d}$$

Calculating the overlap

 The pharmacophore spheres are represented by Gaussian spheres, hence easy to calculate the overlap

•
$$TANIMOTO = \frac{V_{overlap}}{V_1 + V_2 - V_{overlap}}$$

•
$$TVERSKY = \frac{V_{overlap}}{V_1}$$

Popular pharmacophore searching programs

• Open source: Pharao

Taminau, J.; Thijs, G. & De Winter, H. (2008) J. Mol. Graph. Model. 27, 161-169. Commercial: Rocs

 Commercial: <u>Phase</u> (<u>Schrödinger</u>)

Pharao workflow

Case study

HDAC inhibitors

Crystal structure with SAHA

https://github.com/UAMCAntwerpen/2040FBDBIC/blob/master/Topic_03/HDAC-SAHA.pdb

Docking and virtual screening

- What is virtual screening?
- Pharmacophore searching
- Shape-based searching
- Docking
- Estimating model quality

Gaussian representation of points

$$V = \int p \, e^{\left(-\frac{|m-r|^2}{\sigma}\right)} dr$$

With:

p: scaling constant

m: position in space

 σ . spread

Case study

• Erb4 activators

Using only the shape...

Or the shape with pharmacophoric points...

ROCS results

Using only the shape...

...or with pharmacophore info

$$H_2N$$
 S
 N
 S
 S
 S

Docking and virtual screening

- What is virtual screening?
- Pharmacophore searching
- Shape-based searching
- Docking
- Estimating model quality

Docking

The repeated process of searching and scoring

Searching methods

- Molecular dynamics or Monte Carlo simulations
 - F = m a
- Genetic algorithms
 - Gold
 - Autodock
- Shape-based methods
 - DOCK
 - FRED
 - Glide (Schrödinger)
 - **SURFLEX**

Monte Carlo searching

Genetic algorithms

Shape-based searching:

- step 1: representation

Kuntz et al. (1982) 'A geometric approach to macromolecule-ligand interactions', *J. Mol. Biol.* **161**, 269-288.

Shape-based searching:

- step 2: matching

- step 3: optimisation

Scoring methods

- Force-field based scoring functions
- Empirical scoring function
- Knowledge-based scoring function

Force-field based scoring

$$E = W_{VDW} \sum_{i,j} \left(\frac{A_{ij}}{r_{ij}^{12}} + \frac{B_{ij}}{r_{ij}^{6}} \right) + W_{hbond} \sum_{i,j} p(\theta) \left(\frac{C_{ij}}{r_{ij}^{12}} + \frac{D_{ij}}{r_{ij}^{6}} \right) + W_{elec} \sum_{i,j} \frac{q_{i}q_{j}}{r_{ij}} + W_{sol} \sum_{i,j} \left(S_{i}V_{j} + S_{j}V_{i} \right) e^{\left(-r_{ij}^{2} / 2\sigma^{2} \right)}$$

Empirical scoring functions

 $\Delta G = f_{hbonds} \Delta G_{hbonds} + f_{polar-apolar} \Delta G_{polar-apolar} + f_{nrot} \Delta G_{nrot} + f_{apolar-apolar} \Delta G_{apolar-apolar}$

Knowledge-based scoring functions

Experimental contact data from **X-ray structures**

Extract **distance distributions** for each pair of atomtypes

Calculate **statistical potential** for each pair of atomtypes

$$P_{ij} = -\ln \frac{g_{ij}(r)}{g_{ref}}$$

Scope of the different scoring functions

	Pose prediction	Compound selection
Forcefield-based	✓	
Empirical		✓
Knowledge-based	✓	✓

Case studies

BACE inhibitors

Docking and virtual screening

- What is virtual screening?
- Pharmacophore searching
- Shape-based searching
- Docking
- Estimating model quality

Estimating model quality

- Chemoinformatics-based screening
- Pharmacophore-based screening
- Docking

Ranking and classification

From continuous to binary

Confusion matrix

Confusion matrix and cutoff

Performance metrics: accuracy & precision

Metrics and the confusion matrix

•
$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + FN + TN + FP}$$

•
$$PRE = \frac{TP}{TP + FP}$$

•
$$SEN = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Precision =
$$\frac{TP}{TP+FP}$$

 Useful if you have limited budget and you want to be sure that, if a compound is predicted to be 'active', changes are very likely that the compound is really active.

 A high precision comes at the cost of missing out real actives which are not selected by the method

(only looks at the hitlist)

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

 Useful if you have a balanced dataset with balanced number of actives and inactives

• Should *never* be used when there are only a limited number of actives in the dataset.

Recall =
$$\frac{TP}{TP + FN}$$
 = Sensitivity

- Useful if you want to retrieve as many actives as possible from the database ("you don't want to miss actives")
- Comes at the risc of retrieving many false positives
- Optimising for recall is only useful if the precision is also taken into account:
 - When you screen the entire database you will always get 100% recall...

F1-score

$$F1-score = \frac{2 TP}{2 TP + FP + FN}$$

 The harmonic mean of precision and sensitivity:

•
$$F1 = \frac{2 * PRE * SEN}{PRE + SEN}$$

 Represents a good trade-off between identifying all actives versus a good likelihood of being truly active

AUC-ROC curve

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$AUC = \frac{TPR - FPR + 1}{2}$$

Metrics, model quality and cutoff

- The confusion matrix metrics are influenced by:
 - The quality of the *model*
 - Selection of the cutoff in case of a continuous model

- The quality of the model is influenced by:
 - The model itself:
 - Machine learning algorithm and parameters
 - Docking method and parameters
 - Pharmacophore selection and method
 - The quality of the training data

Good and bad models *versus* cutoff

Bad model:

Metrics:

10% cutoff:

50% cutoff:

70% cutoff:

Bad model:

TP	TN	FP	FN	ACC	PRE

Good model:

TP	TN	FP	FN	ACC	PRE

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + FN + TN + FP}$$

$$PRE = \frac{TP}{TP + FP}$$

Model validation: cross-fold approach

Step 4: Calculate the avarege of all of the k validation performance values