CHEMISTRY

SEMESTER ONE EXAMINATION 2005

SOLUTIONS

PART 1

1. C 9. \mathbf{C} 5. В A 13. D 17. 2. C 6. \mathbf{C} 10. 14. В В A 18. 3. В 7. В 11. A 15. C 19. \mathbf{C} 4. C 8. \mathbf{C} 12. A 16. 20. В A

PART 2

1.

- (a) Equation: $SO_4^{-2}(aq) + Ba^{+2}(aq) \rightarrow BaSO_4(s)$ Observation: Two colourless solutions are mixed and a white precipitate forms.
- (b) Equation: $A\ell(OH)_3 + OH \rightarrow [A\ell(OH)_4]$

Observation: The white solid dissolves leaving a clear colourless solution

(c) Equation: $2Cs + 2H_2O \rightarrow 2Cs^+ + 2OH^- + H_2$

Observation: Explosive reaction. A colourless gas is vigorously emitted. The solid dissolves.

(d) Equation: No reaction

Observation: No changes

2.

Molecule or ion	Structure formula (showing all valence electrons)	Sketch of shape	Name of shape
carbonate ion		$\begin{bmatrix} O \\ C \\ O \end{bmatrix}^{2^{-}}$	PLANAR TRIANGULAR
arsenic trihydride	H As: H	H As.'''H H	PYRAMIDAL
selenium dihydride	H Se H	Se H H	BENT

3.
$$[H^+] = 10^{-10.5} = 3.1623 \times 10^{-11} \text{ mol } L^{-1}$$

Therefore [OH⁻] =
$$\frac{10^{-14}}{3.1623 \times 10^{-11}}$$
 = 3.1623 × 10⁻⁴ = 3.16 × 10⁻⁴ mol L⁻¹

4.

Explanation

The chips have less surface area in total so there are less effective collisions than with the powder giving a slower reaction.

The molecules move faster at higher temp - more collisions - faster rate.

Also more molecules will possess the activation energy required - faster rate.

Catalyst provides a lower activation energy path - so more particles will possess at least this energy so they will now react - faster rate

- 5. (a) $\left[\text{Cu(NH}_3)_4\right]^{+2}$ or similar
 - (b) H_3PO_4
 - (c) SiO₂ or SiC
 - (d) Iodine (I₂)

6.

	Your chemical test. Describe fully	What you would observe in each case
solid zinc sulfate	Dissolve each solid in water	with ZnSO ₄ A white precipitate forms
and	Add to each solution a solution of	
solid zinc nitrate	Ba ⁺² , Sn ⁺² , Pb ⁺² or Hg ⁺² ions	with Zn(NO ₃) ₂ No precipitate forms
solid copper (II) carbonate	1. Add dilute $HC\ell$ or H_2SO_4 to each	with CuCO ₃ 1. Solid dissolves to green solution - colourless gas released.
solid copper (II) chloride	2. Heat strongly	2. The green solid goes black
		with $CuC\ell_2$ 1. The solid dissolves to a green solution but no gas evolved. 2. Solid does not go black

END OF PART 2

PART 3

1.

(a)
$$Ba^{+2} + SO_4^{-2} \rightarrow BaSO_4$$

 $n(BaSO_4) = \frac{m}{M} = \frac{1.70}{233.36} = 7.285 \times 10^{-3} \text{ mol}$
 $n(MgSO_4) = n (SO_4^{-2}) = n(BaSO_4) = 7.285 \times 10^{-3} \text{ mol}$
Therefore $m(MgSO_4) = n \times M = 7.285 \times 10^{-3} \times 120.37$
 $= 0.8769g (5L)$
 $= 175 \text{ mg L}^{-1}$

(b)
$$Mg^{+2} + CO_3^{-2} = MgCO_3$$

 $[Mg SO_4] = \frac{1}{V}$
 $= \frac{7.285 \times 10^{-3}}{5} = 1.457 \times 10^{-3} \text{ mol L}^{-1}$
 $n(MgSO_4) \text{ in } 100 \text{ L} = c \times v$
 $= 1.457 \times 10^{-3} \times 10^2$
 $= 1.457 \times 10^{-1} \text{ mol}$
 $n(Na_2CO_3 .10H_2O) = n(CO_3^{-2}) = n(Mg SO_4) = 1.457 \times 10^{-1} \text{ mol}$
 $m(Na_2CO_3 .10H_2O) = n(CO_3^{-2}) = n(Mg SO_4) = 1.457 \times 10^{-1} \text{ mol}$
 $= nM$
 $= 1.457 \times 10^{-1} \times 286.15$
 $= 41.7 \text{ g}$

(c)
$$n(Na^+)$$
 in $100 L = 2n(Na_2CO_3 .10H_2O)$
= 2.9147×10^{-1} mol
therefore $[Na^+] = \frac{1}{V} = \frac{2.9147 \times 10^{-1}}{100} = \frac{2.91 \times 10^{-3}}{100}$ mol L^{-1}

2. (a)
$$m(C) = \frac{12.01}{44.01} \times \frac{0.705}{1} = 0.19238 \, \text{g}$$
 therefore % $C = \frac{0.19348}{1.036} \times \frac{100}{1} = 18.56\%$
$$m(H) = \frac{2.016}{18.016} \times \frac{0.145}{1} = 0.01622 \, \text{g}$$
 therefore % $H = \frac{0.01622}{1.036} \times \frac{100}{1} = 1.566\%$

In second sample

m(C\$\ell\$) =
$$\frac{35.45}{143.35} \times \frac{2.108}{1} = 0.5213 \text{ g} \text{ therefore } \%Cℓ = $\frac{0.5213}{0.945} \times \frac{100}{1} = \frac{55.164\%}{0.945}$$$

therefore % (0) = 100 - (18.569 + 1.566 + 55.164) = 24.70%

C H O $C\ell$

% 18.569 1.566 24.70 55.164

n
$$\frac{18.569}{12.01} = 1.54 \frac{1.566}{1.008} = 1.5535 \frac{24.7}{16} = 1.543 \frac{55.164}{35.45} = 1.556$$

Simplest Ratio 1 1 1 1

therefore EF = CHOC ℓ

(b)
$$n = \frac{PV}{RT}$$

 $= \frac{101.3 \times 0.250}{8.315 \times 473} = 6.44 \times 10^{-3} \text{ mol}$
 $M = \frac{m}{1} = \frac{0.83}{6.44 \times 10^{-3}} = 128.88$
 $= 1.29 \times 10^{2}$

(c) EF = COHC ℓ therefore EF MW = 64.47 g mol⁻¹

$$\frac{\text{Molecular FW}}{\text{EF MW}} = \frac{128.88}{64.47} = 1.999 = \frac{2}{1}$$

therefore Molecular Formula = $2 \text{ E.F} = \text{C}_2\text{O}_2\text{HC}t_2$

3. (a)
$$\frac{6.22 + 6.18 + 6.20}{3} = 6.20 \text{ mL}$$

(b) $H^+ + OH^- \rightarrow H_2O$ $n(OH^-) = c \times v = 0.1031 \times 0.0062 = 6.3922 \times 10^{-4} \text{ mol}$ therefore $n(H^+)$ in 20 mL = 6.3922×10^{-4} mol therefore $n(H^+)$ in 250 mL = $6.3922 \times 10^{-4} \times \frac{250}{20} = 7.99025 \times 10^{-3} \text{ mol}$ $n(H^+)$ in 1.0308 g sample is 7.99025 \times 10⁻³ mols therefore $M = \frac{Mass}{MoLs} = \frac{1.0308}{7.99025 \times 10^{-3}}$ $= 129 \text{ g mol}^{-1}$

- (c) Taking more care is not a modification.

 Modify to give less significant error from the burette reading by
 - Increasing the titration volume by reducing the NaOH concentraton
 - Increasing the titration volume required by increasing the acid concentration