

# RECHERCHE DE CONSENSUS EN ROBOTIQUE EN ESSAIM LY Jean-Baptiste

9 juin 2020

encadré par BREDECHE Nicolas et MAUDET Nicolas



Figure 1 – L'arène réelle



#### L'arène



Figure 2 – L'arène sur le simulateur Kilombo



### L'arène



Figure 3 – L'arène sur le simulateur Kilombo





### Objectifs



■ Algorithmes dédiés ✓

### Objectifs



- Algorithmes dédiés √
- Algorithmes d'apprentissage

## Objectifs



- Algorithmes dédiés ✓
- Algorithmes d'apprentissage
- Amélioration du système de tracking visuel de robots

- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques

- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques
- 2 Cas où l'essaim doit distribuer ses forces au pro-rata de la valeur de chaque ressource
  - Premier algorithme
  - Second algorithme

- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques
- 2 Cas où l'essaim doit distribuer ses forces au pro-rata de la valeur de chaque ressource
  - Premier algorithme
  - Second algorithme
- 3 Conclusion

#### Table of Contents



- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques
- 2 Cas où l'essaim doit distribuer ses forces au pro-rata de la valeur de chaque ressource
  - Premier algorithme
  - Second algorithme
- 3 Conclusion

Figure 4 – Probabilistic finite-state machine



Figure 5 - Probabilistic finite-state machine



### Sites statiques



#### Caractéristiques

- Les qualités des ressources ne changent pas au cours du temps
- Maintenir le consensus

### Majority rule : Expérimentations et résultats



#### Deux ressources

- $q_a = 1, q_b = 2$
- Seuils: 15, 25, 40, 60

Figure 6 -



### Majority rule : Expérimentations et résultats



#### Trois ressources

- $q_a = 1, q_b = 2, q_c = 3$
- Seuils: 15, 25, 40, 60

Figure 7 -



## Majority rule : Expérimentations et résultats



#### Quatre ressources

- $q_a = 1$ ,  $q_b = 2$ ,  $q_c = 3$ ,  $q_d = 4$
- Seuils: 15, 25, 40, 60

Figure 8 -



### Voter model : Expérimentations et résultats



#### Deux ressources

- $q_a = 1, q_b = 2$
- Seuils: 25, 40, 60

Figure 9 -





### Voter model : Expérimentations et résultats



#### Plus de deux ressources

- $q_a = 1, q_b = 2, q_c = 3, q_d = 4$
- Seuils: 25, 40, 60

### Sites dynamiques



#### Caractéristiques

- Les qualités des ressources changent au cours du temps
- Changer de consensus au cours du temps

### Sites dynamiques



### Les agents dits "têtus" ou "explorateurs"

- Agents qui ne changent pas ou plus d'opinion
- Un agent têtu initialisé par ressource

## Sites dynamiques : Expérimentations et résultats



#### Deux ressources

- $q_a = 1, q_b = 2$
- Seuils: 25, 40, 60

Figure 10 -



#### Table of Contents



- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques
- 2 Cas où l'essaim doit distribuer ses forces au pro-rata de la valeur de chaque ressource
  - Premier algorithme
  - Second algorithme
- 3 Conclusion

### Description



### Caractéristique

La distribution spatiale entre les deux ressources devra être à l'image de la valeur de chacune des ressources

| 2 ressources          | theorique <sub>a</sub> | theorique <sub>b</sub> |
|-----------------------|------------------------|------------------------|
| $q_a = 1; q_b = 2$    | 33                     | 67                     |
| $q_a = 1; q_b = 3$    | 25                     | 75                     |
| $q_a = 1$ ; $q_b = 4$ | 20                     | 80                     |

| 3 ressources                      | theorique <sub>a</sub> | theorique <sub>b</sub> | $theorique_c$ |
|-----------------------------------|------------------------|------------------------|---------------|
| $q_a = 1$ ; $q_b = 2$ ; $q_c = 3$ | 17                     | 33                     | 50            |
| $q_a = 1$ ; $q_b = 3$ ; $q_c = 6$ | 10                     | 30                     | 60            |

| 4 ressources                                  | tha | th <sub>b</sub> | $th_c$ | th <sub>d</sub> |
|-----------------------------------------------|-----|-----------------|--------|-----------------|
| $q_a = 1$ ; $q_b = 2$ ; $q_c = 3$ ; $q_d = 4$ | 10  | 20              | 30     | 40              |
| $q_a = 1$ ; $q_b = 3$ ; $q_c = 5$ ; $q_d = 7$ | 6   | 19              | 31     | 44              |

### Description



#### Problèmes

- Obtenir un consensus plus tôt
- Donner du poids pour les ressources de moindre qualité

### Premier algorithme



#### Figure 11 –

#### Algorithm 1: Premier algorithme

while  $n \neq nbreAgents$  do | forall agent disséminateur do

while  $changementsOpinions \neq smax$  do

 $Diss\'{e}mination$ 

 $Voter\ model$ 

 $indiceC = indice\ de\ la\ ressource\ choisie\ par\ le\ Voter\ model$  changementsOpinions = changementsOpinions + 1

avisCourant[indiceC] = avisCourant[indiceC] + 1

Exploration

L'agent devient un agent explorateur en faveur de la ressource prise aléatoirement parmi ses anciennes opinions.

n = n + 1

return consensus



Figure 
$$12 - q_a = 1$$
,  $q_b = 2$ 

Evolution de la qualité du consensus en fonction du temps sur 50 runs :





Figure 
$$13 - q_a = 1$$
,  $q_b = 3$ 

Evolution de la qualité du consensus en fonction du temps sur 50 runs :





Figure 14 – 
$$q_a = 1$$
,  $q_b = 4$ 

Evolution de la qualité du consensus en fonction du temps sur 50 runs :



### Second algorithme



#### Figure 15 –

```
Algorithm 2: Algorithme "amélioré"

while n \neq nbreAgents do

forall agent disséminateur do

while changementsOpinions \neq smax do

changementsOpinions = changementsOpinions + 1
avisCourant[indiceC] = avisCourant[indiceC] + 1

if changementsOpinions = itCP then

avisCourant[indiceC] = avisCourant[indiceC] + poids

if changementsOpinions = itCS then

smax = smin/qualiteC

if smax < changementsOpinions then

changementsOpinions = smax

n+=1
```

### Second algorithme : expérimentations et résultats



Figure  $16 - q_a = 1$ ,  $q_b = 2$ 









Figure 17 –  $q_a = 1$ ,  $q_b = 3$ 







### Second algorithme : expérimentations et résultats



Site A

- Site B

200

Figure  $18 - q_a = 1$ ,  $q_b = 4$ 





#### Table of Contents



- 1 Cas du regroupement autour de la ressource de plus grande valeur
  - Majority rule
  - Voter model
  - Expérimentations et résultats
    - Sites statiques
    - Sites dynamiques
- 2 Cas où l'essaim doit distribuer ses forces au pro-rata de la valeur de chaque ressource
  - Premier algorithme
  - Second algorithme
- 3 Conclusion

Conclusion

Merci