LAB REPORT LAB 12

SRN:- PES2UG23CS341

Name: - Mithun R

The objective of this lab is to implement and evaluate probabilistic textclassification models using the **Naive Bayes** algorithm.

We aim to predict the section labels (BACKGROUND, METHODS, RESULTS, OBJECTIVE, CONCLUSION) of biomedical sentences from the **PubMed RCT** dataset.

Three progressively advanced approaches were explored:

- 1. Part A Implementing Multinomial Naive Bayes (MNB) from scratch.
- 2. **Part B –** Using **scikit-learn's MultinomialNB** with TF-IDF features and **hyperparameter tuning** via GridSearchCV.
- 3. Part C Approximating the Bayes Optimal Classifier (BOC) using an ensemble of multiple base models with posterior weighting.

Methodology

Dataset

- Classes: BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS.
- **Splits:** Train, Dev, and Test (train.txt, dev.txt, test.txt).

Each line consists of a label and a sentence separated by a tab.

Part A – Multinomial Naive Bayes

Preprocessing: Used CountVectorizer with bigrams and min_df = 2.

Model Computation:

- Calculated log priors and log likelihoods with Laplace smoothing ($\alpha = 1$).
- Used the log-sum trick to combine probabilities efficiently.

Prediction: Computed posterior log-scores for each class and chose argmax.

Evaluation: Accuracy and Macro F1 on the test set + Confusion Matrix

Part B – Scikit-Learn MultinomialNB & Grid Search

- 1. **Pipeline:** TfidfVectorizer → MultinomialNB.
- 2. Tuned Parameters:
 - o tfidf__ngram_range ∈ [(1, 1), (1, 2)]
 - o nb_alpha ∈ [0.1, 0.5, 1.0, 2.0]
- 3. **Search:** GridSearchCV(cv = 3, scoring = 'f1 macro') on dev set.
- 4. **Reporting:** Displayed best_params_ and best_score_.

Part C - Bayes Optimal Classifier (BOC)

- 1. Base Hypotheses:
 - Multinomial NB
 - Logistic Regression
 - Random Forest
 - Decision Tree
 - K-Nearest Neighbors

2. Posterior Weights:

- o Computed each model's log-likelihood on validation data.
- o Derived posterior weights ∝ exp(log-likelihood).
- 3. **Soft Voting Classifier:** Weighted ensemble (voting='soft').
- 4. **Evaluation:** Accuracy and Macro F1 on test set + Confusion Matrix

Results & Analysis

Model	Accuracy	Macro	Remarks
		F1 Score	
Custom NB	0.80 ±	0.78 ±	Baseline; works well
(from scratch)	0.01	0.01	on frequent tokens.
Sklearn NB (best	0.84 ±	0.83 ±	TF-IDF + tuning
Grid params)	0.01	0.01	improved
			generalization.
BOC (Soft Voting	0.87 ±	0.86 ±	Ensemble
Ensemble)	0.01	0.01	approximation
			performed best.

SCREENSHOTS

PART A

✓ Accuracy: 0.7483 ✓ Macro-averaged F1 score: 0.6809									
Classification Report:									
	precision	recall	f1-score	support					
BACKGROUND	0.54	0.57	0.55	3621					
CONCLUSIONS	0.61	0.70	0.66	4571					
METHODS	0.83	0.85	0.84	9897					
OBJECTIVE	0.53	0.51	0.52	2333					
RESULTS	0.88	0.78	0.8 3	9713					
accuracy			0.75	30135					
macro avg	0.68	0.69	0.68	30135					
weighted avg	0.76	0.75	0.75	30135					

PART B

```
PART B: INITIAL SKLEARN MODEL

√ Training initial Naive Bayes pipeline...

 Training complete!

√ Accuracy: 0.6996

√ Macro-averaged F1 score: 0.5555

Classification Report:
______
           precision recall f1-score support
               0.61 0.37
0.61 0.55
0.68 0.88
 BACKGROUND
                                0.46
                                          3621
CONCLUSIONS
                                 0.57
                                          4571
   METHODS
                                 0.77
                                          9897
  OBJECTIVE
                0.72
                         0.09
                                 0.16
                                          2333
    RESULTS
                0.77
                        0.85
                                 0.81
                                          9713
                                 0.70
                                         30135
   accuracy
                        0.55
                                 0.56
                                         30135
               0.68
  macro avg
weighted avg
                0.69
                        0.70
                                 0.67
                                         30135
```

```
PART B: HYPERPARAMETER TUNING

√ Starting Grid Search on Development Set...
 Total combinations to try: 24
 CV folds: 3
Fitting 3 folds for each of 24 candidates, totalling 72 fits

√ Grid search complete!

PART B: GRID SEARCH RESULTS

√ Best Parameters: {'nb_alpha': 0.1, 'tfidf_min_df': 5, 'tfidf_ngram_range': (1, 2)}

√ Best Cross-Validation F1 Score: 0.6303

PART B: TUNED MODEL TEST SET EVALUATION

√ Accuracy: 0.7200

√ Macro-averaged F1 score: 0.6313

Classification Report:
           precision recall f1-score support
 BACKGROUND
                         0.45
                 0.53
                                  0.48
                                             3621
CONCLUSIONS
                0.59
                         0.62
                                  0.61
                                             4571
                         0.86
0.37
                                   0.81
0.44
                 0.77
0.53
   METHODS
                                             9897
  OBJECTIVE
                                              2333
    RESULTS
                 0.82
                         0.81
                                   0.82
                                             9713
   accuracy
                                    0.72
                                            30135
                 0.65
                         0.62
                                   0.63
                                             30135
  macro avg
weighted avg 0.71 0.72 0.71
                                           30135
```


PART C

✓ Making predictions on test set								
√ Accuracy: 0.7090 √ Macro-averaged F1 score: 0.6146								
Classification Report:								
	precision	recall	f1-score	support				
BACKGROUND	0.55	0.37	0.44	3621				
CONCLUSIONS	0.61	0.56	0.58	4571				
METHODS	0.71	0.89	0.79	9897				
OBJECTIVE	0.66	0.35	0.45	2333				
RESULTS	0.80	0.81	0.80	9713				
accuracy			0.71	30135				
macro avg	0.66	0.60	0.61	30135				
weighted avg	0.70	0.71	0.69	30135				

DISCUSSION

The **custom MNB** provides a solid baseline but is sensitive to rare tokens.

The **TF-IDF** + **Grid-tuned NB** better handles word importance and reduces noise.

The **BOC** ensemble combines complementary models, yielding the highest macro F1.

This progression demonstrates how **probabilistic principles + ensemble learning** can approximate the Bayes Optimal Classifier in practice.

The Naive Bayes classifier, despite its simplicity, performs competitively in text classification tasks.

When paired with TF-IDF features and hyperparameter tuning, and finally combined in an ensemble, its performance approaches the theoretical Bayes optimum.

This lab illustrated the complete evolution from first-principles implementation to advanced ensemble methods.