Modelling zero-inflated (and overdispersed) count data

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

eggs <- read.csv("data/eggs.csv")</pre>

diameter	old	n.eggs	
14	no	4	
8	yes	0	
7	yes	0	

diameter: nest diameter (cm)

old: does nest look old/abandoned?

Many zeros does not mean you need a zero-inflated model!

Check model afterwards

Nests may be occupied or not

- Nests may be occupied or not
- Occupied nests may not have eggs (too soon, predation, etc)

Number of eggs ~ nest diameter * old appearance

coplot(n.eggs ~ diameter | old, data = eggs)

diameter

Trying Poisson GLM

Trying Poisson GLM

AIC: 1176.7

```
Call:
glm(formula = n.eggs ~ old * diameter, family = poisson, data = eggs)
Deviance Residuals:
   Min
           10 Median 30
                                Max
-3.8905 -0.8784 -0.4514 0.3892 6.6795
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.30773 0.12883 2.389 0.0169 *
oldves -3.78879 0.92230 -4.108 3.99e-05 ***
diameter 0.11441 0.01105 10.354 < 2e-16 ***
oldves:diameter 0.08513 0.07634 1.115 0.2648
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1184.57 on 299 degrees of freedom
Residual deviance: 526.97 on 296 degrees of freedom
```

7

Visualising the fitted Poisson GLM

Checking Poisson GLM

Simulate data from fitted model (yrep) and compare with observed data (y)

```
library("performance")
pp_check(eggs.poi)
```


Checking Poisson GLM with DHARMa

library("DHARMa")
eggs.poi.res <- simulateResiduals(eggs.poi, plot = TRUE)</pre>

Checking overdispersion

testDispersion(eggs.poi.res)

DHARMa nonparametric dispersion test via sd of residuals fitted

Checking zero inflation

testZeroInflation(eggs.poi.res)

Accounting for zero-inflation

Zero-inflated Poisson/Negative Binomial

Mixture model:

1. Model probability of 0

(Binomial)

Zero-inflated Poisson/Negative Binomial

Mixture model:

1. Model probability of 0 (Binomial)

2. Model counts (including 0) (Poisson/Negative Binomial)

Modelling egg number as Zero-Inflated Poisson (ZIP)

Probability nest not occupied ~ old

Nests may be occupied or not:

```
For occupied nests:

Number of eggs ~ Nest diameter (Poisson)

library("glmmTMB")

eggs.zip <- glmmTMB(n.eggs ~ diameter,
family = "poisson",
ziformula = ~ old,
```

data = eggs)

(Binomial)

Modelling egg number as Zero-Inflated Poisson

```
Family: poisson (log)
Formula: n.eggs ~ diameter
Zero inflation:
                 h[o∽
Data: eggs
   ATC
           BIC logLik deviance df.resid
  993.8 1008.6 -492.9 985.8
                                 296
Conditional model:
         Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.41622 0.13619 3.056 0.00224 **
diameter 0.11248 0.01155 9.737 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Zero-inflation model:
         Estimate Std. Error z value Pr(>|z|)
oldyes 5.4897 0.5830 9.416 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Checking ZIP model

pp_check(eggs.zip)

Checking ZIP model with DHARMa

eggs.zip.res <- simulateResiduals(eggs.zip, plot = TRUE)</pre>

Checking ZIP model with DHARMa

testZeroInflation(eggs.zip.res)

Checking ZIP model with DHARMa

testDispersion(eggs.zip.res)

Modelling egg number as Zero-Inflated Negative Binomial (ZINB)

(If there were overdispersion with Poisson)

Modelling egg number as ZINB

```
Family: nbinom2 (log)
Formula: n.eggs ~ diameter
Zero inflation: ~old
Data: eggs
    AIC
            BIC logLik deviance df.resid
  995.7 1014.2 -492.8 985.7
                                    295
Dispersion parameter for nbinom2 family (): 143
Conditional model:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.4118 0.1389 2.964 0.00304 **
diameter 0.1128 0.0118 9.561 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Zero-inflation model:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.4160 0.2846 -8.489 <2e-16 ***
oldyes 5.4995 0.5850 9.401 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comparing models

```
library("parameters")
compare_models(eggs.poi, eggs.zip, eggs.zinb)
```

Parameter	- 1	е	ggs.poi	eg	ggs.zip	eggs.zinb
(Intercept)	 					41 (0.14, 0.68)
diameter old (yes)		-3.79 (-5.60,	-1.98)		0.14) 0.	11 (0.09, 0.14)
old (yes) * diamete	r 	0.09 (-0.06,	0.23)			
Observations			300		300	300

Comparing models

```
library("performance")
compare_performance(eggs.poi, eggs.zip, eggs.zinb)
```

Comparison of Model Performance Indices

```
Name | Model | AIC | BIC | RMSE | Sigma | Score_log | Score_sph | Segs.poi | glm | 1176.701 | 1191.516 | 2.324 | 1.334 | -1.948 | Segs.zip | glmmTMB | 993.790 | 1008.605 | 2.324 | 1.000 | -1.643 | Segs.zinb | glmmTMB | 995.666 | 1014.185 | 2.324 | 143.279 |
```

Accounting for zero-inflation with hurdle models

Tracking measles outbreak

Counting number of hives/person

Many people not sick (0 hives)

Those sick, have many hives (>1)

ZIP/ZINB:

1. Binomial model: probability of zero

Hurdle:

ZIP/ZINB:

- 1. Binomial model: probability of zero
- 2. Count model (Poisson/NegBin) includes zero

Hurdle:

ZIP/ZINB:

- 1. Binomial model: probability of zero
- 2. Count model (Poisson/NegBin) includes zero

Hurdle:

1. Binomial model: probability of non-zero

ZIP/ZINB:

- 1. Binomial model: probability of zero
- 2. Count model (Poisson/NegBin) includes zero

Hurdle:

- 1. Binomial model: probability of non-zero
- 2. Count model truncated at 1

How many hives per skin area?

hives <- read.csv("data/hives.csv")</pre>

```
vaccinated area.cm2 n.hives
    age
Min. : 1.0
           Min. :0.000
                          Min. : 5.000
                                        Min. : 0.000
1st Qu.:23.0 1st Qu.:0.000
                         1st Qu.: 6.000
                                       1st Qu.: 0.000
Median :45.0 Median :1.000
                          Median : 8.000
                                       Median : 2.000
Mean :44.7 Mean :0.648
                          Mean : 7.482
                                       Mean : 3.256
3rd Qu.:65.0 3rd Qu.:1.000
                          3rd Qu.: 9.000
                                        3rd Qu.: 5.250
Max. :90.0
            Max. :1.000
                          Max. :10.000
                                        Max. :20.000
```

Many people with 0 hives

(that does not mean we need zero-inflated model!)

Number of hives ~ age * vaccinated

coplot(n.hives ~ age | as.factor(vaccinated), data = hives)

Given: as.factor(vaccinated)

age

Trying Poisson GLM

Trying Poisson GLM

```
Call:
glm(formula = n.hives ~ vaccinated * age, family = poisson, data = hives,
   offset = log(area.cm2))
Deviance Residuals:
   Min
            10 Median 30
                                Max
-4.0081 -2.2235 0.1396 1.2155 4.2198
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -1.363696 0.095097 -14.340 < 2e-16 ***
vaccinated
            -0.334184   0.122887   -2.719   0.00654 **
          age
vaccinated:age 0.002034 0.002075 0.980 0.32708
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
```

ATC: 2925.6

Null deviance: 2137.0 on 499 degrees of freedom Residual deviance: 1891.7 on 496 degrees of freedom

32

Visualising fitted Poisson GLM

Checking Poisson GLM

pp_check(hives.poi)

Checking Poisson GLM

hives.poi.res <- simulateResiduals(hives.poi, plot = TRUE)</pre>

Checking overdispersion

testDispersion(hives.poi.res)

Checking zero inflation

testZeroInflation(hives.poi.res)

Accounting for zero-inflation with hurdle model

Accounting for zero-inflation with hurdle model

```
Family: truncated poisson ( log )
Formula:
          n.hives ~ vaccinated + age
Zero inflation:
                  ~1
Data: hives
Offset: log(area.cm2)
    ATC
            BIC logLik deviance df.resid
 1932.1 1949.0 -962.1 1924.1
                                   496
Conditional model:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.853885   0.070755 -12.068 < 2e-16 ***
vaccinated -0.365664 0.051532 -7.096 1.29e-12 ***
age 0.014860 0.001065 13.955 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Zero-inflation model:
          Estimate Std. Error z value Pr(>|z|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Checking hurdle model

pp_check(hives.hur)

Checking hurdle model with DHARMa

hives.hur.res <- simulateResiduals(hives.hur, plot = TRUE)</pre>

Checking zero inflation

testZeroInflation(hives.hur.res)

Checking overdispersion

testDispersion(hives.hur.res)

Comparing models

compare_models(hives.poi, hives.hur)

Parameter				hi	ves.poi	1			hi	ves.hur
(Intercept)		-1.36	(-1.55,	-1.18)		-0.85	(-	-0.99,	-0.72)
vaccinated		-0.33	(-0.58,	-0.09)		-0.37	(-0.47,	-0.26)
age		0.01	(0.01,	0.02)		0.01	(0.01,	0.02)
vaccinated * age		2.03e-03	(0.00,	0.01)					
Observations					500	1				500

Comparing models

```
compare_performance(hives.poi, hives.hur)
```

Comparison of Model Performance Indices

Name	I	Model		AIC	l	BIC		RMSE		Sigma	ı	Score_log	l	Score_spher
hives.poi		glm		2925.603	 	2942.462		3.299	1	1.953	1	-2.918	 	0
hives.hur	g	lmmTMB		1932.124		1948.982		3.313	1	1.000	1	-2.262		Θ