Технология программирования на ЭВМ, ММ-1 (дом) Многомерная динамическая память и агументы командной строки ? сентября 2018

1. Дано целое положительное число n. Далее матрица целых чисел $n \times n$. Считать элементы в динамическую матрицу. Найти сумму элементов каждой строки и произведение элементов каждого столбца.

Ввод	3
	1 2 3
	4 5 6
	7 8 9
Вывод	6 15 24
	28 80 162

2. Дано целое положительное число n. Далее матрица целых чисел $n \times n$. Считать элементы в динамическую матрицу. Переставить первую и последнюю строки местами (без какого либо копирования элементов, только изменив адреса строк).

Ввод	4
	1 2 3 4
	2 3 4 5
	3 4 5 6
	4 5 6 7
Вывод	4 5 6 7
	2 3 4 5
	3 4 5 6
	1 2 3 4

3. Дано целые положительные числа n и m. Далее матрица целых чисел $n \times m$. Считать элементы в динамическую матрицу. Вывести транспонированную матрицу. Описать вспомогательную функцию, которая генерируют транспонированную матрицу:

int **transpose(int n, int m, int **matrix);

Ввод	3 4
	1 2 3 4
	5 6 7 8
	9 10 11 12
Вывод	1 5 9
	2 6 10
	3 7 11
	4 8 12

4. Дано целое положительное n. Далее расширенная матрица размером $n \times (n+1)$ из целых чисел от -100 до 100. Найти произведение матрицы $n \times n$ и последнего вектор-столбца.

Ввод	2
	1 2 3
	4 5 6
Вывод	15 42

5. Дано целое положительное число n. Далее массив из n целых чисел. Считать числа в динамический массив. Сгенерировать динамическую матрицу типа циркулянт (то есть каждая строка получает из предыдущей циклическим сдвигом влево).

Ввод	3
	1 2 3
Вывод	1 2 3
	2 3 1
	3 1 2

6. Дано n, далее n строк, на каждой из которых слово (первая буква заглавная, остальные строчные). Вывести слова, которые идут лексикографически раньше последнего слова из списка. Строки сравнить можно с помощью функции:

int strcmp(const char *s1, const char *s2).

Ввод	5
	Manny
	Sid
	Diego
	Shira
	Shangri
Вывод	Manny
	Diego

7. Программа запускается с несколькими аргументами, которые являются целыми числами от -100 до 100. Вывести на стандартный поток вывода их произведение.

Запуск	./prog 5 -2 12
Вывод	-120

8. Программа запускается с несколькими аргументами, которые являются вещественными числами. Вывести на стандартный поток вывода их максимум с 2 знаками после запятой.

Запуск	./prog -1 32e1 153.34
Вывод	320.00

9. Программа запускается с несколькими аргументами. Найти самый длинный аргумент и распечатать его.

Запуск	./prog Bond James Bond
Вывод	James

10. В качестве аргумента дан некоторых шаблон строки, который состоит из букв, точек и одного символа %. Далее одно число n от 1 до 9. Необходимо сгенерировать динамический массив из n динамических строк, где вместо % подставлены цифры от 1 до n. Для определения длина шаблона и его копирования использовать: size_t strlen(const char *s),

char *strcpy(char *dest, const char *src).

Запуск	./prog homework%.c 4
Вывод	homework1.c
	homework2.c
	homework3.c
	homework4.c