What Are Tensors?

A **tensor** is a **multidimensional array** — a generalization of:

- Scalars (0D)
- Vectors (1D)
- Matrices (2D)

Tensors can represent data of any number of dimensions, making them a **fundamental data structure** in machine learning and deep learning.

Simply put: Tensors = Containers for data of any dimension

Types of Tensors by Dimensionality

1. 0D Tensor (Scalar)

- A single number (e.g., 5)
- No axes
- Shape: ()

Ex: x = 5

2. 1D Tensor (Vector)

- A list of numbers
- Has 1 axis
- Shape: (n,) where n = number of elements

Ex: $x = [1, 2, 3] \rightarrow \text{shape } (3,)$

3. 2D Tensor (Matrix)

- A grid of numbers: rows × columns
- Has 2 axes
- Shape: (rows, columns)

Ex:

```
x = [[1, 2, 3],
[4, 5, 6]] \rightarrow shape (2, 3)
```

4. ND Tensor (3D, 4D, 5D...)

As dimensions increase, tensors can represent:

- **3D**: Stack of matrices (like colored image channels) shape (depth, height, width)
- 4D: Batch of images shape (batch_size, channels, height, width)
- **5D**: Video or sequence of batches shape (batch, time, channels, height, width)

These are especially common in deep learning models (e.g., CNNs, RNNs).

Key Concepts: Rank, Axes, Shape

Term	Meaning	Example (x = [[1, 2], [3, 4]])	
Rank	Number of axes (dimensions)	2 (since it's a 2D matrix)	
Axes	Each individual dimension in the tensor	Axis-0: rows, Axis-1: columns	
Shape	Size along each axis	(2, 2)	

Practical Tensor Examples

Tensor Type	Example	Shape
1D	[1, 2, 3, 4]	(4,)
2D	[[1, 2], [3, 4], [5, 6]]	(3, 2)
3D	[[[1,2],[3,4]], [[5,6],[7,8]]]	(2, 2, 2)
4D	Batch of 3 images, each 2×2×3 (RGB)	(3, 2, 2, 3)
5D	Sequence of batches, each with image data	e.g., (2, 3, 3, 32, 32)

Tensor Use in Machine Learning

Tensors are the **backbone of ML frameworks** like:

- TensorFlow
- PyTorch
- Keras

They are used to:

- Store **input data**, like images, text, and sound
- Hold model parameters, like weights and biases
- Pass data through layers in deep learning models

Tensor operations = matrix algebra = how deep learning happens

Summary

Concept	Explanation
Tensor	A general n-dimensional array
0D (Scalar)	Single value
1D (Vector)	List of values
2D (Matrix)	Rows × columns table
3D+	Stacks or batches of matrices/images
Rank	Number of dimensions
Shape	Size along each dimension
Axes	Indexable directions (rows, columns, etc.)

Final Thought:

Tensors aren't just math, they are how machines **see, learn, and think** in the world of deep learning.