2021 - PHY 981 - Homework set 3 (Feb 10th 5pm)

- 1. We meet Tuesdays and Thursdays 2-3 pm link to zoom Discussion session on Fridays 2-3 link to zoom link to lecture notes link to nushellx.zip
- 2. Do this before class on Tuesday
 - 1) download the zip file http://babwww.com/2021-981/toi.zip
 - 2) put the unzipped files on c:\aaa\nushellx
- 3. Read Chapters 8-10.
- 4. For the 2^+ to 2^+ gamma decay what are the allowed $\pi\lambda$ values? Which are the most probable?
- 5. For the allowed beta decay of a 2^+ states what are the allowed J_f^{π} values for the final state?
- 6. Find the probability for $m_s = 1/2$ (the *m* component of the spin wavefunction) in the ℓs coupled wavefunction $|f_{5/2}, m = 5/2\rangle$.
- 7. Derive Eqs. 10.71 and 10.72.
- 8. Find numerical values for $< s_{1/2}||Y^{(2)}||s_{1/2}>, < d_{5/2}||Y^{(2)}||d_{5/2}>, < d_{5/2}||Y^{(2)}||d_{3/2}>.$ Compare the results with Eq. 9.83.
- 9. When the j-j coupled wavefunction $|([\ell, s, j)(\ell, s, j)]J\rangle$ is expanded into its L-S coupled form $\sum_{L,S} a_{L,S} | [(\ell, \ell, L)(s, s, S)]J\rangle$, for $\ell = 2$, j = 5/2 and J = 2, what are values of $a_{L,S}$.
- 10. Calculate $\langle d_{5/2}||\vec{\sigma}||d_{3/2}\rangle$ where $\vec{\sigma}=2\vec{s}$ is the nucleon spin operator.
- 11. Derive Eqs. 7.71 from Eq. 7.69.