实验二: MOS管放大电路(仿真)

专业班级: 通信2101

姓名: **罗畅**

学号: U202113940

实验名称

MOS管放大电路仿真实现

实验目的

- 学习掌握PSpice软件的使用
- 学习共源放大电路工作原理
- 实现MOSFET共源放大电路的仿真实现

实验元器件

电脑 PSpice软件

实验原理

MOSFET共源极放大电路

图 3.3.6 共源极放大电路

• 图3.3.6为N沟道增强型MOSFET共源极放大电路, 其静态工作点可由下式估算:

$$egin{split} V_{GSQ} &= rac{R_{g2}}{R_{g1} + R_{g2}} imes V_{DD} - I_{DQ} R_s \ &I_{DQ} &= K_n (V_{GS} - V_{TN})^2 \ &V_{DSQ} &= V_{DD} - I_{DQ} (R_d + R_s) \end{split}$$

• 动态性能指标可由下式估算:

式
$$3.3.4$$
 $A_v = -g_m R_d$ $R_i = R_{g1}//R_{g2}$ $R_o = R_d$

• 数据手册通常会给出 $V_T N$ 和某工作点下的 g_m 。对于MOS管2N7000,当 I_D =200mA时, g_m^\prime =100mS,则由(3.3.3)第二式可得

$$K_n = rac{(g_m'/2)^2}{I_D} = 12.5 mA/V^2$$

而(3.3.4)第一式中的 g_m 是电路静态工作点下MOS管的互导,同样由式子

$$r_d s = rac{\partial v_{DS}}{\partial i_D}|_{V_{GS}}$$

可得

$$g_m = g_m' \sqrt{rac{I_{DQ}}{I_D}}$$

即

$$g_m=10\sqrt{rac{I_{DQ}}{2}}ms$$

此外 V_{TN} 在0.8-3V之间,这里取 V_{TN} =1.75V

设置静态工作点时,调整电位器 R_p ,使 V_p 为5-6V

实验任务

- 按照图3.3.6连接实验电路图
- 测试静态工作点Q(I_{DQ} , V_{GSQ} , V_{DSQ})
- 记录输入、输出电压波形,并计算电压增益 A_n
- 记录幅频响应曲线db(V(V_o)/V(V_s :+)),测量中频增益、上限频率 f_H 和下限频率 f_L
- 记录相频响应曲线 $V_p(V_o)$ - $V_p(V_s$:+) 或 $P(V(V_o)/V(V_s$:+))
- 记录输入电阻的频率响应: R_i -- $V(V_i)/I(V_S)$
- 记录输出电阻的频率响应: R_o -- $V(V_i)/I(V_S)$
- 观察记录非线性失真现象

注意: 1.设置静态工作点时,调整电位器 R_P ,使 V_D 为 $5\sim6V$ 。 (漏极对地电压) 2.仿真时输出端必须接负载,否则会报错。 (可以将阻值设为很大的值,如t ($10^{12}\Omega$) 来仿真开路情况。)

实验记录

电路图&静态工作点

仿真分析 静态工作点 电路如图所示

数据如下:

```
**** MOSFETS
152
154
   NAME
                  M T
155
   MODEL
                  M2N7000
   ID
                  1.21E-03
156
                  1. 92E+00
   VGS
158
   VDS
                  4.53E+00
159
                  0.00E+00
   VBS
160
   VTH
                  1.73E+00
161
   VDSAT
                  1.94E-01
162
   Lin0/Sat1
                 -1.00E+00
   if
                 -1.00E+00
164
   ir
                 -1.00E+00
165
                 -1.00E+00
   TAU
   GM
                  1. 25E-02
   GDS
                  2.08E-08
168
   GMB
                  0.00E+00
   CBD
                  2.88E-11
170
   CBS
                  0.00E+00
                  8.83E-12
   CGSOV
172
   CGDOV
                  7.78E-13
173
   CGBOV
                  0.00E+00
   CGS
                  2.76E-12
175
   CGD
                  0.00E+00
176
   CGB
                  0.00E+00
               TOR CONCLUDED
```

电路工作在饱和区,符合条件

静态工作点:

 V_{GSQ} = 1.92V

 V_{DSQ} =4.53V

 I_{DQ} =1.21mA

输入输出波形/电压增益

仿真实验 输入波形如下:

输出波形如下:

电压增益为 A_v =1159.4/29.995=38.67

幅频响应曲线

仿真实验 幅频响应曲线如下:

则可以得到:

- 中频增益 A_v = 31.804dB = 38.922 > 10 符合要求
- 上限频率 f_H = 1.44MHz > 100kHz 符合要求
- 下限频率 f_L = 29.139Hz < 100Hz 符合要求

相频响应曲线

仿真实验 相频响应曲线

输入电阻响应曲线

仿真实验 输入电阻响应曲线

可得 R_i =73.357k Ω >51k Ω 符合要求

输出电阻响应曲线

仿真实验 输出电阻频率响应曲线

可得 R_o =5.0997k Ω <5.1k Ω 符合要求

非线性失真现象

仿真实验 非线性失真 截止失真现象

仿真实验 非线性失真 饱和失真现象

实验小结

- 本次实验经历各种各样的波折,如调不出失真曲线、误用示波器测量静态工作点等,在经过不断的调试和重做之后,最终顺利完成了实验。
- 实验过程中发现理解实验原理,掌握MOS管的工作原理和相关计算方法以及相关仪器的使用方法至关重要。
- 此外,在本次实验中还掌握了仿真软件PSPice的基本用法,学会了用其进行一些基本实验的模拟操作,感觉在日后的实验中会有助力。