En tot el lliurament, R serà un anell commutatiu amb unitat i un DIP.

Problema 1. $Sigui\ M\ un\ R$ -mòdul M.

1. Si $m \in M$, definim l'anul·lador de m com $\operatorname{ann}_R(m) = \{r \in R : rm = 0_R\}$. Proveu que $\operatorname{ann}_R(m)$ és un ideal de R.

Demostració. Veiem que $\operatorname{ann}_R(m) = \{r \in R : rm = 0_R\}$ és un ideal de R. Per definició, $\operatorname{ann}_R(m) \subset R$. Siguin $r, r' \in \operatorname{ann}_R(m)$. Tenim que

$$(r-r')m = rm - r'm$$
 (Distributivitat)
= $0_R - 0_R$ ($r, r' \in \operatorname{ann}_R(m)$)
= 0_R (0_R element neutre additiu)

Aleshores, $r - r' \in \operatorname{ann}_R(m)$, d'on $\operatorname{ann}_R(m)$ és un subgrup additiu de R. Siguin $r \in R$, $a \in \operatorname{ann}_R(m)$. Tenim que

$$(ra)m = r(am)$$
 (Associativitat)
= $r0_R$ ($a \in \operatorname{ann}_R(m)$)
= 0_R (0_R element neutre additiu)

Aleshores, $ra \in \operatorname{ann}_R(m)$, d'on deduïm $R \operatorname{ann}_R(m) \subset \operatorname{ann}_R(m)$.

2. Diem que m és de torsió si $\operatorname{ann}_R(m) \neq \{0_R\}$ i definim el submòdul de torsió de M com $T(M) = \{m \in M : \operatorname{ann}_R(m) \neq \{0_R\}\}$. Diem que M és lliure de torsió si $T(M) = \{0_R\}$. Proveu que T(M) és un submòdul de M i M/T(M) és lliure de torsió.

Demostració. Veiem que

$$T(M) = \{ m \in M : \operatorname{ann}_{R}(m) \neq \{0_{R}\} \}$$

= $\{ m \in M : \exists r(r \in R - \{0_{R}\} \land rm = 0_{R}) \}$

és R-submòdul de M. $T(M) \subset M$. Sigui $m_1, m_2 \in T(M)$. Aleshores, $\forall i (i \in \{1, 2\} \Rightarrow \exists r_i (r_i \in R - \{0_R\} \land r_i m_i = 0_R))$. Com R és DIP, R és domini. Per tant, $r_1 \neq 0_R \land r_2 \neq 0_R \Rightarrow r_1 r_2 \neq 0_R$. Tenim que

$$(r_1r_2)(m_1 - m_2) = (r_1r_2)m_1 - (r_1r_2)m_2$$
 (Distributivitat)

$$= (r_2r_1)m_1 - (r_1r_2)m_2$$
 (R commutatiu)

$$= r_2(r_2m_1) - r_1(r_2m_2)$$
 (Associativitat)

$$= r_20_R - r_10_R$$
 ($r_1 \in \operatorname{ann}_R(m_1) \land r_2 \in \operatorname{ann}_R(m_2)$)

$$= 0_R$$
 (0_R element neutre additiu)

Per tant, $\exists r(r \in R - \{0_R\} \land r(m_1 - m_2) = 0_R)$, és a dir, $m_1 - m_2 \in T(M)$, d'on T(M) és un subgrup additiu de M. Sigui $r \in R$, $m \in T(M)$. $\exists r'(r' \in R - \{0_R\} \land r'm = 0_R)$. Per tant,

$$r'(rm) = (r'r)m$$
 (Associativitat)
 $= (rr')m$ (R commutatiu)
 $= r(r'm)$ (Associativitat)
 $= r0_R$ ($r' \in \operatorname{ann}_R(m)$)
 $= 0_R$ (0_R element neutre additiu)

Com $\exists r'(r' \in R - \{0_R\} \land r'(rm) = 0_R), rm \in T(M)$, és a dir, T(M) és tancat per multiplicació d'elements de R. Com T(M) és un subgrup additiu de M i és tancat per multiplicació d'elements de R, és un R-submòdul de M.

Veiem que T/T(M) és lliure de torsió. Clarament

$$\{T(M)\} \subset T(M/T(M)) = \{m + T(M) : \exists r(r \in R - \{0_R\} \land r(m + T(M)) = T(M))\}\$$
$$= \{m + T(M) : \exists r(r \in R - \{0_R\} \land rm \in T(M))\}\$$

Sigui $m + T(M) \in T(M/T(M))$. $\exists r(r \in R - \{0_R\} \land rm \in T(M))$. Com $rm \in T(M)$, $\exists r'(r' \in R - \{0_R\} \land r'(rm) = 0_R)$. Com R és domini i $r, r' \neq 0_R$, deduïm que $m = 0_R$. Aleshores, $m + T(M) = 0_R + T(M) = T(M) \in \{T(M)\}$. Per tant, $T(M/T(M)) \subset \{T(M)\}$. Per doble inclusió, $T(M/T(M)) = \{T(M)\}$.

3. Proveu que $T(M \oplus N) = T(M) \oplus T(N)$.

Demostració. Escrivim

$$T(M \oplus N) = \{(m, n) \in M \oplus N : \exists r(r \in R - \{0_R\} \land r(m, n) = (rm, rn) = (0_R, 0_R))\}$$
$$T(M) \oplus T(N) = \{(m, n) \in M \oplus N : \exists r_1(r_1 \in R - \{0_R\} \land r_1m = 0_R) \land \exists r_2(r_2 \in R - \{0_R\} \land r_2n = 0_R)\}$$

Sigui $(m,n) \in T(M \oplus N)$. $\exists r(r \in R - \{0_R\} \land r(m,n) = (rm,rn) = (0_R,0_R))$. Per tant, $\exists r(r \in R - \{0_R\} \land rm = 0_R) \land \exists r(r \in R - \{0_R\} \land rn = 0_R)$, és a dir, $(m,n) \in T(M) \oplus T(N)$ (i per tant $T(M \oplus N) \subset T(M) \oplus T(N)$).

Sigui $(m,n) \in T(M) \oplus T(N)$. $\exists r_1(r_1 \in R - \{0_R\} \land r_1 m = 0_R) \land \exists r_2(r_2 \in R - \{0_R\} \land r_2 n = 0_R)$. Com R és domini, $r_1 \neq 0_R \land r_2 \neq 0_R \Rightarrow r_1 r_2 \neq 0_R$. Tenim que

$$(r_1r_2)(m,n) = ((r_1r_2)m, (r_1r_2)n)$$

$$= ((r_2r_1)m, (r_1r_2)n) \qquad (R \text{ commutatiu})$$

$$= (r_2(r_2m), r_1(r_2n)) \qquad (Associativitat)$$

$$= (r_20_R, r_10_R) \qquad (r_1 \in \operatorname{ann}_R(m) \land r_2 \in \operatorname{ann}_R(n))$$

$$= (0_R, 0_R) \qquad (0_R \text{ element neutre additiu})$$

Per tant, $\exists r(r \in R - \{0_R\} \land r(m,n) = (rm,rn) = (0_R,0_R))$, és a dir, $(m,n) \in T(M \oplus N)$ (i per tant $T(M) \oplus T(N) \subset T(M \oplus N)$). Per doble inclusió, $T(M \oplus N) = T(M) \oplus T(N)$.

4. Calculeu T(R) i T(R/(a)).

Demostració. Ho fem directament:

$$T(R) = \{r \in R : \exists r'(r' \in R - \{0_R\} \land r'r = 0_R)\}$$
 (Per definició de $T(R)$)
= $\{0_R\}$ (R domini)

$$T(R/(a)) = \{r + (a) \in R + (a) : \exists r'(r' \in R - \{0_R\} \land r'(r + (a)) = (a))\}$$
 (Per definició de $T(R/(a))$)
= $\{r + (a) \in R + (a) : \exists r'(r' \in R - \{0_R\} \land r'r \in (a))\}$
= $R/(a)$ ($r' = a$ i (a) ideal)

Problema 2. Proveu que si M és un mòdul finitament generat i lliure de torsió és lliure.

Demostració. Com M R-mòdul finitament generat, $\exists m_1 \dots \exists m_s(m_1, \dots, m_s \in M - \{0_R\} \land M = (m_1, \dots, m_s))$. Sense pèrdua de la generalitat, podem suposar s mínima. Escrivim $\forall i (i \in \{1, \dots, s\} \Rightarrow M_i := (m_1, \dots, m_i))$. Veiem que M_1 és lliure. Sigui $f: R \to M_1$ morfisme de R-mòduls definida per $f(r) := rm_1$. f és exhaustiva ja que $M_1 := (m_1)$. Sigui $r \in \ker f$. Aleshores, $rm_1 = 0_R$. Suposem que $r \neq 0_R$. Aleshores, $m_1 \in T(M)$. Com M és lliure de torsió, $T(M) = \{0_R\}$, d'on deduïm que $m_1 = 0_R$, contradicció. Per tant, $r = 0_R \in \{0_R\}$, d'on $\ker f \subset \{0_R\}$. Com $\{0_R\} \subset \ker f$ és evident, per doble inclusió $\ker f = \{0_R\}$. Per tant, f és injectiva. Com f morfisme de R-mòduls és exhaustiva i injectiva, f és un isomorfisme. Per tant, $M_1 \cong R$ (M_1 és lliure).

2

Suposem que $j := \max\{i \in \{1, ..., s\} : M_i \text{ és lliure}\} < s.$ M_{j+1} no és lliure. Aleshores, $\{m_1, ..., m_{j+1}\}$ és un sistema generador linealment dependent. Per tant,

$$\forall r_1 \dots \forall r_{j+1} \Big(r_1, \dots, r_{j+1} \in R \Rightarrow \Big(\sum_{k=1}^{j+1} r_k m_k = 0_R \land \exists k \Big(k \in \{1, \dots, j+1\} \land r_k \neq 0_R \Big) \Big) \Big)$$

Suposem que $r_{j+1} \neq 0_R$. Aleshores, $\sum_{k=1}^{j+1} r_k m_k = \sum_{k=1}^{j} r_k m_k = 0_R$. Com M_j és lliure, $\{m_1, \ldots, m_j\}$ és un conjunt linealment independent. Per tant, $\sum_{k=1}^{j} r_k m_k = 0_R \Rightarrow \forall k (k \in \{1, \ldots, j\}) \Rightarrow r_k = 0_R$, contradicció. Per tant, $r_{j+1} \neq 0_R$.

Sigui $g: M_{j+1} \to M_j$ definida per $g(x) := r_{j+1}x$. g ben definida, ja que si $x = \sum_{k=1}^{j+1} r'_k m_k$, es comprova que $g(x) = \sum_{k=1}^{j} (r_{j+1}r'_k - r'_{j+1}r_k) m_k \in M_j$. Sigui $x \in \ker g$. Aleshores, $r_{j+1}x = 0_R$. Suposem que $x \neq 0_R$. Aleshores, $r_{j+1} \in T(M)$. Com M és lliure de torsió, $T(M) = \{0_R\}$, d'on deduïm que $r_{j+1} = 0_R$, contradicció. Per tant, $x = 0_R \in \{0_R\}$ i $\ker g \subset \{0_R\}$, d'on $\ker g = \{0_R\}$ per doble inclusió. Aleshores, $M_{j+1} \cong \operatorname{im} g$, contradicció, ja que com M_j és lliure i $\operatorname{im} g$ és R-submòdul de M_j , $\operatorname{im} g$ és lliure i M_{j+1} no ho és. Per tant j = s, com volíem veure.

Problema 3. Siqui M un R-mòdul finitament generat. Proveu que la sucessió exacta curta

$$0 \longrightarrow T(M) \longrightarrow M \longrightarrow M/T(M) \longrightarrow 0$$

és escindida. Deduïu que M és isomorf a la suma directa del seu submòdul de torsió i un mòdul lliure. Proveu que aquesta descomposició de M com a suma directa d'un mòdul de torsió i un mòdul lliure és única tret d'isomorfisme.

Demostració. Sigui M R-mòdul finitament generat. Aleshores, M/T(M) és R-mòdul finitament generat i lliure de torsió, d'on deduïm que és lliure. Sigui $\{m_1 + T(M), \ldots, m_n + T(M)\}$ base de M/T(M) tal que $\forall i (i \in \{1, \ldots, n\} \Rightarrow m_i \notin T(M))$.

Sigui $\alpha: M/T(M) \to M$ definida per $\forall i (i \in \{1, ..., n\} \Rightarrow \alpha(m_i + T(M)) := m_i)$ i estenent per linealitat. α esta ben definida i és morfisme de R-mòduls. Considerem $\pi: M \to M/T(M)$ la projecció canònica. Aleshores,

$$\pi \circ \alpha(m_i + T(M)) = \pi(m_i)$$
 (Per definició de α)
= $m_i + T(M)$ (Per definició de π)

Deduïm que $\pi \circ \alpha = id_{M/T(M)}$. Per tant,

$$0 \longrightarrow T(M) \longrightarrow M \longrightarrow M/T(M) \longrightarrow 0$$

és escindida, o, equivalentment, $M\cong T(M)\oplus (M/T(M))$, on T(M) és el R-submòdul de torsió de M i M/T(M) R-mòdul lliure per l'observació inicial.

Sigui T_{tor} R-mòdul de torsió i L R-mòdul lliure tal que $M\cong T_{tor}\oplus L$. Tenim que

$$T(M) \cong T(T_{tor} \oplus L) \qquad (M \cong T_{tor} \oplus L)$$

$$= T(T_{tor}) \oplus T(L) \qquad (T(M \oplus N) = T(M) \oplus T(N))$$

$$= T(T_{tor}) \oplus \{0_R\} \qquad (L \text{ lliure } \Longrightarrow L \text{ lliure de torsió})$$

$$\cong T(T_{tor})$$

$$= T_{tor} \qquad (T_{tor} R\text{-m\`odul de torsi\'o})$$

D'altra banda,

$$\frac{M}{T(M)} \cong \frac{T(M) \oplus (M/T(M))}{T(M) \oplus \{0_R\}}$$

$$\cong \frac{T_{tor} \oplus L}{T_{tor} \oplus \{0_R\}}$$

$$\cong L$$

$$(T(M) \oplus (M/T(M)) \cong M \cong T_{tor} \oplus L \text{ i } T(M) \cong T_{tor})$$

Deduïm que la descomposició de M com a suma directa d'un R-mòdul de torsió i un R-mòdul lliure és única tret d'isomorfisme.

Problema 4. Sigui M un R-mòdul de torsió, és a dir, T(M) = M. Per a cada ideal (r) de R (recordem que és DIP), definim el submòdul (r)-primari de M com $T_{(r)} := \{m \in M : r^n m = 0_R \text{ per algunn } \geq 0\}$.

1. Proveu que $T_{(r)}$ és independent del generador que triem per l'ideal.

Demostració. Siguin $r, r' \in R$ tal que (r) = (r'). Sigui $m \in T_{(r)} := \{m \in M : \exists n(n \in \mathbb{N} \land r^n m = 0_R)\}$. $\exists n(n \in \mathbb{N} \land r^n m = 0_R)$. Aleshores,

$$(r')^n = (r''r)^n m$$
 $(r' \in (r') = (r'') \implies \exists r''(r'' \in R \land r' = r''r))$
 $= (r'')^n r^n m$ $(R \text{ commutatiu})$
 $= (r'')^n 0_R$ $(r^n m = 0_R)$
 $= 0_R$ $(0_R \text{ element neutre additiu})$

Per tant, $m \in T_{(r')}$, d'on $T_{(r)} \subset T_{(r')}$. Per simetria, $T_{(r')} \subset T_{(r)}$. Per doble inclusió, $T_{(r)} = T_{(r')}$, com volíem veure.

2. Proveu que si r, s són coprimers, llavors $T_{(rs)} \cong T_{(r)} \oplus T_{(s)}$.

Demostració. Sigui $m \in T_{(r)} \cap T_{(s)}$. Aleshores, $\exists n \exists n' (n, n' \in \mathbb{N} \wedge r^n m = s^{n'} m = 0_R)$. Com r, s coprimers, (r, s) = R. Aleshores, $\exists r' \exists s' (r', s' \in R \wedge r' r^n + s' s^{n'} = 1_R)$. Per tant,

$$m = m(r'r^n + s's^{n'})$$
 $(r'r^n + s's^{n'} = 1_R)$
 $= m(r'r^n) + m(s's^{n'})$ (Distributivitat)
 $= r'(r^nm) + s'(s^{n'}m)$ (Associativitat i commutativitat)
 $= r'0_R + s'0_r$ $(r^nm = s^{n'}m = 0_R)$
 $= 0_R$ (0_R element neutre additiu)

Per tant $m \in \{0_R\}$, d'on $T_{(r)} \cap T_{(s)} \subset \{0_R\}$. Com $\{0_R\} \subset T_{(r)} \cap T_{(s)}$ és evident, per doble inclusió $T_{(r)} \cap T_{(s)} = \{0_R\}$.

Sigui $f: T_{(r)} \oplus T_{(s)} \to T_{(rs)}$ definida per f(m,m') := m+m'. Veiem que f esta ben definida. Sigui $(m,m') \in T_{(r)} \oplus T_{(s)}$. Aleshores, $\exists n \exists n' (n,n' \in \mathbb{N} \wedge r^n m = s^{n'} m' = 0_R)$. Tenim que

$$(rs)^{\max\{n,n'\}} f(m,m') = (rs)^{\max\{n,n'\}} (m+m')$$
 (Per definició de f)
$$= s^{\max\{n,n'\}} (r^{\max\{n,n'\}}m) + r^{\max\{n,n'\}} (s^{\max\{n,n'\}}m')$$
 (Lo de sempre)
$$= s^{\max\{n,n'\}} 0_R + r^{\max\{n,n'\}} 0_R$$
 ($r^n m = s^{n'} m' = 0_R$)
$$= 0_R$$
 (També lo de sempre)

Per tant $f(m,m') \in T_{(rs)}$. f és clarament morfisme de R-mòduls i ker $f = (T_{(r)} \cap T_{(s)}) \oplus (T_{(r)} \cap T_{(s)}) = \{(0_R,0_R)\}$ (f injectiva). Comprovem l'exhaustivitat. Sigui $m \in T_{(rs)}$. $\exists n(n \in \mathbb{N} \land (rs)^n m = 0_R)$. Com (r,s) = R, $\exists r' \exists s'(r',s' \in R \land r'r^n + s's^{n'} = 1_R)$. Com $(rs)^n m$, $r'r^n m \in T_{(s)}$ i $s's^n m \in T_{(r)}$. Tenim que

$$f(s's^n m, r'r^n m) = s's^n m + r'r^n m$$
 (Per definició de f)

$$= (s's^n + r'r^n)m$$
 (Distributivitat)

$$= 1_R m$$
 $(r'r^n + s's^{n'} = 1_R)$

$$= m$$

Per tant, $\forall m(m \in T_{(rs)} \Rightarrow \exists (x, x')((x, x') \in T_{(r)} \oplus T_{(s)} \land f(x, x') = m))$, és a dir, f exhaustiva. Deduïm que $T_{(r)} \oplus T_{(s)} \cong T_{(rs)}$ ja que f és isomorfisme.

3. Proveu que $M \cong \bigoplus_{p} T_{(p)}$, on p es mou en els primers de R.

Demostració. Per tot p primer sigui $\iota_p: T_{(p)} \to \bigoplus_p T(M) (=M)$ i $\iota'_p: T_{(p)} \to \bigoplus_p T_{(p)}$ les respectives inclusions. Per la propietat universal de la suma directa,

Per un argument similar a l'apartat anterior, $\ker \iota = \bigoplus_p \bigcap_p T_{(p)} = \bigoplus_p \{0_R\} = \{(0_R)_p\}$, d'on deduïm la injectivitat de ι .

Veiem l'exhaustivitat. Sigui $m \in T(M)$. $\exists r(r \in R - \{0_R\} \land rm = 0_R)$. Per tant, $m \in T_{(r)}$. Com R és DIP, R és DFU. Aleshores, $\exists e_1 \dots \exists e_n \exists p_1 \dots \exists p_n (e_1, \dots, e_n \in \mathbb{N}, p_1, \dots, p_n \in R)$ primers $\land r = \prod_{i=1}^n p_i^{e_i}$. Aplicant l'isomorfisme del darrer apartat inductivament, obtenim el següent diagrama commutatiu

Aleshores, $\iota(\beta \circ \alpha(m)) = m$, d'on obtenim l'exhaustivitat $(\forall m (m \in T(M) \Rightarrow \exists m' (m' \in \bigoplus_p T_{(p)} \land \iota(m') = m)))$.

Problema 5. Sigui p un primer i $T_{(p)}$ un R-mòdul finitament generat, no nul, (p)-primari d'acord amb la definició de l'exercici anterior.

1. Sigui $\operatorname{ann}_R(T_{(p)}) = \{r \in R : rt \neq 0_R \text{ per a tot } t \in T_{(p)}\}$. Proveu que és un ideal propi de R, generat per p^N per algun N.

Demostració. Escrivim $\operatorname{ann}_R(T_{(p)}) := \{r \in R : \forall t (t \in T_{(p)} \Rightarrow rt = 0_R)\}$. Per definició, $\operatorname{ann}_R(T_{(p)}) \subset R$. Siguin $r, r' \in \operatorname{ann}_R(T_{(p)}), t \in T_{(p)}$. Tenim que

$$(r-r')t = rt - r't$$
 (Distributivitat)
= $0_R - 0_R$ $(r, r' \in \operatorname{ann}_R(m))$
= 0_R (0_R element neutre additiu)

Aleshores, $r - r' \in \operatorname{ann}_R(T_{(p)})$, d'on $\operatorname{ann}_R(T_{(p)})$ és un subgrup de R. Siguin $r \in R, a \in \operatorname{ann}_R(T_{(p)}), t \in T_{(p)}$. Tenim que

$$(ra)t = r(at)$$
 (Associativitat)
 $= r0_R$ ($a \in \operatorname{ann}_R(m)$)
 $= 0_R$ (0_R element neutre additiu)

Aleshores, $ra \in \operatorname{ann}_R(T_{(p)})$, d'on deduïm $R \operatorname{ann}_R(T_{(p)}) \subset \operatorname{ann}_R(T_{(p)})$. Per tant, $\operatorname{ann}_R(T_{(p)})$ és ideal. Veiem que és propi. Per hipòtesi, $T_{(p)} \neq \{0_R\}$. $\exists t(t \in R - \{0_R\} \land t \in T_{(p)})$. Com $1_R \notin \operatorname{ann}_R(t)$, deduïm que $\operatorname{ann}_R(t) \subsetneq R$. Ara,

$$\operatorname{ann}_R(T_{(p)}) = \{r \in R : \forall t (t \in T_{(p)} \Rightarrow rt = 0_R)\}$$
 (Per definició de $\operatorname{ann}_R(T_{(p)})$)
$$= \{r \in R : \forall t (t \in T_{(p)} \Rightarrow r \in \operatorname{ann}_R(t))\}$$
 (Per definició de $\operatorname{ann}_R(t)$)
$$= \bigcap_{t \in T_{(p)}} \operatorname{ann}_R(t)$$
 (Per definició de \cap)
$$\subset \operatorname{ann}_R(t)$$
 ($t \neq 0_R$)
$$\subsetneq R$$

com volíem veure.

Veiem que $\exists N(N \in \mathbb{N} \land \operatorname{ann}_R(T_{(p)}) = (p^N))$. Com $\operatorname{ann}_R(T_{(p)})$ és ideal de R i R és DIP, $\exists r(r \in R \land \operatorname{ann}_R(T_{(p)}) = (r))$. Sigui $r' \in \operatorname{ann}_R(T_{(p)})$. Tenim que $\forall t(t \in T_{(p)} \Rightarrow r't = 0_R)$, $\exists r''(r'' \in R \land r' = rr'')$ i $\exists n(n \in \mathbb{N} \land p^n t = 0_R)$ (ja que $t \in T_{(p)}$). Aleshores,

$$(p^{n} - rr'')t = p^{n}t - rr''t$$

$$= p^{n}t - r't$$

$$= 0_{R} - 0_{R}$$

$$= 0_{R}$$

$$()$$

Sense pèrdua de la generalitat podem suposar que $t \neq 0_R$ ($T_{(p)} \neq \{0_R\}$). Com R és domini, deduïm que $p^n - rr'' = 0_R$ (d'on $p^n = rr'$). Com p primer i R DFU, $\exists u \exists n' (u \in U(R), n' \leq n \land r = up^{n'})$. Per tant,

$$\operatorname{ann}_{R}(T_{(p)}) = (r)$$

$$= (up^{n'}) \qquad (r = up^{n'})$$

$$= (p^{n'}) \qquad (u \in U(R))$$

com volíem veure.

2. Suposem que $T_{(p)}$ està generat per $\{t_1, \ldots, t_s\}$. Proveu que hi ha un conjunt de generadors $\{y_1, \ldots, y_s\}$ de $T_{(p)}$ tal que $\operatorname{ann}_R(y_1) = \operatorname{ann}_R(T_{(p)})$ (= (p^N)).

Demostració. Com $T_{(p)}$ R-mòdul finitament generat, $\exists t_1 \dots \exists t_s(t_1, \dots, t_s \in T_{(p)} \land T_{(p)} = (t_1, \dots, t_s))$. Demostraré una igualtat que potser no és necessària, però la utilitzaré. Sigui $r \in \bigcap_{i=1}^s \operatorname{ann}_R(t_i), t \in T_{(p)}$. Tenim

$$rt = r\left(\sum_{i=1}^{s} r_i t_i\right) \qquad \left(t \in T_{(p)} \implies \exists r_1 \dots \exists r_s (r_1, \dots, r_s \in R \land t = \sum_{i=1}^{s} r_i t_i)\right)$$

$$= \sum_{i=1}^{s} r_i (rt_i)$$

$$= \sum_{i=1}^{s} r_i 0_R \qquad \left(r \in \bigcap_{i=1}^{s} \operatorname{ann}_R(t_i)\right)$$

$$= 0_R$$

Per tant, $\forall t(t \in T_{(p)} \Rightarrow r \in \operatorname{ann}_R(t))$, és a dir, $r \in \bigcap_{t \in T_{(p)}} \operatorname{ann}_R(t)$, d'on deduïm $\bigcap_{i=1}^s \operatorname{ann}_R(t_i) \subset \bigcap_{t \in T_{(p)}} \operatorname{ann}_R(t_i)$. La inclusió $\bigcap_{t \in T_{(p)}} \operatorname{ann}_R(t_i) \subset \bigcap_{i=1}^s \operatorname{ann}_R(t_i)$ és clara ja que $t_1, \ldots, t_s \in T_{(p)}$. Per doble inclusió, $\bigcap_{i=1}^s \operatorname{ann}_R(t_i) = \bigcap_{t \in T_{(p)}} \operatorname{ann}_R(t)$.

Per un argument similar a la demostració de $\exists N(N \in \mathbb{N} \land \operatorname{ann}_R(T_{(p)}) = (p^N))$, podem fer-ho per $\operatorname{ann}_R(t)$, $t \in T_{(p)}$. Per tant, $\forall i (i \in \{1, \dots, s\} \Rightarrow \exists n_i (n_i \in \mathbb{N} \land \operatorname{ann}_R(t_i) = (p^{n_i})))$. Sense pèrdua de la generalitat, suposem que $n_s \leq \ldots \leq n_1$. Aleshores,

$$(p^{n_1}) \subset \cdots \subset (p^{n_s})$$

d'on

$$\operatorname{ann}_R(t_1) \subset \cdots \subset \operatorname{ann}_R(t_s)$$

Aleshores, $\bigcap_{i=1}^s \operatorname{ann}_R(t_i) = \operatorname{ann}_R(t_s)$ (= $\operatorname{ann}_R(T_{(p)})$) i escollint el sistema generador $\{t_s, \ldots, t_1\}$ l'enunciat segueix.

3. Sigui $T'_{(p)} = T_{(p)}/\langle y_1 \rangle$. Proveu que $T'_{(p)}$ és també finitament generat i (p)-primari. Si $y' \in T'_{(p)}$ satisfà $\operatorname{ann}_R(y') = (p^m)$, llavors $m \leq N$ i existeix $y \in T_{(p)}$ tal que la seva classe mòdul $\langle y_1 \rangle$ és y' i $\operatorname{ann}_R(y) = (p^m)$.

Demostració. Com $T_{(p)} = (y_1, \dots, y_s), T_{(p)}/\langle y_1 \rangle = (y_2 + \langle y_1 \rangle, \dots, y_s + \langle y_1 \rangle)$ (també és finitament generat). Podem escriure

$$T_{(p)}/\langle y_1 \rangle = \{ m + \langle y_1 \rangle : m \in T_{(p)} \}$$

$$= \{ m + \langle y_1 \rangle : m \in \{ m \in M : \exists n (n \in \mathbb{N} \land p^n m = 0_R) \} \}$$

$$= \{ m + \langle y_1 \rangle : \exists n (n \in \mathbb{N} \land p^n (m + \langle y_1 \rangle) = \langle y_1 \rangle) \}$$

Per tant, $T_{(p)}/\langle y_1 \rangle$ és (p)-primari. Veiem que si $y' \in T_{(p)}/\langle y_1 \rangle$ satisfà $\operatorname{ann}_R(y') = (p^m)$, llavors $m \leq N$. Sigui $\pi: T_{(p)} \twoheadrightarrow T_{(p)}/\langle y_1 \rangle$. Per exhaustivitat de π , $\exists y (t \in T_{(p)} \land \pi(y) = y')$. Tenim que

$$(p^{N}) = \bigcap_{t \in T_{(p)}} \operatorname{ann}_{R}(t)$$

$$\subset \operatorname{ann}_{R}(y) \qquad (y \in T_{(p)})$$

$$= \{r \in R : ry = 0_{R}\} \qquad (\operatorname{Per definici\'o de ann}_{R}(y))$$

$$\subset \{r \in R : ry \in \langle y_{1} \rangle\} \qquad (\operatorname{Per definici\'o de ann}_{R}(y') \text{ i } \pi(y) = y')$$

$$= (p^{m}) \qquad (\operatorname{Per hip\'otesi})$$

Com $(p^N) \subset (p^m)$, $m \leq N$, com volíem.

Veiem que existeix $y \in T_{(p)}$ tal que la seva classe mòdul $\langle y_1 \rangle$ és y' i $\operatorname{ann}_R(y) = (p^m)$. Tenim que $p^m \in$ $\operatorname{ann}_R(y')$ ($\operatorname{ann}_R(y') = (p^m)$). Aleshores, $\exists r (r \in R \land p^m r = ry_1)$. Tenim que

$$p^{N-m}ry_1 = p^{N-m}p^my \qquad (p^my = ry_1)$$

$$= p^Ny$$

$$= 0_R \qquad (y \in T_{(p)} \text{ i ann}_R(T_{(p)}))$$

Per tant, $p^{N-m}r \in \operatorname{ann}_R(y_1) = (p^N)$, d'on $\exists r'(r' \in R \land p^{N-m}r = r'p^N)$. Ara,

$$p^{N-m}(r-r'p^m) = p^{N-m}r - r'p^m$$
 (Distributivitat)
= 0_R
$$(p^{N-m}r = r'p^m)$$

Com R és domini i p primer, $r - r'p^m = 0_R$ (d'on $r = r'p^m$). Tenim que

$$p^{m}(y - r'y_{1}) = p^{m}y - (r'p^{m})y_{1}$$

$$= p^{m}y - ry_{1} \qquad (r'p^{m} = r)$$

$$= 0_{R} \qquad (p^{m}y = ry_{1})$$

d'on $p^m \in \operatorname{ann}_R(y-r'y_1)$ i, en conseqüència, $(p^m) \subset \operatorname{ann}_R(y-r'y_1)$. Per un argument similar que abans hem vist (quan veiem que $m \leq N$), deduïm que $\operatorname{ann}_R(y - r'y_1) \subset \operatorname{ann}_R(\pi(y - r'y_1))$. Com $\pi(y-r'y_1)=\pi(y)=y'$ i ann $_R(y')=(p^m),$ obtenim ann $_R(y-r'y_1)\subset (p^m).$ Per doble inclusió, $\operatorname{ann}_R(y-r'y_1)\subset (p^m).\ y-r'y_1$ és l'element que busquem.

4. Proveu que existeixen enters positius $m_1 \leq m_2 \leq \cdots \leq m_s$ tals que $\operatorname{ann}_R(T_{(p)}) = (p^{m_s})$ i un isomorfisme de mòduls $T_{(p)} \cong R/(p^{m_1}) \oplus \cdots \oplus R/(p^{m_s})$.

Demostració. Procedim per inducció en s.

Sigui s=1. Sigui $f:R\to T_{(p)}$ el morfisme de R-mòduls exhaustiu definit per $f(r):=ry_1$ (ben definit: $T_{(p)} = (y_1)$). Tenim que ker $f = \operatorname{ann}_R(y_1) = (p^N)$. Aleshores, pel primer teorema d'isomorfisme, $R/(p^{N}) \cong \operatorname{im} f = T_{(p)}.$

Suposem el resultat cert per $\langle s$. Tenim que $T_{(p)}/\langle y_1 \rangle = (y_2 + \langle y_1 \rangle, \dots, y_s + \langle y_1 \rangle)$. Per hipòtesi d'inducció, $\exists m_1 \dots \exists m_{s-1}(m_1 \leq \dots \leq m_s \wedge T_{(p)}/\langle y_1 \rangle \cong \bigoplus_{i=1}^{s-1} R/(p^{m_i}))$. Per l'apartat anterior, $\forall y'(y' \in T_{(p)}/\langle y_1 \rangle \Rightarrow \exists y(y \in T_{(p)} \wedge (\pi(y) = y' \wedge \operatorname{ann}_R(y) = \operatorname{ann}_R(y'))))$ (recordem que podem trobar $n(y') \in \mathbb{N}$ tal que ann $R(y') = (p^{n(y')})$. Aleshores, definim $\beta : T_{(p)}/\langle y_1 \rangle \to T_{(p)}$ definida per $\beta(y') = y$ (ben definida per l'elecció de y). Es comprova que β és morfisme de R-mòduls ja que $\pi: T_{(p)} \to T_{(p)}/\langle y_1 \rangle$ és morfisme de R-mòduls. També es comprova que $\pi \circ \beta = id_{T_{(p)}/\langle y_1 \rangle}$. Aleshores,

$$0 \longrightarrow \langle y_1 \rangle \longrightarrow T_{(p)} \longrightarrow T_{(p)}/\langle y_1 \rangle \longrightarrow 0$$

escindeix, d'on $T_{(p)} \cong (T_{(p)}/\langle y_1 \rangle) \oplus \langle y_1 \rangle$. Del cas s = 1, $\langle y_1 \rangle \cong R/(p^{m_s})$ amb $m_1 \leq \cdots \leq m_{s-1} \leq m_s$. Per tant,

$$T_{(p)} \cong (T_{(p)}/\langle y_1 \rangle) \oplus \langle y_1 \rangle$$

$$\cong \bigoplus_{i=1}^{s-1} R/(p^{m_i}) \oplus R/(p^{m_s})$$

$$\cong \bigoplus_{i=1}^s R/(p^{m_i})$$

i l'enunciat segueix.

Problema 6. Sigui M un R-mòdul finitament generat. Aleshores $M \cong F \oplus T$ on F és lliure i $T \cong \bigoplus_p T_{(p)}$. A més, per a cada p, tenim $T_{(p)} \cong \bigoplus_{i=1}^s R/(p^{m_i})$ per certs m_1, \ldots, m_s .

Demostració. Concloem:

$$M \cong (M/T(M)) \oplus T(M)$$
 (Exercici 3.)

$$\cong (M/T(M)) \oplus \bigoplus_{p} T_{(p)}$$
 (Exercici 4.3.)

$$\cong (M/T(M)) \oplus \bigoplus_{p} \bigoplus_{i=1}^{s} R/(p^{m_i,p})$$
 (Exercici 5.4.)