Dan Jurafsky and James Martin Speech and Language Processing

Chapter 6: Vector Semantics

Let's define words by their usages

In particular, words are defined by their environments (the words around them)

Zellig Harris (1954): If A and B have almost identical environments we say that they are synonyms.

What does ong choi mean?

Suppose you see these sentences:

- Ongchoi is delicious sautéed with garlic.
- Ongchoi is superb over rice
- Ongchoi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

 Ongchoi is a leafy green like spinach, chard, or collard greens

Ong choi: *Ipomoea aquatica* "Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

Build a new model of meaning focusing on similarity

Each word = a vector Similar words are "nearby in space"

Define a word as a vector

Called an "embedding" because it's embedded into a space

The standard way to represent meaning in NLP Fine-grained model of meaning for similarity

- NLP tasks like sentiment analysis
 - With words, requires same word to be in training and test
 - With embeddings: ok if similar words occurred!!!
- Question answering, conversational agents, etc

2 kinds of embeddings

Tf-idf

- A common baseline model
- Sparse vectors
- Words are represented by a simple function of the counts of nearby words

Word2vec

- Dense vectors
- Representation is created by training a classifier to distinguish nearby and far-away words

An alternative to tf-idf

Ask whether a context word is **particularly informative** about the target word.

Positive Pointwise Mutual Information (PPMI)

It compares the observed co-occurrence frequency of two words to their expected co-occurrence if they were statistically independent.

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
 - Things are co-occurring less than we expect by chance
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$PPMI(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)

 f_{ii} is # of times w_i occurs in context c_i

$$p_{ij} = \frac{f_{ij}}{\sum_{W}^{W} \sum_{C}^{C} f_{ij}} \qquad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

apricot pineapple information

mputer	data	pinch	result	sugar
0	0	1	0	1
0	0	1	0	1
2	1	0	1	0
1	6	0	4	0
	0 0 2 1	mputer data 0 0 0 0 2 1 1 6	omputer data pinch 0 0 1 0 0 1 2 1 0 1 6 0	mputer data pinch result 0 0 1 0 0 0 1 0 2 1 0 1 1 6 0 4

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}}$$

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \qquad ppmi_{ij} = \begin{cases} |pmi_{ij}| & \text{if } pmi_{ij} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Count(w,context)

	(,,						
$f_{::}$		computer	data	pinch	result	sugar	
$p_{ii} = \frac{J_{ij}}{W}$	apricot	0	0	1	0	1	2/19
	pineapple digital	0	0	1	0	1	11
$\angle \angle Jij$	digital	2	1	0	1	0	
<i>i</i> =1 <i>j</i> =1	information	1	6	0	4	0	

P(apricat)=

word "c" as vector using Represent the PRMI weights.

Weighting PMI

PMI is biased toward infrequent events

Very rare words have very high PMI values

Two solutions:

Give rare words slightly higher probabilities

For rare events, even a few co-occurrences can produce a high PMI because the model assumes that their co-occurrence is "surprising" or informative. This is particularly problematic because:

- Rare words have low probabilities, so their independent probabilities P(w) and P(c) are small.
- The ratio $\frac{P(w,c)}{P(w)P(c)}$ becomes large, and the logarithm amplifies this effect, leading to a high PMI value.

Example of bias:

Consider a very rare word w that appears in only a few contexts. Even if it co-occurs with a particular context c just a few times, the fact that both P(w) and P(c) are extremely small means that the co-occurrence P(w,c) appears much larger in comparison to their independent occurrences.

This causes PMI to assign a disproportionately high value to rare events, which does not necessarily reflect meaningful associations but rather the low overall probability of occurrence.

If **one of the words** (either the target word w or the context word c has a **higher probability** while the other is rare, the PMI value will still be affected.

Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to $\alpha = 0.75$:

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

This helps because $P_{\alpha}(c) > P(c)$ for rare c

Consider two events, P(a) = .99 and P(b)=.01

$$P_{\alpha}(a) = \frac{99.75}{99.75 + 1.75} = .97 \ P_{\alpha}(b) = \frac{1.75}{99.75 + 1.75} = .03$$

Summary for Part I

- Idea of Embeddings: Represent a word as a function of its distribution with other words
- Tf-idf
- Cosines
- PPMI

Calculate the PPMI vector of the words: *data*, *science*Consider context window of size 2.

Data science is an interdisciplinary field.

Machine learning is a subset of Data science.

Data science involves statistics and programming.

Programming is essential for Data science and Artificial intelligence.

Statistics is important for Data science and Machine learning.