Matrix Analysis and Applications (Autumn 2021)

Homework: 2

向量和范数

 $\label{lem:lemma$

TA: Tianren Zhang, Yizhou Jiang, Chongkai Gao zhang-tr19, jiangyz20, gck20@mails.tsinghua.edu.cn

1. 在 \mathbb{R}^n 中,设 $\boldsymbol{\alpha} = (\xi_1, \xi_2, \dots, \xi_n)$, $\boldsymbol{\beta} = (\eta_1, \eta_2, \dots, \eta_n)$,分别定义实数 $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ 如下:

(1)
$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \left(\sum_{i=1}^{n} \xi_i^2 \eta_i^2\right)^{\frac{1}{2}};$$

(2)
$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \left(\sum_{i=1}^{n} \xi_i\right) \left(\sum_{j=1}^{n} \eta_j\right)$$

(3)
$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \left(\sum_{i=1}^{n} i \xi_i \eta_i\right).$$

判断它们是否为 \mathbb{R}^n 中向量 α 与 β 的内积.

$$\mathbf{2.} \ \, \boldsymbol{A} = \begin{bmatrix} -1 & 0 & 2 & \mathrm{i} \\ 3+\mathrm{i} & 5 & 1+\mathrm{i} & 0 \\ 2 & \mathrm{i} & 2 & -4 \end{bmatrix} \, , \ \, \boldsymbol{x} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ -\mathrm{i} \end{bmatrix} , \ \, \mathrm{i} = \sqrt{-1} \, , \ \, \text{计算} \ \, \|\boldsymbol{A}\boldsymbol{x}\|_1 \, , \ \, \|\boldsymbol{A}\boldsymbol{x}\|_2 \, , \ \, \|\boldsymbol{A}\boldsymbol{x}\|_\infty .$$

3. 设 A 为 n 阶正定埃尔米特矩阵,对任意 $X \in \mathbb{C}^n$,定义

$$\|X\|_A = \sqrt{X^{\mathrm{H}}AX}$$

试证: $||X||_A$ 是一种向量范数.

4. 设求矩阵 $\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$ 和 $\mathbf{B} = \begin{bmatrix} -\mathrm{i} & 2 & 3 \\ 1 & 0 & \mathrm{i} \end{bmatrix}$ (其中 $\mathrm{i} = \sqrt{-1}$) 的范数 $\|\cdot\|_1$, $\|\cdot\|_\infty$ 及 $\|\cdot\|_2$.

5. 设 $P \in \mathbb{C}^{n \times n}$ 可逆,已知 $\mathbb{C}^{n \times n}$ 中有矩阵范数 $\|\cdot\|_M$,对于 $A \in \mathbb{C}^{n \times n}$,定义实数 $\|A\| = \|P^{-1}AP\|_M$,验证 $\|A\|$ 是 $\mathbb{C}^{n \times n}$ 中的一种矩阵范数.

向量和范数

2

6. 设 $\mathbf{A} = (a_{ij})_{m \times n}$, 列向量 $\boldsymbol{\alpha} \in \mathbb{C}^n$, 证明: 矩阵范数

$$\|\boldsymbol{A}\| = \max\{m, n\} \max_{i,j} |a_{ij}|$$

与向量 2 范数和 ∞ 范数都相容.

- 7. 设 $\|\cdot\|$ 是 $\mathbb{C}^{n\times n}$ 上的矩阵范数,证明:
 - (1) $\|I\| \ge 1$;
 - (2) 设 \boldsymbol{A} 为 n 阶可逆矩阵, λ 是 \boldsymbol{A} 的任意特征值, 那么 $\|\boldsymbol{A}^{-1}\|^{-1} \leq |\lambda| \leq \|\boldsymbol{A}\|$.
- 8. 已知 $u \in \mathbb{R}^n (n > 1)$ 为一个单位列向量, 令 $A = I uu^{\mathrm{T}}$, 试证:
 - (1) $\|\mathbf{A}\|_2 = 1$;
 - (2) 对任意的 $X \in \mathbb{R}^n$, 如果有 $AX \neq X$, 那么 $||AX||_2 < ||X||_2$.