1 Chapter 1: Matrices (Review)

Proposition 1.0.1

Augmented matrices $\begin{bmatrix} A\vec{b} \end{bmatrix}$ and $\begin{bmatrix} A'\vec{b}' \end{bmatrix}$ are row equivalent $\Leftrightarrow A\vec{x} = \vec{b}$ and $A'\vec{x} = \vec{b}'$

Theorem 1.0.2

The following are equivalent:

- (1) A is invertible
- (2) $A\vec{x} = \vec{b}$ has a unique solution for any column vector \vec{b} .
- (3) $A\vec{x} = \vec{0}$ has only one solution $\vec{x} = \vec{0}$.

Theorem 1.0.3

 $det(A) \neq 0 \Leftrightarrow A \text{ invertible.}$

det(AB) = det(A)det(B)

Definition 1.0.4: Symmetric group

Symmetric group S_n is a set of all bijection on set $\{1,2,...,n\}$

Proposition 1.0.5

Every permutation can be written as a non-unique product of not necessarily disjoint transpositions (2-cycle)

Proposition 1.0.6

P is permutation matrix for permutation p, then

- (1) P has a single 1 in each row and each column
- (2) $\det(P) = \pm 1$
- (3) pq composition = PQ matrix

Definition 1.0.7: Sign of permutation

 $sign(p) = det(P) = \begin{cases} +1 & even number of transpositions \\ -1 & odd number of transpositions \end{cases}$

3 Chapter 3 (Quick review)

Definition 3.0.1: Vector Space

A set *V* is a vector space over \mathbb{R} equipped with two operations: $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$:

- (1) (V, +) is an abelian group.
- (2) $1 \cdot v = v$ for all $v \in V$.
- (3) $(ab) \cdot v = a \cdot (b \cdot v)$
- (4) (a+b)v = av + bv, a(v+w) = av + aw

Theorem 3.0.2

If V is n-dim vector space over \mathbb{R} , then exists invertible linear function $f: V \to \mathbb{R}^n$

Definition 3.0.3: Bases

An (ordered) set $B = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ is a base of V:

- (1) B is linearly independent
- (2) B spans V

Note: B is a base $\Leftrightarrow B$ is invertible.

Proposition 3.0.4

A set $\{v_1, v_2, ..., v_n\}$ is linearly independent if $a_1v_1 + ... + a_nv_n = 0$ has only one trivial solution $a_1 = a_2 = ... = a_n = 0$

Definition 3.0.5: Coordinate vector

Given some vector $\vec{v} \in V$, the coordinate vector $[\vec{v}]_B$ is the column matrix such that

$$B[\vec{v}]_B = \vec{v}$$

Definition 3.0.6: Subspace

 $W \subseteq V$ is a subspace of V if it

- (1) closed under +,
- (2) closed under scalar multiplication ·

Definition 3.0.7: Direct Sum

V is the direct sum of subspaces of $W_1, W_2, ..., W_k$ if

- (1) $W_1 + W_2 + ... + W_k = V$.
- (2) $W_1, W_2, ..., W_k$ are independent subspaces, which means for any $i, j \in \mathbb{Z}^*, W_i \cap W_j = \{\vec{0}\}$

2 Chapter 2: Groups

2.2 Groups and Subgroups

Definition 2.2.1: Group

A group is a set G together with a binary operator $G \times G \to G$ s.t.

- (1) associative: a(bc) = (ab)c;
- (2) identity: $e \in G$ s.t. $ea = a = ae, \forall a \in G$
- (3) inverse: for each $a \in G$, there exists $b \in G$ s.t. ab = e = ba.

Proposition 2.2.2

Suppose $a \in S$, exist la = e = ar. Then l = r.

Example 2.2.3.

- (1) $GL_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) : |M| \neq 0 \}$
- (2) $M_n(\mathbb{R})$
- (3) $C^0(\mathbb{R}) = \{\text{invertible continuous functions } \mathbb{R} \to \mathbb{R}\};$ $C^1(\mathbb{R}) = \{\text{invertible continuous differential functions } \mathbb{R} \to \mathbb{R}\};$
- (4) S_n symmetric group of n letters

Note: NOT ALL GROUPS ARE ABELIAN

Proposition 2.2.4: Cancellation

 $a, b, c \in G$. If ab = ac or ba = ca then b = c. And if ab = a or ba = a then b = e.

Proof. Suppose ab = ac. Since $a \in G$, $A^{-1} \in G$. And so we mult. both sides by a^{-1} . So we have

$$a^{-1}ab = a^{-1}ac$$

$$eb$$
 = ec

Second, ab = a, $\Longrightarrow a^{-1}ab = a^{-1}a = e \Longrightarrow b = e$

Definition 2.2.5: Subgroup

A subset $H \subset G$ that is itself a group under the operation inherited from G is called a subgroup.

- (a) closure over multiplication $(A, B \in H \implies AB \in H)$
- (b) $e \in H$
- (c) inverse in H

Example 2.2.6. $SL_2(\mathbb{R}) = \{A \in GL_2(\mathbb{R}) : |A| = 1\}, SL_2(\mathbb{R}) \text{ is a subgroup of } GL_2(\mathbb{R}).$

Proposition 2.2.7

G is a group and $H \subset G$ is a subgroup if for every $a, b \in H$ we have $ab^{-1} \in H$.

Example 2.2.8. $\mathbb{S} = \{z \in \mathbb{C}^* : ||z|| = 1\}$ is a subgroup of \mathbb{C}^*

Definition 2.2.9: Proper subgroup

Every group G has subgroups $\{e\}$ and G. Proper subgroup is subgroup that isn't either of them.

Division in \mathbb{Z} : For any a > b in \mathbb{Z} , we can write a = qb + r, for some $q \in \mathbb{Z}$ and some $r \in \mathbb{Z}$ s.t. $0 \le r \le b - 1$.

2.3 Subgroup of Additive Group of Integer

Theorem 2.3.1: Subgroups of \mathbb{Z}

If $S \subseteq \mathbb{Z}$ the $S = \{0\}$ or $S = \mathbb{Z}a$ where a is the smallest positive integer in S.

Proof. $S \subset Z \implies 0 \in S$. Suppose that $x \in S$ s.t. $x \neq 0$. If not, $S = \{0\}$. If x > 0, then OK. If x < 0, then $-x \in S$ because $S \subset \mathbb{Z}$. Therefore, we can always choose a positive integer $x \in S$.

Consider $\mathbb{Z}a$: since $S \subset \mathbb{Z}$, we know that $a \in S \implies a+a+...+a \in S$, and $(-a)+(-a)+..(-a) \in S$. So $\mathbb{Z}a \subset S$.

Consider S: choose the smallest positive integer $a \in S$. Now consider $m \in S$, m = qa + r where $0 \le r < a$ by integer division. Since $a \in S \implies qa \in S$, and $m \in S \implies m - qa \in S \implies r \in S$. However, a is the smallest positive integer in S, so r has to be zero. That is $m = qa \implies m \in \mathbb{Z}a$. Therefore, $S \subset \mathbb{Z}a$.

Conclude: $S = \mathbb{Z}a$.

Proposition 2.3.2

The group $\mathbb{Z}a + \mathbb{Z}b = \langle a, b \rangle = \{\text{all possible products of a and b under group operation}\}$ is equal to group $\mathbb{Z}d$ for some integer d. d is the greatest common divisor of a, b (write as $\gcd(a,b)$)

Proposition 2.3.3

 $a, b \in \mathbb{Z}$ and $d = \gcd(a, b)$. We have:

- (1) $d \mid a \text{ and } d \mid b$
- (2) $m \mid a \text{ and } m \mid b \implies m \mid d$.
- (3) there exists $r, s \in \mathbb{Z}$ s.t. d = ra + sb.

Recall: given a, b we can use Euclidean algorithm to find d.

Example 2.3.4. a = 321, b = 123. Find $ax + by = \gcd(a, b)$.

Solution:

$$321 = 2 * 123 + 75$$

$$123 = 75 + 48$$

$$75 = 48 + 27$$

$$48 = 27 + 21$$

$$27 = 21 + 6$$

$$21 = 3 * 6 + 3$$

$$6 = 2 * 3$$

So gcd(a, b) = 3, then:

$$3 = 21 - 3 * 6$$

$$=(27-6)-3*6$$

$$=27-4*(27-21)$$

$$= 4 * (48 - 27) - 3 * 27$$

$$= 4 * 48 - 7 * (75 - 48)$$

$$=11*(123-75)-7*75$$

$$= 11 * 123 - 18 * (321 - 2 * 123)$$

$$=47 * 123 - 18 * 321$$

Corollary 2.3.5: to the last prop

a, b are relatively prime $(\gcd(a, b) = 1) \leftrightarrow$ there exists $r, s \in \mathbb{Z}$ s.t. ra + sb = 1

Corollary 2.3.6

$$p \mid ab \implies p \mid a \text{ or } p \mid b$$

2.4 Cyclic Group

Definition 2.4.1: Cyclic groups

A group generated by a single element is called a cyclic group.

Notation: $G = \langle g \rangle = \{...g^{-2}, g^{-1}, e, g^1, g^2, ...\} = \{g^n \mid n \in \mathbb{Z}\}$

Proposition 2.4.2

Let $x \in G$, and consider the cyclic group $S = \langle x \rangle$. Let $S = \{k \in \mathbb{Z} \mid x^k = e\} \subseteq \mathbb{Z}$,

(1) S is a subgroup of \mathbb{Z} .

(2) $x^r = x^s \Leftrightarrow x^{r-s} = e \Leftrightarrow r - s \in S$

(3) $S = \mathbb{Z}n$ for some positive integer n and $1, x, x^2, x^3, ..., x^{n-1}$ distinct.

Proof. .

(1). Check definition of subgroup:

Closure:

$$r, s \in S \implies x^r = e \text{ and } x^s = e$$

$$\implies x^r x^s = ee$$

$$\implies x^{r+s} = e$$

$$\implies r + s \in S$$

Inverse: $r \in S \implies x^r = e$. Now consider $x^{-r} = (x^r)^{-1} = e^{-1} = e \implies -r \in S$ $S \subseteq \mathbb{Z}$

(3). By theorem 2.3.3 and (1), $s \subseteq \mathbb{Z} \implies S = \mathbb{Z}n$ for smallest positive integer $n \in S$. Now consider $x^k = x^{qn+r}$ for $0 \le r < n$ (by integer theorem).So,

$$x^{k} = (x^{n})^{q} x^{r}$$
$$= e^{q} x^{r}$$
$$= x^{r}$$

Now we know that n is the minimum positive integer k s.t. $x^k = e$. Since $x^k = x^r$ and r < n, none of $e, x, x^2, ..., x^{n-1} = e$. Suppose not: $x^k = x^l$ for k < l < n. Then $e = x^l - k$, but l - k < n. Contradiction. So $e, x, x^2, ..., x^{n-1}$ unique and the order of H, |H| = n

Definition 2.4.3: Infinite cyclic group

A group generated by element of infinite order. $x^k \neq e$ for all $k \in \mathbb{Z}$. Then $\langle x \rangle = ..., x^{-2}, x^{-1}, e, x, x^2, ...$ are all distinct (actually $\cong \mathbb{Z}$).

Definition 2.4.4: Order

(1) x has order n if n is the smallest positive integer s.t. $x^n = e$.

(2) Cyclic group $\langle x \rangle$ has order n means it has n number(s) of elements, written as $|\langle x \rangle| = n$.

Example 2.4.5. $S_3 = \langle (123), (12) \rangle$.

Notice an *n*-cycle is order n. $(123)^3 = e$, $(12)^2 = e$. A cyclic subgroup $H = \langle (123) \rangle = \{ (123), (132), e \}$ has order 3. Another cyclic subgroup $L = \langle (12) \rangle = \{ (12), e \}$ has order 2.

Example 2.4.6. $GL_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc \neq 0 \right\}$:

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ has infinite order. } \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \text{ has order } 6.$

Proposition 2.4.7

Suppose x has order n (ord(x) = 0) and $k = nq + r(0 \le r < n)$

- $(1) \quad x^k = x^r$
- (2) $x^k = e \Leftrightarrow r = 0$
- (3) $d = \gcd(k, n) \implies \operatorname{ord}(x^k) = \frac{n}{d}$

Definition 2.4.8: Cyclic group generated by set

 $S \subseteq G$ is a subset and consider $H = \langle S \rangle$, then H is the smallest subgroup containing all of S

Example 2.4.9. The smallest non-cyclic group is the **Klein four group**

$$V = \left\{ \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \right\}$$

Notice: if V was cyclic, then it would have an element of order 4. But all elements are order 2.

And $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, where \mathbb{Z}_2 is a cyclic group of order 2.

Proposition 2.4.10

What is the order of

$$\{g \in G \mid \operatorname{ord}(g) = |G|\}$$

Equivalently: how many elements generate all of *G*?

$$\phi(n) = \{ g^s \mid 0 \le s < n, \gcd(s, n) = 1 \}$$

2.5 Homomorphism

Definition 2.5.1: Homomorphism

A function $\phi: G_1 \to G_2$ between groups G_1, G_2 is a homomorphism if $\phi(g*,h)$:

- (1) $(G_1, *_1)$ and $e_1 \in G_1$ identity;
- (2) $(G_2, *_2)$ and $e_2 \in G_2$ identity;
- (3) $\phi(gh) = \phi(g)\phi(h)$.

Example 2.5.2.

- (1) $\det: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ because $\det(AB) = \det(A)\det(B)$.
- (2) Sign: $S_n \to \{1, -1\}$ because $sign(\sigma \tau) = sign(\sigma) sign(\tau)$
- (3) $\exp: \mathbb{R} \to \mathbb{R}^{\times}$ because $e^{x+y} = e^x e^y$
- (4) $\phi: \mathbb{Z} \to G(a \in G)$ because $n \to a^n = aa...a$
- (5) $\mathbb{C}^{\times} \to \mathbb{R}^{\times}$ s.t. $z \to |z|$ because |zw| = |z||w|
- (6) A trivial homo: $\phi: G_1 \to G_2$ where $\phi(g) = e_2$ for all $g \in G_1$.
- (7) An inclusion homo: $H \subseteq G, H \leftrightarrow G, h \rightarrow h$

Proposition 2.5.3

 $\phi: G_1 \to G_2$ is a homomorphism then:

- (a) $\phi(g_1g_2...g_n) = \phi(g_1)...\phi(g_n)$
- (b) $\phi(e_1) = e_2$
- (c) $\phi(g^{-1}) = \phi(g)^{-1}$

Definition 2.5.4: Subgroups associated to how $G_1 \rightarrow G_2$

- (1) Image of ϕ : im(ϕ) = ϕ (G_1) = { $g \in G_2 \mid g = \phi(h)$ for some $h \in G_1$ }
- (2) Kernel of ϕ : $\ker(\phi) = \{g \in G_1 \mid \phi(g) = e_2\} \subseteq G_1$

Claim: $im(\phi)$ is a subgroup of G_2

Proof. Closure: $g, h \in \text{im}(e)$, so $g = \phi(x), h = \phi(y)$ for some $x, y \in G$. So $gh = \phi(x)\phi(y) = \phi(xy) \implies \text{im}(\phi)$ because $xy \in G_1$. Inverse: $g \in \text{im}(\phi) \implies g = \phi(x)$ for some $x \implies g^{-1} = \phi^{-1}(x) = \phi(x^{-1}) \implies g^{-1} \in \text{im}(\phi)$ because $x^{-1} \in G_1$.

Claim: $\ker(\phi)$ is a subgroup of G_1

Proof. Closure: $x, y \in \ker(l) \implies \phi(x) = e = \phi(y) \implies e^2 = \phi(x)\phi(y) \implies e = \phi(xy) \implies xy \in \ker(\phi)$. Inverse: $x \in \ker(\phi) \implies \phi(x) = e \implies \phi^{-1}(x) = \phi(x^{-1}) = e^{-1} = e$, so $x^{-1} \in \ker(e)$.

Example 2.5.5.

- (1) $\det: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$, $\ker(\det) = SL_n(\mathbb{R})$ (a set of $n \times n$ matrices with determinant 1)
- (2) sign: $S_n \to \{1, -1\}$, ker(sign) = A_n

Proposition 2.5.6

 $\phi:G_1\to G_2$ is homomorphism, $K=\ker(\phi)\subseteq G_1$, for $a,b\in G$, the following are equivalent:

- (1) $\phi(a) = \phi(b)$;
- (2) $a^{-1}b \in K$;
- (3) $b \in aK$.

Corollary 2.5.7

(IMPORTANT) $\phi: G_1 \to G_2$ is injective $\Leftrightarrow \ker(\phi) = \{e\}$.

Note: injective means $\phi(x) = \phi(y)$ for $x, y \in G \implies x = y$

Definition 2.5.8: Normal subgroup

A subgroup $N \leq G$ is normal if $gNg^{-1} \leq N$ for any $g \in G$. In another word, the conjugation of N by g is still inside N.

Theorem 2.5.9

Equivalent:

- (1) gN = Ng
- (2) $N \subseteq gNg^{-1}$
- (3) $gNg^{-1} = N$

Proposition 2.5.10

Let ϕ be homomorphism, $\ker(\phi)$ is a normal subgroup.

Proof. $x \in \ker(\phi)$ and $g \in G$. Now consider gxg^{-1} .

$$\phi(gxg^{-1}) = \phi(g)\phi(x)\phi(g^{-1})$$
$$= \phi(g)e\phi^{-1}(g)$$
$$= \phi(g)\phi^{-1}(g)$$
$$= e$$

So $gxg^{-1} \in \ker(\phi)$

Definition 2.5.11: Center of a group

The center of a group G is the set of all elements commuting with everything in G.

Notation: $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$

Proposition 2.5.12

Z(G) is normal in G. Notation: $Z(G) \subseteq G$.

Proof. Choose $x \in Z(G)$ and $g \in G$, then $gxg^{-1} = gg^{-1}x = x \in G$.

2.6 Isomorphism

Definition 2.6.1: Isomorphism

An bijective homomorphism is called an isomorphism. That is $\phi: G_1 \to G_2$ is isomorphism \Leftrightarrow

 $\phi(G_1) = G_2(\text{surjective}); \ker(\phi) = G_1(\text{injective})$

Example 2.6.2.

- (1) exp: $\mathbb{R}^+ \to (0, \infty)^{\times}, x \to e^x$
- (2) $a \in G$ is an element of infinite order. Define $\phi : \mathbb{Z} \to \langle a \rangle$, $\phi(n) = a^n$. $\langle a \rangle$ infinite cyclic is isomorphic to \mathbb{Z} , $\mathbb{Z} \cong \langle a \rangle$
- (3) Let $P_n \leq GL_n$ of permutation matrices. $S_n \to P_n$ s.t. $\sigma \to \text{permutation of matrix associated to } sigma.$

Lemma 2.6.2.1

 $\phi: G_1 \to G_2$ is isomorphism $\implies \phi^{-1}: G_2 \to G_1$ is also an isomorphism

Definition 2.6.3: Automorphism

 $\phi:G\to G$ isomorphism

Trivial: $\phi(g) = g$ identity map on G

Inner automorphism: $\phi_g:G\to G,\,x\to gxg^{-1}$

Proposition 2.6.4

Abelian group G. We have:

- (1) $H \leq G \implies H \leq G$,
- (2) Z(G) = G
- (3) all inner automorphisms are trivial because $\phi_g(x) = gxg^{-1} = x$.

Definition 2.6.5: Conjugation automorphism

 $\phi_g:G\to G,\,x\to gxg^{-1}$ is a conjugation automorphism.

Proof. Homomorphism: $x, y \in G$, then $\phi_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \phi_g(x)\phi_g(y)$. Isomorphism: Let's look at $\ker(e_g)$. $x \in \ker(e_g) \implies \phi_g(x) = e \implies gxg^{-1} = e \implies x = geg^{-1} = e$. So $\ker(e_g) = \{e\}$, so ϕ_g is injective. \square

Notice: normal subgroups are "fixed" by inner automorphism

Definition 2.6.6: Commutator subgroup

 $a,b \in G$, then their commutator is $aba^{-1}b^{-1}$ and is denoted [a,b]. $[G,G] = \{aba^{-1}b^{-1} \mid a,b,\in G\}$ is the commutator subgroup.

Note: if [a, b] = e, then ab = ba.

2.7 Equivalence relation

Definition 2.7.1: Equivalence relation

Equivalence relations on set S denoted as $a \sim b$ for $a, b \in S$,

- (1) transitive $a \sim b$ and $b \sim c \implies a \sim c$.
- (2) symmetric $a \sim b \implies b \sim a$.
- (3) reflexive $a \sim a$ for all $a \in S$

Example 2.7.2. Conjugacy on a group. Because $a \sim b \Leftrightarrow \text{ exists } g \text{ s.t. } a = gbg^{-1}$

Definition 2.7.3: Partition of S

Subdivide S into non-intersecting (disjoint) and non-empty subsets. $S = S_1 \cup S_2 \cup ... \cup S_n$ s.t. $S_i \cap S_j = \emptyset$ for $i \neq j$, is written as:

$$S = S_1 \sqcup S_2 \sqcup ... \sqcup S_n$$

Example 2.7.4.

- (1) $\mathbb{Z} = \text{Even} \sqcup \text{Odd}$
- (2) $S_3 = \{e\} \sqcup \{y, xy, x^2y\} \sqcup \{x, x^2\}, \text{ where } x = (123), y = (12)$

Proposition 2.7.5

Equivalence relation on S is equivalent to partition on S.

Proof. We want to prove $a \sim b \Leftrightarrow a$ and b are in the same subset in the partition.

Lemma 2.7.5.1

Equivalence classes for $a \in S$, $C_a = \{b \in S \mid a \sim b\}$ partition S.

Proof. Main point: if $C_a \cap C_b \neq \emptyset$, then $C_a = C_b$. Suppose $C_a \cap C_b \neq \emptyset$, we'll show that $C_b \subseteq C_a$, and the following proof is also applicable to get $C_a \subseteq C_b$.

 $x \in C_b \implies b \sim x$. Now let $d \in C_a \cup C_b$. Then $a \sim d$ and $b \sim d$. By symmetry, $d \sim b$. Now $a \sim d \sim b \sim x$. So by transitivity, $a \sim x$. So $x \in C_a$. So $C_b \subseteq C_a$ and similarly $C_a \subseteq C_b$. So $C_a = C_b$

So S is partitioned by disjoint equivalence classes.

Definition 2.7.6: Set of equivalent classes

Set S with relation \sim :

$$\overline{S} = \{ [C_a] \mid a \in S \}$$

 C_a is a set of all equivalent classes that are equal to C.

Example 2.7.7.

 \mathbb{Z} = Even \cup Odd.

Even =
$$C_0 = C_2 = C_4 = \dots \rightarrow \text{[Even]} = \overline{0}$$

$$Odd = C_1 = C_3 = C_4 = \dots \rightarrow [Odd] = \overline{1}$$

So group $\overline{\mathbb{Z}} = \{\overline{1}, \overline{0}\}$

Definition 2.7.8: Map and Function of equivalence relation

For any equivalence relation \sim on S, we can define a surjection map

$$\pi S \to \overline{S}, a \to [C_a]$$

So, $\pi(a) = \pi(b) \Leftrightarrow C_a = C_b$.

Furthermore, let $f: S \to T$, for $a, b \in S$,

$$a \sim b \Leftrightarrow f(a) = f(b) \in T$$

(Only) If f is a bijective function, the **fibre** of function f is:

$$f^{-1} = \{ s \in S \mid f(s) = t \}$$

Example 2.7.9.

- (1) $|G| < \infty$, ord: $G \to \mathbb{N}$. Equivalent classes are: $C_n = \{\text{elements of } G \text{ of order } n\}$
- (2) $f: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ defined by f(z) = |z|

Proposition 2.7.10

Let $K = \ker(\phi)$. The following are equivalent:

- (1) aK = bK
- (2) $a^{-1}b \in K$
- (3) $b \in aK$

Proposition 2.7.11

Let $K = \ker(\phi)$, the fibre of ϕ containing $a \in G_1$ corresponds to coset aK. And these coset partition the group G

2.8 Cosets

Definition 2.8.1: Coset

 $H \subseteq G$ is a subgroup and $a \in G$ s.t.

$$aH = \{ah \mid h \in H\} = \{g \in G \mid g = ah \text{ for some } h \in H\}$$

These aH are cosets of H in G.

Corollary 2.8.2

Left cosets of $H \in G$ partition G.

Example 2.8.3. $G = S_3$, $H = \langle y \rangle$. Let x = (123), y = (12). $H = \{e, y\} = yH$. And $xH = \{x, xy\} = xyH$. And $x^2H = \{x^2, x^2y\} = x^2yH$.

Proposition 2.8.4

 $a, b \in G$ and $H \leq G$. The following are equivalent:

- (1) b = ah for some $h \in H$.
- (2) $a^{-1}b \in H$.
- (3) $b \in aH$.
- (4) aH = bH.

Definition 2.8.5

Number of left cosets of a subgroup $H \leq G$ is called the index of H in G, and it is denoted [G:H]

Lemma 2.8.5.1

All left cosets of $H \leq G$ has same order

Proof. $f: H \to aH$, f(h) = ah. It's a bijection because $f^{-1} = a^{-1}h$. So |H| = |aH|

Proposition 2.8.6: I

H is a subgroup of G and [G:H] = 2, then H is normal. (proved in worksheet or hw)

Theorem 2.8.7: Lagrange's Theorem

|G| = |H|[G:H]

Proof. Cosets are all order |H|, and [G:H] cosets partition G.

Corollary 2.8.8

let $g \in G$, ord $(g) \mid |G|$

Corollary 2.8.9

|G| = p (i.e. G is cyclic of prime order), then for every $a \in G$ s.t. $a \ne e$, $G = \langle a \rangle$.

Corollary 2.8.10

Let $\phi: G \to G'$ homomorphism

- (1) $|G| = |\ker(\phi)| |\operatorname{im}(\phi)|$
- (2) $|\ker(\phi)| |G|$
- (3) $|\text{im}(\phi)| ||G| \text{ and } |\text{im}(\phi)| ||G'|$

Proposition 2.8.11: Multiplicativity of index

$$K \leqslant H \leqslant G \implies \big[G:K\big] = \big[H:K\big]\big[G:H\big]$$

We can also do everything with right cosets

2.9 Modular Arithmetic

Definition 2.9.1: Congruence

 $a \equiv b \mod n \Leftrightarrow n \mid b - a \Leftrightarrow a = kn + b$

Note: it's an equivalence relation on $\ensuremath{\mathbb{Z}}$

Proof. .

- (1) Transitivity: $a \equiv b, b \equiv c \implies a \equiv c$
- (2) Symmetry: $a \equiv b \implies b \equiv a$
- (3) Reflexivity: $a \equiv ae = a$

Notation: $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$

Proposition 2.9.2

There are n congruence classes modulo n. And $[\mathbb{Z} : n\mathbb{Z}] = n$

Lemma 2.9.2.1

$$\overline{a+b} = \overline{a} + \overline{b};$$

$$\overline{ab} = \overline{a} \cdot \overline{b}$$

Definition 2.9.3: Congruence

 $a \equiv b \mod n \Leftrightarrow n \mid b-a \Leftrightarrow a = kn + b$

Note: it's an equivalence relation on $\ensuremath{\mathbb{Z}}$

Proof. .

(1) Transitivity: $a \equiv b, b \equiv c \implies a \equiv c$

(2) Symmetry: $a \equiv b \implies b \equiv a$

(3) Reflexivity: $a \equiv ae = a$

Notation: $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$

Proposition 2.9.4

There are n congruence classes modulo n. And $[\mathbb{Z}:n\mathbb{Z}]$ = n

Lemma 2.9.4.1

$$\overline{a+b} = \overline{a} + \overline{b};$$

$$\overline{ab} = \overline{a} \cdot \overline{b}$$

Example 2.9.5. For what n does 2 have a multiplicative inverse modulo n. That is $2a \equiv 1 \pmod{n}$

2a = qn + 1. Since 2a is even, qn must be odd. So q, n are odd. Then we write n = 2k + 1, k = 2m + 1. So

$$2a = (2m+1)(2k+1) + 1$$

$$=4mk + 2m + 2k + 2$$

$$=2(2mk+m+k+1)$$

Example 2.9.6: Proof of Chinese Remainder Theorem. (General idea)

The theorem:

$$x \equiv a \mod m$$

$$x \equiv b \mod n$$

And gcd(m, n) = 1.

Proof.

$$x = arm + bsn$$

$$= a(1 - sn) + bs$$

$$= a - asn + bsn$$

$$= a + (bs - as)n$$

2.10 Congruence Theorem

Definition 2.10.1: Restriction

Let $\phi: G \to G'$ be a homomorphism, and $H \leqslant G$. We may restrict ϕ to H s.t.

$$\phi \mid_{H} = H \rightarrow G$$

We have:

$$\ker(\phi|_H) = \ker(\phi) \cap H$$

$$\operatorname{im}(\phi|_{H}) = \phi(H)$$

Corollary 2.10.2

Let $\phi: H \to G'$

- (1) $|\phi(H)| |H|$
- (2) $|\phi(H)| |G'|$

So if $gcd(|H|, |G|) = 1 \implies \phi(H) = \{e\}, H \leq ker(\phi)$.

Example 2.10.3. $H \le \text{a subgroup, sign: } S_n \to \{1\}. \text{ Since } |\text{sign}(S_n)| = 2, |\phi(H)| = 1 \implies H \le \ker(\text{sign}) = A_n$

Proposition 2.10.4

Let $\phi: G \to G'$, $K = \ker(\phi)$, $H' \leqslant G'$.

- (1) $K \le \phi^{-1}(H') \le G$
- (2) If $H' \subseteq G'$, $\phi^{-1}(H') \subseteq G$
- (3) If ϕ is surjective (i.e. $\phi(G) = G'$), then $\phi^{-1}(H') \triangleleft G \implies H' \triangleleft G'$

Example 2.10.5. det $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}, H = (0, \infty) \subseteq \mathbb{R}^{\times}$ is normal because \mathbb{R}^{\times} is abelian. So

$$\det^{-1}(H) \unlhd GL_n(\mathbb{R})$$

Theorem 2.10.6: Correspondence Theorem

Let $\phi: G \to G'$ be surjective, $K = \ker(e)$. Then there exists a bijection in

$$\{K \leqslant H \leqslant G\} \leftrightarrow \{H' \leqslant G'\}$$

and the bijection relation is:

$$H \to \phi(H)$$

$$H' \rightarrow \phi^{-1}(H')$$

And $H \subseteq G \Leftrightarrow H' \subseteq G'$, $|H| = |H'| \cdot |K|$.

Critical fact: $\phi(K) = \{e\}.$

Proof. We need

(1) $\phi(H) \leq G'$.

(2) $K \leq \phi^{-1}(H') \leq G$.

(3) $H' \unlhd G' \Leftrightarrow \phi^{-1}(H') \unlhd G$.

(4) Bijective: $\phi(\phi^{-1}(H')) = H'$. This is true for any surjective function. More precisely, $H \subseteq \phi^{-1}(\phi(H))$ for any surjective function H. Now we want to prove the inverse containment. Let $x \in \phi^{-1}(\phi(H)) = \{x \in G \mid \phi(x) \in \phi(H)\}$. So we can write $x = \phi(h)$ for some $h \in H$. So $\phi(x)\phi(h)^{-1} = e \implies \phi(xh^{-1}) = e \implies xh^{-1} \in K$. But by hypothesis, $K \leq H$, so $xh^{-1} \in H$. And $h \in H$, so $xh^{-1}h = x \in H$. So $\phi^{-1}(\phi(H)) \subseteq H \implies H = \phi^{-1}(\phi(H))$

(5) $|\phi^{-1}(H')| = |H'| \cdot |K|$.

2.11 Product groups

Definition 2.11.1

We have two group G, G'. The product group $G \times G' = \{(g, g') \mid g \in G, g' \in G'\}$ with operation given component-wise: $(g_1g'_1)(g_2g'_2) = (g_1g_2, g'_1g'_2)$

They are defined by i(x) = (x, 1), i'(x') = (1, x'), p(x, x') = x, p'(x, x') = x'. The

Product group example in book

Theorem 2.11.2

 $\gcd(r,s) = 1$ then $C_{rs} = C_r \times C_s$.

Notation: C_n = cyclic group of order n.

Example 2.11.3.

- (1) $C_6 \cong C_2 \times C_3$. Let $C_6 = \langle x \rangle$, $C_2 = \langle y \rangle$, $C_3 = \langle z \rangle$. $f: C_6 \to C_2 \times C_3$ is defined by f(x) = (y, z), (y, z) has order 6.
- (2) (Non-example) $C_4 \not\cong C_2 \times C_2$

When is $G \cong H \times K$ for $H, K \leqslant G$

Proposition 2.11.4

Define $f: H \times K \to G$ to be f(h, k) = hk. Its image is the set $\{hj \in G \mid h \in H, g \in G\}$

- (1) f is injective $\Leftrightarrow H \cap K = \{e\}$.
- (2) f is a homomorphism \Leftrightarrow elements of K commute with elements of H.
- (3) H is normal in $G \implies Hk \leqslant G$
- (4) f isomorphism $\Leftrightarrow H \cap K = \{e\}, HK = G, H, K \subseteq G\}$
- *Proof.* (1) (Left to right) Suppose that $x \in H \cap K$ such that $x \neq e \implies x^{-1} \in H, x \in K$ and $f(x^{-1}, x) = e = f(e, e) \implies f$ is not injective. (Right to left) $H \cap K = \{e\}$. Now let $(h_1, k_1) \neq (h_2, k_2) \in H \times K$ such that $f(h_1, k_1) = f(h_2, k_2) \implies h_1 k_1 = h_2 k_2 \implies h_2^{-1} h_1 = k_2 k_1^{-1}$. So because $h_2^{-1} h_1 = k_2 k_1^{-1} \in H \cap K = \{e\}$, $h_2 = h_1$ and $k_2 = k_1 \implies$ f injective
 - (2) (Left to right) f homomorphism, $(h_1, k_1), (h_2, k_2) \in H \times K \implies (h_1h_2, k_1k_2) \in H \times K$ and $f(h_1h_2, k_1k_2) = h_1h_2k_1k_2 = f(h_1, k_1) \times f(h_2, k_2) = h_1k_2h_2k_2 \implies h_2k_1 = k_1h_2$. So we prove commutative since the elements h_2, k_1 are arbitrary. (The inverse direction is the same logic)
 - (3) Let $H \subseteq G$, which means $KH = \bigcup_{k \in K} kH$, $HK = \bigcup_{k \in K} Hk$. Since normal, $kH = Hk \implies KH = HK$. So HK is closed under multiplication: HKHK = HHKK = HK. And inverse exists: $hk \in HK \implies (hk)^{-1} = k^{-1}h^{-1} \in KH = HK$.

(4) (Right to left) Suppose $H, K ext{ } ext{$\subseteq$ } G, G = HK, H \cap K = \{e\}$. Define $f = H \times K \to G$. We already know surjective and injective $\implies f$ is a bijection. By (2) we just need to show hk = kh for all $h \in H, k \in K$. Consider the commutator $\underbrace{(hkh^{-1})k^{-1}}_{\text{Product of two elements in } K} = \underbrace{h(kh^{-1}k^{-1})}_{\text{Product of two elements in } H} \in H \cap K = \{e\}.$ So $hkh^{-1}k^{-1} = e \implies hk = kh$

Proposition 2.11.5: Classification of groups of order 4

There are two isomorphism classes of groups of order 4, the class of the cyclic group C_4 of order 4 and the class of the Klein Four Group, which is isomorphic to the product $C_2 \times C_2$ of two groups of order 2.

Proof. Let $|G| = 4 \implies x \in G$, ord(x) = 1, 2, 4.

Case 1: there is an element s.t. ord(x) = 4, then clearly $G \cong \langle x \rangle$.

Case 2: no element of order 4 (only 2 for $x \neq e$).

$$x, y \in G \implies \operatorname{ord}(x) = \operatorname{ord}(y) = 2$$

$$\operatorname{ord}(xy) = 2$$

$$\implies x = x^{-1}, y = y^{-1}$$

$$\implies xyx^{-1}y^{-1} = xyxy = e$$

$$\implies x, y \text{ commute } \implies G \text{ abelian}$$

Now by prop 2.11.4, $G \cong \langle x \rangle \times \langle y \rangle \cong C_2 \times C_2$

2.12 Quotient Groups

Why we care about normal:

 $N \subseteq G$, consider G/N = set of left cosets of $N \in G = \{gN \mid g \in G\} \implies G/N$ is a group. Notice: If N is not normal then G/N is not a group because (gN)(hN) may not be of form xN.

Theorem 2.12.1

If N is a normal subgroup then G/N (G mod N) is itself a group. And the function $\pi: G \to G/N$ s.t. $\pi(g) = gN = \overline{g}$ is a surjective group homomorphism such that $\ker(\pi) = N$. The π is usually referred to as canonical map.

Lemma 2.12.1.1

 $N \subseteq G, aN, bN \in G/N$ then (aN)(bN) = (ab)N

Proof.
$$a$$
 $\underbrace{Nb}_{\text{right coset}} N = abNN \text{ (because it's normal)} = abN.$

Lemma 2.12.1.2

G group, Y a set with composition and $\phi G \to Y$ surjective function such that $\phi(ab) = \phi(a)\phi(b) \Longrightarrow Y$ is a group and ϕ is homomorphism.

Proof. Now prove the theorem:

- (1) group operation on G/N.
- (2) G/M is a group (closure, identity, inverse) by Lemma 2.
- (3) π surjective homomorphism. π is surjective by definition and $\pi(gh) = ghN = gNhN = \pi(a)\pi(b)$ so homomorphism.
- (4) $\ker(\pi) = N$. $a \in N \Leftrightarrow \pi(a) = \pi(e) = \overline{e} \Leftrightarrow aN = eN = N$

Corollary 2.12.2

 $a_1, a_2, ... a_k \in G$ such that $\prod_{i=1}^k a_i \in N$. Then $\pi(a_1 a_2 ... a_k) = \pi(a_1) \pi(a_2) ... = \overline{e}$

Example 2.12.3. $H = \langle (12) \rangle \in S_3$ which is not normal. $eH(123)H = \{(123), (123)(12), (123)^2(12), (123)^2\}$ and it's not a left coset of H.

Theorem 2.12.4: First Isomorphism Theorem

Let $\phi: G \to G'$ to be a surjective group homomorphism with $\ker(\phi) = N$. Then $G/N \cong G'$.

Proposition 2.12.5

If G/Z(G) is cyclic, then G is abelian. (Used in hw but not mentioned in class)

Proof. We can write $G/Z(G) = \langle xZ(G) \rangle$ for some $x \in G$. Then for any $g \in G$, we have $gZ(G) = x^m Z(G), m \in \mathbb{N}$. Then according to proposition 2.8.4 about cosets, $gZ(G) = x^m Z(G) \implies (x^m)^{-1}g \in Z(G)$. Suppose there's another arbitrary element $h \in G$, let $(x^m)^{-1}g = z_1 \in Z(G), (x^n)^{-1}g = z_2 \in Z(G)$,

$$gh = x^m z_1 x^n z_2$$
$$= x^m x^n z_1 z_2$$
$$= x^n z_1 x^m z_2$$
$$= hq$$

So G is abelian.