1. Evaluate the integral:

1. Evaluate the integral:
$$\int_{0}^{2} x^{2} \sqrt{4-x^{2}} \, dx$$
A. $\pi/2$
B. π
C. 2π
D. 4π
E. 8π

$$\int_{0}^{2} x^{2} \sqrt{4-x^{2}} \, dx$$

$$= \lim_{x \to \infty} \int_{0}^{2} (x^{2}) \frac{1}{4-x^{2}} dx = \int_{0}^{2} (4\sin^{2}\theta) (2\cos\theta) (2\cos\theta) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} x^{2} \sqrt{4-x^{2}} \, dx = \int_{0}^{2} (4\sin^{2}\theta) (2\cos\theta) (2\cos\theta) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} x^{2} \sqrt{4-x^{2}} \, dx = \int_{0}^{2} (4\sin^{2}\theta) (2\cos\theta) (2\cos\theta) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} x^{2} \sqrt{4-x^{2}} \, dx = \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (\frac{1}{2} - \frac{1}{2}\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (\frac{1}{2} - \frac{1}{2}\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-(\frac{1+\cos^{2}\theta}{2})) d\theta$$

$$= \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d\theta = \lim_{x \to \infty} \int_{0}^{2} (1-\cos^{2}\theta) d$$

$$\int \frac{1}{4 - x^2} dx = \int \left(\frac{\frac{1}{4}}{2 - x} + \frac{\frac{1}{4}}{2 + x}\right) dx = \frac{1}{4} \left(-\ln|2 - x|\right) + \frac{1}{4} \ln|2 + x| + C$$

$$= \frac{1}{4} \ln|2 + x| - \frac{1}{4} \ln|2 - x| + C$$

3. The Trapezoidal Rule approximation of

$$\int_0^{\frac{1}{2}} \sin(x^2) dx \quad \text{with} \quad n = 3$$

is given by

A.
$$\frac{1}{6}(\sin 0^2 + \sin \frac{1}{6^2} + \sin \frac{1}{3^2})$$

$$(B.)\frac{1}{12}(\sin 0^2 + 2\sin \frac{1}{6^2} + 2\sin \frac{1}{3^2} + \sin \frac{1}{2^2})$$

C.
$$\frac{1}{8}(\sin 0^2 + \sin \frac{1}{6^2} + \sin \frac{1}{3^2} + \sin \frac{1}{2^2})$$

$$\mathrm{D.}\ \, \frac{1}{12}(2\sin 0^2 + 2\sin \frac{1}{6^2} + 2\sin \frac{1}{3^2} + 2\sin \frac{1}{2^2})$$

E.
$$\frac{1}{12}(\sin 0^2 + 2\sin \frac{1}{6^2} + 4\sin \frac{1}{3^2} + 2\sin \frac{1}{2^2})$$

$$\frac{1}{6} \left(\sin 6^2 + 2 \sin \left(\frac{1}{6} \right)^2 + 2 \sin \left(\frac{1}{3} \right)^2 + \sin \left(\frac{1}{2} \right)^2 \right)$$

4. Which of the following is the most suitable substitution to evaluate the integral

$$(A.)x = \sqrt{6} \tan \theta$$

B.
$$x = 6 \sec \theta$$

C.
$$x = \sqrt{6} \sec \theta$$

D.
$$x = 6\sin\theta$$

E.
$$x = \sqrt{6}\sin\theta$$

$$\int \sqrt{6+x^2} \ dx$$

$$6 + x^2 \rightarrow lot x = \sqrt{6} tan \theta$$

(then
$$6+x^2 = 6+6\tan^2\theta$$

= $6(1+\tan^2\theta)$
= $6 \sec^2\theta$

5. Evaluate the integral below, if it converges

$$\int_{\sqrt{e}}^{\infty} \frac{dx}{x(\ln x)^{5}}$$
A. $\frac{1}{2}$
B. 1
C. 2
D. 4
E. Diverges
$$= \lim_{t \to \infty} \left(-\frac{1}{4} \left(\ln x \right) \right) \left(-\frac{4}{4} \left(\ln x \right) \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{4} \left(\ln x \right) \right) \left(-\frac{4}{4} \left(\ln x \right) \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{4} \left(\ln x \right) \right) \left(-\frac{4}{4} \left(\ln x \right) \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{4} \left(\ln x \right) \right) \left(-\frac{4}{4} \left(\ln x \right) \right)$$
6. The form of the partial fraction decomposition for $\frac{1}{x^{3}(x^{2} + 4)^{2}(x - 2)}$ is

A.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x^2 + 4} + \frac{E}{(x^2 + 4)^2} + \frac{F}{x - 2}$$

B. $\frac{A}{x^3} + \frac{Bx + C}{x^2 + 4} + \frac{Dx + E}{(x^2 + 4)^2} + \frac{F}{x - 2}$

C. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 4} + \frac{Fx + G}{(x^2 + 4)^2} + \frac{H}{x - 2}$

D. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 4} + \frac{F}{x - 2}$

E. $\frac{A}{x^3} + \frac{Bx + C}{x^2 + 4} + \frac{Dx^3 + Ex^2 + Fx + G}{(x^2 + 4)^2} + \frac{H}{x - 2}$

7. Find the length of the curve, $y = \ln(\cos x)$, $0 \le x \le \frac{\pi}{4}$.

A.
$$\ln \sqrt{3}$$

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{-\sin x}{\cos x}\right)^2} = \sqrt{1 + \tan^2 x}$$

B.
$$\ln(\sqrt{3}+1)$$

C.
$$\ln(\sqrt{3}+2)$$
 = $\sqrt{\sec^2 X}$ = Sec X Since Sec $X > 0$
D. $\ln\sqrt{2}$ for $0 \le X \le \frac{\pi}{4}$,

(E)
$$\ln(\sqrt{2}+1)$$

are length = $\int_{0}^{\sqrt{4}} \sqrt{1+\left(\frac{4\pi}{2n}\right)^{2}} dx = \int_{0}^{\sqrt{4}} Sec \times dx$

= $\ln \left| Sec \times + tan \times \right| \left| \frac{\sqrt{4}}{2} \right| = \ln \left| \sqrt{2} + 1 \right| - \ln \left| 1 + 0 \right|$

= $\ln \left(\sqrt{2} + 1 \right) = 0$

8. Which integral represents the area of the surface obtained by revolving the curve, $y = e^{2x}$, $0 \le x \le 1$, about the y-axis?

$$A. \int_0^1 2\pi x e^{2x} \ dx$$

B.
$$\int_0^1 2\pi x \sqrt{1 + e^{4x}} \ dx$$

C.
$$\int_0^1 2\pi x \sqrt{1 + 4e^{4x}} \ dx$$

D.
$$\int_0^1 2\pi e^{2x} \sqrt{1 + e^{4x}} \ dx$$

E.
$$\int_0^1 2\pi e^{2x} \sqrt{1 + 4e^{4x}} \ dx$$

Surface Area =
$$\int_{0}^{1} 2\pi x \sqrt{1 + (2e^{2x})^{2}} dx$$

9. Which of the following represents the y-coordinate of the centroid of the bounded region bounded by $y = \sin x$, $y = \cos x$, x = 0, and $x = \frac{\pi}{4}$, where A is the area of the region?

A.
$$\frac{1}{A} \int_0^{\frac{\pi}{4}} \frac{1}{2} (\cos^2 x - \sin^2 x) \ dx$$

B.
$$\frac{1}{A} \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (\sin^2 x - \cos^2 x) \ dx$$

$$\underbrace{C.}_{A} \int_{0}^{\frac{\pi}{4}} x(\cos x - \sin x) \ dx$$

D.
$$\frac{1}{A} \int_0^{\frac{\pi}{4}} x(\sin x - \cos x) dx$$

E.
$$\frac{1}{A} \int_0^{\frac{\pi}{4}} \frac{1}{2} x (\cos x - \sin x)^2 dx$$

$$\left(x, \frac{\cos x + \sin x}{2}\right)$$

$$\overline{y} = \frac{M_g}{A} = \frac{M_{x=0}}{A}$$

$$= \frac{1}{A} \int_0^{\pi/4} x(\cos x - \sin x) dx$$

$$10. \sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n} =$$

E. The series diverges.

$$\frac{1}{2} = \frac{1}{4} = \frac{1}{4} \left(\frac{2}{4}\right)^{n-1} = \frac{1}{2} \left(\frac{1}{2}\right)^{n-1} = \frac{1}{2}$$

and
$$\sum_{n=1}^{9} \frac{3^n}{4^n} = \sum_{n=1}^{9} \frac{3}{4} \left(\frac{3}{4}\right)^{n-1} = \frac{\frac{3}{4}}{\frac{3}{4}} = 3$$

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$

11. Which of the following series converge?

a.
$$\sum_{n=1}^{\infty} \frac{3^n}{1+3^n}$$

a. diverges since
$$\lim_{n\to\infty} \frac{3}{1+3} = 1 \pm 0$$
.

b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
 b. diverges since $\sum_{n=1}^{\infty} \frac{1}{\sqrt[1]{3}}$ is a p-series

c.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

with
$$p=\frac{1}{3}$$
 and $\frac{1}{3} < 1$.

B. Only b.

c.
$$\int_{2}^{\infty} \frac{1}{x(h,x)^{2}} dx = \int_{2}^{\infty} (h,x)^{-2} \frac{1}{x} dx$$

$$2x^{-2} \frac{1}{x} dx$$

$$= \lim_{t \to \sigma} \int_{2}^{t} (\ln x)^{-2} \frac{1}{x} dx = \lim_{t \to \sigma} \left(-(\ln x)^{-1} \right]_{2}^{t}$$

12. Which of the following statements are true?

I. If
$$\lim_{n\to\infty} |a_n| = 0$$
, then $\lim_{n\to\infty} a_n = 0$

II. If
$$\sum_{n=0}^{\infty} a_n$$
 converges, then $\lim_{n\to\infty} a_n = 0$

III. If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=0}^{\infty} a_n$ converges.

A. I only

$$I: -|a_n| \leq a_n \leq |a_n|$$