Quantum Operations and Noise

Siddhant Midha and Aaryan Gupta

Last updated on June 25, 2022

Some classical intuition

- A register X with the alphabet Σ may be in a probabilistic state p.
- Some noise causes the state to change to q. We can use the law of total probability

$$q(a) = \sum_{b \in \Sigma} \mathbb{P}(X' = a | X = b) \mathbb{P}(X = b) \ \forall a \in \Sigma$$

Thus we have

$$q = Ep$$

for some matrix E such that

- 1 Positivity is held: all entries of E are non negative.
- ② Completeness is fulfilled $\sum_{a \in \Sigma} \mathbb{P}(X' = a | X = b) = 1$ (columns sum to one).

Quantum Operations

- We know that systems may not be represented by a pure quantum states.
- Introduced density operator formalism.
- Now how does a system in the state ρ evolve?
- It might not be a closed system.
- Close the system by including the environment. Thus the net state is $\rho\otimes \rho_{\mathit{env}}.$
- ullet The postulate now follows, so we have the new state $\mathcal{E}(
 ho)$ of the system as

$$\mathcal{E}(
ho) = \mathit{Tr}_{\mathsf{env}}(\mathit{U}(
ho \otimes
ho_{\mathsf{env}})\mathit{U}^*)$$

- Issue! Why must the combined state be a product one?
- Observation Input and output spaces needn't be the same.

Don't want the environment

- Goal: describe general quantum operations on open systems without accounting for the environment.
- Question arises: What kind of a map must $\mathcal E$ be so that it represents a valid quantum operation?
- Axioms;
 - **1** $Tr[\mathcal{E}(\rho)] \in [0,1] \forall \rho \ (Tr[\mathcal{E}(\rho)])$ is the probability that ρ undergoes the transformation \mathcal{E}).
 - Convex linearity

$$\mathcal{E}(\sum_{i}p_{i}\rho_{i})=\sum_{i}p_{i}\mathcal{E}(\rho_{i})$$

- for all density matrices ρ_i and probabilities p_i s.t. $\sum_i p_i = 1$
- § \mathcal{E} is completely positive. Not only does \mathcal{E} preserve positivity, $(I \otimes \mathcal{E})$ also preserves positivity for I being the identity on an aribtrarily dimensional system's hilbert space.

Example

For a single qubit state ρ , a measurement in the computational basis can be described by the operations

 $\mathcal{E}_0(\rho) \equiv |0\rangle\langle 0|\rho|0\rangle\langle 0|$ and $\mathcal{E}_1(\rho) \equiv |1\rangle\langle 1|\rho|1\rangle\langle 1|$ with probabilities given as $tr[\mathcal{E}_0(\rho)]$ and $tr[\mathcal{E}_1(\rho)]$. The final state is

$$\frac{\mathcal{E}_i(
ho)}{\mathit{Tr}([\mathcal{E}_i(
ho)])}$$
 for some $i \in \{0,1\}$

That is, if no measurement is happening, the map $\mathcal E$ would be a completely positive trace preserving (CPTP) map.

The operator sum representation

Theorem 8.1 of QCQI

The map \mathcal{E} satisfies the axioms for a valid quantum operation iff there exists a set of operators $\{E_i\}$ such that

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{*}$$

for all valid density matrices ρ and $0 \leq \sum_i E_i^* E_i \leq I$

Note: $A \leq B$ if B - A is PSD. So if we are just dealing with CPTP maps, then these E_i satisfy $\sum_i E_i^* E_i = I$, and are called the *kraus operators*.

Concluding Points

- Kraus operators are not unique. Unitary equivalence exists as in the case of ensembles.
- Physical motivation for kraus ops: Unitary evolution on joint state, and then measurement¹ of the environment in some basis.
- Non trace preserving maps are those which have unitary evolution of the sys+env followed by projective measurement of the two. Thus trace of $\mathcal{E}_m(\rho)$ represents the probability that E_m took place out of all possible $m.^2$.
- Given an opsum representation, we can cook up an environment s.t. unitary evolution (plus possibly projective measurement) followed by tracing out environment describes the map.
- For a d dimensional system, a general CPTP map can be represented by atmost d² kraus operators.³

¹without knowing the outcome

 $^{^2} that$ is, a single non trace preserving map ${\cal E}$ does NOT describe the dynamics fully, you need the set $\{{\cal E}_m\}$

³not in QCQI, elsewhere.