

生物医学工程专业 实验报告

实验课程:	言号与系统	· · · · · · · · · · · · · · · · · · ·	
班级:1502	姓名: _	尚麟静	-
学号:20155467	同组人:	_乌日娜刘逸如	
指导教师:鲍楠			
实验成绩(教师签字):_			

中荷学院教学实验中心制

实验一 常见信号观测实验

一、实验目的

- 1.观察和测量各种典型信号;
- 2.掌握有关信号的重要特性,了解其在信号与系统分析中的应用。

二、实验步骤

- ① 打开实验箱,调节 SW101(程序选择)按钮,使程序指示灯显示 D3D2D1D0=0001,对应信号观测;(实验箱打开电源时默认 D3D2D1D0=0001,对应信号观测)。
 - ② 将跳线开关 K801, K802, K803 和 K804 连接到左侧:
 - ③ 用示波器分别测量 TP801, TP802, TP803, TP804, TP805 的波形, 并记录下来。

测试点说明如下:

- (1) TP801: 测试正弦函数信号波形;
- (2) TP802: 测试指数函数信号波形;
- (3) TP803: 测试指数衰减振荡函数信号波形;
- (4) TP804: 测试抽样函数信号波形;
- (5) TP805: 测试钟形函数信号波形。

三、实验内容

1.波形生成原理

波形产生原理框图如下图所示:

在 DSP 中根据各个典型信号的生成函数,运算生成各种典型信号,然后经过 D/A 转换后,输出到各个测量针。

2.典型信号

正弦函数信号的函数式为:
$$f(t) = K \sin(\omega t + \theta)$$

其波形如图 1-1 所示:

图 1-1 正弦函数信号

示波器观察结果:

DS0-X 2002A, MY55392168: Tue Jun 06 14:45:22 2017

单边指数信号的函数式为:

$$f(t) = \begin{cases} o & t < o \\ Ae^{at} & t > o \end{cases}$$

其波形如图 1-2 所示。其中 a 为实常数,可大于、等于、小于零。

图 1-2 单边指数信号

示波器观察结果:

指数衰减振荡函数信号指振幅按指数规律衰减的正弦信号, 其函数式为:

$$f(t) = \begin{cases} Ae^{-at}\sin\omega t & t \ge 0 \\ o & t \le 0 \end{cases}$$

其图形如图 1-3 所示。其中 a 大于零的实常数。

图 1-3 单边衰减正弦信号

示波器观察结果

抽样函数信号是由 sint 与 t 两个函数之比构成的信号, 其函数表达式为:

$$\mathrm{Sa}(t) = \frac{\sin t}{t}$$

其图形如图 1-4 所示:

图 1-4 抽样函数信号

示波器观察结果

实验二 连续时间系统的模拟

一、实验目的

1.了解基本运算器——加法器、比例放大器和积分器的电路结构和运算功能;

2.掌握用基本运算单元模拟连续时间系统的方法。

二、实验步骤

在实验基本运算单元与连续系统的模拟模块中,有两个运算放大器。分别通过三个插孔与其输入输出端相连。

进行实验时,可根据需要选择不同阻值的电阻。实验模块上有4个电阻、6个精密电位器可供选择。电位器的阻值根据需要进行调节。

1.基本运算器——加法器的观测

图 3-6 加法器实验电路图

- $\begin{array}{c} u \\ 10K \\ 10K \\ 10K \\ 10K \end{array}$
- ① 同学们自己动手连接如图 3-6 所示实验电路;
- ② 连接 P04 和 P914;
- ③ 调节信号源, 使 P04 输出 f=1KHz 的正弦波,调节电位器 W701 使信号输

出幅度为2V;

④ 将 P915 和 P04 分别与 u1 和 u2 端相连,调节电位器 W902 可改变 P915 输出

信号的幅

度;

- ⑤ 用示波器观测 u0 端信号幅度,调节 W902 观察信号幅度的变化,计算输出 信号号幅度是否为两输入信号幅度之和。
 - 2.基本运算器——比例放大器的观测

图 3-7 比例放大器实验电路图

- ① 同学们自己动手连接如图 3-7 所示实验电路;
- ② 调节信号源,使 P04 输出 f=1KHz,占空比为 50%的脉冲信号,调节 W701 使 信号幅度为 2V:
- ③ 将信号源产生的脉冲信号送入连接的电路输入端 u1,示波器同时观察输入、 输出波形并比较。
 - 3.基本运算器——积分器的观测
 - ① 同学们自己动手连接如图 3-8 所示实验电路;
 - ② 连接 P04 与连接电路的输入端 Ui;
 - ③ 调节信号源使 P04 产生 f=200Hz, 占空比为 50%的脉冲信号,调节 W701 使信号幅度为 2V。
 - ④ 用示波器同时观察输入端 Ui、输出端 Uo 的波形并比较。

图 3-8 积分器实验电路

4.一阶 RC 电路的模拟

如图 3-4 (a) 为已知的一阶 RC 电路。图 3-4 (d) 是它的一阶模拟电路。

- ① 同学们自己动手连接如图 3-4(d) 所示实验电路;
- ② 连接 P04 与连接电路的输入端 Ui;
- ③ 调节信号源,使 P04 端输出 f=1KHz,占空比为 50%的脉冲信号,调节 W701 使信号幅度为 2V;
 - ④ 用示波器观测输出端 Uo 波形,验证其模拟情况。

图 3-4 一阶系统的模拟

三、实验内容

1.基本运算器——加法器的观测

输入 u1,u2 如下图

3.基本运算器——积分器的观测

4.一阶 RC 电路的模拟

输出波形如下所示

实验三 信号卷积实验

一、实验目的

- 1. 理解卷积的概念及物理意义:
- 2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验步骤

1. 矩形脉冲信号的自卷积

实验中完成将输入的矩形脉冲信号完成自卷积运算,并将卷积后信号输出。

实验步骤:

- ① 连接 P04 和 P101;
- ② 调节信号源, 使 P04 输出 f=1KHz, 占空比为 50%的脉冲信号,调节 W701 使信号幅度为 2V;
- ③ 按下 SW101 按钮,使程序指示灯 D3D2D1D0=0011,指示灯对应自卷积;
- ④ 将示波器的 CH1 接于 P04,CH2 接于 TP801,分别观察输入信号的 $f_1(t)$ 波形与卷积后的输出信号 $f_1(t) * f_1'(t)$ 的波形;
- ⑤ 按下 SS702, 使频率表右侧 t/T 指示灯亮, 之后旋转 SS702, 调节 P04 输出信号的占空比, 改变激励信号的脉宽, 观测卷积后波形, 记录到表 10-1 中;
 - ⑥ 对比不同脉宽下,卷积后波形的差别,结合实际理解原因;

注意:为了便于观察,输入信号实际为无限长度的周期信号,但是这对自卷积来讲是不现实的,因此在实验中 $f_1'(t)$ 其实只取了脉冲的一个周期长度。

2. 信号与系统卷积

实验中完成将输入的矩形脉冲信号与系统的锯齿波信号完成卷积运算,并将卷积后信号输出。实验步骤:

- ① 连接 P04 和 P101;
- ② 调节信号源, 使 P04 输出 f=1KHz, 占空比为 50%的脉冲信号,调节 W701 使信号峰峰为 2V;
- ③ 按下 SW101 按钮,使程序指示灯 D3D2D1D0=0100,指示灯对应系统卷积;
- ④ 将示波器的 CH1 接于 TP802,CH2 接于 TP801,分别观察系统函数 $f_2(t)$ 波形与卷积后的输出信号 $f_1(t) * f_2(t)$ 的波形:

三、实验内容

1. 矩形脉冲信号的自卷积

表 10-1 输入信号卷积后的输出信号

	输入信号 $f_1(t)$	输出信号 $f_1(t)_*f_1'(t)$				
脉冲宽度(us)	500					
脉冲宽度(us)	250					
脉冲宽度(us)	125					

2. 信号与系统卷积

实验中完成将输入的矩形脉冲信号与系统的锯齿波信号完成卷积运算,并将卷积后信号输出。实验步骤:

- ① 连接 P04 和 P101;
- ② 调节信号源, 使 P04 输出 f=1KHz, 占空比为 50%的脉冲信号,调节 W701 使信号峰峰为 2V;
- ③ 按下 SW101 按钮,使程序指示灯 D3D2D1D0=0100,指示灯对应系统卷积;
- ④ 将示波器的 CH1 接于 TP802,CH2 接于 TP801,分别观察系统函数 $f_2(t)$ 波形与卷积后的输出信号 $f_1(t)*f_2(t)$ 的波形:

如示波器波形图所示:

25%

实验四 矩形脉冲信号的分解

一、实验目的

- 1. 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成;
- 2. 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

二、实验步骤

- ① 连接 P04 和 P101;
- ② 调节信号源, 使 P04 输出 f=4KHz, 占空比为 50%的脉冲信号, 调节 W701 使信号幅度为 4V;
- ③ 按下 SW101 按钮,使程序指示灯 D3D2D1D0=0101,指示灯对应信号分解;
- ④ 示波器可分别在 TP801、TP802、TP803、TP804、TP805、TP806、TP807 和 TP808 上观测信号各次谐波的波形;
- ⑤ 矩形脉冲信号的脉冲幅度和频率保持不变,改变信号的脉宽^τ(即改变占空比),测 量不同^τ 值时信号频谱中各分量的大小;
 - ⑥ 根据表 11-1、表 11-2 中给定的数值进行实验,并记录实验获得的数据填入表中。

注意: 4个跳线器 K801、K802、K803、K804 应放在左边位置。4个跳线器的功能为: 当置于左边位

置时,信号幅度保持不变;当置于右边位置时,可分别通过4个电位器W801、W802、W803、W804调节各路谐波的幅度大小。

 $\frac{\tau}{T}=1/2$ (1) $\frac{\tau}{T}$ 的数值按要求调整,测得的信号频谱中各分量的大小,其数据按表的要求记录。

表 11-1
$$\frac{\tau}{T} = 1/2$$
 的矩形脉冲信号的频谱

	$f = 4kHz$, $T=250 \mu s$, $\frac{\tau}{T} = 1/2$, $\tau = 125 \mu s$, $E(V) = 4V$									
	谐波	_{频率} (kHz)	1f	2f	3f	4 f	5 f	6 f	7 f	8 f 以 上
理	论	电压有效值								
值	K	电压峰峰值								
测	卌	电压有效值(V)	0.89	0	0.29	0.007	0.23	0.08	0.17	0.41
值	里	电压峰峰值(V)	2.47	0	0.7	0.25	0.61	0.2	0.53	1.2

 $\frac{\tau}{T}=1/4$: 矩形脉冲信号的脉冲幅度 E 和频率 f 不变, τ 的数值按要求调整,测得的信号频谱中各分量的大小,其数据按表的要求记录。

表 11-2
$$\frac{\tau}{T} = 1/4$$
 的矩形脉冲信号的频谱

	$f = 4kHz$, $T=250 \mu s$, $\frac{\tau}{T} = 1/4$, $\tau = 62.5 \mu s$, $E(V) = 4V$									
	谐波	_{频率} (kHz)	1f	2f	3f	4 f	5 f	6 f	7 f	8 f 以 上
理	论	电压有效值								
值	K	电压峰峰值								
测	畾	电压有效值(V)	0.68	0.47	0.31	0.08	0.17	0.22	0.14	0.45
值	里	电压峰峰值(V)	1.91	1.31	0.9	0.3	0.51	0.63	0.39	1.27

三、实验设备

1.信号与系统实验箱

1台

2.双踪示波器

1台

3.毫伏表

1台

四、思考题

$$\frac{\tau}{-}=1/4$$

号的频谱图(取最高频率点为10次谐波)。

答: 4次、8次、12次 ······4n次谐波为0;

$$C_{n} = \frac{2E\tau}{T_{1}} \frac{\sin(\frac{n\pi\tau}{T_{1}})}{\frac{n\pi\tau}{T_{1}}}$$

设 E=20, 则:

C1=9; C2=6.4; C3=3; C4=0; C5=1.8; C6=2.12; C7=1.3; C8=0; C9=1; C10=1.27.

的矩形脉冲信号的基波和 2、3 次谐波,以及 4 次以上的高次谐波,你会选用几

个什么类型(低通?带通?…)的滤波器?

答:低通;基本的信号都分布在一次谐波里了。

实验五 矩形脉冲信号的合成

一、实验目的

- 1. 进一步了解波形分解与合成原理;
- 2. 进一步掌握用傅里叶级数进行谐波分析的方法;
- 3. 观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。

二、实验内容

本实验为上节实验的延续。

- ① 连接 P04 和 P101,将 4 个跳线器 K801、K802、K803、K804 放在左边位置:
- ② 调节信号源,使 P04 输出 f=4KHz,占空比为 50%的脉冲信号,调节 W701 使信号幅度为 2V:
- ③ 按下 SW101 按钮, 使程序指示灯 D3D2D1D0=0101, 指示灯对应**信号分解**;
- ④ 示波器可分别在 TP801、TP802、TP803、TP804、TP805、TP806、TP807 和 TP808 上观测信号各次谐波的波形;
- ⑤ 准备 8 个导线,根据下表中给出的内容,分别尝试不同的连接方式(如基波和三次谐波合成,只需连接 P801—P809,P803—P811),然后用双踪示波器同时测量 TP02 和 TP809,并将 TP809 的波形记录在下表中,通过调节电位器 W805 可以改变 TP809 的输出幅度。

说明:为了便于操作,8 根导线的默认连接方式为 P801—P809、P802—P810、 P803—P811、 P804—P812、P805—P813、P806—P814、P807—P815、P808—P816。其组合也可随意更换。

3. 按表 12-1 的要求, 在输出端观察和记录合成结果。

表 12-1 矩形脉冲信号的各次谐波之间的合成

波形合成要求

合成后的波形

三、实验设备

1. 信号与系统实验箱 1台

2. 双踪示波器 1台

四、思考题

方波信号在哪些谐波分量上幅度为零?请画出信号频率为 2KHz 的方波信号的频谱图 (取最高频率点为 10 次谐波)。

实验六 谐波幅度对波形合成的影响

一、实验目的

- 1. 理解谐波幅度对波形合成的作用:
- 2. 进一步加深理解时域周期信号的各频率分量在振幅频谱图上所占的比重。

二、实验内容

- ① 连接 P04 和 P101,将 4 个跳线器 K801、K802、K803、K804 放在左边位置;
- ② 调节信号源,使 P04 输出 f=4KHz,占空比为 50%的脉冲信号,调节 W701 使信号幅度为 2V:
- ③ 按下 SW101 按钮, 使程序指示灯 D3D2D1D0=0101, 指示灯对应**信号分解**;
- ④ 示波器可分别在 TP801、TP802、TP803、TP804、TP805、TP806、TP807 和 TP808上观测信号各次谐波的波形:
- ⑤ 4个跳线器 K801、K802、K803、K804,放在右边,可以对输出的各次谐波幅度进行调整。用导线连接 P801—P809、P802—P810、 P803—P811、P804—P812、P805—P813、P806—P814、P807—P815、P808—P816,进行方波合成,在 TP809 观察合成的波形时否为方波信号。分别按表 13-2、表 13-3、表 13-4、表 13-5、表 13-6、表 13-7、表 13-8,调整各谐波幅值,观察并记录合成后的波形。

表 13-2 各谐波振幅频谱表

谐波振幅	合成后的波形
------	--------

1	二分之一
2	0
3	三分之一
4	0
5	五分之一
6	0
7	七分之一
8 次以上	直接输出

表 13-3 各谐波振幅频谱表

谐波	振幅
1	1
2	0
3	三分之一
4	0
5	五分之一
6	0
7	七分之一
8 次以上	直接输出

表 13-4 各谐波振幅频谱表

谐波	振幅
1	1
2	0
3	二分之一
4	0
5	五分之一
6	0
7	七分之一

8次以1	<u> </u>	直接输出

表 13-5 各谐波振幅频谱表

	1	X 13-3
谐波	振幅	合成后的波形
1	1	
2	0	1GSa/s
3	三分之一	STOP 100.0us/
4	0	The state of the s
5	四分之一	1.520
6	0	
7	七分之一	B->Y: 1.000
8次以上	直接输出	B->Y: 1.06U AX : 600US 1/4X : 1.67kHz AY: 40.0mU Urms=****** Upp= 248mU Urms= 1.07U

表 13-6 各谐波振幅频谱表

谐波	振幅	合成后的波形
1	1	STOP 20.00us/ 660mU
2	0	T 000MV
3	三分之一	(A->X:-60.0us (A->Y: 1.27V
4	0	B->X:60.0us
5	三分之一	B->Y: 1.07U ∆X : 120us
6	0	1/1 ΔX1:8.33kHz
7	七分之一	ΔY: 200mU
8 次以上	直接输出	

表 13-7 各谐波振幅频谱表

		衣 13 ⁻ 7 台 伯 权 派 悃 沙
谐波	振幅	合成后的波形
1	1	
2	0	STOP 10.00us/ f 1 580mV
3	三分之一	(A->X:-30.0us
4	0	[A->Y: 564mU
5	五分之一	B->X:30.0us B->Y: 764mU
6	0	14X::60.0us
7	五分之一	1/;ΔX;:16.7kHz ΔY:-200mU
8次以上	直接输出	Urms=**** Upp= 268mU Urms= 671mU
		199mU⊠/

表 13-8 各谐波振幅频谱表

谐波	振幅	合成后的波形
1	1	DP 100.0us/
2	0	(A->X:-300us
3	三分之一	(A->Y: -200mV (B->X: 300us
4	0	(B->Y: 3.40V
5	五分之一	[:\text{\tincet{\text{\ti}\text{\text{\text{\text{\texict{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\tin{\text{\texi{\tex{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\ter
6	0	(ΔY:-3.60V
7	四分之一	the state of the s
8 次以上	直接输出	
		Total Manager Manager Total

三、实验设备

1. 双踪示波器 1台

2. 信号系统实验箱 1台

实验七 任意信号的分解

一、实验目的

- 1. 进一步理解复杂信号的组成;
- 2. 分析三角波、半波、全波的频率分量。

二、实验内容

- ① 连接 P04 和 P101;
- ② 按下 SW101 按钮, 使程序指示灯 D3D2D1D0=0101, 指示灯对应信号分解;
- ③ 调节信号源,使 P04 分别输出 4K 的三角波、半波、全波信号,调节 W701 使信号幅度为 2V;
- ④ 示波器可分别在 TP801、TP802、TP803、TP804、TP805、TP806、TP807 和 TP808 上观测信号各次谐波的波形;
- ⑤ 分别测出上述三种信号的各次谐波幅度,将测量结果记录在表 15-2 中,并分析各次谐波间的关系是否符合表 15-1。

表 15-1 三角波 半波 全波谐波幅值

表

表 15-2 三角波谐波幅值表

					-			
谐波频率(kHz)		1f	2f	3f	4 f	5 f	6 f	7 f
理论	电压有效值 (mV)							
值	电压峰峰值 (mV)							
测量	电压峰峰值 (mV)	329	0	57	0	34	0	29
值	电压有效值 (mV)	115	0	21	0	12	0	10

3 次谐 4 次谐 5 次谐 7 次谐 波 1次 2次 6次 公式 谐波 形 谐波 波 波 波 谐波 波 $\frac{4E}{(\pi)^2}$ $\frac{1}{9} \cdot \frac{4E}{(\pi)^2}$ $\frac{1}{25} \cdot \frac{4E}{(\pi)^2}$ $\frac{1}{49} \cdot \frac{4E}{(\pi)^2}$ $\frac{4E}{\left(n\pi\right)^2}\sin^2\left(\frac{n\pi}{2}\right)$ 角 0 0 0 波 半 2*E* 2*E* 2*E* 0 0 0 波 3π 15π 35π 全 $\frac{4E}{3\pi}$ 4*E* 4*E* 4*E* 4*E* 4*E* 波 $\overline{35\pi}$ $\overline{99\pi}$ $\overline{15\pi}$ 63π $\overline{143\pi}$

15 - 3

半波谐波幅值表

谐波频率 ^(kHz)		1f	2f	3f	4 f	5 f	6 f	7 f
理论	电压有效值 (mV)							
值	电压峰峰值 (mV)							
测量	电压峰峰值(mV)	240	100	0	39	0	29	0
值	电压有效值 (mV)	85	35	0	15	0	10	0

表 15-4 全波谐波幅值表

谐波频率 ^(KH2)

理论	电压有效值(mV)							
值	电压峰峰值 (mV)							
测量	电压峰峰值 (mV)	185	51	44	33	25	28	
值	电压有效值 (mV)	65	17	16	10	8	10	

三、实验设备

1. 信号与系统实验箱 1台

2. 双踪示波器 1台

3. 毫伏表 1 台