Data Structures and Algorithms - II, Even 2020-21

Single Source Shortest Path Algorithms

- We know how to compute the cost of the shortest path of any given vertex from the source, when all edges had non-negative costs
- How to compute single source shortest path?
 - The vertex w is going to move from S' to S
 - When this vertex is moving, it causes the distance label of the adjacent vertices to be updated
 - That means the best path from s to u includes w
 - If d[u] = d[w] + c(w, u), then the shortest path from s to u (using vertices of s to w) has w preceding u
 - This is the information we will maintain with vertex u: what is the vertex preceding it on the shortest path that we have found so far?

if d[u] > d[w] + c(w, u) then $d[u] \leftarrow d[w] + c(w, u)$

- How to compute single source shortest path?
 - With each vertex, we maintain predecessor information
 - If w = pred[u], then w is the vertex preceding u on the best path from s to u

- We have to keep doing this till we reach the source vertex
- This will give us the shortest path

if
$$d[u] > d[w] + c(w, u)$$
 then
$$d[u] \leftarrow d[w] + c(w, u)$$

$$pred[u] = w$$

Suppose we wanted to find the shortest path from s to a vertex v?

```
x = v
while pred[x] != NULL then //predecessor of my source to null
    print(x)
    pred[x] = x
print(s)
```

- In Dijkstra's algorithm, can this situation occur?
- How many predecessor edges can be there for each vertex?

- Predecessor edge?
 - The edge connecting the predecessor vertex of a given vertex to itself
 - The V-1 predecessor edges
 - Using these predecessor edges, we can reach to any vertex from s
- Then what is this subgraph?
 - If we ignore the directions of the edges, then it is a connected subgraph with V-1 predecessor edges
 - It will be a tree that is a spanning tree
 - But if we bring back the direction, (note that in a directed graph, there is no notion of the *spanning tree*), it is called a *branching*

- In the context of shortest path, this is called the shortest path tree
 - We can compute this tree in the same time as required by Dijkstra's algorithm

-3

Graph with Negative Costs

- Edges can have positive and negative costs
- Given a source, we are trying to find out the shortest path from this source to all the vertices of the graph
- Assumption: There is no negative cycle
 - If the graph has a negative cycle then the shortest path is not defined, cost of the shortest path can be -∞
- What can we say about the shortest path from s to v? Can it be a non simple path (no cycle on the path)?
- There always exists a shortest path which is the simple path

Algorithm

- In one round, every vertex will do the following:
 - Propagate the information to all its neighbors
 - Receive information from its in-neighbors
 - Update its own information
- Information is the current distance label
- How much time one vertex is spending? What is the total time?
 - One node is spending time proportional to its degree,
 thus total time is proportional to the number of edges
 in graph *G*
- What are in the initial diatance labels of each vertex?
 - d[\mathbf{s}] = 0, \forall v ∈ V, d[\mathbf{v}] = ∞
- How many rounds will be there?
 - − V − 1

- Suppose this the shortest path from \boldsymbol{s} to \boldsymbol{t}
- What is the maximum number of edges in the shortest path of any vertex \boldsymbol{v} from \boldsymbol{s}
 - Shortest path is simple
 - All the shortest path tree forms a spanning tree
 - The shortest path of any vertex v from s also consists of the shortest path of the intermediate vertices from s

Algorithm

Claim: If the shortest path from s to vertex t has I edges
on it, then d[t] gets the value of the shortest path after I
rounds

Base case:

- Induction case: Suppose vertex t is at I hop distance from s and uptil (I 1) round, everything holds correctly
- Then, at I^{th} round, d[t] will get updated as: min(d[t], d[t] + c(v, t))
- Thus, the shortest path cost gets updated at Ith round

Suppose this the shortest path from **s** to **t**

What is the maximum number of edges in the shortest path of any vertex ${\bf v}$ from ${\bf s}$

- Shortest path is simple
- All the shortest path forms a spanning tree
- The shortest path of any vertex v from s also consists of the shortest path of the intermediate vertices from s

Algorithm

- What is the running time?
 - O(VE)
- Why it is correct algorithm?
 - Claim: If a vertex t gets a certain distance label d in round r, then we have found a path of length d from s to t
 - Suppose this claim is true uptil round r 1
 - For any t, if its distance label is coming from v, d[v] is finalized at label r 1
 - If this not the shortest path from s to v, there is a contradiction on the assumption

```
\forall \mathbf{v} \in V, d[\mathbf{v}] = \infty
for i = 1 to V - 1 do
   for all v do
        d'[v] = d[v]
        for each w \in Adj[v] do
            d'[v] \leftarrow \min(d'[v], d[w] + c(v, w))
   d[] \leftarrow d'[]
```

d[s] = 0

All Pairs Shortest Path (APSP)

- If edge costs are +ve, what is the time complexity?
 - O(V(E log V))
- If edge costs are –ve, what is the time complexity?
 - O(V(VE))

Best known algorithms:

	Edge costs	What we have learnt	Best known algorithms
SSSP	+ve	O(E log V)	O(E + V log V)
	-ve	O(<i>VE</i>)	O(<i>VE</i>)
APSP	+ve	O(V E log V)	O(V(E + V log V))
	-ve	O(<i>V</i> ² <i>E</i>)	$O(VE + V^2 log V)$

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi.bhattacharjee@tum.de