Problem Sheet 11

6 May

Throughout this problem sheet, representations and characters are taken to be over the field **C** of complex numbers unless otherwise mentioned.

- **1.** Let V be a finite-dimensional **C**-vector space, and let $g: V \to V$ be a **C**-linear map such that $g^n = \mathrm{id}_V$ for some $n \geq 1$. Show that g is diagonalisable. (*Hint*: use the Jordan canonical form.)
- **2.** Let $z = \sqrt{5} + 1 \in \mathbb{C}$. Show that z is an algebraic integer with |z| > 2 and that in $\overline{\mathbf{Z}}$ we have both $2 \mid z$ and $z \mid 2$.

(In particular, this shows that if z is an algebraic integer and n is a positive integer with $z \mid n$, it does not necessarily follow that $|z| \le n$.)

- **3.** Let G be a finite group, and let V be a $\mathbb{C}[G]$ -module. We say that an element $g \in G$ acts as a scalar on V if there exists $\lambda \in \mathbb{C}$ such that $gv = \lambda v$ for all $v \in V$.
 - (a) Show that the set of elements of G that act as a scalar on V is a normal subgroup of G.
 - (b) Assume that V is irreducible. Show that all elements of G act as a scalar on V if and only if V is one-dimensional.
- **4.** Determine all pairs (V, C) where V is an irreducible representation of S_4 (up to isomorphism) and $C \subset S_4$ is a conjugacy class such that the elements of C act as a scalar on V.
- **5.** Let G be a finite group, and let $\rho: G \to \operatorname{Aut}_{\mathbf{C}} V$ be a finite-dimensional representation of G.
 - (a) Show that there exists a **C**-basis of V such that for every element $g \in G$, the matrix of g with respect to this basis has coefficients in the algebraic closure $\overline{\mathbf{Q}}$ of \mathbf{Q} in \mathbf{C} . (*Hint:* consider the irreducible representations of G over $\overline{\mathbf{Q}}$.)
 - (b) Show that there exists a finite Galois extension K of \mathbb{Q} contained in \mathbb{C} such that for every element $g \in G$, the matrix of g with respect to a basis as in (a) has coefficients in K.
- **6.** Let G be a finite group, let $\rho: G \to \operatorname{Aut}_{\mathbf{C}} V$ be an irreducible representation of G with $\dim_{\mathbf{C}} V > 1$, and let $\chi: G \to \mathbf{C}$ be its character.
 - (a) Let $M = \frac{1}{\#G-1} \sum_{g \in G \setminus \{1\}} |\chi(g)|^2$. Show that |M| < 1.
 - (b) Let K be a number field as in Exercise 5(b), and let $P = \prod_{g \in G \setminus \{1\}} \chi(g) \in K$. Show that for every $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$, we have $|\sigma(P)| < 1$. (*Hint:* consider the "conjugated" representation of G obtained by applying σ to the entries of the matrices of the automorphisms $\rho(g)$ with respect to a basis as in Exercise 5(b).)
 - (c) Deduce that there exists $g \in G$ such that $\chi(g) = 0$.

- 7. Let G be the dihedral group D_n with $n \geq 3$ odd, and let X be the set of vertices of the regular n-gon with the standard action of G on X.
 - (a) Show that every element of $G \setminus \{1\}$ has at most one fixed point in X.
 - (b) Show (without using Frobenius's theorem) that the elements of G having no fixed points in X, together with the identity element, form a normal subgroup of G.
- 8. Let n be a positive integer. Suppose that there exists a transitive S_n -set X such that 1 < #X < n! and every element of $S_n \setminus \{1\}$ has at most one fixed point in X. Prove that n equals 3. (*Hint*: use Frobenius's theorem and the fact that A_n is the only non-trivial normal subgroup of S_n if $n \geq 5$.)