Chapter 4

The Simplex Algorithm and Goal Programming

to accompany
Operations Research: Applications and Algorithms
4th edition
by Wayne L. Winston

4.1 How to Convert an LP to Standard Form

- Before the simplex algorithm can be used to solve an LP, the LP must be converted into a problem where all the constraints are equations and all variables are nonnegative.
- An LP in this form is said to be in standard form.

Example 1: Leather Limited

- Leather Limited manufactures two types of leather belts: the deluxe model and the regular model.
 - Each type requires 1 square yard of leather.
 - A regular belt requires 1 hour of skilled labor and a deluxe belt requires 2 hours of skilled labor.
 - □ Each week, 40 square yards of leather and 60 hours of skilled labor are available.
 - □ Each regular belt contributes \$3 profit and each deluxe belt \$4.
- Write an LP to maximize profit.

Example 1: Solution

- The decision variables are:
 - \square x1 = number of deluxe belts produced weekly
 - \square x2 = number of regular belts produced weekly
- The appropriate LP is:

max
$$z = 4x_1 + 3x_2$$

s.t. $x_1 + x_2 \le 40$ (leather constraint)
 $2x_1 + x_2 \le 60$ (labor constraint)
 $x_1, x_2 \ge 0$

- To convert a \leq constraint to an equality, define for each constraint a **slack variable** s_i (s_i = slack variable for the *i*th constraint). A slack variable is the amount of the resource unused in the *i*th constraint.
- If a constraint i of an LP is a \leq constraint, convert it to an equality constraint by adding a slack variable s_i to the ith constraint and adding the sign restriction $s_i \geq 0$.

- To convert the ith ≥ constraint to an equality constraint, define an excess variable (sometimes called a surplus variable) e_i (e_i will always be the excess variable for the ith ≥ constraint.
 - \square We define e_i to be the amount by which *i*th constraint is over satisfied.
- Subtracting the excess variable e_i from the *i*th constraint and adding the sign restriction $e_i \ge 0$ will convert the constraint.
- If an LP has both ≤ and ≥ constraints, apply the previous procedures to the individual constraints.

4.2 Preview of the Simplex Algorithm

- Consider a system Ax = b of m linear equations in n variables (where $n \ge m$).
- A basic solution to Ax = b is obtained by setting n - m variables equal to 0 and solving for the remaining m variables.
 - □ This assumes that setting the n m variables equal to 0 yields a unique value for the remaining m variables, or equivalently, the columns for the remaining m variables are linearly independent.
- Any basic solution in which all variables are nonnegative is called a basic feasible solution (or bfs).

- The following theorem explains why the concept of a basic feasible solution is of great importance in linear programming.
 - □ Theorem 1 The feasible region for any linear programming problem is a convex set. Also, if an LP has an optimal solution, there must be an extreme point of the feasible region that is optimal.

4.3 Direction of Unboundedness

- Consider an LP in standard form with feasible region S and constraints Ax=b and x ≥ 0. Assuming that our LP has n variables, O represents an n-dimensional column vector consisting of all 0's.
- A non-zero vector **d** is a **direction of unboundedness** if for all $x \in S$ and any $c \ge 0$, $x + cd \in S$

Theorem 2 Consider an LP in standard form, having bfs b₁, b₂,...b_k. Any point x in the LP's feasible region may be written in the form

$$\mathbf{x} = \mathbf{d} + \sum_{i=1}^{i=k} \sigma_i \mathbf{b}_i$$

where **d** is **0** or a direction of unboundedness and $\sum_{i=1}^{i=k} \sigma_i = 1$ and $\sigma_i \ge 0$.

Any feasible x may be written as a convex combination of the LP's bfs.

4.4 Why Does LP Have an Optimal bfs?

- Theorem 3 If an LP has an optimal solution, then it has an optimal bfs.
- For any LP with m constraints, two basic feasible solutions are said to be adjacent if their sets of basic variables have m - 1 basic variables in common.
- The set of points satisfying a linear inequality in three (or any number of) dimensions is a half-space.
- The intersection of half-space is called a polyhedron.

4.5 The Simplex Algorithm

- The simplex algorithm can be used to solve LPs in which the goal is to maximize the objective function.
 - Step 1 Convert the LP to standard form
 - Step 2 Obtain a bfs (if possible) from the standard form
 - Step 3 Determine whether the current bfs is optimal
 - **Step 4** If the current bfs is not optimal, determine which nonbasic variable should be come a basic variable and which basic variable should become a nonbasic variable to find a bfs with a better objective function value.
 - **Step 5** Use EROs to find a new bfs with a better objective function value. Go back to Step 3.

Example 2: Dakota Furniture Company

- The Dakota Furniture company manufactures desk, tables, and chairs.
 - □ The manufacture of each type of furniture requires lumber and two types of skilled labor: finishing and carpentry.
 - ☐ The amount of each resource needed to make each type of furniture is given in the table below.

Resource	Desk	Table	Chair
Lumber	8 board ft	6 board ft	1 board ft
Finishing hours	4 hours	2 hours	1.5 hours
Carpentry hours	2 hours	1.5 hours	0.5 hours

Ex. 2 - continued

- At present, 48 board feet of lumber, 20 finishing hours, 8 carpentry hours are available. A desk sells for \$60, a table for \$30, and a chair for \$ 20.
- Dakota believes that demand for desks and chairs is unlimited, but at most 5 tables can be sold.
- Since the available resources have already been purchased, Dakota wants to maximize total revenue.

Example 2: Solution

Define:

- \square x1 = number of desks produced
- \square x2 = number of tables produced x
- \square x3 = number of chairs produced

The LP is:

max
$$z = 60x_1 + 30x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$ (lumber constraint)
 $4x_1 + 2x_2 + 1.5x_3 \le 20$ (finishing constraint)
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$ (carpentry constraint)
 $x_2 \le 5$ (table demand constraint)
 $x_1, x_2, x_3 \ge 0$

- Begin the simplex algorithm by converting the constraints of the LP to the standard form.
- Then convert the LP's objective function to the row 0 format.
- To put the constraints in standard form, simply add slack variables s₁, s₂, s₃, s₄, respectively to the four constraints.
- Label the constraints row 1, row 2, row 3, row 4, and add the sign restrictions si ≥ 0.

Putting rows 1-4 together in row 0 and the sign restrictions yields these equations and basic variables.

	Canonical Form 0		Basic <u>Variable</u>
Row 0	$z - 60x_1 - 30x_2 - 20x_3$	= 0	z = 0
Row 1	$8x_1 + 6x_2 + x_3 + s_1$	= 48	s ₁ = 48
Row 2	$4x_1 + 2x_2 + 1.5x_3 + s_2$	= 20	s ₂ = 20
Row 3	$2x_1 + 1.5x_2 + 0.5x_3 + s_3$	= 8	s ₃ = 6
Row 4	x ₂ + s ₄	= 5	s ₄ = 5

- To perform the simplex algorithm, we need a basic (although not necessarily nonnegative) variable for row 0.
 - ☐ Since z appears in row 0 with a coefficient of 1, and z does not appear in any other row, we use z as the basic variable.
 - With this convention, the basic feasible solution for our initial canonical form has
 - \blacksquare BV = {z, s₁, s₂, s₃, s₄}
 - \blacksquare NBV = {x₁, x₂, x₃}.
 - For this initial bfs, z=0, $s_1=48$, $s_2=20$, $s_3=8$, $s_4=5$, $x_1=x_2=x_3=0$.
- A slack variable can be used as a basic variable if the rhs of the constraint is nonnegative.

- Once we have obtained a bfs, we need to determine whether it is optimal.
- To do this, we try to determine if there is any way z can be increased by increasing some nonbasic variable from its current value of zero while holding all other nonbasic variables at their current values of zero.
 - \square Solving for z in row 0 yields: $Z = 60x_1 + 30x_2 + 20x_3$

- For each nonbasic variable, we can use this equation to determine if increasing a nonbasic variable will increase z.
 - ☐ Increasing any of the nonbasic variables will cause an increase in z.
 - However increasing x_1 causes the greatest rate of increase in z. If x_1 increases from its current value of zero, it will have to become a basic variable.
 - □ For this reason, x_1 is called the **entering variable**. Observe x_1 has the most negative coefficient in row 0.

- Next choose the entering variable to be the nonbasic variable with the most negative coefficient in row 0.
- Goal is to make x_1 as large as possible but as it increases, the current basic variables will change value. Thus, increasing x_1 may cause a basic variable to become negative.
- This means to keep all the basic variables nonnegative, the largest we can make x_1 is min $\{6, 5, 4\} = 4$.

- Rule for determining how large an entering variable can be.
 - When entering a variable into the basis, compute the ratio

Right – hand side of row

Coefficient of entering variable in row

for every constraint in which the entering variable has a positive coefficient.

- The constraint with the smallest ratio is called the winner of the ratio test.
- The smallest ration is the largest value of the entering variable that will keep all the current basic variables nonnegative.

- Always make the entering variable a basic variable in a row that wins the ratio test.
- To make x₁ a basic variable in row 3, we use elementary row operations (EROs) to make x₁ have a coefficient of 1 in row 3 and a coefficient of 0 in all other rows.
 - □ This procedure is called **pivoting** on row 3; and row 3 is called the **pivot row**.
 - The final result is that x_1 replaces s_3 as the basic variable for row 3. The term in the pivot row that involves the entering basic variable is called the **pivot term**.

The result is

	Canonical Form 1			
Row 0	$z + 15x_2 - 5x_3 + 30s_3$	= 240	z = 240	
Row 1	$- x_3 + s_1 - 4s_3$	= 16	s ₁ = 16	
Row 2	$ x_2 + 0.5 x_3 + s_2 - 2 s_3$	= 4	s ₂ = 4	
Row 3	$x_1 + 0.75x_2 + 0.25x_3 + 0.5s_3$	= 4	x ₁ = 4	
Row 4	x ₂ + s ₄	= 5	s ₄ = 5	

■ The procedure used to go from one bfs to a better adjacent bfs is called an **iteration** of the simplex algorithm.

- Attempt to determine if the current bfs is optimal.
- Rearranging row 0 from Canonical Form 1, and solving for z yields

$$z = 240 - 15x_2 + 5x_3 - 30s_3$$

- The current bfs is NOT optimal because increasing x_3 to 1 (while holding the other nonbasic variable to zero) will increase the value of z.
- Making either x₂ or s₃ basic will cause the value of z to decrease.

- Recall the rule for determining the entering variable is the row 0 coefficient with the greatest negative value.
- Since x_3 is the *only* variable with a negative coefficient, x_3 should be entered into the basis.
- Performing the ratio test using x₃ as the entering variable yields the following results (holding other NBVs to zero):
 - From row 1, s1 \geq 0 for all values of x3 since s1 = 16 + x3
 - From row 2, s2 \geq 0 if x3 > 4 / 0.5 = 8
 - From row 3, $x1 \ge 0$ if x3 > 4 / 0.25 = 16
 - From row 4, s4 \geq 0 for all values of x3 since s4 = 5

- This means to keep all the basic variables nonnegative, the largest we can make x₁ is min {8,16} = 8. So, row 2 becomes the pivot row.
- The result of using EROs, to make x_3 a basic variable in row 2.

	Canonical Form 2		Basic Variable
Row 0	$z + 5x_2 + 10s_2 + 10s_3$	= 280	z = 280
Row 1	$-2x_2 + s_1 + 2s_2 - 8s_3$	= 24	s ₁ = 24
Row 2	$-2x_2 + x_3 + 2s_2 - 4s_3$	= 8	$x_3 = 8$
Row 3	$x_1 + 1.25x_2$ - 0.5 s_2 + 1.5 s_3	= 2	x ₁ = 2
Row 4	x ₂ + s ₄	= 5	s ₄ = 5

- In Canonical Form 2
 - \square BV = { z_1, s_1, x_3, x_1, s_4 }
 - \square NBV = { s_3 , s_2 , x_2 }
 - ☐ Yielding the bfs z = 280, $s_1 = 24$, $x_3 = 8$, $x_1 = 2$, $s_4 = 5$, $s_2 = s_3 = x_2 = 0$
- Solving for z in row 0 yields $z = 280 - 5x_2 - 10s_2 - 10s_3$
- We can see that increasing x_2 , s_2 , or s_3 (while holding the other NBVs to zero) will not cause the value of z to decrease.

- The solution at the end of iteration 2 is therefore optimal. The following rule can be applied to determine whether a canonical form's bfs is optimal.
 - □ A canonical form is optimal (for a max problem) if each nonbasic variable has a nonnegative coefficient in the canonical form's row 0.

4.6 Using the Simplex Algorithm to solve Minimization Problems

- Two different ways the simplex method can be used to solve minimization problems.
- Method 1 Consider this LP

min
$$z = 2x_1 - 3x_2$$

s.t. $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

- The optimal solution is the point (x_1,x_2) that makes $z = 2x_1 3x_2$ the smallest.
- Equivalently, this point makes $max z = -2x_1 + 3x_2$ the largest.

This means we can find the optimal solution to the LP by solving this modified LP.

max -z = -2x₁ + 3x₂
s.t.
$$x_1 + x_2 \le 4$$

 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

In solving this modified LP, use -z as the basic variable in row 0. After adding slack variables, s₁ and s₂ to the constraints the initial tableau s obtained.

Initial Table	eau						
Row	- z	x 1	х2	s 1	s2	rhs	BVs
0	1	2	-3	0	0	0	- z = 0
1	0	1	(1)	1	0	4	s1 =4
2	0	1	-1	0	1	6	s2 = 6
ero1	- z	x1	х2	s1	s2	rhs	_
0	1	2	-3	0	0	0	_
1	0	1	1	1	0	4	
2	0	2	0	1	1	10	
1							
ero 2	- z	x 1	x2	s1	s2	rhs	BVs
0	- z 1	x1 5	x2 0	s1	s2	rhs 12	BVs - z = 12
	- z 1 0						

- The optimal solution (to the max problem) is -z = 12, $x_2=4$, $s_2=10$, $x_1=s_1=0$.
- Then the optimal solution to the min problem is z = -12, $x_2 = 4$, $s_2 = 10$, $x_1 = s_2 = 0$.
- The min LP objective function confirms this: $z = 2x_1-3x_2=2(0)-3(4)=-12$.

- In summary, multiply the objective function for the min problem by -1 and solve the problem as a maximization problem with the objective function -z.
- The optimal solution to the max problem will give you the optimal solution for to the min problem.
- Remember that (optimal z-value for the min problem) = - (optimal z-value for the max problem).

- Method 2 A simple modification of the simplex algorithm can be used to solve min problems directly.
 - Modify step 3 of the simplex algorithm
 - If all nonbasic variables (NBV) in row 0 have nonpositive coefficients, the current bfs is optimal.
 - If any nonbasic variable has a positive coefficient, choose the variable with the "most positive" coefficient in row 0 as the entering variable.
- This modification of the simplex algorithm works because increasing a nonbasic variable (NBV) with a positive coefficient in row 0 will decrease z.

4.7 Alternate Optimal Solutions

- For some LPs, more than one extreme point is optimal. If an LP has more than one optimal solution, it has multiple optimal solutions or alternative optimal solutions.
- If there is no nonbasic variable (NBV) with a zero coefficient in row 0 of the optimal tableau, the LP has a unique optimal solution.
- Even if there is a nonbasic variable with a zero coefficient in row 0 of the optimal tableau, it is possible that the LP may not have alternative optimal solutions.

4.8 – Unbounded LPs

- For some LPs, there exist points in the feasible region for which z assumes arbitrarily large (in max problems) or arbitrarily small (in min problems) values. When this occurs, we say the LP is unbounded.
- An unbounded LP occurs in a max problem if there is a nonbasic variable with a negative coefficient in row 0 and there is no constraint that limits how large we can make this NBV.
- Specifically, an unbounded LP for a max problem occurs when a variable with a negative coefficient in row 0 has a non positive coefficient in each constraint.

4.9 The LINDO Computer Package

- LINDO (Linear Interactive and Discrete Optimizer) is a user friendly computer package that can be used to solve linear, integer, and quadratic programming problems.
- LINDO assumes all variables are nonnegative, so nonnegative constraints are not necessary.
 - To be consistent with LINDO, the objective function row is labeled row 1 and constraints rows 2-5.
 - View the LINDO Help file for syntax questions

- To enter this problem into LINDO make sure the screen contains a blank window (work area) with the word "untitled" at the top of the work area.
 - □ If necessary, a new window can be opened by selecting New from the file menu or by clicking on the File button.
- The first statement in a LINDO model is always the objective function.
 - MAX or MIN directs LINDO to solve a maximization or minimization problem.

- Enter the constraints by typing SUBJECT TO (or st) on the next line. Then enter the constraints.
 - □ LINDO assumes the < symbol means ≤ and the > symbol means ≥.
 - There is no need to insert the asterisk symbol between coefficients and variables to indicate multiplication.

- To save the file for future use, select SAVE from the File menu and when asked, replace the * symbol with the name of your choice.
 - The file will be saved with the name you select with the suffix .LTX. DO NOT type over the .LTX suffix. Save using any path available.
- To solve the model, select the SOLVE command or click the red bulls eye button.
 - ☐ When asked if you want to do a range (sensitivity) analysis, choose no.
 - □ When the solution is complete, a display showing the status of the Solve command will be present. View the displayed information and select CLOSE.

- The data input window will now be overlaying the Reports Window.
- Click anywhere in the Reports Window to bring it to the foreground.

The LINDO output shows:

- LINDO found the optimum solution after 2 iterations (pivots)
- \square The optimal z-value = 280
- □ VALUE gives the value of the variable in the optimal LP solution. Thus the optimal solution calls for production of 2 desks, 0 tables, and 8 chairs.
- ☐ SLACK OR SURPLUS gives (by constraint row) the value of slack or excess in the optimal solution.
- □ REDUCED COST gives the coefficient in row 0 of the optimal tableau (in a max problem). The reduced cost of each basic variables must be 0.

4.10 Matrix Generators, LINGO and Scaling LPs

- Most actual applications of LP use a matrix generator to simplify the inputting of the LP.
- A matrix generator allows the user to input the relevant parameters that determine the LPs objective function and constraints; it then generates the LP formulation from that information.
- The package LINGO is an example of a sophisticated matrix generator.
- LINGO is an optimization modeling language that enables users to create many constraints or objective function terms by typing one line.

- An LP package may have trouble solving LPs in which there are nonzero coefficients that are either very small or very large in absolute value.
- In these cases, LINDO will respond with a message that the LP is poorly scaled.

4.11 Degeneracy and the Convergence of the Simplex Algorithm

- Theoretically, the simplex algorithm can fail to find an optimal solution to an LP.
- However, LPs arising from actual applications seldom exhibit this unpleasant behavior.
- The following are facts:
 - ☐ If (value of entering variable in new bfs) > 0, then (z-value for new bfs) > (z-value for current bfs).
 - If (value of entering variable in new bfs) = 0, then (z-value for new bfs) = (z-value for current bfs).
- Assume that in each of the LP's basic feasible solutions all basic variables are positive.

- An LP with this property is a nondegenerate LP.
- An LP is degenerate if it has at least one bfs in which a basic variable is equal to zero.
- Any bfs that has at least one basic variable equal to zero is a degenerate bfs.
- When the same bfs is encountered twice it is called cycling.
 - ☐ If cycling occurs, then we will loop, or cycle, forever among a set of basic feasible solutions and never get to an optimal solution.

Some degenerate LPs have a special structure that enables us to solve them by methods other than the simplex.

4.12 The Big M Method

- The simplex method algorithm requires a starting bfs.
- Previous problems have found starting bfs by using the slack variables as our basic variables.
 - If an LP have ≥ or = constraints, however, a starting bfs may not be readily apparent.
- In such a case, the Big M method may be used to solve the problem.

Example 4: Bevco

- Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda and orange juice.
 - Each orange soda contains 0.5 oz of sugar and 1 mg of vitamin C.
 - Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C.
 - ☐ It costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of orange juice.
 - Bevco's marketing department has decided that each 10-oz bottle of Oranj must contain at least 30 mg of vitamin C and at most 4 oz of sugar.
- Use linear programming to determine how Bevco can meet the marketing department's requirements at minimum cost.

Example 4: Solution

- Letting x_1 = number of ounces of orange soda in a bottle of Oranj
- x2 = number of ounces of orange juice in a bottle of Oranj
- The LP is:

```
min z = 2x_1 + 3x_2

st 0.5x_1 + 0.25x_2 \le 4 (sugar constraint)

x_1 + 3x_2 \ge 20 (Vitamin C constraint)

x_1 + x_2 = 10 (10 oz in 1 bottle of Oranj)

x_1, x_2, > 0
```

The LP in standard form has z and s_1 which could be used for BVs but row 2 would violate sign restrictions and row 3 no readily apparent basic variable.

Row 1:
$$z - 2x_1 - 3x_2 = 0$$

Row 2: $0.5x_1 + 0.25x_2 + s_1 = 4$
Row 3: $x_1 + 3x_2 - e_2 = 20$
Row 4: $x_1 + x_2 = 10$

- In order to use the simplex method, a bfs is needed.
 - ☐ To remedy the predicament, **artificial variables** are created.
 - The variables will be labeled according to the row in which they are used.

Row 1:
$$z - 2x_1 - 3x_2 = 0$$

Row 2: $0.5x_1 + 0.25x_2 + s_1 = 4$
Row 3: $x_1 + 3x_2 - e_2 + a_2 = 20$
Row 4: $x_1 + x_2 + a_3 = 10$

- In the optimal solution, all artificial variables must be set equal to zero.
 - \square To accomplish this, in a min LP, a term Ma_i is added to the objective function for each artificial variable a_i .
 - □ For a max LP, the term $-Ma_i$ is added to the objective function for each a_i .
 - M represents some very large number.

The modified Bevco LP in standard form then becomes:

Row 1:
$$z - 2x_1 - 3x_2$$
 -Ma₂ - Ma₃ = 0
Row 2: $0.5x_1 + 0.25x_2 + s_1$ = 4
Row 3: $x_1 + 3x_2 - e_2 + a_2$ = 20
Row 4: $x_1 + x_2 + a_3 = 10$

Modifying the objective function this way makes it extremely costly for an artificial variable to be positive. The optimal solution should force $a_2 = a_3 = 0$.

Description of the Big M Method

- Modify the constraints so that the rhs of each constraint is nonnegative. Identify each constraint that is now an = or ≥ constraint.
- Convert each inequality constraint to standard form (add a slack variable for ≤ constraints, add an excess variable for ≥ constraints).
- 3. For each \geq or = constraint, add artificial variables. Add sign restriction $a_i \geq 0$.
- 4. Let *M* denote a very large positive number. Add (for each artificial variable) *Ma*_i to min problem objective functions or -*Ma*_i to max problem objective functions.

- 5. Since each artificial variable will be in the starting basis, all artificial variables must be eliminated from row 0 before beginning the simplex. Remembering M represents a very large number, solve the transformed problem by the simplex.
- If all artificial variables in the optimal solution equal zero, the solution is optimal.
- If any artificial variables are positive in the optimal solution, the problem is infeasible.

- The variable with the positive coefficient in row 0 should enter the basis since this is a min problem.
- The ratio test indicates that x_2 should enter the basis in row 2, which means the artificial variable a_2 will leave the basis.
- Use EROs to eliminate x_2 from row 1 and row 3. The ratio test indicates that x_1 should enter the basis in the third row, which means then that a_3 will leave the basis.

- The optimal solution for Bevco is z=25, $x_1=x_2$ = 5, $s_1=1/4$, $e_2=0$.
- This means that Bevco can hold the cost of producing a 10-oz. bottle of Oranj to \$.25 by mixing 5 oz of orange soda and 5 oz of orange juice.

If any artificial variable is positive in the optimal Big M tableau, then the original LP has no feasible solution.

4.13 The Two-Phase Simplex Method

- When a basic feasible solution is not readily available, the two-phase simplex method may be used as an alternative to the Big M method.
- In this method, artificial variables are added to the same constraints, then a bfs to the original LP is found by solving Phase I LP.
- In Phase I LP, the objective function is to minimize the sum of all artificial variables.
- At completion, reintroduce the original LP's objective function and determine the optimal solution to the original LP.

- Because each $a_i \ge 0$, solving the Phase I LP will result in one of the following three cases:
 - \square The optimal value of w' is greater than zero.
 - \square The optimal value of w' is equal to zero, and no artificial variables are in the optimal Phase I basis.
 - In this case, drop all columns in the optimal Phase I tableau that correspond to the artificial variables.
 - Now combine the original objective function with the constraints from the optimal Phase I tableau.
 - This yields the Phase II LP.
 - The optimal value of w' is equal to zero and at least one artificial variable is in the optimal Phase I basis.

4.14 Unrestricted-in-Sign Variables

- If some variables are allowed to be unrestricted in sign (urs), the ratio test and therefore the simplex algorithm are no longer valid.
- An LP with an unrestricted-in-sign variable can be transformed into an LP in which all variables are required to be non-negative.
 - For each urs variable, define two new variables x_i' and x_i^n .
 - Then substitute $x'_i x^n_i$ for x_i in each constraint and in the objective function. Also add the sign restrictions.

- The effect of this substitution is to express xi as the difference of the two nonnegative variables x_i' and x_i^n .
- □ No basic feasible solution can have both $x'_i \ge 0$ and $x^n_i \ge 0$.
- For any basic feasible solution, each urs variable x_i must fall into one of the following three cases.
 - 1. $x'_{i} > 0$ and $x^{n}_{i} = 0$
 - 2. $x'_{i} = 0$ and $x^{n}_{i} > 0$
 - 3. $x'_{i} = x^{n}_{i} = 0$

4.15 Karmarkar's Method for Solving LPs

Karmarkar's method requires that the LP be placed in the following form

$$\min z = \mathbf{cx}$$
s.t. $K\mathbf{x} = 0$

$$x_1 + x_2 + \cdots x_n = 1$$
and that
$$x_i \ge 0$$

- The point $\mathbf{x}^0 = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix}$ be feasible for this LP.
- The optimal z-value for the LP equals 0.
- Karmarkar's method has been shown to be a polynomial time algorithm. This implies that if an LP of size n is solved by Karmarkar's method, then there exist positive numbers a and b such that for any n can be solved in a time of at most anb.

4.16 Multiattribute Decision Making in the Absence of Uncertainty: Goal Programming

- In some situations, a decision maker may face multiple objectives, and there may be no point in an LP's feasible region satisfying all objectives.
- In such a case, how can the decision maker choose a satisfactory decision?
- Goal programming is one technique that can be used.

Example 10: Burnit Goal Programming

- The Leon Burnit Advertising Agency is trying to determine a TV advertising schedule for Priceler Auto Company.
- Priceler has three goals:
 - □ Its ads should be seen by at least 40 million highincome men (HIM).
 - Its ads should be seen by at least 60 million lowincome people (LIP).
 - Its ads should be seen by at least 35 million highincome women (HIW).
- Leon Burnit can purchase two types of ads: those shown during football games and those shown during soap operas.

Ex. 10 - continued

- At most, \$600,000 can be spent on ads.
- The advertising costs and potential audiences of a one-minute ad of each type are shown.

Millions of Viewers				
Ad	нім	LIP	HIW	Cost (S)
Football	7	10	5	100,000
Soap Opera	3	5	4	60,000

Leon Burnit must determine how many football ads and soap opera ads to purchase for Priceler.

Example 10: Solution

Let

X1 = number of minutes of ads shown during football games x2 = number of minutes of ads shown during soap operas

Then any feasible solution to the following LP would meet Priceler's goals:

```
min (or max) z=0x_1+0x_2 (or any other objective function) s.t. 7x_1+3x_2 \ge 40 (HIM constraint) 10x_1+5x_2 \ge 60 (LIP constraint) 5x_1+4x_2 \ge 35 (HIW constraint) 100x_1+60x_2 \ge 600 (Budget constraint) x_1, x_2 \ge 0
```

From the graph it can be seen that no point satisfies the budget constraint meets all threes of Priceler's goals.

- Since it is impossible to meet all of Priceler's goals, Burnit might ask Priceler to identify, for each goal, a cost that is incurred for failing to meet the goal.
- Burnit can then formulate an LP that minimizes the cost incurred in deviating from Priceler's three goals.
- The trick is to transform each inequality constraint that represents one of Priceler's goals into an equality constraint.

- Since it is not known whether a given solution will undersatisfy or oversatisfy a given goal, we need to define the following variables.
 - \Box s_i^+ = amount by which we numerically exceed the *i*th goal
 - S_i^- = amount by which we are numerically under the *i*th goal
- The s_i^+ and s_i^- are referred to as **deviational** variables.
- Rewrite the first three constraints using the deviational variables.

Burnit can minimize the penalty from Priceler's lost sales by solving the following LP.

```
min z=200s_1^- + 100s_2^- + 100s_3^- (or any other objective function)

s.t. 7x_1 + 3x_2 + s_1^- - s_1^+ = 40 (HIM constraint)

10x_1 + 5x_2 + s_2^- - s_2^+ = 60 (LIP constraint)

5x_1 + 4x_2 + s_3^- - s_3^+ = 35 (HIW constraint)

100x_1 + 60x_2 \le 600 (Budget constraint)

All variables nonnegative
```

The optimal solution meets goal 1 and goal 2 but fails to meet the least important goal.

- Pre-emptive goal programming problems can be solved by an extension of the simplex known as the goal programming simplex.
- The differences between the goal programming simplex and the ordinary simplex are:
 - The ordinary simplex has a single row 0, whereas the goal programming simplex requires n row 0's (one for each goal).
 - ☐ In the goal programming simplex, different method is used to determine the entering variable.
 - When a pivot is performed, row 0 for each goal must be updated.

- \square A tableau will yield the optimal solution if all goals are satisfied, or if each variable that can enter the basis and reduce the value of z_i for an unsatisfied goal i will increase the deviation from some goal i having a higher priority than goal i.
- If a computerized goal program is used the decision maker can have a number of solutions to choose from.
- When a preemptive goal programming problem involves only two decision variables, the optimal solution can be found graphically.
- LINDO can be used to solve preemptive goal programming problems.

4.17 Using the Excel Solver to Solve LPs

- Excel has the capability to solve linear programming problems.
- The key to solving an LP on a spreadsheet is to set up a spreadsheet that tracks everything of interest.
- Changing cells and target cells need to be identified.