speed, velocity and acceleration (b) graphical representations of displacement, speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graph STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be?	apply their knowledge and understanding of: (a) displacement, instantaneous speed, average speed, velocity and acceleration HSW10, 12 (b) graphical representations of displacement, speed, velocity and acceleration HSW3 Using data-loggers to analyse motion. (c) Displacement—time graphs; velocity is gradient M3.4, M3.7 (d) Velocity—time graphs; acceleration is gradient; Learners will also be expected to estimate the under non-linear graphs. M3.5, M4.3 (6) M - Define and calculate acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 Split your graph into clear sections. Mega 10 What could this object be? Giga Use calculated values for velocity in your answer	apply their knowledge and understanding of: (a) displacement, instantaneous speed, average speed, velocity and acceleration (b) graphical representations of displacement, speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (e) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 What could this object be? Giga Use calculated values for velocity in your answer Self assess		Learning outcomes	Additional guidance
speed, velocity and acceleration (b) graphical representations of displacement, speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be?	speed, velocity and acceleration (b) graphical representations of displacement, speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (e) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graph STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 ⁵ What could this object be? Giga Use calculated values for velocity in your answer	speed, velocity and acceleration (b) graphical representations of displacement, speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (e) Define and calculate acceleration (f) S - Determine the acceleration from a velocity time graph (g) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graph STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Wega 10⁵ What could this object be? Giga Use calculated values for velocity in your answer Self assess Self assess	-		
speed, velocity and acceleration (c) Displacement–time graphs; velocity is gradient (d) Velocity–time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be?	speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 Split your graph into clear sections. Mega 10 What could this object be? Giga Use calculated values for velocity in your answer	speed, velocity and acceleration (c) Displacement—time graphs; velocity is gradient (d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be? Giga Use calculated values for velocity in your answer Self assess	(a)		
(d) Velocity-time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph (9) C - Use a velocity time graph (10) O:00: STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 ⁶ What could this object be?	(d) Velocity—time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10 What could this object be? Giga Use calculated values for velocity in your answer	(d) Velocity-time graphs; acceleration is gradient; displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph (8) C - Use and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be? Giga Use calculated values for velocity in your answer Self assess Self assess	(b)		
displacement is area under graph. (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be?	displacement is area under graph. under non-linear graphs. M3.5, M4.3 (6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be? Giga Use calculated values for velocity in your answer	(6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 ⁵ What could this object be? Giga Use calculated values for velocity in your answer Self assess	(c)	Displacement–time graphs; velocity is gradient	M3.4, M3.7
(8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 ⁵ What could this object be?	(8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10³ Split your graph into clear sections Mega 10⁵ What could this object be? Giga Use calculated values for velocity in your answer	Colors - Determine the acceleration from a velocity time graph (8) Colors - Use a velocity time graph to determine the displacement, for linear and non-linear graph Lesson 2: Acceleration and velocity time graphs STARTER: Describe and explain how the velocity of this object changes over 4 seconds HWK (due next lesson): Kilo 10 ³ Split your graph into clear sections Mega 10 ⁵ What could this object be? Giga Use calculated values for velocity in your answer Self assess	(d)		under non-linear graphs.
Mega 10 ⁶ What could this object be?	Mega 10 ⁵ What could this object be? Giga Use calculated values for velocity in your answer	Mega 10 What could this object be? Giga 10 Use calculated values for velocity in your answer Self assess (12 ebi:			locity time graphs 0:00:
The Calculated Values for Velocity in Voltranswer	10°	Self assess (12 ebi:		STARTER: Describe and explain how the of this object changes over 4 s	locity time graphs e velocity seconds
Key point	point			STARTER: Describe and explain how the of this object changes over 4 s HWK (due next lesson): Kilo 10³ Split your graph into clear Mega 10⁵ What could this object be Giga Use calculated values for Self assess Key point	e velocity seconds r sections velocity in your answer wellocity in your answer
Key point 1. 0-1s velocity increases because gradient increases.	1. 0-1s velocity increases because gradient increases.			STARTER: Describe and explain how the of this object changes over 4 set. HWK (due next lesson): Kilo 10³ Split your graph into clear Mega 10⁵ What could this object be Giga Use calculated values for Self assess Key point 1. 0-1s velocity increases by	velocity in your answer velocity in your answer pecause gradient increases.
Key point 1. 0-1s velocity increases because gradient increases.	 0-1s velocity increases because gradient increases. 1-2s velocity is constant because gradient is constant 	2. 1-2s velocity is constant because gradient is consta		STARTER: Describe and explain how the of this object changes over 4 set. HWK (due next lesson): Kilo 10³ Split your graph into clear Mega 10° What could this object be Giga Use calculated values for Self assess Key point 1. 0-1s velocity increases to 1-2s velocity is constant.	e velocity seconds resections velocity in your answer pecause gradient increases. t because gradient is consta

- (7) S Determine the acceleration from a velocity time graph
- (8) C Use a velocity time graph to determine the displacement, for linear and non-linear graphs

Analysing velocity time graphs

What information can be gained from a v-t graph?

The **gradient** of a velocity time graph is equal to the **acceleration**

The **area under** a velocity time graph is equal to the **distance** travelled.

Complete the worksheet on velocity time graphs

(6) M - Define and calculate acceleration (7) S - Determine the acceleration from a velocity time graph (8) C - Use a velocity time graph to determine the displacement, for linear and non-linear graphs

Mini plenary

A golf ball is dropped from rest onto a hard floor.

The graph shows how the velocity of the ball varies with time as it bounces, from the time of

At which point does the ball reach its maximum height after the first bounce?

Mini plenary

Which row gives two features of graphs that provide the same information?

	Feature 1	Feature 2	
Α	Gradient of a displacement-time graph	Area under a velocity–time graph	0
В	Gradient of a displacement-time graph	Area under an acceleration–time graph	0
С	Gradient of a velocity–time graph	Area under a displacement-time graph	0
D	Gradient of a velocity–time graph	Area under an acceleration–time graph	0

- (6) M Define and calculate acceleration
 (7) S Determine the acceleration from a velocity time graph
 (8) C Use a velocity time graph to determine the displacement, for linear and non-linear graphs

plenary

Compare displacment time graphs with velocity time graphs

		displacement time graphs	velocity time graphs
	y-intercept represents Gradient of tangent Positive gradient		
	Negative gradient Zero gradient Straight		
Keypoint	Curved Area under curve		
	when 2 lines coincide Object is stopped when constant acceleration looks like		

	displacement-time	velocity-time
"y" intercept	initial displacement	initial velocity
slope of tangent positive slope negative slope	instantaneous velocity motion in positive direction motion in negative direction	instantaneous acceleration — acceleration in positive direction _ acceleration in negative direction
zero slope	not moving	not accelerating
straight curved	constant velocity changing velocity	constant acceleration
area under curve	-	[change in] displacement
curves coincide	objects have same displacement	objects have same velocity
stopped when	horizontal	crosses t-axis
uniform acceleration	parabolic	straight

