Combinational Logic Cincuits

西n number of input > 2ⁿ possible tombinations

由 HALF ADDER:

	Α	В	S	C) B
	0	D Q	0	0
t	0	1	18	0^ 7
1	1	0	1 (160 V
	1	1	0	

χ.	7	(0	Đ	Ą)	\;	(-
		0	A	A		7	X		_

, Ed, X + 8, UX = S

K-Map:		В	B'
	A' A	0	0 1
			S)

$$S = A'B + AB'$$

= $A \oplus B$

A' O O O O O O O O O O O O O O O O O O O	
$\begin{array}{c c} A & A & A & A & A & A & A & A & A & A $	-

· FULL	ADD ER:	0
	C(n+n')}	10
	(a'A + BA	5

~8 A	A A	B	0,5	C
Î O T	0.1	0	0	0
0	0	Se L	111 =	0
100	814	η Q.	1	0
0	1-	} I`	2102	1
11-41	100	.0	111	10
A	0	. 1	0	1
1	1	0	0	Water Bridge
1	T ₁	1 1	4	

()	'A	+	٠.,	A
	(ü	(H	Ä	

$$K-Map:$$
 (fon S)

 $X' O I O I$
 $X' O I O I$
 $X I O I O$
 $X I O I O$

$$S = X'A'B + X'AB' + XA'B' + X'AB$$

$$= X'(A'B + AB') + X(AB + A'B')$$

$$= X'(ABB) + X(ABB)'$$

$$= X \oplus A \oplus B$$

HALL PLDES:

BA + 0'A - 2

19 M - W

$$C = XB + XA + AB$$

 $= AB + X (A + B)^{3} : A100A 11U1 = AB + X {A(B+B')+B(A+A')}$
 $= AB + X (AB+AB'+AB+A'B)$
 $= AB + XAB + X(AB'+A'B)$

= AB (x+1) + x- (A + B)

西 Half - Subtractor:

X	Υ	D	B
0	0	0	0
0	(1	_ \
1	0	1	0
1	I	0_	0

L	<u> </u>				n	
	X	Y	Z	D.	B	
	0	0	1	1		
1	0	1	0	1	+++	
	0	0	0	1	0	
+		0	1	0	0	-
-	1	1	0	0	10	ł
-	١	١	1	1	1	1

Design a combinational circuit that multiplies two 2 bit numbers. Input: A = A, Ao and B = B, Bo A. A. B. C. tugtos gennalto A, Ao X BI BOM HIA ADBO AOBO HA 1 4 0 0 19 A, B1 A6 B1: 70 72 + 0A + 08 = 0 * Canny of the first HA flows to the mext HA as an input bit. * The Isum, bit of the second HA is Zz and carry bit is Z3 1 for ton = DC + DOC + B (A'C + AC') (100 A) A + (0 41) = 1 (Jen) 0 + 0 n =

2) Design a cincuit that has a 3-bit binany input and a single output that output 1 if it is a prime number. (2,3,5,7); otherwise output 0.

-				-
= A	B.	C.	0	
0	: 0	0	ð	
110	0	1	0	
.0	T(0	1	$\Rightarrow 2$ $\Rightarrow 3$
0	(1	1,	\rightarrow 3
1 1	0	0	0	
3: 01	0	171	14	→ 5
1	1	0	0	×7
1	1	.1		roan
	0	0:0	0 0 0	

K	-Mar	16	1	
<u> </u>	B'C'	de	BC	BC'
. 1	BC	0	1.	1,
P'		110	di	10 1
H	U.	-	F	c to

0 = BC + AC + A'B

* Canny of the

$$0 = AC + B(A'+C)$$

$$= AC + B \{ A'(C+C') + C(A+A') \}_{T}$$

$$= AC + B \{ A'(C+C') + AC \}_{T}$$

$$= AC + B(A'C + AC' + AC)$$

$$= AC + B(A'C + AC')$$

$$= AC + B(A'C + AC')$$

3) Design a circuit that has a 3-bit binary input and a single output (Z) specified as follows

7 = 0, when the input is less than 510

Z=1, otherwise

A	В	C	Z
101	Ő	0	0
0	0	1	0
. 0		0	0
. 0		0	0
. 1	0		1
1	0	0	1
		1	1 1
	<u> </u>	1	^

\longrightarrow			-
B'C'	o'c	BC	BC
R.C	0	0	0
0	1	1	
	1		

ABC 11 1 2 L
Z = (Z
(00A) x = 00)

from the equation of full-subtractor, we get, $Df = * \times \oplus Y \oplus Z = D_1 \oplus Z = D_2$ $Bf = X'Y + Z(X \oplus Y)'$ $= B_1 + D_1'Z$ $= B_1 + B_2$

6) Design a combinational cincuit that multiples two 3 bit numbers. Y, Yo Y = Y2 X2YO XIYO X2 Y, X1 Y, X6 Y1 So ·S₂ S, C 2 X2Y2 X1Y2 X0Y2 C4 C3 - X = S5 S4 ×S3 C5 1 M3. M2 M4 M5 02 = Pi = From the equation of full-subtractor, we set * X T Y E Z = DI E = DI (YAX) E + YX E'10 + 10 -= B1 + B2

Xo1 Χo Αo Bo Az AL BI B2 S2 S1 S0 Cout Az A. A. Cout B2 B1 80 S٥ Sz S1 M5

minde aborting on +id-is a mizil of

(figure)