Prove whether the language  $L = \{a^{2^n} \mid n \ge 0\}$  is regular or not. pumping | length | n > 0 ,  $w = a^2 | |w| = 2^n > n$ W= x.y.2 3 x.yi.z EL for i EN  $(p+q \leq n, q>0 \Rightarrow 0 < q \leq n)$  $\times y^2 = \alpha^{2^{n+q}}$ min power of 2 that is greater than  $2^n$ :  $2^{n+1} = 2 \cdot 2^n = 2^n + 2^n$ 0 < q < n =  $2^{n} < 2^{n} + q < 2^{n} + n < 2^{n} < n < 2^{n}$ you can prove this by induction Contradiction. L. is not regular.

Prove whether the language  $L = \{ |m| | m \neq n ; m, n \geq 0 \}$  is regular or not.

pumping length 
$$n \ge 0$$
  $0^m 1^n$ 
 $w = 0^n (n+0)$ ,  $a > 0$   $|w| = 2n + a > n$ 
 $w = xy \pm$  (1)  $|xy| \le n$  (2)  $|y| > 0$  (3)  $|x| \ge n$  (4)  $|x| \le n$  (5)  $|x| \le n$  (7)  $|x| \le n$  (8)  $|x| \le n$  (9)  $|x| \le n$  (1)  $|x| \le n$  (2)  $|x| \le n$  (3)  $|x| \le n$  (4)  $|x| \le n$  (6)  $|x| \le n$  (7)  $|x| \le n$  (8)  $|x| \le n$  (9)  $|x| \le n$  (9)  $|x| \le n$  (9)  $|x| \le n$  (1)  $|x| \ge n$  (1)  $|x|$ 

Contradiction. L'is not regular. L'is regular  $\Leftarrow$  L is regular  $A = \frac{20^{\circ}1^{\circ} | 120^{\circ}3}{120^{\circ}} = \frac{10^{\circ}1^{\circ}}{120^{\circ}} = \frac{10^{\circ}1^{\circ}}{120^{\circ}}$ 

If L'is regular, A is regular

A is not regular proven by pumping lemma, meraning L'is not regular

meaning LB not regular.

For alphabet  $\Sigma = \{0, 1, 2\}$ , design a DFA/NFA that accepts all strings that includes

For alphabet 
$$\Sigma = \{0, 1, 2\}$$
, design a DFA/NFA that accepts all strings that includes "01" but does not include "20", and minimize it.

$$L = L_1 \cap L_2 \qquad L_1 = \{ w \in \{0, 1, 2\}^* \mid "01" \text{ is } \alpha \text{ substring of } w \}$$

$$L_2 = \{ w \in \{0, 1, 2\} \mid "20" \text{ is } not \text{ } \alpha \text{ substring of } w \}$$



## Minimize the given DFA.



