3 Vecteurs et configurations géométriques

3.1 Parallélogrammes

Définition 7 (Rappels). Un quadrilatère ABCD est un parallélogramme si et seulement si :

- Les côtés opposés sont parallèles 2 à 2 : $(AB) \parallel (CD)$ et $(BC) \parallel (AD)$.
- Les côtés opposés sont de même longueur 2 à 2 : AB = CD et BC = AD.
- Deux côtés opposés sont parallèles et de même longueur : $((AB) \parallel (CD)$ et AB = CD) ou $((BC) \parallel (AD)$ et BC = AD)
- Les diagonales [AC] et [BD] se coupent en leur milieu.

Proposition 4. Soit un quadrilatère ABCD. Alors ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$.

Remarque. Attention, il ne faut pas vérifier $\overrightarrow{AB} = \overrightarrow{CD}$.

Proposition 5. Soit un parallélogramme ABCD. Alors,

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

Exemple. Soit ABCD un parallélogramme.

- a) Placer sur la figure E, le point symétrique de A par rapport à B. Placer sur la figure F, le point symétrique de A par rapport à D.
- b) Placer le point G tel que $\overrightarrow{AG} = \overrightarrow{AE} + \overrightarrow{AF}$.
- c) Donner la nature du quadrilatère AEGF.