1) If a complex variable

$$z = \frac{\sqrt{3}}{2} + \frac{i}{2},$$

then z^4 is

GATE 2007 PI

a)
$$2\sqrt{3} + i \cdot 2$$

b)
$$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 c) $\frac{\sqrt{3}}{2} - i\frac{1}{2}$ d) $\frac{\sqrt{3}}{8} + i\frac{1}{8}$

c)
$$\frac{\sqrt{3}}{2} - i\frac{1}{2}$$

d)
$$\frac{\sqrt{3}}{8} + i\frac{1}{8}$$

2) Two cards are drawn at random in succession, with replacement, from a deck of 52 well shuffled cards. Probability of getting both 'Aces' is **GATE 2007 PI**

- a) 1/169
- b) 2/169
- c) 1/13
- d) 2/13

3) The angle(in degrees)between two planar vectors $\mathbf{a} = \frac{\sqrt{3}}{2}i + \frac{1}{2}j \text{ and } \mathbf{b} = -\frac{\sqrt{3}}{2}i + \frac{1}{2}j$ is

GATE 2007 PI

a) 30

b) 60

c) 90

d) 120

4) What is the value of

$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{x - \frac{\pi}{4}}$$

Fig. 1. fig1

GATE 2007 PI

- a) $\sqrt{2}$
- b) 0

- c) $-\sqrt{2}$
- d) Limit does not exist

5) The determinant

$$\begin{vmatrix} 1+b & b & 1 \\ b & 1+b & 1 \\ 1 & 2b & 1 \end{vmatrix}$$

evaluates to

GATE 2007 PI

a) 0

- b) 2b(b-1)
- c) 2(1-b)(1+2b)
- d) 3b(1+b)

6) f(x) = |x| is a function defined for real numbers x. The directional derivative of f at x=0 in the direction d=-1 is GATE AI 2025

a) 1

b) 0

- c) -1/2
- d) -1

7) Whixh one of the following planar mechanisms does NOT provide quick-return motion? **GATE 2007 PI**

	a) Scotch-Yokeb) Whitworth		c) Off-set slider crand) Drag link	k	
8)	The geometric tolera	unce that does NOT a c	datum for its specificat	ion is	GATE 2007 PI
	a) Concentricity	b) Runout	c) Perpendicularity	d) Flat	ness
9)		inder is compressed from e cylinder changes from sticity of oil is			
	a) 1000 MPa	b) 2000 MPa	c) 4000 MPa	d) 800	0 MPa
10)	-	aterial with a modulus of an axial strain of 1000. nit is	<u> </u>		y the component
					GATE 2007 PI
	a) 250	b) 400	c) 500	d) 800	
11)	Which one of the fointo very fine Pearlit	plowing cooling methode steel?	ds is best suited for co	onverting	g Austetine steel GATE 2007 PI
	a) Oil quenching	b) Water quenching	c) Air cooling	d) Furi	nace cooling
12)	Reaming is primarly	used for achieving			GATE 2007 PI
	a) Higher MRRb) Improved dimensi	onal tolerance	c) Fine surface finishd) Improved position		nce
13)	The interpolator in a	CNC machine control	ls		GATE 2007 PI
	a) Sindle speed	b) Coolant flow	c) Feed rate	d) Too	l change
14)	Which one of the fo	llowing instruments is	a comparator?		GATE 2007 PI
	a) Tool Maker's M croscope	fib) GO/NO GO gage c) Optical Interferom	ter ned) Dial Gauge		
15)	Which one of the following products on a line?	lowing is a indispensable	le part of just-in-Time r	nanufact	uring of multiple GATE 2007 PI
	a) Outbiund quality ib) Lot sizing	inspection	c) Safety stocksd) Set up time reduc	tion	
16)	-	analysis of a capital in	nvestment proposal, the	cost tha	t can be ignored
	is				GATE 2007 PI

	a) Sunk cost	b) Fixed cost	c) Marginal cost	d) Variable cost
17)	Which one of the fo	llowing is an effective	therblig?	GATE 2007 PI
ä	a) Position	b) Inspect	c) Grasp	d) Search
18)	In queueing models,	M/M/c denotes a Poiss	son arrival process and	d GATE 2007 PI
	c servers in series		c servers in parall	ributed service times and
	material I must accor	•	50% of the total.If x,y	arying proportions, where and z are the amounts of GATE 2007 PI
ä	a) $x \le 0.5$	b) $x \le 0.5(x + y + z)$	$c) \ 0.5x \le x + y + z$	d) $x \ge 0.5(y + z)$
20)	Which one of the fo	llowing cost componen	its is a part of appraisa	al costs related to quality GATE 2007 PI
ć	• •	ng) Process control const) Quality data acqu		sist) Product inspection and testing cost
	Q. 21 to Q. 75 carry If X is a continuous	two marks each.	e probability density f	function is given by
		$f(x) = \begin{cases} K(5x - 1) \\ 0, \end{cases}$	$-2x^2$), $0 \le x \le 2$, otherwise.	
	Then $P(X;1)$ is	`		
	is			GATE 2007 PI
	-	b) 4/5	c) 14/17	GATE 2007 PI d) 17/28
22)	is a) 3/14 The random variable	,	1, 2, or 3 with probab	d) 17/28 ilities (2+5P)/5,(1+3P)/5,
22)	is a) 3/14 The random variable	X takes on the values	1, 2, or 3 with probab	d) 17/28 ilities (2+5P)/5,(1+3P)/5,
22)	is a) 3/14 The random variable and (1.5+2P)/5,respe a) 0.05,1.87	X takes on the values of P	1, 2, or 3 with probabe and E[X] are respect c) 0.05,1.10	d) 17/28 ilities (2+5P)/5,(1+3P)/5, ively GATE 2007 PI d) 0.25,1.40
22) 23)	is a) 3/14 The random variable and (1.5+2P)/5,respe a) 0.05,1.87 If A is square symm a) 2n distinct real values, not	X takes on the values of Petively. The values of Petiv	1, 2, or 3 with probable and E[X] are respect c) 0.05,1.10 c of dimension 2n. the bers d) n pairs of comple	d) 17/28 ilities (2+5P)/5,(1+3P)/5, ively GATE 2007 PI d) 0.25,1.40 e eigensalues of A are GATE 2007 PI x conjugate numbers. not
22) 23) 23) 24)	is a) 3/14 The random variable and (1.5+2P)/5,respectable and (0.5+2P)/5,respectable and (0.5+2P)/5,r	X takes on the values of P b) 1.90,5.87 tetric real valued matrix lues t necessarily distinct complex conjugate number the interval [0,1] is to be	1, 2, or 3 with probable and E[X] are respected c) 0.05,1.10 confidence of dimension 2n. the bers d) n pairs of complements of	d) 17/28 ilities (2+5P)/5,(1+3P)/5, ively GATE 2007 PI d) 0.25,1.40 e eigensalues of A are GATE 2007 PI x conjugate numbers. not

- a) for a given $x \in [0, 1]$ and a given δ , there δ for a given $\delta > 0$, there is a finite n that is is no finite n that is valid valid for all $x \in [0, 1]$
- b) for a given $\delta > 0$, there is a valid n that is there is a finite n that is valid for all x in finite for a given $x \in [0, 1]$, but there is no [0,1] an all $\delta > 0$ finite n that is valid for all $x \in [0, 1]$
- 25) for the function $f(x,y)=x^2-y^2$ defined as R^2 , The point [0,0] is

GATE 2007 PI

- a) a local minimum c) neither a local min-maximum imum and a local
- b) a local maximum imum nor a locall) both a local max-minimum
- 26) $q_1,...,q_m$ are n-dimensional vectors, with m < n. This set of vectors is linearly dependent. Q is the matrix with $q_1,...,q_m$ as the columns. The rank of Q is GATE 2007 PI
 - a) Less than m
- b) m

- c) between m and n d) n
- 27) "Matching Exercise". Choose the correct one out of the alternatives A,B,C,D Group 1 Group 2

P-Second order differential equations
Q-Nonlinear algebraic equations
R-Linear algebraic equations
S-Numerical integration

1-Runge-Kutta method 2-Newton-Raphson method

3-Gauss elimination

GATE 2007 PI

4-Simpson's rule

- a) P-3,Q-2,R-4,S-1
- b) P-2,Q-4,R-3,S-1

- c) P-1,Q-2,R-3,S-4
- d) P-1,Q-3,R-2,S-4
- 28) A disc type flywheel having a mass of 10 kg and radius 0.2 m is replaced in a single cylinder engine by a system of dynamically equivalent concentrated masses m_1 and m_2 rotating about the flywheel axis as shown below. If the distance x_1 is 0.1 m then the distance x_2 is

Fig. 2. fig2

- a) 0.1 m
- b) 0.2 m
- c) 0.4 m
- d) 0.8 m
- 29) A radial disc cam rotating at a constant speed of 60 rpm provides a parabolic displacement of 0.2 m to its fiat faced rectilinear follower during 900 of its rotation. The acceleration (m/s-) experienced by the follower is

 GATE 2007 PI

- a) 0.8
- b) 1.6
- c) 3.2
- d) 6.4
- 30) Figure below shows a mass of 300 kg being pushed using a cylindrical rod made of a material having E = 22 MPa arid of 2 m length and 0.1 m in diameter. In order to avoid the failure of the rod due to elastic instability, the maximum value of the coefficient of Coulomb friction permissible between the mass and the floor is

Fig. 3. fig3

GATE 2007 PI

- a) 0.22
- b) 0.36
- c) 0.65
- d) 0.75
- 31) A cylindrical tank is filled with water as shown in the Figure below. The force required to close the discharge tube at the bottom of the tank is

Fig. 4. fig4

- a) 18.5 N
- b) 37 N
- c) 45.5 N
- d) 74 N
- 32) When an ideal gas (Cp = 3.5) is heated at constant pressure from $25^{\circ}C$ to $425^{\circ}C$, the change in entropy is GATE 2007 PI
 - a) 1.48
- b) 2.97
- c) 4.2
- d) 5.98
- 33) A long glass cylinder of inner diameter = 0.03 m and outer diameter = 0.05 m carries' hot fluid inside. If the thermal conductivity of glass = 1.05 W/mK, the thermal resistance (°K/W) per unit length of the cylinder is GATE 2007 PI
 - a) 0.031
- b) 0.077
- c) 0.17
- d) 0.34
- 34) A tool with Side Cutting Edge angle of 30°C and End Cutting Edge angle of 10°C is used for fine turning with a feed of 1 mm/rev. Neglecting nose radius of the tool, the maximum (peak to valley) height of surface roughness produced will be GATE 2007 PI

- a) 0.16 mm
- b) 0.26 mm
- c) 0.32 mm
- d) 0.48 mm
- 35) Which one of the following process conditions leads to higher MRR in ECM process?

 GATE 2007 PI
 - a) higher current, larger atomic weight
- c)) lower atomic weight, lower valency
- b) higher valency, lower current
- d) higher valency, lower atomic weight
- 36) In an Abrasive Jet Machining process, if Q = flow rate of the abrasives and d = the mean diameter of the abrasive grain, then material removal rate is proportional to GATE 2007 PI
 - a) $\frac{Q}{d^2}$

- b) Qd
- c) Qd^2
- d) Qd^3
- 37) "Matching Exercise". Choose the correct one out of the alternatives A, B, C, D Group 1 Group 2

P-Plastic Carry-Bags Q-O-rings

1-Theramal-Vacuum Forming

2-Blow Molding

R-Shrink Wrappers

3-Compression Molding

s-Automobile Dashboards 4-Resin Transfer Molding

GATE 2007 PI

- a) P-2, Q-3, R-1, S-4 b) P-1, Q-2, R-3, S-4 c) P-3, Q-4, R-1, S-2 d) P-2, Q-3. R-4. S-1
- 38) "Matching Exercise". Choose the correct one out of the alternatives A, B, C, D

Group-1
P-Sand Casting

Group-2 1-Turbine blades

Q-Investment Casting | 2-I.C. Engine Pistons

GATE 2007 PI

R-Investment Casting
S-Die Casting

3-Large bells 4-Pulleys

- a) P-4, Q-1, R-3, S-2 b) P-2, Q-4. R-3, S-1 c) P-3, Q-4, R-1, S-2 d) P-3, Q-2, R-1, S-4
- 39) Tolerance on the dimension x in the two component assembly shown below is

Fig. 5. fig5

- a) ± 0.025
- b) ± 0.030
- c) ± 0.040
- d) ± 0.045
- 40) The maximum possible percentage reduction in area per pass during wire drawing of an ideal plastic material without friction is of the order of

GATE 2007 PI

a) 37

b) 50

c) 63

- d) 75
- 41) Circular blanks of 35 mm diameter are punched from a steel sheet of 2 mm thickness. If the clearance per side between the punch and die is to be kept as 40 microns, the sizes of punch and die should respectively be

GATE 2007 PI

- a) $35^{+0.00}$ and $35^{+0.040}$ b) $35^{-0.040}$ and $35^{-0.080}$ c) $35^{+0.00}$ and $35^{+0.080}$ d) $35^{+0.040}$ and $35^{-0.080}$
- 42) In a CAD package, a point P(6, 3, 2) is projected along a vector v(-2, 1, -1). The projection of this point on X Y plane will be GATE 2007 PI
 - a) (4,4,0)
- b) (8,2,0)
- c) (7,4,0)
- d) (2,5,0)
- 43) The geometric transformation specified by $[X'Y'1] = [X Y 1] \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.25 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ in a 2D CAD system represents

GATE 20007 PI

a) scaling and Translation

c) Rotation and Translation

b) Scaling and Rotataion

- d) Rotation
- 44) The figure below shows the cross-section of circular fillet weld joining a cylindrical steel pin to a steel plate. If the pin is subjected to a pure torsional load, the shear stress (MPa) occurring at the throat of the weld is

Fig. 6. fig6

- a) 2.5
- b) 5.0
- c) 7.0
- d) 10
- 45) Diameter of a hole after plating needs to be controlled between $30^{+0.050}_{+0.010}$ mm. If the plating thickness varies between 10-15 microns, diameter of the hole before plating should be GATE 2007 PI

	a) $30^{+0.070}_{+0.030}$ mm	b) 30 ^{+0.065} _{+0.020} mm	c) $30^{+0.080}_{+0.030}$ mm	d) $30^{+0.070}_{+0.040}$ mm
46)	-	_		V + I = 240, where $V =$ electrode, voltage should
	be set at			GATE 2007 PI
	a) 20 V	b) 40 V	c) 60 V	d) 80 V
47)		feed drive, a stepper m . The Basic Length Un		1.8° drives a lead screw
	with pitch of 2 min.	. The basic Length On	it (BEO) for this drive	GATE 2007 PI
	a) 10 microns	b) 20 microns	c) 40 microns	d) 100 microns
48)	Which one of the f principle?	following gear manufac	cturing processes is N	OT based on generation
	principle:			GATE 2007 PI
	a) Gear Hobbing	b) Gear Shaping	c) Gear Milling	d) Gear Shaving
49)	are true?	al characteristics of the		at, which of the following
	•	inding when shadow pr		
	R-Constraints are bi	inding when shadow pr	ices are zero	
				GATE 2007 PI
	a) P and Q	b) Q and R	c) only P	d) only R
50)	• •	is of LP models, which pasic variables are zero	•	s true?
	Q-Constraints are bi	inding when shadow pr	ices are non-zero	
	R-Constraints are bi	nding when shadow pr	ices are zero	
	S-Reduced cost is sa	ame as shadow price		
				GATE 2007 PI
	a) P and Q	b) Q and R	c) P and R	d) Q and S
51)	Consider the symme m -vector and c is an	-	P] and [D], where A is	an $m \times n$ matrix, b is an

[P] min
$$c^T x$$
 [D] max $b^T y$
s.t. $Ax \ge b$ s.t. $A^T y \le c$
 $x \ge 0$ $y \ge 0$

Assume that [P] is feasible. If the optimal values are z_1^* for [P] and z_2^* for [D], whenever they exist, then which one of the following is true?

GATE 2007 PI

- a) If [D] is infeasible, then z₁* can be detere) If [D] is feasible, then z₁* can be determined mined and is equal to z₂*.
 b) If [D] is feasible, then z₁* cannot be deterd) If [D] is feasible, then z₁* can be determined
- but not equal to z_2^* . mined.
- 52) The moving average method is to be used for forecasting demand based on m periods of data. Two values of m are tried, m_1 and m_2 with $m_1 > m_2$, to get two different forecasts, denoted by F(t) and G(t). P – F(t) has less variability than G(t)

Q – Forecast error of F(t) is less than that of G(t)Which of the above statements are true?

GATE 2007 PI

a) Only P

b) Only Q

c) Both P and Q

- d) Neither P nor Q
- 53) In an optimization problem, let y be a 0-1 variable and x be a positive real number. Now, the condition that x can take non-zero values only if y = 1 can be modeled using the linear constraint

GATE 2007 PI

a) $x \le My$ (M is ab) $x \ge y$ large number) large number) c) $x \ge My$ (M is all) $xy \ge 0$

54) The average number of accidents occurring monthly on an assembly shop floor is 2. The probability that there will be at least one accident in this month is estimated to be

GATE 2007 PI

a) 0.055

b) 0.456

c) 0.865

d) 0.950

55) X_1, \ldots, X_{100} are Bernoulli random variables with a probability of success equal to 0.6. By the Central Limit Theorem, the random variable

$$Y = \sum_{i=1}^{100} X_i$$

is approximately normally distributed. Then Y has mean and variance respectively equal to

GATE 2007 PI

a) 40 and 24

b) 60 and 24

c) 40 and 12

d) 60 and 12

56) Karmarkar's algorithm for Linear Programming

	e feasible region all possible extreme poin	t solud) generates inte	ction evaluation erior point itera optimum solu	ates which con-		
57) For a transportation problem that has a feasible solution, the northwest corner rule gives a possible solution which is						
possible solut	ion which is			GATE 2007 PI		
b) a near optim	sible solution to the problemal solution to the problemsolution to the problem	*	nany optimal s	solutions to the		
	nt problem in Linear Prog How many feasible soluti	_	-	-		
-				GATE 2007 PI		
a) n^n	b) $n(n-1)$	c) n^2	d) n!			
Group 1 P - Knowled Q - Decisio R - Manage S - Data Mi a) P-4, Q-3, F 60) A process is to 9. The contro a) 15 ± 10.8 61) Item P is man	R-1, S-2 b) P-2, Q-3, R-1, to be controlled with stand l limits for the X chart arm b) 15 ± 3.6 de from components Q and	Group 2 1 - responds to que 2 - uses statistical 3 - provides recom 4 - uses reasoning S-4 c) P-4, Q-2, R-3 dard values $\mu = 15$ and e c) 0.4 ± 10.8	eries with reportules of inferent mendations techniques 3, S-1 d) P-3, d σ = 3.6. The d) 0.4 ± a, is made from	GATE 2007 PI Q-4, R-1, S-2 e sample size is GATE 2007 PI 3.6 n S and T. The		
	r items P, Q, R, S, and T (s) needed to respond to a		tem P is	tively. The lead GATE 2007 PI		
a) 10	b) 11	c) 12	d) 26			
62) The reliability	of an equipment for a ti	me to failure exceeding	ng t is given by	y		
	R	$(t) = \exp(-\lambda t)$				
The mean tim	ne to failure (MTTF) for t	his equipment (in hou	urs) is	GATE 2007 PI		

a) moves along different extreme point solue) divides the feasible region into different

a) λ	b) $\frac{1}{\lambda}$	c) $\frac{1}{\lambda^2}$	d)	λ^2				
63) Four jobs have to be sequenced on a single facility, with the objective of minimizing the maximum tardiness								
	$\max_{i} \text{Completion time}_{i} - \text{Due date}_{i} $.							
The jobs have d	The jobs have due dates and processing times as follows:							
	Job Due date (P	day number) P	rocessing time (da	ys)				
	Q R	6	10					
	R	3 7	3 4					
The last job tha	t should be taken u	•		GATE 2007 PI				
a) P	b) Q	c) R	d)	S				
operating the as		its per year are o	either Rs. 60,000 o	year are Rs. 40,000 in or Rs. 80,000, judged GATE 2007 PI				
a) 3	b) 4.5	c) 6	d)	9				
	Activity		Time (minu	ites)				
65)	machine loading machining	+ unloading	$\begin{vmatrix} 2\\4 \end{vmatrix}$					
T	walking from one							
_	operator and mach	-	be assigned to an	operator to minimize GATE 2007 PI				
a) 1	b) 2	c) 3	d)	4				
66) Given Assertion [a]: Value engineering of a new product is to be done after the original design concept is nearly ready for release for manufacture.								
Reason [r]: Valu	ne engineering aims	s at reducing the	cost of manufactu	GATE 2007 PI				
 a) Both [a] and [r] are true and [r] is the correct reason for [a] correct reason for [a] b) Both [a] and [r] are true, but [r] is not thea is true but [r] is false 								
67) Given Assertion [a]: There is a continuous reduction of life cycles of modern day products Reason [r]: Product life cycle management reduces to a large extent the new product development time from concept to production								

- a) Both [a] and [r] are true and [r] is the correct reason for [a] correct reason for [a] c) Both [a] and [r] are false
- b) Both [a] and [r] are true, but [r] is not thea is true but [r] is false
- 68) The problem of finding the rectangle of maximum area with perimeter equal to 20 can be posed as the constrained optimization problem

Max
$$xy$$

s.t. $2x + 2y = 20$
 $x, y \ge 0$

The solution to this problem is x = y = 5. What is the value of the Lagrange multiplier corresponding to the perimeter constraint?

GATE 2007 PI

a) 2.5

b) 5

c) 7.5

d) 10

69) A manufacturing system with a production rate p units/day experiences a demand rate of d units/day where p i, d. Let Q be the maximum production quantity per period. When the total production in a period reaches Q units, the production is stopped and restarted only when inventory becomes zero. In such a scenario, the maximum cycle inventory is GATE 2007 PI

a) $Q \cdot p \cdot (p-d)$ b) $\frac{Q}{(p-d)^p}$ c) $\frac{Q}{p}(p-d)$ d) $\frac{p(p-d)}{Q}$

70) In a time study, the observed times and ratings for an elemental operation are as shown below:

	Reading 1	Reading 2
Rating (%)	80	100
Observed time (minutes)	0.60	0.50

Considering an allowance of 10% of the normal time, the standard time (in minutes) for the operation is:

GATE 2007 PI

a) 0.49

b) 0.54

c) 0.98

d) 1.08

Common Data questions

Common Data for questions 71,72,73:

The figure below illustrates a project network describing the precedence relationships among different activities (A-J). The activities along with their duration in weeks are represented as arcs, and the events are shown as nodes (1 is the start event and 9 is the end event).

Fig. 7. fig7

71) The length of the crucial path in weeks is

GATE 2007 PI

- a) 29
- b) 31

c) 38

d) 66

72) If U_{α} is the earliest start time of event α , then the reccurence equation defining U_{6} GATE 2007 PI

a)
$$U_6 = \text{Max}\{U_8, 8\}$$

c)
$$U_6 = \text{Max}\{U_3, U_5, 7, 5\}$$

b)
$$U_6 = U_8 - 8$$

d)
$$U_6 = \text{Max}\{U_3 + 7, U_5 + 5\}$$

- 73) If activity B has uncertain duration and is uniformly distributed over the interval [8, 12], and T is the earliest start time of event 3 (assume that event I starts at time 0), then the mean and variance of T are

 GATE 2007 PI
 - a) 10 and 0.4
- b) 10 and 1.33
- c) 16 and 0.4
- d) 16 and 1.33

Common Data for Questions 74,75;

In a Orthogonal machining text, the following observations were made

Cutting force	1200 N
Thrust force	500 N
Tool rake angle	Zero
Cutting speed	1 m/s
Depth of cut	0.8 mm
Chip thickness	1.5 mm

74) Friction angle during machining will be

GATE 2007 PI

- a) 22.6°
- b) 32.8°
- c) 57.1°
- d) 67.4°

75) Chip speed along the tool rake face will be

- a) 0.83 m/s
- b) 0.53 m/s
- c) 1.2 m/s
- d) 1.88 m/s

Statement for Linked Answer Questions 76 & 77:

In the setup shown below, 2 kW power is supplied by oil flowing into the cylinder of the hydraulic actuator at the rate of 400×10^{-6} m³/s.

Fig. 8. fig8

76)	If the	diameter	of the	piston	is 0.05	m,	the	force	(kN)	generated	on the	piston is	
												GATE	2007 PI

- a) 1.6
- b) 4.8
- c) 9.8
- d) 12.2
- 77) The pinion is a spur gear having 30 teeth of 2mm module. The torque T(Nm)

GATE 2007 PI

- a) 1.7
- b) 4.0
- c) 6.8
- d) 8.6

statement for Linked Answer Questions 78 & 79

Consider an unbalanced serial assembly line consisting of three workstations that produces a single part. The part visits each workstation exactly once. The number of parallel machines at each workstation and the processing time at a machine is shown below:

	<u> </u>	
Workstation	Number of machines	Processing time (minutes)
1	1	2
2	2	5
3	6	10

78) What is the capcity (in parts/minute) of the above assembly line?

GATE 2007 PI

- a) 0.1
- b) 0.4
- c) 0.5
- d) 0.6
- 79) The minimum WIP level that allows the line to operate under maximum capacity is GATE 2007 PI
 - a) 1.7
- b) 4.0
- c) 6.8
- d) 8.6

statement for Linked Answer Questions 80 & 81

Blind holes 10 mm diameter, 50 mm deep are being drilled in steel block. Drilling spindle speed is 600 rpm, feed 0.2 mm/rev, Point angle of drill is 120°.

80) Ma	80) Machining time (in minutes) per hole will be GTAE 2007 Pl					
				GIAE 2007 FI		
a) (0.08	b) 0.31	c) 0.44	d) 0.86		
81) During the above operation, the drill wears out after producing 200 holes. Taylor life equation is ofthe form $VT^{0.3} = C$, $V = \text{cutting speed in minimute}$ and $V = \text{constant } C = \text{constant } C = \text{cutting speed}$ in $V = \text{cutting speed}$						
a) 1	5	b) 72	c) 93	d) 490		
Sta	tement for Linke	d Answer Questions 82	2 & 83:			
ave	rage life of 1000		deviation of 50 hours.	that yields bulbs with an The nominal value, USL		
82) The	e process capabili	ty index (C_{pk}) for the	manufacturing process	is GATE 2007 PI		
a) (0.67	b) 1.00	c) 1.33	d) 2.00		
			ratio of the potential	process capability to its		
acu	al process capab	offity is		GATE 2007 PI		
a) (0.50	b) 0.67	c) 1.00	d) 2.00		
Sta	tement for Linke	d Answer Questions 84	4 & 85:			
	U 1	ocess, a sprue of 10 m cubical mould cavity of		50 mm height leads to a		
84) The	e volume flow rat	$e ext{ (in } mm^3/s ext{)}$		GATE 2007 PI		
a) (0.8×10^5	b) 1.1×10^5	c) 1.7×10^5	d) 2.3×10^5		
85) The	e mould filling tin	me (in seconds) is		GATE 2007 PI		
a) 2	2.8	b) 5.78	c) 7.54	d) 8.41		