Assignment 2

Jana Plisiecka

October 27, 2023

Task 2

A is $m \times n$ with SVD $A = U\Sigma V^T$.

First, let's prove that $m \ge n$. Let m < n, rank $A \le m < n$ and rank $A^T = \operatorname{rank} A$. But then $A^T A$ is $n \times n$ and rank $A^T A \le \operatorname{rank} A < n$, so $A^T A$ is singular and $(A^T A)^{-1}$ does not exist. Thus $m \le n$.

The matrices U, Σ and V^T have the following properties (full SVD):

- U is $m \times m$, unitary, possibly singular.
- $\Sigma = \left[\frac{S}{O}\right]$, where S is the non-zero diagonal submatrix of Σ and O is the zero submatrix. If m = n, then $\Sigma = S$. Let also $\tilde{\Sigma} = \left[S^{-1}|O\right]$ such matrix that $\tilde{\Sigma}\Sigma = S^{-1}S = \hat{I}$. Note that $\tilde{\Sigma}^T\Sigma^T = \left[S^{-1}|O\right] \cdot \left[\frac{S}{O}\right] = \hat{I}$ and $\tilde{\Sigma}\tilde{\Sigma}^T = \left[S^{-1}|O\right] \cdot \left[\frac{S^{-1}}{O}\right] = S^{-2}$.
- V is $n \times n$, unitary, non-singular.

Having that properties, let's solve the problems:

(i)
$$(A^T A)^{-1} = \left(\left(U \Sigma V^T \right)^T \cdot U \Sigma V^T \right)^{-1} = \left(V \Sigma^T \cdot U^T U \cdot \Sigma V^T \right)^{-1} =$$

$$V \left(\Sigma^T \Sigma \right)^{-1} V^T = V \left([S|O] \left[\frac{S}{O} \right] \right)^{-1} V^T = V \left(S^2 \right) V^T = V S^{-2} V^T.$$

(ii)
$$(A^T A)^{-1} A^T = V S^{-2} V^T \cdot V \Sigma^T U^T = V S^{-2} \cdot \Sigma^T U^T = V \tilde{\Sigma} \tilde{\Sigma}^T \cdot \Sigma^T U^T = V \tilde{\Sigma} U^T.$$

(iii)
$$A (A^T A)^{-1} = U \Sigma V^T \cdot V S^{-2} V^T = U \Sigma \cdot \tilde{\Sigma} \tilde{\Sigma}^T V^T = U \tilde{\Sigma}^T V^T.$$

(iv)
$$A (A^T A)^{-1} A^T = U \Sigma V^T \cdot V S^{-2} V^T \cdot V \Sigma^T U^T = U \Sigma \cdot \tilde{\Sigma} \tilde{\Sigma}^T \cdot \Sigma^T U^T = U U^T = \hat{I} = \hat{I} \cdot \hat{I} \cdot \hat{I}.$$

Task 3

Compute SVD

The given matrix is

$$A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix}.$$

First we compute the eigenvalues of AA^T :

$$AA^{T} = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} \cdot \begin{bmatrix} -2 & -10 \\ 11 & 5 \end{bmatrix} = \begin{bmatrix} 125 & 75 \\ 75 & 125 \end{bmatrix}$$
$$\det (AA^{T} - \lambda I) = 25 \cdot \det \begin{bmatrix} 5 - \tilde{\lambda} & 3 \\ 3 & 5 - \tilde{\lambda} \end{bmatrix} = 25 \left(\tilde{\lambda}^{2} - 10\tilde{\lambda} + 16 \right) = 25 \left(\tilde{\lambda} - 2 \right) \left(\tilde{\lambda} - 8 \right),$$

where $\lambda=25\tilde{\lambda}$. $\lambda_1=25\cdot 8=200,\ \lambda_2=25\cdot 2=50$. The singular values are $\sigma_1=10\sqrt{2}$ and $\sigma_2=5\sqrt{2}$. This gives

$$\Sigma = \begin{bmatrix} 10\sqrt{2} & 0\\ 0 & 5\sqrt{2} \end{bmatrix}.$$

The left singular vectors are the unit eigenvectors of AA^{T} :

$$(A - \hat{I}\lambda_1) \cdot s_1 = \begin{bmatrix} -75 & 75 \\ 75 & -75 \end{bmatrix} \cdot \begin{bmatrix} s_1^1 \\ s_2^2 \end{bmatrix} = 75 \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} s_1^1 \\ s_2^2 \end{bmatrix} = 0 \implies s_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} .$$

$$(A - \hat{I}\lambda_2) \cdot s_2 = \begin{bmatrix} 75 & 75 \\ 75 & 75 \end{bmatrix} \cdot \begin{bmatrix} s_2^1 \\ s_2^2 \end{bmatrix} = 75 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_2^1 \\ s_2^2 \end{bmatrix} = 0 \implies s_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} .$$

This gives

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Finally, V^T can be found using the following formula:

$$V^T = (U\Sigma)^{-1} A.$$

Compute $(U\Sigma)^{-1}$:

$$(U\Sigma)^{-1} = \begin{bmatrix} 10 & 5 \\ 10 & -5 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}^{-1}.$$

Using Gaussian elimination:

$$\begin{bmatrix} 2 & 1 & \vdots & 1 & 0 \\ 2 & -1 & \vdots & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & \vdots & 1 & 0 \\ 0 & -2 & \vdots & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & \vdots & 1 & 0 \\ 0 & 1 & \vdots & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & \vdots & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \vdots & \frac{1}{2} & -\frac{1}{2} \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}.$$

This gives us

$$(U\Sigma)^{-1} = \frac{1}{20} \begin{bmatrix} 1 & 1\\ 2 & -2 \end{bmatrix}$$

and the last term of our SVD,

$$V^{T} = \frac{1}{20} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \cdot \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix},$$
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \cdot \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}.$$

2D Plots

Figure 1: Singular vectors and their images under A (not to scale).

Inverse of A

$$A^{-1} = \left(U\Sigma V^{T}\right)^{-1} = V\Sigma^{-1}U^{T} = \frac{1}{5} \begin{bmatrix} -3 & 4\\ 4 & 3 \end{bmatrix} \cdot \frac{1}{10\sqrt{2}} \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} -3 & 8\\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 5 & -11\\ 10 & -2 \end{bmatrix}.$$

Norm of A

$$||A||_2 = \max \{\sigma_1, \sigma_2\} = \sigma_1 = 10\sqrt{2}.$$

$$||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2} = \sqrt{200 + 50} = 5\sqrt{10}.$$

Eigenvalues of A

$$\det (A - \lambda \hat{I}) = \det \begin{bmatrix} -2 - \lambda & 11 \\ -10 & 5 - \lambda \end{bmatrix} = \lambda^2 - 3\lambda + 100.$$
$$\lambda_{1,2} = \frac{3}{2} + \frac{1}{2}\sqrt{-391};$$
$$\lambda_1 = \frac{3}{2} + \frac{i}{2}\sqrt{391}, \ \lambda_2 = \frac{3}{2} - \frac{i}{2}\sqrt{391}.$$