אלגברה לינארית 1־ תרגיל בית 8

שאלה 1

 $\operatorname{Span}(S) = \operatorname{Span}(S \setminus \{v\})$ כך שכן אם קיים $v \in S$ מ"ו מעל \mathbb{F} ו־ $S \subseteq V$ קבוצה. הראו כי S תלויה לינארית אם ורק אם קיים V

שאלה 2

יהא
$$U=\left\{\left(egin{array}{c} x_1\\x_2\\ \vdots\\x_n \end{array}
ight)\in \mathbb{F}^n\mid x_1+x_2+\cdots+x_n=0
ight\}\in \mathbb{F}^n$$
 ובקבוצה $U=\left\{\left(egin{array}{c} x_1\\ \vdots\\x_n \end{array}
ight)\in \mathbb{F}^n\mid x_1+x_2+\cdots+x_n=0
ight\}$ ובקבוצה יהא $U=\left\{\left(egin{array}{c} x_1\\ \vdots\\x_n \end{array}
ight)\in \mathbb{F}^n\mid x_1+x_2+\cdots+x_n=0
ight\}$

$$S = \{e_{i+1} - e_i \mid i = 1, \dots, n-1\} \subseteq \mathbb{F}^n$$

יסיחו (0). הוקטור שבו מופיע במקום ה־i ובשאר המקומות ווכיחו כי

.Span (S) = U.א

ב. S בלתי תלויה לינארית.

שאלה 3

$$\operatorname{Span}(v_1, v_2) = \operatorname{Span}(v_1, v_3) = \operatorname{Span}(v_2, v_3).$$

שאלה 4

 $\cdot V$ מ"ו, ויהיו וו-T תת־קבוצות של ע

. $\operatorname{Span}\left(S\right)\cap\operatorname{Span}\left(T\right)=\left\{ 0\right\}$ בת"ל, אז $S\cup T$ וגם $S\cap T=\emptyset$ אם הפריכו: אם הפריכו

שאלה 5

יהא $S_2=(3v_1,v_3,v_1-2v_4)$, $S_1=(v_1,v_2,v_3,v_4)$, $v_1,v_2,v_3,v_4\in V$, אילו מבין הטענות הבאות מ"ו V מ"ו V מ"ו אותה. אם לא, הביאו דוגמא נגדית.

 S_1 א. אם S_2 בת"ל, אז

ב. אם S_1 ת"ל, אז אז S_2 ת"ל.

שאלה 6

יהא V מ"ו מעל שדה \mathbb{F} , ויהיו אם הטענה נכונה, אילו מבין הטענות הבאות נכונות? אם הטענה נכונה, הוכיחו אותה. אחרת, הביאו דוגמה נגדית.

א. אם
$$(v_{k+1},...,v_n)$$
 ת"ל או $(v_1,...,v_k)$ ת"ל, אזי $(v_1,...,v_n)$ ת"ל.

בת"ל.
$$(v_1-v_{k+1},...,v_k-v_{k+1})$$
 אזי $(v_1-v_{k+1},...,v_k-v_{k+1})$ בת ב. אם אזי $(v_1-v_{k+1},...,v_k)$

.ל. אם
$$(a_1v_1,...,a_nv_n)$$
 גם $a_1,...,a_n\in\mathbb{F}$ ת"ל, אזי לכל ת"ל, איי לכל ת"ל, אוי לכל

ד. יהיו $u_1,u_2\in \mathrm{Span}((v_{k+1},...,v_n))$, $u_1\in \mathrm{Span}((v_1,...,v_k))$ בת"ל, $u_1,u_2\in V$ ד. יהיו $u_1,u_2\in V$ אזי $u_1,u_2\in V$ בת"ל.

שאלה 7

: בת"ל כאשר בי ער. (v_1,v_2) בת"ל האם הסדרה (v_1,v_2) בת"ל כאשר

$$.v_2=\left(egin{array}{c}1\2\3\end{array}
ight)$$
 , $v_1=\left(egin{array}{c}4\1\5\end{array}
ight)$, $\mathbb{F}=\mathbb{R}$.א

$$.v_2=\left(egin{array}{c}1\2\3\end{array}
ight)$$
 , $v_1=\left(egin{array}{c}4\1\5\end{array}
ight)$, $\mathbb{F}=\mathbb{F}_7$.ב.

שאלה 8

(כאשר: את $[v]_{\mathcal{B}}$ את חשבו של סדור של בסיס דור מעל $V\in V$ מעל על מעל מער מרחב מהסעיפים הבאים, נתון מרחב וקטורי ע

$$v=\left(egin{array}{c}1\2\3\end{array}
ight)$$
ה ע $\mathcal{B}=\left(\left(egin{array}{c}1\1\1\end{array}
ight),\left(egin{array}{c}1\1\0\end{array}
ight),\left(egin{array}{c}1\0\0\end{array}
ight)$, we have $V=\mathbb{R}^3$. א

$$v=\left(egin{array}{cc} 2 & 2 \ 0 & 0 \end{array}
ight)$$
 , $\mathcal{B}=\left(\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)$ מעל $V=M_{2 imes2}(\mathbb{R})$.ב.

$$v=6+5x+2x^2$$
 , $\mathcal{B}=\left(1+2x,x-x^2,x+x^2
ight)$, \mathbb{R} מעל $V=\mathbb{R}_{\leq 2}\left[x
ight]$ ג.

$$.h\left(x
ight)=x^{2}+1$$
 , $g\left(x
ight)=x$, $f\left(x
ight)=1$ כאשר א $v=h$, $\mathcal{B}=\left(f,g
ight)$, \mathbb{F}_{2} מעל $V=\mathbb{F}_{2}^{\mathbb{F}_{2}}$. ד.

שאלה 9

כאשר \mathbb{R}^3 כאשר בסיס סדור של $\mathcal{C}=(u_1,u_2,u_3)$ נתון כי \mathbb{R}^3 נתון של בסיס סדור של $\mathcal{B}=(v_1,v_2,v_3)$

$$u_1 = v_1 + v_2, u_2 = v_2 + 2v_3, u_3 = v_3 + 7v_1.$$

.i=1,2,3 עבור $[u_i]_{\mathcal{B}}$ א. חשבו את

$$[v]_{\mathcal{B}}$$
 מצאו את מצוו . $[v]_{\mathcal{C}}=\left(egin{array}{c}a\\b\\c\end{array}
ight)$ ב. יהא יהא $v\in\mathbb{R}^3$ מצאו את ב. יהא

שאלה 10

$$B = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix}$$
נסמן

 $M_{2 imes 2}(\mathbb{R})$ א. הראו כי $U=\{A\in M_{2 imes 2}(\mathbb{R}):AB=0\}$ א. הראו כי

. בסיס) ל-U (כלשהו) ל-U (כלשהו) ל-U (כלשהו) ל-ש בסיס סדור ל-ש בסיס).

 $[v]_{\mathcal{B}}$ את חשבו קודם, השבי בסעיף קודם. $v=\left(egin{array}{cc} 6 & 2 \ 9 & 3 \end{array}
ight)$ ג. נסמן