计算物理 作业报告19

PB14203209 张静宁 2017.12.29

第十九题

设体系的能量为 $H=x^2/2\sigma_x^2+y^2/2\sigma_y^2$ (以 kT 为单位),采用 Metropolis 抽样法计算 $\langle x^2\rangle,\langle y^2\rangle,\langle x^2+y^2\rangle$,并与解析结果进行比较。抽样时在 2 维平面上依次标出 Markov 链点分布,从而形象地理解 Markov 链。

理论和算法

理论推导

体系的能量 $H=(rac{x^2}{2\sigma_x^2}+rac{y^2}{2\sigma_y^2})KT$,满足玻尔兹曼分布 $P_i=rac{1}{Z}e^{-E_i/k_bT}$,

且一化常数 Z,即配分函数为

$$Z=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}e^{-(rac{x^2}{2\sigma_x^2}+rac{y^2}{2\sigma_y^2})}dxdy=2\pi\sigma_x\sigma_y$$

故空间概率分布为

$$P(x,y) = rac{e^{-(rac{x^2}{2\sigma_x^2} + rac{y^2}{2\sigma_y^2})}}{2\pi\sigma_x\sigma_y}$$

故理论上有

$$\langle x^2
angle = \sigma_x^2, \ \langle y^2
angle = \sigma_y^2, \ \langle x^2 + y^2
angle = \sigma_x^2 + \sigma_y^2$$

若取
$$\sigma_x=\sigma_y=1$$
,则 $\langle x^2
angle=1$, $\langle y^2
angle=1$, $\langle x^2+y^2
angle=2$

Metropolis 算法

设定Markov链走N步,其中热化阶段为M步,计算系综统计平均时,需要将所有有效步数统计在内(不包括热化 阶段)。物理量 $\emph{\textbf{A}}$ 的系综平均为

$$\langle A
angle = rac{1}{N-M} \sum_{i=M+1}^N A_i$$

计算中将初始值设定如下

$$(x_0, y_0) = (10, 10), N = 500, 000, M = 50,000$$

采用 C 自带函数 rand() 生成随机数,种子是默认值。

文件说明

- metro.c 源程序,执行可输出三个期望值和 Markov 链点坐标
- metro 可执行文件,建议将数据导入文档
- data.txt 数据文件

计算结果与分析

计算结果输出:

$$\langle x^2 \rangle = 1.040565$$
,

$$\langle y^2 \rangle = 0.943181$$
,

$$\langle x^2 + y^2 \rangle = 1.983746,$$

与理论值 $\langle x^2 \rangle = 1$, $\langle y^2 \rangle = 1$, $\langle x^2 + y^2 \rangle = 2$ 非常接近,误差小于 5.7%.

做出二维 Markov 链点图:

Metropolis importance sampling (500000 steps)

总结

本次作业用Metropolis重要抽样算法,实现了玻尔兹曼分布的抽样。绘制出二维Markov链图像,明显可见热化过程为一条从初始点(10,10)向原点接近的不规则曲线,故需要在算平均值时将热化阶段剔除。

计算了 $\langle x^2 \rangle$, $\langle y^2 \rangle$, $\langle x^2 + y^2 \rangle$ 的期望值,均和理论值比较接近。

参考资料

- [1] 丁泽军《计算物理讲义》 2.2.2 Metropolis 方法
- [2] LECTURE 10: Monte Carlo Methods II PDF
- [3] Metropolis 抽样算法 何博 PDF