Week 11: Categorical Data II

Wenhao Jiang

Department of Sociology New York University

November 18, 2022

- ► We have already learned how to deal with the case when a binary variable like gender is used as a explanatory (independent) variable
- ▶ In this case, gender is also a categorical variable, with two possible values
 - ▶ In recent years, large national surveys now include more categories in asking gender

- ► We have already learned how to deal with the case when a binary variable like gender is used as a explanatory (independent) variable
- In this case, gender is also a categorical variable, with two possible values
 - ▶ In recent years, large national surveys now include more categories in asking gender
- ▶ We include gender in regression by transforming it into a 0-1 binary, where 1 represents woman, and 0 man (or 1 as man and 0 as woman)
- ► Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + e_i$
- ▶ How do intepret $\hat{\beta}_2$ (suppose this is a positive number)?

- ► We have already learned how to deal with the case when a binary variable like gender is used as a explanatory (independent) variable
- In this case, gender is also a categorical variable, with two possible values
 - ▶ In recent years, large national surveys now include more categories in asking gender
- ▶ We include gender in regression by transforming it into a 0-1 binary, where 1 represents woman, and 0 man (or 1 as man and 0 as woman)
- ightharpoonup Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + e_i$
- ▶ How do interret $\hat{\beta}_2$ (suppose this is a positive number)?
- ▶ Conditioning on the same level of education, women on average have $\hat{\beta}_2$ -unit higher levels abortion attitudes than men do

- Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + e_i$
- ► Men do not explicitly appear in regression; instead, it appears as the **reference group** for women to be compared with

- ► Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + e_i$
- ► Men do not explicitly appear in regression; instead, it appears as the **reference group** for women to be compared with
- Including a categorical variable that has multiple variables (e.g., race, region, marital status) is analogous
- ► For example, if we want to add race (5 categories: White, Black, Hispanic, Asian, Others) in the above equation
- lt is incorrect to directly specify $Abscale_i = \hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + \hat{\beta}_3 race_i + e_i$
- ► As race is not ordered and additive

- ▶ Instead, we transform race into 5 "dummy variables" (dummy means a binary variable created from categorical variables), white, black, hispanic, asian, others
- lacktriangle If the respondent is a black, black=1 and other other dummy variables =0
- lacktriangle If the respondent is a hispanic, hispanic = 1 and other other dummy variables = 0

- ▶ Instead, we transform race into 5 "dummy variables" (dummy means a binary variable created from categorical variables), white, black, hispanic, asian, others
- ▶ If the respondent is a black, black = 1 and other other dummy variables = 0
- lacktriangle If the respondent is a hispanic, hispanic=1 and other other dummy variables =0
- ▶ We put all these dummy variables but one group in regression; the group that is omitted serves as the **reference** group
- Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + \hat{\beta}_3 black_i + \hat{\beta}_4 hispanic_i + \hat{\beta}_5 asian_i + \hat{\beta}_6 others_i + e_i$

- ▶ Instead, we transform race into 5 "dummy variables" (dummy means a binary variable created from categorical variables), white, black, hispanic, asian, others
- lacktriangle If the respondent is a black, black=1 and other other dummy variables =0
- lacktriangle If the respondent is a hispanic, hispanic = 1 and other other dummy variables = 0
- ▶ We put all these dummy variables but one group in regression; the group that is omitted serves as the **reference** group
- ► Abscale_i = $\hat{\beta}_0 + \hat{\beta}_1 edu_i + \hat{\beta}_2 women_i + \hat{\beta}_3 black_i + \hat{\beta}_4 hispanic_i + \hat{\beta}_5 asian_i + \hat{\beta}_6 others_i + e_i$
- Which group to omit is up to you, but it is related to the interpretation of the results

- ▶ How do we interpret $\hat{\beta}_3$ (suppose this is a positive number)?

- ▶ How do we interpret $\hat{\beta}_3$ (suppose this is a positive number)?
- Conditioning on the same level of education and gender, blacks on average have $\hat{\beta}_3$ -unit higher levels of abortion attitudes than whites do
- ► Whites do not explicitly appear in regression; instead, it appears as the **reference group** for other racial groups to be compared with

Practice

- ► We are now interested in the association between marital status and religious identification, controlling for gender and education
- ▶ There are five categories of marital status, Married, Widowed, Divorced, Separated, Never married

Practice

► $Relig_i = 2.56 + 0.013edu_i + (-0.094)women_i + (-0.355)widowed_i + 0.139divorced_i + 0.376separated + 0.635nevmar_i + e_i$

Table 1: The association between education, sex, marital status and religion, GSS 2021

	Dependent variable:
	Religious identification
Education	-0.007*** (0.003)
Women	0.061*** (0.014)
Widowed	0.076*** (0.028)
Divorced	-0.048** (0.020)
Separated	-0.062 (0.048)
Never married	-0.193^{***} (0.018)
Intercept	0.832*** (0.041)
Observations	3,878
Adjusted R ²	0.041
Note:	*p<0.1; **p<0.05; ***p<0.01

Data Memo and R Operations

Logistics

- ▶ Research Memo: 5-page memo presenting an interesting statistical result and discussing its social science implications
- ► Due **16 December**

General Expectations

- Not required to go very advanced and substantively innovative (but encouraged!), but we generally expect to see
- (1) An introduction with some literature review
 - ► A clear-defined topic (e.g., what is the association between education and gender ideologies/attitudes)
- ▶ (2) A brief description of the data you intend to use
 - ► For example, if you want to use GSS, you may describe which year of data you use, how many individuals are included, what is their gender and race composition, etc.

General Expectations

- (3) Clear-stated dependent (e.g., gender ideologies) and independent (years of education) variables
- ▶ (4) Start with a two-way cross-table
- ▶ (5) Proceed to a bivariate regression
- (6) Adding a set of other controlling variables in a multivariate regression setting, such as gender, age, and region
 - ► Try to test for interactions. For example, does the effect of years of education in gender ideologies depend on which gender the respondent is?
 - ▶ Or, is the variable a mediator, a moderator, or a multiple cause?
- ▶ (7) Visualize the relationship, possibly after step (3) and step (6)
- ▶ (8) Conclusion and implications

Logistics

- ▶ It is almost certain that you will encounter difficulties in cleaning the data
- ► Come to my office hour and I can help!

Data Sources

- General Social Survey
- Current Population Survey
- American Community Survey
- American Decennial Census
- American Time Use Survey
- National Longitudinal Survey of Youth 1979 and 1997

Read Data

```
## set your working directory - you should set your own unique one!
setwd("~/Dropbox/Teaching/SOCUA-302/Week 11")

## read csv data - this is 2021 GSS data
gss <- read.csv("GSS_SOCUA_W11.csv")</pre>
```

run a new line of code: library(dplyr)

▶ The frequency of men and women who have and have no religious identification

```
## relig 0 1 Sum
## sex
## 0 552 1172 1724
## 1 556 1623 2179
## Sum 1108 2795 3903
```

► The proportion of people who have and have no religious identification among men and women

```
## relig 0 1 Sum
## sex
## 0 32.02 67.98 100.00
## 1 25.52 74.48 100.00
```

- The crosstab function by default returns proportion by row
- We can also change it to column-wise proportion
- ► The proportion of men and women among the people who have and have no religious identification

```
## relig 0 1
## sex
## 0 49.82 41.93
## 1 50.18 58.07
## Sum 100.00 100.00
```

▶ We can also include multiple categories as rows

##			relig	0	1	Sum
##	${\tt marital}$	sex				
##	1	0		25.53	74.47	100.00
##		1		22.26	77.74	100.00
##	2	0		23.17	76.83	100.00
##		1		10.63	89.37	100.00
##	3	0		34.05	65.95	100.00
##		1		23.96	76.04	100.00
##	4	0		28.57	71.43	100.00
##		1		30.16	69.84	100.00
##	5	0		47.20	52.80	100.00
##		1		38.63	61.37	100.00

Women who are widowed have the highest proportion of religious believers among all categories.

► The proportion can also be joint percentages

##			relig	0	1	$\operatorname{\mathtt{Sum}}$
##	${\tt marital}$	sex				
##	1	0		12.55	36.62	49.17
##		1		11.31	39.51	50.83
##		${\tt Sum}$		23.86	76.14	100.00
##	2	0		6.57	21.80	28.37
##		1		7.61	64.01	71.63
##		${\tt Sum}$		14.19	85.81	100.00
##	3	0		12.32	23.87	36.19
##		1		15.29	48.52	63.81
##		${\tt Sum}$		27.61	72.39	100.00
##	4	0		8.79	21.98	30.77
##		1		20.88	48.35	69.23
##		${\tt Sum}$		29.67	70.33	100.00
##	5	0		21.54	24.09	45.63
##		1		21.00	33.37	54.37
##		${\tt Sum}$		42.54	57.46	100.00

- ▶ Although the function crosstab is user-written, it is pretty flexible
- ► Take a look at the original instructions here if you want more ways of cross-tabulation to explore the data

- ▶ The basic format of regression in R is $lm(y \sim x1 + x2 + ... xn, data)$
- ▶ Save the regression model by some name, e.g., model1 <- $lm(y \sim x1 + x2 + ... \times n$, data)
- ► You can check the regression output by summary(model1)

- ▶ The basic format of regression in R is lm(y ~ x1 + x2 + ... xn, data)
- ▶ Save the regression model by some name, e.g., model1 <- $lm(y \sim x1 + x2 + ... xn, data)$
- You can check the regression output by summary (model1)
- ► There is a more elegant way to present results by calling stargazer()

Table 2: The association between education and religious identification

	Dependent variable:		
	relig		
educ	-0.006**		
	(0.003)		
Constant	0.807***		
	(0.039)		
Observations	3,925		
Adjusted R ²	0.001		
Note:	*p<0.1; **p<0.05; ***p<0.01		

- ► There is a more elegant way to present results by calling stargazer()
- stargazer() can present multiple results of regressions

Table 3: The association between education, sex and religious identification

install.packages('	'stargazer")	Depen	dent variable:
			relig
		(1)	(2)
	educ	-0.006**	-0.005**
		(0.003)	(0.003)
	sex		0.064***
			(0.015)
	Constant	0.807***	0.758***
		(0.039)	(0.040)
	Observations	2 025	2 005
	Adjusted R ²	3,925 0.001	3,885 0.006
	Note:	*p<0.1; **p	<0.05; *** p<0.01

► We can also include an interaction term to examine whether the association between education and religious identification depends on gender

- ► We can also include an interaction term to examine whether the association between education and religious identification depends on gender
- ▶ In R, the product of two terms is controlled by the * sign

Table 4: The association between education, sex and religious identification

	De	pendent varial	ole:
		relig	
	(1)	(2)	(3)
educ	-0.006**	-0.005**	-0.001
	(0.003)	(0.003)	(0.004)
sex		0.064***	0.174**
		(0.015)	(0.079)
educ:sex			-0.007
			(0.005)
Constant	0.807***	0.758***	0.697***
	(0.039)	(0.040)	(0.059)
Observations	3,925	3,885	3,885
Adjusted R ²	0.001	0.006	0.006
Note:	*p<0).1; **p<0.05;	***p<0.01

Regression

We can change the dependent variable from religious identification to income

Regression

Table 5: The association between education, sex and income

	Dependent variable:				
	rincome				
	(1)	(2)	(3)		
educ	893.4***	886.5***	737.1***		
	(73.4)	(73.2)	(105.2)		
sex		-1,545.4***	-5,924.5***		
		(390.7)	(2,249.4)		
educ:sex			289.3**		
			(146.4)		
Constant	12,261.1***	13,184.8***	15,455.1***		
	(1,127.3)	(1,148.0)	(1,623.4)		
Observations	2,501	2,501	2,501		
Adjusted R ²	0.1	0.1	0.1		
Note:		*p<0.1; **p<0.05; ***p<0.01			

Plot Fitted Regression Line

- ► We can use the function predict.lm to apply the estimated regression equation to any data
- Here we want to show the predicted values by men and women separately

look at the stored data

head(predict_men)

##		educ	sex	y_hat
##	1	0	0	15455.12
##	2	1	0	16192.20
##	3	2		16929.29
##		3		17666.37
##	_	4		18403.45
##		5		19140 53

▶ We can symmetrically create predicted values for women

```
## create a hypothetical data for women
predict_women <-</pre>
  data.frame(educ=seq(0,20,1),
           sex=rep(1,21)
## make predictions
y hat <-
  predict.lm(model3,
           predict women)
## store the data
predict_women$y_hat <- y_hat</pre>
```

look at the stored data head(predict_women)

```
##
     educ sex
                  y_hat
## 1
               9530.589
## 2
              10557.005
## 3
            1 11583.421
## 4
        3
            1 12609.836
## 5
        4
            1 13636.252
        5
## 6
            1 14662.668
```

- ► We combine these two datasets into one by calling rbind() that represents row-wise binding
- ▶ To make rbind() work, the two datasets have to have same column names

predict <- rbind(predict_men,predict_women)</pre>

► Plot the predicted value by calling ggplot()

- ► We want to adjust
- ▶ 1. Sex from a continuous variable to a categorical variable
- 2. Manually defined colors
- ▶ 3. x-axis and y-axis labels
- ▶ 4. Omit the legend title
- ▶ 5. Change the

Adding more categorical variables

- When we want to add categorical variables that can take multiple values, we use factor()
- ▶ R automatically omits one group as reference

Table 6: The association between education, sex, marital status and religion

	Dependent variable:		
	relig		
educ	-0.007*** (0.003)		
sex	0.061*** (0.014)		
factor(marital)2	0.076*** (0.028)		
factor(marital)3	-0.048**(0.020)		
factor(marital)4	-0.062 (0.048)		
factor(marital)5	$-0.193^{***}(0.018)$		
Constant	0.832*** (0.041)		
Observations	3,878		
Adjusted R ²	0.041		
Note:	*p<0.1; **p<0.05; ***p<0.01		

48 / 50

Plot the Coefficients

- We use function plot_summs in R to create a coefficient plot
- ► Take a look at what plot_summs can do and its flexibilities here

