- 1. Obtain the best fitting functions for the following dataset composed of (xdata, ydata1) and (xdata, ydata2) and their standard deviation. Plot the data points and the fitting functions.
- 2. Given the system below, write the equations and solve for the vertical displacements when

W = 2 Kg

W' = 1.5 Kg

k = 0.3 N/m

k' = 1 N/m

3. Given that

 $L = 3 \, \text{m}$

 $L_1 = 0.5 \, \text{m}$

 $L_2 = 1.5 \, \text{m}$

 $L_3 = 2.5 \text{ m}$

 $q = -9.8 \text{ m/s}^2$

Solve for the three angles, and the three tensions using Newton-Raphson's method and plot the positions of the balls at equilibrium when (a) $M_1 = 1$ Kg, $M_2 = 5$ Kg, (b) $M_1 = 1$ Kg, $M_2 = 0$ Kg.

Hint: You can take as unknowns six angle variables sin θ and cos θ , and use the relations $\sin^2 \theta + \cos^2 \theta = 1$ as additional equations.