ESERCITAZIONE 4

Livello d'architettura dell'insieme di istruzioni Decodifica dell'indirizzo 2

Livello d'architettura dell'insieme di istruzioni (1)

- 1) Si scrivano in notazione polacca inversa le seguenti espressioni
 - a) 6*(4-3)
 - b) (7/3)/((1-4)*2)+1
 - c) (5*2+7)-4/2+1

Livello d'architettura dell'insieme di istruzioni (1) Idea (1)

Notazione Tradizionale

2

+

3

Operando 1 Operatore Operando 2

Notazione Polacca Inversa

2

3

Operando 1 Operando 2 Operatore

Operazioni scritte da sinistra verso destro, considerando le priorità.

Riferimento su Tanembaum: pag 355 e seguenti.

Livello d'architettura dell'insieme di istruzioni (2)

- 2) Indicare il tipo di indirizzamento delle seguenti istruzioni
- CMP R2,R4
- MOV R2,#2

Livello d'architettura dell'insieme di istruzioni (2) Idea (1)

Modalità di indirizzamento

- Indirizzamento immediato
- Indirizzamento diretto
- Indirizzamento a registro
- Indirizzamento a registro indiretto
- Indirizzamento indicizzato
- Indirizzamento indicizzato esteso
- Indirizzamento a stack

Livello d'architettura dell'insieme di istruzioni (3)

3) Scrivere le istruzioni Assembly utili per ottimizzare l'utilizzo della CPU per il calcolo della moltiplicazione tra il numero 19 e un valore n intero e non negativo. Verificare , ponendo n=3, che l'operazione proposta sia corretta.

27/11/2017

Livello d'architettura dell'insieme di istruzioni (3) Idea (1)

Istruzioni Principali

Trasferimenti	
MOV DST, SRC	Sposta SRC in DST
Aritmetica	
ADD DST, SRC	Somma SRC a DST
SUB DST, SRC	Sottrae SRC da DST
MUL SRC	Moltiplica EAX con SRC (no segno)
DIV SRC	Divide EDX:EAX per SRC(no segno)

9

Livello d'architettura dell'insieme di istruzioni (3) Idea (2)

Istruzioni Principali

Scorrimento	
SHL / SHR DST, #	Shift logico verso s/d di SRC di # bit
Booleane	
AND DST, SRC	AND di SRC e DST, res in DST
OR DST, SRC	OR di SRC e DST, res in DST
XOR DST, SRC	OR esclusivo di SRC e DST, res in DST
NOT DST	Rimpiazza DST con complemento a 1.

Livello d'architettura dell'insieme di istruzioni (3) Idea (3)

Riferimento sul libro: paragrafo 5.5.3, pag 367 e seguenti

La moltiplicazione tra un qualsiasi numero n e un numero come 2^k , può essere ottimizzato come uno shift del numero verso sinistra di k cifre.

Esempio:

- $-3 \times 2 = ?$
- \rightarrow 3 = (00000011)₂ (rappresentazione a 8 bit)
- $= 2 = 2^1$
- Shift 1 cifra a sx
- $3 \times 2 = (00000110)_2 = 6$

Decodifica dell'indirizzo

1

Decodifica dell'indirizzo(1)

1) Si supponga di avere un calcolatore monoprocessore con 16-bit di indirizzamento (A0÷A15), una EPROM di 2 KB × 8 byte per il programma, una RAM di 2 KB × 8 byte per i dati, una PIO tipo Intel 8255A con 24 porte e un registro di controllo.

Descrivere il circuito che abilita il chip di I/O in modalità Memory-Mapped I/O, se la PIO è posizionata a partire dall'indirizzo FFFCH della memoria.

Suggerimento: porre la EPROM all'indirizzo 0 dello spazio di indirizzamento e la RAM all'indirizzo 8000H.

13

Decodifica dell'indirizzo(1) Idea (1)

Riferimento sul libro pag 215 e seguenti

- 16 bit di indirizzamento A0÷A15
- EPROM e RAM richiedono uno spazio degli indirizzi di 2KB
- PIO richiede 4 byte
- → indirizzi 00000xxxxxxxxxxxxx sono destinati alla EPROM
- → indirizzi 10000xxxxxxxxxxxx sono destinati alla RAM
- Per ogni componente va attivata (con valore 0) la porta di controllo \overline{CS}