Turno mañana

Comisión:

Apellido y Nombre:

Nota Final:

- 1. (15 pts.) Sea $A \in M_n(\mathbb{K})$, defina autovalor y autovector de A.
- 2. Sea $a \in \mathbb{R}$ y sea P_1 el plano perpendicular al vector $(-1,1,a^2)$ que pasa por (0,1,0). Sea P_2 el plano descripto en forma paramétrica por $P_2 = \{t(1,0,1) + s(0,1,a) + (0,0,a) : t,s \in \mathbb{R}\}$. Sea P_3 el plano dado en forma implícita por $P_3 = \{(x,y,z) \in \mathbb{R}^3 : x + ay + (a-2)z = -1\}$.
 - (a) (10 pts.) Escribir la ecuación implícita del plano P_1 .
 - (b) (10 pts.) Escribir la ecuación implícita del plano P_2 .
 - (c) (5 pts.) Dar **todos** los valores $a \in \mathbb{R}$ para los cuales la intersección $P_1 \cap P_2 \cap P_3$ consiste de infinitos puntos.
- 3. (15 pts.) Calcular el determinante de la siguiente matriz:

- 4. Sea K un cuerpo. Demostrar las siguientes afirmaciones. (Sea prolijo y escriba todo de forma completa)
 - (a) (10 pts.) Si $A, B \in M_{m \times n}(\mathbb{K})$, entonces se cumple que A + B = B + A.
 - (b) (10 pts.) Dar la definición de la matriz identidad I_n de tamaño $n \times n$. Si $A \in M_{m \times n}(\mathbb{K})$ entonces

$$A \cdot I_n = A, \quad I_m \cdot A = A.$$

- (c) (5 pts.) Sea $A \in M_n(\mathbb{Q})$ una matriz cuadrada con coeficientes en el cuerpo de los racionales. Asumamos que existe $B \in M_{n \times 1}(\mathbb{C})$ tal que el sistema AX = B no tiene solución. Demostrar que existe $C \in M_{n \times 1}(\mathbb{Q})$ tal que el sistema AX = C no tiene solución.
- 5. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar su afirmación.
 - (a) (5 pts.) Se cumple que

$$det \left[\begin{array}{ccccccc} 1 & -2 & 0 & 10 & 1 & 1 \\ -1 & 5 & 2 & 0 & -1 & -1 \\ 6 & 1 & 4 & 1 & -1 & 6 \\ 7 & 13 & 0 & 1 & 8 & 7 \\ 7 & 1 & 0 & -3 & 1 & 7 \\ 8 & 1 & 4 & 1 & -1 & 8 \end{array} \right] = -1$$

- (b) (5 pts.) Si \mathbb{K} es un cuerpo y $A, B \in M_n(\mathbb{K})$ son matrices tales que AB no es invertible, entonces A ó B no es invertible.
- (c) (10 pts.) La matrices

$$\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}
\qquad
\begin{bmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

son equivalentes por filas.

1	2(a)	2(b)	2(c)	3	4(a)	4(b)	4(c)	5(a)	5(b)	5(c)