Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics Graph Theory

DPP-06

[NAT]

1. Let G be a simple graph with 15 edges and G be a complement graph of G has 21 edges, then the number of vertices in graph G is ____.

[MSQ]

- **2.** Which of the following is true for a graph with vertex connectivity is 3 and edge connectivity is 4?
 - (a) Removal of any 3 vertes can disconnect the graph.
 - (b) Removal of any 4 edges can disconnect the graph.
 - (c) Removal of some 3 vertices will increase the number of connected components.
 - (d) Removal of some 4 edges will increase the number of connected componets.

[MCQ]

- **3.** What is the maximum value of vertex connectivity and edge connectivity possible with a graph of order 10 and size 16?
 - (a) $1 \le VC, EC \le 3$
 - (b) $1 \le VC$, $EC \le 4$
 - (c) $0 \le VC, EC \le 3$
 - (d) $0 \le VC$, $EC \le 4$

[MSQ]

4. Consider the given connected graph G

Which of the following is not the cut set?

- (a) $\{e_6, e_7, e_9\}$
- (b) $\{e_8, e_9, e_{10}, e_{12}\}$
- (c) $\{e_8, e_9, e_{10}\}$
- (d) $\{e_1, e_2, e_3\}$

[MCQ]

- **5.** Consider the following statements:
 - S_1 : The vertex connectivity of the graph is 1 if and only if graph has cut vertex.
 - S₂: The edge connectivity of the graph is 1 if and only if graph has cut edge.

Which of the following statements is true?

- (a) S_1 only
- (b) S_2 only
- (c) Both S_1 and S_2
- (d) Neither S₁ nor S₂

[NAT]

6. For the graph below, vertex.

Connectivity is _____and edge connectivity is _____.

[NAT]

7. Consider the simple undirected graph G.

Find the number of cut set for the above graph G?

Answer Key

(9) 1.

(c, d) 2.

3. (a)

4. (a, b)

5. (c) 6. (2, 2) 7. (7)

Hints and Solutions

1. (9)

As we know that the maximum number of edges in graph with n vertices is $n_{c_2} = \frac{n(n-1)}{2}$.

Now, the graph G and its complement graph together form a complete graph

So, Complete graph with 9 vertices = 15 + 21

$$\Rightarrow$$
 $n_{c_2} = 36$

$$\Rightarrow n_{c_2} = \frac{n(n-1)}{2}$$

$$\Rightarrow$$
 n² - n = 72

$$\Rightarrow$$
 n² - n - 72 = 0

$$\Rightarrow$$
 n(n-9) + 8 (n-9) = 0

$$\Rightarrow$$
 $(n + 8) (n - 9) = 0$

Hence, the graph G have 9 vertices.

2. (c, d)

Consider the given graph below:

Now, the vertex connectivity and edge connectivity for the above graph is 2.

Option a: False

Removal of vertices $\{V_1, V_2\}$ would not disconnected the graph. Hence, removal of any 2 vertices for the above graph will not disconnected the graph. Thus, option a is False.

Option b: False

Removal of edges $\{e_6, e_7\}$ would not disconnect the graph.

Option c: True

As removal of some vertices $\{V_5, V_6\}$ will disconnect the graph. Thus, it increases the number of components.

Option d: True

As removal of some edges $\{e_9, e_{10}\}$ will disconnect the graph.

3. (a)

Here the number of vertices is given 10 and edges are 16.

Now, first find the minimum degree for the above graph:

$$\delta(G) \leq \left\lfloor \frac{2|E|}{n} \right\rfloor$$

$$\delta(G) \le \left\lfloor \frac{2*16}{10} \right\rfloor$$

$$\delta(G) \leq \lfloor 3.2 \rfloor$$

 \therefore Minimum degree $\delta(G)$ will be 3.

Now, the relation between the VC, EC and minimum degree

$$VC \le EC \le \delta(G)$$

$$\therefore$$
 VC \leq EC \leq 3.

Hence, the possible value of VC and EC will be $1 \le VC$, $EC \le 3$.

4. (a, b)

- I. A cut set is a minimal set of edges whose removal disconnect the graph.
- **II.** No proper subset of cut set should be able to disconnect the graph.

Now, let's understand the options:

Option A: Correct, as removal of edges {e₆, e₇, e₉} will not disconnect the graph. It is not a cut set.

Option B: Correct, as the proper subset of edges {e₈, e₉, e₁₀} will disconnect the graph. Hence, it is also not a cut set. So option c and d are the minimal set of edges whose removal disconnect the graph.

5. (c)

Statement S₁: True

The vertex connectivity of the graph is 1 mean we have a vertex whose removal disconnect the graph. Statement S₂: True

The edge connectivity of the graph is 1 mean a pendant vertex (degree 1) is connect to graph with 1 edge.

Example:

The VC is 1: Removal of V_2 will disconnect the graph.

The EC is also 1: Removal of edge $(V_2 - V_3)$ will disconnect.

6. (2, 2)

I. First find the minimum degree of the given graph $\delta(G)$.

So, $\delta(G) = 3$.

II. Now, the relation between VC, EC and S(G) is as follows:

$$VC \le EC \le S(G)$$

$$\therefore VC \leq EC \leq 3$$

From the above relation, we can conclude that the VC and EC would be at most 3.

III. Now, if we delete the vertices either $\{V_6,V_3\}$ or $\{V_7,V_2\}$. It will disconnect the graph as well as if we delete the edges $\{(V_7-V_6),(V_2-V_3)\}$ it will also disconnect the graph .

Hence, the VC and EC for the given graph is 2.

7. (7)

- **I.** The vertex V_5 is pendant vertex. Hence, e_5 will be one of the cut set.
- II. Now, in the above given we have a cycle of length '4': $\{V_1 V_2 V_3 V_4 V_1\}$

So, if we select any 2 edges from the cycle, it will disconnect the graph.

So, the number of cut set from the cycle

$$= 4C_2 = \frac{4 \times 3}{2} = 6$$

Hence, the total number of cut set is 6 + 1 = 7.

$$(II)$$
 {e1, e2}

(III)
$$\{e2, e3\}$$

$$(IV)$$
 {e3, e4}

$$(V)$$
 {e4, e1}

$$(VI)$$
 {e2, e4}

PW Mobile APP: https://smart.link/7wwosivoicgd4