

Chapter 8: Relational Database Design

Database System Concepts, 6th Ed.

Edited by Radhika Sukapuram

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Equivalence of a Pair of Sets of FDs

- □ F: A->C, AC->D, E->AD, E->H
- ☐ G: A->CD, E->AH

pt = ACD

Equivalence of a Pair of Sets of FDs

- □ P: A->B, AB->C, D-> ACE
- □ Q-> A->BC, D->AE

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - □ For example: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - ▶ E.g.: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Why find the canonical cover?

- When a relation is updated, the DBMS must check that there are no FD violations
- Checking with the canonical cover of F is efficient

Canonical Cover

- \square A canonical cover for F is a set of dependencies F_c such that
 - \Box F logically implies all dependencies in F_{c_i} and
 - Γ Γ logically implies all dependencies in Γ , and
 - \square No functional dependency in F_c contains an extraneous attribute, and
 - \square Each left side of functional dependency in F_c is unique.
- To compute a canonical cover for F: F_c = F

repeat

Use the union rule to replace any dependencies in F_c of the form $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2 Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β /* Note: test for extraneous attributes done using F_c , not F*/ If an extraneous attribute is found, delete it from $\alpha \to \beta$ in F_c until (F_c does not change)

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

Use the union rule to replace any dependencies in F_c of the form $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2 Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β /* Note: test for extraneous attributes done using F_c , not F*/ If an extraneous attribute is found, delete it from $\alpha \to \beta$ in F_c until (F_c does not change)

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

- \square Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- \Box A is extraneous in $AB \rightarrow C$
 - as F logically implies (F-{AB->C}) \cup {B->C} as B \rightarrow C already exists
 - \square Set is now $\{A \rightarrow BC, B \rightarrow C\}$

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - $\square \quad \text{Set is now } \{A \to BC, B \to C, AB \to C\}$
- \Box A is extraneous in $AB \rightarrow C$
 - as F logically implies (F-{AB->C}) u {B->C} as B \rightarrow C already exists
- \Box C is extraneous in $A \rightarrow BC$ as

 - □ Now $A \rightarrow B$ and $B \rightarrow C$ are sufficient to imply $A \rightarrow C$
 - □ Therefore C is dropped from $A \rightarrow BC$
 - Can use attribute closure of A in more complex cases
- ☐ The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Lossless-join Decomposition

For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

In other words, $R_1 \cap R_2$ forms a superkey of R1 or R2

- The above functional dependencies are a sufficient condition for lossless join decomposition
 - the dependencies are a necessary condition only if all constraints are functional dependencies (there are constraints other than FDs)

Example

$$R = (A, B, C)$$
$$F = \{A \rightarrow B, B \rightarrow C\}$$

- Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

Dependency preserving

Example

$$R = (A, B, C)$$

$$F = \{A \rightarrow B, B \rightarrow C\}$$

Can be decomposed in two different ways

$$R_1 = (A, B), R_2 = (B, C)$$

Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

Dependency preserving

$$R_1 = (A, B), R_2 = (A, C)$$

Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB$$

□ Not dependency preserving (cannot check $B \rightarrow C$ without computing $R_1 \bowtie R_2$)

Example cont.

- □ instr_dept (<u>ID,</u> name, salary, <u>dept_name</u>, building, budget)
 - instructor (<u>ID,</u> name, salary, <u>dept_name</u>)
 - department(dept_name, building, budget)

Is this decomposition lossless?

Testing for Dependency Preservation

- To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$ we apply the following test (with attribute closure done with respect to F)
 - result = α repeat

 for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ $result = result \cup t$ until (result does not change)
 - If result contains all attributes in β, then the functional dependency
 α → β is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

Example

$$R = (A, B, C)$$

$$F = \{A \rightarrow B$$

$$B \rightarrow C\}$$

$$Key = \{A\}$$

- R is not in BCNF
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving