

Fizyka summer zimowy 2020/2021

Piątek, 15:00 - 16:30 sala wirtualna – zajęcia online

Sylwia Majchrowska

sylwia.majchrowska@pwr.edu.pl

https://majsylw.netlify.app/teaching/
pokój 213, budynek L-1

Kilka słów o mnie

Sylwia Majchrowska, doktorantka na wydziale Podstawowych Problemów Techniki w dyscyplinie Fizyka.

https://majsylw.netlify.app/

Mapa Kampusu

https://pwr.edu.pl/uczelnia/mapa-kampusu http://knbgis.pwr.edu.pl/kampus/L1.html

Kilka słów o Was

Zasady komunikacji

- Spotkania wirtualne ZOOM
- Korespondencja email (sylwia.majchrowska@pwr.edu.pl)
- Quizy Kahoot, formularze googla
- Czy coś jeszcze?
 - Discord
 - Slack
 - •

Zasady zaliczenia

- Prace domowe 10 x 10 points (25%)
- Kolokwium śródsemestralne 100 points (25%)
- Egzamin 100 points (50%)

Punkty = Pd * 0.25 + K * 0.25 + E * 0.5

Spóźnione prace domowe nie będą zaliczane. Obecność na zajęciach jest obowiązkowa.

Spojrzenie na kalendarz

		PA	ŹDZ	IERN	NIK		LIS	STOP	AD		(RUE	ZIE	Ń		STY	CZEŃ	1		LU	TY	
PN	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25	1 Pn N	8	15	2
WT	29	6	13	20	27	3	10	17	24	1	8	15	22 \$r P	29	5	12	19	26	2	9	16	2
ŚR	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	3	10	17	2
cz	1	8	15 H1	22 H2	29 H3	5 H4	12	19 TEST	26 H5	3 H6	10 H7	17 H8	24	31	7 H9	14 H10E	21 gzam	28 in	4	11	18	2
PT	2	9	16	23	30	6	13 \$r P	20	27	4	11	18	25	1	8	(15)	22	29	5	12	19	2
so	3	10	17	24	31	7	14	21	28	5	12	19	26	2		16	23	30	6	13	20	2
N	4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17	24	31	7	14	21	2
P-PARZYSTY N-MEPARZYSTY	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N

Piątki, 15:00 - 16:30 sala wirtualna Konsultacje: Poniedziałki, 19:30 - 20:30 Środy, 19:30 – 20:30 (? L-1)

Ocena

- 50 59 punkty $\rightarrow 3.0$ satisfactory
- 60 69 punkty $\rightarrow 3.5$ satisfactory+
- 70 79 punkty $\rightarrow 4.0$ good
- 80 89 punkty $\rightarrow 4,5$ good+
- 90 99 punkty $\rightarrow 5.0$ very good
- 100 i więcej \rightarrow 5,5 excellent

Punkty = H * 0.25 + M * 0.25 + E * 0.5

Contact the instructor if expecting problems to take an exam.

Literatura

- Halliday, Resnick & Walker, Fundamentals of Physics
- Feynman Richard
 Feynman Lectures on Physics
- Ramamurti Shankar,
 Fundamentals of Physics I and II
 (https://www.youtube.com/watch?v=KOKnWaLiL8 w&list=PLFE3074A4CB751B2B https://www.youtube.com/watch?v=NK-BxowMlfg&list=PLD07B2225BB40E582)

Jak się przygotować?

- Przygotuj kalkulator, szczególnie na testy.
- Regularnie odwiedzaj naszą stronę po notatki, zadania i rozwiązania.

https://majsylw.netlify.app/teaching/ https://github.com/majsylw/Physics

Regularnie odrabiaj swoją pracę domową.

Czym jest fizyka?

Nauka i inżynieria opierają się na pomiarach i porównaniach. Dlatego potrzebujemy reguł dotyczących mierzenia i porównywania rzeczy, a także potrzebujemy eksperymentów, aby ustalić jednostki dla tych pomiarów i porównań. Jednym z celów fizyki (i inżynierii) jest zaprojektowanie i przeprowadzenie tych eksperymentów.

Co będziemy robić?

- Wprowadzenie Czym jest fizyka?
- Kinematyka
- Dynamika
- Ruch obrotowy
- Ruch harmoniczny
- Pole grawitacyjne
- Fizyka relatywistyczna
- Termodynamika
- Hydrodynamika
- Elektrostatyka
- Prąd elektryczny
- Pole magnetyczne
- Fale elektromagnetyczne
- Optyka
- Kwantowa natura promieniowania
- Fizyka jądrowa

Wykonywanie pomiarów

Odkrywamy fizykę, ucząc się mierzyć wielkości występujące w fizyce. Wśród tych wielkości są długość, czas, masa, temperatura, ciśnienie i prąd elektryczny.

Mierzymy każdą wielkość fizyczną w jej własnych jednostkach, porównując ją ze standardem. Jednostka to niepowtarzalna nazwa, którą przypisujemy miarom tej wielkości - na przykład metr (m) jest jednostką długości. 1 m to odległość jaką pokona światło w próżni w ciągu określonego ułamka sekundy.

Jednostki standardowe układu SI

W 1971 roku XIV Generalna Konferencja Miar i Wag wybrała siedem wielkości jako wielkości bazowe, tworząc w ten sposób podstawę Międzynarodowego Układu Jednostek, w skrócie SI od jego francuskiej nazwy i popularnie zwanego systemem metrycznym.

Wielkość	Nazwa	Symbol			
Czas	sekunda	S			
Długość	metr	m			
masa	kilogram	kg			
Prąd elektryczny	amper	A			
Temperatura	kelvin	K			
Liczność materii	mol	mol			
Światłość	kandela	Cd			

Wiele jednostek pochodnych SI jest definiowanych za pomocą tych jednostek podstawowych. Na przykład jednostka SI określająca moc, zwana Watem (W), jest definiowana poprzez podstawowe jednostki masy, długości i czasu.

1 wat =1 W = 1 kg m^2/s^3

Notacja naukowa

Aby wyrazić bardzo duże i bardzo małe wielkości, z którymi często spotykamy się w fizyce, używamy notacji naukowej, która wykorzystuje potęgę 10.

 $3\,560\,000\,000\,\mathrm{m} = 3.56 \times 10^9\,\mathrm{m} = 3.56\,\mathrm{E}9\,\mathrm{m}$

 $0.000\ 000\ 492\ s = 4.92 \times 10^{-7}\ s = 4.92\ E-7\ s$

Prefiksy

 $2.35 \times 10^9 \text{ s} = 2.35 \text{ nanoseconds} = 2.35 \text{ ns}.$

Factor	Prefix ^a	Symbol
10 ²⁴	yotta-	Y
10^{21}	zetta-	\mathbf{Z}
10^{18}	exa-	E
10^{15}	peta-	P
10^{12}	tera-	T
10^{9}	giga-	G
10^{6}	mega-	M
10^{3}	kilo-	k
10^{2}	hecto-	h
10^{1}	deka-	da
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n
10^{-12}	pico-	P
10^{-15}	femto-	f
10^{-18}	atto-	a
10^{-21}	zepto-	Z
10^{-24}	yocto-	y

Najczęściej używane jednostki pogrubiono.

Cyfry znaczące, a miejsca po przecinku

Załóżmy, że rozwiązujesz problem, w którym każda wartość składa się z dwóch cyfr. Te cyfry nazywane są cyframi znaczącymi i określają liczbę cyfr, których możesz użyć do zgłoszenia ostatecznej odpowiedzi. W przypadku danych podanych w postaci dwóch cyfr znaczących ostateczna odpowiedź powinna zawierać tylko dwie cyfry znaczące. Jednak w zależności od ustawienia trybu kalkulatora może zostać wyświetlonych znacznie więcej cyfr. Te dodatkowe cyfry są bez znaczenia.

Kiedy w zadaniu mamy liczbę 3.15 lub 3.15 × 10³, liczba cyfr znaczących jest zrozumiała, a co z liczbą 3000? Czy mamy tylko jedną cyfrę znaczącą (3 × 10³)? Czy są ich aż cztery (3.000 × 10³)? Zakładamy, że wszystkie zera przy zapisie 3000 są znaczące, ale uważaj bo dla 0.0003 tylko jedna cyfra jest znacząca!

Nie myl cyfr znaczących z miejscami dziesiętnymi. Weź pod uwagę długości 35,6 mm, 3,56 m i 0,00356 m. Wszystkie mają trzy cyfry znaczące, ale mają odpowiednio jedno, dwa i pięć miejsc po przecinku.

Długość

The meter is the length of the path traveled by light in a vacuum during a time interval of 1/299 792 458 of a second.

Measurement	Length in Meters
Distance to the first	
galaxies formed	2×10^{26}
Distance to the	
Andromeda galaxy	2×10^{22}
Distance to the nearby	
star Proxima Centauri	4×10^{16}
Distance to Pluto	6×10^{12}
Radius of Earth	6×10^6
Height of Mt. Everest	9×10^{3}
Thickness of this page	1×10^{-4}
Length of a typical virus	1×10^{-8}
Radius of a hydrogen atom	5×10^{-11}
Radius of a proton	1×10^{-15}

Ten przedział czasu został wybrany tak, aby prędkość światła c była równa dokładnie c = 299 792 458 m/s.

Pomiary prędkości światła stały się niezwykle precyzyjne, więc sensowne było przyjęcie prędkości światła jako określonej wielkości i wykorzystanie jej do ponownego zdefiniowania miernika.

Długość - przykłady

1. Konie mają ścigać się po pewnej łące na dystansie 4,0 furglonów. Jaka jest odległość wyścigu w (a) prętach i (b) łańcuchach?

```
(1 \text{ furglon} = 201.168 \text{ m}, 1 \text{ pręt} = 5.0292 \text{ m}, 1 \text{ łańcuch} = 20.117 \text{ m})
```

2. Antarktyda jest mniej więcej półkolista, o promieniu 2000 km. Średnia grubość jego pokrywy lodowej wynosi 3000 m. Ile centymetrów sześciennych lodu zawiera Antarktyda? (Zignoruj krzywiznę Ziemi.)

Czas

One second is the time taken by 9 192 631 770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

"Kiedy to się stało?" "Ile to trwało?"

Measurement	Γime Interval in Seconds	Measurement T	ime Interval in Seconds
Lifetime of the proton (predicted) Age of the universe Age of the pyramid of Cheop Human life expectancy Length of a day	3×10^{40} 5×10^{17} os 1×10^{11} 2×10^{9} 9×10^{4}	Time between human heartbeats Lifetime of the muon Shortest lab light pulse Lifetime of the most unstable particle The Planck time ^a	8×10^{-1} 2×10^{-6} 1×10^{-16} 1×10^{-23} 1×10^{-43}

^aThis is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Czas - przykłady

- 1. Zamień 2 minuty na sekundy.
- 2. Najszybciej rosnącą rośliną w historii jest Hesperoyucca whipplei, która wyrosła na wysokość 3,7 m w 14 dni. Jakie było tempo jej wzrostu w mikrometrach na sekundę?

Masa

Kilogram definiuje się przyjmując stałą wartość liczbową stałej Plancka h równą $h=6.626~070~15\times 10^{-34}$ wyrażoną w jednostce J * s, co jest równe kg m² s⁻¹, gdzie metr i sekundę zdefiniowano względem c i $\Delta v_{\rm Cs}$.

Wcześniej kilogram był definiowany za pomocą standardowej masy platynowo-irydowej przechowywanej w pobliżu Paryża. W przypadku pomiarów w skali atomowej zwykle stosuje się jednostkę masy atomowej, zdefiniowaną na podstawie izotopu węgla-12.

Międzynarodowy wzorzec masy 1 kg, walec platynowo-irydowy o wysokości i średnicy 3,9 cm.

Object	Mass in Kilograms
Known universe	1×10^{53}
Our galaxy	2×10^{41}
Sun	2×10^{30}
Moon	7×10^{22}
Asteroid Eros	5×10^{15}
Small mountain	1×10^{12}
Ocean liner	7×10^{7}
Elephant	5×10^{3}
Grape	3×10^{-3}
Speck of dust	7×10^{-10}
Penicillin molecule	5×10^{-17}
Uranium atom	4×10^{-25}
Proton	2×10^{-27}
Electron	9×10^{-31}

Masa - przykłady

- 1. Ziemia ma masę 5.98 × 10²⁴ kg. Średnia masa atomów tworzących Ziemię wynosi 40 u. Ile atomów tworzy Ziemię? (1 u = 1.660 538 86 × 10⁻²⁷ kg)
- 2. Diamenty są mierzone w karatach, a 1 karat= 0.2 g. Gęstość diamentu wynosi 3,51 g / cm³. Jaka jest objętość 5-karatowego diamentu?

