RIGHT NODE RAISING AND FLEXIBLE CYCLIC LINEARIZATION

Aidan Malanoski 2021-11-02

Overview

- Question: How do we linearize (assign linear order to) to right node raising (RNR) constructions such as (1)?
- Darius found and Jasmine took the book?
- Claim: RNR constructions can be linearized through an extension of Fox & Pesetsky's (2005) Cyclic Linearization, which I term Flexible Cyclic Linearization

Contents

- I. Theoretical background and assumptions
- 2. The problem: RNR under Cyclic Linearization
- 3. The solution: RNR under Flexible Cyclic Linearization
- 4. Consequences of the proposal
- 5. Conclusion

THEORETICAL BACKGROUND AND ASSUMPTIONS

Assumptions

- "Movement" creates multidominant structures (as opposed to copies)
- In right node raising, the constituent is shared between the conjuncts (without rightward movement)
- I. Darius found and Jasmine took the book? $[CP [RP [TP] Darius found [DP] the book]_i]$ and $[TP] Darius found [DP] the book]_i]]]$

Cyclic Linearization (CL)

- Transfer of syntax to PF happens in phases: CP, vP, maybe DP
- At PF, linearization occurs, establishing ordering relations between the terminal nodes of the structures
- Linearization obeys the property of **Order Preservation**: when a phase is linearized, new orderings are added, but orderings from previous phases are never deleted
 - New orderings must be compatible with previously established orderings

Example: Cyclic linearization

What did Darius find?
 [CP what; did Darius [VP what; Darius find what;]]

what < Darius	what < find
	Darius < find

Table 1: Ordering relations established in the vP phase of (2).

 To avoid unlinearizable orderings (e.g., what < what), Fox & Pesetsky assume that only the most recent Merge of a constituent counts for linearization

Example: Cyclic linearization

What did Darius find? [CP what; did Darius [VP what; Darius find what;]]

what < did	what < Darius	what < find	
	did < Darius	did < find	
		Darius < find	

Table 3: Ordering relations established in the CP phase of (2). Orderings already established in the vP phase are underlined.

Wilder's constraints on coordinate structure

- Wilder (1999, 2008) proposes two constraints on the position of gaps in coordinate structures
 - If a shared constituent surfaces in the final conjunct (as in RNR), then gaps corresponding to the shared constituent at the right edge of the conjuncts at which they appear (**right edge condition**)
 - If a shared constituent surfaces in or to the left of the initial conjunct (as in gapping and across-the-board movement)
- I will demonstrate that the right edge condition is a subcase of Order Preservation

RNR UNDER CYCLIC LINEARIZATION

I. Darius found and Jasmine took the book. $[CP]_{RP} = [CP]_{RP} = [CP]_{RP}$

Darius < found	Darius < the	Darius < book
	found < the	found < book
		the < book

Table 4. Ordering relations established during the linearization of [$_{vP}$ Darius found the book].

Jasmine < took	Jasmine < the	Jasmine < book	
	took < the	took < book	
		the < book	

Table 5. Ordering relations established during the linearization of [vP Jasmine took the book].

I. Darius found and Jasmine took the book. $[CP]_{RP} = [CP]_{RP} = [CP]_{RP}$

Darius < found	Darius < and	Darius < Jasmine	Darius < took	Darius < the	Darius < book
	found < and	found < Jasmine	found < took	found < the	found < book
	the < and	the < Jasmine	the < took	the < the	the < book
	book < and	book < Jasmine	book < took	book < the	book < book
		and < Jasmine	and < took	and < the	and < book
			Jasmine < took	Jasmine < the	Jasmine < book
				took < the	took < book

Table 6. Ordering relationships established during the CP phase of (1), under Cyclic Linearization. Italic orderings are reflexive, bold orderings are symmetric, and crossed-out orderings violate Order Preservation.

- There are number of unlinearizable orderings
- Because there is no way of determining which Merge of the book happened first, there is no principled way to resolve these orderings

RNR UNDER FLEXIBLE CYCLIC LINEARIZATION

Flexible Cyclic Linearization

- Flexible Cyclic Linearization (FCL): Ordering statements may be deleted in the phase in which they arise as necessary to linearize the structure
- Flexible Cyclic Linearization is compatible with Order Preservation, which requires that orderings established <u>in</u> <u>previous phases</u> must be respected
- Where a constituent surfaces is determined by:
 - Order Preservation
 - linearizability (no reflexive, symmetric, or non-transitive orderings)
 - economy? (the less orderings removed, the better)

I. Darius found and Jasmine took the book. $[CP]_{RP} = [CP]_{RP} = [CP]_{RP}$

<u>Darius < Darius</u>	Darius < found	Darius < and	Darius < Jasmine	Darius < took	Darius < the	Darius < book
		found < and	found < Jasmine	found < took	found < the	found < book
		the < and	the < Jasmine	the < took	the < the	the < book
		book < and	book < Jasmine	book < took	book < the	<u>book < book</u>
			and < Jasmine	and < took	and < the	and < book
			<u>Jasmine < Jasmine</u>	Jasmine < took	Jasmine < the	Jasmine < book
					took < the	took < book

Table 7. Ordering relationships established during the CP phase of (I), under Flexible Cyclic Linearization. Italic orderings are reflexive, bold orderings are symmetric, and crossed-out orderings violate Order Preservation. Orderings that will be deleted are underlined and in red.

- The following statements are deleted for violating Order Preservation
 - the < Jasmine
 - the < took
 - book < Jasmine
 - book < took
 - book < the
- The following statements are deleted because they are reflexive
 - Darius < Darius
 - the < the
 - book < book
 - Jasmine < Jasmine

 One of each of the following pairs of symmetric ordering statements must be deleted

```
the < and and < the book < and and < book
```

- If we delete the orderings in the second column (keeping the ones in the first column), then we will be left with non-transitive orderings, such as:
 - "the < and" and "and < took" but "took < the"
 - "book < and" and "and < took" but "took < book"
- Thus, we delete the orderings in the first column, and keep the orderings in the second column

I. Darius found and Jasmine took the book. [CP [RP] = TP] Darius [RP] = TP] Darius [RP] = TP] Asmine [RP] = TP] Asmine took [RP] = TP] The book [RP] =

<u>Darius < Darius</u>	Darius < found	Darius < and	Darius < Jasmine	Darius < took	Darius < the	Darius < book
		found < and	found < Jasmine	found < took	found < the	found < book
		the < and	the < Jasmine	the < took	the < the	the < book
		book < and	book < Jasmine	book < took	book ≤ the	book < book
			and < Jasmine	and < took	and < the	and < book
			<u>Jasmine < Jasmine</u>	Jasmine < took	Jasmine < the	Jasmine < book
					took < the	took < book

Table 7. Ordering relationships established during the CP phase of (I), under Flexible Cyclic Linearization. Italic orderings are reflexive, bold orderings are symmetric, and crossed-out orderings violate Order Preservation. Orderings that will be deleted are underlined and in red.

 After deleting the indicated orderings (underlined and in red), we derive the observed order: Darius found and Jasmine took the book

The right edge condition

- The right edge constraint is nothing but Order Preservation
- In the vP phases, the book is linearized so that it follows the material in the vPs both conjuncts.
- If the book were pronounced in the first conjunct (giving *Darius found the book and Jasmine took), then it would not follow the material in the vP of the second conjunct, violating Order Preservation

CONSEQUENCES OF THE PROPOSAL

Consequence I: RNR gaps need not appear at the right edge

- Before explaining why, we must ask: what is the right edge?
- Syntactic view: Roughly speaking, the right edge of a constituent is the most embedded constituent that it dominates
- PF view (under (F)CL): A string σ is at the right edge of a phase if there are no other strings τ in the phase such that $\sigma < \tau$
- PF (under Wilder's proposal): A gap is at the right edge of a conjunct if, were the conjunct to be uttered as its own sentence, the constituent to which the gap corresponds would be pronounced at the end of that sentence

Consequence I: RNR gaps need not appear at the <u>syntactic</u> right edge

- In right node raising, the shared constituent is linearized in the second conjunct because it is linearized at the end of both vP phases
 - This is a result of PF processes, rather than narrow syntactic ones, so we predict that the right edge condition is a PF constraint
- When there is phase-internal displacement, the syntactic right edge and the PF right edge may not be the same!
 - Such as a case will allow us to determine what sense of "right edge" is relevant in the right edge condition
 - This can be observed when across-the-board (ATB) movement and right node raising co-occur

3. From whom did Fatma buy and Yusuf borrow a car? $[_{CP} [_{PP} \text{ from whom}]_i \text{ did } [_{\&P} [_{TP} \text{ Fatma } [_{vP} [_{PP} \text{ from whom}]_i \text{ Fatma buy } [_{DP} \text{ a car}]_j [_{PP} \text{ from whom}]_i]] and <math>[_{TP} \text{ Yusuf } [_{vP} [_{PP} \text{ from whom}]_i \text{ Yusuf borrow } [_{DP} \text{ a car}]_j [_{PP} \text{ from whom}]_i]]]]]$

from < Fatma	from < buy	from < a	from < car	<u>from < from</u>	<u>from < whom</u>
whom < Fatma	whom < buy	whom < a whom < car		whom < from	<u>whom < whom</u>
	Fatma < buy	Fatma < a	Fatma < car	Fatma < from	Fatma < whom
		buy < a	buy < car	<u>buy < from</u>	buy < whom
			a < car	<u>a < from</u>	<u>a < whom</u>
				car < from	car < whom

Table 8. Ordering relations established during the linearization of $[v_P]$ [from whom], Fatma buy a car [from whom], Italic orderings are reflexive and bold orderings are symmetric. Orderings that will be deleted are underlined and in red.

- The following statements are deleted for being reflexive
 - from < from
 - whom < whom
- One of each of the following pairs of symmetric ordering statements must be deleted

```
from < whom
                                      whom < from
from < Fatma
                                      Fatma < from
from < buy
                                      buy < from
                                      a < from
from < a
from < car
                                      car < from
whom < Fatma
                                      Fatma < whom
whom < buy
                                      buy < whom
whom < a
                                      a < whom
whom < car
                                      car < whom
```

- · We must assume that orderings in second column are deleted
 - Because of recoverability?
 - Because of a parameter?

3. From whom did Fatma buy and Yusuf borrow a car? $[_{CP} [_{PP} \text{ from whom}]_i \text{ did } [_{\&P} [_{TP} \text{ Fatma } [_{vP} [_{PP} \text{ from whom}]_i \text{ Fatma buy } [_{DP} \text{ a car}]_j [_{PP} \text{ from whom}]_i]] and <math>[_{TP} \text{ Yusuf } [_{vP} [_{PP} \text{ from whom}]_i \text{ Yusuf borrow } [_{DP} \text{ a car}]_j [_{PP} \text{ from whom}]_j]]]]$

from < Yusuf	from < borrow	from < a	from < car	<u>from < from</u>	<u>from < whom</u>
whom < Yusuf	whom < borrow	whom < a	whom < car	whom < from	<u>whom < whom</u>
	Yusuf < borrow	Yusuf < a	Yusuf < car	Yusuf < from	Yusuf < whom
		borrow < a	borrow < car	borrow < from	borrow < whom
			a < car	<u>a < from</u>	<u>a < whom</u>
				car < from	car < whom

Table 9. Ordering relations established during the linearization of $[v_P]$ [from whom], Yusuf borrow a car [from whom], Italic orderings are reflexive and bold orderings are symmetric. Orderings that will be deleted are underlined and in red.

- The following statements are deleted for being reflexive
 - from < from
 - whom < whom
- One of each of the following pairs of symmetric ordering statements must be deleted

```
from < whom
                                      whom < from
from < Yusuf
                                      Yusuf < from
from < borrow
                                      borrow < from
from < a
                                      a < from
from < car
                                      car < from
                                      Yusuf < whom
whom < Yusuf
whom < borrow
                                      borrow < whom
whom < a
                                      a < whom
whom < car
                                      car < whom
```

We must assume that orderings in second column are deleted

from < did	from < Fatma	from < buy	from < and	from < Yusuf	from < borrow	from < a	from < car	from < from	from < whom
whom < did	whom < Fatma	whom < buy	whom < and	whom < Yusuf	whom < borrow	whom < a	whom < car	whom < from	whom < whom
	did < Fatma	did < buy	did < and	did < Yusuf	did < borrow	did < a	did < car	did < from	did < whom
	<u>Fatma <</u> <u>Fatma</u>	Fatma < buy	Fatma < and	Fatma < Yusuf	Fatma < borrow	Fatma < a	Fatma < car	Fatma < from	Fatma < whom
			buy < and	buy < Yusuf	buy < borrow	buy < a	buy < car	buy < from	buy ≤ whom
			a < and	a < Yusuf	<u>a < borrow</u>	<u>a < a</u>	a < car	<u>a < from</u>	<u>a < whom</u>
			car < and	<u>car < Yusuf</u>	<u>car</u> < <u>borrow</u>	<u>car < a</u>	<u>car < car</u>	<u>car < from</u>	<u>car</u> < whom
				and < Yusuf	and < borrow	and < a	and < car	and < from	and < whom
				Yusuf < Yusuf	Yusuf < borrow	Yusuf < a	Yusuf < car	Yusuf ≤ from	Yusuf ≤ whom
						borrow < a	borrow < car	borrow < from	borrow < whom

Table 10. Ordering relations established during the linearization of CP phase of (3). Italic orderings are reflexive, bold orderings are symmetric, and crossed-out orderings violate Order Preservation. Orderings that will be deleted are underlined and in red.

• The following statements are deleted for violating Order Preservation

whom < from	a < borrow	car < from
Fatma < from	a < from	car < whom
Fatma < whom	a < whom	Yusuf < from
buy < from	car < Yusuf	Yusuf < whom
buy < whom	car < borrow	borrow < from
a < Yusuf	car < a	borrow < whom

- The following statements are deleted for being reflexive
 - from < from
 - whom < whom
 - Fatma < Fatma
 - a < a
 - car < car
 - Yusuf < Yusuf

 One of each of the following pairs of symmetric ordering statements must be deleted

```
from < did did < from and < from whom < did did < whom whom < and and < whom and < and and < car car < and
```

- If we delete the orderings in the first column (keeping the ones in the second column), then we will be left with non-transitive orderings, such as:
 - "and < from" and "from < Fatma" but "Fatma < and"
 - "and < whom" and "whom < Fatma" but "Fatma < and"
 - "a < and" and "and < Yusuf" but "Yusuf < a"
 - "car < and" and "and < Yusuf" but "Yusuf < car"
- Thus, we delete the orderings in the second column, and keep the orderings in the first column

Refining the right edge condition

- After deleting the indicated orderings, we end up with the observed surface order: From whom did Fatma buy and Yusuf borrow a car
- The RNR-ed constituent [a car] does not appear at the syntactic right edge of the first conjunct (that position is occupied by [from whom]). Thus, as predicted, the right edge condition cannot be a constraint on syntactic representations

Consequence 2: An RNR-ed string need not be a constituent

- Because right node raising is a PF phenomenon rather than a syntactic one, we predict that the shared string need not be a constituent
- This prediction is borne out by sentences such as the following:
- 4. Who(m) did Joao bake and Pedro ice a cake for?

4. Who(m) did João bake and Pedro ice a cake for? $[_{CP}$ who_i did $[_{\&P}$ $[_{TP}$ João $[_{\lorP}$ who_i João bake [a cake]_j [for who_i]_k]] and $[_{TP}$ Pedro $[_{\lorP}$ who_i Pedro ice [a cake]_j [for who_i]_k]]]]

who < João	who < bake	who < a	who < cake	who < for	who < who
	João < bake	João < a	João < cake	João < for	<u>João < who</u>
		bake < a	bake < cake	bake < for	bake < who
			a < cake	a < for	<u>a < who</u>
				cake < for	cake < who
					for < who

Table 11. Ordering relations established during the linearization of $[v_P]$ who; João bake a cake for who; Italic orderings are reflexive and bold orderings are symmetric. Orderings that will be deleted are underlined and in red.

- The following statements are deleted for being reflexive
 - who < who
- One of each of the following pairs of symmetric ordering statements must be deleted

```
who < João</th>João < who</th>who < bake</td>bake < who</td>who < a</td>a < who</td>who < for</td>cake < who</td>for < who</td>
```

· We assume that orderings in second column are deleted

4. Who(m) did João bake and Pedro ice a cake for? [CP] = [CP] =

who < Pedro	who < ice	who < a	who < cake	who < for	who < who	
	Pedro < ice	Pedro < a	Pedro < cake	Pedro < for	Pedro < who	
		ice < a	ice < cake	ice < for	ice < who	
			a < cake	a < for	<u>a < who</u>	
				cake < for	cake < who	
					for < who	

Table 12. Ordering relations established during the linearization of $[v_P]$ who; Pedro ice a cake for who; Italic orderings are reflexive and bold orderings are symmetric. Orderings that will be deleted are underlined and in red.

- The following statements are deleted for being reflexive
 - who < who
- One of each of the following pairs of symmetric ordering statements must be deleted

```
who < Pedro</th>Pedro < who</th>who < ice</td>ice < who</td>who < a</td>a < who</td>who < cake</td>cake < who</td>who < for</td>for < who</td>
```

· We assume that orderings in second column are deleted

		*	*	*							
			bake < and	bake < Pedro	bake < ice	bake < a	bake < cake	bake < for	bake < who		
			<u>a < and</u>	<u>a < Pedro</u>	<u>a < ice</u>	<u>a < a</u>	a < cake	a < for	<u>a < who</u>		
			cake < and	<u>cake < Pedro</u>	cake < ice	<u>cake ≤ a</u>	<u>cake < cake</u>	cake < for	<u>cake < who</u>		
				and < Pedro	and < ice	and < a	and < cake	and < for	and < who		
				Pedro <	Pedro < ice	Pedro < a	Pedro < cake	Pedro < for	Pedro <		
				<u>Pedro</u>					who		
						ice < a	ice < cake	ice < for	<u>ice < who</u>		
								for < for	<u>for < who</u>		
Table 13. Ordering relations established during the linearization of CP phase of (3). Italic orderings are reflexive, bold orderings are symmetric, and crossed-											
out orderings	violate Order Pi	reservation. Ord	lerings that will	be deleted are u	nderlined and ir	red.					

who < ice

did < ice

João < ice

who < a

did < a

João < a

who < cake

did < cake

João < cake

who < for

did < for

João < for

who < who

did < who

<u>João < who</u>

who < did

who < João

did < João

<u>João < João</u>

who < bake

did < bake

João < bake

who < and

did < and

João < and

who <

Pedro

did < Pedro

João < Pedro

 The following statements are deleted for violating Order Preservation

a < Pedro</th>bake < who</th>a < ice</td>a < who</td>cake < Pedro</td>cake < who</td>cake < ice</td>Pedro < who</td>cake < a</td>ice < who</td>João < who</td>for < who</td>

- The following statements are deleted for being reflexive
 - who < who
 - João < João
 - a < a
 - cake < cake
 - Pedro < Pedro
 - for < for

 One of each of the following pairs of symmetric ordering statements must be deleted

```
who < did</th>did < who</th>who < and</td>and < who</td>and < a</td>a < and</td>and < cake</td>cake < and</td>
```

- If we delete the orderings in the first column (keeping the ones in the second column), then we will be left with non-transitive orderings, such as:
 - "and < who" and "who < João" but "João < and"
 - "a < and" and "and < Pedro" but "Pedro < a"
 - "cake < and" and "and < Pedro" but "Pedro < cake"
- Thus, we delete the orderings in the second column, and keep the orderings in the first column

An RNR-ed string need not be a constituent

- After deleting the indicated orderings, we are left with: Who did João bake and Pedro ice a cake for?
- However, a cake for is not a constituent!
- This shows that right node raising doesn't target (constituents)
- Strongly suggests that right node raising does not involve movement (as I've assumed), since movement (Merge) targets constituents

QUESTIONS?

Conclusion

- Flexible Cyclic Linearization...
 - allows us to linearize parallel structures (such as right node raising)
 - allows us to (mostly) avoid stipulating where a string is pronounced
- Questions for future work:
 - How can FCL help us analyze other constructions?
 - How can we resolve "perfectly" symmetric orderings in a principled way?
 - Are there cases in which economy (i.e., number of deletions) affects the outcome of linearization?

Thank you

- Jason Kandybowicz
- Matt Pearson
- Everybody who gave me acceptability judgments

References

- Citko, Barbara. 2005. On the Nature of Merge: Internal Merge, External Merge, and Parallel Merge. Linguistic Inquiry 36(4), 475–496.
- Fox, Danny & Pesetsky, David. 2005. Cyclic Linearization of Syntactic Structure. Theoretical Linguistics 31, 1—45.
- Wilder, Chris. 2008. Shared Constituents and Linearization. In Kyle Johnson (ed.), *Topics in Ellipsis*, 229–258. Cambridge University Press.