Лабораторная работа № 3.13: Магнитное поле Земли Исхаков Камиль Фархатович $2~ {\rm декабр} \ 2024~ {\rm r}.$

1 Основные формулы:

Отношение между направлениями пробного поля и земного магнитного поля:

$$\frac{\sin\alpha}{\sin\phi - \alpha} = \frac{B_h}{B_c}$$

где B_h, B_c — направления пробного поля и земного магнитного поля соответственно; ϕ — угол между B_c и B_h , а α — угол между направлением результирующего поля и земного магнитного поля.

Величина магнитной индукции на оси одного кругового тока:

$$B(x) = \frac{\mu_0 I}{2} \frac{R^2}{(x^2 + R^2)^{3/2}}$$

где I – сила тока, R – средний радиус каждой катушки, μ_0 – магнитная постоянная, x – расстояние от центра контура

Модуль вектора направления пробного поля:

$$B_c = \mu_0 \left(\frac{4}{5}\right)^{3/2} \frac{In}{R}$$

где n — число витков в каждой катушке

2 Расчеты:

Таблица 1: Результаты прямых измерений

$\varphi = \dots^{\circ}$	Ток в катушках, мА				
α_i	I_1	I_2	$\langle I \rangle$	$\frac{\sin(\alpha_i)}{\sin(\varphi - \alpha_i)}$	B_c , мк T л
10°	6.40	7.70	7.05	0.36	4.23
20°	12.50	12.60	12.55	0.54	7.52
30°	15.00	16.00	15.50	0.66	9.29
40°	17.70	18.20	17.95	0.75	10.76
50°	19.40	19.40	19.40	0.82	11.63
60°	21.10	20.40	20.75	0.88	12.44
70°	21.90	22.30	22.10	0.94	13.25
80°	23.20	23.60	23.40	1.00	14.03
90°	25.20	25.10	25.15	1.06	15.08
100°	26.30	26.30	26.30	1.13	15.77
110°	28.90	28.20	28.55	1.21	17.11
120°	30.80	30.30	30.55	1.32	18.31
130°	33.70	33.80	33.75	1.49	20.23
140°	40.90	39.50	40.20	1.79	24.10

Угловой коэффициент а = 13.6500 мкТл, что должно соответствовать величине магнитного поля Земли. Из методического пособия А.Ф. Костко В.А. Самолетов 'ФИЗИКА ЛАБОРАТОР-НЫЕ РАБОТЫ ПО ЭЛЕКТРИЧЕСТВУ И МАГНЕТИЗМУ', можно получить информацию о том, какова величина магнитного поля Земли в Санкт-Петербурге, которая равна 15,4 мкТл. Найдем погрешность углового коэффициента, а также доверительный интервал при $\alpha=0.95$:

Погрешность углового коэффициента: ±0.6239 мкТл

Доверительный интервал для 95.0%: 13.6500 ± 2.1788 мкТл

3 Выводы

Во время выполнения лабораторной работы удалось установить диапазон величины магнитного поля Земли, в котором содержится истинное ее значение. Также была сделана линейная аппроксимация данных, которая хорошо описывает зависимость. Коэффициенты линейной аппроксимации: $a=13.6500,\,b=0.2400$