Algoritmi e Strutture Dati

a.a. 2012/13

Compito del 13/06/2013

Cognome:	Nome:
Matricola:	E mail:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

1. Si vuole ordinare in senso crescente un array di lunghezza *n*. Indicare il tempo di esecuzione dei seguenti algoritmi di ordinamento nei casi specificati nelle due colonne:

	Array già ordinato in senso crescente	Array già ordinato in senso decrescente
Insertion sort		
Quicksort		
Heapsort		

2. Si mostri, utilizzando la definizione, che la relazione O soddisfa la proprietà transitiva, ovvero:

"Se
$$f(n) = O(g(n))$$
 e $g(n) = O(h(n))$, allora $f(n) = O(h(n))$ "

3. Si determini un albero di copertura minimo nel seguente grafo:

Algoritmi e Strutture Dati

a.a. 2012/13

Compito del 13/06/2013

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. Dato un albero binario, i cui nodi contengono chiavi intere, progettare un algoritmo **efficiente** che stabilisca se le chiavi nei nodi soddisfano la proprietà del **max-heap**, e analizzarne la complessità.

Per l'esame da 12 CFU, deve essere fornita una funzione C e si deve dichiarare il tipo Node utilizzato per rappresentare l'albero binario.

Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

2. Dato un array A di n elementi, progettare un algoritmo **efficiente** che costruisca **ricorsivamente** un albero binario **bilanciato** tale che A[i] sia l'(i+1)-esimo campo u.key in ordine di visita posticipata (postordine).

Discutere la complessità al caso pessimo indicando, e risolvendo, la corrispondente relazione di ricorrenza.

3. Si scriva un algoritmo di complessità $O(n^2)$ per determinare una clique massimale all'interno di un grafo non orientato con n vertici. Si discuta la sua complessità e la sua correttezza e si simuli accuratamente la sua esecuzione sul seguente grafo:

L'algoritmo è in grado di determinare anche clique massime? In caso negativo si fornisca un controesempio.

- 4. Si definisca <u>formalmente</u> la relazione di riducibilità polinomiale tra problemi decisionali (\leq_P) e si stabilisca se le seguenti affermazioni sono vere o false:
 - 1) La relazione \leq_P è transitiva
 - 2) La relazione \leq_P è riflessiva
 - 3) Se \leq_P è simmetrica, allora P = NP
 - 4) Se $\mathcal{P} \leq_{P} \mathcal{Q}$ e $\mathcal{Q} \in P$, allora $\mathcal{P} \in P$
 - 5) Se \mathcal{P} , $\mathcal{Q} \in NPC$, allora $\mathcal{P} \leq_{\mathbb{P}} \mathcal{Q}$ se e solo se $\mathcal{Q} \leq_{\mathbb{P}} \mathcal{P}$

Nel primo caso si fornisca una dimostrazione <u>rigorosa</u>, nel secondo un controesempio. (Nota: in caso di discussioni poco formali l'esercizio non verrà valutato pienamente.)