

Electrical Machines

Galina Demidova

Assoc. Prof.

demidova@itmo.ru

Dmitry Lukichev

Assoc. Prof.

lukichev@itmo.ru

Alexander Mamatov

Assist. Prof.

amamatov@itmo.ru

Permanent magnet synchronous motors Laboratory task (10 points max)

Aleksandr Mamatov, PhD,
Assistant Professor, Faculty of Control System and Robotics
amamatov@itmo.ru

Initial data

 n_{rated}

 $L_{s} = L_{d} = L_{a}$ inductance of the stator phase [H]

 R_{s} resistance of the stator phase [Ohm]

 ϕ_f rotor flux [Wb]

 Z_p number of pole pairs

inertia of the motor's shaft and

rated speed [rev/min]

mechanical load [kg * m²]

time of the PMSM startup from zero

to rated speed

Task 1. Building the SPMSM model based on differential equations

1.1 Build the SPMSM model in d/q axes using following equations

$$v_{ds}^{r} = R_{s}i_{ds}^{r} + \frac{d\lambda_{ds}^{r}}{dt} - \omega\lambda_{qs}^{r}$$

$$v_{qs}^{r} = R_{s}i_{qs}^{r} + \frac{d\lambda_{qs}^{r}}{dt} + \omega\lambda_{ds}^{r}$$

$$\lambda_{ds}^{r} = L_{ds}i_{ds}^{r} + \phi_{f}$$

$$\lambda_{qs}^{r} = L_{qs}i_{qs}^{r}$$

$$T_{e} = \frac{p}{2}\frac{3}{2} \left[\phi_{f}i_{qs}^{r} + \left(L_{ds} - L_{qs}\right)i_{ds}^{r}i_{qs}^{r}\right]$$

$$\phi_f = const$$

$$\frac{d\phi_f}{dt} = 0$$

$$\frac{di_{ds}^{r}}{dt} = 0$$

$$\frac{di_{ds}^{r}}{dt} = \frac{v_{ds}^{r}}{L_{ds}} - \frac{R_{s}i_{ds}^{r}}{L_{ds}} + \frac{\omega L_{qs}i_{qs}^{r}}{L_{ds}}$$

$$\frac{di_{qs}^{r}}{dt} = \frac{v_{qs}^{r}}{L_{qs}} - \frac{R_{s}i_{qs}^{r}}{L_{qs}} - \frac{\omega L_{ds}i_{ds}^{r}}{L_{qs}} - \frac{\omega\phi_{f}}{L_{qs}}$$

$$T_{e} = \frac{p}{2} \frac{3}{2} \left[\phi_{f}i_{qs}^{r} + \left(L_{ds} - L_{qs} \right) i_{ds}^{r} i_{qs}^{r} \right]$$

Inputs of PMSM model

$$u_a, u_b, u_c$$
 abc voltages

 $\omega_{\scriptscriptstyle m},\,\theta_{\scriptscriptstyle m}$ velocity and angle of the PMSM shaft

Use magnitude invariance reference frame transformation!

Outputs of PMSM model

$$i_a, i_b, i_c$$
 abc currents

 T_m torque of the PMSM

Laboratory task «Surface mounted permanent magnet synchronous motor modelling»

1.2 Build the mechanical part of the model based on follows equations:

$$J\frac{d\omega_{m}}{dt} = T_{m} - T_{load}$$

$$\frac{d\theta_{m}}{dt} = \omega_{m}$$

Task 2. Build the SPMSM model based on Simscape model of PMSM

m-script with initial data:

```
1     Rs = 2.2; % resistance
2     Ls = 0.012; % inductance
3     zp = 15; % number of pole pairs
4     psi = 0.1815; % flux
5     J = 0.14; %inertia
6     n_rated = 35; % rated speed rev/min
7     t_startup = 10; % sec
```


Open Matlab/Simulink and create new model.

Tune the model configuration.

The model of SPMSM based on differential equations

Block diagram of dq equations

Input Clark & Park transformation:


```
function [xd, xq] = abc2dq(xa, xb, xc, theta)
sin_t = sin(theta);
cos_t = cos(theta);
x2 = [2/3 - (1/3) - (1/3); 0 1/sqrt(3) -1/sqrt(3)] * [xa xb xc]';
x_alpha = x2(1);
x_beta = x2(2);
xd = x_alpha * cos_t + x_beta * sin_t;
xq = -x_alpha * sin_t + x_beta * cos_t;
end
```


Output inverse Park & Clark transformation:


```
function [xa, xb, xc] = dq2abc(xd, xq, theta)
sin_t = sin(theta);
cos_t = cos(theta);
x_alpha = xd * cos_t - xq * sin_t;
x_beta = xd * sin_t + xq * cos_t;
xa = x_alpha;
xb = (-0.5) * x_alpha + sqrt(3) / 2 * x_beta;
xc = (-0.5) * x_alpha - sqrt(3) / 2 * x_beta;
end
```


Mechanical part:

The model of SPMSM based on Simscape model

The model of SPMSM based on Simscape model

The model of SPMSM based on Simscape model

Task 3. Implement the V/f startup strategy for SPMSM

Preliminary drive configuration with voltage control method.

Calculation of the voltage command

3.1 Simplified linear model of the VSI inverter

$$u_a = v_s^* \sin(\theta_e)$$

$$u_b = v_s^* \sin(\theta_e) - \frac{2\pi}{3}$$

$$u_c = v_s^* \sin(\theta_e) + \frac{2\pi}{3}$$

ітмо

3.2 Calculation of the voltage command

$$i_{s} \cos \varphi = \frac{2}{3} \left[i_{as} \cos \theta_{e} + i_{bs} \cos \left(\theta_{e} - \frac{2\pi}{3} \right) - \left(i_{as} + i_{bs} \right) \cos \left(\theta_{e} + \frac{2\pi}{3} \right) \right]$$

$$i_{s} = \sqrt{\frac{1}{3} \left(i_{as} + 2i_{bs} \right)^{2} + \left(i_{as} \right)^{2}}$$

$$v_{s}^{*} = R_{s} i_{s} \cos \varphi + \sqrt{\left(2\pi f_{0} \phi_{f} \right)^{2} + \left(R_{s} i_{s} \cos \varphi \right)^{2} - \left(R_{s} i_{s} \right)^{2}}$$

3.3 Generation of the frequency command

$$f^* = \frac{n_{rated}}{60} z_p$$

$$\varepsilon_{startup} = \frac{f^*}{t_{startup}}$$

$$\begin{cases} \varepsilon(t) = \varepsilon_{startup}, & t \le t_{startup} \\ \varepsilon(t) = 0, & t > t_{startup} \end{cases}$$

$$f_0 = \int \varepsilon(t) dt$$

Matlab implementation

ітмо

Matlab implementation


```
function u_s = fcn(i_a, i_b, theta_e, f_0, Rs, psi)
i_s_cos = 2 / 3 * (i_a * cos(theta_e) + i_a * cos(theta_e - 2 * pi / 3) - (i_a + i_b) * cos(theta_e + 2 * pi / 3));

i_s = sqrt(1 / 3 * (i_a + 2 * i_b)^2 + i_a^2);

u_s = Rs * i_s_cos + sqrt((2 * pi * f_0 * psi)^2 + (Rs * i_s_cos)^2 - (Rs * i_s)^2);

end

11
```

Matlab implementation

OK

Cancel

Help

Apply

3.4 Simulations

Simulate the startup process for both of SPMSM models under no load condition.

Simulation time: 11 sec.

Make sure that both models work the same way.

Plot the follows graphs for both models:

- reference frequency and motor velocity in rev/min
- phase currents i_a, i_b, i_c, A
- reference voltage v_s*, V
- phase voltages v_a, v_b, v_c, V
- dq-voltages, V
- dq-currents, A

Report requirements

Report must contain:

- your name in English, your HDU and ITMO numbers, your photo.
- good resolution screenshots of your models of SPMSM
- good resolution screenshots of your startup scheme
- good resolution figures from simulations (white background, legend, unit of measurements).
- listing of your m-file with calculations.
- conclusion.

Reports should be uploaded to the folder in DingTalk chat.

[HDU-AT3-24] Electrical Machines/Student_works/PMSM_Reports

Report requirements

Deadline for report: 2024/10/22

Penalties:

- inaccurate figures: 2 points
- skipping the deadline: 4 points
- no conclusions or inadequate conclusion: 2 points

IN THE CASE OF PLAGIARISM IN ANY PART OF THE LAB, ALL PARTS OF DC LAB WILL BE EVALUATED BY ZERO POINTS. THE FACT OF PLAGIARISM WILL BE REPORTED TO THE FACULTY.

Thank you!

amamatov@itmo.ru