Ex 1 Calculer
$$(1+i)^{25}$$
 et $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$

- **Ex 2** Simplifier $(1+i\sqrt{3})^k (1-i\sqrt{3})^k$, pour $k \in \mathbb{Z}$.
- Ex 3 Discuter selon les valeurs du réel x l'expression de l'argument principal de z = 1 + ix.
- **Ex 4** Etudier la suite (z_n) définie par récurrence par $z_0 \in \mathbb{C}$ et $\forall n \in \mathbb{N}, \ z_{n+1} = \frac{1}{5} (3z_n + 2\overline{z_n})$.
- **Ex 5** Soit $\theta \in \mathbb{R}$. Calculer le module et un argument de $Z = \frac{1 + (\cos \theta + i \sin \theta)^3}{(\cos \theta + i \sin \theta)^2}$.
- **Ex 6** Calculer le module et un argument de $e^{i\alpha} + e^{i\beta}$ $((\alpha, \beta) \in \mathbb{R}^2)$
- **Ex 7** Soient a et b deux complexes de module 1 tels que $ab \neq -1$: montrer que $Z = \frac{a+b}{1+ab} \in \mathbb{R}$
- **Ex 8** Soit z un nombre complexe et $Z = \frac{1+zi}{1-zi}$. Montrer que $|Z| = 1 \iff z \in \mathbb{R}$
- **Ex 9** Soient a et b deux réels, z = a + ib, A = |z|, $\varphi = \text{Arg } z$ et $f(\theta) = a \cos \theta + b \sin \theta$.

Calculer Re $(\bar{z}e^{i\theta})$ et en déduire que $\forall \theta \in \mathbb{R}, f(\theta) = A\cos(\theta - \varphi)$.

Ex 10 Montrer que $\forall (z, z') \in \mathbb{C}^2$, $|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$.

Interpréter géométriquement ce résultat.

Ex 11 Soient z, z', u des nombres complexes vérifiant $zz' = u^2$, et ζ, ζ' des racines carrées de z et z'. Montrer que

$$|z| + |z'| = \left| \frac{z + z'}{2} + u \right| + \left| \frac{z + z'}{2} - u \right|$$

- **Ex 12** Soit α un réel de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $z = \frac{1}{1 + i \tan \alpha}$.
 - a) Calculer le module et l'argument de z.
 - b) Exprimer Re z et Im z en fonction de $\theta = -2\alpha$.
 - c) En déduire que lorsque α varie, le point M d'affixe z décrit un cercle privé d'un point que l'on précisera.
 - d) Donner une construction simple du point M_0 d'affixe $z_0 = \frac{1}{1 + i \tan \frac{7\pi}{n}}$

 $\textbf{Ex 13} \quad \text{Soit } \theta \in \mathbb{R}. \text{ R\'esoudre le syst\`eme } (S) \left\{ \begin{array}{l} \cos \theta + \cos \left(\theta + x\right) + \cos \left(\theta + y\right) = 0 \\ \sin \theta + \sin \left(\theta + x\right) + \sin \left(\theta + y\right) = 0 \end{array} \right. .$ On commencera par montrer à l'aide de l'exponentielle complexe, que $(S) \Longleftrightarrow \left\{ \begin{array}{l} 1 + \cos \left(x\right) + \cos \left(y\right) = 0 \\ \sin \left(x\right) + \sin \left(y\right) = 0 \end{array} \right.$

Ex 14 Résoudre dans C les équations

a)
$$z^2 - (2+i)z - 1 + 7i = 0$$
 b) $z^4 - (5-14i)z^2 - 2(5i+12) = 0$ c) $z^2 + (1-i\sqrt{3})z - i\sqrt{3} = 0$

- **Ex 15** Pour tout réel t, on considère l'équation complexe (E_t) $z^2 2(1 + 2\cos t + 2i\sin t)z 3 = 0$
 - a) Montrer que le discriminant de (E_t) s'écrit $\Delta_t = 16u(t)e^{it}$, où u(t) est un réel à déterminer.
 - b) Discuter suivant les valeurs de t la forme des solutions de (E_t)
- **Ex 16** Trouver une solution réelle de l'équation (E): $iz^3 + (2i-1)z^2 (i+4)z + 3(2i-1) = 0$, et en déduire ses solutions complexes.
- **Ex 17** Calculer $S_n = \sum_{k=0}^n \cos(2kx)$ et $T_n = \sum_{k=0}^{n-1} \cos(2k+1) x$. En déduire $S = \cos^2 \frac{\pi}{14} + \cos^2 \frac{3\pi}{14} + \cos^2 \frac{5\pi}{14}$.

PCSI 1 Thiers 2019/2020 **Ex 18** Soit $x \neq \frac{\pi}{2}$ $[\pi]$. Montrer que si $x \neq 0$ $[\pi]$, alors $\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^k x} = \frac{\sin(n+1)x}{\cos^n x \sin x}$.

On pourra exploiter la relation $\cos(kx) = \operatorname{Re} e^{ikx}$. Qu'en est-il si x = 0 $[\pi]$?

- **Ex 19** On considère un complexe z tel que $|z| \le 1$, $(u_n)_{n \in \mathbb{N}}$ la suite géométrique de premier terme 1 et de raison $\frac{1+z}{2}$ et S_n la somme des n+1 premiers termes de (u_n) , soit $S_n = \sum_{k=0}^n u_k$.
 - a) On suppose |z| < 1. Montrer que (u_n) converge vers 0, puis que S_n converge vers un complexe S à préciser
 - b) On suppose |z|=1 et on pose $z=e^{i\theta}$, avec $\theta\in]-\pi,0[\,\cup\,]0,\pi[\,.$ Montrer que S_n converge vers un complexe S à préciser, et calculer $\mathrm{Re}\,S$ et $\mathrm{Im}\,S$ en fonction de θ .
- $\textbf{Ex 20} \quad \text{On considère la suite } (z_n)_{n \in \mathbb{N}} \text{ de nombres complexes définie par } \left\{ \begin{array}{l} z_0 = i \\ \forall n \in \mathbb{N}, \ z_{n+1} = \frac{1}{2} \left(z_n + |z_n| \right) \end{array} \right.$ Pour tout entier n, on pose : $z_n = \rho_n e^{i\theta_n}$, avec $\rho_n \in \mathbb{R}_+^*$ et $\theta_n \in \left] -\pi, \pi \right]$
 - a) Sans calculer leurs affixes, représenter dans un repère orthonormal les points A_0, A_1, A_2, A_3 d'affixes respectives z_0, z_1, z_2, z_3 (remarquer que A_{n+1} s'interprète comme un milieu).
 - b) Montrer que $\forall n \in \mathbb{N}, \ z_n \notin \mathbb{R}$.
 - c) Démontrer que $\forall n \in \mathbb{N}, \; \left\{ \begin{array}{l} \rho_{n+1} = \rho_n . \cos \frac{\theta_n}{2} \\ \theta_{n+1} = \frac{\theta_n}{2} \end{array} \right.$. En déduire l'expression de θ_n en fonction de n.
 - $\mathrm{d)}\ \ \mathrm{Montrer}\ \mathrm{que}\ \forall n\in\mathbb{N}^*,\quad \rho_n=\prod_{k=1}^n\cos\frac{\pi}{2^{k+1}}, \mathrm{puis}\quad \rho_n=\frac{1}{2^n\sin\frac{\pi}{2^{n+1}}}.$
 - e) Donner le terme général de la suite (z_n) en fonction de n, puis sa limite.
- **Ex 21** Soit $z \in \mathbb{C} \{-1, 0, 1\}$; on considère les points $A(1), B(-1), M(z), M'\left(\frac{1}{z}\right)$, et I le milieu de [MM']. Démontrer que (MM') est bissectrice de l'angle $(\overrightarrow{IA}, \overrightarrow{IB})$.
- **Ex 22** Soient A(a), B(b), C(c) trois points du plan : on dit que ABC est équilatéral direct lorsque $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3}$.
 - a) Montrer que ABC est équilatéral direct si et seulement si $a + bj + cj^2 = 0$.
 - b) Montrer que ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ca$.