EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa «antigo»

Duração da prova: 120 minutos

Prova Modelo

2001

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

135.V1/1 v.s.f.f.

A Prova é constituída por dois Grupos, I e II.

- O Grupo I inclui nove questões de escolha múltipla.
- O Grupo II inclui quatro questões de resposta aberta, subdivididas em alíneas, num total de dez.

Grupo I

• As nove questões deste primeiro grupo são de escolha múltipla.

• Para cada uma delas são indicadas quatro alternativas, das quais só uma está correcta.

• Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para responder a cada questão.

• Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

• Não apresente cálculos.

1. Seja f uma função polinomial de terceiro grau, cujo gráfico se encontra parcialmente representado na figura.

Quantas são as soluções da equação f(x) = 2 ?

(A) uma

(B) duas

(C) três

(D) quatro

2. Considere a função h definida em \mathbb{R} por $h(x) = \operatorname{sen} x$

Qual das seguintes equações pode definir uma recta tangente ao gráfico de $h\,$?

(A) $y = 2x + \pi$

(B) y = -2

(C) $y = \sqrt{2} x - 9$

(D) y = x

3. O coeficiente de ampliação $\,A\,$ de uma certa lupa é dado, em função da distância d (em decímetros) da lupa ao objecto, por

$$A(d) = \frac{5}{5-d}$$

Indique a que distância do objecto tem de estar a lupa para que o coeficiente de ampliação seja igual a 5.

- (A) 2 dm (B) 4 dm (C) 6 dm (D) 8 dm
- 4. Sejam f e g duas funções de domínio \mathbb{R} .

Sabe-se que:

- ullet o gráfico de $\,g\,$ é uma recta, que designamos por $\,s\,$
- $\bullet \lim_{x \to +\infty} (f(x) g(x)) = 0$

Qual das afirmações seguintes é necessariamente verdadeira?

- (A) A recta s é tangente ao gráfico de f
- **(B)** A recta s é secante ao gráfico de f
- **(C)** A recta s não intersecta o gráfico de f
- **(D)** A recta s é uma assimptota do gráfico de f
- 5. Na figura junta estão representados uma elipse e um paralelogramo [ABCD].

Os vértices A e C são os focos da elipse.

Os vértices B e D são pontos da elipse.

O perímetro do paralelogramo é 30.

Qual é o comprimento do eixo maior da elipse?

- **(A)** 12
- **(B)** 15
- **(C)** 18
- **(D)** 20

Considere um vector \overrightarrow{AB} tal que $\left\|\overrightarrow{AB}\right\|=1$ 6.

Qual é o valor do produto escalar \overrightarrow{AB} . \overrightarrow{BA} ?

- **(A)** 1
- **(B)** -1 **(C)** 0
- **(D)** 2
- 7. Num referencial o.n. Oxyz, considere os planos definidos pelas equações z=1 e z = 5.

Qual das equações seguintes define uma superfície esférica tangente aos dois planos?

- **(A)** $x^2 + y^2 + (z-3)^2 = 25$
- **(B)** $x^2 + y^2 + (z-4)^2 = 25$
- (C) $x^2 + y^2 + (z-3)^2 = 4$
- **(D)** $x^2 + y^2 + (z-4)^2 = 4$
- 8. Três rapazes e duas raparigas vão dar um passeio de automóvel.

Qualquer um dos cinco jovens pode conduzir.

De quantas maneiras podem ocupar os cinco lugares, dois à frente e três atrás, de modo a que o condutor seja uma rapariga e a seu lado viaje um rapaz?

- **(A)** 36
- **(B)** 120
- **(C)** 12
- **(D)** 72
- 9. Lança-se duas vezes um dado equilibrado, com as faces numeradas de 1 a 6.

Qual é a probabilidade de sair face 6 em exactamente um dos dois lançamentos?

- (A) $\frac{1}{36}$ (B) $\frac{5}{36}$ (C) $\frac{1}{18}$ (D) $\frac{5}{18}$

Grupo II

Nas questões do segundo grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 2x - \cos x$

Recorrendo exclusivamente a processos analíticos, ou seja, **sem** utilizar a calculadora, resolva as alíneas seguintes:

- **1.1.** Recorrendo ao Teorema de Bolzano, mostre que a função f tem, pelo menos, um zero, no intervalo $]~0,\pi[$.
- **1.2.** Seja f' a função derivada de f. Mostre que f'(x)>0, $\forall\,x\in\mathbb{R}$, e justifique que o zero de f, cuja existência é garantida pelo enunciado da alínea anterior, é o único zero desta função.
- **1.3.** A recta de equação $y=2x-\frac{1}{2}$ intersecta o gráfico de f em infinitos pontos. A abcissa de um desses pontos pertence ao intervalo $[\,3\pi,4\pi]$. Determine-a.
- **2.** A pressão atmosférica de cada local da Terra depende da altitude a que este se encontra. Admita que a pressão atmosférica P (medida em quilopascal) é dada, em função da altitude h (em **quilómetros**), por

$$P(h) = 101 e^{-0.12 h}$$

 $\textbf{2.1.} \quad \text{A montanha mais alta de Portugal \'e o} \\ \text{Pico, na ilha do Pico - Açores.} \\ \text{A altitude do cume do Pico \'e} \quad 2350 \\ \text{metros.}$

Qual é o valor da pressão atmosférica, nesse local? Apresente o resultado em quilopascal, arredondado às unidades.

2.2. Determine x tal que, para qualquer h, $P(h+x)=\frac{1}{2}\,P(h)$. Apresente o resultado arredondado às décimas.

Interprete o valor obtido, no contexto desta igualdade.

- **3.** Um baralho de cartas completo é constituído por cinquenta e duas cartas, repartidas por quatro naipes de treze cartas cada: espadas, copas, ouros e paus.
 - **3.1.** Num certo jogo de cartas, utiliza-se um baralho completo e dão-se treze cartas a cada jogador.

Imagine que está a participar nesse jogo.

Qual é a probabilidade de, nas treze cartas que vai receber, haver exactamente seis cartas do naipe de espadas? Apresente o resultado na forma de percentagem, arredondado às unidades.

3.2. De um baralho completo extraem-se, sucessivamente e sem reposição, duas cartas.

Qual é a probabilidade de pelo menos uma das cartas extraídas ser do naipe de espadas? Apresente o resultado na forma de fracção irredutível.

4. Na figura abaixo está representada, em referencial o.n. Oxyz, uma pirâmide quadrangular regular.

O vértice $\,O\,$ é a origem do referencial

O vértice $\,P\,$ pertence ao eixo $\,Oz\,$

O vértice $\,R\,$ pertence ao plano $\,xOy\,$

O vértice V tem coordenadas (-2,11,5)

Uma equação vectorial da recta que contém a altura da pirâmide é

$$(x, y, z) = (7, -1, 5) + k(6, -8, 0), k \in \mathbb{R}$$

- **4.1.** Mostre que a base da pirâmide está contida no plano de equação 3x-4y=0
- **4.2.** Justifique que o centro da base da pirâmide é o ponto de coordenadas (4,3,5).
- **4.3.** Determine o volume da pirâmide.

Volume da pirâmide = $\frac{1}{3} \times$ Área da base \times Altura

FIM

135.V1/7 v.s.f.f.

COTAÇÕES

Grupo I	81
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	- 3
Nota: Um total negativo neste grupo vale 0 (zero) pontos.	
Grupo II	119
1.1. 1.2. 13 1.3. 13	37
2.	24
3.1	22
4.	36
TOTAL	200