Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2 по дисциплине "Информатика" Синтез помехоустойчивого кода Вариант 50

Выполнил:

Шулай Роман Юрьевич Р3115

Проверил:

Миняев Илья Андреевич

Оглавление

Задание	
Основные этапы вычисления	
1*	
2*	
3*	
4*	
5*	
6*	
7*	
Дополнительное задание №1	
Вывод	
Список литературы	

Задание

- 1. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 2. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчете в виде изображения.
- Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие.
 Подробно прокомментировать и записать правильное сообщение.
- 4. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 15-символьного кода.
- 5. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчете в виде изображения.
- Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие.
 Подробно прокомментировать и записать правильное сообщение.
- 7. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Основные этапы вычисления

1*

Для варианта 50 набор из 4 полученных сообщений следующий: 35, 67, 99, 19

Рисунок 1 Схема декодирования классического кода Хэмминга (7,4)

3*

а) Построим таблицу для сообщения 35:

N	1	2	3	4	5	6	7
Сообщение	0	1	1	1	0	1	0
2 ^x	r1	r2	i1	r3	i2	i3	i4
1	Х		Х		Х		Х
2		Х	Х			Х	х
4				Х	Х	Х	х

Проверочный бит r1 должен быть равен i1⊕i2⊕i4=1, но равен 0

Проверочный бит r2 должен быть равен i1⊕i3⊕i4=0, но равен 1

Проверочный бит г3 должен быть равен і2⊕і3⊕і4=1 и равен 1

Номера битов r1, r2 - 1 и 2 соответственно, значит ошибка в 1+2=3 бите по счету, а это i1 Верное сообщение: 0101010

б) Построим таблицу для сообщения 67:

N	1	2	3	4	5	6	7
Сообщение	1	1	0	0	1	0	0
2×	r1	r2	i1	r3	i2	i3	i4
1	Х		Х		Х		Х
2		Х	Х			Х	Х
4				Х	Х	Х	Х

Проверочный бит r1 должен быть равен i1⊕i2⊕i4=1 и равен 1

Проверочный бит г2 должен быть равен і1⊕і3⊕і4=0, но равен 1

Проверочный бит г3 должен быть равен і2⊕і3⊕і4=1, но равен 0

Номер битов r2, r3 - 2 и 4 соответственно, значит ошибка в 2+4=6 бите по счету, а это i3

Верное сообщение: 11001<mark>1</mark>0

в) Построим таблицу для сообщения 99:

N	1	2	3	4	5	6	7
Сообщение	0	0	0	0	1	1	1
2 ^x	r1	r2	i1	r3	i2	i3	i4
1	Х		Х		Х		Х
2		Х	Х			Х	Х
4				Х	Х	Х	Х

Проверочный бит r1 должен быть равен i1⊕i2⊕i4=0 и равен 0

Проверочный бит г2 должен быть равен і1⊕і3⊕і4=0 и равен 0

Проверочный бит г3 должен быть равен і2⊕і3⊕і4=1, но равен 0

Номер бита r3 - 4, значит ошибка в 4 бите - бите r3

Верное сообщение: 000<mark>1</mark>111

г) Построим таблицу для сообщения 19:

N	1	2	3	4	5	6	7
Сообщение	0	1	0	1	0	0	1
2 ^x	r1	r2	i1	r3	i2	i3	i4
1	Х		Х		Х		Х
2		Х	Х			Х	Х
4				Х	Х	Х	Х

Проверочный бит r1 должен быть равен i1⊕i2⊕i4=1, но равен 0

Проверочный бит r2 должен быть равен i1⊕i3⊕i4=1 и равен 1

Проверочный бит г3 должен быть равен і2⊕і3⊕і4=1 и равен 1

Номер бита r1 - 1, значит ошибка в 1 бите - бите r1

Верное сообщение: **1**101001

4*

Для варианта 50 получено сообщение 50

Рисунок 2 Схема декодирования классического кода Хэмминга (15,11)

6*
Построим таблицу для сообщения 50:

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Сообщение	0	1	0	0	0	1	1	0	0	1	0	0	0	1	1
2 ^x	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
1	х		х		х		х		х		х		х		х
2		х	х			х	х			х	х			х	х
4				х	х	х	х					Х	х	х	х
8								х	х	х	х	х	х	х	х

Проверочный бит r1 должен быть равен i1@i2@i4@i5@i7@i9@i11=0 и равен 0 Проверочный бит r2 должен быть равен i1@i3@i4@i6@i7@i10@i11=1 и равен 1 Проверочный бит r3 должен быть равен i2@i3@i4@i8@i9@i10@i11=0 и равен 0 Проверочный бит r4 должен быть равен i5@i6@i7@i8@i9@i10@i11=1, но равен 0 Номер бита r4 - 8, значит ошибка в 8 бите - бите r4 Верное сообщение: 010001110100011

7*

i = (35+67+99+19+50)*4 = 1080 - информационных битов в передаваемом сообщении. Пусть количество проверочных разрядов - г. Тогда верно неравенство:

 $2^r \ge r + i + 1 \Leftrightarrow 2^r \ge r + 1081$, отсюда наименьшее целое r = 11.

Минимальное число проверочных разрядов: 11

Коэффициент избыточности: $\frac{r}{i+r} = \frac{11}{1091} \approx 0$, 0100825

Дополнительное задание №1

Сделать себе учётную запись на https://gitlab.se.ifmo.ru/. Создал учетную запись https://gitlab.se.ifmo.ru/dxunvrs.

Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Напишем программу на языке программирования Python

```
def main():
           message = input("Введите сообщение(двоичное число длины 7, для выхода quit): ")
            if not isMessage(message):
               print("Ошибка ввода")
        except KeyboardInterrupt:
           print("Ошибка ввода")
        except EOFError:
           print("Ошибка ввода")
    if not(symbols == set("1") or symbols == set("0") or symbols == set("01")):
    if len(message) != 7:
    return True
    for i in range(0,len(message)):
    for i in range(0,len(checkBits)):
```

Рисунок 3 Листинг программы на языке Python

```
# выводим все что нашли
if errorBit == 0:
    return "Ошибок нет, введено верное сообщение: " + "".join([str(x) for x in infBits]) + f"(полное сообщение: {message})"

correctMessage [errorBit-1] = (correctMessage[errorBit-1] + 1) % 2

correctMessage = "".join([str(x) for x in correctMessage])

if errorBit in [1,2,4]:
    return "Ошибка в вроверочном бите, информация не пострадала: " + "".join([str(x) for x in infBits]) + f"(полное сообщение: {correctMessage})"

else:
    infBitsMessage = f"{correctMessage[2]}{correctMessage[4]}{correctMessage[5]}{correctMessage[6]}"

if errorBit == 3:
    return f"Ошибка в {errorBit-2} информационном бите, верное сообщение: {infBitsMessage}" + f"(полное сообщение: {correctMessage})"

return f"Ошибка в {errorBit-3} информационном бите, верное сообщение: {infBitsMessage}" + f"(полное сообщение: {correctMessage})"

if __name__ == "__main__":
    main()

and

if __name__ == "__main__":
    main()
```

Функция isMessage проверяет корректность ввода, основная логика реализована в функции findError. Сначала программа разделяет сообщение на два массива с информационными битами и проверочными, затем считает суммы информационных битов и сравнивает с проверочными, если значения совпали, то в этих битах ошибок нет, если нет то программа запоминает номер бита с ошибкой. После цикла в переменной errorBit содержится номер ошибочного бита. После этого программа выводит место с ошибкой и верное сообщение.

Вывод

В ходе выполнения лабораторной работы я научился работать с кодами Хэмминга (7;4) и (15;11), а также определять биты информации, переданные ошибочно, и, таким образом, исправлять поврежденные в процессе передачи сообщения.

Список литературы

- 1. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. указания / сост. Д. В. Пьянзин. Саранск : Изд-во Мордов. ун-та, 2009. 16 с.
- 2. Коды и устройства помехоустойчивого кодирования информации / сост. Королев A.И. – Мн.: , 2002. – c.286