

## Réduction de modèle

Vincent Vadez

Dorea Technology

vincent.vadez@dorea.fr



Qu'évoque la réduction de modèle pour vous?



 Vous en avez déjà tous fait, peut-être sans le savoir!
 (SVD projet MAM3, interpolation, changement de base réduite d'un système linéaire, développement de Taylor...)

original, k = 512100 200 300 Compressed Image, k = 64100









Compressed Image, k = 128



#### Contexte



• Réduire la <u>complexité</u> de calcul des modèles mathématiques dans les simulations numériques

 Réduction de la <u>dimension d'espace d'état</u> ou des <u>degrés de liberté</u> associés au modèle, une approximation du modèle d'origine est calculée, communément appelée modèle d'ordre réduit



#### Contexte

 Modèles réduits: utiles quand impossible de mener des simulations numériques avec modèle complet

 Causes: limitations des ressources de calcul ou aux exigences du paramètre de simulation (temps réel, requêtes multiples)

#### De multiples applications



• Premiers travaux : Lumley, J.L. (1967). The Structure of Inhomogeneous Turbulence



Fig. 2. F-16 aeroelastic model. (a) Detailed FE structural model and (b) fluid surface grid.

Full order model of an F16 fighter-aircraft with over 2.1 million degrees of freedom, reduced to a model of just 90 degrees of freedom (*Lieu, T.; Farhat, C.; Lesoinne, M. (2006).* "Reduced-order fluid/structure modeling of a complete aircraft configuration". Computer Methods in Applied Mechanics and Engineering. 195 (41–43): 5730–5742.)

COURS POLYTECH - DOREA - 2024 - Réf: DOR/REP/2024/007

#### De multiples applications





Réduction de modèle géométrique d'un maillage surfacique

### De multiples applications





**SOFA Inria Lille** 

#### Contraintes



Modèle réduit → erreur d'approximation

 Besoin de conserver propriétés et caractéristiques du modèle complet

 Modélisation sur ordre réduit se doit d'être efficace et robuste au niveau informatique

#### A retenir



Modèle initial trop volumineux de par le nombre de pas de temps, le nombre de degrés de liberté et/ou le nombre de paramètres. Ceci entraîne des limitations en termes de moyens matériels (CPU, mémoire), humains (préparation et analyse des résultats) et financiers.

#### Motivations



- Maillage d'objets (triangles ou tétraèdres) indispensable pour calculs physiques via éléments finis
- Inconvénients: très chronophage (plus le nombre d'éléments du maillage augmente, plus le calcul physique est fiable, mais plus le temps de calcul augmente).
- En laboratoire: précision au détriment du temps de calcul

En entreprise: compromis entre temps de calcul et precision souhaitée (modèle d'origine rarement acceptable niveau temps de calculs...)







#### Exemple: calcul radiatif d'un satellite

 Problème quadratique en fonction du nombre d'éléments de maillage surface n (O(n²)). Une pièce (~1% du sat) peut avoir plusieurs millions de faces. (considerer que chaque face voit potentiellement les n-1 autres).



$$\dot{Q}_{1 o 2} = \sigma A_1 F_{1 o 2} (T_1^4 - T_2^4)$$



Calculs infaisables pour du temps réel → nécessité de réduction



## Possibilités d'ajustement

• Simplifier/approximer le modèle sans trop le degrader (pour ne pas avoir des modèles totalement différents)

Autre solution: découper le modèle en sous-systèmes

## Résumé du principe







#### Décomposition en sous-systèmes

 Découpage du système en noeuds (isovaleurs ou isoquantités) en fonction de la géométrie du modèle et de l'environnement (mais requiert l'expertise métier, jusqu'à l'apprentissage via machine learning?)



#### Décomposition en sous-systèmes

• Intégration des sous-modèles avec plusieurs modes dans un modèle complexe (très utilisé en aéronautique, aérospatial, aérodynamique, électronique intégrée, biologie, automobile...)

 Remarque: facilité d'intégration du modèle réduit dans des plateformes de simulation de systèmes (Simulink, Abaqus, Modelica, AMEsim etc) -> très utilisées pour la conception de systèmes complexes







### Jumeaux numériques (digital twins)

• Représentation numérique de l'objet permettant d'effectuer des simulations afin d'anticiper le comportement de l'objet <u>en temps réel</u>.

• Exemples d'application: satellite, moteurs d'avion, effet d'un médicament sur un patient, éoliennes, navires, chauffage/ventilation,

locomotives...



# État de l'art de la réduction du modèle mathématique (non exhaustif)



- Méthode de la synthèse modale
- Méthodes de sous-structuration
- Méthodes optimales
- Réduction pour des problèmes non-linéaires

#### Méthode de la synthèse modale



• Extraction préliminaire des valeurs propres et des vecteurs propres de l'équation différentielle sans second membre : x'=Ax

- Valeurs propres et vecteurs propres : pulsations propres et modes propres en dynamique des structures et comme étant les constantes de temps et les modes propres de diffusion en thermique
- Différentes méthodes: Jacobi, puissance itérée, itération de LANCZOS, la méthode d'itération sur les sous-espaces



#### Exemple: puissance itérée

Soit la matrice  $A \in M_{n,n}(IR)$ , ave A diagonalisable. Supposons que A possède n valeurs propres telles que  $|\lambda_1| < |\lambda_2| < \cdots$  $< |\lambda_n|$  et soient  $\mathbf{u_1}, \mathbf{u_2}, \ldots, \mathbf{u_n}$  les vecteurs propres associés. Alors, si  $\mathbf{x_0}$  est un vecteur quelconque:

$$\mathbf{x_0} = \mathbf{a_1}\mathbf{u_1} + \mathbf{a_2}\mathbf{u_2} + \cdots + \mathbf{a_n}\mathbf{u_n}$$
  
Supposons que  $\mathbf{a_n} \neq 0$ , on calcule la suite  $\mathbf{x_{k+1}} = A\mathbf{x_k}$   
ie:  $\mathbf{x_k} = A^k\mathbf{x_0} = \lambda_1^k \mathbf{a_1}\mathbf{u_1} + \lambda_2^k \mathbf{a_2}\mathbf{u_2} + \cdots + \lambda_n^k \mathbf{a_n}\mathbf{u_n}$   
 $= \lambda_n^k ((\lambda_1/\lambda_n)^k \mathbf{a_1}\mathbf{u_1} + \cdots + (\lambda_{n-1}/\lambda_n)^k \mathbf{a_{n-1}}\mathbf{u_{n-1}} + \mathbf{a_n}\mathbf{u_n})$ 

Si i  $\neq$  n,  $(\lambda_i/\lambda_n)^k \rightarrow 0$  donc le terme dominant devient  $\lambda_n^k a_n \mathbf{u_n}$ 



#### Exemple: puissance itérée

Plus grande valeur propre:  $|\lambda_n| \approx (\mathbf{x_{k+1}}/||\mathbf{x_k}||)$ 

Vecteur propre associé: **u**<sub>n</sub> ≈ **x**<sub>k</sub>

On normalise la suite:

$$\mathbf{b_k} = (\mathbf{x_k} / || \mathbf{x_k} ||)$$
 et  $\mathbf{x_{k+1}} = A\mathbf{b_k}$ 

On obtient:  ${}^{t}\mathbf{b}_{k}\mathbf{x}_{k+1} = {}^{t}\mathbf{b}_{k}A\mathbf{b}_{k} -> \lambda_{n}{}^{t}\mathbf{b}_{k}\mathbf{b}_{k} = \lambda_{n}$ 



#### Exemple: puissance itérée

Algorithme:



COURS POLYTECH – DOREA – 2024 – Réf: DOR/REP/2024/007

fin



#### Exemple: puissance inverse

Problème: recherche de la valeur propre de plus petit module

- -> Revient à appliquer puissance itérée à A<sup>-1</sup>
- 1) PA = LU (décomposition LU de A)
- 2) On construit les suites  $\mathbf{b_k}$  et  $\lambda_k$  pour :
  - 1) Résoudre  $LUx_{k+1} = Pb_k$
  - 2) On pose  $\mathbf{b_k} = \mathbf{x_k} / ||\mathbf{x_k}||$  et  $\lambda_k = 1/^t \mathbf{x_{k+1}} \mathbf{b_k}$
- 3) Jusqu'à convergence, ie:  $|\lambda_{k+1} \lambda_k| < epsilon$



#### Exemple: puissance inverse

**Données** : A, P, L, U tels que PA = LU,  $\overrightarrow{x}_0$  et  $\varepsilon$ 

Algorithme:

$$\overrightarrow{x} \leftarrow \overrightarrow{x}_0$$
 $\lambda_{anc} \leftarrow 1$ 

$$\lambda_{anc} \leftarrow 1$$

$$\lambda \leftarrow 0$$

tant que  $|\lambda - \lambda_{anc}| > arepsilon$  faire

$$\frac{\lambda_{anc} \leftarrow \lambda}{\overrightarrow{b} \leftarrow \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}}$$

résoudre  $LU\overrightarrow{x} = P\overrightarrow{b}$ 

$$\lambda \leftarrow \frac{1}{\stackrel{\text{t}}{\overrightarrow{x}}\overrightarrow{b}}$$

fin



#### Méthodes de sous-structuration

• Diviser la structure principale en sous-structures puis approcher champ de solution de chaque sous-structure sur la base de ses modes propres

 Exemples: méthodes de Guyan, Craig Bampton, modes de composantes etc.

### Exemple: méthode de Guyan



$$K.d = f$$

avec **K** matrice de raideur, **f** le vecteur force et **d** le vecteur déplacement En séparant les degrés de liberté master/slave, il vient:

$$egin{bmatrix} \mathbf{K}_{mm} & \mathbf{K}_{ms} \ \mathbf{K}_{sm} & \mathbf{K}_{ss} \end{bmatrix} igg\{ egin{matrix} \mathbf{d}_m \ \mathbf{d}_s \end{matrix} igg\} = igg\{ egin{matrix} \mathbf{f}_m \ \mathbf{0} \end{matrix} igg\}$$

Puis: 
$$\left\{ egin{array}{l} \mathbf{d}_m \ \mathbf{d}_s \end{array} 
ight\} = \left[ egin{array}{l} \mathbf{I} \ -\mathbf{K}_{ss}^{-1}\mathbf{K}_{sm} \end{array} 
ight] \left\{ \mathbf{d}_m \right\} = \left\{ \mathbf{T}_G \right\} \left\{ \mathbf{d}_m \right\}$$

Le système devient donc:  $\mathbf{K}_G \mathbf{d}_m = \mathbf{f}_m$  avec  $\mathbf{K}_G = \mathbf{T}_G^T \mathbf{K} \mathbf{T}_G$  et  $\mathbf{T}_G$  la matrice de transformation de la réduction de Guyan



### Méthodes optimales

Méthodes dites "a posteriori"

• Exemples: POD, SVD, POD snapshots, PGD

## Exemple: Proper Generalized Decomposition

- 1) Formulation variationnelle du problème
- 2) Discrétisation du domaine (éléments finis)
- 3) Solution u approximée par une représentation séparée

$$\mathbf{u} pprox \mathbf{u}^N(x_1, x_2, \dots, x_d) = \sum_{i=1}^N \mathbf{X_1}_i(x_1) \cdot \mathbf{X_2}_i(x_2) \cdots \mathbf{X_d}_i(x_d)$$

Avec les produits de fonctions  $x_1(x_1)$ ,  $x_2(x_2)$ , ...,  $x_d(x_d)$ , chacun dépendant d'une ou plusieurs variables

4) Algorithme de résolution (point fixe)

## Exemple: Proper Generalized Decomposition

La solution est recherchée en appliquant un algorithme glouton (en général point fixe) à la formulation faible du problème.

Pour chaque itération i de l'algorithme, un mode de la solution est calculé. Chaque mode est constitué d'un ensemble de valeurs numériques des produits de fonctions  $\mathbf{X_1}(\mathbf{x_1})$ , ...,  $\mathbf{X_d}(\mathbf{x_d})$ , qui enrichissent l'approximation de la solution.

## Réduction pour des problèmes non linéaires

- La méthode de réduction a priori (APR) est une méthode incrémentale basée sur un enrichissement de la base de projection à l'aide des sous-espaces de Krylov. Le principe de base de cette méthode peut se résumer en quatre étapes :
  - 1. Initialisation de la base
  - 2. Résolution du système réduit
  - 3. Utilisation de la solution du système réduit et du modèle pour déterminer un résidu
  - 4. Enrichissement de la base par le résidu
- Les étapes 2, 3 et 4 sont répétées jusqu'à convergence du modèle réduit vers une précision fixée par l'utilisateur.

## Exemple d'application: thermique spatiale

- Rappels de thermique
- Exemple de réduction du modèle mathématique
- Exemple de réduction du modèle géométrique



#### Différents transferts de chaleur

- Q : transfert de chaleur(W)
- A : aire de la surface(m²)
- L : longueur considérée (m)
- h : coefficient de transfert de chaleur conductif (W.K<sup>-1</sup>)
- ε : émissivité de la surface (pas d'unité)
- σ : constante de Stefan-Boltzmann (W.m<sup>-2</sup>.K<sup>-4</sup>)
- m : masse du composant(kg)
- Cp : capacité thermique massique (J.kg<sup>-1</sup>.K<sup>-1</sup>)
- T1 & T2 : temperature des corps (K)
- Remarque: pas de convection dans l'espace

| Heat Transfer Mechanism | Governing Equation                         |
|-------------------------|--------------------------------------------|
| Conduction              | $Q = kA \frac{T_2 - T_1}{L}$               |
| Convection              | $Q = hA(T_2 - T_1)$                        |
| Radiation               | $Q = \varepsilon \sigma A (T_2^4 - T_1^4)$ |
| Heat Absorbed           | $Q = mc_p(T_2 - T_1)$                      |



#### Différentes sources de chaleur



## Différents outils de régulation de la température





Caloducs

Radiateurs





# Exemple d'application: méthode des conductances équivalentes



- Méthode de réduction de matrice conductrice similaire utilisée à Thales Alenia Space & Airbus
  - Utilisée pour la réduction de modèles mathématiques des satellites
  - Efficacité des outils prouvée (en usage depuis de nombreuses années)

 La méthodologie peut être utilisée par le fournisseur du sous-système pour fournir un modèle réduit plus précis

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software



- Équation conductive thermique du système:
- 3 types de noeuds:

$$[C_{DD}]\{T_D\} + \{Q_D\} + \{P_D\} - [M_{DD}]\left\{\frac{\partial T_D}{\partial t}\right\} = \{0\}$$

- K = gardés
- S = supprimés
- G = groupés (définissant des noeuds moyens A)

$$\begin{bmatrix} C_{KK} & C_{KS} & C_{KG} \\ C_{SK} & C_{SS} & C_{SG} \\ C_{GK} & C_{GS} & C_{GG} \end{bmatrix} \begin{bmatrix} T_K \\ T_S \\ T_G \end{bmatrix} + \begin{bmatrix} Q_K \\ Q_S \\ Q_G \end{bmatrix} + \begin{bmatrix} P_K \\ 0 \\ P_G \end{bmatrix} - \begin{bmatrix} M_{KK} & 0 & 0 \\ 0 & M_{SS} & 0 \\ 0 & \mathbf{M}_{GG} \end{bmatrix} \begin{bmatrix} \frac{\partial I_K}{\partial t} \\ \frac{\partial T_S}{\partial t} \\ \frac{\partial T_G}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software



- Définition d'un noeud moyen:  $T_A = \sum_G a_{AG} T_G$
- $a_{AG}$  = ratio aire/capacitance du noeud G par rapport au noeud A
- Hypothèse physique: flux, échanges radiatifs ou convectifs proportionnels à l'aire du noeud

$$P_G = a_{GA} P_A$$

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software



• Approximation: 
$$\sum_{j} \left( M_{i,j} \frac{\partial T_{j}}{\partial t} \right) \approx \sum_{j} \left( M_{i,j} \right) \frac{\partial T_{i}}{\partial t}$$

Remarque: les facteurs de la matrice M sont plus importants pour les noeuds j qui sont conductivement proches du noeud i

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software



- Équations équivalentes:
  - Équation de la chaleur du système réduit:

$$\left[C_{RR}^{'}\right] \left\{T_{A}^{T}\right\} + \left[PwD_{RD}\right] \left\{Q_{S}^{Q}\right\} + \left\{P_{A}^{T}\right\} - \left[M_{RR}^{'}\right] \left\{\frac{\partial T_{K}}{\partial t}\right\} = \left\{0\right\}$$

Rappel, système d'origine:

$$\begin{bmatrix} C_{KK} & C_{KS} & C_{KG} \\ C_{SK} & C_{SS} & C_{SG} \\ C_{GK} & C_{GS} & C_{GG} \end{bmatrix} \begin{bmatrix} T_K \\ T_S \\ T_G \end{bmatrix} + \begin{bmatrix} Q_K \\ Q_S \\ Q_G \end{bmatrix} + \begin{bmatrix} P_K \\ 0 \\ P_G \end{bmatrix} - \begin{bmatrix} M_{KK} & 0 & 0 \\ 0 & M_{SS} & 0 \\ 0 & \mathbf{M}_{GG} \end{bmatrix} \begin{bmatrix} \frac{\partial T_K}{\partial t} \\ \frac{\partial T_S}{\partial t} \\ \frac{\partial T_G}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



# Réduction du modèle géométrique

• Problème: aucune connexion avec la physique (aucune garantie sur le respect des propriétés)





# État de l'art (non exhaustif)

- Suppresion des sommets, edge collapse / halfedge collapse
- Fonctions de coût et de placement
  - Lindstrom-Turk: preserve la forme, le volume et les frontières
  - Garland-Heckbert: encode la distance approximée au maillage d'origine en utilisant des matrices quadriques attribuées à chacun des sommets
  - Préservation du volume "memoryaware"
  - Préservation des normales





## Suppression de sommets

- Supprime un sommet et ses faces et côtés adjacents, créant un trou de valence k.
- Le trou est triangulé en ajoutant k-2 triangles.
- Le nombre de sommets et de triangles est réduit de 1 et 2, respectivement.





## Edge collapse

- Sélectionne un côté et le "collapse" en un nouveau point. Les deux triangles adjacents sont transformés en deux côtés.
- Le nombre de sommets et de triangles est réduit de 1 et de 2, respectivement.
- Remarque: liberté de placement du nouveau sommet!



Nouveau point



# Halfedge collapse

- Soit un côté sélectionné avec pour sommets p et q, l'opérateur du halfedge collapse déplace p sur q ou q sur p (cas particulier du edge collapse)
- Remarques: déplacer q sur p ou p sur q constituent deux operations différentes
- ici aucun degré de liberté dans le placement du nouveau point





### Minimisation de la fonction de coût

- Respect du volume de la géométrie
- Respect de l'orientation des faces
- Respect de la forme des frontières
- Etc
- => via descente de gradient appliquée à la fonction de coût considérée





Lang. Version:



4.60 - Build 30.0.101.1340



# Réduction géométrique guidée par la physique







### Références

- [1] Frédéric da Silva. Méthodologies de réduction de modèles multiphysiques pour la conception et la commande d'une chaîne de traction électrique. Autre. Université Paris-Saclay, 2015. Français. ffNNT : 2015SACLC022ff. fftel-01275878
- [2] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonalsimplification. In IEEE Visualization, pages 279–286, 1998.
- [3] M. Garland and P. S. Heckbert. Surface simplification using quadric errormetrics. In Proc. SIGGRAPH '97, pages 209–216, 1997.
- [4] David Cohen-Steiner, Pierre Alliez, Mathieu Desbrun. Variational Shape Approximation. [Research Report] RR-5371, INRIA. 2004, pp.29. inria-0007063
- [5] TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software
- [6] https://pages.mtu.edu/~shene/COURSES/cs3621/SLIDES/Simplification.pdf

### Clustering



- Partitionnement de données en sous-ensembles partageant des caractéristiques communes
- Bon clustering si: clusters homogènes et bien différenciés



## Différentes approches



- Par des méthodes de partitionnement:
  - Différentes partitions évaluées via différents critères (kmeans, CLARANS etc)
- Par des méthodes hiérarchiques
  - Décomposition hiérarchique des données via différents critères (BIRCH, Diana etc)
- Par des méthodes basées sur une densité
  - Via connectivité et fonctions de densité (OPTICS, DBSCAN etc)

#### K-means



• Etape 1: k (entrée) centroides initiaux auxquels sont assignés les points les plus proches

 Etape 2: calcul des nouveaux centroides via moyenne des points du cluster

 Etape 3: répéter étape 2 jusqu'à convergence



## Algorithme de Lloyd pour les diagrammes de Voronoi





Tournois, Alliez, Devillers: 2D Centroidal Voronoi Tessellations with Constraints.

## Clustering hiérarchique



- Résulte en un ensemble de clusters imbriqués selon un arbre hiérarchique
- Peut être perçu comme un dendrogramme avec clustering obtenu en "coupant" selon le niveau désiré



# Clustering hiérarchique





### Clustering selon densité: DBSCAN



- Sélectionne arbitrairement un point p
- Collecte tous les points "densitéatteignable" depuis p selon un rayon Epsilon et un nombre minimum de points Nmin
- Si p a une haute densité (bcp de points dans son rayon = core point): création d'un cluster
- Si p a une faible densité mais est dans le voisinage d'un core point: process réitéré pour un autre point p
- Sinon p point isolé
- Fin de l'algorithme quand tous les points ont été visité



# Clustering via libraire Scikit-learn





comparison of the clustering algorithms in scikit-learn

| Method name                                                                                                                          | Parameters                                                                | Scalability                                                          | Usecase                                                                                  | Geometry (metric used)                          |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|
| K-Means                                                                                                                              | number of clusters                                                        | Very large n samples,<br>medium n_clusters<br>with<br>MiniBatch code | General-purpose, even cluster size, flat geometry, not too many clusters, inductive      | Distances between points                        |
| Affinity<br>propagation                                                                                                              | damping, sample<br>preference                                             | Not scalable with<br>n_samples                                       | Many clusters, uneven cluster size, non-flat geometry, inductive                         | Graph distance (e.g.<br>nearest-neighbor graph) |
| Mean-shift                                                                                                                           | bandwidth                                                                 | Not scalable with<br>n_samples                                       | Many clusters, uneven cluster size, non-flat geometry, inductive                         | Distances between points                        |
| Spectral<br>clustering                                                                                                               | number of clusters                                                        | Medium n samples, small n_clusters                                   | Few clusters, even cluster size,<br>non-flat geometry, transductive                      | Graph distance (e.g.<br>nearest-neighbor graph) |
| Ward hierarchical<br>clustering                                                                                                      | number of clusters<br>or distance<br>threshold                            | Large n samples and n_clusters                                       | Many clusters, possibly connectivity constraints, transductive                           | Distances between points                        |
| Agglomerative<br>clustering                                                                                                          | number of clusters<br>or distance<br>threshold, linkage<br>type, distance | Large n samples and n_clusters                                       | Many clusters, possibly connectivity constraints, non Euclidean distances, transductive  | Any pairwise distance                           |
| DBSCAN                                                                                                                               | neighborhood size                                                         | Very large n samples,<br>medium n_clusters                           | Non-flat geometry, uneven cluster sizes, transductive                                    | Distances between nearest points                |
| OPTICS                                                                                                                               | minimum cluster<br>membership                                             | Very large n samples,<br>large n_clusters                            | Non-flat geometry, uneven<br>cluster sizes, variable cluster<br>density,<br>transductive | Distances between points                        |
| Gaussian mixtures                                                                                                                    | many                                                                      | Not scalable                                                         | Flat geometry, good for density estimation, inductive                                    | Mahalanobis distances to centers                |
| BIRCH                                                                                                                                | branching factor,<br>threshold, optional<br>global clusterer.             | Large n clusters and n_samples                                       | Large dataset, outlier removal,<br>data reduction, inductive                             | Euclidean distance<br>between points            |
| 4                                                                                                                                    |                                                                           |                                                                      |                                                                                          | <b>•</b>                                        |
| Ion-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard euclidean |                                                                           |                                                                      |                                                                                          |                                                 |

Ion-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard euclidean listance is not the right metric. This case arises in the two top rows of the figure above.