Grundbegriffe der Informatik Aufgabenblatt 13

Matr.nr.:								
Nachname:								
Vorname:								
Tutorium:	Nr.	Nr. Name des Tutors:						
Ausgabe:	27. Jan	uar 20	011					
Abgabe:	4. Februar 2011, 12:30 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34							
Lösungen w rechtzeit in Ihrer mit diese in der obabgegeben v	ig, eigener er Seite eren li	Hano als D	dschri eckbla	.ft, att u	nd	sie nengeheftet		
Vom Tutor au	ıszufülle	2n:						
erreichte Punkte								
Blatt 13:		/	/ 22					
Blätter 1 – 13	3:	/	260					

Aufgabe 13.1 (3 Punkte)

Finden Sie (z.B. im Internet oder in der Fachliteratur) drei unentscheidbare Probleme, die weder in der Vorlesung noch in der Übung noch auf diesem Übungsblatt vorgestellt wurden.

Aufgabe 13.2 (3+2+2 Punkte)

Zu einer gegebenen Turingmaschine T sei eine Relation R_T auf den Konfigurationen von T wie folgt definiert: (c,d) liegt in R_T , falls es ein t in \mathbb{N}_0 gibt, so dass $\Delta_t(c) = d$ oder $\Delta_t(d) = c$ gilt.

- a) Ist R_T eine Äquivalenzrelation? Geben Sie für jede der drei Eigenschaften einer Äquivalenzrelation an, ob R sie hat, und begründen Sie Ihre Antwort. (Hinweis: Was eine Äquivalenzrelation ist, wurde am Ende des Abschnitts 11.2 über ungerichtete Graphen definiert.)
- b) Erklären Sie, wie man allgemein zu einer Turingmaschine T eine Turingmaschine T' konstruieren kann, die die folgenden Eigenschaften hat:
 - Sie hält für genau die gleichen Eingaben wie *T*.
 - Am Ende jeder haltenden Berechnung von T' stehen auf dem Band nur Blanksymbole.
 - Wenn T' hält, tut sie das immer im gleichen Zustand H.
- c) Erklären Sie, wie Sie das Halteproblem entscheiden könnten, wenn Sie einen Algorithmus hätten, der Ihnen für jede Turingmaschine T und beliebige Konfigurationen c und d von T in endlicher Zeit sagt, ob das Paar (c,d) in R_T liegt.

Hinweis: Verwenden Sie Teilaufgabe b).

Aufgabe 13.3 (2+1+1+1 Punkte)

Die Turingmaschine *T* mit Anfangszustand *S* sei durch folgende Überführungsfunktion gegeben:

	S	$S_\mathtt{a}$	$S_{\mathtt{b}}$	R
a	$(X, S_a, -1)$	$(a, S_a, -1)$	$(a, S_b, -1)$	(a,R,1)
b	$(X, S_b, -1)$	$(b, S_a, -1)$	$(b, S_b, -1)$	(b, R, 1)
Х	(X, S, 1)	$(X, S_a, -1)$	$(X, S_b, -1)$	(X, S, 1)
	-	(a, R, 1)	(b, R, 1)	-

- a) Was steht bei Eingabe eines Wortes $w \in \{a,b\}^*$ am Ende der Berechnung auf dem Band?
- b) Welche Platzkomplexität hat *T*? (Exakte Angabe in Abhängigkeit von der Länge der Eingabe!)
- c) Geben Sie eine einfache Funktion $f : \mathbb{N}_0 \to \mathbb{N}_0$ an, so dass die Zeitkomplexität von T in $\Theta(f(n))$ liegt.

d) Ändern Sie die Turingmaschine so ab, dass am Ende der Berechnung alle auf dem Band stehenden X gelöscht werden.

Aufgabe 13.4 (2+3+2 Punkte)

Die Relation $R \subseteq \mathbb{N}_+ \times \mathbb{N}_+$ sei gegeben durch:

 $nRm \iff$ Es gibt genau so viele verschiedene Primzahlen, die n teilen, wie es verschiedene Primzahlen gibt, die m teilen.

- a) Geben Sie für $n \in \{12, 98, 4096, 500000\}$ jeweils die kleinste Zahl $m \in \mathbb{N}_+$ an, so dass nRm gilt.
- b) Zeigen Sie, dass R eine Äquivalenzrelation ist.
- c) Zeigen oder widerlegen Sie:

```
\forall n_1, n_2, m_1, m_2 \in \mathbb{N}_+ : n_1 R m_1 \wedge n_2 R m_2 \Rightarrow n_1 \cdot n_2 R m_1 \cdot m_2
```