10.6: Alternating Series

Theorem 10.16: Alternating Series Test

The alternating series $\sum (-1)^{k+1} a_k$ converges provided

- 1. the terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \le a_k)$, for k greater than some index N) and $f(k) = a_k$
- $2. \lim_{k \to \infty} a_k = 0.$

d f'(x) < 0

Example. Which of the following are considered alternating series?

$$\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+2}$$

$$\sum_{k=4}^{\infty} \left(\frac{-3}{2}\right)^k$$

$$\sum_{k=0}^{\infty} (-1)^{k} \left(\frac{1}{2}\right)^{k}$$

$$\sum_{k=4}^{\infty} \left(\frac{-3}{2}\right)^k \qquad \sum_{k=0}^{\infty} (-1)^k \left(\frac{1}{2}\right)^k \qquad \sum_{k=1}^{\infty} (-1)^{k+1} \left(\frac{1}{2}\right)^k$$

$$\sum_{k=4}^{\infty} \left(-1\right)^{k} \left(\frac{3}{2}\right)^{k}$$

$$a_{k} = \left(\frac{3}{2}\right)^{k}$$

$$(\cancel{*}) \sum_{k=-3}^{\infty} \frac{\cos(k\pi)}{(k+4)^2}$$

$$\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}$$

$$\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2} \times \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{1}{-2}\right)^k = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(-1)^k} \left(\frac{1}{2}\right)^k$$

$$|x| = \int_{-1}^{\infty} \frac{(-1)^{\kappa}}{(\kappa + \kappa)^{2}}$$

Example. Consider the series $\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt{k}}{2k+3}$. Let a_k represent that magnitude of the terms of the given series.

• What is
$$\lim_{k\to\infty} a_k$$
?

$$\lim_{k\to\infty} \frac{\sqrt{k}}{2k+3} \left(\frac{1/k}{1/k} \right) = \lim_{k\to\infty} \frac{1/\sqrt{k}}{2+3/k} = 0$$

$$LC#4$$

$$\alpha_{k+1} = \frac{\sqrt{\frac{1}{2(k+1)+3}}}{2(k+1)+3}$$

$$= \frac{\sqrt{\frac{1}{2k+5}}}{2k+5}$$

$$= \frac{\sqrt{\frac{1}{2k+5}}}{\sqrt{\frac{1}{2k+5}}}$$

• Compute
$$f'(x)$$
 where $f(k) = a_k$.

• Compute
$$f'(x)$$
 where $f(k) = a_k$. $f(x) = \frac{\sqrt{x}}{2x+3}$ Since $f'(x)$ is negative for $x > 3/2$, the end behavior of the function is decreased by the can have finitely materials that are increasing $\frac{2x+3-4x}{2\sqrt{x}(2x+3)^2}$ $\Rightarrow -2x+3 < 0$ $\Rightarrow -2x+3$

$$f(x) = \frac{\sqrt{x}}{2x+3}$$
Want f'(x)

$$Want + (x) < 0$$

$$\frac{-z \times t^3}{2\sqrt{x}(2x+3)^2} < 0$$

$$\Rightarrow -2x+3 < 0$$

$$\chi > \frac{3}{z} \Rightarrow$$

Since f'(x) is negative for x>3/2, the end behavior of the function is decreasing. We can have finitely many terms that are increasing.

Use the Alternating Series Test to determine if the given series converges.

Example. Does the series
$$\sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{4}{3}\right)^k$$
 converge?

$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} \left(\frac{41}{3}\right)^k = \infty$$
 Diveges by the divegence test

Example. Does the series
$$\sum$$

Example. Does the series
$$\sum_{k=1}^{\infty} \cos(\pi k) e^{-k} \text{ converge?}$$

$$= \sum_{k=1}^{\infty} (-1)^{k} e^{-k}$$

$$\int f(x) = e^{-x}$$

$$f(x) = e^{-x}$$

$$f'(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

$$f''(x) = -e^{-x} < 0, \text{ for all } x -\infty < x < \infty \rightarrow \text{ decasing } a_{\kappa}$$

Theorem 10.17: Alternating Harmonic Series

The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ converges (even though the harmonic

series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges). $\sum_{k=1}^{\infty} |a_k|$ where $a_k = \frac{(-1)^{k+1}}{K}$

Example. Use the Alternating Series Test to show that the alternating harmonic series converges.

(1) $a_{k+1} = \frac{1}{k+1} < \frac{1}{k} = a_k$ By AST, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ conveges $k \to \infty$

Theorem 10.18: Remainder in Alternating Series

Let $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ be a convergent alternating series with terms that are nonincreasing in magnitude. Let $R_n = S - S_n$ be the remainder in approximating the value of that

in magnitude. Let $R_n = S - S_n$ be the remainder in approximating the value of that series by the sum of its first n terms. Then $|R_n| \le a_{n+1}$. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term.

Example. Find the minimum value of n such that $|R_n| < 10^{-4}$ for the following series:

$$\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

$$\left| \left| \left| \left| \left| \right| \right| \right| \leq a_{n+1} < 10^{-4}$$

$$\frac{1}{n+1} < 10^{-4}$$

$$\frac{10^{-4} < n+1}{9,999} < n$$

$$\frac{10^{-999} < n}{10^{-999} < n}$$

$$\frac{\sum \frac{(-1)^{k+1}}{k^2}}{k} \rightarrow \frac{\sum |a_k|}{k} \rightarrow \frac{\sum |a_k|}{k} = \frac{\text{Styll conveges, conveges abs.}}{k}$$

$$\frac{\sum \frac{(-1)^{k+1}}{k}}{k} \rightarrow \frac{\sum |a_k|}{k} \rightarrow \frac{\sum |a_k|}{$$

Definition. (Absolute and Conditional Convergence)

If $\sum |a_k|$ converges, then $\sum a_k$ converges absolutely.

If $\sum |a_k|$ diverges and $\sum a_k$ converges, then $\sum a_k$ converges conditionally.

Example. Can a series of strictly positive terms converge conditionally?

=> [ak conveyes, [lax divuges $a_{\nu} > 0 \rightarrow |a_{\kappa}| = a_{\kappa}$

Conveges absolutely >> impossible **Example.** Consider the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{4+k}{k^2}$. Determine if this series converges absolutely, converges conditionally, or diverges.

 $\frac{2}{\left| \left(-1 \right)^{k+1}} \frac{4+k}{k^2} = \frac{2}{k=1} \frac{4+k}{k^2}$ $\frac{2}{k=1} \left| \left(-1 \right)^{k+1} \frac{4+k}{k^2} \right| = \frac{2}{k=1} \frac{4+k}{k^2}$ $\frac{2}{k=1} \left| \frac{1}{k} \right| = \frac{2}{k} \frac{k}{k^2}$

Since $b_{\kappa} \leq a_{\kappa}$, $\sum_{k=1}^{\infty} \frac{1}{\kappa}$ direger 5 4+K also diveges by DCT

Pour not convege abs.

Cond conti [lax dirages

O O∠akH ≤ak 2 lim ax= lim 4+k kno x= kno 4+k

E (-1) Kr1 4+k

> coneges by AST

10.6: Alternating Series

Math 1080 Class notes Fall 2021

Example. Determine if the following series converge absolutely, converge conditionally, or diverge.

or diverge.

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2\sqrt{k}-1}$$

$$\sum_{k=1}^{\infty} \frac{1}{2\sqrt{k}-1}$$

$$\sum_{k=1$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k$$
absolute
$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k = \frac{\text{convergent geometric}}{\text{Series } w/r = 3/4}$$

Theorem 10.19: Absolute Convergence Implies Convergence

If $\sum |a_k|$ converges, then $\sum a_k$ converges (absolute convergence implies convergence). Equivalently, if $\sum a_k$ diverges, then $\sum |a_k|$ diverges.

Example. Determine whether each of the following series converges absolutely, converges conditionally or diverges.

$$\sum_{k=1}^{\infty} (-1)^k e^{1/k}$$
abs. canv.
$$\sum_{k=1}^{\infty} |(-1)^k e^{1/k}| = \sum_{k=1}^{\infty} e^{i/k} \quad \text{Divigence test lime } e^{i/k} = e^{i} = 1$$

$$\sum_{k=1}^{\infty} (-1)^k e^{i/k} \quad \text{Dividence test lime } e^{i/k} = e^{i} = 1$$

$$\sum_{k=1}^{\infty} (-1)^k e^{i/k} \quad \text{Dividence test lime } e^{i/k} = e^{i} = 1$$

$$\sum_{k=1}^{\infty} (-1)^{k+1} = e^{i/k} =$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}} \text{ abs conv.} \qquad \sum_{k=1}^{\infty} \frac{\left(\frac{1}{3}\right)^k}{\sqrt{k}} \qquad \text{Converges absolutely}$$

abs conv $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$ abs conv $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$ cond conv. (1) $a_{k+1} \leq a_k$: $\frac{1}{\sqrt{k+1}} \leq \frac{1}{\sqrt{k}}$ converges $\sum_{k=1}^{\infty} \frac{(-5)^k}{3^k}$ —) con verges conditionally

Divergence test $\lim_{k\to\infty} \left(\frac{-5}{3}\right)^k$ diverges $\lim_{k\to\infty} \frac{5}{3}$

 $\sum_{k=1}^{\infty} \frac{(-2)^{k-1}}{3^k} \text{ Diviges} \rightarrow \text{not abs convegent}$ Iak

 $\sum_{k=1}^{\infty} \frac{(-1)^k}{3^k} \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{z}{3}\right)^k \text{ some } \sum_{k=1}^{\infty} \frac{z^{k-1}}{3^k} = \sum_{k=1}^{\infty} \frac{z^{k-1}$

Example. Does the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2\sqrt{k}-1}$ converge conditionally, converge absolutely, or

diverge?

LCT
$$W$$
 $\int K$

Divergent ρ -Series $W/\rho = \frac{1}{2}$

Lot W
 $\int K$

Lin $\frac{a_{K}}{a_{K}} = \lim_{K \to \infty} \frac{\sqrt{K}}{2\sqrt{K}-1} = \frac{1}{2} \Rightarrow Series$

Convergence

 $K = 1$
 $K = 1$

$$f'(x) = \frac{1}{2\sqrt{x}-1}$$

$$f'(x) = \frac{-1}{\sqrt{x}(2\sqrt{x}-1)^2} < 0, \text{ when } x \neq \frac{1}{4}$$

$$\Rightarrow k \ge 1$$

$$(2) \lim_{K \to \infty} \frac{1}{2\sqrt{x}-1} = 0$$

$$(3) \lim_{K \to \infty} \frac{1}{2\sqrt{x}-1} = 0$$

Criver n, find remainde $R_8 = a_q = \frac{1}{2\sqrt{q-1}} = \frac{1}{5}$

$$\left| \begin{array}{c} R_8 \right| \leq a_q = \frac{1}{2\sqrt{q-1}} = \frac{1}{5}$$

Given "remainde", Find min n

Want
$$|R_n| \leq 10^{-2}$$

$$\frac{1}{2\sqrt{n+1}-1} \leq \frac{1}{100}$$

$$\frac{100}{2\sqrt{n+1}} \leq \frac{1}{100}$$

Math 1080 Class notes

 $\left(\frac{101}{2}\right)^2 - 1 < 1$

Fall 2021