Introduction to Operating Systems and SQL for Data Science

Practice 11 – Entity Relation

ERD

Introduction

- ERD is a formal modeling of data
- Conceptual database design
- The data is often consists of:
 - Entities
 - Relationships
- Examples:
 - Movies, actors, directors, roles, awards
 - Students, courses, lecturers, rooms
 - Persons, statuses, friendships, messages, likes

ERD

- Part 1 Extracting Tables from ERD.
- Part 2 ERD questions.

The relational model

- Logical database design
- We may deduce the relational model from the conceptual model
 - For instance, by extracting tables from an ERD
- Basic definitions:

A table example

- t1[a1] = (baz)
- $t2[a2] = (\{y,z\})$
- $t1[\overline{a}] = (baz,\{x,y\})$
- t2[<u>k</u>] = (quz,bar)

	<u>k1</u>	<u>k2</u>	a1	a2
t1	foo	bar	baz	{x,y}
t2	quz	bar	foo	{y,z}

Vector of all **key** attributes

$$\underline{\underline{k}} = (k1, k2)$$

$$\bar{a} = (a1, a2)$$

Vector of all non-key attributes

Extracting Tables from ERD

• A short representation:

Translation to a table:

	<u>k</u>			ā	
<u>k1</u>		<u>kn</u>	a1		am

• Constraints:

$$t_1[\overline{\mathbf{k}}] = t_2[\overline{\mathbf{k}}] \Rightarrow t_1[\overline{a}] = t_2[\overline{a}]$$

- We assume <u>k</u> can not be empty
- a may be empty

- Any ai may be multi-valued
 - Multi-valued attributes cannot be a part of the key
- In domain D, for a table row t:
 - for an attribute a_i : $t[a_i] \in D$
 - for a multi-valued attribute a_i : $t[a_i] \in P(D)$
 - · a powerset.

Another Representation of a Multi-Valued Attribute

A table without multi-valued attributes:

<u>K</u>		a2	
<u>name</u>	<u>year</u>	genre	
Cold Mountain	2003	Drama	

Tables - one for each multi-valued attribute:

<u>name</u>	<u>year</u>	<u>screenshots</u>
Cold Mountain	2003	screenshot1

Relationships

- For each <u>k</u>, a may be empty
- Translation to a table:

Relationships – many to one

- An E₁ can relate to at most one E₂
- Translation to a table:

Relationships – unique reference

- An E₁ relates to precisely one E₂
- No table is extracted for R

Relationships – degree constraint

- Each entity of type E₂ must relate (with R) to at least one entity of type E₁
- k₁ and k₂ in R are foreign keys

Relationships – degree constraint

- Note that it always holds that:
 - $\pi_{k2}(R) \subseteq \pi_{k2}(E_2)$
 - $\pi_{k1}(R) \subseteq \pi_{k1}(E_1)$

E₂:

E₁:

 $\pi_{k2}(R)$

<u><u></u> \overline{k}_{2} </u>

 $\pi_{k1}(E_1)$

_{k1}(□₁)

 $\overline{\underline{\mathbf{k}}_{1}}$ $\overline{\mathbf{a}}_{R}$

R:

 $\pi_{k1}(R)$

Aggregations

• Turns the relationship into an entity with attributes of the relationship

Aggregations

Example

Weak Entities

Translation to tables:

Constraints:

$$\pi_{k1}(\mathsf{E}_2) \subseteq \pi_{k1}(\mathsf{E}_1)$$

$$\pi_{k1,k2}(\mathsf{E}_3) \subseteq \pi_{k1,k2}(\mathsf{E}_2)$$

ISA

• ISA – a branching weak entity without key components in the *subclass*

ISA – Translations and Constraints

Constraints:

 $\pi_{\text{name}}(\text{Cake}) \subseteq \pi_{\text{name}}(\text{Dessert})$ $\pi_{\text{name}}(\text{Ice cream}) \subseteq \pi_{\text{name}}(\text{Dessert})$

Question 1 - ERD

Question 1a

Modify the ERD diagram such that for each university its place will be stored (without adding new entities).

Question 1a

Modify the ERD diagram such that for each university its place will be stored (without adding new entities).

Question 1b

Can parents raise 2 children?

Question 1b

Can parents raise 2 children?

Raised table:

Parent1.id	Parent2.id	Child.id
11	22	33
22	11	44

Question 1c

Can parents raise 3 children?

Question 1c

Can parents raise 3 children? no

Question 1d

How many parents can raise one child?

Question 1d

How many parents can raise one child? No limit for now

Question 1e

How can we enforce that each child will be raised by at most one pair of parents?

Question 1e – 1st try

How can we enforce that each child will be raised by at most one pair of parents?

Question $1e - 2^{nd}$ try

How can we enforce that each child will be raised by at most one pair of parents?

