

Python for early-stage design of sustainable aviation fuels

A.M. MARTZ, A.E. COMESAÑA, V.H. RAPP, K.E. NIEMEYER
JULY 10, 2024

Acknowledgements

Lawrence Berkeley **National Laboratory**

PΙ Vi Rapp

Applied Math Ana Comesaña

Software Development Tyler Huntington

Experimental Research Sharon Chen

TEA/LCA Corinne Scown

Oregon State University

PΙ Kyle Niemeyer

Mechanical **Engineering** Ali Martz

Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

Design a cake!

• Make a recipe

- Goals:
 - Taste
 - Cost
 - Appearance

Why is it difficult?

- Multi-objective
 - Taste
 - Cost
 - Appearance

- Multi-parameter
 - Flour
 - Sugar
 - Egg

No-recipe Cakes in the Real World

Manufacture of disintegrating tablets^[1]

Battery design^[2]

Transportation decarbonization

Transportation Decarbonization

- Different modes have different pathways
- Gasoline vehicles → electric vehicles

- Aviation 2-3% of global CO₂ emissions
- Difficult to decarbonize

Conventional Aviation Fuel

• Liquid, petroleum fuel

- Stringent requirements
 - Freezing point
 - Flash point
 - Viscosity
 - Density

Sustainable Aviation Fuel

 Primary decarbonization opportunity

- Derived from biomass feedstocks
 - Cooking/plant oil
 - Agricultural residue

 Comparable performance to conventional fuel

Sustainable Fuel Implementation Challenges

Cost

Scale-up

Slow development

Create an optimization tool for early-stage design of novel sustainable aviation fuels

Methods

Sequential optimization:

- 1. Search space reduction
- 2. Multi-objective Bayesian optimization

Search Space Reduction

BoTorch/Ax Bayesian Optimization

Property Predictors

- "Black box" prediction
- Modular substitution

- Linear by Volume
- Data-driven predictor

Review

Surrogate Comparison [3]

Design Challenge #1

Possible components:

cumene, methylcyclohexane, toluene, cyclopentane, hexene, isooctane

	Cumene		Methylcyclohexane			Hexene	
Blend Ratio	0.18		0.21			0.61	
	Boiling Point (K)	Flash Point (K)		Melting Point (K)	Density (kg/m³)		Viscosity (mm²/s)
Target Values	400		280	150		750	1.3
Blended Estimate	376		292	164		742	1.319
+/-	-24		+12	+14		-8	+0.019

Design Challenge #2

Requirement: 0-75% Jet A

Possible components:

60% heptane/40% isooctane, tetralin, cumene, toluene, methylpentane, isooctane

Blend Ratio:

74% Jet A 08% 60/40 heptane/isooctane 08% Tetralin 10% Cumene

Summary

- Developed multi-objective, multi-parameter optimization approach
- Tool designed for variability
 - Number of components
 - Required components
 - Predictors

Expanded Feedstock to Function capabilities

https://feedstock-to-function.lbl.gov/

Credits

- [1] Sano, Syusuke, et al. "Application of Bayesian Optimization for Pharmaceutical Product Development." *Journal of Pharmaceutical Innovation*, vol. 15, no. 3, Sept. 2020, pp. 333–43. *Springer Link*, https://doi.org/10.1007/s12247-019-09382-8.
- [2] Thelen, Adam, et al. "Sequential Bayesian Optimization for Accelerating the Design of Sodium Metal Battery Nucleation Layers." *Journal of Power Sources*, vol. 581, Oct. 2023, p. 233508. *ScienceDirect*, https://doi.org/10.1016/j.jpowsour.2023.233508.
- [3] Kim, Doohyun, Jason Martz, and Angela Violi. "A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel." *Combustion and Flame*, vol. 161, no. 6, June 2014, pp. 1489–98. *ScienceDirect*, https://doi.org/10.1016/j.combustflame.2013.12.015