ОТЧЕТ ПО РАБОТЕ «TECTOBOE ЗАДАНИЕ ДЛЯ JUNIOR-СПЕЦИАЛИСТОВ ПО НАПРАВЛЕНИЮ DATA SCIENCE»

В данной работе была попытка создать модель, способную предсказывать тип отзыва на фильм(положительный, отрицательный) и оценку, которую поставит пользователь(1,2,3,4,7,8,9). Нейтральные отзывы и соответствующие им оценки не рассматривались и не учитывались. Работа выполнялась на языке python.В качестве обучающего набора брались все данные положительных и отрицательных отзывов из папки train, в качестве оценочного – из папки test.

Этапы работы: загрузка данных, предобработка, выбор оптимального алгоритма, обучение, оценка результатов, создание прототипа на открытой площадке. Остановимся подробнее на каждом.

Загрузка данных: использовались библиотеки os и tqdm.

Предобработка: удалены теги html, удалены повторяющиеся элементы, пропуски данных. Убраны стоп-слова(библиотека nltk), знаки препинания(re) и проведено сравнение эффективности модели с лемматизацией и стемминга. Лемматизация дает лучший результат по большинству алгоритмов.

В случае многоклассовой классификации добавлены новые переменные: lenght(количество слов в предложении), punct%(процент знаков препинания в предложении), polarity(полярность текста) и subjectivity(субъективность) последние 2 из библиотеки TextBlob. Кроме того, добавлена бинарная переменная binary, определяющая является ли отзыв положительным или отрицательным. Такую информацию можно получить с помощью алгоритма бинарной классификации, который является более точным. Добавление последней переменной помогло увеличить точность модели на 10%. Далее в обоих случая для бинарной и многоклассовой классификации проводилась токенизация текста методом TfidfVectorizer.

Выбор оптимального алгоритма: рассматривались основные алгоритмы классического машинного обучения(логистическая регрессия, XGBoost, SGD Classifier, LinearSVC, метод опорных векторов. А также полносвязная нейронная сеть. Для всех алгоритмов проводился поиск по сетке оптимальных параметров. Применялась кросс валидация.

Кроме того, была попытка понижения размерности с помощью метода главных компонент. На 100 искусственных переменных результат оказался несколько хуже, однако скорость расчета возросла.

Оценка результатов: проводилась на тестовой выборке. В качестве метрики качества бралась ассигасу. Но также оценивались precision, recall и f1-score.

Для многоклассовой классификации была достигнута точность **90%** на тестовой выборке(XGBoost)

0.90128	recision	recall	£1	
р	recision	recall	£1 =====	
			TI-Score	support
1	0.81	0.95	0.87	5022
2	0.98	0.70	0.82	2302
3	0.96	0.76	0.84	2541
4	0.92	0.83	0.87	2635
7	0.98	0.94	0.96	2307
8	0.93	0.98	0.95	2850
9	0.96	0.94	0.95	2344
10	0.88	0.98	0.93	4999
			0.00	25000
accuracy			0.90	25000
macro avg	0.93	0.88	0.90	25000
weighted avg	0.91	0.90	0.90	25000

Для бинарной классификации была достигнута точность **98%** (нейронная сеть).

1 1 /					
	precision	recall	f1-score	support	
0	0.98	0.99	0.98	12500	
1	0.99	0.98	0.98	12500	
accuracy			0.98	25000	
macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98	25000 25000	

Создание прототипа: на базе фреймворка Django разработан веб-сервис для ввода отзыва о фильме с автоматическим присвоением рейтинга (от 1 до 10) и статуса комментария (положительный или отрицательный). Однако, при выводе сервиса в открытый доступ, не удалось справиться с ограничением, связанным с работой алгоритма (не более определенного количества секунд, около 30). Сервис развернут наполовину(только для бинарной классификации) и для сокращения времени вместо нейронной сети там выставлена логистическая регрессия с точность 93% на тестовой выборке. На стационарном пк сервис работает и выводит на сервер оба элемента (расчет занимает несколько минут).

Ссылка на сервис: https://bc-egorov.herokuapp.com/reviews/

Ссылка на GitHub: https://github.com/AlexanderEgorovNRNUMEPHI/ML

Ссылка на черновые ноутбуки(при необходимости): https://drive.google.com/drive/folders/1X3LruYXYX4bIbdxXIg1DfkBOgGvS7a9 9?usp=sharing

Выполнил Егоров Александр