rtmnuonline.com

Faculty of Engineering & Technology Second Semester B.E. Examination APPLIED MATHEMATICS

Paper-II

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

- (1) Attempt Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6, Q.7 OR Q.8, Q.9 OR Q.10, Q.11 OR Q.12.
- (2) Retain the construction lines.
- (3) Figures to the right indicate full marks.
- (4) Use of non-programmable calculator is permissible.
- 1. (a) Evaluate

rtmnuonline.com

$$\int_0^x \sin^5 x (1-\cos x)^3 dx.$$

(b) Show that the mean value of kx (l - x) between x = 0 to x = l is two-third of its maximum value.

OR

2. (a) By successive differentiation of

$$\int_{0}^{\infty} x^{m} dx = \frac{1}{m+1} \text{ w.r.t. m. evaluate}$$
rtmnuonline.com

MHB-44131

Contro

(b) Show that

rtmnuonline.com

$$\int_{0}^{\infty} e^{-k^{2}x^{2}} x^{n} dx = \frac{1}{2k^{n+1}} \left[\frac{n+1}{2} \right]$$

Hence find

$$\int_{0}^{\infty} e^{-x^2} dx.$$

- 3. (a) Trace the curve $ay^2 = x^2 (a x)$.
 - (b) Find the area enclosed between the curve $y^2 (2a-x) = x^3$ and its asymptote.

OR

rtmnuonline.com

4. (a) Find the perimeter of the curve

$$r = a (1 + \cos \theta).$$

- (b) A loop of the curve $y^2 = x^2(1 x^2)$ is rotated about the x-axis. Find the volume generated.
- 5. (a) Evaluate $\iint (x^2 + y^2) dxdy$ over the region in the positive quadrant for which $x + y \le 1$.
 - (b) Change the order of integration and hence evaluate

$$\iint_{0}^{x} x e^{\frac{-x^2}{y}} dy dx.$$

(c) Evaluate:

$$\iint_{0}^{\infty} \int_{0}^{1} \int_{0}^{1} x \, dz \, dx \, dy.$$
 rtmnuonline.com

OR

6. (a) Evaluate

$$\iint \frac{r}{\sqrt{a^2 + r^2}} dr d\theta$$
 rtmnuonline.com

over one loop of lemniscate $r^2 = a^2 \cos 2\theta$.

(b) Evaluate

$$\int_{0}^{x} \int_{y}^{x} \frac{x^{2}}{(x^{2} + y^{2})^{3/2}} dx dy$$

by changing into Polar Coordinates.

- (c) Find the mass of the area bounded by the curves $y = x^2$ and $x = y^2$, if the density at any point is given by $\rho = K(x^2 + y^2)$.
- 7. (a) If the vector $\overline{\mathbf{x}}$ and scalar λ satisfies the equation $\overline{\mathbf{a}} \times \overline{\mathbf{x}} = \lambda \overline{\mathbf{a}} + \overline{\mathbf{b}}$ and $\overline{\mathbf{a}} \cdot \overline{\mathbf{x}} = 1$. Find the value of λ and $\overline{\mathbf{x}}$ in terms of $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$.
 - (b) Find the directional derivatives of φ = xy² + yz² at the point (2, -1, 1) in the direction of the vector i + 2j + 2k.
 - (c) Show that $\overline{F} = (4xy z^3)i + 2x^2j 3xz^2k$ is conservative force field. Find the scalar potential function ϕ .

OR

8. (a) Prove that

rtmnuonline.com

$$\left(\overline{a} \times \overline{b}\right) \cdot \left(\overline{c} \times \overline{d}\right) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{b} \cdot \overline{c} \\ \overline{a} \cdot \overline{d} & \overline{b} \cdot \overline{d} \end{vmatrix}.$$

rtmnuonline.com

- (b) Find the angle between the tangents to the curve $\bar{r}=t^2i+2tj-t^3k$ at the points $t=\pm 1$.
- (c) A particle moves along a curve

$$\bar{r} = (t^3 - 4t)i + (t^4 + 4t)j + (8t^2 - 3t^3)k$$

where t is the time. Find the magnitude of tangential and normal components of its acceleration at t = 2.

7

9. Evaluate $\iint_{S} \overline{A} \cdot \hat{n} \, ds$, where

rtmnuonline.com

 $\overline{A} = (x+y^2)i - 2xj + 2yz$ k and S is the surface of the plane 2x + y + 2z = 6 in the first octant.

OR

10. Evaluate $\oint_{c} [(x^2 - \cosh y) dx (y + \sin x) dy]$ by Green's

Theorem, where C is the rectangle with the vertices (0, 0), $(\pi, 0)$, $(\pi, 1)$ and (0, 1).

11. (a) Using method of least squares, fit a curve $y = ab^x$ to the following data:

X	2	3	4	5	6
у	145	175	210	250	300

(b) Apply Lagrange's interpolation formula to find f (x) from the following data:

x	0	1	2	5	
f(x)	2	3	12	147	

rtmnuonline.com

OR

12. (a) Calculate the coefficient of correlation and hence the equations of lines of regression for the following data:

x	1	2	3	4	5	6	7	8	9	
у	9	8	10	12	11	13	14	16	15	-

(b) Solve $y_{x+2} - 4y_x = 9 x^2$.

rtmnuonline.com

rtmnuonline.com