Reference: Agresti, Sections 6.2-6.3

Cumulative link models

- Suppose the response categories, $1, 2, \ldots, c$ are ordered.
- Let $\pi_{ij} = p(y_i = j)$ then the corresponding cumulative probability is

$$P(y_i \le j) = \pi_{i1} + \pi_{i2} + \ldots + \pi_{ij}, \quad j = 1, \ldots, c.$$

• The class of models that we consider are of the form

$$g(P(y_i \leq j)) = \alpha_j + \mathbf{x}_i' \boldsymbol{\beta}.$$

- α_j represents the baseline value of the transformed cumulative probability for category j.
- β_k represents the increase in *all* transformed cumulative probabilities for a one-unit increase in x_{ik} .

Proportional odds cumulative logit model

• A direct extension of the usual logistic regression model applies the logit transformation to the cumulative probabilities,

$$\operatorname{logit}(P(y_i \leq j)) = \log \frac{P(y_i \leq j)}{1 - P(y_i \leq j)} = \alpha_j + \boldsymbol{x}_i' \boldsymbol{\beta}.$$

• The cumulative logits are defined

$$\log\left(\frac{\pi_{i1}}{\pi_{i2} + \pi_{i3} + \dots + \pi_{ic}}\right)$$
$$\log\left(\frac{\pi_{i1} + \pi_{i2}}{\pi_{i3} + \pi_{i4} + \dots + \pi_{ic}}\right)$$
$$\vdots$$
$$\log\left(\frac{\pi_{i1} + \pi_{i2} + \dots + \pi_{i,r-1}}{\pi_{ic}}\right)$$

ullet Each cumulative logit uses all c response categories.

Slide 1

• The log-cumulative odds ratio is proportional to the distance between $x_i = u$ and $x_i = v$

$$\log \frac{p(y_i \le j | \boldsymbol{x}_i = \boldsymbol{u})/p(y_i > j | \boldsymbol{x}_i = \boldsymbol{u})}{p(y_i \le j | \boldsymbol{x}_i = \boldsymbol{v})/p(y_i > j | \boldsymbol{x}_i = \boldsymbol{v})} = (\boldsymbol{u} - \boldsymbol{v})'\boldsymbol{\beta}.$$

Slide 3

- For each j, adjusting for the other covariates in the model, for a 1-unit increase in x_{ik} , the odds that $y_i \leq j$ is multiplied by $\exp(\beta_k)$.
- The model constrains the c-1 response curves to have the same shape. The same proportionality constant applies to each logit. Hence the name **proportional odds model**.

• The odds of $y_i \leq j$ are

$$\frac{P(y_i \le j)}{1 - P(y_i \le j)} = \exp(\alpha_j + \boldsymbol{x}_i' \boldsymbol{\beta}).$$

- $\exp(\alpha_j)$ may be interpreted as the **baseline** odds of a response in category j or below when x = 0.
- Note that α_j increases as j increases, since for j < j', $P(y_i \le j) < P(y_i \le j')$.
- β_k is the change in log-odds of falling into or below any category for a one unit increase in x_k , holding all other covariates fixed.

• The likelihood function viewed as a function of $(\{\alpha_j\}, \beta)$ is

$$\prod_{i=1}^{N} \prod_{j=1}^{c} \pi_{ij}^{y_{ij}} = \prod_{i=1}^{N} \prod_{j=1}^{c} \left(P(y_i \leq j | \mathbf{x}_i) - P(y_i \leq j - 1 | \mathbf{x}_i) \right)^{y_{ij}} \\
= \prod_{i=1}^{N} \prod_{j=1}^{c} \left(\frac{\exp(\alpha_j + \mathbf{x}_i' \boldsymbol{\beta})}{1 + \exp(\alpha_j + \mathbf{x}_i' \boldsymbol{\beta})} - \frac{\exp(\alpha_{j-1} + \mathbf{x}_i' \boldsymbol{\beta})}{1 + \exp(\alpha_{j-1} + \mathbf{x}_i' \boldsymbol{\beta})} \right)^{y_{ij}}.$$

Slide 5

• The log-likelihood is

$$\log \mathcal{L} = \sum_{i=1}^{N} \sum_{j=1}^{c} y_{ij} \log \left[\frac{\exp(\alpha_j + \boldsymbol{x_i'}\boldsymbol{\beta})}{1 + \exp(\alpha_j + \boldsymbol{x_i'}\boldsymbol{\beta})} - \frac{\exp(\alpha_{j-1} + \boldsymbol{x_i'}\boldsymbol{\beta})}{1 + \exp(\alpha_{j-1} + \boldsymbol{x_i'}\boldsymbol{\beta})} \right]$$

Latent variable motivation

- The model can be interpreted in terms of a *latent variable*.
- Suppose the observed response y_i results from grouping an underlying continuous variable y_i^* using cut-points $\alpha_1 < \alpha_2 < \ldots < \alpha_{c-1}$, so that

$$y_i = j$$
 if $\alpha_{j-1} < y_i^* \le \alpha_j$
then, $P(y_i \le j) = P(y_i^* \le \alpha_j)$.

• Suppose that the underlying continuous variable follows a linear model of the form

$$y_i^* = \boldsymbol{x}_i' \boldsymbol{\beta} + \varepsilon_i,$$

Slide 7

where the error term ε_i has c.d.f. $F(\varepsilon_i)$, then

$$P(y_i^* \le \alpha_j) = P(\varepsilon_i \le \alpha_j - \boldsymbol{x}_i'\boldsymbol{\beta}) = F(\alpha_j - \boldsymbol{x}_i'\boldsymbol{\beta})$$

and

$$F^{-1}(P(y_i \le j)) = \alpha_j - \boldsymbol{x}_i' \boldsymbol{\beta}^*$$

- Note that the latent variable formulation results in linear predictor $\alpha_j \mathbf{x}_i' \boldsymbol{\beta}$ rather than $\alpha_j + \mathbf{x}_i' \boldsymbol{\beta}$.
- When using software check which parametrization is used, $\alpha_j + \mathbf{x}_i' \boldsymbol{\beta}$ or $\alpha_j + \mathbf{x}_i' \boldsymbol{\beta}$, and interpret β_k accordingly.

- Note that we have the same parameters β for the effects on Y regardless of how the cutpoints $\{\alpha_j\}$ are chosen.
- Two investigators who use different response categories in studying an association should reach similar conclusions.

- If $\varepsilon \sim \text{logistic}$, then F^{-1} is the logit link.
- Normality for ε implies a probit link for the cumulative probabilites.

$$\boldsymbol{\Phi}^{-1}(P(y_i \le j) = \alpha_j + \boldsymbol{x}_i' \boldsymbol{\beta}$$

Slide 9

- In general, the fit of a logit and probit model are quite similar.
- Another choice is the complementary log-log link, which leads to the model

$$\log(-\log(1 - P(y_i \le j))) = \alpha_j + \mathbf{x}_i' \boldsymbol{\beta}.$$

Example: Cheese-tasting experiment

Data from McCullagh and Nelder (1989), Table 5.1. Subjects were randomly assigned to taste one of four different cheeses. Response categories are 1=strong dislike to 9=excellent taste.

Slide 10

	Response category										
Cheese	1	2	3	4	5	6	7	8	9		
A	0	0	1	7	8	8	19	8	1		
В	6	9	12	11	7	6	1	0	0		
\mathbf{C}	1	1	6	8	23	7	5	1	0		
D	0	0	0	1	3	7	14	16	11		

Note that the function polr(.) in the R package MASS uses the following parametrization for the cumulative logit model

$$\log \frac{P(y_i \le j)}{1 - P(y_i \le j)} = \alpha_j - \mathbf{x_i'}\boldsymbol{\beta}$$

That is,

Slide 11

Slide 12

$$\log \frac{P(y_i \le 1)}{P(y_i > 1)} = \alpha_1 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i}$$

$$\log \frac{P(y_i \le 2)}{P(y_i > 2)} = \alpha_2 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i}$$

$$\vdots$$

$$\log \frac{P(y_i \le 8)}{P(y_i > 8)} = \alpha_8 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i}$$

Using cheese A as the reference, the three dummy variables are

$$x_{1i} = \begin{cases} 1 & \text{if subject } i \text{ tasted cheese B} \\ 0 & \text{otherwise} \end{cases}$$
 $x_{2i} = \begin{cases} 1 & \text{if subject } i \text{ tasted cheese C} \\ 0 & \text{otherwise} \end{cases}$
 $x_{3i} = \begin{cases} 1 & \text{if subject } i \text{ tasted cheese D} \\ 0 & \text{otherwise} \end{cases}$

A positive β_k indicates a greater liking for cheese x_k compared to the reference.

Slide 14

```
      4|5
      -2.2440
      0.3267
      -6.8680

      5|6
      -0.9078
      0.2833
      -3.2037

      6|7
      0.0443
      0.2646
      0.1673

      7|8
      1.5459
      0.3017
      5.1244

      8|9
      3.1058
      0.4057
      7.6547
```

Residual Deviance: 711.3479

AIC: 733.3479

- $\hat{\alpha}_1 = -5.47$ is the estimated log-odds of falling into category 1 (strong dislike) versus all other categories for cheese A.
- $\hat{\alpha}_8 = 3.11$ is the estimated log-odds of responses in $1, \dots, 8$ versus 9 for cheese A.
- $\hat{\beta}_1 = -3.352$ and has p-value = 9.41×10^{-15} (2*pt(-7.819, 1653) where $df = 208 \times 8 11 = 1653$. This indicates that cheese B does not taste as good as cheese A.
- The results imply that D is the preferred cheese, followed by A, then C, and B comes last.

```
We can also use the R package VGAM to fit the proportional odds
model, but we need to first put the data in an ungrouped format.
cheese.ungrp = as.data.frame(lapply(cheese, function(x,p) rep(x,p), cheese$count))
vglm.fit = vglm(response ~ type, family=cumulative(paralle1=TRUE), data=cheese.ungrp)
> summary(vglm.fit)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept):2 -4.41218
                        0.42472 -10.389 < 2e-16 ***
(Intercept):3 -3.31262
                        0.36967 -8.961 < 2e-16 ***
(Intercept):4 -2.24401
                        0.32617 -6.880 5.99e-12 ***
                        0.27477 -3.304 0.000954 ***
(Intercept):5 -0.90776
(Intercept):6 0.04426
                        0.25984 0.170 0.864758
(Intercept):7 1.54592
                        0.30419 5.082 3.73e-07 ***
(Intercept):8 3.10577
                        0.40443
                                 7.679 1.60e-14 ***
```

Slide 15

typeB	3.35184	0.42351	7.914	2.48e-15	***
typeC	1.70989	0.37305	4.583	4.57e-06	***
typeD	-1.61279	0.37778	-4.269	1.96e-05	***

Residual deviance: 711.3479 on 1653 degrees of freedom Log-likelihood: -355.674 on 1653 degrees of freedom

Slide 17

Slide 18

structure.

• Note that the function vglm(.) with family = cumulative uses the parametrization

$$\log \frac{P(y_i \le j)}{1 - P(y_i \le j)} = \alpha_j + \mathbf{x_i'}\boldsymbol{\beta}$$

so, a positive β_k indicates a greater dislike for cheese x_k compared to the reference.

• The estimates of α_j are the same as those using polr(.), but the signs for the estimates of β_k are different.

```
We can test the proportional odds assumption H_0: same slope for all cumulative logits vs. H_1: different slopes with a likelihood ratio test comparing the model with varying slopes for the cumulative logits and the model above noprop.fit = vglm(response ~ type, family=cumulative, data=cheese.ungrp) ---
Residual deviance: 691.0397 on 1632 degrees of freedom Log-likelihood: -345.5199 on 1632 degrees of freedom ---
> 1-pchisq(-2*(logLik(vglm.fit)-logLik(noprop.fit)), df=df.residual(vglm.fit)-df.residual((noprop.fit)))
[1] 0.5018223
We fail to reject the null and can assume a proportional odds
```