

1620 GENERAL PROGRAM LIBRARY

Computation of Equilibrium Composition
and Temperature of Chemical Reactions

9.3.018

DR. JOHN MANIOTES
COMPUTER TECHNOLOGY DEPT.
PURDUE UNIVERSITY
CALUMET CAMPUS
HAMMOND, IN 46323

COMPUTER
TECHNOLOGY

DR. JOHN MAMMOTTE
COMPUTER TECHNOLOGY DEPT.
PHYSICAL DIVISION
CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DISCLAIMER

Although each program has been tested by its contributor, no warranty, express or implied, is made by the contributor or any User's Group, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or any User's Group, in connection therewith.

COMMON USERS GROUP PROGRAM REVIEW AND EVALUATION
(fill out in typewriter, ink or pencil)

Program No. _____

Date _____

Program Name: _____

1. Does the abstract adequately describe what the program is and what it does? Yes _____ No _____
Comment _____

2. Does the program do what the abstract says? Yes _____ No _____
Comment _____

3. Is the description clear, understandable, and adequate? Yes _____ No _____
Comment _____

4. Are the Operating Instructions understandable and in sufficient detail? Yes _____ No _____
Comment _____

Are the Sense Switch options adequately described (if applicable)? Yes _____ No _____
Are the mnemonic labels identified or sufficiently understandable? Yes _____ No _____
Comment _____

5. Does the source program compile satisfactorily (if applicable)? Yes _____ No _____
Comment _____

6. Does the object program run satisfactorily? Yes _____ No _____
Comment _____

7. Number of test cases run _____. Are any restrictions as to data, size, range, etc. covered adequately in description? Yes _____ No _____
Comment _____

8. Does the Program meet the minimal standards of COMMON? Yes _____ No _____
Comment _____

9. Were all necessary parts of the program received? Yes _____ No _____
Comment _____

10. Please list on the back any suggestions to improve the usefulness of the program.
These will be passed onto the author for his consideration.

Please return to:

Your Name _____

Company _____

Address _____

Users Group Code _____

Mr. Richard L. Pratt
Data Corporation
7500 Old Xenia Pike
Dayton, Ohio 45432

THIS REVIEW FORM IS PART OF THE COMMON ORGANIZATION'S PROGRAM REVIEW AND EVALUATION PROCEDURE. NONMEMBERS ARE CORDIALLY INVITED TO PARTICIPATE IN THIS EVALUATION.

O

O

O

1620 USERS GROUP LIBRARY
PROGRAM ABSTRACT

Computation of Equilibrium Composition
and Temperature of Chemical Reactions

By

Mae E. Meads

and

George E. McGowan

Direct Inquiries to:

Mae E. Meads
Engineering Computer Applications Group
The Baltimore Gas and Electric Company
Baltimore, Maryland 21203
1620 Users Group No. 1235

March 9, 1966

Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for IBM Data Processing Systems. When such an announcement occurs, users should order a complete new program from the Program Information Department.

1. TITLE (If subroutine, state in Title): Computation of Equilibrium Composition and Temperature of Chemical Reactions
2. Author; Organization: Mae E. Meads, George E. McGowan - Baltimore Gas and Electric Company, Subject Classification:
Date: 1 November, 1965 Users Group Membership Code: 1235
3. Direct Inquiries to Name: Engineering Computer Applications Group, Baltimore Gas and Electric Company, Baltimore, Maryland 21203 Phone: 539-8000
4. Description/Purpose: (5. Method; 6. Restriction/Range; When Applicable) Computes the equilibrium conditions for the combustion of any hydrocarbon in air or in any oxygen-nitrogen mixture of a given ratio. Uses method devised by Huff, Gordon and Morrell (1) involving solution of equations simultaneously by successive iterations. Restricted to adiabatic combustion processes in which the total number of elements and compounds does not exceed 7 and 13, respectively. Thermodynamic Functions Program is restricted to use with the Table of Coefficients included with the writeup.

7. Specifications (Check or fill in appropriate spaces):
 - a. Storage used by program: 20K
 - b. Equipment required by program:
Card System X; Magnetic Tape System; No. of Tapes _____;
Paper Tape System _____; Disk File System _____; No. of Packs _____;
TNS, TNF, MF _____; Auto divide _____; Indirect addressing _____; Floating point hardware _____;
Other (specify) _____

Can program be used on lesser Machine? No. Specify which requirements can be easily removed None

- c. Programming type (Check appropriate spaces):
Fortran without Format _____; Fortran with Format _____;
PDQ FORTRAN with Format X _____;
Fortran II _____; Mainline, Complete X; Subroutine or function subprogram(S or F) _____;
Is the program a library (ie, SPS) function to the Fortran system checked? No _____;
SPS _____; SPS - 1620/1710 _____;
Mainline, Complete _____; Macro _____; Subroutine _____;
Other programming language: _____; Give details _____

- d. Language used in the writeup: English
8. Additional Remarks: The program consists of three parts referred to in the writeup as Thermodynamic Functions Program, Combustion Process I and Combustion Process II.

TABLE OF CONTENTS

	<u>Section</u>	<u>Sub-Section</u>	<u>Page</u>
Deck Key.....	1.	0.	0
rogram Descriptions.....	2.	0.	0
Computation of Equilibrium Composition and Temperature of Chemical Reactions (General Description).....	2.	1.	1
Thermodynamic Functions (Description).....	2.	2.	1
Combustion Process I (Description).....	2.	3.	1
Combustion Process II (Description).....	2.	4.	1
athematics and/or Techniques.....	3.	0.	0
nput and Output Formats.....	4.	0.	0
Input/Output Format (Thermodynamic Functions).....	4.	1.	0
Input Format.....	4.	1.	1
Output Format.....	4.	1.	4
Input/Output Format (Combustion Process I).....	4.	2.	0
Input Format.....	4.	2.	1
Output Format.....	4.	2.	4
Input/Output Format (Combustion Process II).....	4.	3.	0
Input Format.....	4.	3.	1
Output Format.....	4.	3.	1
estictions.....	5.	0.	0
operating Instructions.....	6.	0.	0
Thermodynamic Functions (Operation).....	6.	1.	1
Combustion Process I (Operation).....	6.	2.	1
Combustion Process II (Operation).....	6.	3.	1
upporting Documentation and Materials.....	7.	0.	0
Sample Problems.....	7.	1.	0
Sample Problem No. 1 (Input).....	7.	1.	1
Sample Problem No. 1 Answers.....	7.	1.	2
Sample Problem No. 2 (Input).....	7.	2.	1
Sample Problem No. 2 Answers.....	7.	2.	2
Source Program Listings (Including Symbol Table)....	7.	3.	0
Thermodynamic Functions.....	7.	3.	1
Combustion Process I.....	7.	3.	5
Combustion Process II.....	7.	3.	11
Data Card Layout Forms.....	7.	4.	0
Thermodynamic Functions.....	7.	4.	1
Combustion Process I.....	7.	4.	3
Combustion Process II.....	7.	4.	4
Block Diagrams.....	7.	5.	0
Thermodynamic Functions.....	7.	5.	1
Combustion Process I.....	7.	5.	2
Combustion Process II.....	7.	5.	3
Operating Procedure (All Programs).....	7.	5.	4
Coefficients of Thermodynamic Data Tables.....	7.	6.	0
Table II (Coefficients and Constants for C_p , H_f and S_f Equations).....	7.	6.	1
Table III (Coefficients and Constants for AH Equations).....	7.	6.	7
Table IV (Coefficients and Constants for Log K Equations).....	7.	6.	10

Deck Key

Deck 1	FORTRAN Source Deck of Thermodynamic Functions Program
Deck 2	FORTRAN Source Deck of Combustion Process I Program
Deck 3	FORTRAN Source Deck of Combustion Process II Program
Deck 4	Compressed Object Deck of Thermodynamic Functions Program Compiled by PDQ FORTRAN Processor C ₂ with Fixed Format Subroutine
Deck 5	Compressed Object Deck of Combustion Processor I Program Compiled by PDQ FORTRAN Processor C ₂ with Fixed Format Subroutine
Deck 6	Compressed Object Deck of Combustion Processor II Program Compiled by PDQ FORTRAN Processor C ₂ with Fixed Format Subroutine*
Deck 7	Sample Problem No. 1 (Input)
Deck 8	Control Card for Sample Problem No. 1 (One-Card-Input Data for Combustion Process II)
Deck 9	Thermodynamic Coefficients for Temperature Range of 1500°-2500° for the Following Species: H ₂ , H ₂ O, OH, CO ₂ , CO, N ₂ , NO, O ₂ , H, C, N, AR, O Used for Sample Problem No. 1
Deck 10	Thermodynamic Coefficients for Temperature Range of 2500°-3500° for the Following Species: H ₂ , H ₂ O, OH, CO ₂ , CO, N ₂ , NO, O ₂ , H, C, N, AR, O Used for Sample Problem No. 2

* - First two (2) cards which zeroes core have been removed.

Deck 11

Sample Problem No. 2 (Input)

Deck 12

Control Card for Sample Problem No. 2
(One-Card-Input Data for Combustion
Process II)

Deck 13

Thermodynamic Coefficients for Temperature
Range of 1500°-2500° for the Following
Species: H₂, H₂O, OH, CO₂, CO, N₂, NO,
O₂, H₂S, S₂, SO₂, SO₃, H, C, N, Ar, O, S
Used for Sample Problem No. 2

PROGRAM DESCRIPTIONS

1.0.1

2.0.0

COMPUTATION OF EQUILIBRIUM COMPOSITION AND TEMPERATURE
OF CHEMICAL REACTIONS

GENERAL DESCRIPTION

The 1620 Program computes the equilibrium conditions for the combustion of any hydrocarbon in air or in any oxygen-nitrogen mixture of a given ratio. The final solution is expressed in terms of the partial pressures of each of the reaction products, " P_i ", the equilibrium temperature " T ", and the number of formula weights of the reactants, " A ", which are involved in the chemical reaction.

A rapidly convergent approximation process that simultaneously determines both composition and temperature resulting from a chemical reaction is the method used in the program. This method was developed by the NACA Lewis Laboratory during 1948 and is applicable to a wide variety of problems.

The program, written for the 1620 computer in FORTRAN language, consists of three passes: (1) Combustion Process I, (2) Combustion Process II and (3) Thermodynamic Functions. Input and output data are on cards. However, the final solution to a problem will be typed out on the 1620 console typewriter.

THERMODYNAMIC FUNCTIONS

PROGRAM DESCRIPTION

The program calculates thermodynamic data at any temperature T (ranging from 300°-3500° K) for use in the Combustion Process I Program.

Thermodynamic data obtained from the program will be the following:

- (1) C_p^o - specific heat at constant pressure and standard conditions. cal./(mole, °K)
- (2) H_T^o - sum of sensible enthalpy and chemical energy at temperature T and standard conditions. (Kcal/mole)
- (3) $\frac{\Delta H}{RT}$ - enthalpy change divided by gas constants times temperature multiplied by -1.
- (4) Log K - logarithm of equilibrium constant.
- (5) S_T^o * - molar entropy at standard conditions. cal./(mole, °K)

* S_T^o is included in the output but is not used in the Combustion Program.

Input data to the program are the Coefficients of Thermo-dynamic Tables II, III, and IV. Further discussion of the tables will be given under the sections entitled "Mathematics" and "Restrictions".

All input and output data in the program will be on cards.

COMBUSTION PROCESS II

COMBUSTION PROCESS I

Combustion Process I sets up an I-matrix and I-matrix which are used in Combustion Process II to solve for new estimates of T_3 . The program also sets up an error parameter, " ϵ ", and tests to see whether or not " ϵ " is less than or equal to .0015. Whenever the value of " ϵ " is greater than .0015, it is concluded that the desired values of the partial pressure, temperature and the formula's weight of the reactants have not been reached. Therefore, the program will type out a message to load Combustion Process II. If the value of " ϵ " is less than or equal to .0015, the desired values have been reached, and the program will type out the partial pressures, " p_i ", the equilibrium temperature, T_e , and the number of formula's weights of the reactants in an 11n.8 format.

The maximum number of components and elements that may be processed through the program are thirteen (13) and seven (7), respectively. A control card which tells the processor the number of components and the number of elements involved in a problem will enable the program to process any number of components less than or equal to thirteen and any number of elements less than or equal to seven.

COMBUSTION PROCESS II

COMBUSTION PROCESS I

Combustion Process II calculates new estimates for input into the Thermodynamic Functions Program.

Input data for the program are: (1) one control card, and (2) the K-matrix and I-matrix left in the machine from Combustion Process I.

Output data will be on cards and will be in the following order:

Temperature Card

Control Data Card

A, P, I Card

Log P(i) Data Cards

MATHEMATICS AND/OR TECHNIQUE

The method used in the program for the computation of equilibrium temperatures and compositions of adiabatic combustion reactions was devised by Huff, Gordon and Morrell.(1) A set of equations, representing dissociative equilibria, pressure balance, mass balance and energy balance is solved simultaneously by successive iterations of a series of correction equation. Each of these correction equations contains a correction variable which takes the form:

$$S_x = Ax \log \frac{X_0}{X} \quad (1)$$

Due to the limited storage capacity of the 1620 computer and the necessity to calculate thermodynamic data for each iteration, the program is written in three parts. The function of each part is as follows:

- (1) Using the estimates of the partial pressures of the reactants involved in the combustion process, thermodynamic properties determined by the Thermodynamic Functions Program, an estimated temperature, the general formula and total enthalpy as basic data, Combustion Process I (Deck 1) constructs two matrices in the manner described by Huff, Gordon and Morrell,(1) and tests for convergence using .0015 as the tolerance level.
- (2) Combustion Process II (Deck 2) multiplies the two matrices that were constructed in Combustion Process I and computes new estimates from the matrix obtained as a result of the matrix multiplication by using the Crout⁽²⁾ method for solving a matrix, as suggested by Huff, Gordon and Morrell.(1)
- (3) The Thermodynamic Functions Program (Deck 3) computes the thermodynamic properties given in equations (2) - (6) for use in the Combustion Process I Program (Deck 1). The coefficients and constants in Tables II, III and IV used in computing the thermodynamic properties necessary for Combustion Process I were computed specifically for the purpose of being used with the Thermodynamic Functions Program. The following equations representing the molar specific heat, the molar enthalpies, the molar entropies, the enthalpy change and the equilibrium constant are used in the program:

3.1.1

$$c_p^o = \alpha + \beta T + \gamma T^2 + \delta T^3 \quad (2)$$

$$h_T^o = (\alpha T + 1/2\beta T^2 + 1/3\gamma T^3 + 1/4\delta T^4) 10^{-3} + c \quad (3)$$

$$s_T^o = \alpha \ln T + \beta T + 1/2\gamma T^2 + 1/3\delta T^3 + k \quad (4)$$

$$\frac{\Delta H}{RT} = a + bT + cT^2 + dT^3 + \frac{m}{T \times 10^{-3}} \quad (5)$$

$$\log K = A \log T + BT + CT^2 + DT^3 + L + \frac{M}{T \times 10^{-3}} \quad (6)$$

Data contained in the National Aeronautics and Space Administration Report (3) were used to determine the coefficients in equations (2) - (6). However, applying equation (1) to the conservation of energy:

$$S_h = Ah \log \frac{h_o}{h} \quad (7)$$

where "h_o" is the enthalpy of the reactants and "h" is the sum of the enthalpies of the product weighted by their respective mole fraction of the combustion products. If for any reason, the values of "h_o" and "h" would be opposite in sign, the expression containing the log (h_o/h) would create an error response in the computer. Therefore, to evaluate "C" of equation (3), assigned enthalpies, as shown in Table I, were used.

TABLE I

ENTHALPY ASSIGNED TO SEVERAL SUBSTANCES

Element	Phase	H ₂₉₈
Ar	Gas	1.4812
Br ₂	Liquid	2.6600
C	Graphite	92.1790
H ₂	Gas	69.4407
N ₂	Gas	3.7715
O ₂	Gas	4.1109
S	Rhombic	100.0000

REFERENCES

- (1) Huff, I. N., Gordon, S., Morrell, V. E., - "General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions", NACA, Report 1037 (1951).
- (2) Grout, P.D., - "A Short Method for Evaluating Determinants and Solving Systems of Linear Equations with Real or Complex Coefficients", Trans. Amer. Inst. Elec. Engrs., 60 (1941).
- (3) McBride, B. J., Heimel, S., Ehlers, J. G., Gordon, S., - "Thermodynamic Properties to 6000° K for 210 Substance Involving the First 18 Elements", NASA, Sp-3001, (1963).

INPUT AND OUTPUT FORMATS

4.0.0

3.1.4

INPUT/OUTPUT FORMATS

THERMODYNAMIC FUNCTIONS

Input

A set of input data for a compound or element being processed through the Thermodynamic Functions Program consists of three cards (one from each of the Coefficients of Thermodynamic Functions Tables). A 2, 3 or 4 will be punched in Column 80 for Tables II, III or IV, respectively. A set of data being processed must be in numeric order by table code.

All data being processed are preceded by a temperature card. The temperature card will be the first card read into the program and will have the following format:

INPUT/OUTPUT FORMAT THERMODYNAMIC FUNCTIONS

<u>Description</u>	<u>Columns</u>	<u>FORTRAN Symbol</u>	<u>Format</u>
T (°K)	1-8	T	F8.2
-503059 069916 -006240 000319 385222 4775775			H20 4
503059 -160988 028738 -002206 10996629			H20 3
495233 638682 -172814 018124 1230309 1580923			H20 2
-207869 016067 -000377 -000032 090789 2246215			H2 4
207869 -036996 001736 000218 5172101			H2 3
580531 147043 -010349 -001733 6768494 -180405			H2 2
2200.00	TEMPERATURE CARD		-

Input data from all three tables are on cards and will be in the following formats:

Table II

<u>Description</u>	<u>Columns</u>	<u>FORTRAN Symbol</u>	<u>Format</u>
α	1-8	A	F8.5
$b \times 10^3$	9-16	B	F8.5
$\gamma \times 10^6$	17-24	CC	F8.5
$\delta \times 10^9$	25-32	D	F8.5
C	33-41	E	F9.5
K	42-49	F	F8.5
Identification	55-57	ID	I2
Table Code	80		

Table III

<u>Description</u>	<u>Columns</u>	<u>FORTRAN Symbol</u>	<u>Format</u>
a	1-8	AA	F8.5
$b \times 10^3$	9-16	BB	F8.5
$c \times 10^6$	17-24	CCC	F8.5
$d \times 10^9$	25-32	DD	F8.5
m	33-41	EE	F9.5
Table Code	80		

Table IV

<u>Description</u>	<u>Columns</u>	<u>FORTRAN Symbol</u>	<u>Format</u>
A	1-8	AAA	F8.5
$B \times 10^3$	9-16	BBB	F8.5
$C \times 10^6$	17-24	CK	F8.5
$\Delta \times 10^9$	25-32	DDD	F8.5
L	33-41	EEE	F9.5
M	42-49	F	F8.5
Table Code	80		

Output

All output data are on cards. There will be one card punched for each set of data read. The order of the elements and compounds in the output is the same as their original order in the input.

The output format will be as follows:

<u>Description</u>	<u>Columns</u>	<u>FORTRAN Symbol</u>	<u>Format</u>
C^o	1-9	C	F9.4
p			
cal./(mole, °K)			
H^o_T	10-18	H	F9.4
(Kcal/mole)			
ΔH_f^o	19-27	HH	F9.4
log K	28-36	CECF	F9.4
S^o_T	37-45	S	F9.4
cal./(mole, °K)			
Identification	76-80	ID	I5

SAMPLE INPUT DATA

FOR

THERMODYNAMIC FUNCTIONS PROGRAM

2200.00	TEMP. = 2200 K			148721 -061149 017015 -001596 5108413	S2	3
580531 147043 -010349 -001733 6768494 -180405	H2	2	-148721 026557 -003695 000230 -156036 2218556	S2	4	
207869 -036996 001736 000218 5172101	H2	3	1110546 292319 -103367 013607 2911630 -613302	SO2	2	
-207869 016067 -000377 -000032 090789 2246215	H2	4	33444 -098020 023869 -002209 12883220	SO2	3	
495233 638682 -172814 018124 1230309 1580923	H2O	2	-233444 042570 -005183 000320 -642058 5595112	SO2	4	
503059 -160988 028738 002206 10996629	H2O	3	1523516 460266 -171284 022566 589454-2908528	SO3	2	
-503059 069916 -006240 000319 385222 4775775	H2O	4	277904 -140570 035012 -003261 17079080	SO3	3	
538982 243528 -061041 005829 4467687 1312034	OH	2	-277904 061049 -007603 000472 -1343033 7417350	SO3	4	
231047 -061566 009990 -000659 5073363	OH	3	496810 000000 000000 000000 8533690 -091377	H	2	
-231047 026738 -002169 000095 188357 2203334	OH	4				
963218 502247 -176740 022673 141059 -643266	CO2	2	515597 -028602 012290 -000845 26191504 838824	C	2	
279290 -134150 031209 -002810 19305350	CO2	3				
-279290 058261 -006777 000407 -639973 8384207	CO2	4				
620126 255577 -088801 011249 6578319 1103990	CO	2	489391 013226 -007869 001568 11346040 872343	N	2	
199668 -071794 016708 -001447 12896790	CO	3				
-199668 031180 -003628 000210 -074022 5601005	CO	4				
595705 271090 -092791 011599 186228 1106826	N2	2	501322 -001167 -001484 000591 6016089 1000671	O	2	
192766 -061552 012924 -001065 11325067	N2	3				
-192766 026732 -002806 000154 -055680 4918414	N2	4				
664779 221014 -077591 009955 2332637 1159108	NO	2	571818 -094930 041903 -005130 16481760 787223	S	2	
164012 -052574 011446 -000981 7562922	NO	3				
-164012 022832 -002485 000142 -084787 3284535	NO	4				
761206 094407 -016012 002108 148991 472934	O2	2				
121493 -024340 002188 -000117 5979684	O2	3				
-121493 010571 -000475 000017 -281254 2596944	O2	4				
006270 702346 -230861 028578 16243440 1252268	H2S	2				
482659 -200597 045752 -004241 8708322	H2S	3				
-482659 087118 -009935 000614 351185 3781976	H2S	4				
848089 053176 -017635 002345 22811776 564902	4.1.5 S2 23	2				

INPUT/OUTPUT FORMATS

COMBUSTION PROCESS I

Input

A set of input data into Combustion Process I will be in the following format and order:

1. Control Data Card (One Card)

<u>Card Column</u>		<u>Format</u>	<u>FORTRAN Symbol</u>
1-3	Number of Compounds	I3	N
4-5	Number of Elements	I2	M
78-80	101 (Identification No.)		

2. A, P, T Data Card (One Card)

1-14	Number of Formula Weights of Reactants	E14.7	B(1)
15-28	Initial Estimate of Total Pressure	E14.7	P(1)
29-42	Temperature	E14.7	T(1)
78-80	201 (Identification No.)		

3. Log P(i) Data Cards (No. of Cards Determined
by No. of Reactants)

1-14	Log P(1)	E14.6	X(8,I)
78-80	301, 302, Etc. (Identification No.)		

4. Thermodynamic Data Cards (No. of Cards Determined
by No. of Reactants)

1-9	ΔH° C° P	F9.4	X(1,I)
10-18	H° T	F9.4	X(9,I)
19-27	$\Delta H/RT$	F9.4	Y(9,I)
28-36	Log K_1	F9.4	Y(10,I)
37-45	S° T	F9.4	
78-80	401, 402, Etc.		

5. a_0, b_0, \dots, h_0 Data Card (One Card)

<u>Card Column</u>		<u>Format</u>	<u>FORTRAN Symbol</u>
1-9	a_0 - No. of Atoms of Respective Element in Formula	F9.4	O(1)
10-18	b_0 - No. of Atoms of Respective Element in Formula	F9.4	O(2)
19-27	c_0 - No. of Atoms of Respective Element in Formula	F9.4	O(3)
28-36	d_0 - No. of Atoms of Respective Element in Formula	F9.4	O(4)
37-45	e_0 - No. of Atoms of Respective Element in Formula	F9.4	O(5)
46-54	f_0 - No. of Atoms of Respective Element in Formula	F9.4	O(6)
55-63	g_0 - No. of Atoms of Respective Element in Formula	F9.4	O(7)
64-72	h_0 - Initial Enthalpy per Mole of Reactants	F9.4	O(8)
78-80	501 (Identification No.)		

6. a_i, b_i, \dots, g_i Data Card (No. of Cards Determined by No. of Reactants)

1-9	a_i - No. of Atoms per Element in Reactant Product	F9.4	I(1,i)
10-18	b_i - No. of Atoms per Element in Reactant Product	F9.4	I(2,i)

6. a_i, b_i, \dots, g_i Data Card (No. of Cards Determined by No. of Reactants) (Cont.)

<u>Card Column</u>		<u>Format</u>	<u>FORTRAN Symbol</u>
19-27	c_i - No. of Atoms per Element in Reactant Product	F9.4	I(3,i)
28-36	d_i - No. of Atoms per Element in Reactant Product	F9.4	I(4,i)
37-45	e_i - No. of Atoms per Element in Reactant Product	F9.4	I(5,i)
46-54	f_i - No. of Atoms per Element in Reactant Product	F9.4	I(6,i)
55-63	g_i - No. of Atoms per Element in Reactant Product	F9.4	I(7,i)
78-80	601, 602, Etc. (Identification No.)		Q(i)

Output

Output data for Combustion Process I will be from the typewriter if the error parameter "E" is less than or equal to .0015. If E is greater than .0015, the data in core store are left in the machine and are used as data for Combustion Process II. The typewriter will type out the following message:

"Push reset, Load Combust. Prog. 2."

A sample output listing of Combustion Process I is shown on the next page.

SAMPLE OUTPUT

COMBUSTION PROCESS I

H2	.11437648E-02
H2O	.73096864E-01
OH	.23769886E-02
CO2	.15166840E 00
CO	.12786094E-01
N2	.73562902E 00
NO	.29623556E-02
O2	.92114445E-02
H2S	.17641303E-08
S2	.20187753E-10
SO2	.17414738E-02
SO3	.50231170E-06
H	.24336940E-03
C	.32717617E-16
N	.17737053E-07
AR	.88019261E-02
O	.34069531E-03
S	.58250858E-07
20	
19	
18	
17	
16	A= .30561900E 00
15	
14	T= .22448700E 04
13	
12	STOP 0000
11	
10	
9	
8	
7	
6	
5	
4	
3	

INPUT/OUTPUT FORMAT

COMBUSTION PROCESS II

Input

Combustion Process II requires only one data card. The data card is a control card and has the following format:

<u>Card Column</u>		<u>Format</u>
1-3	No. of Compounds	I3
4-5	No. of Elements	I2

Output

Output data will be on cards and will have the following format:

<u>Card Column</u>		<u>Format</u>	<u>FORTRAN Symbol</u>
1. Temperature Card			
1-8		F8.2	T(1)
2. Control Data Card			
1-3	No. of Compounds	I3	N
4-5	No. of Elements	I2	M
78-80	101 (Identification No.)		
3. A, P, T Data Card (One Card)			
1-14	No. of Formula Weights of Reactants	E14.7	B(1)
15-28	Initial Estimate of Total Pressure	E14.7	P(1)
29-42	Temperature	E14.7	T(1)
78-80	201 (Identification No.)		
4. Log P(i) Data Cards (No. of Cards Determined by No. of Reactants)			
1-14	Log P(i)	E14.6	
78-80	301, 302, Etc. (Identification No.)		X(8,i)

INPUT/OUTPUT FORMAT
COMBUSTION PROCESS II

RESTRICTIONS

The program is restricted to computation for adiabatic chemical reactions in which the total number of compounds and elements does not exceed 13 and 7, respectively. A code card will allow any variable number of compounds and elements to be processed. (For example, 5 compounds and 2 elements, 11 compounds and 5 elements, 12 compounds and 7 elements, etc.) The code card is also used to avoid division by zero and to avoid the possibility of taking the log of a zero quantity.

In the test for convergence, the program requires that $\epsilon \leq .0015$. However, the smaller the value of ϵ , the more accurate the final results will be. Thus, for a greater degree of accuracy the user of the program may want to require ϵ to be smaller than .0015.

The coefficients and constants in Tables II, III and IV used to determine thermodynamic properties are limited to a total number of seven elements and seventeen molecular or radical species. If thermodynamic data for other species are required, the coefficients and constants in equations (1) - (5) may be determined by referring to reference (3). However, to determine "C" in equation (2), reference should always be made to the assigned enthalpies in Table I. If an element not listed in Table I should be involved, a value may be assigned to represent its molar enthalpy in its standard state. The assigned value should be selected so as to result only in positive values of enthalpy for all other species containing this particular element.

The constants and coefficients in Tables II, III and IV are for use only with the Thermodynamic Functions Program submitted with this writeup. The thermodynamic values obtained from the program by the use of these equations are not internally consistent with values obtained from other sources.

If the original estimates are too unreasonable, the results obtained in any given iteration may exceed, in temperature, the thermodynamic equations furnished with this program. In such cases, it is suggested the program be reconsidered with more reasonable estimates.

RESTRICTIONS

* - The FORTRAN symbol for ϵ is E.

OPERATING INSTRUCTIONS

THERMODYNAMIC FUNCTIONS

Sorting Input

Input data are in the order as indicated in the Input/Output Formats for Thermodynamic Functions Program. No further sorting is required.

Clearing Core

The Object Deck, which was compiled by PDQ FORTRAN, automatically clears core when it is loaded in the machine.

Switch Settings

All program switches are set to "off".

Loading Object Deck and Data

Place Object Deck in 1622 read hopper, followed by temperature card and data punched from Thermodynamics Coefficients Table.* Push "load" button.

Program Stops

There are no "halts" in the program.

Output Data

All output data are on cards and require no sorting. After all input data have been processed, the machine's "reader no feed" light will be on. Retain output data for input into Combustion Process I Program.

*Note: The set of data used depends on the temperature. Each time a new temperature is used, the program must be reloaded, followed by the temperature card and data from the tables for that particular temperature range.

OPERATING INSTRUCTIONS

COMBUSTION PROCESS I

Sorting Input

Input data are in the order as indicated in the Input/Output Formats for Combustion Process Program I. No further sorting is required.

Clearing Core

The Object Deck, which was compiled by PDQ FORTRAN, automatically clears core when it is loaded in the machine.

Switch Settings

All program switches are set to "off".

Operation (1st Iteration)

1. All data for the first run should be carefully edited.
2. Load Object Deck.
3. Load data.
4. If the following message is typed out on the typewriter:

"Push reset, Load Combust. Prog. 2."

Do not clear the machine. Push reset and load Combustion Process II. If the desired answers to the problem have been obtained, the final answers will be typed out on the typewriter in the format indicated in the writeup under Input/Output Formats for Combustion Process I. Processing will then be complete.

Operation (2nd Iteration)

1. Remove first four sets of original input data.
2. Replace original data with new data obtained from Combustion Process II, followed by new data obtained from Thermodynamic Functions Program.
3. Repeat Steps 2 - 4 of first iteration.

Operation (3rd, 4th, 5th, Etc. Iterations)

1. "Same as second iteration".

Program Stops

The program will come to a halt only when processing is complete.

OPERATING INSTRUCTIONS

COMBUSTION PROCESS II

Input Data

Input data are left in machine from Combustion Process I. One data card (control data card) is also read in as input to the program.

"Do not clear machine before loading Program".

Loading Program

When message is typed out from Combustion Process I, the program will come to a halt. Push reset and load program with data control input card on back.

Output

All output data are on cards. Retain temperature card (1st output data card) for processing through Thermodynamic Functions Program. The remaining data will be processed through Combustion Process I.

SUPPORTING DOCUMENTATION AND MATERIALS

Program Stops

The program comes to a halt only when processing is complete.

SAMPLE PROBLEM NO. 1

INPUT DATA

SAMPLE PROBLEMS

		8 5				
		0.0000001E+07	0.0000001E+07	0.0002200E+07		
		-3.000000E+00				H2
		-2.732828E+00				H2O
		-2.698970E+00				OH
		-2.031517E+00				CO2
		-2.698970E+00				CO
		-2.148742E+00				N2
		-3.000000E+00				NO
		-3.000000E+00				O2
		-4.000000E+00				H
		-15.000000E+00				C
		-6.000000E+00				N
		-2.096910E+00				AR
		-4.000000E+00				O
		8.3548 83.5462 -24.8815	4.5019	45.7977		
		12.5689 33.5819 -53.0993	10.0160	64.4355		
		8.4137 60.6026 -24.4301	4.6695	58.6888		
		14.5416 29.8104 -88.8044	23.3723	75.2756		
		8.7237 83.1178 -59.6935	18.5778	62.6390		
		8.6650 18.9139 -52.5632	15.8252	61.0450		
		8.8147 41.1290 -35.3099	8.9970	66.0917		
		9.1384 20.0762 -27.9532	5.1423	65.0775		
		4.9681 96.2667 -.0000	.0000	37.3217		
		5.0315 272.9527 -.0000	.0000	47.7078		
		4.9709 124.3596 -.0000	.0000	46.5441		
		4.9681 10.9298 -.0000	.0000	46.9124		
		4.9786 71.1436 -.0000	.0000	48.5488		
						7.1.1
7.1.0						

4.0000	1.0029	14.9098	0.0890	4.0057	249.6473
2.0000					H2
2.0000				1.0000	H2O
1.0000				1.0000	OH
1.0000				2.0000	CO2
1.0000				1.0000	CO
2.0000				2.0000	N2
1.0000				1.0000	NO
				2.0000	O2
1.0000					H
1.0000					C
1.0000				1.0000	AR
				1.0000	O

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4

7.1.2

SAMPLE PROBLEM NO. 1

ANSWERS

H2	.33758818E-02
H2O	.18343331E 00
OH	.2625090E-02
CO2	.86085267E-01
CO	.83511769E-02
N2	.70106510E 00
NO	.18175524E-02
O2	.42607982E-02
H	.34202367E-03
C	.15010015E-16
N	.11329261E-07
AR	.83806500E-02
O	.18510828E-03

A= .94163000E-01

T= .22085000E 04

STOP 0000

7.1.2

SAMPLE PROBLEM NO. 2

INPUT DATA

12 6

.0000031E+05 0.0000001E+07 0.0002200E+07
 -2.52288E+00
 -1.22185E+00
 -2.69897E+00
 -0.82391E+00
 -1.69897E+00
 -0.15490E+00
 -2.69897E+00
 -2.30103E+00
 -6.00000E+00
 -6.00000E+00
 -2.69897E+00
 -6.00000E+00
 -3.39794E+00
 -17.0000E+00
 -5.30103E+00
 -2.05061E+00
 -3.69897E+00
 -8.00000E+00

8.3548 83.5462 -24.8815 4.5019 45.7977
 12.5689 33.5819 -53.0993 10.0160 64.4355
 8.4137 60.6026 -24.4301 4.6695 58.6888
 14.5416 29.8104 -88.8044 23.3723 75.2756
 8.7237 83.1178 -59.6935 18.5778 62.6390
 8.6650 18.9139 -52.5632 15.8252 61.0450
 8.8147 41.1290 -35.3099 8.9970 66.0917

9.1384	20.0762	-27.9532	5.1423	65.0775		
13.3836	186.2487	-41.7595	6.0712	70.0615		
9.0469	247.5739	-24.0155	3.9830	71.7460		
13.9823	57.7504	-59.6581	11.9288	83.7493		
19.4736	45.7924	-78.6660	12.0215	94.9493		
4.9681	96.2667	-.0000	.0000	37.3217		
5.0315	272.9527	-.0000	.0000	47.7078		
4.9709	124.3596	-.0000	.0000	46.5441		
4.9681	10.9298	-.0000	.0000	46.9124		
4.9786	71.1436	-.0000	.0000	48.5488		
5.1115	176.2871	-.0000	.0000	50.6240		
0.4944	0.5381	4.8237	0.0288	1.3638	0.0057	75.8600
2.0000						H2
2.0000						H2O
1.0000						.OH
1.0000						CO2
1.0000						CO
2.0000						N2
1.0000						NO
2.0000						O2
1.0000						H2S
2.0000						S2
2.0000						SO2
3.0000						SO3
1.0000						H
1.0000						C
1.0000						N
1.0000						AR
1.0000						O
1.0000						S

SAMPLE PROBLEM NO. 2

ANSWERS

H2	.11437648E-02
H2O	.73096864E-01
OH	.23765886E-02
CO2	.15166840E 00
CO	.12786034E-01
N2	.73562902E 00
NO	.29623556E-02
O2	.92114445E-02
H2S	.17641303E-08
S2	.20187753E-10
SO2	.17414738E-02
SO3	.50231170E-06
H	.24336940E-03
C	.32717617E-16
N	.17737053E-07
AR	.88019261E-02
O	.34069531E-03
S	.58250858E-07

SOURCE PROGRAM LISTINGS

A= .30561900E 00

T= .22448700E 04

STOP 0000

PROGRAM LISTING

THERMODYNAMIC FUNCTIONS

260000800009RS
PDQ FORTRAN C2
START

```

-6600      READ 30, T
-6624      5 READ 10, A,B,CC,D,E,F, ID
-6720      B=B/10.**3.
-6768      CC=CC/10.**6.
-6816      D=D/10.**9.
-6864      X=0.434294*TLOG(T)
-6900      C=A+B*T+CC*T**2.+D*T**3.
-7068      H=((A*T+.5*B*T**2.+CC*T**3./3.+.25*D*T**4.)/10.**3.)+E
-7428      S=2.302585*A*X+B*T+.5*CC*T**2.+D*T**3./3.+F
-7704      READ 10, AA,BB,CCC,DD,EE
-7776      BB=BB/10.**3.
-7824      CCC=CCC/10.**6.
-7872      DD=DD/10.**9.
-7920      HH=AA+BB*T+CCC*T**2.+DD*T**3.+((EE/(T*10.**-3.)))
-8160      HH=(-1.)*HH
-8208      READ 10, AAA,BBB,CK,DDD,EEE,FF
-8292      BBB=BBB/10.**3.
-8340      CK=CK/10.**6.
-8388      DDD=DDD/10.**9.
-8436      CECF=AAA*X+BBB*T+CK*T**2.+DDD*T**3.+EEE+(FF/(T*10.**-3.))
-8724      ID=ID+400
-8760      PUNCH 20, C,H,HH,CECF,S, ID
-8844      GO TO 5
-8852      10 FORMAT (4F8.5,F9.5,F8.5,5X,12)

```

7.3.1

```

-8912      20 FORMAT (5F9.4,30X,15)
-8966      30 FORMAT (F8.2)
-8988      END
T9999 SIN
T9989 SINF
T9979 COS
T9969 COSF
T9959 EXP
T9949 EXPF
T9939 LOG
T9929 LOGF
T9919 SQRT
T9909 SQRTF
T9899 ABS
T9889 ABSF
T9879 DRH
T9869 DRHF
T9859 ATAN
T9849 ATANF
T9839 0030
T9829 T
T9819 0005
T9809 0010
T9799 A
T9789 B
T9779 CC
T9769 D
T9759 E
T9749 F
T9739 ID
T9729 5210000000
T9719 5130000000
T9709 000

```

7.3.2

T9699 5160000000
T9689 5190000000
T9679 X
T9669 5043429400
T9659 C
T9649 5120000000
T9639 001
T9629 002
T9619 H
T9609 5050000000
T9599 003
T9589 004
T9579 005
T9569 5025000000
T9559 006
T9549 5140000000
T9539 007
T9529 008
T9519 S
T9509 5123025850
T9499 AA
T9489 BB
T9479 CCC
T9469 DD
T9459 EE
T9449 HH
T9439 5110000000
T9429 AAA
T9419 BBB
T9409 CK
T9399 DDD
T9389 EEE
T9379 FF

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3

T9369 CECF
T9359 0400
T9349 0020

LOAD SUBROUTINES
260000800009RS

PROGRAM LISTING
COMBUSTION PROCESS I

PDQ FORTRAN C2

START
-6600 C COMBUSTION PROCESS
-6600 C PROGRAMMED FOR RESEARCH DEPARTMENT

-6600 C OCTOBER, 1964
-6600 DIMENSION X(9,23),Y(10,23),B(1),P(1),T(1),O(8),Z(9),Q(20)

-6600 READ 60,N,M

-6636 M=M+13

-6672 DO 99 I=1,9

-6684 Z(I)=0.

-6720 DO 99 J=1,23

-6732 99 X(I,J)=0.

-6876 DO 30 I=1,10

-6888 DO 30 J=1,23

-6900 30 Y(I,J)=0.

-7044 READ 402,B(1),P(1),T(1)

-7092 DO 400 I=1,N

-7104 400 READ 402,X(8,I)

-7212 DO 403 I=14,M

-7224 403 READ 402,X(8,I)

-7332 K=1

-7344 L=N

-7356 8 DO 9 I=K,L

-7368 9 READ 100,X(1,I),X(9,I),Y(9,I),Y(10,I)

-7656 IF (L-N) 10,11,10

-7724 11 K=14

-7736 L=M

-7748 GO TO 8

-7756 10 READ 100,O(1),O(2),O(3),O(4),O(5),O(6),O(7),O(8) 7.3.5

-7864 DO 404 I=1,N
-7876 404 X(8,I)=EXP((X(8,I)/.434294))
-8056 DO 405 I=14,M
-8068 405 X(8,I)=EXP((X(8,I)/.434294))
-8248 DO 13 I=1,20
-8260 X(9,22)=X(9,22)+X(8,I)*X(1,I)
-8404 X(9,I)=X(8,I)*X(9,I)
-8584 X(9,21)=X(9,21)+X(9,I)
-8668 13 CONTINUE
-8704 X(9,22)=T(1)*X(9,22)/1000.
-8752 X(9,21)=(-1.)*X(9,21)
-8800 K=1
-8812 L=N
-8824 20 DO 14 I=K,L
-8836 14 READ 600,Y(1,I),Y(2,I),Y(3,I),Y(4,I),Y(5,I),Y(6,I),Y(7,I),Q(1)
-9340 IF (L-N) 15,17,15
-9408 17 K=14
-9420 L=M
-9432 GO TO 20
-9440 15 DO 16 I=1,7
-9452 DO 16 J=1,20
-9464 X(I,J)=X(8,J)*Y(I,J)
-9668 16 X(I,21)=X(I,21)+X(I,J)
-9884 DO 18 I=1,7
-9896 18 X(I,21)=X(I,21)*(-1.)
J0028 DO 19 I=1,10
J0040 19 Y(I,I+13)=1.
J0148 M=M-13
J0184 DO 41 J=1,N
J0196 Y(10,J)=-Y(10,J)+(LOG(X(8,J))* .434294)
J0388 DO 41 I=1,M
J0400 41 Y(10,J)=Y(10,J)-Y(I,J)*(LOG(X(8,I+13))* .434294)
J0748 C SUM P(I) 7.3.6

```

J0748      SUMP=0.
J0760      V=0.
J0772      DO 51 I=1,20
J0784      V=V+ABS(Y(10,I))
J0868      51 SUMP=SUMP+X(8,I)
J0988      DO 74 I=1,M
J1000      74 Z(I)=LOG(B(1)*0(1)/((-1.)*X(1,21)))*.434294
J1228      Z(8)=LOG(B(1)*0(8)/((-1.)*X(9,21)))*.434294
J1348      Z(9)=LOG(P(1)/SUMP)*.434294
J1408      DO 50 I=1,M
J1420      50 X(1,23)=(-1.)*X(1,21)*Z(I)
J1588      X(8,23)=SUMP*Z(9)
J1624      X(9,23)=(-1.)*X(9,21)*Z(8)
J1684      L=M
J1696      M=M+13
J1732      E=V
J1744      DO 83 I=1,9
J1756      83 E=E+ABS(Z(I))
J1852      IF (E-.0015) 200,200,201
J1920      200 DO 210 I=1,N
J1932      210 TYPE 202,Q(I),X(8,I)
J2076      DO 310 I=14,M
J2088      310 TYPE 202, Q(I),X(8,I)
J2232      TYPE 205,B(1),T(1)
J2268      STOP
J2280      201 TYPE 212
J2292      212 FORMAT(/34HPUSH RESET. LOAD COMBUST. PROG. 2.)
J2390      STOP
J2402      60 FORMAT (13,12)
J2430      402 FORMAT (3E14.0)
J2462      600 FORMAT (7F9.4,9X,A4)
J2526      100 FORMAT (8F9.4)
J2584      202 FORMAT (/A4,3H ,E14.8)

```

7.3.7

```

J2630      205 FORMAT (//2HA=,E14.8/,2HT=,E14.8)
J2694      END
T9999      SIN
T9989      SINF
T9979      COS
T9969      COSF
T9959      EXP
T9949      EXPF
T9939      LOG
T9929      LOGF
T9919      SQRT
T9909      SQRTF
T9899      ABS
T9889      ABSF
T9879      DRH
T9869      DRHF
T9859      ATAN
T9849      ATANF
T9839      X   T7779
T7769      Y   T5479
T5469      B   T5469
T5459      P   T5459
T5449      T   T5449
T5439      O   T5369
T5359      Z   T5279
T5269      Q   T5079
T5069      0060
T5059      N
T5049      M
T5039      0013
T5029      000
T5019      0099
T5009      I

```

7.3.8

T4999 0000000000
T4999 J
T4979 0030
T4969 0402
T4959 0400
T4949 0403
T4939 K
T4929 0001
T4919 L
T4909 0008
T4899 0009
T4889 0100
T4879 0010
T4869 0011
T4859 0014
T4849 0404
T48 9 5043429400
T4829 001
T4819 0405
T4809 0013
T4799 5410000000
T4789 5110000000
T4779 0020
T4769 0014
T4759 0600
T4749 0015
T4739 0017
T4729 0016
T4719 0018
T4709 0019
T4699 0041
T4689 SUMP
T4679 V

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
T4669 0051
T4659 0074
T4649 003
T4639 0050
T4629 E
T4619 0081
T4609 4815000000
T4599 0200
T4589 0201
T4579 0210
T4569 0202
T4559 0310
T4549 0205
T4539 0212

LOAD SUBROUTINES

PDQ FIXED FMT SUBROUTNS 11/63

PROCESSING COMPLETE

PROGRAM LISTING

COMBUSTION PROCESS II

260000800009RS

PDQ FORTRAN C2

START

-6600 C SECOND PART OF COMBUSTION PROGRAM

-6600 C NOVEMBER 6, 1964

-6600 DIMENSION X(9,23),Y(10,23),A(1),C(1),T(1),R(9,10),P(20),V(9)

-6600 READ 200,N,M

-6636 C MULTIPLY X MATRIX BY Y MATRIX

-6636 DO 22 I=1,9

-6648 DO 22 K=1,10

-6660 R(I,K)=0.

-6732 DO 22 J=1,23

-6744 22 R(I,K)=R(I,K)+X(I,J)*Y(K,J)

-7140 DO 23 I=1,20

-7152 23 P(I)=X(8,I)

-7284 DO 99 I=1,9

-7296 DO 99 J=1,23

-7308 99 X(I,J)=0.

-7452 C GENERATE N MATRIX

-7452 DO 3 I=1,9

-7464 3 X(I,1)=R(I,1)

-7572 DO 4 J=2,10

-7584 4 X(1,J)=R(1,J)/X(1,1)

-7752 DO 5 I=2,9

-7764 5 X(I,2)=R(I,2)-X(1,2)*X(I,1)

-7932 DO 55 J=3,10

-7944 55 X(2,J)=(R(2,J)-X(1,J)*X(2,1))/X(2,2)

-8196 DO 44 I=2,9

-8208 1K=I-1
-8244 DO 33 J=1,9
-8256 X(J,I)=R(J,I)
-8400 DO 33 K=1,IK
-8412 33 X(J,I)=X(J,I)-X(K,I)*X(J,K)
-8784 IF (X(I,I)) 34,56,34
-8900 56 X(I,I)=1.
-8972 34 IM=I+1
-9008 DO 35 J=IM,10
-9020 X(I,J)=R(I,J)/X(I,I)
-9236 DO 35 K=1,IK
-9248 35 X(I,J)=X(I,J)-X(K,J)*X(I,K)/X(I,I)
-9692 44 CONTINUE
-9728 C COMPUTE DELTA LOG T AND DELTA LOG P14-P20
-9728 V(1)=X(9,10)
-9740 DO 6 J=2,9
-9752 K=10-J
-9788 L=J-1
-9824 V(J)=X(K,10)
-9896 DO 6 I=1,L
-9908 IM=10-I
-9944 6 V(J)=V(J)-X(K,IM)*V(I)
J0208 C COMPUTE DELTA LOG P(I) AND STORE IN ROW 9 OF X-MATRIX
J0208 DO 10 J=1,20
J0220 X(9,J)=Y(9,J)*V(1)-Y(10,J)
J0412 DO 10 I=1,7
J0424 K=10-I
J0460 10 X(9,J)=X(9,J)+Y(I,J)*V(K)
J0760 C COMPUTE DELTA LOG P(N+1) STORE IN ROW 9 OF Y-MATRIX
J0760 L=M
J0772 M=M+13
J0808 DO 11 I=1,N
J0820 11 Y(9,I)=LOG(P(I))* .434294+X(9,I)

```

J1024      DO 12 I=14,M
J1036      12 Y(9,I)=LOG(P(I))* .434294+X(9,I)
J1240      C COMPUTE DELTA LOG A(N+1),T(N+1)
J1240      A(1)=LOG(A(1))* .434294+V(2)
J1288      T(1)=LOG(T(1))* .434294+V(1)
J1336      T(1)=EXP(T(1)/.434294)
J1384      A(1)=EXP(A(1)/.434294)
J1432      PUNCH 102,T(1)
J1456      LL=101
J1468      PUNCH 200,N,L,LL
J1516      LL=201
J1528      PUNCH 100,A(1),C(1),T(1),LL
J1588      DO 7 I=1,N
J1600      LL=300+I
J1636      7 PUNCH 101,Y(9,I),LL
J1756      DO 8 I=14,M
J1768      LL=300+I
J1804      8 PUNCH 101,Y(9,I),LL
J1924      STOP
J1936      200 FORMAT (13,12,71X,14)
J1976      100 FORMAT (3E14.6,34X,14)
J2020      101 FORMAT (E14.6,62X,14)
J2054      102 FORMAT (F8.2)
J2076      END
T9999 SIN
T9989 SINF
T9979 COS
T9969 COSF
T9959 EXP
T9949 EXPF
T9939 LOG
T9929 LOGF
T9919 SQRT

```

7.3.13

```

T9909 SQRTF
T9899 ABS
T9889 ABSF
T9879 DRH
T9869 DRHF
T9859 ATAN
T9849 ATANF
T9839 X    T7779
T7769 Y    T5479
T5469 A    T5469
T5459 C    T5459
T5449 T    T5449
T5439 R    T4549
T4539 P    T4349
T4339 V    T4259
T4249 0200
T4239 N
T4229 M
T4219 0022
T4209 I
T4199 K
T4189 0000000000
T4179 J
T4169 000
T4159 0023
T4149 0099
T4139 0003
T4129 0004
T4119 0005
T4109 0055
T4099 001
T4089 0044
T4079 1K

```

7.3.14

T4069 0001

T4059 0033

T4049 0034

T4039 0056

T4029 511000000000

T4019 IM

T4009 0035

T3999 0006

T3989 0010

T3979 L

T3969 0010

T3959 0013

T3949 0011

T3939 5043429400

T3929 0012

T3919 0102

T3909 LL

T3899 0101

T3889 0201

T3879 0100

T3869 0007

T3859 0300

T3849 0101

T3839 0008

LOAD SUBROUTINES

PDQ FIXED FMT SUBROUTNS 11/63

PROCESSING COMPLETE

DATA CARD LAYOUT FORMS

63

7.3.15

7.4.0

6	10	16	20	24	30	35	40	45	50	55	60	65	70	75	80
TEMP. CARD															
XXXXXX	XXX														
TABLE I															
a	$B \times 10^3$	$C \times 10^6$	$S \times 10^9$	G	K	ID									
$\pm XXXXX$	$\pm XXX$	$\pm XXXXX$	$\pm XXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$									1
TABLE II															
a	$b \times 10^3$	$c \times 10^6$	$s \times 10^9$	m											
$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$									2
TABLE III															
A	$B \times 10^3$	$C \times 10^6$	$D \times 10^9$	L	M										
$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$	$\pm XXXXX$									3

JOB OUTPUT FORMAT (THERMO. FUNCT) DEPT. RESEARCH

OUTPUT FORMAT (THERMO. FUNCT) DEPT. RESEARCH

DATA CARD LAYOUT

10-5-65

PAGE _____ OF _____

JOB INPUT FORMAT (COMB. PROC. I) DEPT. RESEARCH

DATA CARD LAYOUT

10-6-65

PAGE _____ OF _____

JOB Comb. Process II (output) DEPT. RESEARCH

DATA CARD LAYOUT 11-2-65
DATE

PAGE 1 OF 1

TEMPERATURE C AND

NO. OF ELEMENTS

COMPONENTS

A P T

20.1

30.1

30.

Block Diagrams

Application Combustion ProcessProcedure THERMODYNAMIC FUNCTIONSDate 10-5-65 Page 1 of 1Drawn By YEM

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

DIAGRAM OF THERMODYNAMIC FUNCTIONS PROGRAM

IBM. DIAGRAMMING AND CHARTING WORKSHEET

Application COMBUSTION PROCESS II

Procedure

Date 10-6-65

Page 1 of 1

Drawn By M. L. M.

Fold under at dotted line.

7.502

Application Comb. Process I, Comb. Process II, & Thermodynamics
Procedure Operating Procedure

Page 1 of 1

Drawn By G. M. G.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIRST SET OF INPUT DATA
PUNCHED ON "KEY-PUNCH"
AND EDITED.

FIRST ITERATION

1ST TEMP. CARD WILL BE PUNCHED ON "KEY-PUNCH". ALL OTHER USED
IN CONJUNCTION WITH THE COMBUSTION PROCESS PROGRAM WILL BE OB-
TAINED FROM COMBUSTION PROCESS II

THERMODYNAMIC FUNCTIONS PROGRAM

2ND ITERATION

3RD, 4TH, 5TH ITERATION

DATA FOR THE FOLLOWING TEMP.
MAY BE SELECTED FROM THE TABLE:
300° - 900° K
900° - 1500° K
1500° - 2500° K
2500° - 3500° K

"SAME AS 2ND
ITERATION"

Fold under at dotted line.

7-54

COEFFICIENTS OF THERMODYNAMIC DATA TABLES

TABLE II

Coefficients and Constants for C_p , H_T , and S_T Equations

<u>Temp. °K</u>	<u>α</u>	<u>$\beta \times 10^3$</u>	<u>$\gamma \times 10^6$</u>	<u>$S \times 10^9$</u>	<u>c</u>	<u>k</u>
Argon						
300-900	4.96810	0.00000	0.00000	0.00000	0.00000	8.67690
900-1500	4.96810	0.00000	0.00000	0.00000	0.00000	8.67698
1500-2500	4.96810	0.00000	0.00000	0.00000	0.00000	8.67698
2500-3500	4.96810	0.00000	0.00000	0.00000	0.00000	8.67701
Br (gas)						
300-900	4.97787	- 0.01110	- 0.16179	0.31111	26.55610	13.45102
900-1500	5.06468	- 0.67585	1.02643	- 0.30833	26.56008	13.12811
1500-2500	3.94566	1.64307	- 0.58561	0.06731	26.96793	19.22429
2500-3500		No data presently available				
Br ₂ (gas)						
300-900	7.56238	5.23254	- 6.79762	3.05556	7.56818	14.27127
900-1500	8.32286	1.46984	- 1.05952	0.27778	7.46947	10.83361
1500-2500	8.08510	1.38077	- 0.63636	0.10490	7.66888	12.43490
2500-3500		No data presently available				
C (graphite)						
300-900	-1.37805	14.37016	-10.56905	2.72222	92.03903	5.38493
900-1500	1.78343	5.76758	- 3.01310	0.61111	91.18775	-10.92577
1500-2500	3.69097	2.06002	- 0.55082	0.05206	90.43503	-21.45576
2500-3500	5.26020	0.45665	- 0.01772	- 0.00505	89.30364	-31.09357
C (gas)						
300-900	5.01446	- 0.17263	0.22869	- 0.10278	261.99066	9.23312
900-1500	4.94401	0.08499	- 0.09298	0.03333	262.00556	9.57770
1500-2500	5.15597	- 0.28602	0.12290	- 0.00845	261.91504	8.38824
2500-3500	5.24324	- 0.43913	0.20430	- 0.02211	261.88475	7.90497

TABLE II (continued)

<u>Temp. °K</u>	<u>α</u>	<u>$A \times 10^3$</u>	<u>$B \times 10^6$</u>	<u>$S \times 10^9$</u>	<u>C</u>	<u>k</u>
CO (gas)						
300-900	7.40128	- 3.29913	7.16238	- 3.35833	65.70215	5.74348
900-1500	5.36912	4.06773	- 1.80345	0.29722	66.12654	15.67967
1500-2500	6.20126	2.55577	- 0.88801	0.11249	65.78319	11.03990
2500-3500	7.43752	1.00433	- 0.23500	0.02038	65.03924	3.68506
CO₂ (gas)						
300-900	4.62716	18.19396	- 14.66429	4.86389	0.17012	19.89164
900-1500	6.57128	11.09794	- 5.82321	1.13611	- 0.24259	10.37873
1500-2500	9.63218	5.02247	- 1.76740	0.22673	- 1.41059	- 6.43266
2500-3500	12.11555	1.88641	- 0.43936	0.03831	- 2.89546	- 21.19119
COS (gas)						
300-900	5.03988	22.22610	- 22.13774	8.58889	159.12375	20.89278
900-1500	8.33898	9.27936	- 5.00821	1.00556	158.48017	5.00947
1500-2500	11.08096	3.79860	- 1.32033	0.17053	157.44110	- 10.03149
2500-3500	12.94778	1.43330	- 0.31585	0.02768	156.32907	- 21.11925
CS₂ (gas)						
300-900	6.34585	20.63475	- 20.53964	7.70000	317.51697	15.36936
900-1500	9.82266	7.84001	- 4.55571	0.96111	316.79158	- 1.60107
1500-2500	12.43216	2.51804	- 0.90414	0.11890	315.82254	- 15.86241
2500-3500	13.72348	0.86699	- 0.19699	0.01754	315.06061	- 23.52007
H (gas)						
300-900	4.96810	0.00000	0.00000	0.00000	85.33693	- 0.91384
900-1500	4.96810	0.00000	0.00000	0.00000	85.33691	- 0.91379
1500-2500	4.96810	0.00000	0.00000	0.00000	85.33690	- 0.91377
2500-3500	4.96810	0.00000	0.00000	0.00000	85.33690	- 0.91376
H₂ (gas)						
300-900	6.34442	3.06954	- 4.90655	2.76111	67.45133	- 5.65734
900-1500	7.62194	- 2.25177	2.45762	- 0.60833	67.22029	- 11.72213
1500-2500	5.80531	1.47043	- 0.10349	- 0.01733	67.68494	- 1.80405
2500-3500	5.87503	1.69951	- 0.32162	0.02894	67.68494	- 2.48129

TABLE II (continued)

<u>Temp. °K</u>	<u>α</u>	<u>$\beta \times 10^3$</u>	<u>$\delta \times 10^6$</u>	<u>$\delta \times 10^9$</u>	<u>c</u>	<u>k</u>
HBr (gas)						
300-900	7.40347	- 2.78673	5.03202	- 1.92778	25.26861	5.90995
900-1500	4.82434	4.71588	- 2.25298	0.43889	25.93819	19.08726
1500-2500	5.64971	2.93791	- 0.95458	0.11886	25.64684	14.61765
2500-3500		No data presently available				
H ₂ O (gas)						
300-900	7.96504	- 1.18130	5.26881	- 2.22222	11.33351	- 0.13970
900-1500	7.116810	1.74167	1.53476	- 0.58611	11.50568	3.76506
1500-2500	4.95233	6.38682	- 1.72814	0.18124	12.30309	15.80923
2500-3500	6.62109	4.43561	- 0.96469	0.08125	11.22879	5.76574
H ₂ S (gas)						
300-900	7.69475	- 0.00779	6.45881	- 3.18056	162.27594	5.06417
900-1500	5.19272	8.32854	- 2.89714	0.35556	162.84491	17.51098
1500-2500	6.06270	7.02346	- 2.30861	0.28578	162.43440	12.52268
2500-3500	9.11515	3.21967	- 0.71886	0.06309	160.58488	- 5.65846
N (gas)						
300-900	4.96810	0.00000	0.00000	0.00000	113.42918	8.30830
900-1500	4.97213	- 0.01102	0.00976	- 0.00278	113.42811	8.28757
1500-2500	4.89391	0.13226	- 0.07869	0.01568	113.46040	8.72343
2500-3500	4.91189	0.14696	- 0.09934	0.02044	113.43050	8.58571
N ₂ (gas)						
300-900	7.38656	- 2.98433	6.01631	- 2.61111	1.65402	4.33152
900-1500	5.49194	3.44012	- 1.28357	0.16667	2.07553	13.71896
1500-2500	5.95705	2.71090	- 0.92791	0.11599	1.86228	11.06826
2500-3500	7.20928	1.14339	- 0.26995	0.02345	1.10708	3.61543
NO (gas)						
300-900	7.83854	- 5.03549	10.46357	- 5.20833	23.34538	6.76643
900-1500	5.46742	4.48819	- 2.25417	0.42222	23.78872	18.10630
1500-2500	6.64779	2.21014	- 0.77591	0.09955	23.32637	11.59108
2500-3500	7.74594	0.82499	- 0.19014	0.01657	22.66911	5.06361

TABLE II (continued)

<u>Temp. °K</u>	<u>α</u>	<u>$\beta \times 10^3$</u>	<u>$\gamma \times 10^6$</u>	<u>$\delta \times 10^9$</u>	<u>c</u>	<u>k</u>
NO ₂ (gas)						
300-900	6.07017	10.18474	- 2.27786	-1.43611	11.76362	19.83972
900-1500	6.43739	11.25150	- 6.39881	1.33056	11.54805	17.37746
1500-2500	10.10326	3.84337	- 1.35869	0.17694	10.17349	- 2.69188
2500-3500	12.06415	1.35745	- 0.30247	0.02667	9.00610	-14.33726
O (gas)						
300-900	5.82447	- 2.93332	3.68702	-1.60000	59.97630	6.00725
900-1500	5.18254	- 0.35423	0.21798	-0.04722	60.09763	9.08008
1500-2500	5.01322	- 0.01167	- 0.01484	0.00591	60.16089	10.00671
2500-3500	5.15709	- 0.17073	0.04354	-0.00120	60.06363	9.13323
O ₂ (gas)						
300-900	6.86954	- 0.97686	6.00619	-3.63056	2.05967	9.92168
900-1500	5.64527	4.87180	- 2.79798	0.61667	2.23511	15.51879
1500-2500	7.61206	0.94407	- 0.16012	0.02108	1.48991	4.72934
2500-3500	7.82021	0.58387	0.03146	-0.01127	1.41325	3.57106
OH (gas)						
300-900	7.58972	- 2.19358	2.50464	-0.56667	43.90179	1.19689
900-1500	7.20029	- 1.33427	2.02286	-0.55833	44.01996	3.26569
1500-2500	5.38982	2.43528	- 0.61041	0.05829	44.67687	13.12034
2500-3500	5.89037	1.88039	- 0.40655	0.03351	44.33976	10.08323
S (gas)						
300-900	6.01259	- 1.11469	- 0.39298	0.65833	164.70040	6.17447
900-1500	5.90721	- 1.39923	0.77048	-0.14167	164.75922	6.87100
1500-2500	5.71818	- 0.94930	0.41903	-0.05130	164.81760	7.87223
2500-3500	5.20717	- 0.37068	0.20042	-0.02374	165.15635	10.96340
S ₂ (gas)						
300-900	5.70207	9.85685	-11.24595	4.56944	228.79248	19.54349
900-1500	7.77137	2.00324	- 1.20259	0.26389	228.37683	9.51470
1500-2500	8.48089	0.53176	- 0.17635	0.02345	228.11776	5.64902
2500-3500	8.72567	0.21443	- 0.03888	0.00355	227.97571	4.20115

TABLE II (continued)

<u>Temp. °K</u>	<u>α</u>	<u>$\beta \times 10^3$</u>	<u>$\gamma \times 10^6$</u>	<u>$\delta \times 10^9$</u>	<u>c</u>	<u>k</u>
SO_2 (gas)						
300-900	5.95304	14.68612	- 9.71143	2.04722	30.81721	21.41043
900-1500	7.92609	9.42242	- 5.50357	1.16944	30.29440	11.23559
1500-2500	11.10546	2.92319	- 1.03367	0.13607	29.11630	- 6.13302
2500-3500	12.59610	1.01911	- 0.21895	0.01941	28.23600	- 14.97395
SO_3 (gas)						
300-900	4.53177	33.15342	- 28.72571	9.21944	9.10707	26.83475
900-1500	9.87962	15.56309	- 9.25952	1.97222	7.87669	0.16531
1500-2500	15.23516	4.60266	- 1.71284	0.22566	5.89454	- 29.08528
2500-3500	17.71931	1.43245	- 0.35721	0.03160	4.42565	- 43.82149

TABLE III
Coefficients and Constants for $-\Delta H/RT$ Equations

<u>Temp. °K</u>	<u>a</u>	<u>b x 10³</u>	<u>c x 10⁶</u>	<u>d x 10⁹</u>	<u>n</u>
Br_2 (gas)					
300-900	1.20436	- 1.32211	1.08593	- 0.30612	22.91800
900-1500	0.90905	- 0.70996	0.52206	- 0.11252	22.97167
1500-2500	-0.09751	0.47940	-0.08971	0.00374	23.28180
2500-3500			No data presently available		
CO (gas)					
300-900	1.72984	0.04861	-0.54458	0.20827	128.95384
900-1500	2.39396	- 1.09122	0.32347	- 0.03914	128.80884
1500-2500	1.99668	- 0.71794	0.16708	- 0.01447	128.96790
2500-3500	1.49090	- 0.40613	0.08099	- 0.00550	129.27807
CO_2 (gas)					
300-900	6.05670	- 6.09715	3.73496	- 1.02738	192.11031
900-1500	4.39692	- 2.94914	1.03429	- 0.15061	192.44760
1500-2500	2.79290	- 1.34150	0.31209	- 0.02810	193.05350
2500-3500	1.73197	- 0.67102	0.12157	- 0.00790	193.68752
COS (gas)					
300-900	5.94368	- 6.65407	4.30416	- 1.21189	164.82172
900-1500	3.87205	- 2.75450	0.99026	- 0.14607	165.24372
1500-2500	2.41861	- 1.26948	0.30988	- 0.02823	165.78225
2500-3500	1.33834	- 0.60733	0.12817	- 0.00940	166.44810
CS_2 (gas)					
300-900	5.38117	- 5.79611	3.35175	- 0.81596	137.81513
900-1500	3.49011	- 2.65528	1.00703	- 0.15236	138.24684
1500-2500	2.09342	- 1.18320	0.31284	- 0.02893	138.74767
2500-3500	0.97325	- 0.51515	0.13455	- 0.01096	139.45676

TABLE III (continued)

<u>Temp. °K</u>	<u>a</u>	<u>b x 10³</u>	<u>c x 10⁶</u>	<u>d x 10⁹</u>	<u>m</u>
H ₂ (gas)					
300-900	1.80740	- 0.77231	0.82300	-0.34735	51.94214
900-1500	1.16455	0.56655	-0.41223	0.07653	52.05838
1500-2500	2.07869	- 0.36996	0.01736	0.00218	51.72101
2500-3500	2.04360	- 0.42760	0.05395	-0.00364	51.82455
HBr (gas)					
300-900	1.27940	0.69836	-0.87118	0.28166	43.58988
900-1500	2.62092	- 1.35657	0.55007	-0.09400	43.25493
1500-2500	1.64249	- 0.32578	0.06189	-0.00649	43.60677
2500-3500		No data presently available			
H ₂ O (gas)					
300-900	3.92280	- 0.44081	-0.26532	0.07828	110.36133
900-1500	4.00080	- 0.52733	-0.22087	0.06779	110.33572
1500-2500	5.03059	- 1.60988	0.28738	-0.02206	109.96629
2500-3500	4.26326	- 1.15897	0.16912	-0.01037	110.45794
H ₂ S (gas)					
300-900	4.15348	- 0.27850	-1.14929	0.48294	87.10401
900-1500	5.35948	- 2.44753	0.61519	-0.06255	86.84728
1500-2500	4.82659	- 2.00597	0.45752	-0.04241	87.08322
2500-3500	3.03344	- 0.90334	0.15420	-0.01092	88.18437
N ₂ (gas)					
300-900	1.28299	0.75087	-1.00915	0.32848	113.32404
900-1500	2.24043	- 0.87109	0.21858	-0.02167	113.11086
1500-2500	1.92766	- 0.61552	0.12924	-0.01065	113.25067
2500-3500	1.31563	- 0.21378	0.01196	0.00219	113.60060
NO (gas)					
300-900	1.48649	0.52891	-1.13667	0.45393	75.51106
900-1500	2.35865	- 1.22114	0.41630	-0.05941	75.34848
1500-2500	1.64012	- 0.52574	0.11446	-0.00981	75.62922
2500-3500	1.16897	- 0.21358	0.02253	0.00033	75.89597

12.

TABLE III (continued)

<u>Temp. °K</u>	<u>a</u>	<u>b x 10³</u>	<u>c x 10⁶</u>	<u>d x 10⁹</u>	<u>m</u>
NO ₂ (gas)					
300-900	5.03724	- 4.03857	1.61896	-0.22190	111.51946
900-1500	4.47844	- 3.01193	1.14807	-0.17962	111.74950
1500-2500	2.42399	- 1.87920	0.62917	-0.07520	112.52110
2500-3500	1.59110	- 0.78095	0.14604	-0.00434	112.99561
O ₂ (gas)					
300-900	2.40502	- 1.23028	0.22944	0.05416	59.32436
900-1500	2.37503	- 1.40401	0.54244	-0.08946	59.35819
1500-2500	1.21493	- 0.24340	0.02188	-0.00117	59.79684
2500-3500	1.25498	- 0.23281	0.00933	0.00111	59.73753
OH (gas)					
300-900	1.61169	- 0.18612	0.19833	-0.13000	51.03079
900-1500	1.48464	0.24658	-0.30274	0.06430	51.03237
1500-2500	2.31047	- 0.61566	0.09990	-0.00659	50.73363
2500-3500	2.13098	- 0.51607	0.07550	-0.00437	50.85433
S ₂ (gas)					
300-900	3.18182	- 3.04093	1.75451	-0.40920	50.62665
900-1500	2.03449	- 1.20812	0.46019	-0.06884	50.89501
1500-2500	1.48721	- 0.61149	0.17015	-0.01596	51.08413
2500-3500	0.84975	- 0.21048	0.07376	-0.00642	51.49653
SO ₂ (gas)					
300-900	5.89177	- 5.45159	2.79992	-0.57729	127.73154
900-1500	4.19986	- 2.90101	1.12550	-0.17682	128.14633
1500-2500	2.33444	- 0.98020	0.23869	-0.02209	128.83220
2500-3500	1.47201	- 0.43558	0.08495	-0.00573	129.34775
SO ₃ (gas)					
300-900	9.53787	-10.83605	6.60773	-1.68085	168.83660
900-1500	5.82471	- 4.53514	1.79207	-0.28375	169.66850
1500-2500	2.77904	- 1.40570	0.35012	-0.03261	170.79080
2500-3500	1.48906	- 0.58201	0.11545	-0.00742	171.55359

TABLE IV

Coefficients and Constants for Log K Equations

<u>Temp. °K</u>	<u>A</u>	<u>B x 10³</u>	<u>C x 10⁶</u>	<u>D x 10⁹</u>	<u>L</u>	<u>M</u>
Br ₂ (gas)						
300-900	-1.20436	0.57418	-0.23581	0.04431	- 2.23727	9.95316
900-1500	-0.90905	0.30833	-0.11336	0.01629	- 2.97500	9.97647
1500-2500	0.09751	-0.20820	0.01948	-0.00054	- 5.72736	10.11116
2500-3500		No data presently available				
CO (gas)						
300-900	-1.72984	-0.02111	0.11825	-0.03015	- 1.32418	56.00394
900-1500	-2.39396	0.47391	-0.07024	0.00567	0.38885	55.94097
1500-2500	-1.99668	0.31180	-0.03628	0.00210	- 0.74022	56.01005
2500-3500	-1.49090	0.17638	-0.01759	0.00080	- 2.27070	56.11475
CO ₂ (gas)						
300-900	-6.05670	2.64796	-0.81104	0.14873	2.33406	83.43245
900-1500	-4.39692	1.28079	-0.22459	0.02180	- 1.88410	83.57893
1500-2500	-2.79290	0.58261	-0.06777	0.00407	- 6.39973	83.84207
2500-3500	-1.73197	0.29142	-0.02640	0.00114	- 9.59841	84.11742
CO ₃ (gas)						
300-900	-5.94368	2.88983	-0.93464	0.17544	2.46722	71.58117
900-1500	-3.87205	1.19627	-0.21503	0.02115	- 2.80267	71.76444
1500-2500	-2.41861	0.55133	-0.06729	0.00409	- 6.88230	71.99832
2500-3500	-1.33834	0.26376	-0.02783	0.00136	- 10.15361	72.28749
CS ₂ (gas)						
300-900	-5.38117	2.51722	-0.72782	0.11812	0.97930	59.85235
900-1500	-3.49011	1.15317	-0.21867	0.02206	- 3.93043	60.03984
1500-2500	-2.09342	0.51386	-0.06793	0.00419	- 7.83135	60.25735
2500-3500	-0.97325	0.22373	-0.02922	0.00159	- 11.23680	60.56530

TABLE IV (continued)

<u>Temp.°K</u>	<u>A</u>	<u>B x 10³</u>	<u>C x 10⁶</u>	<u>D x 10⁹</u>	<u>L</u>	<u>M</u>
H ₂ (gas)						
300-900	-1.80740	0.33541	-0.17871	0.05028	- 0.05198	22.55819
900-1500	-1.16455	-0.24605	0.08951	-0.01108	-1.65659	22.60867
1500-2500	-2.07869	0.16067	-0.00377	-0.00032	0.90789	22.46215
2500-3500	-2.04360	0.18570	-0.01171	0.00053	0.74465	22.50712
HBr (gas)						
300-900	-1.27940	-0.30329	0.18918	-0.04077	- 0.89267	18.93084
900-1500	-2.62092	0.58915	-0.11945	0.01361	2.64026	18.78538
1500-2500	-1.64249	0.14149	-0.01344	0.00094	- 0.09371	18.93818
2500-3500		No data presently available				
H ₂ O (gas)						
300-900	-3.92280	0.19144	0.05761	-0.01133	0.75972	47.92932
900-1500	-4.00080	0.22902	0.04796	-0.00981	0.97539	47.91820
1500-2500	-5.03059	0.69916	-0.06240	0.00319	3.85222	47.75775
2500-3500	-4.26326	0.50333	-0.03672	0.00150	1.51497	47.97128
H ₂ S (gas)						
300-900	-4.15348	0.12095	0.24956	-0.06991	1.96065	37.82879
900-1500	-5.35948	1.06295	-0.13359	0.00906	5.05225	37.71730
1500-2500	-4.82659	0.87118	-0.09935	0.00614	3.51185	37.81976
2500-3500	-3.03344	0.39232	-0.03348	0.00158	- 1.91574	38.29799
N ₂ (gas)						
300-900	-1.28299	-0.32610	0.21913	-0.04755	- 2.12757	49.21601
900-1500	-2.24044	0.37831	-0.04746	0.00314	0.34882	49.12342
1500-2500	-1.92766	0.26732	-0.02806	0.00154	- 0.55680	49.18414
2500-3500	-1.31563	0.09284	-0.00260	-0.00032	- 2.39115	49.33612
NO (gas)						
300-900	-1.48649	-0.22970	0.24682	-0.06571	- 1.00421	32.79404
900-1500	-2.35865	0.53033	-0.09040	0.00860	1.18577	32.72343
1500-2500	-1.64012	0.22832	-0.02485	0.00142	- 0.84787	32.84535
2500-3500	-1.16897	0.09275	-0.00489	-0.00005	- 2.25801	32.96120

TABLE IV (continued)

<u>Temp. °K</u>	<u>A</u>	<u>B x 10³</u>	<u>C x 10⁶</u>	<u>Δ x 10⁹</u>	<u>L</u>	<u>M</u>
NO ₂ (gas)						
300-900	-5.30724	1.75393	-0.35155	0.03212	2.19934	48.43229
900-1500	-4.47844	1.30807	-0.24930	0.02600	-0.03725	48.53219
1500-2500	-2.42399	0.81613	-0.13662	0.01089	-2.49391	48.86729
2500-3500	-1.59110	0.33916	-0.03171	0.00063	-6.31454	49.07337
O ₂ (gas)						
300-900	-2.40502	0.53431	-0.04982	-0.00784	0.58712	25.76424
900-1500	-2.37503	0.60975	-0.11779	0.01295	0.45422	25.77894
1500-2500	-1.21493	0.10571	-0.00475	0.00017	-2.81254	25.96944
2500-3500	-1.25498	0.10111	-0.00203	-0.00017	-2.66649	25.94368
OH (gas)						
300-900	-1.61169	0.08083	-0.04307	0.01882	-0.15157	22.16239
900-1500	-1.48464	-0.10709	0.06574	-0.00931	-0.42621	22.16308
1500-2500	-2.31047	0.26738	-0.02169	0.00095	1.88357	22.03334
2500-3500	-2.13098	0.22412	-0.01639	0.00063	1.33278	22.08576
S ₂ (gas)						
300-900	-3.18182	1.32066	-0.38099	0.05924	2.95414	21.98688
900-1500	-2.03449	0.52468	-0.09993	0.00997	-0.04026	22.10342
1500-2500	-1.48721	0.26557	-0.03695	0.00230	-1.56036	22.18556
2500-3500	-0.84975	0.10444	-0.01602	0.00093	-3.50471	22.36466
SO ₂ (gas)						
300-900	-5.89177	2.36760	-0.60799	0.08357	3.26278	55.47311
900-1500	-4.19986	1.25989	-0.24440	0.02560	-1.19090	55.65325
1500-2500	-2.33444	0.42570	-0.05183	0.00320	-6.42058	55.95112
2500-3500	-1.47201	0.18917	-0.01845	0.00083	-9.02099	56.17502
SO ₃ (gas)						
300-900	-9.53787	4.70603	-1.43485	0.24333	4.71887	73.32481
900-1500	-5.82471	1.96959	-0.38914	0.04108	-4.88888	73.68610
1500-2500	-2.77904	0.61049	-0.07603	0.00472	-13.43033	74.17350
2500-3500	-1.48906	0.25276	-0.02507	0.00107	-17.31388	74.50478

C

O

O

COMPUTER TECHNOLOGY

THE COMPUTER MUSEUM HISTORY CENTER

1 026 2034 6