ELEC2104 – Week 6

Bipolar junction transistors

PN Junction Review

- As free electrons and holes diffuse across the junction, a region of fixed ions is left behind. This region is known as the "depletion region."
- The fixed ions in depletion region create an electric field, hence potential difference from p to n.
- Fermi level is flat if the device is not under external bias.
- With no external field applied, the drift current flowing in one direction cancels out the diffusion current flowing in the opposite direction

PN Junction Review

Forward bias

$$I_D = I_S \left[\exp\left(\frac{V_F}{V_T}\right) - 1 \right]$$

$$V_T = 26 \text{meV}$$

Reverse bias

$$I_D = -I_S$$

Small current due to flow of minority carriers

I/V Characteristics in Forward Bias

 Recombination of the minority carriers with the majority carriers accounts for the dropping of minority carriers as they go deep into the P or N region

Minority carrier concentrations must vary

Bipolar junction transistors (BJT)

- Invented (1940s) before Field-effect transistors (FET)
- Three terminal device (you can control the circuit now)
- Most digital circuits use FETs
- BJTs are used when high speed, high precision, or high current scenarios
- Current driven (FET is voltage driven)
- npn has higher performance than pnp
- insulated-gate bipolar transistor (IGBT): important in electric cars.

Bipolar Junctions

- We are going to append another doped semiconductor to the PN junction.
- This is called a bipolar junction
- Can be NPN or PNP

Are they just two PN diodes in series?

Biasing a bipolar junction

 Equilibrium: No voltages applied, diffusion currents cancel out drift current induced by built-in voltage at junctions.

- What happens if we bias this device?
 - Apply a positive voltage across both junctions

Biasing a bipolar junction

- One junction is forward-biased while the other is reverse-biased
- Examine what happens to a carrier from left to right:
 - The forward-biased junction is a diode that is on. Electrons move across the junction in the form of diffusion current
 - In the middle region, some electrons can combine with holes in the p-doped region

At the emitter-base junction

 Left side: some electron from n make it to p region (becoming minority carrier in p)

At the base-collector junction

- Electrons made it to the pn junction on the right:
 - The built-in electric field in the pn junction on the right quickly collect the electrons to the n side.

Biasing a bipolar junction

- Remember, wires contacts "talk" to Fermi levels. Roughly speaking, they directly control the majority carriers. The base contact doesn't talk to electrons here (minority carriers) directly.
- The p region is filled with holes, and its Fermi level is controlled by the base contact. The p concentration here is near constant. Even under bias, the energy levels and the Fermi level here appear to be almost flat.
- "Under the water", the minority electrons secretly move across
- Of all the electrons made through the p region from the emitter, a small portion will recombine with holes, or they will go directly to the base contact
- The holes from base does diffuse to emitter, which causes another portion of the base current

Better BJT

- We want this device to operate such that electrons (emitted) from the left side will enter the depletion region and be swept to (collected at) the right side of the n region before they have a chance to recombine with holes
- How to minimize the probability of an electron recombining with a hole?

Increase the probability of emitted electrons which travel toward the "collecting side"

n⁺ emitter, thin base

- We want this device to operate such that electrons (emitted) from the left side will enter the depletion region and be swept to (collected at) the right side of the n region before they have a chance to recombine with holes
- How to minimize the probability of an electron recombining with a hole?

- This device is called a bipolar junction transistor (BJT)
- Regions: Emitter, Base, Collector
- In typical operation, the base-emitter diode is forward biased and the basecollector diode is reverse biased
- The emitter is usually much more heavily doped than the other regions

A small amount of current from the base can induce a much larger current from the emitter

Symbol of a NPN BJT

• Is BJT the same as two back-to-back diodes?

• Is BJT the same as two back-to-back diodes?

Reverse biased PN junction

- Majority carriers that diffuse into the depletion region are pushed back to where they came from
- A reverse-biased diode by itself should only have a small reverse-saturation current I_s (assuming it is not in reverse breakdown).
- I_S is a result of minority carrier drift.

Reverse biased PN junction in a BJT configuration

- The heavily doped emitter (N-type)
 provides a large amount of electrons
- These electrons diffuses into the lightly doped base (P-type) which forms a number of minority carriers
- The base is so narrow that these electrons get through before they can recombine with the holes

NPN and PNP

- NPN and PNP transistors have the same functionality, different majority carriers.
- In typical circuits, NPN transistors have emitters connected to a lower voltage than the collector
 - Emitter is a source of electrons
- Emitter has an arrow because it is forward-biased

NPN and PNP

- PNP transistors are fabricated by reversing the layers of the NPN transistor
- Collectors connected to a lower voltage than the emitter
 - Emitter is a source of holes

NPN and PNP

Transport in BJT

NPN BJT Transport Model

- Emitter injects electrons into base region, almost all of them travel across narrow base and are removed by collector
- Base-emitter voltage v_{BE} and base-collector voltage v_{BC} determine currents in transistor
 - Positive when they forward-bias their respective PN junctions.
- Terminal currents: collector (i_C), base (i_B), emitter (i_E).

Note: Voltage subscripts denote positive-negative terminals

PNP BJT Transport Model

- Voltages v_{EB} and v_{CB} are positive when they forward bias their respective pn junctions.
- Collector current and base current exit transistor terminals and emitter current enters the device.

Attention to the sign

NPN Forward Active Region

- NPN forward active region: $V_{BE} > 0$, $V_{BC} < 0$.
 - Base-emitter is forward-biased, base-collector is reverse-biased
- This is the most frequently used mode
- The base-emitter voltage establishes the emitter current i_E

NPN Forward Active Collector Current

- Forward transport current: Current flow from collector is the same equation as the forward diode current for the base-emitter diode
- Simple way to remember what's going on:
 - In a pn-junction this current flows from n to p; here the V_{RE} is forward biasing the B-E pn junction, only that the electron current from emitter doesn't go to p contact (base), instead, it mostly go to the collector.
- The BJT can be understood as a voltage-controlled current source.

$$i_C = i_F = I_S \left[\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]$$

$$I_S = \frac{AqD_n n_i^2}{N_A W_B}$$

$$10^{-18}A \le I_s \le 10^{-9}A$$

width of base area elementary charge N_A , N_D acceptor and donor density D_n , D_p diffusion constants $V_T = k_B T$ Thermal voltage Boltzmann constant k_R intrinsic carrier density n_i

I_s is transistor saturation current which is analogous to the diode's $I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$

$$I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

NPN Forward Active I-V Characteristics

- Relation between collector current and base-emitter voltage of transistor
- Almost identical to transfer characteristic of *pn* junction diode

NPN Forward Active Base Current

• Base current: Smaller current, which is proportional to collector current:

$$i_B = \frac{i_C}{\beta_F} = \frac{I_S}{\beta_F} \left[\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]$$

• β_F is the forward **common-emitter current gain** and depends on the base width and emitter doping

NPN Forward Emitter Current

By Kirchoff's current law, emitter current is the sum of base and collector currents

$$i_{E} = i_{C} + i_{B}$$

$$= I_{S} \left(1 + \frac{1}{\beta_{F}} \right) \left[\exp \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right]$$

$$= \frac{I_{S}}{\alpha_{F}} \left[\exp \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right]$$

• α_F is the forward **common-base current gain**:

$$0.95 \le \alpha_F = \frac{\beta_F}{\beta_F + 1} \le 1.0$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$

Forward active current summary

- Transistor "amplifies" its base current by a factor of $\beta_F ~(\gg 1)$
 - Injection of a small current into the base produces a much larger current in both collector and emitter terminals

$$\frac{i_C}{i_B} = \beta_F$$

$$i_E = (\beta_F + 1)i_B$$

• Collector and emitter currents are almost equal ($\alpha_F \approx 1$)

$$\frac{\iota_C}{\iota_E} = \alpha_F$$

BJT Current Amplifier

- A forward-active BJT is frequently used as an amplifier because a small amount of current in the base results in a much larger current in the collector
- Example I-V characteristics: $\beta_F = 1000$, $I_S = 5 \times 10^{-17} A$, $V_T = 26 \text{ mV}$.

$$i_C = I_S \left[\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right] \approx I_S \exp\left(\frac{V_{BE}}{V_T}\right)$$

$$i_B = \frac{i_C}{\beta_F}$$

BJT Current Amplifier

• Then, a small **change** in current in the base results in a proportional change in current in the collector

BJT Configurations

- Different ways to configure a BJT when operating as an amplifier (forward active operation)
- **□** Common Emitter

Emitter terminal is common between input and output side

Base terminal is common between input and output side

Collector terminal is common between input and output side

$$\frac{i_C}{i_B} = \beta_F$$

$$\frac{i_C}{i_E} = \alpha_F$$

$$\frac{i_E}{i_B} = \beta_F + 1$$

NPN Forward Active I-V Characteristics

- Relation between collector current and base-emitter voltage of transistor.
- Almost identical to transfer characteristic of pn junction diode

For a fixed $V_{\rm BE}$, device acts like a constant current source, assuming B-C junction is not in breakdown. $I_{\rm C}$ independent of $V_{\rm CE}$

PNP Forward Active Region

- PNP forward active region: V_{EB} > 0, V_{CB} < 0
 - Same concept as NPN, but bias voltages are opposite because the diodes are pointing in the opposite direction
 - Remember, for NPN in forward-active region: $V_{BE} > 0$, $V_{BC} < 0$.
- Base-emitter is still forward-biased, base-collector is still reverse-biased

PNP Forward Active Region

- These are all exactly the same as those for NPN transistors
- The only difference is that the voltages and currents are referenced in the opposite direction

$$i_C = i_F = I_S \left[\exp\left(\frac{V_{EB}}{V_T}\right) - 1 \right]$$

$$i_B = \frac{I_S}{\beta_F} \left[\exp\left(\frac{V_{EB}}{V_T}\right) - 1 \right]$$

$$i_B = \frac{I_S}{\beta_F} \left[\exp\left(\frac{V_{EB}}{V_T}\right) - 1 \right]$$

$$i_E = i_C + i_B$$

$$rac{i_C}{i_B} = eta_F \qquad rac{i_C}{i_E} = lpha_F$$

Summary of I/V characteristics in BJT

- Principal characteristics of interest
- For collector current:

(as long as BC junction is reverse biased and not in breakdown)

 V_{CE} doesn't matter

• Base and emitter current follows the same behaviour:

$$I_{B} = \frac{I_{C}}{\beta} \qquad \qquad I_{E} = \frac{\beta + 1}{\beta} I$$

BJT Large signal model

BJT Large Signal Model

- Large-signal circuit analysis deals with inputs which have such a large range that devices cannot be turned into linear models
- Time to construct a model that will be useful for analysis and circuit designs:

- A virtual diode placed between base and emitter terminals
- A virtual voltage controlled current source is placed between the collector and emitter

BJT Large Signal Model

• Base-emitter junction is modelled by a diode whose cross section is $1/\beta$ times that of the actual emitter area

• The chain of dependencies of currents and voltages in a bipolar transistor:

$$V_{BE} \rightarrow I_C \rightarrow I_B \rightarrow I_E$$

Example 1: Estimate terminal currents and base-emitter voltage for the following circuit.

Let
$$I_S = 10^{-16} A$$
, $\alpha_F = 0.95$, $V_{BC} = V_B - V_C = -5 V$, $I_E = 100 \mu A$, $V_T = 25 mV$

Observations:

- 1. There is a current source at the emitter terminal
- 2. The base-emitter diode must be forward-biased, and $V_{BE}>0$
- 3. V_{BC} < 0, base-collector is reverse-biased.
- 4. The transistor is in forward-active operation region.

Parameters given:

$$I_S = 10^{-16} A$$
, $\alpha_F = 0.95$, $V_{BC} = V_B - V_C = -5 V$, $I_E = 100 \mu A$, $V_T = 25 mV$

$$I_C = \alpha_F I_E = 0.95 \times 100 \mu A = 95 \mu A$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F} = \frac{0.95}{1 - 0.95} = 19$$

$$I_B = \frac{I_E}{\beta_F + 1} = \frac{100\mu A}{19 + 1} = 5\mu A$$

$$V_{BE} = V_T \ln \left(\frac{\alpha_F I_E}{I_S} \right) = 0.69V$$

Example 2: Estimate terminal currents, base-emitter, and base-collector voltage for the following circuit.

Let
$$I_S = 10^{-16} A$$
, $\alpha_F = 0.95$, $V_C = +5 V$, $I_B = 100 \mu A$, $V_T = 25 mV$

Observations:

- 1. There is a current source going into the base
- 2. The base-emitter diode must be forward-biased, and $V_{BE} > 0$
- 3. Base-collector is reverse-biased.
- 4. The transistor is in forward-active operation region.

Parameters given:

$$I_S = 10^{-16} A$$
, $\alpha_F = 0.95$, $V_C = +5 V$, $I_B = 100 \mu A$, $V_T = 25 mV$

$$I_C = \beta_F I_B = 19 \times 100 \mu A = 1.9 mA$$

5V
$$I_E = (\beta_F + 1)I_B$$

= $20 \times 100 \mu A = 2mA$

$$V_{BE} = V_T \ln \left(\frac{I_C}{I_S} \right) = 0.764V$$

$$V_{BC} = V_B - V_C = V_{BE} - V_C$$

= 0.764 $V - 5 = -4.24V$

BJT Model

- To further simplify the model,
 - Replace diode with a constant-voltage diode model
- When analyzing circuits, you must determine that the base-emitter junction is forward-biased before applying this model

$$V_{D} < V_{D,on}$$

$$V_{D} > V_{D,on}$$

$$V_{D} > V_{D,on}$$

$$V_{D,on}$$

$$V_{D,on}$$

$$V_{D,on}$$

$$V_{D,on}$$

$$V_{D,on}$$

$$V_{BE}$$

$$V_{BE}$$

$$V_{BE}$$

$$V_{BE}$$

$$V_{D,on}$$

$$V_{BE}$$

$$V_{D,on}$$

$$V_{BE}$$

$$V_{D,on}$$

BJT Analysis

Example: Find Q-point for the following circuit. Let $\beta_F = 50$, $V_{BC} = -9 \ V$, $V_{D,on} = 0.7 V$

Assume transistor is in the forward-active operation. Then we can replace the BJT with a diode and a current source for large signal analysis.

BJT Analysis

Parameters given: $\beta_F = 50$, $V_{BC} = -9 V$, $V_{D.on} = 0.7 V$

Assume transistor is in the forward-active operation.

$$V_{BE} + 8200I_E - V_{EE} = 0$$

$$I_E = \frac{V_{EE} - V_{BE}}{8200} = \frac{8.3}{8200} = 1.01 \, mA$$

$$I_B = \frac{I_E}{\beta_F + 1} = 19.8 \,\mu A$$

$$I_C = \beta_F I_B = 0.990 \ mA$$

$$V_{CE} = V_{CC} - I_C R_C - (-V_{BE}) = 5.44V$$

PNP Large Signal Model

• Exact same model as NPN, but currents and voltages are flipped

BJT small signal analysis

BJT as Voltage-Controlled Current Source

- BJT can be modeled as a 3-terminal voltage-controlled current source
- Exponentials are a hassle
- If we keep the device operating around a given point with only small changes in the signal, we can create a linear model.

BJT as Voltage-Controlled Current Source

• The relationship between V_{BE} and I_{C} is approximately linear when looking at small signals

K represents some constant relation between ΔV_{BE} and ΔI_{C}

BJT as Voltage-Controlled Current Source

Output voltage can be measured across an output load

$$v_{out} = -Kv_{in}R_L$$

• If KR₁ is greater than 1, then the signal is amplified

$$A_V = \frac{v_{out}}{v_{in}} = -KR_L$$

- How to quantify the device performance?
- How well can the voltage control the current source?
- What is K?

BJT Transconductance

- Transconductance, g_m is a small-signal measure of how well the transistor converts voltage to current.
- g_m is one of the most important parameters in circuit design.
- Remember, for large-signal analysis, conductance G = 1/R

For small changes:

$$g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{d}{dV_{BE}} \left(I_{S} \exp \frac{V_{BE}}{V_{T}} \right)$$

$$g_m = \frac{1}{V_T} \left(I_S \exp \frac{V_{BE}}{V_T} \right)$$

$$g_m = \frac{I_C}{V_T}$$

BJT Transconductance

- g_m can be visualized as the slope of I_C versus V_{BE} characteristics at a given collector current I_{CO} and base-emitter voltage V_{BEO}
- A large g_m will cause a large change in I_C for the same change in ΔV_{BE}

 $I_{C2} > I_{C1}$

BJT Transconductance

Question:

• If I_C remains constant, but β varies, does g_m change?

 Collector bias (or quiescent) current plays an important role in the design of BJT amplifiers