2048 Game

Saranya Roy

1st Version:

In this version, I implemented a basic MinMax agent for the 2048 game, utilizing a heuristic based on the game score .

Testing result:

Score: 9456					
2	64	32	2		
4	512	64	16		
128	16	32	4		
4	512	8	2		

• Final Score: 6040

• Time-limit:0.1

• Search depth: 10

Observations:

- 1) The current MinMax agent successfully avoids invalid moves and performs reasonably well.
- 2) It primarily favors right and down moves.
- 3) The scoring is inconsistent, typically ending around 2000–4000 points.

2nd Version: MinMax with improved heruistic

Testing results:

Score: 15900					
8	2	1024	16		
64	256	64	8		
8	32	512	4		
2	128	16	2		

Maximum Score: 15900

• Average Score: 8000

Observations:

- The board consistently maintains a higher number of empty tiles.
- Overall, the score is more stable and reliable compared to version 1.

Final Version: Expectimax with monotonic and smoothing heuristic

In this version I used Expectimax instead of Minimax, I used:

Testing results:

Score: 36124					
2048	1024	512	128		
32	128	256	64		
2	16	32	16		
8	4	2	4		

Maximum Score: 58298

Average Score: 26000

Observations:

- 1) Expectimax gave better scores than MinMax.
- 2) This version was significantly more stable producing better median scores.

3) In this version, the highest tile consistently stayed in a corner — a key strategy in 2048.

Conclusion:

Across all three versions, my agent showed steady improvement over time.

- Version 1 used a basic score-based approach for decision-making, but it didn't account for tile positioning, leading to subpar performance.
- Version 2 introduced a smarter strategy by attempting to keep the highest tile in a corner, which resulted in more effective moves.
- Version 3 marked the most significant improvement. By implementing Expectimax and incorporating advanced heuristics—such as maintaining board smoothness, anchoring the max tile in a corner, and using a snake-pattern layout—the agent achieved higher and more consistent scores. This version proved to be the most stable and successful overall.