Real Analysis

MATH 104

Instructor: Peng Zhou

KELVIN LEE

UC BERKELEY

Contents

1	The	Real Number Systems 4			
	1.1	Natural Numbers \mathbb{N}			
	1.2	Rational Numbers \mathbb{Q}			
	1.3	Real Numbers $\mathbb R$			
		1.3.1 The Completeness Axiom			
	1.4	$+\infty$ and $-\infty$			
	1.5	Reading (Rudin's)			
		1.5.1 Ordered Sets			
		1.5.2 Fields			
2	Seq	uences 9			
	2.1	Limits of Sequences			
	2.2	Proofs of Limits			
	2.3	Limit Theorems for Sequences			
		2.3.1 Upper and lower limits			
	2.4	Monotone Sequences and Cauchy Sequences			
		2.4.1 Subsequences			
	2.5	lim sup's and lim inf's			
3	Metric Spaces and Topology 18				
	3.1	Metric Spaces			
		3.1.1 Topological Definitions			
		3.1.2 Compact Sets			
	3.2	Connected Sets			
4	Seri	des 23			
	4.1	Series			
	4.2	Alternating Series			
5	Cor	atinuity 26			
	5.1	Limits of Functions			
		5.1.1 Continuous Functions			
	5.2	Continuity and Compactness			
	5.3	Uniform Continuity			
	5.4	Continuity and Connectedness			
6	Differentiation 29				
	6.1	The Derivative of a Real Function 29			

	6.2	Mean Value Theorem	31
		L'Hospital's Rule	
	6.4	Derivatives of Higher Order	3
	6.5	Taylor's Series	34
7	The	e Riemann-Stieltjes Integral	86
	7.1	Definition and Existence of the Integral	36
	7.2	Properties of the Integral	12
	7.3	Integration and Differentiation	15
	7.4	Uniform Convergence and Integration	
8			١7
	8.1	The Gamma Function	<u>1</u> 7
		8.1.1 Beta function	18
9	The	e Lebesgue Theory 4	١9
		4	19

The Real Number Systems

1.1 Natural Numbers \mathbb{N}

Definition 1.1.1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers, denoted \mathbb{N} , are as follows:

- (i) 1 belongs to \mathbb{N} .
- (ii) If n belongs to \mathbb{N} , then its successor n+1 belongs to \mathbb{N} .
- (iii) 1 is not the successor of any element in \mathbb{N} .
- (iv) If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- (v) A subset of \mathbb{N} which contains 1, and which contains n+1 whenever it contains n, must equal to \mathbb{N} .

Remark. The last axiom is the basis of mathematical induction. Let P_1, P_2, P_3, \ldots be a list of propositions that may or may not be true. The principle of mathematical induction asserts all the statements P_1, P_2, \ldots are true provided

- P_1 is true. (Basis for induction)
- $P_n \implies P_{n+1}$. (Induction step)

Definition 1.2.1 (Rational Numbers). The set of rational numbers, denoted \mathbb{Q} , is defined by

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid n, m \in \mathbb{Z}, n \neq 0 \right\},\,$$

which supports addition, multiplication, subtraction, and division.

Remark. \mathbb{Q} is a very nice algebraic system. However, there is no rational solution to equations like $x^2 = 2$.

Definition 1.2.2 (Algebraic Number). A number is called an **algebraic number** if it satisfies a polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where c_0, \ldots, c_n are integers, $c_n \neq 0$ and $n \geq 1$.

Remark. Rational numbers are always algebraic numbers.

Theorem 1.2.3 (Rational Zeros Theorem). Suppose c_0, c_1, \ldots, c_n are integers and r is a rational number satisfying the polynomial equations

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $n \ge 1$, c_n , $c_0 \ne 0$. Let $r = \frac{c}{d}$ where gcd(c, d) = 1. Then $c \mid c_0$ and $d \mid c_n$. In simpler terms, the only rational candidates for solutions to the equation have the form $\frac{c}{d}$ where c is a factor of c_0 and d is a factor of c_n .

Proof. Plug in $r = \frac{c}{d}$ to the equation, we get

$$c_n \left(\frac{c}{d}\right)^n + c_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0.$$

Then we multiply by d^n on both sides and get

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Solving for c_0d^n , we obtain

$$c_0 d^n = -c \left(c_n c^n + c_{n-1}^{n-2} + \dots + c_2 c d^{n-2} + c_1 d^{n-1} \right).$$

Then it follows that $c \mid c_0 d^n$. Since gcd(c, d) = 1, c can only divide c_0 . Now let's instead solve for $c_n c^n$, then we have

$$c_n c^n = -d \left(c_{n-1} c^{n-1} + c_{n-2} c^{n-2} d + \dots + c_1 c d^{n-2} + c_0 d^{n-1} \right).$$

Thus $d \mid c_n c^n$, which implies $d \mid c_n$ because gcd(c, d) = 1.

Corollary 1.2.4. Consider

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0,$$

where $c_0, c_1, \ldots, c_{n-1}$ are integers and $c_0 \neq 0$. Any rational solution of this equation must be an integer that divides c_0 .

Proof. Since the Rational Zeros Theorem states that d must divide c_n , which is 1 in this case, r is an integer and it divides c_0 .

Example 1.2.5. $\sqrt{2}$ is not a rational number.

Proof. Using Corollary 5, if $r = \sqrt{2}$ is rational, then $\sqrt{2}$ must be an integer, which is a contradiction.

1.3 Real Numbers \mathbb{R}

1.3.1 The Completeness Axiom

Definition 1.3.1 (Maximum/minimum). Let S be a nonempty subset of \mathbb{R} .

- (i) If S contains a largest element s_0 (i.e., $s_0 \in S$, $s \leq s_0 \forall s \in S$), then s_0 is the **maximum** of S, denoted $s_0 = \max S$.
- (i) If S contains a smallest element, then it is called the **minimum** of S, denoted as $\min S$.

Remark.

- If s_1, s_2 are both maximum of S, then $s_1 \ge s_2, s_2 \ge s_1$, which implies that $s_1 = s_2$. Thus the maximum is **unique** if it exists.
- However, the maximum may not exist (e.g. $S = \mathbb{R}$).
- If $S \subset \mathbb{R}$ is a finite subset, then max S exists.

Definition 1.3.2 (Upper/Lower bound). Let S be a nonempty subset of \mathbb{R} .

- (i) If a real number M satisfies $s \leq M$ for all $s \in S$, then M is an **upper bound** of S and S is said to be bounded above.
- (i) If a real number m satisfies $\leq s$ for all $s \in S$, then m is a **lower bound** of S and S is said to be bounded below.
- (i) S is said to be *bounded* if it is bounded above and bounded below. Thus S is bounded if there exist real numbers m and M such that $S \subset [m, M]$.

Definition 1.3.3 (Supremum/Infimum). Let S be a nonempty subset of \mathbb{R} .

- If S is bounded above and S has a least upper bound, then it is called the **supremum** of S, denoted by sup S.
- If S is bounded below and S has a greatest lower bound, then it is called the **infimum** of S, denoted by inf S.

Remark. If S has a maximum, then $\max S = \sup S$. Similarly, if S has a minimum, then $\min S = \inf S$. Also note that $\sup S$ and $\inf S$ need not belong to S.

Example 1.3.4. Suppose we have $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$. Then max S does not exist and sup S = 1.

Proof. Suppose for contradiction that it exists. Then it must be of the form $1 - \frac{1}{n_0}$ for some $n_0 \in \mathbb{N}$. However,

$$1 - \frac{1}{n_0 + 1} > 1 - \frac{1}{n_0},$$

and $1 - \frac{1}{n_0 + 1} \in S$. Hence a contradiction.

Theorem 1.3.5 (Completeness Axiom). Every nonempty subset $S \subset \mathbb{R}$ that is bounded above has a least upper bound. In other words, sup S exists and is a real number.

Corollary 1.3.6. Every nonempty subset $S \subset \mathbb{R}$ that is bounded below has a greatest lower bound inf S.

Proof. Consider the set $-S = \{-s \mid s \in S\}$. Since S is bounded below there exists an $m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$. This implies $-m \geq -s$ for all $s \in S$, so $-m \geq u$ for all $u \in -S$. Thus, -S is bounded above by -m. The Completeness Axiom applies to -S, so $\sup -S$ exists. Now we show that $\inf S = -\sup -S$. Let $s_0 = \sup -S$, we need to prove

$$-s_0 \leqslant s$$
 for all $s \in S$,

and if $t \leq s$ for all $s \in S$, then $t \leq -s_0$. The first inequality will show that $-s_0$ is a lower bound while the second inequality will show that $-s_0$ is the greatest lower bound, i.e., $-s_0 = \inf S$. The proofs of the two claims are left as an exercise.

Theorem 1.3.7 (Archimedean Property). If a, b > 0, then na > b for some positive integer n.

Proof. Suppose the property fails for some pair of a, b > 0. That is, for all $n \in \mathbb{N}$, we have $na \leq b$, meaning that b is an upper bound for the set $S = \{na \mid n \in \mathbb{N}\}$. Using the Completeness Axiom, we can let $s_0 = \sup S$. Since a > 0, we have $s_0 - a < s_0$, so $s_0 - a$ cannot be an upper bound for S. It follows that $s_0 - a < n_0 a$ for some $n_0 \in \mathbb{N}$, which then implies that $s_0 < (n_0 + 1)a$. Since $(n_0 + 1)a$ is in S, s_0 is not an upper bound for S, which is a contradiction.

Theorem 1.3.8 (Denseness of \mathbb{Q}). If $a, b \in \mathbb{R}$ and a < b, then there is a rational $r \in \mathbb{Q}$ such that a < r < b.

Proof. We need to show that $a < \frac{m}{n} < b$ for some integers m and n where $n \neq 0$. Equivalently, we want

$$an < m < bn$$
.

Since b-a>0, the Archimedean property shows that there exists an $n\in\mathbb{N}$ such that

$$n(b-a) > 1 \implies bn - an > 1.$$

Now we need to show that there is an integer m between an and bn.

1.4 $+\infty$ and $-\infty$

We adjoint $+\infty$ and $-\infty$ to \mathbb{R} and extend our ordering to the set $\mathbb{R} \cup \{-\infty, +\infty\}$. Explicitly, we have $-\infty \leq a \leq +\infty$ for all $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

Remark. $+\infty$ and $-\infty$ are not real numbers. Theorems that apply to real numbers would not work. We define

$$\sup S = +\infty$$
 if S is not bounded above

and

 $\inf S = -\infty$ if S is not bounded below.

1.5 Reading (Rudin's)

1.5.1 Ordered Sets

Definition 1.5.1 (Order). Let S be a set. An **order** on S is a relation, denoted by <, with the following two properties:

• If $x \in S$ and $y \in S$, then one and only one of the statements

$$s < y, \quad x = y, \quad , y < x$$

is true.

• If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 1.5.2 (Ordered Set). An ordered set is a set S in which an order is defined.

For example, Q is an ordered set if r < s is defined to mean that s - r is a positive rational number.

1.5.2 Fields

Definition 1.5.3 (Field). A field is a set F with two operations: addition and multiplication, which satisfy the following field axioms:

- (A) Axioms for addition
 - (A1) If $x, y \in F$, then $x + y \in F$.
 - (A2) (Commutativity) $\forall x, y \in F, x + y = y + x$.
 - (A3) (Associativity) $\forall x, y, z \in F$, (x + y) + z = x + (y + z).
 - (A4) (Identity) $\forall x \in F, 0 + x = x$.
 - (A5) (Inverse) $\forall x \in F$, there exists a corresponding $-x \in F$ such that

$$x + (-x) = 0.$$

- (M) Axioms for multiplication
 - (M1) If $x, y \in F$, then $xy \in F$.
 - (M2) (Commutativity) $\forall x, y \in F, xy = yx$.
 - (M3) (Associativity) $\forall x, y, z \in F$, (xy)z = x(yz).
 - (M4) (Identity) $\forall x \in F$, 1x = x.
 - (M5) (Inverse) $\forall x \in F$, there exists a corresponding $\frac{1}{x} \in F$ such that

$$x\left(\frac{1}{x}\right) = 1.$$

(D) The distributive law

$$\forall x, y, z \in F, x(y+z) = xy + xz.$$

Definition 1.5.4 (Ordered Field). An **ordered field** is a field F which is also an *ordered set*, such that

- (i) if y < z and $x, y, z \in F$, x + y < x + z,
- (i) if x, y > 0 and $x, y \in F$, xy > 0.

Sequences

2.1 Limits of Sequences

Definition 2.1.1 (Sequence). A sequence is a function whose domain is a set of the form $\{n \in \mathbb{Z} \mid n \ge m\}$ where m is usually 1 or 0.

One may wonder why do we care about sequence, and the answer is that sequences are useful for *approximation*.

Definition 2.1.2. A sequence $\{s_n\}$ of real numbers is said to **converge** to the real number s if $\forall \epsilon > 0$, $\exists N > 0$ such that for all positive integers n > N, we have

$$|s_n - s| < \epsilon$$
.

If $\{s_n\}$ converges to s, we write $\lim_{n\to\infty} s_n = s$, or simply $s_n \to s$, where s is called the **limit** of the sequence. A sequence that does not converge to some real number is said to **diverge**.

2.2 Proofs of Limits

Example 2.2.1. Prove $\lim_{n\to\infty}\frac{1}{n^2}=0$.

Scratch. For any $\epsilon > 0$, we want

$$\left| \frac{1}{n^2} - 0 \right| < \epsilon \iff \frac{1}{n^2} < \epsilon \iff \frac{1}{\epsilon} < n^2 \iff \frac{1}{\sqrt{\epsilon}} < n.$$

Thus, we can just take $N = \frac{1}{\sqrt{\epsilon}}$.

Proof. Let $\epsilon > 0$ and $N = \frac{1}{\sqrt{\epsilon}}$. Then n > N implies $n > \frac{1}{\sqrt{\epsilon}}$ which implies $n^2 > \frac{1}{\epsilon}$ and hence $\epsilon > \frac{1}{n^2}$. Thus n > N implies $\left|\frac{1}{n^2} - 0\right| < \epsilon$. This proves our claim.

Example 2.2.2. Prove $\lim_{n\to\infty} \frac{3n+1}{7n-4} = \frac{3}{7}$.

Scratch. $\forall \epsilon > 0$, we need $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$, which implies that

$$\left|\frac{21n+7-21n+12}{7(4n-4)}\right|<\epsilon\implies \left|\frac{19}{7(7n-4)}\right|<\epsilon.$$

Since 7n-4>0, we can remove the absolute value sign and have

$$\frac{19}{7\epsilon} < 7n - 4 \implies \frac{19}{49\epsilon} + \frac{4}{7} < n.$$

Thus, we have $N = \frac{19}{49\epsilon} + \frac{4}{7}$.

Proof. Let $\epsilon > 0$ and let $N = \frac{19}{49\epsilon} + \frac{4}{7}$. Then n > N implies $n > \frac{19}{49\epsilon} + \frac{4}{7}$, hence $7n > \frac{19}{7\epsilon} + 4$, which gives us $\frac{19}{7(7n-4)} < \epsilon$, and thus $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$. Then we are done.

Example 2.2.3. Prove $\lim_{n\to\infty} 1 + \frac{1}{n} (-1)^n = 1$.

Scratch. $\forall \epsilon > 0$, we want n large enough, such that

$$|a_n - 1| < \epsilon \iff \left| 1 + \frac{1}{n} (-1)^n - 1 \right| < \epsilon \iff \left| \frac{1}{n} (-1)^n \right| < \epsilon \iff \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}.$$

Just take $\alpha = \frac{1}{\epsilon}$, then $n > N \to |a_n - 1| < \epsilon$

2.3 Limit Theorems for Sequences

Definition 2.3.1 (Bounded). A sequence $\{s_n\}$ of real numbers is said to be bounded if the set $\{s_n \mid n \in \mathbb{N}\}\$ is a bounded set, i.e., if there exists a constant M such that $|s_n| \leq M$ for all n.

Theorem 2.3.2. Convergent sequences are bounded.

Proof. Let $\{s_n\}$ be a convergent sequence and let $s = \lim_{n \to \infty} s_n$. Let $\epsilon > 0$ be fixed. Then by convergence of the sequence, there exists an number $N \in \mathbb{N}$ such that

$$n > N \implies |s_n - s| < \epsilon$$
.

By the triangle inequality we see that n > N implies $|s_n| < |s| + \epsilon$. Define $M = \max\{|s| + \epsilon\}$ $\epsilon, |s_1|, \ldots, |s_N|$. Then $|s_n| \leq M$ for all $n \in \mathbb{N}$, so $\{s_n\}$ is a bounded sequence.

Theorem 2.3.3. Let $\{s_n\}$ and $\{t_n\}$ be sequences in \mathbb{R} such that $s_n \to s$ and $t_n \to t$. Let $k \in \mathbb{R}$ be a constant. Then

- (i) $ks_n \to ks$. (ii) $(s_n + t_n) \to s + t$. (iii) $s_n t_n \to st$. (iv) If $s_n \neq 0$ for all n, and if $s \neq 0$, then $\frac{1}{s_n} \to \frac{1}{s}$. (v) If $s_n \neq 0$ and $s \neq 0$ for all n, then $\frac{t_n}{s_n} \to \frac{t}{s}$.

Proof of (i). Since the case where k=0 is trivial, we assume $k\neq 0$. Let $\epsilon>0$ and we want to show that $|ks_n-ks|<\epsilon$ for large n. Since $\lim_{n\to\infty}=s$, there exists N such that

$$n > N \implies |s_n - s| < \frac{\epsilon}{|k|}.$$

Then

$$n > N \implies |ks_n - ks| < \epsilon$$
.

Proof of (ii). Let $\epsilon > 0$. We need to show

$$|s_n + t_n - (s+t)| < \epsilon$$
 for large n .

Using triangle inequality, we have $|s_n + t_n - (s+t)| \le |s_n - s| + |t_n - t|$. Since $s_n \to s$, there exists N_1 such that

$$n > N_1 \implies |s_n - s| < \frac{\epsilon}{2}.$$

Similarly, there exists N_2 such that

$$n > N_2 \implies |t_n - t| < \frac{\epsilon}{2}.$$

Let $N = \max\{N_1, N_2\}$. Then clearly

$$n > N \implies |s_n + t_n - (s+t)| \le |s_n - s| + |t_n - t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Proof of (iii). We use the identity

$$s_n t_n - s t = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s).$$

Given $\epsilon > 0$, there are integers N_1, N_2 such that

$$n > N_1 \implies |s_n - s| < \sqrt{\epsilon}$$

 $n > N_2 \implies |t_n - t| < \sqrt{\epsilon}$

If we take $N = \max \{N_1, N_2\}, n \ge N$ implies

$$|(s_n - s)(t_n - t)| < \epsilon$$

which implies that

$$\lim_{n \to \infty} (s_n - s) (t_n - t) = 0.$$

Applying (i) and (ii), we get

$$\lim_{n\to\infty} \left(s_n t_n - st \right) = 0.$$

Proof of (iv). Choosing m such that $|s_n - s| < \frac{1}{2}|s|$ if $n \ge m$, we see that

$$|s_n| > \frac{1}{2}|s| \quad (n \geqslant m).$$

Given $\epsilon > 0$, there is an integer N > m such that n > N implies

$$|s_n - s| < \frac{1}{2}|s|^2 \epsilon.$$

Hence, for $n \ge N$

$$\left|\frac{1}{s_n} - \frac{1}{s}\right| = \left|\frac{s_n - s}{s_n s}\right| < \frac{2}{|s|^2} \left|s_n - s\right| < \epsilon.$$

Proof of (v). Using (iv), we have $\frac{1}{s_n} \to \frac{1}{s}$, and by (iii), we get

$$\lim_{n\to\infty}\frac{t_n}{s_n}=\lim_{n\to\infty}\frac{1}{s_n}\cdot t_n=\frac{1}{s}\cdot t=\frac{t}{s}.$$

Theorem 2.3.4.

(i) $\lim_{n\to\infty} \frac{1}{n^p} = 0$ for p > 0.

(ii) $\lim_{n\to\infty} a^n = 0$ if |a| < 1.

(iii) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

(iv) $\lim_{n\to\infty} a^{\frac{1}{n}} = 1$ for a > 0.

Proof of (i). Let $\epsilon > 0$ and let $N = \left(\frac{1}{\epsilon}\right)^{\frac{1}{p}}$. Then n > N implies $n^p > \frac{1}{\epsilon}$ and thus $\epsilon > \frac{1}{n^p}$. Since $\frac{1}{n^p} > 0$, this shows n > N implies $\left|\frac{1}{n^p} - 0\right| < \epsilon$.

Proof of (ii). The case for a=0 is trivial. Suppose that $a\neq 0$. Since |a|<1, we can write $|a|=\frac{1}{1+b}$ where b>0. By the binomial theorem, we have $(1+b)^n\geqslant 1+nb>nb$, then

$$|a^n - 0| = |a^n| = \frac{1}{(1+b)^n} < \frac{1}{nb}.$$

Consider $\epsilon > 0$ and let $N = \frac{1}{\epsilon b}$. Then n > N implies $n > \frac{1}{\epsilon b}$ and thus $|a^n - 0| < \frac{1}{nb} < \epsilon$.

Proof of (iii). Let $s_n = n^{\frac{1}{n}} - 1$. Then $s_n \ge 0$ and by the binomial theorem,

$$n = (1 + s_n)^n \geqslant \frac{n(n-1)}{2} s_n^2.$$

Hence,

$$0 \leqslant s_n \leqslant \sqrt{\frac{2}{n-1}} \implies s_n \to 0.$$

Proof of (iv). Suppose a > 1. Let $s_n = a^{\frac{1}{n}} - 1$. Then $s_n > 0$, and by the binomial theorem,

$$1 + ns_n \leqslant (1 + s_n)^n = a,$$

so that

$$0 < s_n \leqslant \frac{p-1}{n}.$$

Hence, $s_n \to 0$. The case for a = 1 is trivial, and if 0 , the result is obtained by takingreciprocals.

2.3.1 Upper and lower limits

Definition 2.3.5. Let $\{s_n\}$ be a sequence of real numbers with the property that for every real M there is an integer N such that $n \ge N$ implies $s_n \ge M$. We then write

$$s_n \to +\infty$$
.

Similarly, if for every real M there is an integer N such that $n \ge N$ implies $s_n \le M$, we write

$$s_n \to -\infty$$
.

2.4 Monotone Sequences and Cauchy Sequences

Definition 2.4.1 (Monotone sequence). A sequence $\{s_n\}$ of real numbers is called an *increasing* sequence if $s_n \leq s_{n+1}$ for all n, and $\{s_n\}$ is called a decreasing sequence if $s_n \geq s_{n+1}$ for all n. If $\{s_n\}$ is increasing, then $s_n \leq s_m$ whenever n < m. A sequence that is increasing or decreasing will be called a monotone sequence or a monotonic sequence.

Theorem 2.4.2. All bounded monotone sequences converge.

Proof. Let $\{s_n\}$ be a bounded increasing sequence, Let $=\{s\mid n\in\mathbb{N}\}$ and let $u=\sup S$, Since S is bounded, u represents a real number. We show $s_n \to u$. Let $\epsilon > 0$. Since $u - \epsilon$ is not an upper bound for S, there exists N such that $s_N > u - \epsilon$. Since $\{s_n\}$ is increasing, $s_N \leqslant s_n$ for all $n \geqslant N$. Of course $s_n \leq u$ for all n, so n > N implies $u - \epsilon < s_n \leq u$, which implies $|s_n - u| < \epsilon$. Hence $s_n \to u$. The proof for bounded decreasing sequences is left as an exercise.

Theorem 2.4.3.

- (i) If $\{s_n\}$ is an unbounded increasing sequence, then $s_n \to +\infty$. (ii) If $\{s_n\}$ is an unbounded decreasing sequence, then $s_n \to -\infty$.

Corollary 2.4.4. If $\{s_n\}$ is a monotone sequence, then the sequence either converges, diverges to $+\infty$, or $-\infty$. Thus $\lim s_n$ is always meaningful for monotone sequences.

Proof. Simply apply the previous two theorems.

Definition 2.4.5. Let $\{s_n\}$ be a sequence in \mathbb{R} . We define

$$\limsup s_n = \lim_{N \to \infty} \sup \{ s_n \mid n > N \}$$

and

$$\lim\inf s_n = \lim_{N \to \infty} \inf \{ s_n \mid n > N \}$$

Theorem 2.4.6. Let $\{s_n\}$ be a sequence in \mathbb{R} .

(i) If $\lim s_n$ is defined (real, or $\pm \infty$), then

 $\lim\inf s_n = \lim s_n = \lim\sup s_n.$

(ii) If $\lim \inf s_n = \lim \sup s_n$, then $\lim s_n$ is defined and

 $\lim s_n = \lim \inf s_n = \lim \sup s_n.$

Definition 2.4.7 (Cauchy sequence). A sequence $\{s_n\}$ of real numbers i called a Cauchy sequence if for each $\epsilon > 0$ there exists a number N such that

$$m, n > N \implies |s_n - s_m| < \epsilon.$$

Lemma 2.4.8. Convergent sequences are Cauchy sequences.

Proof. Suppose $\lim s_n = s$. Since the terms s_n are close to s for large n, they must also be close to each other; indeed

$$|s_n - s_m| = |s_n - s + s - s_m| \le |s_n - s| + |s - s_m|.$$

Let $\epsilon > 0$. Then there exists N such that

$$n > N \implies |s_n - s| < \frac{\epsilon}{2}.$$

Clearly we can also write

$$m > N \implies |s_m - s| < \frac{\epsilon}{2},$$

so

$$m, n > N \implies |s_n - s_m| \le |s_n - s| + |s - s_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\{s_n\}$ is a Cauchy sequence.

Lemma 2.4.9. Cauchy sequences are bounded.

Proof. Let $\epsilon = 1$. By definition, we have N in N such that

$$m, n > N \implies |s_n - s_m| < 1.$$

In particular, $|s_n - s_{N+1}| < 1$ for n > N, so $|s_n| < |s_{N+1}| + 1$ for n > N. If $M = \max\{|s_{N+1} + 1, |s_1|, |s_2|, \dots, |s_N|\}$, then $|s_n| \leq M$ for all $n \in \mathbb{N}$.

Theorem 2.4.10. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof. Earlier we have shown one direction in a lemma. We now only need to show that Cauchy sequences are convergent sequences. Consider a Cauchy sequence $\{s_n\}$ and it is bounded by previous lemma. We now need to show that

$$\lim\inf s_n = \lim\sup s_n.$$

Let $\epsilon > 0$. Since $\{s_n\}$ is a Cauchy sequence, there exists N so that

$$m, n > N \implies |s_n - s_m| < \epsilon.$$

In particular, $s_n < s_m + \epsilon$ for all m, n > N. This shows $s_m + \epsilon$ is an upper bound for $\{s_n \mid n > N\}$, so $v_N = \sup\{s_n \mid n > N\} \le s_m + \epsilon$ for m > N. This, in turn, shows $v_N - \epsilon$ is a lower bound for $\{s_m \mid m > N\}$, so $v_N - \epsilon \le \inf\{s_m \mid m > N\} = u_N$. Thus

$$\limsup s_n \leqslant v_N \leqslant u_N + \epsilon \leqslant \liminf s_n + \epsilon.$$

Since this holds for all $\epsilon > 0$, we have $\limsup s_n \leq \liminf s_n$. Since $\limsup s_n \geq \liminf s_n$ always holds, we are done.

2.4.1 Subsequences

Definition 2.4.11 (Subsequence). Suppose $\{s_n\}_{n\in\mathbb{N}}$ is a sequence. A subsequence of this sequence is a sequence of the form $\{t_k\}_{k\in\mathbb{N}}$

Theorem 2.4.12. Every sequence $\{s_n\}$ has a monotonic subsequence.

Proof. We say that the n-th term is dominant if $s_m < s_n$ for all m > n. There are two cases:

Case 1: Suppose there are infinitely many dominant terms, and let $\{s_{nk}\}$ be any subsequence consisting solely of dominant terms. Then $s_{nk+1} < s_{nk}$ for all k, so $\{s_{nk}\}$ is a decreasing sequence.

Case 2: Suppose there are only finitely many dominant terms. Select n_1 so that s_{n_1} is beyond all the dominant terms of the sequence. Then given $N \ge n_1$, there exists m > N such that $s_m \ge s_N$.

Theorem 2.4.13 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Proof. Using previous theorem, we have a monotonic subsequence. Since monotonic bounded sequence are convergent, we are done. \Box

Alternative proof. Suppose that $\{s_n\}$ is bounded. Then there exists M > 0 such that $|s_n| < M$ for all $n \in \mathbb{N}$. Let $A_1 = \{n \in \mathbb{N} \mid s_n \in [0, M]\}$, $B_1 = \{n \in \mathbb{N} \mid s_n \in [-M, 0]\}$. Since $A_1 \cup B_1 = \mathbb{N}$ is an infinite set, hence at least one of A_1, B_1 is infinite. WLOG assume that A_1 is infinite. We then cut [0, M] into two halves, and repeat the same procedure, then at least one of [0, M/2] and [M/2, M] contains infinitely many points of the sequence. Then, we get a nested sequence of closed intervals,

$$I_1\supset I_2\supset\cdots, \qquad |I_{n+1}|=\frac{1}{2}|I_n|.$$

One can pick subsequence $\{s_{nk}\}$ such that for all k, s_{nk} is in I_k , and $n_{k+1} > n_k$. Then this subsequence is Cauchy, hence is convergent.

Definition 2.4.14 (Subsequential limit). A subsequential limit is any real number or symbol $\pm \infty$ that is the limit of some subsequence of $\{s_n\}$.

Example 2.4.15. Consider $\{s_n\}$ where $s_n = n^2(-1)^n$. The subsequence of even terms diverges to $+\infty$ where as that of odd terms diverges to $-\infty$. Hence, the set $\{-\infty, +\infty\}$ is the set of subsequential limits of $\{s_n\}$.

Example 2.4.16. Consider $\{r_n\}$, a list of all rational numbers. Every real number is a subsequential limit of $\{r_n\}$ as well as $\pm \infty$. Thus, $\mathbb{R} \cup \{-\infty, +\infty\}$ is the set of subsequential limits of $\{r_n\}$.

Theorem 2.4.17. Let $\{s_n\}$ be any sequence. There exists a monotonic subsequence whose limit is $\limsup s_n$ and there exists a monotonic subsequence whose limit is $\liminf s_n$.

Proof. If $\{s_n\}$ is not bounded above, then a monotonic subsequence of $\{s_n\}$ has limit $\limsup s_n =$ $+\infty$. Similarly, if $\{s_n\}$ is not bounded below, a monotonic subsequence has limit $\lim \inf s_n$. Consider the case that it is bounded above. Let $t = \limsup s_n$, and consider $\epsilon > 0$. There exists N_0 so that for $N \ge N_0$,

$$\sup \{s_n \mid n > N\} < t + \epsilon.$$

In particular, $s_n < t + \epsilon$ for all $n > N_0$. We now claim

$${n \in \mathbb{N} \mid |s_n - t| < \epsilon}$$
 is infinite.

Otherwise, there exists $N_1 > N_0$

Theorem 2.4.18. Let $\{s_n\}$ be any sequence in \mathbb{R} , and let S denote the set of subsequential limits of $\{s_n\}$.

- (i) S is non-empty. (ii) $\sup S = \limsup s_n$ and $\inf S = \liminf s_n$.
- (iii) $\lim s_n$ exists if and only if S has exactly one element, namely $\lim s_n$.

Proof. (i) is an immediate consequence of the previous theorem.

To prove (ii), consider any limit t of a subsequence $\{s_{nk}\}$ of $\{s_n\}$. By the

lim sup's and lim inf's 2.5

Let $\{s_n\}$ be any sequence of real numbers, and let S be the set of subsequential limits of $\{s_n\}$. Recall the following definition:

$$\limsup s_n = \lim_{N \to \infty} \sup s_n \mid n > N = \sup S$$

and

$$\lim\inf s_n = \lim_{N \to \infty} \inf s_n \mid n > N = \inf S.$$

Claim.

 $\lim\inf s_n\leqslant \lim\sup s_n.$

Proof. We know that

$$\sup_{n>N} s_n \geqslant \inf_{n>N} s_n.$$

Then take limit $N \to \infty$.

Claim. If $\{s_{n_k}\}$ is a subsequence, then

 $\limsup s_{n_k} \leq \limsup s_n$.

Theorem 2.5.1. If $\{s_n\} \to s > 0$ and $\{t_n\}$ is any sequence, then

 $\lim \sup s_n t_n = s \cdot \lim \sup t_n.$

 $\limsup s_n \iota_n = s \cdot \min \sup s_n \iota_n = s \cdot \min s_n \iota_n$

Proof.

Question. If $\{s_{n_k} \cdot t_{n_k}\}$ converges, does that imply $\{t_{n_k}\}$ converges?

Answer. Yes. (Why?)

Theorem 2.5.2. Let $\{s_n\}$ be any sequence of nonzero real numbers. Then we have

$$\liminf \left| \frac{s_{n+1}}{s_n} \right| \leqslant \liminf |s_n|^{1/n} \leqslant \limsup |s_n|^{1/n} \leqslant \limsup \left| \frac{s_{n+1}}{s_n} \right|.$$

Question. If $\{s_n\}$ is a bounded positive sequence, is $\frac{s_{n+1}}{s_n}$ a bounded sequence?

Answer. No. Consider 0 < a, b < 1, and take $a = \frac{1}{2}$ and $b = \frac{1}{n}$, then $\frac{a}{b} = \frac{n}{2}$.

Claim. If $\{s_n\}$ is bounded and monotone, then the ratio $\frac{s_{n+1}}{s_n}$ eventually converges to 1.

Proof. Since $\{s_n\}$ is bounded and monotone, it must converge to some limit s. Then

$$\lim \frac{s_{n+1}}{s_n} = \frac{\lim s_{n+1}}{s_n} = \frac{s}{s} = 1.$$

Question. Is it possible to have s_n to be bounded, but $\frac{s_{n+1}}{s_n}$ unbounded?

Answer. Yes. Consider

$$s_n = \begin{cases} 1 & n \text{ is even;} \\ \frac{1}{n} & n \text{ is odd.} \end{cases}$$

Question. If $\{s_n\}$ is positive and bounded, is it possible that $\frac{s_{n+1}}{s_n} \to 0$?

Answer. Yes. Consider $s_n = \frac{1}{n!}$. Then

$$\lim \frac{s_{n+1}}{s_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Metric Spaces and Topology

3.1 Metric Spaces

Definition 3.1.1 (Metric Space). A set X, containing elements called **points**, is said to be a **metric** space if with any two points p and q of X there is associated a real number d(p,q), called the distance from p to q, such that

- (i) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- (ii) d(p,q) = d(q,p);
- (iii) $d(p,q) \leq d(p,r) + d(r,q)$, for any $r \in X$.

Any function with these three properties is called a distance function, or a metric.

Definition 3.1.2 (Induced Metric). Let (X, d) be a metric space, and let $S \subset X$. Then, $(S, d|_S)$ is a metric space, where $d|_S$ is the **induced metric**, which is the metric d when restricted to S.

3.1.1 Topological Definitions

Definition 3.1.3 (Topology). A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (i) \varnothing and X are in \mathcal{T} .
- (ii) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (iii) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a **topological space**.

Definition 3.1.4 (Open). If X is a topological space with topology \mathcal{T} , we say that a subset $U \subset X$ is an **open set** of X if U belongs to the collection \mathcal{T} . Hence, a topological space is a set X together with a collection of open subsets of X, such that:

- (i) \emptyset and X are both open;
- (ii) arbitrary unions of open sets are open;
- (iii) finite intersections of open sets are open.

Definition 3.1.5 (Open/Closed Balls). Let (X, d) be a metric space. The **open ball** of $radius \ \epsilon$ at x is defined by:

$$\mathcal{B}_{\epsilon}(p) := \{ x \in X \mid d(p, x) < \epsilon \}$$

and the **closed ball** is defined by:

$$\bar{\mathcal{B}}_{\epsilon}(p) := \{ x \in X \mid d(p, x) \leqslant \epsilon \}.$$

Sometimes we also use the **neighborhood** of p to represent any open ball of any radius centered at p.

Definition 3.1.6 (Limit Point). A point $p \in E$ is a **limit point** if every open ball of p contains a point $q \neq p$ such that $q \in E$, i.e., for every $\delta > 0$,

$$\mathcal{B}^{x}_{\delta}(p) \cup E \neq \emptyset$$
.

Definition 3.1.7 (Dense). $E \subset X$ is **dense** in X if every points of X is a limit point of E or a point of E, i.e., $\overline{E} = X$.

Definition 3.1.8 (Interior Point). Let (X, d) be a metric space, and $E \subset X$. A point $p \in E$ is called an **interior point** of E if there is a open ball \mathcal{B} of P such that $\mathcal{B} \subset E$.

Definition 3.1.9 (Open Sets). A subset $U \subset X$ is **open** if and only if for any $p \in U$, there exists $\delta > 0$ such that the open ball

$$\mathcal{B}_{\delta}(p) = \{x \in X \mid d(p, x) < \delta\} \subset U.$$

In other words, U is open if every point of U is interior.

Definition 3.1.10 (Closed Sets). A subset $E \subset X$ is closed if every limit point of E is a point of E. Equivalently, E is closed if and only if for any point $x \in E^c$, there exists $\delta > 0$, such that $\mathcal{B}_{\delta}(x) \cap E = \emptyset$.

Theorem 3.1.11 (Open/Closed). A set E is open if and only if its complement E^c is closed. Similarly, it is closed if and only if its complement is open.

Definition 3.1.12 (Closure). Let X be a metric space, if $E \subset X$, the closure of E is the set $\overline{E} = E \cup E'$, where E' is the set of all limit points of E. In other words, the closure of E is the intersection of all closed sets containing E, i.e., it is the smallest closed set containing E.

Theorem 3.1.13. If X is a metric space and $E \subset X$, then

- (i) the closure \overline{E} is closed;
- (ii) $E = \overline{E}$ if and only if E is closed;
- (iii) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

3.1.2 Compact Sets

Definition 3.1.14 (Open Cover). An **open cover** of a set E in a metric space X is a collection $\{U_i\}$ of open subsets of X such that $E \subset \bigcup_i U_i$.

Definition 3.1.15 (Compact Set). Let $K \subset S$. K is **compact** if every open cover of K contains a *finite* subcover. More explicitly, the requirement is that if $\{G_{\alpha}\}$ is an open cover of K, then there are finitely many indices $\alpha_1, \ldots, \alpha_n$ such that

$$K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$$
.

Remark. Every finite set is compact. \mathbb{R} is not compact.

Theorem 3.1.16. Compact subsets of metric spaces are closed.

Theorem 3.1.17. Closed subsets of compact sets are compact.

Corollary 3.1.18. If F is closed and K is compact, then $F \cup K$ is compact.

Theorem 3.1.19 (Heine-Borel Theorem). A subset $E \subset \mathbb{R}^k$ is compact if and only if it is closed and bounded.

Theorem 3.1.20. If $E \subset X$ is compact, then E is a closed and bounded subset of X.

Theorem 3.1.21 (Weierstrass). Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Definition 3.1.22 (Convergence of Metric Space). A sequence $\{s_n\}$ in a metric space (S, d) converges to $s \in S$ if $\lim_{n\to\infty} d(s_n, s) = 0$. The sequence is a *Cauchy sequence* if for each $\epsilon > 0$, there exists an N such that

$$m, n > N \implies d(s_m, s_n) < \epsilon.$$

Lemma 3.1.23. If $\{s_n\}$ converges to s, then s_n is Cauchy.

Proof. For any $\epsilon > 0$, there exists N > 0 such that for all n > N

$$d(s_n, s) < \frac{\epsilon}{2}.$$

Thus, for all n, m > N, we have

$$d(s_n, s_m) \le d(s_n, s) + d(s_m, s)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Definition 3.1.24 (Completeness). The metric space (S, d) is **complete** if every Cauchy sequence in S converges to some element in S.

Example 3.1.25 (Non-complete Metric Spaces).

- 1. $S = \mathbb{R} \setminus \{0\}$.
- 2. $S = \mathbb{Q}$.

Lemma 3.1.26. A sequence $\{\boldsymbol{x}^{(n)}\}\in\mathbb{R}^k$ converges iff for each $j=1,2,\ldots,k$, the sequence $\{\boldsymbol{x}^{(n)}\}$ converges in \mathbb{R} . A sequence $\{\boldsymbol{x}^{(n)}\}$ in \mathbb{R}^k is a Cauchy sequence iff each sequence $\{\boldsymbol{x}^{(n)}\}$ is a Cauchy sequence in \mathbb{R} .

Theorem 3.1.27. Euclidean k-space \mathbb{R}^k is complete.

Theorem 3.1.28 (Bolzano-Weierstrass Theorem). Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Theorem 3.1.29. Let $\{F_n\}$ be a decreasing sequence $(F_1 \supseteq F_2 \supseteq \cdots)$ of closed bounded nonempty sets in \mathbb{R}^k . Then $F = \bigcap_{n=1}^{\infty} F_n$ is also closed, bounded and nonempty.

Definition 3.1.30 (Open Cover). Let $E \subset S$. An **open cover** of E is a collection $\{G_{\alpha}\}$ of open subsets of S such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Remark. Every finite set is compact. \mathbb{R} is not compact.

Theorem 3.1.31 (Heine-Borel Theorem). A subset E of \mathbb{R}^k is compact iff it is closed and bounded.

Proof. Suppose $E \subset S$ is compact. Then pick some point $p \in S$ and consider $\{B_n(p) \mid n \in \mathbb{N}\}$, which covers S and thus covers E as well:

$$E \subset S = \bigcup_{n \in \mathbb{N}} B_n(p).$$

Since E is compact, there is a finite subcover such that

$$E \subset \bigcup_{i=1}^{M} B_{n_i}(p).$$

We can order the indices such that $n_1 < n_2 < \cdots, n_M$ then

$$E \subset B_{n_M}(p),$$

which implies that E is bounded. In particular, for any points $x, y \in E$,

$$d(x,y) \leq d(x,p) + d(y,p) \leq 2 \cdot n_M$$
.

The remaining of the proof is left as an exercise.

Theorem 3.1.32. Every k-cell F in \mathbb{R}^k is compact.

3.2 Connected Sets

Definition 3.2.1 (Separated). Two subsets A,B of a metric space X are **separated** if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty, i.e

Definition 3.2.2 (Connected Sets). A set $E \subset X$ is **connected** if E is not a union of two nonempty separated sets.

Theorem 3.2.3. A subset E of \mathbb{R} is connected if and only if $x,y\in E$ and $z\in (x,y)$ implies $z\in E$.

Series

4.1 Series

In this section we are interested in convergence of series, thus we use $\sum a_n$ to denote $\sum_{i=1}^{\infty} a_i$.

Definition 4.1.1 (Convergence/Divergence). The *n*-th partial sum of a sequence $\{a_n\}$ is defined as $s_n = \sum_{i=1}^n a_i$. We say that $\sum a_n$ converges iff the sequence of partial sums $\{s_n\}$ converges to a real number. Otherwise, we say that the series **diverges**.

Definition 4.1.2 (Absolute Convergence). The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Definition 4.1.3 (Geometric Series). A series of the form $\sum_{n=0}^{\infty} ar^n$ for constants a and r is a geometric series. For $r \neq 1$,

$$\sum_{k=0}^{n} ar^k = \frac{a(1-r^{n+1})}{1-r}.$$

For |r| < 1, since $\lim_{n \to \infty} r^{n+1} = 0$, using the formula above gives

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}.$$

If $a \neq 0$ and $|r| \geq 1$, then the sequence $\{ar^n\}$ does not converge to 0, so the series diverges.

Definition 4.1.4 (Cauchy Criterion). A series $\sum a_n$ satisfies the Cauchy criterion if its sequence $\{s_n\}$ of partial sums is a Cauchy sequence, i.e., for each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \geqslant m > N \implies \left| \sum_{i=m}^{n} a_i \right| < \epsilon.$$

Theorem 4.1.5. A series converges iff it satisfies the Cauchy criterion.

Corollary 4.1.6. If a series $\sum a_n$ converges, then $\lim a_n = 0$.

Proof. By Cauchy criterion, take n=m. Then for $\epsilon>0$, there exists N such that n>N implies $|a_n|<\epsilon$. Thus, $\lim a_n=0$.

Remark. The converse is not true. Consider $\sum \frac{1}{n} = +\infty$.

Theorem 4.1.7 (Comparison Test). Let $\sum a_n$ be a series where $a_n \ge 0$ for all n.

- (i) If $\sum a_n$ converges and $|b_n| \le a_n$ for all n, then $\sum b_n$ converges. (ii) If $\sum a_n = +\infty$ and $b_n \ge a_n$ for all n, then $\sum b_n = +\infty$.

Proof of (i). For $n \ge m$, by the triangle inequality, we have

$$\left| \sum_{k=m}^{n} b_k \right| \leqslant \sum_{k=m}^{n} |b_k| \leqslant \sum_{k=m}^{n} a_k.$$

Since $\sum a_n$ converges, it satisfies the Cauchy criterion. It follows from the above that $\sum b_n$ also satisfies the Cauchy criterion, and so $\sum b_n$ converges.

Proof of (ii). Let $\{s_n\}$ and $\{t_n\}$ be the sequences of partial sums for $\sum a_n$ and $\sum b_n$ respectively. Since $b_n \geqslant a_n$ for all n, we have $t_n \geqslant s_n$ for all n. Since $\lim s_n = +\infty$, $\lim t_n = +\infty$, and so $\sum b_n = +\infty.$

Theorem 4.1.8 (Ratio Test). A series $\sum a_n$ of nonzero terms

- 1. converges absolutely if $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$; 2. diverges if $\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- 3. Otherwise $\liminf \left|\frac{a_{n+1}}{a_n}\right| \le 1 \le \limsup \left|\frac{a_{n+1}}{a_n}\right|$ and the test gives no information.

Theorem 4.1.9 (Root Test). Let $\sum a_n$ be a series and let $\alpha = \limsup |a_n|^{\frac{1}{n}}$. The series $\sum a_n$

- (i) converges absolutely if $\alpha < 1$;
- (ii) diverges if $\alpha > 1$.
- (iii) Otherwise, the test gives no information if $\alpha = 1$.

Alternating Series 4.2

Theorem 4.2.1. $\sum \frac{1}{n^p}$ converges iff p > 1.

Proof. If p > 1, then

$$\sum_{k=1}^{n} \frac{1}{k^{p}} \leqslant 1 + \int_{1}^{n} \frac{1}{x^{p}} dx = 1 + \frac{1}{p-1} \left(1 - \frac{1}{n^{p-1}} \right) < 1 + \frac{1}{p-1} = \frac{p}{p-1}.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \leqslant \frac{p}{p-1} < +\infty.$$

If $0 , then <math>\frac{1}{n} \le \frac{1}{n^p}$ for all n. Since $\sum \frac{1}{n}$ diverges, $\sum \frac{1}{n^p}$ diverges as well by the Comparison Test.

Theorem 4.2.2 (Integral Tests). Suppose that f(x) > 0 and is decreasing on the infinite interval $[k, \infty)$ (for some $k \ge 1$) and that $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the improper integral $\int_1^{\infty} f(x) dx$ converges.

Theorem 4.2.3 (Alternating Series Theorem). If $a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots \ge 0$ and $\lim a_n = 0$, then the alternating series $\sum (-1)^{n+1} a_n$ converges. Moreover, the partial sums $s_n = \sum_{k=1}^n (-1)^{k+1} a_k$ satisfy $|s-s_n| \le a_n$ for all n.

Proof. Define $s_n = \sum_{j=1}^n a_j$. The subsequence $\{s_{2n}\}$ is increasing because $s_{2n+2} - s_{2n} = -a_{2n+2} + a_{2n+1} \ge 0$, Similarly, the subsequence $\{s_{2n-1}\}$ is decreasing.

Continuity

5.1 Limits of Functions

Definition 5.1.1 (ϵ - δ limit). Let X, Y be metric spaces, and $E \subset X$, and p a limit point of E. We write the **limit**

$$\lim_{x \to p} f(x) = f(p)$$

if there exists $f(q) \in Y$ such that for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$0 < d_X(x, p) < \delta \implies d_Y(f(x), f(p)) < \epsilon.$$

Theorem 5.1.2.

$$\lim_{x \to p} f(x) = q$$

if and only if

$$\lim_{n\to\infty}f\left(p_n\right)=q$$

for every sequence $\{p_n\}$ such that $p_n \neq p$ (for all n) and $p_n \rightarrow p$.

5.1.1 Continuous Functions

Definition 5.1.3 (Continuity). Let X and Y be metric spaces. A function $f: X \to Y$ is **continuous** at $p \in X$ if for any $\epsilon > 0$, there exists $\delta > 0$ such that for every $x \in X$,

$$d_X(x,p) < \delta \implies d_Y(f(x), f(p) < \epsilon.$$

Or equivalently, for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$f(B_{\delta}(p)) \subset B_{\epsilon}(f(p)).$$

Theorem 5.1.4. If p is a limit point of E. Then f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Theorem 5.1.5 (Preimage of open subset is open). Let X and Y be metric spaces. A function $f: X \to Y$ is continuous if and only if for every open subset $U \subset Y$, $f^{-1}(U)$ is open.

Theorem 5.1.6 (Composition of continuous functions is continuous). If $f: X \to Y$ and $g: Y \to Z$ are continuous, then

$$g \circ f : X \to Z$$
 is continuous.

Theorem 5.1.7. Let f, g be complex continuous functions on metric space X. Then f + g, fg, and f|g are continuous on X.

5.2 Continuity and Compactness

Definition 5.2.1. A function $f: X \to Y$ is **bounded** if there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in X$.

Theorem 5.2.2 (Compactness is preserved under continuity). If f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 5.2.3. Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p)$$

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

5.3 Uniform Continuity

Definition 5.3.1 (Uniformly Continuous). Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\epsilon > 0$ there exists $\delta > 0$ such that (15)

$$d_Y(f(p), f(q)) < \epsilon$$

for all p and q in X for which $d_X(p,q) < \delta$

Theorem 5.3.2. Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is **uniformly continuous** on X.

5.4 Continuity and Connectedness

Theorem 5.4.1 (Connectedness is preserved under continuity). If f is a continuous mapping of metric space X to metric space Y and if E is a connected subset of X, then f(E) is connected.

Theorem 5.4.2 (Intermediate Value Theorem). Let f be a continuous real function on [a,b]. If f(a) < f(b) and if $c \in (f(a), f(b))$, then there exists a point $x \in (a,b)$ such that f(x) = c.

Proof. Since [a,b] is connected, f([a,b]) is also connected subset of \mathbb{R} , which implies that $[f(a),f(b)] \subset f([a,b])$.

Differentiation

6.1 The Derivative of a Real Function

Definition 6.1.1 (Derivative). Let $f : [a, b] \to \mathbb{R}$ be a real valued function. We say f is **differentiable** at a point $p \in [a, b]$ if the following limit exists:

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} \qquad (x \in [a, b] \setminus \{p\})$$

f' is called the **derivative** of f.

Theorem 6.1.2. If f is differentiable at $p \in [a, b]$, then f is continuous at p.

Proof. We simply show that $\lim_{x\to p} f(x) = f(p)$, or $\lim_{x\to p} (f(x) - f(p)) = 0$. Since f'(p) exists, we have

$$\lim_{x \to p} (f(x) - f(p)) = \lim_{x \to p} \left(\frac{f(x) - f(p)}{x - p} \cdot (x - p) \right)$$

$$= \left(\lim_{x \to p} \frac{f(x) - f(p)}{x - p} \right) \cdot \left(\lim_{x \to p} x - p \right)$$

$$= f'(p) \cdot 0$$

$$= 0.$$

Remark. It is not true that if f is differentiable at p, then f is continuous in a neighborhood of p. Consider

$$f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ -x^2 & x \notin \mathbb{Q}. \end{cases}$$

f is both continuous and differentiable only at x = 0.

Remark. Consider

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$$

f'(0) does not exist because

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$

does not exist.

Question. If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, and f'(x) exists at all $x \in \mathbb{R}$. Is f' continuous?

Answer. No. Consider

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x > 0\\ 0 & x \le 0. \end{cases}$$

Since $f'(0^+) = f'(0^-) = 0$, f'(0) = 0. For x > 0, $\lim_{x \to 0^+} f'(x) \neq 0$.

Theorem 6.1.3. Let $f,g:[a,b]\to\mathbb{R}$ and assume f,g are differentiable at p. Then (i) (f+g)'(p)=f'(p)+g'(p); (ii) $(f\cdot g)'(p)=f'(p)g(p)+f(p)g'(p);$ (iii) if $g(p)\neq 0$, then (f/g)'(p)=f'(g-f)g'(g)

$$(f/g)'(p) = \frac{f'g - fg'}{g^2}.$$

Proof of (ii).

$$\lim_{x \to p} \frac{f(x)g(x) - f(p)g(p)}{x - p} = \lim_{x \to p} \frac{f(x)g(x) - f(x)g(p) + f(x)g(p) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} f(x) \cdot \frac{g(x) - g(p)}{x - p} + \lim_{x \to p} \frac{f(x) - f(p)}{x - p} \cdot g(p)$$

$$= f(p)g'(p) + f'(p)g(p).$$

Theorem 6.1.4 (Chain Rule). Let $f:[a,b]\to\mathbb{R}$ be differentiable at $x_0\in[a,b]$, and $g:I\to\mathbb{R}$ where $f([a,b]) \subset I$, and g is differentiable at $f(x_0)$. If

$$h(x) = g(f(x)) \qquad (x \in [a, b]),$$

then h is differentiable at x_0 and

$$h'(x_0) = g'(f(x_0))f'(x_0).$$

Proof. Let y = f(x) and $y_0 = f(x_0)$.

$$\lim_{x \to x_0} \frac{h(x) - h(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(y) - g(y_0)}{x - x_0}.$$

Since $f'(x_0)$ exists, there exist functions u, v such that

$$f(x) = f(x_0) + (x - x_0)(f'(x_0) + u(x));$$

$$g(y) = g(y_0) + (y - y_0)(g'(y_0) + v(y)),$$

and $\lim_{x\to x_0} u(x) = 0$, $\lim_{y\to y_0} v(y) = 0$. Then

$$g(f(x)) - g(f(x_0)) = (f(x) - f(x_0))(g'(f(x_0)) + v(f(x)))$$

= $(x - x_0)(f'(x_0) + u(x))(g'(f(x_0)) + v(f(x))).$

Hence,

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} (f'(x_0) + u(x))(g'(f(x_0)) + v(f(x)))$$
$$= f'(x_0)g'(f(x_0)).$$

6.2 Mean Value Theorem

Definition 6.2.1 (Local Maximum). A point p is a **local maximum** of f if there exists a $\delta > 0$ such that $f(p) = \max f(\mathcal{B}_{\delta}(p))$. Likewise for local minimum.

Remark. If f is locally constant at p, then p is both a local maximum and local minimum.

Lemma 6.2.2. Let $f:[a,b] \to \mathbb{R}$. If f has a local maximum or local minimum at $p \in (a,b)$, and if f'(p) exists, then f'(p) = 0.

Proof. Suppose f has a local maximum at p. Then there exists $\delta > 0$ such that $f(p) \ge f(x)$ for $x \in (p - \delta, p + \delta)$. The derivative is

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}.$$

This limit is ≥ 0 when $x \leq p$ and ≤ 0 when xp. Since f'(p) exists, then by squeeze theorem we must have f'(p) = 0.

Remark. The conditions that $p \in (a, b)$ and f'(p) exists are required since the endpoints a, b can be local maxima but the slopes there are not zero. In addition, there can be cases where p is a local maximum but f'(p) does not exist, consider f(x) = -|x|.

Theorem 6.2.3 (Rolle's Theorem). Let $f:[a,b] \to \mathbb{R}$ be continuous, and suppose f is differentiable on (a,b), and f(a)=f(b). Then there exists some $c \in (a,b)$ such that f'(c)=0.

Remark. Note that $[a,b] \subset \mathbb{R}$ is compact, and so f([a,b]) is also compact.

Proof. Consider the following cases:

- if f([a,b]) is a single point, then f is a constant function, any $c \in (a,b)$ has f'(c) = 0.
- if $\max(f([a,b]) \neq f(a)$, then let $p \in (a,b)$ such that $f(p) = \max(f([a,b]))$. Then by the above lemma, we have f'(p) = 0, where we let c = p.
- if min $(f[a,b]) \neq f(a)$, then similar argument shows f'(p) = 0.

Theorem 6.2.4 (Generalized Mean Value Theorem). Let $f,g:[a,b]\to\mathbb{R}$ be continuous and differentiable in (a, b). Then there exists $c \in (a, b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Proof. Take h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x). Then we have h(a) = h(b). Hence, by Rolle's theorem, there exists $c \in (a, b)$ such that h'(c) = 0 as desired.

Theorem 6.2.5 (Mean Value Theorem). If $f:[a,b]\to\mathbb{R}$ is continuous and differentiable on (a,b), then there exists $c \in (a,b)$ such that

$$f(b) - f(a) = (b - a)f'(c).$$

Proof. Use the generalized Mean Value Theorem by taking g(x) = x.

Corollary 6.2.6. Let f be differentiable on (a, b). Then for all $x \in (a, b)$,

- (i) if $f'(x) \ge 0$, then f is strictly increasing; (ii) if f'(x) = 0, then f is constant; (iii) if $f'(x) \le 0$, then f is strictly decreasing.

Proof of (i). Let x < y be in (a,b). Then applying Mean Value Theorem to [x,y], there exists some $c \in (x, y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x} \geqslant 0.$$

Hence, we have $f(y) \ge f(x)$. Similar arguments apply to the other two claims.

Corollary 6.2.7. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and differentiable everywhere on \mathbb{R} . Suppose there exists M>0 such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$. Then f is uniformly continuous.

Proof. For any $\epsilon > 0$, take $\delta = \frac{\epsilon}{M}$. Then for any $x \neq y$, with $|x - y| < \delta$, there exists some $c \in (x, y)$ such that

$$f(y) - f(x) = (y - x)f'(c),$$

which implies

$$|f(y) - f(x)| = |y - x| \cdot |f'(c)|$$

< $\delta \cdot M = \epsilon$.

Theorem 6.2.8 (Intermediate Value Theorem for Derivatives). Let $f:[a,b] \to \mathbb{R}$ be differentiable such that f'(a) < f'(b). Then for any $\lambda \in (f'(a), f'(b))$, there exists some $c \in (a,b)$ such that $f'(c) = \lambda$.

Remark. This is not an immediate application of the intermediate value theorem as the derivatives of continuous functions may not be continuous.

Proof. Let $g(x) = f(x) - \lambda x$. Our goal is to show that g has a root in (a, b). Since $g'(a) = f'(a) - \lambda < 0$, and $g'(b) = f'(b) - \lambda > 0$. Let $c \in [a, b]$ such that $c = \min g([a, b])$. Since g'(a) < 0 and g'(b) > 0, a, b are not global minimum, which implies that there exists some $c \in (a, b)$ that is a global minimum. Then using the previous lemma, we know that $g'(c) = f'(c) - \lambda = 0$ and so $f'(c) = \lambda$.

6.3 L'Hospital's Rule

Theorem 6.3.1 (L'Hospital's Rule). Suppose $f,g:[a,b]\in\mathbb{R}$ are differentiable in (a,b) and $g'(x)\neq 0$ for all $x\in (a,b)$, where $-\infty\leqslant a< b\leqslant +\infty$. Suppose

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R} \cup \{+\infty, -\infty\}$$

and one of the following holds:

- (i) $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$;
- (ii) $\lim_{x\to a} |g(x)| = \lim_{x\to a} |f(x)| = +\infty$.

Then we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Proof. TODO. \Box

Example 6.3.2.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} e^{x \log \left(1 + \frac{1}{x} \right)}$$
$$= e^{\lim_{x \to \infty} x \log \left(1 + \frac{1}{x} \right)}$$
$$= e.$$

6.4 Derivatives of Higher Order

Definition 6.4.1. If f'(x) is differentiable at x_0 , then the second derivative is defined as $f''(x_0) = (f')'(x_0)$. Similarly, if the (n-1)-th derivative $f^{(n-1)}$ exists and is differentiable at x_0 , then the n-th derivative is defined as $f^{(n)}(x_0) = (f^{(n-1)})'(x_0)$.

Definition 6.4.2 (Smoothness). f(x) is a *smooth* function on (a,b) if for any $x \in (a,b)$, $f^{(k)}(x)$ exists for all $k \in \mathbb{N}$. We also say that f is *infinitely differentiable*.

6.5 Taylor's Series

Definition 6.5.1 (Power Series). Given a sequence $\{c_n\}_{n\geq 0}$. A **power series** is defined by

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n.$$

Proposition 6.5.2. Given a power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n.$$

Let $\alpha = \limsup \sqrt[n]{|c_n|}$ and $R = \frac{1}{\alpha}$. Then f(z) converges for |z| < R and diverges for |z| > R (equality gives no info), where R is the **radius of convergence**.

Proof. Use root test for absolute convergence. If |z| < R, then $|c_n z^n|^{1/n} = |c_n|^{1/n} |z|$. Hence,

$$\lim_{n \to \infty} \sup |c_n z^n|^{1/n} = \alpha |z| < 1.$$

Thus, $\sum_n |c_n z^n|$ is convergent, which implies that $\sum_n c_n z^n$ is convergent (absolute convergence implies convergence). If |z| > R, one can show that $|c_n z^n|$ does not converge to 0.

Definition 6.5.3 (Taylor Series). Let f be a smooth function for which all higher derivatives exist at α . Then the **Taylor series** of f at α is defined as the power series

$$T_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^{k}.$$

Remark. The series may not converge. Even if it converges, the limit may not be f(x).

Theorem 6.5.4 (Taylor's Theorem). Let $f:[a,b] \to \mathbb{R}$, $f^{(n-1)}$ exists and is continuous on [a,b] and $f^{(n)}$ exists on (a,b). Let $\alpha,\beta\in[a,b]$ be distinct points and define

$$P_{\alpha}(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^k.$$

Then for any $\beta \in (a, b)$, if $\beta \neq \alpha$, there exists $\gamma \in [\alpha, \beta]$ such that

$$f(\beta) = P_{\alpha}(\beta) + \frac{f^{(n)}(\gamma)}{n!} (\beta - \alpha)^n.$$

Intuition: Given a smooth function f, we can approximate f(x) near α of different levels:

(i) 0-th order:

$$P_{\alpha,0} = f(\alpha).$$

(ii) 1-th order:

$$P_{\alpha,1}(x) = f(\alpha) + f'(\alpha)(x - \alpha).$$

(iii) 2-nd order

$$P_{\alpha,2}(x) = f(\alpha) + f'(\alpha)(x - \alpha) + \frac{f''(\alpha)}{2!}(x - \alpha)^2.$$

Taylor's theorem is all about the error term $f(x) - P_{\alpha,n-1}(x)$.

Remark. If n=1, then $P_{\alpha}(x)=f(\alpha)$. The statement then becomes there exists $\gamma \in (\alpha,\beta)$ such that

$$f(\beta) - f(\alpha) = f'(\gamma)(\beta - \alpha),$$

which is the Mean Value Theorem. In general, the theorem shows that f can be approximated by a polynomial of degree n-1, and we can estimate the error, if we know bounds on $|f^{(n)}(x)|$.

Proof. Let $P(x) \doteq P_{\alpha}(x)$ for simplicity and let M be the number defined by

$$f(\beta) - P(\beta) = (\beta - \alpha)^n M.$$

Define

$$g(x) = f(x) - P(x) - M(x - \alpha)^{n}.$$

Then $g(\beta) = f(\beta) - P(\beta) - M(\beta - \alpha)^n = 0$ by the choice of M and $g(\alpha) = f(\alpha) - P(\alpha) - 0 = 0$. We want to show that $M = \frac{f^{(n)}(\gamma)}{n!}$ for some $\gamma \in (\alpha, \beta)$. By definition of g,

$$g^{(n)}(x) = f^{(n)}(x) - n!M$$
 $(P(x) \text{ is degree } n-1 \text{ polynomial in } X).$

Now our goal is to show that for any $x \in (a, b)$ there exists $\gamma \in (\alpha, \beta)$ such that $g^{(n)}(\gamma) = 0$. Since we have $g(\alpha) = g(\beta) = 0$, by Rolle's there exists some $\gamma_1 \in (\alpha, \beta)$ such that $g'(\gamma_1) = 0$.

In addition, we have $g^{(k)}(\alpha) = 0$ for $k \in \{1, ..., n-1\}$. Since $g'(\alpha) = 0$ and $g'(\gamma_1) = 0$, by Rolle's there exists $\gamma \in (\alpha, \gamma_1)$ such that $g''(\gamma_2) = 0$. Then we repeat the argument and get $\gamma_n \in (\alpha, \gamma_{n-1})$ such that $g^{(n)}(\gamma_n) = 0$. Let $\gamma = \gamma_n$, then $g^{(n)}(\gamma) = 0$.

Definition 6.5.5 (Analytic function). If a smooth function f(x) satisfies the condition that for any $x_0 \in (a, b)$ there exists $\gamma_0 > 0$ such that

$$f(x) = T_{x_0}(x), \qquad \forall |x - x_0| < \gamma_0,$$

then we say f(x) is a (real) analytic function.

Remark. $\sin(x), \cos(x), e^x$, polynomials, and combinations of any of them are real analytic functions.

The Riemann-Stieltjes Integral

7.1 Definition and Existence of the Integral

Definition 7.1.1 (Partition). A partition P of $[a,b] \subset \mathbb{R}$ is a finite set of points $\{x_i\}_{i=0}^n$ where $a = x_0 \leqslant x_1 \leqslant \cdots \leqslant x_{n-1} \leqslant x_n = b$, i.e.,

$$[a,b] = \bigcup_{i=0}^{n-1} [x_i, x_{i+1}]$$

Define

$$\Delta x_i = x_i - x_{i-1}, \qquad \forall i \in \mathbb{N}.$$

Let $f:[a,b]\to\mathbb{R}$ be real and bounded for the remaining of this section.

Definition 7.1.2 (Upper/lower Darboux sums). Given f and a partition P of [a, b], the **upper** and **lower Darboux sums** are defined by

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i \quad \text{where } M_i = \sup \{ f(x) \mid x \in [x_{i-1}, x_i] \},$$

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i \quad \text{where } m_i = \inf \{ f(x) \mid x \in [x_{i-1}, x_i] \}.$$

Definition 7.1.3 (Upper/lower Darboux integrals). The **upper** and **lower Darboux integrals** are defined by

$$U(f) \doteq \overline{\int_a^b} f(x) dx = \inf U(P, f),$$

$$L(f) \doteq \overline{\int_a^b} f(x) dx = \sup L(P, f).$$

Definition 7.1.4 (Riemann Integral). If U(f) = L(f), then the common value is denoted by

$$\int_{a}^{b} f dx, \quad \text{or} \quad \int_{a}^{b} f(x) dx,$$

which is the **Riemann integral** of f over [a, b] and f is said to be *Riemann-integrable* on [a, b] and we write $f \in \mathcal{R}$ (set of Riemann-integrable functions).

Since f is bounded, there exists $m, M \in \mathbb{R}$ such that $m \leq f(x) \leq M$ over [a, b]. Hence, for every P,

$$m(b-a) \leqslant L(P,f) \leqslant U(P,f) \leqslant M(b-a).$$

Remark. This shows that the upper and lower integrals are defined for every bounded function f.

Theorem 7.1.5. Suppose $f:[a,b] \to \mathbb{R}$ is bounded. Then $f \in \mathcal{R}$ if and only if for each $\epsilon > 0$ there exists a partition P of [a,b] such that

$$U(P, f) - L(P, f) < \epsilon$$
.

Let $\alpha:[a,b]\to\mathbb{R}$ be a monotonically increasing weight function. Define

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1}).$$

Then define

$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i,$$

$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i,$$

and

$$U(f,\alpha) \doteq \overline{\int_a^b} f d\alpha = \inf U(P, f, \alpha),$$

$$L(f,\alpha) \doteq \int_a^b f d\alpha = \sup L(P, f, \alpha),$$

Definition 7.1.6 (Riemann-Stieltjes integral). If $U(f,\alpha) = L(f,\alpha)$, then the common value is denoted by

$$\int_a^b f d\alpha$$
, or $\int_a^b f(x) d\alpha(x)$,

which is the **Riemann-Stieltjes integral** of f with respect to α over [a, b]. f is also said to be integrable with respect to α , and write $f \in \mathcal{R}(\alpha)$ on [a, b].

Remark. By taking $\alpha(x) = x$, the Riemann integral is seen to be a special case of the Riemann-Stieltjes integral.

Remark. Similarly as above, since f is bounded, we have the following inequalities:

$$m(\alpha(b) - \alpha(a)) \leq L(P, f, \alpha) \leq U(P, f, \alpha) \leq M(\alpha(b) - \alpha(a)).$$

Definition 7.1.7 (Refinement). Let P, Q be two partitions of [a, b], where

$$P = \{ a = x_0 \le x_1 \le x_2 \le \dots \le x_n = b \}$$

$$Q = \{ a = y_0 \le y_1 \le y_2 \le \dots \le y_m = b \}.$$

Q is a **refinement** of P if $Q \supset P$. Further, any two partitions P and Q have a **common refinement** $P \cup Q$.

Lemma 7.1.8. If Q is a refinement of P, then

$$L(P, f, \alpha) \le L(Q, f, \alpha) \le U(Q, f, \alpha) \le U(P, f, \alpha).$$

In simpler terms, the refinement of partition improves the approximation.

Proof. It suffices to prove the case that Q has one more point than P. Let that point be x^* such that $x^* \in (x_{i-1}, x_i)$. Then let

$$w_1 = \inf \{ f(x) \mid x \in [x_{i-1}, x^*] \}$$

$$w_2 = \inf \{ f(x) \mid x \in [x^*, x_i] \}.$$

Clearly $w_1 \ge m_i$ and $w_2 \ge m_i$, where as before

$$m_i = \inf \{ f(x) \mid x \in [x_{i-1}, x_i] \}.$$

Hence,

$$L(Q, f, \alpha) - L(P, f, \alpha) = w_1[\alpha(x^*) - \alpha(x_{i-1}] + w_2[\alpha(x_i) - \alpha(x^*)] - m_i[\alpha(x_i) - \alpha(x_{i-1})]$$

$$= (w_1 - m_i)[\alpha(x^*) - \alpha(x_{i-1})] + (w_2 - m_i)[\alpha(x_i) - \alpha(x^*)]$$

$$\geqslant 0.$$

Similar argument applies to the second inequality.

Theorem 7.1.9.

$$L(f, \alpha) \leq U(f, \alpha).$$

Proof. For any partitions P_1, P_2 with common refinement $Q = P_1 \cup P_2$, we have

$$L(P_1, f, \alpha) \leq L(Q, f, \alpha) \leq U(Q, f, \alpha) \leq U(P_2, f, \alpha).$$

Then taking the sup over P_1 and the inf over P_2 gives

$$L(f, \alpha) \leq U(f, \alpha)$$
.

Theorem 7.1.10 (Cauchy Criterion). $f \in \mathcal{R}(\alpha)$ on [a,b] if and only if for every $\epsilon > 0$ there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$
.

Proof. By definition of sup and inf, for every partition P, we have

$$L(P, f, \alpha) \le L(f, \alpha) \le U(f, \alpha) \le U(P, f, \alpha),$$

which implies

$$0 \le U(f, \alpha) - L(f, \alpha) \le U(P, f, \alpha) - L(P, f, \alpha).$$

38

Since for every ϵ there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$
.

Hence for every $\epsilon > 0$, we have

$$0 \le U(f, \alpha) - L(f, \alpha) < \epsilon$$

which implies that $U(f, \alpha) = L(f, \alpha)$, that is, $f \in \mathcal{R}(\alpha)$. Conversely, suppose $f \in \mathcal{R}(\alpha)$, and let $\epsilon > 0$ be given. Since

$$\int f d\alpha = \sup_{P} L(P, f, \alpha) = \inf_{P} U(P, f, \alpha),$$

there exists P_1, P_2 such that

$$\int f d\alpha - L(P_1, f, \alpha) < \frac{\epsilon}{2}$$

$$U(P_2, f, \alpha) - \int f d\alpha < \frac{\epsilon}{2}.$$

Now let $P = P_1 \cup P_2$ be the common refinement. Then we have

$$\int f d\alpha - L(P, f, \alpha) < \frac{\epsilon}{2}$$

$$U(P, f, \alpha) - \int f d\alpha < \frac{\epsilon}{2},$$

which implies

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon.$$

Theorem 7.1.11. Let $U_P = U(P, f, \alpha)$ and $L_P = L(P, f, \alpha)$.

(i) If $U_P - L_P < \epsilon$, then for any Q, refinement of P, we have

$$U_Q - L_Q < \epsilon$$
.

(ii) If $U_P - L_P < \epsilon$, and let $s_i, t_i \in [x_{i-1}, x_i]$, then

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon.$$

(iii) If $f \in \mathcal{R}(\alpha)$, and $U_P - L_P < \epsilon$, $s_i \in [x_{i-1}, x_i]$, then

$$\left| \sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha \right| < \epsilon.$$

Proof of (ii). Since $|f(s_i) - f(t_i)| \leq M_i - m_i$, we have

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i \leq \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$= U_P - L_P$$

$$< \epsilon.$$

Theorem 7.1.12. If f is continuous on [a,b], then $f \in \mathcal{R}(\alpha)$ on [a,b].

Proof. Let $\epsilon > 0$ be given. Since f is continuous on a compact set, f is uniformly continuous. Hence, for every $\eta > 0$, there eixsts $\delta(\eta) > 0$ such that $|x - y| < \delta(\eta)$ implies $|f(x) - f(y)| < \eta$.

Take a partition P where $\Delta x_i < \delta(\eta)$ so that

$$M_i - m_i \leqslant \eta$$
.

Hence,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$\leq \sum_{i=1}^{n} \eta \Delta \alpha_i$$

$$= \eta(\alpha(b) - \alpha(a)).$$

Choose η such that $\eta(\alpha(b) - \alpha(a)) < \epsilon$.

Theorem 7.1.13. If f is monotonic on [a,b] and α is also monotonic and continuous on [a,b], then $f \in \mathcal{R}(\alpha)$.

Proof. Let $\epsilon > 0$. For any $n \in \mathbb{N}$, choose a partition P such that

$$\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}.$$

This is possible by the continuity of α and intermediate value theorem. Then

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$
$$= \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})] \cdot \frac{\alpha(b) - \alpha(a)}{n}$$
$$= \frac{\alpha(b) - \alpha(a)}{n} \cdot (f(b) - f(a)).$$

Then n large enough so that $U_P - L_P < \epsilon$.

Theorem 7.1.14. Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b] and α is continuous at every points at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)$.

Proof. Fix $\epsilon > 0$. Let $E = \{c_1 < c_2 < \cdots < c_m\}$ be the set of discontinuities for f. WLOG, assume $E \subset (a, b)$. Since α is continuous at c_i , we have

$$\alpha(c_i) = \lim_{t \to c_i^-} \alpha(t) = \lim_{t \to c_i^+} \alpha(t).$$

Hence we can take (u_i, v_i) around c_i such that

$$\alpha(v_i) - \alpha(c_i) \leqslant \frac{\epsilon}{2m},$$

 $\alpha(c_i) - \alpha(u_i) \leqslant \frac{\epsilon}{2m}.$

Then we have

$$\alpha(u_i) - \alpha(v_i) \leqslant \frac{\epsilon}{m},$$

which implies that

$$\sum_{i=1}^{m} \alpha(u_i) - \alpha(v_i) \leqslant \epsilon.$$

Let $K = [a, b] \setminus \bigcup_{j=1}^{m} (u_i, v_i)$, a finite disjoint union of closed interval. Since f is continuous on K and K is compact, f is uniformly continuous on K. Hence there exists $\delta > 0$ such that for any $x, y \in K$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Now let P be a partition of [a, b] satisfying

- (i) $[u_i, v_i]$ are intervals in P (jump interval or bad interval),
- (ii) If $I_i = [x_{i-1}, x_i]$ is not a jump interval (good interval), i.e., $I_i \subset K$, then $|x_i x_{i-1}| < \delta$.

Then

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$= \sum_{I_i: \text{good}} (M_i - m_i) \Delta \alpha_i + \sum_{I_i: \text{bad}} (M_i - m_i) \Delta \alpha_i$$

$$\leqslant \sum_{I_i: \text{good}} \epsilon \Delta \alpha_i + \sum_{I_i: \text{bad}} (M - m) \Delta \alpha_i$$

$$\leqslant \epsilon [\alpha(b) - \alpha(a)] + (M - m)\epsilon$$

$$= \epsilon [\alpha(b) - \alpha(a) + M - m].$$

Since ϵ is arbitrary, by the Cauchy criterion, we have $f \in \mathcal{R}(\alpha)$.

Theorem 7.1.15. Suppose $f \in \mathcal{R}(\alpha)$ on [a,b], where $m \leq f \leq M$, and ϕ is continuous on [m,M], and $h=\phi\circ f$ on [a,b]. Then $h\in\mathcal{R}(\alpha)$ on [a,b].

Proof. Fix $\epsilon > 0$. Since ϕ is uniformly continuous, there exists $\delta > 0$ such that for any $x, y \in [m, M]$, $|x - y| < \delta$ implies $|\phi(x) - \phi(y)| < \epsilon$. Let $K = \sup |\phi(x)|$ for any $x \in [m, M]$.

Since $f \in \mathcal{R}(\alpha)$, there exists partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \delta^2$$
.

Let $M_i = \sup_{I_i} f(x)$, $m_i = \inf_{I_i} f(x)$, where $I_i = [x_{i-1}, x_i]$. Similarly, let $M_i^* = \sup_{I_i} h(x)$, $m_i^* = \inf_{I_i} h(x)$. Divide into two classes:

- 1. $i \in G$ if $M_i m_i < \delta$,
- 2. $i \in B$ if $M_i m_i \ge \delta$.

For $i \in G$, our choice of δ implies $M_i^* - m_i^* \leq \epsilon$. For $i \in B$, $M_i^* - m_i^* \leq 2K$. Then we have

$$\delta^{2} \geqslant U(P, f\alpha) - L(P, f, \alpha)$$

$$\geqslant \sum_{i \in B} (M_{i} - m_{i}) \Delta \alpha_{i}$$

$$\geqslant \sum_{i \in B} \delta \Delta \alpha_{i}.$$

Hence,

$$\sum_{i \in B} \Delta \alpha_i \leqslant \delta.$$

Thus,

$$U(P, h, \alpha) - L(P, h, \alpha) = \sum_{i \in G} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{iB} (M_i^* - m_i^*) \Delta \alpha_i$$

$$\leq \epsilon [\alpha(b) - \alpha(a)] + 2K\delta$$

$$< \epsilon [\alpha(b) - \alpha(a) + 2K].$$

Since ϵ is arbitrary, by Cauchy criterion, we have $h \in \mathcal{R}(\alpha)$.

7.2 Properties of the Integral

Theorem 7.2.1 (Properties of integrals). The integration operation has the following properties

(i) If $f_1, f_2 \in \mathcal{R}(\alpha)$ on [a, b] and for any constant c, then

$$f_1 + f_2 \in \mathcal{R}(\alpha), \quad cf \in \mathcal{R}(\alpha),$$

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha,$$
$$\int_{a}^{b} cf d\alpha = c \int_{a}^{b} f d\alpha.$$

(ii) If $f_1(x) \leq f_2(x)$ on [a, b], then

$$\int_{a}^{b} f_{1} d\alpha \leqslant \int_{a}^{b} f_{2} d\alpha.$$

(iii) If $f \in \mathcal{R}(\alpha)$ on [a, b] and if a < c < b, then $f \in \mathcal{R}(\alpha)$ on [a, c] and on [c, b], and

$$\int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha = \int_{a}^{b} f d\alpha.$$

(iv) If $f \in \mathcal{R}(\alpha)$ and if $|f(x)| \leq M$ on [a, b], then

$$\left| \int_{a}^{b} f d\alpha \right| \leq M[\alpha(b) - \alpha(a)].$$

(v) If $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$, then $f \in \mathcal{R}(\alpha_1 + \alpha_2)$ and

$$\int_{a}^{b} f d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$$
$$\int_{a}^{b} f d(c\alpha) = c \int_{a}^{b} f d\alpha.$$

Theorem 7.2.2. If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b], then

- $\begin{array}{l} \text{(i)} \ fg \in \mathcal{R}(\alpha); \\ \\ \text{(ii)} \ |f| \in \mathcal{R}(\alpha) \ \text{and} \ \left| \int_a^b f d\alpha \right| \leqslant \int_a^b |f| d\alpha. \end{array}$

Proof. For (i), let $\phi(t) = t^2$, then $f^2 = \phi \circ f \in \mathcal{R}(\alpha)$ by previous theorem. Since $fg = \frac{1}{2}((f+g)^2 - f(g))$ $f^2 - g^2$), where the RHS is integrable with respect to α , $fg \in \mathcal{R}(\alpha)$ as well.

For (ii), let $\phi(t) = |t|$, then $|f| = \phi \circ f \in \mathcal{R}(\alpha)$. Choose $c = \pm 1$, so that

$$c\int fd\alpha\geqslant 0.$$

Then

$$\left|\int f d\alpha\right| = c \int f d\alpha = \int c f d\alpha \leqslant \int |f| d\alpha,$$

since $cf \leq |f|$.

Definition 7.2.3 (Unit Step Function). The **unit step function** *I* is defined by

$$I(x) = \begin{cases} 0 & (x \le 0), \\ 1 & (x > 0). \end{cases}$$

Theorem 7.2.4. If $f:[a,b]\to\mathbb{R}$ is bounded and is continuous at $s\in(a,b)$, and $\alpha(x)=I(x-s)$, then

$$\int_{a}^{b} f d\alpha = f(s).$$

Proof. Consider partitions $P = \{a = x_0, s = x_1, x_2, x_3 = b\}$. Then

$$U(P, f, \alpha) = \sup \{ f(x) \mid x \in [s, x_2] \} \cdot 1 = L(P, f, \alpha) = \inf \{ f(x) \mid x \in [s, x_2] \} \cdot 1.$$

Since f is continuous at s, we see that $U_p, L_p \to f(s)$ as $x_2 \to s$.

Theorem 7.2.5. Suppose $c_n \ge 0$ for $n = 1, 2, 3, ..., \sum c_n$ converges, $\{s_n\}$ is a sequence of distinct points in (a, b). and

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n).$$

Let f be continuous on [a, b]. Then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n).$$

Theorem 7.2.6. Suppose α increases monotonically and $\alpha' \in \mathcal{R}$ on [a,b]. Let f be a bounded real function on [a,b]. Then $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$. In that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx.$$

Theorem 7.2.7 (Change of Variable). Suppose φ is a strictly increasing continuous function that maps an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by

$$\beta(y) = \alpha(\varphi(y)), \quad g(y) = f(\varphi(y))$$

Then $g \in \mathcal{R}(\beta)$ and

$$\int_{A}^{B} g d\beta = \int_{a}^{b} f d\alpha$$

7.3 Integration and Differentiation

Theorem 7.3.1 (Fundamental Theorem of Calculus I). Let $f \in \mathcal{R}$ on [a,b]. For $a \leq x \leq b$, put

$$F(x) = \int_{a}^{x} f(t)dt$$

Then F is continuous on [a, b]; furthermore, if f is continuous at a point x_0 of [a, b], then F is differentiable at x_0 , and

$$F'(x_0) = f(x_0).$$

Theorem 7.3.2 (Fundamental Theorem of Calculus II). If $f \in \mathcal{R}$ on [a,b] and if there is a differentiable function F on [a,b] such that F'=f, then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Theorem 7.3.3 (Integration by Parts). Suppose F and G are differentiable functions on $[a, b], F' = f \in \mathcal{R}$, and $G' = g \in \mathcal{R}$. Then

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

7.4 Uniform Convergence and Integration

Theorem 7.4.1. Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b], for $n=1,2,3,\ldots$, and suppose $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{R}(\alpha)$ on [a,b], and (23)

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha.$$

Corollary 7.4.2. If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (a \leqslant x \leqslant b)$$

the series converging uniformly on [a, b], then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d\alpha.$$

In other words, the series may be integrated term by term.

Chapter 8

Special Functions

8.1 The Gamma Function

Definition 8.1.1 (Gamma function). For $0 < x < \infty$,

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Theorem 8.1.2. Properties of the gamma function:

(i) If $0 < x < \infty$,

$$\Gamma(x+1) = x\Gamma(x).$$

(ii) For $n \in \mathbb{N}$,

$$\Gamma(n+1) = n!.$$

(iii) $\log \Gamma$ is convex on $(0, \infty)$.

Theorem 8.1.3. If f is a positive function on $(0, \infty)$ such that

- (i) f(x+1) = xf(x),
- (ii) f(1) = 1, (iii) $\log f$ is convex, then $f(x) = \Gamma(x)$.

8.1.1 Beta function

Theorem 8.1.4. If x > 0, and y > 0, then

$$\int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

where the integral is the **beta function** B(x, y).

Chapter 9

The Lebesgue Theory

9.1