Quiz 1

Prof . Prathosh AP and Chandan J

$May\ 2025$

- 1. Suppose in GAN, the supports of $p_{\rm data}$ and p_g are disjoint. What is the value of the GAN value function?
 - (a) 1
 - (b) $-\infty$
 - (c) 0
 - (d) log 2

Answer: (c)

- 2. Consider in GAN, a simple setting where $p_{\text{data}} = \delta(x-1)$ and $p_g = \delta(x+1)$, i.e., both are Dirac delta functions located at different points. What is the GAN value function V(G)?
 - (a) $-\log 2$
 - (b) 0
 - (c) $-\log(0.5)$
 - (d) log 4

Answer: (b).

3. Consider the following GAN training loop in PyTorch:

```
for _ in range(k):
    optimizer_D.zero_grad()
    loss_D.backward()
    optimizer_D.step()
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
```

What does this loop imply?

- (a) Generator is updated multiple times per discriminator update.
- (b) Discriminator is updated multiple times per generator update.
- (c) Both networks are updated simultaneously.
- (d) The model uses gradient accumulation.

Answer: (b).

- 4. Suppose you are training a GAN using torch.nn.BCELoss(). During training, the discriminator loss becomes nearly zero and the generator loss increases rapidly. What is the most likely explanation?
 - (a) The generator is overfitting to the noise.
 - (b) The discriminator has become too strong.
 - (c) The learning rate of the generator is too high.
 - (d) The noise vector dimension is too large.

Answer: (b)

- 5. In Bi-GAN, which of the following expressions represents the correct **joint objective** to be minimized by the encoder E and generator G, and maximized by the discriminator D?
 - (a) $\mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x, E(x))] + \mathbb{E}_{z \sim p_z(z)}[\log(1 D(G(z), z))]$
 - (b) $\mathbb{E}_{z \sim p_z(z)}[\log D(G(z), z)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 D(x, E(x)))]$
 - (c) $\mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 D(x, E(x)))] + \mathbb{E}_{z \sim p_z(z)}[\log(1 D(G(z), z))]$
 - (d) $\mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 D(G(z)))]$

Answer: (a)

- 6. Assume that the encoder E in a Bi-GAN maps $x \in \mathbb{R}^{784}$ to $z \in \mathbb{R}^{100}$, and G maps z to x. What is a necessary condition for E and G to become **inverses of each other**?
 - (a) D must be able to distinguish between fake and real with high confidence.

(b)	The composite mapping	G(E(x))	$\approx x$	and	E(G(z))	$\approx z$	must	hold
	for all x and z .							

- (c) The generator and encoder must share weights.
- (d) The discriminator must estimate pixel-wise binary mask loss.

Answer: (b)

- 7. A GAN's generator G(z) takes in a latent vector $z \sim \mathcal{N}(0, I)$ of size 100, and produces images of shape 28×28 . If the generator consists of three linear layers: $100 \rightarrow 128 \rightarrow 256 \rightarrow 784$, how many trainable parameters are in the generator (excluding biases)?
 - (a) 78,400
 - (b) 102,400
 - (c) 246,272
 - (d) 156,000

Answer: (c)

8. During Bi-GAN training, suppose you compute discriminator output on:

$$D(x, E(x)) = 0.85, \quad D(G(z), z) = 0.15$$

If using Binary Cross Entropy loss with target labels 1 for real and 0 for fake, what is the total discriminator loss?

- (a) 0.324
- (b) 0.45
- (c) 0.23
- (d) 0.85

Answer: (a)

- 9. In a Bi-GAN, you use an encoder E, generator G, and discriminator D. Given batch size 64, and each sample is 784-dimensional, what is the shape of the input to the discriminator?
 - (a) [64, 784]
 - (b) [64, 100]
 - (c) [64, 884]
 - (d) [128, 784]

Answer: (c)

10. Let p_r and p_g be two probability distributions supported on a compact metric space \mathcal{X} . The Wasserstein-1 distance is defined as:

$$W(p_r, p_g) = \inf_{\gamma \in \Pi(p_r, p_g)} \mathbb{E}_{(x,y) \sim \gamma}[\|x - y\|_2]$$

Which of the following properties is guaranteed for W, unlike the Jensen-Shannon divergence?

- (a) It is finite and continuous even when p_r and p_g have disjoint supports.
- (b) It is always zero for disjoint supports.
- (c) It upper bounds the KL divergence.
- (d) It requires the same dimensionality of supports.

Answer: (a)

- 11. In W-GAN, enforcing the 1-Lipschitz condition on the critic (discriminator) is crucial. Which of the following methods **fails** to properly enforce the Lipschitz constraint?
 - (a) Weight clipping, lead to capacity underuse and gradient vanishing.
 - (b) Gradient penalty via $\lambda \mathbb{E}_{\hat{x}}[(\|\nabla_{\hat{x}}D(\hat{x})\|_2 1)^2]$.
 - (c) Spectral normalization to bound each layer's Lipschitz constant.
 - (d) Enforcing $||f(x_1) f(x_2)|| \le ||x_1 x_2||$ directly via constraint optimization.

Answer: (a)

- 12. In the PyTorch implementation of W-GAN, which of the following code snippets correctly enforces the weight clipping constraint on the critic?
 - (a) for p in D.parameters():
 p = torch.clamp(p, -0.01, 0.01)
 - (b) for p in D.parameters():
 p.data.clamp_(-0.01, 0.01)
 - (c) torch.nn.utils.clip_grad_norm_(D.parameters(), 0.01)
 - (d) D.clip(-0.01, 0.01)

Answer: (b)

13. Consider the following marginal distributions:

$$P = [0.25, 0.25, 0.5], \quad Q = [0.5, 0.3, 0.2]$$

Which of the following transport plans T is valid (i.e., has row sums = P and column sums = Q)?

(a)

$$\begin{bmatrix} 0.25 & 0 & 0 \\ 0.25 & 0 & 0 \\ 0 & 0.3 & 0.2 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 0.2 & 0.05 & 0 \\ 0.3 & 0 & 0 \\ 0 & 0.25 & 0.25 \end{bmatrix}$$

(c)

$$\begin{bmatrix} 0.1 & 0.1 & 0.05 \\ 0.2 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \end{bmatrix}$$

(d)

$$\begin{bmatrix} 0.3 & 0 & 0 \\ 0.2 & 0.2 & 0.2 \\ 0 & 0.1 & 0.3 \end{bmatrix}$$

Answer: (b)

14. Let P = [0.2, 0.3, 0.5] and Q = [0.3, 0.3, 0.4]. Consider the following transport plan matrix T:

$$T = \begin{bmatrix} 0.2 & 0.0 & 0.0 \\ 0.1 & 0.2 & 0.0 \\ 0.0 & 0.1 & 0.4 \end{bmatrix}$$

and cost matrix

$$D = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 0 \end{bmatrix}$$

Compute the total cost (EMD).

- (a) 1.1
- (b) 1.5
- (c) 0.8
- (d) 0.9

Answer: (d)

15. Given two discrete distributions:

$$P = [0.5, 0.5], \quad Q = [0.25, 0.75]$$

and an f-divergence defined using $f(u) = u \log u$ (i.e., Kullback-Leibler divergence), compute $D_f(P\|Q)$.

- (a) 0.056
- (b) 0.22
- (c) 0.31
- (d) 0.13

Solution:

$$D_{\text{KL}}(P||Q) = 0.5 \log \frac{0.5}{0.25} + 0.5 \log \frac{0.5}{0.75} = 0.5(1) + 0.5(-0.5849) \approx 0.13$$

Answer: (d)

- 16. Let P = [0.1, 0.2, 0.7] and Q = [0.2, 0.3, 0.5]. Approximate the total variation distance $D_{TV}(P, Q) = \frac{1}{2} \sum_{i} |p_i q_i|$.
 - (a) 0.05
 - (b) 0.2
 - (c) 0.3
 - (d) 0.5

Solution:

$$D_{TV} = \frac{1}{2}(|0.1 - 0.2| + |0.2 - 0.3| + |0.7 - 0.5|) = \frac{1}{2}(0.1 + 0.1 + 0.2) = 0.2$$

Answer: (b)

- 17. If a domain classifier achieves 100% accuracy in distinguishing between source and target domain samples, what can we say about domain adaptation?
 - (a) The domains are perfectly aligned
 - (b) The classifier is overfitting
 - (c) The domains are misaligned
 - (d) Nothing can be inferred

Answer: (c)

18. In adversarial domain adaptation, a gradient reversal layer is used with a coefficient $\lambda = 0.5$. If the original gradient is $\nabla = [2, -4]$, what is the reversed gradient used to update the feature extractor?

- (a) [-1, 2]
- (b) [1, -2]
- (c) [-2, 4]
- (d) [0,0]

Solution:

$$\nabla_{\text{reversed}} = -\lambda \nabla = -0.5 \cdot [2, -4] = [-1, 2]$$

Answer: (a)

19. Given two multivariate Gaussians with means μ_r , μ_g and covariances Σ_r , Σ_g , the Frechet Inception Distance (FID) is defined as:

$$FID = \|\mu_r - \mu_g\|^2 + Tr\left(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}\right)$$

Suppose:

$$\mu_r = [1, 1], \quad \mu_g = [2, 3], \quad \Sigma_r = I, \quad \Sigma_g = 4I$$

What is the FID?

- (a) 1
- (b) 10
- (c) 8
- (d) 6

Solution:
$$\|\mu_r - \mu_g\|^2 = (1-2)^2 + (1-3)^2 = 1+4=5 \text{ Tr}(I+4I-2\sqrt{I\cdot 4I}) = \text{Tr}(5I-2\cdot 2I) = \text{Tr}(5I-4I) = \text{Tr}(I) = 1 \Rightarrow \text{FID} = 5+1=6$$

Answer: (d)

- 20. If the Inception network produces activations with mean and covariance for real data as μ_r , Σ_r and for generated data as μ_g , Σ_g , which of the following is true?
 - (a) If $\mu_r = \mu_q$ and $\Sigma_r = \Sigma_q$, FID is negative.
 - (b) FID is non-negative and equals 0 when distributions are identical.
 - (c) FID can be undefined if Σ_r is not positive definite.
 - (d) FID equals the KL divergence between the distributions.

Answer: (b)