

1. Na figura ao lado, está representado, num referencial o.n. Oxyz, um cubo [ABCDEFGH] em que cada aresta é paralela a um dos eixos coordenados.

Sabe-se que:

- \bullet o vértice B tem coordenadas (0,2,4)
- o vetor \overrightarrow{BE} tem coordenadas (2,2,-2)
- $\bullet\,$ a aresta [BG]é paralela ao eixo Oz

Determine a amplitude do ângulo OBE

Apresente o resultado em graus, arredondado às unidades.

Exame -2020, Ép. especial

F

2. Na figura ao lado, está representada, num referencial o.n. Oxyz, uma pirâmide quadrangular regular [ABCDV]

Os vértices A e C têm coordenadas (2,1,0) e (0,-1,2), respetivamente.

O vértice V tem coordenadas (3, -1, 2)

Determine a amplitude do ângulo VAC

Apresente o resultado em graus, arredondado às unidades. Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame – 2019, 1.ª Fase

3. Considere, num referencial o.n. Oxyz, a superfície esférica de equação $x^2 + y^2 + z^2 = 3$ e o ponto P de coordenadas (1,1,1), pertencente a essa superfície esférica. Seja R o ponto de intersecção da superfície esférica com o semieixo negativo das ordenadas.

Determine a amplitude do ângulo ROP

Apresente o resultado em graus, arredondado às unidades.

Exame - 2018, Ép. especial

4. Considere, num referencial o.n. Oxyz, a superfície esférica de equação

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 10$$

Seja C o centro da superfície esférica e seja A o simétrico do ponto C relativamente ao plano xOy

Determine a amplitude do ângulo AOC

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame – 2018, $2.^a$ Fase

5. Na figura ao lado, está representado, num referencial o.n. Oxyz, um prisma hexagonal regular.

Sabe-se que:

- [PQ] e [QR] são arestas de uma das bases do prisma;
- \bullet $\overline{PQ} = 4$

Determine o produto escalar \overrightarrow{QP} . \overrightarrow{QR}

Exame – 2018, 1.ª Fase

6. Considere, num referencial o.n. xOy, dois pontos distintos, $R \in S$

Seja A o conjunto dos pontos P desse plano que verificam a condição \overrightarrow{PR} . $\overrightarrow{PS}=0$ $(\overrightarrow{PR}.\overrightarrow{PS}$ designa o produto escalar de \overrightarrow{PR} por \overrightarrow{PS}).

Qual das seguintes afirmações é verdadeira?

- (A) O conjunto A é a mediatriz do segmento de reta [RS]
- (B) O conjunto A é o segmento de reta [RS]
- (C) O conjunto A é o triângulo [ROS]
- (D) O conjunto A é a circunferência de diâmetro [RS]

Exame – 2017, Ép. especial

mat.absolutamente.net

7. Na figura ao lado, está representado, num referencial o.n. Oxyz, o cubo [ABCDEFGH]

Sabe-se que:

- \bullet a face [ABCD] está contida no plano xOy
- \bullet a aresta [CD] está contida no eixo Oy
- \bullet o ponto D tem coordenadas (0,4,0)
- o plano ACG é definido pela equação x+y-z-6=0
- o vértice A tem abcissa igual a 2

Seja P o vértice de uma pirâmide regular de base [EFGH]

Sabe-se que:

- ullet a cota do ponto P é superior a 2
- $\bullet\,$ o volume da pirâmide é 4

Determine a amplitude do ângulo OGP

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame - 2017, 2.a Fase

8. Na figura ao lado, está representado, num referencial o.n. Oxyz,o prisma quadrangular regular $\left[OPQRSTUV\right]$

Sabe-se que:

- ullet a face [OPQR] está contida no plano xOy
- ullet o vértice Q pertence ao eixo Oy e o vértice T pertence ao eixo Oz
- \bullet o plano STU tem equação z=3

Determine o valor do produto escalar \overrightarrow{UP} . \overrightarrow{RS}

Exame – 2017, $1.^a$ Fase

9. Na figura ao lado, está representado, num referencial o.n. Oxyz, o prisma quadrangular regular [OABCDEFG]

Sabe-se que:

- os pontos C, A e E pertencem aos eixos coordenados Ox, Oy e Oz, respetivamente;
- o ponto A tem coordenadas (0,2,0)
- o plano OFB é definido pela equação 3x + 3y z = 0

Seja P o ponto de cota igual a 1 que pertence à aresta [BG] Seja R o simétrico do ponto P relativamente à origem.

Determine a amplitude do ângulo RAP

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame – 2016, Ép. especial

10. Considere, num referencial o.n. Oxyz, o plano α definido pela equação 3x + 2y + 4z - 12 = 0Sejam A e B os pontos pertencentes ao plano α , tais que A pertence ao semieixo positivo Ox e B pertence ao semieixo positivo Oy

Seja P um ponto com cota diferente de zero e que pertence ao eixo Oz

Justifique, recorrendo ao produto escalar de vetores, que o ângulo APB é agudo.

Exame – 2016, $2.^a$ Fase

11. Na figura ao lado, está representado um triângulo isósceles $\left[ABC\right]$

Sabe-se que:

- $\overline{AB} = \overline{BC} = \sqrt{2}$
- $B\hat{A}C = 75^{\circ}$

Qual é o valor do produto escalar \overrightarrow{BA} . \overrightarrow{BC} ?

- **(A)** $\sqrt{2}$
- **(B)** $2\sqrt{2}$
- **(C)** $\sqrt{3}$
- **(D)** $2\sqrt{3}$

Exame – 2016, 1.ª Fase

12. Os segmentos de reta [AB] e [BC] são lados consecutivos de um hexágono regular de perímetro 12

Qual é o valor do produto escalar \overrightarrow{BA} . \overrightarrow{BC} ?

- (A) -3
- **(B)** -2
- **(C)** 2
- **(D)** 3

Exame – 2015, Ép. especial

13. Considere, num referencial o.n. Oxyz, o plano β definido pela condição 2x - y + z - 4 = 0Considere o ponto A(1,2,3)

Seja B o ponto de intersecção do plano β com o eixo Ox

Seja C o simétrico do ponto B relativamente ao plano yOz

Determine a amplitude do ângulo BAC

Apresente o resultado em graus, arredondado às unidades.

Exame – 2015, Ép. especial

14. Na figura seguinte, está representado, num referencial o.n. Oxyz, o poliedro [NOPQRSTUV] que se pode decompor num cubo e numa pirâmide quadrangular regular.

Sabe-se que:

- ullet o vértice P pertence ao eixo Ox
- $\bullet\,$ o vértice N pertence ao eixo Oy
- $\bullet\,$ o vértice T pertence ao eixo Oz
- o vértice R tem coordenadas (2,2,2)
- \bullet o plano PQVé definido pela equação 6x+z-12=0

Seja A um ponto pertencente ao plano QRS

Sabe-se que:

- o ponto A tem cota igual ao cubo da abcissa;
- os vetores \overrightarrow{OA} e \overrightarrow{TQ} são perpendiculares.

Determine a abcissa do ponto A, recorrendo à calculadora gráfica.

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora e que lhe permite(m) resolver a equação, devidamente identificado(s) (sugere-se a utilização da janela de visualização em que $x \in [-4,4]$ e $y \in [-2,7]$);
- ullet apresente a abcissa do ponto A arredondada às centésimas.

Exame – 2015, $2.^a$ Fase

15. Considere, num referencial o.n. Oxyz, os pontos A(0,0,2) e B(4,0,0)

Seja P o ponto pertencente ao plano xOy tal que:

- $\bullet\,$ a sua abcissa é igual à abcissa do ponto B
- a sua ordenada é positiva;
- $\bullet \ B\hat{A}P = \frac{\pi}{3}$

Determine a ordenada do ponto ${\cal P}$

Exame -2015, 1.^a Fase

16. Na figura ao lado, está representado, num referencial o.n. Oxyz, o cubo [OABCDEFG], de aresta 3

Sabe-se que:

- ullet o ponto A pertence ao semieixo positivo Ox
- o ponto C pertence ao semieixo negativo Oy
- ullet o ponto D pertence ao semieixo positivo Oz
- o ponto H tem coordenadas (3, -2,3)

Seja α a amplitude, em radianos, do ângulo AHC Determine o valor exato de $\sin^2\alpha$, sem utilizar a calculadora.

Exame – 2014, 1.^a Fase

17. Na figura ao lado, está representado um triângulo equilátero [ABC] Seja a o comprimento de cada um dos lados do triângulo. Seja M o ponto médio do lado [BC]

Mostre que \overrightarrow{AB} . $\overrightarrow{AM} = \frac{3a^2}{4}$

Nota: \overrightarrow{AB} . \overrightarrow{AM} designa o produto escalar do vetor \overrightarrow{AB} pelo vetor \overrightarrow{AM}

Teste Intermédio 11.º ano - 11.03.2014

18. Num referencial o.n. Oxyz, considere um ponto P que tem ordenada igual a -4 e cota igual a 1 Considere também o vetor \vec{u} de coordenadas (2,3,6)

Sabe-se que os vetores \overrightarrow{OP} e \overrightarrow{u} são perpendiculares.

Qual é a abcissa do ponto P?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

Teste Intermédio 11.º ano – 06.03.2013

19. Na figura ao lado, está representado um quadrado [ABCD] de lado igual a 4 Admita que o ponto E pertence ao segmento [AB] e que o triângulo [ADE] tem área igual a 6

Determine o valor exato de \overrightarrow{ED} . \overrightarrow{DC} , sem recorrer à calculadora.

Teste Intermédio 11.º ano – 06.03.2013

20. No referencial o.n. xOy da figura ao lado, estão representados o quadrado [OABC] e o retângulo [OPQR]

Os pontos A e P pertencem ao semieixo positivo Ox e os pontos C e R pertencem ao semieixo positivo Oy

O ponto Q pertence ao interior do quadrado [OABC]

Sabe-se que:

- $\overline{OA} = a$
- $\overline{OP} = b$
- $\overline{RC} = b$

Prove que as retas QB e RP são perpendiculares.

Teste Intermédio 11.º ano - 09.02.2012

- 21. De um triângulo isósceles $\left[ABC\right]$ sabe-se que:
 - \bullet os lados iguais são [AB] e [AC], tendo cada um deles 8 unidades de comprimento;
 - cada um dos dois ângulos iguais tem 30° de amplitude.

Qual é o valor do produto escalar \overrightarrow{AB} . \overrightarrow{AC} ?

- **(A)** $-32\sqrt{3}$
- **(B)** -32
- (C) 64
- **(D)** $64\sqrt{3}$

Teste Intermédio 11.º ano - 27.01.2011

22. Na figura ao lado, está representado, em referencial o.n. Oxyz, o poliedro [VNOPQURST], que se pode decompor num cubo e numa pirâmide quadrangular regular.

Sabe-se que:

- ullet a base da pirâmide coincide com a face superior do cubo e está contida no plano xOy
- $\bullet\,$ o ponto P pertence ao eixo Ox
- o ponto U tem coordenadas (4, -4, -4)

Considere um ponto A , com a mesma abcissa e com a mesma ordenada do ponto ${\cal U}$

Sabe-se que \overrightarrow{OT} . $\overrightarrow{OA} = 8$

Determine a cota do ponto A

Teste Intermédio 11.º ano - 27.01.2011

23. Na figura ao lado, está representado o quadrado [ABCD]

Sabe-se que:

- \bullet o ponto I é o ponto médio do lado [DC]
- ullet o ponto J é o ponto médio do lado [BC]

Prove que \overrightarrow{AI} . $\overrightarrow{AJ} = \left\| \overrightarrow{AB} \right\|^2$

Sugestão: comece por exprimir cada um dos vectores \overrightarrow{AI} e \overrightarrow{AJ} como soma de dois vectores.

Teste Intermédio 11.º ano – 27.01.2011

24. Seja [AB] um diâmetro de uma esfera de centro C e raio 4

Qual é o valor do produto escalar \overrightarrow{CA} . \overrightarrow{CB} ?

- **(A)** 16
- **(B)** -16
- (C) $4\sqrt{2}$ (D) $-4\sqrt{2}$

Teste Intermédio 11.º ano – 06.05.2010Teste Intermédio 11.º ano - 07.05.2009 (adaptado)

25. Na figura ao lado, está representada, num referencial o.n. xOy, a circunferência de equação

$$(x-4)^2 + (y-1)^2 = 25$$

O ponto C é o centro da circunferência.

P e Q são dois pontos da circunferência.

A área da região sombreada é $\frac{25\pi}{c}$

Determine o valor do produto escalar \overrightarrow{CP} . \overrightarrow{CQ}

Teste Intermédio 11.º ano – 27.01.2010

26. Na figura seguinte, está representada uma circunferência de centro ${\cal O}$ e raio r

Sabe-se que:

- \bullet [AB] é um diâmetro da circunferência
- ullet o ponto C pertence à circunferência
- α é a amplitude do ângulo COB
- [OD] é perpendicular a [AC]

Prove que \overrightarrow{AB} . $\overrightarrow{AC} = 4r^2\cos^2\left(\frac{\alpha}{2}\right)$

Sugestão: Percorra as seguintes etapas:

- Justifique que o triângulo [OAC] é isósceles
- Justifique que $\overline{AC} = 2\overline{AD}$
- Justifique que a amplitude do ângulo CAB é $\frac{\alpha}{2}$
- ullet Escreva \overline{AD} , em função de $\dfrac{lpha}{2}$ e de r
- Conclua que \overrightarrow{AB} . $\overrightarrow{AC} = 4r^2 \cos^2\left(\frac{\alpha}{2}\right)$

Teste Intermédio 11.º ano - 29.01.2009

27. Na figura ao lado estão representadas, em referencial o.n. xOy, uma reta AB e uma circunferência com centro na origem e raio igual a 5

Os pontos A e B pertencem à circunferência. O ponto A também pertence ao eixo das abcissas. O ponto B tem coordenadas (3,4)

Seja C o ponto de coordenadas (-3,16)Verifique que o triângulo [ABC] é retângulo em B

Teste Intermédio $11^{\rm o}$ ano -24.01.2008

28. Na figura ao lado está representado, em referencial o.n. Oxyz, um cubo [OPQRSTUV] de aresta 5

O vértice O do cubo coincide com a origem do referencial.

Os vértices P, R e S do cubo pertencem aos semieixos positivos Ox, Oy e Oz, respetivamente.

O triângulo escaleno [MNQ]é a secção produzida no cubo pelo plano α de equação

$$10x + 15y + 6z = 125$$

Seja β a amplitude, em **graus**, do ângulo MQN. Determine β

Apresente o resultado arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Sugestão: comece por determinar as coordenadas dos pontos M e N

Q

U

29. Na figura ao lado estão representados dois vetores, \overrightarrow{AD} e \overrightarrow{AE} , de normas 12 e 15, respetivamente.

No segmento de reta [AD] está assinalado um ponto BNo segmento de reta [AE] está assinalado um ponto C

O triângulo é retângulo [ABC] e os seus lados têm 3, 4 e 5 unidades de comprimento.

Indique o valor do produto escalar \overrightarrow{AD} . \overrightarrow{AE}

- **(A)** 108
- **(B)** 128
- (C) 134
- **(D)** 144

S

T

M

Teste Intermédio 11.º ano – 10.05.2007

30. Na figura ao lado está representado um retângulo [ABCD]

Mostre que o produto escalar \overrightarrow{AB} . \overrightarrow{AC} é igual a \overrightarrow{AB}^2

Teste Intermédio 11.º ano – 19.05.2006

- 31. Na figura ao lado estão representados, em referencial o. n. Oxyz, um prisma e uma pirâmide quadrangulares regulares, com a mesma altura.
 - A base do prisma, que coincide com a base da pirâmide, está contida no plano xOy.
 - O vértice P pertence ao eixo Ox.
 - O vértice R pertence ao eixo Oy.
 - O vértice S pertence ao eixo Oz.
 - O vértice U tem coordenadas (2,2,4).

Calcule a amplitude do ângulo WQV. Apresente o resultado em graus, arredondado às unidades.

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame – 2001, Ép. especial (cód. 135)

32. Na figura seguinte está representada uma circunferência de centro O e raio 1 Os pontos A e B são extremos de um diâmetro da circunferência.

Considere que um ponto P, partindo de A, se desloca sobre o arco AB, terminando o seu percurso em B

Para cada posição do ponto P, seja x a amplitude, em radianos, do ângulo AOP.

Seja fa função que, a cada valor de $x\in[0,\pi],$ faz corresponder o valor do produto escalar $\overrightarrow{OA}.\overrightarrow{OP}$

Qual dos gráficos seguintes pode ser o da função f?

(A)

(B)

(C)

(D)

Exame – 2001, Prova para militares (cód. 435)

33. Considere um vetor \overrightarrow{AB} tal que $\left\|\overrightarrow{AB}\right\|=1$

Qual é o valor do produto escalar \overrightarrow{AB} . \overrightarrow{BA} ?

- **(A)** 1
- **(B)** -1
- **(C)** 0
- **(D)** 2

 $\begin{array}{c} {\rm Exame-2001,\ Prova\ Modelo\ (c\acute{o}d.\ 135)} \\ {\rm Exame-2000,\ 2.^a\ Fase\ (c\acute{o}d.\ 135)} \end{array}$

- 34. Na figura ao lado está representada, em referencial o.n. Oxyz, uma pirâmide quadrangular regular.
 - $\bullet\,$ A base da pirâmide é paralela ao plano xOy
 - \bullet O ponto A tem coordenadas (8,8,7)
 - $\bullet\,$ O ponto B pertence ao plano yOz
 - ullet O ponto C pertence ao eixo Oz
 - $\bullet\,$ O ponto D pertence ao plano xOz
 - $\bullet\,$ O ponto E é o centro da base da pirâmide
 - ullet O vértice V da pirâmide pertence ao plano xOy

Determine a amplitude do ângulo DVB Apresente o resultado em graus, com aproximação à décima de grau.

Exame – 2000, Ép. Especial (setembro) (cód. 135) Exame – 1999, Prova de reserva (cód. 135)

35. Na figura ao lado está representada, em referencial o.n. Oxyz, um prisma triangular regular.

Sabe-se que:

- $\bullet\,$ O vértice O coincide com a origem do referencial
- ullet O vértice P pertence ao semieixo positivo Ox
- \bullet O vértice R pertence ao semieixo positivo Oy
- ullet O segmento [QR] tem comprimento 6

Indique, justificando, o valor do produto escalar \overrightarrow{TS} . \overrightarrow{TR}

Exame – 2000, 1.ª fase - 2.ª chamada (cód. 135)

36. Na figura seguinte estão representados três pontos, em referencial o.n. Oxyz

Sabe-se que:

- $\bullet\,$ o ponto Atem coordenadas (0,5,2)
- $\bullet\,$ o ponto B pertence ao plano $(3,\!0,\!1)$
- o ponto C pertence ao plano (4,2,0)

Mostre que o triângulo [ABC] é retângulo em ${\cal C}$

Exame – 1999, $2.^{\rm a}$ fase (cód. 135)

37. Na figura ao lado está representado um paralelepípedo retângulo [PQRSTUVX]

Qual das afirmações seguintes é verdadeira?

- (A) $\overrightarrow{TP} \cdot \overrightarrow{QU} = 0$
- **(B)** $\overrightarrow{UQ} \cdot \overrightarrow{TX} = 0$
- (C) $\overrightarrow{PQ} \cdot \overrightarrow{TU} = 0$
- **(D)** \overrightarrow{PQ} . $\overrightarrow{PV} = 0$

Exame – 1999, 1.ª Fase - 2.ª Chamada (cód. 135)

38. De dois vetores \vec{p} e \vec{q} sabe-se que têm ambos norma igual a 3 e que $\vec{p} \cdot \vec{q} = -9$ ($\vec{p} \cdot \vec{q}$ designa o produto escalar de \vec{p} por \vec{q}).

Indique qual das afirmações seguintes é verdadeira.

- agudo

- (A) $\vec{p} + \vec{q} = \vec{0}$ (B) $\vec{p} \vec{q} = \vec{0}$ (C) $\vec{p} \perp \vec{q}$ (D) O ângulo dos vetores \vec{p} e \vec{q} é

Exame – 1998, Prova para militares (cód. 135)

39. Considere, num referencial o.n. Oxyz, uma pirâmide triangular não regular [OPQV]

Tem-se que:

- $\bullet\,$ O vértice O da pirâmide é a origem do referencial
- \bullet O vértice V tem coordenadas (0,4,2)
- O ponto P tem coordenadas (2,2,2)
- O ponto Q tem coordenadas (3,3,0)
- Uma equação do plano OPQ é x-y=0
- $\bullet\,$ Uma equação do plano PQV é x+y+z=6
- Uma equação do plano OPV é x + y 2z = 0

Mostre que o ângulo OPQ é reto.

Exame – 1998, Prova de reserva (cód. 135)

40. Considere, num referencial o.n. Oxyz, os pontos A(5,0,0) e B(0,3,1)

Determine as coordenadas de um ponto C, pertencente ao eixo Oz e de cota positiva, de tal modo que o triângulo [ABC] seja retângulo em C

Exame – 1998, 2.ª fase (cód. 135)

- 41. Na figura ao lado está representado um tetraedro regular (sólido geométrico com quatro faces, que são todas **triângulos equiláteros**).
 - \bullet A, B, C e D e são os vértices do tetraedro
 - $\overline{AB} = 6$

O valor do produto escalar \overrightarrow{BC} . \overrightarrow{BD} é

- **(A)** 18
- **(B)** $18\sqrt{2}$
- **(C)** 36
- **(D)** $36\sqrt{2}$

Exame – 1998, 1. a fase - 1. a chamada (cód. 135)

42. Considere, num referencial o.n. Oxyz, um cilindro de revolução como o representado na figura ao lado.

A base inferior do cilindro tem centro na origem ${\cal O}$ do referencial e está contida no plano xOy

[BC] é um diâmetro da base inferior, contido no eixo Oy. O ponto C tem coordenadas (0, -5,0)

O ponto A pertence à circunferência que limita a base inferior do cilindro e tem coordenadas (4,3,0)

A reta r passa no ponto B e é paralela ao eixo Oz

O ponto D pertence à reta r e à circunferência que limita a base superior do cilindro.

Justifique que a reta AC é perpendicular à reta AB

Exame – 1997, 1. a fase - 1. a chamada (cód. 135)