زنجیرهسازی کارکردهای مجازی سرویس شبکه با لحاظ محدودیت منابع مدیریتی

مهندسی فناوری اطلاعات - شبکههای کامپیوتری

پرهام الوانى

بهار ۱۳۹۷

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دکتر بهادر بخشی

١

فهرست

- ◄ مقدمه
- ◄ چالشھا
- ◄ سابقهي كارها
- ◄ تعريف مساله
- ◄ چالشها و نوآوریهای مساله
 - ◄ معیار و نحوهی ارزیابی
 - ◄ مراجع

- ◄ عدم انعطافپذیری معماری فعلی شبکه
- ◄ در مجازیسازی کارکرد شبکه با استفاده از مجازیسازی منابع، می توان کارکردها را بر روی سرورهای استاندارد اجرا کرد و بهرهوری منابع و هزینههای انرژی را کاهش داد.
- ◄ زنجیره سازی کارکرد سرویس نیز امکان ایجاد زنجیرهای از کارکردها را به صورت پویا فراهم میکند.

شکل ۱: معماری سطح بالای مجازیسازی کارکردهای شبکه

۴

- ▼ NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
 - هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFM

- ◄ مديريت و هماهنگي
- ◄ مصرف بهینهی انرژی
 - ◄ تخصيص منابع
 - ۰ مسیریابی
 - ▼ پذیرش زنجیرههایکارکرد سرویس

۶

جدول ۱: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

	تخصیم NFM		اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد و لینک		برخط یا برون خط		محدودی ظرفیت پردازشی نمونه			U	منابع تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	کارکرد	برون خط	برخط	ندارد	دارد	CPU	BW	MEM	other	#
✓	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	_	[/]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[۲]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[٣]
_	✓	_	_	_	_	✓	_	_	✓	✓	_	_	_		NFM pacity	[۴]
	✓	✓	_	_	✓	✓	✓	✓	_	_	✓	✓	√	✓	_	پژوهش حاضر

- ◄ این مقاله به مانند کار پژوهشی حاضر تاخیر را در لینکهای مدیریتی در نظر میگیرد.
 - ◄ این مقاله فرض میکند زنجیرهها از پیش پذیرفته شدهاند.
 - ◄ هدف این مقاله جایگذاری VNFMها به صورت مستقل با هدف کاهش هزینههای عملیاتی می باشد.

M. Abu-Lebdeh, D. Naboulsi, R. Glitho, et al., "On the placement of VNF managers in large-scale and distributed NFV systems," *IEEE Transactions on Network and Service Management*, vol. 14, no. 4, pp. 875–889, Dec. 2017. DOI: 10.1109/tnsm.2017.2730199. [Online]. Available: https://doi.org/10.1109/tnsm.2017.2730199

تعريف مساله

پذیرفتن بیشترین تقاضای زنجیره کارکرد سرویس با در نظر گرفتن نیاز هر نمونه کارکرد مجازی شبکه به یک m VNFM.

- ◄ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها موجود است.
 - n تقاضای زنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم.
 هر تقاضا شامل نوع و تعداد نمونههای مجازی و پنهای باند لینکهای مجازی
 میباشد.
 - ▼ تعداد پردازندههایی که به هر نمونه تخصیص مییابد با توجه به ترافیک ورودی نمونه مشخص میشود.
 - ◄ محدوديت ظرفيت لينكها
 - ◄ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها

- ◄ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمع آوری راحتر خطاها،
 برای هر زنجیره یک VNFM تخصیص میدهیم.
 - ▼ VNFM ها میتوانند بین زنجیره به اشتراک گذاشته شوند.
 - ▶ هر نمونه از VNFMها می تواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
- ارزو کردد. VNFM برای ارتباط میان هر نمونه از VNFMها و VNFها پهنای باند مشخصی رزرو میگردد.
 - ◄ بر روی هر NFVI-PoP حداکثر یک نمونه VNFM مستقر میگردد.

چالشها و نوآوریهای مساله

- ▼ در نظر گرفتن نیازمندی هر نمونه کارکرد مجازی به یک VNFM
 - ▼ در نظر گرفتن نیازمندی تاخیر برای لینکهای مدیریتی
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی
 - ▼ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس

معیار و نحوهی ارزیابی

- ◄ مدلسازي مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
 - ▼ پیادهسازی راهحل مکاشفهای
- ◄ معیار مقایسه این راه حل نرخ پذیرش تقاضاهای زنجیرههای کارکرد سرویس میباشد.
 - ◄ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه
 - ◄ مقایسه با کارهای مرتبط که نیازمندیهای مدیریتی را مدنظر قرار ندادهاند

- V. Eramo, A. Tosti, and E. Miucci, "Server resource dimensioning and routing of service function chain in NFV network architectures," *Journal of Electrical and Computer Engineering*, vol. 2016, pp. 1–12, 2016. DOI: 10.1155/2016/7139852. [Online]. Available: https://doi.org/10.1155/2016/7139852.
- M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, "Distributed service function chaining," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 11, pp. 2479–2489, Nov. 2017. DOI: 10.1109/jsac.2017.2760178. [Online]. Available: https://doi.org/10.1109/jsac.2017.2760178.
- H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, "Near-optimal deployment of service chains by exploiting correlations between network functions," *IEEE Transactions on Cloud Computing*, pp. 1–1, 2017. DOI: 10.1109/tcc.2017.2780165. [Online]. Available: https://doi.org/10.1109/tcc.2017.2780165.
- M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, "On the placement of VNF managers in large-scale and distributed NFV systems," *IEEE Transactions on Network and Service Management*, vol. 14, no. 4, pp. 875–889, Dec. 2017. DOI: 10.1109/tnsm.2017.2730199. [Online]. Available: https://doi.org/10.1109/tnsm.2017.2730199.

فرمولبندي

پذیرش زنجیرههای کارکرد سرویس m VNFM و مدیریت آنها با استفاده از

متغیرهای تصمیمگیری

- x_h binary variable assuming the value 1 if the hth SFC request is accepted; otherwise its value is zero
- y_{wk} the number of VNF instances of type k that are used in server $w \in V_s^{PN}$
- z_{vw}^k binary variable assuming the value 1 if the VNF node $v \in \bigcup_{i=1}^T V_{i,F}^{SFC}$ is served by the VNF instance of type k in the server $w \in V_s^{PN}$

متغیرهای تصمیمگیری

- \bar{y}_w binary varibale assuming the value 1 if VNFM on server $w\in V_s^{PN}$ is used; otherwise its value is zero
- \bar{z}_{hw} binary variable assuming the value 1 if hth SFC is assigned to VNFM on server $w\in V_s^{PN}$

فرمولبندي

$$\max \sum_{h=1}^{T} x_h \tag{1}$$

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدوديت تعداد پردازندههای نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} c\bar{o}re \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (3)

VNF نوع k روی سرور w سرویس شود میبایست v ، VNF instance اگر v ، v instance نوع v روی سرور v فعال شود.

اشتراک گذاری VNFها پشتیبانی نمیگردد.

$$\sum_{v \in \cup_{i=1}^{T} V_{i,F}^{SFC}} z_{vw}^{k} \le y_{wk} \quad \forall w \in V_{s}^{PN}, \forall k \in [1, \dots, F]$$
 (4)

اگر تقاضای hام پذیرفته شده باشد میبایست تمام $VNF\ node$ های آن سرویس شده باشند. یک $VNF\ c$ مداکثر یکبار سرویس داده شود.

$$x_h = \sum_{k=1}^{F} \sum_{w \in V_s^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (5)

اگر تقاضای hام پذیرفته شده باشد میبایست توسط یک VNFM سرویس شده باشد.

$$x_h = \sum_{w \in V_s^{PN}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (6)

$$\bar{z}_{hw} \le \bar{y}_w \quad \forall w \in V_s^{PN}, \forall h \in [1, \dots, T]$$
 (7)

محدوديت ظرفيت سرويسدهي VNFM

$$\sum_{i=1}^{I} z_{iw} \le capacity \quad \forall w \in V_s^{PN}$$
 (8)

متغيرهاي تصميم گيري

 $\tau_{ij}^{(u,v)}$ binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

 $\bar{\tau}_{ij}^{v}$ binary variable assuming the value 1 if the management of VNF node v is routed on the physical network link (i,j)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1, \dots, T]$$
(9)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{\nu} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{\nu} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, ..., T]$$
(10)

محدوديت ظرفيت لينكها

$$\sum_{v \in \cup_{i=1}^{T} V_{i,F}^{SFC}} \bar{\tau}_{ij}^{v} * bandwidth + \sum_{(u,v) \in \cup_{i=1}^{T} E_{i}^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\tag{11}$$