

Na czym polega "akcja laserowa"?

podejście Einsteina

Rodzaje laserów

- ciała stałego (rubinowe, Nd-YAG, Ti-Sp, Er...)
- gazowe (He-Ne, Co₂, Ar, Kr,...)
- półprzewodnikowe (te lubimy najbardziej bo są małe...)
- chemiczne
- FEL (Free Electron Laser)
-

Warunki akcji laserowej

$$\sqrt{r_1 r_2} \exp((g - \alpha_w) L) \exp\left(j \frac{2\pi n_R \cdot 2L}{\lambda_0}\right) = 1 + j0$$

I. Warunek amplitudowy

$$\sqrt{r_1 r_2} \exp((g - \alpha_w)L) = 1 \implies g_{th} = \alpha_w - \frac{1}{2L} \ln(r_1 r_2)$$

Prąd progowy lasera

laser QW (quantum well)

Warunki akcji laserowej

$$\sqrt{r_1 r_2} \exp((g - \alpha_w)L) \exp\left(j \frac{2\pi n_R \cdot 2L}{\lambda_0}\right) = 1 + j0$$

II. Warunek fazowy

$$\frac{2\pi \cdot n_R \cdot 2L}{\lambda_0} = 2\pi \cdot m \implies \lambda_0 = \frac{2L \cdot n_R}{m}$$

$$L = m \frac{1}{2} \frac{\lambda_0}{n_R}$$

Odległość między modami

