Statistical Methods Illustration - Classification Methods

Daniel Shang

```
# Load the necessary packages
library(tidylog)
##
## Attaching package: 'tidylog'
## The following object is masked from 'package:stats':
##
       filter
library(e1071)
## Warning: package 'e1071' was built under R version 4.0.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
library(party)
## Warning: package 'party' was built under R version 4.0.3
## Loading required package: grid
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 4.0.3
## Loading required package: modeltools
## Warning: package 'modeltools' was built under R version 4.0.3
## Loading required package: stats4
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.3
## Loading required package: zoo
```

```
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.0.3
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.0.3
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(caret)
## Loading required package: lattice
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.3
library(car)
## Warning: package 'car' was built under R version 4.0.3
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:modeltools':
##
##
       Predict
```

```
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(naivebayes)
## Warning: package 'naivebayes' was built under R version 4.0.3
## naivebayes 0.9.7 loaded
library(psych)
## Warning: package 'psych' was built under R version 4.0.3
##
## Attaching package: 'psych'
## The following object is masked from 'package:car':
##
       logit
## The following object is masked from 'package:randomForest':
##
##
       outlier
## The following objects are masked from 'package:ggplot2':
##
##
       %+%, alpha
library(readxl)
# Load the data, remove missing values (if any), and convert columns to proper formats
## based on the documentation of the dataset
data = read.csv('C:/Users/34527/Desktop/heart.csv', )
data_clean = na.omit(mutate_all(data,
                      ~ifelse(. %in% c("N/A", "null", "", NULL), NA, .)))
## mutate_all: no changes
```

```
colnames(data_clean)[1] = 'age'
data_clean$sex = as.factor(data_clean$sex)
data_clean$cp = as.factor(data_clean$cp)
data_clean$fbs = as.factor(data_clean$fbs)
data_clean$restecg = as.factor(data_clean$restecg)
data_clean$exang = as.factor(data_clean$exang)
data_clean$slope = as.factor(data_clean$slope)
data clean$ca = as.factor(data clean$ca)
data_clean$thal = as.factor(data_clean$thal)
data_clean$target = as.factor(data_clean$target)
# Set up a train/test split for later model evaluation
set.seed(111)
index_train_test = sample(x = 2, size = nrow(data_clean), replace = TRUE, prob = c(0.8, 0.2))
train_data = data_clean[index_train_test == 1, ]
test_data = data_clean[index_train_test == 2, ]
                             - Support Vector Machine
# Build a support vector machine (SVM) to predict the 'target' and summarize the model
svm_model = svm(target ~ ., data = train_data, kernel = 'linear')
summary(svm model)
##
## Call:
## svm(formula = target ~ ., data = train data, kernel = "linear")
## Parameters:
     SVM-Type: C-classification
## SVM-Kernel: linear
          cost: 1
##
##
## Number of Support Vectors: 95
##
## (49 46)
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Make predictions using the model and compare the outcome with the 'target' values
## in the dataset. Summarize the prediction accuracy and related statistics using
## a confusion matrix
set.seed(123)
prediction_svm1 = predict(svm_model, newdata = test_data)
confusionMatrix(prediction_svm1, test_data$target)
## Confusion Matrix and Statistics
##
```

```
## Prediction 0 1
            0 29 3
##
##
            1 4 29
##
##
                  Accuracy : 0.8923
##
                    95% CI: (0.7906, 0.9556)
       No Information Rate: 0.5077
##
##
       P-Value [Acc > NIR] : 4.663e-11
##
##
                     Kappa: 0.7847
##
##
   Mcnemar's Test P-Value : 1
##
##
               Sensitivity: 0.8788
##
               Specificity: 0.9062
##
            Pos Pred Value : 0.9062
            Neg Pred Value: 0.8788
##
                Prevalence: 0.5077
##
            Detection Rate: 0.4462
##
##
      Detection Prevalence: 0.4923
##
         Balanced Accuracy: 0.8925
##
          'Positive' Class: 0
##
##
# Use the 'tune' formula to figure out the best parameters for the SVM model to
## boost the model performance. The darker the color is, the better the model will
## perform, as indicated by the 'cost' y-axis label.
set.seed(123)
tune_svm = tune(svm, target ~ ., data = train_data, range = list(epsilon = seq(0, 2, 0.1), cost = 2^(2:
plot(tune_svm)
```

Reference

##

Performance of `svm'

Summarize the tuned model summary(tune_svm)

```
##
## Parameter tuning of 'svm':
  - sampling method: 10-fold cross validation
##
##
   - best parameters:
##
    epsilon cost
##
##
   - best performance: 0.2101449
##
##
## - Detailed performance results:
      epsilon cost
##
                        error dispersion
## 1
          0.0
                 4 0.2101449 0.06250510
## 2
                  4 0.2101449 0.06250510
          0.1
## 3
          0.2
                  4 0.2101449 0.06250510
## 4
          0.3
                  4 0.2101449 0.06250510
## 5
          0.4
                  4 0.2101449 0.06250510
## 6
          0.5
                 4 0.2101449 0.06250510
## 7
          0.6
                 4 0.2101449 0.06250510
## 8
          0.7
                 4 0.2101449 0.06250510
## 9
          0.8
                 4 0.2101449 0.06250510
          0.9
                 4 0.2101449 0.06250510
## 10
```

```
## 11
          1.0
                  4 0.2101449 0.06250510
## 12
                  4 0.2101449 0.06250510
          1.1
## 13
          1.2
                  4 0.2101449 0.06250510
##
  14
          1.3
                  4 0.2101449 0.06250510
##
  15
          1.4
                  4 0.2101449 0.06250510
## 16
                  4 0.2101449 0.06250510
          1.5
                  4 0.2101449 0.06250510
## 17
          1.6
## 18
          1.7
                  4 0.2101449 0.06250510
##
  19
          1.8
                  4 0.2101449 0.06250510
##
  20
          1.9
                  4 0.2101449 0.06250510
##
  21
          2.0
                  4 0.2101449 0.06250510
## 22
          0.0
                  8 0.2141304 0.06293997
## 23
          0.1
                  8 0.2141304 0.06293997
                  8 0.2141304 0.06293997
## 24
          0.2
## 25
          0.3
                  8 0.2141304 0.06293997
## 26
          0.4
                 8 0.2141304 0.06293997
##
          0.5
                  8 0.2141304 0.06293997
  27
##
   28
          0.6
                  8 0.2141304 0.06293997
## 29
          0.7
                  8 0.2141304 0.06293997
## 30
          0.8
                  8 0.2141304 0.06293997
## 31
          0.9
                  8 0.2141304 0.06293997
## 32
          1.0
                  8 0.2141304 0.06293997
                  8 0.2141304 0.06293997
## 33
          1.1
                  8 0.2141304 0.06293997
##
   34
          1.2
## 35
          1.3
                  8 0.2141304 0.06293997
   36
          1.4
                  8 0.2141304 0.06293997
## 37
          1.5
                  8 0.2141304 0.06293997
##
   38
          1.6
                  8 0.2141304 0.06293997
## 39
          1.7
                  8 0.2141304 0.06293997
## 40
          1.8
                  8 0.2141304 0.06293997
## 41
          1.9
                 8 0.2141304 0.06293997
## 42
          2.0
                  8 0.2141304 0.06293997
          0.0
## 43
                 16 0.2309783 0.05255532
          0.1
                 16 0.2309783 0.05255532
## 44
## 45
          0.2
                 16 0.2309783 0.05255532
## 46
                16 0.2309783 0.05255532
          0.3
## 47
          0.4
                 16 0.2309783 0.05255532
## 48
          0.5
                 16 0.2309783 0.05255532
## 49
          0.6
                 16 0.2309783 0.05255532
          0.7
                 16 0.2309783 0.05255532
## 50
          0.8
                 16 0.2309783 0.05255532
  51
## 52
          0.9
                 16 0.2309783 0.05255532
## 53
          1.0
                 16 0.2309783 0.05255532
## 54
                 16 0.2309783 0.05255532
          1.1
## 55
          1.2
                 16 0.2309783 0.05255532
## 56
          1.3
                 16 0.2309783 0.05255532
## 57
          1.4
                 16 0.2309783 0.05255532
## 58
          1.5
                 16 0.2309783 0.05255532
## 59
          1.6
                 16 0.2309783 0.05255532
## 60
          1.7
                 16 0.2309783 0.05255532
## 61
                 16 0.2309783 0.05255532
          1.8
## 62
          1.9
                 16 0.2309783 0.05255532
## 63
          2.0
                 16 0.2309783 0.05255532
## 64
          0.0
                 32 0.2516304 0.07470590
```

```
## 65
          0.1
                32 0.2516304 0.07470590
## 66
          0.2
               32 0.2516304 0.07470590
## 67
          0.3
               32 0.2516304 0.07470590
## 68
          0.4
               32 0.2516304 0.07470590
## 69
          0.5
                32 0.2516304 0.07470590
               32 0.2516304 0.07470590
## 70
          0.6
          0.7
                32 0.2516304 0.07470590
## 71
## 72
          0.8
                32 0.2516304 0.07470590
## 73
          0.9
                32 0.2516304 0.07470590
## 74
          1.0
               32 0.2516304 0.07470590
## 75
          1.1
                32 0.2516304 0.07470590
## 76
          1.2
                32 0.2516304 0.07470590
## 77
          1.3
               32 0.2516304 0.07470590
## 78
          1.4
                32 0.2516304 0.07470590
## 79
          1.5
                32 0.2516304 0.07470590
## 80
          1.6
                32 0.2516304 0.07470590
                32 0.2516304 0.07470590
## 81
          1.7
## 82
          1.8
               32 0.2516304 0.07470590
## 83
          1.9
                32 0.2516304 0.07470590
## 84
          2.0
                32 0.2516304 0.07470590
# Use the best model tuned by the function and set it as our final model
set.seed(123)
final_svm = tune_svm$best.model
summary(final_svm)
##
## best.tune(method = svm, train.x = target ~ ., data = train_data,
       ranges = list(epsilon = seq(0, 2, 0.1), cost = 2^{(2:5)}
##
##
## Parameters:
##
      SVM-Type: C-classification
##
   SVM-Kernel: radial
##
          cost: 4
##
## Number of Support Vectors: 120
##
   (62 58)
##
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Use the tuned model to make prediction and compare the accuracy with the previous
## model. Since the prediction accuracy increased from 0.8779 to 0.9241, we can
## conclude that the 'tune' function did a great job identifying the best model
prediction_svm2 = predict(final_svm, newdata = test_data)
confusionMatrix(prediction_svm2, test_data$target)
```

Confusion Matrix and Statistics

```
##
             Reference
##
## Prediction 0 1
            0 29 5
##
            1 4 27
##
##
##
                  Accuracy : 0.8615
                    95% CI : (0.7534, 0.9347)
##
       No Information Rate: 0.5077
##
##
       P-Value [Acc > NIR] : 2.107e-09
##
##
                     Kappa: 0.7229
##
   Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.8788
##
               Specificity: 0.8438
##
            Pos Pred Value: 0.8529
##
            Neg Pred Value: 0.8710
##
                Prevalence: 0.5077
##
            Detection Rate: 0.4462
##
      Detection Prevalence: 0.5231
##
         Balanced Accuracy: 0.8613
##
##
          'Positive' Class: 0
##
                             - Classification Tree
# Build a classification tree model to predict the target. I used a tree control
## parameter 'mincriterion.' The value of this parameter will be considered as
## 1 - p-value that must be exceeded in order to implement a node split.
tree_model1 = ctree(target~., data = train_data, controls = ctree_control(mincriterion = 0.95))
summary(tree_model1)
##
       Length
                   Class
                               Mode
##
            1 BinaryTree
                                 S4
tree_model1
##
     Conditional inference tree with 6 terminal nodes
##
##
## Response: target
## Inputs: age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal
## Number of observations: 238
##
## 1) cp == \{1, 2, 3\}; criterion = 1, statistic = 65.752
     2) oldpeak <= 1.6; criterion = 0.995, statistic = 19.873
##
##
       3) ca == \{0, 1, 4\}; criterion = 0.986, statistic = 18.274
##
         4)* weights = 104
##
       3) ca == \{2, 3\}
         5)* weights = 7
##
```

```
##
     2) oldpeak > 1.6
##
       6)* weights = 20
## 1) cp == \{0\}
     7) thal == \{0, 1, 3\}; criterion = 1, statistic = 26.741
##
##
       8)* weights = 65
##
     7) thal == \{2\}
##
       9) ca == \{0, 2\}; criterion = 0.996, statistic = 18.67
##
         10)* weights = 31
##
       9) ca == \{1, 3\}
##
         11)* weights = 11
```

```
# Plot the tree model built
plot(tree_model1, type = 'simple')
```



```
# Make prediction using the tree model and build a confusion matrix to evaluate
## its prediction accuracy
prediction_tree1 = predict(tree_model1, newdata = test_data)
confusionMatrix(prediction_tree1, test_data$target)
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 24 10
## 1 9 22
```

```
##
##
                  Accuracy : 0.7077
##
                    95% CI: (0.5817, 0.814)
##
       No Information Rate : 0.5077
       P-Value [Acc > NIR] : 0.0008348
##
##
##
                     Kappa : 0.415
##
##
    Mcnemar's Test P-Value: 1.0000000
##
##
               Sensitivity: 0.7273
##
               Specificity: 0.6875
##
            Pos Pred Value : 0.7059
            Neg Pred Value: 0.7097
##
##
                Prevalence: 0.5077
            Detection Rate: 0.3692
##
##
      Detection Prevalence : 0.5231
         Balanced Accuracy: 0.7074
##
##
##
          'Positive' Class : 0
##
# Build another tree model using a different package
tree_model2 = rpart(target ~ ., data = train_data)
# Plot the tree at a certain level of detail
rpart.plot(tree_model2, extra = 1)
```



```
# Make prediction using the second tree model and build a confusion matrix to evaluate
## the prediction accuracy
prediction_tree2 = predict(tree_model2, newdata = test_data, type = 'class')
confusionMatrix(prediction_tree2, test_data$target)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 24 8
            1 9 24
##
##
##
                  Accuracy: 0.7385
##
                    95% CI : (0.6146, 0.8397)
##
       No Information Rate: 0.5077
       P-Value [Acc > NIR] : 0.0001234
##
##
##
                     Kappa : 0.477
##
    Mcnemar's Test P-Value : 1.0000000
##
##
##
               Sensitivity: 0.7273
##
               Specificity: 0.7500
            Pos Pred Value : 0.7500
##
##
            Neg Pred Value: 0.7273
                Prevalence: 0.5077
##
```

```
##
            Detection Rate: 0.3692
##
     Detection Prevalence: 0.4923
        Balanced Accuracy: 0.7386
##
##
##
          'Positive' Class: 0
##
                                Random Forest -
# Build a random forest model to predict the 'target' variable in the dataset. I
## started with a huge number of trees (ntree) so that, based on the plot later,
## we can easily identify the number of trees that leads to least prediction error
set.seed(123)
rf_model1 = randomForest(target ~ ., data = train_data, ntree = 2000)
print(rf_model1)
##
## Call:
## randomForest(formula = target ~ ., data = train_data, ntree = 2000)
                  Type of random forest: classification
                        Number of trees: 2000
##
## No. of variables tried at each split: 3
##
##
           OOB estimate of error rate: 18.07%
## Confusion matrix:
     0
        1 class.error
## 0 80 25
             0.2380952
## 1 18 115
              0.1353383
# Use the random forest model to make prediction and build a confusion matrix to
## evaluate the prediction accuracy
prediction_rf1 = predict(rf_model1, newdata = test_data)
confusionMatrix(prediction_rf1, test_data$target)
## Confusion Matrix and Statistics
##
            Reference
## Prediction 0 1
           0 30 4
##
##
            1 3 28
##
##
                  Accuracy : 0.8923
                    95% CI: (0.7906, 0.9556)
##
      No Information Rate: 0.5077
##
##
      P-Value [Acc > NIR] : 4.663e-11
##
##
                     Kappa: 0.7845
##
  Mcnemar's Test P-Value : 1
##
##
##
              Sensitivity: 0.9091
##
               Specificity: 0.8750
           Pos Pred Value: 0.8824
##
```

```
## Neg Pred Value : 0.9032
## Prevalence : 0.5077
## Detection Rate : 0.4615
## Detection Prevalence : 0.5231
## Balanced Accuracy : 0.8920
##
## 'Positive' Class : 0
##
```

Plot the relationship between the number of trees and the prediction error. We ## can see that the error reaches the lowest point when the number of trees is ## around 750. Therefore, I will use this number to build a new model later to see ## if it does a great job predicting plot(rf_model1)

rf model1


```
# Use the 'tuneRF' function to figure out the 'mtry' parameter that leads to least
## prediction error. 'mtry' is the number of variables randomly sampled as candidates
## at each split of node. According to the plot, an 'mtry' of three leads to the
## random forest model the predicts most accurately
set.seed(123)
tune_rf1 = tuneRF(train_data[, -14], train_data[, 14], stepFactor = 1.5, plot = TRUE, ntreeTry = 750, to
```

```
## mtry = 3  00B error = 18.49%
## Searching left ...
## mtry = 2  00B error = 18.91%
```



```
# Build a new model using the parameters we just figured out. We can see that the
## Out Of Bag (OBB) estimate of error rate decreases from 16.17% to 15.84%, meaning
## that the functions did a great job identifying the best parameters
set.seed(123)
rf_model2 = randomForest(target ~ ., data = train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = TRUE, proximately train_data, ntree = 750, mtry = 3, importance = 150, importance 
print(rf_model2)
##
## Call:
              randomForest(formula = target ~ ., data = train_data, ntree = 750, mtry = 3, importance = TRUE
##
                                                                    Type of random forest: classification
                                                                                           Number of trees: 750
##
\#\# No. of variables tried at each split: 3
##
                                         OOB estimate of error rate: 18.49%
## Confusion matrix:
                      0
                                  1 class.error
## 0 79 26
                                                     0.2476190
## 1 18 115
                                                     0.1353383
```

```
# Build a confusion matrix for more detailed statistics about the model performance
prediction_rf2 = predict(rf_model2, newdata = test_data)
confusionMatrix(prediction_rf2, test_data$target)
```

```
## Confusion Matrix and Statistics
##
             Reference
## Prediction 0 1
##
            0 31 4
##
            1 2 28
##
##
                  Accuracy: 0.9077
                    95% CI : (0.8098, 0.9654)
##
##
       No Information Rate : 0.5077
       P-Value [Acc > NIR] : 5.586e-12
##
##
##
                     Kappa : 0.8152
##
##
    Mcnemar's Test P-Value: 0.6831
##
##
               Sensitivity: 0.9394
               Specificity: 0.8750
##
##
            Pos Pred Value: 0.8857
##
            Neg Pred Value: 0.9333
##
                Prevalence: 0.5077
##
            Detection Rate: 0.4769
      Detection Prevalence: 0.5385
##
##
         Balanced Accuracy: 0.9072
##
##
          'Positive' Class : 0
##
```

```
# Plot the distribution of tree size to better understand the model
hist(treesize(rf_model2), col = 'chartreuse1')
```

Histogram of treesize(rf_model2)


```
# Plot all the variables in the dataset and sort them based on their relative
## importance when making the prediction. The first plot gives information about
## how much prediction accuracy will decrease if we remove the variable. For example,
## if we remove 'ca,' the prediction accuracy will decrease by 30%. The second plot
## shows how pure the nodes are at the end of the tree, if the variable is removed.
varImpPlot(rf_model2, main = 'Variable importance (high to low)')
```

Variable importance (high to low)

To know how many times each column is used in the entire random forest, we can
use the 'varUsed' function
varUsed(rf_model2)

[1] 3678 1165 2346 3420 3586 611 1187 3873 1064 3399 1411 2116 1666

Partial Dependence on age

- K-Nearest Neighbor (KNN) –

```
# Build a KNN model to predict the 'target'. I started by defining the training
## controls. Here, I will evaluate the KNN model using repeated 10-fold cross
## validation repeated for three times.
trCrl1 = trainControl(method = 'repeatedcv', number = 10, repeats = 5)
```

Here, we summarize the model. The result shows that, when k equals 57, the model ## has the highest prediction accuracy. Therefore, if we were to judge the model ## by its prediction accuracy, we get the best model when k equals to 57.

```
## k-Nearest Neighbors
##
## 238 samples
```

```
13 predictor
##
     2 classes: '0', '1'
##
## Pre-processing: centered (22), scaled (22)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
   Summary of sample sizes: 214, 214, 214, 215, 213, 215, ...
   Resampling results across tuning parameters:
##
##
     k
          Accuracy
                      Kappa
##
       5
         0.7841580
                      0.562981114
##
          0.8238188
                      0.641790464
##
         0.8254159
                      0.645005378
##
         0.8254159
                      0.644930992
      11
##
          0.8262522
                      0.647451481
##
          0.8286159
                      0.651469667
      15
##
      17
          0.8276768
                      0.649410796
##
      19
          0.8335188
                      0.660993153
##
          0.8336942
                      0.661566143
##
          0.8353638
                      0.665085408
##
          0.8336246
                      0.661614973
##
          0.8327913
                      0.660115738
##
          0.8336580
                      0.662125729
##
          0.8387029
                      0.672004181
      31
##
          0.8380420
                      0.670245143
##
          0.8388754
                      0.671625625
##
          0.8381478
                      0.669711389
##
      39
          0.8398870
                      0.672744217
##
          0.8389536
                      0.670226663
##
         0.8405174
                      0.673177674
##
      45
          0.8387783
                      0.668593700
          0.8395783
##
      47
                      0.669984230
##
      49
          0.8313754
                      0.653150418
##
          0.8322449
                      0.655019275
##
          0.8364870
      53
                      0.663586244
##
          0.8380507
                      0.666534996
##
          0.8413536
      57
                      0.673185172
##
          0.8412145
                      0.672501357
##
          0.8403449
                      0.669951063
      61
##
          0.8403783
                      0.670405329
##
          0.8388145
                      0.667054945
##
          0.8337362
      67
                      0.656236811
##
      69
          0.8362449
                      0.661295058
##
          0.8387449
      71
                      0.666572805
##
          0.8387449
                      0.666430792
##
          0.8363812
                      0.661247492
      77
##
          0.8337754
                      0.655324557
##
      79
          0.8321058
                      0.651262718
##
          0.8310971
                      0.648947998
##
          0.8328029
                      0.651978988
##
      85
          0.8328362
                      0.652072070
##
      87
          0.8328362
                      0.652300325
##
          0.8311696
                      0.648662858
##
      91
          0.8303333
                      0.646826961
##
      93 0.8243580 0.633226628
```

```
##
          0.8226188
                      0.629575182
##
      97
          0.8219246
                      0.628024262
##
          0.8160130
                      0.615396474
##
          0.8194551
                      0.622762950
     101
##
     103
          0.8160493
                      0.615353243
##
     105
          0.8160826
                      0.615190963
##
     107
          0.8193493
                      0.621921074
##
     109
          0.8143130
                      0.610752711
##
     111
          0.8108710
                      0.602598153
##
     113
          0.8099652
                      0.600286490
##
     115
          0.8075014
                      0.594830925
##
          0.8066986
     117
                      0.593031288
##
     119
          0.8033623
                      0.585777498
##
     121
          0.8025261
                      0.583287862
##
     123
          0.7975203
                      0.572160327
##
     125
          0.7933145
                      0.563137689
##
     127
          0.7932812
                      0.562836731
##
     129
          0.7907420
                      0.557274126
          0.7874362
##
     131
                      0.549800447
##
     133
          0.7806609
                      0.534464094
##
     135
          0.7696464
                      0.510226951
##
     137
          0.7619290
                      0.492395437
##
                      0.482781327
     139
          0.7576870
##
                      0.474263361
     141
          0.7545174
##
     143
          0.7578928
                      0.480523673
##
     145
          0.7536145
                      0.470044369
##
     147
          0.7452420
                      0.450230819
##
     149
          0.7403391
                      0.438753681
##
                      0.425152332
     151
          0.7345362
##
     153
          0.7238304
                      0.400410188
##
     155
          0.7135768
                      0.376289224
##
     157
          0.7051319
                      0.356686692
##
     159
          0.6909841
                      0.322001547
##
     161
          0.6750000
                      0.284400667
##
     163
          0.6600855
                      0.248535848
##
     165
          0.6440290
                      0.210305717
##
     167
          0.6289087
                      0.174375843
##
     169
          0.6130275
                      0.134540074
##
     171
          0.5910290
                      0.080125606
##
     173
          0.5826565
                      0.059812423
##
          0.5776536
     175
                      0.047490311
##
     177
          0.5725087
                      0.034455960
##
     179
          0.5631188
                      0.010731698
##
     181
          0.5605826
                      0.004249969
##
     183
          0.5589159
                      0.00000000
##
     185
          0.5589159
                      0.00000000
##
     187
          0.5589159
                      0.00000000
##
     189
          0.5589159
                      0.00000000
##
     191
          0.5589159
                      0.00000000
##
     193
          0.5589159
                      0.00000000
##
     195
          0.5589159
                      0.00000000
##
     197
          0.5589159
                      0.00000000
##
     199
          0.5589159
                      0.00000000
##
     201
          0.5589159
                      0.00000000
```

```
## 203 \ 0.5589159 \ 0.000000000 ## ## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was k = 57.
```

We plot the relationship between k and the model's prediction accuracy. We can ## see that, when k equals to 57, the model performs the best. plot(knn1)

To better understand the model in terms of which field plays the most important role,
we use the varImp function to sort the importance of different fields in a
descending order.
varImp(knn1)

```
## ROC curve variable importance
##
##
            Importance
## thalach
                 100.00
                  96.01
## cp
                  88.17
## oldpeak
## exang
                  80.28
## ca
                  79.05
## thal
                  77.59
## slope
                  67.04
                  53.90
## sex
```

```
## age
                 52.49
                 26.93
## restecg
## trestbps
                 24.56
## chol
                 12.35
## fbs
                  0.00
# We predict the target using the model and build a confusion matrix. The result
## shows a prediction accuracy of 84.62%.
confusionMatrix(predict(knn1, newdata = test_data), test_data$target)
## Confusion Matrix and Statistics
##
            Reference
##
## Prediction 0 1
           0 25 2
##
            1 8 30
##
##
                  Accuracy : 0.8462
##
##
                    95% CI: (0.7352, 0.9237)
##
       No Information Rate: 0.5077
##
       P-Value [Acc > NIR] : 1.173e-08
##
##
                     Kappa: 0.6931
##
   Mcnemar's Test P-Value: 0.1138
##
##
##
               Sensitivity: 0.7576
##
               Specificity: 0.9375
##
            Pos Pred Value: 0.9259
##
            Neg Pred Value: 0.7895
                Prevalence: 0.5077
##
            Detection Rate: 0.3846
##
##
     Detection Prevalence: 0.4154
##
         Balanced Accuracy: 0.8475
##
##
          'Positive' Class: 0
##
# Other than accuracy, ROC is another common way to evaluate the predictive performance
## of models. I will use ROC to evaluate our KNN model to see if a different K is
## chosen.
set.seed(123)
train_data1 = train_data
test_data1 = test_data
train_data1$target = as.integer(train_data1$target)
test_data1$target = as.integer(test_data1$target)
train_data1$target[train_data1$target == 1] = 'No'
train_data1$target[train_data1$target == 2] = 'Yes'
test_data1$target[test_data1$target == 1] = 'No'
test_data1$target[test_data1$target == 2] = 'Yes'
trCrl2 = trainControl(method = 'repeatedcv', number = 10, repeats = 5,
```

The larger the area under the ROC curve, the better the model performs. Therefore, ## we can see that when K is 97, the model performs the best. knn2

```
## k-Nearest Neighbors
##
## 238 samples
   13 predictor
##
    2 classes: 'No', 'Yes'
##
## Pre-processing: centered (22), scaled (22)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
  Summary of sample sizes: 214, 214, 214, 215, 213, 215, ...
  Resampling results across tuning parameters:
##
##
     k
          ROC
                     Sens
                                Spec
##
       5 0.8547987
                    0.7576364 0.8054945
##
       7 0.8756908
                     0.7849091 0.8552747
##
        0.8853786
                     0.7827273
                                0.8612088
##
                     0.7807273 0.8626374
      11 0.8844855
##
      13 0.8859431
                    0.7885455
                               0.8567033
##
      15
         0.8894635
                     0.7809091
                                0.8671429
##
      17
         0.8925305
                     0.7792727
                                0.8668132
##
         0.8895285
                     0.7812727
      19
                                0.8756044
##
         0.8854131
                     0.7852727
                                0.8728571
##
      23
         0.8817862
                     0.7872727
                                0.8742857
##
         0.8812537
                     0.7852727
      25
                                0.8727473
##
      27
         0.8822068
                     0.7834545
                               0.8727473
                     0.7872727
##
      29
         0.8821663
                                0.8713187
##
         0.8843541
                     0.7894545
      31
                                0.8787912
##
      33
         0.8847827
                     0.7854545
                                0.8805495
##
         0.8879525
      35
                     0.7854545
                                0.8820879
##
      37
         0.8890255
                     0.7778182
                               0.8867033
##
      39 0.8895005
                     0.7778182
                                0.8897802
##
      41 0.8914680
                     0.7701818
                                0.8941758
##
      43 0.8916134
                     0.7700000
                                0.8970330
##
      45 0.8914481
                     0.7583636
                                0.9029670
##
      47
         0.8923946
                     0.7583636
                                0.9043956
##
                                0.900000
      49 0.8922752 0.7454545
##
      51 0.8936623
                     0.7454545
                                0.9015385
##
      53 0.8926938
                     0.7474545
                                0.9089011
##
      55
         0.8950045
                     0.7490909
                                0.9089011
##
      57
                     0.7510909 0.9118681
         0.8985365
##
      59 0.9006668
                     0.7452727
                                0.9174725
##
      61 0.9009476
                     0.7392727
                                0.9204396
##
      63 0.9016269
                     0.7414545
                                0.9190110
##
      65 0.9002208
                     0.7360000
                                0.9204396
##
      67 0.9016344
                    0.7263636 0.9190110
```

```
##
         0.9011608 0.7281818 0.9221978
##
      71
         0.9018212
                     0.7320000 0.9236264
##
          0.9029051
                     0.7301818
                                 0.9250549
##
          0.9038222
                     0.7227273
      75
                                 0.9267033
##
      77
          0.9026878
                     0.7149091
                                 0.9281319
##
         0.9025959
                     0.7052727
                                 0.9310989
      79
                     0.7050909
##
      81
          0.9028971
                                 0.9309890
##
      83
          0.9032912
                     0.7014545
                                 0.9370330
##
      85
          0.9040879
                     0.7014545
                                 0.9371429
##
      87
          0.9023821
                     0.7034545
                                 0.9356044
##
      89
         0.9029825
                     0.6978182 0.9356044
         0.9034845
##
                     0.6976364
      91
                                 0.9340659
##
         0.9032822
                     0.6803636 0.9370330
      93
##
          0.9042802
                     0.6801818 0.9370330
##
          0.9050420
                     0.6767273
      97
                                 0.9385714
##
      99
          0.9044890
                     0.6649091
                                 0.9371429
##
     101
         0.9039960
                     0.6687273
                                 0.9372527
##
     103 0.9030904
                     0.6612727
                                 0.9386813
                     0.6592727
##
     105 0.9020315
                                 0.9403297
     107
##
         0.9013157
                     0.6629091
                                 0.9447253
##
     109
         0.9007897
                     0.6478182 0.9462637
##
                     0.6400000
                                 0.9478022
     111
          0.8981903
##
                     0.6320000
          0.8982937
                                 0.9507692
     113
                     0.6267273
##
     115
          0.8971004
                                 0.9521978
##
     117
         0.8979261
                     0.6229091
                                0.9521978
##
     119 0.8949710
                     0.6172727
                                 0.9507692
##
     121 0.8958232
                     0.6096364
                                 0.9552747
                     0.5983636
##
     123
         0.8960230
                                 0.9552747
##
                     0.5889091
     125
         0.8946768
                                0.9552747
##
     127
          0.8917268
                     0.5869091
                                 0.9567033
##
     129
          0.8912757
                     0.5810909
                                 0.9567033
##
     131
         0.8912632
                     0.5736364
                                 0.9567033
##
     133
         0.8911004
                     0.5567273
                                 0.9581319
##
     135
         0.8902393
                     0.5338182
                                 0.9581319
##
     137
          0.8887912
                     0.5163636
                                 0.9581319
##
     139
         0.8911613
                     0.5010909
                                 0.9595604
##
     141
         0.8946738
                     0.4880000
                                 0.9656044
##
         0.8962318
                     0.4840000
                                 0.9761538
     143
##
          0.8944401
                     0.4685455
                                 0.9791209
     145
##
     147 0.8934980
                     0.4440000
                                 0.9850549
##
                     0.4309091
     149 0.8933317
                                 0.9851648
##
     151 0.8903247
                     0.4140000
                                 0.9880220
##
     153
         0.8898906
                     0.3896364
                                 0.9880220
##
                     0.3643636
                                 0.9895604
     155
         0.8878352
                     0.3470909
##
     157
          0.8832902
                                 0.9895604
##
                     0.3074545
                                 0.9953846
     159
          0.8816489
##
     161
          0.8790554
                     0.2710909
                                 0.9954945
##
          0.8781314
                     0.2336364
                                 0.9969231
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 97.
```

The plot also shows that a K equals to 97 results in the greatest area under ROC. plot(knn2)

The confusion matrix shows that the prediction accuracy is 80%. In this case, ROC
does a worse job figuring out the model with the strongest predictive power than
the accuracy.
confusionMatrix(predict(knn2, newdata = test_data1), as.factor(test_data1\$target))

```
##
  Confusion Matrix and Statistics
##
##
             Reference
##
  Prediction No Yes
##
          No 22
          Yes 11 30
##
##
##
                  Accuracy: 0.8
                    95% CI: (0.6823, 0.889)
##
       No Information Rate: 0.5077
##
##
       P-Value [Acc > NIR] : 1.067e-06
##
##
                     Kappa : 0.6016
##
##
    Mcnemar's Test P-Value: 0.0265
##
               Sensitivity: 0.6667
##
               Specificity: 0.9375
##
##
            Pos Pred Value: 0.9167
##
            Neg Pred Value: 0.7317
```

```
##
                Prevalence: 0.5077
##
           Detection Rate: 0.3385
##
      Detection Prevalence: 0.3692
##
         Balanced Accuracy: 0.8021
##
          'Positive' Class : No
##
##
                                Naive Bayes
# Load the data and print the summary and structure of the dataset
data_n = read_xlsx('C:/Users/34527/Desktop/Admission.xlsx')
summary(data_n)
##
        admit
                          gre
                                          gpa
                                                          ses
                           :220.0
##
  Min.
          :0.0000
                                            :2.260
                                                            :1.000
                     Min.
                                     Min.
                                                     Min.
   1st Qu.:0.0000
                     1st Qu.:520.0
                                     1st Qu.:3.130
                                                     1st Qu.:1.000
## Median :0.0000
                     Median :580.0
                                     Median :3.395
                                                     Median :2.000
   Mean
          :0.3175
                     Mean
                            :587.7
                                     Mean
                                            :3.390
                                                     Mean
                                                            :1.992
##
   3rd Qu.:1.0000
                     3rd Qu.:660.0
                                     3rd Qu.:3.670
                                                     3rd Qu.:3.000
                    Max.
                            :800.0
                                     Max.
                                            :4.000
                                                     Max.
                                                            :3.000
  {\tt Max.}
          :1.0000
##
    Gender_Male
                         Race
                                         rank
## Min.
          :0.000
                   Min. :1.000
                                    Min.
                                           :1.000
## 1st Qu.:0.000
                   1st Qu.:1.000
                                    1st Qu.:2.000
## Median :0.000
                  Median :2.000
                                    Median :2.000
                   Mean :1.962
                                         :2.485
## Mean
         :0.475
                                    Mean
## 3rd Qu.:1.000
                   3rd Qu.:3.000
                                    3rd Qu.:3.000
## Max.
          :1.000
                   Max. :3.000
                                    Max. :4.000
str(data_n)
## tibble [400 x 7] (S3: tbl_df/tbl/data.frame)
                 : num [1:400] 0 1 1 1 0 1 1 0 1 0 ...
   $ admit
##
                 : num [1:400] 380 660 800 640 520 760 560 400 540 700 ...
   $ gre
## $ gpa
                 : num [1:400] 3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
## $ ses
                 : num [1:400] 1 2 2 1 3 2 2 2 1 1 ...
## $ Gender_Male: num [1:400] 0 0 0 1 1 1 1 0 1 0 ...
                 : num [1:400] 3 2 2 2 2 1 2 2 1 2 ...
##
   $ Race
##
                 : num [1:400] 3 3 1 4 4 2 1 2 3 2 ...
   $ rank
# Change columns to factor class
data_n$admit = as.factor(data_n$admit)
data_n$ses = as.factor(data_n$ses)
data_n$Gender_Male = as.factor(data_n$Gender_Male)
data_n$Race = as.factor(data_n$Race)
data_n$rank = as.factor(data_n$rank)
# Plot the distribution between each pair of variables to get a better understanding
## of the data
pairs.panels(data_n[, -1], gap = 0, stars = TRUE, pch = 21,
```

bg = c('red', 'yellow', 'blue')[data_n\$admit])


```
# Split the data set into train and test sets for further model evaluation
set.seed(123)
index_n = sample(2, nrow(data_n), replace = TRUE, prob = c(0.8, 0.2))
train_n = data_n[index_n == 1, ]
test_n = data_n[index_n == 2, ]
# Build a Naive Bayes model using the train set and show the model
nb1 = naive_bayes(admit ~ ., data = train_n, usekernel = TRUE)
##
## =================== Naive Bayes ==========================
##
##
  Call:
## naive_bayes.formula(formula = admit ~ ., data = train_n, usekernel = TRUE)
##
##
##
##
  Laplace smoothing: 0
##
##
##
##
   A priori probabilities:
##
          0
##
                    1
```

```
## 0.6646154 0.3353846
##
  ______
##
##
  Tables:
##
## ::: gre::0 (KDE)
##
## Call:
## density.default(x = x, na.rm = TRUE)
## Data: x (216 obs.); Bandwidth 'bw' = 36.64
##
##
        X
                      У
## Min. :110.1 Min. :5.680e-07
  1st Qu.:310.0 1st Qu.:1.202e-04
## Median:510.0 Median:1.021e-03
## Mean :510.0 Mean :1.249e-03
## 3rd Qu.:710.0 3rd Qu.:2.207e-03
## Max. :909.9 Max. :3.236e-03
##
  ::: gre::1 (KDE)
##
## Call:
## density.default(x = x, na.rm = TRUE)
## Data: x (109 obs.); Bandwidth 'bw' = 36.38
##
##
       x
## Min. :290.9 Min. :2.316e-06
  1st Qu.:445.4 1st Qu.:3.602e-04
## Median:600.0 Median:1.629e-03
## Mean :600.0 Mean :1.616e-03
## 3rd Qu.:754.6 3rd Qu.:2.880e-03
## Max. :909.1 Max. :3.432e-03
##
  ::: gpa::0 (KDE)
##
  density.default(x = x, na.rm = TRUE)
## Data: x (216 obs.); Bandwidth 'bw' = 0.1189
##
##
        X
## Min. :1.903 Min. :0.0001762
## 1st Qu.:2.517 1st Qu.:0.0542374
## Median :3.130 Median :0.4168159
## Mean :3.130 Mean :0.4071837
```

```
## 3rd Qu.:3.743 3rd Qu.:0.7184947
## Max. :4.357 Max. :0.9738248
##
## -----
##
  ::: gpa::1 (KDE)
## ------
##
## Call:
## density.default(x = x, na.rm = TRUE)
##
## Data: x (109 obs.); Bandwidth 'bw' = 0.125
##
##
     X
## Min. :2.245 Min. :0.0006475
## 1st Qu.:2.778 1st Qu.:0.1186863
## Median :3.310 Median :0.4376137
## Mean :3.310 Mean :0.4689858
## 3rd Qu.:3.842 3rd Qu.:0.7882761
## Max. :4.375 Max. :1.1184635
##
## -----
 ::: ses (Categorical)
## -----
## ses 0
  1 0.3472222 0.3577982
  2 0.3425926 0.3486239
  3 0.3101852 0.2935780
##
 ::: Gender_Male (Bernoulli)
##
             0
## Gender_Male
##
  0 0.5231481 0.5504587
##
        1 0.4768519 0.4495413
##
## ::: Race (Categorical)
## -----
##
## Race
         0
  1 0.3333333 0.4495413
   2 0.3472222 0.2385321
   3 0.3194444 0.3119266
## # ... and 1 more table
```

Plot the model and see how each variable is related to the target variable
plot(nb1)


```
# Make the prediction using the Naive Beyes model and combine the result with the
## original data set
pred_n = predict(nb1, train_n, type = 'prob')
```

Warning: predict.naive_bayes(): more features in the newdata are provided as
there are probability tables in the object. Calculation is performed based on
features to be found in the tables.

```
pred_n = round(pred_n, digits = 3)
head(cbind(pred_n, train_n), 30)
```

```
1 admit gre gpa ses Gender_Male Race rank
##
          0
## 1 0.885 0.115
                      0 380 3.61
                                                      3
                                                           3
                                    1
## 2
                                                           3
     0.631 0.369
                       1 660 3.67
                                    2
                                                 0
                                                      2
     0.238 0.762
                                                           1
## 3
                      1 800 4.00
                                    2
                                                 0
                                                      2
     0.605 0.395
                       1 760 3.00
                                                           2
                                                 1
## 5
     0.673 0.327
                       1 560 2.98
                                    2
                                                 1
                                                      2
                                                           1
## 6
     0.724 0.276
                       1 540 3.39
                                    1
                                                 1
                                                      1
                                                           3
## 7
     0.545 0.455
                      0 700 3.92
                                                 0
                                                      2
                                                           2
                                    1
## 8 0.682 0.318
                      0 440 3.22
                                    3
                                                           1
## 9 0.308 0.692
                      1 760 4.00
                                                      2
                                    3
                                                 1
                                                           1
## 10 0.750 0.250
                      0 700 3.08
                                    2
                                                 0
                                                      2
                                                           2
## 11 0.209 0.791
                                    2
                                                           1
                      1 700 4.00
                                                 1
                                                      1
## 12 0.573 0.427
                      0 780 3.87
                                                      3
                                                           4
## 13 0.977 0.023
                      0 360 2.56
                                                 1
                                                      3
                                                           3
```

```
## 14 0.365 0.635
                       0 800 3.75
                                                             2
                                                  1
## 15 0.352 0.648
                       1 660 3.63
                                                       1
                                                             2
                                     1
## 16 0.893 0.107
                       0 600 2.82
                                                  0
                                                       3
                                                             4
## 17 0.657 0.343
                       1 760 3.35
                                                             2
                                     2
                                                  0
                                                       2
## 18 0.149 0.851
                       1 800 3.66
                                     2
                                                  1
                                                       1
                                                             1
## 19 0.209 0.791
                       1 620 3.61
                                                  0
                                     2
                                                       1
                                                             1
## 20 0.693 0.307
                       1 520 3.74
                                                       3
                                     2
                                                  0
## 21 0.487 0.513
                       1 780 3.22
                                                             2
                                     1
                                                  0
                                                       1
## 22 0.408 0.592
                       0 520 3.29
                                     1
                                                  0
                                                       1
                                                             1
## 23 0.692 0.308
                       0 600 3.40
                                                  0
                                                             3
                                     3
                                                       1
## 24 0.411 0.589
                       1 800 4.00
                                     3
                                                  0
                                                       1
                                                             3
## 25 0.917 0.083
                       0 360 3.14
                                                       2
                                     1
                                                  1
                                                             1
## 26 0.923 0.077
                       0 400 3.05
                                     3
                                                  0
                                                       2
                                                             2
## 27 0.577 0.423
                       0 580 3.25
                                                  0
                                                       2
                                                             1
## 28 0.895 0.105
                       0 520 2.90
                                     2
                                                  0
                                                       2
                                                             3
                                                             2
## 29 0.787 0.213
                       1 500 3.13
                                     2
                                                  0
                                                       2
## 30 0.807 0.193
                       1 520 2.68
                                     2
                                                             3
                                                       1
```

Build a confusion matrix using the test set to evaluate the model. As shown, the
prediction accuracy is 73.33%.
confusionMatrix(predict(nb1, test_n), test_n\$admit)

```
## Warning: predict.naive_bayes(): more features in the newdata are provided as
## there are probability tables in the object. Calculation is performed based on
## features to be found in the tables.
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 51 14
##
##
            1 6 4
##
##
                  Accuracy: 0.7333
##
                    95% CI: (0.6186, 0.8289)
##
       No Information Rate: 0.76
##
       P-Value [Acc > NIR] : 0.7544
##
##
                     Kappa: 0.1379
##
##
   Mcnemar's Test P-Value: 0.1175
##
##
               Sensitivity: 0.8947
               Specificity: 0.2222
##
            Pos Pred Value: 0.7846
##
##
            Neg Pred Value: 0.4000
##
                Prevalence: 0.7600
            Detection Rate: 0.6800
##
##
     Detection Prevalence: 0.8667
##
         Balanced Accuracy: 0.5585
##
##
          'Positive' Class: 0
```

##