EE104 S. Lall and S. Boyd

Non-Quadratic Regularizers

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Regularizers

Regularizers and sensitivity

- lacktriangle we want to choose heta to achieve low empirical risk $\mathcal{L}(heta)$
- \blacktriangleright but also, we'd like the predictor g_{θ} to not be too sensitive
- roughly: for x near \tilde{x} , $g_{\theta}(x)$ should be near $g_{\theta}(\tilde{x})$
 - sensitive predictors sometimes don't generalize well
 - insensitive predictors often generalize well
- lacktriangledown a regularizer $r: {f R}^p o {f R}$ is a function that measures the sensitivity of $g_ heta$
- ightharpoonup often predictor sensitivity corresponds to the size of heta
- another interpretation:
 - ightharpoonup the regularizer encodes *prior information* we have about heta
 - ightharpoonup specifically, that $r(\theta)$ is small
- lacktriangle with either interpretation, we want both $\mathcal{L}(heta)$ and r(heta) small

Regularized empirical risk minimization

- lacktriangle in RERM we choose heta to minimize $\mathcal{L}(heta) + \lambda r(heta)$
- lacktriangledown $\lambda>0$ is the regularization hyper-parameter, used to trade off $\mathcal{L}(heta)$ and r(heta)
- lacktriangle we choose λ (and r) by validation on a test set
- we use a regularizer to achieve better test set performance

Penalty based regularizers

ightharpoonup many common regularizers are given by a penalty function $q:\mathsf{R} o\mathsf{R}$

$$r(heta) = q(heta_1) + \cdots + q(heta_p)$$

- usually $q(a) \ge 0$ for all a, and q(0) = 0
- $ightharpoonup q(\theta_i)$ expresses our displeasure in choosing predictor coefficient θ_i
- common examples:
 - lacktriangle sum square, quadratic, Tychonov, ℓ_2 , or ridge regularizer: $q^{\sf sqr}(a)=a^2$, so $r(heta)=\| heta\|_2^2$
 - lacktriangle sum absolute, ℓ_1 , or lasso regularizer: $q^{\mathsf{abs}}(a) = |a|$, so $r(heta) = || heta||_1$
 - $\qquad \qquad \textbf{nonnegative regularizer: } q^{\textbf{nn}}(a) = \left\{ \begin{array}{ll} 0 & a \geq 0 \\ \infty & a < 0 \end{array} \right. \qquad \text{(requires predictor coefficients to be nonnegative)}$

Sensitivity of linear predictors

Feature perturbation

- $lackbox{}$ consider a linear predictor $g_{ heta}(x) = heta^{ extsf{T}} x$
- lacktriangle suppose the feature vector x changes to $ilde x=x+\delta$
- lacksquare δ is the *perturbation* or change in x
- $lackbox{ we'll assume that any } \delta \in \Delta \text{ is possible }$
- $ightharpoonup \Delta$ is called the *feature perturbation set*
- ▶ the change in prediction if x changes to $\tilde{x} = x + \delta$ is $|\theta^T \tilde{x} \theta^T x| = |\theta^T \delta|$
- ▶ how big can this be, over all $\delta \in \Delta$?
- ▶ we define the worst case sensitivity as $\max_{\delta \in \Delta} |\theta^{\mathsf{T}} \delta|$
- it is evidently a measure of sensitivity

Worst case sensitivity with ℓ_2 perturbation

- ▶ let's take $\Delta = \{\delta \mid ||\delta||_2 \le \epsilon\}$ (called an ℓ_2 -ball)
- lacktriangle means the feature vector x can change to any ilde x within ℓ_2 distance ϵ
- ▶ by Cauchy-Schwarz inequality, $|\theta^{\mathsf{T}}\delta| \leq ||\theta||_2 ||\delta||_2 \leq \epsilon ||\theta||_2$
- lacktriangle and the choice $\delta=rac{\epsilon}{\| heta\|_2} heta$ achieves this maximum change in prediction
- lacktriangle so the worst-case sensitivity is $\epsilon ||\theta||_2$
- lacksquare justifies sum square regularizer $r(heta) = || heta||_2^2 = heta_1^2 + \dots + heta_d^2$

Worst case sensitivity with ℓ_∞ perturbation

- lacksquare let's take $\Delta=\{\delta\mid |\delta_i|\leq \epsilon,\ i=1,\ldots,d\}$ (called an ℓ_∞ -ball)
- lacktriangle also expressed as $\Delta=\{\delta\mid \|\delta\|_{\infty}\leq \epsilon\}$, where $\|\delta\|_{\infty}=\max_{i=1,\dots,d}|\delta_i|$ is the ℓ_{∞} -norm of δ
- ightharpoonup means any component of the feature vector x can change by up to ϵ
- ▶ how big can $|\theta^T \delta|$ be, when $\delta \in \Delta$?
- lacktriangle the choice $\delta_i = \epsilon \operatorname{sign}(\theta_i)$ maximizes the change in prediction, *i.e.*,
 - $ightharpoonup \delta_i = \epsilon ext{ if } heta_i > 0$
 - lacksquare $\delta_i = -\epsilon$ if $heta_i < 0$
- with this choice the change in prediction is

$$\epsilon |\theta^{\mathsf{T}} \operatorname{sign}(\theta)| = \epsilon (|\theta_1| + \dots + |\theta_d|) = \epsilon ||\theta||_1$$

- lacktriangle so the worst case sensitivity is $\epsilon ||\theta||_1$
- ightharpoonup justifies sum absolute regularizer $r(\theta) = ||\theta||_1 = |\theta_1| + \cdots + |\theta_d|$

Ridge and lasso regression

- use square loss $\ell(\hat{y}, y) = (\hat{y} y)^2$
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_2^2$ is called *ridge regression*
- lacktriangle choosing heta to minimize $\mathcal{L}(heta) + \lambda || heta||_1$ is called *lasso regression*
- ▶ invented by (Stanford's) Rob Tibshirani, 1994
- widely used in advanced machine learning
- unlike ridge regression, there is no formula for the lasso parameter vector
- ▶ but we can efficiently compute it anyway (since it's convex)

Regulization with a constant feature

- lacktriangle suppose we have a constant feature $x_1=1$
- ightharpoonup associated predictor coefficient θ_1 is the offset
- ightharpoonup since x_1 does not change, $\delta_1=0$ always
- \blacktriangleright so θ_1 does not contribute to predictor sensitivity
- \blacktriangleright for this reason it's common to **not** regularize the associated coefficient θ_1
- lacksquare we modify sum square regularizer to $r(heta) = || heta_{2:d}||_2^2 = heta_2^2 + \cdots + heta_d^2$
- lacktriangle we modify sum absolute regularizer to $r(heta) = || heta_{2:d}||_1 = | heta_2| + \cdots + | heta_d|$

Sparsifying regularizers

Sparse coefficient vector

- ightharpoonup consider linear predictor $g_{\theta}(x) = \theta^{\mathsf{T}} x$
- ightharpoonup suppose θ is sparse, *i.e.*, many of its entries are zero
- $lackbox{}$ prediction $heta^{\mathsf{T}}x$ does not depend on features x_i for which $heta_i=0$
- ▶ this means we select *some* features to use (i.e., those with $\theta_i \neq 0$)
- (possible) practical benefits of sparse θ :
 - > can improve performance when many regressors are actually irrelevant
 - makes predictor simpler to interpret
- \blacktriangleright choosing the sparsity pattern of θ (i.e., which entries are zero) is sometimes called *feature selection*
- ▶ there are many ways to carry out feature selection

Sparse coefficient vectors via ℓ_1 regularization

using ℓ_1 regularization leads to sparse coefficient vectors

$$r(\theta) = ||\theta||_1$$
 is called a *sparsifying regularizer*

rough explanation:

- lackbox for square penalty, once $heta_i$ is small, $heta_i^2$ is very small
- > so incentive for sum square regularizer to make a coefficient smaller decreases once it is small
- lacktriangleright for absolute penalty, incentive to make $heta_i$ smaller keeps up all the way until it's zero

- ▶ artificially generated 50 data points, 200 features, only a few of which are relevant
- ▶ left hand plots use ridge regression, right hand use lasso

- ightharpoonup sorted $|\theta_i|$ at optimal λ
- ▶ lasso parameter has only 35 nonzero components; ridge regression has all 200 coefficients nonzero

- lacktriangle choose λ based on regularization path with test data
- \blacktriangleright keep features corresponding to largest components of θ and retrain
- ▶ plots above use most important 7 features identified by lasso

Even stronger sparsifiers

- $ightharpoonup q(a) = |a|^{1/2}$
- ightharpoonup called $\ell_{0.5}$ regularizer
- but you shouldn't use this term since

$$(|\theta_1|^{0.5} + \cdots + |\theta_d|^{0.5})^2$$

is not a norm (see VMLS)

- lacktriangle 'stronger' sparsifier than ℓ_1
- \blacktriangleright but not convex so computing θ is heuristic

 $ightharpoonup \ell_2$, ℓ_1 , and square root regularization

Nonnegative regularizer

Nonegative coefficients

- ▶ in some cases we know or require that $\theta_i \geq 0$
- lacktriangle this means that when x_i increases, so must our prediction
- ▶ we can think of this constraint as regularization with penalty function

$$q(a) = egin{cases} 0 & a \geq 0 \ \infty & a < 0 \end{cases}$$

- lacktriangle example: y is lifespan, x_i measures healthy behavior i
- ▶ with quadratic loss, called *nonnegative least squares* (NNLS)
- \blacktriangleright common heuristic for nonnegative least squares: use $(\theta^{ls})_+$ (works poorly)

- feature vector $x = (1, u, (u 0.2)_+, \dots, (u 0.8)_+)$
- lacktriangleright nonnegative $heta_i$ means both predictor function is convex (curves up) and nondecreasing
- NNLS loss 0.59, LS loss 0.30, heuristic loss 15.05

How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

- for each candidate regularizer, choose λ to minimize test error (and maybe a little larger . . .)
- ▶ use the regularizer that gives the best test error