PATENT

Attorney Docket No.: 7390-X03-018

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Kurt-Reiner GEISS

Serial No.: 10/665,394

Filed: September 17, 2003

Title: FOOD PRODUCT FOR INCREASING THE COGNITIVE

FUNCTIONAL CAPACITY

CERTIFICATE OF EXPRESS MAILING

PATENTS

EXPRESS "Express Mail" Mailing Label number EV 820315093 US Date of Deposit February 15, 2008

I hereby certify that the attached paper(s) or fee(s) is/are being deposited with the United States Postal Services "Express Mail Post Office to Addressee" service under 37 CFR §1.10 on the date indicated above and is addressed to the Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450.

(Signature of person mailing paper or fee)

ESTEFANIA BELAUNDE

(Typed or printed name of person mailing paper or fee)

PATENT

Attorney Docket No: 7390-X03-018

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Kurt-Reiner GEISS

Group Art Unit: 1615

Serial No.: 10/665,394

Confirmation No.: 4213

Filed: September 17, 2003

Title: FOOD PRODUCT FOR INCREASING THE COGNITIVE FUNCTIONAL

CAPACITY

SUBMISSION OF PRIORITY DOCUMENT

COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, VA 22313-1450

SIR:

Enclosed is a certified copy of the corresponding Austrian patent application for which priority is claimed under 35 USC 119.

Country

Application No.

Filing Date:

AUSTRIA

A 482/2001

March 26, 2001

No fee is believed to be due with this submission. However, if any fees are due, please charge any required fee (or credit any overpayments of fees) to the Deposit Account of the undersigned, Account No. 500601 (Docket No. 7390-X03-018).

Respectfully submitted,

Paul D. Bianco, Reg. #43,500

Enclosures

Paul D. Bianco FLEIT KAIN GIBBONS GUTMAN BONGINI & BIANCO P.L. 21355 E. Dixie Highway, Suite 115 Miami, Florida 33180

Tel: 305-830-2600; Fax: 305-830-2605 E-mail: <u>PBianco@FocusOnIP.com</u> Zentrale Dienste Verwaltungsstellendirektion

Dresdner Straße 87 1200 Wien Austria

www.patentamt.at

Kanzleigebühr € 17,00 - Schriftengebühr € 66,00

Aktenzeichen A 482/2001

Das Österreichische Patentamt bestätigt, dass

die Firma Giventis GmbH in D-65456 Mörfelden-Walldorf, Weingartenstraße 2 (Deutschland),

am 26. März 2001 eine Patentanmeldung betreffend

"Nahrungsmittel, insbesondere einen Riegel zur Steigerung der kognitiven Leistungsfähigkeit",

überreicht hat und dass die beigeheftete Beschreibung samt Zeichnungen mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung samt Zeichnungen übereinstimmt.

Österreichisches Patentamt Wien, am 8. Jänner 2008

Der Präsident:

37 155/Mon

Int.Cl.:

AТ	PAT	ENTS	CHRIFT	J
----	-----	------	--------	---

Nr.

Patentinhaber:

Giventis GmbH

Mörfelden-Walldorf (DE)

Gegenstand:

Nahrungsmittel, insbesondere einen Riegel zur Steigerung der kognitiven Leistungsfä-

higkeit

Zusatz zu Patent Nr.:

Umwandlung aus GM

Ausscheidung aus:

Angemeldet am:

2001 03 26

Innere Priorität:

Priorität:

Beginn der Patentdauer:

Längste mögliche Dauer:

Ausgegeben am:

Erfinder:

Abhängigkeit:

Entgegenhaltungen, die für die Beurteilung der Patentierbarkeit in Betracht gezogen wurden:

1/2

Beschreibung

Die Erfindung betrifft ein Nahrungsmittel, insbesondere einen 5 Riegel, zur Steigerung der kognitiven Leistungsfähigkeit.

Es ist allgemein bekannt, dass mit zunehmendem Alter ein Massenverlust des menschlichen Gehirns einhergeht, der bis zu ca. 100 g betragen kann. Dieser Massenverlust wird unter anderem bedingt durch eine Abnahme der Anzahl der Nervenzellen und der Dichte der synaptischen Verbindungen im neuronalen Netz.

10

- 35

Nach wissenschaftlichen Erkenntnissen steigt dabei der Cholesterinanteil im Gehirn an, während die Phospholipide abnehmen. Dieser langsame Degenerationsprozess geht mit einer Myelin-Zerstörung einher und bedingt konsekutiv die Abnahme des
Phospholipidgehalts. Dadurch kommt es zu entsprechenden Störungen verschiedener physiologischer und biochemischer Zell20 funktionen.

Es ist allgemein bekannt, dass sich diese Störungen im wesentlichen ungünstig auf die Hirnleistungsprozesse, voranging im kognitiven Bereich, auswirken. So nimmt z.B. das Gedächtnis bzw. die Merk- und Lernfähigkeit mit zunehmendem Alter kontinuierlich ab. Diese altersbedingte Hirnleistungsminderung wird gemäß der American Psychiatric Association und der American Psychological Association als Age Related Cognitive Decline (ARCD) und Age Associated Memory Impairment (AAMI) bezeichnet bzw. klassifiziert.

Obwohl die Eigenschaften einer stabilen Gedächtnisspur noch weitgehend unbekannt sind, geht man heute davon aus, dass das Gedächtnis als eine Art "biochemische Veränderung" im Neuronenschaltsystem gespeichert wird. Bei einem Merk- und Lernprozess wird eine gesteigerte Synthese neuer Ribonukleinsäu-

ren (RNA) angenommen. Die RNA liefert dabei die Matrix für diese Proteinsynthese.

Kommt es nun im Rahmen des altersbedingten Degenerationsprozesses zu einer Abnahme des Phospholipidgehaltes, wird die Membranstruktur der Zellwände, die das Lösungsmedium für diese Proteine darstellen, zunehmend zerstört. Dadurch ist zum Beispiel der Aufbau einer neuen Gedächtnisspur (Kurzzeitgedächtnis) zunehmend erschwert.

10

5

Der Erfindung liegt daher die Aufgabe zugrunde ein Nahrungsmittel, vorzugsweise einen Riegel zu schaffen, der die kognitive Leistungsfähigkeit, insbesondere bei Personen über dem 40. Lebensjahr, erhöht.

15

Die der Erfindung zugrunde liegende Aufgabe wird mit den Merkmalen der unabhängigen Patentansprüche jeweils gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Patentansprüchen angegeben.

20

25

30

Ausgangspunkt der vorliegenden Erfindung ist die Erkenntnis, dass die Zufuhr von 100 mg bis 300 mg Phosphatidylserin pro Tag bei älteren Personen zu einer Verbesserung der kognitiven Leistungsfähigkeit, insbesondere der Merk- und Lernfähigkeit sowie einer Steigerung des Konzentrationsvermögens sowie der Aufmerksamkeit führen kann.

Phosphatidylserin ist ein Phospholipid und gehört als Nährstoff zur Gruppe der Lecithine. Durch verschiedene wissenschaftliche Untersuchungen ist belegt, dass Phosphatidylserin spezifische Wirkungen am Nervengewebe, insbesondere im Gehirn, zeitigt. Die maßgebliche Funktion von Phosphatidylserin im Nervengewebe bezieht sich auf die Bildung von Proteinen in der Zellmembranmatrix.

- 35

Diese Proteinstrukturen in der Zellmembran sind für sämtliche wichtige Schaltfunktionen an der Zelloberfläche verantwort-

lich. Dadurch wird die Signalübertragung bzw. Kommunikation zwischen den Hirnzellen gewährleistet und somit die Voraussetzung für eine optimale kognitive Leistungsfähigkeit geschaffen.

5

10

15

20

- 35

Für den Phospholipidmangel im Alter sind im Wesentlichen zwei unterschiedliche Ursachen relevant. Aus Crook TH, Adderly B (1998), "The memory cure", New York: Pocket Books, ist die Hypothese bekannt, dass der menschliche Körper von der Evolution her nicht auf ein Leben im hohen Alter programmiert ist. Die mit der normalen Ernährung aufgenommene Menge von Phosphatidylserin ist zwar ausreichend bis in das mittlere Lebensalter (etwa bis zum 45. Lebensjahr, welches einem vollen Lebensalter in prähistorischer Zeit entspricht), aber nicht mehr im späteren Lebensalter.

Eine weitere Ursache ist jedoch vor allem in den Änderungen der Ernährungsgewohnheiten zu sehen: Aufgrund einer fett- und cholesterinbewussten Ernährung wurde der Verzehr von Phosphatidylserin-haltigen (tierischen) Nahrungsmitteln deutlich eingeschränkt. Dies bedeutet, dass ca. 200 bis 400 mg pro Tag weniger Phosphatidylserin über die Lebensmittel zugeführt werden.

Entsprechend schlägt die Erfindung vor, den Phospholipidmangel im Alter durch eine Substitution bzw. Supplementierung über die Aufnahme von Phosphatidylserin in einem Nahrungsmittel zu beheben. Die Steigerung der kognitiven Leistungsfähigkeit bei Aufnahme von 100 mg bis 300 mg Phosphatidylserin pro Tag ist für Personen im Alter von mehr als 40 Jahren durch wissenschaftliche Studien belegt.

Dabei entfaltet Phosphatidylserin eine spezifische ernährungsphysiologische Wirkung. Bei diesen Dosierungen wird ein nutritiv und/oder situativ bedingter Mangel an Phosphatidylserin im Sinne einer gezielten Zufuhr ausgeglichen und in den Normbereich zurückgeführt. Durch den Zusatz von Phosphatidyl-

serin zu einem Nahrungsmittel schafft die Erfindung daher ein sogenanntes "Functional Food", das über den reinen Ernährungszweck hinaus positive physiologische Wirkungen im Hinblick auf die kognitive Leistungsfähigkeit hat.

5

10

15

20

25

30

. 35

Vorzugsweise hat das erfindungsgemäße Nahrungsmittel einen relativ hohen Gehalt an Kohlenhydraten, wie z. B. Fructosesirup, Zucker und/oder Glucosesirup. In der spezifischen Verbindung der Aufnahme von Kohlenhydraten und Phosphatidylserin wird die Glucose-Aufnahme und somit der Glucosegehalt in den Hirnzellen deutlich erhöht. Dadurch ist kurzfristig eine besonders deutliche Steigerung der kognitiven Leistungsfähigkeit ermöglicht. Die Mindestmenge an Kohlenhydrate beträgt dabei vorzugsweise 15 g in Verbindung mit vorzugsweise 100 bis 300 mg Phosphatidylserin.

Vorzugsweise ist das erfindungsgemäße Nahrungsmittel als Riegel, vorzugsweise als Schokoriegel, ausgebildet. Als ernährungsphysiologische Wirksubstanz enthält der Riegel Phosphatidylserin, vorzugsweise aus Phosphatidylserin-haltigem Lecithin-Extrakt.

Ferner hat der Riegel vorzugsweise einen relativ hohen Kohlenhydratanteil, um die gewünschte Kombinationswirkung der kurzfristigen Verbesserung der kognitiven Leistungsfähigkeit bei der Aufnahme von Phosphatidylserin zu erreichen. Der Kohlenhydratanteil sollte dazu über 40 Gewichtsprozent, vorzugsweise über 57 Gewichtsprozent liegen. Dies entspricht einem Anteil von über 1 Gewichtsprozent, vorzugsweise 1,4 Gewichtsprozent Phosphatydilserin-haltigem Lecithin-Extrakt.

Ferner hat der Riegel vorzugsweise einen Anteil von mindestens 10 Gewichtsprozent, vorzugsweise 16 Gewichtsprozent Eiweiß und mindestens 15 Gewichtsprozent, vorzugsweise 27 Gewichtsprozent Fett. Ferner kann der Riegel mit Vitaminen angereichert werden. Der Überzug mit Schokolade, vorzugsweise Milchschokolade, erhöht die Genussfunktion.

Die Produktgröße des Riegels ist vorzugsweise mindestens 20 g, insbesondere 35 g. Der Riegel kann einzeln verpackt angeboten werden, was die Handhabung vereinfacht. Die Aufnahme von einem Riegel pro Tag ist für die nachhaltige Besserung der kognitiven Leistungsfähigkeit ausreichend; es können täglich jedoch auch mehrere Riegel verzehrt werden. Für die langfristige Steigerung der kognitiven Leistungsfähigkeit reichen aber bei regelmässigem Verzehr auch drei bis vier Riegel pro Woche noch aus.

5

10

15

20

25

30

Vorzugsweise hat der Riegel einen Wassergehalt von weniger als 3%, wodurch sich die Stabilität des Phosphatidylserin erhöht. Die Haltbarkeit kann dann über ein Jahr betragen, wobei die ernährungsphysiologische Wirkung von Phosphatidylserin voll erhalten bleibt.

Im Weiteren wird eine bevorzugte Ausführungsform der Erfindung mit Bezug auf die Zeichnung erläutert. Es zeigen:

- Fig. 1 die Molekularstruktur von Phosphatidylserin und
- Fig. 2 die Zusammensetzung einer bevorzugten Ausführungsform des erfindungsgemäßen Riegels.

Die Fig. 1 zeigt die Molekularstruktur von Phosphatidylserin. Phosphatidylserin gehört zu der Gruppe der Phospholipide. Die Phospholipide werden unterteilt in die vier Gruppen Lecithine, Kephaline, Phosphatidylinosite und Sphingomyeline. Die Glyzerinphospholipide der Lecithin- und Kephalin-Gruppe zeigen einen identischen Aufbau: Die erste primäre und die sekundäre Hydroxylgruppe des Glyzerins ist mit einer Fettsäure, die zweite primäre Hydroxylgruppe ist mit Phosphat verestert.

Das Phosphat wiederum ist mit einer Hydroxiaminoverbindung verestert, hier sind die Stickstoffbasen Cholin, Ethanolamin und Serin zu finden. Phosphatidylserin ist den Kephalinen zu-

geordnet und ist daher auch unter dem Begriff "Serinkephalin" bekannt.

Phosphatidylserin besteht chemisch somit aus Fettsäuren, Glyzerin, Phosphat und Serin.

Neben der Herstellung von Phosphatidylserin aus Rinderhirn kommen die beiden folgenden bevorzugten Herstellungsverfahren zum Einsatz:

10

15

5

- 1. Aufkonzentrierung der in Soja-Lecithin natürlicherweise enthaltenen geringen Menge Phosphatidylserin von 0,2 bis 0,3% durch Extraktion und anschließende chromatographische Reinigung. Das Verfahren ist jedoch sehr aufwendig und auf eine Vielzahl organischer Lösemittel angewiesen.
- Enzymatische Umwandlung der in handelsüblichem Lecithin 2. enthaltenen Phospholipide, Phosphatidylcholin und Phosphatidylethanolamin in Phosphatidylserin, ohne Verwendung organischer Lösemittel. Bei diesem Verfahren han-20 delt es sich um das Prinzip der enzymatischen Umesterung, wie es ähnlich bereits kommerziell für die Umesterung von Triglyzeride (z.B. für Kakaobutter-Ersatzstoffe oder mittelkettige Triglyzeride) durchgeführt wird. Die 25 Umesterung von Fetten ist grundsätzlich ein lebensmitteltechnologisch übliches Verfahren zur Änderung physikalischen Eigenschaften eines Fettes und findet eine sehr breite Anwendung z.B. mit folgenden Zielsetzun-Herstellung von Fettkomponenten mit bestimmten 30 Schmelzeigenschaften (Konsistenz) für Margarinekompositionen, Backfette und Backfettkomponenten sowie Süßwarenfette.

Vorzugsweise wird zur Herstellung von pflanzlichem Phosphati-35 dylserin vorrangig die enzymatische Umwandlung eingesetzt.

Aus der DE 199 172 49 ist ein Verfahren zur Herstellung von Phosphatidylserin bekannt, bei welchem Lecithin in Wasser dispergiert. Phospholipase D und Kalziumchorid werden in Wasser gelöst in die Dispersion überführt. Nach 10 bis 20 Stunden Rühren bei Raumtemperatur wird das Calciumsalz des Phosphatidylserin aus der wässrigen Phase abgetrennt, das freie L-Serin und Cholin im Phosphatidylserin wird ausgewaschen. Durch abschließende Ethanolextraktion werden Phosphatidylserin bzw. Phosphatidylserin angereicherte Produkte erhalten, die keine Restenzymaktivität aufweisen.

Ferner ist aus der US 5,965,413 ein Verfahren zur Herstellung von Phosphatidylserin mit einer ungesättigten Fettsäure als Seitenkette bekannt. Die grundsätzliche Verwendungsmöglichkeit von Phosphatidylserin zur Steigerung der kognitiven Leistungsfähigkeit ist ferner aus US 5,900,409 und US 6,117,853 an sich bekannt.

Anhand von tierexperimentellen Untersuchungen können folgende 20 Aussagen als gesichert betrachtet werden. Die Applikation von Phosphatidylserin

beugt der Neuronenatrophie vor,

5

10

15

- 25 verhindert teilweise den altersbedingten Abbau der Rezeptoren für den Nervenwachstumsfaktor,
- fördert die Bildung von Nervenwachstumsfaktoren (eine Phosphatidylserin-spezifische Wirkung, die bei anderen Phospholipiden nicht festgestellt werden konnte),
 - normalisiert das Cholesterin-/Phospholipidverhältnis im alternden Gehirn,
- . 35 verbessert den ATPase abhängigen Ionentransport über die Zellmembran und

normalisiert die Proteinkinase-C-Balance.

5

25

Darüber hinaus ist die Bioverfügbarkeit von oral appliziertem Phosphatidylserin als gut zu bewerten (nach oraler Gabe ist radioaktiv markiertes Phosphatidylserin nach 30 Minuten im Blut feststellbar und überquert anschließend nach Passage der Leber die Blut-Hirn-Schranke).

Durch neurophysiologische Testverfahren ist darüber hinaus die Steigerung der kognitiven Leistungsfähigkeit bei Probanden im Alter zwischen 40 und 80 Jahren mit sogenanntem Age Related Cognitive Decline (ARCD) und sogenanntem Age Associated Memory Impairment (AAMI) nachgewiesen.

- Die nachfolgend aufgelisteten Tests stellen eine Auswahl der Untersuchungsverfahren dar, die zum Nachweis der Steigerung der kognitiven Leistungsfähigkeit eingesetzt werden:
- a) Nachweis der Steigerung von Aufmerksamkeit und Konzen 20 tration:

Diller L et al. (1974): Studies in Cognition and Rehabilitation in Hemiplegia (Letter Cancellation Test). Rehabilitation Monograph Nr. 50. Institute of Rehabilitation Medicine. New York: University Medical Center.

Schmith A (1973): Symbol Digit Modalities Test. Los Angeles: Western Phosphatidylserinychological Services

Wechsler D et al. (1955): Adult Intelligence Scale Manual (Digit-Symbol und Digit Span (Forward/Backward)). New York: Phosphatidylserinychological Corporation

Wechsler D (1970): Echelle d'intelligence des Wechsler pour adultes: WAIS: 2èEdition. Paris, centre de Phosphatidylserinychologie Appliquée.

b) Zum Nachweis der Steigerung der Merk- und Lernfähigkeit

Rey 15-Word Test for short and long-term verbal memory Rey A (1964): Léxamen clinique en Phosphatidylseriny-chologie (Rey 15-Word Test for short and long-term verbal memory). Paris: Presses Universitaires de France

Block Tapping Test (BTT)

Milner B (1971): Interhemisphenic differences in the localisation of Phosphatidylserinychological processes in men (Block Tapping Test (BTT)). British medical Bulletin, 27: 272

SET Test

5

20

30

35

Isaacs B et al. (1972): The Set Test, a rapid Test of Mental Function in Old People. Age and Agening, 1:222

The five words from the Randt-Memory Test
Randt CT et al. (1980): A memory test for longitudinal
measurement of mild to moderate deficites (The five
words from Randt-Memory Test). Clinical NeuroPhosphatidylserinychology, 2:184

Darüber hinaus wurde in der Mehrzahl der vorliegenden Studien der Verhaltenstest nach der Plutchik Geriatric Rating Scale vorgenommen. (Plutchik R et al. (1970): Reliability and validity of a scale for assessing the functioning of geriatric patients (Plutchik Geriatric Rating Scale). Journal of the American Geriatric Society, 18,6:491-500).

Die Fig. 2 zeigt die Tabellen 20 und 21 bezüglich einer Ausführungsform des erfindungsgemässen Schokoriegels. Die Tabelle 20 gibt den Brennwert des Schokoriegels pro 100 g bzw. pro 35 g sowie die jeweiligen Anteile von Eiweißen, Kohlenhydraten und Fetten an.

Die Tabelle 21 gibt die Zusammensetzung des Schokoriegels hinsichtlich der Vitamine E, C, B1, B6 sowie hinsichtlich Niacin und Pantothensäure an.

- Die Zutaten pro 100 g des Schokoriegels sind: Fruktosesirup,
 Zucker, Magermilchpulver, Kakaobutter, Milchpulver, Milcheiweiß, Süßmolkepulver, Dextrose, pflanzliches Öl gehärtet, Kakaomasse, Maltodextrin, modifizierte Stärke, Reisextrudat,
 1,4 g Lecithin-Extrakt, Kaffee-Extrakt, Aroma, Emulgator Lecithine, 120 mg Vitamin C, getrocknetes Ei-Albumin, 13,2 Pantothenat, 13 mg Vitamin E, 8 mg Niacin, 4 mg Vitamin B1, 4 mg
 Vitamin B6 sowie 200 mg Phosphatidylserin aus LecithinExtrakt. Die Produktgröße des Riegels ist vorzugsweise 35 g.
- Durch den Verzehr von täglich einem oder mehrerer der Schokoriegel kommt es einerseits kurzfristig nach der Einnahme des Riegels zu einer Steigerung der kognitiven Leistungsfähigkeit und andererseits langfristig zu einer nachhaltigen Verbesserung der kognitiven Fähigkeiten, die zum Beispiel nach einem Zeitraum von ein bis drei Wochen eintritt. Dadurch lassen sich Verbesserungen sowohl hinsichtlich ARCD als auch hinsichtlich AAMI erreichen.
- Die Erfindung ist jedoch keineswegs auf Riegel beschränkt;

 vielmehr kann die Zufuhr von Phosphatidylserin in einer Menge von täglich ca. 100 bis 300 mg auch über andere Nahrungsbzw. Lebensmittel, insbesondere sogenannte "Functional Food"-Produkte, zum Beispiel Getränke, Brotaufstriche, Schokoladenund Süßwarenerzeugnisse, Milch, Milchprodukte, diätische Lebensmittel, Getreideerzeugnisse, etc. erfolgen. Solche Nahrungsmittel sollten vorzugsweise einen relativ hohen Kohlenhydratanteil enthalten, um die gewünschte Kombinationswirkung mit Phosphatidylserin hinsichtlich der kurzfristigen Steigerung der kognitiven Leistungsfähigkeit durch Erhöhung des Glucosespiegels im Gehirn zu erreichen.

Patentansprüche

5

1. Nahrungsmittel zur Steigerung der kognitiven Leistungsfähigkeit mit mindestens 100 mg Phosphatidylserin, vorzugsweise 200 mg bis 300 mg Phosphatidylserin.

10

- 2. Nahrungsmittel nach Anspruch 1 mit mindestens 15 g Kohlenhydraten.
- 3. Nahrungsmittel nach Anspruch 1 oder 2 zur Vermeidung und Vorbeugung von Aufmerksamkeits- und Konzentrations- schwierigkeiten, zur Vermeidung und Vorbeugung von Gedächtnisstörungen und Lernstörungen, zur Verbesserung der Aufmerksamkeit und Konzentration, zur Verbessung des Gedächtnis und der Lernfähigkeit und/oder zur Anwendung bei Lern- und Schulungsprozessen.
 - 4. Nahrungsmittel nach Anspruch 1, 2 oder 3, bei dem es sich um ein "Functional Food"-Produkt handelt, zum Beispiel Getränke, Brotaufstriche, Schokoladenerzeugnisse, Süßwarenerzeugnisse, Milch, Milchprodukte, diätische Lebensmittel und Getreideerzeugnisse.
- 5. Riegel zur Steigerung der kognitiven Leistungsfähigkeit mit mindestens 100 mg Phosphatidylserin, vorzugsweise 200 mg bis 300 mg Phosphatidylserin, und mit mindestens 15 g Kohlenhydraten.
 - 6. Riegel nach Anspruch 5 mit einem Gewicht von mindestens 20 g, vorzugsweise 35 g.

35

25

7. Riegel zur Steigerung der kognitiven Leistungsfähigkeit mit mindestens 40 Gewichtsprozent Kohlenhydraten, vor-

zugsweise 57 Gewichtsprozent Kohlenhydraten, und mit mindestens 1 Gewichtsprozent, vorzugsweise 1,4 Gewichtsprozent Phosphatidylserin-haltigem Lecithin-Extrakt.

- 5 8. Riegel nach einem der Ansprüche 5 bis 7 mit mindestens 10 Gewichtsprozent Eiweiß, vorzugsweise 16 Gewichtsprozent Eiweiß.
- Riegel nach einem der Ansprüche 5 bis 8, der mit Vitami nen angereichert ist und einen Schokoladenüberzug aufweist.
- 10. Riegel nach einem der Ansprüche 5 bis 9 mit mindestens 15 Gewichtsprozent Fett, vorzugsweise 27 Gewichtsprozent 15 Fett.
 - 11. Riegel nach einem der Ansprüche 5 bis 10 mit einem Wassergehalt von weniger als 3%.
- 20 12. Riegel nach einem der Ansprüche 5 bis 11 zur Vermeidung und Vorbeugung von Aufmerksamkeits- und Konzentrations- schwierigkeiten, zur Vermeidung und Vorbeugung von Gedächtnisstörungen und Lernstörungen, zur Verbesserung der Aufmerksamkeit und Konzentration, zur Verbessung des Gedächtnis und der Lernfähigkeit und/oder zur Anwendung bei Lern- und Schulungsprozessen.
 - 13. Riegel nach einem der Ansprüche 5 bis 12, bei dem es sich um ein "Functional Food"-Produkt handelt.

Wien, 26.März 2001

30

Giventis GmbH
vertreten durch
PATENTANWÄLTE DIPL.-ING.
ROLF PUCHBERGER
PETER PUCHBERGER
CLAUDIA GRABHERR
A-1011 WIEN, SINGERSTRASSE 13
TEL 612 23 02 FAX 613 37 08

Zusammenfassung

Ein Nahrungsmittel, vorzugsweise ein Schokoriegel, hat einen Phosphatidylserin-Anteil von 100 mg bis 300 mg bei einem relativ hohen Kohlenhydratanteil. Durch die Kombination von Phosphatidylserin und Kohlenhydraten lässt sich sowohl eine kurzfristige als auch eine langfristige Steigerung der kognitiven Leistungsfähigkeit bei Personen ca. ab dem 40. Lebensjahr erreichen, insbesondere bei regelmäßigem Verzehr des Nahrungsmittels.

Fig.1

A 482/2001

1.8.1

A 482/200 1

,20			
	Pro 100 g	Pro 35 g	
Brennwert	1787 kJ	625 kJ	
	425 kcc	149 kcc	
Eiweiß	14g	4,8 g	
Kohlenhydrate	57 g	20 g	
Fetf	169	5,5 g	

21

	Pro 100 g	%RDA,	Pro 35 g	%RDA
Vitamin E	13 mg	130 ,	4,6 mg	46
Vitamin C	120 mg	200	4,2 mg	70
Vitamin B1	4,0 mg	286	1,4 mg	100
Villamin Bó	4,0 mg	200	1,4 mg	<i>7</i> 0
Niacin	8,0 mg	44	2,8 mg	16
Pantothensäure	12,0 mg	44	4,2 mg	70