

Sri Lanka Institute of Information Technology

## Data Warehousing & Business Intelligence

# Customer Credit Card Promotions

Assignment 2

**Submitted By:** 

IT17179386 – Jayasuriya K.E

**Submitted To:** 

MR. Jesuthasan Alosius

## **Step 1: Data Source Selection**

In previous assignment, finally I have created my Data Warehouse by using transformation method. In this case, I had to use that warehouse database for my cube creation. In below, you can see my Cube structure.



## **Step 2: SSAS Cube Implementation**

When Cube creation, first we have to configure our data source. For the data source, we will define our Data Warehouse database.



After that, I have created data source view. It represent diagram view of my star schema by showing connection of my tables.



Next part is creating my cube. First, I had to run Cube wizard for configuration my tables. In this wizard, I had to choose only my fact table and rest of dim tables automatically connect with my fact table.



After apply correct configurations my cube is displaying like this.



After creating cubes, there is one configuration missing. Mistake is, in attribute section all dim tables selected with their primary key and other columns not selected. There for we have to manually drag and drop those columns into attribute section.



## **Creating Hierarchies**

In above image, you can see one hierarchy, which I have created. In below I have inserted other tables with their hierarchies.





#### **Date Wise**



#### Personal detail wise



After these configurations, in first time I am going to deploy my Cube. After the deploying deployment result showed like this.



After deploying the cube, now you can customize your hierarchies with your measures.



Then finally, I have created role, which give user or user group to access to my database.



Then I have deploy again to apply my new creation which is role section.



#### **Step 3: OLAP Operations using PowerPivot**

After the deployment, my deployed database send to SQL Server Management Studio. In there, again I have right clicked my cube and gone to brows section. In here, I have added again my hierarchies with measures.

#### Date hierarchy with measures



Then I have execute this table for turn into SQL script. After converting, it looks like this.



#### Age range hierarchy with measures



#### **SQL** script



After those steps, now I can stablish connection with cube using PowerPivot option in Excel.



Then I have created two queries by including SQL scripts, which I have implemented in management studio.

Query 1



Query 2

| Table Import Wizard                                                                                               |                                |                   |                    | ?          | ×      |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------------|------------|--------|
| Specify a MDX Query Type or paste a MDX query to se                                                               | elect data to imp              | ort from the sour | ce database.       |            |        |
| Friendly Query Name: Query2                                                                                       |                                |                   |                    |            |        |
| MDX Statement:                                                                                                    |                                |                   |                    |            |        |
| SELECT NON EMPTY                                                                                                  |                                |                   |                    |            | ^      |
| [Measures].[Selling Price], [Measure<br>Discount], [Measures].[Total Price]                                       | s].[Quantity], [Mi             | easures].[Coupan  | Discount], [Measur | es].[Other |        |
| ON COLUMNS, NON EMPTY                                                                                             |                                |                   |                    |            |        |
| {<br> [Dim Customer Demographics].[Cus                                                                            | tomer [d].[Custor              | mer Id].ALLMEME   | BERS * [Dim Custon | ner        |        |
| Demographics].[Hierarchy].[No Of C                                                                                | hildren].ÁLLMEN                | (BERS)            | •                  |            |        |
| DIMENSION PROPERTIES MEMB<br>MEMBER_UNIQUE_NAME ON RO<br>SELECT ( { [Dim Customer Dem<br>ON COLUMNS FROM [Assignm | WS FROM (<br>ographics].[Hiera |                   |                    |            |        |
| ON GOLOMINO THOM [Hoogram                                                                                         | oner moduli b m                | ,                 |                    |            |        |
|                                                                                                                   |                                |                   |                    |            |        |
|                                                                                                                   |                                |                   |                    |            |        |
|                                                                                                                   |                                |                   |                    |            | $\vee$ |
| Import measures as text                                                                                           |                                |                   | Validate           | Design.    |        |
| The MDX statement is valid.                                                                                       |                                |                   |                    |            |        |
|                                                                                                                   |                                |                   |                    |            |        |
|                                                                                                                   | < Back                         | Next>             | Finish             | Cance      | 1      |
|                                                                                                                   |                                |                   |                    |            |        |

After running that two queries, I have got those two tables in excel which is same as management studio tables.



|      | Dim Cu 🔽 | Dim Cus 🔽 | Dim Custom 🔽 | Dim Cust | Dim Cust 🔽 | Measures 🔽 | Measu 🔽 | MeasuresCo 🔽 | MeasuresOt 🔽 | MeasuresTot 🔽 | Add Column |
|------|----------|-----------|--------------|----------|------------|------------|---------|--------------|--------------|---------------|------------|
| 1 1  | .7       | 36-45     |              | 1        |            | 478737     | 3969    | 0            | -56826       | 662319        |            |
| 2 1  | .9       | 46-55     |              | 1        |            | 236128     | 3572    | 0            | -4794        | 328906        |            |
| 3 5  | i8       | 26-35     |              | 1        |            | 577512     | 724152  | 0            | -115986      | 484882554     |            |
| 4 6  | i6       | 46-55     |              | 1        |            | 378522     | 2295    | 0            | -34119       | 351645        |            |
| 5    | 75       | 26-35     |              | 1        |            | 12296      | 232     | 0            | -1450        | 10846         |            |
| 6 8  | 14       | 46-55     |              | 1        |            | 85896      | 984     | 0            | -7464        | 103584        |            |
| 7 1  | .38      | 36-45     |              | 1        |            | 66516      | 782     | 0            | -17526       | 63296         |            |
| 8 1  | .79      | 46-55     |              | 1        |            | 188354     | 1230    | 0            | -17138       | 190076        |            |
| 9 2  | 107      | 46-55     |              | 1        |            | 1200738    | 11752   | 0            | -83620       | 1160058       |            |
| 10 2 | 31       | 46-55     |              | 1        |            | 1867548    | 32262   | 0            | -598272      | 2661102       |            |
| 11 2 | 132      | 70+       |              | 1        |            | 283185     | 3780    | 0            | -37665       | 272880        |            |
| 12 2 | 169      | 46-55     |              | 1        |            | 232135     | 2465    | 0            | -31450       | 307105        |            |
| 13   | 179      | 18-25     |              | 1        |            | 485296     | 4200    | 0            | -37296       | 594888        |            |
| 14 2 | 98       | 70+       |              | 1        |            | 14630      | 220     | 0            | -6182        | 8448          |            |
| 15 3 | 13       | 46-55     |              | 1        |            | 70855      | 1073    | 0            | -20313       | 122174        |            |
| 16 3 | 148      | 26-35     |              | 1        |            | 46458      | 594     | 0            | -5148        | 56556         |            |
| 17 3 | 161      | 18-25     |              | 1        |            | 92092      | 1196    | 0            | -22880       | 78312         |            |

## **OLAP Operations**

#### **Drill Down**

For the hierarchy, I have selected (Year -> Month -> week of the month -> day). I have drilled down this hierarchy and added selling price, quantity, coupon discount and other discount as measures.

| Row Labels ▼ Sum of N | MeasuresSelling Price | Sum of MeasuresQuantity | Sum of MeasuresCoupan Discount | Sum of MeasuresOther Discount |
|-----------------------|-----------------------|-------------------------|--------------------------------|-------------------------------|
| <b>■2012</b>          |                       |                         |                                |                               |
| ⊕ February            | 128968933             | 64936310                | -554750                        | -20136589                     |
| ■January              |                       |                         |                                |                               |
| □1                    |                       |                         |                                |                               |
| Friday                | 727489                | 8682                    | 0                              | -121356                       |
| Monday                | 1513056               | 22699                   | -55575                         | -386872                       |
| Saturday              | 1066336               | 11779                   | -632                           | -277222                       |
| Thursday              | 1450838               | 19886                   | 0                              | -186767                       |
| Tuesday               | 698613                | 8187                    | -2850                          | -86493                        |
| Wednesday             | 743788                | 7493                    | 0                              | -155092                       |
| <b>±</b> 2            | 13147500              | 432884                  | -14966                         | -2390947                      |
| ⊕3                    | 15362743              | 1589773                 | -151173                        | -2476832                      |
| <b>±</b> 4            | 18439703              | 1331780                 | -84602                         | -2903129                      |
| ⊕5                    | 8405355               | 1606404                 | -26698                         | -1311434                      |
| <b>⊞ March</b>        | 80763198              | 76412686                | -350490                        | -14453759                     |
| Grand Total           | 271287552             | 146388563               | -1241736                       | -44886492                     |



In the other hand, I have selected (Age range -> marital status -> family size) and I have drilled down this hierarchy and added selling price, quantity, coupon discount and other discount as measures.

| Row Labels 🔻 Sum of Mea | asuresSelling Price | Sum of MeasuresQuantity | Sum of MeasuresCoupan Discount | Sum of MeasuresOther Discount |
|-------------------------|---------------------|-------------------------|--------------------------------|-------------------------------|
| ■18-25                  |                     |                         |                                |                               |
| 8                       |                     |                         |                                |                               |
| 1                       | 1915086             | 25301                   | 0                              | -313709                       |
| 2                       | 2870900             | 1975724                 | -4192                          | -367984                       |
| ■Married                |                     |                         |                                |                               |
| 3                       | 5633031             | 63813                   | 0                              | -402702                       |
| <b>■ Single</b>         |                     |                         |                                |                               |
| 1                       | 2020355             | 1027159                 | 0                              | -335208                       |
| 2                       | 2676876             | 1018428                 | -7881                          | -633141                       |
| 5+                      | 176958              | 1566                    | 0                              | -35032                        |
| <b>⊞26-35</b>           | 53472106            | 32675187                | -203518                        | -8782707                      |
| ⊞36-45                  | 80161775            | 51482348                | -263792                        | -12999197                     |
| <b>■46-55</b>           | 89382233            | 48880337                | -577907                        | -15215539                     |
| <b>■56-70</b>           | 15861306            | 3811464                 | -78478                         | -3333587                      |
| <b>⊞70</b> +            | 17116926            | 5427236                 | -105968                        | -2467686                      |
| Grand Total             | 271287552           | 146388563               | -1241736                       | -44886492                     |



#### Roll up

This OLAP operation is complete opposite of drill down operation. This use hierarchy with less drop downs. For the hierarchy, I have selected (Year -> Month). I have drilled down this hierarchy and added selling price, quantity, coupon discount and other discount as measures.

| Row Labels 🔻 Sum  | of MeasuresSelling Price | Sum of MeasuresQuantity | Sum of MeasuresCoupan Discount | Sum of MeasuresOther Discount |
|-------------------|--------------------------|-------------------------|--------------------------------|-------------------------------|
| <b>■2012</b>      |                          |                         |                                |                               |
| <b>⊞</b> February | 128968933                | 64936310                | -554750                        | -20136589                     |
| <b>■ January</b>  | 61555421                 | 5039567                 | -336496                        | -10296144                     |
| <b>⊞ March</b>    | 80763198                 | 76412686                | -350490                        | -14453759                     |
| Grand Total       | 271287552                | 146388563               | -1241736                       | -44886492                     |



#### Slicing

For the slicing, first we need to create one slice for graph and one slice for table. By using slice, we select one dim with column to get report. It will give result only for our specified selection.





#### **Dicing**

This is improvement of slicing. In here, we need to select more than one dimensions with columns. It will give exact specified value by searching deep.



Row Labels Sum of Measures Selling Price Sum of Measures Quantity Sum of Measures Coupan Discount

18-25
Single 4874189 2047153 -7881 -1003381
Grand Total 4874189 2047153 -7881 -1003381











#### **Pivot**

26

This is 2D representation of our table. You have define 2 sides only in here. And also, this can generate by slice operation. Then you can pivot this table.

#### Age range wise



#### Date wise





### **Step 4: SSRS Report**

Before creating SSRS reports, we have to create report analysis project in visual studio and then we have to define our analysis database when creating report. Then we have to go to query builder and then create table in there by using hierarchy and measurements and build SQL script of it.



Then you have to build matrix by selecting matrix option. And you have to add column names into suitable fields.



Finally, you can give report name for your report and finish it.

#### Report 1 -: Matrix report

#### **Design of matrix reports**



#### **Preview of those matrix reports**



#### Matrix reports on web portal



#### **Report 2: Reports with Multiple Parameters**

Before create report we have to define parameters. In upper line, you can see my parameters.

#### **Design**



#### **Preview**



#### Web portal view



## After applying some parameter values



#### **Report 3: Drill-Down Report**

Using drill down hierarchies (month -> week of month -> day) we will create these reports.

#### **Design**



#### **Preview**



#### Web portal view



**Report 4: Drill Through** 

In these types when we click one report it should take us into another report. There is parent report and child report.

#### **Design - Parent**



#### Design - child



#### **Preview - Parent**



#### Preview - child



#### Web portal view - Parent



After clicking on the customer ID, it will take us to all transaction report

#### Web portal view - child



#### After applying all reports my SQL server Reporting Service is looks like this



#### Part 2 – Power BI

#### **Audience**

This all thing based on customer credit card transaction. People who are age is more than or equal to 18 can have credit card and do transaction. Above 18 years, olds will be my audience. In addition, people who do not have our credit card service also our audience.

## The story, which is going to tell to audience

I am going prove that we are the one who give more discounts when customer purchase items from sales using our credit card. In addition, our credit card is the most used credit card in every month. I am going to prove those by using graphs.

Before prove that we need to import out data warehouse database into our Power BI. After importing database, we have select suitable tables for this experiment.



Then we can show our table connectivity by selecting table connect icon.



## KPI creation and reason of selecting it

In KPI creation, I have select sample of all customers. There are huge number of customers do transaction using our credit cards. There for I created KPI, which is customer, ID must between 50 and 1. For each ID we can see price, customer had to pay and amount of discounts, which they have.



After that I have add that graph into my workspace and in workspace, I have created another 3 charts for understanding total customer transaction for given time period and total of discounts given in particular times.



#### **Dashboard**



## Inside of my dashboard with all charts



# End.