

Aprendizagem 2022

Lab 3: Bayesian learning

Practical exercises

p(A, B, C, D)p(D|A, B, C)

I. Probability theory

1. Consider the following registry where an experiment is repeated six times and four events (A, B, C and D) are detected.

Considering frequentist estimates, compute:

Considering frequentist estimates, compute:
p(A)
p(A,B)
p(B A)
p(A, B, C)
p(A B,C)

	Α	В	C	D
<i>X</i> 1	1	1	0	0
χ_2	1	1	1	0
χ_3	0	0	0	1
X4	0	0	0	1
<i>X</i> 5	0	0	0	0
<i>X</i> 6	0	0	0	0

class

1

1

1

- 2. Considering the following two-dimensional measurements {(-2,2),(-1,3),(0,1),(-2,1)}.
 - a) What are the maximum likelihood parameters of a multivariate Gaussian distribution for this set of points?
 - b) What is the shape of the Gaussian? Draw it approximately using a contour map.

II. Bayesian learning

 χ_1

 $\begin{array}{ccc} x_2 & 1 \\ x_3 & 0 \end{array}$

 χ_6

 χ_4 0

1

0

1

1 1 1

1

0 0

0

0

0

1 1

1 1

0

0

1

0

- 3. Consider the following dataset where:
 - 0: False and 1: Truey1: Fast processingy2: Decent Batteryy3: Good Camera
 - y4: Good Look and Feel
 - y5: Easiness of Use
 - class: iPhone

And the query vector $x_{ m new}$	=	[11111]	$]^T$
-----------------------------------	---	---------	-------

a) Using Bayes' rule, without making any assumptions, compute the posterior probabilities for the query vector. How is it classified?

- b) What is the problem of working without assumptions?
- c) Compute the class for the same query vector under the naive Bayes assumption.
- d) Consider the presence of missings. Under the same naive Bayes assumption, how do you classify $x_{\text{new}} = [1? \ 1? \ 1]^T$

4. Consider the following dataset

	weight (kg)	height (cm)	NBA player
<i>x</i> ₁	170	160	0
χ_2	80	220	1
χ_3	90	200	1
X4	60	160	0
<i>X</i> 5	50	150	0
<i>x</i> ₆	70	190	1

And the query vector $x_{\text{new}} = [100 \ 225]^T$

- a) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians
- b) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods
- **5.** Assuming training examples with m Boolean features.
 - a) How many parameters do you have to estimate considering features are Boolean and:
 - i. no assumptions about how the data is distributed
 - ii. naive Bayes assumption
 - b) How many parameters do you have to estimate considering features are numeric and:
 - iii. multivariate Gaussian assumption
 - iv. naive Bayes with Gaussian assumption

Programming quests

Resources: Classification and Evaluation notebooks available at the course's webpage

- 6. Reuse the **sklearn** code from last lab where we learnt a decision tree in the *breast.w* data:
 - a) apply the naïve Bayes classifier with default parameters
 - b) compare the accuracy of both classifiers using a 10-fold cross-validation
- 7. Consider the accuracy estimates collected under a 5-fold CV for two predictive models M1 and M2, acc_{M1} =(0.7,0.5,0.55,0.55,0.6) and acc_{M2} =(0.75,0.6,0.6,0.65,0.55).

Using **scipy**, assess whether the differences in predictive accuracy are statistically significant. *Resource*: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html