Computer Architecture

Trần Trọng Hiếu

Information Systems Department
Faculty of Information Technology
VNU - UET
hieutt@vnu.edu.vn

Introduction

The Computer Revolution

3

- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

- Desktop computers/ Handheld devices
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

Components of a Computer

- Same components for all kinds of computer
 - Desktop, server, embedded

Input/output includes

- User-interface devices
 - Display, keyboard, mouse
- Storage devices
 - Hard disk, CD/DVD, flash
- Network adapters
 - For communicating with other computers

Anatomy of a Computer

Output device

Network cable

Input device

Input device

Opening the Box

The Processor

AMD Barcelona: 4 processor cores

RAM (Random Access Memory)

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory

Memory Hierarchy Levels

Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth

Inside structure

Abstractions

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

What is Computer Architecture? Easy Answer

Computer Architecture = Instruction Set Architecture + Machine Organization

The Instruction Set: a Critical Interface

Instruction Set Architecture

- A very important abstraction:
 - interface between hardware and low-level software
 - standardizes instructions, machine language bit patterns, etc.
 - advantage: allows different implementations of the same architecture
 - disadvantage: sometimes prevents adding new innovations
- Modern instruction set architectures:
 - 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance

Below Your Program

- Application software
 - Written in high-level language

- Compiler: translates HLL code to machine code
- Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

Levels of Program Code

High-level language program (in C)

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

Assembly language program (for MIPS)

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}


```
C compiler
```

wap: muli \$2, \$5,4 add \$2, \$4,\$2 lw \$15, 0(\$2) lw \$16, 4(\$2) sw \$16, 0(\$2) sw \$15, 4(\$2) ir \$31

Binary machine language program (for MIPS)

Quiz?

- How can computers play audio files?
- How can they understand characters?

7/3/2019 21