Riemannian Geometry Solution Set

A.N.

September 19, 2023

MAT464 AX

Problem 1. 1.1

The antipodal mapping is linear, so its tangent mapping df is itself. At any $p \in S^n$, we compute that

$$\langle \mathfrak{u}, \mathfrak{v} \rangle_{\mathfrak{p}} = \langle -\mathfrak{u}, -\mathfrak{v} \rangle_{\mathfrak{p}} = \langle dA_{\mathfrak{p}}(\mathfrak{u}), dA_{\mathfrak{p}}(\mathfrak{v}) \rangle_{\mathfrak{p}}.$$

On $\mathbb{R}P^p$ we define a riemannian metric by:

$$\langle \mathfrak{u}, \mathfrak{v} \rangle_{\pi(\mathfrak{p})} = \langle \mathfrak{u}, \mathfrak{v} \rangle_{\mathfrak{p}}.$$

By above, this is well defined. We now claim that the natural projection is an isometry. Let $p \in S^n$, take $p \ni U_i = \{x \in S_n : x_i \neq 0\}$. Then $A(U_i)$ is a coordinate chart of $\mathbb{R}P^n$. Therefore, under the natural projection, on U_i we compute that

$$\langle d\pi_p(u), d\pi_p(\nu)\rangle_{[p]} = \langle \pm u, \pm \nu\rangle_{[p]} = \langle u, \nu\rangle_p.$$

Problem 2. 1.2

Define the riemannian metric on \mathbb{T}^n as:

$$\langle \mathfrak{u}, \mathfrak{v} \rangle_{\pi(\mathfrak{x})} = -\langle \mathfrak{u}, \mathfrak{v} \rangle_{\mathfrak{x}}.$$

The following computation verifies that π is locally an isometry:

$$\langle d\pi(u), d\pi(\nu) \rangle_{\pi(x)} = \langle iu, i\nu \rangle_{\pi(x)} = -\langle u, \nu \rangle_{\pi(x)} = \langle u, \nu \rangle_x$$

We now claim that \mathbb{T}^n is isometric with the flat torus i.e. \mathbb{R}^n/Γ , where Γ is a full rank lattice, generated by $2\pi e_i$, where $\{e_i\}$ is the standard basis of \mathbb{R}^n . The riemannian metric on the flat torus is given by the product metric on $S^1 \times \cdots \times S^1$, so for any vectors $\mathfrak{u}, \mathfrak{v} \in T_x \mathbb{R}^n/\Gamma$, we have that

$$\langle u, v \rangle_x = \sum_{i=1}^n \langle u_i, v_i \rangle = \sum_{i=1}^n u_i \overline{v_i} = \langle u, v \rangle_{\pi(x)}.$$

Problem 3. 1.3

Let $f: \mathbb{T}^n \to \mathbb{R}^{2n}$ be defined by $f(u_1 + i\nu_1, \dots, u_n + i\nu_n) = (u_1, \nu_1, \dots, u_n, \nu_n)$. We claim that this is an isometric immersion of \mathbb{T}^n into \mathbb{R}^{2n} . This map is clearly a diffeomorphism, we will show that it is an isometry of manifolds. We compute that

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{x}} = \sum_{i=1}^{2n} \langle \mathbf{u}_i, \mathbf{v}_i \rangle = \langle \mathrm{df}_{\mathbf{x}}(\mathbf{u}), \mathrm{df}_{\mathbf{x}}(\mathbf{v}) \rangle_{f(\mathbf{x})}$$

Problem 4. 1.4

(a)