Praca domowa VI - Analiza Matematyczna I.1

Zadanie 1. Zbadać zbieżność następujących szeregów:

a)
$$\sum_{n=1}^{\infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right)$$
,

b)
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{5}\right)^n,$$

c)
$$\sum_{n=1}^{\infty} \sqrt[n]{\frac{1}{n^{n+1}}}$$
,

d)
$$\sum_{n=1}^{\infty} \frac{1}{\ln n!}.$$

Zadanie 2. Dowieść, że jeżeli $\lim_{n\to\infty} na_n \neq 0$, to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.

Zadanie 3. Podać przykład szeregu $\sum_{n=1}^{\infty}a_{n}<\infty$ takiego, że

a)
$$\sum_{n=1}^{\infty} a_n \ln n = \infty,$$

b)
$$\sum_{n=1}^{\infty} a_n \ln(\ln n) = \infty$$

Zadanie 1*. Niech $(a_n)_{n\geq 1}$ będzie ciągiem liczb dodatnich . Udownodnić nierówność

$$\sum_{n=1}^{\infty} \sqrt[n]{a_1 a_2 \dots a_n} < e \sum_{n=1}^{\infty} a_n.$$

Zadanie 2*. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} - \sqrt[3]{n^3 + 1} \right).$$

Zadanie 3*. Wykazać, że jeżeli $\sum_{n=1}^{\infty} a_n < \infty$ wówczas istnienieje taki $\sum_{n=1}^{\infty} b_n < \infty$, że $\lim_{n \to \infty} \frac{b_n}{a_n} = 0$.