# Machine Learning Fairness

#### **Group Member:**

**Gexin Chen** 

**Noah Love** 

Rhea Sablani

Jiachen Liu

**Xubo Wang** 

**Yixuan Zhang** 

#### **Evaluation Metrics**

- Accuracy (Proportion of Correct Prediction)
- Individual Fairness (Similar Individuals Receive Similar Classification)
- Group Fairness (Similar or Equivalent Classification Distribution)
- Calibration (Difference of Accuracy Between Groups)

## Algorithms

- 1. Learning Fair Representations
- 2. Maximizing Accuracy under Fairness Constraints (C-SVM & C-LR)
- 3. Maximizing Fairness under Accuracy Constraints (gamma & fine-gamma)

#### **Learning Fair Representation**



A here is a hyper-parameter controlling the trade-off between accuracy and fairness.

#### Maximize Accuracy under Fairness Constraint

C-SVM & C-LR

minimize 
$$L(\boldsymbol{\theta})$$
  
subject to  $\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}}) d_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq \mathbf{c},$   
 $\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}}) d_{\boldsymbol{\theta}}(\mathbf{x}_i) \geq -\mathbf{c},$ 

Letter c here is a hyper-parameter controlling the trade-off between accuracy and fairness.

## Maximize Fairness under Accuracy Constraint

gamma & fine-gamma

minimize 
$$\left|\frac{1}{N}\sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}}) d_{\boldsymbol{\theta}}(\mathbf{x}_i)\right|$$
 subject to  $L(\boldsymbol{\theta}) \leq (1 + \gamma)L(\boldsymbol{\theta}^*),$ 

Gamma here is a hyper-parameter controlling the trade-off between accuracy and fairness.

#### Evaluation

|                        | A1 (LFR) | A2 (C-SVM &<br>C-LR) | A3 (gamma & fine-gamma) |
|------------------------|----------|----------------------|-------------------------|
| Accuracy               | 53.66%   | 66%                  | 56.39%                  |
| Calibration            | 11.77%   | 4.94%                | 1.38%                   |
| Protected<br>Accuracy  | 60.69%   | 63.96%               | NA                      |
| Non-protected Accuracy | 48.91%   | 68.91%               | NA                      |
| Individual<br>Fairness | 0.8118   | NA                   | NA                      |
| p-rule                 | NA       | NA                   | 80%                     |

# Hyper-Tuning Visualization



Negative Correlation Between Fairness and Accuracy

#### Reference

- Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. Fairness Constraints: Mechanisms for Fair Classification. https://arxiv.org/abs/1507.05259
- Rjcbard Zemel, Yu Wu, Kevin Swersky, and Toniann Pitassi. Learning Fair Representations. http://proceedings.mlr.press/v28/zemel13.pdf