FACULTATEA DE MATEMATICĂ

Str. Academiei nr. 14, tel. 314.35.08

Probe de concurs – pentru toate specializările – la alegere două din patru materii propuse:

- ➤ Algebră,
- Elemente de analiză matematică,
- ➤ Geometrie şi Trigonometrie,
- Informatică.

Concurența în anii anteriori (toate specializările):

- ➤ 2007 1,82 candidați/loc (matematică); 5,73 candidați/loc (informatică)
- ➤ 2006 2,41 candidați/loc (matematică); 6,456 candidați/loc (informatică)
- ➤ 2005 4,615 candidaţi/loc
- ➤ 2004 3,04 candidaţi/loc
- \geq 2003 3,29 candidati/loc
- \geq 2002 3,24 candidati/loc
- \geq 2001 1,04 candidati/loc
- \geq 2000 1,12 candidati/loc

Domeniul de licență "Matematică"

Prima medie/ultima medie:

- > 2007 9,96/5,22 (buget); 10,00/5,39 (taxă)
- > 2006 9,97/5,05 (buget); 10,00/6,51 (taxă)
- > 2005 9,97/5,08 (buget); 9,92/6,05 (taxă); 10,00/7,37 (ID)
- ➤ 2004 9,93/8,83 (prima sesiune zi);7,48 (prima sesiune taxă); 9,23/6,78 (a doua sesiune)
- \geq 2003 9,87/6,66 (zi); 9,42/6,50 (taxă)
- \geq 2002 9,63/8,24
- \geq 2001 9,77/5,03
- \geq 2000 9,35/5,00

Domeniul de licență "Informatică"

Prima medie/ultima medie:

- > 2007 9,98/8,03 (buget); 9,75/5,13 (taxă); 10,00 / 7.00 (ID)
- > 2006 10,00/7,35 (buget); 9,84/5,13 (taxă)
- > 2005 10,00/5,74 (buget); 9,62/5,00 (taxă); 9,70/7,00 (ID)
- ➤ 2004 9,99/9,5 (prima sesiune zi); 8,98/5,36 (prima sesiune taxă); 9,87/5,28 (a doua sesiune)
- \geq 2003 9,61/7,54 (zi); 7,52/5,25 (taxă)
- > 2002 9,98/9,17
- \geq 2001 9,86/8,74
- > 2000 9,07/7,12

Domeniul de licență "Matematici aplicate"

Prima medie/ultima medie:

- > 2004 (nu mai există)
- > 2003 9.87/6.66 (zi); 9.42/6.50 (taxă)
- \geq 2002 9,10/8,23

Domeniul de licență "Matematică-Mecanică"

Prima medie/ultima medie:

- > 2004 (nu mai există)
- > 2003 9,87/6,66 (zi); 9,42/6,50 (taxă)
- \geq 2002 8,92/8,19
- \geq 2001 8,36/5,50
- \geq 2000 7,04/5,40

Domeniul de licență "Matematică-Informatică"

Prima medie/ultima medie:

- 2004 10/9,05 (prima sesiune zi);
 9,61/7,93 (prima sesiune taxă);
 9,28/5,57 (a doua sesiune)
- > 2003 9,76/7,02 (zi); 8,39/5,90 (taxă)
- > 2002 9,97/8,93
- > 2001 9,98/8,41
- \geq 2000 9,14/6,94

Domeniu de licență MATEMATICĂ

- I.1. Fie polinomul cu coeficienți reali $f = x^4 4x^3 + ax^2 + bx + c$.
- a) Să se determine a, b şi c astfel încât restul împărțirii lui f la x-1 să fie -2, iar polinomul f să aibă rădăcina 1+i.
 - b) Pentru valorile lui a, b și c de la punctul a), să se afle rădăcinile polinomului.

2. Fie mulțimea
$$G = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$
.

Să se arate că:

- a) G împreună cu înmulțirea matricelor este grup comutativ.
- b) Grupul aditiv (Z,+) este izomorf cu grupul G de la punctul a).
- II.1. Fie $a \not si b$ două numere reale. Se definește funcția $f : R \to R$, prin

$$f(x) = \begin{cases} ax^{3} + b, dacă \ x < 0 \\ \frac{a+b-1}{2}, dacă \ x = 0 \\ bx + a - 1, dacă \ x > 0 \end{cases}$$

- a) Să se arate că f este continuă dacă și numai dacă b = a 1.
- b) Să se arate că f este derivabilă dacă și numai dacă a=1 *și* b=0 .
- 2. Se consideră funcțiile $u: [-1,1] \to R$, dată prin $u(x) = x^2 x + 1$ și $v: [-1,1] \to R$, dată prin v(x) = 1. Se definește funcția $f: [-1,1] \to R$ prin $f(x) = \max (u(x), v(x))$.
 - a) Să se arate că f este continuă.
 - b) Să se calculeze $\int_{-1}^{1} f(x) dx$.
- III.1. Două cercuri $C(o_1, r_1)$ și $C(o_2, r_2)$ sunt tangente exterior. Să se determine lungimea tangentelor exterioare.
- 2. Fie ABCD un pătrat circumscris unui cerc de rază 1. Să se arate că, pentru orice punct P situat pe cerc, are loc relatia $PA^2 \cdot PC^2 + PB^2 \cdot PD^2 = 10$.
- IV.1. Fiecărui număr natural strict pozitiv K îi asociem valoarea impar (K) care reprezintă cel mai mare divizor impar al lui K. Pentru numerele naturale strict pozitive $a_1, a_2, ..., a_n$ date, se cere să se tipărească:
 - a) Valoarea impar (a_1) .
- b) Valoarea 1, respectiv 0, după cum numerele impar (a_1) , impar (a_2) , ..., impar (a_n) sunt sau nu în ordine crescătoare.
 - c) Numerele $a_1, a_2, ..., a_n$, în ordinea crescătoare a valorilor atașate lor prin funcția impar.
- 2. Se dau n puncte în plan, prin coordonatele lor reale (x_i, y_i) , i = 1, 2, ..., n). Se cere să se tipărească:
 - a) Raza minimă a discului centrat în (x_1, y_1) , care conține toate celelalte n-1 puncte.
- b) Coordonatele centrului şi raza discului de rată minimă centrat într-unul din puncte şi care le conține pe toate celelate.

Pentru cel puțin unul dintre subpuncte se va scrie codul în Pascal, C sau C++, pentru celelalte fiind suficient ca soluția să fie redactată în pseudocod.

Timp de lucru: 3 ore.

Barem de coreactare:

Algebră (I)	
I. Oficiu	1 p
1.a) Restul împărțirii lui f la $x-1$ este -2 , $a+b+c=1$	1 p

Relațiile care se obțin din faptul că $1+i$ este rădăcină a lui f	2 p
a = 5, b = -2, c = -2	1 p
b) rădăcinile sunt: $1 \pm i$, $1 \pm \sqrt{2}$	1 p
2.a) parte stabilă	
asociativitate	0,5 p
comutativitate	0,5 p
element neutru I_2	0,5 p
element simetric $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$	0,5 p
b) $f: \mathbb{Z} \to G$, $f(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$	0,5 p
f morfism	0,5 p
f bijecție	0,5 p
Total 10 p	· 4

Proba scrisă la Analiză matematică

I. Oficiu	_
$b = a - 1 \Rightarrow f$ continuă în 0	_
f continuă în $0 \Rightarrow b = a - 1$	
b) derivabilitatea în $x \neq 0$	0,5 p
$a=1$ și $b=0 \Rightarrow f$ derivabilă în 0	1 p
f derivabilă în $0 \Rightarrow a = 1$ și $b = 0$	1 p
	_
2. explicitarea funcției f	2 p
a)b)	1 p
a)	1 p

Figura	-
$T_1, T_2 = O_1 T \dots$	1 p
$O_1 T = \sqrt{(r_1 + r_2)^2 - (r_2 - r_1)^2} = 2\sqrt{r_1 r_2}$	1 p
2. Figura.	
Ecuatia cercului.	1 p
Finalizare	3 p
Total 10 p	

Domeniul de licență INFORMATICĂ

I.1. Fie ecuația $x^3 - x^2 + 5x + 2 = 0$, cu rădăcinile x_1, x_2, x_3 . Să se calculeze:

a)
$$x_1^2 + x_2^2 + x_3^2$$
 şi $x_1^4 + x_2^4 + x_3^4$.

b) Determinantul
$$\begin{vmatrix} x_1^2 & x_2^2 & x_3^2 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}$$
.

2. Fie multimea
$$G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in Q, a^2 + b^2 = 1 \right\}.$$

Să se arate că:

a) G împreună cu înmulțirea matricelor este grup comutativ.

b) Dacă
$$a,b \in Q$$
 și $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, atunci $A \in G$ dacă și numai dacă există $r \in Q$ astfel încât

$$a = \frac{2r}{1+r^2}$$
 și $b = \frac{1-r^2}{1+r^2}$.

c) Grupul G are o infinitate de elemente.

II.1. Pentru a > 0, considerăm șirul $(x_n)_{n \ge 1}$ descris astfel: $x_1 = a$ și $x_{n+1} = x_n^2 + x_n$, pentru orice $n \ge 1$.

- a) Să se arate că șirul $(x_n)_{n\geq 1}$ este crescător.
- b) Să se arate că $\lim_{n\to\infty} x_n = \infty$.

c) Să se arate că
$$\frac{1}{1+x_k} = \frac{1}{x_k} - \frac{1}{x_{k+1}}$$
, pentru orice $k \ge 1$.

d) Să se calculeze
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{1+x_k}$$
.

2.a) Să se arate că
$$1 \le \sin x + \cos x \le \sqrt{2}$$
 , pentru orice $x \in \left[o, \frac{\pi}{2}\right]$.

b) Să se calculeze
$$\lim_{n\to\infty} \frac{1}{2^n} \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^n dx$$
.

III.1. Fie ABC un triunghi echilateral înscris într-un cerc. Să se arate că, pentru orice punct $M \in B\hat{C}$, avem MA = MB + MC.

2. Fie ABCD un pătrat de latură 2. Să se determine punctele P din interiorul său de pe laturile pătratului, cu proprietatea că suma $PA^2 + PB^2 + PC^2 + PD^2$ este maximă și, respectiv, minimă.

IV.1. Se consideră segmentele închise $[a_i, b_i]$, i = 1, 2, ..., n cu extremitățile numere întregi.

- a) Să se tipărească valoarea 1, respectiv 0, după cum intersecția $[a_1, b_1] \cap [a_2, b_2]$ este sau nu vidă.
- b) Să se tipărească valoarea 1, respectiv 0, după cum intersecția celor n segmente este sau nu vidă.
- c) În ipoteza că intersecția segmentelor este nevidă, să se tipărească extremitățile segmentului care constituie reuniunea celor n segmente.

- 2. Un arbore cu vârfurile etichetate cu 1, 2, ..., n este bine determinat de tabloul TATA cu n elemente, unde TATA(i) reprezintă vârful care are printre descendenți vârful i sau este 0, dacă i este rădăcina arborelui. Se cer următoarele:
- a) Dat fiind un tablou TATA, asociat unui arbore, să se determine frunzele arborelui; pentru fiecare frunză, să se determine drumul de la ea la rădăcină și drumul de la rădăcină la ea.
- b) Pentru un tablou dat TATA ale cărui elemente aparțin mulțimii $\{0, 1, ..., n\}$, să se determine dacă există un arbore al cărui tablou asociat este tocmai TATA.

Pentru cel puţin unul dintre subpuncte, se va scrie codul în Pascal, C sau C++, pentru celelalte fiind suficient ca soluția să fie redactată în pseudocod.

Timp de lucru: 3 ore.

Barem de coreactare:

Algebră	1
I. Oficiu	
$1.a)x_1^2 + x_2^2 + x_3^2 = -9$	
$x_1^4 + x_2^4 + x_3^4 = 23$	1 p
b) Dezvoltarea determinantului în funcție de x_1, x_2, x_3	1 p
Determinantul este – 25	1 p
2.a) parte stabilă	
asociativitate	0,5 p
comutativitate	0,5 p
element neutru I_2	0,5 p
2	•
element simetric $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$	0.5 p
$\begin{pmatrix} -b & a \end{pmatrix}$ $\begin{pmatrix} b & a \end{pmatrix}$	
b),,⇒"	1 p
b) "⇒" "←"	0,5 p
c) G are o infinitate de elemente (de exemplu, scriem $b = 1 - \frac{1}{1 + 1}$	$\frac{2}{r^2}$ 0,5 p
c) G are o infinitate de elemente (de exemplu, scriem $b=1-\frac{1}{1+1}$ Total 10 p	$\frac{2}{r^2}$ 0,5 p
	$\frac{2}{r^2}$ 0,5 p
Total 10 p	
Total 10 p Analiză matematică	1 p
Total 10 p Analiză matematică I. Oficiu	1 p 1 p 1 p
Total 10 p Analiză matematică I. Oficiu	1 p 1 p 1 p 1 p
Total 10 p Analiză matematică I. Oficiu	1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu 1.a) b) c) d) 2.a) b) Total 10 p Geometrie I. Oficiu	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu 1.a) b) c) d) 2.a) b) Total 10 p Geometrie I. Oficiu 1.	1 p1 p1 p1 p1 p1 p1 p
Total 10 p Analiză matematică I. Oficiu 1.a) b) c) d) 2.a) b) Total 10 p Geometrie I. Oficiu	1 p1 p1 p1 p1 p1 p1 p

74

