(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

PCT

(10) International Publication Number WO 02/086114 A1

- (51) International Patent Classification7: C12N 9/02, A21D 8/04, C12P 7/64, C12N 15/63, C11D 3/386
- (21) International Application Number: PCT/DK02/00251
- (22) International Filing Date: 18 April 2002 (18.04.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 2001 00631

20 April 2001 (20.04.2001) DK

- (71) Applicant (for all designated States except US): NOVOZYMES A/S [DK/DK]; Krogshoejvej 36, DK-2880 Bagsvaerd (DK).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SUGIO, Akiko [JP/US]; 1604 Hillcrest drive Apt. U-21, Manhattan, KS 66502 (US). TAKAGI, Shinobu [JP/JP]; Maehara-nishi 1-31-1-708, Funabashi, Chiba 274-0825 (JP).
- (74) Common Representative: NOVOZYMES A/S; Patents, Krogshoejvej 36, DK-2880 Bagsvaerd (DK).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/086114 AJ

(54) Title: LIPOXYGENASE

(57) Abstract: The inventors have found a novel fungal lipoxygenase from Magnaporthe salvinii and determined its sequence. They have sequenced the gene and cloned it into E. coli and deposited the clone. Oligonucleotide probes based on the sequence information are useful for screening a eukaryotic library to obtain a lipoxygenase. The lipoxygenase is useful in baking and in a detergent.

LIPOXYGENASE

FIELD OF THE INVENTION

The present invention relates to a lipoxygenase and a polynucleotide encoding it.

5 BACKGROUND OF THE INVENTION

Lipoxygenase (EC 1.13.11.12) is an enzyme that catalyzes the oxygenation of polyunsaturated fatty acids such as linoleic acid, linolenic acid and arachidonic acid, which contain a *cis,cis*-1,4-pentadiene unit and produces hydroperoxides of these fatty acids. The enzyme is widely distributed in plants and animals. A number of lipoxygenase genes have been isolated from various plant and mammalian sources.

On the other hand, only a limited number of microbial lipoxygenases are known, and no lipoxygenase gene of microbial origin has been described. Su and Oliw, J. Biological Chemistry, 273 (21), 13072-79 (1998) describe a lipoxygenase from *Gaeumannomyces graminis*.

15

20

25

10

SUMMARY OF THE INVENTION

The inventors have found a novel fungal lipoxygenase and determined its sequence, which can be used for the production of the enzyme in industrial scale. They have cloned the gene into *E. coli* and deposited the clone.

Accordingly, the invention provides a lipoxygenase which is:

- a) a polypeptide encoded by a DNA sequence cloned into plasmid pUC19 present in Escherichia coli deposited as DSM 14139,
- b) a polypeptide having an amino acid sequence as the mature peptide shown in SEQ ID NO: 1, or which can be obtained therefrom by substitution, deletion, and/or insertion of one or more amino acids,
 - c) an analogue of the polypeptide defined in (a) or (b) which:
 - i) has at least 50 % homology with said polypeptide,
 - ii) is immunologically reactive with an antibody raised against said polypeptide in purified form,

30

35

- iii) is an allelic variant of said polypeptide, or
- d) a polypeptide encoded by DNA that hybridizes under low stringency conditions with a complementary strand of
- i) the DNA sequence cloned into plasmid pUC19 present in Escherichia coli deposited as DSM 14139 or
- ii) the DNA sequence of SEQ ID NO: 1 encoding the mature polypeptide or a subsequence thereof having at least 100 nucleotides.

The invention also provides a polynucleotide which comprises:

10

15

25

30

35

- a) the partial DNA sequence encoding a mature lipoxygenase cloned into a plasmid present in Escherichia coli DSM 14139.
- b) the partial DNA sequence encoding a mature lipoxygenase shown in SEQ ID NO: 1,
- c) an analogue of the sequence defined in a) or b) which encodes a lipoxygenase and
 - i) has at least 60 % homology with said DNA sequence, or
- ii) hybridizes at high stringency with a complementary strand of said DNA sequence or a subsequence thereof having at least 100 nucleotides,
 - iii) is an allelic variant thereof, or
 - d) a complementary strand of a), b) or c).

Other aspects of the invention provide a nucleic acid construct and a recombinant expression vector comprising the polynucleotide, a recombinant host cell comprising the construct or the vector, and a method of producing a lipoxygenase by cultivating the cell. Further, the invention provides a method of screening a eukaryotic library to obtain a lipoxygenase and an oligonucleotides probe useful for screening. Finally, the invention provides use of the lipoxygenase in baking and in a detergent.

DETAILED DESCRIPTION OF THE INVENTION

20 Genomic DNA source

A lipoxygenase gene of the invention may be derived from a filamentous fungus, e.g. an Ascomycota, particularly Magnaporthaceae, such as a strain of *Magnaporthe*, particularly *Magnaporthe salvinii* Cattaneo (*Mycologia* 64 (1), 110 (1972)). The species is also known under the synonyms *Curvularia sigmoidea*, *Helminthosporium sigmoideum*, *Leptosphaeria salvinii*, *Nakataea sigmoidea*, *Sclerotium oryzae and Vakrabeeja sigmoidea*. An example is the strain *M. salvinii* IFO 6642.

Alternatively, the gene may be isolated from *Pyricularia*, e.g. *P. oryzae* or *P. grisea*, e.g. *P. oryzae* IFO 30517. The IFO strains are available on commercial terms from Institute for Fermentation, Osaka (IFO), 17-85, Juso-honmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.

The lipoxygenase gene may be isolated from these organisms using probes designed on the basis of the DNA sequences in this specification.

A strain of *Escherichia coli* containing a lipoxygenase gene from *M. salvinii* IFO 6642 was deposited by the inventors under the terms of the Budapest Treaty with the DSMZ - Deutsche Sammlung von Microorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig DE, Germany. The deposit date was 28 February 2001, and the accession number was DSM 14139.

10

15

20

25

30

35

Production of lipoxygenase by cultivation of transformant

The lipoxygenase of the invention may be produced by transforming a suitable host cell with a DNA sequence encoding the lipoxygenase, cultivating the transformed organism under conditions permitting the production of the enzyme, and recovering the enzyme from the culture.

The host organism may be a eukaryotic cell, in particular a fungal cell, such as a yeast cell or a filamentous fungal cell, e.g. a strain of *Aspergillus*, *Fusarium*, *Trichoderma* or *Saccharomyces*, particularly *A. niger*, *A. oryzae*, *F. graminearum*, *F. sambucinum*, *F. cerealis* or *S. cerevisiae*. The production of the lipoxygenase in such host organisms may be done by the general methods described in EP 238,023 (Novo Nordisk), WO 96/00787 (Novo Nordisk) or EP 244,234 (Alko).

Properties of LOX

The lipoxygenase of the invention is able to oxidize a wide range of substrates containing a *cis-cis*-pentadienyl moiety. Thus, it acts on polyunsaturated fatty acids such as linoleic acid (18 carbon atoms, 2 double bonds), linolenic acid (18:3), arachidonic acid (20:4), eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6). It also acts on substrates other than fatty acids, such as methyl linoleate and probably also triglycerides. The enzyme has a very low Michaelis constant (K_M) for linoleic acid and a high specificity (V_{max}/K_M) towards this substrate.

The lipoxygenase from *M. salvinii* is a 9-lipoxygenase, i.e. it oxidizes the double bond between carbon atoms 9 and 10 in linoleic acid and linolenic acid.

The lipoxygenase from *M. salvinii* has optimum activity around pH 7, and it is highly active over a broad pH range 3-12, having more than 50 % of optimum activity in the range pH 6-11. It is stable after overnight incubation at pH 5-11.

The native lipoxygenase from *M. salvinii* has optimum activity at 50-60°C. It is quite active at 40-60°C, and the activity begins to decline at 70 °C. The lipoxygenase is stable after 30 minutes incubation at pH 7 at temperatures up to 50°C.

The reaction rate for recombinant lipoxygenase (expressed in *A. oryzae*) increases nearly ten times at the optimal temperature for catalysis compared to the rate obtained at room temperature. The maximum reaction rate is obtained at 67.5°C. A steep decrease in rate constant is seen above the temperature optimum. It is believed that glycosylation renders the recombinant enzyme more stable towards heat than the wild-type enzyme.

The recombinant lipoxygenase is quite stable at temperatures up to 50°C for at least one hour. The activity drops in a linear fashion at higher temperatures between 50-60°C, and no activity is detected after incubations above 60°C for one hour. No activity loss is detected during incubation at temperatures below 45°C.

PCT/DK02/00251

Frozen solutions of the lipoxygenase lose some activity during storage. With addition of 10 % glycerol there is no discernible activity loss after two weeks storage at -20°C, and the enzyme survived repeated cycles of thaw-freeze without loss of activity.

The lipoxygenase of the invention has good stability in the presence of anionic surfactants. Thus, the lipoxygenase from *M. salvinii* is stable in the presence of 400 ppm of LAS (linear alkyl-benzene sulfonate).

Use of lipoxygenase

5

10

15

20

25

30

35

The lipoxygenase can be used for green flavor synthesis, e.g. nonenal from 9-hydoperoxide of linolenic acid. The synthesis may be done in analogy with Whitehead et al.1995, Cereal foods world 40(4), 193-197 and US 4769243.

The lipoxygenase can also be used for plant hormone synthesis as described in JP H11-29410.

Also the lipoxygenase is a good oxidant of carotenoids, so it can be used for bleaching of foodstuffs such as flour, oil or marine food including carotenoids or carotenoid-like pigments.

The oxidation activity can be utilized for cross-linking of protein, oil, starch, fiber and mixture of these. Cross-linking of chemical compounds can be utilized for synthesis of polymer to give plastic fiber or plastic resin. It can be used for bleaching as a detergent for phenolic, carotenoid or fatty stains or dinginess. Or it can be used for bleaching of waste water or textile dye.

Lipoxygenase can be used for bleaching of plant or marine food materials containing of carotenoids. Thus it could be used for bleaching of flour for bread, noodle or pasta, or bleaching of fish meat or fish oil containing astaxanthin.

It also can be used for cross-linking of protein, oil, starch, plant-fiber or mixture of these in presence of fatty acid, oil or fats. It is useful to change the texture or physical properties of foodstuff or to control of flavor for fat and oil, or to produce polymers made of natural staff beside food use. Cross-linked compounds can be chemical compounds, e.g. phenolic, carbonyl, carboxyl or amide compounds or mixture of these. It could be used for synthesis of plastic fiber or resin.

Other usages of lipoxygenase can be the synthesis of flavor compound such as hexanal or hexenal together as synergy effect of hydroperoxide lyase. Or in case plant material is used as the source of above two enzymes, lipoxygenase can be added to it to improve the yield of flavor compound. The similar can be done for synthesis of plant or animal hormones.

Finally it can be used as bleaching agent. It can be used in detergents for bleaching of phenolic, carotenoid, fatty stains or dinginess of clothes. Or it can be used for bleaching of textile dye or dye for pulp industry in waste water or changing of dye texture.

15

20

25

30

35

Recombinant expression vector

The expression vector of the invention typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a selectable marker, a transcription terminator, a repressor gene or various activator genes. The vector may be an autonomously replicating vector, or it may be integrated into the host cell genome.

Production by cultivation of transformant

The lipoxygenase of the invention may be produced by transforming a suitable host cell with a DNA sequence encoding the lipoxygenase, cultivating the transformed organism under conditions permitting the production of the enzyme, and recovering the enzyme from the culture.

The host organism may be a eukaryotic cell, in particular a fungal cell, such as a yeast cell or a filamentous fungal cell, e.g. a strain of Aspergillus, Fusarium, Trichoderma or Saccharomyces, particularly A. niger, A. oryzae, F. graminearum, F. sambucinum, F. cerealis or S. cerevisiae. The production of the lipoxygenase in such host organisms may be done by the general methods described in EP 238,023 (Novo Nordisk), WO 96/00787 (Novo Nordisk) or EP 244,234 (Alko).

The enzyme can be purified in one step by cation-exchange chromatography to homogeneity.

Nucleotide probe

A nucleotide probe may be designed on the basis of the DNA sequence of SEQ ID NO: 1 or the polypeptide sequence of SEQ ID NO: 2, particularly the mature peptide part. The probe may be used in screening for LOX-encoding DNA as described below.

A synthetic oligonucleotide primer may be prepared by standard techniques (e.g. as described in Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) on the basis of the mature part of the amino acid sequence in SEQ ID NO: 2 or the corresponding part of the DNA sequence. It may be a degenerate probe and will typically contain at least 20 nucleotides.

Screening of eukaryotic DNA library

A polypeptide with lipoxygenase activity may be obtained by a method comprising:

- a) preparing a eukaryotic DNA library,
- b) screening the library to select DNA molecules which hybridize to the probe described above,

- c) transforming host cells with the selected DNA molecules,
- d) cultivating the transformed host cells to express polypeptides encoded by the DNA molecules, and
- e) assaying the expressed polypeptides to select polypeptides having lipoxygenase 5 activity.

The eukaryotic DNA library may be prepared by conventional methods. It may include genomic DNA or double-stranded cDNA derived from suitable sources such as those described above.

Molecular screening for DNA sequences may be carried out by polymerase chain reaction (PCR) followed by hybridization.

In accordance with well-known procedures, the PCR fragment generated in the molecular screening may be isolated and subcloned into a suitable vector. The PCR fragment may be used for screening DNA libraries by e.g. colony or plaque hybridization.

15 Hybridization

10

20

25

30

35

The hybridization is used to indicate that a given DNA sequence is analogous to a nucleotide probe corresponding to a DNA sequence of the invention. The hybridization may be done at low, medium or high stringency. One example of hybridization conditions is described in detail below.

Suitable conditions for determining hybridization between a nucleotide probe and a homologous DNA or RNA sequence involves presoaking of the filter containing the DNA fragments or RNA in 5 x SSC (standard saline citrate) for 10 min, and prehybridization of the filter in a solution of 5 x SSC (Sambrook et al. 1989), 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 μg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) *Anal. Biochem.* 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/μg) probe for 12 hours at approx. 45°C. The filter is then washed two times for 30 minutes in 2 x SSC, 0.5 % SDS at a temperature of at least 55°C, particularly at least 60°C, more particularly at least 65°C, e.g. at least 70°C, or at least 75°C.

Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using an x-ray film.

Alignment and homology

The lipoxygenase and the nucleotide sequence of the invention may have homologies to the disclosed sequences of at least 75 % or at least 85 %, particularly at least 90 % or at least 95 %, e.g. at least 98 %.

For purposes of the present invention, alignments of sequences and calculation of

PCT/DK02/00251

homology scores were done using a Needleman-Wunsch alignment (i.e. global alignment), useful for both protein and DNA alignments. The default scoring matrices BLOSUM50 and the identity matrix are used for protein and DNA alignments respectively. The penalty for the first residue in a gap is -12 for proteins and -16 for DNA, while the penalty for additional residues in a gap is -2 for proteins and -4 for DNA. Alignment is from the FASTA package version v20u6 (W. R. Pearson and D. J. Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444-2448, and W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA", Methods in Enzymology, 183:63-98).

10 **EXAMPLES**

15

20

30

35

Materials and Methods

Molecular cloning techniques are described in Sambrook et al. (1989).

The following commercial plasmids and *E. coli* strains were used for sub-cloning and DNA library construction:

pT7Blue (Novagen)

pUC19 (TOYOBO, Japan)

E. coli JM109 (TOYOBO, Japan)

E. coli DH12S (GIBCO BRL, Life Technologies, USA)

Labeling and detection of hybridization probe was done using DIG-labeling and detection Kit (Boehringer Manheim). Nylon membrane Hybond-N+ (Amersham, England) was used for DNA transfer for colony hybridization.

Soybean lipoxygenase (type I-B) (cat.# L7315) and astaxanthin (cat.# A-9335) was supplied by Sigma. b-carotene (cat.# 031-05533) were supplied by Wako.

25 Media and buffer solution

COVE-ar: per liter 342.3 g sucrose, 20 ml COVE salt solution, 10 mM acryl amide, 15 mM CsCl₂, 30 g Agar noble (Difco)

COVE2-ar: per liter 30 g sucrose, 20 ml COVE salt solution, 10 mM acrylamide, 30 g Agar noble (Difco)

COVE salt solution: per liter 26 g KCl, 26 g MgSO₄-7H₂O, 76 g KH₂PO₄, 50ml Cove trace metals.

Cove trace metals: per liter 0.04 g NaB₄O₇-10H₂O, 0.4 g CuSO₄-5H₂O, 1.2 g FeSO₄-7H₂O, 0.7 g MnSO₄-H₂O, 0.7 g Na₂MoO₂-2H₂O, 0.7 g ZnSO₄-7H₂O.

AMG trace metals: per liter 14.3 g ZnSO₄-7H₂O, 2.5 g CuSO₄-5H₂O, 0.5 g NiCl₂, 13.8 g FeSO₄, 8.5 g MnSO₄, 3.0 g citric acid.

YPG: per liter 4 g yeast extract, 1 g KH₂PO₄, 0.5 g MgSO₄-7H₂O, 15 g glucose, pH 6.0.

STC: 0.8 M Sorbitol, 25 mM Tris pH 8, 25 mM CaCl₂.

STPC: 40% PEG4000 in STC buffer.

Cove top agarose: per liter 342.3 g sucrose, 20 ml COVE salt solution, 10 mM Acetamide, 10 g low melt agarose.

MS-9: per liter 30 g soybean powder, 20 g glycerol, pH 6.0.

MDU-2Bp: per liter 45 g maltose-1H₂O, 7 g yeast extract, 12 g KH₂PO₄, 1 g MgSO₄-7H₂O, 2 g K₂SO₄, 5 g Urea, 1 g NaCl, 0.5 ml AMG trace metal solution pH 5.0.

Host organism

5

10

15

20

25

30

35

Aspergillus oryzae BECh2 is described in WO 00/39322. It is a mutant of JaL228 (described in WO98/123000), which is a mutant of IFO4177.

Transformation of A. oryzae

Aspergillus oryzae strain BECh2 was inoculated in 100 ml of YPG medium and incubated at 32°C for 16 hours with stirring at 80 rpm. Grown mycelia was collected by filtration followed by washing with 0.6 M KCl and re-suspended in 30 ml of 0.6 M KCl containing Glucanex® (Novozymes) at the concentration of 30 µl/ml. The mixture was incubated at 32°C with the agitation at 60 rpm until protoplasts were formed. After filtration to remove the remained mycelia, protoplasts were collected by centrifugation and washed with STC buffer twice. The protoplasts were counted with a hematitometer and re-suspended in a solution of STC:STPC:DMSO (8:2:0.1) to a final concentration of 1.2 x 10⁷ protoplasts/ml. About 4 µg of DNA was added to 100 µl of protoplast solution, mixed gently and incubated on ice for 30 minutes. 1 µl STPC buffer was added to the mixture and incubated at 37°C for another 30 minutes. After the addition of 10 ml of Cove top agarose pre-warmed at 50°C, the reaction mixture was poured onto COVE-ar agar plates. The plates were incubated at 32°C for 5 days.

SDS-PAGE

SDS polyacrylamide electrophoresis was carried out using the commercialized gel PAGEL AE6000 NPU-7.5L (7.5T%) with the apparatus AE-6400 (Atto, Japan) following the provided protocol. 15 µl of sample was suspended in 15 µl of 2x conc. of sample loading buffer (100 mM Tris-HCl (pH 6.8), 200 mM Dithiothreitol, 4% SDS, 0.2% Bromophenol blue and 20% glycerol) and boiled for 5 minutes. 20 µl of sample solution was applied to a polyacrylamide gel, and subjected for electrophoresis in the running buffer (25 mM Tris, 0.1% SDS, 192 mM Glycine) at 20 mA per gel. Resulting gel was stained with SYPRO Orange and detected by molecular Imager FX (BIO-RAD).

Assays for lipoxygenase activity

Spectrophotometric assay

Lipoxygenase activity was determined spectrophotometrically at 25°C by following the formation of hydroperoxides with the absorbance at 234 nm. To 0.98 ml of the buffer (50 mM KH₂PO₄/NaHPO₄, pH 7.0), 10μl of substrate solution (10mM linolenic acid dispersed with 0.2% Tween20) was added and the reaction was started by the addition of 10 μl of enzyme solution. One unit causes an increase in absorbance at 234 nm of 0.001/min.

FOX assay

10

15

20

25

30

35

The assay was initiated by the addition of 20 μ l enzyme solution to 80 μ l of 50 mM each buffer containing 0.7 mM linolenic acid dispersed with 0.02% of Tween 20 using Hiscotron, and incubated for 10 min. The assay was terminated by the addition of 900 μ l of FOX reagent: sulfuric acid (25 mM), xylenol orange(100 μ M), iron(II) sulfate (100 μ M), butylated hydroxytoluen (4 mM) in methanol:water (9:1). Blanks contained only substrate solution during the incubation, but enzyme solution was added after the addition of FOX reagent. The yellow color of acidified xylenol orange was converted to a blue color by the lipid hydroperoxide-mediated oxidation of Fe²⁺ ions with the dye. Absorbance of the Fe³⁺ complex at 620 nm was measured 1 hour after the addition of FOX reagent.

Bleaching assay

Bleaching effect by lipoxygenase was examined spectrophotometrically at 25°C by following the absorbance at 470 nm. The pigment solution was prepared as follows. 150 ul of stock pigment solution (1mg each pigment in 1ml chloroform) was evaporated to be dry. Then 30 ml of the buffer (50 mM $KH_2PO_4/NaHPO_4$, pH 7.0) with 0.3% of Tween 20 was added slowly and the pigment was dissolved. To 0.98 ml of the pigment solution, 10 μ l of substrate solution (10mM linolenic acid dispersed with 0.2% of Tween20) was added and the reaction was started by the addition of 10 μ l of enzyme solution.

Example 1: Cloning of genomic LOX gene from M. salvinii

Genomic DNA from *Magnaporthe salvinii* was digested with *Sac I* and separated on 1.0% agarose gel. Around 2.5 kbp of DNA digestion was recovered from the gel and ligated with BAP treated pUC19 linearized by *Sac I*. Ligation mixture was transformed into *E. coli* DH12S to construct a partial genomic library. It was screened, and a lipoxygenase-positive *E. coli* colony was isolated and the plasmid, termed pSG28, was recovered. The plasmid pSG28 contained a 2.5 kbp *SacI* genomic fragment that contained the presumed LOX homologue sequence. The sequence of 1973 bp out of 2.5 kbp is shown as SEQ. ID 1.

Introns were identified and are indicated in SEQ ID NO: 1. The splice sites were pre-

10

15

PCT/DK02/00251

dicted as described in S.M. Hebsgaard et al., Nucleic Acids Research, 1996, Vol. 24, No. 17, 3439-3452.

The presumed open reading frame consisted of 1851 bp, and the deduced amino acid sequence corresponded to 617 amino acids, shown as SEQ ID NO: 2. The molecular mass was estimated as 67500 Da.

The *E. coli* DH12S harboring plasmid pSG28 was deposited at DSMZ as DSM 14139 with the accession date 2001-02-28.

Example 2: Expression of M. salvinii LOX in A. oryzae

Construction of expression plasmid

The partial genomic sequence of *M. salvinii* genomic gene was amplified by PCR using pSG28 as a template. Primer 3 and 4 (SEQ ID NO: 3 and 4) were designed to make *BamH* I and *Xho* I sites at both ends of the PCR product (nucleotides 4-9 of primer 3 and 5-10 of primer 4, respectively). PCR reaction mixture comprised of 2.5 mM dNTP, 30 pmol each of primer 3 and 4, 5 units of LA taq polymerase (Takara) and supplied GC buffer I. Reaction condition was shown below. LA taq polymerase was added to the reaction mixture after step 1.

Step	Temperature	Time					
1	98 °C	10 mins					
2	96 °C	20 sec					
3	55 °C	45 sec					
4	72 °C	30 sec					
5	72 °C .	10 mins					

* Step 2 to Step 4 were repeated 30 times.

PCR amplified 1.9 kb fragment was isolated and cloned into pT7Blue resulting in pSG29.

The plasmid pSG29 was digested by BamHII and XhoI and 1.9 kb of fragment which contained the LOX gene was ligated with pMT2188 digested with BamHI and XhoI. The plasmid pMT2188 has a modified Aspergillus niger neutral amylase promoter, Aspergillus nidulans TPI leader sequence, Aspergillus niger glucoamylase terminator, Aspergillus nidulans amdS gene as a marker for fungal transformation and S. cerevisiae ura3 as the marker for E. coli transformation. Transformation was done with E. coli DB6507 in which pyrF gene is deficient and can be complemented with S. cerevisiae Ura3. Resulting plasmid was termed pSG30.

30

25

20

10

Expression of M. salvinii LOX in A. oryzae

A. oryzae BECh2 was transformed with the plasmid pSG30 and selection positive transformants were isolated. Transformants were grown on COVE 2 -ar at 32°C for 5 days and inoculated to 100 ml of MS-9 shaking flask. After the cultivation with vigorous agitation at 32°C for 1 day, 3 ml of each culture was transferred to 100 ml of MDU-2Bp in shaking flask to cultivate at 32°C for 3 days. Culture broth was centrifuged at 3500 rpm for 10 minutes and supernatant was collected.

Lipoxygenase activities of the supernatant were determined spectrophotometrically as described before. Positive transformants showed about 100,000U/ml culture broth while untransformed *A. oryzae* BECh2 showed no activity. Culture supernatant was also subjected to SDS-PAGE analysis. Positive transformants showed 80-100kDa smear band which indicated the protein was heavily glycosylated. Untransformed *A. oryzae* BECh2 did not show any significant bands.

15 Example 3: Substrate specificity of lipoxygenase

Kinetic parameters for a number of substrates were determined by standard methods for the *M. salvinii* lipoxygenase.

Substrate	V _{max} (μmol/min/mg)	K _M (μM)	V _{max} /K _M (μmol/min/mg/μM)				
Linoleic acid	2.63	1	2.557				
Na linoleate	2.07	0.41	5.061				
Linoelaidic acid	No activity	No activity	No activity				
Linolenic acid	1.9	0.4	4.488				
Eicosadienoic acid	2.02	11	0.177				
Arachidonic acid	2.44	5.5	0.446				
Linoleoyl chloride	0.97	12	0.080				
Methyl linoleate	0.82	30	0.026				
Linoleoyl acetate	0.77	9	0.085				
Linoleoyl alcohol	1.4	8	0.175				

Substrate	V _{max}	K _M	V _{max} /K _M
	(µmol/min/mg)	(μM)	(μmol/min/mg/μM)
Linoleic acid	12.3	230	0.054

For comparison, one substrate was also tested with soybean lipoxygenase.

Example 3: pH dependence of lipoxygenase activity

The relative activity of the M. salvinii lipoxygenase at various pH values was determined by the FOX assay described above, using the following buffers: 50 mM citric acid/sodium citrate (pH 2.21-3.73) , KH₂PO₄/Na₂HPO₄ (pH 5.30,6.17), Tris/HCI (pH 7.01,8.02), glycylglycine NaCl/NaOH (pH 9.33-11.0).

рН	Relative Activity (%)
2.21	7.11
2.90	20.6
3.73	27.7
5.30	60.0
6.17	83.7
7.01	100
8.02	92.9
9.33	82.6
11.0	77.7

10

5

Example 4: Temperature dependence of lipoxygenase activity

The effect of temperature on the M. salvinii lipoxygenase was studied by 10 min incubation at pH 7.0.

15

Temperature	Relative Activity (%)							
25	50.1							
40	90.0							
50	100							
60	99.6							
70	60.4							

Example 5: Bleaching effect of lipoxygenases

, The bleaching effect of M. salvinii LOX was examined. Soybean L1 was included for comparison. β -carotene and astaxanthin were used as pigments.

β-carotene	Time (min)	M. salvinii	Soybean L1
	0	0.3783	0.3575
	0.4	0.3791	0.3616
	0.8	0.3729	0.3601
	1.2	0.3702	0.362
	1.4	0.3685	0.3602
	1.8	0.3651	0.3602
	2.2	0.3633	0.3595
	2.6	0.3486	0.3595
	3	0.341	0.3594
Δ A47 0/min		0.0121	0.00005
LOX activity		2.652	1.962

Astaxanthin	Time (min.)	M. salvinii	Soybean L1
	0	0.5292	0.5026
	0.4	0.5244	0.5029
	0.8	0.5177	0.505
	1	0.5166	0.5025
	1.4	0.512	0.5013
	1.8	0.5004	0.4993
	2.2	0.4876	0.4985
	2.6	0.4714	0.4986

PCT/DK02/00251

	3	0.4566	0.498
∆A470/min		0.0239	0.0021
LOX activity		2.4952	2.018

The results show that *M. salvinii* LOX bleaches the pigment solutions. Soybean LOX showed little effect on bleaching.

0-1	Form - PCT/RO/134 (EASY) Indications Relating to Deposited Microorganism(s) or Other Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.92
		(updated 01.01.2002)
0-2	International Application No.	
0-3	Applicant's or agent's file reference	10148
1	The Indications made below relate to	T
	the deposited microorganism(s) or other biological material referred to in the description on:	
1-1	page	2
1-2	line	36-37
1-3	Identification of Deposit	
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
		Mikroorganismen und Zellkulturen GmbH
1-3-2	Address of depositary Institution	Mascheroder Weg 1b, D-38124
	, and our or depositely institution	1 · · · · · · · · · · · · · · · · · · ·
1-3-3	Date of deposit	Braunschweig, Germany
1-3-3	· ·	28 February 2001 (28.02.2001)
	Accession Number	DSMZ 14139
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
	FOR I	RECEIVING OFFICE USE ONLY
0-4	This form was received with the international application: (yes or no)	YES
0-4-1	Authorized officer	Marie Louise Rosendal Head Clerk
	FOR INTE	ERNATIONAL BUREAU USE ONLY
0-5	This form was received by the international Bureau on:	
0-5-1	Authorized officer	
		<u></u>

CLAIMS

5

30

- 1. A lipoxygenase which is:
- a) a polypeptide encoded by a DNA sequence cloned into plasmid pUC19 present in Escherichia coli deposited as DSM 14139,
- b) a polypeptide having an amino acid sequence as the mature peptide shown in SEQ
 ID NO: 1, or which can be obtained therefrom by substitution, deletion, and/or insertion of one or more amino acids,
 - c) an analogue of the polypeptide defined in (a) or (b) which:
 - i) has at least 50 % homology with said polypeptide,
- ii) is immunologically reactive with an antibody raised against said polypeptide in purified form,
 - iii) is an allelic variant of said polypeptide, or
 - d) a polypeptide encoded by DNA that hybridizes under low stringency conditions with a complementary strand of
- i) the DNA sequence cloned into plasmid pUC19 present in *Escherichia coli* deposited as DSM 14139 or
 - ii) the DNA sequence of SEQ ID NO: 1 encoding the mature polypeptide or a subsequence thereof having at least 100 nucleotides.
- 20 2. The lipoxygenase of claim 1 which is derived from a filamentous fungus, e.g. an Ascomycota, such as a strain of *Magnaporthe*, particularly *M. salvinii*, more particularly strain IFO 6642.
- 3. DNA comprising a nucleic acid sequence which encodes the lipoxygenase of claim 1 25 or 2.
 - 4. A polynucleotide which comprises:
 - a) the partial DNA sequence encoding a mature lipoxygenase cloned into a plasmid present in *Escherichia coli* DSM 14139,
 - b) the partial DNA sequence encoding a mature lipoxygenase shown in SEQ ID NO: 1,
 - c) an analogue of the sequence defined in a) or b) which encodes a lipoxygenase and
 - i) has at least 60 % homology with said DNA sequence, or
 - ii) hybridizes at high stringency with a complementary strand of said DNA sequence or a subsequence thereof having at least 100 nucleotides,
- 35 iii) is an allelic variant thereof, or
 - d) a complementary strand of a), b) or c).

PCT/DK02/00251

- 5. A nucleic acid construct comprising the nucleic acid sequence of claim 3 or 4 operably linked to one or more control sequences capable of directing the expression of the lipoxygenase in a suitable expression host.
- 5 6. A recombinant expression vector comprising the nucleic acid construct of claim 5, a promoter, and transcriptional and translational stop signals.
 - 7. A recombinant host cell comprising the nucleic acid construct of claim 5 or the vector of claim 6.

10

20

- 8. A method for producing a lipoxygenase comprising cultivating the host cell of claim 7 under conditions conducive to production of the lipoxygenase, and recovering the lipoxygenase.
- 9. An oligonucleotide probe which consists of at least 20 nucleotides and which encodes a partial polypeptide sequence of SEQ ID NO: 2.
 - 10. A method for obtaining a polypeptide with lipoxygenase activity, comprising:
 - a) preparing a eukaryotic DNA library,
 - b) screening the library to select DNA molecules which hybridize to the probe of claim 9,
 - c) transforming host cells with the selected DNA molecules,
 - d) cultivating the transformed host cells to express polypeptides encoded by the DNA molecules, and
- e) assaying the expressed polypeptides to select polypeptides having lipoxygenase activity.
 - 11. A method for preparing a dough or a baked product made from dough, comprising adding the lipoxygenase of claim 1 or 2 to the dough.
- 30 12. A dough composition comprising the lipoxygenase of claim 1 or 2.
 - A detergent composition comprising a surfactant and the lipoxygenase of claim 1 or 2.
 - 14. The detergent composition of the preceding claim wherein the surfactant is anionic.

35

15. A process for oxidizing a polyunsaturated fatty acid comprising contacting the acid with the lipoxygenase of claim 1 or 2 in the presence of air.

PCT/DK02/00251

16. Use of the process of the preceding claim for green flavor synthesis or plant hormone synthesis.

10148-WO.ST25 SEQUENCE LISTING

<110> Novozymes A/S

<120> Lipoxygenase

<130> 10148-wo

<160> 4

<170> PatentIn version 3.1

<210> 1

<211> 1973

<212> DNA

<213> Magnaporthe salvinii

<220>

<221> CDS

<222> (1)..(381)

<223>

<220>

<221> mat_peptide

<222> (52)..()

<223>

<220>

<221> CDS

<222> (501)..(1970)

<223>

48

gcg Ala -1	ctg Leu 1	cca Pro	gtc val	gcg Ala	agc Ser 5	ggc Gly	gaa Glu	gaa Glu	gtg Val	gcc Ala 10	tcg Ser	tcg Ser	tcc Ser	gct Ala	ccg Pro 15	96
acg Thr	acg Thr	ctg Leu	ccc Pro	tcg Ser 20	acg Thr	tcg Ser	agc Ser	agc Ser	tct Ser 25	gcg Ala	ctt Leu	ccc Pro	tcc Ser	ccg Pro 30	acc Thr	144
aag Lys	tac Tyr	acg Thr	ctt Leu 35	ccc Pro	cac His	gag Glu	gac Asp	ccc Pro 40	aac Asn	ccg Pro	gaa Glu	gcg Ala	agg Arg 45	aag Lys	gcc Ala	192
gag Glu	ata Ile	gcg Ala 50	tta Leu	aag Lys	agg Arg	gga Gly	ggg Gly 55	ttc Phe	ctc Leu	tac Tyr	gga Gly	ccc Pro 60	tcc Ser	acc Thr	ctg Leu	240
ggc Gly	cag G1n 65	act Thr	acc Thr	ttt Phe	tac Tyr	ccc Pro 70	agc Ser	ggg Gly	acc Thr	ctg Leu	ggg Gly 75	acc Thr	gcc Ala	atg Met	tcg Ser	288
caa G1n 80	cgc Arg	gac Asp	cag Gln	gcc Ala	ctc Leu 85	tgg Trp	ctc Leu	agg Arg	gat Asp	gca Ala 90	gag Glu	aac Asn	caa Gln	acg Thr	ata Ile 95	336
aca Thr	gcg Ala	tat Tyr	cgt Arg	gaa Glu 100	gcc Ala	aac Asn	gag Glu	aca Thr	ctg Leu 105	agg Arg	gat Asp	atc Ile	cag Gln	agc Ser 110		381
gta	tgtgt	cg a	agccg	gtgti	tt at	gcgt	tcca	ato	atto	tct	gtg	tcct	tgt (ccgt	cccgc	441
ccg	gggtt	tac a	agcca	aagco	cg at	tcag	gtago	taa	actc	ggaa	tgt	tggt	ttt g	gctc1	tgcag	500
cat His	ggc Gly	ggt Gly	ctc Leu	aag Lys 115	acg Thr	ctt Leu	gac Asp	gac Asp	ttc Phe 120	gcg Ala	ctc Leu	ctc Leu	tac Tyr	gac Asp 125	ggc Gly	548
cat His	tgg Trp	aaa Lys	gcg Ala 130	tcg Ser	gtc Val	cca Pro	gag Glu	gga Gly 135	ata Ile	gaa Glu	aag Lys	ggc Gly	atg Met 140	ctg Leu	agc Ser	596
					ctg Leu											644
					cgc Arg											692
agc Ser 175	gtc Val	gag Glu	gac Asp	aag Lys	gtg Val 180	gtc Val	aag Lys	cag Gln	ctg Leu	acg Thr 185	gcc Ala	acg Thr	acg Thr	ctt Leu	gcg Ala 190	740
					ggc Gly											788
aag Lys	aaa Lys	tac Tyr	acg Thr 210	ccg Pro	cag Gln	gca Ala	ggt Gly	cgg Arg 215	tat Tyr	gct Ala	gcg Ala	gcc Ala	tgc Cys 220	cag Gln	ggg Gly	836
ctt Leu	ttc Phe	tat Tyr 225	gtg Va I	gac Asp	gcg Ala	cgg Arg	tcc Ser 230	aat Asn	cag Gln	ttc Phe	ctg Leu	ccg Pro 235	ctg Leu	gcc Ala	atc Ile	884
aag Lys	acc Thr 240	aac Asn	gtg Va l	ggc Gly	gca Ala	gac Asp 245	ctg Leu	acg Thr	tac Tyr	acg Thr	cca Pro 250	ctc Leu	gac Asp	gac Asp	aag Lys	932

Page 2

								10).T-40-	WO. 3	1123					
														ctg Leu		980
tac Tyr	tcg Ser	cag Gln	atg Met	tac Tyr 275	cat His	gtc Val	ctg Leu	ttc Phe	cac His 280	acg Thr	gtt Val	cca Pro	gaa Glu	atc Ile 285	gtg Val	1028
cac His	atg Met	gcc Ala	gcc Ala 290	atc Ile	cgg Arg	acg Thr	cta Leu	agc Ser 295	gag Glu	agc Ser	cac His	ccg Pro	gtg Val 300	ctg Leu	gcc Ala	1076
														gtg Val		1124
gaa Glu	cgc Arg 320	atc Ile	ctg Leu	ttc Phe	aac Asn	ccg Pro 325	ggc Gly	ggg Gly	ttt Phe	tgg Trp	gac Asp 330	cag Gln	aac Asn	ctt Leu	ggc Gly	1172
ctg Leu 335	CCC Pro	gcc Ala	acg Thr	gcg Ala	gcc Ala 340	gtc Val	gac Asp	ttt Phe	ctc Leu	agt Ser 345	tcc Ser	atc Ile	tac Tyr	gcc Ala	cat His 350	1220
ggc Gly	gag Glu	ggc Gly	ggg Gly	ttc Phe 355	cgg Arg	gcc Ala	ggc Gly	tac Tyr	gtg Val 360	gaa Glu	aac Asn	aac Asn	ctg Leu	cgc Arg 365	aag Lys	1268
cgg Arg	ggg Gly	ctg Leu	gtg Val 370	ggc Gly	gac Asp	acc Thr	ttt Phe	ggc Gly 375	ggc Gly	ccg Pro	gcg Ala	ctc Leu	ccg Pro 380	cac His	ttc Phe	1316
ccc Pro	ttc Phe	tac Tyr 385	gag Glu	gac Asp	gcg Ala	cag Gln	cgc Arg 390	gtc Val	ctc Leu	ggg Gly	gcg Ala	atc Ile 395	cgc Arg	ggc Gly	ttc Phe	1364
atg Met	cag G1n 400	gcc Ala	ttt Phe	gtc Val	gac Asp	tcg ser 405	acc Thr	tac Tyr	ggg Gly	ggc Gly	gac Asp 410	gac Asp	ggc Gly	gcg Ala	ctg Leu	1412
gcg Ala 415	cgc Arg	gac Asp	ttt Phe	gag Glu	ctg Leu 420	cag Gln	gac Asp	tgg Trp	gtg Val	gcc Ala 425	gag Glu	gcc Ala	aac Asn	ggg Gly	ccg Pro 430	1460
gcg Ala	cag Gln	gtg Val	cgc Arg	gac Asp 435	ttc Phe	ccc Pro	acg Thr	gcg Ala	ccg Pro 440	ctg Leu	cgg Arg	cgg Arg	cgc Arg	gag Glu 445	gag Glu	1508
ctg Leu	gtg Val	ggc Gly	atc Ile 450	ctg Leu	acg Thr	cac His	ata Ile	gcc Ala 455	tgg Trp	aac Asn	acg Thr	ggc Gly	ggc Gly 460	gcg Ala	cac His	1556
cac His	gtt Val	cta Leu 465	aac Asn	cag Gln	ggg Gly	gcg Ala	ccc Pro 470	gtg Val	cgc Arg	gcc Ala	tcg Ser	ggc Gly 475	gtg Val	ctg Leu	ccg Pro	1604
ctc Leu	cac His 480	ccg Pro	gcg Ala	gct Ala	ctt Leu	tac Tyr 485	gcg Ala	ccc Pro	gtc Val	ccg Pro	gcg Ala 490	gcc Ala	aag Lys	ggc Gly	gcc Ala	1652
gtc Val 495	gcg Ala	tcc Ser	agc Ser	gac Asp	ggc Gly 500	ctg Leu	ctg Leu	gcg Ala	tgg Trp	ctg Leu 505	ccg Pro	gac Asp	gag Glu	gtc Val	aaa Lys 510	1700
tcg Ser	gtg Val	gag Glu	cag Gln	gtg Val 515	tcg Ser	ctg Leu	ctg Leu	gcg Ala	cgc Arg 520	Phe	aac Asn	cgc Arg	gcg Ala	cag Gln 525	gtt Val	1748

Page 3

agg Arg	gac Asp	aga Arg	aac Asn 530	cag Gln	acg Thr	gtg Val	cgc Arg	aac Asn 535	atg Met	ttc Phe	gcc Ala	gca Ala	ccg Pro 540	gag Glu	ctg Leu	1796
ctg Leu	gct Ala	gga Gly 545	aat Asn	ggc Gly	gag Glu	gcg Ala	tac Tyr 550	gcg Ala	gcg Ala	gcc Ala	aac Asn	gcg Ala 555	agg Arg	ttc Phe	gtc Val	1844
gag Glu	gag Glu 560	acg Thr	ggc Gly	cgg Arg	ata Ile	agc Ser 565	cgc Arg	gag Glu	ata Ile	gag Glu	ggc Gly 570	agg Arg	ggt Gly	ttc Phe	gat Asp	1892
agc Ser 575	aag Lys	ggc Gly	ctg Leu	agc Ser	cag Gln 580	ggg Gly	atg Met	ccc Pro	ttt Phe	atc Ile 585	tgg Trp	acc Thr	gcc Ala	ttg Leu	aat Asn 590	1940 ·
ccc Pro	gcg Ala	gtg val	aac Asn	ccg Pro 595	ttt Phe	ttc Phe	ctg Leu	agc Ser	atc Ile 600	tag						1973

<210> 2

<211> 617

<212> PRT

<213> Magnaporthe salvinii

<400> 2

Met Arg Ile Gly Leu Leu Ala Phe Ala Val Ala Ala Arg Tyr Val Glu -15 -5

Ala Leu Pro Val Ala Ser Gly Glu Glu Val Ala Ser Ser Ser Ala Pro -1 1 1 5 15

Thr Thr Leu Pro Ser Thr Ser Ser Ser Ser Ala Leu Pro Ser Pro Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Lys Tyr Thr Leu Pro His Glu Asp Pro Asn Pro Glu Ala Arg Lys Ala 35 40 45

Glu Ile Ala Leu Lys Arg Gly Gly Phe Leu Tyr Gly Pro Ser Thr Leu 50 60

Gly Gln Thr Thr Phe Tyr Pro Ser Gly Thr Leu Gly Thr Ala Met Ser 65 70 75

Gln Arg Asp Gln Ala Leu Trp Leu Arg Asp Ala Glu Asn Gln Thr Ile 80 85 90 95

Thr Ala Tyr Arg Glu Ala Asn Glu Thr Leu Arg Asp Ile Gln Ser His
100 105 110

Gly Gly Leu Lys Thr Leu Asp Asp Phe Ala Leu Leu Tyr Asp Gly His 125

Trp Lys Ala Ser Val Pro Glu Gly Ile Glu Lys Gly Met Leu Ser Asn 130 140 Tyr Thr Ser Asp Leu Leu Phe Ser Met Glu Arg Leu Ser Asn Asn Pro 145 150 Tyr Ser Leu Lys Arg Leu His Pro Thr Lys Asp Lys Leu Pro Phe Ser 160 165 170 175 Val Glu Asp Lys Val Val Lys Gln Leu Thr Ala Thr Thr Leu Ala Ala 180 185 190 Leu His Lys Ala Gly Arg Leu Phe Phe Val Asp His Ser Asp Gln Lys 200 205 Lys Tyr Thr Pro Gln Ala Gly Arg Tyr Ala Ala Ala Cys Gln Gly Leu 210 220 Phe Tyr Val Asp Ala Arg Ser Asn Gln Phe Leu Pro Leu Ala Ile Lys 225 230 Thr Asn Val Gly Ala Asp Leu Thr Tyr Thr Pro Leu Asp Asp Lys Asn 240 250 255 Asp Trp Leu Leu Ala Lys Ile Met Phe Asn Asn Asn Asp Leu Phe Tyr 260 265 270 Ser Gln Met Tyr His Val Leu Phe His Thr Val Pro Glu Ile Val His 275 280 285 Met Ala Ala Ile Arg Thr Leu Ser Glu Ser His Pro Val Leu Ala Val 290 295 300 Leu Asn Arg Ile Met Tyr Gln Ala Tyr Ala Ile Arg Pro Val Gly Glu 305 310 315 Arg Ile Leu Phe Asn Pro Gly Gly Phe Trp Asp Gln Asn Leu Gly Leu 320 335 335 Pro Ala Thr Ala Ala Val Asp Phe Leu Ser Ser Ile Tyr Ala His Gly 340 345 Glu Gly Gly Phe Arg Ala Gly Tyr Val Glu Asn Asn Leu Arg Lys Arg 355 360 365 Gly Leu Val Gly Asp Thr Phe Gly Gly Pro Ala Leu Pro His Phe Pro 370 380 Phe Tyr Glu Asp Ala Gln Arg Val Leu Gly Ala Ile Arg Gly Phe Met 385 Page 5

Gln Ala Phe Val Asp Ser Thr Tyr Gly Gly Asp Asp Gly Ala Leu Ala 400 405 410 415

Arg Asp Phe Glu Leu Gln Asp Trp Val Ala Glu Ala Asn Gly Pro Ala 420 425 430

Gln Val Arg Asp Phe Pro Thr Ala Pro Leu Arg Arg Glu Glu Leu 435 440 445

Val Gly Ile Leu Thr His Ile Ala Trp Asn Thr Gly Gly Ala His His 450 455 460

Val Leu Asn Gln Gly Ala Pro Val Arg Ala Ser Gly Val Leu Pro Leu 465 470 475

His Pro Ala Ala Leu Tyr Ala Pro Val Pro Ala Ala Lys Gly Ala Val 480 485 490 495

Ala Ser Ser Asp Gly Leu Leu Ala Trp Leu Pro Asp Glu Val Lys Ser 500 505

Val Glu Gln Val Ser Leu Leu Ala Arg Phe Asn Arg Ala Gln Val Arg 515 525

Asp Arg Asn Gln Thr Val Arg Asn Met Phe Ala Ala Pro Glu Leu Leu 530 540

Ala Gly Asn Gly Glu Ala Tyr Ala Ala Ala Asn Ala Arg Phe Val Glu 545 555

Glu Thr Gly Arg Ile Ser Arg Glu Ile Glu Gly Arg Gly Phe Asp Ser 570 575

Lys Gly Leu Ser Gln Gly Met Pro Phe Ile Trp Thr Ala Leu Asn Pro 580 585 590

Ala Val Asn Pro Phe Phe Leu Ser Ile 595 600

<210> 3

<211> 29

<212> DNA

<213> Artificial/Unknown

<220>

<221> misc_feature

<223>	Artificial	10148-WO.ST25	
<220>			
<221>	misc_feature		
<223>	Primer 3		
<400> cgcgga	3 tcca tgcgcatcgg actcttggc		29
<210>	4		
<211>	31		
<212>	DNA		
<213>	Artificial/Unknown		
<220>			
<221>	misc_feature		
<223>	Artificial		
<220>			
<221>	misc_feature		
<223>	Primer 4		
<400>			
	cgag ctagatgctc aggaaaaacg	g	31

INTERNATIONAL SEARCH REPORT

onal Application No

PCT/DK 02/00251 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N9/02 A21D8/04 C12P7/64 C12N15/63 C11D3/386 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) I PC 7 C12N A21D C12P C11D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) PAJ, EPO-Internal, SEQUENCE SEARCH C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. WO 02 20730 A (NOVOZYMES AS) 14 March 2002 (2002-03-14) P,X 1-8, 10-16 claims 1-17 & DATABASE EBI [Online] retrieved from EBI Database accession no. ax398040 77% identity in 618 aa overlap with SEQ ID No.2 WO 00 60093 A (INST PFLANZENBIOCHEMIE IPB Α 1-8, (DE)) 12 October 2000 (2000-10-12) 10-16 claims 1-14 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to Involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15 08 2002 1 August 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk TEL (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

ekström nils

INTERNATIONAL SEARCH REPORT

Intermedial Application No PCT/DK 02/00251

		PCT/DK 02/00251				
	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
A	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 07, 29 September 2000 (2000-09-29) & JP 2000 106832 A (HONEN CORP), 18 April 2000 (2000-04-18) abstract; claims 1-5	1-8, 10-16				
A	US 6 204 037 B1 (BRASH A R ET AL) 20 March 2001 (2001-03-20) claims 1-22	1-8, 10-16				
P,A	WO 01 29227 A (BASF AG) 26 April 2001 (2001-04-26) claims 1-20	1-8, 10-16				
P,A	WO 01 79560 A (GLAXO GROUP LTD ;EDWARDS LISA D (US); EMMETT AMANDA H (US); ANDERS) 25 October 2001 (2001-10-25) claims 1-31	1-8, 10-16				
P,A	WO 01 90323 A (MILLENNIUM PHARM INC (US)) 29 November 2001 (2001-11-29) claims 1-22	1-8, 10-16				
P , A	HÖRNSTEN L ET AL: "Cloning of the manganese lipoxygenase gene reveals homology with the lipoxygenase gene family." EUR. J. BIOCHEM., vol. 269, 2002, pages 2690-2697, XP002902589 the whole document	1-8, 10-16				
,						

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Claims Nos.: 9 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of Invention is lacking (Continuation of item 2 of first sheet)
This Inter	national Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🔲 (As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/DK 02/00251

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 9

Claim 9 relates to oligonucleotid consisting of at least 20 nucleotides and encodes a partial polypeptide of SEQ. ID. No. 2. These polypeptides are 601 amino acids long- encoded by more than 1800 nucleotides; claim 9 covers a large number of possibilities. In view of the large number of possibilities- not limited even by a general functionality- render it difficult, if not impossible, to determine the matter for which protection is sought. The present claim fails to comply with the clarity and conciseness requirements of Article 6 PCT to such extent that a meaningful search is impossible. As a consequence of this, claim 9 has not been searched.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

International Application No PCT/DK 02/00251

Information on patent family members

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0220730	14-03-2002	AU 8571901 A WO 0220730 A2	22-03-2002 14-03-2002
WO 0060093	12-19-2000	DE 19914464 A1 AU 3557700 A WO 0060093 A1 EP 1165801 A1	05-10-2000 23-10-2000 12-10-2000 02-01-2002
JP 2000106832 /	18-04-2000	NONE	
US 6204037 E	20-03-2001	US 2001046672 A1	29-11-2001
WO 0129227 /	26-04-2001	DE 19950921 A1 AU 1023501 A WO 0129227 A1 EP 1222282 A1 NO 20021851 A	26-04-2001 30-04-2001 26-04-2001 17-07-2002 03-06-2002
WO 0179560 A	25-10-2001	AU 5166501 A WO 0179560 A2	30-10-2001 25-10-2001
WO 0190323	29-11-2001	AU 6475301 A WO 0190323 A2	03-12-2001 29-11-2001