ΜΕΜ104 Γλώσσα Προγραμματισμού Ι

2ο φυλλάδιο ασκήσεων

20 Οκτωβρίου 2019

1. Γράψτε ένα πρόγραμμα το οποίο βρίσκει και τυπώνει τον αριθμό των φωνηέντων σε μια συμβολοσειρά. Τα φωνήεντα είναι, φυσικά, τα a, e, i, o, u.

```
s = 'Luke, I am your father'
k = 0
for c in s:
   if c in 'aeiouAEIOU':
     k += 1
print('Number of vowels in \"' + s + '\":', k)
```

2. Γράψτε μια επανάληψη while η οποία θα τυπώνει τους ακεραίους μεταξύ 0 και του θετικού ακεραίου η ο οποίος θα εισάγεται από τον χρήστη.

```
n = int(input('Enter an integer: '))
k = 0
while k <= n:
  print(k)
  k += 1</pre>
```

3. Γράψτε ένα πρόγραμμα το οποίο επιστρέφει το άθροισμα ενός πλήθους αριθμών που εισάγονται από τον χρήστη. Η είσοδος των ακεραίων θα πρέπει να τερματίζεται όταν ο χρήστης δώσει τη συμβολοσειρά 'end'.

```
s = 0
while True:
   inp = input('Enter number or type \'end\' to stop: ')
   if inp == 'end':
       break
   s += int(inp)
print('Sum of numbers =' , s)
```

4. Γράψτε ένα πρόγραμμα το οποίο υπολογίζει το άθροισμα

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2},$$

για κάποιον θετικό ακέραιο n ο οποίος θα εισάγεται από τον χρήστη.

```
s = 0
n = int(input('Enter an integer: '))
for i in range(1,n+1):
    s += 1 / i**2
print('Sum of numbers =', s)
```

5. Γράψτε ένα πρόγραμμα το οποίο μετράει τον αριθμό των ψηφίων ενός θετικού ακεραίου.

```
n = int(input('Enter a positive integer: ')
k = 0
while n > 0:
    k += 1
    n //= 10
print('Number of digits of ' + str(n) + ':', k)
```

6. Γράψτε ένα πρόγραμμα το οποίο τυπώνει τον πίνακα της προπαίδειας στην εξής μορφή:

```
for i in range(1,10):
   for j in range(1,10):
     print(i*j, end=' ')
   print()
```

7. Γράψτε ένα πρόγραμμα το οποίο ζητάει ένα θετικό ακέραιο n και υπολογίζει τον n-στό όρο της ακολουθίας Fibonacci. Υπενθυμίζουμε ότι οι όροι της ακολουθίας Fibonacci ορίζονται ως εξής: $F_0=0, F_1=1$ και $F_n=F_{n-1}+F_{n-2}$ για $n\geq 2$.

```
n = int(input('Enter n: '))
o = 0
p = 1
for k in range(2,n+1):
    c = o + p
    o = p
    p = c
print(c)
```

8. Γράψτε ένα πρόγραμμα το οποίο ελέγχει αν μια λέξη είναι παλινδρομική, δηλαδή διαβάζεται το ίδιο και από δεξιά και από αριστερά. Η λέξη πρέπει να δίνεται από τον χρήστη.

```
s = input('Enter a word: ')
i = 0
j = len(s)-1
while i < j:
    if s[i] != s[j]:
        break
    i += 1
    j -= 1

if i >= j:
    print('Palindromic')
else:
    print('Not palindromic')
```

9. Μια Πυθαγόρεια τριάδα είναι ένα σύνολο τριών φυσικών αριθμών a < b < c τέτοιων ώστε $a^2 + b^2 = c^2$. Για παράδειγμα, το σύνολο $\{3,4,5\}$ είναι μια Πυθαγόρεια τριάδα γιατί $3^2 + 4^2 = 9 + 16 = 25 = 5^2$. Υπάρχει ακριβώς μία Πυθαγόρεια τριάδα $\{a,b,c\}$ για την οποία ισχύει επιπλέον ότι a+b+c=1000. Γράψτε ένα πρόγραμμα για να την βρείτε.

```
for a in range(1,1001):
    for b in range(a+1,1001):
        c = 1000-a-b
        if c > b and a**2 + b**2 == c**2:
            print(a,b,c)
```

10. Δεδομένου ενός φυσικού αριθμού k φτιάχνω την ακολουθία (a_n) , $n \ge 0$ με τον εξής τρόπο:

$$a_n = \begin{cases} k & n=0 \\ a_{n-1}/2 & \text{αν } a_{n-1} \text{ άρτιος} \\ 3a_{n-1}+1 & \text{διαφορετικά} \end{cases}$$

Έτσι, αν ξεκινήσουμε με τον αριθμό 13 παράγουμε την ακολουθία $13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$. Αν φτάσουμε στον αριθμό 1 δεν χρειάζεται να συνεχίσουμε γιατί οι όροι που ακολουθούν είναι κατά σειρά $4,2,1,4,2,1,\ldots$ Γράψτε ένα πρόγραμμα το οποίο, δεδομένου του φυσικού αριθμού k, υπολογίζει και τυπώνει τους όρους της παραπάνω ακολουθίας.

```
k = int(input('Enter starting value: '))
an = k
while an != 1:
  print(an, '->', end=' ')
  if an % 2:
    an = 3*an + 1
  else:
    an //= 2
print(1)
```