TK 6590 A6 M35 2005

Phased Array Antenna Handbook

Second Edition

Robert J. Mailloux

Kurt F. Wendt Library

For more information about this document contact the Reference Desk at Wendt Library (askwendt@engr.wisc.edu) or 262-0696

Contents

Prefa	ace to the Second Edition	xi
Prefa	ace to the First Edition	xiii
Ackr	nowledgments	χv
CH/	APTER 1	
Phas	sed Arrays in Radar and Communication Systems	1
1.1	Introduction	1
	1.1.1 System Requirements for Radar and Communication Antennas	1
1.2	Array Characterization for Radar and Communication Systems	12
	1.2.1 Fundamental Results from Array Theory	12
	1.2.2 Array Size Determination	34
	1.2.3 Time-Delay Compensation	43
1.3	Array Architecture and Control Technology	44
	1.3.1 Array Aperture	44
	1.3.2 Feed Architectures	47
	1.3.3 Beamforming Modalities and Relevant Architectures	53
	1.3.4 RF Components for Array Control	55
	References	59
CH	APTER 2	
Patt	ern Characteristics of Linear and Planar Arrays	63
2.1	Array Analysis	63
	2.1.1 The Radiation Integrals	63
	2.1.2 Element Pattern Effects, Mutual Coupling, Gain Computed	
	from Element Patterns	68
2.2	Characteristics of Linear and Planar Arrays	75
	2.2.1 Linear Array Characteristics	75
	2.2.2 Planar Array Characteristics	84
2.3	Scanning to Endfire	89
2.4	Thinned Arrays	92
	2.4.1 Average Patterns of Density-Tapered Arrays	93
	2.4.2 Probabilistic Studies of Thinned Arrays	96
	2.4.3 Thinned Arrays with Quantized Amplitude Distributions	99
	References	107

·	APTER 3	109
	ern Synthesis for Linear and Planar Arrays	
3.1	Linear Arrays and Planar Arrays with Separable Distributions	109
	3.1.1 Fourier Transform Method	109
	3.1.2 Schelkunov's (Schelkunoff's) Form	111
	3.1.3 Woodward Synthesis	113
	3.1.4 Dolph-Chebyshev Synthesis	116
	3.1.5 Taylor Line Source Synthesis	121
	3.1.6 Modified $\sin \pi z/\pi z$ Patterns	128
	3.1.7 Bayliss Line Source Difference Patterns	130
	3.1.8 Synthesis Methods Based on Taylor Patterns: Elliott's	422
	Modified Taylor Patterns and the Iterative Method of Elliott	133
	3.1.9 Discretization of Continuous Aperture Illuminations by Root	420
	Matching and Iteration	139
	3.1.10 Synthesis of Patterns with Complex Roots and Power Pattern	
2.2	Synthesis	141
3.2	Circular Planar Arrays	153
	3.2.1 Taylor Circular Array Synthesis	153
2.2	3.2.2 Bayliss Difference Patterns for Circular Arrays	155
3.3	Methods of Pattern Optimization/Adaptive Arrays	157
	3.3.1 Pattern Optimization	157
	3.3.2 Adaptive Arrays	159
	3.3.3 Generalized S/N Optimization for Sidelobe Cancelers, Phased	1.63
	and Multiple-Beam Arrays	162
	3.3.4 Operation as Sidelobe Canceler	165
	3.3.5 Fully Adaptive Phased or Multiple-Beam Arrays	168
2.4	3.3.6 Wideband Adaptive Control	170
3.4 3.5	Generalized Patterns Using Covariance Matrix Inversion	175
3.3	Pattern Synthesis Using Measured Element Patterns References	176
	References	180
CH	APTER 4	
	erns of Nonplanar Arrays	185
4.1	Introduction	185
	4.1.1 Methods of Analysis for General Conformal Arrays	186
4.2	Patterns of Circular and Cylindrical Arrays	187
	4.2.1 Phase Mode Excitation of Circular Arrays	190
	4.2.2 Patterns and Elevation Scan	194
	4.2.3 Circular and Cylindrical Arrays of Directional Elements	194
	4.2.4 Sector Arrays on Conducting Cylinders	197
4.3	Spherical and Hemispherical Arrays	220
4.4	Truncated Conical Arrays	221
	References	221

ix

CH/	PTER 5	
Elem	ents for Phased Arrays	225
5.1	Array Elements	225
5.2	Polarization Characteristics of Infinitesimal Elements in Free Space	225
5.3	Electric Current (Wire) Antenna Elements	227
	5.3.1 Effective Radius of Wire Structures with Noncircular Cross	
	Section	228
	5.3.2 The Dipole and the Monopole	228
	5.3.3 Special Feeds for Dipoles and Monopoles	234
	5.3.4 Dipoles Fed Off-Center	238
	5.3.5 The Sleeve Dipole and Monopole	238
	5.3.6 The Bowtie and Other Wideband Dipoles	241
	5.3.7 The Folded Dipole	241
	5.3.8 Microstrip Dipoles	246
	5.3.9 Other Wire Antenna Structures	247
	5.3.10 Broadband Flared-Notch, Vivaldi, and Cavity-Backed	
	Antennas	248
5.4	Aperture Antenna Elements	251
	5.4.1 Slot Elements	252
	5.4.2 Waveguide Radiators	254
	5.4.3 Ridged Waveguide Elements	256
	5.4.4 Horn Elements	257
5.5	Microstrip Patch Elements	258
	5.5.1 Microstrip Patch	258
	5.5.2 The Balanced Fed Radiator of Collings	268
5.6	Elements for Alternative Transmission Lines	269
5.7	Elements and Row (Column) Arrays for One-Dimensional Scan	269
	5.7.1 Waveguide Slot Array Line Source Elements	272
	5.7.2 Printed Circuit Series-Fed Arrays	275
5.8	Elements and Polarizers for Polarization Diversity	277
	References	282
CH	APTER 6	
Sum	mary of Element Pattern and Mutual Impedance Effects	291
6.1	Mutual Impedance Effects	291
6.2	Integral Equation Formulation for Radiation and Coupling in Finite	
	and Infinite Arrays	293
	6.2.1 Formulation and Results for Finite Arrays	293
	6.2.2 Formulation and Results for Infinite Arrays	297
6.3	Array Blindness and Surface Waves	306
6.4	Impedance and Element Patterns in Well-Behaved Infinite Scanning	
	Arrays	319
6.5	Semi-Infinite and Finite Arrays	327
6.6	Impedance Matching for Wide Angle and Wideband Radiation	329
	6.6.1 Reduced Element Spacing	331
	6.6.2 Dielectric WAIM Sheets	333
6.7		335

6.8	Small Arrays and Waveguide Simulators for the Evaluation of Phased			
	Array Scan Behavior	339		
	6.8.1 Several Useful Simulators	344		
	References	346		
CH/	PTER 7			
Arra	r Error Effects	353		
7.1	Introduction	353		
7.2	Effects of Random Amplitude and Phase Errors in Periodic Arrays	353		
	7.2.1 Average Pattern Characteristics	354		
	7.2.2 Directivity	358		
	7.2.3 Beam Pointing Error	358		
	7.2.4 Peak Sidelobes	359		
7.3	Sidelobe Levels Due to Periodic Phase, Amplitude, and Time-Delay			
	Quantization	362		
	7.3.1 Characteristics of an Array of Uniformly Illuminated			
	Contiguous Subarrays	364		
	7.3.2 Phase Quantization in a Uniformly Illuminated Array	365		
	7.3.3 Reduction of Sidelobes Due to Phase Quantization	371		
	7.3.4 Subarrays with Quantized Amplitude Taper	374		
	7.3.5 Time Delay at the Subarray Ports	375		
	7.3.6 Discrete Phase or Time-Delayed Subarrays with Quantized	27		
	Subarray Amplitudes	375		
	References	377		
CH/	PTER 8			
Spec	ial Array Feeds for Limited Field-of-View and Wideband Arrays	379		
8.1	Multiple-Beam Systems	379		
	8.1.1 Beam Crossover Loss	381		
	8.1.2 Orthogonality Loss and the Stein Limit	384		
	8.1.3 Multiple-Beam Matrices and Optical Beamformers	392		
8.2	Antenna Techniques for Limited Field-of-View Systems	399		
	8.2.1 Minimum Number of Controls	400		
	8.2.2 Periodic and Aperiodic Arrays for Limited Field of View	402		
	8.2.3 Constrained Network for Completely Overlapped Subarrays	421		
	8.2.4 Reflectors and Lenses with Array Feeds	429		
	8.2.5 Practical Design of a Dual-Transform System	452		
8.3	Wideband Scanning Systems	455		
	8.3.1 Broadband Arrays with Time-Delayed Offset Beams	456		
	8.3.2 Contiguous Time-Delayed Subarrays for Wideband Systems	456		
	8.3.3 Overlapped Time-Delayed Subarrays for Wideband Systems	459		
	References	467		
List	of Symbols	473		
About the Author				
Index				

steering, and the switches are used to truncate the illumination so that only a finite sector of the array is used at any time, a procedure that is required for sidelobe control.

Butler matrices (see Chapter 8) have been used to excite the phase modes of circular arrays directly. As originally proposed by Shelton [36] and developed by Sheleg [25], a matrix-fed circular array with fixed phase shifters can excite current modes around the array, and variable phase shifters can then be used to provide continuous scanning of the radiated beam over 360°. The geometry is shown in Figure 4.8. Another extension of this technique proposed by Skahil and White [37] excites only that part of the circular array that contributes to the formation of the desired radiation pattern. The array is divided into a given number of equal sectors, and each sector is excited by a Butler matrix and phase shifters. With either of these circuits, sidelobe levels can be lowered by weighting the input excitations to the Butler matrix. The technique by Skahil and White was demonstrated by using an 8 × 8 Butler matrix, eight phase shifters, and eight single-pole, four-throw switches to feed four 8-element sectors of a 32-element array. The design sidelobes were -24 dB and measured data showed sidelobes below -22 dB.

Cylindrical sector arrays are excited by currents to focus the far-field distribution for each ring $F_k(\theta, \phi)$ [see (4.8)] to some point (θ_0, ϕ_0) . Assuming element patterns with constant far-field phase, one uses

$$I_{nk} = |I_{nk}| e^{-jk [a_k \sin \theta_0 \cos(\phi_0 - n\Delta\phi_k) + z_k \cos \theta_0]}$$
 (4.24)

This excitation is applied only to the desired illuminated sector, while the other elements of the array are, ideally, terminated in matched loads. In this manner,

Figure 4.8 Matrix scanning system. (From: [25]. © 1968 IEEE. Reprinted with permission.)