5G PHY Layer Processing – Transport Block Segmentation (2)

Rohit Budhiraja

Simulation-Based Design of 5G Wireless Standards (EE698H)

Agenda for today

- Finish discussing transport block segmentation
 - Section 5.2.2 of 36.218
- Very very briefly discuss LDPC encoding
 - Reference Chap 4.1.7.3 of 5G NR by SassanA
- Each code block size : $K' = \lceil B'/(C) \rceil = \frac{28288}{4} = 7072$. Not done like this.

LDPC Encoder details (1)

- An LDPC code is defined by parity check matrix H
- Each codeword \mathbf{v} is chosen such that $H\mathbf{v} = 0$
- A non-codeword (corrupted codeword) will generate a nonzero vector, which is called syndrome
- 5G NR uses a base graph matrix **u** to define the parity check matrix H

$$\mathbf{u} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \mathbf{H} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \mathbf{H} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

LDPC Encoder details (2)

- $m{u}$ needs to be transformed into a PC matrix H using a lifting factor Z_c
- Lifting each (integer) entry of base graph \boldsymbol{u} is replaced by a permuted $Z_c \times Z_c$ identity matrix
- To obtain H
 - Start with an identity matrix I and circularly shift its entries according to the base graph entry u_{ii}
 - We considered an example 2 \times 2 base graph matrix \boldsymbol{u} and lifting factor $Z_c = 3$

LDPC lifting factor and base graph parameters (1)

- NR data channel supports two base graphs to ensure good performance
- Base graph 1 is optimized for large information block sizes and high code rates.
 - \bullet Designed for maximum code rate of 8/9 and may be used for code rates up to 0.95
- Base graph 2 is optimized for small information block sizes and lower code rates
 - Lowest code rate for base graph 2

Parameter	Base Graph 1	Base Graph 2
Minimum code rate R _{min}	1/3	1/5
Base matrix size	46 × 68	42 × 52
Number of systematic columns K_b	22	10
Maximum information block size K_{cb}	$8448(=22\times384)$	$3840(=10 \times 384)$
Number of non-zero elements	316	197

LDPC lifting factor and base graph parameters (2)

Parameter	Base Graph 1	Base Graph 2
Minimum code rate R _{min}	1/3	1/5
Base matrix size	46 × 68	42 × 52
Number of systematic columns Kb	22	10
Maximum information block size Kcb	$8448(=22\times384)$	$3840(=10\times384)$
Number of non-zero elements	316	197

- Above table is Table 5.3.2-1 of 36.218-f20
- Fewer non-zero elements in H indicate lower decoding complexity for a given code rate
 - Base graph 2 has much lower decoding complexity than base graph 1

Segmented code block sizes (1)

- Each code block size : $K' = \lceil B'/(C) \rceil = \frac{28288}{4} = 7072$. Not done like this.
- Standard specifies different lifting sizes to design parity check matrix H

Set Index i _{LS}	Set of Lifting Sizes Z _C	
0	{2,4,8,16,32,64,128,256}	
1	{3,6,12,24,48,96,192,384}	
2	{5,10,20,40,80,160,320}	
3	{7,14,28,56,112,224}	
4	{9,18,36,72,144,288}	
5	{11,22,44,88,176,352}	
6	{13,26,52,104,208}	
7	{15,30,60,120,240}	

• Minimum value of Z_c from Table 5.3.2-1 such that

$$K_b \times Z_c = K \ge K'$$

 $\Rightarrow 22 \times 352 = \underbrace{7744}_{K} \ge \underbrace{7072}_{K'}$

Segmented code block sizes (2)

- When segmented transport block size is not matched to suitable lifting size, filler bits are added
- Number of filler bits

$$F = K - K' = 7744 - 7072 = 672$$

- Total of four code block of size K = 7744 bits with filler bits F = 672
- ullet Note the corresponding set index i_{LS} also input to the LDPC encoder

Summary of transport block segmentation

• Input bit sequence to codeblock segmentation is denoted as:

$$b_0, \ldots, b_{B-1}, B > 0$$

• Bits output from codeblock segmentation are denoted as:

$$c_{r0}, c_{r1}, c_{r2}, c_{r3}, \ldots, c_{r(K_r-1)}$$

- \bullet r is codeblock number, and K_r is number of bits for rth codeblock
- ullet Filler bits (usually denoted as -1) are added to the end of each codeblock

Transport block segmentation as in standard¹

- Number of code blocks C = 4;
- Code block size without filler bits K' = 7072 bits
- Code block size with filler bits K = 7072 + 672 = 7744 bits
- CRC size L = 24 bits

The bit sequence c_{nk} is calculated as:

$$s = 0$$
;
for $r = 0$ to $C - 1$
for $k = 0$ to $K' - L - 1$
 $c_{rk} = b_s$;
 $s = s + 1$;

end for

¹38.212 Sec 5.2.2

Transport block segmentation as in standard²

```
if C > 1
        The sequence c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K'-L-1)} is used to calculate the CRC parity bits p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}
        according to Subclause 5.1 with the generator polynomial g_{CRC24B}(D).
        for k = K'-L to K'-1
            c_{rk} = p_{r(k+L-K')}
        end for
   end if
    for k = K' to K - 1 -- Insertion of filler bits
        c_{rk} = < NULL >_{\cdot}
   end for
end for
```

