Bushibuara P Iviy	courses ► 2102-CVL100 ► 10 February - 16 February ► Minor(Feb15th@2pm)
Started	
	tate Finished
Completed	
Time ta	
Gr	ade 30.00 out of 40.00 (75%)
Question 1 Complete Mark 4.00 out of	(4points)Calculate total theoretical oxygen demand of 147.2 mg/L glucose and 10.8 mg/L benzene?
4.00	Answer: 190.244
	The correct answer is: 190.19
Question 2 Complete Mark 0.00 out of	(4points) A solution has 0.9mmol/L MgCl ₂ . For a flow of 25322.2m ³ /d, calculate total quantity of soda ash (kg/d) needed? Soda ash is 0.9% pure.
4.00	Answer: 134207.66
	The correct answer is: 2684.15
Question 3 Complete Mark 4.00 out of 4.00	(4points)Particle A (0.01mm diameter, specific gravity =2.65, shape factor=1) is settling in a 100ml beaker (case 1). In another case 2, particle B (0.1mm diameter, specific gravity =1.3, shape factor=1) is settling in a 100ml beaker. In both cases, water is at 20degC (assume Re <1).Calculate value of (t1/t2)?
	Select one: 18.18 25.18 50 80
	The correct answers are: 18.18, 80, 50, 25.18
Question 4 Complete Mark 4.00 out of 4.00	(4points)A sample A (100mL volume) (water quality: 1mg/L Cadmium ions, 50mg/L nitrates, 0.8mg/L residual chlorine) is mixed with 100mL of Sample B(water quality: 2mg/L Cadmium ions, 100mg/L nitrates, 1.6mg/L residual chlorine)(all other water quality parameters are within limits). The final solution is tested for its suitability of drinking purpose. Can the water be rejected as unsuitable for drinking purpose?
	Select one: No Yes

The correct answer is: Yes

Question 5 Complete	(4points) A solution has HOCl and OCl (solution pH=7; temperature =25degC). Equilibrium constant for conversion of HOCl to OCl is 3*10 ⁻⁸ mole/L. Calculate value of (HOCl/{HOCl+OCl})?
Mark 4.00 out of	
4.00	Select one: 0.231
	0.7692
	0.7
	0.3
	The correct answer is: 0.7692
Question 6 Complete Mark 2.00 out of	(2points)Residual chlorine is provided in drinking water treatment :
2.00	Select one:
	Before filtration
	Before supplying water to consumers
	After flocculation
	After adsorption
	The correct answer is: Before supplying water to consumers
Question 7 Complete Mark 2.00 out of 2.00	(2points)For 99% kill, Ct values of 4 pathogens are given as following: Adenovirus: C 0.85*t=0.098; E.coli: C 0.85*t=0.24; Poliomyelitis virus: C 0.85*t=1.2; Coxsackievirus A2: C 0.85*t=6.3. Here, C is conc. of HOCl in mg/L unit and (t) is time in minutes. Arrange pathogen in decreasing order of their persistence to 1mg/L HOCl.
	Select one:
	Adenovirus < E.coli <poliomyelitis <coxsackievirus="" a2<="" th="" virus=""></poliomyelitis>
	E.coli < Adenovirus < Poliomyelitis virus <coxsackievirus a2<="" th=""></coxsackievirus>
	E.coli <poliomyelitis <coxsackievirus="" a2<adenovirus<="" th="" virus=""></poliomyelitis>
	Coxsackievirus A2 <adenovirus <="" <poliomyelitis="" e.coli="" th="" virus<=""></adenovirus>
	The correct answer is: Adenovirus < E.coli <poliomyelitis <coxsackievirus="" a2<="" th="" virus=""></poliomyelitis>
Question 8 Complete	(2points)A water sample has 20mg/L sodium ions, 5mg/L calcium ions, 100mg/L suspended solids, 40mg/L chloride ions,50mg/L ferric ions and 10 MPN/100ml fecal coliforms. Alkalinity will be caused by
Mark -1.00 out of	Select one:
2.00	Calcium ions
	Chloride ions
	 Sodium ions
	Ferric ions
	The correct answer is: Chloride ions

2.00	neutralization followed by pH increase
	Alum coagulation and settling
	carbonation
	 Disinfection
	The correct answer is: Alum coagulation and settling
Question 10	
Complete	(2points)In drinking water treatment plant, chemical sludge is produced during:
Mark 2.00 out of	
2.00	Select one:
	precipitation
	aeration
	disinfection
	filtration
	The correct answers are: filtration, precipitation
Question 11 Complete	(2points) Restabilization of colloidal particles happen due to
Mark 2.00 out of 2.00	
2.00	Select one: Sweep coagulation of particles
	-
	Aggregation
	ionic layer compression
	The correct answer is: high concentration of counter ions
Question 12	(2points)Algal growth mainly depends on nutritional loading of
Complete	
Mark 2.00 out of 2.00	Only of any or
	Select one: protein and phosphorus,
	nitrogen and pH,
	nitrogen and phosphorus,nitrogen and carbon.
	nitrogen and carbon.
	The correct answer is: nitrogen and phosphorus,

(2points)Nanoparticles (particles with diameter in nanometer range) can be removed from water using

Question 9

Mark 2.00 out of

Select one:

Complete

Question 13 Complete	(2points) Disinfection process is preferred after removingand ammonia from water.
Mark 2.00 out of 2.00	Select one:
	organic compounds
	o viruses
	o bacteria
	o ionic compounds
	The correct answer is: organic compounds
Question 14	
Complete	(2points)Softening removesfrom water.
Mark -1.00 out of 2.00	Select one:
	divalent cations only,
	divalent cations and higher valence cations,
	divalent anions
	divalent cations as well as anions.
	The correct answer is: divalent cations and higher valence cations,
Question 15 Complete	(2points) Particle A has negative surface charge. Alum is added to remove particle A from solution (pH 3). Type of
Mark 2.00 out of	coagulation mechanism would be:
2.00	Select one:
	o polymer bridging
	adsorption
	ionic layer compression
	sweep coagulation
	The correct answer is: ionic layer compression
	The correct answer is, ionic layer compression
■ Jan29thQuiz1(8	310am-820am)
	Jump to
	wed march2nd(6pm) MinorQueClarification I