Electronic Systems

Active Filters

Lecture 4

Dr. Roaa Mubarak

The Active Filters Contents:

- 1. Introduction to Filters.
- 2. Low Pass Filter.
- 3. High Pass Filter.
- 4. Band Pass Filter.

Butterworth Filter.

- 6. Chebyshev Filter.
- Bessel Filter.
- 8. KHN Biquad filter.
- 9. Multiple Feedback Filters.
- State Variable Filters.

- \Box f_L is the lower Cut-off Frequency
- \Box f_H is the Higher Cut-off Frequency
 - ☐ B.W is the Band-Width
 - \square B.W = f_H f_I
 - \Box Condition: $f_H(f_{c(LPF)}) > f_L(f_{c(HPF)})$

The Center Frequency (Tuned Freq.)

$$f_0 = \sqrt{f_L \cdot f_H}$$

The Quality Factor (How Sharp is the response)

$$Q = \frac{f_0}{B.W}$$

Example 1:

Design a 3^{rd} order Butterworth Band-Pass-Filter (BPF) for the audio frequency band from 20 Hz to 20 KHz. The Butterworth polynomial for n = 3 is (S+1) (S^2+S+1) .

- (a) Draw the Block- diagram for the filter.
- (b) Draw the Circuit- diagram for the filter.
- (c) Calculate the values of the circuit components.

Solution:

(a) Block Diagram

(b) Circuit Diagram

(c) Circuit Components Calculations

$$\frac{III}{For LPF} = \frac{1}{2\pi RC} \Rightarrow 20\times10^3 = \frac{1}{2\pi RC}$$

$$\frac{1}{2\pi RC} \Rightarrow 20\times10^3 = \frac{1}{2\pi RC}$$

$$\frac{1}{2\pi RC} \Rightarrow RC$$

$$\frac{1}{2$$

Example2:

Design a 4^{th} order Butterworth Band-Pass-Filter (BPF) for the audio frequency band from 20 Hz to 20 KHz. The Butterworth polynomial for n=4 is $(S^2+0.765S+1)(S^2+1.848S+1)$

- (a) Draw the Block- diagram for the filter.
- (b) Draw the Circuit- diagram for the filter.
- (c) Calculate the values of the circuit components.

Solution:

(a) Block diagram

(b) Circuit- diagram

 \longleftarrow 4th LBF \longrightarrow \longleftarrow 4th HBF \longrightarrow

(b) Circuit Components Calculations:

For
$$\angle PF$$
:-

 $f_0 = \frac{1}{2\pi RC} = 20 \times 10^3 \text{ Hz}$
 $chose \ C = 0.01 \text{ MF} \ V \Rightarrow i. \ R = 795.775 \text{ R}$

For $\angle HPF$:-

 $f_0 = \frac{1}{2\pi R^2 C} = 20 \text{ Hz}$
 $chose \ C = 0.01 \text{ MF} \ V \Rightarrow i. \ R = 795.775 \text{ kg}$
 $Bn(5) = (5^2 + 0.7655 + 1)(5^2 + 1.8485 + 1)$
 $2k_1 = 0.765$
 $2k_2 = 1.848$
 $Am_1 = 3 - 2k_1 = 2.235$
 $Am_2 = 3 - 2k_2 = 1.52$
 $Am_1 = 1 + \frac{R^2}{R^2} = 2.235$
 $Am_2 = 1 + \frac{R^2}{R^2} = 1.152$
 $R^2 = 1.235$
 $R^2 = 1.235$
 $R^2 = 1.52kn$
 $R^2 = 1.52kn$
 $R^2 = 1.52kn$

 \Box Condition: $f_L(f_{c(LPF)}) < f_H(f_{c(HPF)})$

Example3:

3rd order Butterworth BSF to reject the frequency band from 10 KHz to 40 KHz. The Butterworth polynomial for n=3 is (S+1) (S2+S+1).

- 1. Draw the block diagram for the filter.
- 2. Draw the circuit diagram.
- 3. Calculate all circuit components values.

Solution:

(a) Block Diagram:

(b) Circuit- diagram

(C) Components Calculations

Bn(s) =
$$(5+1)(5^2+5+1)$$

* For the second-order

Am = $3-2k=3-1=2=1+\frac{R_2}{R_1}$

ii $\frac{R_2}{R_1}=1$

Let $\frac{R_1=10kn}{R_1=10kn}$ iii $\frac{R_2=10kn}{R_1=10kn}$

Assuming the gain of the First-order Part is equal to that of the second-order part.

Example 4:

Design a 4^{th} order Butterworth BSF to reject the frequency band from 2 KHz to 10 KHz. The Butterworth polynomial for n = 4 is $(S^2+1.848 S+1) (S^2+0.765 S+1)$.

- 1. Draw the block diagram for the filter.
- 2. Draw the circuit diagram.
- 3. Calculate all circuit components values.

(a) Block diagram

(b) Circuit diagram

For
$$LRE$$
 $fc = 2 \times 10^3 = \frac{1}{2 \times RC}$, $chose P$ $C = a. oIMF$
 $\therefore R = \frac{1}{2 \times 2 \times 10^3 \times -0.01 \times 10^6}$ $V \rightarrow R \cong 7.96 \text{ kn}$

For HPF
 $fc = 10 \times 10^3 = \frac{1}{2 \times R^2 C}$, $chose C = a. oIMF$
 $\therefore R = \frac{1}{2 \times 10^3 \times -0.01 \times 10^6}$ $V \rightarrow R \cong 7.96 \text{ kn}$

For $R = 4 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \text{ kn}$
 $2 \times 1.59 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \times 10^6$
 $2 \times 1.59 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \times 10^6$
 $2 \times 1.59 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \times 10^6$
 $2 \times 1.59 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \times 10^6$
 $2 \times 1.59 \times 10^3 \times -0.01 \times 10^6$ $V \rightarrow R \cong 1.59 \times 1$

1. First Order LPF:

Transfer Function

$$A_{V}(S) = \frac{1}{1 + \frac{S}{W_{C}}}$$

The maximum gain A_m is unity $W_c = 2\pi f_c$

 f_c Is the cut-off frequency

Design Rules:

- \square Maximum gain $A_m = 1$
- $\Box \quad Cut-Off Frequency f_c = \frac{1}{2\pi R C}$

2. second Order LPF:

Transfer Function:

$$A_{V}(S) = \frac{V_{o}}{Vin} = \frac{1}{(\frac{S}{Wc})^{2} + 2K(\frac{S}{Wc}) + 1}$$

The maximum gain A_m is unity

$$W_c = 2\pi f_c$$

f_c Is the cut-off frequency

K is the damping ratio

(2K) is the coefficient of (S) in the table

Design Rules:

- \square Maximum gain $A_m = 1$
- \Box Cut-Off Frequency $f_c = \frac{1}{2\pi R C}$
- \square Damping Ratio $2K = Coefficient of (S) in the polynomial <math>B_n(S)$.

Example:

Analyze the unity gain filter shown:

- 1. Derive an expression for the filter transfer function.
- 2. What is the order and type of the filter?
- 3. Design the filter cut-off frequency of 100Hz

Solution:

 Derive an expression for the filter transfer function (Vo/Vin).

$$V_{o} = I_{3} \cdot \frac{1}{sc}$$

$$V_{o} = \left[\frac{V_{I}}{R + \frac{1}{sc}} \right] \cdot \frac{1}{sc}$$

$$V_{o} = \frac{V_{I}}{scR + I}$$

$$\frac{V_{in}-V_{I}}{R} = \frac{V_{I}-V_{o}}{V_{I}SC} + \frac{V_{I}}{R+\frac{1}{SC}}$$

$$\frac{V_{in}-V_{I}}{R} = SCV_{I}-SCV_{o} + \frac{SCV_{I}}{SCR+1} \times R$$

$$V_{in}-V_{I} = SCRV_{I}-SCRV_{o} + \frac{SCR}{SCR+1} V_{I}$$

$$V_{in} = [(SCR+1) + \frac{SCR}{SCR+1}]V_{I}-SCRV_{o}$$

$$V_{in} = [(SCR+1) + \frac{SCR}{SCR+1}](SCR+1)V_{o}-SCRV_{o}$$

$$V_{in} = [(S(R+1)^{2} + SCR)V_{o}-SCRV_{o}$$

$$V_{in} = [SCR+1]^{2} + SCRV_{o}-SCRV_{o}$$

$$V_{in} = [SCR+1]^{2} + SCRV_{o}-SCRV_{o}$$

$$\frac{V_{o}}{V_{in}} = \frac{1}{S^{2}c^{2}R^{2}+2S(R+1)}$$

$$\frac{V_o}{Vin} = \frac{1}{\left(\frac{S}{I/Rc}\right)^2 + 2\left(\frac{S}{I/Rc}\right) + 1}$$

$$\frac{V_o}{V_{in}} = \frac{1}{\left(\frac{S}{\omega_o}\right)^2 + 2\left(\frac{S}{\omega_o}\right) + 1}$$

(b) What is the order ad type of the filter?

Second-Order LPF

(c) Design the filter for a cut-off frequency of 100KHz.

$$W_0 = \frac{1}{RC} = 2\pi f_0$$

$$\therefore f_0 = \frac{1}{2\pi RC}$$

$$\text{choose } C = 0.01 \text{MF}$$

$$\therefore R = \frac{1}{2\pi (10.\times 10^3)(0.01\times 10^6)}$$

$$R = 159.155 \Omega$$