



# Computer Vision meets Robotics

DEEP REINFORCEMENT FOR SENSORIMOTOR CONTROL

GROUP MEETING - 30.03.2017

by Matthias Mueller













- > Cold
- > 5 flavors
- > Red Wine
- > Music
- > Partner



#### Overview

- Why Deep Learning?
- Reinforcement Learning (Recap)
- Deep Reinforcement Learning (Recap)
  - Deep Q-Network (DQN)
  - Policy Gradients (PG)
- Direct Future Prediction (DFP)

## Deep Learning Use Cases

| General use case                         | Industry                             |                                   |                                    |
|------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------|
| Sound                                    |                                      |                                   |                                    |
| Voice recognition                        | UX/UI, Automotive, Security, IoT     |                                   |                                    |
| Voice search                             | Handset maker, Telecoms              |                                   |                                    |
| Sentiment analysis                       | CRM                                  | Text                              |                                    |
| Flaw detection (engine noise)            | Automotive, Aviation                 | Sentiment Analysis                | CRM, Social media, Reputation mgt. |
| Fraud detection (latent audio artifacts) | Finance, Credit Cards                | Augmented search, Theme detection | Finance                            |
|                                          |                                      | Threat detection                  | Social media, Govt.                |
| Time Series                              |                                      | Fraud detection                   | Insurance, Finance                 |
| Log analysis/Risk detection              | Data centers, Security, Finance      |                                   |                                    |
| Enterprise resource planning             | Manufacturing, Auto., Supply chain   | Image                             |                                    |
| Predictive analysis using sensor data    | IoT, Smart home, Hardware manufact.  | Facial recognition                |                                    |
| Business and Economic analytics          | Finance, Accounting, Government      | Image search                      | Social media                       |
| Recommendation engine                    | E-commerce, Media, Social Networks   | Machine vision                    | Automotive, aviation               |
| Trocommondation origina                  | 2 deministree, media, dedia retireme | Photo clustering                  | Telecom, Handset makers            |
|                                          |                                      |                                   |                                    |
|                                          |                                      | Video                             |                                    |
|                                          |                                      | Motion detection                  | Gaming, UX, UI                     |
|                                          |                                      | Real-time threat detection        | Security, Airports                 |

## Deep Learning as a bridge between fields

- > Earth Science
- Marine Science
- Medicine
- Engineering
- Computer Science
- Robotics





#### **Sergey Levine**

Assistant Professor, UC Berkeley, EECS

#### Address:

754 Sutardja Dai Hall UC Berkeley Berkeley, CA 94720-1758

#### **News and Announcements**

#### News

| March 14, 2017     | Six new papers on deep reinforcement learning posted: <u>Uncertainty-Aware Reinforcement Learning</u> , <u>Model-Agnostic Meta-Learning</u> , <u>Reinforcement Learning with Deep Energy-Based Policies</u> , <u>Exploration with Exemplar Models</u> , <u>Combining Model-Based and Model-Free Updates</u> , and <u>Learning Invariant Feature Spaces</u> (accepted to ICLR 2017). |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| March 1, 2017      | Two new papers on deep robotic learning posted: <u>Cognitive Mapping</u> , accepted at CVPR 2017, and <u>Rope Manipulation</u> , accepted at ICRA 2017.                                                                                                                                                                                                                             |
| February 17, 2017  | Videos of the lectures from our NIPS 2016 Workshop on Deep Learning for Action and Interaction are posted $\underline{here}$ .                                                                                                                                                                                                                                                      |
| February 10, 2017  | Five papers accepted at the International Conference on Learning Representations (ICLR) including one oral presentation! Three are available below, the rest are coming soon.                                                                                                                                                                                                       |
| January 21, 2017   | Nine papers accepted at the International Conference on Robotics and Automation (ICRA) Eight available below, the ninth is coming soon.                                                                                                                                                                                                                                             |
| January 14, 2017   | Two new preprints on deep reinforcement learning posted!                                                                                                                                                                                                                                                                                                                            |
| November 25, 2016  | Four new preprints posted and one technical report on GANs, IRL, and EBMs posted!                                                                                                                                                                                                                                                                                                   |
| November 18, 2016  | I will be co-organizing a new conference in November 2017: <u>CoRL (Conference on Robotic Learning)</u> will take place in mid-November in Mountain View, California.                                                                                                                                                                                                               |
| October 4, 2016    | Six new preprints on deep reinforcement learning and deep robotic learning posted!                                                                                                                                                                                                                                                                                                  |
| October 3, 2016    | <u>Google Research Blog post</u> written with Timothy Lillicrap and Mrinal Kalakrishnan on our latest work at Google is now posted! Nice summary from MIT Technology Review <u>here</u> .                                                                                                                                                                                           |
| September 29, 2016 | Three new preprints on deep robotic learning and deep reinforcement learning posted!                                                                                                                                                                                                                                                                                                |

## Reinforcement Learning Approaches

- Monte Carlo
- TD learning: TD(0) and TD( $\lambda$ )
- Q-Learning: Q(0) and Q( $\lambda$ )
- SARSA

# Deep Reinforcement Learning (Recap)

- Automatically learn to play ATARI games (from raw game pixels!)
- Beat world champions at Go
- Robots are learning how to perform complex manipulation tasks that defy explicit programming
- Simulated quadrupeds are learning to run and leap



### TorchCraft (Facebook)

https://github.com/TorchCraft/TorchCraft









## DeepMind Lab (DeepMind)

https://deepmind.com/blog/open-sourcing-deepmind-lab/







## OpenAl Universe (OpenAl)

https://universe.openai.com/

#### Human-like interface

Agents use the same senses and controls as humans: seeing pixels and using a keyboard and mouse. Universe makes it possible to train a single agent on any task a human can complete with a computer.





# Self-Driving Car Sim (Udacity)

https://github.com/udacity/self-driving-car-sim





## Deep Q-Network

Use deep neural network to approximate

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi]$$

The Q-learning update at iteration i uses the following loss function

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[ \left( r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$



```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
        Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
      Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
       Every C steps reset \hat{Q} = Q
   End For
```

**End For** 

## Policy Gradients (PG)

- Recently, most people prefer to use Policy Gradients, including the authors of the original DQN
- PG is preferred because it is end-to-end
- There's an explicit policy and a principled approach that directly optimizes the expected reward
- Example: learn to play an ATARI game (Pong!) with PG, from scratch, from pixels, with a deep neural network

#### Policy Gradient Methods: Overview

Problem:

maximize 
$$E[R \mid \pi_{\theta}]$$

Intuitions: collect a bunch of trajectories, and ...

- 1. Make the good trajectories more probable
- 2. Make the good actions more probable (actor-critic, GAE)
- 3. Push the actions towards good actions (DPG, SVG)

## What are RL machines good at?

- RL machines excel in games with frequent reward signals, that requires precise play, fast reflexes, and not too much long-term planning
- RL machines fail in games where a rich, abstract model of the game is necessary





#### Human vs. Machine

- Human understands the objective of the game and infers the reward.
- Human brings in a huge amount of prior knowledge, such as intuitive physics and intuitive psychology.
- Humans build a rich, abstract model and plan within it. Humans can figure out what is likely to give rewards without ever actually experiencing the rewarding or unrewarding transition.

- RL machine assumes an arbitrary reward function and updates it through environment interactions.
- RL machine starts from scratch and policy gradients are a brute force solution, where the correct actions are eventually discovered and internalized into a policy.
- RL machine actually has to experience a positive reward, and experience it very often in order to eventually and slowly shift the policy parameters towards repeating moves that give high rewards.

#### Direct Future Prediction (DFP)

- Approach to sensorimotor control in immersive environments
- Semi-supervised learning while learning from raw experience
- Given present sensory input, measurements, and goal, the agent can be trained to predict the effect of different actions on future measurements

#### Direct Future Prediction (DFP)

- High-dimensional sensory stream {s<sub>t</sub>}
  - > e.g. raw visual, auditory, and tactile input
- Lower-dimensional measurement stream {m<sub>t</sub>}
  - > e.g. physical system: attitude, supply levels, and structural integrity
  - e.g. computer game: health, ammunition levels, number of killed adversaries
- → Rich and temporally dense supervision

## Advantages over Deep RL

- Learning without a fixed goal at training time
- Pursue dynamically changing goals at test time
- Outperforms state-of-the-art deep RL models, particularly on complex tasks (Winner of Visual Doom AI Competition)
- Models generalize across environments and goals
- Use of frequent multi-dimensional measurements instead of a scalar reward is beneficial

#### Model

- At each time step t, the agent receives an observation o<sub>t</sub> and executes an action a<sub>t</sub> based on this observation
- Observations have the following structure: o<sub>t</sub> = {s<sub>t</sub>, m<sub>t</sub>} where s and m denote sensory input and measurement vector respectively
- The agent aims to predict future measurements
- Goals of the agent can be defined in terms of future measurements

#### Model

- Let  $\tau_1, \ldots, \tau_n$  be a set of temporal offsets
- Let  $\mathbf{f} = \{\mathbf{m}_{t+\tau_1} \mathbf{m}_t, \dots, \mathbf{m}_{t+\tau_n} \mathbf{m}_t\}$  be the corresponding differences of future and present measurements
- Assume any goal that the agent will pursue can be defined as maximization of some function  $u(\mathbf{f}; \mathbf{g})$ , where the vector  $\mathbf{g}$  parameterizes the goal
- For goals that can be expressed as linear combinations of future measurements:  $u(\mathbf{f}; \mathbf{g}) = \mathbf{g}^T \mathbf{f}$

#### Model

- Future measurements are predicted with a parameterized function approximator, denoted by F:
- **p**<sub>t</sub><sup>a</sup> =  $F(\mathbf{o}_t, a, \mathbf{g}; \boldsymbol{\theta})$ , where  $a \in A$  is an action,  $\boldsymbol{\theta}$  contains the learned parameters of F, and  $\mathbf{p}_a^t$  is the resulting prediction
- At test time, given learned parameters  $\boldsymbol{\theta}$ , the agent can choose the action that yields the best predicted outcome:
- $a_t = \underset{a \in A}{\operatorname{argmax}} \mathbf{g}^T F(\mathbf{o}_t, a, \mathbf{g}; \boldsymbol{\theta})$

#### Training

- Consider a set of experiences collected by the agent, yielding a set D of training examples:  $D = \{\mathbf{o}_i, a_i, \mathbf{g}_i, \mathbf{f}_i\}_{i=1}^N$  where  $\{\mathbf{o}_i, a_i, \mathbf{g}_i, \mathbf{f}_i\}$  is the input and  $\mathbf{f}_i$  is the output of example i.
- The predictor is trained using a regression loss:  $L(\boldsymbol{\theta}) = \sum_{i=1}^{N} ||F(\mathbf{o}_i, a_i, \mathbf{g}_i; \boldsymbol{\theta}) \mathbf{f}_i||^2$
- The parameters of the predictor used by the agent are updated after every k new experiences
- Agent follows an  $\epsilon$ -greedy policy: it acts greedily according to the current goal with probability 1  $\epsilon$ , and selects a random action with probability  $\epsilon$

#### Architechture

- The predictor F is a deep network parameterized by  $\boldsymbol{\theta}$
- The network has three input modules: a perception module  $S(\mathbf{s})$ , a measurement module  $M(\mathbf{m})$  and a goal module  $G(\mathbf{g})$
- The outputs of the three input modules are concatenated, forming the joint input representation used for subsequent processing:

$$\mathbf{j} = J(\mathbf{s}, \mathbf{m}, \mathbf{g}) = \{S(\mathbf{s}), M(\mathbf{m}), G(\mathbf{g})\}\$$

#### Architechture

- Prediction module is split into two streams: an expectation stream  $E(\mathbf{j})$  and an action stream  $A(\mathbf{j})$
- The expectation stream predicts the average of the future measurements over all potential actions
- The action stream concentrates on the fine differences between actions:  $A(\mathbf{j} = \{A^1(\mathbf{j}), \dots, A^w(\mathbf{j})\}, \text{ where } w = |A| \text{ is the number of actions}$



Comparison to prior work

|     | D1 (health)    | D2 (health)    | D3 (frags)     | D4 (frags)    | steps/day |
|-----|----------------|----------------|----------------|---------------|-----------|
| DQN | $89.1 \pm 6.4$ | $25.4 \pm 7.8$ | $1.2 \pm 0.8$  | $0.4 \pm 0.2$ | 7M        |
| A3C | $97.5 \pm 0.1$ | $59.3 \pm 2.0$ | $5.6 \pm 0.2$  | $6.7 \pm 2.9$ | 80M       |
| DSR | $4.6 \pm 0.1$  | _              | _              | _             | 1M        |
| DFP | $97.7 \pm 0.4$ | $84.1 \pm 0.6$ | $33.5 \pm 0.4$ | $16.5\pm1.1$  | 70M       |



D1: Basic D2: Navigation







D3: Battle 2







Generalization across environments

|      |       |      |      | Trair | 1     |         |
|------|-------|------|------|-------|-------|---------|
|      |       | D3   | D4   | D3-tx | D4-tx | D4-tx-L |
|      | D3    | 33.6 | 17.8 | 29.8  | 20.9  | 22.0    |
| st   | D4    | 1.6  | 17.1 | 5.4   | 10.8  | 12.4    |
| Test | D3-tx | 3.9  | 8.1  | 22.6  | 15.6  | 19.4    |
|      | D4-tx | 1.7  | 5.1  | 6.2   | 10.2  | 12.7    |

#### Goal-agnostic training

|               | (a) fixed | l goal (0.5, | , 0.5, 1) | (b) ran | dom goals | s[0,1] | (c) rand | lom goals | [-1, 1] |
|---------------|-----------|--------------|-----------|---------|-----------|--------|----------|-----------|---------|
| test goal     | ammo      | health       | frags     | ammo    | health    | frags  | ammo     | health    | frags   |
| (0.5, 0.5, 1) | 83.4      | 97.0         | 33.6      | 92.3    | 96.9      | 31.5   | 49.3     | 94.3      | 28.9    |
| (0, 0, 1)     | 0.3       | -3.7         | 11.5      | 4.3     | 30.0      | 20.6   | 21.8     | 70.9      | 24.6    |
| (1, 1, -1)    | 28.6      | -2.0         | 0.0       | 22.1    | 4.4       | 0.2    | 89.4     | 83.6      | 0.0     |
| (-1, 0, 0)    | 1.0       | -8.3         | 1.7       | 1.9     | -7.5      | 1.2    | 0.9      | -8.6      | 1.7     |
| (0, 1, 0)     | 0.7       | 2.7          | 2.6       | 9.0     | 77.8      | 6.6    | 3.0      | 69.6      | 7.9     |

#### Ablation study

|                  |             | frags |
|------------------|-------------|-------|
| all measurements | all offsets | 22.6  |
| all measurements | one offset  | 17.2  |
| frags only       | all offsets | 10.3  |
| frags only       | one offset  | 5.0   |

#### References & Resources

- Learning to Act by Predicting the Future (ICLR, 2017)
- Playing FPS Games with Deep Reinforcement Learning (AIII, 2017)
- Deep Reinforcement Learning An Overview (Archive, 2017)
- Loss is its own Reward: Self-Supervision for Reinforcement Learning (Archive, 2017)
- One-Shot Imitation Learning (Archive, 2017)
- Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World (Archive, 2017)
- Cognitive Mapping and Planning for Visual Navigation (CVPR, 2017)
- Playing Doom with SLAM-Augmented Deep Reinforcement Learning (Archive, 2016)

#### References & Resources

- Playing Atari with Deep Reinforcement Learning (Archive, 2013)
- High-Dimensional Continuous Control Using Generalized Advantage Estimation (Archive, 2015)
- Human-level control through deep reinforcement learning (Nature, 2015)
- Gradient Estimation Using Stochastic Computation Graphs (NIPS, 2015)
- Asynchronous Methods for Deep Reinforcement Learning (Archive, 2016)
- http://rll.berkeley.edu/deeprlcourse/
- http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
- http://karpathy.github.io/2016/05/31/rl/