BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K. K. BIRLA GOA CAMPUS

FIRST SEMESTER 2020-2021

Course Handout

Date: 19/08/2020

Course No. : CHE F414

Course Title : TRANSPORT PHENOMENA

Instructor-in-charge : **Dr. Asima Shaukat**

1. Course Description:

Analogy among momentum, heat and mass transport phenomena; Shell balance approach for all three transport phenomena, Boundary layer concepts, velocity, temperature and concentration distribution in laminar flow; Velocity distributions in turbulent flow.

2. Scope and Objective of the Course:

Transport phenomena is a subject of importance in the field of engineering. All the three transport mechanisms namely momentum, heat and mass transfer frequently occur in chemical processes either individually or simultaneously. The aim of this course is to understand the analogy between the transport mechanisms and how the same methods of solution can be applied to the problems involving different transport processes.

3. Books:

Text Book

1. Bird, Stewart and Lightfoot, 'Transport Phenomena', John Wiley & Sons, 2002, 2nd edition

Reference Books

- 1. Fox and McDonald, 'Introduction to fluid dynamics,' John Wiley & Sons, 2008, 7th edition
- 2. Holman, J.P., 'Heat transfer', McGraw Hill, 1997, 8th edition

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Text Book Chap./Sec
1	Introduction	Scope and objectives of course	Ch. 0
2	Molecular momentum transport	Newton's law of viscosity	1.1-1.2
3	Convective momentum transport	Convective momentum transport	1.7
4	Momentum balances	Shell momentum balances, boundary conditions	2.1
5 - 7	Velocity distributions in	Examples	2.2-2.5

	laminar flow			
8	Problems	Problems for Ch. 2		
- 0	Tioblems	Equations of continuity,		
9	Equations of change for	motion and mechanical	3.1-3.3	
	isothermal systems		3.1 3.3	
	Equations of abongs in terms	energy Partial, total and substantial		
10	Equations of change in terms	l ·	3.5	
	of substantial derivative	derivative		
11 - 12	Applications of equations of	Examples	3.6	
	change	_		
13	Problems	Problems for Ch. 3		
14	Molecular energy transport	Fourier's law of heat	9.1	
14		conduction		
	Convective energy transport	Convective transport of	9.7-9.8	
15		energy, work associated with		
		molecular motions		
16.10		Shell energy balances,	10110	
16-18	Energy balances	examples	10.1-10.7	
19-20	Convection	Forced and free convection	10.8-10.9	
21	Problems	Problems for Ch. 10		
	Equations of change for non-	Various forms of energy		
22	isothermal systems	equations	11.1-11.3	
	Applications of equations of	equations		
23-24		Examples	11.4	
25	change	Dualdana fan Cl. 11		
25	Problems	Problems for Ch. 11	17.1	
26	Molecular mass transport	Fick's law of binary diffusion	17.1	
	Convective mass transport	Mass and molar transport by	17.7-17.8	
27		convection, summary of mass		
		and molar fluxes		
20	M 1 1	Shell mass balance, boundary	18.1	
28	Mass balances	conditions		
	Concentration distributions in			
29 - 30	solids and laminar flow	Examples	18.2-18.7	
31	Problems	Problems for Ch. 18		
31	1 TOUGHIS			
22.22	Equations of change for	Equations of continuity,	10 1 10 4	
32-33	multicomponent systems	summary of multicomponent	19.1-19.4	
2.4	D 11	equations of change		
34	Problems	Problems for Ch. 19		
2.5	Velocity distributions with	Time-dependent flow of	4.4	
35	more than one independent	Newtonian fluids	4.1	
	variables			
	Stream function and velocity potential	Solving flow problems using		
36-37		stream functions and velocity	4.2-4.3	
		potential		
38	Flow near solid surfaces	Boundary layer theory	4.4	
39	Problems	Problems for Ch. 4		
40-41	Temperature distributions	Unsteady state heat	12.1-12.3	
	with more than one	conduction in solids, Steady	(R2 - 3.5,	
	independent variable	potential flow	4.6)	
	-	Time-smoothed equations of	,	
42	Turbulent flow	change and velocity profiles	5.1-5.3	
<u> </u>	L	Thange and referry profiles		

4. Evaluation Scheme:

EC No.	Evaluation Component	Weightage (%)	Date & Time	Duration
1	Test 1	15	September 14 (During scheduled class hour)	30 min
2	Test 2	15	October 16 (During scheduled class hour)	30 min
3	Test 3	15	November 16 (During scheduled class hour)	30 min
4	Quizzes/assignments	20	To be announced	-
5	Comprehensive	35	05/12/20 (AN)	120 min

Notices:

Notices, if any, concerning the course will be uploaded on the Moodle

Make-up:

Make-up will be granted for genuine cases only. Prior permission of IC is compulsory. No make-up for Quizzes will be given.

Consultation Hour: Monday, 5:00 to 6:00 pm.

Instructor-in-charge (CHE F414)