

KUMAR ET AL. (2020)

Presented by Alex Gavin

OUTLINE

- Background information and motivation
- Proposed solution and features
- Evaluation
- Questions

BACKGROUND INFO

WIRELESS SENSOR NETWORKS

LOW-POWER AND LOSSY NETWORKS (LLNs)

IEEE 802.15.4 Network

SOMETIMES NEED RELIABLE COMMUNICATION

E.G. VOICE COMMANDS

SEVERAL EXISTING PROTOCOLS

FEW ARE TCP-BASED

WHY NOT TCP?

DEEMED TOO HEAVYWEIGHT

LLN TCP ISSUES

- 1. Memory usage non-deterministic
- 2. TCP headers take up half of IEEE 802.15.4 frames
- 3. Expected power usage poor

EXISTING TCP LACK STANDARD FEATURES

HENCE UDP-BASED PROTOCOLS

UNFORTUNATELY...

UDP-BASED HAS DRAWBACKS

SENSORS NOT FIRST-CLASS CITIZENS

APPLICATION SPECIFIC PROTOCOLS

REQUIRE DEDICATED BASESTATIONS

CUE TCPIp!

WHAT MAKES IT UNIQUE?

FULLY COMPATIBLE TCP

INTEROPERABLE W/ OTHER DEVICES

INCLUDES STANDARD TCP FEATURES

MUCH BETTER PERFORMANCE

HOW IS THIS ACCOMPLISHED?

BUILT USING FREEBSD TCP-STACK

BUILT INTO TWO RTOSes

USES REPRESENTATIVE HARDWARE

USES REPRESENTATIVE HARDWARE

HOWEVER...

LLN TCP INEFFICIENT W/O MODIFICATIONS

TCP-STACK MODIFICATIONS

LLN TCP ISSUES

- 1. Memory usage non-deterministic
- 2. TCP headers take up half of IEEE 802.15.4 frames
- 3. Expected power usage poor

1. MEMORY USAGE

TCP SEND/RECV BUFFERS

STANDARD: BUFFERS SHRINK/GROW

DANGEROUS FOR EMBEDDED DEVICES

TCPIp: SIZES DEFINED AT COMPILE TIME

ZERO-COPY SEND BUFFER

IN-PLACE REASSEMBLY FOR RECEIVE BUFFER

IN-PLACE REASSEMBLY

(a) Naïve receive buffer. Note that size of advertised window + size of buffered data = size of receive buffer.

(b) Receive buffer with in-place reassembly queue. In-sequence data (yellow) is kept in a circular buffer, and out-of-order segments (red) are written in the space past the received data.

Figure 2: Naïve and final TCP receive buffers

2. TCP HEADERS

STANDARD: TCP FRAGMENTS

TCP FRAGMENTATION

TCP FRAGMENTATION

IN LLNs HALF EACH FRAME IS TCP HEADER

TCPIp: LOWER LAYER FRAGMENTS INSTEAD

TCP FRAGMENTATION

TCP: Data
20 Bytes 10000 Bytes

1 Packet

TCP FRAGMENTATION

TCP: Header 20 Bytes Data 10000 Bytes

1 Packet

6LoWPAN: Header 20 Bytes Data 100000 Bytes

1 2 3 4 N Frames

ONLY ONE TCP HEADER

HEADER ONLY IN FIRST FRAME, REST DATA

DECREASES RELIABILITY, BUT GENERALLY NOT MUCH

3. POWER USAGE

LLN DEVICES DUTY CYCLE

STANDARD DUTY CYCLING INEFFICIENT W/ TCP

LEAF NODES POLL FOR DATA

NO DATA => SLEEP, RETRY

E.G. ESTABLISHING CONNECTION

WAIT FULL DUTY CYCLE INCREASES LATENCY

TCPIp: MODIFY TO MAKE EFFICIENT FOR TCP

ADAPTIVE DUTY CYCLE

TCPIp: KEY POINTS

TCPIp KEY POINTS

- Deterministic memory usage
- TCP headers not a problem
- More efficient power usage

EXPERIMENTAL SETUP

HARDWARE

MULTI-HOP NETWORK

Figure 1: Snapshot of uplink routes in OpenThread topology at transmission power of -8 dBm (5 hops). Node 1 is the border router with Internet connectivity.

EVALUATION ___

"NETWORK STUDIES OVER IEEE 802.15.4 NETWORKS"

NETWORK STUDIES OVER IEEE 802.15.4 NETWORKS

	[144]	[22]	[67]	[86]	[69, 70]	This Paper (Hamilton Platform)
TCP Stack	uIP	uIP	uIP	BLIP	Arch Rock	TCPlp (RIOT OS, OpenThread)
Max. Seg Size	1 Frame	1 Frame	4 Frames	1 Frame	1024 bytes	5 Frames
Window Size	1 Seg.	1 Seg.	1 Seg.	1 Seg.	1 Seg.	1848 bytes (4 Seg.)
Goodput (One Hop)	1.5 kb/s	\approx 6.4 kb/s	$\approx 12 \text{ kb/s}$	$\approx 4.8 \text{ kb/s}$	15 kb/s	75 kb/s
Goodput (Multi-Hop)	$\approx 0.55 \text{ kb/s}$	$\approx 1.9 \text{ kb/s}$	$\approx 12 \text{ kb/s}$	$\approx 2.4 \text{ kb/s}$	9.6 kb/s	20 kb/s

Table 6: Comparison of *TCPlp* to existing TCP implementations used in network studies over IEEE 802.15.4 networks.⁶ Goodput figures obtained by reading graphs in the original paper (rather than stated numbers) are marked with the \approx symbol.

RECAP

RECAP

TCPIp

Fully-compatible TCP implementation for LLNs

Contributions:

- Performant TCP implementation for LLNs in two embedded OSes
- TCP optimizations for LLN implementations
- Evaluation of TCPIp in several common scenarios

QUESTIONS?

