Tarea 3

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Instrucciones. Resuelve los siguientes ejercicios. Esta tarea es individual y deberá ser entregada presencialmente, durante la clase del **lunes 30 de junio**.

- **Ej. 1 (1 pt)** En cada inciso, determine si la correspondiente función es inyectiva, sobreyectiva, o biyectiva. Demuestra la conclusión a la que llego (es decir, prueba si la función tiene o no la propiedad que se afrima).
 - i) $h: \{0,1,2\} \to \{x,y\}$ definida por $h=\{(0,x),(1,x),(2,y)\}$, aquí $x \neq y$.
 - ii) $A : \mathbb{R} \to \mathbb{R}$ dada para cada $x \in \mathbb{R}$ por A(x) = 4x + 55.
 - iii) $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ dada para cada $n \in \mathbb{N}$ como $f(n) = \{0, n\}$.
- **Ej. 2 (1 pt)** Se dice que una función $g: X \to Y$ es **constante** si y sólo si para cualesquiera $x, y \in X$ se tiene g(x) = g(y). Encuentra dos funciones no constantes, cuya composición sí sea constante.
- **Ej. 3 (1.5 pts)** Sean X, Y y A conjuntos tales que $A \subseteq X$; $f : X \to Y$ cualquier función; y, definamos $i : A \to X$ para cada $a \in A$ como i(a) = a. Demuestra que para cualquier subconjunto $B \subseteq Y$ se da la igualdad $(f \circ i)^{-1}[B] = A \cap f^{-1}[B]$.
- **Ej. 4 (2 pts)** Sean A y B conjuntos, y $f: A \to B$ cualesquiera. Definimos $F: \mathcal{P}(B) \to \mathcal{P}(A)$ para cada $X \in \mathcal{P}(B)$ como $F(X) = f^{-1}[X]$. Demuestra que si F es inyectiva, entonces f es sobreyectiva.
- **Ej. 5 (1 pt)** Prueba que para cualquier $n \in \mathbb{N}$ se tiene que $2^{n+1} > n^2$.
- **Ej. 6 (1.5 pts)** Muestra que 7 divide a cualquier natural de la forma $9^n 2^n$. Es decir, para cada $n \in \mathbb{N}$ existe un entero $k \in \mathbb{Z}$ de modo que $9^n 2^n = 7k$.
- **Ej. 7 (2 pts)** Supongamos que solo hay monedas de 4\$ y 7\$. Demuestre que sólo con este tipo de monedas se puede conseguir cualquier cantidad de dinero mayor o igual a 18\$. Por ejemplo: 20\$ son 5 monedas de 4\$; 21\$ son 3 monedas de 7\$ y 22\$ son 2 monedas de 7\$ y 2 monedas de 4\$.