Simulation with a basal fluid source (1.5x10⁻⁹ m/s), performed with an initial stress defined as $\sigma_1 = \sigma_3$, a fault permeability equal to 10^9 m^2 , and $\Lambda=0.7 \text{ MPa/}^{\circ}\text{C}$.

Data in Folder "q0_1.5":

- Fault_velocity: fault velocity "Vf" (m/s) fluctuation along the fault during the seismic cycles. (Data used for Figure 6.d)
- Thermal: Thermal anomalies (°C) fluctuation along the fault during the seismic cycle.
- Time: Time variable (yrs). Data was printed every 0.1 second during the
- coseismic period, and every 1 year during the interseismic period. Depth: Depth of the fault nodes (m).

- **Mean_shearStress**: tangential stress " τ " (Pa) fluctuation at 12.75 km depth on the fault during the seismic cycle.
- velocity: fault velocity "Vf" (m/s) fluctuation at 12.75 km depth on the fault during the seismic cycle
- Anomaly_temperature: Thermal anomalies (°C) fluctuation at 12.75 km depth on the fault during the seismic cycle
- Pore_fluid: Pore-fluid factor (λ) fluctuation at 12.75 km depth on the fault during the seismic cycle
- Apparent_friction: apparent friction coefficient fluctuation at 12.75 km depth on the fault during the seismic cycle
- **Mean slip**: mean slip along the fault during the seismic cycles.
- Time2: Time variable (vrs) for Mean shearStress, velocity, Anomaly_temperature, Pore_fluid, Apparent_friction and Mean_slip data. Data was printed every 0.1 second during the coseismic period, and every 1 year during the interseismic period.

• q0 1.5.mp4 : video file showing the pore-fluid factor (λ) in the crust during an earthquake. Video used to create Figure 6 in the article.