课时7 无限长单位脉冲响应(IIR)数字滤波器的设计方法

	知识点	重要程度	常考题型
	1.数字滤波器的技术指标	☆	大题,画图
	2.模拟滤波器的设计	☆	理解
\$	3.巴特沃斯低通滤波器的设计方法	☆ ☆ ☆	大题,简答
	4.切比雪夫滤波器的设计方法	☆ ☆	简答
	5.理想模拟滤波器幅频特性	☆	理解
1 2	6.脉冲响应不变法	☆ ☆ ☆ ☆	大题
\$ X	7.双线性变换法	☆ ☆ ☆ ☆	大题
	8.设计IIR数字低通滤波器的步骤	☆	理解

3巴特沃斯低通滤波器的设计方法

巴特沃斯滤波器的设计流程

 Ω_p ; Ω_s ; α_p ; $\alpha_s \Rightarrow \Omega_c$ 1.根据技术指标求出滤波器的阶数N;

$$\Omega_C = \Omega_p (10^{0.1\alpha_p} - 1)^{-\frac{1}{2N}}$$

$$\Omega_C = \Omega_s (10^{0.1\alpha_s} - 1)^{-\frac{1}{2N}}$$

$$(\frac{\Omega_p}{\Omega_S})^N = \sqrt{\frac{10^{\alpha_p/10} - 1}{10^{\alpha_s/10} - 1}}$$

$$(\frac{\Omega_p}{\Omega_S})^N = \sqrt{\frac{10^{\alpha_p/10} - 1}{10^{\alpha_s/10} - 1}}$$

2.根据公式或查表求出归一化极点,得到归一化传输函数;

$$p_k = e^{j\pi(\frac{1}{2} + \frac{2k+1}{2N})}$$

$$H_a(p) = \frac{1}{\prod_{k=0}^{N-1} (p - p_k)}$$

$$(\frac{\Omega_p}{\Omega_S})^N = \sqrt{\frac{10^{\alpha_p/10} - 1}{10^{\alpha_S/10} - 1}}$$

由于教材不同版本的要求,这里的分子分母位置可以颠倒,特此说明。