2.1. Funciones medibles

1. Sea $\mathcal{F} = \{\emptyset, (-\infty, 0], (0, \infty), \mathbb{R}\}$ y sea $f : \mathbb{R} \to \mathbb{R}$ la función definida mediante

$$f(x) = \begin{cases} 0, & \text{si } x \in (-\infty, 0], \\ 1, & \text{si } x \in (0, 1], \\ 2, & \text{si } x \in (1, \infty). \end{cases}$$

- (a) ¿Es la función f \mathcal{F} -medible?
- (b) Describir todas las funciones medibles $f:(\mathbb{R},\mathcal{F})\to\mathbb{R}$.
- **2**. Sea (X, \mathcal{F}) un espacio medible y $f, g: X \to \mathbb{R}$. Demuestra o encuentra un contraejemplo para las siguientes afirmaciones:
 - (a) Si |f| es medible, entonces f es medible.
 - (b) Si f^2 es medible, entonces f es medible.
 - (c) Si f + g es medible, entonces f es medible o g es medible.
 - (d) Si $f \cdot g$ es medible, entonces f es medible o g es medible.
- 3. Mostrar que una función real f es medible si y sólo si f^2 y $\{f>0\}$ son medibles.
- **4**. Sea $f:[a,b]\to\mathbb{R}$ una función medible tal que f es diferenciable a.e. Mostrar que existe una función medible en [a,b] que es igual a f' a.e.
- 5. Probar que $f = \sup\{f_i : i \in I\}$ no es necesariamente medible aunque cada f_i lo sea.
- 6. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finita y $f: X \to [0, \infty]$ una función medible. Probar que existe una sucesión $\{h_n\}$ de funciones simples con soporte (conjunto de puntos donde la función no es cero) de medida finita tal que $0 \le h_n \uparrow f$. ¿Es esta propiedad cierta si μ no es σ -finita?

Sugerencia: Si h es simple y $K \in \mathcal{F}$, $h1_K$ es simple y su soporte está contenido en K.

2.2. Límites superior e inferior

- 7. Encontrar lím sup A_n y lím inf A_n en los siguientes casos:
 - (a) $A_n = A$, si n es par y $A_n = B$, si n es impar.
 - (b) $A_n = (-2 1/n, 1]$, si n es par y $A_n = [-1, 2 + 1/n)$, si n es impar.

- (c) $A_n = [0, a_n)$, siendo $a_n = 2 + (-1)^n (1 + 1/n)$.
- (d) $A_n \uparrow A \circ A_n \downarrow A$.
- (e) Los A_n son disjuntos dos a dos.
- 8. Sean A_n y B_n subconjuntos de X. Demostrar:
 - (a) $(\limsup A_n) \cap (\limsup B_n) \supset \limsup (A_n \cap B_n)$.
 - (b) $(\limsup A_n) \cup (\limsup B_n) = \limsup (A_n \cup B_n).$
 - (c) $(\liminf A_n) \cap (\liminf B_n) = \liminf (A_n \cap B_n).$
 - (d) $(\liminf A_n) \cup (\liminf B_n) \subset \liminf (A_n \cup B_n)$.
 - (e) En (a) y (d), las inclusiones opuestas no son ciertas en general.
 - (f) $\limsup A_n \liminf A_n = \limsup (A_n A_{n+1}) = \limsup (A_{n+1} A_n)$.
 - (g) Si $A_n \to A$ y $B_n \to B$, entonces $A_n \cup B_n \to A \cup B$ y $A_n \cap B_n \to A \cap B$.
- 9. Probar que $1_{\liminf A_n} = \liminf 1_{A_n}$ y $1_{\limsup A_n} = \limsup 1_{A_n}$.
- 10. Supongamos que $\mu(\cup A_n) < \infty$. Mostrar que

$$\mu(\liminf A_n) \le \liminf \mu(A_n) \le \limsup \mu(A_n) \le \mu(\limsup A_n).$$

¿En cuál de estas desigualdades se utiliza la hipótesis del enunciado? Encontrar un ejemplo en $(\mathbb{R}, \mathcal{B}, m)$ donde los A_n sean intervalos y todas las desigualdades anteriores sean estrictas.

- 11. Sea μ la medida de contar en $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Construir una sucesión A_n tal que $\limsup A_n = \emptyset$, pero $\limsup \mu(A_n) \neq 0$.
- 12. Sean $\{A_n\}$ conjuntos medibles tales que $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Mostrar que

$$\mu(\limsup A_n) = 0.$$

En otras palabras, casi todo elemento $x \in X$ pertenece a lo sumo a un número finito de los A_n , esto es, el conjunto de los puntos $x \in X$ que pertenecen a infinitos de los A_n tiene medida cero. Este resultado se conoce como el *Primer lema de Borel-Cantelli*.

13. Supongamos que lím $\mu(A_n)=0$ y $\sum_{n=1}^{\infty}\mu(A_n\cap A_{n+1}^c)<\infty$. Mostrar que se verifica $\mu(\limsup A_n)=0$.

Sugerencia: Tener en cuenta el apartado (f) del problema 47.