

Sistemas Digitais (SD)

Aula Anterior

Na aula anterior:

- ► Circuitos combinatórios típicos:
 - Somadores / Subtractores
 - Comparadores

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

Unidade Lógica e Aritmética (ULA)

Bibliografia:

- M. Mano, C. Kime: Secções 4.5 e 9.3
- G. Arroz, J. Monteiro, A. Oliveira: Secção 8.4

Circuito somador/subtractor

Circuito somador/subtractor (revisão)

Será possível realizar unidades aritméticas mais completas com um único circuito combinatório?

Unidade aritmética baseada num único circuito:

► A entrada **G** define o **tipo de operação**.

G_2G_0	Y_{i}
00	B _i
01	$\overline{B_{i}}$
10	111 = -1
11	0

G_1G_0	C_{in}
00	0
01	1
10	С
11	С

G_2G_0	Y _i
00	B _i
01	B _i
10	1
11	0

G_1G_0	C _{in}
00	0
01	1
10	С
11	С

$G_2G_1G_2$	$\mathbf{S}_0 \mathbf{Y}_i$	\mathbf{C}_{in}	Operação
000	Bi	0	

G_2G_0	$\mathbf{Y_i}$
00	B _i
01	B _i
10	111 = -1
11	0

G_1G_0	\mathbf{C}_{in}
00	0
01	1
10	С
11	С

$G_2G_1G_0$	$\mathbf{Y}_{\mathbf{i}}$	C_{in}		Operação	
000	B_i	0	R ← A + B	Soma	
001	$\overline{B_{i}}$	1	$R \leftarrow A - B$	Subtracção	
010	B_i	С	$R \leftarrow A + B + C$	Soma com bit de transporte	
011	$\overline{B_{i}}$	С	$R \leftarrow A - B - \overline{C}$	Subtracção com transporte negado	
100	111	0	$R \leftarrow A - 1$	Decremento	
101	0	1	R ← A + 1	Incremento	
110	111	С	$R \leftarrow A - \overline{C}$	Decremento, se C=0	
111	0	С	$R \leftarrow A + C$	Incremento, se C=1	

$$A+\overline{B}+C_{in}$$

$$=A+\overline{B}+C_{in}+1-1$$

$$=(A+\overline{B}+1)+C_{in}-1$$

$$A-B$$

$$=(A-B)-(1-C_{in})$$

$$=(A-B)-\overline{C_{in}}$$
Borrow

Multiplicação

Α					1	1	0	1	Multiplicando
В			X		1	0	1	0	Multiplicador
					0	0	0	0	Produto parcial
				1	1	0	1		Produto parcial
			0	0	0	0			Produto parcial
		1	1	0	1				Produto parcial
M	1	0	0	0	0	0	1	0	Resultado

Multiplicação (representação sem sinal)

Caso particular: multiplicação por uma potência inteira de 2

Exemplo:

$$6 \times 4 = 24$$

$$\Leftrightarrow (0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}) \times 4 = 24$$

$$\Leftrightarrow (0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}) \times 2^{2} = 24$$

$$\Leftrightarrow 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} = 24$$

Ou seja: $000110 \times 4 = 011000$

Deslocamento à esquerda de 2 posições

A multiplicação pela k potência de 2 (i.e. 2^k) corresponde a deslocar os bits do operando em k posições para a esquerda.

Divisão

```
Dividendo
                   Divisor
                  0 1 0 1
  1 0 0 1 0 0 1 1
                   00011101
- 0 1 0 1
 0 1 0 0 0
                   Quociente
 - 0 1 0 1
   0 0 1 1 0
   - 0 1 0 1
     000111
       - 0 1 0 1
         0 0 1 0
                   Resto
```


Divisão

- ▶ Não tem uma sequência fixa de operações elementares
- O número seleccionado de bits do dividendo em cada passo é variável

+

- ▶ Operação pouco frequente, na maioria das aplicações
- ▶ Operação complexa

 \downarrow

▶ Implementada tipicamente através de uma sequência de operações mais simples

Programa

Caso particular: divisão por uma potência inteira de 2

Exemplo:

$$36 \div 4 = 9$$

$$\Leftrightarrow (1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}) \div 4 = 9$$

$$\Leftrightarrow (1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}) \div 2^{2} = 9$$

$$\Leftrightarrow (1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}) = 9$$

Deslocamento à direita de 2 posições

A divisão pela k potência de 2 (i.e. 2^k) corresponde a deslocar os bits do operando em k posições para a direita. Em formato C2, fazse um deslocamento aritmético para a direita (SHRA).

- Circuito combinatório que implementa as operações:
 - Aritméticas
 - Lógicas
 - Deslocamento

Unidade Aritmética

$G_2G_1G_0$	$\mathbf{Y}_{\mathbf{i}}$	\mathbf{C}_{in}		Operação
000	B_{i}	0	$R \leftarrow A + B$	Soma
001	$\overline{B_{i}}$	1	$R \leftarrow A - B$	Subtracção
010	B_{i}	С	$R \leftarrow A + B + C$	Soma com bit de transporte
011	$\overline{B_i}$	С	$R \leftarrow A - B - \overline{C}$	Subtracção com transporte negado
100	1	0	$R \leftarrow A - 1$	Decremento
101	0	1	R ← A + 1	Incremento
110	1	С	$R \leftarrow A - \overline{C}$	Decremento, se C=0
111	0	С	$R \leftarrow A + C$	Incremento, se C=1

- Circuito combinatório que implementa as operações:
 - Aritméticas
 - Lógicas
 - Deslocamento

Unidade Lógica

▶ As operações lógicas aplicam-se individualmente a cada bit dos operandos de entrada:

$$R \leftarrow A \wedge B \Leftrightarrow R \leftarrow A_{n-1} \wedge B_{n-1} | A_{n-2} \wedge B_{n-2} | \dots | A_0 \wedge B_0$$

H_1H_0	(Operação
00	$R \leftarrow \overline{A}$	Complemento
01	$R \leftarrow A \wedge B$	Conjunção
10	$R \leftarrow A V B$	Disjunção
11	$R \leftarrow A \oplus B$	Disjunção exclusiva

- Circuito combinatório que implementa as operações:
 - Aritméticas
 - Lógicas
 - Deslocamento

Operações de deslocamento

Deslocamento simples

▶ Deslocamento aritmético

▶ Rotação

▶ Rotação com transporte

- ► Circuito combinatório que implementa as operações:
 - Aritméticas
 - Lógicas
 - Deslocamento

Operações da unidade lógica e aritmética

- A função realizada é definida por uma palavra de comando;
- Várias codificações possíveis.

$S_4S_3S_2S_1S_0$		Operação
00000	R ← A + B	Soma
00001	$R \leftarrow A - B$	Subtracção
00010	$R \leftarrow A + B + C$	Soma com bit de transporte
00011	$R \leftarrow A - B - (\simC)$	Subtracção com transporte negado
00100	$R \leftarrow A - 1$	Decremento
00101	R ← A + 1	Incremento
00110	$R \leftarrow A - (\simC)$	Decremento, se C=0
00111	$R \leftarrow A + C$	Incremento, se C=1
01-00	R ← ~A	Complemento
01-01	$R \leftarrow A \land B$	Conjunção
01-10	$R \leftarrow A \; V \; B$	Disjunção
01-11	$R \leftarrow A \oplus B$	Disjunção exclusiva
10000	$R \leftarrow SHR\ A$	Deslocamento lógico à direita
10001	$R \leftarrow SHL \ A$	Deslocamento lógico à esquerda
10010	$R \leftarrow SHRA \ A$	Deslocamento aritmético à direita
10011	$R \leftarrow SHLA \ A$	Deslocamento aritmético à esquerda
10100	$R \leftarrow ROR\ A$	Rotação à direita
10101	$R \leftarrow ROL \ A$	Rotação à esquerda
10110	$R \leftarrow RORC \ A$	Rotação à direita com transporte
10111	$R \leftarrow RORL \ A$	Rotação à esquerda com transporte
11	$R \leftarrow A$	Transferência

Bits de Estado (flags)

- ▶ Para além do resultado, as unidades lógicas e aritméticas disponibilizam também um conjunto de bits de estado, que reflectem o valor do resultado. Exemplos:
 - Z activo quando o resultado corresponde ao valor zero;
 - N activo quando o resultado corresponde a um valor <u>negativo</u>;
 - P activo quando o resultado corresponde a um valor positivo;
 - C activo quando o <u>carry</u> gerado aquando do cálculo do bit mais significativo do resultado é '1';
 - O activo quando o resultado corresponde a uma situação de <u>overflow</u>.

Próxima Aula

Tema da Próxima Aula:

- ▶ Elementos básicos de memória
- Latches
 - Latch RS
 - Latch RS sincronizado
 - Latch D

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás