Law of large numbers

 $(X_n)_{n\in\mathbb{N}}$ sequence of iid random variables. Look at the sample average / sample

$$\overline{X_n} = \frac{1}{n}(X_1 + \dots + X_n)$$

It is random! Suppose $mu=\mathbb{E}(X_k)$. Weak LLN: Suppose also that $\sigma^2=\mathbb{V}(X_k)$ is finite. Then $\overline{X_n}\to \mu$ in probability:

$$\mathbb{P}[\left|\overline{X_n} - \mu\right| \ge a] \le \frac{\sigma^2}{na^2}$$

Strong LLN: $\overline{X_n} \to \mu$ almost surely

1 Entropy

1.1 Introduction: measuring information formulas of Hartley, Shannon

"The amount of information contained in a message should be measured by the shortest way to formulate its contents."

We use bits (0s and 1s) (E.g.: 26 letters + symbols, $\ddot{A}, \ddot{O}, \ddot{U}, \, \Box, \, , \, , \, \ldots$)

 $32 \text{ symbols} \equiv \text{binary sequences of length 5: } 00000,00001,...,11111)$

Unit of information: 1 bit

Amount of information contained in the answer to a yes-no-question disregarding its specific contents.

Example. Guess a number in $\{0, \ldots, 2^n - 1\}$.

How many questions?

encode these numbers by binary sequences of length n.

Ask for the digits. This results in needing only n questions.

$$n = \log_2(2^n)$$

Definition 1.1. Set U_N of N different objects "of equal value". Hartley formula: amount of information to identify one of them is

$$H(U_N) = \log_2 N$$

Got this chapter from RENYI.

Justification in terms of "natural" axioms

- (A) $H(U_2) = 1$ (normalisation)
- (B) $H(U_N) \le H(U_{N+1})$
- (C) $H(U_{N \cdot M} = H(U_N) + H(U_M)$

Motivation for (C): Take $M \cdot N$ elements proceed in 2 steps: group the $M \cdot N$ elements into N groups of M elements each

$$U_{NM} = U_M^{(1)} \uplus U_M^{(2)} \uplus \cdots \uplus U_M^{(N)}$$

- 1. which group? $H(U_N)$
- 2. which element of the group found in step 1? $H(U_M)$

Lemma 1.2. $N \mapsto H(U_N) = \log_2(N)$ is the only function on \mathbb{N} which satisfies (A) - (C).

Proof. Let $N \geq 2$ (fixed).

$$2^{s(k)} \le N^k \le 2^{s(k)+1}$$

where $s(k) = \lfloor \log_2(N^k) \rfloor = \lfloor k \log_2 N \rfloor$ and $k \in \mathbb{N}$.

$$\frac{s(k)}{k} \le \log_2(N) < \frac{s(k) + 1}{k}$$

so that
$$\lim_{k\to\infty}\frac{s(k)}{k}=\log_2(N)$$
.
$$(B) \implies H(U_{2^{s(k)}}) \leq H(U_{N^k}) \leq H(U_{2^{s(k)+1}})$$

$$(C) \implies s(k)H(U_2) \leq kH(U_N) \leq (s(k)+1)H(U_2)$$

$$(A) \implies \frac{s(k)}{k} \leq H(U_N) \leq \frac{s(k)+1}{k}$$

$$k\to\infty: \frac{s(k)}{k} \to \log_2(N) \quad \frac{s(k)+1}{k} \to \log_2(N)$$

Variant: one can replace (B) by

$$(B^*) \ H(U_{N+1}) - H(U_N) \to 0 \text{ as } N \to \infty.$$

Group into not necessarily equal parts:

$$U_N = U_{N_1} \uplus U_{N_2} \uplus \cdots \uplus U_{N_n}$$

step 1 which group $H_1 = ?$

step 2 which element of the group found in step 1?

If we know that it is group k, then we need $\log_2(N_k)$ "questions". The average number of questions needed depends on the sizes of the groups.

$$H_2 = \sum_{k=1}^{n} \frac{N_k}{N} \log_2(N_k)$$

we should have

$$H(U_N) = \underbrace{H_1}_{=?} + H_2$$

$$\begin{split} H_1 &= \log_2(N) - \sum_{k=1}^n \frac{N_k}{N} \log_2(N_k) \\ &= -\sum_{k=1}^n \frac{N_k}{N} (\log_2(N_k - \log_2(N))) \\ &= -\sum_{k=1}^n \frac{N_k}{N} \log_2(\frac{N_k}{N}) \\ &= -\sum_{k=1}^n p_k \beta log_2 p_k \end{split}$$

where $p_k = \frac{N_k}{N}$ is the probability of k-th group

1.2 Entropy

information associated with \slash of discrete probability distributions. respectively random variables

Definition 1.3. Let X be a (discrete) RV taking values in a finite set \mathcal{X} .

$$X:(\Omega,\mathcal{A},\mathbb{P})\to\mathcal{X}$$

Distribution of X:

$$p_X(x) = \mathbb{P}[X = x]$$

where $x \in \mathcal{X}$. The entropy of X, respectively of the prob. dist p on \mathcal{X} is

$$H(X) = H(p(x)) = -\sum_{x \in \mathcal{X}} p(X) \log_2(p(x))$$

Convention: $0 \log_2 0 = 0$ $f(p) = -p \log p$. If we enumerate $\mathcal{X} = \{x_1, \dots, x_k\}$, such that $p_k = p(x_k)$, then (p_1, \dots, p_n) is a prob vector

$$H(p_1, \dots, p_k) = -\sum_{k=1}^{n} p_k \log_2(p_k)$$

$$H(X) = \mathbb{E}(-\log_2(p_X(X)))$$

Recall:

$$g: \mathcal{X} \to \mathbb{R}$$

$$g(X) = g \circ X: \Omega \to \mathbb{R}$$

$$g(X)(\omega) = g(X(\omega))$$

$$\mathbb{E}(g(X)) = \sum_{x \in \mathcal{X}} g(x)p(x)$$

Example. $X = \{0, 1\} \ and \ p(0) = 1 - \theta, \ p(1) = \theta$

$$p(X) = \begin{cases} 1 - \theta & \text{if } X = 0 \\ \theta & \text{if } X = 1 \end{cases}$$

$$H(X) = -\theta \log_2(\theta) - (1 - \theta) \log_2(1 - \theta)$$