

Floating-point arithmetic and error analysis (AFAE)

Tutorial nº 1 - Introduction to computer arithmetic

Exercise 1 (Radix conversions). In a classic position system in radix β , a number x is represented by digits $x_{n-1}x_{n-2} \ldots x_0$ with $x_i \in \{0, \ldots, \beta - 1\}$, as follow:

$$x = \sum_{i=0}^{n-1} x_i \beta^i.$$

It is often necessary to convert such a representation of a number in radix β into another radix β' by example for the decimal input-output of a computer that works in binary.

- 1. As an input to a computer system, converting decimal numbers to binary is relatively simple. Assume that in a C program, a number x is represented in radix $\beta = 10$ with each digit x_i being
 - Assume that in a C program, a number x is represented in radix $\beta = 10$ with each digit x_i being an element of an array uint32_t x[9].
 - Describe an algorithm to convert this number into binary ($\beta' = 2$). Show that the result is always representable with a 32 bits unsigned integer uint32_t. Write the algorithm in C as a function uint32_t convertFromDecimal(uint32_t x[9]).
- 2. The conversion from binary to decimal is slightly more complicated. It is useful for decimal display.
 - Assume that *x* is stored in radix $\beta = 2$ as a 32 bits unsigned integer uint32_t.
 - Provide an algorithm to convert this number into decimal (radix $\beta' = 10$). Show that a binary 32 bits integer will never have more than 10 decimal digits. Write an algorithm in C as a function void convertToDecimal(uint32_t res[10], uint32_t x).
 - Why is this binary-to-decimal conversion generally more expensive than the reverse conversion?
- 3. It is not always necessary to represent numbers, that is to say quantities, in a single base or with units whose ratio is always the same (as in 1 m = 10 dm = 100 cm = 1000 mm). It is possible to use several radix, respectively units with different ratios.
 - US are specialists in this way of representing quantities. For example, for the volume of liquids, the following units are used:
 - 1 US gallon corresponds to 4 US quarts;
 - 1 US quart corresponds to 2 US pints;
 - 1 US pint corresponds to 16 US fluid ounces.
 - 1 US fluid ounce corresponds to $3785411\mu\ell = 3785411 \cdot 10^{-6}$ liters.

Propose an algorithm for converting a metric representation in micro-liters ($\mu\ell$) into a US representation. What do you notice?

4. Explain how to write a function that converts a number in a non-redundant radix into binary. We recall that a redundant radix is a radix where all the digits c_i can have some values greater (in magnitude) than the ratio of the weight of the digits. For example, in a classic redundant radix, the digits c_i can be $c_i \in \{-\alpha, -\alpha + 1, \dots, 0, \dots, \alpha - 1, \alpha\}$ with $\alpha > \beta$ where β the ratio of the weight of the digits.

Exercise 2 (Additions). Addition is one of the most basic operations. As an operation, the addition uses numbers written in a appropriate format.

We assume in the sequel that the numbers x and y we wish to add are represented in radix $\beta = 2^{32}$ as 2 arrays uint32_t x[N] and uint32_t y[N]. We recall that

$$x = \sum_{i=0}^{n-1} 2^{32i} x_i \qquad y = \sum_{i=0}^{n-1} 2^{32i} y_i$$

where x_i (resp. y_i) are elements x[i] (resp. y[i]) of the array uint32_t x[N] (resp. uint32_t y[N]).

- 1. Show that for any non-redundant radix β used to represent the numbers, the carry is less than 1 for the addition of 2 numbers. It means that the carry is always either 0 or 1. The proof must be by induction.
- 2. Let a and b be 2 unsigned integers on 32 bits uint32_t a, b. Write a C function void fulladder(uint32_t *s, uint32_t *c_out, uint32_t a, uint32_t b, uint32_t c_in) that computes the sum s and the carry c_{out} of the 2 numbers a, b in radix 2^{32} and the carry c_{in} . The numbers s and c_{out} computed by the function will satisfy

$$2^{32} c_{out} + s = a + b + c_{in}$$

where $0 \le s < 2^{32}$, $c_{out} \in \{0, 1\}$.

We recall that the unsigned integer arithmetic with 32 bits is done in C modulo 2³². We assume that we do not have other unsigned integer types (like uint64_t).

3. Write a C function void addition(uint32_t s[], uint32_t *c, uint32_t x[], uint32_t y[], int n) that performs an addition of the numbers x and y, represented on n unsigned 32 bits integers. The function returns the array s the sum of x and y modulo 2^{32n} and in c the final carry. What is the complexity of an addition?

Exercise 3 (Multiplication). When multiplying two numbers x and y, written with non-redundant radix β , with a result r always with this radix,

$$\sum_{l=0}^{2n-1} r_l \, \beta^l = \sum_{i=0}^n \sum_{k=0}^n \beta^{i+k} \, x_i \cdot y_k,$$

we need to solve two problems:

- the computation of all the partial products x_i y_k corresponding to r_{i+k} and,
- the dealing of the carry when adding these partial products.

We will give solutions to those two problems in the sequel.

1. Let a, b, c be three digits in a non-redundant radix β , that is to say $0 \le a, b, c < \beta$. Show that the partial product $a \cdot b$ increased with a carry c can always be represented as two consecutive digits $0 \le u, v < \beta$ with this radix. To do so, show that for any choice of $0 \le a, b, c < \beta$, we have $0 \le u, v < \beta$ such that

$$\beta \cdot u + v = a \cdot b + c.$$

- 2. Write a C function void accuPartialProduct(uint32_t *u, uint32_t *v, uint32_t a, uint32_t b, uint32_t c) that computes *u* and *v* from *a*, *b* and *c*. We always assume that we do not have access to unsigned integer type greater than uint32_t. You will need some shifts to implement this operation.
- 3. Write a function void shortProduct(uint32_t r[], uint32_t a[], uint32_t b, int n) that computes the operation

$$\sum_{i=0}^{n} 2^{32i} r_i = b \cdot \sum_{i=0}^{n-1} 2^{32i} a_i.$$

4. Explain how to write a C function that computes a multiplication (naive) in $\mathcal{O}(n^2)$. This function void multiplication (uint32_t r[], uint32_t x[], uint32_t y[], int n) will satisfy

$$\sum_{i=0}^{2n-1} 2^{32i} \cdot r_i = \left(\sum_{i=0}^{n-1} 2^{32i} x_i\right) \cdot \left(\sum_{i=0}^{n-1} 2^{32i} y_i\right).$$

We assume that all the arrays have been allocated with the right size and initialized to zero.

Exercise 4 (Normalization of redundant results). The units of division by induction on digits often provide results in a redundant radix, that is to say, digits c_i of the quotient belong to a set $\{-\alpha, -\alpha + 1, \ldots, 0, \ldots, \alpha - 1, \alpha\}$ with $\alpha > \beta$, $\beta = 2$. Each of these digits are represented by a small binary number, often with an explicit bit for the sign.

In this exercise, we will see how this representation can be converted into a classic binary radix with a particular circuit.

The building block we will use is the *full-adder*:

We recall that the outputs s and c' of this operator satisfy for all $x, y, c \in \{0, 1\}$

$$2c' + s = x + y + c$$
.

- 1. Draw the *ripple carry adder*.
- 2. Propose a circuit for normalization of a number with n redundant digits in the radix $\{-3, \ldots, 0, \ldots, 3\}$.

Exercise 5 (Floating-point arithmetic). The IEEE-754 double precision (known as binary64 since 2008) is the most used floating-point format in computer science. The IEEE-754 standard enforces a precision representation in memory for numbers in finite precision format.

We recall that a IEEE-754 precision number is composed of a bit for sign, 11 bits for exponent (stored with a bias $2^{11-1} - 1$ in order for it to be nonnegative) and 52 bits for the mantissa. For normalized numbers (with positive biased exponents), the first bit of the mantissa – always 1 – is not stored. For subnormal numbers, all the bits are stored.

- 1. Decode by hands the following double precision numbers:
 - 1. 0x3ff0000000000000
 - 2. 0x0000000000000000
 - 3. 0x8000000000000000
 - 4. 0x0000000000000001
 - 5. 0xc00a000000000000
 - 6. 0x3ff6a09e667f3bcd
 - 7. 0x7ff0000000000000
- 2. On most of systems (at least for Intel/AMD, Intel/HP Itanium, IBM and ARM), floating-point number are stored in memory as if they were 64 bits words. This makes it possible to define a C type doubleCaster for manipulating floating-point numbers either as floating-point numbers, or as 64 bits words:

```
#include < stdio .h>
#include < stdint .h>

typedef union {
   double d;
   uint64_t l;
} doubleCaster;

int main() {
   doubleCaster xdb;

   xdb.d = 3.125;
   printf("0x%01611x\n",xdb.1);

   return 0;
}
```

What is printed by this code?

- 3. By successive iterations, propose a way to decompose a double precision number $x > 2^{-1021}$ into $E \in \mathbb{Z}$ and $m \in \mathbb{F}$, $1 \le m < 2$ such that $x = 2^E \cdot m$.
- 4. Using C type doubleCaster, propose a way to decompose a double precision number $x > 2^{-1021}$ into $E \in \mathbb{Z}$ and $m \in \mathbb{F}$, $1 \le m < 2$ such that $x = 2^E \cdot m$.
- 5. Extend the method proposed in the previous question to deal with subnormals. We will assume that x > 0.