

Winning Space Race with Data Science

Yanqing Jiang 11/27/2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

>Summary of methodologies

- Data Collection & Wrangling
- Data Exploration with Visualization
- Interactive Visualization/Dashboard with Folium and Plotly
- Machine Learning (predictive analysis on classification)

➤ Summary of all results

- Best launch site: KSC LC-39A
- Best ML model: Decision Tree
- Correlation between launch success rate and number of launches

Introduction

- ➤ Project Background and context
- Falcon 9 first stage landing prediction
- Competition from other providers
- Cost of launch and success rate of launch will determine SpaceX's pricing and bidding
- > Problems that need answers
- What are the factors that related to success launches?
- What are the sites that perform best with launches?
- What are the factors that determine successful landings?

Methodology

Executive Summary

- Data collection methodology:
 - Direct: SpaceX API
 - Indirect: Wikipedia Web scrapping
- Perform data wrangling
 - Data normalization, grouping
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification model
 - Run through 4 machine learning models to find best one

Data Collection – SpaceX API

 Data collection with SpaceX REST calls using key phrases and flowcharts

GitHub URL of the completed
 SpaceX API calls

Data Collection - Scraping

 Web scraping process using key phrases and flowcharts

 GitHub URL of the completed web scraping notebook

Data Wrangling

- Data wrangling process using key phrases and flowcharts
- GitHub URL

- Number of launches at each site
- Number and occurrence of each orbit
- Number and occurrence of mission outcome per orbit type
- Create a landing outcome label from outcome column

EDA with Data Visualization

- Scatter plot: easy to tell dependencies between variables
- Bar chart: on categorical values
- Line chart: clear on trends with time
- GitHub URL

EDA with SQL

SQL queries performed

- Names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved
- Names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- The total number of successful and failure mission outcomes
- The names of the booster versions which have carried the maximum payload mass. Use a subquery
- GitHub URL

Build an Interactive Map with Folium

- Map objects such as markers, circles, lines are added to a folium map by Longitude and Latitude
- Markers with green and red color identified success and failures launches

• Lines are to display the distance of a launch site to nearest railway, highway,

coastline and cities.

• GitHub URL

Build a Dashboard with Plotly Dash

 Interactive pie charts to display success rate on all sites and a selector to narrow down to individual sites

- Scatter plot to display success and failures on all payload range with adjustable range selector
- GitHub URL

Predictive Analysis (Classification)

• GitHub URL

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- Class=O Launch fail
- Class=1 Launch success

 Site with more launches tend to have more successful launches

Payload vs. Launch Site

- Class=O Launch fail
- Class=1 Launch success

 Site CCAFS SLC 40 has more successful rate on heavy pay load launches

Success Rate vs. Orbit Type

 The more mean_class close to 1 the more success launches with a orbit

• ES-L1,GEO, HEO and SSO have the best success rates

Flight Number vs. Orbit Type

- Class=O Launch fail
- Class=1 Launch success

• The higher the flight number go, the higher success rates are for launches (60-80)

Payload vs. Orbit Type

- Class=O Launch fail
- Class=1 Launch success

 Launch failure mainly happened on under 8000 KG and GTO Orbit

Launch Success Yearly Trend

- With time, Space X's launch success rate grow exponentially
- 2018 Space X has a small set back on launch success rate

All Launch Site Names

- Below SQL query are showing all unique launch site names
- %sql is using SQL Magic method

%sql select distinct launch_site from SPACEXDATASET

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with 'CCA'
- %sql is using SQL Magic method

Display 5 records where launch sites begin with the string 'CCA'

```
%sql select * from SPACEXDATASET where launch_site like 'CCA%' limit 5
```

^{*} ibm_db_sa://mjl90806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Confirm SQL number with Python Pandas calculation

```
Display the total payload mass carried by boosters launched by NASA (CRS)
```

```
%sql select sum(payload_mass__kg_) as total_payload from SPACEXDATASET where customer='NASA (CRS)'
```

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

```
total_payload
45596
```

```
#Pandas solution
df[df["CUSTOMER"]=="NASA (CRS)"].PAYLOAD_MASS__KG_.sum()
```

45596

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Confirm SQL result with Python Pandas result

Display average payload mass carried by booster version F9 v1.1

```
%sql select avg(payload_mass_kg_) as Average_Payload_Mass from SPACEXDATASET where booster_version='F9 v1.1'
```

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

```
average_payload_mass
2928
```

```
#Pandas solution
df[df["BOOSTER_VERSION"]=="F9 v1.1"].PAYLOAD_MASS__KG_.mean()
```

2928.4

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Confirm SQL result with Python Pandas result

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

```
%sql select min(DATE) as First_Date from SPACEXDATASET where landing__outcome='Success'
```

* ibm_db_sa://mjl90806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

first_date

2018-07-22

```
#Pandas solution
df[df["LANDING__OUTCOME"]=="Success"].DATE.min()
```

datetime.date(2018, 7, 22)

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

%sql select distinct booster_version from SPACEXDATASET where landing__outcome='Success (drone ship)' and payload_mass__kg_<6000

* ibm_db_sa://mjl90806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

booster_version

F9 FT B1021.2

F9 FT B1031.2

F9 FT B1022

F9 FT B1026

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Because there are multiple Success and Failure type, this statement shows all outcomes

List the total number of successful and failure mission outcomes

%sql select mission_outcome, count(*) as result from SPACEXDATASET group by mission_outcome

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

mission_outcome	RESULT	
Failure (in flight)	1	
Success	99	
Success (payload status unclear)	1	

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Sub query extract max payload number for each booster_version and match with main query
- Main query returns unique booster versions

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

\$sql select distinct booster_version from SPACEXDATASET x1 where booster_version=(select booster_version from SPACEXDATASET x2 where x1.booster_version=x2.booster_version order by x2.payload_mass__kg_ DESC limit 1)

^{*} ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

2015 Launch Records

 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

%sql select booster_version,launch_site,landing__outcome from SPACEXDATASET where landing__outcome ='Failure (drone ship)' and y
ear(DATE)='2015'

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

booster_version	launch_site	landingoutcome
F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

%sql select landing_outcome,count(*) as rank from SPACEXDATASET where date between '2010-06-04' and '2017-03-20' group by landing_outcome order by rank desc

* ibm_db_sa://mj190806:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:30875/bludb Done.

landingoutcome	RANK
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Launch site on a global map

All SpaceX

 launch site are
 in the U.S.
 continental
 states (Florida,
 California)

Map with colored marker

CCAFS LC-40 CCAFS SLC-40 KSC LC-39A

Florida Launch Sites

VAFB SLC-4E

California Launch Site

- Green marker is a successful launch
- · Red marker is a failed launch

Proximities Map

This launch site

- In close proximity to a railway (1.24km)
- In close proximity to a highway (0.6km)
- In close proximity to a coastline (0.86km)
- NOT in close proximity to cities (23.24km)

Total Success Launches by All Sites

• KSC LC-39A has the most successful launches from all sites

Launch site with highest launch success ratio

Total Success Launches for Site - KSC LC-39A

• KSC LC-39A has a success rate of 76.9%, which is the highest launch success rate

Payload vs Launch outcome for all sites

High Payload range (5000kg-10000kg) outcome scatter chart

Low Payload range (O kg-5000kg) outcome scatter chart

• Success rates for low payload range is higher than high payload range (more dots on top)

Classification Accuracy

Best model is
 Decision Tree with
 accuracy of
 89.11% (83.33%
 on test data)

Confusion Matrix

• Decision Tree model shows strong positive results for predicted values

Conclusions

- The Decision Tree model is the best machine learning model for this dataset
- KSC LC-39A had the most success launches and higher success launch % compare to other sites
- Site with more launches have better success rate
- SpaceX success rate for launches grow exponentially with time

Appendix

- 2 Python SQL method used:

#Method 1 with SQL Magic - SQL Magic: %sql ibm_db_sa://mj190806:Q76g0IIy4Lo3RWZE@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:3 0875/bludb?security=SSL

%sql select * from SPACEXDATASET

- IBM DB:

#Method 2 with ibm db import pandas as pd import ibm_db import ibm_db_dbi dsn_uid=" _____"
dsn_pwd=" _____"

dsn database="bludb" dsn port="30875" dsn_protocol="TCPIP" "DRIVER={0};" "DATABASE={1};" "HOSTNAME={2};"

dsn_driver="{IBM DB2 ODBC DRIVER}"

"PORT={3};"

"PROTOCOL={4};" "UID={5};" "PWD={6};" "Security=ssl;").format(dsn_driver, dsn_database, dsn_hostname, dsn_port, dsn_protocol, dsn_uid, dsn_pwd)

conn = ibm db.connect(dsn, "", "") print ("Connected to database: ", dsn_database, "as user: ", dsn_uid, "on host: ", dsn_hostname) except:

pd_conn=ibm_db_dbi.Connection(conn)

print ("Unable to connect: ", ibm_db.conn_errormsg())

OUERY = "select *from SPACEXDATASET" df=pd.read_sql(QUERY,pd_conn) df.head()

