RECURSÃO

Recursão é um conceito fundamental em computação. Sua compreensão nos permite construir programas elegantes, curtos e poderosos. Muitas vezes, o equivalente não-recursivo é muito mais difícil de escrever, ler e compreender que a solução recursiva, devido em especial à estrutura recursiva intrínseca do problema. Por outro lado, uma solução recursiva tem como principal desvantagem maior consumo de memória, na maioria das vezes muito maior que uma função não-recursiva equivalente.

Na linguagem C, uma função recursiva é aquela que contém em seu corpo uma ou mais chamadas a si mesma. Naturalmente, uma função deve possuir pelo menos uma chamada proveniente de uma outra função externa. Uma função não-recursiva, em contrapartida, é aquela para qual todas as suas chamadas são externas. Nesta aula construiremos funções recursivas para soluções de problemas.

Este texto é baseado nas referências [2, 7].

1.1 Definição

De acordo com [2], em muitos problemas computacionais encontramos a seguinte propriedade: cada entrada do problema contém uma entrada menor do mesmo problema. Dessa forma, dizemos que esses problemas têm uma **estrutura recursiva**. Para resolver um problema como esse, usamos em geral a seguinte estratégia:

```
se a entrada do problema é pequena então resolva-a diretamente; senão, reduza-a a uma entrada menor do mesmo problema, aplique este método à entrada menor e volte à entrada original.
```

A aplicação dessa estratégia produz um **algoritmo recursivo**, que implementado na linguagem C torna-se um **programa recursivo** ou um programa que contém uma ou mais **funções recursivas**.

Uma **função recursiva** é aquela que possui, em seu corpo, uma ou mais chamadas a si mesma. Uma chamada de uma função a si mesma é dita uma **chamada recursiva**. Como sabemos, uma função deve possuir ao menos uma chamada proveniente de uma outra função, externa a ela. Se a função só possui chamadas externas a si, então é chamada de função não-recursiva. No semestre anterior, construimos apenas funções não-recursivas.

Em geral, a toda função recursiva corresponde uma outra não-recursiva que executa exatamente a mesma computação. Como alguns problemas possuem estrutura recursiva natural, funções recursivas são facilmente construídas a partir de suas definições. Além disso, a demonstração da correção de um algoritmo recursivo é facilitada pela relação direta entre sua estrutura e a indução matemática. Outras vezes, no entanto, a implementação de um algoritmo recursivo demanda um gasto maior de memória, já que durante seu processo de execução muitas informações devem ser guardadas na sua pilha de execução.

1.2 Exemplos

Um exemplo clássico de uma função recursiva é aquela que computa o fatorial de um número inteiro $n\geqslant 0$. A idéia da solução através de uma função recursiva é baseada na fórmula mostrada a seguir:

$$n! = \left\{ egin{array}{ll} 1 \;, & ext{se} \; n \leqslant 1 \;, \\ n imes (n-1)! \;, & ext{caso contrário} \;. \end{array}
ight.$$

A função recursiva fat, que calcula o fatorial de um dado número inteiro não negativo n, é mostrada a seguir:

```
/* Recebe um número inteiro n >= 0 e devolve o fatorial de n */
int fat(int n)
{
   int result;

   if (n <= 1)
       result = 1;
   else
      result = n * fat(n-1);

   return result;
}</pre>
```

A sentença return pode aparecer em qualquer ponto do corpo de uma função e por isso podemos escrever a função fat como a seguir:

```
/* Recebe um número inteiro n >= 0 e devolve o fatorial de n */
int fat(int n)
{
   if (n <= 1)
      return 1;
   else
      return n * fat(n-1);
}</pre>
```

Geralmente, preferimos a primeira versão implementada acima, onde existe apenas uma sentença com a palavra reservada return posicionada no final do corpo da função fat . Essa maneira de escrever funções recursivas evita confusão e nos permite seguir o fluxo de execução

dessas funções mais naturalmente. No entanto, a segunda versão da função **fat** apresentada acima é equivalente à primeira e isso significa que também é válida. Além disso, essa segunda solução é mais compacta e usa menos memória, já que evita o uso de uma variável. Por tudo isso, essa segunda forma de escrever funções recursivas é muito usada por programadores(as) mais experientes.

A execução da função **fat** se dá da seguinte forma. Imagine que uma chamada **fat(3)** foi realizada. Então, temos ilustrativamente a seguinte situação:

```
fat(3)

fat(2)

fat(1)

devolve 1

devolve 2 × 1 = 2 × fat(1)

devolve 3 × 2 = 3 × fat(2)
```

Repare nas indentações que ilustram as chamadas recursivas à função.

Vamos ver um próximo exemplo. Considere o problema de determinar um valor máximo de um vetor v com n elementos. O tamanho de uma entrada do problema é $n\geqslant 1$. Se n=1 então v[0] é o único elemento do vetor e portanto v[0] é máximo. Se n>1 então o valor que procuramos é o maior dentre o máximo do vetor v[0..n-2] e o valor armazenado em v[n-1]. Dessa forma, a entrada v[0..n-1] do problema fica reduzida à entrada v[0..n-2]. A função maximo a seguir implementa essa idéia.

```
/* Recebe um número inteiro n > 0 e um vetor v de números in-
teiros com n elementos e devolve um elemento máximo de v */
int maximo(int n, int v[MAX])
{
   int aux;

   if (n == 1)
      return v[0];
   else {
      aux = maximo(n-1, v);
      if (aux > v[n-1])
           return aux;
      else
           return v[n-1];
    }
}
```

Segundo P. Feofiloff [2], para verificar que uma função recursiva está correta, devemos seguir o seguinte roteiro, que significa mostrar por indução a correção de um algoritmo ou programa:

Passo 1: escreva o que a função deve fazer;

Passo 2: verifique se a função de fato faz o que deveria fazer quando a entrada é pequena;

Passo 3: imagine que a entrada é grande e suponha que a função fará a coisa certa para entradas menores; sob essa hipótese, verifique que a função faz o que dela se espera.

Isso posto, vamos provar então a seguinte propriedade sobre a função maximo descrita acima.

Proposição 1.1. A função maximo encontra um maior elemento em um vetor v com $n \geqslant 1$ números inteiros.

Demonstração. Vamos provar a afirmação usando indução na quantidade n de elementos do vetor v.

Se n=1 o vetor v contém exatamente um elemento, um número inteiro, armazenado em v[0]. A função **maximo** devolve, neste caso, o valor armazenado em v[0], que é o maior elemento no vetor v.

Suponha que para qualquer valor inteiro positivo m menor que n, a chamada externa à função maximo(m, v) devolva corretamente o valor de um maior elemento no vetor v contendo m elementos.

Suponha agora que temos um vetor v contendo n>1 números inteiros. Suponha que fazemos a chamada externa $\max_{\mathbf{maximo}(n, v)}$. Como n>1, o programa executa a sentença descrita abaixo:

```
aux = maximo(n-1, v);
```

Então, por hipótese de indução, sabemos que a função maximo devolve um maior elemento no vetor v contendo n-1 elementos. Esse elemento, por conta da sentença acima, é armazenado então na variável aux. A estrutura condicional que se segue na função maximo compara o valor armazenado em aux com o valor armazenado em v[n-1], o último elemento do vetor v. Um maior valor entre esses dois valores será então devolvido pela função. Dessa forma, a função maximo devolve corretamente o valor de um maior elemento em um vetor com n números inteiros.

Exercícios

1.1 A n-ésima potência de um número x, denotada por x^n , pode ser computada recursivamente observando a seguinte a fórmula:

$$x^n = \left\{ \begin{array}{ll} 1 \,, & \text{se } n = 0 \,, \\ x \cdot x^{n-1} \,, & \text{se } n > 1 \,. \end{array} \right.$$

Considere neste exercício que x e n são números inteiros.

(a) Escreva uma função não-recursiva com a seguinte interface:

```
int pot(int x, int n)
```

que receba dois números inteiros x e n e calcule e devolva x^n .

(b) Escreva uma função recursiva com a seguinte interface:

```
int potR(int x, int n)
```

que receba dois números inteiros x e n e calcule e devolva x^n .

(c) Escreva um programa que receba dois números inteiros x e n, com $n \ge 0$, e devolva x^n . Use as funções em (a) e (b) para mostrar os dois resultados.

Programa 1.1: Solução do exercício 1.1.

```
#include <stdio.h>
/* Recebe um dois números inteiros x e n e devolve x a n-ésima potência */
int pot(int x, int n)
   int i, result;
  result = 1;
   for (i = 1; i <= n; i++)
      result = result * x;
   return result;
/* Recebe um dois números inteiros x e n e devolve x a n-ésima potência */
int potR(int x, int n)
  if (n == 0)
     return 1;
     return x * potR(x, n-1);
/* Recebe dois números inteiros x e n e imprime x a n-ésima potên-
   cia chamando duas funções: uma não-recursiva e uma recursiva */
int main(void)
  int x, n;
   scanf("%d%d", &x, &n);
   printf("Não-resursiva: %d^%d = %d\n", x, n, pot(x, n));
   printf("Resursiva
                       : d^{d} = d^n, x, n, potR(x, n);
  return 0;
```

FACOM

1.2 O que faz a função abaixo?

```
void imprime_alguma_coisa(int n)
{
   if (n != 0) {
     imprime_alguma_coisa(n / 2);
     printf("%c", '0' + n % 2);
   }
}
```

Escreva um programa para testar a função imprime_alguma_coisa.

- 1.3 (a) Escreva uma função recursiva que receba dois números inteiros positivos e devolva o máximo divisor comum entre eles usando o algoritmo de Euclides.
 - (b) Escreva um programa que receba dois números inteiros e calcule o máximo divisor comum entre eles. Use a função do item (a).
- 1.4 (a) Escreva uma função recursiva com a seguinte interface:

```
float soma(int n, float v[\mathtt{MAX}])
```

que receba um número inteiro n>0 e um vetor v de números com ponto flutuante com n elementos, e calcule e devolva a soma desses números.

- (b) Usando a função do item anterior, escreva um programa que receba um número inteiro n, com $n \ge 1$, e mais n números reais e calcule a soma desses números.
- 1.5 (a) Escreva uma função recursiva com a seguinte interface:

```
int soma_digitos(int n)
```

que receba um número inteiro positivo n e devolva a soma de seus dígitos.

- (b) Escreva um programa que receba um número inteiro n e imprima a soma de seus dígitos. Use a função do item (a).
- 1.6 A **seqüência de Fibonacci** é uma seqüência de números inteiros positivos dada pela seguinte fórmula:

```
\left\{ \begin{array}{lcl} F_1 & = & 1 \\ F_2 & = & 1 \\ F_i & = & F_{i-1} + F_{i-2} \;, \quad \text{para } i \geqslant 3. \end{array} \right.
```

(a) Escreva uma função recursiva com a seguinte interface:

```
int Fib(int i)
```

que receba um número inteiro positivo i e devolva o i-ésimo termo da seqüência de Fibonacci, isto é, F_i .

FACOM

(b) Escreva um programa que receba um número inteiro $i \ge 1$ e imprima o termo F_i da seqüência de Fibonacci. Use a função do item (a).

1.7 O **piso** de um número inteiro positivo x é o único inteiro i tal que $i \le x < i + 1$. O piso de x é denotado por |x|.

Segue uma amostra de valores da função $\lfloor \log_2 n \rfloor$:

(a) Escreva uma função recursiva com a seguinte interface:

```
int piso_log2(int n)
```

que receba um número inteiro positivo n e devolva $\lfloor \log_2 n \rfloor$.

- (b) Escreva um programa que receba um número inteiro $n \ge 1$ e imprima $\lfloor \log_2 n \rfloor$. Use a função do item (a).
- 1.8 Considere o seguinte processo para gerar uma seqüência de números. Comece com um inteiro n. Se n é par, divida por 2. Se n é ímpar, multiplique por 3 e some 1. Repita esse processo com o novo valor de n, terminando quando n=1. Por exemplo, a seqüência de números a seguir é gerada para n=22:

```
22 \quad 11 \quad 34 \quad 17 \quad 52 \quad 26 \quad 13 \quad 40 \quad 20 \quad 10 \quad 5 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1
```

É conjecturado que esse processo termina com n=1 para todo inteiro n>0. Para uma entrada n, o **comprimento do ciclo de** n é o número de elementos gerados na seqüência. No exemplo acima, o comprimento do ciclo de 22 é 16.

(a) Escreva uma função não-recursiva com a seguinte interface:

```
int ciclo(int n)
```

que receba um número inteiro positivo n, mostre a sequência gerada pelo processo descrito acima na saída e devolva o comprimento do ciclo de n.

(b) Escreva uma versão recursiva da função do item (a) com a seguinte interface:

```
int cicloR(int n)
```

que receba um número inteiro positivo n, mostre a sequência gerada pelo processo descrito acima na saída e devolva o comprimento do ciclo de n.

(c) Escreva um programa que receba um número inteiro $n \ge 1$ e determine a seqüência gerada por esse processo e também o comprimento do ciclo de n. Use as funções em (a) e (b) para testar.

FACOM

1.9 Podemos calcular a potência x^n de uma maneira mais eficiente. Observe primeiro que se n é uma potência de 2 então x^n pode ser computada usando seqüências de quadrados. Por exemplo, x^4 é o quadrado de x^2 e assim x^4 pode ser computado usando somente duas multiplicações ao invés de três. Esta técnica pode ser usada mesmo quando n não é uma potência de 2, usando a seguinte fórmula:

$$x^{n} = \begin{cases} 1, & \text{se } n = 0, \\ (x^{n/2})^{2}, & \text{se } n \neq \text{par,} \\ x \cdot x^{n-1}, & \text{se } n \neq \text{impar.} \end{cases}$$
 (1.1)

(a) Escreva uma função com interface

int potencia(int
$$x$$
, int n)

que receba dois números inteiros x e n e calcule e devolva x^n usando a fórmula (1.1).

(b) Escreva um programa que receba dois números inteiros a e b e imprima o valor de a^b .