第1、2章练习

1.讲义习题一: 第 1(执行步改为关键操作数)、第 2、3、6、7 题 习题一

1 答: 执行步 4pmn+3pm+2m+1;关键操作 2n*m*p

2 方法一答: 2n-2 次

方法二答: 2n-2 次

3 1)证明: 任给 c, n>c,则 10n²>cn 。不存在 c 使 10n²<=cn,证毕。

2) 证明: 任给 c, 当 n>2^c 时, logn>c, 从而 n²logn>=cn²,同上。

6 答: logn, n^{2/3}, 20n, 4n², 3ⁿ, n!

7 答: 1)6+n 2) $N = 8\sqrt{3 \cdot 2^n}$ 3)任意 n

2.讲义习题二:第5题。

答: c、e 是割点。每点的 DFN、L 值: A1,1、B2,1、C3,1、D4,4、E5,1、F6,5、G7,5。最大连通分支 CD、EFG、ABCE。

3.考虑下述选择排序算法:

输入: n 个不等的整数的数组 A[1..n]

输出: 按递增次序排序的 A

For i:=1 to n-1

For j:=i+1 to n

If A[j] < A[i] then $A[i] \leftrightarrow A[j]$

问: (1)最坏情况下做多少次比较运算? 答 1+2+..+n-1=n(n-1)/2

(2)最坏情况下做多少次交换运算?在什么输入时发生?

答: 当输入的 n 个数彼此不等且按递降次序排列时, 比较次数

n(n-1)/2, 每次比较都交换, 交换次数 n(n-1)/2。

4.考虑下面的每对函数 f(n)和 g(n),比较他们的阶。

(1)
$$f(n)=(n^2-n)/2$$
, $g(n)=6n$ (2) $f(n)=n+2\sqrt{n}$, $g(n)=n^2$

(3)f(n)=n+nlogn,
$$g(n)=n\sqrt{n}$$
 (4)f(n)=log(n!), $g(n)=n^{1.05}$

$$(3)f(n)=O(g(n))$$
 $(4)f(n)=O(g(n))$

5.在表中填入 true 或 false . 答案:

	f(n)	g(n)	f(n)=O(g(n)	$f(n)=\Omega(g(n))$	$f(n)=\Theta(g(n))$
1	2n³+3n	100n ² +2n+100	F	Т	F
2	50n+logn	10n+loglogn	Т	Т	Т
3	50nlogn	10nloglogn	F	Т	F
4	logn	Log ² n	Т	F	F
5	n!	5 ⁿ	F	Т	F

6.用迭代法求解下列递推方程:

(1)
$$\begin{cases} T(n) = T(n-1) + n - 1 \\ T(1) = 0 \end{cases}$$

(2)
$$\begin{cases} T(n) = 2T(n/2) + n - 1 \\ T(1) = 0 \end{cases}$$
, n=2^k

$$= ... = T(1)+1+2+...+n-1=n(n-1)/2=O(n^2)$$

$$(2)T(n)=2T(n/2)+n-1=2(2T(n/4)+n/2-1)+n-1$$

$$=4T(n/4)+n-2+n-1=4(2T(n/2^3)+n/4-1)+n-2+n-1$$

$$=2^{3}T(n/2^{3})+n-4+n-2+n-1$$

=...=
$$2^{k}T(n/2^{k})+n-2^{k-1}+n-2^{k-2}+...+n-1$$

= $2^{k}T(1)+kn-(1+2+2^{2}+...+2^{k-1})$
= $k2^{k}-2^{k}+1=nlogn-n+1=O(nlogn)$