Overview

Stream Gauge water pixel classification
Timothy Harrelson
Jeremy Swartwood

1. Averaging and Subtracting

*Output image will have low RGB values which make it hard to see by the naked eye.

1. Averaging and Subtracting (Averaging Details)

A 20 x 20 block of pixels is averaged to produce a single center pixel for the resulting Averaged image

Original Image

Averaged Image

2. Generate Mask

All images averaged and subtracted.

(Exaggerated brightness)

Region mask generation

Mask created using kmeans

3. Sample ROI

Image converted to greyscale

(This gives us 1 channel so we don't get multiple results per pixel in the next step)

Grab sections within each Mask Region

4. Generate Gabor Filter

Resulting Filter

5. Learn regions using ANN

6. Load Image

7 . Water Pixel Classification