Name:	MatrNr.:
${ m TU}~{ m B}$	parkeit und Komplexität (Wiederholung) (A) erlin, 27.03.2024 nals/Kunz, Wintersemester 2023/2024)
Hinweis: Je Aufgabe ist mi Wenn eine falsche Antwortmöglichkeit angekreuz	Minuten, Gesamtpunktzahl: 25 ndestens eine Antwortmöglichkeit korrekt. t wurde, so gibt es Null Punkte für die betroffene (Teil-)Aufgabe. ert mit der Anzahl erreichbarer Punkte.
Wir erinnern an folgende Definitionen aus der Vorle	sung :
• Die Null ist eine natürliche Zahl.	
• Die Komplementsprache \overline{A} einer Sprache A über	$\Sigma \text{ ist } \Sigma^* \setminus A.$
	and $g: C \to A$ ist definiert als $f \circ g: C \to B$ mit $(f \circ g)(x) = z \iff$
• Eine Turing-Maschine $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,E)$ b	erechnet eine Funktion $f \colon \Sigma^* \to \Pi^*$, falls für alle $x \in \Sigma^*$, $y \in \Pi^*$ gilt:
	$= y \iff \exists_{z \in E} \ z_0 x \vdash_M^* z y.$
• Die charakteristische Funktion $\chi_L \colon \Sigma^* \to \{0,1\}$ e	iner Sprache $L \subseteq \Sigma^*$ ist definiert als $\chi_L(w) \coloneqq \begin{cases} 1, & w \in L \\ 0, & w \notin L \end{cases}$.
	1} einer Sprache $L \subseteq \Sigma^*$ ist definiert als $\chi'_L(w) \coloneqq \begin{cases} 1, & w \in L \\ \bot, & w \notin L \end{cases}$.
• Die Ackermannfunktion ack ist wie folgt definiert $\operatorname{ack}(x,y) := \operatorname{ack}(x-1,\operatorname{ack}(x,y-1)).$	$\operatorname{ack}(0,y) := y + 1, \operatorname{ack}(x,0) := \operatorname{ack}(x-1,1) \text{und}$
Aufgabe 1: Turing-Maschinen und Sprachen Welche der folgenden Aussagen sind korrekt?	(3 Punkte)
X Jede Turing-Maschine akzeptiert genau eine	Sprache.
Jede Sprache wird von irgendeiner Turing-Maschine akzeptiert.	
Jede entscheidbare Sprache wird von genau einer Turing-Maschine akzeptiert.	
X Jede semi-entscheidbare Sprache wird von einer Turing-Maschine akzeptiert.	
\fbox{X} Sei M eine Turing-Maschine, die auf jeder E	ingabe hält. Dann ist $T(M)$ entscheidbar.
$Aufgabe~2:~~{f Berechenbarkeit}$	(3 Punkte)
	baren Sprachen mit $L_i \subseteq \{0,1\}^*$. Außerdem sei BIN (w) die natürliche vobei BIN $(\epsilon) := 0$). Welche der folgenden Aussagen sind auf jeden Fall
$\boxed{\mathbf{X}}$ Die Funktion $g_1 \colon \{0,1\}^* \to \mathbb{N}$ mit $g_1(w) \coloneqq \{0,1\}^*$	$ \begin{cases} 1, & w \in L_0, \\ 0, & \text{sonst,} \end{cases} $
\square Die Funktion $g_2 \colon \{0,1\}^* \to \mathbb{N}$ mit $g_2(w) \coloneqq \langle 0,1 \rangle$	$ \begin{cases} 1, & w \notin L_{\text{BIN}(w)} \\ 0, & \text{sonst} \end{cases} $
\square Die Funktion $g_3 \colon \{0,1\}^* \to \mathbb{N}$ mit $g_3(w) \coloneqq \langle 0,1 \rangle$	$ \begin{cases} 1, & w \in L_{\text{BIN}(w)} \\ 0, & \text{sonst} \end{cases} $
X Die Funktion $g_4 \colon \{0,1\}^* \to \mathbb{N}$ mit $g_4(w) := \mathbb{N}$	

 $igstyle{\mathbb{X}}$ Die Sprache $igcap_{i=0}^{\infty} L_i$ ist entscheidbar.

Aufgabe 3: Ackermannfunktion Welche der folgenden Aussagen über die Ackermannfunktion a	(4 Punkte) ack sind korrekt?	
ack ist GOTO-berechenbar, aber nicht WHILE-berechen	bar.	
ack ist LOOP-berechenbar.		
X Die Funktion $f \colon \mathbb{N}^2 \to \mathbb{N}$ mit $f(x,y) \coloneqq \max\{0, \operatorname{ack}(0,y)\}$	$-\operatorname{ack}(x,0)$ ist LOOP-berechenbar.	
X Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) \coloneqq \operatorname{ack}(1, n)$ ist LOOP-		
Aufgabe 4: LOOP, WHILE und GOTO Welche der folgenden Aussagen sind korrekt?	(4 Punkte)	
	O-berechenbar.	
Alle totalen Funktionen vom Typ $\mathbb{N} \to \mathbb{N}$ sind WHILE-berechenbar.		
	rechenbar.	
X Alle LOOP-berechenbaren Funktionen sind total und GO	OTO-berechenbar.	
$Aufgabe~5:~~{f LOOP-Berechenbarkeit}$	(4 Punkte)	
Sei f_0, f_1, \ldots eine Liste aller LOOP-berechenbaren Funktion Welche der folgenden Aussagen sind auf jeden Fall korrekt?	` '	
\fbox{X} Die Funktion $g_1\colon \mathbb{N} \to \mathbb{N}$ mit $g_1(n)\coloneqq 2^{f_1(n)}$ ist LOOP-be	erechenbar.	
Die Funktion $g_2 \colon \mathbb{N} \to \mathbb{N}$ mit $g_2(n) \coloneqq f_n(n)$ ist LOOP-be	erechenbar.	
X Die Funktion $g_3 \colon \mathbb{N} \to \mathbb{N}$ mit $g_3(n) \coloneqq (f_0 \circ f_1)(n)$ ist LO	OP-berechenbar.	
$\boxed{\mathbf{X}}$ Die Funktion $g_4 \colon \mathbb{N} \to \mathbb{N}$ mit $g_4(n) \coloneqq \min\{\operatorname{ack}(n,n), f_0(n) \in \mathbb{N} \}$	i)} ist LOOP-berechenbar.	
Die Funktion $g_5 \colon \mathbb{N} \to \mathbb{N}$ mit $g_5(n) \coloneqq \max\{f_0(n), f_1(n), \dots \}$	$\dots, f_n(n)$ } ist LOOP-berechenbar.	
X Die Funktion $g_k \colon \mathbb{N} \to \mathbb{N}$ mit $g_k(n) \coloneqq \max\{f_0(n), f_1(n), \dots \}$		
Aufgabe 6: Turing-Maschinen Betrachten Sie die Turing-Maschine $M=(\{z_0,z_1,z_2,z_3,z_e\},\{0\})$ Darstellung hat:	$(3+4 \ {\rm Punkte})$ 0,1}, $\{0,1,\square\}, \delta, z_0,\square, \{z_e\}),$ wobe i δ die folgende graphische	
$0:\Box,R$		
\bigcap		
$0:\Box,R$ \longrightarrow (z_1)	$\Box:\Box,L$	
$1: \square, R$ $1: \square, R$	z_3 $\Box:\Box,N$ z_e $\exists:\Box,R$	
(a) Welche der folgenden Wörter akzeptiert M ?		
X 0000	X 11111 keins der Wörter wird akzeptiert	
(b) Sei $L \coloneqq \{1^n0^n \mid n \in \mathbb{N} \setminus \{0\}\}$. Welche Aussagen über M	sind korrekt?	
$oxed{X}M$ akzeptiert jedes nicht-leere Wort, das nur aus Nu		
M akzeptiert die Sprache L .		
M akzeptiert die Sprache $\{0,1\}^* \setminus L$.		
M berechnet die Funktion χ_L .		
M berechnet die nirgends definierte Funktion Ω : $\{0,$	$\{0,1\}^* \to \{0,1\}^*.$	
$X \mid M$ hält auf jedem Wort $w \in \{0,1\}^*$ nach höchstens		