CO 351 - Network Flow Theory

Cameron Roopnarine

Last updated: September 8, 2020

Contents

Contents	
1 Review	

CONTENTS 2

Lecture 1	2020-09-08

Introduction.

Chapter 1

Review

LECTURE 2 | 2020-09-08

Definitions:

DEFINITION 1.0.1: Graph, Vertices, Edges

A graph G = (V, E) consists of a set of vertices V, and a set of edges E that are unordered pairs of vertices.

DEFINITION 1.0.2: Degree

The degree of a vertex v is the number of edges incident with v, denoted $d_G(v)$ or d(v).

DEFINITION 1.0.3: Walk

A walk is a sequence of vertices v_1, v_2, \ldots, v_k where $v_i v_{i+1}$ are edges.

DEFINITION 1.0.4: Path

A path is a walk where all vertices are distinct.

DEFINITION 1.0.5: Cycle

A **cycle** is a walk $v_1, v_2, \ldots, v_k, v_1$ where v_1, \ldots, v_k are distinct and $k \ge 3$.

Connectivity and cuts:

DEFINITION 1.0.6: Connected, Disconnected

A graph is **connected** if there is a path between every pair of vertices. Otherwise it is **disconnected**.

DEFINITION 1.0.7: Cut

For $S \subseteq V$, the cut induced by S is the set of all edges with exactly one end in S.

$$\delta(S) = \{ uv \in E : u \in S, v \notin S \}$$

CHAPTER 1. REVIEW 4

DEFINITION 1.0.8: s, t-cut

If $s, t \in V$ where $s \in S$ and $t \notin S$, then $\delta(S)$ is an s,t-cut.

PROPOSITION 1.0.9

There exists an s, t-path if and only of every s, t-cut is non-empty.

Trees:

DEFINITION 1.0.10: Tree

A **tree** is a connected graph with no cycles.

PROPOSITION 1.0.11

A tree with n vertices has n-1 edges.

DEFINITION 1.0.12: Spanning tree

A **spanning tree** of a graph G is a subgraph that is a tree which uses all vertices of G.

PROPOSITION 1.0.13

G has a spanning tree if and only if G is connected.

PROPOSITION 1.0.14

If T is a tree and u, v are not adjacent, then T + uv has exactly one cycle C. If xy is an edge of C, then T + uv - xy is another tree.

LECTURE 3 | 2020-09-08