



# EMBEDDED SYSTEM DESIGN Discrete Dynamics

Doan Duy, Ph. D.

Email: <u>duyd@uit.edu.vn</u>



# Objectives

- Understanding basic concepts of Discrete systems
- Able to design an FSM



#### Contents

- 1. Introduction to Discrete Dynamics
- 2. Finite State Machine
- 3. Language and Framework to design
  Discrete Systems



# Introduction to Discrete Dynamics



**Discrete** = "individually separate / distinct"

A **discrete system** is one that operates in a sequence of discrete *steps* or has signals taking discrete *values*.

It is said to have discrete dynamics.



# Example Design Problem

Count the number of cars that are present in a parking garage by sensing cars enter and leave the garage. Show this count on a display.





#### Discrete System

Example: count the number of cars in a parking garage by sensing those that enter and leave:





#### Discrete System

Example: count the number of cars that enter and leave a parking garage:



- ■Pure signal:  $up: \mathbb{R} \to \{absent, present\}$
- Discrete actor:

Counter: 
$$(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$$
  
 $P = \{up, down\}$ 



#### Reaction/Transition

For any  $t \in \mathbb{R}$  where  $up(t) \neq absent$  or  $down(t) \neq absent$  the Counter **reacts**. It produces an output value in  $\mathbb{N}$  and changes its internal **state**.

#### State: condition of the system at a particular point in time

 Encodes everything about the past that influences the system's reaction to current input





## Input and Output

#### For $t \in \mathbb{R}$ the inputs are in a set

$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

#### and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$





#### **Problem Question**

What are some scenarios that the given parking garage (interface) design does not handle well?

For  $t \in \mathbb{R}$  the inputs are in a set

$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$





### State Space

A practical parking garage has a finite number M of spaces, so the state space for the counter is

$$States = \{0, 1, 2, \dots, M\}$$
.





#### Finite State Machine



Guard  $g \subseteq Inputs$  is specified using the shorthand

$$up \land \neg down$$

which means

$$g = \{\{up\}\}\$$
.



## **FSM Notation**





## Example of Guard

| true                  | Transition is always enabled.                                                 |
|-----------------------|-------------------------------------------------------------------------------|
| $p_1$                 | Transition is enabled if $p_1$ is <i>present</i> .                            |
| $\neg p_1$            | Transition is enabled if $p_1$ is absent.                                     |
| $p_1 \wedge p_2$      | Transition is enabled if both $p_1$ and $p_2$ are <i>present</i> .            |
| $p_1 \vee p_2$        | Transition is enabled if either $p_1$ or $p_2$ is <i>present</i> .            |
| $p_1 \wedge \neg p_2$ | Transition is enabled if $p_1$ is <i>present</i> and $p_2$ is <i>absent</i> . |
|                       |                                                                               |

Transition is enabled if 
$$p_3$$
 is present (not absent).  
 $p_3 = 1$  Transition is enabled if  $p_3$  is present and has value 1.  
 $p_3 = 1 \land p_1$  Transition is enabled if  $p_3$  has value 1 and  $p_1$  is present.  
 $p_3 > 5$  Transition is enabled if  $p_3$  is present with value greater than 5.



# Example: Thermosta





## When does a reaction occur?

input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 



Suppose all inputs are discrete and a reaction occurs when any input is present. Then the above transition will be taken whenever the current state is s1 and x is present.

This is an *event-triggered model*.



### When does a reaction occur?

input:  $x \in \{present, absent\}$ output:  $y \in \{present, absent\}$ 



■Suppose x and y are discrete and pure signals. When does the transition occur?

Answer: when the *environment* triggers a reaction and x is absent. If this is a (complete) event-triggered model, then the transition will never be taken because the reaction will only occur when x is present!



#### **Default Transition**



■ A default transition is enabled if no non-default transition is enabled and it either has no guard or the guard evaluates to true. When is the above default transition enabled?



## Example: Traffic Light





# More Notation

- Stuttering transition: (possibly implicit) default transition that is enabled when inputs are absent, that does not change state, and that produces absent outputs.
- Receptiveness: For any input values, some transition is enabled. Our structure together with the implicit default transition ensures that our FSMs are receptive.
- Determinism: In every state, for all input values, exactly one (possibly implicit) transition is enabled.



## Nondeterministic FSM

■ Model of the environment for a traffic light, abstracted using nondeterminism:





## Use of Nonterministic FSM

- 1. Modeling unknown aspects of the environment or system
  - O Such as: how the environment changes a robot's orientation
- 2. Hiding detail in a *specification* of the system
  - We will see an example of this later (see the text)
- Any other reasons why nondeterministic FSMs might be preferred over deterministic FSMs?



#### **Behaviors and Traces**

FSM behavior is a sequence of (non-stuttering) steps.

• A **trace** is the record of inputs, states, and outputs in a behavior.

• A **computation tree** is a graphical representation of all

possible traces.

■FSMs are suitable for formal analysis. For example, **safety** analysis might show that some unsafe state is not reachable.

yellow



## Tree of Computation

- For a fixed input sequence:
- A deterministic system exhibits a single behavior
- A non-deterministic system exhibits a **set of behaviors** 
  - □ visualized as a *computation tree*

#### Deterministic FSM behavior:



#### Non-deterministic FSM behavior:





# Framework to design Discrete Dynamics



- LabVIEW
- Simulink
- Scade
- •

- Reactors
- StreamIT
- Plotemy II model





#### Labview Statechart





## Plotemy II Model





#### Simulink Stateflow











## Q&A

