EE 531 Statistical Learning Theory

Spring 2017

Lecture 13: April 25

Lecturer: Chang D. Yoo Scribe: Cho Seong Jin

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Regularization methods of linear regression

만약 $\Phi^T(\mathbf{X})\Phi(\mathbf{X})$ 이 singular 하면, diagonal matrix (λI) 를 더함으로써 non-singular하게 만들 수 있고, 따라서 다음과 같이 \mathbf{w} 를 구할 수 있다.

$$\mathbf{w} = (\lambda I + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

이 식은 RSS에 다음과 같이 항을 추가함으로써 얻을 수 있다.

$$(\mathbf{v} - \mathbf{\Phi}(\mathbf{X})\mathbf{w})^T(\mathbf{v} - \mathbf{\Phi}(\mathbf{X})\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

여기에서 두번 째 항 $(\lambda \mathbf{w}^T \mathbf{w})$ 은 regularization(stabilization) term으로 \mathbf{w} 가 너무 커지는 것에 제약을 가하여 (weight decay) overfitting을 막는 역할(overfitting control)을 한다. 또 다른 표현으로 parameter shrinkage 라고도 한다. linear regression에서 regularization은 다음과 같이 일반적으로 표현할 수 있는데,

$$\min_{\mathbf{w}} \max_{\lambda} \left[\sum_{i=1}^{N} (y_i - \mathbf{w}^T \phi(x_i))^2 + \lambda (\sum_{j=1}^{p} |w_j|^q - s) \right]$$

이는

$$\sum_{j=1}^{p} |w_j|^q \le s$$

조건에서

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \phi(x_i))^2$$

를 구하는 것과 같다. 여기에서 q=1이면 lasso regression, q=2이면 ridge regression이라 한다. 두 regularization에 대한 graphical interpretation을 Figure 13.1에 표현하였다. 그림을 보면 regularization과 RSS의 접점에서 \mathbf{w}^* 가 얻어진다. 그림에서 보는 바와 같이 q=1이면, 각 축에서 접점이 얻어질 가능성이 높아지고 이는 sparse한 파라미터 벡터를 얻게 한다.

linear regression에서 Bayesian treatment를 이용하면 MLE (maximum likelihood estimation)의 overfitting 문제를 해결할 수 있다. MLE에서는 $p(\mathbf{y}|\mathbf{w})$ 만을 최대로 하기 때문에, \mathbf{w} 의 분포와 상관없이 트레이닝 데이터에 최적화된 \mathbf{w}^* 를 구하는 반면, MAP (maximum a posterior)에서는 $p(\mathbf{w})$ 가 동시에 적용되기 때문에, \mathbf{w} 가 prior distribution에 의해 제약을 받고, 이는 MLE가 overfitting되지 않도록 regularization 역할을 한다. 다음의 예를 보자.

Example: Polynomial Curve Fitting

target labels $\mathbf{y}=(y_1,y_2,\ldots,y_N)$ 가 $x\in[0,1]$ 에서 $y=\sin(2\pi x)+\epsilon$ 으로 주어졌을 때, hypothesis를 다음과 같이 x의 polynomial로 정하고,

$$f(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

13-2 Lecture 13: April 25

Figure 13.1: Graphical interpretation of regularization.

loss를 다음과 정의하면,

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - f(x_i, \mathbf{w}))^2$$

 $\mathbf{w}^*=\mathrm{argmin}_{\mathbf{w}}\,L(\mathbf{w})$ 가 된다. Figure 13.2는 N=10일 때, M에 따른 polynomial curve의 예이다. 그림을 보면 M=9일 때, overfitting 된 것을 확인할 수 있다.

Figure 13.2: Plots of polynomials having various orders M with 10 samples.

그런데 실제 target function인 sine 함수는 다음과 같은 Taylor series를 갖기 때문에,

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

M=9에서 잘 적용될 것 같지만, 예에서 overfitting 된 이유는 샘플의 개수가 model complexity에 비해 적기 때문에 발생한 것이다. Figure 13.3를 보면 N=100일 때, M=9에서 overfitting 되지 않고 잘 적용되는 것을 확인할 수 있다. 따라서, 트레이닝 샘플의 개수를 증가시키면 overfitting 문제를 줄일 수 있다.

Lecture 13: April 25

Figure 13.3: M = 9 ploynomial for N = 15, N = 100

그러나 샘플 개수는 한정되어 있을 수 있다. 따라서 이 문제를 해결하기 위해 regularization term을 추가하고, 이는 적은 샘플로도 overfitting을 방지할 수 있게 한다. 즉, loss에 다음과 같이 regularization term을 추가하여 \mathbf{w}^* 를 구하면, overfitting을 줄일 수 있다. Figure 13.4을 보면 λ 가 적절한 값을 갖을 때, overfitting되지 않는 것을 확인할 수 있다. 이 때, λ 가 너무 크면 regularization term이 너무 크게 작용하여 underfitting 될 수 있기 때문에, cross-validation을 통해 적절한 값을 찾아야 한다.

$$\tilde{L}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - f(x_i, \mathbf{w}))^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Figure 13.4: M=9 polynomial for $\ln \lambda = -18$, $\ln \lambda = 0$