$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{ik(6k^2r_5+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	3t1t	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}.$	0	0	0	0
	$\frac{#1}{1} + \alpha \beta$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{ ext{#2}}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_1^{\#1} \dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_1^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1 + t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-ar{\imath} k t_1$	0	0	0

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + \bar{\imath} k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2ik \sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:				

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{#1}\dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive particle			
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
Polarisations:	3		
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
Spin:	1		
Parity:	Even		
	Pole residue: Polarisations: Square mass: Spin:		

Massive particle			
ole residue:	$-\frac{1}{r_2} > 0$		
olarisations:	1		
quare mass:	$-\frac{t_2}{r_2} > 0$		
oin:	0		
arity:	Odd		
	assive particole residue: colarisations: quare mass: pin: arity:		

 $r_2 < 0 \&\& r_5 > 0 \&\& t_1 < 0 \&\& t_2 > -t_1$

(No massless particles)