

Chapter 15.1

CS-6360 Database Design

Chris Irwin Davis, Ph.D.

Email: chrisirwindavis@utdallas.edu

Phone: (972) 883-3574 **Office:** FCSS 4.705

Notation

- In the following discussion, we use an abbreviated notation when discussing functional dependencies.
- We concatenate attribute variables and drop the commas for convenience.
- Hence,
 - the FD $\{X,Y\} \rightarrow \{Z\}$ is abbreviated to $XY \rightarrow Z$, and
 - the FD $\{X, Y, Z\} \rightarrow \{U, V\}$ is abbreviated to $XYZ \rightarrow UV$.

Inference Rules

- IR1 (reflexive rule):
 - If $X \supseteq Y$, then $X \rightarrow Y$.
- IR2 (augmentation rule):
- IR3 (transitive rule):
 - $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z.$

Inference Rules

- IR4 (decomposition, or projective, rule):
 - $= \{X \to YZ\} \models X \to Y \text{ and } X \to Z$
- IR5 (union, or additive, rule):
 - $\{X \to Y, X \to Z\} \models X \to YZ.$
- IR6 (pseudo-transitive rule):
 - $\{X \to Y, WY \to Z\} \models WX \to Z.$

Closure

- **Definition**. For each such set of attributes X, we determine the set X+ of attributes that are functionally determined by X based on F;
 - \blacksquare X+ is called the *closure* of X under F.
 - Algorithm 16.1 can be used to calculate *X*+.

Algorithm 15.1

Input: A set *F* of FDs on a relation schema R, and a set of attributes *X*, which is a subset of R.

```
X^+ := X;

repeat

\operatorname{old} X^+ := X^+;

for each functional dependency Y \to Z in F do

if X^+ \supseteq Y then X^+ := X^+ \cup Z;

until (X^+ = \operatorname{old} X^+);
```

Coverage

- **Definition**. A set of functional dependencies *F* is said to **cover** another set of functional dependencies *E* if every FD in *E* is also in *F*+
 - That is, if every dependency in E can be inferred from F;
 - \blacksquare Alternatively, we can say that E is covered by F.
- **Definition**. Two sets of functional dependencies E and F are **equivalent** if E+=F+. Therefore, equivalence means that every FD in E can be inferred from F, and every FD in F can be inferred from E
 - that is, E is equivalent to F if both the conditions—E covers F and F covers E—hold.

Minimal Set of Functional Dependencies

- Informally, a **minimal cover** of a set of functional dependencies E is a set of functional dependencies F that satisfies the property that every dependency in E is in the closure F+ of F.
- In addition, this property is lost if any dependency from the set *F* is removed
 - F must have no redundancies in it, and the dependencies in F are in a standard form.

Minimal Cover

- \blacksquare To satisfy these properties, we can formally define a set of functional dependencies F to be **minimal** if it satisfies the following conditions:
 - Every dependency in F has a single attribute for its right-hand side.
 - We cannot replace any dependency $X \rightarrow A$ in F with a dependency $Y \rightarrow A$, where Y is a proper subset of X, and still have a set of dependencies that is equivalent to F.
 - We cannot remove any dependency from F and still have a set of dependencies that is equivalent to F.

Minimal Cover (cont'd)

- We can think of a minimal set of dependencies as being a set of dependencies in a standard or canonical form and with no redundancies.
- Condition 1 just represents every dependency in a canonical form with a single attribute on the right-hand side.
- Conditions 2 and 3 ensure that there are no redundancies in the dependencies either by:
 - having redundant attributes on the left-hand side of a dependency (Condition 2), or
 - having a dependency that can be inferred from the remaining FDs in F (Condition 3).

Minimal Cover

■ **Definition**. A minimal cover of a set of functional dependencies *E* is a minimal set of dependencies (in the standard canonical form and without redundancy) that is equivalent to *E*. We can always find at least one minimal cover *F* for any set of dependencies *E* using Algorithm 15.2.

Input: A set of functional dependencies E.

- **1.** Set F := E.
- **2.** Replace each functional dependency $X \to \{A_1, A_2, ..., A_n\}$ in F by the n functional dependencies $X \to A_1, X \to A_2, ..., X \to A_n$.
- **3.** For each functional dependency $X \to A$ in F for each attribute B that is an element of X if $\{ \{F \{X \to A\} \} \cup \{ (X \{B\}) \to A \} \}$ is equivalent to F then replace $X \to A$ with $(X \{B\}) \to A$ in F.
- **4.** For each remaining functional dependency $X \to A$ in F if $\{F \{X \to A\}\}$ is equivalent to F, then remove $X \to A$ from F.

Algorithm 15.2

- Let the given set of FDs be $E : \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$.
- \blacksquare We have to find the **minimal cover** of E.
 - All above dependencies are in canonical form (that is, they have only one attribute on the right-hand side), so we have completed step 1 of Algorithm 16.2 and can proceed to step 2.
 - In step 2 we need to determine if $AB \rightarrow D$ has any redundant attribute on the left-hand side; that is, can it be replaced by $B \rightarrow D$ or $A \rightarrow D$?

- Since $B \to A$, by augmenting with B on both sides (IR2), we have $BB \to AB$, or $B \to AB$ (i). However, $AB \to D$ as given (ii).
- Hence by the transitive rule (IR3), we get from (i) and (ii), $B \rightarrow D$. Thus $AB \rightarrow D$ may be replaced by $B \rightarrow D$.
- We now have a set equivalent to original E, say $E':\{B\rightarrow A, D\rightarrow A, B\rightarrow D\}$. No further reduction is possible in step 2 since all FDs have a single attribute on the left-hand side.
- In step 3 we look for a redundant FD in E'. By using the transitive rule on $B \to D$ and $D \to A$, we derive $B \to A$. Hence $B \to A$ is redundant in E' and can be eliminated.
- Therefore, the minimal cover of *E* is $\{B \rightarrow D, D \rightarrow A\}$.