Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 11

1. Пусть
$$z = \sqrt{3} + i$$
. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{\frac{\sqrt{3}}{2} - \frac{i}{2}}$ имеет аргумент $-\frac{17\pi}{14}$.

2. Решить систему уравнений:

$$\begin{cases} x(5+12i) + y(3-9i) = 54 - 218i \\ x(4+9i) + y(5+9i) = 76 - 42i \end{cases}$$

- 3. Найти корни многочлена $-4x^6+20x^5-72x^4-72x^3+752x^2-1312x+960$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=2-4i, x_2=1-i, x_3=2.$
- 4. Даны 3 комплексных числа: -24 + 22i, 3 + 8i, 17 25i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -\frac{\sqrt{3}}{2} + \frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 6 + 6i| < 1 \\ |arg(z - 1 + 3i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-2, 0, -4), b = (-2, -3, 2), c = (6, 7, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-4, -2, -9) и плоскость P: 2x + 14y 4z + 108 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-7,-10,10), $M_1(0,-1,-8)$, $M_2(16,1,-8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 27x - 11y + 12z - 447 = 0 \\ 14x - 7y - 280 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 4y + 12z + 2136 = 0 \\ 8x + 8y + 2z + 736 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.