Chapter 3

Combinational Logic Circuits

3.1 Problems

Problem 3.1 (Implementing an OR gate using AND and NOT) Implement a 2-input OR gate using only AND and NOT gates. (Hint: Start with the truth table that implements \overline{Y} .)

(ans:

The truth table for an OR gate follows.

A	В	Y = A + B	\overline{Y}
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

$$\overline{Y} = \overline{A} \cdot \overline{B}$$

Hence, connect A to a NOT gate and then one input of the AND, connect B to a NOT gate and then to the other input of the AND, and connect the AND output to an NOT gate to form

$$Y = \overline{(\overline{Y})} = \overline{(\overline{A} \cdot \overline{B})} = A + B$$

)

Problem 3.2 (Using only NAND gates) This problem demonstrates that only a NAND gate is needed to implement the basic gates and, hence, any combinatorial logic circuit. Using only two-input NAND gates, implement a NOT, an OR, and an AND gate.

(ans.

The truth table for a NAND gate follows.

A	B	$Y = \overline{A \cdot B}$
0	0	1
0	1	1
1	0	1
1	1	0

To form NOT gate, connect A and B together to form new A. Hence, only AB=00 and AB=11 occur.

For AND gate connect NOT gate to NAND output.

The truth table for an OR gate follows.

A	B	Y = A + B	\overline{Y}
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Implement

$$\overline{Y} = \overline{A} \cdot \overline{B}$$

Hence, connect A to NOT (implemented with a NAND) and then to AND (implemented with a NAND), connect B to NOT (implemented with a NAND) and then to AND (implemented with a NAND), and connect AND output to NOT (implemented with a NAND) to form

$$Y = \overline{(\overline{Y})} = \overline{(\overline{A} \cdot \overline{B})} = A + B$$

The careful student will note that the output NOT can be eliminated if the NOT at the output of the NAND that implements that AND is eliminated.

Problem 3.3 (From logic equation to truth table) Generate the truth table that corresponds to the logic equation given by

$$Y = A \cdot \overline{B} + B \cdot \overline{C} + C \cdot \overline{A}$$

Implement a logic circuit that has a small number of gates.

(ans:

A	B	C	Y	Reason
0	0	0	0	Remaining 0
0	0	1	1	$C \cdot \overline{A} = 1$
0	1	0	1	$B \cdot \overline{C} = 1$
0	1	1	0	Remaining 0
1	0	0	1	$A \cdot \overline{B} = 1$
1	0	1	1	$A \cdot \overline{B} = 1$
1	1	0	1	$B \cdot \overline{C} = 1$
1	1	1	0	Remaining 0

Logic circuit 1: Implement

$$\overline{Y} = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot C$$

$$Y = \overline{(\overline{Y})} = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot C$$

3.1. PROBLEMS 21

Logic circuit 2: Last two terms can be combined to implement

$$\overline{Y} = \overline{A} \cdot \overline{B} \cdot \overline{C} + B \cdot C$$

$$Y = \overline{(\overline{Y})} = \overline{\overline{A} \cdot \overline{B} \cdot \overline{C} + B \cdot C}$$

)

Problem 3.4 (Distributive law) *Use the distributive law to generate the truth table that corresponds to the logic equation given by*

$$Y = A \cdot (\overline{B} + C)$$

Implement one logic circuit directly from the logic equation. Implement a second logic circuit from the truth table using the sum-of-products approach. Advanced courses in logic design teach how to implement logic circuits having the minimum number of gates.

(ans:

	Y	= A	$\cdot B$	$+A\cdot C$
A	B	C	Y	Reason
0	0	0	0	Remaining 0
0	0	1	0	Remaining 0
0	1	0	0	Remaining 0
0	1	1	0	Remaining 0
1	0	0	1	$A \cdot \overline{B} = 1$
1	0	1	1	$A \cdot \overline{B} = 1$
1	1	0	0	Remaining 0
1	1	1	1	$A \cdot C = 1$

Logic circuit 1: Implement

$$Y = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

)

Problem 3.5 (Logic circuit analysis) Generate the truth table that corresponds to the logic circuit shown in Figure 5.36. Draw a different logic circuit that implements this truth table.

Figure 5.35 Logic circuit for Problem 5.5.

(ans:

Logic equation

$$Y = A \cdot B + \overline{C}$$

A	B	C	Y	Reason
0	0	0	1	$\overline{C} = 1$
0	0	1	0	Remaining 0
0	1	0	1	$\overline{C} = 1$
0	1	1	0	Remaining 0
1	0	0	1	$\overline{C} = 1$
1	0	1	0	Remaining 0
1	1	0	1	$A \cdot B = 1$
1	1	1	1	$A \cdot B = 1$

$$\overline{Y} = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C$$

$$Y = \overline{(\overline{Y})} = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C$$

Problem 3.6 (Proving de Morgan's second law) *Starting with the truth table that implements* $\overline{A+B}$, *implement an alternative logic circuit that proves de Morgan's second law given in Eq. (5.10).*

(ans:

de Morgan's second law is

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Entering the Y values from the logic equation $Y = \overline{A + B}$ produces the following truth table.

A	В	$Y = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

We observe that $Y = \overline{A} \cdot \overline{B}$, proving de Morgan's second law.

Problem 3.7 (7-Segment display: Lighting the b segment) *Implement the logic circuit that recognizes the BCD codes that light the b segment in a 7-segment display.*

(ans:

From the truth table in Figure 5.29, we make all don't cares $\times = 1$, resulting in two b = 0 values - for digits 5 and 6. We implement

$$\overline{b} = (\overline{b_3} \cdot b_2 \cdot \overline{b_1} \cdot b_0) + (\overline{b_3} \cdot b_2 \cdot b_1 \cdot \overline{b_0})$$

$$b = \overline{(\overline{b})} = \overline{(\overline{b_3} \cdot b_2 \cdot \overline{b_1} \cdot b_0) + (\overline{b_3} \cdot b_2 \cdot b_1 \cdot \overline{b_0})}$$

3.1. PROBLEMS 23

Problem 3.8 (Digital adder: Carry bit logic circuit) Extending Figure 5.32, implement the logic circuit that produces the carry bit C_n from the inputs A_n , B_n , and C_{n-1} .

(ans:

$$C_n = (\overline{A_n} \cdot B_n \cdot C_{n-1}) + (A_n \cdot \overline{B_n} \cdot C_{n-1}) + (A_n \cdot B_n \cdot \overline{C_{n-1}}) + (A_n \cdot B_n \cdot C_{n-1})$$

Problem 3.9 (Direct implementation of binary multiplication) *Using the truth table in Figure 5.34, implement the four logic circuits that produce each term in the product* $P_3P_2P_1P_0$.

(ans: Enclose each product in parentheses to help the interpretation of the logic equation.

$$P_3 = A_1 \cdot A_0 \cdot B_1 \cdot B_0$$

$$P_2 = (A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0}) + (A_1 \cdot \overline{A_0} \cdot B_1 \cdot B_0) + (A_1 \cdot A_0 \cdot B_1 \cdot \overline{B_0})$$

This can be simplified by combining the last two terms to produce

$$P_2 = (A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0}) + (A_1 \cdot \overline{A_0} \cdot B_1)$$

$$P_1 = (\overline{A_1} \cdot A_0 \cdot B_1 \cdot \overline{B_0}) + (\overline{A_1} \cdot A_0 \cdot B_1 \cdot B_0) + (A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0) + (A_1 \cdot \overline{A_0} \cdot B_1 \cdot B_0 + A_1 \cdot A_0 \cdot \overline{B_1} \cdot B_0) + (A_1 \cdot A_0 \cdot B_1 \cdot \overline{B_0})$$

This can be simplified by combining the first two terms to produce

$$P_{1} = (\overline{A_{1}} \cdot A_{0} \cdot B_{1} + A_{1} \cdot \overline{A_{0}} \cdot \overline{B_{1}} \cdot B_{0}) + (A_{1} \cdot \overline{A_{0}} \cdot B_{1} \cdot B_{0}) + (A_{1} \cdot A_{0} \cdot \overline{B_{1}} \cdot B_{0})$$

Problem 3.10 (Direct implementation of binary division) Using the truth table in Figure 5.35, design the logic circuit to produce the quotient Q_1Q_0 and divide-by-zero error E.

(ans:

 Q_1 : Making all $\times = 0$ produces only two terms that equal 1.

$$Q_1 = (A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0) + (A_1 \cdot A_0 \cdot \overline{B_1} \cdot B_0)$$

 Q_0 : Making all $\times = 1$ produces 7 terms that equal 0.

$$\overline{Q_0} = (\overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0) + (\overline{A_1} \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0}) + (\overline{A_1} \cdot \overline{A_0} \cdot B_1 \cdot B_0)$$

$$+ (\overline{A_1} \cdot A_0 \cdot B_1 \cdot \overline{B_0}) + (\overline{A_1} \cdot A_0 \cdot B_1 \cdot B_0) + (A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0)$$

$$+ (A_1 \cdot \overline{A_0} \cdot B_1 \cdot B_0)$$

Combining terms produces 5 terms:

$$\begin{array}{rcl} \overline{Q_0} & = & (\overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0) + (\overline{A_1} \cdot \overline{A_0} \cdot B_1) \\ & & + (\overline{A_1} \cdot A_0 \cdot B_1) + (A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0) \\ & & + (A_1 \cdot \overline{A_0} \cdot B_1 \cdot B_0) \\ \\ \overline{Q_0} & = \overline{(\overline{Q_0})} \\ \\ E & = 1 \ \textit{only when } B_1 B_0 = 00 \text{:} \\ \\ E & = \overline{B_1} \cdot \overline{B_0} \end{array}$$

3.2. EXCEL PROJECTS 25

3.2 Excel Projects

Project 3.1 (3-Input AND gate) Extend Example 13.13 to implement a 3-input AND gate.

(ans:

	ŀ	Α	В	С	D	E		FΘ	Н	I		J	K		1	Α	В		E	F	G	Н	- 1	J	K
1	1			Trι	uth	Table		T				П		1	ī				Truth Table						
2	Ţ.	Α	В	С	П	Y = A-B	·c	Τ.	Α			П		2	7	Α	В	1	Y = A·B·C			Α			
3	Ι	0	0	0	П	0		П	1			П		3	0) (0 0	П	=IF(AND(A3,B3,C3),1,0)			1			
4	Τ	0	0	1	П	0	П	T	В			П	Υ	4	0) (0 1	П	=IF(AND(A4,B4,C4),1,0)			В			Y
5	Ι	0	1	0	П	0			1			\equiv	1	5	0) [1 0		=IF(AND(A5,B5,C5),1,0)			1			=IF(AND(H3,H5,H7),1,0)
6	Ι	0	1	1	П	0			С					6	0) [1 1		=IF(AND(A6,B6,C6),1,0)			С			
7	Ι	1	0	0	П	0			1		′			7	1	ı (0 0		=IF(AND(A7,B7,C7),1,0)			1			
8	Ι	1	0	1	Ш	0								8	1	ı (0 1		=IF(AND(A8,B8,C8),1,0)						
9	Ι	1	1	0	П	0	J	Ι				ШΤ		9	1	Ī	1 0		=IF(AND(A9,B9,C9),1,0)						
10	ı	1	1	1	П	1	\perp	\perp				Ш		10	1	. :	1 1		=IF(AND(A10,B10,C10),1,0)						

)

Project 3.2 (3-Input OR gate) Extend Example 13.14 to implement a 3-input OR gate.

(ans:

	1	ΑВ	CC	E	F	ΘН	I	J	(L		Α	В	CE	E E	F	G	Н	I	J	K	L
1	ĩ		Tru	ith Table	П	П		Ш	П	1	Г			Truth Table							
2	1	λВ	С	Y = A+B+C		Α		П		2	Α	В	С	Y = A+B+C		П	Α				
3	1	0 0	0	0		0		П		3	0	0 0)	=IF(OR(A3,B3,C3),1,0)		П	0				
4	1	0 0	1	1		В			Υ	4	0	0 :	ı	=IF(OR(A4,B4,C4),1,0)		П	В				Υ
5	(1	0	1		1			1	5	0	1 ()	=IF(OR(A5,B5,C5),1,0)			1				=IF(OR(H3,H5,H7),1,0)
6	1	1	1	1		С		/	П	6	0	1 :	ī	=IF(OR(A6,B6,C6),1,0)			С				
7	T	1 0	0	1		1		П		7	1	0 0)	=IF(OR(A7,B7,C7),1,0)		П	1				
8	T	1 0	1	1		П		П		8	1	0 :	ī	=IF(OR(A8,B8,C8),1,0)		П					
9	T	1 1	0	1				Ш		9	1	1 ()	=IF(OR(A9,B9,C9),1,0)		П					
10	ľ	1 1	1	1						10	1	1 :	ī	=IF(OR(A10,B10,C10),1,0)		П					

)

Project 3.3 (Decimal to binary conversion) *Extend Example 13.16 to convert a decimal number into its 4-bit representation, with each bit in a separate column.*

(ans:

			Α	В	С		D		Ε	F	
	1	Dec	imal		b ₃		b ₂		b ₁	b_0	
	2	1	L3	1			1		0	1	
	А	В		(С		D		E	F	
1	Decim	al		b ₃			b ₂		b ₁	b ₀	
2	13		=MOD(INT((A2/8),2)	=MOD(I	NT(A2/4),2)	=MOD(IN	T(A2/2),2)	=MOD(A2	2,2)

)

Project 3.4 (Verifying logic equations) Using Example 13.17 as a guide, compose a worksheet that implements the truth table for the following logic equations.

1.
$$Y = (A \cdot B) + (\overline{A} \cdot B)$$

2.
$$Y = (A + \overline{B}) \cdot C$$

3.
$$Y = A + B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$

(ans: The following show the VBA Macros in this problem. Sub up3 is assigned to up-arrows in 2-input worksheets and Sub up7 is assigned to up-arrows in 3-input worksheets.

1.

				Α	В	С	D	E	F	
			1	row		Α	В		$Y=(A\cdot B) + (^A\cdot B)$	
			2	3		1	1		1	
			3							
			4							
	Α	В		С		D		Е		F
1	row			Α		В			Y=(A·B) + (~A·B)
2	3		=MOD(IN	IT(A2/2	1),2)	=MOD(INT	(A2),2)		=IF(OR(AND(C2,D2),AN	D(NOT(C2),D2)),1,0)

2.

		P	4	В	С	D	Е	F		G		Н			
	1	ro	w		Α	В	С			Υ		Y=(A+~B) · C			
	2	6	5		1	1	0			0		Y=(A·C) + (~B·C)			
	3	4	7												
	4														
		A	В	С		D			E	F		G			
1	ro	ow		А		В			С			Υ			
2	7			=MOD(INT(A	2/4),2)	=MOD(INT(A	2/2),2)	=M	OD(A2,2)		=IF(OR(AND(C2,E2),AND(NOT(D2),E2)),1,0)				

3.

		A B			C D			E F		G	
	1 row				А	В		C $Y=A + (B \cdot ^{\sim}C) + (^{\sim}A \cdot ^{\sim}B \cdot$		Y=A + (B·~C) + (~A·~B· C)	
		2	4		1	0		0		1	
	Α	В	С	C D E F G		G					
1	row		Α		В	С	Г	Y=A + (B·~C) + (~A·~B· C)			
2	4		=MOD(INT(A2	(4),2)	=MOD(INT(A2/2),2	=MOD(A2,2)		=IF(OR(C2, AND(D2,NOT(E2)),AND(NOT(C2),NOT(D2),E2)),1,0)			

)

Project 3.5 (Implementing a 7-segment display) Using Example 13.18 as a guide, compose a worksheet that forms a 7-segment display based on the binary value of the digit, rather than the digit value.

(ans:

	Α	В	С	D	Е	F	G	Н	Ι
1	TYPE digit								
2	7					0		1	
3							0		
4						0		1	
5	binary code						0		
6	b ₃	0		a=	1				
7	b ₂	1		b=	1				
8	b_1	1		C=	1				
9	b_0	1		d=	0				
10				e=	0				
11				f=	0				
12				g=	0				
13								Π	

	Α	В	С	D	E
6	b ₃	=MOD(INT(A2/8),2)		a=	=IF(NOT(OR(AND(NOT(B6),NOT(B7),NOT(B8),B9),AND(NOT(B6),B7,NOT(B8),NOT(B9)))),1,0)
7	b ₂	=MOD(INT(A2/4),2)		b=	=IF(NOT(OR(AND(NOT(B6),B7,NOT(B8),B9),AND(NOT(B6),B7,B8,NOT(B9)))),1,0)
8	b_1	=MOD(INT(A2/2),2)		c=	=IF(NOT(AND(NOT(B6), NOT(B7),B8,NOT(B9))),1,0)
9	b _o	=MOD(A2,2)		d=	=IF(NOT(OR(AND(NOT(B6),NOT(B7),NOT(B8),B9),AND(NOT(B6),B7,NOT(B8),NOT(B9)),AND(NOT(B6),B7,B8,B9),AND(B6,NOT(B7),NOT(B8),B9))),1,0)
10)			e=	=IF(OR(AND(NOT(B6),NOT(B7),NOT(B8),NOT(B9)), AND(NOT(B6),NOT(B7),B8,NOT(B9)), AND(NOT(B6),B7,B8,NOT(B9)), AND(B6, NOT(B7),NOT(B8), NOT(B9))),1,0)
11				f=	=IF(NOT(OR(AND(NOT(B6),NOT(B7),NOT(B8),B9),AND(NOT(B6),NOT(B7),B8,NOT(B9)),AND(NOT(B6),NOT(B7),B8,B9),AND(NOT(B6),B7,B8,B9),),1,1,0)
4.				-	IF NOTICE (AND (NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) NOTICE) OF REPONDING OF

	F	G	Н
1		=E6	
2	=E11		=E7
3		=E12	
4	=E10		=E8
5		=E9	

)