Университет ИТМО Факультет безопасности информационных технологий

Группа	<u>N3146</u>	К работе допущены			
Студенты_	Суханкулиев Мухаммет				
	Бардышев Артём Антонович_	D 6			
	Шегай Станислав Дмитриевич	Работа выполнена			
	Шкляев Артем Романович				
Преподава	тель Иванов Виктор Юрьевич	Отчет принят			
Рабочий протокол и отчет по лабораторной работе №1.01					
Исследование распределения случайной величины					

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значениями дисперсией.

3. Объект исследования.

Случайная величина – результат измерения заданного промежутка времени (5 сек).

4. Метод экспериментального исследования.

Многократное прямое измерение определенного интервала времени и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные.

Нормальное распределение по функции Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Максимальная «высота» гистограммы:

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

Доверительный интервал:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

Доверительная вероятность:

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t])$$

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Абсолютная погрешность с учетом погрешности приборов:

$$\Delta x = \sqrt{(\overline{\Delta x})^2 + (\frac{2}{3}\Delta_{ux})^2}$$

Относительная погрешность:

$$\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\%$$

Среднее арифметическое всех результатов измерения:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

Соотношение для вероятности попадания результата измерения в интервал $[t_1, t_2]$:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Секундомер	Электронный	4–6 с	0,005 с	
2	Часы	Механические	0–10 с	0,005 с	

7. Результаты прямых измерений и их обработки.

Ŋo	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	5,39	0,3892	0,151477
2	4,87	-0,1308	0,017109
3	5,01	0,0092	0,000085
4	5,09	0,0892	0,007957
5	4,84	-0,1608	0,025857
6	5,05	0,0492	0,002421
7	5,07	0,0692	0,004789
8	4,87	-0,1308	0,017109
9	5,00	-0,0008	0,000001
10	4,96	-0,0408	0,001665
11	5,08	0,0792	0,006273
12	5,00	-0,0008	0,000001
13	5,12	0,1192	0,014209
14	4,83	-0,1708	0,029173
15	5,07	0,0692	0,004789
16	4,95	-0,0508	0,002581
17	5,09	0,0892	0,007957
18	4,81	-0,1908	0,036405
19	5,30	0,2992	0,089521
20	4,74	-0,2608	0,068017
21	5,11	0,1092	0,011925
22	5,04	0,0392	0,001537
23	4,88	-0,1208	0,014593
24	4,92	-0,0808	0,006529
25	5,14	0,1392	0,019377
26	5,05	0,0492	0,002421
27	4,90	-0,1008	0,010161
28	4,99	-0,0108	0,000117
29	4,95	-0,0508	0,002581
30	4,91	-0,0908	0,008245
31	4,98	-0,0208	0,000433
32	5,20	0,1992	0,039681
33	5,03	0,0292	0,000853
34	4,78	-0,2208	0,048753
35	5,16	0,1592	0,025345
36	4,75	-0,2508	0,062901
37	5,18	0,1792	0,032113

	$\langle t \rangle_N = 5,0008 \mathrm{c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) \approx 0 \ c$	$\sigma_N = 0.135 \text{ c}$ $\rho_{max} = 2.955 \text{ c}^{-1}$
50	5,00	-0,0008	0,000001
49	5,01	0,0092	0,000085
48	4,86	-0,1408	0,019825
47	5,09	0,0892	0,007957
46	4,97	-0,0308	0,000949
45	5,05	0,0492	0,002421
44	4,83	-0,1708	0,029173
43	5,14	0,1392	0,019377
42	5,02	0,0192	0,000369
41	5,11	0,1092	0,011925
40	4,90	-0,1008	0,010161
39	4,89	-0,1108	0,012277
38	5,06	0,0592	0,003505

 $t_{min} = 4,74$ с; $t_{max} = 5,39$ с — тогда возьмём 10 интервалов с шагом 0,065 с.

8. Расчет результатов косвенных измерений.

Границы		Λ N	ΔN $\frac{\Delta N}{2}$ c^{-1}		$ ho$, c^{-1}	
интервалов, с			$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	ρ, σ	
4,74	4,805	1	0,3077	4,7725	0,7072	
4,805	4,87	7	2,1538	4,8375	1,4218	
4,87	4,935	6	1,8462	4,9025	2,2670	
4,935	5	9	2,7692	4,9675	2,8667	
5	5,065	11	3,3846	5,0325	2,8749	
5,065	5,13	9	2,7692	5,0975	2,2865	
5,13	5,195	4	1,2308	5,1625	1,4422	
5,195	5,26	1	0,3077	5,2275	0,7215	
5,26	5,325	1	0,3077	5,2925	0,2862	
5,325	5,39	1	0,3077	5,3575	0,0901	

Опытное значение плотности вероятности (пятый интервал):

$$\frac{\Delta N}{N\Delta t} = \frac{11}{50 \cdot 0,065} = 3,3846$$

9. Расчет погрешностей измерений.

Погрешность		Интервал, с		ΔN	ΔN	P
		om	до	ΔIV	N	1
$\langle t \rangle_N \pm \sigma_N$	5,0008 ± 0,135 c	4,8658	5,1358	44	0,88	0,6827
$\langle t \rangle_N \pm 2\sigma_N$	$5,0008 \pm 0,27 \text{ c}$	4,7308	5,2708	50	1	0,9545
$\langle t \rangle_N \pm 3\sigma_N$	$5,0008 \pm 0,405 \mathrm{c}$	4,5958	5,4058	50	1	0,9973

$$\Delta_{ux}=$$
 0,005 c ; $\overline{\Delta x}=t_{\alpha,N}\cdot\sigma_{\langle t\rangle}$; $t_{\alpha,N}=$ 2,009575 (коэфф. Стьюдента при α =0,95) $\overline{\Delta x}\approx0,27129$

Абсолютная погрешность с учетом погрешности прибора:

$$\Delta x = \sqrt{(\overline{\Delta x})^2 + (\frac{2}{3}\Delta_{ux})^2} = \mathbf{0}, \mathbf{27131} c$$

Относительная погрешность измерения:

$$\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% = 5,4262\%$$

10. График.

11. Окончательные результаты.

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0.0190913 \approx \mathbf{0.0191}$$

Дисперсия:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 \approx \mathbf{0}, \mathbf{018}$$

Доверительный интервал:

$$\overline{\Delta x} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \approx \mathbf{0}, \mathbf{2713}$$

По итогам измерений:

$$t = \langle t \rangle_N + \Delta t = (5,0008 \pm 0,27129)c; \ \varepsilon_x = 5,4262\%; \ \alpha = 0,95$$

12. Выводы и анализ результатов работы.

Мы провели многократные измерения определенного интервала времени в 5 секунд, получили выборку из 50 измерений, построили гистограмму распределения результатов измерения, вычислили средние значения измерений ((5,0008 ± 0,27129)*c*) и дисперсию (0,018). При сравнении гистограммы с графиком функции Гаусса – распределения случайной величины – можно отметить сходство поведения построенной опытным путём функции с теоретико-статической сущностью.

Работа позволила ознакомиться с законом распределения случайной величины и подробно его изучить.

13. Дополнительные задания.

Контрольные вопросы

- 1. Являются ли, по вашему мнению, случайными следующие физические величины:
 - плотность алмаза при $20^{\circ}C$
 - напряжение сети
 - сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением
 - число молекул в 1см³ при нормальных условиях?
 Приведите другие примеры случайных и неслучайных физических величин.
- 2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?
- 3. При обработке результатов измерений емкости партии конденсаторов получено: $\langle \mathcal{C} \rangle = 1,1$ мк Φ , $\sigma = 0,1$ мк Φ . Если взять коробку со 100 конденсаторами из этой партии, то сколько среди них можно ожидать конденсаторов с емкостью меньше 1 мк Φ ? больше 1,3 мк Φ ?
- 4. Как изменяется коэффициент Стьюдента при возрастании количества измерений?
- 5. Как зависит коэффициент Стьюдента от доверительной вероятности?
- 6. В чем отличие среднеквадратичного отклонения среднего значения от среднеквадратичного отклонения выборки?
- 7. Обязательно ли в данной работе должно получиться распределение, близкое к нормальному? Почему?

14. Выполнение дополнительных заданий.

- 1. Плотность алмаза при $20^{\circ}C$ это не случайная величина. $\rho \approx 3.51 \, \text{г/см}^3$.
- Напряжение сети это также не случайная величина. Напряжение в электрической сети обычно контролируется и поддерживается на определенном уровне. Однако, могут быть небольшие колебания напряжения из-за различных факторов, таких как нагрузка на сеть.
- Сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением это может быть случайной величиной. Даже если резисторы имеют одно и то же номинальное сопротивление, их реальное сопротивление может немного отличаться из-за производственных отклонений.
- Число молекул в 1см3 при нормальных условиях это не случайная величина. При определенных условиях (нормальных условиях) число молекул в определенном объеме газа является константой, определенной законом идеального газа. Однако, если условия (температура, давление) меняются, то число молекул в данном объеме также изменится.

Другие примеры:

Случайные физические величины:

- Температура частицы газа: В газе частицы постоянно сталкиваются друг с другом и обмениваются энергией, поэтому температура отдельной частицы может случайно изменяться.
- Радиоактивный распад: Время, через которое конкретный атом распадается, является случайной величиной.
- Шум в электронных схемах: это случайные колебания напряжения, вызванные тепловыми эффектами.

Неслучайные физические величины:

- Скорость света в вакууме: это константа и не изменяется.
- Заряд электрона: это также константа и не изменяется.
- Планковская константа: это фундаментальная константа в квантовой механике, которая не изменяется.
- 2. Если цель исследования состоит в оценке средней ЭДС партии батареек с высокой точностью, то даже небольшие различия в измерениях могут быть значимы. В таком случае продолжение измерений может быть оправданным.
 - Однако, если измерения проводятся для простой оценки ЭДС с достаточной точностью для общего представления о состоянии партии батареек, то результаты уже довольно близки друг к другу, и продолжение измерений может быть излишним.

Чтобы улучшить точность эксперимента, можно применить следующие изменения в методике:

- Увеличить количество измерений.
- Использовать более точный прибор.
- Проверить калибровку прибора.
- Стандартизировать условия измерений чтобы исключить влияние внешних переменных на результаты.
- 3. Мы можем использовать формулу стандартизации для нормального распределения:

$$Z = \frac{X - \mu}{\sigma}$$

Для емкости меньше 1 мкФ:

$$Z = \frac{1 - 1,1}{0.1} = -1$$

Для емкости больше 1,3 мкФ:

$$Z = \frac{1,3-1,1}{0.1} = 2$$

Из таблицы стандартного нормального распределения мы можем найти, что вероятность того, что Z меньше -1, примерно равна 0,1587, вероятность того Z больше 2, примерно равна 0,0228.

Теперь мы можем использовать эти вероятности для расчета количества конденсаторов: Д ля емкости меньше 1 мк Φ : $100 \cdot 0,1587 = 15,87$, то есть примерно 16 конденсаторов. Д ля емкости больше 1,3 мк Φ : $100 \cdot 0,0228 = 2,28$, то есть примерно 2 конденсатора.

- 4. При большом количестве измерений *t*-распределение Стьюдента будет очень похоже на нормальное распределение, и *t*-статистика будет давать очень похожие результаты на *z*-статистику, которая используется при нормальном распределении. Это является основой для центральной предельной теоремы в статистике.
- 5. Когда доверительная вероятность увеличивается, доверительный интервал становится шире, чтобы включить больше возможных значений параметра. Это означает, что критическое t-значение, которое определяет эти границы, также увеличивается. Таким образом, коэффициент Стьюдента напрямую зависит от доверительной вероятности.
- 6. Основное отличие между этими двумя величинами заключается в том, что среднеквадратичное отклонение выборки описывает разброс данных в выборке, в то время как среднеквадратичное отклонение среднего значения описывает точность, с которой среднее значение выборки оценивает среднее значение генеральной совокупности.

7. Не обязательно, что в данной работе должно получиться распределение, близкое к нормальному. Распределение данных зависит от многих факторов, включая природу измеряемой величины и процесс, который генерирует данные.

Список использованных источников

- 1. Методическое пособие «Обработка экспериментальных данных» / Курепин В.В., Баранов И.В., под ред. В.А. Самолетова : методическое пособие. 2012. (дата обращения: 11.02.2024).
- 2. Элементарные оценки ошибок измерений / Зайдель А.Н., Изд. 3-е испр. и доп. Л., "Наука Ленинградское отделение: книга. 1968. (дата обращения: 11.02.2024).
- 3. Практическая физика / Сквайрс Дж., М.: Мир : книга. 1971. (дата обращения: 11.02.2024).