Exercise 12.1

1. Prove that the centre of a circle is on the right bisectors of each of its chords.

Given

Circle with centre O

To Prove Centre of the circle is on right bisectors of each of its chords

Draw any chord \overrightarrow{AB} Draw $\overrightarrow{OC} \perp \overrightarrow{AB}$ join O with A and B.

1004.		
Statements	Reasons	
$ \frac{\text{In } \Delta \text{OAC}}{\text{OA} \cong \text{OB}} \leftrightarrow \Delta \text{OBC} $	Radii of same circle	
OC≅OC ∠ACO≅∠BCO ∴ ΔACO≅ΔBCO ∴ AC≅BC	Common Each of 90° H.S ≅ H.S Corresponding sides of the congruent triangles.	
\therefore \overrightarrow{OC} is the right bisector of \overrightarrow{AB}		

2. Where will be the centre of a circle passing through three non-collinear points and why?

Circle is the locus of a point which moves so that its distance from a fixed point O remains same. Otherwise no circle will be formed.

3. Three villages P, Q and R are not on the same line. The people of these villages want to make a Children Park at such a place which is equidistant from these three villages. After fixing the place, of Children park, prove that the Park is equidistant from the three villages.

Given

Three villages P, Q, R not on the same line.

To Prove

Park is equidistant from P, Q and R.

Construction

Complete the triangle PQR, draw the right bisectors of the sides \overline{PQ} and \overline{QR} cutting each other at O. Join O with P, Q and R. let O be the park.

Proof:

	Statements	Reasons
In	$\triangle OPC \leftrightarrow \triangle OQC$	
	$\overline{\text{CP}} \cong \overline{\text{CQ}}$	Construction
	$\overline{OC} \cong \overline{OC}$	Common
	∠1 ≅ ∠2	Each of 90°
<i>:</i> .	$\triangle OCP \cong \triangle OCQ$	$S.A.S \cong S.A.S$
·:	$\overline{OP} \cong \overline{OQ} \dots (i)$	Corresponding sides of congruent triangles
Simil	arly	
	$\overline{OQ} \cong \overline{OR} \dots$ (ii)	
:	$\overline{OP} \cong \overline{OQ} \cong \overline{OR}$	

Theorem.

The right bisectors of the sides of a triangle are concurrent.

Given

ΔΑΒС

To Prove

The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent.

Construction Draw the right bisectors of \overline{AB} and \overline{BC} which meet each other at the point O. Join O to A, B and C.

Proof:

Statements	Reasons
<u>OA</u> ≅ <u>OB</u> (i)	(Each point on right bisector of a segment is equidistant from its end points)
$\overline{OB} \cong \overline{OC}$ (ii) $\overline{OA} \cong \overline{OC}$ (iii) \therefore Point O is on the right bisector of \overline{CA} (iv) But point O is on the right bisector of \overline{AB} and of \overline{BC} (v) Hence the right bisectors of the three sides of a triangle are concurrent at O.	as in (i) From (i) and (ii) (O is equidistant from A and C) construction {from (iv) and (v)}

Note:

- (a) The right bisectors of the sides of an acute triangle intersect each other inside the triangle.
- (b) The right bisectors of the sides of a right triangle intersect each other on the hypotenuse.
- (c) The right bisectors of the sides of an obtuse triangle intersect each other outside the triangle.

Theorem

Any point on the bisector of an angle is equidistant from its arms.

Given

A point P is on \overline{OM} , the bisectors of $\angle AOB$.

To Prove

 $\overrightarrow{PQ} \cong \overrightarrow{PR}$ i.e., P is equidistant from \overrightarrow{OA} and \overrightarrow{OB} .

Construction

Draw $\overline{PR} \perp \overline{OA}$ and $\overline{PQ} \perp \overline{OB}$.

	Statements	Reasons
In	$\frac{\Delta POQ}{OP} \longleftrightarrow \Delta POR$	Common
∴ Henc	$\angle PQO \cong \angle PRO$ $\angle POQ \cong \angle POR$ $\triangle POQ \cong \triangle POR$ the $\overline{PQ} \cong \overline{PR}$	Construction Given S.A.A. ≅ S.A.A. (corresponding sides of congruent triangles)

Theorem

Any point inside an angle, equidistant from its arms, is on the bisector of it.

Given

Any point P lies inside $\angle AOB$ such that $\overline{PQ} \cong \overline{PR}$,

where $\overrightarrow{PQ} \perp \overrightarrow{OB}$ and $\overrightarrow{PR} \perp \overrightarrow{OA}$.

To Prove

Point P is on the bisector of $\angle AOB$.

Construction

Join P to O.

Proof:

ł	Statements	Reasons
In ∴ Hence i.e.,	$\Delta POQ \longleftrightarrow \Delta POR$ $\angle PQO \cong \angle PRO$ $\overline{PO} \cong \overline{PO}$ $\overline{PQ} \cong \overline{PR}$ $\Delta POQ \cong \Delta POR$ $E \angle POQ \cong \angle POR$ $E \Rightarrow POQ \cong APOR$ $E \Rightarrow POQ$	Given (right angles) Common Given H.S. ≅ H.S. (corresponding angles of congruent triangles)

