Álgebra de Boole

Matemática Discreta – UCA M. Julia Bolívar

Álgebra de Boole

Sea $B \neq \emptyset$, un conjunto que contiene 2 elementos especiales o y 1, sobre el cual se definen 2 operaciones binarias cerradas, la suma y el producto (+, ·), y una operación unaria el complemento (—)

 $(B, +, \cdot, -, 0, 1)$ es un álgebra de Boole si $\forall x, y, z \in B$ se cumple :

$$x + y = y + x$$

$$xy = yx$$

$$x(y+z) = xy + xz$$

$$x + yz = (x + y)(x + z)$$

•
$$x + 0 = x$$

$$x1 = x$$

•
$$\forall x \in B$$
, $\exists \bar{x} \in B$: $x + \bar{x} = 1$, $x\bar{x} = 0$

Ejemplo 1

 $B = \{0,1\}$, definimos la suma, el producto y el complemento en las siguientes tablas:

+	0	1
0	0	1
1	1	1

	0	1
0	0	0
1	0	1

\boldsymbol{x}	\overline{x}
0	1
1	0

 $(B, +, \cdot, -, 0, 1)$ es un álgebra de Boole

Ejemplo 2

$$(D_{6},+,\cdot,-,1,6)$$

 D_6 son los divisores positivos del 6

Donde:
$$x + y = mcm(x, y)$$
, $xy = mcd(x, y)$, $\bar{x} = \frac{c}{x}$

+	1	2	3	6
1	1	2	3	6
2	2	2	6	6
3	3	6	3	6
6	6	6	6	6

	1	2	3	6
1	1	1	1	1
2	1	2	1	2
3	1	1	3	3
6	1	2	3	6

x	\overline{x}
1	6
2	3
3	2
6	1

Ejemplo 3

 $(P(U), \cup, \cap, \emptyset, U)$ es un álgebra de Boole

Si por ejemplo $U=\{1,2\}$ $P(U)=\{\emptyset,U,\{1\},\{2\}\}$ (es el conjunto de partes de un conjunto, el cual esta formado por todos los subconjuntos del conjunto)

Observación: El complemento es único

Demostración/

Sabemos que:
$$x + \bar{x} = 1$$
 y $x\bar{x} = 0$

$$x + y = 1$$
 $xy = 0$

$$y = y1 = y(x + \bar{x}) = yx + y\bar{x} = 0 + y\bar{x} =$$
(1) (2) (3) (4)

$$= x\bar{x} + y\bar{x} = (x+y)\bar{x} = 1\bar{x} = \bar{x}$$
(4) (3) (4) (1)

$$y = \bar{x}$$

- (1) Neutro
- (2) Complemento
- (3) Distributiva
- (4) Hipótesis

Leyes del Álgebra de Boole

1)
$$x + x = x$$

$$xx = x$$

Idempotencia

2)
$$x + 1 = 1$$

$$x0 = 0$$

Acotación

$$3) x + xy = x$$

$$x(x+y)=x$$

Absorción

$$4) \; \bar{\bar{x}} = x$$

$$5) \, \overline{x + y} = \bar{x} \bar{y}$$

$$\overline{xy} = \overline{x} + \overline{y}$$

6)
$$x + (y + z) = (x + y) + z$$

$$x(yz) = (xy)z$$

Leyes del Álgebra de Boole

7)
$$x + y = x + z$$
 \wedge $\bar{x} + y = \bar{x} + z$ \rightarrow $y = z$

$$xy = xz$$

$$\wedge \quad \bar{x}y = \bar{x}z \quad \rightarrow \quad y = z$$

$$\rightarrow$$
 $y = z$

Cancelación

Principio de la Dualidad

El dual de una afirmación relacionada con expresiones de un álgebra de Boole se obtiene reemplazando el 0 por el 1, el 1 por el 0, + por \cdot y \cdot por +

Principio de la Dualidad:

El dual de un teorema de un Álgebra de Boole también es un teorema

Ejercicio: Utilizando los axiomas demostrar las leyes de Idempotencia, Acotación, Absorción y Morgan

$$(x+1)(x+\bar{x})$$

$$(x+1)1 \qquad x+1\bar{x}$$

$$x+1 \qquad 1$$

$$\overline{x+y} = \bar{x}\bar{y}$$

Quiero ver que

$$x + y + \bar{x}\bar{y} = 1$$

$$(x+y)\bar{x}\bar{y}=0$$

2

$$x + y + \bar{x}\bar{y} =$$

$$(x+y)\bar{x}\bar{y} =$$

$$(x, \overline{y}) \left[x, \overline{y} + \overline{x} + \overline{y}\right] \left(\overline{y} + \overline{x}\right)$$

$$\overline{x}$$
 $\overline{(xy)(x+xy)}(x+xy)(x+y)$

Gj2) Dar un contraejemple para prober que las sig afinmaciones son falsas en un algebra de Boole

a)
$$x+z=y+z \implies y=x$$

b)
$$x \neq = y \neq \Rightarrow x = y$$

$$0) \quad \chi y = 0 \implies \chi = 0 \quad \forall \quad \mathcal{J} = 0$$