ARMORED MEDICAL RESEARCH LABORATORY Fort Knox, Kentucky

SEP 5 1967

Project No. T-5

17 July 1945

1. PROJECT: NO. T-5 - Test of Flameproofed Clothing, First Partial Report.

Subject: Physiologic Effects of Wearing Flameproofed Clothing in Hot Environments.

a. Authority: Letter, 6th Indorsement, SPMDO 421, ASF, SGO, Washington, 25, D. C., 7 December 1944.

b. Purpose: To determine the physiologic effects from wearing flameproofed garments in hot environments, with particular reference to the heat load imposed.

2. DISCUSSION:

Protection of personnel against fire has always been a problem in armored vehicles. A high proportion of the tanks knocked out in combat burn, and the incidence of burns to total casualties is disproportionately higher in tank crews than in other combat arms. The increasing use of flame as an offensive weapon by ground troops emphasizes the necessity of adequate protection of personnel against fire. As one of the means of protection, flameproofed clothing has been developed. However, the impregnation of clothing with flame resisting substances raises new problems apart from the actual flame resistance of the garments.

It was the purpose of this investigation to study some of these new problems, principally those dealing with (1) the heat load imposed by the clothing, (2) the general acceptability of the clothing from the standpoint of its flexibility, porosity and comfort, and (3) possible toxic effects from the impregnite, both locally in the form of skin rashes and systemically in whatever manner they might be manifested. Of these, the question of the heat load of the clothing is particularly important to the Armored Command because in hot climates closed armored vehicles may develop internal environments which are more severe than any naturally occurring climate. Such conditions impose severe stresses on the crew, making additional thermal loads undesirable.

The garments were prepared by the Technical Division of Chemical Warfare Service. The impregnating formula of the flameproofed clothing here studied was chlorinated paraffin/CC-2/zinc oxide/aluminum stearate/acetylene tetrachloride in the following amounts by weight 139/139/17/1623. These garments were labelled "D". The initial pick-up was 47% of the original garment weight. As this was considered to be excessive, it was reduced to 38% by one laundering prior to shipment for test. The impregnite was designed to protect against both fire and chemical warfare agents. Garments impregnated with compounds to protect against flame alone were not available. For comparison, the men worked nude or in herringbone twill.

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151

This document has been approved for public release and sale; its distribution is unlimited.

44

Best Available Copy

It has been assumed that adequate fire resisting qualities had been imparted to the test clothing and that these qualities were retained throughout this study. Representative garments have been submitted to proper agencies for flame resistance tests.*

In the design of these experiments, three categories of hot environments were chosen:

- a. Naturally occurring climates

 - (1) Hot temperate D.B. 100°F, W.B. 90°F.
 (2) Hot humid (tropical) D.B. 90°F, W.B. 88°F.
- b. Severe conditions which may occur within tanks D.B. 120°F, W.B. 60°F to 90°F.
- c. The upper environmental limits at which men can work:
 - (1) Saturated conditions D.B. 95°F, W.B. 94°F.
 (2) Hot dry conditions D.B. 120°F, W.B. 92°F.

The test period consisted of four (4) hours of continuous work requiring the expenditure of approximately 250 Cals/hour, equal to the energy expenditure of a tank driver during rough cross country driving.

3. CONCLUSIONS:

- a. In hot environments simulating severe naturally occurring hot temperate (D.B. 100°F, W.B. 80°F, relative humidity 43%) and hot humid (tropical, D.B. 90°F, W.B. 88°F, relative humidity 92%) climates:
 - (1) Well acclimatized men are capable of working effectively, without disability and with equal efficiency whether they wear regulation herringbone twill or flameproofed "D" garments.
 - (2) In comparison with the nude state, this clothing imposes only a slight heat load and two layers of clothing, with or without hood and gloves, are tolerated easily and almost as well as one layer of clothing.
- b. In hot environments simulating those found within tanks (D.B. 120°F, W.B. 88° to 90°F, relative humidity 30%) operating in hot climates:
 - (1) Clothing imposes definite and considerable heat loads. In the performance of a given amount of work, clothed men exhibit greater physiologic changes than nude men.

N.R.C. Project Q.M.C. No. 27, Preliminary Report Sub-project 27-A5-X-2, dated 30 April 1945.

- (2) Fit, well acclimatized men are still capable of working effectively and without disability when clothed in single layer herringbone twill or single layer flameproofed "D" garments.
- (3) For a given amount of work, greater physiologic changes are induced in men wearing single layer flameproofed "D" clothing than in men clothed in single layer herringbone twill garments.
- w.B. 94°F, relative humidity 96%; and D.B. 120°F, W.B. 92°F, relative humidity 35%):
 - (1) Clothing now imposes a critical heat load which decreases the ability of men to work. It lowers the limiting wet bulb temperature of the upper environmental limits by from 2°F to 4°F.
 - (2) In this regard, single layer flameproofed "D" clothing has a greater and more deleterious effect than single layer herringbone twill.
 - (3) The effect of clothing (single layer) on the limiting wet bulb temperature of the upper limits at which men can work for four (4) hours is summarized in the following table.

	Limiting Saturated E		Limiting Wet Bulb Environments with D.B. 120°F.			
	Difficult	Impossible	Difficult	Impossible		
Nude	94	96*	92	94*		
Single Layer Herring- bone Twill	92	94	90	92		
Single Layer Flame- proofed "D" Twill	92	94	88	90		

^{*} Established in a previous study.

- d. The principal differences between the herringbone twill and flame-proofed "D" garments are:
 - (1) With wear, herringbone twill rapidly becomes pliable. The flame-proofed "D" clothing remains rather stiff, hard, coarse and is physically irritating to the skin.
 - (2) Herringbone twill readily absorbs water while the flameproofed "D" garments appear to be relatively water repellent.
 - (3) The physical gradient for evaporation (volume sweat evaporated per square meter of surface area per mm Hg difference in water vapor pressure at the temperature of the skin and the environment) through flameproofed "D" clothing in the erect subject was found to be roughly two-thirds of the gradient through herringbone twill.

- e. The flameproofed "D" clothing did not produce toxic changes of either a local or systemic nature.
- f. Healthy, fit, well acclimatized men can work effectively in hot surroundings when wearing flameproofed "D" clothing. At the extreme upper limits of heat, the wearing of impregnated clothing induces greater stresses than the wearing of ordinary herringbone twill fatigues.

4. RECOMMENDATIONS:

- a. That the material of this report be distributed to agencies concerned in the development of formulae and ultimate use of clothing designed to protect against fire and chemical warfare agents.
- b. That these agencies continue to consider, along the lines developed in this report, not only the protective qualities of such clothing but all of the new problems which arise in the ultimate wearer,

Submitted by:

Ludwig W. Eichna, Major, LC Steven M. Horvath, Lajor, SnC Walter B. Shelley, Captain, LC

Assisted by:

Howard Golden, Tec 3 John E. Wagar, Tec 3 Kenneth C. Davis, Tec 3 James P. Stack, Tec 3 William J. Robinson, Tec 5 James W. Gregg, P-4

APPROVED Willard Mack

WILLARD MACHIE

Colonel, Medical Corps

Commanding

4 Incls.

#1 - Appendix with Tables 1 and 2

#2 - Tables 3 thru 17

#3 - Charts 1 thru 12

#4 - Photographs 1 and 2

APPENDIX

A. SUBJECTS, EXPERIMENTAL CONDITIONS AND PROCEDURES

This investigation was conducted in the same general manner as a previously reported study.* All observations were made in the laboratory hot room during January, February and March, 1945.

1. Subjects

Their ages ranged from 20 years to 24 years (average 21.3 years). Their weights varied from 140 pounds to 178 pounds (average 156 pounds); their heights from 64 inches to 72 inches (average 69 inches); their surface areas from 1.7 square meters to 2.0 square meters (average 1.89 square meters). They were all normal, healthy and physically fit.

2. Environments

The studies were carried out in three (3) types of environments.

- a. Environments simulating severe naturally occurring climates both hot temperate and hot humid (tropical).
 - b. Environments comparable to those within tanks operating in hot climates.
- c. Environments at the upper limits tolerated by working men. The characteristics of the environments studied are detailed in Table 1.

TABLE 1
ENVIRONMENTS IN WHICH HEAT LOAD OF CLOTHING WAS STUDIED

TYPE OF	ENVIRONMENT	Dry Bulb Temp. F	Wet Bulb Temp. OF	Relative Humidity
Severe, naturally A. occurring climates	Hot temperate Very hot temperate Hot humid (tropical)	100 100 90	80 86 88	41 57 92
Conditions within B. tanks in hot environments		120	88	28
C. Upper Environmental Limits	Hot, relatively dry Hot Humid Almost saturated	120 120 93 95	90 92 92 94	31 35 95 96

^{*} Project 2, Sub-project 2-11, 2-13, 2-17, Subj., The Upper Limits of Environmental Heat and Humidity Tolerated by Acclimatized, Normal, Young Men Working in Hot Environments, dated 2 October 1944.

Juch. #1

Throughout the tests, the dry and wet bulb temperatures, measured with a motor driven psychrometer, carried around the track 3 times, at a level of four (4) feet usually did not vary from the desired temperatures by more than 1°F. These were recorded every fifteen (15) minutes. The walls and floor were brought into equilibrium with the air temperature, by initiating the desired conditions in the hot room 12 to 15 hours before the men began to work. Wall and floor temperatures were not measured and are assumed to be the same as those previously determined under similar conditions; i.e., walls 2°F to 5°F cooler than the air and the floor 10°F cooler at dry bulb temperatures under 10°°F but 20°F cooler at dry bulb temperatures of 120°F. Additional radiant heat was not supplied. Dry bulb air temperatures showed a gradient of 4 to 5° from floor level to the six foot level.

A mildly turbulent air movement in all parts of the room resulted from the combination of hot air inflow from four anemostats in the ceiling and four (4) sixteen (16") inch fans placed on the floor at the four corners of a wind tunnel in the middle of the room. The fans were directed toward the floor. Wind velocity was not measured but was essentially that produced by the movement of the men marching at 3 mph.

3. Activity

The standard work consisted of walking, in single file, at 3 miles per hour around a 77 foot track in the hot room. The men carried 20 pound packs, were started at 4 minute intervals and walked simultaneously. This work rate was previously determined to be approximately 250 Calories per hour. Four (4) hours of such continuous marching without rest and without leaving the hot environment constituted the standard daily work requirement. At hourly intervals during work, each man halted and stood erect for 2 to 3 minutes while the hourly check data (heart rate and rectal temperature) were obtained. Observations were also made during an hour of quiet sitting in the afternoon.

A standard day consisted of 8 to 9 hours spent in the hot environment: 0745 hours to 1230 hours, walking period; 1300 hours to 1400 hours, lunch; 1400 hours to 1600 hours, sitting period. When only one or two hours of walking were accomplished in the morning, walking was substituted for the afternoon sitting period. After 1600 hours, the men returned to their own quarters on the post and reported at the Laboratory the next morning.

For one week, the men performed the standard work requirement under normal cool indoor conditions. This toughened the feet, accustomed the men to the work and experimental procedures and tended to produce a more uniform state of physical fitness in all men. Then followed an acclimatization period of 10 days during which the men worked in an environment of D.B. 120°F*, W.B. 28°F*, R.H. 28%. After these two preliminary training periods, the definitive study of the heat loads of the clothing was begun.

Thereafter each time that the environmental conditions were changed, the men were acclimatized to the new environment over a period of three or four days before the test runs were undertaken. However, in the environment D.B. 120°F, W.B. 90°F,

^{*} Henceforth D.B. will designate dry bulb temperature, W.B. wet bulb temperature and R.H. relative humidity.

it was necessary to shorten this period to one day. Previous studies have shown the need for acclimatization to each new environment regardless of full acclimatization in previous environments. Only subjects fully acclimatized to the given environment behave in such a repetitive fashion that they can serve as standardized test subjects for the determination of added loads. In the milder environments which do not impose a considerable heat load, prolonged acclimatization is not necessary. Since the data in this report are for subjects fully acclimatized to each environment, the reactions of the men to the clothing heat load are minimized. It was found that in unacclimatized subjects, clothing induced greater physiologic changes.

4. Food and Water

The men ate field rations, type A, obtained from the company mess. Only the mid-day meal was eaten in the hot environment. The amount of food eaten was not measured but generally the men ate heartily.

All drinking water was made up as a 0.1% solution of sodium chlorido and maintained at a temperature of 35°C. The amount drunk was carefully measured. The water intake approximated the sweat loss except in some men in the most severe environments. After leaving the hot room, the men drank tap water.

5. Clothing

The following types and assemblies of clothing were worn during this study:

1	Shoes# Service	Socks* Half Wool	Shorts* Cotton	Drawers Cotton	Under- Chirt Cotton	Jacket	Trousers	Hood	Gloves
Nude	X	X							
Herringbone Twill Single Layer	x	х	X			х	Х		
Flameproof Twill Single Layer	X	X	X			Х	X		
Herringbone Twill Double Layer	Х ,	X		X	Х	x	X		
Flameproof Twill Double Layer	X	X		Х	X	х	x		
Flameproof Twill Complete Assemb.	X	х		X	x	х	, x	Х	X

^{*} These garments were untreated.

All flameproofed "D" clothing was impregnated with the formula: chlorinated paraffin CC-2/zinc oxide/aluminum stearate/acetylene tetrachloride in the following proportions by weight 139/139/139/17/1623. The impregnation renders the garment both flameproof and gasproof. The amount of impregnite picked up by each article expressed as a percentage of its initial weight was as follows: hood, 43%; gloves, 43%; long undershirt, 43%; long drawers, 43%; jacket, 47%; trousers, 47%. The 47% pick-up by the

mel #1

3

jacket and trousers was considered excessive and was reduced to 38% by one laundering prior to shippent of the clothing to this laboratory.

Each subject sued clothing of the best possible fit from the limited stocks and always wore has own clothing in all tests. Each subject's two piece herring-bone twill fatigue uniform and two piece flamoproofed fatigue uniform were of the same size. The clothing was always worn in the same manner; trouser legs tucked inside of the pulled up socks, jacket shirt tucked into the waist of the trousers, top button of jacket buttoned and sleeves unbuttoned at the wrists. This method of wear was chosen as offering the greatest protection against flame. Since it reduces the bellows action of the clothing, these tests were carried out with the clothing imposing their maximum heat loads.

6. Observations and Data Obtained

Upon arrival in the morning, the men'remained in the control (70-75°F.) room until individually called into the hot room approximately 7 to 10 minutes before beginning to walk. Each man entered the hot room completely nude, urinated, dried off any sweat present and was weighed (within 10 grams). Simultaneously the individual items of clothing he was to wear (placed in the hot room 30 to 45 minutes earlier) were also weighed (within 5 grams). The subject quickly dressed in these garments, and stood erect 4 minutes during which the heart rate*, rectal temperature and skin temperature radiometrically (5 areas) were determined simultaneously. He then began marching. During the walking period all water drunk, urine voided and vomitus were carefully measured. At hourly intervals, the heart rate and rectal temperature were determined. After 4 hours of walking, the subject stood erect while the heart rate, rectal temperature and skin temperature were measured. He then stripped completely, urinated, dried off all of the sweat and was weighed. At the same time, his removed clothing was weighed, item by item. Throughout the entire test, records were kept of symptoms, complaints, general appearances, vigor and alertness of the men.

The skin temperature of 5 areas of the body, three covered and two uncovered (chest, forearm, calf, cheek, palm) were determined with a radiometer. For clothed areas, the clothing was opened or pushed aside just sufficiently to permit placing of the radiometer. Undue exposure of clothed areas was avoided. The skin temperatures of individual areas were integrated into an average skin temperature by the following weighting formula based on the original formula of Hardy: chest, 0.44; forearm, 0.14; calf, 0.23; cheek, 0.10; palm, 0.09. Henceforth the term skin temperature will refer to this weighted average skin temperature. Rectal temperatures were measured with calibrated rectal thermometers.

Whenever a man was forced to discontinue walking before the required four hours, the final observations were taken and the time recorded. No man was allowed to discontinue unless objective indications necessitated it.

7. Charting

The charts numbered 1, 2, 3, 4, 5, 8, 9, 10 and 11 indicate the physiologic

^{*} All other heart rates were determined on the men marking time during the first half minute following their removal from the track.

responses of the men in various environments. Corresponding tables give the individual data so that the range and variability of individual response may be more fully appreciated after examining the principles of group behavior presented on the graphs.

B. RESULTS

1. General Consideration

The principles governing the analysis of the data of this study are those which have been developed and reported in detail in previous studies of men in the heat. Briefly, these are: (1) Unacclimatized men improve greatly in their responses to heat from day to day. Only fully acclimatized men have sufficiently constant responses to heat to serve as standardized test subjects for the evaluation of added factors and loads in the heat. Using such test subjects, the effect of added loads will always be presented in the most favorable light. Unacclimatized men subjected to the same loads will have poorer performances. (2) The man as a whole must be considered and evaluated with proper weight given to phenomena which cannot be represented by a number. Appearance, behavior, complaints, vigor, alertness, morale and performance must be given due weight. This weighting depends on the experience of the observer. It may equal or even exceed the weight given to such numerically representable physiologic data as rectal temperature, heart rate, sweating rate, skin temperature. (3) Since the physiologic data can be represented numerically and graphically, most of the following analysis is in these terms. It is to be understood that these serve as gross indices and are valid only when they are consistent and representative of the picture in the man as a whole. The data here presented are to be considered so consistent. (4) Individual subjects exposed to similar heat stresses vary considerably in their responses. Therefore, the averaged data for a group has been graphed while individual data appears in tables.

The subjects were divided into two groups of five (5) men each. These two groups (henceforth designated A and B) were made as comparable as possible on the basis of age, physical characteristics and physiologic responses to work in the heat.

TABLE 2
PHYSICAL CHARACTERISTICS OF THE TWO TEST CROUPS

			1				
CROUP	NAME	AGE	AGE WEIGHT Pounds		SURFACE AREA Sq. Meters		
	DIM SZU MAR LIN KNE	21 23 20 20 20	140 144 153 169 168	68 69 70 72 72	1.75 1.80 1.86 1.99 1.99		
	AVG	21	155	70	1.88		
В	LCW MIC HIL KAC SCO	20 20 24 24 21	141 145 150 171 178	64 69 67 71 71	1.69 1.80 1.78 1.97 2.02		
	AVG	22	157	68	1.85		

Additional data on the comparability of the two groups in each environment was always established by the day of working nude. This day also afforded a base line of response with which the performance in the two types of clothing could be compared.

2. Heat Load - Single and Double Layer Clothing Assemblies; Environments Simulating Naturally Occurring Hot Climates.

a. Hot Temperate Climates - D.B. 100°F, W.B. 80°F, R.H. 92%

Although the men complained that the single layer flameproofed clothing was "hotter" and provided less ventilation than the single layer herringbone twill, the thermal stress imposed by these environments was of such a low order of magnitude that the physiologic changes induced in the men were slight regardless of what they wore. This is indicated by the observations made on a group of four (4) men working in an environment of D.B. 100°F, W.B. 80°F, R.H. 42% on one occasion nude, on another in single layer flameproofed clothing, on a third in double layer flameproofed clothing and finally in the full flameproofed assembly (Chart 1 and Table 3). It is apparent that the addition of clothing induced very few physiologic changes; the performance, rectal temperature and heart rates remained practically identical. The final skin temperature did not fall to as great an extent when additional layers of clothing were worn. The values were still within a normal range. The sweating rate increased progressively as clothing was added and in the full impregnated assembly it was double that in the nude. This is of significance from the standpoint of troop water requirements.

In the absence of sufficient thermal stress differences, the potential heat loads of clothing do not become apparent unless they are very marked.

Men worked in both the two layer herringbone twill and the two layer flameproofed assemblies with equal ease and Chart 2 and Table 4 indicates that the physiologic changes induced by the two types of clothing were minimal and practically
identical. Moreover, insofar as the heart rate and rectal temperature are concerned,
the physiologic changes in the clothed and nude men were essentially the same. The
clothed man exhibited an average sweat rat 100% above the nude. There was no fall
in skin temperature such as occurred in the nude men.

b. Very Hot Temperate Climate - D.B. 700°F, W.B. 86°F, R.H. 57%

This environment differed from the previous one by an increased humidity. The men worked in this environment for one day only; one group in two layer herringbone twill, the other in two layer flameproofed assembly. Chart 3, Table 5 indicates that the physiologic responses of the two groups were very similar. In all measurements, however, the response of the group wearing flameproofed clothing was insignificantly greater than that for the group wearing herringbone twill. With large numbers of men, these differences would have probably been statistically significant. There was, however, one striking difference in the two groups. One man wearing flameproofed clothing was completely exhausted at the end of two hours and was forced to drop out. Indeed, his rapid heart rate of 171 per minute is largely responsible for the difference in the two curves of heart rate. The poor performance and exaggerated physiologic responses of this one subject in the presence of the relatively good responses of his colleagues is not explained.

c. Hot, Humid (Tropical) Climato - D.B. 90°F, W.B. 80°F, R.H. 93%

This almost saturated environment is equivalent to that found under severe jungle conditions. Here again the men worked for one day only, half of the group wearing two layer herringbone twill and the other half waaring two layer flameproofed assemblies. The clothing imposed no handicap to effective work, the physiologic responses in the two groups of men being almost identical (Chart 4 and Table 6). The pulse rate and final skin temperatures in men wearing the flameproofed assembly are in agreement with the previous indications of the greater load of this assembly.

SUMMARY

The studies in these environments have not demonstrated any real differences in the heat load imposed by the flamoproofed and herringbons twill clothing. Those experiments indicate that clothed men can work effectively in severe naturally occurring environments.

- 3. Heat Load Single Layer Clothing Assemblics
 - a. Environments Simulating Those Within Tanks in Hot Climates -D.B. 120°F, W.B. 83°F, R.H. 26%

This environment is representative of the extreme of conditions found / in the driving compartments of buttoned-up 14A3 tanks operating in midday in midsummer at Camp Polk, La. It imposes a marked thermal stress which can be tolerated only after considerable acclimatization. Escause of the severity of this stress, the studies in this environment were limited to the heat loads imposed by single layer assemblies of clothing. Under these conditions, differences in various types of clothing were demonstrated.

Chart 5 and Table 7 show that well acclimatized, fit men can, both nude and clothed, work effectively for at least four (4) hours in such an environment. However, the "cost," measured in terms of the severity of the physiologic responses was greater for clothed men than for nude man. Except for a material increase in the sweating rate, the physiologic changes when wearing herringbone twill were only slightly greater than when the men were nude. When the men wore flameproofed clothing, the physiologic changes were greater. The elevated rectal and skin temperatures were indications that the clothing offered a considerable barrier to the dissipation of heat. However, the sweating rates were identical whether herringbone twill or flameproofed twill was worn. At D.B. 120°F, W.B. 88°F, the heat load of the herringbone twill clothing is still peasily tolerated but the load imposed by the flameproofed clothing begins to approach undesirable proportions.

- b. Environments at the Upper Limits Tolerated by Working Men
 - D.B. 120°F, W.B. 90°F, R.H. 31% D.B. 120°F, W.D. 92°F, R.H. 35% D.B. 93°F, W.B. 92°F, R.H. 97%

 - D.B. 95°F, W.B. 94°F, R.H. 97%

The criteria for the upper environmental limits for work in the heat utilized in this study were described in detail in a previous report and are briefly restated. Invironments are considered "relatively easy" when all men finish the required four (4) hours of work in good spirits, without difficulty or complaints

Incl. #1

a see see See See See See

and with physiologic changes no greater than those seen in acclimatized men working in typically desert or tropical heat; i.e., group average rectal temperatures under 101°F and group average heart rates less than 130 beats per minute. Environments are considered "difficult" when all men still finish the required four (4) hours of work but now with much effort, many complaints, lack of alertness, approaching exhaustion and with physiologic changes exceeding in severity those usually encountered in acclimatized men working in hot climates; i.e., group average rectal temperatures between 101°F and 102°F and heart rates between 130 and 145 beats per minute. Occasionally one man may fail to finish. Environments are considered "impossible" where the group as a whole fails to finish the required four (4) hours of walking. The men suffer from many distressing and severe symptoms and many fall out during the second hour of effort. Few are capable of finishing the four (4) hours of work. The group average rectal temperature exceeds 102°F, and the group average heart rate as rages 150 beats per minute. Critical judgment must be employed with these "rules of thumb" and attention must be given to the over-all picture without focussing on other factors; e.g., physiologic responses. Since these "rules of thumb" are based on group phenomena, they can never be used to predict individual performance.

The "second-wind" improvement discussed in the previous report was again encountered. This subjective improvement usually occurred late in the second or early in the third hour of work and was again associated with the approach of an equilibrium state. In the clothed men, it also seemed to be associated with the wetting of the clothing with sweat. As the garments became progressively wetter, the men remarked that they felt "cooler" and they worked more easily.

The present experiments were designed only to bracket the upper limits and delineate the least severe environments in which the men <u>could</u> not work and the most severe environments in which they <u>could</u> work. Only environments of two extreme types were studied; i.e.,

(a) A humid atmosphere with D.B. 93 - 95°F.

(b) A relatively dry atmosphere with a D.B. of 120°F.

The environments were kept as close to the limit as possible and no work was done to define the "relatively easy" environments. Neither was work done to re-study the upper limits for the nude men. The environments were always picked with regard to the clothed state. "Impossible" in this report is equivalent to the "impossible" in the previously reported study and upper limit in this report to "difficult" in the previous study.

Charts 6 and 7 indicate the effect of the two types of clothing on the upper environmental limits at which men can work. Clothing lowered the upper limit to the extent of reducing the limiting wet bulb temperature of the environment by 2°F to 4°F. This reduction occurred at both the "upper limit" (Chart 6) and the "impossible" levels (Chart 7). Wearing herringbone twill lowered the limiting wet bulb temperature by 2°F for both the saturated and the hotter drier environments. However, when wearing flams-proofed clothing, the limiting wet bulb temperature was lowered by 2°F for saturated environments and by 4°F for environments with a D.B. 120°F. This is consistent with the greater barrier to evaporation imposed by the flameproofed clothing and hence its greater heat load in environments where evaporation is the sole means of losing heat and maintaining thermal equilibrium. Its heat load is not as great where evaporation to not as significant an avenue of heat loss (saturated environments).

Incl. #1

8

Analyses of the performances and physiologic responses of the men in these "upper limits" environments in the nude, wearing herringbone twill or flameproofed clothing are presented in Charts 8, 9, 10 and 11 and in Tables 8, 9, 10 and 11. A uniformity of response along a definite pattern is apparent. When clothed in flame-proofed garments, the overall response is always the poorest and when nude the response is the best; wearing herringbone twill gives an intermediate response.

Increasing the wet bulb temperature from 85°F to 90°F when the dry bulb was 120°F served to separate the two cathing issues more clearly from the standpoint of their respective heat loads. Men clothed in herringbone twill were all able to complete four (4) hours of work whereas half of the men in flameproofed clothing dropped out (compare Chart 5 and 8). When the thermal stress of the surroundings became very marked (D.B. 120°F, W.B. 92°F and D.B. 95°F, W.B. 94°F) this stress was in itself so great that men with both types of clothing were quickly forced to fall out and a determination of the added loads of the two garments became difficult as their individual loads were submerged in the greater environmental load (Charts 9, 11).

4. Physical Characteristics of the Clothing

a. Gross Characteristics

The flameproofed twill garments were heavy, thick, stiff, coarse, rough and waxy. The men objected mildly to these characteristics. With repeated wear, the cloth became more pliable and less coarse but never as soft and flexible as herringbone twill. Its weight remained constant throughout the study indicating that the impregnite had not leached out (Table 12).

The flameproofed clothing was resistant to wetting. (Photograph 1) The garments appeared wettest where the clothing came into direct contact with skin (shoulders, upper back, anterior surface of the thighs). Unless rubbed directly into the cloth, the sweat tended to roll on the clothing like "water on a duck's back," (Figure 1). As a consequence, the sweat was funnelled along the inner surface of the clothing, dripping out of the sleeves and running into the socks and out of the shoes. With repeated wearing, the flameproofed garments wetted to a greater degree than on initial wear, but even so the wetting was not uniform and did not approach the water uptake of herringbone twill (Figure 12, Photograph 2).

b. Absorption of Water

(1) Uptake of Sweat During Walk

The reduced capacity of flamproofed clothing to absorb water was quantitatively demonstrated. After having been dried for at least fourteen (14) hours (sufficient to evaporate the sweat absorbed during the previous day's wear), the individual items of clothing were weighed in the hot room, within 5 grams, immediately before and after walking. Table 13 indicates that the flamproofed garments absorbed less than half as much sweat (water) as the herringbone twill garments. Furthermore, this difference in water uptake was the same in both the saturated and the more dry environments (Table 13). Since the total sweat output of the men was the same when wearing both types of clothing, equal opportunities for the absorption of water were presented to both garments. It also appeared that most of the water taken up by the flamproofed garments was absorbed early for the increase in weight of the clothing of men dropping out in one or two hours almost equalled that of the clothing of the men

Incl. X1

a street water the second

who completed four (4) hours of work.

The water repellancy of the flameproofed clothing decreased with wear (Table 14). However, this clothing never absorbed more than one-half as much water as the herringbone twill. The increase in water absorbing capacity was not due to the leaching out of the flameproofing compound since the weight of the flameproofed garments did not decrease with wear (Table 12).

Determinations of the absorption of water by the flameproofed long cotton underwear were few, but indicated that (1) when relatively small amounts of sweat are present, the flameproofed underwear takes up as much sweat as the cotton underwear and (2) when larger amounts of sweat are present the uptake falls progressively below that for the untreated cotton (Table 15).

(2) Uptake of Water on Irrersion

The absolute differences in the total water absorbing capacities of herringbone twill and flameproofed twill were determined by weighing the two types of clothing before and after immersion in water. The individual items of clothing were dried, weighed, and then immersed in water at 72°F (22°C) for both four and forty-five hours, removed and hung individually. The clothing was reweighed when the drippage rate was 4 drops per minute. It was again hung and then reweighed at intervals to determine the drying rate. This was determined in two environments: (1) D.B. 72°F, W.B. 65°F and (2) D.B. 120°F, W.B. 68°F.

Table 16 indicates that herringbone twill jackets and trousers absorbed water in amounts equal to their initial dry weights; whereas similar flameproofed garments absorbed only about one-half of their dry weight. However, in terms of water absorbed, the actual untake by the flameproofed garments was approximately two-thirds of the uptake by the herringbone twill garments. Similarly, flameproofed long cotton underwear absorbed but 75% to 85% as much water as regular cotton long underwear. A comparison of Table 16 with Tables 13 and 14 indicates that during wear, herringbone twill garments absorbed sweat in amounts approximating 95% of the total water absorptive power of the cloth. On the other hand, during wear, flameproofed garments absorbed 50% to 60% of the water they were capable of absorbing. Determinations of the amount evaporated per unit time from the two types of clothing indicated that they were approximately the same. However, since the flameproofed clothing had absorbed less water (Chart 12), it became dry more rapidly than the herringbone twill.

c. Effect of Clothing on the Evaporation Gradient Between Skin and Air

It appeared that the flameproofed clothing imposed a greater barrier to the evaporation of sweat than did the herringbone twill. A series of experiments were designed to test this hypothesis and quantitate the effect of clothing on the evaporative gradient between skin and air.

These tests were made in an environment of D.B. 120°F, W.B. 92°F on two of similar physical characteristics and with essentially identical physiologic responses to work in the heat. The two men were studied nude, in herringbone twill, in flameproofed twill and in prewetted flameproofed twill. The standard conditions consisted of having the men stand for one-half hour in a wide pan containing mineral oil under which unevaporated sweat collected. The subject's dry clothing, a thermocouple harness, a "test" towel and the pan were weighed while the man dried himself

chel.#1

10

thoroughly with a "discard" towel. The pan was placed on the weighing platform, the subject quickly denned the harness and test clothing, then stepped into the pan. The weight of clothed man plus pan was obtained at the beginning and end of 30 minutes. The change in weight indicated evaporated sweat. During the stand, the skin temperature (by thermocouple from 4 areas) and the surface temperature (by radiometer from 5 areas) were determined five times. When the man was nude, skin temperature readings were made by radiometer. Dry and wet bulb temperatures of the air at the subject's chest level were determined 3 times during the stand and the heart rate and rectal temperature were taken at the beginning and end. At the end of 30 minutes, the final weight and temperature data were taken, the subject undressed, dried in the "test" towel following which the removed clothing and harness, towel and pan were weighed.

From this data were calculated the total sweat loss, the evaporated sweat and its heat equivalent, the mean (average) skin temperature, the vapor pressure of the air, the vapor pressure of water at the temperature of the skin, and the change in body heat content (heat storage). Coefficients used in the storage calculations were 0.33 for skin temperature and 0.67 for rectal temperature and 0.83 for the specific heat of the body.

Table 17 presents the derived data of these experiments. It indicates the extent to which clothing imposed a barrier to evaporative cooling for the standing subject. Flameproof twill imposed a greater barrier than herringbone twill as shown by the smaller volume of sweat evaporated and the decreased heat lost by its evaporation. Herringbone twill cloth decreases the total evaporative heat loss observed in the nude subject by 17% and flameproofed twill cloth by 27%. The evaporative gradient (Calories of heat lost per square meter of body surface per mm Hg difference in vapor pressure of the water at the temperature of the skin and air) follows the same pattern being lowered 13% by herringbone twill and 28% by flameproofed twill (nude, 9.9; herringbone twill, 8.6; flameproofed twill, 7.1).

The physiologic implications of these clothing barriers to evaporative cooling are the progressively higher skin and rectal temperatures and the gain in body heat content as the men went from the nude state to herringbone twill to flameproofed clothing. For example, when nude, the men were in thermal equilibrium and stored no heat; when wearing herringbone twill, they stored heat at the rate of 8.2 Calories/M²/Hour; and when in flameproofed twill, their heat storage was about twice as great, being 14.4 Calories/M²/Hour.

Wearing flameproofed garments which had been previously wetted by immersion yielded total evaporative heat losses and evaporative gradients which closely approximated those for the nude state (Table 17). However, it is likely that they do not represent the actual heat loss from the body for a considerable amount of the evaporation probably took place at the surface of the clothing and not at the skin surface. Evaporation at the clothing surface may not be as beneficial in cooling the body. That this may indeed have been the case is indicated by a definite heat storage of 6.2 Calories/M2/Hour during wearing of the prewetted garments; whereas no heat storage occurred in the nude state where similar evaporative heat losses and evaporative gradients were obtained.

An evaluation of the real meaning of the evaporative gradients here determined is complicated by the progressive wetting of the clothing during the test period. Hence the gradient is in a sense a mixed one, pertaining neither to dry clothing nor

to wet clothing, but to an indefinite state of the clothing which is progressively changing from dry to wet.

5. Toxic Effects

No toxic effects attributable to the impregnation were encountered during this study in which some men were the flamoproofed garments as many as 18 times for a total of 46 hours of wear. The garments were not worn continuously throughout the day, but rather intermittently during test periods varying from 1 to 4 hours in length. Neither generalized systemic effects nor cutaneous toxic reactions resulting from direct contact were seen.

However, an erythematous and maculo-papular dormatitis was noted in some subjects when wearing either nurringbons twill or flameproofed garments. These resulted from the mechanical irritation of the cloth, being localized to areas where rubbing occurred, such as the groins, anterior surface of the thighs, the upper thorax, the belt line and lower legs.

The intermittent and relatively short duration of wear of these garments did not constitute an entirely a disfactory test of the toxic potentialities of the impregnite. Nevertheless, acute toxicity can be excluded by these experiments.

6. Flama Resistance of the Clothing

This has been reported separately.*

^{*}M.R.C. Project Q.M.C. No. 27, Preliminary Report, Sub-Project 27-A5-X-2, dated 30 April 1945.

The Physiologic Responses of Working Men Wearing Increasing Amounts of Flamsproofed Twill

D.B.
100°F.
ŧ
W.B.
£00F

C. C.	F.P.(D) COMPLETE L. ASSENBLY B		F.P.(D) UBLE LAYER W		F.P.(D) GLE LAYER W		EQUIA	CROU	HING P
AVG.	Kac Sco Hic	AVG.	Kac Sco Mic Low	AVG.	Eac Sco Fic	AVG.	Xac Seo File Low	N ALL	
98.7	98.2 98.9 98.8	\$3.8	98.7 99.2 98.5 98.6	93.7	98.6 98.7 98.6	98.7	93.4 93.6 93.6	0	
99.7	5).1 100.5 99.5 99.7	59.5	99.4 100.0 99.2 99.4	99.3	99.0 99.7 99.1 99.4	99.5	99.1 100.3 59.3 59.6	1	RECTAL
99.6	98.9 100.6 59.4 59.6	99.7	\$9.6 100.0 99.2 99.9	99.5	98.9 100.0 99.3 99.6	99.4	99.1 100.1 99.1 99.3	Hours 2	RESTAL TEMPERATURE
99.3	99.0 99.8 99.1	99.4	99.2 99.8 99.1 99.5	99.3	98.9 59.6 59.3 59.3	99.3	99.1 100.0 98.9 99.1	w	ATURE OF
99.5	99.1 100.1 99.1 99.5	99.4	99.1 99.9 99.2 99.4	59.4	59.0 99.5 99.5	99.2	59.0 99.7 99.0 99.0	4	75)
105	105	98	\$\$ 66 777 96	95	96 96 93	100	99 102 93 105	0	
117	######################################	102	102 103 96 102	102	120 23 24 25 26	100	103 90 103 103	-	FULS
105	102 114 99 105	97	99 98 93	103	108 102 102	102	105 108 93 102	Hours 2	3 RAT
101	103 111 90 108	103	102 105 102	101	105 36 105	99	102 90 93	w	FULSE RATE/LIN.
103	108 105 96 102	99	105 102 56 93	99	108 95 99	93	102 102 87 99	4	
95.4	94.9 35.8 95.3 95.8	94.5	8.4.8 94.4 94.0 94.0	95.4	93.5 95.9 97.5 94.7	95.6	94.8 95.7 95.5 95.4	Init.	SKIN THEP.
94.8	91.8 ?1.2 91.8 95.4	94.4	94.2 95.1 94.3 94.1	93.5	93.6 92.8 93.5 94.1	93.1	92.3 92.4 94.3 93.5	Final	TIEP.
992	850 123 2 1055 3831	1011	759 13 57 105 1 8 77	816	709 938 759 85 7	5114	448 63 9 451 520	Gr/Hr.	Heich loss (Sucat)

TABLE 4

The Physiologic Responses of Working Men Wearing Ino Layer Flameproofed Twill and Hermingtone Twill

D.B. 100°F. - W.B. 80°F.

F.P.(D)			H.B.T.		NUDE		HUDE	CLCTHING	
	ш,	5			نن		بد	GROUP	
AVG.	Kac Sco Mic Ion	AVG.	Lin Kne Kar Din	AVG.	Xae Seo Yile Low	NVG.	Lin Kne Mar Din	NAL	ΩE
98.6	98.7 99.2 98.5 98.6	53°8	98.9 98.4 98.8 98.8	98.7	93.4 93.6 93.6	93.7	93.7 93.9 98.6 98.7	0	15
99.5	99.4 100.0 99.2 99.4	99.5	99.6 99.4 99.3 99.5	99.6	99.1 100.3 59.3 99.6	99.7	100.2 99.7 99.1 99.1	-	nectal
99.7	\$9.6 100.0 99.2 \$9.9	99.6	59.6 59.2 59.8 59.8	4.66	59.1 100.1 99.1 99.3	99.5	100.3 99.1 99.4 99.3	Hours 2	RECTAL TRICARMINE
4.66	99.2 99.8 99.1 99.5	90.5	57.5 59.3 59.8 59.9	99.3	99.1 100.0 93.9 99.1	99.5	100.2 59.0 59.3 59.4	u	ao eun.
99.4	99.1 99.9 99.2 99.4	99.5	\$9.5 \$9.2 \$9.6	59,2	\$9.0 \$9.7 \$9.0 \$9.0	99.4	100.2 99.0 99.1 99.4	4	
93	56 66 177 96	63	73 105 34 87	100	93 102 93 105	99	102 96 102 96	0	
102	103 103 96 102	93	93 108 93 93	101	99 105 108 108	107	117 96 111 105	1	PULS
97	93.	95	108 87 99 87	102	105 108 ,3 102	93	95 102 103 801	Hours 2	PUISS RATE/LIN
103	102 103 102	107	96 108 117 103	99	102 105 90 99	96	102 87 96 99	'n	RIE/S
99	105 102 96 93	95	96 501 78 96	98	102 102 87 99	97	105 69 99 99	4	
94.5	8.46 94.4 94.9 94.9	94.6	95.0 94.4 94.8	9.58	94.8 95.7 95.5 96.4	95.1	95.2 94.4 95.4 95.6	Init.	SKIN Takana (Avg. ata
94.4	94.2 95.1 94.3 94.1	94.5	94.2 94.1 95.7 93.8	93.1	92.3 92.4 93.3 93.5	93.6	94.6 93.0 93.2 93.2	Final	T.P.
1011	759 1357 1051 877	948	115 5 956 85 9 823	4115	448 639 451 520	511	502 560 549 433	Gm/Hr.	LSICHT LOSS (Short)

TABLE 5

The Physiologic Responses of Working Men Wearing Two Layer Flameproofed Twill and Herringhone Twill

D.B. 100°F. - W.B. 26°F.

F.	F.P.(D)		.B.T.	CLO.	THING
	B		≻	GRO	UP
AVG.	Kac Sco Mic Low	AVG.	Lin Kne Kar Din	NAL	Ε
98.6	98.4 98.8 98.4 98.6	98.6	59.1 98.5 98.2 98.5	0	
100.0	99.7 100.3 100.0	100.0	100.2 100.0 100.0 99.9	,	RECTAL
100.6	99.9 101.0 101.0*	100.3	100.6 100.0 100.2	Hours 2	
100.2	99.8	100.0	100.3 99.4 100.1 100.2	3	Tereraturs of
100.2	99.8 100.4 100.3	99.9	100.0 99.3 100.2	4	73
110	96 120 117 105	98	93 102 96 97	0	
143	11.7 11.7 153 129	133	126 129 144 132	ا	PULS
148	132 156 171* 132	118	1.05 1.38 1.38	li _o m·s	PULSE EATE/MIN
130	129 141 129	125	126 120 135 120	3	KIK/F
726	120 129 - 129	119	117 111 126 120	4-	•
95.5	94.9 95.6 96.0	95.9	96.2 95.8 96.1 95.4	Init.	SKIN (AVE:
95.5 95.3	94.9 95.2 95.8	95.9 95.0	94.8 94.3 94.6	nit. Final	SKIN TEP. (Avg. Wtg.)
1634	1213 2005 2198 1321	1552	2110 1457 1362 1231	C:3/Hr.	GEIGHT LOSS (Sheat)

*Unable to continue after two (2) hours of walking.

TABLE 6

The Physiologic Responses of Working Men Wearing Two Layer Flameproofed Twill and Herringbone Twill

D.3. 50°7. - W.B. 88°

-	F.P.(D)	_i	н.в.т.	_ c	LOTHI:
	ш	_	> ·	G	ROUP
AVE.	Par Fire HET Kee	AVG.	Kne Kne Mar Din	N.	AME
93.8	98.8 99.1 99.0 98.5	93.8	93.9 93.9 93.2	0	
99.8	99.6 99.9 99.7	1.001	100.2	-	VIOTE
100.0	99.8 100.0 100.0	100.3	100.2 99.8 100.4 100.7	2007.9	BECCAL TELPLEATURS
100.0	\$9.9 99.7 100.2 100.2	100.0	100.0 99.4 100.0	3	RATURE
100.2	100.0 100.1 100.3 100.4	100,2	100.1 59.6 100.3 100.9	4	3
109	H H 95	100	129 69	0	
109	117 102 102 114	106	102 104 117	-	put
122	120 124 124 126	103	102 117 120	Hours 2	PUISS RATE/FIN
132	132 123 138 135	116	123	w	is/ar
137	7,7 17,7 17,1	122	117 117 123 132	4	
95.2 56.4	95.1 95.9 95.2 94.5	95.7	96.2 95.7 96.4 94.6	Init	SKIN (Avg
1.95	96.2 96.3 96.8 96.3	95.7 95.4	95.2 95.4 95.6 95.5	Init. Final	SKIN TEP. (Avg. htg.)
1296	1113 1218 1653 1201	1331	7026 1230 1150 1117	C-/lir.	(Jacat)

The Physiologic Responses of Working Mon Woowing Flameproof of Twill and Hermingbone Twill

D. 3. 120°F. - н. В. 88°F.

		F.P.(D)	н.н	В.Т.		NUDE	NUDE		CLOTHING	
		>		B		ພ		> -	GROU	JP
	AVG.	Dim Szu Ear Lin Kne	Sco AVG.	Low Mic Hil Kac	AVG.	Low Mic Hil Kac Sco	AVG.	Dim Szu l'ar Lin Kna	NALC	3
1	98.6	98.8 98.8 4.86 4.86	98.6 98.7	98.7 99.0 98.6 98.6	98.6	98.5 98.5 98.6 98.5	98.6	98.7 98.7 98.4 98.5	0	
	101.1	101.3 100.6 101.2 101.7 100.8	100.6	100.3 99.8 100.2	99.7	9,6 9,6 9,6 9,6 9,6	99.5	100.1 99.2 99.5 99.7 99.1	1	RECTAL
	101.7	101.6 101.4 101.5 102.3 101.5	100.4	100.6	99.7	100.0 99.6 99.4 99.5 100.1	99.6	100.0 \$9.3 \$9.7 \$9.6 \$9.3	2 2	٠
	101.6	101.3 101.4 101.3 102.4 101.6	100.2	101.0 \$9.7 100.5	99.8	100.0 99.6 99.6 99.6	59.5	100.2 99.2 99.6 99.6 99.6	ų	ature of
	101.5	101.0 101.4 102.5 101.5	100.0	100.5 99.7 100.5	99.9	100.1 100.0 99.8 99.7 100.0	59.5	100.0 99.3 99.6 99.6	4	ซั
	98	81 99 111 96 102	11.7 11.3	123 105 99 105 105	107	96 126 102 99 114	96	103 103 84 87 93	0	
	132	135 129 153 120 120	133	रुद्रमु	116	103 129 120 103	107	111 102 96 111	1	FULSE
	131	132 135 153 117	117 131	251 251 251 251 251 251	115	105 126 111 117 117	112	120 105 111 105 120	Hours 2	E RAT
	131	123 128 126 108	173	82133 82133 82133	112	103 103 103 103	100	103 105 102 103	ω	RATE/LIN.
	129	H2# 122	129 126	र्टी देख	122	120 135 126 126 126	105	105 105 114 114 89	4	•
	97.5	97.7 97.8 97.2	93.4	98.6 98.7 96.6	97.3	97.7 96.3 96.5 97.0 97.0	97.4	97.6 97.2 97.8 97.1 97.1	Init	SKIN (Avg.
	98.7	97.8 98.7 98.0 99.7 99.7	96.7 97.2	98.0 97.1 97.1	97.1	\$3.2 \$6.2 \$6.9 \$7.7 \$6.7	97.0	96.9 97.0 97.7 96.0 97.2	Final	SKIN TEMP. (Avg.Wtg.)
	1746	1701 17,82 1752 2040 1755	2039	1812 1756 154 1754	1120	114.8 106 2 102 2 932 1388	_10:3 7	1025 1054 1054 1054	Ca/lir.	TEIGHT LCCS
	Ω	.0 *1		•		•		•		4- 1

Incl. #2

The state of the s

The Physiologic Responses of Working Men Wearing Flameproofed Twill and Herringbone Twill

D.B. 120°F. - W.B. 90°F.

F.P.(D)		F.P.(D) H.B.T.			NUDE		NUDE	CLO	HING
	. A		B		tu		۶	CROUP	
AVG.	Din Szu Inr Lin Kne	AVG.	Low Hile Hil Kac Sco	AVG.	Low Mic Hill Kac Sco	AVG.	Dim Szu Kar Lin Kne	NAME	E
	2.0 4.0 2.4 4.0 2.7		0°47 0°47 0°47 0°47		0°47 0°47 0°47 0°47		0° t 0° t 0° t 0° t	HRS.	ALKE
98.6	8.86 9.86 4.86 4.86	93.6	98.4 98.3 99.3 98.4 98.4	98.6	98.5 98.5 98.6 98.6	98.7	99.0 99.1 93.0 99.0 98.3	0	
101.1	100.9	100.6	100.7 100.6 100.6 100.4	99.9	39.7 100.0 99.7 99.7	100.1	100.2 99.8 100.1 100.5 99.9	ы	RECTAL
101.8	101.8* 100.6 102.9 102.0	100.9	101.2 101.2 101.0 100.6	2,001	100.2 100.5 100.0 99.8 100.3	100.4	100.4 99.7 100.9 100.1	Hours 2	
101.4	101.0 102.6* 101.9	100.5	100.9 101.0 100.1 100.3	100.0	99.9 100.4 99.9 99.7	100.1	100.4 99.6 100.2 100.5 99.9	w	MTURE OF
101.2	100.5	100.1	100.8 100.0 100.0 100.2	100,1	100.2 100.3 99.9 99.8 100.1	100,2	100.4 100.4 99.8 99.9	4	Ŧ
107	117 102 108 108 108	ध्य	96 102 102 111 105	107	96 117 108 102 111	100	99 96 105 111 90	0	
132	126 126 147 147	123	120 120 117 135 123	123	123	121	726 171 171 171 171	P	STDd
147	277 051 951 777 171*	134	129 153 127 129 135	122	927 111 621 021	119	120 114 123 123 123	Hours 2	PULSE RATE
1,/[11,4 156* 138 147*	128	921 821 821 821 821 821	1119	120 123 111 120 120	119	117 117 129 117 117	w	E/LIN
0'1	153 126	128	135 138 117 132 130	119	117 123 117 114 123	1119	117 114 123 117 123	4	•
97.5	98.1 96.9 97.8 97.7 97.0	97.4	97.3 97.3 97.1 97.1 97.3 98.2	96.9	96.5 97.6 96.5 96.3	97.3	96.9 97.9 97.0 97.7 97.0	Init.	(Avg. litg.)
98 1	97.6* 93.2 97.1* 93.1 98.7*	97.4	97.9 97.3 97.3 97.2 97.2	97.0	97.8 96.8 96.4 97.2 96.9	96.9	96.8 96.7 96.8 96.8 97.5	Final	Ttg.)
2312	1843 1988 2376 3121 2231	1926	1543 2123 1859 1711 2693	1737	164 5 1901 147 7 1472 223 9	1741	1477 1614 1725 221,5 161,2	Ga/Hr.	(Sweat)
Inc	·l.#2								at)

*Cota taken at time of descation of walking - not used in averages for that

The Physiologic Responses of Working Men Wearing Flam-proofed Twill and Herringbone Twill

D.B. 120°F. - W.B. 92°F.

	F.P.(D)		н.в.т.	NUDE	NUDE	CLOTHING
		>	Ħ	В	A	GROUP
•	AVG.	Dim Szu Mar Lin Kne	Low Mic Hil Kac Sco	Mic Hil Kac Sco	Din Szu Mar Lin Kne	NAME: ALKED
*Dat		11.6	4.00 4.00	7.0 7.0 7.0 7.0	0000	HRS.WALKED
a take	98.6	98.6 98.8 97.8 99.1	98.7 98.8 98.7 98.7	98.6 98.4 98.4 99.3	98.5 98.3 99.2 99.2 98.6	0
n at ti	102.1	102.2 101.6 102.1 102.3 102.0	102.0	100.1	100.2	RECTAL 1
Data taken at time of cessation of walking	103.2	103.4 102.9* 103.6* 103.5	103.1 101.8 101.7 102.0 102.3	100.4	101.0 100.1 100.5 101.2 100.3	RECTAL TEMPERATURE OF Hours 1 2 3
essatto	103.7	103.7	103.2* 102.4* 101.7 102.0 102.4	100.5	100.9 100.8 100.7 101.0 100.2	ATURE °
n of wa	103.4	103.4	102.0 101.8 102.5	102.1 101.0 100.6 100.7 101.5	101.1 100.9 100.6 101.1 100.9	F .
lking	100	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	E #8226	105 87 87 87 87 87 87 87 87 87 87 87 87 87	8 8888	0
	11,8	141 188 188 141	## ## ## ## ## ## ## ## ## ## ## ## ##	151 152 153 153 153 153 153 153 153 153 153 153	स्य द्वारा	PULS
- not used in	138	132	132 144 144	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	द्वयस्य द्व	PULSE RATE/MIN Hours 1 2 3
ď in	138	138 131 131	156 156 132 132	इंद्र इंद्र	22 22 25 25 25 25 25 25 25 25 25 25 25 2	3
avera	Ħ	₹	133 126 123 123 123	द्रयस्य द्र	g ggggg	
ges for	97.9	97.4 98.7 97.5 98.2 97.9	98.0 98.3 97.9 97.2 98.1	98.1 97.8 97.2 97.1 97.8	97.6 97.6 97.6 97.6 97.6	SKIN (Avg.)
averages for that hour.	100,8	99.8* 100.5* 100.4*	39.3 99.3 99.4 99.64	99.4 98.7 98.7 98.5 98.2	97.6 98.6 97.8 98.6 99.1	TEMP. Wtg.) Final
our.	2140	1957 1955 2397 2569 1824	1589 2063 1688 1774 2477	1396 2071 1562 1684 2543	1790 1747 2325 2294 1949	WEIGHT LOSS (Sweat) Gm/Hr.

Inel. #2

TABLE 10

The Physiologic Reconses of Working Men Wearing Flameproofed Twill and Herringbone Twill

D.B. 93°F. - W.B. 92°F.

		F.P.(D)	H.B.T.	1.022	בכט::	CLOTHING	
		ង	-در	L,	>	GROUP	
	AVG.	Low Mic Hil Kac Sco	Din Szu Ein Lin Kne	Lew Mic Hil Kac Sco	Dia Sgu Mar Lin Kan	HAME	
	93.7	98.6 98.6 98.3 98.3	93.5 98.7 98.1 99.4 93.6	33 33 5 6 33 3 5 6 33 3 5 6	98.8 93.0 98.4 98.4 98.4	0	
	201.0	101.3 100.8 100.8 101.0	101.0 103.6 103.9 101.7 100.9	100.4 59.9 59.5 100.2 100.5	100.0 99.4 100.3 100.7 99.8	RECTAL	
	101.6	101.7 101.4 101.5 101.3 101.7	101.1 101.5 101.6 102.3 101.2	100.7 100.6 59.9 100.3 100.3	100.4 99.5 100.7 100.6 100.1	TEPERATURE	
	101.7	102.0 101.3 101.3 102.2 102.2	101.3 101.0 101.3 102.0 101.0	101.0 100.5 100.0 100.7 100.8	100.6 59.8 100.8 100.4 100.4	ATURE OF	
	101.9	102.1 102.0 101.4 102.4 101.7	101.4 100.7 101.6 102.1 101.0	101.2 100.6 59.9 101.4 101.1	100.6 99.8 100.5 100.6 100.3	-	
	101	93 103 99 105 102	105 105 102 103 103	\$0 1114 93 102 105	93 120 93 93	0	
	135	#7 #2 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3	25 25 25 25 25 25 25 25 25 25 25 25 25 2	150 150 150 150 150	124, 174, 174, 176, 177, 177, 177, 179, 179, 179, 179, 179	PULS	
	$\mathcal{U}_{\mathcal{U}}$	135 135 129 150 150	135 126 127 127 135	129 143 114 126 123 129	122	E RAT Hours	
	138	135 123 144 145 145 145 145 145 145 145 145 145	123 132 136 136	123 123 124 125 126 127 128	124 127 128 128 128	FUISE RATE/IIN Hours 1 2 3	
	143	133 153 126 150 147	132 123 156 174 123	126 126 105 129 129 129	117 123 153 153 126 126 120	4	
	95.9	96.2 96.2 95.1 95.7 96.4	95.6 95.9 95.9 95.6 95.8	93.0 95.1 95.0 94.6 95.8	95.3 95.2 95.3 96.4 94.8	SKIN TEP (Avg. litg.) op	
	93.4	98.1 98.1 98.1 98.5	97.8 97.6 98.1 98.2	97.3 56.8 96.6 97.1 96.6	96.4 96.8 96.7 96.5 97.0	TEP. Ttg.) Final	
	1897	1476 1961 1650 14:26 2914	1760 1760 2244 235 3 1824	1466 1336 1483 1148 2458	1706 1705 1791 1903 1348	Ga/Hr.	
5	Inc	l. ¥2					

The Physiologic Responses of Working Men Wearing Flameproofed Twill and Herringbone Twill

		,	
		i	b
		•	•
		•	
		١	
		•	
		•	•
			1
			•
		:	
		į	
		•	•
	,	•	4
	1	ł	
		•	
		•	•
,			

D.B. 95°F.

F.P.(D)			H.	в.	T.				NU	DE				1	NUD	E			CLO	THING				
			~						B						zi					A			GRO	UP
AVG.	Kne	Lin	Mar	Szu	Dim	AVG.	Sco	Kac	TEH	Mic		AVG.	Sco	Kac	oth The	Low	AVG.	Kne	Lin	Mar	UTC I		NAM	E
	1.6	2.0	1.5	1.7	8,1		4.0	2.0	2.2	80	١٥		4.0	0.7	300	4.0		0.4	4.0	6	36	5	HRS.	WALKE
98.6	98.9	98.6	98.6	98.1	99.0	98.8	98.8	98.6	99.0	98.6	8	99.1	99.1	98.4	300	1.66	98.5	98.9	98.6	98.5	2 %	2	0	
101.9	102.0	102.2	102.3	101.1	102.1	101.7	101.7	101.3	101.7	101.6	3	100.3	100.4	100.0	1001	100.8	100.3	100.0	100.8	100.3	\$ 60 TOO. 0	, 200	1	RECTAL
103.9	102.8*	103.9#	103.4*	101.8*	103.9*	102.9	102.6	102.7*	102.8	102.9	103 %	101.2	101,1	100.8	101.0	101.6	101.2	100.7	102.0	101.5	100.6	2	Hours 2	RECTAL TEMPERATURE
•	•				ı	103.0	103.0		102.7*		102 J.¥	101.3	101.7	100.7	101.1	10272	101.2	100.8	101.7	101.6	100.9		w	ATURE °F
	1				ı	102.9	102.9					101.5	101.5	101.0	101.1	102,6	101.4	101.2	102.1	101.5	101.0		4	~
107	H	105	111	111	92	111	108	11	114	120		105	105	¥	96	301	102	T05	90	Ħ	105	2	0	
155	159	150	165	111	159	151	150	159	111	162	2	131	138	E.	117	132	134	129	126	162	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	1	PULS
1,17	###	11,7*	180*	***	156#	151	153	171*	135	# # !	156	138	7,4	147	13. 22.	3 55	139	135	135	159	138	3	Hours 2	PULSE RATE/MIN.
1		•	ı	ı	ı	120	150	•	150#	1 5		136	138	135	13 b	861	133	138	132	150	באן א	3	w	E/MIN
	1			3	•	156	156		ı			139	132	156	123	E E	135	129	11,1	159	2 5	3	4	•
96.3	96.0	96.4	96.6	96.3		96.3	95.9	96.1	96.6	96.4	2 70	95.5	94.7	95.6	42.67	1.96	95.3	96.0	95.0	95.1	95.3	2	Init.	(Avg
0 0 0	99.3*	98.5*	99.0%	98.5*		99.2	99.2	98.3*	98.4*	98.3*	%1 00	97.3	97.2	97.2	96.8	98.1	97.0	97.3	97.1	96.9	97.1	2	Final	(Avg. Wtg.)
2188	2005	lu.				2123	2586	221,3	1804	2356	7631	2153	3087	1600	1806	1771	2160	1818	2626	2265	2256	333	Gm/Hr.	(Sweat)
,	1																							-

Incl. X2

TABLE 12
Weight of Test Clothing Before the First and After the Last Wear

(Data are the Average of Ten Uniforms)

	JACKET	TROUSERS
Herringbone Twill Initial Weight (GM) Final Weight (GM)	740 773	656 684
Flameproof Twill Initial Weight (GM) Final Weight (GM)	1098 1106	960 980

TABLE 13

The Sweat Absorbed by Flameproofed and Herringbone
Twill Two-Piece Fatigue Uniforms During Work in Hot Environments

(Data are the Average for the Clothing of Five Men)

	ENVIRONMENT A	ND TYPE OF GARM	ent .		
D.B. 120°F.,	W.B. 90°E.	D.B. 93°F., W.B. 92°F.			
Flameproofed Twill	Herringbone Twill	Flameproofed Twill	Herringbone Twill		
3.5	4.3	4.2	3.9		
306	697	370	719		
305	697	361	721		
611*	1394	751	1440		
8182	8486	8040	6640		
	Flameproofed Twill 3.5 306 305 611*	D.B. 120°F., W.B. 90°F. Flameproofed Herringbone Twill 3.5 4.3 306 697 305 697 611* 1394	Flameproofed Herringbone Flameproofed Twill Twill		

^{*} The clothing assembly of the two men who walked for the entire period had an average water uptake of 663 grams, while the clothing of the remaining three men, walking an average of 2.4 hours, had an uptake of 577 grams.

TABLE 14

The Increased Uptake of Sweat by Flameproofed Garments

During Repeated Wear in Hot Environments

(Data are the Average for the Clothing of 5 Men)

	ENVIRONMENT AND TYPE OF GARMENT .								
	D.B.120°F.,W.B.88°F.	D.B.120°F.,W.B.88°F.	D.B.120°F.,W.B.90°F						
製	Flameproofed Twill	Flameproofed Twill	Flameproofed Twill						
No. of Hours Previous Wear	0	4.6	23.3						
Hours of Wear	3.6	4.2	3.5						
Water Absorbed (Grams)									
Jacket	130	184	306						
Trousers	123	182	305						
Assembly	253	366	611*						
Total Sweat of Subjects (Grams)	5427	7080	8182						
	4,4.00		1						

*See Footnote in Table 13.

TABLE 15

The Sweat Absorbed by the Individual Layers of the Two Layered Flameproofed and Herringbone Twill Fatigue Uniform During Work in Moderately Hot Environments

(Data are the Average for the Clothing of 4 Men)

	ENVIRONMENT AND TYPE OF GARMENT							
	D.B. 100°F.,	W.B. 80°F.	D.B. 100°F.,	W.B. 86°F.				
	Flameproofed	Not Flameproofed	Flameproofed	Not Flameproofed				
Hours of Wear	4.3	4.3	4.3	4.2				
Water Absorbed (Grams)								
Twill Outer Garments	208	609	307*	1175				
Cotton Under Garments	550	507	844*	1106				
Total Sweat of Subjects (Grams)	4330	4010	6492*	6652				

*Data on 3 men only - the data of the one man who failed to finish four hours of walking excluded.

TABLE 16

The Water Uptake by Individual Items of the Two Layered Flameproofed and Herringbone Twill Uniforms Immersed in Tap Water

(Data is the Average of Two Sets of Clothing)

TYPE OF GARMENT	Garme Equili		After S Water (Uptake oaking in 72 ^o F.) for Hours ms)	Water Uptake After Soaking in Water (72°F.) for Forty-five Hours (Grams)		
CUTER GARMENTS	Jacket	Trousers	Jacket	Trousers	Jacket	Trousers	
Herringbone Twill, Unworn Flameproof Twill, Unworn Herringbone Twill, Worn Flameproof Twill, Worn	778 1123 778 1123	615 888 670 955	749 506 854 562	682 362 777 509	864 559 835 664	700 384 747 513	
LONG UNDERGARMENTS	Under- shirt	Drawers	Under- shirt	Drawers	Under- shirt	Drawers	
Cotton Regular, Unworn Cotton Flameproof, Unworn Cotton Regular, Worn Cotton Flameproof, Worn	265 348 225 380	236 313 240 339	543 441 607 596	430 281 473 445	591 525 708 504	514 323 595 456	

TABLE 17

Quantitative Determination of the Reduction in Evaporative Heat Loss Due to Flameproofed and Herringbone Twill Uniforms, in a Hot Environment

D.B. 120°F., W.B. 92°F.

(Average of Two Subjects)

•	NUDE	HERRINGBONE TWILL	FLAMEPROOFED TWILL	PRE-WETTED FLAMEPROOFED TWILL
Evaporative Heat Loss Cal/W2/Hr.	160.7	133.2	117.7	163.4
Evaporative Heat Loss Cal/M2/Hr. per mmHg Vapor Pressure (s-a)*	9.9	8.6	7.1	9.7
Change in Heat Content Cal/M2/Hr.	-2.4	8.2	14.4	6.2
Air Temp. D.B. F.	121.6	120.0	121.1	120.2
Vapor Pressure of Air, mmHg.	29.2	30.2	30.2	30.5
Final Rectal Temp. F.	100.9	101.5	101.6	100.8
Average Skin Temp. F.	97.7	97.7	98.4	98.9
Vapor Pressure at Skin Temp. (s-a) mmHg.	16.5	15.6	16.5	17.0
Sweat, Gm/Hr. Total	1920	1548	1899	1833
Sweat, Gm/Hr. Evaporative	550	458	406	568

^{*}s = skin temperature
a = air temperature

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING INCREASING AMOUNTS OF FLAMEPROOFED TWILL D.B. 100°F - W.B. 20°F

CHART 2

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING
TWO LAYER FLAMEPROOFED TWILL AND HERRINGBONE TWILL

CHART 3 .

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING FLAMEPROOFED TWILL AND HERRINGBONE TWILL

CHART 4

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING
TWO LAYER FLAMEPROOFED TWILL AND HERRINGBONE TWILL

CHART 5

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING
FLAMEPROOFED TWILL AND HERRINGBONE TWILL

UPPER ENVIRONMENTAL LIMITS AT WHICH MEN CAN COMPLETE FOUR HOURS OF CONTINUOUS WALKING

H.B.T. = HERRINGBONE TWILL SINGLE LAYER
F.R. = FLAMEPROOFED TWILL SINGLE LAYER

ER (D) = FLATT ARROCKED AWHIL STYCE LAYER

ACIDS SIDVETTA AC GLICHALICE &

THRESHOLD ENVIRONMENTAL LIMITS

MÉN CANNOT WALK FOR FOUR CONTINUOUS HOURS AT OR ABOVE ENVIRONMENTS DESIGNATED

mee. #3

CHART 8

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING
FLAMEPROOFED TWILL AND HERRINGBONE TWILL

CHART 9

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING
FLAMEPROOFED TWILL AND HERRINGBONE TWILL

CHART 10 .

AVERAGE PHYSIOLOGIC RESPONSE OF WORKING MEN WEARING FLAMEPROOFED TWILL AND HERRINGBONE TWILL

ئۇر

THE DRYING RATE OF FLAMEPROOFED AND HERRINGBONE TWILL UNIFORMS AFTER IMMERSION IN 72° WATER FOR 45 HOURS

DRYING CHAMBER: D.B. 72°F., W.B. 05°F.
DATA FROM ONE SET OF CLOTHING

INITIAL DRY WEIGHT FOR H.B.T. = 1383 CRAMS INITIAL DRY WEIGHT FOR F.P. = 2011 GRAMS

Incl. #3

Arpesrance of Tameproofed clothing (X) after ten wearings and
-- Clameproofed twill (D) after second wearing.
-- AMORED MEDICAL RESEARCH LABORATORY

Project No. 7-5

FORT KNOX, KY.

Protograph #1