NYU FRE 7773 - Week 2

Machine Learning in Financial Engineering
Ethan Rosenthal

Linear Models for Regression

Machine Learning in Financial Engineering
Ethan Rosenthal

Computer Setup?

Linear Models for Regression

Machine Learning in Financial Engineering
Ethan Rosenthal

Linear Models for Regression

- Regression: for when we are predicting continuous values.
- Linear Model: a model that is linear in the model parameters/coefficients.

Let's Generalize

- Imagine we have *n* samples or data points indexed by *i*.
- For each sample, we have *p* features (known "piece of information" about the sample) indexed by j.
- A linear model will look like:

$$y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}$$

Where β_i denotes the *jth* model parameter/coefficient.

Let's Generalize

- Imagine we have n samples or data points indexed by i.
- For each sample, we have p features (known "piece of information" about the sample) indexed by j.
 Known Data
- A linear model will look like:

$$y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}$$

Where β_i denotes the *jth* model parameter/coefficient.

Known Answer

"Rules" aka this is what we want to learn!

Let's Generalize

Bias term (y-intercept)

- Imagine we have *n* samples or data points indexed by *i*.
- For each sample, we have p features (known "piece of information" about the sample) indexed by j.
 Known Data
- A linear model will look like:

$$y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}$$

Where β_j denotes the *jth* model parameter/coefficient.

Known Answer

"Rules" aka this is what we want to learn!

Let's Generalize - single sample i

$$y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}$$

Let's Generalize - single sample i

$$y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + ... + \beta_{p}X_{ip}$$

$$y_{i} = \sum_{j=0}^{p} \beta_{j}X_{ij}$$

where we assume that $X_{i0}=1$ (for mathematical convenience).

Let's Generalize - n samples $y_i = \sum \beta_j X_{ij}$

$$y_i = \sum_{j=0} \beta_j X_{ij}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} X_{10} & X_{11} & X_{12} & \dots & X_{1p} \\ X_{20} & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n0} & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}$$

$$\vec{y} = \mathbf{X}\vec{\beta}$$

Let's Generalize -
$$n$$
 samples $y_i = \sum_{j=0}^{r} \beta_j X_{ij}$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} X_{10} & X_{11} & X_{12} & \dots & X_{1p} \\ X_{20} & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n0} & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}$$
Known Data (features)

$$\vec{y} = \vec{X} \vec{\beta}$$
 "Rules" aka this is what we want to learn!

Known Answers

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.
- 4. Determine the model parameters that produce the minimum loss.

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.
- 4. Determine the model parameters that produce the minimum loss.

Housekeeping:

The model predictions are often denoted \hat{y}_i

The *ground truth / answers* are often denoted \mathcal{Y}_i (no hat).

- 1. Think up some model
- 2. Feed data into the model and make predictions.

$$\hat{ec{y}} = \mathbf{X} \vec{eta}$$

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \vec{X}_i \cdot \vec{\beta} \right)^2$$

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{p} X_{ij} \beta_j \right)^2$$

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.

Mean Squared Error (MSE):

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n ig(y_i - \hat{y}_iig)^2$$
 prediction $\mathcal{L} = rac{1}{n} \sum_{i=1}^n ig(y_i - \vec{X}_i \cdot ec{eta}ig)^2$ Unknown data $\mathcal{L} = rac{1}{n} \sum_{i=1}^n ig(y_i - \sum_{j=0}^p X_{ij}eta_jig)^2$

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.
- 4. Determine the model parameters that produce the minimum loss.
 - a. Take the derivative of your loss function with respect to the model parameters.
 - b. Set it equal to zero.
 - c. Solve for the model parameters.

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.
- 4. Determine the model parameters that produce the minimum loss.
 - a. Take the derivative of your loss function with respect to the model parameters.
 - b. Set it equal to zero.
 - c. Solve for the model parameters.

$$\frac{\partial \mathcal{L}}{\partial \vec{\beta}} = 0$$

- 1. Think up some model
- 2. Feed data into the model and make predictions.
- 3. Calculate the loss between predictions and true values.
- 4. Determine the model parameters that produce the minimum loss.
 - a. Take the derivative of your loss function with respect to the model parameters.
 - b. Set it equal to zero.
 - c. Solve for the model parameters.

$$\frac{\partial \mathcal{L}}{\partial \vec{\beta}} = 0$$

$$\vec{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}$$

The ML Recipe - Meta Comments

- 1. Think up some model
 - a. We chose a linear model. There are many others!
- 2. Feed data into the model and make predictions.
 - We chose what features to use.
- 3. Calculate the loss between predictions and true values.
 - a. We chose Mean Square Error as our loss. There are many others!
- 4. Determine the model parameters that produce the minimum loss.
 - a. We analytically determined the parameters. There are many other ways to determine them!
 - b. Also, sometimes you cannot analytically determine the parameters.

The ML Recipe - Meta Comments

- 1. Think up some model
 - a. We chose a linear model. There are many others!
- 2. Feed data into the model and make predictions.
 - We chose what features to use.
- 3. Calculate the loss between predictions and true values.
 - a. We chose Mean Square Error as our loss. There are many others!
- 4. Determine the model parameters that produce the minimum loss.
 - a. We analytically determined the parameters. There are many other ways to determine them!
 - b. Also, sometimes you cannot analytically determine the parameters.

While we denote step 1 as "the model", all of these steps involve choices that impact the eventual model that is used for prediction.

So far, we have focused on being able to build a model that predicts things.

• Inference: inspect your model to learn about your system.

- Inference: inspect your model to learn about your system.
- Examples:
 - Which feature is most important for accurate predictions?
 - If I increase feature Z by 10%, how will that change the prediction?
 - What is the uncertainty in my prediction?
 - What is the uncertainty in a model parameter?

- Inference: inspect your model to learn about your system.
- Examples:
 - Which feature is most important for accurate predictions?
 - If I increase feature Z by 10%, how will that change the prediction?
 - What is the uncertainty in my prediction?
 - What is the uncertainty in a model parameter?
- This is often more difficult and requires statistical guarantees.
- This is well-studied for linear models but not so for more complicated models.
- There is an inherent tradeoff between model complexity and interpretability.
- Model complexity can be correlated with model performance, so there can be a tradeoff between performance and interpretability.

Nonlinear Features for Linear Models

• We can do whatever we want to the features X.

$$y_i = \sum_{j=0}^p \beta_j X_{ij}$$

 We can square a feature, we can multiple features by each other, we can apply a sine, etc...

$$y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1}^2 + \beta_3 X_{i1} X_{i2} + \beta_4 \sin(X_{i3})$$

ullet While these features are nonlinear, the model is linear in the parameters eta.

Evaluating Regression Models

How do we know how good our prediction is?

How do we know how good our prediction is?

- The model's performance is based on the context in which the model is used.
- We often try to collapse "performance" down to a single number.
- There are many statistical measures of model quality which may or may not be useful in practice.

How do we know how good our prediction is?

- If we are minimizing the Mean
 Squared Error (MSE), then we can
 use MSE as a performance metric.
- Outliers will have a large effect on this metric.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Regression Metrics

 Mean Squared Error - minimizes outliers, good statistical properties, hard to interpret.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Mean Absolute Error - easy to interpret, all loss is treated equally, not robust to outliers.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Regression Metrics

• \mathcal{R}^2 / coefficient of determination - statistically interpretable as the proportion of variance that's predictable

$$\mathcal{R}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• Mean Absolute Percentage Error - interpretable, error is independent of scale. $u_i - \hat{u}_i$

Scientific Computing