CS7643: Deep Learning Fall 2019 HW4 Solutions

James Hahn

November 7, 2019

1 Optimal Policy and Value Function

1. First, let's take the sum of discounted rewards as $\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t)$

We know we start at S_1 , so $s_0 = S_1$, and the we always choose "stay", so $a_0 = a_i$ = "stay". Since we always "stay" at the same state, s_i will always be S_1 . As such, this summation becomes:

$$\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t)$$

$$= \sum_{t=0}^{\infty} \gamma^t r_t(S_0, \text{"stay"})$$

$$= \sum_{t=0}^{\infty} \gamma^t (-1)$$

$$= -\sum_{t=0}^{\infty} \gamma^t$$

So, if we assume this simulation runs for an infinite number of steps, then the sum of discounted rewards is the value $-\infty \cdot \gamma$, which becomes $-\infty$ since $\gamma > 0$.

- 2. The optimal policy, assuming we start at S_1 is $(a_1, a_2) = (\text{"go"}, \text{"go"})$. This is because all other rewards in the MDP are negative, except for the termination reward, which is a reward of +3. Assuming we're forced to take an action at each iteration of the simulation, the only way to achieve that positive reward is to first traverse to S_2 and then terminate the program by choosing the "go" action. This results in a sum of discounted rewards of $\sum_{t=0}^{1} \gamma^t r_t(s_t, a_t) = \gamma^0 r_0(S_1, \text{"go"}) + \gamma^1 r_1(S_2, \text{"go"}) = -2 + \gamma(3) = 3\gamma 2$.
- 3. $V_0 = [0, 0]$

$$V_1 = [\max(r(s_1, \text{``stay''}) + \gamma V_0(s_1), r(s_1, \text{``go''}) + \gamma V_0(s_2)), \max(r(s_2, \text{``stay''}) + \gamma V_0(s_2), r(s_2, \text{``go''}))] = [\max(-1, -2), \max(-1, 3)] = [-1, 3]$$

$$\begin{aligned} V_2 &= [\max(r(s_1, \text{``stay''}) + \gamma V_1(s_1), r(s_1, \text{``go''}) + \gamma V_1(s_2)), \max(r(s_2, \text{``stay''}) + \gamma V_1(s_2), r(s_2, \text{``go''}))] = \\ [\max(-1 - \gamma, -2 + 3\gamma), \max(-1 + 3\gamma, 3)] &= [\max(-2, 1), \max(2, 3)] = [1, 3] \end{aligned}$$

$$V_3 = [\max(r(s_1, \text{``stay''}) + \gamma V_2(s_1), r(s_1, \text{``go''}) + \gamma V_2(s_2)), \max(r(s_2, \text{``stay''}) + \gamma V_2(s_2), r(s_2, \text{``go''}))] = [\max(-1 + 1\gamma, -2 + 3\gamma), \max(-1 + 3\gamma, 3)] = [\max(0, 1), \max(2, 3)] = [1, 3]$$

The optimal V is V_2 or V_3 because they both provide the highest value returns for each state across all iterations of V. With that being said, V_3 can generally be seen as better, since we

show that the values have converged, whereas if we stopped at V_2 , we don't have any idea if the values were already their optimal values or not.

2 Value Iteration Convergence

1.
$$||V^0 - V^*||_{\infty} = ||[-1, -3]||_{\infty} = \max(|-1|, |-3|) = \max(1, 3) = 3$$

 $||V^1 - V^*||_{\infty} = ||[-2, 0]||_{\infty} = \max(|-2|, |0|) = \max(2, 0) = 2$
 $||V^2 - V^*||_{\infty} = ||[0, 0]||_{\infty} = \max(|0|, |0|) = \max(0, 0) = 0$
 $||V^3 - V^*||_{\infty} = ||[0, 0]||_{\infty} = \max(|0|, |0|) = \max(0, 0) = 0$

Clearly, the error decreases monotonically.

2.
$$||T(V) - T(V')||_{\infty}$$

 $= ||max_a \sum_{s'} p(s'|s, a)[r(s, a) + \gamma V_i(s')] - max_a \sum_{s'} p(s'|s, a)[r(s, a) + \gamma V_i'(s')]||_{\infty}$
 $= ||p(s^*|s, a^*)[r(s, a^*) + \gamma V(s^*)] - p(s^*|s, a^*)[r(s, a^*) + \gamma V'(s^*)]||_{\infty}$ (Let a^* and s^* represent the optimal action and state respectively)
 $= ||\gamma \cdot p(s^*|s, a^*)V(s^*) - \gamma \cdot p(s^*|s, a^*)V'(s^*)||_{\infty}$
 $= ||\gamma \cdot p(s^*|s, a^*)(V - V')||_{\infty}$
 $= \gamma ||p(s^*|s, a^*)(V - V')||_{\infty}$
 $\leq \gamma ||p(s^*|s, a^*)||_{\infty} ||V - V'||_{\infty}$ (by Cauchy-Schwarz Inequality)
 $= \gamma ||V - V'||_{\infty}$ (we know $max_s \sum_{s'} p(s'|s, a) = 1$)

... We have shown $||T(V) - T(V')||_{\infty} \le \gamma ||V - V'||_{\infty}$

3.

3 Learning the Model

1.

4 Policy Gradients Variance Reduction

1. Let the approximation of the policy gradient be $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau_i) \nabla_{\theta} \log \pi_{\theta}(\tau_i)$.

Now, let's show when $R(\tau) := R(\tau) - b$ does not change this estimate:

$$\begin{split} &\frac{1}{N} \sum_{i=1}^{N} R(\tau_i) \nabla_{\theta} log \, \pi_{\theta}(\tau_i) \\ &\Longrightarrow \frac{1}{N} \sum_{i=1}^{N} (R(\tau_i) - b) \nabla_{\theta} log \, \pi_{\theta}(\tau_i) \\ &= \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) \right] \left[\sum_{i=1}^{N} R(\tau_i) - b \right] \\ &= \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) R(\tau_i) \right] - \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) b \right] \end{split}$$

Now, in order to prove $\frac{1}{N} \sum_{i=1}^{N} R(\tau_i) \nabla_{\theta} log \, \pi_{\theta}(\tau_i) = \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) R(\tau_i) \right] - \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) b \right],$ we must show $\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_i) b = 0$. This can be seen below:

$$\begin{split} &\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) b \\ &= \mathbf{E}_{\tau \sim \pi_{\theta} \theta} \left[\nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) b \right] \\ &= \mathbf{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbf{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) b] \right] \end{split}$$

```
\begin{split} &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot \mathbf{E}_{s_{(t+1):T},a_{t:(T-1)}} [\nabla_{\theta} log \, \pi_{\theta}(\tau_{i})] \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot \mathbf{E}_{a_{t}} [\nabla_{\theta} log \, \pi_{\theta}(\tau_{i})] \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot \int \frac{\nabla_{\theta} \pi_{\theta} \theta(a_{t}|s_{t})}{\pi_{\theta} \theta(a_{t}|s_{t})} \pi_{\theta}(a_{t}|s_{t}) da_{t} \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot \nabla_{\theta} \int \pi_{\theta}(a_{t}|s_{t}) da_{t} \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot \nabla_{\theta} 1 \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ b \cdot 0 \right] \\ &= \mathbf{E}_{s_{0:t},a_{0:(t-1)}} \left[ 0 \right] \\ &= 0 \end{split}
```

In the above mini-proof, we have shown for any t, the product of the gradient with b is 0.

As such, since the second term of $\frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) R(\tau_{i}) \right] - \frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) b \right]$ is 0, we can reduce it to $\frac{1}{N} \left[\sum_{i=1}^{N} \nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) R(\tau_{i}) \right]$, and we observe that $\frac{1}{N} \sum_{i=1}^{N} (R(\tau_{i}) - b) \nabla_{\theta} log \, \pi_{\theta}(\tau_{i}) = \frac{1}{N} \sum_{i=1}^{N} R(\tau_{i}) \nabla_{\theta} log \, \pi_{\theta}(\tau_{i})$. \square

2. $\operatorname{Var}(R(\tau_i)\nabla_{\theta}\log \pi_{\theta}(\tau_i))$