

Teorija Zvezdanih Spektara Lekcija 13: Ne-LTR efekti u Spektralnim Linijama

Ivan Milić (AOB / MATF)

26/12/2023

Podsetnik

• Koeficijenti emisije i apsorpcije u spektralnoj liniji izgledaju ovako:

Zašto "pogotovo gornjeg?

• Funkcija izvora u liniji:

$$S = \frac{n_u A_{ul}}{n_l B_{lu} - n_u B_{ul}}$$

Ako pretpostavimo da stimulisana emisija može biti zanemarena:

$$S \approx \frac{2hc^2}{\lambda^5} \frac{n_u}{n_l}$$

 Sada, ako pretpostavimo da je broj atoma u stanju / mnogo veći od broja atoma u stanju u, onda je n_I ~ n_{tot}, pa funkcija izvora zavisi samo od n_U

Podsetnik - koherentno rasejanje

 U Ne-LTR smo pretpostavili da funkcija izvora ima Plankovski deo i deo sa rasejanjem (ove dve formulacije su ekvivalentne, što ćemo pokazati uskoro)

$$S_{\lambda} = \epsilon B_{\lambda} + (1 - \epsilon) J_{\lambda}$$

- Ovde smo definisali epsilon kao verovatnoću stvarne apsorpcije (termalizacije) fotona.
- U rasejanju u spektralnim linijama to će biti:

$$\epsilon = \frac{C_{ul}}{A_{ul} + C_{ul}}$$

 Gde C označava sudarnu (foton pretvoren u termalnu energiju) a A (foton nastavlja dalje) radijativnu de-ekscitaciju.

Atom sa dva nivoa

- lako spektralna linija nastaje izmedju dva diskretna energetska nivoa, u principu atomi
 imaju mnogo više energetskih nivoa.
- Jednostavnosti radi, možemo da pretpostavimo da atom ima samo ta dva nivoa te da su
 jedini dozvoljeni prelazi sa gornjeg na donji i obrnuto.
- Te da imamo sudarne i radijativne prelaze.
- Sledeća pretpostavka je da su populacije nivoa konstantne u vremenu.
- Onda ukupan broj de-ekscitacija u našem elementu zapremine, u jedinici vremena mora biti jednak broju ekscitacija:

$$n_u(C_{ul}+R_{ul}) = n_l(C_{lu}+R_{lu})$$
 Sudarni prelazi Radijativni prelazi

• Kako da nadjemo ovo? 2-3 minuta samostalan rad + diskusija

- = Ukupan broj apsorpcija
- Ukupan broj apsorpcija je srazmeran ukupnoj apsorpbovanoj energiji po jedinici zapremine u jedinici vremena.
- Hajdemo korak po korak, kako biste ovo nazvali:

Ovde mislimo na ukupan uklonjeni intenzitet iz snopa, dakle apsorpcija + rasejanje

- = Ukupan broj apsorpcija
- Ukupan broj apsorpcija je srazmeran ukupnoj apsorpbovanoj energiji po jedinici zapremine u jedinici vremena.
- Hajdemo korak po korak, kako biste ovo nazvali:

$$dI_{\lambda}^{abs} = -\chi_{\lambda}^{abs} I_{\lambda} dl$$

• Apsorbovana energija po jedinici zapremine, u jedinici vremena, po jediničnom prostornom uglu. Podelimo sa energijom jednog fotona da predjemo na broj apsorpcija:

$$\frac{dn_{\lambda}^{\text{abs}}}{dt}h\nu = -n_l B_{lu} \frac{h\nu}{4\pi} \phi_{\lambda} I_{\lambda}$$

 = Ukupan broj apsorpcija. Moramo dakle da ovo integralimo po pravcima i talasnim dužinama:

$$\frac{dn_{\lambda}^{\text{abs}}}{dt}h\nu = -n_l B_{lu} \frac{h\nu}{4\pi} \phi_{\lambda} I_{\lambda}$$

$$\frac{dn^{\text{abs}}}{dt} = n_l B_{lu} \frac{1}{4\pi} \oint \int I_{\lambda} \phi_{\lambda} d\lambda d\hat{\Omega} = n_l B_{lu} \overline{J}$$

Broj radijativnih ekscitacija u jedinici vremena učestanost (eng: rate) ekscitacije Integral rasejanja, srednji intenzitet integraljen po apsorpcionom profilu

Radijativne de-ekscitacije

- Imamo dva procesa: Spontanu i stimulisanu emisiju
- Ako pretpostavimo da su emisioni i apsorpcioni profil isti i primenimo prethodnu logiku (tabla ako zatreba) dobijamo:

$$\frac{dn^{\rm em}}{dt} = n_u A_{ul} + n_u B_{ul} \overline{J}$$

Einstein-ov koeficijent spotane emisije je sam po sebi učestanost Integral rasejanja, srednji intenzitet integraljen po apsorpcionom profilu

Poslednji korak je da dodamo sudarne procese i da izjednačimo ekscitacije i de-ekscitacije

Statistička ravnoteža

- Populacije gornjeg i donjeg nivoa su konstantne u vremenu broj ekscitacija jednak broju de-ekscitacija
- Malo generalnije: učestanost procesa koji naseljavaju dati nivo je jednak učestanosti procesa koji raseljavaju dati nivo.
- Npr. za nivo n_{...}:

$$n_l(B_{lu}\overline{J} + C_{lu}) = n_u(B_{ul}\overline{J} + A_{ul} + C_{ul})$$

- Tabla / diskusija: Pokazati da se za donji nivo dobija ista jednačina.
- Ako su nam date sve veličine sem populacija, kako da ih dobijemo?

Funkcija izvora u atomu sa dva nivoa:

Generalni izraz za funkciju izvora (uvek važi):

$$S = \frac{n_u A_{ul}}{n_l B_{lu} - n_u B_{ul}}$$

A jednačina statističke ravnoteže izgleda ovako:

$$n_l(B_{lu}\overline{J} + C_{lu}) = n_u(B_{ul}\overline{J} + A_{ul} + C_{ul})$$

Tabla: Pokazati da je funkcija izvora u liniji linearna kombinacija Plankove funkcije (B) i
integrala rasejanja (J).

Funkcija izvora u atomu sa dva nivoa:

$$S = \epsilon B + (1 - \epsilon)\overline{J}$$

• Gde epsilon sada ima malko komplikovaniji oblik:

$$\epsilon = \frac{C_{ul}(1 - e^{-hc/\lambda kT})}{A_{ul} + C_{ul}(1 - e^{-hc/\lambda kT})} \approx \frac{C_{ul}}{A_{ul} + C_{ul}}$$

 Obratite pažnju da pri izvodjenju ovog izraza moramo da izvedemo relacije izmedju sudarne ekscitacije i de-ekscitacije na osnovu LTR uslova!

Atom sa dva nivoa u ne-LTR

• Opet imamo spregnuće. Ovaj put spregnute su JPZ i jednačina statističke ravnoteže:

$$\mu \frac{dI_{\lambda}}{d\tau \phi_{\lambda}} = I_{\lambda} - S$$

$$S = \epsilon B + (1 - \epsilon) \frac{1}{2} \int \int I_{\lambda} \phi_{\lambda} d\lambda d\mu$$

- Opet ih, po potrebi možemo napisati kao jednu integro-diferencijalnu jednačinu.
- Postoji tačno semi-analitičko rešenje, postoje direktna i iterativna numerička rešenja. Više o tome na vežbama.

Šta su posledice ne-LTR?

- Hajde da sami odgovorimo na to pitanje.
- Zamislite da imamo, zadatu, izotermalnu atmosferu (B = const).
- Pretpostavite epsilon = 0.
- Ubedite sebe (i mene) da će funkcija izvora pasti ispod B na vrhu atmosfere.

Diskusija → Tabla

Šta su posledice ne-LTR?

- Hajde da sami odgovorimo na to pitanje.
- Zamislite da imamo, zadatu, izotermalnu atmosferu (B = const).
- Pretpostavite epsilon = 0.
- Ubedite sebe (i mene) da će funkcija izvora pasti ispod B na vrhu atmosfere.

Tačno rešenje – funkcija izvora bitno pada na vrhu atmosfere

Funkcija izvora dostiže Plankovu funkciju duboko u atmosferi. Ovo nema nikakve veze sa gustinom, već sa ukupnom neprozračnošću.

Funkcije izvora za atom sa dva nivoa sa kompletnom redistribucijom u izotermnoj polu-beskonačnoj atmosferi (Avrett and Hummer 1965)

Rešenje na površini: $S^L(0) = \sqrt{\varepsilon}B$

ne zavisi od oblika profila

Dubina termalizacije zavisi od profila:

(Doppler) (Lorentz) (Voigt)
$$\Lambda_T \approx \frac{C}{\varepsilon} \qquad \Lambda_T \approx \frac{8}{9\varepsilon^2} \qquad \Lambda_T \approx \frac{8a}{9\varepsilon^2}$$

Gubitak fotona kroz površinu teži da smanji funkciju izvora;

Nekoherentno rasejanje povećava dubinu do koje se oseća gubitak fotona.

Za koherentno rasejanje dubina termalizacije je najmanja: $\Lambda_T pprox rac{1}{\sqrt{\epsilon}}$

Ovo prouzrokuje jako duboko spektralne linije! (Ovo su D linije Natrijuma)

Šokantno-frapantan zaključak

U prisustvu ne-LTR efekata čak i u izotermalnoj atmosferi dobijamo apsorpcionu liniju!

 U realističnoj atmosferi (npr Sunčevoj), ovo dovodi da u jakim, ne-LTR spektralnim linijama, funkcija izvora ima sledeći trend:

Opada – fotosferski pad temperature

Raste – hromosferski rast temperature

Opada – neLTR efekti u visokoj hromosferi

Sada konačno razumemo h & k linije Mg II

Neki zaključci:

- Rasejanje tj. Ne-LTR dovodi do spregnuća jednačine statističke ravnoteže i jednačine prenosa zračenja
- Da bismo znali intenzitet na jednoj talasnoj dužini i jednom pravcu moramo da znamo intenzitet na svim talasnim dužinama u svim pravcima
- Rešenje je ne-trivijalno, u generalnom slučaju mora biti numeričko
- Do sada smo gledali slučaj atoma sa dva nivoa linearan problem
- U generalnom slučaju imamo atome sa više nivoa (eng: multilevel atom case).
- Najvažniji rad u ovoj oblasti je verovatno Rybicki & Hummer (1991): An accelerated lambda iteration method for multilevel radiative transfer

Jednačina statističke ravnoteže za atom sa više nivoa

• Populacija svakog od nivoa je konstantna u vremenu.

$$n_i \sum_{j} (A_{ij} + B_{ij} \overline{J}_{ij} + C_{ij}) = \sum_{j} n_j (A_{ji} + B_{ji} \overline{J}_{ij} + C_{ji})$$

- Ako napišemo ovo za svaki nivo, jedna jednačina će biti višak (neodredjen sistem).
- Umesto toga, sistem zatvaramo sa:

$$\sum_{i} n_i = n_{\text{total}}$$

Gde je n_total ukupna koncentracija čestica datog elementa (diskusija).

Kako ovo rešiti?

- Ne-LTR u atomima sa više nivoa nije analitički rešiv problem
- Ako bismo raspisali sve zavisnosti dobili bismo ogroman nelinearan sistem
- Zato se rešava iterativno:

Pretpostavimo početne vrednosti populacija (npr LTE)

Izračunamo intenzitete (aps, em → JPZ)

Izračunamo J

Statistička ravnoteža, dobijamo nove vrednosti populacija

Ponavljamo do konvergencije

Jednačina statističke ravnoteže za atom sa više nivoa

• Populacija svakog od nivoa je konstantna u vremenu.

$$n_i \sum_{j} (A_{ij} + B_{ij} \overline{J}_{ij} + C_{ij}) = \sum_{j} n_j (A_{ji} + B_{ji} \overline{J}_{ij} + C_{ji})$$

- Ako napišemo ovo za svaki nivo, jedna jednačina će biti višak (neodredjen sistem).
- Umesto toga, sistem zatvaramo sa:

$$\sum_{i} n_i = n_{\text{total}}$$

Gde je n_total ukupna koncentracija čestica datog elementa (diskusija).

Atom sa dva nivoa u ne-LTR

• Opet imamo spregnuće. Ovaj put spregnute su JPZ i jednačina statističke ravnoteže:

$$\mu \frac{dI_{\lambda}}{d\tau \phi_{\lambda}} = I_{\lambda} - S$$

$$S = \epsilon B + (1 - \epsilon) \frac{1}{2} \int \int I_{\lambda} \phi_{\lambda} d\lambda d\mu$$

- Opet ih, po potrebi možemo napisati kao jednu integro-diferencijalnu jednačinu.
- Postoji tačno semi-analitičko rešenje, postoje direktna i iterativna numerička rešenja. Više o tome na vežbama.

Tačno rešenje – funkcija izvora bitno pada na vrhu atmosfere

Funkcija izvora dostiže Plankovu funkciju duboko u atmosferi. Ovo nema nikakve veze sa gustinom, već sa ukupnom neprozračnošću.

Ovo prouzrokuje jako duboke spektralne linije! (Ovo su D linije Natrijuma)

Tipično, funkcija izvora pada **ispod** Plankove funkcije

- U prisustvu ne-LTR efekata čak i u izotermalnoj atmosferi dobijamo apsorpcionu liniju!
- U realističnoj atmosferi (npr Sunčevoj), ovo dovodi da u jakim, ne-LTR spektralnim linijama, funkcija izvora ima sledeći trend:

Opada – fotosferski pad temperature

Raste – hromosferski rast temperature

Opada – neLTR efekti u visokoj hromosferi

Sada konačno razumemo h & k linije Mg II

Kako generalno rešavamo Ne-LTR problem

- Ne-LTR u atomima sa više nivoa nije analitički rešiv problem
- Ako bismo raspisali sve zavisnosti dobili bismo ogroman **nelinearan** sistem
- Zato se rešava iterativno:

Pretpostavimo početne vrednosti populacija (npr LTE) – **na svim dubinama**

Izračunamo intenzitete (aps, em, **na svim dubinama** → JPZ)

Izračunamo J, na svim dubinama

Statistička ravnoteža, dobijamo nove vrednosti populacija – na svim dubinama

Ponavljamo do konvergencije

Uprošćena rešenja jednačine statističke ravnoteže

- Uglavnom za atom sa dva nivoa
- Ako možemo da zanemarimo neke radijativne ili sudarne procese, jednačina statističke ravnoteže biva dosta uprošćena
- Ključno je, uglavnom, identifikovati proces odgovoran za populaciju gornjeg nivoa
- Zavisno od linije, to može biti:

Rekombinacija iz jonizovanog stanja

Radijativna eksitacija (rasejanje)

Sudarna eksitacija

 Ove simplifikacije se najčešće koriste uz pretpostavku da je linija optički tanka! (Korone zvezda, HII regioni, planetarne magline, ostaci supernove...)

Sudarno ekscitovane linije

- Najčešće su u pitanju zabranjene linije. To su linije koje ruše neko selekciono pravilo, pa im
 je Einstein-ov koeficijent za spontanu emisiju jako mali.
- Za atom sa dva nivoa, to izgleda ovako:

Sudarno ekscitovane linije

Malo razloženiji izraz za populaciju donjeg nivoa:

$$C_{ij} = n_e \Omega_{ij}(T)$$
 $n_l = n_e \frac{n_l}{n_{\text{ion}}} \frac{n_{\text{ion}}}{n_{\text{species}}} \frac{n_H}{n_H}$

- Striktnije gledano, efikasni presek za sudare zavisi od temperature.
- Kada ovo sve spojimo, i integralimo po visini (rešimo JPZ).

$$j_{\lambda} = n_e^2 G(T) \phi_{\lambda}$$

G(T) je opet neka funkcija doprinosa, ali ovaj put u odnosu na temperaturu a ne na visinu.

$$I_{\lambda} = \int_{0}^{s} n_{e}^{2}(h)G(T(h))\phi_{\lambda}dh$$

Evo nekih funkcija doprinosa za linije koje su važne u koroni Sunca

HMI Dopplergram Surface movement Photosphere

HMI Magnetogram Magnetic field polarity Photosphere

HMI Continuum Matches visible light Photosphere

AIA 1700 Å 4500 Kelvin Photosphere

AIA 4500 Å 6000 Kelvin Photosphere

AIA 1600 Å 10,000 Kelvin Upper photosphere/ Transition region

AIA 304 Å 50,000 Kelvin Transition region/ Chromosphere

AIA 171 Å 600,000 Kelvin Upper transition Region/quiet corona

AIA 193 Å 1 million Kelvin Corona/flare plasma

AIA 211 Å 2 million Kelvin Active regions

AIA 335 Å 2.5 million Kelvin Active regions

AIA 094 Å 6 million Kelvin Flaring regions

AIA 131 Å 10 million Kelvin Flaring regions

Radijativno ekscitovane linije

- Ovo bi bio slučaj čistog rasejanja. Slično primeru za protuberance od prošlog časa.
- Za atom sa dva nivoa, to izgleda ovako:

Hromosfera i protuberance

Procenite gustinu K korone

- Intenzitet korone je ~10⁻⁶ intenziteta diska
- Efikasni presek za Tomsonovo rasejanje je 3.3x10⁻²⁵ cm²
- Procenite, na osnovu ovoga gustinu K korone

Rešenje

Rekombinacione linije

- Linije koje nastaju ili direktno rekombinacijom, ili kaskadnom de-ekscitacijom nakon rekombinacije na neki viši nivo
- Hajde da zajedno dešifrujemo ovu jednačinu statističke ravnoteže

$$n_{ion}n_e\alpha_{rec} + \sum_{j>i} n_j A_{ji} = n_i \sum_{j$$

Rekombinacione linije

- Linije koje nastaju ili direktno rekombinacijom, ili kaskadnom de-ekscitacijom nakon rekombinacije na neki viši nivo
- Hajde da zajedno dešifrujemo ovu jednačinu statističke ravnoteže

Emisija sa nivoa i na niže nivoe

$$n_{ion}n_e\alpha_{rec} + \sum_{j>i} n_j A_{ji} = n_i \sum_{j$$

Rekombinacija na nivo i

Kaskadna de-ekscitacija na nivo i

 Obratite pažnju, koncentracija jona će (uglavnom) zavisiti od nekog jonizujućeg polja zračenja! (Tabla)

Neki primeri ne-zvezdanih spekatara – planetarna maglina

Kvazar

Lajman-alfa šuma

