МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационных систем

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Объектно-ориентированное программирование» Тема: Массив, заданный на множестве комплексных чисел

	Беляев К.В.
Студенты гр. 3372	Лазарев Ф.Н
Преподаватель	Егоров С.С.

Санкт-Петербург

2024

Задание на Практическую работу

Студенты Беляев К.В., Лазарев Ф.Н.

Группа 3372

Исходные данные: создать консольное приложение, реализующее функции перечисленные в описании работы №1, но на множестве комплексных чисел. Приложение должно включать основной модуль, модуль «application», модуль «array» и модуль «complex».

Спецификации классов

Таблица 1. Первичный протокол класса Application

Методы(старые)		
идентификатор	область видимости	семантическое описание
Application	public	Конструктор класса
showMenu	public	Вывод меню в консоль
exec	public	Управление командами из
		меню, взаимодействие с
		классом Array

Таблица 2. Первичный протокол класса Array

Атрибуты(старые)			
идентификатор	тип	область	семантическое описание
		видимости	
length	int	private	Целочисленная длина массива
arr	number*	private	Указатель на первый элемент
			массива
Методы(старые)	1		1
идентификатор	область видимости		семантическое описание
Array	public		Конструктор класса. Создает
			массив заданной длины, по
			умолчанию – 0
~Array	public		Деструктор класса
getLength	public		Получение длины массива
fill	public		Заполнение массива числами с
			консоли
resize	public		Изменение размера массива
changeElement	public		Изменение выбранного
			элемента числом с консоли

printArray	public	Вывод массива в консоль
averageValue	public	Подсчет среднего значения
		элементов массива
SKO	public	Подсчет СКО элементов
		массива
shakerSort	public	Сортировка массива по
		убыванию – если передается
		параметр 1, по возрастанию –
		если передается 0 или не
		передается ничего

Таблица 3. Первичный протокол класса TComplex

Атрибуты			
идентификатор	ТИП	область	семантическое описание
		видимости	
re	double	private	Вещественная часть комплексного
			числа
im	double	private	Мнимая часть комплексного числа
Методы			
идентификатор	06	бласть	семантическое описание
	вид	цимости	
TComplex()	public		Конструктор класса по умолчанию
TComplex(double	public		Конструктора класса,
re, double im)			принимающий вещественное и
			мнимое части комплексного числа
TComplex(double	public		Конструктор класса,
re)			принимающий вещественную
			часть комплексного числа

getRe	public	Получение вещественной части
		комплексного числа
getIm	public	Получение мнимой части
		комплексного числа
module	public	Вычисление модуля комплексного
		числа
operator+	public	Оператор сложения
operator-	public	Оператор вычитания
operator/	public	Оператор деления
operator*	public	Оператор умножения
operator+=		Оператор сложения с
		присваиванием
operator-=	public	Оператор вычитания с
		присваиванием
operator/=	public	Оператор деления с
		присваиванием
operator*=	public	Оператор умножения с
		присваиванием
operator=	public	Оператор присваивания
operator==	public	Оператор «равно»
operator!=	public	Оператор «неравно»
operator<	public	Оператор «меньше»
operator>	public	Оператор «больше»
pow	public	Вычисление корня из
		комплексного числа
operator >>	public	Оператор ">>"
operator <<	public	Оператор "<<"

Диаграмма классов

На рисунке 1 представлена диаграмма классов, дополненная атрибутами и методами.

Рисунок 1 – Диаграмма классов.

Описание контрольного примера с исходными и ожидаемыми расчетными данными

- 1. Вводятся числа 1 0, 1 1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 0 0.
- 2. Изменяется размер массива, новый размер -9 элементов. Выводятся элементы массива: 1, 1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i, 7+7i, 8+8i.
- 3. Подсчитывается среднее значение. Для данного примера оно равно (1 + (1 + i) + (2 + 2i) + (3 + 3i) + (4 + 4i) + (5 + 5i) + (6 + 6i) + (7 + 7i) + (8 + 8i)/9 = 4.11111 + 4i.
- 4. Подсчитываем СКО элементов массива по формуле $S = \sqrt{\frac{1}{n-1}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2} = -2.55879 + 2.73499\mathrm{i}$
- 5. Сортируем элементы по возрастанию. Ожидаемый результат -1, 1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i, 7+7i, 8+8i.
- 6. Сортируем элементы по убыванию. Ожидаемый результат 8+8i 7+7i 6+6i 5+5i 4+4i 3+3i 2+2i 1+1i 1.
- 7. Изменяем значение элемента с индексом 0 на 100. Ожидаемый результат 100 7+7i 6+6i 5+5i 4+4i 3+3i 2+2i 1+1i 1.
- 8. Выходим из программы.

СКРИНШОТЫ РАБОТЫ ПРОГРАММЫ НА КОНТРОЛЬНЫХ ПРИМЕРАХ

После запуска программы на экране появляется консоль, в которую выводится меню, что показано на рисунке 2.

1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти

Рисунок 2 – Запуск программы и начальное меню

Необходимо выбрать пункт меню с созданием массивам. Для этого нужно ввести «1» и нажать клавишу Enter. Программа предложит ввести размер массива. Вводится размер массива — целое положительное число и нажать клавишу Enter. Чтобы заполнить массив числами с клавиатуры, нужно ввести «2» и нажать клавишу Enter, программа попросит ввести числа через пробел и нажать клавишу Enter. На рисунке 3 показан ввод размера и чисел из контрольного примера.

```
Выберите: 2
Введите 10 элементов массива через пробел
1 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 0 0
Массив заполнен
```

Рисунок 3 – Ввод массива из контрольного примера

Чтобы вывести массив на экран, введём «4» и нажмём клавишу Enter. В консоли появится массив с введёнными на предыдущем шаге элементы (рисунок 4).

```
Выберите: 4
Массив: 1 1+1i 2+2i 3+3i 4+4i 5+5i 6+6i 7+7i 8+8i 0
```

Рисунок 4 – Вывод массива на экран

Изменим размер массива. Для этого введём «3» и нажмём клавишу Enter. Программа запросит новый размер. Введем 9. На рисунке 5 показаны результаты работы программы.

```
Выберите: 3
Введите новую длину массива: 9
1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти
Выберите: 4
Массив: 1 1+1i 2+2i 3+3i 4+4i 5+5i 6+6i 7+7i 8+8i
```

Рисунок 5 – Изменение размера массива

Теперь посчитаем среднее значение и СКО элементов. Чтобы это сделать, необходимо ввести «5» и нажать клавишу Enter. На экране появится результат вычислений среднего значения. Затем необходимо ввести «6» и нажать клавишу Enter. На экране появится результат вычислений СКО (рисунок 6).

```
Выберите: 5
Среднее значение: 4.11111+4i
1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти
Выберите: 6
СКО:-2.55879+2.73499i
```

Рисунок 6 – Вычисление среднего значения и СКО

Чтобы отсортировать массив, необходимо ввести «7» и нажать клавишу Enter. На экране появится меню выбора сортировки. Для сортировки по возрастанию необходимо нажать клавиши «1» и Enter, по убыванию – «2» и Enter. А затем вывести массив. На рисунках 7 и 8 показан результат работы программы.

```
Выберите: 7
Сортировка:
1. По возрастанию
2. По убыванию
Сортировка завершена
1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти
Выберите: 4
Массив: 1 1+1i 2+2i 3+3i 4+4i 5+5i 6+6i 7+7i 8+8i
```

Рисунок 7 – Сортировка по возрастанию

```
Выберите: 7
Сортировка:
1. По возрастанию
2. По убыванию
Сортировка завершена
1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти
Выберите: 4
Массив: 8+8i 7+7i 6+6i 5+5i 4+4i 3+3i 2+2i 1+1i 1
```

Рисунок 8 – Сортировка по убыванию

Далее изменим элемент с индексом 0 на 100 и выведем результат. Для этого нажмем «8» и Enter. Введем индекс элемента, который нужно изменить, а затем новое значение. Результат работы программы показан на рисунке 9.

```
Выберите: 8
Введите
Индекс элемента: 0
Новое значение: 100 0
Значение элемента заменено
1. Создать массив
2. Заполнить массив
3. Изменить размерность массива
4. Вывести элементы массива
5. Посчитать среднее
6. Посчитать СКО
7. Отсортировать
8. Изменить элемент
0. Выйти
Выберите: 4
Массив: 100 7+7i 6+6i 5+5i 4+4i 3+3i 2+2i 1+1i 1
```

Рисунок 9 – Изменение элемента

Наконец, чтобы выйти из программы, нужно ввести «0» и нажать клавишу Enter. Далее можно нажать на любую кнопку, и программа автоматически закроется.

ВЫВОДЫ ПО ВЫПОЛНЕНИЮ РАБОТЫ

В рамках данной практической работы была реализована и отлажена программа, предназначенная для работы с массивом произвольного типа данных. С её помощью можно создать массив на выбранное количество элементов, заполнить массив, заменить значения элементов, изменить размер массива, посчитать среднее значение и СКО элементов, вывести массив в консоль. Также был разработан контрольный пример для проведения проверки, с чем программа справилась успешно.