MACHINE LEARNING MEI/1

University of Beira Interior, Department of Informatics Hugo Pedro Proença, hugomcp@di.ubi.pt, 2018/2019

Unsupervised Learning

- This concept is associated to learning without a "supervisor"
 - It also known as self-organization, or cluster analysis
- The basic idea is that, instead of attempting to mimic the behavior of the supervisor, to identify commonalities in the data

• The notion of "cluster" cannot be objectively defined, which justifies different clustering algorithms.

Unsupervised Learning

- There are different families of methods to perform clustering:
 - Connectivity models, in which models are built based on distance connectivity
 - Hierarchical clustering
 - Centroid models, that represent clusters by mean vectors (i.e., centroids)
 - K-means
 - **Distribution** models, where clusters are modelled according to statistical distributions
 - DBSCAN
 - Neural models, where networks implement a form of PCA that finds appropriate feature subspaces
 - Self-Organizing Map (SOM)

Clusters Evaluation

- Internal Evaluation, when the model is evaluated based on the data that was clustered itself
 - Davies-Bouldin index: $DB = \frac{1}{N} \sum_{i=1}^{N} \max_{j \neq i} \frac{\sigma_i + \sigma_j}{d(ci, cj)}$

where "c" represents one centroid, " σ " is the average distance of the elements in one cluster to its centroid and "N" is the number of clusters

- External Evaluation, when the model is evaluated based on new data, typically with class labels
 - Purity: $P = \frac{1}{N} \sum_{i=1}^{M} \max_{d \in D} |m \cap d|$

where "M" represents the set of clusters, and "D" is the labeled data

- It is the most used clustering algorithm, due to its effectiveness and easiness of implementation.
 - Aims to partition "n" observations into "k" clusters
 - Each observation belongs to the nearest cluster centroid, which is the prototype of the cluster.
 - This results in a partitioning of the data space into Voronoi cells.
 - A Voronoi diagram is a partitioning of a plane into regions based on distance to points in a subset of the plane.
 - These points (a.k.a. prototypes) determine the shape of the corresponding Voronoi cell.
 - For each prototype there is a corresponding region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells.

- For K-Means, the value of "K" must be given beforehand
 - There are diferente heuristics to automatically find the optimal value of "K", but depend of the specific problema considered
- Having a data set $X: \{x_1, x_2, ..., x_n\}$
- 1. Initialize (randomly) "K" centroids $oldsymbol{\mu}$: $\{oldsymbol{\mu}_1, oldsymbol{\mu}_2, \dots$, $oldsymbol{\mu}_k\}$
- 2. While (\neg stopping_criterium(μ , X))
 - 1. For every x_i : $\mathbf{c}_i = \arg\min_i d(x_i, \mu_i)$ //cluster assignment
 - 2. For every μ_i : $\mu_i = \sum_{j=1}^{n} x_j \mid x_j \text{ assigned to } \mathbf{c}_i \quad \text{// centroid update}$

- **Stopping criteria**. There are a number of diferent possibilities
 - Simplistic: Predefine a number of iterations
 - Might be "too many", or "too few", depending of the complexity of the feature space
 - Elaborate 1: Evaluate clusters **stationarity** and stop when the changes in clusters positions between consecutive iterations is less than a small threshold.
 - Elaborate 2: Evaluate samples assignments and stop when no samples (or a very small number) of samples changes its centroid between consecutive iterations.

Choose the value of "K"

- Elbow method.
- Define a cost function J() and repeat the clustering procedure for a growing number of clusters. Define "K" as the value where the curvature of J() is maximal

Distance Functions

- Different functions can be used, as long as they met the properties of being a "metric"
- A metric on a set X is a function d : $X \times X \rightarrow [0, \infty)$, where for all x , y , z \in X, the following conditions are satisfied:

```
d(x, y) ≥ 0  // non-negativity or separation axiom
d(x, y) = 0 ⇔ x = y  // identity of indiscernibles
d(x, y) = d(y, x)  // symmetry
d(x, z) ≤ d(x, y) + d(y, z)  // triangle inequality
```

• Examples:

• Euclidean distance:
$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum (x_i - y_i)^2}$$

• Manhatan distance:
$$d(\mathbf{x}, \mathbf{y}) = \sum (|xi - yi|)$$

• Chebyshev distance:
$$d(\mathbf{x},\mathbf{y}) = \max |xi - yi|$$

• Consider the following synthetic dataset:

• Random initialization of 2 clusters:

• K-Means: Iteration 1

• K-Means: Iteration 2

• K-Means: Iteration 3

• K-Means: Iteration 4

