

第13讲 放大电路分析

炼江 2023.11.1

增益: 示例

$$R_{i2} = r_b + (r_e + R_4) \cdot (1 + \beta)$$

$$I_B = V_S/R_{i2}$$

$$I_C = \beta I_B = \beta V_S / R_{i2}$$

$$V_{RL} = -(R_3//R_L) \cdot \beta V_S/R_{i2}$$

$$R_{i2} = r_b + (r_e + R_4 / / R_L) \cdot (1 + \beta)$$

$$I_B = U_S/R_{i2}$$

$$I_E = (1+\beta)I_B = (1+\beta)V_S/R_{i2}$$

$$V_{RL} = (R_4//R_L) \cdot (1+\beta)V_S/R_{i2}$$

$$R_{i2} = r_e + r_b / (1 + \beta)$$

$$I_{C} = -\beta V_{S}/R_{i2}(1+\beta)$$

$$V_{RL} = (R_3//R_L)V_S/R_{i2}$$

增益: 定义

$$A_{V} = \frac{V_{out}}{V_{in}}$$

$$A_{I} = \frac{I_{out}}{I_{in}}$$

$$A_{R} = \frac{V_{out}}{I_{in}}$$

$$A_{G} = \frac{I_{out}}{V_{in}}$$

- ❷ 哪种用得多?
- 分什么?主要用 V(t) 为信号→ 电压模电路
- 分什么? 放大器件为压控… 便于后级接受 便于测量 便于分支

电路功耗易控

3 另三种有用么? 有。虽然相对少些...

增益: 定义

中版 $A_{V} = \frac{V_{out}}{V_{in}}$

❷ A_V: 如何好算?

若各处阻抗易估算

→ 循信号路径推算 ...

若各处阻抗不易估算

- → 动态等效电路: 方程组
- → 作图法
- → 仿真 | 数值解法
- → 套用公式

- ❷ A_V: 如何算好?
 - 比较大
 - 对负载不敏感
 - 对源不敏感
 - 用于各种频率
 - 用于较大信号
 - 能效高
 - 比较稳定
 - 准确可靠
 - 可以调节
 - 可以连续调节
 - 可以数字调节
 - 可以自动调节

•••

 R_{o}

 $ightharpoonup R_i$

f_L f_H

失真

対率

根据场景而定

失真

非线性 失真

线性

失真

失真: 线性失真

 \mathbb{W}

无失真

A = 2

无失真

A = 1/2

į

❷ 线性失真的本质?

歧视:选择性区别对待

2 线性失真一定坏?

未必

譬如:滤波器

2 放大器呢?

不同频率 → 不同增益不同频率 → 不同相移

2 一定会线性失真?

若: 单频信号 → 不会

若: 有一定宽度通频带

线性失真

失真: 非线性失真

失真: 非线性失真

- 2 非线性失真的本质?
 - 1. 转移特性具有非线性
 - 2. 信号幅度过大

- → 超出线性动态范围
- ② 如何控制非线性失真?
 - 1. 信号幅度勿过大
 - 2. 设置合适的静态工作点

失真: 图示

两线分离的原因?

直流和交流通路有差异 动态器件的存在

失真和动态范围?

截止区: I_C ≈ 0

饱和区: V_C < V_B

过载区: V_{CE} × I_C 过大

直流负载线

$$I_C \approx (V_{CC} - V_{CE}) / R_2$$

动态范围最大化?

Q的选择

交流负载线

$$\Delta I_{C} = -\Delta V_{CE} / (R_{2} || R_{L})$$

失真: 图示

② 跟 CE 相仿?

负载线一样并不奇怪 振动幅度差别可能很大

4 失真和动态范围?

截止区: I_C ≈ 0

饱和区: V_C < V_B

过载区: V_{CE} × I_C 过大

2 如何定量描述?

直流负载线

V_{CE}+(V_{CC} R₂V_E)_{CE} R₂

交流负载线

 $\Delta I_{C} = -\Delta V_{CE} / (R_{2} || R_{L})$

失真: 定量描述与测量

☑ 与信号的幅度、波形、统计特征有关

测量时 严格限定条件

计算时 基本难以计算

总谐波失真 THD

Total Harmonic Distortion

① 正弦波激励

$$THD =$$

谐波总功率 基波功率

① 便于频谱仪观测

三阶交调 IP3

Third-Order Intercept

- ① 双正弦 f±Δ 输入
- ① 三阶交调量 f±2Δ 达信号功率

摆率 SR

Slew-Rate

① 阶跃 方波激励

$$SR = max \left| \frac{dV_o}{dt} \right|$$

① 便于示波器观测

1dB压缩点 P1dB

1-dB compression point

- ① P。亏损1dB时的输入功率值
- ① 一般会"回退"

×41

郊率

频响

效率: 图示

$V_{CC} \approx V_{CC} \times I_{C} = V_{CC} \times (I_{CQ} + \Delta I_{C})$

BJT $\approx V_{CE} \times I_{C} = (V_{CEQ} + \Delta V_{CE}) \times (I_{CQ} + \Delta I_{C})$

$$\mathbf{R}_{2} = \mathbf{V}_{R2} \times \mathbf{I}_{R2} = (\mathbf{V}_{R2Q} + \Delta \mathbf{V}_{R2}) \times (\mathbf{I}_{R2Q} + \Delta \mathbf{I}_{R2})$$

$$\mathbf{R}_{I} = \mathbf{V}_{RL} \times \mathbf{I}_{RL} = (\mathbf{0} + \Delta \mathbf{V}_{RL}) \times (\mathbf{0} + \Delta \mathbf{I}_{RL})$$

SE.

 $V_{CEQ} \Delta I_{CE}$

效率: 图示

? RL 功率仍可怜?!!

存在改进办法

② C_E 功耗比较特殊

半周期正;半周期负平均功耗为 0

各元件功

$$V_{CC} \approx V_{CC} \times I_{C} = V_{CC} \times (I_{CQ} + \Delta I_{C})$$

BJT
$$\approx V_{CE} \times I_{C} = (V_{CEQ} + \Delta V_{CE}) \times (I_{CQ} + \Delta I_{C})$$

$$\mathbf{R}_{2} = \mathbf{V}_{R2} \times \mathbf{I}_{R2} = (\mathbf{V}_{R2Q} + \Delta \mathbf{V}_{R2}) \times (\mathbf{I}_{R2Q} + \Delta \mathbf{I}_{R2})$$

$$\mathbf{R}_{L} = \mathbf{V}_{RL} \times \mathbf{I}_{RL} = (\mathbf{0} + \Delta \mathbf{V}_{RL}) \times (\mathbf{0} + \Delta \mathbf{I}_{RL})$$

CE

 $V_{CEQ} \Delta I_{CE}$

效率:图示

- 3 哪种信号η最好?
 - 方波?三角波?正弦波?
- η 与信号频率?
 - 非直接关联
- 如何改进η?

降低偏置?但...

办 结 论

- ① $P_{VCC} = V_{CC} \times (I_{CQ} + \Delta I_{C}) \xrightarrow{\text{对称扰动}} \overline{P_{VCC}} = V_{CC} \times I_{CQ}$ 恒定
- ② 负载功耗:信号幅度越大, P_{RL}越大 → P_{RL} 越大
- ③ 效率 $\eta = P_{RL} / P_{VCC}$ 与信号幅度有关 ,也与波形有关

频 响

频率响应: 定义

☑ 不同频率信号增益不同

☑ 绘制 f ~ A(f) 的曲线

- ▶ 一般横轴取对数 log(f)
- ▶ 纵轴可取 20 · log₁₀|A(f)|
- ▶ 后者以 dB 为单位

☑ 主要指标

- ▶ 截止频率: f_L, f_H, 3dB带宽
- ▶ 滚降速度 | 滚降阶次
- ▶相频特性
- ▶ 带内波纹 | 平坦度
- ▶ 极点分布 (?) 稳定性 (?)

3 线性失真出现的条件?

多个频率分量 + 落入不同区域

频响

频响: f →0 和 f →∞

② f → 0 时,能放大么?

不能

Z_{CB}, Z_{CC} → ∞, 信号断路

→ 交流耦合的肯定都不能

Z_{CE} → ∞,增益大幅减小

→ 直流耦合的要看情况

不能 不存在高通放大器

器件响应不可能无限快

- 载流子具有惯性
- 輸运等过程需要时间
- ▶ PN结,MOS等结构存在电容效应

频响: BJT 高频模型

☑ 混合 π 形模型 vs T 形模型

- ▶ 在 r_{CE} 较大的假设条件下
- ト等效变换: $r_e = r_x = r_{B'E}/(1+β)$

☑ 高频模型:引入PN结电容CB'E和CB'C

- ▶ 均为 10pF 数量级
- ▶ C_{B'F} 略大一些: E 区重掺杂

频响: FET 高频模型

- ☑ 高频模型: 引入极间电容
 - ▶ 在低频仍然适用,但电容几可忽略
- ☑参数:
 - ▶ 典型数量级:

rds

~0.01 ~100K ~10pF ~10pF

~1pF

☑ 绝缘栅型FET: 还存在背栅极与各极之间的电容

频响: 分析方法

☑ 基本方法:将复阻抗代入,求解即可。

- ▶ 先计算 |A|_{max}
- ► \Leftrightarrow $|A(f)| = |A|_{max} / sqrt(2) → <math>f_L$, f_H → BW
- ▶ 若动态元件多 → 系统阶数高 → 求解复杂 + 结果琐碎

OVER

GAME OVER

☑ 复习: 一阶 RC 滤波器

- ▶ 截止频率均为 ω₀ = 1/RC
- ▶ 或: f₀ = 1/2πRC
- ▶ 定义时间常数 τ = 1/RC
- $\rightarrow \omega_0 = 1/\tau$

情况会复杂很多

频响: 讨论(1)

☑ 情形1: 耦合电容

▶ 前级等效: 戴文宁; 后级等效: 负载

$$A(\omega) = \frac{j\omega R_L C}{1 + j\omega (R_o + R_L)C} \cdot \frac{R_o + R_L}{R_o + R_L}$$

☑ 情形2: 负载有串联

$$A(\omega) = \frac{j\omega R_L C}{1 + j\omega (R_o + R_1 + R_L)C}$$

$$\omega_L = 1/(R_o + R_1 + R_L)C$$

$$\tau = (R_o + R_1 + R_L)C$$

☑ 情形3: 负载有并联

$$A(\omega) = \frac{j\omega R_{\#}C}{1 + j\omega(R_o + R_{\#})C}$$

$$\omega_L = 1/(R_o + R_{\sharp})C$$

$$\tau = (R_o + R_{\sharp})C$$

频响: 讨论(2)

☑ 情形4: 旁路电容

▶ **前级等效**: 戴文宁; **后级等效**: 负载

$$A(\omega) = \frac{R_L}{R_L + (1 + j\omega RLC)R_o} \cdot \frac{R_L + R_o}{R_L + R_o}$$

$$= \frac{1}{1 + j\omega(R_L||R_o) C} \cdot \frac{R_L}{R_L + R_o}$$

$$\bullet \ \omega_H = 1/(R_o||R_L)C \quad \tau = (R_o||R_L)C$$

☑ 情形5: 负载串接 或 并联电阻

- ▶ 有相仿结论 ...
- ▶ 均可计算时间常数后快速估计

☑ 情形6: C 串接电阻

$$\frac{R_L + j\omega C R_1 R_L}{R_L + R_o + j\omega C (R_1 R_L + R_o R_L + R_o R_1)}$$

????

规律呢?

高阶的咋办呢?

频响: 宽带放大器通式

$$A(f) = \frac{a_{m}f^{m} + a_{m-1}f^{m-1} + \dots + a_{0}}{b_{n}f^{n} + b_{n-1}f^{n-1} + \dots + b_{0}}$$

多数放大器频响形如:

$$A(f) = \frac{250 \cdot jf}{(1+jf/10)(1+jf/10^5)}$$

$$A(f) = \frac{-50 \cdot f^2}{(1 + jf)(1 + jf / 100)(1 + jf / 10^6)}$$

$$A(f) = \frac{20 \cdot jf}{(1 + jf / 10)(1 + jf / 10^4)^2}$$

$$\mathbf{A}(\mathbf{f}) = \frac{\mathbf{a_m}(\mathbf{jf})^{\mathbf{m}}}{\left(1+\mathbf{j}\,\mathbf{f}/\mathbf{f_{p1}}\right)\left(1+\mathbf{j}\,\mathbf{f}/\mathbf{f_{p2}}\right)....\left(1+\mathbf{j}\,\mathbf{f}/\mathbf{f_{pn}}\right)}$$

❷ 基本特征?

- ☑ 分母均为 (1+jf / f_p) 连乘积
- ☑ 分子均为 jf 幂
- ☑ 已分解因式 ← 高阶手动困难

₹ 有何用途?

- ☑ 快速勾勒频响曲线草图
- ☑ 理解极点的意义
- ☑ 理解主极点的价值 (?)
- ☑ 估算高阶放大器截止频率 (?)

频响:一阶频响的特征

図 幅频近似: 双折线=水平段+滚降段 (20dB/10倍频程)

/dec

☑ 相频近似: 三折线=两水平段 + 过渡段 (45度/10倍频程)

☑ 规律:

$$\omega_0 = 1/RC$$

幅度降 3dB, 相移45度

相频曲线均单调减

通带深处均归一

频响: 宽带放大器拆分

$$\mathbf{A(f)} = \frac{\mathbf{a_m(jf)^m}}{\left(1+\mathbf{j\,f/f_{p1}}\right)\left(1+\mathbf{j\,f/f_{p2}}\right)....\left(1+\mathbf{j\,f/f_{pn}}\right)}$$

一阶高通

 $\frac{j\omega RC}{1+j\omega RC}$

$$\frac{jf/f_L}{1+jf/f_L}$$

m项

n-m项

$$\frac{1}{1+jf/f_H}$$

一阶低通 $\frac{1}{1+j\omega RC}$

☑ 频响拆分为:一阶低通网络和高通网络的乘积

- ▶ 每一阶高通网络:分子1项,分母1项 → f
- ▶每一阶低通网络: 分母1项 → f_H
- ▶ 剩下的常数 A_M: → 中频复数增益
- ② 哪些 f_p 选为 f_L? 哪些选为 f_H? f_L 较小; f_H 较大

频响: 波特图草图

$$\mathbf{A}(\mathbf{f}) = \frac{\mathbf{a_m(jf)^m}}{\left(1 + \mathbf{j}\,\mathbf{f}/\mathbf{f_{p1}}\right)\left(1 + \mathbf{j}\,\mathbf{f}/\mathbf{f_{p2}}\right)....\left(1 + \mathbf{j}\,\mathbf{f}/\mathbf{f_{pn}}\right)}$$

- ☑ 极点排序
- ☑ 绘制 A_M: 增益、相移
- ☑ 高频延伸: 逐 f₁ 引入
 - ▶ 滚降递加 20dB/dec
 - ▶ 相移递加 90度
 - ▶ 极点处相移 45度
 - ▶ 相移斜率 45度/dec
 - ▶ 极点处亏损 3dB
- ☑ 低频延伸:逐f_L引入
 - ▶ 如法炮制 ...

频响: 绘制波特图草图

1. 将极点按升序排列,并标线

- 2. 高通: $\frac{\overline{\text{aid}}}{1}$ $\frac{jf/f_L}{1+jf/f_L}$ 低通 1 $\frac{1}{1+jf/f_H}$
- 4. 配项归一化后,剩余常数为 A_M
- 5. 在幅频和相频图中绘制 A_M
- 6. 从中频向高频逐个绘制低通项
- 7. 从中频向低频逐个绘制高通项
- ❷ 若极点比较靠近,如何? ≈
- 2 多重极点的情形,如何?

滚降加倍; 相移加倍

$$A(f) = \frac{250 \cdot jf}{(1+jf/10)(1+jf/10^5)}$$

$$A(f) = \frac{-50 \cdot f^2}{(1 + jf)(1 + jf / 100)(1 + jf / 10^6)}$$

$$A(f) = \frac{20 \cdot jf}{(1 + jf / 10)(1 + jf / 10^4)^2}$$

频响: 从绘制过程想开去…

- ② 工程中需要推导 A(f) 么? 大多仿真或估算,但考试中也许需要
- (2) 估算的方法呢? 最糙+最快: 带宽增益积(?) 以及...

- ❷ A(f) 中决定带宽的是谁?
 - f_{L1}, f_{H1} 主极点
- ② 能否不推 A(f) 而估 f_{L1}, f_{H1}?
 有相对简便+比较粗略的方法

频响

频响: 低频、高频问题的分离

	父河沿	电阻	晶体管	大电容	小电容	电感
©	X	©	非线性	断		
X	©	©	微扰	1	断	₹
X	©	©	微扰	短	断	•••
X	©	©	微扰降	短短	•	•••
		© X X © X ©	© X © O	○ X○ 非线性X○ 微扰X○ 微扰	 ○ X ○ 非线性 X ○ 微扰 X ○ 微扰 	 ○ X ○ 非线性 ★

频响: 估算主极点…

② 快速估算 f_{L1}, f_{H1}?

f_{L1}与高频小电容无关 f_{H1}与大电容无关

降阶 简化

分析时动态元件数 → 求解问题阶数 ⊗

② 中频增益总是正/负实数么?

原则上是的 ← 正常工程师的设计 所有动态元件 → <u>中频近似</u> 的沉睡

- 额外假设: 极点间相距较远
 - → 主极点: 由"单个"动态元件造成
 - → 主极点附近, "主犯" 开始苏醒 而其他动态元件仍沉睡
 - → 往外走 → 更多动态元件苏醒 其它极点:多个动态元件联合作用形成

估算方法

逐个试探,看谁先睁眼每次试探,均为一阶系统!

频响

频响

频响: 估算 f_L示例

☑ f_L 的候选者:由 C_B, C_C, C_E 担当

- ① C_B外回路电阻 R_S+R_{B1} || R_{B2} || R_{ii}
- ② C_C外回路电阻 R_L+R_C
- ③ C_E外回路电阻 R_E||[r_{EB}+(R_S||R_{B1}||R_{B2})/(1+β)] → τ_E → f_{LE}
- ④ 取 f_{LB}, f_{LC}, f_{LE} 中最大者