Divyadharshini K 241501053

Experiment 10

IMPLEMENTION OF A FUZZY INFERENCE SYSTEM

Aim:

To implement Fuzzy Inference System.

Scenario:

A company wants to automate employee performance evaluation based on two factors:

- 1. Work Experience (Years)
- 2. Project Success Rate (%)

Using Fuzzy Logic, we classify employee performance as Poor, Average, or Excellent, which helps determine bonuses or promotions.

The system follows these rules:

 \subseteq If experience is low AND success rate is low \rightarrow Performance is Poor. \subseteq If experience is medium OR success rate is medium \rightarrow Performance is Average. \subseteq If experience is high AND success rate is high \rightarrow Performance is Excellent.

Procedure:

- 1. Define Input Variables:
 - Experience (0 to 20 years)
 - Success Rate (0 to 100%)
- 2. Define Output Variable:
 - Performance Score (0 to 100%)
- 3. Create Fuzzy Membership Functions for Experience, Success Rate, and Performance:
 - Low, Medium, High (for input variables)
 - Poor, Average, Excellent (for output variable)

4. Define Fuzzy Rules:

- \subseteq IF experience is low AND success rate is low \rightarrow THEN performance is poor. \subseteq IF experience is medium OR success rate is medium \rightarrow THEN performance is average.
- IF experience is high AND success rate is high → THEN performance is excellent.
- 5. Build the Fuzzy Inference System (FIS) using control rules.6. Provide Input Values:
- 70% 7. Perform Fuzzy Computation to determine the final performance score. 8. Output the Performance Score based on fuzzy logic inference.

■ Example: Experience = 12 years, Success Rate =

Program:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

Define fuzzy variables
experience = ctrl.Antecedent(np.arange(0, 21, 1),
'experience') success_rate =
ctrl.Antecedent(np.arange(0, 101, 1), 'success_rate')
performance = ctrl.Consequent(np.arange(0, 101,
1), 'performance')

Define fuzzy membership functions experience['low'] = fuzz.trimf(experience.universe, [0, 0, 10]) experience['medium'] = fuzz.trimf(experience.universe, [5, 10, 15])

```
experience['high'] = fuzz.trimf(experience.universe,
[10, 20, 20])
success rate['low'] = fuzz.trimf(success rate.universe,
[0, 0, 50]) success rate['medium'] =
fuzz.trimf(success_rate.universe, [25, 50, 75])
success_rate['high'] = fuzz.trimf(success_rate.universe,
[50, 100, 100])
performance['poor'] = fuzz.trimf(performance.universe, [0,
0, 50]) performance['average'] =
fuzz.trimf(performance.universe, [25, 50, 75])
performance['excellent'] = fuzz.trimf(performance.universe,
[50, 100, 100])
# Define fuzzy rules
rule1 = ctrl.Rule(experience['low'] & success rate['low'],
performance['poor']) rule2 = ctrl.Rule(experience['medium'] |
success rate['medium'], performance['average']) rule3 =
ctrl.Rule(experience['high'] & success rate['high'],
performance['excellent'])
# Create FIS control system
performance ctrl = ctrl.ControlSystem([rule1, rule2, rule3])
performance sim = ctrl.ControlSystemSimulation(performance ctrl)
# Provide input values
performance sim.input['experience'] = 12 # Example: 12
years of experience performance sim.input['success rate'] =
70 # Example: 70% success rate
# Compute fuzzy inference
performance_sim.compute()
```

Print the output

print(f"Predicted Performance Score: {performance_sim.output['performance']:.2f}")

Output:

