Entonces A es invertible y $A^{-1} = \begin{pmatrix} -\frac{5}{2} & -\frac{3}{2} \\ -2 & -1 \end{pmatrix}$.

EJEMPLO 2.4.3 Una matriz de 2×2 que no es invertible

Sea $A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$. Determine si A es invertible y si es así, calcule su inversa.

SOLUCIÓN
$$ightharpoonup$$
 Si $A^{-1} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ existe, entonces

$$AA^{-1} = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x+2z & y+2w \\ -2x-4z & -2y-4w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Esto conduce al sistema

Si se aplica el mismo procedimiento que en el ejemplo 2.4.1 se puede escribir este sistema en la forma de matriz aumentada $(A \mid I)$ y reducir por renglones:

$$\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ -2 & -4 & | & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 0 & | & 2 & 1 \end{pmatrix}$$

Hasta aquí se puede llegar. El último renglón se lee 0 = 2 o 0 = 1, dependiendo de cuál de los dos sistemas de ecuaciones (en x y z o en y y w) se esté resolviendo. Entonces el sistema (2.4.10) es inconsistente y A no es invertible.

Los últimos dos ejemplos ilustran un procedimiento que siempre funciona cuando se quiere encontrar la inversa de una matriz.

Observación

a) y b) se pueden expresar de otra manera:

Una matriz A de $n \times n$ es invertible si y sólo si su forma escalonada reducida por renglones es la matriz identidad; es decir, si su forma escalonada reducida por renglones tiene n pivotes.

Procedimiento para encontrar la inversa de una matriz cuadrada A

- Paso 1. Se escribe la matriz aumentada (AII).
- Paso 2. Se utiliza la reducción por renglones para poner la matriz A a su forma escalonada reducida por renglones.
- Paso 3. Se decide si A es invertible.
 - a) Si la forma escalonada reducida por renglones de A es la matriz identidad I, entonces A^{-1} es la matriz que se tiene a la derecha de la barra vertical.
 - b) Si la reducción de A conduce a un renglón de ceros a la izquierda de la barra vertical, entonces A no es invertible.