Migrating Enterprise Applications To the Cloud

Outline

- Background
- Modeling
- Evaluation
- Conclusion

Background(1)

- Cloud Computing is becoming more and more popular
- Cloud Computing reduce the cost of IT infrastructures

Users purchase On-Demand Resources

Background(2)

- Characteristics of enterprise applications
 - Typically, three functional tiers:
 - A front-end(FE) tier (e.g. web server)
 - A business-logic(BL) tier
 - A back-end(BE) tier (e.g. databases)
 - Users
 - Internal or external users
 - Security policy
 - Access Control Lists(ACLs) are widely used to ensure security

Background(3)

- In a recent survey of data center managers, over 72% of respondents were considering or using public cloud computing.
- What are concerns of data center managers?
 - Performance
 - Little is known about the performance of app in the cloud
 - Benefits of Cloud
 - Compared with their own local servers, the fee of cloud is cheaper?
 - Privacy & Security
 - Some sensitive data cannot be migrated to the cloud (e.g. information of credit card)

Background(4)

- Thus, Hybrid cloud architecture is an option
- Issues in migrating enterprise
 - Migrating the entire application to the cloud will result in higher response time to internal users.

 From Privacy perspective, enterprises may not move sensitive data to cloud

How to solve this problem?

- There are two respects:
 - Migration of components *
 - Decide which one will be moved to the cloud
 - Migration of ACL
 - To guarantee that the security policies will not be changed

Modeling(1)

The application structure can be described as a graph:

$$G = (V, E)$$
. Let $V = \{C_i\}_{i=1}^m \cup \{I, O\}$.

Each *Ci* is modeled as consisting of *Ni* servers. So the problem is decide how many servers will be migrated to the cloud for each *Ci*

And the goal is to determine a migration strategy M:

 \max Benefits(M) - InternetCosts(M)

subject to Policy Constraints P

Constraints on DelayIncrease(M)

Flow Balance Equations

Modeling(2)

Flow balance equations

Modeling(3)

Flexible routing approach:

 $f_i = \frac{n_i}{N_i}$ (f_i denotes the fraction of servers to migrate).

$$T_{i,j}(1-f_i) = T'_{iL,jL} + T'_{iL,jR}$$

$$T_{i,j}(f_i) = T'_{iR,jL} + T'_{iR,jR}$$

$$T_{i,j}(1-f_j) = T'_{iL,jL} + T'_{iR,jL}$$

$$T_{i,j}(f_j) = T'_{iL,jR} + T'_{iR,jR}$$

$$T'_{iL,jL}, T'_{iL,jR}, T'_{iR,jL}, T'_{iR,jR} \ge 0$$

Independent routing approach:

Let
$$f(i, A) = \frac{n_i}{N_i}$$
 if $A = R$ and $\frac{N_i - n_i}{N_i}$ if $A = L$.
$$T'_{iA, jB} = T_{i, j} f(i, A) f(j, B)$$

Modeling(4)

Internet communication costs:

$$\operatorname{Cost}_{L,I}(\operatorname{Tr}'_{L,I} - \operatorname{Tr}_{L,I}) + \operatorname{Cost}_{R,I} \operatorname{Tr}'_{R,I}$$

where $Cost_{L,I}$ and $Cost_{R,I}$ are respectively the per-unit Internet communication cost of traffic from the local and cloud data centers, $Tr'_{L,I}$ ($Tr_{L,I}$) and $Tr'_{R,I}$ respectively denote the traffic from the local data center and the cloud to the Internet after (before) migration.

Modeling(5)

Mean delay of transactions:

The delay for each request before(after) migration:

$$E[D] = \sum_{i \in V} E\left[\chi_i D_i\right] + \sum_{e=(i,j)\in E} \left(\frac{T_{i,j}}{t} E\left[D_e\right]\right)$$

$$E[D'] = \sum_{i \in V'} E\left[\chi_i' D_i'\right] + \sum_{e=(i,j) \in E} \left(\frac{T_{i,j}'}{t} E\left[D_e'\right]\right)$$

The increase in mean delay:

$$\sum_{e=(i,j)\in E'} \left(\frac{T'_{ij}}{t} E\left[D'_e\right] \right) - \sum_{e=(i,j)\in E} \left(\frac{T_{ij}}{t} E\left[D_e\right] \right).$$

Modeling(6)

- There are two kinds of components:
 - 1. compute-intensive
 - 2. storage-intensive
- So the benefits is:

$$B_c M_c + B_s M_s$$
.

Modeling(7)

- Solve the optimization problem
 - If the flexible routing approach and constraints of mean delay are used, the problem becomes an integer programming problem. Tools like CPLEX can solve it.
 - If the independent routing approach or constraints of variance is considered, the problem becomes a non-linear problem. Tools like BARON can do it.

Evaluation(1)

Figure 8: Data flow of thumbnail application.

Evaluation(2)

- Cloud
 - Azure
- Deriving model parameters
 - Measure the mean of delay, service time, transfer time
- Migration benefits and communication costs:
 - Assume migrating servers to the cloud can reduce costs by a factor 7 for compute-class servers, and 5 for storage-class servers.

Evaluation(3)

D	V	125%	150%	175%	no bound
]	105%	1/1/1, \$20024	1/1/1, \$20024	1/1/1, \$20024	1/1/1, \$20024
1	110%	1/1/1, \$20024	1/3/2, \$36367	1/2/2, \$36836	2/2/2, \$38413
1	150%	1/1/1, \$20024	1/3/3, \$53647	1/3/3, \$53647	1/3/3, \$53647
2	200%	1/1/1, \$20024	1/3/3, \$53647	2/3/3, \$55224	3/3/3, \$56801

Evaluation(4)

Evaluation(5)

Another example:

Figure 10: The ERP application in a large university.

Evaluation(6)

Delay	Yearly	Recommended Components to Migrate		
Bound	Savings	FE	BL	BE
115%	\$14,102	$FE_1(1)$	$BL_1(2)$, BL_2 , BL_4 , BL_5	_
w/ policy				
115%	\$37,769	$FE_1(1), FE_2$	$BL_1(1), BL_2, BL_3,$	BE_2 , BE_3 , BE_4 , BE_5
			BL_4 , BL_5	
110%	\$27,789	FE_2	$BL_2(1), BL_3, BL_5$	BE_2, BE_3, BE_5
120%	\$43,592	$FE_1(1), FE_2$	$BL_1(2)$, BL_2 , BL_3 , BL_5	BE_1 , BE_2 , BE_3 , BE_5
130%	\$57,763	migrate all components in full		

Table 2: Recommendations of the planned approach for ERP application.

Conclusion(1)

- The potential benefits of hybrid cloud deployments of enterprise applications;
- Constraints of Delay & Security Policy will limit the benefits of Migration.
- This paper does not consider the cost of migration.

Reference

[1] M.Hajjat, X.Sun, Y.-W.E.Sung, D.Maltz, S.Rao, K, Sripanidkulchai, and M. Tawarmalani . Cloudward Bound: Planning for beneficial Migration of Enterprise Applications to the Cloud. In Proc SIGCOMM, 2010

Thanks!