Module 01 Languages and Grammar

CS 332 Organization of Programming Languages Embry-Riddle Aeronautical University Daytona Beach, FL

Mo1 Outcomes

At the end of this module you should be able to ...

- 1. State the definition of a symbol, alphabet, string, and language.
- 2. Justify whether a given example is or is not a language.
- 3. State the definition of a grammar.
- 4. Given a description of a language, write its Backus-Naur Form (BNF) or Extended BNF (EBNF).
- 5. State the four levels of the Chomsky Hierarchy.
- 6. State the properties required of a grammar for its language to be in any Chomsky level.
- 7. Given a grammar, place it in the Chomsky hierarchy with justification
- 8. Given a BNF grammar and a string, provide a derivation for the string.
- 9. Use regular expressions to define a language.

Mo1 Language Definition

- A symbol is a single, distinct mark or character.
 - Typically use 1 and 0, or a, b, and c in formal languages.
 - Any symbol applies: λ , β , \checkmark , \odot , \gg , and so on ...
- Symbols have no inherent meaning. We supply meaning.
- We've define in terms of written symbols others acceptable?
 - Spoken words and other sounds (clapping)
 - Gestures, facial expressions, winks, nods, etc
 - Rationale for acceptance: All of these can be transcribed to written symbols

Mo1 Language Definition

- An alphabet, Σ , is a finite set of symbols.
 - $|\Sigma|$ represents the size of alphabet Σ .
 - If $\Sigma = \{a, b, c\}$, then $|\Sigma| = 3$.
- A string, u, is a sequence of symbols from some Σ .
 - Typically use u, v, and w.
 - λ represents the empty string: a string of length zero having no symbols.
 - The length of string u, |u|, is the number of symbols that make it up.
 - If u = abbca, then |u| = 5; $|\lambda| = 0$.
 - Σ^* represents all possible strings that can be made from Σ .

Note the use of set notation. Not an accident! Sets underlie everything.

Mo1 Language Definition

- A symbol is a single, distinct mark or character used as a representation.
- An alphabet, Σ , is a finite set of symbols.
- A string, u, is a sequence of symbols from some Σ .
- A language, L, is a (potentially infinite) set of strings.
 - Languages have no inherent meaning.
 - Languages are not about communication. Some are used for communication.
 - Languages are not about programming. Some are used for programming.

Mo1 Grammar Definition

- A grammar, G, supplies the rules by which a language is constructed
 - We're assuming there is a pattern or structure to the language
 - A set of random strings is still a language
 - Therefore, grammars make sense only for non-random languages
- Backus-Naur Form (BNF) is widely used, universally in Comp Sci
 - BNF uses <u>production rules</u> composed of a left hand side (LHS), and a right hand side (RHS), each containing symbols.
 - The symbols on left hand side (LHS) can be replaced by those on the right hand side (RHS).
 - Production rules take the form LHS \rightarrow RHS (some authors use LHS := RHS).
 - Example: If you have a rule that says A → aCa, and the string abAca, you can use the rule to replace the "A" in the string with "aCa" result is abaCaca (underlined for visibility).

Mo1 BNF Grammars

- Elements of a BNF grammar. BNF grammars contain
 - Terminals: Symbols in the alphabet, Σ , being used. Convention is lower case.
 - Non-Terminals: Intermediary symbols used in G. Convention is upper case.
 - Start symbol: A special non-terminal indicating the first rule that must be used. This course will use S (Note: Capital S because it's a non-terminal.)
- Sample grammar, G_0 , with $\Sigma = \{a, b\}$
 - 1. $S \rightarrow AB$
 - 2. $A \rightarrow aA$
 - 3. $A \rightarrow a$
 - 4. $B \rightarrow bB$
 - 5. $B \rightarrow b$

What strings does G_o produce? Strings having at least one a, and at least one b, where all a's precede all b's.

That's the language defined by G_o.

Mo1 Derivation (using the grammar)

• Sample grammar, G_0 , with $\Sigma = \{a, b\}$

- 1. $S \rightarrow AB$
- 2. $A \rightarrow aA$
- 3. $A \rightarrow a$
- 4. $B \rightarrow bB$
- 5. $B \rightarrow b$

Derive u = abbb		
String	Rule	
S		
AB	1	
AbB	4	
AbbB	4	
Abbb	5	
abbb	3	

Derive u = abbb		
String	Rule	
S		
AB	1	
аВ	3	
abB	4	
abbB	4	
abbb	5	

Derive u = aabb		
String	Rule	
S		
AB	1	
aAB	2	
aaB	3	
aabB	4	
aabb	5	

Two derivations for the same string. That's typical.

Mo1 Example #1

- Let $\Sigma = \{a, b\}$
- Write a grammar for language L1, composed of strings ending in bb.
- Provide a derivation for string bb.
- Provide a derivation for string ababbb.

Mo1 Example Solution

- Let $\Sigma = \{a, b\}$
- Write a grammar for language L₁, composed of strings ending in bb.
- Provide a derivation for string bb.
- Provide a derivation for string ababbb.
- Solution G₁
 - 1. $S \rightarrow A$
 - 2. $A \rightarrow aA$
 - 3. $A \rightarrow bA$
 - 4. $A \rightarrow bb$

Is this the only grammar for L₁?

Derive u = bb	
String	Rule
S	
A	1
bb	4

Derive u = ababbb		
String	Rule	
S		
Α	1	
aA	2	
abA	3	
abaA	2	
ababA	3	
ababbb	4	

Are these the only derivations for these strings?

Mo1 The Chomsky Hierarchy

- Noam Chomsky, a linguist [1], created a hierarchy of languages that became the foundation of formal language theory
 - This grouping of languages is directly tied to theoretical models of computation.
 - This grouping of languages is directly tied to theoretical limits of computation.
 - This grouping of languages is directly tied to programming languages and compilers
 - This grouping of languages is directly tied to data structures and algorithms

Mo1 The Chomsky Hierarchy

- For now, define the Chomsky Hierarchy in terms of grammars
- Will describe restrictions on the Left Hand Side (LHS) and Right Hand Side (RHS)
- "Unrestricted" is sometimes called "recursively enumerable" but not covering that in this course it would take several weeks.

Туре	Name	Characteristics of Grammar
Туре 3	Regular	LHS must contain exactly one non-terminal. Number of terminals in RHS cannot decrease. Strings derived from right to left, or left to right.
Type 2	Context Free	LHS must contain exactly one non-terminal. Number of terminals in RHS cannot decrease.
Type 1	Context Sensitive	LHS may have terminals and non-terminals. Number of terminals in RHS cannot decrease.
Type o	Unrestricted	No restrictions

Regular Expressions Introduced

- Our definitions for example languages have been informal so far.
- This is a course about formal systems and formal notation.
- Every regular language can be expressed by a regular expression.
 - We'll borrow similar notation for context free languages.
- Trivia: All languages of finite size are regular, because you can always brute force a FSM to recognize it. The FSM might be huge, but it's still finite!

Regular Expression (Informally) Defined

- The set of regular expressions, RE, is recursively defined as follows:
 - λ is in RE.
 - Any single symbol is in RE. True for all symbols in the alphabet, Σ .
 - Concatenation: If u and v are in RE, the uv is in RE.
 - Repetition: If u is in RE, then zero or more copies of u is also in RE. This is written as u*, where the * is known as the Kleene star.
 - Repetition: If u is in RE, then one or more copies of u is also in RE. This is written as u⁺.
 - The "or" operator: if u and v are in RE, then the choice of u or v is in RE. This is written as (u + v)

Regular Expression (RE) (Informally) Defined

- What does the previous slide mean?
 - λ is a regular expression.
 - Any single symbol in Σ is a RE.
 - if $\Sigma = \{a, b\}$, then a is a regular expression and so is b.
 - Concatenation: If u and v are in RE, the uv is in RE.
 - if abba and bbab are regular expressions (they are), then so is abbabbab.
 - Repetition: If u is in RE, then zero or more copies of u is also in RE.
 - This is written as u*, where the * is known as the Kleene star.
 - a* means zero or more copies of a, and (abb)* means zero or more copies of abb.
 - Repetition: If u is in RE, then one or more copies of u is also in RE.
 - This is written as u⁺.
 - a^+ means one or more copies of a, and $(abb)^+$ means one or more copies of abb.
 - The "or" operator: if u and v are in RE, then the choice of u or v is in RE.
 - This is written as (u + v) an unfortunate overloading of the + operator.
 - (a + b) means you get to choose a or b.
 - (a + b)* means multiple choices of a or b -- or any string you want.

Regular Expression (Formally) Defined

• The set of regular expressions, RE, is recursively defined as follows:

$$RE = \begin{cases} \lambda \\ a, \forall a \in \Sigma \\ uv, \forall u, v \in RE \\ u*, \forall u \in RE \\ u^+, \forall u \in RE \\ u+v, \forall u, v \in RE \end{cases}$$

Regular Expression Examples

- Let $\Sigma = \{a, b\}$ (For all examples unless stated otherwise)
- The set of all possible strings for an alphabet is written as Σ^* .
 - A very boring language.
- Let L_1 = All strings having 1 or more 'a.'
 - $RE_1 = b*a(a+b)*$
 - "Zero or more *b*'s followed by at least one *a*, followed by any sequence of *a*'s and *b*'s."
- Let L_2 = All strings that start with two 'a's.
 - $RE_1 = aa(a+b)*$
 - "Two a's followed by any sequence of a's and b's."

Regular Expression Examples

- Let $\Sigma = \{a, b\}$ (For all examples unless stated otherwise)
- Let L_3 = Strings that have an even number of 'b's (including λ).
 - $RE_3 = (a*ba*b)*a*$ -- the *b*'s always show up in groups of two.
- Let L_4 = All strings where no two 'a's are adjacent, including λ .
 - $RE_4 = b^* (ab^+ab^+)^* b^*$
- Let L_5 = All strings with at least three 'b's.
 - $RE_5 = (a*ba*ba*b) (a+b)*$ -- the + ensures that at least three *b*'s are present.