FIITJEE ALL INDIA TEST SERIES

JEE (Advanced)-2025 OPEN TEST – I

PAPER -1 **TEST DATE: 09-02-2025**

ANSWERS, HINTS & SOLUTIONS

Physics

PART – I

SECTION - A

1. Situation before and after collision is shown in figure. Sol.

Before collision the speed of satellite is $U_0 = \sqrt{\frac{GM}{R}}$

Consider the meteorite collide with speed u and after collision the combined mass 11m moves at an angle θ with the orbit.

Apply LCM mu = $11\text{mV}^1 \sin \theta$ ----(1)

and
$$10mU_0 = 11mV^1 \cos \theta$$
 -----(2)

Apply LCAM, $11m(V^1\cos\theta)R = 11mV_p(R/2)$ ----(3) here V_p is speed at perigee.

$$Apply \ LCE, \ -\frac{GM11m}{R} + \frac{1}{2}11mV^{1^2} = -\frac{GM11m}{R/2} + \frac{1}{2}11mV_p^2 ----(4)$$

Solving
$$U = \sqrt{\frac{58GM}{R}}$$

Sol.
$$W_{\text{ext}} = \left(\frac{\sigma}{2\epsilon_0}\right)(\lambda\ell)\left(\frac{\ell}{2}\right)\cos 180^\circ = -\frac{\lambda\sigma_0\ell^2}{4\epsilon_0}$$
 (Motion is under constant force and point of application

of force will be at mid point of line charges during the process)

$$V_A - V_B = \frac{\sigma \ell}{2\epsilon_0}$$

Sol.
$$Z_1 = R_1 + X_L i = 8 + 6i$$

 $Z_2 = R_2 - X_C i = 3 - 4i$

$$Z_2 = R_2 - X_C i = 3 - 4$$

Now,
$$\frac{1}{Z'} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

...(i)

...(i)

...(ii)

$$\frac{1}{Z'} = \frac{1}{(8+6i)} + \frac{1}{(3-4i)}$$

$$= \frac{(8-6i)}{100} + \frac{(3+4i)}{25} = \frac{20+10i}{100}$$

$$\frac{1}{Z'} = \frac{(2+i)}{10} \Rightarrow Z' = \frac{10}{(2+i)}$$

$$Z' = 2(2-i)$$

$$Z' = (4 - 2i)$$

$$Z_3 = R_3 + X'_L i = (2+10i)$$
 ...(ii)

Hence, net impedance of the circuit is

$$Z = Z' + Z_3 = (4 - 2i) + (2 + 10i)$$

$$Z = 6 + 8i$$

$$|Z| = \sqrt{(6)^2 + (8)^2} = 10 \Omega$$

Hence,
$$I = \frac{90}{|Z|} = \frac{90}{10} = 9$$
 amp

Sol.
$$E_1 = \frac{hC}{\lambda_1} = \frac{1240}{310} = 4 \text{ eV}$$

$$E_2 = \frac{hC}{\lambda_2} = \frac{1240}{400} = 3.1 \text{ eV}$$

Also,
$$\frac{k_1}{k_2} = 4 \Rightarrow k_1 = 4k_2$$

Now,
$$E_1 = k_1 + \phi$$

$$k_1 + \phi = 4$$

$$\mathsf{E}_2 = \mathsf{k}_2 + \mathsf{\phi}$$

$$k_2 + \phi = 3.1$$

Solving (i) and (ii), we get

$$k_1 - k_2 = 0.9$$

$$4k_2 - k_2 = 0.9$$

$$3k_2 = 0.9$$

$$\Rightarrow$$
 k₂ = 0.3 eV

$$k_1 = 1.2 \text{ eV}$$

from equation (i),

$$k_1 + \phi = 4$$

$$\phi = 4 - k_1 = 4 - 1.2 = 2.8 \text{ eV}$$

 $\phi = 2.8 \text{ eV}$

A, C, D

Sol. At open end pressure amplitude is zero while at closed end pressure amplitude is maximum.

6. A, C

Sol.
$$zero error = -1.25 mm$$

Reading =
$$18 + 0.34 + 1.25 = 19.59$$
 mm

7. A, B, C, D

Sol. (A)
$$\frac{\lambda}{2} = 97 + 0.6D$$

...(i)

...(ii)

 $\lambda = \frac{320}{160} = 2m = 200 \, \text{cm}$

From (i) and (ii)

$$\frac{200}{2} = 97 + 0.6D$$

D = 5 cm

(B)
$$\frac{\lambda}{4} = 97 + 0.3D$$

$$\lambda = (97 \times 4 + 1.2D)$$

$$\lambda = (97 \times 4 + 1.2 \times 5) = 394 \, \text{cm}$$

$$f = \frac{v}{\lambda} = \frac{32000}{394} = 81.22 Hz$$

(C)
$$\frac{3\lambda}{4} = 97 + 0.3D$$

$$= 97 + (0.3)(5)$$

$$\lambda = (98.5) \left(\frac{14}{3}\right) = \frac{394}{3}$$

$$f = \frac{v}{\lambda} = \frac{32000 \times 3}{394} = 243.65 \, Hz$$

(D)
$$\frac{5\lambda}{2} = 97 + 0.6D$$

8.

$$z_1 = 10 + 10i = 10(1 + i)$$

$$Z_2 = 20 - 20i = 20(1 - i)$$

$$z_1 = 10 + 10i = 10(1 + i)$$

$$Z_2 = 20 - 20i = 20(1 - i)$$

$$\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2} = \frac{1}{10(1+i)} + \frac{1}{20(1-i)}$$

$$\frac{1}{z} = \left(\frac{1-i}{20}\right) + \left(\frac{1+i}{40}\right) = \left(\frac{3-i}{40}\right)$$

$$z = \frac{40}{(3-i)} \times \frac{(3+i)}{(3+i)} = 4(3+i)$$

$$I_{rms} = \frac{\varepsilon_{rms}}{|z|} = \frac{40\sqrt{2}}{4\sqrt{10}} = 2\sqrt{5}$$
 amp

(Q)
$$z_1 = 20(1-i)$$

 $Z_2 = 20(1+i)$

$$\frac{1}{z'} = \frac{1}{z_1} + \frac{1}{z_2} = \frac{1}{20(1-i)} + \frac{1}{20(1+i)}$$

$$\frac{1}{z'} = \frac{(1+i)}{40} + \frac{(1-i)}{40} = \frac{1}{20}$$

$$z' = 20 \Omega$$

$$z = 20 + 15i$$

$$\Rightarrow I_{rms} = \frac{\varepsilon_{rms}}{|z|} = \frac{25\sqrt{2}}{25} = \sqrt{2} \text{ amp}$$
(R)
$$x = (x_L - x_C) = 40 - 20 = 20 \Omega$$

$$\frac{1}{z'} = \frac{1}{20} + \frac{1}{20i} = \frac{1 - i}{20}$$

$$z' = \frac{20}{1 - i} = 10(1 + i)$$

$$z = 10 + 10(1 + i) = 10(2 + i)$$

$$\Rightarrow I_{rms} = \frac{\varepsilon_{rms}}{|z|} = \frac{20\sqrt{10}}{10\sqrt{5}} = 2\sqrt{2} \text{ amp}$$
(S)
$$\frac{1}{z'} = \frac{1}{10(1 + i)} + \frac{1}{10(1 - i)} = \frac{(1 - i)}{20} + \frac{(1 + i)}{20} = \frac{1}{10}$$

$$z' = 10\Omega$$

$$\Rightarrow z = 10 + (20 + 40i) = 30 + 40i$$

$$I_{rms} = \frac{\varepsilon_{rms}}{|z|} = \frac{100\sqrt{10}}{50} = 2\sqrt{10} \text{ amp}$$

9. D

Sol.
$$A \rightarrow B$$

$$TP^2 = constant$$

$$PV^{1/3} = constant$$

$$W_{A \rightarrow B} = \frac{P_1V_1 - P_2V_2}{x - 1} = \frac{nR(T_1 - T_2)}{x - 1} = -\frac{9}{2}nRT_0$$

$$\Delta U_{A \rightarrow B} = -3nRT_0$$

$$\Delta Q_{A \rightarrow B} = -\frac{15}{2}nRT_0$$

$$C \rightarrow A$$

$$TP^4 = constant$$

$$PV^{1/5} = constant$$

$$V_{C \rightarrow A} = \frac{nR(T_1 - T_2)}{x - 1} = \frac{15}{4}nRT_0$$

$$\Delta U_{C \rightarrow A} = nR(T_A - T_C) > 0$$

$$\Delta Q_{C \rightarrow A} > 0$$

$$B \rightarrow C$$

$$\Delta U = 0$$

$$W_{B \rightarrow C} > 0$$

$$\Delta Q_{B \rightarrow C} > 0$$

10. B
Sol.
$$\tau = \frac{1}{\frac{6 \times 12}{6 + 12} + \frac{18 \times 24}{18 + 24}} = 0.07$$
 \Rightarrow At steady state

$$R_{eq} = \frac{25}{2}$$

Current through battery = 2 ampere Current through inductor = 1/6 ampere

At one time constant

Current through inductor = $0.63 \times \frac{1}{6} = 0.105$ ampere

From KVL, current through $12\Omega = 1.353$ ampere

$$\Rightarrow$$
 For part (iv) after switching

$$\frac{1}{6}L = i_L(L + 2L)$$

$$i_L = \frac{1}{18} = 0.056$$
 ampere

11. С

Sol. (P)
$$v_1 = \frac{4}{3} \times 3 = 4$$

 $v_r = 4 - 3 = 1 \text{ m/s}$

(Q)
$$\frac{dv}{dt} = -\left(\frac{v}{u}\right)^2 \frac{du}{dt}$$
$$\Rightarrow v_1 = 1 \text{ m/s and } v_r = 10 \text{ m/s}$$

(R)
$$v_{l,m} = 4$$

 $\Rightarrow v_{l, g} = 7 \Rightarrow v_r = 8 \text{ m/s}$

(S) final image is at the position of object hence magnification is 1
$$\Rightarrow v_1 = v_0 = 1$$
m/s $\Rightarrow v_r = 0$

SECTION - B

12. In case I: Sol.

$$P - P_0 = \frac{4T}{r}$$

Now radius 'r' increases to '3r' due to charge on the soap bubble $P_1V_1 = P_2V_2$

$$P \frac{4}{3} \pi r^3 = P_2 \frac{4}{3} \pi (3r)^3$$

$$P_2 = \frac{P}{27}$$

$$P_2 + \frac{\sigma_1^2}{2\epsilon_0} - P_0 = \frac{4T}{3r}$$
, where σ_1 is final charge density ($\sigma_1 = \sigma/9$)

$$\frac{P}{27} + \frac{\sigma^2}{162\epsilon_0} - P_0 = \frac{P - P_0}{3}$$

$$\therefore P = \left(\frac{\sigma^2}{48\epsilon_0} - \frac{9}{4}P_0\right)$$

13. 8

Sol. Let S_1^1 and S_2^1 are the points on the wave front where perpendiculars can be drawn from S_1 and S_2 . For central fringe formed at E path difference should be zero.

$$\begin{split} S_2^1 S_2 + (\mu - 1)t + S_2 E &= S_1^1 S_1 + S_1 E \\ (OS_2^1 - OS_2) + (\mu - 1)t + \sqrt{D^2 + d^2} &= (OS_1^1 - OS_1) + D \\ (\mu - 1)t &= (OS_2 - OS_1) - (\sqrt{D^2 + d^2} - D) \\ using binomial approximation \ t &= \frac{31\lambda}{8} \end{split}$$

14.

Sol.
$$d = \frac{\sqrt{15}}{4}r$$

$$v = d\omega$$

$$\omega = \frac{4v}{\sqrt{15}r}$$

 $v_{max} = \omega(r+d)$ $v_{max} = \left(\frac{15 + 4\sqrt{15}}{15}\right)v$

Front view
Point with maximum instantaneous velocity

r

V

Max

Side view

15. 4

Sol.
$$a = \frac{r+0}{2} = \frac{r}{2}$$

Using Kepler's law

$$\frac{\mathsf{T}}{\mathsf{T}_0} = \left(\frac{\mathsf{r}/2}{\mathsf{r}}\right)^{3/2}$$

$$T = \frac{T_0}{2\sqrt{2}}$$

Instantaneous axis of rotation (IAR)

The time taken by the body to fall on the surface of sun,

$$\tau = \frac{T}{2} = \frac{T_0}{4\sqrt{2}}$$

$$\tau = \frac{\mathsf{T}_0}{4\sqrt{2}}$$

Hence, n = 4

16. 480

Sol. Power obtained = 1200 mega watt = $1200 \times 10^6 \times 3600 = 432 \times 10^{10} \text{ J}$ The output energy from the power house

$$E = \frac{(432 \times 10^{10}) \times 100}{20} = 216 \times 10^{11} J$$

Let this energy is obtained from
$$\Delta m \text{ kg}$$

$$\Delta mc^2 = 216 \times 10^{11}$$

$$\Delta m = \frac{216 \times 10^{11}}{9 \times 10^{16}} = 24 \times 10^{-5} \text{ kg}$$

Hence the uranium required
$$m = \frac{3 \times 24 \times 10^{-5}}{1.5 \times 10^{-3}} = 48 \times 10^{-2} kg$$

$$m = 480 g$$

17.

$$Sol. \qquad P_{in} = \frac{4S}{R} + \frac{4S}{2R} = \frac{6S}{R}$$

$$P_{mid} = \frac{4S}{2R} = \frac{2S}{R}$$

as T = constant

$$\frac{P_{\text{in}}}{P_{\text{mid}}}\frac{V_{\text{in}}}{V_{\text{mid}}} = \frac{\mu_{\text{in}}}{\mu_{\text{mid}}} = \frac{3}{7} = y$$

and
$$\frac{P_{\text{in}}}{P_{\text{mid}}} = \frac{\rho_{\text{in}}}{\rho_{\text{mid}}} = 3 = x$$

Chemistry

PART - II

SECTION - A

18. B Sol. Ph OH Ph OH Ph OH Me OH
$$\frac{Ph}{Ph=5}$$
 OH $\frac{Ph}{Ph=5}$ OH $\frac{P$

$$H_{2}(g)+I_{2}(g) \Longrightarrow 2HI(g)$$

$$1 \qquad 1 \qquad 0$$

$$(1-x) \quad (1-x) \qquad 2x$$

mol at eqbm
$$(1-x)$$
 $(1-x)$ 22 eqbm conc $\frac{(1-x)}{x}$ $\frac{(1-x)}{x}$ $\frac{2x}{x}$

Now, equivalents of hypo used = equivalents of I_2 present at equilibrium

$$0.1(10\times1) = (1-x)\times2$$

$$x = 0.5$$

Initial mol

So,
$$K_c = \frac{(1)^2}{(\frac{1}{2}) \times (\frac{1}{2})} = 4$$

So, K_c for the reaction

$$HI(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$$
 will be $\left(\frac{1}{4}\right)^{\frac{1}{2}} = \frac{1}{2} = 0.5$

Hence, (B)

- 20. A
- Sol. (A) is yellow while (B), (C) and (D) all are blue.
- 21. E
- Sol. A minimum of 6-H-atoms should be present in the sample, so that all the 10 spectral lines can be observed.
- 22. A, C, D
- Sol. (A) $\Delta S_{X\to Z} = \frac{q}{T} = 0$ (reversible adiabatic change)
 - (B) $\Delta S_{X \to Z \to Y} = \Delta S_{X \to Y} = 2.303 \times 5 \times 8.314 \log_{10} \frac{100}{10} = 95.7 \text{ JK}^{-1}$
 - (because 'S' is a state function).
 - (C) $\Delta S_{X\to Y} = 95.7 \text{ JK}^{-1} (\text{Reversible isothermal expansion})$

(D) Since 'S' is a state function, so
$$\Delta S_{X\to Y} = \Delta S_{X\to Z} + \Delta S_{Z\to Y} = 95.7 \text{ JK}^{-1}$$

= $0 + \Delta S_{Z\to Y} = 95.7$
So, A, C and D are correct.

23. A, B, C Sol.

(i) $PO_4^{3-} + H^+ \longrightarrow HPO_4^{2-}$

5 m.mol. 0 after neutralization

So, $pH = pK_{a_3} = 13$ (Buffer)

$$PO_4^{3-} + H^+ \longrightarrow HPO_4^{2-}$$

10 (ii) m.mol. 0 10 after neutralization

So, pH = $\frac{8+13}{2}$ = 10.5 (Amphiprotic anion)

$$PO_4^{3-} + H^+ \longrightarrow HPO_4^{2-}$$

(iii) m.mol. 15 0 after neutralization 10

$$HPO_4^{2-} + H^+ \longrightarrow H_2PO_4^-$$

5

0 5

So, $pH = pK_{a_2} = 8$ (Buffer)

$$PO_4^{3-} + H^+ \longrightarrow HPO_4^{2-}$$

10 20 (iv) m.mol. 0 10 10 after neutralization

$$HPO_4^{2-} + H^+ \longrightarrow H_2PO_4^-$$

10 10 0 m.mol. 10 after neutralization

So, $pH = pK_{a_3} = 5.5$ (Amphiprotic anion)

B, C, D 24. Sol. (A)

$$H_3C$$
 CHO
 CH_3
 CHO
 CHO
 CHO
 CHO
 CHO
 CHO

(B)
$$O \subset CH_3$$
 $\longrightarrow O \subset CH_3$ $O \subset$

(Major product)

25. B
Sol.
$$\underline{P}_4 + O_2 (Excess) \longrightarrow \underline{P}_4 O_{10} \xrightarrow{6PCl_5} \underline{P}OCl_3$$
 $\underline{P}_4 (Excess) + O_2 \longrightarrow P_4 O_6 \xrightarrow{6PCl_5} \underline{P}OCl_3 + \underline{P}Cl_3$
 $\underline{P}_4 + Conc. HNO_3 \longrightarrow H_3 \underline{P}O_4 \xrightarrow{3PCl_5} \underline{P}OCl_3 + HCl$
 $\underline{P}_4 (White) + \underline{S}O_2Cl_2 \longrightarrow \underline{S}O_2 + PCl_5$
 $\underline{P}Cl_5$
 $\underline{S}OCl_2 + \underline{P}OCl_3$

 $\begin{array}{ll} \textbf{26.} & \textbf{C} \\ \textbf{Sol.} & \textbf{CuSO}_4 + 4\textbf{NH}_3\left(a\textbf{q}.\right) & \longrightarrow \left[\textbf{Cu}\big(\textbf{NH}_3\big)_4\right]^{2+} \rightarrow \textbf{Blue}, \, \textbf{sp}^2\textbf{d}, \, \mu = \sqrt{3}\, \textbf{BM}; \, \textbf{paramagnetic} \\ & \textbf{CoCl}_2 + \textbf{KNO}_2 + \textbf{CH}_3\textbf{COOH} & \xrightarrow{\textbf{pH} > 7} \left[\textbf{Co}\big(\textbf{NO}_2\big)_6\right]^{3-} \rightarrow \textbf{yellow}, \, \textbf{diamagnetic}, \, \left(\textbf{d}^2\textbf{sp}^3\right), \, \mu = 0 \\ & \textbf{CoCl}_2 + \textbf{NH}_4\textbf{SCN} & \longrightarrow \left[\textbf{Co}\big(\textbf{SCN}\big)_4\right]^{2-} \rightarrow \textbf{blue}, \, \textbf{paramagnetic}, \, \mu = 3.87\, \textbf{BM}, \, \textbf{sp}^3 \\ \end{array}$

27. A Sol. (P)
$$+ CH_2(COOEt)_2 \xrightarrow{OH'(excess)} (NH_1O^-) + CH_2(COOEt)_2 \xrightarrow{OH'(excess)} (NH_2O^-) + (NH_4)_2 CO_3 \xrightarrow{\Delta} (NH_2OHeleaded) + CH_2 = CH - C - CH_3 \xrightarrow{(NH_2OHeleaded)} (NH_2OHeleaded) + CH_2 = CH - C - CH_3 \xrightarrow{(NH_2OHeleaded)} (NH_2OHeleaded) + CH_2 = CH - C - CH_3 \xrightarrow{(NH_2OHeleaded)} (NH_2OHeleaded) + CH_2OHeleaded) +$$

28. B
Sol.
$$K_2Cr_2O_7 + 7H_2O_2 + 4KOH \longrightarrow 2K_3CrO_8 + 9H_2O$$

$$K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \longrightarrow 2CrO_5 + K_2SO_4 + 5H_2O$$

$$3K_4\Big[Fe\big(CN\big)_6\Big] + 6H_2SO_4 \xrightarrow{\Delta} 12HCN \uparrow + Fe_2\Big[Fe\big(CN\big)_6\Big] + 6K_2SO_4$$

$$2KMnO_4 + Conc. 2H_2SO_4 (cold) \longrightarrow Mn_2O_7 + 2KHSO_4 + H_2O$$

SECTION - B

29. 10 Sol. Possible isomers are $K_3 [Fe(CN)_6] K_3 [Fe(NC)_6] K_3 [Fe(NC)_5 (NC)]$

$$\begin{split} & \text{K}_{3} \Bigg[\text{Fe(CN)}_{4} \big(\text{NC} \big)_{2} \\ & \text{cis and trans} \Bigg] \qquad & \text{K}_{3} \Bigg[\text{Fe(NC)}_{4} \big(\text{CN} \big)_{2} \\ & \text{cis and trans} \Bigg] \\ & \text{K}_{3} \Bigg[\text{Fe(CN)}_{3} \big(\text{NC} \big)_{3} \\ & \text{fac and mer} \Bigg] \end{split}$$

30. Sol.

Number of resonating structure of $SO_4^{2-} = 6$

Number of plane of symmetry in $SO_4^{2-} = 6$

Number of resonating structure of $PO_4^{3-}=4$

So,
$$\frac{6+6}{4} = 3$$

31. Sol.	0				
		Species	Geometry	Hybridization	d-orbitals involved
	I.	$\left[VO(acac)_{_{2}} \right]$	Square pyramidal	dsp ³	$d_{x^2-y^2}$
	II.	$[Fe(CO)_5]$	Trigonal bi-pyramidal	dsp ³	d_{z^2}
	III.	$\left[PtCl_{_{4}}\right]^{\!2^{-}}$	Square planar	dsp ²	$d_{x^2-y^2}$
	IV.	$K_4[Fe(CN)_6]$	Octahedral	d ² sp ³	$d_{x^2-y^2}$, d_{z^2}
	V.	[IF ₇]	Pentagonal bi- pyramidal	sp ³ d ³	$d_{x^2-y^2}$, d_{z^2} and d_{xy}
	So, $x = 3$, $y = 4$ and $z = 1$				

32. Sol.

33. 5 Sol.
$$RH_2 + Ca^{2+} \longrightarrow RCa + 2H^+$$
 $3 \times 10^{-4} M$

So,
$$\left[Ca^{2+}\right] = \frac{3}{2} \times 10^{-4} \text{ M}$$

So, mass of CaCO $_3$ present in 1 L hard water = $\frac{3}{2} \times 10^{-4} \times 100 = 1.5 \times 10^{-2}$ g

So, degree of hardness of water $=\frac{1.5\times10^{-2}}{1500}\times10^6=10~g$

So, degree of hardness = 10 ppm.

So, 2x = 10 and x = 5.

34. 5

Sol. Only, reaction II, IV, V, VI, VII will give tert-butyl benzene as the major product.

Mathematics

PART - III

SECTION - A

Sol.
$$A^{n} = \begin{bmatrix} 2^{n} & 3^{n} - 2^{n} \\ 0 & 3^{n} \end{bmatrix}$$
$$A^{14} = \begin{bmatrix} 2^{14} & 3^{14} - 2^{14} \\ 0 & 3^{14} \end{bmatrix}$$

 $a + d = 4^7 + 9^7$, which is multiple of 13

Sol.
$$g(x) = e^{-x^2} f(x)$$
 is concave downward and $e^{-x^2} f(x) > x$
 $\Rightarrow f(x) > xe^{x^2} \Rightarrow f(x) > \frac{xe^{x^2}}{e}$ also, $f\left(\frac{1}{2}\right) > \frac{1}{2e}$

Sol. Let
$$\frac{a_1}{a_1+1} = \frac{a_2}{a_2+3} = \dots = \frac{a_{1013}}{a_{1013}+2025} = \frac{1}{k}$$

$$\Rightarrow a_1 = \frac{1}{k-1}, a_2 = \frac{3}{k-1}, \dots, a_{1013} = \frac{2025}{k-1}$$

$$\therefore a_1, a_2, a_3 \dots \text{ are in A.P.}$$

$$\Rightarrow \text{Also, } a_1 + a_2 + \dots + a_{1013} = \frac{(1013)^2}{k-1} = 2026$$

$$\Rightarrow \frac{1}{k-1} = \frac{2}{1013} \Rightarrow a_{41} = \frac{81}{k-1} = \frac{162}{1013}$$

Sol. Let
$$f(x) = x^2 + ax + b$$
; $g(x) = x^2 + cx + d$
From given conditions $104a + 3b = 104c + 3d$

$$\Rightarrow \frac{d-b}{a-c} = \frac{104}{3}$$
Now, $g(x) = f(x) \Rightarrow x = \frac{b-d}{c-a} = \frac{104}{3}$

$$\begin{split} \text{Sol.} \qquad I &= \sum_{k=0}^{\infty} \int\limits_{0}^{2^{n}} 2^{k} \left[\frac{x}{2^{k}} \right] dx = \sum_{k=0}^{n-1} 2^{k} \int\limits_{0}^{2^{n}} \left[\frac{x}{2^{k}} \right] dx \, , \, n \in N \\ &= \sum_{k=0}^{n-1} 2^{k} \int\limits_{0}^{2^{n}} \left[\frac{2^{n} - x}{2^{k}} \right] dx \, = \sum_{k=0}^{n-1} 2^{k} \int\limits_{0}^{2^{n}} \left(\frac{2^{n}}{2^{k}} - 1 - \left[\frac{x}{2^{n}} \right] \right) dx = \sum_{k=0}^{n-1} (2^{n} - 2^{k}) 2^{n} - I \\ &\Rightarrow 2I = n \cdot 2^{2n} - 2^{n} \left(\frac{2^{n} - 1}{2 - 1} \right) = (n - 1) 2^{2n} + 2^{n} \end{split}$$

- 40. A, B, C
- Sol. \therefore p(x) has 2024 roots in ($-\infty$, 1)
 - \therefore Using Rolle's theorem p'(x) has also all roots in ($-\infty$, 1)

Now, $f'(x) = p(e^x)$ and $f''(x) = p'(e^x)e^x$ but $e^x > 1 \ \forall \ x \in (0, \infty)$

- \therefore f'(x) and f"(x) have no real roots in $(0, \infty)$
- 41. A, B, C, D

Sol. Let
$$\int_{0}^{1} g(\alpha) d\alpha = k$$
 :: $f(\alpha) = \alpha - k$

Now,
$$g(t) = 1 + \frac{t^3}{2} - t \int_0^t (x - k) dx = 1 + \frac{t^3}{2} - t \left(\frac{t^2}{2} - kt\right)$$

$$q(t) = 1 + kt^2$$

Now,
$$k = \int_{0}^{1} (1 + k\alpha^{2}) d\alpha = 1 + \frac{k}{3} \implies k = \frac{3}{2}$$

$$\Rightarrow$$
 f(x) = x $-\frac{3}{2}$

42.

Sol. (P)
$$A = I + B$$
, where $B = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$

Now,
$$B^2 = B^3 = 0$$

 $\Rightarrow A^{2024} = (I + B)^{2024} = I + 2024B$
trace(A^{2024}) = 2
For infinite solution: $D = D_1 = D_2$

$$trace(A^{2024}) = 2$$

(Q) For infinite solution: $D = D_1 = D_2 = D_3 = 0$

$$D = \begin{vmatrix} 1 & 4 & -1 \\ 7 & 9 & \beta \\ 5 & 1 & 2 \end{vmatrix} = 0 \implies \beta = 0$$

$$D_{1} = \begin{vmatrix} \alpha & 4 & -1 \\ -3 & 9 & 0 \\ -1 & 1 & 2 \end{vmatrix} = 0 \implies \alpha = -1$$

$$\Rightarrow$$
 4 β – 3 α = 3

(R) Vectors are coplanar

$$\begin{vmatrix} \cos A & 1 & 1 \\ 1 & \cos B & 1 \\ 1 & 1 & \cos C \end{vmatrix} = 0 \Rightarrow \csc^2 \frac{A}{2} + \csc^2 \frac{B}{2} + \csc^2 \frac{C}{2} = 2$$

(S) Let required plane is $(x + y + z + 1) + \lambda(2y + z - 4) = 0$

Direction ratio of above plane: 1, 1 + 2λ , 1 + λ

$$d.r ext{ of } x + y + z + 1 = 0 ext{ is } 1, 1, 1$$

Both are at right angle $1 + 1 + 2\lambda + 1 + \lambda = 0 \Rightarrow \lambda = -1$

- Required plane \Rightarrow x y + 5 = 0
- 43.
- Equation of ellipse (E) is $\frac{(x-1)^2}{45} + \frac{(y-3)^2}{20} = 1$ Sol.
 - P: $a^2 b^2 = 25$
 - Q: Product of length of perpendicular from foci upon any tangent = $b^2 = 20$
 - R: Lines joining each focus to the foot of the perpendicular from the other focus upon the tangent at P(4, 7) meet the normal PG and bisect it

 \therefore Required point is mid-point of PG Equation of normal at P(4, 7) is 3x - y - 5 = 0

$$\therefore G = \left(\frac{8}{3}, 3\right)$$

$$\therefore \text{ Required point} = \left(\frac{10}{3}, 5\right)$$

S: Locus of mid-point of QR is another ellipse having same eccentricity as that of ellipse (E) $\Rightarrow e = \frac{\sqrt{5}}{3}$

Sol. (P)
$$444 \int_{-1}^{1} \frac{3x^{443} + x^{1331} + 8x^{884} \sin x^{871}}{1 + x^{888}} dx$$

$$= \int_{-1}^{1} \frac{444x^{443} (3 + x^{888})}{1 + x^{888}} + 444 \int_{-1}^{1} \frac{8x^{884} \sin x^{871}}{1 + x^{888}} dx \text{ (odd function)}$$
Put $x^{444} = t$

$$= \int_{-1}^{1} \left(\frac{3 + t^2}{1 + t^2} \right) dt$$

$$\Rightarrow I = \left[t + 2 \tan^{-1} t \right]_{-1}^{1} = 2 + \pi$$

(Q)
$$I = \int_{0}^{2024} x \cos(2\pi \{x\}) dx$$

$$I = \int_{0}^{2024} (2024 - x) \cos 2\pi (1 - \{x\}) dx$$

$$2I = \int_{0}^{2024} 2024 \cos(2\pi \{x\}) dx = (2024)^{2} \left[\frac{\sin 2\pi x}{2\pi} \right]_{0}^{1} = 0$$

(R)
$$\frac{9}{10^4} \left(\sqrt{\frac{1}{10^4}} + \sqrt{\frac{2}{10^4}} + \dots + \sqrt{\frac{10^4}{10^4}} \right) = 9 \left(\frac{1}{10^4} \sum_{r=1}^{10^4} \sqrt{\frac{r}{10^4}} \right)$$
$$= 9 \int_0^1 \sqrt{x} dx = 6$$

(S)
$$y = \int_{x}^{x^{2}} \frac{dt}{t + \sqrt{t}}$$

$$\frac{dy}{dx} = \frac{x + 2\sqrt{x} - 1}{(x + 1)(x + \sqrt{x})} = 0 \implies x = 3 - 2\sqrt{2}$$

$$y = \int_{x}^{x^{2}} \frac{2dt}{2\sqrt{t}(\sqrt{t} + 1)} = 2\left[\ln\sqrt{t} + 1\right]_{x}^{x^{2}} = 2\ln\frac{x + 1}{\sqrt{x} + 1}$$
Least value of $\frac{e^{y}}{(\sqrt{2} - 1)^{2}} = 4$

45. D
Sol. (P)
$$3 \sin^2 A + 2 \sin^2 B = 1$$

 $\Rightarrow \cos 2A + \frac{2}{3} \cos 2B = 1$ (1

Also,
$$\frac{\sin 2A}{\sin 2B} = \frac{2}{3}$$
 putting this value in equation (1)

$$\Rightarrow$$
 sin(2A + 2B) = sin 2B \Rightarrow 2 cos(A + 2B)·sin A = 0

$$\Rightarrow$$
 cos(A + 2B) = 0 (as 0 < A < $\frac{\pi}{2}$)

$$A + 2B = \frac{\pi}{2}$$

(Q)
$$\frac{\cos 3x}{\sin 5x} - \frac{\sin 3x}{\cos 5x} = \frac{2\cos 8x}{\sin 10x}$$

$$= \frac{2(\cos 2x \cdot \cos 10x + \sin 2x \cdot \sin 10x)}{\sin 10x} = 2(\sin 2x + \cos 2x \cdot \cot 10x)$$

(R)
$$\cos^{-1}(4x^3 - 3x) = \begin{cases} 3\cos^{-1}x & ; \frac{1}{2} < x < 1 \\ 2\pi - 3\cos^{-1}x & ; 0 < x < \frac{1}{2} \end{cases}$$

$$f'(x) = \begin{cases} \frac{-3}{\sqrt{1-x^2}} & ; & \frac{1}{2} < x < 1 \\ \frac{3}{\sqrt{1-x^2}} & ; & 0 < x < \frac{1}{2} \end{cases} \Rightarrow \lambda = -2\sqrt{3} \ , \ \mu = 2\sqrt{3}$$

AI = Diameter

$$\angle BIC = \frac{\pi}{2} + \frac{A}{2}$$

Using sine rule

 $AR = AI \sin (\angle AIR)$ and $PQ = AI (\sin \angle PAQ)$

So, AR = PQ

SECTION - B

Sol. Let
$$\left[x + \frac{19}{100} \right] + \left[x + \frac{20}{100} \right] = \dots = \left[x + \frac{\lambda}{100} \right] = n$$

and $\left[x + \frac{\lambda + 1}{100} \right] = \left[x + \frac{\lambda + 2}{100} \right] = \dots = \left[x + \frac{91}{100} \right] = n + 1$

 \Rightarrow $(\lambda - 18)n + (91 - \lambda)(n + 1) = 546 (n, <math>\lambda$ are natural number)

The only value satisfies about equation is n = 7, $\lambda = 56$

$$\Rightarrow \left[x + \frac{56}{100}\right] = 7 \Rightarrow 644 \le 100x < 744$$

$$\Rightarrow \left[x + \frac{57}{100}\right] = 8 \Rightarrow 743 \le 100x < 843$$

so
$$743 \le 100x < 744 \implies [100x] = 743$$

Sol.
$$ff(x) = \frac{(1-x^{2011})^{\frac{1}{2011}}}{-x}$$

fff(x) = x

 $f_{2025}(x) = x = -\{x\}$ has one real solution

Sol.
$$f(x) = x^{\frac{1}{x}} = e^{\frac{1}{x} \ln x}$$

$$f'(x) = x^{\frac{1}{x}} \left(\frac{1}{x^2} + \ln x \left(-\frac{1}{x^2} \right) \right) = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) = \frac{x^{\frac{1}{x}}}{x^2} (1 - \ln x)$$

f(x) is decreasing for x > e

$$\Rightarrow (2026)^{\frac{1}{2026}} < (2025)^{\frac{1}{2025}} \Rightarrow (2026)^{2025} < (2025)^{2026}$$

$$L = (2025)^{2026} \left[1 + \left(\frac{(2026)^{2025}}{(2025)^{2026}} \right)^n \right]^{\frac{1}{n}} = (2025)^{2026}$$

$$a - b = -1$$

49. 5

Sol. Consider the expansion of
$$\left(\frac{2}{3} - \frac{1}{3}\right) \left(\frac{4}{5} - \frac{1}{5}\right) \left(\frac{6}{7} - \frac{1}{7}\right) \dots \left(\frac{2n}{2n+1} - \frac{1}{2n+1}\right)$$
 the negative terms corresponds to an odd number of tails. So product is (probability of even – probability of odd)

The product reduces to $\frac{1}{2n+1}$ obviously probability even + probability odd = 1

$$\Rightarrow \text{Probability odd} = \frac{1 - \frac{1}{2n+1}}{2} = \frac{n}{2n+1}$$

Sol. Under given condition the possible mapping is
$$f(-2) = 2$$
, $f(0) = 3$, $f(1) = 1$

$$\Rightarrow \text{Area of } \Delta = \frac{1}{2} \begin{vmatrix} i & j & k \\ 2 & 1 & 3 \\ -2 & 1 & 0 \end{vmatrix} = \frac{1}{2} \sqrt{61}$$

Sol. Let A be the origin then
$$\overrightarrow{AB} = \overrightarrow{c} \implies |\overrightarrow{c}| = 4$$

$$\overrightarrow{AC} = \overrightarrow{b} \implies |\overrightarrow{b}| = 3$$

$$\left| \overrightarrow{AD} \right| = \frac{4\overrightarrow{b} + 3\overrightarrow{c}}{7}$$

Also,
$$\frac{\overrightarrow{AB}}{\overrightarrow{FB}} = \frac{3}{2} \Rightarrow \overrightarrow{AF} = \frac{3}{5}\overrightarrow{c}$$
 and $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{b}$

Now,
$$\triangle ABC = k(\triangle DEF)$$

$$\Rightarrow \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} k |\overrightarrow{DF} \times \overrightarrow{DE}|$$

$$\Rightarrow |\vec{c} \times \vec{b}| = k \left| \left(\frac{3}{5} \vec{c} - \left(\frac{4\vec{b} + 3\vec{c}}{7} \right) \right) \times \left(\frac{2}{3} \vec{b} - \left(\frac{4\vec{b} + 3\vec{c}}{7} \right) \right) \right| \Rightarrow k = \frac{245}{56}$$

