Logika i teoria mnogości

Ćwiczenia 1

Zadanie 1. Podać przykłady zdań w sensie logicznym.

Zadanie 2. Zbudować schematy podanych zdań:

- 1. Jeśli myślisz jasno, to nieprawda, że nie potrafisz jasno wyrazić swoich myśli.
- 2. Jeżeli dwa trójkąty mają parami równe boki lub parami równe kąty, to są przystające.
- 3. Jeśli czytasz swobodnie po angielsku, to o ile nie potrafisz mówić w tym języku, to znasz angielski biernie.
- 4. Nie posiadasz gruntownej wiedzy o języku, jeśli słabo znasz gramatykę i nigdy nie uczyłeś się logiki.
- 5. Jan zna logikę wtedy i tylko wtedy, gdy nie jest prawdą, że nie jest prawdą, że Jan zna logikę.
- 6. Jeżeli nie jest prawdą, że albo prosta L jest równoległa do prostej M albo prosta P nie jest równoległa do prostej M, to albo prosta L nie jest równoległa do prostej M albo prosta P jest równoległa do prostej M.

Definicja

- (i) Każda zmienna zdaniowa jest formułą języka rachunku zdań.
- (ii) Jeśli φ, ψ są formułami języka rachunku zdań, to napisy $\neg(\varphi)$,
- $(\varphi) \land (\psi), (\varphi) \lor (\psi), (\varphi) \Rightarrow (\psi), (\varphi) \Leftrightarrow (\psi)$ są formułami rachunku zdań.
- (iii) Nie ma innych formuł języka rachunku zdań poza zmiennymi zdaniowymi i takimi formułami, które powstają dzięki zastosowaniu reguły (ii).

Zadanie 3. Zapisać poniższe formuły po poprawnym opuszczeniu nawiasów:

- $((p) \land (q) \Rightarrow (q) \lor (p))$
- $(p \land (q \lor (r))) \Leftrightarrow (\neg(p) \Leftrightarrow (q \lor r))$
- $((p) \Leftrightarrow (q)) \land (\neg(p \Rightarrow (q \land (p))))$

Notacja beznawiasowa Łukasiewicza

	_	N	$\neg p$	Np
ĺ	\wedge	K	$p \wedge q$	Kpq
ĺ	\vee	A	$p \lor q$	Apq
	\Rightarrow	C	$p \Rightarrow q$	Cpq
	\Leftrightarrow	E	$p \Leftrightarrow q$	Epq

Przykład

$p \wedge (q \vee r)$	KpAqr
$(p \land q) \lor r$	AKpqr
$p \Rightarrow q \land \neg r$	CpKqNr

Zadanie 4. Zapisać w notacji beznawiasowej Łukasiewicza:

- $(p \Rightarrow q) \land (p \Rightarrow \neg r) \Leftrightarrow r$
- $(\neg p \lor \neg q) \Leftrightarrow \neg (p \land q)$
- $(r \Rightarrow (p \Rightarrow q)) \land \neg (p \Leftrightarrow \neg q \lor r)$

Zadanie 5. Zapisać w notacji nawiasowej:

- \bullet EApEqrCpr
- \bullet CCNpKrqANrp
- \bullet CNKpNqApEqNp

Definicja

Niech V będzie pewnym zbiorem zmiennych zdaniowych. Wartościowaniem zbioru V nazywamy dowolną funkcję $w:V\mapsto\{0,1\}.$

Definicja

Tautologią KRZ nazywamy formułę KRZ, która przyjmuje wartość logiczną 1 dla każdego wartościowania (zmiennych występujących w tej formule).

Tablice prawdziwościowe spójników logicznych

p	$\neg p$		
1	0		
0	1		

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

Zadanie 6. Używając metody zero-jedynkowej sprawdzić, czy poniższe formuły są tautologiami rachunku zdań:

1.
$$(p \Rightarrow q) \land p \Rightarrow q$$

2.
$$(p \lor q) \land (p \Rightarrow q) \Rightarrow (q \Rightarrow p)$$

3.
$$p \lor (q \land r) \Rightarrow (p \lor q) \land (p \lor r)$$

4.
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

5.
$$(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \land r)$$

6.
$$(p \Rightarrow q) \Rightarrow ((r \Rightarrow s) \Rightarrow (p \land r \Rightarrow q \land s))$$

Przykład

Sprawdzić metodą zero-jedynkową, czy poniższa formuła jest tautologią rachunku zdań:

$$(p \Rightarrow (q \Rightarrow r)) \Leftrightarrow (q \land \neg r \Rightarrow \neg p)$$

Oznaczmy:

$$\varphi:(p\Rightarrow (q\Rightarrow r))\Leftrightarrow (q\wedge \neg r\Rightarrow \neg p)$$

$$\psi:p\Rightarrow (q\Rightarrow r)$$

$$\chi: q \land \neg r \Rightarrow \neg p$$

Zatem
$$\varphi: \psi \Leftrightarrow \chi$$

p	q	r	$q \Rightarrow r$	ψ	$\neg r$	$q \wedge \neg r$	$\neg p$	χ	φ
1	1	1	1	1	0	0	0	1	1
1	1	0	0	0	1	1	0	0	1
1	0	1	1	1	0	0	0	1	1
1	0	0	1	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1	1
0	1	0	0	1	1	1	1	1	1
0	0	1	1	1	0	0	1	1	1
0	0	0	1	1	1	0	1	1	1

Odpowiedź: φ jest tautologią rachunku zdań.