

Linguagem de Programação do OpenDSS e Interface

Celso Rocha Mestrando EPUSP - Energ

1º Encontro do Grupo de Usuários do OpenDSS Brasil 05/09/2017

Visão Geral

- Sintaxe
- Interface versão Standalone
- Exemplo
- Editor de Texto
- Organizando Circuitos Grandes
- Referências

- O OpenDSS possui um mecanismo de solução baseado em scripts
- Podem ser definidos através de:
 - Arquivos de Texto
 - Outro programa, por meio da interface COM
- Os scripts:
 - Definem circuitos
 - Controlam a solução dos circuitos
 - Especificam os relatórios de saída

- Cada comando corresponde a uma linha de texto
- Não há distinção entre letras maiúsculas e minúsculas
- Via de regra, cada comando apresenta um Verbo e alguns
 Parâmetros

```
VerboComando param1=Valor1 param2=Valor2 ...
```

- Os parâmetros podem ser definidos através do nome ou posição
 - Exemplo:

```
New object=Load.carga1 phases=3 bus1=barraA kv=0.220 kw=10 pf=0.97 model=1 New Load.carga1 3 barraA 3 barraA 0.220 10 0.97 1
```


Como saber a ordem padrão?

Verbos Comuns

Verbo	Descrição
New	Cria um novo elemento de circuito
Edit	Edita um elemento de circuito escolhido
Set	Define as opções de solução como, por exemplo, Mode
Solve	Realiza a solução do circuito definido
Show	Apresenta relatórios de resultados em arquivos *.txt
Export	Salva relatórios de resultados em arquivo *.csv
Plot	Plota os resultados do fluxo de potência no circuito

Verbos Comuns

Verbo	Descrição
New	Cria um novo elemento de circuito
Edit	Edita um elemento de circuito escolhido
Set	Define as opções de solução como, por exemplo, Mode
Solve	Realiza a solução do circuito definido
Show	Apresenta relatórios de resultados em arquivos *.txt
Export	Salva relatórios de resultados em arquivo *.csv
Plot	Plota os resultados do fluxo de potência no circuito

Edit Load.carga1.bus1 = barraB Load.carga.bus1 = barraB

Delimitadores:

```
Arrays, matrizes, strings ou expressões matemáticas:

Linhas de matrizes:
Continuação de uma linha:
Valores e parâmetros:
Classe e objeto; barra e nó:
Parâmetro e valor:
Comentários em linhas:
Comentário de múltiplas linhas:

[], {}, (), "", "
ou espaço
!/ ou !
Comentário de múltiplas linhas:
```

```
/*
Exemplo de uma linha
para mostrar alguns delimitadores
*/

New Line.linha10 phases=3 bus1=A.1.2.3 bus2=B length=100 !units = mi
~ rmatrix = [0.752 0.158 0.156| 0.158 0.747 0.153 | 0.156 0.153 0.743]
~ xmatrix = (1.1814 | 0.4236 1.1983 | 0.5017 0.3849 1.2112 )
//~ cmatrix = [383.948 | 0 383.948 | 0 0 383.948 ]
```


Passos Comuns

- 1. Definição do circuito
- 2. Configuração das opções de simulação
- 3. Resolver o fluxo de potência
- 4. Analisar resultados

Exemplo

Editor de Texto

lotepad++

- Melhor visualização do código
- Sugestões: Notepad++, EditPlus ou TextPad
 - C:\ProgramFiles\OpenDSS\Examples\SyntaxFiles\OpenDSS_synt ax_NotepadPlusPlus.xml

```
*C:\Program Files\OpenDSS\IEEETestCases\13Bus\IEEE13Nodeckt.dss - Notepad++
Eile Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
 [a 👜 🔚 😘 😘 😘 🖓 🖟 [k k k k k k a 🗩 c l ma 🛬 ] 🤏 역 역 [표 💁 ] 🚍 1 🏗 🖫 💹 💯 🚳 🔗 🖜 0 🗩 🗷 10 🗩
层 IEEE13Nodeckt das 🔀 🔛 Listings Updated but 🔀 📳 List IN SUpdated but 🖂 🔛 List IN SUpdated but 🖂 🔛 List IN SUpdated but IN SUpdated b
    1 Clear
    4 ! This script is based on a script developed by Tennessee Tech Univ students
           ! Tyler Patton, Jon Wood, and David Woods, April 2009
    6 4!
    8 new circuit.IEEE13Nodeckt
    9 ~ basekv=115 pu=1.0001 phases=3 bus1=SourceBus
   10 ~ Angle=30
                                                                                                                                                                 ! advance angle 30 deg so result agree with published angle
   11 ~ MVAsc3=20000 MVASC1=21000
                                                                               ! stiffen the source to approximate inf source
   13 ■!SUB TRANSFORMER DEFINITION
           ! Although this data was given, it does not appear to be used in the test case results
           ! The published test case starts at 1.0 per unit at Bus 650. To make this happen, we will change the impedance
   16 ! on the transformer to something tiny by dividing by 1000 using the DSS in-line RPN math
   17 New Transformer.Sub Phases=3 Windings=2 XHL=(8 1000 /)
   18 ~ wdg=1 bus=SourceBus conn=delta kv=115 kva=5000 %r=(.5 1000 /) XHT=4
   19 ~ wdg=2 bus=650
                                                                         conn=wye kv=4.16 kva=5000 %r=(.5 1000 /) XLT=4
         □! FEEDER 1-PHASE VOLTAGE REGULATORS
          ! Define low-impedance 2-wdg transformer
  24 New Transformer.Reg1 phases=1 XHL=0.01 kVAs=[1666 1666]
   25 ~ Buses=[650.1 RG60.1] kVs=[2.4 2.4] %LoadLoss=0.01
   26 new regcontrol.Reg1 transformer=Reg1 winding=2 vreg=122 band=2 ptratio=20 ctprim=700 R=3 X=9
   New Transformer.Reg2 phases=1 XHL=0.01 kVAs=[1666 1666]
   29 ~ Buses=[650.2 RG60.2] kVs=[2.4 2.4] %LoadLoss=0.01
   30 new regcontrol.Reg2 transformer=Reg2 winding=2 vreg=122 band=2 ptratio=20 ctprim=700 R=3 X=9
```


- Em circuitos pequenos, frequentemente coloca-se todos os códigos em apenas um arquivo (*.dss ou *.txt)
- Quando o circuito possui muitos dados, recomenda-se organizá-los em diversos arquivos
- Dois comandos importantes:
 - Redirect:
 - redireciona os dados de entrada para outro arquivo
 - Compile:
 - Igual ao Redirect, porém altera o diretório de trabalho

Rede IEEE 8500 Barras

Arquivo Master.dss

```
□// Master file for 8500-Node IEEE Test Feeder Case
// Balanced Load Case
 Clear
                                                               Limpa o circuito
New Circuit. IEEE8500
 ! Make the source stiff with small impedance
\sim pu=1.05 r1=0 x1=0.001 r0=0 x0=0.001
Redirect LineCodes2.dss
                                                               Elementos de Suporte Gerais
Redirect Triplex Linecodes.dss
Redirect Lines.dss
Redirect Transformers.dss
                        ! Load Transformers
Redirect LoadXfmrs.dss
                                                               Elementos de Circuito
Redirect Triplex Lines.dss
Redirect Loads.dss ! Balanced Loads
Redirect Capacitors.dss
                                                               Elementos de Suporte
Redirect CapControls.dss
Redirect Regulators.dss
                                                                    de Controle
 ! Let DSS estimate the voltage bases
Set voltagebases=[115, 12.47, 0.48, 0.208]
Calcvoltagebases ! This also establishes the bus list
                                                               Comandos Adicionais
 ! Load in bus coordintes now that bus list is established
 Buscoords Buscoords.dss
```


Rede IEEE 8500 Barras

Arquivo Run_8500Node.dss

```
    □! REV 2

 ! OpenDSS script to control the running of the IEEE 8500-Node Distrubution Test Feeder
 ! Balanced Load Case
⊞! To execute, select one or more line and right-click, select Do Selected
! 1. Select from Compile through Solve and execute
^{f L}! 2. Select one or more of the statements to display results and execute
 ! Edit the path name to indicate the correct location of the Master file.
                                                                                           → Compila o arquivo Master
 Compile (master.dss) -
                                                                                           → Elemento de Medição
 New Energymeter.ml Line.ln5815900-1 1 -
 Set Maxiterations=20 ! Sometimes the solution takes more than the default 15 iterations Altera opção de solução
                                                                                           → Resolve
 Solve -
 Show Voltage LN Nodes
 Show Currents Elem Resid
 Show Powers kVA elem
 Set ShowExport=yes
 Export Currents
 Export Powers
 Export voltages
 // **************** Plotting *****************
                                                                                                 Resultados
 Set markCapacitors=yes CapMarkersize=3
 Set markRegulators=yes RegMarkersize=5
 Interpolate
 Plot Circuit Power Max=5000 dots=n labels=n C1=Blue 1ph=3 ! $00FF0000
 Plot Circuit voltage Max=0 dots=n n C1=Blue C2=$FF00FF 1ph=3
 plot circuit Losses Max=50 dots=n labels=n subs=y C1=Blue
 plot profile ph=all
 plot profile ph=1
 summary
 show taps
```


Referências

- Dugan, Roger: Slides de Treinamentos.
 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Training/. [Online; acessado emn11/09/2017].
- Sexauer, Jason: OpenDSS Primer, versão em português.
 https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSS Primer_Portuguese.pdf.[Online; acessado em 11/09/2017].

Comentários Adicionais

Esse material foi disponibilizado gratuitamente, porém, ao utilizá-lo, pedimos que as devidas referências sejam feitas.

Se você possui alguma dúvida ou encontrou algum erro nesse material, por favor, entre em contato conosco através do e-mail opendss.brasil@gmail.com.

Obrigado! Dúvidas?

