Modul praktikum metode numerik X

Nama	FATHURRAHMAN NUR AZIZ		Judul praktikum		
Nim	20113694				
Kelas	Kelas 20 IF 07		Regresi		

save as

Dasar teori

- Regresi adalah teknik pencocokan kurva untuk data yang berketelitian rendah.
- Contoh data yang berketelitian rendah data hasil pengamatan, percobaan di laboratorium, atau data statistik. Data seperti itu kita sebut data hasil pengukuran.
- Untuk data hasil pengukuran, pencocokan kurva berarti membuat fungsi mengampiri (approximate) titik-titik data.
- Kurva fungsi hampiran tidak perlu melalui semua titik data tetapi dekat dengannya tanpa perlu menggunakan polinom berderajat tinggi.

Persamaan

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

ALGORITMA

y = ax + b

Keterangan:

y = variabel terikat

x = variabel bebas

a = koefisien regresi atau slop

b = intercept

Dengan

$$a = \frac{N\sum x_i y_i - \sum x_i \sum y_i}{N\sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{N \sum x_i^2 - (\sum x_i)^2}$$

Algoritma regresi linier:

- 1. Tentukan N titik data yang diketahui dalam (x_i, y_i) untuk i = 1, 2, 3, ..., N
- 2. Hitung nilai a dan b dengan menggunakan formulasi dari regresi linier diatas
- 3. Tampilkan fungsi linier
- 4. Hitung fungsi linier tersebut dalam range x dan step dx tertentu
- 5. Tampilkan hasil tabel (x_n, y_n) dari hasil fungsi linier tersebut

SUMBER:

TUGAS

MANFAATKAN SUMBER INTERNET UNTUK MEMBUAT PROGRAM REGRESI BAIK YANG MENGGUNAKAN MATLAB ATAUBPUN YANG SCILAB ,

TULIS CODE DI LEMBAR MODUL INI . DAN JUGA DI KRIIM DI CLASSROOM

TABEL PENGAMATAN REGRESI

DATA

x	-10	-8	- 6	-4	-2	0	2	4	6	8	10
v	0.0000	0.0001	0.0045	0.0907	0.5488	1.0000	0.5488	0.0907	0.0045	0.0001	0.0000

TAMPILAN CODE

```
Source Code:
     clc; clear; clear all; format compact;
     fprintf('PROGRAM METODE NUMERIK - REGRESI LINEAR\n');
     fprintf('Dibuat oleh :\n');
     fprintf('FATHURRAHMAN NUR AZIZ (20.11.3694)\n');
     fprintf('-----
     ----\n\n');
     Xi = [-10 -8 -6 -4 -2 0 2 4 6 8 10];
     Yi = [0.0000 \ 0.0001 \ 0.0045 \ 0.0907 \ 0.5488 \ 1.0000 \ 0.5488 \ 0.0907 \ 0.0045
     0.0001 0.00001;
     fprintf('X = [');
     fprintf('%g, ', Xi(1:end-1));
     fprintf(' %g]', Xi(end));
     fprintf('\nY = [');
     fprintf('%g, ', Yi(1:end-1));
     fprintf(' %g]', Yi(end));
     n = length(Xi);
     SX = sum(Xi);
     SY = sum(Yi);
     Xi2 = Xi*Xi';
     XiYi = Xi*Yi';
     a = (Xi2 * SY - SX * XiYi)/(n * Xi2 - SX^2);
     b = (n * XiYi - SX * SY)/(n * Xi2 - SX^2);
     fprintf('\n\nDengan Rumus regresi didapatkan : ');
     fprintf('\n');
     fprintf(' ta = %.7f n', a);
     fprintf('\tb = %.7f\n\n', b);
     fprintf('Maka persamaan Regresi Linear:\n\t f(X) = %2.7f +
     2.7fx\n\n',a,b);
     fprintf('========\n');
     fprintf('\t Titik Regresi\n');
     fprintf('========\n');
     fprintf('\tX\t\t\ Y\n');
     fprintf('========\n');
     for x=Xi(1):2:Xi(end)
         yy=a+b*x;
         fprintf(' %.3f \t %10.7f \n', x, yy);
     end
     fprintf('=======\n\n\n');
     xx=Xi(1):Xi(end);
     yy=a+b*xx;
     plot(Xi,Yi,'o',xx,yy);
     title('GRAFIK REGRESI');
```

```
xlabel('x');
ylabel('y');
grid on;
```

OUTPUT:

```
PROGRAM METODE NUMERIK - REGRESI LINEAR
Dibuat oleh :
FATHURRAHMAN NUR AZIZ (20.11.3694)
X = [-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10]
Y = [0, 0.0001, 0.0045, 0.0907, 0.5488, 1, 0.5488, 0.0907, 0.0045, 0.0001, 0]
Dengan Rumus regresi didapatkan :
  a = 0.2080182
  b = 0.0000000
Maka persamaan Regresi Linear:
   f(X) = 0.2080182 + 0.00000000x
_____
   Titik Regresi
         Y
_____
 -10.000 0.2080182 |
-8.000 0.2080182
 -6.000
          0.2080182
          0.2080182
 -4.000
 -2.000
          0.2080182
 0.000
           0.2080182
 2.000
           0.2080182
 4.000
          0.2080182
 6.000
          0.2080182
 8.000
          0.2080182
10.000
           0.2080182
```