Міністерство освіти та науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

3BIT

про виконання комп'ютерного практикуму №1 на тему:

«Дослідження основних принципі побудови імітаційних моделей мовою GPSS»

Завдання 8 Варіант (5) 2

Виконав: студент групи IC-32 Капорін Роман

Мета завдання:

Вивчити теоретичні засади моделювання і основи мови GPSS. Побудувати свою першу модель, дослідити отримані результати та закріпити основи роботи на практиці.

Навчитись аналізувати і досліджувати звіт про роботу моделі, розрізняти його параметри та оцінювати коректність роботи моделі. Здобути базові навички моделювання систем масового обслуговування.

1. Постановка задачі

Завдання. Система автоматизації проектування складається з ЕОМ і **трьох** підключених до неї терміналів. За кожним терміналом працює один проектувальник, який формує завдання на розрахунок в інтерактивному режимі. Набір рядка завдання займає 10 ± 5 с. Аналіз рядка вимагає 3 с роботи ЕОМ і 5 с роботи терміналу. У кожен момент часу може аналізуватися тільки один рядок. Після набору десяти рядків вважається, що завдання сформоване та поступає на обчислення, яке займає 10 ± 3 с роботи ЕОМ (обчислення завдань має більший пріоритет, ніж аналіз рядків). Виведення результату рішення вимагає 8 с роботи терміналу, а аналіз результату проектувальником — 30 ± 10 с, після чого цикл повторюється.

Мета. Промоделювати роботу системи упродовж 6 год. Оцінити ймовірність простою проектувальника через зайнятість ЕОМ, коефіцієнт завантаження ЕОМ і параметри черги до ЕОМ.

2. Лістинг GPSS-програми

```
INITIAL X$RESULT,0
                                             ; Initializing variable for storing
statistic result
            GENERATE ,,,3
                                               ; Create 3 terminals once
NEW_TASK ASSIGN TASK,10 ; 10 lines as comlete inputed data

NEW_LINE ADVANCE 10,5 ; Line inputing by operator

QUEUE EOMQ ; Statistic of EOM usage

SEIZE EOM ; Lock EOM for line analyze
                                             ; Statistic of EOM usage
; Lock EOM for line analyze
; Leave statistic queue
            SEIZE
                       EOM
            DEPART EOMQ
            ADVANCE 3
RELEASE EOM
                                              ; Line processing
                                              ; Unlock EOM
                                              ; Lock terminal for processing
            LOOP TASK, NEW LINE ; Continue inputing text
TASK PROC PRIORITY 1
                                             ; Start task processing with high
priority
            QUEUE EOMQ
SEIZE EOM
DEPART EOMQ
                                             ; Statistic of EOM usage
                                              ; Lock EOM for task analyzing
                                             ; Leave statistic queue
            ADVANCE 10,3
                                             ; Task execution
            RELEASE EOM
                                             ; Unlock EOM
            PRIORITY 0 ; Reset transact's priority
ADVANCE 8 ; Terminal outputs data
ADVANCE 30,10 ; Line analyzing by operator
TRANSFER ,NEW_TASK ; Start new task
TASK RES PRIORITY 0
             GENERATE (6#60#60); Generate 6 hours in seconds
```

```
; Compute probability of operators waiting
; P_wait = 1 - P_work
; P = 1 - ZERO_INCOME/ALL_INCOME
SAVEVALUE RESULT, (1-(QZ$EOMQ/QC$EOMQ))

TERMINATE 1 ; Simulation
START 1
Puc. 1 - Лістинг
```

3. Аналіз результатів

FACILITY EOM	ENTRIES 2980	UTIL. 0.502	AVE. TIME 3.642		AVAIL.	OWNER 0	PEND 0	INTER 0	RETRY 0
QUEUE EOMO	MAX COI	NT. ENTR' 0 <mark>298</mark>		RY(0) 930	0.14		E.TIME 1.058		E.(-0) <mark>.002</mark>
_011 <u>¢</u>	_	v <u>130</u>	У		0 • = 1	-			• • • •
SAVEVALUE RESULT	RI (ETRY O		LUE <mark>352</mark>					

Рис. 2 Фінальний результат моделювання

4. Висновок

Таким чином, ймовірність простою проектувальника із-за зайнятості ЕОМ — 0.352. Коефіцієнт завантаження ЕОМ — 0.502. Параметри черги до ЕОМ: максимальна довжина черги — 2, до ЕОМ було здійснено 2980 звертань, з яких 1930 не чекали в черзі, в середньому в черзі знаходиться 0.146 заявки, середній час очікування в черзі — 1.058 секунди (без врахування пройдених за нульовий час заявок — 3.002).