Topics

Numerical Methods

- ➤ Optimization
- > Integration

Copyright Dick Startz 1 Copyright Dick Startz 2


```
function illustrateMax
figure;
x=0:.01:1;
plot(x,y(x), /linewidth',1.5);
title({\text{Maximization by Matlab','y} = -(x-.5)^2 -9cos(2\pix)'});
print -dpng max1

figure;
[xOpt,fval] = fminunc(@negY,0);
plot(x,y(x),xOpt,-fval,'or','linewidth',1.5);
title({\text{Maximization by Matlab','y} = -(x-.5)^2 -9cos(2\pix)'});
end

function negY = negY(x)
negY = -y(x);
end

function y = y(x)
y = -(x-.5).^2 -9*cos(2*pi*x);
end
```


Maximization by Mataba y = (x-5)³ Geodizx) x₃=3.5 0 -10 -15 -20 -25 -30 -4 -3 -2 -1 0 1 2 3 4 Copyright Dick Startz

Search algorithms

Objectives:

- Get close to the *global* right answer
- Compute as few objective functions as possible

Algorithms:

- Grid search
- Hill climbing

Methods

Grid search

- How fine a grid?
- Where to locate grid?
- How many function evaluations did you say?

Hill climbing

- Global vs local optimum
- Pick search direction
- Choose step size
- Stopping rule

Copyright Dick Startz

Copyright Dick Startz 10

Curse of dimensionality

- 1,000 grid points per dimension
- ➤ 2 parameters → 1 million function evaluations
- ightharpoonup 10 parameters ightarrow 10^{30} function evaluations

Copyright Dick Startz

13

Copyright Dick Startz

First derivative

Copyright Dick Startz

Finding maximum

$$Q''(\beta^{(0)}) = \frac{Q'(\beta^{(0)}) - 0}{\beta^{(0)} - \beta^{(1)}}$$

Newton's method

$$\beta^{(1)} = \beta^{(0)} - \frac{Q'(\beta^{(0)})}{Q''(\beta^{(0)})}$$

Copyright Dick Startz

4

Least squares by Newton's method

$$-ssr(\hat{\beta}) = -\sum (y - \hat{\beta}x)^{2}$$

$$-ssr'(\hat{\beta}) = -2\sum (y - \hat{\beta}x)(-x)$$

$$= 2(\sum yx - \hat{\beta}\sum x^{2})$$

$$-ssr''(\hat{\beta}) = -2\sum x^{2}$$

$$\beta^{(1)} = \beta^{(0)} - \frac{2(\sum yx - \beta^{(0)}\sum x^{2})}{-2\sum x^{2}}$$

$$\beta^{(1)} = \beta^{(0)} + \frac{\sum yx}{\sum x^{2}} - \beta^{(0)}$$

Copyright Dick Startz

Newton's method example

$$Q(x) = -(x - .5)^2 - 9\cos(2\pi x)$$

$$Q'(x) = -2(x - .5) + 2 \cdot 9 \cdot \pi \cdot \sin(2\pi x)$$

$$Q''(x) = -2 + (2\pi)^2 \cdot 9 \cdot \cos(2\pi x)$$

$$x^{(j+1)} = x^{(j)} - \frac{Q'(x^{(j)})}{Q''(x^{(j)})}$$
$$x^{(j+1)} = x^{(j)} - \frac{-2(x - .5) + 2 \cdot 9 \cdot \pi \cdot \sin(2\pi x)}{-2 + (2\pi)^2 \cdot 9 \cdot \cos(2\pi x)}$$

Copyright Dick Startz

Matlab snippet

Step-size adjustment

$$\alpha^{(j)} = 1$$

$$\beta^{(j+1)} = \beta^{(j)} - \alpha_{(j)} \frac{Q'\left(\beta^{(j)}\right)}{Q''(\beta^{(j)})}$$
 If $Q^{(j+1)} < Q^{(j)}, \alpha^{(j)} = \alpha^{(j)}/2$ (If α gets too small, punt.)

Quasi-Newton in matrix form

$$\beta^{(j+1)} = \beta^{(j)} - \left[Q''(\beta^{(j)})\right]^{-1} Q'(\beta^{(j)})$$

$$\beta^{(j+1)} = \beta^{(j)} - D_{(j)}^{-1} Q' \big(\beta^{(j)}\big)$$

• $D \approx Q''$, but guaranteed negative definite

yyright Dick Startz 23 Copyright Dick Startz :

Berndt-Hall-Hall-Hausman (BHHH)

$$I \equiv E\left(\left(\frac{\partial}{\partial \theta}\log f(x|\theta)\right)^{2}\right) = -E\left(\frac{\partial^{2}}{\partial \theta^{2}}\log f(x|\theta)\right)$$

$$D = -\sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \log f(x_i | \theta) \right) \left(\frac{\partial}{\partial \theta} \log f(x_i | \theta) \right)'$$

Copyright Dick Startz

Gauss-Newton Regression

$$\begin{aligned} y_i &= g(x_i, \beta) + \varepsilon_i \\ Q(\beta) &= -\sum (y_i - g(x_i, \beta))^2 \\ e_i(\beta) &\approx e_i (\beta^{(j)}) - \frac{\partial g(x_i, \beta^{(j)})}{\partial \beta} (\beta - \beta^{(j)}) \\ e_i(\beta^{(j)}) &= \frac{\partial g(x_i, \beta^{(j)})}{\partial \beta} \Delta + v \\ \beta^{(j+1)} &= \beta^{(j)} + \widehat{\Delta} \end{aligned}$$

Copyright Dick Startz

Stopping rules

- $Q(\beta^{(j+1)}) Q(\beta^{(j)})$ is small
- $Q(\beta^{(j)})'$ is small
- $\beta^{(j+1)} \beta^{(j)}$ is small

Always: Stop if too many iterations and computer is overheating.

Matlab integral

>> integral(@normpdf,-1.96,1.96) ans =

- - - -

0.9500

Copyright Dick Startz 27 Copyright Dick Startz

Numerical quadrature

$$F = \int_{l}^{u} f(x)dx$$

$$A_{i} \approx (a_{i} - a_{i-1})f\left(\frac{a_{i} + a_{i-1}}{2}\right)$$

$$F \approx \sum_{i=1}^{n} A_{i}$$

Copyright Dick Startz

```
nRectangles = 5;
endPoints =
linspace(1,u,nRectangles+1);
width = endPoints(2)-endPoints(1);
height =
normpdf((endPoints(2:end)+endPoints(1:end-1))/2);
F = sum(width*height);
```

0.4 •(1.96)-•(-1.96)=0.95037 0.35 0.3 0.25 0.2 0.15 0.15 0.10 0.15 0

Copyright Dick Startz 31 Copyright Dick Startz

Copyright Dick Startz

Trapezoidal rule

Using the formula for the area of a trapezoid which is the rectangle (base times height) plus the triangle (1/2 base times height.)

$$A_{i} \approx (a_{i} - a_{i-1})f(a_{i})$$

$$+ \frac{1}{2}(a_{i} - a_{i-1})(f(a_{i-1}) - f(a_{i}))$$

$$= \frac{a_{i} - a_{i-1}}{2}(f(a_{i-1}) + f(a_{i}))$$

Copyright Dick Startz

Copyright Dick Startz

Simpson's rule

Parabola through $f(a_{i-1}), f(a_i)$, and the midpoint $f\left(\frac{a_{i-1}+a_i}{2}\right)$.

$$A_i \approx \frac{a_i - a_{i-1}}{6} \left(f(a_{i-1}) + 4f\left(\frac{a_{i-1} + a_i}{2}\right) + f(a_i) \right)$$

Matlab integral

integral(fun,a,b) uses an adaptive quadrature to integrate the function "fun" between the points a and b. integral2(fun,xmin,xmax,ymin,ymax) does the same thing in two dimensions

Copyright Dick Startz

Integrate multiple dimensions

$$\int_{l_y,l_x}^{u_y,u_x} f(x,y)dxdy$$

$$\int_{l_y}^{u_y} \left[\int_{l_x}^{u_x} f(x,y)dx \right] dy$$

$$A(y) \approx \int_{l_x}^{u_x} f(x,y)dx$$

$$A \approx \int_{l_y}^{u_y} A(y)dy$$

Copyright Dick Startz

Question for class

Compute an estimate of π by the following technique of Monte Carlo integration. Draw random $\{x,y\}$ pairs uniform between 0 and 1. Then decide if the point is inside or outside the unit circle. Since the fraction of points inside the unit circle corresponds to the area of a quarter unit circle, you can estimate π by four times the fraction inside the circle. Do this for a various numbers of random draws and plot the estimates of π against the number of draws.

One example of Monte Carlo Integration

$$\int_{l}^{u} f(x)dx \approx \frac{u-l}{n} \sum f(\tilde{x})$$

where \tilde{x} is drawn randomly.

Copyright Dick Startz 39 Copyright Dick Startz

```
reset(RandStream.getGlobalStream);
l = norminv(.025);
u = norminv(.975);

nPoints = 10000;
x = 1 + (u-1) *rand(nPoints,1);
width = (u-1)./(1:nPoints)';
estimate =
width.*cumsum(normpdf(x));
```

Copyright Dick Startz

