

Practical Machine Learning

Day 3: SEP23 DBDA

Kiran Waghmare

Agenda

- Data
- Types of Attributes
- Preprocessing
- Transformations
- Measures
- Visualization

USERS STREAM

HOURS OF VIDEO

MEALS

USERS UPLOAD

PHOTOS

WHATSAPP **USERS SHARE**

41,666,667

WITH CONTENT

DINERS ORDER

MESSAGES

GAINS I NEW USERS

PACKAGES

(<

PARTICIPANTS IN

every

2020

CONSUMERS SPEND

SHIPS

BUSINESS PROFILE ADS

138,889

ADDS

TO ITS MUSIC LIBRARY

USERS SEND

WORTH OF PAYMENTS

What is data?

Collection of data objects and their attributes

- An attribute is a property or characteristic of an object
 - Examples: **eye color of a person**, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an Objects object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
-	10	No	Single	90K	Yes

Record data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data matrix

• If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute.

 Such data set can be represented by an m x n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document data

- Each document becomes a 'term' vector,
 - each term is a component (attribute) of the vector
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
document 1	3	0	5	0	2	6	0	2	0	2
document 2	0	7	0	2	1	0	0	3	0	0
document 3	0	1	0	0	1	2	2	0	3	0

Transaction data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph data

Examples: Generic graph and HTML Links

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Chemical data

• Benzene molecule: C₆H₆

Ordered data

Sequences of transactions

Ordered data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGCCCGCCCCGCGCCGTC GAGAAGGCCCCCCCTGGCGGCG GGGGGGCGGCCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCGACCAGGG

Ordered data

Spatio-temporal data

Average monthly temperature of land and ocean

Approximating Text with Numerical Features

Bag of words replaces document by word counts:

The International Conference on Machine Learning (ICML) is the leading international academic conference in machine learning

ICML	International	Conference	Machine	Learning	Leading	Academic
1	2	2	2	2	1	1

- Ignores order, but often captures general theme.
- You can compute a "distance" between documents.

Approximating Images and Graphs

- We can think of other data types in this way:
 - Images:

graycale intensity

(1,1)	(2,1)	(3,1)	 (m,1)	 (m,n)
45	44	43	 12	 35

- Graphs:

adjacency matrix

N1	N2	N3	N4	N5	N6	N7
0	1	1	1	1	1	1
0	0	0	1	0	1	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0

Stages of knowledge extraction

Effort for each data-mining process step

Data quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to random modification of original values
- Examples:
 - distortion of a person's voice when talking on a poor phone
 - "snow" on television screen

Two sine waves

Two sine waves + noise

Noise

- Dealing with noise
 - Mostly you have to live with it
 - Certain kinds of smoothing or averaging can be helpful
 - In the right domain (e.g. signal processing), transformation to a different space can get rid of majority of noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Outliers

- Dealing with outliers
 - There are robust statistical methods for detecting outliers
 - In some situations, you want to get rid of outliers
 - but be judicious they may carry useful, even important information
 - In other situations, the outliers are the objects of interest
 - anomaly detection

Missing values

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects
- Estimate missing values (imputation)
- Ignore the missing value during analysis
- Replace with all possible values (weighted by their probabilities)

Duplicate data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources

- Example:
 - Same person with multiple email addresses
- Data cleaning
 - Includes process of dealing with duplicate data issues

Attribute transformation

Definition:

A function that maps the entire set of values of a given attribute to a new set of replacement values, such that each old value can be identified with one of the new values.

Attribute transformation

- Simple functions
 - Examples of transform functions:

 x^k log(x) e^x | x

- Often used to make the data more like some standard distribution, to better satisfy assumptions of a particular algorithm.
 - Example: discriminant analysis explicitly models each class distribution as a multivariate Gaussian

Attribute transformation

- Standardization or normalization
 - Usually involves making attribute:

mean = 0 standard deviation = 1

- in MATLAB, use zscore() function
- Important when working in Euclidean space and attributes have very different numeric scales.
- Also necessary to satisfy assumptions of certain algorithms.
 - Example: principal component analysis (PCA) requires each attribute to be meancentered (i.e. have mean subtracted from each value)

Transform data to a new space

- Fourier transform
 - Eliminates noise present in time domain

Two sine waves

Two sine waves + noise

Frequency

Converting to Numerical Features

Often want a real-valued example representation:

Age	City	Income		Age	Van	Bur	Sur	Income
23	Van	22,000.00		23	1	0	0	22,000.00
23	Bur	21,000.00		23	0	1	0	21,000.00
22	Van	0.00	$\xrightarrow{\hspace*{1cm}}$	22	1	0	0	0.00
25	Sur	57,000.00		25	0	0	1	57,000.00
19	Bur	13,500.00		19	0	1	0	13,500.00
22	Van	20,000.00		22	1	0	0	20,000.00

- This is called a "1 of k" encoding.
- We can now interpret examples as points in space:
 - E.g., first example is at (23,1,0,0,22000).

Feature Aggregation

- Feature aggregation:
 - Combine features to form new features:

Van	Bur	Sur	Edm	Cal		ВС	AB
1	0	0	0	0		1	0
0	1	0	0	0		1	0
1	0	0	0	0	→	1	0
0	0	0	1	0		0	1
0	0	0	0	1		0	1
0	0	1	0	0		1	0

• Fewer province "coupons" to collect than city "coupons".

Feature Selection

Feature Selection:

- Remove features that are not relevant to the task.

SID:	Age	Job?	City	Rating	Income
3457	23	Yes	Van	Α	22,000.00
1247	23	Yes	Bur	BBB	21,000.00
6421	22	No	Van	CC	0.00
1235	25	Yes	Sur	AAA	57,000.00
8976	19	No	Bur	ВВ	13,500.00
2345	22	Yes	Van	Α	20,000.00

Student ID is probably not relevant.

- Mathematical transformations:
 - Discretization (binning): turn numerical data into categorical.

Age	< 20	>= 20, < 25	>= 25
23	0	1	0
23	 0	1	0
22	0	1	0
25	0	0	1
19	1	0	0
22	0	1	0

Only need consider 3 values.

- Mathematical transformations:
 - Discretization (binning): turn numerical data into categorical.
 - Square, exponentiation, logarithm, and so on.

- Mathematical transformations:
 - Discretization (binning): turn numerical data into categorical.
 - Square, exponentiation, or take logarithm.
 - Scaling: convert variables to comparable scales (E.g., convert kilograms to grams.)

Exploratory Data Analysis

You should always 'look' at the data first.

- But how do you 'look' at features and high-dimensional examples?
 - Summary statistics.
 - Visualization.
 - ML + DM (later in course).

Visualization

- You can learn a lot from 2D plots of the data:
 - Patterns, trends, outliers, unusual patterns.

Lat	Long	Temp
0	0	30.1
0	1	29.8
0	2	29.9
0	3	30.1
0	4	29.9

VS.

Basic Plot

Visualize one variable as a function of another.

http://notunlikeresearch.tynenad.com/something-not-unlike-rese/2011/01/more-on-violent-rhetoric-media-violence-and-actual-

Histogram

Histograms display distribution of a variable.

Box Plot

http://www.bbc.co.uk/schools/gcsebitesize/maths/statistics/representingdata3hi

Box Plot

Photo from CTV Olympic coverage in 2010:

Matrix Plot

- We can view (examples) x (features) data table as a picture:
 - "Matrix plot".
 - May be able to see trends in features.

Matrix Plot

- A matrix plot of all similarities (or distances) between features:
 - Colour used to catch attention.

"Correlation
plot"

Scatterplot

- Look at distribution of two features:
 - Feature 1 on x-axis.
 - Feature 2 on y-axis.
 - Basically a "plot without lines" between the points.

 Shows correlation between "personality" score and "looks" score.

http://cdn.okccdn.com/blog/humaneyneriments/looks-v-nersonality.nng

Scatterplot

- Look at distribution of two features:
 - Feature 1 on x-axis.
 - Feature 2 on y-axis.
 - Basically a "plot without lines" between the points.

- Shows correlation between "personality" score and "looks" score.
- But scatterplots let you see more complicated patterns.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet