Special Palindrome Again

A string is said to be a *special palindromic string* if either of two conditions is met:

- All of the characters are the same, e.g. aaa.
- All characters except the middle one are the same, e.g. aadaa.

A *special palindromic substring* is any substring of a string which meets one of those criteria. Given a string, determine how many special palindromic substrings can be formed from it.

For example, given the string s = mnonopoo, we have the following special palindromic substrings: $\{m, n, o, n, o, p, o, o, non, ono, opo, oo\}$.

Function Description

Complete the *substrCount* function in the editor below. It should return an integer representing the number of special palindromic substrings that can be formed from the given string.

substrCount has the following parameter(s):

- n: an integer, the length of string s
- s: a string

Input Format

The first line contains an integer, n, the length of s.

The second line contains the string s.

Constraints

$$1 \le n \le 10^6$$

Each character of the string is a lowercase alphabet, **ascii[a-z]**.

Output Format

Print a single line containing the count of total special palindromic substrings.

Sample Input 0

5 asasd

Sample Output 0

7

Explanation 0

The special palindromic substrings of s =asasd are $\{a, s, a, s, d, asa, sas\}$

Sample Input 1

7 abcbaba

Sample Output 1

10

Explanation 1

The special palindromic substrings of s=abcbaba are $\{a, b, c, b, a, b, a, bcb, bab, aba\}$

Sample Input 2

4 aaaa

Sample Output 2

10

Explanation 2