UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS LABORATÓRIO DE FÍSICA 1

MOVIMENTO UNIDIMENSIONAL

JOÃO VICTOR ALCÂNTARA PIMENTA Nº USP: xxxxxxx

SÃO CARLOS, 2020

1. RESUMO:

Nesta prática serão avaliados dois sistemas de movimento unidimensional de forma quantitativa e no final, calcular com os dois modelos a aceleração gravitacional. Na primeira, a partir de um pêndulo, se relaciona o período de oscilação da massa com a aceleração gravitacional de forma a determinar g no ponto espacial em questão, garantido um movimento harmônico. No segundo experimento, será executado o cálculo da aceleração gravitacional a partir da aceleração de um bloco em um plano inclinado, que representa uma razão calculável de g.

2. INTRODUÇÃO TEÓRICA:

A gravidade é uma das forças fundamentais da natureza. Ela se manifesta em qualquer sistema com massa e causa uma aceleração. Seu módulo é também diretamente proporcional à quantidade de massa e inversamente proporcional ao quadrado da distância entre os centros de massas dos corpos considerados. Seu comportamento é bem descrito por Newton, que equacionou-a da seguinte forma:

$$F_g = \frac{G \times M_1 \times M_2}{d^2} \tag{1}$$

Onde:

 F_g : Força originada da aceleração gravitacional;

G: Constante Gravitacional;

 M_1 e M_2 : Massas 1 e 2 do sistema, respectivamente;

d : A distância entre os centros de massa dos corpos.

Neste contexto é de extremo interesse saber o valor da aceleração gravitacional, que está intrinsecamente relacionada com a força pela equação, *g* é a aceleração gravitacional:

$$F_g = M \times g \tag{2}$$

Para a descobrir portanto é necessário um sistema onde se possa controlar as outras variáveis e dele derivar a aceleração. Desta ideia surgem os dois experimentos realizados. O pêndulo e o corpo em um plano inclinado são sistemas onde é razoavelmente fácil controlar condições e manipular as outras grandezas para se conseguir isolar a grandeza desejada.

2.1 O PÊNDULO:

O sistema pêndulo é baseado em uma corda de massa insignificante para efeitos de cálculo com uma massa significante em seu extremo. Após solta a partir de uma angulação qualquer, neste caso de uma angulação < 15° com o eixo perpendicular ao solo (para que as aproximações sejam verdadeiras e o movimento de fato, harmônico), a massa passa a oscilar graças a uma das componentes da aceleração gravitacional, apresentada na figura (I). Em um mundo sem desgastes energéticos, ou no breve tempo em que observamos, a perda de energia é mínima e pode-se determinar a aceleração gravitacional a partir do período de oscilação desta massa.

Figura (I) - Sistema pêndulo

Na imagem, \overline{P} representa a força peso, originada da aceleração gravitacional, \overline{Px} e \overline{Py} são os componentes do Peso nos eixos demarcados. \overline{Tn} e $\overline{Tn'}$ são a tração e a força da corda no plano que a suspende. Além dessas, o comprimento da corda no sistema é denominado L (m) e o ângulo entre a corda e a perpendicular é representado por θ .

Como é claro na ilustração, A força que causa o movimento horizontal do bloco é referente à componente horizontal do peso. Assim, fica fácil, com algumas aproximações, determinar a fórmula do período e consequentemente a aceleração gravitacional e chega-se na seguinte fórmula:

$$P = 2\pi \sqrt{\frac{L}{g}} \tag{3}$$

2.2 O PLANO INCLINADO:

O plano inclinado é um sistema muito simples e consiste em um bloco sobre um plano que se encontre inclinado. Assim, pode-se observar uma componente da força peso na direção que o plano assume e, com alguns dados auxiliares, calcular a aceleração gravitacional. O sistema consiste em algo similar a seguinte ilustração:

Figura (II) - Sistema Plano inclinado Elaborado pelo Compilador

Desconsiderando o atrito, vale a equação de Newton que expressa a força resultante nesse caso:

$$F = M \times a \tag{4}$$

Onde F seria \overline{Px} , M seria a massa do bloco e a a aceleração resultante, que gera g pela seguinte relação:

$$sen\theta = \frac{\overline{Px}}{P} = \frac{Ma}{Mg}$$

$$g = \frac{a}{sen\theta} \tag{5}$$

Assim, a constante pode ser determinada.

3. MÉTODOS EXPERIMENTAIS:

3.1 O PÊNDULO:

O experimento consiste na medição do período do pêndulo com o aparato de um relógio de mão. Para ser mais exato, foi medido o tempo para 10 oscilações do pêndulo em diferentes comprimentos de L. O pêndulo consiste de uma massa presa a uma corda. A massa é liberada de ângulos relativamente pequenos para garantir o movimento harmônico.

Com os períodos e comprimentos em mãos fica trivial montar um gráfico que relacione $T^2 e L$, para que, de acordo com a equação (3), se possa verificar a relação linear entre as duas grandezas. Neste caso, o coeficiente linear desta reta é dada por algumas constantes descritas na equação bem definidas e de g, que se quer definir.

Assim, o processo consiste basicamente em, a partir da relação linear, determinar pelo coeficiente a constante g.

3.2 O PLANO INCLINADO:

No caso do plano inclinado, a montagem é mais complexa. Foi utilizado como um plano para o bloco um trilho de ar, do Laboratório de Física 1 do IFSC, capaz de diminuir o atrito entre o bloco e o próprio trilho.

O trilho em questão foi inclinado para que configurasse as condições necessárias. medidas as dimensões é possível por trigonometria determinar o ângulo formado. Além disso, para determinar a aceleração do bloco ao longo do movimento um sensor ultrasônico registrou em diversos instantes a distância do bloco ao início do trajeto. Com estes dados é possível determinar a velocidade criando uma nova grandeza que seja a razão entre o distância(x) e o tempo(t) a cada instante e a aceleração(a) de forma simples.

Deve-se verificar uma relação entre as grandezas que corresponda a seguinte equação:

$$\frac{x}{t} = v_0 + \frac{a}{2}t \tag{6}$$

A imagem a seguir apresenta a montagem do trilho e bloco e o sensor, à esquerda da figura:

Figura (III) - Montagem Plano Inclinado Retirado do vídeo disponibilizado no Moodle USP

Um dos lados do trilho foi elevado a uma altura de (7.6 ± 0.1) cm (d) e o comprimento da bancada onde o equipamento está apoiado é de (381.8 ± 0.1) cm (l). Com estes dados, fica definido que o ângulo deve ser:

$$arcsen(d/l) = \theta$$
 (7)

3.3 ANÁLISE DOS RESULTADOS:

Para garantir uma equivalência entre os resultados padrões e os obtidos pelo experimentos, utiliza-se a seguinte equação:

$$|x_1 - x_2| < 2(\sigma_1 - \sigma_2)$$
 (8)

4. RESULTADOS E DISCUSSÃO:

4.1 PÊNDULO:

Os dados obtidos foram os seguintes:

Comprimento(cm)	Tempo 10 oscilações(s)
63.0	16.03
78.0	17.97
88.5	19.13

99.2	20.18
111.5	21.44
125.2	22.72
139.1	23.94
152.4	25.03
163.9	25.91
227.2	30.28
293.2	34.44

Tabela 1 - Comprimento e tempos Elaborada pelo compilador

Com estes dados, elabora-se um Gráfico de T^2 em função de L, já adicionando a ele a regressão correspondente:

Gráfico do comprimento pelo tempo

Gráfico 1 - Comprimento pelo tempo Elaborado pelo compilador

A linha gerada tem coeficiente $(4.01 \pm 0.02) \, s^2/m$ com a incerteza já dada pela função de regressão do R, linguagem usada para determinação da regressão execução dos gráficos. A função da linha é dada por:

$$y = (4.01 \pm 0, 02)x + (11 \pm 3)$$

Resta agora calcular g a partir do que foi encontrado. A constante g foi encontrada sendo, neste método:

$$(9.84 \pm 0.05) \, m/s^2$$

Este valor, de acordo com (8), é estatisticamente equivalente com o valor da gravidade.

O código em R necessário para este experimento foi:

```
Dadospendulo <- read.csv("~/LabFisicaemR/Prática 3/Dadospendulo", sep="")

# Localiza e abre o arquivo com os dados experimentais

comprimento <- Dadospendulo$Comprimento.m.

tempoquadrado <- (Dadospendulo$Tempo.s.)^2

# Declara as variaveis

plot(comprimento, tempoquadrado, grid(), xlab = "Comprimento (m)", ylab = "Tempo (s²)", main = "Gráfico do comprimento pelo tempo")

#Plota o gráfico

regressaopendulo <- lm(tempoquadrado ~ comprimento)

#Faz a regressão linear para os daddos

abline(regressaopendulo)
```

#adiciona a linha no grafico

summary(regressaopendulo)

#para detalhes sobre a regressão

4.2 PLANO INCLINADO:

Os dados para o plano inclinado foram os seguintes, já com a grandeza da razão entre a distância e tempo calculada:

Distância é denominada por x, tempo por t sua razão por x/t.

Nº	x(m)	t(s)	x/t(m/s)	Nº	x(m)	t(s)	x/t(m/s)	Nº	x(m)	t(s)	x/t(m/s)
1	1.11	3.5	0.317	20	1.72	4.45	0.387	39	2.53	5.40	0.469
2	1.14	3.55	0.321	21	1.76	4.50	0.391	40	2.56	5.45	0.470
3	1.16	3.60	0.322	22	1.80	4.55	0.396	41	2.62	5.50	0.476
4	1.19	3.65	0.326	23	1.84	4.60	0.400	42	2.67	5.55	0.481
5	1.22	3.70	0.330	34	1.88	4.65	0.404	43	2.71	5.60	0.484
6	1.25	3.75	0.333	25	1.92	4.70	0.409	44	2.77	5.65	0.490
7	1.28	3.80	0.337	26	1.96	4.75	0.413	45	2.80	5.70	0.491
8	1.31	3.85	0.340	27	2.11	4.80	0.417	46	2.85	5.75	0.496
9	1.34	3.90	0.344	28	2.04	4.85	0.421	47	2.94	5.80	0.507
10	1.37	3.95	0.347	29	2.08	4.90	0.425			-	
11	1.41	4.00	0.353	30	2.12	4.95	0.428				
12	1.44	4.05	0.356	31	2.17	5.00	0.434				
13	1.47	4.10	0.360	32	2.21	5.05	0.438				
14	1.51	4.15	0.364	33	2.25	5.10	0.441				
15	1.54	4.20	0.367	34	2.30	5.15	0.447				
16	1.58	4.25	0.372	35	2.34	5.20	0.450				

17	1.61	4.30	0.374	36	2.39	5.25	0.455
18	1.65	4.35	0.380	37	2.43	5.30	0.458
19	1.69	4.40	0.384	38	2.48	5.35	0.464

Tabela 2- x, t e x/t representados Elaborada pelo compilador

A partir destes dados, faz-se o gráfico de (x/t) em função do tempo, fazendo já a regressão:

Gráfico da velocidade em função do tempo

Gráfico 2- Comprimento x/t pelo tempo Elaborado pelo compilador

Do gráfico, a equação da reta representada é a abaixo, observa-se que \boldsymbol{V}_0 é próximo de 0, mas não exatamente:

$$y = (0.0817 \pm 0.0005)x + (0.025 \pm 0.002)$$

Donde se tira a aceleração de acordo, com a equação (6), que:

$$a = (0.164 \pm 0.001) m/s^2$$

Para finalmente relacionar a aceleração do bloco com a aceleração gravitacional, falta, de acordo com a equação (5), o seno do ângulo de inclinação. Para isso, calcula-se, a partir das medidas feitas no trilho, utilizando da equação (7), o ângulo, que se toma sendo:

$$\theta = (1.1430 \pm 0.0003)^{\circ}$$

A partir disso é fácil definir a aceleração gravitacional como sendo:

$$g = (8.3 \pm 0.2)m/s^2$$

Utilizando as relação (8), não foi possível determinar a equivalência estatística entre o valor encontrado e o valor já bem determinado de g. O ideal seria repetir diversas vezes o experimento para adquirir uma maior precisão dos resultados.

O código em R necessário para este experimento foi:

```
Dadosplanoinclinado <- read.csv2("~/LabFisicaemR/Prática 3/Dadosplanoinclinado", sep="")

# Localiza e abre o arquivo com os dados experimentais

velocidade <- (Dadosplanoinclinado$Position.m./Dadosplanoinclinado$Time.s.)

# Declara as variaveis

plot(Dadosplanoinclinado$Time.s., velocidade, grid(), xlab = "Tempo (s)", ylab=
"Velocidade (m/s)", main= " Gráfico da velocidade em função do tempo" )

#Plota o gráfico

regressaoplano <- lm(formula = velocidade ~ Dadosplanoinclinado$Time.s. )

#Faz a regressão linear para os daddos

abline(regressaoplano)

#adiciona a linha no grafico
```

summary(regressaoplano)

#para detalhes sobre a regressão

5. CONCLUSÃO

A partir dos experimentos foi possível verificar dois valores para a aceleração gravitacional. No primeiro, do pêndulo, o valor foi bem preciso, adquirindo (9.84 ± 0.05) m/s^2 , dentro da margem de erro do experimento. Apresentando uma precisão muito maior do que o segundo experimento.

O segundo experimento, como já dito, teve uma precisão menor, inclusive não foi estatisticamente equivalente ao valor esperado de g, sendo o valor encontrado $g = (8.3 \pm 0.2) m/s^2$. É possível que com mais medidas de diversas repetições do experimento, a precisão fosse melhor.