Lista 6 Algorytmy Kwantowe 1

1. Luki z wykładu

Zadanie 1

Trudność: łatwe Punktów: 2

Na wykładzie omówiliśmy algorytm przybliżania ułamków, który pozwala wysupłać z liczby $\frac{\gamma}{N} = \frac{\lfloor k \frac{N}{t} \rceil}{N}$ interesującą nas liczbę $\frac{k}{t}$. Niestety, jeśli k i t nie są względnie pierwsze, algorytm uprości ten ułamek i jego mianownikiem nie będzie t, tylko jakiś jego dzielnik. Pokaż, że z prawdopodobieństwem $\frac{1}{\text{poly}(n)}$ obwód wypluł taką liczbę $\gamma = \lfloor k \frac{N}{s} \rceil$, że t i s są względnie pierwsze.

Zadanie 2 [Łamanie RSA]

Trudność: łatwe Punktów: 2

W kryptosystemie RSA losuje się dwie duże liczby pierwsze p i q. Obliczenia dokonują się w pierścieniu \mathbb{Z}_N^* , gdzie $N = p \cdot q$. Wybiera się e (zazwyczaj równe 65537), które stanowi klucz publiczny, oraz d, takie że

$$e \cdot d \equiv 1 \mod (p-1)(q-1)$$
.

Wiadomość $m \in \mathbb{Z}_N$ szyfrujemy licząc $c = m^e \pmod{N}$. Deszyfrowanie polega na policzeniu $c^d \equiv m^{e \cdot d} \equiv m \pmod{N}$. Znamy N i szyfrogram c. Jak poznanie ord(c) pomaga w odczytaniu wiadmości m?

2. Algorytm Shora

W kolejnych zadaniach mamy liczbę N będącą iloczynem nieparzystych liczb pierwszych. Naszym celem jest poznanie tych liczb pierwszych.

Zadanie 3

Trudność: średnie Punktów: 3

Niech p będzie nieparzystą liczbą pierwszą, zaś x niech będzie losową (jednostajnie) resztą z dzielenia przez p. k będzie rzędem x, czyli najmniejszą dodatnią potęgą, że $x^k \equiv 1 \pmod{p}$. Pokaż, że z prawdopodobieństwem przynajmniej $\frac{1}{2}$ (ze względu na wybór x) k jest parzyste.

Wskazówka: Grupa multiplikatywna \mathbb{Z}_p^* ma generatory.

Zadanie 4

Trudność: trudne Punktów: 4

Niech $N=p\cdot q$ będzie iloczynem dwóch różnych liczb pierwszych, zaś x niech będzie losową resztą z dzielenia przez N. Udowodnij, że z prawdopodobieństwem przynajmniej $\frac{3}{8}$ rząd k liczby x jest parzysty i $x^{\frac{k}{2}} \not\equiv \pm 1 \pmod{N}$.

Zadanie 5

Trudność: łatwe Punktów: 1

Załóżmy, że N jest potęgą nieparzystej liczby pierwszej p. Jak (klasycznie) znaleźć tę liczbę p?

Zadanie 6

Trudność: średnie Punktów: 2

Skonstruuj algorytm kwantowy do rozkładu liczby na czynniki pierwsze. Jaka jest złożoność tego algorytmu?

3. Hidden Subgroup Problem

W Hidden Subgroup Problem dostajemy funkcję $f:G\to\mathbb{N}$, o której wiemy, że istnieje jakaś podgrupa $H\leqslant G$, którą f "ukrywa" — tj.

$$f(x) = f(y) \iff xH = yH.$$

Zadanie 7 [Problem logarytmu dyskretnego]

Trudność: trudne Punktów: 5

W problemie logarytmu dyskretnego dostajemy liczbę całkowitą M i generator g grupy multiplikatywnej \mathbb{Z}_M^* , to znaczy $\{g^0, g^1, \ldots, g^{N-1}\} = \mathbb{Z}_M^*$. Zakładamy, że N jest nam znane. Dostajemy ponadto $a \in \mathbb{Z}_M^*$, a naszym zadaniem jest znaleźć najmniejsze l, że $g^l \equiv a \pmod{M}$.

Pokaż, że problem ten jest instancją HSP, z grupą $\mathbb{Z}_N \times \mathbb{Z}_N$.

Zadanie 8

Trudność: łatwe Punktów: 1

Okresem funkcji $f: \mathbb{Z}_N^k \to [M]$ jest taki wektor, $u \in \mathbb{Z}_N^k$, że $\forall x \in \mathbb{Z}_N^k$, $f(x_1, \dots, x_k) = f(x_1 + u_1, \dots, x_k + u_k)$ (wszystkie operacje dzieją się oczywiście w \mathbb{Z}_N). Pokaż, że problem jest instancją HSP.

Zadanie 9 [Izomorfizm Grafów]

Trudność: trudne Punktów: 5

Pokaż, że problem izomorfizmu grafów można sprowadzić do szczególnego przypadku HSP.