Machine Learning I

Tema 2. Aprendizaje Supervisado 2.1 Árboles de Decisión

Profesor: José Luis Sancho Gómez

Curso 2023-2024

- 1 ¿Qué es un árbol de decisión?
- 2 Construcción de árboles de decisión
- 3 ID3. Algoritmo básico
- Sobre-ajuste
- 5 Algoritmo CART y Otros
- 6 Random Forest
- 7 Conclusiones

¿Qué es?

Los árboles de decisión son máquinas de aprendizaje supervisado que sirven para clasificar o aproximar.

Supongamos el siguiente problema:

Paciente	Presión Aterial	Urea en sangre	Gota	Hipotiroidismo	Administrar Tratamiento
1	Alta	Alta	Sí	No	No
2	Alta	Alta	Sí	Sí	No
3	Normal	Alta	Sí	No	Sí
4	Baja	Normal	Sí	No	Sí
5	Baja	Baja	No	No	Sí
6	Baja	Baja	No	Sí	No
7	Normal	Baja	No	Sí	Sí
8	Alta	Normal	Sí	No	No
9	Alta	Baja	No	No	Sí
10	Baja	Normal	No	No	Sí
11	Alta	Normal	No	Sí	Sí
12	Normal	Normal	Sí	Sí	Sí
13	Normal	Alta	No	No	Sí
14	Baja	Normal	Sí	Sí	No

- Planteamiento del problema: ¿Cuál es la mejor secuencia de preguntas para saber la clase a la que pertenece un objeto descrito por sus atributos?
- Evidentemente, la "mejor secuencia" es aquella que con el menor número de preguntas, devuelve una respuesta suficientemente buena.
- ¿Qué es mejor preguntar primero si tiene gota o cómo tiene la presión arterial?

Arquitectura

Un árbol de decisión es una estructura jerárquica que consta de un nodo raíz, ramas, nodos internos y nodos hoja.

- Comienza con un nodo raíz sin ramas entrantes. Las ramas salientes del nodo raíz alimentan los nodos internos
- Los nodos internos evalúan características disponibles para formar subconjuntos homogéneos, indicados por nodos hoja o nodos terminales.
- Los nodos hoja representan todos los resultados posibles dentro del conjunto de datos.

Ventajas y desventajas

Pros

- Fáciles de entender e interpretar.
- Sirven también para establecer reglas.
- No lineales
- Menos pre-procesado de los datos: son robustos ante presencia de datos erróneos (outliers), valores faltantes o tipo de datos.
- Es un método no paramétrico (i.e., no hay suposición acerca del espacio de distribución y la estructura del clasificador).

Cons

- Sobreajuste. Los árboles más pequeños son más fáciles de interpretar, pero los más grandes pueden resultar en sobreajuste.
- Pérdida de información al categorizar variables continuas.
- Precisión: otros métodos (por ejemplo, SVM) a menudo tienen tasas de error 30 % más bajas que los árboles básicos (ID.3 y CART).
- Inestabilidad: un pequeño cambio en los datos puede modificar ampliamente la estructura del árbol (distintos conjuntos, distintos árboles). Varianza alevada.

Árboles de decisión

Definición alternativa: recursividad

Un árbol de decisión es una estructura recursiva formada por nodos, en el que existe:

- Un nodo raíz
- El nodo raíz tiene uno o más subnodos
- Cada uno de los subnodos puede ser, a su vez, raiz de un árbol

Está característica recursiva hace que muchos de los algoritmos para crearlos se comporten también de manera recursiva.

Clasificación vs. Regresión

Clasificación

- Variable dependiente es categórica.
- Los valores de los nodos hoja son la moda de las obervaciones de la región.

Regresión

- Variable dependiente es continua.
- Los valores de los nodos hoja son la media de las obervaciones de la región.

Particiones

- Cada nodo define una partición del conjunto de entrenamiento en función de los datos que representa.
- Las particiones producen subconjuntos que son **exhaustivos y excluyentes**.
- Cuestiones clave:
 - **Tipos de particiones**: cuantos más, más posibilidad de encontrar patrones y, por tanto, los árboles más precisos y expresivos.
 - Número de particiones: A más particiones mayor complejidad: equilibrio entre complejidad y precisión.
 - Selección del **mejor atributo** en cada paso
 - Selección del **mejor valor** de umbral de los valores.
 - . . .

Construcción: Particiones posibles I

- Los algoritmos más populares sólo proponen un tipo de partición para valores nominales y otro para valores numéricos:
 - Particiones nominales. En el caso que tengamos un atributo x_i que tenga como posibles valores $\{v_1, v_2, \cdots, v_n\}$, sólo es posible la partición

$$(x_1 = v_1, x_2 = v_2, \cdots, x_n = v_n)$$

que da lugar a árboles con nodos con más de dos nodos hijos.

En el caso de árboles binarios se tienen que evaluar n particiones (una por cada posible valor), definidas por $(x_i=v_i,x_i\neq v_i)$.

Construcción: Particiones posibles II

Particiones numéricas: si el atributo x_i es numérico y continuo, se intenta definir particiones que separe las instancias en intervalos de la forma

$$(x_i \le a, x_i > a)$$

eligiendo diferentes valores de a tenemos diferentes particiones. La expresividad resultante se conoce como *expresividad cuadrangular* y que no relacionan atributos (sólo un atributo cada vez).

ID3: Algoritmo básico de aprendizaje

ID3

El algoritmo básico de aprendizaje es el **ID3 (Iterative Dichotomiser 3)**, J. Ross Quinlan, investigador australiano que propuso el método en 1983.

- El método ID3 trata de encontrar una partición que asegure la **máxima** capacidad predictiva y la máxima homogeneidad de las clases.
- Medida de homegeneidad: la entropía.
- Repetición de "cortes en dos" hasta que se cumpla una determinada condición.

ID3: Entropía

Para determinar el mejor atributo, el ID3 utiliza la **entropía**.

Sea S un conjunto de entrenamiento. Sea p_{\oplus} la proporción de instancias positivas en S y p_{\ominus} la proporción de instancias negativas en S. La **entropía de S** es:

$$H(S) = p_{\oplus} \log_2 \frac{1}{p_{\oplus}} + p_{\ominus} \log_2 \frac{1}{p_{\ominus}} = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

(Relación de la entropía con los conceptos de desorden, equiprobabilidad y homogeneidad)

ID3: Entropía

La entropía nos mide la homogeneidad de los datos (relación inversa)

Para el caso binario:

- Entropía igual a 1 → mínima homogeneidad (equiprobabilidad: $p_{\ominus} = p_{\oplus}$).
- Entropía igual a $0 \rightarrow máxima$ homogeneidad (todas las instancias de una clase).

A la hora de construir un árbol es preferible crear nodos con nodos hoja homogéneos, es decir, de baja entropía.

ID3: Ganancia de Información

- Sea un conjunto de datos $\mathcal X$ con entropía $H(\mathcal X)$.
- lacksquare Si elegimos un atributo A para crear un nodo del árbol, la entropía esperada es:

$$H(\mathcal{X}, A) = \sum_{v \in \mathsf{valores}(A)} \frac{|\mathcal{X}_v|}{|\mathcal{X}|} H(\mathcal{X}_v)$$

siendo \mathcal{X}_v el subconjunto de \mathcal{X} con todos las instancias con A=v.

Por lo tanto, la reducción esperada de la entropía, o lo que es lo mismo la Ganancia de Información, al elegir el atributo A como nodo de decisión del árbol es

$$Ganancia(\mathcal{X}, A) = H(\mathcal{X}) - H(\mathcal{X}, A)$$

■ Por tanto, se elige el atributo que produzca hojas homogéneas, es decir, la **máxima** ganancia de información.

Atributos nominales (no numéricos)

Día	Cielo	Temperatura	Humedad	Viento	Jugar
D1	Soleado	Calor	Alta	Flojo	No
D2	Soleado	Calor	Alta	Fuerte	No
D3	Nublado	Calor	Alta	Flojo	Si
D4	Lluvia	Templado	Alta	Flojo	Si
D5	Lluvia	Frio	Normal	Flojo	Si
D6	Lluvia	Frio	Normal	Fuerte	No
D7	Nublado	Frio	Normal	Fuerte	Si
D8	Soleado	Templado	Alta	Flojo	No
D9	Soleado	Frio	Normal	Flojo	Si
D10	Lluvia	Templado	Normal	Flojo	Si
D11	Soleado	Templado	Normal	Fuerte	Si
D12	Nublado	Templado	Alta	Fuerte	Si
D13	Nublado	Calor	Normal	Flojo	Si
D14	Lluvia	Templado	Alta	Fuerte	No

 \blacksquare En el ejemplo del tenis tenemos 9 objetos clasificados como \oplus y 5 como \ominus , con lo que

$$H([9 \oplus, 5 \ominus]) = -0.642 \cdot \log_2 0.642 - 0.358 \cdot \log_2 0.358 = 0.94$$

- Por lo tanto, el atributo que ofrece una mayor ganancia de información es el atributo Cielo.
- Utilizando Cielo como nodo raíz el árbol inicial quedaría:

Ahora habría que repetir el proceso con los nodos correspondientes a los valores soleado y lluvia (el nodo nublado sólo contiene una clase).

$Ganancia(\mathcal{X}, A) = H(\mathcal{X})$ -	\sum	$\frac{ \mathcal{X}_v }{ \mathcal{X} }H(\mathcal{X}_v)$
	$v \in valores(A)$	111

Día	Cielo	Temperatura	Humedad	Viento	Jugar
D1	Soleado	Calor	Alta	Flojo	No
D2	Soleado	Calor	Alta	Fuerte	No
D3	Nublado	Calor	Alta	Flojo	Si
D4	Lluvia	Templado	Alta	Flojo	Si
D5	Lluvia	Frio	Normal	Flojo	Si
D6	Lluvia	Frio	Normal	Fuerte	No
D7	Nublado	Frio	Normal	Fuerte	Si
D8	Soleado	Templado	Alta	Flojo	No
D9	Soleado	Frio	Normal	Flojo	Si
D10	Lluvia	Templado	Normal	Flojo	Si
D11	Soleado	Templado	Normal	Fuerte	Si
D12	Nublado	Templado	Alta	Fuerte	Si
D13	Nublado	Calor	Normal	Flojo	Si
D14	Lluvia	Templado	Alta	Fuerte	No

- Para el nodo Cielo = Soleado:

 - $\mathcal{X}_{soleado} = \{D_1, D_2, D_8, D_9, D_{11}\}$ con $H(\mathcal{X}_{soleado}) = 0.971$. $Ganancia(\mathcal{X}_{soleado}, Temperatura) = 0.971 \frac{2}{5} \cdot 0 \frac{2}{5} \cdot 1 \frac{1}{5} \cdot 0 = 0.570$
 - $Ganancia(\mathcal{X}_{soleado}, Humedad) = 0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$
 - $Ganancia(\mathcal{X}_{soleado}, viento) = 0.971 \frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0.918 = 0.019$

- Para el nodo Cielo = Lluvia:
 - $\mathcal{X}_{lluvia} = \{D_4, D_5, D_6, D_{10}, D_{14}\} \text{ con } H(\mathcal{X}_{lluvia}) = 0.971.$
 - $Ganancia(\mathcal{X}_{lluvia}, Temperatura) = 0.971 \frac{3}{5} \cdot 0.918 \frac{2}{5} \cdot 1 = 0.820$
 - $Ganancia(\mathcal{X}_{lluvia}, Humedad) = 0.971 \frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0.918 = 0.820$
 - $Ganancia(\mathcal{X}_{lluvia}, Viento) = 0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$

Por lo tanto, el árbol resultante sería

Día	Cielo	Temperatura	Humedad	Viento	Jugar
D1	Soleado	Calor	Alta	Flojo	No
D2	Soleado	Calor	Alta	Fuerte	No
D3	Nublado	Calor	Alta	Flojo	Si
D4	Lluvia	Templado	Alta	Flojo	Si
D5	Lluvia	Frio	Normal	Flojo	Si
D6	Lluvia	Frio	Normal	Fuerte	No
D7	Nublado	Frio	Normal	Fuerte	Si
D8	Soleado	Templado	Alta	Flojo	No
D9	Soleado	Frio	Normal	Flojo	Si
D10	Lluvia	Templado	Normal	Flojo	Si
D11	Soleado	Templado	Normal	Fuerte	Si
D12	Nublado	Templado	Alta	Fuerte	Si
D13	Nublado	Calor	Normal	Flojo	Si
D14	Lluvia	Templado	Alta	Fuerte	No

Todos los nodos hoja tienen una entropía nula (solo instancias de una clase).

ID3: Error global

Error global

Es la probabilidad de error, es decir, suma ponderada de los errores de todas las hojas del árbol.

$$E = \sum_{i=1}^{n_h} w_i e_i$$

donde

- \blacksquare n_h es el número de hojas del árbol.
- w_i es el peso o probabilidad de la hoja i, es decir, la probabilidad de que una instancia sea clasificada por la partición representada por la rama que acaba en la hoja i.
- $ullet e_i$ es el error correspondiente a la rama que acaba en la hoja i (número de instancias erróneas que caen en la hoja i entre el número de instancias que caen en la hoja i.)

ID3: Algoritmo

El algoritmo básico de aprendizaje es el ID3 (Iterative Dichotomiser 3).

Algoritmo arbol \leftarrow aprenderArbol(datos)

- 1: **si** todos los ejemplos en *datos* tienen la misma etiqueta **entonces**
- 2: **devolver** un nodo hoja con dicha etiqueta.
- 3: **sino**
- 4: Sea A el atributo que clasifica mejor a los objetos en datos.
- 5: **para todo** posible valor v de A hacer
- 6: $data(v) \leftarrow todos los objetos con A = v$.
- 7: Añadir nueva rama \leftarrow aprenderArbol(data(v)).
- 8: fin para
- 9: devolver árbol.
- 10: **fin si**

ID3: Algoritmo

ID3(Instancias, Etiquetas, Atributos)

```
Entrada: Instancias: el conjunto de datos.
Entrada: Etiquetas: el conjunto de posibles clases.
Entrada: Atributos: el conjunto de atributos en el conjunto Instancias.
     si todos las instancias son positivos entonces
         devolver el nodo raíz con etiqueta +.
     sino, si todos las instancias son negativos entonces
         devolver el nodo raíz con etiqueta -.
     sino. si Atributos=∅ entonces
         devolver el nodo raíz con el valor de Etiquetas más probable en Instancias.
     fin si
     Sea A el atributo que clasifica mejor a las instancias en datos.
     Crear un árbol con un nodo etiquetado con A.
     para todo posible valor v_i del atributo A hacer
         añadir un arco bajo la raíz con la comprobación A = v_i.
         sea Instancias v_i el subconjunto de Instancias con A = v_i.
         si Instanciasv_i = \emptyset entonces
             añadir un nodo hoja al arco añadido con el valor de Etiquetas más probable en Ejemplos.
         sino
             añadir al nuevo arco el subárbol generado por ID3(Instanciasv_i, Etiquetas,Atributos-\{A\}).
         fin si
     fin para
     devolver nodo raíz.
```

Espacio de hipótesis y sobre-ajuste

El **espacio de hipótesis** H (no confundir con la entropía) en árboles de decisión abarca todas las posibles combinaciones de atributos y valores que pueden formar árboles de decisión, y nuestra tarea es encontrar la hipótesis más adecuada para clasificar correctamente las instancias de entrada.

En general, se prefieren hipótesis cortas para evitar el sobre-ajuste (overfitting).

Sobre-ajuste

Dado un espacio de hipótesis H, se dice que una hipótesis particular $h \in H$ sobreajusta los datos de entrenamiento si existe una hipótesis alternativa $h' \in H$, tal que h presenta un error menor que h' sobre los ejemplos de entrenamiento, pero h' presenta un error menor que h sobre el conjunto total de observaciones.

Proceso de poda

¿Cómo podemos evitar el sobre-aprendizaje o sobre-ajuste?

Poda: Eliminar condiciones de las ramas del árbol encontrar modelos más pequeños. Existen dos tipos de poda:

- Prepoda: El proceso se realiza durante la construcción del árbol, estableciendo un criterio de parada
 - El número de instancias por nodo.
 - El error esperado.
 - MDL (Minimun Description Lenght).
- Postpoda: El proceso se realiza después de la construcción del árbol.
 - Consiste en ir el eliminado nodos de abajo a arriba mientras se vaya cumpliendo un criterio determinado.

Se puden combinar ambas aproximaciones.

Otras medidas

Medidas alternativas: En algunos casos se suele utilizar otras medidas como

- El Ratio de la ganancia de información, para evitar el hecho de que se favorezca la selección de los atributos con más valores.
- MSE para regresión
- Índice Gini empleado por el algoritmo CART
- DKM, basados en AUC, MDL,...

32 / 45

CART

- CART (Classification And Regression Trees). Similar al ID3 pero:
 - Permite que la variable que define la clase sea continua y no construye un conjunto de reglas.
 - Utiliza el índice de Gini en vez de la ganancia de información para seleccionar el mejor atributo (la mejor partición).
 - Utiliza también el esquema de partición recursiva utilizando una estrategia voraz.
 - También permite resolver problemas de regresión.

CART

- Se elige la partición que produce el menor valor de la función de coste.
 - Para regresión: RSME.Para clasificación: GINI

$$Gini(p) = \sum_{i=1}^{n} p_i (1 - p_i)$$

con p_i las proporciones de instancias de la clase i en la partición

- Prepoda: Utiliza como criterio de parada el número mínimo de instancias asignadas al nodo.
- Postpoda: utiliza un criterio que controla la importancia relativa del error frente la complejidad (tamaño del árbol).

C4.5, C50

- **C4.5**: Permite, a diferencia que ID3, que las características puedan ser continuas, definiendo de forma dinámica un atributo discreto particionando los atributos continuos en un conjunto discreto de intervalos.
 - C4.5 transforma los árboles obtenidos en un conjunto de reglas del tipo if-then. La precisión de cada regla es evaluada de forma independiente para determinar el orden en el que deben ser aplicadas.
 - Un proceso de poda elimina antecedentes de las reglas si con esto se mejora la precisión de la misma.
 - C5.0, utiliza menos memoria y obtiene un conjunto de reglas menor y más preciso.
 - J48 es la implementación en código abierto de C4.5

Random Forests

- Random Forest es una técnica que construye un gran número de árboles de decisión no correlacionados.
- Se basa en la técnica de Agregación de Bootstrap (Bagging), tecnica de agregación de clasificadores o regresores que:
 - Aumenta la precisión y estabilidad reduciendo los efectos del ruido.
 - Reduce la varianza en las predicciones
 - Ayuda a evitar el sobre ajuste.
- La predicción del modelo se elige analizando las predicciones de cada uno de los árboles considerados en el modelo.

MLI 2023-2024

Random Forests: Algoritmo

Algoritmo RF \leftarrow RandomForest(datos)

- 1: para $i \leftarrow 1$ to $n_arboles$ hacer
- 2: Extraer una muestra de tamaño size(data) de datos por bootstrapping
- 3: Construir un árbol T_i repitiendo recursivamente para cada nodo hoja
- 4: 1. Seleccionar aleatoriamente *m* atributos.
- 5: 2. Seleccionar la mejor partición de las inducidas por los m atributos.
- 6: 3. Dividir el nodo en dos nodos hijos.
- 7: 4. Si el tamaño del nodo alcanza n_{min} no continuar dividiendo.
- 8: fin para
- 9: **devolver** El conjunto de árboles $\{T_i\}_1^{n_arboles}$.

Random Forests: Algoritmo

- lacksquare Si tenemos p atributos las recomendaciones para el valor de m son:
 - Clasificación: $\lfloor \sqrt{m} \rfloor$ • Regresión: $\lfloor p/3 \rfloor$
 - Siendo el valor mínimo 1.
- Una vez se han construido los árboles para hacer predicciones:
 - Clasificación: La clase más votada por los árboles.
 - Regresión: La media de todas las predicciones.

Random Forests: OBB e importancia de las variables.

- OBB (out of the bag) error estimate: para cada muestra se predice el error utilizando sólo los árboles en los que no ha sido utilizada (no ha sido elegida en el bootstrapping)
 - Los valores son parecidos a los que se obtienen mediante una validación cruzada de N-pliegues.
- Importancia de los atributos:
 - En cada partición del árbol se registra la mejora del criterio de división.
 - Este valor se considera la importancia del atributo
 - Para cada variable se agregan los valores generados en cada árbol.

Conclusiones

- La utilización de árboles de decisión es muy popular en muchas disciplinas.
- Experimentalmente han demostrado una buena capacidad de clasificación.
- La clave reside en la función a optimizar a la hora de elegir el atributo para disgregar el árbol.
- Los ensambles nos permiten mejorar los resultados combinando información.

Bibliografía I

- José Hernández Orallo, M.José Ramírez Quintana, Cèsar Ferri Ramírez, 2004. Introducción a la Minería de Datos. Pearson education. Editorial Pearson, 2004. ISBN: 84 205 4091 9
- Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques.
 Morgan Kaufman Publishers, 2003.
- Christopher Bishop. Pattern Recognition and Machine Learning.
 Springer-Verlag, 2006
- L. A. Breslow and D. W. Aha. *Simplifying decision trees: a survey*. Knowledge Engineering Review, 12(1):1–40, 1997.

Bibliografía II

- Sheerama K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 1997.
- Ethem Alpaydin. Introduction to Machine Learning. MIT Press 2004.
- José T. Palma y Roque Marín (eds.). Inteligencia Artificial: Métodos, Técnicas y Aplicaciones. McGraw-Hill, 2008