Naive Bayes

Olivier Rochaix, Erick Sanmartin, Logan Sell, Nolan Thomas

How Does Naïve Bayes Work?

Brief Intro

- Set of supervised learning algorithms based on applying Bayes' theorem with a "naïve" assumption: each feature makes an independent and equal contribution to the outcome.
- A classifier that uses probabilities calculated from a training set
- Known as a decent classifier, but also known to be a bad estimator.
- Naïve Bayes algorithms are often used in Sentiment Analysis, Spam
 Filtering, Recommendation Systems, Text Categorization, etc.

Naïve Bayes Classifiers

GAUSSIAN NAïVE BAYES

- Continuous values associated with each feature are assumed to be distributed according to a Normal distribution.

MULTINOMIAL NAïVE BAYES

- Suitable for classification with discrete features (e.g., word counts for text classification).

COMPLEMENT NAïVE BAYES

- Designed to correct the "severe assumptions" made by the standard Multinomial Naive Bayes classifier.

- BERNOULLI NAÎVE BAYES

- This classifier is suitable for binary/boolean features.

CATEGORICAL NAïVE BAYES

- Suitable for classification with discrete features that are categorically distributed.

The Bayes Theorem

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

P(dV given iV) = P(iV given dV) * P(dV)P(dV)

Advantages / Disadvantages

Advantages

- Quick
- Simple to use
- Trainable with small test sets
- Scalable
- Resource efficient
- Noise tolerant

Disadvantages

- Assumption of feature independence
- Assumption of feature equality
- Relatively few hyperparameters
- Zero-frequency problem
- Less effective for applications that are highly complex or require very precise predictions

Required Data Processing Steps

Dataset Requirements

The data set is divided into two parts:

The feature matrix

- contains all the vectors(rows) of dataset
- each vector

 consists of the
 value of
 dependent

 features

The response vector

contains the
value of class
variable(predicti
on or output) for
each row of
feature matrix

	Outlook	Temperature	Humidity	Windy	Play Golf
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No

Next Steps

- -Separate training data by class
- -separate_by_class() function assumes final column per row is the class value
- -Create dictionary:
 - -Keys: Class value
 - -Values: List of all records

Hyperparameters

Hyperparameters - Gaussian

- priors: sets the probability for the output class.
 - Takes an array that adds up to 1 (array of probabilities).
 - Array is length of amount of classes
- var_smoothing: artificially adds a user-defined value to the distribution's variance to account for more samples further away from the distribution mean. When there is missing data or a class is not represented var_smoothing keeps model from breaking down.
 - Takes a small float
 - Default value is 1e-9

Code Snippet for Multinomial Naïve Bayes

```
D ~
           def predict category(s, train=train, model=model):
        2
                pred = model.predict([s])
                return train.target names[pred[0]]
[22]
           predict category('Jesus Christ')
[23]
     'soc.religion.christian'
```

Appendix

- An introduction to the concept of Naïve Bayes
 - <u>1.9. Naive Bayes scikit-learn 1.1.2 documentation</u> This resource is the comprehensive documentation of the naïve Bayes model and its different classifiers. [Article]
 - <u>Naive Bayes, Clearly Explained!!!</u> A very simple overview of the Bayes Theorem and how it is used for sorting classes. [Video]
 - <u>Naïve Bayes Algorithm: Everything You Need to Know KDnuggets</u> This resource explains the formula underlying the Naïve Bayes classifier and common problems that can be encountered when using it. [Article]
 - <u>What are Naive Bayes classifiers?</u> Provides a quick glance at the 3 most popular Naïve Bayes classifiers and another look at the Bayes Theorem Formula [Article]
 - <u>(PDF) Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing</u> This resource is a research paper from which the group pulled a handy flowchart to conceptualize the flow of the naïve Bayes model. [PDF]
 - <u>Naïve Bayes Classifier | Naive Bayes Algorithm</u> This resource is a 45-minute comprehensive overview covering the theory of Naïve Bayes, different applications of the ML model, and a code-along example. [Video]

Appendix

- Code examples
 - <u>Naive Bayes Classifier From Scratch in Python</u> This resource provides detailed code examples and a step-by-step explanation of implementing a Naïve Bayes classifier including data processing steps. It was a key source for our Data Processing section. [Article]
 - <u>Naive Bayes Classifier in Machine Learning Javatpoint</u> This resource provides a more in-depth view of the behind the scenes processes of the naïve Bayes model. [Article]
 - <u>Naive Bayes Classifiers GeeksforGeeks</u> This resource runs through an example of the data processing required for naïve bayes and provides some high level information about the model. [Article]
 - <u>Spam Filter in Python: Naive Bayes from Scratch KDnuggets</u> An example of one of the archetypal applications of Naïve Bayes. It includes details on data cleaning as well. [Article]
- Advantages/disadvantages
 - <u>Naive Bayes Pros & Cons HolyPython.com</u> A succinct and easy-to-understand breakdown of the benefits and drawbacks of Naïve Bayes. A useful starting point for learning about the algorithm. [Article]
 - <u>Gaussian Naive Bayes with Hyperparameter Tuning</u> A code demonstration with examples of hyperparameter in context. It includes discussion of strengths and weaknesses (including the zero-frequency problem). [Code tutorial]
- Hyperparameters
 - <u>Naive Bayes Tuning AlFinesse.com</u> A summary of the hyperparameters and their use cases. This includes examples for how the var_smoothing parameter affects a model's performance. [Article]