Graus dos vértices Teoria dos Grafos — QXD0152

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2021

Leituras para esta aula

 Seção 3.3 do Capítulo 3 do livro Fundamentals of Graph Theory do Allan Bickle.

Tópicos desta aula

- Sequência de graus de um grafo
- Sequência gráfica
- Construção recursiva para determinar se uma sequência é gráfica

Relembrando...

Proposição: Se G é um grafo simples de ordem n e $v \in V(G)$, então

$$0 \le \delta(G) \le d(v) \le \Delta(G) \le n-1.$$

Relembrando...

Proposição: Se G é um grafo simples de ordem n e $v \in V(G)$, então

$$0 \le \delta(G) \le d(v) \le \Delta(G) \le n-1.$$

Teorema [Euler 1735]: Se G é um grafo de tamanho m, então

$$\sum_{v\in V(G)}d(v)=2m.$$

Relembrando

Proposição: Se G é um grafo simples de ordem n e $v \in V(G)$, então

$$0 \le \delta(G) \le d(v) \le \Delta(G) \le n-1.$$

Teorema [Euler 1735]: Se G é um grafo de tamanho m, então

$$\sum_{v\in V(G)}d(v)=2m.$$

Corolário: Em qualquer grafo, o número de vértices ímpares é sempre par.

Relembrando

Proposição: Se G é um grafo simples de ordem n e $v \in V(G)$, então

$$0 \le \delta(G) \le d(v) \le \Delta(G) \le n-1.$$

Teorema [Euler 1735]: Se *G* é um grafo de tamanho *m*, então

$$\sum_{v \in V(G)} d(v) = 2m.$$

Corolário: Em qualquer grafo, o número de vértices ímpares é sempre par.

Proposição: Se G é um grafo simples com pelo menos dois vértices, então G contém pelo menos dois vértices com o mesmo grau.

Sequência de graus

Sequência de graus

• **Definição:** A sequência de graus de um grafo G é a lista dos graus dos vértices de G, d_1, d_2, \ldots, d_n , escrita em ordem decrescente, $d_1 \geq d_2 \geq \ldots \geq d_n$.

Grafo G com sequência de graus d = 5, 4, 3, 3, 3, 2

Sequência de graus

• **Definição:** A sequência de graus de um grafo G é a lista dos graus dos vértices de G, d_1, d_2, \ldots, d_n , escrita em ordem decrescente, $d_1 \geq d_2 \geq \ldots \geq d_n$.

Grafo G com sequência de graus d = 5, 4, 3, 3, 3, 2

 Todo grafo tem uma sequência de graus; mas será que para toda sequência decrescente de inteiros não-negativos existe um grafo associado?

- Considere por exemplo a sequência: 3, 1, 1.
 - o É possível construir um grafo com esta sequência de graus?

- Considere por exemplo a sequência: 3, 1, 1.
 - o É possível construir um grafo com esta sequência de graus?
 - Resposta: Não.

- Considere por exemplo a sequência: 3, 1, 1.
 - o É possível construir um grafo com esta sequência de graus?
 - Resposta: Não.
- A partir do Handshaking Lemma obtemos uma condição necessária trivial para que exista um grafo para uma sequência de inteiros não negativos:

Lema: Se uma sequência de inteiros não-negativos d_1, \ldots, d_n é **sequência de graus**, então $\sum d_i$ é par.

- Considere por exemplo a sequência: 3, 1, 1.
 - o É possível construir um grafo com esta sequência de graus?
 - Resposta: Não.
- A partir do Handshaking Lemma obtemos uma condição necessária trivial para que exista um grafo para uma sequência de inteiros não negativos:

Lema: Se uma sequência de inteiros não-negativos d_1, \ldots, d_n é **sequência de graus**, então $\sum d_i$ é par.

• Será que esta condição necessária é também suficiente?

- Considere por exemplo a sequência: 3, 1, 1.
 - o É possível construir um grafo com esta sequência de graus?
 - Resposta: Não.
- A partir do Handshaking Lemma obtemos uma condição necessária trivial para que exista um grafo para uma sequência de inteiros não negativos:

Lema: Se uma sequência de inteiros não-negativos d_1,\ldots,d_n é **sequência de graus**, então $\sum d_i$ é par.

- Será que esta condição necessária é também suficiente?
 - o Resposta: SIM!

Exemplos

- Por exemplo, as sequências $d_1=(4,3,2,1)$ e $d_2=(5,4,3,2,1,1)$ satisfazem a condição necessária para que elas sejam sequências de graus de algum grafo.
 - Que estratégia usar para construir o tais grafos?

Proposição. Os inteiros não negativos d_1, \ldots, d_n são a sequência de graus de algum grafo se e somente se $\sum_{i=1}^n d_i$ é par.

Demonstração.

• (\Rightarrow) Seja d_1, \ldots, d_n a sequência de graus de um grafo G com m arestas. Pelo Handshaking Lemma, temos que $\sum d_i = 2m$, que é um número par.

Proposição. Os inteiros não negativos d_1, \ldots, d_n são a sequência de graus de algum grafo se e somente se $\sum_{i=1}^n d_i$ é par.

Demonstração.

- (\Rightarrow) Seja d_1, \ldots, d_n a sequência de graus de um grafo G com m arestas. Pelo Handshaking Lemma, temos que $\sum d_i = 2m$, que é um número par.
- (\Leftarrow) Suponha $\sum d_i$ par. Vamos construir um grafo com n vértices v_1, \ldots, v_n tal que $d(v_i) = d_i$ para todo i.

Proposição. Os inteiros não negativos d_1, \ldots, d_n são a sequência de graus de algum grafo se e somente se $\sum_{i=1}^n d_i$ é par.

Demonstração.

- (\Rightarrow) Seja d_1, \ldots, d_n a sequência de graus de um grafo G com m arestas. Pelo Handshaking Lemma, temos que $\sum d_i = 2m$, que é um número par.
- (\Leftarrow) Suponha $\sum d_i$ par. Vamos construir um grafo com n vértices v_1, \ldots, v_n tal que $d(v_i) = d_i$ para todo i.
- Como $\sum d_i$ é par, o número de vértices de grau ímpar é par.

Proposição. Os inteiros não negativos d_1, \ldots, d_n são a sequência de graus de algum grafo se e somente se $\sum_{i=1}^n d_i$ é par.

Demonstração.

- (\Rightarrow) Seja d_1, \ldots, d_n a sequência de graus de um grafo G com m arestas. Pelo Handshaking Lemma, temos que $\sum d_i = 2m$, que é um número par.
- (\Leftarrow) Suponha $\sum d_i$ par. Vamos construir um grafo com n vértices v_1, \ldots, v_n tal que $d(v_i) = d_i$ para todo i.
- Como $\sum d_i$ é par, o número de vértices de grau ímpar é par.
- Então, inicialmente pareamos os vértices de grau ímpar. Para cada par, ligamos os vértices no par por meio de uma aresta.
- Assim o número de arestas que faltam para completar o grau em cada vértice do grafo é um número par e não-negativo.
- Deste modo, para cada vértice v_i , adicionamos exatamente $\lfloor d_i/2 \rfloor$ laços a fim de completar os graus requeridos para cada vértice do grafo.

Observações

- Note que a possibilidade de adicionar laços tornou a solução do problema anterior fácil.
- Sem laços não podemos construir um grafo para a sequência d=2,0,0.

Observações

- Note que a possibilidade de adicionar laços tornou a solução do problema anterior fácil.
- Sem laços não podemos construir um grafo para a sequência d = 2, 0, 0.
- Sem laços nem arestas múltiplas, também não é possível construir um grafo para a sequência d=2,0,0.

Observações

- Note que a possibilidade de adicionar laços tornou a solução do problema anterior fácil.
- Sem laços não podemos construir um grafo para a sequência d = 2, 0, 0.
- Sem laços nem arestas múltiplas, também não é possível construir um grafo para a sequência d=2,0,0.
- Logo, o problema fica mais interessante (desafiador ou complexo) quando nos restringimos apenas aos grafos simples.

- **Definição:** Uma sequência gráfica é uma lista de inteiros não-negativos que é a sequência de graus de algum grafo simples.
 - Dizemos um grafo com sequência de graus *S* concretiza *S*.

- **Definição:** Uma sequência gráfica é uma lista de inteiros não-negativos que é a sequência de graus de algum grafo simples.
 - Dizemos um grafo com sequência de graus S concretiza S.
- Três condições necessárias para uma sequência ser gráfica:
 - I. O grau máximo da sequência é no máximo n-1.
 - II. A soma dos graus $\sum d_i$ é par. (pelo Handshaking Lemma)
- III. A sequência deve ter pelo menos dois números repetidos (pelo Exercício da AC01)

- **Definição:** Uma sequência gráfica é uma lista de inteiros não-negativos que é a sequência de graus de algum grafo simples.
 - Dizemos um grafo com sequência de graus S concretiza S.
- Três condições necessárias para uma sequência ser gráfica:
 - I. O grau máximo da sequência é no máximo n-1.
 - II. A soma dos graus $\sum d_i$ é par. (pelo Handshaking Lemma)
 - III. A sequência deve ter pelo menos dois números repetidos (pelo Exercício da AC01)
- Quais das seguintes sequências são gráficas?
 - a) 5, 3, 3, 2, 1
 - b) 2, 2, 2, 2, 1, 1
 - c) 3, 3, 2, 2, 2, 2, 1
 - d) 3, 3, 1, 1

Uma ideia algorítmica para caracterização de sequências gráficas

- Ideia: podemos dizer que uma sequência é gráfica se pudermos transformá-la em uma sequência mais simples, que seja gráfica.
- Suponha que temos uma sequência de graus $d = d_1, d_2, \dots, d_n$
- Obtemos uma sequência mais simples d' a partir de d removendo d_1 e subtraindo 1 de cada um dos termos d_2, \ldots, d_{d_1+1} .
- Claramente, se d' é uma sequência gráfica, então d é gráfica. (Por quê?)

O inverso da implicação acima também é verdadeiro e foi provado por Havel (1955) e Hakimi (1962).

S. L. Hakimi

Teorema de Havel-Hakimi: A sequência $S: d_1 \ge ... \ge d_n$ é gráfica se e somente se a sequência S_1 , formada removendo d_1 e subtraindo 1 dos d_1 próximos maiores termos, é gráfica.

Teorema de Havel-Hakimi: A sequência $S: d_1 \ge ... \ge d_n$ é gráfica se e somente se a sequência S_1 , formada removendo d_1 e subtraindo 1 dos d_1 próximos maiores termos, é gráfica.

Demonstração da volta:

 (\Leftarrow) Suponha que existe um grafo G_1 com sequência de graus S_1 formada como dito no enunciado do teorema. A partir de G_1 , construa o grafo G adicionando um novo vértice e tornando-o adjacente aos d_1 vértices que tiveram seus graus reduzidos. Portanto, G concretiza S, que é gráfica.

Demonstração da ida:

 (\Rightarrow) Seja G um grafo com vértices v_1, \ldots, v_n que concretiza a sequência S, com $d(v_i) = d_i$.

Se v_1 for adjacente aos vértices com graus d_2, \ldots, d_{d_1+1} , então não há mais o que provar e o resultado segue.

Demonstração da ida:

(⇒) Seja G um grafo com vértices v_1, \ldots, v_n que concretiza a sequência S, com $d(v_i) = d_i$.

Se v_1 for adjacente aos vértices com graus d_2, \ldots, d_{d_1+1} , então não há mais o que provar e o resultado segue.

Então, suponha que v_1 não é adjacente aos vértices com graus d_2, \ldots, d_{d_1+1} . Neste caso, vamos modificar o grafo de modo que ele seja.

Demonstração da ida:

(⇒) Seja G um grafo com vértices v_1, \ldots, v_n que concretiza a sequência S, com $d(v_i) = d_i$.

Se v_1 for adjacente aos vértices com graus d_2, \ldots, d_{d_1+1} , então não há mais o que provar e o resultado segue.

Então, suponha que v_1 não é adjacente aos vértices com graus d_2, \ldots, d_{d_1+1} . Neste caso, vamos modificar o grafo de modo que ele seja.

Suponha que existam vértices w e x com d(w) > d(x) tal que $v_1 \leftrightarrow x$ e $v_1 \nleftrightarrow w$. Então, existe algum vértice y que é adjacente a w mas não a x, pois d(w) > d(x).

Continuação da demonstração da ida:

Continuação da demonstração da ida:

Delete as arestas v_1x e yw e adicione arestas v_1w e yx. Isso mantém os graus dos vértices e **aumenta a soma dos graus dos vizinhos de** v_1 .

Continuação da demonstração da ida:

Delete as arestas v_1x e yw e adicione arestas v_1w e yx. Isso mantém os graus dos vértices e **aumenta a soma dos graus dos vizinhos de** v_1 .

Esta operação aumenta o número de vizinhos de v_1 com os graus desejados. Assim, repetindo essa operação, eventualmente produz um grafo G' com a propriedade desejada.

Portanto, deletando v_1 , produzimos um grafo que concretiza S_1 .

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

Exemplo 1: A sequência *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2 é gráfica?

• *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

- *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2
- S_1 : 7, 6, 5, 5, 3, 3, 2, 1

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

- *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2
- S_1 : 7, 6, 5, 5, 3, 3, 2, 1
- S_2 : 5, 4, 4, 2, 2, 1, 0

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

- *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2
- S_1 : 7, 6, 5, 5, 3, 3, 2, 1
- S_2 : 5, 4, 4, 2, 2, 1, 0
- S_3 : 3, 3, 1, 1, 0, 0

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

- *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2
- S_1 : 7, 6, 5, 5, 3, 3, 2, 1
- S_2 : 5, 4, 4, 2, 2, 1, 0
- S_3 : 3, 3, 1, 1, 0, 0
- S_4 : 2, 0, 0, 0, 0

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

- *S*: 8, 8, 7, 6, 6, 4, 4, 3, 2
- S_1 : 7, 6, 5, 5, 3, 3, 2, 1
- S_2 : 5, 4, 4, 2, 2, 1, 0
- S_3 : 3, 3, 1, 1, 0, 0
- S_4 : 2, 0, 0, 0, 0
- S_5 : 0, 0, -1, -1 Não é gráfica

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

Exemplo 2: A sequência *S*: 4, 4, 3, 3, 3, 3, 2, 1, 1 é gráfica?

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

Exemplo 2: A sequência *S*: 4, 4, 3, 3, 3, 3, 2, 1, 1 é gráfica?

 $S: 443333211 \Rightarrow S_1: 33222211 \Rightarrow S_2: 2221111 \Rightarrow S_3: 1111111$

Algoritmo Havel-Hakimi: Dada uma sequência S de inteiros decrescentes, iterativamente remova o primeiro elemento Δ e subtraia 1 dos demais Δ maiores elementos restantes. Pare quando a sequência for formada somente por zeros (neste caso ela é gráfica) ou contém um número negativo (neste caso, S não é gráfica).

Exemplo 2: A sequência *S*: 4, 4, 3, 3, 3, 3, 2, 1, 1 é gráfica?

 $S: 443333211 \Rightarrow S_1: 33222211 \Rightarrow S_2: 2221111 \Rightarrow S_3: 1111111$

- Uma ideia fundamental usada na prova do Teorema de Havel-Hakimi é a operação que troca duas arestas mantendo os graus dos seus extremos.
 - Essas trocas foram usadas para transformar um grafo arbitrário com sequência de graus d em um grafo satisfazendo a condição desejada.

- Uma ideia fundamental usada na prova do Teorema de Havel-Hakimi é a operação que troca duas arestas mantendo os graus dos seus extremos.
 - Essas trocas foram usadas para transformar um grafo arbitrário com sequência de graus d em um grafo satisfazendo a condição desejada.
- Definição: Dado um grafo que contém as arestas uv e wx mas não contém as arestas uw e vx, um 2-switch é a operação que remove uv e wx e adiciona uw e vx.

- Uma ideia fundamental usada na prova do Teorema de Havel-Hakimi é a operação que troca duas arestas mantendo os graus dos seus extremos.
 - Essas trocas foram usadas para transformar um grafo arbitrário com sequência de graus d em um grafo satisfazendo a condição desejada.
- Definição: Dado um grafo que contém as arestas uv e wx mas não contém as arestas uw e vx, um 2-switch é a operação que remove uv e wx e adiciona uw e vx.

A figura abaixo ilustra dois 2-switches sucessivos:

- Um 2-switch preserva os graus de todos os vértices.
- Se um 2-switch torna H em H', então um 2-switch realizado nos mesmos quatro vértices torna H' em H.

- Um 2-switch preserva os graus de todos os vértices.
- Se um 2-switch torna H em H', então um 2-switch realizado nos mesmos quatro vértices torna H' em H.
- Quando dois grafos possuem a mesma sequência de graus, será que é possível transformar um no outro?

- Um 2-switch preserva os graus de todos os vértices.
- Se um 2-switch torna H em H', então um 2-switch realizado nos mesmos quatro vértices torna H' em H.
- Quando dois grafos possuem a mesma sequência de graus, será que é possível transformar um no outro?

Teorema [Berge 1973]: Dois grafos simples G e H têm a mesma sequência de graus se e somente se existe uma sequência de 2-switches que transforma G em H.

Claude Deige

• **Definição:** Uma sequência de graus é unigráfica se existe exatamente um grafo com esta sequência.

• **Definição:** Uma sequência de graus é unigráfica se existe exatamente um grafo com esta sequência.

Exemplo 1: A estrela $K_{1,n-1}$ tem sequência de graus $n-1,1,\ldots,1$. Além disso, nenhum 2-switch pode ser realizado numa estrela. Logo, podemos afirmar que um grafo é uma estrela se e somente se ele tem sequência de graus da forma $n-1,1,\ldots,1$.

• **Definição:** Uma sequência de graus é unigráfica se existe exatamente um grafo com esta sequência.

Exemplo 1: A estrela $K_{1,n-1}$ tem sequência de graus $n-1,1,\ldots,1$. Além disso, nenhum 2-switch pode ser realizado numa estrela. Logo, podemos afirmar que um grafo é uma estrela se e somente se ele tem sequência de graus da forma $n-1,1,\ldots,1$.

Exemplo 2: A sequência 3,3,3,3 é unigráfica, dado que o K_4 é o único grafo que concretiza esta sequência de graus.

• **Definição:** Uma sequência de graus é unigráfica se existe exatamente um grafo com esta sequência.

Exemplo 1: A estrela $K_{1,n-1}$ tem sequência de graus $n-1,1,\ldots,1$. Além disso, nenhum 2-switch pode ser realizado numa estrela. Logo, podemos afirmar que um grafo é uma estrela se e somente se ele tem sequência de graus da forma $n-1,1,\ldots,1$.

Exemplo 2: A sequência 3, 3, 3, 3 é unigráfica, dado que o K_4 é o único grafo que concretiza esta sequência de graus.

Exemplo 3: A sequência 3, 3, 3, 3, 3 não é unigráfica, dado que o $K_{3,3}$ e o $K_3 \square K_2$ ambos concretizam esta sequência.

Fim