

프로젝트 팀원 : 김대영, 박성호

contents

프로젝트 배경 데이터 소개 EDA 및 전처리 모델링 모델링 결과 한계 및 과제

프로젝트 개요

실외 활동 감소, 실내 활동 증가

→ 일상 생활 활동량 감소

운동 빈도 감소

→ 체중 증가

배달 음식 및 간편식 소비 증가

→ 영향 불균형

프로젝트 개요

우리 몸이 섭취한 음식물을 적절하게 사용하지 못해 <mark>혈당</mark> 수치가 정상인보다 훨씬 높은 상태 포도당이 소변으로 빠져 나간다 하여 이름 붙여진 병

데이터 소개

데이터 소개

데이터

당뇨병 데이터

2438개의 rows 26개의 columns 환자 기본 정보 혈압 수치 콜레스테롤 수치 간수치 신장 수치 당뇨병 여부

2438개 중 당뇨병이 206개인 불균형 데이터

EDA 및 전처리

변수 분포도 확인

변수 분포도 확인

각 수치들 중 OI상치가 존재했지만 의학적으로 의미 있는 데이터

EDA 및 전처리 _{상관관계확인}

변수 상관관계 확인

당뇨병 위험도 측정표

질문		문항	점수
	35세 미민		0점
1. 당신의 나이는?	35~44세		2점
	45세 이싱	ł	3점
2. 당신의 부모형제 중 한 명이라도 당뇨병이 있습니까?	아니오		0점
2. 당신의 구도양세 중 한 당이나도 당표당이 있습니까?	예		1점
2 다시오청팬처아야오보유되고이고! 나처아이 140/00 **** 나죠이나이기요?	아니오		0점
3. 당신은 현재 혈압약을 복용하고 있거나 혈압이 140/90 mm Hg 이상인가요?	예	예	
		84 cm 미만	0점
	남자	84~89.9 cm	2점
4 FMO(\$13153115 ODIO(3103		90 cm 이상	3점
4. 당신의 허리둘레는 얼마인가요?		77 cm 미만	0점
	여자	77 ~ 83.9 cm	2점
		84 cm 이상	3점
5. 당신은 현재 담배를 피나요?	아니오		0점
3. 중단근 전세 급배를 파니프:	예		1점
	하루 1잔	미만	0점
6. 당신의 음주량은 하루 평균 몇 잔 인가요? (술 종류 관계없이)	하루 1~4.	9잔	1점
	하루 5잔	하루 5잔 이상	
총점			

AGE(나이)

나이와 약한 상관 관계

BMI(체질량지수)

혈압과 약한 양의 상관관계

SBP(수축기혈압), DBP(이완기 혈압)

혈압과 약한 양의 상관관계

HbA1c(당화혈색소), FBG(공복 혈당)

혈압과 상관 관계가 존재

[※]결과해석 : 점수가 높을수록 당뇨병 위험이 높아진다. 8-9점은 5-7점보다 당뇨병 발생 위험이 2배, 10점 이상일 경우 3배 이상 높아진다. 총점이 5점 이상일 경우 당뇨병이 있을 위험이 높으므로 혈당검사(공복혈당 또는 식후혈당)가 권고된다.

EDA 및 전처리

데이터 전처리

데이터 범주/그룹화

한국인의 체질량 지수에 따른 비만 판정 기준

- <18.5: 저체중

- 18.5-22.9: 정상

- 23.0-24.9: 비만 전단계(과체중)

- 25.0-29.9: 1단계 비만

- 30.0-34.9: 2단계 비만

- 35.0 이상: 3단계 비만

데이터 NULL값 처리

	PR	TG	LDL	HDL	Alb	ALP	labels
184	NaN	138.0	114.0	46.0	4.7	81.0	0
254	NaN	NaN	NaN	NaN	NaN	NaN	0
657	NaN	201.0	119.0	41.0	4.2	62.0	0
1649	NaN	41.0	105.0	81.0	4.7	61.0	0
2002	66.0	NaN	83.0	47.0	4.3	84.0	0
2068	NaN	94.0	121.0	51.0	4.3	253.0	0

파생변수 생성

- TC 그룹(240기준 이상/미만)
- 글루코스 그룹
- 맥압: 수축기와 이완기의 혈압 차이
- BUN/Cr ratio: 신장 질환의 여부 파악
- AST/ALT: 간 기능의 데미지를 파악

실제 사용하는 검사 수치에 대한 정상 및 그 외 진단 기준에 맞춰 범주화 PR(맥박)은 나이대별 중앙값을 이용해 처리 TG(중성지방)은 아래 식을 이용해 처리 TC = HDL + LDL + TC/5 254번 index는 삭제 당뇨병과 연관된 질병들의 수치를 파악해 관련 값들을 산식을 이용해 파생 변수 생성

EDA 및 전처리 탐색적데이터분석

BMI 그룹 분포

저체중 데이터 분포

저체중에서 당뇨 비율이 높은 편 비만율이 높을수록 당뇨병의 위험율 증가 저체중 인원 31명 중 2명이 당뇨병 수치들을 확인 했을 때 뚜렷한 연관성 없음

EDA 및 전처리 탐색적데이터분석

혈당 그룹 분포

EDA 및 전처리 탐색적데이터분석

HDL 그룹 분포

HDL 높음 그룹은 당뇨가 없을 줄 알았지만 그 안에서 <mark>혈당 수치</mark>가 높은 데이터가 존재

모델링

모델링 과정

데이터 처리 기법 및 사용 분류 모델

인코딩/스케일링

오버 샘플링

예측 모델

Label Encoding

One-Hot Encoding

Standard Scaling

Random Oversampling

SMOTE

SMOTE-NC

SMOTE-N

ADASYN

Logistic Regression

Gradient Boosting

Decision

Random

Tree

Forest

XGBoost

KNN

SVC

MLP

LightGBM

해당 기법과 모델들을 사용해 당뇨병 예측

모델링 과정

1. 데이터 전처리

라벨 인코딩 - 각 수준에 따라서 값들을 수치화

	BMI_g	BP_g	PP_g	PR_g	HbA1c_g	FBG_g	TC_g	TG_g	LDL_g	HDL_g
0	1	0	1	1	1	1	2	0	4	2
1	1	2	1	1	1	2	2	0	4	1
2	1	0	1	1	1	1	2	0	4	1
3	1	0	1	1	0	1	0	0	0	1
4	2	0	0	1	1	1	2	2	3	1

스탠다드 스케일링 - 수치형 데이터를 정규화

	age	Ht	Wt	ВМІ	SBP	DBP	PR	HbA1c	FBG	TC
0	59	159.0	56.0	22.2	99	59	60.0	5.8	94	269
1	51	160.0	56.0	21.9	140	85	73.0	6.4	111	272
2	36	162.0	56.0	21.2	100	55	60.0	6.0	91	287
3	53	150.0	47.2	21.0	105	62	78.0	5.5	86	164
4	61	168.1	66.1	23.4	104	67	88.0	5.7	94	252

원핫 인코딩 – 각 수준의 개수만큼 컬럼을 만들어 해당 값은 1 / 아닌 값은 0으로 수치화

	gender_F	gender_M	age_g_30- 44세	age_g_35 세미만	age_g_45 세이상	BMI_g_1 단계비 만	BMI_g_2 단계비 만	BMI_g_3 단계비 만	BMI_g_ 비만전 단계	BMI_g_ 저체중
0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
1	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
2	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
4	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0

모델링 과정

2. 오버 샘플링

Random Sampling

SMOTE

ADASYN

SMOTE-NC

SMOTE-N


```
# 분류기의 성능을 return하는 함수 작성
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
def get clf eval(y test, pred):
   acc = accuracy score(y test, pred)
   pre = precision score(y test, pred)
   re = recall_score(y_test, pred)
   f1 = f1 score(y test, pred)
   auc = roc_auc_score(y_test, pred)
   return acc, pre, re, f1, auc
# 모델과 데이터를 주면 성능을 출력하는 함수
def get_result(model, X_train, y_train, X_test, y_test):
   model.fit(X train, y train)
   pred = model.predict(X test)
   return get clf eval(y test, pred)
# 다수의 모델의 성능을 정리해서 DataFrame으로 반환하는 함수
def get result pd(models, model names, X train, y train, X test, y test):
   col names = ['accuracy', 'precision', 'recall', 'f1', 'roc auc']
   tmp = []
   for model in models:
       tmp.append(get result(model, X train, y train, X test, y test))
   return pd.DataFrame(tmp, columns=col names, index=model names)
```

```
dt_clf = DecisionTreeClassifier(random_state=13, max_depth=4)
knn = KNeighborsClassifier(n_neighbors=5)
rf_clf = RandomForestClassifier(random_state=13, max_depth=4, n_jobs=-1, n_estimators=1000)
lr clf = LogisticRegression(max_iter=400, random_state=13, C=1, solver='lbfgs')
lgbm clf = LGBMClassifier(random state=13, n estimators=1000, n jobs=-1)
svc = SVC(kernel='linear', random state=13)
gb_clf = GradientBoostingClassifier(random_state=13, learning_rate=0.1, n_estimators=200)
xgb = XGBClassifier(random_state=13, n_estimators=400, learning_rate=0.1, n_jobs=-1, use_label_encoder=False)
mlp = MLPClassifier(hidden layer sizes=(11,11,11), activation='relu', max iter=500, batch size=32, learning rate init=0.1, random state=13)
models = [dt_clf, knn, rf_clf, lr_clf, svc, lgbm_clf, gb_clf, xgb, mlp]
model names = ['DecisionTree', 'KNN', 'RandomForest', 'LogisticReg', 'SVC', 'LightGBM', 'GradientBoost', 'XGBoost', 'MLP']
start_time = time.time()
results = get result pd(models, model names, X train oversampled, y train oversampled, X test, y test)
print('Fit time : ', time.time() - start_time)
results
```

```
s kfold = StratifiedKFold(n splits=5, shuffle=True, random state=13)
# random forest
param rf = {'n estimators': [200,600,1000], 'max depth': [2, 4, 6, 10], 'min samples leaf': [1,2,3]}
grid rf = GridSearchCV(estimator=RandomForestClassifier(random state=13), param grid=param rf, scoring='recall', cv=s kfold, n jobs=-1)
# logistic regression
param lg = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'max iter':[200,400,600], 'solver':['newton-cg', 'lbfgs', 'liblinear']}
grid lg = GridSearchCV(estimator=LogisticRegression(random state=13), param grid=param lg, scoring='recall', cv=s kfold, n jobs=-1)
# support vector machine
param svm = {'C': [0.01,0.1,1,10,100,1000], 'gamma': [1,0.1,0.01,0.001,0.0001],'kernel': ['rbf','poly','sigmoid','linear']}
grid svm = GridSearchCV(estimator=SVC(random state=13), param grid=param svm, scoring='recall', cv=s kfold, n jobs=-1)
# multilayer perceptrons
param mlp = {'max iter':(200,500,800,1000), 'batch size':[16,32,64,128], 'learning rate init':[0.001,0.01,0.1,1]}
grid mlp = GridSearchCV(estimator=MLPClassifier(hidden layer sizes=(11,11,11), activation='relu', random state=13), param grid=param mlp, scoring='recall', cv=s kfold, n jobs=-1
grid models = [grid rf, grid lg, grid svm, grid mlp]
grid model names = ['RandomForest', 'LogisticReg', 'SVC', 'MLP']
# grid search.fit(X train oversampled, y train oversampled)
# grid search.predict(X train)
pm tuning result = get result pd(grid models, grid model names, X train oversampled, y train oversampled, X test, y test)
pm tuning result
```

모델링 결과

범주형+라벨 인코딩

	accuracy	precision	recall	f1	rou_auc
DecisionTree	0.241803	0.093827	0.926829	0.170404	0.552900
KNN	0.415984	0.103896	0.780488	0.183381	0.581519
RandomForest	0.084016	0.084016	1.000000	0.155009	0.500000
LogisticReg	0.223361	0.097619	1.000000	0.177874	0.576063
SVC	0.202869	0.093458	0.975610	0.170576	0.553800
LightGBM	0.084016	0.084016	1.000000	0.155009	0.500000
GradientBoost	0.084016	0.084016	1.000000	0.155009	0.500000
XGBoost	0.846311	0.282051	0.536585	0.369748	0.705653
MLP	0.663934	0.163934	0.731707	0.267857	0.694713

범주형+원핫 인코딩

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.754098	0.207407	0.682927	0.318182	0.721777
KNN	0.788934	0.196078	0.487805	0.279720	0.652180
RandomForest	0.829918	0.298077	0.756098	0.427586	0.796393
LogisticReg	0.807377	0.280992	0.829268	0.419753	0.817319
SVC	0.786885	0.248000	0.756098	0.373494	0.772903
LightGBM	0.875000	0.222222	0.195122	0.207792	0.566241
GradientBoost	0.844262	0.307692	0.682927	0.424242	0.770994
XGBoost	0.875000	0.272727	0.292683	0.282353	0.610547
MLP	0.795082	0.229358	0.609756	0.333333	0.710918

연속형+스탠다드 스케일링

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.803279	0.256637	0.707317	0.376623	0.759699
KNN	0.795082	0.234234	0.634146	0.342105	0.721995
RandomForest	0.827869	0.287129	0.707317	0.408451	0.773122
LogisticReg	0.819672	0.284404	0.756098	0.413333	0.790800
SVC	0.801230	0.262712	0.756098	0.389937	0.780733
LightGBM	0.928279	0.588235	0.487805	0.533333	0.728242
GradientBoost	0.893443	0.396226	0.512195	0.446809	0.720303
XGBoost	0.907787	0.454545	0.487805	0.470588	0.717057
MLP	0.846311	0.326531	0.780488	0.460432	0.816418

범주형+원핫 인코딩 모델링 결과

SMOTE-NC 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.805102	0.256402	0.654936	0.366050	0.736926
KNN	0.798127	0.242523	0.650523	0.353203	0.731138
RandomForest	0.846952	0.312032	0.673868	0.425199	0.768356
LogisticReg	0.832582	0.307966	0.790708	0.443049	0.813555
SVM	0.813707	0.283143	0.786063	0.416229	0.801144
LightGBM	0.924084	0.568782	0.417305	0.479897	0.694084
GradientBoost	0.906030	0.451110	0.475494	0.461802	0.710626
XGBoost	0.918752	0.518253	0.460976	0.486695	0.710990
MLP	0.725561	0.230137	0.751568	0.342647	0.737251

Random Oversampling 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.801818	0.250029	0.669454	0.363370	0.741721
KNN	0.844070	0.257884	0.451220	0.328126	0.665770
RandomForest	0.851055	0.323042	0.693496	0.439684	0.779516
LogisticReg	0.826014	0.300182	0.795819	0.435692	0.812298
SVM	0.822326	0.296800	0.805459	0.433585	0.814653
LightGBM	0.924493	0.593333	0.324971	0.419290	0.652400
GradientBoost	0.890444	0.397148	0.567828	0.466402	0.744022
XGBoost	0.925730	0.581969	0.422184	0.488748	0.697196
MLP	0.647375	0.158408	0.649710	0.240145	0.648428

연속형+스탠다드 스케일링 모델링 결과

SMOTE-NC 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.815343	0.263421	0.654472	0.374164	0.742288
KNN	0.805919	0.252803	0.660046	0.365516	0.739709
RandomForest	0.850235	0.319801	0.678862	0.433220	0.772420
LogisticReg	0.835452	0.308617	0.771080	0.440197	0.806203
SVM	0.819448	0.288177	0.776074	0.419961	0.799732
LightGBM	0.926137	0.588372	0.412427	0.484294	0.692991
GradientBoost	0.908081	0.459526	0.490012	0.473180	0.718334
XGBoost	0.915471	0.496591	0.432056	0.460305	0.696081
MLP	0.807120	0.265762	0.693961	0.381621	0.755767

Random Oversampling 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.791983	0.244483	0.684088	0.358684	0.742999
KNN	0.849001	0.271513	0.465505	0.342689	0.674935
RandomForest	0.850240	0.323558	0.698606	0.441416	0.781399
LogisticReg	0.827653	0.302487	0.795819	0.438115	0.813193
SVM	0.822736	0.299434	0.819977	0.438390	0.821465
LightGBM	0.926959	0.629316	0.329849	0.430269	0.655961
GradientBoost	0.891265	0.399382	0.562718	0.466051	0.742138
XGBoost	0.921625	0.544293	0.412660	0.468768	0.690641
MLP	0.732515	0.213181	0.766551	0.331439	0.747902

연속형+스탠다드 스케일링 모델링 결과

SMOTE-NC 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.804273	0.255323	0.684088	0.371141	0.749706
KNN	0.802635	0.244865	0.640534	0.354161	0.729055
RandomForest	0.851050	0.320889	0.683740	0.436027	0.775085
LogisticReg	0.849807	0.339561	0.815331	0.479230	0.834156
SVM	0.838323	0.322704	0.824855	0.463689	0.832196
LightGBM	0.924906	0.571968	0.427294	0.486781	0.699079
GradientBoost	0.915062	0.495540	0.504646	0.499091	0.728791
XGBoost	0.923675	0.554589	0.480488	0.511331	0.722537
MLP	0.811259	0.283294	0.699187	0.394827	0.760415

Random Oversampling 결과

	accuracy	precision	recall	f1	roc_auc
DecisionTree	0.782126	0.237562	0.703600	0.353835	0.746477
KNN	0.850635	0.272778	0.450987	0.339497	0.669246
RandomForest	0.855980	0.334881	0.708130	0.453687	0.788850
LogisticReg	0.838732	0.323084	0.825087	0.464090	0.832533
SVM	0.830528	0.310820	0.820209	0.450451	0.825838
LightGBM	0.931060	0.659448	0.388037	0.486916	0.684606
GradientBoost	0.901107	0.432560	0.567596	0.489062	0.749735
XGBoost	0.924494	0.564828	0.431823	0.487712	0.700897
MLP	0.677393	0.209973	0.883624	0.334608	0.771018

한계 및 과제

한계

과제

다른 분류 범위 기준 적 용해 모델 성능 확인 불균형 및 연속/범주형 혼합 데이터 처리 기법 연구

Reference

https://wyatt37.tistory.com/10 http://www.koreanhypertension.org/

https://www.e-jkd.org/upload/pdf/jkd-2020-21-1-27.pdf http://www.lecturernews.com https://www.koreascience.or.kr/article/JAKO200560537773551.pdf http://www.monews.co.kr/news/articleView.html?idxno=203842 http://www.docdocdoc.co.kr https://ko.wikipedia.org/wiki/%EB%8B%B9%EB%87%A8%EB%B3%91 https://smtmap.com/%EA%B0%84%EC%88%98%EC%B9%98/ http://guro.kumc.or.kr/dept/main/index.do?DP CODE=GRCP&MENU ID=003036050045 https://www.koreascience.or.kr/article/JAKO201354840931827.pdf https://www.schlab.org/guide/item/261/ https://m.khan.co.kr/life/health/article/201511101537195#c2b http://seoulnim.com/news/lecture v.asp?srno=7628&page=70&gubun=&keyword= https://blog.naver.com/PostView.naver?blogId=i-doctor&logNo=221450543662 https://www.joongang.co.kr/article/21657194#home https://www.ibric.org/myboard/view.php?Board=review0&id=529&filename=bc0602.pdf&fidx=2&mode=down https://blog.naver.com/hyouncho2/60170417299 https://www.paik.ac.kr/busan/medicine/disease info view.asp?p sid=1040&p cate=A https://www.cheric.org/PDF/PIC/PC19/PC19-2-0085.pdf https://labtestsonline.kr/tests https://m.amc.seoul.kr/asan/mobile/healthinfo/ https://amc.seoul.kr/asan/healthinfo/ https://kormedi.com/ http://drug.co.kr/abbreviation/ https://m.blog.naver.com/sorak123/222052778113 http://guro.kumc.or.kr/ https://medgongbu.tistory.com/92

컬럼 정의 및 분류(범주화) 기준 정리

CDMID: 고유 ID

gender: 성별

age: 나이

date: 관찰 시작 날짜(추정)

Ht: ∃I(Height)

Wt: 몸무게(Weight)

콜레스테롤 관련

- TC: 총콜레스테롤(Total Cholesterol);
 - o <200 mg/dL: 바람직함(desirable)
 - 200-239: 경계성으로 높음(borderline high)
 - o 240≤: 높은 위험도/이상지질혈증 진단(high)
- TG: 중성지방(Triglyceride)
 - <150: 정상
 - o 150-199: 경계치
 - o 200-499: 높음
 - 500≤: 매우 높음
- LDL: 저밀도 콜레스테롤(나쁜 콜레스테롤; Low-density Lipoprotein Cholesterol)
 - o <100: 정상(optimal)
 - o 100-129: 정상 이상(near optimal/above optimal)
 - o 130-159: 약간 높음(borderline high)
 - o 160-189: 높음(high)
 - o 190≤: 아주 높음(very high)
- HDL: 고밀도 콜레스테롤(좋은 콜레스테롤; High-density Lipoprotein Cholesterol)
 - o <40: 낮음(low)
 - 40-60: 보통
 - o 60≤: 높음(high)

혈압 혈당 데이터

- BMI: 체질량지수(Body Mass Index)
 - <18.5: 저체중
 - 18.5-22.9: 정상
 - 23.0-24.9: 비만 전단계(과체중)
 - 25.0-29.9: 1단계 비만
 - 30.0-34.9: 2단계 비만
 - 35.0 이상: 3단계 비만
- SBP: 수축기혈압(Systolic Blood Pressure); 심장이 수축할 때 혈관에 가해지는 압력
- DBP: 이완기혈압(Diastolic Blood Pressure); 심장이 이완할 때 혈압에 가해지는 압력

혈압분류	수축기혈압(mmHg)		이완기혈압(mmHg)
정상혈압*	<120	그리고	<80
주의혈압	120~129	그리고	<80
고혈압전단계	130~139	또는	80~89
고혈압			
17	140~159	生는	90~99
27	≥ 160	또는	≥ 100
수축기단독고혈압	≥ 140	그리고	<90

^{*} 심뇌혈관 질환의 발병위험이 가장 낮은 최적혈압

(#) 대한고혈압학회

- PR: 맥박수(Pulse Rate)
 - 1분에 60-100회: 정상 맥박
 - o 60회 미만: 서맥(서맥성 부정맥)
 - 100회 이상: 빈맥(빈맥성 부정맥)
- HbA1c: 당화혈색소(HbA1c)
 - ≤ 5.6%: 참고치 이내
 - 5.7-6.4%: 당뇨 전단계
 - ≥6.5%: 당뇨
- FBG: 공복시 혈당(Fasting Plasma Glucose)
 - <70: 저혈당
 - o 70-99 mg/dL: 정상 공복 혈당
 - o 100-125: 공복혈당장애(당뇨병 전단계)
 - 126≤: 당뇨병

간 및 신장 관련

- Alb: 알부민(Alb)
 - o 3.5-5.2g/dL: 정상
- BUN: 혈중요소질소(Blood Urea Nitrogen)
 - o 6-20mg/dL: 정상
- Cr: 크레아티닌(Creatinine)
 - o 0.5-1.4mg/dL: 정상
 - o 남성: 0.6 ≤ Cr < 1.2 정상
 - 여성:0.5≤
- CrCI: 크레아티닌 청소율(Cratinine Clearance)
 - o 75-125 ml/min : 정상
 - 50-75 : 경증
 - 31-50: 중등도
 - 30≤ : 중증(고도 신기능 장애)
- AST: 아스파르테이트아미노전달효소(ASpartate aminoTransferase)
 - <40 IU/L: 정상 (한국기준)
 - 40-200: 경도
 - 200-400: 중등도
 - 400≤: 중증
- ALT: 알라닌 아미노전이효소(Alanine aminoTransferase)
 - <40 IU/L: 정상 (한국기준)
 - 40-200: 경도
 - 200-400: 중등도
 - 400≤: 중증
- GGT: 감마 글루타밀전이효소(Gamma-GlutamylTransferase)
 - o 정상: 남성 10-71 U/L / 여성 6-42 U/L
- ALP: 알칼라인산분해효소(ALkaline Phosphatase)
 - o 40-120 IU/L: 정상
- date_E: 관찰 종료 날짜(추정)
- labels

당뇨병 관련 추가적인 변수

- DLP(이상지질혈증)
 - TC ≥ 240 또는 LDL ≥ 160 또는 TG ≥ 200 또는 HDL < 40: 이상지질혈증
- MS(대사증후군)
 - o TG ≥ 150
 - 남성: HDL < 40, 여성: HDL < 50
 - SBP ≥ 130 0 □ DBP ≥ 85
 - FBG ≥ 100
 - o 이 중 3개 이상 속할 시 대사증후군
- PP(맥압)
 - o SBP DBP
- PP(맥압) 분류
 - o PP < 40: 정상 미만
 - o PP > 60 : 정상 이상
 - o 40 ≤ PP ≤ 60 : 정상
- BUN:Cr 비율
 - Croatine 수치가 정상일 때, 10 ≤ BUN/Cr < 20: 정상
 - o Croatine 수치가 정상일 때, 20 ≤ BUN/Cr : 정상 이상
 - Croatine 수치가 정상일 때, BUN/Cr < 10: 정상 미만
 - ㅇ 그외:관련 없음
- AST:ALT 비율
 - o AST/ALT < 1.0 : 1미만
 - o 1 ≤ AST/ALT < 2.0 : 2미만
 - o 2≤ AST/ALT < 3.0 : 3미만
 - o 3 ≤ AST/ALT: 3이상