VE230 HW3

Due: Tuesday 11th June, 2019

P.3-22 The polarization in a dielectric cube of side L centered at the origin is given by $P = P_o(\mathbf{a}_x x + \mathbf{a}_y y + \mathbf{a}_z z)$.

- a) Determine the surface and volume bound-charge densities.
- b) Show that the total bound charge is zero.

P.3-23 Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization P exists.

P.3-25 Assume that the z=0 plane separates two lossless dielectric regions with $\epsilon_{r1}=2$ and $\epsilon_{r2}=3$. If we know that \mathbf{E}_1 in region 1 is $\mathbf{a}_x 2y - \mathbf{a}_y 3x + \mathbf{a}_z (5+z)$, what do we also know about \mathbf{E}_2 and \mathbf{D}_2 in region 2? Can we determine \mathbf{E}_2 and \mathbf{D}_2 at any point in region 2? Explain.

P.3–28 Dielectric lenses can be used to collimate electromagnetic fields. In Fig. 3–41 the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E_1 at point $P(r_o, 45^\circ, z)$ in region 1 is $\mathbf{a}_r 5 - \mathbf{a}_\phi 3$, what must be the dielectric constant of the lens in order that E_3 in region 3 is parallel to the x-axis?

FIGURE 3-41 A dielectric lens (Problem P.3-28).

P.3-32 The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_i and r_o , respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are ϵ_{r1} for $r_i < r < b$ and ϵ_{r2} for $b < r < r_o$. Determine its capacitance per unit length.

P.3-43 Prove that Eqs. (3-180) for stored electrostatic energy hold true for any two-conductor capacitor.

 $W_e = \frac{1}{2}CV^2 \qquad (J).$

(3-180a)

—·交大密西根学院··

UM-SJTU Joint Institute

$$W_e = \frac{1}{2}QV \qquad (\mathbf{J})$$

$$W_e = \frac{Q^2}{2C} \qquad (J).$$

1