PORTFOLIO THEORY NOTES

Contents

1.	Risk Measures	1
1.1.	. Value at Risk	1
1.2.	2. Estimating the Value at Risk	1
1.3.	8. Average Value at Risk	1
1.4.	Estimating the Average Value at Risk	3

Note 0.1. In these notes we will mostly consider random variables X that model returns. As such we may assume that $X \in L^1(\mathbb{P})$ and $F_X : \mathbb{R} \to (0,1)$ is bijective and continuous. We will call such random variables "nice".

1. Risk Measures

1.1. Value at Risk.

Definition 1.1. Let X be a nice random variable and $\epsilon \in (0,1)$. We define the **value at** risk of X at confidence level $1 - \epsilon$, denoted by $VaR_{\epsilon}(X)$, to be

$$VaR_{\epsilon}(X) = F_{-X}^{-1}(\epsilon)$$

Note 1.2. If X represents the return of a portfolio, then $Var_{\epsilon}(X)$ is just a bound such that with probability ϵ , the loss of the portfolio is not less than the bound.

1.2. Estimating the Value at Risk.

1.3. Average Value at Risk.

Definition 1.3. Let X be a nice random variable and $\epsilon \in (0,1)$. We define the **average** value at risk of X with tail probability ϵ , denoted by $AVaR_{\epsilon}(X)$, to be

$$AVaR_{\epsilon}(X) = \frac{1}{\epsilon} \int_{(0,\epsilon]} VaR_p(X) dm(p)$$

Note 1.4. If X represents the return on a portfolio, then $AVaR_{\epsilon}(X)$ is just the average of the $VaR_{p}(X)$ over all $p < \epsilon$.

Exercise 1.5. Let X be a nice random variable and $\epsilon \in (0,1)$. Then $AVaR_{\epsilon}(X) = \mathbb{E}[-X|-X \geq VaR_{\epsilon}(X)]$.

Proof. Recall that for measurable spaces $(X, \mathcal{A}), (Y, \mathcal{B})$, measurable $f: X \to Y$, measure $\mu: \mathcal{A} \to [0, \infty]$, we may form the push-foreward measure of μ by $f, f_*\mu: \mathcal{B} \to [0, \infty]$ with the following property: for each $g: Y \to \mathbb{C}$, $g \in L^1(f_*\mu)$ iff $g \circ f \in L^1(\mu)$ and for each $B \in \mathcal{B}$,

$$\int_{f^{-1}(B)} g \circ f d\mu = \int_B g df_* \mu$$

Note that

$$\begin{split} \mathbb{E}[-X|-X \geq -F_X^{-1}(\epsilon)] &= -\mathbb{E}[X|X \leq F_X^{-1}(\epsilon)] \\ &= -\frac{1}{\epsilon} \mathbb{E}[X\mathbf{1}_{\{X \leq F_X^{-1}(\epsilon)\}}] \\ &= -\frac{1}{\epsilon} \int_{\{X \leq F_X^{-1}(\epsilon)\}} X dP \\ &= -\frac{1}{\epsilon} \int_{(-\infty, F_X^{-1}(\epsilon)]} x dF_X(x) \end{split}$$

Let μ be the Lebesgue-Stieltjes measure obtained from F_X (i.e. $d\mu = dF_X$). Consider F_X : $\mathbb{R} \to (0,1)$ as in the theorem recalled above. Then for each $(a,b] \subset [0,1]$ with $a' = F_X^{-1}(a)$ (could be $-\infty$) and $b' = F_X^{-1}(b)$, we have that

$$F_{X*}\mu((a,b]) = \mu(F_X^{-1}((a,b]))$$

$$= \mu((a',b'])$$

$$= F_X(b') - F_X(a')$$

$$= b - a$$

So $F_{X*}\mu = m$. Hence

$$\int_{(-\infty, F_X^{-1}(\epsilon)]} x dF_X(x) = \int_{(-\infty, F_X^{-1}(\epsilon)]} (F_X^{-1} \circ F_X)(x) dF_X(x)$$
$$= \int_{(0, \epsilon]} F_X^{-1}(x) dm(x)$$

Note 1.6. If X represents the return of a portfolio. We may define the loss of X, denoted by L_X , to be $L_X = -X$. Then $AVaR_{\epsilon}(X) = \mathbb{E}[L_X|L_X > VaR_{\epsilon}(X)]$.

Theorem 1.7. Let X be a nice random variable and $\epsilon \in (0,1)$. Then

$$AVaR_{\epsilon}(X) = \min_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{\epsilon} \mathbb{E}[(-X - \theta)^{+}] \right)$$

Proof. For $\omega \in \Omega$, $\theta \in \mathbb{R}$, put $g_{\omega}(\theta) = (-X(\omega) - \theta)^+$ and for $\theta \in \mathbb{R}$, $\epsilon \in (0, 1)$, put $f_{\epsilon}(\theta) = \theta + \frac{1}{\epsilon}\mathbb{E}[g(\theta)]$. Then for each $\omega \in \Omega$, g_{ω} is convex. This implies that for each $\epsilon \in (0, 1)$, f_{ϵ} is convex and therefore continuous with right and left.

Let L = -X be the loss of X. One can show that

$$\frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = \frac{F_L(\theta) - 1 + \epsilon}{\epsilon}$$

. The details can be found in [?], but will be omitted here. Thus

$$\lim_{\theta \to \infty} \frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = 1$$

and

$$\lim_{\theta \to -\infty} \frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = \frac{\epsilon - 1}{\epsilon} < 0$$

This implies that there exists $\theta^* \in \mathbb{R}$ such that $f(\theta^*) = \inf_{\theta \in \mathbb{R}} (f_{\theta})$

Thus

$$\frac{\partial f_{\epsilon}}{\partial \theta}(\theta^*) = 0$$

which implies that

$$F_L(\theta^*) = 1 - \epsilon$$

This implies that $\theta^* = Var_{1-\epsilon}$ Finally, evaluating f_{ϵ} at θ^* shows us that

$$\begin{split} f_{\epsilon}(\theta^*) &= \theta^* + \frac{1}{\epsilon} \mathbb{E}[(L - \theta^*)^+] \\ &= \theta^* + \frac{1}{\mathbb{P}(L > \theta^*)} \mathbb{E}[(L - \theta^*) \mathbf{1}_{\{L > \theta^*\}}] \\ &= \theta^* + \frac{1}{\mathbb{P}(L > \theta^*)} \mathbb{E}[L \mathbf{1}_{\{L > \theta^*\}}] - \frac{1}{\mathbb{P}(L > \theta^*)} \mathbb{E}[\theta^* \mathbf{1}_{\{L > \theta^*\}}] \\ &= \theta^* + \frac{1}{\mathbb{P}(L > \theta^*)} \mathbb{E}[L \mathbf{1}_{\{L > \theta^*\}}] - \theta^* \\ &= \mathbb{E}[L | L > \theta^*] \\ ? &= \mathbb{E}[L | L > VaR_{1 - \epsilon}(X)] \text{that } 1 - \epsilon \text{ is bad} \end{split}$$

1.4. Estimating the Average Value at Risk.

Definition 1.8. Let X be a random nice random variable and $X_1, \dots, X_n \stackrel{iid}{\sim} X$. We define the sample average value at risk of X with tail probability ϵ , denoted by $\widehat{AVar_{\epsilon}(X)}$, to be

$$\widehat{AVaR_{\epsilon}(X)} = \inf_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{n\epsilon} \sum_{i=1}^{n} \max(-X_i - \theta, 0) \right)$$

Lemma 1.9. Let X be a random nice random variable and $X_1, \dots, X_n \stackrel{iid}{\sim} X$. Ther $\widehat{AVarR_{\epsilon}(X)}$ is an unbiased estimator for $AVaR_{\epsilon}(X)$.

Proof. For each $\theta \in \mathbb{R}$, define

$$f_{\theta} = \theta + \frac{1}{n\epsilon} \sum_{i=1}^{n} \max(-X_i - \theta, 0)$$

Note that for each $\theta \in \mathbb{R}$, $f_{\theta} \in L^{1}(\mathbb{P})$.

Since f_{θ} is continuous in θ , we have that

$$\inf_{\theta \in \mathbb{R}} f_{\theta} = \inf_{\theta \in \mathbb{Q}} f_{\theta}$$

which is measurable. For $\theta_1, \theta_2 \in [0, \infty)$, if $\theta_1 < \theta_2$, then $\max(-X_i - \theta_1, 0) \ge \max(-X_i - \theta_2, 0)$. So

$$f_0 \le \frac{1}{n\epsilon} \sum_{i=1}^n \max(-X_i, 0)$$