Разработка модуля сопряжения панорамного измерителя и ПК для оцифровки аналоговых данных

Студент - Романов А.Э. Руководитель - Крутских В.В. 19.06.2024

Содержание:

Цель: модернизация панорамного измерителя P2-65.

Задачи:

- 1. Провести анализ существующих прототипов
- 2. Разработать модуль оцифровки
- 3. Разработать программное обеспечение для работы с модулем
- 4. Провести анализ работы разработанного устройства

Анализ прототипов

Таблица 1 — Прототипы анализаторов цепей					
Название	Agilent	Rohde & Schwarz	Планар	Измеритель КСВН	
Модель	N5222A	ZNB-40	C1420	Я2Р-65	
Тип АЦ	Векторный	Векторный	Векторный	Скалярный	
Частотный диапазон	30 Гц – 26.5 ГГц	100 кГц – 40 ГГц	100 кГц — 20 ГГц	25.86 – 37.5 ГГц	
Динамический диапазон, дБ	127	140	145	35	
Подключение к ПК	Есть	Есть	Есть	-	
ПО	PNA-L	R&S ZNB FW	S4VNA	-	
Стоимость, р	17 486 475	20 900 000	8 253 000	250 000	

Структурная схема устройства

Рисунок 1. Обобщенная структурная схема

Рисунок 2. Итоговая структурная схема

Сигналы, проходящие внутри системы:

- 1. Сигнал X сигнал развертки ГКЧ
- 2. Сигнал Y сигнал КСВН измерителя
- 3. Сигнал L сигнал метки развертки ГКЧ
- 4. Сигнал M управляющий разверткой сигнал МК

Напряжения сигналов:

$$U_x \in [0; 6] B$$

 $U_y \in [0; 3] B$
 $U_L \in [0; 3] B$
 $U_M \in [0; -9] B$

Алгоритм работы МК

Рисунок 3. Алгоритм работы МК

Алгоритм работы МК

Таблица 2. – Список зарегистрированных команд МК						
Входное воздействие	Код команды	Операция	Аргументы			
01, 0, 5	01	Установка пределов измерений	0, 5 (B)			
02	02	Измерение сигнала по каналам X и Y	_			
03	03	Измерение сигнала по каналам X и L	_			
04, 5	04	Установка напряжения по каналу М	5 (B)			

Формулы используемые в алгоритме:

$$R(x)=\min(U_m,\max(0,x))$$
 — ограничение напряжения $V(x)=rac{x}{U_m}\cdot A_m$ — преобразование напряжения

Где:

 U_m — наибольшее напряжение (5 В)

 A_m — разрядность ЦАП (АЦП)

Схемотехническое решение

Рисунок 4. Схема усиления

Рисунок 5. Делитель напряжения

Расчет коэффициента усиления:

$$K_U = \frac{U_{\text{вых}}}{U_{\text{вх}}} = 1.8$$

$$R_1 = 5.1 \text{ кОм}$$

 $R_2 = 10 \text{ кОм}$

$$K_U = \frac{R_2}{R_1} = 1.96$$
 $U_{\text{BX}} = \frac{U_{\text{BMX}}}{K_U} = 4.59 \text{ B}$

Расчет коэффициента деления:

$$K = \frac{\dot{U}_{\text{вых}}}{U_{\text{вх}}} = \frac{R_2}{R_1 + R_2} = 0.83$$

$$R_1 = 200 \text{ Ом}$$

 $R_2 = 100 \text{ кОм}$

Создание кабеля

Рисунок 6. Внешний вид кабеля

Рисунок 7. Схема кабеля

Принципиальная электрическая схема

Рисунок 8. Принципиальная электрическая схема устройства

Разводка печатной платы

Рисунок 9. Верхний слой

Рисунок 10. Нижний слой

Сборочный чертеж устройства

Рисунок 11. Чертеж сборки готового устройства

Интерфейс программного обеспечения

Рисунок 12. Интерфейс главной страницы

Рисунок 13. Интерфейс страницы настроек

Формулы преобразования:

$$u = u_{min} + \frac{f - f_{min}}{f_{max} - f_{min}} (u_{max} - u_{min})$$

$$f = f_{min} + \frac{u - u_{min}}{u_{max} - u_{min}} (f_{max} - f_{min})$$

Прототип устройства

Рисунок 14. Внешний вид прототипа

Проведение эксперимента

Рисунок 15. Установка экспериментальных параметров

Используемые команды:

- 03 Измерение сигнала метки
- 04 Установка напряжения развертки

Калибровка (снятие меток):

$$U_{xmin} = 0 \text{ B}$$
 $F_{xmin} = 29 \text{ ГГц}$
 $U_{xmax} = 4.78 \text{ B}$
 $F_{xmax} = 34 \text{ ГГц}$

Параметры эксперимента:

$$F_{min} = 29 \ \Gamma \Gamma \mu$$

 $F_{max} = 34 \ \Gamma \Gamma \mu$
 $F_{s} = 0.01 \ \Gamma \Gamma \mu$

Демонстрация работы устройства

Рисунок 16. Результаты эксперимента

Демонстрация работы устройства

Рисунок 17. Результаты эксперимента в ПО

Спасибо за внимание!