SOP Challenge Report

Ionut, Felix, Sebastian

January 7, 2020

Contents

1	SOP Problem								
2	Sol	ution a	approaches	2					
	2.1	Impler	mented methods	2					
		2.1.1	Exact Method	2					
		2.1.2	Discrete Particle Swarm Optimization (DPSO)	3					
			Greedy Method						
		2.1.4	Beam Search Method	4					
	2.2	Result	S	5					

1 SOP Problem

The Sequential Ordering Problem (SOP) is an asymmetrical TSP with precedence constraints.

Each instance of this problem consists of a directed graph G=(V,A), are weights $w:A\to\mathbb{R}$, a set of precedence constraints $C\subset V\times V$ as well as a start vertex s and destination vertex t.

The problem consists in finding a permutation of vertices starting at s, ending at t, which satisfy all precedence constraints and minimize the weighted sum of arcs connecting the vertices in the given order. [1]

Figure 1: Illustrative example [1]

2 Solution approaches

2.1 Implemented methods

2.1.1 Exact Method

For the exact method, we wrote the following integer linear program. In order to model the precedence constraints, we used packages which are generated at the start vertex and consumed by every other vertices.

Data:

V: Set of vertices.

 w_{ij} : Weight of the arc going from vertex i to j.

C: Set of precedence constraints. If $(i,j) \in C$, i must be visited before j.

s : Start vertex. t : Destination vertex.

Decision variables:

$$x_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is followed by } j \\ 0 & \text{otherwise} \end{cases}$$

 y_{ij} : Number of packages traveling from vertex i to j.

Objective function:

$$\min \sum_{i \in V} \sum_{j \in V} w_{ij} x_{ij}$$

Constraints:

$$\begin{split} \sum_{j \in V} x_{ij} &= 1, & \forall i \in V \\ \sum_{i \in V} x_{ij} &= 1, & \forall j \in V \\ x_{ts} &= 1, & \forall i \in V \\ \sum_{i \in V} y_{sj} &= |V| - 1 \\ y_{ij} &\leq (|V| - 1)x_{ij}, & \forall i, j \in V \\ \sum_{j \in V} y_{ij} - \sum_{j \in V} y_{ji} &= -1, & \forall i \in V \setminus \{s\} \\ \sum_{k \in V} y_{ki} - \sum_{k \in V} y_{kj} &\geq 0, & \forall (i, j) \in C \mid i \neq s \\ x_{ij} &\in \{0, 1\}, & \forall i, j \in V \\ y_{ij} &\in \mathbb{N}, & \forall i, j \in V \end{split}$$

By running this ILP with the Gurobi solver, we were able to get optimal solutions for the smaller instances. However, the solving time quickly became too large for the bigger instances.

2.1.2 Discrete Particle Swarm Optimization (DPSO)

PSO is a population based algorithm that is trying to iteratively improve all candidate solutions (particles) in the population. At every iteration, each particle is influenced by its local position, it is also guided towards his personal best position and, most important, by the best global position found by the entire swarm so far. Each particle updates its personal best position, while the global best position is updated by all particles. There are some parameters that influence local, personal and global updates and they should be optimized. The population size and number of iterations directly impact the running time of the algorithm. The power of this approach comes from the random that is introduced in the update equations. This is the mechanism that makes one particle jump out of a local minima (or a plateau) and continue exploring the space of solutions while still taking into account its personal best and global best. In order to have better understanding about how this algorithm works, click here.

In the continuous case presented above, it is guaranteed that changes applied to each particle lead to a feasible solution. For example, when our search space is \mathbb{R}^n , the update equation generates a solution that is also in \mathbb{R}^n . Well, this is not true for the discrete case and this is the problem that leads to some modifications of PSO for continuous case.

In order to apply DPSO for SOP Problem, new update rules need to be derived in order to generate a feasible solution at each iteration. We implemented DPSO version presented in paper [2] where the authors design operations for updates at each iteration. For SOP Problem, each particle is represented by a permutation where first and last nodes are fixed. We need to make sure the operations applied to each permutation (particle) lead to a valid permutation for our problem, which means that it should respect the precedence constraints. Before evaluating the cost of a particle (permutation), we need to make sure the particle respects the precedence constraints. If it doesn't, then it is passed to a procedure that changes it in order to respect the constraints. This is the point of DPSO that is time-consuming especially for big instances, such as "R.n.r.p" instances. Once we make sure we generate feasible particle at teach iteration, we need to let DPSO procedure to find permutations with smaller and smaller costs.

Our implementation serializes the DPSO object in order to load it later and continue optimization. Normally, (D)PSO is usually implemented without any parallelization support, but we decided to use multiprocessing for each iteration in order to speed-up the computation because the prodecure of forcing the particle to respect precedence constraints is time consuming.

In order to have a powerful (D)PSO algorithm, we would need a reasonably big swarm (a few tens, up to one hundred or two), but given the fact that some problems are big, we could only use a small swarm size. For example, for big problems where n > 65, we could only use one particle per CPU core. On the computer that we run the experiments on, we used 7 cores and finally had 7 particles to explore a big space. We remind that for big values of n the procedure of fixing the particle is very slow.

2.1.3 Greedy Method

The first, simple heuristic we implemented was a greedy algorithm for the SOP Problem. The Greedy algorithm builds a solution starting from the initial node by choosing the the next best node in terms of cost and precedence constraints. As should be known, the greedy algorithm makes local optimal decision which does not always lead to global optimal solutions. Furthermore the greedy algorithm was able to find feasible solutions for all instances quite fast and is easily implemented due to the local search criteria. [3]

In the case of the SOP Problem the greedy algorithm starts the generation of the Hamiltonian path at the initial node. At each iteration of the algorithm we compute the set of unvisited nodes which do not violate the precedence constraints given by the instance. We then append the node with the lowest cost (greedy selection) for this set to the current path. This procedure repeats until all nodes have been visited and the final node has been reached.

2.1.4 Beam Search Method

The idea of beam search, in contrast to the greedy algorithm, is to build K different solutions in parallel, where K is called the beam width. For the SOP Problem the algorithms initializes all solution paths from the initial node. It then finds all possible children of the node(s) and computes the cost of each of the new potential paths. To maintain the beam width it selects the K best new paths and repeats these steps until all nodes have been visited and the end vertex has been reached. [4] [5]

Figure 2: Beam Search

2.2 Results

The subsequent tables contain results for the used methods. The first table (1) displays the best known upper and lower bounds (taken from the problem description file) and the costs of the found solutions. The second table (2) displays the time needed to compute the solutions.

BS10 refers to a beam search of width 10 and BSV to a beam search of width |V|.

Instance	LB	UB	DPSO	Greedy	BS10	BSV
ESC07	2125	2125	2125	2700	2125	2125
ESC11	2075	2075	2195	3175	2480	2480
ESC12	1675	1675	1675	2034	2429	1997
ESC25	1681	1681	6518	3360	2010	1821
ESC47	1288	1288	11617	3843	2186	2664
ESC63	62	62	185	76	72	67
ESC78	18230	18230	27900	22600	20425	20340
kro124p.1	38762	39420	-	52575	49074	49680
kro124p.2	39841	41336	-	57723	54185	52568
kro124p.3	43904	49499	-	77266	64330	60999
kro124p.4	73021	76103	-	98427	94773	89152
ry48p.1	15805	15805	39933	22493	17739	18888
ry48p.2	16074	16666	40867	20911	18829	19207
ry48p.3	19490	19894	40134	27342	24703	24309
ry48p.4	31446	31446	39376	41176	38639	38488
R.500.1000.1	1316	1316	-	6205	5397	4306
R.500.1000.15	43134	49504	-	111129	63321	51582
R.500.1000.30	98987	98987	-	155387	113208	-
R.500.1000.60	178212	178212	-	205604	180442	-
R.600.1000.1	1337	1337	-	4931	5523	-
R.600.1000.15	47042	55213	-	120975	71601	-
R.600.1000.30	126789	126789	-	189988	136791	-
R.600.1000.60	214608	214608	-	256253	222597	-
R.700.1000.1	1231	1231	-	4886	5369	-
R.700.1000.15	54351	65305	-	151331	82151	-
R.700.1000.30	134474	134474	-	208460	149117	-
R.700.1000.60	245589	245589	-	277504	250512	-

Table 1: Results - Cost

Instance	DPSO	Greedy (in s)	BS10 (in s)	BSV (in s)
ESC07	3m 38s	0.000	0.003	0.002
ESC11	7 m 2 s	0.001	0.009	0.009
ESC12	$8m\ 15s$	0.001	0.009	0.014
ESC25	30 m 28 s	0.004	0.079	0.283
ESC47	$3h\ 2m\ 31s$	0.015	0.415	2.367
ESC63	50 m 3 s	0.026	1.074	8.499
ESC78	22m 3s	0.036	1.225	9.83
kro124p.1	$50 \mathrm{m}\ 17 \mathrm{s}$	0.062	4.307	51.46
kro124p.2	-	0.080	3.833	56.224
kro124p.3	-	0.077	2.855	34.347
kro124p.4	-	0.076	1.445	17.222
ry48p.1	19m 42s	0.016	0.61	2.735
ry48p.2	6m 5s	0.020	0.651	2.524
ry48p.3	$1h\ 26m\ 39s$	0.018	0.442	2.027
ry48p.4	1h 6m 18s	0.015	0.269	1.071
R.500.1000.1	-	2.617	591.266	33420 (9h17m)
R.500.1000.15	-	25.288	222.86	11820 (3h17m)
R.500.1000.30	-	25.989	224.676	-
R.500.1000.60	-	26.161	199.452	-
R.600.1000.1	-	4.022	1005.034	-
R.600.1000.15	-	44.231	376.847	-
R.600.1000.30	-	43.502	393.982	-
R.600.1000.60	-	43.993	361.164	-
R.700.1000.1	-	5.865	1723.453	-
R.700.1000.15	-	68.580	598.029	-
R.700.1000.30	-	69.449	616.624	-
R.700.1000.60	-	69.626	679.959	-

Table 2: Results - Computation Time

As we expected, the greedy method allowed us to compute solutions for every instance in a reasonable time. However, the cost of these solutions was often significantly higher than the best known upper bound.

The beam search method then gave some better solutions for most instances while keeping the computation time reasonable when using a fixed width (10 in this case). On a few instances (like ESC12, R.600.1000.1 and R.700.1000.1), the results were worse than the ones from the greedy method. This can be explained by the fact that the search space is broader and better incomplete solutions could lead us away from the path taken by the greedy method. Due to the structure of some instances, the path taken by the greedy method could have worse incomplete solutions but lead to a better final solution.

When using a variable beam width (|V| in this case), the solutions found were better in many cases, but the computation time also increased significantly, especially on the bigger instances. This is why we did not compute results for all the instances.

References

- [1] L. Libralesso, A.-M. Bouhassoun, H. Cambazard, and V. Jost, "Tree search algorithms for the sequential ordering problem," 2019.
- [2] D. Anghinolfi, R. Montemanni, M. Paolucci, and L. Maria Gambardella, "A hybrid particle swarm optimization approach for the sequential ordering problem," *Comput. Oper. Res.*, vol. 38, p. 1076–1085, July 2011.
- [3] T. H. Cormen, *Introduction to Algorithms, Third Edition*. Cambridge: MIT Press, 2009.
- [4] S. Lazebni, "Local search algorithms." https://www.cs.unc.edu/~lazebnik/fall10/lec06_local_search.pdf. Accessed on 2020-01-03.
- [5] "Wikipedia beam search." https://en.wikipedia.org/wiki/Beam_search, Sep 2019. Accessed on 2020-01-03.