

Stat GR 5205 Lecture 11

Jingchen Liu

Department of Statistics Columbia University

Weighted least-squares

▶ The setting

$$y_i = x_i^{\top} \beta + \sigma_i \varepsilon_i$$

where

$$\varepsilon_i \sim N(0,1)$$

Transformation

$$\frac{y_i}{\sigma_i} = \frac{x_i^\top}{\sigma_i} \beta + \varepsilon_i$$

Weighted least-squares

► General form

$$Y = X\beta + \varepsilon$$

where

$$\varepsilon \sim N(0, \Sigma)$$

• Write $\Sigma^{1/2}\delta$, where $\delta \sim N(0, I)$

$$\Sigma^{-1/2}Y = \Sigma^{-1/2}X\beta + \delta$$

The estimator

$$\hat{\beta} = [X^{\top} \Sigma^{-1} X]^{-1} X \Sigma^{-1} Y$$

Weighted least-squares

Variance of least-square estimator

$$Var(\hat{\beta}) = (X^{\top}X)^{-1}X^{\top}\Sigma X(X^{\top}X)^{-1}$$

Robust (Sandwich) variance estimator

$$(X^{\top}X)^{-1}\sum_{i=1}^{n}\hat{\varepsilon}_{i}^{2}x_{i}x_{i}^{\top}(X^{\top}X)^{-1}$$

The penalized likelihood

Figure: LS estimator versus LASSO estimator

The penalized likelihood

Figure: LS estimator, LASSO estimator, and ridge regression

LASSO and ridge regression

► The LASSO estimator

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - x_i^{\top} \beta)^2 + \lambda \|\beta\|_1$$

Ridge regression

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - x_i^{\top} \beta)^2 + \lambda \|\beta\|_2$$

Computation

- Convex function
- ► LASSO penalty is convex
- Optimization

Solution path

Figure: Solution path

	enzyme	liver	progind	heavy	score	gender	age	alcohol
Var	3	4	2	8	1	6	5	7
Step	1	2	3	4	5	6	7	8

Df		Rss	Ср			
0	1	12.8077	240.4521			
1	2	12.6758	239.4407			
2	3	8.2207	139.7107			
3	4	6.4838	102.0520			
4	5	3.0563	25.7884			
5	6	2.4719	14.4428			
6	7	2.3059	12.6526			
7	8	2.0606	9.0527			
8	9	1.9707	9.0000			

LASSO

	enzyme	liver	progind	heavy	score	gender	age	${\tt alcohol}$
Var	3	4	2	8	1	6	5	7
Step	1	2	3	4	5	6	7	8

► AIC

```
Step: AIC=-163.83
logsurvival ~ enzyme + progind + heavy + score + gender + age

Df Sum of Sq RSS AIC

<none> 2.0052 -163.83
+ alcohol 1 0.033193 1.9720 -162.74
+ liver 1 0.002284 2.0029 -161.90
```

Example

Figure: 1. score, 2. progind, 3. enzyme, 4. liver, 5. age, 6. gender, 7. alcohol, 8. heavy

Comparison

- ► AIC, BIC, and C_p
- ▶ LASSO, a.k.a. L₁ regularized regression
- Sparsity
- ▶ Oracle property, $\sqrt{N} \ll \lambda \ll N$, conditions on collinearity
- Other penalty functions

Final comments

- ► The results from variable selection only serves as a guideline of research.
- Model selection is not a replacement of science.
- Machine learning

Nonparametric regression

- ▶ About nonparametric regression
- Different approaches

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \varepsilon$$

Segment/piecewise regression

$$f(x) \triangleq E(Y|X=x)$$

• f(x) is a piecewise linear function

$$f(x) = \beta_0 + \beta_1(x - x_1)^+ + \beta_2(x - x_2)^+ + \beta_3(x - x_3)^+...$$

Variable selection

Kernel smoothing

An estimate

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} y_i I(x_i = x)}{\sum_{i=1}^{n} I(x_i = x)}$$

- ▶ Kernel smoothing takes advantage of the continuity of f(x).
- Kernel estimation

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} y_i K_h(x - x_i)}{\sum_{i=1}^{n} K_h(x - x_i)}$$

Figure: Gaussian kernel, bandwidth = 2

Figure: Gaussian kernel, bandwidth = 5

Figure: Gaussian kernel, bandwidth = 10

Figure: Gaussian kernel, bandwidth = 20

Figure: Gaussian kernel, bandwidth = 50

Smoothing spline

► Least-squares estimate

$$\min \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$$

► General least-squares estimate

$$\min \sum_{i=1}^n (y_i - f(x_i))^2$$

Regularization

$$\min \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_{a}^{b} [f''(x)]^2 dx$$

Figure: Cars

Figure: Cars: spline fitting

Figure: Simulated data

Nonparametric regression

Expansion

$$f(x) = \sum_{i=1}^{\infty} c_i B_i(x)$$

► Truncation

$$f(x) = \sum_{i=1}^{n} c_i B_i(x)$$