第七章 方差分析

什么是方差分析?

【例.1】某饮料生产企业研制出一种新型饮料。饮料的颜色 共有四种,分别为橘黄色、粉色、绿色和无色透明。这四种 饮料的营养含量、味道、价格、包装等可能影响销售量的因 素全部相同。现从地理位置相似、经营规模相仿的五家超级 市场上收集了前一时期该饮料的销售情况,见表1。试分析 饮料的颜色是否对销售量产生影响。

表1 该饮料在五家超市的销售情况							
超市	无色	粉色	橘黄色	绿色			
1	26.5	31.2	27.9	30.8			
2	28.7	28.3	25.1	29.6			
3	25.1	30.8	28.5	32.4			
4	29.1	27.9	24.2	31.7			
5	27.2	29.6	26.5	32.8			

什么是方差分析?

- 1. 检验饮料的颜色对销售量是否有影响,也就是检验四种颜色饮料的平均销售量是否相同
- 2. 设μ₁为无色饮料的平均销售量,μ₂粉色饮料的平均销售量,μ₃为橘黄色饮料的平均销售量,μ₄为绿色饮料的平均销售量,也就是检验下面的假设
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 - H_1 : μ_1 , μ_2 , μ_3 , μ_4 不全相等
- 3. 检验上述假设所采用的方法就是方差分析 (ANOVA: analysis of variance)

什么是方差分析?

- 1. 检验多个总体均值是否相等
 - 通过对各观察数据误差来源的分析来判断多个 总体均值是否相等
- 2. 变量
 - 一个定类尺度的自变量(k个处理水平或分类)
 - 一个定距或比例尺度的因变量
- 3. 用于分析完全随机化试验设计

因素与水平

1、因素与水平

- 因素(factor): 影响试验指标的原因,用A、B、C等字母表示;
- 水平 (level): 试验因素的不同状态,表示为 A_1 、 A_2 、 B_1 、 B_2 。
- 观察值: 在每个因素水平下得到的样本值

2、可控因素与非控因素

- 可控因素或固定因素:因素的水平可准确控制
- 非控因素或随机因素:因素的水平不能严格控制,或效应不完全由因素水平控制

处理与重复

- 处理(treatment)
 - 对受试对象给予的某种外部干预或措施
 - 单因素处理与多因素处理
- 重复 (repetition)
 - 将一个处理实施在两个或多个试验单位上

第一节 方差分析的基本问题

- 一. 方差分析的原理
- 二. 方差分析的基本假定

方差分析的基本思想和原理

方差分析的基本思想和原理

1. 随机误差

- 在因素的同一水平(同一个总体)下,样本的各观察值之间的差异
- 比如,同一种颜色的饮料在不同超市上的销售量是不同的
- 不同超市销售量的差异可以看成是随机因素的影响,或者 说是由于抽样的随机性所造成的,称为*随机误差*

2. 系统误差

- 在因素的不同水平(不同总体)下,各观察值之间的差异
- 比如,同一家超市,不同颜色饮料的销售量也是不同的
- 这种差异*可能*是由于抽样的随机性所造成的,*也可能*是由于颜色本身所造成的,后者所形成的误差是由系统性因素造成的,称为*系统误差*

方差分析的基本思想和原理 (两类方差)

1. 组内方差

- 因素的同一水平(同一个总体)下样本数据的方差
- 比如,无色饮料A₁在5家超市销售数量的方差
- 组内方差只包含*随机误差*

2. 组间方差

- 因素的不同水平(不同总体)下各样本之间的方差
- 比如, A_1 、 A_2 、 A_3 、 A_4 四种颜色饮料销售量之间的方差
- 组间方差既包括*随机误差*,也包括*系统误差*

方差分析的基本思想和原理(方差的比较)

- 1. 如果不同颜色(水平)对销售量(结果)没有影响,那 么在组间方差中只包含有随机误差,而没有系统 误差。这时,组间方差与组内方差就应该很接近, 两个方差的比值就会接近1
- 2. 如果不同的水平对结果有影响,在组间方差中除了包含随机误差外,还会包含有系统误差,这时组间方差就会大于组内方差,组间方差与组内方差的比值就会大于1
- 3. 当这个比值大到某种程度时,就可以说不同水平之间存在着显著差异

方差分析中的基本假定

方差分析中的基本假定

- 1. 每个总体都应服从正态分布
 - 对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本
 - 比如,每种颜色饮料的销售量必需服从正态分布
- 2. 各个总体的方差必须相同
 - 对于各组观察数据,是从具有相同方差的总体中抽取 的
 - 比如,四种颜色饮料的销售量的方差都相同
- 3. 观察值是独立的
 - 比如,每个超市的销售量都与其他超市的销售量独立

方差分析中基本假定

- \rightarrow 如果原假设成立,即 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 - 四种颜色饮料销售的均值都相等
 - 没有系统误差

这意味着每个样本都来自均值为μ、差为σ²的同

- 一正态总体
- →如果备择假设成立,即 H_1 : $μ_i$ (i=1, 2, 3, 4)不全相等
 - 至少有一个总体的均值是不同的
 - 有系统误差

这意味着四个样本分别来自均值不同的四个正态总体

第二节 单因素方差分析

- 一. 方差分析的数学模型
- 二. 单因素方差分析的步骤
- 三. 方差分析中的多重比较
- 四. 单因素方差分析中的其他问题

数学模型

单因素方差分析的数据结构

壬 启(*)	因素(A) i					
重复 (j)	水平A ₁	水平 A_2	•••	水平 A_k		
1	<i>x</i> ₁₁	x_{12}		x_{1k}		
2	x_{21}	x_{22}		x_{2k}		
:	:	:	:	:		
:	:	:	:	:		
n	x_{n1}	x_{n2}		$x_{\rm nk}$		

线性统计模型: $x_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

式中: μ 为总平均数 α_i 为第 i 水平的处理效应 ε_{ij} 为随机误差, $\varepsilon_{ij} \sim N(0, \sigma^2)$

一、固定效应模型

$$\sum \alpha_i = 0$$

二、随机效应模型

$$\alpha_i \sim N(0, \sigma^2)$$

平方和与自由度的分解

(一) 平方和分解

$$x_{ij} - \bar{\bar{x}} = (x_{ij} - \bar{x}_i) + (\bar{x}_i - \bar{\bar{x}})$$

$$\overline{\overline{x}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}}{n} = \frac{\sum_{i=1}^{k} n_i \overline{x}_i}{n}$$

$$\overrightarrow{\Rightarrow} + n = n_1 + n_2 + \Lambda + n_k$$

$$(x_{ij} - \bar{x})^2 = (x_{ij} - \bar{x}_i)^2 + 2(x_{ij} - \bar{x}_i)(\bar{x}_i - \bar{x}) + (\bar{x}_i - \bar{x})^2$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{x}_i - \bar{x})^2$$

$$+2\sum_{i=1}^{k}\sum_{j=1}^{n_i}(x_{ij}-\bar{x}_i)(\bar{x}_i-\bar{\bar{x}})$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 + \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{\bar{x}})^2$$

$$+2\sum_{i=1}^{k} \left[(\bar{x}_i - \bar{\bar{x}}) \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i) \right]$$

→总离差平方和(*SST*)、误差项离差平方和(*SSE*)、水平项离差平方和(*SSA*)之间的关系

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 + \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2$$

$$SST = SSE + SSA$$

- 1、SST 反映全部观察值的离散状况;
- 2、SSE 反映每个总体各观察值的离散状况, 又称组内离差平方和,反映的是随机误差的大小;
- 3、SSA 反映各总体的样本均值之间的差异程度,又称组间平方和,既包括随机误差也包括系统误差。

平方和与自由度的分解

(二) 自由度分解

$$df_T = df_E + df_A$$

- SST的自由度 df_T 为n-1,其中n为全部观察值的个数
- SSA的自由度 df_A 为k-1,其中k为因素水平(总体)的个数
- SSE 的自由度 df_E 为n-k

平方和与自由度的分解

- (三) 计算方差
 - 1. SSA的均方也称组间方差,记为MSA, 计算公式为

$$MSA = \frac{SSA}{k-1}$$

2. SSE的均方也称组内方差,记为MSE ,计算公式为

$$MSE = \frac{SSE}{n-k}$$

构造检验的统计量

$$F = \frac{MSA}{MSE} \sim F(k-1, n-k)$$

如果均值相等, $F=MSA/MSE\rightarrow 1$

单因素方差分析的步骤

- 提出假设
- 构造检验统计量
- 统计决策

提出假设

- 1. 一般提法
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ (因素有k个水平)
 - \blacksquare H_1 : $μ_1$, $μ_2$, ... , $μ_k$ 不全相等
- 2. 对前面的例子
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 - 颜色对销售量没有影响
 - \blacksquare H_0 : $μ_1$, $μ_2$, $μ_3$, $μ_4$ 不全相等
 - 颜色对销售量有影响

构造检验的统计量

表2 四种颜色饮料的销售量及均值						
超市		水平在	A(i)			
(j)	无色(A ₁)	粉色(A2)	橘黄色(A ₃)	绿色(A ₄)		
1	26.5	31.2	27.9	30.8		
2	28.7	28.3	25.1	29.6		
3	25.1	30.8	28.5	32.4		
4	29.1	27.9	24.2	31.7		
5	27.2	29.6	26.5	32.8		
合计	136.6	147.8	132.2	157.3	573.9	
水平均值 观察值个数	$x_1^-=27.32$ $n_1=5$	$x_2=29.56$ $n_2=5$	$x_3=26.44$ $n_3=5$	$x_4 = 31.46$ $n_4 = 5$	= ^{总均值} x = 28.695	

单因素方差分析表 (基本结构)

方差来源	平方和 SS	自由度 df	均方 MS	F 值
组间(因素影响)	SSA	<i>k</i> -1	MSA	<u>MSA</u>
组内(误差)	SSE	n-k	MSE	MSE
总和	SST	<i>n</i> -1		

单因素方差分析

方差分析: 单因素方差分析

SUMMARY

组	计数	求和	平均	方差
列 1	5	136.6	27.32	2.672
列 2	5	147.8	29.56	2.143
列 3	5	132.2	26.44	3.298
列 4	5	157.3	31.46	1.658

方差分析

差异源	SS	df	MS	F	P-value F crit
组间	76.8455	3	25.615	10.486	0.00047 3.2389
组内	39.084	16	2.4428		

统计决策

- → 将统计量的值F与给定的显著性水平 α 的临界值 F_{α} 进行比较,作出接受或拒绝原假设 H_0 的决策
 - 根据给定的显著性水平 α ,在F分布表中查找与第一自由度 $df_1=k-1$ 、第二自由度 $df_2=n-k$ 相应的临界值 F_{α}
 - = 若 $F>F_{\alpha}$,则拒绝原假设 H_0 ,表明均值之间的差异是显著的,所检验的因素(A)对观察值有显著影响
 - 若 $F \le F_{\alpha}$,则不能拒绝原假设 H_0 ,表明所检验的因素(A)对观察值没有显著影响

平方和的简易计算

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{\bar{x}})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - n\bar{\bar{x}}^2$$

$$SSA = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{\bar{x}})^2 = \sum_{i=1}^{k} n_i \bar{x}_i^2 - n\bar{\bar{x}}^2$$

$$\Leftrightarrow C = n\bar{x}^2 = \frac{\left(\sum_{i=1}^k \sum_{j=1}^{n_i} x_{ij}\right)^2}{n}$$

$$SSE = SST - SSA$$

单因素方差分析

【例】某花卉研究所为促进芦荟生长,提高其经济效益,研究了4种不同配方的营养土对芦荟生长的影响。选取初始高度一致的试管苗20株,随机分成4组,一段时间后测量各处理试管苗株高,数据如表所示,试进行方差分析。(α=0.05)

单因素方差分析

四种不同营养土培养下芦荟的株高							
观察值							
(j)	A_1	A_2	A_3	A_4			
1	18.1	17.4	17.3	15.6			
2	18.6	17.9	16.9	15.8			
3	18.7	17.1	18.5	16.7			
4	18.9	16.5	18.2	15.3			
5	18.3						
合计	92.6	∑=346.3					
平均数	18.52	17.28	17.42	16.04	$\overline{\overline{x}} = 17.32$		

解: 设四种营养土培养后的苗株高的均值分别为μ、 μ2、μ3、μ4,则需要检验如下假设

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ (四种营养土效果无显著差异)

 H_1 : μ_1 、 μ_2 、 μ_3 、 μ_4 不全相等 (有显著差异)

$$C = n\bar{x}^2 = 5996.18$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - C = 22.31 \qquad = \frac{15.45/3}{6.86/16} = 11.98$$

$$SSA = \sum_{i=1}^{\kappa} n_i \bar{x}_i^2 - C = 15.45$$

$$SSE = SST - SSA = 6.86$$

$$F = \frac{MSA}{MSE} = \frac{SSA/df_A}{SSE/df_E}$$
$$= \frac{15.45/3}{6.86/16} = 11.98$$

$$F_{0.05}(3,16) = 3.24$$

■结论: 拒绝 H_0 。不同 营养土培养下芦荟株高 的差异非常显著。

方差分析表

差异源	SS	自由度	MS	F	临界值
组间	15.45	3	5.15	11.98	3.24
组内	6.86	19	0.43		
总和	22.31	22			

• 例:为了探讨不同窝的动物出生重是否存在差异,随机选取4窝动物,每窝中均有4只幼仔,结果见表:

动物编号	窝别						
		II	Ш	IV			
1	34.7	33.2	27.1	32.9			
2	33.3	26.0	23.3	31.4			
3	26.2	28.6	27.8	25.7			
4	31.6	32.3	26.7	28.0			
和	125.8	120.1	104.9	118.0			
均值	31.450	30.025	26.225	29.500			

解: H_0 : $\sigma^2 = 0$ (不同窝动物出生重无显著差异) H_1 : $\sigma^2 > 0$ (有显著差异)

$$C = n\bar{x}^2 = 13735.84$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - C = 177.52$$

$$SSA = \sum_{i=1}^{k} n_i \bar{x}_i^2 - C = 58.575$$

$$SSE = SST - SSA = 118.945$$

$$C = n\bar{x}^2 = 13735.84$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - C = 177.52$$

$$F = \frac{MSA}{MSE} = \frac{SSA/df_A}{SSE/df_E}$$

$$= \frac{58.575/3}{118.945/12} = 1.97$$

$$F_{0.05}(3,12) = 3.49$$

■结论:接受 H_0 。不同 窝别动物的出生重没有 显著差异。

• 也可以将表中的每个数值都减去30:

动物编号	窝别								
	1	II	Ш	IV					
1	4.7	3.2	-2.9	2.9					
2	3.3	-4.0	-6.7	1.4					
3	-3.8	-1.4	-2.2	-4.3					
4	1.6	2.3	-3.3	-2.0					
和	5.8	0.1	-15.1	-2.0					
均值	1.450	0.025	-3.775	-0.500					

$$SST = 177.52$$
 $SSA = 58.575$ $SSE = 118.945$ $F = \frac{MSA}{MSE} = \frac{SSA/df_A}{SSE/df_E} = 1.97$

第三节 多重比较

一. 最小显著差数法(LSD检验)

LSD方法

- 1. H0: $\mu_i = \mu_i$ (第i个总体的均值等于第j个总体的均值)
- 2. 检验的统计量为: $\bar{x_i} \bar{x_i}$

$$t = \frac{\overline{x_i} - \overline{x_j}}{S_{\overline{x_i} - \overline{x_j}}} \qquad \qquad LSD = t_{\alpha/2}(n - k) \cdot S_{\overline{x_i} - \overline{x_j}}$$

$$S_{\overline{x_i} - \overline{x_j}} = \sqrt{\frac{S_i^2}{n_i} + \frac{S_j^2}{n_j}} = \sqrt{\frac{2MSE}{n_0}}$$

 $\ddot{x}_i = x_j \ge LSD$,拒绝 H_0 ,若 $|x_i - x_j| < LSD$,不能拒绝 H_0

方差分析中的多重比较(实例)

方差分析: 单因素方差分析

SUMMARY

组	计数	求和	平均	方差	
列 1	5	136.6	27.32	2.672	
列 2	5	147.8	29.56	2.143	
列 3	5	132.2	26.44	3.298	
列 4	5	157.3	31.46	1.658	

方差分析

差异源	SS	df	MS	F	P-value F crit			
组间	76.8455	3	25.615	10.486	0.00047 3.2389			
组内	39.084	16	2.4428					

方差分析中的多重比较(实例)

- 1. 根据前面的计算结果: $x_1=27.3$; $x_2=29.6$; $x_3=26.4$; $x_4=31.5$
- 2. 提出假设
 - H_0 : $\mu_i = \mu_j$; H_1 : $\mu_i \neq \mu_j$
- 3. 计算*LSD*

$$LSD = t_{0.025}(16) \cdot S_{\overline{x_i} - \overline{x_j}} = 2.12 \times \sqrt{\frac{2 \times 2.4428}{5}} = 2.096$$

方差分析中的多重比较(实例)

$$|x_1-x_2|=|27.3-29.6|=2.3>2.096$$

 $|x_1-x_2|=|27.3-26.4|=0.9<2.096$
 $|x_1-x_3|=|27.3-26.4|=0.9<2.096$
 $|x_1-x_4|=|27.3-31.5|=4.2>2.096$
 $|x_2-x_3|=|29.6-26.4|=3.2>2.096$
 $|x_2-x_3|=|29.6-26.4|=3.2>2.096$
 $|x_2-x_4|=|29.6-31.5|=1.9<2.096$
 $|x_2-x_4|=|29.6-31.5|=1.9<2.096$
 $|x_3-x_4|=|26.4-31.5|=5.1>2.096$
 $|x_3-x_4|=|26.4-31.5|=5.1>2.096$
 $|x_3-x_4|=|26.4-31.5|=5.1>2.096$
 $|x_3-x_4|=|26.4-31.5|=5.1>2.096$

组内观测次数不等的方差分析

例:园艺研究所调查了3个品种草莓的维C含量(mg/100g),测定结果如下。试分析不同品种草莓之间的维C含量是否有显著差异。

品品	维C含量									
种	1	2	3	4	5	6	7	8	9	10
1	117	99	107	112	113	106				
2	81	77	79	76	85	87	74	69	72	80
3	80	82	78	84	89	73	86	88		

组内观测次数不等的方差分析

例:园艺研究所调查了3个品种草莓的维C含量(mg/100g),测定结果如下。试分析不同品种草莓之间的维C含量是否有显著差异。

品	维C含量									合	协估	
种	1	2	3	4	5	6	7	8	9	10	合计	均值
1	47	29	37	42	43	36					234	39
2	11	7	9	6	15	17	4	-1	2	10	80	8
3	10	12	8	14	19	3	16	18			100	12.5

 H_0 : $\mu_1 = \mu_2 = \mu_3$ (三种草莓维C含量无显著差异)

 H_1 : μ_1 、 μ_2 、 μ_3 不全相等 (有显著差异)

$$C = n\bar{\bar{x}}^2 = 7141.5$$

$$SST = \sum_{i=1}^{3} \sum_{j=1}^{n_i} x_{ij}^2 - C = 4562.5 = \frac{3874.5/2}{688/21} = 59.13$$

$$SSA = \sum_{i=1}^{3} n_i \bar{x}_i^2 - C = 3874.5$$

$$SSE = SST - SSA = 688$$

$$F = \frac{MSA}{MSE} = \frac{SSA/df_A}{SSE/df_E}$$
$$= \frac{3874.5/2}{688/21} = 59.13$$

$$F_{0.05}(2,21) = 3.47$$

 \blacksquare 结论: 拒绝 H_0 。三个 品种草莓的维C含量差 异非常显著。

用LSD方法进行多重比较:

$$LSD = t_{\underline{\alpha}}(n-k) \cdot S_{\overline{x_i} - \overline{x_j}} = t_{0.025}(21) \cdot S_{\overline{x_i} - \overline{x_j}}$$

$$S_{\overline{x_i} - \overline{x_j}} = \sqrt{\frac{2MSE}{n_0}}$$

$$n_0 = \frac{(\sum n_i)^2 - \sum n_i^2}{(\sum n_i)(k-1)} = 7.8 \approx 8$$

$$LSD = 2.08 \times \sqrt{\frac{2 \times 32.76}{8}} = 5.95 (mg/100g)$$

