Developing a Forest Loss Model for Roraima, Brazil

GEOG 260 Final Presentation

Andrew Niehaus, Tanner Honnef, Annabel Krugman, Will Verde, and Sophie Hayes

Introduction

In this project we observed differences in GEOMOD outputs as changes were implemented in validation period length and driver variables. This analysis displayed an increase in Figure of Merit as validation period length increased and number of driver variables increased.

Forest Loss by Year 1985-2020 in Roraima

Overview of GEOMOD Run Collections

Validation Interval 4	2000-2002 - 2 years
Validation Interval 3	2000-2005 - 5 years
Validation Interval 2	2000-2010 - 10 years
Validation Interval 1	2000-2015 - 15 years

Collection A	Elevation Driver Only
Collection B	Elevation and Slope Drivers
Collection C	Slope, Elevation, Indigenous Land, Protection Status, Land Cover, Rivers, and Population Density Drivers

Remember: The number of driver variables used in GEOMOD increases with each collection after the control group

GEOMOD Run Collection A: Elevation

Interval Length 2, 5, 10, 15 years

This run collection serves as a control group to the larger study of the effect of validation length on GEOMOD results

Run 4A - 2 Year Validation - Elevation

Hits	9
Misses	945
False Alarms	945
FOM	0.474

GEOMOD Run 4A Validation

Run 3A - 5 Year Validation - Elevation

Hits	5
Misses	223
False Alarms	223
FOM	1.30

GEOMOD Run 3A Validation

Run 2A - 10 Year Validation - Elevation

Hits	23
Misses	337
False Alarms	337
FOM	3.32

GEOMOD Run 2A Validation

Run 1A - 15 Year Validation - Elevation

431 Hits Misses 4381 False Alarms 4381 FOM 4.688

GEOMOD Run 1A Validation

256000

GEOMOD Run Collection B: Elevation and Slope

Interval Length: 2,5,10,15 years

Drivers are weighted equally

Run 4B - 2 Year Validation - Elevation and Slope

Hits	12
Misses	942
False Alarms	942
FOM	0.633

GEOMOD Run 4B Validation

Run 3B - 5 Year Validation - Elevation and Slope Drivers

Hits	118
Misses	2173
False Alarms	2173
FOM	2.643

GEOMOD Run 3B Validation

1 | 1 | 1 Forest Persistence 1 | 2 | 1 Miss 1 | 1 | 2 False Alarm 1 | 2 | 2 Hits 2 | 2 | 2 Non-Forest

Run 2B - 10 Year Validation - Elevation and Slope Drivers

Hits	324
Misses	3281
False Alarms	3281
FOM	4.705

GEOMOD Run 2B Validation

Run 1B - 15 Year Validation - Elevation and Slope Drivers

Hits	552
Misses	4260
False Alarms	4260
FOM	6.085

GEOMOD Run 1B Validation

GEOMOD Run Collection C: Slope, Elevation, Indigenous Land, Protection Status, Land Cover, Rivers, Population Density

Interval Length: 2,5,10,15 years

Drivers are weighted equally

GEOMOD Run Collection C: Slope, Elevation, Indigenous Land, Protection Status, Land Cover, Rivers, Population Density

Interval Length: 2,5,10,15 years

Drivers are weighted equally

Run 4C - 2 Year Validation - Multiple Drivers

Hits	34
Misses	920
False Alarms	920
FOM	1.814

GEOMOD Run 4C Validation

Run 3C - 5 Year Validation - Multiple Drivers

Hits	206
Misses	2085
False Alarms	2085
FOM	4.707

GEOMOD Run 3C Validation

Run 2C - 10 Year Validation - Multiple Drivers

Hits	583
Misses	3022
False Alarms	3022
FOM	8.797

GEOMOD Run 2C Validation

Run 1C - 15 Year Validation - Multiple Drivers

Hits	868	
Misses	3944	
False Alarms	3944	
FOM	9.913	

GEOMOD Run 1C Validation

Comparison of all GEOMOD Run Collections

	Collection A	Elevation Driver Only	
	Collection B	Elevation and Slope Drivers	
	Collection C	Slope, Elevation, Indigenous Land, Protection Status, Land Cover, Rivers, and Population Density Drivers	

Comparing Suitability Across Collections A, B, C

The GEOMOD parameters used ensure the same suitability maps were used within each collection

Notice the decreasing standard deviation and maximum value as more driver variables are included

From left to right: Collection A, B, C

Viewer should notice an increase in misses and hits and a decrease in false alarms as number of Driver Variables increases. A decrease in False Alarms with an increase in Hits suggests a improvement in allocation as number of Driver Variables increases.

The three images displayed should lead the viewer to see GEOMOD's capability to simulate forest loss to increase as the Driver Variables used increases from <u>Elevation</u> to <u>Elevation and Slope</u> to <u>Elevation</u>, <u>Slope</u>, <u>Indigenous Land</u>, <u>Protection Status</u>, <u>Land Cover</u>, <u>Rivers</u>, <u>Population Density</u>. In addition to the increase in hits, notice the decrease in False Alarms in the southernmost section of the fishbone pattern, suggesting the variables added in Collections B and C demonstrate a connection to forest loss patterns in Roraima.

Total Operating Characteristic (TOC)

These figures display how many pixels with forest loss fall exist under each possible suitability value threshold- i.e. displaying the distribution of suitability values within pixels of forest loss from 2000-2015 in each GEOMOD Collection

While all three TOC Curves display an expected trend of higher suitability values corresponding to larger volumes of actual forest loss, they do not show any noticeable differences that connect to conclusions we can make about the role of Driver Variables in each Collection.

Multi Resolution Analysis of 15 year Elevation Driver GEOMOD Run Validation

15 year Elevation Driver GEOMOD Run Validation

GEOMOD Run 1A Validation

Conclusion

In this project we observed differences in GEOMOD outputs as changes were implemented in validation period length and driver variables. This analysis displayed an increase in Figure of Merit as validation period length increased and number of driver variables increased.

As number of driver variables increased, we also noticed a more accurate allocation of forest loss in the agricultural "fishbone" formation.

References

- Aldrich, S. P., Walker, R. T., Arima, E. Y., Caldas, M. M., Browder, J. O., & Perz, S. (2006). Land-Cover and Land-Use Change in the Brazilian Amazon: Smallholders, Ranchers, and Frontier Stratification. *Economic Geography*, 82(3), 265–288. https://doi.org/10.1111/j.1944-8287.2006.tb00311.x
- Barni, P. E., Manzi, A. O., Condé, T. M., Barbosa, R. I., & Fearnside, P. M. (2016). Spatial distribution of forest biomass in Brazil's state of Roraima, northern Amazonia. *Forest Ecology and Management*, 377, 170–181. https://doi.org/10.1016/j.foreco.2016.07.010
- Carreiras, J. M. B., Jones, J., Lucas, R. M., & Gabriel, C. (2014). Land Use and Land Cover Change Dynamics across the Brazilian Amazon: Insights from Extensive Time-Series Analysis of Remote Sensing Data. *PLOS ONE*, 9(8), e104144. https://doi.org/10.1371/journal.pone.0104144
- Pontius, R. G. (2018). Criteria to Confirm Models that Simulate Deforestation and Carbon Disturbance. *Land*, 7(3), 105. https://doi.org/10.3390/land7030105
- Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., ... Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. *Remote Sensing*, *12*(17), 2735. https://doi.org/10.3390/rs12172735