ФГОУ ВО Уральский Федеральный Университет имени первого Президента России Б.Н.Ельцина

Физико-технологический институт Кафедра теоретической физики и прикладной математики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

«Разработка компьютерной программы для генерирования ячеечной перколяции на квадратной решетке со стороной L»

Студент:

Вялова С.А.

группа: ФтМ-170403

Преподаватель:

д.ф.-м.н., профессор Мазуренко Владимир Владимирович

Консультант:

H.C.

Сотников Олег Михайлович

21 апреля 2018 г. Екатеринбург.

Содержание

1.	Разработка компьютерной программы для генерирования яче-	компьютерной программы для генерирования яче-			
	ечной перколляции на квадратной решетке со стороной L	2			
	1.1. Цель работы	2			
	1.2. Теоретическая часть	ુ			
	1.2.1. Перколляция	S			
	1.3. Практическая часть				
	1.3.1. Разработка программы	٦			
	1.3.2. Обработка результатов моделирования				
	1.4. Выволы	7			

Глава 1

Разработка компьютерной программы для генерирования ячеечной перколляции на квадратной решетке со стороной L

1.1. Цель работы

Разработка компьютерной программы для генерирования ячеечной перколяции на квадратной решетке со стороной L; оценка значения порога перколяции p_c по результатам десяти испытаний для квадратной решетки со сторонами $L=4,\ L=16,\ L=32.$ Анализ динамики порога перколяции в зависимости от величины стороны решетки.

1.2. Теоретическая часть

1.2.1. Перколляция

Перколяция является удобной моделью для описания широкого класса явлений, которые принято называть критическими. Перколяционные процессы могут приводить к самоорганизации и образованию структур. Объекты, которые образуются при перколяции, называются фракталами. Два простейших типа задач формулируются путём представления среды в виде дискретной решётки. Можно выборочно случайным образом красить (открывать) узлы решётки, считая долю крашенных узлов основным независимым параметром и полагая два крашенных узла принадлежащими одному кластеру, если их можно соединить непрерывной цепочкой соседних крашенных узлов.

Рассмотрим квадратную сетку размером со стороной L=3. Случайным образом выберем три ячейки сетки и заполним их. Тогда доля заполненных ячеек будет составлять $p=N_{filled}/N$, где N - общее число ячеек в сетке.

Один из основных вопросов, на который пытается ответить теория перколяции, - при какой доле p_c заполненных ячеек возникает цепочка, соединяющая верхнюю и нижнюю стороны сетки. Для сетки конечного размера такие цепочки - перколяционные кластеры - могут возникать при разных концентрациях. Если размер сетки L устремить к бесконечности, то критическая концентрация p_c , называющаяся порогом перколляции, станет вполне определённой (рис. 1.1).

Рис. 1.1. Вероятность возникновения перколяции Р в зависимости от доли заполненных узлов р. Гладкая кривая соответствует решетке конечного размера, ступенчатая - бесконечно большой решетке.

Решеточные модели в первую очередь представляют интерес с теоретической точки зрения. К настоящему времени процессы протекания на решетках изучены и поняты достаточно хорошо. С другой стороны, эти задачи имеют и практическую значимость: такой модели достаточно, чтобы описать фазовый

переход парамагнетик-ферромагнетик, процес распространения эпидемии, лесного пожара. В химии теория перколляции применяется для описания процессов порлимеризации или связывания маленьких молекул в макромолекулы (гели). Кроме того, теория находит широкое применение для описания различных неупорядоченных систем в химии и физике: пористые и аморфные материалы, включая и тонкие пленки; неупорядоченные ионные проводники; галактические структуры.

Кластером в теории перколяции называется цепочка связанных объектов (например, заполненных ячеек). Перколяционным кластером называется кластер, соединяющий две противоположные стороны системы.

В настоящей работе будет оцениваться порог перколяции p_c для решетки со стороной L для случаев L=4, L=16, L=32. Пусть p - вероятность того, что в заполненной ячейке отыщется хотя бы один перколяционный кластер. Начальное значение p выбрано равным 0,2. В исходном состоянии решетка не имеет заполненых ячеек. Ячейки решетки будут заполняться последовательно исходя из следующего условия: генерируется случайное число n. Если n меньше либо равно p, то ячейка заполняется, если больше - остается пустой. В заполненной решетке регистрируется наличие перколяционного кластера и фиксируется значение p, когда такой кластер появляется впервые. Затем значение p увеличивается на 0.025, после чего последовательность действий повторяется. Для каждого значения L процедура повторяется 10 раз и для каждого L оценивается порог перколяции как среднее значение по десяти испытаниям.

1.3. Практическая часть

1.3.1. Разработка программы

Целью настоящей работы является разработка компьютерной программы для генерирования ячеечной перколяции на квадратной решетке со стороной L. Программа реализована на языке C++. Алгоритм программы реализован следующим образом: пусть квадратная решетка со стороной L представляется в виде двумерного массива $L \times L$ типа boolean. В начальный момент времени массив заполнен нулями. Также задаётся некоторое значение p, при котором маловероятно наличие соединяющего кластера. В данном случае выбрано значение p, равное 0.2. В цикле по строкам и столбцам массива, моделирующего решетку, генерируется случайное число n от 0 до 1, которое сравнивается с текущим значением p: если n окажется не больше p, то значение элемента массива с индексом (i,j) принимает значение логической единицы, то есть ячейка заполняется. При этом в отдельный файл coordinates выводятся индексы заполненного элемента массива - координата заполненной ячейки. По окончании заполнения массива в этот же файл выводится значение р. После цикла заполнения массива значение p увеличивается на 0.025, и цикл заполнения повторяется до некоторого конечного значения p, в данном случае выбрано 0.9. На выходе программы имеется текстовый файл с координатами всех заполненных ячеек решетки, вероятностью заполнения, который является входным файлом для программы визуализации решетки. В данном случае использован пакет GNUplot.

1.3.2. Обработка результатов моделирования

Разработанная в рамках данной работы программа запускается при помощи скрипта в коммандной оболочке bash. Скрипт запускает программу с заданным параметром L, затем GNUplot с необходимым конфигурационным файлом, определённым для каждого значения L, после чего просмотрщик изображений, в котором отображается полученные изображения заполненных решеток (рис. 1.2-1.7).

Оценим динамику изменения порога перколяции p_c с увеличением параметра L, посчитав среднее значение p_c по n=10 испытаниям и среднеквадратичное отклонение этой величины.

$$\langle p_c \rangle = \frac{1}{n} \sum_{i=1}^n p_c^i$$
 (1.1)

$$\sigma_{p_c} = \frac{1}{n} \sum_{i=1}^{n} (p_c{}^i - \langle p_c \rangle)^2$$
 (1.2)

Рис. 1.2. Характерный вид заполненной решетки для L=4, в верхней части изображения отображается текущее значение p.

Рис. 1.4. Характерный вид заполненной решетки для L=16, в верхней части изображения отображается текущее значение p.

Рис. 1.3. Характерный вид заполненной решетки для L=4, в верхней части изображения отображается текущее значение p. В данном случае появился перколяционный кластер.

Рис. 1.5. Характерный вид заполненной решетки для L=16. В данном случае появился перколяционный кластер.

Рис. 1.6. Характерный вид заполненной решетки для L=32, в верхней части изображения отображается текущее значение p.

Рис. 1.7. Характерный вид заполненной решетки для L=32. В данном случае появился перколяционный кластер.

Таблица 1.1. Значение параметра p_c для n=10 испытаний в случаях с различными значениями L.

i	L=4	L = 16	L = 32
1	$0,\!375$	$0,\!550$	0,575
2	0,300	0,575	0,575
3	0,425	0,625	0,600
4	0,400	0,625	0,600
5	0,425	0,525	0,600
6	0,425	0,550	0,625
7	0,400	0,625	0,600
8	0,425	$0,\!550$	0,600
9	0,525	0,600	0,575
10	0,275	$0,\!550$	0,625
$ < p_c>$	0.3975	0.5775	0.5975
σ_{p_c}	0,00443125	0,00130625	0,00030625

1.4. Выводы

В ходе данной работы была разработана программа для симуляции ячеечной перколяции при различных размерах квадратной решетки. Был оценен

порог перколяции p_c для решетки со стороной $L=4,\ L=16,\ L=32.$ Дисперсия порога перколляции с увеличением размеров квадратной решетки при этом уменьшалась. Из n=10 измерений для каждого значения L можно сделать вывод, что при увеличении размеров квадратной решетки точность измерений растет, что характерно для решетки конечного размера.