Metodologia sperimentale per le scienze agrarie

Andrea Onofri e Dario Sacco

Update: v. 1.0 (15/03/2021), compil. 2021-04-29

Indice

\mathbf{P}_{1}	reme	ssa	10											
	Obie	ettivi	10											
	Orga	anizzazione	10											
	Soft	ware statistico	10											
		authors	10											
	Ring	graziamenti	10											
1	Scie	enza e pseudo-scienza	11											
	1.1	Scienza = dati	13											
	1.2	Dati 'buoni' e 'cattivi'	13											
	1.3	Dati 'buoni' e metodi 'buoni'	13											
	1.4	Il principio di falsificazione	13											
	1.5	Falsificare un risultato	13											
	1.6	Elementi fondamentali del disegno sperimentale	13											
		1.6.1 Controllo degli errori	13											
		1.6.2 Replicazione	13											
		1.6.3 Randomizzazione	13											
		1.6.4 Esperimenti invalidi	13											
	1.7	Chi valuta se un esperimento è attendibile?	13											
	1.8	Conclusioni	13											
	1.9	Altre letture	13											
2	Progettare un esperimento 14													
	2.1	Gli elementi della ricerca	16											
	2.2	Ipotesi scientifica \rightarrow obiettivo dell'esperimento	16											
	2.3	Identificazione dei fattori sperimentali	16											
		2.3.1 Esperimenti (multi-)fattoriali	16											
		2.3.2 Controllo o testimone	16											
	2.4	Le unità sperimentali	16											
	2.5	Allocazione dei trattamenti	16											

	2.6	Le variabili sperimentali	
		,	16
			16
		<u> </u>	16
		•	16
			16
			16
	2.7	•	16
			16
		<u>.</u>	16
		2.7.3 Numero di repliche	16
		2.7.4 La mappa di campo	16
		v i	16
	2.8	Altre letture	16
3	Ric	hiami di statistica descrittiva	17
	3.1	Dati quantitativi	18
		3.1.1 Indicatori di tendenza centrale	18
		3.1.2 Indicatori di dispersione	18
		3.1.3 Incertezza delle misure derivate	18
		3.1.4 Relazioni tra variabili quantitative: correlazione	18
	3.2	Dati qualitativi	18
		3.2.1 Distribuzioni di frequenze e classamento	18
		3.2.2 Statistiche descrittive per le distribuzioni di frequenze .	18
		3.2.3 Distribuzioni di frequenza bivariate: le tabelle di con-	
		tingenze	18
		3.2.4 Connessione	18
	3.3	Statistiche descrittive con R	18
		3.3.1 Descrizione dei sottogruppi	18
		3.3.2 Distribuzioni di frequenze e classamento	18
		3.3.3 Connessione	18
	3.4	Altre letture	18
4	Mo	delli statistici ed analisi dei dati	19
	4.1	Verità 'vera' e modelli deterministici	20
	4.2	Genesi deterministica delle osservazioni sperimentali	20
	4.3	Errore sperimentale e modelli stocastici	20
		4.3.1 Funzioni di probabilità	20
		4.3.2 Funzioni di densità	20
		4.3.3 La distribuzione normale (curva di Gauss)	20
	4.4	Modelli 'a due facce'	20

	4.5	E allora?	20
	4.6	Le simulazioni Monte Carlo	20
	4.7	Analisi dei dati e 'model fitting'	20
	4.8	Modelli stocastici non-normali	
	4.9	Altre letture	20
5	Stin	ne ed incertezza	21
	5.1	Esempio: una soluzione erbicida	23
		5.1.1 Analisi dei dati: stima dei parametri	
		5.1.2 La 'sampling distribution'	
		5.1.3 L'errore standard	
	5.2	Stima per intervallo	
	5.3	L'intervallo di confidenza	
	5.4	Qual è il senso dell'intervallo di confidenza?	
	5.5	Come presentare i risultati degli esperimenti	
	5.6	Alcune precisazioni	
		5.6.1 Campioni numerosi e non	
		5.6.2 Popolazioni gaussiane e non	
	5.7	Analisi statistica dei dati: riassunto del percorso logico	
	5.8	Da ricordare	23
	5.9	Per approfondire un po'	23
	5.10		
		5.10.1 Intervalli di confidenza per fenomeni non-normali	
	5.11	Altre letture	23
6	Dec	isioni ed incertezza	24
Ū	6.1	Confronto tra due medie: il test t di Student	
		6.1.1 L'ipotesi nulla e alternativa	
		6.1.2 La statistica T	
		6.1.3 Simulazione Monte Carlo	
		6.1.4 Soluzione formale	
		6.1.5 Interpretazione del P-level	
		6.1.6 Tipologie alternative di test t di Student	
	6.2	Confronto tra due proporzioni: il test χ^2	25
		6.2.1 Simulazione Monte Carlo	25
		6.2.2 Soluzione formale	25
	6.3	Conclusioni e riepilogo	25
	6.4	Altre letture	25
7	Mod	delli ANOVA ad una via	26
	7.1	Caso-studio: confronto tra erbicidi in vaso	28

	7.2	Descrizione del dataset	8
	7.3	Definizione di un modello lineare	8
	7.4	Parametrizzazione del modello	8
	7.5	Assunzioni di base	8
	7.6	Fitting del modello: metodo manuale	8
		7.6.1 Stima dei parametri	8
		7.6.2 Calcolo dei residui	8
			28
	7.7		8
	7.8	Test d'ipotesi	8
	7.9	Inferenza statistica	8
	7.10	Fitting del modello con R	8
	7.11	Medie marginali attese	8
	7.12	Per concludere	8
	7.13	Altre letture	8
8	La v	verifica delle assunzioni di base 2	9
	8.1	Violazioni delle assunzioni di base	0
	8.2	Procedure diagnostiche	0
	8.3	Analisi grafica dei residui	0
		8.3.1 Grafico dei residui contro i valori attesi	0
		8.3.2 QQ-plot	0
	8.4	Test d'ipotesi	0
	8.5	Risultati contraddittori	0
	8.6	'Terapia'	0
		8.6.1 Correzione/Rimozione degli outliers	0
		8.6.2 Correzione del modello	0
		8.6.3 Trasformazione della variabile indipendente 3	0
		8.6.4 Impiego di metodiche statistiche avanzate	0
		8.6.5 Trasformazioni stabilizzanti	0
	8.7	Esempio 1	0
	8.8	Esempio 2	0
	8.9	Altre letture	0
9	Con	trasti e confronti multipli 3	1
	9.1	Esempio	2
	9.2	I contrasti	2
	9.3	I contrasti con R	2
	9.4	I confronti multipli a coppie (pairwise comparisons) 3	2
	9.5	Display a lettere	2
	9.6	Tassi di errore per confronto e per esperimento	2

	9.7 9.8 9.9	Aggiustamento per la molteplicità	$\frac{32}{32}$
		Altre letture	
10		delli ANOVA con fattori di blocco	33
		Caso-studio: confronto tra erbicidi in campo	34
		Definizione di un modello lineare	34
	10.3	Stima dei parametri	34
		10.3.1 Coefficienti del modello	34
	10.4	10.3.2 Stima di σ	34
		Scomposizione della varianza	34
		Adattamento del modello con R	34
		Disegni a quadrato latino	34
		Caso studio: confronto tra metodi costruttivi	34
	10.8	Definizione di un modello lineare	34
11	La r	regressione lineare semplice	35
	11.1	Caso studio: effetto della concimazione azotata al frumento	36
	11.2	Analisi preliminari	36
	11.3	Definizione del modello lineare	36
		Stima dei parametri	36
	11.5	Valutazione della bontà del modello	36
		11.5.1 Valutazione grafica	36
		11.5.2 Errori standard dei parametri	36
		11.5.3 Test F per la mancanza d'adattamento	36
		11.5.4 Test F per la bontà di adattamento e coefficiente di	
		determinazione	36
		Previsioni	36
	11.7	Altre letture	36
12	Mod	delli ANOVA a due vie con interazione	37
		Il concetto di 'interazione'	38
		Tipi di interazione	38
		Caso-studio: interazione tra lavorazioni e diserbo chimico	38
	12.4	Definizione del modello lineare	38
		Stima dei parametri	38
		Verifica delle assunzioni di base	38
		Scomposizione delle varianze	38
		Medie marginali attese	38
		Calcolo degli errori standard (SEM e SED)	38

			marginali attese e confronti multipli con R \dots	
	12.11		profondire un po'	
		12.11.1	l Anova a due vie: scomposizione 'manuale' della varianza	38
13	App	endice	e 3: Split-plot, split-block e altro	39
	• •		Il caso-studio	40
			Definizione del modello lineare	40
		13.0.3	La natura dell'effetto delle main-plots	40
			Scomposizione della varianza	40
			Il fitting con R	40
			e SEM	40
			SED e confronti multipli	40
	13.1		i a split-block	40
			Definizione del modello lineare	40
		13.1.2	Scomposizione della varianza	40
			confronti multipli	40
	13.2		i gerarchici	40
		13.2.1	Definizione di un modello lineare	40
		13.2.2	Stima dei parametri	40
		13.2.3	Scomposizione della varianza	40
		13.2.4	Medie e SEM	40
14	Lar	eoress	ione non-lineare	41
		_	tudio: degradazione di un erbicida nel terreno	43
			della funzione	43
			dei parametri	43
	11.0		Linearizzazione della funzione	43
			Approssimazione della vera funzione tramite una poli-	10
		11.0.2	nomiale in X	43
		14 3 3	Minimi quadrati non-lineari	
	14.4		ressione non-lineare con R	
			a della bontà del modello	43
			Analisi grafica dei residui	43
			Test F per la mancanza di adattamento (approssimato)	43
			Errori standard dei parametri	43
			Coefficienti di determinazione	43
	14.6		oni lineari e nonlineari dei parametri	43
			ioni	43
			ne delle situazioni 'patologiche'	43
			Trasformazione del modello	43
		14.8.2	Trasformazione dei dati	

	14.9		orofondire Riparame												
			Altre lett												
15	Eser	cizi													
	15.1	Capitol	i 1 e 2 .												
			Esercizio												
	15.2		о 3												
			Esercizio												
			Esercizio												
			Esercizio												
	15.3		о4												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
	15.4		о5												
		-	Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
	15.5		об												
		-	Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
		15.5.5	Esercizio	5.											
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
			Esercizio												
	15.6		i da 7 a 9												
		-	Esercizio												
			Esercizio												
			Esercizio												

	15.6.4 Esercizio 4	56
	15.7 Capitolo 10	56
		56
		57
		57
		58
	-	58
		59
		3C
	15.9.1 Esercizio 1	3C
		61
	15.9.3 Esercizio 3	32
		63
	15.9.5 Esercizio 5	33
	15.9.6 Esercizio 6	64
	15.10Capitolo 14	64
	15.10.1 Esercizio 1	64
	15.10.2 Esercizio 2	65
	15.10.3 Esercizio 3	36
	15.10.4 Esercizio 4	66
		67
	15.10.6 Esercizio 6	67
	15.10.7 Esercizio 7	36
10		
	11	70
	Cosa è R?	
	00 0	71
		71
		71
		71 71
	Quale oggetto sto utilizzando?	
		71
	O	71 71
		71 71
	1 0	71 71
		71 71
		71 71
	98	71 71
	1	71 71
		71 71
	Orumate un venore o un danaliame	: 1

INDICE	9
INDICE	9

Workspace	71
Script o programmi	
Interrogazione di oggetti	
Altre funzioni matriciali	
Cenni sulle funzionalità grafiche in R	
Altre letture	

Premessa

Placeholder

Obiettivi

Organizzazione

Software statistico

The authors

Ringraziamenti

Capitolo 1 Scienza e pseudo-scienza

- 1.1 Scienza = dati
- 1.2 Dati 'buoni' e 'cattivi'
- 1.3 Dati 'buoni' e metodi 'buoni'
- 1.4 Il principio di falsificazione
- 1.5 Falsificare un risultato
- 1.6 Elementi fondamentali del disegno sperimentale
- 1.6.1 Controllo degli errori
- 1.6.2 Replicazione
- 1.6.3 Randomizzazione
- 1.6.4 Esperimenti invalidi

Cattivo controllo degli errori

'Confounding' e correlazione spuria

Pseudo-repliche e randomizzazione poco attenta

- 1.7 Chi valuta se un esperimento è attendibile?
- 1.8 Conclusioni
- 1.9 Altre letture

Progettare un esperimento

- 2.1 Gli elementi della ricerca
- 2.2 Ipotesi scientifica \rightarrow obiettivo dell'esperimento
- 2.3 Identificazione dei fattori sperimentali
- 2.3.1 Esperimenti (multi-)fattoriali
- 2.3.2 Controllo o testimone
- 2.4 Le unità sperimentali
- 2.5 Allocazione dei trattamenti
- 2.6 Le variabili sperimentali
- 2.6.1 Variabili nominali (categoriche)
- 2.6.2 Variabili ordinali
- 2.6.3 Variabili quantitative discrete
- 2.6.4 Variabili quantitative continue
- 2.6.5 Rilievi visivi e sensoriali
- 2.6.6 Variabili di confondimento
- 2.7 Esperimenti di campo
- 2.7.1 Scegliere il campo
- 2.7.2 Le unità sperimentali in campo
- 2.7.3 Numero di repliche
- 2.7.4 La mappa di campo
- 2.7.5 Lay-out sperimentale

Richiami di statistica descrittiva

3.1 Dati quantitativi

- 3.1.1 Indicatori di tendenza centrale
- 3.1.2 Indicatori di dispersione
- 3.1.3 Incertezza delle misure derivate
- 3.1.4 Relazioni tra variabili quantitative: correlazione
- 3.2 Dati qualitativi
- 3.2.1 Distribuzioni di frequenze e classamento
- 3.2.2 Statistiche descrittive per le distribuzioni di frequenze
- 3.2.3 Distribuzioni di frequenza bivariate: le tabelle di contingenze
- 3.2.4 Connessione
- 3.3 Statistiche descrittive con R.
- 3.3.1 Descrizione dei sottogruppi
- 3.3.2 Distribuzioni di frequenze e classamento
- 3.3.3 Connessione
- 3.4 Altre letture

Modelli statistici ed analisi dei dati

- 4.1 Verità 'vera' e modelli deterministici
- 4.2 Genesi deterministica delle osservazioni sperimentali
- 4.3 Errore sperimentale e modelli stocastici
- 4.3.1 Funzioni di probabilità
- 4.3.2 Funzioni di densità
- 4.3.3 La distribuzione normale (curva di Gauss)
- 4.4 Modelli 'a due facce'
- 4.5 E allora?
- 4.6 Le simulazioni Monte Carlo
- 4.7 Analisi dei dati e 'model fitting'
- 4.8 Modelli stocastici non-normali
- 4.9 Altre letture

Capitolo 5 Stime ed incertezza

- 5.1 Esempio: una soluzione erbicida
- 5.1.1 Analisi dei dati: stima dei parametri
- 5.1.2 La 'sampling distribution'
- 5.1.3 L'errore standard
- 5.2 Stima per intervallo
- 5.3 L'intervallo di confidenza
- 5.4 Qual è il senso dell'intervallo di confidenza?
- 5.5 Come presentare i risultati degli esperimenti
- 5.6 Alcune precisazioni
- 5.6.1 Campioni numerosi e non
- 5.6.2 Popolazioni gaussiane e non
- 5.7 Analisi statistica dei dati: riassunto del percorso logico
- 5.8 Da ricordare
- 5.9 Per approfondire un po'...
- 5.10 Coverage degli intervalli di confidenza
- 5.10.1 Intervalli di confidenza per fenomeni non-normali
- 5.11 Altre letture

Decisioni ed incertezza

6.1	Confronto tra due medie: il te	est t	di	Stu-
	dent			

- 6.1.1 L'ipotesi nulla e alternativa
- 6.1.2 La statistica T
- 6.1.3 Simulazione Monte Carlo
- 6.1.4 Soluzione formale
- 6.1.5 Interpretazione del P-level
- 6.1.6 Tipologie alternative di test t di Student
- 6.2 Confronto tra due proporzioni: il test χ^2
- 6.2.1 Simulazione Monte Carlo
- 6.2.2 Soluzione formale
- 6.3 Conclusioni e riepilogo
- 6.4 Altre letture

Modelli ANOVA ad una via

- 7.1 Caso-studio: confronto tra erbicidi in vaso
- 7.2 Descrizione del dataset
- 7.3 Definizione di un modello lineare
- 7.4 Parametrizzazione del modello
- 7.5 Assunzioni di base
- 7.6 Fitting del modello: metodo manuale
- 7.6.1 Stima dei parametri
- 7.6.2 Calcolo dei residui
- 7.6.3 Stima di σ
- 7.7 Scomposizione della varianza
- 7.8 Test d'ipotesi
- 7.9 Inferenza statistica
- 7.10 Fitting del modello con R
- 7.11 Medie marginali attese
- 7.12 Per concludere ...
- 7.13 Altre letture

La verifica delle assunzioni di base

- 8.1 Violazioni delle assunzioni di base
- 8.2 Procedure diagnostiche
- 8.3 Analisi grafica dei residui
- 8.3.1 Grafico dei residui contro i valori attesi
- 8.3.2 QQ-plot
- 8.4 Test d'ipotesi
- 8.5 Risultati contraddittori
- 8.6 'Terapia'
- 8.6.1 Correzione/Rimozione degli outliers
- 8.6.2 Correzione del modello
- 8.6.3 Trasformazione della variabile indipendente
- 8.6.4 Impiego di metodiche statistiche avanzate
- 8.6.5 Trasformazioni stabilizzanti
- 8.7 Esempio 1
- 8.8 Esempio 2
- 8.9 Altre letture

Contrasti e confronti multipli

- 9.1 Esempio
- 9.2 I contrasti
- 9.3 I contrasti con R
- 9.4 I confronti multipli a coppie (pairwise comparisons)
- 9.5 Display a lettere
- 9.6 Tassi di errore per confronto e per esperimento
- 9.7 Aggiustamento per la molteplicità
- 9.8 E le classiche procedure di confronto multiplo?
- 9.9 Consigli pratici
- 9.10 Altre letture

Modelli ANOVA con fattori di blocco

- 10.1 Caso-studio: confronto tra erbicidi in campo
- 10.2 Definizione di un modello lineare
- 10.3 Stima dei parametri
- 10.3.1 Coefficienti del modello
- 10.3.2 Stima di σ
- 10.4 Scomposizione della varianza
- 10.5 Adattamento del modello con R
- 10.6 Disegni a quadrato latino
- 10.7 Caso studio: confronto tra metodi costruttivi
- 10.8 Definizione di un modello lineare

La regressione lineare semplice

- 11.1 Caso studio: effetto della concimazione azotata al frumento
- 11.2 Analisi preliminari
- 11.3 Definizione del modello lineare
- 11.4 Stima dei parametri
- 11.5 Valutazione della bontà del modello
- 11.5.1 Valutazione grafica
- 11.5.2 Errori standard dei parametri
- 11.5.3 Test F per la mancanza d'adattamento
- 11.5.4 Test F per la bontà di adattamento e coefficiente di determinazione
- 11.6 Previsioni
- 11.7 Altre letture

Capitolo 12

Modelli ANOVA a due vie con interazione

Placeholder

- 12.1 Il concetto di 'interazione'
- 12.2 Tipi di interazione
- 12.3 Caso-studio: interazione tra lavorazioni e diserbo chimico
- 12.4 Definizione del modello lineare
- 12.5 Stima dei parametri
- 12.6 Verifica delle assunzioni di base
- 12.7 Scomposizione delle varianze
- 12.8 Medie marginali attese
- 12.9 Calcolo degli errori standard (SEM e SED)
- 12.10 Medie marginali attese e confronti multipli con R
- 12.11 Per approfondire un po'....
- 12.11.1 Anova a due vie: scomposizione 'manuale' della varianza

Capitolo 13

Appendice 3: Split-plot, split-block e altro

Placeholder

CAPITOLO 13. APPENDICE 3: SPLIT-PLOT, SPLIT-BLOCK E ALTRO40

- 13.0.1 Il caso-studio
- 13.0.2 Definizione del modello lineare
- 13.0.3 La natura dell'effetto delle main-plots
- 13.0.4 Scomposizione della varianza
- 13.0.5 Il fitting con R

Medie e SEM

- 13.0.6 SED e confronti multipli
- 13.1 Disegni a split-block
- 13.1.1 Definizione del modello lineare
- 13.1.2 Scomposizione della varianza

SED e confronti multipli

- 13.2 Disegni gerarchici
- 13.2.1 Definizione di un modello lineare
- 13.2.2 Stima dei parametri
- 13.2.3 Scomposizione della varianza
- 13.2.4 Medie e SEM

Capitolo 14

La regressione non-lineare

Placeholder

14.1	Caso studio:	${\bf degradazione}$	di	un	erbici-
	da nel terren	0			

- 14.2 Scelta della funzione
- 14.3 Stima dei parametri
- 14.3.1 Linearizzazione della funzione
- 14.3.2 Approssimazione della vera funzione tramite una polinomiale in X
- 14.3.3 Minimi quadrati non-lineari
- 14.4 La regressione non-lineare con R
- 14.5 Verifica della bontà del modello
- 14.5.1 Analisi grafica dei residui
- 14.5.2 Test F per la mancanza di adattamento (approssimato)
- 14.5.3 Errori standard dei parametri
- 14.5.4 Coefficienti di determinazione
- 14.6 Funzioni lineari e nonlineari dei parametri
- 14.7 Previsioni
- 14.8 Gestione delle situazioni 'patologiche'
- 14.8.1 Trasformazione del modello
- 14.8.2 Trasformazione dei dati
- 14.9 Per approfondire un po'...

Capitolo 15

Esercizi

15.1 Capitoli 1 e 2

15.1.1 Esercizio 1

Vi è stata affidata una prova sperimentale per la taratura agronomica di un nuovo diserbante appartenente al gruppo chimico delle solfoniluree (AGRI-SULFURON), utilizzabile alla dose presumibile di 20 g/ha, per il diserbo di post-emergenza del mais. Gli obiettivi della prova sono:

- 1. Valutare se è opportuno un certo aggiustamento della dose (incremento/diminuzione)
- 2. Valutare se è opportuna l'aggiunta di un bagnante non-ionico
- 3. Valutare se è opportuno splittare la dose di 20 g/ha in due distribuzioni
- 4. Valutare l'efficacia del nuovo diserbante con gli opportuni controlli (testimoni)

Coerentemente con questi obiettivi, scrivere un protocollo sperimentale sufficientemente dettagliato (una pagina) ed aggiungere lo schema della prova

15.2 Capitolo 3

15.2.1 Esercizio 1

Un'analisi chimica è stata eseguita i triplicato e i risultati sono stati i seguenti: 125, 169 and 142 ng/g. Calcolate la media e tutti gli indicatori di variabilità che conoscete.

15.2.2 Esercizio 2

Considerate il file EXCEL 'rimsulfuron.xlsx,' che può essere scaricato da questo link. In questo file sono riportati i risultati di un esperimento con 15 trattamenti e 4 repliche, nel quale sono stati posti a confronti diversi erbicidi e/o dosi per il diserbo nel mais. Calcolare le medie produttive ottenute con le diverse tesi sperimentali e riportarle su un grafico, includendo anche un'indicazione di variabilità. Verificare se la produzione è correlata con l'altezza delle piante e commentare i risultati ottenuti. Il file può essere scaricato

15.2.3 Esercizio 3

Caricare il datasets 'students' disponibile al link: 'https://www.casaonofri.it/_datasets/students.csv.' In questo file potete trovare una database relativo alla valutazione degli studenti in alcune materie del primo anno di Agraria. Ogni record rappresenta un esame, con il relativo voto, la materia e la scuola di provenienza dello studente. Con un uso appropriato delle tabelle di contingenza e del chi quadro, valutare se il voto dipende dalla materia e dalla scuola di provenienza dello studente.

15.3 Capitolo 4

15.3.1 Esercizio 1

E' data una distribuzione normale con $\mu = 23$ e $\sigma = 1$. Calcolare la probabilità di estrarre individui:

- 1. maggiori di 25
- 2. minori di 21
- 3. compresi tra 21 e 25

15.3.2 Esercizio 2

E' data una distribuzione normale con $\mu=156$ e $\sigma=13$. Calcolare la probabilità di estrarre individui:

- 1. maggiori di 170
- 2. minori di 140
- 3. compresi tra 140 e 170

15.3.3 Esercizio 3

Un erbicida si degrada nel terreno seguendo una cinetica del primo ordine:

$$Y = 100 e^{-0.07 t}$$

dove Y è la concentrazione al tempo t. Dopo aver spruzzato questo erbicida, che probabilità abbiamo di osservare, dopo 50 giorni, una concentrazione sotto la soglia di tossicità per i mammiferi (2 ng/g)? Tenere conto che lo strumento di misura produce un coefficiente di variabilità del 20%

15.3.4 Esercizio 4

Un erbicida si degrada nel terreno seguendo una cinetica del primo ordine:

$$Y = 100 e^{-0.07 t}$$

dove Y è la concentrazione al tempo t. Dopo aver spruzzato questo erbicida, che probabilità abbiamo che dopo 50 giorni la concentrazione si sia abbassata al disotto della soglia di tossicità per i mammiferi (2 ng/g)? Tenere conto che lo strumento di misura produce un coefficiente di variabilità del 20%

15.3.5 Esercizio 5

Una coltura produce in funzione della sua fittezza, secondo la seguente relazione:

$$Y = 8 + 8X - 0.07X^2$$

Stabilire la fittezza necessaria per ottenere il massimo produttivo (graficamente o analiticamente). Valutare la probabilità di ottenere una produzione compresa tra 180 e 200 q/ha, seminando alla fittezza ottimale. Considerare che la variabilità stocastica è del 12%.

15.3.6 Esercizio 6

La tossicità di un insetticida varia con la dose, secondo la legge log-logistica:

$$Y = \frac{1}{1 + exp \left\{ -2 \left[log(X) - log(15) \right] \right\}}$$

Dove Y è la proporzione di animali morti e X è la dose. Se trattiamo 150 insetti con una dose pari a 35 g, qual è la probabilità di trovare più di 120 morti? Considerare che la risposta è variabile da individuo ad individuo nella popolazione e questa variabilità può essere approssimata utilizzando una distribuzione gaussiana con un errore standard pari a 10.

15.3.7 Esercizio 7

Simulare i risultati di un esperimento varietale, con sette varietà di frumento e quattro repliche. Considerare che il modello deterministico è un modello ANOVA, nel quale vengono definite le medie delle sette varietà (valori attesi). Decidere autonomamente sui parametri da impiegare per la simulazione (da μ_1 a μ_7 e σ)

15.3.8 Esercizio 8

Considerando il testo dell'esercizio 5, simulare un esperimento in cui l'insetticida viene utilizzato a cinque dosi crescenti, con quattro repliche.

15.4 Capitolo 5

15.4.1 Esercizio 1

In un campo di frumento sono state campionate trenta aree di saggio di un metro quadrato ciascuna, sulle quali è stata determinata la produzione. La media delle trenta aree è stata di $6.2\,$ t/ha, con una varianza pari a 0.9. Stimare la produzione dell'intero appezzamento.

15.4.2 Esercizio 2

Siamo interessati a conoscere il contenuto medio di nitrati dei pozzi della media valle del Tevere. Per questo organizziamo un esperimento, durante il quale campioniamo 20 pozzi rappresentativi, riscontrando le seguenti concentrazioni:

```
38.3 38.6 38.1 39.9 36.3 41.6 37.0 39.8 39.1 35.0 38.1 37.4 38.3 34.8 40.4 39.3 37.0 38.7 38.2 38.4
```

Stimare la concentrazione media per l'intera valle del Tevere

15.4.3 Esercizio 3

E'stata impostata una prova sperimentale per confrontare due varietà di mais, con uno schema sperimentale a blocchi randomizzati con tre repliche. La prima varietà ha mostrato produzioni di 14, 12, 15 e 13 t/ha, mentre la seconda varietà ha mostrato produzioni pari a 12, 11, 10.5 e 13 t/ha. Stimare le produzioni medie delle due varietà, nell'ambiente di studio.

15.4.4 Esercizio 4

Un campione di 400 insetti a cui è stato somministrato un certo insetticida mostra che 136 di essi sono sopravvissuti. Determinare un intervallo di confidenza con grado di fiducia del 95% per la proporzione della popolazione insensibile al trattamento.

49

15.4.5 Esercizio 5

È stata studiata la risposta produttiva del sorgo alla concimazione azotata. I dati ottenuti sono:

Dose	Yield
0	1.26
30	2.50
60	3.25
90	4.31
120	5.50

Assumendo che la relazione sia lineare (retta), stimare la pendenza e l'intercetta della popolazione di riferimento, dalla quale è stato estratto il campione in studio. Utilizzare la funzione lm(Yield ~ Dose) ed estrarre gli errori standard con il metodo summary().

15.5 Capitolo 6

15.5.1 Esercizio 1

Uno sperimentatore ha impostato un esperimento verificare l'effetto di un fungicida (A) in confronto al testimone non trattato (B), in base al numero di colonie fungine sopravvissute. Il numero delle colonie trattate è di 200, mentre il numero di quelle non trattate è di 100. Le risposte (frequenze) sono come segue:

	Morte	Sopravvissute
A	180	20
В	50	50

Stabilire se i risultati possono essere considerati significativamente diversi, per un livello di probabilità del 5%.

15.5.2 Esercizio 2

Uno sperimentatore ha impostato un esperimento per confrontare due tesi sperimentali (A, B). I risultati sono i seguenti (in q/ha):

A	В	
9.3	12.6	
10.2	12.3	
9.7	12.5	

Stabilire se i risultati per le due tesi sperimentali possono essere considerati significativamente diversi, per un livello di probabilità del 5%.

15.5.3 Esercizio 3

Uno sperimentatore ha impostato un esperimento per confrontare se l'effetto di un fungicida è significativo, in un disegno sperimentale con tre ripetizioni. Con ognuna delle due opzioni di trattamento i risultati produttivi sono i seguenti (in t/ha):

A	NT
65	54
71	51
68	59

E'significativo l'effetto del trattamento fungicida sulla produzione, per un livello di probabilità del 5%?

15.5.4 Esercizio 4

Immaginate di aver riscontrato che, in determinate condizioni ambientali, 60 olive su 75 sono attaccate da *Daucus olee* (mosca dell'olivo). Nelle stesse condizioni ambientali, diffondendo in campo un insetto predatore siamo riusciti a ridurre il numero di olive attaccate a 12 su 75. Si tratta di una oscillazione casuale del livello di attacco o possiamo concludere che l'insetto predatore è stato un mezzo efficace di lotta biologica alla mosca dell'olivo?

15.5.5 Esercizio 5

In un ospedale, è stata misurata la concentrazione di colesterolo nel sangue di otto pazienti, prima e dopo un trattamento medico. Per ogni paziente, sono stati analizzati due campioni, ottenendo le seguenti concentrazioni:

Paziente	Prima	Dopo
1	167.3	166.7
2	186.7	184.2
3	107.0	104.9
4	214.5	205.3
5	149.5	148.5
6	171.5	157.3
7	161.5	149.4
8	243.6	241.5

Si può concludere che il trattamento medico è stato efficace?

15.5.6 Esercizio 6

I Q.I. di 16 studenti provenienti da un quartiere di una certa città sono risultati pari a:

```
QI1 <- c(90.31, 112.63, 101.93, 121.47, 111.37, 100.37, 106.80, 101.57, 113.25, 120.76, 88.58, 107.53, 102.62, 104.26, 95.06, 104.88)
```

Gli studenti provenienti da un'altra parte della stessa città hanno invece mostrato i seguenti Q.I.:

```
QI2 <- c(90.66, 101.41, 104.61, 91.77, 107.06, 89.51, 87.91, 92.31, 112.96, 90.33, 99.86, 88.99, 98.97, 97.92)
```

Esiste una differenza significativa tra i Q.I. dei due gruppi?

15.5.7 Esercizio 7

Viene estratto un campione di rondelle da una macchina in perfette condizioni di funzionamento. Lo spessore delle rondelle misurate è:

```
$1 < -c(0.0451, 0.0511, 0.0478, 0.0477, 0.0458, 0.0509, 0.0446, 0.0516, 0.0458, 0.0490)
```

Dopo alcuni giorni, per determinare se la macchina sia ancora a punto, viene estratto un campione di 10 rondelle, il cui spessore medio risulta:

```
S2 < -c(0.0502, 0.0528, 0.0492, 0.0556, 0.0501, 0.0500, 0.0498, 0.0526, 0.0517, 0.0550)
```

Verificare se la macchina sia ancora ben tarata, oppure necessiti di revisione.

15.5.8 Esercizio 8

Sono stati osservati 153 calciatori registrando la dominanza della mano e quella del piede, ottenendo la tabella riportata qui di seguito.

rede.sx	piede.dx
26 21	11 95

Esiste dipendenza tra la dominanza della mano e del piede?

15.5.9 Esercizio 9

Un agronomo ha organizzato un esperimento varietale, per confrontare tre varietà di frumento, cioè GUERCINO, ARNOVA e BOLOGNA. Per far questo ha individuato, in un campo uniforme dell'areale umbro, trenta parcelle da 18 m² e ne ha selezionate dieci a caso, da coltivare con GUERCINO, altre dieci a caso sono state coltivate con ARNOVA e le ultime dieci sono state coltivate con BOLOGNA.

Al termine dell'esperimento, le produttività osservate erano le seguenti:

guercino	arnova	bologna
53.2	53.1	43.5
59.1	51.0	41.0
62.3	51.9	41.2
48.6	55.3	44.8
59.7	58.8	40.2
60.0	54.6	37.2
55.7	53.0	45.3
55.8	51.4	38.9
55.7	51.7	42.9
54.4	64.7	39.3

- 1. Descrivere i tre campioni, utilizzando opportunamente un indicatore di tendenza centrale ed un indicatore di variabilità
- 2. Inferire le medie delle tre popolazioni (cioè quelle che hanno generato i tre campioni), utilizzando opportunamente un intervallo di incertezza
- 3. Per ognuna delle tre coppie (guercino vs arnova, guercino vs bologna, arnova vs bologna), valutare la differenza tra le medie e il suo errore standard. Valutare la significatività della differenza tra le medie delle tre popolazioni, esplicitando l'ipotesi nulla e calcolando il livello di probabilità di errore nel rifiuto dell'ipotesi nulla.

15.5.10 Esercizio 10

Un botanico ha valutato il numero di semi germinati per colza sottoposto a due diversi regimi termici dopo l'imbibizione (15 e 25°C). Per la temperatura più bassa, su 400 semi posti in prova, ne sono germinati 358. Alla temperatura più alta, su 380 semi in prova, ne sono germinati 286.

- 1. Descrivere i due campioni, in termini di proporzione di semi germinati
- 2. Inferire la proporzione di germinati nell'intera popolazione di semi da cui è stato estratto il nostro campione casuale di 780 semi. Utilizzare opportunamente un intervallo di incertezza, sapendo che la varianza di una proporzione è una quantità fissa, che si calcola come p(1-p).
- 3. Esiste una differenza significativa tra le proporzioni delle due popolazioni? Esplicitare l'ipotesi nulla e calcolare la probabilità di errore relativa al suo rifiuto.

15.6 Capitoli da 7 a 9

15.6.1 Esercizio 1

Un esperimento a randomizzazione completa relativo ad una prova varietale di frumento ha l'obiettivo di porre a confronto la produzione di 5 varietà. Le produzioni (in bushels per acre) osservate siano le seguenti:

Variety	1	2	3
A	32.4	34.3	37.3
В	20.2	27.5	25.9
\mathbf{C}	29.2	27.8	30.2
D	12.8	12.3	14.8
${ m E}$	21.7	24.5	23.4

Eseguire l'ANOVA, presentare i risultati e commentarli (esempio tratto da Le Clerg et al., 1962)

15.6.2 Esercizio 2

Colture di tessuto di pomodoro sono state allevate su capsule Petri trattate con una diversa concentrazione di zuccheri, utilizzando cinque repliche. La crescita colturale è riportata in tabella

Control	Glucose	Fructose	Sucrose
45 39	25 28	28 31	$\frac{31}{37}$
40	30	24	35
45	29	28	33
42	33	27	34

Calcolare le medie ed eseguire l'ANOVA. Eseguire i test di confronto multiplo. Commentare i risultati.

15.6.3 Esercizio 3

E'stato impostato un test di durata su un impianto di riscaldamento, per verificare come la temperatura di esercizio influenza la durata del riscaldatore. Sono state testate 4 temperature, con sei repliche e, per ciascun riscaldatore, è stato rilevato il numero di ore prima della rottura. I risultati sono i seguenti:

Temp.	Hours to failure
1520	1953
1520	2135
1520	2471
1520	4727
1520	6134
1520	6314
1620	1190
1620	1286
1620	1550
1620	2125
1620	2557
1620	2845
1660	651
1660	837
1660	848
1660	1038
1660	1361
1660	1543
1708	511
1708	651
1708	651
1708	652
1708	688
1708	729

Valutare se la temperatura di esercizio infleunza significativamente la durata del riscaldatore. Quale/i temperatura/e consentono la maggior durata?

15.6.4 Esercizio 4

Un entomologo ha contato il numero di uova deposte da un lepidottero sulle foglie di tre varietà di tabacco, valutando 15 femmine per varietà. I risultati sono i seguenti:

Female	Field	Resistant	USDA
1	211	0	448
2	276	9	906
3	415	143	28
4	787	1	277
5	18	26	634
6	118	127	48
7	1	161	369
8	151	294	137
9	0	0	29
10	253	348	522
11	61	0	319
12	0	14	242
13	275	21	261
14	0	0	566
15	153	218	734

Eseguite l'ANOVA. Quali sono le assunzioni necessarie per l'ANOVA? Sono rispettate? Vi sono outliers? Calcolate SEM e SED in modo attendibile.

15.7 Capitolo 10

15.7.1 Esercizio 1

E' stato impostanto un esperimento a blocchi randomizzati per confrontare sei tipi di irrigazione, in un aranceto della Spagna. I risultati sono i seguenti (in pounds per parcella):

Metodo	1	2	3	4	5
Goccia	438	413	375	127	320
Conche	413	398	348	112	297
Aspersione	346	334	281	43	231
Aspersione+goccia	335	321	267	33	219
Sommersione	403	380	336	101	293

Eseguire l'ANOVA. Quali sono le assunzioni necessarie per l'ANOVA? Sono rispettate? Calcolate SEM e SED ed eseguite il confronto multiplo. Qual è il metodo di irrigazione migliore?

15.7.2 Esercizio 2

E' stato impostato un esperimento di fertilizzazione secondo uno schema a blocchi randomizzati. I dati ottenuti sono i contenuti percentuali (moltiplicati per 100) in fosforo, in un campione di tessuti vegetali prelevato per parcella:

Trattamento	1	2	3	4	5
Non fertilizzato	5.6	6.1	5.3	5.9	7.4
50 lb N	7.3	NA	7.7	7.7	7.0
100 lb N	6.9	6	5.6	7.4	8.2
50 lb N + 75 lb P2O5	10.8	11.2	8.8	12.9	10.4
100 lb N + 75 lb P205	9.6	9.3	12	10.6	11.6

Eseguire l'ANOVA, considerando il dato mancante. Calcolare SEM e SED. Qual è il trattamento migliore? Aumentare il dosaggio di N senza P2O5 è conveniente? E in presenza di P2O5?

15.7.3 Esercizio 3

È stato condotto un esperimento a quadrato latino per valutare l'effetto di quattro diversi metodi di fertilizzazione. Sono stati osservati i seguenti risultati:

Fertiliser	Row	Column	Yield
A	1	1	104
В	1	2	114
\mathbf{C}	1	3	90
D	1	4	140
A	2	4	134
В	2	3	130
\mathbf{C}	2	1	144
D	2	2	174
A	3	3	146
В	3	4	142
\mathbf{C}	3	2	152
D	3	1	156
A	4	2	147
В	4	1	160
\mathbf{C}	4	4	160
D	4	3	163

Analizzate i dati e commentate i risultati ottenuti

15.8 Capitolo 11

15.8.1 Esercizio 1

È stato condotto uno studio per verificare l'effetto della concimazione azotata sulla lattuga, utilizzando uno schema a blocchi randomizzati. I risultat sono i seguenti:

N level	В1	B2	В3	B4
0	124	114	109	124
50	134	120	114	134
100	146	132	122	146
150	157	150	140	163
200	163	156	156	171

Analizzare i dati e commentare i risultati

15.8.2 Esercizio 2

Per valutare la soglia economica d'intervento, è necessario definire la relazione tra la densità di una pianta infestante e la perdita produttiva della coltura. Ipotizziamo che, nel range di densità osservato, il modello di competizione sia una retta. Per parametrizzare questo modello e verificarne la validità, è stato organizzato un esperimento a blocchi randomizzati, dove sono stati inclusi sette diversi livelli di infestazione di *Sinapis arvensis* ed è stata rilevata la produzione di acheni del girasole. I risultati sono:

density	Rep y	ield
0	1	36.63
14	1	29.73
19	1	32.12
28	1	30.61
32	1	27.7
38	1	27.43
54	1	24.79
0	2	36.11
14	2	34.72
19	2	30.12
28	2	30.8
32	2	26.53
38	2	27.6
54	2	23.31
0	3	38.35
14	3	32.16
19	3	31.72
28	3	28.69
32	3	25.88
38	3	28.43
54	3	30.26
0	4	36.74
14	4	32.566
19	4	29.57
28	4	33.663
32	4	28.751

density	Rep y	ield
38	4	27.114
54	4	24.664

Eseguire l'ANOVA e verificare il rispetto delle assunzioni di base. E'corretto eseguire un test di confronto multiplo e perchè? Eseguire l'analisi di regressione lineare, verificando la bontà di adattamento del modello. Definire il modello parametrizzato. Stabilire la soglia d'intervento, ipotizzando il costo del prodotto e dell'intervento diserbante.

15.9 Capitoli 12 e 13

15.9.1 Esercizio 1

La biologia di Sorghum halepense da rizoma mostra che il peso dei rizomi raggiunge un minimo intorno alla quarta foglia. Di conseguenza, eseguire un trattamento in quest'epoca dovrebbe minimizzare le possibilità di ripresa degli individui trattati, portando anche ad un certo risanamento del terreno. Tuttavia, ci si attende che gli effetti siano maggiori quando le piante provengono da rizomi più piccoli, con un minor contenuto di sostanze di riserva. Per affrontare questi argomenti è stata organizzata una prova in vaso, secondo un disegno a randomizzazione completa con quattro repliche. I risultati sono i seguenti:

$\overline{\text{Sizes} \downarrow / \text{Timing} \rightarrow}$	2-3	4-5	6-7	8-9	3-4/8-9	Untreated
2-nodes	34.03	0.10	30.91	33.21	2.89	41.63
	22.31	6.08	35.34	43.44	19.06	22.96
	21.70	3.73	24.23	44.06	0.10	52.14
	14.90	9.15	28.27	35.34	0.68	59.81
4-nodes	42.19	14.86	52.34	39.06	8.62	68.15
	51.06	36.03	43.17	61.59	0.05	42.75
	43.77	21.85	57.28	48.89	0.10	57.77
	31.74	8.71	29.71	49.14	9.65	44.85
6-nodes	20.84	11.37	55.00	41.77	9.80	43.20
	26.12	2.24	28.46	37.38	0.10	40.68
	35.24	14.17	21.81	39.55	1.42	34.11

$\overline{\text{Sizes} \downarrow / \text{Timing} \rightarrow}$	2-3	4-5	6-7	8-9	3-4/8-9	Untreated
	13.32	23.93	60.72	48.37	6.83	32.21

Eseguite l'ANOVA. Verificate il rispetto delle assunzioni parametriche di base e, se necessario, trasformate i dati. Preparate una tabella per le medie marginali e le medie di cella ed aggiungete i rispettivi errori standard (SEMs). Ha senso considerare le medie marginali? Impostate un test di confronto multiplo per gli effetti significativi, coerentemente con la risposta alla domanda precedente.

15.9.2 Esercizio 2

Un agronomo ha organizzato un confronto varietale in favino, considerando due epoche di semina: autunnale e primaverile. E' stato utilizzato un disegno a blocchi randomizzati e a parcella suddivisa, con le epoche di semina nelle parcelle principali e le varietà nelle sub-parcelle. I risultati sono i seguenti:

Sowing Time	Genotype	1	2	3	4
Autum	Chiaro	4.36	4.00	4.23	3.83
	Collameno	3.01	3.32	3.27	3.40
	Palombino	3.85	3.85	3.68	3.98
	Scuro	4.97	3.98	4.39	4.14
	Sicania	4.38	4.01	3.94	2.99
	Vesuvio	3.94	4.47	3.93	4.21
Spring	Chiaro	2.76	2.64	2.25	2.38
	Collameno	2.50	1.79	1.57	1.77
	Palombino	2.24	2.21	2.50	2.05
	Scuro	3.45	2.94	3.12	2.69
	Sicania	3.24	3.60	3.16	3.08
	Vesuvio	2.34	2.44	1.71	2.00

Eseguite l'ANOVA. Verificate il rispetto delle assunzioni parametriche di base e, se necessario, trasformate i dati. Preparate una tabella per le medie marginali e le medie di cella ed aggiungete i rispettivi errori standard (SEMs). Ha senso considerare le medie marginali? Impostate un test di confronto multiplo per gli effetti significativi, coerentemente con la risposta alla domanda

precedente.

15.9.3 Esercizio 3

Gli erbicidi mostrano sempre un certo grado di persistenza nel terreno. Di conseguenza, se la coltura fallisce subito dopo il diserbo, la scelta delle colture di sostituzione può essere condizionata dal diserbo già eseguito. Per questo motivo, è stato impostato un esperimento di pieno campo volto a valutare se tre erbicidi del mais (rimsulfuron, imazethapyr and primisulfuron) erano in grado di danneggiare quattro colture (soia, girasole, rapa e sorgo) seminate 20 giorni dopo il trattamento. Gli erbicidi sono stati distribuiti su terreno nudo, seguendo un disegno a blocchi randomizzati, su parcelle di elevate dimensioni. Per ogni blocco, la semina è stata eseguita su strisce trasversali, perpendicolari ai trattamenti eseguiti (schema a strip-plot). I risultati sono i seguenti:

Herbidicide	Block	sorghum	rape	soyabean	sunflower
Untreated	1	180	157	199	201
	2	236	111	257	358
	3	287	217	346	435
	4	350	170	211	327
Imazethapyr	1	47	10	193	51
	2	43	1	113	4
	3	0	20	187	13
	4	3	21	122	15
primisulfuron	1	271	8	335	379
	2	182	0	201	201
	3	283	22	206	307
	4	147	24	240	337
rimsulfuron	1	403	238	226	290
	2	227	169	195	494
	3	400	364	257	397
	4	171	134	137	180

Eseguite l'ANOVA. Verificate il rispetto delle assunzioni parametriche di base e, se necessario, trasformate i dati. Preparate una tabella per le medie marginali e le medie di cella ed aggiungete i rispettivi errori standard (SEMs). Ha senso considerare le medie marginali? Impostate un test di confronto mul-

tiplo per gli effetti significativi, coerentemente con la risposta alla domanda precedente.

15.9.4 Esercizio 4

E' stato condotto un esperimento parcellare per valutare l'interazione tra il momento dell'applicazione dell'azoto al terreno (early, optimum, late) e due livelli di un inibitore della nitrificazione (none, 5 lb/acre). L'inibitore ritarda la nitrificazione e riduce le perdite per lisciviazione profonda. L'azoto è stato somministrato in forma marcata (¹⁵N) e i dati raccolti riguardano la percentuale di azoto assorbito dalla pianta.

Genotype	Block	Early	Med	Late
A	1	21.4	50.8	53.2
	2	11.3	42.7	44.8
	3	34.9	61.8	57.8
В	1	54.8	56.9	57.7
	2	47.9	46.8	54.0
	3	40.1	57.9	62.0

Analizzare i dati e commentare i risultati

15.9.5 Esercizio 5

E' stato organizzato un esperimento per valutare l'effetto della temperatura di lavaggio sulla riduzione di lunghezza di alcuni tessuti. I risultati sono espressi in percentuale di riduzione e sono stati ottenuti in un disegno sperimentale a randomizzazione completa, con quattro tessuti e altrettante temperature.

Fabric	210 °F	215 °F	220 °F	225 °F
A	1.8	2.0	4.6	7.5
	2.1	2.1	5.0	7.9
В	2.2	4.2	5.4	9.8
	2.4	4.0	5.6	9.2
\mathbf{C}	2.8	4.4	8.7	13.2
	3.2	4.8	8.4	13.0

Fabric	210 °F	215 °F	220 °F	225 °F
D	3.2	3.3	5.7	10.9
	3.6	3.5	5.8	11.1

Analizzare i dati e commentare i risultati

15.9.6 Esercizio 6

Un processo di sintesi chimica prevede due reazioni, la prima richiede un alcool e la seconda richiede una base. Viene impostato un esperimento fattoriale 3 x 2, con tre alcools e due basi, con uno schema sperimentale completamente randomizzato a quattro repliche. Quali sono le vostre raccomandazioni per la prima e la seconda reazione, sulla base dei risultati dell'esperimento. La variabile rilevata mostra la produzione percentuale del processo.

Alcohol 1	Alcohol 2	Alcohol 3
91.3	89.9	89.3
88.1	89.5	87.6
90.7	91.4	90.4
91.4	88.3	90.3
87.3	89.4	92.3
91.5	93.1	90.7
91.5	88.3	90.6
94.7	91.5	89.8
	91.3 88.1 90.7 91.4 87.3 91.5 91.5	88.1 89.5 90.7 91.4 91.4 88.3 87.3 89.4 91.5 93.1 91.5 88.3

Analizzare i dati e commentare i risultati

15.10 Capitolo 14

15.10.1 Esercizio 1

Due campioni di terreno sono stati trattati con due erbicidi diversi e sono stati posti in cella climatica alle medesime condizioni di temperatura ed umidità. In tempi diversi dopo l'inizio dell'esperimento sono state prelevate aliquote di

ciascun terreno e ne è stata determinata la concentrazione residua di erbicida. I risultati ottenuti sono i seguenti:

Time	Herbicide A	Herbicide B
0	100.00	100.00
10	50.00	60.00
20	25.00	40.00
30	15.00	23.00
40	7.00	19.00
50	3.50	11.00
60	2.00	5.10
70	1.00	3.00

Ipotizzando che la degradazione dei due erbicidi segue una cinetica del primo ordine, parametrizzare la relativa equazione e determinare la semivita dei due erbicidi. Quale sostanza degrada più velocemente?

15.10.2 Esercizio 2

Un popolazione microbica in condizioni non-limitanti di substrato cresce seguendo una cinetica del primo ordine. Un esperimento da i seguenti risultati:

Time	Cells
0	2
10	3
20	5
30	9
40	17
50	39
60	94
70	201

Parametrizzare un modello esponenziale e calcolarne la bontà di adattamento.

66

15.10.3 Esercizio 3

E' stato organizzato un esperimento per valutare il tasso di assorbimento radicale di azoto da parte di *Lemna minor* allevata in coltura idroponica. I risultati medi ottenuti sono i seguenti:

conc	rate
2.86	14.58
5.00	24.74
7.52	31.34
22.10	72.97
27.77	77.50
39.20	96.09
45.48	96.97
203.78	108.88

Parametrizzare il modello iperbolico di Michaelis-Menten:

$$y = \frac{ax}{b+x}$$

Valutarne la bontà di adattamento.

15.10.4 Esercizio 4

E' stato organizzato un esperimento di competizione per valutare l'effetto di densità crescenti di $Ammi\ majus$ sulla produttività del girasole. I risultati ottenuti sono i seguenti:

Weed density	Yield
0	3.52
23	2.89
31	2.76
39	2.75
61	2.48

Parametrizzare l'iperbole di Cousens:

$$Y_W = Y_{WF} \left(1 - \frac{i \cdot x}{100 \left(1 + \frac{i \cdot x}{a} \right)} \right)$$

Valutarne la bontà di adattamento. Determinare la soglia economica di intervento.

15.10.5 Esercizio 5

Uno degli aspetti fondamentali degli studi relativi alla diversità degli ambienti è la valutazione delle curve area-specie. E' stato considerato un aranceto siciliano, del quale è stata valutata con un apposito campionamento 'innestato' la curva area-specie.

Area	numSpecie
1	4
2	5
4	7
8	8
16	10
32	14
64	19
128	22
256	22

Parametrizzare una curva 'di potenza' (power curve):

$$a \cdot x^b$$

Valutarne la bontà di adattamento. Determinare l'area minima di campionamento.

15.10.6 Esercizio 6

Si ritiene che la crescita di una coltura possa essere descritta accuratamente con un'equazione di Gompertz. Si ritiene inoltre che la presenza delle piante infestanti possa modificare la crescita della coltura, alterando i valori dei parametri del modello anzidetto. Per questo motivo viene organizzato un esperimento a randomizzazione completa con tre repliche, 6 tempi di prelievo (DAE) e 2 stati di infestazione (infestato e libero). In ogni tempo di prelievo, le tre repliche vengono raccolte e viene determinato il peso della coltura. I risultati ottenuti sono i seguenti:

DAE	Infested	Weed Free
21	0.06	0.07
21	0.06	0.07
21	0.11	0.07
27	0.20	0.34
27	0.20	0.40
27	0.21	0.25
38	2.13	2.32
38	3.03	1.72
38	1.27	1.22
49	6.13	11.78
49	5.76	13.62
49	7.78	12.15
65	17.05	33.11
65	22.48	24.96
65	12.66	34.66
186	21.51	38.83
186	26.26	27.84
186	27.68	37.72

Parametrizzare il modello di Gompertz:

$$a \cdot exp(-b \cdot exp(-c \cdot x))$$

e verificarne la bontà di adattamento nelle due situazioni. Quali parametri del modello di Gompertz sono maggiormente influenzati dalle piante infestanti? Abbiamo elementi per ritenere che la crescita segua un'equazione di Gompertz piuttosto che una logistica simmetrica?

15.10.7 Esercizio 7

Piante di *Tripleuspermum inodorum* in vaso sono state trattate con erbicida sulfonilureico (tribenuron-methyl) a dosi crescenti. Tre settimano deopo il trattamento è stato registrato il peso delle piante sopravvissute, ottenendo i risulti riportati nella tabella seguente:

Dose (g a.i. ha ⁻¹)	Fresh weight (g pot ⁻¹)
0	115.83
0	102.90
0	114.35
0.25	91.60
0.25	103.23
0.25	133.97
0.5	98.66
0.5	92.51
0.5	124.19
1	93.92
1	49.21
1	49.24
2	21.85
2	23.77
2	22.46

Si ipotizza che la relazione dose-effetto possa essere descritta con un modello log-logistico:

$$c + \frac{d - c}{1 + exp(b(log(x) - log(a))}$$

Parametrizzare questo modello e verificarne la bontà d'adattamento.

Capitolo 16

Appendice 1: breve introduzione ad R

Placeholder

Cosa è R?

Oggetti e assegnazioni

Costanti e vettori

Matrici

Dataframe

Quale oggetto sto utilizzando?

Operazioni ed operatori

Funzioni ed argomenti

Consigli per l'immissione di dati sperimentali

Immissione di numeri progressivi

Immissione dei codici delle tesi e dei blocchi

Immissione dei valori e creazione del datframe

Leggere e salvare dati esterni

Alcune operazioni comuni sul dataset

Selezionare un subset di dati

Ordinare un vettore o un dataframe

Workspace

Script o programmi

Interrogazione di oggetti