

T4. Métodos numéricos Matemáticas III

Manuel Andrade Valinho

manuel.andrade@usc.gal

Área de Astronomia e Astrofísica

Departamento de Matemática Aplicada

Escola Politécnica Superior de Engenharia Campus Terra (Lugo)

Manuel Andrade Valinho

Matemáticas III – Tema 4

1 / 31

Índice

Método de Euler. Análise de erros

Método de Euler. Análise de erros

Métodos de Runge–Kutta Método das diferenças finitas

Métodos de Runge-Kutta

Método das diferenças finitas

Manuel Andrade Valinho Matemáticas III – Tema 4 2 / 33

Apartados

Método de Euler. Análise de erros

Métodos de Runge-Kutta

Método das diferenças finitas

Manuel Andrade Valinho

Matemáticas III – Tema 4

3 / 31

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Resolução numérica de problemas de valor inicial

- Na prática existem muitas EDO que não se podem resolver analiticamente —> métodos numéricos.
- Obtém-se a solução gerál numérica ⇒ só são válidos para PVI.
- Aproxima-se a solução de um PVI num conjunto finito de pontos de um intervalo — obtém-se uma tabela de valores aproximados da solução.

Manuel Andrade Valinho Matemáticas III – Tema 4 4 / 31

USC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Método de Euler

Euler (1768)

Consideremos o problema de valor inicial de primeira ordem

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0. \end{cases}$$

Aproximamos a solução de y(x) em $x=x_0$ mediante a linearização

$$L(x) = f(x_0, y_0)(x - x_0) + y_0,$$

que é a reta tangente a y = y(x)no ponto (x_0, y_0) .

Manuel Andrade Valinho

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas Matemáticas III – Tema 4

Método de Euler

Substituímos x por $x_1 = x_0 + h$, sendo h um pequeno incremento chamado **passo de discretiza-**ção. Tomamos a nova aproximação

$$L(x_1) = f(x_0, y_0)(x_0 + h - x_0) + y_0$$

$$\Leftrightarrow y_1 = y_0 + h f(x_0, y_0),$$

onde $y_1 = L(x_1)$. A aproximação $y_1 \approx y(x_1)$ depende muito do tamanho de h, o qual, por outra parte, deve ser o suficientemente pequeno.

<u>Método de Euler</u>

Este procedimento pode definir-se recursivamente mediante a fór-

mula geral

$$y_{n+1} = y_n + h f(x_n, y_n),$$
 (1)

onde $x_n = x_0 + nh$, com $n = 0, 1, 2, \ldots$, são os **nodos**.

Manuel Andrade Valinho

Matemáticas III - Tema 4

7 / 31

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Método de Euler

Exercício 4.1.1 (aplicação do método de Euler)

Considera o PVI y' = 2xy, y(1) = 1 e calcula

- uma aproximação da solução y(2.0) utilizando o método de Euler com h = 0.1 e h = 0.05,
- o resultado exato para y(2.0) obtido a partir da solução analítica $y=e^{x^2-1}$.

Compara todos os resultados.

Resolução

Identificando f(x, y) = 2xy, a fórmula (1) transforma-se em

$$y_{n+1} = y_n + h 2xy,$$

onde
$$x_0 = 1$$
 e $y_0 = 1$.

~

Método de Euler

h = 0.1					h=0.05						
n	x _n	Уn	Уreal	E _{abs}	E _{rel} [%]	n	x _n	Уn	Уreal	E _{abs}	E _{rel} [%]
0	1.0000	1.0000	1.0000	0.0000	0.00	0	1.0000	1.0000	1.0000	0.0000	0.00
1	1.1000	1.2000	1.2337	0.0337	2.73	1	1.0500	1.1000	1.1079	0.0079	0.72
2	1.2000	1.4640	1.5527	0.0887	5.71	2	1.1000	1.2155	1.2337	0.0182	1.47
3	1.3000	1.8154	1.9937	0.1784	8.95	3	1.1500	1.3492	1.3806	0.0314	2.27
4	1.4000	2.2874	2.6117	0.3243	12.40	4	1.2000	1.5044	1.5527	0.0483	3.11
5	1.5000	2.9278	3.4903	0.5625	16.10	5	1.2500	1.6849	1.7551	0.0702	4.00
6	1.6000	3.8062	4.7588	0.9527	20.00	6	1.3000	1.8955	1.9937	0.0982	4.93
7	1.7000	5.0241	6.6194	1.5952	24.10	7	1.3500	2.1419	2.2762	0.1343	5.90
8	1.8000	6.7323	9.3933	2.6610	28.30	8	1.4000	2.4311	2.6117	0.1806	6.92
9	1.9000	9.1560	13.5990	4.4431	32.70	9	1.4500	2.7714	3.0117	0.2403	7.98
10	2.0000	12.6350	20.0860	7.4503	37.10	10	1.5000	3.1733	3.4903	0.3171	9.08
						11	1.5500	3.6493	4.0654	0.4161	10.20
					12	1.6000	4.2149	4.7588	0.5439	11.40	
					13	1.6500	4.8893	5.5985	0.7092	12.70	
$E_{abs} = valor_{real} - aproximação $					14	1.7000	5.6960	6.6194	0.9233	13.90	
					15	1.7500	6.6643	7.8656	1.2013	15.30	
E _{abs}					16	1.8000	7.8306	9.3933	1.5627	16.60	
$E_{rel}[\%] = \frac{E_{abs}}{ valor_{real} } \times 100$				17	1.8500	9.2401	11.2740	2.0339	18.00		
				18	1.9000	10.9500	13.5990	2.6495	19.50		
				19	1.9500	13.0300	16.4860	3.4559	21.00		
				20	2.0000	15.5710	20.0860	4.5147	22.50		

Manuel Andrade Valinho

Matemáticas III – Tema 4

9 / 31

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Análise de erros

Definição 4.1.2 (erro de discretização)

O erro de discretização (ou erro de truncamento) de um método numérico surge quando consideramos um número finito de passos para calcular uma aproximação a um processo infinito.

O erro de discretização local vem dado por

$$\varepsilon_n = y''(\xi) \frac{h^2}{2}, \qquad \text{com } x_n < \xi < x_{n+1}.$$

A efeitos práticos calculamos um limite superior deste erro no n-ésimo passo como

$$|\varepsilon_n| \leq M \frac{h^2}{2}, \quad \text{com } M = \max_{x_n < \xi < x_{n+1}} |y''(\xi)|.$$

Análise de erros

Portanto, considerando que todos os erros locais se somam, um limite superior para o **erro de discretização global** no n-ésimo passo virá dado por

$$|E_n| \le n M \frac{h^2}{2}, \qquad \text{com } M = \max_{x_n < \xi < x_{n+1}} |y''(\xi)|,$$
 (2)

sendo *n* o número de passos.

O erro de discretização global é $\mathcal{O}(h)$.

Manuel Andrade Valinho

Matemáticas III – Tema 4

11 / 31

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Análise de erros

Exercício 4.1.3 (cálculo do erro de discretização)

Considera o PVI y' = 2xy, y(1) = 1 e calcula um limite superior para o erro de discretização global em cada passo quando se aplica o método de Euler para obter y(2.0) com h = 0.1.

Resolução

Conforme a (2) um limite superior para o erro de discretização global será

$$|E_n| \le n M \frac{h^2}{2},$$

onde
$$M = \max_{x_n < \xi < x_{n+1}} |y''(\xi)|$$
.

 $\sim \rightarrow$

Análise de erros

Da solução $y = e^{x^2 - 1}$ obtemos

$$y''(\xi) = 2(1+2\xi^2)e^{\xi^2-1}.$$

Posto que ξ está entre x_n e $x_n + h$ tomaremos $\xi = 2$. Ademais temos n = 10 e h = 0.1. Obtemos assim

$$|E_n| \le 10 \cdot 2(1 + 2 \cdot 2^2)e^{2^2 - 1} \frac{0.1^2}{2}$$

 $\Rightarrow |E_n| \le 18.0770.$

 \leadsto

Manuel Andrade Valinho

Matemáticas III – Tema 4

13 / 31

Análise de erros

Na seguinte tabela comparam-se os valores dos erros absolutos e os erros de discretização global em cada passo.

n	Хn	Уn	У _{real}	E _{abs}	E _n	
0	1.0000	1.0000	1.0000	0.0000	0.0000	
1	1.1000	1.2000	1.2337	0.0337	0.0422	
2	1.2000	1.4640	1.5527	0.0887	0.1205	
3	1.3000	1.8154	1.9937	0.1784	0.2620	
4	1.4000	2.2874	2.6117	0.3243	0.5140	
5	1.5000	2.9278	3.4903	0.5625	0.9598	
6	1.6000	3.8062	4.7588	0.9527	1.7474	
7	1.7000	5.0241	6.6194	1.5952	3.1416	
8	1.8000	6.7323	9.3933	2.6610	5.6210	
9	1.9000	9.1560	13.5990	4.4431	10.0610	
10	2.0000	12.6350	20.0860	7.4503	18.0770	

Apartados

Método de Euler. Análise de erros

Métodos de Runge-Kutta

Método das diferenças finitas

Manuel Andrade Valinho

Matemáticas III – Tema 4

15 / 31

Método de Euler. Análise de erros **Métodos de Runge–Kutta** Método das diferenças finitas

Métodos de Runge-Kutta

Este métodos constituem generalizações do método de Euler onde a função pendente f é substituída por uma média ponderada de várias pendentes no intervalo $x_n \le x \le x_{n+1}$, isto é,

Euler:
$$y_{n+1} = y_n + h f(x_n, y_n),$$

Runge-Kutta:
$$y_{n+1} = y_n + h(w_1k_1 + w_2k_2 + ... + w_mk_m),$$

onde para $i=1,2,\ldots,m$, sendo ${\bf m}$ a **ordem** do método, temos

$$w_i o ext{pesos}$$

 $k_i \rightarrow \text{ função f avaliada num ponto } (x,y) \text{ para o qual } x_n \leq x \leq x_{n+1}$

Caso particular

$$\left. egin{aligned} m = 1 \ w_1 = 1 \ k_1 = f(x_n, y_n) \end{aligned}
ight.
ight.$$

Método RK4

O método de Runge-Kutta clássico é o de quarta ordem, conhecido como **método RK4**, cujos parâmetros mais habituais são

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = f(x_n, y_n),$$

$$k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1),$$

$$k_3 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2),$$

$$k_4 = f(x_n + h, y_n + hk_3).$$

O erro de discretização global é $\mathcal{O}(h^4)$.

Manuel Andrade Valinho

Matemáticas III - Tema 4

17 / 33

Método de Euler. Análise de erros **Métodos de Runge–Kutta** Método das diferenças finitas

Método RK4

Exercício 4.2.1 (método RK4)

Considera o PVI y' = 2xy, y(1) = 1 e calcula

- uma aproximação da solução y(2.0) utilizando o método RK4 com h=0.1.
- o resultado exato para y(2.0) obtido a partir da solução analítica $y=e^{x^2-1}$.

Compara os resultados com os obtidos utilizando o método de Euler.

Resolução

Calculamos o caso com n=0

$$k_1 = f(x_0, y_0) = 2x_0y_0 = 2,$$

Método RK4

$$k_2 = f(x_0 + \frac{1}{2}0.1, y_0 + \frac{1}{2}0.12)$$

$$= 2(1 + \frac{1}{2}0.1)(1 + \frac{1}{2}0.2) = 2.31,$$

$$k_3 = f(x_0 + \frac{1}{2}0.1, y_0 + \frac{1}{2}0.12.31)$$

$$= 2(1 + \frac{1}{2}0.1)(1 + \frac{1}{2}0.231) = 2.34255,$$

$$k_4 = f(x_0 + 0.1, y_0 + 0.12.34255)$$

$$= 2(1 + 0.1)(1 + 0.234255) = 2.715361.$$

Portanto

$$y_1 = y_0 + \frac{0.1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \Rightarrow y_1 = 1.23367435$$

Manuel Andrade Valinho

Matemáticas III – Tema 4

19 / 31

Método de Euler. Análise de erros **Métodos de Runge–Kutta** Método das diferenças finitas

Método RK4

Na seguinte tabela comparam-se os resultados obtidos utilizando o método de Euler e o método RK4.

n	x _n	y _n [Euler]	y _n [RK4]	Уreal	E _{abs} [Euler]	E _{abs} [RK4]	
0	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	
1	1.1000	1.2000	1.2337	1.2337	0.0337	0.0000	
2	1.2000	1.4640	1.5527	1.5527	0.0887	0.0000	
3	1.3000	1.8154	1.9937	1.9937	0.1784	0.0000	
4	1.4000	2.2874	2.6116	2.6117	0.3243	0.0001	
5	1.5000	2.9278	3.4902	3.4903	0.5625	0.0001	
6	1.6000	3.8062	4.7586	4.7588	0.9527	0.0003	
7	1.7000	5.0241	6.6188	6.6194	1.5952	0.0005	
8	1.8000	6.7323	9.3923	9.3933	2.6610	0.0011	
9	1.9000	9.1560	13.5970	13.5990	4.4431	0.0021	
10	2.0000	12.6350	20.0810	20.0860	7.4503	0.0043	

USC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Apartados

Método de Euler. Análise de erros

Métodos de Runge-Kutta

Método das diferenças finitas

Manuel Andrade Valinho

Matemáticas III – Tema 4

21 / 31

Método de Euler. Análise de erros Métodos de Runge-Kutta Método das diferenças finitas

Resolução numérica de problemas de valores na fronteira

- Na maioria dos casos práticos, os PVF não se podem resolver analiticamente —> métodos numéricos.
- Consideraremos EDO de segunda ordem lineares com condições de fronteira que não envolvem derivadas.

Problema de valores na fronteira de segunda ordem

Consideremos o PVF de segunda ordem

$$\begin{cases} y'' = f(x, y, y'), \\ y(a) = \alpha, \\ y(b) = \beta. \end{cases}$$

Aproximações por diferenças finitas

A expansão em série de Taylor num ponto a de uma função y(x) é

$$y(x) = y(a) + y'(a)\frac{x-a}{1!} + y''(a)\frac{(x-a)^2}{2!} + y'''(a)\frac{(x-a)^3}{3!} + \dots$$

Tomando h = x - a, obtemos

$$y(x) = y(a) + y'(a)\frac{h}{1!} + y''(a)\frac{h^2}{2!} + y'''(a)\frac{h^3}{3!} + \mathcal{O}(h^4),$$

que se pode reescrever, alternativamente, nas seguintes formas

$$y(x+h) = y(x) + y'(x)h + y''(x)\frac{h^2}{2} + y'''(x)\frac{h^3}{6} + \mathcal{O}(h^4), \quad (3)$$

$$y(x-h) = y(x) - y'(x)h + y''(x)\frac{h^2}{2} - y'''(x)\frac{h^3}{6} + \mathcal{O}(h^4), \quad (4)$$

onde ignoramos os termos $\mathcal{O}(h^4)$ por serem desprezíveis.

Manuel Andrade Valinho

Matemáticas III – Tema 4

23 / 31

Método de Euler. Análise de erros Métodos de Runge–Kutta **Método das diferenças finitas**

Aproximações por diferenças finitas

Ignorando em (3) e (4) os termos $\mathcal{O}(h^2)$ e restando-os obtemos

$$y'(x) \approx \frac{1}{2h} [y(x+h) - y(x-h)],$$
 (5)

enquanto que ignorando em (3) e (4) os termos $\mathcal{O}(h^3)$ e somando-os obtemos

$$y''(x) \approx \frac{1}{h^2} [y(x+h) - 2y(x) + y(x-h)],$$
 (6)

que se denominam aproximações por diferenças centradas.

Manuel Andrade Valinho

Método das diferenças finitas

Consideremos o PVF de segunda ordem linear

$$\begin{cases} y'' + P(x)y' + Q(x)y = f(x), \\ y(a) = \alpha, \\ y(b) = \beta. \end{cases}$$
 (7)

Supomos que $a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$ representa uma partição uniforme do intervalo [a, b] em n subintervalos de igual tamanho $h = \frac{b-a}{n}$.

Tomando $y_i = y(x_i)$, $P_i = P(x_i)$, $Q_i = Q(x_i)$, $f_i = f(x_i)$ e substituindo as derivadas y' e y'' por (5) e (6), respetivamente, obtemos

$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}+P_i\frac{y_{i+1}-y_{i-1}}{2h}+Q_iy_i=f_1.$$

Manuel Andrade Valinho

Matemáticas III - Tema 4

25 / 31

Método de Euler. Análise de erros Métodos de Runge-Kutta Método das diferenças finitas

Método das diferenças finitas

Simplificando a expressão anterior chegamos à equação das diferenças finitas

$$\left[\left(1 + \frac{h}{2} P_i \right) y_{i+1} + \left(-2 + h^2 Q_i \right) y_i + \left(1 - \frac{h}{2} P_i \right) y_{i-1} = h^2 f_i \right], \tag{8}$$

que representa uma aproximação à equação diferencial.

Tomando $i=1,2,\ldots,n-1$ em (8), obtemos um sistema algébrico de n-1 equações lineares cujas incógnitas, y_1,y_2,\ldots,y_{n-1} são as aproximações da solução do PVF nos nodos da discretização.

Por outra parte, y_0 e y_n estão determinados pelas condições de fronteira $y_0 = y(x_0) = y(a) = \alpha$ e $y_n = y(x_n) = y(b) = \beta$.

Método das diferenças finitas

Exercício 4.3.1 (método das diferenças finitas)

Utiliza o método das diferenças finitas com n=4 para resolver o PVF y''-4y=0, y(0)=0, y(1)=5 e compara o resultado com o valor exato obtido sabendo que a solução geral é $y(x)=c_1\cosh 2x+c_2$ senh 2x.

Resolução

Realizamos as seguintes identificações:

$$\begin{cases} P(x) = 0, \\ Q(x) = -4, \\ f(x) = 0. \end{cases}$$

Ademais,
$$h = \frac{1-0}{4} = \frac{1}{4}$$
.

Manuel Andrade Valinho

Matemáticas III – Tema 4

27 / 3

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Método das diferenças finitas

Substituindo em (8) obtemos a equação em diferenças

$$\left(1 + \frac{\frac{1}{4}}{2} \cdot 0\right) y_{i+1} + \left(-2 + \left(\frac{1}{4}\right)^2 (-4)\right) y_i + \left(1 - \frac{\frac{1}{4}}{2} \cdot 0\right) y_{i-1}$$

$$= \left(\frac{1}{4}\right)^2 \cdot 0$$

$$\Rightarrow y_{i+1} - 2.25y_i + y_{i-1} = 0.$$

Os nodos são

$$\begin{cases} x_1 = 0 + \frac{1}{4} = \frac{1}{4}, \\ x_2 = 0 + \frac{2}{4} = \frac{1}{2}, \\ x_3 = 0 + \frac{3}{4} = \frac{3}{4}. \end{cases}$$

Método das diferenças finitas

Portanto, para $i=1,2\,\mathrm{e}\,3$ obtemos o sistema algébrico de 3 equações

$$\begin{cases} y_2 - 2.25y_1 + y_0 = 0, \\ y_3 - 2.25y_2 + y_1 = 0, \\ y_4 - 2.25y_3 + y_2 = 0, \end{cases}$$

que com as condições na fronteira $y_0=0$ e $y_4=5$ se transforma em

$$\begin{cases}
-2.25 & y_1 & + & y_2 & = 0, \\
y_1 & - & 2.25 & y_2 & + & y_3 & = 0, \\
y_2 & - & 2.25 & y_3 & = 5.
\end{cases}$$

Manuel Andrade Valinho

Matemáticas III – Tema 4

29 / 33

Método de Euler. Análise de erros Métodos de Runge–Kutta Método das diferenças finitas

Método das diferenças finitas

A solução do sistema é

$$\begin{cases} y_1 = 0.7256, \\ y_2 = 1.6327, \\ y_3 = 2.9479. \end{cases}$$

Por outra parte, da solução geral e das condições na na fronteira obtemos a solução explícita $y(x) = \frac{5 \text{ senh } 2x}{\text{senh } 2}$, da qual obtemos os correspondentes valores exatos

$$\begin{cases} y(0.25) = 0.7184, \\ y(0.50) = 1.6201, \\ y(0.75) = 2.9354. \end{cases}$$

Licença

O trabalho Matemáticas III – T4. Métodos numéricos de Manuel Andrade Valinho está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Manuel Andrade Valinho

Matemáticas III – Tema 4

31 / 31