Adv Abstract Algebra: AAA $\ \#HW03$

Due on 2022 at 11:59PM

Prof. Peter Hermann Spr 2022

Xianzhi

2023

Homework set 3

Problem 1

Suppose that a group G has order 312. Prove that G has a proper normal subgroup.

Solution:

 $312 = 2^3 \times 3 \times 13.$

The number of Sylow p = 2 subgroup, n, has several possibilities

$$1, 3, 13, 39 \equiv \mod p = 2 \tag{1}$$

and they divide $m = 3 \times 13$.

The number of Sylow p=3 subgroup, n has several possibilities.

$$1, 4, 13 \equiv 1 \mod p = 3 \tag{2}$$

(3)

and they divide $m = 8 \cdot 13$.

However, the number of Sylow p=13 subgroup is one, since 1 is the only number $\equiv 1 \mod p=13$ and divide $m=2^3\cdot 3$ at the same time.

By Sylow's theorem, (and corollary) G has a proper normal subgroup of order 13.

The unique Sylow 13 subgroup.

Problem 2

Suppose that a group G has order 1960. Prove that G has a proper normal subgroup.

Solution:

Suppose a group has order $1960 = 2^3 \cdot 5 \cdot 7^2$, the number of Sylow p = 2 subgroup has several possibilities

$$1, 5, 7 \equiv 1 \mod p = 2 \tag{4}$$

and divide $m = 5 \cdot 7 \cdot 7$.

The number of Sylow p = 5 subgroup has several possibilities, for example, $1, 56, 196 \equiv 1 \mod p = 5$ and divide $m = 2^3 \cdot 7^2$.

But the number n of Sylow p = 7 subgroup has 2 possibilities

$$1,8 \equiv 1 \mod p = 7 \tag{5}$$

(6)

and divide $m = 2^3 \cdot 5 = 40$.

Suppose n = 8. (If n = 1, then we are done)

Since G acts on $Syl_7(G)$ by conjugation and the action is transitive, G is essentially permuting the $8Syl_7(G)$ subgroups.

Thus, we could define a homomorphism

$$G \xrightarrow{\psi} S_8$$
 (7)

(ψ is indeed a homomorphism because of the definition of group action)

 $ker\psi$ cannot be the whole group G, since G acts transitively on the $Syl_7(G)$ groups, and we are assuming there is 8 of them, so ψ cannot map everything in G to the identity permutation.

Assuming $ker\psi = \{e\}$, $\Longrightarrow \psi$ is one to one, $|G| = |Im\psi|$ need to divide $|S_8|$ since $Im\psi \leq S_8$. So |G| need to divide $|S_8|$.

But $|G| = 2^3 \cdot 5 \cdot 7^2$. and $|S_8| = 8!$. Contradiction.

Thus $ker\psi$ is not the whole group G and is not just the identity, so $ker\psi \lhd G$ is the proper normal subgroup we seek.

Problem 3

For $A \leq G$, |G:A| finite and A abelian, let $\tau_{G \mapsto A}$ denote the transfer homomorphism from G to A. Let $g \in G$ and $b \in N_G(A)$. Show that $\tau_{G \mapsto A}(g)$ commutes with b.

Hint: If h_1, \ldots, h_n is a set of right coset representatives of A then show that bh_1, \ldots, bh_n is also a set of right coset representatives of A.

Solution:

Let $G = \coprod_{i=1}^{n} Ah_i$ and $b \in N_G(A) = \{g \in G : gA = Ag\}$, then $b^{-1}Ab = A \implies Ab = bA$.

Thus

$$G = bG = b \dot{\coprod}_{i=1}^{n} Ah_{i} \tag{8}$$

$$= \coprod_{i=1}^{n} bAh_i \tag{9}$$

$$= \prod_{i=1}^{n} Abh_i \tag{10}$$

(11)

since Ab = bA set wise, not element wise.

so if h_i 's are coset representatives, then bh_i 's are also coset representatives.

Now, let $g \in G$, we have

$$Ah_i \cdot g = Ah_{ig} \tag{12}$$

$$\Longrightarrow \exists a_{i,q} \ \forall i \text{ such that}$$
 (13)

$$h_i \cdot g = a_{i,g} \cdot h_{ig} \tag{14}$$

$$h_i \cdot g \cdot h_{ig} = a_{i,g} \tag{15}$$

similarly,

$$Ab \cdot h_i \cdot g = Ab \cdot h_{ig} \implies \exists a_{i,g}^* \ \forall i \text{ such that}$$
 (16)

$$b \cdot h_i \cdot g = a_{i,g}^* \cdot b \cdot h_{ig} \tag{17}$$

$$b \cdot \underbrace{h_i \cdot g \cdot h_{ig}}_{a_{i,g}} \cdot b^{-1} = a_{i,g}^* \in A$$

$$\tag{18}$$

$$ba_{i,g}b^{-1} = a_{i,g}^* \ \forall \ i \in \{1,\dots,n\}$$
 (19)

$$\implies a_{i,g} = b^{-1} a_{i,g}^* b \ \forall \ i \tag{20}$$

 $\{h_i\}, \{bh_i\}$ are both coset representations

the $\tau(g)$ is independent of the representatives we pick, so $\tau(g) = \prod_{i=1}^n a_{i,g} = \prod_{i=1}^n a_{i,g}^*$. Hence,

$$\tau(g) = \prod_{i=1}^{n} a_{i,g} \tag{21}$$

$$= \prod_{i=1}^{n} \left(b^{-1} a_{i,g}^* b \right) \tag{22}$$

$$= b^{-1} \left(\prod_{i=1}^{n} a_{i,g}^{*} \right) b \tag{23}$$

$$=b^{-1}\left(\tau(g)\right)b\tag{24}$$

so $b\tau(g) = \tau(g)b$. Thus commute.