Cela števila

Trd. $\forall m \in \mathbb{Z} . \forall n \in \mathbb{N} . \exists q, r \in \mathbb{Z} . m = qn + r \land 0 < r < n.$

Trd. $\forall m, n \in \mathbb{Z} . \exists \gcd(m, n) . \land \exists x, y \in \mathbb{Z} . \gcd(m, n) = mx + ny.$

Trd. $\forall m, n \in \mathbb{Z}$. $gcd(m, n) = 1 \iff \exists x, y \in \mathbb{Z}$. 1 = mx + ny.

1 Uvod v teorijo grup

Lagrange. Naj bo G končna grupa in $H \leq G$: |G| = [G:H]|H|. Grupa permutacij

- Zapis s transpoziciji: $(i_1 i_2 ... i_n) = (i_1 i_n)(i_1 i_{n-1}) ... (i_1 i_3)(i_1 i_2)$
- Inverz k-cikla: $(i_1 i_2 \dots i_k)^{-1} = (i_k i_{k-1} \dots i_2 i_1)$
- Konjugiranje: $\pi \in S_n \Rightarrow \pi(i_1 i_2 \dots i_k) \pi^{-1} = (\pi(i_1) \pi(i_2) \dots \pi(i_k))$
- TODO: A_n , s čim je generirana?

Diedrska grupa D_{2n}

- $z^k r = r^{-k} z = r^{n-k} z$
- $r^k z$ so zrcaljenja, $(r^k z)^2 = 1$

Podgrupe

- $H, K \leq G \implies |HK| = \frac{|H||K|}{|H \cap K|}$
- Diagonalna podgrupa $\triangle = \{(x, x) \mid x \in G\} < G \times G$

Ciklične grupe

- Vsaka podgrupa ciklične grupe je ciklična
- Podgrupe v \mathbb{Z} so oblike $n\mathbb{Z}, n \in \mathbb{N}$
- Podgrupe v \mathbb{Z}_n so \mathbb{Z}_d , kjer $d \mid n$
- $G = \langle a \rangle, |G| < \infty \implies G = \langle a^k \rangle \iff \gcd(k, n) = 1$
- $k \in Z_n \implies \operatorname{red} k = \frac{n}{\gcd(n,k)}$
- Konjugiranje ohranja red elementa

Generatorji grup

Naj želimo določiti $\langle A \rangle$. Oglejmo množico \mathcal{A} vseh možnih produktov in inverzov (elementov, ki morajo biti v $\langle A \rangle$) ter pokažemo, da je podgrupa. Nato iz minimalnosti $\langle A \rangle$ sledi enakost.

Splošno

Naj bo $f: X \to X$ preslikava. Velia:

- f ima levi inverz: $g \circ f = id \iff f$ injektivna. Če f tudi ni $| \mathbf{5} |$ Klasifikacija končnih grup surjektivna, potem ima več levih inverzov.
- f ima desni inverz: $f \circ h = id \iff f$ surjektivna. Če f tudi ni injektivna, potem ima več desnih inverzov.

2 Uvod v teorijo kolobarjev

Brucevo sanje. Naj bo F polje, char F = p. Tedaj $(x+y)^p = x^p + y^p$.

- Kolobar K je Boolov, če $\forall x \in K . x^2 = x$. Boolov kolobar je komutativen in ima karakteristiko 2.
- Kolobar Z ni algebra nad nobenim poljem.
- Naj bo A končno-razsežna algebra, $a \in A \setminus \{0\}$. Tedaj
- $-(\exists b \in A \setminus \{0\} . ab = 0 \lor ba = 0) \sqcup (\exists a^{-1} . a^{-1}a = aa^{-1} = 1).$
- $-\exists b \in A . ab = 1 \lor ba = 1 \implies a^{-1} = b.$
- Če je A obseg, je vsaka podalgebra podobseg.

Algebra kvaternionov H

- $i^2 = j^2 = k^2 = ijk = -1$
- $Q = \{\pm i, \pm j, \pm k, \pm 1\}$ je kvaternionska grupa.
- $Z(\mathbb{H}) = \mathbb{R}, \ Z(Q) = \{-1, 1\}.$
- $\forall h \in \mathbb{H} . \exists \alpha, \beta \in \mathbb{R} . h^2 + \alpha h + \beta = 0$, kjer $-\alpha = h + \overline{h}$ in $\beta = h\overline{h}$.

Kolobar Z_n

- Kolobar $\mathbb Z$ ima 2 obrnljivih elementa: 1 in -1
- V \mathbb{Z}_n element $k \in \mathbb{Z}_n$ je obrnljiv natanko tedaj, ko $\gcd(k,n) = 1$.
- $|\mathbb{Z}_n^*| = \varphi(n)$. Če je p praštevilo, potem $|\mathbb{Z}_p| = p 1$.

Generatorji kolobarjev

Naj želimo določiti $\langle A \rangle$. Postopamo kot pri grupah (vse možne vsote. nasprotni elementi ter produkti). Opazimo tudi, da A vedno vsebuje 1

3 Homomorfizmi

- Homomorfizem $\varphi: \mathbb{Z} \to G$, $\varphi(1) = a$ obstaja za vsak $a \in G$. Homomorfizem $\varphi: \mathbb{Z}^n \to G$, $\varphi(1) = a$ natanko tedaj, ko $a^n = 1$.
- Naj bo $\varphi: G \to G'$ homomrfizem grup in naj ima element $a \in G$ končen red. Tedaj red $\varphi(a)$ | red a. Če je φ vložitev, potem reda sta

4 Kvocientne strukture

Izr. Naj bo K komutativen kolobar, $M \triangleleft K$. Tedaj je M maksimalen $\iff K/_M$ polje.

Kvocientne grupe

- $\langle r \rangle$ je edinka v D_{2n} za $n \geq 3$.
- Če je $G/_{Z(G)}$ ciklična, potem je G Abelova.
- 1. izrek o izomorfizmu
- To, da je podgrupa $N \triangleleft G$ edinka v G lahko dokažemo tako, da najdemo ustrezni homomorfizem φ , za kateri ker $\varphi = N$.

Kvocientni kolobarji

- Za vsak kolobar K velja, da $\forall a \in K . aK = \{ak \mid k \in K\} = Ka \text{ je}$ ideal. To je **glavni ideal** v K, generiran z a.
- Enostavnost kolobarja K uporabimo/dokažemo tako, da predpostavimo, da podan ideal ni trivialen, torej mora biti enak K.
- Kolobar $M_n(D)$ je enostaven, če je D obseg.
- Center enostavnega kolobarja je polje. Komutativen kolobar je enostaven natanko tedai, ko je polje.
- Naj bosta K_1 in K_2 kolobarja. Tedaj vsak ideal direktnega produkta $K_1 \times K_2$ je oblike $I_1 \times I_2$, kjer je I_1 ideal v K_1 ter I_2 ideal v K_2 .

Def. Komutator elementov $a, b \in G$ je $[a, b] := aba^{-1}b^{-1}$.

Def. Naj bo G grupa, potem je $T(G) = \{g \in G \mid \operatorname{red}(g) < \infty\}$ torzijska podgrupa G. Če je $T(G) = \{0\}$, pravimo, da je G brez torzije. **Izr.** Če gcd(n,m) = 1, potem $\mathbb{Z}_n \oplus \mathbb{Z}_m \approx \mathbb{Z}_{nm}$.

• G p-grupa, H q-grupa, $p \neq q : G, H$ ciklični $\iff G \oplus H$ ciklična.

Vse grupe do izomorfizma natančno

Naj treba poiskati vse grupe reda n do izomorfizma natančno. Zapišemo $n=p_1^{k_1}\cdot\ldots\cdot p_n^{k_n}$. Nato zapišemo vse grupe moči $p_i^{k_i}$: to so grupe oblike $\mathbb{Z}_{l_1} \oplus \ldots \oplus \mathbb{Z}_{l_i}$, kjer $l_1 + \ldots + l_i = p_i^{k_i}$ razčlenitev števila $p_i^{k_i}$.

6 Delovanje grup

Naj G deluje na X.

Def. Orbita elementa $x \in X$ je $G \cdot x := \{q \cdot x \mid q \in G\}$.

Def. Stabilizator elementa x je $G_x := \{ g \in G \mid g \cdot x = x \}.$

Def. Množica fiksnih točk $g \in G$ je $X^g := \{x \in X \mid g \cdot x = x\}.$

Def. Fiksne točke delovanja je množica $X^{\hat{G}} := \bigcap_{g \in G} X^g$.

Def. Konjugiranostni razred $x \in G$ je $Raz(x) := \{axa^{-1} \mid a \in G\}$ Konjugiranostni razred je orbita pri delovanju G na G s konjugiranjem.

• Konjugiranostni razred x je $\{x\} \iff x \in Z(G)$.

O orbite in stabilizatorju. Potem za $\forall x \in X$ velja $|G \cdot x| = [G : G_x]$ in če G končna $|G| = |G \cdot x| \cdot |G_x|$.

7 Izreki Sylowa

Def. Naj bo $H \leq G$, množici $N(H) := \{a \in G \mid aHa^{-1} = H\}$ pravimo normalizator H.

Def. $H \leq G$ je p-podgrupa Sylowa, če je $|H| = p^k \wedge p^{k+1} \nmid |G|$. Z n_p ozn. #p-podgrup Sylowa grupe G.

Sylow. Naj praštevilo p deli red končne grupe G:

- $p^k \mid |G| \implies G$ vsebuje vsaj eno p-podgrupo reda p^k .
- $\forall p$ -podgrupa G je vsebovani v kaki p-podgrupi Svlowa.
- $\forall p$ -podgrupi Sylowa sta konjugirani.
- #p-podgrup Sylowa grupe G deli |G|.
- #p-podgrup Sylowa grupe G je pm + 1 za nek $m \ge 0$.

Trd. $n_p = 1 \iff p$ -podgrupa Sylowa je edinka.

Def. Grupa G ie **enostavna**, če sta njeni edini edinki $\{1\}$ in G.

- To, da grupa ni enostavna lahko dokažemo tako, da najdemo edino p-podgrupo Sylowa.
- Opazujemo tudi moč preseka in produkta dveh podgrup.

Kolobar polinomov

Naj bo F polje.

Nerazcepnost

Trd. Naj bo $p(x) \in F[x], \deg(p) > 0$:

- $deg(p) = 1 \implies p(x)$ nerazcepen.
- deg(p) > 2 in p(x) nerazcepen \implies nima ničle v F.
- $\deg(p) \in \{2,3\} \implies (p(x) \text{ nerazcepen } \iff \text{ nima ničle v } F).$

Izr. Naj bo $f(x) \in \mathbb{Z}[x]$ tak, da ga ne moremo zapisati kot produkt dveh nekonstantnih polinomov v $\mathbb{Z}[x]$, potem je f(x) nerazcepen tudi nad $\mathbb{Q}[x]$.

Eisenstein. Naj bo $f(x) = a_n x^n + \cdots + a_1 x + a_0$ in $\exists p \in \mathbb{P}$, da $p \mid a_i$ za $i < n, p \nmid a_n$ in $p \nmid a_0^2$. Potem je f(x) nerazcepen nad $\mathbb{Q}[x]$. Trd. $f(x) = x^n + 1$ nerazcepen nad $\mathbb{Q} \iff n = 2^k, k \ge 1$.

Trd. Če je polinom $a_n x^n + \ldots + a_1 x + a_0$ razcepen nad \mathbb{Q} , kjer so $a_0, \ldots, a_n \in \mathbb{Z}$, potem je $a_n x^n + \ldots + a_1 x + a_0$ razcepen nad \mathbb{Z}_p , kjer $p \in \mathbb{P}$, $p \nmid a_n$, koeficienti pa po modulu p.

Trd. a, b, c liha $\implies ax^4 + bx + c$ nerazcepen nad \mathbb{Q} .

Trd. Naj bodo $a_1, \ldots, a_n \in \mathbb{Z}$ različna števila, potem sta polinoma $(x-a_1)\cdots(x-a_n)-1$ in $(x-a_1)^2\cdots(x-a_n)^2+1$ nerazcepna nad \mathbb{Q} . **Trd.** $x^p - x + 1$ je nerazcepen in separabilen nad \mathbb{Z}_p .

- Lahko pogledamo f(x+1).
- Nad \mathbb{Z}_2 je x^2+x+1 edini nerazcepni polinom stopnje 2. Ostali polinomi pa so x^2 , $x^2 + 1$, $x^2 + x$.
- Uporabimo Brucevo sanje.

Razširitve polj

Naj bo K/F razširitev polj.

Def. $a \in K$ algebraičen nad F, če $\exists p(x) \in F[x] . p(a) = 0$. Če je p(x) moničen in minimalne stopnje, pravimo da je $m_a(x) := p(x)$ minimalni polinom za a nad F in a stopnje algebraičnosti $deg(m_a(x))$ nad F. Sicer je a transcendentalen nad F.

Izr. Naj bo $a \in K$ algebraičen nad F in $p(x) \neq 0 \in F[x]$. p(a) = 0moničen. NTSE:

- 1. p(x) minimalen polinom za a.
- 2. p(x) nerazcepen.
- 3. $\forall q(x) \in F[x] \cdot q(a) = 0 \implies p(x)|q(x)$.

Def. Razširitev K/F je končna, če je K končno razsežen vektorski prostor nad F in pišemo $[K:F] := \dim_F(K)$.

Izr. Naj bosta razširitvi L/K in K/F končni razširitvi.

Tedaj velia $[L:F] = [L:K] \cdot [K:F]$.

Trd. Vsaka končna razširitev je algebraična.

Def. Razširitev K/F je **primitivna**, če $\exists a \in K . K = F(a)$. Elementu a pravimo **primitivni element** K.

Izr. Naj bo K/F razširitev in $a \in K$ algebraičen nad F stopnje n. Potem je $F(a) = F[a] = \{\alpha_0 + \alpha_1 a + \cdots + \alpha_{n-1} a^{n-1} \mid \alpha_i \in F\}$ končna razširitev F in [F(a):F] = n. Torej, a_0, \ldots, a_{n-1} je baza prostora.

Trd. Naj bosta a, b alg. nad F in gcd([F(a):F], [F(b):F]) = 1. Tedaj $[F(a,b):F] = [F(a):F] \cdot [F(b):F]$.

Trd. Naj bo $[E:F]=p\in\mathbb{P},$ potem je $\forall a\in E\backslash F$ algebraičen stopnje p nad F.

Trd. $F(a^k, a^l) = F(a^d)$ za $d = \gcd(k, l)$.

Trd. Naj bosta a_1, \ldots, a_n algebraični nad F.

Tedaj $[F(a_1, ..., a_n) : F] \leq [F(a_1) : F] \cdot ... \cdot [F(a_n) : F].$

Trd. Ničle f(x) so v poljubni razširitvi F enostavne $\iff f(x)$ in f'(x) tuja.

Trd. Naj bo E/F razširitev in $\operatorname{char}(F) = 0$, $a \in E$ je k-kratna ničla $f(x) \in F[x] \iff f(a) = f'(a) = \cdots = f^{(k)}(a) = 0$ in $f^{(k+1)}(a) \neq 0$.

- Stopnja primitivni razširitvi [F(a):F] je enaka stopnje minimalnega polinoma a nad F.
- Naj bo $E \subseteq F$, $a \in F$. Tedaj $E(a) = E \iff [E(a) : E] = 1$.
- Stopnjo razširitve določimo bodisi s pomočjo minimalnega polinoma bodisi s pomočjo verigi razširitev.
- Lahko dokažemo, da je F(a,b) = F(a+b).

Razpadna polja

Def. Naj bo K/F razširitev in $f(x) \in F[x]$. Pravimo da f(x) **razpade** nad K, če je enak produktu linearnih polinomov v K[x]. Če \nexists pravo podpolje K, v katerem f(x) razpade, pravimo da je K **razpadno polje** f(x) nad F.

• Razpadno polje dobimo tako, da vzemimo vsa ničla polinoma in tvorimo $F(x_1, \ldots, x_n)$. Ponavadi je treba dokazati enakost z drugim poljem. To naredimo z levo in desno vsebovanostjo.