Informatik II Skript Sommersemester 2015

Finn Ickler

27. Juni 2015

Inhaltsverzeichnis

14.4.2015	4
16.4.2015	5
21.4.2015	7
23.4.2015	9
28.4.2015	11
30.4.2015	14
5.5.2015	18
7.5.2015	19
12.5.2015	23
19.5.2015	27
21.5.2015	32
9.6.2015	37
11.6.2015	40
16.6.2015	44
18.6.2015	46
23.6.2015	49

25.6	2015	5 4
Cod	debeispiele	
1	Arithmetik mit Fließkommazahlen	5
2	Schlüsselwort define	6
3	Lambda Abstraktion	6
4	Bilderzusammenstellung am Beispiel einer Uhr	8
5	Die one-of Signatur	11
6	Konstruktion eines eigenen Ifs?	11
7	Absolutbetrag durch cond	13
8	Boolsche Ausdrücke mit and und or	14
9	Record Definitionen	14
10	Check-property	16
1	Übersetzung mathematischer Aussagen in check-property	16
12	2 Konstruktoren und Selektoren	17
13	B predicate Signaturen am Beispiel von Längen- und Breitengrade	19
14	4 Ersetzung one-of druch predicate Siganturen	19
1	5 Geocoding	21
10	6 cond mit gemischten Daten	22
1	7 Wrapper und Worker	23
18	B make-pair, ein polymorpher Datentyp	25
19		27
20	O Geschachtelte Listen	29
2	Rekursion auf Listen: Länge einer Liste	30
22	Rekursion: Zusammenfügen zweier Listen	31
23	Bildmanipulation mit Listen aus Pixeln	32
2		35
2	5 Rekursion auf natürlichen Zahlen: Fakultät	35
20	6 Fehlerhafte Rekursionen	36
E	ndrekursion.rkt	37
2	7 Umdrehen einer Liste durch lambda Rekursion	38
28	B Letrec und endrekursives Umdrehen einer Liste	39
Н	igherOrderProcedures.rkt	46
29	Anwendungsbeispiele foldr	48
A	nimationen–und–HOP–Typ2.rkt	49
30		50
3	Animation 2: Ein Raumschiff	50
32	2 Anwendungen von Combined	52
33	3 + als Higher Order Funktion	52

Skript	CC15	Einn	Ickl	or
SKIIDU	2212	гиии	ICKI	21

Informatik II Thorsten Grust

Cur	ryUndMengen.rkt	54
34	Einfache Curry Beispiele	54
35	Ableitungen berechnen mit Curry	55
36	Mengenoperationen Teil 1	56
37	Mengenoperationen Teil 2	57

14.4.2015

Scheme

Ausdrücke, Auswertung und Abstraktion

Dr Racket

Definitonsfenster

Willkommen bei <u>DrRacket</u>, Version 6.1.1 [3m].

Sprache: Die Macht der Abstraktion; memory limit: 128 MB.

> Interaktionsfenster

Die Anwendung von Funktionen wird in Scheme ausschlie SSlich in Präfixnotation durchgeführt

Mathematik	Scheme
44 - 2	(- 44 2)
f(x, y)	(f x y)
$\sqrt{81}$	(sqrt 81)
9^2	(! 3)

Allgemein: (<funktion><argument1><argument2> ...)

(+ 40 2) und (odd? 42) sind Beispiele für *Ausdrücke*, die bei *Auswertung* einen Wert liefern.

(Notation: **⋯→**)

$$(+402)$$
 $\xrightarrow{\text{Reduktion}}$ 42

```
(odd? 42) →→ #f
```

Interaktionsfenster: $\underbrace{Read \rightarrow Eval \rightarrow Print \rightarrow Loop}$

 \overrightarrow{REPL}

Literale stehen für einen konstanten Wert (auch: *Konstante*) und sind nicht weiter reduzierbar.

Literal		Sorte,Typ
#f,#t	(true, false, Wahrheitswert)	boolean
"X"	(Zeichenketten)	String
0 1904 42 -2	(ganze Zahl)	Integer
0.423.14159	(FlieSS kommazahl)	real
1/2, 3/4, -1/10	(rationale Zahlen)	rational
	(Bilder)	image

16.4.2015

Auswertung *zusammengesetzter Ausdrücke* in mehreren Schritten (Steps), von "innen nach außen", bis keine Reduktion mehr möglich ist.

Codebeispiel 1: **Achtung:** Scheme rundet bei Arithmetik mit Fließkommazahlen (interne Darstellung ist binär)

Ein Wert kann an einen *Namen* (auch *Identifier*) gebunden werden, durch (define <id> <e>) (id)Identifier (e)Ausdruck

Erlaubte konsistente Wiederverwendung, dient der Selbstdokumentation von Programmen

Achtung: Dies ist eine sogenannte Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform *keinen* Wert, sondern einen Effekt Name $\langle id \rangle$ wird an den *Wert* von $\langle e \rangle$ gebunden.

Namen können in Scheme beliebig gewählt werden, solange

- (1) die Zeichen () [] {} ", ' '; # | \nicht vorkommen
- (2) dieser nicht einem numerischen Literal gleicht.
- (3) kein Whitespace (Leerzeichen, Tabulator, Return) enthalten ist.

Beispiel: euro→US\$

Achtung: Groß-\Kleinschreibung ist irrelevant.

Codebeispiel 2: Bindung von Werten an Namen

```
(define absoluter-nullpunkt -273.15)
  (define pi 3.141592653)
  (define Gruendungsjahr-SC-Freiburg 1904)
  (define top-level-domain-germany "de")
  (define minutes-in-a-day (* 24 60))
  (define vorwahl-tuebingen (sqrt 1/2))
```

Eine *lambda-Abstraktion* (auch Funktion, Prozedur) erlaubt die Formatierung von Ausrdrücken, in denen mittels *Parametern* von konkreten Werten abstrahiert wird.

```
(lambda (\langle p1 \rangle \langle p2 \rangle \dots \rangle \langle e\rangle (e)Rumpf: enthält Vorkommen der Parameter \langle p_n \rangle (lambda(...)) ist eine Spezialform. Wert der lambda-Abstraktion ist #\langle procedure \rangle. Anwendung (auch Application) des lambda-Aufrufs führt zur Ersetzung aller Vorkommen der Parameter im Rumpf durch die angegebenen Argumente.
```

Codebeispiel 3: Lambda-Abstraktion

```
; Abstraktion: Ausdruck mit "Loch" ⊙
```

In Scheme leitet ein Semikolon einen Kommentar ein, der bis zum Zeilenende reicht und vom System bei der Auswertung ignoriert wird.

Prozeduren sollten im Programm ein- bis zweizeilige *Kurzbeschreibungen* direkt vorangestellt werden.

21.4.2015

Eine Signatur prüft, ob ein Name an einen Wert einer angegebenen Sorte (Typ) gebunden wird. Signaturverletzungen werden protokolliert.

```
(: <id> <signatur>)
```

Bereits eingebaute Sinaturen

```
\begin{array}{c|ccc} \text{natural} & \mathbb{N} & \text{boolean} \\ \text{integer} & \mathbb{Z} & \text{string} \\ \text{rational} & \mathbb{Q} & \text{image} \\ \text{real} & \mathbb{R} & \dots \\ \text{number} & \mathbb{C} & \end{array}
```

(: ...) ist eine Spezialform und hat keinen Wert, aber einen Effekt: Signaturprüfung

Prozedur Signatur spezifizieren sowohl Signaturen für die Parameter $P_1, P_2, \dots P_n$ als auch den Ergebniswert der Prozedur,

```
(: <Signatur P1> ... <Signatur Pn> -> <Signatur Ergebnis>)
```

Prozedur Signaturen werden *bei jeder Anwendung* einer Prozedur auf Verletzung geprüft. *Testfälle* dokumentieren das erwartete Ergebnis einer Prozedur für ausgewählte Argumente:

```
(check-expect <e1> <e2>)
```

Werte Ausdruck $\langle e_1 \rangle$ aus und teste, ob der erhaltene Wert der Erwartung $\langle e_2 \rangle$ entspricht (= der Wert von $\langle e_2 \rangle$) Einer Prozedur sollte Testfälle direkt vorangestellt werden.

Spezialform: kein Wert, sondern Effekt: Testverletzung protokollieren

Konstruktionsanleitung für Prozeduren:

- (1) Kurzbeschreibung (ein- bis zweizeiliger Kommentar mit Bezug auf Parametername)
- (2) Signaturen
- (3) Testfälle
- (4) Prozedurrumpf

Top-Down-Entwurf (Programmieren durch "Wunschdenken") Beispiel: Zeichne Ziffernblatt (Stunden- und Minutenzeiger) zu Uhrzeit h:m auf einer analogen 24h-Uhr

Minutenzeiger legt $\frac{360^{\circ}}{60}$ Grad pro Minute zurück (also $\frac{360}{60} \cdot m$) Studentenzeiger legt $\frac{360}{12}$ pro Stunde zurück ($\frac{360}{12} \cdot h + \frac{360}{12} \cdot \frac{m}{60}$)

Codebeispiel 4: Bauen der Uhr durch Top Down Entwurf

```
; Grad, die Minutenzeiger pro Minute zuruecklegt
  (define degrees-per-minute 360/60)

; Grad, die Stundenzeiger pro voller Stunde zuruecklegt
  (define degrees-per-hour 360/12)

; Zeichne Ziffernblatt zur Stunde h und Minute m
  (: draw-clock (natural natural -> image))
  (check-expect (draw-clock 4 15) (draw-clock 16 15))
  (define draw-clock
  (lambda (h m)
        (clock-face (position-hour-hand h m)
```

```
(position-minute-hand m))))
15 ; Winkel (in Grad), den Minutenzeiger zur Minute m einnimmt
  (: position-minute-hand (natural -> rational))
  (check-expect (position-minute-hand 15) 90)
  (check-expect (position-minute-hand 45) 270)
  (define position-minute-hand
 (lambda (m)
  (* m degrees-per-minute)))
  ; Winkel (in Grad), den Stundenzeiger zur Stunde h einnimmt
  (: position-hour-hand (natural natural -> rational))
25 (check-expect (position-hour-hand 3 0) 90)
  (check-expect (position-hour-hand 18 30) 195)
  (define position-hour-hand
  (lambda (h m)
  (+ (* (modulo h 12) degrees-per-hour)
_{30} ; h mod 12 in {0,1,...,11}
  (* (/ m 60) degrees-per-hour))))
  ; Zeichne Ziffernblatt mit Minutenzeiger um dm und
  ; Stundenzeiger um dh Grad gedreht
 (: clock-face (rational rational -> image))
  (define clock-face
  (lambda (dh dm)
  (clear-pinhole
  (overlay/pinhole
 (circle 50 "outline" "black")
  (rotate (* -1 dh) (put-pinhole 0 35 (line 0 35 "red")))
  (rotate (* -1 dm) (put-pinhole 0 45 (line 0 45
     "blue")))))))
```

23.4.2015

Substitutionsmodell

Reduktionsregeln für Scheme (Fallunterscheidung je nach Ausdrücken) wiederhole, bis keine Reduktion mehr möglich

```
- literal (1, "abc", #t, ...) l \leadsto [eval_{lit}] 

- Identifier id(pi, clock-face,...) id \leadstogebundene Wert [eval_{id}] 

- lambda Abstraktion (lambda (...) \leadsto (lambda (...) ...) [eval_\lambda] 

- Applikationen (f e_1 e_2 ...)
```

```
(1) f, e_1, e_2 reduzieren erhalte: f', e_1', e_2'
```

```
(2) \begin{cases} \text{Operation } f' \text{ auf } e_1' \text{ und } e_2' [\text{apply}_{prim}] & \text{falls } f' \text{ primitiv ist} \\ \text{Argumentenwerte in den Rumpf von } f' \text{ einsetzen, dann reduzieren} & \text{falls } f' \text{ lambda Abstrace} \end{cases}
```

Beispiel:

Bezeichnen (lambda (x) (* x x)) und lambda (r) (* r r) die gleiche Prozedur? \Rightarrow JA!

Achtung: Das hat Einfluß auf das Korrekte Einsetzen von Argumenten für Prozeduren (siehe apply)

Prinzip der Lexikalischen Bindung

Das *bindene Vorkommen* eines Identifiers id kann im Programmtext systematisch bestimmt werden: Suche strikt von innen nach außen, bis zum ersten

```
(1) (lambda (r) <Rumpf>
```

(2) (**define** <e>)

Übliche Notation in der Mathematik: Fallunterscheidung

$$max(x_1, x_2) = \begin{cases} x_1 & \text{falls } x_1 \ge x_2 \\ x_2 & \text{sonst} \end{cases}$$

Tests (auch Prädikate) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische primitive Tests.

```
(: = (number number -> boolean))
(: < (real real -> boolean))
auch >, <=, >=
```

```
(: String=? (string string -> boolean)) auch string>?, string<=? (: zero? (number -> boolean)) auch odd?, even?, positive?, negative? Binäre Fallunterscheidung if if < e_1 >  Mathematik: < e_2 > \begin{cases} e_1 & \text{falls } t_1 \\ e_2 & \text{sonst} \end{cases} < e_2 > )
```

28.4.2015

Die Signatur *one of* lässt genau einen der ausgewählten Werte zu.

```
(one of \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle)
```

Codebeispiel 5: one-of am Beispiel des Fußballpunktesystems

Reduktion von if:

```
(if t_1 < e_1 > < e_2 >)
```

1 Reduziere t_1 , erhalte $t_1' \xrightarrow{} \begin{cases} \langle \mathbf{e}_1 \rangle & \text{falls } t_1' = \# \mathbf{t}, \langle \mathbf{e}_2 \rangle \text{ niemals ausgewertet} \\ \langle \mathbf{e}_2 \rangle & \text{falls } t_1' = \# \mathbf{t}, \langle \mathbf{e}_1 \rangle \text{ niemals ausgewertet} \end{cases}$

Codebeispiel 6: Koennen wir unser eigenes 'if' aus 'cond' konstruieren? (Nein!)

```
; Bedingte Auswertung von el oder e2 (abhaengig von t1)
(check-expect (my-if (= 42 42) "Yes!" "No!") "Yes!")
(check-expect (my-if (odd? 42) "Yes!" "No!") "No!")
(define my-if
(lambda (t1 e1 e2)
(cond (t1 e1)
```

```
(else e2))))
  ; Sichere Division x/y, auch fuer y = 0
  (: safe-/ (real real -> real))
  (define safe-/
    (lambda (x y)
      (my-if (= y 0) ; <-- Funktion my-if wertet ihre</pre>
         Argumente
                              vor der Applikation aus: (/ x
                y) wird
             (/ x y)))); in *jedem* Fall reduziert. :-(
15
  (safe-/ 42 0)
                         ; Fuehrt zu Fehlemeldung "division
    by zero"
                         ; (Reduktion mit Stepper
                            durchfuehren)
```

Spezifikation Fallunterscheidung (conditional expression):

Werte die Tests in den Reihenfolge $t_1, t_2, t_3, \dots, t_n$ aus.

Sobald $t_i \# t$ ergibt, werte Zweig e_i aus. e_i ist Ergebnis der Fallunterscheidung. Wenn $t_n \# t$ liefert, dann liefert

```
Fehlermeldung "cond: alle Tests ergaben false" falls kein else Zweig \langle e_{n+1} \rangle sonst
```

Codebeispiel 7: Absolutwert von x

Reduktion von cond [eval_{cond}]

```
(\textbf{cond} \ (< t_1 > \ < e_1 >) \ (< t_2 > \ < e_2 >) \dots (< t_n > \ < e_n >) \ )
(\textbf{loond} \ (< t_1 > \ < e_1 >) \ (< t_n > \ < e_n >) \ )
(\textbf{loond} \ (< t_1 > \ < e_1 >) \ (< t_1 > \ < e_1 >) \ (< t_1 > \ < e_1 >)
(\textbf{loond} \ (< t_1 > \ < e_1 >) \ (< t_1 > \ < e_1 >) \ (< t_1 < e_1 >)
(\textbf{loond} \ (< t_1 > \ < e_1 >) \ (< t_1 < e_1 < e_1 >) \ (< t_1 < e_1 < e_1 >) \ (< t_1 < e_1 < e_1 < e_1 >) \ (< t_1 < e_1 < e_1
```

cond ist syntaktisches Zucker (auch abgeleitete Form) für eine verbundene Anwendung von if

```
\begin{array}{lll} (\textbf{or} & \langle \mathtt{t}_1 \rangle & \langle \mathtt{t}_2 \rangle & \dots & \langle \mathtt{t}_n \rangle) & \leftrightsquigarrow(\textbf{if} & \langle \mathtt{t}_1 \rangle & (\textbf{or} & \langle \mathtt{t}_2 \rangle & \dots & \langle \mathtt{t}_n \rangle) & \#\mathtt{t}) \\ (\textbf{or}) & \leftrightsquigarrow\#\mathtt{f} \\ (\textbf{and} & \langle \mathtt{t}_1 \rangle & \langle \mathtt{t}_2 \rangle & \dots & \langle \mathtt{t}_n \rangle) & \leftrightsquigarrow(\textbf{if} & \langle \mathtt{t}_1 \rangle & (\textbf{and} & \langle \mathtt{t}_2 \rangle & \dots & \langle \mathtt{t}_n \rangle) & \#\mathtt{f}) \\ (\textbf{and}) & \leftrightsquigarrow\#\mathtt{t} \end{array}
```

Codebeispiel 8: Konstruktion komplexer Prädikate mittels 'and' und 'or'

30.4.2015

Zusammengesetze Daten

Ein Charakter besteht aus drei Komponenten

- Name des Charakters (name)
- Handelt es sich um einen Jedi? (jedi?) Datendefinition für zusammengesetzte Daten
- Stärke der Macht (force)

Konkrete Charakter:

name	"Luke Skywalker "
jedi?	#f
force	25

Codebeispiel 9: Starwars Charakter als Racket Records

```
; Definiere verschiedene Charaktere des Star Wars
    Universums
(define luke
    (make-character "Luke_Skywalker" #f 25))
(define r2d2
    (make-character "R2D2" #f 0))
(define dooku
    (make-character "Count_Dooku" #f 80))
(define yoda
    (make-character "Yoda" #t 85))
```

Zusammengesetzte Daten = *Records* in Scheme Record-Definition legt fest:

- Record-Signatur
- Konstruktor (baut aus Komponenten einen Record)
- Prädikat (liegt ein Record vor?)
- Liste von *Selektoren* (lesen jeweils eine Komponente des Records)

Verträge des Konstruktors der Selektoren für Record- Signatur $\langle t \rangle$ mit Komponenten namens $\langle \text{comp}_1 \rangle \dots \langle \text{comp}_n \rangle$

```
(: make-<t> (<t1>...<t2>) -> <t>)
(: <t>-<comp1> (<t> -> <t1>))
(: <t>-<compn> (<t> -> <tn>))
```

Es gilt für alle Strings n, Booleans j und Integer f:

```
(character-name (make-character n j f) n)
(character-jedi? (make-character n j f) j)
(character-force (make-character n j f) f )
```

Spezialform check-property:

```
;Bezieht sich auf <id1> ... <idn>
```

Test erfolgreich, falls $\langle e \rangle$ für beliebig gewählte Bedeutungen für $\langle id_1 \rangle \dots \langle id_n \rangle$ immer #t ergibt

Codebeispiel 10: Interaktion von Selektoren und Konstruktor:

```
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
  (expect (character-name (make-character n j f)) n)))
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
  (expect (character-jedi? (make-character n j f)) j)))
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
   (expect-within (character-force (make-character n j f))
     f 0.001)))
```

Beispiel: Die Summe von zwei natürlichen Zahlen ist mindestens so groß wie jeder dieser Zahlen: $\forall x_1 \in \mathbb{N}, x_2 \in \mathbb{N} : x_1 + x_2 \ge \max\{x_1, x_2\}$

Codebeispiel 11: Mathematische ∀-Aussage in Racket

Konstruktion von Funktionen, die bestimmte gesetzte Daten konsumiert.

- Welche Record-Componenten sind relevant für Funktionen?
 - → Schablone:

```
(: sith? (character -> boolean))
```

Konstruktion von Funktionen, die zusammengesetzte Daten konstruieren

- Der konstruktor *muss* aufgerufen werden
 - → Schablone:

- Konkrete Beispiele:

Codebeispiel 12: Abfragen der Eigenschaften von character Records

```
; Könnte Charakter c ein Sith sein?
(: sith? (character -> boolean))
(check-expect (sith? yoda) #f)
(check-expect (sith? r2d2) #f)
(define sith?
  (lambda (c)
    (and (not (character-jedi? c))
        (> (character-force c) 0))))
; Bilde den Charakter c zum Jedi aus (sofern c überhaupt
  Macht besitzt)
(: train-jedi (character -> character))
(check-expect (train-jedi luke) (make-character "Luke_
  Skywalker" #t 50))
(check-expect (train-jedi r2d2) r2d2)
(define train-jedi
  (lambda (c)
    (make-character (character-name c)
                    (> (character-force c) 0)
                    (* 2 (character-force c)))))
```

5.5.2015

Position Nord/Südwest vom Äquator Position west/östlich vom Nullmeridian Sei ein Prädikat mit Signatur (<t> -> boolean).

Eine Signatur der Form (predicate p) gilt für jeden Wert der Signatur t sofern $(p) \rightarrow \#t$

Signaturen des Typs predicate) sind damit *spezifischer* (restriktiver) als die Signatur $\langle t \rangle$ selbst.

```
(define <newt> (signature <t>
Beispiele:
```

Codebeispiel 13: Restriktive Signaturen mit predicate

```
; Ist x ein gültiger Breitengrad
; zwischen Südpol (-90°) und Nordpol (90°)?
(: latitude? (real -> boolean))
(check-expect (latitude? 78) #t)
(check-expect (latitude? -92) #f)
(define latitude?
  (lambda (x)
    (within? -90 \times 90))
; Ist x ein gültiger Längengrad westlich (bis -180°)
; bzw. östlich (bis 180°) des Meridians?
(: longitude? (real -> boolean))
(check-expect (longitude? 0) #t)
(check-expect (longitude? 200) #f)
(define longitude?
  (lambda (x)
    (within? -180 \times 180))
; Signaturen für Breiten-/Längengrade basierend auf
; den obigen Prädikaten
(define latitude
  (signature (predicate latitude?)))
(define longitude
  (signature (predicate longitude?)))
```

7.5.2015

Man kann jedes one-of durch ein predicate ersetzen.

Codebeispiel 14: Das "große One-of Sterben des Jahres 2015"

```
(: f ((one-of 0 1 2 ) -> natural))
(define f
    (lambda (x)
        x))
5 ; And then the "The Great one-of Extinction" of 2015
```

```
(define g
(lambda (x)
x))
```

Geocoding: Übersetze eine Ortsangabe mittels des Google Maps Geocoding API (Application Programm Interface) in eine Position auf der Erdkugel.

```
(: geocoder (string -> (mixed geocode geocode-error)))
Ein geocode besteht aus:
```

Signatur

- Adresse (address) stringOrtsangabe (loc) location
- Nordostecke (northeast) location Ein geocode-error besteht aus:
- Südwestecke (southwest) location
 Typ (type) string
 Genauigkeit (accuracy) string

```
(: geocode-adress (geocode -> string))
(: geocode-loc (geocode -> location))
(: geocode-... (geocode -> ...))
```

Signatur

- Fehlerart (level) (one-of "TCP" "HTTP" "JSON" "API")
- Fehlermeldung (message) string

Gemischte Daten

Die Signatur

```
(mixed \langle t_1 \rangle \ldots \langle t_n \rangle)
```

ist gültig für jeden Wert, der mindestens eine der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ erfüllt. *Beispiel*: Data-Definition

Eine Antwort des Geocoders ist entweder

- ein Geocode (geocode) oder
- eine Fehlermeldung (geocode-error)

Beispiel (eingebaute Funktion string-\number)

```
(: string->number (string -> (mixed number (one-of #f))))
(string->number "42") \( \infty \) 42
(string-> number "foo") \( \infty \) #f
```

Codebeispiel 15: Die Google Geocode API

```
(define geocoder-response
    (signature (mixed geocode geocode-error)))
  (: sand13 geocoder-response)
  (define sand13
    (geocoder "Sand_13,_Tübingen"))
  (geocode-address sand13)
  (geocode-type sand13)
(location-lat (geocode-loc sand13))
  (location-lng (geocode-loc sand13))
  (geocode-accuracy sand13)
 (: lady-liberty geocoder-response)
  (define lady-liberty
    (geocoder "Statue_of_Liberty"))
  (: alb geocoder-response)
  (define alb
    (geocoder "Schwäbische_Alb"))
  (: A81 geocoder-response)
  (define A81
    (geocoder "A81, Germany"))
```

Erinnerung:

Das Prädikat $\langle t \rangle$? einer Signatur $\langle t \rangle$ unterscheidet Werte der Signatur $\langle t \rangle$ von allen anderen Werten:

```
(: @\argt{}@? (any -> boolean))
Auch: Prädikat für eingebaute Signaturen
```

```
number?
complex?
real?
rational?
sinteger?
natural?
string?
boolean?
```

Prozeduren, die gemischte Daten der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ konsumieren: *Konstruktionsanleitung*:

```
(: \langle \mathsf{t} \rangle ((mixed \langle \mathsf{t}_1 \rangle ... \langle \mathsf{t}_n \rangle) \rightarrow ...))
(define \langle \mathsf{t} \rangle
(lambda (x)
(cond
((\langle \mathsf{t}_1 \rangle? x) ...)
...
((\langle \mathsf{t}_n \rangle? x) ...))))
```

Mittels let lassen sich Werte an lokale Namen binden,

```
(let (  (\langle \mathrm{id}_1 \rangle \ \langle \mathrm{e}_1 \rangle)   (\ldots)   (\langle \mathrm{id}_n \rangle \ \langle \mathrm{e}_n \rangle))   \langle \mathrm{e} \rangle  )
```

Die Ausdrücke $\langle e_1 \rangle \dots \langle e_n \rangle$ werden *parallel* ausgewertet. $\Rightarrow \langle id_1 \rangle \dots \langle id_n \rangle$ können in $\langle e \rangle$ (und nur hier) verwendet werden. Der Wert des let Ausdruckes ist der Wert von $\langle e \rangle$.

Codebeispiel 16: Liegt der Geocode r auf der südlichen Erdhalbkugel?

ACHTUNG:

'let' ist verfügbar auf ab der Sprachebene "Macht der Abstraktion".

'let' ist syntaktisches Zucker.

```
(let ( (lambda (\langle id_1 \rangle ... \langle id_n \rangle)
```

```
 \begin{array}{cccc} (\langle \mathrm{id}_1 \rangle & \langle \mathrm{e}_1 \rangle) & & \langle \mathrm{e} \rangle) \\ (\ldots) & & & & \langle \mathrm{e}_1 \rangle \\ (\langle \mathrm{id}_n \rangle & \langle \mathrm{e}_n \rangle)) & & & \langle \mathrm{e}_2 \rangle & \ldots \\ & & & & \langle \mathrm{e}_n \rangle \end{array}
```

12.5.2015

Abstand zweier geographischer Positionen b_1 , b_2 auf der Erdkugel in km (lat, lng jeweils in Radian).

Codebeispiel 17: Abstand zweier geographischer Positionen

```
; Abstand zweier geographischer Positionen 11, 12 auf der
   Erdkugel in km (lat, lng jeweils in Radian):
; dist(11, 12) =
  Erdradius in km *
    acos(cos(l1.lat) * cos(l1.lng) * cos(l2.lat) *
   cos(12.lng) +
         cos(l1.lat) * sin(l1.lng) * cos(l2.lat) *
   sin(12.lng) +
        sin(l1.lat) * sin(l2.lat))
\pi
(define pi 3.141592653589793)
; Konvertiere Grad d in Radian (\pi = 180^{\circ})
(: radians (real -> real))
(check-within (radians 180) pi 0.001)
(check-within (radians -90) (* -1/2 pi) 0.001)
(define radians
  (lambda (d)
    (* d (/ pi 180))))
; Abstand zweier Orte o1, o2 auf Erdkugel (in km)
; [Wrapper]
(: distance (string string -> real))
(check-within (distance "Tübingen" "Freiburg") (distance
   "Freiburg" "Tübingen") 0.001)
(define distance
  (lambda (01 02)
```

```
(let ((dist (lambda (11 12)
                                             ; Abstand
       zweier Positionen 11, 12 (in km) [Worker]
                  (let ((earth-radius 6378); Erdradius
                      (in km)
                        (lat1 (radians (location-lat l1)))
                        (lng1 (radians (location-lng l1)))
                        (lat2 (radians (location-lat 12)))
                        (lng2 (radians (location-lng 12))))
                    (* earth-radius
                        (acos (+ (* (cos lat1) (cos lng1)
                           (cos lat2) (cos lng2))
                                 (* (cos lat1) (sin lng1)
                                    (cos lat2) (sin lng2))
                                 (* (sin lat1) (sin
                                   lat2))))))))
          (gc1 (geocoder o1))
          (gc2 (geocoder o2)))
      (if (and (geocode? gc1)
               (geocode? gc2))
          (dist (geocode-loc gc1) (geocode-loc gc2))
          (violation "Unknown_location(s)"))))
; ... einmal quer durch die schöne Republik
(distance "Konstanz" "Rostock")
```

PARAMETRISCH POLYMORPHE PROZEDUREN

Beobachtung: Manche Prozeduren arbeiten unabhängig von den Signaturen ihrer Argumente : *parametrisch polymorphe Funktion* (griechisch : vielgestaltig).

Nutze *Signaturvariablen* %a , %b,... Beispiel:

```
; die Identität
(: id (%a -> %a))
(define id
    (lambda (x) x))

; die konstante Funktion
(: const (%a %b -> %a))
(define const
    (lambda (x y) x))

; die Projektion
```

Eine polymorphe Signatur steht für alle Signaturen, in denen die Signaturvariablen durch konkrete Signaturen ersetzt werden.

Beispiel: Wenn eine Prozedur (: number %a %b -> %a) erfüllt, dann auch:

```
(: number string boolean -> string)
(: number boolean natural -> boolean)
(: number number number -> number)
```


2 #f

```
; Ein polymorphes Paar (pair-of %a %b) besteht aus
; - einer ersten Komponente (first)
; - einer zweiten Komponente (rest)
  (: make-pair (%a %b -> (pair-of %a %b)))
5 (: pair? (any -> boolean))
  (: first ((pair-of %a %b) -> %a))
  (: rest ((pair-of %a %b) -> %b))
  (define-record-procedures-parametric pair pair-of make-pair
  pair?
    (first
    rest))
```

(pair-of $\langle t1 \rangle \langle t2 \rangle$) ist eine Signatur für Paare deren erster bzw. zweiter Komponente die Signaturen $\langle t_1 \rangle$ bzw. $\langle t_2 \rangle$ erfüllen.

```
;→ pair-of Signatur mit (zwei) Parametern
(: make-pair (%a %b -> (pair-of % a %b)))
(: pair? (any -> boolean))
(: first ((pair-of %a %b ) -> %a))
5 (: rest ((pair-of %a %b ) -> %b))
```

Codebeispiel 18: Paare aus verschiedenen Datentypen

```
; Ein paar aus natürlichen Zahlen
; FIFA WM 2014
(: deutschland-vs-brasilien (pair-of natural natural))
(define deutschland-vs-brasilien
```

Eine *Liste* von Werten der Signatur $\langle t_t \rangle$ ist entweder

- leer (Signatur empty-list) oder:
- ein Paar (Signatur pair-of) aus einem Wert der Signatur $\langle t \rangle$ und einer Liste von Werten der Signatur $\langle t \rangle$.

Signatur empty-list bereits in Racket vordefiniert.

Ebenfalls vordefiniert:

```
(:empty empty-list)
(: empty? (any -\zu boolean))
Operatoren auf Listen
```

```
Konstruktoren (: empty-list) leere liste
    (: make-pair (% a (list-of % a)) Konstruiert Liste aus Kopf und Rest

Predikate: (: empty (any -> boolean) liegt leere Liste vor?
    (: pair? (any -> boolean)) Nicht leere Liste?
```

```
Selektoren: (: first (list-of %a)-> %a) Kopf-Element (: rest (list-of %a)-> (list-of %a)) Rest Liste
```

Codebeispiel 19: Listen aus einem oder verschiedenen Datentypen

```
; Noch einmal (jetzt mit Signatur): Liste der natürlichen
     Zahlen 1,2,3,4
  (: one-to-four (list-of natural))
  (define one-to-four
    (make-pair 1
                (make-pair 2
                           (make-pair 3
                                       (make-pair 4
                                                  empty)))))
  ; Eine Liste, deren Elemente natürliche Zahlen oder
     Strings sind
  (: abstiegskampf (list-of (mixed number string)))
  (define abstiegskampf
    (make-pair "SCF"
                (make-pair 96
15
                           (make-pair "SCP"
                                       (make-pair "VfB"
                                          empty)))))
```

19.5.2015

```
(make-pair 1 (make-pair 2 empty))
Visualisierung Listen
```


Spine (Rückgrat)


```
(: jedis-and-siths (list-of (list-of string)))
```


Codebeispiel 20: Jedis und Siths in einer geschachtelten Liste

Prozeduren, die Liste konsumieren Konstruktionsanleitung:

Beispiel:

(rest xs) mit Signatur (list-of number) ist selbst wieder eine kürzere Liste von Zahlen.

(list sum (rest
xs)) erzielt Fortschritt

Konstruktionsanleitung für Prozeduren:

Neue Sprachebene "Macht der Abstraktion"

- Signatur (list-of \% a) eingebaut

```
(list \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle)

\equiv

(make-pair (\langle e_1 \rangle)

(make-pair \langle e_2 \rangle)

... (make-pair \langle e_n \rangle) empty) ...)
```

- Ausgabeformat für nicht leere Listen:

```
{#<list x1x2... xn>
```

Codebeispiel 21: Länge einer Liste

```
; Länge der Liste xs
(: list-length ((list-of %a) -> natural))

(check-expect (list-length empty) 0)
(check-expect (list-length (list 1 1 3 8)) 4)
```

Füge Listen xs , ys zusammen (con*cat*ination) Zwei Fälle (xs leer oder nicht leer)

Beobachtung:

- Die Längen von xs bestimmt die Anzahl der rekursiven Aufrufe von cat
- Auf xs werden Selektoren angewendet

Codebeispiel 22: Zusammenfügen zweier Listen

21.5.2015

Codebeispiel 23: Ausflug: Bluescreen Berechnung wie in Starwars mit Listen:

(**define** yoda

(define dagobah


```
; Zugriff auf die Liste der Bildpunkte (Pixel) eines Bildes:
```

```
;(: image->color-list (image -> (list-of rgb-color)))
;(: color-list->bitmap ((list-of rgb-color) natural
   natural -> image))
```

;Breite/Höhe eines Bildes in Pixeln:

```
; (: image-width (image -> natural))
; (: image-height (image -> natural))

; Eine Farbe (rgb-color) besteht aus ihrem
; - Rot-Anteil 0..255 (red)
; - Grün-Anteil 0..255 (green)
; - Blau-Anteil 0..255 (blue)
```

```
20
  ; (define-record-procedures rgb-color
     make-color
      color?
      (color-red color-green color-blue))
25
  ; Signatur für color-Records nicht in image2.rkt
     eingebaut. Roll our own...
  (define rgb-color
    (signature (predicate color?)))
30
  ; Ist Farbe c bläulich?
  (: bluish? (rgb-color -> boolean))
  (define bluish?
    (lambda (c)
      (< (/ (+ (color-red c) (color-green c) (color-blue c))</pre>
         (color-blue c))))
  ; Worker:
  ; Pixel aus Hintergrund bg scheint durch, wenn der
  ; entsprechende Pixel im Vordergrund fg bläulich ist.
  ; Arbeite die Pixellisten von fg und bg synchron ab
  ; Annahme: fq und bg haben identische Länge!
  (: bluescreen ((list-of rgb-color) (list-of rgb-color) ->
     (list-of rgb-color)))
  (define bluescreen
    (lambda (fg bg)
      (cond ((empty? fg)
             empty)
             ((pair? fg)
              (make-pair
               (if (bluish? (first fg))
                   (first bg)
```

```
(first fq))
               (bluescreen (rest fg) (rest bg)))))))
  ; Wrapper:
  ; Mische Vordergrund fg und Hintergrund bg nach
     Bluescreen-Verfahren
  (: mix (image image -> image))
  (define mix
    (lambda (fg bg)
       (let ((fg-h (image-height fg))
             (fg-w (image-width fg))
             (bg-h (image-height bg))
             (bg-w (image-width bg)))
         (if (and (= fg-h bg-h)
                  (= fg-w bg-w))
             (color-list->bitmap
              (bluescreen (image->color-list fg)
                          (image->color-list bg))
              fg-w
              fg-h)
             (violation "Dimensionen_von_Vorder-/Hintergrund_
                verschieden")))))
75 ; Yoda vor seine Hüte auf Dagobah setzen
```


(mix yoda dagobah) ~~

Generierung aller natürlichen Zahlen (vgl. gemischte Daten) Eine natürliche Zahl (natural) ist entweder

- die 0 (zero)
- der Nachfolge (succ) einer natürlichen Zahl

```
\mathbb{N} = \{0, (succ(0)), (succ(succ(0))), \ldots\}
```

Konstruktoren

Codebeispiel 24: ==> als Einschränkungsoperator

Beispiel für Rekursion auf natürlichen Zahlen: Fakultät

```
0! = 1
n! = n \cdot (n-1)!
3! = 3 \cdot 2!
= 3 \cdot 2 \cdot 1!
= 3 \cdot 2 \cdot 1 \cdot 0!
= 3 \cdot 2 \cdot 1 \cdot 1
= 6
10 = 3628800
```

Codebeispiel 25: Fakultät rekursiv

```
; Berechne n!
(: factorial (natural -> natural))
(check-expect (factorial 0) 1)
(check-expect (factorial 3) 6)
(check-expect (factorial 10) 3628800)

(define factorial
    (lambda (n)
```

```
(cond ((= n 0) 1)
((> n 0) (* n (factorial (- n 1))))))
```

Konstruktionsanleitung für Prozeduren über natürlichen Zahlen:

Beobachtung:

- Im letzten Zweig ist n > 0 \rightarrow pred angewandt
- $(\langle f \rangle (-n 1))$ hat die Signatur $\langle t \rangle$

Satz:

Eine Prozedur, die nach der Konstruktionsanleitung für Listen oder natürliche Zahlen konstruiert wurde *terminiert immer* (= liefert immer ein Ergebnis). (Beweis in Kürze)

Codebeispiel 26: Fehlerhafte Rekursionen

```
\underbrace{(3\cdot(2\cdot(1\cdot0!)))}_{\text{merken}}
```

Die Größe eines Ausdrucks ist proportional zum Platzverbrauch des Reduktionsprozesses im Rechner

⇒ Wenn möglich Reduktionsprozesse, die *konstanten* Platzverbrauch - unabhängig von Eingabeparametern - benötigen

9.6.2015

→ Multiplikationen können vorgezogen werden :-)

Idee: Führe Multiplikation sofort aus. Schleife des Zwischenergebnis (*akkumulierendes Argument*) durch die ganze Berechnung. Am Ende erhält der Akkumulatoren das Endergebnis.

Beispiel: Berechne 5!

```
(: fac-worker (natural natural \rightarrow natural))

n | acc

-1 \( 5 \) 1 \( \sqrt{ \cdot 5} \) neutrales Element

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 5 \( \sqrt{ \cdot 4} \)

-1 \( 4 \) 120 \( \sqrt{ \cdot 1} \)

-1 \( 4 \) 120
```

```
((> n 0) (fac-worker (- n 1) (* n acc))))))
```

Ein Berechnungsprozess ist *iterativ*, falls seine Größe konstant bleibt. Damit:

```
factorial nicht iterativ fac-worker iterativ
```

Wieso ist fac-worker iterativ?

Der Rekursive Aufruf ersetzt den aktuell reduzierten Aufruf *vollständig*. Es gibt keinen *Kontext* (umgebenden Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet"

Kontext des rekursiven Aufrufs in:

```
- factorial: (* n □)
- fac-worker: keiner
```

Eine Prozedur ist *endrekursiv* (tail call), wenn sie keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduren beinhalten, heißen selber endrekursiv. Endrekursive Prozeduren generieren *iterative* Berechnungsprozesse

```
(: rev ((list-of %a))-> (list-of %a))
```

Codebeispiel 27: Liste xs umdrehen

```
Beobachtung: von (rev (from-to 11000))
```

```
(cat (list 1000 ... 2) (list 1))
(cat (list 1000 ... 3) (list 2))
\rightarrow Aufrufe von make-pair: 1000+999+998+...+1
\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} Quadratische Aufrufe :-(
```

Konstruiere iterative Listenumkehrfunktion backwards:

Mittels letrec lassen sich Werte an lokale Namen binden.

```
(letrec  ((\langle id_1 \rangle \langle e_1 \rangle) \dots (\langle id_n \rangle \langle e_n \rangle)) \langle e \rangle)
```

Die Ausdrücke $\langle e_1 \rangle, ..., \langle e_n \rangle$ und $\langle e \rangle$ dürfen sich auf die Namen $\langle id_1 \rangle ... \langle id_n \rangle$ beziehen

Codebeispiel 28: Effizientere Variante eine Liste umzudrehen

```
; Wrapper
  (: backwards ((list-of %a) -> (list-of %a)))
  (check-expect (backwards empty) empty)
  (check-expect (backwards (list 1 2 3 4)) (list 4 3 2 1))
  (define backwards
    (lambda (xs)
      ; Liste xs umdrehen (mit Akkumulator acc, endrekursiv)
      ; Worker
      ; Aufwand: n Aufrufe von make-pair, wenn xs die Länge
      (letrec ((backwards-worker
                 (lambda (xs acc)
15
                   (cond ((empty? xs) acc)
                         ((pair? xs)
                          (backwards-worker (rest xs)
                             (make-pair (first xs) acc))))))
         (backwards-worker xs empty))))
```

Induktive Definition

Konstante Definition der natürlichen Zahlen N.

Definition: (Peamo Axiome)

- (P1) $0 \in \mathbb{N}$
- $(P2) \qquad \forall n \in \mathbb{N} : succ(n) \in \mathbb{N}$
- (P3) $\forall n \in \mathbb{N} : succ(n) \neq 0$
- (P4) $\forall n, m \in \mathbb{N} : succ(n) = succ(m) \Leftrightarrow n = m$

TODO: "Plot"mit punkten und Pfeilen

(P5) Für jede Menge $M \subset N$ mit $0 \in M$

und
$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$
, gilt $M = \mathbb{N}$

" \mathbb{N} enthält nicht mehr als die 0 und die durch succ() generierten Elemente "Nicht ist sonst in \mathbb{N} ,

TODO: Plot von zwei kreisen ineinander Beweisschema der *vollständigen Induktion*

Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$

```
(: P (natural -> boolean))
```

Ziel: $\forall n \in \mathbb{N} : P(n)$

Definiere $M = \{n \in \mathbb{N} | P(n)\} \subset \mathbb{N}$

M enthält die Zahlen n für die P(n) gilt

Induktionsaxiom

Falls

 $0 \in M$

und

$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$

dann

 $M \in \mathbb{N}$

Falls P(0)und $\forall (P(n) \Rightarrow P(succ(n))$

Induktionsschritt

 $\forall (P(n) \Rightarrow P(succ(n)))$ dann

 $\forall n \in \mathbb{N}P(n)$

Beispiel:

```
1
                 =1
 1 + 3
                 = 4
                 = 9
 1 + 3 + 5
 1+3+5+7 = 16
                 =\sum_{i=0}^{n}(2i+1) = (n+1)^{2}
 P(n)
                       Summe der
                        ersten n
                   ungeraden Zahlen
Induktions schluss P(0)
\sum_{0}^{\infty} (2i+1) = 2 \cdot 0 + 1 = (0+1)^{2} \checkmark
Induktionsschritt \forall n(P(n)) = P(n+1)
\sum_{i=0}^{n+1} (2i+1) = \sum_{i=0}^{n} (2i+1) + (2(n+1)+1)
\stackrel{iv.}{=} (n+1)^2 + 2n + 3
                = n^2 + 4n + 4
                =((n+1)+1)^2 \checkmark
Beispiel:
             (define factorial
                          (lambda (k)
                                        (if
                                                     (= k 0) 1
                                                     (* k (factorial (- k 1
                                                         )))))))
P(x) \equiv (factorial \ n) = |n!|
                                                    x:(Racket Repräsentation für x \in \mathbb{N})
Zeige: \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0)
(factorial(0))
* ((lambda (k)...) 0)
\( \) (if (= 0 0)1 ...)
~~> (if #t 1 ...)
\longrightarrow 1 = \boxed{0}! \checkmark
Induktionsschritt: \forall n : (P(n) \rightarrow P(n+1))
(factorial n+1)
```

```
Unter der
Annahme, dass
tatsächlich
Subtraktion
implementiert
ist
```

Beispiel:

Jede durch die Konstruktionsanleitung für Funktionen über natürliche Zahlen konstruierte Funktion liefert ein Ergebnis (*terminiert immer*)

```
(define f
          (lambda (n)
                     (if
                               (= n 0) base
                               (step (f (n-1)) n)))
(: base natural)
(: step (natural natural \rightarrow natural)) Bsp:step \rightarrow (lambda (x y) (*
x y))
Dann gilt P(n) = (f n) terminiert (Mit Ergebnis der Signatur natural)
Zeige \forall n \in \mathbb{N} : P(n)
Induktions basis P(0):
(f 0)
⋯ (if (= 0 0) base ...)
√→ (if #tbase
>>> base √
Induktionsschritt \forall n : (P(n) \rightarrow P(n+1))
(f n+1)
\longrightarrow (if (= |n+1| 0) base ... (step ...))
→→ (if #f base ... (step ...))
```

```
\rightsquigarrow (step (f[n])
\Rightarrow (step (f n) n+1) terminiert
```

Definition:(Listen.endliche Folge)

Die Menge M^* (= Listen mit Elementen aus M + list-of M ist *induktiv* definiert

(L1)
$$empty \in M^*$$
 Nicht leere Liste

$$\forall x \in M, xs \in M^* \qquad \qquad \in M^*$$

Nichts sonst in M^* (L3)

Beweisschema Listeninduktion

So P(xs) eine Eigenschaft von Listen über M.

```
(: P ((list-of M) -> boolean))
```

```
Falls P(empty)
                                                                                                        fang
    \forall x \in M, xs : P(xs) \Rightarrow (P(xs) \Rightarrow (P(make-pair x xs)))
dann
    \forall xs \in M^* : P(xs)
```

Induktionsan-

(make-pair

x xs)

Indukstionsschritt

```
Beispiel:
                    (define cat
                                (lambda (xs ys)
                                           (cond
                                                       ((empty? xs ) ys)
                                                       ((pair? xs) (make-oair (first xs)
                                                           (cat (rest xs) ys))))))
                        (1) cat empty ys = ys
                         (2) (cat xs = mpty) = xs
(M^*, cat, empty)
                                                                                           Beweise:
 ist ein Monoid)
                              (cat (cat xs ys)ys) = (cat xs (cat ys zy))
                    (1) (cat empty ys) \stackrel{\star}{\leadsto} ys\checkmark
                    (2) P(xs) = (cat xs empty) = xs
                    Induktionsanfang P(empty)
                    (cat empty empty) \stackrel{\text{(1)}}{=} empty \checkmark
                    Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair \times xs))
                    (define make-pair mp)
                    (cat (mp x xs)empty)
                    \stackrel{\star}{\leadsto} (mp (first (mp x xs))(cat (rest (mp x xs))empty))
                    (mp x (cat xs empty))
                     iv. = (mp x xs) \checkmark
                    (3) Listeninduktion über xs (ys,zs \in M^* beliebig)
                        P(xs) \equiv (\text{cat (cat xs ys)zs}) = (\text{cat xs (cat ys zs)})
                    Induktionsanfang P(empty)
                    (cat (cat empty ys) zs)
                     \longrightarrow \stackrel{\text{(1)}}{=} (cat ys zs)
                     \leftarrow \sim \stackrel{\text{(1)}}{=} (\text{cat empty (cat ys zs)}) \checkmark
```

Induktionsschritt $\forall x \in M : P(xs) \Rightarrow P((make-pair \times xs))$

(cat (cat (mp x xs)ys)zs))

```
(mp (cat (cat xs ys))zs)
    \stackrel{iv.}{=} (mp (cat (cat xs ys)zs))
  \leftarrow (cat (mp x xs ) (cat ys zs))\checkmark
  Beispiel: Interaktion von length und cat (Distributivität)
  (define length
            (lambda (xs)
                       (cond
                                  ((empty? xs)0)
                                  ((pair? xs) (+ 1
                                            (length (rest xs)))))))
 P(xs): (length (cat xs ys)) = (+(length xs)(length ys)),
 ys \in M^* beliebig.
 Induktionsbasis:
  (length (cat empty ys))
    \stackrel{\text{(1)}}{=} (length ys)
     + (+ 0(length ys))
  ← (+ (length empty) (length ys)) ✓
 Induktionsschritt
  (length (mp x xs)ys)
   cat \stackrel{\star}{\longleftrightarrow} (length (mp x (cat xs ys)))
length \overset{*}{\longleftrightarrow} (+ 1(length (rest (mp x (cat xs ys)))))
  rest \overset{*}{\longleftrightarrow} (+ 1(length (cat xs ys)))
       iv. = (+ 1(+ (length xs)(length ys)))
  ass. \stackrel{(+)}{=} (+ (+ 1(length xs)(length ys)))
length \stackrel{\star}{\longleftarrow} (+ (length (mp x xs) (length ys))) \checkmark
```

Prozeduren höherer Ordnung

(higher-order procedures)

Wert des Parameters p? ist Prozedur ⇒ kann angewendet werden

18.6.2015

Zwei Arten von Higher Order Prozeduren (H.O.P)

- (1) akzeptieren, Prozeduren als Parameter oder/und
- (2) liefern Prozeduren als Ergebnis

```
filter ist vom Typ (1).
```

H.O.P vermeiden Duplizierung von Code und führen zu kompakteren Programmen, verbesserte Lesbarkeit und verbesserte Wartbarkeit.

Beispiel: (map f x)

Allgemeine Transformation von Listen *Listenfaltung* (list folding)

 $\underline{\textbf{Idee: Ersetze die Listenkonstruktoren}}\ \underline{\textbf{make-pair und empty systematisch.}}$

(foldr z c xs) wirkt als Spinetransformer

- empty **→**Z
- make-pair $\leadsto c$
- Eingabe: Liste (list-of %a)
- Ausgabe: im Allgemeinen keine Liste mehr: %b

Beispiele: Listenreduktion mit foldr

TODO: Großes Bild von foldr Funktionen

```
(: sum ((list-of number) -> number))
(define sum(lambda (xs)(foldr 0 + xs)))
```

Beispiel: Länge einer Liste durch Listenreduktion TODO: Bild Plotten

Codebeispiel 29: Fold und seine Anwendungen

```
; Listenreduktion via foldr: Summe der Liste xs
  (: my-sum ((list-of number) -> number))
  (define my-sum
    (lambda (xs)
      (foldr 0 + xs)))
  ; Listenreduktion via foldr: Produkt der Liste xs
  (: my-product ((list-of number) -> number))
  (define my-product
    (lambda (xs)
      (foldr 1 * xs)))
  ; Listenreduktion via foldr: Maximum der Liste xs
  (: my-maximum ((list-of number) -> number))
  (define my-maximum
    (lambda (xs)
      (foldr -inf.0 max xs)))
  ; Identität (auf Listen), implementiert via foldr
  (: my-id ((list-of %a) -> (list-of %a)))
  (define my-id
    (lambda (xs)
      (foldr empty make-pair xs)))
25 ; Reimplementation von append via foldr
  (: my-append ((list-of %a) (list-of %a) -> (list-of %a)))
  (define my-append
    (lambda (xs ys)
      (foldr ys make-pair xs)))
  ; Reimplementation von map via foldr
  (: my-map ((%a -> %b) (list-of %a) -> (list-of %b)))
  (define my-map
    (lambda (f xs)
      (foldr empty
```

```
(lambda (y ys) (make-pair (f y) ys))
             xs)))
  ; Reimplementation von reverse via foldr
  (: my-reverse ((list-of %a) -> (list-of %a)))
  (define my-reverse
     (lambda (xs)
      (foldr empty
              (lambda (y ys) (append ys (list y)))
             xs)))
45
  ; Listenreduktion via foldr: Länge der Liste xs
  (: my-length ((list-of %a) -> natural))
  (define my-length
    (lambda (xs)
      (foldr 0 (lambda (x l) (+ 1 l)) xs)))
  ; Reimplementation von filter mittels foldr
  (: my-filter ((%a -> boolean) (list-of %a) -> (list-of
     %a)))
  (define my-filter
    (lambda (p? xs)
      (foldr empty
              (lambda (y ys) (if (p? y)
                                  (make-pair y ys)
                                 ys))
             xs)))
```

Teachpack 'universe' nutzt H.O.P Animationen (Sequenzen von Bildern/Szenen) zu definieren.

```
(big bang
  ((init))
  (ontick (tock))
  (todraw (render)(w)(h)))
- ((init) %a) Startzustand
```

- (: \(\tau \) (%a -> %a)) Funktion, die einen neuen Zustand aus alten Zustand berechnet

- (: ⟨render⟩ (%a -> image)) Funktio, die aus dem aktuellen eine Szene berechnet (wird in Fenster mit Dimension ⟨w⟩·⟨h⟩ Pixel angezeigt)
- Beim Schließen der Animation wird der letzte Zustand zurückgegeben

Codebeispiel 30: Ein animierter Zähler

Codebeispiel 31: Ein animiertes Raumschiff

```
; Erstellung von Animationen mit Teachpack "universe"
; (2) X-Wing Fighter + Scrolling Death Star

(define death-star
```


50

Ausgabe der römischen Episoden nummern für Film f: (roman (film-episode f))

Gesuchte Funktion ist *Komposition* von zwei existierenden Funktionen:

- (1) Erst film-episode anwenden, dann
- (2) Wende roman auf das Ergebnis von (1) an

Komposition von Prozeduren allgemein:

Codebeispiel 32: Zweites und Drittes Element durch Combined

repeat: n-fache Komposition von f auf sich selbst (n-fache Anwendung von f, Exponentation)

Codebeispiel 33: Gibt die Funktion + zurück

```
; Funktionen, die ihre Argument schrittweise konsumieren
```

```
; Konsumiert Argumente x, y in einem Schritt (eine
       Reduktion von apply_)
   (: plus (number number -> number))
    (define plus
      (lambda (x y)
        (+ x y)))
   ; Konsumiert Argumente x, y in zwei Schritten (zwei
       Reduktionen von apply_).
   ; Nach dem ersten Schritt ist nur Argument x festgelegt,
       Ergebnis ist eine
    ; Funktion, die das zweite Argument y erwartet.
    (: add (number -> (number -> number)))
    (define add
      (lambda (x)
        (lambda (y)
           (+ x y))))
    (map (add 1) (list 1 2 3 4 5 6 7 8 9 10)); \(\dist 2 3 4
       5 6 7 8 9 10 11)
    (map (add 10) (list 1 2 3 4 5 6 7 8 9 10)); \(\documeration\) (list 11 12
       13 14 15 16 17 18 19 20)
      Reduktion: ((add 1)41)
    >>> ((lambda (x) (lambda (y) (+ x y))1)41)
   eval_{id}
  ~~>
         ((lambda (y) (+ 1 y) 41)
 apply_{\lambda}
           Funktion die 1 auf ihr Argument anwenden
[lambda(x)]
  ~~>
         (+141)
 apply_{\lambda}
[lambda(y)]
```

```
($et-insert 2

($a %b → %c) → Applikation auf zwei Argumente (Signaturen %a, %b) → %c

Curry \downarrow uncurry = \downarrow (%a->(%b->%c)) → App. auf Arg. (Sig. %a) → (%b %c) App. auf Arg. (Sig. %b) → %c

Currying (Haskell B. Curry, Moses Schönfinkel)
```

Anwendung einer Prozedur auf ihr erstes Argument liefert Prozedur der restlichen Argumente.

Jede n-stellige Prozedur lässt sich in eine alternative curried Prozedur transformieren, die in n Schritte jeweils ein Argument konsumiert. Uncurry ist die umgekehrte Transformation.

Es gilt für jeder Prozedur p:

```
(uncurry (curry p)) = p
```

"Schönfinkel Isomorphismus"

Codebeispiel 34: Einfache Anwendung von Curry

```
(map ((curry +) 1) (list 1 2 3 4 5 6 7 8 9 10))
; *** (list 2 3 4 5 6 7 8 9 10 11)
(map ((curry +) 10) (list 1 2 3 4 5 6 7 8 9 10))
; *** (list 11 12 13 14 15 16 17 18 19 20)
(filter ((curry =) 2) (list 1 2 3 4 5 4 3 2 1))
; *** (list 2 2)
```

Erinnerung: Bestimmung der ersten Ableitung der rellen Funktion durch Bildung des Differentialqoutienten

Bildung des Differentialqoutienten:

Operator ' (Ableitung konsumiert Funktionen und produziert Funktion) \rightarrow ' ist higher Order

Codebeispiel 35: Ableitungen mit Curry

```
; Differenzenquotienten von f (mit Differenz h)
  (: diffquot (real (real -> real) -> (real -> real)))
  (define diffquot
    (lambda (h f)
      (lambda (x)
         (/ (- (f (+ x h)) (f x))
           h))))
  ; Berechne Differenzenquotienten mit Differenz h = 0.00001
  ; ((derive f) x) \equiv (f' x)
  (: derive ((real -> real) -> (real -> real)))
  (define derive
    ((curry diffquot) 0.00001))
  ; Beispielfunktion: f1(x) = xs + 2x
  (: f1 (real -> real))
  (define f1
    (lambda (x) (+ (* x x x)
                    (*2x)))
  ; Ableitung von f1(x)
  ; f1'(x) = 3xš + 2
25 (check-property
```

Charakteristische Funktion einer Menge $S \subset M$ (s) S M

Charakteristische Funktion für S: $(:\chi_s \pmod{-} \text{Boolean})$

$$\chi_s(x) = \begin{cases} #t & x \in S \\ #f & \text{sonst} \end{cases}$$
$$\chi_s(m) = #f \qquad \chi_s(s) = #t$$

Idee Repräsentiere $S \subseteq$ durch Prozedur (M -> boolean) und Mengenoperation auf Prozeduren (H.O.P)

Codebeispiel 36: Grundlagen Mengenimplementierung

```
; Charakteristische Funktion (M -> boolean) als
   Repräsentation
; für eine Menge S ⊆ M
(define set-of
  (lambda (t)
    (signature (t -> boolean))))
; S42 = { x \in \mathbb{Z} | x > 42 }
(: S42 (set-of integer))
(define S42
  (lambda (x)
    (> x 42))
; Leere Menge Ø
(: empty-set (set-of %a))
(define empty-set
  (lambda (x)
    #f))
```

- :-) Darstellung unendlicher Mengen $(S_42 = \{x \in \mathbb{Z} \mid x > 42\})$
- :-) Mengenoperationen (\cup, \cap, \setminus) in *Konstanter Zeit*

Element *x* in Menge S einfügen:

$$\chi_{S \cup \{x\}}(y) = \begin{cases} #f & x = y \\ \chi_s(y) & \text{sonst} \end{cases}$$

Codebeispiel 37: Erweiterte Mengenoperationen

```
; Element x in Menge S hinzufügen: S U {x}
(: set-insert (number (set-of number) -> (set-of number)))
(define set-insert
   (lambda (x S)
     (lambda (y)
       (or (= y x)
           (S y)))))
; Test: die leere Menge enthält kein Element
(check-property
 (for-all ((x integer))
    (boolean=? (set-member? x empty-set) #f)))
; Test: die Menge Ø U {x} enthält x
(check-property
 (for-all ((x integer))
    (set-member? x (set-insert x empty-set))))
; Konstruiere \{1,2,3,4,5\} = (((\emptyset \cup \{1\}) \cup \{2\}) \cup \{3\}) \cup \{3\})
   {4}) U {5})
(: 1-to-5 (set-of integer))
(define 1-to-5
  (set-insert
   5
    (set-insert
```

```
(set-insert
    3
    (set-insert
    2
    (set-insert
    1 empty-set))))))
```