SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask!

- 1. How many solutions does each of the following equations have?
 - (a) $17x \equiv 23 \pmod{100}$.
- (b) $15x \equiv 23 \pmod{100}$.
- (c) $15x \equiv 25 \pmod{100}$.
- 2. Find all the solutions to each of the equations above.
- 3. Compute 2¹⁹⁹⁹ (mod 17) and (mod 72). Explain why your solutions work.
- 4. Find all solutions to the following systems of congruences:
 - a) $x \equiv 7 \pmod{15}$, $x \equiv 19 \pmod{21}$.
 - b) $x \equiv 11 \pmod{15}$, $x \equiv 8 \pmod{21}$, $x \equiv 14 \pmod{35}$.
- 5. How many elements does \mathbf{Z}_{49}^{\times} have? Does \mathbf{Z}_{49}^{\times} have a generator (i.e., a primitive root)? Explain.
- 6. Prove or Disprove and Salvage if possible:
 - (a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
 - (b) $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$.
 - (c) The product of the first n positive primes plus one is also a prime for all $n \ge 1$.
 - (d) The square of an odd number is always congruent to 1 (mod 8).
 - (e) The number 111 (all 1's) with 899 digits is prime in **Z**.
 - (f) The number 13 + 2i is prime in $\mathbf{Z}[i]$.
- 7. Make a table of logarithms for \mathbf{Z}_{19}^{\times} . Use your table to find all solutions of the following equations in \mathbf{Z}_{19} :
 - (a) $6x^6 + 5 \equiv 9 \pmod{19}$.

- (b) $3x^4 4 \equiv 1 \pmod{19}$
- 8. Is it possible to have 35 successive integers all be composite numbers? Why or why not?
- 9. Be prepared to state the following theorems (carefully!) and give a proof (of all but the last one).
 - (a) Fundamental Theorem of Arithmetic
 - (b) Euclid's theorem on the infinitude of primes
 - (c) Fermat's Little Theorem
 - (d) Wilson's Theorem.
 - (e) There exist numbers which are not rational.
 - (f) Dirichlet's Theorem on primes in arithmetic progressions
- 10. State and prove tests for divisibility by k for $k = 1, 2, \dots 11$.
- 11. Go back over your old homework and make sure you understand any problem on which you lost points.