2 Solution proposée

I.A.1. La loi + est interne et commutative. Montrons qu'elle est associative. On a

$$(x+y) + z = [(\overline{x+y}) \setminus z] \quad [(x+y) \setminus \overline{z}]$$

$$= \left(\overline{(x \setminus \overline{y})} \quad (\overline{x} \setminus y) \right) \setminus z \quad [((x \setminus \overline{y}) \quad (\overline{x} \setminus y)) \setminus \overline{z}]$$

$$= \left[\left((\overline{x} \setminus \overline{y}) \setminus (\overline{x} \setminus y) \right) \setminus z \right] \quad (x \setminus \overline{y} \setminus \overline{z}) \quad (\overline{x} \setminus y \setminus \overline{z})$$

$$= \left[((\overline{x} \quad y) \setminus (x \quad \overline{y})) \setminus z \right] \quad (x \setminus \overline{y} \setminus \overline{z}) \quad (\overline{x} \setminus y \setminus \overline{z})$$

$$= \left[((\overline{x} \setminus \overline{y}) \quad (x \setminus y)) \setminus z \right] \quad (x \setminus \overline{y} \setminus \overline{z}) \quad (\overline{x} \setminus y \setminus \overline{z})$$

$$= (\overline{x} \setminus \overline{y} \setminus z) \quad (x \setminus y \setminus z) \quad (x \setminus \overline{y} \setminus \overline{z}) \quad (\overline{x} \setminus y \setminus \overline{z})$$

Cette dernière expression est invariante par permutation circulaire, donc

$$(x+y) + z = (y+z) + x$$

et la commutativité de + permet d'obtenir (x+y)+z=x+(y+z), ce qui prouve l'associativité.

L'élément neutre est $\operatorname{car} x + = x$. Enfin le symétrique de x est x puisque x + x = ...

I.A.2. $(\mathcal{P}(\Omega) +)$ est un espace vectoriel sur \mathbb{F}_2 puisque $(\mathcal{P}(\Omega) +)$ est un groupe abélien, et puisque la loi externe définie par $0 \times x = -$ et $1 \times x = x$ vérifie bien les quatre axiomes d'un espace vectoriel :

a)
$$1 \times x = x$$
 (trivial)
b) $(\lambda + \mu) \times x = (\lambda \times x) + (\mu \times x)$. En effet
$$(0+1) \times x = (0 \times x) + (1 \times x) \text{ puisque } x = +x$$
 et $(1+1) \times x = (1 \times x) + (1 \times x)$ puisque $= x + x$

La propriété particulière de la loi de groupe + nous permettant de vérifier ce deuxième axiome est x + x = - vérifiée pour toute partie x.

c)
$$\lambda \times (x+y) = (\lambda \times x) + (\lambda \times y)$$
 (trivial)
d) $\lambda \times (\mu \times x) = (\lambda \mu) \times x$ (trivial)

Remarque: On aurait pu utiliser la bijection

$$\begin{array}{ccc} \Psi : & \mathcal{P}\left(\Omega\right) & & \mathbb{F}_2^{\Omega} \\ & x & & \chi_x \end{array}$$

qui à une partie x de Ω associe la fonction caractéristique χ_x , pour transporter la structure d'espace vectoriel de \mathbb{F}_2^{Ω} sur $\mathcal{P}(\Omega)$. On définit alors une loi interne et une loi externe dans $\mathcal{P}(\Omega)$ par transport de structure, et il suffit de vérifier que ces lois ne sont autre que la différence symétrique + et la multiplication que l'on vient d'introduire dans cette question. Cette méthode permet aussi de transporter la structure d'algèbre de \mathbb{F}_2^{Ω} sur $\mathcal{P}(\Omega)$, la multiplication interne étant alors égale à la loi intersection \setminus .

I.A.3. On sait que $\mathcal{P}(\Omega) = 2$ et que $\mathcal{P}(\Omega)$ est un \mathbb{F}_2 -espace vectoriel. Nécessairement $\dim_{\mathbb{F}_2}(\mathcal{P}(\Omega)) = .$ On retrouve ce résultat en exhibant une base de $\mathcal{P}(\Omega)$. Si $\Omega = t_1 - t_1$, et si l'on note x_i le singleton t_i , alors toute partie $x = t_{i_i} - t_{i_k}$ de Ω s'écrit

$$x = \left(1 \ x_{i_1}\right) + \left(1 \ x_{i_k}\right)$$

et cela prouve que $(x_1 x)$ est un système générateur de $\mathcal{P}(\Omega)$. Ce système est une base de $\mathcal{P}(\Omega)$ parce qu'il est générateur et possède $\dim_{\mathbb{F}_2}(\mathcal{P}(\Omega)) =$ éléments.

Remarque : On peut vérifier directement que $(X_1 X)$ est libre en retournant à la définition, l'implication suivante étant immédiate :

$$(\lambda_1 X_1) + (\lambda X) = \lambda_1 = \lambda = 0$$

I.A.4. L'application α est clairement symétrique. On a

$$\alpha (x + x \ y) = \overline{(x + x) \setminus y} = \overline{(x \setminus y) + (x \setminus y)} = \overline{x \setminus y + x \setminus y - 2 \ x \setminus x \setminus y}$$
$$= \overline{x \setminus y} + \overline{x \setminus y} = \alpha (x \ y) + \alpha (x \ y)$$

(1) provient de la distributivité de \backslash sur +, et (2) peut se visualiser sur un diagramme de Venn. On a aussi

$$\alpha \left(0x \ y\right) = \overline{\ \ \ \ \ \ \ \ } = 0 = 0 \times \alpha \left(x \ y\right) \text{ et } \alpha \left(1x \ y\right) = \overline{x \setminus y} = 1 \times \alpha \left(x \ y\right)$$

donc α est bilinéaire à gauche (et par conséquent aussi à droite). Pour démontrer que α est non dégénérée, il faut prouver

$$y \quad \alpha(x \ y) = \overline{x \setminus y} = 0 \quad x = 0$$

Ecrire $x \setminus y = 0$ signifie que le cardinal de l'intersection $x \setminus y$ est pair. On montre alors la contraposée de l'implication ci-dessus : si x était non vide, on pourrait choisir un éléments t dans x, et l'on aurait $x \setminus y = 1$ pour y = t.

I.A.5. On a $\mathcal{D}(\Omega) = \Omega$. Comme est non dégénérée, on a

$$\dim \mathcal{H}(\Omega) + \dim \mathcal{D}(\Omega) = \dim \mathcal{P}(\Omega) = \operatorname{donc} \dim \mathcal{H}(\Omega) = -1$$

 $\mathcal{H}(\Omega)$ est donc un hyperplan de $\mathcal{P}(\Omega)$ et l'on aura $\mathcal{H}(\Omega)=2^{-1}$. Par ailleurs

$$x \quad \mathcal{H}(\Omega) \quad \alpha(x \ \Omega) = 0 \quad \overline{x \setminus \Omega} = 0 \quad x \text{ pair.}$$

Le cardinal de $\mathcal{H}(\Omega)$ est donc aussi égal au nombre de parties de Ω de cardinal pair, et cela entraîne

$$C^{0} + C^{2} + \cdots + C^{2k} + \cdots + C = 2^{-1}$$

On a

$$(x \operatorname{Ker} \alpha_{\mathcal{H}(\Omega)})$$
 $x \operatorname{\mathcal{H}}(\Omega)$ et $(y \operatorname{\mathcal{H}}(\Omega) \quad \alpha(x \ y) = \overline{x \setminus y} = 0)$
 $x \operatorname{pair}$, et pour tout y tel que y soit pair on a $x \setminus y$ pair. (*)

Si x vérifie (*) et si x Ω , alors il existe t Ω x . On choisit t x et l'on pose $y=\ t\ t$. Alors

$$x \setminus y = |x \setminus \{t \ t\}| = |\{t\}| = 1$$

en contradiction avec (*). Cela prouve que $\operatorname{Ker} \alpha_{\mathcal{H}(\Omega)} \subset \Omega$. Comme l'inclusion réciproque est évidente, on aura

$$\operatorname{Ker} \alpha_{\mathcal{H}(\Omega)} = \Omega = \mathcal{D}(\Omega)$$

Remarque: On a $\mathcal{D}(\Omega) = \Omega \subset \mathcal{H}(\Omega) = \mathcal{D}(\Omega)$ ce qui prouve que $\mathcal{D}(\Omega) \setminus \mathcal{D}(\Omega) = \mathcal{D}(\Omega) = 0$, ce qui ne constitue pas une contradiction avec le fait que α est une forme bilinéaire symétrique non dégénérée.

I.B.1. Si $\mathcal{C} = \mathcal{C}$, alors dim $\mathcal{C} + \dim \mathcal{C} = \dim \mathcal{P}(\Omega) = \text{entraı̂ne dim } \mathcal{C} = \frac{1}{2}$. Ainsi $\mathcal{C} = 2^{\frac{1}{2}}$ est pair et **I.A.5** donne $\mathcal{C} \subset \mathcal{H}(\Omega)$. En prenant l'orthogonal des deux membres, $\mathcal{C} \supset \mathcal{H}(\Omega)$ d'où $\mathcal{C} \supset \mathcal{D}(\Omega)$.

I.B.2. ▶ On a

$$P(X|Y) = (X^{2} + Y^{2})^{m} = \sum_{k=0}^{m} C_{m}^{k} X^{2k} Y^{2(m-k)} = \sum_{k=0}^{m} C_{m}^{k} X^{2k} Y^{-2k}$$

et

$$P_{\mathcal{C}}(X | Y) = \underset{x \in \mathcal{C}}{X^{x} Y^{-x}} = \underset{k=0}{\overset{2m}{N(k)} X^{k} Y^{-k}}$$

où $N\left(k\right)=x$ \mathcal{C} x=k. Comme \mathcal{C} est auto-orthogonal, $\mathcal{C}\subset\mathcal{H}\left(\Omega\right)$ et tous les mots x de \mathcal{C} seront de cardinal pair. Donc

$$P_{\mathcal{C}}(X|Y) = \sum_{k=0}^{m} N(2k) X^{2k} Y^{-2k}$$

Trouver un code C tel que $P_C = P$ revient donc à construire un sous-espace vectoriel C telle que

$$\left\{ \begin{array}{ccc} k & 0 & m & N\left(2k\right) = C_m^k \\ k & \left\{0 & \left[\frac{m-1}{2}\right]\right\} & N\left(2k+1\right) = 0 \end{array} \right.$$

Construisons les éléments de \mathcal{C} de la façon suivante : une partie x de $\mathcal{P}(\Omega)$ appartient à \mathcal{C} si et seulement si il existe une partie t_{i_1} t_{i_k} de t_1 t_m telle que $x=t_{i_1}$ t_{i_k} u_{i_1} u_{i_k} . Il est facile de voir que \mathcal{C} est bien un sous-espace vectoriel. On a aussi $N(2k) = C_m^k$ et N(2k+1) = 0 pour tous k, par construction.

 \blacktriangleright Vérifions que ${\mathcal C}$ est auto-orthogonal. On a

$$\mathcal{C} \subset \mathcal{C}$$
 $x \ y \ \mathcal{C}$ $\overline{x \setminus y} = \overline{0}$ $x \ y \ \mathcal{C}$ $x \setminus y$ est pair

et cette dernière affirmation est triviale puisque l'intersection de deux parties x et y de cardinaux pairs est encore une partie de cardinal pair. Comme t_1 u_1 t_m u_m est

une base de C, dim C = m et l'inclusion $C \subset C$ entre deux espace de même dimension sera une égalité.

 \blacktriangleright Montrons que deux éléments \mathcal{C} et \mathcal{C} de $\Gamma(\Omega)$ sont isomorphes.

Si \mathcal{C} $\Gamma(\Omega)$, alors $N(2k) = C_m^k$ pour tout k = 0 m et $\mathcal{C} = 2^m$. En particulier si k = 1 il existe exactement m éléments de \mathcal{C} de cardinal 2, notons-les :

$$t_1 u_1 t_m u_m$$

On a $t_i u_i \setminus t_j u_j$ pour tous i = j. En effet $t_i u_i = t_j u_j$ par hypothèse, et $t_i u_i \setminus t_j u_j = t$ entrainerait $\alpha(t_i u_i t_j u_j) = \overline{t} = \overline{1}$, ce qui contredirait le fait que \mathcal{C} est auto-orthogonal. Par conséquent

$$\Omega = t_1 t_2 \quad t_m u_1 u_2 \quad u_m$$

Le même raisonnement appliqué à $\mathcal C$ donne

$$\Omega = \left\{ t_1 \ t_2 \quad t_m \ u_1 \ u_2 \quad u_m \right\}$$

et montre que (t_1 u_1 u_m) est une base de $\mathcal C$. Il est alors facile de vérifier que la permutation

$$\begin{array}{cccc} s: & \Omega & & \Omega \\ & t_i & & t_i \\ & u_i & & u_i \end{array}$$

est telle que $\overline{s}(\mathcal{C}) = \mathcal{C}$. En effet, tout mot x de \mathcal{C} s'écrit

$$x = \underset{s \subset 1 \quad m}{t_{i_s} \ u_{i_s}}$$

et admettra pour image le mot

$$\overline{s}\left(x\right) = \begin{cases} \left\{t_{i_{s}} \ u_{i_{s}}\right\} \end{cases}$$

qui appartient bien à \mathcal{C} . Ainsi $\overline{s}(\mathcal{C}) \subset \mathcal{C}$ et l'égalité des cardinaux donne $\overline{s}(\mathcal{C}) = \mathcal{C}$.

I.B.3.a. ▶ On a

$$\lambda_{h} \quad h = k \ge 2 \quad \lambda_k = \alpha \left(u_k \quad \lambda_{h} \quad h = \overline{0} \right)$$

et donc aussi $\lambda_1 = \overline{0}$ en remplaçant.

▶ Comme m est pair, l'intersection de 2 éléments quelconques du système générateur de l'énoncé est de cardinal pair, donc $\mathcal{B} = (\mathcal{B})$ et \mathcal{B} est auto-orthogonal.

▶ ($_h$) $_{1 \le h \le m}$ est un système libre à m éléments de $\mathcal B$, et dim ($\mathcal B$) = m puisque $\mathcal B$ est auto-orthogonal. Donc ($_h$) $_{1 < h < m}$ est une base de $\mathcal B$.

I.B.3.b. \triangleright Si $\mu \subset \mathbb{N}_m$ et $\mu \subset \mathbb{N}_m$, alors

$$\overline{\mu} + \overline{\mu} = (\overline{\mu} \quad \overline{\mu}) \quad (\overline{\mu} \setminus \overline{\mu}) = (\overline{\mu} \quad \overline{\mu}) \setminus \overline{(\overline{\mu} \setminus \overline{\mu})} = (\overline{\mu} \quad \overline{\mu}) \setminus (\mu \quad \mu)$$
$$\mu + \mu = (\mu \quad \mu) \quad (\mu \setminus \mu) = (\mu \quad \mu) \setminus (\overline{\mu} \setminus \overline{\mu}) = (\mu \quad \mu) \setminus (\overline{\mu} \quad \overline{\mu})$$

donc $\overline{\mu} + \overline{\mu} = \mu + \mu$, et

$$\frac{\mu + \overline{\mu}}{\overline{\mu + \mu}} = \underline{\begin{pmatrix} \mu & \overline{\mu} \end{pmatrix} \setminus \overline{\begin{pmatrix} \mu \setminus \overline{\mu} \end{pmatrix}}} = \underline{\begin{pmatrix} \mu & \overline{\mu} \end{pmatrix}} \setminus (\overline{\mu} \quad \mu) = \underline{\begin{pmatrix} \overline{\mu} \setminus \overline{\mu} \end{pmatrix}} \quad (\mu \setminus \mu)$$

$$\overline{\mu + \mu} = \underline{\begin{pmatrix} \mu & \mu \end{pmatrix} \setminus \overline{\mu} \setminus \overline{\mu}} = \underline{\begin{pmatrix} \mu & \mu \end{pmatrix}} \quad (\mu \setminus \mu) = \underline{\begin{pmatrix} \mu \setminus \overline{\mu} \end{pmatrix}} \quad (\mu \setminus \mu)$$

donc $\mu + \overline{\mu} = \overline{\mu + \mu}$.

▶ Montrons que \mathcal{B} est un sous-espace vectoriel de $\mathcal{P}(\Omega)$. Tout d'abord \mathcal{B} est trivialement stable par multiplication par $\overline{0}$ ou $\overline{1}$. Ensuite il s'agit de vérifier que \mathcal{B} est stable par addition. On envisage les 3 cas possibles :

a)

$$x_{\mu} + x_{\mu} = t_{h} \quad h \quad \mu + \{t_{h} \quad h \quad \mu \} + u_{h} \quad h \quad \mu + \{u_{h} \quad h \quad \mu \}$$

$$= \{t_{h} \quad h \quad \mu + \mu \} + \{u_{h} \quad h \quad \mu + \mu \}$$

$$= x_{\mu + \mu} \quad \mathcal{B}$$

b)

$$y_{\mu} + y_{\mu} = t_{h} \quad h \quad \mu + \left\{t_{h} \quad h \quad \mu\right\} + u_{h} \quad h \quad \mathbb{N}_{m} \quad \mu + \left\{u_{h} \quad h \quad \mathbb{N}_{m} \quad \mu\right\}$$

$$= \left\{t_{h} \quad h \quad \mu + \mu\right\} + \left\{u_{h} \quad h \quad \overline{\mu} + \overline{\mu}\right\}$$

$$= \left\{t_{h} \quad h \quad \mu + \mu\right\} + \left\{u_{h} \quad h \quad \mu + \mu\right\} \text{ (puisque } \overline{\mu} + \overline{\mu} = \mu + \mu\text{)}$$

$$= x_{\mu + \mu} \quad \mathcal{B}$$

c)

$$x_{\mu} + y_{\mu} = t_{h} \quad h \quad \mu + \{t_{h} \quad h \quad \mu \} + u_{h} \quad h \quad \mu + \{u_{h} \quad h \quad \overline{\mu}\}$$

$$= \{t_{h} \quad h \quad \mu + \mu \} + \{u_{h} \quad h \quad \mu + \overline{\mu}\}$$

$$= \{t_{h} \quad h \quad \mu + \mu \} + \{u_{h} \quad h \quad \overline{\mu + \mu}\} \text{ (puisque } \mu + \overline{\mu} = \overline{\mu + \mu}\text{)}$$

$$= y_{\mu + \mu} \quad \mathcal{B}$$

▶ Montrons que $\mathcal{B}=\mathcal{B}$: On a déjà $\mathcal{B}\subset\mathcal{B}$. Réciproquement, \mathcal{B} est un sous-espace vectoriel qui contient le système générateur $(\ _h)_{1\leq h\leq m}$ de \mathcal{B} puisque :

Par conséquent $\mathcal{B} \supset \mathcal{B}$.

I.B.3.c. On a

$$Q (X Y) = X^{x_{\mu}} Y^{-x_{\mu}} + X^{y_{\mu}} Y^{-y_{\mu}}$$

$$\mu \subset \mathbb{N}_{m}$$

$$\mu \text{ pair}$$

$$\mu = \mathbb{N}_{m}$$

$$\mu \text{ pair}$$

On a aussi $x_{\mu} = 2 \mu$, $y_{\mu} = m$,

$$\mu \subset \mathbb{N}_m \quad \mu = 2k = C_m^{2k} \text{ et } \quad \mu \subset \mathbb{N}_m \quad \mu \text{ pair } = 2^{m-1}$$

On déduit

$$Q (X Y) = \sum_{k=0}^{\frac{m}{2}} C_m^{2k} X^{4k} Y^{-4k} + 2^{m-1} X^m Y^{-m}$$

On retrouve le polynôme de l'énoncé puisque

$$\frac{1}{2} \left(\left(X^2 + Y^2 \right)^m + \left(X^2 - Y^2 \right)^m + (2XY)^m \right)
= \frac{1}{2} \left(\sum_{k=0}^m C_m^k X^{2k} Y^{2m-2k} + \sum_{k=0}^m C_m^k (-1)^{m-k} X^{2k} Y^{2m-2k} \right) + 2^{m-1} X^m Y^m
= \sum_{k=0}^{\frac{m}{2}} C_m^{2k} X^{4k} Y^{-4k} + 2^{m-1} X^m Y^{-m} = Q \quad (X Y)$$

I.B.3.d. Les éléments de \mathcal{B} sont de la forme x_{μ} ou y_{μ} , et l'on a $x_{\mu} = 2$ μ avec μ pair, et $y_{\mu} = m$. Ainsi \mathcal{B} sera pair si et seulement si m $4\mathbb{Z}$, i.e. $8\mathbb{Z}$.

I.B.3.e. ▶ On a

$$Q_{16}\left(X\ Y\right) = \underset{\left(x\ x\ \right)\ \mathcal{C}\ \times\mathcal{C}}{X^{x\ +x}\ Y^{\Omega\ -x\ +\Omega\ -x}} = \left(Q_{8}\left(X\ Y\right)\right)^{2} = Q_{16}\left(X\ Y\right)$$

▶ Montrons que $y \in \Omega$. Pour tout couple $(h \ j)$ \mathbb{N}_m^2 tel que h = j, on a $t_h \ t_j \ u_h \ u_j = \mathcal{E}$, donc

$$\Omega = \underset{h=i}{t_h} t_j u_h u_j \subset \underset{y \in \mathcal{E}}{y \subset \Omega}.$$

 $lackbox{}{lackbox{}{}}$ Montrons que $y\in \mathcal{E}$ \mathcal{E}

Si y \mathcal{E} alors $x \setminus y = 2$ donc il existe i j 1 2 3 4 tels que $y \supset t_i$ t_j . On montre alors que y ne peut pas couper Ω , ce qui prouvera l'inclusion $y \subset \Omega$. Comme $y \in \mathcal{E}$

l'inclusion réciproque est évidente (en effet t_i t_j u_i u_j \mathcal{E} par construction et pour tout couple $(i \ j)$), on en déduira l'égalité.

On a ainsi $y \supset t_i \ t_j$ et $y \quad \mathcal{B}_{16}$ donc y = x + x avec $x \quad \mathcal{C}$ et $x \quad \mathcal{C}$. Les éléments de \mathcal{C} sont de la forme (I.B.3.b) $x = x_{\mu}$ ou y_{μ} , et l'on envisage 2 cas :

- Si $x=x_\mu$ alors $y=x+x\supset t_i\;t_j\;u_i\;u_j$, et l'hypothèse y=4entraı̂ne $y=\;t_i\;t_j\;u_i\;u_j\;\subset\Omega$
- Si $x=y_\mu$ alors $y\supset t_i$ t_j u_k u_l où l'on a posé i j k l=1 2 3 4 , et l'hypothèse y=4 entraı̂ne $y=t_i$ t_j u_k $u_l\subset\Omega$.
- ▶ Si \mathcal{B}_{16} et \mathcal{B}_{16} étaient isomorphes, les parties à 4 éléments de \mathcal{B}_{16} et \mathcal{B}_{16} devraient se correspondre par une permutation. Si l'on pose

$$\begin{cases} \mathcal{E}_x = y & \mathcal{B}_{16} & y = 4 \text{ et } x \setminus y = 2 \\ \mathcal{E}_x = y & \mathcal{B}_{16} & y = 4 \text{ et } x \setminus y = 2 \end{cases}$$

il devrait exister une partie à 4 éléments x de Ω et une partie à 4 éléments x de Ω telles que les éléments de \mathcal{E}_x se déduisent de ceux de \mathcal{E}_x par une permutation. Alors $\mathcal{E}_x = \mathcal{E}_x$, ce qui est absurde puisque

$$y = \Omega \text{ tandis que} \qquad y = \Omega \ \text{ ou } \Omega \ .$$
 $y \ \mathcal{E}_x$

I.B.4.a. On a

$$f(x) = \int_{x \mathcal{C}} (-1)^{\alpha(x y)} f(y) = \int_{y \mathcal{P}(\Omega)} \left(\int_{x \mathcal{C}} (-1)^{\alpha(x y)} f(y) \right) dy$$

$$= \int_{y \mathcal{C}} \left(\int_{x \mathcal{C}} (-1)^{\overline{0}} f(y) + \int_{y \mathcal{C}} \left(\int_{x \mathcal{C}} (-1)^{\alpha(x y)} f(y) \right) dy$$

$$= 2^{\dim \mathcal{C}} \int_{x \mathcal{C}} f(y) + \int_{x \mathcal{C}} (-1)^{\alpha(x y)} f(y)$$

et la formule sera démontrée si l'on prouve que $_{x}$ $_{\mathcal{C}}$ $(-1)^{\alpha(x\,y)}=0$. Soit y $_{\mathcal{C}}$ fixé. Il existe alors x $_{\mathcal{C}}$ tel que $\alpha(x\,y)=\overline{1}$. Par suite

$$H := \left\{ x \quad \mathcal{C} \quad \alpha \left(x \ y \right) = \overline{1} \right\} = \left\{ x \quad \mathcal{C} \quad \alpha \left(x - x \ y \right) = \overline{0} \right\}$$

est un sous-espace affine de direction le noyau de la forme linéaire non nulle $z = \alpha (z y)$. C'est donc un hyperplan affine de $\mathcal{P}(\Omega)$ et l'on aura $H = 2^{-1}$. Cela entraı̂ne $\mathcal{P}(\Omega)$ $H = 2^{-1} = 2^{-1}$ puis $(-1)^{\alpha(x y)} = 0$.

I.B.4.b. La formule de la question précédente devient

$$f(x) = 2^{\dim C} \quad X^{y} Y^{-y}$$

$$x \quad C \quad y \quad C$$

Donc

(MW)
$$2^{\dim \mathcal{C}} \quad X^{x} Y^{-x} = (Y - X)^{x} (X + Y)^{-x}$$
$$f(x) = (Y - X)^{x} (X + Y)^{-x}$$
$$x \quad \mathcal{C} \quad x \quad \mathcal{C}$$

Pour prouver (MW) il suffit ainsi de prouver l'égalité

$$f(x) = (Y - X)^{x} (X + Y)^{-x}$$
 (*)

pour tout $x \in \mathcal{C}$. En utilisant les indications de l'énoncé,

$$f(x) = (-1)^{\alpha(x y)} X^{y} Y^{-y}$$

$$= (-1)^{\alpha(x y)} X^{y} Y^{-y}$$

$$= (-1)^{\alpha(x y_1 + y_2)} X^{y_1 + y_2} Y^{-y_1 - y_2}$$

$$= S_1 \times S_2$$

οù

$$S_1 = \sum_{y_1 = x} (-1)^{\alpha(x y_1)} X^{y_1} Y^{x - y_1} \quad \text{et} \quad S_2 = \sum_{y_2 \in \Omega} (-1)^{\alpha(x y_2)} X^{y_2} Y^{-x - y_2}$$

Le nombre de parties de x à k éléments est C_x^k donc

$$S_1 = \sum_{k=0}^{x} (-1)^k C_x^k X^k Y^{x-k} = (Y - X)^x$$

Par ailleurs, comme $\alpha(x \ y_2) = \overline{0}$ pour tout $y_2 \subset \Omega \ x$, on obtient

$$S_2 = \int_{k=0}^{-x} C^k_{-x} X^k Y^{-x-k} = (X+Y)^{-x}$$

L'égalité (*) s'en déduit.

II.A.1.a. \blacktriangleright Si v V^G alors $p_G(v) = \frac{1}{G} \mathop{g} g(v) = \frac{1}{G} \mathop{g} v = v$ donc v Im (p_G) . Réciproquement, si w Im (p_G) il existe v V tel que $w = p_G(v) = \frac{1}{G} \mathop{g} g(v)$. Alors pour tout h G,

$$h(w) = \frac{1}{G} \int_{g/G} h \circ g(v) = \frac{1}{G} \int_{g/G} g(v) = w$$

donc $w = V^G$. On a montré l'égalité $\operatorname{Im}(p_G) = V^G$.

ightharpoonup Si v V alors $p_{G}\left(v\right)$ V^{G} et la première partie de la preuve ci-dessus montre que

$$p_G(p_G(v)) = p_G(v)$$

Autrement dit $p_G \circ p_G = p_G$ et p_G est un projecteur de V.

II.A.1.b. On a

$$\operatorname{Tr}(p_G) = \frac{1}{G} \operatorname{Tr}(g)$$

si bien que la formule de l'énoncé sera prouvée si l'on démontre que $\operatorname{Tr}(p_G) = \dim(V^G)$. L'application p_G est la projection sur $\operatorname{Im}(p_G) = V^G$ parallèlement à $\operatorname{Ker}(p_G)$. Soit $(v_1 \quad v_k)$ une base de V^G , et $(v_{k+1} \quad v_n)$ une base de $\operatorname{Ker}(p_G)$. La matrice de p_G dans la base $v = (v_1 \quad v_n)$ sera

$$\operatorname{Mat}(p_G; v) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

d'où $\operatorname{Tr}(p_G) = k = \dim(V^G)$.

II.A.1.c. Posons G = (G). La question **II.A.1.b** permet d'écrire

$$\dim\left(V^{G}\right) = \dim\left(V^{G}\right) = \frac{1}{G} \operatorname{Tr}\left(g\right) \tag{*}$$

Chacun des éléments g de G s'écrit g = (g) où g = G et l'on a

$$\left\{g \qquad G \qquad \left(g \ \right) = g \right\} = \left\{g \qquad G \qquad \left(g \ g^{-1}\right) = Id \right\} = g \ (\mathrm{Ker} \)$$

donc

$$\left|\left\{g - G - \left(g\right) = g\right\}\right| = \left|g - (\operatorname{Ker})\right| = \operatorname{Ker} = \frac{G}{G}$$

En remplaçant dans (*):

$$\dim\left(V^{G}\right)=\dim\left(V^{G}\right)=\frac{1}{G}\frac{1}{\operatorname{Ker}} \prod_{g=G}\operatorname{Tr}\left(-\left(g\right)\right)=\frac{1}{G} \prod_{g=G}\operatorname{Tr}\left(-\left(g\right)\right)$$

Remarque : On obtient une amélioration de la question précédente qui montre que la formule reste vraie dans le cas général où l'action de G sur V n'est pas forcément fidèle.

- **II.A.2.a.** \blacktriangleright On a clairement $\sigma_g(\lambda P + Q) = \lambda \sigma_g(P) + \sigma_g(Q)$ et $\sigma_g(PQ) = \sigma_g(P) \sigma_g(Q)$ pour tous scalaire λ et pour tous polynômes P et Q. On a aussi $\sigma_{Id} = Id_A$, donc σ_g est un homomorphisme d'algèbre de A dans A.
 - ▶ Si M représente la matrice de g dans la base e, ce qu'on notera M = Mat(g; e), on a

$$\sigma_q(P)(X_1 \quad X_n) = P((X_1 \quad X_n)M)$$

ce que l'on notera plus simplement

$$\sigma_q(P) = P((X_1 \quad X_n) M)$$

Si $g \ g$ Aut (V) posons N = Mat(g; e). On a

$$(\sigma_g \circ \sigma_g)(P) = \sigma_g [\sigma_g(P)] = \sigma_g(P)(X_1 \quad X_n) M = P((X_1 \quad X_n) MN) = \sigma_{g \circ g}(P)$$

donc

$$g \ g \quad \operatorname{Aut}(V) \quad \sigma_{g \circ g} = \sigma_g \circ \sigma_g$$

Cela prouve que:

a) σ_q est un automorphisme de A. En effet, pour $g = g^{-1}$ on obtient

$$Id_A = \sigma_{Id} = \sigma_g \circ \sigma_{g^{-1}}$$
 et $Id_A = \sigma_{Id} = \sigma_{g^{-1}} \circ \sigma_g$

de sorte que σ_g soit bijective, d'inverse $(\sigma_g)^{-1} = \sigma_{q^{-1}}$.

- b) Ψ est un morphisme de groupes.
- **II.A.2.b.** \blacktriangleright $X_1^{\alpha_1}X_2^{\alpha_2}$ $X_n^{\alpha_n}$ α_{1+} $+\alpha_{n}=k$ est une base de A_k , et le nombre de n-uplets d'entiers $(\alpha_1 \quad \alpha_n)$ tels que $\alpha_1 + \cdots + \alpha_n = k$ est C_{n-1+k}^k , donc $a_k = C_{n-1+k}^k$.
 - \blacktriangleright Pour montrer l'inclusion $\sigma_g\left(A_k\right)\subset A_k$ il suffit, par linéarité, de montrer que

$$\sigma_q(X_1^{\alpha_1}X_2^{\alpha_2} \quad X_n^{\alpha_n}) \quad A_k$$

dès que $\alpha_1+\cdots+\alpha_n=k$. Comme chacun des polynômes $\binom{n}{j=1}\gamma_{ji}X_j$ est homogène de degré α_m , le polynôme

sera bien homogène de degré k. On aura de la même manière $\sigma_{g^{-1}}(A_k) \subset A_k$ d'où $A_k \subset \sigma_g(A_k)$ en composant des deux côtés par σ_g . En conclusion $\sigma_g(A_k) = A_k$.

II.A.3. On a $a_k(G) \le a_k$ pour tout k, donc la convergence absolue de k=0 k=0

era celle de $\stackrel{+}{\underset{k=0}{\overset{}_{=}}}a_{k}\left(G\right) z^{k}.$ On a

$$\frac{a_{k+1}}{a_k} = \frac{C_{n+k}^{k+1}}{C_{n-1+k}^k} = \frac{(n+k)!}{(k+1)!(n-1)!} \frac{k!(n-1)!}{(n+k-1)!} = \frac{n+k}{k+1}$$

donc $\lim_{k \to +} \frac{a_{k+1}}{a_k} = 1$ et le rayon de convergence de la série entière $\lim_{k \to 0} \frac{1}{a_k} a_k z^k$ sera k = 1. Celui de $\lim_{k \to 0} \frac{1}{a_k} a_k (G) z^k$ sera donc k = 1.

II.A.4. $g^G = Id$ donc toutes les valeurs propres de g sont de module 1, et $\frac{1}{\det(Id-zg)}$ sera bien définie si z=0, ou si $\left|\frac{1}{z}\right|=1$. En particulier la fonction $z=\frac{1}{\det(Id-zg)}$ sera C et définie sur le disque ouvert z<1. Elle est donc développable en série entière sur ce disque et le rayon de convergence de $r_k z^k$ sera ≥ 1 .

II.A.4.b. Aucun des α_i n'est nul puisque g est bijective. Si z < 1,

$$\frac{1}{\det(Id - zg)} = \frac{1}{(1 - z\alpha_1)} \frac{1}{(1 - z\alpha_n)} = \prod_{i=1}^{n} \frac{1}{k_i = 0} (z\alpha_i)^{k_i} = \prod_{k=0}^{n} r_k z^k$$

avec

$$r_k = \underset{\alpha_1 + +\alpha_n = k}{\alpha_1^{k_1}} \alpha_n^{k_n}$$

Par ailleurs $M = \text{Mat}(g; e) = \text{diag}(\alpha_1 - \alpha_n)$ entraîne

$$g_k \left(X_1^{k_1} X_2^{k_2} \quad X_n^{k_n} \right) = \sigma_g \left(X_1^{k_1} X_2^{k_2} \quad X_n^{k_n} \right) = (\alpha_1 X_1)^{k_1} \quad (\alpha_n X_n)^{k_n}$$
$$= \left(\alpha_1^{k_1} \quad \alpha_n^{k_n} \right) X_1^{k_1} \quad X_n^{k_n}$$

ďoù

$$\operatorname{Tr}\left(g_{k}\right) = \alpha_{1}^{k_{1}} \quad \alpha_{n}^{k_{n}} = r_{k}$$

$$\alpha_{1}^{k_{1}} \quad +\alpha_{n}=k$$

II.A.4.c. $g^G=Id$ et $\mathbb C$ est algébriquement clos, donc g annule le polynôme scindé X^G-1 dont toutes les racines sont simples. Cela montre que g est diagonalisable. Il existe donc des automorphismes u et g de V tels que

$$g = u^{-1}gu$$
 et $\operatorname{Mat}(g; e) = \operatorname{diag}(\alpha_1 \quad \alpha_n)$.

Alors

$$\frac{1}{\det(Id - zg)} = \frac{1}{\det(Id - zg)} = \frac{1}{k=0} \operatorname{Tr}(g_k) z^k \quad \text{d'après II.A.4.b}$$
$$= \operatorname{Tr}(g_k) z^k \quad \operatorname{car} g_k = u_k^{-1} g_k u_k$$

Finalement $\operatorname{Tr}(g_k) = r_k$.

II.A.4.d. La question II.A.1.c implique

$$a_k(G) = \dim \left(A_k^G\right) = \frac{1}{G} \operatorname{Tr}\left(g_k\right)$$

Alors, pour z < 1,

$$\Phi_{G}\left(z\right) = \sum_{k=0}^{+} a_{k}\left(G\right)z^{k} = \sum_{k=0}^{+} \frac{1}{G} \operatorname{Tr}\left(g_{k}\right)z^{k} = \frac{1}{G} \left(\sum_{g=0}^{+} \operatorname{Tr}\left(g_{k}\right)z^{k}\right)$$

soit

$$\Phi_G(z) == \frac{1}{G} \frac{1}{\det(Id - zg)}$$

en utilisant II.A.4.c.

II.B.1. Il suffit de démontrer que $\sigma_{\mu}(P_{\mathcal{C}}) = P_{\mathcal{C}}$ et $\sigma_{\rho}(P_{\mathcal{C}}) = P_{\mathcal{C}}$. On a dim $\mathcal{C} = \frac{1}{2}$ et $\mathcal{C} = \mathcal{C}$. La formule de Mac Williams donne

$$2^{\overline{2}} \times P_{\mathcal{C}}(X \mid Y) = P_{\mathcal{C}}(Y - X \mid X + Y)$$

d'où

$$P_{\mathcal{C}}(X|Y) = \frac{1}{2^{\frac{1}{2}}} {}_{x | \mathcal{C}} (Y - X)^{x} (X + Y)^{-x}$$

$$= {}_{x | \mathcal{C}} \left(\frac{1}{2} (Y - X)\right)^{x} \left(\frac{1}{2} (X + Y)\right)^{-x} = \sigma_{\mu} (P_{\mathcal{C}}) (X|Y)$$

c'est-à-dire $\sigma_{\mu}(P_{\mathcal{C}}) = P_{\mathcal{C}}$. Par ailleurs

$$\sigma_{\rho}\left(P_{\mathcal{C}}\right)\left(X\ Y\right) = \left(-X\right)^{x}\left(Y\right)^{-x} = X^{x}\left(Y\right)^{-x} = P_{\mathcal{C}}\left(X\ Y\right)$$

puisque x est pair dès que x \mathcal{C} , et cela donne bien $\sigma_{\rho}(P_{\mathcal{C}}) = P_{\mathcal{C}}$.

II.B.2. ▶ On a

$$\mu = \begin{pmatrix} \cos\frac{3\pi}{4} & \sin\frac{3\pi}{4} \\ \sin\frac{3\pi}{4} & -\cos\frac{3\pi}{4} \end{pmatrix} \quad \text{et} \quad \rho = \begin{pmatrix} \cos\pi & \sin\pi \\ \sin\pi & -\cos\pi \end{pmatrix}$$

On reconnaît des matrices de réflexions du plan euclidien (que l'on supposera orienté). Plus précisément :

$$\left\{ \begin{array}{l} \mu = \text{r\'eflexion d'axe la droite d'angle polaire } \frac{3\pi}{8} \text{ (modulo } \pi), \\ \rho = \text{r\'eflexion d'axe la droite d'angle polaire } \frac{\pi}{2} \text{ (modulo } \pi), \end{array} \right.$$

et l'on en déduit que $\rho\mu$ est la rotation d'angle $2 \times \left(\frac{\pi}{2} - \frac{3\pi}{8}\right) = \frac{\pi}{4}$ (modulo 2π). L'automorphisme $\rho\mu$ sera donc d'ordre 8 et H=8.

- ▶ Comme $\rho^2 = Id = \mu^2$, les éléments de G seront soit Id, soit des produits de l'une des 4 forme suivante :
 - (\mathcal{L}) $\mu\rho\mu$ $\mu\rho\mu$; $\mu\rho\mu$ $\rho\mu\rho$; $\rho\mu\rho$ $\mu\rho\mu$ ou encore $\rho\mu\rho$ $\rho\mu\rho$.

Montrer que H est distingué dans G revient donc à montrer que $x (\rho \mu)^k x^{-1}$ H pour tout k = 0.1 7 et pour tout x = G. Puisque x est de l'une des quatre formes ci-dessus, cela revient à prouver les quatre assertions suivantes :

$$\rho (\rho \mu)^{k} \rho^{-1} \quad H \qquad (1)
\rho (\rho \mu)^{k} \mu^{-1} \quad H \qquad (2)
\mu (\rho \mu)^{k} \mu^{-1} \quad H \qquad (3)
\mu (\rho \mu)^{k} \rho^{-1} \quad H \qquad (4)$$

La vérification est facile puisque $(\mu\rho)^{-1} = \rho^{-1}\mu^{-1} = \rho\mu$. Si k=0, on écrit :

(1)
$$\rho (\rho \mu)^k \rho^{-1} = \rho (\rho \mu) \quad (\rho \mu) \rho^{-1} = \mu (\rho \mu) \quad (\rho \mu) \rho$$
$$= (\mu \rho)^k = (\rho \mu)^{-k} \quad H$$

(2)
$$\rho(\rho\mu)^{k} \mu^{-1} = \rho(\rho\mu) \quad (\rho\mu) \mu^{-1} = \mu(\rho\mu) \quad (\rho\mu) \rho$$
$$= (\mu\rho)^{k-1} = (\rho\mu)^{-(k-1)} \quad H$$

(3)
$$\mu (\rho \mu)^k \mu^{-1} = \mu (\rho \mu) (\rho \mu) \mu^{-1}$$

= $(\mu \rho)^k = (\rho \mu)^{-k} H$

(4)
$$\mu (\rho \mu)^k \rho^{-1} = \mu (\rho \mu) \quad (\rho \mu) \rho^{-1}$$
$$= (\mu \rho)^{k+1} = (\rho \mu)^{-(k+1)} \quad H$$

Si k = 0, on vérifie (1) à (4) en suivant la même méthode.

▶ Dans G H, on a $\overline{\rho\mu} = \overline{Id}$. Tous les éléments g de G sont listés en (\mathcal{L}) ci-dessus, si bien que les seules classes possibles dans G H soient \overline{Id} , $\overline{\rho}$, $\overline{\mu}$ ou $\overline{\mu\rho}$. Mais $\rho = (\rho\mu)\mu$ entraı̂ne $\overline{\rho} = \overline{\mu}$; et l'on a $\overline{\mu\rho} = \overline{\mu\rho\mu\mu} = \overline{\mu^2} = \overline{Id}$. On peut donc conclure à

$$G\ H = \left\{\overline{Id}\ \overline{\rho}\right\}$$
 et $G\ H\ = 2$

Finalement

$$G \ = \ G \ H \ \times \ H \ = 2 \times 8 = 16.$$

▶ Le groupe G est la réunion disjointe des classes $\overline{Id} = H$ et $\overline{\rho} = \rho H$, donc

$$G = Id \rho \mu (\rho \mu)^{2} \qquad (\rho \mu)^{7} \rho (\rho \mu) \rho (\rho \mu)^{2} \rho \qquad (\rho \mu)^{7} \rho$$

Comme $\rho\mu$ est la rotation d'angle $\frac{\pi}{4}$ et comme ρ est une réflexion laissant invariant l'octogone régulier, on peut affirmer que G est le groupe diédral D(8) de l'octogone régulier.

II.B.3.a. On a

$$\begin{split} \left(X^{2}-1\right)\left(X^{8}-1\right) \\ &= (X-1)^{2}\left(X+1\right)^{2}\left(X-e^{i\frac{\pi}{4}}\right)\left(X-e^{-i\frac{\pi}{4}}\right) \\ &\qquad \times \left(X-e^{i\frac{\pi}{2}}\right)\left(X-e^{-i\frac{\pi}{2}}\right)\left(X-e^{i\frac{3\pi}{4}}\right)\left(X-e^{-i\frac{3\pi}{4}}\right) \\ &= (X-1)^{2}\left(X+1\right)^{2}\left(X-e^{i\frac{\pi}{4}}\right)\left(X-e^{-i\frac{\pi}{4}}\right)\left(X-i\right)\left(X+i\right)\left(X-e^{i\frac{3\pi}{4}}\right)\left(X-e^{-i\frac{3\pi}{4}}\right) \\ &= (X-1)^{2}\left(X+1\right)^{2}\left(X-e^{i\frac{\pi}{4}}\right)\left(X-e^{-i\frac{\pi}{4}}\right)\left(X-i\right)\left(X+i\right)\left(X-e^{i\frac{3\pi}{4}}\right)\left(X-e^{-i\frac{3\pi}{4}}\right) \end{split}$$

On aura donc une décomposition en éléments simples de la forme suivante dans $\mathbb C$:

$$f(X) = \frac{1}{(X^2 - 1)(X^8 - 1)}$$

$$f(X) = \frac{a}{X - 1} + \frac{b}{(X - 1)^2} + \frac{c}{X + 1} + \frac{d}{(X + 1)^2} + \frac{e}{X - e^{i\frac{\pi}{4}}} + \frac{\overline{e}}{X - e^{-i\frac{\pi}{4}}} + \frac{f}{X - e^{-i\frac{\pi}{4}}} + \frac{f}{X - e^{-i\frac{\pi}{4}}} + \frac{g}{X - e^{-i\frac{3\pi}{4}}} + \frac{\overline{g}}{X - e^{-i\frac{3\pi}{4}}}$$

$$(*)$$

Les coefficients a et b sont obtenus en posant b = X - 1 et en divisant 1 par le polynôme

$$A(h) = (X+1) (X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X + 1)$$

$$= (h+2) ((h+1)^7 + (h+1)^6 + (h+1)^5 + (h+1)^4 + (h+1)^3 + (h+1)^2 + (h+1) + 1)$$

$$= h^8 + 10h^7 + 44h^6 + 112h^5 + 182h^4 + 196h^3 + 140h^2 + 64h + 16$$

suivant les puissances décroissantes de h, et à l'ordre 2. On trouve :

$$1 = A(h) \times \left(\frac{1}{16} - \frac{1}{4}h\right) + h^2 R(h)$$

d'où

$$f(X) = \frac{1}{h^2 A(h)} = \frac{1}{16h^2} - \frac{1}{4h} + \frac{1}{16h^2} - \frac{1}{4h} + \frac{1}{16h^2} - \frac{1}{4h} + \frac{1}{16h^2} - \frac{1}{4h} + \frac{1}{16h^2} - \frac{1}{4h^2} - \frac{1}{4h^2} + \frac{1}{16h^2} - \frac{1}{4h^2} - \frac{1}{4$$

et

$$a = -\frac{1}{4}$$
 et $b = \frac{1}{16}$

Comme f(X) est paire, l'unicité de la décomposition en éléments simples et la comparaison des décompositions de f(X) et de f(-X) montrent que $c=-a=\frac{1}{4}$ et $d=b=\frac{1}{16}$. Posons $f(X)=\frac{1}{(X^2-1)(X^8-1)}=\frac{A(X)}{B(X)}$. On a

$$B(X) = 2X(X^8 - 1) + 8(X^2 - 1)X^7 = 10X^9 - 8X^7 - 2X$$

Avec ces notations, on sait que les coefficients correspondant aux pôles simples sont donnés par :

$$e = \frac{A\left(e^{i\frac{\pi}{4}}\right)}{B\left(e^{i\frac{\pi}{4}}\right)} = \frac{1}{8i \cdot \overline{2}}$$

$$f = \frac{A\left(i\right)}{B\left(i\right)} = \frac{1}{16i}$$

$$g = \frac{A\left(e^{i\frac{3\pi}{4}}\right)}{B\left(e^{i\frac{3\pi}{4}}\right)} = \frac{1}{8i \cdot \overline{2}}$$

Enfin on calcule

$$\frac{e}{X - e^{i\frac{\pi}{4}}} + \frac{\overline{e}}{X - e^{-i\frac{\pi}{4}}} = \frac{1}{8i \cdot \overline{2}} \left(\frac{1}{X - e^{i\frac{\pi}{4}}} - \frac{1}{X - e^{-i\frac{\pi}{4}}} \right)$$

$$= \frac{1}{8i \cdot \overline{2}} \frac{e^{i\frac{\pi}{4}} - e^{-i\frac{\pi}{4}}}{X^2 - \overline{2}X + 1}$$

$$= \frac{1}{8i \cdot \overline{2}} \frac{2i \sin \frac{\pi}{4}}{X^2 - \overline{2}X + 1} = \frac{1}{8} \frac{1}{X^2 - \overline{2}X + 1}$$

$$\frac{f}{X-i} + \frac{\overline{f}}{X+i} = \frac{1}{16i} \left(\frac{1}{X-i} - \frac{1}{X+i} \right) = \frac{1}{8} \frac{1}{X^2+1}$$

 et

$$\frac{g}{X - e^{i\frac{3\pi}{4}}} + \frac{\overline{g}}{X - e^{-i\frac{3\pi}{4}}} = \frac{1}{8i \ \overline{2}} \left(\frac{1}{X - e^{i\frac{3\pi}{4}}} - \frac{1}{X - e^{-i\frac{3\pi}{4}}} \right) = \frac{1}{8} \frac{1}{X^2 + \overline{2}X + 1}$$

En conclusion, la décomposition de f(X) en éléments simples dans $\mathbb{R}(X)$ sera :

$$\frac{1}{(X^2 - 1)(X^8 - 1)} = \frac{\frac{-1}{4}}{X - 1} + \frac{\frac{1}{16}}{(X - 1)^2} + \frac{\frac{1}{4}}{X + 1} + \frac{\frac{1}{16}}{(X + 1)^2} + \frac{\frac{1}{8}}{X^2 - 2X + 1} + \frac{\frac{1}{8}}{X^2 + 1} + \frac{\frac{1}{8}}{X^2 + 2X + 1}$$

II.B.3.b. Si g est une réflexion, sa matrice est semblable à $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ donc

$$\det(Id - zg) = (1 - z)(1 + z) = 1 - z^2$$

Si g est une rotation d'angle θ , sa matrice est semblable à $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et

$$\det (Id - zg) = (1 - z\cos\theta)^2 + z^2\sin^2\theta = z^2 - 2\cos\theta z + 1$$

Les questions II.A.4.d et II.B.2. permettent d'écrire

$$\Phi_G(z) = \frac{1}{G} \int_{g}^{1} \frac{1}{\det(Id - zg)} = \frac{1}{16} \int_{1-z^2}^{1} dz + \int_{k=0}^{1} \frac{1}{z^2 - 2\cos\frac{k\pi}{4}z + 1}$$

$$= \frac{1}{16} \int_{1-z^2}^{1} dz + \int_{k=0}^{1} \frac{1}{(z - e^{i\frac{k\pi}{4}})(z - e^{-i\frac{k\pi}{4}})}$$

d'où

$$\begin{split} \Phi_G\left(z\right) &= \frac{1}{2\left(1-z^2\right)} + \frac{1}{16} (\frac{1}{\left(z-1\right)^2} + \frac{2}{\left(z-e^{i\frac{\pi}{4}}\right)\left(z-e^{-i\frac{\pi}{4}}\right)} \\ &+ \frac{2}{\left(z-e^{i\frac{\pi}{2}}\right)\left(z-e^{-i\frac{\pi}{2}}\right)} + \frac{2}{\left(z-e^{i\frac{3\pi}{4}}\right)\left(z-e^{-i\frac{3\pi}{4}}\right)} + \frac{1}{\left(z+1\right)^2}) \end{split}$$

Finalement

$$\Phi_G(z) = \frac{\frac{1}{4}}{1-z} + \frac{\frac{1}{4}}{1+z} + \frac{\frac{1}{16}}{(z-1)^2} + \frac{\frac{1}{8}}{z^2 - \overline{2}z + 1} + \frac{\frac{1}{8}}{z^2 + 1} + \frac{\frac{1}{8}}{z^2 + \overline{2}z + 1} + \frac{\frac{1}{16}}{(z+1)^2} \\
= \frac{1}{(1-z^2)(1-z^8)}$$

d'après **II.B.3.a.** Comme le rayon de convergence de chacune des séries $\frac{1}{\det(Id-zg)}$ est ≥ 1 d'après **II.A.4.a.**, on peut affirmer que l'égalité ci-dessus est vraie pour tout complexe z tel que z < 1.

II.B.4. Les question II.A.4. et II.B.3.b donnent

$$\Phi_G(z) = \prod_{k=0}^{+} a_k(G) z^k = \frac{1}{(1-z^2)(1-z^8)} = \begin{pmatrix} + & + \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} = \frac{1}{(1-z^2)(1-z^8)} = \begin{pmatrix} + & -1 & + \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} = \frac{1}{(1-z^2)(1-z^8)} = \begin{pmatrix} + & -1 & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} = \frac{1}{(1-z^2)(1-z^8)} = \begin{pmatrix} + & -1 & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix}$$

d'où

$$a_k(G) = (i \ j) \quad \mathbb{N} \times \mathbb{N} \quad 2i + 8j = k$$

Bien entendu $a_k\left(G\right)=0$ si k est impair. Si k est pair, chaque j $\mathbb N$ détermine un unique i $\mathbb Z$ tel que 2i+8j=k, et la condition $i\geq 0$ s'écrit $\frac{k}{2}-4j\geq 0$, ou encore $j\leq \frac{k}{8}$. Il y aura donc ici $\left\lceil \frac{k}{8}\right\rceil+1$ couples $(i\ j)$ solution dans $\mathbb N\times\mathbb N$.

- **II.B.5.** \blacktriangleright D'après **I.B.2** et **I.B.3** les polynômes P_2 et Q_8 sont les polynômes des poids de deux codes auto-orthogonaux. La question **II.B.1** montre alors que P_2 et Q_8 appartiennent à A^G . On a donc $A\subset A^G$. Si l'on note A_k la composante homogène de A de degré k, on déduit $A_k\subset A_k^G$.
 - $ightharpoonup A_k$ est engendré par la famille

$$\mathcal{F} = P_2^i Q_8^j$$
(i j) $\mathbb{N} \times \mathbb{N} \text{ et } 2i + 8j = k$

de cardinal $a_k(G)$ d'après **II.B.4**. Si l'on montre que cette famille est libre, on pourra écrire

$$a_k(G) \le \dim A_k \le a_k(G)$$

pour conclure à $\dim A_k = a_k\left(G\right)$ et à $A\ = A^G.$

▶ Raisonnons par l'absurde et supposons que la famille \mathcal{F} soit liée. Il existe alors des coefficients λ_{ij} non tous nuls tels que

$$\begin{array}{c} \lambda_{i\,j}P_2^iQ_8^j=0\\ \stackrel{(i\,j)}{\underset{2i+8j=k}{\mathbb{N}\times\mathbb{N}}} \end{array}$$

Soit i_0 le plus petit entier tel qu'il existe j avec $\lambda_{i_0 j} = 0$. Soit j_0 le plus petit entier tel que $\lambda_{i_0 j_0} = 0$. Il existe un polynôme $T - \mathbb{C}[X Y]$ tel que

$$P_2^{i_0} \left(\lambda_{i_0 \ j_0} Q_8^{j_0} + P_2 T \right) = 0$$

Comme $\mathbb{C}[X|Y]$ est intègre, on déduit $\lambda_{i_0 j_0} Q_8^{j_0} + P_2 T = 0$ donc en particulier

$$\lambda_{i_0} \,_{i_0} Q_8^{j_0} + P_2 T \, (1 \, i) = 0$$

Mais alors $P_2(1 i) = 0$ et $Q_8^{j_0}(1 i) = 16$ entraînent $\lambda_{i_0 j_0} = 0$, ce qui est absurde.

II.B.6. Si \mathcal{C} est un code auto-orthogonal de $\mathcal{P}(\Omega)$, alors

$$P_{\mathcal{C}}(X|Y) \quad A^G = \mathbb{C}[P_2|Q_8]$$

d'après **II.B.1** et la question précédente. Comme $Q_8 = P_2^4 - 4\Delta$, on déduit $\mathbb{C}[P_2 \ Q_8] = \mathbb{C}[P_2 \ \Delta]$, donc

$$P_{\mathcal{C}}(X|Y) \quad \mathbb{C}[P_2|\Delta].$$

Comme $P_{\mathcal{C}}$, P_2 et Δ sont des polynômes homogènes de degrés respectifs , 2 et 8, il existera une famille $\lambda_{i\,j}$ $_{(i\,j)}$ $_{\mathbb{N}\times\mathbb{N}}$ et $_{2i+8j=}$ de complexes telle que

$$P_{\mathcal{C}}(X|Y) = \underset{\substack{(i|j) \mathbb{N} \times \mathbb{N} \\ 2i+8j=}}{\lambda_{i|j} P_2^i \Delta^j}$$

Si l'on suppose par l'absurde que tous les coefficients $\lambda_{i\,j}$ n'appartiennent pas à \mathbb{Z} , notons j_0 le plus petit entier tel qu'il existe i avec $\lambda_{i\,j_0}$ \mathbb{Z} . Cet indice i est alors unique puisque vérifie $2i+8j_0=$ (où est pair par hypothèse). Notons i_0 l'indice tel que $\lambda_{i_0\,j_0}$ \mathbb{Z} . On a

$$\Delta^{j_{0}} \underset{\substack{2i+8j=\\j\geq j_{0}}}{\lambda_{i\; j}P_{2}^{i}\Delta^{j-j_{0}}} = P_{\mathcal{C}}\left(X\;Y\right) - \underset{\substack{2i+8j=\\j< j_{0}}}{\lambda_{i\; j}P_{2}^{i}\Delta^{j}} =: H\left(X\;Y\right) \quad \mathbb{Z}\left[X\;Y\right]$$

Comme Y^{2j_0} divise Δ^{j_0} , on déduit que Y^{2j_0} divise H(X|Y). Notons $H(X|Y) = Y^{2j_0}H_1(X|Y)$ où $H_1(X|Y) = \mathbb{Z}[X|Y]$. On aura

$$X^{2j_0}Y^{2j_0}\left(X^2-Y^2\right)^{2j_0} \underset{j\geq j_0}{\underset{2i+8j=}{\lambda_{i}}} \lambda_{i\,j}P_2^i\Delta^{j-j_0} = Y^{2j_0}H_1\left(X\ Y\right)$$

soit

$$X^{2j_0} (X^2 - Y^2)^{2j_0} \lambda_{i j} P_2^i \Delta^{j-j_0} = H_1 (X Y)$$

$$2i + 8j = j \ge j_0$$

Il suffit de remplacer $(X \ Y)$ par $(1 \ 0)$ et de se rappeler que $\Delta = X^2Y^2 \left(X^2 - Y^2\right)^2$ pour obtenir

$$\lambda_{i\,j}P_2^i\left(1\ 0\right) = H_1\left(1\ 0\right)$$
 2*i*+8*j*₀=

ou encore (puisque $P_2(X|Y) = X^2 + Y^2$) $\lambda_{i_0 j_0} = H_1(1|0)$ \mathbb{Z} , ce qui est contraire à l'hypothèse.

III.A.1. L'ensemble

$$L^0 = v \quad \mathbb{Q} \quad w \quad L \quad v w \quad \mathbb{Z}$$

est clairement un sous-groupe additif de \mathbb{Q} . Soit $e = (e_1 \quad e)$ une \mathbb{Z} -base de L. Soit $e^* = (e_1^* \quad e^*)$ la base duale de e. Comme \mathbb{Q} est un espace vectoriel euclidien, on peut identifier tout vecteur v de \mathbb{Q} avec la forme linéaire $l_v : x \quad v \ x$. Soit e_i l'unique vecteur tel que $e_i^* = l_{e_i}$. Alors $(e_1 \quad e)$ est une base de \mathbb{Q} et si $w = w_i e_i$,

$$\begin{pmatrix} w & \mathbb{Q} & v \ w = w_i \ (v \ e_i) & l_v = (v \ e_i) \ e_i^* \\ l_v = (v \ e_i) \ l_{e_i} & v = (v \ e_i) \ e_i \end{pmatrix}$$

$$l_v = (v \ e_i) \ l_{e_i} \quad v = (v \ e_i) \ e_i$$

Pour pouvoir affirmer que L^0 est un réseau et que $(e_1 e_1 e_1)$ est une \mathbb{Z} -base de L^0 , il suffit maintenant d'écrire

$$v \quad L^0 \qquad i \quad v e_i \quad \mathbb{Z} \qquad v = (v e_i) e_i \quad \mathbb{Z} e_1 \oplus \cdots \oplus \mathbb{Z} e_1$$

III.A.2.a. Notons d'abord que si e est une \mathbb{Z} -base de L, ou bien si det $\left(P_e^e\right)=\pm 1$, alors e est une base de \mathbb{Q} et $P=P_e^e$ représente la matrice de passage de e vers e. Si x \mathbb{Q} , on note $X={}^t(x_1-x_-)$ le vecteur-colonne des coordonnées de x dans e, et $X={}^t(x_1-x_-)$ celui des coordonnées de x dans e. Par hypothèse P est à coefficients dans \mathbb{Z} , et l'on sait que X=PX.

ightharpoonup Si e est une \mathbb{Z} -base de L, alors

$$X = {}^t (x_1 \quad x) \quad \mathbb{Z} \quad X = P^{-1} X \quad \mathbb{Z}$$

donc P^{-1} est à coefficients dans \mathbb{Z} . Comme P et P^{-1} sont à coefficients dans \mathbb{Z} , leurs déterminants seront dans \mathbb{Z} et

$$(\det P) \times (\det P^{-1}) = 1$$

entraı̂ne det $P = \pm 1$.

▶ Réciproquement, si det $P = \pm 1$ alors P est inversible dans l'ensemble \mathcal{M} (\mathbb{Z}) des matrices carrée de taille et à coefficients entiers puisque

$$P^{-1} = \frac{1}{\det P} t \operatorname{com}(P) \quad \mathcal{M} \quad (\mathbb{Z})$$

et donc le système X=PX se résout en $X=P^{-1}X$ avec X . $\mathbb Z$ dès que X . $\mathbb Z$. Cela montre l'inclusion

$$L \subset \mathbb{Z}e_1 + \mathbb{Z}e$$

L'inclusion réciproque est vraie puisque X \mathbb{Z} entraı̂ne X=PX \mathbb{Z} . En conclusion $L=\mathbb{Z}e_1+\cdots+\mathbb{Z}e$ et e est bien une \mathbb{Z} -base de L.

III.A.2.b. Soient v et v deux bases orthonormales de $\mathbb Q\,$, et $e, \,e\,$ deux $\mathbb Z$ -base de L. On a

$$P_v^e \times P_e^e \times P_e^v = P_v^v$$

Comme det $\left(P_v^v\right)=\pm 1$ $\left(P_v^v\right)$ est une matrice orthogonale puisque c'est la matrice de passage d'une base orthonormale vers une autre base orthonormale) et det $\left(P_e^e\right)=\pm 1$ (d'après **III.A.2.a**) on déduit

$$\det\left(P_v^e\right) \times \det\left(P_e^v\right) = \pm 1$$

d'où

$$\det\left(P_{v}^{e}\right) = \pm \ \det\left(P_{e}^{v}\right)^{-1} = \pm \det\left(\left(P_{e}^{v}\right)^{-1}\right) = \pm \det\left(P_{v}^{e}\right)$$

Finalement $\det(P_v^e) = \left| \det \left(P_v^e \right) \right|$.

III.A.2.c. Soit v une base orthonormale de \mathbb{Q} . Si e est une \mathbb{Z} -base de L, on a vu en **III.A.1** que $e=(e_1 \quad e \)$ est une \mathbb{Z} -base de L^0 . On conserve les notations des question **III.A.1** et **III.A.2.**, et l'on pose

$$P_v^e = A = (a_{ij})$$
 et $P_v^e = B = (b_{ij})$

On a

$$e_j = \underset{i=1}{a_{ij}} v_i \quad e_j \ v_k = a_{kj}$$

et

$$e_{j} = b_{ij}v_{i}$$
 $e_{j} e_{k} = e_{j}^{*}(e_{k}) = \delta_{jk} = b_{ij}v_{i} e_{k} = b_{ij}a_{ik}$

Cela montre que $I = {}^{t}BA$, ou encore $B = {}^{t}A^{-1}$. On en déduit immédiatement

$$\operatorname{Vol}\left(L\right)\operatorname{Vol}\left(L^{0}\right)=\left(\det\left(A\right)\right)\left(\det\left(B\right)\right)=\left(\det\left(A\right)\right)\left(\det\left(A^{-1}\right)\right)=1$$

III.A.3.a. Si d désigne le dénominateur commun de toutes les coordonnées des vecteurs $e_1, ..., e_s$ dans la base canonique $(b_1 \quad b \)$ de $\mathbb Q \$, alors

$$i de_i \mathbb{Z}b_1 \oplus \mathbb{Z}b$$

donc

$$M \subset L = \left(\mathbb{Z} \frac{b_1}{d}\right) \oplus \oplus \left(\mathbb{Z} \frac{b}{d}\right)$$

où L est le réseau de \mathbb{Z} -base $\left(\frac{b_1}{d} - \frac{b}{d}\right)$.

III.A.3.b. $M \setminus L_1$ est un sous-groupe du groupe monogène $L_1 = Gr(e_1)$. C'est donc un groupe monogène engendré par un certain vecteur u_1 . Si l'on suppose que $M \setminus L_k$ est engendré par k vecteurs $u_1, ..., u_k$ de \mathbb{Q} , la projection

$$p: M \setminus L_{k+1}$$
 $\mathbb{Z}e_{k+1}$ $x_1e_1 + x_{k+1}e_{k+1}$ $x_{k+1}e_{k+1}$

est un morphisme de groupes et l'image $p(M \setminus L_{k+1})$ est un sous-groupe du groupe monogène $L_{k+1} = \operatorname{Gr}(e_{k+1})$. Elle est donc engendrée par un vecteur u_{k+1} . Soit u_{k+1} $M \setminus L_{k+1}$ tel que $p(u_{k+1}) = u_{k+1}$. On a

$$M \setminus L_{k+1} = (M \setminus L_k) + \mathbb{Z}u_{k+1}$$

En effet, l'inclusion $M \setminus L_{k+1} \supset (M \setminus L_k) + \mathbb{Z}u_{k+1}$ est triviale. Réciproquement, tout élément $x = x_1e_1 + \dots + x_{k+1}e_{k+1}$ de $M \setminus L_{k+1}$ vérifie $p(x) = x_{k+1}e_{k+1} = \lambda u_{k+1} = \lambda p(u_{k+1})$ pour un entier λ convenable. Par suite $p(x - \lambda u_{k+1}) = 0$ et cela signifie que $x - \lambda u_{k+1} - M \setminus L_k$, ou encore $x - (M \setminus L_k) + \mathbb{Z}u_{k+1}$. L'hypothèse récurrente au rang k montre que $M \setminus L_k = \mathbb{Z}u_1 + \dots + \mathbb{Z}u_k$, d'où

$$M \setminus L_{k+1} = \mathbb{Z}u_1 + \mathbb{Z}u_k + \mathbb{Z}u_{k+1}$$

et la propriété est démontrée au rang k+1.

Au rang on aura

$$M = M \setminus L = \mathbb{Z}u_1 + \mathbb{Z}u$$

de sorte que M soit bien engendré par vecteurs.

III.A.3.c. Si M contient un réseau de \mathbb{Q} , alors M contient à fortiori une base $(e_1 - e_1)$ de \mathbb{Q} , et la question précédente permet d'écrire

$$\mathbb{Z}e_1 \oplus \oplus \mathbb{Z}e \subset M = \mathbb{Z}u_1 + + \mathbb{Z}u$$

ďoù

$$= \dim \operatorname{Vect} (e_1 \quad e) \leq \dim \operatorname{Vect} (u_1 \quad u)$$

Nécessairement la système $(u_1 u)$ sera libre dans $\mathbb Q$, et l'on aura

$$M = \mathbb{Z}u_1 \oplus \oplus \mathbb{Z}u$$

ce qui signifie que M est un réseau de $\mathbb Q\,$.

III.A.4. \blacktriangleright Vérifions que Λ est un sous-groupe additif de \mathbb{Q} . Si $v=\lambda_j w_j$ et $v=\lambda_j w_j$ vérifient (a) et (b), alors $v-v=\lambda_j w_j$ ($\lambda_j-\lambda_j$) $\lambda_j w_j$, les $\lambda_j-\lambda_j$ sont tous de même parité, et

$$(\lambda_j - \lambda_j) \equiv \lambda_j - \lambda_j \equiv 0$$
 (4)
$$1 \le j \le 1$$

Donc v-v Λ . Bien entendu, Λ n'est pas vide car contient le vecteur nul.

▶ Si tous les λ_j sont multiples de 4, notons $\lambda_j = 4\mu_j$. Alors (a) et (b) sont vérifiés et

$$v = \underset{1 \leq j \leq}{\lambda_{j} w_{j}} = \underset{1 \leq j \leq}{\mu_{j} (4w_{j})} \quad \Lambda$$

de sorte que le sous-groupe Λ contienne le réseau $\mathbb{Z}(4w_1) \oplus \mathbb{Z}(4w)$. La question III.A.3 montre que Λ est un réseau.

 \blacktriangleright Montrons l'égalité $\Lambda^0=\Lambda$. Posons $v=\sum_{1\leq j\leq}~\lambda_jw_j$ et $v=\sum_{1\leq j\leq}~\lambda_jw_j.$ On a

• Supposons que v Λ^0 . Pour $\lambda_j=2,\ \lambda_k=-2$ et $\lambda_s=0$ dès que s j k, (*) s'écrit $\lambda_j-\lambda_k$ $2\mathbb{Z}$, et les λ_j sont tous de même parité. Si l'on prend $\lambda_1==\lambda=3$ dans (*), on trouve 3 λ_j $4\mathbb{Z}$ d'où $\lambda_j\equiv 0$ (4). On a donc montré que v satisfaisait (a) et (b), autrement dit $\Lambda^0\subset\Lambda$.

• Réciproquement, si $v - \Lambda$ il faut vérifier (*) pour pouvoir affirmer que $v - \Lambda^0$ et conclure à $\Lambda^0 = \Lambda$. Si les suites (λ_j) et (λ_j) vérifient (a) et (b), il s'agit de prouver que

$$\lambda_j \lambda_j \quad 4\mathbb{Z} \qquad (**)$$

$$1 \le j \le$$

On envisage 4 cas suivant les parités des λ_j et des λ_j . Si les λ_j et les λ_j sont pairs, (**) est trivial. Si les λ_j sont pairs et les λ_j impairs, on note $\lambda_j = 2\mu_j$ et $\lambda_j = 2\mu_j + 1$ et l'on obtient

$$\lambda_j \lambda_j = \left(2\mu_j\right) \left(2\mu_j + 1\right) \equiv \left(2\mu_j\right) \equiv \lambda_j \equiv 0 \ (4)$$

$$1 \le j \le 1 \le j \le 1$$

d'après (b). Le cas où les λ_j sont impairs et les λ_j pairs se résout de la même façon. Enfin, si les λ_j et les λ_j sont impairs et avec des notations évidentes, on a

$$\lambda_{j}\lambda_{j} = (2\mu_{j} + 1)(2\mu_{j} + 1) \equiv (2\mu_{j} + 2\mu_{j} + 1)$$

$$\equiv \lambda_{j} + \lambda_{j} + \equiv 0$$

$$1 \le j \le \lambda_{j} + \lambda_{j} + \epsilon = 0$$

$$1 \le j \le \lambda_{j} + \epsilon = 0$$

$$1 \le j \le \lambda_{j} + \epsilon = 0$$

$$1 \le j \le \lambda_{j} + \epsilon = 0$$

puisque (λ_j) et (λ_j) vérifient (a) et (b), et puisque est un multiple de 4.

III.A.5. Le ppcm d des dénominateurs des coordonnées de tous les vecteurs d'une \mathbb{Z} -base de L dans la base canonique vérifie $L \subset \frac{1}{d}\mathbb{Z}$. Pour tout v = L on a donc $d^2 = v = (dv) - (dv) = \mathbb{Z}$, d'où $d^2 = v = \mathbb{Z}$. L'ensemble $m = \mathbb{N}^* = m = v = \mathbb{Z}$ inclus dans \mathbb{N} n'est donc pas vide et possède un plus petit élément d_L .

Si v-L et $-v^{-2}=\frac{k}{d_L}$, écrivons $v=\frac{1}{d}\left(n_1-n_-\right)$ dans la base canonique. On a

$$n_i^2 = \frac{n_i^2}{d^2} = \frac{k}{d_L} \qquad n_i \le d \quad \frac{\overline{k}}{d_L} \qquad n_i \le d \quad \frac{\overline{k}}{d_L}$$

Posons N=d $\overline{\frac{k}{d_L}}$. Les -uplets $(n_1 - n)$ appartiennent donc à l'hypercube [-N N], et cela entraı̂ne $c_k(L) \leq (2N+1)$, ou encore

$$c_k(L) \le \left(2d \quad \frac{\overline{k}}{d_L} + 1\right)$$

Montrons que la série $+ c_k(L) e^{ik\pi z}$ converge absolument quand z = a + ib et b > 0. On a

$$\left|c_{k}\left(L\right) e^{ik\pi z}\right| = c_{k}\left(L\right) \left|e^{k\pi\left(ai-b\right)}\right| = c_{k}\left(L\right) e^{-bk\pi} \le \left(2d \frac{\overline{k}}{d_{L}} + 1 e^{-bk\pi}\right)$$

Il existe donc α \mathbb{R}_{+}^{*} tel que $\left|c_{k}\left(L\right)e^{ik\pi z}\right|\leq\left(\alpha\ \overline{k}+1\right)e^{-bk\pi}$, et il est facile de voir que

$$\left(\alpha \quad \overline{k} + 1\right) \quad e^{-bk\pi} = o\left(\frac{1}{k^2}\right)$$

lorsque k tend vers + . En effet

$$\left(\alpha \quad \overline{k} + 1\right) \quad e^{-bk\pi} \sim \alpha \quad k^{\frac{1}{2}} e^{-bk\pi}$$

et $\lim_{k \to +} \left(\alpha \ k^{\frac{1}{2}} e^{-bk\pi} \right) = 0$. la série à termes positifs $\lim_{k \to 0} \left(\alpha \ \overline{k} + 1 \right) \ e^{-bk\pi}$ convergera donc, et cela entraı̂ne la convergence de $\lim_{k \to 0} c_k(L) \ e^{ik\pi z}$ par comparaison.

III.B.1. Si $e = (e_1 - e_1)$ désigne la base canonique, on pose

$$v_1 = \frac{1}{2}(e_1 - e_2)$$
; $v_2 = \frac{1}{2}(e_1 + e_2)$; ; $v_{2i-1} = \frac{1}{2}(e_{2i-1} - e_{2i})$; $v_{2i} = \frac{1}{2}(e_{2i-1} + e_{2i})$;

On définit ainsi une base orthogonales qui satisfait v_i $v_i = \frac{1}{2}$

III.B.2.a. On a ${}^t\left(P_e^v\right)P_e^v=(c_{ij})$ où $c_{ij}=v_i\,v_j,$ de sorte que

$$^{t}\left(P_{e}^{v}\right)P_{e}^{v}=\operatorname{Diag}\left(v_{1}\;v_{1}\;v\;v\;\right)\;\operatorname{et}\;\left(\det P_{e}^{v}\right)^{2}=\underset{j=1}{\left(v_{j}\;v_{j}\right)}.$$

III.B.2.b. La question précédente et III.A.2.b donnent

$$(\operatorname{Vol}(R))^2 = (\det P_e^v)^2 = (v_j \ v_j) = \frac{1}{2} \ \text{et} \ (\operatorname{Vol}(R))^2 = (\det P_e^v)^2 = (v_j \ v_j)$$

d'où

$$\left(v_j \ v_j\right) = \frac{1}{2} \tag{1}$$

Si l'on pose $v_j = a_{kj}v_k$ où a_{kj} \mathbb{Z} , alors

$$v_j \ v_j = \frac{1}{2} \sum_{j=1}^{n} a_{kj}^2 \ge \frac{1}{2}$$
 (2)

(1) et (2) impliquent v_j $v_j=\frac{1}{2}$ pour tout j, donc $a_{kj}^2=1$ pour tout j, et cela montre que tous les entiers a_{kj} sont nuls un qui vaut ± 1 . Comme v est une base, il existera nécessairement des entiers j $(1 \le j \le)$.valant ± 1 tels que

$$\begin{cases} v_1 & v \end{cases} = {}_1v_1 & v$$

Par conséquent l'image de l'ensemble $\ v_1 \ v$ par la surjection canonique de R sur R $\ 2R$ sera égale à celle de $\ v_1 \ v$.

III.B.3. On a $\Omega = \overline{v}_1 \quad \overline{v} \subset R$ 2R. L'application

$$\Psi: \quad \begin{array}{ccc} \mathcal{P}\left(\Omega\right) & & & & \\ \overline{v}_{i_1} & \overline{v}_{i_m} & & & \\ \hline \end{array} \qquad \begin{array}{cccc} \frac{R & 2R}{v_{i_1} + & + v_i} \end{array}$$

est bien définie, est surjective. Elle est linéaire : on a en effet

$$\Psi\left(\begin{array}{ccc} \overline{v}_{i_1} & \overline{v}_{i_m} + \overline{v}_{j_1} & \overline{v}_{j_t} \end{array}\right) = \overline{v_{i_1} + v_{i_m}} + \overline{v_{j_1} + v_{j_1}} + \overline{v_{j_1} + v_{j_2}}$$

puisque les éléments qui disparaissent de la somme \overline{v}_{i_1} \overline{v}_{i_m} + \overline{v}_{j_1} \overline{v}_{j_t} sont ceux qui appartiennent à la fois à \overline{v}_{i_1} \overline{v}_{i_m} et à \overline{v}_{j_1} \overline{v}_{j_t} , et que les classes \overline{v} correspondnat à ces éléments sont alors comptés 2 fois dans le membre de droite, et disparaissent de la somme puisque $\overline{v} + \overline{v} = \overline{0}$. On constate aussi

$$\left\{ \begin{array}{ccc} & \Psi\left(\overline{0} & \overline{v}_{i_{1}} & \overline{v}_{i_{m}} \right) = \Psi\left(\right. \right) = \overline{0} = \overline{0} \; \Psi\left(\right. \; \overline{v}_{i_{1}} & \overline{v}_{i_{m}} \right) \\ \Psi\left(\overline{1} & \overline{v}_{i_{1}} & \overline{v}_{i_{m}} \right) = \Psi\left(\right. \; \overline{v}_{i_{1}} & \overline{v}_{i_{m}} \right) = \overline{v}_{i_{1}} + v_{i} = \overline{1} \; \Psi\left(\right. \; \overline{v}_{i_{1}} & \overline{v}_{i_{m}} \right) \end{array} \right. \label{eq:psi_eq}$$

 Ψ est injective car sont noyau est réduit à (c'est le vecteur nul de $\mathcal{P}(\Omega)$).

Les systèmes (\overline{v}_1 \overline{v}) et (\overline{v}_1 \overline{v}) sont des bases respectives de $\mathcal{P}(\Omega)$ et de R 2R, de sorte que montrer que α et β , bilinéaires, se correspondent via Ψ revient à montrer qu'elles se correspondent sur chacun des couples de vecteurs de la base (\overline{v}_1 \overline{v}). C'est évident puisque :

$$\alpha \left(\begin{array}{cc} \overline{v}_i & \overline{v}_j \end{array} \right) = \overline{\overline{v}_i \setminus \overline{v}_j} = \left\{ \begin{array}{cc} \overline{0} \text{ si } i = j \\ \overline{1} \text{ sinon.} \end{array} \right.$$

et

$$\beta \left(\Psi \left(\ \overline{v}_{i} \ \right) \ \Psi \left(\ \overline{v}_{j} \ \right) \right) = \overline{2v_{i} \ v_{j}} = \left\{ \begin{array}{l} \overline{0} \ \mathrm{si} \ i = j \\ \overline{1} \ \mathrm{sinon}. \end{array} \right.$$

III.B.4.a. On a

$$R \stackrel{\pi}{=} R 2R \qquad \stackrel{\Psi}{=} \mathcal{P}(\Omega)$$

$$\overline{v_{i_1} + v_{i_m}} \stackrel{\nabla}{=} \overline{v_{i_1}} \overline{v_{i_m}}$$

et plusieurs façons d'écrire $L(\mathcal{C})$:

$$L(\mathcal{C}) = \pi^{-1}(\mathcal{C}) = v \quad R \quad x = \overline{v}_{i_1} \quad \overline{v}_{i_m} \quad \mathcal{P}(\Omega) \quad \overline{v} = \overline{v}_{i_1} + v_{i_m}$$

$$= v \quad R \quad x = \overline{v}_{i_1} \quad \overline{v}_{i_m} \quad \mathcal{P}(\Omega) \quad \mu_i \quad \mathbb{Z} \quad v - (v_{i_1} + v_{i_m}) = 2\mu_i v_i \quad (1)$$

$$= v \quad R \quad x = \overline{v}_{i_1} \quad \overline{v}_{i_m} \quad \mathcal{P}(\Omega) \quad \mu_i \quad \mathbb{Z} \quad v - (v_{i_1} + v_{i_m}) \quad 2R$$

$$= v \quad R \quad x = \overline{v}_{i_1} \quad \overline{v}_{i_m} \quad \mathcal{P}(\Omega) \quad v = \lambda_i v_i \text{ et } \lambda_i \text{ impair ssi } i \quad i_1 \quad i_m \quad (2)$$

En prenant x= dans (2), on constate que $2R\subset L(\mathcal{C})\subset R$. L'ensemble $L(\mathcal{C})$ est un sous-groupe de R comme image réciproque du groupe additif \mathcal{C} par π . L'écriture (1) montre, par ailleurs, que le groupe $L(\mathcal{C})$ est engendré par la famille $2v_1$ 2v $v_{i_1}+ +v_{i_m}$ i_1 $i_m\subset \mathbb{N}$. La question **III.A.3** prouve alors que $L(\mathcal{C})$ est un réseau.

III.B.4.b. \triangleright Pour montrer l'égalité $(2R)^0 = R$ on peut supposer, sans restreindre la généralité, que $(v_1 \quad v)$ est choisie comme en **III.B.1**. Alors

$$(2R)^{0} = v \quad \mathbb{Q} \qquad w \quad 2R \quad v w \quad \mathbb{Z}$$

$$= v = \lambda_{i} v_{i} \quad \mathbb{Q} \qquad w = 2\mu_{i} v_{i} \quad 2R \qquad \lambda_{i} \mu_{i} \quad \mathbb{Z}$$

$$= v = \lambda_{i} v_{i} \quad \mathbb{Q} \quad \lambda_{i} \quad \mathbb{Z} \quad = R$$

▶ L'inclusion $2R \subset L(\mathcal{C})$ entraı̂ne $L(\mathcal{C})^0 \subset (2R)^0 = R$. Donc

$$L(\mathcal{C})^{0} = v \quad R \quad w \quad L(\mathcal{C}) \quad v \, w \quad \mathbb{Z}$$

$$= v \quad R \quad w \quad L(\mathcal{C}) \quad 2 (v \, w) \quad 2\mathbb{Z}$$

$$= \left\{ v \quad R \quad \overline{w} \quad \mathcal{C} \quad \beta \left(\overline{v} \ \overline{w} \right) = \overline{2v \, w} = \overline{0} \right\} = L(\mathcal{C}^{0})$$

III.B.4.c. Comme $\pi: R$ R 2R est surjective, $\pi(L(\mathcal{C})) = \pi(\pi^{-1}(\mathcal{C})) = \mathcal{C}$ et l'image $(\overline{u}_1 \quad \overline{u})$ de $(u_1 \quad u)$ engendrera l'espace vectoriel \mathcal{C} . Si $j \geq d+1$ alors \overline{u}_j sera combinaison linéaire de $\overline{u}_1 \quad \overline{u}_d$, disons $\overline{u}_j = \int_{i=1}^d i\overline{u}_i$, donc

$$u_j - \int_{i=1}^{d} u_i \quad 2R$$

Il suffit de poser $x_j = \int_{i=1}^{d} u_i u_i$ X pour obtenir $u_j = u_j - x_j$ 2R.

III.B.4.d. \blacktriangleright Le système $\begin{pmatrix} u_1 & u_d & u_{d+1} & u \end{pmatrix}$ est une base de \mathbb{Q} et engendre $L(\mathcal{C})$ (puisque $\begin{pmatrix} u_1 & u \end{pmatrix}$ une \mathbb{Z} -base de $L(\mathcal{C})$), donc est une \mathbb{Z} -base de $L(\mathcal{C})$.

▶ On a vu que $2R \subset L(\mathcal{C})$ en **III.B.4.b** , de sorte que tout v-2R s'écrive sous la forme

$$v = \int_{i=1}^{d} \lambda_i u_i + \sum_{i=d+1}^{d} \lambda_i u_i$$

Cela entraîne $\overline{0} = \bigcup_{i=1}^d \overline{\lambda}_i \overline{u}_i$, donc $\overline{\lambda}_1 = \overline{\lambda}_d = 0$ (puisque $(\overline{u}_1 \quad \overline{u}_d)$ est une base). Par conséquent v s'écrira

$$v = \int_{i=1}^{d} \mu_i (2u_i) + \lambda_i u_i \text{ avec } \mu_i \lambda_i \quad \mathbb{Z}$$

et cela prouve que le système $(2u_1 \quad 2u_d \ u_{d+1} \quad u)$ engendre le groupe 2R. Comme ce système est clairement une base de \mathbb{Q} , on peut affirmer que c'est une \mathbb{Z} -base de 2R.

ightharpoonup Si e désigne la base canonique de $\mathbb Q\,$, ce qui précède entraı̂ne par définition :

$$Vol(2R) = \left| \det_e \left(2u_1 \quad 2u_d \ u_{d+1} \quad u \right) \right|$$
$$= 2^d \left| \det_e \left(u_1 \quad u_d \ u_{d+1} \quad u \right) \right| = 2^d Vol(R) \quad (*)$$

Mais $Vol(2R) = 2 \ Vol(R)$, et **III.B.2.b** donne $Vol(R) = 2^{-\frac{1}{2}}$. En reportant dans (*), on obtient bien

$$\operatorname{Vol}(L(\mathcal{C})) = 2^{\frac{1}{2} - \dim(\mathcal{C})}$$

III.B.5.a. Posons z = a + ib où b > 0. Alors

$$\left| e^{i2\pi \left(k + \frac{1}{2}\right)^2 z} \right| = e^{-b2\pi \left(k + \frac{1}{2}\right)^2} = o\left(\frac{1}{k^2}\right) \text{ et } \left| e^{i2\pi k^2 z} \right| = e^{-b2\pi k^2} = o\left(\frac{1}{k^2}\right)$$

prouve que les deux séries $+ e^{i2\pi\left(k+\frac{1}{2}\right)^2z}$ et $+ e^{i2\pi k^2z}$ sont absolument convergentes lorsque z est fixé tel que $\mathrm{Im}\left(z\right)>0$.

III.B.5.b. On a

οù

$$v_{h} = \left| \left\{ \left(m_{1} \quad m_{x} \ n_{1} \quad n_{-x} \right) \quad \mathbb{Z} \quad \left\{ \begin{array}{l} m_{j} \text{ impair et } n_{j} \text{ pair,} \\ m_{1}^{2} + m_{x}^{2} + n_{1}^{2} + \dots + n_{-x}^{2} = h \end{array} \right\} \right|$$

III.B.5.c. On a bien

$$\theta_{L(\mathcal{C})}\left(z\right) = e^{i\pi\left(v\;v\right)z} = \int_{h=0}^{+} d_{h}e^{i\pi\frac{h}{2}z} \text{ où } d_{h} = \left| \left\{ v \quad L\left(\mathcal{C}\right) \quad v\;v = \frac{h}{2} \right\} \right|$$

III.B.5.d. Comme $L(\mathcal{C}) \subset R$ tout $v = L(\mathcal{C})$ s'écrit $v = \lambda_j v_j = \mathbb{Z}$. Posons $x = \overline{v}_{i_1} = \overline{v}_{i_m}$ identifié à $\overline{v}_{i_1} + \overline{v}_{i_m}$ par l'isomorphisme $\Psi : R \ 2R = \mathcal{P}(\Omega)$. On a

$$v = \lambda_{j}v_{j}$$

$$v = \Lambda_{hx}$$

$$\overline{v} = \sum_{j=1}^{j=1} \overline{\lambda}_{j}\overline{v}_{j} = x = \overline{v_{i_{1}} + \dots + v_{i_{m}}}$$

$$v = \lambda_{j}v_{j}$$

$$\lambda_{j} \text{ est } \begin{cases} \text{ impair si } j & i_{1} & i_{m} \\ \text{ pair sinon.} \end{cases}$$

$$v = \lambda_{j}v_{j}$$

$$\lambda_{j} \text{ est } \begin{cases} \text{ impair si } j & i_{1} & i_{m} \\ \text{ pair sinon.} \end{cases}$$

$$v = \lambda_{j}v_{j}$$

$$\lambda_{j} \text{ est } \begin{cases} \text{ impair si } j & i_{1} & i_{m} \\ \text{ pair sinon.} \end{cases}$$

 donc

onc
$$\Lambda_{h \, x} = \left| \begin{array}{ccc} (\lambda_1 & \lambda &) & \mathbb{Z} & \lambda_j \text{ est } \left\{ \begin{array}{ccc} \text{impair si } j & i_1 & i_m \\ \text{pair sinon.} & & & \\ \end{array} \right., \text{ et } \left. \begin{array}{c} \lambda_j^2 = h \\ \end{array} \right| \\ = v_h$$

En conclusion

$$d_h = \Lambda_h = \Lambda_{h x} = v_h \text{ et } P_{\mathcal{C}}(2(z) - 3(z)) = \theta_{L(\mathcal{C})}(z)$$