Exercise sheet 4

- 1. Prove the following consequences of the Van Kampen theorem (try to prove each of them in detail using both versions of the theorem). In each case, we assume that $U \cap V$ is simply connected:
 - a. If U and V are simply connected open subsets of X that cover X, then prove that X is simply connected.
 - b. If U and V are open subsets of X that cover X, and V is simply connected, then prove that the inclusion map $i:U\to X$ induces a surjection whose kernel is the smallest normal subgroup containing $j_*(\pi_1(U\cap V))$, where $j:U\cap V\to U$, is the inclusion map.
 - c. If U and V are open subsets of X that cover X, and $U \cap V$ is simply connected, then prove that $\pi_1(X)$ is isomorphic to $\pi_1(U) * \pi_1(V)$.
- 2. Use the previous question to compute the fundamental groups of:
 - a. S^n , for $n \geq 2$.
 - b. The projective plane realized as a closed 2-disk with the antipodal points on the boundary identified. (Hint: Let U be the projective plane minus a point and V be a small disk containing that point. What does U deformation retract to? Find a loop, γ , representing a generator of its fundamental group. How does γ relate with a loop representating the generator of $\pi_1(U \cap V)$?)
 - c. The connected sum of two projective planes.
- 3. Can you construct a space whose fundamental group is $\mathbb{Z}/n\mathbb{Z}$ for any given natural number n? (Hint: try generalizing the projective plane example) How about constructing a space whose fundamental group is any given abelian group?
- 4. A space is said to be an n dimensional manifold if each point on it has an open neighbourhood that is homeomorphic to \mathbb{R}^n . Prove that the fundamental group of a manifold of dimension greater than or equal to 3 remains unchanged if you delete a point from the manifold.
- 5. Along with problem 6 from exercise set 2, this should help you to prove that if A is a closed subset of \mathbb{R}^2 which is homeomorphic to \mathbb{R} , then $\mathbb{R}^2 \setminus A$ is disconnected:
 - a. Let $\mathbb{R}^3_{+\epsilon}$ denote the subspace $\{(x,y,z)\in\mathbb{R}^3\mid z>-\epsilon\}$ and $\mathbb{R}^3_{-\epsilon}$ denote the subspace $\{(x,y,z)\in\mathbb{R}^3\mid z<\epsilon\}$. Prove that $U:=\mathbb{R}^3_{+\epsilon}\setminus(A\times \mathbb{R}^3)$

- $(-\epsilon,0]$) deformation retracts onto $\mathbb{R}^3_+ \setminus A$, $V := \mathbb{R}^3_{-\epsilon} \setminus (A \times [0,\epsilon))$ deformation retracts onto \mathbb{R}^3_- and $U \cap V$ deformation retracts onto $\mathbb{R}^2 \setminus A$.
- b. Prove that if $\mathbb{R}^2 \setminus A$ is connected then so is $U \cap V$.
- c. Prove that if we assume that $\mathbb{R}^2 \setminus A$ is connected, then the fundamental group of $\mathbb{R}^3 \setminus A$ must be trivial. Use exercise 6 from exercise set 2. Why does this lead to a contradiction?
- 6. Use the previous exercise to prove that if C is a closed subspace of S^2 which is homeomorphic to S^1 , then $S^2 \setminus C$ is disconnected. (Hint: S^2 minus a single point is homeomorphic to \mathbb{R}^2 . By removing C, you have removed a lot more than one point!)