$\int \csc u \, du = \ln|\csc u - \cot u| + c$

انتگرال

ویژگیها، فرمولها و قوانین حاکم		
و حواتیل حاق	ویرنی، درمونه	
$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$	$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$	
$\int_{a}^{b} f(x) dx = F(x) _{a}^{b} = F(b) - F(a)$ $F(x) = \int f(x)dx$	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$	
$\int_{a}^{a} f(x) dx = 0$	$\int_{a}^{b} c dx = c(b - a)$	
$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$	$\int cf(x)dx = c \int f(x)dx$	
انتگرال توابع چند جملهای و کسری		
$\int dx = x + c$	$\int kdx = kx + c$	
$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$	$\int \frac{1}{x} dx = \ln x + c$	
$\int x^{-n} dx = \frac{1}{1 - n} x^{1 - n} + c, n \neq 1$	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + c$	
$\int x^{\frac{p}{q}} dx = \frac{1}{\frac{p}{q} + 1} x^{(\frac{p}{q} + 1)} + c = \frac{q}{q + p} x^{\frac{p+q}{q}} + c$	$\int (ax+b) dx = \frac{a}{2}x^2 + bx + c$	
انتگرال توابع مثلثاتی		
$\int \cos u du = \sin u + c$	$\int \csc u \cot u du = -\csc u + c$	
$\int \sin u du = -\cos u + c$	$\int \csc^2 u \ du = -\cot u + c$	
$\int \sec^2 u \ du = \tan u + c$	$\int \tan u \ du = \ln \sec u + c$	
$\int \sec u \tan u \ du = \sec u + c$	$\int \cot u du = \ln \sin u + c$	
$\int \sec u \ du = \ln \sec u + \tan u + c$	$\int \sec^3 u du = \frac{1}{2} (\sec u \tan u + \ln \sec u + \tan u) + c$	

 $\int \csc^3 u du = \frac{1}{2} (-\csc u \cot u + \ln|\csc u - \cot u|) + c$

انتگرال توابع لگاریتمی و نمایی

$\int e^u du = e^u + c$	$\int \ln u du = u \ln u - u + c$
$\int a^u du = \frac{a^u}{\ln a} + c$	$\int ue^u du = (u-1)e^u + c$
$\int \frac{1}{u \ln u} du = \ln \ln u + c$	$\int e^{au}\sin(bu) = \frac{e^{au}}{a^2 + b^2}(a\sin(bu) - b\cos(bu)) + c$
$\int ue^{cu}du = \frac{e^{cu}(cu-1)}{c^2} + c$	$\int e^{au}\cos(bu) = \frac{e^{au}}{a^2 + b^2}(a\cos(bu) + b\sin(bu)) + c$

انتگرال توابع معکوس مثلثاتی

$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \frac{u}{a} + c$$

$$\int \tan^{-1} u \, du = u \tan^{-1} u - \frac{1}{2} \ln(1 + u^2) + c$$

$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + c$$

$$\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + c$$

$$\int \frac{1}{u \sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1} \left(\frac{u}{a}\right) + c$$

$$\int \sin^{-1} u \, du = u \sin^{-1} u + \sqrt{1 - u^2} + c$$

انتگرال توابع هایپربولیکی

$\int \sinh u du = \cosh u + c$	$\int \operatorname{sech} u \tanh u \ du = -\operatorname{sech} u + c$
$\int \cosh u du = \sinh u + c$	$\int \operatorname{csch} u \operatorname{coth} u \ du = -\operatorname{csch} u + c$
$\int \tanh u du = \ln \cosh u + c$	$\int \operatorname{sech} u du = \tan^{-1} \sinh u + c$
$\int \operatorname{sech}^2 u du = \tanh u + c$	$\int \operatorname{csch}^2 u du = -\coth u + c$

انتگرال چند تابع پرکاربرد

$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + c$$

$$\int \frac{1}{u^2 - a^2} du = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c$$

$$\int \sqrt{a^2 + u^2} du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln \left| u + \sqrt{a^2 + u^2} \right|$$

$$\int \sqrt{u^2 - a^2} du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + c$$

$$\int \sqrt{2au - u^2} du$$

$$\int \sqrt{2au - u^2} du$$

$$= \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \frac{a - u}{a} + c$$

$$= \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \frac{a - u}{a} + c$$

روشهای انتگرالگیری

حاصل انتگرالی به صورت $\int_a^b f(g(x))g'(x)\,dx$ با استفاده از روش تغییر متغیر، برابر با $\int_{g(a)}^{g(b)} f(u)du$ است. در ابتدا تغییر متغیر u=g(x) در نظر گرفته شده و با جایگذاری آن در انتگرال مفروض، پاسخ به دست آمده است.

فرمول استاندارد انتگرال جز به جز به صورت زیر است.

$$\int u dv = uv - \int v du$$

بنابراین، در ابتدا u و u را شناسایی کرده و با جایگذاری آنها در رابطه فوق، حاصل انتگرال محاسبه می شود.

تغییر متغیر مثلثاتی	
$\sqrt{a^2 - b^2 x^2} \to x = -\frac{a}{b} \sin \theta$	$\sqrt{b^2 x^2 - a^2} \to x = \frac{a}{b} \sec \theta$
$\sqrt{a^2 + b^2 x^2} \to x = -\frac{a}{b} \tan \theta$	$\sqrt{a^2 - x^2} \to x = a \sin \theta$
$\sqrt{a^2 + x^2} \to x = a \tan \theta$	$\sqrt{x^2 - a^2} \to x = a \sec \theta$

کاربردهای انتگرال

مساحت سطح

حاصل $\int_a^b f(x) dx$ برابر با مساحت سطح زیر نمودار تابع f(x) از x=a تا x=b است. بخش قرار گرفته زیر محور x منفی و بخش بالای محور مثبت است.

مساحت بین دو نمودار

مساحت بین دو نمودار در یک بازه برابر با انتگرال اختلاف دو تابع است. اشکال زیر سه حالت مختلفِ محاسبه مساحت بین نمودار را نشان میدهند.

$$A = \int_{a}^{b} f(x) - g(x) \, dx$$

$$A = \int_{c}^{d} f(y) - g(y) \, dy$$

$$A = \int_a^c f(x) - g(x) dx + \int_c^b g(x) - f(x) dx$$

a - f(x): شعاع خارجی

حجم ایجاد شده در نتیجه دوران

دو فرمول اصلی به منظور محاسبه حجم، $V=\int_a^b A(x)\,dy$ و $V=\int_a^b A(y)\,dy$ دو فرمول اصلی به منظور محاسبه حجم، منظور محاسبه A (مساحت) ارائه شده است.

استوانهها

فرمول محاسبه مساحت جانبی یک استوانه برابر است

$$A = 2\pi \times شعاع \times A$$
عرض

فرمول محاسبه مساحت یک حلقه با شعاعهای داخلی و خارجی برابر است با:

$$A = \pi$$
شعاع داخلی – شعاع خارجی)

a-y: شعاع

$$f(y) - g(y)$$
 : عرض

|a| + y : شعاع

$$f(y) - g(y)$$
 : عرض

|a|+g(x): شعاع خارجی

$$a-g(x)$$
: شعاع داخلی $|a|+f(x)$: شعاع داخلی

کار

اگر نیروی F(x) جسمی را در بازه a < x < b جابهجا کند، کار انجام شده برابر است با:

$$w = \int_{a}^{b} F(x) \, dx$$

مقدار متوسط تابع

مقدار متوسط تابع f(x) در بازه $a \le x \le b$ برابر

$$F_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

انتگرال ناسره

انتگرال ناسره به انتگرالی گفته میشود که یک یا دو سر بازه انتگرال گیری در آن بینهایت باشد. به انتگرال ناسرهای که مقدار مشخصی داشته باشد، همگرا و در غیراینصورت واگرا گفته میشود.

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{0}^{t} f(x) dx$$

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

انتگرال به صورت $\lim_{t\to h^-}\int_a^t f(x)\,dx$ انتگرال به صورت

انتگرال ناپیوسته

اگر $\int_a^b f(x)\,dx$ در نقطه a ناپیوسته باشد، آنگاه انتگرال اگر $\int_a^b f(x)\,dx$ در نقطه a ناپیوسته باشد، آنگاه به صورت $\lim_{t\to a^+} \int_t^b f(x) dx$ به صورت

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

تقريب انتگرال معين

 $\Delta x = \Delta x$ انتگرال $\int_a^b f(x) \, dx$ و عدد n مفروض است (در روش سیمپسون n بایستی فرد باشد). با استفاده از تعریف $x_n = b$ و $x_0 = a$ و تقسیم کردن بازه [a,b] به بازههای [a,b] به بازههای [a,b] به بازههای [a,b] به بازههای زیر محاسبه کرد. x_i^* نیز برابر با نقطه میانی بازه ام در نظر گرفته میشود.

روش نقطه میانی

$$\int_{a}^{b} f(x) dx \approx \Delta x [f(x_{1}^{*}) + f(x_{2}^{*}) + \dots + f(x_{n}^{*})]$$

روش ذوزنقهای

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_2) + 2f(x_3) + 2f(x_4) \dots + 2f(x_{n-1}) + 2f(x_n)]$$

روش سیمپسون (Simpson's Rule)

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

مجموعه آموزشهای جامع ریاضیات فرادرس (+کلیک کنید)

برای مشاهده دیگر «تقلبنامههای» مجله فرادرس، به این لینک مراجعه فرمایید.

جهت آگاهی از آخرین تقلبنامههای منتشر شده، در کانال تلگرام مجله فرادرس عضو شوید.

تهیه و تنظیم: مجله فرادرس

