ALGEBRA 1B, Lista 4

Niech G będzie grupą i $n \in \mathbb{N}_{>0}$.

1. Udowodnić, że

$$(\mathbb{Z}_2, +_2) \times (\mathbb{Z}_3, +_3) \cong (\mathbb{Z}_6, +_6).$$

Jak można uogólnić ten wynik?

- 2. Opisać orbity działania $GL_n(\mathbb{R})$ na \mathbb{R}^n .
- 3. Niech (A, +) będzie grupą przemienną. Udowodnić, że poniższy wzór

$$\forall a \in A$$
 $0 \cdot a = a, 1 \cdot a = -a$

zada je działanie \mathbb{Z}_2 na A poprzez automorfizmy. Wskazać odpowiadający temu działaniu homomorfizm $\Psi: \mathbb{Z}_2 \to \operatorname{Aut}(A)$. Kiedy Ψ jest monomorfizmem?

- 4. Udowodnić, że:
 - (a) Dla każdego $k \in \mathbb{Z}_n$ funkcja

$$\phi_k: (\mathbb{Z}_n, +_n) \to (\mathbb{Z}_n, +_n), \quad \phi_k(x) = k \cdot_n x$$

jest endomorfizmem.

- (b) Jeśli $\phi: (\mathbb{Z}_n, +_n) \to (\mathbb{Z}_n, +_n)$ jest endomorfizmem, to istnieje $k \in \mathbb{Z}_n$ takie, że $\phi = \phi_k$.
- (c) Jeśli $k, l \in \mathbb{Z}_n$, to $\phi_k \circ \phi_l = \phi_{k \cdot n l}$.
- (d) Jeśli $k \in \mathbb{Z}_n^*$, to $\phi_k \in \operatorname{Aut}(\mathbb{Z}_n, +_n)$.
- (e) Funkcja

$$\Phi: \mathbb{Z}_n^* \to \operatorname{Aut}(\mathbb{Z}_n, +_n), \quad \Phi(k) = \phi_k$$

jest izomorfizmem.

- 5. Załóżmy, że istnieje $g \in G$ taki, że rząd $(g) \neq 1,2$. Udowodnić, że $\operatorname{Aut}(G) \neq \{\operatorname{id}_G\}$.
- 6. Wyznaczyć centrum S_3 i centrum D_4 .
- 7. Dla $n \ge 3$, opisać klasę sprzężoności (123) w S_n .
- 8. Niech $H \leq G$. Udowodnić, że $|G/H| = |H \setminus G|$.
- 9. Udowodnić, że wszystkie automorfizmy S_3 są wewnętrzne.
- 10. Udowodnić, że jeśli $H \leq G$ oraz [G:H]=2, to $H \leq G$ (tzn. dla każdego $g \in G$ mamy gH=Hg).