D

FEM Summary

- · Belongs to general class of WR methods
 - Residual "orthogonal" to first N Members of completest
 - Residual "an averge" equal to ters
 - Mimies familiar analytic techniques
- · FEMUtilizes localized low order Copolynsmats as basis/weighting functions
 - simple functions ... easy to interest differentiate
 - Single chais sutable for many problems
 - members of a complete set.
- · Lagrange Bases
 - single finction centered at each node ... local
 - easy to extend from linear to graduatic to cubic etc... only C.
 - element becomes localunit of interpolation and integration ... # noder felement dictate basis order.
 - FEM on 1D Lagrange (linear) looks just like FD except for Simpson's Rule like spreading of non-derivative teems

- · Matrix Assembly
 - donc element by element ... [A] = [A] = [A]
 - assemble all contributions from a single element once... i.e. deal with multiple rows and columns in slokel system of equation
 - use local node numbering scheme with a mapping (incidence list) to slobel system Of equations
 - Bes... Type I: remove Galerkin egration and enforce BC Statement directly

 Type II: place value in bounday integral and integrate... Type III Similar except get contribution multiplyin, U... must place but into LHS.
 - Unused Galerkin at Type I boundary 15 equation for the boundary flux.
- · Variable Coefficients
 - several strategies are possible... Can use element-based values... i.e. Constant on an element and different in different element
 - Node-based Colfficients ... Interpolate with same baser used to expand the solution
 - express analytically and integrate accordingly.

- · Two-dimensional Problems
 - invoke Green's theorem to allow use of linear bases ... also gields boundary integral convenent for type 2 and type 3 boundary data
 - Linear triangle ... popular, integrations simple and exact ... counterclockwise numbering convention ... element matrix 15 3 x 3
 - Bounday conditions ... through the bounday integral ... these become 10 integrations so 10 linear basis 15 appropriate
 - Banded Storage mode extential ... sows stay the same, but columns compressed ... half bandwidth is maximum différence between node numbers cuthin an element
 - FEM has similar conservation properties

 as FD. Priviso: mustuse all balentin equations

 Hinger of 2 6 = 1 and 2 24 = 0
- . Bilinear element
 - defined in Iscal Coordinate System ... for ease of integration
 - leads to concept of a bauss point matrix...

 i.e. evaluate all possible integrands at a

 gauss point for a given element... sum of

 Gauss point matrices results in element integration

- Need Jacobian of the transformation... Simple in this case; constant A/4 ... Use Gaussian quadrature which can integrate a polynomial of degree 2N6-1 exactly for N6 gauss points
- · Deformed Bilinear Element
 - utiliter concept of 150 parametriclement...

 i.e. geometry interpolated by a shape function...

 in 150 parametricase, shapefunction 15 same as basis for the solution... Can have Sub-and

 Superparametric elements as well.
 - Bilinear Case... lines of constant 3 or my
 are lines of constant slope in X-y space... must
 get the Jacobien and express derivatives in
 X-y space as derivatives in 3-y space
 - Higher order elements easy to generate ... always best to work in local continut space
 - Can do the Same for the linear transle...

 procedurally every thin, the same one the

 parant element is defined and associated

 bases in 3, 4 space
- · Transient Problems
 - baser are time invariant ... no dal valves become time-varying.
 - spatial discretization leads to Corpled oper in time ... Can use any methods from ENES69

- Can identify the "Mass" and "Itiflness" matrices

 RHS invokes matrix/vector product

 Several stratyres: Obvild a matrix ... prefert

 Store in sparsemed; banded OK, but ID vector

 best; @ reconstruct each time; invokes element

 assembly loop.... do everything at clement level
- Explicit Schemer on FEM possible... best approach "Nodal quadrature"... i.e. use a weaker quadrature which diagonalizes the mass metric, strategy is to apply "sows points" at the noder. must find new weights of that can integrate the ana of the element darty; apply this quadrature rule to all teems in the equation
- Stability / Accuracy ... Can use the Von Neumann analysis and amplification / propagation factor as in FD situation, Analysis done on uniform mesh of bitinear elements. Integral lumping leading exactly to FD molecule.
- Point Soveces ... easy on FEM since everything is already an integral ... when postible place at a node ... when interior to an element must

distribute proportionally amongst modes in the element.

- · Vector Problems on FE
 - have multiple equations and unknowns at each node ... generally, apply FE methods to each scalar component
 - Site of system grows. In 20 with X and y component where there had been a single number associated with each (i,j) combination; now have 4 number
 - Best to use vector identities to lower derivative orders in the area integrals and produce appropriate boundary integrals
 - Boundary quantities often supplied in a noemal tan costal framework... best to rotate the projections of the vector equations into manual tangential coordinate System; for symmetry also want to rotate variables... leads to a similarity transformation of pre- and post multiplication of the system matrix by a rotation matrix and its transpose... only do this Ar weightin, and busis finitions associated with boundary nodes.
- Can have situations with interface relations which need to be imposed as constraints ... conceptually Can view as a cloubling of nodes at the interface Instead, use interface relations to climinate one unknown in teams of the other.

- Bandwidth grows to twice the fell bandwidth of the scalar system plus 1.

- examples considered include continuum mechanis and electromagnetics.