数据科学R与Python实践

第08章黎曼

顾立平

等差级数

等差级数特性

求和公式

数列中任一项减前一项 的差为常数,该常数为 公差,这样的数列即为 等差数列,其前n项之 和为等差级数。

数列第二项起依次减去 第一项,所得新数列各 元素相等,此值即为公 差。 等差级数的求和公式为 S_n=n/2*(首项+末项), 其中S_n是前n项和, n 是项数。

匀加速运动与等差数列

物理中匀加速物体在相等时间间 隔内通过的距离成等差,位移公 式体现其数学规律。

药物剂量与等差关系

生物医学研究中,设定等差剂量 观察效应,剂量与反应关系系统 化分析。

工程设计中的等差序列

结构设计中,等差元素确保几何 力学要求,等差数列用于精确计 算和设计。

057 等差级数

```
R Console
                                                       0 0
                                                              23
> # 使用polygon函数绘制右侧拐点外部的区域,并着色为灰色85,设置边框为黑色
> polygon(c(-xlist,rev(-xlist)),c(Norm.u.s(xlist,0,2),0*rev(xlist)),
+ col="gray85", border="black")
> ## 使用矩形法对函数f(x)在区间[5, 11]上进行数值积分。
> # 定义一个函数f(x), 其计算公式为 (5 + exp(x) + (2.5)^x * sin(2*pi*x)) / 3000
> f = function(x) {
  (5 + \exp(x) + (2.5)^x * \sin(2 * \pi x)) / 3000
+ }
> # 计算dx, 即从5到11的区间被等分为19份, 每份的长度
> dx = (11 - 5) / 19
> # 生成一个等差数列, 起始值为5+dx/2, 终止值为11, 公差为dx
> # 这个数列表示每个小区间的中点
> mid = seq(5 + dx / 2, 11, dx)
> # 使用函数f计算每个中点的函数值,并与dx相乘,然后将所有结果求和
> # 这实际上是使用矩形法进行数值积分的一个近似计算
> sum(f(mid) * dx)
[1] 18.37171707954832911
```


商业领域的 应用

01

销售额预测方法

基于等差数列预测未来销售额,帮助企业制定生产与销售策略,适应市场需求变化。

02

等差级数贷款计算 应用

计算利息或分期付款总和 时,利用等差级数求和, 简化财务计算过程。

03

等差数列价格策略

商家通过设计价格递减的 促销活动,利用等差数列 知识制定价格策略,吸引 顾客。

数值积分

数值积分原理

通过黎曼积分理论,对无法直接求解的函数进行数值逼近,以获取定积分的近似值。

积分计算挑战

许多定积分无法用常规公式精确计算,特别是在面对复杂函数时。

数值积分方法

利用数学定义,采用如梯形法则、辛普森法则等数值技术,进行近似计算。

电子辅助应用

借助计算机和算法,能高效处理复杂积分问题,实现快速有效的数值积分计算。

058 数值积分

```
R Console
                                                          - - X
> # 定义一个函数g, 该函数以x为自变量, 函数值为e的-x次方
> g=function(x) {exp(-x)}
> # 使用integrate函数对函数g在区间[0,1]上进行数值积分
> integrate (g, 0, 1)
0.632120558828557777 with absolute error < 7e-15
> # 使用integrate函数对函数g在区间[0, 无穷大)上进行数值积分
> # 这里"Inf"代表无穷大
> integrate(g, 0, Inf)
0.9999999970182584796 with absolute error < 5.7e-05
> # 使用integrate函数对函数g在区间(-无穷大, 无穷大)上进行数值积分
> # 这里"-Inf"和"Inf"分别代表负无穷大和无穷大
> integrate(g,-Inf,Inf)
Error in integrate(g, -Inf, Inf) : non-finite function value
> # 重新定义函数g(尽管和前面的函数g定义一样,但这里为了代码的完整性还是重新定$
> g=function(x) {exp(-x)}
> # 使用integrate函数对函数g在区间[0,20000]上进行数值积分
> integrate (g, 0, 20000)
2.1707317132330973557e-08 with absolute error < 4.3e-08
```


用于计算质心、重心,模拟物体 运动路径,解决复杂力场中的运 动问题。

常用于动态系统建模,热量质量 传递分析,解决涉及复杂微分方 程的问题。

用于计算期权价格和风险价值,如在Black-Scholes模型中计算预期回报,解决金融数学问题。

商业领域的应用

数据分析与预测

利用数值积分解析历史数据,预测未来趋势,尤其适用于时间序列销售预测和市场动态分析。

金融模型验证

在金融行业,数值积分辅助验证模型,通过比较结果评估模型稳健性与风险评估准确性。

059 黎曼盒

数值积分计算重积分

数值积分用于近似计算多元函数在特定区域的积分值,处理解析求解困难或不可能的情况。

99

将积分区域细分为多个子 区间,简化复杂函数,便 于计算。

35

用近似函数替换被积函数, 对每个小区域积分,累积 得到近似积分值。

33

针对重积分,需对多个变量进行同步划分和近似,以准确评估函数的累积效应。

33

重积分解析

积分区域划分

近似函数应用

多变量同时处理

01 物理学中的数值积分

用于计算物体的质心、重心、转动惯量,处理复杂形状物体的分析。

(02) 流体力学与热传递模拟 通过网格划分,计算流体流动、热量传递和传质过程,求解相 关方程。

13 工程设计中的应用 分析结构应力分布、变形和稳定性,解决材料行为的方程问题。

电磁场分析与天线设计 计算电磁场分布、天线性能参数,通过求解电磁场方程进行精确分析。

060 数值积分计算重积分

```
R Console
                                                          - - X
> # 计算二重积分,外层积分变量为z,内层积分变量为x,被积函数为x*v,其中v被视作z$
> integrate(function(z) {
  sapply(z, function(y) {
  integrate(function(x) {x * y}, 0, 2)$value # 对每个z值(这里视作v), 计$
+ }, 0, 1) # 计算上述函数在[0,1]上的定积分
0.9999999999999988898 with absolute error < 1.1e-14
> # 类似地, 计算另一个二重积分, 被积函数改为4+x-y
> integrate (function(z) {
 sapply(z, function(y) {
   integrate(function(x) {4 + x - y}, 1, 2)$value # 对每个z值(视作v), 计$
+ }, 1, 3) # 计算上述函数在[1,3]上的定积分
7 with absolute error < 7.8e-14
> # 再次类似地, 计算一个更复杂的二重积分, 被积函数为x*exp(y)*sin(x)
> integrate(function(z) {
 sapply(z, function(y) {
   integrate(function(x) {x * exp(y) * sin(x)}, 0, pi / 2)$value # 对每个z$
+ }, -1, 1) # 计算上述函数在[-1,1]上的定积分
2.3504023872876027568 with absolute error < 2.6e-14
4
                   III
```


商业领域的应用

01

金融分析中的数值积分

用于计算期权定价模型中的预期回报和波动率,如 Black-Scholes模型。

03

数据科学与机器学习应用

计算复杂函数的梯度和Hessian矩阵,优化算法和神经网络训练。

02

市场趋势预测分析

通过数值积分处理时间序列数据,预测市场发展趋势和 潜在风险。

04

积分计算在图形分析中的应用 -> 图形分析的积分应用

确定曲线交点,计算定积分以求得两条曲线之间的面积,用于图形解析。

01

物理学:曲线积分法

用于计算变力作用下的功,通过 力与位移曲线的积分,同样适用 于电磁学中电场强度与电势差的 计算。 02

工程学: 截面分析

在结构工程中,通过绘制结构截 面轮廓线与参考线的面积来计算 惯性矩和面积矩,确保复杂结构 的稳定性分析。

061 两条曲线之间的面积

流体力学:流量 计算

通过流速与时间的曲 线积分,可得流体在 特定时间内的总流量, 为水力学和石油工程 等领域提供数据支持。

化学:动力学分 析

在化学反应中,利用 反应速率与时间曲线 的积分,可得反应物 浓度的减少或生成物 浓度的增加,便于理 解反应进程。

商业领域的应用

计算股票价格与基准线间面积,评估股票相对表现,辅助投资决策。

金融分析-股票市场

绘制产品销售量曲线,比较推广策略效果,通过面积评估策略优劣。

市场营销-策略评估

展示数学函数图形,分析定义域、值域及区间变化,直观理解函数性质。

图形解析-原函数图像

投资组合管理

绘制收益率曲线,计算与无风险收益间面积,分析风险与回报特性。

成本效益分析-项目评估

绘制项目成本与收益曲线,计算面积评估净现值,判断项目经济可行性。

01

物理图像的分析价值

运动学中的位移-时间图像,电磁学中的电场强度-位置图像,直观展示物理现象。

02

工程学中的函数图像

结构工程的应力-应变图像,控制工程的系统响应-时间图像,辅助解决工程问题。

03

生物学的动态展示

生态学中种群数量-时间图像,揭示生态系统动态平衡和物种相互作用。

062 绘制一个原函数的图像

商业领域的应用

金融分析图表设计

绘制股票价格时间序列图,展示收益率波动,辅助投资者判断市场动态,制定投资计划。

投资组合风险评估通过绘制风险-回报散点图,帮助投资者理解不同组合的风险收益特性,做出合理资产配置。

市场营销趋势分析 展示产品销售量与市场份额随时间的函数关系,协助营销人员洞察市场趋势,制定有效营销策略。

客户满意度可视化 绘制满意度与忠诚度图像,企业可识别影响因素,及时优化产品和服务,提升客户体验。

运营管理效率优化分析生产成本与库存量随生产变化的图像,帮助运营管理者发现效率瓶颈,制定优化生产策略。

数据科学R与Python实践

谢谢

gulp@mail.las.ac.cn