KNN

Łukasz Odwrot 218283 24.04.2018

Spis treści

1	Opis algorytmu knn	2
2	Badane zbiory	2
3	Normalizacja	4
4	Wpływ doboru metryki na wyniki	4
5	Badanie sposobu głosowania	6
6	Badanie parametru k	8
7	Badanie rozmiaru kroswalidacji	11
8	Porównanie wyników między różnymi metodami klasyfikacji	12
9	Wnioski	13

1 Opis algorytmu knn

Algorytm *K najbliższych sąsiadów* jest jednym z prostszych algorytmów klasyfikacji. Polega on na tym, że ze zbioru uczącego wybieranych jest k najbliższych wektorów (na podstawie atrybutów i wybranej metryki). Następnie na podstawie głosowania, w którym biorą udział wyselekcjonowane wektory ustala się przynależność nowego wektora do klasy. Zbadane zostaną następujące metody głosowania:

- 1. Uniform waga każdego wektora jest jednakowa,
- 2. Distance wartość głosu jest proporcjonalna do odległości, waga wynosi 1/dystans,
- 3. Squared Distance waga wynosi $1/dystans^2$.

Ponadto do sposobu liczenia odległości użyte zostaną następujące metryki

- 1. Euclidean: $\sqrt{\sum_{i=1}^{k}(x_i-y_i)^2}$,
- 2. Manhattan: $\left|\sum_{i=1}^{k} (x_i y_i)\right|$

2 Badane zbiory

Klasteryzacja badana będzie na 4 zbiorach.

Rysunek 1: Rozkład cech dla zbioru Wine

Rysunek 2: Rozkład cech dla zbioru Glass

Rysunek 3: Rozkład cech dla zbioru Diabetes

Rysunek 4: Rozkład cech dla zbioru Knowledge

3 Normalizacja

Wartości dla wszystkich zbiorów zostały znormalizowane, aby uniknąć przewagi jednego z atrybutów nad innymi. W przypadku instancji wine bez normalizacji wynik fscore wynosi 0.752, a w przypadku normalizacji danych wyniki wzrósł do 0.972.

4 Wpływ doboru metryki na wyniki

Dla każdego ze zbiorów zbadano wpływ doboru metryki na jakość klasyfikacji. Sposób głosowania dla tej próby zostanie ustawiony na squaredDistances, dla 5 sąsiadów oraz rozmiarze kroswalidacji 5.

Metric	Accuracy	Precision	Recall	FScore		
	Instanacja Wine					
euclidean	0.955	0.959	0.955	0.955		
manhattan	0.972	0.973	0.972	0.972		
		Instanacja Glass	;			
euclidean	0.66	, 0.672	0.668	0.665		
manhattan	0.682	0.684	0.682	0.677		
	Instanacja Diabetes					
euclidean	0.74	0.651	0.567	0.606		
manhattan	0.742	0.655	0.552	0.599		
Instanacja Knowledge						
euclidean	0.813	0.826	0.813	0.811		
manhattan	0.848	0.854	0.848	0.848		

Rysunek 5: Confusion Matrix dla zbioru Wine

Rysunek 6: Confusion Matrix dla zbioru Glass

Rysunek 7: Confusion Matrix dla zbioru Diabetes

Rysunek 8: Confusion Matrix dla zbioru Knowledge

Dla większości badanych zbiorów metryka *manhattan* daje lepsze rezultaty. Jedyny wyjątek stanowi zbiór *Diabetes*, ale może to być spowodowane losowością w procesie kroswalidacji.

5 Badanie sposobu głosowania

Dla wszystkich badanych zbiorów przetestowane zostaną różne metody głosowania. Badanie zostanie przeprowadzone dla parametru k=5, metryce manhatan i rozmiarze kroswalidacji 5.

Voting	Accuracy	Precision	Recall	FScore	
Wine					
uniform	0.966	0.968	0.966	0.966	
distance	0.972	0.973	0.972	0.972	
squaredDistances	0.972	0.973	0.972	0.972	
		Glass			
uniform	0.664	0.622	0.664	0.636	
distance	0.701	0.7	0.701	0.69	
squaredDistances	0.682	0.684	0.682	0.677	
	Diabetes				
uniform	0.75	0.671	0.556	0.608	
distance	0.747	0.664	0.56	0.607	
squaredDistances	0.742	0.655	0.552	0.599	
Knowledge					
uniform	0.841	0.85	0.841	0.84	
distance	0.856	0.864	0.856	0.855	
squaredDistances	0.848	0.854	0.848	0.848	

Rysunek 9: Confusion Matrix dla zbioru Wine

Rysunek 10: Confusion Matrix dla zbioru Glass

Rysunek 11: Confusion Matrix dla zbioru Diabetes

Rysunek 12: Confusion Matrix dla zbioru Knowledge

Głosowanie na podstawie dystansu zwykle daje najlepsze wyniki. Metoda *uniform* w przypadku zbioru *Glass* sprawiła, że do jednej z klas nie został zakwalifikowany żaden obiekt. Metody bazujące na dystansie potrafią skorygować sytuacje, gdy liczba obiektów w danej klasie nie jest zbyt duża.

6 Badanie parametru k

Dla sposobu pomiaru odległości *uniform* i *distance* zbadano wpływ parametru k dla wszystkich zbiorów przy metodzie liczenia odległości *manhatan* i rozmiarze kroswalidacji 5.

Metoda głosowania uniform				
k	Accuracy	Precision	Recall	FScore
		Wine		
2	0.955	0.958	0.955	0.955
3	0.961	0.963	0.961	0.96
4	0.972	0.974	0.972	0.972
5	0.966	0.968	0.966	0.966
7	0.955	0.957	0.955	0.955
10	0.978	0.979	0.978	0.978
15	0.961	0.963	0.961	0.96
20	0.961	0.963	0.961	0.96
50	0.955	0.959	0.955	0.955
		Glass		
2	0.626	0.637	0.626	0.628
3	0.673	0.685	0.673	0.672
4	0.659	0.66	0.659	0.652
5	0.701	0.7	0.701	0.69
7	0.692	0.699	0.692	0.679
10	0.673	0.704	0.673	0.649
15	0.664	0.702	0.664	0.639
20	0.64	0.593	0.64	0.604
50	0.631	0.586	0.631	0.582
		Diabetes		
2	0.72	0.699	0.347	0.464
3	0.727	0.626	0.537	0.578
4	0.728	0.677	0.422	0.52
5	0.75	0.671	0.556	0.608
7	0.732	0.657	0.485	0.558
10	0.741	0.723	0.418	0.53
15	0.758	0.716	0.507	0.594
20	0.758	0.741	0.47	0.575
50	0.751	0.794	0.388	0.521
		Knowledge		
2	0.774	0.794	0.774	0.777
3	0.841	0.847	0.841	0.841
4	0.821	0.833	0.821	0.822
5	0.841	0.85	0.841	0.84
7	0.851	0.864	0.851	0.849
10	0.836	0.852	0.836	0.834
15	0.851	0.872	0.851	0.848
20	0.843	0.872	0.843	0.84
50	0.751	0.805	0.751	0.738

Metoda głosowania distance				
k	Accuracy	Precision	Recall	FScore
		Wine		
2	0.944	0.949	0.944	0.943
3	0.961	0.963	0.961	0.96
4	0.955	0.958	0.955	0.955
5	0.972	0.973	0.972	0.972
7	0.955	0.957	0.955	0.955
10	0.966	0.968	0.966	0.966
15	0.961	0.963	0.961	0.96
20	0.966	0.968	0.966	0.966
50	0.966	0.968	0.966	0.966
		Glass		
2	0.626	0.637	0.626	0.628
3	0.673	0.685	0.673	0.672
4	0.659	0.66	0.659	0.652
5	0.701	0.7	0.701	0.69
7	0.692	0.699	0.692	0.679
10	0.673	0.704	0.673	0.649
15	0.664	0.702	0.664	0.639
20	0.64	0.593	0.64	0.604
50	0.631	0.586	0.631	0.582
		Diabetes		
2	0.704	0.586	0.522	0.552
3	0.72	0.614	0.534	0.571
4	0.725	0.624	0.534	0.575
5	0.747	0.664	0.56	0.607
7	0.73	0.649	0.496	0.562
10	0.75	0.692	0.511	0.588
15	0.762	0.725	0.511	0.6
20	0.758	0.718	0.504	0.592
50	0.755	0.767	0.429	0.55
		Knowledge		
2	0.801	0.804	0.801	0.802
3	0.851	0.857	0.851	0.851
4	0.843	0.85	0.843	0.843
5	0.856	0.864	0.856	0.855
7	0.858	0.868	0.858	0.857
10	0.878	0.893	0.878	0.876
15	0.871	0.887	0.871	0.869
20	0.858	0.884	0.858	0.855
50	0.781	0.827	0.781	0.77

Współczynnik k w przypadku metody głosowania *uniform* powinien być dobierany w taki sposób, aby nie było możliwości dopasowania wektor do takiej samej ilości reprezentantów innych klas. W przypadku metod bazujących na odległości nie ma to aż takiego znaczenia.

7 Badanie rozmiaru kroswalidacji

Dla każdego z badanych zbiorów zbadano jak ilość podziałów (a co z tym się wiąże wielkość ciągu uczącego) wpływa na jakość klasyfikacji. Zaimplementowana została kroswalidacja stratyfikowana. Pozostałe parametry zostały ustawione następująco: k=5, metryka="manhatan", sposób głosowania="distance".

Folds	Accuracy	Precision	Recall	FScore	
	Wine				
2	0.944	0.949	0.944	0.943	
3	0.961	0.964	0.961	0.96	
4	0.972	0.973	0.972	0.972	
5	0.972	0.973	0.972	0.972	
6	0.966	0.968	0.966	0.966	
7	0.966	0.968	0.966	0.966	
8	0.972	0.973	0.972	0.972	
9	0.972	0.973	0.972	0.972	
10	0.972	0.973	0.972	0.972	
		Glass			
2	0.593	0.57	0.593	0.575	
3	0.636	0.617	0.636	0.621	
4	0.668	0.665	0.668	0.658	
5	0.701	0.7	0.701	0.69	
6	0.706	0.706	0.706	0.694	
7	0.696	0.698	0.696	0.687	
8	0.682	0.683	0.682	0.676	
9	0.692	0.703	0.692	0.682	
10	0.701	0.706	0.701	0.69	
		Diabetes			
2	0.74	0.655	0.537	0.59	
3	0.75	0.674	0.549	0.605	
4	0.747	0.67	0.545	0.601	
5	0.747	0.664	0.56	0.607	
6	0.732	0.641	0.526	0.578	
7	0.736	0.641	0.552	0.593	
8	0.738	0.648	0.549	0.594	
9	0.738	0.648	0.549	0.594	
10	0.743	0.656	0.556	0.602	
Knowledge					
2	0.846	0.855	0.846	0.846	
3	0.843	0.852	0.843	0.843	
4	0.856	0.865	0.856	0.855	
5	0.856	0.864	0.856	0.855	
6	0.873	0.881	0.873	0.872	
7	0.861	0.87	0.861	0.86	
8	0.858	0.867	0.858	0.858	
9	0.861	0.868	0.861	0.86	
10	0.856	0.864	0.856	0.856	

8 Porównanie wyników między różnymi metodami klasyfikacji

Dla każdego z algorytmów wybrane zostały optymalne parametry dla każdego ze zbiorów. Do porównania posły nam wyznacznik $\emph{F-score}.$

Data Set	Bayes	C4.5	knn
Wine	0.957	0.932	0.972
Glass	0.646	0.691	0.690
Diabetes	0.748	0.816	0.608

Rysunek 13: Porównanie działania algorytmów dla trzech zbiorów.

9 Wnioski

Mimo relatywnie prostego działania algorytm knn, daje dobre wyniki. Dla zbioru otrzymane wyniki są nawet lepsze niż dla pozostałych zbiorów. Dla dużych zbiorów dość szybko wzrasta czas potrzebny na selekcję najbliższych sąsiadów.