一、 实验目的与要求

(1) 实验对象简介

图 1 单端反激变换器总电路

单端反激变换器是一种常见的带隔离直流-直流功率变换器,在手机充电器、笔记本电脑适配器等中小功率等级领域应用广泛。其主电路部分极其简单,只需要一个开关管、一个二极管、一个变压器和一个电容就可以实现直流-直流功率变换。单端反激变换器是在反极性变换器基础上演变而来的,因此具有反极性变换器的特性。在开关管导通时,将电源的能量储存在变压管中,即变压器一次侧电感 Lp 储能。当开关管截止时,将导通期间的储能传输到二次侧负载,因此,称为变换器,也称 ON-OFF 变换器或回扫变换器。)

(2) 实验对象电路原理介绍

1、 反激变换器的主电路原理

图 2 反激变换器的主电路

Figure 2 为反激变换器的主电路,变压器原边通过 MOSFET Q1 与输入电压 Vdc 连接,副边通过二极管 D1 连接至输出电容 C,负载通常认为是纯阻性,输出电压为 Vout。反激变压器通常理解为耦合电感,同名端表示了绕组的绕制方向。

Figure3 所示为连续导电模式下 MOSFET Q1 的电压电流波形以及二极管 D1 的电流波形。可以看出,反激变换器主要有两种工作情况:

(1) Q1 导通,输入电压 Vdc 加到原边绕组 Np 上,而在副边产生的感应电压使 D1 因反偏而关断,此时负载电流完全由输出电容 C 放电维持。此时原边电流线性上升:

$$\frac{dlp}{dt} = \frac{V_{dc} - V_{dt_on}}{Lp}$$

Vds on 为Q1 的导通压降,数值较小,Lp 为原边绕组电感。伴随电流上升,

$$Ipmax - Ipmin = \frac{(V_{dc} - V_{dt_on}) * D * T}{Lp}$$

电能储存在耦合电感中。

图 4 Q1 导通电路图

(2) Q2 关断,原边电流被切断,副边二极管 D1 导通,副边绕组电流将电能传送给负载与输出电容,此时原副边电流满足:

$$N_p I_{p_max} = N_s I_{s_max}$$

输出电压 Vout 基本视为恒定,其使二次侧电流线性下降,

$$\frac{dls}{dt} = \frac{V_{out} - V_{diode}}{Ls}$$

$$I_{s_min} - I_{s_max} = \frac{(V_{out} + V_{diode}) * (1 - D) * T}{Ls}$$

图 5 Q1 截止电路图

Q1 再次导通前, 若二次电流为下降到零, 则反激变换器工作与连续导电模式, 即:

$$I_{s_max} \ge \frac{\left(V_{out} + V_{diode}\right) * \left(1 - D\right) * T}{Ls}$$

由于漏感的存在,在 Q1 关断瞬间会在 Q1 上感应出较大的尖峰电压,此时 Q1 电压为

$$V_{Q1_max} = V_{dc} + (V_{out} + V_{diode}) * \frac{Ns}{Nn} + V_{spike}$$

结合以上公式,可以得到连续导电模式下输出电压表达式为:

$$V_{out} = (V_{dc} - V_{dc_{on}}) * \frac{Ns}{Np} * \frac{D}{1 - D}$$

2、主电路控制系统原理

为了实现 12V 稳压输出的目标,需要在主电路中加入反馈回路,并满足如下控制要求

→ 负载稳压: 当复杂变化时输出电压稳压;

→ 输入稳压: 当输入电压变化时输出电压稳压;

◆ 暂态稳定:负载电流突然扰动时输出电压依然稳定。

1、 电压控制模式

电压控制模式是最简单的反馈控制方式,其原理图如 Figure7 所示。为了对电力变换器有效控制,反馈系统由以下部分组成:

- (1) 电阻网络: 监控输出电压并将其降到合适的水平以便于跟参考电压 Vref 进行比较;
- (2) 误差放大器: 生成控制电压 Vcontrol;
- (3) 比较生成器:将控制电压与锯齿信号进行比较生成 PWM 信号以驱动开关管。

图 6 电压反馈部分控制电路

2、电流控制模式

电压控制模式简单易于实现,但是响应速度较慢,控制性能不佳。.电流控制模式是一种改进型的反馈系统,如 Figure 8 所示。其具有以下特点:

- (1) 锯齿波信号由一次测电流,即 MOSFET 电流提供,从而形成另一条电流 反馈回路:
- (2) 当输入电压变化时,一次侧电流率先变化,因此不需要经过输出电压反馈就实现 PWM 的快速调节。

电流控制模式有两条反馈回路,电压回路来自二次侧,电流回路来自一次侧,两条回路共同作用实现控制系统的快速响应。本实验使用 UC3842 控制芯片实现电流模式控制。

图 7 电流控制反馈电路

3、误差放大器

- 二次侧的误差放大环节如图 16 所示, 其特点如下:
- (1) 输出电压 Vout 由电阻 R204、R205、R206 分压降压后通过 TL431 放大器与参考电压 Vref 进行比较;
- (2) TL431 为误差放大器,其内部设置一稳定的参考电压 2.5V;
- (3) 放大后的误差信号用于驱动光耦芯片 U200;
- (4) 元器件 C202、R203、R202、C201、C200 和 R201 构成 TL431 的反馈网络保证快速稳定响应;
- (5) 光耦器件 U200 将误差信号传送给一次侧,实现一次侧和二次侧控制系统的电隔离。

Error Amplifier

TL431 ← amplifier with internal reference←

图 8 误差放大器电路

(3) 实验目的和要求

本实验目标为设计制作一款单端反激变换器,满足如下输入输出要求:

- ♣ 输入电压: 90-240 VAC
- ♣ 输出电压: 12 V DC, 5%
- ♣ 负载电流: 0-1.5 A

本实验理论分析与硬件设计相结合,重点培养学生的仪器操作、电路测试等电工技能,同时使学生养成良好的团队协作精神。

(4) 实验步骤

- ① 本实验分组完成,每组5至6名成员,共同完成本组的反激变换器设计工作。
- ② 首先在 MATLAB/Simulink 中搭建出单端反激变换器的开环模型,通过仿真进一步掌握反激变换器的工作原理,并为下一步的硬件设计提供参考依据。

- ① 然后分别对主电路、变压器、控制系统等内容进行详细了解,确定最终设计方案,并在电路板上完成整个系统的制作。
- ① 通过后续调试使电路满足所提要求,并在波形质量、电能效率等方面进一步提升系统性能。最后完成实验报告。
- ① 实验结束后以组为单位进行成果演示,并提交实验报告。每个成员在自己的实验报告中着重总结自己的工作内容,并对其他成员进行打分。

(5) 实验测试

1、控制芯片测试:

- (1) Vcc 和 GND 接 16V 直流, 无交流输入。
- (2) 测试 Vref 电压。
- (3) 测试 4 管脚波形 (开关频率)。
- (4) 测试 6 管脚脉冲信号。
- (5) 测试 2 管脚信号。
- (6) 测试 1 管脚信号

2、二次侧反馈电路的测试

- (1) 输出端子接直流电源用于模拟输出电压。
- (2) 直流电压设为 11.5V, 测试 TL431 负极与正极电压差。
- (3) 调节直流电压上升至 12.5V,观察 TL431 负极与正极电压差变化规律。
- (4) 测试 TL431 管脚 Ref 与正极电压。

- 二、 主电路仿真 (分别仿真出 90V 和 240V 直流输入时反激变换电路的主要波
- 形,包括二极管电压电流、MOSFET 电压电流等,通过仿真得出稳压输出 12V 时的占空比,其中变压器变比为实际实验中变压器变比,需列出主要仿真步骤和计算依据)

(1) 忽略漏感

① 变压器参数 (漏感设置为0)

② Powergui 参数

设置其为离散系统,采样时间为10纳秒。

③ 脉冲生成器参数

④ MOSFET 参数

	series branch of RLC elements. nch type' parameter to add or remove nch.	e elements
Parameters		
Branch type:	R	
Resistance (Ohms):	
8		
Measurements	None	

开始仿真,得到 MOS 管的电压电流、二极管电压电流以及输出电压的波形如下:

分析不同开关状态下波形的变化规律:

① Q1 导通

MOSFET 导通状态下,其自身电压很小,约等于 0。由于一次侧电感充电,电流线性增大,而 MOSFET 电流大小等于变压器一次侧电流,所以 MOSFET 电流线性增大。

二次侧由于感应电压使二极管反偏而关断。故二极管电流为 0。此时负载电流完全由输出电容 C 放电维持,电流逐渐下降,故输出电压逐渐下降。

② Q1 关断

MOSFET 关断状态下,其电流为 0,其电压等于输入电压减去变压器一次侧电压。

二次侧由于感应电压使二极管导通,二极管电压为其正向导通电压,由于

二次侧电感的存在使得二次侧电流线性减小,由于二极管电流大小等于二次侧电流大小,故二极管电流线性减小。

思考:

● 若输入电压增大:

MOSFET 导通状态下,其电压约为 0。由于一次侧电感充电,电流线性增大,其增大速率由

$$\frac{dIp}{dt} = \frac{V_{dc} - V_{ds_on}}{Lp}$$

公式决定,可知如果输入电压增大,则电流增大速率变大,即电流波形更陡。则一次侧电流最大值将增大。

对于二次侧电流,由

$$N_p I_{p \text{ max}} = N_s I_{s \text{ max}}$$

可知当原副边绕组数 N 不变时,一次侧电流最大值增大,则二次侧电流最大值也将增大。并由

$$\frac{dIs}{dt} = \frac{V_{out} + V_{diode}}{Ls}$$

可知二次侧电流下降速率不变,所以二次侧(即二极管)电流在二次侧导通的时间段内的波形将会整体上移。

对于输出电压,由

$$V_{out} = (V_{dc} - V_{ds_on}) \cdot \frac{Ns}{Np} \cdot \frac{D}{1 - D}$$

可知输出电压增大。

对于输入电压减小的情况,其与输入电压增大的情况相反,不再赘述。

● 若负载增大:

由于存在一个电容与负载并联,所以输出电压不变,而负载变大,则输出电流将减小,也即二极管电流减小。

由

$$\frac{dIs}{dt} = \frac{V_{out} + V_{diode}}{Ls}$$

可知输出电流下降斜率不变,所以输出电流波形整体下移。故输出电流 最大值将减小。又由

$$N_p I_{p_{\rm max}} = N_s I_{s_{\rm max}}$$

可知一次侧电流最大值也将减小。又由于

$$\frac{dIp}{dt} = \frac{V_{dc} - V_{ds_on}}{Lp}$$

可知一次侧电流上升斜率不变,所以一次侧电流(即 MOSFET 电流)减小,波形整体下移。

对于 MOSFET 电压,其在导通时约为 0,断开时等于输入电压加变压器一次侧电压。

(2) 考虑漏感及其解决方法

实际变压器绕组都会有漏感。在以上模型中的变压器模块里添加漏感参数,漏感大小设置为 17.6e-6 H。

其他器件参数不变,再次仿真,得到各电压电流波形如下:

可以观察到,MOS 管在关断时,其电压出现了非常大的尖峰,这正是所设置的变压器漏感导致的。在实际情况中,变压器绕组都会有漏感,如果不加以防范,强大的电压脉冲将会烧毁元器件,甚至造成危险。因此在实际电路中,需要在变压器原边设置 RCD 缓冲电路,以吸收消耗掉漏感存储的多余能量。如下图所示:

RCD 模块参数: 二极管采用默认设置,电容设置为 15 纳法,并设置初始电压为 5 伏,电阻设置为 82 千欧

Resistance (Ohms):		
82000			
Measurements	None		

加入RCD电路后,再次进行仿真,得到各电压电流波形如下:

可以观察到,加入 RCD 电路后,MOS 管在关断时的产生的尖峰电压大大减小了。 后续在 90V-12V、240V-12V 实验中将会在变压器中添加漏感,大小为 17.6e-6H,以 模拟实际使用情况,并同时在电路中变压器一次侧加入 RCD 电路作为缓冲电路。

(3) 90V-12V 仿真过程

将一次测输入直流电压大小设置为 90V,分析该电路,得到输出电压与输入电压的 关系式为

$$\frac{U_O}{U_i} = \frac{D}{1 - D} \frac{N_2}{N_1}$$

带入匝数比及电压比

$$\frac{N_2}{N_1} = \frac{12}{65}$$
, $\frac{U_0}{U_i} = \frac{12}{90}$

解得占空比

$$D = 0.41935$$

将该占空比带入电路中的 PULSE GENERATOR

运行仿真得到输出电压曲线如下图红线:

可知此时 MOSFET 电流有效值为 0.4799A, 二极管电流有效值为 1.832A。输出电压大小在 10.89V 上下浮动,此时输出电压相比与理想输出电压 12V 偏小,故需要增大占空比。

将占空比增大至43%,运行仿真得到如下仿真曲线:

可知此时 MOSFET 电流有效值为 0.5077A, 二极管电流有效值为 1.93A。输出电压大小在 11.39V 上下浮动, 达不到所需的 12V, 故进一步增大占空比。

可知此时 MOSFET 电流有效值为 0.5661A, 二极管电流有效值为 2.133A。输出电压大小在 12.4V 上下浮动,已经超过了所需的 12V,故此时需要减小占空比。

将占空比设置为44%,运行仿真得到输出电压曲线如下:

可知此时 MOSFET 电流有效值为 0.5348A, 二极管电流有效值为 2.025A。输出电压大小在 11.86V 上下浮动,此时小幅度增加占空比。

将占空比设置为44.5%,运行仿真得到的输出电压曲线如下:

可知此时 MOSFET 电流有效值为 0.5514A, 二极管电流有效值为 2.082A。输出电压大小在 12.15V 上下浮动, 此时小幅度减小占空比。

将占空比设置为44.25%,运行仿真得到的输出电压曲线如下:

可知此时 MOSFET 电流有效值为 0.5443A, 二极管电流有效值为 2.058A。输出电压大小在 12.02V 上下浮动,已经很接近所需的 12V。此时小幅度减小占空比。

往后具体调试过程省略,最终发现当占空比为 44.24%时,输出电压在 11.96-12.01V 上下浮动,达到了设计要求。此时 MOSFET 电流有效值为 0.5419A,二极管电流有效值为 2.049A

此时测出输出电压有效值为 11.99V,输出电流有效值为 1.499A,符合实验要求。

故该设计中,90V 直流电压输入,12V 直流电压输出,变压器匝数比 65:12,漏感 17.6e-6H,对应的最佳占空比为 44.24%。

(4) 240V-12V 仿真过程

理论计算输入电压为 240V,输出电压为 12V 时的占空比:

$$\frac{U_O}{U_i} = \frac{D}{1 - D} \frac{N_2}{N_1}$$

代入匝数比及电压比

$$\frac{N_2}{N_1} = \frac{12}{65}$$
, $\frac{U_O}{U_i} = \frac{12}{240}$

解得占空比为:

D=0.213115

① 将此 D=21.3115%代进仿真电路, 所得实验曲线如下所示:

负载电流有效值和输出电压的有效值测量如下:

由上,可知此时输出电压有效值为 10.99V,输出电流有效值为 1.374A,不符合输出电压 12V,负载电流 1.5V 的设计要求。由于电路中大部分器件有损耗,所以占空比应比理论占空比 21.3115%要大。

② 将 D=23%代进仿真电路, 所得实验曲线如下:

负载电流有效值、输出电压有效值、MOSFET 电流有效值及二极管电流有效值测量如下:

由上,此时输出电压为 12.16-12.2V,输出电流有效值为 1.523A,输出电压和输出电流均大于设计要求,综合①②,符合要求的占空比位于 21.3115%-23%之间。经二分法缩小区间,最终得到最佳的占空比为 22.721%。仿真结果如下所示。

③ 将 D=22.721%代进仿真电路, 所得实验曲线如下:

负载电流有效值、MOSFET 电流有效值及二极管有效值测量如下:

由上,此时输出电压有效值为 12.01V,负载电流有效值为 1.502A,在误差范围内符合设计要求。因此,输入电压为 240V 时,占空比为 22.721%,采样时间为 10ns 时能够得到输出电压为 12V,负载电流为 1.5A 的单端反激变换器。

三、变压器设计(绘制所设计变压器的断面图,需列出变压器参数和主要绕制步骤,简述如何防止磁饱和发生)

单端反激变换器中的隔离变压器主要是为了避免磁芯饱和。变压器的磁芯都会有饱和磁密 Bsat,若绕组中的电流过大会使磁芯饱和,此时会导致绕组变为短路状态,从而烧毁电路。

磁通公式:
$$\Phi = \frac{Ni}{R}$$

为避免磁芯饱和,应满足: $B_{sat} * Ae > \frac{Ni}{R}$

 Φ 为磁通量, B_{sat} 为饱和磁密,通常为 300mT,N为绕组的匝数,i为电流,Ae 磁芯的截面积,R 为磁路的磁阻。

磁阻:
$$R = \frac{l}{\mu Ae}$$

l为磁路的长度, μ 为磁导率,空气磁导率 $\mu_0 = 4\pi \cdot 10^{-7} H/m$ 。

在实际应用中电流产生的磁动势大部分都被消耗在空气中,因此避免磁饱和需要再磁路中加入足够的气隙,从而降低磁芯中的磁通量。

$$l > Ni \cdot \frac{\mu_0}{B_{sat}}$$

本项试验采用的是 RM10 型铁氧体磁芯,原边绕组设为 72 匝(第一层为 30 匝,第五层为 24 匝,第五匝为 18 匝),副边绕组设为 12 匝,附属绕组设为 18 匝,并通过添加足够层数的胶带来提供气隙消耗磁动势。

设计变压器的断面图:

图 9 变压器手绘剖面图

变压器参数:

原边绕组的匝数为 72 匝,副边绕组的匝数为 12 匝,附属绕组的匝数为 18 匝。理论上的原边绕组和副边绕组的电压比为 6,原边绕组和附属绕组 的电压比为 4。在对绕组进行加电压实测的时候求得,原边绕组和副边绕 组的电压比为 5.5,原边绕组和附属绕组的电压比为 3.61

变压器实物图:

图 10 各个方向的变压器图

绕制步骤:

- 1. 选用较细的绕组线圈作为原边绕组线圈,较粗的绕组线圈作为副边绕组线圈和附属 绕组线圈,并准备好电压器的基础元件。
- 2. 从基础元件的上端引用细边线圈绕原边绕组的 30 匝, 然后在下端引出, 再用胶带绕足够多的层数。
- 3. 从基础元件的上端引用此细边线圈绕原边绕组的 18 匝,然后回到上端并引出到下端,再用胶带绕足够多的层数。

- 4. 从基础元件的上端引用粗边线圈绕副边绕组的 12 匝, 然后在下端引出, 再用胶带绕足够多的层数。
- 5. 用之前在基础元件的上端引出的细边线圈再绕原边绕组的 24 匝,然后在下端引出,再用胶带绕足够多的层数。
- 6. 从基础元件的下端引用该细边线圈绕原边绕组的 18 匝,然后回到上端并引出到下端,再用胶带绕足够多的层数。

注意事项:

- 1. 为了便于区分绕组的输入和输出端,最好将其做一下标记。
- 2. 在进行绕线圈的时候最好不要将线圈叠合在一起,并且将线圈均匀的分散开。
- 3. 最后在焊变压器的时候需要将线圈外部的绝缘层打磨掉。
- 4. 将变压器基础元件组装时需要用胶带绕在其表面以产生足够的气隙。

防止磁饱和发生:

在绕变压器的时候是通过产生足够的气隙来消除电流产生的磁通势,比如在绕绕组 线圈的时候会在每一层之间会绕足够多层数的胶带,在最后对变压器元器件进行组装的 时候会用胶带绕在其表面。 **四、电路连接**(画出完整的实验电路图,包括主电路和控制电路,列出主要元器件参数,最后给出制作完成的电路板照片)

MOSFET IRF830A	Roa 6k 0.125W
Diode 10A 200V DPG10I200PA	R3 47 2W
D1 DB105 整流桥	R6 82k 2W
D2 1A 600V BYV26C-TAP	R7 62 0.125W
D3 1A 400V BYV26C-TAP	R8 100 0.5W
D5 1A 40V 1N5819	R9 0.75 0.5W 1%
U1 UC3842	R13 3.6k 0.125W
U2 PS2561 光耦	R14 30k 0.125W
U3 TL431 放大器	R15 30k 0.125W
C3 56uF 400Vdc 电解电容	R16 1.5k 0.125W
Crc 330pF 50Vdc 瓷片电容	R17 15k 0.125W
C12 820uF 50V 电解电容	R18 200k 1W
C13 150uF 50V 电解电容	R19 3k 0.125W
C14, 15nF 400Vdc 薄膜电容	R20 15k 0.125W
C15 10pF 2kVdc 瓷片电容	R21 27k 0.125W
C17 1nF 50Vdc	R22 1.1k 0.25W
C18 330pF 10Vdc	R23 180 0.125W
C19 100nF 10Vdc	R24 1M
C20 100uF 50Vdc 电解电容	R25 1k
C21 8.2nF 50Vdc	R26 6.2k
C22 1nF 10Vdc	R27 1.8k
C23 100nF 50Vdc	R28 18k
C24 1nF 50Vdc	R29 2k
C25 10nF 50Vdc	负载电阻 8 20W

电路原理如下:

图 11 手绘电路原理图

电路焊接:

- ▶ 查阅芯片数据手册,得到二极管,三极管,芯片等引脚排列和功能。
- > 对电路原理图进行分析,进行恰当的布局。
- ▶ 通过锡接过线和少部分跳线,将电路焊接至万能板上,如下所示。

图 12 电路正面

图 13 电路板背面

五、**实验结果及分析**(给出调试成功后的输出电压波形,分别计算输入电压为 90V、140V、190V、240V 时的系统效率,并绘制出效率曲线,分析主要系统损耗和效率变化原因)

本次实验中,电路板等均已焊制完成,电路板实物图如下所示。

图表 14 电路板正面

图 15 电路板反面

为了保护电路,防止出现电路板损坏等情况,需要先对电路各个部分分别进行测试, 在各个部分测试通过后,再进行最终的上电测试。

首先对 3842 芯片为核心的控制部分电路进行测试,该电路如下图所示。

给 VCC 引脚接入 16V 直流电压,GND 引脚接地,分别测试 COMP、VFB、REF 脚的输出电压以及 RT/CT 和 OUTPUT 引脚的输出波形和频率,满足测试要求的条件如下表所示。

引脚名称	条件要求
COMP	输出 4.7V 电压
VFB	输出 2.5V 电压
REF	输出 5V 电压
RT/CT	输出 Hz 的三角波
OUTPUT	输出 40kHz~80kHz 的矩形波

经过测试,3842 芯片测试通过,测试截图如下所示,经过对比,该电路工作状态符合要求。

图 16 VCC (左) COMP (右)

图 17 VFB(左) REF(右)

图 18 RT/CT 三角波 40.5kHz

图 19 矩形波 43.8kHz

接着对 TL431 电路进行测试,该电路如下图所示。

先在 Vo1 处接 11.5V 直流电压,测量 TL431 正负极电压,此时电压应为 11.5V。接着将输入电压升到 12.5V,此时 TL431 两点电压将发生较大变化,为 12.5V。

经过测试, TL431 电路测试通过, 测试结果如下所示。输入电压从 11.5V 升到 12.5V

时,正负极电压会从相对相对大的电压跳变到很小的电压。经过对比,该电路工作正常。

图 20 输入电压为 11.5V 时 TL431 正负极电压

图 21 输入电压为 12.5V 时 TL431 正负极电压

六、实验总结(1 思考题:有哪些提升反激变换器效率的方法; 2 本人在团队中的贡献; 3 实验进行过程中的心得体会与收获,遇到的问题与解决方法等; 4 对团队其他成员表 现打分, 五分制。)

1. 有哪些提升反激变换器效率的方法

减小变压器漏感可以提升其效率

2. 本人在团队中的贡献

本人在小组中负责电路仿真部分,完成了90V-12V 仿真部分的内容,并撰写本篇报 告中实验目的和原理的部分。

3. 实验进行过程中的心得体会与收获,遇到的问题与解决方法等

仿真过程中,发现将仿真步长设置为100纳秒时,示波器绘制的波形不准确,所以

将仿真步长设置为10纳秒。利用二分法调节占空比时,发现无法将输出电压完全准 确地调节到 12V,例如 90V-12V 实验中,当占空比为 44.421%时,输出电压为 12V-12.04V, 将占空比调到 44.42 时,输出电压为 11.96V-12.01V,如果将占空比增大至 44.4205%, 则输出电压由 11.96V-12.01V 直接跳到 12V-12.04V。故取 44.42%为最佳 占空比。 4. 对团队其他成员表现打分,五分制。