© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°03

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

$$\forall x \in \mathbb{R}, \ F(x) - \lambda F(x+a) = f(x) \tag{\star}$$

Partie I – Questions préliminaires

- 1. Soit φ constante sur \mathbb{R} . Alors pour tout $(x,y) \in \mathbb{R}^2$, $|\varphi(x) \varphi(y)| = 0 \le K|x-y|$ quelque soit $K \in \mathbb{R}_+$. Ainsi $\varphi \in \mathcal{L}$.
- 2. cos et sin sont dérivables à dérivées bornées donc lipschitziennes.
- **3.** Par définition, $\mathcal{L} \subset \mathcal{F}$. La fonction nulle est constante donc lipschitzienne. Soient $(\varphi, \psi) \in \mathcal{L}^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Il existe $(K, L) \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \le K|x - y|$$
 et $|\psi(x) - \psi(y)| \le L|x - y|$

Par inégalité triangulaire, our tout $(x, y) \in \mathbb{R}^2$,

$$|(\lambda \varphi + \mu \psi)(x) - (\lambda \varphi + \mu \psi)(y)| = |\lambda(\varphi(x) - \varphi(y)) + \mu(\psi(x) - \psi(y))| \le |\lambda||\varphi(x) - \varphi(y)| + |\mu||\psi(x) - \psi(y)| \le (|\lambda|K + |\mu|L)|x - y|$$

On a donc bien $\lambda \phi + \mu \psi \in \mathcal{L}$.

 ${\mathcal L}$ est donc bien un sous-espace vectoriel de ${\mathcal F}.$

4. Puisque $\phi \in \mathcal{L}$, il existe $K \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \le K|x - y|$$

En particulier,

$$\forall t \in \mathbb{R}, \ |\varphi(t) - \varphi(0)| \le K|t|$$

Par inégalité triangulaire,

$$\forall t \in \mathbb{R}, \ |\varphi(t)| \le K|t| + |\varphi(0)|$$

Il suffit alors de poser A = K et $B = |\varphi(0)|$.

5. a. C'est du cours.

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

- **b.** Par croissance comparées, $q^n = o\left(\frac{1}{n^3}\right)$ donc $nq^n = o\left(\frac{1}{n^2}\right)$. Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ est une série de Riemann convergente à termes positifs, la série $\sum_{n \in \mathbb{N}^*} nq^n$ converge.
- **6. a.** Puisque $|\lambda e^{ia}| = |\lambda| < 1$, la série géométrique $\sum_{n \in \mathbb{N}} \lambda^n e^{nia}$ converge et $\sum_{n=0}^{+\infty} \lambda^n e^{ina} = \frac{1}{1 \lambda e^{ia}}$. Par conséquent, la série $\sum_{n \in \mathbb{N}} \lambda^n e^{i(x+na)}$ converge et $\sum_{n=0}^{+\infty} \lambda^n e^{i(x+na)} = \frac{e^{ix}}{1 \lambda e^{ia}}$.

1

© Laurent Garcin MP Dumont d'Urville

b. Les séries $\sum_{n\in\mathbb{N}}\lambda^n\cos(x+na)$ et $\sum_{n\in\mathbb{N}}\lambda^n\sin(x+na)$ sont les parties réelle et imaginaire de la série convergente $\sum_{n\in\mathbb{N}}\lambda^ne^{i(x+na)}$ donc ce sont des séries convergentes. De plus, leurs sommes sont respectivement les parties réelle et imaginaire de $\frac{e^{ix}}{1-\lambda e^{ia}}$. Or

$$\frac{e^{ix}}{1 - \lambda e^{ia}} = \frac{e^{ix}(1 - \lambda e^{-ia})}{(1 - \lambda e^{ia})(1 - \lambda e^{-ia})} = \frac{e^{ix} - \lambda e^{i(x-a)}}{1 - 2\lambda \cos a + \lambda^2}$$

On en déduit les résultats demandés.

Partie II – Etude de (\star) lorsque f est nulle et $|\lambda| \neq 1$

On suppose dans cette partie que f est nulle sur \mathbb{R} et $|\lambda| \neq 1$.

1. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Puisque F vérifie (\star) et que f est nulle, pour tout $k \in [0, n-1]$,

$$\lambda^k F(x + ka) - \lambda^{k+1} F(x + (k+1)a) = 0$$

Puis, via un télescopage

$$F(x) - \lambda^n F(x+a) = \sum_{k=0}^{n-1} \lambda^k F(x+ka) - \lambda^{k+1} F(x+(k+1)a) = 0$$

De la même manière pour tout $k \in [1, n]$,

$$\lambda^{-k} f(x - ka) = \lambda^{-k} k F(x - ka) - \lambda^{-(k-1)} F(x - (k-1)a)$$

Puis, via un télescopage

$$\lambda^{-n} F(x - na) - F(x) = \sum_{k=1}^{n} \lambda^{-k} k F(x - ka) - \lambda^{-(k-1)} F(x - (k-1)a) = 0$$

On en déduit les égalités demandées.

2. D'après la question **4**, il existe $(A, B) \in \mathbb{R}^2_+$ tel que

$$\forall t \in \mathbb{R}, |F(t)| \le A|t| + B$$

Fixons alors $x \in \mathbb{R}$.

Supposons $|\lambda| < 1$. Alors pour tout $n \in \mathbb{N}$,

$$|F(x)| = |\lambda|^n |F(x + na)| \le |\lambda|^n (A|x + na| + B) \le A|a|n|\lambda|^n + (A|x| + B)|\lambda|^n$$

Puisque $|\lambda| < 1$,

$$\lim_{n \to +\infty} |\lambda|^n = \lim_{n \to +\infty} n|\lambda|^n = 0$$

de sorte que F(x) = 0.

Supposons $|\lambda| > 1$. Alors pour tout $n \in \mathbb{N}$,

$$|F(x)| = |\lambda|^{-n}|F(x - na)| \le |\lambda|^{-n}(A|x - na| + B) \le A|a|n|\lambda|^{-n} + (A|x| + B)|\lambda|^{-n}$$

Puisque $|\lambda| > 1$,

$$\lim_{n \to +\infty} |\lambda|^{-n} = \lim_{n \to +\infty} n|\lambda|^{-n} = 0$$

de sorte que F(x) = 0.

Finalement, F est bien nulle sur \mathbb{R} .

Partie III – Etude de (\star) lorsque $|\lambda| \neq 1$

© Laurent Garcin MP Dumont d'Urville

1. Soit $(F, G) \in \mathcal{L}^2$ un couple éventuel de solutions de (\star) . D'après la question 3, $H = F - G \in \mathcal{L}$ et pour tout $x \in \mathbb{R}$,

$$H(x) - \lambda H(x + a) = 0$$

La question 2 permet alors d'affirmer que H = 0 i.e. F = G.

2. a. D'après la question **4**, il existe $(A, B) \in \mathbb{R}^2_+$ tel que

$$\forall t \in \mathbb{R}, |f(t)| \leq A|t| + B$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$|\lambda^n f(x+na)| = |\lambda|^n |f(x+na)| \le |\lambda|^n (A|x+na|+B) \le A|a|n|\lambda|^n + (A|x|+B)|\lambda|^n$$

Puisque $|\lambda| < 1$, les séries $\sum_{n \in \mathbb{N}} |\lambda|^n$ et $\sum_{n \in \mathbb{N}} n|\lambda|^n$ convergent donc la série $\sum_{n \in \mathbb{N}} |\lambda^n f(x+na)|$ converge i.e. la série $\sum_{n \in \mathbb{N}} |\lambda^n f(x+na)|$ converge absolument.

b. Puisque $f \in \mathcal{L}$, il existe $K \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, |f(x) - f(y)| \le K|x - y|$$

Soit $(x, y) \in \mathbb{R}^2$.

$$|F_{0}(x) - F_{0}(y)| = \left| \sum_{n=0}^{+\infty} \lambda^{n} (f(x+na) - f(y+na)) \right|$$

$$\leq \sum_{n=0}^{+\infty} |\lambda|^{n} |f(x+na) - f(y+na)|$$

$$\leq \sum_{n=0}^{+\infty} |\lambda|^{n} K|(x+na) - (y+na)| = \frac{K|x-y|}{1-|\lambda|}$$

Ainsi $F_0 \in \mathcal{L}$.

c. Par définition de F_0 , pour tout $x \in \mathbb{R}$,

$$F_{0}(x) - \lambda F_{0}(x+a) = \sum_{n=0}^{+\infty} \lambda^{n} f(x+na) - \sum_{n=0}^{+\infty} \lambda^{n+1} f(x+(n+1)a)$$
$$= \sum_{n=0}^{+\infty} \lambda^{n} f(x+na) - \sum_{n=1}^{+\infty} \lambda^{n} f(x+na) = f(x)$$

Donc F_0 est bien solution de (\star) et c'est l'unique solution de (\star) appartenant à $\mathcal L$ d'après la question 1.

d. Dans ce cas, l'unique solution de (\star) appartenant à \mathcal{L} est la fonction F_0 telle que pour tout $x \in \mathbb{R}$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n = \frac{1}{1-\lambda}$$

e. Dans le cas où $f = \cos$, l'unique solution de (\star) appartenant à \mathcal{L} est la fonction F_0 telle que pour tout $x \in \mathbb{R}$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n \cos(x + na) = \frac{\cos x - \lambda \cos(x - a)}{1 - 2\lambda \cos a + \lambda^2}$$

Dans le cas où $f = \sin$, l'unique solution de (\star) appartenant à \mathcal{L} est la fonction F_0 telle que pour tout $x \in \mathbb{R}$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n \sin(x + na) = \frac{\sin x - \lambda \sin(x - a)}{1 - 2\lambda \cos a + \lambda^2}$$

- 3. a. Il suffit d'appliquer la question 2.a en remplaçant λ par $\frac{1}{\lambda}$ et a par -a, ce qui est légitime car $\left|\frac{1}{\lambda}\right| < 1$.
 - **b.** On prouve à nouveau que $F_0 \in \mathcal{L}$ comme dans **2.b**. De plus, pour tout $x \in \mathbb{R}$,

$$F_0(x) - \lambda F_0(x+a) = \sum_{n=1}^{+\infty} \lambda^{-(n-1)} f(x - (n-1)a) - \sum_{n=1}^{+\infty} \lambda^{-n} f(x - na)$$
$$= \sum_{n=0}^{+\infty} \lambda^{-n} f(x - na) - \sum_{n=1}^{+\infty} \lambda^{-n} f(x - na) = f(x)$$

Ainsi F_0 est bien solution de (\star) et c'est la seule appartenant à $\mathcal L$ d'après la question 1.