

ELEMENTOS DE DESLIZAMIENTO

ELEMENTOS DE MÁQUINAS

CONTENIDOS

- 1. Clasificación
- 2. Cojinetes
- 3. Rodamientos
 - a. Tipos
 - b. Tolerancias
 - c. Fijación
 - d. Montaje
- 4. Deslizamiento lineal

CLASIFICACIÓN

1

Cojinetes

Cojinetes

Elemento cilíndrico:

Ubicación: eje-cojinete-alojamiento

Más blando que el acero:

Se desgasta el cojinete, nunca el eje ni el alojamiento

¿Para qué se utilizan?

- Soportan el giro de un eje
- Velocidades bajas pero mayor capacidad de carga que los rodamientos

CLASIFICACIÓN

FORMA

Con valona

Carga axial + radial

Carga radial

https://www.selfoil.com/es/formas-disponibles

Glicodur Bronce en polvo

MATERIAL

Bronce

6

El sistema no necesita lubricación

No se pueden mecanizar

No conviente que tengan contacto con materiales que pueda absorber (papel, cartón, etc.)

Cojinetes

DE BRONCE, SIN VALONA, Autolubricados

TOLERANCIAS Cojinetes sin montar 1 interior - d tolerancia G7 D exterior - D tolerancia s7 Longitud -L tolerancia i13 Excentricidad Lectura total del comprador. Ø int. de 0 a 35 tolerancia 70 µ \emptyset int. de 35 a 50 tolerancia 100 μ Cojinetes después del calado Ver condiciones de montaje página 11. Para los cojinetes de Ø interior > 60, la tolerancia de agujero después de calado será H8 DESIGNACION Un cojinete cilíndrico de Ø int. 22 - Ø ext. 28 - L 30 será designado por: -Su calidad: Cojinete SELFOIL B 11 -Su símbolo dimensional: A - 22 - 28 - 30 (la letra A caracteriza los cojinetes cilíndricos)

antes $\mathbf{d} = \mathbf{\Phi}$ int,	de montar	Longitudes
$\mathbf{d} = \emptyset$ int.		gitades
	$\mathbf{D} = \emptyset$ ext.	L
3 ± 12	6 + 31 + 19	5 - 10
4 + 16	8 + 38 8 + 23	5 - 10
5 + 16 5 + 4	8 + 38 8 + 23	5 - 10 - 12 - 15
5 + 16	10 + 38	5 - 10 - 12 - 15
6 + 16 6 + 4	10 + 23	5 - 10 - 12 - 15
6 + 16	10 + 23 12 + 46 + 28	5 - 10 - 12 - 15
8 + 20 8 + 5	12 + 28 12 + 46 + 28	10 - 12 - 15
8 + 20 8 + 5	14 + 46 14 + 28	10 - 12 - 15 - 20
9 + 20	14 + 28 14 + 46 14 + 28	10 - 12 - 15 - 20
10 + 5	15 + 46 15 + 28	10 - 12 - 15 - 20 - 25
10 + 5	16 + 46 16 + 28	10 - 12 - 15 - 20 - 25
10 + 5	18 + 46 18 + 28	10 - 12 - 15 - 20 - 25
12 + 24 6	16 + 46 16 + 28	12 - 15 - 20 - 25
12 + 6	17 + 46 17 + 28	12 - 15 - 20 - 25
12 + 6 12 + 6	20 + 56 20 + 35	12 - 15 - 20 - 25
14 + 24	20 + 35 20 + 35	15 - 20 - 25 - 30
14 + 6	20 + 35 22 + 56 22 + 35	15 - 20 - 25 - 30
15 + 6 15 + 6	20 + 35 20 + 35	15 - 20 - 25 - 30
15 + 6 15 + 24	20 + 35 22 + 56 22 + 35	
16 + 24 16 + 6	20 + 35 20 + 35	15 - 20 - 25 - 30 15 - 20 - 25 - 30
16 + 6 16 + 6	20 + 35 22 + 56 22 + 35	15 - 20 - 25 - 30 - 35
17 + 24	22 + 35 22 + 56 22 + 35	15 - 20 - 25 - 30 - 35
18 + 24 6	22 + 35 22 + 56 22 + 35	15 - 20 - 25 - 30
18 + 24	25 + 35 25 + 35	20 - 25 - 30 - 35
20 + 28 7	25 + 35 25 + 35	20 - 25 - 30 - 35
20 + 7	28 + 35 28 + 35	20 - 25 - 30 - 35
20 + 28 7	30 ± 56 30 ± 35	20 - 25 - 30 - 35 - 40
22 ± ²⁸ / ₇	27 + 56 27 + 35	25 - 30 - 35 - 40
22 + 28 7	28 + 56 28 + 35	25 - 30 - 35 - 40
25 ^{+ 28} / ₇	30 + 56 30 + 35	25 - 30 - 35 - 40
25 ± 28 7	32 + 68 32 + 43	25 - 30 - 35 - 40 - 45
25 ± ²⁸	35 + 68 35 + 43	25 - 30 - 35 - 40 - 45 - 50
28 + ²⁸ 7	35 + 68 43	25 - 30 - 35 - 40 - 45 - 50
30 ± 28 7	38 ± 68 43	30 - 35 - 40 - 45 - 50
30 ± 28 7	40 + 68 40 + 43	30 - 35 - 40 - 45 - 50
32 ± 34	40 + 68 40 + 43	30 - 35 - 40 - 45 - 50
35 ± 34	45 + 68 45 + 43	35 - 40 - 45 - 50 - 60
40 + 34	50 ± 68 50 ± 43	40 - 45 - 50 - 60
45 ^{+ 34} / ₉	60 + 83 60 + 53	40 - 45 - 50 - 60
50 ^{+ 34} / ₉	60 ± 53 60 ± 53	40 - 45 - 50 - 60
60 ± 40	70 ± 89 70 ± 59	50 - 60
80 + 66 + 12	100 ± 125 100 ± 71	80 - 120
100 + 66	120 ± 163	
100 + 12	120 + 79	80 - 120

MGEP MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

DE BRONCE, CON VALONA, Autolubricados

TOLERANCIAS Cojinetes sin montar Ø interior - d tolerancia G8 D exterior - D tolerancia s8 Longitud -L tolerancia j13 Valona: Ø exterior - D' tolerancia j13 tolerancia j14 Espesor - e Excentricidad Lectura total del comparador. ϕ int. de 0 a 35 tolerancia 70 μ int. de 35 a 50 tolerancia 100 μ Cojinetes después del calado Ver condiciones de montaje página 11. DESIGNACION Un cojinete de valona de: Ф int. 22 - Ф ext. 28 - L30 será designado por: -Su calidad: Cojinete SELFOIL B 11 -Su símbolo dimensional: B - 22 - 28 - 30 / 33 - 4 (La letra B caracteriza los cojinetes con valona).

Diámetros antes de montar		Valona		Longitudes
antes de montar $d = \emptyset$ int. $D = \emptyset$ ext.		Ø D'	grueso e	L
3 + 17 + 3	6 + 37 + 19	9	1,5	5 - 10
4 + 22 + 4	8 + 45 + 23	12	2	5 - 10
6 + 22	10 + 45 + 23	14	2	10 - 15
8 ^{+ 27} _{+ 5}	12 + 55 + 28	16	2	10 - 15
10 + 27 + 5	14 + 55 + 28	18	2	10 - 15 - 20
10 + 27 + 5	15 + 28	20	3	10 - 15 - 20
12 + 6	17 _{+ 28}	22	3	10 - 15 - 20 - 25
14 + 6	20 + 35	25	3	15 - 20 - 25 - 30
15 + 6	20 _{+ 35}	25	3	15 - 20 - 25 - 30
16 + 6	22 + 35 + 68	28	3	15 - 20 - 25 - 30
18 + 6	25 + 35	32	4	20 - 25 - 30 - 35
20 + 7	28 + 35	35	4	20 - 25 - 30 — 35 25 - 30 - 35 - 40
22 + 7	28 + 35	33		
25 + 7 28 + 40	32 + 43 36 + 82	40	4	25 - 30 - 35 - 40 25 - 30 - 35 - 40
+ / 22 + 48	+ 43	48	4	25 - 30 - 35 - 40
+ 9	+ 43 45 + 82	55	5	25 - 30 - 35 - 40
+ 9	+ 43	60	5	25 - 30 - 35 - 40
40 + 9	50 _{+ 43}	30		20 - 00 - 00 - 40

Cojinetes

MGEP MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Montaje

 Una vez desmontado no es recomendable reutilizarlo

¿Cuál es la diferencia con los cojinetes?

- El coeficiente de fricción de un rodamiento, μ, puede ser 100 veces menor comparando con el de un cojinete.
- El coeficiente de fricción de un rodamiento, μ, está entre 0,001 0,005.

© NTN-SNR ROULEMENTS. Rolling bearings Handbook cat.No.9012/E. p.4. http://www.ntn-snr.com/portal/fr/en-en/file.cfm/Bearing-HB-en.pdf?contentID=8897

Partes del rodamiento

https://www.youtube.com/watch?v=vibgC6UYBms

Casos de carga

Karga finkoa / Carga fija

(Ej. Esmerila / Esmeril)

Karga birakorra / Carga rotativa

W_F = Velocidad angular de la fuerza w = Velocidad angular del aro que gira

Karga birakorra / Carga rotativa

(Ej. Mandrinadora)

Karga finkoa / Carga fija

Karga finkoa / Carga fija

(Ej. Leba, espeka /

Karga birakorra / Carga rotativa

¿Para qué se utilizan?

2.1

Tipos de rodamientos

Tipos: Según las cargas que soportan

Cargas radiales

Cargas axiales

Tipos: Según el tipo de elemento de rodadura

Tipos: Según el tipo de elemento de rodadura

Rodamientos rígidos de bolas

Una hilera de bolas

Dos hileras de bolas

Rodamientos de bolas de contacto angular

Una hilera de bolas

Dos hileras de bolas

Rodamientos de rodillos cilíndricos

Rodamientos de rodillos cónicos

Una hilera de rodillos Dos hileras de rodillos

Selección

- Parámetros a tener en cuenta:
 - Espacio disponible
 - Cargas
 - Desalineación
 - Precisión
 - Velocidad
 - ✓ Ruido
 - Rigidez
 - Desplazamiento axial
 - Montaje y desmontaje
 - ✓ Material de la jaula

1. Cargas

- Magnitud
- Dirección
- 2. Velocidad
- 3. Montaje y desmontaje

Características principales

1. Cargas

- Magnitud: Normal
- Dirección: Cargas radiales
 - * <u>Rígido de bolas:</u> Cargas axiales prequeñas
 - * Contacto angular: 1 hilera, cargas axiales en una dirección; 2 hileras, en 2 direcciones.

2. Velocidad:

Muy altas. Un único punto de fricción.

3. Montaje y desmontaje:

No son desmontables

Cargas:

- 1. Rodamientos rígidos de bolas
- 2. Rodamiento de bolas de contacto angular

© SKF. Rolling bearings (PUB BU/P1 10000/2 EN). http://www.skf.com/binary/77-121486/SKF-rolling-bearings-catalogue.pdf

Características principales

1. Cargas

- Magnitud: Altas, contacto en toda la superficie.
- Dirección: Radial
 - * <u>Cilíndricos:</u> No soporta cargas axiales, tiene riesgo de desmontarse. (Equivalente: *rígido de bolas*)
 - * Cónicos: Soporta bien las cargas axiales en una dirección.

(Equivalente: Contacto angular)

2. Velocidad:

Normal

3. Montaje y desmontaje:

 Son desmontables, con lo cual, facilitan el montaje y el desmontaje.

MODE A STATE OF THE STATE OF TH

Cargas:

Rodillos

- 1. Rodamientos de rodillos cilíndricos
- 2. Rodamientos de rodillos cónicos

Dos hileras

Características principales

Agujas

1. Cargas

- Magnitud: Muy altas, contacto en toda la superficie
- Dirección: Radial

2. Velocidad:

Normal

3. Montaje y desmontaje:

- Son desmontables, con lo cual, facilitan el montaje y el desmontaje.
- Se utilizan cuando el espacio es limitado.
- Muy poca diferencia entre diámetros

Designación

© SKF. Rolling bearings (PUB BU/P1 10000/2 EN). p.43. http://www.skf.com/binary/77-121486/SKF-rolling-bearings-catalogue.pdf

- 3: Rodamiento de rodillos cónicos
- 6: Rodamiento rígido de bolas, una hilera
- 7: Rodamiento de bolas de contacto angular, una hilera

Proveedores

SCHAEFFLER

MODRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Ejemplos

1. Rodamiento rígido de bolas

Ejemplos

1. Rodamiento rígido de bolas

Ejemplos

2. Rodamiento de bolas de contacto angular

MODE POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Ejemplos

2. Rodamiento de bolas de contacto angular

Ejemplos

2. Rodamiento de rodillos cilíndricos

MODRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Ejemplos

2. Rodamiento de rodillos cilíndricos

Ejemplos

2. Rodamiento de rodillos cónicos

Ejemplos

2. Rodamiento de rodillos cónicos

MODRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Ejemplos

2. Rodamiento de agujas

¿Qué tipo de cargas puede soportar?

MODRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Ejemplos

2. Rodamiento de agujas

¿Qué tipo de cargas puede soportar?

2.2

Tolerancias

- 1. Tolerancias dimensionales
- 2. Tolerancias superficiales
- 3. Tolerancias geométricas

Dimensionales

Para **EJES** de acero:

Carga rotativa sobre el aro interior (o dirección indeterminada de la carga)					
Condiciones de aplicación	Ø eje	Tolerancia			
Cargas ligeras o variables	(18) a 100 (100) a 140	j6 k6			
Cargas normales y elevadas	<18 (18) a 100 (100) a 140 (140) a 200 (200) a 280	j5 k5 m5 m6 n6			
Cargas muy elevadas	<18 (18) a 100 (100) a 200	h5 j5 k5			

Tolerancias

MODERAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Dimensionales

Para **EJES** de acero:

Carga fija sobre el aro interior							
Condiciones de aplicación	Ø eje	Tolerancia					
El aro interior debe poder desplazarse fácilmente sobre el eje		g6					
No es necesario que el aro interior pueda desplazarse fácilmente sobre el eje		h6					

Cargas puramente axiales						
Condiciones de aplicación	Ø eje	Tolerancia				
Aplicaciones de toda clase	<250	j6				
	>250	js6				

Tolerancias

Dimensionales

Para ALOJAMIENTOS de acero:

Carga rotativa sobre el aro exterior							
Condiciones de aplicación	Ø eje	Tolerancia					
Cargas muy elevadas		P7					
Cargas normales y elevadas		N7					
Cargas ligeras o variables		M7					
Dirección indeterminada de la carga							
Condiciones de aplicación	Ø eje	Tolerancia					
Cargas muy elevadas		M7					
Cargas normales y elevadas		K7					
Carga fija sobre el aro exterior							
Condiciones de aplicación	Ø eje	Tolerancia					
Cargas de todas las clases		H7					
Cargas ligeras y normales		Н8					
Transmisión de calor a través del eje		G7					

Superficiales

Rugosidad superficial de los asientos de rodamientos							
Diámetro	del asiento	Ra (valores orientativos para asientos rectificados)					
d, D	d, D Grado de tolerancia del diámetro						
>	≤	IT7	IT6	IT5			
mm		μm					
- 80 500	80 500 1 250	1,6 1,6 3,2 ¹⁾	0,8 1,6 1,6	0,4 0,8 1,6			

MODERAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S. COOP

Geométricos

2.3

Fijación

Elementos para la fijación axial de los rodamientos

Anillos Seeger

KM – MB

Anillos Seeger

- El objetivo principal es realizar la fijación axial
- Pueden tener 2 posciones diferentes:

Montaje:

KM - MB

 El objetivo principal es realizar la fijación axial

• 2 elementos:

Tuerca KM

4.8 FINKAPEN AZKOINAK ISO 2982 / TUERCAS DE FIJACIÓN ISO 2982

Tuercas de fijación M 10×0.75 – M 200×3

Dimensiones G	d ₁	d ₃	В	b	h	Masa	Designacio Tuerca de fijación	ones Arandela de retención adecuada	Llave de gancho adecuada
mm						kg			,
M 10×0,75	13,5	18	4	3	2	0,006	KM 0	MB 0	-
M 12×1	17	22	4	3	2	0,008	KM 1	MB 1	HN 1
M 15×1	21	25	5	4	2	0,012	KM 2	MB 2	HN 2
M 17×1	24	28	5	4	2	0,012	км з	MB 3	HN 3
M 20×1	26	32	6	4	2	0,020	KM 4	MB 4	HN 4
M 25×1,5	32	38	7	5	2	0,028	KM 5	MB 5	HN 5
M 30×1,5	38	45	7	5	2	0,038	KM 6	MB 6	HN 6
M.35×1,5	44	52	8	5	2	0,058	KM 7	MB 7	HN 7
M 40×1,5	50	58	9	6	2,5	0,078	KM 8	MB 8	HN 8
M 45×1,5	56	65	10	6	2,5	0,11	KM 9	MB 9	HN 9
M 50×1,5	61	70	11	6 .	2,5	0,14	KM 10	MB 10	HN 10
M 55×2	67	75	11	7	3	0,15	KM 11	MB 11	HN 11
M 60×2	73	80	11	7	3	0,16	KM 12	MB 12	HN 12
M 65×2	79	85	12	7	3	0,19	KM 13	MB 13	HN 13
M 70×2	85	92	12	8	3,5	0,22	KM 14	MB. 14	HN 14
M 75×2	90	98	13	8	3,5	0,27	KM 15	MB 15	HN 15
M 80×2	95	105	15	8	3,5	0,36	KM 16	MB 16	HN 16
M 85×2	102	110	16	8	3,5	0,42	KM 17	MB 17	HN 17
M 90×2	108	120	16	10	4	0,51	KM 18	MB 18	HN 18

Arandela MB

5.5 EUSTEKO ZIRRINDOLAK DIN 2982 / ARANDELAS DE RETENCIÓN DIN 2982

Arandelas de retención

d 10-280 mm

Dimensiones						Masa	Desig- nación
d	d ₁	d_2	В	f	М		
mm						g	-
10 12	13,5 17	21 25	1	3	8,5 10,5	1,0 2,0	MB 0 MB 1
15	21	28	1	4	13,5	3,0	MB 2
17	24	32		4	15,5	3,0	MB 3
20	26	36	1	4	18,5	4,0	MB 4
25	32	42	1,25	5	23	6,0	MB 5
30	38	49	1,25	5	27,5	8,0	MB 6
35	44	57	1,25	6	32,5	11	MB 7
40	50	62	1,25	6	37,5	13	MB 8
45	56	69	1,25	6	42,5	15	MB 9
50	61	74	1,25	6	47,5	16	MB 10
55	67	81	1,5	8	52,5	22	MB 11
60	73	86	1,5	8	57,5	24	MB 12
65	79	92	1,5	8	62,5	30	MB 13
70	85	98	1,5	8	66,5	32	MB 14
75	90	104	1,5		71,5	35	MB 15
80	95	112	1,75	10	76,5	46	MB 16
85	102	119	1,75	10	81,5	53	MB 17
90	108	126	1,75	10	86,5	61	MB 18
95	113	133	1,75	10	91,5	66	MB 19
100	120	142	1,75	12	96,5	77	MB 20
105	126	145	1.75	12	100.5	83	MB 21

FIJACIÓN AXIAL

- 1. Fijo-libre
- 2. Cruzado
- 2.1 Fijación en "O"
- 2.2 Fijación en "X"

FIJACIÓN AXIAL

1. Fijo-libre

- 2. Cruzado
- 2.1 Fijación en "O"
- 2.2 Fijación en "X"

- Para ejes largos
- Objetivo: El lado que está libre debe ser capaz de absorber la dilatación generada por un foco de calor.
- Fijo: Fijar ambos anillos de los rodamientos que no son desmontables.
- Libre: Fijar los rodamientos que son desmontables o dejar sin fijar un anillo (normalmente el que gira) en los rodamientos no desmontables.

FIJACIÓN AXIAL

1. Fijo-libre

2. Cruzado

2.1 Fijación en "O"

2.2 Fijación en "X"

- Ejes más cortos
- Fáciles para montar y desmontar.
- Menos elementos comerciales
- Dos tipos: "O" y "X".

FIJACIÓN AXIAL

- 1. Fijo-libre
- 2. Cruzado

2.1 Fijación en "O"

2.2 Fijación en "X"

2.1. En "O": Más rígido. Mayor distancia entre los puntos de apoyo, por lo que soporta mejor las cargas.

2.2. En "X": Montaje y desmontaje muy fácil

Ejemplo

¿Qué tipo de fijación tiene?

Resultado

Fijo-libre

Ejemplo

¿Qué tipo de fijación tiene?

Resultado

Cruzado en X

Ejemplo

¿Cuál de las dos estaría bien? Cruzado en X

Ejemplo

¿Cuál de las dos estaría bien? Cruzado en X

Ejemplo

¿Qué tipo de fijación tiene?

Ejemplo

Cruzado en "O"

Ejemplo

Cruzado en "O"

65

Ejemplo

¿Qué tipo de fijación tiene?

Ejemplo

¿Qué tipo de fijación tiene?

CRITERIOS PARA EL MONTAJE Y DESMONTAJE

- 1. En la medida de lo posible, montar los rodamientos fuera.
- 2. El anillo que va en contacto con el elemento que gira, **SIEMPRE CON APRIETE**.
- 3. Los rodamiento de contacto angular y los rodamientos de rodillos cónicos (son equivalentes), sólo se pueden montar hacia un lado. **CUIDADO!**
- 4. Los rodamientos de contacto angular y rodillos cónicos, ES IMPOSIBLE utilizar en un fijo-libre (al menos solos).

Precarga en rodamientos:

Efectos:

Aumenta la rigidez

Disminuye el ruido de funcionamiento

Guiar el eje

Alarga la vida en funcionamiento

¿Cuáles?

- Contacto angular
- Rodillos cónicos

 Se precargan axialmente y en consecuencia, radialmente

2.4

Montaje y desmontaje

Proceso de montaje

- 1. Quitar rebabas
- 2. Mediciones/Comprobaciones
- **3.** Limpiar la superficie
- 4. Engrasarlo con aceite
- 5. Realizar el montaje
 - En frío
 - En caliente

MONTAJE EN FRÍO

1. Kit de ajuste de rodamiento (Golpes)

2. Prensa

Lo que se debe saber:

- Uno de los anillos se monta en APRIETE y el otro con JUEGO.
- El anillo que va montado en **APRIETE**, estará en contacto con el elemento
- La fuerza se aplicará SIEMPRE en el anillo que va en APRIETE.

MONTAJE EN CALIENTE

1. Placa eléctrica

2. Inducción

- Calentando el rodamiento por inducción, se obtiene más precisión en cuanto a temperatura.
- No conviene utilizar el soplete. No existe ningún control del calentamiento y las temperatura, por lo cual, existe la posibilidad de modificar las propiedades mecánicas.

DESMONTAJE

Extractor de 2 garras:

Agarrar desde el anillo que va en APRIETE

Extractor de 3 garras:

Agarrar desde el anillo que va en APRIETE

Guillotina

Se utiliza cuando las garras no llegan al anillo que va en APRIETE.

- Calentadores de anillos
- Extractor hidráulico

LUBRICACIÓN

Cuando hay movimiento entre piezas

- Para reducir el desgaste de las piezas
- Para reducir la fricción entre las piezas
- Para reducir el ruido
- Para evacuar el calor generado
- Para expulsar la suciedad generada

SE MEJORA LA EFICIENCIA DE LAS MÁQUINAS

Rodamientos obturados:

- Traen la lubricación que necesitan para funcionar correctamente.
- Tienen una tapa de sellado o anillo obturador para evitar fugas

3

Deslizamiento lineal

Deslizamiento lineal

- Permite la traslación entre las piezas con la mínima pérdida por fricción posible.
- Resiste fuerzas actuantes en dirección perpendicular a la trayectoria y los momentos generados.

TIPOS:

Guía lineal de contacto:

- El contacto entre los dos cuerpos del par primsmático es directo
- Se utilizan recubrimientos con bajo coeficiente de fricción.

Guía lineal con rodamientos:

- Utiliza elementos rodantes entre los sólidos (bolas, rodillos o ruedas)
- Estos elementos reducen las pérdidas por fricción
- Existen diferentes tipos

CLASIFICACIÓN

1. Guía lineal de contacto (Fricción)

- 2 superficies se deslizan entre ellas.
- Video:

- Ejemplos:
 - o Cola de milano
 - Guía patín

2. Guía lineal con rodamientos (Rodadura)

- Rodadura entre dos superficies (bolas, rodillos y ruedas)
- Video:

- Ejemplos:
 - Guía patín
 - Casquillo

Guía lineal de contacto

Cola de milano

- Capacidad para soportar fuerzas laterales
- Posicionamiento preciso y repetible, evita cualquier movimiento no deseado
- Movimiento lineal suave y reduce el riesgo de errores: operaciones de corte, taladro, fresado, etc.

Guía/raíl y patín:

- Sin elemento rodante
- Alta precisión y poca resistencia de fricción
- Autolineado y elevada rigidez

Guía lineal con rodamientos

Guía/raíl y patín:

- Contiene un elemento rodante: bolas, rodillos o ruedas.
- Extrema precisión y muy poca fricción.
- Capacidad de carga más alta y mejores valores de rigidez.

Casquillos:

- El sistema de guíado es un eje lineal
- En el eje se desplaza el casquillo cilíndrico
- Resistencia de fricción mínima

Olatz Insausti
oinsausti@mondragon.edu
Iraitz Ferreira
iferreira@mondragon.edu
Aitor Urzelai
aurzelaib@mondragon.edu

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu Eskerrik asko Muchas gracias Thank you