TRIGONOMETRY Chapter 11

GEOMETRÍA ANALÍTICA I

MOTIVATING |

¿ QUIÉN FUETRENE DESCARTES ?

¿ QUÉ ES EL PLANO CARTESIANO?

Es un sistema de ubicación de puntos en un plano. Está conformado por dos rectas coplanares numeradas y perpendiculares entre sí, cuya intersección es el ORIGEN DE COORDENADAS O(0;0)

EJE $\overline{X'X}$: Eje de abscisas

EJE $\overline{Y'Y}$: Eje de ordenadas

O(0; 0): Origen de coordenadas

UBICACIÓN DE UN PUNTO EN EL PLANO CARTESIANO

La ubicación de un punto P en el plano cartesiano, se representa mediante un par ordenado (x; y) que indica "las coordenadas del punto P".

x: abscisa del punto P

y: ordenada del punto P

x e y son números reales

Signos de las Coordenadas en cada Cuadrante

Ejemplo: (-5;8) ∈ II C

RADIO VECTOR (r):

Es la distancia desde un punto del plano al origen, (r > 0).

DISTANCIA ENTRE DOS PUNTOS

Dados A y B, dos puntos diferentes del plano cartesiano; entonces la distancia entre ambos es un número real positivo d, (d > 0).

$$AB = d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

V

$$AB = d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

En la fórmula se puede cambiar el orden de las coordenadas.

01

Escriba verdadero (V) o falso (F), según corresponda:

El punto $M(1;-2) \in IIC$ (F)

El punto $N(-3; -5) \in IIIC$ (V)

El punto $P(0;3) \in eje Y$ (V)

El punto $Q(-4;0) \in eje X$ (V)

Justifique cada respuesta.

2) Del gráfico, efectúe $E = \frac{n}{m} + \frac{a}{b}$

RESOLUCIÓN

Se observa que:

$$3a = 6 \implies a = 2$$

$$b + 1 = 4 \implies b = 3$$

$$m+1=-2 \implies m=-3$$

$$2n-1=-5 \implies n=-2$$

Luego reemplazamos en E:

$$E = \frac{-2}{-3} + \frac{2}{3}$$

∴
$$E = \frac{4}{3}$$

3) Halle la distancia entre los puntos A(1;-2) y B(4;2)

Recordemos que:

$$AB = d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

RESOLUCIÓN

Asumimos que:

$$A(1; -2) = (x_1; y_1)$$

B(4;2) =
$$(x_2; y_2)$$

Luego aplicamos:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$AB = \sqrt{(1-4)^2 + (-2-2)^2}$$

$$AB = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16}$$

$$\therefore AB = 5$$

4) Del gráfico, halle la longitud del segmento PQ

RESOLUCIÓN

Asumimos que:

$$P(-7; 9) = (x_1; y_1)$$

$$Q(5;4) = (x_2; y_2)$$

Luego aplicamos:

$$PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$PQ = \sqrt{(-7-5)^2 + (9-4)^2}$$

$$PQ = \sqrt{(-12)^2 + (5)^2} = \sqrt{144 + 25}$$

$$\therefore PQ = 13$$

5) Calcule el perímetro de un cuadrado si dos de sus vértices consecutivos son: B(1; 2) y C(7; 10)

RESOLUCIÓN

Asumimos que:

$$B(1;2) = (x_1; y_1)$$

$$C(7;10) = (x_2; y_2)$$

Calculamos medida de un lado:

$$\ell = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

$$BC =$$

$$\ell = \sqrt{(1-7)^2 + (2-10)^2}$$

$$\ell = \sqrt{(-6)^2 + (-8)^2}$$

$$\ell = \sqrt{36 + 64}$$
 $= 10$

Calculamos el perímetro:

$$2p = 4 \ell = 4 (10)$$

$$\therefore 2p = 40u$$

HELICO | PRACTICE

6) Las edades de dos hermanos, Gustavo y David, están dadas por las cantidades r_1 y r_2 respectivamente. Averigüe según los gráficos mostrados, cual es el mayor de los hermanos.

RESOLUCIÓN

Para Gustavo:
$$r_1 = \sqrt{(-8)^2 + (15)^2}$$

$$r_1 = \sqrt{64 + 225} = \sqrt{289} = 17 \text{ años}$$

Para David:
$$r_2 = \sqrt{(2\sqrt{5})^2 + (-4)^2}$$

$$r_2 = \sqrt{20 + 16} = \sqrt{36} = 6 \text{ años}$$

∴ Gustavo es el hermano mayor

7) Del gráfico, halle el valor de x

RESOLUCIÓN

Se observa que:

$$x < 0$$
 $y = -5$ $r = \sqrt{29}$

Luego:
$$x^2 + (-5)^2 = \sqrt{29}^2$$

 $x^2 + 25 = 29$
 $x^2 = 4$

$$x = -2$$

01

B) Del gráfico, determine el valor de x , si x > 0

RESOLUCIÓN

Asumimos que : BA = 17

B(x; 5) =
$$(x_1; y_1)$$
 A(-8; -3) = $(x_2; y_2)$

Luego:
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=BA$$

$$\sqrt{(x-(-8))^2+(5-(-3))^2}=17$$

$$\left(\sqrt{(x+8)^2+(8)^2}\right)^2=17^2$$

$$(x+8)^2+64=289$$

 $(x+8)^2=225 \implies x+8=\pm 15$

Analizamos:

$$x + 8 = -15$$
 $\Rightarrow x = -23$ i No!
 $x + 8 = 15$ $\Rightarrow x = 7$ (x > 0)