Plots and Loading Data

Check-in

- Everyone getting emails? (e.g., email about these slides?)
- Everyone have access to these slides? https://steffilazerte.ca/NRI 7350/slides.html

Data for Assignments 2, 3 and 4

Assignment 2 (first R assignment!) comes next week

You'll need a data set with

- One *continuous* dependent variable (response)
- One *categorical* independent variable with **at least three categories** (explanatory)
- Two *continuous* independent variables (explanatory)

Example:

- response = **frequency**
- categorical explanatory = site
- continuous explanatory = noise and mass

frequency	site	noise	mass
3500	rural	45	11.0
3600	city	65	10.0
3555	town	55	10.5
3650	rural	47	9.5
3300	town	52	10.0
	_	_	

Data for Assignments 2, 3 and 4

Don't have enough variables? You can...

- Create a categorical variable from continuous
 - o noise in dB = quiet, regular, noisy
 - mass in grams = small, medium, large
 - concentration in g/mL = low, medium, high
 - amount = none, some, lots
- Create a dummy continuous variable
 - \circ x = random numbers between 1 and 250

Don't have any data?

- Ask your supervisor for something related to your project
- Ask your fellow students
- Email Nicky and I together with a brief description of your project and its design and we'll figure something out

Getting started (again)

Open RStudio
Open your NRI project
Open a **new** script for today:

File > New File > R Script

Make sure to load **tidyverse** at the top: **library(tidyverse)**

Creating Figures

Our data set: Palmer Penguins!

Our data set: Palmer Penguins!

library(palmerpenguins)
penguins

```
## # A tibble: 344 × 8
##
      species island
                         bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
                                                                                               vear
      <fct>
              <fct>
                                                 <fdb>>
##
                                  <fdb>>
                                                                    <int>
                                                                                 <int> <fct>
                                                                                              <int>
    1 Adelie Torgersen
                                   39.1
                                                  18.7
                                                                                  3750 male
                                                                                                2007
                                                                      181
    2 Adelie
             Torgersen
                                   39.5
                                                  17.4
                                                                      186
                                                                                  3800 female
                                                                                               2007
    3 Adelie
                                   40.3
                                                                                  3250 female
             Torgersen
                                                  18
                                                                      195
                                                                                               2007
    4 Adelie
              Torgersen
                                                  NA
                                                                       NA
                                                                                    NA <NA>
                                                                                                2007
                                   NΑ
    5 Adelie
                                   36.7
                                                                                  3450 female
             Torgersen
                                                  19.3
                                                                      193
                                                                                               2007
    6 Adelie
                                                                                  3650 male
                                                                                               2007
             Torgersen
                                   39.3
                                                  20.6
                                                                      190
   7 Adelie
              Torgersen
                                   38.9
                                                  17.8
                                                                      181
                                                                                  3625 female
                                                                                               2007
    8 Adelie
                                   39.2
             Torgersen
                                                  19.6
                                                                      195
                                                                                  4675 male
                                                                                               2007
    9 Adelie
             Torgersen
                                                                                               2007
                                   34.1
                                                  18.1
                                                                      193
                                                                                  3475 <NA>
  10 Adelie Torgersen
                                                  20.2
                                                                                               2007
                                   42
                                                                      190
                                                                                  4250 <NA>
## # ... with 334 more rows
                                                                                                     ADELIE
                                                                                           GENTOO!
                                                                                 CHINSTRAP!
```

Our data set: Palmer Penguins!


```
library(palmerpenguins)
penguins
```

```
\# A tibble: 344 \times 8
##
      species island
                         bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
                                                                                               vear
      <fct>
              <fct>
##
                                  <fdb>>
                                                 <fdb>>
                                                                    <int>
                                                                                 <int> <fct>
                                                                                              <int>
    1 Adelie Torgersen
                                   39.1
                                                  18.7
                                                                                  3750 male
                                                                                               2007
                                                                      181
    2 Adelie
             Torgersen
                                   39.5
                                                  17.4
                                                                      186
                                                                                  3800 female
                                                                                               2007
    3 Adelie
                                   40.3
                                                                                  3250 female
             Torgersen
                                                  18
                                                                      195
                                                                                               2007
   4 Adelie
              Torgersen
                                                                                    NA <NA>
                                                                                               2007
                                   NΑ
                                                  NΑ
                                                                       NΑ
    5 Adelie
                                   36.7
                                                                                  3450 female
             Torgersen
                                                  19.3
                                                                      193
                                                                                               2007
    6 Adelie
             Torgersen
                                   39.3
                                                  20.6
                                                                      190
                                                                                  3650 male
                                                                                               2007
   7 Adelie
              Torgersen
                                   38.9
                                                  17.8
                                                                      181
                                                                                  3625 female
                                                                                               2007
    8 Adelie
                                   39.2
             Torgersen
                                                  19.6
                                                                      195
                                                                                  4675 male
                                                                                               2007
    9 Adelie
             Torgersen
                                                                                               2007
                                   34.1
                                                  18.1
                                                                      193
                                                                                  3475 <NA>
  10 Adelie Torgersen
                                                  20.2
                                                                                               2007
                                   42
                                                                      190
                                                                                  4250 <NA>
## # ... with 334 more rows
```

Your turn! Run this code and look at the output in the console

A basic plot

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```



```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

library(palmerpenguins)

• Load the palmerguins package so we have access to penguins data

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

library(tidyverse)

• Load the **tidyverse** package (which loads the **ggplot2** package)

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

ggplot()

- Set the attributes of your plot
- data = Dataset
- aes = Aesthetics (how the data are used)
- Think of this as your plot defaults

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

geom_point()

- Choose a **geom** function to display the data
- Always added to a ggplot() call with +

ggplots are essentially layered objects, starting with a call to ggplot()

```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g))
```



```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_boxplot()
```



```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g))
```



```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_point()
```



```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g))
```



```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_violin()
```


You can add multiple layers

```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_boxplot()
```


You can add multiple layers

```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_boxplot() +
  geom_point(size = 2, colour = "red")
```


You can add multiple layers

```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_boxplot() +
  geom_point(size = 2, colour = "red")
```

6000 -3000 female male NA sex

Order matters

```
ggplot(data = penguins, aes(x = sex, y =
body_mass_g)) +
  geom_point(size = 2, colour = "red") +
  geom_boxplot()
```


Plots are objects

Any ggplot can be saved as an object

```
g <- ggplot(data = penguins, aes(x = sex, y = body_mass_g))
```

Plots are objects

Any ggplot can be saved as an object

```
g <- ggplot(data = penguins, aes(x = sex, y = body_mass_g))
```

g

Plots are objects

Any ggplot can be saved as an object

More Geoms

(Plot types)

Geoms: Lines

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
   geom_line()
```


Geoms: Histogram

```
ggplot(data = penguins, aes(x = body_mass_g)) +
   geom_histogram(binwidth = 100)
```


Geoms: Histogram

Geoms: Barplots

Let ggplot count your data

```
ggplot(data = penguins, aes(x = species)) +
   geom_bar()
```


Geoms: Barplots

Or, you can provide the counts (makes more sense when you already/only have counts)

```
species_counts <- count(penguins, species)

ggplot(data = species_counts, aes(x = species, y = n)) +
   geom_bar(stat = "identity")</pre>
```


Side Note: tidyverse functions

Or, you can provide the counts (makes more sense when you already/only have counts)

```
species_counts <- count(penguins, species)</pre>
```

count()

- **tidyverse** functions always start with the **data**, followed by other arguments
- you can reference any column from 'data'
- count() the number of observations per unique column category

```
species_counts
```

```
## # A tibble: 3 × 2
## species n
## 
## 1 Adelie 152
## 2 Chinstrap 68
## 3 Gentoo 124
```

Your Turn: Create this plot

Your Turn: Create this plot

```
library(ggplot2)

ggplot(data = penguins, aes(x = island, y = bill_depth_mm)) +
   geom_boxplot(colour = "blue")
```


Showing data by group

Mapping aesthetics

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
  geom_point()
```


Mapping aesthetics

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm, colour = sex)) +
  geom_point()
```


Mapping aesthetics

Mapping aesthetics

ggplot automatically populates the legends (combining where it can)

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm, colour = sex, shape = sex)) +
  geom_point()
```


Faceting: facet_wrap()

Faceting: facet_grid()

Your Turn: Create this plot

Hint: colour is for outlining with a colour, **fill** is for 'filling' with a colour

Your Turn: Create this plot

```
ggplot(data = penguins, aes(x = sex, y = flipper_length_mm, fill = sex)) +
  geom_boxplot() +
  facet_wrap(~ species)
```


Hint: colour is for outlining with a colour, fill is for 'filling' with a colour

geom_line() is connect-the-dots, not a trend or linear model

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
  geom_point() +
  geom_line()
```


geom_line() is connect-the-dots, not a trend or linear model

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm))
geom_point() +
geom_line()
Not what we're
looking for
```


Let's add a trend line properly

Start with basic plot:

```
g <- ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
  geom_point()
g</pre>
```


Add the stat_smooth()

- g + stat_smooth(method = "lm")
- **lm** is for "linear model" (i.e. trendline)
- grey ribbon = standard error

Add the stat_smooth()

g + stat_smooth(method = "lm", se = FALSE)

• remove the grey ribbon se = FALSE

A line for each group

Specify group (here we use colour to specify sex)

```
g <- ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm, colour = species)) +
   geom_point()
g</pre>
```


Using stats: Trendlines / Regression lines

A line for each group

• **stat_smooth()** automatically uses the same grouping

```
g + stat_smooth(method = "lm", se = FALSE)
```


A line for each group AND overall

```
g +
  stat_smooth(method = "lm", se = FALSE) +
  stat_smooth(method = "lm", se = FALSE, colour = "black")
```


Your Turn: Create this plot

- A scatter plot
- Comparing Flipper Length by Body Mass grouped by Species
- With a single regression line for the overall trend

Your Turn: Create this plot

- A scatter plot
- Comparing Flipper Length by Body Mass grouped by Species
- With a single regression line for the overall trend

```
ggplot(data = penguins, aes(x = body_mass_g, y = flipper_length_mm, colour = species)) +
  geom_point() +
  stat_smooth(se = FALSE, colour = "black", method = "lm")
```


Customizing plots

Customizing: Starting plot

Let's work with this plot

```
g <- ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm, colour = species)) +
   geom_point()</pre>
```


Customizing: Labels

Customizing: Labels

Practice for later

Add proper labels to some of your previous plots

Customizing: Built-in themes

Customizing: Data range

Limit the data (exclude data)

```
g + xlim(c(4000, 5000))
```


Warning: Removed 228 rows containing missing values (geom_point).

Customizing: Axes

```
scale_ + (x or y) + type (contiuous, discrete, date, datetime)
    scale_x_continuous()
    scale_y_discrete()
    etc.
```

Common arguments

```
g + scale_x_continuous(breaks = seq(0, 20, 10)) # Tick breaks
g + scale_x_continuous(limits = c(0, 15)) # xlim() is a shortcut for this
g + scale_x_continuous(expand = c(0, 0)) # Space between axis and data
```

Customizing: Axes

Using scales

scale_ + aesthetic (colour, fill, size, etc.) + type (manual, continuous, datetime, etc.)

```
g + scale_colour_manual(name = "Type", values = c("green", "purple", "yellow"))
```


Using scales

Or be very explicit:

For colours, consider colour-blind-friendly scales

```
library(ggthemes)
g + scale_colour_colorblind(name = "Type")
g + scale_colour_viridis_d(name = "Type")
```


Forcing

Remove the association between a variable and an aesthetic

```
ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm, colour = sex)) +
 geom_point(colour = "green", size = 5) +
 stat_smooth(method = "lm", se = FALSE, colour = "red")
```


Customizing: Legends placement

At the: top, bottom, left, right

Exactly here

```
g + theme(legend.position = c(0.15, 0.7))
```


Further Reading: https://patchwork.data-imaginist.com/

Setup

- Load patchwork
- Create a couple of different plots

```
library(patchwork)

g1 <- ggplot(data = penguins, aes(x = bill_length_mm, y = bill_depth_mm, colour = species)) +
    geom_point()

g2 <- ggplot(data = penguins, aes(x = species, y = flipper_length_mm)) +
    geom_boxplot()

g3 <- ggplot(data = penguins, aes(x = flipper_length_mm, y = body_mass_g, colour = species)) +
    geom_point()</pre>
```

Side-by-Side 2 plots

g1 + g2

More complex arrangements

$$g2 / (g1 + g3)$$

"collect" common legends

```
g2 / (g1 + g3) + plot_layout(guides = "collect")
```


Annotaate

Penguins Data Summary

Fig 1. Penguins Data Summary

RStudio Export

Demo

RStudio Export

Demo

ggsave()

```
g <- ggplot(penguins, aes(x = sex, y = bill_length_mm, fill = year)) +
   geom_boxplot()

ggsave(filename = "penguins_mass.png", plot = g)</pre>
```

```
## Saving 8 x 3.6 in image
```

Publication quality plots

- Many publications require 'lossless' (pdf, svg, eps, ps) or high quality formats (tiff, png)
- Specific sizes corresponding to columns widths
- Minimum resolutions

```
g <- ggplot(penguins, aes(x = sex, y = body_mass_g)) +
   geom_boxplot() +
   labs(x = "Sex", y = "Body Mass (g)") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1))

ggsave(filename = "penguin_mass.pdf", plot = g, dpi = 300,
   height = 80, width = 129, units = "mm")</pre>
```

Loading Data

Data types: What kind of data do you have?

Specific program files

Туре	R Package	Function (example usage)
Excel (.xls, .xlsx)	readxl	<pre>read_excel("file.xlsx", sheet = 1)</pre>
Comma separated (.csv)	readr	read_csv("file.csv")
Tab separated (e.g, .txt, .dat)	readr	read_tsv("file.txt")
Space separated (e.g, .txt, .dat)	readr	<pre>read_delim("file.dat", delim = " ")</pre>
Fixed-width (e.g, .txt, .dat)	readr	read_fwf("file.dat")

Data types: What kind of data do you have?

Specific program files

Туре	R Package	Function (example usage)
Excel (.xls, .xlsx)	readxl	<pre>read_excel("file.xlsx", sheet = 1)</pre>
Comma separated (.csv)	readr	read_csv("file.csv")
Tab separated (e.g, .txt, .dat)	readr	read_tsv("file.txt")
Space separated (e.g, .txt, .dat)	readr	read_delim("file.dat", delim = " ")
Fixed-width (e.g, .txt, .dat)	readr	read_fwf("file.dat")

Notes

- You may be familiar with base functions (i.e. read.csv(), read.table())
 These are perfectly acceptable, but readr is a bit more powerful and quick
- 2. It can be quicker and safer to save Excel files as a *.csv (Comma-separated-variables file) and then use readr package and read_csv() function
- 3. **readr** is a tidyverse package

```
library(tidyverse) # Load tidyverse which includes readr package

my_data <- read_csv("weather.csv")

## Error: 'weather.csv' does not exist in current working directory
('/home/steffi/Projects/Teaching/UofM - NRI/NRI_7350/_labs').</pre>
```

With no folder (just file name) R expects file to be in Working directory

```
library(tidyverse) # Load tidyverse which includes readr package

my_data <- read_csv("weather.csv")

## Error: 'weather.csv' does not exist in current working directory
('/home/steffi/Projects/Teaching/UofM - NRI/NRI_7350/_labs').</pre>
```

With no folder (just file name) R expects file to be in **Working directory**

Working directory is:

- Where your RStudio project is
- Your home directory (My Documents, etc.) [If not using RStudio Projects]
- Where you've set it (using setwd() or RStudio's Session > Set Working Directory)

```
library(tidyverse) # Load tidyverse which includes readr package

my_data <- read_csv("weather.csv")

## Error: 'weather.csv' does not exist in current working directory
('/home/steffi/Projects/Teaching/UofM - NRI/NRI_7350/_labs').</pre>
```

With no folder (just file name) R expects file to be in **Working directory**

Working directory is:

- Where your RStudio project is
- Your home directory (My Documents, etc.) [If not using RStudio Projects]
- Where you've set it (using setwd() or RStudio's Session > Set Working Directory)

Using Projects in RStudio is a great idea

Absolute Paths

os	Absolute Path
LINUX	/home/steffi/Documents/R Projects/mydata.csv
WINDOWS	C:/Users/steffi/My Documents/R Projects/mydata.csv
MAC	/users/steffi/Documents/R Projects/mydata.csv

Relative Paths

Path	Where to look	
./mydata.csv	Here (current directory) (./)	
/mydata.csv	Go up one directory (/)	
./data/mydata.csv	Stay here (./), go into "data" folder (data/)	
/data/mydata.csv	Go up one directory (/), then into "data" folder (data/)	72 / 8

Absolute Paths

OS	Absolute Path	
LINUX	/home/steffi/Documents/R Projects/mydata.csv	
WINDOWS	C:/Users/steffi/My Documents/R Projects/mydata.csv	
MAC	/users/steffi/Documents/R Projects/mydata.csv	
	With DCt alia Duais atal and an alia	

Relative Paths

With RStudio 'Projects' only need to use **relative** paths

Path	Where to look	
./mydata.csv	Here (current directory) (./)	_
/mydata.csv	Go up one directory (/)	
./data/mydata.csv	Stay here (./), go into "data" folder (data/)	
/data/mydata.csv	Go up one directory (/), then into "data" folder (data/)	72 / 8

Keep yourself organized

- Create an RStudio Project for each Project (e.g. My Project)
- Create a specific **Data** folder within each project (one per project)

Folders look like:

```
    My Project
    Data
    mydata1.csv
    mydata2.csv
    myscript.R
    My Project.Rproj
```

Now when you load data, you can use something like this: "Data/mydata1.csv"

```
library(readxl)
mv data <- read excel("my data.xlsx")</pre>
head(my_data)
## # A tibble: 6 × 6
                                       `Date Egg` Body Mass (g)` ...5 ...6
##
   `Sample Number` Stage
##
              <dbl> <chr>
                                       <dttm>
                                                                     <dbl> <lgl> <lgl>
## 1
                  1 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                     3750 NA
                                                                                 NA
## 2
                  2 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                     3800 NA
                                                                                 NA
## 3
                  3 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                      3250 NA
                                                                                 NA
## 4
                  4 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                      NA NA
                                                                                 NA
## 5
                  5 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                     3450 NA
                                                                                 NA
## 6
                  6 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                      3650 NA
                                                                                 NA
```

```
tail(my_data)
```

```
## # A tibble: 6 × 6
## `Sample Number` Stage
                                     `Date Egg` Body Mass (g)` ...5 ...6
##
             <dbl> <chr>
                                      <dttm>
                                                                   <dbl> <lgl> <lgl>
## 1
                 63 Adult, 1 Egg Stage 2009-11-19 00:00:00
                                                                   3650 NA
                                                                              NA
## 2
                 64 Adult, 1 Egg Stage 2009-11-19 00:00:00
                                                                   4000 NA
                                                                              NA
## 3
                 65 Adult, 1 Egg Stage 2009-11-21 00:00:00
                                                                   3400 NA
                                                                              NA
                 66 Adult, 1 Egg Stage 2009-11-21 00:00:00
## 4
                                                                   3775 NA
                                                                              NA
## 5
                 67 Adult, 1 Egg Stage 2009-11-21 00:00:00
                                                                   4100 NA
                                                                              NA
                 68 Adult, 1 Egg Stage 2009-11-21 00:00:00
## 6
                                                                   3775 NA
                                                                              NA
```

```
tail(my_data)
```

```
## # A tibble: 6 × 6
   `Sample Number` Stage
                                    `Date Egg` Body Mass (g)` ...5 ...6
##
##
             <dbl> <chr>
                                                                 <dbl> <lgl> <lgl>
                                     <dttm>
## 1
                63 Adult, 1 Egg Stage 2009-11-19 00:00:00
                                                                 3650 NA
                                                                            NA
## 2
                64 Adult, 1 Egg Stage 2009-11-19 00:00:00
                                                                 4000 NA
                                                                            NA
## 3
                65 Adult, 1 Egg Stage 2009-11-21 00:00:00
                                                                            NA
                                                            3400 NA
                66 Adult, 1 Egg Stage 2009-11-21 00:00:00
## 4
                                                              3775 NA
                                                                            NA
## 5
                67 Adult, 1 Egg Stage 2009-11-21 00:00:00
                                                              4100 NA
                                                                            NA
                68 Adult, 1 Egg Stage 2009-11-21 00:00:00
## 6
                                                                  3775 NA
                                                                            NA
```

- Looks like we have some extra, empty, columns... (••5, ••6)
- Also looks like some column names might not work well in R
 - (Anything with a space or special character, i.e. Date Egg and Body Mass (g)

- When loading data that was in Excel (etc.) it can often have some funky things going on
- Use the **janitor** package to quickly fix some of those problems

Column names

```
library(janitor)

my_data <- clean_names(my_data)
head(my_data)</pre>
```

```
## # A tibble: 6 × 6
##
     sample number stage
                                      date egg
                                                           body mass g x5
                                                                             x6
##
             <dbl> <chr>
                                      <dttm>
                                                                 <dbl> <lgl> <lgl>
                 1 Adult, 1 Egg Stage 2007-11-11 00:00:00
## 1
                                                                  3750 NA
                                                                             NA
## 2
                 2 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                  3800 NA
                                                                             NA
                 3 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 3
                                                                 3250 NA
                                                                             NA
## 4
                 4 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                  NA NA
                                                                             NA
## 5
                 5 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                  3450 NA
                                                                             NA
                 6 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 6
                                                                  3650 NA
                                                                             NA
```

- When loading data that was in Excel (etc.) it can often have some funky things going on
- Use the **janitor** package to quickly fix some of those problems

Empty rows/columns

```
my data <- remove empty(my data, which = c("rows", "cols"))
head(my data)
## # A tibble: 6 × 4
   sample number stage
                                                         body mass g
##
                         date egg
##
            <dbl> <chr>
                                                               <dbl>
                                     <dttm>
                1 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                3750
## 1
## 2
                2 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                3800
## 3
                3 Adult, 1 Egg Stage 2007-11-16 00:00:00
                                                                3250
                4 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 4
                                                                NA
                5 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 5
                                                                3450
                6 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 6
                                                                3650
```

Loading your data

This blazing fast intro to loading/cleaning will not cover the many, many, many, MANY ways that data can be weird.

Let me know if (when) you run into problems and we can trouble shoot together!

Your Turn!

Prep for next class (be ready for class, but you don't have to share with me unless you want to!)

- Create a **new RStudio Project** for your class project
- Create a "Data" folder inside this project folder
 - Files pane > New Folder
- Add data to it (if you have data)
 - Use your computers folder navigator for this
- Create a new script in the main folder
 - [Menu] File > New > R Script
- Add code to this script to load your data into R
 - Load the appropriate packages (tidyverse, readxl, janitor)
 - Use the appropriate function given your data type (e.g., read_csv() for .csv, read_excel for .xlsx)
 - Use the appropriate file location (e.g, "Data/my_data.csv")
 Remember quotes (" ") around the entire file location
- Explore your data Click on your data in the Environment pane and take a look!

Wrapping Up!

Wrapping up: Common mistakes

Figures

- The package is ggplot2, the function is just ggplot()
- Did you remember to put the + at the **end** of the line?
- Order matters! If you're using custom theme()'s, make sure you put these lines after bundled
 themes like theme_bw(), or they will be overwritten
- Variables like 'year' are treated as continuous, but are really categories
 - o Wrap them in factor(), i.e. ggplot(data = penguins, aes(x = factor(year), y = body_mass_g))

Loading data

- Not using RProjects which makes it hard to find your data
- Expecting your data to be something it's not
 - (open your data in a text editor or spreadsheet program to take a look)
- Using the wrong function (i.e you used read_csv() when you should have used read_tsv())

Wrapping up: Further reading (all Free!)

- RStudio > Help > Cheatsheets > Data Visualization with ggplot2
- ggplot2 book v3
 - By Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen
- <u>Cookbook for R</u> by Winston Chang
 - See also R Graphics Cookbook by Winston Chang
- patchwork site
- R for Data Science
 - Data Visualization
 - Workflow and Projects
 - Data Import