COM1009 Introduction to Algorithms and Data Structures

Topic 06: Lower Bounds and Sorting in Linear Time

Essential Reading: Chapter 8 up to page 198.

► Aims of this topic

- To discuss the class of comparison sorts: sorting algorithms that sort by comparing elements.
- To show a general lower bound for the running time of this class of sorting algorithms. They can't do better than this.
- Other approaches can sometimes do better. We'll see how to sort numbers in a bounded range in linear time.

▶ Comparison Sorts

- InsertionSort
- SelectionSort
- MergeSort
- HeapSort
- QuickSort (see Exercise Sheet 4)
- All of these by comparing elements we call these comparison sorts.
- We'll see today that there's a limit to how fast they can run, but...
 - Sometimes we can go faster by using extra information

► Performance of Comparison Sorts

- The best comparison sorts we have seen so far take time $\Omega(n \log n)$ in the worst case.
 - InsertionSort: worst case = $\Theta(n^2)$
 - MergeSort, HeapSort: worst case = $\Theta(n \log n)$
- Can we do better?
 - Having a better algorithm could be useful
- Can we prove it's impossible to do better?
 - Stops us wasting time looking for something that doesn't exist

▶ Complexity Theory

(very briefly - more in COM2109 Automata, Computation and Complexity)

- Deals with the difficulty of problems.
- Investigates limits to the efficiency of algorithms
 - Results like: "no algorithm can solve problem X faster than worst case time T".
 - Stops us from wasting time trying to achieve the impossible
 - Informs the design of efficient algorithms.
- Two sides of the same coin:

Complexity theory

→ Efficient algorithms

► Appetiser: P and NP

(not relevant for the assessment in COM1009, but relevant for Computer Science)

- P and NP (much more in COM2109)
 - P = problems that can be solved quickly (i.e. in polynomial worstcase time)
 - NP = problems whose solutions can be verified quickly
- Sometimes we can verify solutions quickly, but we can't (currently) find solutions quickly.
 - Example: Given that n > 0 is a product of two primes, find the two primes p and q that satisfy pq = n
 - Finding p and q can be hard, but if you tell me p and q, I can easily multiply them together and check whether the answer equals n
 - Try it! See https://en.wikipedia.org/wiki/RSA_numbers

▶ Appetiser: NP-Completeness

(not relevant for the assessment in COM1009, but relevant for Computer Science)

- NP-complete problems (much more in COM2109)
 - >3000 important but seemingly different problems: satisfiability, scheduling, selecting, cutting, routing, packing, colouring, ...
 - If you can solve any one of these problems quickly, then every other problem in NP can also be solved quickly (i.e. P = NP)
 - But can any of them be solved quickly? No one (currently) knows.
- The P vs NP Problem
 - Is every easily-verified problem also easy to solve in the first place?
 - \$1m prize for a definite solution: https://www.claymath.org/millennium-problems/millennium-prize-problems

► How (Not) to Show Lower Bounds

- How can we show that time $\Theta(...)$ is best possible?
- "We didn't manage to find a better algorithm."
 - Perhaps you didn't look hard enough
- "No one has ever found a better algorithm."
 - How do you know this? What if tomorrow someone does?
 - We have to find arguments that apply to all algorithms that can ever be invented.
- "Surely, every efficient algorithm must do things this way."
 - Intuition is often wrong. For example, efficient algorithms for multiplying matrices start by subtracting elements!

▶ Comparison Sorts as Decision Trees

- There is one thing that all comparison sorts have to do: compare elements
- Let's strip away all the overhead, data movement, looping, recursing, etc. and take the number of comparisons as a lower time bound.
- We assume that elements $a_1, ..., a_n$ are distinct then we can assume that all comparisons have the form $a_i \le a_i$.
- A decision tree reflects all comparisons a particular comparison sort makes, and how the outcome of one comparison determines future comparisons.
 - Like a skeleton of a sorting algorithm.

▶ Decision tree for a comparison sort

Inner node i:j means comparing a_i and a_j.

• Leaves: ordering $\pi_1, \pi_2, \dots, \pi_n$ established by the algorithm:

$$a_{\pi_1} \le a_{\pi_2} \le \dots \le a_{\pi_n}$$

A leaf contains a sorted output for a particular input.

• The execution of a sorting algorithm corresponds to tracing a simple path from the root down to a leaf.

Example of a decision tree

The leaves include all the possible orderings of the n values, so there must be n! of them (in this example, 3! = 6)

Lower bound for comparison sorts

Theorem: Every comparison sort requires $\Omega(n \log n)$ comparisons in the worst case.

- This includes all comparison sorts that will ever be invented.
- Proof follows (see Theorem 8.1 in the book).
- The theorem can be extended towards an $\Omega(n \log n)$ bound for the average-case time (not done here).
- The theorem implies that HeapSort and MergeSort are asymptotically **optimal comparison sorts**. They achieve the best possible $\Omega(n \log n)$ worstcase runtime.

Proof of the lower bound

- The worst-case number of comparisons equals the length of the longest simple path from the root to any reachable leaf: we call this the height h of the tree (as in HeapSort).
- Every correct algorithm must be able to produce a sorted output for each of the n! possible orderings of the input.
- A binary tree of height h has no more than 2^h leaves.
 - We'll prove this formally in a bit; let's take this for granted for now.
- To accommodate n! leaves we need $2^h \ge n!$ And so $h \ge \log(n!)$.
- So the worst-case number of comparisons is at least log(n!)

► How big is log(n!)?

•
$$\log(n!) = \log(n) + \log(n-1) + ... + \log(1)$$
 biggest is $\log(n!) \le n \log(n!)$
• $\log(n!) = \log(n) + ... + \log(n/2) + ... + \log(1)$
- $\log(n!) \ge \log(n) + ... + \log\left(\frac{n}{2}\right)$ m/2 terms, smallest is $\log(n/2)$
- $\log(n!) \ge \frac{n}{2} \cdot \log\left(\frac{n}{2}\right) = \frac{n}{2}\log(n) - \frac{n}{2}\log(2)$
Lower order terms can be ignored

So worst case comparison sorting must take $\Omega(n \log n)$

► Can we do better?

- The lower bound of $\Omega(n \log n)$ is bad news for applications where comparisons are the only source of information.
- However, it suggests a way out: where possible, use more information than mere comparisons!
- Elements to be sorted are often **numbers or strings**, which reveal more information.
 - e.g. representing a value as a decimal (rather than a pile of pebbles) requires work; we have to represent the ones, the tens, the hundreds, ..., separately. This generates information.
 - We can use this information: is a 2-digit number bigger than a 1 digit number? We can answer this without even knowing what the numbers are.

CountingSort: Idea

- Assume that the input elements are integers in $\{0, ..., k\}$. This is extra information — we know up-front that the inputs are no bigger than k.
- For each element x, CountingSort counts the number of elements less than x.
 - For instance, if 17 elements are smaller than x, then x belongs in output position 18.
 - Beware: we need to make sure that equal elements are put in different output positions.
- CountingSort uses an array C[0 ... k] for counting and an array B[1 ... n] for writing the output.

▶ CountingSort

- Initialise counter array
- Count elements
- Running sum: #elements $\leq i$
- Write elements to output

Со	 Time	
1:	let $C[0 \dots k]$ be a new array	
2:	for $i = 0$ to k do	$\Theta(k)$
3:	C[i] = 0	
4:	for $j = 1$ to A.length do	0()
5:	C[A[j]] = C[A[j]] + 1	$\Theta(n)$
<i>i</i> 6:	for $i = 1$ to k do	
7:	C[i] = C[i] + C[i-1]	$\Theta(k)$
8:	for $j = A$.length downto 1 do	
9:	B[C[A[j]]] = A[j]	$\Theta(n)$
10:	C[A[j]] = C[A[j]] - 1	3 (10)

- Runtime is $\Theta(n+k)$
 - Depends on two input parameters instead of just the problem size n.
 - This is O(n) if k = O(n).

▶Stability

- CountingSort is <u>stable</u>: numbers with the same value appear in the output in the same order as they do in the input array.
 - The order of equal elements is preserved.
 - This property is relevant when satellite data (e.g. Java objects) is attached to keys being sorted.
 - We may think of the original order being used to break ties between elements with equal keys.
 - Works well for sorting emails according to (1) read/unread and (2) date.

Radix Sort

- Stability helps for sorting numbers digit by digit (or English words letter by letter).
- Assume that each array element has d digits (from lowest significance to highest significance)

RADIXSORT(A, d)

1: **for** i = 1 to d **do**

2: use a stable sort to sort array A on digit i

► Radix Sort: Example

RADIXSORT(A, d)

- 1: **for** i = 1 to d **do**
- 2: use a stable sort to sort array A on digit i

329		720		720		329
457		355		329		355
657		436		436		436
839]])>-	457	·····ij)))·	839	j))»·	457
436		657		355		657
720		329		457		720
355		839		657		839

Correctness follows from stability and induction on columns.

► Radix Sort: Runtime

- Given n d-digit numbers in which each digit can take up to k possible values, RadixSort using CountingSort sorts these numbers in time $\Theta(d(n+k))$.
 - This is just the runtime of running CountingSort d times.

▶Summary

- Complexity Theory gives limits to the efficiency of algorithms.
 - How (not) to prove lower bounds for all algorithms.
- All comparison sorts need time $\Omega(n \log n)$ in the worst case.
 - Decision trees capture the behaviour of every comparison sort.
- CountingSort sorts n numbers in a bounded range $\{0, ..., k\}$ in time $\Theta(n + k)$.
- RadixSort uses a stable sorting algorithm to sort digit by digit.
 - Stability preserves the order of equal elements.
 - The time for sorting d-digit numbers is $\Theta(d(n+k))$.
 - This is $\Theta(n)$ when d = O(1) and k = O(n).