Predicting Soil Properties from Hyperspectral Satellite Images

Frauke Albrecht^{1,2}, Caroline Arnold^{1,2}, Roshni Kamath^{1,3}, Kai Konen^{1,4}, Rıdvan Salih Kuzu^{1,5}

¹Helmholtz Al ²German Climate Computing Centre DKRZ, ³Jülich Supercomputing Centre, ³Forschungszentrum Jülich GmbH, Germany, ⁴Institute for Software Technology, German Aerospace Center (DLR), Cologne, Germany, ⁵The Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Germany

INTRODUCTION

- Machine Learning Challenge provided by AI4EO[1]
- AI4EO aims to reduce the gap between Earth Observation and Artificial Intelligence

Objective:

- predict agricultural relevant soil parameters
- Computational lightweight solution

DATA

- Airborne hyperspectral images from an unspecified region in Poland
- Soil parameters: potassium (K), magnesium (Mg), phosphorus pentoxide (P2O5), pH value
- Patches according to the boundaries of the agricultural fields.
- 1732 training patches
- Each patch contains 150 hyperspectral bands

Fig.2: Field size distributions for training and test sets

FEATURE ENGINEERING:

- 1. Average reflectance, its 1st, 2nd and 3rd order derivative
- 2. Discrete wavelet transforms of average reflectance: 1st, 2nd, 3rd, 4th level approximation and detail coefficients
- 3. First 5 diagonal values of the Singular Value Decomposition of each channel
- 4. The ratio of 1st, 2nd diagonals: $\sigma 1/\sigma 2$
- 5. Fast Fourier transform of $\sigma 1/\sigma 2$: real and imaginary parts

Fig. 3: Average reflectance for example patches

 \rightarrow For each field patch, a [1 × 2100] dimensional feature array is extracted For data augmentation, 1% random Gaussian noise is added to both input features and target values.

EVALUATION

The evaluation metric measures the improvement upon the baseline (MSE_{bl}) of predicting the average of each soil parameter.

Score =
$$\frac{1}{4} \sum_{i=1}^{4} \frac{\text{MSE}_{\text{algo}}^{(i)}}{\text{MSE}_{\text{bl}}^{(i)}}$$
, where: $\text{MSE}_{\text{algo}}^{(i)} = \frac{1}{N} \sum_{j=1}^{N} (p_j^{(i)} - \hat{p}_j^{(i)})^2$.

TEST SET PREDICTION

- 1154 test patches
- Current score on test set: 0.794

MODEL

- Best model so far: Hybrid model fusing Random Forest and k-Neighest Neighbors regressors
- Hyperparameter tuning using Optuna was included, but best results were achieved with the default settings
- 5-fold cross validation

Field Edge (pixel)	Model	P205	K	Mg	рН	Average
0-11	KNN	1.015	0.984	0.988	0.688	0.916
11+	RF	0.797	0.706	0.573	0.793	0.717
Entire Fields	Hybrid	0.879	0.810	0.728	0.754	0.792
Public Leaderboard Sore on Test Set				0.79001		

[1] https://platform.ai4eo.eu/seeing-beyond-the-visible