6 Priority Queues and Disjoint Sets

6.1 Computing k-th smallest element in a heap

Input. An array A[1..n] of integers satisfying the min-heap property (i.e., for all $2 \le i \le n$, $A[|i/2|] \le A[i]$) and an integer $1 \le k \le n$.

Output. The *k*-th smallest element in *A*.

Running time. $O(k \log k)$.

Remark. A naive way to do this is to call ExtractMin k times. This however will result in $O(k \log n)$ time instead of $O(k \log k)$. The running time $O(k \log k)$ guarantees that for any constant k (i.e., k = O(1)) we find the k-th smallest element in constant time!

Sample.

Input. A = [2, 10, 7, 11, 12, 15, 8, 30, 72, 14], k = 4. **Output.** 10.

7 Decomposition of graphs

7.1 Computing sums of degrees of neighbors

Input. A list of edges of an *undirected* graph G(V, E). Assume that $V = \{1, 2, ..., n\}$.

Output. For each vertex $v \in V$, compute the sum of degrees of v's neighbors.

Running time. O(|V| + |E|).

Sample.

Input. $\{1,4\}$, $\{1,3\}$, $\{3,4\}$, $\{4,2\}$.

Output. 5, 3, 5, 5.

Explanation. The degrees of the vertices 1, 2, 3, 4 are 2, 1, 2, 3, respectively. The sum of degrees of the neighbors of vertex 1 is 2 + 3 = 5, the sum of degrees of the neighbors of vertex 4 is 2 + 1 + 2 = 5.

7.2 Checking hamiltonicity of a DAG

Description. A path in a graph is called *Hamiltonian* if it visits each vertex of the graph exactly once.

Input. A list of edges of a *directed acyclic* graph G(V, E). Assume that $V = \{1, 2, ..., n\}$.

Output. Output the sequence of vertices of a Hamiltonian path if it exists, or "no path" if there is no such path.

Running time. O(|V| + |E|).

Sample 1.

Input. (1,4), (1,3), (3,4), (2,4).

Output. No path.

Explanation.

Sample 2.

Input. (1,4), (1,3), (3,4), (4,2).

Output. 1, 3, 4, 2.

Explanation.

Sample 3.

Input. (3,5), (6,1), (1,5), (2,6), (2,1), (1,3), (5,4), (3,5), (2,5), (3,4).

Output. 2, 6, 1, 3, 5, 4.

Explanation.

8 Paths in graphs

8.1 Finding a shortest cycle

Input. A directed graph G(V, E) with positive edge lengths and an edge $e \in E$.

Output. The length of the shortest cycle containing the edge *e*, or "no cycle".

Running time. $O(|V|^2)$.

Sample.

Input.
$$E: (1,2,3), (2,3,4), (3,4,2), (4,5,2), (5,6,5), (6,1,1), (2,4,1), (3,5,3), (2,5,5), (5,1,1), (2,6,4); $e = (1,2)$.$$

Output. 7.

Explanation. The shortest cycle through the edge (1,2) is $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1$.

8.2 Generalized shortest paths

Description. In Internet routing, there are delays on lines but also, more significantly, delays at routers. This motivates a generalized shortest-paths problem.

Suppose that in addition to having edge lengths $\{l_e : e \in E\}$, a graph also has *vertex* costs $\{c_v : v \in V\}$. Now define the cost of a path to be the sum of its edge lengths, *plus* the costs of all vertices on the path (including the endpoints).

Input. A directed graph G(V, E) with positive edge costs and positive vertex costs, a starting vertex $s \in V$.

Output. An array $cost[\cdot]$ such that for every vertex u, cost[u] is the least cost of any path from s to u (i.e., the cost of the cheapest path), under the definition above. (In particular, $cost[s] = c_s$.)

Running time. $O(|V|^2)$.