优化理论与算法

第九章 牛顿与拟牛顿法

郭加熠|助理教授

目录

拟牛顿算法

更新策略与收敛性

其他与总结

牛顿法

考虑无约束最小化

$$\min f(x)$$

▶ f 凸, 二次连续可微

牛顿法

$$x^{+} = x - t\nabla^{2} f(x)^{-1} \nabla f(x)$$

拟牛顿方法

牛顿法

$$x^{+} = x - t\nabla^{2} f(x)^{-1} \nabla f(x)$$

▶ 优点:快速收敛,仿射不变性

▶ 缺点:需要二阶导数,求解线性方程,对于大规模问题过于昂贵

拟牛顿方法

$$x^+ = x - tH^{-1}\nabla f(x)$$

 $H \succ 0$ 是在 x 处的 Hessian 矩阵的近似,选择它是为了:

- ▶ 避免计算二阶导数
- ▶ 简化搜索方向的计算
- ▶ 仍然满足仿射不变性

算法构建

给定起始点 $x^{(0)} \in \text{dom } f, H_0 \succ 0$

- 1. 计算拟牛顿方向 $\Delta x = -H_{k-1}^{-1} \nabla f(x^{(k-1)})$
- 2. 确定步长 t (例如, 通过回溯线搜索)
- 3. 计算 $x^{(k)} = x^{(k-1)} + t\Delta x$
- 4. 计算 H_k (或 H_k^{-1})
- ▶ 不同的方法在步骤 4 中使用不同的规则来更新 H
- ▶ 也可以直接更新 H_k^{-1} 以简化 Δx 的计算

割线条件

拟牛顿更新满足割线条件 $H_k s = y$, 即,

$$H_k(x^{(k)} - x^{(k-1)}) = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$

解释: 在 $x^{(k)}$ 处定义二阶近似

$$\mathit{f}_{\mathsf{quad}}(z) = \mathit{f}(x^{(k)}) + \nabla \mathit{f}(x^{(k)})^{\mathsf{T}}(z - x^{(k)}) + \frac{1}{2}(z - x^{(k)})^{\mathsf{T}}\mathit{H}_{\mathit{k}}(z - x^{(k)})$$

割线条件意味着 f_{quad} 的梯度在 $x^{(k-1)}$ 处与 f 一致:

$$\nabla f_{\mathsf{quad}}(x^{(k-1)}) = \nabla f(x^{(k)}) + H_k(x^{(k-1)} - x^{(k)}) = \nabla f(x^{(k-1)})$$

割线法

对于 $f: \mathbb{R} \to \mathbb{R}$, 单位步长的 BFGS 给出割线法

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{H_k}, \quad H_k = \frac{f'(x^{(k)}) - f'(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

目录

拟牛顿算法

更新策略与收敛性

其他与总结

Broyden-Fletcher-Goldfarb-Shanno (BFGS) 更新

BFGS 更新

$$H_k = H_{k-1} + \frac{yy^T}{y^Ts} - \frac{H_{k-1}ss^TH_{k-1}}{s^TH_{k-1}s}$$

其中

$$s = x^{(k)} - x^{(k-1)}, \quad y = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$

逆更新

$$H_k^{-1} = \left(I - \frac{sy^T}{y^Ts}\right)H_{k-1}^{-1}\left(I - \frac{ys^T}{y^Ts}\right) + \frac{ss^T}{y^Ts}$$

- ▶ 注意 $y^T s > 0$ 对于严格凸的 f; 也适用于线搜索
- ▶ 更新或逆更新的成本是 O(n²) 操作

正定性

如果 $y^T s > 0$,则 BFGS 更新保持 H_k 的正定性。(可适用于非凸函数)

证明:从逆更新公式,

$$v^{T}H_{k}^{-1}v = \left(v - \frac{s^{T}v}{s^{T}y}y\right)^{T}H_{k-1}^{-1}\left(v - \frac{s^{T}v}{s^{T}y}y\right) + \frac{(s^{T}v)^{2}}{y^{T}s}$$

- ▶ 如果 $H_{k-1} \succ 0$,则对于所有 v,两项都是非负的
- ▶ 第二项仅在 $s^T v = 0$ 时为零;那么第一项仅在 v = 0 时为零 这确保了 $\Delta x = -H_k^{-1} \nabla f(x^k)$ 是一个下降方向

BFGS 更新的最优性

 $X = H_k$ 是下面凸优化问题的最优解

min
$$\operatorname{tr}(H_{k-1}^{-1}X) - \log \det(H_{k-1}^{-1}X) - n$$

s.t. $Xs = y$

- ▶ 目标函数函数是非负的,仅当 $X = H_{k-1}$ 时为零
- ▶ 目标函数也代表 N(0,X) 和 $N(0,H_{k-1})$ 之间的相对熵

最优性结果是由于 KKT 条件: $X = H_k$ 满足

$$X^{-1} = H_{k-1}^{-1} - \frac{1}{2}(sv^T + vs^T), \quad Xs = y, \quad X \succ 0$$

其中

$$v = \frac{1}{s^T y} \left(2H_{k-1}^{-1} y - \left(1 + \frac{y^T H_{k-1}^{-1} y}{y^T s} \right) s \right)$$

Davidon-Fletcher-Powell (DFP) 更新

在之前的目标中交换 H_{k-1} 和 X

min
$$\operatorname{tr}(H_{k-1}X^{-1}) - \log \det(H_{k-1}X^{-1}) - n$$

s.t. $Xs = y$

- ▶ 最小化 $N(0, H_{k-1})$ 和 N(0, X) 之间的相对熵
- ▶ 问题关于 X^{-1} 中是凸的(约束条件写为 $s = X^{-1}y$)
- ▶ 相当于 BFGS 公式的"对偶"

$$H_{k} = \left(I - \frac{ys^{T}}{s^{T}y}\right)H_{k-1}\left(I - \frac{sy^{T}}{s^{T}y}\right) + \frac{yy^{T}}{s^{T}y}$$

(称为 DFP 更新)

▶ 方法提出先于 BFGS 更新, 但实际效果不如 BFGS, 实际使用较少

收敛性

全局结果 (2021 年)

▶ 如果 f 是强凸的,采用线搜索的 BFGS 算法,对于任意初始设置 $x^{(0)}, H_0 \succ 0$,迭代复杂度(全局)为**超线性收敛**

局部收敛 (1976 年)

▶ 如果 f 是强凸的且 $\nabla^2 f(x)$ 是 Lipschitz 连续的,局部收敛是超线性的:对于足够大的 k,

$$||x^{(k+1)} - x^*||_2 \le c_k ||x^{(k)} - x^*||_2 \to 0$$

其中 $c_k \rightarrow 0$

(参见牛顿法的二次局部收敛性)

例子

$$\min \quad c^T x - \sum_{i=1}^m \log(b_i - a_i^T x)$$

n = 100, m = 500

- ▶ 每次牛顿迭代的成本: $O(n^3)$ 加上计算 $\nabla^2 f(x)$
- ▶ 每次 BFGS 迭代的成本: $O(n^2)$

目录

拟牛顿算法

更新策略与收敛性

其他与总结

有限内存拟牛顿方法

拟牛顿方法的主要缺点是需要存储 H_k 或 H_k^{-1}

有限内存 BFGS (L-BFGS): 不需要存储 H_k^{-1}

▶ 存储 2m (例如, m=30) 个向量, 代表最近的 m 次迭代中的

$$s_j = x^{(j)} - x^{(j-1)}, \quad y_j = \nabla f(x^{(j)}) - \nabla f(x^{(j-1)})$$

▶ 假设例如, $H_{k-m}^{-1} = I$,利用储存向量对于 j = k, k-1, ..., k-m+1,递归地计算 $\Delta x = H_k^{-1} \nabla f(x^{(k)})$,使用

$$H_{j}^{-1} = \left(I - \frac{s_{j} y_{j}^{T}}{y_{j}^{T} s_{j}}\right) H_{j-1}^{-1} \left(I - \frac{y_{j} s_{j}^{T}}{y_{j}^{T} s_{j}}\right) + \frac{s_{j} s_{j}^{T}}{y_{j}^{T} s_{j}}$$

(如果足够聪明,不需要计算逆矩阵)

▶ 每次迭代的成本是 *O*(*nm*); 存储是 *O*(*nm*)

总结

	梯度下降法	牛顿法	拟牛顿法	L-BFGS
内存/迭代	O(n)	$O(n^2)$	$O(n^2)$	O(mn)
计算量/迭代	O(n)	$O(n^3)$	$O(n^2)$	O(mn)
局部收敛率	线性	二次	超线性	线性
条件数	影响严重	不受影响	不受影响	温和
脆弱性	稳健	敏感	温和	稳健