Diffusion Models: DALL-E

Deep Learning and Neural Networks: Advanced Topics

Fabio Brau

March 1, 2023

Scuola Superiore Sant'Anna, Pisa.

Introduction

Diffusion Models

Broader Impacts

Introduction

Diffusion Models

Overview

Diffusion models are generative models that aim at denoising data

Timeline

2015) ...Non-equilibrium Thermodynamics. Sohl-Dickstein et al. ICML

2020) Denoising Diffusion Probabilistic Models. Ho et al. NeurIPS.

2021) Score-Based Generative Modeling Through SDE. Song et al. ICLR.

Deep Unsupervised Learning using Non-Equilibrium Thermodynamics

Diffusion process as a Markov Chain with Continuous State Space and Discrete Time.¹

¹Sohl-Dickstein et al., "Deep Unsupervised Learning using Nonequilibrium Thermodynamics".

Reminder: Markov Chains with Discrete Time

Informal Definition

A sequence of random variables $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(t)}, \cdots$, such that:

- $\mathbf{x}^{(t)} \in S$, where S State Space
- The future $\mathbf{x}^{(t+1)}$ depends on the present $\mathbf{x}^{(t)}$ but not on the past $\mathbf{x}^{(t-1)}$

Discrete State Space S

Continuous State Space S

Reminder: MCDT with Discrete State Space

Definition

A sequence of random variables $\{\mathbf{x}^{(t)}\}_{t \in \mathcal{T}} \subseteq S$

- · Discrete Time Property $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)}$, \cdots , $\mathbf{x}^{(t)}$, \cdots
- · Markov Property $\mathbb{P}\left(\mathbf{x}^{(t+1)} \in A \mid \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t)}\right) = \mathbb{P}\left(\mathbf{x}^{(t+1)} \in A \mid \mathbf{x}^{(t)}\right)$

Two MCs with a discrete state space of respectively 2 and 3 states each.

Reminder: DTMC with Continuous State Space

Let assume $\mathbf{x}, \mathbf{y} \in S$ where S continuous state space (e.g. $S = \mathbb{R}^d$) Joint Distribution $p(\mathbf{x}, \mathbf{y})$

$$\mathbb{P}\left(\mathbf{x} \in A \mid \mathbf{y} \in B\right) = \int_{A} \int_{B} p\left(\mathbf{x}, \mathbf{y}\right) \, d\mathbf{x} \, d\mathbf{y}$$

Transactional Kernel $p(\mathbf{x} \mid \mathbf{y})$

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} | \mathbf{y}) p(\mathbf{x})$$

Marginal Distribution $p(\mathbf{x})$

$$p(\mathbf{x}) = \int_{S} p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int_{S} p(\mathbf{x} | \mathbf{y}) p(\mathbf{x}) d\mathbf{y}$$

Markov Chains with Discrete Time

Definition

A sequence of random variables $\{\mathbf{x}^{(t)}\}_{t\in\mathcal{T}}\subseteq S$, such that the future $\mathbf{x}^{(t+1)}$ depends on the present $\mathbf{x}^{(t)}$ but not on the past $\mathbf{x}^{(t-1)}$.

- · Discrete Time Property $\mathbf{x}^{(0)}$. $\mathbf{x}^{(1)}$ $\mathbf{x}^{(t)}$
- Markov Property

$$\mathbb{P}\left(\mathbf{x}^{(t+1)} \in \overset{\cdot}{A} \,|\, \mathbf{x}^{(0)}, \ldots, \mathbf{x}^{(t)}\right) = \mathbb{P}\left(\mathbf{x}^{(t+1)} \in A \,|\, \mathbf{x}^{(t)}\right)$$

Discrete State Space S

Continuous State Space S

Broader Impacts

CLIP Model

"We also found discrepancies across gender and race for people categorized into the 'crime' and 'non-human' categories..."²

²Radford et al., "Learning Transferable Visual Models From Natural Language Supervision".

Thanks for the attention

Fabio Brau

- **m** Scuola Superiore Sant'Anna, Pisa
- fabio.brau@santannapisa.it
- in linkedin.com/in/fabio-brau

