Pollution Data Analysis and Machine learning Prediction

Team7: Snigdha Joshi & Vipra Shah

Part A

Data Pipelining:

Data pipelining is executed using luigi

- 1. Unzip RawData.zip file(6 files for 6 pollutants)
- 2. Clean and Merge(Into 6 files)
- 3. Upload to S3 bucket

Run Following Command:

Docker pull joshisn/finalproject1:final

docker run -ti joshisn/finalproject1:final --module UploadData UploadAll --local-scheduler --id <AWS access id> --key <AWS secrate key>

```
Snigdha@DESKTOP-T23DDG5 MINGW64 ~/Documents/ADS/tasks (master)

$ docker run -ti joshisn/finalproject1:final --module UploadData UploadAll --local-scheduler --id AKIAJ5D7X6D6F335AOQQ --key PyYc9byj7w3TtiP+FWUXR/GTJkTNIv2R2zpDWJIC) DEBUG: Checking if UploadAll(id=AKIAJ5D7X6D6F335AOQQ, key=PyYc9byj7w3TtiP+FWUXR/GTJkTNIv2R2zpDWJIC) is complete All tasks comlepted!

DEBUG: Checking if cleanAll() is complete INFO: Informed scheduler that task UploadAll_AKIAJ5D7X6D6F335_PyYc9byj7w3TtiP__aeecef1c0b has status PENDING DEBUG: Checking if extractzip() is complete All cleaning comlepted!

INFO: Informed scheduler that task cleanAll__99914b932b has status PENDING INFO: Informed scheduler that task extractzip__99914b932b has status PENDING INFO: Informed scheduler that task extractzip__99914b932b has status PENDING INFO: Done scheduling tasks

INFO: Running Worker with 1 processes

DEBUG: Asking scheduler for work...
```


Part B

Data Models and Feature Selection using Azure:

1. Linear Regression:

Metrics

Mean Absolute Error	4.39086
Root Mean Squared Error	6.746139
Relative Absolute Error	0.358237
Relative Squared Error	0.130689
Coefficient of	0.869311

As seen above, MAE and RMSE is too high for linear model. That is because AQI is non-linear itself.

2. Decision Forest with Chi Feature Selection:

Number of decision trees: 10

Maximum depth of the Decision Trees: 15

Decision Forest with Fisher Linear Discriminant Feature Selection:

As seen above, Decision Forest gives us decent MAE and RMSE without taking long processing time.

Common features selected using Filter based(Chi) feature selection and Fisher Linear Discriminent Selection are:

- State Code(Contains city, county and site code)
- Arithmetic Mean
- First Max hour
- Date Local

3. Neural Network:

Metrics

Mean Absolute Error	0.849674
Root Mean Squared Error	1.564987
Relative Absolute Error	0.069322
Relative Squared Error	0.007033
Coefficient of	0.992967
Determination	0.992907

Neural Network also gives us good results still less accurate than Decision Forest.

Also, it takes more processing time due to increase in number of inner nodes to 100 for obtaining above results.

Conclusion:

From above experiments we have decided to use Decision Forest algorithms for further analysis due to :

- i. Good Accuracy
- ii. Less Processing Time

• For PM2.5

	Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as						
	78366992623590.73	0.061886	0.911294	0.003697	0.001798	0.998202

• For SO2

rows columns

1 6

	Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as						
	14765514928040.361	0.239601	2.745836	0.034238	0.029002	0.970998

• For NO2

Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
868933990300.9795	0.001491	0.133265	0.000146	0.000114	0.999886

• For PM10

Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
33190074068271.477	0.111268	3.606325	0.010415	0.02426	0.97574

• For CO:

For Ozone:

For New York State – Alabany County

PM2.5

AQI Trends over 37 years

Maximum AQI for every state over 37 years

This Jupyter notebook shows state and county details where maximum AQI recorded from year 1980 to 2017

AQI trends 1980-2017

Classification:

For classification we have used the combined Annual AQI files for each state for 37 years and split the train and test data as 70-30%.

Logistic Regression

Logistic Regression Model > Evaluate Model > Evaluation results

2. Decision Forest

Metrics

Overall accuracy	0.986679
Average accuracy	0.99334
Micro-averaged precision	0.986679
Macro-averaged precision	0.954207
Micro-averaged recall	0.986679
Macro-averaged recall	0.941962

Predicted Class

3. Neural Network

Neural Network Model > Evaluate Model > Evaluation results

Metrics

Overall accuracy	0.989493
Average accuracy	0.994747
Micro-averaged precision	0.989493
Macro-averaged precision	NaN
Micro-averaged recall	0.989493
Macro-averaged recall	0.648137

Predicted Class

Classify condition:

Results:

1. Decision Forest

2. Neural Network

Based on the above results, we have chosen neural network, since it has best accuracy for prediction compared to decision forest.

Clustering:

Perform Clustering

This Jupyter notebook performs clustering for 6 pollutants NO2, CO, SO2, Ozone, PM2.5 and PM10

```
In [22]: import pandas as pd
import numpy as np
from pandas import *
import os,scipy, datetime
from sklearn.utils import shuffle
from sklearn.utils import LabelEncoder
from sklearn import cluster
from scipy.cluster.vq import kmeans,vq
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt

def performClustering(filename, pollutant_name):
    filepath = os.getcwd() + filename
    df= pd.read_csv(filepath)
    shuffled_df = shuffle(df)
    def dummyEncode(df):
        columnsToEncode = list(df.select_dtypes(include=['category','object']))
    le = LabelEncoder()
    for feature in columnsToEncode:
        try:
        if feature!='AOI':
```



```
2017-08-18 01:49:54.703870 Done plotting!!
2017-08-18 01:49:54.703870 Clustering begins...
2017-08-18 01:50:16.770156 Done!!...
-----K-means Clustering-----
Grouping into clusters...
Exporting clusters as individual dataframes...
Cluster 0 of 107456 rows!
Cluster 1 of 298732 rows!
Cluster 2 of 134691 rows!
Cluster 3 of 70282 rows!
Cluster 4 of 134313 rows!
Cluster 5 of 10077 rows!
Cluster 6 of 62243 rows!
Cluster 7 of 48373 rows!
-----Manual Clustering-----
Grouping into clusters...
Exporting clusters as individual dataframes...
PM10 Manual Cluster 0 of 828015 rows!
PM10 Manual Cluster 1 of 34965 rows!
PM10 Manual Cluster 2 of 2342 rows!
PM10 Manual Cluster 3 of 537 rows!
PM10 Manual Cluster 4 of 143 rows!
PM10 Manual Cluster 5 of 165 rows!
```

Technique1: K-Means Clustering

PM2.5 - Decision forest

PM2.5 - Neural Network

■ Metrics

Mean Absolute Error	0.276125
Root Mean Squared Error	0.53404
Relative Absolute Error	0.027401
Relative Squared Error	0.001972
Coefficient of	0.998028
Determination	0.556026

Pollutant NO2:

1) Decision Forest

NO2 K-means Neural Network > Evaluate Model > Evaluation results

Metrics

Mean Absolute Error	0.346545
Root Mean Squared Error	0.425891
Relative Absolute Error	0.033732
Relative Squared Error	0.001153
Coefficient of	0.998847
Determination	0.550047

Technique2: Manual clustering

Group1:

Decision Forest

Neural Network

NO2 Manual Clustering Group1 Neural Net... > Evaluate Model > Evaluation results

■ Metrics

Mean Absolute Error	0.282274	
Root Mean Squared Error	0.333662	
Relative Absolute Error	0.028776	
Relative Squared Error	0.00081	
Coefficient of	0.00010	
Determination	0.99919	

Group2:

Decision Forest

	Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as	1				1	1
	15519825.373203	0.015858	0.111427	0.002856	0.000214	0.999786

Neural Network

NO2 Manual Clustering Group2 Neural Net... > Evaluate Model > Evaluation results

■ Metrics

Mean Absolute Error	0.351351
Root Mean Squared Error	0.432037
Relative Absolute Error	0.063286
Relative Squared Error	0.003216
Coefficient of	0.996784
Determination	0.5507.64

Group3:

Decision Forest

Neural Network

NO2 Manual Clustering Group3 Neural Net... > Evaluate Model > Evaluation results

Mean Absolute Error	2.23809
Root Mean Squared Error	2.842874
Relative Absolute Error	0.305194
Relative Squared Error	0.093015
Coefficient of Determination	0.906985

Bases on the all models, we choose Decision Forest Model as best model as it give us best accuracy and best values for MAE, RMSE, RAE, RSE and coefficient.

Web Application:

Predict state New York state NY-Bronx date 08/19/2018 Get AQI PM2.5 Predicated AQI: 49.1792592592593 Message: Good: It's a great day to be active outside.

Ozone

Predicated AQI: 67

Message: Unusually sensitive people: Consider reducing prolonged or heavy outdoor exertion. Watch for symptoms such as coughing or shortness of breath. These are signs to take it a little easier. Others: It's a good day to be active outside

Ozone and PM2.5 predicted AQI for next day.

Classification:

Get State Pollution Condition

Case1	Case2
Predict	:
state Florida	
county Miami	
year 2000	
aqi 147	
per 71	20 21 21 22
med 47	
Get State Air	Quality Condition

Visualization:

https://datastudio.google.com/open/0B0oq2j4ughAdWTFCaEQ3Q3d0cWM

Web Application:

https://morning-river-35298.herokuapp.com/

Demo Link:

https://www.youtube.com/watch?edit=vd&v=bUP-lwwh5HE