Languages and Computation (COMP2049/AE2LAC)

Introduction

Dr. Tianxiang Cui

tianxiang.cui@nottingham.edu.cn

Course Overview

- Instructor
 - Tianxiang Cui
 - Office: PMB(SEB) 323
 - · Contact email: tianxiang.cui@nottingham.edu.cn

- Lectures
 - Week 27-30 (26th Feb-23rd March), Week 35-38 (23rd April-18th May)
 - Tuesday 9:00-10:00 DB-A04
 - Thursday 16:00-18:00 DB-A04

Assessment

- 1 Coursework
 - 25% of marking
 - Primarily theoretical problems
 - Details to follow on Moodle page
 - You will learn a lot from the coursework learning by doing

- Exam
 - 75% of marking
 - 2-hour written exam

Course Textbook and References

Main textbook:

• Introduction to Languages and The Theory of Computation (4th Edition), John C. Martin, 2011

Other useful books:

- An introduction to formal languages and automata (Peter Linz)
- Introduction to the Theory of Computation (Michael Sipser)

Also, please remember that you should consult various other references

- Any books on Formal Languages and Automata Theory and related subjects in the library
- Any online resource on these subjects
- I will mention some references during the course, but you need to learn to do your own research as a university student and not limit yourself to the slides and the textbook

Attendance Policy

- It is not compulsory to attend the lectures
 - · My primary role is to trick you into learning something, you can also do your own research
 - ...but, those who attend the lectures may find it easier to follow the module without falling behind
 - Therefore, you are strongly encouraged to attend the lectures
- However, if you do attend, you must pay attention
 - Please do not disrupt the lectures by talking to others, using your mobile phone, laptop, etc ©
 - As it is a theoretical course, it is easy to get lost...

Lectures, Slides and Textbook

- The lecture slides are mainly based on the textbook
- During each lecture, I may also present some materials that may not appear on the slides
- You will be tested on all of these
- The lecture slides are not a substitute for your textbook
 - After the lecture, please **read the textbook** and do more research on the topics that you find more difficult
 - You don't have to read every word of the book
 - Put your knowledge into practice by working out the exercises in the book
 - Or even better, come up with your own examples. That is more productive

Feedback

- It is your responsibility to ask questions
 - Please give me feedback on any issue: things you like, don't like, find hard, find easy, don't understand, etc.
- If you want to discuss something in details, please send me an email
 - I am happy to arrange a meeting

Aims of the Course

- To familiarize you with key Computer Science concepts in central areas like
 - · Automata Theory
 - Formal Languages
 - Models of Computation
 - Complexity Theory
- To equip you with tools with wide applicability in the fields of CS and IT

Content

- 1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines
- 2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars
- 3. The relation between 1 and 2

Topics

- We will cover the following topics:
 - Finite State Machines and Regular Languages
 - Deterministic Finite Automata (DFA)
 - Nondeterministic Finite Automata (NFA)
 - Equivalence between NFA and DFA
 - Equivalence between Regular Languages and Finite Automata
 - Pushdown Automata (PDA) and Context Free Languages (CFL)
 - The Pumping Lemma for context-free languages
 - Equivalence between CFLs and PDAs
 - Turing Machines and Recursively Enumerable Languages
 - Decidability
 - Undecidable Problems

Why Study All This?

- Formal languages and automata have lots of applications in CS and IT. Some examples:
 - Specification of programming languages (grammar, syntax)
 - Implementation of programming language processors
 - Encoding documents
 - Extensible Markup Language (XML)
 - Document Type Definition (DTD)
 - Finding words and patterns in large bodies of text, e.g. in web pages
 - Verification of systems with finite number of states, e.g. communication protocols

Why Study All This?

- Automata are essential for the study of the limits of computation. Deep theoretical questions with big practical implications. Two key issues:
- What can a computer do at all?
 - Decidability
- What can a computer do efficiently?
 - Time and space Complexity
 - Time Complexity classes
 - Polynomial time (P)
 - Nondeterministic, Polynomial time (NP)

- Imagine you're the lead developer for a new web browser. It obviously needs the capability to run JavaScript
- To make your product stand out from the competition, your boss proposes you implement a termination check:
 - Any non-terminating JavaScript programs can then be rejected, without being run
- If you succeed, your salary will be doubled. But if you fail, you'd have to look for a new job
- Should you accept?

• Consider the following program. Does it terminate for all values of $n \ge 1$?

```
while (n > 1) {
     if even(n) {
          n = n / 2;
     } else {
         n = n * 3 + 1;
```

- Not as easy to answer as it might first seem
- Say we start with n = 7, for example:
 - 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
- In fact, for all numbers that have been tried (a lot!), it does terminate . . .
- But, no one has ever been able to **prove** that it always terminates!
- This is known as the Halting Problem

Halting Problem

• The following important decidability result should then perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not

- What might be surprising is that it is possible to prove such a result. This was first done by the British mathematician Alan Turing using Turing Machines
- The Halting problem is **undecidable** over Turing Machines
 - One of the first problems to be proved undecidable

Alan Turing

- Alan Turing (1912-1954) English computer scientist, mathematician
- Introduced an abstract model of computation, Turing
 Machine, to give a precise definition of what problems that can be solved by a computer
- Instrumental in the success of British code breaking efforts during WWII
 - Help to crack Enigma machine code used by German naval

Alan Turing

Noam Chomsky

- Noam Chomsky (born in 1928, age 90)
- American linguist who introduced **Context Free Grammars** in an attempt to describe natural languages formally
- Also introduced the **Chomsky Hierarchy** which classifies grammars and languages and their descriptive power

Noam Chomsky

The Chomsky Hierarchy

- Chomsky introduced the hierarchy of grammars in his study of natural languages
 - Type 0 recursively enumerable languages
 - Type 1 context sensitive languages
 - Type 2 context free languages
 - Type 3 regular languages

the traditional Chomsky hierarchy

Languages

- The terms language and word are used in a strict technical sense in this course
 - A language is a (possibly infinite) set of words
 - A word is a finite sequence (or string) of symbols
- ε denotes the empty word, the sequence of zero symbols
- The term string is often used interchangeably with the term word

Symbols and Alphabets

- What is a symbol, then?
- Anything, but it has to come from an alphabet Σ which is a **finite** set
- Examples:
 - The binary alphabet $\Sigma = \{0, 1\}$
 - The set of all lower-case letters $\Sigma = \{a, b, \dots, z\}$
 - The set of all ASCII characters
- ε, the empty word, is **never** a symbol of an alphabet

Languages: Example

Alphabet

• $\Sigma = \{a, b\}$

Words

• ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, . . .

Languages

- Ø, {\varepsilon}, {a}, {b}, {a, aa}, {\varepsilon}, aa, aaa},
- $\{a^n \mid n \ge 0\},\$
- $\{a^nb^n \mid n \ge 0, n \text{ even}\}$

Note the distinction between ε , \emptyset , and $\{\varepsilon\}$!

Exercises

- Is the set of natural numbers, *N*, a possible alphabet? Why/Why not?
- What about the set of all natural numbers smaller than some given number n?
- Suggest an alphabet of the set {0010, 00000000, 01110011}.
- List some words over your alphabet?

Powers of An Alphabet

- If Σ is an alphabet, we can express the set of all strings of a **certain length** from that alphabet by using the **exponential notation**:
 - Σ^k : the set of strings of length k, each of whose is in Σ

• Example:

- Σ^0 : { ϵ }, regardless of what alphabet Σ is, as ϵ is the only string of length 0
- $$\begin{split} \bullet & \text{ If } \Sigma = \{0, \, 1\} \\ \bullet & \Sigma^1 = \{0, \, 1\} \\ \bullet & \Sigma^2 = \{00, \, 01, \, 10, \, 11\} \\ \bullet & \Sigma^3 = \{000, \, 001, \, 010, \, 011, \, 100, \, 101, \, 110, \, 111\} \end{split}$$
- Note: confusion between Σ and Σ^1
 - Σ is an alphabet; its members 0 and 1 are symbols
 - Σ^1 is a set of strings; its members are strings (each one of length 1)

Kleene Star

- Given an alphabet Σ we define the set Σ^* as set of words (or strings) over Σ
- The symbol * is called **Kleene star** and is named after the mathematician and logician Stephen Cole Kleene
- Inductive definition (define the elements in a set in terms of other elements in the set)
 - The empty word $\varepsilon \in \Sigma^*$
 - Given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$
 - These are all elements in Σ^*
 - Alternatively, $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$
 - E.g. if $\Sigma = \{a\}$, $\Sigma^* = \{\epsilon, a, aa, aaa, aaaa, ...\}$
- Is Σ^* always infinite? Always non-empty?

```
• If \Sigma = \{0,1\}, some elements of \Sigma^* are:

• \epsilon (the empty word, \Sigma^0)

• \Sigma^1?

• \Sigma^2?

• \Sigma^3?
```

- We are just applying the inductive definition
- Note: although there are infinitely many words in Σ^* (when $\Sigma \neq \emptyset$), each word has a **finite** length

Concatenation of Words

- An important operation on Σ^* is **concatenation**
 - Let $w = w_1 \dots w_k$ and $y = y_1 \dots y_k$ be two strings over some alphabet Σ . Then the concatenation of w and y (in symbols $w \cdot y$, or just wy) is the string $w_1 \dots w_k y_1 \dots y_k$
 - i.e. the concatenated string is formed by making a copy of *w* and following it by a copy of *y*

• Example:

- w = 01101 and y = 110, then wy = 01101110 and yw = 11001101
- w = ab and y = ba, then wy = abba and yw = baab
- For any string w, the equations $\varepsilon w = w\varepsilon = w$ hold
- Concatenation is associative
 - i.e. w(yv) = (wy)v, so we will simply write wyv
- By w^k we denote w concatenated with itself k times

Language Revisited

- The notion of a language L of a set of words over an alphabet Σ can now be made precise:
 - A language L over an alphabet Σ is a subset of Σ^* , i.e. $L \subseteq \Sigma^*$
 - Or equivalently, $L \in P(\Sigma^*)$
 - \boldsymbol{P} is the power set, i.e. the set of all subsets of Σ^*

Languages: Example

- The set $\{0010, 00000000, \epsilon\}$ is a language over $\Sigma = \{0,1\}$ (Finite or infinite?)
- The language of all strings consisting of n 0s followed by n 1s over $\Sigma = \{0,1\}$ $(n \ge 0)$ (Finite or infinite?)

```
\{\epsilon, 01, 0011, 000111, \ldots\}
```

• The set of strings of 0s and 1s with an equal number of each over $\Sigma = \{0,1\}$ (Finite or infinite?)

```
\{\varepsilon, 01, 10, 0011, 0101, 1001, \ldots\}
```

Languages: Example

- Ø, the empty language, is a language over any alphabet
- {ɛ}, the language consisting of only the empty string, is also a language over any alphabet
- English language
 - The collection of legal English words is a set of strings over the alphabet that consists of all the letters
- C programming language
 - The alphabet is a subset of the ASCII characters and programs are subset of strings that can be formed from this alphabet
- Note: a language over Σ need not include strings with all symbols of Σ . Thus, a language over Σ is also a language over any alphabet that is a superset of Σ

Languages Union

- The union of two languages L and M, denoted $L \cup M$, is the set of strings that are in either L, or M, or both
- Example:

$$L = \{001, 10, 111\}$$

$$M = \{\epsilon, 001\}$$

$$L \cup M = \{\epsilon, 001, 10, 111\}$$

Languages Concatenation

• Concatenation of words can be extended to languages. The concatenation of languages L and M, denoted L.M or just LM, is the set of strings that can be formed by taking any string in L and concatenating it with any string in M. Formally, we have:

$$LM = \{uv \mid u \in L \land v \in M\}$$

• Example:

$$L = \{\varepsilon, a, aa\}$$

$$M = \{b, c\}$$

$$LM = \{uv \mid u \in \{\varepsilon, a, aa\} \land v \in \{b, c\}\}$$

$$= \{\varepsilon b, \varepsilon c, ab, ac, aab, aac\}$$

$$= \{b, c, ab, ac, aab, aac\}$$

Languages Concatenation

Concatenation of languages is also associative:

$$L(MN) = (LM)N$$

- For any language L, the equations $L\{\epsilon\} = L = \{\epsilon\}L$ hold
- How about concatenating the **empty language** (\$\varphi\$) to any language?

It yields the empty language (0)

$$L\emptyset = \emptyset = \emptyset L$$

Languages Concatenation

• Concatenation distributes through set union:

$$L(M \cup N) = LM \cup LN$$
$$(L \cup M)N = LN \cup MN$$

But not through intersection

$$L(M\cap N)\neq LM\cap LN$$

Counterexample:

$$L = \{\epsilon, a\}, M = \{\epsilon\}, N = \{a\}$$

$$L(M \cap N) = L\emptyset = \emptyset$$

$$LM \cap LN = \{\epsilon, a\} \cap \{a, aa\} = \{a\}$$

Languages Closure

• Exponent notation is used to denote iterated concatenation:

$$L^1 = L$$
 $L^2 = LL$
 $L^3 = LLL$

- By definition: $L^0 = \{\epsilon\}$ (for any language, **incl.** \emptyset)
- The **closure** of a language L is denoted L^* and represents the set of those strings that can be formed by taking **any number** of strings from L, possibly with repetitions (i.e., the same string may be selected more than once) and concatenating all of them

Languages Closure: Example

- If $L = \{0, 1\}$ then L^* is all strings of 0 and 1
- If $L = \{0, 11\}$ then L^* consists of strings of 0 and 1 such that the 1 come in pairs, e.g., 011, 11110, 11011, etc. But **not 01011 or 101**.

Languages Membership

- Fundamental question for a language $L: w \in L$?
- *L* finite: Easy! (Enumerate *L* and check)
- L infinite: ? We need:
 - · A **finite** (and preferably concise) formal **description** of *L*
 - An algorithmic **method to decide** if $w \in L$ given a suitable description
- Various approaches to achieve this
 - Will be key a theme throughout the module

Concluding Remarks

- The Chomsky Hierarchy
- Symbol
- Alphabet
- Word
- Language
- Operators on languages
 - Union
 - Concatenation
 - Closure