Значения A_0 и A_1 сохраняются в буфере памяти. После этого значения A_0 , A_1 , A_2 заносятся на носитель информации, предназначенный для хранения результатов сжатия.

3. На вход блока сжатия в момент времени \dot{t}_c ; поступает очередной отсучет \dot{f}_f . По формуле (4.12) проводится расчет $\dot{f}^*(\dot{t}_c)$, а по формулам (4.6) или (4.9) осуществляется расчет одного из точечных критериев $\mathcal{E}(\dot{t}_c)$ или $\delta(\dot{t}_c)$. Палее проверяется выполнение требований (4.11), наложенных на соответствующий критерий равномерного приближения. Если условие (4.11) удовлетворяется, то повторяется выполнение п. 3 для нового отсчета, в противном случае осуществляется переход к п. 4.

4. Значения \mathcal{J}_{i-1} , \mathcal{L}_{i-1} принимаются за новый существенный отсчет и запоминаются в буфере памяти. Далее по формуле (4.12) строится новая экстраполирующая прямая, а коэффициенты A_0 , $A_{\mathcal{I}}$ уже рассчитываются по-другому:

$$A_1 = \frac{f_i - f_{i-1}}{f_i - t_{i-1}}$$
, $A_0 = f_{i-1} - A_1 t_{i-1}$.

Значения $A_{\mathcal{I}}$ и $A_{\mathcal{I}}$ сохраняются в буфере памяти, после чего значения $A_{\mathcal{I}}$, $A_{\mathcal{I}}$,

Выполнение алгоритма заканчивается по окончании поступления данных на вход блока сжатия.

Алгоритм первого порядка с интерполирующей процедурой аппроксимации. 1. На вход блока сжатия в момент времени t_1 поступает первый отсчет f_1 . Значения t_1 и t_1 запоминаются в буфере памяти.

счет f_j . Значения t_j и f_j запоминаются в буфере памяти. 2. На вход блока сжатия в момент времени t_2 поступает второй отсчет f_2 . Значения t_2 и t_2 запоминаются в буфере памяти.

3. На вход блока сжатия в момент времени t_2 поступает очередной отсчет f_2 . Значения t_2 и f_2 запоминаются в буфере памяти. По точкам t_1, t_2 и t_2, t_3 строится интерполирующая прямая:

$$f^*(t) = A_0 + A_1 t$$
,

где коэффициенты A_0 , A_1 рассчитываются по формулам:

$$A_1 = \frac{f_1^2 - f_1}{t_2^2 - t_1}$$
; $A_0 = f_1 - A_1 t_1$.

Далее последовательно для всех отсчетов $t_2^2, t_2^2; \ldots; t_{i-1}, t_{i-j}$ по формулам (4.6) или (4.11) рассчитываются значения точечных критериев $\varepsilon(t)$ или $\delta(t)$. Если для всех указанных отсчетов выполняется условие (4.11),

наложенное на соответствующий критерий равномерного приближения, выполнение п. 3 повторяется для новых отсчетов. Если же хотя бы для одного отсчета условие (4.11) не выполняется, то осуществляется переход к п. 4.

4. Значения f_{i-1} , f_{i-1} принимаются за существенный отсчет и запоминаются в буфере памяти. Значения коэффициентов A_0 , A_1 , подсчитаных в момент поступления этого отсчета, т.е. в предыдущий момент времени, результатов сжатия. Примем (c - 1)й отсчет за первый и, повторяя все вышеприл. 3.

По окончании поступления данных необходимо занести на итоговый носитель коэффициенты A_0 , A_1 , рассчитанные на основе последнего отсчета, и значение Z_1 — время поступления последнего существенного отсчета.

Алгоритм первого порядка с процедурой типа "свет". Работа этого алгоритма иллюстрируется на рис. 4.2 и подробно описана в работе [1]. Сущность алгоритма заключается в аналогии построения аппроксимирующей прямя прохождению пучка света через "щели", образуемые интервалом погрешнос,

Рис. 4.2. Иллюстрация работы алгоритма первого порядка с процедурой типа "свет":

x — экспериментальные точки; — • — аппроксимирующая прямая