Electric Field

Coulomb's Law

electrostatic force to $\,q_{1}\,$ add by $\,q_{2}\,$

$$\vec{F}_e = k_e \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \hat{r}$$

permittivity $arepsilon_0$ in vacuum: $arepsilon_0 = 8.854 imes 10^{-12} \emph{C}^2 \emph{m}^{-2} \emph{N}^{-1}$

Electric Field

electric field on $\,q_{\,0}\,$ add by $\,Q\,$

$$\overrightarrow{E} = \frac{\overrightarrow{F}_e}{q_0} = \frac{Q}{4\pi\varepsilon_0 r^2} \widehat{r}$$

here \vec{E} is a vector field

Permittivity

define $1/arepsilon_0$ electric field line generated per coulomb at spherical surface of radius r, \vec{E} at each point is given by

$$\vec{E} = \frac{\frac{1}{\varepsilon_0} Q}{4\pi r^2} \hat{r} = \frac{Q}{4\pi \varepsilon_0 r^2} \hat{r}$$

Superposition of Electric field

$$\vec{F} = \sum_{i=1}^{n} \vec{F}_i$$

$$\overrightarrow{E} = \sum_{i=1}^{n} \overrightarrow{E}_i = \sum_{i=1}^{n} \frac{q_i}{r_i^2} \widehat{r}_i$$

Continuous Charge Distribution

• 2D plane assume charge distribution per unit area follows $\delta(x,y)$

$$Q = \sum_{i} Q_{i} = \sum_{i} \delta(x, y) \Delta x \Delta y = \iint_{S} \delta(x, y) dx dy$$

3D volume

assume charge distribution per unit volume follows $\delta(x, y, z)$

$$Q = \sum_{i} Q_{i} = \sum_{i} \delta(x, y) \Delta x \Delta y \Delta z = \iiint_{V} \delta(x, y, z) dx dy dz$$

E Field Calculation

charged wire

find \overrightarrow{E} of distance a from symmetric position of 2l wire with charge density λ

$$\vec{E} = \int_{-l}^{l} d\vec{E}_y = \int_{-l}^{l} \frac{\lambda dx}{4\pi\varepsilon_0(x^2 + a^2)} \cdot \frac{a}{\sqrt{x^2 + a^2}} = \frac{2\lambda a}{4\pi\varepsilon_0} \int_{-l}^{l} \frac{1}{(x^2 + a^2)^{\frac{3}{2}}} dx$$

apply substitution $x = a \tan \theta$

$$\Rightarrow \frac{2\lambda a}{4\pi\varepsilon_0} \int_{-l}^{l} \frac{asec^2\theta d\theta}{(a^2(tan^2\theta+1))^{\frac{3}{2}}} = \frac{\lambda}{2\pi\varepsilon_0 a} \left(\frac{l}{\sqrt{l^2+a^2}}\right)$$

when having an infinite long wire

$$l \to \infty \Rightarrow \overrightarrow{E} = \frac{\lambda}{2\pi\varepsilon_0 a}$$

charged plane

find \vec{E} of distance a from an infinite plane with charge density σ

$$E = \int_0^\infty dE = \int_0^\infty \frac{2\pi x dx \sigma}{4\pi \varepsilon_0 (x^2 + a^2)} \cdot \frac{a}{\sqrt{x^2 + a^2}} = \frac{\sigma}{2\varepsilon_0} \int_0^{\frac{\pi}{2}} \frac{ax}{(x^2 + a^2)^{\frac{3}{2}}} dx$$

apply substitution $x = a \tan \theta$

$$\Rightarrow \frac{\sigma}{2\varepsilon_0} \int_0^{\frac{\pi}{2}} \frac{\tan\theta}{(\tan^2\theta + 1)^{\frac{3}{2}}} sec^2\theta d\theta = \frac{\sigma}{2\varepsilon_0} \int_0^{\frac{\pi}{2}} sin\theta d\theta = \frac{\sigma}{2\varepsilon_0}$$