\[
\frac{\f

Simplifications: L=0 $M_L=0$, S=1, T=0, $M_T=0$

Z (m;"ms" SMs) (SMs | m;" ns") = Sms Ms

-> some with other one

En (mont/ TMr) (TMr/Mont/) = 1 (and other one to)

Josh (FlhLM, Xhl'n', It) = = & Su, Smn

Take S-wars:
$$(OM_{s} | 1M_{s})$$
 factors or always $6_{3,s} \delta h_{3,ns}!$ (No sum and $M_{3}!$)

The expression reduces to $= \frac{[4_{3}(\tilde{G})]^{2}}{2} \frac{1}{2} \frac{7_{1}}{7_{1}} \frac{7_{1}}{7_{1}}$

(9 L'0 | 9 > (9 | 9 L'0) 80/2-5, (9 6) | 45, (4) | 45, (4) |

Only
$$G_{\hat{q}}$$
 dependent in CG 's. Average over $U_{\hat{q}}$

$$| \underbrace{\mathbb{E}_{\mathcal{G}}(\hat{G})}^{k} \Big[\Big(1 + \underbrace{\frac{1}{2}} \frac{\partial U_{\hat{q}}(\hat{q}|q \infty)}{4\pi} \underbrace{\frac{1}{2}} \frac{\partial U_{\hat{q}}(\hat{q}|q \infty)}{4\pi} \Big) \Big(\underbrace{\delta U_{\hat{x}_{1}, \hat{x}_{1}}(q, q) + \frac{1}{2}}_{W_{\hat{x}_{1}}} \underbrace{\frac{1}{2}}_{W_{\hat{x}_{1}}} \Big(\frac{1}{2} \underbrace{\frac{1}{2}}_{W_{\hat{x}_{1}}} \underbrace{\frac{1}{2}}_{W_$$

$$\left(\hat{\Lambda}_{\lambda}(9) \right)_{0} = \left[1 + \frac{1}{2\pi} \frac{1}{4\pi} \left(6 \tilde{U}_{x_{1}-x_{1}}(q,9) + 5 \tilde{U}_{x_{1}-x_{1}}(q,9) \right) \right] V_{3S_{1}}(9) \right]^{\lambda} \\
+ \frac{3V}{4} \left(\frac{2}{\pi} \right)^{2} \frac{1}{4\pi} \sum_{x=x_{1},30_{1}} \int_{0}^{\infty} \frac{du k^{2}}{(2\pi)^{3}} \int_{0}^{\sqrt{2\pi}} \frac{du$$

* Might be messing up [] I ferm.
> To tost contributions, you could compare
To tost contributions, you could compare to $ \Psi_d^{\circ}(q > \lambda) ^2$ and $ \Psi_d^{\circ}(q < \lambda) ^2$