Model Predictive Control

Philippe Weingertner

August 15, 2018

Contents

Mo	tion Control	1
Nor	ı linear optimization under constraints	2
2.1	Definition	2
2.2	Example	3
2.3	Solving with ipopt	3
Veh	nicle Models	6
3.1	Dynamic vs Kinematic Models	6
3.2	Kinematic Model	6
	3.2.1 State	6
	3.2.2 Deriving the kinematic model	7
	3.2.3 Errors	9
	3.2.4 Kinematic Model	10
3.3	Dynamic Models	10
Mo	del Predictive Control	10
4.1	Optimization under constraints: cost functions	10
4.2	Timsestep length and Elapsed duration	10
4.3		11
4.4		12
4.5	MPC Solver code	13
	Non 2.1 2.2 2.3 Veh 3.1 3.2 3.3 Mo 4.1 4.2 4.3 4.4	2.2 Example 2.3 Solving with ipopt Vehicle Models 3.1 Dynamic vs Kinematic Models 3.2 Kinematic Model 3.2.1 State 3.2.2 Deriving the kinematic model 3.2.3 Errors 3.2.4 Kinematic Model 3.3 Dynamic Models Model Predictive Control 4.1 Optimization under constraints: cost functions 4.2 Timsestep length and Elapsed duration 4.3 Latency handling 4.4 MPC Solver algorithm

1 Motion Control

Motion Control deals with the last stage of an autonomous driving pipeline: the control module. The input to the control module will be provided by

the output of the path planning module via a set of waypoints to follow as close as possible. The control module will have to provide the actuators commands (in our case steering angle and throttling; acceleration or deceleration) so that the automated driving comply with a set of rules:

- follow the planned waypoints as close as possible
- drives smoothly
- try to adjust the speed: as fast as a configurable reference when possible and driving more slowly during curves

Figure 1: Autonomous Driving pipeline

2 Non linear optimization under constraints

2.1 Definition

In its most generic form we are dealing with the following problem:

minimize
$$f_0(x)$$

subject to $lower_i \leq f_i(x) \leq upper_i, i = 1, ..., m.$

Note that by setting $lower_i = upper_i$ we can define constraints as equalities as well.

2.2 Example

```
minimize x_1 * x_4 * (x_1 + x_2 + x_3) + x_3

subject to x_1 * x_2 * x_3 * x_4 \ge 25

x_1^2 + x_2^2 + x_3^2 + x_4^2 = 40

1 \le x_1, x_2, x_3, x_4 \le 5
```

2.3 Solving with ipopt

ipopt and cppad are used to solve non-linear minimization problems. ipopt requires the computation of first order (Jacobians) and 2nd order derivatives (Hessians). These derivatives will be computed automatically thanks to cppad: providing automatic differentiation services.

The previous example is solved with ipopt and CppAD here: https://www.coin-or.org/CppAD/Doc/ipopt_solve_get_started.cpp.htm

Listing 1: Simple example with ipopt

```
1
 2
 3
   # include <cppad/ipopt/solve.hpp>
   namespace {
 6
         using CppAD::AD;
 7
8
         class FG_eval {
9
         public:
10
              typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;
              void operator()(ADvector& fg, const ADvector& x)
11
                     assert(fg.size() == 3);
12
              {
                    assert(x.size() = 4);
13
14
15
                   // Fortran style indexing
16
                   AD < double > x1 = x[0];
17
                   AD < double > x2 = x[1];
18
                   AD < double > x3 = x[2];
19
                   AD < double > x4 = x[3];
20
                   // f(x)
                   fg[0] = x1 * x4 * (x1 + x2 + x3) + x3;
21
22
                   // g_1 (x)
23
                    fg[1] = x1 * x2 * x3 * x4;
24
                   // g_{2} (x)
```

```
25
                   fg[2] = x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4;
26
27
                   return;
28
              }
29
        };
30 }
31
32 bool get_started(void)
33 {
         bool ok = true;
34
        size_t i;
        typedef CPPAD_TESTVECTOR( double ) Dvector;
35
36
37
        // number of independent variables (domain dimension for f and g)
38
        size_t nx = 4;
39
        // number of constraints (range dimension for g)
40
        size_t ng = 2;
        // initial value of the independent variables
41
42
        Dvector xi(nx);
        xi[0] = 1.0;
43
44
        xi[1] = 5.0;
45
        xi[2] = 5.0;
        xi[3] = 1.0;
46
47
        // lower and upper limits for x
        Dvector xl(nx), xu(nx);
48
49
        for (i = 0; i < nx; i++)
50
               xl[i] = 1.0;
51
             xu[i] = 5.0;
52
53
        // lower and upper limits for g
        Dvector gl(ng), gu(ng);
54
55
        gl[0] = 25.0;
                           gu[0] = 1.0e19;
                           gu[1] = 40.0;
56
        gl[1] = 40.0;
57
        // object that computes objective and constraints
58
59
        FG_eval fg_eval;
60
        // options
61
62
        std::string options;
63
        // turn off any printing
        options += "Integer print_level 0 \ n";
64
```

```
options += "String sb
                                            yes\n";
65
66
         // maximum number of iterations
         options += "Integer max_iter
67
                                             10 \n";
68
         // approximate accuracy in first order necessary conditions;
69
         // see Mathematical Programming, Volume 106, Number 1,
         // Pages 25-57, Equation (6)
70
                                            1e-6 n;
         options += "Numeric tol
71
72
         // derivative testing
         options += "String
                               derivative_test
73
                                                           second-order\n";
74
         // maximum amount of random pertubation; e.g.,
75
         // when evaluation finite diff
76
         options += "Numeric point_perturbation_radius 0.\n";
77
78
         // place to return solution
79
         CppAD::ipopt::solve_result < Dvector > solution;
80
81
         // solve the problem
82
         CppAD::ipopt::solve<Dvector, FG_eval>(
83
               options, xi, xl, xu, gl, gu, fg_eval, solution
84
         );
85
         // Check some of the solution values
86
87
88
         ok &= solution.status == CppAD::ipopt::solve_result < Dvector >::success
89
90
         double check_x[] = \{ 1.000000, 4.743000, 3.82115, 1.379408 \};
         double check_zl[] = \{1.087871, 0., \}
91
              };
    0.
92
         double \operatorname{check}_{zu}[] = \{ 0., 
                                           0.,
                                                      0.,
    0.
              };
93
         double rel_tol
                            = 1e-6; // relative tolerance
94
         double abs_tol
                            = 1e-6; // absolute tolerance
95
         for (i = 0; i < nx; i++)
96
                ok &= CppAD:: NearEqual(
                    check_x[i], solution.x[i],
97
                                                  rel_tol, abs_tol
98
               );
99
               ok &= CppAD::NearEqual(
                    check_zl[i], solution.zl[i], rel_tol, abs_tol
100
101
102
               ok &= CppAD:: NearEqual(
```

3 Vehicle Models

3.1 Dynamic vs Kinematic Models

3.2 Kinematic Model

3.2.1 State

The state variables are the following:

Figure 2: Model state

- x: x position
- y: y position
- ψ : angle between speed vector and x-axis
- \bullet v: speed vector

3.2.2 Deriving the kinematic model

Our state vector is

$$S_t = [x_t, y_t, \psi_t, v_t]$$

We derive an approximation model, kinematic, relating S_{t+1} and S_t . The smaller the dt the more accurate the model.

The model used id the kinematic bicycle model:

Figure 3: Kinematic bicycle model

Linear movement approximation: assuming during dt that v_t and ψ_t are constant:

$$x_{t+1} = x_t + v_t * \cos(\psi_t) * dt$$

$$y_{t+1} = y_t + v_t * \sin(\psi_t) * dt$$

Rotational movement approximation: assuming during dt that v_t and steering angle δ_t are constant:

Let first compute the radius of curvature R based on the steering angle δ and the distance L between rear and front wheels:

Figure 4: Radius of curvature R

We have

$$\tan(\delta)\approx L/R$$

We are moving on a circle from position M_t to position M_{t+1} at a constant speed v_t

$$M_{t+1}M_t = R * (\psi_{t+1} - \psi_t) \approx v_t * dt$$

So we have:

$$\psi_{t+1} = \psi_t + (v_t/R) * dt$$

$$\psi_{t+1} = \psi_t + (v_t/L) * \tan(\delta_t) * dt$$

Note that for small δ_t we have $\tan(\delta_t) \approx \delta_t$

Speed update: assuming during dt that a_t is constant:

$$v_{t+1} = v_t + a_t * dt$$

So to summarize our kinematic bicycle model is:

$$x_{t+1} = x_t + v_t * \cos(\psi_t) * dt$$

$$y_{t+1} = y_t + v_t * \sin(\psi_t) * dt$$

$$\psi_{t+1} = \psi_t + (v_t/L) * \tan(\delta_t) * dt$$

$$v_{t+1} = v_t + a_t * dt$$

The state vector is $S_t = [x_t, y_t, \psi_t, v_t]$.

The actuator command $A_t = [a_t, \delta_t]$ defines a **constraint** between S_{t+1} and S_t .

Note also that for a bicycle we have $\delta_t \in [-\pi/2, \pi/2]$ whereas for a car we have $\delta_t \in (-\delta_{max}, \delta_{max})$ with $\delta_{max} < \pi/2$.

3.2.3 Errors

The errors variables are the following:

The dashed white line is the cross track error.

Figure 5: Model errors

- cte: cross track error. It corresponds to distance of vehicle from the planned trajectory (as planned by path planning module)
- $e\Psi$: psie error is the angle difference of the vehicle trajectory with the planned trajectory (as planned by path planning module)

The new state vector is $[x_t, y_t, \psi_t, v_t, cte_t, e\Psi_t]$.

3.2.4 Kinematic Model

3.3 Dynamic Models

Forces, Slip Angle, Slip ratio and Tire Models

4 Model Predictive Control

MPC reframes the task of following a trajectory as an optimization problem. The solution to the optimization problem is the optimal trajectory.

MPC involves simulating different actuator inputs, predicting the resulting trajectory and minimizing a set of constraints (or cost functions).

Input: a reference trajectory we want to follow

Constraints:

- Vehicle Model
- Comfort

Output: actuator commands (steering, throttling, braking ...)

Once we found the lowest cost trajectory, we implement the very first set of actuation commands. Then we throw away the rest of the trajectory we calculated. Instead of using the old trajectory we predicted, we take our new state and use that to calculate a new optimal trajectory. In that sense, we are constantly calculating inputs over a future horizon. That's why this approach is also called Receding Horizon Control. We constantly reevaluate the trajectory because our vehicle model is not perfect and the next predicted (or planned) state may (slightly...) differ with our prediction (in the sense of a consequence of a command sent).

4.1 Optimization under constraints: cost functions

4.2 Timsestep length and Elapsed duration

N=10 and dt=100 ms are used so that we are working on 1 second of data. This is a trade-off: we need enough data visibility to ensure a good prediction, but we also have to limit the amount of computation. In general,

Figure 6: Minimization problem

smaller dt gives better accuracy, but that will require higher N for given horizon (N*dt). However, increasing N will result in longer computational time which increases the latency. The most common choice of values is N=10 and dt=0.1 but anything between N=20, dt=0.05 should work.

Figure 7: Solver setup with N*dt time horizon

4.3 Latency handling

A contributing factor to latency is actuator dynamics. For example the time elapsed between when you command a steering angle to when that angle is actually achieved. This could easily be modeled by a simple dynamic system and incorporated into the vehicle model. One approach would be running a simulation using the vehicle model starting from the current state for the duration of the latency. The resulting state from the simulation is the new initial state for MPC.

Thus, MPC can deal with latency much more effectively, by explicitly taking it into account, than a PID controller.

4.4 MPC Solver algorithm

Figure 8: Solver input

Figure 9: Solver output

Figure 10: Solver actuator commands

4.5 MPC Solver code

Listing 2: MPC solver with ipopt

```
1 #include "MPC.h"
 2 #include <cppad/cppad.hpp>
 3 #include <cppad/ipopt/solve.hpp>
 4 #include "Eigen -3.3/Eigen/Core"
 5 #include "Eigen -3.3/Eigen/QR"
7 using CppAD::AD;
9 // TODO: Set the timestep length and duration
10 \text{ size t } N = 10;
11 \quad double \quad dt = 0.1;
12
13 // This value assumes the model presented in the classroom is used.
14 / /
15 // It was obtained by measuring the radius formed by running the vehicle in
16 // simulator around in a circle with a constant steering angle and velocity
17 //
      flat terrain.
18 //
19 // Lf was tuned until the the radius formed by the simulating the model
20 // presented in the classroom matched the previous radius.
```

```
21 //
22 // This is the length from front to CoG that has a similar radius.
23 const double Lf = 2.67;
24
25 // NOTE: feel free to play around with this
26 // or do something completely different
27
28 double ref_v = 120;
29
30 // The solver takes all the state variables and actuator
31 // variables in a singular vector. Thus, we should to establish
32 // when one variable starts and another ends to make our lifes easier.
33 \text{ size_t } x_{\text{start}} = 0;
34 \text{ size_t y\_start} = \text{x\_start} + \text{N};
35 \text{ size\_t psi\_start} = \text{y\_start} + \text{N};
36 \text{ size\_t } \text{v\_start} = \text{psi\_start} + \text{N};
37 \text{ size\_t cte\_start} = \text{v\_start} + \text{N};
38 size_t epsi_start = cte_start + N;
39 size_t delta_start = epsi_start + N;
40 \text{ size\_t a\_start} = \text{delta\_start} + N - 1;
41
42 class FG_eval {
43
    public:
44
     // Fitted polynomial coefficients
45
      Eigen::VectorXd coeffs;
46
      FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
47
      typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
48
      void operator()(ADvector& fg, const ADvector& vars) {
49
50
        // TODO: implement MPC
51
        // 'fg' a vector of the cost constraints, 'vars' is a vector of variab
52
        // NOTE: You'll probably go back and forth between this function and
53
        // the Solver function below.
54
55
        // The cost is stored is the first element of 'fg'.
        // Any additions to the cost should be added to 'fg[0]'.
56
57
        fg[0] = 0;
58
59
        // Reference State Cost
60
        // TODO: Define the cost related the reference state and
```

```
// any anything you think may be beneficial.
61
62
        for (size_t t = 0; t < N; t++) {
          fg[0] += 4 * 2000 * CppAD::pow(vars[cte_start + t], 2);
63
64
          fg[0] += 4 * 2000 * CppAD::pow(vars[epsi_start + t], 2);
65
          fg[0] \leftarrow CppAD::pow(vars[v_start + t] - ref_v, 2);
66
67
68
        // Minimize the use of actuators.
69
        for (size_t t = 0; t < N - 1; t++) 
70
          fg[0] += 5 * CppAD::pow(vars[delta_start + t], 2);
71
          fg[0] += 5 * CppAD::pow(vars[a_start + t], 2);
72
73
74
        // smooth
75
        for (size_t t = 0; t < N - 2; t++) 
76
          fg[0] += 200 * CppAD::pow(vars[delta_start + t + 1] - vars[delta_start]
77
          fg[0] += 10 * CppAD::pow(vars[a_start + t + 1] - vars[a_start + t],
78
        }
79
80
        // Setup Constraints
81
82
83
        // NOTE: In this section you'll setup the model constraints.
84
85
        // Initial constraints
86
87
        // We add 1 to each of the starting indices due to cost being located
        // index 0 of 'fg'.
88
        // This bumps up the position of all the other values.
89
90
        fg[1 + x_start] = vars[x_start];
        fg[1 + y_start] = vars[y_start];
91
92
        fg[1 + psi_start] = vars[psi_start];
93
        fg[1 + v_start] = vars[v_start];
94
        fg[1 + cte_start] = vars[cte_start];
        fg[1 + epsi_start] = vars[epsi_start];
95
96
97
        // The rest of the constraints
        for (size_t t = 1; t < N; t++) 
98
99
          // at time t+1
100
          AD < double > x1 = vars[x_start + t];
```

```
101
          AD < double > y1 = vars[y_start + t];
102
          AD < double > psi1 = vars[psi_start + t];
103
          AD < double > v1 = vars[v_start + t];
104
          AD<double> cte1 = vars[cte_start + t];
105
          AD<double> epsi1 = vars[epsi_start + t];
106
107
          // at time t
108
          AD < double > x0 = vars[x_start + t - 1];
109
          AD < double > y0 = vars[y_start + t - 1];
110
          AD < double > psi0 = vars[psi_start + t - 1];
111
          AD < double > v0 = vars[v_start + t - 1];
112
          AD < double > cte0 = vars[cte_start + t - 1];
113
          AD < double > epsi0 = vars[epsi_start + t - 1];
114
          AD < double > delta0 = vars[delta_start + t - 1];
115
116
          AD < double > a0 = vars[a_start + t - 1];
117
118
          // XXX: to be updated
119
          AD < double > f0 = coeffs[0] + coeffs[1] * x0 + coeffs[2] * x0 * x0 + c
120
          AD < double > psides0 = CppAD:: atan(coeffs[1] + 2 * coeffs[2] * x0 + 3
121
122
          // Here's 'x' to get you started.
123
          // The idea here is to constraint this value to be 0.
124
125
          // NOTE: The use of 'AD<double>' and use of 'CppAD'!
126
          // This is also CppAD can compute derivatives and pass
127
          // these to the solver.
128
129
          // TODO: Setup the rest of the model constraints
130
          fg[1 + x_start + t] = x1 - (x0 + v0 * CppAD:: cos(psi0) * dt);
131
          fg[1 + y_start + t] = y1 - (y0 + v0 * CppAD:: sin(psi0) * dt);
132
          fg[1 + psi_start + t] = psi1 - (psi0 - v0 * delta0 / Lf * dt); // XX
133
          fg[1 + v_start + t] = v1 - (v0 + a0 * dt);
134
          // BUG fg [1 + cte_start + t] = cte1 - (cte0 + v0 * CppAD::sin(epsi0)
135
136
          // BUG fg[1 + epsi_start + t] = epsi1 - (epsi0 + v0 * delta0 / Lf *
          fg[1 + cte_start + t] = cte_1 - ((f_0 - y_0) + (v_0 * CppAD::sin(epsi_0))
137
          fg[1 + epsi\_start + t] = epsi1 - ((psi0 - psides0) - v0 * delta0 / L
138
139
        }
140
      }
```

```
141 };
142
143 //
144 // MPC class definition implementation.
145 //
146 MPC::MPC() {}
147 MPC::~MPC() {}
148
149
   vector<double> MPC::Solve(Eigen::VectorXd state, Eigen::VectorXd coeffs) {
150
      bool ok = true;
151
      size_t i;
152
      typedef CPPAD_TESTVECTOR(double) Dvector;
153
154
      double x = state[0];
155
      double y = state[1];
156
      double psi = state[2];
157
      double v = state[3];
158
      double cte = state [4];
159
      double epsi = state [5];
160
161
      // TODO: Set the number of model variables (includes both states and inp
      // For example: If the state is a 4 element vector, the actuators is a 2
162
163
      // element vector and there are 10 timesteps. The number of variables is
164
165
      // 4 * 10 + 2 * 9
166
      size_t n_vars = N * 6 + (N - 1) * 2;
167
      // TODO: Set the number of constraints
168
      size_t n_constraints = N * 6;
169
170
      // Initial value of the independent variables.
171
      // Should be 0 except for the initial values.
172
      Dvector vars (n_vars);
173
      for (i = 0; i < n_{vars}; i++)
174
        vars[i] = 0.0;
175
176
      // Set the initial variable values
177
      vars[x_start] = x;
178
      vars[y_start] = y;
179
      vars[psi_start] = psi;
180
      vars[v_start] = v;
```

```
vars [cte_start] = cte;
181
      vars[epsi_start] = epsi;
182
183
      // Lower and upper limits for x
184
185
      Dvector vars_lowerbound(n_vars);
      Dvector vars_upperbound(n_vars);
186
      // TODO: Set lower and upper limits for variables.
187
      // Set all non-actuators upper and lowerlimits
188
      // to the max negative and positive values.
189
190
      for (i = 0; i < delta_start; i++)
        vars_lowerbound[i] = -1.0e19;
191
        vars_upperbound[i] = 1.0e19;
192
193
      }
194
      // The upper and lower limits of delta are set to -25 and 25
195
      // degrees (values in radians).
196
      // NOTE: Feel free to change this to something else.
197
198
      for (i = delta\_start; i < a\_start; i++) {
        vars_lowerbound[i] = -0.436332 * Lf; // *Lf ? XXX
199
200
        vars\_upperbound[i] = 0.436332 * Lf; // *Lf?
201
      }
202
203
      // Acceleration/decceleration upper and lower limits.
      // NOTE: Feel free to change this to something else.
204
205
      for (i = a_start; i < n_vars; i++)
206
        vars_lowerbound[i] = -1.0;
        vars_upperbound[i] = 1.0;
207
      }
208
209
210
211
      // Lower and upper limits for the constraints
      // Should be 0 besides initial state.
212
213
      Dvector constraints_lowerbound(n_constraints);
214
      Dvector constraints_upperbound(n_constraints);
      for (i = 0; i < n_{constraints}; i++)
215
216
        constraints_lowerbound[i] = 0;
        constraints_upperbound[i] = 0;
217
218
219
      constraints_lowerbound [x_start] = x;
220
      constraints_lowerbound[y_start] = y;
```

```
221
      constraints_lowerbound[psi_start] = psi;
      constraints_lowerbound[v_start] = v;
222
      constraints_lowerbound[cte_start] = cte;
223
      constraints_lowerbound[epsi_start] = epsi;
224
225
226
      constraints_upperbound [x_start] = x;
      constraints_upperbound[y_start] = y;
227
228
      constraints_upperbound[psi_start] = psi;
229
      constraints_upperbound [v_start] = v;
230
      constraints_upperbound[cte_start] = cte;
      constraints_upperbound[epsi_start] = epsi;
231
232
233
      // Object that computes objective and constraints
234
      FG_eval fg_eval(coeffs);
235
236
      // NOTE: You don't have to worry about these options
237
238
      // options for IPOPT solver
239
240
      std::string options;
      // Uncomment this if you'd like more print information
241
      options += "Integer print_level 0 \ n";
242
      // NOTE: Setting sparse to true allows the solver to take advantage
243
      // of sparse routines, this makes the computation MUCH FASTER. If you
244
      // can uncomment 1 of these and see if it makes a difference or not but
245
246
      // if you uncomment both the computation time should go up in orders of
      // magnitude.
247
      options += "Sparse
                                        forward\n";
248
                          \operatorname{true}
                                        reverse \n";
249
      options += "Sparse true
      // NOTE: Currently the solver has a maximum time limit of 0.5 seconds.
250
      // Change this as you see fit.
251
                                                  0.5 \ n":
      options += "Numeric max_cpu_time
252
253
254
      // place to return solution
      CppAD::ipopt::solve_result < Dvector > solution;
255
256
257
      // solve the problem
      CppAD::ipopt::solve<Dvector, FG_eval>(
258
259
          options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound
          constraints_upperbound, fg_eval, solution);
260
```

```
261
262
      // Check some of the solution values
263
      ok &= solution.status == CppAD::ipopt::solve_result < Dvector >::success;
264
265
      // Cost
266
      auto cost = solution.obj_value;
267
      //std::cout << "Cost " << cost << std::endl;
268
269
270
      // TODO: Return the first actuator values. The variables can be accessed
      // 'solution.x[i]'.
271
272
      // {...} is shorthand for creating a vector, so auto x1 = \{1.0, 2.0\}
273
      // creates a 2 element double vector.
274
      //return {solution.x[delta_start], solution.x[a_start]};
275
276
      vector<double> result;
277
278
279
      result.push_back(solution.x[delta_start]);
280
      result.push_back(solution.x[a_start]);
281
282
      for (size_t i = 0; i < N - 1; i++) 
283
        result.push_back(solution.x[x_start + i + 1]);
        result.push_back(solution.x[y_start + i + 1]);
284
285
      }
286
287
      return result;
288 }
```