Prof. Americo Cunha

Universidade do Estado do Rio de Janeiro - UERJ

americo.cunha@uerj.br

www.americocunha.org

$$f(x)=0$$

É possível garantir que essa equação tem solução?

$$f(x) = 0$$

É possível garantir que essa equação tem solução?

Quando f é contínua, sim!

Teorema do valor intermediário

Se $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ é uma função contínua, então para qualquer valor u entre f(b) e f(a) existe $c\in[a,b]$ tal que f(c)=u.

Teorema de Bolzano:

Se f é uma função contínua e assume valores com sinais contrários nos extremos de um intervalo, então f tem raiz no interior desse intervalo.

É um *método numérico* para calcular uma *solução aproximada* para a equação f(x) = 0, num intervalo [a, b] onde existe uma solução x^* .

Hipóteses:

$$f \in C[a,b]$$
 e $f(a) f(b) < 0$

É um *método numérico* para calcular uma *solução aproximada* para a equação f(x) = 0, num intervalo [a, b] onde existe uma solução x^* .

Hipóteses:

$$f \in C[a,b]$$
 e $f(a) f(b) < 0$

Teorema de Bolzano \Longrightarrow existe uma raiz $x^* \in (a, b)$

4 / 16

Ideia do método:

- Calcule o ponto médio de [a, b], i.e., $x_m = (a + b)/2$
- Com base no sinal de $f(x_m)$ verifique se

$$x^* \in [a, x_m]$$
 ou $x^* \in [x_m, b]$

Se $f(x_m) = 0$ a raiz já foi encontrada!

 Repita o procedimento no subintervalo que contém a raiz, até obter uma aproximação com a tolerância desejada

Algoritmo da bisseção

```
Input: f, [a, b], and tol
 1: iter = 1
 2: x_m = (a+b)/2
 3: Error = |b - a|/2
 4: if f(x_m) = 0 or Error < \text{tol} then
 5:
    return
 6: end if
 7: while Error > tol do
 8: if f(a) f(x_m) < 0 then
 9:
    b = x_m
10: else
11: a = x_m
12: end if
13: x_m = (a+b)/2
14: Error = |b-a|/2
15: iter = iter + 1
16: end while
17: return
Output: x_m, iter
```


Implementação em GNU Octave

```
function [xm,iter] = bisection(f,a,b,tol)
    iter = 1;
     xm = 0.5*(a+b);
   Error = 0.5*abs(b-a);
   while Error > tol
      fprintf([' iter = %3d ',...
               ' root = %.16f '....
               'Error = %.16f \n'], iter, xm, Error);
      if f(a) * f(xm) < 0
         b = xm;
      else
         a = xm;
      end
         xm = 0.5*(a+b);
      Error = 0.5*abs(b-a);
       iter = iter + 1:
   end
return
```


Experimento computacional 1

```
f(x) = x^2 - 2

[a, b] = [0, 2]

>> a=0.0; b=2.0; tol=1.0e-9;

>> f = @(x) x^2-2;

>> root = bisection(f,a,b,tol);
```


Experimento computacional 2

$$f(x) = x^3 - 30x^2 + 2552$$
$$[a, b] = [0, 20]$$

Experimento computacional 3

$$f(x) = \cos(x) \cosh(x) + 1$$

 $[a, b] = [0, 3]$
 $>> a=0.0; b=3.0; tol=1.0e-9;$
 $>> f = @(x) \cos(x)*\cosh(x)+1;$
 $>> root = bisection(f,a,b,tol);$

Para pensar em casa ...

Exercício computacional:

A rotina bisection.m possui um *bug* que pode levar à uma falha crítica. Você consegue identificá-lo?

Exercício computacional:

Modifique a rotina bisection.m para corrigir o bug acima e previnir possíveis erros de entrada do usuário:

- intervalo que não contém raiz;
- tolerância não positiva.

Fundamentação teórica

Teorema (limite para o erro do método da bisseção)

Seja f uma função contínua em [a, b] que muda de sinal no interior desse intervalo, e x^* uma raiz de f em (a, b).

O método da bisseção gera uma sequência de aproximações

$$x_0, x_1, \cdots, x_n, \cdots$$

tal que (para qualquer $n \in \mathbb{N}$):

$$|x^*-x_n| \leq \frac{|b-a|}{2^n}$$

Logo, $x_n \to x^*$ quando $n \to \infty$.

Fundamentação teórica

Teorema (limite para o erro do método da bisseção)

Seja f uma função contínua em [a, b] que muda de sinal no interior desse intervalo, e x^* uma raiz de f em (a, b).

O método da bisseção gera uma sequência de aproximações

$$x_0, x_1, \cdots, x_n, \cdots$$

tal que (para qualquer $n \in \mathbb{N}$):

$$|x^*-x_n| \leq \frac{|b-a|}{2^n}$$

Logo, $x_n \to x^*$ quando $n \to \infty$.

Pense numa demonstração para esse teorema.

Número de iterações até a "convergência"

Para que o método da bisseção produza uma aproximação tal que $|x^*-x_n|<$ tol basta escolher n de forma que

$$\frac{|b-a|}{2^n} < \texttt{tol}.$$

Número de iterações até a "convergência"

Para que o método da bisseção produza uma aproximação tal que $|x^* - x_n| < \text{tol}$ basta escolher n de forma que

$$\frac{|b-a|}{2^n} < \texttt{tol}.$$

Assim sendo, o número de iterações até a "convergência" é

$$n^* = \operatorname{floor}\left(\log_2\left(\frac{|b-a|}{\operatorname{tol}}\right)\right).$$

Obs: $floor(\pi) = 3$.

Número de iterações até a "convergência"

Para que o método da bisseção produza uma aproximação tal que $|x^*-x_n|<$ tol basta escolher n de forma que

$$\frac{|b-a|}{2^n} < {\tt tol}.$$

Assim sendo, o número de iterações até a "convergência" é

$$\mathit{n}^* = \mathtt{floor}\left(\log_2\left(\frac{|b-a|}{\mathtt{tol}}\right)\right).$$

Note que esse critério depende apenas de [a, b] e tol, sendo independente do computador utilizado.

Obs: $floor(\pi) = 3$.

Características do método da bisseção

- © Simples e fácil de implementar
- © Seguro e robusto (não falha)
- © Convergência garantida (teorema)
- © Requer apenas a continuidade de f
- © Convergência extremamente lenta
- © Difícil de generalizar para várias variáveis

15 / 16

Como citar esse material?

A. Cunha, *Método da Bisseção*, Universidade do Estado do Rio de Janeiro – UERJ, 2020.

Essas notas de aula podem ser compartilhadas nos termos da licença Creative Commons BY-NC-ND 3.0, com propósitos exclusivamente educacionais.

