Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет систем управления и робототехники

Дисциплина: Информатика Лабораторная работа №7 Работа с системой компьютерной вёрстки ТЕХ

Евстигнеев Дмитрий Максимович R3242

 ${
m Caнкт-} \Pi {
m erep fypr} \\ 2021$

В. Левин

Парабола и неравенства

Прародителем всех тождественных неравенств является тот факт, что квадрат любого действительного числа неотрицателен: $X^2 \geqslant 0$ Эют факт можно сформулировать еще так: график функции $y=x^2$ (парабола) не проходит ниже оси абсцисс (рис. 1). Знак равенства в неравенстве $X^2 \geqslant 0$ имеет место только при X=0 (парабола $y=x^2$ касается оси абсцисс в начале координат). В этой заметке мы расскажем о том, как, исходя и.» этого элементарного неравенства, можно постепенно получить неравенства более сложные. І. Рассмотрим квадратный трехчлен

$$y = Ax^2 + 2Bx + C, A \neq 0;$$

графиком его также является парабола. Найдем необходимые и достаточные условия того, чтобы для всех действительных значений х выполнялось неравенство

$$Ax^2 + 2Bx + C \geqslant 0. \tag{1}$$

Эти условия находятся очень легко. Вопервых, необходимо, чтобы A было положительным, так как при A < 0 всегда существуют значения a-, для которых неравенство (1) заведомо неверно (это ясно, конечно, из того, что при A < 0 парабола либо пересекает ось абсцисс, либо вся расположена ниже этой оси). Возьмем, например, $x = x_0 = m + \sqrt{(m^2 + m)}$, гДе т выбрано так, чтобы оно было больше, чем

 $\frac{|B|)}{|A|}$ и чем $\frac{|C|}{|A|.}$ Тогда (напомним, что сейчас у нас A<0):

$$Ax_0^2 + 2Bx_0 + C \leqslant = 0 - |A|x_0^2 + 2|B|x_0 + +|C| < |A|(-x_0^2 + 2mx_0 + m) = = |A|(-2m^2 - m - 2m\sqrt{(m^2 + m)} + +2m^2 + 2m\sqrt{(m^2 + m + m)} = 0),$$

то есть

$$Ax^2 + 2Bx + C \geqslant 0.$$

Если же a>0 0, то, выделив из квадратного трехчлена полный квадрат, получим

$$Ax_0^2 + 2Bx_0 + C = A\left[\left(x + \frac{|B|}{|A|}\right)^2 + \frac{|C|}{|A|} - \frac{|B^2|}{|A^2|}\right] = A\left(x + \frac{|B|}{|A|}\right)^2 + \frac{AC - B^2}{A} \geqslant \frac{AC - B^2}{A},$$
(2)

так как $A\left(x+\frac{|B|}{|A|}\right)^2>0$. Знак равенства в неравенстве (2) достигается только при $x=-\frac{|B|}{|A|}$. Таким образом, неравенство (1) верно для всех действительных значений х тогда и только тогда, когда A>0 и $AC\geqslant B^2$. Знак равенства в неравенстве (1)- является лишь в том случае, когда

Рис. 1:

Свойс-	Цент-	Поворот	Парал-
тва	ральная	на угол α	лельный
	симмет-	$(\alpha \neq 180^{\circ})$	перенос на
	рия		ненулевое
			расстояние
1	да	нет	да
2	да	да	нет
3	да	да	нет
4	нет	да	да
		при $\alpha =$	
		$= 180^{\circ}$	

10 а) Нового понятия не получится, так как всякий четырехугольник с конгруэнтны- ми сторонами—ромб Это объясняется тем. что в определении ромба в учебнике сделано отступление от минимальности числа свойств, указываемых в определении (достаточно было бы указать, что ромб —это параллелограмм, две смежные стороны которого конгруэнтны) б) Да Новому определению удовлетво- ряет, например, правильный шестиуголь-

Подвиг, который будет жить в веках

15 лет прошло с того дня, когда советский космический корабль «Восток» поднял в за облачные высоты первого космонавта Юрня Гагарина Человек впервые оказался одни на один с космическим пространством Ге ронческий полет был завершен успешно 15 лет — небольшой для нсторин срок Но как много сделано за это время в области исследования н использования космического пространства* Более тридцати советских космонавтов совершили свои полеты на ко раблях «Восток», «Союз» и космических стан циях «Салют», а некоторые из них уже дваж ды побывали в космическом пространстве Интенсивно развиваются исследования Луны и планет Солнечной системы Космические исследования приобрели международный ха рактер Успешно осуществляются научные программы «Интеркосмос», завершена первая советско-американская космическая про грамма «Союз — Аполлон»