NIP One 4

- 1) . N = 10,000 documents
 - One of from has 250 words where 'sneet' occurs 20 fines (call it D)
 - · 'Sheet' also occurs in 2500 documents (outrail)
 - -> What 95 th-9dh for 'sneet' in a bag of words
 representation of D.

Recall,

$$tP_{t,d} = \frac{Cant(t,d)}{Ien(d)}$$

$$+\frac{1}{5}n_{el,0} = \frac{20}{250} = \frac{2}{25}$$

. Are they Similar or not ?

GS(w,w) = 1.1 + 0.4.0.2 + 0.3.0.5 + 0.80.7 + 0.04.

 $\sqrt{1+0.4^2+0.3^2+0.8^2+0.04^2}$ $\sqrt{1+0.2^2+0.5^2+0.7^2+0.6^2}$

=0.96

. They are Similar (Sligthy below max Similarly)

. Make one Change to reduce Similarly -> let's try inverting the biggest term (Causes trigest reduction in cosse)

 $\rightarrow 1000 (65(W_1, W_2) = -0.09$

. - 0.09 Kt and we can no longer say the two words are Similar.

3. Given are 3 Sentences

-> Perform text-normalitation (StoPwood Termoral) &

Process belong Protect strains in Potent strains in Potent strains in Potent strains in Potent strains to our computers.

D2: If Confluents inderstand natural language they will become south simpler to use

D3: Speech recognition is the first step to built confluents

VOCab: natural, language, Process, become, important, begin, talk, computer, understand, stimple, use, speech. relagnition, first, step, build, like

b) what 95 downent vector for D3 -> use Reg. Cants 1) -> then the 1919 (Por each word in vocab.)

Wab.	\mathcal{D}_3	tf4D3	idft	tp-1919
natural language Aroass become 9mBHONT begin talk	000000		Now	0000000
OnRuter	1	17	$109_{10}(\frac{3}{3})$	\bigcirc
understand Simple Use	000	1 /	Com	0
Speech leaghton Pirst Step bulild	\ \ \ !	\/7 \/7 \/7 \/7	696 (311) 1096 (311) 1096 (311) 1096 (311) 1096 (311)	0.068
like	1	1/7	10916 (311)	
	·Doament Uector	·normaliad Preavency		·tP-9dp Vector
	(frequency Count)	ants (D3 has words)	7	0

4. Consider CBOW model

→ V words in the wab. → d is embedding dimension

. Dow the architecture

- · For Stopgian each of the other stons is the Same (V, Vxd, d, d, dxv, V)
 - -> but only , in Put vector (tagetwoord)
 - C or 1 owher vectors defending on formulation
- 5. Find big-0 (inhime of Computing a Single Prob.

 P(Context=clused=w) for SKipgram

 with 9+ 9n terms of embedding dim in d and was

 Site V
 - To multiply Akin & Bonin 9+ takes

 The do Kn dot Products (for each elem.

 91 the result)

 201 by the second of the results of the results.
 - -> each dot Product involves two multiplications
 - · m-1 additions

· here, Overall the matrix in which corresponds to Knor multiplications

- will disting the Knor-1) additions since the Knor multiplications dominate the Corplexity.

. SKiP-gran: By-ch

$$h = \chi_{v_{xd}} \rightarrow d.(v)$$
 multiplications

 $U_c = h_{v_d} v_{v_v} \rightarrow v.(d)$ multiplications

 $J_c = Solimar(u_c) \rightarrow v$ multiplications o

. Rena, Owall Conflexity 95 OCOU)

- 6. Users Ad B have used word 2 vec on a specific vocabulary
 - Each of them has obtained two word where word in the vocabulary. You for each word in the vocabulary. Forwas porwas anker conket conkettager)
 - · 9P for every two words w, w' in Vit hads that

$$U_{\omega}^{A}.V_{\omega}^{A}=U_{\omega}^{B}.V_{\omega}^{B}$$

. Can we claim $V_{\omega}^{f} = V_{\omega}^{b} \forall \omega \in V$

MO.

. It's obvious that IP a.b = C.d then that obesn't imply C = d

. hene, Can make the Polkaring Canterexample let wab:

by A by B

What was $(1 \ 1) \ (0.505) \ (2 \ 2) \ (\frac{1}{3} \ \frac{1}{3})$

Thresh $(22)(10)(33)(\frac{1}{2}0)$

. There's only two Pairs of woods

(Malt, thesn):

 $(11).(10) = (22)(\frac{1}{2}0)$

(thesh, matt):

 $(2\ 2)\cdot(\frac{1}{2}\frac{1}{2})=(3\ 3)\cdot(\frac{1}{3}\frac{1}{3})$

* Kena, or from last Page Rolds for every Pair of words

however, clearly for each word

Thresh Halz

7. Compare word2 Lec to Co-occurra based

Word2 Lec

Co-OCasera

disadu. Statistics into

· Global & bal* Statistics (e.g. wood -wood matrix)

Dense, Short Utob . Sharse, long utotor adu.