实验报告:构建三层神经网络分类器进行Fashion-MNIST分类

王子天 23210980082

github repo链接,模型-百度网盘链接

1. 引言

本实验不依赖现有的深度学习框架如PyTorch或TensorFlow等,仅使用NumPy库,自主构建了一个三层神经网络分类器。实验使用Fashion-MNIST数据集,最终提交的代码中包含了模型、训练、测试和参数查找四个部分,进行了模块化设计。 其中,模型部分允许自定义隐藏层大小、激活函数类型,支持通过反向传播计算给定损失的梯度;训练部分实现了SGD优化器、学习率权重衰减、交叉熵损失和L2正则化,并能根据验证集指标自动保存最优的模型权重;参数查找环节可以使用网格搜索法调节学习率、学习率权重衰减强度、各隐藏层大小、L2正则化强度(weight_dacay)等超参数;测试部分支持导入训练好的模型,输出在测试集上的分类准确率等指标。

2. 数据集

Fashion-MNIST数据集是一个包含10个不同时尚商品类别的图像集合。每个图像都是28x28像素的灰度图,涵盖了从T恤、裤子到鞋子、包等多种时尚商品。与MNIST手写数字数据集相比,Fashion-MNIST提供了更复杂的图像分类任务,有助于评估神经网络在不同场景下的性能。

3. 模型构建

- 1. **网络架构**:本实验搭建的神经网络架构包括1个输入层、2个隐藏层和1个输出层。输入层接收28x28像素的图像数据,并将其展平为一维向量,作为网络的输入。隐藏层采用全连接结构,通过权重矩阵和偏置项与前一层的输出进行线性组合,并应用激活函数引入非线性。输出层使用softmax函数,将隐藏层的输出转换为概率分布,以表示不同类别的预测概率。
- 2. **激活函数**:在隐藏层中,我选择了Sigmoid和ReLU作为激活函数。ReLU函数能够改善Sigmoid中的梯度消失问题,并加快训练速度。它通过将输入值映射到非负区域,引入非线性特性,使网络能够学习更复杂的特征表示。在输出层中,我使用了softmax函数将隐藏层的输出转换为概率分布,以便进行多分类任务。
- 3. **参数初始化**:为了打破对称性并提高模型的泛化能力,我使用了随机初始化方法对网络参数(权重和偏置)进行初始化。权重矩阵使用小的随机数进行初始化,而偏置项需要设置为零。

4. 训练流程

- 1. 前向传播:在前向传播阶段,首先将输入数据通过网络层进行前向计算。输入数据经过输入层后,进入第一个隐藏层。在隐藏层中,根据权重矩阵和偏置项计算每个神经元的输出值,并应用ReLU激活函数进行非线性变换。然后,将隐藏层的输出作为下一个隐藏层的输入,重复上述过程直至到达输出层。在输出层中,使用了softmax函数将隐藏层的输出转换为概率分布,以表示不同类别的预测概率。
- 2. **损失函数**:为了衡量模型预测与真实标签之间的差异,本实验采用交叉熵损失函数作为训练目标。 交叉熵损失函数能够量化预测概率分布与真实概率分布之间的差距,并通过最小化该差距来优化网 络参数。此外,在损失函数构建中,还对参数进行了L2范数惩罚,以控制模型的复杂度,提升样 本外泛化性能。通过计算损失函数值,评估模型在当前配置下的性能,并据此调整网络参数以改进 模型。

- 3. **反向传播**:在反向传播过程中,我使用了矩阵求导的链式法则计算损失函数关于网络参数的梯度。 首先,计算输出层对损失函数的梯度(即误差项),然后逐层向前传递梯度,计算每个隐藏层对损 失的贡献。通过反向传播算法,可以将损失函数关于输出层的梯度逐层传递回输入层,并据此更新 网络参数以最小化损失函数。
- 4. **优化器**:本实验选择随机梯度下降(SGD)作为优化算法来更新网络参数。在每个训练批次中,随机选择一部分数据进行迭代训练,并计算该批次数据的损失函数值及其关于网络参数的梯度。然后,使用SGD算法更新网络参数,以减小损失函数值。为了加速训练过程和防止过拟合,实验引入了学习率衰减策略,使学习率随训练轮次的增加而逐渐减小。此外,还采用了L2正则化项对网络参数进行约束,以减小过拟合的风险。
- 5. **验证评估**:在每个训练周期结束后,使用验证集评估模型的性能。通过计算验证集上的损失值和准确率等指标,监控模型的训练进度并检查是否存在过拟合现象。根据验证集性能的变化情况,进行超参数调整以优化模型性能。最后,我保存了最佳模型权重,以便在测试集上进行评估。

6. 训练过程可视化

在训练集和验证集上的loss曲线

验证集上的accuracy曲线

5. 超参数调优

为了找到最佳的超参数配置,实验进行了超参数调优。首先,确定了需要调优的超参数范围,如学习率、隐藏层大小、正则化强度等。然后,采用网格搜索的方法,在超参数空间中选择不同的配置组合进行训练。在每个配置下,记录模型在验证集上的性能表现(如损失值和准确率),并比较不同配置下的结果以找到最优配置。

所得最优模型的超参数配置为:

lr	hidden1_dim	hidden2_dim	weight_decay		
0.1	256	256	1e-3		

不同超参数组合下,模型在测试集和训练集上的具体表现如下:

1r	hidden1_dim	hidden2_dim	weight_decay	train_loss	val_loss	train_acc	val_acc
0.1	64	64	1	0.365	0.399	86. 98%	85.60%
0.1	64	64	0.1	0.348	0.389	87. 54%	85.60%
0.1	64	64	0.001	0.358	0.400	87. 25%	85. 43%
0.1	64	128	1	0.365	0.403	87.09%	85.28%
0.1	64	128	0. 1	0.338	0.378	87.77%	85.68%
0.1	64	128	0.001	0. 337	0.379	87. 95%	85. 98%
0.1	128	64	1	0.359	0.395	87. 23%	85.52%
0.1	128	64	0. 1	0.336	0.379	87. 99%	85. 93%
0.1	128	64	0.001	0.338	0.384	87. 98%	85. 93%
0.1	128	128	1	0.355	0.390	87.44%	85.35%
0.1	128	128	0. 1	0. 333	0.374	88.00%	85.85%
0.1	128	128	0.001	0.326	0.372	88. 37%	86.45%
0.1	256	64	1	0.355	0.391	87. 49%	85. 48%
0.1	256	64	0. 1	0.330	0.373	88.04%	85. 97%
0.1	256	64	0.001	0.330	0.373	88. 21%	86. 43%
0.1	256	128	1	0.347	0.386	87. 79%	85.87%
0. 1	256	128	0. 1	0.323	0.369	88. 50%	85. 97%
0.1	256	128	0.001	0.322	0.371	88. 43%	86. 13%
0.1	256	256	1	0.346	0.383	87. 76%	85.68%
0.1	256	256	0. 1	0.316	0.361	88.74%	86. 27%
0.1	256	256	0.001	0.317	0.366	88.63%	86. 47%
0.01	64	64	1	0. 519	0.545	81.77%	80.72%
0.01	64	64	0. 1	0. 529	0.556	80. 95%	80. 20%
0.01	64	64	0.001	0.520	0.549	81.63%	80. 33%
0.01	64	128	1	0.500	0.525	82.35%	81. 25%
0.01	64	128	0. 1	0. 503	0.535	82.11%	80.67%
0.01	64	128	0.001	0. 507	0.537	81. 80%	80.37%
0.01	128	64	1	0.510	0.533	82. 20%	81.65%
0.01	128	64	0. 1	0.505	0.528	82. 30%	81. 15%
0.01	128	64	0.001	0. 498	0.526	82. 49%	81.33%
0.01	128	128	1	0. 493	0.518	82.58%	81.43%
0.01	128	128	0. 1	0.492	0.516	82.72%	81.50%
0.01	128	128	0.001	0. 493	0.521	82.67%	81.70%
0.01	256	64	1	0.492	0.519	82.65%	81.37%
0.01	256	64	0. 1	0.489	0.518	82.74%	81.78%
0.01	256	64	0.001	0. 495	0.515	82.54%	81.17%
0.01	256	128	1	0.491	0.519	82.77%	81.28%
0.01	256	128	0. 1	0.488	0.517	83.04%	81. 43%
0.01	256	128	0.001	0.484	0.514	82.98%	81.57%

6. 测试与评估

在测试阶段,我们使用独立的测试集对训练好的模型进行评估。首先,我们将测试集中的图像数据输入 到模型中,并通过前向传播得到每个类别的预测概率。然后,我们根据预测概率确定每个图像的预测类 别,并与真实标签进行比较,计算分类准确率等评估指标。

下图是最佳模型在测试数据集上,各类别的分类准确率数据:

category	0	1	2	3	4	5	6	7	8	9
precision	81.19%	98. 46%	76. 10%	84.66%	77. 48%	94. 79%	68. 40%	91.17%	95. 17%	93. 56%

7. 网络参数可视化

为了深入理解模型的内部工作机制,本实验对训练好的网络参数进行了可视化分析。首先,绘制了权重矩阵的热力图,展示了不同神经元之间的连接强度和权重分布模式,以帮助了解模型在学习过程中的特征提取和表示能力。

此外,实验还采用了主成分分析(PCA)等方法对隐藏层的输出进行降维处理,并在二维平面上绘制了降维后的数据点,以展示隐藏层学习到的特征表示,并帮助理解模型如何将输入数据映射到高维空间中的特征表示。

