南京农业大学本科生课程

::第3章 命题逻辑的推理理论

数学系

*** 本章说明

- □本章的主要内容
 - 推理的形式结构
 - 自然推理系统P
- □本章与后续各章的关系
 - 本章是第五章的特殊情况和先行准备

- □3.1 推理的形式结构
- □3.2 <u>自然推理系统P</u>
- □ 本章小结
- □ 习题
- **□** <u>作业</u>

** 3.1 推理的形式结构

- □数理逻辑的主要任务是用数学的方法来研究数学中的 推理。
- □推理是指从前提出发推出结论的思维过程。
- □前提是已知命题公式集合。
- □结论是从前提出发应用推理规则推出的命题公式。
- □证明是描述推理正确或错误的过程。
- □要研究推理, 首先应该明确什么样的推理是有效的或 正确的。

:: 有效推理的定义

- 定义3.1 设 $A_1, A_2, ..., A_k$ 和B都是命题公式,若对于
 - $A_1, A_2, ..., A_k$ 和B中出现的命题变项的任意一组赋值,
 - (1) 或者A₁∧A₂∧…∧Aょ为假;
 - (2) 或者当A1人A2人...人Ak为真时,B也为真;

则称由前提A₁, A₂, ..., A_k推出B的推理是有效的或正确

的,并称B是有效结论。

:: 关于有效健理的说明

□由前提A₁,A₂,…,A_k推结论B的推理是否正确 与诸前提的排列次序无关。

 $\Box \Gamma = \{A_1, A_2, ..., A_k\}$ 由 Γ 推B的推理记为 \vdash B 若推理是正确的,记为 $\Gamma \models B$ 若推理是不正确的,记为 $\Gamma \not\models B$

:: 关于有效能理的说明

- □设A₁, A₂, ..., A_k, B中共出现n个命题变项,对于任何 一组赋值 a₁ a₂... a_n(a_i=0或者1, i=1, 2, ..., n), 前提 和结论的取值情况有以下四种:
 - (1) A₁ 人 A₂ 人 ... 人 A_k 为 0, B 为 0。
 - (2) $A_1 \wedge A_2 \wedge ... \wedge A_k \rightarrow 0$, B为1。
 - (3) $A_1 \wedge A_2 \wedge ... \wedge A_k$ 为1,B为0。
 - (4) A₁ ∧ A₂ ∧ ... ∧ A_k 为 1, B 为 1。
- □只要不出现(3)中的情况,推理就是正确的,因而判断 推理是否正确,就是判断是否会出现(3)中的情况。
- □推理正确,并不能保证结论B一定为真。

** 例题

例3.1 判断下列推理是否正确。(真值表法)

p	q	p ∧(p → q)	q	p ∧(q → p)	q
0	0	0	0	0	0
0	1	0	1	0	1
1	0	0	0	1	0
1	1	1	1	1	1

:: 有效推理的等价定理

定理3.1 命题公式 A_1 , A_2 , ..., A_k 推B的推理正确当且仅当 $(A_1 \land A_2 \land ... \land A_k) \rightarrow B$ 为重言式。

□该定理是判断推理是否正确的另一种方法。

∵ 定理3.1的证明

- (1)证明必要性。若 $A_1, A_2, ..., A_k$ 推B的推理正确,
- 则对于 A_1 , A_2 , ..., A_k , B中所含命题变项的任意一组赋值,不会出现 $A_1 \wedge A_2 \wedge ... \wedge A_k$ 为真,而B为假的情况,
- 因而在任何赋值下,蕴涵式 $(A_1 \land A_2 \land ... \land A_k)$ →B均为真,故它为重言式。
- (2)证明充分性。若蕴涵式 $(A_1 \land A_2 \land ... \land A_k)$ →B为重言式,
- 则对于任何赋值此蕴涵式均为真,因而不会出现前件为真后件 为假的情况,
- 即在任何赋值下,或者 $A_1 \wedge A_2 \wedge ... \wedge A_k$ 为假,
- 或者A₁ ∧ A₂ ∧ ... ∧ A_k和B同时为真,这正符合推理正确的定义。

:: 推理的形式结构

- (1) 设 $\Gamma = \{A_1, A_2, ..., A_k\}$,记为 $\Gamma \vdash B$ 。
- $(2) A_1 \land A_2 \land \dots \land A_k \rightarrow B$
- (3) 前提: A₁, A₂, ..., A_k

结论: B

```
说明
```

当推理正确时,

- □形式(1)记为Γ | B。
- □形式(2)记为 $A_1 \land A_2 \land ... \land A_k \Rightarrow B$ 。
 - ⇒表示蕴涵式为重言式。

··判断推理是否正确的方法

- 真值表法
- □ 等值演算法
- □ 主析取范式法

□当命题变项较少时,这三种方法比较方便。

□是否有其他的证明方法?

::例题

例3.2 判断下列推理是否正确。(等值演算法)

(1) 下午马芳或去看电影或去游泳。她没去看电影,所以,她 去游泳了。

解:设p:马芳下午去看电影,q:马芳下午去游泳。

前提: p∨q,¬p

结论: q

推理的形式结构: $((p \lor q) \land \neg p) \rightarrow q$

$$((p \lor q) \land \neg p) \rightarrow q$$

$$\Leftrightarrow \neg ((p \lor q) \land \neg p) \lor q$$

$$\Leftrightarrow ((\neg p \land \neg q) \lor p) \lor q$$

$$\Leftrightarrow ((\neg p \lor p) \land (\neg q \lor p)) \lor q$$

$$\Leftrightarrow$$
 $(\neg q \lor p) \lor q \Leftrightarrow 1$

由定理 3.1可知, 推理正确。

** 例题

例3.2 判断下列推理是否正确。(主析取范式法)

(2) 若今天是1号,则明天是5号。明天是5号,所以今天是1号。

解:设p:今天是1号,q:明天是5号。

前提: $p \rightarrow q$, q

结论: p

推理的形式结构: $(p \rightarrow q) \land q \rightarrow p$

$$(p \rightarrow q) \land q \rightarrow p$$

$$\Leftrightarrow (\neg p \lor q) \land q \rightarrow p$$

$$\Leftrightarrow \neg ((\neg p \lor q) \land q) \lor p$$

$$\Leftrightarrow \neg q \lor p$$

$$\Leftrightarrow (\neg p \land \neg q) \lor (p \land \neg q) \lor (p \land \neg q) \lor (p \land q)$$

$$\Leftrightarrow m_0 \lor m_2 \lor m_3$$

主析取范式不含 $m_{l,}$ 故不是重言式(01是成假赋值),所以推理不正确。

** 推理定律--重言蕴含式

- $(1) A \Rightarrow (A \lor B)$
- $(2) (A \land B) \Rightarrow A$
- $(3) (A \rightarrow B) \land A \Rightarrow B$
- (4) (A→B) ∧¬B ⇒ ¬A
 式
- $(5) (A \lor B) \land \neg B \Rightarrow A$
- (6) $(A \rightarrow B) \land (B \rightarrow C) \Rightarrow (A \rightarrow C)$
- $(7) (A \leftrightarrow B) \land (B \leftrightarrow C) \Rightarrow (A \leftrightarrow C)$
- (8) $(A \rightarrow B) \land (C \rightarrow D) \land (A \lor C) \Rightarrow (B \lor D)$ $(A \rightarrow B) \land (\neg A \rightarrow B) \land (A \lor \neg A) \Rightarrow B$

附加律

化简律

假言推理

拒取

析取三段论

假言三段论 等价三段论

构造性二难

构造性二难

(特殊形式)

 $(9)(A \rightarrow B) \land (C \rightarrow D) \land (\neg B \lor \neg D) \rightarrow (\neg A \lor \neg C)$ 破坛性 \neg 难

*** 关于推理定律的几点说明

- □A, B, C为元语言符号, 代表任意的命题公式。
- □若一个推理的形式结构与某条推理定律对应的蕴涵 式一致,则不用证明就可断定这个推理是正确的。
- □2.1节给出的24个等值式中的每一个都派生出两条推理定律。例如双重否定律A⇔¬¬A产生两条推理定律A⇒¬¬A和¬¬A⇒A。
- □由九条推理定律可以产生九条推理规则,它们构成了 推理系统中的推理规则。