Machine Learning Introduction to the Course

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering The Hong Kong University of Science and Technology

This set of notes is based on internet resources.

Arthur Samuel (1959): Machine learning is a "field of study that gives computers the ability to learn without being explicitly programmed".

- Arthur Samuel (1959): Machine learning is a "field of study that gives computers the ability to learn without being explicitly programmed".
- Machine learning is the science of getting machines to learn and act in a similar way to humans while also autonomously learning from real-world interactions and sets of training data that we feed them.

- Arthur Samuel (1959): Machine learning is a "field of study that gives computers the ability to learn without being explicitly programmed".
- Machine learning is the science of getting machines to learn and act in a similar way to humans while also autonomously learning from real-world interactions and sets of training data that we feed them.
- Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves.

Machine Learning is the science of making computer artifacts improve their performance with respect to a certain performance criterion using example data or past experience, without requiring humans to program their behavior explicitly.

- Machine Learning is the science of making computer artifacts improve their performance with respect to a certain performance criterion using example data or past experience, without requiring humans to program their behavior explicitly.
- Machine Learning is a set of methods that automatically detect patterns in data, use the uncovered patterns to for prediction or decision making.

Machine Learning (and AI) is Very Hot

Countries and companies invest heavily in ML and AI.

Machine Learning (and AI) is Very Hot

The number of research papers on AI and Machine Learning has been increasing sharply in the past few years.

http://aipano.cse.ust.hk/

Overview of topics: http://home.cse.ust.hk/ lzhang/topic/ai-tree.pdf

Coverage of this Course

Deployment	Adversarial Attack	(XAI		Meta-learning			Federated Learning	
	(Security)		Trust) (Learn t		Learn)			(Privacy)	
	General Issues	Supervised		Self-Supervised		Unsupervised		sed	Reinforcement
Deep	Dropout	Feedforward NN		Recurrent NN		VAE			DQN
Learning	Normalization	Convolutional NN		Transformer		GAN			Policy gradient
	Optimizers			BERT					Actor-critic
Machine	Overfitting	Linear Regres	sion		Finite		ite		Q-learning
Learning	Bias, variance	Logistic Regre	ession			Mixtures			
	Regularization	Generative models							
	Validation	SVM							
Foundation	Probability Theory		Information Theory				Optimization Theory		
Principles	Likelihood, Bayes theorem		Cross entropy				Gradient Descent		
Algorithms		Divergence				Newton			
							Primal-	-dual	

Objective: Quickly bring students with little background to the forefront of research, while covering all important topics in between.

Questions about an ML Algorithm:

1 What does it do? [Inputs and Outputs] (User)

Questions about an ML Algorithm:

- 1 What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)

Questions about an ML Algorithm:

- 1 What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- **3** Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.

Questions about an ML Algorithm:

- What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- **3** Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.
- 4 Why can it achieve its goal? [Theoretical guarantees] (Theoretician)

Questions about an ML Algorithm:

- 1 What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- 3 Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.
- 4 Why can it achieve its goal? [Theoretical guarantees] (Theoretician)

We will focus mostly on the first three questions.

Questions about an ML Algorithm:

- What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- 3 Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.
- 4 Why can it achieve its goal? [Theoretical guarantees] (Theoretician)

We will focus mostly on the first three questions. We will explain the math behind the objective functions and how the steps are derived from principles.

Questions about an ML Algorithm:

- 1 What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- 3 Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.
- 4 Why can it achieve its goal? [Theoretical guarantees] (Theoretician)

We will focus mostly on the first three questions. We will explain the math behind the objective functions and how the steps are derived from principles. So, we will do a fair amount of math derivations.

Questions about an ML Algorithm:

- 1 What does it do? [Inputs and Outputs] (User)
- 2 How does it work? [Steps] (Programmer)
- 3 Why does it work the way it does? (Algorithm Designer)
 - Ideas behind the steps.
 - Pros and cons w.r.t alternatives.
- 4 Why can it achieve its goal? [Theoretical guarantees] (Theoretician)

We will focus mostly on the first three questions. We will explain the math behind the objective functions and how the steps are derived from principles. So, we will do a fair amount of math derivations.

Hands-on experiences are to be gained via self-practice, programming assignment and term project.