Table of

Discrete Circle Recognition

David Coeurjolly

Laboratoire LIRIS
Université Claude Bernard Lyon 1
43 Bd du 11 Novembre 1918
69622 Villeurbanne CEDEX
France

david.coeurjolly@liris.cnrs.fr

January - 2005

- Definitions
- 2 Discrete circle recognition in LP₃
- 3 Discrete circle recognition in LP2
- 4 Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

- Definitions
- 2 Discrete circle recognition in LP₃
- Discrete circle recognition in LP₂
- Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

- Definitions
- 2 Discrete circle recognition in LP₃
- 3 Discrete circle recognition in LP₂
- 4 Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

Table of contents

Coeurjolly

circle recognition in LP₃

Definitions

circle recognition in

Efficient discrete

Optimizations
Computational

cost analysis On-line recognition

Discrete arc segmentation

Conclusio

- 2 Discrete circle recognition in LP3
- Discrete circle recognition in LP₂
- Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

Definitions

Discrete circle recognition in

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation

Why the discrete circle recognition?

- Important elementary object in the discrete geometry paradigm
- $\bullet \ \, \text{Order 2 object} \to \text{curvature estimation} \\$

Definitions

Discrete circle recognition in LP2

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line

recognition and Discrete arc segmentation

Conclusio

Definition of a discrete disk with center (0,0)

$$D: x^2+y^2<\left(R+rac{1}{2}
ight)^2, \qquad x,y\in\mathbb{Z} \ \ ext{and} \ \ R\in\mathbb{R}$$

Definitions

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation Definition of an arithmetical discrete circle with center (x_0, x_0) and radius R

$$\left(R - \frac{1}{2}\right)^2 \leq (x - x_0)^2 + (y - y_0)^2 < \left(R + \frac{1}{2}\right)^2, \qquad x, y \in \mathbb{Z}$$

Definitions

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations Computational

Computation cost analysis On-line recognition

Discrete arc segmentation

Conclusion

Recognition based on circular separability

Property

A set D of pixels is a digital disk if there exists an Euclidean circle that encloses the pixels of D but excludes its complement

Circular separability in Computational Geometry

- ⇒ Linear programming in dimension 3
- ⇒ Linear programming in dimension 2

Notations

Definitions

circle recogn tion in LP₃

Discrete circle recognition in

Efficient discrete algorithm

Optimizations Computational

cost analysis On-line recognition

Discrete arc segmenta-

Conclusio

Recognition based on circular separability

Property

A set D of pixels is a digital disk if there exists an Euclidean circle that encloses the pixels of D but excludes its complement

Circular separability in Computational Geometry

- ⇒ Linear programming in dimension 3
- ⇒ Linear programming in dimension 2

Notations

Definitions

Discrete circle recognition in

Discrete circle recognition in

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition

Discrete arc segmentation

Preimage of discrete circle and arc center domain

Definition

Given a set of pixels S, its preimage must contain the set of discrete disks enclosing S and excluding its complement

- 3 parameters: (x_0, y_0) and R
- The problem is not linear
- Can be reduced to a 2-D domain representing the centers (x_0, y_0) (arc cente domain) from which we can deduce a set of radii R according to S

 acd is empty \Leftrightarrow the preimage is empty $\Leftrightarrow \mathcal{S}$ is not a discrete disk

Definitions

Discrete circle recogni tion in

Discrete circle recognition in

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation

Preimage of discrete circle and arc center domain

Definition

Given a set of pixels S, its preimage must contain the set of discrete disks enclosing S and excluding its complement

- 3 parameters: (x_0, y_0) and R
- The problem is not linear
- Can be reduced to a 2-D domain representing the centers (x₀, y₀) (arc center domain) from which we can deduce a set of radii R according to S

 acd is empty \Leftrightarrow the preimage is empty \Leftrightarrow S is not a discrete disk

Definitions

Discrete circle recogni tion in

Discrete circle recogni tion in

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation

Preimage of discrete circle and arc center domain

Definition

Given a set of pixels S, its preimage must contain the set of discrete disks enclosing S and excluding its complement

- 3 parameters: (x_0, y_0) and R
- The problem is not linear
- Can be reduced to a 2-D domain representing the centers (x₀, y₀) (arc center domain) from which we can deduce a set of radii R according to S

acd is empty \Leftrightarrow the preimage is empty \Leftrightarrow S is not a discrete disk

Definitions

Discrete circle recogni tion in

Discrete circle recogni tion in

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation

Preimage of discrete circle and arc center domain

Definition

Given a set of pixels S, its preimage must contain the set of discrete disks enclosing S and excluding its complement

- 3 parameters: (x_0, y_0) and R
- The problem is not linear
- Can be reduced to a 2-D domain representing the centers (x₀, y₀) (arc center domain) from which we can deduce a set of radii R according to S

acd is empty \Leftrightarrow the preimage is empty \Leftrightarrow S is not a discrete disk

Definitions

Discrete circle recogni tion in

Discret circle recogn tion in

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition

Discrete arc segmentation

Preimage of discrete circle and arc center domain

Definition

Given a set of pixels *S*, its preimage must contain the set of discrete disks enclosing *S* and excluding its complement

- 3 parameters: (x_0, y_0) and R
- The problem is not linear
- Can be reduced to a 2-D domain representing the centers (x₀, y₀) (arc center domain) from which we can deduce a set of radii R according to S

acd is empty \Leftrightarrow the preimage is empty \Leftrightarrow S is not a discrete disk

Table of contents

David Coeurjolly

Definition

Discrete circle recognition in LP₃

Definitions

Discrete circle recognition in

Efficient discrete

algorithm

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmentation

Conclusio

- 2 Discrete circle recognition in LP₃
- 3 Discrete circle recognition in LP₂
- Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

Canalusia

[OKM86]

Paraboloid projection

$$(x,y) \rightarrow (x,y,x^2+y^2)$$

i.e. projection onto the paraboloid $z = x^2 + y^2$

In this transformed space, a plane $ax + by + (x^2 + y^2) = c$ can be rewritten as:

$$(x + \frac{1}{2}a)^2 + (y - \frac{1}{2}b)^2 = c + \frac{1}{4}(a^2 + b^2)$$

Hence, assuming $c + \frac{1}{4}(a^2 + b^2) > 0$, a plane in the transformed space is a circle in \mathbb{R}^2 . Conversely a circle $(x - b)^2 + (y - b)^2 - B^2$ is transformed into:

$$-2Ax - 2By + (x^2 + y^2) = R^2 - (A^2 + B^2)$$

Circular separability as a LP in dimension 3

David Coeurjolly

Definition

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc
segmenta-

C---!--

[OKM86]

Paraboloid projection

$$(x,y) \rightarrow (x,y,x^2+y^2)$$

i.e. projection onto the paraboloid $z = x^2 + y^2$

In this transformed space, a plane $ax + by + (x^2 + y^2) = c$ can be rewritten as:

$$(x+\frac{1}{2}a)^2+(y-\frac{1}{2}b)^2=c+\frac{1}{4}(a^2+b^2)$$

Hence, assuming $c + \frac{1}{4}(a^2 + b^2) > 0$, a plane in the transformed space is a circle in \mathbb{R}^2 . Conversely, a circle $(x - A)^2 + (y - B)^2 = R^2$ is transformed into:

$$-2Ax - 2By + (x^2 + y^2) = R^2 - (A^2 + B^2)$$

Circular separability as a LP in dimension 3

David Coeurjolly

Definition

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc
segmenta-

0----

[OKM86]

Paraboloid projection

$$(x,y) \rightarrow (x,y,x^2+y^2)$$

i.e. projection onto the paraboloid $z = x^2 + y^2$

In this transformed space, a plane $ax + by + (x^2 + y^2) = c$ can be rewritten as:

$$(x+\frac{1}{2}a)^2+(y-\frac{1}{2}b)^2=c+\frac{1}{4}(a^2+b^2)$$

Hence, assuming $c + \frac{1}{4}(a^2 + b^2) > 0$, a plane in the transformed space is a circle in \mathbb{R}^2 . Conversely, a circle $(x - A)^2 + (y - B)^2 = R^2$ is transformed into:

$$-2Ax - 2By + (x^2 + y^2) = R^2 - (A^2 + B^2)$$

Circular separability as a LP in dimension 3

David Coeurjolly

Definition

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc

segmentation

LP system

S can be separated from T by a circle if the feasible region of the system:

$$\begin{cases} ax + by + (x^2 + y^2) \le c & \text{if } (x, y) \in S \\ ax + by + (x^2 + y^2) \ge c + d & \text{if } (x, y) \in T \end{cases}$$

is not empty.

Rem.

The parameter d can be defined by a, b and c, hence we obtain a linear system in dimension 3

Conclusio

Algorithm

- For each pixel $s \in S$ and $t \in T$
 - Construction of the two linear constraints $s \to ax + by + (x^2 + y^2) \le c$ and $t \to ax + by + (x^2 + y^2) \ge c + d$
- Solve the global linear inequality system
- If the feasible region is empty, S is not a discrete disk
- Otherwise, return the preimage

Computational cost

- |S| + |T| linear constraints
- To detect if the feasible is empty or not : O(|S| + |T|) [Meg83, Meg84]
- To construct the preimage : $O((|S| + |T|) \cdot \log(|S| + |T|))$ [PS85] (not on-line)

Simple Discrete Circle recognition in LP3

David Coeurjolly

Definition

Discrete circle recognition in LP₃

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computations
cost
analysis
On-line
recognition
and
Discrete arc
segmenta-

Conclusion

Algorithm

- For each pixel $s \in S$ and $t \in T$
 - Construction of the two linear constraints $s \to ax + by + (x^2 + y^2) \le c$ and $t \to ax + by + (x^2 + y^2) \ge c + d$
- Solve the global linear inequality system
- If the feasible region is empty, S is not a discrete disk
- Otherwise, return the preimage

Computational cost

- |S| + |T| linear constraints
- To detect if the feasible is empty or not : O(|S| + |T|) [Meg83, Meg84]
- To construct the preimage : $O((|S| + |T|) \cdot \log(|S| + |T|))$ [PS85] (not on-line)

Table of contents

David Coeurjolly

Discrete circle recognition in LP2

Discrete circle recognition in LP₂

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmentation

Optimizations

Computational analysis

recognition Discrete arc seamenta-

tion

Conclusion

Lemma

If a circle $C(\omega,R)$ encloses S but excludes T, its center ω necessarily satisfies the following inequality:

$$\forall s \in S, \ \forall t \in T, \ dist(\omega, s) < dist(\omega, t)$$

Definition

Let $s \in S$ and $t \in T$, H(s,t) denotes the half-plane bounded by the perpendicular bisector of s and t, and containing s

$$C(\omega, R)$$
 is valid for $(s, t) \Leftrightarrow \omega \in H(s, t)$ and $dist(\omega, s) < R < dist(\omega, t)$

Conclusio

Arc Center Domain

$$acd(S, T) = \bigcap_{s \in S, t \in T} H(s, t)$$

- $|S| \cdot |T|$ linear constraints
- acd is a 2-D convex region (maybe unbounded)
- it corresponds to the Generalized Voronoi cell in Computational Geometry

Conclusio

Arc Center Domain

$$acd(S, T) = \bigcap_{s \in S, t \in T} H(s, t)$$

- |S| ⋅ |T| linear constraints
- acd is a 2-D convex region (maybe unbounded)
- it corresponds to the Generalized Voronoi cell in Computational Geometry

segmentation

Arc Center Domain

$$acd(S, T) = \bigcap_{s \in S, t \in T} H(s, t)$$

- $|S| \cdot |T|$ linear constraints
- acd is a 2-D convex region (maybe unbounded)
- it corresponds to the Generalized Voronoi cell in Computational Geometry

segmentation

Arc Center Domain

$$acd(S, T) = \bigcap_{s \in S, t \in T} H(s, t)$$

- $|S| \cdot |T|$ linear constraints
- acd is a 2-D convex region (maybe unbounded)
- it corresponds to the Generalized Voronoi cell in Computational Geometry

Discrete circle recognition in LP2

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition
and
Discrete arc
segmenta-

tion Conclusion

Computational cost

Intersection of $|S| \cdot |T|$ linear constraints in 2-D

- Detect if the acd is empty or not : $O(|S| \cdot |T|)$ [Meg83, Meg84]
- Construct the acd : $O((|S| \cdot |T|) \cdot \log(|S| \cdot |T|))$ [PS85] (on-line algorithms)

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition

and Discrete arc segmentation

Canalusia

Summary

LP_2

- $O(|S| \cdot |T|)$ or $O((|S| \cdot |T|) \cdot \log(|S| \cdot |T|))$
- Elementary 2-D on-line algorithms

LP_3

- O(|S| + |T|) or $O((|S| + |T|) \cdot \log(|S| + |T|))$
- LP solvers exist but optimal algorithms are quite complex

Discrete case: S = set of pixels and T = background pixels

⇒ Inefficient algorithms

Discrete circle recognition in LP2

Efficient discrete algorithm

Optimizations
Computational
cost
analysis
On-line
recognition

and
Discrete arc
segmenta-

Conclusio

LP_2

- $O(|S| \cdot |T|)$ or $O((|S| \cdot |T|) \cdot \log(|S| \cdot |T|))$
- Elementary 2-D on-line algorithms

 LP_3

- O(|S| + |T|) or $O((|S| + |T|) \cdot \log(|S| + |T|))$
- LP solvers exist but optimal algorithms are quite complex

Discrete case: S = set of pixels and T = background pixels

⇒ Inefficient algorithms

Table of contents

David Coeurjolly

Discrete circle recognition in

Definitions

2 Discrete circle recognition in LP

Observed by Discrete circle recognition in LP_2

Efficient discrete algorithm

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmentation

Conclusion

Efficient discrete algorithm

algorithm

Optimizations

Computational cost analysis

recognition and Discrete arc segmentation

Conclusio

Table of contents

Coeurjolly

Optimizations

Computational analysis

recognition Discrete arc seamenta-

- Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation

Definition

circle recognition in LP₃

Discrete circle recognition in LP₂

discrete algorithm

Optimizations

Computational cost analysis
On-line

recognition and Discrete arc segmentation

Conclusio

Prop 1: [CGRT04]

S can be reduced to its convex hull

Computational cost

Discrete Convex hull of the border \mathcal{B} of the object : $O(|\mathcal{B}|)$

Dofinition

Discrete circle recognition in

Discrete circle recognition in LP₂

discrete

Optimizations

Computational cost analysis
On-line recognition

recognition and Discrete arc segmenta-

Conclusio

Prop 2: Triangular inclusion

If a point $t' \in T$ belongs to the triangle (s, s', t) with $s, s' \in S$ and $t \in T$, then the point t can be removed from T without changing the acd

Filtering of T in the discrete case

David Coeurjolly

Discrete circle recognition in

Discrete circle recognition in LP₂

discrete algorithm

Optimizations

Computational cost analysis On-line recognition and Discrete arc

segmentation

Prop 3

We can independently process the edges of $Conv(\mathcal{B})$

Definition

circle recogn tion in LP₃

circle recognition in LP₂

discrete algorithm

Optimizations

Computational cost analysis

recognition and Discrete arc segmenta-

Conclusio

Filtering of T and Bezout's points

[CGRT04]

Definition: Bezout's point

A point $\mathcal P$ is a Bezout point of a straight segment [mn] defined by an arithmetical directional vector \overrightarrow{u} if and only if:

$$\overrightarrow{mP} = \overrightarrow{v} + k\overrightarrow{u}$$
 with $k \in \mathbb{Z}$ and $\det(\overrightarrow{u}, \overrightarrow{v}) = \pm 1$

and \mathcal{P} is the closest point to the middle of [mn].

Uni-modular parallelogram

Let $O,\ P,\ Q,\ R\in\mathbb{Z}^2$ be a parallelogram. There is no discrete point inside $(\mathit{OPQR})\Leftrightarrow \det(\vec{\mathit{OP}},\vec{\mathit{OQ}})=\pm 1$

Discrete circle

Discrecircle recognition in

Efficient discrete algorithm

Optimizations

Computational cost analysis
On-line recognition and
Discrete arc segmenta-

Conclusio

Filtering of T and Bezout's points

[CGRT04]

Definition: Bezout's point

A point $\mathcal P$ is a Bezout point of a straight segment [mn] defined by an arithmetical directional vector \overrightarrow{u} if and only if:

$$\overrightarrow{mP} = \overrightarrow{v} + k\overrightarrow{u}$$
 with $k \in \mathbb{Z}$ and $\det(\overrightarrow{u}, \overrightarrow{v}) = \pm 1$

and \mathcal{P} is the closest point to the middle of [mn].

Theorem

Let us consider the oriented edge e=[mn] with $m,\ n\in\mathbb{Z}$ and T_e the set of grid points in $\bar{\mathcal{O}}$ belonging to the half-space defined by e. Then, all triangles (m,n,t) contain another point $t'\in T$ except for Bezout points

Dofinition

Discrete circle recognition in

Discret circle recogn tion in LP₂

discrete

Optimizations Computational

analysis
On-line
recognition
and
Discrete arc
segmenta-

Conclusio

Conclusion on the optimizations

- S = Conv(B)
- T =one Bezout's point per edge of the $Conv(\mathcal{B})$

Objective

Bound on the number of edges of the discrete convex hul

Definition

Discrete circle recognition in

Discret circle recogn tion in LP₂

discrete

Optimizations Computational

analysis
On-line
recognition
and
Discrete arc

Conclusio

Conclusion on the optimizations

- S = Conv(B)
- T =one Bezout's point per edge of the $Conv(\mathcal{B})$

Objective

Bound on the number of edges of the discrete convex hull

Table of contents

Coeurjolly

David

Efficient discrete algorithm

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmentation

Optimizations

Computational cost analysis

recognition Discrete arc seamenta-

Definition

Discrete circle recognition in LP3

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations

Computational

analysis On-line

recognition and Discrete arc segmentation

Canalusi

[BB91, AŽ95]

Let e(m) be the number of edges of a convex polygon whose vertices belong to a $m \times m$ grid:

$$e(m) = \frac{12}{(4\pi^2)^{1/3}} m^{2/3} + O(m^{1/3} \log(m))$$

Given a convex object $\mathcal O$ in a $m \times m$ -grid

•
$$|S| = O(m^{2/3})$$

•
$$|T| = O(m^{2/3})$$

Discrete convex hull in a $m \times m$ -grid

David Coeuriolly

Optimizations

Computational cost

analysis recognition Discrete arc seamenta-

tion

[BB91, AŽ95]

Let e(m) be the number of edges of a convex polygon whose vertices belong to a $m \times m$ grid:

$$e(m) = \frac{12}{(4\pi^2)^{1/3}} m^{2/3} + O(m^{1/3} \log(m))$$

Given a convex object \mathcal{O} in a $m \times m$ -grid

- $|S| = O(m^{2/3})$
- $|T| = O(m^{2/3})$

Definition

Discrete circle recognition in LPo

Discreticircle recognition in LP₂

Efficient discrete algorithm

Optimizations Computational

Computationa cost analysis On-line

recognition and Discrete arc segmenta-

Canalusia

Alg

lacktriangle Compute the convex hull of $\mathcal O$

O(*m*)

2 For each edge of $Conv(\mathcal{B})$

 $O(m^{2/3})$ edges

Compute Bezout's point and append it to T

 $O(\log(m))$

Solve the Separability problem using either LP₂ or LP₃

LP_2

• $O(|S| \cdot |T|)$ or $O((|S| \cdot |T|) \cdot \log(|S| \cdot |T|))$

• $O(m^{4/3})$ or $O(m^{4/3}\log(m))$

LP_3

- O(|S| + |T|) or $O((|S| + |T|) \cdot \log(|S| + |T|))$
- $O(m^{2/3})$ or $O(m^{2/3}\log(m))$

Definition

circle recogni tion in LP₃

Definitions

recognition in

Efficient discrete

Optimizations
Computational

cost analysis On-line recognition and Discrete arc

segmentation

- Discrete circle recognition in LP3
- Objective the control of the cont
- Efficient discrete algorithm
 - Optimizations
 - Computational cost analysis
 - On-line recognition and Discrete arc segmentation
- Conclusion

Definition

Discrete circle recognition in

Discre circle recogn tion in LP2

Efficient discrete algorithm

Optimizations Computational cost analysis

On-line recognition and Discrete arc segmentation

Conclusio

On-line recognition and Discrete arc segmentation

Specific problems

- The LP solver must be on-line to update the acd
- If the input is an 8-arc, we need to estimate the local orientation (kind of local convex hull)
- ⇒ greedy process

A possible solution:

- Use an on-line DSS segmentation to extract Strictly convex or concave part (SCoC) from the 8—arc
- 2 On-line construction of the convex hull and Bezout's points
- 3 On-line solver in LP_2 [PS85] $(O(m^{4/3} \log(m)))$

Some results

David Coeurjolly

Definition

Discrete circle recognition in

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis

On-line recognition and Discrete arc segmenta-

tion

[CGRT04]

Definition

Discrete circle recognition in

Discrete circle recognition in LP₂

Efficient discrete algorithm

Optimizations
Computational
cost
analysis

On-line recognition and Discrete arc segmentation

Conclusion

Some results

Definition

Discrete circle recognition in

Discrete circle recognition in LP₂

Efficient discrete

Optimizations Computational

cost analysis On-line recognition

Discrete arc segmenta-

Final result of the segmentation

Definition

circle recognition in LP₃

Definitions

2 Discrete circle recognition in LP3

Discrete circle recognition in LP₂

4 Efficient discrete algorithm

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmentation

Conclusion

discrete algorithm

algorithm
Optimizations
Computational

cost analysis On-line

recognition and Discrete arc segmentation

Conclusion

Conclusion

David Coeurjolly

Definition

circle recognition in

Discrete circle recognition in LP₂

discrete algorithm

Optimizations

Computational cost analysis

On-line recognition and Discrete arc segmenta-

tion Conclusion

Importance of the arithmetic in geometrical problems Without Bezout's points [Kov90]: With Bezout's points:

Recognition in LP₂:

Brute-force algorithm

- $O(n^2 \log n)$
- update $O(\log n)$
- memory $O(n^2)$

With the arthimetical properties

- $O(n^{4/3} \log n)$
- update O(log n)
- memory $O(n^{4/3})$

Definition

Discrete circle recognition in

Discrete circle recognition in LP₂

Efficient discrete

Optimizations

Computational

analysis On-line recognition

and Discrete arc segmentation

Conclusion

 $[{\sf NA84,\,Fis86,\,Sau93,\,WS95,\,Dam95,\,TC89,\,Kim84,\,KA84}]$

David

Coeuriolly

Computational

recognition

seamenta-

Conclusion

D.M. Acketa and J.D. Žunić.

On the maximal number of edges of convex digital polygons included into a $m \times m$ -grid. Journal of Combinatorial Theory, Serie A(69):358–368, 1995.

A. B

A. Balog and I. Bárány.

On the convex hull of the integer points in a disc.

In ACM-SIGACT ACM-SIGGRAPH, editor, Proceedings of the 7th Annual Symposium on Computational Geometry (SCG '91), pages 162–165, North Conway, NH, USA, June 1991. ACM Press.

D. Coeurjolly, Y. Gerard, J.-P. Reveillès, and L. Tougne.

An elementary algorithm for digital arc segmentation.

Discrete Applied Mathematics, 139(1-3):31–50, 2004.

P. Damaschke.

r. Daniascrike.

The linear time recognition of digital arcs.

Pattern Recognition Letters, 16(5):543–548, May 1995.

S. Fisk.

Separating points sets by circles, and the recognition of digital disks.

IEEE Transaction on Pattern Analysis and Machine Intelligence, 8(4):554–556, 1986.

C. E. Kim and T. A. Anderson.

Digital disks and a digital compactness measure.

In Seventh International Conference on Pattern Recognition (Montreal, Canada, July 30-August 2, 1984), IEEE Publ. 84CH2046-1, pages 254–257. IEEE, 1984.

C. E. Kim.

Digital disks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:372–374, 1984.

V. A. Kovalevsky.

New definition and fast recognition of digital straight segments and arcs.

Proceedings of the tenth international conference on Pattern Analysis and Machine Intelligence, pages 31–34, June 1990.

N. Megiddo.

Linear-time algorithms for linear programming in \mathbb{R}^3 and related problems. SIAM Journal of Computing, 12(4):759–776, November 1983.

N. Megiddo.

Optimizations Computational analysis recognition

Discrete arc seamenta-Conclusion

tion

Linear programming in linear time when the dimension is fixed.

Journal of the ACM, 31(1):114-127, January 1984,

A. Nakamura and K. Aizawa.

Digital circles.

Computer Vision, Graphics, and Image Processing, 26(2):242-255, May 1984.

Joseph O'Rourke, S. R. Kosaraju, and N. Megiddo.

Computing circular separability.

Discrete and Computational Geometry, 1(1):105-113, 1986.

F. P. Preparata and M. I. Shamos.

Computational Geometry: An Introduction. Springer-Verlag, 1985.

P. Sauer. On the recognition of digital circles in linear time.

Computational Geometry: Theory and Application 2, pages 287-302, 1993.

S. M. Thomas and Y. T. Chan. A simple approach for the estimation of circular arc center and its radius. Computer Vision, Graphics and Image Processing, 45:362-370, 1989.

M. Worring and W.M. Smeulders.

Digitized circular arcs: characterization and parameter estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):587-598, jun 1995.

