ÁLGEBRA LINEAR :: PROVA 01

PROF. TIAGO MACEDO

N.T.	A	D. 4
Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (3,0 pontos). Dado $r \in \mathbb{R}$, denote por $\lfloor r \rfloor$ o maior número inteiro que é menor ou igual a r (ou seja, a parte inteira de r).

(a) (1,5 pontos) Explique por que o conjunto $\mathcal{F}(\mathbb{Z}) = \{f \colon \mathbb{Z} \to \mathbb{Z} \mid f \text{ \'e uma função}\}$ munido das operações:

$$s \colon \mathcal{F}(\mathbb{Z}) \times \mathcal{F}(\mathbb{Z}) \to \mathcal{F}(\mathbb{Z}), \quad s(f,g)(n) = f(n) + g(n) \quad \text{para todo } f,g \in \mathcal{F}(\mathbb{Z}), \ n \in \mathbb{Z},$$
 $m \colon \mathbb{R} \times \mathcal{F}(\mathbb{Z}) \to \mathcal{F}(\mathbb{Z}), \quad m(\lambda,h)(n) = \lfloor \lambda h(n) \rfloor \quad \text{para todo } \lambda \in \mathbb{R}, \ h \in \mathcal{F}(\mathbb{Z}), \ n \in \mathbb{Z}.$ não é um \mathbb{R} -espaço vetorial.

(b) (1,5 pontos) Considere o \mathbb{R} -espaço vetorial $V=\{f\colon \mathbb{Z}\to \mathbb{R}\mid f$ é uma função} munido das operações:

$$s \colon V \times V \to V$$
, $s(f,g)(n) = f(n) + g(n)$ para todo $f,g \in V$, $n \in \mathbb{Z}$, $m \colon \mathbb{R} \times V \to V$, $m(\lambda,h)(n) = \lambda h(n)$ para todo $\lambda \in \mathbb{R}$, $h \in V$, $n \in \mathbb{Z}$.

Mostre que $W = \{ f \in V \mid f(n) = 0 \text{ se } n \text{ \'e par} \}$ é um subespaço de V.

Data: 06 de abril de 2017.

Questão 2 (3,0 pontos). Considere o \mathbb{R} -espaço vetorial \mathbb{R}^4 munido da soma e multiplicação escalar definidos coordenada-a-coordenada, e considere os subespaços

$$W = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z - w = 0\} \text{ e } U = \langle \{(2, 1, 1, 0), (1, 0, 2, -1), (0, 1, 0, 1)\} \rangle.$$

- (a) (2,0 pontos) Encontre uma base para $W \cap U$ contendo o vetor (1,0,-1,0).
- (b) (0,5 ponto) Qual é a dimensão de $W \cap U$? Justifique.
- (c) (0.5 ponto) A soma W+U é direta? Justifique.

Questão 3 (3,0 pontos). Considere o conjunto $X=\{-2,-1,1,2\}$ e o \mathbb{R} -espaço vetorial $V=\{f\colon X\to\mathbb{R}\mid f\text{ \'e}\text{ uma função}\}$ munido das operações:

$$s \colon V \times V \to V, \quad s(f,g)(x) = f(x) + g(x) \quad \text{para todo } f,g \in V, \, x \in X,$$

$$m \colon \mathbb{R} \times V \to V$$
, $m(\lambda, h)(x) = \lambda h(x)$ para todo $\lambda \in \mathbb{R}, h \in V, x \in X$.

Dado o subespaço $W=\{f\in V\mid f(x)=f(-x) \text{ para todo } x\in X\}$, encontre um subespaço $W'\subseteq V$ tal que $W\oplus W'=V$. Justifique.

Questão 4 (3,0 pontos). Determine se as seguintes afirmativas são verdadeiras ou falsas. Em seguida, demonstre as que forem verdadeiras e encontre contra-exemplos para as que forem falsas.

- (a) (1,0 ponto) Sejam E um espaço vetorial e $C, D \subset E$ subconjuntos linearmente dependentes. Se $C \cap D \neq \emptyset$, então $C \cap D$ é linearmente dependente.
- (b) (1,0 ponto) Existem matrizes $A = (a_{i,j}) \in M_{2,3}(\mathbb{R})$, tais que o conjunto formado pelos seus vetores-coluna, $\{(a_{11}, a_{21}), (a_{12}, a_{22}), (a_{13}, a_{23})\}$, é linearmente independente.
- (c) (1,0 ponto) Se V é um \mathbb{R} -espaço vetorial de dimensão finita e W_1,W_2,W_3 são subespaços de V, então $(W_1+W_2)\cap W_3=(W_1\cap W_3)+(W_2\cap W_3)$.