

Electrónica Geral

2021/2022 – 1º Semestre

Problema

Filtros 3 – Filtro Passa-Baixo de Chebyshev

Obter a função de transferência de um filtro passa-baixo de Chebyshev que obedeça às seguintes especificações: Atenuação inferior a 0,5 dB (A_p) até 2 kHz $(\omega_p/2\pi)$ e atenuação superior a 10 dB (A_s) acima de 5 kHz $(\omega_s/2\pi)$. Esboçar a sua característica de atenuação.

Ap=0,5 dB $A_{Cheby}(\Omega)=10log[1+\epsilon^2C_n^2(\Omega)], T(S)=K/D(S)$

n	K	D(S)	$C_n(\Omega)$
1	2,863	S+2,863	Ω
2	1,431	S ² +1,425S+1,516	2Ω ² -1
3	0,716	(S+0,626) (S ² +0,626S+1,142)	$4\Omega^3$ - 3Ω

$S = s / \omega_p$		
$S = \omega_p / s$		
$S = (s^2 + \omega_0)/Bs$		
$S = Bs/(s^2 + \omega_0)$		

Resolução

 $\omega_p=2\pi \times 2 \text{ krad/s}$

 $\omega_s=2\pi \times 5 \text{ krad/s}$

A_p=0,5 dB

A_s=10 dB

1)
$$A(1)=10\log(1+\epsilon^2)=Ap$$
 fornece $\epsilon=0,3493$.

2)
$$A(\Omega_s)=10\log(1+\epsilon^2\Omega_s^{2n})\ge As$$
 fornece n=2.

3)
$$T(s) = H^{-1}(\hat{S}) \Big|_{\hat{S} = \frac{s}{\omega_p}}^{\hat{S} = \frac{s}{\omega_p}}$$
 fornece $T(s) = \frac{2,256x10^8}{s^2 + 1,789x10^4 s + 2,39x10^8}$

Característica sai de 0,5 dB e tem 2 extremos na banda passante e é monotónica em todo o resto de banda.