DMA — Ugeopgave 2

Helga Rykov Ibsen <mcv462>

21. september 2021

1 Opgaven

Antag at A[0...n-1] er en usorteret array af længde n, og en inversion er et par (i, j) sådan at A[i] > A[j] og i < j, så gælder det at CountInversions(A, n) tæller antallet af inversioner:

Del 1

Antag at n = 7 og A = [5,4,6,7,2,1,5], så kan antallet af inveriosner der er i A visualiseres på følgende måde (T-True, F-False):

Iteration	1	2	3	4	5	6	7	8	9	10	11	12
i	0	0	0	0	0	0	1	1	1	1	1	2
j	1	2	3	4	5	6	2	3	4	5	6	3
A[i]	5	5	5	5	5	5	4	4	4	4	4	6
A[j]	4	6	7	2	1	5	6	7	2	1	5	7
A[i]>A[j]	Т	F	F	Т	Т	F	F	F	Т	Т	F	F
i <j< td=""><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td></j<>	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
inversions	1	1	1	2	3	3	3	3	4	5	5	5

Som det tydeligt kan ses fra de to tabeller er antallet af inversioner i A=[5,4,6,7,2,1,5] lige med 12.

Iteration	13	14	15	16	17	18	19	20	21
i	2	2	2	3	3	3	4	4	5
j	4	5	6	4	5	6	5	6	6
A[i]	6	6	6	7	7	7	2	2	1
A[j]	2	1	5	2	1	5	1	5	5
A[i]>A[j]	Т	Т	Т	Т	Т	Т	Т	F	F
i <j< td=""><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td></j<>	Т	Т	Т	Т	Т	Т	Т	Т	Т
inversions	6	7	8	9	10	11	12	12	12

Del 2

Det maksimale antal af inversioner, som et array af længde n kan have, svarer til det antal af iterationer som giver TRUE (cf. linjen 4 i CountInversions(A,n)) i alle iterationer. Det betyder at det maksimale antal af inversioner kan findes ved hjælp af sumformlen:

$$\frac{n(n-1)}{2} \tag{1}$$

Grunden til at man skriver her (n-1) i stedet for (n+1) er prædefineret af definitionen på en inversion i denne opgave (dvs. A[i] > A[j] og i < j). Det betyder, at de sidste to tal der bliver sammenlignet i array'et er henholdsvis A[n-2] og A[n-1], hvorefter funktionen stopper med at køre og returnerer det samlede antal af inversioner. For array'et A fra Del 1, som indeholder 7 heltal, kan det maksimale antal af inversioner derfor udregnes som:

$$\frac{7(7-1)}{2} = 21\tag{2}$$

Del 3

Se algoritmen CountInversions(A, n) i starten af opgaven.

Del 4

For at visualisere beregningen af køretiden for funktionen CountInversions(A, n), betragt tabellet nedenfor:

Linjetal	Skridt	Max gange
1	c_1	1
2 (ydre for-løkke)	c_2	n
3 - 5 (indre for-løkke)	c_3	n^2
6	c_4	1

Køretiden kan beregnes som $T(n) = c_1 + c_2 n + c_3 n^2 + c_4 = \Theta(n^2)$. Da vi kun er intereseret i de led der vokser hurtigst, kan vi udelade konstanter c_n , som slet ikke vokser, samt ledet n, som vokser linært. Tilbage står n^2 . Køretiden for denne algoritme er altså kvadratisk.