



# Session 3.1 - Mapping against reference genome and Variant Calling

### Sara Monzón Fernández

BU-ISCIII

<u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

04-15 Noviembre 2018, 2ª Edición Programa Formación Continua, ISCIII





## Index

### Mapping against reference genome and Variant Calling:

- Mapping vs Alignment
- What is mapping?
- How to choose a NGS mapper.
- SAM/BAM format
- Duplicate filter
- Variant Calling
- Source of error and mitigation strategies
- VCF and bed format
- GATK vs VARSCAN2
- High quality SNP selection





# Alignment

### **Definition:**

Arrange two or more nucleotide or aminoacid sequences to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships.

| AAB24882<br>AAB24881 | TYHMCQFHCRYVNNHSGEKLYECNERSKAFSCPSHLQCHKRRQIGEKTHEHNQCGKAFPTYECNQCGKAFAQHSSLKCHYRTHIGEKPYECNQCGKAFSK |
|----------------------|------------------------------------------------------------------------------------------------------|
| AAB24882             | PSHLQYHERTHTGEKPYECHQCGQAFKKCSLLQRHKRTHTGEKPYE-CNQCGKAFAQ-                                           |
| AAB24881             | HSHLQCHKRTHTGEKPYECNQCGKAFSQHGLLQRHKRTHTGEKPYMNVINMVKPLHNS                                           |





# Multiple alignment (MSA)

### **Definition:**

A multiple alignment is a colection of three or more sequences partial or completely aligned.







# Mapping definition

### Definición:

Place a sequence inside a larger sequence. For example, determine the position of a read inside a reference genome.

```
Referencia/ genoma
...GTGGGCCGGCAATTCGATATCGCGCATATATTTCGGCGCATGCTTAGC...
Lecturas:
GCAATTCGATAT
GCGCATATATTT
TGGGCCGGCAAT
CGCATGCTTAGC
ATTCGATATCGC
GCCGGCAATTCG
       Mapeo
...GTGGGCCGGCAATTCGATATCGCGCATATATTTCGGCGCATGCTTAGC...
          GCAATTCGATAT
                                      CGCATGCTTAGC
   TGGGCCGGCAAT
                    GCGCATATATTT
             ATTCGATATCGC
 GCCGGCAATTCG
```





# Alignment vs mapping

# Mapping:

- A mapping is regarded to be correct if it overlaps the true region.
- Each read maps independently
- From thousand to millions of sequences.

# Multiple alignment:

- An alignment is regarded to be correct only if each base is placed correctly.
- Minimizes differences among sequences
- From tens to hundred of sequences.

### Consideratiosn:

- An algorithm can be good at mapping but may not be good aligning.
- This is because the true alignment minimizes differences between reads, but the read mapper only sees the reference.





# So in summary...

### CTGACCTCATGTGATCCACCCGCCTTGGCC

Find best match for the read in a reference sequence



# Challenges

- Errors in reads
- Errors in libraries
- Repetitive regions (repeats, homologous regions)
- Homopolymers
- Individual polymorphisms

Pierre Lechat. Variants Calling lecture. Pasteur.fr





Passion ---

# What mapper should I use?

# Mappers:

- Más de 60 mappers available.
- Lots of papers reviewing its performamnce.







# What mapper should I use?

### Cosas a tener en cuenta:

- Computational resources vs sensibility
- Platform and type of experiment (Illumina/454/etc,paired-end,DNA/RNA/etc)
- Variation (indels allowance, mistmatch number, etc.)
- Repetitions (all regions, best match, random, user defined number...)

## Importante:

Default options don't have to be the best:

"... there is no tool that outperforms all of the others in all the tests. Therefore, the end user should clearly specify his needs in order to choose the tool that provides the best results." - Hatem et al *BMC Bioinformatics* 2013, **14**:184





# What mapper should I use?

Table 1: Application-specific alignment features distribution among multiple aligners.

| Aligners     | Operate<br>system | Programming<br>language | Input Format <sup>1</sup> ?<br>(Fasta and Fastq) | Output<br>format | Multithread? | Gapped<br>alignment? | Paired-end<br>alignment? | Trimming<br>alignment? | Bisulfite<br>alignment? | Note                                      |
|--------------|-------------------|-------------------------|--------------------------------------------------|------------------|--------------|----------------------|--------------------------|------------------------|-------------------------|-------------------------------------------|
| Bowtie       | *                 | C++                     | √                                                | SAM              | √            |                      | √                        | √                      |                         | Maximum allowed                           |
|              |                   |                         |                                                  |                  |              |                      |                          | -                      |                         | mismatches ≤3<br>BWA-short: 200 bp;       |
| BWA          | 0                 | C++                     | √                                                | SAM              | √            | √                    | √                        |                        |                         | BWA-SW: 100 kbp                           |
| BOAT         | 0                 | С                       | √                                                |                  | ./           | √                    |                          |                        |                         | Maximum allowed                           |
| DOM          |                   |                         | ٧                                                | -                | ٧            | ٧                    |                          |                        |                         | mismatches ≤3                             |
| GASSST       | 0                 | C++                     | Fasta                                            | SAM              | √            | √                    |                          |                        |                         | Merely Fasta format required<br>for reads |
|              |                   |                         |                                                  |                  |              |                      |                          |                        |                         | Maximum read length                       |
| Gnumap       | 0                 | C                       | √ ( prb)                                         | SAM              | √            | √                    |                          | √                      | √                       | <1000 bp                                  |
| GenomeMapper | 0                 | С                       | √                                                | BED              | √            | √                    |                          |                        |                         | Maximum read length <                     |
| Genomewapper |                   | C                       | · ·                                              | DED              | V            | · ·                  |                          |                        |                         | 2000 bp                                   |
| mrFAST       | *                 | C                       | √                                                | SAM              |              | √                    | √                        |                        |                         | Maximum read length<br><300 bp            |
|              |                   |                         |                                                  |                  |              |                      |                          |                        |                         | Maximum read length                       |
| mrsFAST      | *                 | C                       | √                                                | SAM              |              |                      | √                        |                        | √                       | <200 bp                                   |
| MAQ          | 0                 | C++                     | Fastq                                            | map              |              |                      | √                        |                        |                         | Maximum read length ≤128 bp               |
| NovoAlign    | •                 | C++                     | √                                                | SAM              | √            | √                    | <b>a</b> /               | <b>4</b>               | 2/                      | Restrictions for academic                 |
|              |                   |                         | *                                                |                  | *            | *                    | *                        | *                      | *                       | version<br>Maximum read length            |
| PASS         | *                 | C++                     | √(sff)                                           | GFF3             | √            | √                    | √                        |                        |                         | <1000 bp                                  |
| PerM         | *                 | C++                     | √                                                | SAM              | √            |                      | √                        | √                      |                         | Maximum read length ≤128 bp               |
| RazerS       | *                 | C++                     | √ ( prb)                                         | Eland, GFF       |              | √                    | <b>√</b>                 | <b>√</b>               |                         | Arbitrary read length                     |
| RMAP         | 0                 | C++                     | √                                                | BED              |              |                      | √                        |                        | √                       | Fixed-length reads required               |
| SeqMap       | *                 | C++                     | Fasta                                            | Eland            |              | √                    |                          |                        |                         | Maximum allowed                           |
|              |                   |                         |                                                  |                  |              | -                    |                          |                        |                         | mismatches ≤5<br>Maximum read length      |
| SOAPv2       | 0                 | C++                     | √                                                | *                | √            | √                    | √                        |                        |                         | <1000 bp                                  |
| SHRiMAP2     | 0                 | Python                  | Fasta                                            | SAM              | √            | √                    | √                        |                        |                         | Parallel computing supported              |
| Segemehl     | 0                 | C                       | Fasta                                            | *                | √            | √                    | √                        | √                      | √                       | Large memory usage required               |
| SSAHA2       | •                 | NA                      | √                                                | GFF, SAM         |              |                      | √                        |                        |                         | For long reads mapping                    |

<sup>&</sup>lt;sup>1</sup>We here only consider short-reads input format.

<sup>\*</sup>Windows, Linux, or Unix operating system.

<sup>\*</sup>Windows, Linux, Unix, or Mac X operating system.

Linux, Unix, or Mac X operating system.

Linux or Unix operating system.

<sup>&</sup>quot;The short-read aligning algorithms' own output format.





# End-to-end vs local alignment

### End-to-end

Local

Read: GACTGGGCGATCTCGACTTCG

Reference: GACTGCGATCTCGACATCG

Alignment:

Read: GACTGGGCGATCTCGACTTCG

11111 1111111111111111

Reference: GACTG--CGATCTCGACATCG

Read: ACGGTTGCGTTAATCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Alignment:

Read: ACGGTTGCGTTAA-TCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Bowtie2 manual.





### BWA MEM



### **SMEM** strategy

- Maximal exact match (MEM): an exact match that cannot be extended further in either direction
- Super-maximal exact match (SMEM): a MEM that is not contained in any other MEMs on the query coordinate (Li, 2012). At any query position, the longest exact match covering the position must be a SMEM.

Seed-and-extend algorithm

Local alignment

Hen LI. Aligning sequence reads, clone sequences and assembly con\*gs with BWA-MEM. Poster. Broad Institute.





### BOWTIE2

End-to-end alignment by default.

### Three reporting modes:

- Best alignment
- K alignments
- All alignments

Lots of customizable parameters that change its performance.





# Example whole genome aligner: MUMMER

- Maximal Unique Matcher (MUM)
  - match <- exact match of a minimum length</pre>
  - maximal <- cannot be extended in either direction
    without a mismatch</pre>
  - unique
    - occurs only once in both sequences (MUM)
    - occurs only once in a single sequence (MAM)
    - occurs one or more times in either sequence (MEM)

Adam M. Phillippy. Whole Genome Alignment with MUMmer. Presentation.





# Example whole genome aligner: MUMMER

MUM: maximal unique match

**MAM**: maximal almost-unique match -----

MEM: maximal exact match



Adam M. Phillippy. Whole Genome Alignment with MUMmer. Presentation.





# Example whole genome aligner: MUMMER



Adam M. Phillippy. Whole Genome Alignment with MUMmer. Lecture.





Which aligner should I use for aligning reads agains a complete genome for variant calling?

# Reads mapping uniquely Read mapping equally in two repetitive regions: - MAPQ = 0 - Generate FP variant calls





Which aligner should I use for aligning reads against a resistance gene database for determining with resistance genes I have in my sample?

Homologus/repetitive region

Reads mapping to the repetitive/homologus region map against all alleles.

We allow one read to map to several locations.



Reads mapping uniquely only map in Allele 1. Which is the one more **covered** 

# **MAPQ**

- What if there are several possible places to align your sequencing read? This may be due to:
  - Repeated elements in the genome
  - Low complexity sequences
  - Reference errors and gaps

MQ is a phredScore of the quality of the alignment



### MAPQ is <u>NOT</u> comparable among mappers.

### BWA:

- MAPQ represents the probability of the read to be mapped correctly.
- MAPQ = 0 identifies unmapped reads and...

Reads mapping to different locations!

### **BOWTIE2:**

- MAPQ represents the
   "uniqueness" of the read. A
   MAPQ < 10 indicates that
   there is at least a 1 in 10
   chance that the read truly
   originated elsewhere</pre>
- MAPQ = 0 identifies unmapped reads





### SAM format

### Definición:

It's a specification that defines a generic format for storing nucleotide alignments. It describes a query alignment against a reference genome.

```
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref
              9 30 3S6M1P1I4M *
                                 O O AAAAGATAAGGATA
                                    O GCCTAAGCTAA
r003 0 ref 9 30 5S6M
                                                        * SA:Z:ref,29,-,6H5M,17,0;
r004
       0 ref 16 30 6M14N5M
                                     O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                     O TAGGC
                                                        * SA:Z:ref,9,+,5S6M,30,1;
                              = 7 -39 CAGCGGCAT
r001
    147 ref 37 30 9M
                                                        * NM:i:1
```





## SAM format

| Col | Field | Туре        | Regexp/Range                             | Brief description                     |
|-----|-------|-------------|------------------------------------------|---------------------------------------|
| 1   | QNAME | String      | [!-?A-~]{1,255}                          | Query template NAME                   |
| 2   | FLAG  | $_{ m Int}$ | [0,2 <sup>16</sup> -1]                   | bitwise FLAG                          |
| 3   | RNAME | String      | \* [!-()+-<>-~][!-~]*                    | Reference sequence NAME               |
| 4   | POS   | $_{ m Int}$ | [0,2 <sup>31</sup> -1]                   | 1-based leftmost mapping POSition     |
| 5   | MAPQ  | $_{ m Int}$ | [0,2 <sup>8</sup> -1]                    | MAPping Quality                       |
| 6   | CIGAR | String      | \* ([0-9]+[MIDNSHPX=])+                  | CIGAR string                          |
| 7   | RNEXT | String      | \* = [!-()+-<>-~][!-~]*                  | Ref. name of the mate/next read       |
| 8   | PNEXT | $_{ m Int}$ | [0,2 <sup>31</sup> -1]                   | Position of the mate/next read        |
| 9   | TLEN  | $_{ m Int}$ | [-2 <sup>31</sup> +1,2 <sup>31</sup> -1] | observed Template LENgth              |
| 10  | SEQ   | String      | \* [A-Za-z=.]+                           | segment SEQuence                      |
| 11  | QUAL  | String      | [!-~]+                                   | ASCII of Phred-scaled base QUALity+33 |

```
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r001
r002
     0 ref
              9 30 3S6M1P1I4M *
                               0
                                    O AAAAGATAAGGATA
                                                        *
    0 ref
r003
              9 30 5S6M
                               0
                                    O GCCTAAGCTAA
                                                        * SA:Z:ref,29,-,6H5M,17,0;
r004
       0 ref 16 30 6M14N5M
                                    O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                0
                                     O TAGGC
                                                        * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
                                                        * NM:i:1
```





# SAM format: flags

| Bit   | Description                                            |
|-------|--------------------------------------------------------|
| 0x1   | template having multiple segments in sequencing        |
| 0x2   | each segment properly aligned according to the aligner |
| 0x4   | segment unmapped                                       |
| 0x8   | next segment in the template unmapped                  |
| 0x10  | SEQ being reverse complemented                         |
| 0x20  | SEQ of the next segment in the template being reversed |
| 0x40  | the first segment in the template                      |
| 0x80  | the last segment in the template                       |
| 0x100 | secondary alignment                                    |
| 0x200 | not passing quality controls                           |
| 0x400 | PCR or optical duplicate                               |
| 0x800 | supplementary alignment                                |

https://broadinstitute.github.io/picard/explain-flags.html





# Flag explanation example 1

| SAM Flag: 99 Explain                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Switch to mate Toggle first in pair / second in pair                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| Find SAM flag by property:  To find out what the SAM flag value would be for a given combination of properties, tick the boxes for those that you'd like to include. The flag value will be shown in the SAM Flag field above.                                                                                                                                                                                  | Summary: read paired (0x1) read mapped in proper pair (0x2) mate reverse strand (0x20) |
| <ul> <li>✓ read paired</li> <li>✓ read mapped in proper pair</li> <li>□ read unmapped</li> <li>□ mate unmapped</li> <li>□ read reverse strand</li> <li>✓ mate reverse strand</li> <li>✓ first in pair</li> <li>□ second in pair</li> <li>□ not primary alignment</li> <li>□ read fails platform/vendor quality checks</li> <li>□ read is PCR or optical duplicate</li> <li>□ supplementary alignment</li> </ul> | first in pair (0x40)                                                                   |





# Flag explanation example 2

| SAM Flag: 147 Explain                                                                              |                                                                |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Switch to mate Toggle first in pair / second in pair                                               |                                                                |
| Find SAM flag by property:                                                                         | Summary:                                                       |
| To find out what the SAM flag value would be for a given combination of properties, tick the boxes | read paired (0x1)                                              |
| for those that you'd like to include. The flag value will be shown in the SAM Flag field above.    | read mapped in proper pair (0x2)<br>read reverse strand (0x10) |
| ✓ read paired                                                                                      | second in pair (0x80)                                          |
| ✓ read mapped in proper pair                                                                       |                                                                |
| read unmapped                                                                                      |                                                                |
| mate unmapped                                                                                      |                                                                |
| read reverse strand                                                                                |                                                                |
| mate reverse strand                                                                                |                                                                |
| first in pair                                                                                      |                                                                |
| second in pair                                                                                     |                                                                |
| not primary alignment                                                                              |                                                                |
| read fails platform/vendor quality checks                                                          |                                                                |
| read is PCR or optical duplicate                                                                   |                                                                |
| usupplementary alignment                                                                           |                                                                |





# SAM format: CIGAR string

| $_{\mathrm{Op}}$ | BAM | Description                                           |
|------------------|-----|-------------------------------------------------------|
| М                | 0   | alignment match (can be a sequence match or mismatch) |
| Ι                | 1   | insertion to the reference                            |
| D                | 2   | deletion from the reference                           |
| И                | 3   | skipped region from the reference                     |
| S                | 4   | soft clipping (clipped sequences present in SEQ)      |
| H                | 5   | hard clipping (clipped sequences NOT present in SEQ)  |
| P                | 6   | padding (silent deletion from padded reference)       |
| =                | 7   | sequence match                                        |
| X                | В   | sequence mismatch                                     |





### SAM vs BAM format

- SAM and BAM format are exactly the same.
  - SAM is a tabular plain text file.
  - BAM is its binary format. Binary meaning is in a compress format not human readable.
  - We MUST always use BAM format because it is optimized for computer-reading

### **AND**

### **BECAUSE IT SAVES A LOT OF DISK SPACE!!**

Typical bam and sam format files weights from a S. grumpensis

SAM format file: 3.6 GB BAM format file: 689 M





# Duplicate filter

- Duplicates are non-independent measurements of a sequence
  - Sampled from the exact same template of DNA
  - Violates assumptions of variant calling
- Errors in sample/library prep will get propagated to all the duplicates
- Just pick the "best" copy mitigates the effects of errors
- **Definition**: sequences starting and finishing in the exact same coordinates. Both pairs if paired-end.





# Duplicate filter







# Mapping statistics

- % mapped: reads mapped/total reads
- % unmapped: reads unmapped/total reads
- % duplicates: reads belonging to same template/total reads
- Mean depth of coverage
- Coverage: % genome with at least one read mapped.





# Depth of coverage vs coverage

### **Breadth of coverage**

How much of a genome is "covered" by short reads? Are there regions that are not covered, even not by a single read?

Breadth of coverage is the percentage of bases of a reference genome that are covered with a certain depth. For example: 90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth.

### **Depth of coverage**

How strong is a genome "covered" by sequenced fragments (short reads)?

Per-base coverage is the average number of times a base of a genome is sequenced. The coverage depth of a genome is calculated as the number of bases of all short reads that match a genome divided by the length of this genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).







# Variant Calling

Variant calling concept is simple:

Find positions in our reads different from the reference.

 We start with our secuences mapped against our reference genome, and we walk trough every column of the alignment counting the number of alleles found and comparing them against the reference.











# Sources of error and mitigation strategies

Polymerase error

Sequencing

Polymerase error

Sequencing chemistry Reaction

Base calling

detection.

Read

Genome duplication

Structural variants



Base Quality scores

Mapping quality scores

> **Filtering** thresholds

Adapted from Olson et al. Frontiers in Genetics. 2015





# Sources of error and mitigation strategies

### Sample processing errors.

- Random errors.
- Associated with polymerase errors . (1 in  $10^{2-3}$  bases)
- Homopolymers and tandem repeats experience higher indel error rates.

### • Solutions:

- Paired-end libraries.
- Minimization of PCR cycles.

Adapted from Olson et al. Frontiers in Genetics. 2015





# Sources of error and mitigation strategies

### Sequencing:

- Dependent on the platform.
- Can be random and systematic.
- 6% Illumina, 50% Roche (Ross et al.2013)
- P.e Illumina commits error in the G/T channels.

### Solutions:

Strand bias.

Adapted from Olson et al. Frontiers in Genetics. 2015





#### Mapping errors:

- Genomic duplication and structural variation.
- High diverse areas.

#### Solutions

- Paired-end libraries.
- Long reads / fragments.
- MAPQ
- Realignment around indels.

Adapted from Olson et al. Frontiers in Genetics. 2015

















#### • SNP calling step

- Errors may result in base calling errors.
- FP and FN calls.

#### Solutions

- Strand bias
- Base quality rank sum
- MAPQ
- Hard filters:
  - Depth of coverage
  - Minimun base call frequency.

Adapted from Olson et al. Frontiers in Genetics. 2015





#### Reference selection

- Critial step <- Bias which SNPs are called.</li>
- SNPs in genes not present in the reference <u>WON'T</u> be called.
- Less effect in clonal bacteria.
- Number of SNPs called vary A LOT!
- Solutions:
  - Kmerfinder





## Repetitive/Phage regions filtering

#### PHASTER

- We can remove/mask phague/repetitive regions where reads won't map.
- This way those areas will be out of analysis.
- Problem: those areas could be important!

#### GMI Proficiency test

- **Proficiency Testing for bacterial** WGS, 2012 an end-user survey of current capabilities, requirements and priorities
- 2. **Proficiency Test Pilot, 2014 Wet lab** and Dry lab

Escherichia coli, Staphilococus aureus and Salmonella typhimurium

**Full Proficiency Test, 2015** 

Escherichia coli, Staphilococus aureus and Salmonella tiphimurium

Full Proficiency Test, 2016 Wet lab and Dry lab

Campylobacter coli and C. jejuni, Listeria monocytogenes and klebsiella pneumoniae

Número de SNPs reportado por <u>cada laboratorio parcipante</u>

Secuenciación de genomas bacterianos:

herramientas y aplicaciones

| Lab   | EC      | SA      | ST      |
|-------|---------|---------|---------|
| GMI02 | 25731   | 1383    | 8968    |
| GMI04 | 25731   | 1383    | 8968    |
| GMI06 | 43264   | 6226    | 5822    |
| GMI10 | 13083   | 1797    | 12902   |
| GMI14 | 14687   | NA      | 1431    |
| GMI26 | 92831   | 6164    | 31044   |
| GMI39 | 52590   | 2672    | 16034   |
| GMI42 | 9460    | NA      | 12884   |
| GMI43 | 38532   | 4163    | 16562   |
| GMI46 | 63273   | 2341    | 9958    |
| GMI48 | 67034   | 2063    | 14080   |
| GMI58 | 79231   | NA      | 19656   |
| GMI59 | 23561   | 2715    | 14199   |
| GMI13 | 9276    | 1628    | 8746    |
| GMI16 | 55473   | 2122    | 13630   |
| GMI21 | 5187829 | 2837196 | 5090636 |
| GMI22 | 33416   | 1597    | 13066   |
| GMI27 | 33664   | 2130    | 13297   |
| GMI30 | 607217  | 11881   | 12733   |
| GMI31 | NA      | NA      | 4141    |
| GMI32 | 14667   | 25949   | 28164   |
| GMI33 | 71822   | 5420    | 21668   |
| GMI35 | 6706    | 1334    | NA      |
| GMI37 | 73355   | 2897    | 14294   |
| GMI40 | 45725   | 2033    | 11180   |
| GMI44 | 35039   | 1836    | 9446    |
| GMI45 | 5183821 | 2836332 | 5088344 |
| GMI47 | 20707   | 1805    | 12198   |
| GMI50 | 84      | NA      | 1300    |
| GMI51 | 35521   | NA      | 10042   |
| GMI55 | NA      | 1644    | 9102    |
| GMI61 | NA      | NA      | 24      |
| GMI63 | NA      | 2834703 | 5077509 |
| GMI7  | 21731   | 1673    | 9192    |
| GMI8  | 15972   | 1851    | 12979   |





#### VCF format



#### Bed format



# Pipelines for bacterial SNP-based analysis

| Software      | Description                                            | Other    | References           |
|---------------|--------------------------------------------------------|----------|----------------------|
| CFSAN         | VARSCAN variant calling                                | Terminal | Davis et al., 2015   |
| NASP          | Variant calling with VarScan, solSNP,samtools and GATK | Terminal | Sahl et al., 2016    |
| Lyve-Set      | VARSCAN variant calling                                | Terminal | Katz et al., 2017    |
| KSNP          | Reference free variant calling.                        | Terminal | Gardner et al., 2015 |
| SNVPhyl       | Variant calling with freebayes and samtools            | Galaxy   | Petkau et al., 2017  |
| CSI phylogeny | Variant calling with samtools.                         | Web      | Kaas et al., 2014    |





#### **GATK**



Best Practices for Germline SNPs and Indels in Whole Genomes and Exomes - June 2016

#### **GATK**

#### 1. Define active regions

 The program determines which regions of the genome it needs to operate on, based on the presence of significant evidence for variation.

#### • <u>2. Determine haplotypes by assembly of the active region</u>

For each ActiveRegion, the program builds a De Bruijn-like graph to reassemble the ActiveRegion, and identifies what are the possible haplotypes present in the data. The program then realigns each haplotype against the reference haplotype using the Smith-Waterman algorithm in order to identify potentially variant sites.

#### • 3. Determine likelihoods of the haplotypes given the read data

For each ActiveRegion, the program performs a pairwise alignment of each read against each haplotype using the PairHMM algorithm. This produces a matrix of likelihoods of haplotypes given the read data. These likelihoods are then marginalized to obtain the likelihoods of alleles for each potentially variant site given the read data.

#### 4. Assign sample genotypes

For each potentially variant site, the program applies Bayes' rule, using the likelihoods of alleles given the read data to calculate the likelihoods of each genotype per sample given the read data observed for that sample. The most likely genotype is then assigned to the sample.

Best GATK practice guide.







#### **GATK**







# Cohorts need to be analyzed together at variant calling step

- If we simply call variants on individual samples then merge lists of their variants, we miss a lot of important information
- Joint variant discovery rescues a lot of valuable information





Sequencing and variant calling pipelines MPG Primer @ Broad Institute Cambridge, 15 October, 2015







# Joint analysis empowers calls in difficult sites



- If we analyze Sample #1 or Sample #N alone we are not confident that the variant is real
- If we see both samples then we are more confident that there is real variation at this site in the cohort

Sequencing and variant calling pipelines MPG Primer @ Broad Institute Cambridge, 15 October, 2015





### GATK problems

- Haploid variant calling is a side project. GATK is mainly for diploid organism, and the development and improvement of the haploid algorithm is slow.
- Manual filtering is needed for high quality SNPs selection.





#### VARSCAN2

- Uses a heuristic/statistic method instead of bayesian.
- Allows more flexibility and hard filters.
- Used in many bacterial variant calling pipelines. P.e CFSAN snp-pipeline.







#### VARSCAN2







## Comparative VARSCAN - GATK







## Comparative VARSCAN - GATK



**GATK** 

#### **CFSAN - VARSCAN**

**CFSAN** 









## Comparative VARSCAN - GATK









# High Quality SNP selection

| CFSAN Filtering GATK |              |          |  |
|----------------------|--------------|----------|--|
| ~                    | PhredQ       | <b>~</b> |  |
| ×                    | Strand bias  | >        |  |
| ×                    | MAPQ         | >        |  |
| <b>~</b>             | AD filtering | ×        |  |
| <b>~</b>             | SNP Cluster  | <b>~</b> |  |







# Population Allele frequency vs Sample Allele frequency

 Population allele frequency: probability of finding an allele in the population. Number of individuals carrying an allele vs total of individuals in the population.









# Population Allele frequency vs Sample Allele frequency

 Alternate/Base allele frequency: number of reads supporting the alternate allele vs total of reads.







## SNP cluster filtering

#### Acummulation of more than 3 SNPs in 1000 pb



#### 1000 pb window





#### What's next?

# SNP matrix creation And Phylogeny!





# Thanks for your attention!