Examenul național de bacalaureat 2021 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Testul 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	-	
1.	$1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} = 1 \cdot \frac{1 - \left(-\frac{1}{3}\right)^5}{1 - \left(-\frac{1}{3}\right)} =$	3 p
	$=\frac{3}{4}\left(1+\frac{1}{3^5}\right)>\frac{3}{4}$	2 p
2.	$(f \circ f)(x) = 0 \Leftrightarrow -3f(x) + 18 = 0 \Leftrightarrow f(x) = 6$	3 p
	$-3x+18=6 \Leftrightarrow x=4$, deci abscisa punctului de intersecție a graficului funcției $f\circ f$ cu axa Ox este egală cu 4	2p
3.	$2^{2-x}(2-1+2^3) = 9 \Leftrightarrow 2^{2-x} = 1$	3p
	x=2	2p
4.	$T_{k+1} = C_{14}^k \left(x^3\right)^{14-k} \left(\frac{1}{\sqrt{x}}\right)^k = C_{14}^k x^{\frac{42-3k-\frac{k}{2}}{2}} = C_{14}^k x^{\frac{84-7k}{2}}, \text{ unde } k \in \{0,1,2,\dots,14\}$	3p
	$\frac{84-7k}{2} = 0 \Leftrightarrow k = 12, \text{ deci } T_{13} = C_{14}^{12} = 91 \text{ nu îl conține pe } x$	2p
5.	Punctul $M\left(\frac{a-2}{2},3\right)$ este mijlocul segmentului AB	3 p
	$3 = 2 \cdot \frac{a-2}{2} + 3 \Leftrightarrow a = 2$	2p
6.	În $\triangle ABC$, $\operatorname{tg} C = 1 \Rightarrow \sphericalangle C = \frac{\pi}{4}$, $\operatorname{deci} \sin C = \frac{\sqrt{2}}{2}$	3 p
	$2R = \frac{AB}{\sin C} \Rightarrow AB = 2 \cdot 3 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2}$	2p

(30 de puncte) SUBIECTUL al II-lea

1.a)	$A(3) = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{vmatrix} =$	2p
	=12+1+(-1)-4-(-3)-1=10	3 p
b)	$\det(A(a)) = a^2 + a - 2$, pentru orice număr real a , deci $\det(A(a)) = 0 \Leftrightarrow a = 1$ sau $a = -2$	3 p
	Cum $\det(A(n)) \neq 0$, pentru orice număr natural $n, n \geq 2$, rangul matricei $A(n)$ este egal	2n
	cu 3, pentru orice număr natural n , $n \ge 2$	- P

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

c)	Pentru orice număr natural $m \ge 2$, $A(m)$ este inversabilă, deci $A^{-1}(m)$ are toate elementele numere întregi dacă $\det(A(m)) = -1$ sau $\det(A(m)) = 1$	3p
	Cum $m \ge 2$, obținem $\det(A(m)) = m^2 + m - 2 \ge 4$, deci $A^{-1}(m)$ nu are toate elementele	2 p
	numere întregi	
2.a)	$8 \circ 8 = \frac{8 \cdot 8 - 4}{8 + 8 - 4} =$	3 p
	$=\frac{60}{12}=5$	2p
b)	$(x+2)\circ(y+2) = \frac{xy+2x+2y}{x+y}, (x+y)\circ 4 = \frac{4x+4y-4}{x+y}, \text{ pentru orice } x, y \in M$	2p
	$(x+2) \circ (y+2) - (x+y) \circ 4 = \frac{xy - 2x - 2y + 4}{x+y} = \frac{(x-2)(y-2)}{x+y}$, pentru orice $x, y \in M$ şi, cum $x > 2$ şi $y > 2$, obţinem că $(x+2) \circ (y+2) > (x+y) \circ 4$, pentru orice $x, y \in M$	3 p
c)	$x \circ x = \frac{x^2 - 4}{2x - 4} = \frac{x + 2}{2}$, $\underbrace{x \circ x \circ x \circ \dots \circ x}_{\text{de } 2^n \text{ ori } x} = \frac{x + 2^{n+1} - 2}{2^n}$, unde $x \in M$ şi n este număr natural,	3 p
	$n \ge 2$	
	$\frac{x+2^{n+1}-2}{2^n} = 2^n - \frac{1}{2^n} \implies x = 2^{2n} - 2 \cdot 2^n + 1 \implies x = \left(2^n - 1\right)^2$	2 p

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = \frac{1}{x-3} - 2 \cdot \frac{2x}{x^2 - 9} =$	3p
	$=\frac{x+3-4x}{x^2-9} = \frac{3(1-x)}{x^2-9}, \ x \in (3,+\infty)$	2 p
b)	$f'(x) < 0$, pentru orice $x \in (3, +\infty) \Rightarrow f$ este strict descrescătoare pe $(3, +\infty)$, deci f este injectivă	2p
	Cum f este continuă pe $(3,+\infty)$, $\lim_{x\to 3} f(x) = +\infty$ și $\lim_{x\to +\infty} f(x) = -\infty$, obținem că f este surjectivă, deci f este bijectivă	3 p
c)	$\lim_{x \to 3} ((x-3)f(x)) = \lim_{x \to 3} \frac{f(x)}{\frac{1}{x-3}} = \lim_{x \to 3} \frac{f'(x)}{\left(\frac{1}{x-3}\right)'} = \lim_{x \to 3} \frac{-\frac{3(x-1)}{x^2-9}}{-\frac{1}{(x-3)^2}} =$	3р
	$= \lim_{x \to 3} \frac{3(x-1)(x-3)^2}{x^2 - 9} = \lim_{x \to 3} \frac{3(x-1)(x-3)}{x+3} = 0$	2 p
2.a)	$\int_{1}^{\frac{3}{2}} \left(f(x) - \frac{x^{2}}{x^{2} - 4} \right) dx = \int_{1}^{\frac{3}{2}} x dx = \frac{x^{2}}{2} \begin{vmatrix} \frac{3}{2} \\ 1 \end{vmatrix} = 1$	3p
	$=\frac{1}{2}\left(\frac{9}{4}-1\right)=\frac{5}{8}$	2 p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$\int_{-1}^{1} (f(x) + f(-x)) dx = \int_{-1}^{1} \frac{2x^2}{x^2 - 4} dx = 2 \int_{-1}^{1} \frac{x^2 - 4 + 4}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \int_{-1}^{1$	3p
	$= 2\left(1 + \ln\frac{1}{3} + 1 - \ln 3\right) = 4\left(1 - \ln 3\right)$	2 p
c)	$\int_{a}^{\sqrt{3}} \sqrt{x - f(x)} dx = \int_{a}^{\sqrt{3}} \sqrt{x - x - \frac{x^2}{x^2 - 4}} dx = \int_{a}^{\sqrt{3}} \frac{x}{\sqrt{4 - x^2}} dx = -\sqrt{4 - x^2} \begin{vmatrix} \sqrt{3} \\ a \end{vmatrix} = \sqrt{4 - a^2} - 1, \ a \in (0, \sqrt{3})$	3p
	$\sqrt{4-a^2} = \sqrt{3} \Leftrightarrow a^2 = 1$ și, cum $a \in (0, \sqrt{3})$, obținem $a = 1$	2p