Théorie des langages rationnels : THLR CM 5

Uli Fahrenberg

EPITA Rennes

S3 2024

Aperçu ●○ Aperçu

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- 5 Langages reconnaissables, minimisation

Propriétés de clôture

Propriétés de clôture

Théorème

Les langages rationnels sont clos par

- union, concaténation, étoile,
- préfixe, suffixe, facteur,
- intersection et complémentation.

Propriétés de clôture

Théorème

Les langages rationnels sont clos par

- union, concaténation, étoile,
- préfixe, suffixe, facteur,
- intersection et complémentation.

Clôture par préfixe etc.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors Pref(L), Suff(L) et Fact(L) sont rationnels aussi.

- Soit A un automate fini tel que L = L(A).
- ② Notons $A = (\Sigma, Q, Q_0, F, \delta)$.

Clôture par préfixe etc.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors Pref(L), Suff(L) et Fact(L) sont rationnels aussi.

- Soit A un automate fini tel que L = L(A).
- ② Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- Soient
 - $\operatorname{pref}(A) = (\Sigma, Q, Q_0, \frac{Q}{Q}, \delta),$
 - suff(A) = (Σ , Q, Q, F, δ),
 - fact(A) = (Σ , Q, Q, Q, δ).
- Alors $L(\operatorname{pref}(A)) = \operatorname{Pref}(L(A))$, $L(\operatorname{suff}(A)) = \operatorname{Suff}(L(A))$ et $L(\operatorname{fact}(A)) = \operatorname{Fact}(L(A))$.

Clôture par complémentation

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

Démonstration.

Soit A un automate fini

tel que
$$L = L(A)$$
.

Clôture par complémentation

<u>Lem</u>me

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

Démonstration.

• Soit A un automate fini déterministe complet tel que L = L(A).

Clôture par complémentation

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

- ① Soit A un automate fini déterministe complet tel que L = L(A).
- O Notons $A = (\Sigma, Q, q_0, F, \delta)$.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

- **①** Soit A un automate fini déterministe complet tel que L = L(A).
- ② Notons $A = (\Sigma, Q, q_0, F, \delta)$.

Clôture par intersection

Corollaire

Soient L_1 et L_2 des langages rationnels, alors $L_1 \cap L_2$ l'est aussi.

Démonstration.

Par la loi de de Morgan,

Clôture par intersection

Corollaire

Soient L_1 et L_2 des langages rationnels, alors $L_1 \cap L_2$ l'est aussi.

Démonstration.

Par la loi de de Morgan, $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.

• aussi, construction directe par produit d'automates finis déterministes complets

Minimisation

Minimisation

Soit L un langage rationnel. On s'intéresse aux questions d'existence et unicité d'un automate fini minimal qui reconnait L.

- très compliqué pour des automates non-déterministes
- p.ex. [Brzozowski, Tamm : Theory of átomata. Theor. Comput. Sci. 539 : 13-27 (2014)]
- mais pour des automates finis déterministes :

Théorème

Pour tout langage rationnel L il existe un unique automate fini déterministe complet A avec nombre d'états minimal t.q. L = L(A).

Indistinguabilité

Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini.

• on note L_q , pour tout $q \in Q$, le langage reconnu par A depuis état initial q

Définition

Deux états $q_1, q_2 \in Q$ sont indistinguables si $L_{q_1} = L_{q_2}$.

- si deux états sont indistinguables, on peut les identifier
- écrivons $q_1 \sim q_2$ si q_1 et q_2 sont indistinguables : une relation d'équivalence dans Q

Théorème

Si A est déterministe complet, alors l'automate quotient $A_{/\sim}$ est l'automate fini déterministe complet minimal pour L(A).

L'automate quotient

Définition

Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini et $R \subseteq Q \times Q$ une relation d'équivalence. L'automate quotient de A sur R est

 $A_{/R} = (\Sigma, Q', Q'_0, F', \delta')$ defini comme suite :

- $Q' = Q_{/R} = \{[q]_R \mid q \in Q\}$, l'ensemble de classes d'équivalence de R
- $Q_0' = \{ [q_0]_R \mid q_0 \in Q_0 \}$
- $F' = \{ [q_f]_R \mid q_f \in F \}$
- $\delta' = \{([p]_R, a, [q]_R) \mid (p, a, q) \in \delta\}$

Exemple (sur tableau)

Démonstration

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Théorème (rappel)

Soit A un automate fini déterministe complet, alors $A_{/\sim}$ est l'unique automate fini déterministe complet minimal pour L(A).

Démonstration.

- **1** $A_{/\sim}$ est déterministe complet et $L(A_{/\sim})=L(A)$. (Pourquoi?)
- On finit la démonstration par le lemme suivant.

Lemme

Si A et A' sont deux automates finis déterministes complets avec L(A) = L(A'), alors $A_{/\sim}$ et $A'_{/\sim}$ sont isomorphes.

- Qu'est-ce que c'est « isomorphe »?
- Pourquoi le lemme démontre-t-il le théorème?

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Lemme (rappel)

Si A et A' sont deux automates finis déterministes complets avec L(A) = L(A'), alors $A_{/\sim}$ et $A'_{/\sim}$ sont isomorphes.

- On note $A_{/\sim}=(\Sigma,Q,q_0,F,\delta)$ et $A'_{/\sim}=(\Sigma,Q',q'_0,F',\delta')$.
- ② Soit $R \subseteq Q \times Q'$ la relation défini par q R q' ssi $L_q = L_{q'}$.
- $L_{q_0} = L(A_{/\sim}) = L(A) = L(A') = L(A'_{/\sim}) = L_{q_0'}, \text{ alors } q_0 R q_0'.$
- \bigcirc $q_1 R q'$ et $q_2 R q' \Rightarrow L_{q_1} = L_{q'} = L_{q_2} \Rightarrow q_1 \sim q_2 \Rightarrow q_1 = q_2$;
- o alors R est une bijection.
- Est-ce qu'on a fini?

Myhill-Nerode

• même chose qu'avant, sans passer par un automate :

Définition

Soit $L \subseteq \Sigma^*$ et $u, v \in \Sigma^*$, alors u et v sont indistinguables dans L si pour tout $w \in \Sigma^*$, $uw \in L \iff vw \in L$.

• écrivons $u \equiv_L v$ si u et v sont indistinguables dans L : une relation d'équivalence dans Σ^*

Théorème (Myhill-Nerode)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi le nombre n de classes d'équivalence de \equiv_L est fini. Dans ce cas, n est aussi le nombre d'états de l'automate fini déterministe complet minimal reconnaissant L.

- voir le poly pour une démonstration
- l'automate a comme états les classes d'équivalence de \equiv_L

Soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate fini déterministe complet.

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Théorème (rappel)

 $A_{/\sim}$ est l'unique automate fini déterministe complet minimal pour L(A).

Algorithme

- 1 Initialiser avec deux classes d'équivalence : F et $Q \setminus F$
- ② Itérer jusqu'à stabilisation :
 - pour tout $p, q \in Q$ dans une même classe d'équivalence C :
 - s'il existe $p \xrightarrow{a} p'$ et $q \xrightarrow{a} q'$ tel que p' et q' ne sont pas dans la même classe :
 - séparer C en classes $C_1 \ni p$ et $C_2 \ni q$

Exemple (sur tableau)

Égalité est décidable

Corollaire

Il existe un algorithme qui, pour automates finis A_1 et A_2 , décide si $L(A_1) = L(A_2)$.

- Convertir A_1 et A_2 en automates finis déterministes complets minimaux.
- ② Décider si A_1 et A_2 sont isomorphes.

Langages reconnaissables

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

- algorithme de Thompson : convertir une expression rationelle dans un automate fini à transitions spontanées
- algorithme de Brzozowski & McCluskey: convertir un automate fini dans une expression rationelle ← maintenant
 - outil : automates finis généralisés, avec transitions étiquetées en expressions rationnelles

Automates finis généralisés

Définition

Un automate fini généralisé est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux.
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times RE(\Sigma) \times Q$ est la relation de transition.
- un calcul dans $A: \sigma = q_1 \xrightarrow{e_1} q_2 \xrightarrow{e_2} \cdots \xrightarrow{e_{n-1}} q_n$
- l'étiquette d'un calcul : $\lambda(\sigma) = e_1 e_2 \dots e_{n-1} \in RE(\Sigma)$
- un calcul réussi : $q_1 \in Q_0$ et $q_n \in F$
- Le langage reconnu par A : $L(A) = \bigcup \{L(\lambda(\sigma)) \mid \sigma \text{ calcul réussi dans } A\}$

Algorithme de Brzozowski & McCluskey

- Soit A un automate fini
- ② « Convertir » A en automate fini généralisé
- 3 Convertir A en automate fini généralisé pure :
 - une unique transition entre chaque pair d'états
 - ullet un état initial unique q_0 sans transitions entrantes
 - \bullet un état final unique q_f sans transition sortante
- ① while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes
- o return l'étiquette de la transition unique

Langages reconnaissables

$$\rightarrow (q_i)$$
 $a + (b + aa)(ca)^*c$ $q_f \rightarrow$

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
 - une unique transition entre chaque pair d'états
 - ullet un état initial unique q_0 sans transitions entrantes
 - un état final unique q_f sans transition sortante

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
 - une unique transition entre chaque pair d'états
 - un état initial unique q₀ sans transitions entrantes
 - un état final unique q_f sans transition sortante
 - $Q' = Q \cup \{q_0, q_f\}$ pour $q_0, q_f \notin Q$
 - $\Delta: Q' \times Q' \rightarrow RE(\Sigma)$
 - $\Delta(q_1,q_2)=\sum \left\{a\mid (q_1,a,q_2)\in \delta
 ight\}$ pour $q_1,q_2\in Q$
 - c.à.d. $\Delta(q_1, q_2) = \emptyset$ si $\{a \mid (q_1, a, q_2) \in \delta\} = \emptyset$
- $\Delta(q_i, q_2) = \begin{cases} \varepsilon & \text{si } q_2 \in Q_0 \\ \varnothing & \text{sinon} \end{cases}$ $\Delta(q_1, q_f) = \begin{cases} \varepsilon & \text{si } q_1 \in F \\ \varnothing & \text{sinon} \end{cases}$

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \odot while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes
 - $Q' \leftarrow Q' \setminus \{q\}$
 - pour tout $p, r \in Q'$ (donc aussi pour p = q!) :
- $\bullet \ \Delta(p,r) \leftarrow \Delta(p,r) + \Delta(p,q)\Delta(q,q)^*\Delta(q,r)$

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes
 - $Q' \leftarrow Q' \setminus \{q\}$
 - pour tout $p, r \in Q'$ (donc aussi pour p = q!) :
 - $\Delta(p,r) \leftarrow \Delta(p,r) + \Delta(p,q)\Delta(q,q)^*\Delta(q,r)$
- return l'étiquette de la transition unique
- donc $\Delta(q_i, q_f)$

Langages reconnaissables

Exercice

Utiliser

- ① l'algorithme de Thompson pour convertir l'expression rationnelle $a(b^*a + b)$ en automate fini à transitions spontanées A;
- ② l'algorithme de Brzozowski et McCluskey pour reconvertir A en expression rationnelle.

Conclusion

Récapitulatif

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation
 - poly chapitres 1-4
 - moins 2.3.2, 2.3.5, 2.4.4 et 4.1.3

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

syntaxe sémantique aut. finis dét. complets langages reconnaissables aut, finis déterministes langages reconnaissables automates finis langages reconnaissables aut. finis à trans. spontanées langages reconnaissables expressions rationnelles langages rationnelles

Applications

- automate fini $\hat{}$ algorithme en mémoire constante
- lien vers les algorithmes online / streaming
- parsage, analyse lexicale, grep etc.: expression rationnelle

 automate fini déterministe / non-déterministe (!)
- traduction automatique : automates probabilistes
- vérification : modélisation par automates probabilistes / pondérés / temporisés / hybrides / etc.

- (le poly!)
- O. Carton, Langages formels. Vuibert 2014
- J. Sakarovitch, *Eléments de théorie des automates*. Vuibert 2003
- T.A. Sudkamp, Languages and Machines. Addison-Wesley 2005
- D.C. Kozen, Automata and Computability. Springer 2012
- algèbre de Kleene pour la vérification des programmes
- Tony Hoare et.al : Concurrent Kleene algebra pour la vérification des systèmes distribués

- soit L_i le langage reconnu par A avec état initial q_i
- alors $L_0 = \{a\}L_0 \cup \{b\}L_1 \cup \{\varepsilon\}$ $L_1 = \{a\}L_2 \cup \{b\}L_0$ $L_2 = \{a\}L_1 \cup \{b\}L_2$
- $\begin{array}{c} L_2 = \{a\}L_1 \cup \{b\}L_2 \\ \bullet \text{ comme \'equation matrice-vecteur}: \begin{bmatrix} L_0 \\ L_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} a & b & \emptyset \\ b & \emptyset & a \\ \emptyset & a & b \end{bmatrix} \begin{bmatrix} L_0 \\ L_1 \\ L_2 \end{bmatrix} \cup \begin{bmatrix} \varepsilon \\ \emptyset \\ \emptyset \end{bmatrix}$

Slogan

Un automate fini sur Σ est une transformation affine dans un espace vectoriel sur le demi-anneau $\mathcal{P}(\Sigma^*)$.

Un demi-anneau est une structure algébrique $(S, \oplus, \otimes, 0, 1)$ telle que

- (S, \oplus, \mathbb{O}) forme un monoïde commutatif,
- $(S, \otimes, 1)$ forme un monoïde,
- $x(y \oplus z) = xy \oplus xz$, $(x \oplus y)z = xz \oplus yz$ et $x \mathbb{0} = \mathbb{0}x = \mathbb{0}$

S est idempotent si $x \oplus x = x$.

Théorème

L'ensemble de langages finis forme le demi-anneau idempotent libre.

Une algèbre de Kleene est un demi-anneau idempotent S équipé avec toutes les sommes géométriques $\bigoplus_{n\geq 0} x^n$, pour tout $x\in S$, et telle que $x(\bigoplus_{n\geq 0} y^n)z=\bigoplus_{n\geq 0} (xy^nz)$ pour tout $x,y,z\in S$.

Théorème

L'ensemble de langages rationnels forme l'algèbre de Kleene libre.

Définition (variante)

Un automate fini (pondéré) avec n états sur un demi-anneau S est composé d'une matrice $\Delta \in S^{n \times n}$ et deux vecteurs $i, f \in S^n$.

• ici :
$$S = \mathcal{P}(\Sigma^*)$$
, $\Delta = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$, $i = \begin{bmatrix} \{\varepsilon\} \\ \{\varepsilon\} \\ \emptyset \end{bmatrix}$, $f = \begin{bmatrix} \{\varepsilon\} \\ \emptyset \\ \{\varepsilon\} \end{bmatrix}$

Théorème / définition

Si S est une algèbre de Kleene, alors $S^{n\times n}$ l'est aussi, et le langage reconnu par A est $L(A)=i\Delta^*f$.

