Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

Pedro Lopez Jr.* NASA Johnson Space Center, Houston, TX 77058

The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. Current technology dictates that such missions will require systems that can support humans for durations as long as 900 days. The design and planning for these missions should include the logistics and provisions required to sustain the crew, including their mass and volume.

This paper will provide the information needed to determine the logistics mass and volume required to sustain crew based on crew size, mission duration, and whether the environmental control life support system (ECLSS) is open or closed. Details on how the factors for the various logistics items were determined will also be provided. Results for potential mission scenarios will also be discussed. Opportunities for significant mass and volume reduction, identified through mass breakdown, will be provided, as well as potential threats that will need to be addressed to attain mission success.

*

^{*} Aerospace Engineer, Advanced Mission Development Group, Technical Integration Office, Engineering Directorate/EA4.

Logistics Needs Assessment for 300, 600, and 900-Day Missions with Closed Loop ECLSS

Pedro Lopez

Agenda

- Introduction
- Consumables Rate Assessment
 - Water
 - Gases
 - Food
 - Crew Provisions
- Logistics Needs Determination
 - Total Mass/Volume for Each Scenario
 - Opportunities and Threats
- Conclusions

Introduction

- Compared logistics studies performed by DSH, HAT and CAT to select rates to be used for each consumable item
- Assessed logistics mass required to sustain the following cases:
 - 300, 600, and 900-day, closed-loop ECLSS missions
 - 3, 4, and 6 crew
- Included volume required for logistics mass, with packaging
- Compared logistics needed against Standard Cygnus-type Logistics Module delivery capability to each destination
- Study did not include mass for spares, science, radiation protection, etc.

Water

Water Usage

Item	Units	Rate	Open/ Closed ECLS	Notes	CAT	НАТ	DSH	DIFFERENCES
O2 Generation	kg per crewday	1	Closed	Orion/CCDev	Agree	Agree	0.3402	DSH rate heritage not clear
H2O Drink	kg per crewday	2	Both	Orion/CCDev	Agree	Agree	4.3	Overall water value from DSH; ISS heritage reported
H2O Food Rehydration	kg per crewday	0.5	Both	Orion/CCDev	Agree	Agree		
H2O Medical	kg per crewday	0.05	Both	Orion/CCDev	Agree	Agree		
H2O Hygiene	kg per crewday	0.4	Both	Orion/CCDev	Agree	Agree		
H2O Flush	kg per day	0.25	Both	Orion/CCDev	Agree	Agree		

Water Recovery (Closed Loop)

ltem	Units	Rate	Percent Recoverabl e	Notes	CAT	НАТ	DSH	DIFFERENCES
Sabatier	kg per crewday	0.5	-	50% of O2 loss	Agree	Agree	-	
Crew Latent	kg per crewday	1.87	100	Orion/CCDev	Agree	1.93	-	HAT rate heritage not clear
Urine	kg per crewday	1.49	85	Orion/CCDev	Agree	Agree	-	
Flush	kg per day	0.25	85	Orion/CCDev	Agree	Agree	-	
H2O Hygiene	kg per crewday	0.4	100	Carried by HAT	-	Agree		Included in total water recovery
H2O Medical	kg per crewday	0.05	100	Carried by HAT	-	Agree		Included in total water recovery

Water Container

ltem	Capacity (L)	Empty Mass (kg)	Volume (m³)	Notes	CAT	НАТ	DSH	DIFFERENCES
Rodnik Tank	210	35	0.21	ISS Heritage	Agree	Agree	-	

- Water usage rate of 3.0125 kg and 4.0125 kg for open and closed-loop ECLS, respectively
- Water recovery of 4.140kg by combining CAT and HAT rates
- Rodnik tanks used for containment

Gases

Gases

ltem	Units	Rate	Open/ Closed ECLS	Notes	САТ	НАТ	DSH	DIFFERENCES
O2 Metabolic	kg per crew/day	0.82	Open	Orion/CCDev	Agree	Agree	0.272	
Swing Bed Ullage - O2	kg per day	0	Open	Orion CO2 removal not used	Agree	Agree	-	
Swing Bed Ullage - N2	kg per day	0	Open	Orion CO2 removal not used	Agree	Agree	-	
Cabin Air Leakage	kg per day	0.00454	O2/N2 for Open, N2 for closed	Engineering Est.	Agree	Agree		Based on doubling test rate, still order of magnitude lower than Node requirement; 21% O2, 79% N2
Cabin Air Leakage - Orion	kg per day	0.00908	O2/N2 for Open, N2 for closed	Orion	Agree	Agree	_	21% O2, 79% N2
N2/O2 Tank Ullage	kg per tank	0.5	Both	Orion/CCDev	Agree	Agree	-	

Gas Container

Item	Capacity (kg)	Empty Mass (kg)	Volume (m³)	Notes	CAT	нат	DSH	DIFFERENCES
COPV - O2	38.1	74.8	0.39	ISS Heritage	Agree	Agree	ı	
COPV - N2	28.7	74.8	0.39	ISS Heritage	Agree	Agree	-	

- O₂ consumption and O₂ leakage covered by O₂ generation on closed-loop
- Swing beds only used in open-loop
- COPV tanks used for containment

Food/Crew Provisions

Food/Crew Provisions

ltem	Units	Rate	Notes	CAT	HAT	DSH	DIFFERENCES
Food	kg per crew/day	1.831	BVAD Table & ISS experience	Agree	Agree	1.663	DSH based on ISS
Food Containment Bags	kg per kg food	0	Included above	Agree	Agree	Agree	
Waste Collection - Fecal Canisters	kg per day	0.9	per JSC/EC, Orion values	Agree	Agree	-	DSH assumes using collection bags at 0.23 kg/crew/day
Waste Collection - Urine Prefilter	kg per day	0.25	per JSC/EC, Orion values	Agree	Agree		DSH assumes prefilters part of WHC
Fecal/Urine Collection Bags (contingency)	kg per crewday	0	Reuse contingency waste collection capability in Orion	Agree	Agree	-	
Personal Hygiene Kit	kg per crew	1.8	ISS value; used for every six months	Agree	Agree	Agree	
Hygiene Consumables	kg per crewday	0.079	Match Orion WCS Supplies Value	Agree	Agree	0.075	Minor difference
Clothing (No Laundry)	kg per crewday	0.46	Match Orion Clothing and Crew Pref Value	Agree	Agree	0.33	DSH rate heritage not clear
Recreation & Personal Stowage	kg per crew	25/50	25kg for up to 1yr; 50kg for more than 1 yr	Agree	Agree	50	DSH uses constant mass allocation
Wipes (housekeeping)	kg per crewday	0.25	AES trash team / ISS historical data	Agree	Agree	0.3	Minor difference
Trash Bags	kg per crewday	0.011	AES trash team / ISS historical data	Agree	Agree	0.05	DSH based on ISS
Operational Supplies	kg per crew	20/25	20kg for up to 1yr; 25kg for more than 1 yr	Agree	Agree	20	DSH uses constant mass allocation
Survival kit	kg per crew	0	Reuse Orion Items	Agree	Agree		
Sleep Accomodations	kg per crew	0	Reuse Orion Sleep Restraints	Agree	Agree	9	
Health Care Consumables	kg per crewday	0.09	AES trash team / ISS historical data	Agree	Agree	-	
Medical/Surgical/Dental	kg	0	Assume reuse items included in 62kg misc kit on Orion or booked in dry mass	Agree	Agree	-	
Emergency Breathing Apparatus	kg per crew	0	Reuse Orion Items	Agree	Agree	-	

- Some differences between CAT/HAT and DSH
- Personal hygiene, personal stowage, and operational supplies rate used as factor based on mission duration

Food/Crew Provisions - Containment

Food/Crew Provisions Containment

Item	Units	Rate	Notes	CAT	HAT	DSH	DIFFERENCES
CTB Mass, Empty	kg	1.56	ISS	Agree	2	1	
CTB Mass Capacity	kg	11.44	ISS average experience	Agree	18		HAT based on ISS maximum
CTB Volume	m³	0.053	ISS	Agree	Agree		

Food/crew provisions carried in ISS Cargo Transfer Bags (CTBs)

Logistics Assessment Overview

Methodology

- Collect ISS mass and volume usage data for crew consumables
- Apply previous studies' assumptions along with ISS methodology to determine reasonable, consistent Water,
 Gas, Food, and Crew provision logistics necessary to sustain a mission

General Assumptions

- Used the following for leakage calculations:
 - Orion + 4 Modules (habitation module, two Logistics Module, and Deep-Space Module) for missions to Deep Space (EML2)
 - Additional LMs not included, will only affect N2 lost since O2 leakage is covered by closed-loop ECLSS
- Regenerative ECLSS via urine processor, condensate recovery, and Sabatier for closed-loop case
- Launch/entry items (e.g., suits, etc.) not included, only consumables and crew provisions (which includes waste management)
- Logistics delivered via standard Cygnus-type to EML2
 - 3.2t delivery capability to EML2

Logistics Study – Executive Summary

- Study Summary
 - Assessed logistics mass required to sustain the following cases:
 - 300, 600, and 900-day, closed-loop ECLSS missions (3, 4, and 6 crew)
- Closed-loop ECLSS results in surplus of O₂ and H₂O; however, some of each is required to kick-start the system
 - Assumed adding 25kg of O₂ and H₂O each, along with tanks (when needed)
- Logistics mass required for 300-day missions to EML2 for up to 4 crew with closed-loop ECLSS can be delivered on two LMs (up to 4,843.8kg occupying 19.5m³ of volume)
 - 4-crew case results in ~1570kg available for other items such as spares
 - 6-crew case would require a third LM
- 600-day missions for up to 4-crew would require three LMs
 - 4-crew case results in only ~170kg available for other items such as spares, would need additional LM
 - 6-crew case would require 5 LMs (13,651.5kg occupying 54.89m³ of volume)
- 900-day missions would require 4, 5, and 7 LMs for the three cases assessed, respectively

Total Mass/Volume Calculation (3-crew, 300-day, closed loop)

	Daily Use Mass Totals									
Consumable/Carrier	Total Requirement (kg)	Notes								
Water	0.0	100% condensate & 85% urine/flush recovery								
Oxygen (Metabolic)	0	Obtained from water								
Oxygen (Leakage & Ullage)	0.87	Reduce with better module and vehicle volumes								
Nitrogen (Leakage & Ullage)	8.31	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures								
Food	1647.9									
Crew Provisions	1146									
Total	2803.1									

F	Per Mission Mass Totals								
Consumable/Carrier	Total Requirement (kg)	Notes							
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg							
O ₂ Tanks (1)	74.8	Each empty O ₂ & N2 COPV is ~ 74.8 kg							
N ₂ Tanks (1)	74.8	Each empty O ₂ & N2 COPV is ~ 74.8 kg							
Crew Provisions	327.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)							
CTB Mass	427.4								
Total	904.0	85							
		25kg O2, 25kg H2O + Rodnik ta added to kick-start system							
Grand Total = Cygnus Capability to		Kg Requires 2 LMs due to mass							

3206

EML2=

	Volume Dry Cargo									
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)					
300 Day, 3 Crew	3120.9	3495.4	13	269	14.26					

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food

& CP

Volume of Water Tanks									
Type of Tank	Volume of One Tank (m³)	Total Number of Tanks	Total Volume Required (m³)						
Water	0.21	1	0.21						

Water to kick-start system

ISS NORS Tank Volume									
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)						
COPV (O ₂)	0.39	1	0.39						
COPV (N ₂)	0.39	1	0.39						
			0.78						

Total Volume	15.3	m³
Cygnus Capability	18.9	
to EML2	10.9	m³

Requires 1 LM due to volume

Notes:

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Total Mass/Volume Calculation (4-crew, 300-day, closed loop)

Daily Use Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Water	0.0	100% condensate & 85% urine/flush recovery		
Oxygen (Metabolic)	0	Obtained from water		
Oxygen (Leakage & Ullage)	0.87	Reduce with better module and vehicle volumes		
Nitrogen (Leakage & Ullage)	8 31	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures		
Food	2197.2			
Crew Provisions	1413			
Total	3619.4			

Per Mission Mass Totals					
Consumable/Carrier	Total Requirement (kg)	Notes			
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg			
O ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is $^\sim$ 74.8 kg			
N ₂ Tanks (1)	74.8	Each empty O ₂ & N2 COPV is ~ 74.8 kg			
Crew Provisions	436.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)			
CTB Mass	553.8				
Total	1139.4	85			
		25kg O2, 25kg H2O + Rodnik tan added to kick-start system			
Grand Total = Cygnus Capability to		Kg Requires 2 LMs due to mass			

3206

EML2=

Volume Dry Cargo					
Case	Usable Cargo Mass† (kg)		Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
300 Day, 4 Crew	4046.2	4531.7	13	349	18.50

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks			
Type of Tank	Volume of One Tank (m³)	Total Number of Tanks	Total Volume Required (m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

Total Volume	19.5	m³
Cygnus Capability	18.9	
to EML2	10.5	m³

Requires 2 LMs due to volume

Notes:

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag NORS Tanks pressurized at 6000 psi

11

Total Mass/Volume Calculation (6-crew, 300-day, closed loop)

Daily Use Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Water	0.0	100% condensate & 85% urine/flush recovery		
Oxygen (Metabolic)	0	Obtained from water		
Oxygen (Leakage & Ullage)	0.87	Reduce with better module and vehicle volumes		
Nitrogen (Leakage & Ullage)	8.31	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures		
Food	3295.8			
Crew Provisions	1947			
Total	5252.0			

Per Mission Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is $^{\sim}$ 74.8 kg		
Crew Provisions	654.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	806.5			
Total	1610.1	85		
		25kg O2, 25kg H2O + Rodnik tank added to kick-start system		
Grand Total =	6947.1	Kg Requires 3 LMs		

3206

Cygnus Capability to

EML2=

Volume Dry Cargo					
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
300 Day, 6 Crew	5896.8	6604.4	13	509	26.98

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks				
Type of Tank	Volume of One Tank (m³)	Total Number of Tanks	Total Volume Required (m³)	
Water	0.21	1	0.21	

Water to kick-start system

ISS NORS Tank Volume					
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)		
COPV (O ₂)	0.39	1	0.39		
COPV (N ₂)	0.39	1	0.39		
			0.78		

Total Volume	27.97	m³
Cygnus Capability	18.9	
to EML2	10.9	m³

Requires 2 LMs due to volume

Notes:

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag NORS Tanks pressurized at 6000 psi

Total Mass/Volume Calculation (3-crew, 600-day, closed loop)

Daily Use Mass Totals					
Consumable/Carrier	Total Requirement (kg)	Notes			
Water	0.0	100% condensate & 85% urine/flush recovery			
Oxygen (Metabolic)	0	Obtained from water			
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes			
Nitrogen (Leakage & Ullage)	13 33	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures			
Food	3295.8				
Crew Provisions	2292				
Total 5601.1					

Per Mission Mass Totals				
Consumable/Carrier Total Requirement (kg)		Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)		Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.0	Each empty $\rm O_2$ & N2 COPV is $^\sim$ 74.8 kg		
Crew Provisions	654.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	853.3			
Total 1582.1		159.8		
		25kg O2 + COPV, 25kg H2O + Rodnik tank added		
Grand Total =	7343.1	Kg Requires 3 LMs		

3206

Cygnus Capability to

EML2=

Volume Dry Cargo					
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
600 Day, 3 Crew	6241.8	6990.8	13	538	28.51

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks			
Type of Tank	Volume of One Tank (m³)	Total Number of Tanks	Total Volume Required (m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	29.5	m³
Cygnus Capability	18.9	
to EML2	10.9	m³

Requires 2 LMs due to volume

Notes:

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Total Mass/Volume Calculation (4-crew, 600-day, closed loop)

Daily Use Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Water	0.0	100% condensate & 85% urine/flush recovery		
Oxygen (Metabolic)	0	Obtained from water		
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes		
Nitrogen (Leakage & Ullage)	13 33	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures		
Food	4394.4			
Crew Provisions	2826			
Total	7233.7			

Per Mission Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)		Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.0	Each empty O_2 & N2 COPV is \sim 74.8 kg		
Crew Provisions	872.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	1106.0			
Total	Total 2052.8 159.8			
		25kg O2 + COPV, 25kg H2O + Rodnik tank added		
Grand Total =	9446.3	Kg Requires 3 LMs		

3206

Cygnus Capability to

EML2=

	Volume Dry Cargo				
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)	Number of CTB Required**	Volume Required (m³)
600 Day, 4 Crew	8092.4	9063.5	13	698	36.99

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks			
	Volume	Total	
Type of	of One	Total Number of	Volume
Tank	Tank		Required
	(m³)	Tanks	(m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	37.98	m³
Cygnus Capability	18.9	
to EML2	10.9	m³

Requires 3 LMs due to volume

Notes:

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Total Mass/Volume Calculation (6-crew, 600-day, closed loop)

Daily Use Mass Totals					
Consumable/Carrier	Total Requirement (kg)	Notes			
Water	0.0	100% condensate & 85% urine/flush recovery			
Oxygen (Metabolic)	0	Obtained from water			
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes			
Nitrogen (Leakage & Ullage)	13.33	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures			
Food	6591.6				
Crew Provisions	3894				
Total 10498.9					

Per Mission Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)	0	Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is $^\sim$ 74.8 kg		
Crew Provisions	1308.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	1609.9			
Total	2992.7	159.8		
		25kg O2 + COPV, 25kg H2O + Rodnik tank added		

13651.5

3206

Kg

Grand Total =

EML2=

Cygnus Capability to

Volume Dry Cargo					
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
600 Day, 6 Crew	11793.6	13208.8	13	1017	53.90

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks			
	Volume	Total	
Type of	of One	Total Number of	Volume
Tank	Tank		Required
	(m³)	Tanks	(m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	54.9	m³
Cygnus Capability	18.9	
to EML2	10.5	m³

Requires 3 LMs due to volume

Notes:

Requires 5 LMs

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Total Mass/Volume Calculation (3-crew, 900-day, closed loop)

Daily Use Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Water	0.0	100% condensate & 85% urine/flush recovery		
Oxygen (Metabolic)	0	Obtained from water		
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes		
Nitrogen (Leakage & Ullage)	19 75	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures		
Food	4943.7			
Crew Provisions	3438			
Total 8401.5				

	er Mission Mass	Totals		
Consumable/Carrier	Total Requirement (kg)	Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)	U	Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.8	Each empty $\rm O_2$ & N2 COPV is $^\sim$ 74.8 kg		
Crew Provisions	981.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	1279.2			
Total	2335.0	159.8		
		25kg O2 + COPV, 25kg H2O + Rodnik tank added		

10896.3

3206

Kg

Grand Total =

EML2=

Cygnus Capability to

	Volume Dry Cargo				
Case	Usable Cargo Mass† (kg)		Ave. Density	Number of CTB Required**	Volume Required (m³)
900 Day, 3 Crew	9362.7	10486.2	13	807	42.77

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food

& CP

Volume of Water Tanks			
Type of	ype of of One Tank (m³) Total Number of		Total Volume Required
Idlik			(m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	43.76	m³
Cygnus Capability	18.9	
to EML2	10.9	m³

Requires 3 LMs due to volume

Notes:

Requires 4 LMs

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Total Mass/Volume Calculation (4-crew, 900-day, closed loop)

Daily Use Mass Totals					
Consumable/Carrier	Total Requirement (kg)	Notes			
Water	0.0	100% condensate & 85% urine/flush recovery			
Oxygen (Metabolic)	0	Obtained from water			
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes			
Nitrogen (Leakage & Ullage)	19.75	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures			
Food	6591.6				
Crew Provisions	4239				
Total 10850.4					

Per Mission Mass Totals				
Consumable/Carrier	Total Requirement (kg)	Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)	0	Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is $^{\sim}$ 74.8 kg		
Crew Provisions	1308.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	1656.7			
Total 3039.5		159.8 25kg O2 + COPV, 25kg H2O + Rodnik tank added		

14049.7

3206

Kg

Grand Total =

EML2=

Cygnus Capability to

	Volume Dry Cargo				
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
900 Day, 4 Crew	12138.6	13595.2	13	1046	55.44

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food

& CP

Volume of Water Tanks			
	Volume	Total	Total
Type of	of One	Number of	Volume
Tank	Tank	Tanks	Required
	(m³)	Tanks	(m³)
Water	0.21	1	0.21

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	56.43	m³
Cygnus Capability	18.9	
to EML2	16.9	m

Requires 3 LMs due to volume

Notes:

Requires 5 LMs

due to mass

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag NORS Tanks pressurized at 6000 psi

17

Total Mass/Volume Calculation (6-crew, 900-day, closed loop)

Daily Use Mass Totals					
Consumable/Carrier	Total Requirement (kg)	Notes			
Water	0.0	100% condensate & 85% urine/flush recovery			
Oxygen (Metabolic)	0	Obtained from water			
Oxygen (Leakage & Ullage)	0.00	Reduce with better module and vehicle volumes			
Nitrogen (Leakage & Ullage)	19.75	Possibly more efficient to fully load tank with air or N₂ and balance oxygen for proper partial pressures			
Food	9887.4				
Crew Provisions	5841				
Total 15748.2					

Per Mission Mass Totals				
Consumable/Carrier Total Requirement (kg)		Notes		
Rodnik Tanks (0)	0	Each Rodnik is ~35 kg		
O ₂ Tanks (0)		Each empty O_2 & N2 COPV is \sim 74.8 kg		
N ₂ Tanks (1)	74.0	Each empty $\rm O_2$ & N2 COPV is $^\sim$ 74.8 kg		
Crew Provisions	1962.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)		
CTB Mass	2414.9			
Total	4451.7	159.8		
		25kg O2 + COPV, 25kg H2O + Rodnik tank added		
Grand Total =	20359.6	Kg Requires 7 LMs		

3206

Cygnus Capability to

EML2=

due to mass

	Volume Dry Cargo				
Case	Usable Cargo Mass† (kg)	_	Single CTB Ave. Density (kg/CTBe)		Volume Required (m³)
900 Day, 6 Crew	17690.4	19813.2	13	1525	80.83

Volume of 1

† Does not include bag FSE + Foam

CTB: 0.053

* 12% packing factor

** Some packing efficiency when combine "rounded up" food

& CP

Volume of Water Tanks				
Type of Tank				
Water	0.21	1	0.21	

Water to kick-start system

ISS NORS Tank Volume				
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)	
COPV (O ₂)	0.39	1	0.39	
COPV (N ₂)	0.39	1	0.39	
			0.78	

O2 to kick-start system

Total Volume	81.82	m
Cygnus Capability	18.9	
to EML2	10.5	m

Requires 5 LMs due to volume

Notes:

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

Logistics Results – Summary

DOCKED OPS DURATION	Crew Size	ECLSS Type	LM Capacity	Logistics Mass Required	Logistics Volume	Minimum # of LM Needed
300 days	3	Closed	3206kg/18.9m³	3792.1kg	15.3 m ³	2
300 days	4	Closed	3206kg/18.9m³	4843.8kg	19.5 m ³	2
300 days	6	Closed	3206kg/18.9m ³	6947.1kg	27.97 m ³	3
600 days	3	Closed	3206kg/18.9m ³	7343.1kg	29.5 m ³	3
600 days	4	Closed	3206kg/18.9m ³	9446.3kg	37.98 m ³	3
600 days	6	Closed	3206kg/18.9m ³	13651.5kg	54.9 m ³	5
900 days	3	Closed	3206kg/18.9m ³	10896kg	43.76 m ³	4
900 days	4	Closed	3206kg/18.9m ³	14050kg	56.43 m ³	5
900 days	6	Closed	3206kg/18.9m ³	20360kg	81.8 m ³	7

Backup

pportunities and Threats

Water

- (O) Tanks mounted outside pressurized volume could save 0.210 m³ each
- (O) Precise drinking/hygiene/food rehydration and medical allocation could reduce mass by 0.75 kg/c/d
 - Flush amount the same, just calculated in separate location of models

Gases

- (O) Tanks mounted outside pressurized volume could save 0.39 m³ each
- (O) This study utilized O₂ and N₂ for leakage, ISS utilizes air
 - Air less complex/expensive to handle
- Potential safety concern with burst or large leak in tank
 - Ensure pressure relief valve capability

Crew Provisions

- (O) ISS wipes and clothing rates of 0.153
 and 0.196 kg/c/d, respectively
 - Savings of 1949kg for 900-day, 6-crew
- Toilet different by design
 - (O) ISS model uses KTOs at 0.48 kg/d
 - 126kg, 252kg, and 378kg savings with KTOs for 300, 600, and 900-day missions, respectively
 - (O or T) Reconcile urine pre-treat filter calculation
- (O or T) Reconcile category differences between previous Exploration model & ISS methodology

Volume

- (T) Packing density needs thorough review with Logistics Team
 - Actual individually packing could produce slightly higher volume

Water

Assumptions

- Rodnik tanks within pressurized volume of Logistics Module
 - Major difference against ISS Impacts to pressurized cargo volume
- Silver biocide water with 3 year shelf life

Consumption (See figure on next two charts)

- Consistent with MPCV and CCDev exploration assumptions
 - Slightly more conservative
 - Deviation from ISS
 - » 2.2 L/Crewman/Day Drinking/Hygiene/Food
 - » No medical allowance
 - » 0.3 L/Crewman/Day Flush*
 - » 75% water recovery rate vs 85%

Open-Loop ECLSS

2.9 L Drinking/Hygiene/Food
0.35 L Metabolic Water
0.50 L Water in Food
0.05 L Medical
0.0625 L Flush†

3.0125 L Resupplied Water
0.85 L Unaccounted Water

† 0.25 L Water once a day flush for 4 Crew - ISS Assumes 0.3 L/flush/crew/day

Crew Latent	1.87 L
Urine	1.49 L
Feces Water	0.19 L
Wet Trash	0.25 L
Flush	0.0625 L
Water Lost	3.8625 L

- Does not take into account Payload water
 - ISS uses 1.27 L Resupply of which 0.82 L is recovered and 0.45 L is lost

Closed-Loop ECLSS

1.0 L Water for O₂ Generation

2.9 L Drinking/Hygiene/Food

0.35 L Metabolic Water

0.50 L Water in Food

0.05 L Medical

0.0625 L Flush†

4.0125 L Resupplied Water

0.85 L Unaccounted Water

† 0.25 L Water once a day flush for 4 Crew

ISS Assumes flush/crew/day

Recoverable Water 3.9225 L Water Lost 0.94 L

Added 0.40 L Hygiene and 0.05 L Medical to recoverable water as recommended by DSH

- Does not take into account Payload water
 - ISS uses 1.27 L Resupply of which 0.82 L is recovered and 0.45 L is lost

Gases

Assumptions

- Provide N₂ and O₂ to cover leakage
 - No oxygen required for crew consumption for closed-loop cases, created using water via O₂ generator
- COPV (ISS NORS Tank) inside pressurized volume impacts cargo volume
 - Empty mass of 74.8kg; capacity of 38.1kg O₂ or 28.7kg N₂
- Calculated leak rate based on ISS Engineering experience, and considers:
 - Nominal and anomalous leakage
- Includes tank ullage (closed-loop and open-loop) and swingbed ullage (open-loop only)
- Calculation includes leakage during untended periods during one year for missions shorter than 365 days

Consumption

- O2 crew consumption rate of 0.82 kg/crew/day (open-loop)
- Air Leakage estimated rate of 0.01 lbm/day (0.0045 kg/day) for a given module
 - Engineering estimate*
 - Little over double for Orion (0.00908 kg/day)
- For leakage calculations assume:
 - MPCV + 2 modules (Node and one Logistics Module) for 30/60-day missions
 - MPCV + 3 modules (Node, Deep Space, and one Logistics Module) for 180/360/540-day missions

* Leakage Rate Estimation

- Based upon ISS Node 1 specification (.117 lb/day) and test (.005 lb/day) leak rates
- Doubling test rate but still stay order magnitude below requirement
 - Try not to be so conservative you can't verify

Food

Assumptions

Only use "single" CTB* for containment/storage

Mass per crewmember per day

- 1.831 kg for food, including sealed wrapping
 - Does not include Bulk Overwrap Bag (BOB) weight
 - ~60 grams each
 - Does not include containment/storage container
 - CTB weight factored in separately
 - » Single CTB + foam = 1.56 kg

^{*}Conservative bag choice

Crew Provisions

Assumptions

- Provide clothes, comfort items, office supplies, waste and hygiene supplies, etc. for crew
- Three categories
 - Per mission use (kg/crew)
 - Daily use per crew person (kg/crew/day)
 - Daily use for all crew (kg/day)

Per Mission Use (kg)					
Category	Subcategory	Examples	60 Day Mass Per Crewmember (kg/Crew)	60 Day, 4 Crew Total (kg)	180 Day 4 Crew Total (kg)**
Crew Personal Items, One-time use, and Crew care Packages	Crew Care Packages*	Personal photos, personal T- shirts, books, keepsakes, Shoes, etc.	10.0	40	120
	Onorational Supplies	Batteries, notebooks, office supplies, etc.	10.0	40	120
	Personal Hygiene Kit		1.8	7.2	21.6
* Some personal items already in MPCV			21.8	87.2	261.6

^{**} Based on ratio (kg/day) for the 60 day stay

Crew Provisions

Some notable differences between ISS and Exploration modeling

- ISS model uses 0.153 kg/c/d for wipes
- ISS model uses 0.196 kg/c/d for clothing

Daily Use per Crew Person (kg/crew/day)					
Category	Subcategory	Examples	Mass Per Crewmembe r per day (kg/C/D)	Crew	180 Day 4 Crew Total (kg)
Regularly consumed items	Hygiene consumables		0.079	19.0	56.9
	Health Care Consumables		0.09	21.6	64.8
	Wipes	Wet wipes, Household wipes, dry wipes	0.25	60.0	180.0
	Trash Bags		0.011	2.6	7.9
	Clothes	t-shirts, shorts, pants, socks, exercise clothes, etc.	0.46	110.4	331.2
		Total	0.89	213.6	640.8

Crew Provisions

- Fecal canisters and urine pre-filter differ by toilet design from ISS
 - ISS model uses KTOs at 0.48 kg/d
 - Urine pre-treat filter considered part of ISS WHC

Daily Use for All Crew (kg/day)					
Category	Subcategory	Examples	Mass Per Day (kg/Day)	Crew	180 Day 4 Crew Total (kg)
Waste Collection	Fecal Canisters		0.90	54.0	162.0
	Urine Pre-filter		0.25	15.0	45.0
		Total	1.15	69.0	207.0

Total Volume Calculation

Assumptions

- Apply single CTB for conservatism and simplicity
 - Final packing efficiencies could be obtained
- ISS average density from historical experience
- Volume of 1 CTB = 0.053 m³
- Single CTB average packing density is 13 kg/CTBe

ISS packing experience defines "Customer Cargo"

- Customer cargo = (Usable Cargo) x (Packing Factor)
 - Usable cargo is the weight of the cargo item alone, no packing or FSE
 - ISS Packing factor = 12%

Backup for Consumable

M-01 Configuration

- Uses M-01 Bag dimensional envelope
- Same basic interfaces as M-01 bag
- Same zippered opening as M-01 bag
- Incorporates venting for excess gas buildup
- Utilizes cut Zotek F-30 foam inserts
- Center foam section can fit through tight diameter hatches
- Inserts wrapped in Beta Cloth to eliminate debris
- P/N 684-015302

Foam Inserts - VIA Not shown

RTA Dimensions

ISS Trash/Waste

Assumptions

- Account for Crew daily waste, Fecal waste, hardware, and packing material
- Trash stored in CTBs, Jettison Stowage Bags (JSB), and KTOs
- Whatever went up, must come down
 - Except for urine and condensate (Vented)
 - Rate equivalent to usage

Mass capacity for waste containers

- CTB = (Depends on available CTB size)
- KTO = 11.5 kg
- JSB = variable depending on content (i.e. H/W vs bubble wrap)
 - Range from 0.5kg to 20 kg

Volume capacity for waste containers

- Single CTB* = 0.0283 m^3
- KTO = 0.0198 m³
- JSB = 0.0764 m³

Logistics Needs Assessment for Mars Transit Vehicle 600-Day, 4-Crew (Round-Trip Duration)

Pedro Lopez

Logistics Study – Executive Summary

Study Summary

- Assessed logistics mass required on Mars transit vehicle to sustain crew (round-trip)
 - 600-day, 4-crew, closed-loop ECLSS mission

Logistics mass required for this mission scenario amounts to 8,614.9kg occupying 33.2m³ of volume

- Includes fluid consumables for contingency
- Closed-loop ECLSS results in no O₂/H₂O required
 - 30 days of open-loop margin provided for contingency
 - 361.5kg H₂O and 100.1kg O₂, plus container mass
- Identified potential opportunities and threats by analyzing mass breakdown
 - Food represents 51% (~4,400kg) of total logistics
 - · Rate may be reduced via optimization of packaging
 - CTBs represent ~11% (~930kg), fecal canisters represent ~6% (~540kg)
 - Potential targets for optimization, could result in considerable mass savings
 - Clothing represents ~6% (~530kg)
 - Reusable clothing and/or addition of laundry system may result in mass savings
 - More significant savings with increased crew size and mission duration
 - Effect on water processing system needs to be determined
 - Food expiration and water quality will be an issue due to mission durations
 - Freezer(s) most likely required
 - Water quality monitoring

Agenda

- Introduction
- Assessment Overview
- Review of Opportunities and Threats
 - Mass Breakdown
 - Food
 - CTBs
 - Fecal Canisters
 - Clothes
 - Other Opportunities/Threats
- Review of Consumables Rates
- Logistics Needs Determination
 - Total Mass/Volume
- Conclusions

- Would like to thank the following for their inputs/advice:
 - Molly Anderson and Imelda Stambaugh (EC)
 - Matt Simon, Chel Stromgren and Kandyce Goodliff (LaRC)
 - Eric Schultz (ISS)

Introduction

- Assessed logistics mass required on Mars transit vehicle to sustain crew of 4 for 600 days (round-trip duration) based on closed-loop ECLSS
- Included volume required for logistics mass, with packaging
- Compared logistics needed against Standard Cygnus-type Logistics Module delivery capability to each destination
- Study did not include mass for spares, science, radiation protection, etc.

Logistics Assessment Overview

Methodology

- Collect ISS mass and volume usage data for crew consumables
- Apply previous studies' assumptions along with ISS methodology to determine reasonable, consistent Water,
 Gas, Food, and Crew provision logistics necessary to sustain a mission
- Coordinated all rate information with HAT to ensure consensus approach

General Assumptions

- Consumables calculated for 600 days nominal (closed-loop) + 30 days contingency (open-loop)
- Used the following for leakage calculations:
 - Orion + 4 Modules (habitation module, two Logistics Module, and Deep-Space Module) for missions to Deep Space (EML2)
- Regenerative ECLSS via urine processor, condensate recovery, and Sabatier for closed-loop case
- Launch/entry items (e.g., suits, etc.) not included, only consumables and crew provisions (which includes waste management)
- Logistics delivered via standard Cygnus-type to EML2
 - 3.2t delivery capability to EML2

Logistics Mass Breakdown

Food, CTBs and Crew Provisions represent majority of logistics

Food (~4,400kg – 51% total logistics)

OPPORTUNITY

Food rate

- Current study uses 1.831 kg/crewday based on BVAD Table and ISS experience
 - Based on current packaging methods (each meal separately packaged)
 - Results in 4,394kg for this case
- Metabolic requirement is 1.5kg/crewday
 - ~0.33kg/crewday savings available via packaging optimization
- Assuming ~0.2kg/crewday rate reduction via packaging optimization would result in ~480kg savings for this case

 Other packaging methods need to be explored to determine whether rate can be reduced

Food (~4,400kg – 51% total logistics)

THREAT

Food Expiration

- Food limited to ~one-year useful stored lifetime; longer duration missions require means to extend lifetime
- Freezer(s) possibly required, representing additional mass and volume
- Current case would require freezer with 5.6m³ capacity
 - Volume determined using 307kg/m³ density for food required for 235 days (600-365 days)
- Freezer required could result in ~1,200kg mass increase, occupying ~6m³ of pressurized volume
 - Ref: Mars Transit Habitat Sizing study (LaRC/M. Simon); based on Human Spaceflight book, crew accommodations chapter (400kg mass allocation occupying 2m³ pressurized volume)
- Longer duration missions would require more freezer volume
 - 900-day, 4-crew would require ~12.8m³ of freezer capacity (~2,500kg mass increase)

CTBs (~930kg – 11% of total logistics)

OPPORTUNITY

- CTBs are designed to withstand launch loads while safely delivering a wide array of items
 - Cargo densities as high as ~510 kg/m³ (max load for full CTB, strapped)
 - Over-designed to deliver items such as food, clothing, hygiene/crew care, wipes, trash bags, etc.
 - Food density assumed at ~300 kg/m³
- Custom design of bags for lower density cargo would result in mass savings
- Concepts could be tested on cargo delivery to ISS

THREAT

Packing Density

- Current study does not include storage efficiency for CTB arrangement/accessibility
 - May increase CTB storage volume by as much as 30%

Crew Provisions Mass Breakdown

Driven by fecal canisters, clothes, and wipes

Fecal Canisters (~540kg – 6% of total logistics)

OPPORTUNITY

- Canisters consumption at 0.9kg/crewday
- Current missions assume that canisters are used to collect and store fecal waste
- Multiple crew-uses are stored in a single canister, which is removed periodically once full
- The canister is used to safely store the fecal waste after collection
- Processing waste instead of storing it in the original canister may be an opportunity to use fewer disposable canisters
- Dry waste would be safer to store in bags or other lightweight containers

Assessment of other options should be pursued to determine optimal solution

Clothes (~530kg – 6% of total logistics)

OPPORTUNITY

- Current study assumes disposable clothes at 0.22 kg/crewday
- Laundry system could reduce clothing rate from 0.22 kg/crewday to 0.04 kg/crewday
 - Results in mass savings of ~430kg for this case
 - Effect more significant with increased crew size and mission duration
- However, laundry system would also increase system mass (laundry, water processing system)
 - HAT study assumes 84kg laundry system and ~460kg mass increase in water processing system for 4crew
 - Would result in mass increase for this case (600-day)
 - Mass savings possible for mission duration >756 days with 4-crew
- Other laundry system designs (waterless, self-contained water processing, etc.) may result in mass savings at shorter mission durations
- Clothing rate could also be reduced via reusable clothing
- Integrated assessment of laundry/reusable clothing options should be pursued to determine optimal solution

Other Opportunities/Threats

OPPORTUNITIES

Rodnik Tank/COPVs

- Current study assumes use of Rodnik tanks for H_2O (35kg empty mass, 210L capacity) and COPVs for O_2 and N_2 (74.8kg empty mass, 38.1kg O_2 /28.7kg N_2 capacity)
- Other containment options/tank redesign should be explored to optimize container mass/capacity

THREATS

Water Quality

- Long-duration missions could greatly affect quality of water
- Additional assets/functions may be required to monitor water quality

Summary of Opportunities/Threats

- Potential opportunities to reduce overall logistics mass have been identified
 - CTBs and fecal canisters represent ideal candidates for optimization studies
 - Food
 - Rate reduction limited to ~0.3 kg/crewday via packaging optimization
 - Clothes
 - Addition of laundry system and/or reusable clothing to reduce clothing rate
 - Integrated impact needs to be assessed
- Identified potential threats that could increase mass and/or volume
 - Need for freezers to address food expiration
 - Packing density to account for efficiency in CTB arrangement/accessibility
 - Water quality could be an issue due to mission durations

Water

Water Usage

ltem	Units	Rate	Open/ Closed ECLS	Notes
O ₂ Generation	kg per crewday	1	Closed	Orion/CCDev
H₂O Drink	kg per crewday	2	Both	Orion/CCDev
H ₂ O Food Rehydration	kg per crewday	0.5	Both	Orion/CCDev
H ₂ O Medical	kg per crewday	0.05	Both	Orion/CCDev
H ₂ O Hygiene	kg per crewday	0.4	Both	Orion/CCDev
H ₂ O Flush	kg per day	0.25	Both	Orion/CCDev

Water Recovery (Closed Loop)

	Trate: House tely			
Item	Units	Rate	Percent Recoverable	Notes
Sabatier	kg per crewday	0.5	-	50% of O ₂ loss
Crew Latent	kg per crewday	1.87	100	Orion/CCDev
Urine	kg per crewday	1.49	85	Orion/CCDev
Flush	kg per day	0.25	85	Orion/CCDev
H₂O Hygiene	kg per crewday	0.4	100	Carried by HAT
H ₂ O Medical	kg per crewday	0.05	100	Carried by HAT

Water Container

Item	Capacity (L)	Empty Mass (kg)	Volume (m³)	Notes
Rodnik Tank	210	35	0.21	ISS Heritage

- Water usage rate of 3.08 kg and 4.08 kg for open and closed-loop ECLSS, respectively
- Water recovery of 4.44 kg by combining CAT and HAT rates
- Rodnik tanks used for containment

Gases

		ases		
ltem	Units	Rate	Open/ Closed ECLS	Notes
O ₂ Metabolic	kg per crew/day	0.82	Open	Orion/CCDev
Swing Bed Ullage - O ₂	kg per day	0	Open	Orion CO ₂ removal not used
Swing Bed Ullage - N ₂	kg per day	0	Open	Orion CO ₂ removal not used
Cabin Air Leakage	kg per day	0.00454	O ₂ /N ₂ for Open, N ₂ for closed	Engr. Estimate; O ₂ leakage covered via generation
Cabin Air Leakage – Orion	kg per day	0.00908	O ₂ /N ₂ for Open, N ₂ for closed	Orion; O ₂ leakage covered via generation
N ₂ /O ₂ Tank Ullage	kg per tank	0.5	Both	Orion/CCDev

Gas Container

Item	Capacity (kg)	Empty Mass (kg)	Volume (m³)	Notes
COPV - O ₂	38.1	74.8	0.39	ISS Heritage
COPV - N ₂	28.7	74.8	0.39	ISS Heritage

- O₂ consumption and O₂ leakage covered by O₂ generation on closed-loop
- COPV tanks used for containment

Food/Crew Provisions

	Food/Crew Pro	visions	
Item	Units	Rate	Notes
Food	kg per crew/day	1.831	BVAD Table & ISS experience
Food Containment Bags	kg per kg food	0	Included above
Waste Collection - Fecal Canisters	kg per day	0.9	per JSC/EC, Orion values
Waste Collection - Urine Prefilter	kg per day	0.25	per JSC/EC, Orion values
Fecal/Urine Collection Bags (contingency)	kg per crewday	0	Reuse contingency waste collection capability in Orion
Personal Hygiene Kit	kg per crew	1.8	ISS value; used for every six months
Hygiene Consumables	kg per crewday	0.079	Match Orion WCS Supplies Value
Clothing (No Laundry)	kg per crewday	0.22	Recent ISS data
Recreation & Personal Stowage	kg per crew	25/50	25kg for up to 1yr; 50kg for more than 1 yr.
Wipes (housekeeping)	kg per crewday	0.195	AES trash team / ISS historical data
Trash Bags	kg per crewday	0.011	AES trash team / ISS historical data
Operational Supplies	kg per crew	20/25	20kg for up to 1yr; 25kg for more than 1 yr.
Survival kit	kg per crew	0	Reuse Orion Items
Sleep Accommodations	kg per crew	0	Reuse Orion Sleep Restraints
Health Care Consumables	kg per crewday	0.09	AES trash team / ISS historical data
Medical/Surgical/Dental	kg	0	Assume reuse items included in 62kg misc. kit on Orion or booked in dry mass
Emergency Breathing	kg per crew	0	Reuse Orion Items

Personal stowage and operational supplies rates vary based on mission duration

Apparatus

Food/Crew Provisions - Containment

Food/Crew Provisions Containment

Item	Units	Rate	Notes
CTB Mass, Empty	kg	1.56	ISS
CTB Mass Capacity	kg	11.44	ISS average experience
CTB Volume	m^3	0.053	ISS

Food/crew provisions carried in ISS Cargo Transfer Bags (CTBs)

Total Mass/Volume Calculation (4-crew, 600-day, closed loop)

Volume Required (m³)

31.22

0.053

Total Requirement (kg)	Notes
	Represents 30-day margin assuming open loop
	ECLSS; needs for 600-day mission duration
	provided by closed-loop ECLSS
	Leakage/ullage assuming Orion + 4 modules
	Represents 30-day margin assuming open loop
	ECLSS; needs for 600-day mission duration
	provided by closed-loop ECLSS
	1.831 kg per crew/day; BVAD Table & ISS
	experience
	50kg per crew for missions longer than 365 days
	25kg per crew for missions longer than 365 days
	1.8kg per crew for every 180 days
189.6	0.079kg per crew/day; Orion WCS supplies value
	0.09kg per crew/day; ISS historical data
	0.195kg per crew/day; ISS historical data
	0.011kg per crew/day; ISS historical data
	0.22kg per crew/day; ISS historical data
	0.9kg per day; per JSC/EC, Orion values
150.0	0.25kg per day; per JSC/EC, Orion values
7211 2	kg
	RS/CONTAINERS
Total	Notes
	385 CTBs required for food; 214 CTBs required for
934.4	Crew Provisions, for total of 599 CTBs
70	2 Rodnik tank at 35kg
224.4	3 COPV at 74.8kg each
74.8	1 COPV at 74.8kg
1303.6	kg
	468.0 26.4 528.0 540.0 150.0 7311.3 CARRIE Total Requirement (kg) 934.4 70 224.4 74.8

Case	Usable Cargo Mass† (kg)	Customer Cargo Mass* (kg)	Single CTB Ave. Density (kg/CTBe)	Number of CTB Required**		
600 Day, 4 Crew	6836.4	7656.8	13	589		
t Does not inc * 12% packing ** Some packi	Volume of 1 CTB: o" food & CP					
Volume of Water Tanks						
Type of Tank	Volume of One Tank (m³)		Total Volume Required (m³)			

2

Volume Dry Cargo

0.42

ISS NORS Tank Volume					
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)		
COPV (O ₂)	0.39	3	1.17		
COPV (N ₂)	0.39	1	0.39		
			1.56		

0.21

Total Volume 33.20 m
Cygnus Capability to
EML2 18.9 m

Requires 2 LMs due to volume

Notes:

Water

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

NORS Tanks pressurized at 6000 psi

TOTAL MASS	8614.9	kg
Cygnus Capability		
to EML2	3206	kg

Requires 3 LMs due to mass

Conclusion

- Logistics mass required to support transit trip to Mars vicinity assuming crew of 4 and 600 days (round-trip duration) amounts to 8,614.9kg occupying 33.2m³ of volume
 - Includes 30-day O₂ and H₂O consumables margin for contingencies
 - Could be delivered on 3 LMs

- Potential opportunities to reduce overall logistics mass have been identified
 - Food, CTBs and fecal canisters

- Identified potential threats that could increase mass and/or volume
 - Need for freezers to address food expiration
 - Packing density to account for efficiency in CTB arrangement/accessibility
 - Water quality could be an issue due to mission durations

Further assessment on identified opportunities/threats is recommended

Backup

Water

Assumptions

- Rodnik tanks within pressurized volume of Logistics Module
 - Major difference against ISS Impacts to pressurized cargo volume
- Silver biocide water with 3 year shelf life

Consumption (See figure on next two charts)

- Consistent with MPCV and CCDev exploration assumptions
 - Slightly more conservative
 - Deviation from ISS
 - » 2.2 L/Crewman/Day Drinking/Hygiene/Food
 - » No medical allowance
 - » 0.3 L/Crewman/Day Flush*
 - » 75% water recovery rate vs 85%

Open-Loop ECLSS

2.9 L Drinking/Hygiene/Food
0.35 L Metabolic Water
0.50 L Water in Food
0.05 L Medical
0.125 L Flush †

3.08 L Resupplied Water
0.85 L Unaccounted Water

+ 0.25 L Water once a day flush for 2 Crew
- ISS Assumes 0.3 L/flush/crew/day

Crew Latent	1.87 L
Urine	→ 1.49 L
Feces Water	0.19 L
Wet Trash	0.25 L
Flush	0.125 L
	19.55
Water Lost	3.925 L

- Does not take into account Payload water
 - $-\,$ ISS uses 1.27 L Resupply of which 0.82 L is recovered and 0.45 L is lost

Closed-Loop ECLSS

1.0 L Water for O₂ Generation

2.9 L Drinking/Hygiene/Food

0.35 L Metabolic Water

0.50 L Water in Food

0.05 L Medical

0.125 L Flush†

4.08 L Resupplied Water
0.85 L Unaccounted Water

† 0.25 L Water once a day flush for 2 Crew

- ISS Assumes flush/crew/day

Added 0.40 L Hygiene and 0.05 L Medical to recoverable water as recommended by DSH

- Does not take into account Payload water
 - ISS uses 1.27 L Resupply of which 0.82 L is recovered and 0.45 L is lost

Water (600 Day – Closed Loop)

600 Day Water Consumption			
Water Use	Crew Daily Rate (kg/Crew/Day)	Total Crew Rate (kg/day)	Total Usage (kg)
Drinking, Food Rehydration, Hygiene	2.9	11.6	7308
Medical	0.05	0.2	126
Flush	0.063	0.25	157.5
O ₂ Generation	1	4	2520
		Total	10111.5

611 Day Water Supply					
Water Recovery	Recoverable Water (kg/Crew/Day)	Recovered Water (kg/Crew/Day)	Total Crew Recovery Rate (kg/Day)	Total Recovery (kg)	
Crew Latent (100%)	1.87	1.87	7.48	4712.4	
Urine (85%)	1.49	1.27	5.07	3191.6	
Flush (85%)	0.125	0.05	0.21	133.9	
Sabatier (50% of O ₂ loss)	0.5	0.50	2.00	1260.0	
Hygiene (100%)	0.4	0.40	1.60	1008.0	
Medical (100%)	0.05	0.05	0.20	126.0	
			Total	10431.9	
	0.0kg delta of water results in	0	total number of tanks requi	red	

Water (30 Day Margin – Open Loop)

30 Day Water Consumption (Margin)			
Water Use	Crew Daily Rate (kg/Crew/Day)	Total Crew Rate (kg/day)	Total Usage (kg)
Drinking, Food Rehydration, Hygiene	2.9	11.6	348
Medical	0.05	0.2	6
Flush	0.063	0.25	7.5
		Total	361.5

361.5kg delta of water results in

2 total number of tanks required

Carrier Mass			
Water Carrier	Empty Mass (kg)	Number of Tanks	Total Mission Mass (kg)
Rodnik Tank	35	2	70

Carrier Volume			
Water Carrier	Amount of Water (L)	Volume of Tank (m³)	Volume of All Tanks (m ³)
Rodnik Tank	210	0.21	0.42

Gases

Assumptions

- Provide N₂ and O₂ to cover leakage
 - No oxygen required for crew consumption for closed-loop cases, created using water via O₂ generator
- COPV (ISS NORS Tank) inside pressurized volume impacts cargo volume
 - Empty mass of 74.8kg; capacity of 38.1kg O₂ or 28.7kg N₂
- Calculated leak rate based on ISS Engineering experience, and considers:
 - Nominal and anomalous leakage
- Includes tank ullage (closed-loop and open-loop)

Consumption

- O2 crew consumption rate of 0.82 kg/crew/day for 30-days contingency (open-loop)
- Air Leakage estimated rate of 0.01 lbm/day (0.0045 kg/day) for a given module
 - Engineering estimate*
 - Little over double for Orion (0.00908 kg/day)
- For leakage calculations assume:
 - MPCV + 4 modules (Node, Deep Space, and two Logistics Modules) for 600-day mission

* Leakage Rate Estimation

- Based upon ISS Node 1 specification (.117 lb/day) and test (.005 lb/day) leak rates
- Doubling test rate but still stay order magnitude below requirement
 - Try not to be so conservative you can't verify

Gases – Crew Consumption

- Tank provided oxygen for crew consumption for open-loop ECLSS only
 - Oxygen created using water for closed loop
- Required for 30-day margin only

Gas	Crew Daily	Total Crew	30 day
	Rate (kg)	Rate (kg)	usage (kg)
Oxygen	0.82	3.28	98.4

Gases – Leakage

- N₂ for leakage and ullage makeup for entire mission duration; O₂ for 30-day margin only
 - Orion + 4 modules for 600-day mission
 - O₂ for actual mission duration covered via O₂ generator
 - ISS utilizes air vs Nitrogen Easier process and cost less

Gas	Daily Leakage Orion (kg)	Daily Leakage 4 Modules (kg)	Total Daily Leakage (kg)	Total Mission Leakage (kg)*
Oxygen	0.00191	0.00378	0.00569	0.17
Nitrogen	0.00717	0.01422	0.02139	12.83

^{*}Oxygen generator on; O2 value represents margin

Gases – Ullage (Open Loop)

Gas tank ullage

Dependent on the number of days

Tank Ullage	Ullage per Tank (kg)**	Total Number of Tanks	Total Ullage (kg)
Oxygen	0.50	3	1.5
Nitrogen	0.50	1	0.50

^{*} Provided by Exploration Logistics Team

^{**} ISS NORS value

Gasses (Quantity and Mass)

 Number of tanks driven by crew consumption, leakage, and ullage

Gas Carrier	Empty Mass (kg)	Total Number of Tanks	Total Tank Mass (kg)
COPV (Oxygen)	74.8	3	224.4
COPV (Nitrogen)	74.8	1	74.8

Food

Assumptions

Only use "single" CTB* for containment/storage

Mass per crewmember per day

- 1.831 kg for food, including sealed wrapping
 - Does not include Bulk Overwrap Bag (BOB) weight
 - ~60 grams each
 - Does not include containment/storage container
 - CTB weight factored in separately
 - » Single CTB + foam = 1.56 kg

^{*}Conservative bag choice

Food

Food totals are just the food and its wrapper

	Crew Daily Rate (kg)	Total Crew Rate (kg)	Usage Total (kg)
Rehydratable Food w/wrapper	1.831	7.324	4394.40

Containment Bag	Empty Mass	Total Number of	Total CTB Mass
	(kg)	CTBs	(kg)
Single CTB	1.56	385	600.6

^{*1} CTB holds ~11.44 kg usable cargo

Assumptions

- Provide clothes, comfort items, office supplies, waste and hygiene supplies, etc.
 for crew
- Three categories
 - Per mission use (kg/crew)
 - Daily use per crew person (kg/crew/day)
 - Daily use for all crew (kg/day)

Per Mission Use (kg)				
Category	Subcategory	Examples	Mission Mass Per Crewmember (kg/Crew)	600 Day, 4 Crew Total (kg)
Crew Personal Items, One-time use, and Crew care Packages	Crew Care Packages	Personal photos, personal T- shirts, books, keepsakes, Shoes, etc.	25/50*	200
	Operational Supplies	Batteries, notebooks, office supplies, etc.	20/25*	100
	Personal Hygiene Kit	***************************************	1.8**	24
* Usage for missions les 365 days	s than/greater than	Total		324.0

^{** 1.8} kg/crew for every 180 days

Some notable differences between ISS and Exploration modeling

- ISS model uses 0.153 kg/c/d for wipes
- ISS model uses 0.196 kg/c/d for clothing

	Daily Use per Crew Person (kg/crew/day)				
Category	Subcategory	Examples	Mass Per Crewmember per day (kg/C/D)	600 Day, 4 Crew Total (kg)	
Regularly consumed items	Hygiene consumables		0.079	189.6	
	Health Care Consumables		0.09	216	
	Wipes	Wet wipes, Household wipes, dry wipes	0.195	468	
	Trash Bags		0.011	26.4	
	Clothes	t-shirts, shorts, pants, socks, exercise clothes, etc.	0.22	528	
		Total	0.595	1428	

- Fecal canisters and urine pre-filter differ by toilet design from ISS
 - ISS model uses KTOs at 0.48 kg/d
 - Urine pre-treat filter considered part of ISS WHC

Daily Use for All Crew (kg/day)				
Category	Subcategory	Examples	Mass Per Day (kg/Day)	600 Day, 4 Crew Total (kg)
Waste Collection	Fecal Canisters		0.90	540
	Urine Pre-filter		0.25	150
		Total	1.15	690

Summary of all Crew provisions

Crew Provision Category	Total Usage (kg)
Mission Use	324.0
Daily Use per Crew	1428
Daily Use for All Crew	690
Total	2442.0

Containment Bag	Empty Mass (kg)	Total CTBs	Total Mass (kg)
Single CTB	1.56	214	333.84

Single CTB ~ 11.44 kg usable cargo

- Bag + Foam =
$$1.56 \text{ kg}$$

Total Mass Calculation

Daily Use Mass Totals			
Consumable/Carrier	Total Requirement (kg)	Notes	
Water	361.5	Represents margin on mission duration	
Oxygen (Metabolic)	98.4	Represents margin on mission duration	
Oxygen (Leakage & Ullage)	1.67	Represents margin on mission duration	
Nitrogen (Leakage & Ullage)	13.33	Possibly more efficient to fully load tank with air or N ₂ and balance oxygen for proper partial pressures	
Food	4394.4		
Crew Provisions	2118		
Total	6987.3		

Per Mission Mass Totals			
Consumable/Carrier	Total Requirement (kg)	Notes	
Rodnik Tanks (2)	70	Each Rodnik is ~35 kg	
O ₂ Tanks (3)	224.4	Each empty O_2 & N2 COPV is ~ 74.8 kg	
N ₂ Tanks (1)	74.8	Each empty O_2 & N2 COPV is ~ 74.8 kg	
Crew Provisions	324.0	Possible to gain efficiency by using larger bag (i.e. double CTB or M0 bag)	
CTB Mass	934.4		
Total	1627.6		

Grand Total =	8614.9	kg

Total Volume Calculation

Assumptions

- Apply single CTB for conservatism and simplicity
 - Final packing efficiencies could be obtained
- ISS average density from historical experience
- Volume of 1 CTB = 0.053 m³
- Single CTB average packing density is 13 kg/CTBe

ISS packing experience defines "Customer Cargo"

- Customer cargo = (Usable Cargo) x (Packing Factor)
 - Usable cargo is the weight of the cargo item alone, no packing or FSE
 - ISS Packing factor = 12%

Volume Calculation

Volume Dry Cargo					
Case	Usable Cargo Mass† (kg)	Customer Cargo Mass* (kg)	Single CTB Ave. Density (kg/CTBe)	Number of CTB Required**	Volume Required (m³)
600 Day, 4 Crew	6836.4	7656.8	13	589	31.22

Volume of 1 CTB:

0.053

* 12% packing factor

^{**} Some packing efficiency when combine "rounded up" food & CP

Volume of Water Tanks			
Type of Tank	Volume of One Tank (m³)	Total Number Tanks	Total Volume Required (m³)
Water	0.210	2	0.42

ISS NORS Tank Volume			
Gas Carrier	Volume (m³)	Total Number of Tanks	Total Tank Volume (m³)
COPV (O ₂)	0.39	3	1.17
COPV (N ₂)	0.39	1	0.39
			1.56

NORS Tanks fly up in FSE that take up volume equivalent to an M-01 bag

NORS Tanks pressurized at 6000 psi

Total Volume	33.20	m³
--------------	-------	----

[†] Does not include bag FSE + Foam

Backup for Consumable

M-01 Configuration

- Uses M-01 Bag dimensional envelope
- Same basic interfaces as M-01 bag
- Same zippered opening as M-01 bag
- Incorporates venting for excess gas buildup
- Utilizes cut Zotek F-30 foam inserts
- Center foam section can fit through tight diameter hatches
- Inserts wrapped in Beta Cloth to eliminate debris
- P/N 684-015302

Foam Inserts – VIA Not shown

RTA Dimensions

ISS Trash/Waste

Assumptions

- Account for Crew daily waste, Fecal waste, hardware, and packing material
- Trash stored in CTBs, Jettison Stowage Bags (JSB), and KTOs
- Whatever went up, must come down
 - Except for urine and condensate (Vented)
 - Rate equivalent to usage

Mass capacity for waste containers

- CTB = (Depends on available CTB size)
- KTO = 11.5 kg
- JSB = variable depending on content (i.e. H/W vs bubble wrap)
 - Range from 0.5kg to 20 kg

Volume capacity for waste containers

- Single CTB* = 0.0283 m^3
- KTO = 0.0198 m³
- JSB = 0.0764 m³