Medios de transmisión aéreos

Medios de transmisión aéreos

- Los medios inalámbricos transportan señales electromagnéticas mediante frecuencias de microondas y radiofrecuencias que representan los dígitos binarios de las comunicaciones de datos.
- Como medio de red, el sistema inalámbrico no se limita a conductores o canaletas, como en el caso de los medios de fibra o de cobre.

Redes inalámbricas

Los estándares de IEEE y de la industria de las telecomunicaciones sobre las comunicaciones inalámbricas de datos abarcan la capas Física y de Enlace de datos.

Chart of the Electromagnetic Spectrum man's height paperclip **a** thickness bacteria baseball water molecule

© 2005 SURA www.sura.org $\lambda = 3x10^8/\text{freg} = 1/(\text{wn}^*100) = 1.24x10^{-6}/\text{eV}$

SURA Southeastern Universities

Redes inalámbricas

Las especificaciones de la capa física se aplican en áreas que incluyen:

- Datos para la codificación de señales de radio, frecuencia y poder de transmisión, recepción de señales.
- Diseño y construcción de la antena.

Estándares IEEE

Los estándares comunes de comunicación de datos que se aplican a los medios inalámbricos son:

- ► IEEE estándar **802.11**
- ► IEEE estándar **802.15**
- ► IEEE estándar 802.16

IEEE estándar 802.11

► IEEE estándar 802.11: Comúnmente denominada Wi-Fi, se trata de una tecnología LAN inalámbrica (Red de área local inalámbrica, WLAN) que utiliza una contención o sistema no determinista con un proceso de acceso a los medios de Acceso múltiple con detección de portadora/Prevención de colisiones (CSMA/CA).

IEEE estándar **802.15**

IEEE estándar **802.15**: Red de área personal inalámbrica (WPAN) estándar, comúnmente denominada "Bluetooth", utiliza un proceso de emparejamiento de dispositivos para comunicarse a través de una distancia de 1 a 100 metros.

IEEE estándar 802.16

IEEE estándar **802.16**: Comúnmente conocida como WiMAX (Interoperabilidad mundial para el acceso por microondas), utiliza una topología punto a multipunto para proporcionar un acceso de ancho de banda inalámbrico.

WI-FI

Los estándares incluyen:

- ▶ IEEE 802.11a
- ► IEEE 802.11b
- ► IEEE 802.11g
- ► IEEE 802.11n

IEEE 802.11a: opera en una banda de frecuencia de **5 GHz** y ofrece velocidades de hasta **54 Mbps**. Posee un área de cobertura menor y es menos efectivo al penetrar estructuras edilicias ya que opera en frecuencias superiores. Los dispositivos que operan conforme a este estándar no son interoperables con los estándares 802.11b y 802.11g.

Modulación: OFDM

IEEE 802.11b: opera en una banda de frecuencia de **2.4 GHz** y ofrece velocidades de hasta **11 Mbps**. Los dispositivos que implementan este estándar tienen un mayor alcance y pueden penetrar mejor las estructuras edilicias que los dispositivos basados en 802.11a.

Modulación CCK (manipulación por código complementario)

IEEE 802.11g: opera en una frecuencia de banda de **2.4 GHz** y ofrece velocidades de hasta **54 Mbps**. Por lo tanto, los dispositivos que implementan este estándar operan en la misma radiofrecuencia y tienen un alcance de hasta 802.11b pero con un ancho de banda de 802.11a.

Modulación: OFDM y soporta CCK

Estándares WLAN

► IEEE 802.11n:

Estándar más moderno. Especifica soporte para las tecnologías tanto de **2.4 GHz** como de **5GHz** y amplía el alcance y la velocidad de transmisión de datos. Utiliza diversas antenas, canales de banda ancha y tecnología Múltiples entradas, múltiples salidas.

Diseñada para ser compatible en sentido descendente con los equipos 802.11 a, b, y g existentes.

Características

- ► El diámetro de una red 802.11, depende de muchos parámetros, incluido el intervalo de frecuencia utilizado.
- Normalmente se encuentra entre los 100 y 300 m.

LAN inalámbrica (WLAN)

Una LAN inalámbrica requiere los siguientes dispositivos de red:

- ▶ Punto de acceso inalámbrico (AP)
- ► Adaptadores NIC inalámbricos

LAN inalámbrica (WLAN)

Punto de acceso inalámbrico (AP): Concentra las señales inalámbricas de los usuarios y se conecta, generalmente a través de un cable de cobre, a la infraestructura de red existente basada en cobre, como Ethernet.

LAN inalámbrica (WLAN)

Adaptadores NIC inalámbricos: Proporcionan capacidad de comunicación inalámbrica a cada host de la red.

Topologías

- Ad Hoc o conjunto de servicios básicos (BSS)
- Modo Infraestructura o conjunto de servicios extendidos (ESS)

Ad Hoc o conjunto de servicios básicos (BSS)

- Son creadas mediante estaciones individuales
- No contienen una estación base
- Los nodos se comunican directamente entre sí
- Respecto a la zona de cobertura pueden localizarse muy apartadas, pueden traslaparse de modo parcial o por completo

Ad Hoc o conjunto de servicios básicos (BSS)

Modo Infraestructura o conjunto de servicios extendidos (ESS)

- Algunas estaciones son estaciones base (puntos de acceso AP)
- ▶ Un AP es un miembro de un BSS
- Todos los AP de la red están conectados entre sí mediante el sistema de distribución (DS)
- Con el DS, los AP llevan a cabo el servicio de sistema de distribución (DSS)
- ▶ La tarea del DSS consiste en transmitir paquetes entre estaciones que no pueden o no quieren interactuar en forma directa
- **ESS** son varios BSS conectados por un DS

Topología con AP

Modo
Infraestructura
o conjunto de
servicios
extendidos (ESS)

BLUETOOTH

Una tecnología concebida en 1994 por un grupo de ingenieros del primer suministrador de equipos, servicios y software de telecomunicaciones del mundo, el grupo sueco Ericsson

- La tecnología Bluetooth utiliza el concepto de **piconet**.
- ▶ Puede reunir hasta **255 dispositivos**, aunque solamente **8** de ellos pueden estar activos y llevar a cabo intercambio de datos en cualquier momento.

- Uno de los dispositivos piconet es el maestro y los otros dispositivos son esclavos
- El maestro es responsable proporcionar acceso al medio compartido de la piconet que representa frecuencias de la gama de 2.4 GHz
- Un esclavo activo puede intercambiar datos solamente con su maestro

- ► El medio compartido transmite datos desde 1Mbps hasta 50 Mbps*
- ► El maestro divide el ancho de banda medio entre siete dispositivos esclavos con fundamento en la técnica de multiplexado por división de tiempo (TDM)

*Bluetooth tiene diversos usos y dependiendo de ellos, tiene sus propias especificaciones.

WiMAX

Componentes:

- Estación base WiMAX (torre)
- ► Receptor WiMAX

WiMAX

- ▶ Trabaja en un rango de 10 a 66 GHz
 - ▶ Viajan en líneas rectas y en forma similar a la luz
 - ► Modulación OFDM
 - Cobertura: hasta 50 km
 - ▶ Velocidades: hasta 128 Mbps

https://wimaxforum.org

MICROONDAS

Microondas

- Las microondas permiten transmisiones tanto terrestres como con satélites.
- ▶ Sus frecuencias estan comprendidas entre 1 y 10 GHz.
- Velocidades de transmisión del orden de 10Mbps
- ► Requieren licencia de uso

Microondas

- No atraviesan bien los obstáculos, de forma que es necesario situar antenas repetidoras cuando se desean realizar comunicaciones a largas distancias
- ► En el caso de las comunicaciones por satélite, existe un pequeño retardo en las transmisiones debido a q la señal tarda aprox. 0.3 segundos en llegar y volver.

Microondas

Las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada.

Infrarrojo

Las ondas infrarrojas se usan generalmente para la comunicación a **corto alcance**.

No atraviesan los objetos sólidos.

Es por este motivo que las redes infrarrojas suelen estar dirigidas a oficinas o plantas de oficinas de reducido tamaño.

Métodos de transmisión

En el modo *punto* a *punto*, el tipo de emisión por parte del transmisor se hace de forma direccional. Por ello, **las estaciones deben verse directamente**, para poder dirigir el haz de luz directamente de una hacia la otra. Por este motivo, este es el tipo de red inalámbrica más limitado.

LÁSER

La tecnología óptica láser punto a punto se utiliza para conectar redes en áreas metropolitanas densamente pobladas. Permite conectar redes que se encuentran separadas desde unos pocos metros hasta 4 o 5 kilómetros

Se pueden alcanzar velocidades de hasta **1500 Mbps**.

LÁSER

Un inconveniente es la necesidad de los equipos cuenten con una línea de visión directa entre ellos, es decir no puede haber otros edificio, arboles u otras estructuras que bloqueen la línea de visión entre ellos. Pero esto se compensa con el hecho de que no es necesario negociar o pagar derechos.

LÁSER

Este esquema ofrece un ancho de banda muy alto y un costo muy bajo.

Un haz muy estrecho, es aquí también una debilidad. Apuntar un rayo láser de 1 mm de anchura a un blanco de 1 mm a 500 metros de distancia requiere mucha puntería y precisión en la instalación. Por lo general, se añaden lentes al sistema para desenfocar ligeramente el rayo.

Enlaces satelitales

Estaciones terrestres:

- ▶ Enlace de subida
- ▶ Enlace de bajada

Etapa ubicada en el espacio:

Donde la señal de subida cruzará por el transpondedor del satélite y será regresada a la tierra a una menos frecuencia con la que fue transmitida.

Enlace satelital

Enlace satelital

Bandas de frecuencias mas utilizadas:

L: 1GHz

C: 4 y 6 GHz

Ku 12 y 14 GHz

Ka: 20 GHz

Antena en Chetumal, Ejemplo

Equipo especializado

Cobertura

Imágenes

Información

