Introduction to Database Systems

Normalization

Lee Mong Li

Recap: Functional Dependencies

Definition: $X \rightarrow Y$

- If two tuples agree on the values of the attributes in X, then they agree on the values of the attributes in Y.
- Example: {position} → {salary}

If two employees have the same position, they also have the same salary.

Types of FDs:

Trivial

 $Y \subset X$

Non-trivial

 $Y \not\subset X$

- Completely non-trivial $Y \cap X = \emptyset$
- Example: Given a relation R(A,B,C,D,E) with

$$F = \{AB \rightarrow CE, CD \rightarrow D, ACE \rightarrow BC, D \rightarrow E\}$$

How many FDs of each type are there?

Armstrong's Axioms

Let X, Y, Z be subsets of the scheme of relation R

- Reflexivity: If $Y \subset X$, then $X \to Y$
- **Augmentation:** If $X \to Y$, then $X \cup Z \to Y \cup Z$
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Example: Given a relation R(A,B,C,D,E) with $F = \{AB \rightarrow ABCE, C \rightarrow BC \}$ Show that ACD is a **superkey** using the axioms. In other words, show that ACD \rightarrow ABCDE

Attribute Closure

For a set X of attributes, we call the **closure of X** (*w.r.t. a* set of FDs), denoted by X+, the maximum set of attributes such that $X \to X+$.

Example: Given a relation R(A, B, C, D, E) with

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow D\}$$

Is A in A+? Is B in A+? Is C in A+? Is D in A+? Is E in A+?

Algorithm:

- Start with the given set X.
- Find and add new attributes which can be determined by any subset of X, until no more attributes can be added.

Useful for (a) finding candidate keys and (b) proving equivalence of sets of FDs

Candidate Keys

Consider the relation R(A,B,C,D,E) with the FDs:

AB→CDE

AC→BDE

 $B \rightarrow C$

 $C \rightarrow B$

 $C \rightarrow D$

 $B \rightarrow E$

Find all candidate keys

Equivalence of 2 Sets of FDs

Algorithm based on attribute closure Intuition:

- Given two sets of FDs F and G
- If we have in F, A→B and A+= ABC, then we know that A→A, A→B and A→C is in F+
- And if we have in G, $A^+ = AB$, then we know that there is some FD (i.e., $A \rightarrow C$) in F⁺ but not in G⁺
- Hence, F and G are not equivalent.

Minimal Cover

A set of FDs F is a minimal cover for a set of FDs G if and only if

- Every FD in F is of the form X → A where X is a set of attributes, A is a single attribute and X has no redundant attributes
- There are no redundant FDs in F
- F is equivalent to G, that is, F+ = G+

Minimal Cover

Consider the relation R(A,B,C,D,E) with FDs:

AB→CDE

AC→BDE

 $B \rightarrow C$

 $C \rightarrow B$

 $C \rightarrow D$

 $B \rightarrow E$

Find a minimal cover for the FDs

Normalization

Process of Decomposition

 Break down a relation into smaller relations such that all attributes are still present in at least one of the smaller relations.

Lossless / Lossy

 Whether the original relation can be recovered by combining the smaller relations.

Dependency preserving

 Whether all the dependencies still exist in the smaller relations.

Given a relation R(A,B,C) with $\{A\} \rightarrow \{B,C\}$, which of the following are decompositions?

R1(A), R2(B)

No

R1(A,C), R2(B)

Yes

R1(A,B), R2(B,C)

Yes

R1(A,B), R2(A,C)

Yes

R1(A,C), R2(B,C)

Yes

Given a relation R(A,B,C) with $\{A\} \rightarrow \{B,C\}$, which are lossless decompositions?

R1(A), R2(B)

No

R1(A,C), R2(B)

No

R1(A,B), R2(B,C)

No

R1(A,B), R2(A,C)

R1(A,C), R2(B,C)

_			
	Α	В	C
	1	Bill	G

Α	В	C
1	Bill	Gates
2	Bill	Clinton

Α	В	В	С
1	Bill	Bill	Gates
2	Bill	Bill	Clinton

A	B	C
1	Bill	Gates
1	Bill	Clinton
2	Bill	Gates
2	Bill	Clinton

Given a relation R(A,B,C) with $\{A\} \rightarrow \{B,C\}$, which are lossless decompositions?

R1(A), R2(B)

No

R1(A,C), R2(B)

No

R1(A,B), R2(B,C)

No

R1(A,B), R2(A,C)

Yes

R1(A,C), R2(B,C)

A	В	C
1	Bill	Gates
2	Bill	Clinton

A	В	A	С
1	Bill	1	Gates
2	Bill	2	Clinton

Α	В	С
1	Bill	Gates
2	Bill	Clinton

Given a relation R(A,B,C) with $\{A\} \rightarrow \{B,C\}$, which are lossless decompositions?

R1(A), R2(B)

No

R1(A,C), R2(B)

No

R1(A,B), R2(B,C)

No

R1(A,B), R2(A,C)

Yes

R1(A,C), R2(B,C)

No

Α	В	C
1	Steve	Jobs
2	New	Jobs

Α	С
1	Jobs
2	Jobs

В	C
Steve	Jobs
New	Jobs

Α	В	С
1	Steve	Jobs
1	New	Jobs
2	Steve	Jobs
2	New	Jobs

R1(A,B), R2(A,C)

Given a relation R(A,B,C) with $\{A\} \rightarrow \{B,C\}$, which are dependency preserving decompositions?

R1(A), R2(B) No

R1(A,C), R2(B) No

R1(A,B), R2(B,C) No

R1(A,B) $A \rightarrow B$ R1(A,C) $A \rightarrow C$ R1(A,C), R2(B,C) No

Yes

Normal Forms

Boyce-Codd Normal Form (BCNF)

 For any FD X → Y on a relation R, either the FD is trivial (i.e., Y ⊂ X) or X is a superkey of R

Third Normal Form (3NF)

 For any FD X → Y on a relation R, either the FD is trivial (i.e., Y ⊂ X), or X is a superkey, or Y is part of some candidate key

Example:

- Given a relation R(A, B, C, D, E, G) with FDs F = { AB → CDEG, E → G }
- Candidate key: AB
- E → G violates both BCNF and 3NF

Decomposition into BCNF

Given a set of relations and a set of FDs

- 1. Find FD X \rightarrow Y on a relation R that violates BCNF property
- 2. Decompose R into (R X+ + X) and X+ (and project the FDs)
- 3. Repeat Steps 1 & 2 until all relations are in BCNF

Note: It is sometimes useful to find the minimal cover first.

Example: R(A, B, C, D, E, G) with $F = \{AB \rightarrow CDEG, E \rightarrow G\}$

- E → G violates BCNF
- BCNF decomposition into:

```
R1(E, G) with F1 = { E \rightarrow G }
R2(A, B, C, D, E) with F2 = { AB \rightarrow CDE }
```


Decomposition into 3NF

Given a set of relations and a set of FDs

- 1. Find the minimal cover G.
- 2. For every FD X → Y in G,
 If X ∪ Y is not in the existing relations, then add a relation R with X ∪ Y (and project the FDs)
- 3. If there is no relation containing the key, add a relation with the key.

Note 1: The given relations are ignored.

Note 2: The extended minimal cover can be used, too.

Example: R(A, B, C, D, E, G) with $F = \{AB \rightarrow CDEG, E \rightarrow G\}$

- E → G violates 3NF
- $G = \{AB \rightarrow C, AB \rightarrow D, AB \rightarrow E, E \rightarrow G\}$
- Extended minimal cover G' = { AB → CDE, E → G }
- 3NF synthesis: { R1(A,B,C,D,E), R2(E,G) }

BCNF Decomposition

Consider the relation R(A,B,C,D,E) with FDs:

AB→CDE

AC→**BDE**

 $B \rightarrow C$

C→B

 $C \rightarrow D$

 $B \rightarrow E$

Give a BCNF decomposition of R.

3NF Decomposition

Consider the relation R(A,B,C,D,E) with FDs:

AB→CDE

AC→**BDE**

 $B \rightarrow C$

C→B

 $C \rightarrow D$

 $B \rightarrow E$

Give a 3NF decomposition of R.