SOFTWARE DEFECT PREDICTION

NIDA ZAKI (Z1938561) YUE MA (Z1934458)

MOTIVATION

- Software Defect Prediction which predicts defective code regions, can help developers find bugs and prioritize their testing efforts.
- We utilize classifier models and artificial neural networks as a means to detect and predict defects in softwares.
- These models work by learning patterns between attributes of the software and a corresponding binary label that indicates whether or not a defect exists.
- These models can also help to better understand the underlying software features and how they affect the defect rate.
- We perform feature importance measures to see which features are more important in the models prediction performance.
- All this information can be extremely useful, and may suggest an area of focus for software design companies.
- Previous work only tested with limited models, most of researchers chose ensemble learning [1] [2] [3]. We will contribute to a more comprehensive comparisons which include most of the popular classification machine learning methods, as well as artificial neural networks.

DATASET (ATTRIBUTES)

name: a brief name

version: version of the software

name: a detailed version name for the

software

wmc: weighted methods per class

dit: depth of inheritance tree

noc: number of children

cbo: coupling between objects

rfc: response for class

Icom: lack of cohesion of methods

ca: afferent couplingsce: efferent couplings

npm: number of public methods

Icom3: lack of cohesion in methods

loc: lines of code

dam: data access metric

moa: measure of aggregation **mfa:** multi-factor authentication **cam:** cohesion among methods

ic: continuous integration

cbm: coupling between methods
amc: average method complexity

max_cc: maximum cyclomatic complexity
avg cc: average cyclomatic complexity

bug: number of bugs

ATTRIBUTE CORRELATION

WILL	1.00	-0.03	0.07	0.39	0.84	0.70	0.26	0.48	0.89	-0.01	0.73	0.22	0.49	-0.01	-0.02	0.09	0.14	0.01	0.34	0.19	0.34
qį	-0.03	1.00	-0.01	-0.02	0.06	-0.02	-0.06	0.11	-0.04	-0.03	-0.02	0.09	-0.03	0.03	-0.03	0.56	0.42	-0.02	-0.03	-0.07	0.03
JQL -	0.07	-0.01	1.00	0.24	0.05	0.03	0.26	0.05	0.06	-0.01	0.01	0.05	0.04	-0.00	-0.01	0.00	0.00	-0.00	0.00	-0.01	0.02
ф.	0.39	-0.02	0.24	1.00	0.45	0.27	0.93	0.47	0.40	-0.00	0.25	0.11	0.26	-0.01	-0.01	0.06	0.06	0.01	0.17	0.12	0.29
ıţc	0.84	0.06	0.05	0.45	1.00	0.55	0.22	0.71	0.73	0.00	0.71	0.32	0.54	-0.01	-0.01	0.18	0.18	0.03	0.43	0.33	0.41
com	0.70	-0.02	0.03	0.27	0.55	1.00	0.20	0.32	0.59	-0.01	0.47	0.05	0.28	-0.00	-0.01	0.02	0.05	-0.00	0.16	0.07	0.24
g -	0.26	-0.06	0.26	0.93	0.22	0.20	1.00	0.11	0.29	0.00	0.12	0.00	0.12	-0.01	-0.01	-0.02	-0.01	-0.01	0.07	0.03	0.22
g -	0.48	0.11	0.05	0.47	0.71	0.32	0.11	1.00	0.41	-0.02	0.41	0.28	0.43	0.00	0.01	0.22	0.20	0.04	0.30	0.25	0.28
md.	0.89	-0.04	0.06	0.40	0.73	0.59	0.29	0.41	1.00	-0.01	0.47	0.20	0.43	-0.01	-0.03	0.09	0.15	0.00	0.22	0.11	0.30
com3 r	-0.01	-0.03	-0.01	-0.00	0.00	-0.01	0.00	-0.02	-0.01	1.00	-0.01	0.02	0.04	-0.00	0.04	-0.00	-0.02	0.09	-0.00	-0.01	-0.0
))	0.73	-0.02	0.01	0.25	0.71	0.47	0.12	0.41	0.47	-0.01	1.00	0.15	0.44	-0.01	-0.01	0.06	0.09	0.02	0.52	0.34	0.33
mag.	0.22	0.09	0.05	0.11	0.32	0.05	0.00	0.28	0.20	0.02	0.15	1.00	0.25	0.02	0.02	0.16	0.10	0.03	0.13	0.13	0.09
moa de	0.49	-0.03	0.04	0.26	0.54	0.28	0.12	0.43	0.43	0.04	0.44	0.25	1.00	-0.00		0.06	0.09	0.03	0.19	0.11	0.25
_	-0.01	0.03	-0.00	-0.01	-0.01	*	-0.01	0.00	-0.01	-0.00	-0.01	0.02	-0.00	1.00	-0.00	0.01	0.01	-0.00	-0.01	-0.01	-0.0
n mfa			Service Service	Parties and American	27 A	77		9		100	CONTRACTOR OF	20 TO 10		SACRO CO.		September 1		2000000		20.000.000	
Gam.	-0.02	-0.03	-0.01	-0.01	-0.01	-0.01	-0.01	0.01	-0.03	0.04	-0.01	0.02	-0.01	-0.00	1.00	-0.02	-0.02	-0.00	-0.02	-0.02	-0.0
.≌ -	0.09	0.56	0.00	0.06	0.18	0.02	-0.02	0.22	0.09	-0.00	0.06	0.16	0.06	0.01	-0.02	1.00	0.73	-0.01	0.07	0.08	0.0
ė.	0.14	0.42	0.00	0.06	0.18	0.05	-0.01	0.20	0.15	-0.02	0.09	0.10	0.09	0.01	-0.02	0.73	1.00	-0.01	0.07	0.07	0.0
amc	0.01	-0.02	-0.00	0.01	0.03	-0.00	-0.01	0.04	0.00	0.09	0.02	0.03	0.03	-0.00	-0.00	-0.01	-0.01	1.00	0.01	0.01	0.00
max_cc	0.34	-0.03	0.00	0.17	0.43	0.16	0.07	0.30	0.22	-0.00	0.52	0.13	0.19	-0.01	-0.02	0.07	0.07	0.01	1.00	0.75	0.20
avg_cc m	0.19	-0.07	-0.01	0.12	0.33	0.07	0.03	0.25	0.11	-0.01	0.34	0.13	0.11	-0.01	-0.02	0.08	0.07	0.01	0.75	1.00	0.12
ve gud	0.34	0.03	0.02	0.29	0.41	0.24	0.22	0.28	0.30	-0.01	0.33	0.09	0.25	-0.00	-0.02	0.06	0.07	0.00	0.20	0.12	1.00
	wmc -	dt -	- DOC	- оф	fc -	lcom -	9	8	- wdu	com3 –	- JOI	dam -	moa -	mfa -	- Wa	L.	- mp	amc -	ax_cc -	- 22 EA	- bng

Correlation refers to the strength of the relationship between two attributes.

Here, we can see that the correlation between the attributes is very low (indicated by the dark color in the heat map), meaning that the attributes/ features are hardly related.

FEATURE SELECTION

Features with low correlation are less linearly dependent and hence they contribute individually to the prediction model.

Hybrid Feature Selection method is used to automate the process of finding the minimal and optimal set of features which reduces the computational and time complexity of the model.

Correlation Based Feature Selection: From the correlation matrix and depending on the threshold value, it is decided if certain features are to be removed from the dataset. The features that have correlation greater than 0.95 with respect to other features are to be removed from the dataset.

```
threshold = 0.95
correlation(df.iloc[:,:-1],threshold)

set()
```

```
threshold = 0.8
correlation(df.iloc[:,:-1],threshold)
{'ca', 'npm', 'rfc'}
```

As shown here, we got an empty set, so we did not remove any feature.

But if the threshold value is 0.8, then features that have correlation greater than 0.8 with respect to other features would be removed, which would be ca, npm and rfc.

RESEARCH QUESTIONS - SUPERVISED LEARNING

RESEARCH QUESTIONS: Which classification method has the best performance in predicting the defect (bug) in a software?

DEPENDENT VARIABLE: "bug"

"bug">=1 \rightarrow has defects (1)

"bug"= $0 \rightarrow \text{no defect } (0)$

INDEPENDENT VARIABLES: wmc, dit, noc, cbo, rfc, lcom, ca, ce, npm, lcom3, loc, dam, moa, mfa, cam, ic, cbm, amc, max_cc, avg_cc

METHODS / MODELS

- 1. Decision Tree
- 2. Random Forest
- 3. K Nearest Neighbors
- 4. Support Vector Machines (SVM)
- 5. Ensemble
 - a. Bagging
 - b. Boosting
 - -Adaboost
 - -Gradient Boosting
 - XGBoost

- 6. Naive Bayes Classifier
 - a. Gaussian Naive Bayes
 - b.Bernoulli Naive Bayes
- 7. Neural Networks
 - a. Sequential Neural Networks
 - b.Multi Layer Perceptron
- 8. Cross Validation
- 9. Undersampling

^{*5,6,8,9} are for dealing with imbalanced dataset

RESULTS - ACCURACY (Best: Ensemble Boosting- Gradient Boosting)

Decision Tree	0.823
Random Forest	0.827
Ensemble - Bagging	0.828
Boosting - Adaboost	0.81
Boosting - Gradient Boosting	0.84
Boosting - XGBoost	0.83
K Nearest Neighbors	0.813

SVM	0.73
Naive Bayes- Gaussian Bayes	0.374
Naive Bayes- Bernoulli Naive Bayes	0.737
Neural Networks- Sequential NN	0.83
Neural Networks- Multi Layer Perceptron	0.83

RESULTS- ROC CURVE (PART - 1)

RESULTS- ROC CURVE (PART - 2)

0.8

1.0

RESULTS - CLASSIFICATION REPORT (PART - 1)

Classification	precision	recall	f1-score	support
0	0.83	0.99	0.90	1141
1	0.56	0.08	0.13	251
accuracy			0.82	1392
macro avg	0.69	0.53	0.52	1392
weighted avg	0.78	0.82	0.76	1392

		n Report : precision	recall	f1-score	support
	0	0.86	0.95	0.90	1141
	1	0.54	0.28	0.37	251
accura	асу			0.83	1392
macro a	avg	0.70	0.61	0.63	1392
weighted a	avg	0.80	0.83	0.80	1392

C1422111	Lation	Report : precision	recall	f1-score	support
	0	0.86	0.95	0.90	1141
	1	0.54	0.28	0.37	251
accur	racy			0.83	1392
macro	avg	0.70	0.62	0.64	1392
weighted	avg	0.80	0.83	0.80	1392

Classificatior	report :			
	precision	recall	f1-score	support
0	0.85	0.94	0.89	1141
1	0.46	0.23	0.30	251
accuracy			0.81	1392
macro avg	0.65	0.58	0.60	1392
weighted avg	0.78	0.81	0.79	1392

RESULTS - CLASSIFICATION REPORT (PART - 2)

Classification	A STATE OF TAXABLE OF TAXABLE PARTY OF TAXABLE OF TAXAB	Machine (SVM) Algorithm report :					
	precision	recall	f1-score	support			
0	0.84	0.84	0.84	1141			
1	0.26	0.25	0.25	251			
accuracy			0.73	1392			
macro avg	0.55	0.54	0.55	1392			
weighted avg	0.73	0.73	0.73	1392			

		Bayes Algor Report :	ithm		
C1033171		precision	recall	f1-score	support
	0	0.94	0.25	0.40	1141
	1	0.21	0.92	0.35	251
accur	racy			0.37	1392
macro	avg	0.57	0.59	0.37	1392
weighted	avg	0.81	0.37	0.39	1392

	precision	recall	f1-score	support
0	0.89	0.77	0.83	1141
1	0.36	0.57	0.44	251
accuracy			0.74	1392
macro avg	0.62	0.67	0.63	1392
weighted avg	0.80	0.74	0.76	1392

Classifica	tion	Report :			
		precision	recall	f1-score	support
	0	0.85	0.97	0.90	1141
	1	0.56	0.20	0.29	251
accura	су			0.83	1392
macro a	vg	0.70	0.58	0.60	1392
weighted a	vg	0.79	0.83	0.79	1392

RESULTS - CLASSIFICATION REPORT (PART - 3)

Classification	on Report :			
	precision	recall	f1-score	support
0	0.85	0.92	0.88	1141
1	0.43	0.28	0.34	251
accuracy			0.80	1392
macro avg	0.64	0.60	0.61	1392
weighted avg	0.78	0.80	0.79	1392

Classificatio	n Report :			
	precision	recall	f1-score	support
0	0.85	0.98	0.91	1141
1	0.70	0.20	0.31	251
accuracy			0.84	1392
macro avg	0.78	0.59	0.61	1392
weighted avg	0.82	0.84	0.80	1392

Classificatio	n Report :			
	precision	recall	f1-score	support
0	0.85	0.98	0.91	1141
1	0.64	0.19	0.29	251
accuracy			0.83	1392
macro avg	0.74	0.58	0.60	1392
weighted avg	0.81	0.83	0.79	1392

Result Changes After Applying Undersampling Method

SUMMARY OF CLASSIFICATION REPORTS OF CLASSIFIERS

	Label	DT	RF	Bagging	AdaBoost	GB	XGB	KNN	SVM	GaussianNB	BernoulliNB	MLP
Ducalston	0	0.83	0.86	0.86	0.85	0.85	0.85	0.85	0.84	0.94	0.89	0.85
Precision	1	0.56	0.54	0.54	0.43	0.70	0.64	0.46	0.26	0.21	0.36	0.56
Decall	0	0.99	0.95	0.95	0.92	0.98	0.98	0.94	0.84	0.25	0.77	0.97
Recall	1	0.08	0.28	0.28	0.28	0.20	0.19	0.23	0.25	0.92	0.57	0.20
E1	0	0.90	0.90	0.90	0.88	0.91	0.91	0.89	0.84	0.40	0.83	0.90
F1-score	1	0.13	0.37	0.37	0.34	0.31	0.29	0.30	0.25	0.35	0.44	0.29

THE CLASSIFICATION REPORT AFTER APPLYING UNDER SAMPLING METHOD

	Label	DT	RF	Bagging	Adaboost	GB	XGBoost	KNN	SVM	GaussianNB	BernoulliNB	MLP
Precision	0	0.61	0.67	0.68	0.69	0.67	0.67	0.63	0.55	0.57	0.63	0.67
rrecision	1	0.73	0.69	0.69	0.68	0.71	0.71	0.66	0.55	0.73	0.70	0.70
Danall	0	0.83	0.69	0.70	0.67	0.75	0.75	0.70	0.53	0.87	0.75	0.73
Recall	1	0.46	0.67	0.67	0.71	0.63	0.63	0.60	0.56	0.34	0.56	0.63
E1 coops	0	0.70	0.68	0.69	0.68	0.70	0.71	0.66	0.54	0.69	0.69	0.70
F1-score	1	0.57	0.68	0.68	0.69	0.67	0.67	0.63	0.55	0.46	0.62	0.67

MAE Score After Applying Cross Validation

MAE SCORE OF CROSS VALIDATION ON MULTIPLE CLASSIFIERS

	DT	RF	Bagging	Adaboost	GB	XGB	KNN	SVM	GaussianNB	BernoulliNB
Fold-1	0.175	0.181	0.180	0.187	0.173	0.171	0.186	0.267	0.810	0.244
Fold-2	0.175	0.177	0.176	0.189	0.180	0.172	0.183	0.265	0.590	0.250
Fold-3	0.185	0.184	0.187	0.198	0.186	0.194	0.197	0.263	0.633	0.246
Fold-4	0.182	0.185	0.189	0.209	0.182	0.189	0.197	0.261	0.705	0.279
Fold-5	0.174	0.176	0.179	0.195	0.173	0.167	0.166	0.261	0.266	0.253
Average	0.178	0.181	0.182	0.196	0.179	0.179	0.186	0.264	0.601	0.254

Artificial Neural Network or Sequential Neural Network

Input shape	Hidden layer 1	Hidden layer 2	Output layer
(20,)	size = 32	size=32	Size= 1

Testing result (Accuracy)						
Model with Adam	0.8305					
Model with SGD	0.8297					
Model with RMSprop	0.8254					

FEATURE IMPORTANCE (PART - 1)

Decision Tree Feature Importance

Random Forest Feature Importance

FEATURE IMPORTANCE (PART - 2)

XGBoost Feature Importance

Top 3 important features:

loc: lines of code

rfc: response for class
cam: methods of class

REFERENCES

- [1] A., Mabayoje, Abdullateef Balogun, Amos Bajeh, and Badamasi Musa. "SOFTWARE DEFECT PREDICTION: EFFECT OF FEATURE SELECTION AND ENSEMBLE METHODS" 3 (September 10, 2018): 518–22.
- [2] Sun, Zhongbin, Qinbao Song, and Xiaoyan Zhu. "Using Coding-Based Ensemble Learning to Improve Software Defect Prediction." *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 42, no. 6 (November 2012): 1806–17. https://doi.org/10.1109/TSMCC.2012.2226152.
- [3] Balogun, Abdullateef, Amos Bajeh, Victor Orie, and Ayisat Yusuf-Asaju. "Software Defect Prediction Using Ensemble Learning: An ANP Based Evaluation Method." *FUOYE Journal of Engineering and Technology* 3 (September 1, 2018). https://doi.org/10.46792/fuoyejet.v3i2.200.