ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

支持 PD 的多快充协议双口充电解决方案

1. 概述

SW3518S 是一款高集成度的多快充协议双口充电芯片,支持 A+C 口任意口快充输出,支持双口独立限流。其集成了 5A 高效率同步降压变换器,支持 PPS/PD/QC/AFC/FCP/SCP/PE/SFCP/VOOC 等多种快充协议,最大输出 PD 100W(20V@5A),CC/CV 模式,以及双口管理逻辑。外围只需少量的器件,即可组成完整的高性能多快充协议双口充电解决方案。

2. 应用领域

- 车充
- 适配器
- 插排

3. 规格

• 同步降压变换器

- ▶ 输出电流高达 5A
- ➤ 输入电压范围 6~40V
- ▶ 支持 CC/CV 模式
- ▶ 支持双口独立限流
- ▶ 支持线损补偿
- ▶ 支持温度控制

• 快充协议

- ➤ 支持 PPS/PD3.0/PD2.0
- ▶ 支持 QC4+/QC4/QC3.0/QC2.0
- ▶ 支持 AFC
- ▶ 支持 FCP
- ▶ 支持 SCP
- ➤ 支持 PE2.0/PE1.1
- ▶ 支持 SFCP
- ▶ 支持 VOOC

• Type-C 接口

- ▶ 内置 USB Type-C 接口逻辑
- ➤ 支持 DFP/Source 角色

· BC1.2 模块

- ➤ 支持 BC1.2 DCP 模式
- ▶ 支持苹果/三星大电流充电模式 识别

• 快充指示灯

▶ 内置快充指示灯驱动

保护机制

- ▶ 软启动
- ▶ 输入过压保护
- ▶ 输入欠压保护
- ▶ 输出过流保护
- ▶ 输出短路保护
- ▶ 过温保护
- · I2C接口
- QFN-28(4x4mm) 封装

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

4. 功能框图

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

5. 引脚定义及功能描述

5.1 引脚定义

5.2 引脚描述

Pin	Name	Function Description	
1	CC2	Type-C 配置通道 2。	
2	CC1	Type-C 配置通道 1。	
3	DPC	Type-C 口 DP 信号。	
4	DMC	Type-C 口 DM 信号。	
5	FLED	快充指示。	
6	CSPC	Type-C 口输出电流检测正端。	
7	CSNC	Type-C 口输出电流检测负端。	
8	CSNA	Type-A 口输出电流检测负端。	
9	CSPA	Type-A 口输出电流检测正端。	
10	VBUSC	Type-C 口负载接入检测引脚。	
11	VBUSA	Type-A 口负载接入检测引脚。	
12	VDD	内部工作电源。	

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

13	DGND	数字地。	
14	VDRV	驱动电源。	
15	BST	上N管驱动 Bootstrap 引脚。	
16	LGATE	下 N 管驱动信号。	
17	HGATE	上N管驱动信号。	
18	SW	开关节点电压检测引脚。	
19	VIN	输入电源。	
20	SDA	I2C 数据信号。	
21	SCK	I2C 时钟信号。	
22	GATEC	Type-C 口通路控制。	
23	GATEA	Type-A 口通路控制。	
24	NTC	板级温度检测引脚。	
25	COMP	外部补偿引脚。	
26	IDA	Type-A 口 ID 认证。	
27	DPA	Type-A 口 DP 信号。	
28	DMA	Type-A 口 DM 信号。	
	EPAD	散热 PAD,接地。	

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VIN	-0.3	40	V
输出电压	CSPA/CSNA/CSPC/ CSNC/VBUSA/VBUSC	-0.3	22	V
SW 管脚电压	SW	-0.3	40	V
BST/HGATE 管脚电压	BST/HGATE-SW	-0.3	6	V
通路控制电压	GATEA/GATEC	-0.3	27	V
其它管脚电压		-0.3	6	V
节温		-40	+150	°C
存储温度		-60	+150	°C
ESD (HBM)		-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

7. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VIN	5		36	V

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

8. 电气特性

(V_{IN} = 12V, T_A = 25°C, 除特别说明。)

供电电源 VIN 输入电源 VIN	IN	TYP	MAX	UNIT
VIN 输入欠压门限 V _{IN_UVLO} VIN 输入电压下降 4. VIN 输入欠压门限迟滞 V _{IN_UVLO_HYS} VIN 输入电压上升 0.8 VIN 输入过压门限 V _{IN_OVP} VIN 输入电压上升 3e VIN 输入过压门限迟滞 V _{IN_OVP_HYS} VIN 输入电压下降 1. VDD 输出电压 V _{DD} V _{IN} =12V 4. VDD 输出电流 V _{DRV} V _{IN} =12V 4. VDRV 输出电压 V _{DRV} V _{IN} =12V 4. 空载电流 IQ V _{IN} =12V, I _{OUT} =0mA 4.				
VIN 输入欠压门限迟滞 VIN_UVLO_HYS VIN 输入电压上升 0.8 VIN 输入过压门限 VIN_OVP VIN 输入电压上升 36 VIN 输入过压门限迟滞 VIN_OVP_HYS VIN 输入电压下降 1. VDD 输出电压 VDD VIN=12V 4. VDD 输出电流 VDRV VIN=12V 4. VDRV 输出电压 VDRV VIN=12V 4. 空载电流 IQ VIN=12V, IOUT=0mA 4.	;		36	V
VIN 输入过压门限 VIN_OVP VIN 输入电压上升 36 VIN 输入过压门限迟滞 VIN_OVP_HYS VIN 输入电压下降 1. VDD 输出电压 VDD VIN=12V 4. VDD 输出电流 VDRV VIN=12V 4. VDRV 输出电压 VDRV VIN=12V 4. 空载电流 IQ VIN=12V, IOUT=0mA 4.	9	5	5.1	V
VIN 输入过压门限迟滞 VIN_OVP_HYS VIN 输入电压下降 1. VDD 输出电压 VDD VIN=12V 4. VDD 输出电流 IDD VIN=12V VIN=12V VDRV 输出电压 VDRV VIN=12V 4. 空载电流 IQ VIN=12V, IOUT=0mA	35	1	1.15	V
VDD 输出电压 VDD VIN=12V 4. VDD 输出电流 IDD VIN=12V VDRV 输出电压 VDRV VIN=12V 4. 空载电流 IQ VIN=12V, IOUT=0mA	6	37.5	39	V
VDD 输出电流 IDD VIN=12V VDRV 输出电压 VDRV VIN=12V 4. 空载电流 IQ VIN=12V, IOUT=0mA	2	1.5	1.8	V
V DRV 输出电压 V_{DRV} V_{IN} =12 V 4. 空载电流 I_Q V_{IN} =12 V , I_{OUT} =0 m A	9	5	5.1	V
空载电流 IQ V _{IN} =12V, I _{OUT} =0mA	İ	50		mA
	9	5	5.1	V
降压变换器		2	4	mA
[] [] [] [] [] [] [] [] [] []				
开关频率 F _{CHG} 11	0	125	140	KHz
V _{OUT} =5V, I _{OUT} =0V 5.	0	5.1	5.2	V
$V_{OUT}=9V$, $I_{OUT}=0V$ 8.	9	9.1	9.3	V
输出电压 Vout Vout=12V, Iout=0V 11	.7	12.1	12.3	V
V _{OUT} =15V, I _{OUT} =0V 14	.6	15.1	15.4	V
V _{OUT} =20V, I _{OUT} =0V 19	.5	20.1	20.5	V
Γ_{CC} 限流电流 Γ_{CC} $\Gamma_{CS}=5$ $\Gamma_{CS}=$	0	3.3	3.6	A
RCS	4	2.7	3.0	A
线损补偿 V _{OUT_WDC} R _{CS} =5mΩ 50	0	65	80	mV/A
恒温温度值 T _{REGU_CHG} 10)5	120	135	$^{\circ}$ C
轻载检测				
轻载电流检测门限值 I _{LIGHT_LOAD} R _{CS} =5mΩ 10	0	15	25	mA
轻载检测关机时间 t _{LIGHT_LOAD} 1.	5	2	3	S
Type-C 接口				
CC 管脚输出电流 I _{CC_SOURCE} Power Level=3.0A 31	0	330	350	uA
BC1.2				
DP/DM 电压 DP Apple 2.4A Mode 2.5	55	2.7	2.85	V

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

	DM	Apple 2.4A Mode	2.55	2.7	2.85	V	
PE	PE						
电流门限	I_{REF}		150	250	350	mA	
退出时间	t _{PLUG_OUT}		160	200	240	mS	
I2C							
速率	f_{CLK}			100	400	Kbit/S	
热关机保护							
过热关机门限	T _{SHDT}	温度上升	135	150	165	$^{\circ}$	
过热关机迟滞	T _{SHDT_HYS}	温度下降	35	50	65	$^{\circ}$	

9. 功能描述

9.1 降压变换器

SW3518S 集成了高效率的开关降压变换器。采用外置双 N 功率管,负载能力可达 5A,效率>95% (VIN=12V, VOUT=5V, IOUT=5A)。

降压变换器开关频率 125KHz。采用 PFM/PWM 自动切换模式,轻载时工作在 PFM 模式,中载及重载时工作在 PWM 模式。

降压变换器支持 CC/CV 模式。当负载电流小于 CC 限流时,降压电路输出设定电压。当负载达到 CC 限流值时,将限定输出电流在 CC 限流值,输出电压将下降。单口输出时,CC 限流 3.3A; 双口同时输出时,每个口单独限流 2.7A。

降压变换器支持线损补偿。输出补偿电压根据负载电流线性增加,增加电压为65mV/A。

降压变换器支持温度控制,当芯片温度超过 120℃时,输出电压开始下降;如果继续过温超过 150℃,则芯片进入过温关机模式。进入过温关机模式后,温度降低到过温门限迟滞以下,芯片自动开机,降压变换器启动回到默认状态。

降压变换器包含了输入过压/输入欠压/输出过流/输出短路等保护。

9.2 通路控制

SW3518S 支持 Type-A+Type-C 双口输出,任意口支持快充输出。

Type-A 口支持 QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP/VOOC 快充输出。

Type-C 口支持 PPS/PD3.0/PD2.0/QC4+/QC4/QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP 快充输出。

默认状态下, Type-A 口输出 5V, Type-C 无输出。单口输出时,支持快充输出。双口输出时,支持5V 输出,同时各口单独限流。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

负载接入将打开已关闭的 Type-A 口对外放电。在单口输出时,空载检测后 Type-A 口恢复到默认的 5V 输出;多口时,空载检测将关闭 Type-A 口。空载检测电流门限约 15mA。UFP 设备接入打开 Type-C 口对外放电,UFP 设备移出关闭 Type-C 口,同时 Type-C 口空载时也会关闭 Type-C 口通路。

9.3 Type-C 接口

SW3518S 集成了 Type-C 接口控制器,支持 DFP/Source 角色,当 UFP 设备接入时自动对其放电,UFP 设备移出时自动关闭通路。

当 UFP 设备连接时, SW3518S 将会在 CC 引脚上广播 3A 电流能力。

9.4 PD 快充

SW3518S 集成了 PPS/PD3.0/PD2.0 快充协议, PPS 输出最大支持 3.3~21V@3A, PD3.0/PD2.0 输出支持 5V/9V/12V/15V@3A、20V@5A, 最大支持 100W 输出。

9.5 QC 快充

SW3518S 集成了 QC 快充协议,支持 QC4+/QC4/QC3.0/QC2.0,支持 Class A/Class B。QC2.0 输出支持 5V/9V/12V/20V。QC3.0 输出支持 3.6V~20V,200mV/Step。

QC2.0/QC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入设备		SW3518S		
DP	DM	VOUT	Note	
3.3V	3.3V	20V		
0.6V	0.6V	12V		
3.3V	0.6V	9V		
0.6V	3.3V	连续模式	0.2V/Step	
0.6V	GND	5V		

9.6 AFC 快充

SW3518S 集成了 AFC 快充协议,输出支持 5V/9V/12V。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

9.7 FCP 快充

SW3518S 集成了 FCP 快充协议,输出支持 5V/9V/12V。

9.8 SCP 快充

SW3518S 集成了 SCP 快充协议,输出支持 5V@4.5A、4.5V@5A。

9.9 PE 快充

SW3518S 集成了 PE2.0 及 PE1.1 快充协议, PE2.0 输出支持 5V~20V, 500mV/Step。PE1.1 输出支持 5V/7V/9V/12V。

9.10 SFCP 快充

SW3518S 集成了 SFCP 快充协议,输出支持 5V/9V/12V。

9.11 VOOC 快充

SW3518S 集成了 VOOC 快充协议,输出支持 5V@4.25A。

9.12 BC1.2 功能

SW3518S 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.13 快充指示灯

SW3518S 内部集成快充指示灯驱动 FLED Pin,在快充输出时,FLED 拉低,打开快充指示灯。

9.14 ADC

SW3518S 内部集成了 12 bit ADC,可采集输入电压/输出电压/Type-A 口输出电流/Type-C 口输出电流/板级温度。板级温度通过采集 103AT NTC 电阻的电压进行折算,通过串接 2K 电阻,提高高温时的检测精度。具体来说:

ADC 通路	范围	Step
--------	----	------

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

输入电压	0~40.96V	10mV
输出电压	0~24.576V	6mV
Type-A 口输出电流	0~10.24A	2.5mA
Type-C 口输出电流	0~10.24A	2.5mA
NTC 电压	0~2.048V	0.5mV

9.15 I2C 接口

SW3518S 支持 I2C 接口,支持 100K/400K 通信速率。Master 可通过 I2C 接口读取芯片的状态信息。读操作:

Slave address: 0x3C Register address: 0xB0

写操作:

Slave address: 0x3C Register address: 0xB0

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

10. 典型应用电路图

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

11. 机械尺寸

11.1 封装图

11.2 封装尺寸

C	Dimension in Millimeters						
Symbol	MIN	NOM	MAX				
A	0.70	0.75	0.80				
A1	0	0.02	0.05				
b	0.15	0.20	0.25				
С	0.18	0.20	0.25				
D	3.90	4.00	4.10				
D2	2.30	2.40	2.50				
e		0.40BSC					
Nd		2.40BSC					
Е	3.90	4.00	4.10				
E2	2.30	2.40	2.50				
Ne	2.40BSC						
L	0.35	0.40	0.45				
h	0.30	0.35	0.40				

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

12. 版本历史

- V1.0 初始版本;
- V1.1 修改输出电压范围;
- V1.2 修改线补值;