BOOK CHAPTER PRESENTATION: LEARNING, REGRET MINIMIZATION AND EQUILIBRIA.

VISHVAS VASUKI

Part 1. Outline

1. Intro about the paper

Book chapter presentation: Learning, Regret Minimization and Equilibria. [1] Authors: Avrim Blum, Yishay Mansour. A few results appeared first in COLT 2005: From external to internal regret.

We will see some important results and techniques from this work.

2. Plan

20 minutes available. 8 minutes for introducing the model. 10 minutes for proving result about making an internal regret alg from an external regret alg. 2 minutes remarking about connection with game theory and equilibria.

Part 2. Introducing the model

3. Players, strategies, utilities

Players $P = \{p_i\}$. A strategy is not a move but an algorithm to make moves. S_i : strategy set of p_i . Strategy vector (strategy profile): $s = (s_1, ..., s_n)$. s_{-i} : s sans

3.1. Mixed/randomized strategies. Independent mixed strategy of i: a Prob Distr over $S_i:D_i$.

Mixed strategy profile, perhaps p_i coordinated: Probability distribution over $\times_i S_i$: D.

- 3.2. Utility. Preference ordering of outcomes for i: Cost, utility of strategy: $c_i(s) = -u_i(s).$
- 3.2.1. ϵ dominated strategy. s_i dominated by s_i' if: $u_i(s_i', s_{-i}) \geq u_i(s_i, s_{-i}) + \epsilon$.

4. Repeated games with partial info about utilities

 p_1 in uncertain environment (p_{-1}) ; utilities of p_{-1} not known. Eg: Choosing a route to go to school.

4.1. Model. Same game repeated T times; At time t: p_1 uses online alg H to pick distr $D_H^{(t)}$ over S_1 . p_1 picks action $k_1^{(t)}$ from $D_H^{(t)}$. Loss/ cost function for p_1 : $c_1: \times_i S_i \to [0,1]$. $c_1^{(t)}(k_1^{(t)}) := c_1(k_1^{(t)}, D_{-1}^{(t)}), c_1(D) := E_{x \sim D}[c_1(x)]$.

- 4.1.1. Model with full info about costs. H gets cost vector $c_1^{(t)} \in [0,1]^{|S_1|}$, pays cost $c_1(D_H^{(t)}, D_{-1}^{(t)}) = E_{k_1^{(t)} \sim D_H^{(t)}}[c_1(k_1^{(t)}, D_{-1}^{(t)})] = E_{k_1^{(t)} \sim D_H^{(t)}}[c_1^{(t)}(k_1^{(t)})].$ Total loss for H: $L_H^{(T)} = \sum c_1(D_H^{(t)}, D_{-1}^{(t)}).$
- 4.1.2. Model with partial info about costs. Aka Multi Armed Bandit (MAB) model. p_1 (or H) pays cost for $k_1^{(t)}$: $c_1(k_1^{(t)}, D_{-1}^{(t)}) = c_1^{(t)}(k_1^{(t)})$. Total loss for H: $L_H^{(T)} = \sum c_1(k_1^{(t)}, D_{-1}^{(t)})$.
- 4.1.3. Goal. Minimize $\frac{L_2^{(T)}}{T}$. Maybe other p_i do the same. $D_{-1}^{(t)}$ and $c_1^{(t)}$ can vary arbitrarily over time; so, model is adversarial.
- 4.2. **Regret analysis.** H incurs loss $L_H^{(T)}$; p_1 sees simple policy π would have had much lower loss. Comparison class of algs G. π best alg in G: $L_{\pi}^{(T)} = min_{g \in G} L_g^{(T)}$. Regret $R_G = L_H^{(T)} L_{\pi}^{(T)} = max_{g \in G} (L_H^{(T)} L_g^{(T)})$.
- 4.2.1. Goal. Minimize R_G .
- 4.2.2. Lower bound for regret wrt all policies. $G_{all} = \{g : T \to S_1\}$: \exists sequence of loss vectors $c_1^{(t)} : R_{G_{all}} \geq T(1 |S_1|^{-1})$. So, must restrict G.
- 4.3. **External regret.** Aka Combining Expert Advice. $G = \{i^T : i \in S_1\}$, policies where all $k_1^{(t)}$ are the same; π is best single action. $L_{\pi}^{(T)} = \sum c_1(\pi, D_{-1}^{(t)})$.

If H has low external regret bound: H matches performance of offline alg. [Find proof]. H comparable to optimal prediction rule from some large hyp class H. [Find proof].

- 4.3.1. Rand Weighted majority alg (RWM). Suppose $c_1^{(t)} \in \{0,1\}^{|S_1|}$. Treat S_1 as a bunch of experts: Want to put as much wt as possible on best expert. Let $|S_1| = N$. Init weights $w_i^{(1)} = 1$, total wt $W^{(1)} = N$, $Pr_{D_H^{(1)}}(i) = N^{-1}$.
- If $c_1^{(t-1)}(i) = 1$, $w_i^{(t)} = w_i^{(t)}(1-\eta)$, $Pr_{D_1^{(t)}}(i) = \frac{w_i^{(t)}}{W^{(t)}}$. [Find proof]. Like analysis of mistake bound of panel of k experts in colt ref. For $\eta < 2^{-1}$, $L_H^{(T)} \leq (1+\eta) \min_{i \in S_1} L_i^{(t)} + \frac{\ln N}{\eta}$. Any time H sees signifi-

For $\eta < 2^{-1}$, $L_H^{(T)} \leq (1+\eta) \min_{i \in S_1} L_i^{(t)} + \frac{\ln N}{\eta}$. Any time H sees significant expected loss, big drop in W. $W^{(T+1)} \geq \max_i w_i^{(T+1)} = (1-\eta)^{\min_i L_i^{(T)}}$. [Incomplete].

For $\eta = \min\left\{\sqrt{\ln N/T}, 2^{-1}\right\}$: $L_H^{(T)} \leq \min_i L_i^{(T)} + 2\sqrt{T \ln N}$. If T unknown, use 'guess and double' with const loss in regret. [**Find proof**].

- 4.3.2. Polynomial weights alg. Extension of RWM to $c_1^{(t)} \in [0,1]^{|S_1|}$. Wt update is $w_i^{(t)} = w_i^{(t)} (1 \eta c^{(t-1)}(i))$. $L_H^{(T)} \leq \min_i L_i^{(T)} + 2\sqrt{T \ln N}$. [Find proof].
- 4.3.3. Rand Alg Lower bounds. If $T<\log_2 N$: For any online alg H, \exists stochastic generation of losses: $E[L_H^{(T)}]=T/2$, but $\min_i L_i^{(t)}=0$: at t=1 let N/2 actions get loss 1; at time t: half the actions which had a loss 0 at time t-1 get loss 1; so, probability mass on actions with $0=2^{-1}$.

If N=2, \exists stochastic generation of losses: $E[L_H^{(T)} - \min_i L_i^{(T)}] = \Omega(\sqrt{T})$. [Find **proof**].

4.3.4. Convergence to equilibrium: 2 player constant sum repeated game. All p_i use alg H with external regret R; Value of game: (v_i) . Avg loss: $\frac{L_H^{(T)}}{T} \leq v_i$. [Find **proof**]. If $R_G = O(\sqrt{T})$, convergence to v_i .

Part 3. Models to be introduced if there is time

5. Nash equilibrium

Defn: D or $\{D_i\}$ where even if all p_i know all D_i , no treachery profitable. Maybe D not unique. So each p_i can decide D_i if he knows D_{-i} .

- 5.1. Randomized (mixed) strategies. Not Pure strategy s, but distr D. Risk neutral p_i maximize $u_i(D) = E_{s \sim D}[u_i(s)]$, with $Pr_{s \sim D}(s) = \prod_i Pr_{s_i \sim D_i}(s_i)$.
- 5.2. Existance of Equilibria. Any game with $|P|, |S_i|$ finite, \exists mixed strategy Nash equilib. [Find proof].
- 5.3. ϵ Nash equilib. A special case: $\forall i, D' : u_i(D) \geq u_i(D'_i, D_{-i}) \epsilon$

6. Correlated equilibrium D

(Aumann). Coordinator has distr D, samples s from D, tells each p_i its s_i . p_i not told s_j , but knows it is correlated to s_i ; so knows all $Pr(s_{-i}|s_i)$. D known to every p_i . D is correlated equilib if it is not in any p_i 's interest to deviate from s, assuming other p_i follow instructions:

$$E_{s_{-i} \sim D|s_i}[u_i(s_i, s_{-i})] \ge E_{s_{-i} \sim D|s_i}[u_i(s_i', s_{-i})].$$

Mixed strategy Nash equilibrium is the special case where D_i are independently randomized (with diff coins).

- 6.1. Regret defn. $f_i: S_i \to S_i$, regret $r_i(s, f) = u_i(f_i(s_i), s_{-i}) u_i(s)$: $E_{s \sim D}[r_i(s, f_i)] \ge 0$.
- 6.2. ϵ correlated equilibrium. $E_{s \sim D}[r_i(s, f_i)] \leq \epsilon$.
- 6.3. Traffic light/ Chicken. $C = \begin{pmatrix} (-100, -100) & (1,0) \\ (0,1) & (0,0) \end{pmatrix}$. s = (1,2) and (2,1) stable; so coordinator picks one randomly. This correlation increases payoff as the low expected utility mixed strategy $D_i = (101^{-1}, 1 101^{-1})$ is avoided.

Part 4. Important results

6.4. Low external regret alg in partial cost info model. Exploration vs exploitation tradeoff in algs.

Alg MAB: Divide time T into K blocks; in each time block $\tau+1$: explore and get cost vector: execute action i at random time to get vector of RV's: $\hat{c}^{(\tau)}$, also exploit: use distr $D^{(\tau)}$ as strategy; pass $\hat{c}^{(\tau)}$ to full info external regret alg F with ext regret $R^{(K)}$ over K time steps; get distr $D^{(\tau+1)}$ from F.

Max Loss during exploration steps: NK. RV for total loss of F over K time blocks: $\hat{L}_F^{(T)} = \frac{T}{K} \sum_{\tau} p^{\tau} c^{\tau} \leq \frac{T}{K} (min_i \hat{L}_i^{(K)} + R^{(K)})$. Taking expectation, $L_{MAB}^{(T)} = E[\hat{L}_{MAB}^{(T)}] = E[\hat{L}_F^{(T)} + NK] \leq \frac{T}{K} (E[min_i \hat{L}_i^{(K)}] + R^{(K)}) + NK \leq \frac{T}{K} (min_i E[\hat{L}_i^{(K)}] + R^{(K)}) + NK \leq min_i L_i^{(T)} + \frac{T}{K} R^{(K)} + NK$.

Using the $O(\sqrt{K \log N})$ alg, with $K = (\frac{T}{K}R_K)$, we get $L_{MAB}^{(T)} \leq min_iL_i^{(T)} + O(T^{2/3}N^{1/3}\log N)$.

- 6.5. Swap regret. Comparison alg (H,g) is H with some swap fn $g: S_1 \to S_1$.
- 6.5.1. Internal regret. A special case: Swap every occurance of action b_1 with action b_2 . Modification fn: $switch_i(k_i, b_1, b_2) = k_i$ except $switch_i(b_1, b_1, b_2) = b_1$.
- 6.5.2. Low Internal regret alg using external regret minimization algs. Let $N = |S_i|$; $(A_1,..,A_N)$ copies of alg with external regret bound R. Master alg H gets from A_i distr $q_i^{(t)}$ over S_i ; makes matrix $Q^{(t)}$ with $q_i^{(t)}$ as rows; finds stationary distr vector $p^{(t)} = p^{(t)}Q^{(t)}$: Picking $k_i \in S_i$ same as picking A_j first, then picking $k_i \in S_i$; gets loss vector $c^{(t)}$; gives A_i loss vector $p_i^{(t)}c^{(t)}$.
- $\forall j: L_{A_i} = \sum_t p_i^{(t)} \langle c^{(t)}, q_i^{(t)} \rangle \leq \sum_t p_i^{(t)} c_j^{(t)} + R. \text{ Also, Sum of percieved losses} = \text{actual loss. So, for any swap fn g, } L_H^T \leq \sum_i \sum_t p_i^{(t)} c_{g(i)}^{(t)} + NR = L_{F,g}^{(T)} + NR.$ Thence, using polynomial weights alg, swap regret bound $O(\sqrt{|S_1|T \log |S_1|})$.

6.5.3. Convergence to Correlated equilibrium. Every p_i uses strategy with swap regret $\leq R$: then empirical distr Q over $\times_i S_i$ is an $\frac{R}{T}$ correlated equilibrium. R = $L_H^{(T)} - L_{H,g}^{(T)} = \sum_t E_{s^{(t)} \sim D^{(t)}}[r_i(s,g)] = TE_{s \sim Q}[r_i(s,g)].$ Convergence if all players have sublinear swap regret.

6.5.4. Frequency of dominated strategies. p_1 uses alg with swap regret R over time T; w: avg over T of prob weight on ϵ dominated strategies; so $\epsilon wT \leq R$; so $w \leq \frac{R}{T_{\epsilon}}$. If alg minimizes external regret using polynomial weights alg, freq of doing dominated actions tends to 0.

References

[1] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory. Cambridge University Press, New York, NY, USA, 2007.