Definition of Recursion ... see Recursion

Recursion

Self help

Simply Recursive ...

* These notes on recursion are the basic concepts you will need to answer A4 question 2

* More detailed notes on recursion including the concept of "tail recursion as well as animated slides will be coming out

next week ... stay tuned

Drawing Hands by M. C. Escher lithograph January 1948

Recursion

- * *Definition*: When a subroutine **invokes** *itself*.
 - * Or when a series of subroutines eventually invoke the first subroutine again.
- * The intent is to break a large problem into smaller and simpler problems. These smaller solutions are then combined to solve the larger problem.

Example of Recursion

* Factorials can be calculated recursively.

$$n! = n \times (n-1) \times (n-2) \times 1$$

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \times (n-1)! & \text{if } n > 0 \end{cases}$$

* This part suggests recursion. The calculation is done with reference to itself.

Factorial Example

```
4! = 4 \times 3!
= 4 \times (3 \times 2!)
= 4 \times (3 \times (2 \times 1!))
= 4 \times (3 \times (2 \times (1 \times 0!)))
= 4 \times (3 \times (2 \times (1 \times 1)))
```

* Three levels of recursion

Recursion

- * Every recursive process requires two things:
- 1. A **base case** that is processed *without* recursion. This requires an **ending condition** that knows when to apply the base case.
- 2. A method that reduces a particular case to one or more smaller cases. This requires a **recursive call**.

Recursion

- * In the factorial example the base case is
 - * n! = 1 if n = 0 no further recursion is needed
- * and the method to reduce a case to a smaller one is
 - $n! = n \times (n-1) \text{ if } n > 0$

* Now, let's translate this to C code...

factorial Subroutine

```
int factorial ( int n ) {
   if ( n == 0 ) {
      return ( 1 );
   else {
      return ( n * factorial ( n - 1) );
   }
      Recursive Call
```

The call to factorial from factorial is recursive.

When executed this will continue until the if statement is true (i.e. n == 0).

```
int factorial ( 4 ) {
   if ...
                                    4*3*2*1*1
   else
      return (4 * factorial(4-1));
          if ...
                                         3*2*1*1
          else
             return (3 * factorial(3-1));
                 if ...
                                                2 * 1 * 1
                else
                    return (2 * factorial(2-1));
                    if ...
                                                    1 * 1
                    else
                       return (1 * factorial(1-1));
                           if (n == 0)
                              return (1);
```

Why Use Recursion?

- * Recursive solutions can be **concise** and *elegant*.
 - * Small amount of code required.
- * **But**, it requires that the programmer understand the problem and the recursive solution *very well*.
- * What problems are candidates for recursion?
 - * Problems that are readily subdivided can be solved recursively in a small amount of code.
 - * Problems that have a long chain of partial results can benefit from recursion.

Other Recursive Algorithm Examples

- * Quicksort is a divide and conquer algorithm.
- * A large array is divided into two smaller sub-arrays called low and high.
- * The sub-arrays are then recursively sorted.

Quicksort Algorithm

- * Pick an element, called a **pivot**, from the array.
- * Partition the array by reordering it so that all elements with values **less** than the **pivot** come before the pivot and all elements **greater** than the **pivot** come after it..
- * Recursively apply the above steps to the two sub-array created by the pivot: the sub-array of **lesser** values and the sub-array of elements of **greater** values.

Select the last element to be the **pivot**.

Compare the **pivot** to other elements and put **greater** element after it.

After the **partition** is finished - *recursively* **partition** each sub-array on either side of the position of the **pivot**.

```
#include <stdio.h>
#include <stdlib.h>
void quickSort ( int *arr, int low, int high ) {
   int pivot, i, temp;
   /*
    * Select a pivot element
    * - the last element
    */
   pivot = high;
   if ( low < high ) {</pre>
      i = low;
      while ( i < pivot ) {</pre>
         /*
          * Go from the lower boundary until you
          * get a number greater than the pivot index
          */
         while ( arr[i] <= arr[pivot] && i < pivot ) {</pre>
           1++;
         }
```

```
/*
    * If you find an element that is higher than the pivot
       swap with the element in front of the pivot
   */
   temp = arr[i];
   arr[i] = arr[pivot-1];
   arr[pivot-1] = temp;
   /*
       Swap the pivot with the element in front of it
   */
   temp = arr[pivot];
   arr[pivot] = arr[pivot-1];
   arr[pivot-1] = temp;
   pivot = pivot - 1;
/*
   Recursion: perform quickSort for the two sub-arrays,
   one to the left of pivot and one to the right of the pivot
*/
quickSort(arr, low, pivot-1);
quickSort(arr, pivot+1, high);
```

}

```
Generating the numbers to be sorted:
1 45 89 53 33
quicksort (0, 4)
1 53 89 33 45
1 89 33 53 45
1 33 89 53 45
quicksort (0, 1)
1 33
quicksort (0,0)
quicksort (1, 1)
quicksort (2, 4)
53 45 89
45 53 89
quicksort (2, 2)
quicksort (3, 4)
53 89
quicksort (3, 3)
quicksort (4,4)
Sorted array:
 1 33 45 53 89
( 1 45 89 53 33 )
```

```
Generating the numbers to be sorted:
4 87 32 21 5 25 11 59 4 18
quicksort (0, 9)
4 4 32 21 5 25 11 59 18 87
4 4 59 21 5 25 11
                 18 32 87
4 4 11 21 5 25 18 59 32 87
4 4 11 25 5 18 21 59 32 87
4 4 11 5 18 25 21 59 32 87
4 4 11 5 18 25 21 59 32 87
quicksort (0, 3)
4 4 5 11
quicksort (0, 2)
4 4 5
quicksort (0, 1)
4 4
quicksort (4, 9)
18 25 21 59 32 87
quicksort (4,8)
18 25 21 32 59
quicksort (4, 7)
18 25 21 32
quicksort (4,6)
                                 Sorted array:
18 21 25
                                   4 4 5 11 18 21 25 32 59 87
quicksort (4,5)
                                 ( 4 87 32 21 5 25 11 59 4 18 )
18 21
```

Towers of Hanoi

- * Towers of Hanoi is a puzzle that consists of three posts, and a set of disks of different sizes that can be stacked on the posts.
- * At the start, all the disks are stacked on one post by size (largest on bottom).
- * The challenge is to transfer the stack from the first post to the third, using the second post for temporary storage.
- * Only one disk can be moved at a time, and a larger disk can never be put on top of a smaller disk.

The Recursive Algorithm

- * Step 1. Move the stack of all but the largest disk from the first to the second post.
- * Step 2. Then move the largest disk from the first post to the third post.
- * Step 3. Then move the stack from the second to the third post.
- * Steps 1 and 3 are recursive.


```
void hanoi (int height, int one, int two, int three)
    if (height <= 0) {
      return;
    hanoi ( height-1, one, three, two );
    printf ("Move disk %d from %d to %d\n", height, one, three);
    hanoi ( height-1, two, one, three);
Solution to Towers of Hanoi with 3 disks: hanoi (3, 1, 2, 3)
Move disk 1 from 1 to 3
Move disk 2 from 1 to 2
Move disk 1 from 3 to 2
Move disk 3 from 1 to 3
Move disk 1 from 2 to 1
Move disk 2 from 2 to 3
Move disk 1 from 1 to 3
```

But when is recursion not the answer?

* The Fibonacci sequence can be defined as follows:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2} \text{ for } n >= 2$$

* The sequence looks like:

Recursive Fibonacci

```
int fibonacci ( int n ) {
  if ( n <= 0 ) {
      return (0);
  } else if ( n == 1 ) {
     return (1):
  } else {
     return (fibonacci(n-1) + fibonacci(n-2));
```

```
fibonacci(4)
                                2+1
            fibonacci(3)
                                              fibonacci(2)
               1+1
                                                 1+0
                     fibonacci(1)
    fibonacci(2)
                                        fibonacci(1) fibonacci(0)
       1+0
                                          return(1) return(0)
                       return(1)
fibonacci(1) fibonacci(0)
 return(1) return(0)
int main ( int argc, char *argv[] )
                                         $ ./fib 8
                                         0 1 1 2 3 5 8 13 21
   int i, n;
   n = atoi (argv[1]);
   for ( i=0; i<=n; i++ ) {
      printf ( "%d ", fibonacci(i) );
   printf ( "\n" );
   return (0);
```

But...

- * The recursive solution for the Fibonacci sequence is very inefficient.
 - * It requires a large number of function calls.
- * The problem is that we have stated the problem incorrectly. We are not looking to find the *n*th term but are instead looking at a way to construct a sequence.
- * This is better done as an iterative (loop-based) function.

```
int fibonacci ( int n ) {
   int i;
   int oneBack, twoBack, current;
   if ( n <= 0 ) {
    return (0);
   } else if ( n == 1 ) {
     return (1);
   } else {
      twoBack = 0;
      oneBack = 1;
      for ( i=2; i<=n; i++ ) {
         current = twoBack + oneBack;
         twoBack = oneBack;
        oneBack = current;
      return (current);
```