Fallunterscheidungen

Einführung in die Programmierung

Johannes Brauer

2. März 2020

Fallunterscheidungen aus der Mathematik

Zwei Beispiele

Definition der Fakultät

$$n! = \begin{cases} 1, \text{falls } n = 0 \\ n \cdot (n-1)!, \text{falls } n \ge 1 \end{cases}$$

Definition der Fibonacci-Folge

Die Fibonacci-Folge f_1, f_2, f_3, \ldots ist wie folgt definiert:

$$f_1 = 1 \tag{1}$$

$$f_2 = 1 (2)$$

$$f_n = f_{n-1} + f_{n-2} \text{ für } n > 2$$
 (3)

Bedingte Funktionen

Vergleichsausdrücke und Boolesche Ausdrücke

• Numerische Vergleichsausdrücke der Art $a < b, x \geq y \text{ oder } r < s < t$

werden in Racket so aufgeschrieben:

- Die Auswertung ergibt #true oder #false.
- Den Racket-Ausdruck (< r s t) kann man als Abkürzung für

betrachten.

• Neben (and ...) stehen (or ...) und (not ...) zur Verfügung. Die Anzahl der Argumente von and und or ist dabei beliebig groß.

Anwendungsbeispiel

- Wir nennen eine Funktion bedingt, wenn für die Ermittlung ihres Resultats eine Fallunterscheidung erforderlich ist.
- Beispiel: Ein Hersteller für Speicherchips verkauft die Chips nach folgender Preisstaffel:

Stückzahl	Stückpreis [€]
<= 1000	15,00
$> 1000 \text{ und} \le 10000$	12,50
> 10000	9,75

Gesucht: Funktion, die aus der Stückzahl den Stückpreis ermittelt

Racket-Pseudofunktion für Fallunterscheidungen

```
(cond
   [frage antwort]
   ...
   [frage antwort])
(cond
   [frage antwort]
   ...
   [else antwort])
```

- Jede frage muss ein boolescher Ausdruck sein.
- Jede antwort ist ein beliebiger Racket-Ausdruck.
- Das Resultat der cond-Funktion ist die antwort der ersten frage, deren Auswertung #true liefert.
- In der linken Variante von cond muss die Auswertung mindestens einer frage #true liefern.

Entwurf bedingter Funktionen – Regel 6

- Für den Entwurf einer bedingten Funktion sind in der Problembeschreibung alle zu unterscheidenden Fälle zu identifizieren.
- Für die gemäß Regel 3 erforderlichen Beispiele ist für jeden identifizierten Fall mindestens ein Beispiel aufzuschreiben.
- Zusätzlich sind die Grenzfälle (Intervallgrenzen) zu beachten.

Regel 6:

- Für den Funktionsrumpf ist
 - ein cond-Skelett mit je einer Frage-Antwort-Kombination für jeden Fall zu formulieren,
 - für jeden Fall die Frage (Bedingung) zu formulieren,
 - für jeden Fall der Racket-Ausdruck für die Berechnung der Antwort zu ermitteln.

Entwurf der Funktion stueckpreis

Das cond-Skelett

Für das Beispiel des Chipherstellers ergibt sich folgendes Funktionsskelett:

Formulierung der Fragen

Aus der Tabelle für die Preisstaffelung ergeben sich folgende Bedingungen/Fragen:

Für die Beispiele sollten die Grenzfälle 0, 1000 und 10000 sowie Werte aus dem Innern der Intervalle (z. B. 500, 2000, 20000) verwendet werden.

Formulierung der Antworten

Die Ausdrücke für die Berechnung der Antworten ergeben sich direkt aus der Tabelle für die Preisstaffelung:

Vereinfachung der Bedingungen

Nachdem die Funktion getestet wurde, können die Bedingungen vereinfacht werden:

```
(define stueckpreis
  (lambda [stueckzahl]
        (cond
        [(<= stueckzahl 1000) 1500]
        [(<= stueckzahl 10000) 1250]
        [else 975])))</pre>
```

(Die vollständige Funktion stueckpreis steht in Moodle zur Verfügung.) (Aufgaben zu bedingten Funktionen)