

Department of Applied Informatics

Big Data Analysis Academic year 2022-2023

First group work

Delivery date: Wednesday 7 December 2022

You are given a data set, which comes from Kaggle and concerns consumer transactions. Each row relates to one transaction and contains product codes that were purchased. The dataset can be downloaded as follows:

wget snf-803830.vm.okeanos.grnet.gr/data.zip

Your goal is to build a MapReduce program that identifies subsets of products that are frequently purchased, i.e., that appear in at least N transactions, where N is given as a parameter at runtime.

Solve the above problem with Hadoop & MapReduce in distributed configuration, for a) one node, b) two nodes. Set the following transaction values as thresholds: 5000, 10000, 50000

Your solution may consist of more than one MapReduce cycle.

Example of execution for subsets of products purchased at least 2 times:

Input file:	Exit:	
1234	[1, 2, 3]	2
123	[1, 2] 2	
2 2	[1, 3] 2	
1	[1] 3	
	[2, 3] 2	
	[2] 3	
	[3] 2	

For each of the above configurations, perform 5 runs and after subtracting the highest and lowest values, record the average of the 3 remaining runs for each of the following times: Elapsed Time, Average Map Time, Average Reduce Time.

Instructions

- 1 The work is carried out exclusively in groups of 2 students. If you cannot find a partner, please use this link.
- 2 The programming language is Java.

- 3 You will deliver:
 - 3.1 Your code.
 - 3.2 A report that will include:
 - 3.2.1The algorithm you used to solve the problem.
 - 3.2.2 Any limitations and considerations of your solution. 3.2.3 Additional packages, if you used them.
 - 3.2.4The system parameters, if modified.
 - 3.2.5 Graphs and tables with the times you measured. 3.2.6 Commentary on the times you observed.
 - 3.3 The output files with the result of your program for each number of reducers you used.
 - 3.4 The .jar you will create.
- 4 The assignment will be delivered <u>electronically exclusively via openeclass</u> in the form of <u>a</u> zip <u>file.</u>
- 5 To measure the times, you will use the job history server. It starts with the command:

```
~/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
```

And it terminates if we put a stop at the start. You can find it at the following address for your machine:

<MASTER NAME>:19888

6 To run on a node, you can use the following script (without the optional parameters) to terminate the appropriate service:

~/hadoop/sbin/yarn-daemon.sh stop

Indicative References:

- 1 Chapters 2.1-2.3 from the book "Mining from Big Data Sets", also available online at http://www.mmds.org/
- 2 "Data-Intensive Text Processing with MapReduce." Available online at https://lintool.github.io/MapReduceAlgorithms/
- 3 Notes of the course