FANUC

Préconisations* FANUC

Choix robot déterminé par

- ✓ Application
- ✓ Cadence
- ✓ Charge embarquée
- √ Rayon d'action
- ✓ Le process (précision, rigiditée, ...)

Enveloppe de travail

- Pour les robots poly-articulés, il n'y a pas de limitation au niveau de l'utilisation de l'enveloppe de travail lorsqu'ils sont au sol ou au plafond. En angle, veuillez vous référer au livret intégrateur du robot concerné.
- Les performances seront optimums dans l'enveloppe intermédiaire du robot.
- Pour un robot type delta, les zones de travail sont différentes.
- Pour des performances optimums, il est préférable de travailler dans l'enveloppe interne. Voir spécifications de chaque robot.

Charge embarquée

- Une charge embarquée, ce n'est pas qu'une masse en Kg mais c'est une masse avec une position de centre de gravité et des inerties.
- Ces conditions de charge du préhenseur doivent entrer dans les spécifications du robot. Vérification à partir du Payload Checker Intégrateur ou du diagramme de charge du robot.
- Les charges embarquées doivent impérativement être déclarées et activées.
 (Préhenseur à vide et préhenseur en charge)
- Veuillez paramétrer toutes les composantes du PAYLOAD:
 - => Masse en Kg, centre de gravité en cm et inerties en Kg.f.cm.s²
- Les inerties sont prises au centre de gravité et alignées avec le système de coordonnées placé au niveau du flasque robot, l'axe des Z sortant.

Nous insistons sur le fait qu'il est impératif de déclarer correctement la charge embarquée.

Préconisations mécaniques d'installation 1/2

- Installez le robot goupillé sur une plaque ou rehausse.
- Le défaut de planéité de la plaque doit être <1mm/m.
- L'inclinaison du robot par rapport à sa surface d'installation doit être inférieur ou égal à 0.5° /sol. Et ce pour les robots de type M410iB, M410iC, R2000iB, R2000iC, M900iA et M900iB
- Sol bétonné (25Mpa) d'une épaisseur de 250mm minimum.
- Ne pas installer la plaque ou la rehausse robot sur un plan de joint du sol bétonné.
- Dimensionnez le bâti en fonction des charges transmises par le robot au support.
- Préhenseur goupillé sur le flasque robot.

Préconisations mécaniques d'installation 2/2

- Le robot doit évoluer dans un environnement propre, sec (<75% d'humidité) et exempt de graisse, de poussière et de projection d'eau. (Dans le cas contraire, veuillez nous consulter)
- La température ambiante de fonctionnement d'un robot est comprise entre 0 et 45° C maxi. (sur les plages de température suivantes: 0⇔10 et 35⇔45 veuillez suivre les recommendations FANUC – nous consulter)
- Attention, la température ambiante impacte le rendement d'utilisation du robot.

Préconisations Pneumatiques

- La pression de l'alimentation pneumatique des robots ne doit pas dépasser les spécifications propres à chaque robot (se référer aux livrets intégrateurs disponibles sur le site suivant « http://serve-ftp.com »).
- Ne pas faire passer de matière liquide dans les gaines pneumatique.
- L'air entrant dans le robot doit être filtré et sec.

Préconisations Electriques

- Vérification des tensions d'alimentions nominales à l'entrée du sectionneur
- Ne pas utiliser le 24V interne à la baie pour les alimentations des cartes entrées/sorties FANUC ou pour tout autre élément.
- Vérifiez la bonne mise à la terre (masse) de tous les éléments de l'îlot robotisé
- Utilisez les signaux de sécurité (EMGIN, Fence)

Préconisations Accastillage

- Ne pas utiliser le passage des câbles internes du robot pour y rajouter des câbles ou divers tuyaux.
- Utilisez uniquement les points de fixation prévus pour fixer l'accastillage additionnel (ne pas réaliser de perçage dans la fonderie).
- Prendre en compte la masse de l'accastillage supporté par le robot dans « l'Armload » et éventuellement déterminer les efforts reportés sur les différents axes du robot s'ils sont significatifs.
- Pour information, il vous est possible de simuler le mouvement d'un accastillage simple (gaine) sur notre logiciel ROBOGUIDE.

Préconisations Software 1/2

- Paramétrez le montage du robot: Angle, sol, mur, plafond
- Paramétrez les Payloads dans leur intégralité en charge et à vide: Masse,
 CDG, Inerties, Armload et les activer par programme.
- Utilisez systématiquement des repères outils et utilisateurs pour l'apprentissage des trajectoires.
- Ne pas utiliser des ACC supérieur à 100.
- Fluidifiez les mouvements: Utiliser de préférence des valeurs de CNT importantes ou privilégier l'utilisation de l'option Advanced Constant Path (instructions AP et RT)
- Contrôlez le taux de sollicitations des axes: Overheat (MENU, 4 Status, F1 Type, Axis)
 - Utilisez aussi la fonction iRDiadgnostic pour évaluer les sollicitations des axes.

Préconisations Software 2/2

- Evitez les collisions.
- Utilisez la fonction HOLD pour un arrêt immédiat et contrôlé du robot.
- L'arrêt d'urgence n'est pas un mode de marche.
- L'utilisation de l'instruction FINE en fin de ligne d'un point est bien souvent inutile, l'instruction CNT0 suffira dans la plupart des cas et vous gagnerez du temps de cycle!
- L'option "Auto Singularity Avoidance R512" sert à traverser le point de singularité lors d'une trajectoire linéaire mais ne sert pas à travailler sur le point de singularité! (C'est pourquoi, il est préférable de choisir un robot 4 axes ou 5 axes pour une application de palettisation.)

Sollicitations CPU

 Certaines fonctions sollicitent la CPU, il est donc nécessaire de les utiliser et de les optimiser en fonction des besoins.

Attention quand ces diverses fonctions sont combinées:

- Ref Position: attention quand leur nombre est augmenté,
- Space Function: attention quand leur nombre est augmenté,
- IR Vision: En fonction de la fonction utilisée ex: multiple locator tool,
- DCS: Limitation au niveau du nombre de volumes déclarés
- Multitâches Utilisation du Karel avec plusieurs taches: Bien gérer les priorités et l'utilisation de « delay » pour rendre du temps CPU aux autres taches. Ne pas saturer avec des conditions handler trop nombreuses.

Attention également aux boucles folles sans « delay ».

FANUC

Recommendations d'implantation M-3iA

Montage optimum pour un M-3iA/6S

- La plupart des mouvements sont réalisés perpendiculairement au sens d'avance
- Cette implantation utilise l'axe 1 principalement pour les mouvements en Z
- Cela permet de reduire l'effet de la charge liée au moteur J4

Plage de fonctionnement optimum

Sous RG il est possible d'afficher la plage de fonctionnement optimum du robot R=500m.

Enveloppe intérieure ci-dessous:

Il suffit d'ajouter un dressout au robot sous Roboguide.

Au-delà de ce rayon de 550mm, vous êtes susceptible de rencontrer des complications.

NB: la masse embarquée sur ce type de robot DELTA doit être la plus légère possible. (gain de temps sur un même cycle jusqu'à x3 suivant le robot)

En cas de déboitement des bras

- Changez les bush: pièce entre le bras et la rotule
- Remplacez les ressorts cassés ou endommagés

