Welcome to the deep learning specialization

- 1. Neural networks and deep learning
- 2. Improve deep neural networks: hyperparameter tuning, regularization, and optimization
- 3. Structure your machine learning project
- 4. Convolutional neural networks CNN 為確認
- 5. Natural language processing: building sequence models (Recurrent neural network RNN Long short term memory model LSTM) ⇒ NLP

rectified linear regression (ReLu) ____ size >O >> price
以他就是做一个 max(o,y)

Supervised learning with neural networks

	input (7)	output (y)	application
	home features	price	real estate } standard NN Online ads
	ad, user info	dick on adicorn	online ads
		object (1,, 1000)	plate tagging CNN 卷纸神歪网络
	audio	test transcript	Speech recognition & RNN (sequence data)
	English	Chinese	Machine translation)
	image, roldor	position of cor	outonomous driving customer hybrid

bedroom malkobility >> price

Zip code

Zip

Structured data and unstructured data

size. * bedrooms. price audio.imag.

Scale drives deep learning progress

Why is deep learning taking off?

Logistic regression as a neural network

Binary classification

RGB. if aimage is 64 x64 pixel,
$$\rightarrow$$
 3 † 64 x64 matrix unroll all pixel intensity: $X = \begin{cases} 1 \\ 1 \end{cases}$ gives $\begin{cases} 1 \\ 1 \end{cases}$ gives $\begin{cases} 1 \\ 1 \end{cases}$ gives $\begin{cases} 1 \\ 1 \end{cases}$ blue

$$X \in \mathbb{R}^{Nx}$$
 ye [0,1] $Nx = 122.88$, $X \rightarrow Y$

m=m-train. m+ost=# test exmples

$$Y = [y'' \dots y'^m]$$
 $Y \in \mathbb{R}^{1 \times m}$, $Y \in \mathbb{R}^{1 \times m}$

Logistic regression

Given
$$\chi$$
, want \hat{y} (yold \hat{y} = $P(y=1|x)$, $o=\hat{y}=1$ $\chi\in\mathbb{R}^{N_{c}}$

parameter of logistic regression: WERM, DER

Output
$$\hat{y} = \sigma(W^T x + b)$$
 $\sigma(z) = \frac{1}{1 + e^{-z}}$ if $z \log \sigma(z) \ge 1$
Small $\sigma(z) = 0$
 $\chi_0 = 1 \cdot \chi \in \mathbb{R}^{n \times + 1}$ if $z = \sigma(\theta^T x)$ $\Theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_{n y} \end{bmatrix}_{w}$

$$X_0 = 1 \cdot X \in \mathbb{R}^{N\times + 1} \cdot \hat{Y} = \mathcal{T}(\hat{\theta}^T x) \quad \Theta = \begin{bmatrix} \Theta_0 \\ \vdots \\ \Theta_n \end{bmatrix} \leftarrow b$$

Logistic regression cost function

Loss (error) function

Cost function Liquities regression:
$$J(\theta) = -\frac{1}{2m} \left\{ \frac{1}{2m} \frac{1}{2m}$$

Cost function
$$J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} J(\hat{q}^{(i)},q^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} (\hat{q}^{(i)}|_{g_{i}} \hat{q}^{(i)} + (1-\hat{q}^{(i)})|_{g_{i}} (1-\hat{q}^{(i)})$$

The loss function computes the error for a single training examples, and the roct function is the average of the loss function of the

Python and vectorization

Vectorization

$$Z = W^T X + b$$
 $W = \begin{bmatrix} \vdots \\ \end{bmatrix} X = \begin{bmatrix} \vdots \\ \end{bmatrix} W \in \mathbb{R}^{n_x}, X \in \mathbb{R}^{n_x}$
 $V \in \mathcal{R}^{n_x}$
 $V \in \mathcal{R}^{n_x}$
 $V \in \mathcal{R}^{n_x}$

More vectorization examples

Vectors and matrix valued functions

Import numpy as np

$$U = np. exp(v)$$
 $U = np. log(v)$
 $U = np. abs(v)$
 $U = np.$

Vectorizing logistic regression

$$\frac{Z^{(1)}}{Z^{(1)}} = W^{T}X^{(1)} + b \qquad Z^{(m)} = W^{T}X^{(m)} + b$$

$$Q^{(1)} = \mathcal{O}(Z^{(1)}) \qquad Q^{(m)} = \mathcal{O}(Z^{(m)})$$

$$\frac{Z}{Z^{(m)}} = \mathcal{O}(Z^{(m)}) \qquad Q^{(m)} = \mathcal{O}(Z^{(m)})$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = Q^{(m)} + Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = W^{T}X^{(m)} + b \qquad Q^{(m)}$$

$$\frac{Z}{Z^{(m)}} = Q^{(m)}$$

$$\frac{Z}{Z^{(m)}}$$

Vectorizing logistic regression's gradient output

$$dz = A - Y$$

$$dz = [dz^{(i)} - dz^{(w)}] \quad (1 \times w)$$

$$dz = A - Y$$

$$dw + = X^{(i)}dz^{(i)} \quad db + = dz^{(i)}$$

$$dw = A - Y$$

$$dw + = X^{(i)}dz^{(i)} \quad db + = dz^{(i)}$$

$$dw = A - Y$$

$$dw + = X^{(i)}dz^{(i)} \quad db + = dz^{(i)}$$

Company of the property of the

The loss function computes the error for a single training examples, and the cost function is the overage of the loss function of the entire training set.

Gradient descent

$$\hat{y} = r(w^{3}x + b) \quad \sigma(z) = \frac{1}{|+e^{-z}|}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} J(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (h y^{(i)}) \log (h \hat{y}^{(i)}))$$

$$\downarrow convex function$$

$$to find w. b that winning J(w.b)$$

$$J(w) \quad repeat \{$$

$$w := w - \alpha \frac{dJ(w)}{dw}$$

$$\rbrace \quad w := w - \alpha \frac{dJ(w)}{dw}$$

$$\rbrace \quad w := w - \alpha \frac{dJ(w)}{dw}$$

$$\rbrace \quad w := w - \alpha \frac{dJ(w)}{dw}$$

$$\rbrace \quad \psi := w - \alpha \frac{dJ(w)}{dw$$

Derivatives

More derivative examples

Computation graph

Derivative with a computation graph

Logistic regression gradient descent

$$Z = W^{T}X+b$$

$$\hat{y} = \alpha = \sigma(z)$$

$$L(\alpha, y) = -(y \log \alpha) + (1-y) \log (1-\alpha)$$

$$du = X \cdot dz \quad W$$

$$du = X \cdot dz \quad du$$

$$du = X$$

Implementing logistic regression

$$Z = w^{T}x + b$$

$$= np.det(w.T, x) + b$$

$$A = \sigma(z)$$

$$dz = A - Y$$

$$dw = \frac{1}{m} X dz^{T}$$

$$db = \frac{1}{m} np sum(dz)$$

$$w := w - \alpha dw$$

$$b := b - \alpha db$$

Broadcasting in python

General principle

A note on python / numpy vectors

Explanation of logistic regression cost function

$$\begin{split} \hat{y} &= \nabla \left(\mathbf{W}^\mathsf{T} \mathbf{X} + \mathbf{b} \right) \quad \text{where} \quad \nabla (\mathbf{Z}) &= \frac{1}{1 + e^{2}} \\ \text{interpret} \quad \hat{y} &= P(y|x|x) \\ \text{if} \quad y &= 1 \cdot P(y|x) = \hat{y} \; ; \quad \text{if} \quad y &= 0 \cdot P(y|x) = 1 - \hat{y} \\ P(y|x) &= \hat{y}^{3} \left(1 - \hat{y}^{3} \right)^{(1+y)} \quad \text{Add } \mathbf{A} \neq \mathbf{b} \quad \log P(y|x) = y \log \hat{y} + (1+y) \log \left(1 - \hat{y}^{3} \right) \\ \text{if} \quad y &= 1 \cdot P(y|x) = \hat{y} \quad \text{Add } \mathbf{A} \neq \mathbf{b} \quad \log P(y|x) \triangleq 1 \cdot \text{Fi. (1-10)} \quad \text{P(y)} \quad \& \forall \\ y &= 0 \cdot P(y|x) = 1 - \hat{y} \end{split}$$

Cost on m examples

pc labels in trset) = log
$$\prod_{i=1}^{m} P(y^{(i)} | X^{(i)})$$

log $p(\cdots) = \sum_{i=1}^{m} \frac{1}{1 - (\hat{y}^{(i)}, y^{(i)})}$

$$= -\sum_{i=1}^{m} 1 \cdot \hat{y}^{(i)} \cdot y^{(i)}$$

$$= -\sum_{i=1}^{m} 1 \cdot \hat{y}^{(i)} \cdot y^{(i)}$$
having historian estimation

Gradient descent on m examples

$$J(w,b) = \frac{1}{m} \sum_{k=1}^{\infty} I(\alpha^{0}, y) \qquad (X^{0}, y^{0})$$

$$\Rightarrow \alpha^{0} = y^{0} = \sigma(\alpha^{0}) = \sigma(w^{1} X^{0} + b) \qquad dw^{0} \cdots dw^{0} \cdots db^{0}$$

$$\frac{\partial}{\partial w_{1}} J(w,b) = \frac{1}{m} \sum_{k=1}^{\infty} I(\alpha^{0}, y^{0})$$

$$J = 0: dw_{1} = 0: dw_{2} = 0: db = 0$$

$$\text{Tor } i = 1 + to \qquad m: \text{ the first loop}$$

$$\alpha^{0} = \sigma(2^{0})$$

$$J = -[y^{0}] [\log \alpha^{0}] + (1 - y^{0}) [\log (1 - \alpha^{0})]$$

$$dw^{0} + x = X^{0} \cdot d2^{0}$$

$$dw^{0}$$

7(3

UCOJ = X

Neural networks overview

d'a

"2 layer NN"

₹ ○ → ŷ

 $V_{(ij)} = L(x_{(ij)})$

parameter, $W^{(0)}$, $Y^{(0)}$, function: J (WEG, PGG, MEG, PGG) New output units - L 高大(g, y) Arrest (complete pushes $\xi^{(i)}$, (i,1,...,m))

Repeat (complete pushes $\xi^{(i)}$, (i,1,...,m)) $\delta w^{(i)} = \frac{41}{k^{(i)}}$, $\delta \delta^{(i)} = \frac{41}{k^{(i)}}$ $\delta w^{(i)} = \frac{41}{k^{(i)}}$ $\delta v^{(i)} = 0$ $\delta v^{(i)} = 0$

Backpropagation: ξω = Mω Vω + Pω ξω = Δω ξω) , db = m msum (d x co, axis = 1, keep dins = True) $*y_{S_{CO}} = \underbrace{(N_{CO}, w)}_{(N_{CO}, w)} * \underbrace{a_{CO}(S_{CO})}_{(N_{CO}, w)}$ " 4 mco = # 45co x1 adbto = In up-samedzto, axis =1. hoppins = True) (N^{EQ}, 1)

Summary of gradient descent

1. $d3^{(1)} = 0^{(1)} - y$ 2. $dw^{(2)} = d3^{(2)}, 0^{(2)}$ 5. $db^{(2)}, d3^{(2)}$ 9 Apr = W 9 Em Vent 9 Em = Ven - J $c. dw^{t0} = dz^{c0}x^T$ dwen = # dzonxT 6. d bc0 = d200 $db^{c0} = \frac{1}{m} \text{ sp. sm.} (dg^{c0}) \text{ exist}, \text{ leapons} = True)$

2017年10月26日

Deep-layer neural network

10.18

Forward propagation in a deep network

Getting your matrix dimensions right

Why deep representation?

Circuit theory and deep learning

Informally, there are functions you can compute with a small L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Building blocks of deep neural networks

Forward and backward propagation

Forward propagation for layer I

Backward propagation for layer I

$$\begin{array}{lll} \inf_{z \in \mathcal{T}} d_z^{(C)} & \text{Ver(nind)}: \\ & \text{vorp-}i \ d_0^{(C)}, d_0^{(C)}, d_0^{(C)}, d_0^{(C)} \\ & d_0^{(C)} + g^{(C)}(\underline{\mathcal{Z}}^{(C)}) & d_0^{(C)} = d_0^{(C)} + g^{(C)}(\underline{\mathcal{Z}}^{(C)}) \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} & d_0^{(C)} + d_0^{(C)} + d_0^{(C)}, d_0^{(C)}, d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)}, d_0^{(C)} & d_0^{(C)} + d_0^{(C)}, d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)}, d_0^{(C)} & d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)}, d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ & d_0^{(C)} + d_0^{(C)} + d_0^{(C)} + d_0^{(C)} \\ &$$

Summary

Parameters vs hyperparameters

Applied deep learning is a very empirical process Application: vision, speech recognition, NLP, online advertising, recommendation

What does this have to do with human brain?

forward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

backward propagation
$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L]^T} \\ db^{[L]} &= \frac{1}{m} np. \, \text{sum}(dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]}) \\ &\vdots \\ dZ^{[1]} &= dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} A^{[1]^T} \\ db^{[1]} &= \frac{1}{m} np. \, \text{sum}(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$