TEÓRICA 1

INTRODUÇÃO

Sumário

- Desenvolvimento histórico
- Sistema geral
- Conceitos gerais

Bibliografia

- John M. Senior, "Optical Fiber Communications,
 Principles and Practice", 3^a Edição, Prentice Hall, 2009.
- Gerd Keiser, "Optical Fiber Communications", 3^a Edição, McGraw Hill, 2000.
- P. André, M. Lima, A. Pratas, L. Costa, C. Mendonça e A. Teixeira, "Comunicações Óticas e Aplicações", Lidel, 2017.

- As comunicações óticas são comuns há muitos anos
- Em 1880 Alexander Graham Bell e o seu assistente Charles Sumner Tainter transmitiram sinais de áudio utilizando um feixe de luz.
 - Fotofone telefone através da modulação da luz solar
 - Alcance máximo de 200 m

- A evolução na primeira metade do século XX foi limitada a pequenas ligações de baixa capacidade
- Esta limitação deveu-se essencialmente
 - Falta de fontes de luz adequadas
 - Problemas da transmissão de luz na atmosfera
 - Exigência da linha de vista do sinal
 - Line of sight (LoS)
 - Afetada por fortes perturbações atmosféricas
 - Chuva, neve, nevoeiro, poeiras, turbulência atmosférica, etc.

Espetro radioelétrico

Espetro radioelétrico

Espetro radioelétrico

Modulações de sinal

Sinal rádio e obstáculos

- Na década de 1960 houve um interesse renovado nas comunicações óticas
 - Advento do laser
 - Permitia uma potente fonte de luz coerente
 - Possibilitava moduladoras de alta frequência
 - A baixa divergência do laser aumentava a possibilidade de comunicação em espaço livre

Dr. Theodore Maiman

- Ligações óticas atmosféricas com laser
 - Curtas distâncias dentro da atmosfera terrestre
 - Comunicação de vídeo entre e uma câmara e uma estação base móvel
 - Comunicação de dados entre edifícios distanciados algumas centenas de metros

- Ligações óticas não-atmosféricas
 - Ligação entre satélites para altos débitos de transmissão
 - Não sofrem da perturbação atmosférica
 - Possuem uma maior segurança na ligação
 - Para intercetar o sinal o feixe de luz terá que ser cortado
 - Cessam assim as comunicações

 Ligações óticas não-atmosféricas também foram implementadas

- Devido a estes problemas atmosféricos, as comunicações rádio proliferaram
 - São mais imunes às perturbações que afetam as comunicações óticas.
 - São menos imunes a outros tipos de perturbação
 - Sofrem de interferências eletromagnéticas
- As comunicações rádio podem vencer grandes distâncias
 - Limitadas na quantidade de informação a transmitir por unidade de tempo
 - Depende do comprimento de onda utilizado e da largura de banda da da portadora na frequência e modulação utilizadas
 - Dada a exigência contínua de uma maior largura de banda
 - Utilizam-se frequência rádio mais altas tais como as micro-ondas e já nas ondas milimétricas

- As frequências das comunicações óticas oferecem um maior potencial na largura de banda utilizável
 - Possuem um fator de 10⁴ sobre as comunicações rádio na frequência das micro-ondas
- Portadoras de muito alta frequência concentram a energia disponível dentro da própria onda eletromagnética transmitida
 - É uma vantagem pois dão assim um maior desempenho ao sistema

- Algumas datas marcantes
 - 1840
 - Daniel Colladon e Jaques Babinet demonstraram o princípio de guia de luz
 - 1850
 - John Tyndall inventor Irlandês Fonte de água luminosa
 - 1960
 - Fibras óticas com atenuação elevada
 - 1965-1966
 - Charles K. Kao e George A. Hockham
 - Impurezas nas fibras provocavam atenuação
 - 1975-1980
 - Primeiros sistemas em serviço efetivo nas ligações a longa distância
 - 1984
 - Introdução das fibras óticas em Portugal

- O advento das fibras óticas reforçou a força nas comunicações óticas
- Na década de 1960 as fibras óticas eram vistas como potencial substituto do cabo coaxial
 - No entanto as primeiras fibras apresentavam atenuações muito fortes
 - 1000 dB/km
 - Os cabos coaxiais tinham apenas 5 a 10dB/km de atenuação

- Junção de fibras óticas
 - Outro dos grandes problemas que surgiram nessa altura
 - Possuíam altos níveis de atenuação
 - Não existiam os meios, técnicas e métodos para uma efetiva junção de duas fibras óticas
- Em 10 anos, tudo mudou
 - As perdas na fibra ótica baixaram para 5dB/km
 - As técnicas de junção foram aperfeiçoadas
 - Outros componentes óticos foram sendo devolvidos
 - Dispositivos ativos e passivos
 - Grandes evoluções principalmente na área do laser

- Atualmente as comunicações óticas são o método escolhido para altos débitos
- A redução das perdas na fibra ótica levaram a uma atenuação máxima de ~0,15dB/km
- A tecnologia laser conseguiu atingir débitos de 40Gbps num só feixe
- A criação de amplificadores óticos sem recurso a energia elétrica permitiu vencerem-se distâncias

- Sistemas de comunicação por fibra ótica
 - Utilizam os mesmos conceitos de qualquer outro sistema de comunicação

- Sistemas de comunicação por fibra ótica
 - Podem ser analógicos ou digitais
 - Os sistemas analógicos vs sistemas digitais
 - são limitados a curtas distâncias
 - Apresentam menores larguras de banda
 - Menos eficientes
 - Requerem um elevado rácio na relação sinal/ruído
 - Possuem maiores problemas de linearidade devido aos dispositivos óticos ativos
 - Principalmente nas frequências de modulação mais elevadas

- Ligação por fibra ótica típica
 - Emissor por semicondutor laser
 - Detetor por fotodíodo de avalanche

- Vantagens das comunicações por fibra ótica
 - Enorme potencial de largura de banda
 - Frequências óticas desde os 10¹³ aos 10¹⁶ Hz
 - Permitem larguras de banda muito superiores quando comparadas com as ligações rádio e por cabo
 - 20MHz em cabo coaxial até 10km
 - 700MHz em rádio para algumas centenas de metros
 - Larguras de banda típicas por distância percorrida (dados de 2000)
 - 5 THz km em fibra
 - 100 MHz km em coaxial
 - Estes valores podem ser muito superiores com a utilização da multiplexagem por comprimento de onda

Vantagens das comunicações por fibra ótica

- Pequena espessura e peso
 - As fibras óticas são pequenas (tipicamente da espessura de um cabelo humano)
 - Mesmo com uma bainha são mais leves e finas do que o seu equivalente em cobre
 - A substituição de cabos de cobre por fibra ótica nas condutas das cidades alivia o espaço e o peso

- Vantagens das comunicações por fibra ótica
 - Pequena espessura e peso

The optical fiber cable in the foreground has the equivalent capacity of the copper cable in the background.

- Vantagens das comunicações por fibra ótica
 - Isolamento elétrico
 - São fabricadas em vidro ou em polímero de plástico
 - São por isso isolantes naturais
 - Não criam problemas elétricos entre equipamentos (incompatibilidade de massas ou terras)
 - Excelente para comunicação em meios eletricamente perigosos

- Vantagens das comunicações por fibra ótica
 - Imunes à interferência e diafonia
 - As fibras óticas formam um guia de onda dielétrico e por isso livre de interferências
 - Eletromagnética (EMI)
 - Radiofrequência (RFI)
 - Transientes de comutação que causam pulsos eletromagnéticos (EMP)
 - Ideal para a comunicação em meios industriais devido ao constante arranque e paragem de motores
 - Não é suscetível a trovoadas

- Vantagens das comunicações por fibra ótica
 - Segurança no sinal
 - A luz na fibra ótica não irradia significativamente para o exterior
 - É necessário um processo invasivo para obter-se sinal
 - Qualquer tentativa para tal será detetada
 - É por isso um fator de escolha para certas aplicações
 - Militares
 - Banca
 - Redes de dados em geral

- Vantagens das comunicações por fibra ótica
 - Pequenas perdas na transmissão
 - Muito baixa atenuação e consequentemente baixas perdas na transmissão
 - 0,15dB/km
 - Os repetidores ou amplificadores podem ser espaçados entre longas distâncias (centenas de quilómetros)
 - Devido a esses fatores, é o fator de escolha para as telecomunicações de longa distância
 - Para além dos cabos de cobre também já começam a substituir os satélites
 - Conseguem-se menores tempos de atraso do que pela comunicação via satélite

- Vantagens das comunicações por fibra ótica
 - Robustez e flexibilidade
 - As fibras óticas possuem atualmente um elevado valor de força de tração
 - Mesmo n\u00e3o considerando a bainha e o revestimento
 - Podem ser dobradas e torcidas até níveis muito consideráveis
 - Já existem estruturas de cablagem comprovadamente flexíveis, compactas e robustas
 - São mais fáceis de arrumar, transportar, manusear e instalar
 - Considerando o seu pequeno tamanho e peso

- Vantagens das comunicações por fibra ótica
 - Confiabilidade do sistema e facilidade de manutenção
 - Caraterística que decorre da baixa perda de sinal
 - Necessita de menos intermediários tais como repetidores ou amplificadores de linha para aumentar a potência do sinal transmitido
 - A fiabilidade do sistema é geralmente melhorada em comparação com sistemas tradicionais em cobre
 - O tempo de vida comum dos componentes óticos é de cerca de 20 a 30 anos
 - Todos estes fatores tendem a reduzir o tempo e os custos de manutenção

- Vantagens das comunicações por fibra ótica
 - Baixo custo potencial
 - As fibras óticas são feitas essencialmente de vidro que por sua vez é feito da sílica que existe na areia
 - Não é um elemento escasso
 - Em comparação com o cobre, oferecem um forte baixo custo potencial para o meio de comunicação
 - Depende no entanto de outros componentes que ainda são caros
 - Emissores laser de semicondutor de alta performance
 - Detetores tais como os fotodíodos
 - Conetores e acopladores

- Vantagens das comunicações por fibra ótica
 - Baixo custo potencial
 - Para longas distâncias estes valores são mais vantajosos quando comparados com o equivalente em cobre
 - Menos repetidores e amplificadores
 - A forte competição não é só com as transmissões elétricas em cobre
 - Os sistemas rádio também tem sofrido com a forte concorrência

O que é a luz

- O que é a luz
 - Até ao início do século XVII era considerado como uma corrente de partículas
 - Enviada desde uma fonte de luz
 - Viajavam em linha reta
 - Penetravam em materiais transparentes e refletiam nos materiais opacos
 - Para efeitos de reflexão e refração da luz esta teoria enquadrava-se
 - Falha na explicação de fenómenos de interferência e de difração

Reflexão e refração

Refraction

Difração

Difração

Intensity Distribution of Diffracted Light

Difração

- Uma correta explicação da difração foi fornecida por Fresnel em 1815
 - Augustin-Jean Fresnel (1788–1827)
 - Mostrou que o carater retilíneo da propagação da luz pode ser interpretado por uma onda em movimento
- Em 1864 Maxwell teorizou que as ondas de luz poderiam ter uma natureza eletromagnética
 - James Clerk Maxwell (1831-1879)
- Mais tarde, a observação de efeitos de polarização indicaram que as ondas de luz eram transversais
 - O movimento da onda é perpendicular à direção do seu percurso

 Estas ondas eletromagnéticas irradiadas de um pequeno ponto de luz podem ser representadas como uma sequência de frentes de onda esféricas

- Frentes de onda também podem ser conhecidas como fases de onda
 - Se a onda for vista como uma sinusoide com um ponto máximo e mínimo
 - A escolha de um ponto na sinusoide significa escolher a fase da onda
 - A frente de onda está separada da seguinte por um comprimento de onda

Conceitos gerais WAVE FRONTS

Wave fronts are parallel surfaces connecting equivalent points on adjacent waves.

- Quando uma frente de onda é menor do que um objeto ou fenda ela é vista como linhas retas
- Neste caso a onda de luz é representada como uma onda plana
 - A sua direção de propagação é indicada por um raio de luz que pode ser desenhado na perpendicular à frente da fase
 - Desta forma os efeitos óticos de larga escala podem ser analisados por um processo geométrico simples
 - Traçado de raios ou ray tracing

- Ray tracing
 - É uma técnica para apresentar imagens tridimensionais (3D) num ecrã (2D) bidimensional
 - Baseia-se na simulação do trajeto que os raios de luz percorreriam no mundo real, mas, neste caso, de trás para a frente

- Ray tracing
 - Esta visão da ótica é referida como raio de luz ou ótica geométrica
 - O conceito de raios de luz é de extrema utilidade porque mostra a direção do fluxo de energia num feixe de luz
 - Torna-se assim uma representação mais facilitada para se estudar o fenómeno da condução da luz
 - Nos efeitos de refração, reflexão e difração

- Polarização
 - Em física, polarização é uma propriedade de ondas eletromagnéticas
 - As ondas eletromagnéticas são tridimensionais
 - Ao contrário das ondas ondas mecânicas
 - É uma medida da variação do vetor do campo elétrico dessas ondas em relação ao tempo
 - Para melhor se visualizar o fenómeno utilizam-se ondas planas
 - Numa onda eletromagnética o plano elétrico é perpendicular ao plano magnético

- Polarização
 - Planos elétrico e magnético
 - Planos sempre ortogonais

- Polarização
 - Se utilizarmos só um dos campos e fizermos a sua projeção sobre dois planos ortogonais
 - Azul é o campo elétrico por exemplo
 - Verde e vermelho s\(\tilde{a}\) o as componentes ortogonais x
 e y
 - Podem n\u00e3o estar em fase entre elas
 - Roxo é a forma desenhada pelo vetor no plano

- Polarização
 - Se as componentes estiverem em fase
 - A intensidade das componentes é igual ou proporcional a uma constante
 - O vetor soma destas duas componentes irá fazer uma reta no plano (roxo)
 - Este é um caso de polarização linear

- Polarização
 - As componentes têm a mesma amplitude
 - Estão desfasadas 90º
 - Quando uma das componentes está a zero a outra está no máximo ou no mínimo
 - O vetor resultante no plano é um círculo
 - Este é um caso de polarização circular

- Polarização
 - Na polarização circular a direção de rotação depende da relação entre fases
 - Polarização circular direita ou esquerda

Direita – sentido dos ponteiros do relógio

- Polarização
 - As componentes não têm a mesma amplitude
 - Não estão desfasadas 90°
 - O vetor resultante no plano é uma elipse
 - Este é um caso de polarização Elíptica

- Polarização
 - Linear vertical e horizontal

- Polarização
 - Linear inclinada

- Polarização
 - Circular

Refração

- É a mudança na direção de uma onda ao atravessar a fronteira entre dois meios com diferentes índices de refração
- Modifica a velocidade de propagação e o comprimento de onda, mantendo uma proporção direta
- A constante de proporcionalidade é a frequência, que não se altera

- Índice de Refração
 - É uma relação entre a velocidade da luz no velocidade da luz num determinado meio
 - Em meios com índices de refração mais baixos (próximos a 1) a luz tem velocidade maior
 - Próximo a velocidade da luz no vácuo

• Índice de Refração (n)

$$n=\frac{c}{v}$$

- n é o índice de refração (sem unidade)
- c é a velocidade da luz no vácuo
 - 3 x 10⁸ m/s
- v é a velocidade da luz no meio

$$v = \lambda f$$

- λ é o comprimento de onda do sinal
- f é a frequência.

- Índice de Refração (n)
 - Para um λ =589 nm

Material	n
Vácuo	1
Gases a 0 °C e 1 atm	
Ar	1,000293
Hélio	1,000036
Hidrogénio	1,000132
CO_2	1,00045

Material	n	
Líquidos a 20 °C		
Água	1,333	
Álcool Etílico	1,36	
Azeite	1,47	

Material	n	
Sólidos		
Gelo	1.309	
Vidro	~1,5	
Diamante	2,42	

- Refração e Reflexão
 - Quando um raio de luz atinge uma superfície que separa um meio de outro
 - Parte da luz reflete
 - Parte da luz é refratado quando entra no segundo meio
 - Isto é devido à diferença de velocidade que a luz sofre a passar de um meio para outro

Refração e Reflexão

- Lei de Snell
 - Também conhecida como lei de Snell-Decartes ou lei da refração
 - Willebrord Snellius (1580-1626)
 - Esta lei define a equivalência dos rácios entre o raio de incidência e o raio refratado

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

- · Lei de Snell
 - O interface é a linha que separa os meios
 - P é o raio incidente
 - Q é o raio refratado

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

$$n_1\sin\theta_1=n_2\sin\theta_2$$

· Lei de Snell

- · Lei de Snell
 - Reflexão total interna e ângulo crítico
 - Considerando n1 > n2

- Lei de Snell
 - Reflexão total interna e ângulo crítico
 - Exemplo entre ar (n=1) e vidro (n=1,5)

$$\theta c = arco - seno \frac{1}{1,5}$$

$$= 41,81^{\circ}$$

- · Lei de Snell
 - Reflexão total interna e ângulo crítico
 - Considerando n1 > n2

Impossível

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 = \frac{1.333}{1} \cdot \sin (50^\circ) = 1.333 \cdot 0.766 = 1.021,$$

$$\theta_{\rm crit} = \arcsin\left(\frac{n_2}{n_1}\sin\theta_2\right) = \arcsin\frac{n_2}{n_1} = 48.6^{\circ}.$$