Computability and Complexity Problem Set 5

Fixed point theorem and applications

Y. Deville

- C. Bertrand Van Ouytsel & V. Coppé & A. Gerniers & N. Golenvaux & M. Parmentier $March,\ 2021$
- 1. The **S** property is defined as follows:

$$\forall k \; \exists S \; \text{total} \; \& \; \text{computable} \; : \; \varphi_k(x,y) = \varphi_{S(x)}(y)$$

Prove that the **S** property is a particular case of S-m-n (i.e. prove that S-m-n implies **S** for m = n = 1).

- 2. Using the fixed point theorem, show that there exists a program P_n such that P_n terminates only for input n. (Hint: use the function g(n,x) = 1 if $x = n, \perp$ otherwise together with the **S** property)
- 3. Using the fixed point theorem, show that there exists a program P_n that always outputs n (i.e. that prints its source code).
- 4. Prove Rice's theorem using the fixed point theorem. (Hint: define the function f(x) = i if $x \in A$, j if $x \in \overline{A}$, with $i \in \overline{A}$ and $j \in A$)
- 5. Prove that $K = \{n \in \mathbb{N} \mid \varphi_n(n) \neq \bot\}$ is not recursive using the fixed point theorem.

Challenge

Show that, for any computable total function f, there exist an infinity of k's such that $\varphi_k = \varphi_{f(k)}$.

(Hint: Show that if it was not the case, we could find a computable total function that would not satisfy the fixed point theorem)

1.
$$5-m-n \rightarrow 35$$
 totale calculable
 $\forall k: fk(x,y) = ff(h,y)(y)$

$$5-5$$
 $\forall k \exists f botale calculable: $f_k(s_{F,g}) = f_{F(k,g)}(s)$
 $f(k,x) = f_{S}(k,x) = f_{h'}(x)$$

$$\angle soil g(n, n) = 1$$

$$\angle sinon$$

$$\rightarrow$$
 $f_{\Lambda} (S_{i}) = f_{S(n)}(S_{i}) = f_{g(n, x)}$

-s of calculable -s Periste

4. Soit $i \in A$, $j \in A$ $-s \in A$ $i \in A$

Si A récursif, J Calculable

Point Sixe: 3 h; th= PS(L)

Si $k \in A$; $f_h = f_j$ $Si k \in \overline{A}$; f_{ki} f_i