Ejercicio 1: Aplicando el concepto intuitivo de límite en las funciones dadas a continuación, realice una tabla de valores adecuada y concluya si existe o no el $\lim f(x)$.

Luego verifica gráficamente utilizando el software GEOGEBRA.

a).
$$f(x) = (x-1)^2$$
; $\lim_{x\to 0} f(x)$?

b).
$$f(x) = \frac{x^2 - 4}{x - 2}$$
; $\lim_{x \to 2} f(x)$?

c).
$$f(x) = \begin{cases} 3x - 1 & si \ x \le 2 \\ 2x + 3 & si \ x > 2 \end{cases} \quad \lim_{x \to 2} f(x)$$
? d). $f(x) = \sqrt{x - 1}$; $\lim_{x \to 1^+} f(x)$?

d).
$$f(x) = \sqrt{x-1}$$
; $\lim_{x \to 1^+} f(x)$?

e).
$$f(x) = \frac{sen x}{x}$$
; $\lim_{x \to 0} f(x)$?

f).
$$f(x) = (1+x)^{1/x}$$
; $\lim_{x\to 0} f(x)$?

Ejercicio 2: Dada la siguiente gráfica de una función, analice las consignas expuestas y concluya si existe o no el $\lim_{x\to a} f(x)$. En cada caso justifique su respuesta.

$$f(-4)$$

$$f(-3)$$

$$\lim_{x \to -4^{-}} f(x)$$

$$\lim_{x\to -3^-} f(x)$$

$$\lim_{x\to -1^-} f(x)$$

$$\lim_{x\to 3^{-}} f(x)$$

$$\lim_{x \to -4^+} f(x) \qquad \qquad \lim_{x \to -3^+} f(x)$$

$$\lim_{x\to -3^+} f(x)$$

$$\lim_{x \to 1^+} f(x)$$

$$\lim_{x \to -1^+} f(x) \qquad \qquad \lim_{x \to 3^+} f(x)$$

$$\lim_{x \to -4} f(x)$$

$$\lim_{x\to -3} f(x)$$

$$\lim_{x\to -1} f(x)$$

$$\lim_{x\to 3} f(x)$$

$$\lim_{x\to -\infty} f(x)$$

$$\lim_{x\to +\infty} f(x)$$

Ejercicio 3: Bosqueja la gráfica de una función que cumpla con las siguientes condiciones:

$$\lim f(x) = 0$$

$$\lim_{x \to -1^-} f(x) = 4$$

$$\lim_{x \to -\infty} f(x) = 0 \qquad \lim_{x \to -1^{-}} f(x) = 4 \qquad \lim_{x \to -1^{+}} f(x) = 0 \qquad f(-1) = 4$$

$$f(-1) = 4$$

$$\lim f(x) = 2$$

$$\lim_{x \to 0^{-}} f(x) = 2 \qquad \lim_{x \to 0^{+}} f(x) = 2 \qquad f(0) = 0$$

$$f(0) = 0$$

$$\lim_{x \to \infty} f(x) = -c$$

$$\lim_{x \to 2^{-}} f(x) = -\infty \qquad \lim_{x \to 2^{+}} f(x) = +\infty \qquad \qquad \nexists f(2)$$

$$\nexists f(2)$$

$$\lim_{x \to a} f(x) = a$$

$$\lim_{x \to a^+} f(x) = 4$$

$$f(4) = 4$$

$$\lim_{x \to 4^{-}} f(x) = 4 \qquad \lim_{x \to 4^{+}} f(x) = 4 \qquad f(4) = 4 \qquad \lim_{x \to +\infty} f(x) = 0$$

Ejercicio 4: Dados los siguientes limites

$$\lim_{x \to a} f(x) = -5$$

$$\lim_{x \to a} g(x) = 0$$

$$\lim_{x \to a} h(x) = 3$$

Aplicando propiedades de límites, encuentre los límites que existan. Si el límite no existe, explique por qué.

a)
$$\lim_{x \to a} [f(x) + g(x)]$$

$$e) \lim_{x \to a} \frac{f(x)}{g(x)}$$

$$b) \lim_{x \to a} [h(x)]^2$$

$$f$$
) $\lim_{x \to a} \frac{g(x)}{h(x)}$

c)
$$\lim_{x\to a} \sqrt[3]{f(x)}$$

$$g$$
) $\lim_{x \to a} \frac{2f(x)}{g(x) - h(x)}$

$$d$$
) $\lim_{x\to a}\frac{1}{g(x)}$

Ejercicio 5: Aplicando definición de valor absoluto, encuentre los siguientes límites, si existen. Si no existe, explique por qué.

a)
$$\lim_{x \to -3} |x + 3|$$

c)
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$b) \lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

d)
$$\lim_{x \to 7} \frac{|x - 7|}{x - 7}$$

Ejercicio 6: Dada la función

$$f(x) = \begin{cases} x & \text{si } x < 0 \\ 2x^3 & \text{si } 0 < x \le 3 \\ 5 - x & \text{si } x > 3 \end{cases}$$

Evalúe si existen los siguientes límites:

$$a) \lim_{x\to 0^+} f(x)$$

$$c)\lim_{x\to 2}f(x)$$

$$e$$
) $\lim_{x\to 3^+} f(x)$

b)
$$\lim_{x\to 0} f(x)$$

$$d$$
) $\lim_{x\to 3^-} f(x)$

$$f$$
) $\lim_{x\to 5} f(x)$

FORMAS INDETERMINADAS

$$\frac{0}{0}$$
 $\frac{\infty}{\infty}$ $\infty - \infty$ $0.\infty$ 0^0 ∞^0 1^∞

Ejercicio 7: Resuelve analíticamente, aplicando propiedades. Luego, verifica gráficamente utilizando el software GEOGEBRA.

a).
$$\lim_{x \to 4} [(x^2 - 2) + \sqrt{x}]$$

b).
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
 c). $\lim_{x\to 2} \frac{x-2}{x^2-4}$

c).
$$\lim_{x\to 2} \frac{x-2}{x^2-4}$$

d).
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^3 - 2x^2 + 3x - 2}$$
 e). $\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$ f). $\lim_{x \to 2} \frac{x^{2m} - 2x^m + 1}{x^{2n} - 2x^n + 1}$

e).
$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$$

f).
$$\lim_{x\to 2} \frac{x^{2m}-2x^m+1}{x^{2n}-2x^n+1}$$

g).
$$\lim_{x \to 1} \frac{|x-1|}{x-1}$$

h).
$$\lim_{x \to \frac{\pi}{2}} f(x)$$
 si $f(x) = \begin{cases} sen x & x \le \frac{\pi}{2} \\ cos\left(x - \frac{\pi}{2}\right) & x > \frac{\pi}{2} \end{cases}$

i).
$$\lim_{x \to -2} f(x)$$
 y $\lim_{x \to 1} f(x)$ si $f(x) = \begin{cases} \frac{x}{x+2}x \le 1\\ (x-1)^2 + \frac{1}{3}x > 1 \end{cases}$

j).
$$\lim_{x \to 1} \left[\frac{x^2 - 1}{x - 1} \right]^{2x}$$

k).
$$\lim_{x \to \frac{\pi}{2}} sen(x^2)$$
 l). $\lim_{x \to \frac{\pi}{2}} sen^2 x$

1).
$$\lim_{x \to \frac{\pi}{2}} sen^2 x$$

Ejercicio 8: Resuelve analíticamente, aplicando propiedades.

a).
$$\lim_{x \to \infty} \frac{3x^2 + 2x - 5}{2x^2 - 3x + 4}$$

b).
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{x}$$

c).
$$\lim_{x\to\infty} \left(\sqrt{x+5} - \sqrt{x}\right)$$

d).
$$\lim_{x\to\infty} (\sqrt{x^2-3}-x)$$

e).
$$\lim_{x\to\infty} \frac{3x+\sqrt{x+8}}{\sqrt{x+3}+2x}$$

f).
$$\lim_{x \to \infty} \frac{x-2}{x^2-4}$$

g).
$$\lim_{x \to 2} \frac{x^6 - 2x^3 + 1}{x^4 - 2x^2 + 1}$$

h).
$$\lim_{x \to +\infty} \frac{\sqrt[5]{2x^4 + 3x - 11}}{\sqrt[7]{x^3 + 2}}$$

i).
$$\lim_{x \to +\infty} \left(\frac{1}{3x^2} + 1 \right)^{\frac{5x^2 - 3}{2}}$$

j).
$$\lim_{x \to +\infty} \left(\frac{x^2+1}{3x^2+2} \right)^{x^2}$$

k).
$$\lim_{x \to +\infty} \frac{5^x + 2^x}{5^x + 3^x}$$

1).
$$\lim_{x \to +\infty} \left(\frac{2^x + 1}{2^x - x} \right)^x$$

Ejercicio 9: Dadas las siguientes funciones, determina si poseen asíntotas verticales y horizontales. Luego verifica gráficamente utilizando el software GEOGEBRA.

a).
$$f(x) = \frac{x}{x^2 - 4}$$

b).
$$g(x) = \frac{x-2}{x^2-4}$$

c).
$$h(x) = \frac{x^3 - 2x^2 + 3x - 2}{x^2 - 4x + 3}$$

d).
$$f(x) = \frac{2}{x^2}$$

e).
$$y = -\frac{x}{x^3}$$

f).
$$g(x) = \frac{x^3 + x^2}{x^2 - x - 2}$$

g).
$$f(x) = tg\left(x - \frac{\pi}{2}\right)$$

h).
$$f(x) = \begin{cases} \frac{x}{x+2} & x \le 1 \\ ln(x-1) & x > 1 \end{cases}$$
 i). $g(x) = \log_2\left(\frac{x^2 - 4}{x}\right)$

i).
$$g(x) = \log_2\left(\frac{x^2 - 4}{x}\right)$$

j).
$$f: f(x) = \sqrt{\frac{x+3}{x+2}}$$

k).
$$f(x) = \frac{3}{2} \ln(x-1) + 2$$

$$1). \ f(x) = \ln\left(\frac{2x}{x-1}\right)$$

m).
$$f(x) = \frac{x-4}{\sqrt{x^2-2}}$$

$$n). \ f(x) = \log|3x + 6|$$

PRIMER LÍMITE FUNDAMENTAL

Si $0 < x < \pi/2$, se cumple que: $f(x) = \frac{sen x}{x} = 1$

Ejercicio 10: Resuelve analíticamente, los siguientes límites.

a).
$$\lim_{x\to 0} \frac{sen\,2x}{sen\,5x} =$$

b).
$$\lim_{x \to \pi} \frac{sen x}{1 + \cos x}$$

c).
$$\lim_{x\to 0} \frac{tg^2 x}{x \cdot senx}$$

d).
$$\lim_{x \to \frac{\pi}{4}} (tg x - 1) \cdot \sec 2x$$

e).
$$\lim_{x \to \pi} \frac{\cos x + 1}{x \cdot sen x}$$

f).
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(x - \frac{\pi}{2}\right)^2}{1 - sen^2 x}$$

g).
$$\lim_{x \to 0} \frac{x - sen 3x}{x + sen x}$$

h).
$$\lim_{x\to 0} \frac{sen\,mx}{sen\,nx}$$

i).
$$\lim_{x\to 0} \frac{tg \, x-senx}{x^3}$$

j).
$$\lim_{x\to 0} \frac{x^2 \cos x}{1 - \sqrt{1 - \sin x}}$$

k).
$$\lim_{x\to\infty} sen\left(\frac{5}{x-3}\right)$$

1).
$$\lim_{x \to 0} \frac{2x + sen x}{3x - x \cdot \cos x}$$

Ejercicio 11: Determinar los valores de **a** para que existan los siguientes límites.

a).
$$\lim_{x \to 0} f(x)$$
 si $f(x) = \begin{cases} \frac{sen(\frac{x}{a})}{x} & si x < 0 \\ \frac{x^2 - x + 1}{x - 2} & si x \ge 0 \end{cases}$ b). $\lim_{x \to 0} f(x)$ si $f(x) = \begin{cases} 6\cos x & si x \le 0 \\ a(x^2 + 2) & si x > 0 \end{cases}$

C).
$$\lim_{x \to 2} f(x)$$
 si $f(x) = \begin{cases} x^2 + a^2 & \text{si } x \le 2 \\ log_a \sqrt{x + 14} & \text{si } x > 2 \end{cases}$ d). $\lim_{x \to 0} f(x)$ si $f(x) = \begin{cases} \frac{sen(\frac{x}{3})}{x} & \text{si } x < 0 \\ \frac{x^2 - x - a}{x - 2} & \text{si } x \ge 0 \end{cases}$

SEGUNDO LÍMITE FUNDAMENTAL

$$Seaf(x) = \left(1 + \frac{1}{x}\right)^x$$
 $se\ verifica$ $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$

El teorema también se cumple cuando:

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{t \to 0} (1 + t)^{\frac{1}{t}} = e$$

Ejercicio 12: Resuelve analíticamente, los siguientes límites.

a).
$$\lim_{x\to\infty} \left(1-\frac{2}{x}\right)^x$$

b).
$$\lim_{x \to \infty} (1+x)^{-\frac{3}{x}}$$

c).
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{3x}$$

d).
$$\lim_{x\to\infty} \left(\frac{2^x+1}{2^x-x}\right)^x$$

e).
$$\lim_{x\to\infty} \left(\frac{\ln(x+1)}{\ln n}\right)^{\ln x}$$

f).
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{3x^2 + 2} \right)^{x^2}$$

g).
$$\lim_{x\to 0} \left(\frac{21x+3}{3-16x}\right)^{\left(\frac{3-7x}{2x}\right)}$$

g).
$$\lim_{x \to 0} \left(\frac{21x+3}{3-16x} \right)^{\left(\frac{3-7x}{2x}\right)}$$
 h). $\lim_{x \to \infty} \left(1 + \frac{5}{2x} \right)^{\left(\frac{3x}{4}-2\right)}$

i).
$$\lim_{x \to -\infty} \frac{\left(\frac{1}{2}\right)^{x+2} + 6}{\left(\frac{1}{2}\right)^{x} - 5}$$

Ejercicio 13. Se estima que el crecimiento poblacional de una ciudad está dado por la

expresión:
$$f(t) = \frac{240 + 20t}{16 + t}$$

en miles de habitantes, desde su creación en 1810. Calcular:

- a) ¿Qué población tenía esa ciudad en 1810?
- b) ¿Qué población tenía en 1890?
- c) ¿Qué tendencia seguirá pasados 200 años?

Ejercicio 14. La cantidad de una droga en la corriente sanguínea t horas después de inyectada intramuscularmente está dada por la función: $f(t) = \frac{10t}{t^2 + 1}$. Al pasar el tiempo, ¿cuál es la cantidad límite de droga en sangre?

Ejercicio 15. En un experimento biológico, la población de una colonia de bacterias (en millones) después de **x** días está dada por: $y = \frac{4}{2 + 8e^{-2x}}$

- a) ¿Cuál es la población inicial de la colonia?
- b) Resolviendo $\lim_{x\to\infty} y$, se obtiene información acerca de si la población crece indefinidamente o tiende a estabilizarse en algún valor fijo. Determine cuál de estas situaciones ocurre.

Ejercicio 16. Los ingenieros industriales han estudiado un trabajo particular en una línea de montaje. La función $y = f(t) = 120 - 80 e^{-0.3t}$, es la función de la curva de aprendizaje que describe el número de unidades terminadas por hora para un empleado normal de acuerdo al número de horas de experiencia t que él tiene en su trabajo.

- a) Determine el número de unidades que puede terminar un empleado en el momento que ingresa a esa empresa y luego de su primera hora de experiencia.
- b) ¿Cuántas unidades puede terminar un empleado cuando el número de horas de experiencia en la fábrica crece indefinidamente?

Ejercicio 17. El peso de un cultivo de bacterias crece siguiendo la ley $y = \frac{1,25}{1+0,25e^{-0.4t}}$ donde el tiempo t > 0 se mide en horas y el peso del cultivo en gramos.

- a) Determine el peso del cultivo transcurridos 60 minutos.
- b) ¿Cuál será el peso del mismo cuando el número de horas crece indefinidamente?

Ejercicio 18. El tejido vivo sólo puede ser excitado por una corriente eléctrica si ésta alcanza o excede un cierto valor que se designa con $\bf v$. Este valor $\bf v$ depende de la duración $\bf t$ de la corriente. La ley de Weiss establece que $v=\frac{a}{t}+b$, donde $\bf a$ y $\bf b$ son constantes positivas. Analice el comportamiento de $\bf v$ cuando:

- a) t se aproxima a cero.
- b) tiende a infinito.