Klausur zur Experimentalphysik 4

Prof. Dr. W. Henning, Prof. Dr. L. Fabbietti Sommersemester 2012 26. Juli 2012

Zugelassene Hilfsmittel:

- 1 beidseitig handbeschriebenes oder computerbeschrieben DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (4 Punkte)

Auf ein Teilchen wirke die Kraft $K = -kx + k_0$, mit $(k = m_0\omega^2)$.

- (a) Stellen Sie die dazugehörige Schrödingergleichung auf und zeigen Sie mittels binomischer Formel, dass es sich hierbei um einen harmonischen Oszillator handelt,.
- (b) Interpretieren Sie das Potential V(x).
- (c) Geben Sie die Energieeigenwerte des Teilchens an.

Lösung

(a) Das Potential lautet:

$$V(x) = \frac{1}{2}m_0\omega^2(x - x_0)^2 - \epsilon_0$$
 (1)

mit $x_0 = \frac{k_0}{k}$ und $\epsilon_0 = \frac{k_0^2}{2k}$

[1]

Die stationäre Schrödingergleichung ist damit:

$$\left[-\frac{\hbar^2}{2m_0} \frac{d^2}{dx^2} + \frac{1}{2} m_0 \omega^2 (x - x_0)^2 - \epsilon_0 \right] \psi(x) = E\psi(x). \tag{2}$$

Durch die Transformation $y = x - x_0$, $\hat{E} = E + \epsilon_0$ erhalten wir die bekannte Form der Schrödingergleichung.

$$\left[-\frac{\hbar^2}{2m_0} \frac{d^2}{dy^2} + \frac{1}{2} m_0 \omega^2 y^2 \right] \psi(y) = \hat{E}\psi(y). \tag{3}$$

[1]

(b) Bei dem Potential handelt es sich um ein harmonisches Potential mit einem nach x_0 verschobenen Mittelpunkt.

(c)
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{1}{2}\frac{k_0^2}{k} \tag{4}$$

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass die Wellenfunktion

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \tag{5}$$

für den Grundzustand des Wasserstoffes eine Lösung der Schrödinger-Gleichung

$$-\frac{\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) - \frac{\hbar^2}{2mr^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}\right] + E_{pot}(r)\psi = E\psi \qquad (6)$$

ist, wobei die Abstandsabhängigkeit der potentielle Energie gegeben ist durch

$$E_{pot}(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} \tag{7}$$

und berechnen sie die Energie des Grundzustandes.

Lösung

Weil im Grundzustand Kugelsymmetrie vorliegt, kann man die Winkelabhängigkeit ignorieren und braucht daher nur folgenden Schrödinger-Gleichung zu betrachten:

$$-\frac{\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + E_{pot}(r)\psi = E\psi \tag{8}$$

mit der Abstandsabhängigkeit der potentiellen Energie

$$E_{pot}(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} \tag{9}$$

[1]

[1]

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} = Ce^{-Zr/a_0}$$
(10)

mit $C = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2}$. Man leitet nach r ab:

$$\frac{\partial \psi_{100}}{\partial r} = C \frac{\partial}{\partial r} \left(e^{-Zr/a_0} \right) = -C \frac{Z}{a_0} e^{-Zr/a_0}. \tag{11}$$

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi_{100}}{\partial r} \right) = -C \frac{Z}{a_0} \frac{\partial}{\partial r} \left(r^2 e^{-Zr/a_0} \right) = \left[-\frac{2Zr}{a_0} + r^2 \left(\frac{Z}{a_0} \right)^2 \right] C e^{-Zr/a_0}. \tag{12}$$

[1]

Diesen Ausdruck zusammen mit der potentiellen Energie eingesetzt in die Schrödinger-Gleichung gibt:

$$-\frac{\hbar^2}{2mr^2} \left[-\frac{2Zr}{a_0} + r^2 \left(\frac{Z}{a_0} \right)^2 \right] Ce^{-Zr/a_0} - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} Ce^{-Zr/a_0} = ECe^{-Zr/a_0}$$
 (13)

Auflösen nach E ergibt:

$$E = -\frac{\hbar^2}{2mr^2} \left[-\frac{1}{4\pi\epsilon_0} \frac{2me^2 Zr}{\hbar^2} + r^2 \left(\frac{1}{4\pi\epsilon_0} \frac{Zme^2}{\hbar^2} \right)^2 \right] - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}$$
 (14)

[1]

mit $a_0 = (4\pi\epsilon_0) \frac{\hbar^2}{me^2}$ erhält man

$$E = -\frac{\hbar^2}{2mr^2} \left[-\frac{1}{4\pi\epsilon_0} \frac{2me^2 Zr}{\hbar^2} + r^2 \left(\frac{1}{4\pi\epsilon_0} \frac{Zme^2}{\hbar^2} \right)^2 \right] - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} = \frac{1}{(4\pi\epsilon_0)^2} \frac{Z^2 e^4 m}{2\hbar^2}$$
(15)

[1]

Dies ist die Energie des Grundzustandes. Also wurde gezeigt, dass die gegebene Wellenfunktion eine Lösung dieser Schrödinger-Gleichung ist.

Aufgabe 3 (7 Punkte)

Die Natrium D-Linien sind emittiertes Licht der Wellenlänge 589, 5932nm (D1) und 588, 9965nm (D2). Diese charakteristischen Spektrallinien entstehen beim Übergang eines Elektrons von $3^2P_{1/2}$ (D1) bzw. $3^2P_{3/2}$ (D2) auf $3^2S_{1/2}$. Betrachten Sie Natrium dabei als Ein-Elektronen-System.

- (a) Skizzieren Sie die Aufspaltung der Energieniveaus in einem schwachen Magnetfeld und geben Sie diese in Einheiten von $\mu_B B$ an!
- (b) Zeichnen Sie alle erlaubten Übergänge ein.
- (c) Wie stark muss das Magnetfeld sein, damit der energetische Abstand des niedrigsten Zustands des $3^2P_{3/2}$ und des höchsten Zustands von $3^2P_{1/2}$ 90% der Feinstrukturaufspaltung dieser beiden Zustände ($\Delta E_{\rm FS} = 3 \cdot 10^{-22} \rm J$) beträgt?

Lösung

(a) Bei genügend schwachem Magnetfeld B ist die entsprechende Aufspaltung viel geringer als die Feinstrukturaufspaltung und gegeben durch die Korrektur

$$\Delta E^{\text{Zeeman}} = g_i \mu_B m_i B \tag{16}$$

mit dem Lande-Faktor

$$g_j = \frac{3J(J+1) - L(L+1) + S(S+1)}{2J(J+1)} \tag{17}$$

Abbildung 1: Aufspaltung der Energienive
aus von Na beim Zeeman-Effekt mit erlaubten Dipol-Übergängen.

[1]

Für die Niveaus $3^2S_{\frac{1}{2}}$, $3^2P_{\frac{1}{2}}$ und $3^2P_{\frac{3}{2}}$ ist jeweils $g_{S_{\frac{1}{2}}}=2$, $g_{P_{\frac{1}{2}}}=\frac{2}{3}$ und $g_{P_{\frac{3}{2}}}=\frac{4}{3}$.

[1]

Die Dipol-Übergangsregeln lauten

$$\Delta l = \pm 1, \Delta J = 0, \pm 1, \Delta m_i = 0, \pm 1$$
 (18)

(b) Skizze

[3]

(c) Der energetische Abstand der beiden Zustände $\left(3^2P_{\frac{3}{2}},m_j=-\frac{3}{2}\right)$ und $\left(3^2P_{\frac{1}{2}},m_j=\frac{1}{2}\right)$ ist gegeben durch

$$\Delta E = \Delta E_{\rm FS} - \frac{1}{2} g_{P_{\frac{1}{2}}} \mu_B B - \frac{3}{2} g_{P_{\frac{3}{2}}} \mu_B B = \Delta E_{\rm FS} - \frac{7}{3} \mu_B B \tag{19}$$

[1]

Aus der Forderung $\Delta E = \frac{9}{10} \Delta E_{\rm FS}$ ergibt sich eine Magnetfeldstärke

$$B = \frac{3}{70} \frac{\Delta E_{\rm FS}}{\mu_B} \approx 1,38T \tag{20}$$

[1]

Aufgabe 4 (4 Punkte)

Metastabile He(2^1S_0)-Atome in einer Gasentladungszelle bei T=1000K absorbieren Licht auf dem Übergang $2^1S_0 \to 3^1P_1$. Die Termwerte ($T_n=E_n/hc$) der Niveaus sind 166 272 cm⁻¹ (2^1S_0) und 186 204 cm⁻¹ (3^1P_1), die Lebensdauern $\tau(3^1P_1)=1,4$ ns und $\tau(2^1S_0)=1$ ms.

- (a) Bei welcher Wellenlänge liegt die entsprechende Resonanzlinie (Absorptionslinie)?
- (b) Wie groß ist die Frequenz ihrer natürlichen Linienbreite?
- (c) Wie groß ist die Frequenz ihrer Dopplerbreite?

Lösung

(a) Die Wellenlänge λ des Überganges zwischen den Zuständen mit Termwerten T_i , T_k ist

$$\lambda_{ik} = \frac{1}{T_i - T_k} = \frac{1}{19932} \text{cm} = 501,7 \text{nm}$$
 (21)

[1]

(b) Die natürliche Linienbreite ist

$$\delta \nu_n \le \frac{1}{2\pi \tau_i} + \frac{1}{2\pi \tau_k} = \frac{10^9}{2\pi \cdot 1, 4} + \frac{10^3}{2\pi} = 1,14 \cdot 10^8 \text{s}^{-1} = 114 \text{MHz}$$
 (22)

[1]

(c) Die Dopplerbreite beträgt

$$\delta\nu_D = 7,16 \cdot 10^{-7} \cdot \nu_0 \cdot \sqrt{T/M} \sqrt{mol/gK}$$
(23)

[1]

$$\nu_0 = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{5.017 \cdot 10^{-7}} s^{-1} = 5,98 \cdot 10^{14} s^{-1}$$
 (24)

$$T = 10^3 \text{K}, M = 4\text{g/mol}$$
 (25)

$$\Rightarrow \delta \nu_D = 6,77 \cdot 10^9 s^{-1} = 6,77 \text{GHz}. \tag{26}$$

[1]

Aufgabe 5 (5 Punkte)

Wie groß ist die Photonenenergie beim Übergang $n=2 \to n=1$ eines myonischen Atoms mit einer Masse von 140amu und einer Kernladungszahl Z=60?

Bei welchem Wert der Hauptquantenzahl n wird der Radius r_n der Myon-Bahn so groß wie der kleinste Radius der Elektronenbahn?

Hinweis: Myonenmasse: $m_{\mu} = 206, 6m_e$

Lösung

Beim myonischen Atom beträgt die reduzierte Masse

$$\mu = \frac{m_{\mu} m_{\rm K}}{m_{\mu} + m_{\rm K}} \tag{27}$$

[1]

Mit $m_{\mu}=206,6m_e$ und $m_{\rm K}=140\cdot 1836m_e$ folgt $\mu=206,6m_e$.

⇒
$$Ry_{\mu}^{*} = 206, 6 \cdot Ry^{\infty}$$

⇒ $E_{n} = -\frac{206, 6Ry^{*\infty}Z^{2}}{n^{2}}$
⇒ $h\nu = 0, 75 \cdot 60^{2} \cdot 206, 6 \cdot 13, 6\text{eV}$
= $7.59 \cdot 10^{6}\text{eV}$

[2]

Die Photonenergie liegt im MeV-Bereich. Der Radius r_{μ} es Myons im myonischen Atom ist

$$r_n^{\mu} = \frac{n^2}{Z} \cdot \frac{a_0}{206, 6} \tag{28}$$

[1]

Der kleinste Radius der Elektronenbahn ist $r_1^{\rm el}=\frac{a_0}{Z}.$ Aus $r_1^{\rm el}=r_n^\mu$ folgt

$$\frac{n^2}{206,6} = 1 \Rightarrow n \approx 14 \tag{29}$$

[1]

Aufgabe 6 (3 Punkte)

Man berechne die Geschwindigkeit der Photoelektronen, die durch K_{α} -Strahlung von Silber aus der K-Schale des Molybdäns ausgelöst werden. Die Kernladungszahl Z von Silber beträgt 47 und die Ionisierungsenergie von Molybdän (Z=42) ist 20 keV.

Lösung

Die Frequenz der K_{α} -Linien von Silber ist für eine effektive Kernladung $Z_{\text{eff}}=Z-1$:

$$h\nu = Ry^*(Z-1)^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right), Z = 47, n_1 = 1, n_2 = 2, R* = 13, 6\text{eV}$$

$$\Rightarrow h\nu = 13, 6 \cdot 46^2 \cdot 0, 75\text{eV} = 21, 6\text{keV}$$

$$= 3, 45 \cdot 10^{-15} \text{J}$$

$$\Rightarrow \nu = 5, 22 \cdot 10^{18} / \text{s}$$

[2]

Der experimentelle Wert ist $h\nu=21,9{\rm keV},~\lambda=0,562{\rm \AA}.$ Die Ionisierungsenergie von Molybdän ist

$$IP(^{42}Mo) = 20,0 keV$$
 (30)

Die kinetische Energie der Photoelektronen ist $E_{\rm kin}=h\nu-{\rm IP}=(21,6-20,0){\rm keV}=1,6{\rm keV}.$ Ihre Geschwindigkeit ist daher

$$v = \sqrt{\frac{2E_{\text{kin}}}{m_e}} = \sqrt{\frac{2 \cdot 1, 6 \cdot 1, 6 \cdot 10^{-16}}{9, 1 \cdot 10^{-31}}} \text{m/s}$$
$$= 2, 4 \cdot 10^7 \text{m/s} = 7, 9 \cdot 10^{-2} c$$
[1]

Aufgabe 7 (4 Punkte)

Ein radioaktives Tritiumatom (³H) im Grundzustand wandelt sich durch den β -Zerfall eines Neutrons ($n \to p + e^- + \bar{\nu}$) in ein ³He⁺-Ion um. Nehmen Sie an, dass für die Grunszustandswellenfunktion des wasserstoffähnlichen Atoms vor und nach dem Zerfall gilt:

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}} \tag{31}$$

Wie hoch ist die Wahrscheinlichkeit, dass sich das Helium-Ion durch den Übergang in einem 1s-Zustand befindet?

Hinweis:
$$\int r^2 e^{\alpha r} dr = e^{\alpha r} \left(\frac{r^2}{\alpha} - \frac{2r}{\alpha^2} + \frac{2}{\alpha^3} \right)$$

Lösung

Es seien \mathbb{Z}_0 und \mathbb{Z} jeweils die Kernladungszahl vor und nach dem beschriebenen Zerfall.

Die Wahrscheinlichkeit W_{1s} , dass sich das Elektron, beschrieben durch die Wellenfunktion

$$\psi_{100}^{Z_0} = \frac{1}{\sqrt{\pi}} \left(\frac{Z_0}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Z_0 r}{a_0}} \tag{32}$$

nun im neuen Grundzustand ψ^Z_{100} befindet, ist gegeben durch

$$W_{1s} = \left\| P_{\psi_{100}^Z} \psi_{100}^{Z_0} \right\|^2 = \left| \left\langle \psi_{100}^Z, \psi_{100}^{Z_0} \right\rangle \right|^2 \tag{33}$$

[1]

mit dem Projektor $P_{\psi^Z_{100}}$ in den Unterraum span $\{\psi^Z_{100}\}.$ Es ergibt sich

$$\begin{split} \left\langle \psi_{100}^{Z}, \psi_{100}^{Z_0} \right\rangle &= \int_{\mathbb{R}^3} (\psi_{100}^{Z}(x))^* \psi_{100}^{Z_0}(x) \mathrm{d}^3 x \\ &= \frac{(ZZ_0)^{\frac{3}{2}}}{\pi a_0^3} \int_{\mathbb{R}_3} e^{-(Z+Z_0)\frac{r}{a_0}} \mathrm{d}^3 x \\ &= \frac{4}{a_0^3} (ZZ_0)^{\frac{3}{2}} \underbrace{\int_0^\infty e^{-(Z+Z_0)\frac{r}{a_0}} r^2 \mathrm{d}r}_{\frac{2a_0^3}{(Z+Z_0)^3}} = \frac{8(ZZ_0)^{\frac{3}{2}}}{(Z+Z_0)^3} \end{split}$$

Damit ist

$$W_{1s} = \frac{64(ZZ_0)^3}{(Z+Z_0)^6} \tag{34}$$

[2]

Speziell für $Z_0 = 1, Z = 2$ ist

$$W_{1s} = \frac{512}{729} \approx 0,702 \tag{35}$$

[1]

Aufgabe 8 (7 Punkte)

(a) Bestimmen Sie mit Hilfe der Hundschen Regeln das $^{2S+1}L_J$ -Symbol des Grundzustandes von Kohlenstoff. Wie groß ist die Dimension der Entartung des Grundzustandes? *Hinweis*: Kohlenstoff hat sechs Elektronen.

Lösung:

Die Version der Hundschen Regeln, die im Folgenden verwendet wird, ist:

- 1) Die Orbitale der Unterschale werden möglichst parallel mit Spins besetzt. S ist das sich hieraus ergebende $\sum m_s$.
- 2) Die Orbitale der Unterschale werden so besetzt, dass große m_l -Werte zuerst besetzt werden. L ist das sich hieraus ergebende $|\sum m_l|$.
- 3) J ist |L-S| wenn die Unterschale weniger als halb oder halb besetzt ist, sonst L+S.

Die Grundzustandskonfiguration von Kohlenstoff ist $1s^22s^22p^2$, ihre Dimension der Entartung ist d=15.

Die Hundschen Regeln 1. und 2. führen auf das Bild

$$m_l = 1 \quad 0 \quad -1$$

Also

$$S = 1 , L = 1$$
 (36)

Mit Regel 3. folgt

$$J = |L - S| = 0 \tag{37}$$

[1]

Insgesamt ist also das Grundzustandssymbol von Kohlenstoff:

$$S = 1 , L = 1 , J = 0 \rightarrow {}^{3}P_{0}$$
 (38)

[1]

Wegen J=0 ist dieses nicht entartet, der Grundzustand von Kohlenstoff ist also eindeutig.

[1]

(b) Die Grundzustandskonfiguration von Kobalt-27 ist $[Ar] 3d^7 4s^2$. Wie groß ist die Entartung dieser Konfiguration gemäß dem Zentralfeldmodell? Bestimmen Sie mit Hilfe der Hundschen Regeln das $^{2S+1}L_J$ -Symbol des 'wahren' Grundzustandes und geben Sie die Dimension seiner Entartung an.

Lösung:

Die Grundzustandskonfiguration von Kobalt-27 ist $[Ar] 3d^74s^2$. Im Zentralfeldmodell ist deren Entartung

[1]

Die Hundschen Regeln 1. und 2. führen auf das Bild

$$m_l = 2 \quad 1 \quad 0 \quad -1 \quad -2$$

Also

$$S = \frac{3}{2} , L = 3$$
 (40)

[1]

Mit Regel 3. folgt

$$J = L + S = \frac{9}{2} \tag{41}$$

Insgesamt also:

$$S = \frac{3}{2} , L = 3 , J = \frac{9}{2} \rightarrow {}^{4}F_{9/2}$$
 (42)

[1]

Dies ist immer noch 2J + 1 = 10-fach entartet.

[1]

Aufgabe 9 (5 Punkte)

Beim H_2 - Molekül ist die Schwingungsfrequenz $\omega_0=8,28\cdot 10^{14}~s^{-1}$ und die Dissoziationsenergie beträgt $E_{Dis} = 4,478 \ eV$. Vergleichen Sie im folgenden das H_2 - Molekül mit dem HD- Molekül. D ist das Deuterium mit einem Kern aus Proton und Neutron. Nehmen Sie Proton und Neutron als gleich schwer an.

- (a) Warum kann man annehmen, daß die Kraftkonstante ("Federkonstante") bei beiden Molekülen gleich ist?
- (b) Ist unter der Bedingung von 9a auch die Dissoziationsenergie gleich bei beiden Molekülen und warum?
- (c) Berechnen Sie die Dissoziationsenergie des HD- Moleküls.

Lösung

(a) Die Kraftkonstante wird durch die Atomhüllen bestimmt. Diese sind in beiden Molekülen gleich, daher sind auch die Kraftkonstanten gleich.

[1]

(b) Die Dissoziationsenergie hängt von der Nullpunktsenergie bzw. von der Schwingungsfrequenz ω_0 ab. Da diese wiederum von der reduzierten Masse abhängt, erwarten wir verschiedene Dissoziationsenergien im H_2 - und HD- Molekül.

[1]

(c) Die reduzierten Massen sind

$$\mu_{H_2} = \frac{1}{2}m_p, \quad \mu_{HD} = \frac{2}{3}m_p, \quad \rightarrow \quad \mu_{HD} = \frac{4}{3}\mu_{H_2}$$

[1]

Die Schwingungsfrequenz des HD- Moleküls ist

$$\omega_{HD} = \sqrt{\frac{D'}{\mu_{HD}}} = \sqrt{\frac{3}{4}}\omega_{H_2} = 7,17 \cdot 10^{14} \ s^{-1}$$

[1]

Das HD- Molekül hat also eine kleinere Nullpunktsenergie und damit eine grössere Dissoziationsenergie als das H_2 - Molekül. Die Differenz der Dissoziationsenergien ist

$$E_{Diss,HD} - E_{Diss,H_2} = \frac{1}{2}\hbar(\omega_{H_2} - \omega_{HD}) = 0, 5 \cdot 6, 58 \cdot 10^{-16} \ eV \cdot s \ 1, 11 \cdot 10^{14} \ s^{-1} = 0,037 \ eV.$$

Daher ist die Dissoziationsenergie vom HD- Molekül

$$E_{Diss,HD} = E_{Diss,H_2} + 0.037 \ eV = 4.515 \ eV.$$

[1]

Mit diesen Messungen wurde die Existenz der Nullpunktsenergie bei Schwingungen nachgewiesen.

Aufgabe 10 (3 Punkte)

Die Zustandsdichte eines zweidimensionalen Elektronengases ist konstant und unabhängig von der Energie. Welcher Bruchteil aller Elektronen eines solchen Materials mit der Fermienergie E_F hat bei $T=300\mathrm{K}$ eine Energie $E\geq E_F(T=0)=4\mathrm{eV}$?

Hinweis:
$$\int \frac{1}{e^{(E-E_F)kT}+1} dE = -kT \ln \left(e^{-\frac{E}{kT}} + e^{-\frac{E_F}{kT}} \right)$$

Lösung

Die Gesamtzahl der Elektronen ist gegeben durch

$$N = \int_0^\infty D(E)f(E)dE \tag{43}$$

wobei D(E) konstant ist. Der Anteil der Elektronen mit $E \geq E_F$ ist damit

$$\frac{N(E \ge E_F)}{N_{\text{total}}} = \frac{\int_{E_F}^{\infty} \frac{1}{e^{(E - E_F)kT} + 1} dE}{\int_{0}^{\infty} \frac{1}{e^{(E - E_F)kT} + 1} dE}$$

Die Stammfunktion von $\frac{1}{e^{(E-E_F)kT}+1}$ ist $-kT\ln\left(e^{-\frac{E}{kT}}+e^{-\frac{E_F}{kT}}\right)$, daher ist $\int_{E_F}^{\infty}\frac{1}{e^{(E-E_F)kT}+1}\mathrm{d}E=kT\ln 2$ und $\int_{0}^{\infty}\frac{1}{e^{(E-E_F)kT}+1}\mathrm{d}E=E_F+kT\ln(1+e^{-\frac{E_F}{kT}})$, womit

$$= \frac{\ln 2}{\frac{E_F}{kT} + \ln(1 + e^{-\frac{E_F}{kT}})}$$

[2]

Für $E_F = 4\text{eV} = 6, 4 \cdot 10^{-19} \text{J}, T = 300 \text{K}$ ist damit

$$\frac{N(E \ge E_F)}{N_{\text{total}}} = 4.5 \cdot 10^{-3} \tag{44}$$

[1]

wie man leicht nachrechnet.

Konstanten

Physikalische Konstanten

Größe	Symbol, Gleichung	Wert
Vakuumlichtgeschwindigkeit	c	$2,9979 \cdot 10^8 \mathrm{ms}^{-1}$
Plancksche Konstante	h	$6,6261 \cdot 10^{-34} \mathrm{Js} = 4,1357 \cdot 10^{-15} \mathrm{eVs}$
Red. Plancksche Konstante	$\hbar = h/2\pi$	$1,0546 \cdot 10^{-34} \mathrm{Js}$
Elektr. Elementarladung	e	$1,6022 \cdot 10^{-19} \mathrm{C}$
Boltzmann-Konstante	k_{B}	$1,3807 \cdot 10^{-23} \mathrm{JK^{-1}} = 8,617 \cdot 10^{-5} \mathrm{eVK^{-1}}$
Magnetische Feldkonstante	μ_0	$4\pi \cdot 10^{-7} \mathrm{VsA^{-1}m^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 1/\mu_0 c^2$	$8,8542 \cdot 10^{-12} \mathrm{AsV^{-1}m^{-1}}$
Elektronruhemasse	$m_{ m e}$	$9,1094 \cdot 10^{-31} \mathrm{kg} = 0,5110 \mathrm{MeV}/c^2$
(Anti-)Protonruhemasse	$m_{ar{ ext{p}}, ext{p}}$	$1,6726 \cdot 10^{-27} \mathrm{kg} = 938,2720 \mathrm{MeV}/c^2$
Neutronruhemasse	$m_{ m n}$	$1,6749 \cdot 10^{-27} \mathrm{kg} = 939,5653 \mathrm{MeV}/c^2$
Atomare Masseneinheit	amu	$1,6605 \cdot 10^{-27} \mathrm{kg}$
Avogadro-Zahl	N_A	$=6.023\cdot 10^{23}$
Bohr'scher Radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{e^2m_e}$	$5,29 \cdot 10^{-11} \mathrm{m}$
Bohr'sches Magneton	μ_B	$9,2741 \cdot 10^{-24} \text{JT}^{-1} = 5,7884 \cdot 10^{-5} \text{eVT}^{-1}$
Kernmagneton	μ_K	$= 5,0508 \cdot 10^{-27} \mathrm{J/T} = 3,152 \cdot 10^{-14} \mathrm{MeV/T}$
Magnetisches Moment des Protons:	μ_P	$2,79\mu_{K}$
Feinstrukturkonstante	$1/\alpha$	137,036
Rydbergsche Konstante	R_{∞}	$13{,}6057\mathrm{eV}$