Übungsblatt 5: Moduln

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 5.1. (Dualität) Sei R ein Ring. Für jeden R-Modul M definieren wir den dualen Modul

$$M^{\vee} = \operatorname{Hom}(M, R),$$

wobei Hom für die R-linearen Homomorphismen steht. Beweisen Sie, dass M und $M^{\vee\vee}$ als R-Moduln kanonisch isomorph sind, wenn $M=R^d$, wobei $d\geq 0$.

Übung 5.2. (wird benotet, aud 5 Punkten) Sei k ein Körper. Sei R der Ring $k[x,y]/(y^3-x^2)$. Das injektive Ringhomomorphismus

$$R = k[x, y]/(y^3 - x^2) \hookrightarrow k[t],$$

welches x auf t^3 und y auf t^2 abbildet, induziert eine R-Modulstruktur auf M = k[t]. Sei I das von (der Abbildung von) x erzeugte Ideal in R. Berechnen Sie Ann(M/IM).

Übung 5.3. Sei R ein Ring und es sei das folgende kommutative Diagram von R-Moduln:

$$M_1 \xrightarrow{\mu} M_2$$

$$\downarrow^{f_1} \qquad \downarrow^{f_2}$$

$$N_1 \xrightarrow{\nu} N_2$$

Beweisen Sie, dass es eindeutige R-Modulhomomorphismen

$$f_{\ker} : \ker(\mu) \to \ker \nu \quad \text{und} \quad f_{\operatorname{co}} : \operatorname{coker}(\mu) \to \operatorname{coker}(\nu)$$

gibt, sodass das folgende erweiterte Diagram auch kommutativ ist:

Übung 5.4. Welche endliche kommutative Gruppen verfügen über eine $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ -Modul Struktur?

Hinweis. Der folgende Fakt kann ohne Beweis angewandt sein: Für p eine Primzahl gilt $\exists n \in \mathbb{Z}/p\mathbb{Z}$, sodass $n^2 \equiv 5$ genau so dann, wenn p = 2, 5, oder $p \equiv 1$ oder $4 \mod 5$.