

Goal-Oriented Requirements Engineering

Como requisitos são elicitados para sistemas IA?

Vamos analisar esse requisito para um sistema com tradução automática:

[RF01] O sistema deve fornecer traduções precisas e confiáveis do texto de origem para o texto de destino

Engenharia de Requisitos

A principal medida do sucesso de um sistema de software é o grau em que ele atende aos seu propósito. Portanto, identificar esse propósito deve ser uma das principais atividades do desenvolvimento de sistemas de software.

Assim, a engenharia de requisitos deve abordar as razões pelas quais um sistema de software é necessário, as funcionalidades que ele deve ter para atingir seu propósito e as restrições sobre como o software deve ser projetado e implementado.

Mundo Real (Problema)

Requisitos

Software (Solução)

Processo natural de engenharia de requisitos

1º Passo

O contexto atual em questão é analisado em usa forma organizacional, operacional e técnica

2º Passo

Os problemas são apontados e identificados

3° Passo

São então identificados e aperfeiçoados **objetivos** de alto nível para resolver esses problemas

4º Passo

Os requisitos são então elaborados para atingir esses objetivos

Objetivo: Desenvolver um aplicativo móvel para gerenciamento de finanças pessoais.

[RFO1] O aplicativo deve permitir aos usuários registrar suas transações financeiras diárias, incluindo despesas, receitas e transferências entre contas.

[RFO2] O aplicativo deve gerar relatórios mensais de despesas e receitas, apresentando gráficos e resumos categorizados para facilitar a visualização e análise das finanças.

[RFO3] O aplicativo deve integrar-se com contas bancárias dos principais bancos, permitindo a importação automática de transações para facilitar o acompanhamento das finanças.

Introduzindo GORE

- O GORE é uma abordagem para a engenharia de requisitos através de metas.
- Uma meta é um objetivo que o sistema em consideração deve atingir.
- O GORE envolve a elicitação, o refinamento, a decomposição e a operacionalização de metas para garantir o alinhamento com os objetivos dos stakeholders.
- Os requisitos no GORE funcionam como implementações das metas.
- No GORE, os agentes são responsáveis por atingir as metas.

A partir de uma meta, é possível ir quebrando ela em sub-metas até ela chegar num nível baixo o suficiente para ser considerado um requisito.

Pergunta: Quais outras sub-metas e requisitos podem ser extraídos dessa meta?

O sensor de temperatura deve disparar um alerta se a temperatura no local de armazenamento exceder 25°C.

Agentes e requisitos

O aplicativo deve gerar automaticamente relatórios mensais resumindo as estatísticas da atividade do usuário no aplicativo.

ER Tradicional vs. GORE

Tradicional

Ponto de partida: Declarações de requisitos iniciais fornecidas pelo cliente, centradas em "o que" o sistema deve fazer.

Objetivo: Produzir um documento de requisitos abrangente que possa ser entregue aos programadores.

GORE

Ponto de partida: Identificar e compreender os objetivos que os stakeholders têm para o sistema, abordando o "porque" o sistema deve fazer o que faz.

Objetivo: Alinhar os requisitos do sistema com as metas e as intenções dos stakeholders, assegurando que o sistema resultante cumpra estas metas de nível superior.

Taxonomia no GORE

Produzir um documento de requisitos abrangente que possa ser entregue aos programadores.

Tipos de Metas

Soft Goals

Estes não podem ser estabelecidos com critérios de satisfação claros. São utilizados para comparar aperfeiçoamentos alternativos.

Exemplo: "Melhorar a satisfação dos usuários com o aplicativo."

Hard Goals

Estas podem ser verificadas e a sua satisfação pode ser claramente estabelecida.

Exemplo: "Garantir que o aplicativo processe as transações em 2 segundos."

Frameworks de Aplicação do GORE

NFR

O framework NFR (Non-Functional Requirements) centra-se na modelação e análise sistemáticas dos requisitos não funcionais, assegurando que estes estão na mente dos programadores.

KAOS

KAOS é uma metodologia de engenharia de requisitos orientada para objetivos que integra raciocínio semi-formal, qualitativo e formal.

|*

O framework i* é uma metodologia de modelação orientada para os agentes utilizada na engenharia de requisitos, na reengenharia de processos empresariais e na análise do impacto organizacional.

Metodologia KAOS

Knowledge Acquisition in autOmated Specification or Keep All Objects
Satisfied

A KAOS é descrita como um framework multiparadigma que permite combinar diferentes níveis de expressão e raciocínio: semi-formal para modelagem e estruturação de objetivos, qualitativo para seleção entre as alternativas e formal, quando necessário, para um raciocínio mais preciso.

A KAOS tem origem numa cooperação entre a Universidade de Oregon e a Universidade de Lovaina (Bélgica) em 1990. A pesquisa, as extensões e as melhorias da metodologia continuam a ser efetuados regularmente na Universidade de Lovaina.

Elementos KAOS

A modelagem de objetivos KAOS é o conjunto de diagramas de objetivos interrelacionados que foram elaborados para resolver um determinado problema

São propriedades desejadas do sistema.

Os requisitos são metas atribuídas a um só agente de software.

São descrições sobre o contexto ou ambiente que estão propessos a mudanças (regras de negócio, leis da física e etc.)

Os agentes são seres humanos ou componentes automatizados responsáveis pela concretização dos requisitos.

Links KAOS

São introduzidas **ligações de responsabilidade** para relacionar os requisitos e seu agente.

As **ligações de refinamento OR** significam que a satisfação de **uma das submetas** é suficiente para satisfazer a meta principal.

As **ligações de refinamento AND** relacionam uma meta com um conjunto de submetas. Isto significa que a satisfação de **todas as submetas** no refinamento é suficiente para satisfazer a meta principal.

Vamos criar uma hierarquia básica refinando um goal.

São propriedades desejadas do sistema.

As ligações entre metas destinam-se a captar situações em que as metas apoiam positivamente ou negativamente outras metas

Ao terminar de refinar um sub-goal, você pode ligar ela a um agente, dessa forma, temos um requisito.

Os agentes são seres humanos ou componentes automatizados responsáveis pela concretização dos requisitos.

Os requisitos são metas atribuídas a um só agente de software.

São introduzidas ligações de responsabilidade para relacionar os requisitos e seu agente.

Deve-se garantir um acesso a um banco de dados para que o objetivo se cumpra, vamos indicar esse fato no diagrama.

São descrições sobre o contexto ou ambiente que estão propessos a mudanças (regras de negócio, leis da física e etc.)

Vamos elicitar mais requisitos.

As ligações de refinamento OR significam que a satisfação de uma das submetas é suficiente para satisfazer a meta principal.

As ligações de refinamento AND relacionam uma meta com um conjunto de submetas. Isto significa que a satisfação de todas as submetas no refinamento é suficiente para satisfazer a meta principal.

Um goal pode ser atribuído a um só agente se todos os seus sub-goals podem ser atribuídos a ele também.

Caso um goal possa ser atribuído a um só agente, então os goals-folha dele não precisam explicitamente apontar para um agente.

Goal-folhas

Goal-folhas

O Language Reactor é uma extensão para a Netflix para ajudar no aprendizado de linguas estrangeiras. Na qual, caso habilitada, o usuário pode passar o mouse por cima de uma palavra estrangeira desconhecida na legenda e ele mostra em um pop up o significado no dicionário traduzido.

Facilitar o aprendizado de idiomas estrangeiros.

Nem sempre ao usar o dicionário, a tradução virá precisamente. Logo, ela precisa ser contextualizada.

ReadLang é uma aplicação onde você pode ler textos em línguas estranjeiras. Ao clicar em uma palavra ele oferece a tradução e um texto gerado por IA a explicando no contexto proposto.

brothers

composta da mia mamma, mio papà e i miei tre **fratelli**. Alle 22:30 circa vado a letto a leggere alcuni libri prima di dormire.

fratelli - brothers

The Italian word "fratelli" means "brothers" in English. In its usual meaning, it refers to male siblings or brothers in a general sense. In the given context, it specifically refers to the speaker's three brothers, indicating that the speaker has three male siblings.

Switch explanations to Italian

Edit word

Áreas-chave para o desenvolvimento de sistemas de IA

User Needs

Esta área se concentra identificação análise dos е requisitos dos usuários para sistemas de IA, incluindo capacidades do sistema, interações dos usuários e se o deve sistema assistir automatizar tarefas. Ele enfatiza a escolha de métricas de avaliação apropriadas, considerando tradeoffs.

Model Needs

Esta área aborda a seleção e o treinamento do modelo de IA com base nas necessidades das partes interessadas, como explicabilidade vs precisão. Envolve documentar os dados usados no ajuste do modelo para mitigar preconceitos e decidir entre treinamento estático versus dinâmico.

Data Needs

Esta área cobre a identificação de fontes de dados, tipos, qualidade, rótulos, recursos, precisão e exatidão. Enfatiza a garantia da justiça e inclusão dos dados e do equilíbrio entre o custo de aquisição de mais dados e os benefícios que isso proporciona.

Áreas-chave para o desenvolvimento de sistemas de IA

Feedback and User Control

Esta área envolve a obtenção de feedback explícito e implícito dos usuários e permitir-lhes controlar e ajustar o sistema. Inclui o planejamento de mecanismos de feedback e a garantia de que os usuários possam calibrar as configurações iniciais.

Explainability and Trust

Esta área se concentra em explicações fornecer para decisões do sistema de IA para construir a confiança do usuário. Envolve explicar resultados e previsões, exibir níveis confiança adaptar е explicações ao contexto para evitar excesso de confiança ou mal-entendidos.

Errors and Failure

Esta área aborda a identificação e definição de erros, suas fontes e o impacto nos usuários. Inclui planejamento para correção de erros, mitigação dos efeitos dos erros e cautela com suposições baseadas em dados confidenciais para manter a confiança do usuário.

Facilitar o aprendizado de idiomas estrangeiros

Benefícios do GORE

1

Rastreabilidade e refinamento

2

Persistencia dos requisitos

3

Comunicação com Stakeholder 4

Estabilidade da informação

Bibliografia

- Aljahdali, Sultan, Jameela, Bano, Nisar, Hundewale. "Goal Oriented Requirements Engineering –A Review". Proceedings of the ISCA 24th International Conference on Computer Applications in Industry and Engineering, CAINE 2011. (2011).
- Van Lamsweerde, Axel. "Goal-oriented requirements engineering: A guided tour." Proceedings fifth ieee international symposium on requirements engineering. IEEE, 2001.
- Lapouchnian, Alexei. "Goal-oriented requirements engineering: An overview of the current research." University of Toronto 32 (2005).
- Uszok, Jeffrey Bradshaw Andrzej, and Jeffrey Bradshaw. "Kaos tutorial." URL http://ontology. ihmc. us/KAoS/KAoS_Tutorial_files/frame. html.