2023 年上海市高等学校信息技术水平考试试卷

二三级 物联网技术及应用(模拟卷)

(本试卷考试时间 150 分钟) 送水縣 每水縣 1 分 廿 25 分)从下面题目给出的 A B

一、单选题 (本大趣 25 道小趣 , 每小题 1 分, 共 25 分), 从下面题目给出的 A、B、	
C、D 四个可供选择的答案中选择一个正确答案。	
1不属于低功率短距离无线通信技术。	
A. 广播	
B. 超宽带	
C. 蓝牙	
D. Wi-Fi	
2. 作为物联网发展的排头兵,市场最为关注的技术为。	
A. 射频识别	
B. 传感器	
C. 智能芯片	
D. 无线传输网络	
3. 物联网的主体是物,核心是网络,物与物之间通过网络进行。	
A. 设备间联动	
B. 信息传输	
C. 数据交换	
D. 数据处理	
4. 物联网。	
A. 是一个纵向延伸的领域	
B. 具有学科综合性强、产业链条长、渗透范围广的特点	
C. 不能覆盖信息获取、传输、处理、存储、使用的全过程	
D. 与传感网没有关系	
5. 在物联网中,Radio Frequency Identification 简称为。	
A. RFID	
B. RFI	
C. RaFI	
D. RaFID	
6. 在物联网中,指的是利用条形码 、红外感应、二维码等技术随时随地获取物	IJ
体的信息。	
A. 可靠传递	
B. 全面感知	
C. 智能处理	
D. 互联网	

7. 卫星导航定A. 感知层B. 应用层C. 网络层D. 会话层	位技术属于物	取联网体系结构	中	_的关键技术。	
8. 在物联网三A. 感知层B. 应用层C. 网络层D. 通信层	层架构中,可	靠传输是	的特征。	o	
9. 物联网的 A. 感知层 B. 应用层 C. 网络层 D. 通信层	是建_	立在移动通讯	図和互联网基4	础上的。	
10A. Zigbee B. VR C. NFC D. ETC 11. 在物联网体A. 大脑 B. 皮肤 C. 神经中枢		~K			
D. 社会分工 12. 蓝牙技术的 A. 蓝牙鼠标键 B. 无线路由器 C. 摄像头 D. 智能门锁	盘	话蓝牙耳机、引	蓝牙手表、	等。	
13. Zigbee 提A. 20kbps B. 30kbps C. 40kbps D. 50kbps	供的数据速率	包括 250kbps	、40kbps 和_	o	
14. 物联网仓屋务。	幸管理系统采 /	用基于 LoRa、	NB-IoT等	网络,	完成物流相关的任

第 2 页, 共 12 页 35 (模拟卷)

A. 控制 B. 传输 C. 应用 D. 物理
15主要是通过手机、电脑等实现对空调、饮水机等家电设备的远程智能控制。A. 智能安防B. 远程监控C. 智能家居D. 智能影音
16. 传感器正向着智能化方面发展,其中典型的传感器智能化结构模式是 A. 传感器+通信技术 B. 传感器+微处理器 C. 传感器+多媒体技术 D. 传感器+网络技术
17. IEEE 802. 15. 4 致力于实现低成本、低传输速率、低功耗的无线连接,其覆盖范围属于
A. 广域网 B. 城域网 C. 局域网 D. 个人区域网 18. 在无线传感网络中,用于处理同一类型数据,以减少数据的冗余。 A. 数据融合 B. 数据采集
C. 数据同步 D. 数据屏蔽 19. 将条形码转化为有意义的信息,需要经历扫描和
20. 基站定位的原理是距离基站越远,信号越。 A. 弱 B. 强 C. 好 D. 大
21. Zigbee 协议栈中 MAC 层负责不同设备之间无线的建立。 A. 数据链路

第 3 页, 共 12 页 35 (模拟卷)

B. 组网 C. 信号 D. 终端
22. 在无线低速网络中,通信距离最远的是。 A. 蓝牙通信 B. Zigbee 通信 C. 红外线通信 D. LoRa 通信
23协议用于无线宽带网络安全加密。 A. WEP B. WPA C. SSL D. VPN
24. 物联网设备通常具有资源受限的特点,因此物联网操作系统不需要具备
25
2. 在物联网体系结构中,网络层的技术拥有接近无限的地址空间,可以标识海量的物联网设备。
3技术可以对医疗物品进行标识与管理。
4. 物联网操作系统必须具备低功耗和
5. MySQL 数据库是一个关系型数据库管理系统(RDBMS),其中 SQL 代表。

三、操作题

在中国式现代化的大背景下,智慧医疗正在走进寻常百姓的生活。有一款智能穿戴设备,拟利用物联网技术通过该设备实现个人健康数据的获取、交互和预警,现需进行智能网关和移动应用两部分开发。在智能网关开发部分,需要在PyCharm环境中按要求实现网关和数据源之间的信息交互。在移动应用开发部分,需要在Android Studio环境中按要求实现移动端的用户登录、健康监测数据获取和预警控制等功能。

保存注意:

- 1.智能网关开发完成后请将下列文件复制到C:\KS\python文件夹中:
- (1) 工程文件结构1. png
- (2) C:\Test\IOTGW\venv\YL\gate.py
- (3) C:\Test\IOTGW\venv\YL\config.data
- 2.移动应用开发完成后请将下列文件复制到C:\KS\android文件夹中:
- (1) 工程文件结构2. png
- (2) C:\Test\IOTAPP\app\src\main\res\layout\activity login.xml
- (3) C:\Test\IOTAPP\app\src\main\java\com\example\iotapp\LoginActivity.java
- (4) C:\Test\IOTAPP\app\src\main\java\com\example\iotapp\MainActivity.java
- (5) C:\素材\demo\config.txt

1. 智能网关开发(本大题5道小题, 共60分)

- (1)使用PyCharm在C:\Test文件夹中创建新工程IOTCW, 在venv中新建YL文件夹,将C:\素材\python files文件夹中的config.data和gate.py文件复制到YL文件夹中,截图保存为"工程文件结构1.png"文件。(10分)
- (2) 如图1所示,打开C:\Test\ IOTGW\venv\YL\config. data文件,修改IP地址为本机实际IP地址。(6分)

(3)运行C:\素材\data source\Server.exe文件,启动数据源服务器。打开gate.py文件,完善getConfig()函数,获取config.data文件中的IP地址存储到全局变量ip中,获取用户名、密码存储到全局变量allowedUser中;完善getData()函数,从数据源服务器获取数据存储到全局变量dataFromSource中,程序每隔7秒向数据源服务器发送find指令,网关与数据源通信端口为10068。程序运行结果如图2所示。(16分)

pate ×

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/YL/gate.py 登录信息[IP地址: 192.168.111.128, 用户名: iot, 密码: 2023]

图2 程序运行结果

(4) 完善clientComm()函数,建立网关与安卓客户端的通信,端口号为10067,监听客户端连接,可接受的最大连接数为1000。

【开发结果验证】启动安卓模拟器,安装C:\素材\apk\app.apk文件并运行,界面如图3

第 5 页, 共 12 页

35 (模拟卷)

所示。输入IP地址、端口号、用户名、密码后单击登录按钮进行验证,验证失败则程序运行 结果如图4所示,验证成功则程序运行结果如图5所示。(12分)

🦺 gate 🔀

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/YL/gate.py 登录信息[IP地址: 192.168.111.128, 用户名: iot, 密码: 2023] 用户 iot 正在从IP地址为 ('192.168.111.128', 49877) 的主机登录。 用户 iot 登录失败!

图4 登录失败的提示语

⋛ gate 🔀

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/YL/gate.py 登录信息[IP地址: 192.168.111.128, 用户名: iot, 密码: 2023] 用户 iot 正在从IP地址为 ('192.168.111.128', 49904) 的主机登录。 用户 iot 登录成功!

图5 登录成功的提示语

(5) 完善getFromClient()和sendToClient()函数,实现每隔10秒向客户端推送数据, 使安卓程序登录成功后如图6所示,程序运行结果如图7所示。分别单击安卓程序中的各按钮 (按钮发送的命令格式见表1),程序输出结果如图8所示(图中仅显示部分按钮单击后的结

果)。(16分)

表1 安卓程序按钮对应命令格式

按钮功能	对应命令格式
最高体温预警值+1	t11,体温值
最高体温预警值-1	t12,体温值
最低体温预警值+1	t21,体温值
最低体温预警值-1	t22,体温值
最高血压(收缩压)预警值+1	s11,血压(收缩压)值
最高血压(收缩压)预警值-1	s12,血压(收缩压)值
最低血压(收缩压)预警值+1	s21,血压(收缩压)值
最低血压(收缩压)预警值-1	s22,血压(收缩压)值
最高血压(舒张压)预警值+1	d11,血压(舒张压)值
最高血压(舒张压)预警值-1	d12,血压(舒张压)值
最低血压(舒张压)预警值+1	d21,血压(舒张压)值
最低血压(舒张压)预警值-1	d22,血压(舒张压)值
最高心率预警值+1	h11,心率值
最高心率预警值-1	h12,心率值
最低心率预警值+1	h21,心率值
最低心率预警值-1	h22,心率值
最高呼吸速率预警值+1	rll,呼吸速率值
最高呼吸速率预警值-1	r12,呼吸速率值
最低呼吸速率预警值+1	r21,呼吸速率值
最低呼吸速率预警值-1	r22,呼吸速率值

图6 登录成功的安卓程序界面

第 7 页, 共 12 页 35 (模拟卷)

```
□ gate ×

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/YL/gate.py

登录信息[IP地址: 192.168.111.128, 用户名: iot, 密码: 2023]

用户 iot 正在从IP地址为 ('192.168.111.128', 50071) 的主机登录。

用户 iot 登录成功!

已为用户 iot 建立数据接收连接。

已为用户 iot 建立数据接收连接。

已将数据 {"0200":"54","0400":"68","0100":"126","0300":"93","0000":"36","0500":"14"} 发送给用户 iot

已将数据 {"0200":"82","0400":"79","0100":"108","0300":"91","0000":"38","0500":"19"} 发送给用户 iot

已将数据 {"0200":"79","0400":"133","0100":"111","0300":"91","0000":"39","0500":"14"} 发送给用户 iot
```

图7 程序运行结果

```
用户 iot 已设置 增加最低血压(舒张压)预警值 为 60mmHg。
用户 iot 已设置 增加最高心率预警值 为 102次/分。
用户 iot 已设置 增加最高心率预警值 为 103次/分。
用户 iot 已设置 增加最低心率预警值 为 60次/分。
用户 iot 已设置 降低最高体温预警值 为 38°C。
用户 iot 已设置 降低最低体温预警值 为 35°C。
用户 iot 已设置 降低最低体温预警值 为 35°C。
用户 iot 已设置 降低最低血压(收缩压)预警值 为 140mmHg。
用户 iot 已设置 降低最低血压(收缩压)预警值 为 89mmHg。
用户 iot 已设置 降低最低血压(收缩压)预警值 为 88mmHg。
用户 iot 已设置 降低最低血压(价缩压)预警值 为 90mmHg。
```

图8 程序输出结果

2. 移动应用开发(本大题5道小题,共60分)

(1)使用Android Studio在C:\Test文件夹中创建新工程IOTAPP,切换到Project视图,如图9所示,将C:\素材\android files文件夹中的所有文件复制到相应位置,截图保存为"工程文件结构2.png"文件。(12分)

- (2) 完善activity_login.xml文件,实现如图11所示的登录界面,其中密码框的输入类型设置为"密码",即输入任何字符均显示为星号或点号。(16分)
 - (3) 完善LoginActivity. java文件,实现以下功能: (14分)
 - IP地址、端口号、用户名、密码任意一项输入为空时提示"信息不完整!";
 - 用户名的长度小于3时提示"用户名应大于2个字符!";
 - 用户名或密码输入错误时提示"登录失败!";
 - 登录成功时跳转到如图12所示的登录成功界面。
- (4) 完善MainActivity. java文件,实现以下功能:通过布局文件activity_main. xml 显示每个监测数据的当前值及初始预警的最大最小值,当前值数据每隔5秒自动刷新。监测内容项及其在数据源中的对应编号、预警初始值见表2。

监测内容	编号	预警初始最大值	预警初始最小值
体温	0000	38°C	35°C
血压 (收缩压)	0100	140mmHg	89mmHg
血压 (舒张压)	0200	90mmHg	59mmHg
心率	0400	101次/分	59次/分
呼吸速率	0500	21次/分	15次/分

表2 监测内容、对应编号及预警初始值对应表

当监测值介于预警最大值和最小值之间时,字体显示为灰色;当监测值大于预警最大值时,字体显示为红色;当监测值小于预警最小值时,字体显示为蓝色。

单击设置预警值对应的"最大值+"、"最小值-"按钮在页面显示更新后的预警值,每次单

击按钮变化值幅度为1个单位;同时向智能网关发送数据命令,将各监测内容的预警范围作 相应调整,各按钮与发送命令的对应关系如表3所示。(12分)

按钮	对应命令格式	举例
最高体温预警值+1	t11,体温值	t11,39°C
最高体温预警值-1	t12,体温值	t12,37°C
最低体温预警值+1	t21,体温值	t21,36°C
最低体温预警值-1	t22,体温值	t22,34°C
最高血压(收缩压)预警值+1	s11,血压(收缩压)值	s11,141mmHg
最高血压(收缩压)预警值-1	s12,血压(收缩压)值	s12,139mmHg
最低血压(收缩压)预警值+1	s21,血压(收缩压)值	s21,90mmHg
最低血压(收缩压)预警值-1	s22,血压(收缩压)值	s22,88mmHg
最高血压(舒张压)预警值+1	d11,血压(舒张压)值	d11,91mmHg
最高血压(舒张压)预警值-1	d12,血压(舒张压)值	d12,89mmHg
最低血压(舒张压)预警值+1	d21,血压(舒张压)值	d21 ,60mmHg
最低血压(舒张压)预警值-1	d22,血压(舒张压)值	d22,58mmHg
最高心率预警值+1	h11,心率值	hll,102次/分
最高心率预警值-1	h12,心率值	h12, 100 次/分
最低心率预警值+1	h21,心率值	h21,60次/分
最低心率预警值-1	h22,心率值	h22,58次/分
最高呼吸速率预警值+1	r11,呼吸速率值	r11,22次/分
最高呼吸速率预警值-1	r12,呼吸速率值	r12,20次/分
最低呼吸速率预警值+1	r21,呼吸速率值	r21, 16 次/分
最低呼吸速率预警值-1	r22,呼吸速率值	r22,14次/分

表3 各按钮与发送命令对应关系

- (5) 打开C:\素材\demo\config. txt文件,用户名为iot,登录密码为2023,修改文字 "ip="后的内容为本机实际IP地址,如图10所示。(6分)
- 【开发结果验证】运行C:\素材\data source\Server. exe文件, 启动数据源服务器(如 已启动,请不要重复启动)。运行C.\素材\demo\gate.exe文件,启动智能网关。运行本工程, 在如图11所示的登录界面中输入IP地址、端口号、用户名、密码,其中端口号为10067,单 击登录按钮,登录成功后界面如图12所示。单击相关按钮,网关命令框出现如图13所示的提 示语。

图10 config.txt文件示例

图13 gate. exe验证提示语

