1 Integrals dobles i triples

1. Dibuixeu el recinte, invertiu l'ordre d'integració i calculeu les integrals dobles següents, en un dels dos ordres.

(a)
$$\int_{0}^{1} \int_{1}^{2} dx \, dy$$
 (b) $\int_{1}^{2} \int_{0}^{3} (x+y) dx \, dy$ (c) $\int_{1}^{2} \int_{0}^{3} (x+y) dx \, dy$ (d) $\int_{0}^{1} \int_{x^{2}}^{3} (x+y) dx \, dy$ (e) $\int_{1}^{2} \int_{0}^{3} (x+y) dx \, dy$ (f) $\int_{1}^{1} \int_{x}^{\sqrt{x}} (y+y^{3}) dy \, dx$ (g) $\int_{0}^{1} \int_{x}^{1} y^{2} e^{xy} dy \, dx$ (g) $\int_{0}^{1} \int_{x}^{x^{2}} x e^{y} dy \, dx$ (h) $\int_{2}^{4} \int_{y}^{8-y} y dx \, dy$

- 2. Dibuixeu el recinte i calculeu les integrals dobles següents:
 - (a) f(x,y) = y, sobre la regió limitada per $y = x^2$ i $x = y^2$
 - (b) $f(x,y) = x^2$, sobre la regió limitada per y = x, y = 2x i x = 2
 - (c) f(x,y) = 1, sobre cadascuna de les regions del primer quadrant limitades per $2y = x^2$, y = 3x i x + y = 4
 - (d) f(x,y)=y, sobre la regió per sobre de y=0, limitada per $y^2=4x$ i $y^2=5-x$
 - (e) $f(x,y) = \frac{1}{\sqrt{2y-y^2}}$, sobre la regió del primer quadrant limitada per $x^2 = 4 2y$
- 3. Dibuixeu el recinte i calculeu les integrals dobles següents:

(a)
$$\int_0^{\arctan\frac{3}{2}} \int_0^{\frac{2}{\cos\theta}} r dr d\theta$$

(b)
$$\int_0^{\frac{\pi}{2}} \int_0^2 r^2 \cos \theta dr d\theta$$

(c)
$$\int_0^{\frac{\pi}{4}} \int_0^{\frac{\tan \theta}{\cos \theta}} r^3 \cos^2 \theta dr d\theta$$

- 4. Utilitzeu integrals dobles per calcular les àrees de les regions del pla següents.
 - (a) Regió limitada per 3x + 4y = 24, x = 0, y = 0
 - (b) Regió limitada per $x+y=2,\,2y=x+4,\,y=0$
 - (c) Regió limitada per $x^2 = 4y$, $8y = x^2 + 16$
 - (d) Regió limitada per $r = \tan \theta / \cos \theta$ i $\theta = \pi/3$
 - (e) Regió exterior a r = 4 i interior a $r = 8\cos\theta$
- 5. Calculeu $\iint_D \frac{1}{\sqrt{1+x+2y}} dx dy$ on $D = [0,1] \times [0,1]$, de dues maneres diferents: directament i efectuant el canvi de variables u = x, v = 2y.
- 6. Sigui P el paral·lelogram limitat per les rectes y = 2x, y = 2x 2, y = x i y = x + 1. Calculeu $\iint_P xy \, dx \, dy$ usant un canvi de variables lineal.
- 7. Sigui D la regió del pla limitada pels eixos coordenats i per la recta x+y=1. Calculeu $\int \int_D \cos\left(\frac{x-y}{x+y}\right) dx \, dy$ mitjançant el canvi de variables $u=x-y, \, v=x+y$.
- 8. Calculeu les integrals següents usant coordenades polars:

- (a) $\iint_D (x^2 + y^2) dx dy$, on D és el recinte del primer quadrant limitat per les rectes y = x, y = 3x i les circumferències $x^2 + y^2 = 2$, $x^2 + y^2 = 8$
- (b) $\iint_D xe^{(x^2+y^2)^{3/2}} dx dy$, on D és la regió interior al disc de centre l'origen i radi 1, per sobre de la recta x+y=0

(c)
$$\iint_D y\sqrt{x^2+y^2} \, dx \, dy$$
, on $D = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \ge 1, \ (x-1)^2+y^2 \le 1, \ x \ge 0, \ y \ge 0\}.$

(d)
$$\iint_D \sqrt{x^2 + y^2} \, dx \, dy$$
, on $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 + 6x \le 0, \ y \ge -x\}$

(e)
$$\iint_D \frac{x^2}{x^2 + y^2} dx dy$$
, on $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2, \ y \le x^2, \ x \ge 0, \ y \ge 0\}$

- 9. Calculeu el volum de les següents regions de \mathbb{R}^3 :
 - (a) Volum per sota de z = 3x, per sobre de z = 0 i interior a $x^2 + y^2 = 25$
 - (b) Volum en el primer octant del sòlid limitat per $x^2 + z = 9$ i 3x + 4y = 24
 - (c) Volum en el primer octant del sòlid limitat per $x^2 + y^2 = 25$ i z = y
 - (d) Volum comú als cilindres $x^2 + y^2 = 16$ i $x^2 + z^2 = 16$
 - (e) Volum per sobre de z=0, comú a $x^2+y^2=4$ i $x^2+y^2+2z=16$
 - (f) Volum interior a r=2 i exterior a $z^2=r^2$ (on les superfícies estan expressades en coordenades cilíndriques).
 - (g) Volum interior al tros de cilindre $x^2 + y^2 = 4x$ comprès entre $x^2 + y^2 = 4z$ i z = 0.
 - (h) Volum del sòlid $A = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge x^2 + y^2, \ x \le 0, \ y \ge 0, \ z \in [1, 2]\}.$
 - (i) Volum en el primer octant del sòlid limitat superiorment per $x^2 + y^2 + \frac{z^2}{4} = 9$ i inferiorment per $x^2 + y^2 + z^2 = 12$.
 - (j) Volum del sòlid $A = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge \frac{x^2}{4} + \frac{y^2}{2}, \ \frac{x^2}{8} + \frac{y^2}{4} \le 1, \ z \in [0, 2]\}.$
 - (k) Volum en el primer octant del sòlid limitat superiorment per z=xy, inferiorment per z=0 i lateralment per $x^2+y^2=a^2$ i $x^2+y^2=2ax$.
 - (l) Volum del sòlid $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 \le 1, \ x^2 + y^2 + (z 1)^2 \le 2, \ z \ge 0\}$
- 10. Calculeu les integrals triples següents:
 - (a) $\iint_A \frac{1}{(1+x+y+z)^4} dx dy dz$, on A és el sòlid limitat per les superfícies x=0, y=0, z=0 i x+y+z=1.
 - (b) $\iint_A z \, dx \, dy \, dz$, on A és el sòlid limitat pel con $z^2 = \frac{h^2}{R^2}(x^2 + y^2)$ i el pla z = h, on h i R són constants positives. (*Indicació: Useu coordenades cilíndriques*).
- 11. Calculeu les següents integrals utilitzant coordenades cilíndriques, esfèriques i cartesianes:

(a)
$$\iiint_A xy \, dx \, dy \, dz$$
, on $A = \{(x, y, z) \mid x \ge 0, y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 1\}.$

(b)
$$\iiint_A z \, dx \, dy \, dz$$
, on $A = \{(x, y, z) \, | \, x^2 + y^2 + z^2 \le 4, \, x^2 + y^2 \le z^2, \, z \le 0\}$.

12. Calculeu

$$\int\!\int\!\int_A \frac{1}{(x^2+y^2+z^2)^{3/2}}\,dx\,dy\,dz,$$

on A és la regió limitada per les esferes $x^2+y^2+z^2=a^2$ i $x^2+y^2+z^2=b^2$, amb a>b>0.

- 13. Calculeu $\int\!\!\int\!\!\int_A e^{(x^2+y^2+z^2)^{3/2}}\,dx\,dy\,dz$, essent A la bola de radi unitat centrada a l'origen.
- 14. Trobeu la massa de la regió definida per $x^2 + y^2 + z^2 \le 4$, $x \ge 0$, $y \ge 0$, $z \ge 0$, si la densitat és igual a xyz.
- 15. Calculeu el moment d'inèrcia d'un sòlid en forma de cilindre circular recte de radi a i alçada b respecte del seu eix si la densitat és proporcional a la distància a l'eix.
- 16. Una esfera sòlida de radi a té un forat cilíndric de radi b < a tal que el seu eix coincideix amb un diàmetre de l'esfera. Calculeu, suposant la densitat ρ constant, la massa i el centre de masses del que resta de l'esfera.

Solucions

1. (a)
$$\int_{1}^{2} \int_{0}^{1} dy \, dx = 1$$

(b) $\int_{0}^{3} \int_{1}^{2} (x+y) dy \, dx = 9$
(c) $\int_{1}^{2} \int_{2}^{4} (x^{2} + y^{2}) dx \, dy = 70/3$
(d) $\int_{0}^{1} \int_{y}^{\sqrt{y}} xy^{2} dx \, dy = 1/40$
(e) $\int_{0}^{1} \int_{1}^{2} x/y^{2} dy \, dx + \int_{1}^{2^{3/2}} \int_{x^{2/3}}^{2} x/y^{2} dy \, dx = 3/4$
(f) $\int_{0}^{1} \int_{y^{2}}^{y} (y+y^{3}) dx \, dy = 7/60$
(g) $\int_{0}^{1} \int_{\sqrt{y}}^{1} xe^{y} dx \, dy = (e-2)/2$
(h) $\int_{2}^{4} \int_{2}^{x} y dy \, dx + \int_{4}^{6} \int_{2}^{8-x} y dy \, dx = 32/3$
(i) $\int_{-1}^{0} \int_{0}^{1} |y| \cos\left(\frac{\pi x}{2}\right) dx \, dy = \frac{1}{\pi}$
(j) $\int_{0}^{1} \int_{0}^{y} y^{2} e^{xy} dx \, dy = \frac{e}{2} - 1$

- - (b) 6 u^2 (e) $16\pi/3 + 8\sqrt{3} \text{ u}^2$ (c) $32/3 \text{ u}^2$
- 6. 77. $\frac{\sin 1}{2}$

5. $6 - 2\sqrt{3} - \frac{4}{3}\sqrt{2}$

- 8. (a) $15(\arctan 3 \frac{\pi}{4})$ (b) $\frac{\sqrt{2}(e-1)}{3}$ (c) $\frac{13}{20}$ (d) $6(8-5\sqrt{2})$ (e) $\frac{\pi-1}{4}$ 9. (a) 250 u^3 (c) $125/3 \text{ u}^3$ (e) $28\pi \text{ u}^3$ (g) $6\pi \text{ u}^3$ (i) $2\pi(5-2\sqrt{3}) \text{ u}^3$ (k) $\frac{5}{48}a^4 \text{ u}^3$ (b) $1485/16 \text{ u}^3$ (d) $1024/3 \text{ u}^3$ (f) $\frac{32\pi}{3} \text{ u}^3$ (h) $\frac{3\pi}{8} \text{ u}^3$ (j) $4\pi\sqrt{2} \text{ u}^3$ (l) $\frac{4\pi}{3}(\sqrt{2}+1) \text{ u}^3$
- 10. (a) 1/48(b) $\frac{\pi h^2 R^2}{4}$ 11. (a) 1/15(b) -2π
- 12. $4\pi \ln(a/b)$
- 13. $\frac{4}{3}\pi(e-1)$
- 14. $\frac{3}{4}$
- 15. $\frac{3}{5}Ma^2$
- 16. Massa: $\frac{4\pi}{3}\rho(a^2-b^2)^{3/2}$, centre de masses: (0,0,0)