Introducción

DHCPv6

El Protocolo DHCP

Miguel Angel Astor Romero

21 de Noviembre de 2017

Agenda

Introducción

- Introducción
- 2 Antecedentes
- 3 Dynamic Host Configuration Protocol (DHCP)
- 4 DHCPv6
- Conclusiones

Introducción

- El problema de la autoconfiguración de dispositivos con capacidad de red TCP/IP fue identificado en los años 80 cuando se hizo necesario el conectar dispositivos sin disco duro u otras formas de almacenamiento secundario a ARPANET.
- Hoy en día la autoconfiguración se utiliza como un mecanismo de conveniencia para simplificar la construcción de redes de área local.

Autoconfiguración en redes

- Distintas redes han utilizado sus própios mecanísmos de autoconfiguración:
 - AppleTalk AppleTalk Address Resolution Protocol.
 - IPX La dirección IPX se arma combinando el número de red IPX con la dirección MAC del dispositivo.
- En las redes TCP/IP se utiliza el protocolo DHCP o DHCPv6 dependiendo de la versión del protocolo IP.

Reverse Address Resolution Protocol (RARP)

- Definido en el RFC 903.
- Protocolo de tipo request-reply.
- Se aplica en la capa de enlace de datos.
- Permite recibir una dirección IP a partir de una dirección MAC.
- Procedimiento:
 - El cliente envía un mensaje RARP en broadcast a toda la red local.
 - 2 Los servidores RARP que reciban el paquete revisan la dirección MAC del cliente en sus bases de datos internas y envían la IP asociada en una respuesta directa al cliente.
- ¿Como evitar colisiones si dos o más servidores pueden responder simultáneamente?

RARP

Conclusiones

Bootstrap Protocol (BOOTP)

- Definido en el RFC 951.
- Se aplica en capa de aplicación con UDP (puerto 67) como transporte.
- Protocolo de tipo request-reply.
- Permite la obtención de más información que solo la IP asociada a una dirección MAC.
- Las solicitudes y respuestas se envían a la dirección especial 255.255.255.255.
- Los administradores deben mantener tablas estáticas en los servidores para asociar direcciones MAC con la información relevante.
- Permite el uso de agentes relé (relay agents).

Historia

- RARP permite la asignación estática de direcciones IP, y solamente direcciones IP.
- BOOTP permite la asignación automática de información de configuración, pero necesita que el administrador realice una asociación previa entre hosts e información de conexión.
- En 1993 R. Droms define el protocolo DHCP para obtener un mecanismo de asignación dinámica de información de conexión.
 - Definido en el RFC 1541.
 - Se implementa en la capa de aplicación.
 - Usa UDP como transporte (puerto 67).
 - Funciona según una máquina de estados.
 - Versión más reciente en el RFC 2131.

Modos de configuración

Asignación estática

El servidor asigna direcciones IP específicas a clientes con direcciones MAC específicas.

Asignación automática

Cuando un cliente solicita una IP por primera vez, la IP que se le asigne es guardada en una tabla para poder reutilizar la asignación posteriormente.

Asignación dinámica

A los clientes se les "arriendan" direcciones IP de un *pool* de direcciones durante un tiempo limitado. Las direcciones asignadas deben renovarse constantemente.

Asignación dinámica

- ¿Por qué es necesario un mecanismo de asignación dinámica de información de conexión?
- ¿Por qué no basta con la asignación automática?

Máquina de estados de DHCP

Funcionamiento de un cliente DHCP

- Todo cliente comienza en el estado Initialize.
- 2 El cliente envía un mensaje DHCPDISCOVER a la red 255.255.255.255 y pasa al estado *Select*.
- Servidores responden con un mensaje DHCPOFFER.
- El cliente escoge uno de los DHCPOFFER que recibió:
 - Aplica la configuración definida por el mensaje.
 - Responde al servidor responsable con un DHCPREQUEST y pasa al estado Request.
- Sel servidor responde con un mensaje DHCPACK donde establece los términos definitivos del arrendamiento de IP. El cliente pasa al estado Bound al recibir este mensaje.

Consideraciones de implementación

- Todo cliente DHCP debe mantener tres temporizadores al momento de recibir una dirección IP:
 - Uno para iniciar el proceso de renovación de arrendamiento (por defecto, 50 % del tiempo total del contrato).
 - 2 Uno para pasar a estado *Rebind* en caso de que el servidor responsable no conteste un proceso de renovación (por defecto, 87.5 % del tiempo total del contrato).
 - 3 Uno para liberar la dirección asignada en caso de que el tiempo de contrato se venza (por defecto, Tiempo total del contrato).
- Los temporizadores pueden usar valores por defecto, o ser asignados explícitamente por el servidor:
- El cliente es responsable de retransmitir paquetes cuando no recibe respuesta.

Figure 23.5 The format of a DHCP message, which is an extension of a BOOTP message. The options field is variable length; a client must be prepared to accept at least 312 octets of options.

Campos iniciales

Introducción

- OP Código de operación.
 - 1 es solicitud, 2 es respuesta.
- HTYPE Tipo de dirección de hardware.
 - Tipo igual a 1 significa Ethernet.
 - HLEN Longitud en octetos de la dirección de hardware.
 - Las direcciones MAC Ethernet son de longitud 6.
 - HOPS Se coloca en 0 en el cliente.
 - Cada relay agent incrementa la cuenta en 1.
- TRANS. ID Generado por el cliente.
- SECONDS el cliente lo coloca en 0.
 - El cliente lo incrementa en 1 en cada retransmisión.

Conclusiones

DHCPv6

El campo FLAGS

Figure 23.6 The format of the 16-bit FLAGS field in a DHCP message. The leftmost bit is interpreted as a broadcast request; all others bits must be set to zero.

El campo de opciones

- El campo de opciones siempre comienza con el número mágico 99.130.83.99.
- Cada opción consiste en tres partes:
 - El primer octeto indica el tipo.
 - El segundo octeto indica la longitud en octetos L (opcional).
 - Los siguientes L octetos contienen el valor.
- Las opciones se utilizan, entre otras cosas, para:
 - Enviar el tiempo de arrendamiento.
 - Enviar la máscara de subred.

Opciones especiales

- La opción de tipo 0 no posee longitud ni valor. Se usa para padding.
- La opción de tipo 255 no posee longitud ni valor. Se usa para finalizar la lista de opciones.

Especificación de tipo de mensaje

TYPE FIELD	Corresponding DHCP Message Type
1	DHCPDISCOVER
2	DHCPOFFER
3	DHCPREQUEST
4	DHCPDECLINE
5	DHCPACK
6	DHCPNACK
7	DHCPRELEASE

Conclusiones

Dynamic Host Configuration Protocol for IPv6

- En IPv6 existen dos mecanismos de configuración automática:
 - Stateless Autoconfigura direcciones IPv6.
 - Utiliza los mecanismos de descubrimiento de vecinos de ICMPv6.
 - Stateful Autoconfigura más información de red.
 - Utiliza DHCPv6.

Autoconfiguración con IPv6

FIGURE 8-2 The address autoconfiguration process for a host (Part 1).

Mensajes DHCPv6

Tipos de mensaje DHCPv6

ID	Tipo	Equivalente en DHCP
1	Solicit	DHCPDISCOVER
2	Advertise	DHCPOFFER
3	Request	DHCPREQUEST
4	Confirm	DHCPREQUEST
5	Renew	DHCPREQUEST
6	Rebind	DHCPREQUEST
7	Reply	DHCPACK
8	Release	DHCPRELEASE
9	Decline	DHCPDECLINE
10	Reconfigure	
11	Information-Request	DHCPINFORM
12	Relay-Forward	
13	Relay-Reply	

Conclusiones

Mensajes de relé en DHCPv6

FIGURE 8-6 DHCPv6 messages between relay agent and server.

Intercambio de mensajes stateful

Se utiliza para la asignación de direcciones IPv6 y la solicitud simultanea de información de la red.

- 1 El cliente genera su dirección link-local.
- 2 El cliente envía un mensaje *Solicit* a la dirección FF02::1:2 con su dirección *link-local* como fuente.
- 3 El servidor envía un mensaje Advertise.
- 4 El cliente envía un mensaje Request como respuesta.
- Sel servidor envía un mensaje Reply para asignar la dirección IPv6.

Intercambio de mensajes stateless

Se utiliza solo para solicitar información de la red, sin asignar direcciones IPv6.

- El cliente envía un mensaje *Information-Request* a la dirección FF02::1:2 con su dirección IPv6 como fuente.
- 2 El servidor responde con un mensaje *Reply* para enviar la información solicitada.

Este mecanismo se suele utilizar para distribuir información de la red cuando esta usa autoconfiguración *stateless* (sin DHCPv6) para las direcciones IPv6.

Resumen

- DHCP se deriva del protocolo BOOTP como un mecanismo para proveer asignación dinámica de direcciones IP.
- La asignación dinámica de direcciones se basa en un modelo de "arrendamiento".
- Los clientes DHCP funcionan mendiante una máquina de estados.
- DHCPv6 es diferente a DHCP para IPv4 y se utiliza bajo solo ciertos escenarios de autoconfiguración IPv6.

RFC's históricos

- Finlayson, et al., A Reverse Address Resolution Protocol RFC 903, IETF Internet Standard, 1984.
- B. Croft y J. Gilmore, BOOTSTRAP PROTOCOL (BOOTP), RFC 951, ITEF Draft Standard, 1985.
- R. Droms, *Dynamic Host Configuration Protocol*, RFC 1541, IETF Proposed Standard, 1993.

RFC's importantes

- R. Droms, *Dynamic Host Configuration Protocol*, RFC 2131, IETF Draft Standard, 1997.
- R. Droms, et al., *Dynamic Host Configuration Protocol for IPv6 (DHCPv6)*, RFC 3315, IETF Proposed Standard, 2003.

Referencias

- D. Comer, Redes Globales de Información con Internet y TCP/IP: Principios Básicos, Protocolos y Arquitectura, 3ª Edición, Prentice Hall, 1996.
- J. Davies, *Understanding IPv6*, 3^a Edición, Microsoft Press, 2012.

¿Preguntas?

