Identify Hidden Affluent Customers

Hiring assessment for Maybank

Presented by:

Naitik Shukla Senior Data Scientist 30-Mar-2024

Introduction

- The bank is always striving to enhance its customer base across various segments to maximize revenue opportunities.
- One crucial aspect of this endeavor is upgrading the segment of Existing To Bank (ETB) customers from Normal to Affluent.
- By identifying hidden affluent customers within the existing customer base, the bank can effectively target them for upselling relevant products and services.
- This presentation aims to outline our approach to identifying these hidden affluent customers and the potential impact on revenue growth.

Introduction

- Business Problem: The bank seeks to upgrade ETB customers to the affluent segment to enhance revenue opportunities.
- Objective: Identify hidden affluent customers within the existing customer base for targeted upselling.
- Significance: Upgrading customer segments can lead to increased revenue and improved customer satisfaction.
- **Presentation Overview**: We will discuss our methodology, data analysis, and data prep for approaching identified affluent customers, and ML based approach to identify hidden affluent customers.
- **Result**: Show Monetary benefit with new approach over original value.

EDA Key finding

Average Bank Engagement of Customer by segment

a. Affluent: 127,210

b. Normal: 40,054

Count of Customers by segment

a. Affluent: 10,448

b. Normal: 42,116

EDA Key finding contd.

5 Products identified in given data viz. CASA,TD,LOAN,FUNDS,CC(Credit Card)

CASA, TD(inferred) and Credit Card is most sold products with high engagement.

Customer Count by Product

Customer
Monetary
Engagement by
Product

EDA Key finding contd. - NUM_PRD

Few columns distribution with interesting variation between segments.

Number of Product: Affluent customers tend to have more number of products than Normal.

EDA Key finding contd. - C_Age

Age: Many Normal segment users lies in Outliers zone(Q3+1.5*IQR), but generally Q1-Median-Q3 is lower for Normal category than Affluent category.

Key Takeaways from RFM

R - Recency No data to get this

F - Frequency No data to get this

M - Monetary — Focus on this

MTHCASA - average monthly balance in CASA MTHTD - average monthly balance in TD

Asset_value - Total Asset value

UT_AVE - Average Unit Trust(UT) value

AVG_TRN_AMT - Average Credit card transaction amount in a month

Data Prep - NULL

While exploring data, it has been observed that data is not complete, there are lots of missing values exist in data, So before building any derived features first task is to cleanup what seems to be bad record.

For eg. For huge number of data, there exist no information about their product Monetary information like below, so we removed from our analysis.

	C_ID	NUM_PRD	CASATD_CNT	HL_tag	AL_tag	N_FUNDS	ANN_N_TRX	C_seg
65856	16777	2	NaN	NaN	NaN	NaN	NaN	NORMAL
65865	17211	2	NaN	NaN	NaN	NaN	NaN	NORMAL
65866	17293	2	NaN	NaN	NaN	NaN	NaN	NORMAL
65929	19536	2	NaN	NaN	NaN	NaN	NaN	NORMAL
66039	21940	2	NaN	NaN	NaN	NaN	NaN	NORMAL

Data Prep contd. - DUPLICATE

We identify there exists DUPLICATE entry within our dataset based on C_ID, which should able to help us identify repeating customer.

Looking into specific data from below where C_ID=11, we can see it's not possible for same customer to have both records.

Considering this fact, for further analysis we will consider each record as separate customer information, C ID and PC are dummy variable with no value.

	C_ID	C_AGE	C_EDU	C_HSE	PC	INCM_TYP	gn_occ	NUM_PRD	CASATD_CNT	MTHCASA
44084	0	31	NaN	NaN	20184.0	2.0	PMEB	1	NaN	NaN
7920	0	61	NaN	NaN	29894.0	NaN	HOUSEWIFE	2	1.0	35373.02
34921	11	70	A- Levels	HDB 4-5 ROOM	22167.0	2.0	RETIREE	4	2.0	34867.23
31864	11	70	Masters	SEMI- DETACHED	9259.0	6.0	PMEB	2	1.0	47782.61

Data Prep contd. - BINNING

For features like Age, Edu, housing and occupation there exist many Null as well as multiple entry which have ordinal value.

We clubbed multiple categories into single bin based on Heuristic knowledge only.

House_Type	House_Value	Education	Education_Value	Occupation	Occupation_Value
HDB 1-3 ROOM	0	Below O-Levels	0	STUDENT	0
Others	0	O-Levels	0	STODENT	U
NaN	0	A-Levels	0	HOUSEWIFE	0
HDB 4-5 ROOM	1		1	OTHERS	0
HDB EXECUTIVE APARTMENT/ MANSIONETTE	1	Others	0	OTTIERS	O
EXECUTIVE CONDOMINIUM	2	NaN	0	Others	0
PRIVATE APARTMENT	2	Diploma	1	NaN	0
PRIVATE CONDOMINIUM	2	Technical/Vocational Qualifications	1	DILLE COLLAD	1
SEMI-DETACHED	3	Degree	2	BLUE COLLAR	1
TERRACE	3		2	RETIREE	1
BUNGALOW	4	Professional Qualifications	2	PMEB	2
SHOPHOUSE	4	Masters	3	PIVIED	2
INDUSTRIAL BUILDING	5	PHD/Doctorate	3	WHITE COLLAR	2
COMMERICAL BUILDING	5				
OFFICE	5				
HOTEL/ SERVICE APARTMENT	5				

Data Prep contd. - New features

To show if any products any customer purchased, we will infer based on amount for each product identified columns, and create columns value 1 or 0.

For eg. IS_CASA can have values (0,1) which tells if that customer have that product or not.

Created 5 columns **IS_CASA**, **ID_TD**, **IS_FUNDS**, **IS_LOAN**, **IS_CC** for 5 products identified.

Data prep contd. - New Features

To focus on Monetary part, we will derive some new features which will give information about customer with less sparse data.

Some new features are:

- CASA_DIFF = Range of Min and Max specific customer balance over last year (This will signal activity and big range signify bigger transactions)
- CC_MTH_TRN_AMT_DIFF = provide Range of transactions using CC customer doing(signal for activity and how big spend)
- LoanAsset_ratio = Total Loan purchase price with Asset value ratio, signal buying strength
- AssetvCValue = Find ratio with total asset and total yearly assets accumulated, signal growth of customer.
- **Cus_engagement_val** = Total engagement of customer with Bank

Data prep contd. - Outliers

Age=2, occupation = RETIREE

	C_ID	C_AGE	C_EDU	C_HSE	PC	INCM_TYP	gn_occ
36911	57783	2	NaN	NaN	11212.0	NaN	RETIREE

Removing highest 5 records from Top 1 percentile customers based on

MTHCASA
DRvCR
Asset value

	C_ID	gn_occ	C_AGE	MTHCASA
10594	27951	HOUSEWIFE	42	6534839
48329	15555	PMEB	58	4206869
10981	3792	PMEB	85	4106541
29469	14133	PMEB	78	3154990
53573	6014	RETIREE	84	3150314

	C_ID	gn_occ	C_AGE	DRvCR
376	17189	PMEB	60	11635000
10627	31877	PMEB	59	4670670
15437	61121	HOUSEWIFE	95	3800000
3459	66104	PMEB	41	3256142
47715	418	RETIREE	77	3215349

		C_ID	gn_occ	C_AGE	Asset value
5	50418	56192	PMEB	55	7940605
1	0594	27951	HOUSEWIFE	42	7115850
	9877	31752	HOUSEWIFE	85	4953129
	376	17189	PMEB	60	4403973
4	8329	15555	PMEB	58	4223319

Model Training - Approach

Since we have to predict result for whole dataset, So classical train-test approach with 80:20 ratio won't work, Since predicted dataset have already been used in Train dataset.

To predict and train on complete dataset without data leak we use 2 concepts:

- StratifiedKFold each set contains approximately the same percentage of samples of each target class as the complete set.
- 2. Cross_val_predict For each split, it fits the model on the training set and makes predictions on the test set.

Model Training - Random Forest Classifier

Model Training - XGBoost Classifier

Model Training - Business value

Original from data

Total Monetary value of Affluent customers= 1,329,093,823

Random Forest out

New Total Monetary value of Affluent customers= = 2,267,690,693

XGBoost output

Total Monetary value of Affluent
customers= = 2,374,348,280

For more breakdown into each product details refer here: **ProductWise Customer Engagement**

Post Training Analysis - SHAP(shapley Additive exPlanations)

Post model train SHAP helps in model explainability by quantifies the contribution of each feature to a model's output, offering granular insights into prediction behavior. By revealing feature importance, it enhances model interpretability, aiding in decision-making and model refinement.

SHAP originated from cooperative game theory's 'Shapley values' and has been adapted for machine learning interpretability. This technique is model agnostic and really helps to understand our model prediction.

Post Training Analysis - SHAP - Feature Importance

 Few columns have enough information to have similar model - we can truncate some columns from our model building.

Decision plot for sample records

Post Training Analysis - Decision Plot for prob(.5-.6)

Our threshold for model prediction taken is .50, So Plotting inferences with a probability threshold between 0.5 and 0.6 allows us to focus on predictions near the decision boundary.

It aides in understanding model uncertainty and misclassifications within this range.

There are not many outliers in the output, Effect of LoanAsset_ratio, DRvCR, NUM_PRD, AssetvCValue,Customer_engagemen t immediately stand out

Post Training Analysis - Decision Plot for prob(.4-.5)

There are few outliers in the output,
Effect of LoanAsset_ratio, DRvCR,
NUM_PRD, AssetvCValue,C_EDU and
Customer_engagement immediately
stand out

Visualize 2 outliers from range(.4-.5) prob

Thankyou

