Brownian Motion

(1) Pre - Brownian Motion:

Pef: G is Commission white poise on CiRt. By.)

with intensity: M. Lebes que mensure. Set:

(Bt) toyt is pre-Brownian motion if Bt = GcIGOLY)

Rmk: Covariance (kes,t) year. kes,t) = sat.

7hm. (Characterization)

(Xt) too is real-valued random process. Follows equi:

- i) It's pre-Brownian Motion
- ii) It's centered houssian process with countinna k. st. k(s,t) = s t.
 - iii) $X_0 = 0$. A.S. $\forall 0 \leqslant s \leqslant t$. $X_t X_s \sim N(0, t-s)$ indept of $\delta \in X_r$. $r \leqslant s$?
 - iv) $X_0=0$. A.S. For $0=to< t_1-\cdots < t_p$. $(X_{ti}-X_{ti-1})$ is $\sum_{i=1}^{n} 0 f$ indept r.v. $X_{ti}-X_{ti-1} \sim N_{i0}$. ti-ti-1.
 - Pf. i) = ii) is trivial. For ii) = iii):
 - Fet M is banssian span generated by cxeles.

 Ms is spaned by CXIIIsss. Ms is by cxsm-xslass

 Chark: Ms I Ms. ⇒ ochs) indept with ochs.

 iii) ⇒ iv) is stinight. For iv) ⇒ i):

prop. For B pre-Brownian motion. Them:

- i) (Symmetry) So B is
- ii) Escaling Variance) & 200. Bt = 1 Bx t is also pre-Brown.
- indept with ochriss).

Pf: i). ii) trivial. iii) Consider Conssian Span. => orthogonal.

RMK: We often Write: Gef) = 5. fess ABs. for fe

L'e K'. But. At). But sinu Conssian white

noise isn't real measure depend on W. So:

So fess ABs isn't real integral. Later. We

Will find way to extend it!

(2) Construction:

O pef: For E metric space with Borel o-algebra

i) CX+)tel is random process with values in

E. Sample path of X is: t — X+CH)

for every fix w En.

frk: We can't ever assert the path is measurable.

ii) $(Xt)_{t \in Y} \cdot (\widehat{X}t)_{t \in Y} \cdot (\widehat{X}t)_{$

Pmk. But sample path of Xt may be very lifterent from Xt

(iii) \widetilde{X} is indistinguishable from X if $\exists N \in \Lambda$. P(N) = 0. St. $\forall W \in \Lambda/N$. $\widetilde{X} \neq cW$ = $X \neq cW$. $\forall t \in T$.

Rmk: i) Indistinguishable => modification:

ii) Two indistinguishable process have a.s.
same sample paths.

Lemma If $X \cdot \widehat{X}$ are both left/right-conti. P-2.5.

Then: \widehat{X} is modification of $X \iff$ Indistinguishable.

Pf: For (\Longrightarrow) Consider to TAR. $X_t = X_t$ except N_t .

Then N = N, $U \in UN_t$ is P-null.

@ Sample path:

Pef: (Bt)tro is Brownian motion if:

- i) (Bi) too is pre-Brownian.
- ii) All sample paths are conti.

Next, we prove such process exactly exists: Fix X & ik. O < tix - ... < tn . Define measure on ix": Mx.t. -- tn (AIX -- An) = SAIX. -- SAI AX. TI Ptm-tms (Xms, Xm) for Ai + Bx. X = x, to = 0. Pt (n.b) = (22+) = exp(- (b-n)2) Thm. No = I Fure: W: 1/20 -> 1/3, Fo = Oc [W | Weti) EAi. Isian). (Ai) = Bx). Then for each x & 1.] unique p.m. on (No. Fo). St. Vx(W/W(0)=x)=1 and D<t. -- <tn. Vx [w[witi] & Ai] = Mxiti-tn (Aix -- An) Pf: Check Consistency condition for [Ma) sex": Show = I Ptj-tin (X, 9) Ptin-tj (9, 2) Ag = Ptin-tin (X, 2) =) (Si), " = (tj)". Mx.s.-In1 (AIX--Am) = Mx.t.-tn (AIX--Aj-1X-1/(XAj+1-XAn) A & G. ()] Ey (ti) = [0.+0). B & Byn. St. A = [wl (weti). Wete) ---) EB 3. Pf: Sut: A = [A | A = [w | (weti) --) & B. (ti) = [0.0). B & Bix"]. prove: A = 7. (=) prove: A is o-algebra.

(Since $\forall A \in A$. $A \in \mathcal{F}_{0}$. And generator of $\mathcal{F}_{0} \in A$.)

For $A_{n} = [w|(w(t_{1}^{i}), w(t_{2}^{i}), \cdots) \in B_{n}]$.

Rebrew $[t_{n}] = [t_{1}^{i}]_{i,j} \Rightarrow A_{n} = [w|(w(t_{1}), \cdots) \in E_{n}]$. $A = UA_{n} = [w|(w(t_{1}), \cdots) \in UE_{n}] \in A$. $A = UA_{n} = [w|(w(t_{1}), \cdots) \in UE_{n}] \in A$. $A = UA_{n} = [w|(w(t_{1}), \cdots) \in UE_{n}] \in A$.

many workinates. So, we know:

for $C = [w|t \mapsto wit)$ anti} & Fo. i.e. it's not measurable. So $V \times isn't$ $P \cdot m$. of BM.

To solve this problem:

Penite: $Q_2 = I m/2^n \mid m, n \in \mathbb{Z}_{>0}$. $N_2 = I w : Q_2 \rightarrow i k'$.

For is σ -algebra generated by finite Rimensional sets in N_2 . Pestrict V_X on (N_2, \mathcal{G}_2)

Thm. For Tx0. xt1k'. Vx(Iw:ar -> 1 k | w is nonformly bont: on annount)) = : Vx(12.c) = 1

Rmk: After proving this 7hm. Then to reconstruct:

(+): It depends on countable coordinates as To explinder sets) Consider $C = E W : 1/k_{20} \rightarrow 1/k'$. Contil. $C = \delta(C)^{(4)}$ $U : \Lambda_{2,0} \longrightarrow C \qquad \widetilde{W}(t) \text{ is Contilextension of } W.$ $W(t) \longmapsto \widetilde{V}(t).$

Int Px = Vx 0 gt. (& I Wetist Ai) = ([wetist Ai])

Pf. WLOG. Suppose $B_0=0$. T=1. Set $C=E12.1^{4}$ Then: $E_0 | Bt - Bs |^4 = E_0 | Bt - s |^4 = Ct - s)^2 C$ Thus, If $E1x_5 - xt |^6 \le k!t - s!^{4T}$. $x - \beta > 0$.

for $y < \frac{\pi}{\beta}$. $\exists CCW$). St.

PC $EW | 1 \times 2 - xt |^2 \le C12 - t |^4$. $\forall z \cdot t \in A_1 \cap C_1 \cap J_1 \} = 1$.

Pf. $G_0 = \bigcap_{s \in S_1^{-1}} E[X_1 / 2 - X_1 / 2 - 1 \le 2^{-y_0}]$.

By Chebyshev: $P(G_0) = 2^n \cdot 2^{ny} \cdot 2^{-nc(t+\delta)} \cdot k = k \cdot 2^{-nc(t+\delta)}$

Lemma On Hw = Onzw Gn. Then: 1x2-x115 3 12-114. ¥ 2. r ∈ @2 1 Co.1]. 12-11 < 2-1. => I p(Mi) < co. So p(Mr. ult) = 1. For we & Mr. ult). by Lemma: 1x2-x11= A12-r1. 42.reaz. And 12-11 5 Sins. Extend to 4 2.1 & a. ([. 1] . It 0=50 <5.... < 5.=7 5t. 15:- Sin1 < Scw). Then: by triangle inequility. Thm. Brownian path is y-Nölder anti. for yez. Pf: E(|Bt-Bs1") = Cm |t-s1". Cm = E|B11". By Thm. above. Set \$=2m. \ = m-1. Let m -1 -. So Bt is Y- Milher . A.s. (m is along Zt) Set Brownian motion is modification of Bt. RAK :) For I = 1kt. Use Thm successively on [n.n+1] i) Alternative Method to construct 8m: Bezin with Pre-Brownian Motion: Bt. Then by Kolmogorov's Lemma: 7 Bt the modification of Bt. with Y-Molder casi path. for Yory = . Ywen. Consider: Y: 1 -> Cuixt. 1R'). Yew) = (+ +> Becal) W = Po4" is Wilner measure on CC. 6(C1). P is p.m. of Pre-Brownian Motion. Plb.=0)=1. Weams loss it lepent on chica of BM. And:

W (IW | Weti) & Ai. Isian () = P (Bti & Ai. Isian)

Pmk: Penote My nw) is set of times at which path $w \in C$ is $Y-H\ddot{o}lder$.

Then: PCMY = Q = 1. $\forall Y > \frac{1}{2}$ $PC \neq X \neq X = 0$. $\forall Y \neq X = 0$. But: $PCM \neq X \neq X = 1$. Commensure O, not empty)

(3) Property:

O Markov Property:

i) Penite: $7s = \sigma c Br, r = s$). $9s = \Omega_{t}, 3t$ $\lim_{k \to \infty} |f_{s}|^{t} = right - contii : \Omega_{t}, 3t = 9t$ ii) 9s = nllow = Infinitestimal peckAt future. i.e. $A \in 9s = s$ A $\in 9s = s$

iii) Zs + Zs. e.g. lim Bt-Bs & Zs. but not Zi. Duf: n- Limension Brownian Motion Bt = (Bt -.. Bt). where {Bt}. indust. Brownian Motions Rmk: It easy to generalize the construction of mensure for multidimension: Pxchwi = & Pxchwi) on (C,C). $C = \{w : 1/20 \rightarrow 1/2^n : unti)$. $C = \{cc\}$. 7hm. C Simple Markow) If soo. Y bld: C - ik' measurable. Then. Uxe'k. Exc Yous 195) = Ess (Y) Pf. Show: Exc YOBS IA) = Exc EB, (Y) IA). HAE 8. Suppose Y = TI fm (Witmi). 0 < t. < - < tn. fm. bld. mensorable. Let: h: ocheti. ocs,... eskesth. A= [wesi) & Ai. Ai & Big. 15isk].

=> ExcYOBS IA) = JA. LX. Ps. cx. X.) -- JAK LXK PSK-SET (XKT. XK) Shy Ps+h-sk (XK, 7) Ecy. h).

q (g, h) = f kg, Pin, n, n, f. (q,) -- f kg n Pto-to (m, n) fr (дп). 5. = ExcyoBs JA) = Exc & BS+A. L) JA) . A & Js+h. By Z-A => + A + Fish - it holds! Note YeBsth. h) is bld c By induction) = bet hoo. by DCT. So: Exc YOUS IA) = Exc YCBs.o) IA). YAE Z. Apply McT to extend Titm to general Y & C.

Cor. $E_{x}(Y \circ \theta s | \mathcal{Z}_{s}^{+}) = E_{x}(Y \circ \theta s | \mathcal{Z}_{s}^{\circ}) \in \mathcal{Z}_{s}^{\circ}$ Pf. $\mathcal{Z}_{s}^{\circ} = \mathcal{Z}_{s}^{+}$. $E_{x}(Y \circ \theta s | \mathcal{Z}_{s}^{\circ}) = E_{x}(Y) \in \mathcal{Z}_{s}^{\circ}$.

Wr. $E_{x}(Z|\mathcal{Z}_{s}^{+}) = E_{x}(Z|\mathcal{Z}_{s}^{\circ})$. for $Z \in C$. MI. $\forall S \geq 0$. $x \in \mathcal{X}^{\wedge}$.

Pf. B_{y} McT. $Prov_{s}$ for $Z = \pi_{s}^{\circ} f_{r}(B_{tr}(w))$. $\Rightarrow Z = X \cdot (Y \circ \theta s)$. $X \in \mathcal{Z}_{s}^{\circ}$. $Y \in C$. $S_{0} : E_{x}(Z|\mathcal{Z}_{s}^{+}) = X E_{\theta s}(Y) \in \mathcal{Z}_{s}^{\circ}$. $Prov_{s}^{\circ} : Z \in \mathcal{Z}_{s}^{+} \Rightarrow Z = E_{s}(Z|\mathcal{Z}_{s}^{+}) = E_{x}(Z|\mathcal{Z}_{s}^{\circ})$ $\in \mathcal{Z}_{s}^{\circ}$. S_{0} $\mathcal{Z}_{s}^{+} = \mathcal{Z}_{s}^{\circ}$. $up \neq r$ null-Sets.

7hm. CBIngmental's 0-1 Law)

If A = 9, +. 4 x & ip. 7hm: Px (A) & E0.13.

Pf. Zo = 18.13. trivial. By Grollary above.

Rmk: We sny: 3° (germ 6-field) is trivial as well.

7hm. If z = inf [t > 0 | Bt > 03. Then Pocz=0)=1.

 $\frac{Pf. \ \ P. (Z \le t) \ge P. (Bt > 0) = \frac{1}{2} \Rightarrow P. (Z = 0) = \lim_{t \to 0} P(Z \le t) \ge \frac{1}{2}}{\{Z = 0\}} = \int_{I} Z \le E \} \in \mathcal{F}_{0}^{+}. \ \ By \ \ 0 - 1 \ Lww.$

Cor. If To = inflt >0 | Bt =0 }. Then Pl To =0) =1.

Pf: By symmetric of Thm. above. BM hits

IK+. IX- both immediately.

Of points tecnible st. Bt is local maximum.

Pf: WLOG. com: Ner Bt in (0.0). B. = 0.

I (tn). (sn) yo. st. B(tn)>0. B(sn)<0. A.S.

Select subseq: Sn. > tn. > Sn. > tn. --> tnk --> 0

So on each [tnk, tnk=1]. local max exists.

Rmk: It means local maximum/minimum points
form a countably dense set.

7hm. If Bt is Brownian motion starts at 0. Then for $X_0 = 0$. $X_t = t B(\frac{t}{t})$. too. is also BM.

If: EcXtXs) = ths easy to chark and conti. 4t>0

(X(t)) -- X(tn)) is multinormal dist.

For conti. at. t=0:

By $SLLN: Br/n \rightarrow 0$. A.S. For Values between Z^* :

By $k:|m:q:rov | Treepn: |Pi | max |Bin+\frac{k}{2m} > -Bin>| > n^{\frac{3}{3}}) = n^{\frac{3}{3}} E|Bi|^2$.

Let $m \rightarrow \infty$. $\Rightarrow Sup |Bin>-Bin>| > n^{\frac{3}{3}} \cdot u|_{E}$. $a.s. \Rightarrow Bt/t \rightarrow 0$. A.S.

Denote: $\mathcal{T}_{i} = \sigma c B s$, $s \neq t$) = future at time t. $\mathcal{T} = \Omega \mathcal{T}_{i}$.

Thus. If $A \in \mathcal{T}$. Then: $P \times c A$) $\in \{0.1\}$. indept with x.

RMK: In Blumenthol's 7hm. Px(A) may depend on x.

Pf: $7mil\ \sigma$ -field of Bt is germ σ -field of Xt in the 1hm above. So PolA(E0.1).

Note $At S'_i$. $I_A = I_0 \cdot \theta_i$.

 $\Rightarrow P_{X} (A) = E_{X} (I_{0} \circ \theta_{1}) = E_{X} (E_{B}, (I_{0}))$ $= \int (22)^{-\frac{n}{2}} e^{-\frac{(n-x)^{2}(n+x)}{2}} P_{N}(0) \Lambda_{N}$

Set $X=0 \Rightarrow P_q(0)=0$. ms. $\forall \gamma$. if $P_0(A)=0$ Let $\widetilde{A}=A^c$. if $P_0(A)=1$. so $P_q(0)=1$. ms Replace in the equation above!

Cor. Bt is one-dimension BM. States at D.

Then: $\lim_{t\to 0} Bt/J_t = +\infty$. $\lim_{t\to 0} Bt/J_t = -\infty$. Po-A.S.

Pf. By Faton's: P. (Bn/In > k.i.o) > lim P. (Bn > k.In)
= P. (B, > k) > 0.

Note: $LBn/In:k.i.ol \in Z$. Second by symmetry.

Cor. Bt is one-dimension BM. $A = \bigcap LB_t = 0. \exists t \ge n$]

Then $P_X(A) = 1. \forall X$.

Pf: By translation invariant. Continity.

Rmf: It means: One-Aimension Brownian

Motion is recurrent. Actually. Bt

Will hit Zero infinite times in

(0.6). Y2:0. (Consider Xt=tB(\frac{1}{4}))

7hm. t -> Bt is not monotone on any interval. a.s.

Pf. Note pesup Bt > 0. 4220) = Pi inf Bt < 0. 4220) = 1.

 \Rightarrow \forall $2 \in a^{+}$. \forall 1 > 0 \Rightarrow \Rightarrow B_{t} \Rightarrow

Prop. $0 < t_0^n < t_1^n = t$. Seq of subdivision of Co.t..

Whose mesh $\rightarrow 0$. i.e. $Sup | t_1^n - t_{1-1}^n | \rightarrow 0$. Then: $\lim_{n \to \infty} \sum_{i=1}^{p_n} (B_{t_i}^n - B_{t_{i-1}}^n)^n = t$. in L^n .

Pf: Bti-Btin= Geltin.ti]). With M. Lebesque massure

Cor. t -> Bt has infinite variation on any interval with probability one.

Pf: $\sum_{i}^{p} \mathcal{L} \mathcal{B}_{t_{i}}^{n} - \mathcal{B}_{t_{i}}^{n})^{T} \leq \sup_{i} |\mathcal{B}_{t_{i}}^{n} - \mathcal{B}_{t_{i}}^{n}| \sum_{i} |\mathcal{B}_{t_{i}}^{n} - \mathcal{B}_{t_{i}}^{n}|$ By conti. $\sup_{i} |\mathcal{B}_{t_{i}}^{n} - \mathcal{B}_{t_{i}}^{n}| \rightarrow 0$.

Kmt. It shows that it's impossible to Refine

Sites AB+ as case of Stieltjes integral

Wirt functions of finite variation.

ii) Strong Markov:

For convention, $N_x = IA | A \subset D. P_x(D) = 0$. $T_s^x = \sigma(T_s^* \cup N_x)$ Then set : $T_s = P_s^x$. (Not wome a filtration depends on the initial state)

Denite: 300 = 6 (Br. 120). 97 = 1 A & gal A a 17 = t) 6 92).

Thm. C Strong Markov)

ct.w) \(\mathread{\top} \text{Y_t(w)} \text{till is bold and } \text{EBis'} \times C

If \(S \) is stopping time. Then \(\text{Y} \times \frac{a}{a} \).

\(E_{\times} \text{Y_s} \cdot \text{P_s} \) = \(E_{\text{Biss}} \text{CY_s} \) on \(\text{S<===} \).

Pf: 1) Assume: $\exists (t_n) f_m \cdot f_{\chi}(s_m) = \sum_n f_{\chi}(s_m) \int_{n} f_{\chi}(s_m)$

2') To remove assumption:

Set $S_n = (E2^nS]+1)/2^n$. Stopping time. First consider: $Y_{t}(w) = f_0(t)$ if $f_n(w) \in \mathbb{R}$ for $(w) \in \mathbb{R}$ for $(w) \in \mathbb{R}$ but conti $S_n \in \mathbb{R}$ industrian: $S_n \in \mathbb{R}$ $(x) \in \mathbb{R}$

For $\forall A \in \mathcal{I}s \leq \mathcal{J}sn$. Note: $\{S_n < \infty\} = \{S < \infty\}$.

By 1') = $\{E_{\chi}(Y_{S_n}, \theta_{S_n}, I_{Angs < \infty})\} = \{E_{\chi}(Y_{\zeta}(B_{\zeta}s_n), S_n), I_{Angs < \infty}\}$.

Apply $\{B \in \mathcal{I} \Rightarrow n \rightarrow \infty\}$. We obtain combinion.

By MCT: Set $\mathcal{X} = [Y|Y \text{ satisfies }...]$ Consider $A = ho \times [W(Si) \in Gi. |Si \in K]$. Cylinder set. $f_i^n(x) = [A \cap h(x) \cdot h_i^n] \int [J_{ii} \cdot h_{ii} \rightarrow \infty)$. $f_i^n(x) = f_i^n(x) \int [f_i^n(x) \cdot h_i^n] \int [f_i^n(x) \cdot h_i^n] = f_i^n(x) \int [f_i^n(x) \cdot h_i^n$

Cor. T is Stopping time. $p(T < \infty) > 0$. Then: $V \times \in \mathcal{K}^n$. For $B_t^{(T)} = J_{1T < \infty} (B_{T+t} - B_T)$.

It's BM indept with G_T . under $P(\cdot | T < \infty)$ Pf_t Set $Y_T = J_{1} B_{T+t} - B_T \in A_1$. for $A \in \mathcal{B}_{\mathcal{K}}^{\infty}$.

@ Path Properties:

Next, Consider one-Limension Brownian Motion Bt. +30.

Denote: $Rt = \inf \{u > t \mid B_n = 0\}$. $T_n = \inf \{t > 0 \mid B_t = n\}$. $Z(w) = \{t \mid B_t(w) = 0\}$. Zeros of $B_t(w)$.

i) 7hm. i) Zw) is closed has no isolated point. So it's perfect set e Merce uncountable;

ii) M(Zw)) = 0. M is Lebesgue measure.

its Manshorff himension is 1/2.

Pf: i) $P_{x} \in Rt < \infty$) = 1. $\Rightarrow P_{x} \in T_{0} \circ \theta_{Rt} > 0$ | T_{Rt}) = $P_{0}(T_{0} > 0) = 0$ $\Rightarrow P_{x} \in T_{0} \circ Rt > 0$, $\exists t \in \Omega$) = 0. So if $u \in Z_{LW}$). Isolated on left size. Then:

it's decreasing limit point in Z_{LW}).

ii) By Fubini: Exe M(Zew) n EO. Tij)) = \int_{\text{T}}^{\text{T}} \int_{\text{Z}(\text{W})} \)
=\int_{\text{T}}^{\text{T}} \int_{\text{Z}(\text{W})} \int = \int_{\text{T}}^{\text{T}} \int_{\text{Z}(\text{W})} \)
=\int_{\text{T}}^{\text{T}} \int_{\text{Z}} (\text{B} \text{L} \int_{\text{D}}) = \int_{\text{T}}^{\text{T}} \int_{\text{Z}(\text{W})} \)

ii) Nitting Time:

7hm. Under P., ETn. 1203 has Stationary indept increments.

Pf: 1') Stationary:

if 0 < n < b. then: $Tb \circ \theta Tn = Tb - Ta$.

If $b \land d$. Measurable. $E \cdot (f \cdot (Tb - Ta) \mid \mathcal{F}_{Ta})$ $= E_0 \cdot (f \cdot (Tb) \cdot (\theta Ta) \mid \mathcal{F}_{Ta}) = E_0 \cdot (f \cdot (Tb - Ta))$ By translation invariant: $E_0 \cdot (f \cdot (Tb - a))$ $\Rightarrow E_0 \cdot (f \cdot (Tb - Ta)) = E_0 \cdot (f \cdot (Tb - a))$

2') Indept:

Let $Ro < A_1 - \cdots < A_n$. $fi \cdot bAA \cdot mensurable$.

Let $Fi = fi (T_{Ai} - T_{Ai-1}) \cdot 1 \le i \le n$. $E_o (T_i F_i) = E_o (E_o (F_i | g_{T_{Ai-1}}) T_i F_i)$ $= E_o (F_n) E_o (T_i F_i) = \cdots = T_i E_o (F_i)$

Rmk: By Scaling: $T_n \sim n^2T$, $(B_t \sim \frac{1}{\lambda}B_{\lambda^t})$ So: $t_k = T_k - T_{k1}$, $i_1 i_1 \lambda$. $\stackrel{\circ}{\Sigma} t_k / n^2 \longrightarrow T$. Since $\tilde{\Sigma} t_k = T_n$.

Cor. For $\forall n(\lambda) = E_0 \in e^{-\lambda T_0}$, $n \ge 0$. $\Rightarrow \forall x(\lambda) \forall y(\lambda)$ $= \forall x+y(\lambda). \quad \forall x \in \mathcal{Y}_{n(\lambda)} = e^{-n(\lambda)}.$

Thm. (Reflection Principle)

Set a > 0. Then: $P \circ CTn < t$) = $2P \circ CBt > n$).

If: Let $Y \circ CW$ = $\begin{cases} 1. & \text{if } s < t. & \text{wit-s} > n \\ 0. & \text{otherwise.} \end{cases}$

5 = inf [s < t | Bs = n]. Ys (8s (W)) = Is set. B + n}

E (Ys o 8 s | Fs) = En (Ys) on [S < m].

7hm. (Genelization)

If nev = a. Then: PolTnet. Bt E(n.v)) = PolBt E(2a-v. 2a-n))

Penote $\widetilde{u} = 2a - n$. $\widetilde{V} = 2a - V$. Let:

 $\widetilde{Y}_{s} = \begin{cases} 1 & s < t, \ W \in -s, \ e(\widetilde{v}, \widetilde{u}) \end{cases}$ $\widetilde{Y}_{s} = \begin{cases} 1 & s < t, \ w \in -s, \ e(\widetilde{v}, \widetilde{u}) \end{cases}$

E, (Ys o 6 s | Is) = E, (Ys) Take expectation on both sides!

 $\frac{p_{mk}}{W} = (nn \ obtain \ Aist. \ of \ (St. Bt) \ from \ above.$ $(St. Bt) \sim f(n,b) = \frac{212n-b}{\sqrt{22t^2}} e^{-(24-b)/2t} I_{Ano. b(a)}.$

Thm. (Aresine Law) CArcsine Law)

H se [0,1]. L = sup [t = | Bt = 0]. Then: Poll = s) = \frac{2 \text{nls}}{2}.

Pf: P(Ta = t) = 2 P(Bt?a) = 2 fac2zt) - 2 -x'/2t 1x. X= TI (2253) - N & - 1/25 AS

P(L st) = E. (ILT. > 1-+3 0 0t) = E, (Ex, (I & To > 1-t3)) = \int_{1k'} P + (0. x) P x (T > 1-s) l x = Six' Pt10. x) Poc Tx >1-5)1x By the Formular before $=\frac{2}{2}$ presints Pmk: i) Note the Amsity is symmetric at 5== and blow up at o. ii) Another form of Arcsine Law: Def: T= mrg max Bt (Well-Lef. Sines that: Bt = Bs (Bt - Bs ~ Bt-s = 0. it's prob. 0) Claim: Ytt Co.1]. POLTSt) = = Tarcsin It. = P. (max (Bs-Bt) > max (Bn-Bt))

[1] = P= (max (Bt-6-Bt) > max (But - Bt 1) = P. (mrx Xs > mrx Yn)

cost 1 cost 2 where Xs. ossst. 8m indept with Yn. DENSI-t. BM. both from O. Apply Nilt of max Bs = S+ ~ 18+1.

=> P. (Tst) = P. (It | 21 > II-+ | 221) = P. (+)

(4) Martingales:

Note: We have Bt. Bi-t. eBt- ot. Bt. Are all martingales.

Thm. Let $T = \inf \{t + 1Bt + (a,b)\}$. A < 0 < b. Then $E \in T \} = -Ab$.

Pf: $E \circ (B^2_{TAt}) = E \circ (TAt)$. By BDT. Let $t \to \infty$.

 $\frac{1h_{ro}}{E_{o}} = e^{-\lambda T_{o}} = e^{-\lambda T_{o}} = e^{-\lambda T_{o}}.$ $Pf: E_{o} = e^{-\lambda T_{o}} = e^{-\lambda T_{o}} = e^{-\lambda T_{o}}.$ $E = e^{-\lambda T_{o}} = e^{-\lambda T_{o}} = e^{-\lambda T_{o}}.$

Thm. If $\mu(t,x)$ is polynomial in t,x. St. $\frac{\partial h}{\partial t} + \frac{1}{2} \frac{\partial h}{\partial x^2} = 0$ Then: $\mu(t,Bt)$ is martingale.

Pf: Show = $E_{x}(w(t,Bt)) = ((t)) = Comt. (=) \frac{\partial \varphi}{\partial t} = 0$ Then: $\forall s < t.$ Let V(r,x) = w(s+r,x) satisfies: $\frac{\partial \varphi}{\partial t} = \frac{1}{2} \frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} = \frac{1}{2} \frac{\partial \varphi}{\partial t} = \frac{1}{2} \frac{\partial \varphi}{\partial t} = \frac{1}{2}$

 $\Rightarrow E_{x}(u_{ct}, B_{t})|q_{s}\rangle = E_{x}(v_{ct-s}, B_{t-s}) \circ \theta_{s}|q_{s}\rangle$ $= E_{b_{s}}(v_{ct-s}, D_{ct-s})) = V(0, B_{s})$ $= u_{c}(s, B_{s}).$

Rmk: It can be extended to $\forall u(t,x)$. St. $\frac{\partial n}{\partial t} = \frac{1}{2} \frac{\partial n}{\partial x^2} \cdot \text{pullipsinter} : E_{x}[u(t,B_t)] < \infty$