IBM PROJECT

EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

TEAM ID: PNT2022TMID04324

IDEATION PHASE(WEEK-2)

LITERATURE SURVEY

S.NO	PAPER	AUTHOR	YEAR	PROPOSED METHODS AND	ACCURACY
				ALGORITHMS	
1	Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study	Njoud Abdullah Almansour, Hajra Fahim Syed, Nuha Radwan Khayat, Rawan Kanaan Altheeb, Renad Emad Juri, Jamal Alhiyafi, Saleh Alrashed, Sunday O.Olatunji	2019	Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques	97.75%
2	Chronic Kidney Disease Prediction using Machine Learning Models	S.Revathy, B.Bharathi, P.Jeyanthi, M.Ramesh	2019	Decision Tree, Support Vector Machine (SVM) and Random Forest Classifier	98.33%
3	An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy	Bilal Khan, Rashid Naseem, Fazal Muhammad, Ghulam Abbas, and Sunghwan Kim	2020	Support Vector Machine (SVM), Logistic Regression, Naïve Bayes, Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques	98.25%
4	A Machine Learning Methodology for Diagnosing Chronic Kidney Disease	Jiongming Qin, Lin Chen, Yuhua Liu, Chuanjun Liu, Changhao Feng, and Bin Chen	2020	Logistic regression, random forest, support vector machine, k- nearest neighbour, naive Bayes classifier and feed forward neural network	99.83%

5	Prediction of	Pankaj chittora,	2021	Artificial Neural	98.86%
	Chronic Kidney	Sandeep chaurasia,		Network (ANN), C5.0,	
	Disease - A Machine	Prasun chakrabarti,		Chi-square Automatic	
	Learning	Gaurav kumawat,		interaction detector,	
	Perspective	Tulika chakrabarti,		logistic regression, linear	
		Zbigniew		support vector machine	
		leonowicz, Michał		with penalty L1 & with	
		jasinski, Lukasz		penalty L2 and random	
		jasinski, Radomir		tree	
		gono, Elżbieta			
		jasińska, and			
		Vadim bolshev			