TMT4110 KJEMI

LØSNINGSFORSLAG TIL ØVING NR. 3, VÅR 2011

OPPGAVE 1

a) Ut fra at $n_{CO} = n_{CO_2}$ kan man skrive likningen som:

$$x \operatorname{Fe_3O_4} + y \operatorname{C} = z \operatorname{Fe} + t \operatorname{CO} + t \operatorname{CO_2}$$

hvor x, y, z og t skal bestemmes. Ut fra balanseringen mhp. O kan vi skrive: 4x = 3t. Søker vi et løsningspar for denne likningen, finner vi at det første mulige løsningspar er x = 3, t = 4, når både x og t er heltallige.

Vi prøver nå denne løsningen:

$$3 \text{ Fe}_3\text{O}_4 + y \text{ C} = z \text{ Fe} + 4 \text{ CO} + 4 \text{ CO}_2$$

Altså blir z = 9 når likningen balanseres mhp. Fe og y = 8 når likningen balanseres mhp. C. Vi får:

$$3 \text{ Fe}_3\text{O}_4 + 8 \text{ C} = 9 \text{ Fe} + 4 \text{ CO} + 4 \text{ CO}_2$$

(Kontrollerer vi, ser vi at $x = 3$ og $t = 4$ gav rett resultat).

b) Antall gram C som går med:

$$3 \text{ Fe}_3 \text{O}_4 + 8 \text{ C} = 9 \text{ Fe} + 4 \text{ CO} + 4 \text{ CO}_2$$

$$n_{Fe_3O_4} = \frac{m}{M} = \frac{1500 \cdot 10^3 \, g}{231,6 \, g / mol} = 6478,5 mol$$

$$n_C = n_{Fe_3O_4} \cdot MF = 6478,5 mol \cdot \frac{8}{3} = 17276 mol$$

$$m_C = n \cdot M = 17276 mol \cdot 12,01 g / mol = 207485 g = 2.075 \cdot 10^5 g$$

Det går med 207,5 kg C

c) I følge reaksjonslikningen dannes 1 mol gassblanding (dvs. 0,5 mol CO og 0,5 mol CO₂) pr 1 mol C som reagerer. Volumet *V* av gassblandingen gis fra den ideelle gasslov:

$$V = \frac{nRT}{P} = \frac{17276mol \times 0,08206LatmK^{-1}mol^{-1} \times (273,15+20)K}{1.00atm} = 4.16 \cdot 10^{5} L = 416m^{3}$$
(Husk 1 L = 10^{-3} m³)

OPPGAVE 2

a) Molbrøken til A₂ (g) settes lik x_{A_2} . Vi har videre at $n_{A_2} = n_{B_2}$. Dette gir

$$x_{A_2} = \frac{n_{A_2}}{n_{A_2} + n_{B_2}} = \frac{n_{A_2}}{2n_{A_2}} = \frac{1}{2}$$

Tilsvarende har vi

$$x_{\rm B_2} = \frac{n_{\rm B_2}}{n_{\rm A_1} + n_{\rm B_2}} = \frac{n_{\rm B_2}}{2n_{\rm B_2}} = \frac{1}{2}$$

Daltons lov gir P_{A_2} og P_{B_2} før likevekt ved 25_°C

$$P_{A_2} = x_{A_2} \cdot P_t = \frac{1}{2} \times P_t = \frac{1}{2} \times 1,40 = \underline{0,700 \text{ atm}}$$

 $P_{B_2} = x_{B_2} \cdot P_t = \frac{1}{2} \times P_t = \frac{1}{2} \times 1,40 = \underline{0,700 \text{ atm}}$

hvor totaltrykket ved 25_°C er $P_t = 1,40$ atm.

Alternativt kunne vi fra den ideelle gasslov ha skrevet

$$\frac{P_{A_2}}{n_{A_2}} = \frac{P_{B_2}}{n_{B_2}} \Leftrightarrow \frac{P_{A_2}}{P_{B_2}} = \frac{n_{A_2}}{n_{B_2}} = 1 \text{ dvs}_{\underline{\cdot}} P_{A_2} = P_{B_2}$$

og da
$$P_{A_2} + P_{B_2} = 1,40 \text{ atm}$$
 \Rightarrow $P_{A_2} = P_{B_2} = 0,700 \text{ atm}$

- b) For å beregne likevektskonstanten kan vi tenke oss at vi går frem i to trinn:
 - 1) Først varmer vi opp til 200°C uten at gassene A_2 (g) og B_2 (g) reagerer.
 - 2) Deretter beregnes P_{A_2} og P_{B_2} ved likevekt vha. en FØR/ETTER_betraktning.
- 1) $P_{A_2}^{200}$ og $P_{B_2}^{200}$ angir partialtrykkene til A₂ (g) og B₂ (g) før likevekt ved 200_°C (dvs. ingen reaksion).

Fra den ideelle gasslov følger:

$$\frac{P_{A_2}^{200}}{200 + 273,15} = \frac{P_{A_2}^{25}}{25 + 273,15} = \frac{0,700}{25 + 273,15} \Rightarrow \underbrace{P_{A_2}^{200} = 1,11 \text{atm}}_{\text{A}_2} \text{ (og } \underbrace{P_{B_2}^{200} = 1,11 \text{atm}}_{\text{B}_2} \text{)}$$

2) Partialtrykket av A_2B_4 ved likevekt er $P_{A_2B_4}$.

Daltons lov gir:

$$P_{A_2} + P_{B_2} + P_{A_2B_4} = (1.11 - P_{A_2B_4}) + (1.11 - 2 \times P_{A_2B_4}) + P_{A_2B_4} = 1.40 \text{ atm}$$

Dette gir:

$$P_{A_2B_4} = 0.41 \text{ atm}$$

 $P_{A_2} = 0.70 \text{ atm}$
 $P_{B_2} = 0.29 \text{ atm}$

Likevektskonstanten ved 200_°C blir

$$K = \frac{P_{A_2B_4}}{P_{A_2} \times (P_{B_2})^2} = \frac{0.41}{0.70 \times (0.29)^2} = \frac{7.0}{100}$$

OPPGAVE 3

$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$
 (1)

a) Antall mol PCl₅ (g) og gassens volum er konstant. Dermed gir den ideelle gasslov, PV = nRT.

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
): $P_2 = \frac{P_1 T_2}{T_1}$

Dersom P_2 er trykket av PCl₅ (g) ved 250 °C, P_1 er trykket av PCl₅ (g) ved 20 °C, $T_1 = 293,15$ K og $T_2 = 523,15$ K, har vi:

$$P_2 = \frac{1,00 \times 523,15}{293,15} = \underline{1.78 \text{ atm.}}$$

b) Likevektskonstanten K, for reaksjon (1) følger greit av en såkalt "FØR/ETTER"-betraktning. Dersom x er partialtrykket til PCl₃ (g) (og Cl₂ (g)) ved likevekt, har vi:

$$PCl_{5}(g) = PCl_{3}(g) + Cl_{2}(g)$$
 (1)
FØR 1,78 0 0
ETTER 1,78 - x x x

Daltons lov gir: (1,78 - x) + x + x = 2,90 $(P_{PC13} + P_{C12} + P_{C15} = P_{tot})$

):
$$x = 1.12$$

Fra massevirkningsloven følger:

$$K = \frac{P_{PCl_3} \cdot P_{Cl_2}}{P_{PCl_4}} = \frac{x \cdot x}{1.78 - x} = \frac{1,12^2}{1,78 - 1,12} = \underline{1,90}$$

OPPGAVE 4

a) Den ideelle gasslov: PV = nRT. Den kan omskrives på tre måter:

 $\frac{n}{V} = \frac{P}{RT} = konstant$ (ved konstant $T \circ P$). Dette er en formulering av Avogadros lov.

PV = nRT = konstant (ved konstant n og T). Dette er Boyles lov.

 $V = \left(\frac{nR}{P}\right)T = kT$ (ved konstant P og n). Dette er Charles lov.

b)
$$n = \frac{(1 \text{ atm} \times 1 \text{ L})}{0,082 \frac{\text{L atm}}{\text{K mol}} \times 274 \text{ K}} = 0,045 \text{ mol}$$

c)
$$n = \frac{(1 \text{ Pa} \times 1 \text{ m}^3)}{8,31 \frac{\text{J}}{\text{K mol}} \times 1 \text{ K}} = 0,12 \text{ mol}$$

d) $\frac{n}{V} = \frac{P}{RT}$ er konstant ved konstant trykk og temperatur. Det vil si at tettheten av gassen (masse/volum) bare er avhengig av massen av hver partikkel, eller av molmassen dersom

(masse/volum) bare er avhengig av massen av hver partikkel, eller av molmassen dersom man regner i mol.

- e) I pkt d så vi at tettheten bestemmes av molmassen. La oss si at 1 mol gass ved en bestemt temperatur utgjør V L. (Avogadros lov.) Ett mol nitrogen veier 28 g; ett mol vanndamp veier 18 g. Tettheten av de to gassene er henholdsvis 28 g/V og 18 g/V. Alle gasser som har mindre molmasse enn luft, vil derfor stige, mens alle med større molmasse synker. Gjennomsnittlig molmasse av gassene i luften er 29 g/mol. Det vil si at He, NH₃ og H₂O stiger opp. CO er bare litt lettere enn luft, slik at tendensen til å stige er liten.
- f) De aller fleste molekyler, også giftmolekyler, er tyngre enn 29 g/mol. Noen ytterst få giftige gasser stiger, f. eks. NH₃ og HF. CO (kullos) og HCN (blåsyregass) har en meget liten tendens til å stige.

OPPGAVE 5

Forbrenningsreaksjonen kan skrives som

$$C_n H_m N_s + t O_2 = n CO_2 + s NO_2 + \frac{1}{2} m H_2 O$$
 (1)

Antall gram av den støkiometriske forbindelse som forbrennes = $0,20 \cdot M_{C_nH_mN_s}$

Først må derfor molekylformelen $C_nH_mN_s$ bestemmes.

a) Av reaksjon (1) følger:

1 mol $C_nH_mN_s$ gir n mol CO_2 , s mol NO_2 og $\frac{1}{2}$ m mol H_2O .

Dvs. 0,20 mol $C_nH_mN_s$ gir 0,20 n mol CO_2 , 0,20 s mol NO_2 og 0,20 · $\frac{1}{2}$ m mol H_2O . Vi får:

$$n_{CO2}$$
: 0,20 $n = \frac{35,2}{M_{CO_2}}$ (antall mol CO_2 som dannes i følge oppgaven)

$$0,20 n = \frac{35,2}{44} = 0,8$$
 \rightarrow $\underline{n=4}$

s kan f.eks. bestemmes ut fra prinsippet om massens bevarelse.

vekt reaktanter = vekt produkter
$$0,20 \text{ M}_{C_4H_{12}N_s} + 57,6 = 35,2 + 21,6 + 0,20 \text{ s } M_{NO_2}$$
$$0,20(4 \times 12 + 12 \times 1 + 14\text{s}) + 57,6 = 35,2 + 21,6 + 0,20 \times 46 \times \text{s}$$
$$\rightarrow \underline{s} = \underline{2}$$

Dermed er den støkiometriske forbindelsens molekylformel $\underline{C_4H_{12}N_2}$.

b) Antall gram $C_4H_{12}N_2$ som forbrennes:

$$m = n \cdot M = 0.20 \cdot M_{C_4 H_{12} N_2} = 0.20 \text{ mol} \cdot (4 \cdot 12.01 + 12 \cdot 1.01 + 2 \cdot 14.01) \text{ g/mol} = 17.6 \text{ g}.$$

Det forbrennes 17,6 g av $C_4H_{12}N_2$

(Alternativt: antall gram = $35.2 \text{ g CO}_2 + 21.6 \text{ g H}_2\text{O} + 0.20 \times 46 \times 2 \text{ g NO}_2 - 57.6 \text{ g O}_2 = 17.6 \text{ g}$).