EE3019 - Integrated Electronics Tutorial 8 - Revision

If you have difficulty with this tutorial, please revise EE2002

- 1. The BJT-based Wilson Current Mirror is depicted in Figure 8.1.
 - (a) Show that the current gain is given by $\frac{I_o}{I_{REE}} = \frac{\beta^2 + 2\beta}{\beta^2 + 2\beta + 2}$

and discuss the implication of this current gain (with respect to the simple current mirror).

- (b) Design an equivalent CMOS Wilson Current Mirror circuit with an output current of 0.2 mA. Assume that V_{DD} = 9V, and the MOSFET parameters are $\mu_n C_{ox} W/L = 1.0 \times 10^{-4} \text{ A/V}^2$, $V_t = 0.4 \text{ V}$.
- (c) Determine the minimum output voltage of your Current Mirror design. [(b) $R = 21 \text{ k}\Omega$; (c) $V_{out} \geq 4.4 \text{ V}$]
- 2. The transistor in Figure 8.2 has the following parameters: β =100, $r_o = \infty$, $V_{BE} = 0.7$ V and $V_{CEQ} = 2$ V. Assume that $V_T = 25$ mV. The input source has an internal impedance R_S .
 - (a) Determine the value of R_c . [1.05 k Ω]
 - (b) Determine the transconductance g_m and r_{π} . [334mA/V, 299.5 Ω]
 - (c) Determine the voltage gain as a common collector amplifier and as a common emitter amplifier. [0.975V/V, -2.05V/V]
 - (d) Determine the input resistance seen by the input signal source (this includes R_s). [51.8 $k\Omega$]
 - (f) Determine the output resistances taken at the common collector amplifier output and at the common emitter amplifier output. [12.54 Ω , 1.05 k Ω]

Figure 8.1 Figure 8.2

- 3. A BJT differential amplifier is depicted in Figure 8.3. The current source $I = 100\mu\text{A}$ and the transistor parameters are: npn: $V_A = 200\text{V}$, $\beta = 100$; pnp: $V_A = 100\text{V}$, $\beta = 50$. Assume $V_T = 26\text{mV}$. Determine (or by inspection, state) the following:
 - (a) differential input resistance (assume that the current source is ideal),
 - (b) output resistance,
 - (c) equivalent transconductance,
 - (d) differential voltage gain, and
 - (e) differential voltage gain when the output is connected to a subsequent stage with an input resistance of 1 $M\Omega$.

[(a) 104 k Ω ; (b) 1.33 M Ω ; (c) 1.92 mA/V; (d) 2554 V/V; 1096 V/V]

Figure 8.3