Introdução à Função

Introdução

Uma função pode ser entendida como uma máquina que tranforma uma matéria-prima num produto final.

Neste material aborda-se o gráfico, paridade, tipologia e operações de funções.

Conceitos de função

Definição 1 (Função). Dados dois conjuntos não vazios A e B, chama-se função de A em B a regra que associa **cada** elemento de A a um **único** elemento de B.

$$f: A \longrightarrow B$$
$$x \longmapsto y = f(x)$$

Imagem de f: $\text{Im}_f = \{ y \in B; \ y = f(x), \ x \in A \}$

Teste da reta vertical

Exemplo 1. Em uma pista circular de testes, um automóvel desloca-se com velocidade constante. Com o auxílio de um cronômetro, marcaram-se diferentes intervalos de tempo e, em cada intervalo de tempo, verificou-se a distância percorrida.

Tempo (h)	0,2	0,4	0,8	1,6	2	x
Distância (km)	10	20	40	80	100	50x

Definição 2 (Gráfico). Seja $f:A\longrightarrow B$ uma função. O conjunto

$$G_f = \{(x, y) \in \mathbb{R}^2 | x \in D_f \text{ e } y = f(x) \in \text{Im}_f \}$$

é chamado de gráfico de f.

Análise de Gráficos

Considere o seguinte gráfico

Sejam m e n tais que m < n e $I \subset D_f$:

, v « I C D J ·				
se $f(m) < f(n), \forall m, n \in I$.				
se $f(m) > f(n), \forall m, n \in I$.				
se $f(m) = f(n), \forall m, n \in I$.				
se $f(m) > f(n), \forall n \in I$.				
O número $m \in D_f$ chama-se ponto de máximo local .				
se $f(m) > f(n), \forall m \in I$.				
O número $n \in D_f$ chama-se ponto de mínimo local .				
se $f(x) < 0, \forall x \in I$.				
se $f(x) > 0, \forall x \in I$.				
x , tais que $x \in D_f$ e $f(x) = 0$.				

Introdução à Função 1

Paridade de Funções

Seja $f: A \longrightarrow B$ uma função.

$$f$$
 é par se $\forall x \in D_f$
tem-se
 $f(-x) = f(x)$.

f é ímpar se $\forall x \in D_f$

$$f(-x) = -f(x).$$

Exemplo 3. Em cada caso, indique se a função é par ou ímpar.

$$a) \ f(x) = 1/x,$$

b)
$$g(x) = 5 - x^2$$

a)
$$f(x) = 1/x$$
, b) $g(x) = 5 - x^2$,
c) $h(x) = x^3 - x$, d) $m(x) = 2x + 1$.

$$d) m(x) = 2x + 1$$

Tipologia de Funções

Sejam A = [a, b] e B = [c, d] intervalos reais e $f:A\longrightarrow B$ uma função. Então f será:

♦ Injetora

Se $x_1 \neq x_2$ tem-se $f(x_1) \neq f(x_2)$.

Exemplo em Diagrama de Venn

★ Se nenhuma reta horizontal corta o gráfico mais de uma vez, então f é injetora.

♦ Sobrejetora

Se $\operatorname{Im}_f = B$.

★ Se toda reta horizontal (não disjunta com B) corta o gráfico, então f é sobrejetora.

♦ Bijetora

Se f for injetora e sobrejetora.

★ Se toda reta horizontal (não disjunta com B) corta o gráfico em um só ponto, então f é bijetora.

Composição de Funções

Definição 3 (Função composta). Sejam $f: A \longrightarrow B$ $e g: B \longrightarrow C$ duas funções. A composta de g com f \acute{e} a função $g \circ f : A \longrightarrow C$ tal que $(g \circ f)(x) = g(f(x))$ $para \ x \in A$.

Exemplo 4. Dadas as funções f(x) = 2x-1 e g(x) = $x^2 + 5$, determine $g \circ f$.

Definição 4 (Função inversa). Se f é uma função bijetora de A em B, a regra inversa de f é uma função de B em A que é denominada função inversa de f e $indicada por f^{-1}$.

Exemplo 5. Determine a função inversa de

$$f(x) = 4x^3 - 1.$$

Graficamente, temos:

