UNIVERSIDADE ESTADUAL DO RIO DE JANEIRO

Introdução à Álgebra Linear PF, 2019.2

Campus:

Prof. Angelo M. Calvão

Coloque o seu nome na primeira página das respostas e coloque suas iniciais nas páginas subsequentes, para o caso em que as páginas venham a se separar. Você $n\tilde{a}o$ pode usar seus livros e notas neste teste. Você deve mostrar o desenvolvimento de todas as questões. Valem as seguintes regras:

- Se você for usar um "teorema fundamental", você deve indicar isto e explicar porquê este teorema pode ser aplicado.
- Organize o seu trabalho de maneira clara e coerente. Soluções que não estejam claras e organizadas receberão pouco ou nenhum crédito.
- Resultados misteriosos e sem embasamento não receberão crédito. Questões corretas sem embasamento de cálculos algébricos ou sem justificativas não serão aceitas.
- Confira as suas respostas. Ao terminar cada questão, confira as respostas e verifique se o resultado final está correto. Resultados finais incorretos não serão aceitos.

1. Como devem ser escolhidos os coeficientes $a, b \in c$ para que o sistema tenha solução x = 2, y = 1 e z = 1?

$$\begin{cases}
ax + by - 3z = -3 \\
-2x - by + cz = -1 \\
ax + 3y - cz = -3
\end{cases}$$
(1)

- 2. Determinar se a transformação é linear, se for, encontre uma matriz que a representa.
 - (a) T(x,y) = (2x, y+1)
 - (b) $T(x,y) = (\sqrt[3]{x}, \sqrt[3]{y})$
 - (c) T(x,y) = (2x + y, x y)
 - (d) $T(x,y) = (x^2,y)$
- 3. Encontre a matriz inversa e verifique!

$$A = \begin{bmatrix} 2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7 \end{bmatrix} \tag{2}$$

4. Encontre uma base de um subespaço do \mathbb{R}^4 gerado pelos vetores $v_1 = (1, 1, 0, 0)$, $v_2 = (0, 0, 1, 1)$, $v_3 = (-2, 0, 2, 2)$ e $v_4 = (0, -3, 0, 3)$.