Sequence format and pre-processing

Ramiro Logares, ICM, Barcelona

Illumina short reads

- We receive files in fastq format from the sequencing center
- Two files per sample, 1 forward (R1) and 1 reverse (R2)
- Normally, reads overlap
- Depending on the library preparation, all reads are in the same direction (5'-3') or their directions are mixed in both R1 and R2
- We usually work with gzipped fastq files to save space

How files look like when they are received

18S_BL060704_022-MSTAReuk_R1.fastq.gz 18S_BL060704_022-MSTAReuk_R2.fastq.gz 18S_BL060704_30-MSTAReuk_R1.fastq.gz 18S_BL060704_30-MSTAReuk_R2.fastq.gz 18S_BL060704_30r3_MSTAReuk_R1.fastq.gz 18S_BL060704_30r3_MSTAReuk_R2.fastq.gz 18S_BL060801_022-MSTAReuk_R1.fastq.gz 18S_BL060801_022-MSTAReuk_R2.fastq.gz 18S_BL060801_30r2-MSTAReuk_R1.fastq.gz 18S_BL060801_30r2-MSTAReuk_R2.fastq.gz 18S_BL060801_30r3_MSTAReuk_R1.fastq.gz 18S_BL060801_30r3_MSTAReuk_R2.fastq.gz 18S_BL060912_022-MSTAReuk_R1.fastq.gz 18S_BL060912_022-MSTAReuk_R2.fastq.gz

18S_BL091222_022-MSTAReuk_R1.fastq.gz 18S_BL091222_022-MSTAReuk_R2.fastq.gz 18S_BL091222_30-MSTAReuk_R1.fastq.gz 18S_BL091222_30-MSTAReuk_R2.fastq.gz 18S_BL091222_30r3_MSTAReuk_R1.fastq.gz 18S_BL091222_30r3_MSTAReuk_R2.fastq.gz 18S_BL100120_022-MSTAReuk_R1.fastq.gz 18S_BL100120_022-MSTAReuk_R2.fastq.gz 18S_BL100120_30-MSTAReuk_R1.fastq.gz 18S_BL100120_30-MSTAReuk_R2.fastq.gz 18S_BL100120_30r3_MSTAReuk_R1.fastq.gz 18S_BL100120_30r3_MSTAReuk_R2.fastq.gz 18S_BL100217_022-MSTAReuk_R1.fastq.gz 18S_BL100217_022-MSTAReuk_R2.fastq.gz

18S_BL130417_30-MSTAReuk_R2.fastq.gz 18S_BL130417_30r3_MSTAReuk_R1.fastq.gz 18S_BL130417_30r3_MSTAReuk_R2.fastq.gz 18S_BL130507_022-MSTAReuk_R1.fastq.gz 18S_BL130507_022-MSTAReuk_R2.fastq.gz 18S_BL130507_30-MSTAReuk_R1.fastq.gz 18S_BL130507_30-MSTAReuk_R2.fastq.gz 18S_BL130507_30r3_MSTAReuk_R1.fastq.gz 18S_BL130507_30r3_MSTAReuk_R2.fastq.gz 18S_BL130604_022-MSTAReuk_R1.fastq.gz 18S_BL130604_022-MSTAReuk_R2.fastq.gz 18S_BL130604_30-MSTAReuk_R1.fastq.gz 18S_BL130604_30-MSTAReuk_R2.fastq.gz 18S_BL130604_30r3_MSTAReuk_R1.fastq.gz 18S_BL130604_30r3_MSTAReuk_R2.fastq.gz 18S_BL130709_022-MSTAReuk_R1.fastq.gz 18S_BL130709_022-MSTAReuk_R2.fastq.gz

fastq format

- Four sequences per line
 - 1. @sequence.ID
 - 2. ACTGACTGACTG # nucleotide sequence
 - 3. + (separator)
 - 4. Quality scores (Phred +33: normally 0-41)

Quite a bit of information here

@M02696:67:000000000-B44VG:1:1101:11781:1257 1:N:0:57

+

@M02696:67:000000000-B44VG:1:1101:8695:1347 1:N:0:57

+

@M02696:67:000000000-B44VG:1:1101:22691:1423 1:N:0:57

+

@M02696:67:000000000-B44VG:1:1101:19965:1620 1:N:0:57

+

@M02696:67:00000000-B44VG:1:1101:17122:1672 1:N:0:57

+

@M02696:67:000000000-B44VG:1:1101:21438:1779 1:N:0:57

+

@M02696:67:000000000-B44VG:1:1101:11781:1257 1:N:0:57

The first line, identifying the sequence, contains the following elements.

@<instrument>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<UMI> <read>:<is filtered>:<control number>:<index>

Table 1 FASTQ File Elements

Element	Requirements	Description			
@	@	Each sequence identifier line starts with @.			
<instrument></instrument>	Characters allowed:	Instrument ID.			
	a-z, A-Z, 0-9 and underscore				
<run number=""></run>	Numerical	Run number on instrument.			
<flowcell id=""></flowcell>	Characters allowed:				
	a-z, A-Z, 0-9				
<lane></lane>	Numerical	Lane number.			
<tile></tile>	Numerical	Tile number.			
<x_pos></x_pos>	Numerical	X coordinate of cluster.			
<y_pos></y_pos>	Numerical	Y coordinate of cluster.			
<umi></umi>	Restricted characters: A/T/G/C/N	Optional, appears when UMI is specified in sample sheet. UMI sequences for Read 1 and Read 2, seperated by a plus [+].			
<read></read>	Numerical	Read number. 1 can be single read or Read 2 of paired-end.			
<is filtered=""></is>	Y or N	Y if the read is filtered (did not pass), N otherwise.			
<control< td=""><td>Numerical</td><td>0 when none of the control bits are on, otherwise it is an even number.</td></control<>	Numerical	0 when none of the control bits are on, otherwise it is an even number.			
number>		On HiSeq X and NextSeq systems, control specification is not performed and this number is always 0.			
<index></index>	Restricted characters: A/T/G/C/N	Index of the read.			

Sanger Phred quality scores

Phred Quality Score	Probability of incorrect base call	Base call accuracy	
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1000	99.9%	
40	1 in 10000	99.99%	
50	1 in 100000	99.999%	

 $Q = -10 \log_{10} P$

Q = Phred quality scores

P = base calling error probability

Calculating Phred scores

- To determine quality scores, Phred first calculates several parameters related to peak shape and peak resolution at each base.
- Phred then uses these parameters to look up a corresponding quality score in huge lookup tables.
- These lookup tables were generated from sequence traces where the correct sequence was known, and are hard coded in Phred; different lookup tables are used for different sequencing chemistries and machines.

- Quality scores are encoded in ASCII
 (American Standard Code for Information Interchange)
- The start in character 33 (Phred+33)

CCCCCGGGGFG@CGG;FDEFFGEFGGGG9E@CFGCGGGEFG<EFGFEFGGGGFGGGEG<FC@@@6@F8@FCGAFF FFF,6C6EC@FCFGGGGGGGGGGGGFGGDF:CFFFAFF,BCE<CFFEFF7F8?,CF<EBCF,AFDGFAFF< 9@BEFEG?FC9,CE<FD?A7CGEG:FDFG,3A;,CDFGGGFF,=CF,6,6BFGF,6+4@EEGGGG7>EC? FGGF@FCGED8CFFGG79D9CCF<?C4713?FFFCDE

Q=ASCII code - 33

convert ascii33 to error probability $Q_{\mathrm{PHRED}} = -10 \times \log_{10}(P_e)$ hg18-total-sequenced= 2'858'034'764 (UCSC)

ETHKED			2010(- 8)				BIOINFORMATICS TRAINING
hg 18-total-sequenced			d=2'858'034'764	(UCSC)		- COTA	AND SERVICE FACILITY
Char (q)	Dec	Q	error probability	%correct	1-error base		# errors in 2.85Gb
!	33	0	1.00E+00	0.000%	1		2,858,034,76
"	34	1	7.94E-01	20.567%	1		2,270,217,70
#	35	2	6.31E-01	36.904%	2		1,803,298,02
\$	36	3	5.01E-01	49.881%	2		1,432,410,53
%	37	4	3.98E-01	60.189%	3		1,137,804,13
&	38	5	3.16E-01	68.377%	3		903,789,949
`	39	6	2.51E-01	74.881%	4		717,905,874
(40	7	2.00E-01	80.047%	5		570,252,906
)	41	8	1.58E-01	84.151%	6		452,967,984
*	42	9	1.26E-01	87.411%	8		359,805,259
+	43	10	1.00E-01	90.000%	10		285,803,476
,	44	11	7.94E-02	92.057%	13		227,021,771
-	45	12	6.31E-02	93.690%	16		180,329,803
	46	13	5.01E-02	94.988%	20		143,241,054
/	47	14	3.98E-02	96.019%	25		113,780,413
0	48	15	3.16E-02	96.838%	32		90,378,995
1	49	16	2.51E-02	97.488%	40		71,790,587
2	50	17	2.00E-02	98.005%	50		57,025,291
3	51	18	1.58E-02	98.415%	63		45,296,798
4	52	19	1.26E-02	98.741%	79		35,980,526
5	53	20	1.00E-02	99.000%	100		28,580,348
6	54	21	7.94E-03	99.206%	126)	22,702,177
7	55	22	6.31E-03	99.369%	158	1	18,032,980
8	56	23	5.01E-03	99.499%	200		14,324,105
9	57	24	3.98E-03	99.602%	251		11,378,041
:	58	25	3.16E-03	99.684%	316)	9,037,899
;	59	26	2.51E-03	99.749%	398		7,179,059
<	60	27	2.00E-03	99.800%	501		5,702,529
=	61	28	1.58E-03	99.842%	631		4,529,680
>	62	29	1.26E-03	99.874%	794	,	3,598,053
?	63	30	1.00E-03	99.900%	1,00	0	2,858,035
@	64	31	7.94E-04	99.921%	1,25	9	2,270,218
Α	65	32	6.31E-04	99.937%	1,58	5	1,803,298
В	66	33	5.01E-04	99.950%	1,99	5	1,432,411
С	67	34	3.98E-04	99.960%	2,51	2	1,137,804
D	68	35	3.16E-04	99.968%	3,16	2	903,790
Ε	69	36	2.51E-04	99.975%	3,98	1	717,906
F	70	37	2.00E-04	99.980%	5,01	2	570,253
G	71	38	1.58E-04	99.984%	6,31	0	452,968
Н	72	39	1.26E-04	99.987%	7,94	3	359,805
I	73	40	1.00E-04	99.990%	10,00	00	285,803
J	74	41	7.94E-05	99.992%	12,58	39	227,022
K	75	42	6.31E-05	99.994%	15,84	19	180,330
L	76	43	5.01E-05	99.995%	19,95	53	143,241
М	77	44	3.98E-05	99.996%	25,11	19	113,780
N	78	45	3.16E-05	99.997%	31,62	23	90,379
0	79	46	2.51E-05	99.997%	39,8	11	71,791

Phred encoding in different sequencers

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
                               104
                                         126
 -5....0.....9......40
              S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Removing primers

- The sequences received from the sequencing center may contain primers used to amplify them
- Primers need to be removed as they normally contain ambiguous positions that can interfere with DADA2
- DADA2 assumes primers have been removed

Checking if sequences have primers in unix

- We know the primer sequence expected in the reads
- Fw:CCAGCA[ACGT]C[ACGT]GCGGTAATTCC
- Rv: ACTTCGTTCTTGAT[AGCT][AGCT]

Reverse primers

23856

- Ambiguities are included to match sequences
- We use zgrep to match the primer against the gzipped sequences

```
[rlogares@marbits raw]$ ls
BL100525E-MSTAReuk R1.fastq.gz
                                                                                                 primers R1 in reads
                                BL100706E-MSTAReuk R1.fastq.gz
                                                                BL100914E-MSTAReuk R1.fastq.gz
BL100525E-MSTAReuk R2.fastq.gz
                                BL100706E-MSTAReuk R2.fastq.gz
                                                                 BL100914E-MSTAReuk R2.fastq.gz
                                                                                                 primers R2 in reads
                                BL100803E-MSTAReuk R1.fastq.gz
BL100622E-MSTAReuk_R1.fastq.gz
                                                                clipping primers.sh
BL100622E-MSTAReuk R2.fastq.gz
                                BL100803E-MSTAReuk R2.fastq.gz
                                                                cutadapt.o40252
[rlogares@marbits raw]$ zgrep -c --color CCAGCA[ACGT]C[ACGT]GCGGTAATTCC BL100525E-MSTAReuk R1.fastq.gz
23843
        Forward primers
[rlogares@marbits raw]$ zgrep -c --color ACTTTCGTTCTTGAT[AGCT][AGCT][AGCT]
                                                                             BL100525E-MSTAReuk_R2.fastq.gz
```

- As several counts are given, we inspect the sequences visually

[rlogares@marbits raw]\$ zgrep --color CCAGCA[ACGT]C[ACGT]GCGGTAATTCC BL100525E-MSTAReuk_R1.fastq.gz

We use cutadapt to remove primers

- Program: https://cutadapt.readthedocs.io/en/stable/
- Runs in unix (we will run this in Google Colab)
- Cutadapt will search for primers in R1 and R2 sequences and remove them
- It can also remove all sequences where primers have not been found

```
# Running cutadapt in a loop (NB: use arrays if you have a cluster)

for i in $(ls *fastq.gz | cut -f 1 -d - | uniq); \
    do cutadapt -g CCAGCASCYGCGGTAATTCC -G ACTTTCGTTCTTGATYRR \
    -m 100 -M 350 --match-read-wildcards --pair-filter=both -q 10 \
    -o $i-MSTAReuk_R1.clipped.fastq.gz -p $i-MSTAReuk_R2.clipped.fastq.gz \
    $i-MSTAReuk_R1.fastq.gz $i-MSTAReuk_R2.fastq.gz; done
```

Ambiguities in primers are interpreted

-q ADAPTER, --front=ADAPTER Sequence of an adapter ligated to the 5' end (paired data: of the first read). The adapter and any preceding bases are trimmed. Partial matches at the 5' end are allowed. If a '^' character is prepended ('anchoring'), the adapter is only found if it is a prefix of the read. Paired-end options: The -A/-G/-B/-U options work like their -a/-b/-g/-u counterparts, but are applied to the second read in each pair. -G ADAPTER 5' adapter to be removed from second read in a pair. -m LENGTH, --minimum-length=LENGTH Discard reads shorter than LENGTH. Default: 0 -M LENGTH, --maximum-length=LENGTH Discard reads longer than LENGTH. Default: no limit --match-read-wildcards Interpret IUPAC wildcards in reads. Default: False # --pair-filter=(any|both) Which of the reads in a paired-end read have to match the filtering criterion in order for the pair to be filtered. Default: any -q [5'CUTOFF,]3'CUTOFF, --quality-cutoff=[5'CUTOFF,]3'CUTOFF Trim low-quality bases from 5' and/or 3' ends of each read before adapter removal. Applied to both reads if data is paired. If one value is given, only the 3' end is trimmed. If two comma-separated cutoffs are given, the 5' end is trimmed with the first cutoff, the 3' end with the second. -o output file R1 -p FILE, --paired-output=FILE Write second read in a pair to FILE.

Cutadapt options

- After cutadap, sequences are ready to be used in dada2
- It is good to double check primers are gone using the same zgrep command used before
- We don't analyse the overall quality of the sequences, as this will be done later with dada2
- We only remove entire sequences that look very wrong with cutadapt
- It is important to consider whether sequences come from sequencers with 4- or 2- color chemistries, as this will change cutadapt parameters
- There are alternative tools, such as Trimmomatic