Related aspect...

"Marketing 2.0"

Let's now see the other direction of links

Strategic move: Adding outlinks

What happens in this case?

- Just reason by symmetry
- The pagerank gets lower (<=) because some flow goes out, we cannot augment flow with an outgoing channel

Property: solidity

- Property of ranking measure, to be "solid": adding outlinks to a page doesn't cause an increase of the hypertextual score
- The spamdex effort cannot just be local

Other example

- ◆0.196 initially, passing to
- **♦0.211**

0.196 → 0.211

The Spam Farm

A special link structure devoted to increase the hypertextual score

Structure of a generic farm

Optimal spam farm with a target page?

Good properties of this structure

It uses the least possible number of links, while still keeping...

... a very important property

Reachability

Optimal structure generalized

Another optimal spam farm (sacrificing reachability)

Important aspect

Are we alone? Cannot we join forces instead with an *alliance*?

The idea: join our spam farm with

someone else's

The Alliance Problem

What are the best ways to do it?

Scheme: «deep» alliance p_0 q_{m}

 p_k

 q_2

 p_1

 p_2

How much pagerank?

The average of the two pageranks!

So...

Useful alliance scheme to share the load and get a more *robust* configuration: we do our best and then we share

goods and bads

Scheme: «superficial» alliance

How much pagerank?

◆ MORE THAN THE MAX BETWEENTHE TWO (!!!!)

(bonus proportional to k and m)

Ring

Complete core

Countermeasures!

◆In this case, it doesn't look so difficult: just find the ring / complete core structures among different sites ☺

Other cores?

• We just need to have a strongly connected graph among the target pages (that is to say, from every page I can arrive to any other)

And so...

- ... how many strongly connected graphs there can be?
- If they are only a few ones, then the countermeasures will work well...
- So how many for an alliance (size N)?

The "A003030 sequence"...

♦ N=3:18

♦ N=4: 1606

♦ N=5 : 565080

♦ N=6: 734774776

◆ N=7:3523091615568

N=8:63519209389664176

N=9: 4400410978376102609280

N=10:1190433705317814685295399296

N=11:1270463864957828799318424676767488

. . .

Let's see two of them...

Example.....

Remember the «teleport» component in pagerank

This way...

- We could measure for a web page / web site what is the effect of teleportation
- A value called relative spam mass
- if it is too big, maybe something is wrong (too many «secondary» pages are offering contributions)

Result?

Success rate to find spam:

♦95%-100% ◎

Other example of countermeasure

Does the web have a structure? Or is

it just chaotic?

Super-Powerful countermeasure!

- Base idea: analyze the «shape» of a web site: if this is too much different
 - from the average, then something is wrong
- All this (challange) in an efficient way (!!)

