

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

FIG. 1

200

FIG. 2

FIG. 3

FIG. 4

$f(u, i)$, where $u \in \{\#1, \#2\}$ and $i = 1, \dots, 4$				
$(c_1, 0)$,	$(c_2, -3)$,	$(c_3, 1)$,	$(c_4, -1)$,	$(c_5, -3)$
$(c_2, 0)$,	$(c_3, 4)$,	$(c_4, 2)$,	$(c_5, 0)$	
$(c_3, 0)$,	$(c_4, -2)$,	$(c_5, -4)$		
	$(c_4, 0)$,	$(c_5, -2)$		
$(c_1, 0)$,	$(c_2, -3)$,	$(c_3, 1)$,	$(c_4, -1)$,	$(c_5, 2)$
$(c_2, 0)$,	$(c_3, 4)$,	$(c_4, 2)$,	$(c_5, 5)$	
$(c_3, 0)$,	$(c_4, -2)$,	$(c_5, 1)$		
	$(c_4, 0)$,	$(c_5, 3)$		

FIG. 5

FIG. 6

Input: T : a trie built on \mathcal{D}
 S : a subspace defined by a continuous column
set $\{c_i, c_{i+1}, \dots, c_k\}$
 $q = (c_1, v_1), \dots, (c_n, v_n)$: a query object
 ϵ : pattern threshold

Output: near-neighbors of q in subspace S

$n \leftarrow$ root of T ;
 $search(n, S)$;

Function $search(x, S)$

if $S = \emptyset$ **then**
| output the descendants of x ;

else
| assume $S = \{c_j, c_{j+1}, \dots, c_k\}$;
| **for** x 's child node y under edge labeled (c_j, v)
| where $v \in [(v_j - v_i) - \epsilon, (v_j - v_i) + \epsilon]$ **do**
| | $search(y, \{c_{j+1}, \dots, c_k\})$;

FIG. 7

Input: \mathcal{D} : objects in multi-dimensional space \mathcal{A}

Output: PD-Index of \mathcal{D}

for each $u \in \mathcal{D}$ **do**

\lfloor insert $f(u, i)$, $1 \leq i < |\mathcal{A}|$ into a trie; (Eq 5)

for each node x encountered in a depth-first traversal of
the trie **do**

\lfloor label node x by $\langle n_x, s_x \rangle$;

\lfloor let (c, d) be the arc that points to x ;

\lfloor append $\langle n_x, s_x \rangle$ to pattern-distance link (c, d) ;

FIG 8

FIG. 9A

FIG. 9B

Input: q : a query object, S : a given subspace
 ϵ : pattern threshold

Output: q 's near-neighbors in subspace S

let $(c_1, v_1), \dots, (c_{|S|}, v_{|S|})$ be q 's projection on S ;
 $x \leftarrow$ the node under arc $(c_1, 0)$;
 $search(x, 2)$;

Function $search(x, i)$

if $i \leq |S|$ **then**

for pattern distance link I of (c_i, v) , where $v \in [v_i - v_1 - \epsilon, v_i - v_1 + \epsilon]$ **do**

 /* perform a binary search on I */

for all node $r \in I$ and $n_r \in [n_x, n_x + s_x]$ **do**

 | $search(r, i + 1)$;

 | **end**

 | **end**

 | **else**

 | output objects in L_x , $x = v_s, \dots, v_m$

 | **end**

FIG. 10

node	5	6	10	14	15	18	21	22	24
objs	{1}	{2}	{3,4}	{1}	{2}	{3,4}	{1}	{2}	{3,4}

FIG. 11

FIG. 12

Input: $q = (c_1, v_1), \dots, (c_n, v_n)$: a query object
 r : distance threshold, ϵ : pattern tolerance
 F : index file for \mathcal{D}

Output: $\mathcal{NN}(q, r)$

```

for  $i = 1, \dots, r + 1$  do
   $R \leftarrow$  the range of the (only) node in link  $(c_i, 0)$ ;
   $j \leftarrow i + 1$ ;
  while  $R \neq \phi$  and  $j \leq |\mathcal{A}|$  do
    search link  $(c_j, v)$  for nodes inside any range of
     $R$ , where  $v \in [v_j - v_i - \epsilon, v_j - v_i + \epsilon]$ ;
    update  $R$  by adding the ranges of those nodes;
    if a region  $s$  of  $R$  is inside  $|\mathcal{A}| - r$  brackets then
      output objects in  $L_x$  where  $x \in s$ ;
      eliminate  $s$  from  $R$ ;
    end
    if a region  $s$  of  $R$  is inside less than  $r - j$  brackets then
      eliminate the region from  $s$ ;
    end
     $j \leftarrow j + 1$ ;
  end
end

```

FIG. 13

$pdist(\cdot, \cdot) \leq 3$

FIG.14A

$pdist(\cdot, \cdot) \leq 4$

FIG.14B

$|A| = 20, \xi = 5, \dots, 80$

varying total data size, $\xi = 20$

FIG. 15A

FIG. 15B

varying # of objects, $\xi = 20$

FIG. 15c

Pattern matching in given subspaces

Near-neighbor search in subspaces beyond given dimensionalities

FIG. 16A

FIG. 16B

Impact of ξ and $|\mathcal{A}|$ in near-neighbor query $\mathcal{NN}(q, 7)$

FIG. 16C

■ # Nodes Yeast ■ # Pages Yeast.
■ # Nodes Mouse ■ # Pages Mouse

(a) Find Near-neighbors in DNA micro-array
in given subspaces (X axis is query length)

FIG. 17A

■ # Nodes ■ # Pages

(b) Find Near-Neighbors in DNA micro-array
(X axis is the distance radius r)

FIG. 17B