CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Anca Dragan --- University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel, and Anca. http://ai.berkeley.edu.]

Markov Models

O Value of X at a given time is called the state

- O Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- O Stationarity assumption: transition probabilities the same at all times
- O Same as MDP transition model, but no choice of action
- O A (group blo) BNI. We can always use generic BNI reasoning on it if we

Mini-Forward Algorithm

Ouestion: What's P(X) on some day t?

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Application of Stationary Distribution: Web Link Analysis

PageRank over a web graph

- O Each web page is a possible value of a state
- O Initial distribution: uniform over pages
- O Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - O With prob. 1-c, follow a random outlink (solid lines)

Stationary distribution

- Will spend more time on highly reachable pages
- O E.g. many ways to get to the Acrobat Reader download page
- O Somewhat robust to link spam.
- O Google 1.0 returned the set of pages containing all your

Application of Stationary Distributions: Gibbs Sampling*

• Each joint instantiation over all hidden and query variables is a state: $\{X_1, ..., X_n\} = H U Q$

• Transitions:

• With probability 1/n resample variable X_j according to

$$P(X_j \mid x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_n, e_1, ..., e_m)$$

• Stationary distribution:

- **o** Conditional distribution $P(X_1, X_2, ..., X_n | e_1, ..., e_m)$
- O Means that when running Gibbs sampling long enough we get a sample from the desired distribution

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
 - O Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - O Underlying Markov chain over states X
 - O You observe outputs (effects) at each time step

Example: Weather HMM

O An HMM is defined by:

O Initial distribution: $P(X_1)$

O Transitions: $P(X_t \mid X_{t-1})$

O Emissions: $P(E_t \mid X_t)$

R_{t-1}	R_{t}	$P(R_{t} R_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Inference: Find State Given Evidence

• We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

- O Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - o equivalently, derive B_{t+1} in terms of B_t

Two Steps: Passage of Time + Observation

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$

O Then, after one time step passes:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- O Basic idea: beliefs get "pushed" through the transitions
 - O With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

O As time passes, uncertainty "accumulates"

T = 1

T = 2

(Transition model: ghosts usually go clockwise)

T = 5

Observation

• Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

• Then, after evidence comes in:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

• As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Weather HMM

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X_{t}} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

.	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - O Storing map from X to counts would defeat the point
- \circ P(x) approximated by number of particles with value x
 - O So, many x may have P(x) = 0!
 - O More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(3,3)
(2,3)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2)

(2,2)

(2,3) w=.2 (3,2) w=.9

(3,1) w=.4

(3,3) w=.4 (3,2) w=.9

(1,3) w=.1

(2,3) w=.2

(3,2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2.3) w=.2

(3,2) w=.9

(2,2) w=.4

(New) Particles:

(3,2)

(2,2)

(3,2)

(2,3)

(3,3) (3,2)

(1,3)

(1,3)

(2,3)

(3,2)

(3,2)

Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

• In robot localization:

- O We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- O State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- O Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - O State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

[Dirk Haehnel, et al.]

Most Likely Explanation*

HMMs: MLE Queries*

- O HMMs defined by
 - O States X
 - O Observations E
 - O Initial distribution: $P(X_1)$
 - O Transitions: $P(X|X_{-1})$
 - O Emissions: P(E|X)

arg max $P(x_{1:t}|e_{1:t})$

 $x_{1:t}$

- New query: most likely explanation:
- New method: the Viterbi algorithm

State Trellis*

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms*

Forward Algorithm (Sum)

Viterbi Algorithm (Max)

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$