

DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

Degree of BEng/MEng in Chemical Engineering CP203 Thermodynamics and Chemical Principles

Date: Monday 9th May 2016 Time: 09:30-12:30

Time: 09:30-12:30 Duration: 3 hours

Answer All Questions Answer each section in a separate booklet

There are 200 marks available in each section of the paper

Calculators must not be used to store text and/or formulae nor be capable of communication. Invigilators may require calculators to be re-set.

Section A: Answer All Questions

- QA1. An ideal gas is expanded isothermally in a closed and frictionless piston/cylinder apparatus to 2.5 times its initial volume, producing in the process 2.4 kJ mol⁻¹ of work. Calculate the temperature of the gas inside the cylinder. [10 marks]
- **QA2.** 7 moles of methane are initially at a pressure of 2 bar and a temperature of 290 K. Calculate the enthalpy change of a process after which the gas has a pressure of 6 bar and a temperature of 420 K. You can make use of the fact that the enthalpy is a function of state to define a convenient path for the process. You can also assume that under these conditions methane behaves ideally and has heat capacities of $c_P = 35.7 \text{ J mol}^{-1} \text{ K}^{-1}$ and $c_V = 27.4 \text{ J mol}^{-1} \text{ K}^{-1}$. [20 marks]
- QA3. 42 moles of pure hydrogen gas and 17 moles of pure oxygen gas are first mixed at a constant temperature of 60°C and a constant pressure of 2 bar. The mixture is then cooled isobarically to a temperature of 25°C. Calculate the total entropy change for the process of mixing and cooling.

You can assume ideal mixture behaviour. Heat capacities for the gases are $c_P(H_2) = 29.2 \text{ J mol}^{-1} \text{ K}^{-1}$ and $c_P(O_2) = 29.7 \text{ J mol}^{-1} \text{ K}^{-1}$.

[25 marks]

- QA4. Derive an expression for the change in molar enthalpy with molar volume at constant temperature of a gas described by the van der Waals equation of state. [20 marks]
- **QA5.** A heat pump uses an ideal gas to keep an exam venue warm (at 25°C) during a typical Scottish summer (outside temperature of 0°C). The following facts are known about the four-step cycle of operation of the heat pump:
 - i) The first and third steps are adiabatic and involve gas expansion and gas compression, respectively;
 - ii) During the second step, involving isothermal expansion, the entropy of the gas increases by 50 J K^{-1} ;
 - iii) The fourth step involves isothermal gas compression, and consumes 20 kJ of work.

Calculate the coefficient of performance of the heat pump and compare it to the corresponding coefficient of performance for a Carnot heat pump operating between the same two temperatures.

[30 marks]

QA6. A liquid mixture of acetone (component 1) and acetonitrile (component 2) is in equilibrium with its vapour in a closed vessel at 60°C. If the mole fraction of acetone in the vapour is 0.35, calculate the composition of the liquid phase, assuming that the mixture behaves ideally.

Pure component equilibrium for the each of the two species is given by the following Antoine equations, where pressure is in kPa and temperature is in °C:

$$\ln\left(P_1^{sat}\right) = 14.5463 - \frac{2940.46}{T + 237.22}$$

$$\ln(P_2^{sat}) = 14.2724 - \frac{2945.47}{T + 224.00}$$

[20 marks]

QA7. Integrate the Clapeyron equation for vapour-liquid equilibrium assuming that the liquid molar volume is negligible compared to the vapour molar volume, and that the vapour is well described by the virial expansion below, with coefficient B = -0.045 bar⁻¹:

$$Z = 1 + BP$$

Use the expression you obtained to estimate the boiling temperature of water at 7 bar, making use of the fact that water boils at T = 99.6°C at P = 1 bar. The enthalpy of vapourisation of water over the relevant range of conditions can be considered constant and equal to 38.9 kJ mol⁻¹.

[30 marks]

QA8. A stream of pure carbon dioxide gas initially at T = 300 K and P = 8 bar is throttled adiabatically through a valve, such that its pressure drops by 6 bar. Calculate the temperature of the stream after passing the valve, assuming that there is no work done in the throttling process and that the molar volume is inversely proportional to the pressure with constant $a = 2500 \text{ J mol}^{-1}$:

$$V = \frac{a}{P}$$

Within the relevant range of pressure and temperature, you may assume that $c_P = 37.5$ J/molK and $\alpha = 0.0035$ K⁻¹ are constants. [25 marks]

QA9. A reversible adiabatic turbine accepts steam at 5 bar and 280°C. The steam leaves the turbine at 3.5 bar. Using the steam tables provided, calculate the molar work produced by the turbine and the outlet temperature of the steam. You may ignore kinetic and potential energy changes during the process.

[20 marks]

NUMERICAL SOLUTIONS

QA1. 315 K

QA2. 32.5 kJ

QA3. 102.4 J/K

QA4.
$$\left(\frac{\partial h}{\partial v}\right)_T = \frac{2a}{v^2} - \frac{RTb}{(v-b)^2}$$

QA5.
$$\beta$$
 = 3.15; β _{ID} = 11.93

QA6. $x_1 = 0.202$

QA7. 430.2 K

QA8. 296 K

QA9. -1.55 kJ/mol; 236 °C

Thermodynamics Equation Sheet

All symbols have the meaning as given in class materials.

First Law (general)

$$\Delta U = Q + W - \Delta \left(\frac{1}{2}mv^{2}\right) - \Delta (mgz)$$

Gibbs phase rule

$$F = 2 - \pi + N$$

Thermal expansion coefficient

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

Isothermal compressibility

$$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T}$$

Heat capacities

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}$$

$$C_{P} = \left(\frac{\partial H}{\partial T}\right) = T\left(\frac{\partial S}{\partial T}\right)$$

$$C_{P} - C_{V} = T \left(\frac{\partial V}{\partial T} \right)_{P} \left(\frac{\partial P}{\partial T} \right)_{V}$$

Van der Waals equation of state

$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$

Virial equation of state

$$Z = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$

Thermodynamic potentials

$$H = U + PV$$

$$A = U - TS$$

$$G = H - TS$$

Fundamental thermodynamic relations

$$dU = TdS - PdV$$

$$dH = TdS + VdP$$

$$dA = -SdT - PdV$$

$$dG = -SdT + VdP$$

Maxwell equations

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

Internal energy and enthalpy

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} - P$$

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} - P\left(\frac{\partial V}{\partial P}\right)_{T}$$

$$\left(\frac{\partial H}{\partial V}\right)_{T} = T \left(\frac{\partial P}{\partial T}\right)_{V} + V \left(\frac{\partial P}{\partial V}\right)_{T}$$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} + V$$

Carnot relationship

$$\left|\frac{\mathbf{Q}_1}{\mathbf{Q}_2}\right| = \frac{T_1}{T_2}$$

Entropy

$$\Delta S = \int_{1}^{2} \frac{dQ_{rev}}{T}$$

$$dS = \frac{C_P}{T} dT - \left(\frac{\partial V}{\partial T}\right)_P dP$$

$$\Delta S_{IG} = C_P \ln \frac{T_2}{T_1} - nR \ln \frac{P_2}{P_1}$$

Thermodynamics Equation Sheet

Joule-Thomson coefficient

$$\left(\frac{\partial T}{\partial P}\right)_{H} = \frac{V}{C_{P}} (\alpha T - 1)$$

Phase equilibrium

$$\frac{dP^{sat}}{dT_b} = \frac{\Delta h}{T_b \Delta v}$$

$$\frac{dP^{sat}}{dT_b} = \frac{\Delta hP^{sat}}{RT_b^2}$$

$$\ln P^{sat} = A - \frac{B}{T_b + C}$$

Multi-component systems (m or M stand for any extensive property)

$$dU = TdS - PdV + \sum_{i=1} \mu_i dn_i$$

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,P,nj}$$

$$m = \sum_{i} x_{i} \overline{m}_{i}$$

$$\Delta M_{\text{Mix}} = \sum_{i} n_{i} \overline{m}_{i} - \sum_{i} n_{i} m_{i}^{0}$$

$$\sum_{i} x_{i} d\overline{m}_{i} = 0$$

Ideal mixture

$$\mu_{i} = \mu_{i}^{0} + RT \ln x_{i}$$

$$U = \sum_{i} n_{i} u_{i}^{0}$$

$$H = \sum_{i} n_{i} h_{i}^{0}$$

$$V = \sum_{i} n_{i} v_{i}^{0}$$

$$S = \sum_{i} n_{i} s_{i}^{0} - nR \sum_{i} x_{i} \ln x_{i}$$

$$G = \sum_{i} n_{i} \mu_{i}^{0} + nRT \sum_{i} x_{i} \ln x_{i}$$

$$Pv_{i} = P_{i}^{\text{sat}} x_{i}$$

Thermodynamics Steam Tables

TEMPERATURE: t $^{\circ}$ C (TEMPERATURE: T kelvins)

							•				
P/kPa (t ^{sat} /°C)		sat. liq.	sat. vap.	75 (348.15)	100 (373.15)	125 (398.15)	150 (423.15)	175 (448.15)	200 (473.15)	225 (498.15)	250 (523.15)
, , ,	V	1.000	129200.	160640.	172180.	183720.	195270.	206810.	218350.	229890.	241430.
(6.98)	U H S	29.334 29.335 0.1060	2385.2 2514.4 8.9767	2480.8 2641.5 9.3828	2516.4 2688.6 9.5136	2552.3 2736.0 9.6365	2588.5 2783.7 9.7527	2624.9 2831.7 9.8629	2661.7 2880.1 9.9679	2698.8 2928.7 10.0681	2736.3 2977.7 10.1641
10 (45.83)	V U H S	1.010 191.822 191.832 0.6493	14670. 2438.0 2584.8 8.1511	16030. 2479.7 2640.0 8.3168	17190. 2515.6 2687.5 8.4486	18350. 2551.6 2735.2 8.5722	19510. 2588.0 2783.1 8.6888	20660. 2624.5 2831.2 8.7994	21820. 2661.4 2879.6 8.9045	22980. 2698.6 2928.4 9.0049	24130. 2736.1 2977.4 9.1010
20 (60.09)	V U H S	1.017 251.432 251.453 0.8321	7649.8 2456.9 2609.9 7.9094	8000.0 2478.4 2638.4 7.9933	8584.7 2514.6 2686.3 8.1261	9167.1 2550.9 2734.2 8.2504	9748.0 2587.4 2782.3 8.3676	10320. 2624.1 2830.6 8.4785	10900. 2661.0 2879.2 8.5839	11480. 2698.3 2928.0 8.6844	12060. 2735.8 2977.1 8.7806
30 (69.12)	V U H S	1.022 289.271 289.302 0.9441	5229.3 2468.6 2625.4 7.7695	5322.0 2477.1 2636.8 7.8024	5714.4 2513.6 2685.1 7.9363	6104.6 2550.2 2733.3 8.0614	6493.2 2586.8 2781.6 8.1791	6880.8 2623.6 2830.0 8.2903	7267.5 2660.7 2878.7 8.3960	7653.8 2698.0 2927.6 8.4967	8039.7 2735.6 2976.8 8.5930
40 (75.89)	V U H S	1.027 317.609 317.650 1.0261	3993.4 2477.1 2636.9 7.6709		4279.2 2512.6 2683.8 7.8009	4573.3 2549.4 2732.3 7.9268	4865.8 2586.2 2780.9 8.0450	5157.2 2623.2 2829.5 8.1566	5447.8 2660.3 2878.2 8.2624	5738.0 2697.7 2927.2 8.3633	6027.7 2735.4 2976.5 8.4598
50 (81.35)	V U H S	1.030 340.513 340.564 1.0912	3240.2 2484.0 2646.0 7.5947		3418.1 2511.7 2682.6 7.6953	3654.5 2548.6 2731.4 7.8219	3889.3 2585.6 2780.1 7.9406	4123.0 2622.7 2828.9 8.0526	4356.0 2659.9 2877.7 8.1587	4588.5 2697.4 2926.8 8.2598	4820.5 2735.1 2976.1 8.3564
75 (91.79)	V U H S	1.037 384.374 384.451 1.2131	2216.9 2496.7 2663.0 7.4570		2269.8 2509.2 2679.4 7.5014	2429.4 2546.7 2728.9 7.6300	2587.3 2584.2 2778.2 7.7500	2744.2 2621.6 2827.4 7.8629	2900.2 2659.0 2876.6 7.9697	3055.8 2696.7 2925.8 8.0712	3210.9 2734.5 2975.3 8.1681
100 (99.63)	V U H S	1.043 417.406 417.511 1.3027	1693.7 2506.1 2675.4 7.3598		1695.5 2506.6 2676.2 7.3618	1816.7 2544.8 2726.5 7.4923	1936.3 2582.7 2776.3 7.6137	2054.7 2620.4 2825.9 7.7275	2172.3 2658.1 2875.4 7.8349	2289.4 2695.9 2924.9 7.9369	2406.1 2733.9 2974.5 8.0342
101.325 (100.00)	V U H S	1.044 418.959 419.064 1.3069	1673.0 2506.5 2676.0 7.3554		1673.0 2506.5 2676.0 7.3554	1792.7 2544.7 2726.4 7.4860	1910.7 2582.6 2776.2 7.6075	2027.7 2620.4 2825.8 7.7213	2143.8 2658.1 2875.3 7.8288	2259.3 2695.9 2924.8 7.9308	2374.5 2733.9 2974.5 8.0280
125 (105.99)	V U H S	1.049 444.224 444.356 1.3740	1374.6 2513.4 2685.2 7.2847			1449.1 2542.9 2724.0 7.3844	1545.6 2581.2 2774.4 7.5072	1641.0 2619.3 2824.4 7.6219	1735.6 2657.2 2874.2 7.7300	1829.6 2695.2 2923.9 7.8324	1923.2 2733.3 2973.7 7.9300
150 (111.37)	V U H S	1.053 466.968 467.126 1.4336	1159.0 2519.5 2693.4 7.2234			1204.0 2540.9 2721.5 7.2953	1285.2 2579.7 2772.5 7.4194	1365.2 2618.1 2822.9 7.5352	1444.4 2656.3 2872.9 7.6439	1523.0 2694.4 2922.9 7.7468	1601.3 2732.7 2972.9 7.8447
175 (116.06)	V U H S	1.057 486.815 487.000 1.4849	1003.34 2524.7 2700.3 7.1716			1028.8 2538.9 2719.0 7.2191	1099.1 2578.2 2770.5 7.3447	1168.2 2616.9 2821.3 7.4614	1236.4 2655.3 2871.7 7.5708	1304.1 2693.7 2921.9 7.6741	1371.3 2732.1 2972.0 7.7724
200 (120.23)	V U H S	1.061 504.489 504.701 1.5301	885.44 2529.2 2706.3 7.1268			897.47 2536.9 2716.4 7.1523	959.54 2576.6 2768.5 7.2794	1020.4 2615.7 2819.8 7.3971	1080.4 2654.4 2870.5 7.5072	1139.8 2692.9 2920.9 7.6110	1198.9 2731.4 2971.2 7.7096
225 (123.99)	V U H S	1.064 520.465 520.705 1.5705	792.97 2533.2 2711.6 7.0873			795.25 2534.8 2713.8 7.0928	850.97 2575.1 2766.5 7.2213	905.44 2614.5 2818.2 7.3400	959.06 2653.5 2869.3 7.4508	1012.1 2692.2 2919.9 7.5551	1064.7 2730.8 2970.4 7.6540
250 (127.43)	V U H S	1.068 535.077 535.343 1.6071	718.44 2536.8 2716.4 7.0520				764.09 2573.5 2764.5 7.1689	813.47 2613.3 2816.7 7.2886	861.98 2652.5 2868.0 7.4001	909.91 2691.4 2918.9 7.5050	957.41 2730.2 2969.6 7.6042
275 (130.60)	V U H S	1.071 548.564 548.858 1.6407	657.04 2540.0 2720.7 7.0201				693.00 2571.9 2762.5 7.1211	738.21 2612.1 2815.1 7.2419	782.55 2651.6 2866.8 7.3541	826.29 2690.7 2917.9 7.4594	869.61 2729.6 2968.7 7.5590
300 (133.54)	V U H S	1.073 561.107 561.429 1.6716	605.56 2543.0 2724.7 6.9909				633.74 2570.3 2760.4 7.0771	675.49 2610.8 2813.5 7.1990	716.35 2650.6 2865.5 7.3119	756.60 2689.9 2916.9 7.4177	796.44 2729.0 2967.9 7.5176
				3 -1							

 $V = \text{SPECIFIC VOLUME} \quad \text{cm}^3 \text{ g}^{-1}$

U = SPECIFIC INTERNAL ENERGY kJ kg⁻¹
H = SPECIFIC ENTHALPY kJ kg⁻¹
S = SPECIFIC ENTROPY kJ kg⁻¹ K⁻¹

Thermodynamics Steam Tables

TEMPERATURE: t $^{\circ}$ C (TEMPERATURE: T kelvins)

				(12							
P/kPa (t sat /°C)		sat. liq.	sat. vap.	150 (423.15)	175 (448.15)	200 (473.15)	220 (493.15)	240 (513.15)	260 (533.15)	280 (553.15)	300 (573.15)
325 (136.29)	V U H S	1.076 572.847 573.197 1.7004	561.75 2545.7 2728.3 6.9640	583.58 2568.7 2758.4 7.0363	622.41 2609.6 2811.9 7.1592	660.33 2649.6 2864.2 7.2729	690.22 2681.2 2905.6 7.3585	719.81 2712.7 2946.6 7.4400	749.18 2744.0 2987.5 7.5181	778.39 2775.3 3028.2 7.5933	807.47 2806.6 3069.0 7.6657
350 (138.87)	V U H S	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	540.58 2567.1 2756.3 6.9982	576.90 2608.3 2810.3 7.1222	612.31 2648.6 2863.0 7.2366	640.18 2680.4 2904.5 7.3226	667.75 2712.0 2945.7 7.4045	695.09 2743.4 2986.7 7.4828	722.27 2774.8 3027.6 7.5581	749.33 2806.2 3068.4 7.6307
375 (141.31)	V U H S	1.081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6.9160	503.29 2565.4 2754.1 6.9624	537.46 2607.1 2808.6 7.0875	570.69 2647.7 2861.7 7.2027	596.81 2679.6 2903.4 7.2891	622.62 2711.3 2944.8 7.3713	648.22 2742.8 2985.9 7.4499	673.64 2774.3 3026.9 7.5254	698.94 2805.7 3067.8 7.5981
400 (143.62)	V U H S	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	470.66 2563.7 2752.0 6.9285	502.93 2605.8 2807.0 7.0548	534.26 2646.7 2860.4 7.1708	558.85 2678.8 2902.3 7.2576	583.14 2710.6 2943.9 7.3402	607.20 2742.2 2985.1 7.4190	631.09 2773.7 3026.2 7.4947	654.85 2805.3 3067.2 7.5675
425 (145.82)	V U H S	1.086 613.667 614.128 1.7990	436.61 2554.8 2740.3 6.8739	441.85 2562.0 2749.8 6.8965	472.47 2604.5 2805.3 7.0239	502.12 2645.7 2859.1 7.1407	525.36 2678.0 2901.2 7.2280	548.30 2709.9 2942.9 7.3108	571.01 2741.6 2984.3 7.3899	593.54 2773.2 3025.5 7.4657	615.95 2804.8 3066.6 7.5388
450 (147.92)	V U H S	1.088 622.672 623.162 1.8204	413.75 2556.7 2742.9 6.8547	416.24 2560.3 2747.7 6.8660	445.38 2603.2 2803.7 6.9946	473.55 2644.7 2857.8 7.1121	495.59 2677.1 2900.2 7.1999	517.33 2709.2 2942.0 7.2831	538.83 2741.0 2983.5 7.3624	560.17 2772.7 3024.8 7.4384	581.37 2804.4 3066.0 7.5116
475 (149.92)	V U H S	1.091 631.294 631.812 1.8408	393.22 2558.5 2745.3 6.8365	393.31 2558.6 2745.5 6.8369	421.14 2601.9 2802.0 6.9667	447.97 2643.7 2856.5 7.0850	468.95 2676.3 2899.1 7.1732	489.62 2708.5 2941.1 7.2567	510.05 2740.4 2982.7 7.3363	530.30 2772.2 3024.1 7.4125	550.43 2803.9 3065.4 7.4858
500 (151.84)	V U H S	1.093 639.569 640.116 1.8604	374.68 2560.2 2747.5 6.8192		399.31 2600.6 2800.3 6.9400	424.96 2642.7 2855.1 7.0592	444.97 2675.5 2898.0 7.1478	464.67 2707.8 2940.1 7.2317	484.14 2739.8 2981.9 7.3115	503.43 2771.7 3023.4 7.3879	522.58 2803.5 3064.8 7.4614
525 (153.69)	V U H S	1.095 647.528 648.103 1.8790	357.84 2561.8 2749.7 6.8027		379.56 2599.3 2798.6 6.9145	404.13 2641.6 2853.8 7.0345	423.28 2674.6 2896.8 7.1236	442.11 2707.1 2939.2 7.2078	460.70 2739.2 2981.1 7.2879	479.11 2771.2 3022.7 7.3645	497.38 2803.0 3064.1 7.4381
550 (155.47)	V U H S	1.097 655.199 655.802 1.8970	342.48 2563.3 2751.7 6.7870		361.60 2598.0 2796.8 6.8900	385.19 2640.6 2852.5 7.0108	403.55 2673.8 2895.7 7.1004	421.59 2706.4 2938.3 7.1849	439.38 2738.6 2980.3 7.2653	457.00 2770.6 3022.0 7.3421	474.48 2802.6 3063.5 7.4158
575 (157.18)	V U H S	1.099 662.603 663.235 1.9142	328.41 2564.8 2753.6 6.7720		345.20 2596.6 2795.1 6.8664	367.90 2639.6 2851.1 6.9880	385.54 2672.9 2894.6 7.0781	402.85 2705.7 2937.3 7.1630	419.92 2738.0 2979.5 7.2436	436.81 2770.1 3021.3 7.3206	453.56 2802.1 3062.9 7.3945
600 (158.84)	V U H S	1.101 669.762 670.423 1.9308	315.47 2566.2 2755.5 6.7575		330.16 2595.3 2793.3 6.8437	352.04 2638.5 2849.7 6.9662	369.03 2672.1 2893.5 7.0567	385.68 2705.0 2936.4 7.1419	402.08 2737.4 2978.7 7.2228	418.31 2769.6 3020.6 7.3000	434.39 2801.6 3062.3 7.3740
625 (160.44)	V U H S	1.103 676.695 677.384 1.9469	303.54 2567.5 2757.2 6.7437		316.31 2593.9 2791.6 6.8217	337.45 2637.5 2848.4 6.9451	353.83 2671.2 2892.3 7.0361	369.87 2704.2 2935.4 7.1217	385.67 2736.8 2977.8 7.2028	401.28 2769.1 3019.9 7.2802	416.75 2801.2 3061.7 7.3544
650 (161.99)	V U H S	1.105 683.417 684.135 1.9623	292.49 2568.7 2758.9 6.7304		303.53 2592.5 2789.8 6.8004	323.98 2636.4 2847.0 6.9247	339.80 2670.3 2891.2 7.0162	355.29 2703.5 2934.4 7.1021	370.52 2736.2 2977.0 7.1835	385.56 2768.5 3019.2 7.2611	400.47 2800.7 3061.0 7.3355
675 (163.49)	V U H S	1.106 689.943 690.689 1.9773	282.23 2570.0 2760.5 6.7176		291.69 2591.1 2788.0 6.7798	311.51 2635.4 2845.6 6.9050	326.81 2669.5 2890.1 6.9970	341.78 2702.8 2933.5 7.0833	356.49 2735.6 2976.2 7.1650	371.01 2768.0 3018.5 7.2428	385.39 2800.3 3060.4 7.3173
700 (164.96)	V U H S	1.108 696.285 697.061 1.9918	272.68 2571.1 2762.0 6.7052		280.69 2589.7 2786.2 6.7598	299.92 2634.3 2844.2 6.8859	314.75 2668.6 2888.9 6.9784	329.23 2702.1 2932.5 7.0651	343.46 2735.0 2975.4 7.1470	357.50 2767.5 3017.7 7.2250	371.39 2799.8 3059.8 7.2997
725 (166.38)	V U H S	1.110 702.457 703.261 2.0059	263.77 2572.2 2763.4 6.6932		270.45 2588.3 2784.4 6.7404	289.13 2633.2 2842.8 6.8673	303.51 2667.7 2887.7 6.9604	317.55 2701.3 2931.5 7.0474	331.33 2734.3 2974.6 7.1296	344.92 2767.0 3017.0 7.2078	358.36 2799.3 3059.1 7.2827