E-commerce Platform Search Function - Analysis

4. Analysis
Time Complexity Comparison:
1. Linear Search:
- Time Complexity: O(n) in worst and average case, O(1) in best case.
- Explanation: Each element is checked one-by-one until the target is found or the end is reached.
2. Binary Search:
- Time Complexity: O(log n) in best, average, and worst case.
- Explanation: The array is divided in half at each step, making the search significantly faster for sorted
arrays.
Suitability for E-commerce Platform:
- Binary search is significantly more efficient than linear search for large datasets.
- However, binary search requires the data to be sorted, which adds a preprocessing step.
Recommendation:
- For small or unsorted product lists, linear search can be used due to simplicity.
- For large-scale platforms, binary search (on a sorted array or tree-based structure) is preferred for faster

- For dynamic systems, consider using more advanced data structures like Tries, Hash Maps, or even full-text

response times.

E-commerce Platform Search Function - Analysis

search engines (e.g., Elasticsearch).