Minimization Using Duality

- Standard Minimization Problem
- Building the Dual Tableau
- Solving Standard Minimization

Standard Minimization Form

Standard minimization form involves a minimization problem where all constraints are ≥, for example:

minimize
$$3x_1 + 4x_2$$

subject to $x_1 + 3x_2 \ge 10$
 $2x_1 + 2x_2 \ge 8$

Standard Minimization Form

If we converted a standard minimization problem straight into a tableau it would look like

this:
$$\begin{bmatrix} 1 & 3 & -1 & 0 & 0 & 10 \\ 2 & 2 & 0 & -1 & 0 & 8 \\ 3 & 4 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$$
"minimize $f = 3x_1 + 4x_2$ " becomes
"maximize $f = -3x_1 - 4x_2$ ", which converts to $3x_1 + 4x_2 + f = 0$
we need to subtract slack variables, not add them

This tableau has all sorts of things wrong with it, including negative solutions which are illegal.

Fortunately, a standard minimization problem can be converted into a maximization problem with the same solution. The minimization problem and its corresponding maximization problem are called *duals* of each other.

The steps for using duality in the simplex method do not make much sense, but the method works.

The first step in solving a standard minimization problem using duality is to write the information into a matrix, ignoring everything you know about slack variables and objective functions.

		_ X ₁	x_{2}	ans _
minimize	$f = 3x_1 + 4x_2$	1	3	10
subject to	$x_1 + 3x_2 \ge 10$	2	2	8
	$2x_1 + 2x_2 \ge 8$	4 3	4	0

The next step is to create the dual matrix, which starts with the *transpose* of the matrix we just created. "Transpose" means the first column becomes the first row, and so on:

$$\begin{bmatrix} 1 & 3 & 10 \\ 2 & 2 & 8 \\ 3 & 4 & 0 \end{bmatrix} \text{ becomes } \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 4 \\ 10 & 8 & 0 \end{bmatrix}$$

The next step is where it gets strange. Using the transposed matrix, fill it in as if it were a standard maximization matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 4 \\ 100 & -8 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Then maximize as you normally would.

After pivoting twice, the finished matrix looks like this:

$$\begin{bmatrix} 0 & 4 & 3 & -1 & 0 & 5 \\ 12 & 0 & -6 & -6 & 0 & 6 \\ 0 & 0 & 12 & 36 & 12 & 180 \end{bmatrix}$$

The last step is to divide the last row so the "f" column becomes 1. Your new last row is:

1 and 2

From this you can read the solution directly.

The minimum of 15 occurs at $x_1 = 1$, $x_2 = 3$.

Practice Problem 1

Convert these constraints into a dual matrix in standard maximum form:

Minimize
$$4x_1 + 2x_2 + 5x_3$$

subject to $3x_1 + x_2 + 5x_3 \ge 15$
 $2x_1 + 4x_2 + 2x_3 \ge 20$

Practice Problem 2

Using your pivoting program for standard maximum simplex, complete the steps to solve your tableau from problem 1.

- 2a. Write the final last row.
- 2b. Identify the values of: the slack variables; x_1 , x_2 , and x_3 ; and the minimized objective function.

Practice Problem 3

An office manager is equipping a new workspace with storage units. Traditional shelves can hold 9 cubic feet of material and provide 3 square feet of work area on top. Deep file cabinets can hold 12 cubic feet of material and provide 6 square feet of work area on top. The manager needs at least 50 cubic feet of storage and 36 square feet of work area. File cabinets cost \$100 each and shelves \$70. Minimize cost. Write a full answer in context.