There will not be any complicated analysis or advanced mathematics in the presentation and evaluation of astronomy in this course.

There is no formal

Mathematics Requirement (2 of 2), but...

skill in mathematics is an essential ingredient in a scientific view of the Universe.

Here are some specific skills you are expected to use:

Ratios

Relative scales are often the only meaningful way to express comparisons in astronomy. In the table on page 194, look for the column headed "**Distance from sun**." By setting up the appropriate ratios, calculate the actual distance of each planet from the Sun if Earth is 150,000,000 km from the sun. Then find the column headed "**Revolution period**" and calculate the relative revolution period of each planet compared to Earth's year.

Graphs

A graph is a device by which numbers are translated into visual units to make their meaning clearer. In science, the most useful graph is one that reveals a mathematical principle behind a body of data. In astronomy, almost every graph is a line graph. To read a graph, you must recognize the co-ordinate system. This means the familiar x-axis and y-axis. Every graph must have both the x-axis and y-axis labeled with a description of what the axis represents, and each axis must include the scale that shows the relevant numbers. You must be able to "read" the graph, which means identifying the x-value and the y-value of a point on the graph. You must be able to describe the changes that occur if a point "moves" on the graph. Note that it does not usually mean that some object is actually moving. You must be able to describe the effect on a given graph of new information about the circumstances represented by the graph.

Scientific notation

Large and small numbers will be expressed in scientific notation. There must be **exactly one digit** to the left of the decimal place.

Prepared by Peter Jedicke, 2017-01-03; edited by I. Haque 2019-01-10