

PRELIMINARY ENGINEERING REPORT

PROPOSED ALBERTALMONDREAL CRUDE OIL SIPEUME

PREPARED FOR

HOME OIL COMPANY LIMITED

BULTON VINSIANAS, BURTOPISES AMERICA

PROPERTY AND THE

FILLIAN

Energy Exhibit no. CC-29-4 vol. 1

PRELIMINARY ENGINEERING REPORT

ON

PROPOSED ALBERTA - MONTREAL CRUDE OIL PIPELINE

Prepared for

HOME OIL COMPANY LIMITED

12

by

DUTTON-WILLIAMS BROTHERS LIMITED

Engineers - Constructors

Calgary, Alberta

February 26, 1958

Digitized by the Internet Archive in 2025 with funding from University of Toronto

DUTTON - WILLIAMS BROTHERS LIMITED

ENGINEERS - CONSTRUCTORS

NORTH CANADIAN OIL BUILDING

CALGARY, ALBERTA

REPLY TO Project 3094

February 26, 1958.

Home Oil Company Limited 304 Sixth Avenue West Calgary, Alberta

Gentlemen:

In accordance with your instructions of January 15, 1958, we have prepared the attached Preliminary Engineering Report on the proposed Alberta-Montreal Pipeline crude oil system. We believe the report sufficiently examines the factors involved and adequately defines a system for planning purposes.

Conclusions

1. Under the conditions considered, the 30-inch "Southern Route" system appears to offer the most economical transportation and also the best balance between investment and operating cost.

In evaluating the alternatives, no limitation was placed upon possible sizes of the main pipeline or possible routes to be compared. A comparison of the recommended system with an alternate route and size is, however, made in the report to illustrate the basis for this conclusion. The comparative capital requirements for the 30-inch alternates are set forth as follows for the initial and tenth year of operation:

DUTTON-WILLIAMS BROTHERS LIMITED

ENGINEERS - CONSTRUCTORS

	Southern	Southern Route		Northern Route	
Classification	1960	1969	1960	1969	
Construction Costs	\$307,500,000	\$332,100,000	\$350,900,000	\$379, 100, 000	
Line Fill	24, 100, 000	24, 100, 000	25,500,000	25,500,000	
Int. during Const.	12,100,000	12,600,000	13,800,000	14,400,000	
Working Capital	1,900,000	1,900,000	2,000,000	2,000,000	
Financing Costs	7,800,000	7,800,000	8,700,000	8,700,000	
	\$353,400,000	\$378,500,000	\$400,900,000	\$429,700,000	

2. Based upon the capital requirements for the recommended system, the 30-inch Southern Route System, the "cost of service" during the 5th year of operation per barrel transported as projected in the report is 51.8¢. "Cost of service" in this case includes depreciation, interest, operating cost, return on investment and income taxes. We believe a normal tariff schedule for crude oil pipelines employing this amount as the primary transportation charge from Alberta to Montreal could be recommended and that earnings generated at this rate on the assumed average throughput will be sufficient to effect financing of the project.

Report Summary

- 1. The initial capital requirements for the recommended system amounts to approximately \$353,400,000 of which \$307,500,000 is attributable to cost of the installation.
- 2. The initial system consists of approximately
 - 1,919 miles of 30-inch Main Line 100 miles of 26-inch gathering line 71.5 miles of 16-inch gathering line 73.5 miles of 10-inch gathering line
 - 1,700,000 barrels of steel tank storage 35,000 installed horsepower in pumping facilities

DUTTON-WILLIAMS BROTHERS LIMITED

ENGINEERS - CONSTRUCTORS

- 3. The initial capacity of the system is 253,000 BPD and by addition of pumping facilities may be economically increased to 393,000 BPD.
- 4. Average annual throughputs have been assumed to increase from 200,000 BPD in the first year of operation to 385,600 BPD in the 10th year, the final year considered.

Preparation of the Report

Route reconnaissance was made by automobile and aircraft over the various possibilities, and as a result two principal routes were selected for final consideration. A further check of critical points and alternate sections on these routes was made as needed. Detailed notes of a number of previous investigations over the entire area were also of assistance, as were actual construction cost information on the several existing pipeline systems which parallel all or parts of the routes considered.

Pipeline route locations were made with the use of aerial photographs and topographic maps and based upon the reconnaissance notes.

Hydraulic studies of the various routes were made after profiles were developed from the above information. Schematic arrangements of a number of alternative designs and routes were then produced. On the basis of preliminary cost estimates, a number of the alternatives were then eliminated. More exact cost estimates were then compiled for remaining alternates using quotations from manufacturers and other realistic data.

Operating costs then were prepared which further reduced the alternative schemes then deserving further comparison.

Financial requirements have been developed for the alternate systems to determine required income over the period of years from which tariff rates were selected. The rates were then used to project pro forma financial data for the future years of operation to test their adequacy.

Volume I is generally arranged to begin with the premises, followed by a design discussion, and concluded with the financial data derived therefrom. Volume II defines the system recommended in specification form suitable for incorporation with later detailed drawings and final bills of materials into complete plans and specifications of the system.

DUTTON-WILLIAMS BROTHERS LIMITED

ENGINEERS - CONSTRUCTORS

It is hoped that the report contains design decisions and sufficient definition of the system to facilitate the planning of this project.

Respectfully submitted,

DUTTON-WILLIAMS BROTHERS

R. G. Murray, Jr.

Executive Vice-President

VOLUME I

ENGINEERING AND ECONOMIC STUDIES

Table of Contents

		Page
Ro	tter of Transmittal ute Map	1
	nematic Diagram of System	
	ble of Contents	5
L1 S	st of Design Exhibits	7
	CHAPTER I - ENGINEERING STUDIES	
A.	INTRODUCTION	8
	1. Function of the System	8
	2. Purpose and Scope of the Report	9
	3. Terminology	10
В.	PREMISES OF PIPELINE SYSTEM	12
	1. Discussion of Demand	12
	2. Discussion of Supply	14
	3. Gathering and Terminal Facilities	16
	4. Selection and Description of Route	17
C.	DESIGN PREMISES	20
	1. Climatic Conditions	20
	2. Crude Oil Characteristics	22
	3. Design Throughput	23
D.	DESIGN CALCULATIONS	24
	1. Flow Formulas	24
	2. System Design	26
	a. Pipe Specifications	26
	b. Hydraulic Calculations	28
E.	DESCRIPTION OF PROPOSED FACILITIES	33
	1. Pipeline	33
	2. Tankage	35
	a. General	35
	b. Storage Tank Capacity Selection Procedure	36

Table of Contents (Continued)

			Page
	3.	Stations and Terminal	39
		a. General	39
		b. Calgary Station	45
		c. Britamoil Junction Station	46
		d. Edmonton Station	46
		e. Bellshill Lake Station	47
		f. Typical Intermediate Station	47
		g. Montreal Terminal	48
	4.	Construction Exhibits	49
		CHAPTER II - ECONOMIC STUDIES	
A.	EST	MATED INVESTMENT REQUIREMENTS	50
	1.	Summary	50
	2.		52
	3.		54
	4.	Pipeline Construction Costs	56
		a. Summary - Total Pipeline	56
		b. Details - Western Section	57
		c. Details - Central Section	62
		d. Details - Eastern Section	67
	5.	Pump Station and Tankage Costs	72
В.	EST	MATED ANNUAL OPERATING COSTS	87
	1.	Summary of Annual Operating Costs, Southern Route	87
	2.	Summary of Annual Operating Costs, Northern Route	88
	3.	Station Operating Cost	89
	4.	Estimated Annual Station Personnel Expense	92
	5.	Estimated Annual Tank Farm Maintenance	94
	6.	Estimated Annual Pipeline Maintenance	95
	7.	Estimated Annual Communications Cost	95
	8.		96
	9.	Operating Costs in Canada, Southern System	99
C.	FINA	ANCIAL DATA	103
	1.	Discussion	103
	2	Financial Statements	107

DESIGN EXHIBITS

	F	ollowin Page
1.	Route Map	4
2.	Schematic Diagram of Alternate Systems	4
3.	Throughput Development, Ten-Year Period	15
4.	Profile, Bellshill Lake-Montreal	19
5.	Profiles, Edmonton-Bellshill Lake, Calgary-Bellshill Lake	19
6.	Regina Climatic Data	20
7.	Mean Annual Temperature	20
8.	Soil Temperature at Various Depths	21
9.	Friction Loss Curve, Calgary-Britamoil Junction	25
10.	Friction Loss Curve, Britamoil Junction-Bellshill Lake	25
11.	Friction Loss Curve, Edmonton-Bellshill Lake	25
12.	Friction Loss Curves, Bellshill Lake-Montreal	25
13.	Pressure-Flow-Horsepower Curves, Calgary-Britamoil Jct.	29
14.	Pressure-Flow-Horsepower Curves, Britamoil JctBellshill Lal	ke 29
15.	Pressure-Flow-Horsepower Curves, Edmonton-Bellshill Lake	29
16.	Pressure-Flow-Horsepower Curves, Bellshill Lake-Montreal,	
	30" Pipe	32
17.	Pressure-Flow-Horsepower Curves, Bellshill Lake-Montreal,	
	34" Pipe	32
18.	Tank Scheduling Chart Edmonton (1962)	36
19.	Tank Scheduling Chart Edmonton (1969)	36
20.	Tank Scheduling Chart Bellshill Lake (1962)	38
21.	Tank Scheduling Chart Bellshill Lake (1969)	38
22.	Typical Manifold & Scraper Trap at Water Crossings	
	- Schematic Layout	48
23.	Calgary Station Schematic Layout	48
24.	Britamoil Junction Station Schematic Diagram	48
25.	Edmonton Station Schematic Layout	48
26.	Bellshill Lake Station Schematic Layout	48
27.	Typical Intermediate Station Schematic Layout	48
28.	Montreal Terminal Schematic Layout	48
29.	Office Building Plan	48
30.	Main Line Station Building Perspective	48

CHAPTER I

ENGINEERING STUDIES

A. INTRODUCTION

1. FUNCTION OF THE SYSTEM

The purpose of the proposed Alberta-Montreal crude oil pipeline is to provide the most economical transportation for the proven and potential oil reserves in Western Canada to the Montreal refining area. Although evaluations of the crude supply, market outlets and determinations of probable minimum shipments over a ten year period have been prepared by others, the function of the system can be briefly described as follows.

Present outlets for Alberta crude consume less than 50 percent of the rated production capacity. Reserves due to new discoveries are increasing at a rate greater than the potential consumption of present markets. Exploration and drilling operations are slowing due to lack of payout for new discoveries.

Meanwhile, the Montreal area imports a substantial amount of foreign crude at a cost representing about one-third of Canada's trade deficit. A foreign source of such crude is subject to variations in world affairs and upon ocean transportation. This factor may be critical in case of a world or Canadian national emergency.

Present crude oil transportation from Alberta eastward, which might be extended to Montreal, is operating at such capacity that it could not serve the Montreal market in any quantity without a corresponding reduction in its present service to other points.

Montreal is the only marketing area remaining in Canada with sufficient demand to substantially utilize shut-in reserves in Alberta. Export of these reserves to the United States is continuously dependent upon the prevailing import policy of the United States to protect its own producers, and continuously dependent upon prevailing competitive prices of other foreign crudes which may be imported without field proration at the source.

The function of the proposed pipeline system, then, would be to provide a transportation medium of such economic effectiveness that the eastern Canadian market of the Montreal area may be served competitively by Canadian reserves.

2. PURPOSE AND SCOPE OF THE REPORT

This report has been prepared under the instructions of Home Oil Company Limited, representing a group of Alberta producers. The report summarizes results of route reconnaissance and planning studies undertaken to determine an economical crude oil transmission system from Alberta to Montreal.

The purpose of the report is fivefold:

- (1) To define alternate systems derived from field engineering and economic studies as appearing most feasible for present and future indicated needs.
- (2) To recommend one of the alternate systems as most satisfactory based on the premises supplied.
- (3) To supply realistic cost estimates for financial arrangements.
- (4) To furnish an estimate of required annual income and tariff rates necessary to support the system.
- (5) To present sufficiently definitive engineering and economic aspects to permit construction to proceed with a minimum of delay.

Certain aspects of the feasibility of the system are beyond the scope of this report, and beyond the assignment therefor. These aspects include:

- (1) A discussion of the reserves in Alberta or more particularly the adequacy or selection of certain fields or areas in Alberta to satisfy pipeline throughput premises, or the designation of gathering points.
- (2) Evaluation of the Montreal area as an outlet for Western crude oil.
- (3) Evaluation of the effect of the tariffs derived in this report upon competitive marketing, or upon the economics of production.

It is understood however that the foregoing aspects have been or will concurrently be treated in reports by others.

3. TERMINOLOGY

Some brief reference terms have been utilized to avoid repeating descriptive identifications throughout the report.

Definitions of such terms follow:

Company the owner of the proposed Alberta-

Montreal crude oil pipeline system

Calgary Lateral the lateral from Calgary to Bellshill

Lake, crossing the Britamoil pipeline between the Stettler and Drumheller

fields

Britamoil Junction the junction point between the Britamoil

pipeline and Calgary Lateral

Edmonton Lateral the lateral from Edmonton to Bellshill

Lake

Main Line, mainline the pipeline from Bellshill Lake to

Montreal

bbl. barrel

BPD barrels per day

MBPD thousands of barrels per day

MBPYr thousands of barrels per year

psi pounds per square inch

OD outside diameter

ID inside diameter

dia. diameter

wall thickness of pipe

SSU Saybolt Seconds Universal

API American Petroleum Institute

ASA American Standards Association

oF degrees Fahrenheit

MP milepost measured from origin of

traverse

" inches

feet

HP hydraulic horsepower

HPo, BHP operating horsepower or brake horse-

power

HPi installed horsepower

matl material

const construction

B. PREMISES OF PIPELINE SYSTEM

1. DISCUSSION OF DEMAND

As previously stated, it is beyond the scope and assignment of this study to develop the demand or supply aspects of crude oil for this system. However, throughput requirements in general were derived as outlined herein.

From the recent study by Walter J. Levy, oil economics consultant, the demand for foreign crude oil and products in the Montreal area for 1960 is estimated to be 282,000 BPD and 32,000 BPD respectively. (See Page 1-12, Levy report.) It has also been estimated that the Alberta-Montreal pipeline could supply replacement of 70 percent of this crude oil market, or 200,000 BPD.

Present Montreal refiners operate on crude stock averaging 30° API gravity (at 60°F), composed principally of Venezuelan and Middle East crudes ranging from 25°API to possibly 35° API. Alberta crudes tentatively selected to serve Montreal have an average gravity of about 35.5° API.

Complete utilization of a lighter charge stock would effect a further deficit in heavy fuel oil supply in the area. This deficit should eventually be mitigated or possibly eliminated by natural gas utilization from the Trans-Canada pipeline. Also, if the trend to higher motor octanes continues, future refinery additions and new installations may require the higher gravity stock afforded by Alberta.

Some of these and other considerations are treated in detail in the Levy and Purvin & Gertz reports. However, the considerations briefly mentioned above substantiate the fact that about 70 percent of the 1960 Montreal demand for crude oil could reasonably be satisfied by Alberta crudes, and a higher percentage thereafter.

The Levy report (Page 1-16) further states that in 1965 crude oil demand in the Montreal area would reach some 396,000 BPD with no products imports required. It is assumed the Alberta-Montreal pipeline could capture 80 percent of this market, or 320,000 BPD, in light of the foregoing discussion and more detailed analysis. The throughput buildup in the pipeline between 200,000 BPD in 1960 and 320,000 BPD in 1965 is assumed as a straight line to obtain annual increments.

After 1965, it is assumed that Canadian crude oil can supply 100 percent of the increase in Montreal requirements at the 1960 to 1965 rate of demand growth. In 1960, a total of 314,000 BPD of crude oil and products demand is projected as previously stated. The 1965 demand is similarly 396,000 BPD -- an increase of 82,000 BPD

in five years. This annual increase of 16,400 BPD has been used to extrapolate the demand requirements in Montreal for Alberta crudes through 1969.

Requirements past 1969 are not estimated and further throughput projection is not attempted herein. Certainly intra-Canadian growth in the prairie provinces, the Toronto, Northern Ontario and Maritime areas, and even the possibility of crude oil export could eventually influence the ultimate pipeline throughput requirements.

Therefore, in order to maintain realistic premises, the engineering and economic studies herein do not consider the throughput buildup after 1969. An exception to this hypothesis occurs only as a secondary consideration of the 34-inch Main Line alternate, which can economically attain a throughput of 550,000 BPD. This alternate is developed under Section D, Design Calculations.

In summary, the throughputs in annual increments as herein developed are tabulated below. The daily rates shown would require 365-day continuous pumping, which is impractical in actual operation. Design throughputs, derived later in the report, allow about seven days per year, or two percent of the time, for emergency and routine shutdowns for maintenance and overhaul of the system.

Year	Throughput, BPD*						
1960	200,000						
1961	224,000						
1962	248,000						
1963	272,000						
1964	296,000						
1965	320,000						
1966	336,400						
1967	352,800						
1968	369,200						
1969	385,600						

^{*} Multiply by 365 to obtain annual rates.

2. DISCUSSION OF SUPPLY

The Levy report (Page 1-7) shows a surplus for 1957 between Alberta's productive capacity and actual production to meet demand, of about 370,000 BPD (50 percent of capacity). The report further states (Page iii) that by 1965 the gap is likely to be some 500,000 BPD. Discoveries northwest of Edmonton are also to be considered. The work of other consultants can also be used to fully substantiate the Alberta supply as more than adequate to meet Montreal demands without jeopardizing present markets for Alberta crude.

A presently insignificant consideration is that the route of the proposed pipeline intersects the Westspur pipeline in Eastern Saskatchewan. South Saskatchewan crudes now have marketing outlets but new discoveries in the future could utilize the proposed system if other marketing facilities were operating above economic capacity.

It is definitely not the function of the Alberta-Montreal pipeline to compete with other pipeline systems presently installed or compete in the markets served thereby. But the proposed pipeline could in the future relieve existing facilities of excessive capacities at uneconomical operation, providing the economic capacity of the proposed system is sufficient.

Extensive study by others has furnished for this report a distribution of sources of the throughput from the various Alberta fields. Heavier Alberta crudes, below about 38° API, were favored for initial operations to correlate with the demand of present Montreal refineries. Economics of gathering was also considered in these assumptions in the interest of effectiveness of the overall system.

After consideration of these two points, the deficit between present allowable production and productive capacity was noted for the fields to determine surplus capacity geographically. Laterals from Edmonton and Calgary to a common point at Bellshill Lake appeared to present a feasible gathering system. The Calgary Lateral would receive the major portion of its stream about midway to Bellshill Lake, from the present Britamoil pipeline.

It is assumed that the Britamoil pipeline would deliver volumes from fields including Drumheller, West Drumheller, Wayne, Fenn-Big Valley, Stettler and some smaller fields. The Calgary Lateral stream would be augmented to a relatively small degree by flow from Calgary. The throughput from Calgary would represent surplus over Calgary requirements, and originate from Harmattan, Harmattan East, Westward Ho, Sundre and possibly other fields, delivered to Calgary via the Cremona pipeline. A small volume would be injected directly at Bellshill Lake from Bellshill Lake Field

which contains a preferred heavy gravity crude.

Deliveries to Edmonton have been based on the incremental production from these major fields: Pembina, Leduc, Redwater, Acheson, and Golden Spike. The Texaco stream initially excluded from consideration because of high gravity, would probably be added to shipments as refinery capacity permits. The Peace River steam has been considered as being devoted to the Trans-Mountain pipeline. Pembina has been used to compensate for the exclusion of these two streams.

The Pembina stream as used in this report would include production from new fields mainly north and northwest of Edmonton such as Swan Hills, Red Earth, etc. Such new and future discoveries would reduce the balancing demand on the Pembina field.

The term, Alberta Light, has been used to denote Leduc, Acheson, Golden Spike and other light crude streams flowing to Edmonton. It is assumed that three crudes would be batched out of Edmonton - Pembina (including Swan Hills), Redwater and Alberta Light. Based on prorated production capacity figures, these crudes would be batched in the following proportions:

Pembina	39.5%
Redwater	37.5%
Alberta Light	23.0%

All streams from Calgary and Britamoil will be comingled to Bellshill Lake.

A Throughput Development Chart, Exhibit 3, appears on the following page. The chart shows the amount of throughput from each source for each of the ten years considered. This chart represents the basis for ensuing hydraulic calculations.

3. GATHERING AND TERMINAL FACILITIES

It is assumed that all throughput will enter the system through existing pipelines except for the minor amounts (5,000 BPD) injected directly at Bellshill Lake. The Calgary stream enters through the Cremona pipeline, the Britamoil stream through the Britamoil pipeline, and the Edmonton stream through three existing lines via short connecting lines. Therefore, no significant gathering facilities need be installed, except for the respective pump stations and tankage.

Major tank farms are required at Edmonton and Bellshill Lake since three grades of crude oil are batched in and out of Edmonton, and four grades in and out of Bellshill Lake. Small tankage is required at Calgary, and at Britamoil Junction to comingle the incoming streams for further transmission. Calculation of tankage requirements is shown under Section E, Description of Proposed Facilities.

Batching of four grades of crude oil allows selective receipt of any grade by each of the Montreal refineries. A manifold would be located at a central point between refineries, with a transfer pipeline of about two miles average length laid to each refinery. Custody transfer would occur at the manifold by use of positive displacement meters.

4. SELECTION AND DESCRIPTION OF ROUTE

Since the proposed pipeline serves no intermediate points between Bellshill Lake and Montreal, the most direct route between the two points would in general effect the minimum of cost and resulting tariff. Some deviation is economically warranted to avoid rocky or rough terrain or populated areas where construction costs are excessive. In addition, consideration is given to accessibility of the traverse by road for maintenance or emergency repairs.

After the basic route was selected, the traverse was further defined by aerial and ground reconnaissance and a careful study of large-scale topographic maps. Areas such as the water crossings at Sault Saint Marie were given particular attention at the site to determine an economic routing and realistic cost estimate for construction.

The shortest and most economical route derived is shown as a solid line on the Route Map, Exhibit A, in the front of the report. This route is termed the Southern Route, and passes partially through the United States. United States passage should not affect throughput expenses, since the oil would travel in bond from border to border without tankage. It is understood no United States transportation tax would be effected as long as no tankage is installed in the States.

An alternate, or Northern Route, is also shown on the Route Map which does not cross the international border. This route is approximately 115 miles longer than the Southern Route, and crosses an area of about 800 miles of solid rock terrain. This stretch is sparsely populated and would entail excessive construction and maintenance costs. Alternate costs and required tariffs are presented in Chapter II for both routes.

The profiles of the two lateral lines terminating at Bellshill Lake are shown on Exhibit 5 following this section. The Calgary Lateral traverses relatively flat farm land from its origin near Calgary to the Britamoil Junction at Milepost 73.5. The Red Deer River is crossed at Milepost 65. At this point the river valley is approximately 5 miles wide and 600 feet deep. Some heavy grading will be required at the edges of the valley.

From Britamoil Junction to Bellshill Lake at Milepost 145 the route crosses flat farm and grazing land with some light brush. Small ponds and sloughs are numerous in this area but should present no construction difficulty.

The Edmonton Lateral passes through farm and grazing land with some small sloughs and light brush from its origin to about Milepost 50. From Milepost 50 the route is relatively flat, mostly farm land with a small amount of brush. The Edmonton Lateral terminates at Bellshill Lake at Milepost 100.

Exhibit 4 shows the profile of the Main Line for the Southern Route. The Alberta portion of the Main Line traverses flat farm and grazing land with light brush and some small ponds and sloughs. The Alberta border is crossed at Milepost 76.7.

The Saskatchewan portion of the Main Line crosses farm land with occasional ponds and sloughs. The South Saskatchewan River is crossed near Milepost 215 and this crossing is considered a major underwater crossing. The route also crosses numerous small streams and creeks, none of which will present any construction difficulties. The Saskatchewan-Manitoba border is crossed at Milepost 490.

The route crosses the southwest corner of the Province of Manitoba, an area of mostly farm land with a small amount of brush. No construction difficulties are expected in crossing the small streams in this area. The Manitoba-North Dakota border is crossed at Milepost 603.5.

The North Dakota portion of the Main Line crosses flat farm land with very little tree cover and with occasional small creeks. This section ends at the Red River crossing at Milepost 709 which is the North Dakota-Minnesota border. This river crossing is not considered a major river crossing.

The Minnesota portion of the route extends from Milepost 709 to Milepost 971. The western part of this section is flat farm land, the remaining portion is swampy with numerous lakes and streams.

The Wisconsin section extends to Milepost 1071.5 and crosses an area with some farm land, some tree cover and numerous streams flowing north into Lake Superior.

The Michigan section, from Milepost 1071.5 to Milepost 1370 crosses a small amount of farm land, the remainder consisting of wooded areas with a great many lakes and swamps. Some solid rock area will be crossed in western Michigan. Lake Nicolet below Sault Ste. Marie is approximately one mile wide and 25 feet deep at the point of crossing. The International Boundary is crossed in Lake George at Milepost 1370. This crossing is approximately one-half mile wide and thirty feet deep.

The Ontario section of the route extends from Milepost 1370 to Milepost 1876. 5. Rock will be encountered throughout this section with practically solid rock terrain near and east of Sudbury. Difficult construction is expected between Lake George and Pembroke with most difficulty expected near Sudbury. From Pembroke to the Quebec border near Point Fortune the route traverses farm land with small quantities of brush and swampy areas.

The Quebec part of the route is primarily farm land. This section includes the Ottawa, Mille Iles and Prairie River Crossings. Rock excavation is expected in these river crossings.

The route terminates near the refinery area of Montreal at Milepost 1919.

C. DESIGN PREMISES

1. CLIMATIC CONDITIONS

Climatic conditions along the route affect the system in many ways--in design, construction, and maintenance. A careful analysis is particularly important for this pipeline system, since the fluid to be pumped bears a marked increase in viscosity with decreasing temperatures. Climatic conditions affect not only the hydraulic throughput of the line, but also affect the selection and preparation of equipment, and the periods of construction and maintenance.

The chart on the following page, Exhibit 6, presents climatic data for Regina as obtained from the Department of Transport. The succeeding chart, Exhibit 7, shows mean annual temperature isotherms across Canada. Exhibit 7 illustrates that the mean temperature is approximately the same $(35^{\circ} \, \text{F})$ across the traverse, with but slightly warmer conditions $(40^{\circ} \, \text{F})$ on the eastern end. A comparison of hythergraphs showing monthly precipitation and temperature for various cities along the route determines that Regina represents average weather conditions.

Regina, as shown by Exhibit 6, has an extreme range of temperatures, varying from an average daily high temperature of 79°F in July to an average daily low temperature of -11°F in January -- with recorded extremes of 107°F and -56°F.

Average temperatures are below freezing from November through March, effecting considerable handicap and additional expense for outside construction work during this period. Design must be adequate for this period to protect liquid cooled equipment, and provide sufficient heat for process and personnel requirements.

Average annual snowfall amounts to only 29 inches, which is a consideration in the design of roof loads for buildings. Total precipitation for the year averages only 15 inches, indicating a relatively dry climate and ease of pipeline maintenance. The hythergraph for Kapuskasing, Ontario, which lies near the Northern Route, shows an annual rainfall of about 28 inches but very similar temperatures to Regina.

Temperatures below ground are important in pipeline hydraulic calculations, since temperature affects viscosity which in turn affects the pressure required to effect a given flow, and the resulting horsepower required. Above ground temperatures naturally affect underground temperatures, but the extent is dependent upon not only the depth considered but also upon the cohesiveness, void ratio, and percolation rate of the soil.

			TE	MPERATU	JRE			Precipitation				
	A.		·ile.		Extremes			-		1		Total Pre-
	Ave	Average Daily			erage	Red	ord	R	Rain		Snow	
	Mean	High	Low	High	Low	High	Low	Inches	Days	Inches	Days	tation (water)
	°F.	°F.	°F.	°F.	°F.	°F.	°F.	No.	No.	No.	No.	in.
Jan	0.7	9.5	-10.9	36	-38	48	54	0.04	1	4.7	8	0.51
Feb	2.0	12.6	-8.6	37	-35	53	56	0.01	1	3.4	13	0.35
Mar	16.5	26.9	6.1	47	-22	76	-44	0.13	1	5.4	9	0.67
Apr	37.8	49.7	26.0	73	5	89	-20	0.44	5	3.0	3	0.74
May	51.0	64.8	37 · 1	85	20	99	7	1.78	8	0.6	1	1.84
June	60.2	73.2	47.2	90	32	102	23	3.24	12	0.1	1	3.25
July	64.8	78.9	50.8	93	38	107	28	2.38	11	Nil	Nil	2 · 38
Aug	62.2	76.9	47.6	92	34	104	23	1.76	9	Nil	Nil	1.76
Sept	51.4	64 . 9	38.0	85	21	99	9	1.26	6	0.6	1	1.32
Oct	39 · 4	51.8	27.0	75	8	87	-15	0.63	4	2.3	2	0.86
Nov	21.3	31.6	11.0	55	-14	73	-47	0.12	1	4.8	9	0.60
Dec	7.6	16.4	-1.3	41	-29	59	-55	0.03	1	3.9	9	0.42
Year	34 · 5	46-4	22.5	96	-42	107	-56	11.82	59	28.8	54	14 - 70
	HEAT- ING FACTOR			WIND			Thun-	BRIGHT SUN- SHINE	Frost ²	Humidity		
	Day-		Most Second Prevalent Prevalent			Average Speed				Water-	Relative	
	Degrees Below 65°F.	Direc- tion	Per- cent- age	Direc- tion	Per- cent- age	Miles per Hour	Days with	Hours of	Days with	Vapour (parts per 1,000)	24- Hour	Noon
	No.						No.	No.	No.		p.c.	p.c.
Jan	2,037	SE.	24	w.	23	12.0	Nil	108	31	1.0	89	86
Feb	1,818	SE.	26	W.	19	12.1	Nil	126	28	1.1	91	88
Mar	1,504	SE.	23	NW.	18	13 · 2	Nil	163	31	1.9	87	83
Apr	816	SE.	24	NW.	16	13.9	1	216	23	3.7	70	60
Мау	434	SE.	19	E.	19	14.0	2	252	6	5.3	60	47
June	174	E.	18	SE.	17	13.4	3	244	1	7.7	69	57
July	48	w.	18	SE.	18	11.4	5	329	Nil	9.7	68	54
Aug	92	SE.	21	W.	17	12.3	4	285	Nil	8.6	65	52
Sept	408	W.	20	SE.	19	12.6	1	205	4	6.0	69	56
Oct	794	SE.	24	W.	23	12.9	Nil	170	17	4.3	70	58
Nov	1,355	SE.	26	W.	21	13.0	Nil	98	30	2.0	88	83
Dec	1,779	SE.	27	W.	21	12 · 1	Nil	98	31	1.3	88	84
Year	11,259	SE.	22	w.	18	12.7	14	2,294	201	4.4	76	67

REGINA CLIMATIC DATA

Less than 5 days in 10 years. 2 Average date of last spring frost June 6; of first fall frost Sept. 10.

The seasonal variation of soil temperatures moderates at increasing depths, so that higher minimum temperatures are obtained in a pipeline the deeper it is buried. However, construction costs are somewhat proportional to the depth of ditch, so that an economic balance must be attained. It has been assumed that the proposed system would have 36 inches of cover in soil and 20 inches of cover in rock. Therefore, the average depth of centerline of pipe for the Main Line would be about 52 inches in soil and 36 inches in rock.

Many studies were examined of soil temperatures in areas analogous to the traverse proposed. Exhibit 8 on the following page is believed representative for the traverse. The curve shows the great temperature advantage of burying the pipe from three to four feet deep to the centerline. The advantage decreases with increasing depth.

On the basis of Exhibit 8, the minimum flowing temperature of the crude oil would be about 30° F, and a maximum of 54° F. A conservative average design temperature of 35° F was selected. Thus flow should exceed design throughput most of the year, with the possibility of slightly less than design throughput occurring during the coldest periods.

EXHIBIT 8

2. CRUDE OIL CHARACTERISTICS

Physical properties of the crude oil have a marked effect on the hydraulic design of the system. Such properties include viscosity, gravity and pour point. The pour point of all oils considered appears well below the minimum flowing temperature anticipated and thus may be disregarded in this study.

Viscosities and gravities were obtained for the oils from all fields anticipated to contribute to the throughput. Where oils were to be comingled during flow, the respective viscosities were blended appropriately to derive a representative figure. Specific gravities were averaged according to the proportion of each oil comingled. Both viscosities and gravities were converted to the design flowing temperature of 35°F. Results are as follows:

	At 35°F	
	Gravity	Viscosity
Pipeline Sections	APIO	SSU
Edmonton-Bellshill Lake	33.8	118
Calgary-Britamoil Junction	33.3	71
Britamoil Junction - Bellshill Lake	31.4	193
Bellshill Lake - Montreal	33.3	130

These values were used in hydraulic calculations.

3. DESIGN THROUGHPUT

As previously related, throughputs shown on the foregoing Throughput Development Chart represent average daily values for 365 days per year. Since some time must reasonably be reserved for shut-down time to accommodate emergency repairs and maintenance, throughput must be increased the remainder of the time to produce the average daily figures. It is assumed that the pipeline will operate 98 percent of the time, allowing about seven days per year for shut-downs. Therefore, average throughput on an annual basis has been divided by 98 percent to result in the design throughputs shown below.

	Throughput, BPD, for Pipeline Section				
			Edmonton-	*Bellshill	
	Calgary -	Britamoil Jct	Bellshill	Lake -	
Year	Britamoil Jct.	Bellshill Lake	Lake	Montreal	
1960	8,160	49,200	149,700	204,000	
1961	9, 180	54,900	168,500	228,000	
1962	10,200	60,500	187,400	253,000	
1963	14,500	66,200	206, 100	277,000	
1964	18,800	71,800	225,000	302,000	
1965	23,000	77,500	243,800	326,000	
1966	27,400	83, 100	254,900	343,000	
1967	27,600	83,900	270,800	360,000	
1968	27,900	84,800	286,700	377,000	
1969	28,200	85,600	302,600	393,000	

^{*}Includes 5, 100 BPD injected at Bellshill Lake.

formulas based on empirical data. For this study, the various C values were selected from large charts empirically derived, for purposes of accuracy. Values ranged from C = 0.0211 for a Q of 17,000 BPH and d of 29.125" to C = 0.0344 for a Q of 400 BPH and d = 10.25".

From the above formulae, the pressure loss per mile of pipeline for various throughputs and pipe diameters was plotted to aid in further calculations. The more pertinent of the resulting charts, Exhibits 9 through Exhibit 12, follow. Alternate pipe sizes were selected for each pipeline section and economically compared, with allowance for throughput growth and some flexibility between laterals. Pipe diameters of 10-3/4" OD, 16" OD, and 26" OD were selected for the laterals from Calgary, Britamoil Junction and Edmonton respectively.

Diameters of 26", 30" and 34" were initially considered for the Main Line, but the 26" size was considered comparatively uneconomical after the second year throughput of 228,000 BPD. Therefore, detailed analyses were made for 30" and 34" sizes. Any intermediate size could be rolled on special order.

FRICTION LOSS CURVE CALGARY - BRITAMOIL JUNCTION

FRICTION LOSS CURVE BRITAMOIL JCT.-BELLSHILL LAKE

FRICTION LOSS CURVE EDMONTON - BELLSHILL LAKE

FRICTION LOSS CURVES BELLSHILL LAKE - MONTREAL

2. SYSTEM DESIGN

The economic optimum diameter for a crude oil transmission line of given throughput depends on many variables -- such as line length, oil properties, traverse profile, pump station location, operating pressure, allowable pipe stress.

As a rule-of-thumb, however, the friction loss per mile is a reasonable basis for preliminary diameter selection. For a crude oil of the properties corresponding to this study, the economic optimum condition may be very generally expressed by the rule-of-thumb formula:

$$P/L = 13 - \frac{D}{4}$$

where P/L is the pressure drop in psi per mile, and D is the OD of the pipe.

Friction loss design values lower than optimum values usually produce much more economic results than values correspondingly higher. Therefore, for systems expecting throughput growth, it is desirable that friction loss values for initial years of operation be considerably below optimum values. These premises have been developed from detailed engineering and economic studies comparing alternate systems.

A rule-of-thumb for economic optimum working pressure may be expressed as

$$P = 1250 - 15D$$

where P is maximum working pressure in psi, which occurs at pump station discharge when the traverse is fairly level.

a. Pipe Specifications

For large-diameter long-distance transmission lines significant savings result by designing and operating the system at the maximum allowable working stress of the pipe. This is of course true since steel that is not used to its safe capacity represents wasted investment. On this project, each thirty-second of an inch of pipe wall thickness costs approximately \$15,000,000.

In designing this system wherein the smallest diameter selected is 10-3/4" OD, a minimum wall thickness of 0.250" is recommended. This limit is empirically established in the interests of overall economy, as lesser thicknesses are

subject to considerable damage in handling pipe and complications in welding. Hidden handling damage or weld defects may result in a costly maintenance program and loss of product due to leaks, years after installation.

Four grades of pipe are commonly used for pipelines in accordance with API Standards 5L and 5LX, for line pipe and high-test line pipe respectively. These grades are Grades B, X-42, X-46 and X-52. They vary in chemical properties and yield strength. Minimum yield strengths according to code are: Grade B, 35,000 psi; X-42, 42,000 psi; X-46, 46,000 psi; and X-52, 52,000 psi.

Thus X-52 pipe is 49 percent stronger than Grade B; and it costs only a few percent more. X-52 pipe, however, is more brittle, and more difficult to satisfactorily weld in cold weather. Where extra strength is not essential, Grade B is preferred for its ductility. This is particularly true for crossings of swift rivers in sandy soil subject to erosion and possible pipe movement.

Maximum allowable working pressures for pipe used in cross-country oil pipelines are established by the ASA Code B 31.1, Section 3. Although it is not mandatory to follow this code in the area traversed, it has been used as representing good pipeline practice. The code modifies Barlow's formula to:

$$t = \frac{PD}{2S} + C$$

where t = design thickness of the pipe wall, in inches

P = maximum working pressure, in psi

D = OD of pipe, in inches

and C = corrosion allowance, in inches

The design thickness, t, must compensate for the manufacturer's tolerance--minus 12.5 percent by API Code. For seamless or electric-resistance-welded pipe, S equals 85 percent of the minimum yield strength. Although the pipe is to be adequately protected from corrosion, a corrosion allowance of 0.05 inches is used as good practice to compensate for minor defects incurred in manufacturing, handling and occasioned by holidays (weak spots) in the protective coating. Therefore, the code formula becomes:

$$t = \frac{PD}{(.875) 2 (.85S)} + .05, \text{ or } t = \frac{PD}{2 \times .744S} + .05$$

This expression relates that the pipe may be stressed to about 74.4 percent of yield, less corrosion allowance. For pipe sizes and thicknesses considered in this study, pipe may be stressed to roughly 64 percent of yield if the corrosion allowance of 0.05 inch is deducted.

Allowable working pressures based on the code formula and a corrosion allowance of .05 inch, in the range of sizes considered, are tabulated below:

			Allowable	
Pipe OD	Grade	Wall	Working Pressure	
10-3/4"	В	0. 250''	934 psi	
16	X-46	0.250"	825	
10	X-52	0.250"	932	
26	X-52	0. 438"	1132	
		0.406"	1037	
		0.375"	945	
		0. 344"	853	
		0.312"	758	
30	X-52	0.438"	981	
		0.40611	899	
		0.375"	819	
		0.344"	740	
		0.312"	657	
34"	X-52	0.438"	866	
		0.406"	793	
		0.375"	723	
		0.344"	653	
		0.312"	580	

All pipe should be ordered double-random length, with ends beveled 30 degrees for welding.

b. Hydraulic Calculations

Pertinent features of hydraulic design have been established, such as oil gravity and viscosity, throughput, pipe wall and diameter, and friction loss. From the profiles, Exhibits 4 and 5, the distance from Calgary to Britamoil Junction is 73.5 miles; from Britamoil Junction to Bellshill Lake, 71.5 miles; from Edmonton to Bellshill Lake, 100.0 miles; and from Bellshill Lake to Montreal, 1,919 miles via the Southern Route, and 2,034 miles via the Northern Route.

The required pressure at the upstream end of each pipeline lateral was calculated by (1) multiplying friction loss per mile for the design throughput by the lateral length in miles,

(2) allowing 37 to 50 psi for terminal losses through piping, valves, equipment and tank filling, and (3) compensating for the difference in elevation between the two ends of the lateral.

The resultant pressure in feet of head may be plotted on the respective profile as a vertical distance above the elevation of the upstream end. The suction pressure converted to feet may be plotted vertically at the terminal end. The slope of the line connecting the two plotted points coincides with the friction loss per unit of distance, and is termed the hydraulic gradient.

The pressure in the pipe at any point along the traverse is equal to the vertical distance between the hydraulic gradient and the ground elevation at the respective point.

Although this axiom relates to elementary hydraulics, it is basic to the frugal design of the main line system, as will be discussed.

Considering first the laterals, the profile presents a problem only near Calgary. A high point exists 5.3 miles from Calgary along the traverse to Britamoil Junction. Gravity flow from this point to the Junction would effect a delivery of about 15,900 BPD, which flow is not required until after 1963. This high point acts as a critical point from which the hydraulic gradient must be projected back to Calgary, until the throughput requirement exceeds 15,900 BPD. At that time, the hydraulic gradient would pass above the critical point, and the terminal elevation would control the required Calgary discharge pressure.

The charts on the following pages, Exhibits 13, 14 and 15, show the discharge pressure and brake horsepower required for each lateral at the flow rates under consideration. Brake (operating) horsepower has been calculated by the formula:

$$BHP = \frac{.0000171 \times BPD \times P}{e}$$

where P = discharge pressure less suction pressure, in psi e = pump and gear efficiency

Pump and gear efficiency has been assumed as 80 percent. This figure may be slightly high for small pumps at lateral stations, but is conservative overall, since main line units will operate up to 87 percent efficiency. In most cases, installed horsepower in preliminary design is at least 10 percent greater than the required operating horsepower to prevent excessive wear and maintenance of the prime movers.

PRESSURE - FLOW - HORSEPOWER CURVES CALGARY - BRITAMOIL JCT.

EXHIBIT 13

PRESSURE-FLOW-HORSEPOWER CURVES BRITAMOIL JCT. - BELL SHILL LAKE

PRESSURE-FLOW-HORSEPOWER CURVES EDMONTON-BELLSHILL LAKE

Main Line hydraulic studies were performed similarly to those for laterals. Preliminary studies show a 26-inch system as requiring too many pump stations with resulting excessive operating costs to make for an economic system with the throughput involved. Therefore, 30-inch and 34-inch systems were pursued for both the Northern and Southern Routes.

The total pressure required from Bellshill Lake to Montreal was calculated for the BPD throughput each year. Allowance was made for elevation differential and for 50 psi suction pressure at each pump station and the Montreal manifold. This suction allowance is liberal -- part of this pressure could be used to increase flow during the extremely cold periods when marked increases in viscosity occur.

The total pressure required for tenth year (1969) throughputs was divided by an even number to obtain a reasonable station discharge pressure in accordance with the previously stated rule-of-thumb,

P = 1250 - 15D, or 800 psi for 30" pipe 740 psi for 34" pipe

The 50 psi suction pressure was added to each station discharge pressure, since only the differential affects the hydraulic gradient desired. An even number of stations is preferred so that alternate stations may be installed initially, and intermediate stations added when necessary as the throughput increases.

Eight stations were selected for the 30-inch Southern Route to be increased to 16 for 1963 throughput and beyond. Similarly, five stations were selected for the 34-inch Southern Route, increasing to 10 in 1964. The resulting station spacing could be bisected to add 10 more stations in 1970 to pump up to 550,000 BPD with a reasonably economical station spacing of about 96 miles. The 30-inch system would not be economical with 32 stations installed. It would appear more economical to loop the pipeline if and when throughput exceeded about 400,000 BPD.

The Northern Route, 115 miles longer, was treated similarly--requiring a nine-station system for the 30-inch, increased to 18 stations in 1963; and a six-station system for the 34-inch increased to 12 in 1964. Station horsepower requirements were calculated for all alternates as described for laterals.

Exhibits 16 and 17 on the following pages show the station discharge pressure and brake horsepower required for each station on the Southern Route alternates for the throughput range under consideration. Both discharge pressure and brake horsepower naturally drop as shown on the Exhibits when intermediate stations are added. Friction loss was based on 3/8" wall pipe.

Station discharge pressures required over the ten-year period were compared with the allowable working pressure of various wall thicknesses of the 30-inch and 34-inch pipe, as previously tabulated. A wall thickness of 13/32" was selected for pipe at station discharge points. This thickness has an allowable working stress by the formula presented of 899 psi and 793 psi for 30-inch and 34-inch pipe respectively.

Stations were located by using large scale profiles of one inch equals four miles horizontally, and one inch equals 400 feet vertically. Hydraulic gradients were drawn to locate stations, assuming 899 psi discharge pressure for stations on the 30-inch system, and 793 psi on the 34-inch system. A suction pressure of 50 psi was allowed at each station and Montreal. All intermediate stations were considered--resulting in a total of 16 stations (including Bellshill Lake) on the 30-inch system, and 20 stations on the 34-inch system.

As discussed, the pressure in the pipeline at any point along the traverse corresponds to the difference in the elevation of the hydraulic gradient and the ground surface at the point in question. This difference in elevation may be called D. After plotting the hydraulic gradients including all future stations, the distance D was carefully examined along the entire traverse. Wherever D converted to psi fell within the allowable working pressure of thinner pipe, the milepost of the point was noted as the start of a different wall thickness. Thus the pipe wall was "telescoped" throughout the entire traverse to provide maximum economy of pipe conducive with projected throughput conditions.

It is interesting to note that in some cases D exceeded the allowable working stress of 13/32" wall pipe due to depressions in ground elevation. Therefore, some 7/16" wall pipe was required. A minimum wall thickness of 5/16" was used for both the 30" and 34" alternates, as lesser walls in these sizes would be subject to excessive damage and defects during construction.

It is reiterated that discharge pressures of future intermediate stations were accounted for in the progressive

selection of wall thicknesses along the traverse. In many sections along the traverse D is greater before intermediate stations are considered than after. This may be easily demonstrated graphically, as the slope of the hydraulic gradient is increased for a given discharge pressure when additional stations are inserted.

A tabulation of wall thicknesses by mileposts is much too detailed for presentation in this report. However, a tabulation of pipe and wall thicknesses by Provinces and States is included in Chapter II under, Analysis of Pipe Requirements. From this tabulation it may be seen that average wall thickness is slightly less than 11/32".

From Exhibits 16 and 17 it is noted that the required discharge pressure in 1969 only, slightly exceeds the allowable working pressure of 13/32" wall pipe. The resulting stress is about 67 percent of yield strength, but heavier pipe was not considered for several reasons. (1) The required throughput is theoretical and may be closely approached with the allowable pressure. (2) A design wall thickness of 3/8" was used while the average actual wall thickness would be less than 11/32", allowing slightly increased flow. (3) The design suction pressure of 50 psi is liberal, and may be partially used to increase flow. (4) The design temperature of 35°F is well below the average flowing temperature anticipated.

PRESSURE-FLOW-HORSEPOWER CURVES BELLSHILL LAKE-MONTREAL

PRESSURE-FLOW-HORSEPOWER CURVES BELLSHILL LAKE-MONTREAL

E. DESCRIPTION OF PROPOSED FACILITIES

1. PIPELINE

The schematic diagram of the pipeline system, Exhibit 2, shows relative locations of all parts of the pipeline system. The table below shows pipe sizes and lengths for the system.

Pipe Sizes and Lengths

Section	Pipe Size OD, Inches	Pipe Length Miles
Calgary to Britamoil Junction	10-3/4	73.5
Britamoil Junction to Bellshill Lake	16	71.5
Edmonton to Bellshill Lake	26	100
Bellshill Lake to Montreal South Route	30 (Alternate)	1, 919
	34 (Alternate)	1,919
North Route	30 (Alternate)	2,034
	34 (Alternate)	2,034

The entire pipeline will be coated and wrapped for corrosion protection, and buried to a depth that will allow a minimum of 36 inches of cover in soil, and 20 inches in rock. The coating will consist of a 3/32-inch minimum thickness coat of coal-tar-base enamel preceded by a primer. The pipe will then be wrapped with 15 lb. glass reinforcing wrap, followed by an outer wrap of asbestos felt. Both wraps are recommended for maximum protection of the enamel from damage due to extreme temperature, soil stress, and construction maintenance operation. The Construction Specifications, Volume II, present coating and wrapping procedures. In the event that other materials than specified show economic advantage without sacrificing quality, they may be substituted during final design.

Gate valves will be spaced along the pipeline at approximately 25 mile intervals to serve as safety cutoffs for isolation of sections of the pipeline for repairs of line breaks, maintenance and other contingencies. These gate valves are through-conduit type to allow passage of internal scrapers. For ready accessibility, each gate valve will be located adjacent to a highway. The above ground portion of

each gate valve will be protected by a steel box type shelter with hinged doors for access to the valve operator. Exhibit L shows a typical gate valve installation.

Casings will be installed at all points where the pipeline crosses Provincial or State Highways and railroads. Typical highway and railroad crossing details are shown on Exhibits B and C. The pipeline will be buried under all river and creek crossings as shown on Exhibit D.

The pipeline route will be marked by aerial route markers and ground markers to assist in patrolling the line and to provide reference points by which crews can be directed to pipe breaks or washouts. The pipeline will also be marked at all highway and railroad crossings. Markers are shown on Exhibits F and G.

Additional protection of the pipeline will be provided by the installation of electrolysis test stations as shown on Exhibit E. The tests at these stations will indicate the need for any corrosion protection. Corrosion protection, when needed, would probably consist of buried magnesium anodes. The outer flanges at each station will be insulated to prevent corrosive electrolytic currents.

The Construction Exhibits referred to above and other Construction Exhibits are included as Article 4 of this Section.

2. TANKAGE

a. General

Storage tank installations are planned at four stations. These are Calgary, Britamoil Junction, Edmonton and Bellshill Lake Stations. The tank sizes and capacities for each station are shown in the table below.

Initial Tankage

Location	Number Required	Capacity, Each	Size
Calgary	1	50,000 bbl.	86' dia. x 48'
Britamoil Jct.	1	30,000 bbl.	67' dia. x 48'
Edmonton	8	100,000 bbl.	134' dia. x 40'
Bellshill Lake	4	150,000 bbl.	150' dia. x 48'
	2	96,000 bbl.	120' dia. x 48'
	2	42,500 bbl.	80' dia. x 48'

Tankage to be installed in 1965

Location	Number Required	Capacity, Each	Size
Edmonton	3	100,000 bbl.	134' dia. x 40'
Bellshill Lake	2	150,000 bbl.	150' dia. x 48'
	1	96,000 bbl.	120' dia. x 48'
	1	42,500 bbl.	80' dia. x 48'

All storage tanks will be designed and constructed in accordance with the API Code. Standard storage tank appurtenances will be provided, including ground reading level gauges. Further study should be made to determine the need for tank bottom corrosion protection, tank agitators, tank heaters, remote reading tank level gauges and special exterior paint. Information available at this time indicates that these items will not be needed.

Each tank will be placed on a crowned pad of well compacted fill topped by a layer of oiled sand or asphalt, and will be located in a separate, well drained, firewall enclosure.

b. Storage Tank Capacity Selection Procedure

Calgary Station

The single 50,000 barrel storage tank to be installed at Calgary will be used in conjunction with two existing storage tanks. The 50,000 barrel size was selected as adequate added storage capacity to increase the total tankage to a volume that will allow continuance of existing deliveries to local refineries, and also provide a continuous crude stream for the Calgary Lateral to Britamoil Junction at the design flow rates.

Britamoil Junction Station

The continuous incoming crude streams from Calgary and from the Britamoil line will be comingled in the single 30,000 bbl. storage tank. Station suction will be taken from the same storage tank. The 30,000 bbl. size was judged as adequate to handle this floating operation, allowing for fluctuations in the flow rates of either the incoming streams or the outgoing stream.

Edmonton

The selection of storage tank capacity at Edmonton is dependent on the scheduling procedure for the system. Three crude streams will each continuously enter the station into tankage. These are the Redwater, Pembina and Alberta Light crudes. The crudes will not be comingled and will require separate tankage. The crudes will be alternately batched from tankage through the line to the Bellshill Lake Station. The tankage must provide ample separate space for each of the three incoming streams, and allow adequate tank volume for crude build up to accommodate the outgoing stream. These two factors were carefully studied in order to reduce the investment cost in tankage to a minimum.

Exhibits 18 and 19 on the following pages show graphically the incoming volumes, the outgoing volumes and the resulting net storage space required to handle the streams at the station. The charts are based on an assumed four day cycle. Each of the three incoming streams will enter the station continuously during the four day cycle. A tender of each crude will be shipped out of the station to Bellshill Lake once during the cycle. The size of the tender will be dependent on the relative incoming rate for the particular crude. For example, the Pembina crude will have the largest incoming volume and as a result the outgoing tender will be the largest.

B-PEMBINA CRUDE

C-REDWATER CRUDE

D-ALBERTA LIGHT CRUDE

TANK SCHEDULING CHART EDMONTON (1969) EXHIBIT 19

Referring to Exhibit 18: crude B (Pembina) is assumed as the first outgoing tender during the cycle, going out of tankage at a rate of 290, 400 bbls. per 1.58 day period; crude B is also entering tankage at the rate of 290, 400 bbls. per four day period; after 1.58 days of crude B shipment, the stream is switched to crude C (Redwater); during the remainder of the cycle crude B is incoming only and will fill the tanks in preparation for the next shipment; as shown on Exhibit 18 the required minimum tankage for crude B is the net difference in outgoing and incoming volumes at the end of the 1.58 day shipping period, which is 173,000 bbls. Tankage for crude C is analyzed in a similar manner: crude C enters tankage continuously during the four day cycle at the rate of 275,600 bbls. per four days; after 1.58 days have elapsed shipment of crude C begins, at which time 110,000 bbls. have entered the tanks; crude C is shipped at the rate of 275,600 bbls. per 1.50 days after which the outgoing stream is switched to crude D (Alberta Light); as shown on Exhibit 18 the required minimum tankage for crude C is the volume of incoming crude C accumulated at the time shipment began (110,000 bbls.) plus the net difference in volumes of outgoing and incoming crude at the time shipment of crude C ended (62,000 bbls.), making a total of 172,000 bbls, of required storage capacity; after shipment of crude C ends the incoming stream will replenish the tankage. Crude D tankage is evaluated in a similar manner to arrive at a minimum tankage of 130,000 bbls.

The initial tankage requirements are based on Exhibit 18. The volumes shown on Exhibit 18 are those predicated for 1962. However, the tankage selected will be adequate until 1965. In 1965 added tankage will be installed based on Exhibit 19 which shows volumes predicted for 1969. A summary of the theoretical minimum required tankage and the actual tankage selected is presented below.

Total Edmonton Tankage Capacity (Thousands of Barrels)

	Theoretical					
		Minimum			Installed	
	Crude	1962	1965	1969	1960	1965
В	Pembina	173	221	285	300	400
С	Redwater	172	219	280	300	400
D	Alberta Light	130	166	210	200	300

The installed tankage has been selected to include approximately 50 percent greater volumes than the theoretical minimum volumes to allow for some flexibility in scheduling and to allow for possible variations in incoming and outgoing flow rates.

Bellshill Lake Station

The Bellshill Lake Station has a very similar scheduling situation to that described above for the Edmonton Station. The three crudes from Edmonton will arrive in separate tenders, and will be directed to separate tankage. A fourth set of tanks is required in which the two incoming streams from Britamoil Junction and Bellshill Lake Field will be comingled. These two streams will arrive continuously during the entire four day cycle. The four crudes will each be tendered to Montreal once during the assumed four day cycle.

Exhibits 20 and 21 are charts similar to those described above which show the analysis for determining the theoretical minimum required tankage for each crude. The table below is a summary of theoretical minimum versus installed tankage.

Bellshill Lake Tankage Capacities (Thousands of Barrels)

			eoretica inimum	.1	Insta	.lled
	Crude	1962	1965	1969	1960	1965
A	Britamoil and Bellshill Lake	191	247	273	300	450
В	Pembina	187	243	270	300	450
С	Redwater	116	150	160	192	288
D	Alberta Light	40	60	70	85	127.5

Here, as at Edmonton, the installed tankage will be approximately 50 percent greater than the theoretical minimum, in order to provide continuous, flexible operation.

A - CALGARY & BELLSHILL LAKE CRUDE

B - PEMBINA CRUDE

C-REDWATER CRUDE

D-ALBERTA LIGHT CRUDE

TANK SCHEDULING CHART BELLSHILL LAKE (1969) EXHIBIT 21

3. STATIONS AND TERMINAL

a. General

As shown on the Route Map, Exhibit 1, all alternate systems will include pumping stations at Calgary, Britamoil Junction, Edmonton and Bellshill Lake with a terminal at Montreal. The number of intermediate Main Line stations will vary with Main Line size and route. The table below shows the number of intermediate Main Line stations for each alternate.

Number of Intermediate Main Line Pumping Stations

	30" I	Line	34" Line		
Year Installed	Southern Route	Northern Route	Southern Route	Northern Route	
1960	7	8	4	5	
1963	15	17			
1964		an en	9	11	

All stations will be similar in many respects. The facilities that are typical for all stations will be described in the paragraphs below. The particular arrangement of each station will be described in subsequent paragraphs. Exhibits 23 through 30 show schematic arrangements for each station, indicating the main facilities to be installed.

Office Building (Refer to Exhibits 29 and 30)

An office building will be erected at each station and at the terminal, which will include: main office and control area; garage, storage and workshop area; locker room; switchgear and motor control center room; and boiler room. The building will be of double wall construction with concrete block on the inside and face brick on the exterior. The floor will be concrete slab, covered with composition tile, and the ceiling will include acoustical tile and insulation.

The office and control area will include space for the control console, control and recording instruments, communications equipment and office furniture. The garage will include space for storage, and provisions for repair work on instruments and equipment. The switchgear room will house the switchgear, motor control centers and relay cabinets.

The locker room will include lockers, water closet, wash basin and shower facilities for the personnel attached to the station. The boiler room will include a boiler for office building heating, instrument air compressor, air tank, air dehydrator, water pump, water softener, water system pressure tank and hot water heater. Steam heat will be provided throughout the building. Ample building lighting and electrical outlets will be provided.

Pump House (Refer to Exhibit 30)

A separate pump house will be erected at all stations except at Calgary and at the Montreal terminal. The pump house, which primarily houses the main pump units, will be of all metal construction and fully insulated. The floor will be concrete slab, surfaced with Masterplate. All pump houses containing diesel engine units will require a concrete block firewall between pumps and engines.

The pump house will also house the diesel-electric generator units for station power in cases where local power is not available. Other equipment located in the pump house will include the air compressor and air storage tanks for engine starting air, fuel oil day tanks, centrifuges and an explosive gas mixture warning system for the pump area. An interconnecting passageway will join pump house and office building for use during inclement weather.

Main Pump Units

Diesel engines with centrifugal pumps connected through a speed increaser have been tentatively selected as the main pumping units for all stations, as it is assumed that low cost electric power will not be available at the majority of the locations. Further detailed investigation may show that electric motor driven units will be feasible at some locations. The engines preliminarily selected are dual-fuel engines able to use diesel fuel, natural gas and some grades of crude oil. The use of crude oil will reduce the fuel cost. However, the use of some crudes may result in added maintenance cost offsetting the savings in fuel.

As shown on the exhibits, all main pump units are connected in series. Detailed investigation may indicate that the future units should be added in parallel to the

initial units. It may also prove feasible to add the future units to the downstream side of the initial units instead of to the upstream side as shown on the exhibits. Considerable detailed study must be made before final pump unit selection.

Station Piping

All station piping, fittings and valves at the pump manifolds and downstream of the pump units will be designed for ASA 600 lb. pressure rating. Tank piping, tank manifold piping, strainer piping and other piping upstream of the main pumps will be designed for ASA 150 lb. pressure rating where possible. The above ground pipe will be painted. The buried pipe will be coated and wrapped.

Ample supports and anchors for above ground piping will be installed. Platforms and catwalks for access to valves will be provided. Dual basket type strainers are included in the station manifold line upstream of the main pumps. Each strainer will handle full flow and will be operated alternately, allowing cleaning during the off cycle.

Scraper Traps

Scraper traps will be installed at each station to permit cleaning the main line by pigging. Each scraper trap will include a quick disconnect cover for fast pig removal and a bypass line to be used when launching or receiving the pig.

Meters

Meters will be installed at Calgary, Britamoil Junction, Bellshill Lake and Montreal. The sheltered metering installations will include P.D. type meters, strainers, prover tank, sump and pump to service prover tank and sump. The meters will be equipped with counters and ticket printers. Equipment supports and access platforms will be installed.

Electrical

It is assumed that local electrical power for miscellaneous station needs will be available at Calgary, Britamoil Junction, Edmonton, Bellshill Lake and Montreal. It is also assumed that local power will not be

available at the intermediate stations. The intermediate stations will each require the installation of one 60 KW diesel-electric generator set and one 40 KW set as a standby.

These units will supply electric power for miscellaneous station needs including building lighting, communications, controls, small motors, shop equipment and personnel quarters. Switch-gear for the generators will be located in the office building. Yard lights will be provided at all operating areas. All facilities will be grounded.

Instrumentation and Controls

A summary of the instrumentation and controls is presented below. This applies to all stations unless otherwise noted. The center of the control system will be the control console located in the office.

- (a) The control console will include the following:
 - (1) Schematic of station with switches and operation indication lights for booster pump and motor operated valves (no booster pump at intermediate stations). Operation indication lights only for main pump units and radiator operation.
 - (2) Automatic controllers and recorders for station discharge pressure, station suction pressure, and station flow. Recorders actuated by changes in air pressure from pressure cells located on manifold.
 - (3) Warning by lights and by buzzer and horn of:

High station discharge pressure
Low station suction pressure
Station flow not within desired range
High engine speed
High pump bearing temperature
High pump case temperature
Pump seal failure
High sump level
Instrument air failure

(4) Emergency shutdown switch for pump units.

(5) Automatic pump unit shutdown in event of:

High station discharge pressure
Low station suction pressure
High engine speed
High engine jacket water temperature
Low engine lube oil pressure
High pump bearing temperature
High pump case temperature
Pump seal failure

- (6) Automatic equipment for engine control during warm up period.
- (b) The engines will be started at the instrument panel mounted on their respective engine unit. The engine instrument panels will also include the following:
 - (1) Visual indication of:

Engine speed
Engine jacket water temperature
Engine jacket water pressure
Engine lube oil temperature
Engine lube oil pressure
Engine fuel oil pressure
Engine exhaust temperature

(2) Warning by lights and by buzzer or horn of:

High engine jacket water temperature Low engine lube oil pressure

- (c) Other controls and instrumentation provided in the station include:
 - (1) Recording thermometer for outgoing crude.
 - (2) Direct reading pressure gauges at manifold, strainers, booster pump, scraper trap.
 - (3) Station shutdown switch outside building.
 - (4) Mercoid switches for shutdown for pump bearing temperature and pump case temperature will be located on small rack immediately adjacent to each pump.
 - (5) Outgoing gravity measurement.

Communications

It is assumed that all voice and teletype communications will be by leased wire.

Fuel System

A 1,000 bbl. fuel tank will be provided at each station (except Calgary and Montreal) to store either diesel oil or crude oil for engine fuel. It is assumed the crudes transported will prove satisfactory for engine use. The crude may be taken from the Main Line into the fuel tank. The tank will be a cone roof type, enclosed by a firewall and will be equipped with steam coils to heat the fuel. Piping will be provided from the fuel tank to a 30 bbl. fuel day tank in the pump house.

Centrifuges will be required to purify the crude oil when used as fuel. The crude will pass through the centrifuge before entering the day tanks. As crude oil may be used as fuel, it is advisable to install a separate 30 bbl. diesel fuel day tank for emergency use and to use when running down the engines in order to maintain clean nozzles.

Drain System

Each station will require an oil drain system to receive crude oil drainage from station piping and equipment. This will include a sump tank with lines from scraper traps, pumps and manifold piping. A rotary vane type pump will be installed to pump out the sump tank to the suction side of the station.

The large metering installations will have separate sump tanks and pumps. The sump tanks will be equipped with a three position control switch which will automatically start the sump pump when the sump is full, and will stop the sump pump when a low level is reached. The third and highest position will cause an alarm when the sump is near overflow.

Water System

It is assumed that water will be available at all locations from wells or streams. A water pump, pressure tank and water softener will be installed for station needs. The engines will be water cooled which requires the installation of fan cooled radiator units for each engine. Precautions will be taken to prevent

freezing of the water lines.

Sewage System

The sewage system at each station will include a septic tank with an adequate drain field.

Fire Fighting Equipment

Portable, foam type, fire fighting equipment will be installed in the office building, pump house and will be strategically located in the operating areas.

Yard Improvements

All station sites will be graded to assure proper drainage and good appearance. Sidewalks will be provided between work areas, and needed area roads will be built. Station areas will be fenced.

Staff Housing

It is assumed that staff housing will be required at all stations with the exception of Calgary, Edmonton, Montreal, and two other stations. Adequate housing was estimated to consist of four houses and a dormitory.

b. Calgary Station (Refer to Exhibit 23)

The initial installation at the Calgary Station will include a 50,000 bbl. storage tank, 20 HP electric drive booster pump, sheltered metering area with two three-inch meters, office building and outgoing scraper trap.

The new storage tank will be manifolded with the two existing storage tanks to receive crude from the field and provide crude to the pipeline. Initially the 20 HP booster pump will furnish enough total pumping capacity for the station. The crude will be metered, as tank gauging does not appear to be feasible for custody transfer since crude from the tankage will be delivered to local refineries simultaneously with deliveries to the pipeline.

Future expansion will include a pump house and a 150 HP centrifugal pump unit in 1963. A second 150 HP pumping unit and a third three-inch meter will be added in 1965.

c. Britamoil Junction Station (Refer to Exhibit 24)

Initially at Britamoil Junction the facilities will include an incoming scraper trap, sheltered metering installations for each of the incoming streams, a 30,000 bbl. storage tank, 75 HP booster pump, two 600 HP engine driven centrifugal pump units, office building, pump house and outgoing scraper trap.

The metering installation will include three six-inch meters for the incoming stream from the Britamoil line, and two three-inch meters for the incoming line from Calgary. Both streams will be comingled in the storage tank and drawn out as one main stream to Bellshill Lake. The tank will be floating on the line and gauging will not be feasible for custody transfer. The 75 HP booster pump will supply 50 psi suction pressure to the main pumps.

Future additions will include a 25 HP booster pump in 1963, a third 600 HP main pump unit in 1964, and a third three-inch meter in 1965.

d. Edmonton Station (Refer to Exhibit 25)

The Edmonton Station will initially include eight 100,000 bbl. storage tanks, three 75 HP tank booster pumps, one 250 HP main booster pump, dual strainers, two 1,000 HP engine driven centrifugal pump units, pump house, office building and outgoing scraper trap.

The three incoming streams will be handled in separate tankage. Each crude in its turn will be tendered from tankage through the Main Line to Bellshill Lake. The tank valves, tank manifold valves and pump manifold valves will all be motor operated and controlled from the office to enable quick and convenient tank switching and pump startup.

Future expansion will include: the addition of a 100 HP main booster pump and a 2,000 HP main pump unit in 1962; a pump house extension, one 2,000 HP main pump unit and three 100,000 bbl. storage tanks in 1965; and a 2,000 HP pump unit in 1967. Metering of the incoming stream may be desirable in the future. Initially the storage tanks will be gauged for custody transfer. Consideration should be given to the need for sampling and BS and W monitoring facilities.

e. Bellshill Lake Station (Refer to Exhibit 26)

The Bellshill Lake Station will include incoming scraper traps for the lines from Britamoil Junction and Edmonton, sheltered metering areas for each of three incoming lines, four 150,000 bbl. storage tanks, two 96,000 bbl. tanks, two 42,500 bbl. tanks, four 100 HP tank booster pumps, one 250 HP main booster pump, dual strainers, office building, pump house, two 2,000 HP engine driven centrifugal pump units and an outgoing scraper trap.

The three incoming streams will be from Edmonton, Britamoil Junction and Bellshill Lake Field. The Edmonton stream will include three batched crudes. The streams from Britamoil Junction and Bellshill Lake Field will be comingled at the station. This means that four crudes must be handled separately in the station. The Edmonton stream will be metered with four 10-inch meters, the Britamoil Junction stream with three 6-inch meters and the Bellshill Lake Field stream with two 3-inch meters.

Each crude will be directed to a separate group of tanks through an incoming manifold. The four crudes will be alternately tendered out of tankage in cycles through the outgoing manifold into the Main Line to Montreal. The tank valves, incoming manifold valves, outgoing manifold valves and the pump manifold valves will all be motor operated with control from the office.

Future expansion will require: one 100 HP booster pump in 1963; two 100,000 bbl. tanks, one 96,000 bbl. tank, one 42,500 bbl. tank and one 2,000 HP main pump unit (30-inch line only) in 1965; one 2,000 HP pump unit (34-inch line only) in 1966; and one 2,000 HP pump unit and pump building extension in 1968 (30-inch line only).

f. Typical Intermediate Station (Refer to Exhibit 27)

The initially installed facilities will include incoming scraper trap, dual strainers, two 2,000 HP engine driven main pump units, pump building, office building, outgoing scraper trap and personnel housing. A bypass line will be provided to allow bypass of a shutdown station. Pump manifold valves will be motor operated with control from the office.

Future added facilities will include: one 2,000 HP pump unit in 1965 (30-inch line only); one 2,000 HP pump

unit in 1966 (34-inch line only); one 2,000 HP pump unit in 1968 (30-inch line only).

g. Montreal Terminal (Refer to Exhibit 28)

The Montreal terminal will include an incoming scraper trap, sheltered metering installation with four 10-inch meters, office building and a delivery header. Deliveries will be made to refineries in the Montreal area. The valves on the delivery manifold will be motor operated and controlled from the office. Pipeline ownership will include the delivery manifold valves. Future additions will include one 10-inch meter in 1963 and one 10-inch meter in 1965.

BRITAMOIL JCT. STATION

SCHEMATIC DIAGRAM

EXHIBIT 24

A-1000 HP Dual-Fuel Engine With Centrifugal Pump
B-Future(1962) 2000 HP Dual-Fuel Engine With Centrifugal Pump
C-250 HP Booster Pump, Electric Drive
D-Storage Tanks - Pembina Crude; 100,000 Bbl; 134' x 40'
E-Storage Tanks - Alberta Light Crude; 100,000 Bbl; 134' x 40'
F-Storage Tanks - Redwater Crude; 100,000 Bbl; 134' x 40'
G-Dual Strainers
H-Fuel Tank
I-Future Metering Area

J - Future Sampling And Testing Building K - Future (1962) 100 HP Booster Pump L - Future (1965) 2000 HP Pump Unit M - Future (1967) 2000 HP Pump Unit N - 75 HP Booster Pump, Electric Drive SCHEMATIC LAYOUT

EXHIBIT 25

OFFICE BUILDING PLAN

MAIN LINE STATION BUILDING PERSPECTIVE

EXHIBIT 30

4. CONSTRUCTION EXHIBITS

Exhibits A through N on the following pages show proposed Main Line construction details. The titles of these exhibits are listed below. These exhibits are also presented in Volume II.

List of Construction Exhibits

No.	Title
A.	Minimum Ditch Requirements
В.	Specifications for Railroad Crossings
C.	Specifications for Highway Crossings
D.	Specifications for River Crossings
E.	Specifications for Electrolysis Test Stations
F.	Specifications for Aerial Markers
G.	Highway and Railroad Pipeline Markers
H.	Schedule of Main Line Gate Valves
I.	Specifications for Anchor Rods
J.	Specifications for Tile Repair
K.	Casing End Closure "Z" Gasket Installation
L.	Main Line Gate Valve Installation
M.	Details of Gate Installations
N.	Specifications for Insulating Flanges

4" LOOSE EARTH PADDING REQUIRED IN BOTTOM OF DITCH FOR ROCK EXCAVATION WHERE NECESSARY.

PIPE DIA.	MIN.DIM. "A" IN EARTH	MIN DIM. "A" IN ROCK	MIN.DIM. "B" EARTH OR ROCK
16 "	36"	20"	26
18"	36"	20	28
20"	36"	20"	30′
26"	36″	20″	36
30"	36″	20″	40
34"	36″	20~	44"

DUTTON - WILLIAMS BROTHERS LIMITED ENGINEERS - CONSTRUCTORS CALGARY, ALBERTA	MINIMUM DITCH REQUIREMENTS
DRAWN ROGERS DATE 2-1-58 TRACED SCALE NONE	CHECKED C.B.D. APPROVED C. J. F. EXHIBIT A

GENERAL NOTES

- I. SEAL CASING BUSHING, WILLIAMSON TYPE Z, EACH END.
- 2. PIPELINE SHALL NOT BE CONSTRUCTED UNDER RAILROAD RIGHT OF WAY AND TRACKS NEARER THAN SIX (6) FEET ON A LINE PERPENDICULARLY DISTANT FROM ANY RAIL JOINT IN SAID TRACK.
- 3. CASING PIPE SHALL BE PLACED UNDER ROADBED AND TRACKS BY THE JACKING OR BORING METHOD IN ALL CROSSINGS UNDER THIS PARTICULAR SPECIFICATION UNLESS INSTRUCTIONS TO THE CONTRARY ARE ISSUED BY THE COMPANY. THE TRENCH ON EACH SIDE OF THE TRACK SHALL BE PROMPTLY REFILLED IN A PROPER AND WORKMANLIKE MANNER. SO AS TO LEAVE NO HOLES OR OBSTRUCTIONS THEREIN AND SO AS TO FURNISH AND PROVIDE PROPER DRAINAGE.
- 4. WHERE, IN THE OPINION OF THE RAILROAD COMPANY'S CHIEF ENGINEER, DRAINAGE DITCHES OR OTHER CONDITIONS REQUIRE THE PIPE AND CASING TO BE BURIED TO A GREATER DEPTH, PIPE SHALL BE SO INSTALLED.
- 5. NO PIPE SHALL BE PLACED ON, UNDER, OR WITHIN 25 FEET OF, ANY BRIDGE, CULVERT, OR STRUCTURE, WITHOUT SPECIAL AUTHORITY OF RAILROAD COMPANY'S CHIEF ENGINEER.
- 6. CASING PIPE SHALL BE 3 WALL WITH AN OUTSIDE DIAMETER 4 GREATER THAN THAT OF THE MAIN LINE PIPE.
- 7. IN ALL CASES THE SPECIFICATIONS OF THE OF THE RAILROAD COMPANY WHOSE FACILITIES ARE BEING CROSSED SHALL GOVERN.

ENGINEERS	MS BROTHERS LIMITED — CONSTRUCTORS GARY, ALBERTA	SPECIFICATIONS FOR RAILROAD CROSSINGS	
DRAWN ROGERS	DATE 2-1-58	CHECKED C.B.D. EXHIBIT B	
TRACED	SCALE NONE	APPROVED C. J. F.	

- I. SEAL CASING BUSHING, WILLIAMSON TYPE Z, EACH END.
- 2. BORING SHALL BE DONE BY AN APPROVED METHOD AND THE CASING SHALL BE ADVANCED AT A RATE APPROXIMATELY EQUAL TO THE RATE OF BORING. WHERE BORING IS NOT PRACTICAL, DUE TO ROCK STRATA OR OTHER OBSTRUCTIONS, THE CHIEF ENGINEER OF THE DEPARTMENT OF HIGHWAYS SHALL FIRST APPROVE ALL PLANS FOR CONSTRUCTION BY "OPEN CUT," "TUNNELING", OR OTHER METHODS.
- 3. IN REFILLING THE TRENCH EXCAVATED FOR THE PIPELINE, ADJACENT TO HARD SURFACED ROADS OR HIGHWAYS AND ACROSS ROADS WHERE TRENCHING IS PERMITTED, THE TRENCH SHALL BE PROMPTLY BACKFILLED IN A PROPER AND WORKMANLIKE MANNER SO AS TO LEAVE NO HOLES OR OBSTRUCTIONS THEREIN AND SO AS TO FURNISH AND PROVIDE PROPER DRAINAGE.
- 4. CASING PIPE SHALL BE $\frac{3}{8}$ WALL WITH AN OUTSIDE DIAMETER 4" GREATER THAN THAT OF THE MAIN LINE PIPE.
- 5. LOCATE VENT ACCORDING TO HIGHWAY DEPT. INSTRUCTIONS.

DUTTON - WILLIAMS BROTHERS LIMIT ENGINEERS - CONSTRUCTORS CALGARY, ALBERTA		SPECIFICATIONS FOR HIGHWAY CROSSINGS	
DRAWN ROGERS DATE 2-1-58	CHECKED C. B. D.	UDIT C	
TRACED SCALE NONE	APPROVED C. J. F.	EXHIBIT C	

PIPE TO BE LAID TO EXTRA DEPTH AT THESE LOCATIONS TO PREVENT EXCESSIVE BENDING. RIVER PIPE TO BE LEVEL UNDER RIVER CHANNEL EXCEPT IN ROCK FORMATIONS WHERE PIPE MAY BE LAID A MINIMUM OF 3' BELOW RIVER BED. _: ان NOTES:

ENGINEERS -	BROTHERS LIMITED	SPECIFICATIONS FOR RIVER CROSSINGS			
DRAWN ROGERS	DATE 2-1-58	CHECKED C.B.D.	EXHIBIT D		

GENERAL NOTES

- I. STD. WT. 2" PIPE BURIED 2' IN GROUND AND 2' ABOVE GROUND. WIRES TIED TO SERVICE ENGINEERS INC. 2 SIZE PLASTIC TERMINAL BOARD AND PIPE CAPPED WITH 2" SIZE SERVICE ENGINEERS INC. ELECTROLYSIS CHECK POINT ALUMINUM CAP WITH CHAIN SPOT WELDED OR BRAZED TO THE 2" PIPE 8" BELOW TOP OF PIPE.
- 2. WIRES TO BE SOLID TW COVERED 12 COPPER WIRE FURNISHED BY THE COMPANY.
- 3. WIRES TO BE WELDED TO PIPE BY THE CADWELD PROCESS AND INSULATED WITH ENAMEL AND ASBESTOS FELT PAPER OR ADHESIVE TAPE. MATERIAL TO BE FURNISHED BY THE COMPANY.
- 4. LAY WIRES IN TRENCH BESIDE PIPE, NOT UNDER OR OVER PIPE.

DUTTON - WILLIAMS BROTHERS LIMITED ENGINEERS - CONSTRUCTORS CALGARY, ALBERTA	SPECIFICATIONS FOR ELECTROLYSIS TEST STATIONS		
DRAWN ROGERS DATE 2-1-58 TRACED SCALE NONE	CHECKED C. B. D. APPROVED C. J. F. EXHIBIT E		

MARKER TO BE MOUNTED ON 4" PIPE.
WEDGE USED TO ATTACH TOP MEMBER.
BOLT USED TO ATTACH BOTTOM MEMBER.
ALL FRAME TO BE I'X I'X 3" ANGLE.

BACKGROUND COLOR TO BE BRIGHT ORANGE OR CHROME YELLOW. ALL NUMERALS TO BE DEAD BLACK.

ATTACH NUMERALS TO ARMS WITH $\frac{1}{8}$ " ϕ BOLTS.

NUMERAL PLATES TO HAVE PORCELAIN FINISH. ALL OTHER METAL TO HAVE PROTECTIVE ALUMINUM COATING.

ENGINEERS -	BROTHERS LIMITED CONSTRUCTORS	SPECIFICATIONS FOR AERIAL MARKERS		
DRAWN ROGERS	DATE 2-1-58	CHECKED C. B. D.	EXHIBIT F	
TRACED	SCALE NONE	APPROVED C. J. F.	CARIBIT	

DUTTON - WILLIAMS BROTHERS LIMITED ENGINEERS - CONSTRUCTORS CALGARY, ALBERTA	HIGHWAY AND RAILROAD PIPELINE MARKERS			
DRAWN ROGERS DATE 2-1-58 TRACED SCALE NONE	CHECKED C.B.D. EXHIBIT G			

EXHIBIT H

SCHEDULE OF MAIN LINE GATE VALVES

Location - Milepost Measured from Edmonton

124.3	745.0	1380.0
150.2	766.8	1424.0
176.7	810.0	1440.0
193.9	834.0	1489.6
241.2	878.0	1508.6
267.5	900.0	1549.4
293.7	923.0	1569. 2
329.0	964.0	1589.3
370.5	984.0	1609.2
391.0	1003.8	1652.0
411.6	1024.5	1675.0
452.5	1068. 2	1699.6
471.3	1091.9	1721.7
490.0	1112.3	1770.5
511.7	1137.5	1794.8
553.2	1180.5	1839.4
577.7	1203.0	1862.4
600.2	1223.9	1909.5
638.5	1267.3	1931. 2
661.0	1290.0	1954.0
684.0	1310.4	1998.8
727.8	1355.5	

TOTAL 65 Gate Valves, Main Line

Calgary La	teral	
(MP measured fr	om Calgary)	Edmonton Lateral (26" O.D. Pipe)
for 10 3/4" O. D. Pipe	for 16" O. D. Pipe	(MP measured from Edmonton)
14.5	93.2	21.2
31.4	. 114.8	41.9
43.0		65.5
59.5		82.3

NOTE: LOCATION AND SPACING TO BE DETERMINED BY FIELD ENGINEER.

TO BE INSTALLED IN AREAS SUBJECT TO POSSIBLE INUNDATION PRIOR TO CONSOLIDATION OF THE BACKFILL.

DUTTON - WILLIAMS BROTHERS LIMIT ENGINEERS CONSTRUCTORS CALGARY, ALBERTA	SPECIFICATIONS FOR ANCHOR RODS
DRAWN ROGERS DATE 2-1-58	CHECKED C.B.D. EXHIBIT I
TRACED SCALE NONE	APPROVED C. J. F.

ENGINEERS -	BROTHERS LIMITED CONSTRUCTORS Y, ALBERTA	SPECIFICATIONS FOR TILE REPAIR		
DRAWN ROGERS	DATE 2-1-58	CHECKED	C. B.D.	EXHIBIT J
TRACED	SCALE NONE	APPROVED	C. J. F.	2

OFFSET METHOD TO BE USED AT CUTS

GATE INSTALLATION

NOTE: REBUILD FENCES TO ORIGINAL POST SPACING REMOVING ALL BRACES AND TIES.

DUTTON - WILLIAMS BROTHE ENGINEERS — CONSTRUCT CALGARY, ALBERTA		DETAILS OF GATE INSTALLATIONS			
DRAWN ROGERS DATE TRACED SCALE	2 -1-58 NONE	CHECKED	C. B. D. C. J. F.	EXHIBIT M	

CHAPTER II

ECONOMIC STUDIES

A. ESTIMATED INVESTMENT REQUIREMENTS

1. SUMMARY

Capital requirements are summarized on the following page, and presented in detail on succeeding pages. Investment costs were derived from an analysis of preliminary design drawings for the pumping stations and terminal facilities, field investigation of the pipeline traverse, and detailed cost comparison of pipe prices delivered along the traverse from quotations by pipe manufacturers. Other capital requirements were developed from empirical data for this particular project. Such items as financing cost, working capital and interest during construction are derived under Section C, Financial Data.

The capital requirements summarized below serve as aids in financing and in calculation of operating costs and revenue requirements. Four systems are shown, the 30-inch and 34-inch systems for both the Southern Route and the Northern Route. Since the Southern Route is most economical, costs were prepared in detail for this Route. For the Northern Route, some costs were prepared in detail while others were adapted from the Southern Route where the possible error was insignificant. A buildup of costs for each of the ten years as stations and other facilities are added periodically is shown in the details and under Financial Data. Only the first and tenth year figures are shown on the following page to maintain conciseness in the summary.

SUMMARY OF ESTIMATED CAPITAL REQUIREMENTS

(000 Omitted)

ute	34-Inch System		\$383,597	19, 105 35, 417	\$419,014	\$ 16,202	1,478 1,478	9,676	30,729 30,729	\$477,099
Northern Route	34-Inc		\$583,591 \$583,591	19, 105	\$402,702 \$419,014	\$ 15,856 \$ 16,202	1,478	9,676	30,729	\$460,441 \$477,099
Nort]	30-Inch System		\$528,115 \$528,115	50,958	\$379,073	\$ 14,414	2,009 2,009	8,714	25,458 25,458	\$429,668
	30-Inc		\$528,115	22,740 50,958	\$350,855	\$ 13,815	2,009	8,714	25,458	\$400,851
ıte	34-Inch System		\$550,526 \$550,526	17,433 31,248	\$347,759 \$361,574 \$350,855 \$379,073	12,107 \$ 12,629 \$ 13,693 \$ 13,985 \$ 13,815 \$ 14,414	1,370	8,440	30,729 30,729	\$353,318 \$378,478 \$401,991 \$416,098 \$400,851 \$429,668
Southern Route	34-Inc 1960	1	\$350,326	17,433	\$347,759	\$ 13,693	1,370	8,440	30,729	\$401,991
South	30-Inch System		\$286,412 \$286,412	20,990 45,628	\$307,462 \$332,100	\$ 12,629	1,884	7,776	24,089 24,089	\$378,478
	30-Incl		\$280,412	.s 20,990	\$307,462	\$ 12,107	1,884	7,776	24,089	\$353,318
		È	i. Fipelines	2. Stations and Terminals	Total System Cost	3. Interest During Construction	4. Working Capital	5. Financing Costs	6. Line Fill	Total Capital Require-
			7	14		4.1	4.	_,		

2. BASIS OF COSTS

Costs detailed on the following pages are based on these conditions:

- a. It is assumed that the construction period would be from July 1, 1958 to December, 1959. Throughput would begin on January 1, 1960.
- b. All costs are based on a rate of exchange of one Canadian dollar equals one United States dollar. Under present trends, it would appear advantageous to purchase imports as soon as possible.
- c. All costs are based on present prices except for pipe. Pipe costs have been increased seven dollars per ton over present prices in anticipation of such approximate increase effective July 1. If pipe costs are further increased in 1959, such increase must be covered by the five percent contingency factor added to pipeline costs.
- d. Present indications from pipe manufacturers indicate that if pipe orders were placed by April 1, 1958, deliveries could start by July 1, on 26-inch and larger pipe, and immediately for the 16-inch and smaller sizes.
- e. Canadian mills could roll 100 miles per month of 30-inch pipe, but supply only 200 miles per year in each 1958 and 1959 of any pipe over 30-inch because of plate width (subject to change at time of order). U.S. mills can presently guarantee full delivery within the construction period. However, it is urgent that commitments for pipe be made as soon as possible to insure delivery as required.
- f. A Canadian duty of 22-1/2 percent has been assumed for pipe 10-3/4-inch OD and less, and for valves and pipeline accessories necessarily imported from the United States. A duty of 15 percent has been assumed on imported pipe larger than 10-3/4-inch OD. All material prices include Dominion sales tax of 10%, and provincial and state sales tax where applicable as follows: Saskatchewan, 3%; North Dakota, 2%; Michigan, 3%; and Quebec, 2%.
- g. After inclusion of Canadian duty, U.S. pipe is slightly more expensive than Canadian pipe. Canadian pipe would thus be used where possible. However, considering the possibility that present delivery promises may change by the time firm

orders are placed, pipe has been assumed originating from the following sources for the various alternates:

		South	hern Rout	Northern Route		
_	Smaller	Canadia	in Part 1			
Source	Pipe	30"	34''	30" 34"	30"	34"
Canada	100%	50%	32.8%		62.5%	20%
U. S. A.		50%	67.2%	100% 100%	% 37.5%	80%

- h. No drawback of Canadian duty or Dominion sales tax has been considered.
- i. Communications facilities are assumed leased wire and therefore are shown as operating rather than investment costs.
- j. All pumps in pump stations are assumed powered by engines using crude oil from the pipeline for fuel.
- k. A factor for contingencies and omissions is included in investment costs as five percent for the pipeline system and ten percent for pump stations and terminals.
- 1. Engineering-management costs of seven percent as shown include (1) preparation of detailed engineering design, specifications, bills of material, and contract documents; (2) field survey, including staking right-of-way, preparation of plans and profiles, and inventory survey and maps; (3) right-of-way acquisition, including negotiations with owners but not including payments to owners; (4) negotiations of damage claims, but not including damage payments; (5) material procurement, expediting and shipping, including solicitation of competitive quotations, mill inspection of pipe, routing, receiving reports, and filing loss and damage claims with carrier and insurance companies; (6) construction inspection, including customary radiographic or X-ray welding inspection, and visual inspection of plant work, right-of-way, grade and alignment, ditch, welding, bending, coating, backfill and cleanup; (7) field engineering and administration of construction, including progress reports, automotive and field office expense, cost accounting, as-built drawings and supervision of testing the completed system.
- m. Some detailed costs are shown only in summary for the sake of conciseness in report presentation. Details are available upon request to substantiate the items shown.

3. ANALYSIS OF PIPE REQUIREMENTS

3. ANALYSIS OF PIPE REQUIREMENTS (Continued)

.; ;;	30-Inch	h System	ç Ç E-	C	34 -In	34 -Inch System	E
30"	7/16	6.5	1 ons 2,370.3	D1a.	Wall 13/32	Miles 28.9	Tons 11,121.0
	13/32	44.5	15,081.1		3/8	42.5	15,110.0
	3/8	21.0	6,578.0		11/32	70.5	22,997.1
	11/32	19.5	5,605.1		5/16	120.1	35,648.1
	5/16	170.5	44, 597.9			262.0	84,876.2
		262.0	74, 232, 4				
3011	7/16	20.5	7,475.5	34"	13/32	9.2	3,540.2
	13/32	10.6	3,592.3		3/8	16.6	5,866.2
	3/8	19.4	6,076.9		11/32	46.1	15,005.2
	11/32	37.7	10,836.5		5/16	28.6	8,459,4
	5/16	12.3	3, 217.3			100.5	32,871.0
		100.5	31, 199.5				
3011	13/32	21.8	7,388.0	34"	13/32	28. 1	10,813.2
	3/8	32.5	10, 180, 3		3/8	65.4	23,251.7
	11/32	82.5	23, 713.8		11/32	42.0	13,700.4
	5/16	161.0	42, 269.7		5/16	162.3	48,173.9
24"	1/2	3.5	1, 166.8	24"	1/2	3.5	1,166.1
		301.3	84,718.6			301.3	97,105.3
30"	13/32	8.09	20,605.1	34"	13/32	91.3	35,133,2
	3/8	48.9	15,317.4		3/8	98.2	34,913.0
	11/32	99.0	28,456.6		11/32	93.2	30,401.8
	5/16	296.3	77,503.2		5/16	222.3	65,983.1
		505.0	141,887.3			505.0	166,431.1
3011	5/16	42.5	11,116.7	34"	5/16	42.5	12,614.8
24"	1/2	1.0	331.3	24"	1/2	1.0	331.29
		43.5	11,448.0			43.5	12,946.1

4. PIPELINE CONSTRUCTION COSTS

a. Summary - Total Pipeline

(000 OMITTED)

		FIRST Y	FIRST YEAR PROGRAM (1958)	RAM (1958)	SECOND	YEAR PROG	PROGRAM (1959)	
		Material	Installation		Material	Installation		
Section	Province or State	Cost	Cost	Total Cost	Cost	Cost	Total Cost	Grand Totals
Western	Alberta	\$ 8,873	\$ 2,734	\$11,607	\$ 9,853	\$ 2,961	\$12,814	\$24,421
	Saskatchewan	16,872	5,233	22,105	20,906	7,081	27,987	50,092
	Manitoba	1	3	1	10,025	3,155	13, 180	13, 180
	Direct Pipeline Cost	25,745	7,967	33,712	40,784	13,197	53,981	87,693
	Contingencies			1,686			2,699	4,385
	Engineering and			1				
	Management			2,485			3,979	6,464
	Total Pipeline Cost - We	Western Section	ection	37,883			60,626	98,542
Central	North Dakota	t	1	ı	7,269	2,999	10,268	10, 268
	Minnesota	11,070	5,290	16,360	6,749	3,232	9,981	26,341
	Wisconsin	1	1	1	7,299	3,563	10,862	10,862
	Michigan	7,912	6,053	13,965	13,024	7,879	20,903	34,868
	Direct Pipeline Cost	18,982	11,343	30,325	34,341	17,673	52,014	82,339
	Contingencies			1,517			2,601	4,118
	Engineering and							
	Management			2,235			3,835	6,070
	Total Pipeline Cost - Central Section	Central Se	ction	34,077			58,450	92,527
Eastern	Ontario	15,204	14,311	29, 515	25,409	21,982	47,391	76,906
	Quebec	3,756	2,344	6,100	316	1,575	1,891	7,991
	Direct Pipeline Cost	18,960	16,655	35,615	25,725	23,557	49,282	84,897
	Contingencies			1,781			2,464	4,245
	Engineering and							
	Management			2,626			3,635	6,261
	Total Pipeline Cost - Eastern Section	Eastern Se	ection	40,022			55,381	95,403
	Total Pipeline Cost			111,982			174,490	286,472

b. Details - Western Section, Pipeline

Materials - Western Section	Right of Way Easements and Damages \$ 152,250 (a) Alberta \$ 204,750 (b) Saskatchewan	Alberta 5,933,520 Saskatchewan 11,151,508 Manitoba Total 17,085,028	Alberta 1,275,451 Saskatchewan 1,854,626 Manitoba Total 3,130,077	Highway and Railway Crossings 14,372 (a) Alberta 51,100 (b) Saskatchewan 51,100 (c) Manitoba Total 65,472	g Materials Alberta Saskatchewan Manitoba Total Total 300,010 555,274
1959 PROGRAM Total Cost	\$ 187,050	7,072,595	1,161,301	29, 060	358, 838
	248,400	13,736,634	2,278,971	74, 980	669, 444
	165,000	6,882,511	968,992	41, 495	352, 709
	600,450	27,691,740	4,409,264	145, 535	1, 380, 991
Grand Totals	\$ 339,300	13,006,115	2,436,752	43,432	658, 848
	453,150	24,888,142	4,133,597	126,080	1,224,718
	165,000	6,882,511	968,992	41,495	352,709
	957,450	44,776,768	7,539,341	211,007	2,236,275

Grand Totals	\$ 24,500 127,500 30,000 182,000	98,060 238,950 63,720 400,730	137,000 388,000 116,400 641,400	39,700	374,350 1,852,325 514,550 2,741,225
1959 PROGRAM Total Cost	\$ 17,000 90,000 30,000	57,520 127,440 63,720 248,680	85,280 232,800 116,400 434,480	39,700	28,986 1,025,574 514,550 1,569,110
1958 PROGRAM Total Cost	\$ 7,500 37,500 - 45,000	40,540 111,510 - 152,050	51,720 155,200 - 206,920	1 1 1	345,364 826,751 - 1,172,115
	Total	Total	Total	Total	Total
A. Materials (Continued)	6. Concrete Weights(a) Alberta(b) Saskatchewan(c) Manitoba	7. Mainline Valve Assemblies (a) Alberta (b) Saskatchewan (c) Manitoba	8. Scraper Traps (a) Alberta (b) Saskatchewan (c) Manitoba	9. River Crossing Manifolds(a) Alberta(b) Saskatchewan(c) Manitoba	10. Import Duties(a) Alberta(b) Saskatchewan(c) Manitoba

Grand Totals	\$ 1,423,183 2,855,453 789,908 5,068,544	1,076,234 - 1,076,234	184, 460 374, 151 99, 715 658, 326	18,726,000 37,778,000 10,025,000 66,529,000
1959 PROGRAM Total Cost	\$ 758, 239 1, 579, 425 789, 908 3, 127, 572	595, 649	97, 131 206, 983 99, 715 403, 829	9,853,000 20,906,000 10,025,000 40,784,000
1958 PROGRAM Total Cost	\$ 664,944 1,276,028 - 1,940,972	480,585	87, 329 167, 168 - 254, 497	8,873,000 16,872,000
A. Materials (Continued)	Dominion Sales Tax (a) Alberta (b) Saskatchewan (c) Manitoba Total	12. Provincial Tax (a) Alberta (b) Saskatchewan (c) Manitoba Total	13. Miscellaneous Materials(a) Alberta(b) Saskatchewan(c) ManitobaTotal	14. Total Material Cost - Western Section (a) Alberta (b) Saskatchewan (c) Manitoba Total

Grand Totals	\$ 5,202,538 10,601,503 2,882,633	18, 686, 674 85, 000 750, 000	835,000 89,250 248,750	85,000 423,000 24,000 52,500	14,000	24,500 75,000 22,500 122,000
1959 PROGRAM Total Cost	\$ 2,733,595 5,772,411 2,882,633	750,000	750,000 59,200 148,750 85,000	292, 950 292, 950 14, 000 28, 000	14,000	14,000 45,000 22,500 81,500
1958 PROGRAM Total Cost	\$ 2,468,943 4,829,092 - 7,298,035	85,000	30,050	130,050 10,000 24,500	34,500	10,500 30,000 - 40,500
B. Installation - Western Section	l. Pipeline(a) Alberta(b) Saskatchewan(c) ManitobaTotal	2. River and Stream Crossings(a) Alberta(b) Saskatchewan(c) ManitobaTotal	 Highway and Railway Crossings (a) Alberta (b) Saskatchewan (c) Manitoba 	 4. Valve Assemblies (a) Alberta (b) Saskatchewan (c) Manitoba 		(a) Alberta (b) Saskatchewan (c) Manitoba Total

Grand Totals	\$ 269,712 586,247 150,867 1,006,826	5,695,000 12,314,000 3,155,000 21,164,000	24, 421, 000 50, 092, 000 13, 180, 000	000,660,100
1959 PROGRAM Total Cost	\$ 140,205 336,839 150,867 627,911	2,961,000 7,081,000 3,155,000 13,197,000	12,814,000 27,987,000 13,180,000	23, 781, 000
1958 PROGRAM Total Cost	\$ 129, 507 249, 408 - 378, 915	2,734,000 5,233,000 7,967,000		33, (12,000
B. Installation (Continued)	 6. Testing and Miscellaneous Construction (a) Alberta (b) Saskatchewan (c) Manitoba Total 	7. Total Installation Cost - Western Section (a) Alberta (b) Saskatchewan (c) Manitoba Total	8. Total Direct Pipeline Cost - Western Section (a) Alberta (b) Saskatchewan (c) Manitoba	1 Otal - Western Section

c. Details - Central Section, Pipeline

	1958 PROGRAM	1959 PROGRAM	
	Total Cost	Total Cost	Grand Totals
A. Materials - Central Section			
1. Right-of-Way Easements and Damages			
(a) North Dakota	:1	\$ 191,750	\$ 191,750
	235,600	145,400	381,000
(c) Wisconsin	ı	146,200	146,200
(d) Michigan	181,700	276,400	458, 100
Total	417,300	759,750	1,177,050
2. Pipe			
	ı	5,637,555	5,637,555
	8,825,102	5,408,884	14,233,986
	ı	5,889,936	5,889,936
(d) Michigan	5,965,149	10,236,642	16,201,791
Total	14,790,251	27,173,017	41,963,268
3. Pipe Freight			
(a) North Dakota	į	681,778	681,778
	920,480	564, 160	1,484,640
	ţ.	624,000	624,000
(d) Michigan	497,520	851,280	1,348,800
Total	1,418,000	2,721,218	4,139,218
4. Highway and Railway Crossings			
(a) North Dakota	ı	25,057	25,057
	45,469	22, 125	67, 594
	i	39, 281	39, 281
(d) Mıchıgan	27,960	67,066	95,026
Total	73,429	153,529	226, 958

Grand Totals	\$ 329,308 812,736 311,801 930,618 2,384,463	30,000 270,000 90,000 555,000	47,790 159,300 47,790 159,300 414,180	116,400 232,800 77,600 310,400 737,200	79,400
1959 PROGRAM Total Cost	\$ 329,308 310,083 311,801 590,021 1,541,213	30,000 90,000 90,000 240,000 450,000	47,790 63,720 47,790 1111,510 270,810	116,400 77,600 77,600 155,200 426,800	1 1
1958 PROGRAM Total Cost	\$ 502,653 - 340,597 843,250	180,000 - 315,000 495,000	95,580 - 47,790 143,370	155, 200 - 155, 200 310, 400	79,400
	Total	Total	Total	Total	Total
A. Materials (Continued)	5. Coating Materials(a) North Dakota(b) Minnesota(c) Wisconsin(d) Michigan	6. Concrete Weights(a) North Dakota(b) Minnesota(c) Wisconsin(d) Michigan	7. Main Line Valve Assemblies (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan	8. Scraper Traps (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan	9. Lake Crossing Manifolds(a) Michigan

Grand Totals	\$ 137,358 - - 590,410 727,768	72,004 176,944 72,392 207,155	7,269,000 17,819,000 7,299,000 20,936,000 53,323,000
1959 PROGRAM Total Cost	\$ 137,358 - 367,552 504,910	72, 004 67, 028 72, 392 128, 329 339, 753	7, 269, 000 6, 749, 000 7, 299, 000 13, 024, 000 34, 341, 000
1958 PROGRAM Total Cost	\$ - 222,858	109, 916 - 78, 826 188, 742	11,070,000 7,912,000 18,982,000
A. Materials (Continued)	10. State Taxes (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan Total	11. Miscellaneous Material(a) North Dakota(b) Minnesota(c) Wisconsin(d) MichiganTotal	 12. Total Material Cost - Central Section (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan Total

Grand Totals	\$ 2,768,290 7,883,374 3,279,108 11,203,863 25,134,635	1,750,000	55,000 153,250 88,750 219,500 516,500	10,500 35,000 10,500 35,000	22,500 45,000 15,000 60,000
1959 PROGRAM Total Cost	\$ 2,768,290 2,999,040 3,279,108 7,293,264 16,339,702	1	55,000 50,000 88,750 155,750 349,500	10,500 14,000 10,500 24,500 59,500	22,500 15,000 15,000 30,000 82,500
1958 PROGRAM Total Cost	\$ 4,884,334 3,910,599 8,794,933	1,750,000	103, 250 - 63, 750 167, 000	21,000 - 10,500 31,500	30,000
	Total	Total	Total	Total	Total
B. Installation - Central Section	1. Pipeline(a) North Dakota(b) Minnesota(c) Wisconsin(d) Michigan	2. River and Stream Crossings (a) Michigan	3. Highway and Railway Crossings(a) North Dakota(b) Minnesota(c) Wisconsin(d) Michigan	 4. Valve Assemblies (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan 	5. Scraper Traps (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan

Grand Totals	\$ 142,710 405,376 169,642 663,637 1,381,365	2,999,000 8,522,000 3,563,000 13,932,000 29,016,000	10, 268, 000 26, 341, 000 10, 862, 000 34, 868, 000
1959 PROGRAM Total Cost	\$ 142,710 153,960 169,642 375,486 841,798	2,999,000 3,232,000 3,563,000 7,879,000 17,673,000	10, 268, 000 9, 981, 000 10, 862, 000 20, 903, 000 52, 014, 000
1958 PROGRAM Total Cost	\$ 251,416 - 288,151 539,567	5,290,000 6,053,000 11,343,000	16,360,000 13,965,000 30,325,000
B. Installation (Continued)	6. Testing and Miscellaneous Construction (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan Total	7. Total Installation Cost - Central Section (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan Total	8. Total Direct Pipeline Cost - Central Section (a) North Dakota (b) Minnesota (c) Wisconsin (d) Michigan Total - Central Section

d. Details - Eastern Section, Pipeline

A. Materials - Eastern Section	1958 PROGRAM Total Cost	58 PROGRAM Total Cost	1959 PROGRAM Total Cost	Grand Totals
' [
_	↔	207,000	\$ 345,600	\$ 552,600
(b) Quebec	Total 300	309,000 516,000	100,000	409,000
2. Pipe (a) Ontario	10,989,927	9,927	18,316,682	29,306,609
(b) Quebec	Z, 323, 244 Total 13, 313, 171	3,244	68,931 18,385,613	2,392,175
3. Pipe Freight				
	813	813,832	1,356,396	2,170,228
(b) Quebec	Total 997	183,414 997,246	2,979	2,356,621
4. Highway and Railway Crossings				
(a) Ontario	œ 'c	89, 675	171,680	261,355
	Total 15	157,625	171,680	329,305
5. Coating Materials				
(a) Ontario	264	564, 256	940,776	1,505,032
(b) Quebec	Total 69	127, 620 691, 876	2,975	130,595
6. Concrete Weights				
(a) Ontario (b) Quebec	.9	67,500 30,000	127, 500 75, 000	195,000
	Total 9	97,500	202, 500	300,000

Grand Totals	\$ 270,810 15,930 286,740	388,000 116,400 504,400	39,700	2,213,407 203,309 2,416,716	3,347,950 293,704 3,641,654	71,023
1959 PROGRAM Total Cost	\$ 175,230 - 175,230	232,800	39,700	1,384,082 7,000 1,391,082	2,106,643 11,865 2,118,508	4,169
1958 PROGRAM Total Cost	\$ 95,580 15,930 111,510	155,200 116,400 271,600	1 1	829, 325 196, 309 1, 025, 634	1,241,307 281,839 1,523,146	66,854
	Total	Total	Total	Total	Total	Total
A. Materials (Continued)	7. MainLine Valve Assemblies (a) Ontario (b) Quebec	8. Scraper Traps (a) Ontario (b) Quebec	9. River Crossing Manifolds (b) Quebec	10. Import Duties(a) Ontario(b) Quebec	11. Dominion Sales Tax(a) Ontario(b) Quebec	12. Provincial Tax (a) Ontario (b) Quebec

Grand Totals	\$ 402,009 40,821 442,830	40,613,000	44,685,000
1959 PROGRAM Total Cost	\$ 251, 611 3, 381 254, 992	25,409,000	25,725,000
1958 PROGRAM Total Cost	\$ 150,398 37,440 187,838	15,204,000	18,960,000
A. Materials (Continued)	13. Miscellaneous Materials(a) Ontario(b) QuebecTotal	14. Total Material Costs - Eastern Section(a) Ontario(b) Quebec	Total - Eastern Section

Grand Totals	\$33,253,456 2,006,136 35,259,592	600,000 1,550,000 2,150,000	577,250 150,000 727,250	59, 500 3, 500 63, 000	75,000 22,500 97,500	1,788,450 186,864 1,975,314
1959 PROGRAM Total Cost	\$20,072,400 - 20,072,400	400,000 1,500,000 1,900,000	379,750	38,500	45,000	1,107,006 75,000 1,182,006
1958 PROGRAM Total Cost	\$13,181,056 2,006,136 15,187,192	200,000 50,000 250,000	197,500 150,000 347,500	21,000 3,500 24,500	30,000 22,500 52,500	681,444 111,864 793,308
	Total	Total	Total	Total	Tota1	ruction
B. Installation - Eastern Section	1. Pipelines(a) Ontario(b) Quebec	2. River and Stream Crossings(a) Ontario(b) Quebec	3. Highway and Railway Crossings(a) Ontario(b) Quebec	4. Valve Assemblies(a) Ontario(b) Quebec	5. Scraper Traps (a) Ontario (b) Quebec	6. Testing and Miscellaneous Construction(a) Ontario(b) QuebecTotal

Grand Totals		\$36, 293, 000 $3, 919, 000$ $40, 212, 000$	76,906,000	84,897,000
1959 PROGRAM Total Cost		\$21,982,000 1,575,000 23,557,000	47,391,000	49,282,000
1958 PROGRAM Total Cost		\$14,311,000 2,344,000 16,655,000	29,515,000 6,100,000	35,615,000
	ned)	ost Total	Total Direct Pipeline Cost - Eastern Section (a) Ontario (b) Quebec	Total - Eastern Section
	Installation (Continued)	Total Installation Cost (a) Ontario (b) Quebec	Total Direct Pipeli (a) Ontario (b) Quebec	

B.

 ∞

5. PUMP STATION AND TANKAGE COSTS

Description of Items Listed In Investment Cost for Stations

LAND IN FEE

- STORAGE TANKS -- Standard A. P.I. welded steel tanks, erected complete with standard fittings. Includes foundations, grading, firewalls and firewall drains.
- MAIN LINE & BOOSTER PUMPING UNITS -- Includes complete units installed, foundations and cooling water systems.
- MAIN STATION PIPING & EQUIPMENT -- Includes pipe, valves, fittings, control valves, strainers, foundations and catwalks.
- AUXILIARY STATION PIPING & EQUIPMENT -- For fuel systems, air systems, oil drain systems, fire fighting equipment, and miscellaneous. Includes pipe, valves, fittings, pumps, compressors, air dryers, centrifuges, foundations, fuel tanks with firewalls, portable boiler and heating coils, sump tank, fire fighting equipment and miscellaneous equipment.
- METERING FACILITIES -- Includes meters, pipe, valves, fittings, strainers, provers, pumps, foundations, shelters and catwalks.
- ELECTRICAL SYSTEM, INSTRUMENTS AND CONTROLS -- (Source of power indicated on summaries) Includes generators (if required), switchgear, circuit panels, yard lighting, grounding, distribution, control console, recording and indicating instruments and alarms.
- BUILDINGS -- Pumps and office buildings, includes foundations, superstructure, lighting, plumbing and fixtures, heating system, boiler and miscellaneous furniture.
- STATION SITE DEVELOPMENT -- Includes station roads, access roads (where required), sidewalks, station grading, perimeter fence, water supply system (well, if required) and sewage disposal system.

STAFF HOUSING

SUMMARY OF INVESTMENT COSTS - STATIONS
(In Thousands of Dollars)

30" LINE - SOUTH ROUTE

Construc- Omission & Engineering &

	Stations	1960	1960 1962 1963	- 1	1964	1965	1967	1968	Total	Total Material	tion	Contingencies	Management
	Edmonton	4203	389			1322	330		6244	3417	1889	530	408
	Calgary	415		98		10			571	279	207	48	37
	Britamoil	1222		16	191	6			.1438	789	433	122	94
	Bellshill Lake	5775		99	10	1787		337	7975	4147	2627	629	522
- 73	9 Intermediate	5278*		*8659		3156		3019	18051	11142	4194	1533	1182
	Montreal	569		33		33			635	336	204	54	41
	TOTAL INVESTMENT (CANADA) 17462	MENT 17462	389	6629	201	6377	330	3356	34914	20110	9554	2966	2284
	6 Intermediate	3528**	*	3528**	*	1879		1779	10714	6564	2538	911	701
	TOTAL INVESTMENT (U.S.) 3528	MENT 3528		3528		1879		1779	10714	6564	2538	911	701
	TOTAL INVESTMENT	20990	389	389 10327	201	8256	330	5135	45628	26674	12092	3877	2985
	* Canad	* Canada 1960 - 4 Stations	- 4 St	ations									

SUMMARY 30" SOUTH

1963 - 5 Stations 1960 - 3 Stations 1963 - 3 Stations

** U.S.

SUMMARY OF INVESTMENT COSTS - STATIONS

(In Thousands of Dollars)

30" LINE - NORTH ROUTE

Engineering & Management	408	37	94	522	2231	41	(3333
Construc- Omission & tion Contingencies	530	48	122	629	2896	54		4329
Construc- tion	1889	207	433	2627	7922	204		13282
Total Material	3417	279	789	4147	21046	336		30014
Total	6244	571	1438	7975	34095	635	1	330 6039 50958
1968				337	5702			6039
1967	330							330
964 1965 1967 1968	1322	20	6	1787	2965	33		201 9183
1964			191	10				201
1963		98	16	99	11875*	33		2076
1962	389				1			389 12076
1960 1962 1963	4203	415	1222	5775	10556*	699	MENT	22740
Stations	Edmonton	Calgary	Britamoil Jct.	Bellshill Lake	17 Intermediate 10556*	Montreal		(CANADA)
					- 74	-		

* 1960 - 8 Stations 1963 - 9 Stations

SUMMARY OF INVESTMENT COSTS - STATIONS

(In Thousands of Dollars)

34" LINE - SOUTH ROUTE

\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1960	1962 1963	1963	1964	1965	1966	1967	Total	Total Material	Construc-	Omission & Contingencies	Engineering & Management
Edmonton	4203	389			1322		330	6244	3417	1889	530	408
Calgary	415		98		20			571	279	207	48	37
Britamoil	1222		16	191	6			1438	789	433	122	94
Bellshill Lake	5775		99	10	1437	337		7625	3914	2563	649	499
5 Intermediate	2768*			4153*		1671		8592	5190	2110	730	562
Montreal	569		33		33			635	336	204	54	41
TOTAL INVESTMENT (CANADA) 14952	MENT 14952	389	201	4354	2871	2008	330	25105	13925	7406	2133	1641
4 Intermediate	2481**	*		2481**	*	1181		6143	3684	1536	521	402
TOTAL INVESTMENT (U.S.) 2481	MENT 2481			2481		1181		6143	3684	1536	521	402
TOTAL	17433	389	201	6835	2871	3189	330	330 31248	17609	8942	2654	2043

* Canada 1960 - 2 Stations 1964 - 3 Stations ** U.S. 1960 - 2 Stations 1964 - 2 Stations

** U.S.

SUMMARY 34" SOUTH

SUMMARY OF INVESTMENT COSTS - STATIONS

(In Thousands of Dollars)

34" LINE - NORTH ROUTE

Engineering & Management	408	37	94	499	1238	41	2317
Omission & Contingencies	530	48	122	649	1606	54	3009
Construc-	1889	207	433	2563	4642	204	9938
Total Material	3417	279	789	3914	11418	336	20153
Total	6244	571	1438	7625	18904	635	330 35417
1967	330						330
1965 1966 1967				337	3677		2871 4014
	1322	70	6	10 1437		33	
1964			191	10	8306*		8507
1963		98	16	99		33	201
1960 1962 1963	389						389
1960	4203	415	1222	5775	6921*	699	MENT 19105
Stations	Edmonton	Calgary	Britamoil Jct.	Bellshill Lake	11 Intermediate	Montreal	TOTAL INVESTMENT (CANADA) 19105
				-	- 76	-	

* 1960 - 5 Stations 1964 - 6 Stations

toute toute toute toute	Total Matl Const	20	915 551 343 268	906 123	867 562	47 35	172 242	93 85	24 23	3417 1889	5306 530 408	6244
e - South Route e - South Route e - North Route e - North Route	67 Const			27	20	4	41			55	280 28 22	330
30" Line 34" Line 30" Line 34" Line	1967 Matl Co			183	37	2	8			225	28	3.
(<u>A</u>)	1965 tl Const		268	27	95	4	12	17		423	1124 112 86	1322
ON STATION COSTS (CANADA) s of Dollars)	19 Matl		343	183	149	2	10	14		701		13
	1962 tl Const			29	32	2	6	2		77	331 33 25	389
EDMONT INVESTMENT (Thousand	19 Matl			194	52	1	9	p-ref		254		3
INVI	1960 t1 Const		551	40	415	25	217	63	23	1334	571 357 275	4203
	19 Matl	20	915	346	629	42	153	78	24	2237	C .	
	ITEM	Land in Fee	Storage Tanks 100,000 Bbl. 100,000 Bbl.	Main Line & Booster Pumping Units	Main Station Piping & Equipment	Auxiliary Station Piping & Equipment	Electrical System, Instruments & Controls (Public Power)	Station Buildings	Station Site Development	Sub Totals	Total Material & Construction Omissions & Contingencies Engineering & Management	TOTAL INVESTMENT (CANADA)

APPLIES TO:

EDMONTON

0
H
ES
LI
Д
Д
A

		CAI INVESTMI (Thou	CALGARY STATION STMENT COSTS (CAN (Thousands of Dollars)	CALGARY STATION INVESTMENT COSTS (CANADA) (Thousands of Dollars)		APPLIES TO: 30" Line - S 34" Line - S 30" Line - N	PPLIES TO: 30" Line - South Route 34" Line - South Route 30" Line - North Route 34" Line - North Route	oute oute oute	
	1960	09	1963	3	1965	55	Total	tal	
ITEM	Matl	Const	Matl Const	Const	Matl Const	Const	Matl Const	Const	
Land in Fee	20						20		
Storage Tanks 50,000 BbL	09	63					09	63	
Main Line & Booster Pumping Units	2	1	15	М	17	4	34	∞	
Main Station Piping & Equipment	18	12	13	7	13	7	44	26	
Auxiliary Station Piping & Equipment	60	r.					60	ru	
Metering Facilities	19	13			2	1	21	14	
Electrical System, Instruments & Controls (Public Power)	42	34	44	rU	rυ	r-	rc I	46	
Station Buildings	23	24	15	12	~	2	39	38	
Station Site Development	7	7					7	7	
Sub Totals	194	159	47	27	38	21	279	207	
Total Material & Construction		353	2	74		59	4	486	

48

9 2

5 7

35

Engineering & Management 27
TOTAL INVESTMENT (CANADA) 415

Omissions & Contingencies

98

70

571

1
0
V
9
\triangleleft
H
-
α
M

		INVE	BRITAMOIL STAINVESTMENT COSTS (Thousands of Do	BRITAMOIL STATION STMENT COSTS (CAN (Thousands of Dollars)	TION (CANADA) llars)	(-	APPLIES 30" Line 34" Line 30" Line	DI I	South Route South Route North Route North Route	t te e
ITEM	1960 Matl Co	60 Const	19 Mat1	1963 t1 Const	19 Matl	1964 tl Const	19 Matl	1965 tl Const	Mati	Total tl Const
Land in Fee	20								20	
Storage Tanks: 30,000 Bbl.	41	45							4	45
Main Line & Booster Pumping Units	213	40	2	-	101	19			316	09
Main Station Piping & Equipment	06	54	2	2	19	10			111	99
Auxiliary Station Piping & Equipment	41	25			-	2			42	27
Metering Facilities	28	35					К	2	61	37
Electrical System, Instruments & Controls (Station Generators)	37	35	4	m	m	2	1	1	45	41
Station Buildings	78	62			H	Ŋ			62	29
Station Site Development	24	40							24	40
Staff Housing	50	20							50	50
Sub Totals	652	386	00	9	125	38	4	3	789	433
Total Material & Construction Omissions & Contingencies Engineering & Management	1038 104 80	38 04 80		41 1	1	163 16 12		1 1 1	1	1222 122 94
TOTAL INVESTMENT (CANADA)	0A) 1222	23		16		191		6	15	1438

BELLSHILL STATION

30" Line - North Route 30" Line - South Route APPLIES TO: INVESTMENT COSTS (CANADA) (Thousands of Dollars)

Const Total Matl Matl Const LΩ Matl Const ∞ Matl Const LO Matl Const $^{\circ}$ Matl Const Station Site Development Auxiliary Station Piping Instrument & Controls Main Line & Booster Sub Totals Main Station Piping Metering Facilities Electrical System, Station Buildings 150,000 Bbl. 96,000 BbI. 42,500 Bbl. Storage Tanks: Public Power) Pumping Units ITEM Staff Housing & Equipment & Equipment Land in Fee

BELLSHILL

TOTAL INVESTMENT (CANADA) 5775

Total Material & Construction Omissions & Contingencies Engineering & Management

		INV	BELLSHI INVESTMENT (Thousan		SELLSHILL STATION STMENT COSTS (CANADA) (Thousands of Dollars)	VADA)		APPLIES 34" Line	H	FO: - South Route - North Route	Route	
Ma L	Mati	1960 tl Const	Matl	1963 El Const	Matl Co	964 Const	19 Mat1	1965 11 Const	19 Matl	1966 11 Const	Mati	Total
Land in Fee	50	1									50	
Storage Tanks: 150,000 Bbl. 96,000 Bbl. 42,500 Bbl.	685 219 106	458 169 105					343 146 53	229 84 53			1028 365 159	687 253 158
Main Line & Booster Pumping Units	426	59	12	2					183	27	621	88
Main Station Piping & Equipment	926	712	10	œ			173	108	39	22	1148	850
Auxiliary Station Piping & Equipment	43	30							provid	2	44	32
Metering Facilities	149	80	11	7	5	60	12	7			177	105
Electrical System, Instrument & Controls (Station Generators)	153	217	8	m			9	7	m	m	165	230
Station Buildings	77	61							1	ľ	78	99
Station Site Development	29	44									59	44
Staff Housing	50	50									50	50
Sub Totals	2913	1993	36	20	5	3	733	488	227	59	3914	2563
Total Material & Construction Omissions & Contingencies Engineering & Management		4906 491 378		56 6 4	8		12	1221 122 94	2	286 29 22	9	6477 649 499
TOTAL INVESTMENT (CANADA)	_	5775		99	10		14	1437	3	337	7	7625

BELLSHILL

- 81 -

TYPICAL INTERMEDIATE

TYPICAL INTERMEDIATE STATION INVESTMENT COSTS (UNITED STATES)

APPLIES TO:	30" Line - South Route	
ENT COSTS (UNITED STATES)	Thousands of Dollars)	

T. Mi	1960 or 1963 Matl Const	1963	Mat1	1965 tl Const	Mat1	1968 Matl Const	Total Matl Co	tal
Land in Fee	10						10	
Main Line & Booster Pumping Units	332	44	167	25	167	25	999	94
Main Station Piping & Equipment	152	68	33	19	33	19	218	127
Auxiliary Station Piping & Equipment	4	7	П	23	1	2	9	11
Electrical System, Instruments & Controls (Station Generators)	33	27	2	2	73	М	37	32
Station Buildings	77	29	7	_∞			84	20
Station Site Development	23	39					23	39
Staff Housing	50	50					50	50
Sub Totals	681	318	210	56	203	49	1094	423
Total Material & Construction Omissions & Contingencies Engineering & Management	999	999		266 27 20		252 25 19	1517 152 116	29
TOTAL INVESTMENT (UNITED STATES)	STATES 1176	653) 64	(*)	313		962	1785	35

TYPICAL INTERMEDIATE

Total Matl Const	10	728 102	291 162	6 11	46 32	84 70	23 39	50 50	1238 466	1704 171 131	2006
1968 Matl Const		183 27	44 23	1 2	2				230 55	285 29 22	336
1965 Matl Const		183 27	44 22	1 2	2 2	7 8			237 61	298 30 23	351
1960 or 1963 Matl Const	10	362 48	203 117	7	42 27	77 62	23 39	50 50	771 350	1121 112 86	A) 1319
ITEM	Land in Fee	Main Line & Booster Pumping Units	Main Station Piping & Equipment	Auxiliary Station Piping & Equipment	Electrical System, Instruments & Controls (Station Generators)	Station Buildings	Station Site Development	Staff Housing	Sub Totals	Total Material & Construction Omissions & Contingencies Engineering & Management	TOTAL INVESTMENT (CANADA)

APPLIES TO: 30" Line - South Route 30" Line - North Route

TYPICAL INTERMEDIATE STATION INVESTMENT COSTS (CANADA) (Thousands of Dollars)

STATION	STATES)	
TYPICAL INTERMEDIATE ST	NVESTMENT COSTS (UNITED	(Thousands of Dollars)

APPLIES TO:

	(Thousand	Thousands of Dollars)	34" Line - South Route
ITEM	1960 or 1964 Matl Const	1966 Matl Const	Total Matl Const
9 6	10		10

Total Matl Const	10	499 69	185 108	42 28	35 29	77 61	23 39	50 50	921 384	1305	100	7.5.7.7
1966 Matl Const		167 25	33 19	1 2	. 2				203 48	251	19	295
1960 or 1964 Mat1 Const	10	332 44	152 89	41 26	33 27	77 61	23 39	50 50	718 336	1054	81	STATES) 1240
ITEM	Land in Fee	Main Line & Booster Pumping Units	Main Station Piping & Equipment	Auxiliary Station Piping & Equipment	Electrical System, Instruments & Controls (Station Generators)	Station Buildings	Station Site Development	Staff Housing	Sub Totals	Total Material & Construction Omissions & Contingencies	Engineering & Management	TOTAL INVESTMENT (UNITED STATES)

TYPICAL INTERMEDIATE

TYPICAL INTERMEDIATE

APPLIES TO: 34" Line - South Route 34" Line - North Route	Total Matl Const	10	545 75	247 140	42 28	44 29	77 61	23 39	50 50	1038 422	1460	1112	1718
ATION ADA)	1966 Matl Const		27	23	2	7				54	284 28	22	334
INVESTMENT COSTS (CANADA) (Thousands of Dollars)	Mati		183	44	1	2				230	8		(7)
TYPICA	or 1964 Const		48	117	26	27	61	39	50	368	176 118	06	1384
	1960 Mat1	10	362	203	41	42	22	23	20	808	 1		
	ITEM	Land in Fee	Main Line & Booster Pumping Units	Main Station Piping & Equipment	Auxiliary Station Piping & Equipment	Electrical System, Instruments & Controls (Station Generators)	Station Buildings	Station Site Development	Staff Housing	Sub Totals	Total Material & Construction Omissions & Contingencies	Engineering & Management	TOTAL INVESTMENT (CANADA)

APPLIES TO:

30" Line - South Route 34" Line - South Route 30" Line - North Route 34" Line - North Route

> MONTREAL TERMINAL INVESTMENT COSTS (CANADA) (Thousands of Dollars)

ITEM	1960 Mat1 Co	60 Const	1963 Matl Const	Mat1	1965 tl Const	T Mati	Total tl Const
Land in Fee	10					10	
Main Station Piping & Equipment	51	28				51	28
Auxiliary Station Piping & Equipment	3	т				m	m
Metering Facilities	175	66	17 11	17	11	209	121
Electrical System, Instruments & Controls (Public Power)	31	19				31	19
Station Buildings	22	23				22	23
Station Site Development	10	10				10	10
Sub Totals	302	182	17 11	17	11	336	204
Total Material & Construction Omissions & Contingencies Engineering & Management	4	484 48 37	28 3		28 3		540 54 41
TOTAL INVESTMENT (CANADA)	7.0	569	33		33		635

COSTS OPERATING ANNUAL ESTIMATED B.

SUMMARY OF ANNUAL OPERATING COSTS SOUTHERN ROUTE

(000 Omitted)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
30" System (1) Stations, excluding labor and tankage	\$1,135	\$1,578	\$2,174	\$2,819	\$3,636	\$4,487	\$5,216	\$6,003	\$6,898	\$7,707
(2) Station and Terminal Labor (3) Tank Maintenance (4) Pipeline Maintenance (5) Communications	792 70 989 292	792 70 989 292	792 70 989 292	1,293 70 989 292	1,293 70 989 292	1, 293 100 989 292	1,293 100 989 292	1,293 100 989 292	1,293 100 989 292	1,293 100 989 292
Subtotal *(6) Administration	3,278	3,721	4,317	5,463	6,280	7,161	7,890	8,677	9,572	10,381
Total	\$4,191	\$4,578	\$5,174	\$6,521	\$7,338	\$8,231	\$8,960	\$9,747	\$10,642	\$11,451
34" System (1) Stations, excluding labor and tankage	585	\$ 798	\$1,126	\$1,486	\$1,919	\$2,410	\$2,867	\$3,331	\$3,877	\$4,385
Labor	604	604	604	604	917	917	917	917	917	917
(3) Tank Maintenance(4) Pipeline Maintenance(5) Communications	1,122	1,122	1,122	1,122	1,122	1,122	1,122	1,122	1,122	1,122
Subtotal *(6) Administration Total	2,673 835	2,886	3,214 835 835	3,574 835	4,320	4,841	5,298	5,762	6,308	6,816 972 \$7,788

* Administration is computed as 40% of items (2), (3), (4) and (5).

Small tools, supplies, and automotive and maintenance equipment are included in station and pipeline maintenance and administration costs.

SUMMARY OF ANNUAL OPERATING COSTS NORTHERN ROUTE

(000 Omitted)

1969	\$8,168	1,418	1,058	11,199	\$12,411		\$4,634	1,042	100	1,203	455	7,434	1,120	\$8,554
1968	\$7,305	1,418	1,058	10,336	\$11,548		\$4,105	1,042	100	1,203	455	6,905	1,120	\$8,025
1967	\$6,361	1,418	1,058	9,392	\$10,504		\$3,519	1,042	100	1,203	455	6,319	1,120	\$7,439
1966	\$5,522	1,418	1,058	8,553	\$9,765		\$3,033	1,042	100	1,203	455	5,833	1,120	\$6,953
1965	\$4,764	1,418	1,058	7,795	\$9,007		\$2,564	1,042	100	1,203	455	5,364	1,120	\$6,484
1964	\$3,833	1,418	1,058	6,834	\$8,034		\$2,034	1,042	70	1,203	455	4,804	1,108	\$5,912
1963	\$2,996	1,418	1,058	5,997	\$7,197		\$1,583	299	70	1,203	455	3,978	958	\$4,936
1962	\$2,312	855	1,058	4,750	\$5,725		\$1,199	299	20	1,203	455	3,594	958	\$4,552
1961	\$1,680	855	1,058	4,118	\$5,093		\$ 852	299	20	1,203	455	3,247	958	\$4,205
1960	\$1,211	855	1,058	3,649	\$4,624		\$ 626	199	70	1,203	455	3,021	958	\$3,979
3011 Swetom	(1) Stations, excluding labor and tankage	(3) Tank Maintenance	(4) Pipeline Maintenance (5) Communications	Subtotal *(6) Administration	Total	34" System (1) Stations. excluding labor	and tankage	Labor	(3) Tank Maintenance	(4) Pipeline Maintenance	(5) Communications	Subtotal	*(6) Administration	Total

Small tools, supplies, and automotive and maintenance equipment are included in station and pipeline maintenance and * Administration is computed as 40% of items (2), (3), (4) and (5). administration costs.

3. STATION OPERATING COST EXCLUDING LABOR AND TANKAGE

Southern Route	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Operating Horsepower per Hour Calgary-Britamoil Jct.	rV	9	2	12	45	132	268	272	284	296
Booster Pumps					19	23	27	28	28	28
Britamoil JctBellshill Lake	229	345	487	629	856	1,086	1,355	1,392	1,448	1,488
Booster Pumps	49	52	61	99	72	78	83	84	85	98
Edmonton-Bellshill Lake	1,113	1,520	1,990	2,560	3,200	3,960	4,470	5,240	6,110	7,040
Booster Pumps	150	169	187	206	225	243	255	271	287	303
Bellshill Lake Boosters	204	228	253	277	302	326	343	360	377	393
Total Without Main Line	1,750	2,323	2,985	3,780	4,719	5,848	6,801	7,647	8,619	9,634
Main Line, 30" System	17,480	24,420	33,850	44,000	56,900	70,200	81,600	94,100	108,300	121,000
Total, 30" System	9,230	26,740	36,840	47,780	61,620	76,050	88,400	101,750	116,920	130,630
Main Line, 34" System	8, 160	11,200	16,100	21,400	27,800	35,000	41,800	48,800	57,100	64,700
Total, 34" System	9,910	13,520	19,090	25, 180	32,520	40,850	48,600	56,450	65,720	74,330
Operating Cost @ \$59.00 per Operating BHP: (000 Omitted)										
30" System	\$1,135	\$1,578	\$2,174	\$2,819	\$3,636	\$4,487	\$5,216	\$6,003	\$6,898	\$7,707
34" System	585	798	1,126	1,486	1,919	2,410	2,867	3,331	3,877	4,385

STATION OPERATING COST EXCLUDING LABOR AND TANKAGE (Cont'd) 3.

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Northern Route										
Operating Horsepower per Hour Main Line, 30" System	18,770	26,150	36,200	47,000	60,250	74,900	86,800	60,250 74,900 86,800 100,160 115,200 128,800	115,200	128,800
Total, 30" System	20,520	28,473	39, 185	50,780	64,969	80,748	93,601	107,807	123,819	138,434
Main Line, 34" System	8,860	12,120	17,330	23,050			44,600		60,950	68,900
1 Oca1, 31 Oystelli	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14,41	CTC 07	000,02	34,404	40,400	01,401	59,04(64,569	(8,534
Operating Cost @ \$59.00 per Operating BHP: (000 Omitted)										
30" System	\$1,211	\$1,680	\$2,312	\$1,680 \$2,312 \$2,996 \$3,833 \$4,764	\$3,833		\$5,525	\$6,361	\$7,305	\$8,168
34" System	929	852	1,199	1,199 1,583	2,034	2,564	3,033	3,519	3,519 4,105 4,634	4,634

STATION OPERATING COST DETAILS

Fuel (crude oil) consumption per BHP Hour Fuel oil cost per barrel, including average transportation cost Fuel oil cost per pound Fuel oil cost per BHP Hour	= 0.35 lb. = \$3.00 = \$0.01 = \$0.0035	
Fuel oil cost per BHP Year @ 98% Load Factor = 8585 hrs. x \$0.0035	=	\$30.05
Lube oil consumption = 1 gallon/3000 BHP Hours		
Lube oil cost per gallon, including average transportation cost	= \$0.90	
Lube oil cost per BHP Hour Lube oil cost per BHP Year (8585 hrs.)	= \$0.003 =	\$ 2.60
Repairs and renewals, excluding labor per operating BHP Year (Operating HP is approximately		
75% of installed HP for ten-year period)		\$26.00
Total annual operating cost per operating BHP, excluding labor		\$58.65
		(\$59.00)

4. ESTIMATED ANNUAL STATION PERSONNEL EXPENSE

1)	Edmonton	
	 Station superintendent Shift operators Electrical technician Electrician Utility men Social benefits 	\$ 9,600 26,400 7,200 6,000 33,600 16,600 \$99,400
2)	Bellshill Lake	
	 Station superintendent Shift operators Electrical technician Electrician Utility men Social benefits 	\$ 9,600 26,400 7,200 6,000 33,600 16,600 \$99,400
3)	Calgary	
	1 Station superintendent 4 Shift operators Social benefits	\$ 8,400 24,000 <u>6,500</u> \$38,900
4)	Britamoil Junction	
	1 Station superintendent 4 Shift operators 2 Utility men Social benefits	\$ 8,400 24,000 8,400 8,200 \$49,000
5)	Montreal Manifold	
	1 Chief operator 4 Shift operators 4 Meter and utility men Social benefits	\$ 7,800 24,000 24,000 $\frac{11,200}{$67,000}$
Tota	l labor excluding Main Line stations	\$353,700

6) Typical Main Line Station

1	Station superintendent	\$ 9.000
4	Shift operators	26,400
4	Utility men	16.800
	Social benefits	10,400
		\$62,600

SUMMARY - SOUTHERN ROUTE

	3 0 "	System	3 4 "	System
	1960-2	1963-9	1960-3	1964-9
	8 Stations	16 Stations	5 Stations	10 Stations
(1) Labor excluding Main Line				
Stations	\$353,700	\$353,700	\$353,700	\$353,700
(2) Station Labor	438,200	939,000	250,400	563,400
Total	\$792,000	\$1,293,000	\$604,000	\$917,000

Note: Bellshill Lake is a Main Line station but included under Item (1) and excluded from Item (2).

SUMMARY - NORTHERN ROUTE

	30 11	System	3 4 "	System
	1960-2	1963-9	1960-3	1964-9
	9 Stations	18 Stations	6 Stations	12 Stations
(1) Labor excluding Main Line	\$353.700	\$353,700	\$353,700	ф252 7 00
Stations	\$353,700	\$353,700	\$353,700	\$353,700
(2) Station Labor	500,800	1,064,200	313,000	688,600
Total	\$854,500	\$1,417,900	\$666,700	\$1,042,300

5. ESTIMATED ANNUAL TANK FARM MAINTENANCE

		TANKAGE In Barrels		
	1960-64	1965-69		
l) Calgary	50,000	, 50,000		
2) Britamoil Junction	30,000	30,000		
3) Edmonton	800,000	1,100,000		
4) Bellshill Lake	877,000	1,315,500		
Total Barrels	1,757,000	2,495,500		
Maintenance Cost per Year @ \$0.04/barrel	\$ 70,000	\$ 100,000		

6. ESTIMATED ANNUAL PIPELINE MAINTENANCE

			SOUTHER		
		_	30" System	3	34" System
1)	73.5 Miles, 10 3/4" OD Pipe @ \$250/Mile	\$	18,000	\$	18,000
2)	71.5 Miles, 16" OD Pipe @ \$250/Mile		18,000		18,000
3)	100 Miles, 26" OD Pipe @ \$350/Mile		35,000		35,000
4)	750 Miles, 30" Pipe @ \$600/Mile		450,000		
4a)	750 Miles, 34" OD Pipe @ \$700/Mile				525,000
5)	1169 Miles, 30" Pipe @ \$400/Mile		468,000		
5a)	1169 Miles, 34" OD Pipe @ \$450/Mile	_		_	526,000
	TOTAL PIPELINE MAINTENANCE PER YEAR	\$	989,000	\$1	, 122, 000
			NORTHER	N R	OUTE
	Adding 115 Miles @ \$600/Mile for 30" \$700/Mile for 34"	\$1	,058,000	\$1	,202,500
7.	ESTIMATED ANNUAL COMMUNICATI	ONS	COST		
	Leased wire and teletype, 2164 Miles of \$200/Mile per year, Southern Route			\$	432,000
	2279 Miles of \$200/Mile per year, Northern Route			\$	455,000

8. OPERATING COSTS IN UNITED STATES, SOUTHERN SYSTEM

30" System Station Operating Cost Within U.S. (Excluding Labor and Tankage)

Year	BHP/Station	BHP in U.S. (3 sta. 1960-2) (6 sta. 1963-9)	Operating Cost @ \$59.00/BHP
1960	2185	6560	\$ 387,000
1961	3052	9160	540.400
1962	4231	12690	748,700
1963	2750	16500	973,500
1964	3556	21340	1,259,100
1965	4388	26330	1,553,500
1966	5100	30600	1,805,400
1967	5881	35290	2,082,100
1968	6768	40610	2,396,000
1969	7562	45370	2,676,800

34" System

(2 sta. 1960-3)	
(4 sta. 1964-9)	
1960 1632 3264	\$ 192,600
1961 2240 4480	264,300
1962 3220 6440	380,000
1963 4280 8560	505,000
1964 2780 11120	656,100
1965 3500 14000	826,000
1966 4180 16720	986,480
1967 4880 19520	1,151,700
1968 5710 22840	1,347,600
1969 6470 25880	1,527,000

Station Labor Expense in U.S.

\$ 62,600/ Main Line Station

30" System		34" System		
1960-2 3 Stations	1963-9 6 Stations	1960-3 2 Stations	1964-9 4 Stations	
\$187,800	\$375,600	\$125,200	\$250,400	

Pipeline Maintenance - Estimated Annual in U.S.

Milepost out of U.S. Milepost into U.S.			
	767.5 Miles in U.S.	30" System	34" System
200 Miles, 30" O.D.	Pipe @ \$600/Mile	120,000	
200 Miles, 34" O.D.	Pipe @ \$700/Mile		140,000
567.5 Miles, 30" O. I	D. Pipe @ \$400/Mile	227,000	
567.5 Miles, 34" O. I	D. Pipe @ \$450/Mile		255,400
		\$347,000	\$395,400

Communications Cost in U.S.

767.5 Miles @ \$200/Mile \$153,500

U.S. PORTION - ANNUAL OPERATING COSTS

696

229

376 347 154

554 351

\$3,905

1960 1961
\$ 387 \$ 540
154 154
1,076 1,229 276 276
₩

52 \$1,348 \$1,52	35 250 25 35 395 39 34 154 15	2,147	1 \$2,467 \$2,64
\$1,152	250 395 154	1,95	\$2,271
\$ 986	250 395 154	1,785	\$2,105
\$ 826	250 395 154	1,625	\$1,945
\$ 656	250 395 154	1,455	\$1,775
\$ 205	125 395 154	1,179	\$1,449
\$ 380	125 395 154	1,054	
\$ 264	125 395 154	938	\$1,208
r \$ 193	125 395 154	867	\$1,137
(1) Stations, excluding labor and tankage (2) Station and Terminal	Labor (3) Pipeline Maintenance (4) Communications	Subtotal (5) Administration	Total

50 95 54 56 26 26 40

Note: No tank maintenance in the United States

9. OPERATING COSTS IN CANADA, SOUTHERN SYSTEM

Main Line Station Operating Costs, within Canada (excluding labor and tankage)

30" System

Year	BHP/Sta. (Main Line only)	BHP in Canada (Main Line only) (5 Sta. 1960-2) (10 Sta. 1963-9)	Total BHP (without Main Line)	Total, 30" System in Canada	Operating Costs @ \$59.00/BHP
1960	2,185	10,930	1,750	12,680	\$ 748,120
1961	3,052	15,260	2,323	17,583	1,037,400
1962	4,231	21,155	2,985	24,140	1,424,300
1963	2,750	27,500	3,780	31,280	1,845,500
1964	3,556	35,560	4,719	40,279	2,376,460
1965	4,388	43,880	5,848	49,728	2,933,950
1966	5,100	51,000	6,801	57,801	3,410,260
1967	5,881	58,810	7,647	66,457	3,920,960
1968	6,768	67,680	8,619	76,299	4,501,640
1969	7,562	75,620	9,634	85,254	5,029,990

34" Sy	stem	(3 Sta. 1960-3) (6 Sta. 1963-9)		Total, 34"	
1960	1,632	4,896	1,750	6,646	\$ 392,110
1961	2,240	6,720	2,323	9,043	533,540
1962	3,220	9,660	2,985	12,645	746,060
1963	4,280	12,840	3,780	16,620	980,580
1964	2,780	16,680	4,719	21,399	1,262,540
1965	3,500	21,000	5,848	26,848	1,584,030
1966	4,180	25,080	6,801	31,881	1,880,980
1967	4,880	29,280	7,647	36,927	2,178,690
1968	5,710	34,260	8,619	42,879	2,529,860
1969	6,470	38,820	9,634	48,454	2,858,790

Station Labor Expense in Canada

Typical Main Line Station - \$62,600/year

	30" S	System	34" System				
	1960-2 5 Stations	1963-9 10 Stations	1960-3 3 Stations	1964-9 6 Stations			
l) Labor excluding Main Line Stations	\$353,700	\$353,700	\$353,700	\$353,700			
2) Station Labor	250,000	563,400	125,200	313,000			
Total	\$603,700	\$917,100	\$478,900	\$666,700			

Note: Bellshill Lake is a Main Line station but included under Item (1) and excluded from Item (2).

Pipeline Maintenance - Estimated Annual in Canada

	30" System	34" System
1) 73.5 Miles, 10 3/4" O.D. Pipe @ \$250/mile	\$ 18,000	\$ 18,000
2) 71.5 Miles, 16" O.D. Pipe @ \$250/mile	18,000	18,000
3) 100 Miles, 26" O.D. Pipe @ \$350/mile	35,000	35,000
4) 550 Miles, 30" O.D. Pipe @ \$600/mile	330,000	
5) 550 Miles, 34" O.D. Pipe @ \$700/mile		385,000
6) 601.5 Miles, 30" O.D. Pipe @ \$400/mile	240,600	
7) 601.5 Miles, 34" O.D. Pipe @ \$450/mile		270,700
Total pipeline maintenance cost/year	\$641,600	\$726,700

Communications

1396. 5 Miles @ \$200/mile/year \$279,300

CANADIAN PORTION - ANNUAL OPERATING COSTS

(000 Omitted)

8 1969	2 \$5,030	7 917		0 6,968	5 \$7,743	3 \$2,859	199 7	001 00	727	279	3 4,632	2 \$5.341		5 \$7,743	5		\$5,341 2,646 3 \$7,987
1968	\$4,502	917		6,440	\$7,215	\$2,530	199	100	727	279	4,303	\$5.012		\$7,215	\$10,839		\$5,012 2,467 \$7,479
1967	\$3,921	917	642	5,859	\$6,634	\$2,179	199	100	727	279	3,952	\$4.661		\$6,634	\$9,944		\$4,661 2,271 \$6,932
1966	\$3,410	917	642	5,348	\$6,123	\$1,881	299	100	727	279	3,654	\$4.363		\$6, 123	\$ 9,156		\$4,363 2,105 \$6,468
1965	\$2,934	917	642	4,872	\$5,647	\$1,584	299	100	727	279	3,357	\$4.066		\$5,647	\$8,429		\$4,066 1,945 \$6,011
1964	\$2,376	917	642 279	4,284	\$5,047	\$1,263	299	20	727	279	3,006	\$3,703		\$5,047	\$7,534		\$3,703 1,775 \$5,478
1963	\$1,846	917	642 279	3,754	\$4,517	\$ 981	479	20	727	279	2,536	\$3,158		\$4,517	\$6,719		\$3,158 1,449 \$4,607
1962	\$1,424	604	642 279	3,019	\$3,657	\$ 746	479	20	727	279	2,301	\$2,923		\$3,657	\$5,371		\$2,923 1,324 \$4,247
1961	\$1,037	604	642 279	2,632	\$3,270	\$ 534	479	20	727	279	2,089	\$2,711		\$3,270	1,505		\$2,711 1,208 \$3,919
1960	\$ 748	604	642	2,343	\$2,981	\$ 392	479	20	727	279	1,947	\$2,569		\$2,981	\$4,333		\$2,569 1,137 \$3,706
30" System	and tankage (2) Station and Terminal	(3) Tank Maintenance	(4) Pipeline Maintenance (5) Communications	Subtotal (6) Administration	Total	34" System (1) Stations, excluding labor and tankage (2) Station and Terminal	Labor	(3) Tank Maintenance	(4) Pipeline Maintenance	(5) Communications	Subtotal	(6) Administration Total	30" System	Operating Cost - Canada	Operating Cost - U.S. Total	34" System	Operating Cost - Canada Operating Cost - U.S. Total

C. FINANCIAL DATA

1. DISCUSSION

a. Alternate Systems

Financial projections have been made of both 30" and 34" Systems, following two different routes. The Southern Route includes a portion within the United States. Such portion has been treated herein as a separate company, subsidiary to the Canadian portion. The studies here presented are designated as follows:

- 1. (a) Southern Alternate 30" System
 - (b) U.S. Subsidiary 30" System
- 2. (a) Southern Alternate 34" System
 - (b) U.S. Subsidiary 34" System
- 3. Northern Alternate 30" System
- 4. Northern Alternate 34" System

b. Financial Data and Assumptions

Basic construction costs are set out earlier in this report. From these a schedule of capital requirements and sources of capital has been prepared.

Interest during the 1958-59 construction period has been provided at 5.25%, the assumed average annual interest rate, for a period of nine months. Interest during construction on facilities constructed in later years has been provided at the rate of 2.125% which represents interest for about five months. Basic is the assumption that all new facilities will be put into operation as of the beginning of the following calendar year.

Working capital has been provided in an amount equal to 90 days or 25% of the estimated fifth year operating expense.

Line fill, a substantial item, has been assumed to be the responsibility of the pipeline and has been computed at a cost of \$2.70 per barrel.

Finance expense has been provided in an amount equal to 2.027% of total capital requirements or 2.07% of such requirements exclusive of that for finance expense. This percentage

is an average for the several types of securities here involved and is patterned closely to the cost of recent issues of comparable new companies.

As sources of capital the following proportions might be assumed. Those in the first column have been used. They closely approximate those of a number of large transmission lines.

Mortgage bonds	55%	65%
Debentures	30%	20%
Common stock	15%	15%
Total	100%	100%

Quite possibly the mortgage bonds will be placed privately. The debentures and common stock likely will be sold publicly in units.

For these purposes the borrowing by both mortgages and debentures has been treated as a single debt. An average interest rate of 5.25% has been assumed. Probably that for mortgages will be a little less and that for debentures a little more.

Debt reduction has been computed as straight line annual sinking fund payments of 1/21 of the total debt beginning in the year 1963. For the purposes of computing annual interest all borrowings, subsequent to the initial 1958-59 period, and all repayments have been treated as occurring at mid-year.

Operating expense for each year is set out earlier in the report.

Advalorem or property taxes have been provided at the rate of 1.2% of initial cost of all fixed assets in Canada and 2.0% of those in the United States.

Depreciation has been computed at the composite straight line rate of 3.5% per annum on the beginning of the year investment.

Interest and amortization of finance expense is the aggregate of interest, computed as heretofore described, and amortization of finance expense at the rate of 4% per annum.

For the purposes of computing cost of service there has

been included a return of 7.5% on total investment reduced by accumulated straight line depreciation. This return is, in the cost of service schedules, the total of the columns entitled "interest" and "required net profit".

Income taxes have been provided at 47% for Canadian profits and 54% of those in the United States. Income taxes shown as expense or cost are computed on profits based on straight line 3.5% depreciation. Such taxes are divided into two categories, paid and deferred, on the assumption that taxes will be paid on profits after deducting 6.5% declining balance depreciation. This difference in book and tax depreciation affects nothing except the conservation of cash during the first ten years of operations.

c. Statements

For each alternate system the cost of service has been first computed for each of the years 1960-69, inclusive. Taking into account numerous economic factors, including the financibility of the systems, the cost of service per barrel indicated for 1964, the fifth year of operation, has been selected as an illustrative tariff.

Then, based upon such illustrative tariff and annual throughputs, provided and set out earlier in this report, proforma financial statements for the two 30" systems have been prepared.

For cost of service and pro forma statement purposes the transportation costs through the United States portion of the Southern Alternate has been treated as a cost to the Canadian system. Thus, the Canadian system collects a tariff for the entire shipment and pays to the U.S. subsidiary the portion allocable to it. In reviewing the income statements and balance sheets of the Southern Alternate it must be remembered that profits, assets, debts, capital, etc. are reflected partly in the statements for the Southern Alternate and partly in those for the U.S. Subsidiary.

For purposes of ready comparison there follows a tabulation of the per barrel cost of service of each alternate for each year. These figures are, of course, based upon the foregoing assumptions and assumed throughputs, consistently applied.

		Systems	34" Systems					
Year	Southern	Northern	Southern	Northern				
1960	\$.758	\$.823	\$.845	\$. 938				
1961	. 665	. 727	. 735	. 813				
1962	. 605	. 662	. 646	. 715				
1963	. 553	. 605	. 589	. 652				
1964	. 518	. 566	. 543	. 602				
1965	. 479	. 522	. 500	. 555				
1966	. 454	. 494	. 471	. 522				
1967	. 438	. 479	. 448	. 495				
1968	. 415	. 454	. 421	. 465				
1969	. 396	. 432	. 399	. 440				

Hereafter there is presented, for the two 30" systems, the following pro forma statements:

Income and Expense

Balance Sheets

Cash Receipts and Disbursements

Capitalization

Cost of Service

Fixed Assets, Depreciation and Deferred Income Taxes

Debt Service

There is also submitted cost of service studies of the 34" alternates.

ALBERTA-MONTREAL PIPELINE

PRO FORMA STATEMENT OF INCOME AND EXPENSE

			(000 OMITTED)	red)						
	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Revenue	\$ 37,814	\$ 42,352	\$ 46,889	\$ 51,427	\$ 55,971	\$ 60,502	\$ 63,603	\$ 66,186	\$ 69,805	\$ 72,905
Revenue Deductions										
Operating Expense	2,981	3,270	3,657	4,517	5,047	5,647	6. 123	6.634	7 215	7 743
Depreciation (Straight Line)	7,645	7,645	7,659	7,902	7,909	8, 137	8, 137			8 269
Ad Valorem Tax	2,621	2,621	2,621	2,709	2,711	2,789	2,789			2,835
Transportation Through U.S. Subsidiary Income Taxes	12, 191	13,654	15,117	16,580	17,995	19,507	20, 505	21,338	22,505	23,504
Paid					2,797	5. 188	6 544	7 594	0 4 4	10 242
2 Deferred	526	1,824	3,063	3,927	2,594	1,319	994	780	424	10, 646
l Total	25,964	29,014	32,117	35,635	39,053	42,587	45,092	47,288	50, 203	52,737
Net Income Before Interest	11,850	13,338	14,772	15,792	16,918	17,915	18,511	18,898	19,602	20,168
Interest and Amortization of Finance Expense	11,257	11,281	11,318	11,364	10,839	10,578	10,011	9,455	9,025	8,457
Annual Net Income	593	2,057	3,454	4,428	6,079	7,337	8, 500	9,443	10,577	11,711
Cumulative Earned Surplus	593	2,650	6,104	10,532	16,611	23,948	32,448	41,891	52,468	64,179
Rate Base (Capital less Depreciation)	242, 594	235,349	234,690	226,988	225,579	217,442	209,602	204,014	195,745	187,476
Return on Rate Base	4.9%	5.7%	6.3%	7.0%	7.5%	8.2%	8.8%	9.3%	10.0%	10.7%
Return on Common Stock	1.5%	5.1%	8.6%	11.1%	15.2%	18.3%	21.2%	23.6%	26.4%	29.3%
Ratio of Cash Available From Earning to Interest Expense	1.8	2.1	2.4	2.5	2.5	2.6	2.9	2.9	3,2	3.4

ALBERTA-MONTREAL PIPELINE SOUTHERN ALTERNATE -- 30" SYSTEM

PRO FORMA BALANCE SHEETS

1969		\$236, 248 79, 721 156, 527 86, 030 1, 262 24, 089 3, 358 271, 266	40,080 151,412 15,595 64,179 271,266
1968		\$236, 248 71, 452 164, 796 76, 497 1, 262 24, 089 3, 582 270, 226	40,080 162,227 15,451 52,468
1967		\$236, 248 63, 183 173, 065 67, 818 1, 262 24, 089 3, 806	40,080 173,042 15,027 41,891
1966		\$ 232, 821 55, 034 177, 787 60, 906 1, 262 24, 089 4, 030	40,080 181,299 14,247 32,448 268,074
1965		\$232,484 46,897 185,587 53,903 1,262 24,089 4,254	40,080 191,814 13,253 23,948 269,095
1964		\$232, 484 38, 760 193, 724 47, 701 1, 262 24, 089 4, 478	40,080 202,629 11,934 16,611 271,254
1963		\$225,971 30,851 195,120 41,723 1,262 24,089 4,702 266,896	40,080 206,944 9,340 10,532 266,896
1962		\$225, 766 22, 949 202, 817 36, 062 1, 262 24, 089 4, 926 269, 156	40,080 217,559 5,413 6,104 269,156
1961		\$218,823 15,290 203,533 21,605 1,262 24,089 5,150 5,150	40,080 210,559 2,350 2,650 255,639
1960		\$218, 426 7, 645 210, 781 9, 852 1, 262 24, 089 5, 374 251, 358	40,080 210,159 526 593 251,358
1959		\$218,426 218,426 1,262 24,089 5,598 250,239	40 , 080 210, 159 250, 239
	Assets	Fixed Assets Reserve for Depreciation Cash Working Capital Line Fill Unamortized Finance Expense Total	Liabilities and Capital Common Stock Long Term Debts Reserve for Deferred Income Taxes Earned Surplus

ALBERTA-MONTREAL PIPELINE

PRO FORMA STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

1969	\$ 11,711 8,269 144	224	20,348		10,815	9, 533	86,030
1968	\$10,577 8,269 424	224	19,494		10,815	8,679	76,497
1967	\$ 9,443 8,149	224 18,596 2,558	21, 154	3,356	10,815	6,912	67,818
1966	\$ 8,500 8,137 994	224	18,155	330	10,815	7,003	906,09
1965	\$ 7,337 8,137 1,319	224	17,017		10,815	6,202	53, 903
1964	\$ 6,079 7,909 2,594	224	23,306	6,377	10,815	5,978	47,701
1963	\$ 4,428 7,902 3,927	224	16,681	201	10,815	5,661	41,723
1962	\$ 3,454 7,659 3,063	224 14,400 7,000	21,400	6,799	6,943	14,457	36,062
1961	\$ 2,057 7,645 1,824	224	12,150	3 8 %	397	11,753	21,605
1960	\$ 593 7,645 526	224	8,988			8,988	9,852
1958-59	↔	210,159	250,239	210, 151 8, 275 24, 089 1, 262 5, 598	249,375	864	864
Cash Receipts	From Operations Net Profit Depreciation Deferred Income Tax Amortization of Finance	Expense On Total Borrowed Capital Common Stock	Total Cash Disbursements	Construction Interest during Construction Line Fill Working Capital Finance Expense	Debt Keduction Total	Annual Excess of Cash Receipts	Cumulative Cash Balance

ALBERTA-MONTREAL PIPELINE

CAPITALIZATION

Total	\$ 227, 603 8, 645 236, 248 1, 262 24, 089 5, 598	267, 197	146, 958 80, 159 227, 117 40, 080 267, 197
1967		3,427	2,558
1966	\$ 330	337	300
1965			
1964	\$ 6,377	6, 513	6,500
1963		202	200
1962	\$ 6,799	6,943	7,000
1961		397	400
1960			
1958-59	\$ 210,151 8,275 218,426 1,262 24,089 5,598	249,375	130,000 80,159 210,159 40,080 250,239
Capital Requirements	Construction Interest during Construction Total Working Capital Line Fill Finance Expense	Total Sources of Capital	Borrowed Capital Mortgages Debentures Total Common Stock

ALBERTA-MONTREAL PIPELINE

(000 OMITTED)

COST OF SERVICE

Year	Operating	Ad Valorem Tax	Straight Line Depreciation	Interest and Amortization	U.S. Subsidiary's Cost of Service	Normalized Income Tax	Required Net Profit	Total Cost of Service	MBP Yr.	Cost of Service Per Bbl.
096	\$ 2,981	\$ 2,621	\$ 7,645	\$ 11,257	\$ 17,905	\$ 6,064	\$ 6,838	\$ 55,311	73,000	\$ 0.758
961	3,270	2,621	7,645	11,281	17,497	5,649	6,370	54,333	81,760	0.665
7961	3,657	2,621	7,659	11,318	17,691	5,573	6,284	54,803	90,520	0.605
1963	4,517	2,709	7,902	11,364	17,720	5,019	2,660	54,891	99, 280	0.553
1964	5,047	2,711	2,909	10,839	17,995	5,391	6,079	55, 971	108,040	0.518
5961	5,647	2,789	8,137	10,578	17,955	5,081	5,730	55,917	116,800	0.479
9961	6,123	2,789	8,137	10,011	17,876	5,063	5,709	55, 708	122,786	0.454
2961	6,634	2,793	8,149	9,455	17,929	5,184	5,846	55,990	127,772	0.438
8961	7,215	2,835	8,269	. 9,025	17, 938	5,016	5,656	55,954	134,758	0.415
6961	7,743	2,835	8,269	8,457	17,895	4,970	5,604	55,773	140,744	0.396

ALBERTA-MONTREAL PIPELINE

SOUTHERN ALTERNATE -- 30" SYSTEM

FIXED ASSETS, DEPRECIATION AND DEFERRED INCOME TAXES

(000 OMITTED)

Income Taxes Deferred Annual Cumulative	. ↔	3,080	5, 738	8, 195	10,151	11,934	13,252	14,246	15,026	15,450	15,594
Income T Annual	· (3,080	2,658	2,457	1,956	1,783	1,318	994	780	424	144
Excess of Tax Depreciation	€	6,553	5,656	5, 228	4,161	3,793	2,805	2,115	1,660	905	306
Declining Balance Tax Depreciation @ 6, 5% Annual Remaining	! ₩	204, 228	191,324	185,380	173,522	168,333	157,391	147,476	141,094	131,923	123,348
Declini Tax Depre	ι •	14,198	13,301	12,887	12,063	11,702	10,942	10,252	608'6	9,171	8,575
Straight Line Depreciation @ 3.5% Annual Reserve	1 60	7,645	15,290	22,949	30,851	38,760	46,897	55,034	63,183	71,452	79,721
Straig Depreciat Annual	l (/)	7,645	7,645	7,659	7,902	7,909	8,137	8,137	8,149	8,269	8,269
Cost	\$ 218,426	218,426	218,823	225,766	225,971	232,484	232,484	232,821	236, 248	236, 248	236, 248
Addition	1958-59 \$ 218,426		397	6,943	205	6,513		337	3,427		
Year	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

foregoing income statement and balance sheets does not coincide with the above Until the year 1964 the deferrment of taxes and the reserve therefore on the due to carry forward losses in early year created by tax depreciation.

ALBERTA-MONTREAL PIPELINE SOUTHERN ALTERNATE -- 30" SYSTEM

DEBT SERVICE (000 OMITTED)

Interest and Amortization Expense	· 69	11,257	11,281	11,318	11,364	10,839	10,578	10,011	9,455	9,025	8,457
Interest Capitalized During Construction	\$ 8,275		00	144	4	136		7	7.1		
Total	\$ 8,275	11,257	11,289	11,462	11,368	10,975	10,578	10,018	9,526	9,025	8,457
Amortization of Finance Expense	ι (Λ)	224	224	224	224	224	224	224	224	224	224
Interest @ 5.25%	\$ 8,275	11,033	11,065	11,238	11,144	10,751	10,354	9,794	9,302	8,801	8,233
pal	\$ 210,159	210,159	210,559	217,559	206,944	202,629	191,814	181,299	173,042	162,227	151,412
Principal Net Additions (Reductions)	\$ 210,159		400	7,000	(10,615)	(4,315)	(10,815)	(10,515)	(8,257)	(10,815)	(10,815)
Year	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

PRO FORMA STATEMENT OF INCOME AND EXPENSE	(000 OMITTED)	<u>1960</u> <u>1961</u> <u>1962</u> <u>1963</u> <u>1964</u> <u>1965</u> <u>1966</u> <u>1967</u>	7 \$16,580 \$18,043 \$1	
			ıne	

		1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
	Revenue	\$ 12,191	\$ 13,654	\$ 15,117		\$ 18,043		10	\$ 21,338	\$ 22,505	\$ 23, 504
	Revenue Deductions Operating Expense	1,352	1,505	1,714	2,202	2,487	2,782	3,033	3,310	3,624	3, 905
	Straight Line Depreciation	3,540	3,540	3,540	3,666	3,666	3,733	3,733	3, 733	3,797	3, 797
	Ad Valorem Tax Income Taxes	2,023	2,023	2,023	2,095	2,095	2, 133	2,133	2, 133	2,170	2,170
	Paid					1,533	2,784	3,490	4.031	4.727	5, 391
- 1	Deferred	296	1,004	1,670	2,062	1,286	687	512	411	219	71
14	Total	7,211	8,072	8,947	10,025	11,067	12, 119	12,901	13,618	14,537	15,334
_	Net Income Before Interest	4,980	5,582	6,170	6,555	9.976	7,387	7,604	7,720	7,968	8,170
	Interest and Amortization of Finance Expense	4,727	4,727	4,747	4,798	4,575	4,431	4,194	3,936	3,754	3,517
	Net Income	253	855	1,423	1,757	2,401	2,956	3,410	3, 784	4,214	4,653
	Cumulative Earned Surplus	253	1,108	2,531	4,288	6,689	9,645	13,055	16,839	21,053	25,706
	Rate Base (Capital less Depreciation)	101,437	97,997	98,057	94,391	92,725	88,992	85,259	82,030	78,233	74,536
	Rate of Return	4.9%	5.7%	6.3%	6.9%	7.5%	8.3%	8.9%	9.4%	10.2%	11.0%
	Rate of Return on Common Stock	1.5%	5.2%	8.5%	10.5%	14.4%	17.5%	20, 5%	22.6%	25.2%	27.8%
	Ratio of Cash Available From Earnings to Interest Expense	1.9	2.1	2,4	2.6	2.6	2.7	2.8	3.0	3.2	s. 4.

ALBERTA-MONTREAL PIPELINE

U.S. SUBSIDIARY -- 30" SYSTEM PRO FORMA BALANCE SHEETS

(000 OMITTED)

1969	\$108,481 36,745 71,736 40,039 622 1,308	16, 693 63, 088 8, 218 25, 706 113, 705	
1968		16, 693 67, 588 8, 147 21, 053 113, 481	
1967	\$ 108, 481 29, 151 79, 330 32, 114 622 1, 482	16, 693 72, 088 7, 928 16, 839 113, 548	
1966	\$ 106, 664 25, 418 81, 246 29, 812 1, 569	16, 693 75, 984 7, 517 13, 055	
1965	\$ 106, 664 21, 685 84, 979 26, 570 1, 656	16,693 80,484 7,005 9,645	
1964		16, 693 84, 984 6, 318 6, 689 114, 684	
1963		16,693 87,484 5,032 4,288	
1962	\$ 104, 746 9 10, 620 94, 126 17, 513 622 1, 917	16, 693 91, 984 2, 970 2, 531 114, 178	
1961	\$ 101, 143 7,080 94,063 10,796 622 2,004	16,693 88,384 1,300 1,108	
1960	\$ 101, 143 \$ 3, 540 97, 603 5, 310 622 2, 091	16,693 88,384 296 253 105,626	
1959	\$ 101, 143 \$ 101, 143 \$ 101, 143 \$ 101, 143 \$ 105.077	16,693	
Assets	Fixed Assets Reserve for Depreciation Balance Cash Working Capital Unamortized Finance Expense	Liabilities and Capital Capital Stock Long Term Debts Reserve for Deferred Income Taxes Earned Surplus	

ALBERTA-MONTREAL PIPELINE

PRO FORMA STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

(000 OMITTED)

1960 1961 1962 1963 1964	\$ 253 \$ 855 \$ 1,423 \$ 1,757 \$ 2,401 3,540 3,540 3,540 3,666 3,666 296 1,004 1,670 2,062 1,286	78 78 78 78 78 78 78 78 87 87 87 88 88 89 80 <th>4,176 5,486 6,720 7,572 7,440 3,600 2,000</th> <th>4,176 5,486 10,320 7,572 9,440</th> <th></th> <th>3,528 1,879 75 39</th> <th>4,500 4,500</th> <th>3,603 4,500 6,418</th> <th>4,176 5,486 6,717 3,072 3,022</th> <th>5,310 10,796 17,513 20,585 23,607</th>	4,176 5,486 6,720 7,572 7,440 3,600 2,000	4,176 5,486 10,320 7,572 9,440		3,528 1,879 75 39	4,500 4,500	3,603 4,500 6,418	4,176 5,486 6,717 3,072 3,022	5,310 10,796 17,513 20,585 23,607
Cash Receipts	Earnings Net Profit \$ \$ Depreciation Deferred Income Taxes Amortization of Finance	Expense	Total Borrowed Capital 88,384 Common Stock 16,693	105,077	Cash Disbursements	Construction 97,311 Interest during Construction 3,832 Finance Expense 2,178 Working Capital 622		Total 103,943 =	Annual Excess of Receipts 1, 134	Cumulative Cash Balance 1,134 ====================================

ALBERTA-MONTREAL PIPELINE

U.S. SUBSIDIARY -- 30" SYSTEM

(000 OMITTED)

CAPITALIZATION

Total	\$ 104, 497 3, 984 108, 481	111,281		61,204	94,588	111,281
1967	\$ 1,779	1,817		604	604	604
1966						
1965						
1964	\$1,879 39 1,918	1,918		2,000	2,000	2,000
1963						
1962	\$ 3,528	3,603		3,600	3,600	3,600
1961						
1960						
1958-59	\$ 97,311 3,832 101,143 622 2,178	103,943		55,000	88,384	105,077
	Capital Requirements Construction Interest during Construction Total Working Capital Finance Expense	Total	Sources of Capital Borrowed Capital	Mortgages Debentures	Total Common Stock	Total

ALBERTA-MONTREAL PIPELINE

COST OF SERVICE (000 OMITTED)

Total Cost of Cost of Service Service MBP Yr. Per Bbl.		\$ 17,905 73,000 \$ 0.245	17,497 81,760 0.214	17,691 90,520 0,195	17,720 99,280 0.177	17,995 108,040 0.167	17,955 116,800 0.154	17,876 122,786 0.146	17,929 127,772 0.140	17 030 134 750 0 133
Required Net Profit		\$ 2,881	2,623	2,607	2,281	2,379	2,243	2,200	2,216	2 113
Normalized Income Tax		\$ 3,382	3,079	3,060	2,678	2,793	2,633	2,583	2,601	2 480
Interest and Amortization		\$ 4,727	4,727	4,747	4,798	4,575	4,431	4,194	3,936	3 754
Straight Line Depreciation		\$ 3,540	3,540	3,540	3,666	3,666	3,733	3,733	3,733	3.797
Ad Valorem Tax		\$ 2,023	2,023	2,023	2,095	2,095	2,133	2,133	2,133	2,170
Operating Expense	, L	\$ 1,352	1,505	1,714	2,202	2,487	2,782	3,033	3,310	3.624
Year	0,01	1960	1961	1962	1963	1964	1965	1966	1967	1968

ALBERTA-MONTREAL PIPELINE

U.S. SUBSIDIARY -- 30" SYSTEM

FIXED ASSETS, DEPRECIATION AND DEFERRED INCOME TAXES

Income Taxes Deferred	ι «	1,638	3,046	4,365	5,406	6,318	7,005	7,517	7,928	8,147	01.0
Income	1 69	1,638	1,408	1,319	1,041	912	687	512	411	219	7.1
Excess of Tax Depreciation	l € 0	3,034	2,607	2,442	1,927	1,688	1,273	948	761	405	132
Declining Balance Tax Depreciation @ 6.5% Annual Remaining	ι ()	94,569	88,422	86,043	80,450	77,014	72,008	67,327	64,650	60,448	56.519
Declin Tax Depre	1	6,574	6,147	5,982	5,593	5,354	5,006	4,681	4,494	4,202	3,929
Straight Line Depreciation @ 3.5% Annual Reserve	ı ₩	3,540	7,080	10,620	14,286	17,952	21,685	25,418	29,151	32,948	36.745
Strai Depreciat Annual	ı ₩	3,540	3,540	3,540	3,666	3,666	3,733	3,733	3,733	3,797	3,797
Balance	\$ 101,143	101, 143	101, 143	104,746	104,746	106,664	106,664	106,664	108,481	108,481	108,481
Addition	958-59 \$ 101,143			3,603		1,918			1,817		
Year	958-59	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969

ALBERTA-MONTREAL PIPELINE

Interest and Amortization Expense	;	4,727	4,727	4,747	4,798	4,575	4,431	4,194	3,936	3,754	3,517
Interest Capitalized During Construction	\$ 3,832			75		39			% %		
Total	\$ 3,832	4,727	4,727	4,822	4,798	4,614	4,431	4,194	3,974	3,754	3,517
Amortization of Finance Expense	ι ()	87	8 2	87	87	87	87	87	87	87	28
Interest @ 5.25%	\$ 3,832	4,640	4,640	4,735	4,711	4,527	4,344	4,107	3,887	3,667	3,430
pal	\$ 88,384	88,384	88,384	91,984	87,484	84,984	80,484	75,984	72,088	67,588	63,088
Principal Net Additions (Reductions)	\$ 88,384			3,600	(4,500)	(2, 500)	(4, 500)	(4, 500)	(3, 896)	(4, 500)	(4, 500)
Year	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

PRO FORMA STATEMENT OF INCOME AND EXPENSE

(000 OMITTED)

Revenue	\$ 41,318	\$ 46,271	\$ 51,234	\$ 56,192	\$ 61,151	1965	1966	\$ 72,319	1968 \$ 76,273	1969
Revenue Deductions										
Operating Expense	4,624	5,093	5,725	7,197	8,034	9,007	9,765	10,504	11,548	12,411
Depreciation	12,763	12,763	12,777	13,209	13,216	13,544	13,544	13,556	13,772	13,772
Ad Valorem Tax	4,376	4,376	4,381	4,529	4,531	4,644	4,644	4,648	4,722	4,722
Income Tax						c c				
Deferred	704	2,815	4.811	6.122	7.808	7,609	2, 106	11,652	13,804	15,866
Total	22,467	25,047	27,694	31,057	34, 241	37,488	39,966	42,098	44,956	47,388
Net Income Before Interest and Amortization of Finance Expense	18,851	21,224	23,540	25,135	26,910	28,504	29, 531	30,221	31,317	32,273
Interest and Amortization of Finance Expense	18,057	18,049	18,115	18, 231	17,369	16,897	15,984	15,121	14,499	13,685
Net Income	794	3,175	5,425	6,904	9,541	11,607	13,547	15,100	16,818	18,588
Cumulative Earned Surplus	794	3,969	9,394	16,298	25,839	37,446	50, 993	66,093	82, 911	101,499
Rate Base (Capital Less Depreciation)	388,988	376,225	375,448	362,239	358, 423	334,879	331,635	324,296	310,524	296,752
Return on Rate Base	4.8%	5.6%	6.3%	6.9%	7.5%	8.5%	8.9%	9.3%	10.1%	10.9%
Return on Common Stock	1.2%	4.9%	8.4%	10.7%	14.8%	18.0%	21.0%	23.4%	26.1%	28.8%
Ratio of Cash Available From Earnings to Interest	1,8	2.0	2.3	2.4	2,8	2.6	2.8	3.0	3,2	3.4

ALBERTA-MONTREAL PIPELINE

PRO FORMA BALANCE SHEET

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Assets											
Fixed Assets	\$ 364,670	\$ 364,670	\$ 365,067	\$377,400	\$377,605	\$ 386,983	\$ 386,983	\$387,320	\$393,487	\$393,487	\$393,487
Reserve for Depreciation		12,763	25,526								132,916
Balance	364,670	351,907	339,541	339,097	326,093	322, 255	308,711	295,504	288, 115	274,343	260,571
Cash	006	15,510	34,215	57,244	66,223	79,759	90,543	102,652	116,045	130,694	146,620
Line Fill	25,458	25,458	25,458	25,458	25,458	25,458	25,458	25,458	25,458	25,458	25,458
Working Capital	2,009	2,009	2,009	2,009	2,009	2,009	2,009	2,009	2,009	2,009	2,009
Unamortized Finance											
Expense	8,714	8,365	8,016	7,667	7,318	6,969	6,620	6,271	5,922	5,573	5,224
Total	401,751	403,249	409,239	431,475	427,101	436,450	433,341	431,894	437,549	438,077	439,882
Liabilities and Capital											
Common Stock	64,451	64,451	64,451	64,451	64,451	64,451	64,451	64,451	64,451	64,451	64,451
Borrowed Capital	337,300	337,300	337,300	349,300	331,900	323,900	306,500	289,400	278,217	260,817	243,417
Reserve for Deferred											
Income Taxes		704	3,519	8,330	14,452	22,260	24,944	27,050	28,788	29,898	30,515
Earned Surplus		794	3,969	9,394	16,298	25,839	37,446	50,993	66,093	82,911	101,499
	1										
Total	401,751	403,249	409,239	431,475	427,101	436,450	433,341	431,894	437,549	438,077	439,882

ALBERTA-MONTREAL PIPELINE

NORTHERN ALTERNATE -- 30" SYSTEM

PRO FORMA STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

Cash Receipts	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
arning Net Profit Depreciation Deferred Income Taxes Amortization of Finance	↔	\$ 794 \$ 12,763	\$ 3,175 9 12,763 2,815	\$ 5,425 ; 12,777 4,811	\$ 6,904 (5) 13,209 (6,122)	\$ 9,541 13,216 7,808	\$ 11,607 13,544 2,684	\$ 13,547 13,544 2,106	\$15,100 \$16,818 13,556 13,772 1,738 1,110		\$ 18, 588 13, 772 617
Expense		349	349	349	349	349	349	349	349	349	349
Total Borrowed Capital Common Stock	337,300 64,451	14,610	19, 102	23,362	26,584	30,914	28, 184	29,546	30,743	32,049	33,326
Total	401,751	14,610	19, 102	35,362	26, 584	40,314	28, 184	29,846	36,960	32,049	33,326
Cash Disbursements											
Construction Interest during Construction Line Fill Working Capital Finance Expense	350,855 13,815 25,458 2,009 8,714		389	12,076	201	9, 183		330	6,039		
Debt Reduction					17,400	17,400	17,400	17,400	17,400	17,400	17,400
Total	400,851		397	12,333	17,605	26,778	17,400	17,737	23,567	17,400	17,400
Annual Excess of Receipts	006	14,610	18,705	23,029	8,979	13,536	10,784	12, 109	13,393	14,649	15,926
Cumulative Cash Balance	006	15,510	34,215	57, 244	66, 223	79,759	90,543	102,652	116,045	130,694	146,620

ALBERTA-MONTREAL PIPELINE

OMITTED)
000)

Total	\$ 379, 073 14, 414 3 93, 487 2, 009 25, 458 8, 714 429, 668	236,317 128,900 365,217 64,451 429,668
1967	\$6,039	6,217
1966	\$ 330 337 337 337 337	300 300
1965		
1964	\$ 9, 183 195 9, 378	9,400
1963	\$ 201	
1962	\$ 12,076 257 12,333 12,333	12,000
1961	3 3 9 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
1960		
1958-59	\$ 350,855 13,815 364,670 2,009 25,458 8,714 400,851	208,400 128,900 337,300 64,451 401,751
Capital Requirements	Construction Interest during Construction Total Working Capital Line Fill Finance Expense Total	Sources of Capital Borrowed Capital Mortgages Debentures Total Common Stock

ALBERTA-MONTREAL PIPELINE

NORTHERN ALTERNATE -- 30" SYSTEM

COST OF SERVICE

Cost of Service Per Bbl.	\$ 0,823	0.727	0.662	0,605	0.566	0.522	0.494	0.479	0,454	0.432
MBP Yr.	73,000	81,760	90,520	99, 280	108,040	116,800	122,786	127,772	134,758	140,744
Total Cost of Service	\$60,796	59,466	59,949	60,028	61,099	61,015	60,709	61,189	61,126	60,762
Required Net Profit	\$11,117	10,168	10,044	8,937	9,513	8,969	8,889	9,201	8,790	8,571
Normalized Income Tax	\$ 9,859	9,017	8,907	7,925	8,436	7,954	7,883	8,159	7,795	7,601
Interest and Amortization	\$ 18,057	18,049	18,115	18,231	17,369	16,897	15,984	15,121	14,499	13,685
Straight Line Depreciation	\$ 12,763	12,763	12,777	13, 209	13,216	13,544	13,544	13,556	13,772	13,772
Ad Valorem Tax	\$4,376	4,376	4,381	4,529	4,531	4,644	4,644	4,648	4,722	4,722
Operating	\$4,624	5,093	5,725	7,197	8,034	6,007	9,765	10,504	11,548	12,411
Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

NORTHERN ALTERNATE -- 30" SYSTEM

FIXED ASSETS, DEPRECIATION AND DEFERRED INCOME TAXES

Income Taxes Deferred Annual Cumulative	ι «	5,142	10,224	14,956	18,793	22,260	24,944	27,050	28,788	29,898	30,515
Income T Annual	ι ω	5,142	5,082	4,732	3,837	3,467	2,684	2,106	1,738	1,110	617
Excess of Tax Depreciation	₩.	10,941	10,812	10,068	8,164	7,377	5,711	4,481	3,698	2,361	1,312
Declining Balance Tax Depreciation @ 6.5% Annual Remaining	l 69	362,300	339, 122	328,610	307,442	296, 227	276,972	259, 284	248, 197	232,064	216,980
Declin Tax Depre	ι «	23,704	23,575	22,845	21,373	20,593	19,255	18,025	17,254	16,133	15,084
Straight Line Depreciation @ 3.5% Annual Reserve	ι (/)	12,763	25,526	38,303	51,512	64,728	78,272	91,816	105,372	119, 144	132,916
Straig Deprecia Annual	ı ()	12,763	12,763	12,777	13,209	13,216	13,544	13,544	13,556	13,772	13,772
st Balance	\$364,670	364,670	365,067	377,400	377,605	386,983	386,983	387,320	393,487	393,487	393,487
Cost	\$ 364,670		397	12,333	205	9,378		337	6,167		
Year	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

NORTHERN ALTERNATE -- 30" SYSTEM

DEBT SERVICE

	Interest and Amortization Expense	· · · · · · · · · · · · · · · · · · ·	18,057	18,049	18,115	18,231	17,369	16,897	15, 984	15, 121	14,499	13.685
	Interest Capitalized During Construction	\$ 13,815		∞	257	4	195		2	128		
	Total	\$ 13,815	18,057	18,057	18,372	18,231	17,564	16,897	15,991	15,249	14,499	13,685
(000 OMITTED)	Amortization of Finance Expense	· \	349	349	349	349	349	349	349	349	349	349
0)	Interest @ 5.25%	\$ 13,815	17,708	17,708	18,023	17,882	17,215	16,548	15,642	14,900	14,150	13,236
	ipal Balance	\$ 337,300	337,300	337,300	349,300	331,900	323,900	306,500	289,400	278,217	260,817	243,417
	Principal Net Additions (Reductions)	\$ 337,300			12,000	(17,400)	(8,000)	(17,400)	(17,100)	(11, 183)	(17,400)	(17,400)
	Year	1958-59	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

SOUTHERN ALTERNATE -- 34" SYSTEM

COST OF SERVICE (000 OMITTED)

Cost of Service Per Bbl.	\$ 0,845	0, 735	0.646	0.589	0.543	0.500	0.471	0.448	0.421	0,399
MBP Yr.	73,000	81,760	90,520	99,280	108,040	116,800	122,786	127,772	134,758	140,744
Total Cost of Service	\$61,652	60,054	58,509	58,434	58,675	58,358	57,850	57,254	56,710	56, 126
Required Net Frofit	\$7,919	7,297	6,626	6,594	6,554	6,483	6,362	6,306	6,257	6,207
Normalized Income Tax	\$7,023	6,471	5,876	5,848	5,812	5,749	5,642	5,592	5,549	5,504
U.S. Subsidiary's Cost of Service	\$ 19,427	18,856	18,331	18,356	18,323	18, 134	18,020	17,842	17,671	17,485
Interest and Amortization	\$ 13,006	13,011	13,028	12,742	12,339	11,843	11,284	10,659	10,027	9,395
Straight Line Depreciation	\$8,719	8,719	8,732	8,740	8,895	8,998	9,070	9,081	9,081	9,081
Ad Valorem Tax	\$ 2,989	2,989	2,993	2,996	3,049	3,085	3,109	3,113	3,113	3,113
Operating	\$2,569	2,711	2,923	3,158	3,703	4,066	4,363	4,661	5,012	5,341
Year	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969

ALBERTA-MONTREAL PIPELINE

U. S. SUBSIDIARY -- 34" SYSTEM

COST OF SERVICE

Cost of Service Per Bbl.	\$ 0.266	0, 231	0, 203	0.185	0.170	0, 155	0, 147	0.140	0, 131	0 124
Cos Ser Per	\$ 0.	0.	0.	0.	0.	0.	0.	0.	0.	0
MBP Yr.	73,000	81,760	90,520	99, 280	108,040	116,800	122,786	127,772	134,758	140.744
Total Cost of Service	\$ 19,427	18,856	18,331	18,356	18,323	18,134	18,020	17,842	17,671	17,485
Required Net Profit	\$ 3,155	2,860	2,565	2,571	2,403	2,354	2,350	2,261	2,208	2,156
Normalized Income Tax	\$ 3,704	3,357	3,011	3,018	2,821	2,763	2,759	2,654	2,592	2,531
Interest and Amortization	\$ 5,252	5,252	5,252	5,139	5,005	4,753	4,487	4,271	4,019	3,767
Straight Line Depreciation	\$ 3,932	3,932	3, 932	3,932	4,021	4,021	4,021	4,063	4,063	4,063
Ad Valorem Tax	\$2,247	2,247	2,247	2,247	2,298	2,298	2, 298	2,322	2,322	2,322
Operating Expense	\$1,137	1,208	1,324	1,449	1,775	1,945	2,105	2,271	2,467	2,646
Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969

ALBERTA-MONTREAL PIPELINE

NORTHERN ALTERNATE -- 34" SYSTEM

COST OF SERVICE

Ad Valorem Tax	Straight Line Depreciation	Interest and Amortization	Normalized Income Tax	Required Net Profit	Total Cost of Service	MBP Yr.	Service Per Bbl.
\$5,023 \$14,650		\$20,869	\$11,300	\$ 12,659	\$ 68,480	73,000	\$ 0. 938
5,023 14,650		20,861	10,200	11,569	809,999	81,760	0.813
5,027 14,663		20,865	9,200	10,465	64,772	90,520	0.715
5,030 14,671		20,418	9,200	10,487	64,742	99, 280	0.652
5,134 14,975		19,892	6,000	10,114	65,027	108,040	0.602
5,169 15,077		19,022	000 6	10,109	64,861	116,800	0.555
5,219 15,221		18,177	8,700	9,812	64,082	122,786	0.522
5,222 15,233		17,170	8,550	9,677	63,291	127,772	0.495
5,222 15,233		16,157	8,500	9,547	62,684	134,758	0.465
5,222 15,233		15,144	8,400	9,418	61,971	140,744	0,440

