BHAGWAN MAHVIR UNIVERSITY B.TECH SEMESTER II EXAMINATION SUMMER 2025

Subject Code: 2010200201 Date:09/0			6/2025	
		me: Mathematics-II-Theory		
	ic: 2,001 uctions:	PM TO 4.30PM Total Ma	rks: 60	
	1. At 2. M	tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.		
			Marke	
Q.1	(a)	Evaluate $\int_{0}^{1} \int_{0}^{2} (x^2 + y^2) dy dx$	02	
	(b)	Solve $(D^2+9)y = \cos 4x$	04	
	(c)	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	06	
Q.2	(a)	Let R^3 have the Euclidean inner product. For which value of k are $u = (2,1,3)$ and $v = (1,7,k)$ orthogonal?	02	
	(b)	Find $L\{t^2 \cosh 3t\}$	04	
	(c)	Solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of variables.	06	
	(a)	OR		
	(c)	Solve $y'' - 4y' + 4y = \frac{e^{2x}}{x}$ by the method of variation of parameter.	06	
Q.3	(a)	Find $\nabla \phi$ if $\phi = x^2 + y^2 + z^2$ at (1, -1, 1).	02	
	(b)	Sate First shifting theorem using it find $L\{(t+1)^2e^t\}$.	04	
	(c)	Find the power-series solution of the equation $\frac{d^2y}{dx^2} + y = 0$ about	06	
		$x_0 = 0.$		
Q.3	(a)_	OR State Green's theorem in the plane.	02	
,	(b)	Using Convolution theorem, find inverse Laplace of $\frac{s}{(s^2+a^2)^2}$	04	
	(c)	Solve $x(y-z)p + y(z-x)q = z(x-y)$.	06	
Q.4	(a)	Form the partial differential equation $z = (x-2)^2 + (y-3)^2$.	02	
	(b)	Find the directional derivative of $\phi = xy^2 + yz^2$ at the point (2, -1,1)	04	
		in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.		
	(c)	Determine whether the set V of all pairs of real numbers (x, y) with	06	
		the operations $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$ and		
		k(x, y) = (kx, ky) is a vector space.		
Q.4	(a)	Solve $\sqrt{p} + \sqrt{q} = 1$.	02	
	- /	AVITY ALE LAID TI. SILL	112	

	(b)	If $\overline{F} = x^2 \hat{i} + xy^2 \hat{j}$, evaluate $\int_C \overline{F} d\overline{r}$ from (0,0) to (1,1) along the path	04
	(c)	y = x. Let R^3 have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis vectors	06
		$u_1 = (1,0,0), u_2 = (3,7,-2), u_3 = (0,4,1)$ into an orthonormal basis.	
Q.5	_(a)	Solve $(4x^2D^2 + 16xD + 9)y = 0$	02
	(b)	Evaluate $\int_{0}^{2} \int_{1}^{2} \int_{0}^{yz} xyz dx dy dz$	04
	(c)	Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy$ by transforming into polar coordinates.	06
		OR	
Q.5	(a)	Solve $\frac{\partial^2 z}{\partial x^2} = z$.	02
	(b)	Find the area common to the cardiods $r = a(1 + \cos \theta)$ and	04
		$r = a(1 - \cos\theta)$.	
	(c)	Change the order of integration and evaluate $\int_{0}^{2} \int_{0}^{4-x^2} \frac{xe^{2y}}{4-y} dy dx$.	06
		0 0 ' 3	