Chapter 28: Radon-Nikodym 定理

Latest Update: 2025 年 1 月 1 日

Exercise #28. 1. 假设 Q 和 P 是有限测度,且 $Q \ll P, P \ll Q$. 这时,我们称 Q 和 P 是等价的,记作 $Q \sim P$. 证明: $X = \frac{dQ}{dP}$ 满足 X > 0, P-几乎处处.即 $P(X \le 0) = 0$.

证明. 假设我们考虑的问题在可测空间 (Ω,\mathcal{A}) 上. 由于 $Q\ll P$, 且是有限测度, 根据 RN 定理存在 唯一 (a.s. P) 的 $X=\frac{dQ}{dP}\geq 0$, 使得 $\int XdP=1$ 且对于任意 $A\in\mathcal{A}$, 有

$$Q(A) = \int_{A} X dP.$$

反证法. 若不然, 记 $B=\{X\leq 0\}$, 则 P(B)>0. 根据测度的定义 $Q(B)\geq 0$, 但是此时根据集合 B的定义,

$$Q(B) = \int_{B} X dP \le 0,$$

于是 Q(B) = 0. 根据 $P \ll Q$, 有 P(B) = 0, 这与 P(B) > 0 矛盾! 因此, $P(X \le 0) = 0$.

Exercise #28. 2. 如果 $Q \sim P$, 设 $X = \frac{dQ}{dP}$. 证明: $\frac{1}{X} = \frac{dP}{dQ}$.

注. 参见习题 9.8.

证明. 假设我们考虑的问题在可测空间 (Ω,\mathcal{A}) 上. 要证明 $\frac{1}{X}=\frac{dP}{dQ}$, 根据 RN 定理中的唯一性, 只需证明对于任意 $A\in\mathcal{A}$, 有

$$P(A) = \int_{A} \frac{1}{X} dQ.$$

其中, X 满足 $\int X dP = 1, X > 0$ (a.s. P), 且对于任意 $A \in \mathcal{A}$, 有

$$Q(A) = \int_{A} X dP.$$

根据习题 9.7, 用标准方法可以证明积分变换公式, 则

$$\int_A \frac{1}{X} dQ = \int_A \frac{1}{X} X dP = \int_A dP = P(A).$$

Exercise #28. 3. 设 μ 是测度使得 $\mu = \sum_{n=1}^{\infty} \alpha_n P_n$, 其中 P_n 是概率测度, $\alpha_n > 0$. 假设 $Q_n \ll P_n$ 对每个 n 成立. 以及 $\nu = \sum_{n=1}^{\infty} \beta_n Q_n, \beta_n \geq 0, \forall n$. 证明: $\nu \ll \mu$.

证明. 假设我们考虑的问题在可测空间 (Ω, \mathcal{A}) 上. 根据 Levi 单调收敛定理, 显然, μ, ν 是测度. 设 $N \in \mathcal{A}$, 且 $\mu(N) = 0$. 则

$$\sum_{n=1}^{\infty} \alpha_n P_n(N) = 0 \Rightarrow P_n(N) = 0, \forall n.$$

因此, 根据 $Q_n \ll P_n$, 对于任意 n, 有 $Q_n(N) = 0$, 即 $\nu(N) = 0$, 即 $\nu \ll \mu$.

Exercise #28. 4. 设 P,Q 是两个概率, 令 $R = \frac{P+Q}{2}$. 证明: $P \ll R$.

证明. 考虑可测空间 (Ω, A) . 先证: R 是一个概率测度.

- 1. $R: \mathcal{A} \to [0,1]$. 对于任意 $A \in \mathcal{A}$, 有 $R(A) = \frac{1}{2}P(A) + \frac{1}{2}Q(A) \in [0,1]$.
- 2. $R(\Omega) = \frac{1}{2}P(\Omega) + \frac{1}{2}Q(\Omega) = \frac{1}{2} + \frac{1}{2} = 1.$
- 3. 对于任意互不相交的事件 $A_1, A_2, \ldots \in \mathcal{A}$, 有

$$R\left(\sum_{j=1}^{\infty} A_{j}\right) = \frac{P\left(\sum_{j=1}^{\infty} A_{j}\right) + Q\left(\sum_{j=1}^{\infty} A_{j}\right)}{2} = \sum_{j=1}^{\infty} \frac{P(A_{j}) + Q(A_{j})}{2} = \sum_{j=1}^{\infty} R(A_{j}).$$

接下来证明 $P \ll R$. 设 $N \in \mathcal{A}$, 且 R(N) = 0. 则

$$P(N) + Q(N) = 0 \Rightarrow P(N) = 0, Q(N) = 0.$$

因此, $P \ll R$.

Exercise #28. 5. 假设 $Q \sim P$. 给出一个 P 鞅但不是 Q 鞅的例子. 再给出一个鞅过程的例子, 使它在 P 和 Q 下都是鞅.