Giorno 5 Operazioni tra insiemi

Ora che sappiamo cosa è un insieme (o almeno facciamo finta) possiamo definire un po' di operazioni.

Dati 2 insiemi A e B definiamo l'unione, scriviamo $A \cup B$ che è l'insieme che contiene tutti gli elementi x che sono in A o in B (o in entrambi ma sono elementi dell'unione una volta sola visto che $A \cup B$ è un insieme e nessun insieme può contenere 2 volte uno stesso elemento).

Dati 2 insiemi A e B definiamo l'intersezione, scriviamo $A \cap B$ che è l'insieme che contiene tutti gli elementi x che sono in A e in B (cioè gli elementi comuni a A e B).

Il prodotto $A \times B$ è l'insieme delle coppie (a,b) con il primo elemento $a \in A$ e il secondo $b \in B$. In pratica

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Nota: come puoi immaginare ora che sai come funziona la testa dei matematici prima o poi vorremo fare operazioni tra infiniti insiemi. Per ora ci accontentiamo.

Nota: un altro casino è che possiamo fare $(A \times B) \times C$ che in teoria avrebbe come elementi coppie ((a,b),c) ma facciamo finta che non ce ne accorgiamo e che $A \times B \times C$ contenga terne (a,b,c). sia $A \times B \times C$, che $(A \times B) \times C$ che $A \times (B \times C)$ contengono le terne (a,b,c).

Esercizio: Cosa contiene $N \times \emptyset$?

Se ogni elemento di A è anche elemento di B allora A è un sottoinsieme di B e scriviamo $A \subset B$. Ovviamente \varnothing è sottoinsieme di ogni insieme B ($\varnothing \subset B$ per qualunque B). Ovviamente per ogni insieme B, $B \subset B$, cioè B è sempre sottoinsieme di se stesso.

Dato A un sottoinsieme di B ($A \subset B$) possiamo definire il complemento di A in B, che è l'insieme B-A che contiene tutti gli elementi $x \in B$ tale che non sono elementi di A, cioè:

$$B - A = \{x \in B : x \notin A \subset B\}$$

Nota: sui libri lo trovi anche definito quanto A non è sottoinsieme ma a ma piace di più così al momento.

Nota: qui è uno dei posti dove i tipi importano. Se ho P, insieme dei primi minori di 10, cioè $P=\{2,3,5,7\}$ e prendessi l'insieme delle cose che non stanno in P oltre a 6, in -P ci troverei pure una mela, hookii, me e te. invece faccio $\mathbb{N}-P$ e ci trovo tutti **i numeri** che non sono in P. \mathbb{N} funziona come un tipo.

Dato un insieme A, P(A) è l'insieme di tutti i sui sottoinsiemi, si chiama l'insieme delle parti. Se $A = \{0, 1, 2\}$ allora

$$P(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, A\}$$

ha 8 elementi, ops $\mathit{avr}\grave{a}$ 8 elementi.

Nota: $\{1\}$ e 1 sono due cose diverse. $1 \in A$ è un elemento di A. $\{1\}$ invece è un sottinsieme di A che contiene un solo elemento. Abbiamo $1 \in \{1\} \subset A$. Non si può scrivere né $1 \subset A$ né $\{1\} \in A$.

Nota: anche che \emptyset è un oggetto, un elemento dell'insieme delle parti P(A).

Esercizio: quanti elementi ha $P(\emptyset)$?

Nota: siccome gli insiemi sono definiti con delle proposizioni P(x) non ti sfuggirà che l'unione intersezione e complemento di insiemi corrisponde agli operatori logici .or., .and., .not. tra le corrispondenti proposizioni. [In buona sostanza logica booleana e insiemistica sono la stessa cosa.]