Estruturas de Dados e Algoritmos

João Arthur Brunet Computação @ UFCG

Curso Laboratório Objetivos Conteúdo Contribua Bibliografia

Análise de Algoritmos Recursivos

Oct 28, 2019 18 minutos de leitura

Até aqui vimos como analisar algoritmos iterativos, lembra? Esse processo pode ser resumido pelos seguintes passos:

- 1. identificar operações primitivas;
- 2. identificar a quantidade de vezes que cada uma dessas primitivas é executada;
- 3. Somar essas execuções.

Você lembra quais são as operações primitivas?

- Avaliação de expressões booleanas;
- Operações matemáticas;
- Retorno de métodos;
- Atribuição;
- Acesso à variáveis e posições arbitrárias de um array

Seguindo esses passos sempre chegamos a uma função que descreve o tempo de execução do algoritmo. Vimos também que estamos interessados na ordem de crescimento dessa função, mais do que nos seus termos detalhados. Isto é, como se comporta a função para grandes valores de n. Assim, podemos aplicar as seguintes diretrizes para identificar a classe de complexidade das funções:

- 1. Eliminar constantes;
- 2 Fliminar evacentes de menor magnitude

L. LIIIIIIIai expoemes de menoi magimude.

Desse modo, a função f(n)=70n+32n+231 tem ordem de crescimento linear. Isto é, $f(n)\in\Theta(n)$. Lembrando sempre que a maneira formal de demonstrar que $f(n)\in\Theta(n)$ é encontrar c1, c2 e n0, tal que:

$$0 <= c1 * n <= 70n + 32n + 231 <= c2 * n, \forall n >= n0$$

O Problema

Acontece que, para algoritmos recursivos, a aplicação dos passos acima não é direta, pois um algoritmo recursivo é definido em termos dele mesmo. Vamos começar com uma função bem simples: fatorial.

```
public int fatorial(int n) {
   if (n==0 || n == 1)
      return 1;
   else
      return n * fatorial(n-1);
}
```

Vamos tentar aplicar os passos que aprendemos para a análise de algoritmos.

Identificando as primitivas.

```
if (n==0 || n == 1) -> avaliação de expressão booleana.
return 1 -> retorno de método.
return n -> retorno de método.
* -> operação aritmética.
fatorial(n-1) -> ?
```

Como vimos, para o caso em que as execuções não são em função de n (caso acima) podemos simplificar as operações primitivas e suas execuções para (1).

O problema aqui é calcular o custo de fatorial(n-1).

Qual o custo dessa operação e quantas vezes ela será executada? Não conseguimos responder essa questão de maneira direta como fizemos para os algoritmos iterativos porque trata-se de uma função definida em termos dela mesma. No nosso contexto, funções dessa natureza são chamadas de **relações de recorrência**.

Relação de Recorrência

Relação de recorrência é uma equação ou inequação que descreve uma função em termos dela mesma considerando entradas menores.

A função que descreve o tempo de execução de um algoritmo recursivo é dada por sua relação de recorrência. Vejamos a relação de recorrência que descreve o algoritmo de cálculo do fatorial:

$$T(n) = T(n-1) + \Theta(1),$$

simplificando temos: T(n) = T(n-1) + 1

Ou seja, o custo de calcular fatorial(n) é o custo de calcular fatorial(n-1) somado às primitivas que são executadas a cada passo da recursão que, nesse caso, representam 1.

Nosso desafio então é resolver essa relação de recorrência para determinarmos o tempo de execução do algoritmo para cálculo do fatorial. Para isso, vamos utilizar o método da árvore de recursão.

Método da árvore de recursão

A ideia para resolver uma relação de recorrência é simular a sua execução através de uma árvore, onde os nós representam a entrada e as arestas representam a chamada recursiva.

Exemplo: Fatorial

Vamos entender como funciona esse recurso através de exemplos. Veja a árvore de recursão para o cálculo do fatorial de 5.

Note que a raiz da árvore inicia com o valor 5, que é o tamanho da entrada. Note também que o custo do nível da entrada 5 é 1 (as primitivas). Este custo deve ser somado ao custo para a entrada 4 (chamada recursiva) que, por sua vez é 1. O cálculo da entrada 4 deve ser somado ao custo para a entrada 3 (chamada recursiva) e assim por diante. Veja que isso nada mais é do que a reprodução da relação de recorrência T(n)=T(n-1)+1.

Por fim, não é difícil compreender que o custo total é a soma dos custos de cada nível, ou seja, a soma dos custos de cada passo da recursão.

Contudo, nosso trabalho aqui é definir o tempo de execução do algoritmo em função de uma entrada de tamanho n qualquer. Vamos, novamente, ilustrar a árvore de recursão para esse cenário:

Novamente, para calcular a função que define o tempo de execução desse algoritmo, precisamos somar os custos de cada nível. Isto é, somaremos o valor 1 uma quantidade de vezes representada por h+1, onde h é a altura da árvore e o +1 é o custo da última execução (if n=0 || n=1).

Portanto, precisamos definir h. Analisando a árvore, não é difícil notar que h=n-1. Assim, temos que f(n)=1*(n-1)+1, isto é, f(n)=n. Portanto, podemos dizer que $f(n)\in\Theta(n)$.

Veja em detalhes como isso é feito no vídeo abaixo.

Resolvendo relações de recorrência - Fatorial

Em resumo, podemos estabelecer os seguintes passos para analisar um algoritmo recursivo:

- 1. Estabelecer a relação de recorrência
- 2. Expandir a árvore de execução baseado na relação de recorrência
- 3. Determinar a altura h máxima da árvore
- 4. Somar o custo de cada nível de execução
- 5. Somar o custo total (soma do custo de todos os níveis)

Exemplo: MergeSort

Vamos analisar um exemplo um pouco mais complexo. O Merge Sort é um algoritmo de ordenação que, a cada execução parcial, efetua duas chamadas recursivas diminuindo pela metade o tamanho da entrada e um rotina (merge) cujo tempo de execução é dado por $\Theta(n)$.

```
public void mergeSort(int[] v, int ini, int fim) {
    If (ini < fim) {
        int meio = (ini + fim) / 2;
        mergeSort(v, ini, meio);
        mergeSort(v, meio + 1, fim);
        merge(v, ini, meio, fim);
    }
}</pre>
```

Relação de recorrência. A primeira etapa para identificar a classe de complexidade do *Merge Sort* é identificar a sua relação de recorrência:

$$T(n) = T(n/2) + T(n/2) + (n)$$
 , simplificando $T(n) = 2*T(n/2) + n$, onde n = v.length

- 2 * T(n/2) representa as duas chamadas recursivas em que a entrada é divida pela metade em cada uma delas.
- \bullet +n representa o custo da função que une duas sequências já ordenadas em uma sequência ordenada. Não precisamos saber como isso é feito nesse momento, apenas precisamos saber que essa parte do algoritmo tem custo linear

Gravei um vídeo para deixar mais claro. Talvez te ajude a entender como, a partir do algoritmo, extraímos a relação de recorrência do Merge Sort.

Para fixar! Muitas relações de recorrência podem ser descritas na seguinte forma:

T(n) = a * T(n/b) + f(n), com a >= 1, b > 1 e f(n) não negativa.

É importante que a gente saiba em português o que significa essa equação acima. Você lembra que ela é referente a um algoritmo recursivo, certo? Em português, dizemos que há **a** chamadas

recursivas e que cada chamada recursiva divide a entrada em $\mathfrak p$ partes. Além disso, a cada chamada recursiva, um custo $\mathbf f(\mathbf n)$ é adicionado.

Precisa de mais um exemplo sobre como extrair a relação de recorrência a partir de um algoritmo recursivo? Veja o vídeo abaixo para fixar bem.

Acho que agora é um bom momento para você testar o que aprendeu até aqui.

Quiz

Árvore de Recursão. Voltando para o Merge Sort, vamos ilustrar a árvore de recursão gerada pela recorrência T(n)=2T(n/2)+n.

Podemos notar que a árvore é um pouco diferente da que ilustramos para o fatorial. Em primeiro lugar, a árvore é binária. Sendo assim, o custo de um nível agora é calculado somando-se os custos de cada nó desse nível. Novamente, as arestas representam as duas chamadas recursivas de cada passo. Outra mudança é que cada nó filho diminui na metade o tamanho da entrada do nó pai. Essas duas últimas sentenças são resumidas por 2*T(n/2). Por fim, cada nó tem o seu tempo de execução definido em função linear do tamanho da entrada. Essa última sentença é resumida pela parte final da relação de recorrência +n.

Função do tempo de execução. Agora precisamos somar os custos de todos os níveis. Para isso, assim como no caso do fatorial, precisamos determinar a altura dessa árvore.

Para o calculo da altura podemos notar que a arvore ira parar de crescer quando $n/2^h=1$, pois o algoritmo atinge a condição de parada ini >= fim.

Assim, temos que $2^h=n$. Aplicando \log nos dois lados da equação, temos:

$$h * \log_2 2 = \log n$$

Simplificando, temos: $h = \log_2 n$

Agora que já definimos a altura da árvore, precisamos somar os custos parciais (de cada nível) uma quantidade de vezes representada pela altura da árvore. Cada nível tem custo n (ex: 2*n/2, 4*n/4, 8*n/8...). Se somarmos n por 10 vezes, teremos 10*n. Se somarmos n por 100 vezes, teremos 100*n. Como vamos somar n por $\log n$ vezes, temos que o tempo de execução desse algoritmo é dado por $f(n)=n*\log n$. Naturalmente, só podemos fazer essa multiplicação porque cada nível tem o mesmo custo n.

Então, temos que $T(n) = (n * \log n)$.

O vídeo abaixo explica detalhadamente como é feita a análise de eficiência do Merge Sort utilizando a árvore de recursão.

Exemplo: Busca Binária

O algoritmo de busca binária é um algoritmo clássico de identificação da posição de um determinado elemento em uma sequência ordenada. A ideia é "palpitar" sempre a posição central. Caso o palpite seja maior do que o valor sendo procurado, o algoritmo descarta a metade à frente do palpite e passa a procurar na metade que contém os valores menores do que o palpite. Dessa

maneira, a cada passo da recursão, são descartados metade dos elementos restantes. Esse procedimento torna a busca binária muito eficiente, quando comparada com a busca linear, que descarta apenas um elemento a cada iteração.

```
public int indexOf(int[] v, int n, int ini, int fim) {
   if (ini < fim) {
      int meio = (ini + fim) / 2;

      if (v[meio] == n) return meio;

      if (n < v[meio])
          return indexOf(v, n, ini, meio - 1);
      else
          return indexOf(v, n, meio + 1, fim);
    } else {
      return -1;
    }
}</pre>
```

Relação de recorrência. Como aprendemos anteriormente, a primeira etapa para identificar o custo de execução do algoritimo de Busca Binária é identificar a sua relação de recorrência:

$$T(n) = T(n/2) + \Theta(1).$$
 Simplificando, $T(n) = T(n/2) + 1$, onde n = v.length

• T(n/2) representa a chamada recursiva em que a entrada é divida pela metade. Importante notar aqui que, embora haja duas chamadas recursivas no código, apenas uma é executada a cada passo. Por isso temos T(n/2) e não 2*T(n/2).

 $\bullet \ +1$ representa o custo da operação de cálculo do meio e da avaliação das expressões booleanas.

Caso você não tenha entendido como chegamos a essa relação de recorrência, eu gravei um vídeo explicando. Veja abaixo.

Árvore de Recursão. Vamos ilustrar a árvore de recursão gerada pela recorrência T(n)=T(n/2)+1.

Cada nó da árvore possui apenas uma aresta, porque há apenas uma chamada recursiva. Cada nível tem o seu custo constante (1), uma vez que a cada passo da recursão apenas algumas primitivas são executadas, como as avaliações das expressões booleanas e o cálculo da variável meio.

Função do tempo de execução. Agora precisamos somar os custos de todos os níveis. Para isso, assim como nos casos anteriores, precisamos determinar a altura dessa árvore.

O cálculo da altura é exatamente o mesmo do realizado para o exemplo do Merge Sort. A árvore irá parar de crescer quando $n/2^h=1$, pois o algoritmo atinge a condição de parada <code>ini >= fim</code>. Aplicando os mesmos passos do exemplo anterior, temos que a $h=\log n$

Agora que já definimos a altura da árvore, precisamos somar os custos parciais (de cada nível) uma quantidade de vezes representada pela altura da árvore. Cada nível tem custo 1. Se somarmos 1 por 10 vezes, teremos 10*1. Se somarmos 1 por 100 vezes, teremos 100*1. Como vamos somar 1 por $\log n$ vezes, temos que o tempo de execução desse algoritmo é dado por $f(n)=1*\log n$, ou seja, $f(n)=\log n$. Naturalmente, só podemos fazer essa multiplicação porque cada nível tem o mesmo custo 1.

Eu fiz um vídeo que segue esse protocolo descrito acima para ilustrar a árvore, calcular sua altura e definir o custo total. Vale a pena você conferir para fixar bem o modo como utilizamos o método da árvore de recursão.

Resolvendo relações de recorrência - busca binária

Método Mestre

O método iterativo utilizando a árvore de recursão é, de fato, uma boa alternativa para identificar a classe de complexidade de algoritmos recursivos. Além de ser um método analítico, ele tem propriedades didáticas importantes. Isto é, o exercício de ilustrar a árvore de recursão (execução) e, a partir dela, identificar o custo total do algoritmo é importante não somente para esse fim, mas para exercitar a capacidade de abstração e raciocínio do aluno. Contudo, muitas vezes, trata-se de um mecanismo laborioso. Nesse contexto, surge o **Teorema Mestre** que nos permite identificar a classe de complexidade de um algoritmo aplicando apenas algumas operações matemáticas e comparando ordem de complexidade de funções.

E como o teorema funciona? Primeiramente, é preciso que a relação de recorrência tenha determinadas propriedades. Vamos analisar concretamente essas propriedades:

$$T(n) = a * T(n/b) + f(n)$$

Sendo a>=1, b>1 e f(n) não negativa.

Como vimos anteriormente, a representa a quantidade de chamadas recursivas (quantidade de subproblemas), b representa em quanto a entrada é diminuída a cada chamada recursiva e f(n) representa o custo parcial de cada etapa da recursão. Para aplicar o Teorema Mestre, sua relação de recorrência deve ser na forma acima com a>=1, b>1 e f(n) não negativa.

Para esses casos, o Teorema Mestre é uma maneira direta de resolvermos a relação de recorrência. O Teorema Mestre estabelece que:

- Se $f(n) < n ** log_b^a$, então $T(n) = \Theta(n ** log_b^a)$.
- Se $f(n) = n ** log_b^a$, então $T(n) = \Theta(f(n) * log_b^n)$.
- Se $f(n) > n ** log_b^a$, então $T(n) = \Theta(f(n))$.

Desse modo, se a relação de recorrência obedecer às restrições a>=1, b>1 e f(n) não negativa, basta aplicarmos o teorema.

Exemplo

Para a relação de recorrência $T(n) = 8*T(n/2) + 1000*n^2$, temos:

- a = 8
- b = 2
- $f(n) = 1000 * n^2$

Comparando $1000*n^2$ com n ** \log_b a, temos que $1000*n^2 < n^3$. Portanto, aplicando a primeira regra do Teorema Mestre, podemos afirmar que T(n) = $\$ \Theta(n ** \log_b a) e, portanto, $T(n) = \Theta(n^3)$.

Exemplo

$$T(n) = 2 * T(n/2) + 10 * n$$

Para a relação acima, temos:

- a = 2
- b = 2
- f(n) = 10 * n

Comparando 10*n com n ** \log_{b} a temos que 10*n=n, pois comparamos a ordem de grandeza das funções e, quando fazemos isso, as constantes não importam. Portanto, aplicando a segunda regra do Teorema Mestre, podemos afirmar que $T(n) = \Theta(n*\log_2 n)$.

Exemplo

Para $T(n) = 2 * T(n/2) + n^2$, temos:

- a = 2
- b = 2
- $f(n) = n^2$

Comparando n^2 com n ** \log_{b} a temos que $n^2 > n$. Portanto, aplicando a terceira regra do Teorema Mestre, podemos afirmar que $T(n) = \Theta(f(n))$ e, portanto, $T(n) = \Theta(n^2)$.

Ouiz

Notas

Este material é um resumo superficial do Capítulo 4 do livro "Algoritmos: Teoria e Prática" de Cormen et. al.

Há outras implementações de fatorial. Por exemplo, ao invés de checar se n == 0 ou n == 1, bastaria apenas checar se n == 0, 1 * 1 == 1. Dessa forma, a altura da árvore gerada teria uma unidade a mais. Contudo, isso não impacta na ordem de grandeza do algoritmo.

❸ Ordenação por Comparação: Selection Sort

Análise Assintótica

