Sprawozdanie 11-5

Greś Krzysztof 130319

Laboratorium komputerowe z przedmiotu "Metody Obliczeniowe", prowadzący: dr hab, inż. L.Bieniasz

<u>Ćwiczenie 11-5</u> <u>Greś Krzysztof</u>

Zagadnienie z warunkiem początkowym i brzegowym obejmuje:

 $\frac{\text{równanie różniczkowe cząstkowe}}{\partial t} \quad \frac{\partial U(x,t)}{\partial t} = D \, \frac{\partial^2 U(x,t)}{\partial x^2}, \text{ określone dla współrzędnej przestrzennej } x \in [0,+\infty)$

oraz czasu $t \in [0, t_{\text{max}}]$,

warunek początkowy U(x,0) = 0, oraz

warunki brzegowe U(0, t) = 1, $U(+\infty, t) = 0$.

Zagadnienie to może opisywać transport ciepła, w pręcie pół-nieskończonym, o współczynniku transportu ciepła D, po raptownym podwyższeniu temperatury na jednym końcu pręta w chwili t = 0.

Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$, gdzie erfc(z) = 1 – erf(z), a erf(z)

jest tzw. funkcją blędu: erf $(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-w^2) dw$.

Do obliczeń numerycznych przedział nieskończony x należy zastąpić przedziałem skończonym [0,a], gdzie $a \ge 6\sqrt{Dt_{\max}}$. Do obliczenia funkcji erf(z) z dokładnością bliską dokładności maszynowej dla zmiennych typu **double** należy zastosować pakiet CALERF udostępniony przez prowadzącego zajęcia.

Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość $\lambda = D \, \delta t/h^2$, możliwie najbliższą $\lambda = 0.4$ dla metody bezpośredniej lub $\lambda = 1$ dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać.

Do zaliczenia projektu należy wykonać:

- (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla t_{mass}, w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
- (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą).
- (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.

Algorytmy:

Dyskretyzacja:

Klasyczna metoda bezpośrednia
Metoda pośrednia Laasonen

Metoda pośrednia Cranka-Nicolson

Rozwiązanie algebraicznych układów równań liniowych:
Dekompozycja LU macierzy pełnej
Algorytm Thomasa

Metoda iteracyjna Jacobiego

□ Metoda iteracyjna Gaussa-Seidela
□ Metoda iteracyjna SOR (należy dobrać ω)

Parametry:

 $t_{\text{max}} = 2, D = 1.$

Dyskretyzacja: Laasonen, KMB

Algorytmy: Dekompozycja LU macierzy pełnej, Algorytm Thomasa

Wykresy:

KLASYCZNA METODA BEZPOŚREDNIA

Wykres max_error(h) dla t_max

Dla różnych kroków h, uzyskano wykres:

h	błąd
0.1	0.00153558
0.09	0.00137568
0.08	0.00121424
0.07	0.00106631
0.06	0.00101408
0.05	0.000911744
0.04	0.00076047
0.03	0.000455525
0.02	0.000302657

Porównanie rozwiązań numerycznych i analitycznych dla:

Jak można zauważyć, dla wybranych czasów – wyniki pokrywają się z wartościami analitycznymi Zależności błędu od czasu t:

LAASONEN

Algorytm Thomasa

Wykres max_error(h) dla t_max

Dla różnych kroków h, uzyskano wykres:

h	błąd
0.1	0.00170911
0.09	0.00152595
0.08	0.00134964
0.07	0.00118288
0.06	0.00101408
0.05	0.000844831
0.04	0.000672733
0.03	0.000505207
0.02	0.000335621

Porównanie rozwiązań numerycznych i analitycznych dla:

Jak można zauważyć, dla wybranych czasów – wyniki pokrywają się z wartościami analitycznymi Zależności błędu od czasu t:

LAASONEN

Dekompozycja LU macierzy Pełnej

Wykres max_error(h) dla t_max

Dla różnych kroków h, uzyskano wykres:

h	błąd
0.1	0.00170911
0.09	0.00152595
0.08	0.00134964
0.07	0.00118288
0.06	0.00101408
0.05	0.000844831
0.04	0.000672733
0.03	0.000505207

Porównanie rozwiązań numerycznych i analitycznych dla:

Jak można zauważyć, dla wybranych czasów – wyniki pokrywają się z wartościami analitycznymi

Zależności błędu od czasu t:

Podsumowanie:

KMB:

Można zauważyć, że wszystkie wartości są zbliżone do analitycznych niezależnie od ustawionego t.

Maksymalny błąd względny stabilizuje się stabilizuje poniżej określonego czasu, jednakże powyżej tego czasu – szybko sapada do 0.

Rząd dokładności wynosi:

Laasonen-Thomas: 1,006856

Można zauważyć, że wszystkie wartości są zbliżone do analitycznych niezależnie od ustawionego t.

Maksymalny błąd względny stabilizuje się stabilizuje poniżej określonego czasu, jednakże powyżej tego czasu – szybko sapada do 0.

Rząd dokładności wynosi: 1,006856

Laasonen-LU:

Można zauważyć, że wszystkie wartości są zbliżone do analitycznych niezależnie od ustawionego t.

Maksymalny błąd względny stabilizuje się stabilizuje poniżej określonego czasu, jednakże powyżej tego czasu – szybko sapada do 0.

Rząd dokładności wynosi: 1,006666

Wnioski:

Metody są dokładne

Algorytm Thomasa jest znacznie szybszy od LU, dla małego kroku h takiego jak 0.01, algorytm może nawet liczyć kilka minut.

Błąd dokładności nie zgadza się z rzędem teoretycznym.