COGNOME	NOME	MATRICOLA
○ Gr. 1 Bader (A-G)	○ Gr. 2 Cioff	i (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Sia V uno spazio vettoriale sul campo reale e sia U un suo sottoinsieme. Cosa vuol dire che U è un sottospazio vettoriale di V? Dare un esempio di sottospazio vettoriale proprio (cioè diverso da tutto \mathbb{R}^2) di \mathbb{R}^2 .

- 2. Si consideri il sistema lineare : $\begin{cases} x-y+z+t &= 0\\ 3x-3y-z-t &= 0\\ x-y+2z+2t &= 0 \end{cases}$
 - (i) Con il metodo di eliminazione di Gauss, calcolarne le soluzioni;
 - (ii) dire (giustificando la risposta) se l'insieme delle soluzioni di tale sistema è un sottospazio di \mathbb{R}^4 e, in caso affermativo, calcolarne la dimensione e scriverne una base.

- 3. Sia V uno spazio vettoriale sul campo reale.
 - (i) Cosa vuol dire che V ha dimensione 2?
 - (ii) Se V ha dimensione 2 e $S = \{v, w, u\}$ è un sistema di vettori di V a due a due distinti, possiamo dire che S è linearmente dipendente? \bigcirc Si \bigcirc No Perché?

4. Calcolare una base del nucleo ed una base dell'immagine dell' applicazione lineare $g: \mathbb{R}^4 \mapsto \mathbb{R}^3$ tale che g(x, y, z, t) = (x - 2z, z - y, x - y - z).

5. Calcolare il determinante della matrice $A = \begin{pmatrix} 1 & \sqrt{3} & 0 & 1 \\ 1 & -2 & 0 & 1 \\ 1 & \sqrt{3} & 0 & 1 \\ 2 & 1 & 4 & 7 \end{pmatrix}$

- **6.** Data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(x, y, z) = (-x, y, x + z),
 - (i) calcolare autovalori ed autospazi di f;
 - (ii) dire, giustificando la risposta, se f è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di f.

7. Fissato nel piano della geometria elementare un riferimento cartesiano monometrico ortogonale, dimostrare che le rette r:(x,y)=t(4,1)+(0,1) e s:4x+y-1=0 sono ortogonali e calcolarne il punto di intersezione.

8. Fissato nello piano della geometria elementare un riferimento cartesiano monometrico ortogonale, rappresentare la circonferenza passante per i punti P(1,1), Q(9,1), R(9,-1) e calcolarne centro e raggio.

- **9.** Fissato nello spazio della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino il piano $\pi: x+y-z-1=0$, la retta $r: \begin{cases} x-y-z=0\\ 3x-3y-2z=-1 \end{cases}$ ed i punti $A(1,-1,0),\ B(1,0,0)$. Si rappresentino
 - (i) la retta per A ortogonale a π ;
 - (ii) il piano per A parallelo a r e ortogonale a π ;
 - (iii) la sfera tangente a π in B passante per l'origine.