# 4주차 1차시. 패스워드 크래킹에 대한 이해

# [학습목표]

1. 패스워드 크래킹에 대해 설명할 수 있다.

학습내용1: 패스워드 관리

보안 관리자의 첫 번째 방어책

- 1. 크래킹되기 쉬운 패스워드
- \* 길이가 너무 짧거나 널(Null)인 패스워드

1, a

- \* 사전에 나오는 단어나 이들의 조합으로 이루어진 패스워드 ehtk(도사), godghr(행복)
- \* 키보드 자판을 일련순으로 나열한 패스워드

1234, asdf, gwer

\*사용자 계정 정보에서 유추 가능한 단어들로 된 패스워드 사용자의 이름 또는 계정에서 유추가 가능한 단어 Wishfree 계정의 wishfree76

### 2. 크래킹되기 쉬운 패스워드

- ① 기억하기는 쉽고 크래킹하기 어려운 패스워드
- ② 최소 8자 이상의 패스워드

패스워드는 길면 길수록 좋음

③ 대문자와 소문자 조합

대문자와 소문자를 조합하여 패스워드를 추측하기 어렵게 조합

④ 글자와 숫자를 조합

영문자와 숫자를 조합하여 보안을 강화

- ⑤ 특수 문자를 조합
- -, \_, &, \$, > 와 같은 특수를 문자를 조합하여 보안을 강화
- ⑥ 좋은 패스워드 예시

eodlf@!11'

⑦ 패스워드 검증 사이트를 이용

https://howsecureismypassword.net/

# 학습내용2 : 해시의 암호화

### 1. 운영체제에서 패스워드를 숨기는 방법

\* 해시(Hash)

해시 : 임의의 데이터로부터 일종의 짧은 전자 지문을 만들어 내는 방법 해시 함수를 이용

- · 데이터를 자르고 치환하거나 위치를 교환하는 방법
- · 해시 값(hash value) : 해시 함수를 통해 나온 결과 값
- ㆍ 해시 값에서 원래를 데이터를 구하는 것이 불가능 해야 함



\* 암호화 (Encryption)

암호화 : 특별한 알고리즘을 이용해 데이터를 전달하는 것 암호화 알고리즘을 아는 사람은 복호화(Decryption)하여 원래의 값을 읽을 수 있음



### 2. 해시와 암호화의 차이점

- \* 해시 나눗셈을 이용한 해시 알고리즘
- · 두 수를 가운데를 기준으로 둘로 나누고 큰 수를 작은 수로 나눔
- · 앞 6자리 숫자를 버리고 나머지 값이 해시의 결과 값

이용하는 수: 123456789, 123486789

나눗셈을 이용해 얻은 해시 값

· 123456789의 해시 값 : 2677861 · 123486789의 해시 값 : 4569155



로직을 알더라도 버려진 1.81838과 1.81882를 알 수 없으므로 두 해시 값만으로 해시 전의 원래 수를 알아내는 것은 불가능



로직을 알고 있을 경우 해시의 결과 값을 구할 수 있음 해시 결과 값을 통해 해시를 생성하기 전의 원래 값은 알기 어려움 값이 아주 조금만 다르더라도 해시 결과 값은 무척 상이하게 생성

- \* 암호화 로마시대 암호화 방식
- · 밀어내기식 치환 방법
- · 기본적인 치환(Substitution) 방식
- · 3자씩 알파벳을 밀어내 대응되는 글자로 치환





암호화 구문- Wish to be free from myself 암호화 알고리즘 - 알파벳을 밀어서 대응되는 글자로 치환 암호화 키(Key)- 3

학습내용3 : Salt

#### 해시와 암호화의 약점

- · 해시나 암호화로 패스워드 저장해도 같은 패스워드는 같은 해시 값, 같은 암호문으로 저장
- · 만일 root 사용자와 wishfree 사용자의 패스워드가 eodlf@!11 이라면 동일하게 E2E783C7C3660CC594BFB35753E454F6 로 저장됨
- · 같은 해시 결과나 암호문은 같은 결과만으로도 패스워드를 노출하는 약점이 있음

(안나옴) 이런 상황을 막기 위해 패스워드 해시와 암호화에 사용되는 첨가물의 일종 root 사용자와 wishfree 사용자가 동일한 패스워드(eodlf@!11)를 사용하더라도 Salt를 이용하면 서로 다른 암호화 결과를 저장하게 됨

\* Salt와 패스워드를 조합한 값에 대한 MD5 해시 값의 생성 예

| 계정       | Salt | 패스워드      | Salt+패스워드를 MD5로 해시한 결과 값         |
|----------|------|-----------|----------------------------------|
| root     | a2   | eodlf@!11 | 9EF83D5BEF4A7CBC6F7D4940D8447089 |
| wishfree | 4F   | eodlf@!11 | 6B796B0DD16C30CCF0B7F02E6457F024 |

#### (안나옴)

- · Salt와 패스워드 합한'a2eodlf@!11'과'4Feodlf@!11'을 각각 해시한 결과 값은 다름
- · 적용된 Salt는 똑같은 패스워드를 숨길 뿐만 아니라 적용 수준에 따라 패스워드 크래킹을 매우 어렵게 만드는 요소

### Salt 단점

- · 패스워드 파일로 저장 시 MD5 해시 값만 저장 불가능
- ㆍ시스템이 패스워드와 어떤 것을 합해 해시를 구한 것인지 알 수 없음
- · 패스워드 파일에 저장 시 간단한 인코딩을 통해 해시 결과 값 앞이나 뒤에 Salt 붙임

# 학습내용4: 패스워드 크래킹 방법에 대한 이해

- 1. 패스워드 크래킹 방법에 대한 이해
- ① 사전 대입 공격

미리 만들어진 패스워드 사전을 이용해서 하나씩 대입하는 방법

② 무작위 대입 공격

문자열 범위에 대해서 생성 가능한 모든 패스워드 생성하여 입력하는 방법

③ 레인보우 테이블을 이용한 공격

변이된 형태의 문자열이 저장된 레인보우 테이블을 이용한 입력하는 방법

### 2. 사전 대입 공격

사용자가 설정하는 대부분의 패스워드에 특정 패턴이 있는 것을 이용 패스워드로 사용할 만한 것을 사전으로 만들어놓고 하나씩 대입 패스워드 일치 여부 확인

### 3. 무작위 대입 공격

패스워드에 사용될 수 있는 문자열의 범위 정하고, 그 범위 내에서 생성 가능한 모든 패스워드 생성하여 입력 패스워드가 그다지 복잡하지 않거나 짧을 경우단시간에 크래킹

### 4. 레인보우 테이블을 이용한 공격

1980년 마틴 헬만이 소개

2000년대에 윈도우의 LM 패스워드를 크래킹할 때 사용

하나의 패스워드에서 시작해 변이된 형태의 여러 패스워드 생성

변이된 각 패스워드의 해시를 고리처럼 연결하여일정 수의 패스워드와 해시로 이루어진 체인(Chain)을 무수히 만들어놓은 테이블

#### 레인보우 테이블의 기본 개념

- · 패스워드별 해시 값을 미리 생성한 후 크래킹하고자하는 해시 값을 테이블에서 검색하여 원래 패스워드를 찾는 것
- · 패스워드의 해시 값이 '123452323242'라면 각 해시 테이블에서 미리 구해둔 해시 값 '123452323242'를 찾아 패스워드 '12gw' 챃음
- ㆍ 가능한 모든 패스워드에 대해서 해시 값을 구해야 하기 때문에 용량이 매우 커질 수 있음

#### [표] 미리 계산된 해시 테이블

| 패스워드 | 헤시           |
|------|--------------|
| 1dww | 551234523452 |
| 12qw | 123452323242 |
| 21fe | 523233452333 |
| df32 | 234523232345 |

대용량으로 생성될 수 있는 해시 테이블을 R(Reduction) 함수를 이용해 작은 크기로 줄이는 것 R 함수 : 패스워드로 사용될 수 있는 문자열을 해시 값으로 만드는 함수 [그림] MD5 해시와 R 함수의 동작



### 5. 레인보우 테이블을 이용한 공격 예시

최초 패스워드 234342에서 MD 5 해시 값을 3번 구하고, R 함수가 2번 동작

\* [표1] 234342의 MD5 해시와 R 함수의 반복 실행 결과



\* [표2] 346343의 MD5와 R 함수의 반복 실행 결과

| 패스워드            |        | MD5 해시                               |
|-----------------|--------|--------------------------------------|
| 최초 패스워드         | 346343 | A62798B2BFCF406BD76FCBC7A367887<br>6 |
| 첫 번째 R 함수 동작 결과 | 627982 | 570727EE4270E0C1A4D8FBB741926DB<br>8 |
| 두 번째 R 함수 동작 결과 | 570727 | 86AB6B3355F33F7CD62658FDDA5AF7D<br>6 |

\* [표3] 898232의 MD5와 R 함수의 반복 실행 결과

| 패스워드            |        | MD5 해시                               |
|-----------------|--------|--------------------------------------|
| 최초 패스워드         | 898232 | 91CF19DD04A05110A2D2A30D578DD<br>A29 |
| 첫 번째 R 함수 동작 결과 | 911904 | 3B8635770F22C17E9643441A3E49992<br>E |
| 두 번째 R 함수 동작 결과 | 386357 | E2038DD2A8315D9BF7F72AE5C07530F<br>8 |

\* [표4] 표1~표3들의 값을 이용해 생성한 레인보우 테이블

| 패스워드   | MD5 해시                           |
|--------|----------------------------------|
| 234342 | 22B7D9922C994737D0D9DFCCF6B415B6 |
| 346343 | 86AB6B3355F33F7CD62658FDDA5AF7D6 |
| 898232 | E2038DD2A8315D9BF7F72AE5C07530F8 |

예시 : 패스워드 해시 값

· 570727EE4270E0C1A4D8FBB741926DB8

① 레인보우 테이블에 크래킹 하려는 해시 값과 같은 MD5 해시 값이 있는지 확인 [표4]에는 570727EE4270E0C1A4D8FBB741926DB8 해시 값 없음

| 패스워드   | MD5 해시                           |
|--------|----------------------------------|
| 234342 | 22B7D9922C994737D0D9DFCCF6B415B6 |
| 346343 | 86AB6B3355F33F7CD62658FDDA5AF7D6 |
| 898232 | E2038DD2A8315D9BF7F72AE5C07530F8 |

② 레인보우 테이블에 크래킹 하려는 해시 값이 없으면크래킹 할 해시 값에 R 함수 적용 후 패스워드 구하고 다시 해시 값을 구함

570727EE4270E0C1A4D8FBB741926DB8 에 R함수 적용

패스워드 570727 구함

570727 해시 값 86AB6B3355F33F7CD62658FDDA5AF7D6 을 구함

③ 2에서 구한 해시 값 86AB6B3355F33F7CD62658FDDA5AF7D6 이 레인보우 테이블에 있는지 확인 [표4]에서 생성한 레인보우 테이블에86AB6B3355F33F7CD62658FDDA5AF7D6 값 존재

| 패스워드   | MD5 해시                           |
|--------|----------------------------------|
| 234342 | 22B7D9922C994737D0D9DFCCF6B415B6 |
| 346343 | 86AB6B3355F33F7CD62658FDDA5AF7D6 |
| 898232 | E2038DD2A8315D9BF7F72AE5C07530F8 |

④ 레인보우 테이블에서 확인한 해시 값 발견하면 그 해시 값에 해당하는 최초 패스워드 구함 값이 없다면 같은 해시 값이 나올 때까지 2와 3과정을 해시 테이블 생성 시에 설정한 체인 수만큼 반복 [표 4]에서 86AB6B3355F33F7CD62658FDDA5AF7D6 에 해당하는 패스워드는 346343

| 패스워드   | MD5 해시                           |
|--------|----------------------------------|
| 234342 | 22B7D9922C994737D0D9DFCCF6B415B6 |
| 346343 | 86AB6B3355F33F7CD62658FDDA5AF7D6 |
| 898232 | E2038DD2A8315D9BF7F72AE5C07530F8 |

⑤ 확인한 최초 패스워드에서 다시 패스워드와 일치하는 해시 값이 나올 때까지 MD5 해시와 R함수 반복 수행해당 해시 값이 확인되면 찾는 패스워드는 해당 해시 값을 생성한 문자열이 됨

실제 레인보우 테이블의 형태

- · 레인보우 체인 2,000개 이상
- · 최초 패스워드, 최종 해시 값만 레인보우 테이블에 저장 체인을 2,000개 사용하는 레인보우 테이블에서 해시 값을 10,000개 저장하고 있다면, 레인보우 테이블에서 확인할 수 있는 패스워드의 종류는 20,000,000 (2000\*10000)개

## [학습정리]

- 1. 운영체제에서 비밀번호를 숨기는 방법은 해시와 암호화 방법이 있다.
- 2. 패스워드를 크래킹하는 방법은 사전 대입 공격, 무작위 대입 공격, 레인보우 테이블을 이용한 공격 등이 있다.