BiliBili Demo

Dapang¹, Xiaopang^{*2}, Zhongpang¹

¹BiliBili

²LibiLibi

bilibili@edu.cn

Abstract—This is abstract.

Index Terms—BiliBili, powerful, template, latex, sublime.

I. INTRODUCTION

Wireless power transfer (WPT) through magnetic coupling has a profound impact on both consumer electronics and industrial applications [1]. Compared with traditional plugin systems, WPT systems are free of cables, providing users with a more convenient, safe and efficient experience [2]. Currently, most of commercialized WPT systems operate in kHz band, such as at several hundreds kHz [3]. It is mainly because this frequency band provides a richer selection of power electronics components. However, the kHz operation requires large-size coupling coils and ferrite to achieve enough mutual inductance.

$$\begin{cases}
X_{\Pi 1} = X_{T1} + X_{T2} + \frac{X_{T1}X_{T2}}{X_{T3}}, \\
X_{\Pi 2} = X_{T2} + X_{T3} + \frac{X_{T2}X_{T3}}{X_{T1}}, \\
X_{\Pi 3} = X_{T3} + X_{T1} + \frac{X_{T3}X_{T1}}{X_{T2}}.
\end{cases} (2)$$

Fig. 1. Caption. (a) Subcaption1. (b) Subcaption2.

Fig. rm reffig:socketNew shows...

II. A NOVEL METHOD TO DESIGN IMPEDANCE MATCHING NETWORKS FOR MHZ WPT SYSTEMS

Thus the transformed impedance, i.e., the input impedance of the IMN, can be calculated as:

$$Z_{\text{net}} = R_{\text{net}} + jX_{\text{net}} = Z_{\text{T1}} + (Z_{\text{load}} + Z_{\text{T2}}) / / Z_{\text{T3}}$$
$$= jX_{\text{T1}} + \frac{\int_{0}^{\infty} jX_{\text{T3}} (R_{\text{load}} + jX_{\text{load}} + jX_{\text{T2}})}{R_{\text{load}}}$$
(3)

III. PARAMETER DESIGN

A. System Configuration

Fig. 2. System configuration of proposed multi-receiver MHz WPT system.

Fig.

rm reffig:system illustrates configuration of the proposed multi-receiver MHz WPT system, which is composed of a PA, an IMN of T-network, a transmitting (Tx) coil and several receiving (Rx) coils connected with corresponding rectifiers. In this system, Class E typology is applied in both the PA and the rectifier, due to its zero voltage switching (ZVS) and zero voltage derivative switching (ZVDS) characteristics. In the figure, $M_1 \sim M_n$ are the mutual inductance between the Tx coil and different Rx coils, with the cross coupling between

$$a = \sqrt{\left(R_{\text{loadA}} + R_{\text{loadB}}\right)^{2} + \left(X_{\text{loadA}} - X_{\text{loadB}}\right)^{2} + 4R_{\text{loadA}}R_{\text{loadB}}\tan^{2}\theta_{\text{ref}}} \cdot \sqrt{\left(R_{\text{loadA}} - R_{\text{loadB}}\right)^{2} + \left(X_{\text{loadA}} - X_{\text{loadB}}\right)^{2}}$$

$$b = R_{\text{loadB}}^{2} + R_{\text{loadA}}^{2} \left(1 + 2\tan^{2}\theta_{\text{ref}}\right) + \left(X_{\text{loadA}} - X_{\text{loadB}}\right)^{2} + 2R_{\text{loadA}} \left[R_{\text{loadB}} \left(1 + \tan^{2}\theta_{\text{ref}}\right) + \tan\theta_{\text{ref}} \left(X_{\text{loadB}} - X_{\text{loadA}}\right)\right]$$
(1)

Fig. 3. Coil shapes. (a) Solenoid. (b) Spiral.

 $\begin{tabular}{l} TABLE\ I \\ TARGET\ SETTING\ AND\ CALCULATED\ PARAMETERS\ OF\ THE\ IMN \\ \end{tabular}$

Original Impedances		
$Z_{\text{loadA}} (Z_{coilA})$	27+0j Ω	
$Z_{\text{loadB}} (Z_{coilB})$	9+0j Ω	
Target Setting		
Z_{ref}	14.7+12.3j Ω	
$\theta_{ m ref}$	-88°	
Calculated T-net		
Z_{T1}	26.7j Ω	
Z_{T1}	7j Ω	
Z_{T1}	-23.4j Ω	

the Rx coils ignored. L_{tx} is inductance of the Tx coil and $L_{rx1} \sim L_{rxn}$ are the inductances of Rx coils. Their parasitic resistors and compensation capacitors are also shown in the figure. sys sys

Table rm reftbl:tar

IV. HYBRID COUPLING COILS

Based on the above factors and the preliminary simulations, the hybrid coupler has the following 2 advantages:

- Higher receiver capacity;
- Suitable for those receivers with special shapes.

[4]

V. EXPERIMENTAL VERIFICATION

VI. CONCLUSIONS

A multi-receiver MHz WPT system with hybrid coupler is proposed.

REFERENCES

- [1] Y. Jang and M. M. Jovanovic, "A contactless electrical energy transmission system for portable-telephone battery chargers," *IEEE Transactions on Industrial Electronics*, vol. 50, no. 3, pp. 520–527, 2003.
- on Industrial Electronics, vol. 50, no. 3, pp. 520–527, 2003.
 [2] M. Liu, H. Zhang, Y. Shao, J. Song, and C. Ma, "High-performance megahertz wireless power transfer: Topologies, modeling, and design," *IEEE Industrial Electronics Magazine*, 2020.
- [3] Z. Li, C. Zhu, J. Jiang, K. Song, and G. Wei, "A 3-kw wireless power transfer system for sightseeing car supercapacitor charge," *IEEE Transactions on Power Electronics*, vol. 32, no. 5, pp. 3301–3316, 2016.

TABLE II PARAMETERS OF THE EXPERIMENTAL SYSTEM

Parameters	Value	
\overline{f}	6.78 MHz	
L_f	10 uH	
L_0	2.17 uH	$Z_{T1}=26.7$ j Ω
$C_0^* \\ C_s$	357 pF	$Z_{T1} = 20.7$ 32
C_s	287 pF	
L_{tx}	6.65 uH 🔪	$Z_{T2}=7$ j Ω
C_{tx}^*	$_{85 \text{ pF}}$ \Longrightarrow	ZT2 - IJ 32
r_{tx}	1.1 Ω	
C_{T3}	$1005 \text{ pF} \implies$	$Z_{T3}=$ -23.4j Ω
$Z_{ m ref}$	$9\sim$ 27 Ω	
$M_1 \sim M_3$	0.45 uH	
L_r	4.7 uH	
$C_{r1} \sim C_{r3}$	540 pF	
C_L	10 uF	
$R_{L1} \sim R_{L3}$	$40~\Omega$	

[4] D. Ahn and P. P. Mercier, "Wireless power transfer with concurrent 200-khz and 6.78-mhz operation in a single-transmitter device," *IEEE Transactions on Power Electronics*, vol. 31, no. 7, pp. 5018–5029, 2015.