МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«Самарский национальный исследовательский университет имени академика С. П. Королева»

(Самарский университет)

Институт информатики и кибернетики Прикладные математика и физика

Отчёт по курсовой работе

Дисциплина: "Технологии программирования"

Преподаватель: Белоусов А.	A.
(110,1111)	
(подпис	:ь)
Студент: Чернов В.	A
6301-030301	D
(подпис	ъ

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ	3
введение	4
1 ПЛАН ПРОЕКТА	5
2 СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ СИСТЕМЫ С БИЗНЕС-ЦЕЛЯМИ, БИЗНЕС-ЗАДАЧАМИ И ПОЛЬЗОВАТЕЛЬСКИМИ СЦЕНАРИЯМИ	6
3 ОПИСАНИЕ АРХИТЕКТУРЫ СИСТЕМЫ	9
4 ИНСТРУКЦИЯ ПО РАЗВЁРТЫВАНИЮ И УСТАНОВКЕ СИСТЕМЫ	10
5 ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ СИСТЕМЫ	17
ЗАКЛЮЧЕНИЕ	24
ПРИЛОЖЕНИЕ	25

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Разработать проект информационной системы и реализовать разработанный проект в соответствии с технологией разработки ПО.

ВВЕДЕНИЕ

В данной курсовой работе в качестве предметной области было выбрано веб-приложение. Суть данного проекта заключается в использовании технологий машинного обучения с целью классификации каких-либо данных, которые будет выполнять классификатор, и, в следствии, предсказывания дальнейших событий.

Цель: создание веб-приложения, использующего технологии машинного обучения.

Необходимо разработать веб-приложение выполняющее следующие задачи:

• Предсказание дальнейших значений на основе входных данных;

Веб-приложение должно соответствовать следующим требованиям:

- Иметь интуитивно понятное меню;
- Иметь панель входных данных;

Описание:

Данный проект реализуется в рамках упрощения задачи расчёта и разведочного анализа данных. Веб-приложение старается облегчить работу пользователя по классификации и анализу некоторых данных.

1 ПЛАН ПРОЕКТА

План работ по проекту с основами вехами и датами их выполнения:

- 1. Подготовка описания проекта и его основных задач 06.11.2023;
- 2. Сценарии использования системы с бизнес-целями, бизнес-задачами и пользовательскими сценариями 15.11.2023;
- 3. Описание архитектуры системы 22.11.2023;
- 4. Код реализации системы 30.11.2023;
- 5. Инструкции по развертыванию и установке системы 04.12.2023;
- 6. Инструкция пользователя системы 11.12.2023;
- 7. Оформление отчёта 14.12.2023.

Этапы проекта отслеживаются в диаграмме Ганта с учётом всех основных вех и дат их исполнения (рисунок 1).

Рисунок 1

2 СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ СИСТЕМЫ С БИЗНЕС-ЦЕЛЯМИ, БИЗНЕС-ЗАДАЧАМИ И ПОЛЬЗОВАТЕЛЬСКИМИ СЦЕНАРИЯМИ

Веб-приложение - сайт с моделью, использующей технологии машинного обучения, которая будет классифицировать данные, а также прогнозировать дальнейшие результаты.

Данный раздел описывает связь функций системы с бизнес-целями и сценариями использования.

Роли пользователей:

- Студенты;
- Научные сотрудники;
- Лаборанты;
- Программисты.

Бизнес-цели:

BG1 Увеличение числа пользователей сайта через предоставление качественного сервиса классификации на основе методов машинного обучения

F1-1 Предоставление различного функционала

UC1-1-1 Выбор данных

Я, как пользователь, хочу загружать свои данные для их классификации

Актор	Пользователь
Триггер	Пользователь открыл боковую
	панель

Результат	Просмотр бегунков для входных
	данных
Основной поток	1. Пользователь находится на
	главной странице
	2. Пользователь открывает
	боковую панель
	3. Перед пользователем
	входные данные
	4. Пользователь загружает свой
	набор входных данных

UC1-1-2 Выбор модели классификации

Я, как пользователь, хочу выбирать модель классификации данных

Актор	Пользователь
Триггер	Пользователь открыл боковую
	панель
Результат	Просмотр раздела "модель
	классификации"
Основной поток	1. Пользователь находится на
	главной странице
	2. Пользователь открывает
	боковую панель
	3. Перед пользователем выбор
	модели

UC1-1-3 Проверки модели классификации на устойчивость

Я, как пользователь, хочу знать, устойчива ли модель, которую выбрал

Актор	Пользователь
Триггер	Пользователь получил некоторые
	данные

Результат	Просмотр раздела "устойчивость
	данной модели"
Основной поток	1. Пользователь находится на
	главной странице
	2. Пользователь получает
	некоторые данные после
	работы классификатора
	3. Перед пользователем
	устойчивость модели
	классификации, которую он
	выбрал

3 ОПИСАНИЕ АРХИТЕКТУРЫ СИСТЕМЫ

Данный раздел описывает необходимые сервисы, приложения и технологии для создания курсового проекта.

Написание и запуск веб-приложения при помощи Python

Чтобы построить модель и опубликовать её где-нибудь, понадобятся библиотеки streamlit, pandas и scikit-learn. Взглянем на общую схему проекта. Он будет состоять из двух больших частей: Frontend и Backend.

Во Frontend-части приложения, а именно, на веб-странице, будет боковая панель, находящаяся слева, в которой можно будет вводить входные параметры модели. Эти данные будут передаваться Backend, где предварительно обученная модель будет производить классификацию, используя заданные характеристики. Результаты классификации отправляются

Frontend.

В Backend-части приложения то, что ввёл пользователь, сохраняется в датафрейме, который будет использоваться в виде тестовых данных для модели. Потом будет построена модель для обработки данных. В ней будет применяться алгоритм из библиотеки scikit-learn. И наконец, модель будет применена для классификации данных, введённых пользователем. Кроме того, будут возвращаться и данные о прогностической вероятности. Это позволит нам определить степень достоверности результатов классификации.

4 ИНСТРУКЦИЯ ПО РАЗВЁРТЫВАНИЮ И УСТАНОВКЕ СИСТЕМЫ

1. Подготовка к установке

1.1. Установка python 3.8.0

Скачайте официальные установочные файлы с официального сайта https://code.visualstudio.com/Download версии 3.8.0, либо же последней версии. Данный редактор является кроссплатформенным, поэтому его можно установить на операционные системы Windows, Linux или же MAC. Также устанавливаем интерпретатор Python https://www.python.org с официального сайта.

1.2. Установка расширений

Кликаем по значку "Расширения" или же используем комбинацию клавиш CTRL+SHIFT+X.

Рисунок 1.1 – Инструкция по скачиванию файла

В появившемся окне пишем: "Russian Language Pack" - это установка русского языка.

Рисунок 1.2 – Инструкция по скачиванию файла

Устанавливаем данное расширение и перезапускаем VS Code.

Установим сам Python. Так же заходим в "Расширения" и в появившемся окне вводим "Python".

Рисунок 1.3 – Инструкция по скачиванию файла

Устанавливаем первое расширение.

Далее нужно выбрать интерпретатор Python. Для этого нажимаем комбинацию клавиш CTRL+SHIFT+P и в появившемся окне пишем "select interpreter".

Рисунок 1.4 – Инструкция по скачиванию файла

Выбираем интерпретатор и вводим путь, где у вас установлен интерпретатор Python.

Рисунок 1.5 – Инструкция по скачиванию файла

Всё готово для работы. Пробуем создать новый файл, для этого в левом верхнем углу нажимаем "Файл" > "Сохранить" и сохраняем его с расширением ".py".

2. Установка веб-приложения

- 2.1 Перейти в репозиторий GitHub: SHPATELb/- (github.com)
- 2.2 Скачать файл и.ру

Рисунок 2.1 – Инструкция по скачиванию файла

Рисунок 2.2 – Инструкция по скачиванию файла

3. Открытие скаченного файла

Перейдите в дерикторию, куда был установлен файл и откройте его с помощью VS Code.

Рисунок 3.1 – Инструкция по открытию файла

4. Установка нужных библиотек

Для работы данного веб-приложения нужно установить следующие библиотеки:

- Streamlit;
- Pandas;
- Numpy;
- Scikit-learn;
- Openpyxl.

Установку нужно производить в терминале при помощи команды pip install:

Рисунок 4.1 – Инструкция по установке библиотек

5. Запуск программы

В правом верхнем углу редактора нажимаем кнопку запуска.

Рисунок 5.1 – Инструкция по запуску программы

После запуска программы в терминале появится что-то подобное:

```
ПРОБЛЕМЫ ВЫХОДНЫЕ ДАННЫЕ КОНСОЛЬ ОТЛАДКИ <u>ТЕРМИНАЛ</u> ПОРТЫ

PS 0:\programming\example> & o:/programming/example/venv/Scripts/Activate.ps1

• (venv) PS 0:\programming\example> & o:/programming/example/venv/Scripts/python.exe o:/programming/example/u.py 2023-12-06 12:53:40.911

warning: to view this Streamlit app on a browser, run it with the following command:

streamlit run o:/programming/example/u.py [ARGUMENTS]

• (venv) PS 0:\programming\example>
```

Рисунок 5.2 – Инструкция по запуску программы

В нижней строке нужно прописать команду: stremlit run u.py. После чего откроется окно в браузере.

```
PS 0:\programming\example> & o:/programming/example/venv/Scripts/Activate.ps1

(venv) PS 0:\programming\example> & o:/programming/example/venv/Scripts/python.exe o:/programming/example/u.py
2023-12-06 12:53:40-911
Warning: to view this Streamlit app on a browser, run it with the following
command:

streamlit run o:/programming/example/u.py [ARGUMENTS]

(venv) PS 0:\programming\example> streamlit run u.py

You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501
Network URL: http://192.168.0.105:8501

A new version of Streamlit is available.

See what's new at https://discuss.streamlit.io/c/announcements

Enter the following command to upgrade:

$ pip install streamlit --upgrade
```

Рисунок 5.3 – Инструкция по запуску программы

Рисунок 5.4 – Инструкция по запуску программы

5 ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ СИСТЕМЫ

Данная инструкция содержит область и назначение применения, а также описание элементов интерфейса пользователя и описание базовых сценариев использования системы в виде примеров со скриншотами.

1. Введение

Суть данного проекта заключается в использовании технологий машинного обучения с целью классификации каких-либо данных, которые будет выполнять классификатор, и, в следствии, предсказывания дальнейших событий.

1.1. Область применения

Данный сайт реализуется в рамках упрощения задачи расчёта и разведочного анализа данных. Веб-приложение старается облегчить работу пользователя по классификации и анализу некоторых данных.

1.2. WEB-интерфейс

Сайт состоит из главного меню и боковой панели.

Рисунок 1.1 – Инструкция по запуску программы

Главное меню представляет из себя информационную страницу, на которую выводятся все полученные значения в результате классификации. Боковая панель отображает входные данные.

2. Назначения и условия применения

2.1. Цель веб-приложения

• Предсказание дальнейших значений на основе входных данных.

2.2. Условия применения системы

Для корректной работы программы нужно версия Python 3.8.0 или же выше.

Также нужны библиотеки streamlit, pandas, numpy, scikit-learn и openpyxl.

3. Работа с сервисом

3.1. Подготовка системы к работе

Для работы с сайтом Вам необходимо открыть документ «Инструкция по развёртыванию и установке системы» и выполнить все написанные в нём пункты.

3.2. Описание работы с сервисом

Пока вы не загрузили какой-либо файл формата .xlsx для классификации своих данных, вы можете изначально попробовать модель, определяющую вид цветка ириса.

Изменяя параметры на боковой панели, а именно: "длина чашелистика", "ширина чашелистика", "длина лепестка", "ширина лепестка" - вы можете увидеть к какому виду относится цветок ириса с данными параметрами в графе: "Предсказание".

Рисунок 3.1 – Параметры боковой панели

Рисунок 3.2 – Графа "Предсказание"

В графе "Вероятность предсказания" вы можете понаблюдать, в каком процентном соотношении вид цветка соответствует данной разновидности с заданными параметрами.

Рисунок 3.3 – Графа "Вероятность предсказания"

Пользователь может загружать свои данные в виде таблицы формата .xlsx в графе "Параметры, вводимые пользователем", находящейся на боковой панели. Нужно нажать кнопку "Browse files", и выбрать загружаемый файл.

Рисунок 3.4 – Графа "Параметры, вводимые пользователем"

После загрузки ваших данных в виде таблице формата .xlsx, вы перейдёте на следующую страницу.

Рисунок 3.5 – Меню с данными пользователя

На боковой панели можно выбрать одну из пяти моделей классификации данных.

Рисунок 3.6 – Выбор модели классификации данных

В главном меню есть графы "Вероятность предсказания" и "Устойчивость модели".

Рисунок 3.7 – Графы "Вероятность предсказания" и "Устойчивость модели"

По вероятности предсказания мы можем узнать насколько хорошо подходит классификатор для предоставленных данных, и какой подход лучше всего использовать для их же анализа.

Устойчивость модели показывает нам, как ведёт себя классификатор при перемешивании данных.

4. Аварийные ситуации

В случае отказа или сбое работы системы, а также для получения консультаций и технической поддержки необходимо обратиться по электронной почте: <u>vsevolod.67@yandex.ru</u>.

ЗАКЛЮЧЕНИЕ

В ходе курсовой работы было разработано веб-приложение, использующее технологии машинного обучения. Пользователь может классифицировать и анализировать необходимые ему данные.

В качестве среды разработки был выбран Visual Studio Code. В качестве языка программирования был выбран Python. Для создания вебприложения была выбрана библиотека streamlit.

ПРИЛОЖЕНИЕ

Код разработанного проекта находится в github: https://github.com/SHPATELb/-