INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002)

Class Test – I (Spring)

Name: Kaushal Banthua		Roll number: $\sqrt{9}$ CS 10039
Date: Wed, Jan 20, 2021	Marks: 35	Time: 8:10-9am (FN)

Answer ALL the questions using xournal or similar software to edit the PDF

Q1: Your roll number is of the form $nnDDx_2nnx_1x_0$. Consider the decimal number $x_2x_1x_0 = 139$. Let B be its binary equivalent. Run the *double dabble* (also called *add-3 and shift*) algorithm to convert the binary number B to BCD showing each step clearly. The operations should be either B Sft for left shift or Add 3. The entries for D2, D1 and D0 should be their values after application of the indicated operation.

25

Operation	B2	B1	В0	$x_2x_1x_0 = 139$
Initial	0000	0000	0000	B = 10001011
L Sft	0000	0000	0001	10001011
L Sft	0000	0000	0010	10001011
L Sft	0000	0000	0100	10001011
LSft	0000	0000	1000	10001011
Ada3	0000	0000	1011	10001011
LSFL	0000	000 /	0111	10001011
Add 3	0000	0001	1010	1000 <mark>1</mark> 011
LSFt	0000	0011	0100	16001011
LSft	0000	0110	100	10001011
Add 3	0000	1001	1100	1000101
LSft	0001	_0011	1001	10001011
Finish	$x_2 = \underline{\qquad}$	x ₁ =3_	$x_0 = \underline{\mathcal{O}}$	

/ \	40	/		`
(a) 49+($1-x_1$	x	n)

Item	Binary representation
$x_1x_0 =$	00100111
$-x_1x_0$ (2's complement)	11011001
49	00 110001
+ (- <i>x</i> ₁ <i>x</i> ₀)	11011001
Result 266	100001010
= 10 (mod 28 = 256)	

(b)
$$(-x_1x_0)+(-49)$$

Item	Binary representation
49	00 110001
-49 (2's complement)	
$-x_1x_0$	11011001
+ (-49)	1100111
Result 424	110101000

$$= -88 \pmod{2^8 = 256}$$

5

5