CURS 4

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

PRELIMINARII - CONTINUARE

MULŢIMI PARŢIAL ORDONATE

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiție.

Un element $e \in S$ se numeşte

- element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;
- element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;
- · cel mai mic element (sau minim) al lui S dacă $e \le a$ pentru orice $a \in S$;
- · cel mai mare element (sau maxim) al lui S dacă $a \le e$ pentru orice $a \in S$.

MULŢIMI PARŢIAL ORDONATE

Propoziție.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

- · Atât minimul, cât și maximul lui S sunt unice (dacă există).
- · Orice minim (maxim) este element minimal (maximal). Reciproca nu este adevărată.
- · S poate avea mai multe elemente maximale sau minimale.

Demonstrație. Exercițiu.

MULŢIMI PARŢIAL ORDONATE

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiţie.

Un element $e \in A$ se numeşte

- · majorant al lui S dacă $a \le e$ pentru orice $a \in S$;
- · minorant al lui S dacă $e \le a$ pentru orice $a \in S$;
- supremumul lui S, notat sup S, dacă e este cel mai mic majorant al lui S;
- · infimumul lui S, notat inf S, dacă e este cel mai mare minorant al lui S.

Proprietăți.

- · Atât mulţimea majoranţilor, cât şi mulţimea minoranţilor lui S pot fi vide.
- · Atât supremumul, cât și infimumul lui S sunt unice (dacă există).

MULŢIMI BINE/INDUCTIV ORDONATE

Fie (A, \leq) o mulţime parţial ordonată.

Definiție.

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

Exemple.

 (\mathbb{N}, \leq) este bine ordonată, dar (\mathbb{Z}, \leq) nu este bine ordonată.

Observație.

Orice mulțime bine ordonată este total ordonată.

Definiție.

 (A, \leq) se numeşte inductiv ordonată dacă orice submulțime total ordonată a sa admite un majorant.

AXIOMA ALEGERII

Axioma alegerii (în engleză Axiom of Choice) (AC).

Dacă $(A_i)_{i \in I}$ este o familie de mulțimi nevide, atunci există o funcție f_C care asociază fiecărui $i \in I$ un element $f_C(i) \in A_i$.

- · formulată de Zermelo în 1904
- · a provocat discuţii aprinse datorită caracterului său neconstructiv: nu există nicio regulă pentru a construi funcţia alegere f_c .

Reformulare.

Următoarea afirmație este echivalentă cu Axioma alegerii:

Dacă $(A_i)_{i \in I}$ este o familie de mulţimi nevide, atunci $\prod_{i \in I} A_i$ este o mulţime nevidă.

AXIOMA ALEGERII

Teoremă.

Următoarele afirmații sunt echivalente cu Axioma alegerii:

- · Lema lui Zorn: Orice mulţime inductiv ordonată are un element maximal.
- · Principiul bunei ordonări: Orice mulţime nevidă X poate fi bine ordonată (adică, pentru orice X există o relaţie binară \leq pe X a.î. (X, \leq) este mulţime bine ordonată).
- · Gödel (1940) a demonstrat că axioma alegerii este consistentă cu ZF.
- · Cohen (1963) a demonstrat că negația axiomei alegerii este consistentă cu ZF.
- · Prin urmare, axioma alegerii este independentă de ZF.
- · Cohen a primit în 1966 Medalia Fields.

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative.

Propoziții declarative

- · Suma numerelor 2 și 4 este 6.
- · Mihai Eminescu a fost un scriitor român.
- · Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime. (Conjectura lui Goldbach).
- · Andrei este deştept.
- · Marţienilor le place pizza.

Propoziții care nu sunt declarative

- · Poţi să îmi dai, te rog, pâinea?
- · Pleacă!

LITERELE GRECEŞTI

Αα

ALPHA [a]

δλφα

Ηη

ΕΤΑ [ε:]

NU [n]

TAU [t]

 $\tau \alpha \tilde{n}$

บกั

 $_{\beta\beta}$ вета [b]

θῆτα

Ĕεĩ

ΓγGAMMA [g]

γάμμα

 $\Delta\delta$

Ee EPSILON [e]

ἒ ψιλόν

μũ

Hη Θθ

It IOTA [i]

ίῶτα

Kκ KAPPA [k]

δέλτα

κάππα

Λλ LAMBDA [1]

λάμβδα

 $M\mu$

Nv 3

Ξξ Oo

 $\prod_{\pi_{[0]}} \pi$

πεῖ

YEĨ

Pρ

óῶ

Ψεĩ

Σσς

Ττ Υι

Yv

ὖ ψιλόν

ὂ μικρόν

 X_{χ}

 $\Psi\psi$ $\Omega\omega$

OMEGA [ο:] ὧ μέγα

SIGMA [s]

σῖνμα

11

Considerăm anumite propoziții ca find atomice și le notăm cu p, q, r, ... sau cu $p_1, p_2, p_3, ...$

Exemplu.

- · p = Numărul 2 este par.
- · q = Mâine plouă.
- $\cdot r$ = Sunt obosit.

Pornind de la propoziţiile atomice, putem crea propoziţii complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici:

- · ¬ (negaţia),
- · → (implicaţia),
- · ∨ (disjuncţia),
- · ∧ (conjuncţia),
- · ↔ (echivalenţa).

Exemplu.

```
p = Numărul 2 este par.
```

q = Mâine plouă.

r = Sunt obosit.

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par şi mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă şi numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu.

$$\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$$

Exemplu.

Fie propoziţia:

 φ = Azi este miercuri, deci avem curs de logică.

Considerăm propozițiile atomice

- · p = Azi este miercuri.
- · q = Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q)$ = Azi este miercuri și nu avem curs de logică.

Exemplu.

Fie propoziţia:

φ = Dacă trenul întârzie și nu sunt taxiuri la gară, atunci Ion întârzie la întâlnire.

Considerăm propozițiile atomice

- · p = Trenul întârzie.
- · q = Sunt taxiuri la gară.
- · r = Ion întârzie la întâlnire.

Atunci
$$\varphi = (p \land (\neg q)) \rightarrow r$$
.

Presupunem că φ , p sunt adevărate şi r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

LOGICA PROPOZIŢIONALĂ - LIMBAJUL

Definiție 4.1

Limbajul logicii propoziționale (LP) este format din:

- · o mulţime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile
- · conectori logici: \neg (se citeşte non), \rightarrow (se citeşte implică)
- · paranteze: (,).

Mulţimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

Notăm variabilele cu $v, u, w, x, y, v_0, v_1, v_2, \dots$

LOGICA PROPOZIŢIONALĂ - LIMBAJUL

Definiția 4.2

Mulţimea *Expr* a expresiilor lui *LP* este mulţimea tuturor şirurilor finite de simboluri ale lui *LP*.

- · Expresia vidă se notează λ .
- · Lungimea unei expresii θ este numărul simbolurilor din θ .
- · Simⁿ este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- · Prin convenţie, $Sim^0 = \{\lambda\}$.
- · Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemplu.

$$((((v_7, \quad v_1 \neg \rightarrow (v_2), \quad \neg v_1 v_2, \quad ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), \quad (\neg (v_1 \rightarrow v_2))$$

LOGICA PROPOZIŢIONALĂ - LIMBAJUL

Definiția 4.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui *LP*, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- · Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numeşte (i,j)-subexpresia lui θ ;
- · Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Definiția 4.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ şi ψ sunt formule, atunci $(\varphi \to \psi)$ este formulă.
- (F3) Numai expresiile obţinute aplicând regulile (F0), (F1), (F2) sunt formule.

Mulţimea formulelor se notează Form. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

Observații.

- · Definiția formulelor este un exemplu de definiție inductivă.
- · Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- · $Form \subseteq Expr$. Formulele sunt expresiile "bine formate".

FORMULE

Exemplu.

- $\cdot v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- · $((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$, $(\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\cdot \varphi = v$, unde $v \in V$;
- $\cdot \varphi = (\neg \psi)$, unde ψ este formulă;
- $\cdot \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 4.5

Mulțimea Form a formulelor lui LP este numărabilă.

Demonstrație. Exercițiu.

Conectorii derivaţi \lor (se citeşte sau), \land (se citeşte şi), \leftrightarrow (se citeşte dacă şi numai dacă) sunt introduşi prin abrevierile:

$$\begin{array}{lll} (\varphi \vee \psi) & := & ((\neg \varphi) \rightarrow \psi) \\ (\varphi \wedge \psi) & := & (\neg (\varphi \rightarrow (\neg \psi))) \\ (\varphi \leftrightarrow \psi) & := & ((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)). \end{array}$$

Convenţii.

- · În practică, renunțăm la parantezele exterioare; le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- · Pentru a mai reduce din folosirea parantezelor, presupunem că
 - · ¬ are precedența mai mare decât ceilalți conectori;
 - $\cdot \wedge, \vee$ au precedență mai mare decât $\rightarrow, \leftrightarrow$.
- · Prin urmare, formula ((($\varphi \to (\psi \lor \chi)$) \land (($\neg \psi$) \leftrightarrow ($\psi \lor \chi$))) va fi scrisă ($\varphi \to \psi \lor \chi$) \land ($\neg \psi \leftrightarrow \psi \lor \chi$).

PRINCIPIUL INDUCȚIEI PE FORMULE

Propoziția 4.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea P.
- (1) Pentru orice formulă φ , dacă φ are proprietatea P, atunci şi $(\neg \varphi)$ are proprietatea P.
- (2) Pentru orice formule φ, ψ , dacă φ şi ψ au proprietatea P, atunci $(\varphi \to \psi)$ are proprietatea P.

Atunci orice formulă φ are proprietatea **P**.

Demonstrație. Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ .

Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \le n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

PRINCIPIUL INDUCȚIEI PE FORMULE

Pasul iniţial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ şi, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducţie. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $\cdot \varphi = v \in V$. Atunci φ are proprietatea **P**, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducţie, ψ are proprietatea P. Aplicînd ipoteza (1), rezultă că φ are proprietatea P.
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea P. Rezultă din (2) că φ are proprietatea P.

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea P.

PRINCIPIUL INDUCȚIEI PE FORMULE

Propoziția 4.7 (Principiul inducției pe formule - variantă alternativă) Fie Γ o mulțime de formule care are următoarele proprietăți:

- · $V \subseteq \Gamma$;
- · Γ este închisă la \neg , adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- · Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Demonstrație. Definim următoarea proprietate P: pentru orice formulă φ ,

 φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 4.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea P, deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

THE AXIOM OF CHOICE ALLOWS YOU TO SELECT ONE ELEMENT FROM EACH SET IN A COLLECTION AND HAVE IT EXECUTED AS AN EXAMPLE TO THE OTHERS.

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de Logică Matematică și Computațională al prof. Laurențiu Leuștean din anul universitar 2017/2018.

Comic-ul aparţine xkcd.