baseline anlaysis

February 23, 2023

/Users/ryanshea/opt/miniconda3/envs/tensorflow/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

from pandas import MultiIndex, Int64Index

0.1 Notes:

- Generally, most ML models are able to find a difference between the two classes
- Logistic Regression and Decision Tress have lower accuracies but even they do better than random guessing
- None of the models have been tuned but most of the others have around .77 accuracy
- Shows that there is a lot of room for improvement in data synthesis

```
[]: fake = pd.read_csv('fake_returns.csv').drop("Unnamed: 0", axis=1).T
    real = pd.read_csv('real_returns.csv').drop("Unnamed: 0", axis=1).T

    fake['label'] = 0
    real['label'] = 1
    print(fake.head())
    print(real.head())
```

```
label
    0 0.018903 -0.028697 0.016171 -0.010939 0.024098
                                                           0
    1 0.004445 0.002597 0.011681 0.006875
                                             0.002442
                                                           0
    2 0.004113 -0.000945 0.009640 -0.002228
                                             0.002092
    3 0.003525 -0.005657 -0.001579 -0.000251 0.006937
    4 -0.003574 -0.003970 -0.007127 -0.002242 0.001875
    0 -0.015061 0.000583 0.005816 0.001912 -0.002144
    1 -0.067705 -0.020872  0.043075  0.007002 -0.000873
                                                           1
    2 0.018355 0.010048 -0.011197
                                   0.003540 -0.009258
    3 0.000220 -0.011784 0.011652 0.013388 0.026251
                                                           1
    4 0.004243 0.002334 -0.017521 0.017447 0.006675
                                                           1
[]: # combine, shuffle, and split
    np.random.seed(0)
    df = pd.concat([fake, real])
    df = df.sample(frac=1).reset_index(drop=True)
[]:
                                               3
                                                           label
          -0.005124 -0.022862 -0.015359 -0.053346 0.008409
                                                               1
          -0.006478 -0.015799 0.022404 0.014828 0.035294
                                                               1
    1
          -0.010542 -0.014620 -0.007076 -0.004644 -0.005648
    2
                                                               0
          3
                                                               0
          -0.018514 0.004395 0.011364 0.003803 0.000000
    99631 -0.002732 -0.001971 -0.000224 -0.004348 -0.000190
                                                               0
    99632 -0.007494 -0.009779 0.006263 0.001235 0.014107
                                                               0
    99633 -0.014397 -0.000361 0.008395 -0.002989 -0.010194
                                                               0
    99634 -0.003073 -0.005414 -0.000081 -0.005265 -0.004561
                                                               0
    99635 0.026337 0.001496 0.005961 -0.003383 0.022250
                                                               1
    [99636 rows x 6 columns]
[]: print(df['label'].sum() / len(df)) # roughly 50/50 split
    0.4981733509976314
[]: X_train, X_test, y_train, y_test = train_test_split(df.drop('label', axis=1),__

df['label'], test_size=0.1, random_state=0)
[]: def eval model(model):
        model.fit(X_train, y_train)
        y pred = model.predict(X test)
        print(f"Accuracy: {accuracy_score(y_test, y_pred)}\n\n")
        print(f"Confusion Matrix:\n{confusion matrix(y test, y pred)}\n\n")
        print(f"Classification Report:\n\n{classification_report(y_test, y_pred)}")
```

return model

[]: logistic = eval_model(LogisticRegression())

Accuracy: 0.5630268968285829

Confusion Matrix: [[3218 1820] [2534 2392]]

Classification Report:

	precision	recall	f1-score	support
0	0 56	0.64	0.60	E020
0	0.56	0.64	0.60	5038
1	0.57	0.49	0.52	4926
accuracy			0.56	9964
macro avg	0.56	0.56	0.56	9964
weighted avg	0.56	0.56	0.56	9964

[]: svm = eval_model(SVC())

Accuracy: 0.7760939381774388

Confusion Matrix: [[3894 1144] [1087 3839]]

Classification Report:

	precision	recall	f1-score	support
0	0.78	0.77	0.78	5038
1	0.77	0.78	0.77	4926
a coura cu			0.78	9964
accuracy macro avg	0.78	0.78	0.78	9964
weighted avg	0.78	0.78	0.78	9964

[]: rf = eval_model(RandomForestClassifier())

Accuracy: 0.7786029706945002

Confusion Matrix:

[[3695 1343] [863 4063]]

Classification Report:

	precision	recall	f1-score	support
0	0.81	0.73	0.77	5038
1	0.75	0.82	0.79	4926
accuracy			0.78	9964
macro avg	0.78	0.78	0.78	9964
weighted avg	0.78	0.78	0.78	9964

[]: xgb = eval_model(xgb.XGBClassifier())

/Users/ryanshea/opt/miniconda3/envs/tensorflow/lib/python3.8/site-packages/xgboost/sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/ryanshea/opt/miniconda3/envs/tensorflow/lib/python3.8/sitepackages/xgboost/data.py:250: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):

[00:31:45] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Accuracy: 0.7768968285828984

Confusion Matrix: [[3784 1254] [969 3957]]

Classification Report:

	precision	recall	f1-score	support
0	0.80	0.75	0.77	5038
1	0.76	0.80	0.78	4926
2661172611			0.78	9964
accuracy			0.70	9904
macro avg	0.78	0.78	0.78	9964
weighted avg	0.78	0.78	0.78	9964

[]: tree = eval_model(DecisionTreeClassifier())

Accuracy: 0.6964070654355681

Confusion Matrix: [[3457 1581] [1444 3482]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.71 0.69	0.69 0.71	0.70 0.70	5038 4926
accuracy			0.70	9964
macro avg	0.70	0.70	0.70	9964
weighted avg	0.70	0.70	0.70	9964

[]: cat = eval_model(catboost.CatBoostClassifier(verbose=False))

Accuracy: 0.7785026093938178

Confusion Matrix: [[3761 1277]

[930 3996]]

Classification Report:

	precision	recall	f1-score	support
0	0.80	0.75	0.77	5038

1	0.76	0.81	0.78	4926
accuracy			0.78	9964
macro avg	0.78	0.78	0.78	9964
weighted avg	0.78	0.78	0.78	9964

[]: light = eval_model(lightgbm.LGBMClassifier())

Accuracy: 0.779205138498595

Confusion Matrix: [[3724 1314] [886 4040]]

Classification Report:

	precision	recall	f1-score	support
0	0.81	0.74	0.77	5038
O	0.01	0.14	0.11	3030
1	0.75	0.82	0.79	4926
accuracy			0.78	9964
macro avg	0.78	0.78	0.78	9964
weighted avg	0.78	0.78	0.78	9964