Example 3.1.1

Figure 1 shows a plane, pin-jointed truss which is supported at A and B and carries a vertical load of 10 kN at F as shown. All six members have a cross-sectional area of 300 mm² and are made of steel with E=200 GPa. Note that the structure is *statically determinate*.

- i) Calculate the reactions at A and B.
- ii) Calculate the internal forces in all six members of the truss.
- iii) Using an energy method, calculate the vertical deflection at joint F.
- iv) Using an energy method, calculate the horizontal deflection at joint F.

Figure 1: A plane pin-jointed truss.

i) Support reactions:

A global balance of moments about point B gives:

$$\sum M_B = 0$$
(10000)(2.0) $+R_{A,x}(1.0) = 0$
20000 $+R_{A,x} = 0$
 $R_{A,x} = -20 \,\mathrm{kN}$ (i.e. 20 kN to the left)

And a global balance of forces gives:

$$R_{B,x} = 20 \,\mathrm{kN} \,\mathrm{(totheright)}$$

$$R_{B,v}=0$$

$$R_{A,y} = 10 \,\mathrm{kN} \,\mathrm{(up \, wards)}$$

ii) Internal forces

The characteristic angle between members is $\theta = 45^{\circ}$.

Joint B:

$$P_{RD} = -R_{Rx} = -20 \,\mathrm{kN}$$

Joint A:

Joint F:

$$\sum F_{y} = 0$$

$$10 \text{ kN } -P_{CF} \sin \theta = 0$$

$$10 \text{ kN } -P_{CF} \left(\sqrt{2}/2\right) = 0$$

$$P_{CF} = 14142 \text{ N}$$

$$\sum F_{x} = 0$$

$$P_{CF} \cos \theta + P_{DF} = 0$$

$$P_{DF} = -P_{CF} \cos \theta$$

$$P_{CF} = -10 \text{ kN}$$

Joint C:

$$\begin{array}{ccc} \sum_{P_{CD}} F_{y} & = 0 \\ P_{CD} & + P_{CF} \sin \theta & = 0 \\ P_{CD} & = -P_{CF} \sin \theta \\ P_{CD} & = -10 \, \mathrm{kN} \end{array}$$

iii) Vertical deflection at ${\it F}$

Member	Li / m	Pi / N	Pi'	Pi Pi' Li / Nm
AC	1	10000		
AD	1.414214	14142.14		
BD	1	-20000		
CD	1	-10000		
CF	1.414214	14142.14		
DF	1	-10000		

Applying Castigliano's theorem:

$$\left(\delta_{y}\right)_{F} = \sum_{i=1}^{m} \frac{P_{i} P_{i} L_{i}}{A_{i} E_{i}}$$

$$\left(\delta_{y}\right)_{F} = \frac{1}{\left(\delta_{y}\right)_{F}}$$

$$\left(\delta_{y}\right)_{F} = \frac{1}{\left(\delta_{y}\right)_{F}}$$

i.e.

iv) Horizontal deflection at ${\cal F}$

Apply a unit load at the joint of interest with the correct orientation:

Now perform a new 'static equilibrium' analysis to obtain P_i ' values.

Member	Li / m	Pi / N	Pi'	Pi Pi' Li / Nm
AC	1	10000)	
AD	1.414214	14142.14		
BD	1	-20000)	
CD	1	-10000)	
CF	1.414214	14142.14		
DF	1	-10000)	

Applying Castigliano's theorem:

$$\left(\delta_{x}\right)_{F} = \sum_{i=1}^{m} \frac{P_{i} P_{i} L_{i}}{A_{i} E_{i}}$$

$$\left(\delta_{x}\right)_{F} =$$

$$(\delta_x)_F =$$

i.e.