

39th | 2022全国青少年信息学奥林匹克冬令营 National Olympiad in Informatics Winter Camp

第一课堂

杂谈: 多重时空下的算法竞赛

罗哲正

麻省理工学院

什么是算法竞赛?

- 考察算法
- 规定时间内编程解决数学问题
- •测试数据
- 时间/空间限制

什么是OI

OI 即 Olympiad in Informatics,是高中阶段主要的算法竞赛,有较为明确考纲(如 NOI,IOI 大纲)

多为4~5小时解决3~4道难度不同的题 较为正式的比赛中为5小时三道题

每题都有明确标注的部分分

IOI 赛制有及时反馈 CNOI 赛制无及时反馈,赛后统一评测

OI以外的算法竞赛

区域赛 CCPC

World Finals

ICPC系列

蓝桥杯

百度之星 美团杯

• • • • • •

线下比赛

多种赛制: ICPC, CF, 提交答案

Atcoder UOJ Codechef

Codeforces Topcoder

• • • • • •

短周期网络赛

Topcoder Open (TCO)
Google Code Jam (GCJ)
HashCode

长周期网络赛 (年度)

大洋彼岸的启示

从交换生经历谈中美信息学竞赛差异

我的高三到底做了啥?

选拔

赛制

CNOI	USACO	IOI
按测试点给分	按测试点给分	按子任务给分
文件输入输出	标准输入输出	交互式输入输出
赛后统一评测	即时评测	即时评测
有详细部分分	有粗略部分分	严格按照子任务给部分分

命题特点与选手科技树

- · IOI 的命题精神是什么?
 - · 请认真听一听彭老师《IOI 题型与去向分析》
- 我们的命题与组题科学吗?USACO 这方面如何?
 - 谈谈你印象中最"偏"的一道正式比赛题。
 - 谈谈你见过的好题。
 - 谈谈你心中最优秀的一场比赛。
 - · USACO 的题是什么样的?
 - 你觉得近年的比赛难度在如何变化?应该如此吗?
- 我们的科技领先吗?领先在哪里?
 - 谈谈你认为最惊艳的中国 OI 科技。

训练模式

以学校为单位(有教练) 个人学习者 校内资源 在线资源 CNOI 模拟赛 网络赛 同僚交流 在线交流

总结与建议

对比国外选手的训练选拔方式,我们可以学到什么?

如何训练(面向 IOI)

面向IOI的训练模式

- 可以继续通过模拟赛训练,但注 意不要过度拟合 CNOI 赛制
- 利用网络在线比赛适应即时反馈的赛制
- 提高整体的做题效率,IOI 赛制的 节奏远快于 CNOI 赛制

资源的选择与利用

- 认真对待且珍惜 IOI 真题,尤其是交 互类型
- 刷题时侧重 IOI 考纲内的题目
- 其他国家的决赛,选拔赛真题(如 美国,日本,波兰)
- ICPC 训练赛可极大提升综合能力, 可以尝试

如何考试(面向 IOI)

时间管理

减小方差

擅于挑战

- 利用即时反馈尽快拿到暴力/部分分,不要优化暴力
- 优先做得分率高的部分分,平时注意提升代码稳定性
- 提前 90 分钟做好全部收场规划
- 善于从 low-level 写码状态切换回 high-level 思考状态
- 谨慎但不要惧怕投入大量时间思考
- 训练对题目难度的感知

如何选拔

• 尽可能采用 IOI 赛制。

• 增多选拔赛的题目数量, 平均权值(需要更多成本投入)。

· 增加 CNOI 中缺乏的题型与知识点的考察,如交互。

着眼未来: OI 与大学

包含我对一些 OI 选手的采访

中学阶段: OI 的投入与回报

· OI 与文化课的冲突:大多数集训队员都不同程度的停了文化课。

• OI 对升学的价值:加分,保送,申请时作为重要的课外活动。

OI的学习方式

- 自主学习能力
- 自主在网上找资源的能力(如 blog, google scholar)
- 快速阅读并筛选资源的能力
- 不要硬想问题, 学会从题解中学习
- 做题往往比看书有用

OI的思维模式

- •逻辑思维能力
- 建立对题目难度的良好估计
- 模块化的拆分问题
- 先考虑问题的特殊情况,看看能不能把做法一般化
- 先暴力解决问题再思考优化
- 学会问"为什么想到这个",关注直觉(intuition)

OI中的知识点

- 代码能力,调试技巧,常数优化
- 可以快速学会一门编程语言,并看懂他人的代码
- 算法思维: 把计算过程写成算法, 提升理解复杂算法的能力
- 分析算法的复杂度及正确性
- 概率,组合与线性代数
- 初级而广泛应用的思想: 贪心, 动态规划, 分治, 递归

Ol in Research

Theory

System

Artificial Intelligence and Machine Learning

Other areas

Ol in my Research

Temporal and Object Quantification Networks
 Jiayuan Mao*, Zhezheng Luo*, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, and Tomer D. Ullman (*: First two authors contributed equally.)

- Project Page:
 - http://toqnet.csail.mit.edu/

Event Grounding

Collision

Grasp

Flip

Event Recognition in Soccer Game

Relational and Temporal Action Concept

Action Concept Representation — First–Order–Logic (FOL) and Linear–Temporal–Logic (LTL)

Relational Reasoning — Feature Representation

We store relational features at each time t.

Internal relational features are represented by tensors.

red(x, t):

x is a red team player

blue(x, t):

x is a blue team player

ball(x, t):

x is a the ball

close(x, y, t):

x and y are close to each other (distance < 1m) at time t

Globally Features (Nullary)

Dimension: D_0

Object Features (Unary)

Dimension: $N \times D_1$

Object Pair Features (Binary)

Dimension: $N \times N \times D_2$

Unary: Q_0

Binary: R_0

 $p_1(t)$

 $p_2(t)$

 $p_{D_0}(t)$

 $q_1(x,t)$

 $q_2(x,t)$

 $q_{D_1}(x,t)$

 $r_1(x, y, t)$

 $r_2(x, y, t)$

 $r_{D_2}(x, y, t)$

Relational Reasoning Layer — Expander and Reducer

Relational Reasoning — An Example NN $\boldsymbol{\sigma}$ Nullary P_2 Expand Nullary Reduce NN Unary: Q2 Unary: Q₁ Expand Reduce Binary: R₂ Binary: R₁ NN σ $\forall y. \neg ball(y,t) \lor close(x,y,t)$ $red(x,t) \land \forall y. \neg ball(y,t) \lor close(x,y,t)$ red(x,t) \neg ball $(y,t) \lor close(x,y,t)$ blue(x, t)red(x,t)ball(x,t)

如何抽取时序关系?

• $possess \rightarrow kick \rightarrow otherPlayerGet$

- $f_1[t] = otherPlayerGet[t]$
- $f_2[t_1] = \max_{t_2 > t_1} \{ f_1[t_2] \&\& \max_{t_1 \le k < t_2} kick[k] \}$
- $f_3[t_1] = \max_{t_2 > t_1} \{ f_2[t_2] \&\& \max_{t_1 \le k < t_2} possess[k] \}$
- $f[i][t_1] = \max_{t_2 > t_1} func1(f[i-1][t_2], \max_{t_1 \le k < t_2} f[i-1][k])$

Feature Dim

Temporal Quantification from j to i

$$P_K^{(t,1)} : e_1$$

$$P_K^{(t,2)} : e_2$$

Feature Dim

Temporal Quantification from j to i

$$P_K^{(t,1)} : e_1 \\ P_K^{(t,2)} : e_2$$

$$e_3(i) = (e_1 \ until \ e_2)(i) \Leftrightarrow \exists j > i. (G_{i:j-1}e_1) \land e_2(j)$$

$$e_4(i) = (e_1 \ then \ e_2)(i) \Leftrightarrow \exists j > i. (F_{i:j-1}e_1) \land e_2(j)$$

Feature Dim

 $P_2^{(t,1)} : e_1 P_2^{(t,2)} : e_2$ $P_2^{(t,2)} : e_4 = eventually e_3$

$$P_2^{(t,1)} : e_1 P_2^{(t,2)} : e_2$$

 $P_2^{(t,2)} : e_4 = eventually e_3$

$$\begin{bmatrix} P_3^{(1,1)} & \cdots \\ P_3^{(2,1)} & \cdots \\ P_3^{(3,1)} & \cdots \\ P_3^{(4,1)} & \cdots \\ P_3^{(5,1)} & \cdots \end{bmatrix}$$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

$$P_2^{(t,1)} : e_1 P_2^{(t,2)} : e_2$$

 $P_2^{(t,2)} : e_4 = eventually e_3$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

$$P_{2}^{(t,1)}: e_{1} \quad P_{2}^{(t,2)}: e_{2} \qquad \qquad P_{3}^{(t,1)}: e_{5} = e_{1} \text{ until } (e_{2} \wedge e_{4})$$

$$P_{2}^{(t,2)}: e_{4} = eventually e_{3} \qquad \qquad = e_{1} \text{ until } (e_{2} \wedge (eventually e_{3}))$$

$$P_2^{(t,1)} : \mathbf{e_1} \qquad P_2^{(t,2)} : \mathbf{e_2}$$

 $P_2^{(t,2)} : \mathbf{e_4} = \mathbf{eventually} \ \mathbf{e_3}$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

$$P_2^{(t,1)} : \mathbf{e_1} \qquad P_2^{(t,2)} : \mathbf{e_2}$$

 $P_2^{(t,2)} : \mathbf{e_4} = \mathbf{eventually} \ \mathbf{e_3}$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

Feature Dim


```
e_1: Red team is possessing the ball
```

$$\exists x. \left(\text{red}(x) \land \forall y. \left(\text{close}(x, y) \lor \neg \text{ball}(y) \right) \right)$$

 e_2 : Ball is moving fast while is near the blue teams gate

$$\exists x. (ball(x) \land fast(x) \land near_blue_gate(x))$$

 e_3 : Blue team goal keeper is controlling the ball

$$\exists x. (blue(x) \land is_goalkeeper(x) \land \forall y. (close(x, y) \lor \neg ball(y)))$$

 e_5 : Blue team deflected: Red team was possessing the ball, until the ball was moving fast near blue teams gate, and then the goal keeper of the blue team got the ball

$$\exists x. \left(\operatorname{red}(x) \land \forall y. \left(\operatorname{close}(x, y) \lor \neg \operatorname{ball}(y) \right) \right)$$

$$U \exists x. \left(\operatorname{ball}(x) \land \operatorname{fast}(x) \land \operatorname{near_blue_gate}(x) \right) \land$$

$$F \exists x. \left(\operatorname{blue}(x) \land \operatorname{is_goalkeeper}(x) \land \forall y. \left(\operatorname{close}(x, y) \lor \neg \operatorname{ball}(y) \right) \right)$$

$$P_3^{(t,1)}$$
: $e_5 = e_1$ until $(e_2 \land e_4)$
= e_1 until $(e_2 \land (eventually e_3))$

TOQ-Nets — Overview

如何避免 OI 模式的"副作用"

- 要学会"拉长战线", OI 题都可以在几个小时内解决, 而科研和工程上的问题并非如此。要学会做没有短期回报的事情。
- 要学会听课,读材料,而不是仅仅自己做题。避免纯粹的"面向作业学习"。
- 学会提问, 学会合作, 学会从别人的视角理解问题。
- 要跨越"AC思维",不要觉得只要做对了题,懂不懂并不重要,要从定义开始理解。透彻的理解对课程,考试,科研都很重要。
- 并不是每个问题都有简洁优美高效的解法,不要看不起暴力。

高中 OI 选手的生活与社交

• 事实:很多集训队员的高中生活中几乎没有社交。

• 多数集训队员的社交对象以机房同学/网友为主。

• 部分 OI 选手生活不规律, 经常熬夜

对 OI 选手大学生活的建议

- 重视一起在 OI 中成长的同学, 你们会有很多共同语言。
- 不要只和 OI 选手打交道,走出舒适圈,多样化自己的社交圈。 与更多的人交流会帮助你认识到自己社交和心智上的局限,并扩 展自己的社交能力。
- 有能力可以主动参与学校活动,培养其他的爱好并结识同好。

杂谈:一些宽泛的建议

- 享受生活,这可能是前后三年内唯一有空玩一玩的时间。保持纯粹,到了大学之后人会变得复杂。珍惜现在只想快乐做点题目的时光。
- 早点思考自己要做什么,大一大二就可以去了解一下,可以试错, 多获取一些信息,多和前辈聊天。
- 尽可能想清楚自己要做什么。如果要做科研的话,不要只做TCS(尤其是组合算法),多看别的领域。
- 放平心态,享受过程,关注自己和周边人的心理健康,有困难及时求助。相信自己,大胆尝试。

致谢

· 感谢 CCF 提供交流与分享的平台。

• 感谢陈立杰, 罗浩宽, 王蕴韵, 吕凯风, 高继扬和杨家齐同学接受采访。

• 感谢在座各位的聆听。

谢谢大家!

2022年1月24日

有争议的例子

- [WC2015] 混淆与破解
- [WC2015] 未来程序
- [CTSC2015] CTEX
- [清华集训2015] 恐怖的奴隶主
- [清华集训2015] 多边形下海
- [清华集训2015] 斗地主
- [WC2017] 挑战

"偏题"应该怎么出

- 数学题应该怎么出?
 - 例子: [浙江省选2015]地震后的幻想乡, Endless Spin
- 物理题应该怎么出?
 - 例子:[清华集训2015] V
- 游戏题应该怎么出?
 - 例子: [JLOI2014] 2048, [UR#9] 包子晚宴
- 提交答案题应该怎么出?
 - 例子: [APIO2013] TASKSAUTHOR, [IOI2017] Nowruz

什么样的题叫好题?

[NOI2013] 向量内积

• 给n个d维向量,问是否存在两个向量的内积为k的倍数。

• $n \le 100000$; $d \le 30$; $k \in \{2,3\}$.

• $O(n^2d)$ 做法有60,使用bitset做k=2的有80。

[NOI2015] 寿司晚宴

• 问有多少种办法把2,3,…,n分成三个集合A,B,C,使得A集合中任何一个数都和B中任何一个数都互质。

• $n \le 500$.

•	30pts	$n \le 30$
	20pts	$n \le 100$
	20pts	$n \le 200$
	30pts	$n \le 500$

[NOI2017] 整数

- 一个整数x刚开始为0,有n个操作,操作分为两种
- 1 ab: 把x加上 $a\cdot 2^b$
- 2 k: 询问x二进制从末尾数第k位的值,保证 $x \ge 0$
- $n \le 1000000$; $|a| \le 10^9$; $b, k \le 30n$.
- 数据中,n从10到1000000按对数大致均匀分布,存在一些 $a=1; |a|=1; b, k \leq 30; b, k \leq 100; b, k \leq n$ 的部分分。

[IOI2016] Railroad

- 有n个过山车轨道,每个轨道有两个参数 s_i, t_i ,进入速度不能高于 s_i 且离开速度一定为 t_i ,在轨道之间减速需要花费减速量的代价。火车初速度为1。
- 现在你需要把轨道排成一排,最小化代价。
- $n \le 200000$; $1 \le s_i$, $t_i \le 10^9$.

•	Subtask 1 [11pts]	$n \leq 8$
	Subtask 2 [23pts]	$n \le 16$
	Subtask 3 [30pts]	$n \le 200000$
	Subtask 4 [36pts]	$n \le 200000$

[IOI2017] Ancient Books

- 有一列桌子 $0 \sim n 1$,每个桌子上摆了一本古书,古书编号也为 $1 \sim n$,你需要整理古书使得古书和所在桌子的编号对应。你刚 开始在s,结束时也需要回到s。你有如下操作,求最小时间。
 - 将手上的内容和桌子上的内容交换(即拿起/放下或交换)
 - 走到相邻的桌子
- 前一个操作为瞬时操作,最后一个操作需要花费1的时间。
- $1 \le n \le 1000000$; $0 \le s \le n 1$.

•	Subtask 1 [12pts]	$n \le 4$; $s = 0$	Subtask 4 [20pts]	$n \le 1000$
	Subtask 2 [10pts]	$n \le 1000; s = 0$	Subtask 5 [30pts]	$n \le 10^6$
	Subtask 3 [28pts]	$n < 10^6$: $s = 0$		

[IOI2018] 排座位

- 一个大厅有 $H \times W$ 个座位,行编号为 $0 \sim H 1$,列编号为 $0 \sim W 1$ 。一共HW位参赛者,编号为 $0 \sim HW 1$,第i个参赛者座位为 (R_i, C_i) 。对于任意k,若编号为 $0 \sim k 1$ 的参赛者的座位恰好组成了一个实心矩形,那么称为美妙的。一个座位表的美妙度为美妙的k的个数。
- 给定座位表,每次交换两个人的座位,维护美妙度。
- $HW \le 10^6$; $Q \le 50000$.

•	Subtask 1 [5pts]	$HW \le 100; Q \le 5000.$	Subtask 4 [6pts]	$Q \le 5000, a-b \le 10^4.$
	Subtask 2 [6pts]	$HW \le 10^4; Q \le 5000.$	Subtask 5 [33pts]	H = 1
	Subtask 3 [20pts]	$H, W \le 10^3; Q \le 5000.$	Subtask 6 [30pts]	No Special Constraints

如何组成一场比赛?

- 难度分布合理
 - · 不合理的例子: CTSC
- 代码量合理
 - 不合理的例子: AHOI 2016
- 部分分合理
 - 部分分很大程度数影响了题目的实际权重
 - 失衡的例子: NOI 2013 Day 1
 - 好的例子: NOI 2014
- •新颖的思路?

[US Open 2017] Modern Art

• 有一个N×N的格子棋盘,刚开始颜色都是0,颜色1~N²以某种顺序被涂到棋盘上,每次涂色恰好是一个子矩形,并会覆盖之前的颜色。现在给定棋盘的最终状态,问哪些颜色可能是第一个被涂到棋盘上的。

• $N \le 1000$.

[US Open 2017] Switch Grass

• 给一张N个点M条边的带权无向图。每个点都有一个颜色,现在有Q个操作,每个操作修改一个点的颜色,并询问两个顶点不同色的边的最大权值。

• $N \le 200000$; $M \le 200000$; $Q \le 200000$.

[US Open 2017] Cowbasic

• 有一门编程语言,有以下语法:

- 其中: <exp> = <num> | <var> | (<exp> + <exp>), <num>都是正整数。
- 给一段程序, 求答案对109 + 7取模的结果。
- •程序最多100行。

WQS-CLJ 二分

- [国家集训队2012] tree (by 陈立杰)
 - 给一个n个点m条边的无向带权连通图,每条边是黑色或白色,求恰好有c条边的最小权生成树。
 - $n \le 50000, m \le 100000, 1 \le w_i \le 100.$
- [IOI2016] 外星人