NSSH NBO

R1173x SERIES

Super low on resistance/Low voltage LDO

NO.EA-123-220509

OUTLINE

The R1173x Series are CMOS-based positive voltage regulator ICs. The R1173x Series have features of super low dropout, 1A output current capability, and -3mV typical load regulation at 1A. Even the output voltage is set at 1.5V, on resistance of internal FET is typically 0.32Ω . Therefore, applications that require a large current at small dropout are suitable for the R1173x series. Low input voltage is acceptable and low output voltage can be set. The minimum input voltage is 1.4V, and the lowest set output voltage is 0.8V. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor net for setting output voltage, a current limit circuit at overcurrent, a chip enable circuit, a thermal-shutdown circuit, and so on. A stand-by mode with ultra low consumption current can be realized with the chip enable pin. The output voltage types of R1173 are fixed one in the IC and adjustable one (R1173x001x).

Since the packages for these ICs are the SOT-89-5 package, HSON-6, or HSOP-6J, high density mounting of the ICs on boards is possible.

FEATURES

Output Current	1A
Supply Current	Typ. 60μA
Standby Current	Typ. 0.1μA
Input Voltage Range	1.4V to 6.0V
Output Voltage Range	
	1.0V to V _{IN} (R1173x001)
	(For other voltages, please refer to MARK INFORMATIONS.)
Dropout Voltage	Typ. 0.32V (Vouт=1.5V, louт=1A)
	Typ. 0.18V (Vouт=2.8V, Iouт=1A)
Ripple Rejection	Typ. 70dB (Vouт=2.8V)
Output Voltage Accuracy	
Temperature-drift Coefficient of Output Voltage	
Line Regulation	Typ. 0.05%/V
Load Regulation	Typ. –2mV (Іоυт=300mA)
	Typ. –3mV (Іоυт=1А)
Packages	SOT-89-5, HSON-6, HSOP-6J
Low inrush current at turning-on	Typ. 500mA
Built-in Thermal Shutdown Circuit	
Built-in Current Limit Circuit	Typ. 250mA
Output capacitors	C _{IN} =Ceramic 4.7μF
	Cout=Tantalum 4.7μF (Vout<1.0V)
	Couτ=Ceramic 4.7μF (Vouτ ≧ 1.0V)

APPLICATIONS

- Local Power source for Notebook PC.
- Local Power source for portable communication equipments, cameras, and videos.
- Local Power source for home appliances.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1173Dxx1*-TR-FE	HSON-6	3,000 pcs	Yes	Yes
R1173Hxx1*-T1-FE	SOT-89-5	1,000 pcs	Yes	Yes
R1173Sxx1*-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range from 0.8V(08) to 5.0V(50) in 0.1V steps. External Setting Type: 00 (ADJ pin voltage is fixed at 1.0V.) (For other voltages, please refer to MARK INFORMATIONS.)

- * : The auto discharge function at off state are options as follows.
 - (B) "H" active, without auto discharge function at off state
 - (D) "H" active, with auto discharge function at off state

PIN CONFIGURATIONS

• HSON-6

• HSOP-6J

PIN DESCRIPTIONS

●SOT-89-5

Pin No.	Symbol	Description	
4	ADJ	ADJUST Pin (R1173H001x)	
ı	NC	No Connection (R1173Hxx1x)	
2	GND	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	V _{DD}	Input Pin	
5	Vouт	Output Pin	

●HSON-6

Pin No.	Symbol	Description
1	Vоит*1	Output Pin
2	Vоит*1	Output Pin
2	ADJ	ADJUST Pin (R1173D001x)
3	NC	No Connection (R1173Dxx1x)
4	GND	Ground Pin
5	CE	Chip Enable Pin ("H" Active)
6	V _{DD}	Input Pin

Tab and tab suspension leads in the parts are GND level. (They are connected to the reverse side of the IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

The tab suspension leads should be open and do not connect to other wires or land patterns.

^{*1)} The Vout pin must be wired together when it is mounted on board.

●HSOP-6J

Pin No.	Symbol	Description
1	Vоит	Output Pin
2	GND*1	Ground Pin
2	ADJ	ADJUST Pin (R1173S001x)
3	NC	No Connection (R1173Sxx1x)
4	CE	Chip Enable Pin ("H" Active)
5	GND*1	Ground Pin
6	V _{DD}	Input Pin

^{*1)} The GND pin must be wired together when it is mounted on board.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	6.5	V
Vce	Input Voltage (CE Input Pin)	-0.3 to 6.5	V
Vout	Output Voltage	-0.3 to V _{IN} +0.3	V
	Power Dissipation (SOT-89-5)*	900	
PD	Power Dissipation (HSON-6)*	900	mW
	Power Dissipation (HSOP-6J)*	1700	
Topt	Operating Temperature	-40 to 85	°C
Tstg	Storage Temperature	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• R1173xxxxB/D (Fixed Output Voltage Type)

Topt=25°C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.4		6.0	V
Iss	Supply Current	VIN-VOUT=1.0V, VCE=VIN,	Іоит=0А		60	100	μА
Istandby	Standby Current	VIN= 6.0V, VCE=0V			0.1	1.0	μА
Vout	Output voltage	VIN-VOUT=1.0V	Vоит>1.5V	×0.98		×1.02	V
V 001	Output voltage	Iоит=100mA	V _{OUT} ≤ 1.5V	-30		+30	mV
Δ V ουτ/	Load regulation	V_{IN} - V_{OUT} =0.3 V , 1mA \leq If $V_{\text{OUT}} \leq$ 1.1 V , then V_{IN} :		-15	-2	15	mV
Δl оυт	Load regulation	•	V_{IN} - V_{OUT} =0.3 V , 1 $mA \le I_{OUT} \le 1A$ If $V_{OUT} \le 1.1V$, then V_{IN} =1.7 V		-3		IIIV
VDIF	Dropout Voltage	F	Refer to the following	g table			
$\Delta V_{ ext{OUT}}/$ $\Delta V_{ ext{IN}}$	Line regulation	$I_{OUT}=100$ mA, $V_{OUT}+0.5$ V If $V_{OUT} \le 0.9$ V, 1.4 V ≤ 0.9 V			0.05	0.20	%/V
RR	Ripple Rejection	$ \begin{array}{l} f{=}1kHz \; (V_{\text{OUT}} \leq 4.0V) \\ f{=}1kHz \; (V_{\text{OUT}}{>}4.0V) \\ \text{Ripple } 0.5Vp{-}p, V_{\text{IN}}{-}V_{\text{OUT}}{=}1.0V, \; I_{\text{OUT}}{=}100\text{mA} \\ \text{If } V_{\text{OUT}} \leq 1.2V, \; V_{\text{IN}}{-}V_{\text{OUT}}{=}1.5V, \; I_{\text{OUT}}{=}100\text{mA} \\ \end{array} $			70 60		dB
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT}=100mA$, $-40^{\circ}C \le T_{Opt} \le 85^{\circ}C$			±100		ppm/ °C
Іым	Output Current	VIN-VOUT=1.0V		1			Α
Isc	Short Current Limit	Vоит=0V			250		mA
R _{PD}	Pull-down resistance for CE pin			1.9	5.0	15.0	ΜΩ
VCEH	CE Input Voltage "H"			1.0		6.0	V
VCEL	CE Input Voltage "L"			0		0.4	V
T _{TSD}	Thermal Shutdown Detector Threshold Temperature	Junction Temperature			150		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			120		°C
en	Output Noise	BW=10Hz to 100kHz			30		μVrms

• Dropout Voltage by Output Voltage

Topt=25°C

	D	Dropout Voltage V _{DIF} (V)				
Output Voltage Vουτ (V)	Іоит=30	Iout=300mA				
1001(1)	Тур.	Max.	Тур.			
$0.8 \leq V_{OUT} < 0.9$	0.33	0.57	0.72			
0.9 ≦ V _{OUT} < 1.0	0.22	0.47	0.64			
1.0 ≦ V _{OUT} < 1.5	0.18	0.32	0.56			
1.5 ≦ V _{OUT} < 2.6	0.10	0.15	0.32			
2.6 ≦ Vout	0.05	0.10	0.18			

• R1173x001B/D (Adjustable Output Voltage Type)

Topt=25°C

Symbol	Item	Con	ditions	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.4		6.0	V
Iss	Supply Current	Vout=Vadj, Vin	=2.0, VcE=Vin		60	100	μА
Istandby	Standby Current	VIN=6.0V, VCE	=0V		0.1	1.0	μА
Vоит	Reference Voltage for Adjustable Voltage Regulator	Vout=Vadj, Vin Iout=100mA	=2.0V	0.970	1.000	1.030	V
RV out	Output Voltage Range			1.0		Vin	V
Δ V ουτ/	Load regulation	V _{IN} =1.4V 1mA ≦ Iout ≦	300mA	-15	-2	15	mV
Δl оит	Load regulation	V _{IN} =1.7V 1mA ≦ Iout ≦	í 1A		-3		IIIV
V_{DIF}	Dropout Voltage	Vout=Vadj	І оит= 300mA		0.18	0.32	V
V DIF	Dropout Voltage	V OUT = V ADJ	Іоит=1А		0.56		V
ΔV out/ ΔV in	Line regulation	Vout=Vadj, Iou $1.5V \le V$ in \le			0.05	0.20	%/V
RR	Ripple Rejection	f=1kHz Ripple 0.5Vp-p, Vout=VadJ, VIN=2.5V Iout=100mA			70		dB
ΔV оит/ ΔT орt	Output Voltage Temperature Coefficient	$\begin{array}{l} \text{Iout=100mA} \\ -40^{\circ}\text{C} \leq \text{Topt} \leq 85^{\circ}\text{C} \end{array}$			±100		ppm/°C
Ішм	Output Current	Vout=Vadj, Vin	=2.0	1			Α
I sc	Short Current Limit	Vout=VadJ=0V	,		250		mA
Rpd	Pull-down resistance for CE pin			1.9	5.0	15.0	МΩ
Vceh	CE Input Voltage "H"			1.0		6.0	V
Vcel	CE Input Voltage "L"			0		0.4	V
T _{TSD}	Thermal Shutdown Detector Threshold Temperature	Junction Temperature			150		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			120		°C
en	Output Noise	BW=10Hz to	100kHz		30		μVrms

Technical Notes on External Components and Typical Application

(Refer to the example of typical application)

Example of the typical application of R1173x (Fixed Output Type)

Phase Compensation

In these ICs, phase compensation is made with the output capacitor for securing stable operation even if the load current is varied. For this purpose, use as much as a capacitor as C2. Recommendation value is as follows:

Mounting on PCB

Make V_{DD} and GND lines sufficient. If their impedance is high, a current flows, the noise picked up or unstable operation may result. Further use a 4.7 μ F or more value capacitor between V_{DD} pin and GND pin as close as possible.

Set an Output capacitor between VouT pin and GND pin for phase compensation as close as possible.

Output Voltage	C2 recommendation value	Components Recommendation	
V _{OUT} <1.0V	Tantalum 4.7μF or more		
1.0 ≦ Vouт<3.3V	Ceramic 4.7μF or more	Kyocera 4.7μF (1608) Part Number: CM105X5R475M06AB Murata 4.7μF (1608) Part Number: GRM188R60J475KE19B Murata 10μF (1608) Part Number: GRM188B30G106ME46B	
3.3V ≦ V _О ∪Т	Ceramic 4.7μF or more	Kyocera 4.7μF (thin 2012) Part Number: CT21X5R475M06AB Murata 10μF (1608) Part Number: GRM188B30G106ME46B	

If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.

Technical Notes on Output Voltage Setting of Adjustable Output type (R1173x001x)

The Output Voltage may be adjustable for any output voltage between its 1.0V reference and its V_{DD} setting level. An external pair of resistors is required, as shown above.

The complete equation for the output voltage is described step by step as follows;

12=1 _{IC} +13	(1)
I2=I _{IC} +I3 I3=1.0/R3	(2)
Thus,	
I2=I _{IC} +1.0/R3	(3)
Therefore,	
Vout=1.0+R2×I2	(4)
Put Equation (3) into Equation (4), then	
$V_{OUT}=1.0+R2(I_{IC}+1.0/R3)$	
=1.0(1+R2/R3)+R2×I _{IC}	(5)
In 2nd term, or R2×lıc will produce an error in Vo∪⊤.	
In Equation (5),	
lic=1.0/Ric	(6)
$R2\times I_{IC}=R2\times 1.0/R_{IC}$	
=1.0×R2/R _{IC}	(7)
For better accuracy, choosing R2 (< <ric) error.<="" reduces="" td="" this=""><td></td></ric)>	

*) The graph is a typical characteristic, please evaluate the circuit with an actual condition.

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

3) Dropout Voltage vs. Output Current (Topt=25°C)

4) Output Voltage vs. Temperature (Ιουτ=100mA)

5) Supply Current vs. Temperature R1173x081x

6) Dropout Voltage vs. Output Current

7) Dropout Voltage vs. Set Output Voltage

8) 0.8V Output type, Operating Input Voltage Range

9) Ripple Rejection vs. Input Bias

10) Ripple Rejection vs. Frequency R1173x081x

R1173x301x

R1173x401x

R1173x451x

R1173x501x

11) Line Transient Response (Tr=Tf=5μs, Ιουτ=100mA)

R1173x101x

NO.EA-123-220509

12) Load Transient Response (Tr=Tf=500ns)

R1173x081x

13) Turn-on speed with CE pin control

14) Turn-off speed with CE pin control R1173x081D

15) Inrush Current

16) Stable Area: ESR limit vs. Load current

0.8V to 3.3V Output type : C_{OUT} =4.7 μ F (Kyocera CM105X5R475M06AB) 5.0V Output type : C_{OUT} =4.7 μ F (Kyocera CT21X5R475K06AB)

Measurement Conditions

- · VIN=VOUT+1V
- Freguency=10Hz to 1MHz
- · Topt=25°C

As an output capacitor for this IC, Ceramic capacitor is recommendable. However, other low ESR type capacitor can be used with this IC.

For your reference, noise level is tested, and if the noise level is $40\mu V$ or less than $40\mu V$, the ESR values are plotted as stable area. Upper limit is described in the next five graphs, or ESR vs. Output Current. (Hatched area is the stable area.)

R1173x101x

R1173x301x

R1173x501x

Power Dissipation (SOT-89-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	High Wattage Land Pattern	Standard Land Pattern
Environment Mounting on Board (Wind velocity=0m/s		Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)	Glass cloth epoxy plastic (Double sided)
Board Dimensions	30mm x 30mm x 1.6mm	50mm x 50mm x 1.6mm
Copper Ratio Top side : Approx. 20%, Back side : Approx. 100% Through-hole \$\int 0.85 \text{mm x 10pcs}\$		Top side : Approx. 10% , Back side : Approx. 100%
		-

Measurement Result

(Ta=25°C,Tjmax=125°C)

	High Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	1300mW	900mW	500mW
Thermal Resistance	77°C/W	111°C/W	200°C/W

High Wattage Standard

Measurement Board Pattern

IC Mount Area Unit : mm

Package Dimensions (SOT-89-5)

NO.EA-123-220509

Mark Specification (SOT-89-5)

R1173H Series Marking List Table PKG: SOT-89-5

R1173Hxx1B

R1173Hxx1D

R1173Hxx1B		R1173Hxx1D	
Part Number	0234	Part Number	1234
R1173H081B R1173H091B	L08B L09B	R1173H081D R1173H091D	L08D L09D
R1173H101B R1173H111B R1173H121B R1173H131B R1173H141B R1173H151B R1173H161B R1173H171B R1173H181B R1173H191B	L10B L11B L12B L13B L14B L15B L16B L17B L18B L19B	R1173H101D R1173H111D R1173H121D R1173H131D R1173H141D R1173H151D R1173H161D R1173H171D R1173H181D R1173H191D	L10D L11D L12D L13D L14D L15D L16D L17D L18D L19D
R1173H201B R1173H211B R1173H221B R1173H231B R1173H241B R1173H251B R1173H261B R1173H271B R1173H271B R1173H281B R1173H291B	L20B L21B L22B L23B L24B L25B L26B L27B L28B L29B	R1173H201D R1173H211D R1173H221D R1173H231D R1173H241D R1173H251D R1173H261D R1173H271D R1173H281D R1173H291D	L20D L21D L22D L23D L24D L25D L26D L27D L28D L29D
R1173H301B R1173H311B R1173H321B R1173H331B R1173H341B R1173H351B R1173H361B R1173H371B R1173H381B R1173H381B	L30B L31B L32B L33B L34B L35B L36B L37B L38B L39B	R1173H301D R1173H311D R1173H321D R1173H331D R1173H341D R1173H351D R1173H361D R1173H371D R1173H381D R1173H391D	L30D L31D L32D L33D L34D L35D L36D L37D L38D L39D
R1173H401B R1173H411B R1173H421B R1173H431B R1173H441B R1173H451B R1173H461B R1173H471B R1173H481B R1173H481B	L40B L41B L42B L43B L44B L45B L45B L46B L47B L48B L49B	R1173H401D R1173H411D R1173H421D R1173H431D R1173H441D R1173H451D R1173H461D R1173H471D R1173H481D R1173H491D	L40D L41D L42D L43D L44D L45D L46D L47D L48D L49D
R1173H501B	L50B	R1173H501D	L50D
R1173H181B5 R1173H281B5 R1173H12B5	L01B L02B L03B	R1173H181D5 R1173H281D5 R1173H121D5	L01D L02D L03D
R1173H001B	L00B	R1173H001D	L00D

Power Dissipation (HSON-6)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)
Board Dimensions	40mm x 40mm x 1.6mm
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%
Through-hole	φ 0.5mm x 44pcs

Measurement Result

(Ta=25°C, Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	900mW	400mW
Thermal Resistance	θja = (125-25 °C) / 0.9W= 111°C/W	250°C/W

40

Measurement Board Pattern

C Mount Area Unit : mm

Package Dimensions (HSON-6)

* Attention: Tabs or Tab suspension leads in the parts have V_{DD} or GND level. (They are connected to the reverse side of this IC.)

Refer to PIN DISCRIPTION.

Do not connect to other wires or land patterns.

Unit: mm

NO.EA-123-220509

Mark Specification (HSON-6)

①②③④:Product Code .Refer to the marking list table ⑤⑥ :Lot No............Alphanumeric serial number.

R1173D Series Marking List Table

PKG: HSON-6

R1173Dxx1B

R1173Dxx1D

KIII/SDXXIB		KIII/3DXXID	
Part Number	1234	Part Number	1234
R1173D081B R1173D091B	H08B H09B	R1173D081D R1173D091D	H08D H09D
R1173D101B R1173D111B R1173D121B R1173D131B R1173D141B R1173D151B R1173D161B R1173D171B R1173D181B R1173D181B	H10B H11B H12B H13B H14B H15B H16B H17B H17B H18B H19B	R1173D101D R1173D111D R1173D121D R1173D131D R1173D141D R1173D151D R1173D161D R1173D171D R1173D181D R1173D191D	H10D H11D H12D H13D H14D H15D H16D H17D H18D H19D
R1173D201B R1173D211B R1173D221B R1173D231B R1173D241B R1173D251B R1173D261B R1173D271B R1173D281B R1173D291B	H20B H21B H22B H23B H24B H25B H26B H27B H28B H29B	R1173D201D R1173D211D R1173D221D R1173D231D R1173D241D R1173D251D R1173D261D R1173D271D R1173D281D R1173D291D	H20D H21D H22D H23D H24D H25D H26D H27D H28D H29D
R1173D301B R1173D311B R1173D321B R1173D331B R1173D341B R1173D351B R1173D361B R1173D371B R1173D381B R1173D391B	H30B H31B H32B H33B H34B H35B H36B H37B H38B H39B	R1173D301D R1173D311D R1173D321D R1173D331D R1173D341D R1173D351D R1173D361D R1173D371D R1173D381D R1173D391D	H30D H31D H32D H33D H34D H35D H36D H37D H38D H39D
R1173D401B R1173D411B R1173D421B R1173D431B R1173D441B R1173D451B R1173D461B R1173D471B R1173D481B R1173D481B R1173D491B	H40B H41B H42B H43B H44B H45B H46B H47B H48B H48B	R1173D401D R1173D411D R1173D421D R1173D431D R1173D441D R1173D451D R1173D461D R1173D471D R1173D481D R1173D491D	H40D H41D H42D H43D H44D H45D H46D H47D H48D H48D H49D
R1173D501B	H50B	R1173D501D	H50D
R1173D181B5 R1173D281B5 R1173D121B5	H01B H02B H03B	R1173D181D5 R1173D281D5 R1173D121D5	H01D H02D H03D
R1173D001B	H00B	R1173D001D	H00D

Power Dissipation (HSOP-6J)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	High Wattage Land Pattern	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)	Glass cloth epoxy plastic (Double sided)
Board Dimensions	50mm x 50mm x 1.6mm	50mm x 50mm x 1.6mm
Copper Ratio	90%	50%
Through-hole	φ0.5mm x 24pcs	φ0.5mm x 24pcs

Measurement Result (Ta=25°C,Tjmax=125°C)

	High Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	2000mW	1700mW	540mW
Thermal Resistance	50°C/W	59°C/W	185°C/W

Measurement Board Pattern

C IC Mount Area Unit : mm

Package Dimensions (HSOP-6J)

NO.EA-123-220509

Mark Specification (HSOP-6J)

①②③④ : Product Code.....Refer to the marking list table. ⑤⑥ : Lot No.......Alphanumeric serial number.

R1173S Series Marking List Table

PKG: HSOP-6J

R1173Sxx1B

R1173Sxx1D

R1173Sxx1B		R1173Sxx1D	
Part Number	0234	Part Number	0234
R1173S081B R1173S091B	C08B C09B	R1173S081D R1173S091D	C08D C09D
R1173S101B R1173S111B R1173S121B R1173S131B R1173S141B R1173S151B R1173S161B R1173S171B R1173S191B	C10B C11B C12B C13B C14B C15B C16B C17B C18B C19B	R1173S101D R1173S111D R1173S121D R1173S131D R1173S141D R1173S151D R1173S161D R1173S171D R1173S181D R1173S191D	C10D C11D C12D C13D C14D C15D C16D C17D C18D C19D
R1173S201B R1173S211B R1173S221B R1173S231B R1173S241B R1173S251B R1173S261B R1173S271B R1173S271B R1173S281B R1173S291B	C20B C21B C22B C23B C24B C25B C26B C27B C28B C29B	R1173S201D R1173S211D R1173S221D R1173S231D R1173S241D R1173S251D R1173S261D R1173S271D R1173S281D R1173S291D	C20D C21D C22D C23D C24D C25D C26D C27D C28D C29D
R1173S301B R1173S311B R1173S321B R1173S331B R1173S341B R1173S351B R1173S361B R1173S371B R1173S381B R1173S391B	C30B C31B C32B C33B C34B C35B C36B C37B C38B C39B	R1173S301D R1173S311D R1173S321D R1173S331D R1173S341D R1173S351D R1173S361D R1173S371D R1173S381D R1173S391D	C30D C31D C32D C33D C34D C35D C36D C37D C38D C39D
R1173S401B R1173S411B R1173S421B R1173S431B R1173S441B R1173S451B R1173S461B R1173S471B R1173S481B R1173S491B	C40B C41B C42B C43B C44B C45B C46B C47B C48B C49B	R1173S401D R1173S411D R1173S421D R1173S431D R1173S441D R1173S451D R1173S461D R1173S471D R1173S491D	C40D C41D C42D C43D C44D C45D C46D C47D C48D C49D
R1173S501B	C50B	R1173S501D	C50D
R1173S181B5 R1173S281B5 R1173S121B5	C01B C02B C03B	R1173S181D5 R1173S281D5 R1173S121D5	C01D C02D C03D
R1173S001B	C00B	R1173S001D	C00D

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/