Numerical Analysis

gouziwu

March 16, 2019

Contents

1	Cha	np1 Mathematical Preliminaries	1
	1.1	1.2 Roundoff Errors and Computer Arithmetic]
	1.2	1.3 ALgorithms and Convergence	4
2	Chap2 Solutions of equations in one variable		
	2.1	2.1 Bisection method	4
	2.2	2.2 Fixed-Point Iteration	4
	2.3	2.3 Newton's method	2
	2.4	2.4 Error analysis for iterative methods	2
3	Cha	ap6	9

1 Chap1 Mathematical Preliminaries

1.1 1.2 Roundoff Errors and Computer Arithmetic

Truncation Error: the error involved in using a truncated, or finite, summation to approximate the sum of an infinite series

Roundoff Error: the error produced when performing real number calculations. It occurs because the arithmetic performed in a machine involves numbers with only a finite number of digits.

Suppose
$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}...\times 10^n$$
, then
$$fl(y) = \begin{cases} 0.d_1d_2...d_k \times 10^n & \text{chopping} \\ chop(y+5\times 10^{n-(k+1)}) = 0.\delta_1\delta_2...\delta_k \times 10^n & \text{Rounding} \end{cases}$$

Definition 1.1. If p* is an approximation to p, the absolute error is |p-p*|, and the relative error is $\frac{|p-p*|}{|p|}$, provided that $p \neq 0$

Definition 1.2. The number p* is said to approximate p to t significant digits if t is the largest nonnegative integer for which $\frac{|p-p*|}{|p|} < 5 \times 10^{-t}$

chopping
$$\left|\frac{y-fl(y)}{y}\right| = \left|\frac{0.d_1d_2...d_kd_{k+1}...\times 10^n - 0.d_1d_2...d_k\times 10^n}{0.d_1d_2...d_kd_{k+1}\times 10^n}\right| = \left|\frac{0.d_{k+1}...}{0.d_1d_2...}\right| \times 10^{-k} \leqslant \frac{1}{0.1} \times 10^{-k} = 10^{-k+1}$$

rounding
$$\left| \frac{y - fl(y)}{y} \right| \le \frac{0.5}{0.1} \times 10^{-k} = 0.5 \times 10^{-k+1}$$

Finite digit arithmetic

- $x \oplus y = fl(fl(x) + fl(y))$
- $x \otimes y = fl(fl(x) \times fl(y))$
- $x \ominus y = fl(fl(x) fl(y))$
- $x \oplus y = fl(fl(x) \div fl(y))$

1.2 1.3 ALgorithms and Convergence

An algorithm that satisfies that small changes in the initial data produce correspondingly small changes in the final results is called **stable**; otherwise it is **unstable**. An algorithm is called **conditionally stable** if it is stable only for certain choices of initial data.

Suppose that E > 0 denotes an initial error and En represents the magnitude of an error after n subsequent operations. If $E_n \approx CnE_0$, where C is a constant independent of n, then the growth of error is said to be **linear**. If $E_n \approx C^n E_0$, for some C > 1, then the growth of error is called **exponential**

Suppose $\{\beta_n\}_{n=1}^{\infty}$, $\lim_{n\to\infty} \beta_n = 0$, $\{\alpha_n\}_{n=1}^{\infty}$, $\lim_{n\to\infty} \alpha_n = \alpha$. If a positive constant K exists with $|\alpha_n - \alpha| \leq K|\beta_n|$ for large n, then $\{\alpha_n\}_{n=1}^{\infty}$ converges to with rate, or order, of convergence $O(\beta_n)$

Suppose $\lim_{h\to 0}G(h)=0, \lim_{h\to 0}F(h)=L$ and $|F(h)-L|\leqslant K|G(h)|$ for sufficiently small h, then we write F(h)=L+O(G(h))

2 Chap2 Solutions of equations in one variable

2.1 2.1 Bisection method

Theorem 2.1. Intermediate Value Theorem If $f \in C[a,b]$, $K \in (f(a), f(b))$, then there exists a number $p \in (a,b)$ for which f(p) = K

Theorem 2.2. Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The bisection method generates a sequence $\{p_n\}, n = 0, 1, \ldots$ approximating a zero p of f with

$$|p_n - p| \le \frac{b - a}{2^n}, \quad when \ n \ge 1$$

2.2 Fixed-Point Iteration

$$f(x) = 0 \stackrel{\text{equivalent}}{\longleftrightarrow} x = f(x) + x = g(x)$$

Theorem 2.3. Fixed-Point Theorem Let $g \in C[a,b]$ be s.t. $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose that g' exists on (a,b) and that a constant 0 < k < 1 exists with $|g'(x)| \le k$ for all $x \in (a,b)$ (hence g' can't converge to 1). Then for any number p_0 in [a,b], the sequence defined by $p_n = g(p_{n-1}), n \ge 1$ converges to the unique point p in [a,b]

Corollary 2.1.
$$|p_n - p| \le \frac{1}{1-k}|p_{n+1} - p_n|$$
 and $|p_n - p| \le \frac{k^n}{1-k}|p_1 - p_0|$

2.3 Newton's method

Linearize a nonlinear function using Taylor's expansion

Let $p_0 \in [a, b]$ be an approximation to p s.t. $f'(p_0) \neq 0$, hence $f(x) = f(p_0) + f'(p_0)(x - p_0) + \frac{f''(\xi_x)}{2!}(x - p_0)^2$, then $0 = f(p) \approx f(p_0) + f'(p_0)(p - p_0) \rightarrow p \approx p_0 - \frac{f(p_0)}{f'(p_0)} p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$, for $p \geq 1$

Theorem 2.4. Let $f \in C^2[a,b]$. If $p \in [a,b]$ is s.t. f(p) = 0, $f'(p) \neq 0$, then there exists a $\delta > 0$ s.t. Newton's method generates a sequence $\{p_n\}, n \in \mathbb{N} \setminus \{0\}$ converging to p for any initial approximation $p \in [p - \delta, p + \delta]$.

2.4 2.4 Error analysis for iterative methods

Definition 2.1. Suppose $\{p_n\}(n=0,1,...)$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants α and λ exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}(n=0,1,\ldots)$ converges to p of order α , with asymptotic error constant λ

Theorem 2.5. Let p be a fixed point of g(x). If there exists some constant $\alpha \ge 2$ s.t. $g \in C^{\alpha}[p-\delta, p+\delta], g'(p) = \cdots = g^{\alpha-1}(p) = 0$ and $g^{\alpha}(p) \ne 0$. Then the iterations with $p_n = g(p_{n-1}), n \ge 1$ is of order α

$$p_{n+1} = g(p_n) = g(p) + g'(p)(p_n - p) + \dots + \frac{g^{\alpha}(\xi_n)}{\alpha!}(p_n - p)^{\alpha}$$

Theorem 2.6. Let $g \in C[a,b]$ be s.t. $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose in addition that g' is continuous on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a,b], the sequence

$$p_n = g(p_{n-1}), \quad for \ n \geqslant 1$$

converges only linearly to the unique fixed point in [a,b]

Proof.

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} \frac{|g(p_n) - p|}{|p_n - p|}$$

$$= \lim_{n \to \infty} \frac{|g'(\xi)(p_n - p)|}{|p_n - p|}$$

$$= |g'(p)|$$

Theorem 2.7. Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g" is continuous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ s.t. for $p_0 \in [p-\delta, p+\delta]$, the sequence defined by $p_n = g(p_{n-1})$, when $n \ge 1$ converges at least quadratically to p. Moreover, for sufficiently large values of n,

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2$$

3 Chap6