Transcendental Numbers

Vincent Lin

November 4, 2023

1/16

Introduction

Motivation, definitions, etc

Definition

An algebraic number is $\alpha \in \mathbb{C}$ which is a root of a nonzero polynomial in $\mathbb{Q}[x]$. $\alpha \in \mathbb{C}$ that are not algebraic numbers are called transcendental numbers.

Example

• $q \in \mathbb{Q}$ are algebraic numbers.

More Definitions

Vincent Lin Transcendental Numbers November 4, 2023 3

Can we construct a transcendental number?

Theorem

$$\sum_{i=1}^{\infty} \frac{1}{10^{n!}}$$
 is transcendental.

Which of the following are transcendental?

$$\log(2), \log_2(21441)$$
 $e, \pi, \sqrt[4]{\pi}$ $\cos 1$ $2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$ $e + \pi, e\pi, e^\pi, \pi^e, e^e$ ϕ, γ, λ

Vincent Lin Transcendental Numbers November 4, 2023 5/16

Transcendental by the Lindemann-Weierstrass Theorem

$$\log(2), \log_2(21441)$$

$$e, \pi, \sqrt[4]{\pi}$$

$$\cos 1$$

$$2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$$

$$e + \pi, e\pi, e^{\pi}, \pi^e, e^e$$

$$\phi, \gamma, \lambda$$

Vincent Lin Transcendental Numbers November 4, 2023 6/16

Transcendental by the Gelfond-Schneider Theorem

$$\log(2), \log_2(21441)$$

$$e, \pi, \sqrt[4]{\pi}$$

$$\cos 1$$

$$2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$$

$$e + \pi, e\pi, e^{\pi}, \pi^e, e^e$$

$$\phi, \gamma, \lambda$$

Vincent Lin Transcendental Numbers November 4, 2023

Unknown. Schanuel's Conjecture implies transcendence.

$$\log(2), \log_2(21441)$$

$$e, \pi, \sqrt[4]{\pi}$$

$$\cos 1$$

$$2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$$

$$e + \pi, e\pi, e^{\pi}, \pi^e, e^e$$

$$\phi, \gamma, \lambda$$

Vincent Lin Transcendental Numbers November 4, 2023 8 / 16

Algebraic. Minimal polynomial is $x^2 - x - 1$.

$$\log(2), \log_2(21441)$$
 $e, \pi, \sqrt[4]{\pi}$
 $\cos 1$
 $2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$
 $e + \pi, e\pi, e^\pi, \pi^e, e^e$
 ϕ, γ, λ

Vincent Lin Transcendental Numbers November 4, 2023 9 / 16

Both irrationality and transcendence are unknown.

$$\log(2), \log_2(21441)$$

$$e, \pi, \sqrt[4]{\pi}$$

$$\cos 1$$

$$2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$$

$$e + \pi, e\pi, e^{\pi}, \pi^e, e^e$$

$$\phi, \gamma, \lambda$$

Algebraic. Minimal polynomial has degree 71!

$$\log(2), \log_2(21441)$$

$$e, \pi, \sqrt[4]{\pi}$$

$$\cos 1$$

$$2^{\sqrt{2}}, \sqrt{2}^{\sqrt{2}}, i^i$$

$$e + \pi, e\pi, e^{\pi}, \pi^e, e^e$$

$$\phi, \gamma, \lambda$$

Vincent Lin Transcendental Numbers November 4, 2023 11 / 16

Lindemann-Weierstrass Theorem

Theorem

If $\alpha_1, \ldots, \alpha_n$ are algebraic numbers and linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} .

Corollary

If α is a nonzero algebraic number, then e^{α} is transcendental.

12 / 16

Gelfond-Schneider Theorem

Theorem 1

Let α be a nonzero algebraic not equal to 1. If β is not rational $(\in \mathbb{C} \setminus \mathbb{Q})$, then α^{β} is transcendental.

Baker's Theorem

Theorem

Vincent Lin Transcendental Numbers November 4, 2023 14

Schanuel's Conjecture

Theorem

References

John Smith (2022) Publication title Journal Name 12(3), 45 – 678.

Annabelle Kennedy (2023) Publication title Journal Name 12(3), 45 – 678.