Lab 1

Jordan Garrett

1/7/2022

About me

Purpose of labs

- Facilitate learning theoretical concepts covered in lecture
- Answer questions about homework
- Review for midterms and the final
- ▶ Implement statistical analyses from lecture in RStudio

Lab 1 Outline

- ► Cover preliminary statistics and probability concepts
- ▶ Intro to R and setup

Random Variable

- ➤ A variable that takes on specific values with specific probabilities.
- Measurable functions that map outcomes of a stochastic process to a measurable space.
- ▶ Typically denoted by a capital letter (e.g., X, Y, Z).
- Denote the outcome of a coin flip as Y
 - ightharpoonup Y = 1 if Heads, else Y = 0
 - p(Y=1) = 0.5

Probability distribution

- Probability mass function (PMF)
 - Assigns probabilities to individual values of a discrete random variable

Probablity distribution

- Probability density function (PDF)
 - Similar to a PMF, but instead specifies the probability that a continuous variable takes on a range of values.

Expected value and Variance

- ▶ The expected value of a random variable Y is denoted as E(Y).
 - Probability weighted average of all possible values.

```
y <- c(70,80,85,90,100)
p.y <- c(0.18,0.34,0.35,0.11,0.02)

E.y <- sum(y*p.y)
E.y
```

```
## [1] 81.45
```

- Variance
 - A measure of how disperse all possible values of a random variable are from the expected value (i.e. population or sample mean)

Multivariate Distributions PDF → **Joint Probability Density**

► For the random variables *X* and *Y*, the joint pdf characterizes the probability that each *X* and *Y* takes on a set of values.

Multivariate Distributions

Variance → **Covariance**

- ▶ Measure of how much two random variables vary together.
- ► Formally, is the expected value of each random variable's deviation from its respective expected value.

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

Typically represented as a matrix.

Marginal Distribution

Probability distribution of an outcome for one random variable in the presence of all other outcomes for another random variable

	x_1	x ₂	х3	X ₄	$p_{Y}(y_{i})$
У1	0.125	0.0625	0.03125	0.03125	0.25
y ₂	0.09375	0.1875	0.09375	0.09375	0.46875
У3	0.28125	0	0	0	0.28125
$p_X(x_i)$	0.5	0.25	0.125	0.125	1

Pearson correlation & Statistical independence

- Pearson correlation coefficient ρ measures the linear relationship between two random variables
- Two random variables are statistically independent if the realization of one does not affect the outcome of the other.

Likelihood

- Throughout this course we are going to use statistical models (e.g., regression, ANOVA) to describe patterns of variability in random variables.
- These models have parameters (e.g., mean of a sampling distribution)
- ► A **likelihood** function is the joint probability of observed data as a function of parameters in a statistical model.

R

Programming Tips

- ► Google is your best friend!
- ▶ More than a single way to skin a cat (code).
- Learn more than one language.
- ► Have fun!