

5. Asymptotic Normality of M-

课程 □ Unit 3 Methods of Estimation □ Lecture 12: M-Estimation □ estimators

5. Asymptotic Normality of M-estimators Asymptotic Normality of M-estimators

0:00 / 0:00

下载 SubRip (.srt) file

□ 1.0x

下载 Text (.txt) file

Start of transcript. Skip to the end.

So now, I could actually reproduce everything I've done.

Remember when I showed you the sketch of proof

for the maximum likelihood?

What happened?

Well, we took a first order Taylor expansion of the derivative of the log likelihood.

So here I would want to take a first over Taylor

expansion of the derivative of rho.

视频 下载视频文件

字幕

Asymptotic normality of the M-estimators

3/3 points (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathbf{P}$. Let $ho\left(x,\mu
ight)$ denote a loss function satisfying

$$\mu^{*}=\mathop{
m argmin}_{\mu\in\mathbb{R}}\mathbb{E}\left[
ho\left(X_{1},\mu
ight)
ight]$$

where $\mu^*\in\mathbb{R}$ is some unknown one-dimensional parameter associated with ${f P}$ that we would like to estimate. Let

$$J\left(\mu
ight) \; = \mathbb{E}\left[rac{\partial^2
ho}{\partial\mu^2}(X_1,\mu)
ight]$$

$$K\left(\mu
ight) \ = \mathrm{Var}\left[rac{\partial
ho}{\partial\mu}(X_1,\mu)
ight]$$

You construct the M-estimator $\widehat{\mu}_n$ associated ho.

Assuming that the conditions for the asymptotic normality of this M-estimator hold, we have

$$\sqrt{n}rac{\widehat{\mu}_{n}-\mu^{st}}{\sqrt{J(\mu^{st})^{-2}K\left(\mu^{st}
ight)}}\stackrel{(d)}{\longrightarrow}Q$$

for some distribution Q. What is Q? Poisson with mean 1. \circ Exponential with mean **1**. Standard normal. $\mathcal{N}\left(0,\sigma^{2}
ight)$ for some unknown parameter σ^{2} . Let q_lpha denote the lpha-quantile of the distribution Q. For what value of q_lpha is it true that $\mu^* \in \left| \widehat{\mu}_n - q_lpha \sqrt{rac{J(\mu^*)^{-2}K\left(\mu^*
ight)}{n}}, \widehat{\mu}_n + q_lpha \sqrt{rac{J(\mu^*)^{-2}K\left(\mu^*
ight)}{n}}
ight|$ with probability 95% as $n \to \infty$? ☐ **Answer:** 1.96 Let $\mathcal{I} := \left| \widehat{\mu}_n - q_lpha \sqrt{rac{J(\mu^*)^{-2}K\left(\mu^*
ight)}{n}}, \widehat{\mu}_n + q_lpha \sqrt{rac{J(\mu^*)^{-2}K\left(\mu^*
ight)}{n}}
ight|$ denote the interval in the previous question. Is ${\mathcal I}$ an asymptotic confidence interval for μ^* of level 5%? igcup Yes, because the previous question solves for q_{lpha} so that this holds.

- ullet Yes, because of the asymptotic normality of $\widehat{\mu}_n$.
- No, because we did not define a statistical model for this problem.
- ullet No, because the endpoints of ${\mathcal I}$ depend on the true parameter. \Box

Solution:

For the first question, the correct response is "Standard normal." Referring to the theorem regarding the asymptotic normality of the Mestimators, we see that the asymptotic variance of $\widehat{\mu_n}$ is $J(\mu^*)^{-2}K(\mu^*)$. Hence,

$$\sqrt{n}rac{\widehat{\mu_{n}}-\mu^{*}}{\sqrt{J(\mu^{*})^{-2}K\left(\mu^{*}
ight)}}\stackrel{n
ightarrow\infty}{\longrightarrow}\mathcal{N}\left(0,1
ight).$$

For the second question, the correct response is "1.96". By the previous equation,

where $q_{0.025}=1.96$ is the 2.5%-quantile of a standard Gaussian.

For the third question, the correct response is "No, because the endpoints of \mathcal{I} depend on the true parameter." By definition, the endpoints of a confidence interval should be estimators, and this is not the case for \mathcal{I} because $K^{-1}\left(\mu^*\right)$ and $J\left(\mu^*\right)$ depend on the true parameter.

提交

你已经尝试了2次(总共可以尝试2次)

☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 12: M-Estimation / 5. Asymptotic Normality of Mestimators

© 保留所有权利