Funktionenräume

Dozent: Prof. Dr. M. Griesemer

 $\ \ Vor les ung smit schrieb^1$

Stand 3. April 2015

Universität Stuttgart, Sommersemester 2015

¹Für Hinweise bezüglich Inhalt oder Form via eMail (uni@robinlang.net) bin ich dankbar.

Inhaltsverzeichnis

1	Vorbereitu	ng	ţ
2	Sobolev-Ra	äume	11
	2.0.1	Sobolevräume	. 12

Motivation

1) Elektron im Feld statischer Kerne. Suche $\varphi \in L^2(\mathbb{R}^3)$ und $E \in \mathbb{R}$ mit

$$\left(-\Delta_x - \sum_{i=1}^N \frac{z_i}{|x - R_i|}\right) \varphi = E\varphi, \tag{0.1}$$

wobei $z_i \in \mathbb{N}$ und $R_i \in \mathbb{R}^3$ für $i=1,\ldots,N$ ist. Die Lösungen sind im Allgemeinen nicht in $C^2(\mathbb{R}^3)$ sondern in $H^2(\mathbb{R}^3)$, d.h.

$$-\Delta\varphi = -\sum_{i=1}^{N} \frac{\partial^2}{\partial_{x_i}^2} \varphi \tag{0.2}$$

ist im Sinn schwacher Ableitungen zu verstehen.

2) Elektrostatik: Das Potential Φ zur Ladungsverteilung $\rho \in L^1(\Omega)$, für $\Omega \subset \mathbb{R}^3$, umgeben von einem Leiter Ω^c , ist bestimmt durch das Randwertproblem (RWP)

$$\begin{array}{rcl}
-\Delta\Phi &= 4\pi\rho & \text{in } \Omega, \\
\Phi &= 0 & \text{auf } \partial\Omega.
\end{array} \right\}$$
(0.3)

Die klassische C²-Lösung minimiert das Funktional

$$\int_{\Omega} \left(|\nabla \Phi|^2 - 8\pi \rho \Phi \right) \, \mathrm{d}x \tag{0.4}$$

bezüglich allen Funktionen Φ aus $\{\Phi \in C^2(\Omega) \mid \Phi = 0 \text{ auf } \partial\Omega\}$, sofern sie existiert. Auch wenn der Minimierer existiert, so ist es doch einfacher, die Existenz zuerst im **Sobolev-Raum** $\mathring{H}^{1,2}(\Omega)$ nachzuweisen.

Frage: Wie regulär sind Funktionen aus $H^2(\mathbb{R}^3)$, $\mathring{H}^{1,2}(\Omega)$, etc?

Kapitel 1

Vorbereitung

- ▶ Ein Gebiet $\Omega \subset \mathbb{R}^n$ ist offen und zusammenhängend und $\overline{\Omega}$ ist der Abschluss von Ω in \mathbb{R}^n .
- ▶ $G \subset\subset \Omega$ bedeutet, dass $\overline{G} \subset \Omega$ kompakt ist und somit dist $(\overline{G}, \Omega^c) > 0$ gilt.
- ▶ Für $u : \Omega \to \mathbb{C}$ und $\Omega \subset \mathbb{R}^n$ ist der **Träger** von u definiert durch

$$\operatorname{supp} u := \overline{\{x \in \Omega \mid u(x) \neq 0\}} \subset \mathbb{R}. \tag{1.1}$$

Multiindices

Seien $\alpha, \beta \in \mathbb{N}^n$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ und $y \in \mathbb{R}^n$. Wir verwenden folgende Notationen:

- $|\alpha| = \alpha_1 + \cdots + \alpha_n$ und
- $\triangleright \alpha! = \alpha_1 \cdots \alpha_n$
- $lackbox{
 ightarrow} \, \partial^{lpha} = rac{\partial^{|lpha|}}{\partial^{lpha_1}_{x_1} \cdots \partial^{lpha_n}_{x_n}}$
- $\blacktriangleright \ ({}^\alpha_\beta) = \textstyle\prod_{i=1}^n ({}^{\alpha_i}_{\beta_i}) = \textstyle\prod_{i=1}^n \frac{\alpha_i!}{\beta_i!(\alpha_i \beta_i)!} = \frac{\alpha!}{\beta!(\alpha \beta)!} \ \text{für } \alpha \geq \beta$

Damit lässt sich nun der Binomische Lehrsatz verallgemeinern:

$$(x+y)^{\alpha} = \sum_{\beta < \alpha} {\alpha \choose \beta} x^{\beta} y^{\alpha-\beta}, \tag{1.2}$$

$$\partial^{\alpha}(fg) = \sum_{\beta \le \alpha} {\alpha \choose \beta} (\partial^{\beta} f) (\partial^{\alpha - \beta} g)$$
 (1.3)

Funktionenräume

Für $\Omega \subset \mathbb{R}^n$ offen und $m \in \mathbb{N}_0$ setzen wir

- ▶ $C^m(\Omega) := \{u : \Omega \to \mathbb{C} \mid u \text{ hat stetige partielle Ableitungen } \partial^{\alpha} u \text{ bis zur Ordnung } |\alpha| = m\}$
- $ightharpoonup C(\Omega) := \{u : \Omega \to \mathbb{C} \mid u \text{ ist stetig}\}$
- $ightharpoonup C^{\infty}(\Omega) := \bigcap_{m>0} C^m(\Omega)$
- $C_0^{\infty}(\Omega) := \bigcap_{m \geq 0} C_0^m(\Omega) = C^{\infty}(\Omega) \cap C_0(\Omega)$

Seien $\Omega \subset \mathbb{R}^n$ (Lebesgue-)messbar und $p \geq 1$. $L^p(\Omega)$ besteht aus Äquivalenzklassen messbarer Funktionen $u: \Omega \to \mathbb{C}$ mit

$$\int_{\Omega} |u(x)|^p \, \mathrm{d}x < \infty \tag{1.4}$$

falls $1 \le p < \infty$ und

$$\operatorname{ess\,sup}_{x\in\Omega}|u(x)|:=\inf\{\alpha\geq 0\mid |u(x)|\leq \alpha \text{ f.\"{u}.}\}<\infty \tag{1.5}$$

falls $p = \infty$. Zwei Funktionen u, v heißen **äquivalent** genau dann wenn

$$u \propto v \quad \Leftrightarrow \quad u(x) = v(x) \quad \text{f.\"{u}. in } \Omega.$$
 (1.6)

L^p versehen mit den Normen

$$||u||_p := \left(\int_{\Omega} |u(x)|^p dx\right)^{1/p} \quad (1 \le p < \infty),$$
 (1.7)

$$||u||_{\infty} := \operatorname{ess\,sup} |u(x)| \quad (p = \infty)$$
(1.8)

ist ein Banachraum. Es gilt die Höldersche Ungleichung:

Satz. Seien $f \in L^p(\Omega)$, $g \in L^q(\Omega)$ und $1 \le p, q \le \infty$ mit 1/p + 1/q = 1, dann ist $fg \in L^1(\Omega)$ und es gilt

$$||fg||_1 \le ||f||_p ||g||_q. \tag{1.9}$$

Theorem 1. *Ist* $\Omega \subset \mathbb{R}^n$ *offen und* $1 \leq p < \infty$ *, dann ist* $C_0(\Omega)$ *dicht in* $L^p(\Omega)$.

Satz 2. Sei $u \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$ und $u_h(x) := u(x-h)$. Dann gilt $||u_h - u||_p \to 0$ für $h \to 0$.

Beweis. Sei $\varepsilon > 0$ und wähle (siehe Theorem 1) $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ mit $\|u - \varphi\|_p < \varepsilon/3$. Dann gilt

$$||u_h - u||_p \le ||\varphi_h - \varphi||_p + \underbrace{||u_h - \varphi_h||_p}_{=||u - \varphi||_h} + ||u - \varphi||_p$$
(1.10)

$$<\|\varphi_h - \varphi\|_p + \frac{2}{3}\varepsilon < \varepsilon \tag{1.11}$$

für |h| klein genug, da supp φ kompakt und somit φ gleichmäßig stetig ist.

Faltung und Glättung

Seien $f,g:\mathbb{R}^n\to\mathbb{C}$ messbar, $x\in\mathbb{R}^n$ und sei $y\mapsto f(x-y)g(y)$ integrierbar, dann ist

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y) \, dy = (g * f)(x)$$
 (1.12)

die **Faltung** von *f* mit *g*.

Satz 3. Sei $1 \le p \le \infty$. Falls $f \in L^p(\mathbb{R}^n)$ und $g \in L^1(\mathbb{R}^n)$, dann ist auch $f * g \in L^p(\mathbb{R}^n)$ und es gilt

$$||f * g||_p \le ||f||_p ||g||_1. \tag{1.13}$$

Beweis. Der Fall $p = 1, \infty$ verbleibt als Übung. Sei also 1 und <math>q so, dass 1/p + 1/q = 1 gilt. Dann ist

$$|f * g(x)| \le \int_{\mathbb{R}^n} |f(x - y)| \cdot |g(y)|^{1/p} \cdot |g(y)|^{1/q} \, dy$$
 (1.14)

$$\leq \|g\|_1^{1/q} \left(\int_{\mathbb{R}^n} |f(x-y)|^p \cdot |g(y)| dy \right)^{1/p}$$
 (1.15)

und somit

$$\int_{\mathbb{R}^n} |f * g(x)|^p \, \mathrm{d}x \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - y)|^p \cdot |g(y)| \, \mathrm{d}y \right) \cdot \|g\|_1^{p/q} \, \mathrm{d}x \tag{1.16}$$

$$= \|f\|_p^p \cdot \|g\|_1^{1+p/q} < \infty. \tag{1.17}$$

Durch Wurzelziehen folgt die Behauptung.

Theorem 4 (Young'sche Ungleichung). Seien $1 \le p, q \le \infty$ und 1/p + 1/q = 1 + 1/r. Falls $f \in L^p(\mathbb{R}^n)$ und $g \in L^q(\mathbb{R}^n)$, dann ist $f * g \in L^r\mathbb{R}^n$ und es gilt

$$||f * g||_r \le ||f||_p ||g||_q. \tag{1.18}$$

Beweis. Siehe [AF].

Sei im Folgenden

$$L^p_{\mathrm{loc}}(\Omega) := \{ u : \Omega \to \mathbb{C} \mid u \text{ ist messbar mit } u \in L^p(K) \text{ für beliebige } K \subset\subset \Omega \}. \tag{1.19}$$

Lemma 5. Sei $J \in C_0^{\infty}(\mathbb{R}^n)$, dann gilt für $u \in L_{loc}^1(\mathbb{R}^n)$

- (a) $J * u \in C^{\infty}(\mathbb{R}^n)$ und $\partial^{\alpha}(J * u) = (\partial^{\alpha}J) * u$ für $\alpha \in \mathbb{N}_0^n$.
- **(b)** Falls supp $J \subset \overline{B_{\varepsilon}(0)}$, dann gilt supp $(J * u) \subset \text{supp } (u)_{\varepsilon}^{1}$

Beweis. (a) Skizze: (1) $J*u \in C(\mathbb{R}^n)$, (2) $\partial_{x_i}(J*u) = (\partial_{x_i}J)*u$ mit Satz von Lebesgue, (3) Induktion.

Beispiele. (a) Für die Funktion J gegeben durch

$$J(x) := \begin{cases} \exp\left(-\frac{1}{1-|x|^2}\right) & \text{falls } |x| < 1, \\ 0 & \text{falls } |x| \ge 1 \end{cases}$$
 (1.20)

gilt $J \in C_0^{\infty}(\mathbb{R}^n)$.

(b) Sei $0 \le J \in C_0^{\infty}(\mathbb{R}^n)$ mit supp $J \subset \{|x| \le 1\}$ und $\int J(x) \, \mathrm{d}x = 1$. Für $\varepsilon > 0$ setzen wir

$$J_{\varepsilon}(x) := \varepsilon^{-n} J(x/\varepsilon).$$
 (1.21)

Dann gilt

- (i) $J_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$, $J_{\varepsilon} \geq 0$ und supp $J_{\varepsilon} \subset \overline{B_{\varepsilon}(0)}$,
- (ii) $\int J_{\varepsilon}(x) dx = 1$.

Lemma 6. Sei $u \in L^1_{loc}(\mathbb{R}^n)$ stetig in der offenen Menge $\Omega \subset \mathbb{R}^n$. Dann gilt für jede kompakte Menge $K \subset \Omega$

$$\sup_{x \in K} |J_{\varepsilon} * u(x) - u(x)| \to 0 \qquad (\varepsilon \to 0^+). \tag{1.22}$$

Beweis. Es ist

$$J_{\varepsilon} * u(x) - u(x) = \int J_{\varepsilon}(x - y)u(y) \, dy - \underbrace{\int J_{\varepsilon}(x - y) \, dy}_{-1} u(x)$$
 (1.23)

$$= \int J_{\varepsilon}(x-y) \big(u(y) - u(x) \big) \, \mathrm{d}y \tag{1.24}$$

und somit

$$|J_{\varepsilon} * u(x) - u(x)| \le \int_{|x-y| \le \varepsilon} J_{\varepsilon}(x-y)|u(y) - u(x)| \, \mathrm{d}y \tag{1.25}$$

$$\leq \sup_{y:|y-x|\leq \varepsilon} |u(y)-u(x)|. \tag{1.26}$$

Sei $\varepsilon < \varepsilon_0 := \operatorname{dist}(K, \Omega^c)$. Dann ist

$$\sup_{x \in K} |J_{\varepsilon} * u(x) - u(x)| \le \sup_{x \in K_{\varepsilon}, \ |x - y| \le \varepsilon} |J_{\varepsilon} * u(x) - u(x)| \to 0 \qquad (\varepsilon \to 0^+), \tag{1.27}$$

da u auf K_{ε} gleichmäßig stetig ist.

¹Dies ist die Menge aller x mit $dist(x, supp u) < \varepsilon$ gemeint.

Theorem 7. Sei $\Omega \subset \mathbb{R}^n$ offen, $1 \leq p < \infty$ und $u \in L^p(\Omega)$. Dann gilt

- (a) $I_{\varepsilon} * u \in C^{\infty}(\Omega) \cap L^{p}(\Omega)$,
- **(b)** $||J_{\varepsilon} * u||_{p,\Omega} \leq ||u||_{p,\Omega}$,
- (c) $||J_{\varepsilon} * u u||_{p,\Omega} \to 0$ für $\varepsilon \to 0^+$,

wobei $J_{\varepsilon} * u(x) = \int_{\Omega} J_{\varepsilon}(x - y)g(y) \, dy$ ist, d.h. setze u in $\mathbb{R}^n \setminus \Omega$ durch u(x) = 0 fort.

Beweis. (a) Aus $u \in L^p(\Omega)$ folgt $u \in L^1_{loc}(\mathbb{R}^n)$ (siehe Blatt 1). Also ist nach Lemma 5 und Satz 3 $J_{\varepsilon} * u \in C^{\infty}(\Omega) \cap L^p(\mathbb{R}^n)$.

(b) Aus Satz 3 folgt weiter, dass

$$||J_{\varepsilon} * u||_{p,\Omega} \le ||J_{\varepsilon} * u||_{p}, \mathbb{R}^{n} \le \underbrace{||J_{\varepsilon}||_{1}}_{=1} \underbrace{||u||_{p,\mathbb{R}^{n}}}_{=||u||_{p,\Omega}}.$$
(1.28)

(c) Nach Theorem 1 existiert ein $\Phi \in C_0(\Omega)$ mit

$$|u - \Phi||_p < \delta/3 \quad \text{für } \delta > 0. \tag{1.29}$$

Nach Lemma 6 konvergiert dann

$$|J_{\varepsilon} * \Phi - \Phi| \to 0 \qquad (\varepsilon \to 0^+)$$
 (1.30)

gleichmäßig auf $K := \text{supp}(\Phi)_1 = \{x \mid \text{dist}(x, \text{supp}\,\Phi) \leq 1\}$. Also ist

$$||J_{\varepsilon} * \Phi - \Phi||_{p}^{p} = \int |J_{\varepsilon} * \Phi(x) - \Phi(x)|^{p} dx$$

$$(1.31)$$

$$\leq \sup_{x \in K} |J_{\varepsilon} * \Phi(x) - \Phi(x)|^p \int_K 1 \, \mathrm{d}x \to 0 \qquad (\varepsilon \to 0^+). \tag{1.32}$$

Somit existiert ein $\varepsilon_0 > 0$ so, dass $||J_{\varepsilon} * \Phi - \Phi||_p < \delta/3$ für $\varepsilon < \varepsilon_0$ und es folgt

$$||J_{\varepsilon} * u - u||_{v} \le ||J_{\varepsilon} * (u - \Phi)||_{v} + ||J_{\varepsilon} * \Phi - \Phi||_{v} + ||\Phi - u||_{v}$$
(1.33)

$$\leq \|J_{\varepsilon}\|_{1} \cdot \|u - \Phi\| + \frac{2}{3}\delta < \delta. \tag{1.34}$$

Satz 8. Sei $\Omega \subset \mathbb{R}^n$ offen und $1 \leq p < \infty$. Dann ist $C_0^{\infty}(\Omega)$ dicht in $L^p(\Omega)$.

Beweis. Nach Theorem 1 ist $C_0(\Omega) \subset L^p(\Omega)$ dicht. Sei also $u \in L^p(\Omega)$, $\delta > 0$ und $\Phi \in C_0(\Omega)$ mit $\|u - \Phi\|_p < \delta/2$. Nach Lemma 5 ist dann $J_{\varepsilon} * \Phi \in C_0^{\infty}(\Omega)$ falls $\varepsilon < \operatorname{dist}(\operatorname{supp} \Phi, \Omega^c)$ und

$$||J_{\varepsilon} * \Phi - \Phi||_{p} < \frac{\delta}{2} \tag{1.35}$$

für ε klein genug (Theorem 7(c)). Also ist

$$||J_{\varepsilon} * \Phi - u||_{p} \le ||J_{\varepsilon} * \Phi - \Phi||_{p} + ||\Phi - u||_{p} < \frac{\delta}{2} + \frac{\delta}{2} = \delta$$

$$(1.36)$$

für ε klein genug.

Satz 9. Sei $\Omega \subset \mathbb{R}^n$ offen und $u \in L^1_{loc}(\Omega)$. Falls

$$\int_{\Omega} u\varphi \, \mathrm{d}x = 0 \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega), \tag{1.37}$$

dann ist u(x) = 0 fast überall in Ω .

Beweis. Für $n \in \mathbb{N}$ sei

$$K_n = \{ x \in \Omega \mid |x| \le n \text{ und } \operatorname{dist}(x, \Omega^c) \ge 1/n \}.$$
(1.38)

Also ist $K_n \subset \Omega$ kompakt, $K_n \subset K_{n+1}$ und $\bigcup_{n \geq 1} K_n = \Omega$. Weiter ist

$$\operatorname{dist}(K_n, K_{2n}^c) \ge \frac{1}{2n}.\tag{1.39}$$

Sei

$$u_n(x) = \begin{cases} u(x)\chi_{K_n}(x), & \text{falls } x \in \Omega, \\ 0, & \text{falls } x \notin \Omega. \end{cases}$$
 (1.40)

Dann ist $u_n \in L^1(\Omega)$ und für $x \in K_n$ und $\varepsilon \le 1/(2n)$ gilt

$$J_{\varepsilon} * u_{2n}(x) = \int_{|x-y| \le \frac{1}{2n}} J_{\varepsilon}(x-y)u_{2n}(y) \, dy = \int_{\Omega} J_{\varepsilon}(x-y)u(y) \, dy = 0, \tag{1.41}$$

da $y\mapsto J_{\varepsilon}(x-y)$ in $C_0^{\infty}(\Omega)$ liegt. Es folgt $\chi_{K_n}(J_{\varepsilon}*u_{2n})\equiv 0$, wobei

$$J_{\varepsilon} * u_{2n} \to u_{2n} \quad \text{in } L^1(\Omega).$$
 (1.42)

Also gilt

$$\|\chi_{K_n}u\|_1 = \|\chi_{K_n}u_{2n}\|_1 = \lim_{\varepsilon \to 0^+} \|\chi_{K_n}(J_{\varepsilon} * u_{2n})\|_1 = 0, \tag{1.43}$$

d.h. u(x) = 0 fast überall in K_n und somit auch

$$u(x) = 0$$
 fast überall in $\bigcup_{n \ge 1} K_n = \Omega$. (1.44)

Kapitel 2

Sobolev-Räume

Schwache Ableitung

Sei $\Omega \subset \mathbb{R}^n$ offen und $u \in C^k(\Omega)$ für $k \in \mathbb{N}$. Dann gilt für alle $\alpha \in \mathbb{N}_0^n$ mit $|\alpha| \leq k$ und für alle $\varphi \in C_0^{\infty}(\Omega)$ die Identität

$$\int_{\Omega} u \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} (\partial^{\alpha} u) \varphi \, dx. \tag{2.1}$$

Das motiviert folgende Definition:

Definition 10. *Sei* $\alpha \in \mathbb{N}_0^n$ *und* $u, b \in L^1_{loc}(\Omega)$, $\Omega \subset \mathbb{R}^n$ *offen mit*

$$\int_{\Omega} u \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} v \varphi \, dx \tag{2.2}$$

für alle $\varphi \in C_0^{\infty}(\Omega)$. Dann heißt v schwache α -Ableitung von u und man schreibt $v = \partial^{\alpha} u$.

Bemerkungen. 1) Die schwache *α*-Ableitung ist eindeutig, falls sie exisitiert: Sind v, \tilde{v} schwache *α*-Ableitungen von u, dann gilt

$$\int_{\Omega} (v - \tilde{v}) \varphi \, dx = 0 \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega)$$
 (2.3)

und somit $v=\tilde{v}$ f.ü. in Ω . D.h. $v=\tilde{v}$ in $L^1_{\mathrm{loc}}(\Omega)$.

- **2)** Falls $u \in C^k(\Omega)$, dann ist $\partial^{\alpha} u$ für $|\alpha| \le k$ die klassische α -Ableitung von u.
- **3)** Es ist möglich, dass $\partial^{\alpha}u$ existiert aber $\partial^{\beta}u$ für ein $\beta \leq \alpha$ nicht existiert.

Beispiele. 1) Sei $u(x) = x \cdot \chi_{\{x \ge 0\}}(x)$. Dann ist $u' = \Theta$ die *Heaviside Funktion* aber Θ hat keine schwache Ableitung ($\Theta' = \delta$ im Distributionssinn).

Beweis.

$$\int_{-\infty}^{\infty} u\varphi' \, dx = \int_{0}^{\infty} x\varphi'(x) \, dx = x\varphi(x) \Big|_{0}^{\infty} - \int_{0}^{\infty} \varphi(x) \, dx = -\int_{-\infty}^{\infty} \Theta(x)\varphi(x) \, dx$$
 (2.4)

2) Sei $u(x,y) = \Theta(x)$ für $(x,y) \in \mathbb{R}^2$. Sei $\alpha = (1,1)$, dann gilt $\partial^{\alpha} u = 0$ aber $\partial_x u$ existiert nicht.

Beweis.

$$\int u\partial^{\alpha}\varphi \, dx \, dy = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \Theta(x) \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial x} \right)$$
 (2.5)

$$= \int_{-\infty}^{\infty} dx \Theta(x) \int_{-\infty}^{\infty} dy \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial x} \right) = 0.$$
 (2.6)

Also ist
$$\partial^{\alpha} u = 0$$
.

3) Für $\kappa < n-1$ gilt

$$\partial_i |x|^{-\kappa} = -\kappa \frac{x_i}{|x|^{\kappa+2}}. (2.7)$$

2.0.1 Sobolevräume

Sei $\Omega \subset \mathbb{R}^n$ offen, $1 \leq p \leq \infty$ und $m \in \mathbb{N}$. Dann ist

$$W^{m,p}(\Omega) := \{ u \in L^p(\Omega) \mid \partial^{\alpha} u \in L^p(\Omega) \text{ für } \alpha : |\alpha| \le m \}$$
 (2.8)

mit

$$||u||_{m,p} := \left(\sum_{|\alpha| \le m} ||\partial^{\alpha} u||_p^p\right)^{1/p} \qquad (1 \le p < \infty)$$

$$(2.9)$$

$$||u||_{m,\infty} := \max_{|\alpha| \le m} ||\partial^{\alpha} u||_{\infty} \qquad (p = \infty)$$
(2.10)

ist ein normierter Vektorraum.

Theorem 11. Für $1 \le p \le \infty$ ist $W^{m,p}(\Omega)$ ein Banachraum.

Beweis. Sei $(u_k)_{k=1}^{\infty}$ eine Cauchy-Folge in $W^{m,p}(\Omega)$, dann ist $(\partial^{\alpha}u_k)$ für jedes $|\alpha| \leq m$ eine Cauchy-Folge in $L^p(\Omega)$ (dieser ist vollständig). Also existiert ein u_{α} mit

$$\partial^{\alpha} u_k \to u_{\alpha} \quad \text{in } L^p(\Omega)$$
 (2.11)

für alle α mit $|\alpha| \le m$. Sei $u = u_{\alpha=0}$. Zu zeigen ist $u_{\alpha} = \partial^{\alpha} u$ für alle α mit $|\alpha| \le m$.

Sei $\varphi \in C_0^{\infty}(\Omega)$, dann

$$\int_{\Omega} u \partial^{\alpha} u \, dx \stackrel{(*)}{=} \lim_{k \to \infty} \int_{\Omega} u_k \partial^{\alpha} \, dx \tag{2.12}$$

$$= \lim_{k \to \infty} (-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} u_k \varphi \, dx \tag{2.13}$$

$$= (-1)^{|\alpha|} \int_{\Omega} u_{\alpha} \varphi \, \mathrm{d}y. \tag{2.14}$$

Also ist $u_{\alpha} = \partial^{\alpha} u$ und somit $\partial^{\alpha} u_{k} \to \partial^{\alpha} u$ in $L^{p}(\Omega)$ für alle α mit $|\alpha| \leq m$ und somit $||u_{k} - u||_{m,p} \to 0$ für $k \to \infty$. Zu (*):

$$\left| \int_{\Omega} \left(u \partial^{\alpha} \varphi - u_{k} \partial^{\alpha} \varphi \right) \, \mathrm{d}x \right| \leq \| u - u_{k} \|_{p} \| \partial^{\alpha} \varphi \|_{q} \to 0 \qquad (k \to \infty), \tag{2.15}$$

wobei
$$1/q + 1/q = 1$$
.

Example FIXME:

1) Sei $\Omega = B_R(0) \subset \mathbb{R}^n$ und

$$u(x) = |x|^{-\alpha} \quad \alpha < n$$

Dann ist $u \in L^1_{loc}(\Omega)$ und

$$\nabla u(x) = -\alpha \frac{x}{|x|^{\alpha+2}} \quad \alpha < n-1$$

(Blatt 1). Es gilt

$$\int_{|x|

$$= \begin{cases} \alpha \omega_n \frac{R^{n-(\alpha+1)p}}{n-(\alpha+1)p} & \alpha < \frac{n}{p} - 1 \\ \infty & \alpha \ge \frac{n}{p} - 1 \end{cases}$$$$

wobei $\omega_n = \int_{|x|=1}$ der Flächeninhalt der Einheitssphäre in \mathbb{R}^n ist. Im Fall $\alpha < \frac{n}{p} - 1$ folgt $u \in W^{1,p}(B_R(0))$ (dann $u \in L^p(B_R(0))$ Übung). Es gilt auch $u \in W^{1,p}(B_R(0))$. Dann folgt $\alpha < \frac{n}{p} - 1$ (Übung).

Also

$$u \in W^{1,p}(B_R(0)) \iff \alpha < \frac{n}{p} - 1$$

2) Sei $(d_k)_{k\geq 1}$ dicht in $B_1(0)$ und

$$u(x) = \sum_{k>1} 2^{-k} |x - a_k|^{-\alpha}$$
 (2.16)

Dann ist $u \in W^{1,p}(B_1(0))$ genau dann wenn $\alpha < \frac{n}{p} - 1$.

Beweis. Falls $\alpha < \frac{n}{p} - 1$, dann ist $u(x) = 2^{-k}|x - a_k|^{-\alpha}$ in $W^{1,p}(B_1(0))$ und $\|u_k\|_{1,p} \le i^k C_{\alpha,p,n}$, also ist die Reihe $\sum_{k\ge 1} \|u_k\|_{W^{1,p}(B_1(0))} < \infty$, d.h. (2.16) ist absolut konvergent in $W^{1,p}(B_1(0))$ und somit $u \in W^{1,p}(B_1(0))$ denn $W^{1,p}$ ist vollständig. Übung: $u \in W^{1,p}(B_1(0)) \implies \alpha < \frac{n}{p} - 1$.

Folgerung FIXME

Falls n > p und $0 < \alpha < \frac{n}{p} - 1$ dann ist $u \in W^{1,p}(B_1(0))$ und trotzdem in jedem Punkt d_k divergent. Wir wollen nun zeigen, dass $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ dicht ist in $W^{1,p}(\Omega)$, $1 \le p < \infty$. Dazu brauchen wir einige Vorbereitungen:

Satz FIXME

Seien $u, v \in W^{m,p}(\Omega)$, $1 \le p \le \infty$ und $|\alpha| \le m$. Dann gilt

- i) $\partial^{\alpha} u \in W^{m-|\alpha|,p}(\Omega)$ und $\partial^{\beta}(\partial^{\alpha} u) = \partial^{\alpha}(\partial^{\beta} u) = \partial^{\alpha+\beta} u$ falls $|\alpha| + |\beta| \le m$.
- ii) $\lambda u + \mu v \in W^{m,p}(\Omega)$ und $\partial^{\alpha}(\lambda u + \mu v) = \lambda \partial^{\alpha} u + \mu \partial^{\alpha} v$ für $\lambda, \mu \in \mathbb{C}$.
- iii) Ist $v \subset \Omega$ offen, dann ist $u \upharpoonright V \in W^{m,p}(V)$.
- iv) Ist $\gamma \in C_0^{\infty}(\Omega)$, dann ist $\gamma u \in W^{m,p}(\Omega)$ und

$$\begin{pmatrix} \partial^{\alpha}(\gamma u) = \sum_{\beta \leq \alpha} \alpha \\ \beta(\partial^{\beta}\gamma)(\partial^{\alpha-\beta}u) \end{pmatrix}$$

Beweis. (i)-(iii) Übung (L.C. Evans).

(iv) Beweis der Leibniz-Regel

$$\int (\gamma u) \partial_i \varphi \, dx = \int u(\gamma \partial_i \varphi)$$

$$= \int u(\partial_i (\gamma \varphi) - (\partial_i \gamma) \varphi)$$

$$= -\int (\partial_i u) (\gamma \varphi) + u(\partial_i \gamma) \varphi$$

$$= -\int ((\partial_i u) \gamma + u \partial_i \gamma)) \varphi.$$

Per Induktion bekommt man nun die Leibnizregel für ∂^{α} (s. Evans). Aus der Leibniz-Regel folgt $\gamma u \in W^{m,p}(\Omega) denn \partial^{\beta} \gamma \in C_0^{\infty}$ und $\partial^{\alpha-\beta} u \in L^p(\Omega)$. \square

Lemma FIXME

Ist $K \subset \Omega$ kompakt, dann existiert $\varphi \in C_0^{\infty}(\Omega)$ mit $0 \le \varphi \le 1$ und $\varphi \equiv 1$ (FIXME) auf K und

$$\sup_{x \in \Omega} |\partial^{\alpha} \varphi(x)| \le c_{\delta}^{-|\alpha|}$$

wobei $\delta = \operatorname{dist}(K, \Omega^c)$ und c_{α} ist unabhängig von K, Ω .

Beweis. FIXME

Sei X_{δ} die charakteristische FUnktion von $K_{\delta/2} := \{x \in \Omega | \operatorname{dist}(x,K) \leq \frac{\delta}{2}\}$. Sei $\varepsilon = \frac{\delta}{3}$ und $\varphi := J_{\varepsilon} * \chi_{\delta}$. Dann ist $0 \leq \varphi \leq 1$, $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ und $\operatorname{supp}(\varphi) \subset \operatorname{supp}(\chi_{\delta}) \subset K_{\delta/2+\varepsilon}\Omega$ nach Lemma 1.5. Außerdem gilt

$$\partial^{\alpha} \varphi = (\partial^{\alpha} J_{\varepsilon} * \chi_{\delta},$$

wobei $\partial^{\alpha} J_{\varepsilon}(x) = ^{-|\alpha|} (\partial_{\alpha} J)_{\varepsilon}(x)$ und somit

$$\begin{split} \|\partial^{\alpha} \varphi\|_{\infty} &\leq \|\partial^{\alpha} J_{\varepsilon}\|_{1} \underbrace{\|\chi_{\delta}\|_{\infty}}_{=1} \\ &= \varepsilon^{-|\alpha|} \|(\partial^{\alpha} J)_{\varepsilon}\|_{1} = \varepsilon^{-|\alpha|} \|\partial^{\alpha} J\|_{1} \end{split}$$

Satz (Zerlegung der Eins) FIXME

Sei $\Omega \subset \mathbb{R}^n$ und $\Omega = \bigcup_{U \in \mathcal{O}} U$ eine offene Überdeckung von Ω , $U \subset \mathbb{R}^n$ offen. Dann existiert eine Folge $\psi_k \in C_0^{\infty}(\Omega)$, $k \in \mathbb{N}$ mit

- (i) $0 \le \psi_k \le 1$.
- (ii) $supp(\psi_k)U$ für ein $u \in \mathcal{O}$.
- (iii) Ist $K \subset \Omega$ kompakt, dann existiert $W \supset K$ offen, $K \subset W \subset \Omega$ und $m \in \mathbb{N}$, so dass

$$\sum_{k=1}^{m} \psi_k(x) = 1 \quad x \in W$$

(bzw. $\sum_{k\geq 1} \psi_k(x) = 1$ in Ω). (ψ_k) heißt eine <u>der offene Überdeckung $\Omega = \bigcup_{U\in\mathcal{O}} U$ untergeordnete,</u> lokal endliche Zerlegung der Eins.

Beweis. Sei $D \subset \Omega$ eine abzählbar und dicht und sei $(B(x_j,r_j))_{j\in\mathbb{N}}$ die Folge der abgeschlossenen Kugeln welche alle Kugeln $\overline{B(x,r)}$ mit $X\subset D,r\in\mathbb{Q}$ und $\overline{B(x,r)}\subset U$ für ein $U\in\mathcal{O}$ umfasst.

Sei
$$V_j = \{x | |x - x_j| < \frac{r_j}{2}\} \subset B(x_j, r_j)$$
. Dann existiert $\varphi_j \in C_0^{\infty}(\Omega)$ mit

- (i) $0 \le \varphi_j \le 1$
- (ii) $\varphi_i \equiv 1$ auf V_i

14

(iii) supp $(\varphi_i) \subset B(x_i, r_i)$ (Lemma 4). Definiere

$$\psi_1 := \varphi_1 \tag{2.17}$$

$$\psi_2 := (1 - \varphi_1)\varphi_2 \tag{2.18}$$

$$\psi_i := (1 - \varphi_1)(1 - \varphi_2) \cdots (1 - \varphi_{i-1})\varphi_i. \tag{2.20}$$

Dann gilt $0 \le \psi_i \le 1$, supp $(\psi_i) \subset \text{supp}(\varphi_i) \subset \overline{B(x_i, r_i)}$ und

$$\psi_1 + \psi_2 + \ldots + \psi_i = 1 -$$

Da $\varphi_i = 1$ in V_i folgt $\psi_1 + \psi_2 + \cdots + \psi_i = 1$ in $V_1 \cup V_2 \cup V_3 \cup \ldots \cup V_j$. Sei $K \subset \Omega$ kompakt, dann existiert $m \in \mathbb{N}$ mit $K \subset \bigcup_{i=1}^m V_i =: W$ denn

Lemma 6 FIXME

Sei $u \in W^{m,p}(\Omega)$, $1 \le p < \infty$ und sei $V \subset\subset \Omega$ offen. Dann gilt

$$||J_{\varepsilon} * u - u||_{W^{m,p}(V)} \to 0 \quad (\varepsilon \to 0+)$$

Beweis. Wir zeigen zuerst, dass

$$\partial^{\alpha}(I_{\varepsilon} * u) = I_{\varepsilon} * (\partial^{\alpha} u)$$

in V für $|\alpha| \leq m$ und $\varepsilon < \mathrm{dist}(V, \Omega^c)$. Nach Lemma 1.5 ist $J_{\varepsilon} * u \in C^{\infty}(\Omega)$ und

$$\partial^{\alpha}(J_{\varepsilon} * u) = (\partial^{\alpha}J_{\varepsilon}) * u.$$

Sei $x \in V$ und $\varepsilon < \mathrm{dist}(V, \Omega^{\varepsilon})$ Dann ist die Funktion $y \mapsto J_{\varepsilon}(x - y)$ in $C_0^{\infty}(\Omega)$ und somit

$$(\partial^{\alpha} J_{\varepsilon} * u)(x) = \int \partial^{\alpha} J_{\varepsilon}(x - y)u(y) \, dy$$

$$= (-1)^{|\alpha|} \int \partial_{y}^{\alpha} J_{\varepsilon}(x - y)u(y) \, dy$$

$$= \int J_{\varepsilon}(x - y)\partial^{\alpha} u(y) \, dy$$

$$= J_{\varepsilon} * (\partial^{\alpha} u)(x).$$

 $\partial^{\alpha}u \in L^{p}(V)$, $1 \leq p < \infty$. Also nach Theorem 1.7, $J_{\varepsilon} * \partial^{\alpha}u \to \partial^{\alpha}u$ in $L^{p}(V)$ ($\varepsilon \to 0+$). Es folgt

$$\begin{split} \|J_{\varepsilon} * u - u\|_{W^{1,p}(V)} &= \sum_{|\alpha| \le m} \|\partial^{\alpha} (J_{\varepsilon} * u) - \partial^{\alpha} u\|_{p,V}^{p} \\ &= \sum_{|\alpha| \le m} \|J_{\varepsilon} * (\partial^{\alpha} u) - \partial^{\alpha} u\|_{p,V}^{p} \to 0 \\ (\varepsilon 0 +), \end{split}$$

Theorem 7 (Meyers, Serrin 1964)

Für $1 \le p < \infty$ ist $C^{\infty}(\Omega) \cap W^{m,p}(\Omega)$ dicht in $W^{m,p}(\Omega)$.

Beweis. Für $k \in \mathbb{N}$ sei

$$\Omega_k = \{x \in \Omega | \operatorname{dist}(x, \Omega^c) > \frac{1}{k} \quad \text{ und } |x| < k\}.$$

Dann $\Omega_1 \subset \Omega_2 \subset \cdots \subset \Omega$ und $\bigcup_{k>1} \Omega_k = \Omega$ für

. Sei $U_k = \Omega_{k+1} \cap \overline{\Omega_{k-1}}^c = \Omega_{k+1} \setminus \overline{\Omega_{k-1}} und U_1 = \Omega_1$ Dann $\Omega = \bigcup_{k=1}^{\infty} U_k$. Sei (φ_j) eine der offene Überdeckung $\Omega = \bigcup_{i \geq 1} U_i$ untegeordnete lokal endliche Zerlegung der Eins (Satz 5) und sei $(\psi_k)_{k \geq 1}$ wie folgt definiert. ψ_1 ist die Summe der φ_i mit supp $(\varphi_i) \subset U_1$. φ_2 ist die Summe der φ_i mit

 $\operatorname{supp}(\varphi_i)\subset U_2$ aber $\operatorname{supp}(\varphi_i)\not\subset U_1$ etc. Dann ist $\psi_k\in C_0^\infty(\Omega)$ dann \overline{U}_k kompakt und somit ist ψ_k eine endliche Summe. Außerdem $0\leq \psi_k\leq 1, \sum \psi_k(x)=1$ in Ω , $\operatorname{supp}(\psi_k)\subset U_k$. Sei $\varepsilon>0$ und $\varepsilon_k>0$ so klein, dass

$$\operatorname{supp}(J_{\varepsilon_k}*(\psi_k U))\subset U_k$$

und

$$||J_{\varepsilon_k} * \underbrace{(\psi_k u)}_{\in W^{m,p}} - \psi_k u||_{W^{m,p}(\Omega_k) < 2^{-k}\varepsilon}$$

(Lemma 6). Definiere

$$\varphi := \sum_{k \geq 1} J_{\varepsilon_k} * (\psi_{\varepsilon} U)$$

auf jeder kompakten Menge $K\subset \Omega$ sind nur endlich viele Summanden $\neq 0$ also $\varphi\in C^\infty(\Omega)$. In Ω_k gilt

$$u(x) = \sum_{j=1}^{k+1} \psi_j(x) u(x)$$

$$\varphi(x) = \sum_{j=1}^{k+1} J_{\varepsilon_i} * (\psi_j u)(x).$$

Also gilt

Literaturverzeichnis

[AF] Robert A. Adams and John F. Fournier, Sobolev Spaces, 2nd Edition, Academic Press (2003).