

Lecture 07 Nash theo<u>rem</u>

Thomas Marchioro October 23, 2023

Terminology recap

- In a game $\mathbb{G} = (S_1, S_2, \dots, S_n; u_1, u_2 \dots, u_n)$ we can have
 - Pure strategy: $s_i \in S_i$
 - Joint strategy: $s = (s_1, ..., s_n) \in S_1 \times \cdots \times S_n$
- In static games of complete information, joint strategy = outcome → Actually, this is a lie! (True when the joint strategy includes only pure strategies)

No Nash Equilibrium?

■ In this game, there is no NE in pure strategies

		Even		
		0	1	
рp	0	-4, 4	4, -4	
0	1	4, -4	-4, 4	

- However, there is a "good" a strategy that rational players are willing to adopt
- We just need to extend the definition of strategies

Mixed strategies

Missing outcome

- Expand Odds&Evens games introducing strategy
 - 1/2: "Play 0 with probability 1/2 and 1 with probability 1/2"

		Even		
		0	1/2	1
-	0	-4, 4	0, 0	4 , -4
ppO	1/2	0, 0	0, 0	0, 0
	1	4, -4	0, 0	-4, 4

■ It seems that (1/2, 1/2) is a NE. Let us formalize this.

Mixed strategies

Remember:

- A **probability distribution** over a non-empty discrete set A is a function $p: A \to [0, 1]$ that satisfies $\sum_{a \in A} p(a) = 1$
- The set of possible probability distributions over A is called the *simplex* of A and denoted as ΔA
- **Mixed strategy**: In a game $\mathbb{G} = (S_1, \dots, S_n; u_1, \dots, u_n)$, a mixed strategy for player i is a probability distribution p_i over set S_i
- For player i, playing p_i means choosing strategies $S_i = (s_i^{(1)}, \ldots, s_i^{(k)})$, $k = |S_i|$, with probabilities $(p_i(s_i^{(1)}), \ldots, p_i(s_i^{(k)}))$
- Warning! There will be a lot of similarities with lotteries \rightarrow Do not confuse the two concepts!

Expected payoff

- Utility u_i can be extended to the expected utility, which is a real function over $\Delta S_1 \times \Delta S_2 \times \cdots \times \Delta S_n$
- If players choose mixed strategies $(p_1, ..., p_n)$, player i's payoff can be computed as a weighted average over p_i 's

$$u_i(p_i,\ldots,p_n) = \sum_{(s_1,\ldots,s_n)\in S} \underbrace{p_1(s_1)\cdots p_n(s_n)}_{\text{probability of }(s_1,\ldots,s_n)} \cdot u_i(s_1,\ldots,s_n)$$

with
$$S = S_1 \times \cdots \times S_n$$

- In other words, for all combinations of pure strategies:
 - fix (pure) joint strategy $s = (s_1, \dots, s_n)$
 - \blacksquare compute its probability as $p_1(s_1) \cdots p_n(s_n)$
 - weigh $u_i(s_1, ..., s_n)$ on this probability and sum

Intuition

8

- Consider Odds& Evens game and assume Odd decides to play
 0 with probability q, while Even plays 0 with probability r
 - Conversely, 1 is played by Odd and Even with probability 1-q and 1-r, respectively

		Even		
		0	1	
		(prob r)	$(prob\ 1-r)$	
		-4 <i>q</i> r,	4q(1-r),	
D Q Q	0 (prob <i>q</i>)	4qr	-4q(1-r)	
)	$1 \; (prob \; 1 - q)$	4(1-q)r,	-4(1-q)(1-r),	
		-4(1-q)r	4(1-q)(1-r)	

this is a single joint strategy $p = (p_1, p_2) = ((q, 1-q), (r, 1-r)) \rightarrow$ for compactness, we just write (q, r)

Intuition

ppO	$\begin{array}{c} 0 \; (prob \; q) \\ 1 \; (prob \; 1 - q) \end{array}$

Ev	ren
0	1
(prob r)	(prob 1 - r)
-4 <i>qr</i> ,	4q(1-r)
4qr	-4q(1-r)
4(1-q)r	-4(1-q)(1-r),
-4(1-q)r	4(1-q)(1-r)

Odd's payoff:

$$u_1(q,r) = -4qr + 4q(1-r) + 4(1-q)r - 4(1-q)(1-r)$$

$$= -4qr + 4q - 4qr + 4r - 4rq - 4 + 4q + 4r - 4qr$$

$$= -16qr + 8q + 8r - 4 = -4(2q-1)(2r-1)$$

Intuition

■ We can see these as "intermediate" strategies between 0 and 1

		Even		
		0	r	1
	0			
ppO	q 1		-16qr + 8q + 8r - 4 16qr - 8q - 8r + 4	

Pure strategies as mixed strategies

- Given a mixed strategy $p_i \in \Delta S_i$, we define the **support** of p_i as $supp(p_i) = s_i \in S_i : p_i(s_i) > 0$
- Each pure strategy $s_i \in S_i$ can be seen as a mixed strategy $p \in \Delta S_i$ such that $p(s_i) = 1$
 - lacksquare meaning that $p(s_i')=0$ for any other $s_i'\in S_i, s_i'\neq s_i$
- Every definition or result that applies to mixed strategies applies also to pure strategies, seen as degenerate mixed strategies

Strict/weak dominance

- Consider game $\mathbb{G} = (S_1, S_2, \dots, S_n; u_1, u_2 \dots, u_n)$
 - Notation: $p_{-i} = (p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_n) \in \Delta S_1 \times \dots \times \Delta S_{i-1} \times \Delta S_{i+1} \times \Delta S_n$ (note that there are infinite many tuples in this set!)
- Given two mixed strategies $p_i, p'_i \in \Delta S_i$, we say that p'_i strictly dominates p_i

$$u_i(p'_i, p_{-i}) > u_i(p_i, p_{-i}), \text{ for all } p_{-i}$$

■ We say that p'_i weakly dominates p_i if

$$u_i(p'_i, p_{-i}) \ge u_i(p_i, p_{-i}), \text{ for all } p_{-i}$$

 $u_i(p'_i, p_{-i}) > u_i(p_i, p_{-i}), \text{ for some } p_{-i}$

Strict/weak dominance

- Infinite many possibilities for p_{-i} . How to prove that a mixed strategy dominates another one? Luckily, we can leverage some useful properties:
- p'_i strictly dominates p_i iff (iff = if and only if)

$$u_i(p_i',s_{-i})>u_i(p_i,s_{-i}), \quad \text{for all } s_{-i}\in S_{-i}$$
 we compare the mixed stretegies of the mixed stretegies of the mixed stretegies and provided in other pure strategies.

 p'_i weakly dominates p_i iff

$$u_i(p'_i, s_{-i}) \ge u_i(p_i, s_{-i}),$$
 for all $s_{-i} \in S_{-i}$
 $u_i(p'_i, s_{-i}) > u_i(p_i, s_{-i}),$ for some $s_{-i} \in S_{-i}$

In other words, we can limit our search to other players' pure strategies

Nash equilibrium

- Consider game $\mathbb{G} = (S_1, S_2, \dots, S_n; u_1, u_2 \dots, u_n)$
- A joint mixed strategy $p^* = (p_1^*, \dots, p_n^*) \in \Delta S_1 \times \dots \times \Delta S_n$ is a **Nash equilibrium** if for all *i*:

$$u_i(p_i^*,p_{-i}^*) \geq u_i(p_i',p_{-i}^*)$$
 for all $p_i' \in \Delta S_i$

- Generalization of the NE in pure strategies: no player has incentive to change his/her move (which is a mixed strategy now)
- The concept of "best response" generalizes in an analogous manner

NE as absence of regrets

- In pure strategies, we could see NE as joint strategies in which no one regrets the outcome
- In mixed strategies, this is a bit more subtle: players may play the best response to other players' strategies and still regret the result
 - E.g., in Odds&Evens both players choose 0 and 1 with 50% probability
 - One of them will end up losing (hence regretting the outcome), yet they both played a best response
- In mixed NE, there is no regret about the chosen strategy, even though players may not like the final result

Back to Odds&Evens

- In the Odds&Evens game, the payoff for Odd is -4(2q-1)(2r-1), while the payoff for Even is the opposite
- If q = 1/2 or r = 1/2, both players get payoff 0
- If q = r = 1/2, no player has incentive to change

				Even	
		0		1/2	
-	0			0, 0	
ppO				0, 0	
_	1/2		0, 0 0, 0	0, 0	0, 0 0, 0
				0, 0	
	1			0, 0	

Self-assessment

- As an exercise, prove that (1/2, 1/2) is the **only** Nash equilibrium of the Odds&Evens game
- How to proceed
 - Consider 3 cases: those where Odd's payoff is > 0, < 0, or = 0 (but joint strategy is not q = r = 1/2)
 - Show that in each case there is a player who has incentive to deviate
 - As a consequence, none of these strategies is a NE $\Rightarrow q = r = 1/2$ is the only NE \square

IESDS and mixed strategies

■ (Abuse of) notation: we use qL+(1-q)C to denote the mixed strategy "play L with probability q and C with probability q = 1"

		Player B			
		L	C	R	
A	Т	7, 4	5, 0	8, 1]
layer	D	6, 0	3, 4	9, 1	
<u></u>					

- R is not dominated by L or C. However, mixed strategy $p = \frac{1}{2}L + \frac{1}{2}C$ yields payoff $u_B = 2$ regardless of A's choice
- Pure strategy R is strictly dominated by p
 - R can be eliminated
 - Further eliminations are possible

IESDS and mixed strategies

 \blacksquare Joint strategy (T, L) is the only survivor of IESDS \rightarrow only NE of the game

IESDS and mixed strategies

- Similar results to the pure strategy case hold for IESDS in mixed strategies
 - Theorem: NE survive IESDS
 - **Theorem**: The order of IESDS is irrelevant
- Remember: Use strict (not weak) dominance! A weakly dominated strategy can be part of a NE (or belong to the support of a strategy that is part of a NE)

Characterization of mixed NE

- **Theorem**: Consider game $\mathbb{G} = (S_1, S_2, \dots, S_n; u_1, u_2 \dots, u_n)$ and a joint mixed strategy $p^* = (p_1^*, \dots, p_n^*)$ in \mathbb{G} . The following statements are equivalent
 - 1 Joint mixed strategy p^* is a Nash equilibrium
 - 2 For each *i*:

$$u_i(p_i^*, p_{-i}^*) = u_i(s_i, p_{-i}^*) \text{ for all } s_i \in \text{supp}(p_i^*)$$

 $u_i(p_i^*, p_{-i}^*) \ge u_i(s_i, p_{-i}^*) \text{ for all } s_i \notin \text{supp}(p_i^*)$

- Simply put, fixing strategy p_{-i}^* , player i receives the same payoff for all pure strategies $s_i \in \text{supp}(p_i)^*$
- Clearly, this is also equal to the payoff yielded by p_i^* , being a convex combination of those pure strategies

Characterization of mixed NE

- Intuition: suppose p_{-i}^* is fixed and consider joint mixed strategy qL + (1 q)R for player i (support = $\{L, R\}$)
- If $u_i(L, p_{-i}^*) \neq u_i(R, p_{-i}^*)$ then either L or R yields lower payoff than the other \Rightarrow Player i should remove it from the support to maximize $u_i \Rightarrow$ Not a NE

Back to the Battle of the Sexes

		E	3
		R(r)	S(1-r)
⋖	R(q)	2, 1	0, 0
1	S (1-q)	0, 0	1, 2

- This game has two NE in pure strategies: (R, R) and (S, S)
- We can show that there is also a mixed NE
- Player A chooses R w.p. q, player B chooses R w.p. r
- A joint mixed strategy is uniquely identified by (q, r)
 - A's payoff: $u_A(q, r) = 2 \cdot qr + 1 \cdot (1 q)(1 r)$
 - B's payoff: $u_B(q, r) = 1 \cdot qr + 2 \cdot (1 q)(1 r)$

Back to the Battle of the Sexes

- \blacksquare q = probability A plays R, r = probability B plays R
- Assume (q^*, r^*) is a NE
 - Note: it must be $supp(q^*) = supp(r^*) = \{R, S\}$ (otherwise, we fall back to the pure-strategy NE)
- Due to the "characterization" theorem, it must be

$$u_A(q^*, r^*) = \underbrace{u_A(S, r^*) = u_A(R, r^*)}_{\text{we use this eq. to find } r^*}$$

- Plug the values q = 0 (for S) and q = 1 (for R) in $u_A(q, r) = 2qr + (1 q)(1 r)$ and solve for $r = r^*$
- $1 r^* = 2r^*$
- Solution for B: $r^* = 1/3$

Back to the Battle of the Sexes

- Similarly, we impose $u_B(q^*, S) = u_B(q^*, R)$
- Plug the values r = 0 (for S) and r = 1 (for R) in $u_B(q, r) = qr + 2(1 q)(1 r)$ and solve for $q = q^*$
- $2-2q^*=q^*$
- Solution for A: $q^* = 2/3$
- Mixed NE: A plays (R, S) with probabilities (2/3, 1/3), B plays (R, S) with probabilities (1/3, 2/3)
- **Note**: A's NE strategy is found using B's utility function, and vice versa

Back to the Prisoner's dilemma

■ We have only one NE in pure strategies. What about mixed strategies?

-9, 0

		Play	er B
		M	
<	M	-1, -1	-
ayer	F	0, -9	_
<u> </u>			

Nash theorem (intro)

- The reasoning we used to find the third (mixed) NE of the Battle of Sexes can be generalized
- Every two-player game with two strategies has a NE in mixed strategies (although they could be degenerate mixed strategies, i.e., pure strategies)
- This is easy to prove, and part of the more general Nash theorem
- **Theorem** (Nash, 1950): Every game with finite pure-strategy sets S_i has at least one Nash equilibrium, possibly involving mixed strategies

Understanding mixed strategies

- Mixed strategies are key for Nash Theorem
 - How do we interpret the probabilities involved in mixed strategies?
 - In the end, players play a pure strategy (i.e., take a deterministic action)
- Possible interpretations
 - Large numbers: If the game is played $M \gg 1$ times, a probability q for s_i means that s_i gets played qM times
 - Fuzzy values: Uncertain actions, players do not know
 - **Beliefs**: The probability *q* reflects the uncertainty that the other players have about my choice (which is actually deterministic)

Belief

- A **belief** of player i is a possible profile of opponents' strategies: an element of set ΔS_{-i}
 - Same definition as in pure strategies but with ΔS_{-i}
- Again, the best-response correspondence BR : $\Delta S_{-i} \rightarrow 2^{\Delta S_{-i}}$ associates $p_{-i} \in \Delta S_{-i}$ with a subset of ΔS_i such that each $p_i \in BR(p_{-i})$ is a best response to p_{-i}
 - Best responses are still not unique

- Using beliefs, we can speak of best response to an opponent's (mixed) strategy
- Intuition:

		В		
		F	G	
_	U	6, 1	0, 4	
1	D	2, 5	4, 0	

- B ignores what A will play
- So B assumes q = probability that A plays U
- Likewise, A assumes r = probability that B plays F
- E.g., if A's belief is that B always plays F (i.e., r = 1), A's best response is to play U (q = 1). In general?

		В		
		F	G	
_	U	6, 1	0, 4	
1	D	2, 5	4, 0	

- It holds: $u_A(D, r) = 2r + 4(1 r), u_A(U, r) = 6r$
- U is actually A's best response as long as r > 1/2, else it is D; if r = 1/2, they are equivalent
- Denote A's best response with $q^*(r)$

■ A's best response is either U or D, i.e. $q^*(r) = 1$, 0, respectively:

$$q^*(r) = \begin{cases} 0 & \text{if } r < 1/2 \\ 1 & \text{if } r > 1/2 \end{cases}$$

		В	
		F	G
⋖	U	6, 1	0, 4
	D	2, 5	4, 0

- For B: $u_B(q, F) = q + 5(1 q), u_B(q, G) = 4q$
- B's best response $r^*(q)$ is

$$r^*(q) = \begin{cases} 1 & \text{if } q < 5/8 \\ 0 & \text{if } q > 5/8 \end{cases}$$

- Joint strategy $p^* = (q = 1/2, r = 5/8)$ is a NE
- NE are points where the choice of each player is best response to the other player's choice

Existence of NE

- The existence of at least one NE is guaranteed by topological reasons
- There may be more than on NE (e.g., Battle of the Sexes)

		В	
		R	S
⋖	R	2, 1	0, 0
	S	0, 0	1, 2

- $u_A(R,r) = 2r, u_A(S,r) = 1 r, q^*(r) = 1 1(r 1/3)$
- $u_B(q,R) = q, u_A(q,S) = 2(1-q), r^*(q) = 1 1(q-2/3)$

Existence of NE

- Here there are three NE
- In any event, $q^*(r)$ must intersect $r^*(q)$ at least once
- Nash theorem generalizes this idea

38

■ For game $\mathbb{G} = (S_1, S_2, \dots, S_n; u_1, u_2 \dots, u_n)$, define

$$BR_i: \Delta S_1 \times ... \Delta S_{i-1} \times \Delta S_{i+1} \times ... \times \Delta S_n \rightarrow 2^{\Delta S_i}$$

$$\mathsf{BR}_i(p_{-i}) = \{p_i \in \Delta S_i : u_i(p_i, p_{-i}) \text{ is maximized}\}$$

■ Then, define $\mathbf{BR}: \Delta S \to 2^{\Delta S}$ as

$$\mathsf{BR}(p) = \mathsf{BR}_1(p_{-1}) \times \cdots \times \mathsf{BR}_n(p_{-n})$$

- BR $_i(p_{-i})$ is the set of best responses of i to other player's strategies; **BR** is their aggregate
 - p is a NE if $p \in BR(p)$
 - Properties of $BR_i(p_{-i})$: (1) is always non-empty; (2) always contains at least one pure strategy

- Brouwer's fixed point theorem: If f(x) is a continuous function $f: \mathcal{I} \to \mathcal{I}$, where $\mathcal{I} \subset \mathbb{R}$ to itself, $\exists x^* \in \mathcal{I}$ such that $f(x^*) = x^*$
- Proof (sketch): Consider $\mathcal{I} = [0,1]$. If f(0) > 0 and f(1) < 1, apply Bolzano-Weierstrass theorem to f(x) x

- Kakutani's fixed point theorem: Consider
 - lacksquare $A\subset\mathbb{R}^n$ non-empty, compact, and convex
 - correspondence $F: A \rightarrow 2^A$ such that
 - For all $x \in A$, F(x) is non-empty and convex
 - If $\{x_i\}$, and $\{y_i\}$ are sequences in \mathbb{R}^n converging to x and y, respectively: $y_i \in F(x_i) \Rightarrow y \in F(x)$ (F's graph is closed)
 - Then, there exists $x^* \in A$ such that $x^* \in F(x^*)$
- Nash theorem: Nothing but Kakutani's theorem applied to the global best-response correspondence BR

Questions?