dde_fct_learning

September 15, 2023

1 Function Learning with DeepXDE

We use DeepXDE to learn a 1D function of the form

$$f(x) = x\sin(5x)$$

A similar problem was previously coded by hand just using pytorch.

```
[1]: import deepxde as dde import numpy as np
```

No backend selected.

Finding available backend...

Using backend: pytorch

Other supported backends: tensorflow.compat.v1, tensorflow, jax, paddle. paddle supports more examples now and is recommended.

Found pytorch

Setting the default backend to "pytorch". You can change it in the ~/.deepxde/config.json file or export the DDE_BACKEND environment variable. Valid options are: tensorflow.compat.v1, tensorflow, pytorch, jax, paddle (all lowercase)

Note that the pytorch backend is found automatically, it being in the conda environment.

Define

- geometry
- training parameters (16 sampling points, 100 test points)
- network architecture, activation and initilization

```
[3]: geom = dde.geometry.Interval(-1, 1)
num_train = 16
num_test = 100
data = dde.data.Function(geom, func, num_train, num_test)
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN([1] + [20] * 3 + [1], activation, initializer)
```

Instantiate the model and choose the optimizer.

```
[4]: model = dde.Model(data, net)
model.compile("adam", lr=0.001, metrics=["12 relative error"])
```

```
Compiling model...
'compile' took 0.000175 s
```

Train the model for 10000 iterations.

```
[5]: losshistory, train_state = model.train(iterations=10000)
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
```

Training model...

Step	Train loss	Test loss	Test metric
0	[2.93e-01]	[2.52e-01]	[1.10e+00]
1000	[3.20e-04]	[2.90e-04]	[3.72e-02]
2000	[7.81e-05]	[1.01e-04]	[2.19e-02]
3000	[3.28e-05]	[6.18e-05]	[1.72e-02]
4000	[3.63e-05]	[5.64e-05]	[1.64e-02]
5000	[7.72e-06]	[2.92e-05]	[1.18e-02]
6000	[4.46e-06]	[2.43e-05]	[1.08e-02]
7000	[2.68e-06]	[2.12e-05]	[1.01e-02]
8000	[3.36e-06]	[2.10e-05]	[1.00e-02]
9000	[8.83e-07]	[1.64e-05]	[8.85e-03]
10000	[6.36e-07]	[1.44e-05]	[8.31e-03]

Best model at step 10000:

train loss: 6.36e-07 test loss: 1.44e-05 test metric: [8.31e-03]

Saving loss history to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/loss.dat ...

Saving training data to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-

^{&#}x27;train' took 6.788644 s

advanced/02Examples/01_SciML/train.dat ...
Saving test data to
/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/test.dat ...

[]: