

# Computer Vision

Lab 05: Image Segmentation

### Sumeet Gyanchandani

### 1 Image Preprocessing

## smoothed image



Figure 1. Smoothed image for Cow



Figure 2. L\*a\*b\* image for Cow

#### smoothed image



Figure 3. Smoothed image for Zebra

#### l\*a\*b\* image



**Figure 4.** L\*a\*b\* image for Zebra

It is better to do segmentation in the L\*a\*b\* color space as compared to RGB color space because unlike the RGB and CMYK color models, L\*a\*b\* color is designed to approximate human vision. It aspires to perceptual uniformity, and its L component closely matches human perception of lightness. Apart from Image Segmentation, it can also be used to make accurate color balance corrections by modifying output curves in the a and b components, or to adjust the lightness contrast using the L component.

# 2 Mean-Shift Segmentation



Figure 5. Image Map for Cow from Mean-Shift Segmentation



Figure 6. Image Map for Zebra from Mean-Shift Segmentation



Figure 7. Segment Visualization for Cow



Figure 8. Segment Visualization for Zebra

# 3 EM Segmentation

### 3.1 K = 3



Figure 9. Image Map for Cow from EM Segmentation



 $\textbf{Figure 10.} \ \ \textbf{Image Map for Zebra from EM Segmentation}$ 



**Figure 11.** Segment Visualization for K = 3



Figure 12. Segment Visualization for K=3



Figure 13. Image Map for Cow from EM Segmentation



Figure 14. Image Map for Zebra from EM Segmentation



Figure 15. Segment Visualization for K=4



Figure 16. Segment Visualization for K=4



Figure 17. Image Map for Cow from EM Segmentation



Figure 18. Image Map for Zebra from EM Segmentation



Figure 19. Segment Visualization for K=5



Figure 20. Segment Visualization for K=5