Section 1

Atomy and Molecules and their Functional Properties

Stoichiometry | converting | empirical formula | limiting reactants

Tips when converting (g > mol / mol > g / mol -> mol)

Make sure you try to cancel out any units you don't want.

Include the element when computing.

Limiting Reagent

$$ex. C_2H_4 + O_2 \rightarrow CO_2 + H_20$$

 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_20$

given 3.0 mol Oz and 119 g Cetta, what is the limiting reagent when forming CO2?

119 g Cz H4 : Imol Cz H4 = 4.24 mol Cz H4

28.06 g (z H4

4.24 mol C2 Hq · 2 mol CO, = 8.48 mol CO2

3.0 mol 02 · 2 mol CO2 = 2 mol CO2

Empirical Formula

1. change % to gram & -D assuming 100%.
2. g -B mil for all elements

3. divide each answer (moles) from above by

the smallest answer.

4. Multiply to get whole #'s Ruld: multiply o.t by 2 multiply 0.33/0.66 by 3 multiply 0.25/0.75 by 4

5. put the final # moles you calculated in the formula

Useful Unit Conversions / Numbers

Mass
$$19 = 0.001 kg - 1000$$

 $1kg = 1000 g - 2 \times .1000$

Chemical Bonding | Coulomb's Law | 1E and EA | Lawis Structure | Resonance | Dipole | Polarity | Formal charge | VSPER Theory

Coulomb's Law

Ionization Energy

the closer the e- is to the poten, the stronger its attraction => higher IE.

Connections: High IE Low IE

Smaller critical · larger entical
Distance

· larger lattice · smaller lattice — t

energy

Electron Apprinty

the energy released when accepting eexothermic process

Levis Structure

IE -EA > 0

Na + bigger / imaller Na-Cl - bigger / imaller Cl

Resonance Structures

1. Consider compounds with adouble bind.

Dipole Moment / Polarity

electronegativity is directly related to

Formal Charges

Fc (dement) = valence = - (bond pairs + lone e)

H FC(1) = 6 -
$$(Z + 4) = 0$$

H FC(H)=1- $(1+0) = 0$

V SPER Them

Steric number LSN): # of electron domains, where one electron domain can be a lone pair, or single I doubted triple bond.

Electron Geometry: barred on # of electron domains

LP-LP > LP-bond > bond-bond

Molecular Geometry: Ione paids repulse, so they attent the angle of the geometry.

Practice

Molaule	e Domains	Limi	EM	ME	Bond Angle
C+14		H — 1 ← H	tetrahedral	tetrahaml	Bond Angle
PF3	4	:F-P-F:			
S# z	4	: <u>;</u> — <u>;</u> :	tetrah dral	bent	<111.5°
Noz	3	:Ö-N=ö:	tnginal p	lanar bent	120 *
8H3	3	H-BH !	tnginal plan	ar tnginalf	olanar 120°

Periodic Trends

Thermodynamics I Ideal vs Real Gas Work | Heat | Partial Privare | Enthalpy | Graham's Law Kircchoff's Law

Ideal Gas Law

Roctmeans Squared Speed

$$\sqrt{\frac{3 \, k_1}{m}}$$

VZKLT M

Real Gas Laws

$$P = \frac{nRT}{(v-nb)} - a \left(\frac{n}{V}\right)^2$$
 a: attraction - > polar has higher 1

IMF 3

Lundon F < Dipola-Induced D < D-D < 10n-D < 10n-10n Weaker MF's = higher vapir pressure = minererap Stringer IMF's = I war vapor prisine

Work

Work

work done on system

$$\Delta U = W + Q$$

Change in

Internal energy

work done on system

 $W > 0$

on the system

 $W < 0$

by the system

 $W = 0$

none

$$W = -p_{ext} \Delta V$$
 $p = \frac{nRT}{V}$ *Tip add all miles and then plug eind play to And Ptotal = $P_x + P_y + ...$ Ptotal

Heat

Specific Heat Capacity
$$q = m C\Delta T$$
 Tamp of Ta

Graham's Law

$$\frac{\text{Rate}_{a}}{\text{Rate}_{b}} = \frac{N_{a}}{N_{b}} \left(\frac{m_{b}}{m_{1}}\right)^{1/2} + \text{Note: } N = \# \text{ molecular}$$

$$n = \# \text{ moles}$$

Enthalpy

$$\Delta H = \Delta E + Pext \Delta V$$
 *Tip: ΔH elemental = 0
 $\Delta H = \Delta H$ products - ΔH reactanty

Hess's Law Rules

1. Alip the reactions - change sign 2. balance equations to cancel to apply same calculations to the DH.

Special Paths

Adiabatic

Isothermal

Isochine

Sobaric

$$-q = 0$$

$$-W = N(V(T_2 - T_1)$$

$$\begin{array}{cccc} \cdot & q = W & \cdot & W = 0 \\ \cdot & W = n RT \ln \frac{V_2}{V_1} & \cdot & \Delta U = q \end{array}$$

Ideal Gas Laws Trends

V VS. P

T LV V

PVST

N vs. T

Kirchoff's Law

Heat and Work Trends

NTPT

Expansion:

$$W = -p \Delta V$$
$$-p(+) = -$$

Phase Changes

Maximizing conversion to Products

decrease pressure, concentration of parts