Transformer Vit, DETR

Visual Transformer

Visual Transformer (ViT) intro

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, ICLR 2021

- Transformer 는 NLP 에서 대중적으로 사용하는 구조가 되었음
- Vit는 Transformer를 사용하여 이미지 인식에 적용한 연구
- 반면 컴퓨터 비전 분야에서는 Convolution 연산을 이용한 방법이 아직까지 대중적
- Convolution 연산?

Visual Transformer (ViT)

Inductive bias

• Inductive Bias : 귀납 편향

CNN에서 사용되는 inductive bias 없이 이미지 인식에서 성능향상을 보인 ViT

Visual Transformer (ViT)

Key idea

Image $x \in R^{H \times W \times C} \to A$ sequence of flattened 2D patches $x_p \in R^{N \times (P^2 \cdot C)}$

Table 1: Details of Vision Transformer model variants.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	3-3
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	77.63 ± 0.23	$76.28 \pm \textbf{0.46}$	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

• JFT300M dataset으로 pretrain 시키고 테스트

RGB embedding filters (first 28 principal components)

Position embedding

1

2

4

1

5

6

7

- 1. 자동으로 low-level의 특성을 학습하는 embedding filter
- 2. Positional embdding 이후의 이미지와 패치와의 유사도
- 3. Attention이 얼마나 먼 패치를 할당하고 있는지 (receptive field와 유사)

End-to-End Object Detection with Transformers, ECCV 2020

- Object Detection 문제를 direct set prediction으로 푸는 모델
- 기존의 Detection 에서 생기는 non-maximum suppression (NMS) 문제를 해결
- Transformer 기반의 prediction

Object detection

NMS

- 기존 방법은 non-maximum suppression (NMS) 문제를 해결하기 위해 post processing 필요
- DETR은 transformer 를 활용한 end-to-end 방식

bipartite matching

- NMS 해결 -> 각각의 실제 레이블에 대해서 하나만 할당하자!
- bipartite matching

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$$

 σ : index

$$\mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) = -\mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)})$$

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

```
@torch.no grad()
def forward(self, outputs, targets):
   bs, num_queries = outputs["pred_logits"].shape[:2]
   out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
   out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
   tgt ids = torch.cat([v["labels"] for v in targets])
   tgt_bbox = torch.cat([v["boxes"] for v in targets])
   cost class = -out prob[:, tgt ids]
   cost_bbox = torch.cdist(out_bbox, tgt_bbox.type(torch.FloatTensor).to(out_prob.device), p=1)
   C = self.cost bbox * cost bbox * self.cost class * cost class
   C = C.view(bs, num_queries, -1).cpu()
   sizes = [len(v["boxes"]) for v in targets]
    indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
    return [(torch.as tensor(i, dtype=torch.int64), torch.as tensor(i, dtype=torch.int64)) for i, i in indices]
```

시계열 데이터

시계열 데이터와 자연어 데이터

Thank you