

Efficient Multitask Feature and Relationship Learning

Han Zhao^o, Otilia Stretcu^o

Carnegie Mellon University

Alex Smola[†]

†Amazon

Geoff Gordon[‡]

‡Microsoft Research

†geoff.gordon@microsoft.com {han.zhao, ostretcu}@cs.cmu.edu †alex@smola.org

Motivation

Multitask Learning:

- Multiple linear regression models
- Weight matrix W:
- ightharpoonup rows = tasks
- columns = features
- Goal:
- ► Joint learning multiple tasks
- ► Better generalization with less data
- ► Find correlation between tasks/features

Formulation

Empirical Bayes with prior:

$$W \mid \xi, \Omega_1, \Omega_2 \sim \left(\prod_{i=1}^m \mathcal{N}(\mathbf{w}_i \mid \mathbf{0}, \xi_i \mathbf{I}_d)\right) \cdot \mathcal{MN}_{d \times m}(W \mid \mathbf{0}_{d \times m}, \Omega_1, \Omega_2)$$

- $\mathcal{MN}_{d\times m}(W\mid \mathbf{0}_{d\times m},\Omega_1,\Omega_2)$ is matrix-variate normal distribution
- $\Omega_1 \in \mathbb{S}^d_{++}$, covariance matrix over features
- $\Omega_2 \in \mathbb{S}^m_{++}$, covariance matrix over tasks
- $W \in \mathbb{R}^{d \times m}$, weight matrix

Maximum marginal-likelihood with empirical estimators:

where $\Sigma_1 := \Omega_1^{-1}$, $\Sigma_2 := \Omega_2^{-1}$.

• Multi-convex in W, Σ_1, Σ_2

Nonlinear extension:

- ullet Replace the feature matrix X with the output of a neural network $g(\mathbf{x}; \theta)$ with learnable parameters θ .
- Estimate W and θ using backpropagation.
- Optimize the two covariance matrices using our proposed approach.

Optimization Algorithm

Solvers for W when Σ_1 , Σ_2 are fixed:

minimize
$$h(W) \triangleq ||Y - XW||_F^2 + \eta ||W||_F^2 + \rho ||\Sigma_1^{1/2}W\Sigma_2^{1/2}||_F^2$$

Three different solvers:

• A closed form solution with $O(m^3d^3 + mnd^2)$ complexity:

$$\operatorname{vec}(W^*) = \left(I_m \otimes (X^T X) + \eta I_{md} + \rho \Sigma_2 \otimes \Sigma_1\right)^{-1} \operatorname{vec}(X^T Y)$$

Gradient computation:

$$\nabla_W h(W) = X^T (Y - XW) + \eta W + \rho \Sigma_1 W \Sigma_2$$

Conjugate gradient descent with $O(\sqrt{\kappa} \log(1/\varepsilon)(m^2d + md^2))$ complexity, κ is the condition number, ε is the approximation accuracy.

• Sylvester equation AX + XB = C using the Bartels-Stewart solver. The first-order optimality condition:

$$\Sigma_1^{-1}(X^T X + \eta I_d)W + W(\rho \Sigma_2) = \Sigma_1^{-1} X^T Y$$

Exact solution for W computable in $O(m^3 + d^3 + nd^2)$ time.

Solvers for Σ_1 and Σ_2 when W is fixed:

minimize
$$\operatorname{tr}(\Sigma_1 W \Sigma_2 W^T) - m \log |\Sigma_1|$$
, subject to $lI_d \preceq \Sigma_1 \preceq uI_d$
minimize $\operatorname{tr}(\Sigma_1 W \Sigma_2 W^T) - d \log |\Sigma_2|$, subject to $lI_d \preceq \Sigma_2 \preceq uI_d$

Exact solution by reduction to minimum-weight perfect matching:

Algorithms:

Input: W, Σ_2 and l, u.

1: $[V, \nu] \leftarrow \text{SVD}(W\Sigma_2 W^T)$.

2: $\lambda \leftarrow \mathbb{T}_{[l,u]}(m/\nu)$. 3: $\Sigma_1 \leftarrow V \operatorname{diag}(\lambda) V^T$. Input: W, Σ_1 and l, u.

1: $[V, \nu] \leftarrow \text{SVD}(W^T \Sigma_1 W)$.

2: $\lambda \leftarrow \mathbb{T}_{[l,u]}(d/\nu)$.

3: $\Sigma_2 \leftarrow V \operatorname{diag}(\lambda) V^T$.

- Exact solution only requires one SVD
- Time complexity: $O(\max\{dm^2, md^2\})$

Experiments

Datasets:

- Synthetic data:
- \triangleright Randomly sample 10^4 instances, shared among all the tasks.
- \triangleright Gradually increase the dimension of features, d, and the number of tasks, m, to test scalability.
- Robot data (SARCOS):
- \blacktriangleright d=21 (7 joint positions, 7 joint velocities, 7 joint accelerations), m = 7 (7 joint torques).
- ► 44,484 train instances, 4,449 test instances.
- School data:
- d = 27, m = 139, n = 15,362 instances.
- ► Goal: predict student scores.

Convergence analysis:

• The closed form solution does not scale when $md \ge 10^4$.

Results (mean squared error):

Method	SARCOS							Cahaal
	1st	2nd	3rd	4th	5th	6th	7th	School
STL	31.40	22.90	9.13	10.30	0.14	0.84	0.46	0.9882 ± 0.0196
MTFL	31.41	22.91	9.13	10.33	0.14	0.83	0.45	0.8891 ± 0.0380
MTRL	31.09	22.69	9.08	9.74	0.14	0.83	0.44	0.9007 ± 0.0407
MTFRL	31.13	22.60	9.10	9.74	0.13	0.83	0.45	0.8451 ± 0.0197
FETR	31.08	22.68	9.08	9.73	0.13	0.83	0.43	0.8134 ± 0.0253
STL-NN	24.81	17.20	8.97	8.36	0.13	0.72	0.34	
MT-NN	12.01	10.54	5.02	7.15	0.09	0.70	0.27	
MTFRL-NN	11.02	9.51	4.99	7.11	0.08	0.62	0.27	
FETR-NN	10.77	9.34	4.95	7.01	0.08	0.59	0.24	

Feature covariance matrix and task covariance matrix:

(a) Covariance matrix over features.

(b) Covariance matrix over tasks.