

## planetmath.org

Math for the people, by the people.

## well-founded induction

Canonical name WellfoundedInduction
Date of creation 2013-03-22 12:42:17
Last modified on 2013-03-22 12:42:17
Owner rathoy (4018)

Owner ratboy (4018) Last modified by ratboy (4018)

Numerical id 22

Author ratboy (4018) Entry type Theorem Classification msc 03B10

Related topic PrincipleOfFiniteInduction

**Definition.** Let S be a non-empty set, and R be a binary relation on S. Then R is said to be a **well-founded** relation if and only if every nonempty subset  $X \subseteq S$  has an http://planetmath.org/RMinimalElementR-minimal element. When R is well-founded, we also call the underlying set S well-founded.

Note that R is by no means required to be a total order, or even a partial order. When R is a partial order, then R-minimality is the same as minimality (of the partial order). A classical example of a well-founded set that is not totally ordered is the set  $\mathbb{N}$  of natural numbers ordered by division, i.e. aRb if and only if a divides b, and  $a \neq 1$ . The R-minimal elements of  $\mathbb{N}$  are the prime numbers.

Let  $\Phi$  be a property defined on a well-founded set S. The principle of well-founded induction states that if the following is true :

- 1.  $\Phi$  is true for all the R-minimal elements of S
- 2. for every a, if for every x such that xRa, we have  $\Phi(x)$ , then we have  $\Phi(a)$

then  $\Phi$  is true for every  $a \in S$ .

As an example of application of this principle, we mention the proof of the fundamental theorem of arithmetic: every natural number has a unique factorization into prime numbers. The proof goes by well-founded induction in the set  $\mathbb{N}$  ordered by division.