Bestimmung der Gleichgewichtskonstante für ein Homogenes Gleichgewicht [1]

Autor: Florian Kluibenschedl

Bericht verfasst am: 3. März 2019

Versuchsdurchführung am: 04. März 2019 Gruppe, Matrikelnummer: 3, 11805747

Lehrveranstaltung: PR Allgemeine Chemie A

Institut: Allgemeine, Anorganische

und Theoretische Chemie

Assistent: Ladstätter Eva

Zusammenfassung

1 Theoretische Grundlagen

1.1 Motivation

Das orange-gelbe $\mathrm{Fe^{3+}}_{(aq)}$ Ion bildet mit farblosem $\mathrm{SCN^{-}}_{(aq)}$ das blutrot gefärbte Komplexion $[\mathrm{Fe}(\mathrm{OH_2})_5\mathrm{SCN}]^{2+}$ gemäß 1.

$$[Fe(OH2)6]3+ + SCN- \longrightarrow [Fe(OH2)5SCN]2+ + H2O Rgl. 1$$

Bei $[\text{Fe}(\text{OH}_2)_5\text{SCN}]^{2+}$ handelt es sich um einen Charge-Transfer Komplex¹, was die tiefrote Farbe erklärt - Absorbtionsmaximum $\lambda_{max} = 485\,\text{nm}$ [2, S. 540]. Die Intensität der Farbe korreliert mit der Konzentration, weswegen sich die Vis-Photometrie zur Konzentrationsbestimmung eignet [3, S. 108]. Sind die Konzentrationen aller Spezies in 1 bekannt, errechnet sich nach (1) die entsprechende Komplexbildungskonstante β . Die Konzentration von H_2O wird dabei als Konstant angenommen.

$$\beta = \frac{[[\text{Fe}(\text{OH}_2)_5 \text{SCN}]^{2+}]}{[[\text{Fe}(\text{OH}_2)_6]^{3+}] * [\text{SCN}^-]}$$
(1)

1.2 Ziel des Experiments

Auf Basis der obigen Überlegungen ist das Ziel, eine möglichst exakte Bestimmung der Komplexbildungskonstante der beschriebenen Reaktion mithilfe von Vis-Photometrie durchzuführen.

2 Experimenteller Teil

2.1 Verwendete Materialien

Tabelle 1: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Hersteller	Chemikalie	Hersteller
$\begin{array}{c} \hline 16\mathrm{mm} \times 160\mathrm{mm} \ \mathrm{Reagenzgl\ddot{a}ser} \ - \ 6 \ \mathrm{St\ddot{u}ck} \\ 6100\text{-Vis Photometer} \\ (10.00\pm0.05)\mathrm{ml} \ \mathrm{Vollpipette} \\ (10.0\pm0.1)\mathrm{ml} \ \mathrm{Messzylinder} \\ (50.0\pm0.1)\mathrm{ml} \ \mathrm{Messzylinder} \\ \mathrm{Glask\ddot{u}vetten} \ \varnothing 1.6\mathrm{cm} \\ \mathrm{Messpipette} \end{array}$		$0.002\mathrm{M}$ NaSCN Lösung $0.2\mathrm{M}$ Fe(NO $_3$) $_3$ Lösung deionisiertes Wasser	

2.2 Versuchsdurchführung

Um die Konzentrationen bestimmen zu können, wurde eine Verdünnungsreihe erstellt. Dazu wurden 6 gereinigte Reagenzgläser jeweils mit $10 \,\mathrm{mL}$ einer $0.002 \,\mathrm{M}$ NaSCN Lösung gefüllt². In Reagenzglas $1 \,\mathrm{wurden} \, 10 \,\mathrm{mL}$ einer $0.2 \,\mathrm{M} \,\mathrm{Fe}(\mathrm{NO_3})_3$ Lösung pipettiert³. In diesem Reagenzglas liegt $\mathrm{Fe}^{3+}_{(\mathrm{aq})}$ im

 $^{^1}$ high-spin

²Vollpipette

 $^{^3}$ Vollpipette

Überschuss vor ($[SCN^-] << [Fe^{3+}_{(aq)}]$, also $[Fe(OH_2)_5SCN]^{2+} = [SCN^-]_0$), weswegen es im Folgenden als Standard verwendet wurde. Anschließend wurden $10\,\mathrm{mL}$ einer $0.2\,\mathrm{M}$ Fe $(NO_3)_3$ in einen $50\,\mathrm{mL}$ Messzylinder pipettiert und mit deionisiertem Wasser auf $25\,\mathrm{mL}$ aufgefüllt. Nach dem homogenisieren wurden $10\,\mathrm{mL}$ entnommen⁴ und in Reagenzglas 2 pipettiert. Mit einer Messpipette wurden weitere $5\,\mathrm{mL}$ vom Messzylinder entnommen und verworfen. Die verbleibenden $10\,\mathrm{mL}$ wurden mit deionisiertem Wasser auf $25\,\mathrm{mL}$ aufgefüllt, wovon wieder $10\,\mathrm{mL}$ entnommen und in Reagenzglas 3 pipettiert wurden. Diese Prozedur wurde wiederholt, bis man 6 Reagenzgläser mit jeweils verschiedenen Konzentrationen an $Fe^{3+}_{(aq)}$, $SCN^-_{(aq)}$ und $[Fe(OH_2)_5SCN]^{2+}$ hatte - deutlich erkennbar an der abnehmenden Intensität der roten Färbung.

Die Messung mit dem Vis-Photometer erfolgte in Glasküvetten ($d=1.6\,\mathrm{cm}$), die 10 mL der Probelösung aus den Reagenzgläsern der Verdünnungsreihe enthielten⁵. Die Messung der Extinktion $E_{\lambda_{max}}$ erfolgte beim Absorptionsmaximum $\lambda_{max}=485\,\mathrm{nm}$. Für die Messung wurde die Methode Eisenthiocyanat - Nr. 1001 verwendete, die bereits eine entsprechende Kalibriergerade enthält⁶. Als Ergebnis der Messung erhält man die Konzentration von [Fe(OH₂)₅SCN]²⁺.

2.3 Auswertung

Um die Komplexbildungskonstante berechnen zu können, müssen die Gleichgewichtskonzentrationen der an der Reaktion beteiligten Spezies bekannt sein.

Bei der Verdünnungsreihe wird in jedem Schritt die Konzentration von SCN⁻ halbiert, da das Volumen durch die Zugabe von jeweils $10\,\mathrm{mL}$ der verdünnten $\mathrm{Fe(NO_3)_3}$ verdoppelt wird $(V_2=20\,\mathrm{mL})$. Für die $\mathrm{Fe^{3+}_{(aq)}}$ Konzentration in den Reagenzgläsern ergibt sich eine Folge, wie in (2) dargestellt. Die genannten Konzentrationen entsprechen den Anfangskonzentrationen und sind in aufgelistet.

$$[Fe^{3+}_{(aq)}]_{n+1} = \frac{V_n}{V_{n+1}} * [Fe^{3+}_{(aq)}]_n = \frac{10}{25} * [Fe^{3+}_{(aq)}]_n = 0.4 * [Fe^{3+}_{(aq)}]_n$$
(2)

Die Gleichgewichtskonzentrationen lassen sich wie in (3) und (4) angeführt berechnen. $[[Fe(OH_2)_5SCN]^{2+}]_{eq}$. wurde mit dem Vis Photometer bestimmt.

$$[Fe^{3+}_{(aq)}]_{eq.} = [Fe^{3+}_{(aq)}]_0 - [[Fe(OH_2)_5SCN]^{2+}]_{eq.}$$
 (3)

$$[SCN^{-}_{(aq)}]_{eq.} = [SCN^{-}_{(aq)}]_{0} - [[Fe(OH_{2})_{5}SCN]^{2+}]_{eq.}$$
 (4)

Durch Einsetzen der Gleichgewichtskonzentration in (1) errechnet sich die gesuchte Komplexbildungskonstante. Die theoretischen Konzentrationen von $[\text{Fe}(\text{OH}_2)_5\text{SCN}]^{2+}$ lassen sich ausgehend von der gemessenen Extinktion, dem bekannten molaren Extinktionskoefizienten $\varepsilon_{\lambda_{max}} =$ $4250\,\text{L}\,\text{mol}^{-1}\,\text{cm}^{-1}$ und der Schichtdicke $d=1.6\,\text{cm}$ mit dem Lamber-Beer'schen Gesetz berechnen:

$$[[Fe(OH_2)_5SCN]^{2+}]_{theoret.,eq.} = \frac{E_{\lambda_{max}}}{\varepsilon_{\lambda_{max}} * d}$$
(5)

⁴Vollpipette

⁵Probelösung wurde mit einem 10 mL Messzylinder überführt; es wurde darauf geachtet, eine saubere, trockene Küvette zu verwenden, um ungewollte Änderungen der Konzentrationen zu verhindern

 $^{^6}$ zuvor wurde eine Hintergrundkorrektur der Grundabsorption von $\mathrm{H}_2\mathrm{O}$ - Lösungsmittel - durchgeführt

2.4 Messergebnisse und Literaturwerte

In Tabelle 3 sind alle Messwerte angeführt, die im Rahmen der Versuchsdurchführung wie in 2.2 beschrieben, gemessen wurden. Tabelle 2 enthält die Konzentrationen der Verdünnungsreihe.

Tabelle 2: Ausgangs- und Anfangskonzentrationen

Nr.	V_1 in ml	$[SCN^{-}_{(aq)}]$ in M	$[\mathrm{Fe}^+_{(\mathrm{aq})}]$ in M	V_2 in ml	$[SCN^{-}_{(aq)}]_0$ in M	$[\mathrm{Fe}^{+}_{(\mathrm{aq})}]_{0}$ in M
1	10	0.002	0.2	20	0.001	0.1
2	10	0.002	0.08	20	0.001	0.04
3	10	0.002	0.03	20	0.001	0.02
4	10	0.002	0.01	20	0.001	0.006
5	10	0.002	0.005	20	0.001	0.003
6	10	0.002	0.002	20	0.001	0.001

Tabelle 3: Messergebnisse und Komplexbildungskonstanten

Nr.	$[\mathrm{Fe}^+]_{eq.}$ in M	$[SCN^{-}]_{eq}$ in M	[[Fe(OH ₂) ₅ SCN] ²⁺] _{eq.} in M β	$E_{\lambda_{max}}$	$[[Fe(OH_2)_5SCN]^{2+}]_{th.,eq.}$ in M
1	1×10^{-4}				
2	1×10^{-4}				
3	1×10^{-4}				
4	1×10^{-4}				
5	1×10^{-4}				
6	1×10^{-4}				

3 Ergebnisse und Diskussion

 $\frac{1}{2}$

3

Re	eaktionsverzeichnis
	Reaktion Rgl. 1 2
\mathbf{Li}^{\cdot}	teraturverzeichnis
[1]	Wolfgang Viertl et al. $Versuchsvorschriften\ PR\ Allgemeine\ Chemie$ - $Universit \"{a}t\ Innsbruck$. 2019.
[2]	Peter Atkins, Tina Overton, Jonathan Rourke, Mark Weller und Fraser Armstrong. <i>Inorganic Chemistry</i> . 6th edition. Oxford: Oxford University Press, 2014 (siehe S. 2).
[3]	Georg Schwedt. $Taschenatlas\ der\ Analytik.$ 3. Auflage. Weinheim: Wiley-VCH Verlag GmbH & Co., 2007 (siehe S. 2).
Al	obildungsverzeichnis
Ta	bellenverzeichnis

2

4