

MICCAI 2022 ~ Poster To95, Session 6 (Tuesday PM)

Leveraging Labeling Representations in Uncertainty-based Semi-supervised Segmentation

"Adding <u>Anatomically-aware</u> Representation for <u>Uncertainty Estimation</u>"

Sukesh Adiga V, Jose Dolz and Hervé Lombaert ETS Montréal

September 20, 2022

Introduction – Uncertainty in Semi-Supervision

• Context:

- o Predictions from unlabeled data can be uncertain
- Uncertainty estimation is costly with multiple inferences

Labeled Data

• Idea:

 Estimate uncertainty with a single inference that leverages an anatomically-aware representations

• How:

 Exploit anatomical information from available masks to estimate uncertainty

Unlabeled Data

Context: Uncertainty-aware methods

- Uncertainty estimation
 - Monte-Carlo Dropout (MCDO)
 - Ensembling

- UAMT Yu et al., MICCAI'19 DUMT- Wang et al., MICCAI'20 URPC Luo et al., MICCAI'21

- Uncertainty is captured primarily on boundaries
- Need high computation (multiple inferences)
- Anatomically-aware representation to estimate uncertainty in a single inference

Labeling Representations in Semi-Supervised Segmentation

Results on LA dataset

MICCAI2022 Singapore

- Dataset: 2018 Atrial Segmentation Challenge
- Our method improves performance by up to 1.5% Dice score and 2.5mm Hausdorff
- Our uncertainty estimate needs a single inference
- Our representation improves segmentation in uncertain regions

Methods	#K	N/M	DSC (%)	HD (mm)
Upper bound	-	80/0	91.23 ± 0.44	6.08 ± 1.84
Lower bound	-	8/0	76.07 ± 5.02	28.75 ± 0.72
Lower bound	-	16/0	81.46 ± 2.96	23.61 ± 4.94
MT Tarvainen et al (2017)	-	8/72	78.22 ± 6.89	16.74 ± 4.80
SASSnet Li et al (2020a)	-	8/72	83.70 ± 1.48	16.90 ± 1.35
DTC Luo et al (2021a)	-	8/72	83.10 ± 0.26	12.62 ± 1.44
UAMT Yu et al (2019)	8	8/72	85.09 ± 1.42	18.34 ± 2.80
URPC Luo et al (2021b)	1	8/72	84.47 ± 0.31	17.11 ± 0.60
Ours	1	8/72	$\textbf{86.58} \pm \textbf{1.03}$	$\textbf{11.82}\pm\textbf{1.42}$
MT Tarvainen et al (2017)	-	16/64	86.06 ± 0.81	11.63 ± 3.40
SASSnet Li et al (2020a)	-	16/64	87.81 ± 1.45	10.18 ± 0.55
DTC Luo et al (2021a)	-	16/64	87.35 ± 1.26	10.25 ± 2.49
UAMT Yu et al (2019)	8	16/64	87.78 ± 1.03	11.10 ± 1.91
URPC Luo et al (2021b)	1	16/64	88.58 ± 0.10	13.10 ± 0.60
Ours	1	16/64	88.60 ± 0.82	$\textbf{7.61}\pm\textbf{0.78}$

DSC: 97.06, HD: 4.68

(a) SASSnet

20%

(d) URPC

(e) Ours

Take-home message

- <u>Proposal</u>: Anatomically-aware uncertainty estimate to guide segmentation models
 - labeling representation to approximate new pixel-wise uncertainty maps
 - needs a single inference, reducing computation complexity

• Results:

- Our labeling representation improves the segmentation performance by up to 1.5%
 Dice score and 2.5mm Hausdorff Distance
- improves segmentation in uncertainty regions

MICCAI 2022 ~ Poster Tog5, Session 6

Leveraging Labeling Representations in Uncertainty-based Semi-supervised Segmentation

"Adding <u>Anatomically-aware</u> Representation for <u>Uncertainty Estimation</u>"

Sukesh Adiga V, Jose Dolz and Hervé Lombaert ETS Montréal

Fonds de recherche Nature et technologies

