```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.linear model import LinearRegression
In [2]: data = pd.read csv('bmwcarprices.csv')
         data
Out[2]:
             Mileage Age(yrs) Sell Price($)
          0
               69000
                            6
                                     18000
               35000
                            3
                                     34000
          1
          2
               57000
                            5
                                     26100
                            2
          3
               22500
                                     40000
                            4
          4
               46000
                                     31500
          5
               59000
                            5
                                     26750
               52000
                            5
                                     32000
          6
          7
               72000
                            6
                                     19300
          8
               91000
                            8
                                     12000
          9
               67000
                            6
                                     22000
         10
               83000
                            7
                                     18700
         11
               79000
                                     19500
         12
                            5
               59000
                                     26000
         13
               58780
                                     27500
                            7
         14
               82450
                                     19400
         15
               25400
                            3
                                     35000
         16
                            2
                                     35500
               28000
         17
                            5
               69000
                                     19700
                            8
         18
               87600
                                     12800
                            5
         19
               52000
                                     28200
```

Cleaning and Preprocessing

Checking if there is any duplicate or empty data cells

```
In [3]: data.duplicated()
```

```
Out[3]: 0
               False
         1
               False
         2
               False
         3
               False
         4
               False
         5
               False
         6
               False
         7
               False
         8
               False
         9
               False
         10
               False
         11
               False
         12
               False
         13
               False
               False
         14
         15
               False
         16
               False
         17
               False
         18
               False
         19
               False
         dtype: bool
In [4]: data.isnull()
```

Out[4]:		Mileage	Age(yrs)	Sell Price(\$)
	0	False	False	False
	1	False	False	False
	2	False	False	False
	3	False	False	False
	4	False	False	False
	5	False	False	False
	6	False	False	False
	7	False	False	False
	8	False	False	False
	9	False	False	False
	10	False	False	False
	11	False	False	False
	12	False	False	False
	13	False	False	False
	14	False	False	False
	15	False	False	False
	16	False	False	False
	17	False	False	False
	18	False	False	False
	19	False	False	False

Analyzing data

```
In [5]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 20 entries, 0 to 19
      Data columns (total 3 columns):
                           Non-Null Count Dtype
           Column
       0
           Mileage
                           20 non-null
                                           int64
       1
           Age(yrs)
                           20 non-null
                                           int64
           Sell Price($) 20 non-null
                                           int64
      dtypes: int64(3)
      memory usage: 608.0 bytes
In [6]: data.describe()
```

Out[6]:		Mileage	Age(yrs)	Sell Price(\$)			
	count	20.000000	20.000000	20.000000			
	mean	59736.500000	5.150000	25197.500000			
	std	20595.441825	1.785173	7834.479713			
	min	22500.000000	2.000000	12000.000000			
	25%	50500.000000	4.000000	19375.000000			
	50%	59000.000000	5.000000	26050.000000			
	75%	73750.000000	6.250000	31625.000000			
	max	91000.000000	8.000000	40000.000000			
In [7]:	<pre>data['Sell Price(\$)'].mean()</pre>						
Out[7]:	25197.5						
In [8]:	data.mean()						
Out[8]:							
	Age(yrs) 5.15						
	Sell Price(\$) 25197.50 dtype: float64						
In [9]:	<pre>txt = "Oldest BMW on sell is {} years old and newest one is {} years old" txt.format(data['Age(yrs)'].max(), data['Age(yrs)'].min())</pre>						
Out[9]:	'Oldest BMW on sell is 8 years old and newest one is 2 years old'						
	Visua	alizing the o	data				
Tn [10]:	nl+ c	catter(data['	MilenceliM	data['Sell			

```
In [10]: plt.scatter(data['Mileage'], data['Sell Price($)'])
Out[10]: <matplotlib.collections.PathCollection at 0x206a3322a90>
```


Machine Learning

Using Linear Regression

```
In [11]: model = LinearRegression()
```

Splitting the data into X and y

```
In [24]: X = data.drop(['Sell Price($)'], axis=1)
y = data['Sell Price($)']
X
```

Out[24]:		Mileage	Age(yrs)
	0	69000	6
	1	35000	3
	2	57000	5
	3	22500	2
	4	46000	4
	5	59000	5
	6	52000	5
	7	72000	6
	8	91000	8
	9	67000	6
	10	83000	7
	11	79000	7
	12	59000	5
	13	58780	4
	14	82450	7
	15	25400	3
	16	28000	2
	17	69000	5
	18	87600	8
	19	52000	5

Splitting the data into Training and Testing sets

```
In [13]: from sklearn.model_selection import train_test_split
In [14]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

Training the model

Predicting using Testing data set

```
In [16]: predict = model.predict(X test)
In [17]: predict.astype(int)
Out[17]: array([27954, 37986, 38414, 16123])
In [18]: y_test
Out[18]: 6
               32000
         16
               35500
         15
               35000
         14
               19400
         Name: Sell Price($), dtype: int64
         Displaying Predicted and Actual value in a DataFrame
In [19]: value_data = {
             "Actual values" : y_test,
             "Predicted Values" : predict.astype(int)
         resultdf = pd.DataFrame(value data)
         resultdf
Out[19]:
             Actual values Predicted Values
                   32000
                                  27954
          6
         16
                   35500
                                  37986
```

 15
 35000
 38414

 14
 19400
 16123

In [20]: model.score(X_test, y_test)

Out[20]: 0.7366857366135322