- 问题 (1): 本系列问题中, 我们研究域上的可分代数.
- 问题 (1.1): 对交换环 R, 若 R 的理想降链都终止, 即对 R 的理想 $\{I_n\}_{n=1}^{\infty}$, 若 $I_1 \supset I_2 \supset I_3 \cdots$, 则存在 $N \in \mathbb{Z}_{\geq 0}$, 使得 $I_n = I_N$ 对所有 $n \geq N$ 成立, 则我们称 R 是一个 Artinian 环.请按照下列步骤, 证明 Artinian 环的结构定理:
 - (1) <u>请证明</u>: R 只有有限多个极大理想.(**提示**: 若 $\{\mathfrak{m}_n\}_{n=1}^{\infty}$, 则 $\mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots$ 是理想降链.)

 - (3) <u>请证明</u>: 存在环同构 $R \cong \prod_{i=1}^m R/\mathfrak{m}_i^n$, 其中 $\mathfrak{m}_1, \ldots, \mathfrak{m}_m$ 是 R 的全部极大理想, 而 $n \in \mathbb{Z}_{>1}$.
 - (4) <u>请证明</u>: R 是 Noetherian.(**提示**: 由 (3) 只需证明 R/\mathfrak{m}_i^n 是 Noetherian 的, 即不妨设 R 是只有极大理想 \mathfrak{m} 的局部环. 若 R 不是 Noetherian 的, 由 Artinian 性, 存在极小的理想 I, 使得 I 不是有限生成的. 此时若 $\mathfrak{m}I = I$, 则 $0 = \mathfrak{m}^n I = I$, 矛盾. 故 $\mathfrak{m}I \subsetneq I$, 进而 $\mathfrak{m}I$ 是有限生成的. 此时, 将 $I/\mathfrak{m}I$ 看作 R/\mathfrak{m} -线性空间, 由非有限生成,则 $I/\mathfrak{m}I$ 一定是无穷维的. 记 $\{e_n\}_{n=1}^\infty$ 是 $I/\mathfrak{m}I$ 的线性无关组, 考虑 e_2, e_3, \ldots 生成的子空间 W, 这意味着存在理想 J, 使得 $\mathfrak{m}I \subset J \subsetneq I$, 且 $J/\mathfrak{m}I$ 是无穷维的, 进而 J 不是有限生成的,与 I 的极小性矛盾.)
 - (5) <u>请证明</u>: 对 R 的极大理想 \mathfrak{m} 和 $n \in \mathbb{Z}_{\geq 1}$, 当 n 足够大时, 有 $R_{\mathfrak{m}} = R/\mathfrak{m}^{n}$ (你可以用到如下事实: $(R/\mathfrak{m}^{n}) = (R/\mathfrak{m}^{n})_{\mathfrak{m}} = R_{\mathfrak{m}}/\mathfrak{m}^{n}R_{\mathfrak{m}}$), 进而命题 (3) 告诉我们 $R = \prod_{\mathfrak{m} \in \mathbb{R}_{K} \setminus \mathbb{T}_{\mathbb{Z}_{0}}} R_{\mathfrak{m}}$.(提示: 利用 Nakayama 引理.)
- 问题 (1.2): 对域上的有限维 K-代数 A,请证明 下列条件等价:
 - (1) $A \otimes_K K^{alg}$ 是既约的, 即 $nil(A \otimes_K K^{alg}) = 0$.
 - (2) $A \otimes_K K^{alg} = K^{alg} \times K^{alg} \times \cdots \times K^{alg}$.
 - (3) 存在 K 的有限可分扩张 $L_1, ..., L_n$, 使得 $A = \prod_{i=1}^n L_i$.

提示: 由 $\dim_K(A) < \infty$, 此时 A 是 Artinian 的, 因而可以利用 Artinian 环的结构定理.

问题 (2): 本系列问题中, 我们将介绍 Galois 理论的一个简单的例子. 为防同学们不熟悉 Galois 扩张的概念, 这里简要介绍一些本问题中会用到的关于 Galois 扩张的

基本事实: 对域的有限扩张 L/K, 记 $G = \operatorname{Aut}_K(L)$. 对 G 的子群 H, 记 $\operatorname{Inv}(H) = \{x \in L : \sigma(x) = x$ 对所有 $\sigma \in H$ 成立 $\}$. 若 $\operatorname{Inv}(G) = K$, 则称 L/K 是一个 Galois 扩张, 此时记 $\operatorname{Gal}(L/K) = \operatorname{Aut}_K(L)$ 为 L/K 的 Galois 群. 可以证明, L/K 是 Galois 扩张当且仅当 L/K 是正规可分扩张, 当且仅当存在 K 上的多项式 f(X), 使得 $f(X) = \prod_{i=1}^{n} (X - \alpha_i)$, 其中 $\alpha_i \in L$ 且 $L = K(\alpha_1, \ldots, \alpha_n)$. 当 L/K 是 Galois 扩张, 则对 $G = \operatorname{Gal}(L/K)$ 的子群 H, 则 $H \mapsto \operatorname{Inv}(H)$ 给出了 G 的子群与 L/K 的中间域的 1-1 对应, 其逆映射为 $E \mapsto \operatorname{Gal}(L/E)$, 且满足 $[L : E] = |\operatorname{Gal}(L/E)|$.

问题 (2.1): 对域扩张 L/K, 若 E_1/K 和 E_2/K 是 Galois 子扩张,<u>请证明</u>: E_1E_2/K 也是 Galois 扩张,且 $Gal(E_1E_2/K) \to Gal(E_1/K) \times Gal(E_2/K)$, $\sigma \mapsto (\sigma|_{E_1}, \sigma|_{E_2})$ 是群的嵌入. 问题 (2.2): 从这一问开始, 我们考虑 $\mathbb Q$ 的扩域 $K = \mathbb Q(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_n})$, 其中 p_1, \dots, p_n 是互不相同的素数,<u>请证明</u>: $K/\mathbb Q$ 是 Galois 扩张,且存在 $0 \le r \le n$,使得 $Gal(K/\mathbb Q) \cong (\mathbb Z/2\mathbb Z)^r$.

问题 (2.3): 对 $(m_1, \ldots, m_n) \in \{0, 1\}^n$,请证明: $\mathbb{Q}(\sqrt{p_1^{m_1} p_2^{m_2} \ldots p_n^{m_n}})$ 是两两不同的域扩张,即 K/\mathbb{Q} 存在至少 $2^n - 1$ 个不同的 2 次子扩张.

问题 (2.4):<u>请证明</u>: $Gal(K/\mathbb{Q}) = (\mathbb{Z}/2\mathbb{Z})^n$, 并具体指出其中的每个元素是如何在 K 上作用的.

问题 (2.5):请证明: $\sqrt{p_1} + \sqrt{p_2} + \cdots + \sqrt{p_n}$ 不是整数.

问题 (3): 本系列问题中, 我们研究 Dedekind 整环与域扩张间的关联.

问题 (3.1):请证明: 若 R 是 Dedekind 整环,则 R 是 Noetherian 的,整闭的,且 $\dim(R) = 1$.

问题 (3.2): 对交换环 R, 若 R 是局部环, 即 R 只有唯一极大理想 \mathfrak{m} , <u>请证明</u>: 对 $r \in \mathfrak{m}$, 则 1 + r 是 R 中的可逆元.

问题 (3.3): <u>请证明:</u> 若 M 是有限生成 R-模, 且 $M = \mathfrak{m}M$, 其中 $\mathfrak{m}M$ 是 rm 生成的子模, 其中 $r \in \mathfrak{m}, m \in M$, 则 M = 0.

提示: 利用 Nakayama 引理.

问题 (3.4):请根据以下步骤证明, 若 R 是局部整环, \mathfrak{m} 是唯一极大理想, 满足 R 是 Noetherian 的, 整闭的, $\dim(R) = 1$, 则 R 是离散赋值环.

- (1) $\mathfrak{m} \neq \mathfrak{m}^2$.
- (2) 取 $\pi \in \mathfrak{m} \mathfrak{m}^2$, 则任取 $x \in \mathfrak{m}$, 存在 n 使得 $x^n \in \pi R$.(提示: 否则, 考虑乘性子集 $S = \{1, x, x^2, ...\}$ 以及局部化 $S^{-1}R$ 中包含 $\pi S^{-1}R$ 的极大理想)
- (3) 存在 $n \in \mathbb{Z}_{>0}$, 使得 $\mathfrak{m}^n \subset \pi R$.(提示: 利用 \mathfrak{m} 是有限生成的)
- (4) 取 n, 使得 $\mathfrak{m}^n \subset \pi R$, 且 $\mathfrak{m}^{n-1} \not\subset \pi R$. 此时, 取 $t \in \mathfrak{m}^{n-1} \pi R$, 则 $\frac{t}{\pi}\mathfrak{m}$ 是 R 的理想.(提示: 注意到 $t\mathfrak{m} \subset \mathfrak{m}^n \subset \pi R$)

- (5) 在 (4) 的条件下, 若 n > 1, 证明 $\frac{t}{\pi} \mathbf{m} \subset \mathbf{m}$, 进而 $\frac{t}{\pi} \not\equiv R$ 上的整元, 故 $\frac{t}{\pi} \in R$, 即 $t \in \pi R$ 矛盾.(提示: 若 $\frac{t}{\pi} \mathbf{m} \not\subset \mathbf{m}$, 则 $\frac{t}{\pi} \mathbf{m} = R$)
- (6) 由 (4),(5), 则 $\mathfrak{m} = \pi R$ 是主理想. 进而 R 是离散赋值环.(**提示**: 此时 π 是 R 的唯一素元, 只需证明 R 是唯一分解整环即可)

问题 (3.5): 对整环 R,请证明 下列条件等价:

- (1) R 是 Dedekind 整环.
- (2) R 是 Noetherian, 整闭, $\dim(R) = 1$ 的环.

在下面的问题中, 你可以用到如下事实: 若 L/K 是可分扩张,A 是 K 的子环, $K = \operatorname{Frac}(A)$, 且 A 是 Dedekind 环. 记 B 是 A 在 L 中的整闭包, 则 B 是有限生成 A-代数.(该事实的证明涉及较深入的线性代数, 故而此处各位同学可以直接使用)

问题 (3.6): 对 Dedekind 整环 A, 记 $K = \operatorname{Frac}(A)$, 若 L/K 是有限可分扩张, 记 B 是 A 在 L 中的整闭包, <u>请证明</u>: B 也是 Dedekind 整环. 特别地, 我们称 $\mathbb Q$ 的有限扩张 K 是一个数域, 则数域 K 中的所有代数整数构成一个 Dedekind 整环 $\mathcal O_K$.

问题 (4): 本系列问题中, 我们研究 ℚ 的二次扩张.

问题 (4.1):请证明: 若 K/\mathbb{Q} 是二次扩张,则 $K = \mathbb{Q}(\sqrt{d})$,其中 d 是无平方因子的整数. 问题 (4.2): 对 $K = \mathbb{Q}(\sqrt{d})$,其中 d 是无平方因子的整数,记 \mathcal{O}_K 是 \mathbb{Z} 在 K 中的整闭包,请证明:

$$\mathcal{O}_K = \begin{cases} \mathbb{Z} \left[\sqrt{d} \right] & d \not\equiv 1 \mod 4 \\ \mathbb{Z} \left[\frac{1+\sqrt{d}}{2} \right] & d \equiv 1 \mod 4 \end{cases}$$

特别地, 此时 \mathcal{O}_K 是秩为 2 的自由 \mathbb{Z} -模.

问题 (4.3):请按照以下步骤 求出 $p\mathcal{O}_K$ 如何分解为 \mathcal{O}_K 中素理想的乘积.

- $(1) |\mathcal{O}_K/p\mathcal{O}_K| = p^2.$
- (2) \mathfrak{p} 出现在 $p\mathcal{O}_K$ 的素理想分解中当且仅当 $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, 此时 $\mathcal{O}_K/\mathfrak{p}$ 是有限域 \mathbb{F}_p 的有限扩张.

在下面你可以直接用到如下事实: 若 \mathfrak{p} 是 \mathcal{O}_K 的素理想, 则 $\mathfrak{p}^k/\mathfrak{p}^{k+1}$ 是维数 1 的 $\mathcal{O}_K/\mathfrak{p}$ -线性空间.(该命题的证明要么涉及相对复杂的初等技巧, 要么需要引入模的局部化的概念, 故而此处略去)

- (3) 若 \mathfrak{p} 是 \mathcal{O}_K 的素理想, 则 $[\mathcal{O}_K:\mathfrak{p}^n]=[\mathcal{O}_K:\mathfrak{p}]^n$.
- (4) 若 $p\mathcal{O}_K = \mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\dots\mathfrak{p}_g^{e_g}$, 记有限域 $\mathcal{O}_K/\mathfrak{p}_k$ 的元素个数为 p^{f_k} , 则 $\sum_{k=1}^g e_k f_k = 2$ (提示: 利用中国剩余定理).

问题 (4.4): 固定 $K = \mathbb{Q}(\sqrt{3}), \mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$,请证明 下列事实:

- (1) 对 $x + y\sqrt{3} \in \mathcal{O}_K$, 记 $N(x + y\sqrt{3}) = |x^2 3y^2|$, 则 N 是乘性的. 即对 $\alpha, \beta \in \mathcal{O}_K$, 有 $N(\alpha\beta) = N(\alpha)N(\beta)$. 进一步地, $u \in \mathcal{O}_K$ 是单位当且仅当 N(u) = 1.
- (2) \mathcal{O}_K 关于 N 构成一个欧几里得整环, 进而 \mathcal{O}_K 是主理想整环.
- (3) 若 $(x+y\sqrt{3})$ 是 \mathcal{O}_K 的非零素理想, 则 $(x-y\sqrt{3})$ 也是 \mathcal{O}_K 的非零素理想.
- (4) 若 $(x + y\sqrt{3})$ 是 \mathcal{O}_K 的素理想,且 $x, y \neq 0$,则 $|x^2 3y^2| = p^n$,其中 p 是素数,且 $(x + y\sqrt{3})$ 和 $(x y\sqrt{3})$ 都出现 $p\mathcal{O}_K$ 的素理想分解中.
- (5) 当 p = 2 或 3, 则 $p\mathcal{O}_K = \mathfrak{p}^2$, 其中 \mathfrak{p} 是 \mathcal{O}_K 的素理想.(提示: $\frac{1+\sqrt{3}}{1-\sqrt{3}}$ 是 \mathcal{O}_K 中的单位)
- (6) 当 $p \neq 2, 3$, 若素理想 $\mathfrak{p} = (x + y\sqrt{3})$ 出现在 $p\mathcal{O}_K$ 的分解中, 则要么 $\mathfrak{p} = p\mathcal{O}_K$, 要么 $(x+y\sqrt{3})$ 和 $(x-y\sqrt{3})$ 是不同的素理想. 进而 $p\mathcal{O}_K$ 要么是 \mathcal{O}_K 中的素理想, 要么分解为 \mathcal{O}_K 中两个互不相同的素理想的乘积.
- (7) 在 (6) 中, 若 $(x+y\sqrt{3}) = p\mathcal{O}_K$, 则 $N(x+y\sqrt{3}) = p^2$. 若 $(x+y\sqrt{3})(x-y\sqrt{3}) = p\mathcal{O}_K$, 则 $N(x+y\sqrt{3}) = p$.
- (8) 对素数 p, 当 p > 3, 则丢番图方程 $X^2 3Y^2 = \pm p$ 存在整数解当且仅当 p 在 \mathcal{O}_K 中分解为两个互不相同的素理想的乘积.

问题 (4.5): 同理 (4.4),<u>请证明</u>: 对素数 p, 当 p > 2, 则丢番图方程 $X^2 + 2Y^2 = p$ 存在整数解当且仅当 p 在 $\mathbb{Z}\left[\sqrt{-2}\right]$ 中分解为两个互不相同的素理想的乘积.