

Neuronale Netze in der Softwaretechnik und ihre aktuell bekannten Grenzen

Robin Schramm, Konstantin Rosenberg, Ravell Heerdegen Hochschule Reutlingen, MKI WS 18/19, SAT

Betreuer Prof. Dr. Christian Kücherer

Einleitung (Ravell H.)

Wie können neuronale Netze in der Softwaretechnik eingesetzt werden?

Wo liegen die aktuellen Grenzen?

Gliederung (Konstantin R.)

- 1. Neuronale Netze
- 2. Mustererkennung
- 3. Kosten- und Aufwandsschätzung
- 4. Softwarequalität
- 5. Fazit
- 6. Literaturverzeichnis

Neuronale Netze (Konstantin R.

- Lösung für komplexe Probleme
- Bestandteile:
 - Neuronen (Neurons)
 - Layer
 - Gewichte (Weights)
 - Aktivierungsfunktion

[36]

Neuronale Netze(Konstantin R.)

Abbildung 1: Struktur neuronales Netz

- Allgemein
- Convolutional neural networks (CNNs)
- Spracherkennung
- Gefühlserkennung

Allgemein

Difference between Supervised Learning & Unsupervised Learning

Supervised Learning	Unsupervised Learning
Input data is labelled	Input data is unlabeled
Uses training dataset	Uses just input dataset
Used for prediction	Used for analysis
Classification and regression	Clustering, density estimation and dimensionality reduction

Abbildung 2: Vergleich learning Modelle PR

Convolutional neural networks

[3], [7]

Convolutional neural networks

Abbildung 3: Beispielentwurf eines CNN

Spracherkennung [1]

Hidden Markov Model

[2], [9], [10]

Spracherkennung und convolutional neural networks

Zwei Beispiele

[3], [8]

Spracherkennung und residual neural networks

Gefühlserkennung

[7], [12], [13], [14]

Gefühlserkennung

Abbildung 4: Kulturell unabhängige Gesichtsausdrücke

Gefühlserkennung und convolutional

neural networks

Zwei Beispiele

[7], [13]

- Einleitung
- Stand der Technik
- Leistungsbeurteilung
- Vergleich

Einleitung

(Robin S.)

Software Projekt Management (SPM)

Projektkosten Management

Kosten- und Aufwandsschätzung

[15][16][17]

Stand der Technik

- 1. Expertensysteme
- 2. Lineare Systeme
- 3. Nonlineare Modelle
- 4. Soft-Computing

COCOMO

- Constructive Cost Model
- Algorithmisches Modell

COCOMO

Software	Size	Sizing Method Source Lines of Code 🗘					
	SLOC	% Design Modified	% Code Modified	% Integration Required	Assessment and Assimilation (0% - 8%)	Software Understanding (0% - 50%)	Unfamiliarity (0-1)
New							
Reused		0	0				
Modified							
Software	Size	Sizin	g Method	Function	Points	0	
Unadjust	DESCRIPTION OF THE PROPERTY OF	Trans.				123	
Functi		F 150 E 200	uage Ja	201271			

COCOMO

(Robin S.)

Contware Could Directs						
Precedentedness	Nominal 🗘	Architecture / Risk Resolution	Nominal 🗘	Process Maturity	Nominal	
Development Flexibility	Nominal 🗘	Team Cohesion	Nominal 🗘			
Software Cost Drivers						
Product		Personnel		Platform		
Required Software Reliability	Nominal 🗘	Analyst Capability	Nominal 🗘	Time Constraint	Nominal 🗘	
Data Base Size	Nominal 🗘	Programmer Capability	Nominal 🗘	Storage Constraint	Nominal 🗘	
Product Complexity	Nominal 🗘	Personnel Continuity	Nominal 🗘	Platform Volatility	Nominal 💲	
Developed for Reusability	Nominal 🗘	Application Experience	Nominal	Dunings		
Documentation Match to Lifecycle Needs Nominal 🗘		Platform Experience Nominal 🗘		Project Use of Software Tools Nominal ❖		
		Language and Toolset Experience	Nominal 🗘			
				Multisite Development	Nominal 🗘	
				Required Development Schedule	Nominal 🗘	

Software Scale Drivers

COCOMO

(Robin S.)

Results

Software Development (Elaboration and Construction)

Effort = 37.0 Person-months Schedule = 12.1 Months Cost = \$110960

Total Equivalent Size = 10000 SLOC

Acquisition Phase Distribution

Phase		Schedule (Months)		Cost (Dollars)
Inception	2.2	1.5	1.5	\$6658
Elaboration	8.9	4.5	2.0	\$26631
Construction	28.1	7.6	3.7	\$84330
Transition	4.4	1.5	2.9	\$13315

Abbildung 7: COCOMO

Soft-Computing

(Robin S.)

• Fuzzy-Logik, Evolutionäre Algorithmen, NNs

Pro:

Con:

+ Leicht generalisierbar

- Abhängig von Traingingsdaten

+ Flexibel

[25][26]

Leistungsbeurteilung

(Robin S.)

- Qualitätsmessung
- Mean Relative Error (MRE)
 - Gutes Ergebnis wenn Fehlerwert < 25%
- NASA Projekte zum Testen von Algorithmen

[27]

Vergleich

(Robin S.)

- 1. Abrahamsson et al.
 - 1 Mathematisches Modell, 2 NNs
 - Ein NN schnitt besser ab als mathematisches, eins schlechter [24]

2. Khalifelu

 NN und Support Vector Machine liefern bessere Ergebnisse und sind performanter [10]

3. Gharehchopogh

11 Projekte, 90% lieferte NN bessere Ergebnisse als COCOMO [24][28]

- Einleitung
- Automatisiertes Testen
- Evaluation von Softwarequalität
- Vorhersage von Softwarequalität

Einleitung

- Softwarequalität -> Erfüllung von Anforderungen eines
 Softwareprodukts nach ISO/<u>IEC</u> 25000
- Methoden zur Qualitätssicherung
 - Testmethoden
 - Testwerkzeug
 - Schulungen von Mitarbeitern

• ... [29]

Automatisiertes Testen

- Absicherung eines bestehenden Systems durch funktionale Softwaretests
 - Erzeugen von Testdaten
 - Erzeugen von Erwartungswerten
 - Training des NN mit Testdaten und Erwartungswerten
 - Ableiten von Testfällen

[32]

[32]

Automatisiertes Testen

Pro	Contra
Spart Arbeit	Begrenzt einsetzbar
Spart Zeit	Initialer Aufwand

Software Metriken

- Softwareeigenschaften werden Zahlen zugeordnet
- Bsp. Anzahl Verzweigungen, Anzahl der Klassen...
- Dient der qualitativen Einschätzung eines Softwareprodukts

Evaluation von Softwarequalität

- Motivation:
 - Frühzeitiges Erkennen von Mängeln
 - Bessere Planung
- Input: Software Metriken

[34]

Evaluation von Softwarequalität

- Evaluation der Methode anhand alter Projekte
- Ergebnisse:
 - Genaue Einschätzung
 - Unzureichende Ergebnisse → Schlechte Ergebnisse

Vorhersage von Softwarequalität

- Motivation:
 - Bessere Planung
 - Frühes Erkennen von Defiziten
 - Erkennen von Zusammenhängen in der Entwicklung
- Input: Softwaremetriken

[35]

Vorhersage von Softwarequalität

- Einsatz von Fuzzy NN's
- Software Metriken dienen als Input
- Ergebnisse:
 - Genaue Vorhersage
 - Zeigt Ursache und Wirkung von Entscheidungen
 - Kommt mit vielerlei Dateiformaten aus

[35]

Fazit

Literaturverzeichnis (Robin S.)

[1] Meng, J., Zhang, J., Zhao, H.: Overview of the speech recognition technology. Proceedings - 4th International Conference on Computational and Information Sciences, ICCIS 2012, pp. 199{202 (2012). https://doi.org/10.1109/ICCIS.2012.202

[2] Vydana, H.K., Vuppala, A.K.: Residual neural networks for speech recognition. 25th European Signal Processing Conference, EUSIPCO 2017 pp. 543 [547. https://doi.org/10.23919/EUSIPCO.2017.8081266

[3] Guiming, D., Xia, W., Guangyan, W., Yan, Z., Dan, L.: Speech recognition based on convolutional neural networks. 2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016 pp. 708{711. https://doi.org/10.1109/SIPROCESS.2016.7888355

[4] Maind, M.S.B., Wankar, M.P.: Research Paper on Basic of Articial Neural Network. International Journal on Recent and Innovation Trends in Computing and Communication 2(1), 96{100 (2014). https://doi.org/10.1109/Oceans-Spain.2011.6003625, http://www.ijritcc.org

[5] Tang, X.: Hybrid hidden markov model and arti cial neural network for automatic speech recognition. Proceedings of the 2009 Pacic-Asia Conference on Circuits, Communications and System, PACCS 2009, pp. 682 (685 (2009). https://doi.org/10.1109/PACCS.2009.138

[6]Khalifelu, Z.A., Gharehchopogh, F.S.: Comparison and evaluation of data mining techniques with algorithmic models in software cost estimation. Procedia Technology 1, 65{71 (2012). https://doi.org/10.1016/j.protcy.2012.02.013

[7] Jayashree, P., Melvin Jose, J., Premkumar: Machine learning in automatic speech recognition: A survey. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India) 32(4), 240(251 (2015). https://doi.org/10.1080/02564602.2015.1010611

[8] A. K. Jain, Robert P. W. Duin, J. Mao: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis And Machine Intelligence, Vol. 22, No. 1, January 2000 22(1), 4{37 (2000)

[9] Awasthi, A.: Facial Emotion Recognition Using Deep Learning. IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI) Dec. 22, 2017 1(September), 9{12 (2013). https://doi.org/10.1145/2818346.2830593

[10] Santos, R.M., Matos, L.N., Macedo, H.T., Montalvao, J.: Speech recognition in noisy environments with convolutional neural networks. Proceedings - 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015 pp. 175{179 (2016). https://doi.org/10.1109/BRACIS.2015.44

[11] Deng, L., Yu, D.: Automatic speech recognition, Springer Verlag, vol. 9 (2015). https://doi.org/10.1007/BF02747521

[12] Aracena, C., Basterrech, S., Snasel, V., Velasquez, J.: Neural Networks for Emotion Recognition Based on Eye Tracking Data. Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 pp. 2632{2637 (2016). https://doi.org/10.1109/SMC.2015.460

[13] Surace, L., Patacchiola, M., Sonmez, E.B., Spataro, W., Cangelosi, A.: Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classi ers. Proceeding ICMI 2017 Proceedings of the 19th ACM International Conference on Multimodal Interaction Pages 593-597 pp. 593 (597 (2017). https://doi.org/10.1145/3136755.3143015

[14] Huang, C.: Combining convolutional neural networks for emotion recognition. 2017 IEEE MIT Undergraduate Research Technology Conference, URTC 2017 pp. 1{4 (2018). https://doi.org/10.1109/URTC.2017.8284175

[15] Bajta, M.E., Idri, A., Ros, J.N., Fernandez-Aleman, J.L., Gea, J.M.C.D., Garca, F., Toval, A.: Software project management approaches for global software development: a systematic mapping study. Tsinghua Science and Technology 23(6), 690{714 (2018). https://doi.org/10.26599/TST.2018.9010029

[16] Matson, J.E., Barrett, B.E., Mellichamp, J.M.: Software development cost estimation using function points. IEEE Transactions on Software Engineering 20(4), 275{287 (1994). https://doi.org/10.1109/32.277575

[17] Bilgaiyan, S., Mishra, S., Das, M.: A Review of Software Cost Estimation in Agile Software Development Using Soft Computing Techniques. In: 2016 2nd International Conference on Computational Intelligence and Networks (CINE), Computational Intelligence and Networks (CINE), 2016 2nd International Conference on, cine. p. 112. IEEE. https://doi.org/10.1109/CINE.2016.27

[18] Jeery, D.R., Low, G.: Calibrating estimation tools for software development. Software Engineering Journal 5(4), 215(221 (1990). https://doi.org/10.1049/sej.1990.0024

[19] Heemstra, F.J.: Software Cost Estimation. Handbook of Software Engineering, Hong Kong Polytechnic University 34(10) (1992). https://doi.org/10.1142/97898123897010014

[20] Huang, X., Ho, D., Ren, J., Capretz, L.F.: Improving the COCOMO model using a neuro-fuzzy approach. Applied Soft Computing 7(1), 29 (40 (2007). https://doi.org/10.1016/J.ASOC.2005.06.007

[21] Huang, S.J., Lin, C.Y., Chiu, N.H.: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model. Journal of Information Science and Engineering 22(2), 297{313 (2006)

[22] Jain, R., Sharma, V.K., Hiranwal, S.: Reduce mean magnitude relative error in software cost estimation by HOD-COCOMO algorithm. In: 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). pp. 708{712. https://doi.org/10.1109/ICCICCT.2016.7988044

[23] Chen, Z., Menzies, T., Port, D., Boehm, B.: Feature subset selection can improve software cost estimation accuracy. ACM SIGSOFT Software Engineering Notes 30(4), 1 (2005). https://doi.org/10.1145/1082983.1083171

[24] Abrahamsson, P., Moser, R., Pedrycz, W., Sillitti, A., Succi, G.: Eort Prediction in Iterative Software Development Processes { Incremental Versus Global Prediction Models. In: First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007). Pp. 344{353 (2007). https://doi.org/10.1109/ESEM.2007.16

[25] Boetticher, G.D.: Using Machine Learning to Predict Project Eort: Empirical Case Studies in Data-Starved Domains. Model Based Requirements Workshop pp. 17{24 (2001). https://doi.org/10.1.1.19.111

[26] Setyawati, B.R., Sahirman, S., Creese, R.C.: Neural Networks for Cost Estimation. AACE International Transactions p. 13.1 (2002)

[27] Finnie, G.R., Wittig, G.E.: Al tools for software development eort estimation. Software Engineering: Education and Practice, 20 1996. Proceedings. International Conference pp. 346{353 (1996). https://doi.org/10.1109/SEEP.1996.534020

[28] Gharehchopogh, F.S.: Neural networks application in software cost estimation: A case study. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications. pp. 69{73 (2011). https://doi.org/10.1109/INISTA.2011.5946160

[29] Franz, K.: Handbuch zum Testen von Web- und Mobile-Apps, Springer- Verlag Berlin Heidelberg (2015). https://doi.org/10.1007/978-3-662-44028-5

[30] Antinyan, V., Derehag, J., Sandberg, A., Staron, M.: Mythical unit test coverage. IEEE Software (3), 73{79 (2018). https://doi.org/10.1109/MS.2017.3281318

[31] Committee, S.&.S.E.S., Others: IEEE Std 1061-1998-IEEE Standard for a Software Quality Metrics Methodology. IEEE Computer Society, Tech. Rep (1998)

[32] Wu, L., Liu, B., Jin, Y., Xie, X.: Using back-propagation neural networks for functional software testing. In: 2nd International Conference on Anti-counterfeiting, Security and Identi cation, ASID 2008. https://doi.org/10.1109/IWASID.2008.4688385

[33] Majma, N., Babamir, S.M.: Software test case generation & test oracle design using neural network. 22nd Iranian Conference on Electrical Engineering, ICEE 2014 pp. 1168{1173 (2014). https://doi.org/10.1109/IranianCEE.2014.6999712

[34] Pomorova, O., Hovorushchenko, T.: Arti cial neural network for software quality evaluation based on the metric analysis. Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2013 pp. 0{3 (2013). https://doi.org/10.1109/EWDTS.2013.6673193

[35] Peng, W., Yao, L., Miao, Q.: An approach of software quality prediction based on relationship analysis and prediction model. In: Proceedings of 2009 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009. https://doi.org/10.1109/ICRMS.2009.5270097

[36] Abbildung 1: Maind, M.S.B., Wankar, M.P.: Research Paper on Basic of Articial Neural Network. International Journal on Recent and Innovation Trends in Computing and Communication 2(1), 96{ 100 (2014). https://doi.org/10.1109/Oceans-Spain.2011.6003625

[37] Abbildung 2: http://kindsonthegenius.blogspot.com/2018/01/what-is-difference-between-supervised.html

[38] Abbildung 3: https://s3.amazonaws.com/cdn.ayasdi.com/wp-content/uploads/2018/06/21100605/Fig2GCNN1.png

[39] Abbildung 4: https://www.researchgate.net/figure/Human-facial-expressions-of-six-basic-Ekman-emotions_fig2_267391519

[40] Abbildung 5-7: http://csse.usc.edu/tools/cocomoii.php

Vielen Dank für Ihre Aufmerksamkeit