TRAVAIL PRATIQUE 2

IFT-2002 : Informatique théorique H 2014 (Julien Marcil)

- Travail individuel
- À remettre via Pixel, en format pdf, au plus tard le jeudi 17 avril 2014 à 23h00.
- Un travail remis en retard ne sera pas corrigé et se verra attribuer la note 0.
- Sauf indications contraires, tous les théorèmes, lemmes et résultats vus au cours peuvent être cités sans démonstration.

Question 1 (20 + 5 points)

Soit $\Sigma = \{0, 1\}.$

- (a) Soit le langage $A = \{xy \mid x, y \in \Sigma^* \text{ et } x = y\}$. Démontrez que A n'est pas un langage hors contexte.
- (b) Soit le langage $B = \{xy \mid x, y \in \Sigma^* \text{ et } |x| = |y| \text{ mais } x \neq y\}$. Démontrez que B est un langage hors contexte.

Question 2 (10 + 15 points)

Soit les machines de Turing $M=(S,\Sigma,\Gamma,S_0,S_{accepte})$ qui ont un seul état accepteur $S_{accepte}\in S$. Le mot produit par une machine M est celui qui se trouve sur son ruban lorsqu'elle atteint l'état $S_{accepte}$, donc lorsqu'elle s'arrête. Les machines M utilisent un ruban unique, s'étendant à l'infini à droite et à gauche.

(a) Trouvez une machine de Turing

$$M_3 = (\{S_0, S_1, S_{accepte}\}, \{a, \mathbf{a}\}, \{a, \mathbf{a}\}, \delta, S_0, S_{accepte})$$

qui, lorsqu'exécutée sur un ruban vide, M_3 produira un mot contenant 4 symboles a. Donnez la séquence des configurations de M_3 pour cette exécution.

(b) Quel est le plus grand nombre de symboles a que vous arrivez à produire avec une machine

$$M_4 = (\{S_0, S_1, S_2, S_{accepte}\}, \{a, \sqcup\}, \{a, \sqcup\}, \delta, S_0, S_{accepte})$$

exécutée sur un ruban vide? Exhibez votre machine de Turing M_4 et la séquence des configurations pour son exécution.

Question 3 (10 + 10 + 10 points)

Les ensembles d'entiers positifs peuvent être codés facilement pour les programmes RÉPÉTER. L'ensemble d'entiers $S = \{i_1, i_2, \dots, i_t\}$ est codé dans un registre r par la valeur :

$$p_{i_1} \times p_{i_2} \times \cdots \times p_{i_t}$$

où p_{i_j} correspond au i_j -ième nombre premier. Donnez les programmes RÉPÉTER pour les macros suivantes (vous pouvez utiliser n'importe quelles macros définies dans les diapositives du cours) :

- (a) Donnez la macro $CARD(r_1)$ qui retourne dans r_0 la cardinalité de l'ensemble codé par r_1 .
- (b) Donnez la macro $\texttt{AJOUT}(r_1, r_2)$ qui retourne dans r_0 l'ensemble codé dans r_1 auquel on ajoute l'entier rangé dans r_2 .
- (c) Donnez la macro $INTER(r_1, r_2)$ qui retourne dans r_0 l'intersection des ensembles codés par r_1 et r_2 .

Question 4 (10 + 10 points)

- (a) Soit $S_a = \{ \langle M \rangle \mid M \text{ est un AFD}^1 \text{ tel que } M \text{ accepte } w^R \text{ si } M \text{ accepte } w \}$. Montez que S_a est un langage décidable.
- (b) Soit $S_b = \{\langle M_1, M_2 \rangle \mid M_1 \text{ et } M_2 \text{ sont des AFD}^1 \text{ tels que } L(M_1) \subseteq L(M_2) \}$. Montez que S_b est un langage décidable.

^{1.} automate fini déterministe