Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №3 з дисципліни "Аналогова електроніка - 1"

Виконав:

студент групи ДК-62

Кужильний О. В.

Перевірив:

доц. Короткий \in В.

- 1. Дослідження залежності Іс(Uзв) для n-канального польового МДН транзистора 2N7000
- 1.1. Було проведно симуляцію роботи моделі польового МДН транзистора 2N7000 в режимі лінійного підвищєння напруги затвор-виток та отримано таку залежність струму стоку:

Nº	Uзв, V	I, A
1,00	0,20	0,000000
2,00	0,40	0,000000
3,00	0,60	0,000000
4,00	0,80	0,000000
5,00	1,00	0,000000
6,00	1,20	0,000000
7,00	1,40	0,000000
8,00	1,60	0,000005
9,00	1,80	0,003309
10,00	2,00	0,013050
11,00	2,20	0,028461

Для розрахунку порогової напруги оберемо струм стоку 6 мА, який протікає при напрузі на затворі 1,87 В.

Струм, що в 4 рази більший за нього, тобто, 24 мA, протікає при напрузі стоку 2,15 В.

Тоді порогова напруга буде дорівнювати:

$$U_{\pi} = 2U_{\text{3Bl}} - U_{\text{3B2}}$$

$$U_{\pi} = 2 * 1,87 - 2,15 = 1,59 \text{ B},$$

Якщо підставити отриману порогову напругу в формулу $I_c = \frac{b}{2}(U_{_{3B}}-U_{_{\Pi}})^2$, то можна отримати:

$$24 * 10^{-3} = \frac{b}{2} (2,15 - 1,59)^{2}$$
$$24 * 10^{-3} = \frac{b}{2} 0,56$$
$$b = \frac{24 * 10^{-3} * 2}{0,56} = 0,15306$$

Nº	Uзв, V	Ic, A
1,00	0,20	0,00
2,00	0,40	0,00
3,00	0,60	0,00
4,00	0,80	0,000000
5,00	1,00	0,000004
6,00	1,20	0,000016
7,00	1,40	0,000955
8,00	1,60	0,012900
9,00	1,80	0,031800
10,00	2,00	0,059500

На малюнку наведено графік отриманої залежності:

3 залежності видно, що істотний струм стоку починає протікати при напрузі $1,35\div1,4$ В.Похибку в визначенні порогової напруги може бути викликана технологічними особливостями виготовлення польових транзисторів — порогова напруга для деяких транзисторів може коливатися в межах $0,5\div5$ В.

Для експериментальних даних коефіцієнт b:

Uзв, V	Ic, A	Uп, V	b коефіцієнт
2,00000	0,059	1,20	0,155

Отримали величину одного порядку, тому модель можна вважати вірною. Відхилення можна пояснити так само: технологічні процеси у деяких транзисторів дають відхилення передавальної провідності до 5 разів.

- 3. Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000
- 3.1.Було проведено симуляцію схеми підсилювача з загальним витоком з наступними параметрами компонентів:

Використані елементи			
R1	121500,00	Om	
R2	50600,00	Om	
R3	235,00	Om	
C1	10,00	uF	
C2	10,00	uF	
2N7000			

На виході підсилювача при синусоїдальному вхідному сигналі амплітудою 20 мВ нелінійних спотворень не відбувається, що свідчить про коректний підбір робочої точки.

Таку ж схему було складено в лабораторії та досліджено при таких же вхідних сигналах. Отримали наступні результати:

3.2. Для перевірки робочої точки напругу генератора сигналу виставили рівною нулю. Отримали такі параметри робочої точки спокою:

$$U_{_{3B0}} = 1,46 \text{ B}$$

$$U_{Bc0} = 3,67 B$$

$$I_{c0} = 56,7 \text{ mA}$$

3.3. На вхід підсилювача подали сигнал, аналогічний вхідному в симуляції. На виході отримали синусоїдальний сигнал без нелінійних спотворень, обернений по фазі на 180 градусів:

Коефіцієнт підсилення за напругою визначили як відношення амплітуди вихідного сигналу до амплітуди вхідного:

$$K_U = \frac{U_{\text{вих}}}{U_{\text{вх}}} = \frac{-362\text{мB}}{21.5\text{ мB}} = -16.81$$

3.4. Для знаходження максимальної амплітуди вхідного сигналу напругу на вході підвищували до тих пір, поки на виході не з'явились нелінійні спотворення. Спотворення виглядали так:

3.5. Для експериментального визначення передавальної провідності робочу точку транзистора змістили на 0,14В шляхом включення до резистору R2 послідовно додатковий резистор на 10 кОм. Струм спокою виріс з 5,6 мА до 11 мА.

Тоді $\Delta U_{\rm 3B}$ = 0,09 B , a $\Delta I_{\rm c}$ = 5,8 мA.

$$g_m = \frac{\Delta I_c}{\Delta U_{_{3B}}} = \frac{0.0144}{0.09} = 62 \text{ MC}$$

Зі знайденої передавальної провідності можна знайти теоретичний коефіцієнт підсилення за напругою:

$$K_U = \frac{U_{\text{BHX}}}{U_{\text{BY}}} = -g_m R_3 = -62.8 * 10^{-3} * 235 = -14.76$$

Висновки

- В даній лабораторній роботі провели експериментальне дослідження поведінки польового транзистору в різних режимах роботи: відзняли статичну вихідну та передавальну характеристики, розрахували коефіцієнт b, порівняли їх з даними симуляцій. Також було складено схему підсилювача з загальним витоком і досліджено його роботу при різних вхідних параметрах. Експериментально та теоретично визначили коефіцієнт підсилення та передавальну провідність.
- В цілому, отримані результати свідчать про коректність математичних моделей роботи транзистора, але і про наявність невідповідностей у комп'ютерних моделях транзисторів.