Virtual lab 4: Resolution of Gamma Ray Spectrometer

Name: Athira Sreejith Roll no: MS18033 email: ms18033@iisermohali.ac.in Lab session: 15/11/2021

November 15, 2021

Contents

\cup	ontents									
1	1 Aim									
2	Data taken and Observations	2								
	2.1 Screenshots									
	2.2 Data Taken									
	2.3 Count vs LLD plots									
	2.4 Calculation of resolution									
	2.5 Plot of r and r_p as a function of PMT Voltages	10								
3	Result	10								

1 Aim

To Study the dependence of Energy Resolution on the Applied High Voltage and to determine the best Operating Voltage for our setup.

2 Data taken and Observations

The counts vs LLD data for different PMT voltages between 575 to 725V is collected for Cs-137 Source with time period of counts set to 5s. The gain is set to 1.0, and is kept constant throughout the experiment.

2.1 Screenshots

2.2 Data Taken

The total count vs LLD data obtained is given below.

V = 575		V = 600		V = 625		V = 650		V = 675		V = 700		V = 725	
LLD	Count												
1.5	351	1.5	252	1.5	150	1.5	50	1.5	45	1.5	152	1.5	237
1.55	243	1.55	182	1.55	113	1.55	33	1.55	32	1.55	106	1.55	167
1.6	209	1.6	151	1.6	90	1.6	30	1.6	27	1.6	85	1.6	144
1.65	187	1.65	130	1.65	78	1.65	27	1.65	24	1.65	78	1.65	130
1.7	146	1.7	106	1.7	63	1.7	20	1.7	19	1.7	59	1.7	104
1.75	183	1.75	134	1.75	75	1.75	30	1.75	28	1.75	79	1.75	133
1.8	352	1.8	279	1.8	229	1.8	168	1.8	165	1.8	230	1.8	286
1.85	1767	1.85	1709	1.85	1674	1.85	1782	1.85	1740	1.85	1688	1.85	1805
1.9	8718	1.9	9334	1.9	10410	1.9	11094	1.9	11767	1.9	10109	1.9	9976
1.95	30380	1.95	30865	1.95	35415	1.95	37463	1.95	36839	1.95	34809	1.95	32637
2	55766	2	58255	2	57940	2	63913	2	62511	2	62832	2	56649
2.05	64196	2.05	60892	2.05	60203	2.05	55863	2.05	56889	2.05	60980	2.05	64208
2.1	42892	2.1	38133	2.1	32356	2.1	24424	2.1	24874	2.1	30058	2.1	38035
2.15	17258	2.15	12855	2.15	8913	2.15	5654	2.15	5451	2.15	8911	2.15	12397
2.2	4155	2.2	2340	2.2	1376	2.2	652	2.2	633	2.2	1316	2.2	2486
2.25	583	2.25	271	2.25	125	2.25	43	2.25	39	2.25	104	2.25	256
2.3	70	2.3	31	2.3	14	2.3	5	2.3	0	2.3	11	2.3	
2.35	18	2.35	13	2.35	5	2.35	0	2.35	0	2.35	5	2.35	11
2.4	20	2.4	14	2.4	5	2.4	0	2.4	0	2.4	5	2.4	
2.45	13	2.45	10	2.45	5	2.45	0	2.45	0	2.45	5	2.45	
2.5	18	2.5	14	2.5	5	2.5	0	2.5	0	2.5	5	2.5	13

2.3 Count vs LLD plots

The average count vs LLD plots are as follows:

A Gaussian plot is obtained for each count vs LLD plot, as expected.

2.4 Calculation of resolution

The Full Width at Half Maxima (FWHM) and the maximum LLD Amplitude height, A_{mh} are obtained from the Gaussian fit to the count vs LLD plots.

Resolution
$$r = \frac{FWHM}{A_{mh}}$$

Percentage resolution $r_p = 100r\%$

Operating Voltage	Amh	FWHM	r	rp
575	2.037	0.163	0.080019637	8.001964
600	2.031	0.158	0.07779419	7.779419
625	2.023	0.154	0.076124567	7.612457
650	2.014	0.143	0.071002979	7.100298
675	2.016	0.144	0.071428571	7.142857
700	2.022	0.147	0.072700297	7.27003
725	2.031	0.157	0.077301822	7.730182

2.5 Plot of r and r_p as a function of PMT Voltages

Resolution Percentage as a function of Operating Voltage

The PMT voltage in the data set with the minimum resolution is 650V.

3 Result

The best operating voltage for this setup is obtained to be 650 V.