Metric spaces Def A metric d on a set X is a sunc. d: XxX—R satisfying : (a) symmetry dexist = d(y, x) bxy (b) positivity. d(x,y)≥0 and =0 iff x=y (c) bringle ineq. d(x,y) & d(x,y) + d(x,y) Then (X) d) is colled a metric space ex (a) (R, d(xxx)=(x-41) (b) (IR, $d(x,y) = \int_{x}^{y} e^{-t} dt l$) (c) (18m, d(x, y) = 11x-y11) = \S(n; -yi)2 b=metric (4) (RM, d(x,y) = mox |xi-yi) リズーアルの、教者し二metric (e) (R^m, d(x,y) = max |x; -yi|)

Lemma $P \subseteq \mathbb{R}^m$ is open using the Euclidean metric

It is open using the sup metric

Of let $B_{\epsilon}^{Gac}(\pi_0)$ be the Euclidean ball $B_{\epsilon}^{Sup}(\pi_0)$ be the sup ball

Note: $|\vec{x}| \in ||\vec{x}|| \leq ||\vec{x}||$

Def If X is a mebic space, ESX clasure of E: E = EVE' E=E= [O,1] = E=E'= [O,1] E = (0,1) U (2) => E'= [0,1], E = [0,1] U (2) Lemma Let X be a metric space, ESX) (a) E is closed W E= E iff E is closed (c) if ESFAF doed => ESF (Rmk: B) E % & E 60 smallest clased set) If let qe(E)c => 3 870 St. Bs(q) 1E = \$ ⇒ (E) c is open ⇒ Ē is closed 余二易证 Lemma let Exg CR be bounded above > SUPESE

(in par, if E closed then sup E = E, Be sup E = max E)

£ y y ∈ E ⇒ y ∈ Ē	
If y ∉ E ⇒ ∀ € ≥xeE st y- € <x th="" ≤y<=""><th></th></x>	
1 yet = 10 - 10 - 10	
=> B= (y) NE = P	
⇒ ye E'SÊ □	
Compactnes	
Def An open cover of E in metalic space X	
is LGas _{aces} of open subsets s.t. E C Y Ea Lindex set)	
Lindex Set.)	
斜E compact if Y open cover of E 都有 finite subcover.	
Thm Cot subsets of metric spaces are closed & bounded.	
INM LOTE SUBSELS U) MECHE SPACES WE CHOOL & DOWNERS.	
(det of bdd:	
If let KCX be cpt = 370. 1 s.t. EC Br(570)	
let pek	
unsider $\{2:d(p,q)>\frac{1}{n}\}_{n=1}^{\infty}$	
B	
by upthess, $\exists n \text{ s.t. } K \subseteq \{q: d(p,q) > n\}$	
- Bu(a) AV)/a3 - d	
$\Rightarrow B_{\pi}(Q) \cap K \setminus \{Q\} = \emptyset$	
\Rightarrow X\K open \Rightarrow K Joved	
- / / / - / - / - / - / - / - / - / - /	
Bdd Wasidor { pld4.9) < n}_=1	