

# RIYA Week 4 Presentation

Frequency Domain Analysis

Jacob Thomas Sony
IIT Bombay

## Tasks accomplished

- Performed calibration of the FFT code using a pure sinusoid function
- Attempted to improve the FFT results of the non-linear system

### FFT Calibration

#### **Acceleration signal** = Sinusoid with frequency 250 Hz and RMS value 0.1g

```
% Case 3

fs3 = 1024; % Sampling frequency
duration3 = 30; % Duration of signal
N3 = fs3 * duration3; % Number of samples
t3 = 0:1/fs3:duration3-1/fs3; % Time vector
f3 = 0.1*sqrt(2)*sin(250*2*pi*t3); % Vector respresenting 250 Hz sinusoidal signal with 0.1g RMS
```

#### DSP parameters (in seconds/ Hz appropriately)

```
DSP Parameters
"Time resolution" "0.00097656"

"Time record" "29.999"

"Sampling frequency" "1024"

"Frequency resolution" "1"

"Number of points" "1024"
```

For the previous sinusoid acceleration signal, used for calibration





#### Example 2

```
fs2 = 1024;
duration2 = 30;
N2 = fs2 * duration2;
t2 = 0:1/fs2:duration2-1/fs2;
f2 = 3*sin(25*2*pi*t2) + 0.4*sin(50*2*pi*t2 - 49*pi/180) + 5*(randn(size(t2)));
```

```
DSP Parameters
"Time resolution" "0.00097656"

"Time record" "29.999"

"Sampling frequency" "1024"

"Frequency resolution" "0.033333"

"Number of points" "30720"
```





When **NFFT** = **1024**, where is the other peak ??





## FFT analysis for Disc spring stack



### Height/Thickness ratio

$$\frac{h_1}{\tau} = \frac{h_2}{\tau} = \sqrt{2}$$

#### **Base displacement**

$$x_{base}(t) = 0.25\sin(80\pi t)$$

5-6 cycles of input displacement for one cycle of output!

## FFT analysis for Disc spring stack

#### FFT spectrum for input signal





## FFT analysis for Disc spring stack

#### FFT spectrum for output signal





Spectral leakage even after windowing! Need to investigate further

### **Future work**

- Continue working on the "spectral leakage" problem
- Study the Dynamics of the linearized system in time and frequency domains
- Study for more combinations of  $h/\tau$  ratios, especially cases with multiple solutions and are not numerically "nice".
- Study effects of damping and hysteresis due to snap-through events and other non-linearities