Exam 2

(A): 5π/2 51 51 r3 dz dr dθ

----

Problem 2

(A): (a): P= Za Cos \$

(b): p= d Sec \$

(c): (2# 5TH \$2 cost p2 2p sind dd dd

(4): The show that Fis conservative, we must show that Curl ( ) = 0;

$$\begin{array}{cccc}
(ux)(F) &= & F \times & F & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

(6): Fee that 
$$f$$
  
 $f_{x} = f_{x} = 2xy + Z^{3} \implies f = x^{2}y + Z^{3}x + g(y,Z)$   
 $f_{y} = x^{2} + 2yZ \implies f = x^{2}y + y^{2}Z + h(Z,x)$ 

= x y + 23 x +

We see that  $f_x=2xy+z^3 \Rightarrow f(1-x^2y+z^3x+9(xy_3z)$ 

$$fy = x^2 + \frac{2}{2y} 9^4 (4, 2) = x^2 + 2y 2$$

$$9 = 4^2 2 + h(2)$$

fz=3z2 x + y2 + h'(2) = 42 + 352 x of -1

(a): We see that Sisthe graph of

Z=f(x)y=1-x^2-y^2; then,

h. S= <2x,2y,17dA.

In turn

(1 \$\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{

In turn

() Finds = ( Let x² + Hy² dA

Make achange a f variables to spherical to spothalt

... = 2 Th

## Problem 5

(a)(2y,-2x)

- (b) Consider the un! t sphere with R = (xyz) ithen  $(url(\vec{F}) \cdot \hat{n} = 2xy 2yx = 0)$
- (c): Bistoke's Theorem we can set it equal to the statement of (b) and get 0.