

Faculdade Anhanguera de Taubaté – Unidade II

Curso de Ciência da Computação e Engenharias

Disciplina: *Métodos Numéricos*

Professor: *Marcello Benevides*

Aula 01 & 02 – Introdução

Ementa:

- Erros
- Equações
- Interpolação
- Integração
- Autovalores
- Equações diferenciais
- Mínimos Quadrados

Livro texto para Métodos Numéricos

E. KREYSZIG

Advanced Engineering Mathematics

Wiley

Avaliação:

- Listas de exercícios
- Provas
- Ava

Software para métodos numéricos

SCILAB

https://www.scilab.org/

https://www.avaeduc.com.br/pluginfile.php/3239 402/mod_page/content/2/Introdu%C3%A7%C3% A3o%20ao%20Scilab.pdf

CAPÍTULO I - ERROS

1) Conversão de nºs binários em decimais:

$$N = (b_m b_{m-1} \dots b_1 b_0)_2 = (b_m 2^m + b_{m-1} 2^{m-1} + \dots + b_1 2^1 + b_0 2^0)_{10}$$

Onde
$$b_i \in \{0,1\} \ \forall i=1,...,m$$

$$Ex_1$$
: $(1001)_2 = (b_3 \ b_2 \ b_1 \ b_0)_2 =$

=
$$(1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)_{10}$$
 =

$$= (8 + 0 + 0 + 1)_{10} =$$

$$= (9)_{10}$$

2) Conversão de nºs decimais em binários:

$$N = (d_n d_{n-1} \dots d_1 d_0)_{10} = (b_m b_{m-1} \dots b_1 b_0)_2 = \sum_{k=0}^{m} b_k 2^k$$

Onde m é a maior potência de 2 tal que $2^m \le N$

$$\begin{aligned} \mathsf{Ex}_2 &: (47)_{10} = (b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0)_2 = \\ &= b_5 2^5 + b_4 2^4 + b_3 2^3 + b_2 2^2 + b_1 2^1 + b_0 2^0 = \\ &= 32b_5 + 16b_4 + 8b_3 + 4b_2 + 2b_1 + b_0 = \\ &= (\ 1 \ 0 \ 1 \ 1 \ 1 \ 1)_2 \end{aligned}$$

3) Representação de nºs decimais fracionários:

$$f=(0.d_1 d_2 \dots d_k \dots)_{10} = d_1 10^{-1} + d_2 10^{-2} + \dots + d_k 10^{-k} + \dots$$

Onde $d_i \in \{0,1,...9\}$

Se existir m tal que d_k =0 $\forall k > m \Rightarrow f$ tem representação decimal finita

$$Ex_3: f = 1/8 = 0.125 = 1 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}$$
 \Rightarrow finita

$$Ex_4$$
: $f = 1/9 = 0.111... = 1 \times 10^{-1} + 1 \times 10^{-2} + 1 \times 10^{-3} + ...$ \Rightarrow não finita

4) Conversão de nºs decimais fracionários em binários:

$$f=(0.d_1 d_2 \dots d_k \dots)_{10} = (0.b_1 b_2 \dots b_k \dots)_2 = b_1 2^{-1} + b_2 2^{-2} + \dots + b_k 2^{-k} + \dots$$

Onde $b_i \in \{0,1\}$

Como converter uma fração decimal em uma fração binária?

$$f = \sum_{k=1}^{\infty} b_k 2^{-k} \quad \Rightarrow \quad 2f = b_1 + \sum_{k=1}^{\infty} b_{k+1} 2^{-k} \quad \Rightarrow b_1 = 0 \text{ ou } 1$$
 Parte frac. binária de $2f$
$$(2f)_f = \sum_{k=1}^{\infty} b_{k+1} 2^{-k} \quad \Rightarrow \quad 2(2f)_f = b_2 + \sum_{k=1}^{\infty} b_{k+2} 2^{-k}$$

Seguindo esse raciocínio, obtemos b_3 , ..., b_k , que são os dígitos que compõem a representação binária!

5) Aritmética de ponto flutuante

Seja x um número qualquer na base β em aritmética de ponto flutuante de t dígitos:

$$x = \pm (.d_1 d_2 ... d_t)_{\beta} \times \beta^e$$

Onde: (i) $\pm (.d_1 d_2 ... d_t)_{\beta} \times \beta^e$ é uma fração na base β

(ii)
$$d_j \in \{0,1,2,..., \beta-1\}$$

(iii)
$$e \in [m, M]$$

(iv) t = número máximo de dígitos da mantissa

Um número não pode ser representado se o expoente "e" estiver fora dos limites m e M.

Números cuja representação em aritmética de ponto flutuante de *t* dígitos extrapolam os t dígitos da mantissa são armazenados por arredondamento ou por truncamento.

- •truncagem: descartar todos os decimais a partir de um específico
- arredondamento:

redondamento:
$$0,57 \rightarrow 0,5$$
-para cima, descartado para > 5
-para baixo, descartado para < 5

$$\begin{array}{c} 0,57 \to 0,5 \\ 0,52 \to 0,5 \end{array}$$

$$0,57 \rightarrow 0,6$$

$$0,52 \rightarrow 0,5$$

$$0,52 \to 0,5$$

Ex $_5$: Seja um sistema de aritmética de ponto flutuante cuja mantissa tenha t=3 dígitos, base β =10, m=-4 e M=4.

X	Representação por arredondamento	Representação por truncamento
1.25	0.125×10	0.125×10
10.053	0.101×10^{2}	0.100×10^{2}
-238.15	-0.238×10 ³	-0.238×10 ³
2.71828	0.272×10 ¹	0.271×10^{1}
0.00000007	Underflow	Underflow
718235.82	Underflow	Overflow

Ex₆: Dados x = 0.937×10^4 e y = 0.127×10^2 , calcule x + y para um sistema em que t=4 e β =10.

$$x + y = 0.9370 \times 10^4 + 0.0013 \times 10^4 = 0.9383 \times 10^4$$

Estimativa de erros

Definição de erro:

$$\varepsilon = a - \tilde{a}$$
 , onde

erro relativo:

ã = valor aproximadoa = valor verdadeiro (não conhecido)

Tipos de erros:

$$\varepsilon_r = \frac{\varepsilon}{a} = \frac{a - \ddot{a}}{a} \quad (a \neq 0)$$

operações (truncagens e arredondamento) experimentais $\epsilon_r \cong \frac{\epsilon}{2} \quad se \quad \epsilon << \tilde{a}$

$$\varepsilon_r \cong \frac{\varepsilon}{\tilde{a}}$$
 se $\varepsilon << \tilde{a}$

Na prática, ε também não é conhecido. Assim, devemos definir um valor limite para o erro: $\beta \ge |\epsilon|$

Propagação de erros

Seja y uma função das variáveis x_1 , x_2 , x_3 , ... x_n , ou seja,

$$y = f(x_1, x_2, x_3, ... x_n)$$

onde x_i é uma medida com um erro experimental Δx_i , ou seja

$$x_i = x_i \pm \Delta x_i$$

O erro Δy em y devido aos erros Δx_i das medidas de x_i pode ser obtido como:

$$\Delta y = \left| \frac{\partial y}{\partial x_1} \Delta x_1 \right| + \left| \frac{\partial y}{\partial x_2} \Delta x_2 \right| + \left| \frac{\partial y}{\partial x_3} \Delta x_3 \right| + \dots$$

Ex₇: Para determinar o período de oscilação de um sistema massa-mola, um aluno mediu a constante elástica da mola e a massa do bloco, encontrando:

$$m = (100,36 \pm 0,03)$$
 g
e
 $k = (200,4 \pm 0,7) \times 10^2$ N/m

O período de oscilação do sistema é:

$$T = 2\pi \sqrt{\frac{m}{k}} = 1,406 \times 10^{-2} \, s$$

O erro *\Delta T no período será dado por*

$$\Delta T = \left| \frac{\partial T}{\partial m} \Delta m \right| + \left| \frac{\partial T}{\partial k} \Delta k \right| = \frac{\pi}{\sqrt{mk}} \Delta m + \pi \sqrt{\frac{m}{k^3}} \Delta k$$

onde $\Delta m = 0.03 \times 10^{-3} \text{ kg}$ e $\Delta k = 0.7 \times 10^{2} \text{ N/m}$ Substituindo esses valores na equação, obtém-se

$$\Delta T = 2,66 \text{ x} 10^{-5} \text{ s} = 0,00266 \text{ x} 10^{-2} \text{ s}$$

$$T=(1,406 \pm 0,003) \times 10^{-2} \text{ s}$$

CAPÍTULO II - EQUAÇÕES

Objetivo: Resolver f(x) = 0, isto é, encontrar números ξ_i tais que $f(\xi_i) = 0$

Fase I: isolar as raízes

Teorema de Cauchy-Bolzano: Seja f uma função contínua em [a,b]. Se f(a)×f(b) < 0 então existe pelo menos uma raiz $\xi \in [a,b]$.

Teorema: Se f'preservar o sinal em [a,b] então a raiz ξ é única.

Processo I (Esboço do gráfico - varredura): Determinar um ponto inicial, um passo h e um ponto final de busca

 Ex_8 : Isolar a(s) raíz(es) positiva(s) de f(x) = 2x - cos(x) = 0;

Façamos a = 0, h=1, b = 10

X	0	1	2	3	4	5	6	7	8	9	10
f(x)	-1	1.46	4.42	6.99	8.65	9.72	11.03	•••	•••	•••	20.84

Conclusão: Há raiz $\xi \in [0,1]$.

Como f'(x) = 2 + sen(x) > 0 \forall x \in [0,1] então ξ é única.

Processo II: Transformar f(x) = 0 em g(x) - h(x) = 0 e encontrar os pontos de interseção de g e h.

 Ex_8 : Isolar a(s) raíz(es) positiva(s) de f(x) = 2x - cos(x) = 0;

Resp.:
$$\xi \in [0, \pi/2]$$
.

 Ex_9 : Isolar a(s) raíz(es) de f(x) = x + ln(x) = 0;

Resp.:
$$\xi \in [?, ?]$$
.

 Ex_{10} : Isolar a(s) raíz(es) de f(x) = xln(x) - 1 = 0;

Resp.:
$$\xi \in [?, ?]$$
.

Fase II: Refinar cada raiz

Diz-se que x_k é uma "boa" aproximação para a raiz ξ se:

(i)
$$|f(x_k)| < \varepsilon$$

(ii)
$$|x_k - \xi| < \varepsilon$$

Sendo ε a tolerância máxima admissível.

Estes dois critérios não são equivalentes!

 $|f(x_k)| < \varepsilon$, mas $|x_k - \xi| >> \varepsilon$

 $|x_k - \xi| < \varepsilon$, mas $|f(x_k)| >> \varepsilon$

Solução: Impor os dois critérios:

i)
$$|f(x_k)| < \varepsilon$$

ii)
$$|x_k - \xi| < \varepsilon$$

Como utilizar o segundo critério não se conhecendo ξ ?

Solução 1: Reduzir o intervalo [a,b] que contém a raiz até que sua amplitude seja menor que ε , isto é, que b – a < ε .

Se b – a <
$$\epsilon \Rightarrow \forall x_k \in [a,b]$$
 tem-se: $|x_k - \xi| < b - a < \epsilon$

Obs.: Como um método numérico pode não convergir é comum impor um número máximo de iterações como critério adicional de parada.

Solução 2: Aplicar o teorema:

TEOREMA: Sejam f e f'contínuas em [a,b]. Se f'preserva o sinal em [a,b] e se m=min|f'(x)| e M=max|f'(x)| para $x \in [a,b]$, então:

$$|x_k - \xi| \le ((M-m)/m)|x_k - x_{k-1}|$$

Além disso, se [a,b] é tão pequeno que $M \le 2m$ então:

$$|x_k - \xi| \le |x_k - x_{k-1}|$$

Conclusão: Para intervalo [a,b] suficientemente pequeno:

$$|x_k - x_{k-1}| < \epsilon$$
 substitui $|x_k - \xi| < \epsilon$

Método da Bisseção

Idéia: Reduzir o intervalo que contém a raiz, dividindo-o ao meio a cada iteração.

```
procedimento Bissecao(a,b, \varepsilon, ITERMAX,x);
1 k \leftarrow 0;
2 x \leftarrow (a+b)/2;
3 enquanto ((b-a \ge \varepsilon \quad \underline{\text{ou}} \quad f(x) \ge \varepsilon) \quad \underline{\text{e}} \quad k \le ITERMAX) faça
   \underline{\operatorname{se}} \left( f(a) \times f(x) < 0 \right)
   então b \leftarrow x
             \underline{\text{senão}} \ a \leftarrow x;
    x \leftarrow (a+b)/2;
    k \leftarrow k + 1;
9 fim-enquanto;
10 \underline{se} (k \leq ITERMAX)
11
       então Retorne x como aproximação para a raiz;
         senão Imprima: Não foi obtida uma aproximação com a precisão
12
13
                                requerida em k iterações;
fim Bissecao;
```

Determinar com precisão ε < 0,01 e com um máximo de 10 iterações, a raiz da equação $f(x) = 2x - \cos x = 0$. Solução:

- (a) Isolamento da raiz:
 Já foi visto que ξ ∈ [0, 1].
- (a) Refinamento da solução:

\overline{k}	a	ь	x_k	$f(x_k)$	b — a	Conclusão
	Co		$-x_{R}$		0 6	
0	0	1	0.500	0.122	1	$\xi \in [0.000, 0.500]$
1	0	0.500	0.250	-0.469	0.500	$\xi \in [0.250, 0.500]$
2	0.250	0.500	0.375	-0.181	0.250	$\xi \in [0.375, 0.500]$
3	0.375	0.500	0.438	-0.031	0.125	$\xi \in [0.438, 0.500]$
4	0.438	0.500	0.469	0.045	0.063	$\xi \in [0.438, 0.469]$
5	0.438	0.469	0.453	0.007	0.031	$\xi \in [0.438, 0.453]$
6	0.438	0.453	0.445	-0.012	0.016	$\xi \in [0.445, 0.453]$
7	0.445	0.453	0.449	-0.002	0.008	Pare! pois $b - a < \varepsilon e f(x_k) < \varepsilon$

Na iteração 7, tanto a amplitude do intervalo [a,b] quanto a imagem, em módulo, de x_7 são menores que a precisão requerida, isto é, $b-a=0.453-0.445=0.008<\varepsilon=0.01$ e $|f(x_7)|=0.008<\varepsilon=0.01$. Desta forma, dizemos que $x_7=0.449$ é uma aproximação para a raiz ξ da equação $f(x)=2x-\cos x=0$ com uma precisão $\varepsilon<0.01$.

Método da Falsa Posição

<u>Idéia</u>: Tomar como aproximação x para a raiz ξ a média ponderada dos extremos do intervalo [a,b] com pesos |f(b)| e |f(a)| respectivamente.

$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|}$$

Desta forma, x estará mais próximo do extremo cuja imagem for menor.

Simplificação:

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$


```
procedimento FalsaPosicao(a,b, \varepsilon, ITERMAX,x);
1 k \leftarrow 0;
    x_{\text{ant}} \leftarrow a;
3 x \leftarrow \frac{a \times f(b) - b \times f(a)}{f(b) - f(a)};
4 enquanto (|x-x_{\text{ant}}| \ge \varepsilon \quad \text{ou} \quad |f(x)| \ge \varepsilon) \quad \underline{e} \quad k \le ITERMAX faça
5
   \underline{se}(f(a) \times f(x) < 0)
        então b \leftarrow x
              \underline{\text{senão}} \ a \leftarrow x;
        x_{\text{ant}} \leftarrow x;
      x \leftarrow \frac{a \times f(b) - b \times f(a)}{f(b) - f(a)};
10 k \leftarrow k + 1;
11 fim-enquanto;
12 se (k \leq ITERMAX)
13
          então Retorne x como aproximação para a raiz;
          senão Imprima: Não foi obtida uma aproximação com a precisão
14
15
                                   requerida em k iterações;
fim FalsaPosicao;
```

Determinar, com erro $\varepsilon < 0,01,$ a raiz da equação $f(x) = 2x - \cos x = 0$ no intervalo [0, 1]. Solução:

Gerando as aproximações x_k segundo a expressão 5.6, obteremos a seguinte tabela:

k	a	b	x_k	$f(x_k)$	$ x_k - x_{k-1} $	Conclusão
0	0	1	0.407	-0.105	0.407	$\xi \in [0.407, 1.000]$
1	0.407	1.000	0.447	-0.009	0.040	$\xi \in [0.447, 1.000]$
2	0.447	1.000	0.450	-0.001	0.003	Pare! pois $ f(x_2) < 0.01 \text{ e } x_2 - x_1 < \varepsilon$

Logo, $x_2=0.450$ é uma aproximação para a raiz ξ da equação $f(x)=2x-\cos x=0$ com uma precisão $\varepsilon<0.01$.

Método da Iteração Linear

- f(x) = 0 , solução é o número x = s tal que f(s) = 0
- métodos iterativos:

iniciar com um valor tentativo x_0 , calcular valores $x_1, x_2 \dots$

Ponto fixo:

transformar f(x) = 0 em x = g(x)

$$x_0 \rightarrow x_1 = g(x_0)$$

 $x_1 \rightarrow x_2 = g(x_1)$

.

a solução da equação é o ponto

processo
$$x_{n+1} = x_n = x^*$$

iterativamente os Algoritmos estáveis e instáveis

fixo do

Exemplo:

$$f(x) = x^2 - 3x + 1 = 0$$

$$x_{n+1} = (x_n^2 + 1)/3$$

1	3
0,666667	3,333333
0,481481	4,037037
0,410608	5,765889
0,389533	11,41516
0,383912	43,76863
0,382463	638,8975
0,382093	136063,7
0,381998	6,17E+09

converge

2	2,66666
2,5	2,62
2,6	2,619048
2,615385	2,618182
2,617647	2,61805
2.617978	2.61803

diverge

Teorema: sendo x=s uma solução de x=g(x) e supondo que g(x) tem uma derivada contínua no intervalo *J* que contém *s*;

então, se $| g'(x) | \le k < 1$ em J, o processo iterativo definido por $x_{n+1} = g(x_n)$ para qualquer x_0 em J é convergente.

Ex.:

$$f(x) = x^3 + x - 1$$

$$f(x) = x^{3} + x - 1$$

$$x_{n+1} = g(x_{n}) = \frac{1}{1 - x_{n}^{2}}$$

$$|\dot{g}(x)| = \frac{2|x|}{(1+x^2)^2}$$

1
0,5
0,64
0,644196
0,643491
0,643612
0,643591

Método de Newton (Newton-Raphson)

f(x) tem uma derivada contínua f'(x)

$$\beta = \dot{f}(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

$$x_1 = x_0 - \frac{f(x_0)}{\dot{f}(x_0)}$$

Exigências para convergência:

- (i) f'e f" devem preservar o sinal em [a,b] e não se anularem
- (ii) x_0 deve ser tal que $f(x_0) \times f''(x_0) > 0$.

Algoritmo para calcular a solução de f(x)=0, sendo dada a aproximação inicial x_0 . A função f(x) é contínua, bem como sua derivada f'(x). ε é a tolerância máxima e N é o número máximo de iterações

Dados: f(x), f'(x), x_0 , ε , N

Algoritmo NEWTON

Entrada: f(x), f'(x), x_0 , ε , N

Saída: solução aproximada $x_n (n \le N)$ ou mensagem de erro

For
$$n = 0, 1, 2, 3N$$

Calcule $f'(x_n)$

If $f''(x_n) = 0$, then "Mensagem de erro" (procedimento malsucedido)

Else: calcular
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

If
$$|x_{n+1} - x_n| \le \varepsilon$$
 then "Raiz é" x_{n+1} ; STOP

End

"Mensagem de erro"; STOP (não convergiu após N iterações)

End NEWTON

Determinar pelo Método de Newton-Raphson, com precisão $\varepsilon < 0,01$ em um máximo de 10 iterações, a raiz da equação $f(x) = 2x - \cos x = 0$.

(a)Isolamento

Já foi visto que $\xi \in [0, 1]$.

(b)Determinação de x₀:

$$f'(x) = 2 + \operatorname{sen} x \Longrightarrow f'(x) > 0 \ \forall \ x \in [0, 1]$$
$$f''(x) = \cos x \Longrightarrow f''(x) > 0 \ \forall \ x \in [0, 1]$$

Sendo f(0) = -1, f(1) = 1.46 e f''(x) > 0 então podemos tomar como aproximação inicial $x_0 = 1$, pois f(1)f''(1) > 0.

(c)<u>Refinamento</u>:

k	x_k	$f(x_k)$	$f'(x_k)$	$ x_k - x_{k-1} $	Conclusão
0	1	1.460	2.841	-	
1	0.486	0.088	2.467	0.514	
2	0.450	0.001	2.435	0.036	
3	0.450	0.000	2.435	0.000	Pare! pois $ f(x_3) < 0.01 \text{ e } x_3 - x_2 < \varepsilon$

Logo, $x_3=0.450$ é uma aproximação para a raiz ξ da equação $f(x)=2x-\cos x=0$ com uma precisão $\varepsilon<0.01$.

