43. Теоремы о дифференцируемых функциях. Теорема Ферма.

Mariya Senina

January 2021

1 Введение

Теоремы Ферма, Ролля и Лагранжа - теоремы о дифференцируемых функциях, ещё можно услышать название Французские Теоремы.

У нас на Лекциях были только формулировки, но я приведу доказательства, т.к. мне кажется, что они не сложные, но дают лучшее понимание.

Бонус: Песня группы "Научно-технический реп" про Теорему Ферма: https://youtu.be/10mrknUtUrs

2 Формулировка

Теорема. f(x) - непрерывна на [a;b] и дифференцируема на (a;b) и $\exists x_0 \in (a;b)$ такой что $f(x_0)$ - максимум или минимум функции на интервале $(a;b) \Rightarrow f(x_0)' = 0$.

Проще теоремму можно сформулировать так: в точках экстренума (=максимума и минимума) производная функции обращается в ноль. Как и в

остальных Французских теоремах важно запомнить, условия теореммы - мы требуем, чтобы непрерывность была именно на отрезке [a;b], а не на интервале, чтобы не было разрывов в крайней точке, см картинку б). Очевидно, что на картинке б) условие не выполняется - ни в одной точке производная нулю не ровна, хотя максимум пренадлежит отрезку.

3 Доказательство

Не умоляя общности, будем доказывать теорему, считая что x_0 - точка локального максимума, если это не так теорема доказывается аналогично.

Определим функцию $g(x) = \frac{f(x) - f(x_0)}{x - x_0}$. По определению производной $f'(x_0) = \lim_{x \to x_0} g(x_0)$.

Так как x_0 точки локального максимума, то существует некоторая окрестность вокруг этой точки такая что для любого x входящего в эту окрестность $f(x_0) \ge f(x)$. Дальше будем рассматирвать только эту окрестность.

Функция f(x) на (a;b) дифференцируема, значит в каждой точке мы можем взять производную и левосторонний и правосторонние пределы совпадут с производной. Заметим, что т.к. при $x \le x_0$ функция возраствает, значит $g(x) \le 0$, значит правосторонний предел $f(x_0)$, он будет меньше либо равен нуля. Аналогично при $x \ge x_0$ функция возраствает, значит $g(x) \ge 0$, значит левосторонний наоборот больше либо равен. Т.к. функция непрерывная, они будут ровны значению производной функции в точке x_0 . Т.е. $\lim_{x \to x_0 -} g(x) \le 0$, $\lim_{x \to x_0 +} g(x) \ge 0$ и $\lim_{x \to x_0 -} = \lim_{x \to x_0 +} = f'(x_0) \Rightarrow \lim_{x \to x_0 -} = \lim_{x \to x_0 +} = f'(x_0) = 0$

Вот мы и доказали, что производная в точке x_0 ровна 0.