Introduction to Computer Systems Lecture 3 – Bits, Bytes, and Integers

2022 Spring, CSE3030

Sogang University

CSE3030 S'22

Binary Representations

- Bit a unit that represents two status, 0 and 1.
- Why not 10-base representation?
 - Easy to store with bistable elements
 - Compact implementation of arithmetic functions with logic gates.
 - Reliably transmitted on noisy and inaccurate wires
- Electronic implementation
 - Low voltage 0, High voltage 1

Representing Information

- Information = Bits + Context + Representation
 - Information is written in bits on the memory.
 - The context indicates the data type of a set of bits.
 - Representation will give meaning to bits.
- How many information can N bits represent?
 - 2ⁿ things
- How to represent different types of information?
 - Each information type has its data representation.
 - Characters, numbers (integer and float), pixels, machine instructions

Binary	0101 0011	0100 1111	0100 0111	0100 0001	0100 1110	0100 0111	0100 0011	0101 0011
Character	'S'	'O'	'G'	'A'	'N'	'G'	'C'	'S'
Integer	1095192403				13969	18094		
Double				1.256674	x 10^93			

SE3030 S'22

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Deciman

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

Character

Integer

Real number

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Representations for Integers

- Unsigned integer representation
 - Unsigned int/short/long

$$\mathbf{B} = [b_{w-1}, b_{w-2}, ..., b_0] = \sum_{i=0}^{w-1} b_i 2^i = b_0 1 + b_1 2 + ... + b_{w-1} 2^{w-1}$$

$$10011011 = 2^7 + 2^4 + 2^3 + 2^1 + 2^0 = 155$$

- Signed integer representation
 - Using two's complement encoding to represent negative numbers
 - The left-most bit is a sign bit.

$$\mathbf{B} = [b_{w-1}, b_{w-2}, ..., b_0] = -b_{w-1} 2^{w-1} + \sum_{i=0}^{w-2} b_i 2^i = b_0 1 + b_1 2 + ... + b_{w-2} 2^{w-2} - b_{w-1} 2^{w-1}$$

$$10011011 = -2^7 + 2^4 + 2^3 + 2^1 + 2^0 = -101$$

- W-bit integer representation can represent 2^W numbers.
 - Represent a finite set of integer numbers.

SE3030 S'22

Two's Complement Encoding

- Its complement with respect to 2^w
 - The sum of a number and its two's complement is 2^w

$$10000000_{(2)} = complement (01110011_{(2)}) + 01110011_{(2)}$$
$$= 10001101_{(2)} + 01110011_{(2)}$$

By switching all bits of x and adding one, you can get the complement of x.

complement
$$(01110011_{(2)}) = 10001100_{(2)} + 1 = 10001101_{(2)}$$

E3030 S'22

Signed Integer Representation

- Two's Complement Representation
 - Unique zero
 - A signed bit represents "minus".
 - 0 greater than or equal to 0
 - 1 less than 0

$$\mathbf{B} = [b_{w-1}, b_{w-2}, ..., b_0] = -b_{w-1} 2^{w-1} + \sum_{i=0}^{w-2} b_i 2^i$$

CSE3030 S'22

Principle of using Complements as Negative Numbers

• By adding and subtracting a base to the power *n* at different positions, subtraction can be considered as addition of a complement.

• A>B

```
• 999_{(10)} - 100_{(10)} = \mathbf{0}999_{(10)} + (1\mathbf{0}000 - \mathbf{0}100)_{(10)} - 1\mathbf{0}000_{(10)}
= \mathbf{0}999_{(10)} + \mathbf{9}900_{(10)} - 1\mathbf{0}000_{(10)} (get the complement of 0100, i.e. 9900)
= 1\mathbf{0}899_{(10)} - 1\mathbf{0}000_{(10)} = \mathbf{4}\mathbf{0}899_{(10)} (delete a digit that is out of the range)
= \mathbf{0}899_{(10)}
```

A<B

```
• 0099_{(10)} - 0100_{(10)} = \mathbf{0}099_{(10)} + (1\mathbf{0}000 - \mathbf{0}100)_{(10)} - 1\mathbf{0}000_{(10)}
= \mathbf{0}099_{(10)} + \mathbf{9}900_{(10)} - 1\mathbf{0}000_{(10)} (get the complement of 0100, i.e. 9900)
= \mathbf{9}999_{(10)} - 1\mathbf{0}000_{(10)} = \mathbf{9}999_{(10)} = -1_{(10)} (abbreviate -10000)
```

• Bold numbers represents signs (0 – positive or zero, 9 – minus)

CSE4010 S'22

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

	4.50	4.0	4-0	140
Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
				•

15213

-15213

Sum

Numeric Ranges

- Unsigned Values
 - *UMin* = 0 000...0
 - $UMax = 2^w 1$ 111...1

Values for W = 16

Two's Complement Values

•
$$TMin = -2^{w-1}$$
100...0

•
$$TMax = 2^{w-1} - 1$$

011...1

- Other Values
 - Minus 1 111...1

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonn egative values

Uniqueness

- Every bit pattern represent s unique integer value
- Each representable intege r has unique bit encoding

→ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned inte ger
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp in teger

Conversion Visualized

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

Visualizing 2's Complement Addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Unexpected sign!
 - Lower bits are the same

Boolean Algebra

- How computers manipulate bits?
- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0
 And
 - A&B = 1 when both A=1 and B=1

Not

Or

A | B = 1 when either A=1 or B=1

I	0	1
0	0	1
1	1	1

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1$ if $j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - 76543210
 - 01010101 { 0, 2, 4, 6 }
 - 76543210

Operations

• &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
• ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
• ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - · long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0x41 => 0xBE$
 - ~010000012 => 101111102
 - $\sim 0 \times 000 => 0 \times FF$
 - $\sim 000000002 => 1111111112$
 - 0x69 & 0x55 => 0x41
 - 01101001₂ & 01010101₂ => 01000001₂
 - $0x69 \mid 0x55 => 0x7D$
 - 01101001₂ | 01010101₂ => 01111101₂

Shift Operations

- Left Shift:x << y
 - Shift bit-vector **x** left **y** positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector **x** right **y** positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Adder

• Using bit operations, n-bit addition can be computed.

CSE3030 S'22 26

Implementation of Adder

 By consecutively concatenating full adders n-times, we can get a n-bit adder.

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	C _{in}	S	С
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Half adder

Full adder

CSE3030 S'22 27

4-bit integer adder

Summary

A computer encodes, stores, and manipulates information in bits.

Representing negative numbers as 2's complements

- Use the same logic hardware for unsigned and signed integers.
 - If the true result is out of scope, the result is not valid.

SE3030 S'22 29