Définition 6.16 - prédécesseur, successeur immédiats

Soit E un ensemble ordonné non vide et $e \in E$. On dit que :

- $-p \in E$ est un prédécesseur immédiat de e si p < e et il n'existe pas d'élement $a \in E$ tel que p < a < e
- $-s \in E$ est successeur immédiat de e si e < s et il n'existe pas d'élement $a \in E$ tel que e < a < s

Exemples 6.17 - prédécesseur, successeur immédiats

- \blacktriangleright $\forall n \in \mathbb{N}, n+1$ est le successeur immédiat de n pour l'ordre usuel.
- $\blacktriangleright \ \forall n \in \mathbb{N}^*, \, n-1$ est le prédécesseur immédiat de n pour l'ordre usuel.
- ▶ 0 n'a pas de prédécesseur (en particulier immédiat) pour l'ordre usuel.

Exemples 6.18 - prédécesseur, successeur immédiats

▶ Dans \mathbb{R} muni de l'ordre usuel, aucun élément e n'a de prédécesseur (resp.successeur) immédiat puisque si a < e alors en particulier $a < \frac{a+e}{2} < e$.

Définition 6.19 - éléments minimal, maximal

Soit E un ensemble ordonné non vide et $e \in E$. On dit que

- e est un élément minimal de E s'il n'admet pas de prédécesseur.
- e est un élément maximal de E s'il n'admet pas de successeur.

Exemples 6.20 - éléments minimal, maximal

▶ Soit E un ensemble. L'ensemble $A = \mathcal{P}(E)$ {Ø} des parties non vides de E muni de l'inclusion et ordonné. Si $E \neq \emptyset$, E est l'élément maximal de A, et $\forall e \in E$, $\{e\}$ est un élément maximal de A.

Remarque 6.21 - sur le dernier exemple

▶ L'ensemble précédent montre en particulier qu'un ensemble peut tout à fait avoir plusieurs éléments minimaux ou maximaux.

Définition 6.22 - plus grand, plus petit éléments

Soit E un ensemble ordonné non vide et $e \in E$. On dit que :

- e est le plus grand élément de E si $\forall x \in E, x < e$.
- e est le plus petit élément de E si $\forall x \in E, x \geq e$.

Démonstration : (preuve de l'unicité) Supposons par l'absurde, qu'il n'y a pas unicité du plus petit élément. Soit e et e' deux plus petits éléments distincts de E. Alors, par définition, (e est un plus petit élément E, $e \le e'$). de même, $e' \le e$. Par antisymétrie de \le , e = e'. Absurde. On montre de même l'unicité du plus grand élément, s'il existe.

Définition 6.23 : Ordre bien fondé Soit (E, \leq) un ensemble ordonné. On dit que \leq est un ordre bien fondé si toute partie non vide de E admet au moins un élément minimal.

Exemple 6.24: Ordres bien fondés

- l'ordre usuel sur l'ensemble ℕ des entiers naturels est bien fondé.
- l'inclusion sur les parties d'un ensemble fini est bien fondée.
- la relation de divisibilité sur l'ensemble N* est un ordre bien fondé.

Exemple 6.25 Ordres non bien fondés

- l'ordre usuel sur \mathbb{Z} ou sur \mathbb{R}_+
- L'inclusion sur les parties d'un ensemble infini n'est pas bien fondée.

Propriété 6.26 Soit $(A, \leq_A)et(B, \leq_B)$ deux ensembles ordonnés. Si \leq_A et \leq_B sont bien fondées, l'ordre lexicographique défini sur $A \times B$ est bien fondé.

Démonstration : Soit X une partie non vide de $A \times B$. Montrons qu'elle admet un élément minimal. On note $A_X = \{a \in A, \exists b \in B, (a,b) \in X\}$. X est non vide, donc A_X l'est également. De plus, comme \leq_A est bien fondé, A_X admet un élément minimal. Soit donc $a_0 \in A$ un élément minimal de A_X . On considère alors l'ensemble $B_0 = \{b \in B, (a_0, b) \in X\}$. Par définition de a_0, B_0 est non vide, alors, \leq_B étant aussi bien fondé, B_0 admet un élément minimal b_0 . l'élémet $x_0 = (a_0, b_0)$ est alors un élément minimal de X. En effet, Soit $(a, b) \in X$ tel que $(a, b) \leq (a_0, b_0)$ i.e. tel que $a < a_0 ou(a = a_0 etb \leq_B b_0)$. $a \in A_X$ donc, par minimalité de $a_0, a \not< a_0$, on a donc $a = a_0$ et $a_0 \in B_0$ puisque $a_0 \in B_0$ puisque $a_0 \in B_0$. Par minimalité de $a_0 \in B_0$ quisque $a_0 \in B_0$ quisque $a_0 \in B_0$ puisque $a_0 \in B_0$ puisque

Propriété 6.27 Soit $((E_i, \leq_i))_{i \in [1, n]}$ une famille finie d'ensembles munis d'ordres bien fondés. $(n \geq 2)$. L'ordre

produit défini sur
$$\prod_{i=1}^{n} E_i = E_1 \times ... \times E_n$$
 est bien fondé.

Démonstration Soit A une partie non vide de $E_1 \times \ldots \times E_n$. On pose $A_1 = \{a_1 \in E_1, \exists (x_1, \ldots, x_n) \in A^n, x_1 = a_1\}$. Comme A est non vide, A_1 est une partie non vide de E_1 qui admet donc un élément minimal m_1 . On pose $A_2 = \{a_2 \in E_2, \exists (x_1, \ldots, x_n) \in A^n, x_2 = a_2 \text{ et } x_1 = m_1\}$. Comme A est non vide, A_2 est une partie non vide de E_2 qui admet donc un élément minimal m_2 .

On construit ainsi n ensembles non vides définis pour tout $i \in \mathbb{N}$ par :

$$\begin{cases} A_{i+1} = \{a_{i+1} \in E_{i+1}, \exists (x_1, \dots, x_n) \in A^n, \forall j \in \llbracket 1, i \rrbracket, x_j = m_j \text{ et } x_{i+1} = a_{i+1} \} \\ m_i \text{ est un élément minimal de } A_i, \forall i \in \llbracket 1, n \rrbracket \end{cases}$$

L'élément $m = (m_1, \ldots, m_n)$ est alors, par construction, un élément minimal de A.

Remarque 6.28 Si E est muni d'un ordre total et bien fondé, alors toute partie non vide de E admet un plus petit élément. On parle alors de bon ordre et d'ensemble bien ordonné.

Définition 6.29 Soit E un ensemble. On appelle prédicat sur E toute propriété P dépendant d'éléments de E. Lorsque P dépend de n paramètres, on dit que P est d'arité n. On note alors $\forall (x_1, \ldots, x_n) \in E^n$.

- $P(x_1,...,x_n)$ lorsque la propriété est vraie.
- $-\neg P(x_1,...,x_n)$ lorsque la propriété est fausse.

Remarque 6.30 Une relation bianire est en fait un prédicat d'arité 2.

Théorème 6.31 Soit (E, \leq) un ensemble ordonné. Les propositions suivantes sont équivalentes :

- 1. < est un ordre bien fondé.
- 2. Il n'existe pas de suite infinie strictement décroissante d'élements de E.
- 3. Pour tout prédicat P sur E, si:

$$\forall (x,y) \in E^2, x > y \implies P(x)$$

Démonstration:

- (1) \implies (2) : Supposons que \leq est un ordre bien fondé, et par l'absurde, que $(x_n)_{n\in\mathbb{N}}$ est une suite infinie strictement décoissante d'éléments de E. Alors l'ensemble non vide $\{x_n, \in \mathbb{N}\} \subset E$ admet un élément minimal x_k ; Ainsi, par décroissance stricte de (x_n) , $x_{k+1} < x_k$, ce qui contredit la minimalité de x_k
- $-(2) \implies (3)$: Soit P un prédicat sur E. On suppose que

$$(\forall (x,y) \in E^2, y < x \implies P(y)) \implies P(x)$$

.On note (A) cette propriété. Montrons que

$$\forall x \in E, P(x)$$

. Pour cela, on considère l'ensemble $A = \{x \in E, \neg P(x)\} \subset E$.

Supposons, par l'absurde que A est non vide : soit x_0 tel que $\neg P(x_0)$.

Alors par contraposée de (A), il existe $x_1 \in E$ tel que $x_1 < x_0$ et $\neg P(x_1)$.

En itérant ce raisonnement, on construit une suite infinie, strictement décroissante d'éléments $x_i \in E$ telle que $\forall i, \neg P(x_i)$, ce qui contredit la propriété (2).

- (3) \Longrightarrow (1). Soit A une partie non vide de E. on note P(x) le prédicat $x \notin A$. Puisque $A \neq \emptyset$, la proposition "∀" "∀ $y \in E, y < metP(y)$ "

Remarque 6.33 : La proposition (3) définit un principe de récurrence sur n'importe quel ensemble d'un ordre bien fondé. dans le cas où $E = \mathbb{N}$, on retrouve le principe de récurrence forte.