

Advanced Natural Language Processing

Lecture 3: Word Embedding and Language Model

陈冠华 CHEN Guanhua

Department of Statistics and Data Science

Content

- Word representations
- Recurrent neural network
- Language model

Lexical Semantics

How should we represent the meaning of the word?

green flowers opposite the leaves, succeeded by small berries turning red when ripe. Also more widely: any plant of the genus *Piper* or the family

b. Usu. with distinguishing word: any of numerous plants of other

in taste and in some cases are used as a substitute for it.

families having hot pungent fruits or leaves which resemble pepper (1a)

• Words, lemmas, senses, definition

Oxford English Dictionary: https://www.oed.com/

Piperaceae

Lexical Semantics

How should we represent the meaning of the word?

- Words, lemmas, senses, definition
- Relationships between words
 - Synonymity: same meaning, e.g., couch/sofa
 - Antonymy: opposite senses, e.g., hot/cold
 - Similarity: similar meanings, e.g., car/bicycle
 - Relatedness: association, e.g., car/gasoline
 - Superordinate/Subordinate: e.g., car/vehicle, mango/fruit

Lexical Semantics

How should we represent the meaning of the word?

- Words, lemmas, senses, definition
- Relationships between words or senses
- Taxonomy: abstract -> concrete

Lexical Resources

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: mouse Search WordNet

Display Options: (Select option to change)

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) mouse (any of numerous small rodents typically resembling diminutive rats having pointed snouts and small ears on elongated bodies with slender usually hairless tails)
- S: (n) shiner, black eye, mouse (a swollen bruise caused by a blow to the eye)
- <u>S:</u> (n) mouse (person who is quiet or timid)
- S: (n) mouse, computer mouse (a hand-operated electronic device that controls the coordinates of a cursor on your computer screen as you move it around on a pad; on the bottom of the device is a ball that rolls on the surface of the pad) "a mouse takes much more room than a trackball"

Verb

- <u>S: (v) sneak, mouse, creep, pussyfoot</u> (to go stealthily or furtively) "..stead of sneaking around spying on the neighbor's house"
- S: (v) mouse (manipulate the mouse of a computer)

WordNet Search - 3.1 (princeton.edu)

Huge amounts of human labor to create

Visual Wordnet with D3.js

wordnet可视化

Methods to Represent Words

- Theories of language tend to view the data (words, sentences, documents) and abstractions over it as symbolic or categorical.
 - Uses symbols to represent linguistic information
- Machine learning algorithms built on optimization rely more on continuous data.
 - Uses floating-point numbers (vectors)

How to enable machines to understand words?

One-Hot Word Vector

One-hot vector (独热向量) $w \in R^{|V|}$

- Sparse
- Expensive
- Hard to compute word relationships

```
expert [0 0 0 1 0 0 0 0 0 0 0 0 0 0]
skillful [0 0 0 0 0 0 0 0 0 0 0 0 0]
```

One-Hot Word Vector

Use word-word co-occurrence counts to represent the meaning of words!

$$P(w_1, w_2, ...w_n) = \prod_{i=1}^{n} P(w_i | w_{i-1})$$

$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

- dog = the 10th word
- cats = the 118th word

Each word is just a string or indices w_i in the vocabulary list

Distributional Hypothesis

Distributional hypothesis:

Words that occur in similar contexts tend to have similar meanings.

(J.R.Firth 1957)

- "You shall know a word by the company it keeps"
- One of the most successful ideas of modern statistical NLP!

When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window).

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

These context words will represent "banking".

Example

What does "Ong Choy" mean?

- Suppose you see these sentences:
 - Ong Choy is delicious sautéed with garlic
 - Ong Choy is superb over rice
 - Ong Choy leaves with salty sauces
- And you've also seen these:
 - ... water spinach sautéed with garlic over rice
 - Chard stems and leaves are delicious
 - Collard greens and other salty leafy greens

空心菜; 通菜

Model of Meaning Focusing on Similarity

- Each word = a vector
 - Similar words are "nearby in space"
 - The standard way to represent meaning in NLP

```
not good
                                                            bad
                                                  dislike
                                                                worst
                                                 incredibly bad
      now
                     are
                                                                   worse
               you
than
                                        incredibly good
                            very good
                    amazing
                                       fantastic
                                                 wonderful
               terrific
                                    nice
                                   good
```

Sparse vs Dense Vectors

- The vectors in the word-word occurrence matrix are
 - Long: vocabulary size
 - Sparse: most are 0's
- Alternative: we want to represent words as short (50-300 dimensional) & dense (real-valued) vectors
 - The basis for modern NLP systems

$$v_{\text{cat}} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\text{dog}} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

$$v_{\text{the}} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\text{language}} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Why Dense Vectors?

- Short vectors are easier to use as features in ML systems
- Dense vectors generalize better than explicit counts (points in real space vs points in integer space)
- Sparse vectors can't capture higher-order co-occurrence
 - w_1 co-occurs with "car", w_2 co-occurs with "automobile"
 - They should be similar but they aren't, because "car" and "automobile" are distinct dimensions
- In practice, they work better!

Word Embeddings

• Word embeddings = Learned representations from text for representing words

Input: a large text corpora, V, d

- V: a pre-defined vocabulary
- d: dimension of word vectors (e.g. 300)

Output
$$f: V \to \mathbb{R}^d$$

$$v_{\text{cat}} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\text{dog}} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

$$v_{\text{the}} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\text{language}} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector Each coordinate/dimension of the vector doesn't have a particular interpretation

Word Embeddings

They have some nice properties

Male-Female

Verb tense

$$v_{\rm man} - v_{\rm woman} \approx v_{\rm king} - v_{\rm queen}$$

 $v_{\rm Paris} - v_{\rm France} \approx v_{\rm Rome} - v_{\rm Italy}$

Country-Capital

Word analogy test: $a : a^* :: b : b^*$

$$b^* = \arg\max_{w \in V} \cos(e(w), e(a^*) - e(a) + e(b))$$

Word2vec

- Key idea: Use each word to predict other words in its context
 - A classification problem
- Assume that we have a large corpus $w_1, w_2, ..., w_T \in V$
- Context: a fixed window of size 2m (m = 2 in the example)

Word2vec

OUTPUT

Assumption: words under different context have the same vector

Two word2vec algorithms:

- Skip-gram: p(c|w)
- Continuous bag of words (CBOW): p(w|c)

- Context: c
- Target word: w

SUM

PROJECTION

INPUT

w(t-2)

Skip-Gram Objective

- Assume that we have a large corpus $w_1, w_2, ..., w_T \in V$
- Context: a fixed window of size 2m (m = 2 in the example)
- For each word in the corpus

Convert the training data into:

(into, problems)
(into,turning)
(into,banking)
(into, crises)
(banking, turning)
(banking, into)
(banking, crises)
(banking, as)

. .

Our goal is to find parameters that can maximize

 $P(\text{problems} \mid \text{into}) \times P(\text{turning} \mid \text{into}) \times P(\text{banking} \mid \text{into}) \times P(\text{crises} \mid \text{into}) \times P(\text{turning} \mid \text{banking}) \times P(\text{into} \mid \text{banking}) \times P(\text{crises} \mid \text{banking}) \times P(\text{as} \mid \text{banking}) \times P(\text{as} \mid \text{banking}) \times P(\text{crises} \mid \text{b$

Skip-Gram Objective

• For each word w_t in the corpus, we predict context words within context size m, given center word w_t :

all the parameters to be optimized
$$\mathcal{L}(\theta) = \prod_{t=1}^{T} \prod_{-m < j < m, j \neq 0} P(w_{t+j} \mid w_t; \theta)$$

 Usually, we optimize the model by minimizing the (average) negative log likelihood

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{1}^{T} \sum_{-m \le j \le m, j \ne 0} \log P(w_{t+j} | w_t; \theta)$$

• Where T is the sentence length, $t + j \in [1, T]$

What is the difference between "likelihood" and "probability"? (stackexchange.com)

Modeling the Probability

- Use two sets of vectors for each word in the vocabulary
 - $u_a \in \mathbb{R}^d$, vector for center word $a \in V$
 - $v_b \in \mathbb{R}^d$, vector for context word $b \in V$
- Use inner product $(u_a \cdot v_b)$ and <u>softmax</u> to measure how likely word a appears with context word b

$$P(w_{t+j} | w_t) = \frac{\exp(u_{w_t} \cdot v_{w_{t+j}})}{\sum_{k \in V} \exp(u_{w_t} \cdot v_k)}$$

 $P(\cdot \mid a)$ is a probability distribution defined over V: $\sum_{w \in V} P(w \mid a) = 1$

A 4-dimensional embedding

•••

Skip-Gram Objective

· Optimize the model by minimizing the (average) negative log likelihood

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{1}^{T} \sum_{-m \le j \le m, j \ne 0} \log P(w_{t+j} | w_t; \theta)$$

- Here θ is the model parameter set
- The model has 2d|V| parameters
- Each word has two vectors, why?
 - As word a is not likely to appear in its context, thus p(a|a) should be low.
 - This is not the case when each word has one vector, as (u_a, u_a) is always 1.
- After trained, we usually use the center word vector u_a , or concatenate them.
- The model parameters can be optimized with SGD, etc.

Continuous Bag of Words (CBOW)

$$L(\theta) = \prod_{t=1}^{T} P(w_t \mid \{w_{t+j}\}, -m \le j \le m, j \ne 0)$$

$$\bar{\mathbf{v}}_t = \frac{1}{2m} \sum_{-m \le j \le m, j \ne 0} \mathbf{v}_{t+j}$$

$$P(w_t \mid \{w_{t+j}\}) = \frac{\exp(\mathbf{u}_{w_t} \cdot \bar{\mathbf{v}}_t)}{\sum_{k \in V} \exp(\mathbf{u}_k \cdot \bar{\mathbf{v}}_t)}$$

[1301.3781] Efficient Estimation of Word Representations in Vector Space (arxiv.org)

15.1. Word Embedding (word2vec) — Dive into Deep Learning

Available Dense Embeddings

- Word2vec (Mikolov et a. 2013)
 - https://code.google.com/archive/p/word2vec/
- GloVe (Pennington et al. 2014)
 - http://nlp.stanford.edu/projects/glove/
- Fasttext (Bojanowsi et al. 2017)
 - http://www.fasttext.cc/
- Tencent Al Lab Embedding
 - https://ai.tencent.com/ailab/nlp/en/embedding.html

Word2Vec Coding Practice

- Python package <u>gensim</u>
- <u>Tutorial for gensim</u>

```
import gensim.downloader as api
word_vectors = api.load("glove-wiki-gigaword-50")
word_vectors.most_similar("glass")
# Check the "most similar words", using the default "cosine
similarity" measure.

result = word_vectors.most_similar(positive=['woman', 'king'],
negative=['man'])
most_similar_key, similarity = result[0] # look at the first match
print(f"{most_similar_key}: {similarity:.4f}")
# >>> queen: 0.7699
```

Data Preprocess

- Language identification
- Filtering
 - Topic
 - Content
 - Length
- Tokenization
 - Subword
 - Chinese vs. English

85 美国 65145 86 就 64294

87个64214

88 经济 64120

89 并 64022

90 should 63358

91 us 62842

Data Preprocess

- Subword
 - Byte-pair-encoding (BPE)
 - WordPiece
 - SentencePiece

Neural Machine Translation of Rare Words with Subword Units - ACL Anthology

```
# echo "I saw a girl with a telescope."
_I _saw _a _girl _with _a _ te le s c o pe
```

- Note:
 - phone and __phone are two different tokens.

Tokenizers: How machines read (floydhub.com)

LLM Tokenizers Explained: BPE Encoding, WordPiece and SentencePiece

Data Preprocess

SentencePiece toolkit

```
# Train a sentencepiece model on text corpus
spm_train --input=data/botchan.txt --model_prefix=myspm --vocab_size=1000

# Tokenize a sentence using the trained sentencepiece model
echo "I saw a girl with a telescope." | spm_encode --model=myspm.model
# >>> _I _saw _a _girl _with _a _ te le s c o pe .

# Tokenize a sentence into token ids using the trained sentencepiece model
echo "I saw a girl with a telescope." | spm_encode --model=myspm.model --output_format=id
# >>> 9 459 11 939 44 11 4 142 82 8 28 21 132 6

# Detokenize into text sentence from token ids
echo "9 459 11 939 44 11 4 142 82 8 28 21 132 6" | spm_decode --model=myspm.model --input_format=id
# >>> I saw a girl with a telescope.
```

Language Modeling

• Language Modeling is the task of predicting what word comes next

The students opened their _

• Given a sequence of words $x_1, x_2, ..., x_{i-1}$, compute the probability distribution of the next word x_i ($x_i \in V = \{w_1, w_2, ..., w_{|V|}\}$):

$$p(x_t \mid x_{< t})$$

- N-gram Language Model
 - The probability of the next word depends only on a fixed size window (n-1) of previous words.

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=2}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

Language Modeling

Calculating the probability of a sentence

$$p(X) = \prod_{i=1}^{L} p(x_i | x_{< i})$$

- We can use LM to
 - Score a sentence
 - Generate a sentence

while didn't choose end-of-sentence symbol:
 calculate probability
 sample a new word from the probability distribution

Statistical Language Modeling

Evaluating Language Models

The standard evaluation metric for Language Models is perplexity.

$$PPL = 2^{-l}$$

$$l = \frac{1}{T} \sum_{t=1}^{T} \log p_{\theta}(x_t | x_{\leq t})$$

In some cases, it is also written as

$$\text{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\text{\tiny LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T} \qquad \text{Normalized by number of words}$$

Inverse probability of corpus, according to Language Model

Evaluating Language Models

• This is equal to the exponential of the cross-entropy loss $\mathcal{L}(\theta)$

$$\mathcal{L}(\theta) = CE(y_t, \widehat{y_t}) = -\sum_{i=1}^{|V|} \widehat{y}_t^i \log y_t^i$$

- \hat{y}_t^i is a one-hot vector that stands for ground-truth token distribution
- PPL score is also equivalent to the exponentiation of the cross-entropy between the data and model predictions. [link]
- Lower perplexity is better

Cross-Entropy Loss

- Useful when training a classification problem with multiple classes
 - The accuracy tells the model whether or not a particular prediction is correct
 - The cross-entropy loss gives information on how correct a particular prediction is
- Given a true distribution t and a predicted distribution p, the cross entropy between them is given by the following equation

$$\mathcal{L} = -\sum_{i \in V} t(i) \log p(i)$$

- Where the true distribution t = [0,0,...0,1,0,...,0], p = [0.02,0.07,...,0.67,0.12,...,0.01]
- Code for cross_entropy loss fairseq

Cross-Entropy Loss

Source sequence:

Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

Target sequence:

I saw a cat on a mat <eos>
previous tokens we want the model to predict this

Recurrent Neural Network (RNN)

• A family of neural networks that can handle variable length inputs

A function: $\mathbf{y} = RNN(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \in \mathbb{R}^h$, where $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$

Core idea: apply the same weights repeatedly at different positions!

Vanilla RNN

- Define the RNN network as a function $y = \text{RNN}(x_1, x_2, ..., x_n)$, where $y \in \mathbb{R}^h, x_i \in \mathbb{R}^h$
- Define the hidden state h_t as

$$h_t = f(h_{t-1}, x_t), h_t \in R^h$$

- Where h_0 is the initial state and can be set as 0
- For vanilla RNN,

$$h_t = g(Wh_{t-1} + Ux_t + b), h_t \in R^h$$
$$y = W_oh_t + b_o$$

- Where, g(x) is a non-linear function, e.g., tanh, ReLU,
- $W \in \mathbb{R}^{h \times h}$, $U \in \mathbb{R}^{h \times h}$, $b \in \mathbb{R}^h$

Vanilla RNN

• Key idea: apply the same weights W, U, b repeatedly

$$h_t = g(Wh_{t-1} + Ux_t + b)$$

RNN vs Feedforward NN

Feed-Forward Neural Network

$$h_1 = g(U_1 x + b_1)$$

$$h_2 = g(U_2h_1 + b_2)$$

Recurrent Neural Network

$$h_t = g(Wh_{t-1} + Ux_t + b)$$

Vanilla RNN: Pros and Cons

- Advantages:
 - Can process any length input
 - Computation for step t can (in theory) use information from many steps back
 - Model size doesn't increase for longer input context
- Disadvantages:
 - Recurrent computation is slow (can't parallelize)
 - In practice, difficult to access information from many steps back (Optimization issue)

Problems of Vanilla RNN

- Gradient exploding problem
 - Gradients become too large
 - model will become difficult to converge (unstable)
 - One solution: gradient clipping, take a step in the same direction but a smaller step
- Gradient vanishing problem
 - Gradients become too small
 - Difficult to know which direction the parameters should move to
 - Model can't capture long-term dependencies
 - Model may capture a wrong recent dependency

More reading about optimization problem in the Deep Learning book

cs224n-2018-lecture9-vanishing_gradient

RNN Variants: LSTM

- Long Short-Term Memory RNN (LSTM)
 - Proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients problem
- Short-term memory
 - Recall specific information about anything for a brief period
 - Only last for about 30 seconds ~ minutes
- Long-term memory
 - Last for minutes to years

System 2 deep learning: The next step toward artificial general intelligence -Benjio

RNN Variants: LSTM

- Hidden state as h_t and cell state as c_t
- c_t stores long-term information
 - Changes very little step to step
- *h_t* stores short-term information
 - Changes all the time

Input gate (how much to write):

$$\mathbf{i}_t = \sigma(\mathbf{W}^i \mathbf{h}_{t-1} + \mathbf{U}^i \mathbf{x}_t + \mathbf{b}^i) \in \mathbb{R}^h$$

Forget gate (how much to erase):

$$\mathbf{f}_t = \sigma(\mathbf{W}^f \mathbf{h}_{t-1} + \mathbf{U}^f \mathbf{x}_t + \mathbf{b}^f) \in \mathbb{R}^h$$

Output gate (how much to reveal):

$$\mathbf{o}_t = \sigma(\mathbf{W}^o \mathbf{h}_{t-1} + \mathbf{U}^o \mathbf{x}_t + \mathbf{b}^{(o)}) \in \mathbb{R}^h$$

New memory cell (what to write):

$$\mathbf{g}_t = \tanh(\mathbf{W}^g \mathbf{h}_{t-1} + \mathbf{U}^g \mathbf{x}_t + \mathbf{b}^g) \in \mathbb{R}^h$$

Final memory cell: $c_t = f_t \odot c_{t-1} + i_t \odot g_t$

Final hidden cell: $h_t = o_t \odot \tanh(c_t)$

Output $y = MLP(h_t)$

<u>Understanding LSTM Networks -- colah's blog</u>

<u>LSTM — PyTorch 2.0 documentation</u>

RNN Variants: GRU

- Gated Recurrent Unit (GRU)
 - Introduced by Kyunghyun Cho et al. in 2014
- Simplified 3 gates to 2 gates: reset gate and update gate, without an explicit cell state

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

Kyunghyun Cho
Bart van Merriënboer Caglar Gulcehre
Université de Montréal

Dzmitry Bahdanau
Jacobs University, Germany
d.bahdanau@jacobs-university.de

firstname.lastname@umontreal.ca

d.bandanau@jacobs-university.d

Fethi Bougares Holger Schwenk
Université du Maine, France Univ

k Yoshua Bengio
Université de Montréal, CIFAR Senior Fellow

firstname.lastname@lium.univ-lemans.fr

find.me@on.the.web

GRU — PyTorch 2.0 documentation

Gated Recurrent Unit (GRU)

Reset gate:

$$\mathbf{r}_t = \sigma(\mathbf{W}^r \mathbf{h}_{t-1} + \mathbf{U}^r \mathbf{x}_t + \mathbf{b}^r)$$

• Update gate:

$$\mathbf{z}_t = \sigma(\mathbf{W}^z \mathbf{h}_{t-1} + \mathbf{U}^z \mathbf{x}_t + \mathbf{b}^z)$$

New hidden state:

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}(\mathbf{r}_t \odot \mathbf{h}_{t-1}) + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

merge input and forget gate!

RNN Language Model

Language modeling

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times ... \times P(w_n \mid w_1, w_2, ..., w_{n-1})$$

$$= P(w_1 \mid \mathbf{h}_0) \times P(w_2 \mid \mathbf{h}_1) \times P(w_3 \mid \mathbf{h}_2) \times ... \times P(w_n \mid \mathbf{h}_{n-1})$$

We select the output token by

$$\hat{y} = \operatorname{softmax}(W_o h_t + b_o) \in R^{|V|}$$

- Weight tying
 - Input word embedding E
 - Output embedding W_o
 - Set $E = W_0 \in R^{|V| \times d}$

Multi-layer RNNs

- In practice, using 2 to 4 layers is common (usually better than 1 layer)
- Transformer networks can be up to 24 layers with lots of skip-connections

The hidden states from RNN layer are the inputs to RNN layer

Multi-layer RNNs

Pytorch LSTM documentation

Examples:

```
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
```


Bidirectional RNN

- Expect the hidden state contains information from both side
- For RNN language modeling

$$\overrightarrow{\mathbf{h}}_{t} = f_{1}(\overrightarrow{\mathbf{h}}_{t-1}, \mathbf{x}_{t}), t = 1, 2, \dots n$$

$$\overleftarrow{\mathbf{h}}_{t} = f_{2}(\overleftarrow{\mathbf{h}}_{t+1}, \mathbf{x}_{t}), t = n, n - 1, \dots 1$$

$$\mathbf{h}_{t} = [\overleftarrow{\mathbf{h}}_{t}, \overrightarrow{\mathbf{h}}_{t}] \in \mathbb{R}^{2h}$$

Bidirectional RNN

- For text classification tasks:
 - Concatenate the last hidden vectors in two directions
 - Or take the mean/max over all the hidden vectors

Different Types of Sequence Modeling Tasks

<u>Translation with a Sequence to Sequence Network and Attention — PyTorch Tutorials</u>

Sequence-to-Sequence Generation with RNN

- Many-to-many sequence modeling tasks
- Challenge in language translation:
 - Memorize whole input sentence in one hidden state

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry BahdanauJacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*

Université de Montréal

Input sentence

RNN Search

- "... allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word ..."
- Attention mechanism
 - Assign attention weight to each word, to know how much "attention" the model should pay to each word (i.e., for each word, the network learns a "context")

Figure 2: The BLEU scores of the generated translations

(Here 30/50 means the train set contains sentences up to 30/50 words.

- Attention provides a solution to the bottleneck problem
- Use the attention distribution to take a weighted sum of the encoder hidden states.
- The attention output mostly contains information from the hidden states that received high attention.

- We have encoder hidden states $h_1, h_2, ..., h_S$
- On timestep t, we have decoder hidden state $s_1, s_2, ..., s_t$
- We get the attention scores for this step $e_t = [s_t^T h_1, s_t^T h_2, ..., s_t^T h_S]$
- We take softmax to get the attention distribution α_t for this step
 - This is a probability distribution and sums to 1 $\alpha_t = \operatorname{softmax}(e_t)$

$$\operatorname{Softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j} \exp(x_j)}$$

 We take a weighted sum of the encoder hidden states to get the attention output (context vector)

$$c_{tx} = \sum_{i=1}^{S} \alpha_{t,i} h_i$$

• Get attention vector a_t by

$$a_t = \tanh(W_c[c_{tx}; s_t])$$

• Predict y_t using a_t

$$p(y_t|y_{< t}, X; \theta) = \operatorname{softmax}(W_o a_t)$$

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 {lmthang, hyhieu, manning}@stanford.edu

"Luong" attention

- Another score metric
 - Attention weights as $score(s_t, h_i) = v_a^T \tanh(W_a[s_t; h_i])$
- Predict y_t using h_t
 - $p(y_t|y_{< t}, X; \theta) = \operatorname{softmax}(W_o h_t)$

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*
Université de Montréal

Bahdanau attention

Visualization of Attention Score

General Attention Definition

- Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query.
 - For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values).
- The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.

Name	Alignment score function	Citation	
Content-base attention	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \operatorname{cosine}[oldsymbol{s}_t,oldsymbol{h}_i]$	Graves2014	the attention score
Additive(*)	$\mathrm{score}(oldsymbol{s}_t, oldsymbol{h}_i) = \mathbf{v}_a^ op anh(\mathbf{W}_a[oldsymbol{s}_{t-1}; oldsymbol{h}_i])$	Bahdanau2015	
Location-Base	$lpha_{t,i} = \mathrm{softmax}(\mathbf{W}_a s_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015	
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015	Attention? Attention! Lil'Log
Dot-Product	$\mathrm{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015	
Scaled Dot- Product(^)	$\mathrm{score}(s_t,h_i) = \frac{s_t^\top h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017	

Further Reading

- Learning Word Embedding | Lil'Log
- On word embeddings Part 1
- A Recipe for Training Neural Networks
- 深度学习科研, 如何高效进行代码和实验管理? 知乎

Thank you