- 6.1 Сила тока в проводнике равномерно нарастает от $I_0 = 0$ до I = 3 А в течение времени t = 10 с. Определить заряд Q, прошедший в проводнике.
- 6.2 По медному проводнику сечением $0.88 \, \text{мm}^2$ течет ток $80 \, \text{мA}$. Найдите среднюю скорость упорядоченного движения электронов вдоль проводника, предполагая, что на каждый атом меди приходится один свободный электрон. Плотность меди $\rho = 8.9 \, \text{г/сm}^3$.
- 6.3 Определите суммарный импульс электронов в прямом проводе длиной $l=500\,\mathrm{M}$, по которому течет ток $l=20\,\mathrm{A}$.
- 6.4 Определите общее сопротивление между точками A и B цепи, представленной на рисунке, если $R_1=1$ Ом, $R_2=3$ Ом, $R_3=R_4=R_6=2$ Ом, $R_5=4$ Ом.

6.5 Определите сопротивление проволочного каркаса, имеющего форму куба, если он включен в цепь между точками A и B. Сопротивление каждого ребра каркаса r=3 Ом.

6.6 Батарея с э.д.с. $\epsilon=20$ В, амперметр и реостаты с сопротивлениями R1 и R2 соединены последовательно. При выведенном реостате R1 амперметр показывает ток I=8 А, при введенном реостате R1 — ток I=5 А. Найти сопротивления R1 и R2 реостатов и падения потенциала U_1 и U_2 на них, когда реостат R1 полностью включен.

6.7 Два источника тока ($\varepsilon_1 = 8$ В, $r_1 = 2$ Ом, $\varepsilon_2 = 6$ В, $r_2 = 1.5$ Ом) и реостат (R = 10 Ом) соединены, как показано на рисунке, вычислить силу тока I, текущего через реостат.

6.8 Определить силу тока I_3 в резисторе сопротивлением R_3 (рис. 19.9) и напряжение (U_3) на концах резистора, если $\varepsilon_1=4$ В, $\varepsilon_2=3$ В, $R_1=2$ Ом, $R_2=6$ Ом, $R_3=1$ Ом. Внутренними сопротивлениями источников тока пренебречь

6.9 На рисунке $\varepsilon_1 = 10$ В, $\varepsilon_2 = 20$ В, $\varepsilon_3 = 40$ В, а сопротивления $R_1 = R_2 = R_3 = R = 10$ Ом. Определить силу токов, протекающих через сопротивления и через источник ЭДС. Внутреннее сопротивление источников ЭДС не учитывать.

6.10 Найти ток через резистор R3. Если номиналы резисторов равны: R1=300 Ом, R2=200 Ом, R3=100 Ом, R4=400 Ом, R5=100 Ом. ЭДС одинаковые и равны 10 В.

6.11 Найти ток через резистор R2. Если номиналы резисторов равны: R1=100 Ом, R2=200 Ом, R3=100 Ом, R4=400 Ом, R5=100 Ом. ЭДС одинаковые и равны 11 В.

6.12 Найти ток через резистор R1. Если номиналы резисторов равны: R1=1 Ом, R2=500 Ом, R3=200 Ом, R4=400 Ом, R5=100 Ом. ЭДС одинаковые и равны 1 В.

6.13 Найти ток через резистор R3. Если номиналы резисторов равны: R1=100 Ом, R2=500 Ом, R3=200 Ом, R4=400 Ом, R5=100 Ом. ЭДС одинаковые и равны 200 В.

6.14 Найти ток через резистор R1. Если номиналы резисторов равны: R1=100 Ом, R2=500 Ом, R3=200 Ом, R4=400 Ом, R5=100 Ом. ЭДС одинаковые и равны 100 В.

6.15 Найти ток через резистор R3. Если номиналы резисторов равны: R1=100 Ом, R2=500 Ом, R3=200 Ом, R4=400 Ом. ЭДС одинаковые и равны 100 В.

6.16 Найти ток через резистор R4. Если номиналы резисторов равны: R1=100 Ом, R2=200 Ом, R3=200 Ом, R4=200 Ом, R5=100 Ом. ЭДС равно 10 В.

- 6.17 Какова связь между сопротивлением и проводимостью, удельным сопротивлением и удельной проводимостью?
- 6.18 В чем заключается явление сверхпроводимости? Каковы его перспективы?
- 6.19 В чем заключается физический смысл удельной тепловой мощности тока?
- 6.20 Поясните физический смысл электродвижущей силы, разности потенциалов и напряжения на участке электрической цепи.