Zahlendarstellung

Benjamin Tröster

Hochschule für Technik und Wirtschaft Berlin

1. Dezember 2021

Fahrplan

Einleitung

Rationale Zahlen

Heute

- Coronabedingt: Sprung von Schaltkreisen und Transistoren zur Zahlendarstellung
- Ziel: Wir bauen ein Rechenwerk (ALU) aus Schaltkreisen mithilfe von Gattern
- ▶ Zwischenziel: Wie können wir die Zahlen im Rechner darstellen?
- lacktriangle Darstellung der natürlichen Zahlen \mathbb{N}
- lacktriangle Darstellung der ganzer Zahlen \mathbb{Z}

Die rationalen Zahlen Q (anschaulich)

$$\mathbb{Q} = \left\{ rac{\mathsf{a}}{\mathsf{b}} | \mathsf{a}, \mathsf{b} \in \mathbb{Z}, \mathsf{b}
eq 0
ight\}$$

Bruchrechenregeln

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'} \qquad \qquad \frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'}$$

Konsequenz

$$\frac{a}{b} = \frac{a'}{b'} \qquad \Leftrightarrow \qquad ab' = a'b$$

Die rationalen Zahlen \mathbb{Q} (konstruktiv)

$$\mathbb{Q} = \left\{ \frac{\mathsf{a}}{\mathsf{b}} | \mathsf{a}, \mathsf{b} \in \mathbb{Z}, \mathsf{b} \neq 0 \right\}$$

Problem

▶ Im Allgemeinen hat $x \cdot b = a$ keine Lösung $x \in \mathbb{Z}$.

Konstruktion von Q

- ► Abschluss von Z unter Division
- ightharpoonup Äquivalenzklassen von Paaren (a,b) mit $a,b\in\mathbb{Z},b\neq0$

Darstellung von $\mathbb Q$

Theorem

Jede Zifferndarstellung von $\mathbb N$ induziert eine Zifferndarstellung von $\mathbb Q$. Ziffernmenge: $\mathcal Z \cup \{-\} \cup \{/\}$

Folgerung

▶ ℚ ist abzählbar

Beispiele

- Dezimalsystem
- Dualsystem

q-adische Brüche

$$z_n \dots z_0, z_{-1} \dots z_{-m} = \sum_{-m}^n z_i q^i, \qquad z_i \in \{0, \dots, q-1\}, n, m \in \mathbb{N}$$

Beispiele:

- ightharpoonup Dezimalbrüche: q=10
- ▶ Dualbruch: q = 2

Theorem

Jeder Dualbruch ist ein Dezimalbruch, nicht umgekehrt.

Theorem

Jeder q-adische Bruch ist eine rationale Zahl, nicht umgekehrt.

Periodische Dezimalbrüche

Beispiel:

Periodischer Dezimalbruch (Periodenlänge 3): $0,1234234\ldots=0,\overline{1234}$ Geometrische Reihe

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-(m+1)}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}$$

Theorem

Jeder periodische Dezimalbruch ist eine rationale Zahl und umgekehrt.

Eindeutigkeit

- ▶ Im Allgemeinen ist die Darstellung nicht eindeutig: $1, \overline{0} = 0, \overline{9}$
- ▶ Eindeutigkeit erzwingen: $\overline{0}$ ist verboten.

Praktische Realisierung im Rechner

- Darstellung als Paar von integer-Zahlen
 - ▶ integer = Ganzzahldarstellung im Rechner
 - Länge muss variable sein
 - ► Aufwand für Rechenoperationen nicht a priori bekannt (Kürzen!)
- ► Keine standardisierte Hardware-Unterstützung
 - Spezialanwendungen (Schnitterkennung in der Computergraphik)
 - ► Symbolik-Programme (Maple, Mathematica, ...)
 - Aufwendig und langsam

Quellen I

