Universidade Federal da Bahia

Departamento de Engenharia Elétrica e Computacação - DEEC

Relatório da Etapa I - Trabalho de Curto-Circuito - 2021.1

Discentes: Henrique Nunes Poleselo, Leonardo Lima, Miguel Damásio

Docente: Daniel Barbosa

Conteúdo

1	Esp	ecificações	1
2	Des	envolvimento dos Scripts	2
3	Sim	ulações	4
	3.1	Determinação do Disjuntor 52-1 na Barra 4	4
	3.2	Impedância do transformador TR03T1	4
	3.3	Determinação da potência de curto-circuito na barra 8	5
	3.4	Alteração da Configuração dos Transformadores	5

1 Especificações

Durante esta primeira etapa do trabalho de curto-circuito utilizou-se o software Anafas para validar os dados calculados pelos scripts em Python que foram desenvolvidos. O sistema elétrico de potência que foi analisado em questão é mostrado na Figura 1. Sendo os requisitos para esta primeira etapa:

- Diagrama de de sequência positiva;
- Matriz de impedância de base de sequência positiva;
- As tensões de pós-falta (Va, Vb, Vc) em todas as barras em Volts e por unidade, nas suas respectivas referências, e as correntes, em Ampères e por unidade, nas linhas de transmissão (Ia, Ib, Ic) circunvizinhas para os seguintes curtos-circuitos:
 - Trifásico na barra da SE4 345kV com impedância de falta $Z_{fa}=0,467\Omega$
 - Trifásico na barra da SE6 138kV com impedância de falta $Z_{fb}=1,187\Omega$
 - Trifásico na barra da SE7 13,8kV com impedância de falta $Z_{fc}=1,005\Omega$

Figura 1: Representação do SEP que foi analisado.

As tensões de pré-falta foram fornecidas:

Barra	Módulo(PU)	Angulo
1	1.0394	-13.8148°
2	1.0266	-13.8715°
3	1.0346	-14.0869^{Ω}
4	1.0222	-13.6568°
5	1.0166	-20.6902°
6	1.0161	-21.1685°
7	0.9891	-26.0122^{0}
8	1.0136	-12.2356°
9	1.0207	-8.8582°

Tabela 1: Tabela das tensões de pré-falta.

2 Desenvolvimento dos Scripts

O ponto de partida para o cálculo das tensões de pós-falta é primeiro determinar o diagrama de sequência positiva, também conhecido como a matriz ZBarra, que se encontra na Figura 9 em anexo a este relatório, a mesma representa as relações de impedância existentes entre as barras do sistemas elétrico de potência. O script que realiza o cálculo referente ao ZBarra se encontra em anexo a este relatório, com o nome calc-zbarra.py. É importante salientar que para a realização da etapa 1, a resolução foi dividida em dois diferentes programas, portanto é necessário rodar primeiramente o calc-zbarra.py, que gerará um arquivo CSV com o zbarra.csv que é importado no segundo programa calc-tensao-pos-falta.py, que realiza o cálculo das correntes de falta, tensões pós-falta e correntes circunvizinhas.

O passo a passo para o cálculo da matriz ZBarra pode está descrito no respectivo código. Usou-se a impedância equivalente vista da barra $Z_{1e_q}=0,05719$ com ângulo de $85,20976^{\circ}$ e a potência de curto circuito trifásico, $S_c c_3$, ambos fornecidos nas tabelas de instrução do trabalho. $S_c c_3=29761,6736\,W$ com ângulo de $86,9873^{\circ}$.

Para o cálculo das tensões de pós falta foi necessário inicialmente determinar as correntes de falta, visto que a variação das tensões nas barras é resultado da corrente de falta passante entre elas, logo da matriz de impedâncias tem-se que:

$$V_{pos} = V_{pref} + Z_{kk} \cdot I_{f_k} \tag{1}$$

Onde V_{pos} representa a tensão de pós-falta, V_{pref} a tensão de pré-falta, Z_{kk} o

elemento da matriz ZBarra (onde o k representa a barra em que a falta ocorre) e I_{f_k} a corrente de falta. Para computar a tensão de pós-falta, é necessário primeiro calcular a corrente de falta. Tal corrente é calculada pela expressão (2) abaixo aplicada à barra onde ocorreu a falta:

$$I_{f_k} = \frac{V_{pref}}{Z_{f_k} + Z_{t_{hk}}} \tag{2}$$

Lembrando que as tensões de pré-falta V_{pref} constam na Tabela 1, já as resistências de falta Z_{f_k} foram dadas também e são referenciadas tanto no script quanto neste relatório como sendo Z_{fa} , Z_{fb} e Z_{fc} , cada uma representando a resistência de falta nas barras 4, 6 e 7, respectivamente. O termo $Z_{t_{hk}}$ é impedância de Thévenin vista da barra do curto, o mesmo pode ser obtido por meio do elemento Z_{kk} da matriz ZBarra, portanto, a equação é reescrita da forma:

$$I_{f_k} = \frac{V_{pref}}{Z_{f_k} + Z_{kk}} \tag{3}$$

Por meio do script desenvolvido em Python, obteve-se a seguinte saída do programa, *i.e*: as seguintes correntes de falta:

Obtidas as correntes de falta relativas aos curtos nas respectivas barras e feitas as devidas defasagens em relação aos transformadores existentes no SEP é possivel obter as tensões de pós-falta em todas as barras do sistema, a tabela que contem as tensões pós-falta calculadas pode ser encontrada na Figura 10.

Para o cálculo das correntes circunvizinhas utiliza-se a Lei de Ohm, uma vez que estas são calculadas por meio da diferença entre as tensões de pós-falta presentes em barras adjacentes a barra do curto, divididas pelas impedâncias das linhas de transmissão ou pela reatância do transformador, a depender do caso. A tabela que contém os cálculos feitos no script pode ser encontrado na Figura 11. O cálculo detalhado foi comentado devidamente no script calc-tensao-pos-falta.py.

3 Simulações

3.1 Determinação do Disjuntor 52-1 na Barra 4

Para o dimensionamento do disjuntor 52-1, foi especificado que a tensão nominal do disjuntor é a tensão pré-falta na barra 4 e a corrente nominal do disjuntor será determinada pela corrente de curto. Sendo a barra 4 diretamente ao terra, sendo o este o pior caso. Conforme mostrado na Figura 2, os parâmetros comerciais devem ser de 380kV e 5kA.

Figura 2: Corrente máxima de curto na barra 4.

3.2 Impedância do transformador TR03T1

Através das simulações, uma falta trifásica na barra 7 sem impedância, observou-se que quando o transformador TR03T1 tem a sua reatância alterada para aproximadamente 28% PU, a corrente de falta na barra 7 alcança o valor de aproximadamente 8kA, de forma que conforme ao diminuir esta porcentagem a corrente aumenta.

Figura 3: Simulação da falta trifásica na barra 7 sem impedância com o transformador em 28% PU.

3.3 Determinação da potência de curto-circuito na barra 8

Primeiro passo foi determinar a capacidade de interrupção do disjuntor na barra 8 através da simulação do curto citcuio trifásico sem impedança na mesma, no caso 4.9kA, como mostrado na Figura 4.

Foi inserido o gerador na barra 8 e determinou-se a sua impedânca equivalente que é capaz de fazer com que a sua corrente de curto trifásico na barra 8 aumente em 20%. Conforme as Figuras 5 e 6, é possível perceber que esta impedância é de 0.5% de resistência e e 17.5%. A partir desta impedância foi determinado que a potência de curto-circuito trifásica é de 587MVA, atraves da equação:

$$S_c c_3 = \frac{V_{pref}^2}{conj Z_{eq}} \tag{4}$$

3.4 Alteração da Configuração dos Transformadores

A Figura 7 ilustra o circuito base com a falta trifásica com impedância na barra 7 com os transformadores configurados em Dy1. Já a Figura 8 com as mesmas configurações anteriores, só que com o transformador na configuração Yyo.

Figura 4: Pior caso: máxima corrente de curto na barra 8.

Atraves da simulação pode-se perceber que o módulo das tensões nas barras permanecem inalterados, já que este não depende da configuração dos transformadores. Já o ângulo das tensões pós-falta nas barras é alterado, uma vez que o grupo vetorial dos transformadores foi alterado, alterando-se assim os defasamentos entre barras.

Figura 5: Impedância do gerador utilizada para o cálculo da potência de curtocircuito máxima.

Figura 6: Simulação de curto-circuito trifásico na barra 8 com o gerador inserido.

Figura 7: Transformador com configuração Dy1.

Figura 8: Transformador com configuração Yyo.

Zbarra														
0.002817 + 0.03764i	0.002378 + 0.02298i	0.002661 + 0.03406i	0.001449 + 0.0144i	0.001449 + 0.0144i	0.001449 + 0.0144i	0.001449 + 0.0144i	0.001038 + 0.0103i	7.978e-05 + 0.00114i	0.002661 + 0.03406i					
0.002378 + 0.02298i	0.002937 + 0.0404i	0.002572 + 0.02724i	0.001769 + 0.02531i	0.001769 + 0.02531i	0.001769 + 0.02531i	0.001769 + 0.02531i	0.001268 + 0.0181i	7.885e-05 + 0.002001i	0.002572 + 0.02724i					
0.002661 + 0.03406i	0.002572 + 0.02724i	0.005501 + 0.1899i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.00112 + 0.01221i	8.24e-05 + 0.001351i	0.00279 + 0.04036i					
0.001449 + 0.0144i	0.001769 + 0.02531i	0.001563 + 0.01707i	0.002456 + 0.0317i	0.002456 + 0.0317i	0.002456 + 0.0317i	0.002456 + 0.0317i	0.001761 + 0.02267i	0.0001178 + 0.002507i	0.001563 + 0.01707i					
0.001449 + 0.0144i	0.001769 + 0.02531i	0.001563 + 0.01707i	0.002456 + 0.0317i	0.002456 + 0.1545i	0.002456 + 0.1545i	0.002456 + 0.1545i	0.001761 + 0.02267i	0.0001178 + 0.002507i	0.001563 + 0.01707i					
0.001449 + 0.0144i	0.001769 + 0.02531i	0.001563 + 0.01707i	0.002456 + 0.0317i	0.002456 + 0.1545i	0.009494 + 0.24i	0.009494 + 0.24i	0.001761 + 0.02267i	0.0001178 + 0.002507i	0.001563 + 0.01707i					
0.001449 + 0.0144i	0.001769 + 0.02531i	0.001563 + 0.01707i	0.002456 + 0.0317i	0.002456 + 0.1545i	0.009494 + 0.24i	0.009494 + 0.4078i	0.001761 + 0.02267i	0.0001178 + 0.002507i	0.001563 + 0.01707i					
0.001038 + 0.0103i	0.001268 + 0.0181i	0.00112 + 0.01221i	0.001761 + 0.02267i	0.001761 + 0.02267i	0.001761 + 0.02267i	0.001761 + 0.02267i	0.002899 + 0.0343i	0.0001344 + 0.002749i	0.00112 + 0.01221i					
7.978e-05 + 0.00114i	7.885e+05 + 0.002001i	8.24e-05 + 0.001351i	0.0001178 + 0.002507i	0.0001178 + 0.002507i	0.0001178 + 0.002507i	0.0001178 + 0.002507i	0.0001344 + 0.002749i	0.000174 + 0.003288i	8.24e+05 + 0.001351i					
0.002661 + 0.03406i	0.002572 + 0.02724i	0.00279 + 0.04036i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.001563 + 0.01707i	0.00112 + 0.01221i	8.24e-05 + 0.001351i	0.00279 + 0.04036i					
				Yba	irra									
3.936 - 112.1i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	-2.476 + 94.68i					
0 + 0i	3.81 - 69.9i	0 + 0i	-3.556 + 39.21i	0 + 0i	-0.2533 + 30.69i									
0 + 0i	0 + 0i	0.1212 - 6.684i	0 + 0i	-0.1212 + 6.684i										
0 + 0i	-3.556 + 39.21i	0 + 0i	8.093 - 99.39i	-0 + 8.143i	0 + 0i	0 + 0i	-3.461 + 38.52i	-1.075 + 13.52i	0 + 0i					
0 + 0i	0 + 0i	0 + 0i	-0 + 8.143i	0.9568 - 19.76i	-0.9568 + 11.62i	0 + 0i	0 + 0i	0 + 0i	0 + 0i					
0 + 0i	0 + 0i	0 + 0i	0 + 0i	-0.9568 + 11.62i	0.9568 - 17.58i	-0 + 5.959i	0 + 0i	0 + 0i	0 + 0i					
0 + 0i	0 + 0i	0 + 0i	0 + 0i	0 + 0i	-0 + 5.959i	0 - 5.959i	0 + 0i	0 + 0i	0 + 0i					
0 + 0i	0 + 0i	0 + 0i	-3.461 + 38.52i	0 + 0i	0 + 0i	0 + 0i	5.085 - 55.75i	-1.624 + 17.23i	0 + 0i					
0 + 0i	0 + 0i	0 + 0i	-1.075 + 13.52i	0 + 0i	0 + 0i	0 + 0i	-1.624 + 17.23i	18.34 - 327.9i	0 + 0i					
-2.476 + 94.68i	-0.2533 + 30.69i	-0.1212 + 6.684i	0 + 0i	2.85 - 132i										

Figura 9: YBarra e ZBarra.

		#1	@13,8kV	#2	@345kV	#3	@345kV	#4	@345kV	#5	@138kV	#6	@138kV	#7	@13,8kV	#8	@345kV	#9	@345kV
Questão	Fase	[V1]	≤ V1(*)	[V2]	≤ V2(*)	[V3]	∡ V3(*)	V4	₫ V4(*)	[V5]	≤ V5(*)	[V6]	∡ V6(')	[V7]	≤ V7(*)	V8	∡ V8(*)	V9	∡ V9(*)
3a PU	A	0,6753	-63,6247	0,2130	10,9627	0,6248	-70,4745	0,0126	68,5185	0,6590	-122,1955	0,6669	-122,4703	1,8440	100,1211	0,2834	19,6372	0,9401	21,3435
kV	A	9,3193	-63,6247	73,4807	10,9627	2,5993	-70,4745	4,3486	-68,5185	90,9461	-122,1955	92,0338	-122,4703	25,4469	100,1211	97,7596	19,6372	324,3516	21,3435
3b PU	A	0,9792	-13,2329	0,9439	50,0958	0,9631	-13,4447	0,9204	51,5200	0,3653	-24,9113	0,0263	-107,4185	1,4931	111,4959	0,9416	51,4954	1,0128	51,5374
kV	A	13,5128	-13,2329	325,6492	50,0958	4,0066	-13,4447	317,5394	51,5200	50,4108	-24,9113	3,6344	-107,4185	20,6041	111,4959	324,8521	51,4954	349,3994	51,5374
3c PU	A	1,0274	77,1555	1,0230	138,1980	1,0202	77,0596	1,0184	138,9523	0,8662	79,6710	0,8027	86,6791	0,7739	-153,2118	1,0115	139,6475	1,0205	141,3482
kV	A	14,1787	77,1555	352,9201	138,1980	4,2439	77,0596	351,3391	138,9523	119,5323	79,6710	110,7735	86,6791	10,6802	-153,2118	348,9618	139,6475	352,0783	141,3483
		#1	@13,8kV	#2	@345kV	#3	@345kV	#4	@345kV	#5	@138kV	#6	@138kV	#7	@13,8kV	#8	@345kV	#9	@345kV
Questão	Fase	[V1]	≠ V1(*)	[V2]	≰ V2(*)	[V3]	∡ V3(*)	[V4]	4 V4(*)	[V5]	∡ V5(•)	[V6]	∡ V6(*)	[V7]	≤ V7(*)	V8	∡ V8(*)	V9	4 V9(*)
a PU	B	0,6753	56,3753	0,2130	130,9627	0,6248	49,5255	0,0126	188,5185	0,6590	-2,1955	0,6669	-2,4703	1,8440	220,1211	0,2834	139,6372	0,9401	141,343
kV	В	9,3193	56,3753	73,4807	130,9627	2,5993	49,5255	4,3486	188,5185	90,9461	-2,1955	92,0338	-2,4703	25,4469	220,1211	97,7596	139,6372	324,3516	141,343
Bb PU	В	0,9792	106,7671	0,9439	170,0958	0,9631	106,5553	0,9204	171,5200	0,3653	95,0887	0,0263	12,5815	1,4931	231,4959	0,9416	171,4954	1,0128	171,537
kV	В	13,5128	106,7671	325,6492	170,0958	4,0066	106,5553	317,5394	171,5200	50,4108	95,0887	3,6344	12,5815	20,6041	231,4959	324,8521	171,4954	349,3994	171,537
Bc PU	В	1,0274	197,1555	1,0230	258,1980	1,0202	197,0596	1,0184	258,9523	0,8662	199,6710	0,8027	206,6791	0,7739	-33,2118	1,0115	259,6475	1,0205	261,348
kV	В	14,1787	197,1555	352,9201	258,1980	4,2439	197,0596	351,3391	258,9523	119,5323	199,6710	110,7735	206,6791	10,6802	-33,2118	348,9618	259,6475	352,0783	261,3483
		#1	@13,8kV	#2	@345kV	#3	@345kV	#4	@345kV	#5	@138kV	#6	@138kV	#7	@13,8kV	#8	@345kV	#9	@345kV
Questão	Fase	[V1]	≠ V1(*)	[V2]	≤ V2(*)	[V3]	∡ V3(*)	[V4]	a V4(*)	[V5]	∡ V5(*)	[V6]	∡ V6(*)	[V7]	≤ V7(*)	[8V]	∡ V8(*)	V9	∡ V9(*)
la PU	В	0,6753	176,3753	0,2130	250,9627	0,6248	49,5255	0,0126	188,5185	0,6590	-2,1955	0,6669	-2,4703	1,8440	220,1211	0,2834	139,6372	0,9401	141,3439
kV	В	9,3193	176,3753	73,4807	250,9627	2,5993	49,5255	4,3486	188,5185	90,9461	-2,1955	92,0338	-2,4703	25,4469	220,1211	97,7596	139,6372	324,3516	141,343
вь РИ	В	0,9792	226,7671	0,9439	290,0958	0,9631	226,5553	0,9204	291,5200	0,3653	215,0887	0,0263	132,5815	1,4931	351,4959	0,9416	291,4954	1,0128	291,537
kV	В	13,5128	226,7671	325,6492	290,0958	4,0066	226,5553	317,5394	291,5200	50,4108	215,0887	3,6344	132,5815	20,6041	351,4959	324,8521	291,4954	349,3994	171,537
						Ť	Ť		Ť		·						·	,	
c PU	В	1,0274	317,1555	1,0230	378,1980	1,0202	317,0596	1,0184	378,9523	0,8662	319,6710	0,8027	326,6791	0,7739	86,7882	1,0115	379,6475	1,0205	381,348
kV	В	14,1787	317 1555	352 9201	378,1980	4.2439	317.0596	351 3391	378,9523	119.5323	319,6710	110,7735	326,6791	10,6802	86,7882	348 9618	379 6475	352,0783	381,348

Figura 10: Tensões pós-falta.

			#1	@13,8kV	#2	- Desirable Control	#3	@345kV	#4	@345kV	#5	@138kV	#6	@138kV	#7	@13,8kV	#8	and the second second	#9	@345kV
Que	estão	Fase	[11]	± l1(*)	[12]	± (2(*)	[13]	± 13(°)	[14]	≥ 14(*)	[15]	≤ 15(*)	[16]	≤ 16(°)	[17]	± 17(*)	[18]	≤ 18(*)	[19]	± 19(*)
За	PU	A	0,0000	0,0000	4,1545	-70,4880	0,0000	0,0000	0,0000	0,0000	5,2729	-2,6434	0,0000	0,0000	0,0000	0,0000	5,4775	-62,6796	12,7471	-63,3405
	kA	A	0,0000	0,0000	0,6953	-70,4880	0,0000	0,0000	0,0000	0,0000	0,8824	-2,6434	0,0000	0,0000	0,0000	0,0000	0,9166	-62,6796	2,1332	-63,3405
3b	PU	A	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	4,2302	-106,0772	0,0000	0,0000	8,8001	-69,2992	0,0000	0,0000	0,0000	0,0000
	kA.	A	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,7698	-106,0772	0,0000	0,0000	3,6817	-69,2992	0,0000	0,0000	0,0000	0,0000
_	_											_								
3c	PU	A	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	9,0735	-78,5477	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	kA	A.	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	37,9610	-78,5477	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
			#1	042 0114		- CONTINE	#3	- CONTINE	-	CONTINE	ue:	@138kV	ne.	@138kV	#7	042 014	No.	0245144	***	- CONTINE
000		Fase	177.	@13,8kV	#2	@345kV	All To	@345kV	#4	@345kV	#5	@138KV	#6	₹ 16(a)	1171	@13,8kV	#8	@345kV	#9	@345kV
_	estão	_	[11]		12		13	-	14		[15]		16	-	17.1		[18]		19	_
За	PU kA	В	0,0000	0,0000	4,1545	49,5120	0,0000	0,0000	0,0000	0,0000	5,2729	117,3566	0,0000	0,0000	0,0000	0,0000	5,4775	57,3204	12,7471	56,6595
	KA	В	0,0000	0,0000	0,6953	49,5120	0,0000	0,0000	0,0000	0,0000	0,8824	117,3566	0,0000	0,0000	0,0000	0,0000	0,9166	57,3204	2,1332	56,6595
36	PU	В	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.2302	13.9228	0.0000	0.0000	8.8001	50.7008	0.0000	0.0000	0.0000	0.0000
50	kA	В	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0,0000	1.7698	13,9228	0.0000	0,0000	3.6817	50,7008	0.0000	0.0000	0.0000	0.0000
_	RCS.	10	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,7050	13,3220	0,0000	0,0000	3,0017	20,7000	0,0000	0,0000	0,0000	0,0000
3с	PU	В	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	9,0735	41,4523	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
-	kA	В	0,0000	0,0000	0,0000	0.0000	0,0000	0,0000	0,0000	0.0000	0,0000	0.0000	37,9610	41,4523	0,0000	0.0000	0,0000	0.0000	0,0000	0,0000
		1						.,		1 -1	1 -1	, .,	,,		, -,	,	1 - 1 - 1 - 1	1 -1	, -,	
			#1	@13,8kV	#2	@345kV	#3	@345kV	#4	@345kV	#5	@138kV	#6	@138kV	#7	@13,8kV	#8	@345kV	#9	@345kV
Que	estão	Fase	[11]	4 H(*)	[12]	± 12(*)	[13]	≤ 13(*)	[14]	≥ 14(*)	[15]	≤ 15(*)	[16]	4 16(*)	[17]	≤ 17(*)	[18]	± 18(*)	19	≤ 19(*)
За	PU	В	0,0000	0,0000	4,1545	169,5120	0,0000	0,0000	0,0000	0,0000	5,2729	237,3566	0,0000	0,0000	0,0000	0,0000	5,4775	177,3204	12,7471	176,6595
	kA	В	0,0000	0,0000	0,6953	169,5120	0,0000	0,0000	0,0000	0,0000	0,8824	237,3566	0,0000	0,0000	0,0000	0,0000	0,9166	177,3204	2,1332	176,6595
																				21,
3b	PU	В	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	4,2302	133,9228	0,0000	0,0000	8,8001	170,7008	0,0000	0,0000	0,0000	0,0000
	kA.	В	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,7698	133,9228	0,0000	0,0000	3,6817	170,7008	0,0000	0,0000	0,0000	0,0000
_																				
3с	PU	В	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	9,0735	161,4523	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	kA.	В	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	37,9610	161,4523	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Figura 11: Tabela ilustrando as correntes que fluem de determinada barra para a barra onde ocorre a falta.