PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-031216

(43) Date of publication of application: 04.02.1997

(51)Int.CI.

C08J 5/18 B65D 65/46 C08G 63/08

(21)Application number: 07-181668

(71)Applicant: MITSUBISHI PLASTICS IND LTD

SHIMADZU CORP

(22)Date of filing:

18.07.1995

(72)Inventor: TERADA SHIGENORI

TAKAGI JUN

(54) POLY(LACTIC ACID) SHEET

(57)Abstract:

PROBLEM TO BE SOLVED: To prepare a poly(lactic acid) sheet excellent in moldability. SOLUTION: A poly(lactic acid) polymer with a weight-average molecular weight ranging from 60,000 to 700,000 is used to produce a poly(lactic acid) sheet having the relation between the heat of crystallization ΔTc and the heat of melting of the crystal ΔHm satisfying $(\Delta Hm - \Delta Hc)/\Delta Hm \le 0.7$, when the sheet is heated to increase its temperature. The poly(lactic acid) polymer with a weight-average molecular weight ranging from 60,000 to 700,000 is used to also give a poly(lactic acid) sheet having no crystallization, point Tc and the melting point Tm.

LEGAL STATUS

[Date of request for examination]

17.04.2002

[Date of sending the examiner's decision of

28.09.2004

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

Date of extinction of right

Copyright (C); 1998,2003 Japan Patent Office

(19)日本國特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-31216

(43)公開日 平成9年(1997)2月4日

(51) Int.Cl. ⁶	識別記号 庁内里	E理番号 FI		技術表示箇所
CO8J 5/18	CFD	C081	5/18 C F	⁷ D
B 6 5 D 65/46		B65D	65/46	
C 0 8 G 63/08	NLW	C08G	63/08 N1	.W
		審查請	求 未請求 請求項の数	文2 OL (全 6 頁)
(21)出願番号	特願平7-181668	(71)出願	人 000006172	
			三菱樹脂株式会社	
(22)出顧日	平成7年(1995)7月18日		東京都千代田区丸の	内2丁目5番2号
		(71)出願	人 000001993	
			株式会社島津製作所	i e
			京都府京都市中京区	西ノ京桑原町1番地
		(72)発明	者 寺田 滋養	
			滋賀県長浜市三ツ矢	町5番8号 三菱樹脂
			株式会社長浜工場内	I
		(72)発明		
				町5番8号 三菱樹脂
		6- 10 B	株式会社長浜工場内	
		(74)代理	人, 弁理士 近藤 久美	

(54) 【発明の名称】 ポリ乳酸系シート

(57)【要約】

【課題】 成形加工性に優れたポリ乳酸系シートを提供 することにある。

【解決手段】 重量平均分子量が6万以上、70万以下 であるポリ乳酸系重合体からなるシートであり、かつ、 該シートを昇温したときの結晶化熱量△Hcと結晶融解 熱量ΔHmとの関係 (ΔHm-ΔHc)/ΔHmが0. 7以下であることを特徴とするポリ乳酸系シート、およ び、重量平均分子量が6万以上、70万以下であるポリ 乳酸系重合体からなるシートであり、かつ、該シートは 結晶化温度Tcおよび融解温度Tmをもたないことを特 徴とするポリ乳酸系シート。

【特許請求の範囲】

【請求項1】 重量平均分子量が6万以上、70万以下 であるポリ乳酸系重合体からなるシートであり、かつ、 該シートを昇温したときの結晶化熱量△H c と結晶融解 熱量ΔHmとの関係 (ΔHm-ΔHc)/ΔHmが0. 7以下であることを特徴とするポリ乳酸系シート。

【請求項2】 重量平均分子量が6万以上、70万以下 であるポリ乳酸系重合体からなるシートであり、かつ、 該シートは結晶化温度Tcおよび融解温度Tmをもたな いことを特徴とするポリ乳酸系シート。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は成形加工性に優れ、 自然分解性を有しているポリ乳酸系シートに関する。

【従来の技術】各種商品の展示包装用に用いられている ブリスター加工品、食品カップあるいはトレーなどは、 樹脂製シートを得た後、当該シートを熱成形法である真 空成形、圧空成形等により成形して作られるのが一般的 である。また、特にブリスター加工品は包装体を通して 20 中の商品を透視できる、透明性に優れているものが好ま れている。そこで、上記樹脂製シートにはポリ塩化ビニ ル系、ポリエチレンテレフタレート系、ポリスチレン系 などのシートが使用されている。

【0003】しかしながら、上述したシートは化学的、 生物的に安定なため自然環境下に放置されてもほとんど 分解されることなく残留、蓄積される。これらは自然環 境中に散乱して動植物の生活環境を汚染するだけでな く、ゴミとして埋められた場合にもほとんど分解せずに 残り、埋立地の寿命を短くするという問題がある。

【0004】そこで、これらの問題を生じない分解性重 合体からなる材料が要求されており、多くの研究、開発 が行われている。その一つにポリ乳酸が知られており、 様々な用途に使用することが検討されている。

[0005]

【発明が解決しようとする課題】しかしポリ乳酸からな るシートは、一般的に、脆性を有しており、上述したよ うなブリスター加工品あるいはフィルム状の薄い膜を得 ようとすると、成形時にひび割れあるいは破断等を引き 起としてしまう。とのため、従来のプラスチツク製品に 40 代替するためには、多くの検討が必要である。

【0006】そこで本発明の課題は、成形加工性に優れ たポリ乳酸系シートを提供することにある。

[0007]

【課題を解決するための手段】本発明の要旨は、重量平 均分子量が6万以上、70万以下であるポリ乳酸系重合 体からなるシートであり、かつ、該シートを昇温したと きの結晶化熱量AHcと結晶融解熱量AHmとの関係

 $(\Delta Hm - \Delta Hc) / \Delta Hm が 0.7以下であることを$

旨は、重量平均分子量が6万以上、70万以下であるボ リ乳酸系重合体からなるシートであり、かつ、該シート は結晶化温度Tcおよび融解温度Tmをもたないことを 特徴とするポリ乳酸系シートである。

[0008]

【発明の実施の形態】本発明に用いられるポリ乳酸系重 合体とは、ポリ乳酸または乳酸と他のヒドロキシカルボ ン酸との共重合体、もしくはこれらの混合物であり、本 発明の効果を阻害しない範囲で他の高分子材料が混入さ 10 れても構わない。また、成形加工性、シートや成形物の 物性を調整する目的で、可塑剤、滑剤、無機フィラー、 紫外線吸収剤などの添加剤、改質剤を添加することも可 能である。

【0009】乳酸としてはL-乳酸、D-乳酸が挙げら れ、他のヒドロキシカルボン酸としてはグリコール酸、 3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、3-ヒドロ キシ吉草酸、4-ヒドロキシ吉草酸、6-ヒドロキシカ プロン酸などが代表的に挙げられる。これらの重合法と しては、縮合重合法、開環重合法など公知のいずれの方 法を採用することも可能であり、さらには、分子量増大 を目的として少量の鎖延長剤、例えば、ジイソシアネー ト化合物、エポキシ化合物、酸無水物などを使用しても 構わない。

【0010】本発明に使用されるポリ乳酸系重合体の重 量平均分子量は6万以上、70万以下である。重量平均 分子量が6万未満ではシート成形時に引き取った溶融重 合体が固化する前に流動してしまい、膜厚の均一なシー トを得ることが難しい。また、得られるシートは脆く、 わずかな応力や変形で容易に破断、割れが発生する。

【0011】一方、重量平均分子量が70万を越える と、シート成形時に高負荷によってスクリュー回転速度 が一定しないことや口金内部で溶融重合体の圧力(樹脂 圧)が高くなり、メルトフラクチャー等による押出不良 につながる。また、口金出口で溶融重合体に高剪断が加 わりシートの外観に悪影響を及ぼす等の問題も生じる。 なお、押出温度を高くすることにより、樹脂の溶融粘度 を下げることができるが、ポリ乳酸は熱分解しやすいの で好ましい方法ではない。

【0012】以上の様に溶融粘度、押出安定性、シート の物性等から、本発明に使用されるポリ乳酸系重合体の 重量平均分子量は6万以上、70万以下である。

【0013】上記ポリ乳酸系重合体の水分を除去した 後、溶融押出を行いシートを作成する。好ましい溶融温 度はポリ乳酸系重合体の組成あるいは分子量によって適 宜選択することが好ましいが、通常、140℃から25 0 ℃の範囲である。

【0014】シート状に溶融成形されたポリ乳酸系重合 体は、回転するキャスティングドラム(冷却ドラム)に 接触させて急冷するのが好ましい。キャスティングドラ 特徴とするポリ乳酸系シートである、異なる本発明の要 50 ムの温度が高いとポリマーがキャスティングドラムに粘 着し、引き取れない。さらには、結晶化が促進されて球 晶が発達し、後述するように、熱成形および延伸ができ ない。

【0015】本発明のポリ乳酸系シートは、該シートを昇温したときの結晶化熱量 Δ H c と結晶融解熱量 Δ H m との関係(Δ H m $-\Delta$ H c)/ Δ H m が 0. 7以下である。(Δ H m $-\Delta$ H c)/ Δ H m はシートの結晶化度を示す指標であり、前記値が 0. 7を越えたシートは熱成形あるいは延伸を行っても、白化、厚みぶれ等の外観不良を生じやすい。

【0016】結晶融解熱量△Hm、結晶化熱量△Hcは、シートサンブルの示差走査熱量測定(DSC)により求められるもので、結晶融解熱量△Hmは昇温速度10℃/分で昇温したときの全結晶を融解させるのに必要な熱量であって、重合体の結晶融点付近に現れる結晶融解による吸熱ピークの面積から求められる。また結晶化熱量△Hcは、昇温過程で生じる結晶化の際に発生する発熱ピークの面積から求められる。

【0017】結晶融解熱量 Δ Hmは、主に重合体そのものの結晶性に依存し、結晶性が大きい重合体では大きな 20値を取る。ちなみにL-乳酸またはD-乳酸の完全ホモポリマーでは60J/g以上あり、これら2種の乳酸の共重合体ではその組成比により結晶融解熱量 Δ Hmは変化する。

【0018】結晶化熱量△Hcは、重合体の結晶性に対するその時のシートの結晶化度に関係する指標であり、結晶化熱量△Hcが大きいときには、昇温過程でシートの結晶化が進行する。すなわち重合体が有する結晶性を基準にシートの結晶化度が相対的に低かったことを表す。逆に、結晶化熱量△Hcが小さい時は、重合体が有30する結晶性を基準にシートの結晶化度が相対的に高かったことを表す。

【0019】(△Hm-△Hc) /△Hmを低下させるためには、結晶性の低い重合体を用いることである。 L-乳酸とD-乳酸とからなるポリ乳酸の共重合では、両者の組成比により結晶性が異なる。組成比によっては結晶化しない重合体を得ることができる。

【0020】異なる本発明のポリ乳酸系シートは、結晶 化温度Tcおよび融解温度Tmをもたない。すなわち、 本発明のポリ乳酸系シートは結晶化しない。結晶化しな 40 いポリ乳酸系シートは、所望する形状に熱成形あるいは 延伸を行うことができる。

【0021】結晶化しないポリ乳酸系シートは、L-乳酸とD-乳酸との組成比を近づけることにより得ることができる。ポリ乳酸系重合体を構成するL-乳酸とD-乳酸との配列順によっても異なるが、通常、L-乳酸とD-乳酸との組成比は90:10~10:90、より好ましくは80:20~20:80の範囲にあるポリ乳酸系重合体を用いることで得られる。

[0022]

【実施例】以下に実施例を示すが、本発明はこれにより限定されない。実施例中に示す測定値は次に示すような条件で測定を行い、算出した。

[0023]

(1) Tg、Tc、Tm、(△Hm-△Hc)/△Hm 示差走査熱量計DSC-7 (パーキンエルマー社製)を用い、フィルムサンブル10mgをJIS-K7122 に基づいて、昇温速度10℃/分で昇温したときのサーモグラムからガラス転移温度Tg、結晶化温度Tc、融解温度Tmおよび結晶融解熱量△Hmと結晶化熱量△Hcを求め、(△Hm-△Hc)/△Hmを算出した。

【0024】(2)重量平均分子重Mw

以下の測定条件で、ゲルバーミエーションクロマトグラフィーHLC-8120GPC(東ソー(株)社製)を用い、標準ポリスチレンと分子量を比較して求めた。

【0025】 クロマトカラム: Shim-Packシリーズ ((株) 島津製作所社製)

溶媒: クロロホルム

サンプル溶液濃度: 0.2wt/vol%

サンブル溶液注入量: 200μ1

溶媒流速: 1.0m1/分

ポンプ・カラム・検出器温度: 40℃

(3)押出し性

30mm φ単軸小型押出機を用い、Tダイより溶融押出 しを行った。作製条件は次のとおりである。尚、押出温 度は分子量に応じて変化させた。

【0026】 Tダイ リップ幅:200mm リップ ギャップ:0.6mm スクリュー フルフライト L/D:25

(4)耐折性

シートを長手方向に $30\,\mathrm{mm}$ 、幅方向に $10\,\mathrm{mm}$ の短冊状に切り出し、該短冊の長手方向の両端を折曲げて、シートの折れ具合を調べた。1種類のシートについて、サンプル数n=10で行った。全て破断しなかった場合を0、 $1\sim2$ 個破談した場合をO、 $3\sim4$ 個破談した場合を Δ 、5 個以上破断した場合を \times と表記した。実用レベルはO以上である。

【0027】(5)成形性

PLAVAC-FE36PH型(三和興業社製熱成形機)に150mm×150mmに切り出したポリ乳酸シートを装着して、赤外線ヒーターで成形温度(60℃~90℃以内)に予熱した。その後、後述する3種類の金型1~3をシートの下から持ち上げ、金型内を真空にして各種のブリスターを成形することにより、成形性を評価した。

【0028】評価は極めて成形容易な場合を◎、成形可能の場合を○、成形可能であるが白化、厚みぶれ等の外観の悪い場合を△、ほとんど成形できない場合を×と表記した。実用レベルは○以上である。

50 【0029】図1~3に、使用した金型1~3の断面図

(A)と底面図(B)を、各々示す。図1に示す金型1 はほぼ皿状であり、図2に示す金型2は底面が四角形の 比較的浅いカップであり、図3に示す金型3は底面が円 の深いカップである。図3の金型を使用するときのみ、 金型とほぼ同形状のプラグを用いてシートを金型底面か ら3 mmまで、シートを押し込んで成形した。

【0030】(実施例1) L-乳酸とD-乳酸の組成比 がおおよそ98:2で、重量平均分子量73.000の ポリ乳酸を、水分除去のため乾燥空気を送りながら12 0°Cで3時間乾燥した後、30mmφ単軸エクストルー 10 ダーにて190°CでTダイより押し出し、キャスティン グロール (ロール温度56℃) にて急冷し、厚み約20 Oμmの透明シートを得た。押出性は良好であった。 【0031】(実施例2、3)実施例1と同様の組成を もった重量平均分子量180,000および620,0 00のポリ乳酸をそれぞれ210℃、230℃でTダイ より押し出した。それぞれ56℃でキャスティングし、 約200μmの透明シートを得た。押出性は良好であっ た。

【0032】(実施例4) L-乳酸とD-乳酸の割合が 20 80:20、重量平均分子量の140,000のポリ乳 酸を実施例1と同様にして200℃で押し出し、54℃ でキャスティングして約200μmの透明シートを得 た。押出性は良好であった。

*【0033】(比較例1)実施例1と同様の組成をもっ た重量平均分子量40,000のポリ乳酸を190℃で Tダイより押し出し、56℃でキャスティングロールに て引き取ろうとしたが、溶融粘度が低すぎ、引き取りが 安定せずシート幅が変動した。得られたシートは透明で あった。

【0034】(比較例2)実施例1と同様の組成を持っ た重量平均分子量750.000ポリ乳酸を230~2 40℃で押し出し、56℃でキャスティングしようとし たが、溶融粘度が高く、吐出量が安定せず、幅・厚みの そろったシートを得ることができなかった。さらに溶融 粘度を下げるため260℃以上で押し出そうとしたが、 熱分解によりシート内に発泡が生じ、表面にムラも見ら れシートの外観はよくなかった。

【0035】実施例1~4、比較例1,2に使用したポ リ乳酸のL-乳酸とD-乳酸の組成比と重量平均分子 量、シートの押出し性、得られたシートのTg、Tc、 Tm、(ΔHm-ΔHc)/ΔHmを測定し、耐折性と 成形性を評価した。総合評価は耐折性と成形性の結果を 合わせて評価した。特に優れている場合を◎、実用レベ ル以上の場合を○、実用レベル以下の場合を△、特に劣 っている場合を×と表記した。結果を表1に示す。

[0036]

【表1】

表 1

試料他		実施例1	実施例 2	実施例 3	実施例 4	比較例1	比較例 2
組成比	D体 (%)	98	98	98	80	98	98
	L体 (%)	2	2	2	20	2	2
童量平均分子量		73. 000	180. 000	620. 000	140. 000	40, 000	750. 000
ガラス転	多温度Tg(℃)	58	58	59	56	57	58
結晶化温度Tc(℃)		106	118	135	-	102	137
融解温度Tm(℃)		174	174	173	_	172	171
(ΔHm - ΔHc)/ΔHm		0. 12	0. 11	0. 10	0	0.14	-
押出し性		良好	良好	良 好	良 好	シート幅に バラツキが 発生	
耐折性		0	0	©	0	×	_
成形性	金型1 金型2 金型3	000	000	000	000	000	-
総合評価		0	0	0	0	×	×

(実施例5)実施例2で得たシートを熱風循環器内で8 0℃、約20分間放置することにより、熱処理を施し、 結晶化度(Δ Hm- Δ Hc)/ Δ Hmを増した。シート は若干白化した。

【0037】(実施例6)キャスティングロールの速度 を変化してシートの厚みを400 μ mとした以外は実施 50 熱処理を施し、結晶化度(Δ Hm - Δ Hc)/ Δ Hmを

例2で同様に作製したシートを、70℃で縦・横それぞ れ1.5倍に延伸して、結晶化度を増した。得られたフ ィルムの厚みは約170 µmである。

【0038】(比較例3)実施例2で得たシートを熱風 循環器内で110℃、約15分間放置することにより、

7

増した。シートは白化した。

【0039】(比較例4)実施例6で得た400μmのシートを、70℃で縦・横それぞれ2.5倍に延伸して、結晶化度を増した。得られたフィルムの厚みは約60μmである。

【0040】実施例5, 6、比較例3, 4に使用したポ*

* リ乳酸のL-乳酸とD-乳酸の組成比、得られたシートのTg、Tc、Tm、(ΔHm-ΔHc)/ΔHmを測定し、耐折性と成形性、総合評価を表2に示す。 【0041】 【表2】

R

表 2

战科场		実施例 5	実施例 6	比較例3	比較例4
租成比	D体 (%)	98	98	98	98
	L# (%)	2	2	2	2
ガラス転移温度Tg(℃)		60	59	67	63
結晶化温度T c (℃)		87	85	80	71
融解温度Tm (℃)		174	175	175	175
(ΔHm−ΔHc)/ΔHm		0.59	0. 57	0. 94	0.77
耐折性		0	0	0	0
成形性	金型 1 金型 2 金型 3	004	@O4	× ×	× × ×
総合評価		0~Δ	0~Δ	×	×

【0042】一方、重量平均分子量が本発明範囲外である比較例1は押出し不良が生じ、得られたシートの耐折性が悪く、脆いシートである。成形性は比較的良好であるが、成形加工性用シートとしては実用的な十分な強度をもたない。また、同様に重量平均分子量が本発明範囲外である比較例2は幅、厚み共に不揃いであり、成形加工性用シートとして使用に耐えられない。

【0043】表2に示される実施例5はポリ乳酸系シートを熱処理しており、また、実施例6は延伸している。 このために、結晶化度(ΔHm-ΔHc)/ΔHmが増 40 しており、金型3のような深いカップには適していない

が、他の性能は優れており、金型1,2のような浅いカップには十分に利用が可能である。

【0044】一方、比較例3, 4は(Δ Hm- Δ Hc) / Δ Hmが0. 7を越えており、成形性が劣り、成形加 工性用シートとして使用に耐えられない。

[0045]

① 【発明の効果】以上説明したように、本発明のポリ乳酸 系シートは成形加工性に優れているので、ブリスター、 容器等の様々な分野での、ポリ乳酸の使用を可能とす る。

【図面の簡単な説明】

【図1】実施例で使用される金型1の断面図(A)と底面図(B)。

【図2】実施例で使用される金型2の断面図(A)と底面図(B)。

【図3】実施例で使用される金型3の断面図(A)と底面図(B)。

【図2】

