Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по заданию №5-6 «Классификация векторизованного текста»

по дисциплине «Компьютерная лингвистика»

Авторы: Исхакова Эмина Лакиза Александр Плотская Дарья

Факультет: ИКТ

Группа: К3242

Преподаватель: Чернышева Анастасия Владимировна

Цель работы: Построить, обучить и оценить модель классификации векторизованных текстов.

Ссылка на исходный код: https://github.com/alexanderlakiza/cs224/blob/main/task5-6/task5-6.ipynb (В основном этапы работы описываются в самой тетрадке)

Разделение обязанностей по ходу работы:

Исхакова Эмина: Поиск датасета, описание датасета, составление отчёта Лакиза Александр: Очистка текста, создание и обучение модели Плотская Дарья: Визуализация данных и выводы

Ход работы: Мы взяли датасет с твитами о работе американских авиакомпаний на английском языке. Датасет содержит более 10000 твитов и имеет классификацию на 3 типа (positive, neutral, negative). Для нас важны лишь два столбца из 15: с текстом и классификацией.

Проводим предобработку текста:

```
1. punct_marks = string.punctuation + "-" + "«" + "»" + "`" + "`"
  "..." + """ \
2. + "''" + """ + ''' + '...'
3. auxiliary_pos = ['NPRO', 'PREP', 'CONJ', 'PRCL', 'INTJ']
4. for i in range(len(X)):
      X[i] = re.sub(r'@', '', X[i]) # удаление @
5.
      X[i] = re.sub('http://\S+|https://\S+', '', X[i]) # удаление
6.
ССЫЛОК
7.
      X[i] = re.sub('http[s]?://S+', '', X[i])
8. X[i] = word tokenize(X[i]) # токенизация
9.
      X[i] = [morph.parse(word)[0].normal form for word in X[i]]
  лемматизация
10.
       X[i] = [word.lower() for word in X[i] if word not in
punct marks]
11.
        # нижний регистр и знаки препинания
12.
       X[i] = [word for word in X[i] if
morph.parse(word[0])[0].tag.POS not in auxiliary pos]
13.
        # удаление слов служебных частей речи
```

Далее для каждого типа векторизации создаём, как указано в задании, свою таблицу с метриками при разных параметрах

Пример с мешком n-грамм:

	type	param	precision	recall	accuracy	f_1
0	n-grams	(1, 1)	0.767058	0.605234	0.759106	0.647163
1	n-grams	(1, 2)	0.806666	0.543497	0.733651	0.583758
2	n-grams	(1, 3)	0.809387	0.508971	0.715439	0.542486
3	n-grams	(1, 4)	0.803249	0.495886	0.708402	0.525111
4	n-grams	(1, 5)	0.802649	0.486398	0.703228	0.512773
5	n-grams	(1, 6)	0.809522	0.482148	0.700952	0.507180
6	n-grams	(1, 7)	0.809737	0.477970	0.698882	0.501816
7	n-grams	(1, 8)	0.808533	0.476050	0.697848	0.499149

Затем мы добавили графики распределения по метрикам и по векторизаторам: Примеры:

В конце мы сделали следующие выводы:

- Показатель precision постепенно растёт у мешка n-грамм при увеличении параметра n. Это может быть связано с удачным (для данного векторизатора) разделением на обучающую и тестовую выборки. У tf-idf данная метрика колеблется у одного значения. Остальные метрики имеют примерно одинаковое распределение, что может объясняться математически.
- Мешок n-грамм даёт в среднем лучшие показатели при параметрах (1, 1), (1, 2) и (1, 3). Мешок символьных n-грамм при (5, 8) и (5, 9).
- Самыми лучшими векторизаторами для данного датасета получились: n-gramm (1, 1) и n-char-gram (5, 8), (5, 9).
- Не самые высокие показатели метрик могут быть следствием не самой точной изначальной классификации твитов, например, в исходном датасете некоторые твиты относятся к какому-то классу с точностью всего лишь 0.34, что крайне мало.