EXPERIMENT 9: SHIFT REGISTER

AIM: To realize and study of Shift Registers

- 1) SISO (Serial in Serial out)
- 2) SIPO (Serial in Parallel out)
- 3) PIPO (Parallel in Parallel out)
- 4) PISO (Parallel in Serial out)

LEARNING OBJECTIVE:

- To identify the basic forms of data movement in shift register
- To learn different modes data transfer

COMPONENTS REQUIRED: IC 7495, LEDs, Power supply, Breadboard,

PINOUT DIAGRAM FOR IC7495:

THEORY: In digital circuits, a shift register is a cascade of flip flops, sharing the same clock, in which the output of each flip-flop is connected to the "data" input of the next flip-flop in the chain, resulting in a circuit that shifts by one position the "bit array" stored in it, *shifting in* the data present at its input and *shifting out* the last bit in the array, at each transition of the clock input.

More generally, a shift register may be multidimensional, such that its "data in" and stage outputs are themselves bit arrays: this is implemented simply by running several shift registers of the same bit-length in parallel.

Shift registers can have both parallel and serial inputs and outputs. These are often configured as 'serial-in, parallel-out' (SIPO) or as 'parallel-in, serial-out' (PISO). There are also types that have both serial and parallel input and types with serial and parallel output. There are also 'bidirectional' shift registers which allow shifting in both directions: $L \rightarrow R$ or $R \rightarrow L$. The serial input and last output of a shift register can also be connected to create a 'circular shift register'.

1)SERIAL IN SERIAL OUT (SISO) (Right Shift)

Serial i/p data	Shift Pulses	Q_{A}	Q_{B}	$Q_{\rm C}$	Q_{D}
-	-	X	X	X	X
0	t1	0	X	X	X
1	t2	1	0	X	X
0	t3	0	1	0	X
1	t4	1	0	1	0
X	t5	X	1	0	1
X	t6	X	X	1	0
X	t7	X	X	X	1
X	t8	X	X	X	X

2)SERIAL IN PARALLEL OUT (SIPO)

Serial i/p data	Shift Pulses	Q_{A}	Q_{B}	$Q_{\rm C}$	Q_{D}
-	-	X	X	X	X
0	t1	0	X	X	X
1	t2	1	0	X	X
0	t3	0	1	0	X
1	t4	1	0	1	0

3)PARALLEL IN PARALLEL OUT (PIPO)

Clock Input Terminal	Shift Pulses	Q _A	Q_{B}	$Q_{\rm C}$	Q_{D}
-	-	X	X	X	X
CLK ₂	t1	1	0	1	0

4)PARALLEL IN SERIAL OUT (PISO)

Clock Input Terminal	Shift Pulses	Q _A	Q_{B}	$Q_{\rm C}$	Q_{D}
-	-	X	X	X	X
CLK ₂	t1	1	0	1	0
CLK ₂	t2	X	1	0	1

Digital Logic Design And Analysis

Second Year Computer Engineering 2018-19

0	t3	X	X	1	0
1	t4	X	X	X	1
X	t5	X	X	X	X

PROCEDURE

- 1)Give biasing to the IC
- 2)Do connections for SIPO, PIPO and note down corresponding o/p.

OBSERVATIONS

I) PIPO: Parallel I/P Parallel O/P

M	Clk2	A	В	C	D	QA	QB	Q c	QD
1									
1									

II) SIPO: Serial I/P Parallel O/P a) Shift Right

M	Clk1	Serial I/P	QA	QB	Q c	QD
0						

b) Shift Left

M	Clk2	D I/P	QA	QB	Q c	QD
1						

Postlab Questions:

- What is shift register? Explain 4 bit bi-directional shift register
 Design 4 bit Johnson counter.
 Design 4 bit twisted ring counter.