Game Theory - Problem set 1 Due date: classes on March, 24th

Problem 1 (2p) Find all pure strategy Nash equilibria in the game between three players: 1 (choosing: U, D), 2 (choosing: L, R) and 3 (choosing matrix A, B, C) with payoffs given by:

	L	R			L	R		L	R
$\bigcup U$	0,0,3	0,0,0		U	2,2,2	0,0,0	U	0,0,0	0,0,0
D	1,0,0	0,0,0		D	0,0,0	2,2,2	D	0,1,0	0,0,3
A				\overline{B}			\overline{C}		

Problem 2 (2p) Consider the Inspection game between worker and principal. Worker can S shirk or W work, while principal inspect I or not NI. Cost of inspection is h, cost of work is g. v is the value of work to the principal. w stands for wage (transfer).

	I	NI			
S	0, -h	w, -w			
W	w-g, v-w-h	w-g, v-w			

- $Assume \ w > g > h > 0.$
- Find all Nash Equilibria in mixed (or pure) strategies.

Problem 3 (3p) Army A has a single plane, that can be sent to destroy one of the targets. Army B has a single gun, that can be used to protect one of the targets. The value of the target is v_i , where $v_1 > v_2 > v_3 > 0$. Army A can destroy a target only that is not protected by B. Army A's aim is to maximize expected loss of army B, and army B's aim is to minimize such a loss. Write it as a (strictly competitive) strategic form game and find Nash equilibria in mixed strategies.

Problem 4 (2p) Consider a first price, sealed-bid auction as a strategic game. Suppose we have $\{1,\ldots,n\}$ players, where i-th player valuation is v_i . Let $v_1 > v_2 > \ldots > v_n > 0$. Each player bets (some nonnegative amount) in a closed envelope and the winner is the one that gives the highest bid. If few players gives the same highest bid then the winner is the one with the smallest i among those that bid the highest. It is a first price auction, i.e. the winner pays the amount he/she bids. Show that in any PS Nash equilibrium player 1 wins.

Problem 5 (1p) Diamond introduced the search model, in which player i expands effort $a_i \in [0,1]$ searching for trading partners, and has a payoff function given by (with $\theta > 0$ being parameter characterizing search environment):

$$u_i(a_i, a_{-i}) = \theta a_i \sum_{j \neq i} a_j - c_i(a_i)$$

Under what conditions placed on c_i , is this a supermnodular game? Then, using theorems from the class, what can be said about the NE of this game? How do they depend on parameter θ ?