Отчет

Шилов Максим

Формула левого прямоугольника (на одном узле)

$$x_0 = a,$$

$$w(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

$$A_0 = \int_a^b \frac{w(x)}{(x - x_0)w'(x_0)} dx = b - a$$

$$J_0 = (b - a)f(b)$$

Формула трапеций (на двух узлах)

$$x_0 = a, \quad x_1 = b,$$

$$A_0 = \int_a^b \frac{w(x)}{(x - x_0)w'(x_0)} dx = \frac{b - a}{2},$$

$$A_1 = \int_a^b \frac{w(x)}{(x - x_1)w'(x_1)} dx = \frac{b - a}{2}$$

$$J_1 = (b - a)\frac{f(a) + f(b)}{2}$$

Метод левых прямоугольников (составная формула)

$$x_{i} = a + ih, \quad h = \frac{b - a}{N}, \quad i = 0, \dots, N$$

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{N} \int_{x_{k}}^{x_{k-1}} f(x) dx = \sum_{k=1}^{N} [f(x_{k})h + \varepsilon_{n,[x_{k-1},x_{k}]}]$$

$$|\varepsilon_{n,[x_{k-1},x_{k}]}| \le \frac{\|f^{(1)}(x)\|_{C[x_{k-1},x_{k}]}}{2} h^{2}$$

$$|\varepsilon| \le \sum_{k=1}^{N} |\varepsilon_{n,[x_{k-1},x_{k}]}| \le \frac{\|f^{(1)}(x)\|_{C[a,b]}}{2} (b - a)h$$

Метод трапеций (составная формула)

$$x_{i} = a + ih, \quad h = \frac{b - a}{N}, \quad i = 0, \dots, N$$

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{N} \int_{x_{k}}^{x_{k-1}} f(x) dx = \sum_{k=1}^{N} \left[\frac{(f(x_{k-1}) + f(x_{k}))}{2} h + \varepsilon_{n, [x_{k-1}, x_{k}]} \right] ,$$

$$|\varepsilon_{n, [x_{k-1}, x_{k}]}| \leq \frac{\|f^{(2)}(x)\|_{C[x_{k-1}, x_{k}]}}{12} h^{3},$$

$$|\varepsilon| \leq \sum_{k=1}^{N} |\varepsilon_{n, [x_{k-1}, x_{k}]}| \leq \frac{\|f^{(2)}(x)\|_{C[a, b]}}{12} (b - a) h^{2}$$

Правило Рунге

 $arepsilon_q(J_{rac{N}{2}})=|J_N-J_{rac{N}{2}}|$ (Оценка погрешности для левых прямоугольников)

 $arepsilon_t(J_{rac{N}{2}})=rac{1}{3}|J_N-J_{rac{N}{2}}|$ (Оценка погрешности для трапеций)

$$J_N f - J f \approx C N^p$$
 $J_{\frac{N}{2}} f - J f \approx C (\frac{N}{2})^p = C \frac{N^p}{2^p}$
 $J_N f - J_{\frac{N}{2}} f \approx C N^p (\frac{2^p - 1}{2^p}) \quad \Rightarrow \quad C N^p \approx \frac{2^p}{2^p - 1} (J_N f - J_{\frac{N}{2}} f) \quad (1)$
 $C (\frac{N}{2})^p \approx \frac{2^p}{2^p - 1} (J_{\frac{N}{2}} f - J_{\frac{N}{4}} f) \quad (2)$
 $(1): (2) \quad \Rightarrow \quad 2^p \approx \frac{(J_N f - J_{\frac{N}{2}} f)}{(J_{\frac{N}{2}} f - J_{\frac{N}{4}} f)}$
 $\Rightarrow \quad \ln 2^p \approx \ln \frac{(J_N f - J_{\frac{N}{2}} f)}{(J_{\frac{N}{2}} f - J_{\frac{N}{4}} f)} \quad \Rightarrow$
 $\Rightarrow \quad p \approx \log(\frac{J_N f - J_{\frac{N}{2}} f}{J_{\frac{N}{2}} f - J_{\frac{N}{4}} f}) \frac{1}{\log 2} \quad (\Pi_{\text{Орядок Точности}})$

Пример

$$f(x)=e^x$$
, $a=0$, $b=\pi$ \Rightarrow $Jf=\int\limits_0^\pi e^x\,dx=e^\pi-1\approx 22,1406926328$ (в качестве π взято приближенное значение $=3.1415926535$)

Метод левых прямоугольников

Число разбиений:	$J_N f$	$ Jf - J_N f $	p	$\varepsilon_q(J_{\frac{N}{2}})$
4	31.96191502	9.82122239	-1.26947241	11.943680
8	26.77180992	4.63111729	-1.20241177	5.190105
40	23.02153567	0.88084303	-1.05332155	0.903589
80	22.57826935	0.43757671	-1.02749321	0.443266

Метод трапеций

Число разбиений:	$J_N f$	$ Jf - J_N f $	p	$\varepsilon_t(J_{\frac{N}{2}})$
4	23.26728536	1.12659272	-1.81142146	1.123720
8	22.42449509	0.28380245	-1.94677260	0.280930
40	22.15207270	0.01138007	-1.99777917	0.011380
80	22.14353786	0.00284523	-1.99944404	0.002844

1 Метод левых прямоугольников (python 3.4)

```
import numpy as np
Jf = 22.1406926328
def In_q(a, b, m):
        h = (b-a)/m
        rad = 0
        for i in range(1, m + 1):
                x = a + i*h
                rad += np.exp(x)
        return rad*h
a_q = 0
b_q = 3.1415926535
m_q = int(input('m = '))
l_n = In_q(a_q, b_q, m_q)
1_2n = In_q(a_q, b_q, round(m_q/2))
1_4n = In_q(a_q, b_q, round(m_q/4))
e = np.log((1_n - 1_2n)/(1_2n - 1_4n))*(1/(np.log(2)))
e_p_q = np.abs(1_n - 1_2n)
print(l_n)
print(np.abs(Jf - l_n))
print('Рунге (порядок точности) :', e)
print('Рунге (оценка погрешности) :', e_p_q)
```

2 Метод трапеций (python 3.4)

```
import numpy as np
Jf = 22.1406926328
def In_t(a, b, m):
       h = (b-a)/m
       r9d = 0
       x_k_minus_1 = a_t
        for i in range(1, m + 1):
                x_k = a + i*h
                r9d += (np.exp(x_k_minus_1) + np.exp(x_k))/2
                x_k_minus_1 = x_k
       return r9d*h
a_t = 0
b_t = 3.1415926535
m_t = int(input('m = '))
I_n_t = In_t(a_t, b_t, m_t)
I_2n_t = In_t(a_t, b_t, round(m_t/2))
I_4n_t = In_t(a_t, b_t, round(m_t/4))
e_t = np.log((I_n_t - I_2n_t)/(I_2n_t - I_4n_t))*(1/(np.log(2)))
e_t_q = np.abs(I_n_t - I_2n_t)/3
print(I_n_t)
print(np.abs(Jf - I_n_t))
print('Рунге (порядок точности) :', e_t)
print('Рунге (оценка погрешности) :', e_t_q)
```