UNIVERSITY OF STRATHCLYDE DEPARTMENT OF MATHEMATICS AND STATISTICS

MM201 Linear Algebra and Differential Equations

1 Lecture examples: Chapter 1

Examples 1A

1 Find x, y and z by solving the matrix equation

$$\begin{bmatrix} x^2 + x & y^2 + z \\ y & x^2 + x \end{bmatrix} = \begin{bmatrix} 12 & 12 \\ 3 & 12 \end{bmatrix}.$$

We have y = 3, $y^2 + z = 12$ and $x^2 + x = 12$ so y = 3, z = 3 and x = 3 or -4.

2 If
$$A = \begin{bmatrix} 4 & -2 \\ \frac{1}{2} & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ -1 & -\frac{3}{2} \end{bmatrix}$, evaluate $A + B$ and $A - B$.

$$A+B = \left[\begin{array}{ccc} 4+0 & -2+1 \\ \frac{1}{2}-1 & 4-\frac{3}{2} \end{array} \right] = \left[\begin{array}{ccc} 4 & -1 \\ -\frac{1}{2} & \frac{5}{2} \end{array} \right], \quad A-B = \left[\begin{array}{ccc} 4-0 & -2-1 \\ \frac{1}{2}+1 & 4+\frac{3}{2} \end{array} \right] = \left[\begin{array}{ccc} 4 & -3 \\ \frac{3}{2} & \frac{11}{2} \end{array} \right].$$

3 If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, evaluate AB and BA .

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

$$BA = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5+18 & 10+24 \\ 7+24 & 14+32 \end{bmatrix} = \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix}$$

Note: $AB \neq BA$. This is generally the case. If AB = BA, we say that they commute under matrix multiplication.

4 If
$$C = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix}$, evaluate CD and DC .

$$CD = \begin{bmatrix} 1 & -1 & 2 \\ -3 & -1 & -4 \end{bmatrix}$$
, DC cannot be done.

Examples 1B

1 If
$$A = \begin{bmatrix} 17 & 2 \\ 0 & \frac{1}{2} \end{bmatrix}$$
, find AI and IA .

$$AI = \begin{bmatrix} 17 & 2 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 2 \\ 0 & \frac{1}{2} \end{bmatrix}.$$

Similarly IA = A.

2 Given
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, find $A - 3A^T + 2I$.

The identity matrix is $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so

$$A - 3A^{T} + 2I = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - 3 \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 3 & 9 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ -3 & -6 \end{bmatrix}.$$

3 Given
$$A = \begin{bmatrix} 4 & 0 & -5 \\ -3 & 0 & 4 \\ -18 & 1 & 24 \end{bmatrix}$$
, verify that $A^{-1} = \begin{bmatrix} 4 & 5 & 0 \\ 0 & -6 & 1 \\ 3 & 4 & 0 \end{bmatrix}$.

$$\begin{bmatrix} 4 & 0 & -5 \\ -3 & 0 & 4 \\ -18 & 1 & 24 \end{bmatrix} \begin{bmatrix} 4 & 5 & 0 \\ 0 & -6 & 1 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I.$$

4 Verify that the matrix $A = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & 2 & 1 \\ 2 & -1 & -2 \end{bmatrix}$ is orthogonal.

$$A^{T}A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ -2 & 2 & -1 \\ 2 & 1 & -2 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & 2 & 1 \\ 2 & -1 & -2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = I_{3}.$$

Examples 1C

 $\mathbf{1} \quad \text{If } A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \text{ find } A^{-1}.$

$$A^{-1} = \frac{1}{1 \cdot 4 - 2 \cdot 3} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

2 If $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, find A^{-1} .

Here the determinant $ad-bc=1\cdot 6-2\cdot 3=0$ so the inverse does not exist, i.e. A is singular.

Examples 1D

1 State whether the following matrices are in row echelon form, reduced row echelon form or neither:

A,C,D are in reduced row echelon form; B is in row echelon form.

2 Solve the equations $x_1 - 3x_2 + 5x_3 - 7x_4 = -2 .$ $-2x_1 + 4x_2 - 6x_3 + 8x_4 = 2$ $x_1 + x_2 + x_3 + x_4 = 2$ $x_1 + 5x_2 + 2x_3 + 5x_4 = 7$

and the solution is

$$m{x} = \left[egin{array}{c} 0 \ 0 \ 1 \ 1 \end{array}
ight].$$

 $x_1 - 3x_2 + 5x_3 - 7x_4 = -2 \Rightarrow x_1 = 0$

Examples 1E

SO

1 Solve the system

$$x_1 + 3x_2 + 3x_3 = 13$$

 $2x_1 + 5x_2 + 4x_3 = 23$
 $2x_1 + 7x_2 + 8x_3 = 29$.

The augmented matrix is

The equations are now

$$x_1 + 3x_2 + 3x_3 = 13$$

 $x_2 + 2x_3 = 3$

so x_3 is a free variable: put $x_3 = \lambda$, say, to get

$$x_2 = 3 - 2\lambda;$$
 $x_1 = 13 - 3(3 - 2\lambda) - 3\lambda = 4 + 3\lambda.$

Solution is

$$x = \begin{bmatrix} 4+3\lambda \\ 3-2\lambda \\ \lambda \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}.$$

2 Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 & 4 \\ 2 & 2 & 2 & 8 \\ -3 & 1 & 2 & 1 \end{array} \right].$$

Use EROs on the augmented matrix $[A|\boldsymbol{b}]$ where $\boldsymbol{b} = [1\,2\,0]^T$ to find the general solution of $A\boldsymbol{x} = \boldsymbol{b}$ where $\boldsymbol{x} = [x_1\,x_2\,x_3\,x_4]^T$.

$$\begin{bmatrix} 1 & 1 & 1 & 4 & | & 1 \\ 2 & 2 & 2 & 8 & | & 2 \\ -3 & 1 & 2 & 1 & | & 0 \end{bmatrix} r'_2 = r_2 - 2r_1$$

$$-3 & 1 & 2 & 1 & | & 0 \end{bmatrix} r'_3 = r_3 + 3r_1$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 4 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 4 & 5 & 13 & | & 3 \end{bmatrix} r'_2 = r_3$$

$$r'_3 = r_2$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 4 & | & 1 \\ 0 & 4 & 5 & 13 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} r'_2 = r_2/4$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 4 & | & 1 \\ 0 & 1 & \frac{5}{4} & \frac{13}{4} & | & \frac{3}{4} \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} r'_1 = r_1 - r_2$$
echelon form

The variables x_1 and x_2 (associated with the leading 1s) are called **leading** variables: x_3 and x_4 are called **free** variables. From the echelon form, the original system is equivalent to

$$x_1 + x_2 + x_3 + 4x_4 = 1$$

 $x_2 + \frac{5}{4}x_3 + \frac{13}{4}x_4 = \frac{3}{4}$

so let $x_4 = \lambda$, $x_3 = \mu$, say, to obtain

$$x_2 = \frac{3}{4} - \frac{5}{4}\mu - \frac{13}{4}\lambda,$$

$$x_1 = 1 - \left(\frac{3}{4} - \frac{5}{4}\mu - \frac{13}{4}\lambda\right) - \mu - 4\lambda = \frac{1}{4} + \frac{1}{4}\mu - \frac{3}{4}\lambda.$$

The solution is therefore

$$\boldsymbol{x} = \begin{bmatrix} \frac{1}{4} \\ \frac{3}{4} \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -\frac{3}{4} \\ -\frac{13}{4} \\ 0 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{4} \\ 1 \\ 0 \end{bmatrix}.$$

3 Show that the system

$$x_1 - x_2 + 2x_3 = 2$$

 $2x_1 + 3x_2 + x_3 = k$
 $4x_1 + 11x_2 - x_3 = -1$

is inconsistent (i.e. has no solution) if $k \neq 1$. Find the general solution when k = 1.

Augmented matrix is

The final equation shows there is only a solution if k = 1. When k = 1 we have

so x_3 is a free variable: put $x_3 = \lambda$, say, to get

$$x_2 = \frac{3}{5}\lambda - \frac{3}{5};$$
 $x_1 = 2 - \frac{3}{5} + \frac{3}{5}\lambda - 2\lambda = \frac{7}{5} - \frac{7}{5}\lambda.$

General solution is

$$m{x} = \left[egin{array}{c} rac{7}{5} \\ -rac{3}{5} \\ 0 \end{array}
ight] + \lambda \left[egin{array}{c} -rac{7}{5} \\ rac{3}{5} \\ 1 \end{array}
ight].$$

4 Use EROs to transform the coefficient matrix in

$$x_1 + x_2 + 2x_3 = 9$$

 $2x_1 + 4x_2 - 3x_3 = 1$
 $3x_1 + 6x_2 - 5x_3 = 0$

to row echelon form. Hence obtain the solution using back substitution (this process is called **Gaussian Elimination**). Continue EROs to obtain the coefficient matrix in reduced echelon form and hence obtain the solution (this additional work incorporates the back substitution into the matrix transformation, and is called **Gauss-Jordan Elimination**).

Augmented matrix is

$$\begin{bmatrix} 1 & 1 & 2 & | & 9 \\ 2 & 4 & -3 & | & 1 \\ 3 & 6 & -5 & | & 0 \end{bmatrix} r'_2 = r_2 - 2r_1$$

$$3 & 6 & -5 & | & 0 \end{bmatrix} r'_3 = r_3 - 3r_1$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 2 & | & 9 \\ 0 & 2 & -7 & | & -17 \\ 0 & 3 & -11 & | & -27 \end{bmatrix} r'_3 = r_3 - \frac{3}{2}r_2$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 2 & | & 9 \\ 0 & 2 & -7 & | & -17 \\ 0 & 0 & -\frac{1}{2} & | & -\frac{3}{2} \end{bmatrix} r'_2 = r_2/2$$

$$r'_3 = -2r_3$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 2 & | & 9 \\ 0 & 1 & -\frac{7}{2} & | & -\frac{17}{2} \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

Back substitution:

$$x_3 = 3;$$
 $x_2 - \frac{7}{2}x_3 = -\frac{17}{2} \Rightarrow x_2 = 2;$ $x_1 + x_2 + 2x_3 = 9 \Rightarrow x_1 = 1$

SO

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
.

Now continue the EROs:

$$\rightarrow \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{array} \right]$$

so solution is

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
.

Examples 1F

1 List all permutations of $S = \{1, 2, 3\}$.

If

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & 3\\ j_1 & j_2 & j_3 \end{array}\right),\,$$

then j_1 can take 3 values; for each choice of j_1 , j_2 can take 2 values; for each choice of j_1 and j_2 , j_3 can take only 1 value.

The 3! permutations are

$$(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).$$

2 Determine the number of inversions in each of the following permutations:

(a)
$$\sigma = (3,6,5,1,4,2)$$
, (b) $\sigma = (4,2,1,3)$.

- (a) No. of inversions = 2 + 4 + 3 + 0 + 1 = 10.
- (b) No. of inversions = 3 + 1 + 0 = 4.

3 Determine the sign of the following permutations:

(a)
$$\sigma = (4,1,3,2)$$
, (b) $\sigma = (3,6,1,5,4,2)$.

- (a) No. of inversions = 3 + 0 + 1 = 4 so $sgn(\sigma) = +1$.
- (b) No. of inversions = 2+4+0+2+1=9 so $sgn(\sigma) = -1$.

4 For n=2, list the set of products $a_{1\sigma(1)} a_{2\sigma(2)}$, the associated permutations, signs of permutations and signed products $\operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)}$. Hence write down $\det(A)$. Repeat for n=3.

n = 2:

Product	Permutation	\mathbf{Sign}	Signed Product
$a_{11} a_{22}$	(1, 2)	+1	$a_{11} a_{22}$
$a_{12} a_{21}$	(2, 1)	-1	$-a_{12} a_{21}$

$$\Rightarrow \det(A) = a_{11} a_{22} - a_{12} a_{21}$$

n = 3:

Product	Permutation	\mathbf{Sign}	Signed Product
$a_{11} a_{22} a_{33}$	(1, 2, 3)	+1	$a_{11} a_{22} a_{33}$
$a_{11} a_{23} a_{32}$	(1, 3, 2)	-1	$-a_{11} a_{23} a_{32}$
$a_{12} a_{21} a_{33}$	(2, 1, 3)	-1	$-a_{12} a_{21} a_{33}$
$a_{12} a_{23} a_{31}$	(2, 3, 1)	+1	$a_{12} a_{23} a_{31}$
$a_{13} a_{21} a_{32}$	(3, 1, 2)	+1	$a_{13} a_{21} a_{32}$
$a_{13} a_{22} a_{31}$	(3, 2, 1)	-1	$-a_{13} a_{22} a_{31}$

 $\Rightarrow \det(A) = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}.$

Examples 1G

1 Identify the minor and cofactor of a_{32} where

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 3 & 4 & 5 \\ 2 & -1 & 5 \end{array} \right].$$

$$M_{32} = \begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix}$$
 so minor of $a_{32} = \det(M_{32}) = \begin{vmatrix} 1 & -1 \\ 3 & 5 \end{vmatrix} = 5 + 3 = 8$.
Cofactor of $a_{32} = (-1)^{3+2} \det(M_{32}) = -8$.

2 If

$$A = \left[\begin{array}{rrr} 3 & 1 & 0 \\ 2 & 4 & -3 \\ 5 & 4 & -2 \end{array} \right],$$

find det(A) by cofactor expansion along row 2 and also along column 3.

Row 2: det
$$(A) = 2(-1) \begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} + 4(+1) \begin{vmatrix} 3 & 0 \\ 5 & -2 \end{vmatrix} + (-3)(-1) \begin{vmatrix} 3 & 1 \\ 5 & 4 \end{vmatrix}$$

= $-2(-2) + 4(-6) + 3(12 - 5) = 4 - 24 + 21 = 1$

Col 3: det
$$(A) = 0$$
 $(+1)$ $\begin{vmatrix} 2 & 4 \\ 5 & 4 \end{vmatrix} + (-3)(-1) \begin{vmatrix} 3 & 1 \\ 5 & 4 \end{vmatrix} + (-2)(+1) \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix}$
= $0 + 3(12 - 5) - 2(12 - 2) = 21 - 20 = 1$

Find det(A) if

$$A = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Expand along row 1:

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & 0 & 0 \\ a_{32} & a_{33} & 0 \\ a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11}a_{22} \begin{vmatrix} a_{33} & 0 \\ a_{43} & a_{44} \end{vmatrix} = a_{11}a_{22}a_{33}a_{44}$$

 \Rightarrow det (A) = product of elements on the main diagonal.

Note: This result holds for lower triangular (and upper triangular) matrices of any order. The strategy is to expand along the row (or column) containing at most one non-zero element.

Examples 1H

1 For
$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 3 \\ 5 & 8 \end{bmatrix}$, verify that

(i)
$$\det(A + B) \neq \det(A) + \det(B)$$
 (ii) $\det(AB) = \det(A) \det(B)$.

(ii)
$$\det(AB) = \det(A) \det(B)$$

$$A + B = \begin{bmatrix} 2 & 4 \\ 7 & 9 \end{bmatrix}, \qquad AB = \begin{bmatrix} 2 & 17 \\ 3 & 14 \end{bmatrix}$$

SO

$$det(A) = 3 - 2 = 1$$
, $det(B) = -8 - 15 = -23$,

$$det(A + B) = 18 - 28 = -10, \quad det(AB) = 28 - 51 = -23.$$

Hence results.

Find det(A) for the following matrices (using EROs to simplify if necessary):

$$(a) A = \begin{bmatrix} 5 & 1 & 6 \\ 0 & 0 & 0 \\ 2 & 1 & 3 \end{bmatrix} \quad (b) A = \begin{bmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 5 & 8 & 9 \end{bmatrix} \quad (c) A = \begin{bmatrix} 3 & 1 & 5 \\ 1 & 2 & 3 \\ 1 & -1 & 4 \end{bmatrix}.$$

(a)
$$det(A) = -0 \begin{vmatrix} 1 & 6 \\ 1 & 3 \end{vmatrix} + 0 \begin{vmatrix} 5 & 6 \\ 2 & 3 \end{vmatrix} - 0 \begin{vmatrix} 5 & 1 \\ 2 & 1 \end{vmatrix} = 0.$$

(b)
$$\det(A) = \begin{vmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 5 & 8 & 9 \end{vmatrix} \begin{vmatrix} r_1' = r_1 - r_2 \\ = \begin{vmatrix} 0 & 0 & 0 \\ 2 & -1 & 3 \\ 5 & 8 & 9 \end{vmatrix} = 0$$

(b)
$$\det(A) = \begin{vmatrix} 2 & -1 & 3 & r'_1 = r_1 - r_2 \\ 2 & -1 & 3 & 2 \\ 5 & 8 & 9 \end{vmatrix} = 0.$$

(c) $\det(A) = \begin{vmatrix} 3 & 1 & 5 & r'_1 = r_3 \\ 1 & 2 & 3 & 2 \\ 1 & -1 & 4 & r'_3 = r_1 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & 4 \\ 1 & 2 & 3 & r'_2 = r_2 - r_1 \\ 3 & 1 & 5 & r'_3 = r_3 - 3r_1 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & 4 \\ 0 & 3 & -1 \\ 0 & 4 & -7 \end{vmatrix}$

$$= - \begin{vmatrix} 3 & -1 \\ 4 & -7 \end{vmatrix} = -(-21+4) = 17.$$

Use row and column operations to find det(A) when $A = \begin{bmatrix} \lambda & x & x \\ x & \lambda & x \\ x & x & \lambda \end{bmatrix}$.

$$\det(A) = \begin{vmatrix} \lambda & x & x \\ x & \lambda & x \\ x & x & \lambda \end{vmatrix} \begin{vmatrix} c'_1 = c_1 + c_2 \\ c'_1 = c_1 + c_2 \end{vmatrix} = \begin{vmatrix} \lambda + x & x & x \\ x + \lambda & \lambda & x \\ 2x & x & \lambda \end{vmatrix} \begin{vmatrix} c'_1 = c_1 + c_3 \\ c'_2 = c_1 + c_3 \end{vmatrix}$$

$$= \begin{vmatrix} \lambda + 2x & x & x \\ \lambda + 2x & \lambda & x \\ \lambda + 2x & x & \lambda \end{vmatrix} \begin{vmatrix} c'_1 = c_1/(\lambda + 2x) \\ c'_1 = c_1/(\lambda + 2x) \end{vmatrix} = (\lambda + 2x) \begin{vmatrix} 1 & x & x \\ 1 & \lambda & x \\ 1 & x & \lambda \end{vmatrix} \begin{vmatrix} r'_2 = r_2 - r_1 \\ r'_3 = r_3 - r_1 \end{vmatrix}$$

$$= (\lambda + 2x) \begin{vmatrix} 1 & x & x \\ 0 & \lambda - x & 0 \\ 0 & 0 & \lambda - x \end{vmatrix} = (\lambda + 2x)(\lambda - x)^{2}.$$