LECTURE 4: Counting

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

Then:
$$P(A) = \frac{\text{number of elements of } A}{\text{number of elements of } \Omega} = \frac{k}{n}$$

- Basic counting principle
- Applications

permutations number of subsets combinations binomial probabilities partitions

Basic counting principle

- 4 shirts
- 3 ties
- 2 jackets

Number of possible attires?

- r stages
- ullet n_i choices at stage i

Number of choices is:

Basic counting principle examples

- Number of license plates with 2 letters followed by 3 digits:
 - ... if repetition is prohibited:
- ullet **Permutations:** Number of ways of ordering n elements:

• Number of subsets of $\{1,\ldots,n\}$:

Example

• Find the probability that: six rolls of a (six-sided) die all give different numbers.

(Assume all outcomes equally likely.)

Combinations

• Definition: $\binom{n}{k}$: number of k-element subsets of a given n-element set

$$=\frac{n!}{k!(n-k)!}$$

- Two ways of constructing an **ordered** sequence of k **distinct** items:
 - Choose the k items one at a time
 - Choose k items, then order them

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$\binom{n}{n} =$$
$$\binom{n}{0} =$$

$$\binom{n}{n} =$$

$$\binom{n}{0} =$$

$$\sum_{k=0}^{n} \binom{n}{k} =$$

Binomial coefficient $\binom{n}{k} \longrightarrow$ Binomial probabilities

- $n \ge 1$ independent coin tosses; P(H) = p
- $\mathbf{P}(k \text{ heads}) = \binom{n}{k} p^k (1-p)^{n-k}$

- P(HTTHHHH) =
- P(particular sequence) =
- P(particular k-head sequence)

P(k heads) =

A coin tossing problem

- Given that there were 3 heads in 10 tosses,
 what is the probability that the first two tosses were heads?
 - event A: the first 2 tosses were heads
 - event B: 3 out of 10 tosses were heads
- First solution:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} =$$

Assumptions:

- independence
- $\bullet P(H) = p$

$$\mathbf{P}(k \text{ heads}) = \binom{n}{k} p^k (1-p)^{n-k}$$

A coin tossing problem

- Given that there were 3 heads in 10 tosses, what is the probability that the first two tosses were heads?
 - event A: the first 2 tosses were heads
 - event B: 3 out of 10 tosses were heads

Assumptions:

- independence
- $\bullet \ \mathbf{P}(H) = p$

$$\mathbf{P}(k \text{ heads}) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Second solution: Conditional probability law (on B) is uniform

Partitions

- $ullet n \geq 1$ distinct items; $r \geq 1$ persons give n_i items to person i
 - here n_1, \ldots, n_r are given nonnegative integers
 - with $n_1 + \cdots + n_r = n$
- Ordering *n* items:
 - Deal n_i to each person i, and then order

$$\frac{number of partitions}{n_1! n_2! \cdots n_r!}$$
 (multinomial coefficient)

Example: 52-card deck, dealt (fairly) to four players.

Find P(each player gets an ace)

- Outcomes are:
 - number of outcomes:
- Constructing an outcome with one ace for each person:
 - distribute the aces
 - distribute the remaining 48 cards

• Answer:
$$\frac{4 \cdot 3 \cdot 2 \cdot \frac{48!}{12! \ 12! \ 12! \ 12!}}{\frac{52!}{13! \ 13! \ 13! \ 13!}}$$

52-card deck, dealt (fairly) to four players. A smart solution Example: Find P(each player gets an ace)Stack the deck, aces on top Deal, one at a time, to available "slots"