Anhang zum Kapitel 2

2.A Tabelle von Fourier-Transformationspaaren

Die Fourier-Transformationspaare sind zum Teil von [6, 47, 69] entnommen. Es gilt jeweils: $0 < (\alpha, \beta, t_0, \omega_0, A) \in \mathbb{R}, n \in \mathbb{N}$.

Tabelle 2.3: Fourier-Transformationspaare

Tabelle 2.4: Fourier-Transformationspaare

Tabelle 2.5: Fourier-Transformationspaare

Tabelle 2.6: Fourier-Transformationspaare

Tabelle 2.7: Fourier-Transformationspaare

 ${\bf Tabelle~2.8:}~ {\bf Fourier\text{-}Transformations paare}$

Tabelle 2.9: Fourier-Transformationspaare

2.B Tabelle von Laplace-Transformationspaaren

Die Transformationspaare sind mehrheitlich [6, 7, 21, 47, 69] entnommen. Es gilt: $0 < \alpha \in \mathbb{R}, n \in \mathbb{N}, a, \nu \in \mathbb{C}, s = \sigma + j\omega$ und somit $\Re\{s\} = \sigma$ und $\Im\{s\} = \omega$.

#	f(t), wobei $f(t) = 0$ für $t < 0$	F(s) mit Konvergenzbereich
1	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} \frac{df(0)}{dt} - \dots - \frac{d^{n-1} f(0)}{d^{n-1} t}$
2	$\int_{0}^{t} f(x)dx$	$\frac{F(s)}{s}$
3	$\frac{f(t)}{t}$	$\int_{0}^{\infty} F(s)ds$
4	$f(t-\alpha)u(t-\alpha)$	$e^{-s\alpha}F(s)$
5	$f(t+\alpha)u(t+\alpha)$	$e^{+s\alpha}\left(F(s) - \int_{0}^{a} e^{-st} f(t) dt\right)$
6	$f_1(t) * f_2(t) * f_3(t)$	$F_1(s) \cdot F_2(s) \cdot F_3(s)$
7	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi j}(F_1(s)*F_2(s))$
8	$\lim_{t \to 0^+} f(t)$	$\lim_{s \to \infty} sF(s)$
9	$\lim_{t \to \infty} f(t)$	$\lim_{s \to \infty} sF(s)$ $\lim_{s \to 0} sF(s)$
10	u(t)	$\frac{1}{s}$ mit $\sigma > 0$
11	$\delta(t)$	1 mit $\sigma \in \mathbb{R}$
12	$\frac{d\delta(t)}{dt}$	s
13	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$
14	$\frac{d\delta(t)}{dt}$ $\frac{t^{n-1}}{(n-1)!}$ $\frac{t^{n-1}e^{-at}}{(n-1)!}$ $\frac{1}{\sqrt{\pi t}}$	$\frac{1}{(s-a)^n}$
15	$\frac{1}{\sqrt{\pi t}}$	$\frac{\frac{1}{(s-a)^n}}{\frac{1}{\sqrt{s}}}$
16	$\frac{n!4^nt^{n-\frac{1}{2}}}{(2n)!\sqrt{\pi}}$	$\frac{1}{s^n\sqrt{s}}$
17	$J_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\frac{\frac{1}{s^n\sqrt{s}}}{\frac{(\sqrt{s^2+a^2}-s)^{\nu}}{a^{\nu}\sqrt{s^2+a^2}}} \text{ mit } \sigma > \Im\{a\} $ $\frac{(s-\sqrt{s^2-a^2})^{\nu}}{a^{\nu}\sqrt{s^2-a^2}} \text{ mit } \sigma > \Re\{a\} $
18	$I_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\left \frac{\left(s - \sqrt{s^2 - a^2} \right)}{a^{\nu} \sqrt{s^2 - a^2}} \text{ mit } \sigma > \left \Re\{a\} \right \right $
19	$\frac{\sin(\alpha t)}{t}$	$\arctan\left(\frac{\alpha}{s}\right) \text{ mit } \sigma > 0$
		\tan^{-1}

Tabelle 2.10: Laplace-Transformationspaare

 $J_{\nu}(at)$ ist die Bessel- oder Zylinderfunktion ν . Ordnung 1. Gattung und $I_{\nu}(at)$ ist die modifizierte Bessel-Funktion ν . Ordnung [7].

Die folgende Tabelle ist nach dem Grad des Nenners geordnet. Die Tabelle ist bis zum Nennergrad 3 vollständig und stammt von [6, 21].

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(s),	Konvergenzbereich	$f(t)$, wobei $f(t) = 0$ für $t < 0$ mit $(\alpha, \beta, \gamma) \in \mathbb{C}$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,	$\sigma \in \mathbb{R}$	$\delta(t)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{s}$,	$\sigma > 0$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{s+\alpha}$,	$\sigma > -\Re\{\alpha\}$	$e^{-\alpha t}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{s^2}$,	$\sigma > 0$	t
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\sigma > -\min\{\Re\{\alpha\}, 0\}$	lpha
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	β - α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{s}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	α - β
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\sigma > -\Re\{\alpha\}$	
$\frac{s^2-a^2}{s^2-a^2}, \qquad \sigma > \Re(\alpha) \qquad \alpha \\ \frac{s}{s^2+a^2}, \qquad \sigma > \Im(\alpha) \qquad \sin(\alpha) \\ \frac{1}{s^2+a^2}, \qquad \sigma > \Im(\alpha) \qquad \cos(\alpha) \\ \frac{1}{(s+\beta)^2+\alpha^2}, \qquad \sigma > \Im(\alpha) \qquad \cos(\alpha) \\ \frac{1}{(s+\beta)^2+\alpha^2}, \qquad \sigma > \Im(\alpha) \qquad \cos(\alpha) \\ \frac{1}{(s+\beta)^2+\alpha^2}, \qquad \sigma > \Im(\alpha) - \Re(\beta) \\ \frac{s}{(s+\beta)^2+\alpha^2}, \qquad \sigma > \Im(\alpha) - \Re(\beta) \\ \frac{s}{(s+\beta)^2+\alpha^2}, \qquad \sigma > \Im(\alpha) - \Re(\beta) \\ \frac{s}{a^3}, \qquad \sigma > 0 \\ \frac{1}{s^3}, \qquad \sigma > 0 \\ \frac{1}{s^3}, \qquad \sigma > 0 \\ \frac{1}{s^3(s+\alpha)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), 0) \\ \frac{1}{s(s+\alpha)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), 0) \\ \frac{1}{s(s+\alpha)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), 0) \\ \frac{1}{s(s+\alpha)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\gamma)) \\ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\gamma)) \\ \frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\gamma)) \\ \frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\gamma)) \\ \frac{1}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\gamma)) \\ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\beta), \Re(\gamma)) \\ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re(\beta), \Re(\beta)) \\ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min(\Re(\alpha), \Re(\beta), \Re$	$(s+\alpha)^2$,	$\sigma > -\Re\{\alpha\}$,
$ \frac{1}{s^{2} + \alpha^{2}}, \qquad \sigma > \Im\{\alpha\} \qquad \sin(\alpha t) \\ \frac{1}{\alpha} + \frac{1}{(s+\beta)^{2} + \alpha^{2}}, \qquad \sigma > \Im\{\alpha\} \qquad \sin(\alpha t) \\ \frac{1}{(s+\beta)^{2} + \alpha^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \cos(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\min(\alpha t) \\ \frac{1}{s^{2}}, \qquad \sigma > -\alpha(\alpha t) \\ $	$s^2-\alpha^2$,		α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{s}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{s^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} $	
$ \frac{s}{(s+\beta)^2 + \alpha^2}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \alpha $ $ \frac{s}{(s+\beta)^2 + \alpha^2}, \qquad \sigma > \Im\{\alpha\} - \Re\{\beta\} \qquad \alpha $ $ \frac{1}{s^3}, \qquad \sigma > 0 \qquad \frac{1}{2}$ $ \frac{1}{s^2(s+\alpha)}, \qquad \sigma > -\min\{\Re\{\alpha\}, 0\} \qquad \frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$ $ \frac{1}{s(s+\alpha)(s+\beta)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, 0\} \qquad \alpha $ $ \frac{1}{s(s+\alpha)(s+\beta)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, 0\} \qquad \alpha $ $ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad \alpha $ $ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad (\alpha - \beta)\beta - \alpha)(\alpha - \beta)$ $ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \qquad (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \gamma)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\beta - \alpha)(\gamma - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \beta)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \beta)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\beta\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\beta\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\min\{\Re\{\beta\}, \Re\{\beta\}\} \qquad (\alpha - \alpha)(\beta - \alpha)(\alpha - \alpha)$ $ \frac{s^2}{(s+\alpha)^3}$	$\frac{s}{s^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{(s+\beta)^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	α
$\frac{1}{s(s+\alpha)(s+\beta)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, 0\} \\ \frac{1}{s(s+\alpha)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, 0\} \\ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} \\ \frac{1}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \\ \frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \\ \frac{1}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re\{\beta\}, \Re\{\alpha\}\} \\ \frac{1}{s(s+\beta)^2+\alpha^2}, \qquad \sigma > -\min\{\Re\{\beta\}, \Re\{\alpha\}\} \\ \frac{1}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{- \Im\{\beta\}, \Re\{\alpha\}\} \\ \frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\}, \Re\{\alpha\}\} \\ \frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\}, \Re\{\alpha\}\} \\ \frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\}, \Re\{\alpha\}\} \\ \frac{\alpha^2e^{-\alpha t} + \alpha \sin(\beta t) + \beta \cos(\beta t)}{\alpha^2 + \beta^2}, \qquad \frac{\alpha^2e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\alpha t)}{\alpha^2 + \beta^2}, \qquad \frac{\alpha^2e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}, \qquad \frac{\alpha^2e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}, \qquad \frac{\alpha^2e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}, \qquad \frac{\alpha^2e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}, \qquad \alpha^2e^{-\alpha t} + \alpha^2e^$	$\frac{1}{s^3}$,	$\sigma > 0$	$\frac{t^2}{2}$
$\frac{s(s+\alpha)(s+\beta)}{1}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta), \}\} \qquad \frac{\alpha\beta(\alpha-\beta)}{\alpha^2}$ $\frac{1}{(s+\alpha)^2}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta), \}\} \qquad \frac{1-e^{-\alpha t} - ate^{-\alpha t}}{\alpha^2}$ $\frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta), \Re(\gamma)\} \qquad \frac{(\gamma-\beta)e^{-\alpha t} + (\alpha-\gamma)e^{-\beta t} + (\beta-\alpha)e^{-\gamma t}}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ $\frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta), \Re(\gamma)\} \qquad \frac{(\beta\beta-\gamma)e^{-\alpha t} + \beta(\gamma-\alpha)e^{-\beta t} + \gamma(\alpha-\beta)e^{-\gamma t}}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ $\frac{s^2}{(s+\alpha)(s+\beta)(s+\gamma)}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta), \Re(\gamma)\} \qquad \frac{a(\beta-\gamma)e^{-\alpha t} + \beta(\gamma-\alpha)e^{-\beta t} + \gamma(\alpha-\beta)e^{-\gamma t}}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ $\frac{1}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta)\} \qquad \frac{e^{-\alpha t} - [1+(\beta-\alpha)t]e^{-\beta t}}{(\beta-\alpha)^2}$ $\frac{s}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta)\} \qquad \frac{e^{-\alpha t} - [1+(\beta-\alpha)t]e^{-\beta t}}{(\beta-\alpha)^2}$ $\frac{s^2}{(s+\alpha)(s+\beta)^2}, \qquad \sigma > -\min\{\Re(\alpha\}, \Re(\beta)\} \qquad \frac{a^2e^{-\alpha t} + \beta(\beta-2\alpha-t\beta^2+\alpha\beta)e^{-\beta t}}{(\beta-\alpha)^2}$ $\frac{1}{(s+\alpha)^3}, \qquad \sigma > -\Re(\alpha) \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re(\alpha) \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re(\alpha) \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re(\alpha) \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re(\alpha) \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\inf\{\Re(\beta) - \Im(\alpha) , \qquad \frac{ae^{-\beta t}[a\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha}$ $\frac{1}{s(s^2+\alpha^2)}, \qquad \sigma > -\min\{\Re(\beta), \Re(\beta)\}, \qquad \frac{ae^{-\beta t}[a\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\beta e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im(\beta) , \Re(\alpha)\} \qquad \frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\alpha t)}{\alpha^2 + \beta^2}$ $\frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta$	$\frac{1}{s^2(s+\alpha)}$,	$\sigma > -\min\{\Re\{\alpha\}, 0\}$	$\frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{s(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},0\}$	${\alpha\beta(\alpha-\beta)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\sigma > -\min\{\Re\{\alpha\}, 0\}$	$lpha^2$
$ \frac{(s+\alpha)(s+\beta)(s+\gamma)}{s^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} $ $ \frac{s^2}{(s+\alpha)(s+\beta)(s+\gamma)}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} $ $ \frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\} $ $ \frac{1}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s^2}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s^2}{(s+\alpha)(s+\beta)^2}, \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} $ $ \frac{s^2}{(s+\alpha)^3}, \sigma > -\Re\{\alpha\} $ $ \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $ \frac{s^2}{(s+\alpha)^3}, \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} $ $ \frac{a(-\beta)(\beta-\gamma)(\gamma-\alpha)}{(\beta-\alpha)(\beta-\gamma)(\gamma-\alpha)} $ $ \frac{a^2e^{-\alpha t} + \beta(\beta-\alpha)e^{-\beta t}}{(\beta-\alpha)^2} $ $ \frac{s^2}{(s+\alpha)^3}, \sigma > -\Re\{\alpha\} $ $ \frac{(2-\alpha t)te^{-\alpha t}}{2}$	$\frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	
$\frac{s}{(s+\alpha)(s+\beta)^2}; \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad \frac{(\beta-\alpha)^2}{(\beta-\alpha)^2}$ $\frac{s^2}{(s+\alpha)(s+\beta)^2}; \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad \frac{-\alpha e^{-\alpha t} + [\alpha + t\beta(\beta-\alpha)]e^{-\beta t}}{(\beta-\alpha)^2}$ $\frac{1}{(s+\alpha)^3}; \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2 e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}; \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2 e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}; \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}; \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$ $\frac{1}{s[(s+\beta)^2 + \alpha^2]}; \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2 + \beta^2)}$ $\frac{1}{s(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\cos(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$ $\frac{s}{(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}; \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$		$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{-\alpha^2(\beta - \gamma)e^{-\alpha t} - \beta^2(\gamma - \alpha)e^{-\beta t} - \gamma^2(\alpha - \beta)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
$\frac{(s+\alpha)(s+\beta)^2}{s^2}, \qquad \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\} \qquad \frac{(\beta-\alpha)^2}{(\beta-\alpha)^2}$ $\frac{1}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2e^{-\alpha t} + \beta(\beta-2\alpha-t\beta^2+\alpha\beta t)e^{-\beta t}}{(\beta-\alpha)^2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$ $\frac{1}{s[(s+\beta)^2+\alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha-e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2+\beta^2)}$ $\frac{1}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2+\beta^2)}$ $\frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\alpha t) + \frac{\alpha^2e^{-\beta t}\sin(\alpha t)}{\alpha^2+\beta^2}$		$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$(\beta - \alpha)^2$
$\frac{(s+\alpha)(s+\beta)^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t+\alpha^2t^2)e^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t+\alpha^2t^2)e^{-\alpha t}}{2}$ $\frac{1}{s[(s+\beta)^2+\alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2+\beta^2)}$ $\frac{1}{s(s^2+\alpha^2)}, \qquad \sigma > \Im\{\alpha\} \qquad \frac{1-\cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2+\beta^2)}$ $\frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\alpha t) + \frac{\alpha - \beta}{\alpha}e^{-\beta t}\sin(\alpha t)}{\alpha^2+\beta^2}$	$\frac{s}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$(\beta-\alpha)^2$
$\frac{1}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{t^2e^{-\alpha t}}{2}$ $\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$ $\frac{1}{s[(s+\beta)^2 + \alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2 + \beta^2)}$ $\frac{1}{s(s^2 + \alpha^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{1 - \cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$ $\frac{s}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\beta t) + \frac{\alpha - \beta}{2}e^{-\beta t}\sin(\beta t)}{\alpha^2 + \beta^2}$	$\frac{s^2}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$(\beta - \alpha)^2$
$\frac{s}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-\alpha t)te^{-\alpha t}}{2}$ $\frac{s^2}{(s+\alpha)^3}, \qquad \sigma > -\Re\{\alpha\} \qquad \frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$ $\frac{1}{s[(s+\beta)^2 + \alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2 + \beta^2)}$ $\frac{1}{s(s^2 + \alpha^2)}, \qquad \sigma > \Im\{\alpha\} \qquad \frac{1 - \cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$ $\frac{s}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\beta t) + \frac{\alpha - \beta}{2}e^{-\beta t}\sin(\beta t)}{\alpha^2 + \beta^2}$	$\frac{1}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	
$\frac{1}{s[(s+\beta)^2+\alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2 + \beta^2)}$ $\frac{1}{s(s^2 + \alpha^2)}, \qquad \sigma > \Im\{\alpha\} \qquad \frac{1 - \cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$ $\frac{s}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\beta t) + \frac{\alpha - \beta}{2}e^{-\beta t}\sin(\beta t)}{\alpha^2 + \beta^2}$	$\frac{s}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	
$\frac{1}{s[(s+\beta)^2+\alpha^2]}, \qquad \sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\} \qquad \frac{\alpha - e^{-\beta t}[\alpha\cos(\alpha t) + \beta\sin(\alpha t)]}{\alpha(\alpha^2 + \beta^2)}$ $\frac{1}{s(s^2 + \alpha^2)}, \qquad \sigma > \Im\{\alpha\} \qquad \frac{1 - \cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha\sin(\beta t) - \beta\cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$ $\frac{s}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha\cos(\beta t) + \beta\sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2 + \beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t}\cos(\beta t) + \frac{\alpha - \beta}{2}e^{-\beta t}\sin(\beta t)}{\alpha^2 + \beta^2}$	$\frac{s^2}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	2
$\frac{1}{s(s^2+\alpha^2)}, \qquad \sigma > \Im\{\alpha\} \qquad \frac{1-\cos(\alpha t)}{\alpha^2}$ $\frac{1}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha \sin(\beta t) - \beta \cos(\beta t)}{\beta(\alpha^2+\beta^2)}$ $\frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha \beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t} \cos(\beta t) + \frac{\alpha - \beta}{2} e^{-\beta t} \sin(\beta t)}{\alpha^2+\beta^2}$	1	$\sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\}$	$\alpha(\alpha^2+\beta^2)$
$\frac{1}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{\beta e^{-\alpha t} + \alpha \sin(\beta t) - \beta \cos(\beta t)}{\beta(\alpha^2+\beta^2)}$ $\frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2+\beta^2}$ $\frac{e^{-\alpha t} - e^{-\beta t} \cos(\gamma t) + \frac{\alpha-\beta}{2} e^{-\beta t} \sin(\gamma t)}{\alpha^2+\beta^2}$	1	$\sigma > \Im\{\alpha\} $	$\frac{1-\cos(\alpha t)}{\alpha^2}$
$\frac{s}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}$ $\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha \beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2 + \beta^2}$ $e^{-\alpha t} - e^{-\beta t} \cos(\gamma t) + \frac{\alpha - \beta}{2} e^{-\beta t} \sin(\gamma t)$	1	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\beta(\alpha^2+\beta^2)$
$\frac{s^2}{(s+\alpha)(s^2+\beta^2)}, \qquad \sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}\} \qquad \frac{\alpha^2 e^{-\alpha t} - \alpha\beta\sin(\beta t) + \beta^2\cos(\beta t)}{\alpha^2 + \beta^2}$ $e^{-\alpha t} - e^{-\beta t}\cos(\gamma t) + \frac{\alpha - \beta}{2}e^{-\beta t}\sin(\gamma t)$		$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)}{\alpha^2 + \beta^2}$
$e^{-\alpha t} - e^{-\beta t} \cos(\gamma t) + \frac{\alpha - \beta}{2} e^{-\beta t} \sin(\gamma t)$	s^2	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{\alpha^2 e^{-\alpha t} - \alpha \beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2 + \beta^2}$
$\frac{1}{(s+\alpha)[(s+\beta)^2+\gamma^2]}, \ \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \} $ $\frac{c}{(\beta-\alpha)^2+\gamma^2}$	_	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{e^{-\alpha t} - e^{-\beta t}\cos(\gamma t) + \frac{\alpha - \beta}{\gamma}e^{-\beta t}\sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
$-\alpha e^{-\alpha t} + \alpha e^{-\beta t} \cos(\gamma t) - \frac{\alpha \beta - \beta^2 - \gamma^2}{\gamma} e^{-\beta t} \sin(\gamma t)$			
$\frac{s^2}{(s+\alpha)[(s+\beta)^2+\gamma^2]}, \ \sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \} \qquad \frac{\alpha^2 e^{-\alpha t} + [(\alpha-\beta)^2 + \gamma^2 - \alpha^2] e^{-\beta t} \cos(\gamma t) - \left(\alpha\gamma + \beta\left(\gamma - \frac{\beta(\alpha-\beta)}{\gamma}\right)\right) e^{-\beta t} \sin(\gamma t)}{(\beta-\alpha)^2 + \gamma^2}$	2		$\frac{(\beta-\alpha)^2+\gamma^2}{\alpha^2 e^{-\alpha t} + [(\alpha-\beta)^2+\gamma^2-\alpha^2]e^{-\beta t}\cos(\gamma t) - (\alpha\gamma+\beta(\gamma-\frac{\beta(\alpha-\beta)}{\gamma}))e^{-\beta t}\sin(\gamma t)}{(\beta-\alpha)^2+\gamma^2}$
$\frac{1}{s^4}, \qquad \qquad \sigma > 0 \frac{t^3}{6}$	$\frac{1}{s^4}$		

 ${\bf Tabelle~2.11:}~ {\bf Laplace\text{-}Transformations paare}$