WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burnau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:	-	(11) International Publication Number:	WO 90/03398
C07K 15/04, A61K 37/00, 39/02 A61K 39/09	I V	(43) International Publication Date:	5 April 1990 (05.04.90)
(21) International Application Number: PC	T/US89/042	PCT/US89/04241 (81) Designated States: AT (European patent), AU, BE (Euro-	n patent), AU, BE (Euro-
(22) International Filing Date: 28 September 1989 (28.09.89)	8.60.82) 6861	pean patent, CH (Lutopean patent, DE (Lutopean patent), HE (Lutopean patent), IT (European patent), JP, LU (European patent), M. L'U-	satent), UE (European pa- GB (European patent), IT uropean patent), NL (Eu-
(30) Priority data: 250,417 28 September 1988 (28.09.88) US	U (88.09.88)		patent).
(71) Applicant: BRIGHAM AND WOMEN'S HOSPITAL	HOSPITA		•

(72) Inventor: PIER, Gerald, B.; 21 Thorndike Street, Brook-line, MA 02146 (US).

(71) Applicant: BRIGHAM AND WOMEN'S HOSPITAL [US/US]; 75 Francis Street, Boston, MA 02115 (US).

(74) Agents: GOLDSTEIN, Jorge, A. et al.; Saidman, Sterne, Kessler & Goldstein, 1225 Connecticut Avenue, N.W., Suite 300, Washington, DC 20036 (US).

(54) This: CAPSULAR POLYSACCHARIDE ADHESIN ANTIGEN, PREPARATION, PURIFICATION AND USE

A substantially pure capsular exopolysacturatic adhesin
of coagulasc-negative staphylococcal strains, and a general
method to prepare such adhesins,
are described, Varcines composed of such adhesins, and uses of
such adhesins to produce poylcional and monoclonal antipodies against such adhesins, are
also disclosed. The adhesins are
useful in costing polymeric mediall materials to prevent colonization by coagulasc-negative staphylococcal strains, and as a
probe in selecting desirable poymeric medicial materials. Such
adhesin antibodies are useful in
rive to prevent infection by nosocomial coagulasc-negative staphylococcal strains, in assays for the estimation of such
adhesin in complex mixtures, and as a
phylococcal strains, in assays for the estimation of such
adhesins in complex mixtures, and as a an affinity chromatogra-

Codes used to identify States party to the PCT on the front pages of pumphlets publishing international applications under the PCT. FOR THE PURPOSES OF INFORMATION ONLY Z=3332 BEE5832=5

BEST AVAILABLE COPY

TITLE OF THE INVENTION

CAPSULAR POLYSACCHARIDE ADHESIN ANTIGEN. PREPARATION. PURIFICATION AND USE

BACKGROUND OF THE INVENTION

ELELD OF THE INVENTION

catheters and medical prostheses. probe for the development of polymeric materials useful as homologous bacterial cells to polymeric materials, and as a production of antibodies effective against the binding of uses of said purified adhesin product as a vaccine for the exopolysaccharide adhesin isolated from a particular strain of <u>Staphylococcus epidermidis</u>, to a general method capable of isolating this compound in substantially pure form, and to The present invention relates to a substantially pure

DESCRIPTION OF THE BACKGROUND ART

dialysis shunts, vascular grafts, and extended-wear contact tissues at the site of prosthetic medical devices, including lenses. Within 48 to 72 hours, relatively large numbers of intravascular catheters, cerebrospinal fluid shunts, hemocharacteristic propensity for invading skin and adjacent <u>Staphylococcus epidermidis</u> (coagulase-negative) have a Both <u>Staphylococcus aureus</u> (coagulase-positive) and

WO 90/03398

PCT/US89/04241

÷

materials). polyvinylchloride, polyvinylfluoride, or polyester based cells attach and proliferate on the inner or outer surfaces of catheters, irrespective of their composition (polyethylene, 625, 738-9. It has been demonstrated that S. epidermidis <u>Infectious Diseases</u>, Saunders, Philadelphia, 1985, pp. 618-Youmans, G.P., et al., The Biologic and Clinical Basis of Remington, J.S., et al., eds., Current Clinical Topics in midis: The Organism, Its Diseases, and Treatment," in these foreign bodies. Archer, G.L., "Staphylococcus epiderstaphylococci are demonstrable at the site of insertion of <u>Infectious Diseases</u>, McGraw-Hill, New York, 1986, pp. 25-46;

materials. adherence to, and colonization of, polymeric prosthetic surface properties of these organisms that might mediate coccal foreign-body infections, attention has focused on first step in the pathogenesis of coagulase-negative staphylocharacterized. As adherence is believed to be the critical sals to become nosocomial pathogens have not been well the microbial factor(s) that permit these normal skin commencocci clearly is enhanced in the presence of a foreign body, Although the virulence of coagulase-negative staphylo-

isms. Youmans <u>et al., supra</u>; Peters, G., <u>et al., Journal of</u> antibiotics, as well as against natural host defense mechanslime substance may protect the <u>\$__epidermidis</u> cells against <u>Infectious Diseases 146</u>:479-82 (1982). referred to as "slime." It has been hypothesized that the staphylococcal adhesin is an extracellular material often The most promising candidate for the source of a specific

is presumably a polysaccharide. Bayston, R., <u>et al., Develop-</u> elaborate a mucoid material that stains with alcian blue and bacteria isolated from cerebrospinal fluid shunt infections It has been known since 1972 that coagulase-negative

mannose, L-fucose, and L-rhamnose, and also contain amino The extracellular polysaccharide substance of slime-producing bacteria is a loose amorphous material composed of a range of ow and high molecular weight polymers composed, in general, of neutral monosaccharides such as D-glucose, D-galactose, Dsugars, uronic acid, and polyols such as ribitol and glycerol. oristina, A.G., <u>Science</u> 237:1588-95 (1987). Glucose, galactose, phenylalanine, mannose, hexosamine, phosphorous, glycine and alanine have been found as components of the slime produced by S. epidermidis strains in clinical specimens Appl. Bact. 51:229 (1981). Isolates of such bacteria from sites of infections are more likely to produce slime than are random isolates from skin. Ishak, M.A., et al., Journal of Clinical Microbiology 22:1025-9 (1985). Moreover, slimeproducing strains adhere well to a variety of polymeric unrelated to biomaterial infections. Ichiman, ל., et al., ל mental and Medical Child Neurology 14 (Supp. 27):25-8 (1972). naterials. Christensen, G.D., <u>et al., Infect. Immun. 37</u>:318-26 (1982).

Coagulase-positive staphylococci (<u>S. aureus</u>) are reported to produce multiple cell surface proteins which can be released from such cells by thermal extraction and which can be shown to bind to influenza virus-infected canine kidney cells. It was considered that <u>S. aureus</u> produces multiple cell surface protein adhesins. Sanford, B.A., <u>et al.</u>, <u>Infect. Immun. 52</u>:671-5 (1986); <u>Proc. Soc. Exp. Biol. Med. 181</u>:104-11 (1986).

Identification of other microbial adhesins has been reported. Pier (U.S. Patent 4,285,936, August 25, 1981; U.S. Patent 4,528,458, March 25, 1986) discloses a method for partial purification of a polysaccharide antigen from <u>Pseudomonas aeruginosa</u> slime. <u>Escherichia coli</u> fimbrial protein adhesins have been identified and partially purified by

WO 90/03398

several investigators (Orskov, I., et al., infect. immun. 4Z:191-200 (1985); Chanter. H., <u>J. Gen. Microbiol.</u> 125:225-243 (1983); Ferreiros, C.H., et al., Rev. espanol. de fisiolog. 32:45-50 (1983); and Moch, T., et al., Proc. Natl. Acad. Sci. 84:3462-6 (1987)).

Lectin-like glycoprotein adhesins. have been identified in the <u>Bacteroides fragilis</u> group, and a 70 kDa adhesin has been purified by affinity chromatography (Rogemond, V., <u>gt al.</u>, <u>Infect. Immun.</u> 53:99-102 (1986)). Monoclonal antibody affinity chromatography was used to purify a 165 kDa surface protein of <u>Mycoplasma pneumoniae</u> which madiates attachment of such bacteria to target cells (Leigt, D.K., <u>gt al.</u>, <u>J. Bacteriol. 157</u>:678-80 (1984)), and to isolate a 150kDa adhesin protein from <u>Strebtococcus sanguis</u> FW213 (Elder, B.L., <u>gt al.</u>, <u>Infect. Immun.</u> 54:421-7 (1986)). A uroepithelial cell adhesin protein of 17.5 kDa was partially purified from fimbrii of <u>Proteus mirabilis</u>, a frequent cause of urinary tract infection (Wray, S.K., <u>et al.</u>, Infect. Immun. 54:43-9 (1986)).

Ludwicka (Ludwicka, A., et al., Zbl. Bakt. Hvg. 6 258:256-67 (1984)) fractionated by ion-exchange chromatography a phenol-saline extract of slime from <u>S. epidermidis</u> and obtained four crude fractions. Both the phenol-saline extract and two of the four crude fractions inhibited the attachment of bacterial cells to polymeric material. On the basis of the presence of monosaccharides in the fractions, the reaction of the fractions with lectins, and the complete inhibition of the production of the four fractions by pretreatment of the bacteria by tunicamycin (inhibitor of glycoprotein synthesis), the authors concluded that the extracellular slime substance is a complex of glycoconjugate (i.e., glycoprotein) character.

Hogt (Hogt, A.H., et al., Infect. Immun. 51:294 (1986) have also observed that crude extracellular products from the slime of homologous strains of <u>S. epidermidis</u> inhibit the

ķ

adherence of homologous bacterial cells to polymeric materials used as catheters and prostheses. No information was provided in this report as to the chemical nature of the extracellular products.

the protection of the neonatal piglet against Escherichia coli Stand. 53:189-97 (1983)) discloses multi-adhesin vaccines for humans and animals. Nagy (Nagy, L.K., et al., Dev. Biol. diseases induced by adhesin-bearing homologous bacteria in <u>osa</u> which may be used for the therapeutic treatment of surface adhesins of Escherichia coli and Pseudomonas aerugin-April 27, 1983) discloses monoclonal antibodies specific for Patent 4,652,498, March 24, 1984; and EP 82401506.1, published G.B., <u>et al.</u>, U.S. patents, <u>supra</u>) disclose a vaccine compris-(Sadowski, .P., U.S. Patent 4,443,549, April 17, 1984; U.S. <u>Pseudomonas aeruginosa</u> strain 2192 slime which induces in ing a high molecular weight mucoid exopolysaccharide from use of said conjugate as an anti-caries vaccine. Pier (Pier, recipient animals an immunity to said organism. Sadowski polysaccharide from the same (serotypically) organism, and the protein adhasin (MM-74 kDa) from <u>Streptococcus mutans</u> and a 21, 1986) discloses a covalent conjugate between a capsular al., French Patent Application 85-07315, published November directed against homologous bacteria. Frank (Frank, R., et such cells have been used as vaccines to produce antibodies Bacterial cells and materials derived from the surface of

SUMMARY OF THE INVENTION

The inventors considered that, if a substantially pure capsular polysaccharide adhesin antigen could be isolated from the slime of strains of pathogenic <u>S. epidermidis</u>, a vaccine could be prepared from such an antigen that could be used to

WO 90/03398

PCT/US89/04241

÷

raise polyclonal antibodies in vivo in a human or animal, or monoclonal antibodies in hybridoma cells. Reasoning that adhesin-mediated colonization is required for the onset of pathogenesis, the inventors conceived that the polyclonal or monoclonal antibodies produced against the adhesin of the invention, by preventing the adherence of adhesin-bearing pathogenic bacteria to the recipient's tissue cells or polymeric medical prostheses or catheters, represent a new means for preventing or treating diseases and infections due to <u>S. epidermidis</u>.

Further, the substantially pure capsular polysaccharide adhesin of the invention is useful as a probe to test new polymeric materials for medical devices.

Therefore, in a preferred embodiment, the present invention provides a substantially pure polysaccharide from extracts of <u>S. epidermidis</u> RP-62 strain (an isolate from a patient with catheter-related bacteremia that produces copious quantities of slime) that mediates adherence to polymeric materials and also appears to be the capsule for this organism. In another preferred embodiment, the present invention provides a method for producing a substantially pure polysaccharide adhesin from extracts of <u>S. epidermidis</u> strain RP-62.

In another preferred embodiment, the substantially pure polysaccharide adhesin of the invention is used as a vaccine to raise in animals antibodies against said adhesin that inhibit the attachment of adhesin-bearing bacteria to polymeric materials.

The substantially pure polysaccharide of the invention may also be used as an antigen to produce monoclonal antibodies in hybridoma cells. Such monoclonal antibodies can be administered for prophylaxis or therapeutic purposes to humans

-7-

or animals in order to prevent or reduce infections by coagulase-negative staphylococci.

In yet another preferred embodiment, the substantially pure polysaccharide adhesin of the invention is used to screen polymeric materials for resistance to attachment by bacteria.

DESCRIPTION OF THE DRAWINGS

Figure 1A demonstrates the immunodiffusion pattern of crude extract (A), purified teichoic acid (B) and purified adhesin (C) against antisera raised to whole cells of <u>S. epidermidis</u> strain RP-62A.

Figure 1B demonstrates immunoelectrophoresis of <u>S. epidermidis</u> antigens. Troughs were filled with antisera to strain RP-62A whole cells. A, crude extract; B, teichoic acid, C, purified adhesin; D, mixture of teichoic acid and purified adhesin.

Figure 2 demonstrates the electrophoresis pattern of restriction enzyme digests of bacterial DNA from strains RP-62A (left-hand pattern of each pair) and RP-62NA (right-hand pattern of each pair). Lanes 1 and 12, HindIII digest of phage lambda DNA; Lanes 2 and 3, undigested DNA from RP-62A and RP-62NA; Lanes 4 and 5, EcoRI digest; Lanes 6 and 7, SauIIA digest; Lanes 8 and 9, Rsal digest; Lanes 10 and 11, Clal digest.

Figure 3 demonstrates the inhibition of binding of <u>S. epidermidis</u> strain RP-62 cells to silastic catheter tubing after incubation of the tubing in the indicated concentrations of the various bacterial antigens prior to dipping in bacterial suspension (10⁶ cells per ml). Significant (p<0.05, t test) inhibition was seen only with crude extracts from strain RP-62A at concentrations of 0.12-0.50 mg/ml and with purified adhesin at concentrations of 0.06-0.50 mg/ml.

WO 90/03398

4

Figure 4 demonstrates the inhibition of adherence of various strains of cosgulase-negative staphylococci to silastic catheter tubing by different antigen preparations (0.1 mg/ml concentration) from <u>S. epidermidis</u> strain RP-62A. An asterisk indicates significant (pc0.05, t test) inhibition.

Figure 5 shows transmission electron microscopy of various strains of coagulase-negative staphylococci following incubation with normal rabbit serum, rabbit serum raised to either whole RP-62A cells or rat antiserum raised to purified adhesin and ferritin-labeled goat antibody to rabbit or rat 1gG. A) is strain RP-62 stained with normal rabbit serum (x 75,000); B) strain RP-62 stained with rabbit antisera to whole cells (X 62,000); C) strain RP-62A stained with rat antiserum to purified adhesin (X 49,000); D) strain RP-14 stained with rat antiserum to strain RP-62A whole cells (X 35,000); E) strain RP-14 stained with rat antiserum to strain RP-62A whole cells (X 35,000); E) strain RP-62 whole cells (X 50,000); B strain RP-62 whole cells (X 50,000). Bar in each graph represents 200 nm.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention comprises the isolation in substantially pure form of an exopolysaccharide adhesin antigen from coagulase-negative staphlococct bacteria, use of said adhesin as a vaccine to raise polyclonal and monoclonal antibodies against said adhesin, use of said adhesin to prevent adherence of said bacteria to polymeric materials, and use of said adhesin as a probe to test for polymeric materials to which said bacteria will not adhere.

÷

Materials and Methods

Bacterial strains. The following strains were provided by Dr. Gordon Christensen, Memphis, TN, and have been described previously (Christensen, G.D., et al., Ann. Intern. Hed. 26:1-10 (1982); Infect. Immun. 37:318-26 (1982)): (a) Staphylococcus epidermidis strains RP-62A (slime-producing, highly adherent, from a patient with catheter-related sepsis), RP-62NA (a variant of RP-62A which is less adherent and produces no slime by macroscopic examination), and RP-12; (b) S. hominis strain RP-14; and (c) S. haemolyticus strain SP-2.

DNA analysis of S. epidermidis strains. Bacterial cells are lysed by the enzyme lysostaphin. The lysate is digested with RNase A (Sigma) and RNase T₁ (Sigma) to degrade bacterial RNA, dissolved in a detergent solution such as sodium dodecyl sulfate, and the proteins digested with proteolytic enzymes such as pronase and proteinase K (Boehringer-Mannheim). DNA is extracted from the digested cells by multiple extractions into phenol, and precipitated from the phenolic solution by the addition of ethanol at -20°C at a final concentration of 60-70% alcohol. The precipitated DNA is collected by centrifugation, washed with 70% aqueous ethanol, dried in vacuo, then digested with restriction endonucleases (EcoRi, Saulia, Rsal and Clal (New England Biolabs, Beverly, MA)). The restriction digest is electrophoresed on a 1% agarose gel; restriction fragments are visualized by ethidium bromide staining.

Characterization of crude extracts, purified adhesin, and teichoic acid. Samples are hydrolyzed at 100°C in 6 N HCl from 4 to 48 hours prior to analysis. Reducing carbohydrate content is detected and estimated by the phenol-sulfuric acid

WO 90/03398

PCT/US89/04241

-0-

Blackwell, Oxford, 1978, Chapter 19). methods (Ouchterlony, O., et al., In Immunochemistry, vol. I, performed by double diffusion and immunoelectrophoresis times compared to standards. maintained at 250°C. Samples are identified by retention an additional 9 minutes. The flame ionization detector is followed by a 30°C/min rise to 210°C, which is then held for injector and initial oven temperatures are 140°C, which is Deerfield, IL) and SP-2330 (Supelco, Delfont, PA). The using simultaneous injections of identical samples onto 25held for 3 minutes; a 5°C/min rise to 150°C is then performed, foot capillary columns of RSL-310 (Alltech Associates, monosaccharide methyl esters (Chambers, R.C., et al., Biochem. by gas liquid chromatography of the trimethylsilyl derivatized citrate system. Monosaccharides are individually identified J.C., et_al., Infect__immun_, in press (1987)); and amino <u>J. 125</u>:1009-18 (1971)) in a Hewlett-Packard 5880 instrument MB, Beckman Instruments, Inc., Fullerton, CA) using a lithium acids and amino sugars by an amino acid analyzer (Model 121 tography against fatty acid methyl esters as standards (Lee, positive reaction in the method of Chen (Chen, P.S., gt al., by absorbance at 254 nm against a DNA standard; phosphate by a Anal. Chem. 28:1256 (1956)); lipids by gas-liquid chromaproteins by a positive reaction in the Bradford dye tes reaction (Dubois, M., <u>et al.</u>, <u>Anal. Chem.</u> <u>28</u>:350-6 (1956)) (Bradford, M., Anal. Biochem. Z2:248-54 (1976)), nucleic acid: Serologic analyses can be

Adherence assays. The adherence of coagulase-negative staphylococcal strains to polymeric (i.e., silastic) catheter tubing (French 3, Jesco International Inc., San Antonio, TX) is determined as follows. An overnight culture of bacteria in tryptic soy broth is diluted to contain 106 colony-forming units (cfu)/ml. A 3 cm length of tubing fitted with a 21

WO 90/03398

PCT/US89/04241

÷

the tubing, bacteria adhering to the remaining 2 cm is quantified by rolling the tubing over the surface of a tryptic gauge needle and sterilized with ethylene oxide gas is then dipped into the culture for 15 min at room temperature. The tubing is washed in saline by vigorously agitating the tubing, as well as repeatedly drawing saline through the tubing with a 3 ml syringe fitted to the needle. Washing is continued until wash fluids contain less than 1 cfu/100 μ l. This occurs in about 3 separate washes. After discarding a 1 cm section of soy agar plate in several directions, followed by overnight incubation at 37°C.' The cfu/catheter are counted the next adhering to the tubing before and after rolling on the agar day. The efficiency of the transfer of bacteria from plastic tubing to the agar plate can be estimated by radio-labelling the organisms by including one $\mu \mathrm{C} i$ of $[^{14}\mathrm{C}]$ -sodium acetate in the preliminary overnight culture medium. The number of cfu plate is determined by liquid scintillation counting and correlated with bacterial counts obtained by plating identical samples.

Direct adherence of the purified adhesin to catheter tubing is determined by incubating a 0.5 cm length of tubing with a 0.5 mg/ml solution of adhesin in 40 mM phosphate buffer, pH 7.2, for two hours at 37°C, washing the tubing in phosphate-buffered saline 0.05% Tween 20, and performing a standard ELISA or RIA assay on the sensitized piece of tubing (Bryan, L.E. et al. J. Clin. Microbiol. 18:276-82 (1983)). By the term "ELISA" is intended an enzyme-linked immunoassay. By the term "RIA" is intended a radioimmunoassay.

Inhibition of adherence of bacteria to catheter tubing by crude extracts and purified adhesin is performed by incubating the catheter tubing in solutions of these materials for two hours at 37°C, washing the coated tubing in sterile saline, placing it in bacterial cultures (10^6 cfu/ml), and completing

WO 90/03398

PCT/US89/04241

-13-

the adherence assay as described <u>supra</u>. When poorly adherents strains of <u>S. epidermidis</u> (e.g., strains CL and SP-2) are used in inhibition assays, the input inoculum should be increased to 10^7 cfu/ml, which increases the number of adhering bacteria as much as 5-fold. Inhibition of adherence is calculated as solutions.

% inhibition = 100 (no. of cfu adhering following adhesin treatment)

no. of cfu adhering without treatment

Inhibition of adherence by rabbit antibody to purified adhesin (see <u>infra</u>) is performed by incubating the bacteria with the indicated concentration of normal and immune serum for 2 hr at 4°C, washing the bacteria three times in tryptic soy broth, resuspending to 10⁶ cfu/ml tryptic soy broth, and continuing the adherence assay as described <u>supra</u>. Inhibition of adherence is calculated as follows:

% inhibition = 100 . (no. of cfu adhering with immune serum)

no. of cfu adhering with normal serum

Inhibition data should be statistically analyzed for significance by Students t test.

Transmission electron microscopy. Transmission electron microscopy of <u>S. epidermidis</u> strains is performed as previous-1y described (Pier, 6B, <u>J. Clin. Microbiol.</u>, <u>24</u>:189-96 (1986). For visualization of extracellular structures, bacterial cells are incubated with either a 1:2 dilution of rabbit antibody to whole cells or undiluted rat antibody raised to purified adhesin (see <u>infra</u>), or with normal serum controls. After

-13-

three saline washes, bacteria are incubated with ferritinconjugated antibody to either rabbit or rat IgG.

Preparation of Crude Bacterial Extracts

Crude extracts are prepared by incubation of cell suspensions with the enzymes lysostaphin and lysozyme. Insoluble material is removed by sequential centrifugation and filtration through a micropore filter (0.45 µm), the filtrate is dialyzed against water, and then lyophilized (freeze-dried in vacuo at low temperature).

<u>Isolation of Adhesin</u>

mannan containment that is contributed by the original bacterial tryptic soy broth growth medium and that co-purifies Concanavalin A-Sepharose column (LKB Instruments) to remove a fractions are then subjected to affinity chromatography on a determined by an adherence assay (infra). Adhesin-containing eluted by 0.2 M NaCl at neutral pH (preferably about 7.0), as 250 cartridge (LKB Instruments, Rockville, MD). Adhesin is (preferably about 7.0); a preferred system is DEAE Zeta-Prep fractionated by ion-exchange chromatography at neutral pH molecules of mass greater than 10,000 daltons, is then tion through a 10,000 dalton cut-off membrane and washing with concentrated, neutralized, and the conductivity reduced (preferably to below 10 millisiemans) by repeated ultrafiltrapassage through a micropore filter. temperature, then clarified by sequential centrifugation and mixture is brought to neutral pH (preferably 6.8) and room subjected to thermal shock (95-100°C) at about pH 5.0. Eighteen-hour cultures of <u>S. epidermidis</u> strains are The retained concentrate, which contains macro-The clear extract is

WO 90/03398

PCT/US89/04241

-14-

with the bacterial polysaccharide adhesin. The unbound fraction is repeatedly dialyzed against water to remove salts and small molecules, then lyophilized. After reconstitution of the adhesin-containing powder in calcium-containing buffer at an acidic pH (preferably 5.0), the solution is incubated sequentially with DNase (to remove contaminating DNA), RNase (to remove contaminating RNA), and pronase (to remove contaminating RNA), and pronase (to remove contaminating RNA), and pronase (to remove contaminating brotein). The purified adhesin solution is then fractionated on a molecular sieve column in an ammonium carbonate buffer at neutral pH (preferably about 7.0). Elution is monitored by measuring A206 nm; adhesin fractions eluting with a Kav of 0.0-0.2 are collected and pooled. This fraction contains substantially pure capsular polysaccharide adhesin.

<u>Isolation of Teichoic Acid</u>

Teichoic acid, another component of the slime of S. epidermidis, is recovered from the DEAE Zeta Prep 250 ion-exchange column used in fractionating adhesin, in the fraction eluting with a higher concentration (0.6 M) of NaCl than eluted adhesin (0.2 M). This material is then digested with nuclease enzymes as described above, protein is denatured by heating at 100°C at an acid pH (preferably about 4.0), then chromatographed on a molecular sieve column (Sepharose CL-4B) in ammonium carbonate buffer at neutral pH. Serologically-active fractions that elute with a Kav of 0.33-0.57 are pooled, dialyzed, and lyophilized.

Adhesin Vaccine

Polyclonal antibodies. Polyclonal antibodies to epitopic regions of the purified adhesin may be raised by a plurality

WO 90/03398

of injections of said adhesin antigen into a host animal. In a preferred embodiment, antibodies are produced in rabbits by subcutaneous administration of 0.5 mg of antigen in complete Freund's adjuvant, followed 7 days later by intravenous injections three times weekly with 0.5 mg of antigen in saline. The thrice weekly injections are performed for 3 consecutive weeks, and blood is then drawn 5 days after the last injection. Normal (pre-immune) serum is obtained in all cases.

Polyclonal antibodies to purified adhesin may also be raised in rats given three 50 μg injections five days apart, with blood drawn 5 days after the final injection.

Polyclonal antibodies to whole cells of <u>S. epidermidis</u> strains are raised in rabbits as previously described (Pier, G.B., <u>et.al.</u>, <u>J. Infect, Dis. 147</u>:494-503 (1983)).

Monoclonal antibodies. Monoclonal antibodies are immunoglobulins directed to specific epitopic regions on an antigen. Monoclonal antibodies against the substantially pure polysaccharide adhesin of the invention can be produced by the hybridoma technology of Köhler and Milstein (Köhler, G., Science 233:1281-6 (1986); Milstein, C., Science 231:1261-8 (1986)).

Briefly, the purified adhesin is used to once-prime or hyperimmunize animal donors of antibody-producing somatic B cells (e.g., lymphocytes). Lymph nodes and spleens of immunized animals are convenient sources. Although mouse and rat lymphocytes give a higher percentage of stable fusions with mouse myeloma lines, the use of rabbit, human and frog cells is also possible. In a preferred embodiment, hypermannized mouse spleen cells are used to make the fused cell rybrids.

PCT/US89/04241

Specialized myeloma cell lines are available for use in Eur. J. Immunol, 6:511-9 (1976); Schulman, M., et al., Mature 275:269-70 (1978)). Methods for generating hybrids of antimyeloma cells usually comprise mixing somatic cells with myeloma cells in a 10:1 proportion (though the proportion can hybridoma-producing fusion procedures (Köhler, G., <u>et al.</u>, adhesin antibody producing spleen or lymph node cells and vary from 20:1 to 1:1, respectively) in the presence of an species of animal is the source of both the somatic and myeloma cells. Fusion methods have been described by Köhler Cell Genet. 3:231-6 (1977)), in which polyethylene glycol is agent(s) that promotes fusion. It is preferred that the same and Milstein (Köhler, G., <u>et al.</u>, <u>Nature 256</u>:495-7 (1975); Eur. J. Immunol. 6:511-19 (1976)), in which Sendai virus is the fusion agent, and by Gefter (Gefter, S., et al., Somatic the fusion agent: In a preferred embodiment, the method of Gefter <u>et al.</u> is modified to include dimethylsulfoxide as an additional fusion agent.

isolation of clones and antibody detection are carried out by standard techniques. Fusion cell hybrids are selected by culturing the cells on media that support growth of hybridomas but prevent the growth of unfused myeloma cells. (The unfused somatic cells do not maintain viability in in vitro cultures and hence do not pose a problem.) In a preferred embodiment, myeloma cells lacking hypoxanthine phosphoribosyltransferase (HPRT') are used. These cells are selected against in a hypoxanthine/aminopterin/thymidine (HAI) medium in which hybridoma cells survive due to the HPRT+ genotype of the spleen cells, but unfused myeloma cells do not. Myeloma cells with different genetic deficiencies that can be selected against in media supporting the growth of genotypically competent hybrids are also possible.

•

The detection of anti-adhesin antibody-producing hybrids can be achieved by any one of several standard assays, including ELISA and RIA techniques that have been described in the literature (Kennet, R., <u>et al.</u>, eds., <u>Monoclonal Antibodies</u>. <u>Hybridomas: A New Dimension in Biological Analysis</u>, Plenum, New York, 1980, pp. 376-84; Bryan, L.E., <u>et al.</u>, <u>J. Clin. Microbiol.</u> <u>18:276-82</u> (1983)).

Once the desired fused cell hybrids have been selected and cloned into individual anti-adhesin antibody-producing cell lines, each cell line may be propagated in either of two standard ways: injection of the hybridoma into a histo-compatible animal and recovery of the monoclonal antibodies in high concentration from the body fluids of the animal (e.g., serum or ascites fluid), or propagation in vitro in tissue culture, wherein the antibody in high concentration is recoverable from the culture medium.

<u> Therapeutic Use of Anti-Adhesin Antibody</u>

Monoclonal antibodies specific to epitopic regions on the colonization-mediating adhesin, as well as the non-specific polyclonal antibodies described above, can be used clinically for the prevention or treatment of diseases caused by pathogenic bacteria producing and bearing such adhesins. For example, polyclonal and monoclonal antibodies specific for the capsular polysaccharide adhesin of the present invention can be administered to any animal species for the prevention and/or treatment of infections due to pathogenic Staphylococcus epidermidis, e.g., those that colonize polymeric implanted medical devices and catheters. By the term "administer" is intended, for the purpose of this invention, any method of treating an animal with a substance, such as orally, intramuscularly, intramuscularly,

WO 90/03398

PCT/US89/04241

concentration of at least about one μg of specific antibody effect desired. Preferably, the dosage should result in a ment, if any, frequency of treatment, and the nature of the health, and weight of the recipient, kind of concurrent treatthe dosage administered will be dependent upon the age, other liquid compositions are also pharmaceutically effective, per milliliter of blood. form, though any compatible carrier may be used. Of course, the antibody may be preferably administered in parenteral bodies in aqueous salt solutions of serum albumin. In humans, including mixtures of antibodies and skim milk and/or antivehicles and delivered to the patient by any one of several antibody is present in a pharmacologically effective dosage, required pursuant to government regulations. Provided the parenteral means. In some instances, and particularly where suspended or dissolved in any of several suitable liquid human treatment is involved, purification may be desired or antibodies is preferably parenteral. The antibodies may be cal garden animals. The mode of administration of these including humans, farm animals, domestic animals, or zoologiliving creature that is subject to staphlococcal infection. or subcutaneously). By the term "animal" is intended any

Diagnostic Use of Anti-Adhesin Antibody

The adhesin-specific antibodies are also useful for medical and research purposes. For example, the antibodies can be used diagnostically to detect with great accuracy the presence of <u>Staphylococcus epidermidis</u> strains among a general population of bacteria. Other applications include the use of adhesin-specific monoclonal antibodies in affinity chromatogaphy systems for the purification of <u>Staphylococcus epider</u>-

midis polysaccharide adhesin or in assay systems for the quantitative estimation of such adhesin.

Use of Purified Adhesin as a Probe

The purified capsular polysaccharide adhesin of the invention can be used in conjunction with the adherence assays described <u>supra</u> as a probe in designing new polymeric materials to which coagulase-negative staphlococci bacteria will not adhere. Such new polymers would be extremely beneficial to patients in whom catheters and other medical prosthetic devices and shunts are employed and who now suffer from the nosocomial effects of such bacteria.

Having now described the invention in general term, the following specific examples will serve to illustrate more fully the nature of the present invention, without acting as a limitation upon its scope.

EXAMPLE I

Isolation of Strain PR-62A Adhesin

<u>tryptic soy broth in an LSL Biolaffite fermentor with aeration</u> (0.5 1/min), stirring (200 rpm), and maintenance of the pH at 7.2 by titration with 50% acetic acid and 5 NaOH. After 18 hr growth at 37°C, the pH was adjusted to 5.0 with 50% acetic acid and the temperature of the culture raised to 95-100°C for 1 h. After cooling, the pH was adjusted to 6.8, the culture removed from the fermentor, and bacterial cells removed by centrifugation. The supernatant was passed through a 0.5 μ filter and then concentrated to about 400 ml on a Pellicon

WO 90/03398

6

ultrafiltration system (Millipore Corp., Bedford, MA) using The supernatant was then diluted with 2 1 deionized water and reconcentrated to 400 ml. This step was repeated until the pH of the solution was 6.8 and the conductivity was around 4.8 millisiemens. A portion (1/4) of the solution was then membranes with a molecular weight cut-off of 10,000 dalton. applied to a DEAE Zeta-prep 250 cartridge (LKB Instruments, Rockville, MD) previously equilibrated in 0.05 M Tris buffer, pH 6.8. After loading, the cartridge was washed with 600 ml of 0.05 M Tris buffer and the eluate discarded. The adhesin was then recovered in the fraction eluting with 0.2 M NaCl in 0.05 M Iris buffer, after preliminary assays determined that this molarity of NaCl eluted material which inhibited the adherence of strain RP-62A to silastic catheter tubing (see infra). The 0.2 M NaCl eluate was pooled, dialyzed against canavalin A-Sepharose (LKB Instruments) to remove a mannan component from the tryptic soy broth medium which co-purified with the adhesin. The unbound adhesin-containing fraction was water, and lyophilized. The material was then dissolved (25 material was then resuspended in 0.1 M sodium acetate, pH 6.0, at 25 mg/ml. and chromatographed on an affinity column of Conrecovered, dialyzed against numerous changes of delonized and digested with DNase (1 mg/ml) and RNase (3 mg/ml) for 16 hr at 37°C, after which time pronase (1.0 mg/ml) was added and an additional 4 hr digestion at 37°C carried out. This mg/ml) in 0.1 M NaOH, 1.0 mM MgCl2, and 1.0 mM CaCl2 pH 5.0, solution was then applied to a 2.6 x 90 cm column of Sepharose CL-48 (Pharmacia Fine Chemicals, Piscataway, NJ) equilibrated in 0.2 M ammonium carbonate, pH 6.8. Fractions (8 ml) were collected, and pools were made from fractions absorbing UV light at 206 nm that eluted with a $K_{\rm av}$ of 0.0-0.2 (peak=0.02). numerous changes of deionized water, and lyophilized.

EXAMPLE II

Isolation of Strain PR-62A Teichoic Acid

Teichoic acid was recovered from the Zeta-prep 250 cartridge in the fraction eluting with 0.6 M NaCl. This material was digested with nuclease enzymes as described above, heated at 100°C, pH 4.0, for 1 h, then chromatographed deionized water, and lyophilized. of 0.33-0.57 (peak=0.48) were pooled, dialyzed against carbonate. Serologically active fractions eluting with a Kav on a 2.6 X 90 cm column of Sepharose CL-4B in 0.2 M ammonium

EXAMPLE III

Chemical Components of Crude Extract. Teichoic Acid Fraction of Slime, and Purified Adhesin

analyzed. The chemical components of the crude extract, the isolated teichoic acid, and the purified adhesin are shown in RP-62A that appeared to have the properties of an adhesin was isolated from the culture supernatant of <u>S. epidermidis</u> strain Utilizing the methodology described above, a fraction

WO 90/03398

PCT/US89/04241

-22-

Table 1

Chemical Components Identified in Crude Extract, Teichoic Acid, and Purified Adhesin of <u>Staphylococcus epidermidis</u> strain RP-62A

Preparation

* Darron+ of +o+1	Monosaccharides (percent of total sugars) Glycerol Glucose Galactose Glucosamine Galactosamine	Component Reducing sugar Amino sugars Uronic acids Phosphate Protein Nucleic acids Lipids Unidentified	
		Crude Extract 12* 5 2 11 3 7 <0.01**	
	20 20 20 <0.1**	Tetchotc <u>Acid</u> 20 25 <1** 14 2 1 <0.01**	
	<0.1** <0.1** <0.1** 5	Purified Adhesin 54 20 10 <0:02** 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

^{**}Lower limit of detection.

Crude extract contained numerous components, of which carbohydrate and phosphate were predominant. The teichoic acid fraction of slime was composed principally of phosphate, glycerol, glucose, and glucosamine. The purified adhesin was principally composed of carbohydrate with only low to non-detectable levels of protein, nucleic acids, and phosphate. No lipids were detected in the purified adhesin. The principal monosaccharides identified were galactose, glucosamine and galactosamine; glucose was absent. In addition, a complex chromatogram of monosaccharides indicated the presence of galacturonic and glucuronic acids, as well as smaller amounts of mannosamine, fucosamine, and neuraminic acid. Trace amounts of ribose and muramic acid were identified, likely due to low level contamination with RNA and peptidoglycan.

EXAMPLE IV

Serological Properties of Crude Extract. Isishoic Acid. and Purified Adhesin

Serologically, crude extract gave three precipitin lines in double diffusion when tested against a rabbit antisera raised against whole cells of strain RP-62A (Figure 1A), while telchoic acid and the purified adhesin gave single precipitin lines. By immunoelectrophoresis (Figure 1B), the crude extract had multiple precipitin lines against antisera to whole cells. In contrast, purified adhesin gave a single precipitin line which did not move in the electric field. Purified telchoic acid gave a strong precipitin line migrating towards the anodal end of the gel, as well as a weaker, more negatively charged line when high concentrations of antigen were used. A mixture of telchoic acid and purified adhesin

WO 90/03398

-24-

resulted in two precipitin lines corresponding to the individual, purified components.

FXAMPLE

Adherence of S. Epidermidis Strains to Polymeric Tubing

The adherence assay described <u>supra</u> was used to quantify the binding of strains of coagulase-negative staphylococci to silastic catheter tubing. When the inoculant size of strain RP-62A was varied from 10²-10⁹ cfu/ml, linear binding was obtained between input inocula of 10³-10⁶ cfu/ml. When 10⁶ cfu/ml of radiolabeled bacteria were used in this adherence assay, and pieces of catheter tubing counted before and after being rolled over the tryptic soy agar plate, 67-75% of the counts were dislodged in three separate experiments, indicating that a majority of the adherent bacterial population was being measured by this technique.

Strains of coagulase-negative staphylococci were screened in the adherence assay at inocula of 10^6 cfu/ml. Three highly adherent strains of coagulase-negative staphylococci in addition to strain RP-62A (strains RP-12, RP-14, F-3284), and poorly adherent strains (Table 2).

Expression of Slime and Adhesin, and Adherence of Coagulase-Negative Staphylococci to Silastic Catheter Tubing

		Produc	Production of:	٠
Strain	Species	Slime	Adhesin	Mean No. CFU Adhering (±SD)
RP-62A RP-12	S. epidermidis S. epidermidis	ŧŧ	Pos2	233 ± 20
77.14	S. hominis	+	Pos	167 ± 24
00-63NA	epidermidis	‡	Pos	++
SD-2	epigermigis	•	Poss	H
29	S LIGHT VEICUS	•	Neg	+
	Strain and and and a	٠	Neg	19 ± 5

1. Semi-quantitative measurement as described by Christensen, G.D., <u>et al.</u> <u>Infect. Immun.</u> <u>37</u>:318-26 (1982).

2. Presence (Pos) or absence (Neg) of adhesin determined by double immunodiffusion.

3. Strain RP-62NA is only weakly positive for adhesin productival.

strain RP-62NA were concentrated 10-fold. be detected by immunodiffusion only if culture supernatants of a weak precipitin line corresponding to purified adhesin could 62NA adhered only about 1/3 as well as its parent strain, and also evaluated in the adherence assay (Table 2). Strain RPable antigen. The adherence properties of strain RP-62NA were while two of the poorly adherent strains expressed no detectdouble diffusion with the purified adhesin of strain RP-62A, expressed an antigen giving a precipitin line of identity in Of the three additional highly adherent strains, two

strains RP-62A and RP-62NA indicated that the parent strain and its variant were closely related, Restriction enzyme digestion of total cellular DNA of as the digestion

WO 90/03398

PCT/US89/04241

-26-

patterns using four different restriction enzymes were identical (Figure 2).

EXAMPLE VI

Properties of Purified Adhesin

extract from strain RP-62A, and adherence of strain SP-2 was purified adhesin (Figure 4). Some of the strains were significantly (P<.05, t test) inhibited from adhering by inhibited by teichoic acid from strain RP-62A. inhibited from adhering to the catheter material by crude only the two strains expressing the adhesin antigen were coagulase-negative staphylococci to silastic catheter tubing, 62A. When these same materials (0.1 mg/ml) were tested for their ability to inhibit adherence of other strains of in a manner identical to that of crude extract from strain RPdid the extract from the poorly adherent strain SP-2, prepared Teichoic acid did not inhibit adherence of strain RP-62A, nor purified adhesin prepared from strain RP-62A (Figure 3). inhibition of adherence was seen with both crude extract and homologous strain to silastic catheter tubing. A dose-related was tested for its ability to inhibit adherence of the The adhesin purified from <u>S. epidermidis</u> strain RP-62A

serum concentration (Table 3). adhesin antigen, while antigen-negative strains were not of strains of coagulase-negative staphylococci expressing the there was significant (P<.05, t test) inhibition of adherence concentrations of \geq 0.25%. Using a serum concentration of 1%, adherence of this strain in a dose-related fashion at serum RP-62A-purified adhesin from strain RP-62A inhibited the inhibited from adhering to silastic catheter tubing at this In a similar fashion, rabbit antibodies raised to strain

Table 3

Inhibition of Adherence of Coagulase-Negative Staphylococci to Silastic Catheter Tubing by Rabbit Antibody to Adhesin Purified from <u>Staphylococcus epidermidis</u> Strain RP-62A

Percent Inhibition of Adherence (±1.50)	59 ± 17* 65 ± 1 * 1 ± 1 14* 62 ± 8	17 ± 9 0
Strain	Adhesin positive RP-62A· RP-14 F-3284 RP-6618A ² RP-12 ³	Adhesin negative SP-2 CL

Serum concentration 1%. 2P < 0.05, t test.

*Produces gradily reduced amount of adhesin.
*Initial studies with RP-12 were negative. However, more
recent studies have shown that RP-12 does in fact produce this
adhesin. Apparently, the sera used initially failed to detect
the production of adhesin from strain RP-12.

readily bound rabbit antibodies raised to whole cells and purified adhesin, while antibodies in pre-immunization sera Silastic catheter tubing coated with the purified adhesin had only a slight reaction with coated catheter tubing (Table

WO 90/03398

-58-

PCT/US89/04241

Table 4

Reaction of Rabbit Antibody to Purified Adhesin from Strain <u>Stankulococus</u> audde<u>midis</u> RP-62A with Silastic Catheter Tubing Cather Coated with Purified Adhesin

Reaction with:

Adhesin-Coated <u>Catheter</u>	0.202	1.212
Uncoated	0.150*	0.191
Serum [5% Concentration]	Pre-immune	Whole cell Purified adhesin

*Mean Aps of triplicate wells containing indicated catheters

EXAMPLE VII

Transmission Electron Microscopy

and CL after treatment with normal rabbit or rat serum, rabbit Transmission electron microscopy was used to examine the appearance of bacterial cells of RP-62A, RP-62NA, RP-14, RP-12 antiserum raised to whole RP-62A cells, and rat antiserum raised to purified adhesin. Both of these antisera revealed 14 that appeared to be a capsule (Figure 5A-D) which was not rabbit serum and strain RP-62A; all other strains treated with an extracellular structure surrounding strains RP-62A and RPany normal .serum looked identical to Figure 5A). Strain RP-62NA appeared to have only a slight amount of capsular seen with normal serum (shown in the figure only for normal

material when reacted with antibodies to whole cells (Figure 5F) and purified adhesin (not shown), consistent with the serologic findings mentioned <u>supra</u>. Both strains RP-12 and CL lacked any detectable capsule using sera to RP-62A whole cells and purified adhesin (not shown).

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

WO 90/03398 PCT/US89/04241

-30-

HHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTERS PATENT OF THE UNITED STATES:

- A capsular polysaccharide adhesin from coagulasenegative bacteria produced in substantially pure form.
- The adhesin of claim 1, wherein said bacteria comprises <u>Staphylococcus epidermidis</u> strains.

The adhesin of claim 2, wherein said strain com-

prises strain RP-62A.4. The adhesin of claim 2, wherein said strain com-

prises strain RP-62NA.

- The adhesin of claim 2, wherein said strain comprises strain F-3284.
- 6. The adhesin of claim 2, wherein said strain comprises strain RP-12.
- The adhesin of claim 1, wherein said bacteria comprises <u>Staphylococcus hominus</u> strains.
- The adhesin of claim 7, wherein said strain comprises strain RP-14.
- The adhesin of claim 1, wherein said adhesin inhibits adherence of homologous bacterial cells to polymeric material.

- The adhesin of claim 9, wherein said polymeric material comprises polymeric catheter and shunt tubing.
- The adhesin of claim 9, wherein said polymeric material comprises a polymeric medical prosthetic device.
- 12. A process for purifying a capsular polysaccharide adhesin from coagulase-negative bacteria, comprising the following steps:
 - (a) extracting adhesin from cell cultures;
- (b) chromatographically separating said adhesin extract of (a) on an ion-exchange colum;
 - (c) eluting adhesin from the column of (b);
- (d) chromatographically separating the adhesincontaining fraction(s) from (c) on an affinity column;
- (e) further purifying the adhesin from (d) by chromatographing on a molecular sieve column.
- 13. A vaccine against coagulase-negative staphylococci comprising a pharmalogically acceptable non-toxic vehicle containing the substantially pure capsular polysaccharide adhesin antigen specific to said staphylococci.
- 14. The vaccine of claim 13, wherein said vehicle is selected from among Freund's complete adjuvant, Freund's incomplete adjuvant, saline, serum albumin, and saponin.
- 15. A method of increasing immunity to infection by coagulase-negative bacteria in a member of a mammalian species comprising administering to said mammalian species a therapeutically effective amount of the vaccine of claim 13.

WO 90/03398

-32

- 16. The method of claim 15, wherein said mammalian species is a human.
- The method of claim 15, wherein said coagulasenegative bacteria comprises a <u>Stanhylococcus epidermidis</u> strain.
- 18. The method of claim 17, wherein said strain consists of strain RP-62A.
- The method of claim 17, wherein said strain consists of strain RP-62NA.
- The method of claim 17, wherein said strain consists of strain F-3284.
- 21. The method of claim 17, wherein said strain consists of strain RP-12.
- 22. The method of claim 17, wherein said coagulase-negative bacteria comprises a <u>Staphylococcus hominus</u> strain.
- 23. The method of claim 17, wherein said strain consists of strain RP-14.
- 24. A method of producing monoclonal antibodies against the capsular polysaccharide adhesin of coagulase-negative staphylococci, comprising: propagating a hybridoma formed by fusing a cell capable of producing antibodies against said adhesin with a myeloma cell and harvesting the antibodies produced by said hybridoma.

33-

Monoclonal antibody against capsular polysaccharide adhesin of coagulase-negative staphylococci.

- 26. A pharmaceutical composition comprising antibodies against a capsular polysaccharide adhesin of coagulase-negative staphylococci bacteria and a pharmaceutical carrier thereof.
- 27. The pharmaceutical composition of claim 26, wherein said antibodies are monoclonal antibodies.
- The pharmaceutical composition of claim 26, wherein said antibodies are polycional antibodies.
- said bacteria comprises <u>Staphylococcus epidermidis</u> strain.

 30. The pharmaceutical composition of claim 26, wherein

29. The pharmaceutical composition of claim 26, wherein

- said bacteria comprises <u>Staphylococcus hominus</u> strain.

 31. A method for evaluating polymeric materials for coagulase-negative staphylococci bacteria adherance, compris-
- (a) contacting said polymeric material with said staphylococci in suspension culture;

ing:

- (b) washing said polymeric material with saline to remove non-adhering bacteria;
- (c) culturing adhering bacteria on the surface of a solid culture medium; and
- (d) quantifying the number of bacterial colonies growing on said plate.

WO 90/03398

PCT/US89/04241

-34-

- 32. A method of inhibiting adherence of coagulase-negative staphylococci to a polymeric material comprising contacting said polymeric material with a solution of the substantially pure capsular polysaccharide adhesin.
- 33. An affinity chromatography composition useful for isolating the capsular polysaccharide adhesin of a coagulase-negative staphylococcal strain from crude mixtures comprising a solid matrix to which is covalently bound a monoclonal antibody to the adhesin of claim 1.

.5

FIGURE 2

FIGURE 1

PCT/US89/04241

3/5

WO 90/03398

PCT/US89/04241

4/5

FIGURE 4

PURIFIED ADMESIK RP-62A

инвитов (ол мамі)

FIGURE 3

CRUDE EXTRACT RP424

CRUDE EXTRACT SP-2

#000**0#**

FIGURE 5

INTERNATIONAL SEARCH REPORT

international	
Acekcange	
TO G	
Sesn/	
9/012	

List decrement published diffy the extended fund, and the proof disc are confident with the description of the proof disc are confident with the description of the proof disc are confident with the description of the proof disc are confident to the description of the proof disc are confident to the description of th	Constitution of the consti	Special categories of citied decuments; if A categories of citied decuments; if A categories of citied decuments; if A categories ca	- Secol Secol
1. 1.	4,830,852 (Marburg et al.) 16 May 1989 See entire document.	US, A, 1,830 16 Ma See e	λ.' d.
1-33	1,789,735 (Frank et al.) 06 December 1988 See entire document.	US, A, 4,789 06 De See e	P. Y
Activant to Claim No. 1	TO COMMINISTED TO BE RELEVANT !	III. DOCUMENTO COMBIDENTO TO SE RELEVANT :	Calegory .
	03.6, 06, 94 Occumentation Seather stone than Minimum Decumentation To Criteri Del bush Decuments bis Included in the Fales Searched	1 3	
	Chistofiction States 7 72-406, 806 1, 123 514/54	530/395, 40 536/1.1,55,	Classifican U.
55.1;424/85.8,88	1900-041: "CDYR-39004" R6180577000-159765-159765 U. S. Cl: 530/395, 402-406, 806; 536/1.1,123,55	1920-1947: "CD1/Km Cypoqua A U. S. C1: 530/395, 402	Tyc. S

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

