Propietats de les mostres i Intervals de Confiança

TCL:
$$X_1, ..., X_n$$
 i.i.d. $(n \rightarrow \infty)$, amb $E(X_i) = \mu$ i $V(X_i) = \sigma^2$, llavors
$$\frac{\sum_{i=1}^n X_i}{n} = \overline{X}_n \approx N(\mu, \sigma^2/n)$$
 (i també $\sum_{i=1}^n X_i \approx N(n\mu, \sigma^2n)$)

$$\frac{\sum_{i=1}^{n} X_{i}}{n} = \overline{X}_{n} \approx N(\mu, \sigma^{2}/n)$$

(i també
$$\sum_{i=1}^{n} X_i \approx N(n\mu, \sigma^2 n)$$
)

Estadístic mitjana mostral
$$(\bar{x})$$
: $\frac{(\bar{x}-\mu)}{\sqrt{\sigma^2/n}} \approx N(0,1)$ $\frac{(\bar{x}-\mu)}{\sqrt{s^2/n}} \approx t_{n-1}$ on $\bar{x} = \sum_{i=1}^n x_i/n$

Estadístic variància mostral (
$$s^2$$
): $s^2 \frac{n-1}{\sigma^2} \approx \chi_{n-1}^2$

Estadístic variància mostral (
$$s^2$$
): $s^2 \frac{n-1}{\sigma^2} \approx \chi_{n-1}^2$ on $s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 - n(\overline{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}{n-1}$

Paràmetre	Estadístic	Premisses	Distribució	Interval de Confiança 1-α (Risc α)
μ	$\hat{z} = \frac{(\overline{x} - \mu)}{\sqrt{\sigma^2/n}}$	[X ~ N o n≥≈30] i σ coneguda	Ź ~ N(0,1)	$\mu \in (\overline{x} \pm z_{1-\alpha/2} \sqrt{\frac{\sigma^2}{n}})$
μ	$\hat{t} = \frac{(\overline{x} - \mu)}{\sqrt{s^2/n}}$	X ~ N	↑ ~ t _{n-1}	$\mu \in (\overline{x} \pm t_{n-1,1-\alpha/2} \sqrt{\frac{s^2}{n}})$
μ	$\hat{z} = \frac{(\bar{x} - \mu)}{\sqrt{s^2/n}}$	n ≥ ≈100	Ź ~ N(0,1)	$\mu \in (\overline{x} \pm z_{1-\alpha/2} \sqrt{\frac{s^2}{n}})$
σ (normal)	$\hat{X}^2 = \frac{s^2(n-1)}{\sigma^2}$	X ~ N	$\hat{\chi}^2 \sim \chi^2_{\text{n-1}}$	$\sigma^2 \in \left(\frac{S^2(n-1)}{\chi^2_{n-1, 1-\alpha/2}}, \frac{S^2(n-1)}{\chi^2_{n-1, \alpha/2}} \right)$
π (Binomial)	$\hat{z} = \frac{(p-\pi)}{\sqrt{\pi(1-\pi)/n}}$	(1-π)n ≥ ≈ 5 πn ≥ ≈ 5	Ź ~ N(0,1)	$\pi \in (P \pm z_{1-\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}})$ $\hat{\pi} = P o \hat{\pi} = 0.5$
λ (Poisson)	$\hat{z} = \frac{(L - \lambda)}{\sqrt{\lambda}}$	λ≥≈5	Ź ~ N(0,1)	$\lambda \in (L \pm z_{1-\alpha/2} \sqrt{L})$

Proves d'Hipòtesis

H_0 : $\mu \leq \mu_0 \rightarrow \text{Rebutjar } H_0 \text{ si } \hat{z} > z_{1-\alpha}$					
σ (normal)	H_0 : $\sigma = \sigma_0$	$\hat{X}^2 = \frac{S^2(n-1)}{\sigma^2}$	Y ~ N	$\hat{X}^2 \sim \chi^2_{n-1}$	Rebutjar H ₀ si $\hat{X}^2 < \chi^2_{n-1,\alpha/2}$ o $\hat{X}^2 > \chi^2_{n-1,1-\alpha/2}$
Anexe: λ (Poisson)	$H_0: \lambda = \lambda_0$	$\hat{z} = \frac{(f - \lambda_0)}{\sqrt{\lambda_0}}$	λ ₀ ≥ ≈ 5	Ŝ ~ N(0,1)	Rebutjar H ₀ si $ \hat{Z} > z_{1-\alpha/2}$ ($ \hat{Z} > 1$ '96 amb $\alpha = 5$ %)
π (Binomial)	H_0 : $\pi = \pi_0$	$\hat{z} = \frac{(p - \pi_0)}{\sqrt{\pi_0 (1 - \pi_0)/n}}$	(1–π ₀)n ≥ ≈5 π ₀ n ≥ ≈5	2 ~ N(0,1)	Rebutjar H ₀ si $ \hat{Z} > z_{1-\alpha/2}$ ($ \hat{Z} > 1'96$ amb $\alpha = 5\%$)
μ	$H_0: \mu = \mu_0$	$\hat{z} = \frac{(\bar{y} - \mu_0)}{\sqrt{S^2/n}}$	n ≥ ≈100	2 ~ N(0,1)	Rebutjar H ₀ si $ \hat{Z} > z_{1-\alpha/2}$
μ	$H_0: \mu = \mu_0$	$\hat{t} = \frac{(\bar{y} - \mu_0)}{\sqrt{S^2/n}}$	Y ~ N	↑ ~ t _{n-1}	Rebutjar H ₀ si $ \stackrel{\wedge}{t} > t_{n-1,1-\alpha/2}$ ($ \stackrel{\wedge}{t} > t_{n-1,0'975}$ amb α =5%)
	H_0 : $\mu = \mu_0$	$\hat{z} = \frac{(\overline{y} - \mu_0)}{\sqrt{\sigma^2/n}}$	Y~ N o n≥≈ <i>30</i> i σ coneguda	Ŝ ~ N(0,1)	Rebutjar H ₀ si $ \hat{Z} > z_{1-\alpha/2}$ ($ \hat{Z} > 1$ '96 amb $\alpha = 5$ %)
Paràmetre	Hipòtesi nul·la	Estadístic	Premisses	Distribució sota H0	Criteri Decisió (Risc α)

En les proves unilaterals s'acumula el valor de P a un sol costat

 $H_0: \mu \ge \mu_0 \rightarrow \text{Rebutjar } H_0 \text{ si } \hat{z} < -z_{1-\alpha}$

Proves de μ i σ en 2 mostres

Paràme tre	Hipòtesi nul·la	Estadístic	Premisses	Distrib. sota H ₀	Decisió (Risc α)
μ	H_0 : $\mu_1 = \mu_2$	$\hat{z} = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$	$[Y_1 \ Y_2 \sim N \ o \ n_1 \ n_2 \ge \approx 30]$ m.a.s. ind. i $\sigma_1 \ \sigma_2$ conegudes	2 ~ N(0,1)	Rebutjar si $ \hat{2} > \mathbf{Z}_{1-\alpha/2}$ ($ \hat{2} > 1'96 \text{ amb }$ $\alpha = 5\%$)
μ	H_0 : $\mu_1 = \mu_2$	$\hat{t} = \frac{(\bar{y}_1 - \bar{y}_2)}{S\sqrt{1/n_1 + 1/n_2}}$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	Y_1 , $Y_2 \sim N$ $\sigma_1 = \sigma_2$ m.a.s indep.	t ~ t _{n1+n2−2}	Rebutjar si $ \hat{t} > t_{n1+n2-2, 1-\alpha/2}$ $ \hat{t} > t_{n1+n2-2, 0'975}$ amb $\alpha = 5\%$
μ	H_0 : $\mu_1 = \mu_2$	$\hat{z} = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$	n ₁ , n ₂ ≥ ≈100 m.a.s indep	2 ~ N(0,1)	Rebutjar si ½ > Z _{1-α/2}
μ	$H_0: \mu_1 = \mu_2$	$\hat{t} = \frac{\overline{D} - \mu_0}{S_D / \sqrt{n}}$	D ~ N m.a. aparellada	f ∼ t _{n−1}	Rebutjar si $ \stackrel{\wedge}{t} > t_{n-1, 1-\alpha/2}$
σ (nor- mal)	$H_0: \sigma^2_1 = \sigma^2_2$	$ \hat{F} = S_A^2 / S_B^2 $ Sent $S_A^2 > S_B^2$	Y ₁ , Y ₂ ~ N m.a.s. indep	F ~ F _{nA-1,nB-}	Rebutjar si F > F _{nA-1,nB-1, 1-α/2}

Les corresponents proves unilaterals es fan acumulant el risc α a un costat

Proves de π en 2 mostres

Premisses = 2	Distrib.(H0)	Decisió (α=0.05) Rebutjar si
	Δ Ν(Ο Δ)	Rebutiar si
$e_{ij} \ge 5 \ \forall \ ij$ m.a.s indep.	2 ~ N(U, I)	½ > 1.96
	$\hat{\chi}^2 \sim \chi^2_{(I-1)(J-1)}$	Rebutjar si $\hat{\chi}^2 > \chi^2_{(I-1)(J-1),0.95}$
e _{ij} ≥ 5 ∀ ij m.a.s indep.	$\hat{\chi}^2 \sim \chi^2_{(I-1)(J-1)}$	Rebutjar si $\mathaccent 2^2 > \chi^2_{(I-1)(J-1),0.95}$
a, b ≥ 5 m.a. aparellades	$\hat{\mathbf{x}}^2 \sim \chi^2_1$	Rebutjar si $\hat{\chi}^2 > \chi^2_{1,0.95}$
	m.a.s indep. $ \begin{array}{c} 2\\$	$\hat{\chi}^2 \sim \chi^2_{(I-1)(J-1)}$ $\frac{2}{m.a.s indep.}$ $\hat{\chi}^2 \sim \chi^2_{(I-1)(J-1)}$ $\hat{\chi}^2 \sim \chi^2_{(I-1)(J-1)}$ $a, b \geq 5$ $m.a.$ $\hat{\chi}^2 \sim \chi^2_{1}$

Model lineal (quantitativa vs quantitativa)

$$b_1 = \frac{S_{XY}}{S_X^2} = r \frac{S_Y}{S_X}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

$$\overline{y} = \frac{\sum y_i}{n}$$
 $s_y^2 = \frac{\sum y_i^2 - \frac{(\sum y_i)^2}{n}}{n-1}$ $s_{xy} = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{n-1}$

$$r_{XY} = \frac{S_{XY}}{S_X S_Y} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})/(n-1)}{S_X S_Y} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2 \sum_{i} (y_i - \overline{y})^2}}$$

$$S^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{(n-1)S_{Y}^{2}(1-r^{2})}{n-2} = \frac{(n-1)(S_{Y}^{2}-b_{1}S_{XY})}{n-2}$$

Estimació i inferència dels paràmetres [ML]

Paràmet	re	β ₀	β1		σ^2	
Estimade		$b_0 = Y - b_1 X$		$b_1 = S_{XY} / S^2_X$	$S^2 = \Sigma e_i^2/(n-2)$	
Esperan	ça	$E(b_0) = \beta_0$		$E(b_1) = \beta_1$	$E(S^2) = \sigma^2$	
Error tipu	JS	$S_{b_0} = \sqrt{S^2 (\frac{1}{n} + \frac{2}{(n - \frac{1}{n})^2})}$	$\frac{\overline{\overline{X}^2}}{(1)S_x^2}$)	$S_{b_1} = \sqrt{S_n^2 / (n-1)S_n^2}$		
Distribuc	ió	(b ₀ -β ₀) / S _{b0} .	~ t _{n-2}	$(b_1-\beta_1)/S_{b1} \sim t_{n-1}$	$(n-2)S^2/\sigma^2 \sim \chi$. 2 , n-2
Interval o Confianç		$IC(\beta_0,95\%)$ = $b_0 \pm t_{n-2,0.975}$		$IC(\beta_1,95\%) =$ $= b_1 \pm t_{n-2,0.975} \cdot S_{b1}$	$IC(\sigma^{2},95\%) = (n-2)S^{2}/\chi^{2}_{n-2,0.975}$ $\leq (n-2)S^{2}/\chi^{2}_{n-2,}$	$\leq \sigma^2$
H ₀ usua	al	$\beta_0 = 0$		$\beta_1 = 0$		
Rebutjar F	ł _o si	$ b_0/S_{b0} > t_{n-2}$	2,0.975	$ b_1/S_{b1} > t_{n-2,0.97}$	5	
	Е	stimació puntual	Estimació per interval 95		r interval 95%	
D " ''		F		al valor esperat	Per a valors individuals	
Predicció		$\hat{y}_h = b_0 + b_1 X_h$	$\widehat{y}_h \pm t_{n-2,0}$	$\int_{0.975} S \sqrt{\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum (X_i - \overline{X})^2}}$	$\hat{y}_h \pm t_{n-2,0.975} S_{\sqrt{1 + \frac{1}{n} + \frac{(X_h)^2}{\sum (X_h)^2}}}$	$\frac{\overline{(-\overline{X})^2}}{(\overline{X_i} - \overline{X})^2}$