Please hand in this Homework as follows:

- Upload to Gradescope HW4: A pdf of the theoretical homework **combined with** the pdf of your jupyter notebook for problem 3.
- Upload to Gradescope HW4 programming: A ipynb file for problem 3.

You must upload both the pdf of your jupyter notebook to HW4 and the code ipynb file to HW4 programming.

- 1. Logistic regression (15 points)
 - (a) Recall the in class we wrote the logistic regression loss as

$$L(\theta) = \sum_{i=1}^{n} \log(1 + e^{-Y_i X_i^t \theta}), Y_i \in \{-1, 1\}$$

(I've removed the factor 2 in the exponent as it can be absorbed in θ .)

Give a detailed derivation of the Newton algorithm for logistic regression and show that each iteration corresponds to solving a weighted least square problem, i.e. starting with θ^{old} , θ^{new} solves:

$$\arg\min_{\theta} (Z - X\theta)^t W(Z - X\theta), \text{ or } X^t W X \theta = X^t W Z,$$

where $X \in R^{n \times d}$ is the training data matrix, $W \in R^{n \times n}$ is a diagonal matrix and $Z \in R^n$. Write W and Z in terms of $X,Y,\theta^{(old)}$. Hint: Note that in this model $p_i = P(Y_i = 1|X_i) = \frac{1}{1+e^{-\eta_i}} = \frac{e^{\eta_i}}{1+e^{\eta_i}}$, where $\eta_i = X_i^t \theta$, and $\frac{e^{Y_i \eta_i}}{[1+e^{Y_i \eta_i}]^2} = p_i(1-p_i)$.

We write the model for logistic regressionas $y_i \sim Bern(p_i)$, where $p_i = \frac{1}{1 + e^{-X_i^t \theta}}$, the negative log-likelihood function is:

$$L(\theta|X,y) = \sum_{i=1}^{n} \log\left(1 + e^{-Y_i X_i^t \theta}\right)$$

So to minimize we take the gradient:

$$\nabla L = -\sum_{i=1}^{n} \left[Y_i X_i \frac{e^{-Y_i X_i^T \theta}}{1 + e^{-Y_i X_i^T \theta}} \right] = -\sum_{i=1}^{n} \left[Y_i X_i \frac{1}{1 + e^{Y_i X_i^T \theta}} \right].$$

$$H = \nabla^2 L = \sum_{i=1}^n \frac{e^{Y_i X_i^T \theta}}{(1 + e^{Y_i X_i^T \theta})^2} Y_i^2 X_i X_i^T = \sum_{i=1}^n p_i (1 - p_i) X_i X_i^t$$

The Newton iteration is $-H(\theta^{new}-\theta)=\nabla L$, or $-H\theta^{new}=-H\theta+\nabla L$. Using the fact that $X_i^t\theta=\eta_i$, and

$$Y_i/(1+e^{Y_iX_i^t\theta}) = \begin{cases} 1-p_i & Y_i = 1\\ -p_i & Y_i = -1 \end{cases} = (Y_i+1)/2 - p_i.$$

$$\sum_{i=1}^n X_i X_i^t p_i (1-p_i) \theta^{new} = \sum_{i=1}^n X_i p_i (1-p_i) \eta_i + \sum_{i=1}^n Y_i X_i \frac{1}{1+e^{Y_i X_i^T \theta}}$$

$$= \sum_{i=1}^n X_i p_i (1-p_i) \left[\eta_i + \frac{1}{p_i (1-p_i)} Y_i \frac{1}{1+e^{Y_i X_i^T \theta}} \right]$$

$$W_{ii} = p_i (1-p_i) \qquad Z_i = \eta_i + \frac{(Y_i+1)/2 - p_i}{p_i (1-p_i)},$$

Thus, each iteration is equivalent to solving a weighted LS problem.

(b) Assume the data are perfectly linearly separable, i.e. there exist θ such that $x_i^t \theta < 0$ if $y_i = 0$ and $x_i^t \theta > 0$ if $y_i = 1$. Show that the maximum likelihood estimator for the logistic regression model does not exist. Comment on the behavior of the iteratively reweighted least squares algorithm. Hint: If θ is a perfect separator then $\alpha\theta$ is also for any $\alpha > 0$. It may be easier to work with the likelihood instead of the log-likelihood. Consider the likelihood function:

$$f(\theta) = \prod_{y_i=1} \frac{e^{x_i^T \theta}}{e^{x_i^T \theta} + 1} \prod_{y_i=0} \frac{1}{e^{x_i^T \theta} + 1}.$$

If θ can separate data well, then consider $\alpha\theta$

$$f(\alpha \theta) = \prod_{y_i=1} \frac{e^{\alpha x_i^T \theta}}{e^{\alpha x_i^T \theta} + 1} \prod_{y_i=0} \frac{1}{1 + e^{\alpha x_i^T \theta}}.$$

This function is continuous increasing to 1 as $\alpha \to \infty$. However, $f(\theta) < 1$ for all θ . Thus the MLE does not exist in this case.

For solving the iteratively reweighted least squares algorithm, as the loss function is strictly convex, the function value will increase to 1 after iterations. When $f(\theta) \geq 1 - \epsilon$, $x_i^T \theta > \log \frac{1-\epsilon}{\epsilon}$ for $y_i = 1$ and $x_i^T \theta < -\log \frac{1-\epsilon}{\epsilon}$ for $y_i = 0$. Then $w_i(1-w_i) \to 0$ for all i and $||H|| \to 0$. The Newton iteration that $\theta^{new} - \theta = H^{-1}L$ is diverging.

(c) What happens with the hinge and the quadratic losses in the perfectly separable setting. In both cases discuss whether there is a minimizer, and explain your conclusions.

Hinge: $L(\theta) = \sum_{i=1}^{n} [1 - Y_i X_i^t \theta]_+$.

Quadratic: $L(\theta) = \sum_{i=1}^{n} [1 - Y_i X_i^t \theta]^2$.

For hinge loss, if $Y_i X_i^t \theta > 0$ for i = 1, ..., n, then any large enough α can make $L(\alpha \theta) = \sum_{i=1}^n [1 - \alpha Y_i X_i^t \theta]_+ = 0$, so there is a minimizer but it's not unique.

For quadratic loss, $\nabla^2 L(\theta) = 2\sum_{i=1}^n X_i X_i^t$ is positive semi-definite, so $L(\theta)$ is convex and there is a minimizer.

2. Lasso minimization (15 points) We are given data $X_1, Y_1, \ldots, X_n, Y_n$, with $X_i \in \mathbb{R}^d, Y_i \in \mathbb{R}$. We assume each coordinate of the X_i 's has mean 0 and variance 1. In class we discussed coordinatewise minimization of the Lasso loss function:

$$L(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - X_i^t \theta)^2 + \lambda \sum_{i=1}^{d} |\theta_i|,$$

with $\lambda > 0$.

(a) Fixing all coordinates except for the k'th coordinate we minimize:

$$f(\theta_k) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - c_i - X_{ik}\theta_k)^2 + C + \lambda |\theta_k|.$$

Write out the expressions for c_i and C.

$$c_i = \sum_{j=1, j \neq k}^d X_{ij} \theta_j, C = \sum_{j=1, j \neq k}^d \lambda |\theta_j|$$

(b) Show that minimizing $f(\theta_k)$ is equivalent to minimizing

$$g(\theta_k) = \frac{1}{2}\theta_k^2 - \frac{1}{n}\sum_{i=1}(Y_i - c_i)X_{ik}\theta_k + \lambda|\theta_k|.$$

$$f(\theta_k) = \frac{1}{2n}\sum_{i=1}^n(Y_i - c_i - X_{ik}\theta_k|)^2 + C + \lambda|\theta_k| = \frac{1}{2n}(\sum_{i=1}^n X_{ik}^2)\theta_k^2 - \frac{1}{n}\sum_{i=1}^n(Y_i - c_i)X_{ik}\theta_k + \frac{1}{2n}(\sum_{i=1}^n (Y_i - c_i)^2) + C + \lambda|\theta_k|.$$

Because each coordinate of the X_i 's has mean 0 and variance 1, $\sum_{i=1}^n X_{ik}^2 = n$, so we can minimize $g(\theta_k) = \frac{1}{2}\theta_k^2 - \frac{1}{n}\sum_{i=1}(Y_i - c_i)X_{ik}\theta_k + \lambda|\theta_k|$.

- (c) Define the function $h(x) = \frac{1}{2}x^2 tx + \lambda |x|$, $\lambda > 0$, show that it is strictly convex, and thus has a unique minimum.
 - $\frac{1}{2}x^2 tx = \frac{1}{2}(x-t)^2 \frac{1}{2}t^2$ is strictly convex, $\lambda |x|$ is convex, so h(x) is strictly convex, and thus has a unique minimum.
- (d) Show that the minimum is given by $x^* = sign(t)[|t| \lambda]_+$. (Hint: If a strictly convex function h is smoothly differentiable at a point x and h'(x) = 0 then it is minimized at x.)

If $|t| - \lambda > 0$, $h'(x^*) = (x^* - t) + \lambda sign(t) = sign(t)|t| - sign(t)\lambda - t + \lambda sign(t) = 0$, so h(x) is minimized when $x = x^*$. If $|t| - \lambda <= 0$, for any x between 0 and t, $|(\frac{1}{2}(x-t)^2)'| = |x-t| <= |t| <= \lambda$, so h(x) is minimized when $x = 0 = sign(t)[|t| - \lambda]_+ = x^*$.

3. Multinomial gradient (10 points) You have C classes and labeled data $X_1, Y_1, \ldots, X_n, Y_n$, with $X_i \in \mathbb{R}^d$ and $Y_i \in \{1, \ldots, C\}$. Let Z_i be the 'one-hot' vector corresponding to Y_i , i.e. $Z_{ij} = 1_{j=Y_i}, j = 1, \ldots, C$. Let \mathbf{X} be the $n \times d$ data matrix. Let \mathbf{Z} be the $n \times C$ label matrix.

We model

$$P(Y = c|X = x) = \frac{\exp \theta_c^t x}{\sum_{k=1}^C \exp \theta^k x},$$

for θ_c , c = 1, ..., C unknown parameters in R^d .

In class we wrote the likelihood $\theta = (\theta_1, \dots, \theta_C)$ as

$$L(X, Y, \theta) = \prod_{i=1}^{n} \prod_{c=1}^{C} \left[\frac{\exp \theta_c^t X}{\sum_{k=1}^{C} \exp \theta^k X} \right]^{Z_{ic}}.$$

Denote by $\pi_{ic} = P(Y = c | X_i, \theta)$, let $\pi_c = (\pi_{1c}, \dots, \pi_{nc})$ and let π be the $n \times C$ matrix with columns $\pi_c, c = 1 \dots, C$.

(a) Write the log-likelihood $\log L(X, Y, \theta)$.

$$\begin{split} \log L(X, Y, \theta) &= \sum_{i=1}^{n} \sum_{c=1}^{C} \left[Z_{ic} \left(\theta_{c}^{T} X_{i} - \log \left(\sum_{k=1}^{C} \exp \theta_{k}^{T} X_{i} \right) \right) \right] \\ &= \sum_{i=1}^{n} \sum_{c=1}^{C} Z_{ic} \theta_{c}^{T} X_{i} - \sum_{i=1}^{n} \sum_{c=1}^{C} Z_{ic} \log \left(\sum_{k=1}^{C} \exp \theta_{k}^{T} X_{i} \right) \\ &= \sum_{i=1}^{n} \sum_{c=1}^{C} Z_{ic} \theta_{c}^{T} X_{i} - \sum_{i=1}^{n} \log \left(\sum_{k=1}^{C} \exp \theta_{k}^{T} X_{i} \right). \end{split}$$

using the fact that $\sum_{c=1}^{C} Z_{ic} = 1$.

(b) Write the gradient of $\nabla_{\theta_c} \log L(\theta)$ w.r.t to θ_c in terms of \mathbf{Z}, π_c and \mathbf{X} .

$$\nabla_{\theta_c} \log L(\theta) = \sum_{i=1}^n Z_{ic} X_i - \sum_{i=1}^n \frac{\exp \theta_c^T X_i}{\sum_{k=1}^C \exp \theta_k^T X_i} X_i$$
$$= \sum_{i=1}^n Z_{ic} X_i - \sum_{i=1}^n \pi_{ic} X_i$$
$$= X^T (Z_c - \pi_c)$$

where Z_c is the c-th column of $Z, c = 1, \ldots, C$.

(c) Write the $C \times d$ matrix of the C gradients $\nabla_{\theta_c} \log L, c = 1, \dots, C$ as a matrix product in terms of \mathbf{Z}, π and X, yielding a $d \times C$ matrix.

$$\nabla_{\theta} \log L(\theta) = X^T (Z - \pi).$$