## **Exploratory Data Analysis - Casino Jitter Data**

**Author: Kaza Razat** 

#### Introduction

Conduct exploratory data analysis (EDA) on a casino jitter dataset to determine important relationships or key insights in preparation for predictive models to help the casino determine the best time of day to open X number of tables for particular casino games.

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns

%matplotlib inline
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")

In [2]: url = "https://library.startlearninglabs.uw.edu/DATASCI410/Datasets/JitteredHeadCount.csv"
casino_data = pd.read_csv(url).reset_index(drop=True)
In [3]: print (casino_data.shape)

(175677, 9)
```

## In [4]: | casino\_data.describe()

## Out[4]:

|       | Hour          | TablesOcc     | TablesOpen    | TablesClosed  | HeadCount     | DayOfW     |
|-------|---------------|---------------|---------------|---------------|---------------|------------|
| count | 175677.000000 | 175677.000000 | 175677.000000 | 175677.000000 | 175677.000000 | 175677.000 |
| mean  | 11.504431     | 2.074591      | 2.555804      | 1.853430      | 7.390228      | 3.992      |
| std   | 6.922330      | 3.307518      | 3.673229      | 2.993767      | 12.458613     | 1.997      |
| min   | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 1.000      |
| 25%   | 6.000000      | 0.000000      | 1.000000      | 0.000000      | 0.000000      | 2.000      |
| 50%   | 12.000000     | 1.000000      | 1.000000      | 1.000000      | 3.000000      | 4.000      |
| 75%   | 18.000000     | 2.000000      | 3.000000      | 3.000000      | 8.000000      | 6.000      |
| max   | 23.000000     | 24.000000     | 24.000000     | 23.000000     | 109.000000    | 7.000      |

# In [5]: # Initial Summary Stats casino\_data.dtypes

| Out[5]: | GameCode      | object |
|---------|---------------|--------|
|         | DateFormat    | object |
|         | Hour          | int64  |
|         | TablesOcc     | int64  |
|         | TablesOpen    | int64  |
|         | TablesClosed  | int64  |
|         | HeadCount     | int64  |
|         | DayOfWeek     | int64  |
|         | DayNumber     | int64  |
|         | dtype: object |        |

In [6]: casino\_data.head(10)

Out[6]:

|   | GameCode | DateFormat | Hour | TablesOcc | TablesOpen | TablesClosed | HeadCount | DayOfWo |
|---|----------|------------|------|-----------|------------|--------------|-----------|---------|
| 0 | ВА       | 9/16/2011  | 6    | 0         | 0          | 1            | 0         |         |
| 1 | ВА       | 9/16/2011  | 7    | 0         | 0          | 1            | 0         |         |
| 2 | ВА       | 9/16/2011  | 8    | 0         | 0          | 1            | 0         |         |
| 3 | ВА       | 9/16/2011  | 9    | 0         | 0          | 1            | 0         |         |
| 4 | ВА       | 9/16/2011  | 10   | 0         | 1          | 0            | 0         |         |
| 5 | ВА       | 9/16/2011  | 11   | 0         | 1          | 0            | 0         |         |
| 6 | ВА       | 9/16/2011  | 12   | 0         | 1          | 0            | 0         |         |
| 7 | ВА       | 9/16/2011  | 13   | 0         | 1          | 0            | 0         |         |
| 8 | ВА       | 9/16/2011  | 14   | 0         | 1          | 0            | 0         |         |
| 9 | ВА       | 9/16/2011  | 15   | 0         | 1          | 0            | 0         |         |

In [184]: # Create a new Data column formatted properly to use for time series p
lots
casino\_data.loc[:, 'Date'] = pd.to\_datetime(casino\_data.loc[:, 'DateFo
rmat'])

In [7]: casino\_data.head(10)

Out[7]:

|   | GameCode | DateFormat | Hour | TablesOcc | TablesOpen | TablesClosed | HeadCount | DayOfW |
|---|----------|------------|------|-----------|------------|--------------|-----------|--------|
| 0 | ВА       | 9/16/2011  | 6    | 0         | 0          | 1            | 0         |        |
| 1 | ВА       | 9/16/2011  | 7    | 0         | 0          | 1            | 0         |        |
| 2 | ВА       | 9/16/2011  | 8    | 0         | 0          | 1            | 0         |        |
| 3 | ВА       | 9/16/2011  | 9    | 0         | 0          | 1            | 0         |        |
| 4 | ВА       | 9/16/2011  | 10   | 0         | 1          | 0            | 0         |        |
| 5 | ВА       | 9/16/2011  | 11   | 0         | 1          | 0            | 0         |        |
| 6 | ВА       | 9/16/2011  | 12   | 0         | 1          | 0            | 0         |        |
| 7 | ВА       | 9/16/2011  | 13   | 0         | 1          | 0            | 0         |        |
| 8 | ВА       | 9/16/2011  | 14   | 0         | 1          | 0            | 0         |        |
| 9 | ВА       | 9/16/2011  | 15   | 0         | 1          | 0            | 0         |        |

## **Correlation plots**

As a starting point to help indentity what possible value relationships to explore we have a function to plot a heatmap of all the numerical values in the dataset. This function can later be expanded to exclude values as well.

```
In [186]:
          # A function to plot of a heatmap of the correlation of data numerical
          values
          def corr heatmap():
              vals corr = casino_data[['Hour',
                                         'TablesOcc',
                                         'TablesOpen',
                                         'TablesClosed',
                                         'HeadCount',
                                         'DayOfWeek',
                                        'DayNumber'
                                       ]].corr()
              plt.subplots(figsize=(14,14))
              sns.color_palette("BuGn r")
              sns.heatmap(vals corr, vmax=.3, center=0,cmap="YlGnBu",
                           square=True, linewidths=.25, cbar kws={"shrink": .5})
              plt.title('Correlation matrix for numeric features')
              plt.yticks(rotation='horizontal')
              plt.xticks(rotation='vertical')
              return
          corr heatmap()
```



```
In [10]: tables_open = casino_data[["GameCode","TablesOpen","DayName","DayOfWee
k","DayNumber","Hour"]]
```

```
In [11]: tables_open.loc[:, 'hours_bin'] = pd.cut(tables_open.loc[:, 'Hour'], b
    ins=3,labels=["Morning","Afternoon","Evening"])
```

In [12]: # Create a pivot table that is a slice of the main dataset to focus on
 Tables that were opened
 tables\_open = pd.pivot\_table(tables\_open, index=['GameCode','DayNumber
 ','DayName','hours\_bin','DayOfWeek'], values='TablesOpen', aggfunc='su
 m')

In [13]: tables\_open.head(10)

Out[13]:

#### **TablesOpen**

| GameCode | DayNumber | DayName  | hours_bin | DayOfWeek |   |
|----------|-----------|----------|-----------|-----------|---|
|          |           |          | Morning   | 6         | 0 |
|          | 47        | Friday   | Afternoon | 6         | 6 |
|          |           |          | Evening   | 6         | 8 |
|          |           | Saturday | Morning   | 7         | 8 |
| DΛ       | 48        |          | Afternoon | 7         | 8 |
| BA       |           |          | Evening   | 7         | 8 |
|          |           | Sunday   | Morning   | 1         | 8 |
|          | 49        |          | Afternoon | 1         | 8 |
|          |           |          | Evening   | 1         | 8 |
|          | 50        | Monday   | Morning   | 2         | 8 |

Out[194]:

#### **TablesOpen**

| Dayivanie | iloui s_biii | DayOrveek |   |
|-----------|--------------|-----------|---|
|           | Morning      | 6         | 0 |
| Friday    | Afternoon    | 6         | 6 |
|           | Evening      | 6         | 8 |

DayName hours him DayOfWeek

## **Facet Grid Histograms**

A function that takes a game code and plots a facet grid of histograms showing the distribution of open tables by day of the week accross the range of days that game code has data. Texas Hold'em poker is probably one of the most popular tables at a casino so we will input that game code to view the data. We can see from the plots that tables being opened align with the likely traffic flowing into the casino during busy times of a given week day. We can also see the values increase on the weekends.

```
In [195]: # Function takes a game code as string and plots a facet grid of the d
    istribution of open tables by day of the week

def facetHist(game_code):
    tables_open_tp = tables_open.loc[game_code]
    tables_open_tp.reset_index(inplace=True)
    print (tables_open_tp.head(20))
    gr = sns.FacetGrid(tables_open_tp, col="DayName")
    gr = gr.map(plt.hist, "TablesOpen")
    return

facetHist("TP")
```

|    | DayNumber           | DayName                   | hours_bin                 | DayOfWeek             | TablesOpen         |                  |
|----|---------------------|---------------------------|---------------------------|-----------------------|--------------------|------------------|
| 0  | 1                   | Monday                    | Morning                   | 2                     | 27                 |                  |
| 1  | 1                   | Monday                    | Afternoon                 | 2                     | 45                 |                  |
| 2  | 1                   | Monday                    | Evening                   | 2                     | 66                 |                  |
| 3  | 2                   | Tuesday                   | Morning                   | 3                     | 32                 |                  |
| 4  | 2                   | Tuesday                   | Afternoon                 | 3                     | 43                 |                  |
| 5  | 2                   | Tuesday                   | Evening                   | 3                     | 64                 |                  |
| 6  | 3                   | Wednesday                 | Morning                   | 4                     | 28                 |                  |
| 7  | 3                   | Wednesday                 | Afternoon                 | 4                     | 40                 |                  |
| 8  | 3                   | Wednesday                 | Evening                   | 4                     | 63                 |                  |
| 9  | 4                   | Thursday                  | Morning                   | 5                     | 32                 |                  |
| 10 | 4                   | Thursday                  | Afternoon                 | 5                     | 40                 |                  |
| 11 | 4                   | Thursday                  | Evening                   | 5                     | 64                 |                  |
| 12 | 5                   | Friday                    | Morning                   | 6                     | 27                 |                  |
| 13 | 5                   | Friday                    | Afternoon                 | 6                     | 54                 |                  |
| 14 | 5                   | Friday                    | Evening                   | 6                     | 88                 |                  |
| 15 | 6                   | Saturday                  | Morning                   | 7                     | 48                 |                  |
| 16 | 6                   | Saturday                  | Afternoon                 | 7                     | 52                 |                  |
| 17 | 6                   | Saturday                  | Evening                   | 7                     | 90                 |                  |
| 18 | 7                   | Sunday                    | Morning                   | 1                     | 42                 |                  |
| 19 | 7                   | Sunday                    | Afternoon                 | 1                     | 41                 |                  |
|    | DayName = Monday Da | yName = Tuesday DayName = | - Wednesday DayName = Thu | sday DayName = Friday | DayName = Saturday | DayName = Sunday |
| 40 |                     | _                         | _                         |                       | 1 1 1              |                  |
| 20 | the second          | ان بالل                   |                           |                       |                    |                  |
| 10 |                     |                           |                           | .1. 111               |                    |                  |

## **Hexbin plots**

The hexbin plot avoids the issue of overplotting so that the relationship of the quantity of open tables by game code can be viewed over the range of days. By creating a function that takes the game code as input we can easily plot hexbins for any of the game codes.



#### **Facet Grids**

The facet grid with scatter points is being used to show how many tables are open for a give game code by day of the week and hours of the day binned into morning, afternoon and evening categories.



In [198]: tables\_open.loc["TP"].head()

Out[198]:

#### **TablesOpen**

|   | DayNumber | DayName | nours_bin | DayOfWeek |    |
|---|-----------|---------|-----------|-----------|----|
| • |           |         | Morning   | 2         | 27 |
|   | 1         | Monday  | Afternoon | 2         | 45 |
|   |           |         | Evening   | 2         | 66 |
|   | 2         | Tuesday | Morning   | 3         | 32 |
|   | 2         |         | Afternoon | 3         | 43 |

#### Scatter Plot with Marker and Color

A function that plots a scatter chart of the number of Open tables for a given casino game over all days in the dataset. The points are marked and colored by categorical hourly ranges during the day. This plot can be improved by plotting marker size with additional numeric data if available. The example plot for the Texas Hold'em Poker game code shows the slight increase in open tables from Day 1 through Day 366 by time of day.

```
In [199]:
          def colorScatter(game code,game name):
              t = tables open.loc[game code]
              t.reset index(inplace=True)
              sns.lmplot(x = 'DayNumber', y = 'TablesOpen',
                          data = t,
                          hue = 'hours bin',
                          size=6,
                          markers=["o", "x",">"],
                          palette="seismic",
                          scatter kws={'alpha':0.3,'s': 30},
                          fit reg = True)
              plt.xlabel('Day Number')
              plt.ylabel('Open Tables')
              plt.title('Game:{} \n Day Number vs. Open Tables \n with hour rang
          e by color and marker'.format(game name))
              return
          colorScatter("TP","Texas Hold'em Poker")
```



In [ ]: