Project Euler Proofs

Zach Taylor

April 18, 2019

1.
$$\sum_{k=1}^{n} k = \frac{n*(n+1)}{2}$$
 for all $n \ge 1$.

Proof. The formula clearly holds when n=1 and n=2. Now suppose the formula holds when $n=m\geq 2$. Then

$$\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + m + 1 = \frac{m * (m+1)}{2} + m + 1 = \frac{(m+1) * (m+2)}{2}$$

Thus the formula holds for n=m+1, so by the principle of induction it holds for all $n \geq 1$.

2. Let $a, b, c \in \mathbb{Z}$. Then $b \mid a$ and $c \mid a$ if and only if $lcm(b, c) \mid a$.

Proof. Set $n = \operatorname{lcm}(b, c)$, and suppose $b \mid a$ and $c \mid a$. By the division algorithm, a = pn + r for some $p, r \in \mathbb{Z}$, where $0 \le r < n$. Thus, since $b \mid a$ and $b \mid n$, we have $b \mid r$. By the same reasoning, we also have $c \mid r$. Since r is a common multiple of b and c and r < n, r must be 0. Thus a = pn, that is, $n \mid a$. Conversely, let $k, j \in \mathbb{Z}$ such that n = kb and n = jc. Then if $n \mid a$, we have, for some $m \in \mathbb{Z}$, a = mn = (mk)b = (mj)c, and thus $c \mid a$ and $b \mid a$.