EXAMINATION DATA SHEET FOR TECHNICAL SCIENCES

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Standard pressure	p_{θ}	1,01 × 10⁵ Pa
Standard temperature	T ⁰	273 K
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck's constant	h	6,63 × 10 ⁻³⁴ J⋅s

TABLE 2 FORMULAE

$$\begin{split} E_{\text{cell}}^{\theta} &= E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} \end{split}$$

IEB Copyright © 2022 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE OF ELEMENTS

	1	2	3	4	5	6	7 KEY	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					tomic umber	1	2,1	Electi Symb	ronega ool	ativity							He
2	3 1,0 Li 7 11 0,9	Be 9			Approx atomic		1 relativ	/e					5 2,0 B 10,8 13 1,5	C	N	O	F 19	Ne 20
3	Na 23	Mg 24,3	04 4 2				05 45	00.40	07.40	00.40	100 40	00.40	A ℓ	Si 28	P 31	S	Cℓ 35,5	Ar 40
4	19 0,8 K 39	Ca	Sc 45	Ti 48	V 51	C r	Mn 55	Fe 56	Co 59	Ni 59	Cu 63,5	30 1,6 Zn 65,4	Ga 70	Ge 72,6	33 2,0 As 75	Se 79	Br 80	36 Kr 84
5	37 0,8 Rb 85,5	Sr	Y 89	Zr 91	Nb 93	Mo 96	Tc	44 2,2 Ru 101	Rh 103	Pd 106	Ag	48 1,7 Cd 112	In 115	Sn 119	Sb 121	Te	 127	Xe 131
6	55 0,7 Cs 133	56 0,9 Ba 137,3	57 La 139	72 1,6 Hf 178,5	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 200,6	81 1,8 T2 204,4	82 1,8 Pb 207	83 1,9 Bi 209	Po	85 2,5 At	86 Rn
7	87 0,7 Fr	88 0,9 Ra	89 Ac															
				ı	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
					90 Th	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

TABLE 4A STANDARD REDUCTION POTENTIALS

	Half	Ε ^θ (V)					
	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87			
	Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81			
	H ₂ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	2H₂O	+ 1,77			
	MnO + 8H ⁻ + 5e ⁻	\rightleftharpoons	_	+ 1,51			
	$C\ell_2(g) + 2e^-$	-	2Cl ⁻	+ 1,36			
	Cr ₂ O + 14H ⁺ + 6e ⁻			+ 1,33			
	$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons		+ 1,23			
	MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23			
	Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20			
	$Br_2(\ell) + 2e^-$	1 1					
	NO + 4H+ + 3e-						
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\hat{\ell})$	+ 0,96 + 0,85			
	Ag+ + e-	\rightleftharpoons	Ag	+ 0,80			
	NO + 2H⁺ + e⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80			
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77			
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68			
	l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54			
	Cu+ + e-	\rightleftharpoons	Cu	+ 0,52			
	SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+ 0,45			
ncreasing oxidising ability	2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+ 0,40			
lbi	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34			
g	SO + 4H ⁺ + 2e ⁻	\Rightarrow SO ₂ (g) + 2H ₂ (+ 0,17			
sin	Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺ (3/	+ 0,16			
di	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15			
οχi	S + 2H+ + 2e-			+ 0,14			
g	2H+ + 2e-	=	H ₂ (g)	0,00			
sir	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06			
ea.	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13			
JCI	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14			
=	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27			
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28			
	$Cd^{2+} + 2e^{-}$	\rightleftharpoons	Cd	- 0,40			
	$Cr^{3+} + e^{-}$	\rightleftharpoons	Cr ²⁺	- 0,41			
	$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe	- 0,44			
	$Cr^{3+} + 3e^{-}$	\rightleftharpoons	Cr	- 0,74			
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76			
	2H ₂ O + 2e ⁻	\rightleftharpoons	H2(g) + 2OH ⁻	- 0,83			
	Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91			
	$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn	– 1,81			
	$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	– 1,66			
	Mg ²⁺ + 2e ⁻			- 2,36			
	Na+ + e-	\rightleftharpoons	Na	– 2 ,71			
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2 ,87			
	Sr ²⁺ + 2e ⁻	=	Sr	- 2,89			
	Ba ²⁺ + 2e ⁻	=	Ba	- 2,90			
	Cs+ + e-	=	Cs	- 2,92			
	K+ + e-	=	K	- 2,93			
	Li ⁺ + e ⁻	_	Li	- 3,05			
		`					

Increasing reducing ability

TABLE 4B STANDARD REDUCTION POTENTIALS

	Hal	Ε ^θ (V)					
	Li ⁺ + e ⁻	=	Li	-3,05			
	K+ + e-	\rightleftharpoons	K	-2,93			
	Cs+ + e-	\rightleftharpoons	Cs	-2,92			
	Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90			
	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89			
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87			
	Na+ + e-	\rightleftharpoons	Na	-2,71			
	Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,36			
	$A\ell^{3-} + 3e^{-}$	\rightleftharpoons	Αĺ	-1,66			
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18			
	$Cr^{2+} + 2e^{-}$	\rightleftharpoons	Cr	-0,91			
	2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83			
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76			
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74			
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44			
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41			
	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40			
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28			
_	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,27			
ncreasing oxidising ability	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14			
abi	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13			
g	$Fe^{3+} + 3e^{-}$	\rightleftharpoons	Fe	-0,06			
Sir	2H+ + 2e-	=	H ₂ (g)	0,00			
idi	$S + 2H^+ + 2e^-$	\rightleftharpoons	$H_2S(g)$	+0,14			
ŏ	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15			
ng	Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺	+0,16			
3Si	SO + 4H+ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17			
rea	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34			
nc	$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40			
	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H ₂ O	+0,45			
	Cu+ + e-	\rightleftharpoons	Cu	+ 0,52			
	l ₂ + 2e ⁻	⇒ 2l⁻		+0,54			
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68			
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77			
	NO + 2H+ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80			
	Ag+ + e-	\rightleftharpoons	Ag	+0,80			
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\ell)$	+0,85			
	NO + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+0,96			
	$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br [_]	+1,07			
	Pt ²⁺ + e ⁻	\rightleftharpoons	Pt	+1,20			
	$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+1,23			
	$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+1,23			
	$Cr_2O + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33			
	$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cl-	+1,36			
	MnO + 8H+ + 5e-	=	$Mn^{2+} + 4H_2O$	+1,51			
	$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77			
	Co ³⁺ + e ⁻	=	Co ²⁺	+1,81			
aht © 2	F ₂ (g) + 2e ⁻	=	2F-	+2,87			