

COMP220: Graphics & Simulation 3: Mathematics for graphics

(ロ) (個) (重) (重) 重 の(0)

Learning outcomes

- ► Outcome 1
- ► Outcome 2
- ► Outcome 3

A vector has **components**

A vector has components

A vector has **components**

A vector also has **direction** and **magnitude** (or **length**)

A vector has **components**

A vector also has **direction** and **magnitude** (or **length**)

A vector has components

A vector also has **direction** and **magnitude** (or **length**)

The **origin** is the point represented by the vector $(0,0,\ldots)$

▶ We often measure angles in radians

- We often measure angles in radians
- ► $\pi = 3.14159...$

- ▶ We often measure angles in radians
- $\pi = 3.14159...$
- π radians = 180 degrees = half a circle

- ▶ We often measure angles in radians
- $\rightarrow \pi = 3.14159...$
- π radians = 180 degrees = half a circle
- $\frac{\pi}{2}$ radians = 90 degrees = right angle

- We often measure angles in radians
- $\rightarrow \pi = 3.14159...$
- π radians = 180 degrees = half a circle
- $\frac{\pi}{2}$ radians = 90 degrees = right angle
- Careful! Some things in OpenGL work in degrees, others in radians (just to confuse you...)

OpenGL uses a right-handed coordinate system

OpenGL uses a right-handed coordinate system

OpenGL uses a right-handed coordinate system

► The x-axis points towards the right-hand side of the screen

OpenGL uses a right-handed coordinate system

- ► The x-axis points towards the right-hand side of the screen
- ► The y-axis points towards the top of the screen

OpenGL uses a right-handed coordinate system

- ► The x-axis points towards the right-hand side of the screen
- ► The y-axis points towards the top of the screen
- ► The z-axis points out of the screen

 In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector

- In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector
- ► The extra coordinate is called w

- In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector
- \blacktriangleright The extra coordinate is called w
- Simple explanation: w should always equal 1 for points in 3D space; having w there makes certain calculations easier

- In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector
- \blacktriangleright The extra coordinate is called w
- Simple explanation: w should always equal 1 for points in 3D space; having w there makes certain calculations easier
 - (Actually, a point (x, y, z) can be represented as a vector $(x \times w, y \times w, z \times w, w)$ for any $w \neq 0$)

- In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector
- ► The extra coordinate is called w
- Simple explanation: w should always equal 1 for points in 3D space; having w there makes certain calculations easier
 - (Actually, a point (x, y, z) can be represented as a vector $(x \times w, y \times w, z \times w, w)$ for any $w \neq 0$)
- ► In homogeneous coordinates, the origin is (0,0,0,1) not (0,0,0,0)!

► An m × n matrix is a rectangular array of numbers, having m rows and n columns

► An m × n matrix is a rectangular array of numbers, having m rows and n columns

$$\begin{pmatrix} 3 & 0 & 2.4 \\ 1.7 & -6 & -4.5 \end{pmatrix} \qquad \leftarrow \text{A 2} \times \text{3 matrix}$$

► An m × n matrix is a rectangular array of numbers, having m rows and n columns

$$\begin{pmatrix} 3 & 0 & 2.4 \\ 1.7 & -6 & -4.5 \end{pmatrix} \qquad \leftarrow A \ 2 \times 3 \ \text{matrix}$$

► Note: the plural of matrix is matrices

► An m × n matrix is a rectangular array of numbers, having m rows and n columns

$$\begin{pmatrix} 3 & 0 & 2.4 \\ 1.7 & -6 & -4.5 \end{pmatrix} \qquad \leftarrow A \ 2 \times 3 \ \text{matrix}$$

- ► Note: the plural of matrix is matrices
- In computer graphics we mostly work with square matrices (number of rows = number of columns)

Multiplying vectors and matrices

Multiplying vectors and matrices

► Two n × n matrices can be multiplied, giving a new n × n matrix

Multiplying vectors and matrices

- ► Two n × n matrices can be multiplied, giving a new n × n matrix
- An n x n matrix and an n-vector can be multiplied, giving a new n-vector

Multiplying vectors and matrices

- ► Two n × n matrices can be multiplied, giving a new n × n matrix
- An n x n matrix and an n-vector can be multiplied, giving a new n-vector
- ► See https://www.khanacademy.org/math/ precalculus/precalc-matrices/ multiplying-matrices-by-matrices/v/ matrix-multiplication-intro

Multiplying vectors and matrices

- Two n × n matrices can be multiplied, giving a new n × n matrix
- An n x n matrix and an n-vector can be multiplied, giving a new n-vector
- ► See https://www.khanacademy.org/math/ precalculus/precalc-matrices/ multiplying-matrices-by-matrices/v/ matrix-multiplication-intro
- (But you don't really need to know how to calculate these manually...)

Multiplication of numbers is commutative

- ► Multiplication of numbers is **commutative**
 - ▶ $a \times b = b \times a$

- Multiplication of numbers is commutative
 - \bullet $a \times b = b \times a$
 - e.g. $2 \times 3 = 3 \times 2$

- Multiplication of numbers is commutative
 - \rightarrow $a \times b = b \times a$
 - e.g. $2 \times 3 = 3 \times 2$
- ► Multiplication of matrices is **not commutative**

- Multiplication of numbers is commutative
 - \rightarrow $a \times b = b \times a$
 - e.g. $2 \times 3 = 3 \times 2$
- Multiplication of matrices is not commutative
 - ▶ In general, $A \times B \neq B \times A$

- Multiplication of numbers is commutative
 - \rightarrow $a \times b = b \times a$
 - e.g. $2 \times 3 = 3 \times 2$
- Multiplication of matrices is not commutative
 - ▶ In general, $A \times B \neq B \times A$
 - ► There may be some matrices where $A \times B = B \times A$, but they are the exception

Transformations

 A transformation is a mathematical function that changes points in space

- A transformation is a mathematical function that changes points in space
- ► E.g. shifts them, rotates them, scales them, ...

- A transformation is a mathematical function that changes points in space
- ► E.g. shifts them, rotates them, scales them, ...
- Many useful transformations can be represented by matrices

- A transformation is a mathematical function that changes points in space
- ► E.g. shifts them, rotates them, scales them, ...
- Many useful transformations can be represented by matrices
- Multiplying these matrices together combines the transformations

- A transformation is a mathematical function that changes points in space
- ► E.g. shifts them, rotates them, scales them, ...
- Many useful transformations can be represented by matrices
- Multiplying these matrices together combines the transformations
- Multiplying a vector by the matrix applies the transformation

GLM

We will use the **GLM** library to do matrix calculations for us

http://glm.g-truc.net/

GLM aims to mirror GLSL data types (vec4, mat4 etc) in C++

Identity

Identity

The identity transformation does not change anything

Identity

The identity transformation does not change anything

```
// Default constructor for glm::mat4 creates an ←
  identity matrix
```

Translation

Translation

Translation shifts all points by the same vector offset

Translation

Translation shifts all points by the same vector offset

```
transform = glm::translate(transform, glm::vec3(0.3f, \leftarrow 0.5f, 0.0f));
```

Scaling

Scaling

Scaling moves all points closer or further from the origin by the same factor

Scaling

Scaling moves all points closer or further from the origin by the same factor

```
transform = glm::scale(transform, glm::vec3(1.2f, 0.5f \leftarrow , 1.0f));
```


► How do we represent a rotation in 3 dimensions?

- ► How do we represent a rotation in 3 dimensions?
- One way is by specifying the axis (as a vector) and the angle (in radians)

- ▶ How do we represent a rotation in 3 dimensions?
- One way is by specifying the axis (as a vector) and the angle (in radians)
- Axis always runs through the origin

- ▶ How do we represent a rotation in 3 dimensions?
- One way is by specifying the axis (as a vector) and the angle (in radians)
- Axis always runs through the origin

```
float angle = glm::pi<float>() * 0.5f;
glm::vec3 axis(0, 0, 1);
transform = glm::rotate(transform, angle, axis);
```

```
transform = glm::translate(transform, glm::vec3(0.5f, \leftrightarrow 0.5f, 0.0f));
transform = glm::rotate(transform, angle, axis);
```

► Transformations do not commute in general changing the order will change the result

- ► Transformations do not commute in general changing the order will change the result
- ► The order they are applied is the reverse of what you might think — i.e. the above rotates then translates

Any orientation of an object in 3D space can be described by three rotations around:

- Any orientation of an object in 3D space can be described by three rotations around:
 - ► The *x*-axis (1,0,0)

- Any orientation of an object in 3D space can be described by three rotations around:
 - ► The *x*-axis (1,0,0)
 - ► The y-axis (0, 1, 0)

- Any orientation of an object in 3D space can be described by three rotations around:
 - ► The x-axis (1,0,0)
 - ► The y-axis (0, 1, 0)
 - ► The z-axis (0,0,1)

- Any orientation of an object in 3D space can be described by three rotations around:
 - ► The x-axis (1,0,0)
 - ► The y-axis (0, 1, 0)
 - ► The z-axis (0, 0, 1)
- These angles are sometimes called roll, pitch and yaw

Gimbal lock

https://youtu.be/rrUCBOlJdt4?t=1m55s