# Integration ved substitution + hængeparti.

#### Grafer under x-aksen

Ønsker vi at bestemme arealet afgrænset af en negativ funktion f og x-aksen på et interval [a,b] kan vi bruge sætningen om arealer mellem funktioner. Dette giver os følgende sætning.

**Sætning 1.1.** Lad f være en kontinuert funktion, der opfylder, at f(x) < 0 for alle  $x \in [a,b]$ . Så er arealet af området afgrænset af f og x-aksen på intervallet [a,b] givet ved

$$A = -\int_{a}^{b} f(x) \mathrm{d}x.$$

Bevis. Vi betragter arealet mellem funktionen g(x) = 0 og f(x). Dette er givet ved

$$A = \int_{a}^{b} g(x) - f(x) dx$$
$$= \int_{a}^{b} 0 - f(x) dx$$
$$= -\int_{a}^{b} f(x) dx,$$

hvilket konkluderer beviset.

**Eksempel 1.2.** Vi skal bestemme arealet mellem x-aksen og funktionen  $\sin(x)$  på intervallet  $[0, 4\pi]$ . Vi starter med at plotte funktionen. Dette kan ses af Fig. 1



Figur 1: Grafen for sin(x)

Af figuren kan vi se, at  $\sin(x)$  er positiv på intervallet  $[0, \pi]$  og negativ på intervallet  $[\pi, 2\pi]$ . Derfor skal vi dele integralet op i to for at bestemme integralet. Dette gøres:

$$A = \int_0^{\pi} \sin(x) dx - \int_{\pi}^{2\pi} \sin(x) dx$$

$$= [-\cos(x)]_0^{\pi} - [-\cos(x)]_{\pi}^{2\pi}$$

$$= -\cos(\pi) - (-\cos(0)) - (-\cos(2\pi) - (-\cos(\pi)))$$

$$= 1 + 1 + 1 + 1$$

$$= 4$$

## Integration ved substitution

Skal vi integrere en sammensat funktion, skal vi bruge en slags omvendt kæderegel. Dette kaldes ofte integration ved substitution. Vi starter med at bevise, at metoden virker.

**Sætning 2.1.** Lad f(g(x)) være en kontinuert funktion i x, og antag, at g(x) er differentiabel. Så gælder der, at

$$\int f(g(x)) \cdot g'(x) dx = F(g(x)) + k.$$

Bevis. Det er sådan set bare at gøre prøve. Vi tester, om F(g(x)) er en stamfunktion ved at differentiere:

$$(F(g(x)))' = F'(g(x)) \cdot g'(x) = f(g(x)) \cdot g'(x),$$

hvilket var hvad vi skulle vise.

#### Eksempel 2.2. Vi skal løse

$$\int \frac{2x}{x^2 + 1} \mathrm{d}x.$$

Vi har en indre funktion  $x^2 + 1$ , som vi betegner med  $u = x^2 + 1$ . Vi skal i følge sætningen bruge den differentierede til den indre funktion. Derfor bestemmes

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x.$$

Vi betragter  $\frac{\mathrm{d}u}{\mathrm{d}x}$  som en brøk (Det er det ikke!), og isolerer dx

$$\mathrm{d}x = \frac{\mathrm{d}u}{2x}.$$

Vi substituerer nu dx og u ind i integralet:

$$\int \frac{2x}{x^2 + 1} dx = \int \frac{2x}{u} \frac{du}{2x}$$
$$= \int \frac{1}{u} du$$
$$= \ln(u) + k.$$

Vi substituerer nu tilbage:

$$\int \frac{2x}{x^2 + 1} dx = \ln(x^2 + 1) + k.$$

Det er let at tjekke, at dette udtryk differentieret giver

$$(\ln(x^2+1)+k)' = \frac{2x}{x^2+1}$$

### Opgave 1

Bestem arealet afgrænset af funktionen  $f(x) = 4x^3 - 9x^2$  og x-aksen. Start med at tegne grafen.

# Opgave 2

Bevis ii) og iii) fra Sætning 1.2 fra sidst.

# Opgave 3

Løs følgende integraler ved integration ved substitution

1) 
$$\int x \sin(x^2) dx$$

$$2) \int \frac{1}{\sqrt{2x}} \mathrm{d}x$$

$$3) \int \frac{12x}{3x^2 - 1} \mathrm{d}x$$

1) 
$$\int x \sin(x^2) dx$$
  
2) 
$$\int \frac{1}{\sqrt{2x}} dx$$
  
3) 
$$\int \frac{12x}{3x^2 - 1} dx$$
  
4) 
$$\int 2 \sin(2x) - 2x \cos(x^2) dx$$

# Opgave 4

Opgaver fra sidst