- * Function involving higher order destrative:
 - * Rayleigh Ritz Method: -

consider. The functional
$$I = \int_{x_1}^{x_2} F(x, y, y') dx$$

with $y(a) = b_1$ and $y'(a) = b_2$

working kule!

Step 2 we initial condition $y(a) = b_1$ and $y(a) = b_2$ and find c_0 , c_1 , c_2 and put in O

Step 3 Now use new $\overline{y}(x)$ and find I by usual infegration we get $I = \phi(c_i)$

step 4 use $I = \phi(C_i)$ & find C_i (using stationary) method) and put in equation (1) we get

The Required solution

EX 1) solve by Rayleigh Ritz method—the boundary value problem.

$$t = \int_{0}^{1} (2xy - y^{2} - y'^{2}) dx$$
 given $y(0) = 0$, $y(1) = 0$

solution: here, F = 2xy - y2 y'2

Now we Assume the trial solution

$$\overline{y}(x) = c_0 + c_1 x + c_2 x^2 \qquad \boxed{ }$$

Since, y(0) = 0 and y(1) = 0 $0 = c_0 + 0 + 0 \implies c_0 = 0$

Scanned by CamScanner

Using Rayleigh-Ritz method, solve the boundary value problem $I = \int (xy + \frac{1}{2}y'^2) dx ; 0 \le x \le 1$ and y(0) = 0, y(1) = 0solution: here $F = xy + \frac{1}{2}y'^2$ and y(0) = 0we Assume the trial solution $\overline{y}(x) = c_0 + c_1 x + c_2 x^2$ if y(o)=0 Then $0 = c_0 + c_1(0) + c_2(0)$ if y(1)=0 -then 0 = 0+ c1(1)+ c2(1) => [c2 = -c1] .. equation (1) becomes $\overline{y}(x) = c_1 x - c_1 x^2 = c_1(x-x^2)$ $\overline{y}'(x) = c_1 - 2c_1x = c_1(1-2x)$ $I = \int (\chi \bar{y} + \pm \bar{y}') dx$ = $\int \left[x \left[c_1(x-x^2) \right] + \frac{1}{2} \left[c_1(1-2x) \right]^2 \right] dx$ $= \int \left\{ c_1 \left(\chi^2 - \chi^3 \right) + \frac{1}{2} c_1^2 \left(1 - 4\chi + 4\chi^2 \right) \right\} d\chi$ $= C_1 \left[\frac{\chi^3}{3} - \frac{\chi^4}{4} \right] + \frac{1}{2} c_1^2 \left[\chi - 4 \frac{\chi^2}{2} + 4 \frac{\chi^3}{3} \right]$

$$= c_1 \left[\left(\frac{1}{3} - \frac{1}{4} \right) - (0 - 0) \right] + \frac{1}{2} c_1^2 \left[\left(1 - \frac{4}{2} + \frac{4}{3} \right) - (0 - 0 + 0) \right]$$

$$= \frac{c_1}{12} + \frac{1}{2} c_1^2 \left(\frac{1}{3} \right)$$

$$=$$
 $\frac{c_1}{12} + \frac{1}{6} c_1^2$

: for stationary value
$$\frac{dE}{dc_i} = 0$$

$$\Rightarrow \frac{1}{12} + \frac{1}{6} 2c_1 = 0$$

$$\Rightarrow c_1 = -\frac{1}{4}$$

.. equation (1) becomes

$$\overline{y}(x) = \frac{1}{4}x(x-1)$$

 $\frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{4} \chi(\chi-1)$ is Required solution

Using Rayleigh - Ritz method, solve the boundary value problem

$$I = \int_{0}^{1} (2xy + y^{2} - y'^{2}) dx$$
, $0 \le x \le 1$
given $y(0) = y(1) = 0$

Ans:
$$y(x) = \frac{5}{18} x(1-x)$$