Exercise 1. Paraphrase the following statements in the form of \forall and \exists :

- (1) There must be a maximum among finitely many real numbers;
- (2) The retirement ages vary from different countries.

Exercise 2. Prove by definition that [a,b) is bounded.

Exercise 3. Let $A \subset \mathbb{R}$ be bounded, $B \subset A$. Prove that B is bounded.

Exercise 4. Let $S_1, S_2 \subset \mathbb{R}$ be bounded. Prove that $S_1 \cup S_2$ is bounded.

Exercise 5. (1) Give the definition of the **infimum** (the greatest lower bound) of $S \subset \mathbb{R}$ in the form of \forall and \exists .

- (2) Prove that if T has an upper bound, then $U = \{x : -x \in T\}$ has an lower bound, and $\sup T = -\inf U$.
- (3) Conclude the existence and the uniqueness of the infimum of a set.

Exercise 6. Let $S \subset \mathbb{R}$. We say that α is the maximum of S, denoted as $\alpha = \max S$, if

- (a) $\forall s \in S, s \leq \alpha;$
- (b) $\alpha \in S$.

Prove that

- $(1) \max[-1, 1] = 1;$
- (2) S = [-1, 1) has no maximum;
- (3) If $\max S$ exists, then $\max S = \sup S$.