

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

E344 Assignment 1

Sean Muller 23575786

Report submitted in partial fulfilment of the requirements of the module

Design (E) 344 for the degree Baccalaureus in Engineering in the Department of Electrical

and Electronic Engineering at Stellenbosch University.

Plagiaatverklaring / Plagiarism Declaration

- 1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele eiendom van ander persone asof dit jou eie werk is.
 - Plagiarism is the use of ideas, material and other intellectual property of another's work and to present is as my own.
- 2. Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit 'n vorm van diefstal is.
 - I agree that plagiarism is a punishable offence because it constitutes theft.
- 3. Ek verstaan ook dat direkte vertalings plagiaat is.

 I also understand that direct translations are plagiarism.
- 4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

 Accordingly all quotations and contributions from any source whatsoever (including the internet) have been cited fully. I understand that the reproduction of text without quotation marks (even when the source is cited) is plagiarism
- 5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of 'n ander module/werkstuk nie.

 I declare that the work contained in this assignment, except where otherwise stated, is my original work and that I have not previously (in its entirety or in part) submitted it for grading in this module/assignment or another module/assignment.

23575786	Sm						
Studentenommer / Student number	Handtekening / Signature						
S. Muller	August 7, 2022						
Voorletters en van / Initials and surname	Datum / Date						

Contents

De	clara	tion												
Lis	t of	Figures		ii										
Lis	t of	Tables		iv										
No	men	clature		V										
1.	Lite	rature	survey	1										
	1.1. Operational amplifiers													
	1.2.	Currer	nt sensing	. :										
			onic range sensor											
		1.3.1.	Interfacing with the ultrasonic range sensor	. 4										
		1.3.2.	Converting PWM signals to analogue signals											
2.	Deta	ail desi	gn	6										
	2.1.	Currer	nt sensor	. (
		2.1.1.	Opamp configuration	. (
		2.1.2.	Opamp design	. 6										
	2.2.	Analog	gue range sensor	. 7										
3.	Resu	ılts		ç										
	3.1.	Currer	nt sensor	. (
		3.1.1.	Simulation	. (
		3.1.2.	Practical	. 10										
		3.1.3.	Circuit	. 11										
	3.2.	Ultras	onic range sensor	. 12										
		3.2.1.	Simulation	. 12										
		3.2.2.	Practical	. 12										
Bil	bliogi	aphy		14										
Α.	Soci	al cont	ract	15										
B	GitH	lub Ac	tivity Heatman	16										

List of Figures

1.1.	Circuit diagrams of 4 op amp configurations	2
1.2.	Timing diagram for ultrasonic sensor [1]	4
1.3.	Decomposition of a PWM signal [2]	5
2.1.	Current sensing circuit design	6
2.2.	Filter configuration from [2]	8
2.3.	Filter configuration from [2]	8
3.1.	Current sensing circuit simulation results	6
3.2.	Circuit response to different input conditions	L(
3.3.	Labelled circuit and student card	1
3.4.	Circuit response to a full range step from 10% to 0.5% duty cycle	2
3.5.	Current draw vs circuit output	12
3.6.	Ultrasonic sensor filter circuit responses	13

List of Tables

0 1	T3.1.	. 1		. 1		C													_
ソエ	Filters and	their	maximiim	required	corner	trequency													\sim
4.1.	i mons and	OIICII	maximum	required	COLLICI	ii cquciic,	•	 •	•	•	•	•	•	•	•	•	•	•	_

Nomenclature

Variables and functions

 R_{sense} Resistor used to in series with the load to measure current

Acronyms and abbreviations

op amp Operational amplifier

Chapter 1

Literature survey

1.1. Operational amplifiers

Operational amplifiers: limitations and considerations

There are many practical limitations to operational amplifiers in comparison to the ideal model. The limit on the common mode voltage is a concern as the limit is usually around the rail voltage and since the negative rail will be ground and the common mode voltage will be close to 0 the data sheet should be consulted to ensure normal operation of the op amp [3].

A significant consideration is the offset voltage between the inputs of the opamp as when the inputs are equal (no current is being given to the load) there will be an offset voltage on the order of mV which is a similar magnitude to the relevant voltages [4]. This will result in significant output voltages at no load. However a negative feedback will greatly reduce the impact of input offset voltage and current [4].

The output voltage won't be able to go all the way to the rail voltages. Therefore there will be some output voltage when there is no current through the load due to the output not able to go below a certain voltage above ground.

Operational amplifier configurations

There are many different configurations for operational amplifiers, this section will cover 4 basic configurations that could be useful for the current sensor.

The simplest circuit is the voltage follower, it requires no other components and causes the output voltage to track the input voltage. The op amp in this configuration provides a large input impedance and very low output impedance which can allow signals to pass between logic components without them loading each other and can be used to stabilize a voltage divider [5].

The inverting op amp is a configuration where the output is connected to the inverting input terminal using a resistor, there is a second resistor connecting this terminal to the circuit input. The non-inverting input is connected to ground. This configuration results in a gain equal to the negative of the ratio between the two resistors. The negative gain cause the output to be exactly out of phase with the input [5].

The non-inverting op amp configuration is similar to the inverting amplifier except the input is connected directly to the non-inverting input and the inverting input terminal has a resistor connecting it to the ground. This results in the gain being equal to 1 plus the ratio

between the two resistors [5].

The differential amplifier is similar to the inverting amplifier, but instead of connecting the non-inverting input to ground a second signal is connected to the input of this terminal through a resistor of the same value as the other terminal. This results in the output being the difference between the two signals scaled by the ratio of the feedback resistor to the input resistor. This configuration is good at filtering out noise common to both input terminals [5].

(c) Circuit diagram for a non-inverting op amp [5]

(d) Circuit diagram for a differential op amp [5]

Figure 1.1: Circuit diagrams of 4 op amp configurations

٠

1.2. Current sensing

There are many different techniques to measure current. Both invasive and non invasive methods each with their own advantages and disadvantages that make them suitable for different situations. An invasive current sensor negatively affect the system and decreases performance whereas a non-invasive current sensor doesn't affect the operation of the system at a meaningful level.

Hall effect

The Hall effect current sensor is a non invasive method of current sensing that uses the magnetic field generated around a current carrying conductor [6]. This magnetic field creates a voltage across the material of the sensor. Hall effect sensors measure this voltage to determine the current flowing in a conductor [7]. There are many advantages to using a Hall effect sensor however, besides the amplifier circuit additional circuits are required and is more costly than other measurement methods [6].

Rogowski coil

The Rogowski coil is a non invasive current sensing method that uses a helical shaped coil that is wrapped around the conductor that you want to measure current in. The coil outputs a voltage depending on the rate of change of current through the conductor, this requires an integrator circuit to create an output voltage that is proportional to the current. The Rogowski coil is very useful for high frequency currents and does not require complex temperature compensation. However this method is only suitable for AC current [6].

Shunt Resistor

The shunt resistor is the most common current sensing technique and uses a resistor in series with the current to be measured. This is a invasive current measuring method. The shunt resistor produces a voltage drop proportional to the current, however the resistance and hence the voltage must be kept low in order to reduce the power consumption. This requires a high gain amplifier circuit to increase the small voltages to meaningful levels. The shunt resistor is a very cost effective solution that works on both AC and DC however it creates a decrease in system efficiency and can't handle high currents due to power dissipation across the resistor. Thermal drift also results in error [6].

High-side vs low-side current sensing is only applicable for invasive methods like the shunt resistor. Low-side has the advantages of being simple and low cost and low input common mode voltage however it can't detect high current due to a short [8]. High-side current sensing removes the ground disturbance and can detect accidental shorts however it has a higher complexity and cost because the gain circuit must be able to handle high common mode voltages [8].

1.3. Ultrasonic range sensor

1.3.1. Interfacing with the ultrasonic range sensor

The datasheet of the HC-SR04 shows a 5 V supply is required and the sensor uses 15 mA when operating [1]. Which results in an operating power usage of 75 mW.

In order to trigger the sensor to send out a sonic pulse an input trigger is required for atleast 10 µs at high TTL levels [1] [1]. The trigger must be sent at least 60 ms apart to prevent false outputs due to the delayed echo [1]. See Figure: 1.2 for a timing diagram showing the relationship between the input trigger the sonic pulse and the output from the module.

Figure 1.2: Timing diagram for ultrasonic sensor [1]

The ultrasonic sensor determines the range of an object that it is pointed at by sending out a set of 8 sonic pulses at 40 kHz when triggered [1]. Once the set of pulse is sent the output is set to high until the sensor detects the return of pulse, at which point it drives the output low. With a regular interval trigger this results in a PWM output signal where the duty cycle corresponds to the distance between the sensor and the object it is facing. This distance is determined by using the speed of sound through air and half the time it takes for the echo to come back as shown in Equation: 1.1 [1].

$$Distance = \frac{OutputHighTime \cdot SpeedOfSound}{2}$$
 (1.1)

1.3.2. Converting PWM signals to analogue signals

A PWM signal can be treated as the sum of a DC signal and a square-wave of equivalent duty cycle, as shown in Figure: 1.3. Converting a PWM signal to its Fourier series equivalent shows that this DC component is equal to the amplitude of the PWM signal multiplied with the duty cycle [2].

The core concept behind getting a analogue signal from a PWM signal is to use a low pass filter to remove the higher frequency components and leave the DC component [2]. The frequency of the PWM signal determines the frequency of the first harmonic as this harmonic will occur at the same frequency of the PWM signal.

Since it is impossible to physically realise a idea low pass filter the cut-off frequency must be set lower than the frequency of the PWM signal. This results in a trade of between the attenuation of the ripple voltage caused by the first harmonic of the PWM signal and the frequency at which the duty cycle of the PWM signal can be varied [2]. Increasing the order of the filter result in a better approximation of ideal low pass filter and allows for the cut-off frequency to be increased without sacrificing attenuation of the first harmonic.

Figure 1.3: Decomposition of a PWM signal [2].

Chapter 2

Detail design

2.1. Current sensor

Currently being rewritten.

2.1.1. Opamp configuration

2.1.2. Opamp design

Figure 2.1: Current sensing circuit design

2.2. Analogue range sensor

The HC-SR04 ultrasonic sensor requires a 5 V supply and requires 15 mA to operate [1]. The frequency of the sensor output is the same as the input trigger frequency which is 16 Hz. Using a maximum distance of 1 m and a minimum distance of 5 cm results in a minimum duty cycle of 0.4% and a maximum duty cycle of 10%. The output pulses will have a maximum amplitude of [1].

Equation 2.1 is used to calculate the needed gain of the system. In order to have the gain stage output a maximum of 5 V at 1 m a gain of 10.77 is required.

$$Gain = \frac{V_{Expected}}{V_{DutyCycle \cdot V_{Amplitude}}}$$
 (2.1)

In order to determine the corner frequency fist the minimum attenuation must be calculated. The minimum attenuation can be calculated using the gain and amplitude of the first harmonic frequency component in the square wave to determine the size of the output ripple voltage, see Equation 2.2. Since the second harmonic and higher will all be attenuated more aggressively than the first harmonic it will contribute the most to the ripple voltage.

$$First Harmonic Amplitude = V_{Amplitude} \cdot Duty Cycle \cdot sinc(\pi \cdot Duty Cycle)$$
 (2.2)

$$MinimumAttenuation = 20log(\frac{MaximumNoise}{FirstHarmonicAmplitude \cdot Gain})$$
 (2.3)

Using Equation 2.3 it is determined that an attenuation of atleast $-41 \,\mathrm{dB}$ is needed at 16 Hz. The corner frequency is then determined solving a simple straight line graph equation as shown in Equation 2.5.

$$log(w) = \frac{MinimumAttenuation + AttenuationSlope \cdot log(2\pi \cdot F_{trigger})}{AttenuationSlope}$$
(2.4)

$$F_{cutoff} = 10^{2\pi \cdot log(w)} \tag{2.5}$$

To determine what order filter to use Equation 2.5 was solved using the different gradients for 1st, 2nd and 3rd order filters. Table 2.1 shows the results of these calculations. In order to adhere to the response time specifications of 1.5s it was decided that a 3rd order filter would have the best response time and noise attenuation without being to complex to build.

Design document [2] was used in the design of the 3rd order filter. Figure: 2.2 shows the filter configuration that will be used. A simple gain stage will be appended to the end of the filter and then a voltage divider will ensure that the final output voltage is less than 3.3 V. The whole circuit diagram is shown in Figure: 2.3. The circuit is designed to take input with an amplitude of 5 V with a duty cycle between 0% and 10%.

Filter	Gradient	Maximum corner frequency
1st	$-20\mathrm{dB}$	$0.13\mathrm{Hz}$
2nd	$-40\mathrm{dB}$	$1.44\mathrm{Hz}$
3rd	$-60\mathrm{dB}$	$3.2\mathrm{Hz}$

Table 2.1: Filters and their maximum required corner frequency

Figure 2.2: Filter configuration from [2]

The design document gives nominal values of R1=1.6 k Ω R2=2.4 k Ω R3=7.5 k Ω C1=100 nF C2=10 nF C3=47 nF to construct a third order filter with a corner frequency of 1 kHz. It was decided to design for a corner frequency of 2 Hz as this provides a good compromise between noise reduction and response time. In order to achieve this corner frequency frequency and impedance scaling was used on the given component values to get them to acceptable values that are easy to implement and result in minimal current draw.

For the gain stage resistors $R5 = 22 \,\mathrm{k}\Omega$ and $R6 = 220 \,\mathrm{k}\Omega$ potentiometer. This will allow for a gain of up to 10 as calculated, however as shown in Figure: 2.3 a lower gain is required to achieve the desired circuit response. This is due to practicalities such as rise time increasing the DC component of the input signal.

The voltage divider, R7 and R8 in Figure: 2.3, is to reduce the maximum output of 5 V from the gain stage to a maximum of 3.3 V to be used as input to the micro-controller. The resistor values are chosen to reduce current draw.

Figure 2.3: Filter configuration from [2]

Chapter 3

Results

3.1. Current sensor

3.1.1. Simulation

Figure 3.1 shows the simulation results for the circuit shown in Figure: 2.1. The requirement for a 10 mV signal at 1 kHz to result in less than 250 mV at the output, is shown to be met in 3.1a where the 10 mV signal at 1 kHz results in an output of ≈ 160 mV. Figure 3.1b shows that the circuit has a response time less than 100ms, with a response time of ≈ 30 ms. The requirement that the amplification circuit draws less than 150 μ A is met in Figure: 3.1c where the maximum current draw is 83 μ A.

Figure 3.1: Current sensing circuit simulation results

circuit.

(c) Current draw of 5V supply to current sensing

3.1.2. Practical

As shown in Figure: 3.2 the practical results match the simulated results shown in Figure: 3.1.

The practical response to no input (3.2a) shows an output of 66 mV, this differs from the simulation output of 0 V due to the non ideal nature of practical op amps and is due to the offset voltage between the input terminals.

Figure: 3.1b shows an output voltage of 2.2 V to a 200 mA input while Figure: 3.2c shows a 1.82 V output to a 200 mA input. This is due to the practical circuit having a reduced gain in comparison to the simulation. This was done to reduce the affect of the input offset voltage mentioned previously.

Figure: 3.2d shows the output clips sat 3.28 V which is very close to the theoretical 3.3 V.

Figure: 3.2e shows a lesser response to noise than the simulation, this is due to the noise input to the practical circuit is different to the simulated noise and at a higher frequency so the low pass filter attenuates it more heavily.

The measure response time in Figure: 3.2f is 24 ms which is very close to the response time measured in the simulation of 30 ms.

(d) Circuit response to motor stall.

(b) Circuit response to free running motor.

(e) Circuit response to noise.

(c) Circuit response to slight restriction on the motor.

(f) Circuit response to step input.

Figure 3.2: Circuit response to different input conditions

3.1.3. Circuit

Figure 3.3: Labelled circuit and student card.

3.2. Ultrasonic range sensor

3.2.1. Simulation

Figure: 3.4 shows the circuit response to a step input change from the maximum 10% duty cycle to a 0.5% duty cycle. As shown in the figure the circuit outputs \not \not $3\,V$ for a maximum input and \not $0.3\,V$ for the minimum input. The figure also demonstrates the circuits compliance to the noise and response time requirements with noise levels of $58\,\text{mVpk-pk}$ and a response time of $386\,\text{ms}$.

Figure: 3.5 shows that throughout circuit operation current draw is ; 170 μA.

Figure 3.4: Circuit response to a full range step from 10% to 0.5% duty cycle

Figure 3.5: Current draw vs circuit output

3.2.2. Practical

Figure: 3.4 shows the output response to a step change from $1\,\mathrm{m}$ to $5\,\mathrm{cm}$ back to $1\,\mathrm{m}$. The figure also shows the compliance to the requirements with the $1\,\mathrm{m}$ measurement having an output of $3.24\,\mathrm{V}$ and an output of $200\,\mathrm{mV}$ at $5\,\mathrm{cm}$. The figure also shows a compliance with the rise time of $258\,\mathrm{ms}$.

Figure: 3.6b shows that the output ripple voltage is less than 70 mVpk-pk at 1 m when the ripple voltage will be at its worst.

Figure: 3.6c shows the circuit response to a gradual change in the input across the full range from close to far.

(a) Circuit response a step input.

(b) Circuit ripple voltage at 1m.

(c) Circuit response to smooth change in range measurement.

Figure 3.6: Ultrasonic sensor filter circuit responses.

Bibliography

- [1] Elec Freaks, "Ultrasonic ranging module hc-sr04." [Online]. Available: https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
- [2] David M. Alter, "Using pwm output as a digital-to-analog converter on a tms320c240 dsp," 1998. [Online]. Available: https://www.ti.com/lit/an/spra490/spra490.pdf
- [3] R Nave, "Departures from ideal op-amp." [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/opamprac.html
- [4] University of Ottawa, "Physical limitations of op amps." [Online]. Available: https://www.site.uottawa.ca/~rhabash/ELG3336DCImperfections.pdf
- [5] Jean Jacques Meneu, "Top 10 fundamental op amp circuits," 2016. [Online]. Available: https://www.arrow.com/en/research-and-events/articles/fundamentals-of-op-amp-circuits
- [6] Current Sensing Techniques using Different Current Sensors, "How to make opamps amp op," 2019. [Online]. Available: https://circuitdigest.com/article/how-to-measure-current-in-a-circuit-with-different-current-sensing-techniques
- [7] RS Electronics, "The guide to hall effect sensors." [Online]. Available: https://za.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/hall-effect-sensors-guide
- [8] Preeti Jain, "Current sensors." [Online]. Available: https://www.engineersgarage.com/current-sensors/

Appendix A

Social contract

E-design 344 Social Contract

2022

The purpose of this document is to establish commitment between the student and the organisers of E344. Beyond the commitment made here, it is not binding.

In the months preceeding the term, the lecturer (Thinus Booysen) and a few paid helpers (Rita van der Walt, Keegan Hull, and Michael Ritchie) spent countless hours to prepare for E344 to ensure that you get your money's worth, that you are enabled to learn from the module, and demonstrate and be assessed on your skills. We commit to prepare the assignments, to set the assessments fairly, to be reasonably available, and to provide feedback and support as best and fast we can. We will work hard to give you the best opportunity to learn from and pass analogue electronic design E344.

I, Sean Muller have registered for E344 of my own volition with the intention to learn of and be assessed on the principals of analogue electronic design. Despite the potential publication online of supplementary videos on specific topics, I acknowledge that I am expected to attend the scheduled lectures to make the most of these appointments and learning opportunities. Moreover, I realise I am expected to spend the additional requisite number of hours on E344 as specified in the yearbook.

I acknowledge that E344 is an important part of my journey to becoming a professional engineer, and that my conduct should be reflective thereof. This includes doing and submitting my own work, working hard, starting on time, and assimilating as much information as possible. It also includes showing respect towards the University's equipment, staff, and their time.

Prof. MJ (Thinus) Booysen	Student number: 235/5/86
MJ Booysen Report by MJ Report Bland By MJ Report Bland By MJ Bland By MJ Bland By MJ By M	Sean Muller Muller Maker 2022 07 26 Signature: Dightily signed by Sean Sean Muller Mul
Date: 1 July 2022	Date: 25 July 2022

1

Appendix B

GitHub Activity Heatmap

