

Date: 12.09.2025

Containerized Linear Regression Model for Shoe Size Prediction

Trained in Jupyter, Stored in S3, and Deployed via ECS Fargate with Streamlit UI

Contents

Γ	rained in Jupyter, Stored in S3, and Deployed via ECS Fargate with Streamlit UI	1
	1. Overview	2
	2. Dataset	
	3. Model Training	
	4. Model Storage – AWS S3	
	5. Web Application – Streamlit	
	6. Docker Image	
	7. Deployment on AWS ECS Fargate	
	8. Accessing the App	

1. Overview

Built a web application that predicts shoe size from a person's height and gender using a trained linear regression model, fully deployed on AWS.

Here is the github repo: aryan-madhavi/S3-Model-and-Containerized-App

2. Dataset

Sample Dataset:

Height	Gender	Shoe Size
180	M	12
165	F	6

Gender encoded as: $M \rightarrow 1, F \rightarrow 0$

Final model trained on only Height and Gender

Actual Dataset: Dataset

3. Model Training

Performed in a Google Collab Research notebook: <u>model.ipynb</u>
Used it to download the model.pkl file as well after the model was trained

4. Model Storage – AWS S3

- Created a Bucket: `am-regression-model`
- Uploaded the `model.pkl` file in the bucket

5. Web Application – Streamlit

Features:

- User inputs height and gender.
- Button triggers prediction.
- Displays predicted shoe size.

Caching:

• Uses @st.cache_resource(ttl=14400) to cache model for 4 hours.

6. Docker Image

The dockerfile has been used to build, tag and push the image to DockerHub: docker.io/aryanfafo/shoe-size-predictor:v1

7. Deployment on AWS ECS Fargate Steps:

1. Created IAM Policy:

 Created a `ecsTaskS3ReadPolicy` and `ecsTaskS3ReadRole` for `ECS` Service to allow S3 read

2. Created ECS Cluster:

o Created a cluster name `shoe-size-predictor-cluster` with AWS Fargate as infra

3. Created Task Definition:

- o Created a cluster name `shoe-size-predictor-task` with AWS Fargate as infra
- Set CPU to 0.5 vCPU and 1GB Memory
- Assigned the `ecsTaskS3ReadRole` as Task Role
- o Map port 8501 container to 8501 host
- Other default settings

4. Start the Task:

- o Navigate to the created cluster
- o Go to the Task subtab and run new task
- Select `shoe-size-predictor-task`
- o Ensure the security group allows port 8051
- Rest default configuration

8. Accessing the App

- Task gets a public IP: http://<public-ip>:8501
- You may also use the `nslookup public-ip` to get the FQDN