IT24103037

Lab 05

1. Import the dataset ('Exercise – Lab 05.txt') into R and store it in a data frame called "Delivery Times".

■ Data Editor						
File Edit Help						
	Delivery_Timeminutes.	var2	var3	var4	var5	^
1	34					
2	54					
3	47					
4	29					
5	39					
6	61					
7	20					
8	40					
9	57					
10	36					
11	38					
12	44					
13	59					
14	38					
15	40					
16	40					
17	67					
18	66					
19	55					
						v

> setwd("C:\\Users\\IT24103080\\Desktop\\IT24103080")
> Delivery_Times<-read.table("Exercise - Lab 05.txt",header=TRUE)</pre>

> fix(Delivery_Times)
> attach(Delivery_Times)

2. Draw a histogram for deliver times using nine class intervals where the lower limit is 20 and upper limit is 70. Use right open intervals.

```
> #Q2
> names(Delivery_Times)<-c("X1")
> attach(Delivery_Times)
> hist(X1,main = "Histrogram for deliver times")
> histogram<-hist(X1,main = "Histrogram for deliver times",breaks = seq(20,70,length=10),right=FALSE)</pre>
```

Histrogram for deliver times

3. Comment on the shape of the distribution.

The histogram shows a **uniform distribution**, where the frequencies across the delivery times are fairly evenly spread out across the intervals, with no clear peaks or skewness.

4. Draw a cumulative frequency polygon (ogive) for the data in a separate plot.

```
> #Q4
> breaks <-round(histogram$breaks)
> freq <-histogram$counts
> mids <- histogram$mids
> cum.freq <- cumsum(freq)
> new<-c()
> for(i in 1:length(breaks)){
  if(i==1){
      new[i]=0
  }else{
      new[i]=cum.freq[i-1]
+ }
> plot(breaks, new, type ='l', main = "Cumulative Frequecy Polygon for Deliver Times",
       xlab="Deliver Times",ylab = "Cumulative Frequency",ylim=c(0,max(cum.freq)))
> cbind(Upper=breaks,CumFreq = new)
      Upper CumFreq
 [1,]
       130
                  0
 [2,]
       146
 [3,]
                10
       161
 [4,]
       177
                16
 [5,]
               17
       192
               22
 [6,]
       208
 [7,]
       223
               25
 [8,]
       239
               26
                29
 [9,]
        254
[10,]
       270
> histogram<-hist(X1, main = "Histrogram for deliver times", breaks = seg(20,70,length=10
  ),right=FALSE)
```

