1. C언어의 구조

소스코드	설명		
예1) #include <stdio.h> 2</stdio.h>	1줄:standard(표준)input/output(입출력)을 사용하기 위해 반드시 include(포함)시켜야 한다. 2줄:C 언어는 main()함수가 몸체이며 실행시에 main()함수부터 실행한다. 앞에 붙는 void는 반환되는 값의 type(자료형)이 없음을 의미한다.		
예2) #include <stdio.h> void main() { printf("Hello World\n"); }</stdio.h>	3줄:printf()함수는 Consol(콘솔)화면에 출력하 기 위한 명령어이다. printf()안의 " "에 출력할 내용을 넣는다. 명령어(문장)의 마지막에는 ; (세미콜론)로 끝낸다.		
161% · · · · · · · · · · · · · · · · · · ·	 3줄:printf()함수안의 " "에 ₩n(₩n)는 줄넘김		
<pre>#include<stdio.h> 2 pvoid main() { printf("Hello World\n"); printf("Next Line\n"); }</stdio.h></pre>	을 의미한다.		
<pre>#include<stdio.h></stdio.h></pre>	2줄:main()함수 앞의 int 는 반환(return)되는 값(0)이 정수형(int)임을 의미한다.		

4. 변환포맷

1) 숫자와 문자포맷

숫자포맷

정수포맷	%d (int형의 포맷)
실수포맷	%f (float형의 포맷) %lf (double형의 포맷)

문자포맷

문자포맷	%c (char형의 포맷)
문자열포맷	%s (char형 배열의 포맷)

※출력자릿수의 예

명령	출력상태

1	printf("%d", 4);	4					
(2)	printf("%5d", 4);					4	
3	printf("%05d", 4);	0	0	0	0	4	
4	printf("%-5d",4);	4					
(5)	printf("%5c", 'a');					а	
6	printf("%-5c", 'a');	а					
7	printf("%5s", "AM");				Α	М	
(8)	printf("%-5s", "AM");	Α	М				
9	printf("%5.2s", "korea");				k	0	
10	printf("%5.2f", 1.5);		1		5	0	
11)	printf("%05.2f", 1.5);	0	1		5	0	
(12)	printf("%-5.2f", 1.2);	1		2	0		

%- 왼쪽부터

% 오른쪽부터

%0 남는 자리는 0으로 채움

%5.2s 5개의 문자열중 2개만 추출

2. 배열

배열을 사용하면 같은 종류의 대량의 데이터를 효율적으로 간편하게 처리할 수 있다.

- 변수 활용한 저장 공간 선언; int a0, s1, s2, s3, s4, s5, s6, s7, s8, s9;
- 배열 활용한 저장 공간 선언 ; int a[10];

1. 배열의 사용

- 1차원 배열: 동일한 자료형으로 구성되어진 기억 공간들에 동일한 자료들을 각각 일괄적으로 처리시키기 위하여 사용하는 자료형 예) int M[10];
- 2차원 배열: 행과 열로 구성된 배열을 말하며 2차원 배열은 1차원 배열들의 모임이다.
- 3차원 배열: 면과 행 그리고 열로 구성된 배열을 말하며 3차원 배열은 2차원 배열들의 모임을 말한다.

1차원	1차원 배열의 선언방법					
	자료형 배열명[갯수];	예) int a[5]; a[0] a[1] a[2] a[3] a[4]				
	자료형 배열명[갯수]={값1,값2,값3,값n};	예) int a[5]={1, 10, 20, 5, 12}; int a[]={1, 10, 20, 5, 12}; char ch[]="korea";				

Г	1	10	20	5	12		
	a[0]	a[1] a	[2]	a[3]	a[4]	
	k	0	r	е	а		
	ch[0]] ch[[1] c	:h[2]	ch[3]	ch[4]	

2차원 배열의 선언방법

예) int a[2][3]; 자료형 배열명[행갯수][열갯수]; a[0][1] a[0][2] a[0][0] a[1][0] a[1][1] a[1][2] 예) int $a[2][3]=\{1,2,3,4,5,6\};$ 자료형 배열명[행갯수][열갯수]= $a[][3]=\{1,2,3,4,5,6\};$ int {값1,값2,값3,..값n}; 4 5 6

3차원 배열의 선언방법

예) int a[2][3][2];
 a[0][0][0]
 a[0][0][1]
 a[1][0][0]
 a[1][0][1]

 a[0][1][0]
 a[0][1][1]
 a[1][1][0]
 a[1][1][1]

 a[0][2][0]
 a[0][2][1]
 a[1][2][0]
 a[1][2][1]
 자료형 배열명[면][행][열]; a[2][3][2]= {1,2,3,4,5,6,7,8,9,10,11,12}; a[][3][2]= int 자료형 배열명[면][행][열]= $\{1,2,3,4,5,6,7,8,9,10,11,12\};$ {값1,값2,값3,..값n}; 2 7 1 3 4 10 6 5 11 12

1.1. 1차원 배열

실습1) 1차원배열에 저장된 값을 출력하기

```
1 void main()
2 {
3    int M[5]={10,20,30};
4    M[0]=5;
5    M[3]=40;
6    printf("%d, %d, %d, %d, %d\m", M[0], M[1], M[2], M[3], M[4]);
7    8 }
```

실습2) grade배열에 저장된 값들을 출력하는 프로그램

1 void main()
2 {

```
3  int grade[10]={31,63,62,87,14,25,92,70,75,53};
4  int i;
5  for(i=0;i<10;i++)
6  {
7  printf("%5d\n", grade[i]);
8  }
9  }</pre>
```

실습3) grade배열에 저장된 값들의 평균을 출력하는 프로그램

```
1
    void main()
2
    {
3
       int grade[10]={31,63,62,87,14,25,92,70,75,53};
4
       int i, size, hap=0;
       double avg;
5
6
       size=sizeof(grade)/sizeof(grade[0]);
7
       for(i=0;i \le ize;i++)
8
9
          hap=hap+grade[i];
10
       }
       avg=hap/size;
11
       printf("%lf ₩n", avg);
12
13
    }
14
```

실습4) a배열에 저장된 값을 b배열로 복사하는 프로그램

```
1
     #include<stdio.h>
2
     #define SIZE 5
     void main()
3
4
5
        int i;
        int a[SIZE]=\{1,2,3,4,5\};
6
7
        int b[SIZE];
        for(i=0;i<SIZE;i++)
8
9
10
           b[i]=a[i];
11
12 }
13
```

3. 포인터와 포인터 변수

- 포인터란 메모리상의 임의의 위치 값을 말하며 주소, 번지라고도 하며 1바이트 간격으로 부여 된 위치 값을 말한다. - 포인터 변수란 메모리상의 위치 값을 기억시켜 둘 목적으로 사용하는 기억공간을 말한다.

(1) 포인터의 표기

& : 시작주소 예) &a : a의 시작주소 * : 포인터 예) *a : 포인터 변수 a

포인	터 변수				
				char *ap;	
1) 7	포인터 변수 선언		자료형 <u>*변수명1</u> ;	float *cp;	
1) =	보인의 친구 선원		자료형 변수명2;	int *bp;	
				int b;	주소 변수 기억장소 bt 1245052
2) 포인터 변수에 주소 저장			<u>변수명1</u> =&변수명2;	bp=&b	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
-	포인터 변수를 통하여 저장	여 상수값	<u>*변수명1</u> =상수값;	*bp=100;	
1	void main()	3줄:char형	의 기억공간의 시작주소	를 저장하는	주소변수
2	{	5줄:int형의	기억공간의 시작주소를	를 저장하는 주	소변수
3	char *ap;	6줄:float형	의 기억공간의 시작주소	를 저장하는	주소변수
4	int *ap;	8줄:a의 주	소를 ap포인터 변수에	저장해 둔다	
<i>5</i>	float *cp;	9줄:ap포인	터변수에 저장된 "주소·	를 참조"한 저	장 공간에 10을 저장
6	int a;	포인터 변=	수 앞에 *이 붙으면 포	인터 변수에	담긴 "주소를 참조"한
7	ap=&a	저장 공간이	이다.		
8	*ap=10;				
9	}				
10					

실습1) 포인터 변수의 사용 예

1	void main()	3줄:a,b변수는 일반변수이며 상수를 저장
2	{	4줄:ptr1, ptr2변수는 포인트 변수이며 주소를
3	int a=10, b=20;	저장.
4	int *ptr1, *ptr2;	4줄:int *prt1=&a 포인터 변수의 선언과 할당
5		을 동시에 가능
6	ptr1=&a	6줄:ptr1변수에 a의 주소를 저장
7	ptr2=&b	7줄:ptr2변수에 b의 주소를 저장
8	printf("a=%d, %u₩n", a, &a);	12줄:ptr1변수에 저장된 주소에 해당하는 기억
9	printf("b=%d, %u₩n", b, &b);	공간
10	printf("ptr1의 주소 %u₩n", &ptr1);	
11	printf("ptr2의 주소 %u₩n", &ptr2);	
12	printf("%d₩n", *ptr1);	
13	printf("%d₩n", *ptr2);	
14		
<u>15</u>	}	

실습2) 포인터 변수를 이용한 값 저장

실습3) 포인터 변수를 이용한 연산

```
void mai() {
                                                 void main(){
1
2
                                            2
      int a, *ap
                                                     int a,b,c,d;
3
                                           3
      int b, *bp
                                                     int *ap, *bp;
4
      ap=&a;
                                            4
                                                     ap=&a;
      bp=&b;
                                            5
5
                                                     bp=&b;
      *ap=10;
                                            6
                                                     *ap=5;
6
      *bp=20;
                                                     *bp=3;
8
      printf("%d ₩n", *ap);
                                            8
                                                     c=*ap+*bp;
      printf("%d ₩n", *bp);
                                            9
9
                                                     d=a+b;
10
    }
                                            10
                                                     printf("c=%d₩n", c);
                                                     printf("d=%d₩n", d);
11
                                            11
12
                                            12
                                                     printf("*ap=%u₩n", ap);
13
                                            13
                                                     printf("%d₩n", *ap);
14
                                            14
                                                     printf("*ap=%u₩n", &a);
15
                                            15
16
                                            16
결과 또는 설명
                                           결과 또는 설명
```

실습4) 값전달 방식의 swap()함수

실습5) 주소전달 방식의 swap()함수

```
void swap(int a. int b)
                                                    void swap(int *a, int *b)
                                               1
2
                                               2
3
         int temp;
                                               3
                                                         int temp;
4
         temp=a;
                                               4
                                                         temp=*a;
5
                                               5
         a=b;
                                                         *a=*b;
6
         b=temp;
                                               6
                                                         *b=temp;
                                               7
7
    void main()
                                               8
                                                    void main()
8
9
                                               9
10
         int a=10, b=20;
                                               10
                                                         int a=10, b=20;
         printf("a=%d, b=%d\foralln", a, b);
                                               11
                                                         printf("a=%d, b=%d\foralln", a, b);
11
12
                                               12
         swap(a, b);
                                                         swap(&a, &b);
13
         printf("a=%d, b=%d\foralln", a, b);
                                               13
                                                         printf("a=%d, b=%d\foralln", a, b);
```

```
    14 }

    15

    결과 또는 설명

    결과 또는 설명

결과 또는 설명
```

```
포인터와 배열의 관계 (배열명자체가 주소임 즉 a 가 주소)
int a[10]=\{10,20,30,40,50,60,70,80,90,100\};
printf("%d₩n", a[0]);
                     //10
printf("%d₩n", a[1]);
                     //20
printf("%d₩n", a[2]);
                     //30
                     //40
printf("%d₩n", a[3]);
printf("%d₩n", *(a+0));
                     //또는 *a 같음 //10
printf("%d₩n", *(a+1));
                     //20
printf("%d₩n", *(a+2));
                     //30
printf("%d₩n", *(a+3)); //40
printf("%d₩n", *(a+3)+2); //42
```