Automatos celulares

O que são autômatos celulares?

- Propostos na década de 40 por John von Neumann
 - Representar matematicamente a evolução de um sistema complexo
 - Desenvolver máquinas de auto-replicação através de regras matemáticas simples
 - Auto-organização em sistemas complexos
- Máquinas abstratas
- Definidas em espaços celulares
- Tempo discreto
- Regras baseadas na vizinhança
- Pode levar a comportamentos complexos emergência

O que são autômatos celulares

- Redes de células cujos estados são alterados no tempo (discreto) com regras que dependem do estado anterior e da vizinhança
- Características importantes e comuns
 - Homogeneidade (todas as células obedecem ao mesmo conjunto de regras)
 - Estados discretos (conjunto finito de estados para cada célula)
 - Interações locais
 - Processo dinâmico

Automatos celulares elementares

- Reticulado unidimensional
- Estados {0,1} (morta, viva)
- Primeiros vizinhos i-1 e i+1

Função de transição

x _t (i-1)	X _t (i)	x _t (i+1)	X _{t+1} (i)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Função de transição

x _t (i-1)	× _t (i)	x _t (i+1)	X _{t+1} (i)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Regra 50 - 00110010

Regra 50

rule 102

rule 94

rule 90

rule 30

Classes

Iniciando com estado aleatório

- Classe 1 Homogêneo
- Classe 2 Estável simples
- Classe 3 Padrão irregular
- Classe 4 Estrutura complexa

Jogo da vida

John Conway 1970

- Menos de 2 vizinhos morre
- 2 ou 3 vizinhos vive
- Mais de 3 vizinhos morre
- 3 vizinhos vive

- Turing completo
- Golly

Modelo SIR

- Modelo minimalista para reproduzir a dinâmica de propagação de uma doença
 - Cada autômato é um indivíduo da população em um dos estados:
 - 0 Susceptível
 - 1 Infectada
 - 2 Recuperada

- Indivíduo infectado contamina susceptíveis vizinhos com probabilidade p_{c}
- Indivíduo infectado tem probabilidade p_R de se recuperar