Intro Formulation Results Idea

PPI Networks and Gene Expression

Adrin Jalali

July 7, 2013

Microarray Gene Expression

credit: en.wikipedia.org

Van't Veer breast-cancer data

Yeast Protein Interaction Network

credit:

Intro Formulation Results Idea

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 6, 2012 © Mary Ann Liebert, Inc. Pp. 694–709 DOI: 10.1089/cmb.2012.0065

Network-Induced Classification Kernels for Gene Expression Profile Analysis

OFER LAVI.1-3 GIDEON DROR.2 and RON SHAMIR

ABSTRACT

Computational classification of gene expression profiles into distinct discuse phenotypes has been highly succeeding to date. Still, robotates, accuracy, and bloigical interpretation of boars highly succeeding to date. Still, robotates, accuracy, and bloigical interpretation of mustion judity with the expression profiles can improve the results. Here, we thus, the transcent in a respect of this profiles. First, we show that interactions are insider cleares by showing that on expressed gene tend to be close in the network of internations. Second, we show that the conception of the profiles of the showing that the conception of the conc

Key word: algorithms

1. INTRODUCTION

It was not stated in the contract and th

We would like then to develop methods for detecting sets of biomarkers that (1) are more meaningful biologically and (2) are more stable across different studies. Such sets would be more useful for downstream biological research. The two goals do not always go hand in hand; for example, Hwang et al. (2008)

³IBM Haifa Research Lab, Haifa, Israel.

694

³Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
²Valvat Research Huifu Israel

NICK

1. SVM modified objective function

$$\min_{\mathbf{w},w_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2}\beta \sum_{(j,k) \in E} (w_j - w_k)^2 \right\}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : (\mathbf{wx}_i + w_0)y_i \ge 1$$

3. Dual to Primal

$$\mathbf{w} = (\mathbf{I} + \beta \mathbf{B})^{-1} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

2. Dual problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{L}) (\mathbf{L}^{T} \mathbf{x}_{j}) \right\}$$

$$\mathsf{LL}^T = (\mathsf{I} + \beta \mathsf{B})^{-1}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \geq 0$$

credit: Ofer Lavi, et.al., Journal of Computational Biology, (2012)

NICK Performance Summary

credit: Ofer Lavi, et.al., Journal of Computational Biology, (2012)

Synthesize data

- A random graph
- Signal nodes:

$$f(n) = \begin{cases} N(-\mu, 1) & \text{if } n \text{ is in class } 1\\ N(\mu, 1) & \text{if } n \text{ is in class } 2 \end{cases}$$

Random nodes:

$$f(n)=N(0,1)$$

Pathway: 2, 3, or 4 connected signal nodes.

Synthesized data

Synthesized data easy scenario

Synthesized data easy scenario

X196

X133

X133

X116

X116

X240

X125

X243

X82

X243

X116

X82

X150

X113

X150

X157

X6

X113

X192

X95

X192

X110

X72

X267

X249

X165

X132

X110

X138

X110

Synthesized data medium scenario

Synthesized data medium scenario

X125 X125 X125 X82 X240 X240 X82 X82 X240 X243 X267 X267 X113 X82 X243 X243 X267 X110 X113 X113 X113 X110 X110 X110 X243 X150 X110 X197 X150 X150 X6 X6 X111 X111 X113 X193 X6 X192 X111 X293 X192 X192 X293 X293 X192 X132 X293 X197 X205 X205 X293 X132

X175

X197

X132

X175

X175

X197

X132

X290

Synthesized data hard scenario

Synthesized data hard scenario

X42	X42]
X101	X101	
X106	X106]
X42	X182	
X101	X198	
X106	X168	
X12	X12	
X101	X182	
X198	X198	
X168	X168	
X42	X3	
X101	X41	
X190	X190	- 0 0 0 0 0 0 0 0
X281	X281	9 00 00 00 00
X98	X98	
X190	X127	
X42	X250	
X182	X182	
X182	X127	
X147	X147	
X127	X127	<u> </u>
X79	X79	
X12	X41	
X205	X205	
X198	X299	
X127	X187	
X168	X292	
X127	X148	
X187	X187	_
X281	X36	

	X97	X97
	X97	X75
	X75	X75
	X75	X299
	X299	X299
	X299	X198
	X106	X106
	X198	X198
	X106	X168
	X198	X101
	X205	X205
	X168	X168
	X205	X272
	X101	X101
	X190	X190
	X190	X272
	X90	X90
	X272	X272
	X101	X182
	X190	X127
	X236	X236
	X272	X69
	X12	X12
	X69	X69
	X168	X292
	X69	X219
	X101	X41
	X90	X228
	X236	X228
	X219	X219

Results

- Extract pairs of genes with mutual absolute large w
- Synthesized easy: all implanted pathways come on top of the list
- Synthesized hard: they are vanished

Results

- Extract pairs of genes with mutual absolute large w
- Synthesized easy: all implanted pathways come on top of the list
- 3 Synthesized hard: they are vanished
- Van't veer:
 - Slightly better performance, although not necessarily as reported.
 - 2 You find even better genes in w/o network scenario.
 - Well known genes are of very high degree in the network.

• Estimate density distribution of each gene for class A.

- Estimate density distribution of each gene for class A.
- For each sample:
 - Extract abnormal genes according to above estimated distributions
 - Extract the part of PPI network induced by extracted genes (almost)

- Estimate density distribution of each gene for class A.
- For each sample:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- Use a graph kernel for labeled graphs to classify extracted graphs.

- Estimate density distribution of each gene for class A.
- ② For each sample:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- Use a graph kernel for labeled graphs to classify extracted graphs.
- Extract common sub-graphs from individual graphs that seem to be helping the classification.

Intro Formulation Results Idea

Why it doesn't work

Intro Formulation Results Idea

Weighted idea

Finished!

Thank You!