Digital System Testing

Ref: Digital System Testing & Testable Design by Miron Abramovici

Testing & Diagnosis

- What is testing?
 - The system is exercised and its resulting response is analyzed to ascertain whether it behaved correctly
- What is diagnosis?
 - Locate the cause of the misbehavior of the system

Basic Concept of Testing

Testing: To tell whether a circuit is good or bad

- Verification: To verify the correctness of a design
- Diagnosis: To find the faulty site
- Reliability: To find whether a good system will work correctly or not after some time
- Debug: To find the faulty site and try to eliminate the fault

Significance of Testing?

Economics!

- Reduce test cost (enhance profit)
 - Automatic test equipment (ATE) is extremely expensive
- Shorten time-to-market
 - Market dominating or sharing
- Guarantee IC quality and reliability

Rule of Ten:

Cost to detect faulty IC increases by an order of magnitude

Defects detected in	Cost
Wafer	0.01 - 0.1 0.1 - 1 1 - 10 10 - 100 100 - 1000
Packaged chip	0.1 - 1
Board	1 – 10
System	10 - 100
Field	100 – 1000

Importance of Testing

- Moore's Law results from decreasing feature size (dimensions)
 - from 10s of μm to 10s of nm for transistors and interconnecting wires
- Operating frequencies have increased from 100KHz to several GHz
- Decreasing feature size increases probability of defects during manufacturing process
 - A single faulty transistor or wire results in faulty IC
 - ▶ Testing required to guarantee fault-free products

Importance of testing

```
N = # transistors in a chip
p = Prob. (a transistor is faulty)
P_f = Prob. (the chip is faulty)
P_f = 1 - (1 - p)^N
 If p = 10^{-6}
   N = 10^6
        P_f = 63.2\%
```


Difficulties in Testing

- Fault may occur anytime
 - Design
 - Process
 - Package
 - Field
- Fault may occur at any place

Verification Vs Testing

- Verifies correctness of design.
- Performed by simulation, hardware emulation, or formal methods.
- Performed once prior to manufacturing.
- Responsible for quality of design.

- Verifies correctness of manufactured hardware.
- ▶ Two-part process:
 - Test generation: software process executed once during design
 - <u>Test application</u>: electrical tests applied to hardware
- Test application performed on every manufactured device.
- Responsible for quality of devices.

Problems of Ideal Test

- Ideal tests detect all defects produced in the manufacturing process.
- Ideal tests pass all functionally good devices.
- Very large numbers and varieties of possible defects need to be tested.

Real Test

- Based on analyzable fault models, which may not map on real defects.
- Incomplete coverage of modeled faults due to high complexity.
- Some good chips are rejected. The fraction (or percentage) of such chips is called the *yield loss*.
- Some bad chips pass tests. The fraction (or percentage) of bad chips among all passing chips is called the defect level.

Principle of Testing

- Testing typically consists of
 - Applying set of test stimuli (input patterns, test vectors) to inputs of circuit under test (CUT), and
 - Analyzing output responses
- The quality of the tested circuits will depend upon the thoroughness of the test vectors

Testing - levels of abstraction

Control	Data	Level of abstraction	
Logic values (or sequence of logic values)		Logic level	
Logic values	Words	Register level	
Instructions	Words	Instruction set level	
Programs	Data structures	Processor level	
Mess	sages	System level	

Testing Stages

- Circuit and physical design
- Device processing (wafer-level testing)
- Device packaging (package-level testing)
- Device mounted to the circuit board (board-level testing)
- Circuit board insulated in the system (system-level testing)
- Product delivery (field-level testing)

Errors

- An instance of an incorrect operation of the system being tested.
- ▶ The error may be
 - Design error
 - ▶ Fabrication error
 - Fabrication defect
 - Physical failure
 - Environmental failure

Faults

- ▶ Fab. Error, fab. Defects & physical failures are collectively referred as physical fault.
 - Permanent
 - Intermittent
 - Transient
- Fault is detected by observing an error caused by it.
- The basic assumptions regarding the nature of logical faults are referred to as *fault model*

Test Evaluation

- Determining the Effectiveness or Quality of a test.
- It is in the context of a fault model.
- Ratio between the no. of faults detected by the total no of faults in the assumed fault universe - Fault coverage.
- It is carried out via a simulated testing experiment called fault simulation.

Types of Testing

Criterion	Attribute of testing methods	Terminology
When is the test is performed?	Concurrently with the normal system operation	□On-line testing □Concurrent testing
 	□As a separate activity	□Off-line testing
Where is the source of stimuli?	□Within the system itself	□Self-testing
	□Applied by the an external device	□External testing
What do we test for?	□Design error	□Design verification testing
	□Fabrication errors □Fabrication defects □Infancy physical failures	□Acceptance testing □Burn-in □Quality-assurance testing
	□Physical failures	□Field testing
		□Maintenance testing

Types of Testing – Contd...

Criterion	Attribute of testing methods	Terminology
	□IC	□Component-level testing
What is the physical object being tested?	□Board	□Board-level testing
	□System	□System-level testing
How are the stimuli and/or the expected response produced?	□Retrieved from the storage	□Stored-pattern testing
	□Generated during testing	□Algorithmic testing □Comparison testing
	□In a fixed (predetermined) order	
How are the stimuli applied?	□Depending on the result obtained so far	□Adaptive testing

Types of Testing – Contd...

Criterion	Attribute of testing methods	Terminology
How fast are the stimuli	□Much slower than the normal operation speed?	□DC (static) testing
applied?	□At the normal operation speed	□AC testing □At-speed testing
What are the observed results?	□The entire output patterns □Some functions of the output patterns	□Compact testing
What lines are accessible for testing?	□Only the I/O lines □I/O and internal lines	□Edge-pin testing □Guided-probe testing □bed-of-nails testing □Electron-beam testing □In-circuit testing □In-circuit emulation

Types of Testing – Contd...

Attribute of testing methods	Terminology
□The system itself □An external device (tester)	□Self-testing □Self-checking □External testing
	methods The system itself

Fault Modeling

Logical Fault Models

Logical faults represents the <u>effect of physical</u> <u>faults</u> on the behavior of the modeled system

- ▶ Faults that affects the logic function
- Delay faults

Logical Fault Models

What do we gain by modeling physical faults as a logical faults?

First

- Fault analysis become logical
- Complexity is greatly reduces

Second

- Some logical faults are technology independent, same faults model is applicable to many technologies.
- Testing & diagnosis method developed for such faults remain valid despite changes in technology

Third

Test derived for the logical faults can be used for physical faults, whose effect on circuit behavior is not completely known.

Explicit & Implicit Faults

Explicit fault

A fault universe in which every fault is individually identified and hence the <u>faults to be analyzed can be explicitly enumerated</u>.

Implicit fault

 A fault universe by collectively identifying the <u>faults</u> of interest – typically by defining their characteristic properties

Structural & Functional Faults

Structural fault

In conjunction with structural model

▶ Functional fault

In conjunction with functional model

Frequent Testing Strategy

- Single fault assumption
- Many physical faults can affect an area containing several components
- Newly manufactured system prior to testing, multiple faults are likely to exist.
- Multiple fault If the testing experiments does not detect the every single faults, then the circuit may contain one of the undetected faults at any time, and the occurrence of a second single faults between two testing experiments creates a multiple fault.

Stuck at Faults

- Faults affecting interconnections are short & open
- Short
 - By connecting points not intended to be connected
- Open
 - Breaking between connections
- ▶ A short between ground or supply and a signal line can make the signal remain at a fixed logic value v (v ∈ 0, I) and it is denoted by s-a-v
- A short between two signal lines usually creates a new logic function – Bridging faults

Stuck faults caused by open

Fault Detection

- ▶ Faults detection works by comparing the response of a known-good version of the circuit to that of the actual circuit, for a given stimulus set.
- A fault exists if there is any difference in the responses.
- One common fault detection approach is path sensitization.
- The path sensitization method, which is used by the tool to detect stuck-at faults, starts at the fault site and tries to construct a vector to propagate the fault effect to a primary output

Fault Classes

- Untestable (UT)
- Untestable (UT) faults are faults for which no pattern can exist to detect them. Untestable faults cannot cause functional failures, so the tools exclude them when calculating test coverage.
- ▶ The following are the Untestable Faults.
 - Un-used (UU)
 - The unused fault class includes all faults on circuitry unconnected to any circuit observation point and faults on floating primary outputs.

 Site of "Unused" Fault

Tied (TI)

- The tied fault class includes faults on gates where the point of the fault is tied to a value identical to the fault stuck value.
- In below fig, node A is connected to GND and there assumed to be a s-a-0 fault at A.

Blocked (BL)

The blocked fault class includes faults on circuitry for which tied logic blocks all paths to an observable point

Redundant Fault

- ▶ The redundant fault class includes faults that test generator considers undetectable.
- After the test pattern generator exhausts all patterns, it performs a special analysis to verify that the fault is undetectable under any conditions.

Fault Modeling

- The effects of physical defects
- Most commonly used fault model: Single stuck-at fault


```
A s-a-1 B s-a-1 C s-a-1 D s-a-1 A s-a-0 B s-a-0 C s-a-0 D s-a-0 E s-a-1 F s-a-1 G s-a-1 E s-a-0 F s-a-0 G s-a-0 14 faults
```


Fault Coverage (FC)

$$FC = \frac{\text{# faults detected}}{\text{# faults in fault list}}$$

Example:

Test	faults detected	FC
{(0,0)}	C ₁	16.67%
{(0,1)}	a ₁ ,c ₁	33.33%
{(1,1)}	a_0,b_0,c_0	50.00%
{(0,0),(1,1)}	$\mathbf{a_0,b_0,c_0,c_1}$	66.67%
{(1,0),(0,1),(1,1)}	all	100.00%

Fault Modeling

Single stuck at faults

- S @ 0
- > S@I

Bridge fault

Multiple stuck at faults

Single stuck at fault

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Single stuck at fault - s@0

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = 0$$

$$Z2 = x2.x3$$

Single stuck at fault - s@1

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = x2$$

$$Z2 = x2.x3$$

Single stuck at fault - bridge fault

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = (xI+x2).x2 = x2$$

 $Z2 = x2.x3$

Fault Simulation Terminologies

a:SA0 propagates

a:SA0 is blocked

a:SA0 is not activated

Fault Detection

- For a single output circuit, a test t that detects a fault f makes Z(t) = 0 and $Z_f(t) = I$ or vice-versa.
- Thus set of all tests that detect f is given by the solutions of the equation

$$\rightarrow$$
 Z(x) XOR Z_f(x) = I

Thus any test in which $x_1 = 0$ and $x_4 = 1$ is a test for f. any of the four tests (0001, 0011, 0101, 0111) that detect f.