# Functional Analysis, assignment 2

# Zarghoona Ghazi, mlv986

25. januar 2021

# Problem 1a

The first part is to show  $f_N \to 0$  weakly as  $N \to \infty$ 

We have that  $(e_n)_{n\geq 1}\in H$  since  $(e_n)_{n\geq 1}$  is a ONB and since  $f_N=N^{-1}\sum_{n=1}^{N^2}e_n$ , then  $f_N\in H$  for

I will now define a linear bounded function  $F_y: H \to \mathbb{C}$  and let  $y = y_n e_n \in H$  such that  $F_y(x) = \langle x, y \rangle$  by Riesz's representations theorem y= Ema?

I will now look at

$$F_y(f_N) = \langle f_N, y \rangle$$

$$= \langle N^{-1} \sum_{n=1}^{N^2} e_n, \sum_{n=1}^{\infty} y_n e_n \rangle$$

$$= N^{-1} \sum_{n=1}^{N^2} \langle e_n, \sum_{n=1}^{\infty} y_n e_n \rangle \quad \text{Geneal}_{T_r} \quad \text{for this}$$

$$= N^{-1} \sum_{n=1}^{N^2} y_n < \infty \quad \text{is not defined.}$$

since I had that the function  $F_y$  was bounded.

To show  $N^{-1}\sum_{n=1}^{N^2}e_n\to 0$  I will show  $\frac{1}{\sqrt{N}}\sum_{n=1}^Ny_n<\infty$  Why will that shie? So I start by having: You either mean weakly when  $\left(\frac{1}{\sqrt{N}}\sum_{n=1}^Ny_n\right)^2$ 

and use the triangle inequality and Cauchy-Schwarz':

$$\left(\frac{1}{\sqrt{N}} |\sum_{n=1}^{N} y_n|\right)^2 \le \left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} |y_n|\right)^2$$

$$= \left(\sum_{n=1}^{N} \frac{1}{\sqrt{N}} |y_n|\right)^2$$

$$\le \sum_{n=1}^{N} \left(\frac{1}{\sqrt{N}}\right)^2 \sum_{n=1}^{N} |y_n|^2$$

$$= \sum_{n=1}^{N} |y_n|^2$$

From this I can get

$$\left|\frac{1}{\sqrt{N}}\sum_{n=1}^{N}y_{n}\right| \leq \left(\sum_{n=1}^{N}|y_{n}|^{2}\right)^{1/2} < \infty$$

for  $N \ge 1$  since  $(y_n)_{n\ge 1} \in \ell_2(\mathbb{N})$  and  $<\infty$  applies by definition of  $\ell_p(\mathbb{N})$  since we had an y by Riesz's  $\nearrow$ theorem.

Further we can say that since  $\sum_{n=1}^{N}|y_n|^2<\infty$  we have that there exists a  $C\in\mathbb{C}$  such that  $\sum_{n=1}^{N}|y_n|^2\to C$  for  $n\to\infty$ . No, this requires  $\sum_{n=1}^{N}|y_n|^2\to C$  for  $n\to\infty$ .

For 
$$\varepsilon > 0 \exists M$$
 for which  $\sum_{n=M+1}^{\infty} |y_n|^2 < \varepsilon$ , then  $K \ge 1$  for any constant will give us  $\sum_{n=M+1}^{K+M} |y_n|^2 < \varepsilon$ . Now by  $N \ge \frac{C^2}{\varepsilon^2}$  we will get 
$$\frac{1}{\sqrt{N}} \sum_{n=1}^{M} |y_n| \le \frac{\varepsilon}{C} \cdot C = \varepsilon$$

I will now use Cauchy-Schwartz' on the following

$$\left| \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n \right| \le \frac{1}{\sqrt{N}} \sum_{n=1}^{N} |y_n|$$

$$= \frac{1}{\sqrt{N}} \sum_{n=1}^{M} |y_n| + \frac{1}{\sqrt{N}} \sum_{n=M+1}^{N} |y_n|$$

$$\le \varepsilon + \frac{1}{\sqrt{N}} \sum_{n=M+1}^{N+M} |y_n|$$

$$\le \varepsilon + \sqrt{\left(\sum_{n=M+1}^{N+M} \frac{1}{N}\right) \left(\sum_{n=M+1}^{N+M} |y_n|^2\right)}$$

$$= \varepsilon + \sqrt{1 \cdot \sum_{n=M+1}^{N+M} |y_n|^2}$$

$$\le \varepsilon + \sqrt{\varepsilon}$$

this gives us

$$\left| \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n \right| \to 0$$

for  $N \to \infty$  which implies

$$\left| \frac{1}{\sqrt{N}} \sum_{n=1}^{N^2} y_n \right| \to 0$$

for  $N \to \infty$ 

So to conclude that  $f_N \to 0$  weakly, we look at the limit.

$$\lim_{N\to\infty}F(f_N)=\lim_{N\to\infty}N^{-1}\sum_{n=1}^{N^2}e_n=0$$

Wheed you use this?

as I had F was bounded, hence continuous. So now we can conclude that  $f_N \to 0$  weakly for  $N \to \infty$ .

(

The second part is to show that  $||f_N|| = 1 \ \forall \ N \ge 1$ .

$$||f_N||^2 = ||N^{-1} \sum_{n=1}^{N^2} e_n||^2$$

$$= |N^{-1}|^2 ||\sum_{n=1}^{N^2} e_n||^2$$

$$= N^{-2} ||\sum_{n=1}^{N^2} e_n||^2$$

$$= N^{-2} \sum_{n=1}^{N^2} ||e_n||^2$$

$$= N^{-2} \sum_{n=1}^{N^2} 1^2$$

$$= N^{-2} \cdot N^2$$

$$= 1$$

I take the square root and get that  $||f_N|| = 1$ 

(/)

# Problem 1b

I have that  $K = \overline{co\{f_N|N\geq 1\}}^{||\cdot||}$  then by definition 7.7 is  $co\{f_N|N\geq 1\}$  convex, this mean that the norm and the weak closures of  $co\{f_N|N\geq 1\}$  will coincide by theorem 5.6 And then theorem 5.6 says that  $\overline{co\{f_N|N\geq 1\}}^{||\cdot||} = \overline{co\{f_N|N\geq 1\}}^{||\tau w||}$  and this gives that K is weakly closed.

I will now consider a unit ball  $\overline{B}_{H^*}(0,1) \subset H^*$  then is  $\overline{B}_{H^*}(0,1)$  weak\* compact by theorem 6.1, since we have that H is normed vector space. By lecture notes we have that Hilbert spaces are reflexive, then by thm. 5.9 we get  $\tau w = \tau w^*$  for  $H^*$ . This gives us  $\overline{B}_{H^*}(0,1)$  is weakly compact.

where  $y \in H$ . This gives us an isomorphism  $H^* \to H$  where  $F_y \to y$ .

From this we will get the isomorphism  $\overline{B}_{H^*}(0,1) \to \overline{B}_H(0,1)$ . This implies  $K \subset \overline{B}_H(0,1)$  is a weakly closed subset of a weakly compact space. We can now say that K is weakly compact and hence conclude that K is weakly closed and  $f_N \to 0$  weakly as  $N \to \infty$ , hence  $0 \in K$ .

(V)

#### Problem 1c

From definition 7.1 I have that for  $x \in K$  it applies  $x = \alpha x_1 + (1 - \alpha)x_2$ , this implies  $x = x_1 = x_2$  for  $x_1, x_2 \in K$  and  $0 < \alpha < 1$ .

I now observe  $K \subseteq H$  is non-empty convex compact subset. Now I say that  $g_n = \langle \cdot, e_n \rangle \in H^*$  for any  $n \in \mathbb{N}$  where it is a continuous linear functional. I note  $h_n(K)$  is a subset of  $\mathbb{R}$  and we let  $C = \sup_n \{\langle x, -e_n \rangle | x \in K\} = \sup_n \{-\langle x, e_n \rangle | x \in K\}$  and I will now get that  $x \in K, x \geq 0, 0 \in K$  hence  $C \leq 0$ .

Why?

This is unclear.

Since I have fulfilled all the requirement I get from lemma 7.5 that  $F_n:=\{x\in K|Re\langle x,-e_n\rangle=0\}\neq\emptyset$ is compact face of K for all  $n \in \mathbb{N}$  I have  $0 \in F_n$ , hence  $0 \in \bigcap_{n=1}^{\infty} F_n \neq \emptyset$ . Since 0 is the only element which is orthogonal on all elements  $e_n$  then I get

$$\bigcap_{n=1}^{\infty} F_n = \{ x \in K | Re\langle x, -e_n \rangle = 0 \forall n \in \mathbb{N} \} = \{ 0 \}$$

Earlier I said that  $F_n$  is compact face of K hence  $\bigcap_{n=1}^{\infty} F_n = \{0\}$  is also a face of K by Remark 7.4(3). Then we can conclude that 0 is a extreme point in K by Remark 7.4(1).

I will now show that  $f_N$  is extreme point in K.

I start by fixing  $N \ge 1$  and will suppose that  $f_N = \alpha x_1 + (1 - \alpha)x_2$  for  $0 < \alpha < 1$  and  $x_1, x_2 \in K$ . Since I know that  $1 = ||f_N||^2 = \langle f_N, f_N \rangle$ , I examine the following:

$$1 = \langle f_N, f_N \rangle = \langle \alpha x_1 + (1 - \alpha) x_2, f_N \rangle = \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle$$

and this gives me that:

$$\begin{split} 0 &= \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle - 1 \\ &= \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle - (\alpha + (1 - \alpha)) \\ &= \alpha (\langle x_1, f_N \rangle - 1) + (1 - \alpha) (\langle x_2, f_N \rangle - 1) \end{split}$$
 Which ones

from earlier I have that  $0 < \alpha < 1$ , and I know that  $\langle x_1, f_N \rangle, \langle x_2, f_N \rangle \geq 0$  from our assumptions, so this gives me that  $0 \leq \langle x_i, f_N \rangle \leq 1$  for i = 1, 2 which implies  $\langle x_1, f_N \rangle = 1$  and  $\langle x_2, f_N \rangle = 1$ .

I will now observe that

 $1 = ||\langle x_1, f_N \rangle|| \le ||x_1|| ||f_N|| = ||x_1||$ to show  $x_1 = x_2 = f_N$ . From our definition of extreme points I get  $x_1 \in K \subseteq \overline{B}_H(0,1)$  which implies  $||x_1|| \le 1$ .

Hence  $1 = ||\langle x_1, f_N \rangle|| = ||x_1|| ||f_N|| = ||x_1||$ .

I now have that both  $x_1$  and  $f_N$  are linear dependent which gives me that  $x_1 = \lambda f_N$  with the scalar  $\lambda$ . This implies

$$1 = \langle x_1, f_N \rangle = \langle \lambda x_1, f_N \rangle = \lambda \langle x_1, f_N \rangle = \lambda ||f_N||^2 = \lambda$$

This gives me  $x_1 = f_N$ , and for  $x_2$  it is the same, and then I can say  $x_1 = x_2 = f_N$ . I can now conclude that  $f_N$  is extreme points in K for all  $N \geq 1$ .

#### Problem 1d

From 1.b I have that  $K = \overline{co\{f_N|N \ge 1\}}^{\tau w}$  is non-empty convex subset of H. I can now say that  $Ext(K) \subseteq \overline{co\{f_N|N \ge 1\}}^{\tau w}$  by thm 7.9. From 1.c I get  $\{f_N|N \ge 1\} \cup \{0\} \subseteq \overline{co\{f_N|N \ge 1\}}^{\tau w}$ . Since I knew that H is normed vector spaces, then H is metrizable and hence  $\{f_N | N \ge 1\}$  is metrizable.

I now have that  $\{f_N|N\geq 1\}$  is countable, this mean that I can look at sequences in  $\{f_N|N\geq 1\}$ rather than looking at nets. I will now assume that  $(x_n)_{n\geq 1}$  is a sequence in  $\{f_N|N\geq 1\}$  which converges weakly to  $x\in\overline{co\{f_N|N\geq 1\}}^{\tau w}$ . This implies  $x_i=f_N$  for some  $N\geq 1$ , then I see that x is either  $f_N$  or zero.

From this I get  $Ext(K) \subseteq \overline{\{f_N|N \geq 1\}}^{\tau w} = \{f_N|N \geq 1\} \cup \{0\}$ . From 1.c I get  $\{f_N|N \geq 1\} \cup \{0\} \subseteq Ext(K)$ , which implies  $Ext(K) = \{f_N|N \geq 1\} \cup \{0\}$ . I can now conclude that there do not exists other extreme points.

# Problem 2a

I start by noting  $T: X \to Y$  and  $g: Y \to \mathbb{K}$ .

Next I see that from HW4P2 I have  $x_n \to x$  weakly for  $x \in X$  and  $n \to \infty$  if and only if we have  $f(x_n) \to f(x) \ \forall f \in X^*$ . From the functions T and g I can take a  $g \in Y^*$  and will end with having  $g \circ T \in X^*$  where  $(g \circ T)(x_n) \to (g \circ T)(x)$  for  $n \to \infty$ .

This will also apply for for  $g(Tx_n) \to g(Tx)$ . Since I had that it was if and only if I can now conclude that  $Tx_n \to Tx$  weakly as  $n \to \infty$ .

# Problem 2b

Like before I have that  $x_n \to x$  weakly for  $n \to \infty$ . To show  $||Tx_n - Tx|| \to 0$  for  $n \to \infty$ , will I do it by contradiction. So I say  $||Tx_n - Tx|| \not\to 0$  for  $n \to \infty$  there will exists a sequence  $(x_{n_k})_{k \in \mathbb{N}}$  where  $||Tx_{n_k} - Tx|| > 0$  for  $k \in \mathbb{N}$ , which mean that  $x_{n_k} \to x$  weakly for  $k \to \infty$  because  $x_n \to x$  weakly for  $n \to \infty$ , so we have that  $(x_{n_k})_{k \in \mathbb{N}}$  is bounded. This implies that since it is bounded it will have a subsequence  $(x_{n_{k_i}})_{i \in \mathbb{N}}$  for which  $||Tx_{n_{k_i}} - Tx'|| \to 0$  for some  $x' \in X$ , because we are in Banach space, this mean that it is complete. For  $x \to \infty$ , weakly for  $x \to \infty$ , weakly for  $x \to \infty$  because we are in Banach space, this mean that it is complete.

Earlier we showed that  $x_{n_k} \to x$  weakly for  $k \to \infty$ , and together with problem 2a I get that  $Tx_{n_k} \to Tx$  weakly, which implies  $Tx_{n_{k_i}} \to Tx$  weakly for  $i \in \mathbb{N}$ . I can now say that since we had  $Tx_{n_{k_i}} \to Tx$  weakly it will imply that  $||Tx_{n_{k_i}} - Tx|| \to 0$  for  $i \to \infty$  which mean  $||Tx_{n_k} - Tx|| < \epsilon$  which is a contradiction to  $||Tx_{n_k} - Tx|| > \epsilon$ . This gives us that  $||Tx_{n_k} - Tx|| \to 0$  for  $n \to \infty$ .

Problem 2c

I have to show T is compact, so I will do it by contradiction. I start by having that T is not compact, i.e  $T \notin \mathcal{K}(H,Y)$ . By assuming this I get that  $T(\overline{B}_H(0,1))$  is not totally bounded by proposition 8.2. This mean that there exists an  $\varepsilon > 0$  for which there do not exist union of finitely many open balls for which  $T(\overline{B}_H(0,1))$  is covered by radius  $\varepsilon$ .

I will now show that there exists a sequence  $(x_n)_{n\geq 1}$  in the closed unit ball of H such that  $||Tx_n-Tx_m||\geq \varepsilon$  for all  $n\neq m$ . I will now take a  $x_1\in \overline{B}_H(0,1)$  where I also have  $x_1\in (\underline{x_n})_{n\geq 1}\subset \overline{B}_H(0,1)$  and will suppose that for  $x_2,x_3,...,x_n$  it applies that  $||Tx_q-Tx_r||\geq \varepsilon$   $\forall q,r\leq n$ . Now I look at

$$S := T(\overline{B_H(0,1)}) \cap (\bigcup_{i=1}^n B_Y(T_{x_i},\varepsilon))^C$$

where we notice that

$$T(\overline{B_H(0,1)}) \nsubseteq (\cup_{i=1}^n B_Y(T_{x_i},\varepsilon))$$

because  $T(B_H(0,1))$  is not totally bounded. From this I can say  $S \neq \emptyset$ . I will now take  $x_{n+1} \in B_H(0,1)$  for which it apply that  $Tx_{n+1} \in S$ , and I notice that  $Tx_{n+1} \in (\bigcup_{i=1}^n B_Y(T_{x_i},\varepsilon))^C$  which implies for any i that  $Tx_{n+1} \notin B_Y(T_{x_i},\varepsilon)$  We now get that  $||Tx_{n+1} - Tx_i|| \geq \varepsilon \ \forall i \leq n$ . And if we continue the same process we will obtain the sequence  $||Tx_n - Tx_m|| \geq \varepsilon$ .

Since it is given that H is separable, we get by thm 5.13 that H is metrizable and by proposition 2.10 we get that H is reflexive. We can now say that  $\overline{B}(0,1)$  is weakly compact by 6.3. Hence I get that every sequence has a weakly convergent subsequence. So we let  $(x_{n_k})_{k\geq 1}$  be a weakly convergent subsequence of  $(x_n)_{n\geq 1}$  since  $\overline{B}(0,1)$  is weakly sequentially compact.

Hence  $||Tx_{n_k} - Tx|| \neq 0$  for  $k \to \infty$  since we had  $||Tx_n - Tx_m|| \geq \varepsilon \ \forall n \neq m$ . I do now get a contradiction and can conclude that T must be compact.

# Problem 2d

To show that  $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$  is compact I start by having  $(x_n)_{n \geq 1} \in H$  and  $x_n \to x$  weakly for  $n \to \infty$ . This implies that from 2a that  $Tx_n \to Tx$  weakly in  $\ell_1(\mathbb{N})$  and specially say that  $Tx_n \to Tx$  weakly iff  $||Tx_n - Tx|| \to 0$  by Remark 5.3

I know that  $\ell_2(\mathbb{N})$  is Hilbert space, infinite dimensional separable by HW4P4, then can I say that T is compact by 2c.

# Problem 2e

I want to show that no  $T \in \mathcal{K}(X,Y)$  is onto.

So I start by assuming that T is onto, which is contradiction. I know that X, Y are infinite dimensional Banach space. I let  $T \in \mathcal{L}(X,Y)$  be compact and open. Why we get T is open, I will get that T is open, I will get that T is open, I will get that T is compact which T is open, I will said that T is compact which gives us that T is also compact. I will now examine if T is compact for different values of T.

I look at r=1 and get that:  $\overline{B_Y(0,1)}=\overline{B_Y(0,1)}$ , i.e  $\overline{B_Y(0,1)}$  is compact, but it cannot be compact since the unit ball of finite dimensional normed space Y is never compact by Riezs lemma.

For r > 1 I get  $\overline{B_Y(0,1)}$  is a closed subset of the set  $\overline{B_Y(0,1)}$  which is compact, so here I also get that  $\overline{B_Y(0,1)}$  is compact which is a contradiction as before f?

For r < 1 I look at a continuous function  $f: Y \to Y$ . We know that the image  $f\overline{B_Y(0,1)}$  under a continuous function of a compact set  $\overline{B_Y(0,1)}$  is compact, i.e we have  $f\overline{B_Y(0,1)} = \overline{B_Y(0,1)}$  is compact, but this is again a contradiction as before.

I can now conclude that no  $T \in \mathcal{K}(X,Y)$  can be onto.

#### Problem 2f

To show that M is self-adjoint, i.e  $M = M^*$ , I start by defining  $t = \bar{t}$  because t can only have real values.

I will now look at the inner product on H, where  $f, g \in H$ 

$$\begin{split} \langle Mf,g\rangle &= \int_{[0,1]} Mf(t)(\overline{g(t)})dm(t)\\ &= \int_{[0,1]} tf(t)(\overline{g(t)})dm(t)\\ &= \int_{[0,1]} f(t)\overline{t}(\overline{g(t)})dm(t)\\ &= \int_{[0,1]} f(t)\overline{t}\overline{g(t)}dm(t)\\ &= \int_{[0,1]} f(t)\overline{Mg(t)}dm(t)\\ &= \langle f,Mg \rangle \end{split}$$

The definition of self-adjoint is that  $\langle Mf,g\rangle=\langle f,M^*g\rangle$  and we have now shown  $\langle Mf,g\rangle=\langle f,Mg\rangle$ , hence we may have that  $\langle f, Mg \rangle = \langle f, M^*g \rangle$  where  $M = M^*$ .

To show that M is not compact, I start by assuming that M is compact and show it by contradiction. I have just shown that M is self-adjoint, and I know that H is finite dimensional, and separable by HW4P4, so I now have that H has an ONB  $(e_n)_{n\geq 1}$  consisting of eigenvectors for M with corresponding values  $\lambda_n \in \mathbb{N}$  by thm 10.1. But in HW6P3 we have shown that M has no eigenvalues, so now there is a contradiction with our assumption. So I can now conclude that M is not compact.

#### Problem 3a

Since [0,1] is compact Hausdorff spaces, and since m is lebesgue-measure on Borel-sigma-algebra is it finite Borel-measure on [0,1] and since we know that K is continuous on  $[0,1] \times [0,1]$  we will get that  $K \in C([0,1] \times [0,1])$ . I can now use theorem 9.6 to conclude that T is compact. ( Check at least

Problem 3b

It only if you show 
$$T=T_{c}$$
 in fact  $T=T_{c}$   $\widetilde{K}(S,t)=k(t,s)$ 

I will use Tonelli-Fubini to show that  $T = T^*$ 

$$\langle Tf,g\rangle = \int_{[0,1]} Tf(s)\overline{g(s)}dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)dm(t)\overline{g(s)}dm(s)$$

$$= \int_{[0,1]} \left( \int_{[0,1]} K(s,t)f(t)dm(t) \right) \overline{g(s)}dm(s)$$

$$= \int_{[0,1]\times[0,1]} K(s,t)f(t)\overline{g(s)}dm(s,t)$$

$$= \int_{[0,1]\times[0,1]} K(t,s)\overline{g(s)}f(t)dm(t,s)$$

$$= \int_{[0,1]} \left( \int_{[0,1]} K(t,s)\overline{g(s)}dm(s) \right) f(t)dm(t)$$

$$= \int_{[0,1]} T\overline{g(t)}f(t)dm(t)$$

$$= \langle f, Tg \rangle$$

I how have shown what I wanted.

#### Problem 3c

It is given how Tf(s) and K(s,t) is defined, so I use this to show

$$Tf(s) = (1-s) \int_{[0,s]} tf(t)dm(t) + s \int_{[s,1]} (1-t)f(t)dm(t)$$

$$Tf(s) = \int_{[0,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} K(s,t)f(t)dm(t) + \int_{[s,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} (1-s)tf(t)dm(t) + \int_{[s,1]} (1-t)sf(t)dm(t)$$

$$= (1-s)\int_{[0,s]} tf(t)dm(t) + s\int_{[s,1]} (1-t)f(t)dm(t)$$

The first part is now shown.

We know that  $||f||_2 < \infty$  since we know that  $f \in L_2([0,1],m)$  then we will see that

$$\left(\int_{[0,1]} |f|^2 dm(t)\right)^{\frac{1}{2}} < \infty$$

we will now get How?

How ? 
$$\left((1-s)\int_{[0,1]}|tf(t)|^2dm(t)\right)^{\frac{1}{2}}<\infty$$
 even that

and then we will have that

$$(1-s)\int_{[0,1]}tf(t)dm(t)<\infty$$

The same applies for the other integral

$$\left(s \int_{[0,1]} |(1-t)f(t)|^2 dm(t)\right)^{\frac{1}{2}} < \infty$$

then we will get

$$s\int_{[0,1]} (1-t)f(t)dm(t) < \infty$$

This does not

I can now conclude that Tf is continuous on [0,1] by proposition 1.10 since Tf is bounded

does not imply cont.

The next I have to show is (Tf)(0) = (Tf)(1) = 0. For s = 0 I get: only for linear operators
not (non-linear) functions

 $(Tf)(0) = (1-0) \int_{[0,0]} tf(t)dm(t) + 0 \int_{[0,1]} (1-t)f(t)dm(t) = \int_{[0,0]} tf(t)dm(t) = 0$ 

For s = 1 I get:

$$(Tf)(1) = (1-1) \int_{[0,1]} tf(t)dm(t) + 1 \int_{[0,1]} (1-t)f(t)dm(t) = \int_{[1,1]} (1-t)f(t)dm(t) = 0$$
 Hence I get  $(Tf)(0) = (Tf)(1) = 0$ 

### Problem 4a

First part:

I will justify that  $g_k \in \mathscr{S}(\mathbb{R})$ 

I notice that  $e^{-x^2} \in \mathcal{S}(\mathbb{R})$  from HW7P1 since  $e^{-||x||^2} = e^{-x^2}$ 

Now I note that  $(S_a f)(x) := f(\frac{x}{a})$  from lecture notes p.62 and then can I by HW7P1 say

 $S_{\sqrt{2}}e^{-x^2} \in \mathscr{S}(\mathbb{R})$ , hence  $e^{\frac{-x^2}{2}} \in \mathscr{S}(\mathbb{R})$  and can conclude that  $x^{\alpha}e^{\frac{-x^2}{2}} \in \mathscr{S}(\mathbb{R})$  and hence we finish by getting  $g_k \in \mathscr{S}(\mathbb{R})$ .

Next part is to compute  $\mathcal{F}(g_k)$  for k = 0, ..., 3

I start by letting  $\phi(x) := e^{\frac{-x^2}{2}}$ , and noting that both  $e^{\frac{-x^2}{2}}$  and  $x^k e^{\frac{-x^2}{2}}$  are integrable. Then is  $\phi(x) = \hat{\phi}(x)$  by proposition 11.4. From this we get

$$\mathcal{F}(g_k)(\xi) = \hat{g_k}(x) = (x^k \phi)(\xi) = i^k (\partial^k \hat{\phi})(\xi) = i^k (\partial^k \phi)(\xi)$$

The first equality is from definition 11.1, because we have from HW7P1c that  $\mathscr{S} \subset L_p$ , so  $f, x^{\alpha} f \in L_1(\mathbb{R}^n)$ , the third equality is by proposition 11.3d where the argument is the same as before.

So for k = 0 we get:

$$g_0 := \mathcal{F}(g_0)(\xi) = i^0(\partial^0 \phi)(\xi) = e^{\frac{-\xi^2}{2}}$$

For k = 1 we get:

$$g_1 := \mathcal{F}(g_1)(\xi) = i^1(\partial^1 \phi)(\xi) = -i\xi e^{\frac{-\xi^2}{2}}$$

For k = 2 we get:

$$g_2 := \mathcal{F}(g_2)(\xi) = i^2(\partial^2 \phi)(\xi) = i^2 e^{\frac{-\xi^2}{2}}(\xi^2 - 1)$$

For k = 3 we get:

$$g_3 := \mathcal{F}(g_3)(\xi) = i^3(\partial^3 \phi)(\xi) = i^3 e^{\frac{-\xi^2}{2}}(-\xi)(\xi^2 - 3) = i\xi^3 e^{\frac{-\xi^2}{2}} - 3i\xi e^{\frac{-\xi^2}{2}}$$



For  $h_0 \in \mathscr{S}(\mathbb{R})$  I will show  $\mathcal{F}(h_0) = i^0 h_0$ 

$$\mathcal{F}(g_0) = e^{\frac{-\xi^2}{2}} = i^0 h_0 = g_0$$

For  $h_1 \in \mathcal{S}(\mathbb{R})$  I will show  $\mathcal{F}(h_1) = ih_1$  I will start by looking at  $\mathcal{F}(g_3)(\xi)$ 

$$\mathcal{F}(g_3)(\xi) = i(\xi^3 e^{\frac{-\xi^2}{2}} - 3\xi e^{\frac{-\xi^2}{2}}) = i(g_3(\xi) - 3g_1(\xi))$$

so then I have by linearity of Fourier transform that

$$\mathcal{F}(g_3 - \frac{3}{2}g_1)(\xi) = \mathcal{F}(g_3)(\xi) - \frac{3}{2}\mathcal{F}(g_1)(\xi)$$
$$= i(g_3(\xi) - 3g_1(\xi)) + \frac{3}{2}i\xi^{\frac{-\xi^2}{2}}$$
$$= i(g_3(\xi) - \frac{3}{2}g_1(\xi))$$

Hence I get that  $h_1 = (g_3(\xi) - \frac{3}{2}g_1(\xi))$  and then  $\mathcal{F}(h_1) = ih_1$ 

For  $h_2 \in \mathscr{S}(\mathbb{R})$  I will show  $\mathcal{F}(h_2) = i^2 h_2 = -h_2$ 

$$\mathcal{F}(g_2)(\xi) = -(g_2(\xi) - g_0(\xi))$$

so then I have by linearity of Fourier transform that

$$\mathcal{F}(g_2 - \frac{1}{2}g_0)(\xi) = \mathcal{F}(g_2)(\xi) - \frac{1}{2}\mathcal{F}(g_0)(\xi)$$
$$= -(g_2(\xi) - g_0(\xi)) - \frac{1}{2}\mathcal{F}(g_0)g_0(\xi)$$
$$= -(g_2(\xi) - \frac{1}{2}g_0(\xi))$$

Therefore is  $h_2=(g_2-\frac{1}{2}g_0)$  and hence I have that  $\mathcal{F}(h_2)=i^2h_2=-h_2$ 

For  $h_3 \in \mathscr{S}(\mathbb{R})$  I will show  $\mathcal{F}(h_3) = i^3 h_3 = -ih_3$ 

$$\mathcal{F}(g_1)(\xi) = -i\xi e^{\frac{-\xi^2}{2}} = -ig_1(\xi)$$

Therefore I get  $h_3 = g_1$  and hence  $\mathcal{F}(h_3) = i^3 h_3 = -i h_3$ 



# Problem 4c

I want to show that  $\mathcal{F}^4(f) = f$ .

I know that  $\mathscr{S}(\mathbb{R}) \subseteq L_1(\mathbb{R})$ , and  $f, \hat{f} \in L_1(\mathbb{R})$ .

I will now look at  $\mathcal{F}$ :

$$\begin{split} \mathcal{F}(f)(\xi) &= \hat{f}(\xi) \\ &= \int_{\hat{\mathbb{R}}} f(x) e^{-ix\xi} dm(x) \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ix\xi} d(x) \end{split}$$

So then I will get

$$\mathcal{F}^*(f)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\xi} d(x)$$

I will now look at  $\mathcal{F}^2$ 

$$\begin{split} \mathcal{F}^2(f)(\xi) &= \mathcal{F}(\mathcal{F}(f)(\xi)) \\ &= \mathcal{F}(\hat{f}(\xi)) \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(x) e^{-ix\xi} d(x) \end{split}$$

I will now define  $\mathcal{T}(f) := S_{-1}f \in \mathscr{S}(\mathbb{R})$ , and look at  $\mathcal{T}^2$ 

$$(\mathcal{T}^2 f)(x) = \mathcal{T}(\mathcal{T} f)(x) = (\mathcal{T} f)(-x) = f(x)$$

we note that  $f = \mathcal{F}^*\mathcal{F}(f)$  from corollary 12.12 so therefore I get

$$\begin{split} (\mathcal{T}f)(\xi) &= \mathcal{F}^*(\mathcal{F}(f)(-\xi)) \\ &= \mathcal{F}^*(\hat{f})(-\xi) \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(x) e^{-ix\xi} d(x) \qquad \text{does} \quad \text{not aatch above} \\ &= \mathcal{F}^2(f)(\xi) \end{split}$$

I will now look at  $\mathcal{F}^4$  where I use  $\tau(f)$  $\mathcal{F}^4 = (\mathcal{F}^2)^2 = f$ So the conclusion is that I have shown  $\mathcal{F}^4(f) = f$  for all  $f \in \mathscr{S}(\mathbb{R})$ 

### Problem 4d

I want to show that  $\lambda \in \{1, i, -1, -i\}$ , and it will be enough to show that  $\lambda^4 = 1$ . I start by supposing that  $f \neq 0$ . It is given that  $\lambda f = \mathcal{F}(f)$ , so I will get that  $\lambda^4 f^4 = \mathcal{F}^4(f) = f$  and then I will have that  $\lambda^4 = \frac{f}{f^4}$ .

I notice that in 4c I showed that  $\mathcal{F}^4(f) = f$  and this will now give me

$$\frac{f^2=\mathcal{F}^8(f)=\mathcal{F}^4(\mathcal{F}^4(f))=\mathcal{F}^4(f)=f}{\text{and hence }f^4=(f^2)^2=f^2=f.}$$
 and hence 
$$f^4=(f^2)^2=f^2=f.$$
 I can now say that 
$$\lambda^4=\frac{f}{f^4}=\frac{f}{f}=1.$$

I can now see that  $\lambda = 1$ ,  $\lambda = -1$ ,  $\lambda = i$  and also  $\lambda = -i$ , so now I have that these are the no only values for which  $\lambda f = \mathcal{F}(f)$ . Therefore will the eigenvalues of  $\mathcal{F}$  be  $\{1, i, -1, -i\}$ .

26 {1,-1i,-i}

# Problem 5

I want to show that  $supp(\mu) = [0, 1]$ . To do this I start by noting that it is given that  $\mu$  is a Radon measure on [0, 1] which is LCHT-space. I recall from HW8P3 where it will be enough for me to show

 $\frac{\tan \mu([0,1]^c) = 0.}{\text{It is given that } \mu([0,1]) = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}([0,1]) \text{ and know that}}$   $\int_{x_n}^{\infty} \int_{x_n}^{\infty} \int_{x_n}^{\infty} \left[ [0,1]^c \right] dx = \int_{x_n}^{\infty} \int_{x_n}^$ 

I will now get from HW8P3 that

$$\mu([0,1]^c) = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}([0,1]^c) = 0$$

From this can I conclude that  $supp(\mu) = [0, 1]$  since  $x_n \in [0, 1]$ .