连续时间金融的模拟方法

陈堰平

chen@yanping.me

中国人民大学 统计学院

November 22, 2007

An investment bank could be more collegial than a college.

— Emanuel Derman

My Life as a Quant(2004)

金融工程基本概念

金融工具

• 原生工具:

- 股票 (stock)
- 债券 (bond)
- 货币

• 衍生工具:

- 远期 (forward)
- 期货 (futures)
- 期权 (options)
-

衍生工具(derivative)

- 远期和期货:两方签定合约,在确定的未来的某天(到期日),合约的买方必须支付规定数量的钱(即执行价)给合约的卖方,合约的卖方必须在到期日以执行价转让指定数量的股票给买方。
- 期权:两方签定合约,赋予合约的买方在到期日以一定价格买入或 卖出股票的权利(不是义务)。

期权

- 是否可以提前执行: 美式期权、欧式期权
- 买入还是卖出资产:
 - 看涨期权 (call options)
 - 看跌期权 (put options)

必备的数学知识

Brown 运动

Brown 运动又被称为 Wienner 过程。原指苏格兰生物学家 R. Brown 于 1827 年在显微镜下发现的花粉颗粒的不规则运动。以前都认为 Brown 运动的数学定义是 Einstein 首先于 1905 年提出的,但其实早在 1900年 Bachelier 就在他的博士论文中提出了 Brown 运动,并把 Brown 运动用 在股票价格的研究。

Brown 运动的数学性质

设连续时间随机过程 $W_t: 0 \le t < T$ 是 [0, T) 上的标准 Brown 运动,

- $W_0 = 0$
- 独立增量性: 对于有限个时刻 $0 < t_1 < t_2 < \cdots < t_n < T$,随机变 量

$$W_{t_2} - W_{t_1}, W_{t_3} - W_{t_2}, \cdots, W_{t_n} - W_{t_{n-1}}$$

是独立的

• 正态性:对任意的0 < s < t < T, $W_t - W_s$ 服从均值为0,方差 为 t-s 的正态分布

关于 dW_t

$$W(t+\Delta t)-W(t)=\epsilon(t+\Delta t)\sim N(0,\Delta t)$$
 $dW_t=\lim_{\Delta t\to 0}(W(t+\Delta t)-W(t))=\lim_{\Delta t\to 0}\epsilon(t+\Delta t)\sim N(0,dt)$

那么我们可以把 dW_t 当作普通的随机变量看待

$$E(dW_t) = 0$$
, $Var(dW_t) = dt$, $E((dW_t)^2) = dt$

随机微分方程

一般形式 $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$

算术 Brown 运动

$$dX_t = \mu dt + \sigma dW_t$$

在给定初值 X_{tn} 的条件下,可以求出方程的解为

$$X_t = X_{t_0} + \mu(t - t_0) + \sigma(W_t - W_{t_0})$$

$$dX_t = \mu X_t dt + \sigma X_t dW_t$$

$$X_t = X_{t_0} \exp \left[(\mu - \frac{\sigma^2}{2})(t - t_0) + \sigma(W_t - W_{t_0}) \right]$$

随机微分方程

一般形式 $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$

算术 Brown 运动

$$dX_t = \mu dt + \sigma dW_t$$

在给定初值 X_{t_0} 的条件下,可以求出方程的解为

$$X_t = X_{t_0} + \mu(t - t_0) + \sigma(W_t - W_{t_0})$$

几何 Brown 运动

$$dX_t = \mu X_t dt + \sigma X_t dW_t$$

在给定初值 X_{t_0} 的条件下,可以求出方程的解为

$$X_t = X_{t_0} \exp \left[(\mu - \frac{\sigma^2}{2})(t - t_0) + \sigma(W_t - W_{t_0}) \right]$$

4 나 가 4 만 가 4 분 가 4 분 가 보고 */ Y

Itô 引理

假设 X(t) 满足随机微分方程

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$$

f(X) 是 X 的函数,则

$$df(X) = f_X(X)dX + \frac{1}{2}f_{XX}(dX)^2$$

如果我们关心的函数 f 又是时间 t 的函数

$$df(X,t) = (f_X dX + f_t dt) + \frac{1}{2} [f_{XX} (dX)^2 + 2f_{Xt} dX dt + f_{tt} (dt)^2]$$

$$= f_X dX + f_t dt + \frac{1}{2} f_{XX} (dX)^2$$

$$= f_X [\mu(t,X) dt + \sigma(t,X) dW_t] + f_t dt + \frac{1}{2} f_{XX} \sigma^2(X,t) dt$$

$$= \left[\mu(X,t) f_X + \frac{1}{2} \sigma^2(X,t) f_{XX} + f_t \right] dt + \sigma f_X dW$$

Itô 引理

假设 X(t) 满足随机微分方程

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$$

f(X) 是 X 的函数,则

$$df(X) = f_X(X)dX + \frac{1}{2}f_{XX}(dX)^2$$

如果我们关心的函数 f 又是时间 t 的函数

$$df(X,t) = (f_X dX + f_t dt) + \frac{1}{2} [f_{XX} (dX)^2 + 2f_{Xt} dX dt + f_{tt} (dt)^2]$$

$$= f_X dX + f_t dt + \frac{1}{2} f_{XX} (dX)^2$$

$$= f_X [\mu(t,X) dt + \sigma(t,X) dW_t] + f_t dt + \frac{1}{2} f_{XX} \sigma^2(X,t) dt$$

$$= \left[\mu(X,t) f_X + \frac{1}{2} \sigma^2(X,t) f_{XX} + f_t \right] dt + \sigma f_X dW$$

Black-Scholes 方程(1)

t 时刻买入一份某股票的欧式看涨期权,敲定价是 K ,到期日是 T ,此时股价是 S_t ,市场上的无风险连续利率是 r 。在以下假定下为期权的价值 $V(S_t,t)$ 建模:

- 股价的变化服从几何 Brown 运动
- 股票没有红利
- 没有交易成本
- 市场上没有套利机会

终值条件: $V(S_T, T) = (S_T - K)^+$ 边界条件: V(0, t) = 0

Black-Scholes 方程(2)

买入期权的同时,为了抵消风险就要卖出一定量的股票,下面是个投资 组合

$$\Pi = V(S_t, t) - \Delta S_t$$

 $d\Pi = dV(S_t, t) - \Delta dS_t$

 Δ 是卖出股票的数量。股价满足下面的方程

$$dS = \mu S dt + \sigma S dW_t$$

 $V(S_t,t)$ 是 S_t 和 t 的函数。由ltô 引理

$$dV = \frac{\partial V}{\partial S}dS + \frac{\partial V}{\partial t}dt + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}dt$$

$$d\Pi = \frac{\partial V}{\partial S}dS + \frac{\partial V}{\partial t}dt + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}dt - \Delta dS$$

November 22, 2007

Black-Scholes 方程(3): Delta hedging

$$d \Pi = \left(\frac{\partial V}{\partial S} - \Delta\right) dS + \frac{\partial V}{\partial t} dt + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} dt$$

可以看出,上式第一项含有随机性,如果取 $\Delta = \frac{\partial V}{\partial S}$,则可消除投资组合 Π 的随机性(风险)

$$d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) dt$$
$$\Pi = V - \frac{\partial V}{\partial S} S$$

Black-Scholes 方程(4): 无套利原理

无风险资产满足方程:

$$d\Pi = r\Pi dt = r\left(V - \frac{\partial V}{\partial S}S\right)dt$$

投资组合对冲掉风险后应与无风险资产等值,否则就会出现套利机会。

$$r\left(V - \frac{\partial V}{\partial S}S\right)dt = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)dt$$

两边约掉 dt,整理得

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

这就是Black-Scholes 方程

Black-Scholes 方程(4): 无套利原理

无风险资产满足方程:

$$d\Pi = r\Pi dt = r\left(V - \frac{\partial V}{\partial S}S\right)dt$$

投资组合对冲掉风险后应与无风险资产等值,否则就会出现套利机会。

$$r\left(V - \frac{\partial V}{\partial S}S\right)dt = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right)dt$$

两边约掉 dt , 整理得

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

这就是Black-Scholes 方程

Black-Scholes 公式

$$\begin{cases} \tau = T - t \\ d_1 = \frac{\ln \frac{S_t}{K} + (r + \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}} \\ d_2 = d_1 - \sigma\sqrt{\tau} \\ V(S_t, t) = S_t N(d_1) - Ke^{-r\tau} N(d_2) \end{cases}$$

详细推导过程请看:

• 史树中.(2006).金融中的数学.北京:高等教育出版社

模拟技术

模拟的核心思想

由于 $dW_t \sim N(0, dt)$, 所以当 Δt 足够小的时候,可以用 $\epsilon \sqrt{\Delta t}$ 近似 ΔW_t , 其中 $\epsilon \sim N(0, 1)$

Euler-Maruyama 格式

$$\begin{cases} t_{N} = T, \ \Delta t = \frac{t_{N} - t_{0}}{N} \\ t_{j} = t_{j-1} + \Delta t, \ (j = 1, 2, \dots, N) \\ X_{j} - X_{j-1} = \mu(t_{j-1}, X_{j-1}) \Delta t + \sigma(t_{j-1}, X_{j-1}) \epsilon_{j} \sqrt{\Delta t} \end{cases}$$

其中 $\{\epsilon_j\}_{j\geq 1}$ 是服从 N(0,1) 的白噪声,假设 X_0 已经给定

更多迭代格式

• Kloeden P. E., Platen E. *Numerical Solution of Stochastic Differential Equations* . Berlin and Heideberg: Springer-Verlag, 1992

模拟的核心思想

由于 $dW_t \sim N(0, dt)$,所以当 Δt 足够小的时候,可以用 $\epsilon \sqrt{\Delta t}$ 近似 ΔW_t , 其中 $\epsilon \sim N(0,1)$

Euler-Maruyama 格式

$$\begin{cases} t_{N} = T, \ \Delta t = \frac{t_{N} - t_{0}}{N} \\ t_{j} = t_{j-1} + \Delta t, \ (j = 1, 2, \dots, N) \\ X_{j} - X_{j-1} = \mu(t_{j-1}, X_{j-1}) \Delta t + \sigma(t_{j-1}, X_{j-1}) \epsilon_{j} \sqrt{\Delta t} \end{cases}$$

其中 $\{\epsilon_i\}_{i>1}$ 是服从 N(0,1) 的白噪声,假设 X_0 已经给定

Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential

November 22, 2007

模拟的核心思想

由于 $dW_t \sim N(0, dt)$, 所以当 Δt 足够小的时候,可以用 $\epsilon \sqrt{\Delta t}$ 近似 ΔW_t , 其中 $\epsilon \sim N(0, 1)$

Euler-Maruyama 格式

$$\begin{cases} t_{N} = T, \ \Delta t = \frac{t_{N} - t_{0}}{N} \\ t_{j} = t_{j-1} + \Delta t, \ (j = 1, 2, \dots, N) \\ X_{j} - X_{j-1} = \mu(t_{j-1}, X_{j-1}) \Delta t + \sigma(t_{j-1}, X_{j-1}) \epsilon_{j} \sqrt{\Delta t} \end{cases}$$

其中 $\{\epsilon_j\}_{j\geq 1}$ 是服从 N(0,1) 的白噪声,假设 X_0 已经给定

更多迭代格式:

 Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations . Berlin and Heideberg: Springer-Verlag, 1992

算术 Brown 运动的模拟

Figure: 算术 Brown 运动轨迹的模拟

几何 Brown 运动的模拟(1)

对 $j=1,2,\ldots,N$, 做以下几步

- $t_i = t_{i-1} + \Delta t$
- 产生 Z_j ~ N(0,1)
- $\Delta W_j = Z_j \sqrt{\Delta t}$

•
$$X_j = X_{j-1} \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)\Delta t + \sigma \Delta W_j\right)$$

几何 Brown 运动的模拟(2)

另一种思路:

$$V(S_t,t) = E\left[e^{-r(T-t)}V(S_T,T)\right] = e^{-r(T-t)}E\left[V(S_T,T)\right]$$

Monte Carlo 方法:

- 对 k = 1, 2, ..., M,做以下几步
 - 模拟出第 k 条价格轨迹, 得 T 的股价为 $(S_T)_k$
 - $(V(S_T, T))_k = V((S_T)_k, T) = ((S_T)_k K)^+$
- $\hat{E}(V(S_T, T)) = \frac{1}{M} \sum_{k=1}^{M} (V(S_T, T))_k$
- $\hat{V} = e^{-r(T-t)}\hat{E}\left(V(S_T, T)\right)$

November 22, 2007

另一种思路:

$$V(S_t,t) = E\left[e^{-r(T-t)}V(S_T,T)\right] = e^{-r(T-t)}E\left[V(S_T,T)\right]$$

Monte Carlo 方法:

- 对 k = 1, 2, ..., M,做以下几步
 - 模拟出第 k 条价格轨迹, 得 T 的股价为 $(S_T)_k$
 - $(V(S_T, T))_k = V((S_T)_k, T) = ((S_T)_k K)^+$
- $\hat{E}(V(S_T, T)) = \frac{1}{M} \sum_{k=1}^{M} (V(S_T, T))_k$
- $\hat{V} = e^{-r(T-t)}\hat{E}(V(S_T, T))$

另一种思路:

$$V(S_t,t) = E\left[\mathrm{e}^{-r(T-t)}V(S_T,T)\right] = \mathrm{e}^{-r(T-t)}E\left[V(S_T,T)\right]$$

Monte Carlo 方法:

- 对 k = 1, 2, ..., M,做以下几步
 - 模拟出第 k 条价格轨迹, 得 T 的股价为 $(S_T)_k$
 - $(V(S_T, T))_k = V((S_T)_k, T) = ((S_T)_k K)^+$
- $\hat{E}(V(S_T, T)) = \frac{1}{M} \sum_{k=1}^{M} (V(S_T, T))_k$
- $\hat{V} = e^{-r(T-t)}\hat{E}\left(V(S_T, T)\right)$

另一种思路:

$$V(S_t,t) = E\left[\mathrm{e}^{-r(T-t)}V(S_T,T)\right] = \mathrm{e}^{-r(T-t)}E\left[V(S_T,T)\right]$$

Monte Carlo 方法:

- 对 k = 1, 2, ..., M,做以下几步
 - 模拟出第 k 条价格轨迹, 得 T 的股价为 $(S_T)_k$
 - $(V(S_T, T))_k = V((S_T)_k, T) = ((S_T)_k K)^+$
- $\hat{E}(V(S_T, T)) = \frac{1}{M} \sum_{k=1}^{M} (V(S_T, T))_k$
- $\hat{V} = e^{-r(T-t)}\hat{E}(V(S_T, T))$

一个实例

考虑一份三个月到期,执行价为40美元的欧式看涨期权,股票现在的价格是36美元,波动率为0.5,无风险利率是0.05。

- 用Black-Scholes 公式算得期权的价格为2.26美元。
- 用模拟的方法:

	M = 200	M = 1000	M = 5000
N = 1	2.55	2.19	2.24
N = 10	2.59	2.28	2.20
N = 100	1.81	2.26	2.31

参考文献

金融衍生品:

- Hull, J. (2006). *OPtions, Futures and Other Derivatives*, 6th ed. Prentice Hall, Englewood Cliffs, New Jersey.
- McDonald,R.(2003) . Derivatives Markets. Addison Wesley, Boston 数量金融:
 - 史树中.(2006).金融中的数学.北京:高等教育出版社
 - 史树中.(2004).金融经济学十讲.上海:上海人民出版社
 - 姜礼尚.(2003).期权定价的数学模型和方法.北京:高等教育出版社
 - Ross,S.M.An Introduction to Mathematical Finance,Options and Other Topics.Cambridge:Cambridge University Press
 - Stampfli, J., Goodman, V. (2001). The Mathematics of Finance: Modeling and Hedging. Thomson Learning
 - Wilmott, P. (2000). Paul Wilmott on Quantitative Finance. Wiley, New York
 - Merton,R.C. (1992). Continuous Time Finance, Rev.ed. Blackwell, Oxford

模拟技术:

- Chan, N. H, Wong, H. Y. (2006) Simulation Techniques in Financial Risk Management. Wiley, New York
- Seydel, R.U. (2006). Tools for Computional Finance, 3rd ed. Springer-Verlag, Berlin
- McLeich, D.L. (2005). Monte Carlo Simulation and Finance . Wiley, New York
- Back, K. (2005), A Course in Derivative Securities: Introduction to Theory and Computation. Springer, New York.
- Glasserman ,P.(2003). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York

Thank You!

