

Lecture 2

Linear Regression

Dr. Le Huu Ton

Hanoi, 09/2016

Outline

Linear Regression

Gradient Descent?

Multi Feature Representation

Questions and Answers

Review of Machine Learning

For each input x, output y = h(x)

Table 1: Training data of housing price in Hanoi

In Supervised Learning, each training data consists of 2 elements: input x (features) and output y (response)

Notation

(x,y) : One training data

 $(x^{(i)},y^{(i)})$: the ith training data

Plotting of training data

Linear Regression: Assume that the output y is a linear function of input x

$$y=h(x)=a*x+b$$

Objective:

Learning the function y=h(x)=a*x+b, such as it returns the minimize error-cost function for the training data (optimization problem)

Find the coefficient a,b to minimize the cost function

Cost Function:

The error for training data:

$$e^{(1)} = \frac{1}{2} (h(x^{(1)}) - y^{(1)})^2 = \frac{1}{2} (30a + b - 2.5)^2$$

$$e^{(2)} = \frac{1}{2}(h(x^{(2)}) - y^{(2)})^2 = \frac{1}{2}(43a + b - 3.4)^2$$

Size(m²)	Price (b.VND)
30	2.5
43	3.4
25	1.8
51	4.5
40	3.2
20	1.6

$$e^{(m)} = \frac{1}{2}(h(x^{(m)}) - y^{(m)})^2 = \frac{1}{2}(x^{(m)}a + b - y^{(m)})^2$$
The cost function is define as:

$$E = \frac{1}{m} (e^{(1)} + e^{(2)} + \dots + e^{(m)}) = \frac{1}{m} \sum_{i=1}^{m} e^{(i)} = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Objective:

Use the gradient function to find a minimum of a function

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Note that E is a function of a and b, we have only 2 variables a and b.

<u>Idea:</u>

Choose random number for a and b, the algorithm is implemented in many steps. At each step, modify a and b such as the cost function is reduced

$$a := a - \alpha \frac{\partial}{\partial_a} E(a) \qquad b := b - \alpha \frac{\partial}{\partial_b} E(b)$$

A demonstration and explanation of Gradient Descent algorithm can be found at the following website:

http://www.onmyphd.com/?p=gradient.descent

Suppose that (x0,y0) is a local minimum of the cost function, what will 1 iteration of gradient descent do?

- 1. Leave x0 unchanged
- 2. Change x0 in random direction
- 3. Move x0 toward the global minimum
- 4. Decrease x0

Calculate the derivations of the cost function: $\frac{\partial}{\partial_a} E(a) = \frac{\partial}{\partial_b} E(b)$

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Given the following formula:

$$\frac{\partial}{\partial_x}(x^2) = 2x$$

$$\frac{\partial}{\partial_x}(f(x)^2) = 2f(x).\frac{\partial}{\partial_x}f(x)$$

$$\frac{\partial}{\partial_a} E(a) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)}).x^{(i)}$$

$$\frac{\partial}{\partial_b} E(b) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)})$$

Exercise:

Starting at a=0 and b= 0, α =0.01, what is the cost function?

Calculate the value of a and b after first iteration (first step). Confirm if the cost function is reduced or not?

Size(m²)	Price (b.VND)
30	2.5
43	3.4
25	1.8
51	4.5
40	3.2
20	1.6

$$a := a - \alpha \frac{\partial}{\partial_a} E(a) \qquad b := b - \alpha \frac{\partial}{\partial_b} E(b)$$

$$\frac{\partial}{\partial_a} E(a) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)}).x^{(i)}$$

$$\frac{\partial}{\partial_a} E(b) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)})$$

Batch and Stochastic Gradient Descent

Batch gradient Descent:

Compute the Gradient Descent using the whole data set

Stochastic Gradient Descent:

Compute the Gradient Descent using 1 training example at a time

- Randomly reorder the training data
- Use $(x^{(1)},y^{(1)})$ to calculate the gradient descent in order to update a,b
- Use $(x^{(2)}, y^{(2)})$ to update
- _

Mini-Batch Gradient Descent

Compute the Gradient Descent for t example at a time (1<t<m)

Example:

We have 1000 training data.

Step 1: Update the coefficient using 10 data 1-10

Step 2: Update the coefficient using 10 data 11-20

• • • •

Big value of α may lead to the incensement of cost function and not convergence

⇒ Gradient Descent works if the cost function decrease at each step

Convergence:

How to know if a function is converged or not?

- Cost function is smaller than a predefined threshold
- After a big enough number of step
- Cost function decreased less than a predefine threshold

Summarization:

- 1. Calculate the cost function
- 2. Select random value for coefficient a,b
- 3. Step by step modify a, b such as the cost function is decreased While (not converged)

do

$$a := a - \frac{\partial}{\partial_a} E(a)$$
 $b := b - \frac{\partial}{\partial_b} E(b)$

Example:

Consider the same example, but with more inputs

Size (m²)	N ⁰ of floors	N ⁰ of rooms	Price (billion VND)
30	3	6	2.5
43	4	8	3.4
25	2	3	1.8
51	4	9	4.5
40	3	5	3.2
20	1	2	1.6

 $x^{(i)}$: the input of ith training data

 $\chi_{j}^{(i)}$: the component j of ith training data

Matrix representation:

$$y = h(x) = \theta_0 + \theta_1 + \theta_2 + ... + \theta_n$$

$$x = \begin{vmatrix} 1 \\ x_1 \\ \dots \\ x_n \end{vmatrix}$$

$$heta = egin{bmatrix} heta_0 \ heta_1 \ heta_n \end{bmatrix}$$

$$h(x) = [\theta_0 \ \theta_1 \ \theta_2 \dots \theta_n] \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \theta^T x$$

Cost Function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{2m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

Gradient Descent

Start with random value of θ , step by step modify θ in order to decrease the cost function

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial_{\theta_{j}}} E(\theta)$$

$$\frac{\partial}{\partial_{\theta_j}} E(\theta) = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial_{\theta_j}} (\theta^T x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Gradient Descent

Start with random value of θ , step by step modify θ in order to decrease the cost function

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial_{\theta_{j}}} E(\theta)$$

$$\frac{\partial}{\partial_{\theta_j}} E(\theta) = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial_{\theta_j}} (\theta^T x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Normal Equations

Linear Regression:

Minimize the value of the cost function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

Normal Equations:

Solve the following equation to find out the optimized value of θ

$$\frac{\partial}{\partial_{\theta}}E(\theta) = 0$$

Normal Equations

Linear Regression:

Minimize the value of the cost function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

Normal Equations:

Solve the following equation to find out the optimized value of θ

$$\frac{\partial}{\partial_{\theta}} E(\theta) = 0 \qquad \forall j \in (0, 1, ..., n), \frac{\partial}{\partial_{\theta_{j}}} E(\theta) = 0$$

Normal Equations

Solution:

Given a training set of m training example, each contain n inputs, we have the matrix X (m,n+1) of inputs and vector of output Y

$$X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_n^{(2)} \\ & \dots & & & \\ x_0^{(m)} & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ & \dots \\ (x^{(m)})^T \end{bmatrix} \qquad Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ & \dots \\ y^{(m)} \end{bmatrix}$$

Solution of normal equations is:

$$\theta = (X^T X)^{-1} X^T Y$$

 Using normal equation to find the value of coefficients theta for this training data

X	у
3	0
2	1
1	2

$$\theta = (X^T X)^{-1} X^T Y$$

Homework

Size (m²)	N ⁰ of floors	N ⁰ of rooms	Price (billion VND)
30	3	6	2.5
43	4	8	3.4
25	2	3	1.8
51	4	9	4.5
40	3	5	3.2
20	1	2	1.6

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial_{\theta_{i}}} E(\theta)$$

$$\frac{\partial}{\partial_{\theta_i}} E(\theta) = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial_{\theta_i}} (\theta^T x^{(i)} - y^{(i)})^2 = \frac{1}{m} \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$$

Polynomial Regression

Polynomial Regression

Output is an polynomial function of the input

For example

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + ... + \theta_n x^n$$

$$x_1 = x$$

$$x_2 = x^2$$

. . .

$$x_n = x^n$$

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$

Linear Regression

References

http://openclassroom.stanford.edu/MainFolder/VideoPage.php?co urse=MachineLearning&video=02.4-LinearRegressionl-GradientDescent&speed=100

Feature Rescale

Objective: Scale all features to the same scale, in order to have easier computation

Popular scale : [0,1],[-0.5,0.5]