Problem 1 (a) Calculate the image of the sequence (3,0,2) under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

$$3+1$$
 $3+1$
 $3+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$

(b) Calculate the pre-image of the number 2940 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$2940 = 10.294 = 10.3.98 = 10.3.5.5.2.49 = 2.3.5.5.7$$

(c) Calculate the pre-image of the number 3850 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

LAST NAME:

FIRST NAME:

(d) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

under Gödel numbering. Represent the pre-image of the number 78 m as a function of the (components of) sequence s. If such a representation does not exist, prove it.

Answer:

$$98m = 6.13 =$$

$$= 2.3.13$$

auswer:

(X,+1, (X2+1, (X3, (X4)X5)X6+1)

(e) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence $(x_1+2, x_2+1, x_3, x_4, 1)$

as a function of n. If such a representation does not exist, prove it.

Answer:

auswer m. 2².3.11² = = 12.121m en, = 11452m

(a) Calculate the image of the se-Problem 1 quence $\langle 5, 0, 1 \rangle$ under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

(b) Calculate the pre-image of the number 2730 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

(c) Calculate the pre-image of the number 6930 under Gödel numbering and show your work. If this preimage does not exist, prove it.

Answer:

LAST NAME:

FIRST NAME:

(d) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence $\langle x_1+1, x_2, x_3+1, x_4, 2 \rangle$

as a function of n. If such a representation does not exist, prove it.

Answer:

(e) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

under Gödel numbering. Represent the pre-image of the number $143 \, m$ as a function of the (components of) sequence s. If such a representation does not exist, prove it.

Answer:

auswer:

LAST NAME:

 $(cd \cup baa \cup (c (c \cup d) c)^*) (c (da)^* \cup bd^*a)^*$

(a) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

Answer:

(c) State the cardinality of the set L. (If L is a finite set, state the exact number of elements of L. Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

Lis infinite and

(b) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

G= (V, E, P, S) V=25, A, D, B, E, FJ, 2=29,0,0,0

9: 5-E APS A ecd/baa/D D-OAIDDIccc cdc B-e 2/1878 CFE 16Fa E - A da E I A F-ebFID

FIRST NAME:

LAST NAME:

 $(a (b \cup c)^* \cup db^*c)^* (ab \cup dcc \cup (abaa)^*)$

(a) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

G=(V, &, P, 5)

(c) State the cardinality of the set L. (If L is a finite set, state the exact number of elements of L. Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

V={S,A,B,D,E,H?

2=da,b,c,dy A-eNIAA/aD/dEc Dealbolc B-Aab) dec

H-e MHH abac

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

Answer:

Answer:

LAST NAME:	
LAST NAME.	

FIRST	NAME:

Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is not greater Problem 3 than 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of a's is not less than 2.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

(aubucus) (aubucus) (aubucus)

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

Answer:

(buc) & a (buc) & a (aubuc)

(c) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

aubucus Xaubucus Xaubucus) U (Suc pa Cbuc) * a Caubuc) *

(d) Write a regular expression that represents the language L_1L_1 . If such a regular expression does not exist, state it and explain why.

aubucus) (aubucus) (aubucus) (aubucus). (aubucus) (aubucus)

(e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise, state that L_1 is infinite and specify whether it is countable or not.)

Answer:

1+3+9+27=140

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

julinije and counteble

(g) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

suffinite and counteble

(h) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

infinite and uncounteble

. cm NAME			
AST NAME	1.		

FIRST	NAME:

Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is equal to Problem 3 3 or 4.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of c's is not less than 3.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

(aubuc) (aubuc) (aubucus) Answer:

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

(aub)c(aub)c(aub)c(aubuc) Answer:

(c) Write a regular expression that represents the language L_1L_1 . If such a regular expression does not exist, state it and explain why.

(aubuc Kaubuc Kaubuc) (aubuc (aubuc) (aubuc) (aubuc) aubue (aubu cu 1)

(d) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

(aubuc)(aubuc) (aubuc) (aubucu) Eupla c (anpla c (anplac (anpro)

(e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise, state that L_1 is infinite and specify whether it is countable or not.)

Answer:

37 + 34 = 27 + 81 = 11027

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

Answer:

intimite and countable

(g) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

jutinide and uncounteble

(h) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

infinite and countable

Problem 4 Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ whose length is divisible by 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of c's and d's (together) is odd.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

Answer:

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an automaton does not exist, state it and explain why.

LAST NAME:

FIRST NAME:

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

Answer:

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it and explain why.

Answer: ZE Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of a's and c's (together) is divisible by 3.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an

LAST NAME: FIRST NAME:

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

Answer:

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it

7,5,0,0

and explain why. Answer:

Problem 5 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties:

- 1. begins and ends with the same letter;
- 2. contains exactly two c's.
- (a) Write a regular expression that represents the language L. If such a regular expression does not exist, state it and explain why.

Answer:

a(aub) c(aub) c(aub) a

b(aub) c(aub) c(aub) b

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

LAST NAME:			
Dito:	Part Ball Sur		

(c) Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

FIRST NAME:

Answer:

G=(V, S, P, S)

S=La,b,cd

V=LS, A,B, L,D)

P:S=A|B|L

P:S=A|B|L

A=aDcDcDc

B=bDcDcDb

L acDc

D-eNIDDIalh

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap c^*$. If such an automaton does not exist, state it and explain why.

Answer:

- 1. first letter is either a or b;
- 2. last letter is either b or c;
- 3. first letter is different from the last letter;
- 4. contains exactly two c's.
- (a) Write a regular expression that represents the language L. If such a regular expression does not exist, state it and explain why.

a (aub) c (aub) c (aub) h Answer: a (aub) oc (aub) oc 6 (aub) * c (aub) de

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

T A	am	NT		NA	T	
LA	ST	IN.	A	IVI	L	j

FIRST NAME:

(c) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

=15, A, B, D, QECECED E-eNIRE/a

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap a c^*$. If such an automaton does not exist, state it and explain why.

Answer:

FIRST NAME:

Let L_1, L_2 be languages over the al-Problem 6 phabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_1 = \{g^{3k} e^{2i+3} d^{2\ell} c^{2t+1} b^{\ell} a^k\}$$

$$L_2 = \{c^{2m+3} a^{3m+1} d^{2n} g^{j+2} e^{3p} b^{j+1}\}$$
where $m, j, n, p, i, k, \ell, t \ge 0$.

(a) Write a complete formal definition of a context-

free grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

G=(V, 5, P, T) Z= 29,0,0,0,9 BeddB5 A CCD/C

(b) Write a complete formal definition of a contextfree grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

G=(V, S, P, T2) Answer: V=2T2, E, F, H, J 2-2-17c1d15 P. TZ & EFH E-ACCE ana cccc F+ddFIN H-+ 2 Hb 1 29 Jb NI Less 4-E

Vrite	a	complete	formal	definition	of	a	context-

(c) W free grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Answer: G=(V, &, P, S V=25, Tn, A,B,D, 5-e 2/155/T7 TI-SESTIQUARS
ATERATION B-edd136 1D) accolla

(d) Write a complete formal definition of a contextfree grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer: G=(V, 2, P) 5-03125, 52 +215252112 11-1954 TralAB 299/A399-A B-AddBb10

Problem 6 Let L_1, L_2 be languages over the alphabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_1 = \{a^{3m+2} c^{2m+1} e^{2n} b^{j+3} g^{3p} d^{j+2}\}$$

$$L_2 = \{b^k g_i^{2i+1} a^{\ell} e^{2t+3} d^{2\ell} c^{3k}\}$$
where $m, j, n, p, i, k, \ell, t \ge 0$.

(a) Write a complete formal definition of a context-free grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

(b) Write a complete formal definition of a context-free grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer:

G=(V,S,P,Q)

V=(Q,Q,Q,S,A,B)

L=(c,b,c,d,Q)

Q+Q,(Q,Q)

Q+A,Q,Q,I

S+ABD

A=QQQACCIQQC

B+QeBIN

D=bDd|bbbEdd

E+Q&QEIN

(d) Write a complete formal definition of a contextfree grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Answer: F-eggF/9
H-eaHddT

J-eeeJ/eee

G=N,S,P,QJ J=Ja,b,c,d,gJ V=LQ,S,A,B,D,E,T,FH,Z P: Q & N/QQ/S/T S-ABD A-QQA/S/T A-QAAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QAACC/QQC A-QA **Problem 7** Let L be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ which satisfy all of the following properties.

- 1. the string is a concatenation of four non-empty palindromes;
- 2. three of the four palindromes have an odd length;
- 3. one of the four palindromes has an even length;
- 4. the four palindromes may appear in any order;
- 5. the middle symbol of each of the three oddlength palindromes is different from d;
- 6. the middle two symbols of the even-length palindrome are different from a.

Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

P. S & EDDD | DEDD | DDED | DDDE

E & QEa | bEb | cEc | dEd | bb | cc | dd

Dea Da | bD b | cDc | a | b) C

LAST NAME:	

FIRST NAME:

Problem 7 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties.

- 1. the string is a concatenation of four non-empty palindromes;
- 2. three of the four palindromes have an even length;
- 3. one of the four palindromes has an odd length;
- 4. the four palindromes may appear in any order;
- 5. the middle symbol of the odd-length palindrome is different from a;
- 6. the middle two symbols of each of the three even-length palindromes are different from d.

Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

G=(V,S,P,S) L=La,b,c] V=LS,E,D] P:S=DEE|EDEE|EBDE|EEED P:S=DEEE|EDEE|EBDE|EEED E=aEa|bEb|cEc|aa|bb|cc D=aDa|bDb|cDc|b|c

LAST NAME:

FIRST NAME: