

InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions

Shikhar Vashishth*1,2, Soumya Sanyal*1, Vikram Nitin3, Nilesh Agrawal1, Partha Talukdar1 ¹Indian Institute of Science, ²Carnegie Mellon University, ³Columbia University

Carnegie Mellon University Language Technologies Institute

Knowledge Graph Link Prediction

The task of inferring new facts based on the existing facts in the Knowledge Graph (KG).

representation for all entities and relations in KG.

Increasing Interactions Helps!

Prior works have demonstrated that increasing features improves link interaction between prediction performance.

ConvE (2D-Convolution)

Contributions

- 1. We propose InteractE, which augments the expressive power of ConvE through feature permutation, "checkered" reshaping, and circular convolution.
- 2. Establish correlation between the number of interactions and link prediction performance. Theoretically, we demonstrate that InteractE increases interactions compared to ConvE.

InteractE Overview

Given entity and relation embeddings, InteractE generates multiple permutations (\mathcal{P}_k) of these embeddings and reshapes them using a "Checkered" reshaping function (ϕ). Depth-wise circular convolution \otimes) is employed to convolve each of the reshaped permutations, which are then flattened (vec) and fed to a fully-connected layer to generate the predicted object embedding.

> $\psi(s, r, o) = g(\text{vec}(f(\phi(\boldsymbol{\mathcal{P}}_k) \otimes \boldsymbol{w}))\boldsymbol{W})\boldsymbol{e}_o$ **Score Function:**

Components of InteractE

Feature Reshaping:

$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$	a_1 a_2 a_3 a_4	a_1 b_1 a_2 b_2
a_5 a_6 a_7 a_8	$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_3 \\ b_4 \end{bmatrix}$	b_3 a_3 b_4 a_4
$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_3 \\ b_4 \end{bmatrix}$	a_5 a_6 a_7 a_8	a_5 b_5 a_6 b_6
b_5 b_6 b_7 b_8	b_5 b_6 b_7 b_8	b ₇ a ₇ b ₈ a ₈
(a) Stack	(b) Alternate	(c) Chequer

Proposition 7.3. For any kernel w of size k and for all reshaping functions $\phi: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{n \times n}$, the following statement holds:

$$\mathcal{N}_{het}(\phi_{chk}, k) \ge \mathcal{N}_{het}(\phi, k)$$

Acknowledgement

This work is supported in part by the Ministry of Human Resource Development (Government of India) and Google PhD Fellowship.

Circular Convolution:

Proposition 7.4. Let Ω_0 , $\Omega_c: \mathbb{R}^{n \times n} \to \mathbb{R}^{(n+p) \times (n+p)}$ denote zero padding and circular padding functions respectively, for some p > 0. Then for any reshaping function ϕ ,

$$\mathcal{N}_{het}(\Omega_c(\phi), k) \ge \mathcal{N}_{het}(\Omega_0(\phi), k)$$

Source Code

Source code is available at: github.com/malllabiisc/InteractE Contact

soumyasanyal@iisc.ac.in svashish@cs.cmu.edu

Results

	FB15k-237			WN18RR		
	MRR	H@10	H@1	MRR	H@10	H@1
SACN RotatE	.35 .338	.54 .533	.26 .241	.47 .476	.54 .571	.43 .428
ConvE	.325	.501	.237	.43	.52	.40
InteractE	.354	.535	.263	.463	.528	.430

Link prediction results on FB15k-237 and WN18RR. We find that InteractE outperforms or gives comparable performance across all the datasets.

Effect of Feature Reshaping Function

Performance on WN18RR

Performance on FB15k-237

As we decrease T, the number of heterogeneous interactions increases. The results empirically validate that increasing heterogeneous interactions improve link prediction.