Instituto Superior de Engenharia de Lisboa

Licenciatura/Mestrado em Engenharia Informática e de Computadores

Segurança Informática

Teste final, primeira época, Semestre de Inverno, 08/09

Duração: 2 horas e 30 minutos

- 1. (2) Considere a existência de um ataque à função de hash SHA1, baseado num algoritmo eficiente para: dado x, obter $x' \neq x$ tal que H(x') = H(x). Quais as implicações deste ataque caso esta função seja usada num esquema de assinatura digital.
- 2. (2) Na JCA (Java Cryptography Architecture) os keystores podem armazenar chaves e certificados. Qual a necessidade de indicar uma password para proteger um keystore apenas com certificados?
- 3. (2) Considere a infra-estrutura de certificados X.509.
 - 3.1. Como é que uma CA ao emitir o certificado C consegue impedir que uma cadeia seja considerada válida se o certificado C for usado nos certificados intermédios?
 - 3.2. Comente a seguinte frase: "Dada a natureza especial do certificado raiz (trust anchor) não faz sentido que este faça parte da cadeia de certificação de um certificado X.509".
- 4. (4) Considere o protocolo SSL (Secure Socket Layer).
 - 4.1. Indique quais os dois grandes sub-protocolos em que se divide o protocolo TLS. Descreva a funcionalidade de cada um.
 - 4.2. Descreva os mecanismos usados nos sub-protocolos para evitar ataques de replay.
- 5. (3) Considere um *site* para consulta das colocações dos alunos no concurso de acesso ao ensino superior. Um aluno pode consultar a sua colocação introduzindo o seu número de BI no *site*.

Como é que se pode evitar que um atacante com acesso à base de dados do *site* consiga facilmente obter uma lista dos BIs de todos os alunos que concorreram? Descreva as limitações da sua solução.

- 6. (2) Considere a seguinte política definida sobre o modelo $RBAC_1$:
 - $U = u_1, u_2, u_3$
 - $R = r_0, r_1, r_2, r_3$
 - $P = p_0, p_1, p_2$
 - $\{r_0 \leq r_1, r_0 \leq r_2, r_2 \leq r_3, r_1 \leq r_3\} \subseteq RH$
 - $UA = \{(u_1, r_1), (u_2, r_2), (u_3, r_3)\}$
 - $RA = \{(r_0, p_0), (r_1, p_1), (r_2, p_2)\}$
 - 6.1. Sendo s_0 um identificador de sessão, e $user(s_0) = u_2$, é possível que $r_1 \in roles(s_0)$? E que $r_0 \in roles(s_0)$?
 - 6.2. Quais os utilizadores que podem aceder a um recurso que exija a permissão p_1 .

Justifique todas as respostas.

- 7. (3) Considere os seguintes certificados SDSI (Simple Distributed Security Infrastructure):
 - a) K_M Instituicoes $ES \rightarrow K_M$ Politecnico
 - b) K_M Instituicoes $ES \rightarrow K_M$ Universidade
 - c) K_M Aluno $ES \rightarrow K_M$ InstituicoesES Aluno
 - d) K_M Aluno $ES \rightarrow K_M$ Politecnico Aluno
 - e) K_M Aluno $ES \rightarrow K_M$ Universidade Aluno
 - f) K_M Politecnico \rightarrow K_M IPL
 - g) $K_M IPL \rightarrow K_{IPL}$
 - h) K_{IPL} $Aluno \rightarrow K_{A123}$
 - i) K_{IPL} Aluno \rightarrow K_{IPL} AlunoMestrado
 - j) K_{IPL} $AlunoMestrado \rightarrow K_{A456}$
 - 7.1. Quais dos certificados anteriores são redundantes? Demonstre esta redundância provando que são inferíveis a partir de outros certificados.
 - 7.2. Quais as chaves que fazem parte do nome local K_M Aluno ES? Justifique.
 - 7.3. Se a chave do IPL (K_{IPL}) mudar quais os certificados que teriam de ser reemitidos?
- 8. (2) Em C e C++, os buffers presentes em stack são os únicos vulneráveis a ataques de buffer overflow?