SPACE APPS CHALLENGE 2024

SEISMIC DETECTION

PRIMARY OBJECTIVE:

The primary objective is to develop a computer program capable of analyzing seismic data to accurately distinguish seismic quakes from noise.

AGENDA

Data Collection

Data Preprocessing

Features Extraction

Build & Design The Algorithm

Report & Document the Results

SPACE APPS CHALLENGE 2024 SEISMIC DETECTION

Data Collection

1. Lunar Apollo Mission Seismic Data || 2. Mars InSight Lander Seismic Data || 3. Additional Data: Earthquake

Data Preprocessing

- 1. Noise Reduction: Bandpass Filter
- 2. Normalization: Standardization

SPACE APPS CHALLENGE 2024 SEISMIC DETECTION

Features Extraction

Continuous Wavelet Domain (CWT): provides a time-frequency representation of signals, offering multi-resolution analysis across various scales. It captures both short-term, high-frequency details and long-term, low-frequency trends. The output is a 2D matrix of wavelet coefficients, representing the signal's frequency content at each time point.

SPACE APPS CHALLENGE 2024 SEISMIC DETECTION

Build & Design The Algorithm

- The detection algorithm applies a bandpass filter to seismic signals, followed by a continuous wavelet transform (CWT) to extract time-frequency features. It then divides the signal into overlapping windows and assigns weights to high-frequency components. The algorithm identifies the "best window" with the maximum weighted amplitude, marking it as the likely onset of seismic

activity.

