Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason's Gain Formula		1	2 DODE PLOT
				2.1 Introduction
2	Bode Plot		1	2.2 Example
	2.1 2.2	Introduction	1	3 Second order Syste
3	Secon 3.1 3.2	Damping	1 1 1	3.1 Damping3.2 Example4 Routh Hurwitz Criter
4	Routl 4.1 4.2 4.3	Routh Array	1 1 1 1	4.1 Routh Array4.2 Marginal Stability4.3 Stability5 State-Space Model
5	State -5.1 5.2	Space Model Controllability and Observability Second Order System	1 1 1	5.1 Controllability and Observability5.2 Second Order System6 NYQUIST PLOT
6	Nyquist Plot		1	7 Compensators
7	Compensators		1	8 Phase Margin 8.1. The open loop transfer function
8	Phase Margin		1	$G(s) = \frac{2}{(s+1)(s+2)}$
9	Gain Margin		3	Find its magnitude and phase r

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

2 Bode Plot

- M
- RION

n of a system is

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 (8.1.1)

esponse. **Solution:** Substituting s =

$$G(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)}$$
 (8.1.2)

$$G(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)}$$

$$\implies |G(j\omega)| = \frac{2}{(\sqrt{\omega^2+1})(\sqrt{\omega^2+4})}$$
 (8.1.2)

$$\angle G(j\omega) = -\tan^{-1}(\omega) - \tan^{-1}\left(\frac{\omega}{2}\right)$$
(8.1.4)

8.2. Find ω for which the gain of (8.1.1) first becomes 1.

Solution: From (8.1.3)

$$|G(j\omega)| = 1 \qquad (8.2.1)$$

$$\left| G(j\omega) \right| = 1 \qquad (8.2.1)$$

$$\implies \frac{2}{\left(\sqrt{\omega^2 + 1}\right)\left(\sqrt{\omega^2 + 4}\right)} = 1 \qquad (8.2.2)$$

$$\implies \omega_{gc} = 0 \qquad (8.2.3)$$

which is the desired frequency.

8.3. Find $\angle G(j\omega_{gc}) + 180^{\circ}$. This is known as the *phase margin*(PM)

Solution: From (8.1.4),

$$\angle G(\omega) = 0^{\circ} \implies PM = 180^{\circ} \qquad (8.3.1)$$

8.4. Verify your result by plotting the gain and phase plots of $G(1\omega)$.

Solution: The following code plots Fig. 8.4

The Phase plot is as shown,

Fig. 8.4

8.5. A positive phase margin for the open loop system indicates a stable closed loop system. (8.3.1) indicates that G(s) with unity feedback is stable. Show that the roots of 1 + G(s) lie in the left half plane proving closed loop stability. Solution: Let the closed loop transfer function

$$T(s) = \frac{G(s)}{1 + G(s)}$$
 (8.5.1)

Then

$$1 + G(s) = 0 (8.5.2)$$

$$\implies s^2 + 3s + 4 = 0 \tag{8.5.3}$$

or
$$s = -1.5 + 1.3j$$
, $-1.5 - 1.3j$ (8.5.4)

Since the roots are in the left half plane, the system is stable.

8.6. Instead of unity feedback, consider a system with

$$H(s) = \frac{50}{s+1} \tag{8.6.1}$$

Compute the open loop phase margin for this system.

Solution:

$$G(s)H(s) = \frac{100}{(s+1)^2(s+2)},$$
 (8.6.2)

the magnitude and phase are

$$\left| G(j\omega) H(j\omega) \right| = \frac{10^2}{\sqrt{(\omega^2 + 1)^2} \sqrt{\omega^2 + 4}}$$
 (8.6.3)

$$\angle G(j\omega)H(j\omega) = -\tan^{-1}\frac{\omega}{2} - 2\tan^{-1}(\omega)$$
(8.6.4)

The gain crossover frequency is given by

$$\frac{10^2}{\sqrt{\omega_{gc}^2 + 4} \sqrt{(\omega_{gc}^2 + 1^2)^2}} = 1 \tag{8.6.5}$$

(8.6.6)

$$\omega_{gc}^6 + 6\omega_{gc}^4 + 9\omega_{gc}^2 - 9996 = 0$$
 (8.6.7)
 $\Longrightarrow \omega_{gc} = 4.42$ (8.6.8)

$$\implies \omega_{gc} = 4.42 \qquad (8.6.8)$$

From (8.6.4) and (8.6.8), the phase margin is

$$PM = 180^{\circ} - 2 \tan^{-1}(\omega_{gc}) - \tan^{-1}\left(\frac{\omega_{gc}}{2}\right)$$
(8.6.9)

$$\implies P.M = -40.15^{\circ}$$
 (8.6.10)

8.7. Verify your result through the magnitude and phase plot.

Solution: The following code plots Fig. 8.7

8.8. Since the PM in (8.6.10) is negative, the closed loop system is unstable. Verify this using the Routh-Hurwitz criterion.

Fig. 8.7

Solution: The characteristic equation is

$$1 + G(s)H(s) = 0 (8.8.1)$$

$$\implies s^3 + 4s^2 + 5s + 102 = 0$$
 (8.8.2)

Constructing the routh array for (8.8.2),

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s \end{vmatrix} = \begin{vmatrix} 1 & 5 & 0 \\ 4 & 102 & 0 \\ -20.5 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s \\ s^{0} \end{vmatrix} = \begin{vmatrix} 1 & 5 & 0 \\ 4 & 102 & 0 \\ -20.5 & 0 & 0 \\ 102 & 0 & 0 \end{vmatrix}$$

$$(8.8.3)$$

$$(8.8.4)$$

: there are two sign changes in the first column of the routh array, two poles lie on right half of s-plane. Therefore, the system is unstable.

9 Gain Margin