STAT540 Biology Introduction

Alice Zhu, Evan Durno

Biology studies organisms and their interaction with the environment

Cells, signal network, DNA/RNA, Proteins

Characteristic compartment layout of cells

Some typical cells

Structure of bacteriophage

DNA has 3 forms of double helix, and is composed of nucleotides

DNA: Double Helix

DNA encodes genes

Coding region is only a fraction of the genome

Number of genes in species:

Human: 20,000 ~ 30,000

Rice: 28,000 Fly: 14,000

Yeast: 6,000

E.coli: 4,000

The noncoding DNA is not junk region

Human and Fugu fish share roughly the same genes and regulatory sequences, but the Fugu fish has a more condensed form with little junk region.

Fugu fish: 400 million base Human: 3 billion base

RNA

RNA is synthesized by transcription

Transcription proceeds from 5' to 3' on the RNA, i.e. from 3' to 5' on the complementary template DNA

Protein Structure

Primary structure amino acid sequence beta sheet Secondary structure regular sub-structures hemoglobin Tertiary structure three-dimensional structure Quaternary structure

Primary Protein structure sequence of a chain of animo acids

Secondary Protein structure hydrogen bonding of the peptide backbone causes the amino acids to fold into a repeating pattern

Quaternary protein structure protein consisting of more than one amino acid chain

Tertiary protein structure three-dimensional folding pattern of a protein due to side chain interactions

http://cnx.org/content/m44402/latest/Figure_03_04_09.jpg

complex of protein molecules

Protein is synthesized by translation

Translation is interpreted via Codon

Codon Degeneracy:

Many distinctive codons can redundantly map onto the same amino acid

Second letter											
		U	С	Α	G						
First letter	U	UUU } Phe UUC } Leu UUG }	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G	Thire				
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC CGA CGG	UCAG					
	Α	AUU AUC AUA Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU Ser AGA AGG Arg	UCAG	Third letter				
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA GAG GIU	GGU GGC GGA GGG	U C A G					

http://www.mun.ca/biology/scarr/MGA2_03-20.html

The **Central Dogma**: Summary

http://www.angelfire.com/dc/apgenetics/central.dogma.jpg DNA Replication Transcription RNA Translation protein

- > The inherited information is stored in DNA
- > RNA carries the inheritance information from nucleus to cytoplasm
- ➤ The inheritance information is expressed in proteins with RNA being the mediator
- The proteins come in versatile structures equipped with diverse functions to meet cellular demand

Example for the flow of heritable information, quantitatively: in human,

DNA: 3 billion bp (haploid) → RNA transcripts: 62.1-74.7% of DNA transcribed

(Djebali, Davis et al, 2012) → Proteins: about 20,000-25,000

Regulation of the gene expression

Regulation of the gene expression

Epigenetic Regulation

- Genes are silenced or activated by epigenetically modifying the access of transcriptional machinery to the DNA
- e.g. signalled by methylation of DNA = off genes.
- •The access is moderated by regulating how compact the DNA is,

Chromatin and Chromosome compact the genome

http://upload.wikimedia.org/wikipedia/commons/4/4b/Chromatin_Structures.png

In eukaryotic cells only, the prokaryotes counterpart is genophore

Chromosome

Size of genome vs. size of nucleus

General GENOME Sizes

Yeast 12 million bp
Worm 100 million bp
Fruit Fly 133 million bp
Human 3.3 billion bp
Mouse 3.4 billion bp
Red Viscacha Rat 8.2 billion bp
Mountain Grasshopper 16.5 billion bp

Avg. diameter of nucleus of mammalian cells = 6 micrometers

http://info.gersteinlab.org/Genome_Statistics

Regulation – Signal Transduction

Regulation of the gene expression

Post-transcriptional regulation: miRNA, siRNA, piRNA

Summary: Regulation of the gene expression

- Activate or silence gene expression
- Control on each level of the cascading flow for gene expression,
- Some control may entail multiple levels
- The regulation involves various type and quantity of molecules, such as RNA, noncoding RNA, protein, DNA, which is still in need of understanding.

Genetic variation: inter-species

http://bio8.wikispaces.com/

Genetic variation: intra-species

CHICKEN VARIATIONS

Single Nucleotide Variation (SNV) Single Nucleotide Polymorphism (SNP)

h2p://wikipedia.org

- SNP: the alternative base of the SNV occur > 1% population
- Most are biallelic, synonymous or non-synonymous due to codon degeneracy
- e.g. 1 per 1,000-2,000 bp in human genome, giving rise to genetic diversity
- may be disease-related: Osteoporosis(SMAD1) sickle-cell anemia(SNP in β-globin gene)
- Popular in Genome-wide association study(GWAS)
 which investigates the association (cosegregation)
 between the SNPs and a trait (disease or response to
 drug, e.g. Warfarin)

http://www.mun.ca/biology/scarr/MGA2_03-20.html

Disease-related: Genetic variation within the same species or within one individual

Reference: Chromosomal Chaos and Cancer, Peter Duesberg

Examples:

Copy Number Variation(CNV): Addition or deletion of copy number , e.g. Huntington's disease

Loss of Heterozygosity(LOH): initially heterozygous for a mutant allele, but mutation (point or deletion, chromosomal deletion/breaks, recombination) converts it to homozygous of mutant allele.

Genetic Variation: Summary

- Inter- or intra- species, or among the cells within the same individual
- Could be disease-causing, or the coordination between a number of variation together contribute to the disease manifestation
- SNP is widely utilized in GWAS study

How is the genome data generated?

http://www.microarray.lu/en/MICROARRAY_Overview.shtml

Next Generation Sequencing

NGS

High-end sequencing- Platform†	Sequencing chemistry	Read lengths/ through put	Run time	Template prep	Application
Roche 454 - Titanium FLX	Pyrosequencing	400 bp 400 Mb/run	10 hours	Emulsion PCR	Denovo WGS of microbes, pathogen discovery, Exome seq
Illumina/Solexa -HiSeq 2000	Reversible terminator chemistry	2×100bp 600 GB/ run (dual cell)	11.5 days	Solid-phase	Human WGS, exome seq, RNA-seq, Methylation
ABI/LifeTechnology-SOLiD 5550XL	Sequencing by ligation	2×60bp 15 GB/day	8 days	Emulsion PCR	Human WGS, exome seq, RNA-seq, Methylation
HelicosBiotechnologies	Reversible Terminator chemistry	25-55 bp 28 GB/run (avg)	>I GB/hour	Single molecule	Human WGS, exome seq, RNA-seq, Methylation
Roche 454- GS Junior	Pyrosequencing	400 bp 50 Mb/run	10 hours	Emulsion PCR	Denovo WGS of microbes, pathogen discovery, Exome seq
Illumina/Solexa- MiSeq	Reversible terminator chemistry	2×150bp 1.0-1.4 Gb	26 hours	Solid-phase	Microbial discovery, Exome seq, Targeted capture
ABI/ Lifetechnology- lontorrent	H+ Ion sensitive transistor	320 Mb/run	8 hours*	Emulsion PCR	Microbial discovery, Exome seq, Targeted capture

^{*}Sample preparation -6 hours, sequencing time -2 hours, †Data shown here represent the highest figures currently available on the company website and is highly likely to change by the time this article is published

Technology – Applications

- DNA => genetic variations
 - SNP array
 - Whole genome / exome / targeted sequencing
- RNA => differential expression
 - Expression array
 - RNA-seq / miRNA-seq
- Epigenome => differential methylation / chromatin state
 - DNA methylation array
 - Bisulfite sequencing
 - Methylated DNA immunoprecipitation (MeDIP-seq)
 - Chromatin immunoprecipitation sequencing (ChIPseq) for histone modifications

Database

NCBI Home Resource List (A-Z) All Resources Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature Proteins Sequence Analysis Taxonomy Training & Tutorials Variation

All Resources

All Databases Downloads Submissions Tools How To

Databases

Assembly

A database providing information on the structure of assembled genomes, assembly names and other meta-data, statistical reports, and links to genomic sequence data.

BioProject (formerly Genome Project)

A collection of genomics, functional genomics, and genetics studies and links to their resulting datasets. This resource describes project scope, material, and objectives and provides a mechanism to retrieve datasets that are often difficult to find due to inconsistent annotation, multiple independent submissions, and the varied nature of diverse data types which are often stored in different databases.

BioSample

The BioSample database contains descriptions of biological source materials used in experimental assays.

Bio Systems

Database that groups biomedical literature, small molecules, and sequence data in terms of biological relationships.

Bookshelf

A collection of biomedical books that can be searched directly or from linked data in other NCBI databases. The collection includes biomedical textbooks, other scientific titles, genetic resources such as GeneReviews, and NCBI help manuals.

ClinVar

A resource to provide a public, tracked record of reported relationships between human variation and observed health status with supporting evidence. Related information in the NIH Genetic Testing Registry (GTR), MedGen, Gene, OMIM, PubMed and other sources is accessible through hyperlinks on the records.

CloneDB (formerly Clone Registry)

A database that integrates information about clones and libraries, including sequence data, map positions and distributor information.

Summary

- •DNA → RNA → Protein → non-coding RNA
- •Genes from the genome are expressed under intricate regulation.
- •Variation in the genome may result in (i) disease manifestation, (ii) response to treatment, and need to be extracted from the background noise.
- •Technology enables high-throughput production of data pertaining to DNA, RNA and Protein, and could be used in search for underlying genomic cause of certain conditions.