Modéliser une valeur absolue : un exemple

Un problème bien connu en statistique :

On observe des points $(x_i, y_i) \in \mathbb{R}^2$ i = 1, ..., n et on s'intéresse à trouver une fonction linéaire $y = a \cdot x + b$ qui ref ète l'échantillon

Une manière de faire ceci est de minimiser :

$$\sum_{i=1}^{n} (ax_i + b - y_i)^2, \tag{1}$$

où $a,b\in\mathbb{R}$ sont les paramètres de la droite qui est cherchée.

$$(ax_i + b - y_i)^2$$
: Carré de la distance verticale du point (x_i, y_i) à la droite $y = ax + b$

Au lieu d'utiliser la méthode des moindres carrés on pourrait aussi minimiser la fonction suivante un peu plus robuste face à des valeurs déviantes :

$$\sum_{i=1}^{n} |ax_i + b - y_i|. \tag{2}$$

L'astuce:

Introduire une variable de plus qui modélise la valeur absolue de $ax_i + b - y_i$.

Le programme linéaire

$$\min \sum_{i=1}^{n} h_{i}
h_{i} \geq ax_{i} + b - y_{i}, i = 1, ..., n
\geq -(ax_{i} + b - y_{i}), i = 1, ..., n$$
(3)

Les variables sont h_i , i = 1, ..., n, a et b. Pour $a \in \mathbb{R}$ et $b \in \mathbb{R}$ fixés, les h_i optimaux seront $h_i = |ax_i + b - y_i|$ vu que la fonction objectif minimise la somme des h_i . Si un des h_i était strictement plus grand que $|ax_i + b - y_i|$ alors la fonction objectif pourrait être améliorée en diminuant ce h_i .

Un exemple

But

Trouver une droite ajustée, comme décrit auparavant, pour les points

$$(1,3), (2.8,3.3), (4,2), (5.5,2.1), (6,0.2), (7,1.3), (7.5,1), (8.5,0.8).$$

Une droite ajustée optimale qui respecte la mesure de distance (2) est la droite $y = -0.293333 \cdot x + 3.293333$.

