IELET2107 Øving 1

Øving 1

Oppdatert: 2021-08-27

Oppgave 1 - Robotkonfigurasjon

Betrakt en robotmanipulator i planet bestående av et roterende ledd etterfulgt av et prismatisk ledd som vist i figur 1.

Figur 1: Robot i planet med 2 frihetsgrader

- a) Anta at leddene har frihetsgrader θ og d, distansen fra monteringspunktet til det roterende leddet er konstant med lengde l_1 , og at distansen fra det roterende til det prismatiske leddet er konstant med lengde l_2 . Skisser robotens arbeidsområde gitt at enden av det prismatiske leddet regnes som endeffektor.
- b) Definer en verdensramme og lokale koordinatrammer for roboten, og beregn direktekinematikken for manipulatoren. Direktekinematikken skal inneholde både posisjon og orientering for endeffektor.
- c) Beregn den inverse kinematikken til manipulatoren gitt at ønsket endeffektorposisjon er (x_e, y_e) .
- d) Finn hastighetskinematikken til roboten, og bestem om manipulatoren har singulære konfigurasjoner.

Oppgave 2 - Enkodere

Anta at vinkelen θ til rotasjonsleddet til roboten i figur 1 måles med en inkrementell enkoder med PPR = 1024.

- a) Hva blir oppløsningen til vinkelmålingen?
- b) Finn et uttrykk for posisjoneringsnøyaktigheten til endeffektor til roboten i figur 1 som en funksjon av d gitt at oppløsningen til θ er som i forrige oppgave og at d måles nøyaktig.

IELET2107 Øving 1

Oppgave 3 - Rotasjoner

- a) Gitt fire lokale koordinatrammer $o_0x_0y_0z_0$, $o_1x_1y_1z_1$, $o_2x_2y_2z_2$ og $o_3x_3y_3z_3$, og rotasjonsmatrisene R_1^0 , R_2^0 og R_2^3 . Finn uttrykk for rotasjonsmatrisene R_3^0 og R_2^1 .
- b) Gitt følgende sekvens av rotasjoner
 - 1) En rotasjon på ϕ rundt verdens x-aksen
 - 2) En rotasjon på θ rundt verdens z-aksen
 - 3) En rotasjon på ψ rundt den aktuelle y-aksen
 - 4) En rotasjon på α rundt verdens x-aksen
 - 5) En rotasjon på β rundt den aktuelle y-aksen

Hva blir den totale rotasjonen R (det er ikke nødvendig å utføre matrisemultiplikasjonene)?

c) Koordinatrammen $o_2x_2y_2z_2$ framkommer etter en rotasjon av koordinatrammen $o_0x_0y_0z_0$ rundt z_0 med vinkel $\frac{\pi}{6}$, og deretter en rotasjon rundt x_1 med vinkel $\frac{\pi}{4}$. Gitt punktet $p^2 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, hva er p^0 ?