

TMA4180

Optimisation I

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 1

1 a) Remembering that, by definition,

$$\liminf_{k \to \infty} y_k = \lim_{k \to \infty} \inf_{n > k} y_n,$$

this inequality follows from three properties: (1) the infimum—think minimum—of two sets A and B is greater than or equal to the sum of the infimum of each set:

$$\inf(A+B) \ge \inf A + \inf B$$
,

where $A + B = \{a + b : a \in A \text{ and } b \in B\}$; (2) the limit operation is linear:

$$\lim_{k \to \infty} (a_k + Cb_k) = \lim_{k \to \infty} a_k + C \lim_{k \to \infty} b_k;$$

and (3) taking limits preserve non-strict inequalites (\leq or \geq): if $a_k \leq b_k$ for all $k \in \mathbb{N}$, then $\lim_k a_k \leq \lim_k b_k$, provided the limits exist. (Try to prove these properties if they are not clear to you.) Hence,

$$\lim_{k \to \infty} \inf y_k + \lim_{k \to \infty} \inf z_k = \lim_{k \to \infty} \left(\inf_{m \ge k} y_m + \inf_{n \ge k} z_n \right) \\
\leq \lim_{k \to \infty} \left(\inf_{\ell \ge k} (y_\ell + z_\ell) \right) = \lim_{k \to \infty} \inf (y_k + z_k),$$

where ℓ is just a common index.

Strict inequality occurs for example if $y_k = (-1)^k$ and $z_k = (-1)^{k+1}$. Then $y_k + z_k = 0$ for all k, which yields

$$\lim_{k \to \infty} \inf y_k = -1 = \lim_{k \to \infty} \inf z_k \quad \text{and} \quad \lim_{k \to \infty} \inf (y_k + z_k) = 0.$$

b) For any k it is true that

$$y_k^i \le \sup_{i \in I} y_k^i$$

for all i by definition of supremum, and $\sup_{i \in I} y_k^i$ is just a real sequence indexed by k—let us call it x_k to make notation easier. Since $y_k^i \leq x_k$ for all k (and i), it follows that

$$\liminf_{k \to \infty} y_k^i \le \liminf_{k \to \infty} x_k.$$

(Try to prove this yourself, or ask for help.) As this inequality holds for all i, we can take the supremum and obtain

$$\sup_{i \in I} \liminf_{k \to \infty} y_k^i \le \liminf_{k \to \infty} x_k = \liminf_{k \to \infty} \left(\sup_{i \in I} y_k^i \right).$$

2 Let $x \in \mathbb{R}^n$ be arbitrary, and $(x_k)_{k \in \mathbb{N}} \subset \mathbb{R}^n$ be any sequence converging to x. We must show that $\lim \inf_{k \to \infty} f(x_k) \ge f(x)$, and this is a direct consequence of exercise 1 b):

$$\liminf_{k \to \infty} f(x_k) = \liminf_{k \to \infty} \left(\sup_{i \in I} f_i(x_k) \right) \ge \sup_{i \in I} \left(\liminf_{k \to \infty} f_i(x_k) \right) \ge \sup_{i \in I} f_i(x) = f(x).$$

Indeed, the first inequality comes from exercise 1 b) with $y_k^i = f_i(x_k)$, while the latter is a result of the lower semi-continuity of the f_i 's (and properties of supremum).

- 3 Note first that a finite sum of lower semi-continuous (l.s.c.) functions is l.s.c., and furthermore, that continuous functions especially are l.s.c. (try to prove both facts).
 - a) The polynomial $x \mapsto x^4 20x^3$ is continuous, and hence, also l.s.c. Moreover, $x \mapsto \sin(kx)$ is continuous (and l.s.c.) for all $k \in \mathbb{N}$, so that $\sup_{k \in \mathbb{N}} \sin(kx)$ is l.s.c. by exercise 2. Thus f is l.s.c. Since, sin is a bounded function, it follows that f grows like x^4 as $|x| \to \infty$. In particular, f is coercive, and we deduce the existence of a global minimiser on \mathbb{R} by Theorem 9 in the note "Minimisers of Optimization Problems."
 - b) Since g is continuous, it is l.s.c. Coercivity fails, because $g(x) \to 0$ as $x \to -\infty$. However, g is bounded from below, and strictly increasing for sufficiently large x (hence, these points cannot be minimisers). As, for example, $g(-1) < 0 = g(-\infty)$, it follows that g attains a global minimiser in \mathbb{R} .
 - c) Again, h is continuous and therefore also l.s.c. It is not coercive, which can be seen by letting $||(x_1, x_2)|| \to \infty$ with $x_1 \equiv 0$, yielding $h(x_1, x_2) \equiv 0$ for this particular sequence. Due to quadratic terms, h is bounded from below by 0, and we observe that all points on the x_1 -axis are global minimisers with function value equal to 0.
- Effectively, the exponential map $x \mapsto \exp(-x^2)$ is always positive, decreasing, and goes to 0 as $|x| \to \infty$ much faster than any polynomial goes to infinity. Thus for f to have a global minimum, we need that $x^2 2x + c \le 0$ for some (finite) $x \in \mathbb{R}$. This is also sufficient, as f is continuous and thus will have a minimum in a compact interval containing that particular x. By factoring,

$$x^{2} - 2x + c = (x - 1 - \sqrt{1 - c})(x - 1 + \sqrt{1 - c}) \le 0,$$

and so the factors need to have opposite sign, or at least one be equal to 0. This leads to

$$1 - \sqrt{1 - c} \le x \le 1 + \sqrt{1 - c}$$

(the other alternative is impossible), from which we conclude that $c \leq 1$ is necessary and sufficient.

Taking for granted that $\|\cdot\|_{F}$ is a norm on $\mathbb{R}^{n\times n}$ (exercise: show this), it follows that $\|\cdot\|_{F}$ is continuous (all norms are continuous; prove it if you want). Moreover,

the determinant function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous because det A equals just a linear combination of products of the elements of A. Thus the map

$$f \colon \Omega \to \mathbb{R}$$
 given by $f(A) = ||A||_{\mathcal{F}} + \frac{1}{\det A}$,

where $\Omega = \{A \in \mathbb{R}^{n \times n} : \det A > 0\}$, is continuous (in particular, l.s.c.).

But Ω is an open, unbounded set, and so we need to find a compact subset $K \subset \Omega$ where global minimiser(s) in Ω ought to exist. Since $f(I_{n \times n}) = n + 1$ for the identity matrix $I_{n \times n}$, it suffices to consider $A \in \Omega$ with

$$||A||_{\mathcal{F}} \le n+1$$
 and $\frac{1}{\det A} \le n+1$.

Defining

$$K = \{ A \in \mathbb{R}^{n \times n} : ||A||_{\mathcal{F}} \le n + 1 \text{ and } \det A \ge (n+1)^{-1} \},$$

which is a compact set (why?), we conclude that f admits a global minimum in $K \subset \Omega$.

6 a) Routine differentiation yields

$$\nabla f(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$$

and

$$\nabla^2 f(x) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}.$$

b) Since f is defined in terms of quadratic terms, it is bounded from below by 0. Moreover f(x) = 0 if and only if $x_2 = x_1^2$ and $1 - x_1 = 0$, which means that $x_1 = 1$ and $x_2 = 1$. Therefore (1, 1) is the unique minimiser of f.

Another argument: (1,1) is the only stationary/critial point of f, that is, the only point for which $\nabla f = 0$. Moreover, the Hessian

$$\nabla^2 f(1,1) = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix}$$

has eigenvalues $501 \pm \sqrt{250601} > 0$, and so f is symmetric positive definite at (1,1). Hence, (1,1) is a strict local minimiser by Theorem 2.4 in N&W. As f is coercive (check it), (1,1) must be a global minimiser, and in fact, the minimiser since there are no other stationary points.