

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 7 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วันศุกร์ที่ 6 พฤษภาคม พ.ศ. 2554 เวลา 8.30-13.30 น.

ข้อสอบภาคทฤษฎี

คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบภาคทฤษฎีคะแนนรวม 120 คะแนน คิดเป็น 60 % ของคะแนนในการแข่งขันทั้งหมด
- 2. ให้นักเรียนตรวจสอบเอกสารก่อนลงมือทำดังนี้
 - 2.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 20 หน้า (รวมปกและตารางธาตุ)
 - 2.2 กระดาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 39 หน้า (รวมปก)
 - 2.3 เลขประจำตัวสอบในข้อสอบภาคทฤษฎีและกระคาษคำตอบภาคทฤษฎีทุกหน้า
- 3. ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบทันที แล้วรวบรวมข้อสอบและกระดาษคำตอบใส่ในซองเอกสาร วางไว้บน โต๊ะ รอจนกรรมการคุมสอบเก็บข้อสอบก่อน จึงออกจากห้องสอบ
- 5. โจทย์กำนวณให้แสดงวิธีกิดตามโจทย์ที่กำหนด กรณีกำตอบที่เป็นตัวเลขต้องกำนึงถึงเลขนัยสำคัญหรือ ตอบจำนวนทศนิยมตามที่โจทย์กำหนด
- 6. ในระหว่างการสอบ นักเรียนสามารถรับประทานอาหารว่างที่วางให้บนโต๊ะได้
- 7. ห้ามยืมเครื่องเขียนหรือเครื่องคิดเลขผู้อื่นใช้โดยเด็ดขาด
- 8. ห้ามนักเรียนนำเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนถือว่าทุจริตในการสอบ กรณีทุจริตใด ๆ ก็ตามนักเรียนจะหมดสิทธิ์ในการแข่งขันและจะถูกให้ออกจากห้องสอบทันที

กำหนดให้

เลขอาโวกาโคร (Avogadro number)

ค่าคงที่ของแก๊ส (Gas constant)

 $N_A = 6.02 \times 10^{23} / mol$

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

 $= 0.082 \text{ L atm mol}^{-1} \text{ K}^{-1}$

= 1.987 cal/mol.K

 $K = {}^{o}C + 273$

ค่าคงที่ของฟาราเคย์ (Faraday constant)

ค่าคงที่ของพลังค์ (Planck's constant)

ความเร็วแสง

 $F = 96,500 \text{ C/mol e}^-$

 $H = 6.63 \times 10^{-34} \text{ J.s}$

 $C = 3 \times 10^8 \text{ m/s}$

ปริมาตรต่อ โมลของแก๊สอุดมคติ (molar volume of gas) $= 22.4~L~ \dot{\vec{n}}$ STP

สมการอาร์เรเนียส

 $k \quad = A e^{\,-Ea/RT}$

1 atm = 760 mmHg

 $1 L = 1 dm^3 = 10^3 cm^3 = 10^3 mL$

1 cal = 4.184 J

การแข่งขัน เคมีโอลิมปิกระดับชาติ ครั้งที่ 7

ตารางธาตุ

								1 1.0									VIIIA 2 4.0
IA	IIA							H hydrogen				IIIA	IVA	VA	VIA	VIIA	He helium
3 Li ^{6.9}	4 Be 9.0											5 B 10.8	6 C 12.0	7 14.0 N	8 16.0 O	9 19.0 F	10 20.2 Ne
11 23.0 Na	beryllium 12 24.3 Mg					ransition	Elemen					boron 13 27.0 Al	carbon 14 28.1 Si	15 31.0 P	oxygen 16 32.1 S	fluorine 17 35.5 Cl	neon 18 39.9 Ar
sodium	magnesium	IIIB	IVB	VB	VIB	VIIB		· VIIIB ·		IB	IIB	aluminum	silicon	phosphorus	sulfur	chlorine	argon
19 39.1 K	$\mathbf{Ca}^{40.1}$	21 45.0 Sc	22 47.9 Ti	$\mathbf{V}^{50.9}$	24 C r 52.0	25 54.9 Mn	26 55.8 Fe	27 C0 58.9	28 58.7 Ni	29 63.5 Cu	30 65.4 Zn	31 69.7 Ga	32 72.6 Ge	33 74.9 As	34 79.0 Se	35 79.9 Br	36 83.8 Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
37 85.5 Rb	38 87.6 Sr	39 88.9 Y	40 91.2 Zr	41 92.9 Nb	42 95.9 Mo	43 98.9 Tc	44 101.1 Ru	45 102.9 Rh	46 106.4 Pd	47 107.9 Ag	48 112.4 Cd	49 114.8 In	50 118.7 Sn	51 121.8 Sb	52 127.6 Te	53 126.9 I	54 131.3 Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
55 132.9 Cs	56 137.3 Ba	57-71	72 178.5 Hf	73 180.9 Ta	74 183.9 W	75 186.2 Re	76 190.2 Os	77 192.2 Ir	78 195.1 Pt	79 197.0 Au	80 200.6 Hg	81 204.4 Tl	82 207.2 Pb	83 209.0 Bi	84 (209) Po	85 (210) At	86 (222) Rn
cesium	barium	*	hafnium	tantalum	tungsten	rhenium	osmium	irridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
87 (223) Fr	88 (226) Ra	89-103	104 (261) Rf	105 (262) Db	106 (266) Sg	107 (264) Bh	108 (269) Hs	109 (268) Mt	110 (271) Ds	111 (272) Rg	112 (277) Uub	113 (284) Uut	114 (289) Uuq	115 (288) Uup	116 (292) Uuh	117 (7) Uus	118 (7) Uuo
francium	radium	#	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	ununbium	ununtrium	ununquadium	ununpentium	ununhexium	ununseptium	ununoctium

*Lanthanide Series

#Actinide series

57	138.9	58 140.1	59 140.9	60 144.2	61 (145)	62 150.0	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	69 168.9	70 173.0	71 175.0
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
laı	nthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
89	$\mathbf{Ac}^{(227)}$	90 232.0 Th	91 231.0 Pa	92 238.0 U J	93 237.0 Nn	94 (244) Pu	95 (243) Am	96 (247) Cm	97 (247) Bk	98 (251) Cf	99 (254) Es	100 (257) Fm	101 (258) Md	102 (255) No	103 (256) Lr
a	ctinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium

โจทย์ข้อที่ 1 (5.5 คะแนน)

พิจารณาข้อมูลเกี่ยวกับปฏิกิริยาของธาตุ X ดังนี้

- ก. X ทำปฏิกิริยากับโซเคียมได้สารประกอบ Na_2X และเมื่อ Na_2X ละลายน้ำ เกิดปฏิกิริยา ไฮโครลิซิสได้สารละลายที่เป็นเบส
- ข. เผา X กับออกซิเจน ได้ XO_2 แต่ถ้ามีตัวเร่งปฏิกิริยาด้วยจะ ได้ XO_3 XO_2 มีออกซิเจนร้อยละ 50.0 โดยมวล
- ค. X หลอมเหลวทำปฏิกิริยากับคลอรีนได้สารประกอบ X_2Cl_2 ซึ่งมีกลิ่นเหม็นรุนแรง
- ง. เมื่อ ${
 m XO_3}$ ละลายน้ำปริมาณน้อยและให้ความร้อนจะได้กรดจำพวกกรดไพโร มีสูตร ${
 m H_2X_2O_7}$
- จ. เมื่อละลาย \mathbf{XO}_2 ในน้ำแล้วเติม \mathbf{NaOH} จะได้เกลือ \mathbf{Y}
- น. เมื่อต้ม Y กับ X จะได้เกลือ Z มีสูตร $Na_2X_2O_3$
- ช. (1) Y ทำปฏิกิริยากับ $\mathrm{Fe^{3+}}\,$ ได้เกลือออก โซที่ $\mathrm{X}\,$ มีเลขออกซิเดชันสูงสุด
 - (2) Z ทำปฏิกิริยากับ I_2 ได้เกลือ $Na_2X_4O_6$

ตอบคำถามต่อไปนี้โดยใช้สัญลักษณ์ตามตารางธาตุ

- 1.1 (1.5 คะแนน) X มีการจัดอิเล็กตรอนในออร์บิทัลอย่างไร
- 1.2 (2.5 คะแนน) จงเขียนและคุลสมการแสคงปฏิกิริยาที่เกิดขึ้นในข้อ ก ฉ และ ช
- 1.3 (1.5 คะแนน)
 - (1) จงเขียนสูตรลิวอิสของ X_2Cl_2 และเสนอโครงสร้างของโมเลกุลโดยใช้หลัก VSEPR
 - (2) โครงสร้างของกรคไพโร $H_2X_2O_7$ คล้ายกับการเอา H_2XO_4 2 โมเลกุลมาต่อเชื่อมโคยใช้ อะตอมออกซิเจนร่วมกัน จงวาครูปแสคงโครงสร้างสามมิติของ $H_2X_2O_7$

โจทย์ข้อที่ 2 (5.5 คะแนน)

ในช่วง 30 ปีที่ผ่านมา มีการทดลองสังเคราะห์ชาตุใหม่ ๆ ด้วยปฏิกิริยานิวเคลียร์อย่างกว้างขวาง ดังตัวอย่าง ต่อไปนี้

- ก. การระคมยิงนิวเคลียสของ $^{252}_{98}{
 m Cf}$ ด้วย $^{10}_{5}{
 m B}$ ทำให้ได้ธาตุ A พร้อมทั้งนิวตรอน 3 อนุภาค
- ข. การระคมยิงนิวเคลียสของ ²³⁸₉₂U ด้วยนิวตรอนความเร็วสูง ซึ่งในขั้นแรกจะได้ไอโซโทป ²³⁹U ก่อนที่จะสลายตัวให้แบปจูเนียม-239 ²³⁹Np จะสลายตัวต่อไปเป็นพลูโตเนียม-239 โดยมี ครึ่งชีวิต 2.35 วัน พลูโตเนียมจากปฏิกิริยานี้ใช้ประโยชน์เป็นเชื้อเพลิงนิวเคลียร์ในเครื่อง ปฏิกรณ์ปรมาณูชนิดใหม่ได้

ในการทดลองครั้งหนึ่ง หลังจากการยิงนิวตรอนสิ้นสุดลงและวัดค่ากัมมันตภาพรังสี (แอกทิวิตี) วิเคราะห์ผล แล้ววัดอีกครั้งเมื่อเวลาผ่านไป 117 นาที พบว่า ค่ากัมมันตภาพรังสีของ ²³⁹U เหลือเพียง 1/32 ของค่าเมื่อเริ่มต้น

- 2.1 (1 คะแนน) สัญลักษณ์นิวเคลียร์ของ A เป็นอย่างไร
- 2.2 (1.5 คะแนน) จงเขียนสมการนิวเคลียร์แสดงการเปลี่ยนแปลงทั้งหมดในกระบวนการในข้อ ข.
- **2.3** (1.5 กะแนน) ครึ่งชีวิตของ 239 U เป็นเท่าใด
- **2.4** (1.5 คะแนน) ถ้า 239 U ที่เกิดขึ้นในตอนแรกมีปริมาณ 1.00 g ทิ้งไว้นาน 10 วันจะมี 239 Pu เกิดขึ้นกี่กรัม
 - (ให้ถือว่า 239 U สลายเป็น 239 Np ได้หมคภายในเวลา 5 ชั่วโมง โดยที่ 239 Np ยังไม่สลายตัว)

โจทย์ข้อที่ 3 (5.5 คะแนน)

พิจารณาข้อมูลต่อไปนี้

ก. ถ้าฉายรังสีเอกซ์ไปยังสารตัวอย่าง จะทำให้อิเล็กตรอนชั้นในหลุดออกจากอะตอมได้ เรียก
 อิเล็กตรอนนี้ว่า โฟโตอิเล็กตรอน อิเล็กตรอนที่ออกมานี้มีพลังงานจลน์ติดตัวมาด้วยดังสมการ

$$h\nu = I + E_k$$

เมื่อ $h\nu =$ พลังงานของรังสีแม่เหล็กไฟฟ้าที่ใช้

I =พลังงานไอออไนเซชันหรือพลังงานยึดเหนี่ยวของอิเล็กตรอน

 $E_{\mathbf{k}} = \mathbf{w}$ ลังงานจลน์ของโฟโตอิเล็กตรอน

- ข. ข้อมูลจากการศึกษาการเลี้ยวเบนของรังสีเอกซ์พบว่า โลหะโครเมียมมีโครงสร้างผลึกเป็นแบบ ลูกบาศก์กลางตัว (body centered cubic) รัศมีอะตอมเท่ากับ 128 pm
- 3.1 (1 คะแนน) จากข้อมูลในข้อ ก. จงเรียงลำคับพลังงานจลน์ของ โฟโตอิเล็กตรอนที่หลุดออกมาจาก 1s ออร์บิทัลของโครเมียม (Cr) โมลิบดีนัม (Mo) และทั้งสเตน (W) เมื่อใช้รังสีเอกซ์พลังงานเท่ากัน บอกเหตุผลสั้น ๆ
- **3.2** (1 คะแนน) จากข้อ **3.1** โครเมียมไอออนที่เพิ่งเกิดขึ้นทันที มีอิเล็กตรอนเดี่ยวจำนวนเท่าใด
- 3.3 (2 กะแนน) จากข้อมูลในข้อ ข. เลขโคออร์ดิเนชันของโครเมียมเป็นเท่าใด และความยาวตามขอบ ของหน่วยเซลล์เป็นเท่าใด แสดงวิธีคิด พร้อมวาครูปประกอบ
- **3.4** (1.5 คะแนน) ความหนาแน่นของโลหะโครเมียมเป็นเท่าใด

โจทย์ข้อที่ 4 (7 คะแนน)

ให้จับคู่ความสัมพันธ์ระหว่างธาตุในคอลัมน์ **ก** และตัวเลือกในคอลัมน์ **ข** โดยนำตัวเลขของตัวเลือกใน คอลัมน์ **ข**มาใส่ในช่องคำตอบของคอลัมน์ **ก** ทั้งนี้ หากเลือกตัวเลือกใดมาตอบ <u>สามารถใช้ตัวเลือกนั้นเพียง</u> <u>1 ครั้ง</u> (หากเลือกตัวเลือกซ้ำกัน จะไม่ตรวจคำตอบในข้อที่ตอบซ้ำกันนั้น)

คอลัมน์ ก	คอลัมน์ ข
ซีนอน	1. เกิดกรดออกโซที่มีออกซิเจน 3 อะตอม และแตกตัวให้โปรตอนใด้ 2 ตัว
ลิเทียม	2. เกิดสารประกอบเฮไลด์ที่เสถียรมีมุมพันธะ 109.5° ทุกมุม
แรกอม	3. โลหะที่อยู่ในคาบ n ที่อาจมีเลขควอนตัมโมเมนตัมเชิงมุม l ได้ตั้งแต่ 0 ถึง 4
ฟอสฟอรัส	4. ใอโซโทปของธาตุนี้ใช้ในการกำหนดมวลอะตอมของธาตุอื่น ๆ
ซัลเฟอร์	5. โลหะที่ทำปฏิกิริยากับแก๊สในโตรเจนเกิดสารประกอบในใตรค์ที่โลหะมี เลขออกซิเคชัน +1 ได้
สตรอนเชียม	6. เกิดสารประกอบ binary oxide ที่มีเลขออกซิเคชัน +5
โบรอน	7. รูปธรรมชาติเป็น โมเลกุลที่มี $1.2 imes 10^{22}$ อะตอมใน 1 โมล
อาร์เซนิก	8. เกิดสารประกอบที่มีเลขออกซิเดชัน +4 ได้
บางกลา	$9.$ อัตราส่วนของค่า $\emph{IE}_1: \emph{IE}_2: \emph{IE}_3$ มีค่าประมาณ $1:1.9:8.2$
ไอโอดีน	10. เป็นชาตุที่เกิดจากการสังเคราะห์ (artificial element)
รูบีเคียม	11. อัญรูปหนึ่งของธาตุนี้ในธรรมชาติเป็นของแข็ง โครงสร้างโมเลกุลเป็นวงที่ มี 8 พันธะ
อลูมิเนียม	 ใช้ไฮบริดออร์บิทัล sp³d² เกิดสารประกอบหรือไอออนเตตระฟลูออไรด์ที่ มีอิเล็กตรอนคู่โดดเดี่ยว 2 คู่ได้
คลอริน	13. สารประกอบออกไซด์มีสมบัติเป็น amphoteric
ซิลิกอน	14. ใอออนที่มีประจุ 2+ มีอิเล็กตรอนในออร์บิทัล <i>d</i> 5 ตัว
แคลเซียม	15. ทำปฏิกิริยากับน้ำในอัตราส่วนโมล 1:1 ให้แก๊สไฮโครเจนและไฮครอกไซค์
ออกซิเจน	 เกิดสารประกอบไฮไดรด์ที่มีสูตรโมเลกุลและรูปร่างแตกต่างกันได้เป็น จำนวนมาก
	17. เกิดกรดออกโซที่เรียกชื่อว่า hypo- และ per- ได้

เลขประจำตัวสอบ.....

โจทย์ข้อที่ 5 (6 คะแนน)

สารประกอบโคออร์ดิเนชันของแมงกานีสสองชนิดมีโครงสร้างแบบ octahedral สาร ${\bf A}$ มีสูตรเคมีเป็น ${\rm Mn}({\rm NH_3})_4{\rm Cl_x}$ และสาร ${\bf B}$ มีสูตรเคมีเป็น ${\rm Mn}({\rm NH_3})_4{\rm Cl_y}$ เมื่อนำสารทั้งสองชนิดซึ่งมีจำนวนโมลเท่ากัน โคย ${\bf A}$ มวล 2.65 g และ ${\bf B}$ มวล 2.29 g มาละลายน้ำและเติมสารละลาย ${\rm AgNO_3}$ ปริมาณมากเกินพอลงไป จะได้ตะกอนของ ${\rm AgCl}$ จากสาร ${\bf A}$ ปริมาณ 2.87 g และจากสาร ${\bf B}$ 1.43 g

- **5.1** (2 คะแนน) เขียนสูตรของสารประกอบโคออร์ดิเนชันของสารทั้งสองชนิด โดยแสดงส่วนของสาร เชิงซ้อนให้ชัดเจน
- 5.2 (1 คะแนน) เขียนชื่อสารประกอบโคออร์ดิเนชันของสาร **B** เป็นภาษาอังกฤษ
- 5.3 (2 คะแนน) วาดรูปใอโซเมอร์ที่เป็นไปได้ของใอออนบวกของ A และระบุชื่อของใอโซเมอร์ เหล่านั้น
- 5.4 (0.5 คะแนน) ถ้าผลรวมของลิแกนค์ส่งผลแบบสนามแรง (strong field) ให้เขียนแผนภาพแสดง ระดับพลังงานของ d-orbital และบรรจุอิเล็กตรอนของอะตอมกลางในสาร B ลงในแผนภาพโดย ถือว่าลิแกนค์ทั้งหมดไม่มีความแตกต่างกัน
- 5.5 (0.5 กะแนน) เปรียบเทียบสมบัติพาราแมกเนติกของสาร **A** และสาร **B** โดยใช้เครื่องหมาย มากกว่า น้อยกว่า หรือเท่ากับ

โจทย์ข้อที่ 6 (8 คะแนน)

สารละลาย $\mathrm{MnO_4}^-(\mathrm{aq})$ ทำปฏิกิริยากับสารละลาย $\Gamma(\mathrm{aq})$ ในกรด ที่อุณหภูมิ $25~^{\circ}\mathrm{C}$ ความดัน $1.00~\mathrm{atm}$ ดังนี้

$$MnO_4^-(aq) + I^-(aq) \to Mn^{2+}(aq) + I_2(s)$$
 $E^0 = 0.97 \text{ V}$

กำหนดให้ 1. ศักย์ไฟฟ้าของเซลล์เพิ่มขึ้นตามอุณหภูมิ เมื่ออุณหภูมิเพิ่มขึ้น 1 $^{\circ}$ C ศักย์ไฟฟ้าของ เซลล์จะเพิ่มขึ้น $1.0 \times 10^{^{-4}}$ V

$$2. \ \Delta S^{\circ} = nF \left(\frac{\partial E}{\partial T} \right)_{P}$$

เมื่อ n = จำนวนอิเล็กตรอนในปฏิกิริยา

F = ค่าคงที่ฟาราเคย์

และ $\left(\frac{\partial E}{\partial T}\right)_P$ = อัตราการเปลี่ยนแปลงศักย์ใฟฟ้าของเซลล์ต่อ 1 หน่วยอุณหภูมิ

- 6.1 (1.5 คะแนน) จงเขียนสมการแสดงปฏิกิริยาออกซิเคชัน ปฏิกิริยารีดักชัน และปฏิกิริยารวม โดย ระบุสถานะด้วย
- 6.2 (1 กะแนน) จงเขียนแผนภาพเซลด์ที่ใช้สะพานเกลือและเกิดปฏิกิริยาตามสมการในข้อ 6.1 โดย ระบุสถานะด้วย
- 6.3 (1.5 คะแนน) จงคำนวณพลังงานเสรี (free energy, ΔG°) ตามสมการของปฏิกิริยาในข้อ 6.1 ที่ อุณหภูมิ 25 °C ความคัน 1.00 atm
- 6.4 (1 คะแนน) จงคำนวณเอนโทรปี (entropy, ΔS°) ตามสมการของปฏิกิริยาในข้อ 6.1 ที่อุณหภูมิ 25 °C ความคัน 1.00 atm
- 6.5 (1.5 คะแนน) จงคำนวณเอนทัลปี (enthalpy, ΔH°) ตามสมการของปฏิกิริยาในข้อ 6.1 ที่อุณหภูมิ 25 °C ความคัน 1.00 atm
- 6.6 (1.5 คะแนน) จงคำนวณค่าคงที่สมคุล (ในเทอมของ $\ln K$) ตามสมการของปฏิกิริยาในข้อ 6.1 ที่ อุณหภูมิ 25 °C ความคัน 1.00 atm

โจทย์ข้อที่ 7 (5 คะแนน)

แก๊สผสมประกอบด้วย CH_4 CO_2 และ H_2 เมื่อนำแก๊สผสมชนิดนี้ 200~mL ผ่านลงในสารละลาย KOH จำนวนมากเกินพอ จะเหลือแก๊ส 120~mL เมื่อนำแก๊สที่เหลือทั้งหมดทำปฏิกิริยากับ O_2 จำนวน 200~mL ซึ่งมากเกินพอ หลังจากเกิดปฏิกิริยาสมบูรณ์ เหลือแก๊สจำนวนหนึ่งซึ่งเมื่อผ่านลงในสารละลาย KOH จำนวนมากเกินพอ จะเหลือแก๊ส 220~mL ถ้าการวัดปริมาตรของแก๊สทุกครั้งทำที่อุณหภูมิและความดัน เดียวกันและผลิตภัณฑ์ที่เป็นน้ำอยู่ในสภาวะแก๊ส ณ อุณหภูมิและความดันที่ทดลอง

จงคำนวณร้อยละ โคยปริมาตรของแก๊สแต่ละชนิดในแก๊สผสม

โจทย์ข้อที่ 8 (11.5 คะแนน)

ในการศึกษาจลนศาสตร์ของปฏิกิริยาระหว่างกรดแอสคอร์บิค ($C_6H_8O_6$) กับโพแทสเซียมเฮกซาไซยาโน เฟอร์เรต(III) ($K_3[Fe(CN)_6]$) โดยชั่ง $C_6H_8O_6$ 0.0044 g ละลายในน้ำจนมีปริมาตรเป็น 100 mL และชั่ง $K_3[Fe(CN)_6]$ 0.1644 g ละลายในน้ำจนมีปริมาตรเป็น 500 mL จากนั้นนำสารละลาย $C_6H_8O_6$ 3.00 mL ผสมกับสารละลาย $K_3[Fe(CN)_6]$ 3.00 mL เกิดปฏิกิริยาดังต่อไปนี้

$$C_6H_8O_6 + 2 [Fe(CN)_6]^{3-} \rightarrow C_6H_6O_6 + 2 [Fe(CN)_6]^{4-} + 2 H^+ \dots (1)$$

สารละลาย $\mathbf{C}_6\mathbf{H}_8\mathbf{O}_6$ และผลิตภัณฑ์ เป็นสารละลายไม่มีสี ส่วนสารละลาย $\mathbf{K}_3[\mathrm{Fe}(\mathrm{CN})_6]$ เป็นสารละลาย สีเหลือง

- 8.1 (2.75 คะแนน) เมื่อปฏิกิริยาสมบูรณ์ จะเหลือสารตั้งต้นตัวใดในปฏิกิริยาและเหลือเท่าใด
- **8.2** (1.5 คะแนน) ถ้ากำหนดให้ $V_0,\,F_0\,\,$ คือ จำนวนโมลเริ่มต้นของ $\mathrm{C_6H_8O_6}$ และ $\mathrm{K_3[Fe(CN)_6]}$ ตามลำดับ $V_t,\,F_t\,\,$ คือ จำนวนโมลที่เวลา t ของ $\mathrm{C_6H_8O_6}$ และ $\mathrm{K_3[Fe(CN)_6]}$ ตามลำดับ หา $F_t\,$ ในเทอมของ $F_0,\,V_t\,$ และ V_0
- **8.3** (1.25 คะแนน) ถ้าปริมาณ $C_6H_8O_6$ ณ เวลาหนึ่ง เหลืออยู่ $5.5 \times 10^{-7} \, \mathrm{mol}$ ให้คำนวณหาจำนวน โมลของ $K_3[\mathrm{Fe}(\mathrm{CN})_6]$ ณ เวลานั้น
- 8.4 (0.5 คะแนน) ปฏิกิริยาในสมการ (1) เป็นปฏิกิริยาหลายขั้นตอน ในขั้นตอนหนึ่งเกิด อินเทอร์มีเดียต (intermediate) X ซึ่งเป็น steady state ค่า d[X] / dt มีค่าเท่าเท่าใด
- 8.5 (1.5 คะแนน) เมื่อนำสารละลายผสมมาวัคค่าการคูดกลื่นแสงที่ความยาวคลื่น 420 นาโนเมตร ตั้งแต่เริ่มผสม (t=0) จนกระทั่งปฏิกิริยาสมบูรณ์ (t=30 นาที) ได้ผลดังในตาราง

เวลา (นาที)	ค่าการดูคกลื่นแสง
0	0.51
10	0.39
30	0.26

หาจำนวนโมลของ $\mathbf{K}_{3}[\mathrm{Fe}(\mathrm{CN})_{6}]$ ที่เวลา t=10 นาที

8.6 (2.75 คะแนน) จากตารางข้อมูลในข้อ 8.5 นำมาเขียนกราฟระหว่างค่าการดูดกลื่นแสง (แกน Y) และความเข้มข้น (แกน X) ได้ค่าความชันเท่ากับ 1020 จากการศึกษาพบว่า ปฏิกิริยานี้เป็นปฏิกิริยาอันดับสอง ซึ่งสามารถหาค่าดูดกลื่นแสงที่เวลาใด ๆ จากสมการต่อไปนี้

$$A_t = \frac{A_{\rm f}}{1 - \frac{A_0 - A_{\rm f}}{A_0} \,{\rm e}^{-c_{\rm f} k_{\rm obs} t}}$$

 A_0,A_t และ A_t คือ ค่าการคูดกลื่นแสงที่เวลาเริ่มต้น, ที่เวลา t และที่เวลาปฏิกิริยาสมบูรณ์ ตามลำดับ

 $c_{
m f}$ คือ ความเข้มข้นสุดท้ายของสารตั้งต้นที่เหลืออยู่หลังจากปฏิกิริยาสมบูรณ์ $k_{
m obs}$ คือ ค่าคงที่อัตราการเกิดปฏิกิริยาจากการทดลอง = $2.60~{
m L~mol}^{-1}~{
m s}^{-1}$

จาก Beer-Lambert Law และกำหนดให้ ระยะทางที่แสงเดินทางผ่านสารตัวอย่างเท่ากับ $1.0~{
m cm}$ ให้กำนวณหาก่าการดูดกลื่นแสง (A,) ที่เวลา $t=5~{
m unif}$

8.7 (1.25 คะแนน) ในการศึกษาหาค่าคงที่อัตราการเกิดปฏิกิริยา (k) ระหว่างกรดแอสคอร์บิคกับ โพแทสเซียมเฮกซาไซยาโนเฟอร์เรตที่อุณหภูมิต่าง ๆ เมื่อเขียนกราฟระหว่าง k ในแกน Y กับ 1/T (T คือ อุณหภูมิเคลวิน) ในแกน X ได้กราฟเป็นเส้นตรงซึ่งมีสมการเป็น

$$y = -3.006 x + 11.8$$

จงคำนวณหาค่าพลังงานก่อกัมมันต์ (Ea) ของปฏิกิริยานี้

โจทย์ข้อที่ 9 (5.5 คะแนน)

A เป็นโมเลกุลแก๊สที่สามารถเปลี่ยนไปเป็นโมเลกุล C เมื่อได้รับพลังงานในปริมาณที่มากพอ ถ้า A* คือ โมเลกุลที่มีพลังงานสูงที่เกิดขึ้นจากการชนกันของโมเลกุล A ขั้นตอนของปฏิกิริยาการสลายตัวของ A ไปเป็น C เป็นดังต่อไปนี้

$$A + A \xrightarrow{k_1} A^* + A$$
(1)
 $A^* \xrightarrow{k_3} C$ (2)

โดยที่อัตราการเกิดและอัตราการหายของ \mathbf{A}^* เท่ากัน

- **9.1** (0.5 คะแนน) จงเขียนกฎอัตรา ($\Delta[A^*]/\Delta t$) ของปฏิกิริยารวมในเทอมของ k_1, k_2, k_3
- 9.2 (5 คะแนน) จงเขียนกฎอัตรา ($\Delta[C]$ / Δt) ในเทอมของ [A] และค่าคงที่อัตราการเกิดปฏิกิริยา
 - ก. ที่ความดันแก๊สปกติ
 - ข. ที่ความดันแก๊สต่ำมาก พร้อมทั้งระบุอันดับของปฏิกิริยา
 - ค. ที่ความคันแก๊สสูงมาก พร้อมทั้งระบุอันดับของปฏิกิริยา

โจทย์ข้อที่ 10 (12 คะแนน)

วิธีมาตรฐานวิธีหนึ่งที่ใช้หาปริมาณในโตรเจนในโปรตีนหรือในสารที่มีในโตรเจนเป็นองค์ประกอบคือ วิธี Kjeldahl มีขั้นตอนโดยทั่วไปดังนี้

- ขั้นที่ 1 ย่อยโปรตีนหรือสารที่มีในโตรเจนเป็นองค์ประกอบด้วยกรคซัลฟิวริกได้แก๊ส คาร์บอนใดออกใชด์ น้ำ และแอมโมเนียมใฮโดรเจนซัลเฟต
- ขั้นที่ 2 เติมสารละลายโซเคียมไฮครอกไซค์ไค้แก๊สแอมโมเนียและโซเคียมซัลเฟต
- ขั้นที่ 3 ผ่านแก๊สแอมโมเนียที่เกิดในขั้นที่ 2 ลงในสารละลายมาตรฐานกรค<u>ที่มากเกินพอ</u>
- ขั้นที่ 4 หาปริมาณแอมโมเนียโดยการไทเทรตแบบย้อนกลับ (back-titration) กับสารละลาย มาตรฐานเบส

สารตัวอย่างหนึ่งมีสาร A ปนอยู่ โดยเป็นสารชนิดเดียวที่มีในโตรเจนเป็นองค์ประกอบ สาร A มีอัตราส่วน โมลของ C:H:N=a:b:c โดยส่วนที่เหลือเป็นออกซิเจน ถ้านำสารตัวอย่างนี้ 0.2500~g มาวิเคราะห์ ปริมาณ ในโตรเจนด้วยวิธี Kjeldahl โดยผ่านแก๊สแอมโมเนียที่เกิดขึ้นลงไปในสารละลายกรดซัลฟิวริก 0.05000~mol/L ปริมาตร 50.00~mL แล้วหาปริมาณกรดซัลฟิวริก ที่มากเกินพอโดยการไทเทรตกับ สารละลายมาตรฐานโซเดียมไฮดรอกไซด์ 0.05000~mol/L พบว่า ที่จุดยุติใช้สารละลายโซเดียม ไฮดรอกไซด์ 3.40~mL

- 10.1 (3.5 คะแนน) จำนวนโมลแอมโมเนียจากสารตัวอย่างเป็นเท่าใด
- 10.2 (2 คะแนน) ถ้าขั้นตอนการย่อยสารตัวอย่างด้วยกรดซัลฟิวริก ผ่านแก๊สการ์บอนไดออกไซด์ที่ เกิดขึ้นลงในสารละลายแบเรียมไฮดรอกไซด์ ได้ตะกอนขาวหนัก 1.4294 g สูตรของตะกอนนี้เป็น อย่างไร และจำนวนโมลการ์บอนไดออกไซด์จากสารตัวอย่างเป็นเท่าใด
- 10.3 (3 คะแนน) ถ้าจำนวนโมลในโตรเจนเป็นสองเท่าของโมลออกซิเจน และสาร A มีมวลโมเลกุล
 88.0 g/mol สาร A มีอัตราส่วนโมลของคาร์บอนต่อไฮโครเจนต่อไนโตรเจนต่อออกซิเจนเท่าใค
- **10.4** (2 คะแนน) สาร A มีจำนวนใอโซเมอร์โครงสร้าง (structural isomer) แบบสมมาตรเท่าใด และเขียนโครงสร้างดังกล่าว
- 10.5 (1.5 คะแนน) ร้อยละ โดยมวลของสาร A ในสารตัวอย่างเป็นเท่าใด

โจทย์ข้อที่ 11 (9.5 คะแนน)

น้ำฝนในธรรมชาติเป็นกรดเล็กน้อยเนื่องจากมีแก๊สการ์บอนไดออกไซด์ละลายอยู่ ในบริเวณที่มีมลพิษทาง อากาศจากกระบวนการผลิตไฟฟ้า อุตสาหกรรมทั่วไป และยานพาหนะ จะเกิดฝนกรด (acid rain) เนื่องจาก น้ำฝนทำปฏิกิริยากับออกไซด์ของซัลเฟอร์และในโตรเจนที่เกิดจากการเผาไหม้ถ่านหินและน้ำมัน ก่อให้เกิด กรดซัลฟิวริก ($\mathbf{H}_2\mathbf{SO}_4$) และกรดในทริก (\mathbf{HNO}_3)

11.1 (3 คะแนน) ถ้าการละลายของแก๊ส CO_2 ในน้ำฝนเป็นไปตาม Henry's law ซึ่งกล่าวว่า การ ละลายของแก๊สในของเหลวเป็นสัดส่วนโดยตรงกับความดันย่อยเหนือของเหลว เมื่อความดันย่อย ของ CO_2 ในอากาศที่อิ่มตัวด้วยไอน้ำที่อุณหภูมิ 25 °C และความดัน 1.00 atm เท่ากับ 3.04×10^{-4} atm และ CO_2 ทั้งหมดที่ละลายในน้ำฝนอยู่ในรูปของกรดคาร์บอนิก ($\mathrm{H}_2\mathrm{CO}_3$) จงคำนวณ pH ของน้ำฝนที่มี CO_2 ละลายอยู่

ทำหนดให้ Henry's constant ของ CO_2 ในน้ำเท่ากับ $2.3 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1} \cdot \text{atm}^{-1}$ H_2CO_3 มี $K_{\text{a}1} = 4.3 \times 10^{-7}, K_{\text{a}2} = 5.6 \times 10^{-11}$

- 11.2 (3 คะแนน) นักวิทยาศาสตร์นำน้ำตัวอย่างจากทะเลสาบซึ่งเป็นที่รองรับน้ำฝนที่มี ${
 m CO}_2$ ละลายอยู่ มาวัค pH พบว่า pH = $4.80\,$ ถ้าความเข้มข้นรวมของคาร์บอเนตทุกรูปแบบ (total carbonate) ที่ละลายอยู่ในน้ำจากทะเลสาบเท่ากับ $4.50\times 10^{-3}~{
 m mol/L}$ จงคำนวณความเข้มข้นของ ${
 m CO}_3^{\ 2-}$, ${
 m HCO}_3^{\ -}$ และ ${
 m H}_2{
 m CO}_3^{\ -}$ ในน้ำจากทะเลสาบ
- 11.3 (3.5 คะแนน) ถ้าโรงงานผลิตกระแสไฟฟ้าเผาไหม้ถ่านหิน 1.00 ตัน ซึ่งมีซัลเฟอร์ร้อยละ 2.5 โดย มวล ทำให้เกิด ${
 m SO}_2$ ขึ้น 50.0 kg และ ${
 m SO}_2$ ทั้งหมดถูกออกซิไดส์ไปเป็น ${
 m SO}_3$ แล้วละลายในน้ำฝน ที่ตกลงมา ปริมาณ 20 mm ในพื้นที่ 2.6 km น้ำฝนที่มี ${
 m SO}_2$ ละลายอยู่นี้มี pH เท่าใด

กำหนดให้

น้ำฝนเริ่มต้นเป็นน้ำบริสุทธิ์มี pH = 7.00

การวัดปริมาณน้ำฝนเป็นไปตามเกณฑ์มาตรฐานทั่วโลก โดยวัดเป็นหน่วยความสูงต่อ 1 หน่วยพื้นที่ ${
m H_2SO_4}$ มี $K_{
m a1}$ สูงมาก และ $K_{
m a2}=1.2\times 10^{-2}$

โจทย์ข้อที่ 12 (11 คะแนน)

สารละลายชนิดหนึ่งเตรียมจาก $CuSO_4 \cdot 5H_2O$ และ $NiSO_4$ ชนิดละ 5.00 g/L นำสารละลายนี้มา 250.00 mL เพื่อเตรียมวัสคุนาโนคอมโพสิตที่มีโลหะ Cu และ Ni เกาะที่ขั้วคาร์บอนด้วยการแยกสลาย ด้วยไฟฟ้า (electrolysis) โดยใช้กระแสคงที่ที่ 0.50 A ประสิทธิภาพของกระแส (current efficiency) เท่ากับร้อยละ 98 หลังจากนั้นนำสารละลายที่เหลือมาแยกไอออน Cu^{2+} และ Ni^{2+} ออกจากสารละลายด้วย การปรับ pH และผ่านแก๊ส H_2S จนสารละลายอิ่มตัว

กำหนดให้

$$\begin{array}{lll} Cu^{2+}(aq) + 2e^- &\to Cu(s) & E^0 = +0.34 \text{ V} \\ Ni^{2+}(aq) + 2e^- &\to Ni(s) & E^0 = -0.25 \text{ V} \\ H_2S(aq) &\rightleftharpoons H^+(aq) + HS^-(aq) & K_1 = 1.1 \times 10^{-7} \\ HS^-(aq) &\rightleftharpoons H^+(aq) + S^{2-}(aq) & K_2 = 1.0 \times 10^{-14} \\ CuS(s) &\rightleftharpoons Cu^{2+}(aq) + S^{2-}(aq) & K_{sp} = 8.0 \times 10^{-37} \\ NiS(s) &\rightleftharpoons Ni^{2+}(aq) + S^{2-}(aq) & K_{sp} = 3.0 \times 10^{-21} \\ Cu^{2+}(aq) + H_4Y(aq) &\rightleftharpoons [CuY]^{2-}(aq) + 4H^+(aq) & K_f = 6.3 \times 10^{18} \\ Ni^{2+}(aq) + H_4Y(aq) &\rightleftharpoons [NiY]^{2-}(aq) + 4H^+(aq) & K_f = 4.2 \times 10^{18} \\ \end{array}$$

- 12.1 (3 คะแนน) ถ้าโลหะ Cu และ Ni ที่ขั้วคาร์บอนมีมวลรวมกัน 0.50 g และร้อยละ โคยมวลของ โลหะ Cu : Ni เท่ากับ 60 : 40 ต้องผ่านกระแสไฟฟ้าในสารละลายนานกี่นาที
- 12.2 (2.5 คะแนน) หลังจากแยกสลายด้วยไฟฟ้า สมมติว่า ปริมาตรของสารละลายไม่เปลี่ยนแปลง สารละลายที่เหลือมีไอออน Cu^{2+} และ Ni^{2+} เข้มข้นชนิคละกี่ mol/L
- 12.3 (1 คะแนน) เมื่อผ่านแก๊ส H_2S ลงในสารละลายที่เหลือจากการแยกสลายด้วยไฟฟ้าจนสารละลาย อิ่มตัว พบว่า ความเข้มข้นของ H_2S ในสารละลายเท่ากับ $0.10 \; \text{mol/L}$ ถำดับของการเกิดตะกอน เป็นอย่างไร ให้เหตุผลประกอบคำตอบ
- 12.4 (3.5 คะแนน) pH ต่ำสุดจากการคำนวณที่จะทำให้ใอออนชนิดแรกตกตะกอนได้มีค่าเท่าใด และ pH สูงสุดจากการคำนวณที่จะไม่ทำให้ใอออนอีกชนิดที่เหลือในสารละลายตกตะกอนมีค่าเท่าใด
- 12.5 (1 คะแนน) หากผ่านแก๊ส H_2S จนตะกอนชนิดแรกตกสมบูรณ์ และต้ม ไล่แก๊ส H_2S ออกจาก สารละลายให้หมด ถ่ายสารละลายลงในขวดกำหนดปริมาตรขนาด 250 mL ปรับปริมาตรด้วย น้ำกลั่น นำสารละลายนี้มา 25.00 mL เพื่อหาปริมาณแคต ไอออนชนิดที่สองที่เหลือในสารละลาย ด้วยวิธีการ ไทเทรตด้วยสารละลายมาตรฐาน ethylenediaminetetraacetic acid (EDTA หรือ H_4Y) เข้มข้น 0.0200 mol/L โดย ใช้ Eriochrome black T เป็นอินดิเคเตอร์ ที่จุดยุติจะ ใช้ สารละลาย EDTA ปริมาตรเท่าใด (สมมติว่า จุดยุติคือจุดสมมูล)

โจทย์ข้อที่ 13 (8.5 คะแนน)

ไอบิวโพรเฟน (ibuprofen) หรือ (\pm)-2-(4-isobutylphenyl) propanoic acid เป็นยาบรรเทาอาการปวด ประเภทที่ไม่ใช่เสตียรอยค์ (non-steroidal anti-inflammatory drug-NSAID) สเตอริโอไอโซเมอร์ที่ให้ ฤทธิ์บรรเทาอาการปวดคือ S ไอโซเมอร์ ได้มีรายงานวิธีสังเคราะห์ราซีมิกไอบิวโพรเฟนไว้หลายวิธีจาก isobutylbenzene (สาร \mathbf{I}) ในที่นี้ได้ยกตัวอย่างมา 2 วิธี ซึ่งผนวกกันเป็นแผนภาพไว้ดังนี้

- 13.1 (0.5 คะแนน) รีเอเจนต์ 1 ที่ใช้เปลี่ยน isobutylbenzene (สาร I) เป็นสาร A ได้เช่นกันคืออะไร
- 13.2 (1 คะแนน) รีเอเจนต์ 2 ที่ใช้เปลี่ยน สาร ${f A}$ เป็น สาร ${f II}$ ได้คืออะไร
- 13.3 (1 คะแนน) จงเขียนโครงสร้างของสเตอริโอไอโซเมอร์ที่ออกฤทธิ์ของ ibuprofen ((S)-ibuprofen)
- 13.4 ($0.5\,$ คะแนน) จงเขียนโครงสร้างของสาร ${f A}$
- 13.5 ($0.5\,$ กะแนน) จงเขียนโครงสร้างของสาร ${f B}$
- 13.6 (1 คะแนน) จงเขียนโครงสร้างของไอโซเมอร์ของสาร ${f C}$ ที่มีสเตอริโอเคมีเหมาะสมที่จะทำให้ได้ ผลิตภัณฑ์เป็น (S)-ibuprofen
- 13.7 ($0.5\,$ คะแนน) จงเขียนโครงสร้างของสาร ${f D}$
- 13.8 (0.5 คะแนน) จงเขียนโครงสร้างของสาร E
- 13.9 (1 คะแนน) จงเขียนโครงสร้างของไอโซเมอร์ของสาร F ที่มีสเตอริโอเคมีเหมาะสมที่จะทำให้ได้ ผลิตภัณฑ์เป็น (S)-ibuprofen
- 13.10 (2 คะแนน) เขียนโครงสร้างของสเตอริโอไอโซเมอร์ทั้งหมดของสาร II

โจทย์ข้อที่ 14 (9.5 คะแนน)

สารผลิตภัณฑ์ธรรมชาติ X เป็นสารทำให้ผิวขาว มีสูตรโมเลกุล $C_{12}H_{16}O_7$ เมื่อทำไฮโครลิซิสด้วย β -glucosidase แล้วได้สารไครัล A ($C_6H_{12}O_6$) ที่ให้ผลบวกกับสารละลายเบเนดิกซ์ (Benedict's solution) และสาร B ($C_6H_6O_2$) ที่ละลายในสารละลาย NaOH แต่ไม่ละลายในสารละลาย NaHCO $_3$ และ ให้สีเขียวกับสารละลาย FeCl $_3$ สาร B มีโปรตอน 2 กลุ่มที่มีสิ่งแวดล้อมต่างกัน มีจำนวนเป็นอัตราส่วน 2: 4 เมื่อนำ X มาทำ methylation ด้วย (CH_3) $_2SO_4$ / NaOH จะได้สาร C ($C_{17}H_{26}O_7$) ซึ่งเมื่อทำไฮโครลิ ซิสจะได้สาร D (2,3,4,6-tetra-O-methyl-D-glucose, $C_{10}H_8O_6$) กับสาร E ($C_7H_8O_2$) ที่ละลายให้ใน สารละลาย NaOH แต่ไม่ละลายในสารละลาย NaHCO $_3$ ดังแสดงในแผนภาพต่อไปนี้

- 14.1 (7.5 คะแนน) เขียนโครงสร้างสารทุกตัว (\mathbf{X} , \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} และ \mathbf{E}) แสดงสเตอริโอ ใอ โซเมอร์ (ถ้ามี)
- 14.2 (2 คะแนน) เขียนสมการของปฏิกิริยาระหว่างสาร E กับสารละลาย NaOH

โจทย์ข้อที่ 15 (10 คะแนน)

Acetyl CoA เป็นสารตั้งต้นที่สำคัญในสิ่งมีชีวิตที่ทำให้เกิดสารชีวโมเลกุลขนาดใหญ่ ทั้งนี้ปฏิกิริยาที่ เกิดขึ้นอาศัยตัวทำปฏิกิริยา เช่น NADH หรือ NAD+ และ/หรือเอนไซม์เฉพาะ เช่น hydrase, dehydrase, hydrogenase, dehydrogenase และ oxidase ดังแผนภาพ

- 15.1 (2 คะแนน) จงแสดงกลไกปฏิกิริยาในขั้นที่ 1 (step 1) กำหนดให้ ATP เป็นสารที่ให้พลังงานใน การทำปฏิกิริยา
- 15.2 (3 คะแนน) จงแสดงกลไกปฏิกิริยาในขั้นที่ 2 (step 2)
- 15.3 (3 คะแนน) ให้ใส่สาร และ/หรือ เอ็นไซม์ต่อไปนี้ที่ทำให้เกิดปฏิกิริยาในขั้นที่ 3, 4 และ 5 (step 3, 4 and 5)
 NADH, NAD+, hydrase, dehydrase, hydrogenase, dehydrogenase, oxidase
- 15.4 (2 คะแนน) จงเขียนโครงสร้างของสาร X และสาร Y ที่เกิดจากปฏิกิริยาชีวสังเคราะห์นี้
