第一章 向量

1.1 线性表示的判定与计算

1.	伐问重组	α, β, γ 与数	(k,l,m) 满足	$k\alpha + l\beta + m\gamma =$	$= 0 (km \neq 0),$	则

- (a) (A) α, β 与 α, γ 等价
- (b) (B) $\alpha, \beta 与 \beta, \gamma$ 等价
- (c) (C) α, γ 与 β, γ 等价
- (d) (D) α 与 γ 等价

Solution.【详解】 □

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。当 a,b 为何值时,
 - (a) (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示,并求出表示式;
 - (b) (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,但表示式不唯一,并求出表示式。

Solution.【详解】 □

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价,求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

Solution.【详解】 □

线性相关与线性无关的判定

	1.2 线压值人一线压力人的分别				
3.	$(2014,$ 数一、二、三) 设 $\alpha_1,\alpha_2,\alpha_3$ 均为 3 维列向量,则对任意常数 k,l , $\alpha_1+k\alpha_3,\alpha_2+l\alpha_3$ 线性无关是 $\alpha_1,\alpha_2,\alpha_3$ 线性无关的				
	(a) (A) 必要非充分条件				
	(b) (B) 充分非必要条件				
	(c) (C) 充分必要条件				
	(d) (D) 既非充分又非必要条件				
	Solution.【详解】 □				
4.	设 A 为 n 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1=A\alpha_1\neq 0,$ $A^2\alpha_2=\alpha_1+A\alpha_2,$ $A^2\alpha_3=\alpha_2+A\alpha_3$,证明 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。				
	Solution.【详解】 □				
5.	设 4 维列向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,与 4 维列向量 β_1,β_2 两两正交,证明 β_1,β_2 线性相关。				
	Solution.【详解】 □				
1.3 极大线性无关组的判定与计算					
6.	读 $\alpha_1 = (1, 1, 1, 3)^T$, $\alpha_2 = (-1, -3, 5, 1)^T$, $\alpha_3 = (3, 2, -1, a + 2)^T$, $\alpha_4 = (-2, -6, 10, a)^T$ 。				
	(a) (I) 当 a 为何值时,该向量组线性相关,并求其一个极大线性无关组;				
	(b) (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha=(4,1,6,10)^T$ 由其线性表示。				
	Solution.【详解】 □				
7.	证明:				

- (a) (I) 设 A, B 为 $m \times n$ 矩阵,则 $r(A+B) \le r(A) + r(B)$;
- (b) (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \leq \min\{r(A), r(B)\}$ 。

Solution. 【详解】

1.4 向量空间 (数一专题)

- 8. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (a) (I) 证明向量组 $\beta_1, \beta_2, \beta_3$ 为 R^3 的一个基:
 - (b) (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1,\alpha_2,\alpha_3$ 与基 β_1,β_2,β_3 下的坐标相同,并求所有的 ξ 。

Solution. 【详解】