জ্ঞানমূলক + অনুধাবনমূলক + সংক্ষিপ্ত (এসকিউ) নোট

বুসায়ৰ ৩ম অধ্যাম পদাৰ্থের গঠন

Prepared by: SAJJAD HOSSAIN

জ্ঞানমূলক প্রশ্নোত্তর

মৌলিক ও যৌগিক পদার্থ এবং পরমাণু ও অণু

- ১. মৌলিক পদার্থ কাকে বলে? [রা. বো. ২৪; ম. বো. ২৪] উত্তর: যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌল বা মৌলিক পদার্থ বলে।
- ২. **অণু কাকে বলে?** [রা. বো. ২৪; দি. বো. ২৩] উত্তর : দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন এর মাধ্যমে যুক্ত থাকলে তাকে অণু বলে।
- পরমাণু কী?
 উত্তর: পরমাণু হলো মৌলিক পদার্থের ক্ষুদ্রতম কণা যার মধ্যে মৌলের গুণাগুণ থাকে।

মৌলের প্রতীক ও সংকেত

 প্রতীক কাকে বলেগুটা. বো. ২৪; রা. বো. ২৪,২২; চ. বো. ২১; ব. বো. ২২

উত্তর : কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলে।

পরমাণু ভেতরের কণা

- ৫. পরমাণুর ভর সংখ্যা বা নিউক্লিয়ন সংখ্যা কাকে বলে? [ঢা. বো. ২৪,২৩; ব. বো. ২৩; ম. বো. ২৩; ঢা. বো. ২১; রা. বো. ২২,২১; য. বো. ১৬; কু. বো. ২১; চ. বো. ১৫; ব. বো. ২২,২১; দি. বো. ১৯,১৫; ম. বো. ২২]
 - উত্তর : কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন <mark>সংখ্যার</mark> যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলা হয়।
- ৬. **একটি নিউট্রনের প্রকৃত ভর কত**পুবিগুড়া ক্যান্ত, পাবলিক স্কুল এভ কলেজ, বগুড়া

উত্তর : একটি নিউট্রনের প্রকৃত ভর 1.675×10⁻²⁴ g।

পরমাণুর শক্তিস্তরে ইলেকট্রন বিন্যাস

- ৭. **অরবিটাল কী?**উত্তর : পরমাণুতে বিদ্যমান প্রতিটি প্রধান শক্তিস্তর কতকগুলো উপশক্তিস্তরে বিভক্ত থাকে যাদের অরবিটাল বলে।
- ৮. **অরবিট কী?** [কু. বো. ২৩; দি. বো. ২৩; ঢা. বো. ২১] উত্তর : পরমাণুর যে সকল স্থির কক্ষপথে ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে আবর্তন করে তাদেরকে অরবিট বলে।

আইসোটোপ

- ৯. পারমাণবিক সংখ্যা কাকে বলে? [সি. বো. ২৪] উত্তর : কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে।
- ১০. আইসোটোপ কাকে বলে? [ঢা. বো. ২২,২১; য. বো. ২১; চ. বো. ২০; ম. বো. ২০; সকল বোর্ড ১৮; ব. বো. ২১,১৭; দি. বো. ২৪,১৭] উত্তর: যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটোপ বলে।

পারমাণবিক ভর বা আপেক্ষিক পারমাণবিক ভর

- ১১. আপেক্ষিক পারমাণবিক ভর কাকে বলে? [সি. বো. ২৩; দি. বো. ২০] উত্তর : কোনো একটি পরমাণুর ভর এবং একটি কার্বন-12 পরমাণু ভরের 1 অংশের অনুপাতকে ঐ মৌলের পারমাণবিক ভর বলে।
- ১২. গড় আপেক্ষিক পারমাণবিক ভর কী?

সেরকারি প্রমথনাথ বালিকা উচ্চ বিদ্যালয়, রাজশাহী] উত্তর: পর্যায় সারণিতে যে পারমাণবিক ভর লেখা আছে, তা মূলত গড় আপেক্ষিক পারমাণবিক ভর; যেমন Cu এর গড় আপেক্ষিক পারমাণবিক ভর 63.5।

তেজঙ্ক্রিয় আইসোটোপ ও তাদের ব্যবহার

১৩. তেজঞ্জিয় আইসোটোপ কাকে বলে?

[কু. বো. ২১]

উত্তর : যে সকল আইসোটোপের নিউক্লিয়াস স্বতঃস্কৃর্তভাবে (নিজে নিজেই) ভেঙে আলফা রশ্মি, বিটা রশ্মি, গামা রশ্মি ইত্যাদি নির্গত করে তাদেরকে তেজস্ক্রিয় আইসোটোপ বলে।

অনুধাবনমূলক+ সংক্ষিপ্ত প্রশ্নোত্তর

অণু ও পরমাণু

১. Cl₂ এবং 2Cl এর মধ্যে পার্থক্য লেখ।

সি. বো. ২৩

উত্তর : Cl2 এবং 2Cl এর মধ্যে পার্থক্য নিমুরূপ-

Cl_2	2Cl
Cl_2 হলো ক্লোরিন অণু।	2Cl হলো ক্লোরিনের দুটি বিচ্ছিন্ন পরমাণু।
দুটি Cl পরমাণু রাসায়নিক	2C1 কোনো রাসায়নিক বন্ধনের
বন্ধনের মাধ্যমে যুক্ত হয়ে ${ m Cl}_2$	মাধ্যমে যুক্ত হয়ে অণু গঠন
অণু গঠন করে।	করেনি।

পরমাণুর ভেতরের কণা

২. প্রমাণুর নিউক্লি<mark>য়াস ধনাত্মক চার্জবিশিষ্ট কেন? ব্যাখ্যা ক</mark>র √য. বো. ২৩/

উত্তর : পরমাণুর নিউক্লিয়াস ধনাত্মক চার্জবিশিষ্ট । কারণ নিউক্লিয়াসের অভ্যন্তরে থাকে প্রোটন ও নিউট্রন । প্রোটনের চার্জ ধনাত্মক এবং তা $+1.60\times10^{-10}~{\rm c}$ । অপরদিকে নিউট্রন চার্জহীন । যেহেতু নিউক্লিয়াসের অভ্যন্তরে কেবল প্রোটনের চার্জ থাকে এবং তা ধনাত্মক, সেহেতু পরমাণুর নিউক্লিয়াস ধনাত্মক চার্জবিশিষ্ট হয় ।

- ৩. পরমাণু সামগ্রিকভাবে চার্জশূন্য কেন? ব্যাখ্যা কর। [কু. বো. ২৩] উত্তর : পরমাণু সামগ্রিকভাবে চার্জশূন্য। করাণ পরমাণুর কেন্দ্রে নিউক্লিয়াসে ধনাত্মক চার্জযুক্ত যতগুলো প্রোটন থাকে ঠিক ততগুলো ঋণাত্মক চার্জযুক্ত ইলেকট্রন নিউক্লিয়াসের বাইরে পরমাণুতে অবস্থান করে। এ ধনাত্মক ও ঋণাত্মক চার্জ পরস্পারকে প্রশম করে দেয় বলে পরমাণু চার্জ শূন্য হয়ে যায়।
- 8. $\frac{23}{11}$ Na⁺ বলতে কী বোঝায়? ব্যাখ্যা কর। $[\pi]$ </sup>. বো. ২২; ম. বো. ২২]

উত্তর : $^{23}_{11}{\rm Na}^{\scriptscriptstyle +}$ বলতে বুঝায় সোডিয়াম(Na) মৌলটির,

- (i) প্রোটন সংখ্যা = 11
- (ii) ইলেকট্রন সংখ্যা = (11 1) = 10
- (iii) নিউট্রন সংখ্যা = (23 11) = 12
- (iv) ভরসংখ্যা = 23
- (v) পারমাণবিক সংখ্যা তথা প্রোটন সংখ্যা যেহেতু 11, তাই মৌলটি সোডিয়াম (Na)।
- ৫. সোডিয়াম এর ভরসংখ্যা 23- ব্যাখ্যা কর। [ম. বো. ২১; সি. বো. ২৪] উত্তর: কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে। অর্থাৎ, ভরসংখ্যা হচ্ছে প্রোটন সংখ্যা ও নিউট্রন সংখ্যার সমষ্টি। Na এর ভরসংখ্যা 23 বলতে বুঝায়, Na পরমাণুর নিউক্রিয়াসে প্রোটন সংখ্যা 11 এবং নিউট্রন সংখ্যা (23)
 - -11) = 12, যাদের সমষ্টি (11+12) = 23 হচ্ছে ${23 \atop 11}$ Na এর ভরসংখ্যা।
- Al এর পারমাণবিক সংখ্যা 13 বলতে কী বুঝ?

[কুমিল্লা ক্যাডেট কলেজ, বরিশাল জিলা স্কুল]

জ্ঞানমূলক + অনুধাবনমূলক + সংক্ষিপ্ত (এসকিউ) নোট

বুসায়ৰ ৩ম অধ্যাম পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

উত্তর : কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে অবস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। Al এর পারমাণবিক সংখ্যা 13 বলতে Al পরমাণুর নিউক্লিয়াসে 13 টি প্রোটন আছে।

৭. পারমাণবিক সংখ্যা ও ভরসংখ্যার মধ্যে ২টি পার্থক্য লিখ।

[ময়মনসিংহ গার্লস ক্যাডেট কলেজ, কুমিল্লা জিলা স্কুল] উত্তর : পারমাণবিক সংখ্যা ও ভরসংখ্যার মধ্যে ২টি পার্থক্য নিমুরুপ :

পারমাণবিক সংখ্যা	ভরসংখ্যা
১. কোনো মৌলের কেন্দ্রে	১. মৌলের কেন্দ্রে অবস্থিত
অবস্থিত মোট প্রোটন সংখ্যাকে	প্রোটন ও নিউট্রনের মোট
ঐ মৌলের পারমাণবিক সংখ্যা	সংখ্যাকে পারমাণবিক সংখ্যা বা
বলে।	নিউক্লিয়ন সংখ্যা বলে।
২. পারমাণবিক সংখ্যাকে Z	২. ভর সংখ্যাকে A দ্বার প্রকাশ
দারা প্রকাশ করা হয়।	করলে, A = Z+n; n =
ST STATE	নিউট্রন সংখ্যা।

পরমাণু মডেল

৮. অরবিট কাকে বলে? ব্যাখ্যা কর।

মি. বো. ২৩

উত্তর: পরমাণুর যে সকল স্থির কক্ষপথে ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে আবর্তন করে তাদেরকে অরবিট বলে। প্রতিটি অরবিটে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2$ সংখ্যক। যেখানে n=1,2,3,4ইত্যাদি। n=1 হলে K শেল নির্দেশ করে। অনুরূপভাবে n=2,3,4 ইত্যাদির জন্য L,M,N শেল নির্দেশ করে। আবার $2n^2$ সূত্রানুযায়ী K,L,M,N শেলে সর্বোচ্চ সংখ্যক ইলেকট্রন থাকতে পারে 2,8,18,32 টি করে।

৯. পরমাণুতে কীভাবে বর্ণালি সৃষ্টি হয়? [ব. বো. ২৩; নবাব ফয়জুন্নেসা সরকারি বালিকা উচ্চ বিদ্যালয়, কুমিল্লা]

উত্তর: শক্তির উৎস থেকে মৌলের অস্যখ্য পরমাণুর একই ইলেকট্রন বিভিন্ন পরিমাণে শক্তি শোষণ করে উদ্দীপিত অবস্থায় বিভিন্ন নির্দিষ্ট শক্তির উচচ শক্তিস্তরে লাফিয়ে চলে। পরে শক্তির উৎস সরিয়ে নিলে ঐ অসংখ্য হাইড্রোজেন পরমাণুর ইলেকট্রন শক্তি বিকিরণ করে একই নিম্ন শক্তিস্তরে ফিরে আসতে পারে। তখন বিভিন্ন রেখা বর্ণালির সৃষ্টি হয়ে থাকে।

১০. অরবিট এবং অরবিটালের মধ্যে পার্থক্য লিখ।

[ইবনে তাইমিয়া স্কুল এন্ড কলেজ, কুমিল্লা] উব্বর : অরবিট ও অরবিটালের মধ্যে দইটি পার্থক্য নিমুরূপ :

অরবিট	অরবিটাল
১. পরমাণুর যেসব স্থির কক্ষপথে	১. নিউক্লিয়াসের চতুর্দিকে যে
ইলেকট্রনগুলো নিউক্লিয়াসকে	অঞ্চলে আবর্তনশীল ও নির্দিষ্ট
কেন্দ্র করে আবর্তন করে	শক্তিযুক্ত ইলেকট্রন মেঘের
তাদেরকে অরবিট বলে।	সর্বাধিক প্রাপ্তির সম্ভাবনা থাকে,
All Victoria	তাকে অরবিটাল বলে।
২. 'অরবিট' শব্দটি উৎস হচ্ছে	২. 'অরবিটাল' শব্দটির উৎস হচ্ছে
বোর প্রদত্ত হাইড্রোজেন পরমাণুর	কোয়ান্টাম বল বিদ্যা।
গঠন সংক্রান্ত মতবাদ।	

পরমাণুর শক্তিস্তরে ইলেকট্রন বিন্যাস

- ১১. তৃতীয় শক্তিস্তরে 'f' অরবিটাল থাকে না কেন? ব্যাখ্যা কর lচ. বো. ২৪l উত্তর: ৩য় শক্তিস্তরে f অরবিটাল নেই। কারণ ৩য় শক্তিস্তরের জন্য n=3 এবং $l=0,\,1,\,2$ । জানা আছে, l এর মান $0,\,1$ ও 2 এর জন্য $s,\,p$ ও d অরবিটাল সম্ভব হয়। তাই ৩য় শক্তিস্তরে f অরবিটাল (orbital) নেই।
- ১২. দ্বিতীয় প্রধান শক্তিস্তরে 'd' অরবিটাল থাকে না কেন? [কু. বো. '২৩]

উত্তর: দ্বিতীয় প্রধান শক্তিস্তরে d অরবিটাল থাকে না। কারণ দ্বিতীয় প্রধান শক্তিস্তরের জন্য n=2, সেক্ষেত্রে উপশক্তিস্তর $1=0,\ 1$ । আমরা জানি, l এর মান 0 ও 1 এর জন্য s ও p অরবিটাল সম্ভব। এজন্য 2d অরবিটাল দ্বিতীয় প্রধান শক্তিস্তরে থাকে না।

১৩. 2p অপেক্ষা 2s অরবিটাল এর শক্তি কম- ব্যাখ্যা কর। [ম. বো. '২১] উত্তর: দুটি অরবিটালের মধ্যে যার (n+l) এর মান কম, তার শক্তি ও

2p অরবিটালের জন্য : n=2 এবং l=1

(n+l)=2+1=3

 $2\mathbf{s}$ অরবিটালের জন্য : $\mathbf{n}=2$ এবং l=0

(n+l) = 2 + 0 = 2

দেখা যাচ্ছে যে, $2p \circ 2s$ এর মধ্যে 2s এর (n+l) এর মান কম, তাই 2s এর শক্তিও কম।

১৪. ত্ম শক্তি স্তরে f orbital নেই, কেন? [চ. বো. '২২]

উত্তর : ত্ম শক্তিস্তরে f অরবিটাল নেই। কারণ ত্ম শক্তিস্তরের জন্য n= 3 এবং 1 = 0, 1, 2। জানা আছে, 1 এর মান 0, 1 ও 2 এর জন্য ns, n ও n অরবিটাল সম্ভব হয়। তাই তম শক্তিস্তরে n orbital নেই।

১৫. 4s অপেক্ষা 3d অরবিটালের শক্তি বেশি-ব্যাখ্যা কর। [য. বো.'২১] উত্তর: অরবিটালের শক্তি নির্ধারণ করা হয় (n+l) এর মান হিসাব করে। যে অরবিটালের (n+l) এর মান বেশি সেটির শক্তি বেশি। 4s অরবিটালের ক্ষেত্রে = n+1=4+0=4 3d অরবিটালের ক্ষেত্রে = n+1=3+2=5 যেহেতু 3d অরবিটালের (n+1) এর মান বেশি, সেহেতু এর শক্তি বেশি।

১৬. ক্রোমিয়ামের ইলেকট্রন বিন্যাস ব্যতিক্রমধর্মী কেন? ব্যাখ্যা কর। [ব. বো. ২৪]

উত্তর : Cr ক্ষেত্রে 4s অরবিটালে দুটো জোড়বদ্ধ ইলেকট্রন এবং d-অরবিটালে চারটি অযুগা<mark> ইলেকট্রন থাকা বাঞ্ছ্</mark>নীয় ছিল।

 $Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$

কিন্তু বাস্তবক্ষেত্রে Cr এর সঠিক ইলেকট্রন বিন্যাস নিমুরূপ-

 $Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$

কারণ অর্ধপূর্ণ অথবা সম্পূর্ণভাবে পূর্ণ অরবিটালের সুস্থিতি অধিক হওয়ায় Cr এর ইলেক্ট্রন বিন্যাস সাধারণ নিয়মে হয় না।

১৭. কপার (Cu) এর ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে না কেন?

[চ. বো. ২২: ব. বো. ১৭]

উত্তর : সাধারণভাবে দেখা যায় যে, সমশক্তিসম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণ পূর্ণ হলে সে ইলেকট্রন বিন্যাস অধিকতর সুস্থিতি অর্জন করে। এক্ষেত্রে $d^{10}s^1$ এবং d^5s^1 ইলেকট্রন বিন্যাসবিশিষ্ট মৌল অধিকতর স্থায়ী হয়। কপার (Cu) এর ইলেকট্রন বিন্যাসে ($1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^1$) সুস্থিতির জন্য $3d^94s^2$ এর পরিবর্তে $3d^{10}4s^1$ হয়। এজন্য কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে

১৮. ${
m Fe}^{2+}$ ও ${
m Fe}^{3+}$ আয়নের মধ্যে কোনটি অধিক সুস্থিত? ব্যাখ্যা কর। $[ar{\varphi},\ {
m Cal},\ 22]$

উত্তর : Fe²⁺ ও Fe³⁺ আয়নের মধ্যে Fe³⁺ আয়ন অধিক সুস্থিত। কারণ আয়ন দুটির ইলেকট্রন বিন্যাস :

 $Fe^{2+}(26) = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^6 \ 4s^0$ (সুস্থিত নয়)

Fe³⁺(26) = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵, 4s⁰ (মুস্থিত)

ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে, Fe^{3+} আয়নের d অরবিটাল ইলেকট্রন দ্বারা অর্ধপূর্ণ থাকে বলে Fe^{3+} আয়নটি সুস্থিত। অপরদিকে

জ্ঞানমূলক + অনুধাবনমূলক + সংক্ষিপ্ত (এসকিউ) নোট

বুসায়ৰ ৩ম অধ্যাম পদাৰ্থের গঠন

Prepared by: SAJJAD HOSSAIN

 Fe^{2+} আয়নের 3d অরবিটালে 6টি ইলেকট্রন থাকায় এটি ইলেকট্রন দ্বারা পূর্ণ বা অর্ধপূর্ণ কোনটিই নয় । তাই Fe^{2+} সুস্থিত নয় ।

১৯. K এর 19 তম ইলেকট্রন 3d অরবিটালে প্রবেশ না করে 4s অরবিটালে যায় কেন- ব্যাখ্যা কর। [ঢাকা রেসিডেনসিয়ার মডেল কলেজ]

উত্তর : আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিমুশক্তির অরবিটালে এবং পরে উচ্চশক্তির অরবিটালে গমন করে। দুটি অরবিটালের মধ্যে কোনটি নিমুশক্তির আর কোনটি উচ্চশক্তির তা (n+l) এর মানের ওপর নির্ভর করে। যার (n+l) এর মান কম সেটি নিমুশক্তির অরবিটালে। 3d এবং 4s অরবিটালের জন্য (n+l) এর মান নিমুরূপ:

3d অরবিটালে : n = 3, I = 2 ∴ n + 1 = 3 + 2 = 5

4s অরবিটালে : n = 4, s = (0) : n + 1 = 4 + 0 = 4

সূতরাং 3d এর চেয়ে 4s অরবিটালের শক্তি কম (4s < 3d) হওয়ায় পটাসিয়ামের 19তম ইলেকট্রন 3d অরবিটালে না গিয়ে 4s অরবিটালে স্থান গ্রহণ করে। ফলে K(19) এর ইলেকট্রন বিন্যাস হয়-

 $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 +$

<u>আ</u>ইসোটোপ

২০. ডিউটেরিয়াম, হাইড্রোজেনের একটি আইসোটোপ ব্যাখ্যা কর 🖟 বো. ২৩/

উত্তর : ডিউটেরিয়াম $\binom{2}{1}$ H) হাইড্রোজেন (H) এর একটি আইসোটোপ । নিচে তা ব্যাখ্যা করা হলো :

যেসব পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ভিন্ন হয় সে সব পরমাণুকে পরস্পরের আইসোটোপ বলা হয়। ডিউটেরিয়াম $\binom{2}{1}H$) ও

হাইড্রোজেন $\binom{1}{1}H$) উভয়ের প্রোটন সংখ্যা 1, অর্থাৎ সমান। আবার ভরসংখ্যা যথাক্রমে 2 এবং 1, অর্থাৎ ভিন্ন। যেহেতু তাদের প্রোটন সংখ্যা একই এবং ভরসংখ্যা ভিন্ন।

সুতরাং তারা পরস্পরের আইসোটোপ।

২১. $\frac{1}{1}$ H এবং $\frac{3}{1}$ H পরস্পর আইসোটোপ ব্যাখ্যা কর । $\boxed{u: cal. 20}$ উত্তর : $\frac{1}{1}$ H এবং $\frac{3}{1}$ H পরস্পর আইসোটোপ । জানা আছে, যে সব পরমাণুর প্রোটন সংখ্যা একই কিন্তু তর সংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে পরস্পর আইসোটোপ বলে । $\frac{1}{1}$ H ও $\frac{3}{1}$ H পরমাণুদ্বয়ের প্রোটন সংখ্যা 1 । এদের ভরসংখ্যা ভিন্ন (1 ও 3) এবং নিউট্রন সংখ্যা ভিন্ন (0, 2) । এজন্য $\frac{1}{1}$ H ও $\frac{3}{1}$ H পরস্পরের আইসোটোপ ।

পারমাণবিক ভর বা আপেক্ষিক পারমাণবিক ভর

২২. আপেক্ষিক পারমাণবিক ভরের একক নেই কেন? ব্যাখ্যা কর। [ঢা. বো.' ২৩; দি. বো.'২৩; রা. বো.'২১; কু. বো.'২২; চ. বো.'২০; সি. বো.'২২: ব. বো.'২০]

উত্তর : জানা আছে, দুটি একই রকম রাশি অনুপাত আকারে থাকলে এর কোনো একক থাকে না। কোনো মৌলের আপেক্ষিক পারমাণবিক ভরকে নিমুরূপে প্রকাশ করা হয়-

মৌলের আপেক্ষিক পারমাণবিক ভর

মৌলের ১টি পরমাণুর ভর

· ১টি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশ

সুতরাং, দেখা যায়, আপেক্ষিক পারমাণবিক ভর দুটি পৃথক ভরের অনুপাত (kg/kg বা g/g)। তাই এর কোনো একক থাকে না।

. "নাইট্রোজেনের আণবিক ভর 28" - ব্যাখ্যা কর। [ম. বো: ২৪] উত্তর: জানা আছে, কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভরকে নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাপ্ত যোগফলই হলো ঐ অণুর আণবিক ভর। নাইট্রোজেনের আণবিক ভর 28 বলতে বুঝায়, নাইট্রোজেন এর পারমাণবিক ভর (14 × 2)। কেননা নাইট্রোজেন একটি ছি-প্রমাণুক গ্যাস (N2)।

এজন্য নাইট্রোজেনের আণবিক ভর =14 imes2=28.

তেজস্ক্রিয় আইসোটোপ ও তাদের ব্যবহার

২৪. কৃষিক্ষেত্রে ফসফরাসের আইসোটোপের ভূমিকা ব্যাখ্যা কর √কু. বো. ১৭/

উত্তর: ফসফরাসের তেজস্ক্রিয় রশ্মি ব্যবহার করে কৃষিক্ষেত্রে নতুন নতুন উন্নত মানের বীজ উদ্ভাবন করা হচ্ছে এবং এর মাধ্যমে ফলনের মানের উন্নতি ও পরিমাণ বাড়ানো হচ্ছে। তেজস্ক্রিয় ³²P যুক্ত ফসফেট দ্রবণ উদ্ভিদের মূলধারায় সূচিত করা হয়। গাইগার কাউন্টার ব্যবহার করে পুরো উদ্ভিদে এর চলাচল চিহ্নিত করে কী কৌশলে উদ্ভিদ বেড়ে উঠে তা ফসফরাস ব্যবহার করে জানা যায়।

