Solver: Cui Yan

Email Address: ycui3@e.ntu.edu.sg

1. (a) How computers access the shared channels in CSMA/CD networks?

- To send data, a station first listens to the channel to see if anyone else is transmitting.
- If so, the station waits until the end of the transmission (1-persistent) or waits a random period of time and repeats the algorithm (non-persistent). Otherwise, it transmits a frame.
- If a collision occurs, the station will detect the collision, abort its transmission, waits a random amount of time, and starts all over again.

Under what conditions a collision may occur?

Whenever more than one station detect an idle channel and their transmission times overlap.

How long it takes for a transmitting computer to be sure it has seized the channel without any collision?

Figure above shows an example of how two computers access the shared channel in CSMA/CD network. Suppose the competing computers A and B want to send frames to each other. At time 0, A finds the channel idle and sends out a frame. Suppose the propagation time from A to B is τ , at time τ - ϵ , the frame almost arrives at B. At the same time, B sends out one frame. B detects the collision immediately at time τ - ϵ . The frame from B arrives at A and A detects the collision at time 2 τ . Therefore it takes 2 τ time for a transmitting computer to be sure it has seized the channel without any collision.

(b) Explain what is flow control and congestion control respectively.

Flow control is the process of managing the rate of data transmission between two nodes in the network to prevent a fast sender from outrunning a slow receiver. It relates to the pointto-point traffic between a given sender and a given receiver.

Congestion control is concerned with controlling traffic entry into a network, to prevent or handle the congestion situations where too many packets are present in the subnet and performance degrades sharply. It is a global issue.

A situation where flow control is needed but congestion control is not:

A fiber optic network with a capacity of 1000G bps on which a supercomputer was trying to transfer a file to a personal computer at 1G bps.

A situation where congestion control is needed but flow control is not:

A store-and-forward network with 1M bps lines and 1000 larger computers, half of which were trying to transfer files at 100K bps to the other half.

- 2. (a) ① B delivers frames 0, 1, 2, 3, 4 to network layer.
 - ② B saves frame 6 in the buffer.
 - ③ B positively ackownledges A sequence number 4.
 - ④ Sequence numbers 5, 6, 7, 0 are within the receiving window of B.

(b) Under what circumstances will machine A receive a negative acknowledgement?

A receives negative acknowledgements from B under 2 circumstances:

- ① a frame sent by A is lost and the frame received by B is not what B is expecting for. B will send a negative acknowledgement to A.
- ② a frame sent by A is damaged and there is checksum error. This event will trigger B to send a negative acknowledgement to A.

Under what conditions will machine A retransmit a frame?

A will retransmit the frame only if the sequence of the frame to be retransmitted is within A's sending window. (i.e. between(ack_expected, (r.ack + 1) % (MAX_SEQ + 1), next_frame_to_send) is true).

Explain why such condition is required using a concrete scenario.

Suppose initially B's receiving window is 0-3. A sends B frames 0-3 and B receives them. B will rotate the receiving window to 4-7 and sends A the acknowledgement (ACK) with sequence number 3. Suppose the ACK is lost and A's retransmission timer times out, A will retransmit frames 0-3. These frames are outside B's receiving window. Therefore B will reject these frames and send A back a negative acknowledgement (NAK) r with r.ack = 3.

Without such condition we mentioned, A will send frame 4 once it receives the NAK (since (r.ack + 1) % (MAX_SEQ + 1) equals to 4). However, A has never sent frame 4 before and A has not even received frame 4 from network layer. Hence, error will happen.

With such condition, A will check and find that frame 4 is not within the sending window and A will not send it.

Therefore, such condition is required.

3. The measured delays from C to B, D and E are 8, 6, and 10, respectively. Therefore, Going to other routers via B gives the delays: (14, 8, 16, 20, 14, 10); Going to other routers via D gives the delays: (18, 20, 12, 6, 15, 16); Going to other routers via E gives the delays: (12, 16, 13, 19, 10, 14);

Compare the delays for each router, we have the new routing table for C:

Destination	Expected Delay	Outgoing Line
Α	12	E
В	8	В
С	0	-
D	6	D
E	10	E
F	10	В

4. ① if round-trip time is 200ms, then in 1 second, 5 windows can be sent, which is equivalent to 5 * 65535 bytes/sec. Hence the line efficiency is:

$$\frac{5*65535\ bytes/sec}{1\ Gbps}*100\% = 0.24\ \%$$

@ if round-trip time is 500ms, then in 1 second, 2 windows can be sent, which is equivalent to 2 * 65535 bytes/sec. Hence the line efficiency is:

$$\frac{2*65535\; bytes/sec}{1\; Gbps}*100\% = 0.10\;\%$$

5.

Α	/^\d\d\d\d\d\\$/
	equivalently, /^\d{6}\$/, or /^[0-9]{6}\$/
В	pos != 0
С	userPIN.focus()
D	checkConfirmPIN()
Е	userPIN.value != userConfirmPIN.value
F	userConfirmPIN.focus()
G	document.getElementById("pin")
Н	userPIN.value
I	method = "POST"
J	onblur = "checkPIN()"
K	onblur = "checkConfirmPIN()"
Ĺ	onclick = "encryptPIN()"

6.

Α	"givenName"
В	"familyName"
С	"gender"
D	"pin"
Е	\$pin / 2
F	\$index ++
G	19 - \$index
Н	\$originalPIN = 0
1	19 - \$index
J	\$exp = \$exp * 2
K	\$originalPIN
L	"user_information.txt", 'w+'
М	\$output

All the Best in Your Final Exams!