IIUM	cat-us-trop	hy
	IIUM	IIUM cat-us-trop

.vimrc
$\operatorname{template.cpp}$
Combinatorics
RMQ DP
Suffix arrays
Graph algorithms (LCA, SCC)
.vimrc
set ai ts=4 sw=4 st=4 noet nu nohls
syntax enable
filetype plugin indent on
map <f6> :w<cr>:!g++ % -g && (ulimit -c unlimited; ./a.out < ~/input.txt) <cr></cr></cr></f6>
map <f5> <f6></f6></f5>
colo pablo
map <f12> :!gdb ./a.out -c core <cr></cr></f12>
map (112) .: gub ./a.out -c core (on)
template.cpp
#include <cstdio></cstdio>
#include <cstd10> #include<sstream></sstream></cstd10>
#include\sstream> #include <cstdlib></cstdlib>
#include <ctype></ctype>
<pre>#include<cmath></cmath></pre>
<pre>#include<algorithm></algorithm></pre>
<pre>#include<set></set></pre>
#include <queue></queue>
<pre>#include<stack></stack></pre>
<pre>#include<list></list></pre>
<pre>#include<iostream></iostream></pre>
<pre>#include<string></string></pre>
<pre>#include<vector></vector></pre>
<pre>#include<cstring></cstring></pre>
<pre>#include<map></map></pre>
<pre>#include<cassert></cassert></pre>
<pre>#include<climits></climits></pre>
using namespace std;
#define REP(i,n) for(int i=0; i<(n); i++)
#define $FOR(i,a,b)$ for(int i=(a); i<=(b); i++)
#define FORD(i,a,b) for(int i=(a); i>=(b); i)
<pre>#define FORIT(i, m) for (typeof((m).begin()) i=(m).begin(); i!=(m).end(); ++i)</pre>
<pre>#define SET(t,v) memset((t), (v), sizeof(t))</pre>
<pre>#define ALL(x) x.begin(), x.end()</pre>
<pre>#define UNIQUE(c) (c).resize(unique(ALL(c)) - (c).begin())</pre>
<pre>#define sz(v) int(v.size())</pre>
#define pb push_back
<pre>#define VI vector<int></int></pre>
<pre>#define VS vector<string></string></pre>

Combinatorics

Mathematical Sums

$$\begin{array}{ll} \sum_{k=0}^n k = n(n+1)/2 & \sum_{k=a}^b k = (a+b)(b-a+1)/2 \\ \sum_{k=0}^n k^2 = n(n+1)(2n+1)/6 & \sum_{k=0}^n k^3 = n^2(n+1)^2/4 \\ \sum_{k=0}^n k^4 = (6n^5+15n^4+10n^3-n)/30 & \sum_{k=0}^n k^5 = (2n^6+6n^5+5n^4-n^2)/12 \\ \sum_{k=0}^n x^k = (x^{n+1}-1)/(x-1) & \sum_{k=0}^n kx^k = (x-(n+1)x^{n+1}+nx^{n+2})/(x-1)^2 \end{array}$$

Binomial coefficients

	0	1	2	3	4	5	6	7	8	9	10	11	12	$\binom{n}{l} = \frac{n!}{l}$
0	1													$\binom{n}{k} = \frac{(n-k)!k!}{\binom{n}{k}} + \binom{n-1}{k-1}$
1	1	1												(n) n $(n-1)$
2	1	2	1											
3	1	3	3	1										$\binom{k}{k} = \binom{k}{k-1}$
4	1	4	6	4	1									$\binom{k}{k} = \frac{1}{n-k+1} \binom{k}{k}$
5	1	5	10	10	5	1								$\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}$
6	1	6	15	20	15	6	1							
7	1	7	21	35	35	21	7	1						$\sum_{n=1}^{n} (n)$ on 1
8	1	8	28	56	70	56	28	8	1					$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$ $\sum_{k=1}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$
9	1	9	36	84	126	126	84	36	9	1				$\sum_{k=1}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$
10	1	10	45	120	210	252	210	120	45	10	1			
11	1	11	55	165	330	462	462	330	165	55	11	1		$(m+n) = \sum_{r} r \pmod{n}$
12	1	12	66	220	495	792	924	792	495	220	66	12	1	$\begin{pmatrix} r \end{pmatrix} - \sum_{k=0}^{\infty} \begin{pmatrix} k \end{pmatrix} \begin{pmatrix} r-k \end{pmatrix}$
	0	1	2	3	4	5	6	7	8	9	10	11	12	$\binom{n}{k} = \prod_{i=1}^k \frac{n-k+i}{i}$

Catalan numbers $C_n = \frac{1}{n+1} {2n \choose n}$. $C_0 = 1$, $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$. $C_{n+1} = C_n \frac{4n+2}{n+2}$. $C_0, C_1, \ldots = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \ldots$ C_n is the number of: properly nested sequences of n pairs of parentheses; rooted ordered binary trees with n+1 leaves; triangulations of a convex (n+2)-gon.

Derangements. Number of permutations of $n=0,1,2,\ldots$ elements without fixed points is $1,0,1,2,9,44,265,1854,14833,\ldots$ Recurrence: $D_n=(n-1)(D_{n-1}+D_{n-2})=nD_{n-1}+(-1)^n$. Corollary: number of permutations with exactly k fixed points is $\binom{n}{k}D_{n-k}$.

Stirling numbers of 1^{st} kind . $s_{n,k}$ is $(-1)^{n-k}$ times the number of permutations of n elements with exactly k permutation cycles. $\begin{bmatrix} n \\ k \end{bmatrix} = |s_{n,k}| = |s_{n-1,k-1}| + (n-1)|s_{n-1,k}|$ s(0,0) = 1 and s(n,0) = s(0,n) = 0.

Stirling numbers of 2^{nd} kind. $S_{n,k}$ is the number of ways to partition a set of n elements into exactly k non-empty subsets. $\binom{n}{k} = S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}$. $S_{n,1} = S_{n,n} = 1$.

Bell numbers . B_n is the number of partitions of n elements. $B_0, \ldots = 1, 1, 2, 5, 15, 52, 203, 877, \ldots$ $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k = \sum_{k=1}^{n+1} S_{n,k}$. Bell triangle: $B_r = a_{r,1} = a_{r-1,r-1}, \ a_{r,c} = a_{r-1,c-1} + a_{r,c-1}$.

Eulerian numbers . $E(n,k) = {n \choose k}$ is the number of permutations with exactly k descents $(i:\pi_i < \pi_{i+1})$ / ascents $(\pi_i > \pi_{i+1})$ / excedances $(\pi_i > i)$ / k+1 weak excedances $(\pi_i \ge i)$. Formula: E(n,m) = (m+1)E(n-1,m) + (n-m)E(n-1,m-1). E(n,0) = E(n,n-1) = 1. $E(n,m) = \sum_{k=0}^{m} (-1)^k {n+1 \choose k} (m+1-k)^n$.

```
Double factorial. Permutations of the multiset \{1, 1, 2, 3, \dots n, n\} such that for each k, all the num-
bers between two occurrences of k in the permutation are greater than k. (2n-1)!! = \prod_{k=1}^{n} (2k-1).
Eulerian numbers of 2^{nd} kind. Related to Double factorial, number of all such permutations
that have exactly m ascents. \left\langle \left\langle {n \atop m} \right\rangle \right\rangle = (2n-m-1)\left\langle \left\langle {n-1 \atop m-1} \right\rangle \right\rangle + (m+1)\left\langle \left\langle {n-1 \atop m} \right\rangle \right\rangle. \left\langle \left\langle {n \atop 0} \right\rangle \right\rangle = 1
Multinomial theorem . (a_1 + \cdots + a_k)^n = \sum \binom{n}{n_1, \dots, n_k} a_1^{n_1} \dots a_k^{n_k}, where n_i \ge 0 and \sum n_i = n.
\binom{n}{n_1,\dots,n_k} = M(n_1,\dots,n_k) = \frac{n!}{n_1!\dots n_k!} M(a,\dots,b,c,\dots) = M(a+\dots+b,c,\dots)M(a,\dots,b)
RMQ DP
int make_dp(int n) { // N log N
     REP(i,n) H[i][0]=i;
     for(int l=0,k; (k=1 << l) < n; l++) for(int i=0;i+k < n;i++)
          H[i][1+1] = A[H[i][1]] > A[H[i+k][1]] ? H[i+k][1] : H[i][1];
} // query log N almost O(1)
int query_dp(int a, int b) {
     for(int l=0;;l++) if (a+(1<< l+1) > b) {
          int o2 = H[b-(1<<1)+1][1];
          return A[H[a][1]] < A[o2] ? H[a][1]:o2;
}
     }
Suffix arrays
const int N = 100 * 1000 + 10;
char str[N]; bool bh[N], b2h[N];
int rank[N], pos[N], cnt[N], next[N], lcp[N];
bool smaller(int a, int b) { return str[a] < str[b];}</pre>
void suffix_array(int n) {
     REP(i,n)pos[i]=i, b2h[i]=false;
     sort(pos,pos+n,smaller);
     REP(i,n) bh[i]=!i||str[pos[i]] != str[pos[i-1]];
     for(int h=1;h< n;h*=2) {
          int buckets=0;
          for(int i=0,j; i<n; i=j) {
               j=i+1;
               while(j<n && !bh[j])j++;
               next[i]=j;
               buckets++;
          }
          if(buckets==n)break;
          for(int i=0;i<n;i=next[i]) {
               cnt[i] = 0;
               FOR(j, i, next[i]-1) rank[pos[j]]=i;
          }
          cnt[rank[n-h]]++;
          b2h[rank[n-h]]=true;
          for(int i=0;i<n;i=next[i]) {
               FOR(j, i, next[i]-1) {
                     int s = pos[j]-h;
                     if(s>=0){
                          rank[s] = rank[s] + cnt[rank[s]]++;
                          b2h[rank[s]]=true;
```

FOR(j, i, next[i]-1) {
 int s = pos[j]-h;

```
if(s>=0 && b2h[rank[s]])
                    for(int k=rank[s]+1;!bh[k] && b2h[k]; k++) b2h[k]=false;
        REP(i,n) pos[rank[i]]=i, bh[i]|=b2h[i];
}
   }
void get_lcp(int n) {
    lcp[0]=0;
    int h=0;
    REP(i,n) if(rank[i]) {
        int j=pos[rank[i]-1];
        while(i+h < n && j+h < n && str[i+h] == str[j+h]) h++;
        lcp[rank[i]]=h;
        if(h)h--;
}
   }
Graph algorithms (LCA, SCC)
Tarjan's offline LCA
function TarjanOLCA(u)
    MakeSet(u); u.ancestor := u;
    for each v in u.children do
        TarjanOLCA(v); Union(u,v); Find(u).ancestor := u;
    u.colour := black;
    for each v such that {u,v} in P and v.color==black do
        print "LCA", u, v, Find(v).ancestor
Tarjan's Strong Connected Components
procedure tarjan(v)
  index = count; v.lowlink = count++; S.push(v);color[v] = 1;
  for all (v, v2) in E do
     if (!color[v2])
        tarjan(v2); v.lowlink = min(v.lowlink, v2.lowlink);
     else if (color[v2]==1)
        v.lowlink = min(v.lowlink, v2.lowlink);
  if (v.lowlink == index)
    do { v2 = S.top(); S.pop(); print v2; color[v2]=2; } while (v2 != v);
for all v in V do if(!color[v]) tarjan(v);
```