Misura della caratteristica I-V di due diodi a giunzione p-n

Cristina Caprioglio, Luca Morelli Primo turno, tavolo 3

Abstract

Lo mettiamo? Lei non lo menziona

1 Scopo della prova

La prova consisteva nella misura delle caratteristiche I-V di due diodi a giunzione p-n, uno al silicio e uno al germanio. Abbiamo inoltre realizzato dei fit su ROOT in modo da ricavare i parametri fisici corrente inversa " I_0 " e " ηV_T ", rispettivamente la corrente inversa e il prodotto tra il fattore di idealità e l'equivalente della temperatura in volt.

2 Procedura

Per prima cosa abbiamo eseguito la calibrazione della tensione misurata con l'oscilloscopio, mettendola in relazione con quella data dal multimetro. Per fare ciò abbiamo collegato l'oscilloscopio al punto C e abbiamo cortocircuitato i punti A-B e abbiamo preso 10 misure tra i 50 e i 760 mV. Abbiamo prima preso il valore dell'oscilloscopio e poi quello del multimetro. Spostando poi il potenziometro fuori dal circuito abbiamo regolato la resistenza a $500\,\Omega$, per poi reinserirlo e mettere anche tra i punti A e B il diodo, prima al silicio e poi al germanio, con il catodo nel punto A. Dopo aver spostato l'oscilloscopio nel punto D abbiamo effettuato 16 misure per il silicio e 23 per il germanio, agendo sul potenziometro per variare la tensione e leggendo poi la corrente dal multimetro. Infine, abbiamo riportato i dati su dei grafici con scala semi-logaritmica ed eseguito i fit per ottenere i parametri ricercati.

3 Materiali utilizzati

 $\bullet \,$ Potenziometro da 1 $k\Omega$

• Diodo p-n: AAZ15/OA47 Germanio

 $\bullet\,$ Diodo p-n: 1N914A/1N4446/1N4148 Silicio

• Cavetti

• Cacciavite

• Cavi a doppia banana

• Breadboard

4 Strumentazione

• Alimentatore a bassa tensione

- Oscilloscopio ISO-TECH, ISR 622 20MHz
- Multimetro digitale

5 Misurazioni

5.1 Calibrazione dell'oscilloscopio

Tensione oscilloscopio (mV)	Fondo scala (mV)	Tensione multimetro (mV)
50 ± 14	10	48.20 ± 0.34
130 ± 51	50	123.40 ± 0.57
210 ± 51	50	202.6 ± 0.81
280 ± 101	100	268.8 ± 1
360 ± 101	100	349.3 ± 1.2
440 ± 101	100	428 ± 2.4
520 ± 102	100	505 ± 2.5
600 ± 201	200	571 ± 2.6
680 ± 201	200	654 ± 2.7
760 ± 202	200	734 ± 2.7

- 5.2 Silicio
- 5.3 Germanio
- 6 Grafici
- 6.1 Calibrazione dell'oscilloscopio
- 6.2 Silicio
- 6.3 Germanio

Conclusioni