Elektronik Aygıtlar

BÖLÜM 8 FET YÜKSELTEÇLERİ

BMB2012 – Elektronik Devreler ve Aygıtlar Ders Notları Bursa Uludağ Üniversitesi Bilgisayar Mühendisliği Bölümü 2023-2024 Bahar Yarıyılı

Çeviren ve Düzenleyen: Prof. Dr. Kemal FİDANBOYLU

Giriş

- FET'ler aşağıdaki avantajlara sahiptir:
 - Mükemmel voltaj kazancı
 - Yüksek giriş empedansı
 - Düşük güç tüketimi
 - İyi frekans yanıtı

JFET Küçük Sinyal Modeli

- Geçit ve kaynak arasındaki voltaj, bir JFET'in drenajdan (D) kaynağa (S) giden akımı kontrol eder.
- Transkondüktans: I_D akımındaki bir değişikliğin V_{GS} voltajındaki değişikliğe olan oranı.
- Transkondüktans g_m parametresi ile ifade edilir:

Giri ileçıkı arasında oldu u için Çıkı akımı/Giri Voltajı

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

Özellik Sayfaları:

$$g_m = g_{fs} = y_{fs}$$

g_m Parametresinin Grafik Yöntemiyle Tespiti (1)

$$g_m = m = \frac{\Delta y}{\Delta x} = \frac{\Delta I_D}{\Delta V_{GS}}$$

g_m Parametresinin Grafik Yöntemiyle Tespiti (2)

• Örnek 1: Aşağıdaki dc polarlama noktalarında I_{DSS} = 8 mA ve V_P = -4 V olan bir JFET için g_m 'nin değerini bulun: (a) V_{GS} = -0.5 V, (b) V_{GS} = -1.5 V, (c) V_{GS} = -2.5

Çözüm:

a.
$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} \cong \frac{2.1 \text{ mA}}{0.6 \text{ V}} = 3.5 \text{ mS}$$

b. $g_m = \frac{\Delta I_D}{\Delta V_{GS}} \cong \frac{1.8 \text{ mA}}{0.7 \text{ V}} \cong 2.57 \text{ mS}$
c. $g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{1.5 \text{ mA}}{1.0 \text{ V}} = 1.5 \text{ mS}$

• Not: V_{GS} 'nin değeri V_P 'ye yaklaştıkça g_m azalır.

g_m Parametresinin Matematiksel Tanımları (1)

DC analizinden elde etti in V_s'yi kullan

Bir fonksiyonun bir noktadaki türevi, o noktada çizilen teğetin eğimine eşittir. Bu nedenle, Shockley denklemini kullanarak I_D 'nin V_{GS} 'ye göre türevini alırsak, g_m için aşağıdaki gibi bir denklem türetebiliriz:

$$g_{m} = \frac{dI_{D}}{dV_{GS}}\Big|_{Q\text{-pt.}} = \frac{d}{dV_{GS}}\Big[I_{DSS}\Big(1 - \frac{V_{GS}}{V_{P}}\Big)^{2}\Big]$$

$$= I_{DSS}\frac{d}{dV_{GS}}\Big(1 - \frac{V_{GS}}{V_{P}}\Big)^{2} = 2I_{DSS}\Big[1 - \frac{V_{GS}}{V_{P}}\Big]\frac{d}{dV_{GS}}\Big(1 - \frac{V_{GS}}{V_{P}}\Big)$$

$$= 2I_{DSS}\Big[1 - \frac{V_{GS}}{V_{P}}\Big]\Big[\frac{d}{dV_{GS}}(1) - \frac{1}{V_{P}}\frac{dV_{GS}}{dV_{GS}}\Big] = 2I_{DSS}\Big[1 - \frac{V_{GS}}{V_{P}}\Big]\Big[0 - \frac{1}{V_{P}}\Big]$$

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|}\Big[1 - \frac{V_{GS}}{|V_{P}|}\Big]$$

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]$$

 $V_{GS} = 0 \text{ V için:}$

$$g_{m0} = \frac{2I_{DSS}}{|V_P|}$$

$$g_m = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right] = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$$

g_m Parametresinin Matematiksel Tanımları (1)

- **Örnek 2:** Örnek 1'in karakteristik eğrilerine sahip JFET için: (a) maksimum g_m değerini bulun, (b) Her çalışma noktasında g_m değerini bulun ve grafik sonuçlarıyla karşılaştırın.

GÖZÜM: a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(8 \text{ mA})}{4 \text{ V}} = 4 \text{ mS}$$
 g_{m} 'nin maksimum değeri.
b. $V_{GS} = -0.5 \text{ V için}$; $g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right] = 4 \text{ mS} \left[1 - \frac{-0.5 \text{ V}}{-4 \text{ V}} \right] = 3.5 \text{ mS}$ $V_{GS} = -1.5 \text{ V için}$; $g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right] = 4 \text{ mS} \left[1 - \frac{-1.5 \text{ V}}{-4 \text{ V}} \right] = 2.5 \text{ mS}$ $V_{GS} = -2.5 \text{ V için}$; $g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right] = 4 \text{ mS} \left[1 - \frac{-2.5 \text{ V}}{-4 \text{ V}} \right] = 1.5 \text{ mS}$

g_m ile V_{GS} Parametrelerinin Grafiksel Gösterimi

 g_m 'nin maksimum değeri $V_{GS} = 0 \text{ V ve minimum}$ değeri $V_{GS} = V_P$ 'de oluşur. V_{GS} 'nin değeri ne kadar negatif olursa, g_m 'nin değeri o kadar az olur.

I_D 'nin g_m Parametresi Üzerindeki Etkisi (1)

$$1 - \frac{V_{GS}}{V_P} = \sqrt{\frac{I_D}{I_{DSS}}}$$

$$1 - \frac{V_{GS}}{V_P} = \sqrt{\frac{I_D}{I_{DSS}}}$$
 $g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_P} \right) = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$

a.
$$I_D = I_{DSS}$$
 için, $g_m = g_{m0} \sqrt{\frac{I_{DSS}}{I_{DSS}}} = g_{m0}$
b. $I_D = I_{DSS}/2$ için, $g_m = g_{m0} \sqrt{\frac{I_{DSS}/2}{I_{DSS}}} = \mathbf{0.707} g_{m0}$
c. $I_D = I_{DSS}/4$ için, $g_m = g_{m0} \sqrt{\frac{I_{DSS}/4}{I_{DSS}}} = \frac{g_{m0}}{2} = \mathbf{0.5} g_{m0}$

En yüksek g_m değerleri, V_{GS} 0 V'a yaklaştığında ve I_D , maksimum I_{DSS} değerine yaklaştığında elde edilir.

I_D 'nin g_m Parametresi Üzerindeki Etkisi (2)

- Örnek 4: Örnek 1'den 3'e kadar olan JFET için g_m 'ye karşı I_D 'yi çizin.
- Çözüm:

JFET Empedansı (1)

Giriş Empedansı :

$$Z_i = \infty \Omega$$

IG Ooldu u için

Çıkış Empedansı :

$$Z_o = r_d = \frac{1}{y_{os}}$$

$$r_d = \frac{\Delta V_{DS}}{\Delta I_D} |_{V_{GS} = \text{constant}}$$

• y_{os} = FET özellik sayfalarında listelenen admitans parametresi.

JFET Empedansı (2)

• Örnek 5: Şekil 7'deki JFET için $V_{GS} = 0 \text{ V ve } V_{GS} = -2 \text{ V için } V_{DS} = 8 \text{ V'ta çıkış empedansını bulun.}$

Çözüm:

V_{GS} = 0 V için bir teğet çizilir. Eğer ΔV_{DS} = 5 V olarak seçilirse, ΔI_D = 0.2 mA olur. Böylelikle,

$$r_d = \frac{\Delta V_{DS}}{\Delta I_D} \Big|_{V_{GS} = 0 \text{ V}} = \frac{5 \text{ V}}{0.2 \text{ mA}} = 25 \text{ k}\Omega$$

• V_{GS} = -2 V için bir teğet çizilir. Eğer ΔV_{DS} = 8 V olarak seçilirse, ΔI_D = 0.1 mA olur. Böylelikle,

$$\left| r_d = \frac{\Delta V_{DS}}{\Delta I_D} \right|_{V_{GS} = -2 \text{ V}} = \frac{8 \text{ V}}{0.1 \text{ mA}} = 80 \text{ k}\Omega$$

Yukarıdaki sonuçlar, r_d 'nin bir Q-noktasından başka bir Q-noktasına değiştiğini, daha düşük değerlerin tipik olarak daha düşük V_{GS} değerlerinde (0 V'a yakın) meydana geldiğini gösterir.

JFET AC Eşdeğer Devresi (1)

JFET AC Eşdeğer Devresi (2)

- Örnek 6: g_{fs} = 3.8 mS ve g_{os} = 20 mS için FET ac eşdeğer modelini çizin.
- Çözüm:

$$g_m = g_{fs} = 3.8 \text{ mS ve } r_d = \frac{1}{g_{os}} = \frac{1}{20 \,\mu\text{S}} = 50 \,\text{k}\Omega$$

Ortak-Kaynak Sabit Polarlama Konfigürasyonu (1)

 Giriş sinyali geçit terminaline uygulanır ve çıkış sinyali drenaj terminalinden alınır.

Ortak-Kaynak Sabit Polarlama Konfigürasyonu (2)

$$Z_i = R_G$$

 Z_0 tanımının gerektirdiği şekilde V_i = 0 V olarak alırsak, Vgs'de 0 V olur. Böylece, $g_m V_{qs} = 0$ mA olur ve akım kaynağı, Şekil 13'te gösterildiği gibi bir açık devre eşdeğeri ile değiştirilebilir. Çıkış empedansı ise şu şekilde elde edilir: $Z_o = R_D \| r_d$

Direnç r_d , R_D 'ye kıyasla yeterince büyükse (en az 10:1), $r_d || R_D \approx R_D$ yaklaşımı sıklıkla uygulanabilir ve şu sonucu elde ederiz: $Z_o \cong R_D$ $r_d \ge 10R_D$

$$V_o = -g_m V_{gs}(r_d || R_D)$$

$$V_{gs} = V_i$$

$$V_o = -g_m V_i(r_d || R_D)$$

$$V_{gs} = V_i$$

 $V_o = -g_m V_i(r_d || R_D)$ $A_v = \frac{V_o}{V_i} = -g_m(r_d || R_D)$

Eğer $r_d \ge 10R_D$ ise:

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m}R_{D}$$

$$r_{d} \ge 1$$

Ortak-Kaynak Sabit Polarlama Konfigürasyonu (3)

- Örnek 7: Örnek 1'in sabit polarlamalı konfigürasyonu, $V_{GSQ} = -2 \text{ V ve } I_{DQ} = 5.625 \text{ mA}, I_{DSS} = 10 \text{ mA ve } V_P = -8 \text{ V ile tanımlanan bir Q-noktasına sahiptir. Devre, uygulanan bir <math>V_i$ sinyali ile Şekil 14'teki gibi yeniden çizildi. y_{os} 'un değeri 40 mS olarak verilmiştir. Aşağıdaki parametreleri bulun: (a) g_m , (b) r_d , (c) Z_i , (d) Z_o , (e) A_v , r_d 'nin etkilerini dikkate alarak, (f) A_v , r_d 'nin etkilerini göz ardı ederek.
- Çözüm:

Ortak-Kaynak Sabit Polarlama Konfigürasyonu (4)

Örnek 7: (Devamı)

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(10 \text{ mA})}{8 \text{ V}} = 2.5 \text{ mS}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.5 \text{ mS} \left(1 - \frac{(-2 \text{ V})}{(-8 \text{ V})} \right) = \mathbf{1.88 \text{ mS}}$$
b. $r_d = \frac{1}{y_{os}} = \frac{1}{40 \mu \text{S}} = \mathbf{25 \text{ k}\Omega}$
c. $Z_i = R_G = \mathbf{1 M\Omega}$
d. $Z_o = R_D \| r_d = 2 \text{ k}\Omega \| 25 \text{ k}\Omega = \mathbf{1.85 \text{ k}\Omega}$
e. $A_v = -g_m (R_D \| r_d) = -(1.88 \text{ mS})(1.85 \text{ k}\Omega)$

• (f) şıkkında gösterildiği gibi, r_d ve R_D arasında 25 k Ω :2 k Ω = 12.5:1'lik bir oran, çözümde %8'lik bir farkla sonuçlanır.

f. $A_v = -g_m R_D = -(1.88 \text{ mS})(2 \text{ k}\Omega) = -3.76$

= -3.48

Ortak-Kaynak Öz Polarlama Konfigürasyonu (1)

R_S direncinin C_S kapasitörü ile baypas edilmesi:

Ortak-Kaynak Öz Polarlama Konfigürasyonu (2)

• R_S direncinin C_S kapasitörü ile baypas edilmesi:

- Eğer $r_d \ge 10R_D$ ise: $A_v = -g_m R_D$ $r_d \ge 10R_D$
- Devre girişi ile çıkışı arasında 180° faz kayması vardır.

Ortak-Kaynak Öz Polarlama Konfigürasyonu (3)

• R_S direncinin C_S kapasitörü ile baypas edilmemesi:

$$Z_i = R_G$$

$$Z_o = \frac{V_o}{I_o} \bigg|_{V_i = 0}$$

• Şekil 18'de V_i = 0 V olursa, geçit terminali toprak potansiyelinde (0 V) olur. R_G üzerindeki voltaj 0 V olur ve R_G direnci kısa devre olur. Kirchhoff'un akım kanununu uygularsak, aşağıdaki sonuçları elde ederiz:

Self-bias JFET configuration including the effects of R_S with $r_d = \infty \Omega$.

$$I_{o} + I_{D} = -g_{m}(I_{o} + I_{D})R_{S} = -g_{m}I_{o}R_{S} - g_{m}I_{D}R_{S}$$
 $I_{o}[1 + g_{m}R_{S}] = -I_{D}[1 + g_{m}R_{S}]$
 $I_{o} = -I_{D}$ Çünkü, $g_{m}V_{gs} = 0$ A
 $V_{o} = -I_{D}R_{D}$
 $V_{o} = -(-I_{o})R_{D} = I_{o}R_{D}$

Ortak-Kaynak Öz Polarlama Konfigürasyonu (4)

- R_S direncinin C_S kapasitörü ile baypas edilmemesi:
 - Devreye r_d dahil edilirse, eşdeğer devre Şekil 19'da gösterildiği gibi görünecektir.

$$Z_o = \frac{V_o}{I_o} \bigg|_{V_i = 0 \text{ V}} = -\frac{I_D R_D}{I_o}$$

Kirchhoff'un akım kanununu uygularsak aşağıdaki sonuçları elde ederiz:

$$I_{o} = g_{m}V_{gs} + I_{r_{d}} - I_{D}$$
 $V_{r_{d}} = V_{o} + V_{gs}$
 $I_{o} = g_{m}V_{gs} + \frac{V_{o} + V_{gs}}{r_{d}} - I_{D}$

Including the effects of r_d in the self-bias JFET configuration.

$$V_o = -I_D R_D$$
 olduğuna göre, $I_o = I_D R_D$

$$V_o = -I_D R_D$$
 olduğuna göre, $I_o = \left(g_m + \frac{1}{r_d}\right) V_{gs} - \frac{I_D R_D}{r_d} - I_D$

$$V_{gs}=-(I_D+I_o)R_S$$
 olduğuna göre,
$$I_o=-\bigg(g_m+\frac{1}{r_d}\bigg)(I_D+I_o)R_S-\frac{I_DR_D}{r_d}-I_D$$

Ortak-Kaynak Öz Polarlama Konfigürasyonu (5)

 $R_{\rm S}$ direncinin $C_{\rm S}$ kapasitörü ile baypas edilmemesi:

$$I_o \left[1 + g_m R_S + \frac{R_S}{r_d} \right] = -I_D \left[1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d} \right]$$

$$I_{o} \left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} \right] = -I_{D} \left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}} \right]$$

$$I_{o} = \frac{-I_{D} \left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}} \right]}{1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}}$$

$$Z_{o} = \frac{V_{o}}{I_{o}} = \frac{-I_{D}R_{D}}{-I_{D}\left(1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}}\right)} = \frac{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}\right]}{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}}\right]}R_{D}$$

$$Z_{o} = \frac{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}\right]}{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}}\right]}R_{D}$$

$$\left(1 + g_m R_S + \frac{R_S}{r_d}\right) \gg \frac{R_D}{r_d}$$

Eğer
$$r_d \ge 10R_D$$
 ise: $\left(1 + g_m R_S + \frac{R_S}{r_d}\right) > \frac{R_D}{r_d}$ $1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d} \cong 1 + g_m R_S + \frac{R_S}{r_d}$

$$\boxed{Z_o \cong R_D} \quad _{r_d \ge 10R_D}$$

Ortak-Kaynak Öz Polarlama Konfigürasyonu (6)

- $R_{\rm S}$ direncinin $C_{\rm S}$ kapasitörü ile baypas edilmemesi:
 - Şekil 19'daki devre için, Kirchhoff'un voltaj yasasının giriş devresine uygulanması şu şekilde sonuçlanır:

$$V_i - V_{gs} - V_{Rs} = 0 \implies V_{gs} = V_i - I_D R_S$$

• Kirchhoff'un voltaj kanununu kullanırsak r_d üzerindeki voltaj şu şekilde yazılabilir:

$$V_{r_d} = V_o - V_{R_S} \longrightarrow I' = \frac{V_{r_d}}{r_d} = \frac{V_o - V_{R_S}}{r_d}$$

Kirchhoff'un akım kanununu kullanırsak: $I_D = g_m V_{gs} + \frac{V_o - V_{R_S}}{r_d}$

$$I_D = g_m V_{gs} + \frac{V_o - V_{Rs}}{r_d}$$

• Yukarıdaki denklemde V_{qs} , V_o ve V_{RS} yerine I_D cinsinden yazarsak:

$$I_{D} = g_{m} \left[V_{i} - I_{D} R_{S} \right] + \frac{(-I_{D} R_{D}) - (I_{D} R_{S})}{r_{d}} \implies I_{D} \left[1 + g_{m} R_{S} + \frac{R_{D} + R_{S}}{r_{d}} \right] = g_{m} V_{i} \implies I_{D} = \frac{g_{m} V_{i}}{1 + g_{m} R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

Ortak-Kaynak Öz Polarlama Konfigürasyonu (7)

- R_S direncinin C_S kapasitörü ile baypas edilmemesi:
 - Çıkış voltajı aşağıdaki gibi elde edilir:

$$V_{o} = -I_{D}R_{D} = -\frac{g_{m}R_{D}V_{i}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

• Eğer $r_d \ge 10(R_D + R_S)$ ise:

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}$$

$$r_{d} \geq 10(R_{D} + R_{S})$$

Including the effects of r_d in the self-bias JFET configuration.

 Devre girişi ile çıkışı arasında 180° faz kayması vardır.

Ortak-Kaynak Öz Polarlama Konfigürasyonu (8)

 Örnek 8: Örnek 2'nin öz polarlamalı konfigürasyonu, $V_{GSO} = -2.6 \text{ V ve } I_{DO} = 2.6 \text{ mA}, I_{DSS} = 8 \text{ mA ve } V_P = -10.0 \text{ mA}$ 6 V ile tanımlanan bir Q-noktasına sahiptir. Devre, uygulanan bir V; sinyali ile Şekil 20'deki gibi yeniden çizildi. gos'un değeri 20 mS olarak verilmiştir. Aşağıdaki parametreleri bulun: (a) g_m , (b) r_d , (c) Z_i , (d) Z_{o} , (e) A_{v} . Not: (d) ve (e) şıklarında, önce r_{d} 'nin etkilerini dikkate alarak, daha sonra göz ardı ederek hesaplamaları yapın, daha sonra sonuçları karşılaştırın.

Ortak-Kaynak Öz Polarlama Konfigürasyonu (9)

- Örnek 8: (Devamı)
- Çözüm:

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(8 \text{ mA})}{6 \text{ V}} = 2.67 \text{ mS}$$

 $g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.67 \text{ mS} \left(1 - \frac{(-2.6 \text{ V})}{(-6 \text{ V})} \right) = 1.51 \text{ mS}$

b.
$$r_d = \frac{1}{y_{os}} = \frac{1}{20 \,\mu\text{S}} = 50 \,\text{k}\Omega$$

c.
$$Z_i = R_G = 1 \,\mathrm{M}\Omega$$

d. r_d nin etkilerini dikkate alırsak: $r_d = 50 \text{ k}\Omega > 10R_D = 33 \text{ k}\Omega$

$$Z_o=R_D=$$
 3.3 ${
m k}\Omega$ Eğer $r_d=$ ${
m \infty}\Omega$ olarak alırsak: $Z_o=R_D=$ 3.3 ${
m k}\Omega$

Network for Example 8.

Ortak-Kaynak Öz Polarlama Konfigürasyonu (10)

Örnek 8: (Devamı)

e. r_d'nin etkilerini dikkate alırsak:

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega) + \frac{3.3 \text{ k}\Omega + 1 \text{ k}\Omega}{50 \text{ k}\Omega}} = -1.92$$

Eğer $r_d = \infty \Omega$ olarak alırsak:

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega)} = -1.98$$

Yukarıdaki sonuçlardan, $r_d \ge 10(R_D + R_S)$ koşulu sağlandığı için r_d 'nin etkisinin minimum olduğunu gözlemleyebiliriz. Ayrıca, bir JFET yükseltecinin tipik kazancının, benzer konfigürasyonlara sahip BJT'ler için genel olarak karşılaşılandan daha az olduğuna dikkat edin. Bununla birlikte, JFET'in giriş empedansının (Z_i) bir BJT'nin tipik giriş empedansından çok daha büyük olduğunu ve bunun sistemin genel kazancı üzerinde çok olumlu bir etkisi olacağını unutmayın.

Ortak-Kaynak Voltaj Bölücü Polarlama Konfigürasyonu (1)

Ortak-Kaynak Voltaj Bölücü Polarlama Konfigürasyonu (2)

$$Z_i = R_1 \| R_2$$

Eğer $V_i = 0$ V olarak alırsak, Vgs ve g_mV_{qs} de sıfır olur. Dolayısıyla, çıkış empedansını aşağıdaki gibi elde ederiz: $Z_o = r_d \| R_D$

Redrawn network of Fig. 22.

Eğer
$$r_d \ge 10R_D$$
 ise: $Z_o \cong R_D$

$$Z_o \cong R_D$$
 $r_d \ge 10R_D$

$$V_{gs} = V_i$$
, $V_o = -g_m V_{gs}(r_d || R_D)$, $A_v = \frac{V_o}{V_i} = \frac{-g_m V_{gs}(r_d || R_D)}{V_{gs}}$

$$A_v = \frac{V_o}{V_i} = -g_m(r_d || R_D)$$

Eğer
$$r_d \ge 10R_D$$
 ise

Eğer
$$r_d \ge 10R_D$$
 ise:
$$A_v = \frac{V_o}{V_i} \cong -g_m R_D$$
$$r_d \ge 10R_D$$

Sonsuz paralel herhangi bir ey herhangi bir eydir Kısa devre paralel herhangi bir ey kısa devredir

 Z_0 ve A_v denklemlerinin, sabit polarlamalı ve öz-polarlamalı (baypas edilmiş R_S ile) konfigürasyonlar için elde edilenlerle aynı olduğuna dikkat edin. Tek fark, R_1 ve R_2 'nin paralel kombinasyonuna duyarlı olan Z_i denklemidir.

Ortak-Geçit Konfigürasyonu (1)

JFET common-gate configuration.

Network of Fig. 24 following substitution of JFET ac equivalent model.

- Şekil 25'te V_i = 0 V olarak alırsak, R_S "kısa devre" olacak ve V_{gs} 'yi 0 V yapacaktır. Sonuç olarak $g_m V_{gs}$ = 0 olacak ve r_d , R_D ile paralel olacaktır. Böylece, $Z_o = R_D \| r_d$
- Eğer $r_d \ge 10R_D$ ise:

$$\boxed{Z_o \cong R_D} \qquad \qquad r_d \ge 10R_D$$

Ortak-Geçit Konfigürasyonu (2)

$$V' = -V_{gs}$$
 $V' - V_{r_d} - V_{R_D} = 0$ $V_{r_d} = V' - V_{R_D} = V' - I'R_D$

$$I' + g_m V_{gs} = I_{r_d}$$

$$I' = I_{r_d} - g_m V_{gs} = \frac{(V' - I' R_D)}{r_d} - g_m V_{gs}$$

$$I' = \frac{V'}{r_d} - \frac{I' R_D}{r_d} - g_m [-V']$$

$$I'\left[1 + \frac{R_D}{r_d}\right] = V'\left[\frac{1}{r_d} + g_m\right]$$

$$I'\left[1 + \frac{R_D}{r_d}\right] = V'\left[\frac{1}{r_d} + g_m\right]$$

$$Z'_i = \frac{V'}{I'} = \frac{\left[1 + \frac{R_D}{r_d}\right]}{\left[g_m + \frac{1}{r_d}\right]}$$

$$Z'_{i} = \frac{V'}{I'} = \frac{r_{d} + R_{D}}{1 + g_{m}r_{d}}$$

$$Z_{i} = R_{S} ||Z'_{i}|$$

$$Z_{i} = R_{S} || \left[\frac{r_{d} + R_{D}}{1 + g_{m}r_{d}} \right]$$

$$Z_i = R_S \| \left[\frac{r_d + R_D}{1 + g_m r_d} \right]$$

Z_i yaklaşık olarak şu şekilde elde edilir:

$$Z_{i} = R_{S} \| Z_{i}^{\prime}$$

$$Z_{i} = R_{S} \| \left[\frac{r_{d} + R_{D}}{1 + g_{m}r_{d}} \right]$$
• Eğer $r_{d} \ge 10R_{D}$ ise, $R_{D}/r_{d} << 1$ ve $1/r_{d} << g_{m}$,
$$Z_{i}^{\prime} = \frac{\left[1 + \frac{R_{D}}{r_{d}} \right]}{\left[g_{m} + \frac{1}{r_{d}} \right]} \cong \frac{1}{g_{m}}$$

$$Z_{i}$$
 yaklaşık olarak şu şekilde elde edilir:
$$Z_{i} = \frac{\left[1 + \frac{R_{D}}{r_{d}} \right]}{\left[g_{m} + \frac{1}{r_{d}} \right]} \cong \frac{1}{g_{m}}$$

Ortak-Geçit Konfigürasyonu (3)

$$V_i = -V_{gs}$$

$$V_o = I_D R_D$$

$$V_{r_d} = V_o - V_i$$

$$V_o = I_D R_D = \left[\frac{V_i - V_o}{r_d} + g_m V_i \right] R_D$$
$$= \frac{V_i R_D}{r_d} - \frac{V_o R_D}{r_d} + g_m$$
$$= \left[\frac{R_D}{r_d} - \frac{R_D}{r_d} \right] + \left[\frac{R_D}{r_d} - \frac{R_D}{r_d} \right]$$

$$I_{r_d} = \frac{V_o - V_i}{r_d}$$

$$V_{i} = -V_{gs} V_{i} = V_{o} - V_{i} I_{r_{d}} = V_{o} - V_{i} I_{r$$

$$= \frac{V_{i}R_{D}}{r_{d}} - \frac{V_{o}R_{D}}{r_{d}} + g_{m}$$

$$V_{o} \left[1 + \frac{R_{D}}{r_{d}} \right] = V_{i} \left[\frac{R_{D}}{r_{d}} + g_{m}R_{D} \right]$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\left[g_{m}R_{D} + \frac{R_{D}}{r_{d}} \right]}{\left[1 + \frac{R_{D}}{r_{d}} \right]}$$

- Eğer $r_d \ge 10R_D$ ise: $A_v \cong g_m R_D$ $r_{d \ge 10R_D}$
- **Faz İlişkisi**: A_{ν} 'ın pozitif olması, V_{o} ve V_{i} aynı fazda olduğunu göstermektedir.

Ortak-Geçit Konfigürasyonu (4)

Örnek 9: Şekil 27'deki devre ortakgeçit konfigürasyonuna benzemese bile, yakından incelendiğinde Şekil 24'teki devreye benzediği ortaya çıkacaktır. $V_{GSO} = -2.2 \text{ V ve } I_{DO} =$ 2.03 mA ise, aşağıdaki parametreleri bulun: (a) g_m , (b) r_d , (c) Z_i , (d) Z_0 , (e) V_0 . Not: (c), (d) ve (e) şıklarında, önce r_d 'nin etkilerini dikkate alarak, daha sonra göz ardı ederek hesaplamaları yapın, daha sonra sonuçları karşılaştırın.

Ortak-Geçit Konfigürasyonu (5)

- Örnek 9: (Devamı)
- Çözüm:

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(10 \text{ mA})}{4 \text{ V}} = 5 \text{ mS}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 5 \text{ mS} \left(1 - \frac{(-2.2 \text{ V})}{(-4 \text{ V})} \right) = 2.25 \text{ mS}$$
b. $r_d = \frac{1}{g_{os}} = \frac{1}{50 \mu \text{S}} = 20 \text{ k}\Omega$

c. r_d direncinin etkisini dikkate alırsak, Z_i şu şekilde elde edilir:

$$Z_{i} = R_{S} \| \left[\frac{r_{d} + R_{D}}{1 + g_{m}r_{d}} \right] = 1.1 \text{ k}\Omega \| \left[\frac{20 \text{ k}\Omega + 3.6 \text{ k}\Omega}{1 + (2.25 \text{ mS})(20 \text{ k}\Omega)} \right]$$
$$= 1.1 \text{ k}\Omega \| 0.51 \text{ k}\Omega = \mathbf{0.35 k}\Omega$$

 $r_d = \infty$ olarak alırsak, Z_i şu şekilde elde edilir:

$$Z_i = R_S \| 1/g_m = 1.1 \text{ k}\Omega \| 1/2.25 \text{ ms} = 1.1 \text{ k}\Omega \| 0.44 \text{ k}\Omega$$

= **0.31 k\O**

Ortak-Geçit Konfigürasyonu (6)

Örnek 9: (Devamı)

d. r_d direncinin etkisini dikkate alırsak, Z_o şu şekilde elde edilir:

$$Z_o = R_D \| r_d = 3.6 \,\mathrm{k}\Omega \| 20 \,\mathrm{k}\Omega = 3.05 \,\mathrm{k}\Omega$$

 $r_d = \infty$ olarak alırsak, Z_o şu şekilde elde edilir:

$$Z_o = R_D = 3.6 \,\mathrm{k}\Omega$$

e. r_d direncinin etkisini dikkate alırsak, A_v şu şekilde elde edilir:

$$A_{v} = \frac{\left[g_{m}R_{D} + \frac{R_{D}}{r_{d}}\right]}{\left[1 + \frac{R_{D}}{r_{d}}\right]} = \frac{\left[(2.25 \text{ mS})(3.6 \text{ k}\Omega) + \frac{3.6 \text{ k}\Omega}{20 \text{ k}\Omega}\right]}{\left[1 + \frac{3.6 \text{ k}\Omega}{20 \text{ k}\Omega}\right]} = \frac{8.1 + 0.18}{1 + 0.18} = 7.02$$

$$A_{v} = \frac{V_{o}}{V_{i}} \Rightarrow V_{o} = A_{v}V_{i} = (7.02)(40 \text{ mV}) = 280.8 \text{ mV}$$

 $r_d = \infty$ olarak alırsak, A_v şu şekilde elde edilir:

$$A_v = g_m R_D = (2.25 \text{ mS})(3.6 \text{ k}\Omega) = 8.1$$

 $V_o = A_v V_i = (8.1)(40 \text{ mV}) = 324 \text{ mV}$

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (1)

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (2)

Eğer V_i = 0 V olarak alırsak, geçit terminali Şekil 31'de gösterildiği gibi doğrudan toprağa bağlanır. V_{gs} ve V_o 'nun aynı paralel devre üzerinde olması, $V_o = -V_{qs}$ ile sonuçlanır. Kirchhoff'un akım kanununu S düğümünde uygulayarak, aşağıdaki sonucu ederiz: $I_o + g_m V_{gs} = I_{r_d} + I_{R_s} = \frac{V_o}{r_d} + \frac{V_o}{R_s}$

Determining Z_o for the network of Fig. 30.

$$I_{o} = V_{o} \left[\frac{1}{r_{d}} + \frac{1}{R_{S}} \right] - g_{m} V_{gs} = V_{o} \left[\frac{1}{r_{d}} + \frac{1}{R_{S}} \right] - g_{m} [-V_{o}] = V_{o} \left[\frac{1}{r_{d}} + \frac{1}{R_{S}} + g_{m} \right]$$

$$Z_o = \frac{V_o}{I_o} = \frac{V_o}{V_o \left[\frac{1}{r_d} + \frac{1}{R_S} + g_m \right]} = \frac{1}{\frac{1}{r_d} + \frac{1}{R_S} + g_m} = \frac{1}{\frac{1}{r_d} + \frac{1}{R_S} + \frac{1}{1/g_m}}$$

$$Z_o = r_d ||R_S|| 1/g_m$$

$$Z_o = r_d \|R_S\| 1/g_m$$

Eğer
$$r_d \ge 10R_S$$
 ise: $Z_o \cong R_S || 1/g_m$ $r_d \ge 10R_S$

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (3)

$$\mathbf{A_{v}} \qquad V_{o} = g_{m} V_{gs}(r_{d} \| R_{S})$$

$$V_i = V_{gs} + V_o$$
$$V_{gs} = V_i - V_o$$

$$V_{o} = g_{m}(V_{i} - V_{o})(r_{d} \| R_{S})$$

$$V_{o} = g_{m}V_{i}(r_{d} \| R_{S}) - g_{m}V_{o}(r_{d} \| R_{S})$$

$$V_{o}[1 + g_{m}(r_{d} \| R_{S})] = g_{m}V_{i}(r_{d} \| R_{S})$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} \| R_{S})}{1 + g_{m}(r_{d} \| R_{S})}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} \| R_{S})}{1 + g_{m}(r_{d} \| R_{S})} \quad \text{Eğer } r_{d} \ge 10 R_{S} \text{ ise:} \qquad A_{v} = \frac{V_{o}}{V_{i}} \cong \frac{g_{m}R_{S}}{1 + g_{m}R_{S}}$$

- Kazanç denkleminin paydası paydan bir kat daha büyük olduğu için, kazanç hiçbir zaman birden büyük olamaz (emitör-sürücü BJT devresinde olduğu gibi).
- **Faz İlişkisi**: A_{ν} 'ın pozitif olması, V_{o} ve V_{i} aynı fazda olduğunu göstermektedir.

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (4)

• Örnek 10: Şekil 32'deki kaynak-sürücü devresinin noktası, $V_{GSQ} = -2.86 \text{ V ve}$ $I_{DQ} = 4.56 \text{ mA olarak}$ verilmiştir. Aşağıdaki parametreleri bulun: (a) g_m , (b) r_d , (c) Z_i , (d) Z_o , (e) A_v .

 Not: (d) ve (e) şıklarında, önce r_d'nin etkilerini dikkate alarak, daha sonra göz ardı ederek hesaplamaları yapın, daha sonra sonuçları karşılaştırın.

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (5)

- Örnek 10: (Devamı)
- Çözüm:

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(16 \text{ mA})}{4 \text{ V}} = 8 \text{ mS}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 8 \text{ mS} \left(1 - \frac{(-2.86 \text{ V})}{(-4 \text{ V})} \right) = 2.28 \text{ mS}$$
b. $r_d = \frac{1}{g_{os}} = \frac{1}{25 \mu \text{S}} = 40 \text{ k}\Omega$
c. $Z_i = R_G = 1 \text{ M}\Omega$

d. r_d direncinin etkisini dikkate alırsak, Z_o şu şekilde elde edilir:

$$Z_o = r_d \|R_S\| 1/g_m = 40 \text{ k}\Omega \|2.2 \text{ k}\Omega \|1/2.28 \text{ mS} = 40 \text{ k}\Omega \|2.2 \text{ k}\Omega \|438.6 \Omega = 362.52 \Omega$$

 $r_d = \infty$ olarak alırsak, Z_o şu şekilde elde edilir:

$$Z_o = R_S \| 1/g_m = 2.2 \text{ k}\Omega \| 438.6 \Omega = 365.69 \Omega$$

Kaynak-Sürücü (Ortak-Drenaj) Konfigürasyonu (6)

- Örnek 10: (Devamı)
 - e. r_d direncinin etkisini dikkate alırsak, A_v şu şekilde elde edilir:

$$A_{v} = \frac{g_{m}(r_{d} \| R_{S})}{1 + g_{m}(r_{d} \| R_{S})} = \frac{(2.28 \text{ mS})(40 \text{ k}\Omega \| 2.2 \text{ k}\Omega)}{1 + (2.28 \text{ mS})(40 \text{ k}\Omega \| 2.2 \text{ k}\Omega)}$$
$$= \frac{(2.28 \text{ mS})(2.09 \text{ k}\Omega)}{1 + (2.28 \text{ mS})(2.09 \text{ k}\Omega)} = \frac{4.77}{1 + 4.77} = \mathbf{0.83}$$

 $r_d = \infty$ olarak alırsak, A_v şu şekilde elde edilir:

$$A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}} = \frac{(2.28 \text{ mS})(2.2 \text{ k}\Omega)}{1 + (2.28 \text{ mS})(2.2 \text{ k}\Omega)}$$
$$= \frac{5.02}{1 + 5.02} = \mathbf{0.83}$$

 Yukarıdaki sonuç, r_d'nin kazanç üzerinde genellikle çok az etkiye sahip olduğunu gösterir.

D-MOSFET'ler (1)

 Shockley denklemi, D-MOSFET'ler için de geçerlidir. Aslında, Şekil 33'te gösterilen D-MOSFET ac eşdeğer modeli, Şekil 8'de gösterilen JFET ac eşdeğer modeli ile tamamen aynıdır. D-MOSFET'lerin tek farkı, V_{GSQ}'nun n-kanallı aygıtlar için pozitif, pkanallı aygıtlar için negatif olabilmesidir. Sonuç olarak, aşağıdaki örnekte gösterildiği gibi, g_m'nin g_{m0}'dan büyük olabileceğidir. r_d direnciğin değerleri ise, JFET'lere çok benzer.

D-MOSFET'ler (2)

Örnek 11: Örnek 7'de analiz edilen Şekil 34'teki devre için, Q-noktası $V_{GSO} = 0.35 \text{ V ve } I_{DO}$ = 7.6 mA'dır olarak verilmiştir. Aşağıdaki parametreleri bulun: (a) g_m ve g_{m0} ile karşılaştırın, (b) r_d , (c) Şekil 34 için ac eşdeğer devresini çizin, (d) Z_i (e) Z_0 , (f) A_v

9 18 V $I_{DSS} = 6 \text{ mA}$ $10 \text{ M}\Omega R_c \ge 150 \Omega$ Network for Example 11.

Çözüm:

D-MOSFET'ler (3)

Örnek 11: (Devamı)

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(6 \text{ mA})}{3 \text{ V}} = 4 \text{ mS}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 4 \text{ mS} \left(1 - \frac{(+0.35 \text{ V})}{(-3 \text{ V})} \right) = 4 \text{ mS} (1 + 0.117) = 4.47 \text{ mS}$$
b. $r_d = \frac{1}{y_{os}} = \frac{1}{10 \mu \text{S}} = 100 \text{ k}\Omega$

(c) Şekil 34 için ac eşdeğer devresi Şekil 35'te gösterilmiştir.

AC equivalent circuit for Fig. 34.

d. Eq. (28):
$$Z_i = R_1 || R_2 = 10 \,\mathrm{M}\Omega || 110 \,\mathrm{M}\Omega = 9.17 \,\mathrm{M}\Omega$$

e. Eq. (29):
$$Z_o = r_d \| R_D = 100 \,\mathrm{k}\Omega \| 1.8 \,\mathrm{k}\Omega = 1.77 \,\mathrm{k}\Omega \cong R_D = 1.8 \,\mathrm{k}\Omega$$

f.
$$r_d \ge 10R_D \rightarrow 100 \,\mathrm{k}\Omega \ge 18 \,\mathrm{k}\Omega$$

$$A_v = -g_m R_D = -(4.47 \text{ mS})(1.8 \text{ k}\Omega) = 8.05$$

E-MOSFET'ler

 g_m ve r_d değerleri, FET'in özellik sayfasından bulunabilir.

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

$$g_{m} = \frac{dI_{D}}{dV_{GS}} = \frac{d}{dV_{GS}} k(V_{GS} - V_{GS(Th)})^{2} = k \frac{d}{dV_{GS}} (V_{GS} - V_{GS(Th)})^{2}$$

$$= 2k(V_{GS} - V_{GS(Th)}) \frac{d}{dV_{GS}} (V_{GS} - V_{GS(Th)}) = 2k(V_{GS} - V_{GS(Th)})(1 - 0)$$

$$g_m = 2k(V_{GS_Q} - V_{GS(Th)})$$

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (1)

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (2)

$$I_i = g_m V_{gs} -$$

$$V_{gs} = V_i$$

$$I_i = g_m V_i + \frac{V_o}{r_d \| R_D}$$

$$I_i = g_m V_{gs} + \frac{V_o}{r_d \| R_D}$$
 $V_{gs} = V_i$ $I_i = g_m V_i + \frac{V_o}{r_d \| R_D}$ $I_i - g_m V_i = \frac{V_o}{r_d \| R_D}$

$$V_o = (r_d || R_D)(I_i - g_m V_i)$$

$$V_o = (r_d || R_D)(I_i - g_m V_i)$$

$$I_i = \frac{V_i - V_o}{R_F} = \frac{V_i - (r_d || R_D)(I_i - g_m V_i)}{R_F}$$

$$\begin{aligned} I_i R_F &= V_i - (r_d \| R_D) I_i + (r_d \| R_D) g_m V_i \\ V_i [1 + g_m(r_d \| R_D)] &= I_i [R_F + r_d \| R_D] \end{aligned} \qquad Z_i = \frac{V_i}{I_i} = \frac{R_F + r_d \| R_D}{1 + g_m(r_d \| R_D)}$$

$$Z_{i} = \frac{V_{i}}{I_{i}} = \frac{R_{F} + r_{d} \| R_{D}}{1 + g_{m}(r_{d} \| R_{D})}$$

Tipik olarak, $R_F >> r_d || R_D$, böylece $Z_i \cong \frac{R_F}{1 + g_m(r_d || R_D)}$

$$Z_i \cong \frac{R_F}{1 + g_m(r_d || R_D)}$$

Eğer r_d ≥ 10R_D ise:

$$Z_i \cong \frac{R_F}{1 + g_m R_D}$$

$$R_F \gg r_d \| R_D, r_d \ge 10 R_D$$

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (3)

Z_o

• V_i = 0 V ise, Şekil 39'da gösterildiği gibi geçit terminalinden toprağa kısa devre oluşur ve V_{gs} = 0 V ve g_mV_{gs} = 0 olur. Bu durumda R_F , r_d ve R_D dirençleri birbirine paralel olur. Böylece,

$$Z_o = R_F \| r_d \| R_D$$

• Tipik olarak, $R_F >> r_d || R_D$, böylece

$$Z_o \cong r_d \| R_D$$

• Eğer $r_d \ge 10R_D$ ise:

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (4)

$$I_i = g_m V_{gs} + \frac{V_o}{r_d \| R_D}$$

$$I_i = g_m V_{gs} + rac{V_o}{r_d \| R_D}$$
 $V_{gs} = V_i$ ve $I_i = rac{V_i - V_o}{R_F}$

$$\begin{split} \frac{V_i - V_o}{R_F} &= g_m V_i + \frac{V_o}{r_d \| R_D} \\ \frac{V_i}{R_F} - \frac{V_o}{R_F} &= g_m V_i + \frac{V_o}{r_d \| R_D} \\ V_o \bigg[\frac{1}{r_d \| R_D} + \frac{1}{R_F} \bigg] &= V_i \bigg[\frac{1}{R_F} - g_m \bigg] \end{split}$$

$$A_v = \frac{V_o}{V_i} = \frac{\bigg[\frac{1}{R_F} - g_m \bigg]}{\bigg[\frac{1}{r_d \| R_D} + \frac{1}{R_F} \bigg]}$$

$$\frac{1}{r_d \| R_D} + \frac{1}{R_F} = \frac{1}{R_F \| r_d \| R_D}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\left[\frac{1}{R_{F}} - g_{m}\right]}{\left[\frac{1}{r_{d} \| R_{D}} + \frac{1}{R_{F}}\right]}$$
$$\frac{1}{r_{d} \| R_{D}} + \frac{1}{R_{F}} = \frac{1}{R_{F} \| r_{d} \| R_{D}}$$

$$g_m \gg \frac{1}{R_F}$$

• Tipik olarak,
$$g_m \gg \frac{1}{R_F}$$
 Böylece, $A_v = -g_m(R_F \| r_d \| R_D)$

Tipik olarak, $R_F >> r_d || R_D$. Eğer $r_d \ge 10 R_D$ ise, $A_v \cong -g_m R_D ||_{R_F \gg r_d || R_D, r_d \ge 10 R_D}$

$$A_{v} \cong -g_{m}R_{D}$$

$$R_{F} \gg r_{d} \| R_{D}, r_{d} \geq 10R$$

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (5)

• Örnek 12: Şekil 40'taki E-MOSFET devresi için, $k = 0.24 \times 10^{-3} \text{ A/V}^2$, $V_{GSQ} = 6.4 \text{ V ve } I_{DQ} = 2.75 \text{ mA}$. Aşağıdaki parametreleri bulun: (a) g_m , (b) r_d , (c) Z_i , (d) Z_0 , (e) A_V .

 Not: (c), (d) ve (e) şıklarında, önce r_d'nin etkilerini dikkate alarak, daha sonra göz ardı ederek hesaplamaları yapın, daha sonra sonuçları karşılaştırın.

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (6)

- Örnek 12: (Devamı)
- Çözüm:

a.
$$g_m = 2k(V_{GS_Q} - V_{GS(Th)}) = 2(0.24 \times 10^{-3} \text{ A/V}^2)(6.4 \text{ V} - 3 \text{ V})$$

= 1.63 mS
b. $r_d = \frac{1}{g_{os}} = \frac{1}{20 \,\mu\text{S}} = 50 \,\text{k}\Omega$

c. r_d direncinin etkisini dikkate alırsak, Z_i şu şekilde elde edilir:

$$Z_{i} = \frac{R_{F} + r_{d} \| R_{D}}{1 + g_{m}(r_{d} \| R_{D})} = \frac{10 \,\mathrm{M}\Omega + 50 \,\mathrm{k}\Omega \| 2 \,\mathrm{k}\Omega}{1 + (1.63 \,\mathrm{mS})(50 \,\mathrm{k}\Omega \| 2 \,\mathrm{k}\Omega)}$$
$$= \frac{10 \,\mathrm{M}\Omega + 1.92 \,\mathrm{k}\Omega}{1 + 3.13} = \mathbf{2.42 \,\mathrm{M}\Omega}$$

 $r_d = \infty$ olarak alırsak, Z_i şu şekilde elde edilir:

$$Z_i \cong \frac{R_F}{1 + g_m R_D} = \frac{10 \,\text{M}\Omega}{1 + (1.63 \,\text{mS})(2 \,\text{k}\Omega)} = 2.53 \,\text{M}\Omega$$

E-MOSFET Drenaj Geri Besleme Konfigürasyonu (7)

Örnek 12: (Devamı)

d. r_d direncinin etkisini dikkate alırsak, Z_o şu şekilde elde edilir:

$$Z_o = R_F ||r_d|| R_D = 10 \,\mathrm{M}\Omega ||50 \,\mathrm{k}\Omega || 2 \,\mathrm{k}\Omega = 49.75 \,\mathrm{k}\Omega ||2 \,\mathrm{k}\Omega$$
$$= 1.92 \,\mathrm{k}\Omega$$

 $r_d = \infty$ olarak alırsak, Z_o şu şekilde elde edilir:

$$Z_o \cong R_D = 2 k\Omega$$

e. r_d direncinin etkisini dikkate alırsak, A_v şu şekilde elde edilir:

$$A_{v} = -g_{m}(R_{F} || r_{d} || R_{D})$$

$$= -(1.63 \text{ mS})(10 \text{ M}\Omega || 50 \text{ k}\Omega || 2 \text{ k}\Omega)$$

$$= -(1.63 \text{ mS})(1.92 \text{ k}\Omega)$$

$$= -3.21$$

 $r_d = \infty$ olarak alırsak, A_v şu şekilde elde edilir:

$$A_v = -g_m R_D = -(1.63 \text{ mS})(2 \text{ k}\Omega)$$

= -3.26

E-MOSFET Voltaj Bölücü Konfigürasyonu

FIG. 42 AC equivalent network for the configuration of Fig. 41.

• Eğer
$$r_d \ge 10R_D$$
 ise:
$$Z_o \cong R_d$$

$$r_d \ge 10R_D$$

$$A_v = \frac{V_o}{V_i} = -g_m(r_d || R_D)$$

$$Z_i = R_1 || R_2$$

• Eğer
$$r_d \ge 10 R_D$$
 ise: $A_v = \frac{V_o}{V_i} \cong -g_m R_D$

Özet Tablosu (1)

TABLE 1

 Z_i , Z_o , and A_v for various FET configurations

Configuration Z_i Z_o Fixed-bias [JFET or D-MOSFET] Medium (2 k Ω) Medium (-10)High $(10 \,\mathrm{M}\Omega)$ $R_D \| r_d$ $-g_m(r_d||R_D)$ R_G $-g_m R_D$ $(r_d \ge 10 R_D)$ Self-bias bypassed R_S [JFET or D-MOSFET] Medium (2 k Ω) Medium (-10)High $(10 \,\mathrm{M}\Omega)$ $-g_m(r_d||R_D)$ $R_D \| r_d$ R_G $-g_m R_D$ $(r_d \ge 10 R_D)$

Özet Tablosu (2)

TABLE 1

 Z_i , Z_o , and A_v for various FET configurations

Özet Tablosu (3)

TABLE 1

Z_i, Z_o, and A_v for various FET configurations

Özet Tablosu (4)

Arıza Tespit Yaklaşımları

DC polarlamalarını kontrol edin:

 Doğru değilse güç kaynağını, dirençleri, FET'i kontrol edin. Ayrıca amplifikatör aşamaları arasındaki kuplaj kapasitörünün sağlam olduğundan emin olmak için kontrol edin.

AC voltajlarını kontrol edin:

 Doğru değilse FET'i, kapasitörleri ve bir sonraki aşamanın yükleme etkisini kontrol edin.

Pratik Uygulamalar

- Üç Kanallı Ses Karıştırıcı
- Sessiz Anahtarlama
- Faz Kaydırmalı Şebekeler
- Hareket Algılama Sistemi