Machine Learning Introduction

Kristen Menou

What is ML?

"Standard Programming"

Definitions/Conventions

- Unsupervised learning: categorize/characterize/ find trends in arbitrary dataset (e.g.: clustering in x,y plane, in the absence of z)
- Supervised learning: predict after learning from a set of example datapoints: z=f(x,y)
- Regression: supervised learning with continuous, ordered response (e.g. 0-1000)
- Classification: supervised learning with categorical response (e.g. yes/no, black/white)

A variety of algorithms

Supervised Regression

- Simple and multiple linear regression
- Decision tree, random forest
- Artificial Neural networks
- Nearest neighbor methods (e.g., k-NN or k-Nearest Neighbors)
- •

Supervised Two-class & Multi-class Classification

- Logistic regression and multinomial regression
- Artificial Neural networks
- Decision tree, random forest
- SVM (support vector machine)
- Bayesian classifiers (e.g., Naive Bayes)
- Nearest neighbor methods (e.g., k-NN or k-Nearest Neighbors)
- •

Unsupervised

- K-means clustering
- PCA (principal component analysis)
- •

State-of-the-Art

MNIST data: hand-written digits (10-class classification)

t-SNE algorithm: 2D

ML in practice

- It is unclear what constitutes the best ML solution on a given problem
- Data science competitions provide useful comparisons (+ near-optimal solutions)
- Competition & collaboration both help

Kaggle: ML training camp

- Dataset & ML Competition Host
- Competitions: company provides data, crowd builds ML models, predict on "unseen/unlabeled" test data, best predictive model wins \$\$\$
- Company gets crowd-sourced, near-optimal ML solution for their specific data science problem
- ~500,000 kagglers, typically ~500-3000 participate in a given competition
- Key issues: feature engineering, overfitting, ML algorithms (choice + optimization)

\$60,000 • 674 teams

Santander Customer Satisfaction

Wed 2 Mar 2016

Mon 2 May 2016 (56 days to go)

Merger and 1st Submission Deadline

Dashboard

Public Leaderboard - Santander Customer Satisfaction

This leaderboard is calculated on approximately 50% of the test data. The final results will be based on the other 50%, so the final standings may be different. See someone using multiple accounts? Let us know.

#	Δ1d	Team Name * in the money	Score @	Entries	Last Submission UTC (Best - Last Submission)
1	-	BreakfastPirate *	0.841667	20	Mon, 07 Mar 2016 19:25:16 (-2.2d)
2	-	NxGTR *	0.841416	17	Mon, 07 Mar 2016 06:32:43 (-3.2d)
3	-	anokas *	0.841367	21	Mon, 07 Mar 2016 21:45:07 (-45.7h)
4	†1	DS.RESEARCH =	0.841221	25	Mon, 07 Mar 2016 06:01:14 (-0.3h)
5	11	Babar16	0.841218	8	Sun, 06 Mar 2016 21:36:32
6	-	Dimitris Leventis	0.841136	25	Mon, 07 Mar 2016 11:38:55 (-3.1d)
7	-	carl	0.841116	14	Sun, 06 Mar 2016 21:38:37 (-24h)
8	-	Florian	0.841112	7	Fri, 04 Mar 2016 07:07:45
9	-	Kim Quy	0.841085	6	Sun, 06 Mar 2016 09:29:59
10	-	Robert Martin	0.841060	30	Mon, 07 Mar 2016 21:28:55 (-0.1h)
11	†400	YaronBlinder	0.840953	4	Mon, 07 Mar 2016 19:56:11

ML project: general steps

- Data selection and pre-processing
- Data splitting (cross-validation)
- Feature selection (remove) and feature engineering (add)
- Model selection & optimization
- Deployment/Prediction phase

Synthetic Data

Generate 20 samples from sinusoid + gaussian noise: y=f(x)

Fitting choices

Best fit polynomials of various degrees (minimizing the squared residuals)

Good?

Fits the noise? "Overfitting"

Train-Test Split Split data points in train (say 2/3) and test (1/3)

Fit/Learn/Train on train set, predict on test set (mean squared error). Best model will "generalize" best on the test data (rather than "fitting the noise" in the train data)

Strategy I: limit complexity

Strategy 2: regularization.

Damp coefficients of polynomial fit.

Adjust free parameter with train/test validation.

Sparse regularization: zero-out coefficients preferentially (only 3-4 non-zero).

Again train/test validation required for model evaluation.

A kind of automated feature selection!