STAT714 Final Project

Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms:

Assessing the Effects of Between-Imputation Iterations (Takahashi, 2017)

2020021218 이소연 2020020338 전지현 2020020316 황서진

Assumptions of Imputation Methods

1. Missing Data Mechanism

-MCAR:
$$f(m_i|y_i,\phi) = f(m_i|y_i^*,\phi)$$
 for all i

-MAR:
$$f(m_i|y_{i(0)}, y_{i(1)}, \phi) = f(m_i|y_{i(0)}, y_{i(1)}^*, \phi)$$
 for all i

-NMAR:
$$f(m_i | y_{i(0)}, y_{i(1)}, \phi) \neq f(m_i | y_{i(0)}, y_{i(1)}^*, \phi)$$
 for some i

2. Ignorability

If both of conditions satisfied:

- (1) MAR condition
- (2) the distinctness condition

Assumptions of Imputation Methods

3. Proper Imputation

 Confidence proper: Simplified version of proper imputation by van Buuren(2012: 39)

confidence proper if ...:

$$E(ar{Q}|Y) = \hat{Q}$$
 $E(ar{U}|Y) = U$ $\left(1 + rac{1}{m}
ight) E(B|Y) \geq V(ar{Q})$

1. Data Augmentation (DA)

- -It is hard to judge the convergence in MCMC because its convergence is stochastic
- -R package: norm2 'mcmcNorm' (MCMC for incomplete multivariate normal data)
- Step 1) Imputation step: generates imputed values from the predictive distribution of missing values, given the observed values and the parameter values at iteration t

$$Y_{(1)}^{(t+1)} \sim p(Y_{(1)}|Y_{(0)},\theta^{(t)})$$

Step 2) Posterior step: generates parameter values from the posterior distribution, given the observed values and the imputed values at iteration t+1

$$\theta^{(t+1)} \sim p(\theta|Y_{(0)}, Y_{(1)}^{(t+1)})$$

2. Fully Conditional Specification (FCS)

- -Allows for the creation of flexible multivariate models
- -R package: MICE 'mice' (Multivariate Imputation By Chained Equations)
- Step 1) Imputations based on a set of conditional distributions for each variable on the other variables, one at a time.

$$y_{j(1)}^{(t+1)} \sim p\left(y_{j(1)}\middle|y_{(0)}, y_{1(1)}^{(t+1)}, \dots, y_{j-1(1)}^{(t+1)}, y_{j+1(1)}^{(t)}, \dots, y_{K(1)}^{(t)}, x\right)$$
 $j = 1, \dots K$

Step 2) Draws $\theta_j^{(t+1)}$ given the observed values and the (t+1)th imputations

$$\theta_j^{(t+1)} \sim p(\theta_j|y_{(0)}, y_{1(1)}^{(t+1)}, \dots, y_{K(1)}^{(t+1)}, x)$$

3. Expectation-Maximization with Bootstrapping (EMB)

- -EM algorithm is applied to each of the M bootstrap resamples to refine M point estimates of parameter θ .
- -R package: Amelia 'amelia' (Uses a bootstrap(default=100)+EM algorithm)
- Step 1) Expectation step: calculates the Q-function by averaging the complete-data log-likelihood over the predictive distribution of missing data.

$$Q(\theta | \theta^{(t)}) = \int l(\theta | y) f(Y_{(0)} | Y_{(1)}, \theta^{(t)}) dY_{(0)}$$

Step 2) Maximization step: finds parameter values at iteration t + 1 by maximizing the Q-function.

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta | \theta^{(t)})$$

Between-imputation Iterations

the number of times the imputation process is iterated between saving one complete dataset to memory and the next (e.g. between m = 1 and m = 2)

	Joint Modeling	Conditional Modeling	Between-imputation Iterations required
MCMC	DA	FCS	0
Non-MCMC	EMB		X

- 1. Data Augmentation (DA)
- 2. Fully Conditional Specification (FCS)
- 3. Expectation-Maximization with Bootstrapping (EMB)

Hyperparameters from Meta-Analysis

-Literatures that compared imputation methods

[Table] Summary of the 20 Studies on Multiple Imputation

Authors	MI Algorithms	Sample Size	Number of Variables	Number of Imputations	Number of Iterations	Missing Rate
Barnard and Rubin (1999)	DA	10, 20, 30	2	3, 5, 10	Unknown	10%, 20%, 30%
Hardt, Herke, and Leonhart (2012)	DA, EMB, FCS	50, 100, 200	3, 13, 23, 43, 83	20	Unknown	20%, 50%
McNeish (2017)	DA, FCS	20, 50, 100, 250	4	5, 25, 100	Unknown	10%, 20%, 30%, 50%

- -N = 1000 (Sample size)
- -p = 10 (Number of variables)
- M = 5(Number of Imputations)
- T: the number of EMB iteration, doubling for DA and FCS

Monte Carlo Simulated Data (Theoretical)

MC 시뮬레이션 Run 횟수는 500 관측치 수 = 1000

설명변수 X 의 개수 p-1는 1, …, 9으로 변화하며, multivariate normal을 따름 $\rightarrow X \sim N_{p-1}(0,1)$

X 의 공분산(상관계수)행렬은 Unif(-1,1)에서 9^2 개의 난수를 거듭 제곱하여 생성 \rightarrow r = matrix(runif(9^2,-1,1), ncol=9); Cor \langle -cov2cor(r%*%t(r))

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,1] [,1] 1.00000000 0.001192676 0.4845351 -0.28138331 0.12096665 -0.004177945 -0.16580310 -0.201378893 -0.43339747 [2,] 0.001192676 1.00000000 0.1711035 -0.51210209 -0.22414282 -0.397915620 -0.72671978 -0.006932479 -0.05650666 [3,] 0.484535091 0.171103534 1.0000000 -0.38341631 0.06247200 -0.126390475 -0.20427691 -0.171238401 -0.77807966 [4,] -0.281383307 -0.512102093 -0.3834163 1.00000000 -0.06436935 0.491598014 0.61026175 0.599824987 0.31183735 [5,] 0.120966646 -0.224142821 0.0624720 -0.06436935 1.000000000 -0.606624257 0.33116141 0.078619688 -0.22061605 [6,] -0.004177945 -0.397915620 -0.1263905 0.49159801 -0.60662426 1.000000000 0.09940189 0.391326164 0.37946220 [7,] -0.165803099 -0.726719775 -0.2042769 0.61026175 0.33116141 0.099401894 1.00000000 -0.045070208 0.15252656 [8,] -0.201378893 -0.006932479 -0.1712384 0.59982499 0.07861969 0.391326164 -0.04507021 1.000000000 0.30701544 [9,] -0.433397470 -0.056506657 -0.7780797 0.31183735 -0.22061605 0.379462197 0.15252656 0.307015435 1.000000000
```

Monte Carlo Simulated Data (Theoretical)

```
\begin{aligned} \mathbf{y_i} &= \boldsymbol{\beta_0} + \boldsymbol{\beta_1} \boldsymbol{x_{1i}} + \dots + \boldsymbol{\beta_{p-1}} \boldsymbol{x_{p-1i}} + \boldsymbol{\varepsilon_i} \quad where \ \beta_j \ includes \ \beta_0, \\ \boldsymbol{\beta_j} &\sim Unif(-2,2), \qquad j = 0,1,\cdots 10, \qquad \varepsilon_i \sim N(0,\sigma) \ , \qquad \sigma \sim Unif(0.5,2.0) \end{aligned}
```

p = 10 일 때

```
> beta
[1] -0.8496899 1.1532205 -0.3640923 1.5320696 1.7618691 -1.8177740 0.1124220 1.5696762 0.2057401 -0.1735411
```

Monte Carlo Simulated Data (Theoretical)

결측 발생 메커니즘: MAR y_i 는 완전히 관측된 변수이며, x_j 는 다음과 같이 y_i 와 난수 u_{ij} 에 의존하여 결측치를 가진다.

```
 u_{ij} \sim Unif(0,1) 
 x_{ji} \begin{cases} missing & if \ y_i < median(y_i) \ and \ u_{ij} < 0.5 \ or \ y_i > median(y_i) and \ u_{ij} > 0.9 \\ not \ missing & otherwise \end{cases}
```

위 메커니즘에 따라 만들어진 데이터는 각 변수 별 약 30%의 결측률을 가진다.

Evaluation criteria

- Unbiasedness

$$Bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- Efficiency

$$RMSE(\hat{\theta}) = \sqrt{E(\hat{\theta} - \theta)^2}$$

- Confidence Validity

$$SE(CR) = \sqrt{\frac{CR(1 - CR)}{S}}$$

where $CR = proportion \ of \ simulated \ smaples \ for \ which \ CI \ includes \ \beta_1(Coverage \ rate)$

Abbreviations	Missing Data Methods
CD	Complete data without missing values
LD	Listwise deletion (Complete case)
EMB	MI by AMELIA II
DA1	MI by NORM2 with no iterations
DA2	MI by NORM2 with 2*EM iterations
FCS1	MI by MICE with no iterations
FCS2	MI by MICE with 2*EM iterations
S-SI	Stochastic SI by norm.nob in MICE

Bias (Theoretical Data)

*red: absolute value over 0.01

O	Number of Independent Variables (p-1)										
$oldsymbol{eta}_1$	1	2	3	4	5	6	7	8	9		
Complete	-0.0041	-0.0043	-0.0040	-0.0049	-0.0055	-0.0060	-0.0057	-0.0088	-0.0071		
LD	-0.0059	-0.0073	-0.0043	-0.0080	-0.0110	-0.0097	-0.0103	-0.0146	0.0119		
SSI	-0.0024	-0.0075	-0.0040	-0.0044	-0.0049	0.0027	-0.0032	-0.0325	-0.0859		
EMB	-0.0046	-0.0038	-0.0039	-0.0062	-0.0071	-0.0082	-0.0048	-0.0486	-0.0480		
DA1	-0.0024	-0.0038	-0.0132	-0.0178	-0.0173	-0.0207	-0.0191	-0.0110	-0.0087		
DA2	<u>-0.0004</u>	-0.0006	<u>-0.0006</u>	-0.0008	0.0001	<u>-0.0005</u>	-0.0003	0.0088	0.0131		
FCS1	-0.0016	-0.001	-0.0102	-0.0095	-0.0106	-0.0115	-0.0118	-0.0053	-0.0067		
FCS2	-0.0033	0.0002	-0.0014	-0.0019	-0.0024	-0.0020	-0.0001	<u>-0.0050</u>	0.0399		

RMSE (Theoretical Data)

*red: absolute value over 0.2

P	Number of Independent Variables (p-1)										
$oldsymbol{eta_1}$	1	2	3	4	5	6	7	8	9		
Complete	0.0606	0.0608	0.0714	0.0719	0.0723	0.0754	0.0758	0.1573	0.3088		
LD	0.0774	0.1189	0.1910	0.2543	0.3000	0.3377	0.3710	0.4850	0.7989		
SSI	0.0742	0.0815	0.1081	0.1115	0.1194	0.1353	0.1239	0.4124	0.5199		
EMB	0.0596	0.0670	0.0911	0.1001	0.1071	0.1126	0.1131	0.5220	0.4874		
DA1	0.0884	0.1020	0.1630	0.17970	0.1853	0.2002	0.2019	0.2301	0.2262		
DA2	0.0349	0.0377	0.0475	0.0517	0.0547	0.0559	0.0564	0.2015	0.4773		
FCS1	0.0442	0.0627	0.1174	0.1331	0.1403	0.1616	0.1632	0.2061	0.2076		
FCS2	0.0431	0.0479	0.0638	0.0683	0.0743	0.0782	0.0787	0.2948	0.6016		

Correlation (Theoretical Data)

Coverage (Theoretical Data)

*red: absolute value under 0.9

P	Number of Independent Variables (p-1)										
$oldsymbol{eta}_1$	1	2	3	4	5	6	7	8	9		
Complete	0.946	0.942	0.942	0.940	0.942	0.932	0.940	0.940	0.938		
LD	0.924	0.824	0.708	0.600	0.524	0.526	0.532	0.818	0.906		
SSI	0.882	0.82	0.766	0.752	0.730	0.670	0.754	0.430	0.352		
EMB	0.950	0.934	0.914	0.912	0.912	0.918	0.908	0.884	0.874		
DA1	0.986	0.974	0.928	0.906	0.874	0.842	0.862	0.704	0.738		
DA2	0.962	0.974	0.960	0.966	0.950	0.954	0.954	0.952	0.962		
FCS1	0.944	0.876	0.670	0.628	0.632	0.60	0.604	0.522	0.506		
FCS2	0.934	0.934	0.944	0.936	0.910	0.898	0.930	0.874	0.862		

Lengths of the 95% CI (Theoretical Data) *red: length too small or large than complete data

O	Number of Independent Variables (p-1)										
$oldsymbol{eta_1}$	1	2	3	4	5	6	7	8	9		
Complete	0.2186	0.2188	0.2518	0.2568	0.2575	0.2653	0.2669	0.5601	1.0797		
LD	0.2593	0.2992	0.3843	0.4323	0.4741	0.5321	0.5830	1.2608	2.6525		
SSI	0.2186	0.2194	0.2539	0.2606	0.2622	0.2697	0.2728	0.4416	0.4907		
EMB	0.2575	0.2752	0.3422	0.3677	0.3872	0.4044	0.4104	1.6975	2.7171		
DA1	0.5417	0.5301	0.6125	0.6349	0.6287	0.6315	0.6366	0.6266	0.6635		
DA2	0.2488	0.2963	0.2475	0.2653	0.2795	0.2935	0.2963	1.0208	2.4805		
FCS1	0.2796	0.2089	0.2653	0.2863	0.3087	0.3213	0.3257	0.3480	0.3541		
FCS2	0.2493	0.2938	0.2432	<u>0.2555</u>	0.2703	0.2814	0.2820	<u>0.9266</u>	1.8429		

Computation Time in Sec (Theoretical Data)

-intel xeon gold 6230s(2.1GHz CPU) with 384GB RAM

O	Number of Independent Variables (p-1)										
$\boldsymbol{\beta_1}$	1	2	3	4	5	6	7	8	9		
EMB	0.0402	0.0419	0.0450	0.0503	0.0594	0.0756	0.1039	0.1550	<u>0.1758</u>		
DA1	0.0113	0.0115	0.0121	0.0129	0.0139	0.0151	0.0166	0.0181	0.0197		
DA2	0.0227	0.0452	0.0774	0.1227	0.1922	0.2912	0.4316	0.6342	0.8843		
FCS1	0.0175	0.0322	0.0492	0.0700	0.0882	0.1110	0.1346	0.1611	0.1900		
FCS2	0.1144	0.4392	1.0894	2.2967	4.0312	6.5446	10.0143	13.724	18.2476		

결론

실제 실험 결과 ≈ 논문 결과

-Bias, RMSE, Coverage: DA2의 성능이 가장 우수

-CI length: DA2, FCS2의 성능이 가장 우수

-Computation time: EMB가 가장 우수

- → DA와 FCS는 between-imputation iteration이 없을 경우 성능 저하 심각
- → 효과 면에서는 DA2와 FCS2가 EMB보다 뛰어났으나, 계산 시간 면에서 between-imputation iteration이 없는 EMB가 두드러지게 우수했으며 효과 차이는 용인할 수 있는 수준
- → EMB: confidence proper without between-imputation iteration
- → Single imputation(stochastic regression): coverage rate가 낮고 CI length 과소추정

감사합니다!

부록

Check MAR Assumption of the Simulated Data

Change of Distribution in the First Variable

부록

Monte Carlo Simulation

Figure 3. Number of iterations required vs. iteration number.

This shows how the number of iterations needed stabilizes within about 500-1000 iterations, and within about 100 iterations it is accurate to 20%.