Schrödinger Time Evolution

Arnav Gupta

April 17, 2024

Contents

1	Schr	rödinger Equation	
	1.1	Recipe for Solving Time-Dependent Quantum Mechanics	٥
2	Spir	n Precession	٤
	2.1	Magnetic Field in the z-Direction	
	2.2	Magnetic Field in a General Direction	,

1 Schrödinger Equation

Postulate 6: the time evolution of a quantum system is determined by the Hamiltonian or total energy operator H(t) through the Schrödinger equation

$$i\hbar \frac{d}{dt}\psi(t) = H(t)\psi(t)$$

The Hamiltonian is an observable so it is a Hermetian operator. The energy eigenvalue equation is

$$HE_n = E_n E_n$$

The basis of eigenvectors of the Hamiltonian is the **energy basis**.

If the initial state of the system at time 0 is

$$\psi(0) = \sum_{n} c_n E_n$$

then the time evolution of this state under the action of the time-independent Hamiltonian ${\cal H}$ is

$$\psi(t) = \sum_{n} c_n e^{-iE_n t/\hbar} E_n$$

For an observable A whose eigenstates consist of superpositions of energy eigenstates, where $a_1 = \alpha_1 E_1 + \alpha_2 E_2$. Then for $psi(0) = c_1 E_1 + c_2 E_2$, \$\$ $P_{a_1} = |\alpha_1|^2 |c_1|^2 + |\alpha_2|^2 |c_2|^2$

• $2\operatorname{Re}(\alpha_1 c_1^* \alpha_2^* c_2 e^{-i(E_2 - E_1)t/\hbar})$

and so the probabilities are time dependent, which is determined by the difference of the energies of the 2standard contract of the 2standard

$$\omega_{21} = \{rac{E_2-E_1}{\hbar} $$ is the egin{aligned} \mathbf{Bohr frequency}. \end{aligned}$$

1.1 Recipe for Solving Time-Dependent Quantum Mechanics

Given a Hamiltonian H and an initial state $\psi(0)$, find the probability that the eigenvalue a_i of the observable A is measured at time t.

- 1. Diagonalize H to find the eigenvalues and eigenvectors for the energies.
- 2. Write $\psi(0)$ in terms of the energy eigenstates E_n .
- 3. Multiply each eigenstate coefficient by $e^{-iE_nt/\hbar}$ to get $\psi(t)$.
- 4. Calculate the probability $P_{a_j} = |a_j| |\psi(t)|^2$.

2 Spin Precession

For the magnetic dipole

$$\mu = g \frac{q}{2m_e} S$$

the Hamiltonian is

$$H = -g \frac{q}{2m_e} S \cdot B$$

2.1 Magnetic Field in the z-Direction

If
$$B = B_0 \hat{z}$$
, then $H = \omega_0 S_z$ for $\omega_0 = -g \frac{q}{2m_e} B_0$.

Spin precession: where probabilities change for certain spins since the Hamiltonian is defined for other spins

Larmor precession: the precession of the spin vector

Larmor frequency: the frequency of precession

Ehrenfest's Theorem: quantum mechanical expectation values obey classical laws

2.2 Magnetic Field in a General Direction

Spin flip: where a state flips to the orthogonal state

The probability of a spin flip is

$$P_{+\to-} = \frac{\omega_1^2}{\omega_0^2 + \omega_1^2} \sin^2\left(\frac{\sqrt{\omega_0^2 + \omega_1^2}}{2}t\right)$$

which is Rabi's formula.