VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Měření vzdálenosti laserovým senzorem Mikroprocesorové a vestavěné systémy

Obsah

1	Úvod	2
2	Moduly	2
3	Zapojení 3.1 Schéma	2
4	Implementace4.1 Rozbor kódu	3
5	Video	3
6	Závěr	3

1 Úvod

Cílem práce bylo implementovat a zapojit laserový detekční elemtn VL5L0X pro měření vzdálenosti. K tomuto účelu byla poskytnuta deska Wemos D1 R32 a příslušné komponenty. Implementace aplikace je v C s využitím Arduino knihoven.

2 Moduly

K projektu byly dostupné 3 moduly.

- VL53L0X laser na měření vzdálenosti
- Wemos D1 R32 deska s mikrokontrolerem
- Displej OLED 0,96"- displej pro zobrazení naměřených dat
- KY-040 rotační enkóder pro ovládání aplikace

3 Zapojení

Zapojení probíhalo pomocí dodané dokumentace ze zadání. Připojení 5V na snímač a na rotační enkóder. Připojení 3.3V na displej. Při připojení snímače na 3.3V nedosahuje maximální vzdálenosti, ale pouze omezeného rozsahu. Připojení země na všechny součástky. Poté propojení pinů SCL a SDA z desky do displeje a do snímače. Pro připojení rotačního enkóderu se musí použít jak analogové tak digitální piny. Tyto piny se také musí nakonfigurovat viz.4.

3.1 Schéma

Obrázek 1: Schéma zapojení desky a modulů

4 Implementace

Pro **IMP**lementaci jsem se, po zkušenostech ze střední školy a práci s STM32F407, rozhodl jít cestou menšího odporu a aplikaci implementovat v Arduino ekosystému. Jako vývojové prostředí jsem použil Arduino IDE 1.8.19. S tímto také přišly bonusy ve využití jejich knihoven. Použil jsem následující knihovny:

- Adafruit_SSD1306.h práce s displejem [1]
- Adafruit_VL53L0X práce s laserovým měřidlem [2]
- AiEsp32RotaryEncoder.h práce s rotačním enkóderem [3]

4.1 Rozbor kódu

Před zapnutím aplikace se spustí funkce sestup() ve které probíhá inicializace všech modulů, nastavení pinů a zpřístupnění sériového portu. Celá aplikace je implementovaná v nekonečné smyčce simulované funkcí loop(). V této smyčce se podle uživatelského vstupu, snímaném ve funkci $rotary_onButtonClick()$, program rozděluje do tří větví:

- *menu()*
- measure()
- changeUnits()

Ve funkci menu() se pouze zobrazuje menu. V changeUnits() je implementace změny centimetrů na palce et vice versa. Ve funkci measure() probíhá samotné měření s laserem a zápis získaných dat na displej.

5 Video

Na videu nemluvím, pouze ukazuji funkčnost mého programu. V době psaní dokumentace je většina věcí na videu bohužel nečitelná, doufám, že při kontrole již bude dostupná větší kvalita. Video.

6 Závěr

Program dělá to co má, na žádné chyby jsem nenarazil. Jediné omezení jsou, HW omezení snímače.

Odkazy

- [1] Adafruit. $Adafruit_SSD1306$. [online]. [vid. 2023-12-04]. $\check{\mathbf{K}}$ íj. 2021. URL: https://github.com/adafruit/Adafruit_SSD1306.
- [2] Adafruit. $Adafruit_V L53L0X$. [online]. [vid. 2023-12-04]. Říj. 2023. URL: https://github.com/adafruit/Adafruit_VL53L0X.
- [3] Igor Antolic. *AiEsp32RotaryEncoder*. [online]. [vid. 2023-12-04]. Lis. 2021. URL: https://github.com/igorantolic/ai-esp32-rotary-encoder.