0.1 实数集

构造实数集

• 定义: 分割

如果有理数集 A 满足:

- 1. A 有上界
- 2. 如果 $a \in A$,且 $b \in Q$ 满足 b < a,则 $b \in A$
- 3. 对于 $\forall a \in A$, $\exists b \in A$ 满足 a < b 那我们称 A 为有理数集的一个分割。
- 定义: 有序

如果集合 $A \subset B$,我们称 A < B. 如果集合 A = B,我们称 A = B.

显然不存在其他的情况,因而所有分割构成的集合 ℝ 是有序集。

• 性质: 确界原理

现在我们证明 ℝ 满足确界原理。

取 \mathbb{R} 的一个有上界的子集 S,接下来证明存在 $\alpha = \sup S$.

构造集合 $\alpha = \{x | \text{如果 } \beta \in S, \text{则 } x \in \beta\}$, 我们验证 $\alpha \in \mathbb{R}$, 也就是说 α 也是一个分割。 性质1,2都是显然的,我们只验证3:

采用反证法,如果 $\exists a \in \alpha$,使得 $\forall b \in \alpha$,总有 a > b,又因为 $\exists \beta \in S$,有 $a \in \beta$,那么这显然与 β 是一个分割矛盾。从而我们知道 $\alpha \in \mathbb{R}$.

只需要说明 $\alpha = \sup S$,一方面 α 必然是 S 的上界,因为 S 的每个元素都是 α 的子集。 另一方面,如果 $\gamma < \alpha$,则必然存在一个 α 中的有理数 x,使得 $x \notin \gamma$.又知道 x 属于 S 中的某个元素 β ,也就是说有 $\beta > \gamma$,这说明了 γ 不是 S 的上界。

从而便得到了证明。

容易验证 \mathbb{R} 满足我们期望的所有性质,包括符合运算律等,从而我们得到了实数集的一个构造。