

TL072 TL072A - TL072B

LOW NOISE J-FET DUAL OPERATIONAL AMPLIFIERS

- WIDE COMMON-MODE (UP TO Vcc⁺) AND DIFFERENTIAL VOLTAGE RANGE
- LOW INPUT BIAS AND OFFSET CURRENT
- LOW NOISE $e_n = 15 \text{nV/Hz}$ (typ)
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE J-FET INPUT STAGE
- LOW HARMONIC DISTORTION: 0.01% (typ)
- INTERNAL FREQUENCY COMPENSATION
- LATCH UP FREE OPERATION
- HIGH SLEW RATE: 16V/µs (typ)

DESCRIPTION

The TL072, TL072A and TL072B are high speed J–FET input dual operational amplifiers incorporating well matched, high voltage J–FET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

ORDER CODES

Part Number	Temperature	Package		
Fait Number	Range	N	D	
TL072M/AM/BM	−55°C, +125°C	•	•	
TL072I/AI/BI	–40°C, +105°C	•	•	
TL072C/AC/BC	0°C, +70°C	•	•	
Example : TL0720	CN	•	•	

PIN CONNECTIONS (top view)

December 1998 1/9

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage - (note 1)		±18	V
Vi	Input Voltage - (note 3)		±15	V
V _{id}	Differential Input Voltage - (note 2)		±30	V
P _{tot}	Power Dissipation		680	mW
	Output Short-circuit Duration - (note 4)		Infinite	
T _{oper}		TL072C,AC,BC TL072I,AI,BI TL072M,AM,BM	0 to 70 -40 to 105 -55 to 125	°C
T _{stg}	Storage Temperature Range		-65 to 150	°C

Notes:

- All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.
 Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
 The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

57

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter		TL072I,M,AC,AI, AM,BC,BI,BM			TL072C		
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Vio	$\begin{array}{c} \text{Input Offset Voltage } (R_S=50\Omega) \\ T_{amb}=25^{\circ}C & TL072 \\ TL072A \\ TL072B \\ T_{min.} \leq T_{amb} \leq T_{max.} & TL072 \\ TL072A \\ TL072B \\ TL072B \end{array}$		3 3 1	10 6 3 13 7 5		3	10	mV
DVio	Input Offset Voltage Drift		10			10		μV/°C
l _{io}	Input Offset Current * $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		5	100 4		5	100 10	pA nA
l _{ib}	Input Bias Current * $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		20	200 20		20	200 20	pA nA
A _{vd}	$ \begin{array}{l} \text{Large Signal Voltage Gain } (R_L = 2k\Omega, \ V_O = \pm 10V) \\ T_{amb} = 25^{\circ}C \\ T_{min.} \leq T_{amb} \leq T_{max.} \end{array} $	50 25	200		25 15	200		V/mV
SVR	Supply Voltage Rejection Ratio (R _S = 50Ω) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	80 80	86		70 70	86		dB
I _{CC}	Supply Current, per Amp, no Load $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		1.4	2.5 2.5		1.4	2.5 2.5	mA
V _{icm}	Input Common Mode Voltage Range	±11	+15 -12		±11	+15 -12		V
CMR	Common Mode Rejection Ratio (R _S = 50Ω) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	80 80	86		70 70	86		dB
los	Output Short-circuit Current $T_{amb} = 25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$	10 10	40	60 60	10 10	40	60 60	mA
±V _{OPP}	$ \begin{array}{ll} \text{Output Voltage Swing} \\ T_{amb} = 25^{\circ}C & R_{L} = 2k\Omega \\ R_{L} = 10k\Omega \\ T_{min.} \leq T_{amb} \leq T_{max.} & R_{L} = 2k\Omega \\ R_{L} = 10k\Omega \end{array} $	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew Rate (V_{in} = 10V, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, unity gain)	8	16		8	16		V/µs
t _r	Rise Time (V_{in} = 20mV, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, unity gain)		0.1			0.1		μs
K _{OV}	Overshoot ($V_{in} = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, $T_{amb} = 25$ °C, unity gain)		10			10		%
GBP	Gain Bandwidth Product (f = 100kHz, $T_{amb} = 25^{\circ}C$, $V_{in} = 10$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF)	2.5	4		2.5	4		MHz
Ri	Input Resistance		10 ¹²			10 ¹²		Ω
THD	Total Harmonic Distortion (f = 1kHz, A_V = 20dB, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, V_O = 2V _{PP})		0.01			0.01		%
en	Equivalent Input Noise Voltage (f = 1kHz, $R_s = 100\Omega$)		15			15		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase Margin		45			45		Degrees
V _{O1} /V _{O2}	Channel Separation (A _v = 100)		120			120		dB

^{*} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY

V_{CC} = ± 15V $R_L = 2k\Omega$ MAXIMUM PEAK-TO-PEAKOUTPUT 25 See Figure 2 20 VOLTAGE (V) ± 10V 15 10 $V_{CC} = \pm 5V$ 5 100K 1K 10K 1M 10M 100 FREQUENCY (Hz)

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE

477

INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY

TOTAL POWER DISSIPATION VERSUS FREE AIR TEMPERATURE

TOTAL POWER DISSIPATION (mW)

COMMON MODE MODE REJECTION

SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE

COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

OUTPUT VOLTAGE VERSUS ELAPSED TIME

EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY

TOTAL HARMONIC DISTORTION VERSUS FREQUENCY

PARAMETER MEASUREMENT INFORMATION

Figure 1: Voltage Follower

Figure 2: Gain-of-10 Inverting Amplifier

TYPICAL APPLICATION

100KHz QUADRUPLE OSCILLATOR

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Difficusions	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches			
HILIEUSIONS	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

© http://www.st.com