3ª. Lista de Cálculo I – Computação

Livro Cálculo 1 – James Stewart – 7ª. Edição

Páginas 89 e 90 – exercícios: 5, 6, 9, 11, 15, 17, 29, 31, 34, 36, 37 e 38(a).

Páginas 98 e 99 – exercícios: 1, 2, 3, 5, 9, 10, 11, 15, 19, 21, 23, 25, 29, 35, 37, 41, 43, 45, 47 e 49.

- Para a função f, cujo gráfico é dado, diga o valor de cada quantidade indicada, se ela existir. Se não existir, explique por quê.
 - (a) $\lim_{x \to a} f(x)$
- (b) $\lim_{x \to a} f(x)$
- (c) $\lim_{x \to a^+} f(x)$

- (d) $\lim f(x)$
- (e) f(3)

- (6.) Para a função h cujo gráfico é dado, diga o valor da cada quantidade, se ela existir. Se não existir, explique por quê.
 - (a) $\lim_{x \to -3^{-}} h(x)$
- (b) $\lim_{x \to a^{+}} h(x)$
- (c) $\lim_{x \to a} h(x)$

- (d) h(-3)
- (e) $\lim_{x\to 0^-} h(x)$
- (f) $\lim_{x\to 0^+} h(x)$

- (g) $\lim_{x \to 0} h(x)$
- (h) h(0)
- (i) $\lim_{x \to a} h(x)$

- (j) h(2)
- (k) $\lim_{x \to a} h(x)$
- (l) $\lim_{x \to a} h(x)$

- 7. Para a função g cujo gráfico é dado, diga o valor da cada quantidade, se ela existir. Se não existir, explique por quê.
 - (a) $\lim_{t \to \infty} g(t)$
- (b) $\lim_{t \to 0} g(t)$
- (c) $\lim g(t)$

- (d) $\lim_{t\to 2^-} g(t)$
- (e) $\lim_{t\to 2^+} g(t)$
- (f) $\lim_{t \to 2} g(t)$

- (g) g(2)
- (h) $\lim g(t)$

- 8. Para a função R, cujo gráfico é mostrado a seguir, diga quem são:
 - (a) $\lim_{x \to a} R(x)$
- (b) $\lim_{x \to a} R(x)$
- (c) $\lim_{x \to \infty} R(x)$
- (d) $\lim_{x \to a} R(x)$
- (e) As equações das assíntotas verticais.

- Para a função f cujo gráfico é mostrado a seguir, determine o seguinte:
 - (a) $\lim_{x \to a} f(x)$
- (b) $\lim_{x \to a} f(x)$
- (c) $\lim_{x \to 0} f(x)$
- (d) $\lim_{x \to a} f(x)$
- (e) $\lim_{x \to a^+} f(x)$
- (f) As equações das assíntotas verticais.

10. Um paciente recebe uma injeção de 150 mg de uma droga a cada 4 horas. O gráfico mostra a quantidade f(t) da droga na corrente sanguínea após t horas. Encontre

$$\lim_{t \to 0^-} f(t)$$

$$\lim_{t\to 12^-} f(t) \qquad e \qquad \lim_{t\to 12^+} f(t)$$

e explique o significado desses limites laterais.

11-12 Esboce o gráfico da função e use-o para determinar os valores de *a* para os quais $\lim_{x\to a} f(x)$ existe:

$$\mathbf{11} f(x) = \begin{cases}
1 + x & \text{se } x < -1 \\
x^2 & \text{se } -1 \le x < 1 \\
2 - x & \text{se } x \ge 1
\end{cases}$$

12.
$$f(x) = \begin{cases} 1 + \sin x & \text{se } x < 0 \\ \cos x & \text{se } 0 \le x \le \pi \\ \sin x & \text{se } x > \pi \end{cases}$$

- 13-14 Use o gráfico da função f para dizer o valor de cada limite, se existir. Se não existir, explique por quê.
 - (a) $\lim_{x \to 0^-} f(x)$
- (b) $\lim_{x \to 0^+} f(x)$
- (c) $\lim_{x \to 0} f(x)$

13.
$$f(x) = \frac{1}{1 + e^{1/x}}$$

14.
$$f(x) = \frac{x^2 + x}{\sqrt{x^3 + x^2}}$$

15–18 Esboce o gráfico de um exemplo de uma função f que satisfaça a todas as condições dadas.

$$\lim_{x \to 1^{-}} f(x) = 2, \quad \lim_{x \to 1^{+}} f(x) = -2, \quad f(1) = 2$$

16.
$$\lim_{x \to 0^{-}} f(x) = 1$$
, $\lim_{x \to 0^{+}} f(x) = -1$, $\lim_{x \to 2^{-}} f(x) = 0$, $\lim_{x \to 2^{+}} f(x) = 1$, $f(2) = 1$, $f(0)$ não está definido

$$\lim_{x \to 3^{+}} f(x) = 4, \quad \lim_{x \to 3^{-}} f(x) = 2, \quad \lim_{x \to -2} f(x) = 2,$$

$$f(3) = 3, \quad f(-2) = 1$$

18.
$$\lim_{x \to 0^{-}} f(x) = 2$$
, $\lim_{x \to 0^{+}} f(x) = 0$, $\lim_{x \to 4^{-}} f(x) = 3$, $\lim_{x \to 4^{+}} f(x) = 0$, $f(0) = 2$, $f(4) = 1$

19–22 Faça uma conjectura sobre o valor do limite (se ele existir) por meio dos valores da função nos números dados (com precisão de seis casas decimais).

19.
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - x - 2},$$

$$x = 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,$$

$$1.9, 1.95, 1.99, 1.995, 1.999$$

20.
$$\lim_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2},$$

$$x = 0, -0.5, -0.9, -0.95, -0.99, -0.999,$$

$$-2, -1.5, -1.1, -1.01, -1.001$$

21.
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$
, $x = \pm 1, \pm 0.5, \pm 0.1, \pm 0.05, \pm 0.01$

22.
$$\lim_{x\to 0^+} x \ln(x+x^2)$$
, $x=1,0,5,0,1,0,05,0,01,0,005,0,001$

23–26 Use uma tabela de valores para estimar o valor do limite. Se você tiver alguma ferramenta gráfica, use-a para confirmar seu resultado.

23.
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$

24.
$$\lim_{x \to 0} \frac{\text{tg } 3x}{\text{tg } 5x}$$

25.
$$\lim_{x\to 1} \frac{x^6-1}{x^{10}-1}$$

26.
$$\lim_{x\to 0} \frac{9^x - 5^x}{x}$$

27. (a) A partir do gráfico da função
$$f(x) = (\cos 2x - \cos x)/x^2$$
 e dando *zoom* no ponto em que o gráfico cruza o eixo y, estime o valor de $\lim_{x\to 0} f(x)$.

(b) Verifique sua resposta da parte (a), calculando f(x) para valores de x que se aproximem de 0.

28. (a) Estime o valor de

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{\operatorname{sen} \pi x}$$

traçando o gráfico da função $f(x)=(\sin x)/(\sin \pi x)$. Forneça sua resposta com precisão de duas casas decimais.

(b) Verifique sua resposta da parte (a) calculando f(x) para valores de x que se aproximem de 0.

29–37 Determine o limite infinito.

$$\lim_{x \to -3^+} \frac{x+2}{x+3}$$

30.
$$\lim_{x \to -3^-} \frac{x+2}{x+3}$$

$$\lim_{x \to 1} \frac{2 - x}{(x - 1)^2}$$

32.
$$\lim_{x \to 5^{-}} \frac{e^x}{(x-5)^3}$$

33.
$$\lim_{x \to 0} \ln(x^2 - 9)$$

$$\lim_{x \to \infty} \cot x$$

35.
$$\lim_{x \to \infty} x \csc x$$

$$\lim_{x \to 2^{-}} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

$$\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{x^2 - 5x + 6}$$

(38.) (a) Encontre as assíntotas verticais da função

$$y = \frac{x^2 + 1}{3x - 2x^2}$$

(b) Confirme sua resposta da parte (a) fazendo o gráfico da função.

39. Determine
$$\lim_{x \to 1^-} \frac{1}{x^3 - 1} e \lim_{x \to 1^+} \frac{1}{x^3 - 1}$$

(a) calculando $f(x) = 1/(x^3 - 1)$ para valores de x que se aproximam de 1 pela esquerda e pela direita,

(b) raciocinando como no Exemplo 9, e

(c) a partir do gráfico de f.

40. (a) A partir do gráfico da função $f(x) = (\operatorname{tg} 4x)/x$ e dando *zoom* no ponto em que o gráfico cruza o eixo y, estime o valor de $\lim_{x\to 0} f(x)$.

(b) Verifique sua resposta da parte (a) calculando f(x) para valores de x que se aproximam de 0.

41. (a) Estime o valor do limite $\lim_{x\to 0} (1+x)^{1/x}$ com cinco casas decimais. Esse número lhe parece familiar?

(b) Ilustre a parte (a) fazendo o gráfico da função $y = (1 + x)^{1/x}$.

42. (a) Faça o gráfico da função $f(x) = e^x + \ln|x - 4|$ para $0 \le x \le 5$. Você acha que o gráfico é uma representação precise de f?

(b) Como você faria para que o gráfico represente melhor f?

43. (a) Avalie a função $f(x) = x^2 - (2^x/1.000)$ para x = 1, 0, 8, 0, 6, 0, 4, 0, 2, 0, 1 e 0,05, e conjecture qual o valor de

$$\lim_{x\to 0} \left(x^2 - \frac{2^x}{1.000}\right)$$

(b) Avalie f(x) para x = 0.04, 0.02, 0.01, 0.005, 0.003 e 0.001. Faça uma nova conjectura.

44. (a) Avalie $h(x) = (\lg x - x)/x^3$ para x = 1, 0, 5, 0, 1, 0, 05, 0, 01 e 0,005.

 \mathbb{A}

(b) Estime o valor de $\lim_{x\to 0} \frac{\operatorname{tg} x - x}{x^3}$

(c) Calcule h(x) para valores sucessivamente menores de x até finalmente atingir um valor de 0 para h(x). Você ainda está confiante que a conjectura em (b) está correta? Explique como finalmente obteve valores 0. (Na Seção 4.4 veremos um método para calcular esse limite.)

(d) Faça o gráfico da função h na janela retangular [-1, 1] por [0, 1]. Dê *zoom* até o ponto onde o gráfico corta o eixo y para estimar o limite de h(x) quando x tende a 0. Continue

Exercícios

(1) Dado que

$$\lim_{x \to 2} f(x) = 4 \qquad \lim_{x \to 2} g(x) = -2 \qquad \lim_{x \to 2} h(x) = 0$$

encontre, se existir, o limite. Caso não exista, explique por quê.

(a)
$$\lim_{x \to 2} [f(x) + 5g(x)]$$

(b)
$$\lim_{x \to 2} [g(x)]^3$$

(c)
$$\lim_{x \to a} \sqrt{f(x)}$$

(d)
$$\lim_{x \to 2} \frac{3f(x)}{g(x)}$$

(e)
$$\lim_{x \to 2} \frac{g(x)}{h(x)}$$

(f)
$$\lim_{x \to 2} \frac{g(x)h(x)}{f(x)}$$

(2) Os gráficos de f e g são dados. Use-os para calcular cada limite. Caso não exista, explique por quê.

(a)
$$\lim_{x \to 2} [f(x) + g(x)]$$

(b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

(c)
$$\lim_{x \to 0} [f(x)g(x)]$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x \to 2} [x^3 f(x)]$$

(f)
$$\lim_{x \to 1} \sqrt{3 + f(x)}$$

3-9 Calcule o limite justificando cada passagem com as Propriedades dos Limites que forem usadas.

$$\lim_{x \to 0} (3x^4 + 2x^2 - x + 1)$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

7.
$$\lim_{x\to 8} \left(1 + \sqrt[3]{x}\right) (2 - 6x^2 + x^3)$$
 8. $\lim_{t\to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5}\right)^2$

8.
$$\lim_{t\to 2} \left(\frac{t^2-2}{t^3-3t+5}\right)^2$$

$$\lim_{x \to 2} \sqrt{\frac{2x^2 + 1}{3x - 2}}$$

(a) O que há de errado com a equação a seguir?

$$\frac{x^2 + x - 6}{x - 2} = x + 3$$

(b) Em vista de (a), explique por que a equação

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} (x + 3)$$

está correta.

11-32 Calcule o limite, se existir.

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

13.
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

15
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$
 16. $\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

17.
$$\lim_{h \to 0} \frac{(-5+h)^2 - 25}{h}$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$

$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

20.
$$\lim_{t\to 1} \frac{t^4-1}{t^3-1}$$

$$\lim_{h\to 0}\frac{\sqrt{9+h}-3}{h}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1} - 3}{u-2}$$

$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

25
$$\lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t}$$
 26. $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2+t}\right)$

26.
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$

27.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$

27.
$$\lim_{x\to 16} \frac{4-\sqrt{x}}{16x-x^2}$$
 28. $\lim_{h\to 0} \frac{(3+h)^{-1}-3^{-1}}{h}$

$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right) \qquad \qquad \textbf{30.} \lim_{x \to -4} \frac{\sqrt{x^2+9}-5}{x+4}$$

30.
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - \frac{1}{x^2 + 4}}{x + 4}$$

31.
$$\lim_{h\to 0} \frac{(x+h)^3-x^3}{h}$$

32.
$$\lim_{h\to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

33. (a) Estime o valor de

$$\lim_{x \to 0} \frac{x}{\sqrt{1 + 3x} - 1}$$

traçando o gráfico da função $f(x) = x/(\sqrt{1+3x}-1)$

- (b) Faça uma tabela de valores de f(x) para x próximo de 0 e estime qual será o valor do limite.
- (c) Use as Propriedades dos Limites para mostrar que sua estimativa está correta.
- 34. (a) Use um gráfico de

$$f(x) = \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

para estimar o valor de $\lim_{x\to 0} f(x)$ com duas casas decimais.

- (b) Use uma tabela de valores de f(x) para estimar o limite com quatro casas decimais.
- (c) Use as Propriedades dos Limites para encontrar o valor exato do limite.
- **35.** Use o Teorema do Confronto para mostrar que

 $\lim_{x\to 0} (x^2 \cos 20\pi x) = 0$. Ilustre, fazendo os gráficos das funções $f(x) = -x^2$, $g(x) = x^2 \cos 20\pi x$ e $h(x) = x^2$ na mesma tela.

36. Empregue o Teorema do Confronto para mostrar que

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \operatorname{sen} \frac{\pi}{x} = 0.$$

Ilustre, fazendo os gráficos das funções f, g e h (como no Teorema do Confronto) na mesma tela.

- (37) Se $4x 9 \le f(x) \le x^2 4x + 7$ para $x \ge 0$, encontre $\lim f(x)$.
- **38.** Se $2x \le g(x) \le x^4 x^2 + 2$ para todo x, avalie $\lim_{x \to 1} g(x)$.
- **39.** Demonstre que $\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$.
- **40.** Demonstre que $\lim_{x \to 0^{+}} \sqrt{x} e^{\operatorname{sen}(\pi/x)} = 0$

41-46 Encontre, quando existir, o limite. Caso não exista, explique por quê.

- **41** $\lim_{x \to 3} (2x + |x 3|)$ **42.** $\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$
- **43.** $\lim_{x \to 0.5^{-}} \frac{2x 1}{|2x^3 x^2|}$ **44.** $\lim_{x \to -2} \frac{2 |x|}{2 + x}$
- **45** $\lim_{x \to 0^{-}} \left(\frac{1}{x} \frac{1}{|x|} \right)$ **46.** $\lim_{x \to 0^{+}} \left(\frac{1}{x} \frac{1}{|x|} \right)$
- (47.) A função sinal, denotada por sgn, é definida por

$$sgn x = \begin{cases} -1 & se x < 0 \\ 0 & se x = 0 \\ 1 & se x > 0 \end{cases}$$

- (a) Esboce o gráfico dessa função.
- (b) Encontre ou explique por que não existe cada um dos limites a seguir.

- (i) $\lim_{x\to 0^+} \operatorname{sgn} x$ (ii) $\lim_{x\to 0^-} \operatorname{sgn} x$ (iv) $\lim_{x\to 0} |\operatorname{sgn} x|$
- **48.** Seja

$$f(x) = \begin{cases} x^2 + 1 & \text{se } x < 1\\ (x - 2)^2 & \text{se } x \ge 1 \end{cases}$$

- (a) Encontre $\lim_{x\to 1^-} f(x)$ e $\lim_{x\to 1^+} f(x)$.
- (b) $\lim_{x\to 1} f(x)$ existe?
- (c) Esboce o gráfico de f.
- **49** Seja $g(x) = \frac{x^2 + x 6}{|x 2|}$.
 - (a) Encontre
 - (i) $\lim_{x \to a} g(x)$
- (b) $\lim_{x\to 2} g(x)$ existe?
- (c) Esboce o gráfico de g.
- **50**. Seja

$$g(x) = \begin{cases} x & \text{se } x < 1\\ 3 & \text{se } x = 1\\ 2 - x^2 & \text{se } 1 < x \le 2\\ x - 3 & \text{se } x > 2 \end{cases}$$

- (a) Determine as quantidades a seguir, se existirem.

 - (i) $\lim_{x \to 1^-} g(x)$ (ii) $\lim_{x \to 1} g(x)$ (iii) g(1)

(iv)
$$\lim_{x \to 2^{-}} g(x)$$
 (v) $\lim_{x \to 2^{+}} g(x)$ (vi) $\lim_{x \to 2^{-}} g(x)$

- (b) Esboce o gráfico de g.
- 51. (a) Se o símbolo [] denota a função maior inteiro do Exemplo 10. calcule
- - (i) $\lim_{x \to -2} [x]$ (ii) $\lim_{x \to -2} [x]$ (iii) $\lim_{x \to -2} [x]$
 - (b) Se n for um inteiro, calcule
 - (i) $\lim_{x \to n^{-}} [x]$ (ii) $\lim_{x \to n^{+}} [x]$
 - (c) Para quais valores de a o limite $\lim_{x\to a} [x]$ existe?
- **52.** Seja $f(x) = [\cos x], -\pi \le x \le \pi$.
 - (a) Esboce o gráfico de f.
 - (b) Calcule cada limite, se existir
 - (i) $\lim_{x \to 0} f(x)$
- (ii) $\lim_{x \to (\pi/2)^{-}} f(x)$
- $(iii) \lim_{x \to (\pi/2)^+} f(x)$
- (iv) $\lim_{x \to -\frac{1}{2}} f(x)$
- (c) Para quais valores de a o limite $\lim_{x\to a} f(x)$ existe?
- **53.** Se f(x) = [x] + [-x], mostre que existe $\lim_{x\to 2} f(x)$, mas que não é igual a f(2).
- 54. Na Teoria da Relatividade, a fórmula da contração de Lorentz

$$L = L_0 \sqrt{1 - v^2/c^2}$$

expressa o comprimento L de um objeto como uma função de sua velocidade v em relação a um observador, onde L_0 é o comprimento do objeto em repouso e c é a velocidade da luz. Encontre $\lim_{v\to c^-} L$ e interprete o resultado. Por que é necessário o limite à esquerda?

- **55.** Se *p* for um polinômio, mostre que $\lim_{x\to a} p(x) = p(a)$.
- **56.** Se r for uma função racional, use o Exercício 55 para mostrar que $\lim_{x\to a} r(x) = r(a)$ para todo número a no domínio de r.
- **57.** Se $\lim_{x \to 1} \frac{f(x) 8}{x 1} = 10$, encontre $\lim_{x \to 1} f(x)$.
- **58.** Se $\lim_{x \to 0} \frac{f(x)}{x^2} = 5$, encontre os seguintes limites.

59. Se

$$f(x) = \begin{cases} x^2 & \text{se } x \text{ \'e racional} \\ 0 & \text{se } x \text{ \'e irracional} \end{cases}$$

demonstre que $\lim_{x\to 0} f(x) = 0$

- Mostre por meio de um exemplo que $\lim_{x\to a} [f(x) + g(x)]$ pode existir mesmo que nem $\lim_{x\to a} f(x)$ nem $\lim_{x\to a} g(x)$ existam.
- **61.** Mostre por meio de um exemplo que $\lim_{x\to a} [f(x) g(x)]$ pode existir mesmo que nem $\lim_{x\to a} f(x)$ nem $\lim_{x\to a} g(x)$ existam.
- **62.** Calcule $\lim_{x\to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$ **63.** Existe um número *a* tal que

$$\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$$

exista? Caso exista, encontre a e o valor do limite.