Friday, November 22, 2019 11:27

Adjoint: V for sover F, B: V×V \rightarrow F bihnear form

T: V \rightarrow V Adjoint T' of T wit B satisfies

B(Tx,y) = B(x,Ty).

char F = 2

If
$$l \in O(V, Q)$$
 then $l' = l'$. $(B(l^x, y) = B(l^y, l^y) = B(x, l^y))$.
In fact, $TT' = l \Rightarrow T \in O(V, Q)$ as well. $(B(Tx, Ty) = B(x, l^y) = B(x, l^y))$.

Prop (i) if $T:V \rightarrow V$, $U \subset V$, $T(u) \subset u$, Then $T(u^{\perp}) \subset u^{\perp}$.

(ii) if T is orthogonal, $T(U^{\perp}) \in U^{\perp}$ as well.

If $v \in U^{\perp}$, B(u, Tv) = B(Tu, v) = 0, proving (i). if $T \in O(v, Q)$, T(u) = u. so $T^{-1}(u) = u$.

Det V = U, I ... I ur (orthogonal direct sum) if V = U, @... @ Ur & Ui I Uj.

Intuis case, $Q(\Sigma x_i) = \widehat{\Sigma}Q(x_i)$.

Det $U \subset V$ is isotropic if it contains $u \in V$. Q(u) = 0 (an isotropic vector). $U \subset V$ is totally isotropic if Q(u) = 0.

Det a 2d vs V is called a Hyperbolic plane if it is non-degenerate & isotropic. Def a pair (u,v) is hyperbolic if B(u,v)=1=B(v,u) of B(u,u)=0=B(v,v).

eg a hyperbolic base $(u,v) \longrightarrow Q(xu+yv)=xy$ (Hyperbolic)

($Q(xu+yv)=x^2+y^2$ would be cortesian).

Thus The following conditions on a 2d vs V w/ a are equivalent

(i) V is a Hyperbolic Plane

- (ii) V how a hyperbolic base
- (iii) discr $B = -1F^{*2}$.

So, up to isometry, there is only one hyperbolic plane.

Thus The rotation go O+(V,Q) is is is omorphic to F*.

* in fact, they look like [" a"] in a hyperbolic base

* Also, every improper hand [o a] is a reflection Su-av.