Struktura mreže proteinskih interakcija i njena računarska analiza na primeru ispitivanja neuređenosti proteina u interaktomima virusa SARS-CoV-2

Lazar Vasović, 2006/2021 prof. dr Gordana Pavlović-Lažetić Istraživanje podataka u bioinformatici Seminar Katedre, 12. maj 2022.

Mreže proteinskih interakcija

- Biološki sistemi interagujući blokovi
- Mreža (graf) prirodni matematički model
- Interaktomi mreže proteinskih interakcija
- Neusmerene grane

Neuređenost proteina

- Neuređeni proteini (IDP)
 - fleksibilna struktura
- Neuređeni regioni (IDR)
 - vrlo često spone
- Neuređeni proteini → veliki interaktomi

Ovaj i povezani radovi

- Spajanje dve teme poslednjih godina
- Eukariotske mreže ID(čvorišta) > ID(ostali)
- Virusne i kombinovane mreže –
- Osobine od interesa stepen povezanosti i stepen neuređenosti prema nekoliko mera
- Uzajamno dejstvo spojeni interaktom virusa (razmatrani SARS-CoV-2) i domaćina (čovek)

Odabrani interaktomi

• Javno dostupni podaci – baze *IntAct, iRefIndex*

	Glavni proteini	Izvorna baza	Čvorovi	Grane
M_IntAct	membranski	IntAct	259	568
M_iRef	membranski	iRefIndex	211	486
Nsp_iRef	nestrukturni	iRefIndex	311	1122
SARS2_iRef	ceo proteom	iRefIndex	1419	8942

Uzajamno dejstvo – mreža HuRI, baza NDEx

	Glavni proteini	Izvorna baza	Čvorovi	Grane
SARS_iRef	samo virusni	iRefIndex	30	53
pluća_HuRI	plućno tkivo	HuRI/NDEx	175	162

Primer interaktoma

Raspodela stepena čvorova

Mere neuređenosti

- Specijalizovane baze DisProt
- Alternativa profilisanje i predviđanje
- Profilisanje aminokiselinski sastav
- Predviđanje ansambli neuronskih mreža
- Dodatne mere neuređeni regioni, dužina
- Druga strana interakcije susedi

Aminokiselinski profil

- Statističko opravdanje zastupljenost u bazama
- Biofizičko opravdanje naelektrisanje, polarnost, veličina bočnog ostatka...

Razlike u udelima aminokiselina

Composition Profiler, http://www.cprofiler.org/help.html

Tipovi aminokiselinskih profila

- Udeo "neuređenih" prosta zastupljenost
- "Tvrdi" profil kojoj grupi je bliži u proseku
- "Meki" profil otežani prosek bliskosti

Jedna dimenzija → dve dimezije

Zajednička i uslovna raspodela

Trend zajedničke raspodele

Trend uslovne raspodele

Granice podele

- Podela po horizontalnoj osi:
 - Precizni maksimumi 5/14, 10, 21, 47
 - Aproksimacija sva četiri kvantil 0,982
 - Približne vrednosti 12, 12, 25, 47
- Podela po vertikalnoj osi:
 - Standard iz literature 0,3
 - "Tvrdi" profil uklapa se
 - Zanimljivost blizu medijane

Trend raspodela sa granicama

Trend raspodela sa granicama

Trend raspodela sa granicama

Hidropatija i CH predikcija

- Hidropatija ≈ inverz "mekom" profilu i udelu
- Hidrofilni i naelektrisani lanci → IDP
- CH predikcija ≈ "tvrdi" profil

CH predikcija ≈ "tvrdi" profil

PONDR® familija

- Više zadataka ansambli neuronskih mreža
- PPIDR predviđanje po svakom ostatku

PONDR®, http://www.pondr.com/pondr-tut.html

PONDR® VSL2

Neuređeni regioni

Raspodela "dobitaka" prema podeli

Dužina sekvence

Dužina sekvence

Dodatne analize

- Drugi kraj interakcije –
 postoji li korelacija,
 možda je neuređenost
 u susedstvu
- Analogne analize bilo koje mere u paru
- Uzajamno dejstvo postoji li veza sa *IDP*

Drugi kraj interakcije

Drugi kraj interakcije

Drugi kraj interakcije

Uzajamno dejstvo

Zaključak

- Analizirano nekoliko interaktoma virusa SARS-CoV-2, nekoliko mera neuređenosti, nekoliko različitih načina prikaza...
- Rezultati iako mnogo toga zavisi od odabira mesta podele, čini se da su najpovezaniji čvorovi (čvorišta, habovi) mahom uređeniji
- Susedstvo i uzajamno dejstvo slično
- Uzrok virusni proteini?

Literatura

- Vladimir N. Uversky. Analyzing IDPs in Interactomes. In Birthe B. Kragelund and Karen Skriver, editors, Intrinsically Disordered Proteins, chapter 46, pages 895–945. Springer Science+Business Media, LLC, 2020.
- Zsuzsanna Dosztányi, Jake Chen, A. Keith Dunker, István Simon, and Peter Tompa. Disorder and Sequence Repeats in Hub Proteins and Their Implications for Network Evolution. *Journal of Proteome Research*, 5(11):2985–2995, 2006.