Cyclic Redundancy Check - 8 ACA

André Alves 88811 Renato Valente 89077

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

December 2020

Encoder

Para a codificação dos dados usamos as Propriedades do módulo (Properties of the remainder).

$$(\sum_{n=0}^{15} a_n \times x^{n+8}) mod(x^8 + x^5 + x^3 + x^2 + x + 1)$$

Com a resolução da fórmula anterior podemos concluir que são necessários **64 xor** gates e **11 xor** de atraso de propagação no pior caso.

Para reduzir o número de gates recorremos à utilização de operações comuns com execução em paralelo para a redução do atraso de propagação.

Obtivemos uma redução na implementação para **38 XOR**-gates e **4 XOR**-gates de atraso de propagação no pior caso.

A maneira como reduzimos as XOR-gates e a arquitetura do encoder encontram-se nos slides seguintes.

Tabela de XOR-gates

r\a	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		IN XOR LVL					
7	0	1	0	0	1	1	1	1	1	1	0	1	0	1	0	0	9	8	2	1	1		
6	0	0	1	0	0						1	0		0	1	0	9	8	2	1	1		
5	0	0	0		0	0						1	0		0	1	9	8	4	3	2		
4	0	1	0	0	0			0	0	0	1	0		1		0	7	6	3	2	2		
3	0	0	1	0	0	0		1	0	0	0		0			1	7	6	4	3	2		
2		1	0		1			0	0		0	1		1		1	12	11	4	3	2		
1		0	1	0	0	0	0	0	1					0		1	9	8	4	3	2		
0		0	0							0	1	0		0	0	1	10	9	4	3	2		
	3	3	3	3	3	5	7	5	5	5	5	5	5	5	5	5	72	64		19	2		
																			10				
			14			10											13	8	9				
			11			9				12					10		5	7	8				
	14	11	4	10	8	8	13	5	12	0	9	6	4	15	9	15	3	6	7				
	2	4	2	9	7	7	1	3	0	3	2	5	0	6	1	11	1	5	6				
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	19	38		

As cores iguais equivalem à junção dessas entradas para poderem ser reaproveitadas ou para diminuir o atraso. Agrupámos 19 vezes as várias entradas, dando por isso, 19 XOR-gates. O Encoder agora com menos entradas precisa apenas de 19 XOR-gates, dando um total de 38 XOR-gates.

Arquitetura

Arquitetura Extenso

Igual à anterior mas passando as gates XOR-4 para gates XOR-2.

Checker

Verificar se existem erros introduzidos na transmissão.

Para isso aceitamos a entrada de $a(x) \times x^8 + r$ (a_r), em que o a(x) é a nossa word em bits e o r é o resto da divisão do a(x) pelo polinómio b(x). Usamos os 16 primeiros bits da entrada ,a_r na entrada a do encoder e recebemos o r. Depois fazemos comparação bit a bit do r dado pelo encoder com os 8 bits menos significativos da entrada a_r usando XOR-gates de 2 entradas. Para não dar erro é necessário que todos os bits de comparação sejam 0, por isso usamos um OR-gate de 8 entradas, em que os bits de comparação são as entradas e a saída é a saída do checker. Saíndo 0 significa que a mensagem não contém erros.

Esquema da arquitetura no slide seguinte.

Arquitetura Checker

