### Algorithm Analysis

**Insertion Sort** 

### Sorting

- Arrange an unordered list of elements in some order.
- Some common algorithms
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Quick Sort

### Sorting

- Important primitive
- For today, we'll pretend all elements are distinct.



Length of the list is n

```
INSERTION-SORT (A, n)
   for i = 2 to n
       key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
       j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[j+1] = key
```

#### example

```
Insertion-Sort(A, n)
  for i = 1 to n - 1
    key = A[i]
    j = i - 1
    while j >= 0 and A[j] > key
        A[j + 1] = A[j]
        j = j - 1
    A[j + 1] = key
```



Start by moving A[1] toward the beginning of the list until you find something smaller (or can't go any further):



#### example

```
Insertion-Sort(A, n)
  for i = 1 to n - 1
    key = A[i]
    j = i - 1
    while j >= 0 and A[j] > key
        A[j + 1] = A[j]
        j = j - 1
    A[j + 1] = key
```



#### Then move A[2]:

key = 3



#### example

```
Insertion-Sort(A, n)
  for i = 1 to n - 1
    key = A[i]
    j = i - 1
    while j >= 0 and A[j] > key
        A[j + 1] = A[j]
        j = j - 1
    A[j + 1] = key
```



Then move A[3]: key = 8



#### example

```
Insertion-Sort(A, n)
  for i = 1 to n - 1
    key = A[i]
    j = i - 1
    while j >= 0 and A[j] > key
        A[j + 1] = A[j]
        j = j - 1
    A[j + 1] = key
```



### Then move A[4]: key = 5



example

Start by moving A[1] toward the beginning of the list until you find something smaller (or can't go any further):



#### Then move A[2]:





#### Then move A[3]:



Then we are done!

### Why does this work?

Say you have a sorted list, 3 4 6 8 , and another element 5 .

• Insert 5 right after the largest thing that's still smaller than 5. (Aka, right after 4).

Then you get a sorted list:

3 4 5 6 8

This sounds like a job for...

# Proof By Induction!

### Outline of a proof by induction

#### Let A be a list of length n

- Base case:
  - A[:1] is sorted at the end of the 0'th iteration. ✓
- Inductive Hypothesis:
  - A[:i+1] is sorted at the end of the i<sup>th</sup> iteration (of the outer loop).
- Inductive step:
  - For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it holds for i=k.
  - Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k
     (previous slide)
- Conclusion:
  - The inductive hypothesis holds for i = 0, 1, ..., n-1.
  - In particular, it holds for i=n-1.
  - At the end of the n-1'st iteration (aka, at the end of the algorithm), A[:n] =
     A is sorted.
  - That's what we wanted! √

#### Algorithm Analysis

- Estimate the resources required by an algorithm
  - Memory
  - Communication Bandwidth
  - Energy Consumption
  - Computational Time
- Helps identify the most efficient one

- Timing the run of insertion sort on our computer
- We will get runtime estimates for,
  - A particular computer
  - A particular input
  - A particular implementation
  - A particular compiler/interpreter
  - Particular libraries and background tasks
- What about others?

### Algorithm Analysis

- Assumptions
  - One-processor
  - Random-access machine (RAM) model of computation

#### Random-access Machine

- Random-access machine (RAM)
  - Instructions execute one after another
  - No concurrent operations
  - Each instructions takes the same amount of time
  - Each data access takes the same amount of time
  - Contains commonly found instructions
    - Arithmetic (add subtract, multiply, divide, remainder, floor, ceiling)
    - Data movement (load, store, copy) and
    - Control (branching, call and return)
  - Includes common data types
  - Doesn't model memory hierarchy

- Runtime depends on inputs
  - Sort an array of 10000 items vs Sort and array of 3 items
- Input Size
  - Problem specific
  - For sorting, the number of items in the input
  - For multiplication, the total number of bits needed for representation
  - For graph, the number of nodes and edges

- Running time of an algorithm
  - For a given input
  - The number of instructions and data access executed
- Assumption
  - Constant time taken by each line of the pseudocode

```
INSERTION-SORT(A, n)
                                                                cost
                                                                       times
   for i = 2 to n
                                                                c_1
                                                                c_2 \qquad n-1
2
        key = A[i]
                                                                0 \qquad n-1
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                c_4 \qquad n-1
        i = i - 1
                                                                c_5 \qquad \sum_{i=2}^n t_i
     while j > 0 and A[j] > key
5
                                                                c_6 \qquad \sum_{i=2}^n (t_i - 1)
             A[j+1] = A[j]
6
                                                                c_7 \qquad \sum_{i=2}^n (t_i - 1)
          j = j - 1
                                                                c_8 = n - 1
        A[i+1] = kev
```

 $t_i$  denotes the number of times the **while** loop test in line 5 is executed for that value of i

T(n) denote the running time of an algorithm on an input of size of n

```
INSERTION-SORT(A, n)
                                                                        times
                                                                 cost
   for i = 2 to n
                                                                        n
                                                                 c_1
                                                                 c_2 \qquad n-1
        key = A[i]
                                                                 0 \qquad n-1
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                 c_4 \qquad n-1
        j = i - 1
                                                                 c_5 \qquad \sum_{i=2}^n t_i
      while j > 0 and A[j] > key
5
                                                                 c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
             A[j+1] = A[j]
6
                                                                 c_7 \qquad \sum_{i=2}^n (t_i - 1)
          j = j - 1
7
        A[j+1] = key
                                                                 c_8 \qquad n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

```
INSERTION-SORT(A, n)
                                                                          times
                                                                   cost
   for i = 2 to n
                                                                   c_1
                                                                          n
                                                                  c_2 \qquad n-1
        key = A[i]
2
                                                                   0 \qquad n-1
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                   c_4 \qquad n-1
        i = i - 1
                                                                  c_5 \qquad \sum_{i=2}^n t_i
      while j > 0 and A[j] > key
5
                                                                  c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
             A[j+1] = A[j]
6
                                                                  c_7 \qquad \sum_{i=2}^n (t_i - 1)
           j = j - 1
        A[i+1] = key
                                                                         n - 1
                                                                   C_{\mathbf{R}}
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

- Best Case
  - The array is sorted
  - $t_i = 1$  for all i = 2, 3, ..., n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$
  
=  $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$ .

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

- Best Case
  - The array is sorted

A linear function of n

• 
$$t_i=1$$
 for all  $i=2,3,...,n$  
$$T(n)=an+b$$
 where  $a=c_1+c_2+c_4+c_5+c_8$  and  $b=-(c_2+c_4+c_5+c_8)$ 

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

- Worst Case
  - The array is sorted in reverse order
  - $t_i = i$  for all i = 2, 3, ..., n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

- Best Case
  - The array is sorted
  - $t_i = i$  for all i = 2, 3, ..., n

A quadratic function of n

$$T(n) = an^2 + bn + c$$
  
where a, b and c are constants

Instead of exact function, we estimate the rate of growth or the order of growth

- Best Case
  - Most significant term an
  - Linear
- Worst Case
  - Most significant term  $an^2$
  - Quadratic

#### Reference

- CLRS Chapter 2
  - Sections 2.1, 2.2