Stellar Structure Equations

Sam Frederick

September 3, 2018

The following equations are referenced from former Duke undergraduate Emily Kuhn's senior thesis. These equations of state for pressure and density result from the N=1 solution to the Lane-Emden Equation, and the functions for gravitational potential are solutions to the Poisson Equation for a central mass characterized by the chosen EOS.

$$\rho(r) = \rho_c \frac{\sin(\pi r/R)R}{r\pi} \qquad r < R \tag{1}$$

$$P(r) = K\rho(r)^2 \tag{2}$$

$$\varphi_{core} = 4G\rho_c \left(-\frac{R^2}{\pi} - \frac{M}{4R\rho_c} \right) \tag{3}$$

$$\varphi_{inside}(r) = 4G\rho_c \left(\frac{-R^3 \sin(\pi r/R)}{\pi^2 r} - \frac{M}{4R\rho_c} \right)$$
 (4)

$$\varphi_{outside}(r) = -\frac{GM}{r} \tag{5}$$