

Project Home-a-loan

Wei Cheung

000

July 20, 2017

The Challenge

The Challenge

Mission:

Predict whether a lead will convert to "lock"

Values for the Company:

- Know the potential of each customer know the ones to focus on
- Marketing based on Profile of "Ideal Customers"

The Challenge

Mission:

• Predict "locked-to-funded" time (efficiency)

Values for the Company:

- Give expected time improve customer experience
- Know areas of improvement for efficiency

The data

- ~9800 cases
- ~420 features
- Cleaning / pre-processing:

Data Type	Examples	Processing
Numerical	Borrower income, loan amount	None
Categorical	Type of home, Education level, City of property, Gender	Dumification
Text	Goal of refinancing, Unqualified reason note	Tfidf Vectorization (limiting stop words)
Datetime	Created time, Last modified	Categorize (year, quarter, month, dow), Calculate Period (difference of dates/times), Calculate Cohort (quarter/month since initiation)

Part 1 - Leads Conversion

Part 1 - Lead Conversion

Part 1 - Methodology

Random Oversampling for Imbalance Classes

Random Forest Classifier

Part 1 - Results

Predicted Probability v.s. True Value

Part 1 - Results

Predicted Probability v.s. True Value

Part 1 - Interpretation

Part 1 - Interpretation

Examples of the Important Features

Feature	Borrower Age	Borrower's Annual Income	Borrower current employment	Home purchase cost	Years in home	Property zip code
Mean	44	127,000	7.5	406,000	8	98103
Common range	33 - 54	6,300 - 247,000	0 - 15	190,000 - 614,000	0.5 - 15	98103, 92691, 98125, 93003

Part 2 - Loan Processing

Part 2 - Results

Part 2 - Results

Average 5-fold Cross Validation Score (R^2) Linear Regression -1.33061408844 -0.245496700573Lasso Regression Ridge Regression -0.865095256528 K-Nearest Neighbor -0.343409414617 Decision Tree Regressor -1.16520248636 -0.472828301417 Baggin Regressor Random Forest Regressor -0.357897560664 Gradient Boosting Regressor -0.230093423452 Adaptive Boosting Regressor -0.197224868497 Number of features: 423

Outcome:

- Experimented with different features, different algorithms
- No strong signal (near zero R2)

Potential reason:

- Data set too small
- Signals lie in external factors

Part 2 - Insights

160

Understaffed

(the higher, the worse)

> (or, months since the company launched)

Conclusions

Part 1

- Multistage model construction, Oversampling, Random Forest Classification
- Outperform existing models in Accuracy, F1-score, Precision
- Import feature extracted, Best Customer Profiling

Conclusions

Part 1

- Multistage model construction, Oversampling, Random Forest Classification
- Outperform existing models in Accuracy, F1-score, Precision
- Import feature extracted, Best Customer Profiling

Part 2

- Too few data points (~300) to detect signal for prediction
- Time cohort analysis indicated trends in outcome

Conclusions

Part 1

- Multistage model construction, Oversampling, Random Forest Classification
- Outperform existing models in Accuracy, F1-score, Precision
- Import feature extracted, Best Customer Profiling

Part 2

- Too few data points (~300) to detect signal for prediction
- Time cohort analysis indicated trends in outcome

Future work

- Implement prediction pipeline into existing workflow
- Include new features (from internal and external sources) into prediction models
- Try different models (neural network) that can take care of wide data sets

Thank you

Wei Cheung

cheungwz@gmail.com

github.com/weizhic