AN6093NSA

Digital Communication Orthogonal Modulator IC

Overview

The AN6093NSA is a orthogonal modulator IC for PHS. It incorporates a phase shifter and an APC circuit for indirect modulation in the 1.9 GHz band. It efficiently prevents power from leaking to adjacent channels. When provided with an LC filter, it can efficiently suppress IF-band local harmonic spurious.

Features

- •Operating supply voltage range: 2.7 to 4 V
- •1.9 GHz indirect modulation
- •LO1's eighth-order harmonic suppression: -58dBc or better
- •High-power output: -12 dBm
- •Variable range: APC = typ 38 dB (fout = 1.9 GHz)
- Phase shifter frequency: 233 MHz
- Package: SSOP016-P-0225A with 0.65 mm pitch

■Block Diagram

Mobile Communication

6932852 0013187 OT4 📟

Panasonic

897

Pin Descriptions

Pin No.	Description	Pin No. Description		
1	V _{CC} (mod)	9	LO2R	
2	Iinput	10	LO2	
3	Tinput	11	APC/BS	
4	Qinput	12	LC2	
5	Qinput	13	Test Pin	
6	LC1	14	GND	
7	LOI	15	RFoutput	
8	GND	16	V _{cc} (UP–MIX)	

Absolute Maximum Ratings $(T_a=25^{\circ})$

Parameter	Symbol	Rating	Unit
Supply voltage	V _{cc}	4.2	V
Supply current	I_{CC}	60	mA
Power dissipation	P _D	252	mW
Operating ambient temperature	T _{opr}	-20 to +60	r
Storage temperature	T _{stg}	-55 to +125	· °C

Note) Protect from electrostatic discharge.

Recommended Operating Range

Parameter	Symbol	Range
Operating supply voltage range	V_{cc}	2.7 to 4V

■ Electrical characteristics $(Ta=25\pm2\%)$

Parameter	Symbol	Condition min		typ	max	Unit
Output level (1)	(1) $ Poi V_{APC} = 233 MHz, -10 dBm Lo2 = 1660 MHz, -15 dBm V_{APC} = 2.5 V $		-15	-12		dBm
Output level (2)	Po2	Lo1=233MHz, -10dBm Lo2=1685MHz, -15dBm V _{APC} =2.5V	-15	-12	_	dBm
Current consumption	I_{cc}	Lo1 = 233MHz, -10dBm Lo2 = 1672.5MHz, -15dBm V _{APC} = 2.5V		29	38	mA

Notes) $V_{cc}=3V$

IQ signal: $0.5V_{P-P}$ (two-phase), $\pi/4$ QPSK modulation input DC bias = 1.8 V

P₀₁ output frequency = 1893.024 MHz P₀₂ output frequency = 1918.024 MHz

■ 6932852 0013188 T30 **■**

Panasonic

898

■ Electrical Characteristics (design values for reference) $(T_a=25\pm2\%)$

The following design values are for reference only (not guaranteed).

Parameter	Symbol Condition		min	typ	max	Unit
Minimum output level*	Pmin	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=1.0V		-50	-45	dBm
1st local leak suppression*1	CL1	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V		-25	_	dBo
2nd local leak suppression*1	CL2	Lo1 = 233MHz, - 10dBm Lo2 = 1672.5MHz, - 15dBm VAPC = 2.5V		-15		dBo
Image leak suppression*1	IL	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V IQ: Level adj.	_	-35	-30	dBc
Adjacent spurious suppression*2	DU1	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V		-55	-50	dBo
In-band output deviation*3	⊿P	Lo1=233MHz, -10dBm Lo2=1660 to 1685MHz, -15dBm VAPC=2.5V		±1.6	_	dB
3rd intermodulation distortion suppression*3 (Pout = -1.5dBm)	IM3	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V		-25		dBo
fLO1+fLO2, Local leak suppression*1	CL	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V IQ: DC offset adj.	_	-35	-30	dBo
Adjacent channel power leak suppression (600 kHz separation)	BL	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V	_	-65	-60	d₿d
Base-band distortion suppression*1	вн	Lo1=233MHz, -10dBm Lo2=1672.5MHz, -15dBm VAPC=2.5V		-40	-30	dBo
Adjacent spurious suppression ^{Note,2)}	DU2	Using an LC filter between pins 6 and 12, removing 8fLo1, and 2fLo2 to 6fLo1 components	_	-60	_	dBo

Note 1) $V_{CC} = 3V$

IQ signal: $0.5V_{P-P}$, two-phase, input DC bias = 1.8V

*1 : π /4 QPSK modulation *2 : π /4 QPSK modulation

*3: PN9-stage modulation

Note 2) The output level decreases if an LC filter is attached.

■ Usage note

Surge breakdown levels

The following are design values for reference only (not guaranteed) .

Condition : C = 200 pF, and $R = 0 \Omega$

Pin No.	Positive breakdown level (V)
2	130
3	130
4	130
5	130

Note) Breakdown level is 200 V or more for those pins other than above and for negative surges.

= 6932852 0013189 977 **=**

Panasonic

899

Mobile

Commu