Отчет по лабораторной работе №6

Дисциплина: Математические основы защиты информации и информационной безопасности

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

Содержание

5	Выводы	10
4	Выполнение лабораторной работы 4.1 Шаг 1	8 8 9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

List of Figures

4.1	Реализация алгоритма, реализующего р-метод Полларда	8
4.2	Разложение на множители	9

List of Tables

1 Цель работы

Ознакомится и реализовать алгоритм разложения чисел на множители.

2 Задание

Реализовать программно алгоритм, реализующий р-метод Полларда.

3 Теоретическое введение

$$x_{i+1} = f(x_i)$$

, где і \geqslant 0, до тех пор, пока не найдем такие числа i,j, что i< j и $x_i=x_j$. Поскольку множество S конечно, такие индексы i,j существуют (последовательность «зацикливается»). Последовательность x_i будет состоять из «хвоста» $x_0,x_1,...,x_{i-1}$ длины $O(\sqrt{\frac{\pi n}{8}})$ и цикла $x_i=x_j,x_{i+1},...,x_{j-1}$ той же длины.

Алгоритм, реализующий р-метод Полларда. Bxod . Число n, начальное значение c, функция f, обладающая сжимающими свойствами. $\mathit{Bыxod}$. Нетривиальный делитель числа n. 1. Положить $a \leftarrow c, b \leftarrow c$. 2. Вычислить $a \leftarrow f(a)(modn), b \leftarrow f(f(b))(modn)$. 3. Найти $d \leftarrow (a-b,n)$. 4. Если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: «Делитель не найден»; при d = 1 вернуться на шаг p.

4 Выполнение лабораторной работы

4.1 Шаг 1

Ознакомилась с предоставленными теоретическими данными. Для выполнения задания решила использовать язык Python. Подключила библиотеку math. Написала функцию, реализующую поиск нетривиального делителя с помощью р-метода Полларда. Код функции и результат ее использования представлен на Рисунке 1 (рис. - fig. 4.1). Функция принимает на вход число n и число c. Фукнцию f реализовала как отдельную функцию и не передавала ее функции алгоритма. Пример работы алгоритма для числа из представленых для лабораторной работы материалов также представлен на рисунке.

Figure 4.1: Реализация алгоритма, реализующего р-метод Полларда

4.2 Шаг 2

Так как результатом выполнения функции является нетривиальный делитель, для разложения числа 1359331 на множители разделила его на найденный делитель для нахождения второго множителя. Так, 1359331=1181*1151 (рис. - fig. 4.2).

```
In [23]: polard(1359331, 1)
Out[23]: 1181
In [19]: 1359331/1181
Out[19]: 1151.0
In [21]: 1181*1151
Out[21]: 1359331
```

Figure 4.2: Разложение на множители

5 Выводы

Я ознакомилась с алгоритмом, реализующем р-метод Полларда, и реализовала его программно. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.