Chemical Reactions

V. Reaction Rate

(p. 532 - 541)

Standard 7. Solutions, Rates of Reaction, and Equilibrium

7.5 Identify the factors that affect the rate of a chemical reaction (temperature, mixing, concentration, particle size, surface area, and catalyst).

- Reaction rate depends on the collisions between reacting particles.
- Successful collisions occur if the particles...
 - collide with each other
 - have the correct <u>orientation</u>
 - have enough kinetic energy to break bonds

Particle Orientation

Required Orientation

Successful Collision

Unsuccessful Collisions

- Activation Energy (E_a)
 - minimum energy required for a reaction to occur

- Activation Energy
 - depends on reactants
 - low E_a = fast reaction rate

- Surface Area
 - high SA = fast reaction rate
 - more opportunities for collisions
 - Increase surface area by...
 - using smaller particles (crushing)
 - dissolving in water

- Concentration
 - high concentration = fast reactionrate
 - more opportunities for collisions

- Temperature
 - high temp = fast reaction rate
 - high KE
 - fast-moving particles
 - more likely to reach activation energy

Temperature

Analogy: 2-car collision

5 mph "fender bender"

50 mph "high-speed crash"

Catalyst

- substance that increases rxn. rate without being consumed in the rxn.
- lowers the activation energy

Enzyme Catalysis

