1

NCERT Discrete-10.5.3-7

EE22BTECH11004 - Allu Lohith

1. Find the sum of the first 22 terms of an AP in which d = 7 and the 22nd term is 149.

Ans: Let the series be

$$x(0), x(1), x(2), x(3), \dots, x(n)$$

Parameter	Description	Formulae/Value
x (0)	First term of A.P	-
d	Commom difference	7
n	Count of terms starting from '0'	-
x(n)	$(n+1)^{th}$ term of the A.P	x(0) + nd
x(21)	Value of 22 nd term	149
y (n)	Sum of (n+1) terms in A.P	$\left(\frac{n+1}{2}\right)(2x(0)+nd)$

TABLE 0 PARAMETERS

Now, the 22^{nd} term means a(21), so

$$x(21) = x(0) + nd (1)$$

$$149 = x(0) + 21(7) \tag{2}$$

$$x(0) = 2 \tag{3}$$

The general term is x(n) = 2 + 7d The z transform of the general term is

$$x(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
 (4)

$$= \frac{2}{1 - z^{-1}} + \frac{7z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{5}$$

$$=\frac{2+5z^{-1}}{(1-z^{-1})^2}\tag{6}$$

On convolution for finding the sum

$$y(n) = x(n) * u(n)$$
 (7)

$$\implies y(z) = x(z) \cdot u(n)$$
 (8)

$$\implies y(z) = \left[\frac{2 + 5z^{-1}}{(1 - z^{-1})^2} \right] \cdot \frac{1}{1 - z^{-1}}$$
 (9)

$$\implies y(z) = \frac{2 + 5z^{-1}}{(1 - z^{-1})^3} \tag{10}$$

Using Contour integration to find the inverse z-transform,

$$y(n) = \oint_C y(z) \cdot z^{n-1} dz \tag{11}$$

$$y(21) = \oint_{c} \frac{2 + 5z^{-1}}{(1 - z^{-1})^{3}} \cdot z^{20} dz$$
 (12)

We can observe there are three poles and thus m = 3,

$$R = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$

$$(13)$$

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{2 + 5z^{-1}}{(1 - z^{-1})^3} \cdot (z^{20}) \right)$$

$$=\frac{1}{2}(1012+2310)\tag{15}$$

$$\implies R = 1661 \tag{16}$$

Python code for finding the sum of terms of the AP:

Parameter	Description	Value
x(0)	First term of A.P	2
y(21)	Sum of 22 terms in A.P	1661

TABLE 0 RESULTS