

WHAT YOU SHOULD HAVE GOT OUT OF THE LAST HOUR

- DNA contains the genetic information that encodes traits
- DNA is double stranded, complementary and anti-parallel
- The beginning of a DNA strand is called the 5' ("five prime") region and the end of a DNA strand is called the 3' ("three prime") region
- Proteins are produced through the processes of transcription and translation
- Amino acids are encoded by nucleotide triplets called codons
- mRNA transcripts contain "start" and "stop" codons that initiate and terminate protein translation

DNA is complementary and anti-parallel

Gene or coding or sense strand

5'- CCGATGTCATAAGAC - 3'

DNA IS READ 5' TO 3'

GENES ARE TRANSCRIBED FROM 5' TO 3'

DNA is complementary and anti-parallel

DNA STRANDS ARE
ANTI-PARALLEL,
PARALLEL BUT
OPPOSITE

Gene or coding or sense strand

5'- CCGATGTCATAAGAC - 3'

Template or non-coding or anti-sense strand 3'- GGCTACAGTATTCTG - 5'

DNA STRANDS ARE COMPLEMENTARY;
ADENINE (A) PAIRS WITH THYMINE (T),
CYTOSINE (C) PAIRS WITH GUANINE (G)

Translating DNA into proteins

```
Sense strand

5'- CCGATGTCATAAGAC - 3'

trinas anticodons

5'- GGCUACIAGUIAUUICUG - 5'

mricodons

5'- CCGAUGUCAUAAGAC - 3'

Template or non-coding or antisense strand

3'- GGCTACAGTATTCTG - 5'
```

START CODON

How do we know where to start translation?

STOP CODONS

TRANSCRIPTION & TRANSLATION

- Codon
 - Series of 3 nucleotides in a row
 - Specifies the genetic code information for a particular amino acid (e.g. AAU = I)
 - Also called"nucleotide triplet"
 - Codon table

N	Time Desiries					
	First Position 5'	Second Position				Third Position 3'
		U	C	A	G	J
	U	UUU F UUC F UUA L UUG L	UCU S UCC S UCA S UCG S	UAU Y UAC Y UAA stop UAG stop	UGU C UGC C UGA stop UGG W	ಧಿ∀೧៨
	C	CUU L CUC L CUA L CUG L	CCU P CCC P CCA P CCG P	CAU H CAC H CAA Q CAG Q	CGU R CGC R CGA R CGG R	G G
STAR		AUU I AUC I AUA I AUG M	ACU T ACC T ACA T ACG T	AAU N AAC N AAA K AAG K	AGU S AGC S AGA R AGG R	G Y C
	G	GUU Y GUC Y GUA Y GUG Y	GCU A GCC A GCA A GCG A	GAU D GAC D GAA E GAG E	GGU G GGC G GGA G GGG G	U C A G

AMINO ACID SINGLE-LETTER

Built-in redundancy

- Reading frames
 - Non-overlapping sequence of three-nucleotide codons
 - There are 3 possible reading frames in an mRNA strand
 - There are 6 in a double-stranded DNA molecule (three reading frames from each of the two DNA strands)
 - Nomenclature
 - 1,2,3 coding strand
 - -1,-2,-3 for template strand

"Gene" Sequence: thecatatetherat. Reading Frame +1 starts at the first letter: PERIOD IS "STOP CODON" the cat ate the rat. Reading Frame +2 starts at the second letter: t hec ata tet her at. Reading Frame +3 starts at the third letter: th eca tat eth era t. Reading Frames -1, -2 & -3 would be like reading the sentence "backwards."

- Open reading frame (ORF)
 - A reading frame that contains a start codon and a stop codon, with multiple threenucleotide codons in between
 - Hypothesis for correct reading frame from which to translate the DNA into protein
 - May contain introns (non-coding regions) in eukaryotes

- Coding Sequence (CDS)
 - The actual region of DNA that is translated to protein

```
Reading Frame +1 P M (start) S stop D

5' - CCGATGTCATAAGAC - 3'
3' - GGCTACAGTATTCTG - 5'
```


- Possible Sequences
 - PMS-stop-D
 - RCHK
 - KVIR
 - VL-stop-HR

- Possible Sequences
 - PMS-stop-D
 - RCHK
 - KVIR
 - VL-stop-HR

- Which one is an actual coding sequence?
 - PMS-stop-D
 - Coding sequence has to have a start (M) and stop codon with at least one amino acid in between

- Common misconceptions
 - Translation always starts with the first letter of a DNA sequence
 - Translation begins at the first start codon (AUG/ATG)
 - All DNA codes for proteins
 - Genes are found only on one of the strands of DNA

BIOINFORMATICS (FOR COMPUTER SCIENTISTS)

MPCS56420
AUTUMN 2020
SESSION 1C

