Understanding the spectrum of a blackbody

Sudheendra B.R.

Suhas P.K.

Shahsank K.K.

March 2020

Guided by V.H. Belvadi

Dept. of Physics

Yuvaraja's College, Mysuru

Part 1

Introduction

An idealised object that can **absorb**, and subsequently **emit**, all the radiation incident on it is called a blackbody.

1

 Consider gaseous medium, in which we have a charged oscilator (Say an electron).

- Consider gaseous medium, in which we have a charged oscilator (Say an electron).
- Due to random motion of the gaseous atoms, it often collides with the oscillator.

 Consider gaseous medium, in which we have a charged oscilator (Say an electron).

 Due to random motion of the gaseous atoms, it often collides with the oscillator.

 As a result the gaseous atoms imparts some of it's kinetic energy to the oscillator.

- Kinetic energy of the oscillator is, $\frac{1}{2}kT$.
- And the total kinetic energy will be kT.

 Since the charge is radiating energy the system cannot attain equilibrium

 Since the charge is radiating energy the system cannot attain equilibrium

4

 Since the charge is radiating energy the system cannot attain equilibrium

 Inner walls of the box is totally reflective.

So, the energy radiated by the oscillator per second can be given by,

$$\frac{1}{Q} = \frac{\left(\frac{dW}{dt}\right)}{\omega_0 W}$$

Q is the radiation reaction.

 ω_0 is the natural frequency of vibration.

 $\ensuremath{\mathcal{W}}$ is the total energy content of the oscillator.

Also, we have

$$\frac{1}{Q} = \frac{\gamma}{\omega_0}$$

Where γ is the dampping constant.

Average energy loss due to radiation is given by,

$$\left\langle \frac{dW}{dt} \right\rangle = \gamma kT$$

Since the degree of freedom is 3,

$$\left\langle \frac{dW}{dt} \right\rangle = 3\gamma kT$$

- $\mathbf{I}(\boldsymbol{\omega})d\boldsymbol{\omega}$ is the incident light energy within a frequeny range $d\boldsymbol{\omega}$.
- **Asumption:** The radiation which falls on a *cross section* ' σ_{S} ' is absorbed completely,
- Scattered light is the product of $\mathbf{I}(\pmb{\omega})d\pmb{\omega}$ and $\pmb{\sigma}_{\mathtt{S}}.$

Expression for the cross section is given by,

$$\sigma_{\rm S} = \frac{8\pi r_0^2}{3} \left[\frac{\omega^4}{(\omega^2 - \omega_0^2)^2 + \gamma^2 \omega^2} \right]$$

When $\omega = \omega_0$,

$$\sigma_{s} = \frac{2\pi r_0^2 3\omega_0^2}{3(\omega - \omega_0)^2 + \frac{\gamma^2}{4}}$$

$$\frac{dW_{s}}{dt} = \int_{0}^{\infty} \mathbf{I}(\boldsymbol{\omega}) \, \sigma_{s} \, d\boldsymbol{\omega} = \int_{0}^{\infty} \frac{2\pi r_{0}^{2} \boldsymbol{\omega}_{0}^{2} \, \mathbf{I}(\boldsymbol{\omega}) \, d\boldsymbol{\omega}}{3 \left[(\boldsymbol{\omega} - \boldsymbol{\omega}_{0})^{2} + \frac{\boldsymbol{\gamma}^{2}}{4} \right]}$$

$$\frac{dW_{s}}{dt} = \frac{2}{3}\pi r_0^2 \omega_0^2 \mathbf{I}(\omega_0) \int_{-\infty}^{\infty} \frac{d\omega}{(\omega - \omega_0)^2 + \left(\frac{\gamma}{2}\right)^2}$$

The integral reduces to arctan function. We get, $2\pi/\gamma$.

$$\frac{dW_s}{dt} = \frac{dW}{dt} = 3\gamma kT$$

$$\therefore \mathbf{I}(\omega) = \frac{9\gamma^2 kT}{4\pi^2 r_0^2 \omega_0^2}$$

$$\implies \gamma = \frac{2}{3} \frac{r_0 \omega_0^2}{c}$$

$$\implies \gamma = \frac{2}{3} \frac{r_0 \omega_0^2}{c}$$

The intensity distribution function $I(\pmb{\omega})$ is,

$$\mathbf{I}(\boldsymbol{\omega}) = \frac{\boldsymbol{\omega}^2 \, kT}{\boldsymbol{\pi}^2 \boldsymbol{\varsigma}^2}$$

The experimental observation

Figure 1: Spectrum of a blackbody.

A theoretical explanation for the obtained experimental results were needed.

- The harmonic oscillator can take up energies only in the multiples of $\hbar\omega$.
- The probability of occupying an energy level **E** is $\mathbf{P}(\mathbf{E}) = \pmb{\alpha} e^{-\hbar \pmb{\omega}/kT}$.

- The number of oscillators in ground state is N_0 .
- The number of oscillator in first state is $N_1=N_0e^{-\hbar\omega/kT}$.
- Then $N_n=N_0 x^n$, where $x=e^{-\hbar\omega/kT}$

- · The energy in the ground state is zero.
- The energy in the first state is $N_1\hbar\omega$ or $N_0\hbar\omega X$
- Total energy is given by

$$E_{(total)} = N_0 \hbar \omega (0 + x + 2x^2 + \cdots)$$

· The total number of oscillators is

$$N_{(total)} = N_0(1 + x + x^2 + \cdots)$$

· The average energy is

$$\langle E \rangle = \frac{E_{(total)}}{N_{(total)}} = \frac{N_0 \hbar \omega (0 + x + 2x^2 + \cdots)}{N_0 (1 + x + x^2 + \cdots)}$$

$$Y = 1 + 2x + 3x^2 + \cdots$$

$$YX = X + 2X^2 + 3X^3 + \cdots$$

$$Y(1-x) = 1 + x + x^2 + \cdots$$

$$Y = \frac{1}{(1-x)^2}$$

$$\langle E \rangle = \frac{N_0 \hbar \omega x / (1 - x)^2}{N_0 / (1 - x)}$$

$$\langle E \rangle = \frac{\hbar \omega e^{-\hbar \omega/kT}}{1 - e^{-\hbar \omega/kT}}$$
 $\therefore x = e^{-\hbar \omega/kT}$

$$\boxed{\langle E \rangle = \frac{\hbar \omega}{e^{\hbar \omega / kT} - 1}} \tag{1}$$

Hence The intensity of radiation for frequency ω is given by,

$$I(\omega)d\omega = \frac{\hbar\omega^3d\omega}{\pi^2c^2\left(e^{\hbar\omega/kT}-1\right)}$$
 (2)

Graph

Figure 2: Spectrum of a blackbody.

Part 2

• The intensity of radiation for frequency ω is given by

$$I(\omega)d\omega = \frac{\hbar\omega^3d\omega}{\pi^2c^2\left(e^{\hbar\omega/kT} - 1\right)}$$

- · Planck considered that the matter was quantized and not light.
- Einstein came up with an alternate idea to solve Black body problem.

• Einstein considered that even the light was quantized, by taking that light is actually photons with energy $\hbar\omega$

• Einstein assumed that Planck's formula was right.

- Consider two energy levels , say , the n^{th} level and m^{th} level.

• The probability of the transition is proportional to intensity of the light.

$$R_{n\to m} = N_n B_{nm} I(\omega) \tag{3}$$

- · Spontaneous emission.
- Stimulated emission.

· The combined mathematical expression is,

$$R_{m\to n} = N_m[A_{mn} + B_{mn}I(\omega)] \tag{4}$$

• At thermal equilibrium, the number of atoms going to higher energy level ,ust be equal to the number of atoms coming to lower energy state.

• The ratio of N_m to N_n is given by $e^{-\hbar\omega/kT}$

• At thermal equilibrium both $R_{n\to m}$ and $R_{m\to n}$ are equal.

•
$$N_n B_{nm} I(\boldsymbol{\omega}) = N_m [A_{mn} + B_{mn} I(\boldsymbol{\omega})]$$

- On dividing the previous equation by $N_{\it m}$ we get,

•
$$B_{nm}I(\omega)e^{\hbar\omega/kT} = A_{mn} + B_{mn}I(\omega)$$

• The equation that Einsteim got for the intensity of radiation for frequency is

$$I(\omega) = \frac{A_{mn}}{B_{nm}e^{\hbar\omega/kT} - B_{mn}} \tag{5}$$

• Since Einstein considered that the formula given by Planck was correct, we should get,

• $B_{nm} = B_{mn}$ and also

$$\frac{A_{mn}}{B_{nm}} = \frac{\hbar \omega^3 d\omega}{\pi^2 c^2}$$

This is how Einstein rederived Planck's formula from a quantum mechanical viewpoint.

Part 3

• ϕ = Probability amplitude

•
$$\mathbf{P} = \left| \boldsymbol{\phi} \right|^2$$

•
$$\phi = \phi_1 + \phi_2$$

• P =
$$\left| \phi_1 + \phi_2 \right|^2$$

- Detector 1 is set to detect only α particles and Dectector 2 is set to detect only oxygen atoms.
- Probability amplitude of the scattering is given by $f(\theta)$ when they are at an angle θ .
- The probability of this event = $|f(\theta)|^2$

- Set up the dectectors such that the detectors would dectect either α particle or oxygen atom.
- We will not distinguish which particle is which entering the detector.
- This means that if oxygen atom in position θ , then α particle on the opposite side is at an angle $\pi-\theta$.

• Probability amplitude of oxygen atom =
$$f(\pi - \theta)$$

• Probability amplitude of
$$\alpha$$
 particle = $f(\theta)$

• The probability of a particle being detected at detector 1 =
$$|f(\theta)|^2$$
 + $|f(\pi - \theta)|^2$

- Consider if both are α particles,
- Then we would not know which particle entered the detector, so the total probability changes to,
- The probability of a lpha particle being detected at detector 1 = $\left|f(heta) + f(\pi heta)\right|^2$

• If
$$\theta=\frac{\pi}{2}$$
, then applying this to the expression $\left|f(\theta)+f(\pi-\theta)\right|^2$ we get,

• Probability =
$$4\left|f\left(\frac{\pi}{2}\right)\right|^2$$
 , if the particles are indistinguishible.

• Suppose the particles were distinguishible, then the probability for $\theta=\frac{\pi}{2}$ when applied for $|f(\theta)|^2+|f(\pi-\theta)|^2$ is given by,

• Probability =
$$2\left|f\left(\frac{\pi}{2}\right)\right|^2$$

This shows that the probability gets doubled for indistinguishible particles.

- Can we apply the same logic to the electron-electron scattering?
- OBSERVATION: "When we have situation in which the identity of the electron which is arriving at a point is echanged with another one, the new amplitude interfere with old one with an opposite phase."
- In electrons case , the interfering amplitude for exchange interfere with a negative sign. Probability for electron = $\left|f(\theta) f(\pi \theta)\right|^2$

Scattering of unpolarized spin one-half particles

Fraction of cases	Spin of particle 1	Spin of particle 2		Spin at D_1	Spin at D_2	Probability	
$\frac{1}{4}$	up	up		up		$ f(heta)-f(\pi- heta) ^2$	
$\frac{1}{4}$	down	down		down	down	$\left f(heta)-f(\pi- heta) ^2 ight $	
$\frac{1}{4}$	up	down	{	up	down	$ f(heta) ^2$	
				down	up	$ f(\pi- heta) ^2$	
$\frac{1}{4}$	down	up		up	down	$ f(\pi- heta) ^2$	
				down	up	$ f(heta) ^2$	
Total probability $=rac{1}{2} f(heta)-f(\pi- heta) ^2+rac{1}{2} f(heta) ^2+rac{1}{2} f(\pi- heta) ^2$							

Identical Particles

Identical particles, also called **indistinguishable particle**, are particles that cannot be distinguished from one another.

Identical - Indistinguishable Particles

- · Consider particle 'a' and particle 'b'.
- Let the two particle collide and get sacttered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.
- If the particles are indistinguishable then the amplitudes of these process will add up.
- Probability that the two particles arrive at ds_1 and ds_2 is $|<1|a><2|b>+<2|a><1|b>|^2ds_1ds_2$

• Integrating over the area of the detector, if we let ds_1 and ds_2 range over the whole area $(\triangle S)$, we could count each part of the area twice since the expression $|<1|a><2|b>+<2|a><1|b>|^2ds_1ds_2$ contains everything that can happen with any pair of surface elements ds_1 and ds_2 .

• Probability_{BOSE} =
$$\frac{\left(4\left|a\right|^{2}\left|b\right|^{2}\right)}{2} (\Delta S)$$

This is just twice what we got the probability for distinguished particles.

State with n Bose particle

- Consider n particles say a, b, c... scattered in n direction say 1, 2, 3 ...
- Probability that each particle acting alone would go into an element of the surface ds of the detector is $\left| <> \right|^2 ds$.

- Assumption :All particles are distinguishable.
- Probability that n particles will be counted together in n different surface elements = $\left|a_1b_2c_3...\right|^2ds_1ds_2...$
- If the amplitude does not depend on where ds is located in the detector, then the $Probability = \left(\left|a\right|^2\left|b\right|^2...\right)(ds_1ds_2...)$

• Integrating each dS over the surface \triangle S of the dectector

$$(P_n)_{different} = \left(\left| a \right|^2 \left| b \right|^2 ... \right) (\Delta S)^n$$

- Now suppose that all the particle are Bose particles.
- For n particles, there are n! different, but indistinguishable possibilities for which we must add the amplitudes.

- Probability that n particles will be counted on the n surface elements is given by $Probability = \left(\left| a_1b_2c_3... + a_1b_3c_2... \right|^2 \right) (ds_1ds_2...)$
- Probability = $\left(\left|n!abc...\right|^2\right) (ds_1ds_2...)$
- Integrate each ds over the area \triangle S of the detector

$$(P_n)_{BOSE} = n! \left(\left| abc... \right|^2 \right) (\Delta S)^n$$

• Comparing the probability when the particles are distinguishable and indistinguishable

$$(P_n)_{BOSE} = n! \left(\left| abc... \right|^2 \right) (\Delta S)^n$$

$$(P_n)_{different} = \left(\left| a \right|^2 \left| b \right|^2 ... \right) (\Delta S)^n$$

• $(P_n)_{BOSE} = n!(P_n)_{different}$

•	What is the probability that a Bose particle will go into particular state when there are already n particles present ?

Emission and Absorption of photons

- When the light is emitted, a photon is "created".
- Consider that there are some atom emitting n photons.
- OBSERVATION: The probability that an atom will wmit a photon into a particular final state is increased by the factor (n+1) if there are already n photons in that state.

· In quantum mechanics we can show that

$$<\chi|\phi>=<\phi|\chi>^*$$

- The amplitude to get from any condition ϕ to any other condition χ .
- We have that amplitude that a photon will be added to some state, say j, when there are already n photons present we can express this condition as

$$< n+1|n> = (\sqrt{n+1})a$$

 $< n|n+1> = (\sqrt{n+1})a^*$

where a=<j|a> is the amplitude when there are no other photons are present.

• The amplitude to absorb a phot when there are n photons present is given by $< n - 1 | n > = (\sqrt{n}) a^*$

$$\cdot < n+1|n> = (\sqrt{n+1})a$$

$$< n|n+1> = (\sqrt{n+1})a^*$$

• The above two equation shows that they are symmetric in nature.

- Thought Experiment: Lets us consider that there are n photons that are created in the same state, that of same frequency but they cannot be distinguished .
- The probability that an atom can emit another poton into same state is $(Probability)_{emit} = (n+1) \left| a \right|^2$
- The probability that an atom absorbs a photon into the same state is $(Probability)_{absorb}=(n)\left|a\right|^2$

- · Rate at which an atom will make a transition to downwards has two parts.
- Probability that it will make a spontaneous transition $|a|^2$ is proportional to the number of photons.
- The co-efficient of absorption, of induced emission and spontaneous emission are all equal and are related to the probability of spontaneous emission.

The Blackbody Spectrum

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.
- In thermal equilibrium at temperature T, from statistical mechanics

$$\frac{N_e}{N_g} = e^{\left(\frac{-\Delta E}{\omega \hbar}\right)}$$

 NOTE: Each atom in the ground stae can absorb a photon and go into the excited state and each atom in the excited state can emit a photon and go to the ground state.

- At equilibrium, the rate of these two process must be equal.
- Rate is proportional to the probability of the event and the number of atoms present.
- \overline{n} is the average number of photons present in a given state with the frequency ω

- The absorption rate from the state is $N_g \overline{n} |a|^2$, and the emission rate into that state is $N_e(\overline{n}+1) |a|^2$.
- At equilibrium $N_g\overline{n}\,\Big|\,a\,\Big|^{\,2}=N_e(\overline{n}+1)\,\Big|\,a\,\Big|^{\,2}$

• Solving for the average number of photons present in a given state with the frequency ω $\overline{n}=\frac{1}{e^{\hbar\omega/k_{\rm B}T-1}}$

• The energy of each photon is given by
$$\frac{\hbar\omega}{e^{\hbar\omega}/k_Bt-1}$$

• For any harmonic oscillator, the quantum mechanical energy levels are equally spaced with a seperation $\hbar\omega$.

• The energy levels are equally spaced and the n^{th} energy level is the mean enegry of the oscillator.

$$(E)_{mean} = \frac{\hbar\omega}{e^{\hbar\omega}/k_B t - 1}$$

Considering the bose particle which donot interact with each other, and in that state the whole system of particles behaves (for all quantum mechanical purpose) exactly like an harmonic oscillator.

- Analysing the Electro-magnetic field in a box, it show the properties of an harmonic oscillation.
- Thus, the number of photons in a particular state in a box, can be equated to the number of energy levels associated with the particular modes of oscillation of the electromagetic fields.

• Mean energy in any particular modes in a box at a temperature T is given by

$$(E)_{mean} = \frac{\hbar \omega}{e^{\hbar \omega}/k_B t - 1}$$

ASSUMPTIONS

- For every mode there are some atoms in the box, which have energy levels that can radiate into that mode so that each mode can get into thermal equilibrium.
- The assumtion of Blackbody radiation law.

• There will be billions of modes in the box and there will be many small frequency intervals $\Delta\omega$.

- The wave number k is given by $k = \frac{t\pi}{\lambda}$.
- The δk between successive modes is given by

$$\delta k = k_{j+1} - k_j = \frac{\pi}{L}$$

- An assumption is made that kL is large that in small interval Δk , there are many modes.

• ΔW is the number of modes in the interval Δk .

• This is given by
$$\Delta W=\frac{\Delta k}{\delta k}$$
 and $\delta k=\frac{j\pi}{L}$. Thus, $\Delta W=\frac{L(\Delta k)}{\pi}$

Fig. 4–9. Standing wave modes in two dimensions.

- A standing wave in a rectangular box must have an integral number of half waves along each axis.
- Thus, ΔW the number of modes for a vector wave number **k** between the axes components $kandk+\Delta k$ is

$$\Delta W = \frac{L_X L_Y L_Z}{(2\pi)^3} (\Delta k_X \Delta k_Y \Delta k_Z)$$
$$dW(K) = V \frac{d^3 k}{(2\pi)^3}$$

- Applying the above result to find number of photon modes for photons with frequencies in the range Δk .
- In vaccum the magnitude of **k** is related to the frequency by

$$\left| k \right| = \frac{\omega}{c}.$$

- In the frequency interval $\Delta \omega$, these are all the modes which correspond to k's with magnitude between k and $k + \Delta k$, independent of the direction.
- The "volume in the k-space" between k and $k+\Delta k$ is a spherical shell of volume $4\pi(k^2)\Delta k$.

• The number of modes is then,

$$\Delta W = \frac{V4\pi(k^2)\Delta k}{(2\pi)^3}.$$
 substitute $k = \frac{\omega}{c}$
$$\Delta W(\omega) = \frac{V4\pi(\omega^3)\Delta\omega}{(2\pi\epsilon)^3}$$

- These modes are independent, we must for double the number of modes.
- · This is given by,

$$\Delta W(\pmb{\omega}) = rac{V \pi(\pmb{\omega}^3) \Delta \pmb{\omega}}{(\pi \epsilon)^3}$$
 (for light).

• We have shown that each mode has an average the energy $\overline{n}\hbar\omega=\frac{\hbar\omega}{\rho\hbar\omega/k_BT}-1$

• Multiplying This by the number of modes, we get the energy ΔE in the modes that lie in the interval $\Delta \omega$:

$$\Delta E = \left(\frac{\hbar \omega}{e^{\hbar \omega/k_{\rm B}T} - 1}\right) \left(\frac{V\pi(\omega^3)\Delta\omega}{(\pi^2)(c^3)}\right)$$

Thank you