数学基礎論ノート

anko9801

1. 公理的集合論

1.1. 論理

1.1.1. 論理式

1.1.2. ZFC 公理系

Axiom 1 (外延性**).** $\forall x \forall y (\forall z (z \in x \longleftrightarrow z \in y) \longrightarrow x = y)$

Axiom 3 (内包性図式**).** 変数 y を自由変数として用いない任意の論理式 φ を用いて次のように表せられる . $\exists y \forall x (x \in y \longleftrightarrow x \in z \land \varphi)$. つまり $\{x \in z : \varphi\}$ は存在する .

Theorem 1.1.1 $\exists y \forall x (x \notin y)$

Proof. 内包性より $\{x\in z:x\neq x\}$ が存在,つまり $\exists y \forall x (x\in y\longleftrightarrow x\in z\land x\neq x)$ ■ 上の集合 y を空集合 0 と呼ぶ.多分これは真のクラスも含まれる.

Theorem 1.1.2 $\neg \exists z \forall x (x \in z)$

Proof. $\forall x(x \in z)$ となる z が存在すると仮定すると,内包性より $\{x \in z : x \notin x\} = \{x : x \notin x\}$ が存在,つまり $\exists y \forall x(x \in y \longleftrightarrow x \notin x)$ となる.しかし x に y を代入することで $y \in y \longleftrightarrow y \notin y$. よって矛盾.

Axiom 4 (\forall x \forall y \exists z (x \in z \land y \in z)

Axiom 5 (和集合). $\forall \mathcal{F} \exists A \forall Y \forall x (x \in Y \land Y \in \mathcal{F} \rightarrow x \in A)$

Axiom 6 (置換図式). $\forall x \in A \exists ! y \varphi(x,y) \rightarrow \exists Y \forall x \in A \exists y \in Y \varphi(x,y)$

Definition 1.1.3 (順序対). $\langle x, y \rangle := \{ \{x\}, \{x, y\} \}$

Definition 1.1.4 (和集合). $\bigcup \mathcal{F} \coloneqq \big\{ x : \exists Y \in \mathcal{F}(x \in Y) \big\}$

Definition 1.1.5 (共通部分). $\bigcap \mathcal{F} := \{x : \forall Y \in \mathcal{F}(x \in Y)\}$

Definition 1.1.6 (直積集合). $A \times B := \{\langle x, y \rangle : x \in A \land y \in B\}$

Proof. 置換公理と内包性公理より,各 $y \in B$ に対し,

$$\forall x \in A \exists ! z(z = \langle x, y \rangle) \tag{1}$$

$$\operatorname{prod}(A, y) := \{ z : \exists x \in A(z = \langle x, y \rangle) \}$$
 (2)

また,次のように定義できる.

$$\forall y \in B \exists ! z(z = \operatorname{prod}(A, y)) \tag{3}$$

$$\operatorname{prod}'(A,B) := \left\{ \operatorname{prod}(A,y) : y \in B \right\} \tag{4}$$

 $A \times B \coloneqq \bigcup \operatorname{prod}'(A, B)$ と置くことで定義の正当性が分かる.

Definition 1.1.7 (関係). 任意の要素が順序対となる集合.

Definition 1.1.8 (定義域 , 値域). 関係 R に対し , 定義域 dom(R) と値域 ran(R) は次のように定義する .

$$dom(R) = \{x : \exists y (\langle x, y \rangle \in R)\}$$
 (5)

$$ran(R) = \{ y : \exists x (\langle x, y \rangle \in R) \}$$
 (6)

Definition 1.1.9 (関数). 関係 f が $\forall x \in \text{dom}(f), \exists ! y \in \text{ran}(f) (\langle x, y \rangle \in f)$ を満たすとき f を関数と呼ぶ. また, 関数 f について $A = \text{dom}(f), B \supset \text{ran}(f)$ を満たすとき, $f: A \to B$ と書く.

Definition 1.1.10 (関数の制限).

Definition 1.1.11 (狭義全順序). 集合 A 関係 R に対し,次を満たす組 $\langle A,R \rangle$ を狭義全順序と呼ぶ.

推移律
$$\forall x, y, z \in A(xRy \land yRz \rightarrow xRz)$$
 (7)

三分律
$$\forall x, y \in A(x = y \lor xRy \lor yRx)$$
 (8)

非反射律
$$\forall x \in A(\neg(xRx))$$
 (9)

Theorem 1.1.12 $\langle A,R \rangle$ が狭義全順序ならば,任意の $B \subset A$ について $\langle B,R \rangle$ は狭義全順序となる.

Definition 1.1.13 (同型写像). 集合と関係の対 $\langle A, R \rangle, \langle B, S \rangle$ について全単射 $f: A \to B$ が存在し $\forall x, y \in A(xRy \longleftrightarrow f(x)Sf(y))$ となるとき $\langle A, R \rangle \cong \langle B, S \rangle$ と書き, f を同型写像

と呼ぶ.

Definition 1.1.14 (整列順序). 全順序 $\langle A, R \rangle$ について A の空でない任意の部分集合に必ず R- 最小の要素があるとき , $\langle A, R \rangle$ が整列順序であるという .

Definition 1.1.15 (切片). $pred(A, x, R) := \{y \in A : yRx\}$

Theorem 1.1.16 次の *3* つの命題は互いに背反である.

$$(a) \quad \langle A, R \rangle \cong \langle B, S \rangle \tag{10}$$

(b)
$$\exists y \in B(\langle A, R \rangle \cong \langle \operatorname{pred}(B, y, S), S \rangle)$$
 (11)

(c)
$$\exists x \in A(\langle \operatorname{pred}(A, x, R), R \rangle \cong \langle B, S \rangle)$$
 (12)

Proof. 次のようにfを定める.

$$f = \{ \langle v, w \rangle : v \in A \land w \in B \land \langle \operatorname{pred}(A, v, R), R \rangle \cong \langle \operatorname{pred}(B, w, S), S \rangle \}$$
 (13) わからず

Axiom 9 (選択公理). $\forall A \exists R (R \text{ は } A \text{ を整列順序づけする})$

1.1.3. 順序数

Definition 1.1.17 (推移的). 集合 x の任意の要素が同時に x の部分集合でもあるとき x が 推移的であると呼ぶ.

Definition 1.1.18 (順序数). 推移的な集合 x が \in によって整列順序づけされるとき , x を順序数と呼ぶ .

Theorem 1.1.19

- 1. x が順序数で $y \in x$ なら, y も順序数で $y = \operatorname{pred}(x,y)$.
- 2. $x \ge y$ が順序数で $y \cong x$ なら, x = y.
- 3. $x \ge y$ が順序数なら, $x \in y, y \in x, y = x$ のどれか 1 つだけが成立する.
- $4. x \ge y \ge z$ が順序数で $x \in y, y \in z$ であれば, $x \in z$ である.
- 5. C が順序数の空でない集合であれば、 $\exists x \in C \forall y \in C (x \in y \lor x = y)$.

Proof. ■

1.1.4. クラスと再帰的定義

やろうと思ったけどかなり骨折れる.重要な部分だけ証明する.

1.1.5. 基数

Definition 1.1.20 (集合のサイズの比較).

- 1. $A \preceq B$ とは A から B への 1 対 1 関数があるということである.
- 2. $A \approx B$ とは A から B の上への 1 対 1 関数があるということである.

Theorem 1.1.21 (シュレーダーとベルンシュタインの定理).

$$A \preceq B, B \preceq A \to A \approx B$$
 (14)

Proof. $A \lesssim B, B \lesssim A$ より 1 対 1 関数 $f: A \to B$ と $g: B \to A$ が存在する . $A_0 = A, B_0 = B, A_{n+1} = g''B_n, B_{n+1} = f''A_n, A' = \bigcap_n A_n \cup \bigcup_n A_{2n} \setminus A_{2n+1}$ と おく . このとき次のように $h: A \to B$ を定義する .

$$h(x) = \begin{cases} f(x) & (x \in A') \\ g^{-1}(x) & (\text{else}) \end{cases}$$
 (15)

関数 h(x) が全単射であることを示す.まず h(x) の単射性 $\forall x,y.h(x)=h(y)$ $\implies x=y$ を示す. $x,y\in A'$ のとき,f の単射性より成り立つ. $x,y\notin A'$ のとき, g^{-1} の単射性より成り立つ.また $x\in A',y\notin A'$ と仮定すると,前提より $f(x)=g^{-1}(y)$ $\iff (g\circ f)(x)=y.$ ここで $x\in\bigcap_n A_n$ とすると, $y=(g\circ f)(x)\in\bigcap_n A_n$ より矛盾. $x\in A_{2n}\backslash A_{2n+1}$ とすると, $y=(g\circ f)(x)\in A_{2n+2}\backslash A_{2n+3}$

- 1.1.6. 実数
- 1.1.7. 実数
- 1.1.8. メタ理論の形式化
- 2. 圏論
- 2.1.
- 2.1.1. a

Definition 2.1.22 (圏 (category)). 圏 C とは対象 (object) の集まり Ob(C) と射 (morphism) の集まり Mor(C) の組であって次を満たすものをいう.

- 1. 各 $f \in Mor(C)$ に対し、ドメイン (domain) とコドメイン (codomain)
- 2. 射の合成についてモノイドを成している.

Definition 2.1.23 (関手 (functor)). 圏 C,D に対し,関手 $F:C\to D$ とは $\mathrm{Ob}(C)\ni a\mapsto F(a)\in\mathrm{Ob}(D)$, $\mathrm{Mor}(C)\ni f\mapsto F(f)\in\mathrm{Mor}(D)$ とし,射の合成についてモノイド準同型を成すものである.

3.