Linear Algebra

[KOMS119602] - 2022/2023

12.2 - Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (December 2022)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of various types of linear transformation among vectors in vector spaces;
- 2. perform a linear transformation (reflection, projection, rotation, dilation, expansion, shear) on a vector in a vector space.

Basic Matrix Transformations in \mathbb{R}^2 and \mathbb{R}^3

(page 259 of Elementary LA Applications book)

1. Reflection

Reflection operators on \mathbb{R}^2

Reflection operators are operators on \mathbb{R}^2 (or \mathbb{R}^3) that maps each point into its symmetric image about a fixed line or a fixed plane that contains the origin.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the <i>x</i> -axis T(x, y) = (x, -y)	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	(-x, y) = (x, y) $T(x)$ x	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	T(x) = x $(y, x) y = x$ $(x, y) x$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection operators on $\ensuremath{\mathbb{R}}^3$

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the xy-plane T(x, y, z) = (x, y, -z)	$T(\mathbf{x}) = \begin{bmatrix} x & y & y \\ y & y & y \\ y & y & y \\ y & y &$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$T(\mathbf{x}) = \begin{pmatrix} -x, y, z \\ x \end{pmatrix}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

2. Projection

Projection operators on \mathbb{R}^2

Projection operators or orthogonal projection operators are matrix operators on \mathbb{R}^2 (or \mathbb{R}^3) that map each point into its orthogonal projection onto a fixed line or plane through the origin.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the x-axis $T(x, y) = (x, 0)$	(x, y) $T(x)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	(0, y) $T(x)$ x x	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Projection operators on \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy-plane T(x, y, z) = (x, y, 0)	$\begin{array}{c} z \\ x \\$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz-plane $T(x, y, z) = (x, 0, z)$	(x, 0, z) $T(x)$ x y x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane $T(x, y, z) = (0, y, z)$	$ \begin{array}{c} z \\ T(x) \\ x \end{array} $ $ \begin{array}{c} (0, y, z) \\ x \end{array} $	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3. Rotation

Rotation operators for \mathbb{R}^2

Rotation operators are matrix operators on \mathbb{R}^2 or \mathbb{R}^3 that move points along arcs of circles centered at the origin.

How to find the standard matrix for the rotation operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that moves points counterclockwise about the origin through a positive angle θ ?

 $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$ The standard transformation matrix for T is:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Review on "angle"

Conversion from o to rad

Rotation operators for \mathbb{R}^2 (cont.)

The matrix:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is called the rotation matrix for \mathbb{R}^2 .

Let $\mathbf{x} = (x, y) \in \mathbb{R}^2$ and $\mathbf{w} = (w_1, w_2)$ be its image under the rotation. Then:

$$\mathbf{w} = R_{\theta}\mathbf{x}$$

with:

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Example: a rotation operator

Find the image of $\mathbf{x}=(1,1)$ under a rotation of $\pi/6$ rad $(=30^{o})$ about the origin.

Solution:

We know that: $\sin(\pi/6) = \frac{1}{2}$ and $\cos(\pi/6) = \frac{\sqrt{3}}{2}$.

By the previous formula:

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

Rotations in \mathbb{R}^3

Rotations in \mathbb{R}^3 is commonly described as axis of rotation and a unit vector \mathbf{u} along that line.

Right-hand rule is used to establish a sign for the angle for rotation.

- If the axes are the axis x, y, or z, then take the unit vectors i, j, and k respectively.
- An angle of rotation will be positive if it is counterclockwise looking toward the origin along the positive coordinate axis and will be negative if it is clockwise.

Rotations in \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	y x	$w_1 = x$ $w_2 = y\cos\theta - z\sin\theta$ $w_3 = y\sin\theta + z\cos\theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive z -axis through an angle θ	x w	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

4. Dilation and contraction

Dilation & contraction

Let $k \in \mathbb{R}, k \geq 0$. The operator:

$$T(\mathbf{x}) = k\mathbf{x}$$

on \mathbb{R}^2 or \mathbb{R}^3 defines the increment or decrement of the length of vector \mathbf{x} by a factor of k.

- If k > 1, it is called a dilation with factor k;
- If $0 \le k \le 1$, it is called a contraction with factor k.

Dilation & contraction on \mathbb{R}^2

Operator	Illustration $T(x, y) = (kx, ky)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x}) = \begin{cases} \mathbf{x} & (x, y) \\ (kx, ky) & x \end{cases}$	(0,1) $(0,k)$ $(0,k)$ $(0,k)$ $(0,k)$	[<i>k</i> 0]
Dilation with factor k in R^2 $(k > 1)$	y $T(\mathbf{x})$ (kx, ky) \mathbf{x} (x, y)	$(0,1) \qquad (0,k) \qquad \uparrow \uparrow \qquad \vdots \qquad$	[0 k]

Dilation & contraction on \mathbb{R}^3

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	z $T(\mathbf{x}) = (kx, ky, kz)$ x	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 $(k > 1)$	$z \qquad (kx, ky, kz)$ $T(x) \qquad x \qquad (x, y, z)$	

5. Expansion and compression

Expansion and compression

In a dilation or contraction of \mathbb{R}^2 or \mathbb{R}^3 , all coordinates are multiplied by a non-negative factor k.

Now what if **only one coordinate** is multiplied by k?

- If k > 1, it is called the expansion with factor k in the direction of a coordinate axis (x, y, or z);
- If $0 \le k \le 1$, it is called compression

Expansion and compression in \mathbb{R}^2 (in x-direction)

Operator	Illustration $T(x, y) = (kx, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x -direction with factor k in R^2 $(0 \le k < 1)$	$ \begin{array}{c} y \\ (kx, y) \\ T(x) \\ x \end{array} $	(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)	$\begin{bmatrix} k & 0 \end{bmatrix}$
Expansion in the x -direction with factor k in R^2 $(k > 1)$	(x, y) (kx, y)	(0,1) $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$	[0 1]

Expansion and compression in \mathbb{R}^2 (in *y*-direction)

Operator	Illustration $T(x, y) = (x, ky)$	Effect on the Unit Square	Standard Matrix
Compression in the y-direction with factor k in R^2 $(0 \le k < 1)$	(x, y) (x, ky) $T(x)$	$(0,1)$ $(0,k)$ $\downarrow \downarrow$ $(1,0)$	[1 0]
Expansion in the y-direction with factor k in R^2 $(k > 1)$	$T(\mathbf{x})$ $T($	(0, 1) (0, k) 11	[0 k]

6. Shear

Shear

A matrix operator of the form:

$$T(x,y) = (x + ky, y)$$

translates a point (x, y) in the xy-plane parallel to the x-axis by an amount ky that is proportional to the y-coordinate of the point.

This is called shear in the x-direction by a factor k.

Similarly, a matrix operator:

$$T(x,y) = (x, y + kx)$$

is called shear in the y-direction by a factor k.

When k > 0, then the shear is in the positive direction. When k < 0, it is in the negative direction.

Shear

Operator	Effect on the Unit Square	Standard Matrix
Shear in the x -direction by a factor k in R^2 $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \clip (k,1) \$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear in the y-direction by a factor k in R^2 $T(x, y) = (x, y + kx)$	$(0,1) \qquad (0,1) \qquad (0,1) \qquad (0,1) \qquad (1,k) \qquad (1,k) \qquad (1,k) \qquad (1,k) \qquad (1,k)$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Example

Describe the matrix operator whose standard matrix is as follows:

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solution:

From the tables on the previous slides, we can see that:

- A₁ corresponds to a shear in the x-direction by a factor 2;
- A₂ corresponds to a shear in the x-direction by a factor -2;
- A₃ corresponds to a dilation with factor 2;
- A_4 corresponds to an expansion in the x-direction with factor 2.

Example (cont.)

Describe geometrically the result of the transformation:

Exercise