Dennis Mao, Julian Rodemann, Michael Kobl

Besprechung 20.06.2022/22.06.2022

Aufgabe 1

Es seien X_1, \ldots, X_n stochastisch unabhängige Zufallsvariablen mit Verteilungsfunktion F_{X_i} , $i = 1, \ldots, n$.

- a) Stellen Sie die Verteilungsfunktion von $Z_{\max} = \max(X_1, \dots, X_n)$ und $Z_{\min} = \min(X_1, \dots, X_n)$ als Funktion der F_{X_i} dar.
- b) Berechnen Sie die Dichte von Z_{\max} unter der Annahme, dass $F_{X_i} = F \ \forall \ i = 1, \dots, n$ und F stetig differenzierbar ist.

Aufgabe 2

- **a)** Sei $X \sim \text{Po}(\lambda_1)$ und $Y \sim \text{Po}(\lambda_2)$ stochastisch unabhängig. Welcher Verteilung folgt Z = X + Y?
- **b)** Folgern Sie anhand des Ergebnisses aus a), welcher Verteilung die Zufallsvariable $X^* = \sum_{i=1}^{n} X_i$ mit $X_i \sim \text{Po}(\lambda)$ stochastisch unabhängig, i = 1, ..., n, folgt.
- c) Seien X_1, \ldots, X_n poissonverteilte Zufallsvariablen mit $X_i \sim \text{Po}(\lambda)$ stochastisch unabhängig, $i = 1, \ldots, n$. Berechnen Sie den Erwartungswert von

$$T = \left(\frac{n-1}{n}\right)^{\sum_{i=1}^{n} X_i}.$$

Aufgabe 3

Sei X eine stetige Zufallsvariable. Die zugehörige Dichte f(x) sei symmetrisch um x=a. Zeigen Sie, dass E(X)=a gilt, falls E(X) existiert.

Besprechung von ausgewählter Themen aus der Vorlesung.