Hospital Readmission Prediction Using Machine Learning

Author: Anusha K

Email: anukulal04@gmail.com

1. Introduction

Hospital readmissions, especially among diabetic patients, are a significant burden to healthcare systems in terms of both cost and patient outcomes. In this project, we build a machine learning model to predict whether a patient is likely to be readmitted based on their clinical and demographic data. Early identification of at-risk patients enables targeted interventions, reducing preventable readmissions.

2. Dataset Overview

Source: UCI Machine Learning Repository

• Name: Diabetes 130-US hospitals for years 1999–2008

• **Size:** 101,766 patient records

• Features: 50 (demographics, medical history, lab tests, medications, diagnoses)

• **Target:** Readmission (1 = readmitted, 0 = not readmitted)

3. Data Preprocessing

- Dropped columns with over 80% missing data
- Handled missing values (?) by mode imputation or removal
- Label encoding for categorical variables
- Standard scaling for numerical features
- Outlier detection using IQR
- Feature engineering (e.g., medication change indicators)

4. Models Applied

Model Purpose

Logistic Regression Baseline model with good interpretability

Model Purpose

Decision Tree Interpretable model with rule-based learning

Random Forest Ensemble model with high precision & explainability

Gradient Boosting High AUC score, strong performance

Neural Network High recall, good for screening

5. Best Performing Models

• Best Balanced Model: Logistic Regression

• F1-score: 0.2563, Recall: 51.6%, AUC: 0.6453

• **Best Precision:** Random Forest (~70.6%)

• **Best AUC:** Gradient Boosting (0.6777)

• **Best Recall:** Neural Network (53.2%)

6. Explainability

To ensure clinical trust and model transparency, we applied:

- SHAP (SHapley Additive Explanations): for global & local feature impact
- **LIME** (Local Interpretable Model-agnostic Explanations): for local, instance-level insights

Key influential features:

- Number of inpatient visits
- Insulin usage
- Time in hospital
- Number of medications
- Discharge disposition

7. Evaluation Metrics

- Accuracy
- Precision & Recall
- F1-Score
- ROC-AUC

- Confusion Matrix
- Stratified 5-fold Cross-Validation
- McNemar's test for model comparison

8. Conclusion

This project successfully demonstrates the application of machine learning to predict diabetic patient readmissions. Random Forest and Logistic Regression models showed strong predictive power, and SHAP/LIME enhanced model interpretability for clinical decision-making.

By leveraging healthcare analytics and explainable AI, hospitals can:

- Stratify patient risk
- Improve discharge planning
- Optimize care pathways
- Reduce healthcare costs

9. Future Work

- Integrate real-time hospital EHR data
- Expand prediction to other chronic diseases
- Deploy as a clinical decision support system (CDSS)

10. Tools Used

- Python, Jupyter Notebook
- Pandas, NumPy, Matplotlib, Seaborn
- scikit-learn, XGBoost, LightGBM, SHAP, LIME

11. References

- UCI Machine Learning Repository
- Lundberg et al. SHAP
- Ribeiro et al. LIME