Higher-Order DisCoCat Peirce-Lambek-Montague Semantics

Alexis Toumi, Giovanni de Felice

ACT 2024, Oxford

Outline

Coecke

Montague

Lambek

Peirce

- 1. DisCoCat $F: \mathbf{G} o \mathbf{FinVect}$
- 2. Lambek grammars G as categories
- 3. Montague semantics $F: \mathbf{G} \to \Lambda L$
- 4. Peirce: first-order logic with diagrams
- 5. Higher-Order DisCoCat $F: \mathbf{G} o \Lambda D$

$\mathsf{DisCoCat}\, F : \mathbf{G} \to \mathbf{FinVect}$

- 1. Parse your sentence as a morphism in a closed (rigid) category ${f G}$
- 2. Map each type t_i to a finite-dimensional vector space $F(t_i)=\mathbb{R}^d$ and each word w_i of type t_i to a vector $F(w_i o t_i) \in F(t_i)$
- 3. Compute the meaning of the sentence as the image of the functor $F: \mathbf{G} \to \mathbf{FinVect}$, i.e. perform tensor network contraction

$\mathsf{DisCoCat}\, F : \mathbf{G} \to \mathbf{FinVect}$

Pros	Cons
both symbolic and statistical	hard to train on big datasets
intuitive graphical language	curse of dimensionality
natural quantum implementation	it's all linear maps!

Categorial Grammar: Context

Die syntaktische Konnexität, Ajdukiewicz (1935)

$$xrac{y}{x} o y$$

A quasi-arithmetical notation for syntactic description, Bar-Hillel (1953)

$$x(x \backslash y) o y \leftarrow (y/x)x$$

The Mathematics of Sentence Structure, Lambek (1958)

$$x\otimes (xackslash y) o y\leftarrow (y/x)\otimes x$$

Categorial and Categorical Grammars, Lambek (1988)

Categorial Grammar: Definition (1/2)

Definition: Given a set X, we define $T(X)\supseteq X+\{I\}$ where for all $x,y\in T(X)$ we have $(x\backslash y),(x/y)$ and $(x\otimes y)\in T(X)$

Definition: A categorial grammar is a tuple G=(V,X,D,s) where:

- ullet V is a set of words called the **vocabulary**
- ullet X is a set of **basic types** with $s\in X$ the **sentence type**
- $D \subseteq V \times T(X)$ is a set of **dictionary entries**
- In practice, this is extended with a set of **ad-hoc rules** $R \subseteq X \times X$.

Categorial Grammar: Definition (2/2)

Definition: The language of a categorial grammar G is given by:

$$L(G) = \{w_1 \dots w_n \in V^\star \mid \exists \ f : w_1 \otimes \dots \otimes w_n \to s \in \mathbf{G}\}$$

where G is the free (non-symmetric) closed monoidal category, i.e.

$$\mathbf{G}(y,xackslash z)\simeq\mathbf{G}(x\otimes y,z)\simeq\mathbf{G}(x,z/y)$$

Categorial Grammar: Example

$$V = \{ \text{Female, astronaut, sets,} ... \} \quad X = \{N, NP, S\}$$

$$D = \{ (\text{Female}, N \leftarrow N), (\text{astronaut}, N), ... \} \quad R = \{(N, NP)\}$$

Montague Semantics

English as a formal language, Montague (1970)

Formulae as simply-typed lambda terms

Let L be the signature of first-order logic, i.e. $L_0 = \{ au, \phi\}$ and

L_1	symbol	\mathbf{type}
constants	Alice, Bob,	au
unary predicates	man, sings,	$ au o \phi$
binary predicates	needs, sees,	$ au ightarrow (au ightarrow \phi)$
nullary operators	$ op, oldsymbol{\perp}$	ϕ
unary operators	_	$\phi o \phi$
binary operators	$\wedge, \vee, \rightarrow$	$\phi o (\phi o \phi)$
quantifiers	\forall,\exists	$(au o \phi) o \phi$

Let ΛL be the free cartesian closed category it generates, i.e. where the lambda terms $f:1 o\phi$ reduce to first-order logic formulae.

Montague Semantics $F: \mathbf{G} o \Lambda L$

$$F(s) = \phi$$
 $F(n) = \tau \to \phi$ $F(p) = (\tau \to \phi) \to \phi$

Montague semantics	$\mathbf{word}\ w$	$\mathbf{type}\ t$	meaning $F(w \to t)$
proper nouns	Alice	p	$\lambda P.P(Alice)$
common nouns	man	n	$\lambda x. \operatorname{man}(x)$
adjectives	big	$n \leftarrow n$	$\lambda Px.\mathrm{big}(x) \wedge Px$
determiners	every	$p \leftarrow n$	$\lambda PQ. \forall x. Px \to Qx$
intransitive verbs	sleeps	p o s	$\lambda P.P(\lambda x.\text{sleeps}(x))$
transitive verbs	kills	$(p \to s) \leftarrow p$	$\lambda PQ.Q(\lambda x.P(\lambda y.\mathrm{kills}(x,y)))$

Montague Semantics $F: \mathbf{G} o \Lambda L$

Montague Semantics $F: \mathbf{G} o \Lambda L$

PROLEGOMENA TO AN APOLOGY FOR PRAG-MATICISM.

OME on, my Reader, and let us construct a diagram to illustrate the general course of thought; I mean a System of diagrammatization by means of which any course of thought can be represented with exactitude.

Hand-written as early as 1882, but remained unpublished until 1906.

Compositional Diagrammatic First-Order Logic, Haydon and Sobocinski (2020)

Compositional Diagrammatic First-Order Logic, Haydon and Sobocinski (2020)

Diagrammatic Algebra of First Order Logic, Bonchi, Di Giorgio, Haydon & Sobocinski (2024)

Diagrams as simply-typed lambda terms

Let D be the signature of string diagrams generated by a monoidal signature $\Sigma=(\Sigma_0,\Sigma_1,\operatorname{dom},\operatorname{cod})$, i.e. $D_0=\Sigma_0^\star\times\Sigma_0^\star$ and

D_1	symbol	type
boxes	$f\in \Sigma$	(x,y)
identity	id_x	(x,x)
composition	\circ_{xyz}	(x,y) o (y,z) o (x,z)
\mathbf{tensor}	\otimes_{xyzw}	(x,y) o (z,w) o (xz,yw)

Let ΛD be the free cartesian closed category it generates, i.e. where the lambda terms $f: 1 \to (x,y)$ reduce to string diagrams $x \to y$.

"very big" = "big big"	word w	type t	meaning $F(w \rightarrow t)$
common nouns	car	n	$car \in \Sigma$
adjectives	big	$n \leftarrow n$	λx .big $\circ x$
adverbs	very	$(n \leftarrow n) \leftarrow (n \leftarrow n)$	$\lambda fx.ffx$

$$\Sigma = (\Sigma_0, \Sigma_1, \mathtt{dom}, \mathtt{cod}, \mathtt{holes})$$

$$ext{holes}(f) = ig((z_1, w_1), \dots, (z_k, w_k)ig) \in (\Sigma_0^\star imes \Sigma_0^\star)^\star$$

D_1 (continued)	symbol	type
boxes with holes	$f \in \Sigma$	$(z_1, w_1) \rightarrow \cdots \rightarrow (z_k, w_k) \rightarrow (x, y)$

$$F(s)=(1,1) \qquad F(n)=(1,N) \qquad F(p)=\prod_{x\in \Sigma_0^\star}(N,x) o (1,x)$$

Peirce-Lambek-Montague	$\mathbf{word}\ w$	$\mathbf{type}\ t$	meaning $F(w \to t)$
common nouns	man	n	$(\text{man}: 1 \to N) \in \Sigma$
proper nouns	Alice	p	$\lambda f. \text{Alice} \circ f$
adjectives	$_{ m big}$	$n \leftarrow n$	$\lambda f.\mathrm{spider}_{2,1} \circ (\mathrm{big} \otimes f)$
determiners	no	$p \leftarrow n$	$\lambda fg.\mathrm{cut}(g\circ f)$
intransitive verbs	sleeps	$p \rightarrow s$	$\lambda P.P(\mathrm{sleeps})$
transitive verbs	kills	$(p \to s) \leftarrow p$	$\lambda PQ.Q(P(ext{kills})^T)$
copula	is	$(p \to s) \leftarrow p$	$\lambda PQ.Q(P(\mathrm{id}_N)^T)$

Implementation (1/4): Formula

```
from discopy import frobenius, utils
from discopy.tensor import Dim, Tensor
@utils.factory # Ensure the subclass is closed under composition
class Formula(frobenius.Diagram):
    ty_factory = frobenius.PRO # i.e. natural numbers as objects
    def eval(self, size: int) -> Tensor[bool]:
        return frobenius.Functor(
            ob=lambda _: Dim(size),
            ar=lambda box: box.data,
            cod=Category(Dim, Tensor[bool]))(self)
class <u>Cut</u>(frobenius.Bubble, Formula): ...
class Ligature(frobenius.Spider, Formula): ...
class Predicate(frobenius.Box, Formula): ...
Id, Formula.bubble_factory = Formula.id, Cut
Tensor[bool].bubble = lambda self, **_{:} self.map(lambda x: not x)
```

Implementation (2/4): Grammar

```
from discopy.grammar.categorial import Ty, Word, Eval
n, p, s = Ty('n'), Ty('p'), Ty('s') # noun, phrase and sentence
man, island = (Word(noun, n) for noun in ("man", "island"))
_{\tt is} = (Word(verb, (p >> s) << p) for verb in ("is"))
no, an = (Word(det, p << n) for det in ("no", "an"))
no_man_is_an_island = (no @ man @ _is @ an @ island
    >> Eval(p << n) @ ((p >> s) << p) @ Eval(p << n)
    >> p @ Eval((p >> s) << p) >> Eval(p >> s))
```

Implementation (3/4): Functor

```
from discopy import closed, python
M, I = (Predicate("M", 0, 1, data) for P, data in zip("MI", unary_predicates))
F = closed.Functor(
    cod=closed.Category(tuple[type, ...], python.Function),
    ob={s: Formula, n: Formula, p: Callable[[Formula], Formula]},
    ar={Alice: lambda: lambda f: A >> f,
        sleeps: lambda: lambda P: P(S.dagger()),
        man: lambda: M, island: lambda: I,
        big: lambda: lambda f: f @ B >> Ligature(2, 1, frobenius.PRO(1)),
        _is: lambda: lambda P: lambda Q: Q(P(Id(1)).dagger()),
        kills: lambda: lambda P: lambda Q: Q(P(K).dagger()),
        no: lambda: lambda f: lambda g: (f >> g).bubble(),
        some: lambda: lambda f: lambda g: f >> g,
        every: lambda: lambda f: lambda g: (f >> g.bubble()).bubble()})
```

Implementation (4/4): Evaluation

```
from random import choice
size = 42 # Generating a random interpretation to test our model
random_bits = lambda n=size: [choice([True, False]) for _ in range(n)]
unary_predicates = is_man, is_island = [random_bits() for _ in range(5)]
evaluate = lambda sentence: bool(F(sentence)().eval(size))
assert evaluate(no_man_is_an_island) == all(
    not is_man[x] or not is_island[x] for x in range(size))
```

Thank you!

