Clustering studenti informatica

Tommaso Ceccarini, Filippo Mameli 21 agosto 2018

Introduzione

II dataset

Il dataset che abbiamo analizzato contiene dati sulle carriere accademiche degli studenti del corso di laurea di informatica dell'università degli studi di Firenze e il loro voto conseguito al test di ingresso.

- Coorte: Anno di immatricolazione
- Crediti totali: Numero crediti complessivi dello studente
- Crediti con voto: Numero di crediti assegnati allo studente per esami con votazione in trentesimi (tutti tranne Inglese)
- Voto medio: Media pesata dei voti degli esami sostenuti

II dataset

- Nome dell'esame
- Data in cui lo studente ha sostenuto l'esame

Gli esami sono Algoritmi e strutture dati (ASD), Programmazione (PRG), Architetture degli elaboratori (ARC), Analisi I (ANI), Matematica discreta e logica (MDL) e Inglese.

• Punteggio conseguito al test di ingresso.

Gestione dei dati

La gestione dei dati

Le principali operazioni effettuate sul dataset sono:

- eliminare gli studenti che hanno sostenuto solo inglese
- riportare tutti gli attributi relativi alle date degli esami nel formato YYYY-MM-DD

La gestione dei dati

Le principali operazioni effettuate sul dataset sono:

- eliminare gli studenti che hanno sostenuto solo inglese
- riportare tutti gli attributi relativi alle date degli esami nel formato YYYY-MM-DD

Creazione table

```
CREATE TABLE 'studenti' (
  'coorte' int(11),
  'crediti_totali' int(11),
  'crediti_con_voto' int(11).
  'voto_medio' int(11),
  'ASD' int(11),
  'data_ASD' text,
  'data_INGLESE' text,
  'TEST' int(11)
) FNGTNE=TnnoDB
I.OAD DATA INFILE 'studenti.csv' INTO TABLE studenti
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;
```

Update tabella

```
update dmo.studenti set data_ARC = '0000-00-00' where
   data_ARC='0';
update dmo.studenti set data_ASD = '0000-00-00' where
   data_ASD='0';
update dmo.studenti set data_PRG = '0000-00-00' where
   data PRG='0':
update dmo.studenti set data_ANI = '0000-00-00' where
   data_ANI='0';
update dmo.studenti set data_MDL = '0000-00-00' where
   data_MDL='0';
update dmo.studenti set data_INGLESE = '0000-00-00' where
   data_INGLESE = '0';
```

Analisi dei dati

Analisi dei dati

Tabella di correlazione

	coorte	crediti totali	crediti con voto	voto medio	ASD	ARC	PRG	ANI	MDL	ING	TEST
coorte	1	0.013343	0.01821	0.03655	0.03581	-0.01609	-0.0822	0.13386	-0.04033	NA	0.04126
crediti_totali	0.01334	1	0.99522	0.44571	0.52984	0.72508	0.69882	0.61015	0.62789	NA	0.38433
crediti_con_voto	0.01821	0.99522	1	0.44838	0.52957	0.71955	0.70879	0.61593	0.62654	NA	0.39025
voto_medio	0.03655	0.44571	0.44838	1	0.36900	0.36427	0.43085	0.39777	0.31828	NA	0.39428
ASD	0.03581	0.52984	0.52957	0.36900	1	0.29321	0.31192	0.10116	0.23775	NA	0.16149
ARC	-0.0160	0.72508	0.71955	0.36427	0.29321	1	0.43166	0.27541	0.39622	NA	0.29979
PRG	-0.0822	0.69882	0.70879	0.43085	0.31192	0.43166	1	0.19585	0.27295	NA	0.24356
ANI	0.13386	0.61015	0.61593	0.39777	0.10116	0.27541	0.19585	1	0.36333	NA	0.32378
MDL	-0.0403	0.62789	0.62654	0.31828	0.23775	0.39622	0.27295	0.36333	1	NA	0.38777
ING	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA
TEST	0.04126	0.384332	0.39025	0.39428	0.16149	0.29979	0.2435	0.32378	0.38777	NA	1

Scatterplot Crediti totale e ASD

Scatterplot Crediti totale e ARC

Scatterplot ARC e PRG

Scatterplot ASD e ANI

Matrice di correlazione

Clustering

Clustering

- crediti totali, architetture, programmazione;
- algoritmi e strutture dati, architetture, programmazione, analisi 1 e matematica discreta e logica;
- voto medio e test.

Clustering

- l'analisi effettuata con tecniche di clustering gerarchico è stata effettuata su un sottoinsieme dei dati a disposizione selezionato in base alla coorte dello studente (anno 2010);
- nel caso dell'algoritmo di Kmeans viene stabilito preventivamente il numero dei cluster possibili utilizzando valori ritenuti sensati di volta in volta;
- l'algoritmo DBSCAN è stato utilizzato per l'analisi relativa ai voti dei diversi esami scegliendo preventivamente i valori di MinPts e eps ritenuti sensati di volta in volta.

Cluster ARC e PRG k = 2

	Crediti totali	ARC	PRG	Istanze
0	0.65	0.32	0.85	183 (58%)
1	0.27	0.05	0	133 (42%)

Tabella 1: Cluster con ARC e PRG con $k=2\ SSE\ 51.35$

Cluster ARC e PRG k = 3

	Crediti totali	ARC	PRG	Istanze
0	0.88	0.82	0.89	73 (23%)
1	0.27	0.05	0	133 (42%)
2	0.50	0	0.81	110 (35%)

Tabella 2: Cluster con ARC e PRG con k=3 SSE 14.85

Dendogramma

Figura 1: Dendogramma relativo al clustering gerarchico con metodo complete.

Dendogramma

Figura 2: Dendogramma relativo al clustering gerarchico con metodo average.

Cluster di tutti i voti

	ASD	ARC	PRG	ANI	MDL	Istanze
0	0.73	0.05	0.81	0.43	0.02	100 (32%)
1	0.65	0.05	0	0.50	0.12	133 (42%)
2	0.91	0.65	0.89	0.88	0.60	83 (26%)

Tabella 3: Cluster di tutti i voti con $k=3\ SSE\ 106.19$

Gruppi di studenti

- gli studenti che hanno conseguito una buona votazione negli esami di Algoritmi e Strutture Dati e Programmazione, una votazione discreta all'esame di Analisi I e che non hanno sostenuto Matematica discreta e Logica e Architetture degli elaboratori;
- gli studenti con le stesse caratteristiche del cluster precedente, ma che hanno sostenuto Programmazione
- gli studenti che hanno sostenuto tutti gli esami e con un buona votazione.

Scatter plot dei cluster

Figura 3: Scatter plot relativo ai cluster dei voti di Architetture degli Elaboratori e Programmazione

Cluster DBSCAN

	Istanze					
0	40 (14%)					
1	46 (17%)					
2	41 (15%)					
3	13 (5%)					
4	45 (16%)					
5	33 (12%)					
6	6 (2%)					
7	18 (6%)					
8	22 (8%)					
9	14 (5%)					

Tabella 4: Cluster ottenuti con DBSCAN eseguito con MinPts=6 e eps=0.5.

Cluster DBSCAN

Istanze					
0	40 (15%)				
1	46 (17%)				
2	41 (15%)				
3	13 (5%)				
4	45 (17%)				
5	33 (12%)				
6	18 (7%)				
7	22 (8%)				
8	14 (5%)				

Tabella 5: Cluster ottenuti con DBSCAN eseguito con MinPts=10 e eps=0.4.

Cluster DBSCAN

Istanze					
0	40 (18%)				
1	46 (20%)				
2	41 (18%)				
3	45 (20%)				
4	33 (15%)				
5	22 (10%)				

Tabella 6: Cluster ottenuti con DBSCAN eseguito con MinPts=20 e eps=0.4.

Cluster Voto medio e Test

	voto medio	Test	Istanze
0	0.36	0.41	85 (27%)
1	0.75	0.66	146 (42%)
2	0.45	0.67	85 (27%)

Tabella 7: Cluster con Voto $_$ medio e Test con k = 3 SSE 9.6

Valutazione del clustering e model

selection

Valutazione del clustering e model selection

- Selezione del numero "ottimale" di cluster per il K-means
- Valutazione del K-means
- Valutazione DBSCAN

Selezione numero di cluster nel K-means

Viene effettuata tramite la seguente procedura

- Determinazione SSE in funzione di k
- Selezione del valore ottimale di k_{opt}

successivamente è possibile valutare e confrontare i risultati ottenuti dall'algoritmo con i diversi valori di k.

Example

Figura 4: Dependency update

Example

Figura 5: Dependency update

Example

Figura 6: Dependency update

Selezione Eps fissato MinPts in DBSCAN

Viene effettuata tramite la seguente procedura

- Ordino i punti rispetto alla loro distanza dal loro k-esimo punto più vicino item pongo MinPts=k
- Determino un grafico con indici punti ordinati e distanze dal k-esimo più vicino
- Selezione come valore di Eps quello per cui c'è un picco.

Valutazione

La valutazione dei clustering ottenuti con K-means e DBSCAN è stata fatta con la seguente procedura

- Calcolo matrice distanze tra i punti
- Calcolo matrice di incidenza dei cluster
- "Serializzazione" e calcolo della correlazione

successivamente è possibile valutare e confrontare i risultati ottenuti dai clustering ottenuti con il K-means con i diversi valori di k e con il DBSCAN.

```
# Matrice di incidenza
matriceIncidenza <- function(data){</pre>
 nr = nrow(data)
 nc = ncol(data)
 C = matrix(nrow = nr, ncol = nr)
 for(i in 1:nr){
   for(j in 1:nr){
     if(data[i,nc] == data[j,nc])
       C[i,j] = 1
     else
       C[i,j] = 0
return(C)
```

```
# matrice distanza
matriceDistanza <- function(data){</pre>
  return(as.matrix(dist(data[,1:(ncol(data)-1)],method =
      'euclidean', diag = TRUE, upper = TRUE)))
calcoloCorrelazione <- function(data){</pre>
  MI <- matriceIncidenza(data)
  D <- matriceDistanza(data)</pre>
 mi = as.vector(t(MI))
  d = as.vector(t(D))
  return(cor(mi,d,method="pearson"))
calcoloCorrelazione(crediti_totali_prg_arc_clustered)
```

Valori Correlazione K-means

	coorte	crediti totali	crediti con voto	voto medio	ASD	ARC	PRG	ANI	MDL	ING	TEST
coorte	1	0.013343	0.01821	0.03655	0.03581	-0.01609	-0.0822	0.13386	-0.04033	NA	0.04126
crediti_totali	0.01334	1	0.99522	0.44571	0.52984	0.72508	0.69882	0.61015	0.62789	NA	0.38433
crediti_con_voto	0.01821	0.99522	1	0.44838	0.52957	0.71955	0.70879	0.61593	0.62654	NA	0.39025
voto_medio	0.03655	0.44571	0.44838	1	0.36900	0.36427	0.43085	0.39777	0.31828	NA	0.39428
ASD	0.03581	0.52984	0.52957	0.36900	1	0.29321	0.31192	0.10116	0.23775	NA	0.16149
ARC	-0.0160	0.72508	0.71955	0.36427	0.29321	1	0.43166	0.27541	0.39622	NA	0.29979
PRG	-0.0822	0.69882	0.70879	0.43085	0.31192	0.43166	1	0.19585	0.27295	NA	0.24356
ANI	0.13386	0.61015	0.61593	0.39777	0.10116	0.27541	0.19585	1	0.36333	NA	0.32378
MDL	-0.0403	0.62789	0.62654	0.31828	0.23775	0.39622	0.27295	0.36333	1	NA	0.38777
ING	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA
TEST	0.04126	0.384332	0.39025	0.39428	0.16149	0.29979	0.2435	0.32378	0.38777	NA	1

Valutazione k-Means

- Procedura model selection non efficace
- Valori scelti inizialmente sono migliori

Valutazione DBSCAN

- E' possibile calcolare lo stesso valore di correlazione anche per il DBSCAN
- Necessaria preventiva rimozione di rumore

Figura 7: Dependency update

Correlazione e rumore DBSCAN

	coorte	crediti totali	crediti con voto	voto medio	ASD	ARC	PRG	ANI	MDL	ING	TEST
coorte	1	0.013343	0.01821	0.03655	0.03581	-0.01609	-0.0822	0.13386	-0.04033	NA	0.04126
crediti_totali	0.01334	1	0.99522	0.44571	0.52984	0.72508	0.69882	0.61015	0.62789	NA	0.38433
crediti_con_voto	0.01821	0.99522	1	0.44838	0.52957	0.71955	0.70879	0.61593	0.62654	NA	0.39025
voto_medio	0.03655	0.44571	0.44838	1	0.36900	0.36427	0.43085	0.39777	0.31828	NA	0.39428
ASD	0.03581	0.52984	0.52957	0.36900	1	0.29321	0.31192	0.10116	0.23775	NA	0.16149
ARC	-0.0160	0.72508	0.71955	0.36427	0.29321	1	0.43166	0.27541	0.39622	NA	0.29979
PRG	-0.0822	0.69882	0.70879	0.43085	0.31192	0.43166	1	0.19585	0.27295	NA	0.24356
ANI	0.13386	0.61015	0.61593	0.39777	0.10116	0.27541	0.19585	1	0.36333	NA	0.32378
MDL	-0.0403	0.62789	0.62654	0.31828	0.23775	0.39622	0.27295	0.36333	1	NA	0.38777
ING	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA
TEST	0.04126	0.384332	0.39025	0.39428	0.16149	0.29979	0.2435	0.32378	0.38777	NA	1

Model selection DBSCAN

Hello world

Figura 8: Dependency update

Figura 9: Dependency update

 $\textbf{Figura 10:} \ \ \mathsf{Dependency} \ \mathsf{update}$

Correlazione e rumore DBSCAN

	coorte	crediti totali	crediti con voto	voto medio	ASD	ARC	PRG	ANI	MDL	ING	TEST
coorte	1	0.013343	0.01821	0.03655	0.03581	-0.01609	-0.0822	0.13386	-0.04033	NA	0.04126
crediti_totali	0.01334	1	0.99522	0.44571	0.52984	0.72508	0.69882	0.61015	0.62789	NA	0.38433
crediti_con_voto	0.01821	0.99522	1	0.44838	0.52957	0.71955	0.70879	0.61593	0.62654	NA	0.39025
voto_medio	0.03655	0.44571	0.44838	1	0.36900	0.36427	0.43085	0.39777	0.31828	NA	0.39428
ASD	0.03581	0.52984	0.52957	0.36900	1	0.29321	0.31192	0.10116	0.23775	NA	0.16149
ARC	-0.0160	0.72508	0.71955	0.36427	0.29321	1	0.43166	0.27541	0.39622	NA	0.29979
PRG	-0.0822	0.69882	0.70879	0.43085	0.31192	0.43166	1	0.19585	0.27295	NA	0.24356
ANI	0.13386	0.61015	0.61593	0.39777	0.10116	0.27541	0.19585	1	0.36333	NA	0.32378
MDL	-0.0403	0.62789	0.62654	0.31828	0.23775	0.39622	0.27295	0.36333	1	NA	0.38777
ING	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA
TEST	0.04126	0.384332	0.39025	0.39428	0.16149	0.29979	0.2435	0.32378	0.38777	NA	1

Conclusioni

Conclusioni

- Architetture degli elaboratori esame più difficile
- La media alla fine del primo anno non sempre conferma i risultati ottenuti al test di ingresso
- Non tutti gli esami sono generalmente sostenuti al primo anno

Grazie per l'attenzione