Master's theorem to solve securinence eq.

Standard eq. =
$$T(n) = aT(\frac{n}{b}) + f(n)$$

where $n \ge d$ and d is

some constant.

Tomoulas for masters theorem

if $a < b^d$
 $T(n) = 0$ ($n^d \log n$) if $a = b$
 $T(n) = 0$ ($n^{\log b a}$) if $a > b^d$

Examples

Compare it with standard eq.

Here $f(n) = n$ i.e. n^d

Here $a = b$ and $b = a$

Now $b^d = b = a$

i.e. $a > b^d$ i.e. $b > a^d$

(2)
$$T(n) = 2T(\frac{n}{2}) + n\log n$$

Here $d = 1$, $f(n) = n\log n$
 $a = 2$, $b = 2$
 $\therefore b^d = 2^1 = 2$
Here $a = b^d$ i.e. $a = 2 = 2$
 $\begin{bmatrix} Thus, T(n) = 0(n\log n) \end{bmatrix}$
(3) $T(n) = 4T(\frac{n}{2}) + n^3$
Here $d = 3$, $f(n) = n^3$
 $a = 4$, $b = 3$
 $\therefore b^d = 3^3 = 9$
Here $a < b^d$
 $Thus, T(n) = 0(n^3)$
Moste e.g.
(2) $T(n) = 2T(\frac{n}{2}) + n^2$
(3) $T(n) = 3T(\frac{n}{2}) + n^3$
(4) $T(n) = T(\frac{n}{2}) + 1$