

Elliptic Curve Cryptography (ECC)

Oleh: Dr. Rinaldi Munir

Program Studi Informatika
Sekolah Teknik Elektro dan Informatikam(STEI)
ITB

Referensi:

- 1. Andreas Steffen, *Elliptic Curve Cryptography*, Zürcher Hochschule Winterthur.
- 2. Debdeep Mukhopadhyay, *Elliptic Curve Cryptography*, Dept of Computer Sc and Engg IIT Madras.
- 3. Anoop MS, Elliptic Curve Cryptography, an Implementation Guide

Pengantar

- Sebagian besar kriptografi kunci-publik (seperti RSA, ElGamal, Diffie-Hellman) menggunakan integer dengan bilangan yang sangat besar.
- Sistem seperti itu memiliki masalah yang signifikan dalam menyimpan dan memproses kunci dan pesan.
- Sebagai alternatif adalah menggunakan kurva eliptik (elliptic curve).
- Komputasi dengan kurva eliptik menawarkan keamanan yang sama dengan ukuran kunci yang lebih kecil.
- Kriptografi yang menggunakan kurva eliptik dinamakan *Elliptic Curve Cryptography* (ECC).

Sumber: William Stallings, Cryptography and Network Security Chapter 10, 5th Edition

- ECC adalah algoritma kriptografi kunci publik yang lebih baru (meskipun belum dianalisis dengan baik).
- Dikembangkan oleh Neal Koblitz dan Victor S. Miller tahun 1985.
- Klaim: Panjang kunci ECC lebih pendek daripada kunci RSA, namun memiliki tingkat keamanan yang sama dengan RSA.
- Contoh: kunci ECC sepanjang 160-bit menyediakan keamanan yang sama dengan 1024-bit kunci RSA.
- Keuntungan: dengan panjang kunci yang lebih pendek, membutuhkan memori dan komputasi yang lebih sedikit.
- Cocok untuk piranti nirkabel, dimana prosesor, memori, umur batere terbatas.

Teori Aljabar Abstrak

- Sebelum membahas ECC, perlu dipahami konsep aljabar abstrak yang mendasarinya.
- Konsep aljabar abstrak:
 - 1. Grup (group)
 - 2. Medan (field)

Grup

- Grup (group) adalah sistem aljabar yang terdiri dari:
 - sebuah himpunan G
 - sebuah operasi biner *

sedemikian sehingga untuk semua elemen a, b, dan c di dalam G berlaku aksioma berikut:

- 1. Closure: a * b harus berada di dalam G
- 2. Asosiatif: a * (b * c) = (a * b) * c
- 3. Elemen netral: terdapat e ∈ G sedemikian sehingga

$$a * e = e * a = a$$

4. Elemen invers: terdapat $a' \in G$ sedemikian sehingga

$$a * a' = a' * a = e$$

Notasi: <G, *>

- <G, +> menyatakan sebuah grup dengan operasi penjumlahan.
- <G, ·> menyatakan sebuah grup dengan operasi perkalian

Contoh-contoh grup:

- 1. $\langle R, + \rangle$: grup dengan himpunan bilangan riil dengan operasi + e = 0 dan a' = -a
- 2. $\langle R^*, \cdot \rangle$: grup dengan himpunan bilangan riil tidak nol (yaitu, $R^* = R \{ 0 \}$) dengan operasi kali (·) $e = 1 \text{ dan } a' = a^{-1}$
- 3. <Z, +> dan <Z, ⋅> masing-masing adalah grup dengan himpunan bilangan bulat (*integer*) dengan operasi + dan ⋅

- 4. $\langle Z_n, \oplus \rangle$: grup dengan himpunan integer modulo n, yaitu Z_n , = $\{0, 1, 2, ..., n-1\}$ dan \oplus adalah operasi penjumlahan modulo n.
 - $\langle Z_p, \oplus \rangle$: grup dengan himpunan integer modulo p, p adalah bilangan prima, yaitu Z_p , = $\{0, 1, 2, ..., p-1\}$ dan \oplus adalah operasi penjumlahan modulo p.
 - $\langle Z^*_p, \otimes \rangle$: dengan himpunan integer bukan nol, p adalah bilangan prima, yaitu Z^*_p , = $\{1, 2, ..., p-1\}$ dan \otimes adalah operasi perkalian modulo p.

• Sebuah grup $\langle G, * \rangle$ dikatakan grup komutatif atau grup abelian (atau disingkat abelian saja) jika berlaku aksioma komutatif a * b = b * a untuk semua $a, b \in G$.

- <R, +> dan <R, ·> adalah abelian
- <Z, +> dan <Z, ·> adalah abelian
- Apakah <Z_n, ⊕>, <Z_p, ⊕> , <Z*_p, ⊗> abelian?

Ket: Abelian diambil dari kata "abel", untuk menghormati Niels Abel, seorang Matematikawan Norwegia (1802 – 1829)

Medan (Field)

- Medan (field) adalah himpunan elemen (disimbolkan dengan F) dengan dua operasi biner, biasanya disebut penjumlahan (+) dan perkalian (·).
- Sebuah struktur aljabar <F, +, ·> disebut medan jika dan hanya jika:
 - 1. <F, +> adalah grup abelian
 - 2. $\langle F \{0\}, \cdot \rangle$ adalah grup abelian
 - 3. Operasi · menyebar terhadap operasi + (sifat distributif)

Distributif:
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

 $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$

 Jadi, sebuah medan memenuhi aksioma: closure, komutatif, asosiatif, dan distributif

- Contoh medan:
 - medan bilangan bulat
 - medan bilangan riil
 - medan bilangan rasional (p/q)

Evariste Galois

- Sebuah medan disebut berhingga (finite field) jika himpunannya memiliki jumlah elemen yang berhingga. Jika jumlah elemen himpunan adalah n, maka notasinya F_n Contoh: F₂ adalah medan dengan elemen 0 dan 1
- Medan berhingga sering dinamakan juga Galois Field, untuk menghormati Evariste Galois, seorang matematikawan Perancis (1811 – 1832)

Medan Berhingga F_p

- Kelas medan berhingga yang penting adalah F_p
- F_p adalah adalah medan berhingga dengan himpunan bilangan bulat {0, 1, 2, ..., p – 1} dengan p bilangan prima, dan dua operasi yang didefinisikan sbb:

1. Penjumlahan

Jika a, $b \in F_{p_r}$ maka a + b = r, yang dalam hal ini r = (a + b) mod p, $0 \le r \le p - 1$

2. Perkalian

Jika a, $b \in F_{p_s}$ maka $a \cdot b = s$, yang dalam hal ini $s = (a \cdot b)$ mod $p_s \le s \le p - 1$

Contoh: F₂₃ mempunyai anggota {0, 1, 2, ..., 22}.

Contoh operasi aritmetika:

$$12 + 20 = 9$$
 (karena $32 \mod 23 = 9$)

$$8 \cdot 9 = 3$$
 (karena 72 mod 23 = 3)

Medan Galois (Galois Field)

- Medan Galois adalah medan berhingga dengan p^n elemen, p adalah bilangan prima dan $n \ge 1$.
- Notasi: *GF*(*pⁿ*)
- Kasus paling sederhana: bila $n = 1 \rightarrow GF(p)$ dimana elemenelemennya dinyatakan di dalam himpunan $\{0, 1, 2, ..., p 1\}$ dan operasi penjumlahan dan perkalian dilakukan dalam modulus p.

GF(2):

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

GF(3):

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

•	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

• Contoh: Bentuklah tabel perkalian untuk GF(11). Tentukan solusi untuk $x^2 \equiv 5 \pmod{11}$

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7	8	9	10
	0	2	4	6	8	10	1	3	5	7	9
3	0	3	6	9	1	4	7	10	2	5	8
4	0	4	8	1	5	9	2	6	10	4	7
	0	5	10	4	9	3	8	2	7	1	6
6	0				2			9		10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

$$x^2 \equiv 5 \pmod{11}$$

Maka:
 $x^2 = 16 \rightarrow x_1 = 4$

$$x^{2} = 49 \rightarrow x_{1} = 4$$

 $x^{2} = 49 \rightarrow x_{2} = 7$

Cara lain: cari elemen diagonal = 5, lalu ambil elemen mendatar atau elemen Vertikalnya (dilingkari).

Galois Field GF(2^m)

- Disebut juga medan berhingga biner.
- GF(2^m) atau F_2^m adalah ruang vektor berdimensi m pada GF(2). Setiap elemen di dalam GF(2^m) adalah integer dalam representasi biner sepanjang maksimal m bit.
- String biner α_{m-1} ... α_1 α_0 , $\alpha_i \in \{0,1\}$, dapat dinyatakan dalam polinom $\alpha_{m-1}x^{m-1} + ... + \alpha_1x + \alpha_0$
- Jadi, setiap $a \in GF(2^m)$ dapat dinyatakan sebagai $a = \alpha_{m-1}x^{m-1} + ... + \alpha_1x + \alpha_0$
- Contoh: 1101 dapat dinyatakan dengan x³ + x² + 1

Operasi aritmetika pada GF(2^m)

Misalkan $a = (a_{m-1}..a_1 a_0) dan b = (b_{m-1}...b_1 b_0) \in GF(2^m)$

Penjumlahan:

$$a + b = c = (c_{m-1}..c_1 c_0)$$
 dimana $c_i = (a_i + b_i)$ mod 2, $c \in GF(2^m)$

• <u>Perkalian</u>: $a \cdot b = c = (c_{m-1}..c_1 c_0)$ dimana c adalah sisa pembagian polinom $a(x) \cdot b(x)$ dengan *irreducible polynomial* derajat m, $c \in GF(2^m)$

Contoh: Misalkan $a = 1101 = x^3 + x^2 + 1$ dan $b = 0110 = x^2 + x$ a dan $b \in GF(2^4)$

(i)
$$a + b = (x^3 + x^2 + 1) + (x^2 + x) = x^3 + 2x^2 + x + 1 \pmod{2}$$

Bagi tiap koefisien dengan 2,

lalu ambil sisanya

$$= x^3 + 0x^2 + x + 1$$

$$= x^3 + x + 1$$

Dalam representasi biner:

$$0110 +$$

1011 → sama dengan hasil operasi XOR

$$\therefore$$
 a + b = 1011 = a XOR b

(ii)
$$a \cdot b = (x^3 + x^2 + 1) \cdot (x^2 + x) = x^5 + 2x^4 + x^3 + x^2 + x \pmod{2}$$

= $x^5 + x^3 + x^2 + x$

Karena m = 4 hasilnya direduksi menjadi derajat < 4 oleh irreducible polynomial $x^4 + x + 1$

$$x^5 + x^3 + x^2 + x \pmod{f(x)} = (x^4 + x + 1)x + x^5 + x^3 + x^2 + x$$

= $2x^5 + x^3 + 2x^2 + 2x \pmod{2}$
= x^3

∴
$$a \cdot b = 1000$$

Kurva Eliptik

 Kurva eliptik adalah kurva dengan bentuk umum persamaan:

$$y^2 = x^3 + ax + b$$

dengan syarat $4a^3 + 27b^2 \neq 0$

• Tiap nilai a dan b berbeda memberikan kurva eliptik yang berbeda.

• Contoh: $y^2 = x^3 - 4x$

$$= x(x-2)(x+2)$$

Sumber gambar: Kevin Tirtawinata, Studi dan Analisis Elliptic Curve Cryptography

Sumber gambar: Kevin Tirtawinata, Studi dan Analisis Elliptic Curve Cryptography

Sumber gambar: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

- Kurva eliptik terdefinisi untuk $x,y \in R$
- Didefinisikan sebuah titik bernama titik O(x, ∞), yaitu titik pada *infinity*.
- Titik-titik P(x, y) pada kurva eliptik bersama operasi + membentuk sebuah grup.

Himpunan grup: semua titik P(x, y) pada kurva eliptik Operasi biner : +

 Penjelasan kenapa kurva eliptik membentuk sebuah grup dijelaskan pada slide-slide berikut ini.

Penjumlahan Titik pada Kurva Eliptik

(a)
$$P + Q = R$$

Penjelasan geometri:

- 1. Tarik garis melalui P dan Q
- Jika P ≠ Q, garis tersebut memotong kurva pada titik -R
- 3. Pencerminan titik -R terhadap sumbu-x adalah titik R
- Titik R adalah hasil penjumlahan titik P dan Q

Keterangan: Jika R = (x, y) maka -R adalah titik (x, -y)

(b) P + (-P) = O, di sini O adalah titik di *infinity*

P'= -P adalah elemen invers:

$$P + P' = P + (-P) = O$$

O adalah elemen netral:

$$P + O = O + P = P$$

Penjelasan Analitik

Persamaan garis g: $y = \lambda x + \beta$

Gradien garis g:
$$\lambda = \frac{y_p - y_q}{x_p - x_q}$$

Perpotongan garis g dengan kurva:

$$(\lambda x + \beta)^2 = x^3 + ax + b$$

Koordinat Titik R:

$$x_r = \lambda^2 - x_p - x_q$$

$$y_r = \lambda(x_p - x_r) - y_p$$

Contoh: Kurva eliptik $y^2 = x^3 + 2x + 4$

Misalkan P(2, 4) dan Q(0, 2) dua titik pada kurva

Penjumlahan titik: P + Q = R. Tentukan R!

Langkah-langkah menghitung koordinat R:

- Gradien garis g: $\lambda = (y_p y_q)/(x_p x_q) = (4 2)/(2 0) = 1$
- $x_r = \lambda^2 x_p x_q = 1^2 2 0 = -1$
- $y_r = \lambda(x_p x_r) y_p = 1(2 (-1)) 4 = -1$
- Jadi koordinat R(-1, -1)
- Periksa apakah R(-1, -1) sebuah titik pada kurva eliptik:

$$y^2 = x^3 + 2x + 4 \iff (-1)^2 = (-1)^3 + 2(-1) + 4$$

 $\Leftrightarrow 1 = -1 - 2 + 4$
 $\Leftrightarrow 1 = 1 \text{ (terbukti R(-1,-1) titik pada}$
 $\text{kurva } y^2 = x^3 + 2x + 4 \text{)}$

Contoh lain:

$$\lambda = (y_p - y_q)/(x_p - x_q)$$

=(-1.86-0.836)/(-2.35-(-0.1))
= -2.696 / -2.25 = 1.198

$$x_r = \lambda^2 - x_p - x_q$$

= $(1.198)^2 - (-2.35) - (-0.1)$
= 3.89

$$y_r = \lambda(x_p - x_r) - y_p$$

= 1.198(-2.35 - 3.89) - (-1.86)
= -5.62

Sumber gambar: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Penggandaan Titik

Penggandaan titik (point doubling): menjumlahkan sebuah

titik pada dirinya sendiri

 Penggandaan titik membentuk tangen pada titik P(x, y)

• P + P = 2P = R

 Jika ordinat titik P nol, yaitu y_p = nol, maka tangen pada titik tersebut berpotongan pada sebuah titik di infinity.

• Di sini, P + P = 2P = O

Sumber gambar: Anoop MS, Elliptic Curve Cryptography, an Implementation Guide

Penjelasan Analitik

Persamaan tangen g: $y = \lambda x + \beta$

Gradien garis g:
$$\lambda = \frac{dy}{dx} = \frac{3x_p^2 + a}{2y_p}$$

Perpotongan garis g dengan

kurva:
$$(\lambda x + \beta)^2 = x^3 + ax + b$$

Koordinat Titik R:

$$x_r = \lambda^2 - 2x_p$$

$$y_r = \lambda(x_p - x_r) - y_p$$

Jika $y_p = 0$ maka λ tidak terdefinisi sehingga 2P = 0

• Contoh:

$$P+P=2P$$

Sumber gambar: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Pelelaran Titik

 Pelelaran titik (point iteration): menjumlahkan sebuah titik sebanyak k – 1 kali terhadap dirinya sendiri.

•
$$P^k = kP = P + P + ... + P$$

• Jika $k = 2 \rightarrow P^2 = 2P = P + P$

Jelaslah Kurva Eliptik membentuk Grup <G, +>

- Himpunan G: semua titik P(x,y) pada kurva eliptik
- Operasi biner: +
- Semua aksioma terpenuhi sbb:
 - 1. Closure: semua operasi P + Q berada di dalam G
 - 2. Asosiatif: P + (Q + R) = (P + Q) + R
 - 3. Elemen netral adalah O: P + O = O + P = P
 - 4. Elemen invers adalah -P: P + (-P) = O
 - 5. Komutatif: P + Q = Q + P

Perkalian Titik

- Perkalian titik: kP = Q
 - Ket: k adalah skalar, P dan Q adalah titik pada kurva eliptik
- Perkalian titik diperoleh dengan perulangan dua operasi dasar kurva eliptik yang sudah dijelaskan:
 - 1. Penjumlahan titik (P + Q = R)
 - 2. Penggandaan titik (2P = R)
- Contoh: $k = 3 \rightarrow 3P = P + P + P$ atau 3P = 2P + P $k = 23 \rightarrow kP = 23P = 2(2(2(2P) + P) + P) + P$

Elliptic Curve Discrete Logarithm Problem (ECDLP)

- Menghitung kP = Q mudah, tetapi menghitung k dari P dan Q sulit. Inilah ECDLP yang menjadi dasar ECC.
- ECDLP dirumuskan sebagai berikut:
 Diberikan P dan Q adalah dua buah titik di kurva eliptik, carilah integer k sedemikian sehingga Q = k P
- Secara komputasi sulit menemukan k, jika k adalah bilangan yang besar. k adalah logaritma diskrit dari Q dengan basis P. *)
- Pada algoritma ECC, Q adalah kunci publik, k adalah kunci privat, dan P sembarang titik pada kurva eliptik.

Catatan: ingatlah $kP = P^k$, sehingga $Q = kP = P^k$, k adalah logaritma diskrit dari Q

Kurva Eliptik pada Galois Field

- Operasi kurva eliptik yang dibahas sebelum ini didefinisikan pada bilangan riil.
- Operasi pada bilangan riil tidak akurat karena mengandung pembulatan
- Pada sisi lain, kriptografi dioperasikan pada ranah bilangan integer.
- Agar kurva eliptik dapat dipakai di dalam kriptografi, maka kurva eliptik didefinisikan pada medan berhingga atau Galois Field, yaitu GF(p) dan GF(2^m).
- Yang dibahas dalam kuliah ini hanya kurva eliptik pada GF(p)

Kurva Eliptik pada GF(p)

Bentuk umum kurva eliptik pada GF(p) (atau F_p):

$$y^2 = x^3 + ax + b \mod p$$

yang dalam hal ini p adalah bilangan prima dan elemen-elemen medan galois adalah $\{0, 1, 2, ..., p - 1\}$

• Contoh: Tentukan semua titik P(x,y) pada kurva eliptik $y^2 = x^3 + x + 6 \mod 11 \deg x \deg x$ didefinisikan di dalam GF(11)

Jawab:

```
x = 0 \rightarrow y^2 = 6 \mod 11 \rightarrow \text{tidak ada nilai y yang memenuhi}

x = 1 \rightarrow y^2 = 8 \mod 11 \rightarrow \text{tidak ada nilai y yang memenuhi}

x = 2 \rightarrow y^2 = 16 \mod 11 \equiv 5 \pmod 11 \rightarrow y_1 = 4 \text{ dan } y_2 = 7 \rightarrow P(2,4) \text{ dan } P'(2,7)

x = 3 \rightarrow y^2 = 36 \mod 11 \equiv 3 \pmod 11 \rightarrow y_1 = 5 \text{ dan } y_2 = 6 \rightarrow P(3,5) \text{ dan } P'(3,6)
```

Jika diteruskan untuk x = 4, 5, ..., 10, diperoleh tabel sebagai berikut :

x	y ²	Y _{1,2}	P(x,y)	P'(x,y)
0	6	-		
1	8	-		
2–	→ 5–	4,7	(2;4)	(2,7)
3	3	5,6	(3,5)	(3,6)
4	8	-		
5	4	2,9	(5,2)	(5,9)
6	8	-		
7	4	2,9	(7,2)	(7,9)
8	9	3,8	(8,3)	(8,8)
9	7	-		
10	4	2,9	(10,2)	(10,9)

Jadi, titik-titik yang terdapat pada kurva eliptik adalah 12, yaitu: (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9), (7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9)

Jika ditambah dengan titik O di infinity, maka titik-titik pada kurva eliptik membentuk grup dengan n = 13 elemen.

Sumber: Andreas Steffen, Elliptic Curve Cryptography

Sebaran titik di dalam kurva eliptik $y^2 = x^3 + x + 6 \mod 11$ pada GF(11)

Penjumlahan Dua Titik di dalam EC pada GF(p)

Misalkan $P(x_p, y_p)$ dan $Q(x_q, y_q)$.

Penjumlahan: P + Q = R

Koordinat Titik R:

$$x_r = \lambda^2 - x_p - x_q \mod p$$

$$y_r = \lambda(x_p - x_r) - y_p \mod p$$

λ adalah gradien:

$$\lambda = \frac{y_p - y_q}{x_p - x_q} \mod p$$

Pengurangan Dua Titik di dalam EC pada GF(p)

Misalkan $P(x_p, y_p)$ dan $Q(x_q, y_q)$. Pengurangan: P - Q = P + (-Q), yang dalam hal ini $-Q(x_q, -y_q \pmod{p})$.

Penggandaan Titik di dalam EC pada GF(p)

Misalkan $P(x_p, y_p)$ yang dalam hal ini $y_p \neq 0$.

Penggandaan titik: 2P = R

Koordinat Titik R:

$$x_r = \lambda^2 - 2x_p \mod p$$

 $y_r = \lambda(x_p - x_r) - y_p \mod p$

Yang dalam hal ini,

$$\lambda = \frac{3x_p + a}{2y_p} \bmod p$$

Jika $y_p = 0$ maka λ tidak terdefinisi sehingga 2P = 0

 Contoh: Misalkan P(2, 4) dan Q(5, 9) adalah dua buah titik pada kurva eliptik y² = x³ + x + 6 mod 11. Tentukan P + Q dan 2P.

Jawab:

$$\lambda = (9-4)/(5-3) \mod 11 = 5/3 \mod 11 = 5 \cdot 3^{-1} \mod 11$$

= 5 \cdot 4 \mod 11 \equiv 9 \mod 11)

P + Q = R, koordinat Titik R:

$$x_r = \lambda^2 - x_p - x_q \mod 11 = 81 - 2 - 5 \mod 11 \equiv 8 \pmod 11$$

 $y_r = \lambda(x_p - x_r) - y_p \mod 11 = 9(2 - 8) - 4 \mod 11 = -58 \mod 11$
 $\equiv 8 \pmod 11$

Jadi, R(8, 8)

Menghitung 2P = R:

$$\lambda = (3(2)^2 + 1)/8) \mod 11 = 13/8 \mod 11$$

$$= 13 \cdot 8^{-1} \mod 11$$

$$= 13 \cdot 7 \mod 11$$

$$= 78 \mod 11 \equiv 3 \pmod 11$$

Koordinat R:

$$x_r = 3^2 - 2 \cdot 2 \mod 11 \equiv 5 \pmod 11$$

 $y_r = \lambda(x_p - x_r) - y_p \mod 11 = 3(2 - 5) - 4 \mod 11$
 $= -13 \mod 11 \equiv 9 \pmod 11$

Jadi, R(5, 9)

• Nilai kP untuk k = 2, 3, ... diperlihatkan pada tabel:

k	kp
1	(2,4)
2	(5,9)
3	(8,8)
4	(10,9)
5	(3,5)
6	(7,2)
7	(7,9)
8	(3,6)
9	(10,2)
10	(8,3)
11	(5,2)
12	(2,7)
13	0

Jika diketahui P, maka kita bisa menghitung Q = kP

Jika persoalannya dibalik sbb:
Diberikan P, maka tidak mungkin
menghitung k bila Q diketahui

U

ECDLP

Elliptic Curve Cryptography (ECC) *)

- ECC adalah sistem kriptografi kunci-publik, sejenis dengan RSA, Rabin, ElGamal, D-H, dll.
- Setiap pengguna memiliki kunci publik dan kunci privat
 - Kunci publik untuk enkripsi atau untuk verifikasi tanda tangan digital
 - Kunci privat untuk dekripsi atau untuk menghasilkan tanda tangan digital
- Kurva eliptik digunakan sebagai perluasan sistem kriptografi kunci-publik yang lain:
 - 1. Elliptic Curve ElGamal (ECEG)
 - 2. Elliptic Curve Digital Signature (ECDSA)
 - 3. Eliiptic Curve Diffie-Hellman (ECDH)

Penggunaan Kurva Eliptik di dalam Kriptografi

- Bagian inti dari sistem kriptografi kunci-publik yang melibatkan kurva eliptik adalah grup eliptik (himpunan titiktitik pada kurva eliptik dan sebuah operasi biner +).
- Operasi matematika yang mendasari:
 - Jika RSA mempunyai operasi perpangkatan sebagai operasi matematika yang mendasainya, maka
 - ECC memiliki operasi perkalian titik (penjumlahan berulang dua buah titik)

- Dua pihak yang berkomunikasi menyepakati parameter data sebagai berikut:
 - 1. Persamaan kurva eliptik $y^2 = x^3 + ax + b \mod p$
 - Nilai a dan b
 - Bilangan prima p
 - 2. Grup eliptik yang dihitung dari persamaan kurva eliptik
 - 3. Titik basis (base point) B (x_B, y_B) , dipilih dari grup eliptik untuk operasi kriptografi.
- Setiap pengguna membangkitkan pasangan kunci publik dan kunci privat
 - Kunci privat = integer x, dipilih dari selang [1, p-1]
 - Kunci publik = titik Q, adalah hasil kali antara x dan titik basis B:

$$Q = x \cdot B$$

*) Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Review: Algoritma Diffie-Hellman

Ingatlah kembali diagram pertukaran kunci Diffie-Hellman:

Elliptic Curve Diffie-Hellman (ECDH)

- Public: Kurva eliptik dan titik B(x,y) pada kurva
- Secret: Integer milik Alice, a, dan integer milik Bob, b

- Alice menghitung a. (b.B)
- Bob menghitung b·(a·B)
- Hasil perhitungan akan sama karena ab = ba

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Algoritma Elliptic Curve Diffie-Hellman

- Alice dan Bob ingin berbagi sebuah kunci rahasia.
 - Alice dan Bob menghitung kunci publik dan kunci privat masingmasing.
 - Alice
- » Kunci privat = a
- » Kunci publik = $P_{\Delta} = a \cdot B$
- Bob
- » Kunci privat = b
- » Kunci publik = $P_B = b \cdot B$
- Alice dan Bob saling mengirim kunci publik masing-masing.
- Keduanya melakukan perkalian kunci privatnya dengan kunci publik mitranya untuk mendapatkan kunci rahasia yang mereka bagi
 - Alice \rightarrow $K_{AB} = a(bB)$
 - Bob \rightarrow $K_{\Delta B} = b(aB)$
 - Kunci rahasia = K_{AB} = abB

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Contoh *): Misalkan kurva eliptik yang dipilih adalah $y^2 = x^3 + 2x + 1$ dan p = 5. Himpunan titik-titik pada kurva eliptik adalah $\{(0, 1), (1, 3), (3, 3), (3, 2), (1, 2), (0, 4)\}$. Alice dan Bob menyepakatai titik B(0, 1) sebagai basis.

1. Alice memilih a = 2, lalu menghitung kunci publiknya:

$$P_A = a \cdot B = 2B = B + B = (1, 3)$$
 \rightarrow misalkan titik Q

2. Bob memilih b = 3, lalu menghitung kunci publiknya:

$$P_B = b \cdot B = 3B = B + B + B = 2B + B = (3, 3) \rightarrow misalkan titik R$$

- 3. Alice mengirimkan P_A kepada Bob, Bob mengirimkan P_B kepada Alice.
- 4. Alice menghitung kunci rahasia sbb:

$$K_A = a \cdot P_B = 2R = R + R = (0, 4)$$

5. Bob menghitung kunci rahasia sbb:

$$K_B = b \cdot P_A = 2Q = Q + Q = (0, 4)$$

Jadi, sekarang Alice dan Bob sudah berbagi kunci rahasia yang sama, yaitu (0, 4)

*) Sumber bahan: Nana Juhana, Implementasi Elliptic Curve Cryptography
(ECC) pada proses Pertukaran Kunci Diffie-Hellman dan Skema Enkripsi El Gamal
Bahan Kuliah IF3058 Kriptografi
57

Elliptic Curve El Gamal

- Elliptic Curve El Gamal: sistem kriptografi kurva eliptik yang analog dengan El Gamal.
- Misalkan Alice ingin mengirim Bob pesan yan dienkripsi.
 - Baik Alice dan Bob menyepakati titik basis B.
 - Alice dan Bob membuat kunci privat/kunci publik.
 - Alice
 - Kunci privat = a
 - Kunci publik = P_{Δ} = a * B
 - Bob
 - Kunci privat = b
 - Kunci publik = $P_B = b * B$
 - Alice mengambil plainteks, M, lalu mengkodekannya menjadi sebuah titik, P_M, dari kurva eliptik

^{*)} Sumber bahan: Debdeep Mukhopadhyay, Elliptic Curve Cryptography,
Dept of Computer Sc and Engg IIT Madras

- Alice memilih bilangan acak lain, k, dari selang [1, p-1]
- Cipherteks adalah pasangan titik
 - $P_C = [(kB), (P_M + kP_B)]$
- Untuk mendekripsi, Bob mula-mula menghitung hasil kali titik pertama P_c dengan kunci privatnya, b
 - b · (kB)
- Bob kemudian mengurangkan titik kedua dari P_C dengan hasil kali di atas

•
$$(P_M + kP_B) - [b \cdot (kB)] = P_M + k \cdot (bB) - b \cdot (kB) = P_M$$

Bob kemudian men-decode P_M untuk memperoleh pesan M

Perbandingan El Gamal dengan Elliptic Curve El Gamal

- Cipherteks pada EC El Gamal adalah pasangan titik
 - $P_C = [(kB), (P_M + kP_B)]$
- Cipherteks pada El Gamal juga pasangan nilai:
 - $C = (g^k \mod p, \mod p)$ (ket: $y_b = kunci publik Bob)$

- Bob kemudian mengurangkan titik kedua dari P_C dengan hasil kali b · (kB)
 - $(P_M + kP_B) [b(kB)] = P_M + k(bB) b(kB) = P_M$
- Di dalam El Gamal, Bob menghitung bagi dari nilai kedua dengan nilai pertama yang dipangkatkan dengan kunci privat Bob
 - $m = my_B^k / (g^k)^b = mg^{k*b} / g^{k*b} = m$

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Keamanan ECC

 Untuk mengenkripsi kunci AES sepanjang 128-bit dengan algoritma kriptografi kunci publik:

Ukuran kunci RSA: 3072 bits

Ukuran kunci ECC: 256 bits

Bagaimana cara meningkatkan keamanan RSA?

NIST guidelines for public key sizes for AES						
ECC KEY SIZE (Bits)	RSA KEY SIZE (Bits)	KEY SIZE RATIO	AES KEY SIZE (Bits)			
163	1024	1:6				
256	3072	1:12	128			
384	7680	1:20	192			
512	15 360	1:30	256			

Tidak Praktis?

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Aplikasi ECC

- Banyak piranti yang berukuran kecil dan memiliki keterbatasan memori dan kemampuan pemrosesan.
- Di mana kita dapat menerapkan ECC?
 - Piranti komunikasi nirkabel
 - Smart cards
 - Web server yang membutuhkan penangangan banyak sesi enkripsi
 - Sembarang aplikasi yang membutuhkan keamanan tetapi memiliki kekurangan dalam power, storage and kemampuan komputasi adalah potensial memerlukan ECC

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Keuntungan ECC

- Keuntungan yang sama dengan sistem kriptografi lain: confidentiality, integrity, authentication and non-repudiation, tetapi...
- Panjang kuncinya lebih pendek
 - Mempercepat proses encryption, decryption, dan signature verification
 - Penghematan storage dan bandwidth

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras

Summary of ECC

- "Hard problem" analogous to discrete log
 - Q=kP, where Q, P belong to a prime curve

```
given k, P \rightarrow "easy" to compute Q given Q, P \rightarrow "hard" to find k
```

- known as the elliptic curve logarithm problem
 - k must be large enough
- ECC security relies on elliptic curve logarithm problem
 - compared to factoring, can use much smaller key sizes than with RSA etc
 - → for similar security ECC offers significant computational advantages

^{*)} Sumber bahan: **Debdeep Mukhopadhyay, Elliptic Curve Cryptography**, Dept of Computer Sc and Engg IIT Madras