Lezione del 1 aprile

Teorema 0.1. Sia $D \subseteq \mathbb{C}$ un aperto e ω una 1-forma su D.

I seguenti fatti sono equivalenti

- 1. ω è chiusa
- 2. $\int_{\partial R} \omega = 0$ per ogni rettangolo $R \subset D$
- 3. $\int_{\gamma} \omega = 0$ per ogni laccio γ omotopo al laccio costante

Dimostrazione. $1 \Rightarrow 2$ Se $\gamma \sim c$ a estremi fissi dove c è il cammino costante allora $\int_{\gamma} \omega = \int_{c} \omega = 0$.

 $3 \Rightarrow 2$. ∂R è un cammino omotopicamente banale.

 $2 \Rightarrow 1$ Visto nella lezione precedente

Ricordiamo che ogni cammino chiuso $\gamma: [0,1] \to D$ definisce un loop $\hat{\gamma}: S^1 \to D$

Definizione 0.1 (Liberamente omotopo).

Siano α, γ loop.

 γ si dice liberamente omotopo a α se

$$\exists H:\, [0,1]\times [0,1] \rightarrow [0,1] \rightarrow D$$

continua con

$$H(t,0) = \gamma(t)$$

$$H(t,1) = \alpha(t)$$

$$H(0,s) = H(1,s) \, \forall s$$

Osservazione 1. Due cammini sono liberamente omotopi se esiste un omotopia tra loro H tale che

$$H(\bullet,s):[0,1]\to D$$

è un cammino chiuso per ognis.

Tale condizione è una condizione più debbole dell'omotopia ad estremi fissi in quanto H(0, s) = H(1, s) non sono costanti in s

Proposizione 0.2.

 α liberamente omotopo a γ \Leftrightarrow $\hat{\alpha} \sim \hat{\gamma}$ \Leftrightarrow $\exists \beta$ cammino $\gamma \sim \beta \star \alpha \star \overline{\beta}$ ad estremi fissi

Esempio 0.3. in $\mathbb{C}\setminus\{\}$ 0 i cammini $\gamma(t)=e^{2\pi it}$ e $\alpha(t)=5e^{2\pi it}$ sono liberamente omotopi

Fatto 0.4. Se ω è una 1-forma chiusa su D e α, γ sono cammini chiusi liberamente omotopi allora

$$\int_{\gamma} \omega = \int_{\alpha} \omega$$

infatti $\gamma \sim \beta \star \alpha \star \overline{\beta}$ ad estremi fissi dunque

$$\int_{\gamma} \omega = \int_{\beta \star \alpha \star \overline{\beta}} \omega = \int_{\beta} \omega + \int_{\alpha} \omega = \int_{\overline{\beta}} \omega = \int_{\alpha} \omega$$

1

1 Forme chiuse di classe C^1

Definizione 1.1. Sia $D \subseteq \mathbb{C}$ aperto e $\omega = P \, \mathrm{d}x + Q \, \mathrm{d}y$ 1-forma su D. ω si dice C^1 se $P,Q:D\to\mathbb{C}$ sono funzioni di classe C^1 . In questo caso poniamo formalmente

$$d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$$

(la definizione è formale in quanto non diamo significato a dx dy è un simbolo formale)

Andiamo ora a definire l'integrazione su un rettangolo. Sia $R \subset \mathbb{C}$ un rettangolo e $f: R \to \mathbb{C}$ continua, allora ha senso $\int_R f(x,y) dx dy$. Se $(a_1, b_1), (a_2, b_1), (a_2, b_2), (a_1, b_2)$ sono i vertici del rettangolo allora

$$\int_{R} f(x,y) \, dx \, dy = \int_{[a_{1},a_{2}] \times [b_{1},b_{2}]} f(x,y) \, dx \, dy = \int_{a_{1}}^{a_{2}} \left(\int_{b_{1}}^{b_{2}} f(x,y) \, dy \right) \, dx = \int_{b_{1}}^{b_{2}} \left(\int_{a_{1}}^{a_{2}} f(x,y) \, dx \right) \, dy$$

Teorema 1.1 (Formula di Green, Green-Rieman, Stokes). Sia ω una 1-forma C^1 du D e $R\subseteq D$ un rettangolo allora

$$\int_{\partial R} \omega = \int_{R} dw$$

Dimostrazione. Con le notazioni appena introdotte

$$\int_{R} dw = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{R} \frac{\partial Q}{\partial x} dx dy - \int_{R} \frac{\partial P}{\partial y} dx dy =$$

$$= \int_{b_{1}}^{b_{2}} \left(\int_{a_{1}}^{a_{2}} \frac{\partial Q}{\partial x} dx \right) dy - \int_{a_{1}}^{a_{2}} \left(\int_{b_{1}}^{b_{2}} \frac{\partial P}{\partial y} dy \right) dx =$$

$$\int_{b_{1}}^{b_{2}} \left(Q(a_{2}, y) - Q(a_{1}, y) \right) dy - \int_{a_{1}}^{a_{2}} \left(P(x, b_{2}) - P(x, b_{1}) \right) dx =$$

$$\int_{b_{1}}^{b_{2}} Q(a_{2}, y) dy - int_{b_{1}}^{b_{2}} Q(a_{1}, y) dy - int_{a_{1}}^{a_{2}} P(x, b_{2}) dx + int_{a_{1}}^{a_{2}} P(x, b_{1}) dx = \int_{\partial R} \omega$$

Teorema 1.2. Sia ω una 1-forma C^1 su D

$$\omega \ chiusa \Leftrightarrow d\omega = 0$$

 $Dimostrazione. \Rightarrow$ Essendo la forma chiusa, $\forall p \in D$ esiste $U \subseteq D$ aperto con $p \in U$ e con

$$\omega = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy \text{ su } U$$

Essendo ω di classe C^1 , F è di classe C^2 ora

$$d\omega = \left(\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y}\right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x}\right)\right) dx dy$$

ora per un noto teorema

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$$

da cui $\,\mathrm{d}\omega=0$

 \Leftarrow Sia $R\subset D$ un rettangolo. Allora per il teorema precedente

$$\int_{\partial R} \omega = \int_R \, \mathrm{d}\omega = 0$$

dunque per un teorema precedente ω è chiusa

Teorema 1.3. Sia $f: D \to \mathbb{C}$ olomorfa. f(z) dz è una 1-forma chiusa su D

Dimostrazione. Supponiamo f(z) dz non sia chiusa, allora esiste un rettangolo $R \subseteq D$ tale che $\int_{\partial R} \omega \neq 0$.

D'ora in avanti se \overline{R} è un rettangolo denoteremo $\alpha(\overline{R}) = \int_{\partial \overline{R}} \omega$.

Dividiamo il rettangolo R in 4 rettangoli congruenti (dividiamo a metà entrambi i lati) ottenendo così i rettangoli A_1, \ldots, A_4 , osserviamo

$$\alpha(R) = \alpha(A_1) + \dots + \alpha(A_4)$$

in quanto nel membro a destra, i contributi dei segmenti interni si elidono.

Essendo $\alpha(R) \neq 0$ esiste un A_i tale che

$$|\alpha(A_i)| \ge \frac{|\alpha(R)|}{4}$$

Pongo R_1 uguale ad A_i , iterando la costruzione applicandola ad R_1 ottengo un nuovo rettangolo $R_2 \subset R_1$ tale che $|\alpha(R_2)| \geq \frac{|\alpha(R_1)|}{2} \geq \frac{|\alpha(R_1)|}{4}$.

Iterando tale costruzione ottengo una successione di rettangoli inscatolati

$$R_1 \supset R_2 \supset \cdots \supset R_n \supset \cdots$$

con

$$|\alpha(R_i)| > \frac{|\alpha(R)|}{\Delta^i}$$

Sia $z_0 \in \bigcap_{n \in \mathbb{N}} R_n \neq \emptyset$ (essendo intersezione di compatti chiusi non vuoti). Poichè f olomorfa

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \varepsilon(z)|z - z_0|$$

dove

$$\lim_{z \to z_0} |\varepsilon(z)| \to 0$$

dunque

$$\alpha(R_n) = \int_{\partial R_n} (f(z_0) + f'(z_0)(z - z_0) + \varepsilon(z) |z - z_0|) dz =$$

$$\int_{\partial R_n} f(z_0) dz + \int_{\partial R_n} f'(z_0)(z - z_0) dz + \int_{\partial R_n} \varepsilon(r) |z - z_0| dz = \int_{\partial R_n} \varepsilon(r) |z - z_0| dz$$

infatti dz e $(z-z_0)$ dz sono esatte ammettendo come primitiva z e $\frac{(z-z_0)^2}{2}$.

Se n è sufficientemente grande, $R_n \subseteq B(z_0, \delta)$ con δ piccolo a piacere.

Inoltre possiamo scegliere n in modo che

$$|\varepsilon(z)| \le \frac{|\alpha(R)|}{4(a+b)^2} \quad \forall z \in R_n$$

dove a, b sono le lunghezze dei lati di R. Tale scelta è possibile in quanto $diam(R_n) \leq \frac{a+b}{2^n}$ e $\varepsilon(z) \to 0$ per $z \to z_0$.

Per tale n se $z \in \partial R_n$ si ha $|z - z_0| \le \frac{a+b}{2^n} = diam(R_n)$ per cui

$$|\alpha(R_n)| = \left| \int_{\partial R_n} \varepsilon(z) |z - z_0| \, \mathrm{d}z \right| \le$$

$$\le \int_0^{2\frac{a+b}{2^n}} |\varepsilon(\gamma(t))| \cdot |\gamma(t) - z_0| \, \mathrm{d}t \le \frac{2(a+b)}{2^n} \cdot \frac{|\alpha(R)|}{4(a+b)^2} \cdot \frac{a+b}{2^n} = \frac{1}{2} \cdot \frac{|\alpha(R)|}{4^n}$$

il che contraddice $|\alpha(R_n)| > \frac{|\alpha(R)|}{4^n}$

 γ è un cammino che parametrizza il bordo di R_n

Corollario 1.4. Sia $f: D \to \mathbb{C}$ olomorfa allora $\forall p \in D$ esiste $U \subseteq D$ aperto con $p \in U$ e $F: U \to C$ olomorfa con $F' = f_{|U}$

Dimostrazione. f(z) dz è chiusa, dunque esiste U come nell'enunciato e $F:U\to\mathbb{C}$ con dF=f(z) dz su U.

Abbiamo F olomorfa e F' = f su U

Corollario 1.5. Sia $f:D\to\mathbb{C}$ olomorfa, allora $\int_{\gamma}f(z)\,\mathrm{d}z=0$ per ogni laccio γ omotopicamente banale

Proposizione 1.6. Sia $f: D \to \mathbb{C}$ con $D \subseteq \mathbb{C}$ aperto.

Se f è continua su D e olomorfa su $D \setminus r$ dove r retta orizzontale, allora f(z) dz è chiusa

Dimostrazione. Sia $R\subseteq D$ un rettangolo, dimostriamo che $\int_{\partial R}f(z)\,\mathrm{d}z=0.$ Andiamo a distinguere alcuni casi

- \bullet Se $r\cap R=\emptyset$ allora folomorfa su tutto Rdunque ricadiamo nel teorema precedente
- Se un lato orizzontale di R giace su r allora costruisco una successione di rettangoli R_n come in figura in modo che R_n "tenda" a R.

Allora usando che f è continua si vede

$$\int_{\partial R} f(z) dz = \lim_{n \to +\infty} f(z) dz = 0$$

in quanto $\int_{\partial R_n} f(z) dz = 0$ per ogni n (r non initerseca la retta e ricadiamo nel caso precedente).

Se R ha vertici (a_1, b_1) , (a_2, b_1) , (a_2, b_2) , (a_1, b_2) e $R \cap r$ ha ordinata b_1 con $b_1 < b_2$ allora i vertici di R_n sono $\left(a_1, b_1 + \frac{1}{n}\right)$, $\left(a_2, b_1 + \frac{1}{n}\right)$, $\left(a_2, b_2\right)$, $\left(a_1, b_2\right)$

• Se r interseca R ma r non contiene lati di R, allora r divide il rettangolo in 2 rettangoli R_1 e R_2 .

Ora un lato di R_1 giace su r, così come per R_2 concludiamo osservando che

$$\int_{\partial R} f(z) dz = \int_{\partial R_1} f(z) dz + \int_{\partial R_2} f(z) dx = 0 + 0 = 0$$