

LOJİK DEVRELERİ 2. YILİÇİ SINAVI CEVAPLARI

CEVAP 1:

a)

SR Flip-flop: Q(t+1)=S+Q(t)R', SR=0

D Flip-flop: Q(t+1) = D

Buna göre D tipi flip-flopun girişine S + Q(t)R' ifadesi uygulanacaktır.

b) Ana-uydu (master-slave) tipi flip-floplarda, saat işareti 'l'de olduğu sürece girişe gelen değerler, çıkışı belirlemek üzere değerlendirilir. Belirlenen değer saat işaretinin inen kenarında kayıt edilir ve çıkışa yansıtılır.

Kenar tetiklemeli flip-floplarda girişler sadece saat işaretinin etkin kenarında değerlendirilir ve çıkışa yansıtılır.

Yukarıdaki diyagramda saat işareti 1'deyken S=1 R=0 oluyor. Ana-uydu flip-flop bu girişi değerlendiriyor ve içeriğini 1 yapmaya hazırlanıyor. Daha sonra yine saat işareti 1'deyken S=0 R=0 oluyor. Bu giriş içerik değişmeyecek (yani ana-uydu ff 1'de kalacak) demektir. Saat işaretinin inen kenarında ise hazırlanan değer (yani 1) ana uydu flip-flopun çıkışına yansıyor. Karşılaştırmaya aldığımız negatif kenar tetiklemeli flip-flop ise sadece inen kenardaki girişleri değerlendiriyor. Burada S=0,R=0 olduğuna göre filp-flopun iceriği değismiyor ve 0'da kalıyor.

CEVAP 2:

a) D tipi ff'larda $Q^+=D$ olduğuna göre Q_0^+ ve Q_1^+ belirlemek için D_0 ve D_1 belirlenmeli.

Devreden $D_0 = A \cdot B$ ve çıkışın $Z = A \cdot B \cdot Q_1' + Q_0'$ olduğu görülüyer.

Veri seçici ise devrenin her durumu için veri girişlerinden birini çıkışına aktaracaktır. Buna göre:

$Q_1 Q_0$	D_1	$Q_1^+Q_0^+,Z_0^-$			Α	R	
00	A·B		$Q_1 Q_0$	00	01	10	11
01 10 11	(A⋅B)' A+B		00	00,1	00,1	00,1	11,1
10	B'		01	10,0	10,0	10,0	01,1
'''	D		10	00,1	10,1	10,1	11,1
			11	10,0	00,0	10,0	01,0

Tabloyu oluşturmak için veri seçicinin ifadesini yazmaya gerek yoktur. Yandaki tablo Karnaugh diyagramı değildir.

S',Z				
_			Α	В
	S	00	01	

_	A D				
S	00	01	10	11	
D1	D1,1	D1,1	D1,1	D4,1	
D2	D3,0	D3,0	D3,0	D2,1	
D3	D1,1	D3,1	D3,1	D4,1	
D4	D3,0	D1,0	D3,0	D2,0	

c) Yukarıda bulunan tablo Karnaugh diyagramı haline getirilip Q₁⁺ için yeniden yazılır:

 $D_1 = B' \cdot Q_0 + A' \cdot Q_1' \cdot Q_0 + A \cdot B \cdot Q_0' + B \cdot Q_1 \cdot Q_0' + A \cdot Q_1 \cdot Q_0'$

Sadece D₁ girişine gelen devre değişecektir. Yukarıdaki ifadeye göre devre çizilir.

SORU 3:

Zamanlama diyagramından da görüldüğü gibi girişlerin çıkış üzerindeki etkisi saat işaretinden sonra gerçekleşmektedir. Bu nedenle devre Moore modeline göre tasarlanacaktır.

(Girişler XY şeklinde gösterilmiştir.)

S ⁺	XY						
`	S	00	01	11	10	Z	
	Α	Α	Α	В	В	0	
	В	Α	Α	С	С	0	
	C	Α	Α	D	D	0	
	D	D	Α	Α	D	1	

Q 1/0	* U		XY			
	$Q_1 Q_0$	00	01	11	10	Ζ
	00	00	00	01	01	0
	01	00	00	11	11	0
	11	00	00	10	10	0
	10	10	00	00	10	4

Т₁∖		XY					
	$Q_1 Q_0$	00	01	11	10		
	00	0	0	0	0		
	01	0	0	1	1		
	11	1	1	0	0		
	10	0	1	_1>	0		

T_0	XY				
	$Q_1 Q_0$	00	01	11	10
	00	0	0	A	\forall
	01	1	1	0	0
	11	[1_	1)	1	_1
	10	0	0	0	0

$$T_1 = X \cdot Q_1' \cdot Q_0 + X' \cdot Q_1 \cdot Q_0 + Y \cdot Q_1 \cdot Q_0'$$

$$\mathsf{T}_0 = \mathsf{X} \cdot \mathsf{Q}_1' \cdot \mathsf{Q}_0' + \mathsf{X}' \cdot \mathsf{Q}_0 + \cdot \mathsf{Q}_1 \cdot \mathsf{Q}_0$$

 $Z = Q_1 \cdot Q_0'$

Yukarıdaki ifadelere göre devre çizilir.