

Medulloblastoma

CKG Notebook Analysis

Re-analysis of Proteomics Data Including covariates

- Preprocessing
- Stratification looking at covariates: Age, Gender, Metastatic status and histology
- Differential regulation including covariates
- Functional enrichment

Pre-processing

- Remove WNT samples (low number of samples)
- Filter proteins with more than 80% missing values in all groups
- Normalize data using median-centered normalization
- Impute missing values using a mixed model: K-Nearest Neighbors algorithm (KNN) if at least 60% valid values, otherwise Minimum Probability (MinProb) drawing random values from a down-shifted Gaussian distribution

Sample Stratification

PCA looking at groups: GR3, GR4, SHH

PCA Medulloblastoma groups

- The PCA shows a clear separation of the samples according to the type of Medulloblastoma
- Some of the proteins driving the separation are: OTX2, MT3, CNR1, SFRP1, PDE5A, PDLIM3, POU3F2, POU3F3
- There seem to be other subgroups among the known groups

Sample Stratification

PCA looking at Age, Metastatic status, Histology

• The PCA seems to also separate the samples according to these covariates

Sample Stratification

Stratification based on ssGSEA (GO biological processes)

Functional PCA Medulloblastoma groups

- Processes such as methylation seem to drive the separation of GR3 samples
- Proteins involved in rRNA processing characterize SHH samples
- Proteins annotated to microtubule-based process and G-protein coupled receptor signaling pathway cluster the GR4 samples

Differential Regulation

ANCOVA analysis including covariates: Age, Gender, Metastatic status, Histology

Functional Enrichment

GO biological Processes enrichment of up- and down-regulated proteins in each pairwise comparison

Enrichment GR3 vs GR4

GO biological Processes enrichment of up- and down-regulated proteins in each pairwise comparison

Enrichment GR3 vs SHH

Functional Enrichment

GO biological Processes enrichment of up- and down-regulated proteins in each pairwise comparison

Enrichment GR4 vs SHH

Identification of SubgroupsSimilarity Network Fusion

- Integration of all omics data generated using Similarity Network Fusion (SNF):
 - * SNF build sample similarity networks using each omics data (RNAseq, Proteomics, PhosphoSTY, PhosphoY, Acetylomics) and fuses those networks into a single network that uses to identify clusters
 - We use these clusters to identify subgroups of patients

Subgroups

SNF clusters: PCA on proteomics data

Drivers for the SNF Clusters

These are the most informative features to distinguish the identified clusters

- RNAseq: MPP3, B3KNK0, MAPK10, OTX2-AS1, HIP1R, GRAMD1B, PYY, MAK, OTX2, TTBK1, NRIP2, PCYT1B, BOC
- Proteomics: RREB1~Q92766, ZNF609~O15014, MAPK10~P53779, TTBK1~Q5TCY1, PLXNC1~O60486, RALGPS2~Q86X27, OTX2~F1T0C9, THRA~P10827, GRAMD1B~Q3KR37, MAPK10~A0A286YF97, Q59G28, A0A140VKC1, OSBP2~Q969R2, NGFR~P08138, OTX1~P32242, CLTC~A0A087WVQ6
- Phospho: PPM1H_S496-p, OSBP2_S284-p, AFF3_S903-p, SLC4A8_S246-p, Q6ZSD7_S1367-p, FAM171A2_T791-p, RREB1_S1219-p, TSHZ3_S837-p, RREB1_S1194-p, PCYT1B_T337-p
- Acetylomics: LDHA_K228-ac, DPF2_K207-ac, SMAD2_K46-ac

Proteomics dataset contains the most informative features (Mutual Information score)