EE315 - Electronics Laboratory

Experiment - 3 Simulation **BJT Transistor and DC Biasing**

Preliminary Work

- 1. For the circuit given in Figure 1
- a) Calculate the value of R_{adj} that makes V_{CE} equal to 5 V.
- **b)** Calculate V_{RB} (voltage drop accross R_B).
- c) Explain the reason for choosingV_{CE} equal to 5 V.
- 2. For the circuit given in Figure 2, determine I_B , I_C , V_B , V_E , and V_{CE} .

- **3.** For the circuit given in Figure **3**, derive an expression for $v_0 = v_c$ as a function of v_{drv} . Specify the v_{drv} levels where the transistor turns off completely $(i_C = 0)$ and it goes into saturation $(i_C < \beta i_B)$.
- **4.** For the circuit given in Figure **4**, find the values of R_C and R_B , so that I_{Csat} = **2** mA and ν_o changes between **10** V and **0** V while ν_{drv} is a **1** kHz square wave signal switching between **0** V and **10** V.

Draw v_{drv} and v_{o} as a function of time.

Figure 1. Emitter-stabilized bias circuit

Figure 2. Voltage divider biasing circuit

Figure 3. Switching circuit

Figure 4. Switching circuit

Procedure

1. Build the circuit given in Figure 1.

Place an NPN transistor on the schematic and select **BC547B** as the transistor model (right-click on the transistor figure and click on "Pick New Transistor"). You will use the same transistor model for all parts of the experiment. Place a normal resistor as \mathbf{R}_{adj} change its value until you obtain $\mathbf{V}_{CE} = \mathbf{5} \ \mathbf{V}$ with less

Place a normal resistor as \mathbf{R}_{adj} change its value until you obtain $\mathbf{V}_{CE} = \mathbf{5} \mathbf{V}$ with less than 1% error.

1.a) Measure V_{BE} and the voltages across R_B , and R_C while V_{CE} is still at **5 V**. Also measure I_B , I_C , and $\pmb{\beta}$.

V _{BE} =	V _{RB} =	$V_{RC} =$
I _R =	Ic=	B =

1.b) Change every one of the resistance values R_B , R_C , R_E , and transistor parameters β , and $V_{BE(on)}$ by 1% and record the new I_C values in the following table. Change only one of the resistor values or parameters at a time and keep the others at their original settings for each I_C measurement.

changed component	new value of I_{C} (mA)	percent change in I _C
R _B		
R _C		
RE		
β		
V _{BE(on)}		

- **1.c)** Which value(s) among R_B , R_C , R_E , β , and $V_{BE(on)}$ has/have the most significant effect on I_C ?
- **2.a)** Build the circuit in Figure **2**. Measure the values of I_B , I_C , V_B , V_{BE} , and V_{CE} .

$$I_B =$$

$$I_C =$$

$$V_B =$$

$$V_{BE} =$$

$$V_{RC} =$$

2.b) In practice, all component values are specified with a tolerance range. Tolerance range determines the minimum and maximum of the actual values that will be obtained if several of these components are tested. For example, a **100 k\Omega** resistor with **5** % tolerance may have an actual value between **95 k\Omega** and **105 k\Omega**. Similarly, the minimum and maximum values of β are given in transistor datasheets.

If thousands of this circuit are to be manufactured, then you had to make sure that \mathbf{V}_{CE} will be reasonable within the tolerance range of all components. Indicate in the table below, which end ("min" or "max") of the tolerance range should be used for each parameter in calculation of the lowest and highest values of \mathbf{V}_{CE} .

component or parameter	For lowest V _{CE}	For highest V _{CE}
R ₁		
R ₂		
R _C		
R _E		
β		
V _{BE(on)}		

- **3.a)** Build the circuit given in Figure **3**. Use a pulse waveform as v_{drv} that changes from **0 V** to **10 V** in **1 ms** (i.e. PULSE(0 10 0 1m 1u 1m 3m)).
- **3.b)** Measure the range of v_{dry} values in which the transistor acts as a switch.

$$v_{\text{drv-Low-Max}} = \text{ (where } v_{\text{O}} > 90\% \text{ of } V_{\text{CC}})$$

$$v_{\text{drv-High-Min}} =$$
 (where $v_{\text{O}} < 10\% \text{ of } V_{\text{CC}}$)

4.a) Setup the circuit in Figure **4** using the R_B and R_C values previously calculated in the preliminary work. Set ν_{drv} source timing parameters to obtain a **10 kHz** pulse signal with **50** % duty cycle (i.e. PULSE(0 10 0 1u 1u 49u 100u)). Keep the ν_{drv} source **Trise** and **Tfall** settings at **1 µs** all the time. Set simulation time long enough to observe the steady state ν_O waveform. Change the peak voltage of ν_{drv} as in the following table and record the peak-to-peak ν_O voltage.

Freq. (kHz)	ν _{drv} (Vpeak)	ν ₀ (Vp-p)
	2	
10	4	
	6	
	8	
	10	
	2	
	4	
	6	
	8	
	10	

- **4.b)** Set ν_{drv} peak voltage to **10 V** and increase ν_{drv} frequency (reduce **Ton** and **Tperiod**) until the peak-to-peak ν_{O} voltage decreases down to **5 V** roughly. Make sure that duty cycle of the ν_{drv} remains as **50%** while the **Trise** and **Tfall** settings are **1 µs** all the time. Measure ν_{O} for the other ν_{drv} peak voltage settings and record the results in the table above. Plot ν_{O} amplitude (**Vp-p**) versus ν_{drv} (**Vpeak**) for the two freuency settings.
- **4.c)** Comment on the difference in the output signals resulting from the changes in $v_{
 m drv}$ peak voltage and frequency.