Supplemental Material – Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time

Krissia Zawadzki,^{1,2} Roberto M. Serra,³ and Irene D'Amico^{4,1,5}

¹Departamento de Física e Ciência Interdisciplinar,
Instituto de Física de São Carlos, University of São Paulo,
Caixa Postal 369, 13560-970 São Carlos, SP, Brazil

²Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

³Centro de Ciências Naturais e Humanas, Universidade Federal do ABC,
Avenida dos Estados 5001, 09210-580, SantoAndré, São Paulo, Brazil

⁴Department of Physics, University of York, YOrk, YO105DD, United Kingdom

⁵International Institute of Physics, Federal University of Rio Grande do Norte, Natal, Brazil

Evolution of work probability distribution

In our letter, we presented 3-dimensional plots for the evolution of the work probability distributions P(W) with respect to the driving time τ , for chains of sizes L=4 and L=8 within zero and strong-coupling regimes, U=0J and U=10J respectively.

Here, we provide animations showing P(W) evolving with τ , $\tau J = 0.2, ..., 1.0, 1.5, 2.0, ..., 10.0$, for fixed value of U (U/J = 0.0, 1.0, 2.0, ..., 10.0) and for all the considered chain lengths, $2 \le L \le 8$. The animations clearly show how the distribution is strongly τ -dependent below the pM-QPT (weak many-body correlations), to become basically τ -independent above the pM-QPT (strong many-body correlations). These animations are available in the Figs named work_distribution_beta=0.4_L=NSITES_U=COULOMB.gif, with NSITES=2,4,6,8 and COULOMB varying according to the range U/J above.

Moments of the quantum work probability distribution

As discussed in our letter, the statistics of the quantum work distribution P(W) can be characterized by its momenta. Of particular importance are: its average $\langle W \rangle$; standard deviation $\langle W - \bar{W} \rangle^2$; and skewness, or third central momentum $\langle W - \bar{W} \rangle^3$. Here we present the heatmaps of these quantities – and in addition of the curtosis, or fourth central momentum $\langle W - \bar{W} \rangle^4$ – with respect to U and τ , and for all considered system sizes L=2, 4, 6, 8, see Figs. 1–4. To facilitate the comparison, we include here also the skewness for L=4 and L=8, already presented in the main text.

The heatmaps of the work produced by applying the external electric field is shown in panel (a) of Figs. 1–4, for $0 \le U \le 10J$ and $0.2/J \le \tau \le 10$. The freezing of the system due to the pM-QPT results in a dramatic reduction in the extractable work for all values of L.

For L = 4, 6, 8 the first four momenta of P(W) display a qualitative behaviour which is size-independent, with the white lines in the heatmaps for the skewness k = 3 representing the points at which this quantity is zero. Also, for the same L, standard deviation and curtosis have qualitatively similar behaviours.

However, for L=2, the skewness remains negative for all coupling regimes U and driving times τ , while the curtosis displays a behaviour qualitatively different from the standard deviation for weak interactions and intermediate to long driving times.

Entropy production

The entropy production corresponding to the average quantum work produced for L=4 and L=8 is plotted in Fig. 5, left and right panel, respectively. For low-correlations the entropy is strongly sensitive to the dynamical regime, and decreases as the system becomes more adiabatic. Note that, for a finite quantum system, adiabaticity does not imply equilibration, so the entropy is expected to remain finite for increasing τ . At high correlations, the entropy remains relatively low independently of τ .

The overall entropy behavior implies that, for the same type of driving potential and same driving time, tailoring many-body interactions may be used to approach – or not – equilibrium.

Figure 1: Heatmaps of the average work and the following three central momenta $\langle W - \bar{W} \rangle^k$ k = 2, 3, 4 for L = 2.

Figure 2: Heatmaps of the average work and the following three central momenta $\langle W - \bar{W} \rangle^k$ k = 2, 3, 4 for L = 4.

Figure 3: Heatmaps of the average work and the following three central momenta $\langle W - \bar{W} \rangle^k$ k = 2, 3, 4 for L = 6.

Figure 4: Heatmaps of the average work and the following three central momenta $\langle W - \bar{W} \rangle^k$ k = 2, 3, 4 for L = 8.

Figure 5: Heatmaps of the entropy production, for L=4 (left) and L=8 (right).