The Aldous–Hoover representation theorem and applications to modeling relational data

James Lloyd

University of Cambridge

January 2013

Collaborators

Daniel M. Roy (Cambridge) Peter Orbanz (Columbia) Zoubin Ghahramani (Cambridge)

James Lloyd 1/11

RELATIONAL DATA: DEFINITION

Anything measured at more than one type of 'object'

In full generality, anything that can be stored in a relational database

James Lloyd 2/

HOW CAN WE MODEL SUCH DATA?

- ▶ Interested in generative modeling of such data for e.g.,
 - Discovery of latent structure e.g., groups of proteins with similar functions in protein-protein interactomes
 - Prediction of missing data e.g., movie recommendation, friend suggestions
- Relational data typically encoded in arrays. How do reasonable assumptions about the data translate to the array representation
- ▶ We make a weak assumption and demonstrate the implied structure for arrays
 - ► Implied structure allows for classification of many models
 - Also inspires a simple Bayesian nonparametric model with good empirical performance

James Lloyd 3/1

EXCHANGEABILITY FOR RELATIONAL DATA

James Lloyd 4/11

EXCHANGEABILITY FOR CORRESPONDING ARRAYS

James Lloyd 5/11

EXCHANGEABILITY CAN BE CHARACTERISED

Definition

An array $X = (X_{ij})_{i,j \in \mathbb{N}}$ is called an *exchangeable array* if

$$(X_{ij}) \stackrel{\mathrm{d}}{=} (X_{\pi(i)\pi(j)})$$
 for every $\pi \in \mathbb{S}_{\infty}$.

Theorem (Aldous, Hoover)

A random 2-array (X_{ij}) is exchangeable if and only if there is a random (measurable) function $F:[0,1]^3 \to \mathcal{X}$ such that

$$(X_{ij})\stackrel{\scriptscriptstyle d}{=} (F(U_i,U_j,U_{ij})).$$

for every collection $(U_i)_{i\in\mathbb{N}}$ and $(U_{ij})_{i\leq j\in\mathbb{N}}$ of i.i.d. Uniform[0, 1] random variables, where $U_{ii}=U_{ii}$ for $j< i\in\mathbb{N}$.

James Lloyd 6/1

AN ARBITRARILY GOOD APPROXIMATION

This representation can be simplified

Call an array (X_{ij}) , *simple* if it admits a representation

$$(X_{ij}) \stackrel{d}{=} (\Theta(U_i, U_j))$$

Let $\mathcal{L}(Y)$ be the law (distribution) of a random variable Y and define $\chi_m X := (X_{ij}; i, j \leq m)$.

Theorem (Kallenberg)

Let X be a d-dimensional exchangeable array in a Borel space \mathcal{X} . Then there exist some simple exchangeable arrays X_1, X_2, \ldots such that $\mathcal{L}(\chi_m X_n)$ and $\mathcal{L}(\chi_m X)$ are mutually absolutely continuous for all $m, n \in \mathbb{N}$ and the associated Radon–Nikodym derivatives converge uniformly to 1 as $n \to \infty$ for fixed m.

James Lloyd 7/1

THIS INSPIRES A BAYESIAN NONPARAMETRIC MODEL

We decompose the function F into two functions $\Theta:[0,1]^2\to\mathcal{W}$ and $H:[0,1]\times\mathcal{W}\to\mathcal{X}$ for a suitable space \mathcal{W} , such that

$$(X_{ij}) \stackrel{d}{=} (F(U_i, U_j, U_{ij})) = (H(U_{ij}, \Theta(U_i, U_j)))$$
.

Inspiring the following generative model

$$\Theta \sim \mathcal{GP}(0,\kappa)$$
 $U_1, U_2, \ldots \sim_{\text{iid}} \text{Uniform}[0,1]$
 $X_{ij} | W_{ij} \sim P[.|W_{ij}]$
where $W_{ij} = \Theta(U_i, U_j)$.

James Lloyd 8/11

THE MODEL IN PICTURES

$$\Theta:[0,1]^2 \longrightarrow [0,1]$$
 measurable and symmetric $U_1,U_2,\ldots \sim_{\mathrm{iid}} \mathrm{Uniform}[0,1]$
$$\Pr\{\mathrm{edge}\ i,j\} = \Theta(U_i,U_j)$$

MANY MODELS FIT THIS PATTERN

Graph data

Random function model	Θ	\sim	$\mathcal{GP}\left(0,\kappa ight)$
Latent class	W_{ij}	=	$\Lambda_{U_iU_i}$ where $U_i \in \{1, \dots, K\}$
IRM	W_{ij}	=	$\Lambda_{U_iU_i}$ where $U_i \in \{1, \ldots, \infty\}$
Latent distance	W_{ij}	=	$- \mathring{U_i}-U_j $
Eigenmodel	-,		$U_i'\Lambda U_j$
LFRM			$U_i'\Lambda U_j$ where $U_i\in\{0,1\}^\infty$
ILA	W_{ij}	=	$\sum_d \mathbb{I}_{U_{id}} \mathbb{I}_{U_{jd}} \Lambda_{U_{id}U_{jd}}^{(d)}$ where $U_i \in \{0,\dots,\infty\}^\infty$
SMGB	Θ	\sim	$\mathcal{GP}\left(0,\kappa_{1}\otimes\kappa_{2} ight)$

Real-valued array data

Random function model	Θ	~	$\mathcal{GP}\left(0,\kappa ight)$
Mondrian process based	Θ	=	piece-wise constant random function
PMF	W_{ij}	=	$U_i'V_j$
GPI VM	Θ	\sim	$GP(0,\kappa\otimes\delta)$

James Lloyd 10/11

A CORRESPONDENCE RESULT

Proposition

A matrix factorization model defined as

$$W_{ij} = U_i' \Lambda V_j \qquad \Lambda_{ij} \sim_{iid} \mathcal{N}(0,1)$$

is equivalent to

$$W_{ij} = \Theta\left(U_i, V_j\right) \qquad \Theta \sim \mathcal{GP}\left(0, L_U \otimes L_V\right)$$

where $L_U(U_{i_1}, U_{i_2}) = U'_{i_1}U_{i_2}$ and similarly for L_V .

James Lloyd

A SIMPLER OVERVIEW OF MODEL SPACE

	W_{ij}	κ	$U_i, V_j \sim .$
Random function model	$\phi(U_i,V_j)'\Lambda$	$\kappa_{U imes V}$	Gaussian
SMGB, InfTucker	$\phi(U_i)'\Lambda\phi(V_j)$	$\kappa_U \otimes \kappa_V$	Laplace
GPLVM	$\phi(U_i)'\Lambda$	$\kappa_U \otimes \delta_V$	Gaussian
Eigenmodel	$U_i'\Lambda V_j$	$L_U \otimes L_V$	Gaussian
Linear relational GP	$U_i'\Lambda V_j$	$L_U \otimes L_V$	Gaussian
PCA, PMF	$U_i'\Lambda$	$L_U \otimes \delta_V$	Gaussian
Latent distance	$- U_i-U_j $	0	Gaussian
Mondrian process based	Decision tree	*	Uniform
Latent class	$\Lambda_{U_iU_i}$	$\delta_{U imes U}$	Multinomial
IRM	$\Lambda_{U_iV_i}$	$\delta_{U imes V}$	CRP
IHRM	$\Lambda_{U_iV_i}$	$\delta_{U imes V}$	CRP
BMF	$U_i'\Lambda V_j$	$L_U \otimes L_V$	IBP
LFRM	$U_i'\Lambda U_j$	$L_U \otimes L_U$	IBP
ILA	$\sum\nolimits_{d}\mathbb{I}_{U_{id}}\mathbb{I}_{U_{jd}}\Lambda_{U_{id}U_{jd}}^{(d)}$	*	CRP + IBP

James Lloyd 12/1

POSTERIOR

A protein interactome

Adjacency matrix sorted by MAP embedding

MAP Θ

James Lloyd 13/1

ONGOING RESEARCH / IDEAS

- ▶ Modeling multiple arrays e.g., joint modelling of social network and 'like' data
 - ► Corollaries of Aldous–Hoover suggest representations for such data
 - Many unanswered questions about generating good models
- ► Trying new priors on functions
 - Many priors on functions for sequential data that could have utility for relational data
 - ▶ e.g., Analogous versions of *k*-means, mixture of Gaussians?
- ► Trying new priors on latent variables
 - ► CRP + IBP prior in ILA could be more broadly applicable

James Lloyd 14/11

EXTENSIONS: ARRAY WITH 'FEATURE' DATA

Corollary

Let $(X_{ij})_{i,j\in\mathbb{N}}$ and $(C_i)_{i\in\mathbb{N}}$ be random variables in \mathcal{X} and \mathcal{X}' respectively. Then the following are equivalent:

- i. $(X_{ij}, C_i) \stackrel{d}{=} (X_{\pi(i)\pi(j)}, C_{\pi(i)})$ for every $\pi \in \mathbb{S}_{\infty}$.
- ii. There are random (measurable) functions $F:[0,1]^3 \to \mathcal{X}$ and $G:[0,1] \to \mathcal{X}'$ such that

$$(X_{ij}, C_i) \stackrel{d}{=} (F(U_i, U_j, U_{ij}), G(U_i)), \tag{1}$$

for every collection $(U_i)_{i\in\mathbb{N}}$ and $(U_{ij})_{i\leq j\in\mathbb{N}}$ of i.i.d. Uniform[0, 1] random variables, where $U_{ji}=U_{ij}$ for $j< i\in\mathbb{N}$.

James Lloyd 15/1

EXTENSIONS: MULTIPLE ARRAYS

Consider rating data (X_{ij}) with users i and movies j, with side information in the form of covariates for both users, C_i , and movies, D_j , and a social network (S_{ik}) over users i, k.

Corollary

The following are equivalent

i.
$$(X_{ij}, C_i, D_j, S_{ik}) \stackrel{d}{=} (X_{\pi(i)\pi'(j)}, C_{\pi(i)}, D_{\pi'(j)}, S_{\pi(i)\pi(k)})$$
 for every $\pi, \pi' \in \mathbb{S}_{\infty}$.

ii. There exist random functions F, G, H, I such that

$$(X_{ij}, C_i, D_j, S_{ik}) \stackrel{d}{=} (F(U_i, V_j, W_{ij}), G(U_i), H(V_j), I(U_i, U_k, U_{ik}))$$
 (2)

for every collection $(U_i)_{i \in \mathbb{N}}$, $(V_j)_{j \in \mathbb{N}}$, $(W_{ij})_{i,j \in \mathbb{N}}$ and $(U_{ik})_{i \leq k \in \mathbb{N}}$ of i.i.d. Uniform [0,1] random variables, where $U_{ki} = U_{ik}$ for $k < i \in \mathbb{N}$.

James Lloyd 16/11

MULTIPLE ARRAYS: PRELIMINARY NUMERICAL RESULTS

Data

- ightharpoonup A friend of friends network collected from last.FM (S_{ik})
- ▶ A user × genre matrix: $X_{ij} = 1$ iff user *i* has listened to genre *j*

Cold start task

- \blacktriangleright Want to predict entire rows of X_{ii} i.e., recommendations for new users
- Consider jointly modelling the array

Preliminary numerical results promising

Insert a table and some comparisons

James Lloyd 17/11

MULTIPLE ARRAYS: MANY OPEN QUESTIONS

- Which designs of model will effectively model multiple arrays without having to 'balance' or compromise?
 - ► Flat clustering models seem especially inappropriate e.g., IRM
 - ▶ Multiple clustering models seem well suited
 - ► How does this transfer to GP case in particular, prior on length scales
- Is generative modelling appropriate, or can we find more efficient models of conditional densities?
 - What are appropriate representations for conditional densities?

James Lloyd 18/11

POTENTIAL FUTURE RESEARCH - 1-ARRAY -> 2-ARRAY

e.g., Mixture of basis functions (motivate via Mondrian) Relational *k*-means Must be something interesting

James Lloyd 19/11

APPENDIX: RFM NUMERICAL RESULTS

Table

James Lloyd 20/11

APPENDIX: RFM POSTERIOR

Pictures

James Lloyd 21/11

APPENDIX: RFM INFERENCE

Words and maths

James Lloyd 22/11