

Data Science in Production

Richa Khandelwal

Sr. Software Engineering Manager @ Nike

https://www.richakhandelwal.com/
@ri_cha_k

#oscon

Data Science Solution Lifecycle

Architecture

What is the Problem Then? Why Are We Here?

Because Things Data Scientists Say

Say What?

- My model is ready for production. It is writing results on awesomescientist1/exp-1021/ adssgd/result_1096
- Git? What's that?
- What's JIRA?
- What tests?
- I recorded it in a spreadsheet that is saved on my machine
- But this works on my machine/cluster
- Why can't I have all the data? What's GDPR?

Because Code Looks Like This

get_rec_data	_
ints_cluster	_
ints_cluster_2	
ints_cluster_3	
ints_cluster_test	
ints_cluster4	_
ints_cluster4_old	
ints_cluster5	
ints_cluster6	
ints_cluster6 -test	
ints_cluster6_old	_
ints_cluster7	
ints_purch6mos_cluster	
ints_purch6mos_cluster_nikeapp	
ints_snapshot_cluster	

https://www.finecooking.com/recipe/spaghetti-alla-carbonara

Because Tools Are Different

Because Science Workflow is Different

- Data Science work is research oriented
- Majority of code is thrown away
- Small changes may not show full impact
- Unit tests can't capture problems that appear only with full dataset
- Data plays major role and is equally, sometime more, important than code
- Slower feedback loop

Because This is Not Sustainable

Hidden Debt is Dangerous Because it Compounds Silently.

Hidden Technical Debt in Machine Learning Systems Paper

We Can Come Back From This

http://coolspotters.com/characters/hermione-granger/and/accessories/vine-wood-and-dragon-heartstring-core-wand/media/1222722#medium-1222722

ML is a Small Component - Improve Holistically

The Basics: Adopt Production Grade Code Practices

- Reusability
- Unit Tests
- Logging
- Code Optimizations
- Version Control and PR Process
- Readability

Move Away From This Workflow

Embed Engineers Early On

- Early optimizations
- Avoid rewrites
- Enforcement of approved tools
- Frequent iterations
- Avoid data pipeline maze
- Early contract definition

Contract First Development

Build Definition of Done For a Data Science Solution

- Data pipelines for input
- Acceptable output formats
- Repeatable pipelines for retraining
- Scalability
- Cluster optimizations
- Configurations are trackable through code

Go Beyond the Basics

https://wallpapersite.com/movies/hermione-granger-emma-watson-harry-potter-hd-4k-8936.html

Build Tools For Model Lifecycle

- Track Hyperparameters during multiple iterations
- Track input locations that can help reproduce a model
- Retraining schedule
- Track offline accuracy and model metadata for traceability.
- Single place to discover models developed for different domains
- Packaging to allow running on multiple platforms

At Nike

ML Flow - Open Source

Open source tool for tracking, packaging and deploying a model

Tracking

Record and query experiments: code, data, config, results

Projects

Packaging format for reproducible runs on any platform

Models

General format for sending models to diverse deploy tools

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html

Alerting and Monitoring

- Prediction biases
- Upstream data dependencies
- Large prediction variances
- Automated mitigations
- Retraining variances
- Ask scientists for model verification scripts

Examples

Summary

Blur the lines between engineering and science to create sustainable data science systems. Reward reduction of overhead just as much as increase in accuracy of a model. Collaborate, Collaborate and then Collaborate more.

Questions?

http://www.mugglenet.com/2017/01/extreme-harry-potter-fan/hand-raise-2/

Thank You!

- Talk to your data scientists and understand their pain points.
- Talk to your engineers and understand their pain points.
- Collaborate closely to build a model together from inception to production
- Read the Hidden Technical Debt in Machine Learning Systems Paper
- Automate one thing that shouldn't live on somebody's laptop
- Join Nike Personalization Hiring Data Scientists and Engineers!

