DISCRETE MORSE THEORY AND APPLICATIONS

Sushovan "Sush" MAJHI

Topology and Geometry Seminar Tulane University, 2018

1/32

MYSELF

I am a fifth year PhD student at Tulane University.

2/32

Myself

I am a fifth year PhD student at Tulane University.

My Collaborators:

Carola Wenk, Computer Science, Tulane University Rafal Komendarczyk, Mathematics, Tulane University Brittany Terese Fasy, Computer Science, Montana State University Yusu Wang, Computer Science, Ohio State University

MOTIVATION

A reasonably "good" smooth function reveals the Combinatorial Description of a smooth manifold.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a <u>critical point</u> of f if Df = 0.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a <u>critical point</u> of f if Df = 0.

A critical point p is non-degenerate if Hess(f) is non-singular.

The number of -ve eigen values if called the index of p.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a <u>critical point</u> of f if Df = 0.

A critical point p is non-degenerate if Hess(f) is non-singular.

The number of -ve eigen values if called the index of p.

FIGURE: critical points with index

MORSE FUNCTION

A smooth function $f:M^n\to\mathbb{R}$ is called a Morse function if all its critical points are non-degenerate.

MORSE FUNCTION

A smooth function $f:M^n\to\mathbb{R}$ is called a Morse function if all its critical points are non-degenerate.

p has index 0. w has index +2. Others have index +1.

$$f^{-1}[a,\infty]$$

FIGURE: Sub-level Set

FIGURE: Sub-level Set

FIGURE: Sub-level Set

FIGURE: Sub-level Set

FIGURE: Morse Complex

MORSE THEOREM

If f is Morse on M, then M is homotopy equivalent to a CW-complex having a d-cell for each critical point of f of index d.

MORSE THEOREM

If f is Morse on M, then M is homotopy equivalent to a CW-complex having a d-cell for each critical point of f of index d.

MORSE INEQUALITY

critical *d*-index critical points $\geq H_d(M)$.

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

STABLE MANIFOLD

The stable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to \infty} \Phi_t(x) = p\}$$

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

STABLE MANIFOLD

The stable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to \infty} \Phi_t(x) = p\}$$

UNSTABLE MANIFOLD

The unstable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to -\infty} \Phi_t(x) = p\}$$

OBSERVATIONS

For a Morse function f on a compact manifold M,

• critical points are the equilibrium points of ∇f .

OBSERVATIONS

For a Morse function f on a compact manifold M,

- lacktriangledown critical points are the equilibrium points of ∇f .
- f (strictly) decreases along the flow-lines.

OBSERVATIONS

For a Morse function f on a compact manifold M,

- critical points are the equilibrium points of ∇f .
- 2) f (strictly) decreases along the flow-lines.
- o no limit cycles.

APPLICATION

PROBLEM STATEMENT

Given a (noisy) sample S taken around a (hidden) embedded graph G, how one can "reconstruct" the topology and geometry of G from S.

FIGURE: Sample around an embedded graph

MAP RECONSTRUCTION FROM GPS TRACES

FIGURE: GPS traces of Berlin (mapreconstruction.org)

MAP RECONSTRUCTION FROM GPS TRACES

FIGURE: GPS traces of Berlin (mapreconstruction.org)

FIGURE: A reconstruction

Noise Models

Hausdorff noise

Noise Models

- Hausdorff noise
- Non-Hausdorff noise

Noise Models

- Hausdorff noise
- 2 Non-Hausdorff noise

WHAT TO RECONSTRUCT?

Topology (homotopy type)

Noise Models

- Hausdorff noise
- Non-Hausdorff noise

WHAT TO RECONSTRUCT?

- Topology (homotopy type)
- @ Geometry (Hausdorff-close)

Noise Models

- Hausdorff noise
- Non-Hausdorff noise

WHAT TO RECONSTRUCT?

- Topology (homotopy type)
- ② Geometry (Hausdorff-close)

GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain \tilde{D} and a sample S around G.

• Compute density f of S over \tilde{D} .

GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain \tilde{D} and a sample S around G.

- Compute density f of S over \tilde{D} .
 - Histogram Computation

GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain \tilde{D} and a sample S around G.

- **1** Compute density f of S over \tilde{D} .
 - Histogram Computation
 - Kernel Density Estimate

$$K(x, y; \tau) := \exp\left(\frac{-\|x - y\|^2}{2\tau^2}\right)$$
$$f(x) = \frac{1}{2\pi n\tau^2} \sum_{X_j \in S} K(x, X_j; \tau)$$

GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain \tilde{D} and a sample S around G.

- **1** Compute density f of S over \tilde{D} .
 - Histogram Computation
 - Kernel Density Estimate

$$K(x, y; \tau) := \exp\left(\frac{-\|x - y\|^2}{2\tau^2}\right)$$
$$f(x) = \frac{1}{2\pi n\tau^2} \sum_{X_j \in S} K(x, X_j; \tau)$$

② for an appropriate threshold t, $f^{-1}[t,\infty)$ is considered.

GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain \tilde{D} and a sample S around G.

- **1** Compute density f of S over \tilde{D} .
 - Histogram Computation
 - Kernel Density Estimate

$$K(x, y; \tau) := \exp\left(\frac{-\|x - y\|^2}{2\tau^2}\right)$$
$$f(x) = \frac{1}{2\pi n\tau^2} \sum_{X_j \in S} K(x, X_j; \tau)$$

- ② for an appropriate threshold t, $f^{-1}[t,\infty)$ is considered.
- 1 heuristic pruning methods are applied this super-level set to approximate G.

RELATED WORK

RECENT WORKS

 Choosing thresholds systematically using Persistent Homology. Ahmed, Fasy et al. (AFGW15)

RECENT WORKS

- Choosing thresholds systematically using Persistent Homology. Ahmed, Fasy et al. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. Dey, Wang et al.(DWW18)

RECENT WORKS

- Choosing thresholds systematically using Persistent Homology. Ahmed, Fasy et al. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. Dey, Wang et al.(DWW18)

LIMITATIONS

1 Thresholds are chosen heuristically.

RECENT WORKS

- Choosing thresholds systematically using Persistent Homology. Ahmed, Fasy et al. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. Dey, Wang et al.(DWW18)

LIMITATIONS

- Thresholds are chosen heuristically.
- Theoretical guarantees on the topological/geometric correctness is not proved.

RECENT WORKS

- Choosing thresholds systematically using Persistent Homology. Ahmed, Fasy et al. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. Dey, Wang et al.(DWW18)

LIMITATIONS

- Thresholds are chosen heuristically.
- Theoretical guarantees on the topological/geometric correctness is not proved.
- The output is often a thick region around the hidden graph.

BACK TO MORSE

FIGURE: KDE

If the samples are concentrated around a graph, then the mountain ridges on the graph of the density function are expected to capture it.

DISCRETE MORSE FUNCTION

Let K be a simplicial complex. A function $f:K\to\mathbb{R}$ is a discrete Morse function if for every $\alpha^{(p)}\in K$

DISCRETE MORSE FUNCTION

Let K be a simplicial complex. A function $f:K\to\mathbb{R}$ is a discrete Morse function if for every $\alpha^{(p)}\in K$

CRITICAL SIMPLEX

A simplex $\alpha^{(\rho)}$ is critical if

CRITICAL SIMPLEX

A simplex $\alpha^{(\rho)}$ is critical if

DISCRETE MORSE THEOREM

K is a simplicial complex with a discrete Morse function. Then K is homotopy equivalent to a CW-complex with exactly one cell of dimension p for each critical simplex of dimension p.

DISCRETE MORSE THEOREM

K is a simplicial complex with a discrete Morse function. Then K is homotopy equivalent to a CW-complex with exactly one cell of dimension p for each critical simplex of dimension p.

FIGURE: Simplicial Collapse

FIGURE: Simplicial Complex K and discrete vector

DISCRETE VECTOR FIELD

 (σ, τ) is a discrete vector in K if $\tau < \sigma$.

TULANE UNIVERSITY '18

FIGURE: Simplicial Complex K and discrete vector

DISCRETE VECTOR FIELD

 (σ,τ) is a discrete vector in K if $\tau<\sigma$. A discrete vector field is a collection of discrete vectors such that every simplex of K is head/tail of at most one vector.

24/32

BACKGROUND: DISCRETE MORSE THEORY

FIGURE: V-path

V-PATH

$$\sigma_0, \tau_0, \sigma_1, \tau_1, \ldots, \sigma_{l+1}$$

where (σ_i, τ_i) is a vector and $\tau_i < \sigma_{i+1}$.

BACKGROUND: MORSE CANCELLATION

FIGURE: Morse Cancellation

BACKGROUND: MORSE CANCELLATION

FIGURE: Morse Cancellation

STABLE MANIFOLD

For a critical edge *e*, its stable manifold is the set of all V-paths ending at the boundary of *e*.

ASSUMPTION ON THE DENSITY FUNCTION

$$(\omega, \beta_1, \beta_2, \nu)$$
-Approximation of G

$$f(x) \in \begin{cases} [\beta_1, \beta_1 + \nu], & x \in V^{\omega} \\ [\beta_2, \beta_2 + \nu], & x \in E^{\omega} \\ [0, \nu], & \text{otherwise} \end{cases}$$

OUR ALGORITHM

Input: The discretized domain K, the density function f, the threshold δ Output: The reconstructed graph \hat{G}

- Initialize V as the trivial vector field on K and $\hat{G} = \emptyset$.
- ② Run persistence on the super-level set filtration of f to get the persistence pairs P(K).
- **3** For each $(\sigma, \tau) \in P(K)$ with $Pers(\sigma, \tau) < \delta$ Try to perform a Morse cancellation for the pair and update V.
- For each $(v, e) \in P(K)$ and $(e, t) \in P(K)$ with $Pers(v) \ge \delta$, $\hat{G} = \hat{G} \cup \{ \text{ stable manifold of } e \}$.
- output Ĝ

OUR RESULT

THEOREM

If G is a connected, embedded planar graph in a cubical complex K and f is an $(\omega, \beta_1, \beta_2, \nu)$ -approximation then the output \hat{G} has the same homotopy type as G. Moreover, $d_H(G, \hat{G}) < \omega$.

FUTURE WORK

• How to circumvent the heavy persistence computation.

FUTURE WORK

- How to circumvent the heavy persistence computation.
- What condition on the density function gives up a small Fréchet distance between the edges of the output and the edges of the graph.

FUTURE WORK

- How to circumvent the heavy persistence computation.
- What condition on the density function gives up a small Fréchet distance between the edges of the output and the edges of the graph.
- Extend the result to higher dimensions.

Thanks

31/32

REFERENCES I

Mahmuda Ahmed, Brittany Terese Fasy, Matt Gibson, and Carola Wenk, Choosing thresholds for density-based map construction algorithms, Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (New York, NY, USA), SIGSPATIAL '15, ACM, 2015, pp. 24:1–24:10.

Tamal K. Dey, Jiayuan Wang, and Yusu Wang, *Graph reconstruction by discrete Morse theory*, 34th International Symposium on Computational Geometry, 2018, pp. 31:1–31:15.