Hugo Marquerie 24/02/2025

Condiciones necesarias y suficientes para ser base de alguna topología

Proposición 1. Sea $X \neq \emptyset$ y $\mathcal{B} \subset \mathcal{P}(X)$, entonces

 $\exists \mathcal{T} \text{ topolog\'ia de } X : \mathcal{B} \text{ es una base de } \mathcal{T} \iff \mathcal{B} \text{ satisface las siguientes propiedades:}$

- (a) $\forall x \in X : \exists B_x \in \mathcal{B} : x \in B_x$.
- (b) $\forall B_1, B_2 \in \mathcal{B} : \forall x \in B_1 \cap B_2 : \exists B_x \in \mathcal{B} : x \in B_x \subset B_1 \cap B_2.$

Demostración: Comprobemos ambas direcciones de la doble implicación.

- \implies Suponemos que \mathcal{B} es una base de una topología \mathcal{T} de X.
 - 1. Como \mathcal{T} es una topología, $X \in \mathcal{T}$ y como \mathcal{B} es base de \mathcal{T} , $\exists \{B_i\}_{i \in I} \subset \mathcal{B}$ tales que $X = \bigcup_{i \in I} B_i$. Sea $x \in X$ arbitrario, entonces $x \in X = \bigcup_{i \in I} B_i$ $\implies \exists i_0 \in I : x \in B_{i_0} \in \mathcal{B} \implies \forall x \in X : \exists B_x = B_{i_0} \in \mathcal{B} : x \in B_x \subset X$.
 - 2. Sea $B_1, B_2 \in \mathcal{B}$ y $x \in B_1 \cap B_2$ arbitrarios $\mathcal{B} \subset \Longrightarrow B_1, B_2 \in \mathcal{T}$. $\Longrightarrow x \in B_1 \cap B_2 = \bigcup_{\alpha \in I} B_\alpha \implies \exists \beta \in I : x \in B_\beta \in \mathcal{B} \subset \mathcal{T}.$

Entonces $\forall B_1, B_2 \in \mathcal{B} : \forall x \in B_1 \cap B_2 : \exists B_x = B_\beta \in \mathcal{B} : x \in B_x \subset B_1 \cap B_2.$

- El Suponemos que \mathcal{B} satisface las propiedades (a) y (b) y queremos ver que \mathcal{B} es base de una topología \mathcal{T} de X.
 - 1. Identificamos \mathcal{T} como el conjunto de todas las uniones de elementos de \mathcal{B} .

 $\Longrightarrow \mathcal{T} = \{G \subset X : \forall x \in G : \exists B \in \mathcal{B} : x \in B \subset G\} \text{ (la unicidad para más tarde)}.$

- 2. Comprobamos que \mathcal{T} es una topología de X.
- i) $\varnothing \in \mathcal{T} \wedge X \in \mathcal{T}$ porque $\forall x \in X : \exists B_x \in \mathcal{B} : x \in B_x \subset X$.
- ii) Sean $G_1, G_2 \in \mathcal{T}$, veamos que $G = G_1 \cap G_2 \in \mathcal{T}$.

$$\forall x \in G : x \in G_1 \land x \in G_2 \implies \exists B_1, B_2 \in \mathcal{B} : x \in B_1 \subset G_1 \land x \in B_2 \subset G_2$$
$$\implies x \in B_1 \cap B_2 \subset G_1 \cap G_2 = G$$

Ahora por la propiedad (b) $\exists B_x \in \mathcal{B} : x \in B_x \subset B_1 \cap B_2 \subset G \implies G = G_1 \cap G_2 \in \mathcal{T}.$

- iii) Sean $\{G_{\alpha}\}_{\alpha\in I}\subset \mathcal{T}$, queremos ver que $G=\bigcup_{\alpha\in I}G_{\alpha}\in \mathcal{T}$. Sea $x\in G$ arbitrario $\Longrightarrow \exists \beta\in I: x\in G_{\beta}\in \mathcal{T}$. Ahora por la definición de $\mathcal{T}\colon \exists B_x\in \mathcal{B}: x\in B_x\subset G_{\beta}\subset \bigcup_{\alpha\in I}G_{\alpha}=G\in \mathcal{T}$.
 - 3. Comprobamos que \mathcal{B} es base de \mathcal{T} , que es inmediato por la definición de \mathcal{T} y la caracterización de una base para una topología dada.

$$\implies \mathcal{T} = \{\text{uniones de elementos de } \mathcal{B}\} \implies \mathcal{T} \text{ es única.}$$

Si \mathcal{B} también es una base para otra topología \mathcal{T}' , entonces $\mathcal{T} = \mathcal{T}'$ de forma inmediata.

Referenciado en

• Topologia-producto