

Programming Day - Week 06

Introduction

Welcome to your favorite day of the week which is programming day. This week, we shall work together to learn and implement new programming concepts.

Let's do some coding.

Skill: Problem solving using Conditional Statements

Task 01(CP):

Write a C++ program to print the appropriate activity depending on the variable temperature and humidity value. The table below assumes that the temperature can only be warm and cold, and the humidity can only be dry and humid.

If temperature is	If humidity is	Print this activity
warm	dry	Play tennis
warm	humid	swim
cold	dry	Play basketball
cold	humid	Watch tv

Task 02(CP):

Jack is a teacher who needs a program that helps him to compile 8th class results. He has five subjects (English, Maths, Chemistry, Social Science, and Biology) marked in detail. Program asks the user to enter five subjects' marks, including student name and displays the total marks, percentage, grade (by percentage), and student name. Every subject has a total of 100 marks. Grading policy details are mentioned below

Percentage	Grade
90-100 percentage	A+
80-90 percentage	A
70-80 percentage	B+
60-70 percentage	В
50-60 percentage	С

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

40-50 percentage	D
Below 40 percentage	F

Task 03(CP):

Write a Program to display an Astrological sign or a Zodiac sign for a given date of birth. Zodiac Signs according to the dates and months are given below.

Zodiac Sign	Dates of Birth	Symbol
Aries	Match 21 - April 19	The Ram
Taurus	April 20 - May 20	The Bull
Gemini	May 21 - June 20	The Twins
Cancer	June 21 - July 22	The Crab
Leo	July 23 - August 22	The Lion
Virgo	August 23 - September 22	The Virgin
Libra	September 23 - October 22	The Scales
Scorpio	October 23 - November 21 The Scorpion	
Sagittarius	November 22 - December 21	The Archer
Capricorn	December 22 - January 19 The Goat	
Aquarius	January 20 - February 18 The Water Beard	
Pisces	February 19 - Match 20 The Fishes	

The program takes the date and month of birth as input and then displays the astrological sign or Zodiac sign according to that input.

Test Cases:

Input	Output	Explanation
Day = 10 Month = December		People born on this data have zodiac Sagittarius.
Day = 7 Month = September	Virgo	

Task 04(CP):

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

Write a program that calculates and prints the bill for a cellular telephone company. The company offers two types of service: regular and premium. Its rates vary, depending on the type of service. The rates are computed as follows:

Regular service: \$10.00 plus the first 50 minutes are free. Charges for over 50 minutes are \$0.20 per minute.

Premium service: \$25.00 plus:

- For calls made during the day., the first 75 minutes are free; charges for more than 75 minutes are \$0.10 per minute.
- For calls made during the night, the first 100 minutes are free; charges for more than 100 minutes are \$0.05 per minute.

Your program should prompt the user to enter a **service code** (type char), and **the number of minutes** the service was used.

A service code of r or R means regular service; a service code of p or P means premium service. **Treat any other character as an error**. Your program should output the type of service, the number of minutes the telephone service was used, and the amount due from the user.

For the premium service, the customer may be using the service during the day and the night(d or D for day and n or N for the night). Therefore, to calculate the bill, you must ask the user to input the number of minutes the service was used during the day and the number of minutes the service was used during the night.

Test case

Enter which type of customer you are(Residental or Premium) select (r/p) : p (Press 'D' for day time or Press 'N' for night time) call : N
Enter number of mins you used the service : 57
The charges are : 25\$

Programming Day - Week 06

Task 05(CP):

A fruit shop during weekdays sells at the following prices:

Fruit	Price
banana	2.50
apple	1.20
orange	0.85
grapefruit	1.45
kiwi	2.70
pineapple	5.50
grapes	3.85

During the weekend days the prices are higher:

Fruit	Price
banana	2.70
apple	1.25
orange	0.90
grapefruit	1.60
kiwi	3.00
pineapple	5.60
grapes	4.20

Write a program that reads from the console a fruit (banana/apple / ...), a day of the week (Monday / Tuesday / ...) and a quantity (a decimal number) and calculates the price according to the prices from the tables above. Print "error" if it is an invalid day of the week or an invalid name of a fruit.

Test Cases:

Input	Output
orange Sunday 3	2.70
kiwi Monday 2.5	6.75

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

grapes	2.10
Saturday	
0.5	

Task 06(CP):

A hotel offers two types of rooms: studio and apartment. Prices are in dollars (\$). Write a program that calculates the price of the whole stay for a studio and apartment. Prices depend on the month of the stay:

May and October	June and September	July and August
Studio- 50\$ / per night	Studio - 75.20\$ / per night	Studio 76\$ / per night
Apartment - 65\$ / per night	Apartment - 68.70\$ /per night	Apartment - 77\$ / per night

The following discounts are also offered:

- For a studio, in case of more than 7 stays in May and October: 5% discount.
- For a studio, in case of more than 14 stays in May and October: 30% discount.
- For a studio, in case of more than 14 stays in June and September: 20% discount.
- For an apartment, in case of more than 14 stays, no limitation regarding the month: 10% discount.

Input Data

The input data is read from the console and contains exactly two lines:

- The first line contains the month May, June, July, August, September or October.
- The second line is the number of stays integer within the range [0 ... 200].

Output Data

Print the following two lines on the console:

- On the first line: "Apartment: { price for the whole stay }\$."
- On the second line: "Studio: { price for the whole stay }\$."

Test Cases:

Input	Output	Comments
May		In May, in the case of more than 14 stays,
15	Studio: 525.00\$.	the discount for the studio is 30% (50 - 15 =
		35 , and for the apartment is $10%$ (65 - 6.5 =
		68.5).
		The whole stay in the apartment: 877.50 lv
		The whole stay in the studio: 525.00 lv

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

Apartment: 961.80\$. Studio: 1052.80\$.	
Apartment: 1386.00\$. Studio: 1520.00\$.	

Task 07(CP):

A student has to attend an exam at a particular time (for example, at 9:30 am). They arrive in the exam room at a particular time of arrival (for example 9:40 am). It is considered that the student has arrived on time if they have arrived at the time when the exam starts or up to half an hour earlier. If the student has arrived more than 30 minutes earlier, the student has come too early. If they have arrived after the time when the exam starts, they are late.

Write a program that inputs the exam starting time and the time of the student's arrival, and prints if the student has arrived on time, if they have arrived early or if they are late, as well as how many hours or minutes the student is early or late.

Input Data

Read the following four integers (one on each line) from the console:

- The first line contains exam starting time (hours) an integer from 0 to 23.
- The second line contains the exam starting time (minutes) an integer from 0 to 59
- The third line contains an hour of arrival an integer from 0 to 23.
- The fourth line contains minutes of arrival an integer from 0 to 59.

Output Data

Print the following on the first line on the console:

- "Late", if the student arrives later compared to the exam starting time.
- "On time", if the student arrives exactly at the exam starting time or up to 30 minutes earlier.
- "Early", if the student arrives more than 30 minutes before the exam's starting time.

If the student arrives with more than one minute difference compared to the exam starting time, print on the next line:

- "mm minutes before the start" for arriving less than an hour earlier.
- "hh:mm hours before the start" for arriving 1 hour or earlier. Always print minutes using 2 digits, for example "1:05".
- "mm minutes after the start" for arriving more than an hour late.

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

• "hh:mm hours after the start" for arriving late by 1 hour or more. Always print minutes using 2 digits, for example, "1:03".

Test Cases

Input	Output
Exam Starting Time (hour): 9 Exam Starting Time (minutes): 30 Student hour of arrival: 9 Student minutes of arrival: 50	Late 20 minutes after the start
Exam Starting Time (hour): 16 Exam Starting Time (minutes): 0 Student hour of arrival: 15 Student minutes of arrival: 0	Early 1:0 hours before the start
Exam Starting Time (hour): 9 Exam Starting Time (minutes): 0 Student hour of arrival: 8 Student minutes of arrival: 30	On time 30 minutes before the start
Exam Starting Time (hour): 9 Exam Starting Time (minutes): 0 Student hour of arrival: 10 Student minutes of arrival: 30	Late 1:30 hours after the start
Exam Starting Time (hour): 14 Exam Starting Time (minutes): 0 Student hour of arrival: 13 Student minutes of arrival: 55	On time 5 minutes before the start
Exam Starting Time (hour): 11 Exam Starting Time (minutes): 30 Student hour of arrival: 8 Student minutes of arrival: 12	Early 3:18 hours before the start
Exam Starting Time (hour): 11 Exam Starting Time (minutes): 0 Student hour of arrival: 11 Student minutes of arrival: 0	On time
Exam Starting Time (hour): 11 Exam Starting Time (minutes): 30	Early 35 minutes before the start

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

Student hour of arrival: 10 Student minutes of arrival: 55	
Exam Starting Time (hour): 11 Exam Starting Time (minutes): 30 Student hour of arrival: 12 Student minutes of arrival: 29	Late 59 minutes after the start

Task 08(CP):

The figure consists of 6 blocks with size h * h, placed as in the figure below. The lower left angle of the building is at position $\{0, 0\}$. The upper right angle of the figure is on position $\{2*h, 4*h\}$. The coordinates given in the figure are for h = 2:

Write a program that enters an integer h and the coordinates of a given point $\{x, y\}$ (integers) and prints whether the point is inside the figure (inside), outside of the figure (outside) or on any of the borders of the figure (border).

Sample Input and Output:

Input	Output
2 3 10	Outside
2 3 1	Inside
2	Border

Skill: Problem solving using Conditional Statements

Programming Day - Week 06

2 2	
2 6 0	Border
2 0 6	Outside
15 13 55	Outside
15 29 37	Inside

Programming Day - Week 06

Skill: Patrolling Objects inside boundries

Introduction

In the last lessons, we learned how to move objects in the game using the arrow keys. Now, let's make the game more fun by making the objects move on their own inside the maze. This will make the game more challenging and exciting to play.

Let's do some coding.

```
We want to obtain the following output.

©CWINDLOWING STANDARD COME STAN
```

Consider the following steps to solve this problem.

We will need the following functions to make an object patrol inside the maze.

- **printMaze()** A function to print maze.
- gotoXY(x,y) A function to go the xy location on the console.
- printPacman(x,y) A function to print Pacman on the console.
- **printGhost(x,y)** A function to print Ghost on the console.
- **getCharAtxy(x,y)** A function to read character from the console.

Skill: Patrolling Objects inside boundries

Programming Day - Week 06

• clearScreen(x,y,p) A function to remove the previous character from the screen.

```
Lets create the function prototypes for these functions.
```

```
7  void printMaze();
8  void gotoxy(int x, int y);
9  void clear(int x, int y, char previous);
10  void showPacMan(int x, int y);
11  void showGhost(int x, int y);
12  char getCharAtxy(short int x, short int y);
```

Lets write the function definitions of these functions.

```
void printMaze()
{
    cout << "%%%%%%%%%" << endl;
    cout << "% . . %" << endl;
    cout << "% %%%%%%%%%%" << endl;
    cout << "%%%%%%%%%%%%" << endl;
}</pre>
```

```
void gotoxy(int x, int y)
{
    COORD coordinates;
    coordinates.X = x;
    coordinates.Y = y;
    SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), coordinates);
}

void clear(int x, int y, char previous)
{
    gotoxy(x, y);
    cout << previous;
}</pre>
```


Programming Day - Week 06

```
void showGhost(int x, int y)
{
    gotoxy(x, y);
    cout << "G";
}

char getCharAtxy(short int x, short int y)
{
    CHAR_INFO ci;
    COORD xy = {0, 0};
    SMALL_RECT rect = {x, y, x, y};
    COORD coordBufSize;
    coordBufSize X = 1;
    coordBufSize X = 1;
    return ReadConsoleOutput(GetStdHandle(STD_OUTPUT_HANDLE), &ci, coordBufSize, xy, &rect) ? ci.Char.AsciiChar : ' ';
}</pre>
```

- Now, we write to develop the program logic in such a way that once the ghost reaches the end of the maze, then it should start moving in the opposite direction.
- In addition to this, it should maintain the overall structure of the maze as well. Consider the following solution for this.

```
14
     main()
15
         int gx = 1;
16
17
         int gy = 1;
         string direction = "right";
18
         char previousChar = ' ';
19
         system("cls");
20
         printMaze();
21
         showGhost(gx, gy);
22
         while (true)
23
24
25
             Sleep(100);
```


Programming Day - Week 06

```
//move Ghost Functionality
26
              if(direction == "right")
27
28
29
                  char nextLocation = getCharAtxy(gx + 1, gy);
30
                  if(nextLocation == '%')
31
                      direction = "left";
32
33
                  else if (nextLocation == ' ' | | nextLocation == '.')
34
35
36
                      clear(gx, gy, previousChar);
37
                      gx = gx + 1;
                      previousChar = nextLocation;
38
                      showGhost(gx,gy);
39
40
41
              if(direction == "left")
42
43
44
                  char nextLocation = getCharAtxy(gx - 1, gy);
                  if(nextLocation == '%')
45
46
                       direction = "right";
47
48
                  else if (nextLocation == ' ' || nextLocation == '.')
49
50
                      clear(gx, gy, previousChar);
51
52
                      gx = gx - 1;
                      previousChar = nextLocation;
53
54
                       showGhost(gx,gy);
55
56
57
58
```

Great Work Students! You have now learned how to make objects patrol inside a boundary.

Task 01(CP):

Update the Pacman game in which there should be two ghosts now that are patrolling horizontally and vertically.

Task 02(CP):

Update the Pacman game where each time the Pacman takes a Health pill, the program increment the game score. Additionally, display the score at all times in the game.

Skill: Patrolling Objects inside boundries

Programming Day - Week 06

Good Luck and Best Wishes!!
Happy Coding ahead:)