Caractérisations par spectroscopie en synthèse organique

Agrégation 2020

Synthèse de l'indigo

 $2 C_7 H_5 NO_3(s) + 2 C_3 H_6 O(l) + 2 HO^-(aq) \rightarrow C_{16} H_{10} N_2 O_2(s) + 2 CH_3 CO_2^-(aq) + 4 H_2 O(l)$

Espèces	2- nitrobenzaldéhyde	acétone	ion hydroxyde	indigo	ion éthanoate	eau
Quantités initiales	0,5 g =3,3.10 ⁻³ mol	5 mL =68.10 ⁻³ mol	2,5mL à 1mol/L			

Indigo:

Spectroscopie UV-Visible

- \star T_{λ} =I_{0λ} /I_{t λ} la transmittance
- $A_{\lambda} = -\log_{10}(T)$ l'absorbance

Spectre de l'indigo commercial

Synthèse du paracétamol

Para-aminophénol

Anhydride acétique

Paracétamol

Acide acétique

$$5,50g = 5,04.10^{-2}$$
mol

$$\sim$$
7,0mL = 7,4.10⁻²mol

Spectroscopie infrarouge (IR)

Spectroscopie infrarouge (IR)

Table de données IR

Type de liaison		σ (en $ m cm^{-1}$)	Largeur de la bande	Intensité d'absorption	Remarques
0 — Н	phase gazeuse	3600 – 3700	Fine	Moyenne	
hydroxyle	phase condensée	3200 - 3400	Large	Forte	se superpose à la précédente
N — H		3100 - 3500	Fine	Moyenne (amine) à forte (amide)	double bande si NH_2
С — Н		2900 - 3100	Variable	Moyenne à forte	Peut descendre à 2700 cm ⁻¹ pour un aldéhyde
0 – H carboxyle		2500 - 3200	Large	Moyenne à forte	se superpose aux C-H
C = 0		1650 - 1750	Fine	Forte	
C = C		1600 - 1700	Variable	Moyenne	
N — H		1560 - 1640	Fine	Forte	se superpose à C=O pour un amide

Spectre IR du pentane/

Spectre IR du pentanol /

Spectre IR du pentan-1-amine

Spectroscopie infrarouge (IR)

Nombre d'onde (cm⁻¹)

Spectre IR de l'indigo

Limitations de la spectroscopie IR

Spectroscopie RMN

Spectre RMN et déplacement chimique

SPECTRE RMN DE L'ETHANE

SPECTRE RMN DU METHOXYETHANE

Table de déplacement chimique

Type de proton	Exemple	δ(ppm)
Proton d'un alcane ou de chaîne carbonée éloignée d'atomes électronégatifs	$CH_3-CH_2-CH_2-CH_3$	0,8 – 2,5
Proton sur un atome de carbone lié à un atome électronégatif	CH ₃ -OH CH ₃ -CH ₂ -O-CH ₃ CH ₃ -CH ₂ -Cl	3,1 – 5,0
	CH ₃ -CH=CH ₂	4,5 – 6,0 pour alcène 6,5 – 8,2 pour le cycle
Proton lié à l'atome de carbone d'un groupe carbonyle	CH ₃ -C H =O	9,5 – 11
Proton lié à d'un groupe carboxyle	CH ₃ -CO ₂ H	10,5 – 12
Proton d'un groupe hydroxyle ou amino	CH ₃ -O <mark>H</mark> CH ₃ -N H₂	0,5 – 5
Proton d'un phénol	Ar-O <mark>H</mark>	4,5-7,1
Proton lié à une amide	CO-NH-	6,0-8,5

Merci