Álgebra Linear Avançada Multilinearidade

Adriano Moura

Unicamp

2020

Funções Multilineares

Dados \mathbb{F} -espaços vetoriais V_1, \ldots, V_k e W, considere o espaço vetorial

$$\mathcal{F}\left(V_1\times\cdots\times V_k,W\right)$$

das funções definidas em $V_1 \times \cdots \times V_k$ a valores em W. Uma função $\phi \in \mathcal{F}(V_1 \times \cdots \times V_k, W)$ é dita k-linear se for linear em cada entrada separadamente. Mais precisamente,

$$\phi(v_1, \dots, v_{i_0-1}, v + \lambda v', v_{i_0+1}, \dots, v_k) = \phi(v_1, \dots, v_{i_0-1}, v, v_{i_0+1}, \dots, v_k) + \lambda \phi(v_1, \dots, v_{i_0-1}, v', v_{i_0+1}, \dots, v_k)$$

para quaisquer $1 \le i_0 \le k, v_i \in V_i, i \ne i_0, v, v' \in V_{i_0}, \lambda \in \mathbb{F}$.

Denotaremos por

$$\operatorname{Hom}_{\mathbb{F}}^{k}\left(V_{1},\ldots,V_{k},W\right)$$

o subconjunto de $\mathcal{F}(V_1 \times \cdots \times V_k, W)$ formados pelas funções k-lineares. Não confundir com $\operatorname{Hom}_{\mathbb{F}}(V_1 \oplus \cdots \oplus V_k, W)$.

Exemplos

Exercício: Mostre que $\operatorname{Hom}_{\mathbb{F}}^{k}(V_{1},\ldots,V_{k},W)$ é um subespaço vetorial de $\mathcal{F}(V_{1}\times\cdots\times V_{k},W)$.

Se $V_i = V$ para todo $1 \le i \le k$, simplificaremos a notação escrevendo $\operatorname{Hom}_{\mathbb{F}}^k(V, W)$ ao invés de $\operatorname{Hom}_{\mathbb{F}}^k(V, \dots, V, W)$. Se $W = \mathbb{F}$, um elemento de $\operatorname{Hom}_{\mathbb{F}}^k(V, \mathbb{F})$ é chamado de uma forma k-linear em V. Por exemplo, se $\mathbb{F} = \mathbb{R}$, um produto interno em V é uma forma bilinear em V, isto é, um elemento de $\operatorname{Hom}_{\mathbb{F}}^2(V, \mathbb{R})$.

Se
$$V_1, \ldots, V_k = M_{k,1}(\mathbb{F})$$
, a função

$$\phi: V_1 \times \cdots \times V_k \to \mathbb{F}, \quad (A_1, \dots, A_k) \mapsto \det([A_1| \cdots |A_k])$$

é uma forma k-linear em $M_{k,1}(\mathbb{F})$.

Não Fechamento da Imagem

Considere
$$V = \mathbb{F}^2$$
, $W = \mathbb{F}^4$ e $\phi \in \text{Hom}^2_{\mathbb{F}}(V, W)$ dada por $\phi(v_1, v_2) = (x_1 x_2, x_1 y_2, y_1 x_2, y_1 y_2)$ para $v_1 = (x_1, y_1), v_2 = (x_2, y_2).$

Observe que

$$(a_1, a_2, a_3, a_4) \in Im(\phi) \qquad \Leftrightarrow \qquad a_1 a_4 = a_2 a_3.$$

A implicação \Rightarrow é imediata. Reciprocamente, Se $a_1 \neq 0$, escolhendo $v_1 = (1, a_3/a_1)$ e $v_2 = (a_1, a_2)$, temos $\phi(v_1, v_2) = (a_1, a_2, a_3, a_4)$. Se $a_1 = 0$, então ou $a_2 = 0$ ou $a_3 = 0$. No primeiro caso, escolhendo $v_1 = (0, 1)$ e $v_2 = (a_3, a_4)$, temos $\phi(v_1, v_2) = (a_1, a_2, a_3, a_4)$. No segundo, escolha $v_1 = (a_2, a_4)$ e $v_2 = (0, 1)$.

Considere então os vetores w=(2,2,1,1) e w'=(1,0,1,0). Pelo parágrafo anterior, $w,w'\in Im(\phi)$ e $w+w'=(3,2,2,1)\notin Im(\phi)$.

Bases e Multilinearidade

Teorema 9.1.3

Se $\alpha_j = (v_{i,j})_{i \in I_j}$ é base para V_j , $1 \le j \le k$, $I = I_1 \times \cdots \times I_k$ e $(w_i)_{i \in I}$ é uma família num espaço vetorial W, $\exists ! \phi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \dots, V_k, W)$ t.q. $\phi(v_{i_1,1}, \dots, v_{i_k,k}) = w_i \, \forall \, \mathbf{i} = (i_1, \dots, i_k) \in I$.

Proposição 9.1.4

Sejam $V_j, \alpha_j, 1 \leq j \leq k, I$ e W como no Teorema 9.1.3 e $\beta = (w_s)_{s \in S}$ uma base de W. Dado $\mathbf{i} = (i_1, \dots, i_k) \in I$, defina $\mathbf{v_i} = (v_{i_1,1}, \dots, v_{i_k,k})$ e, dado $(\mathbf{i}, s) \in I \times S$, seja $\phi_{\mathbf{i}, s} \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \dots, V_k, W)$ o elemento satisfazendo

$$\phi_{\mathbf{i},s}(\mathbf{v}_{\mathbf{i}'}) = \delta_{\mathbf{i},\mathbf{i}'} w_s$$
 para todo $\mathbf{i}' \in I$.

Então, $(\phi_{\mathbf{i},s})_{(\mathbf{i},s)\in I\times S}$ é uma família l.i. em $\mathrm{Hom}_{\mathbb{F}}^k(V_1,\ldots,V_k,W)$ e é uma base se $\dim(V_j)<\infty\ \forall\ 1\leq j\leq k$. Neste caso,

$$\dim\left(\operatorname{Hom}_{\mathbb{F}}^{k}(V_{1},\ldots,V_{k},W)\right)=\dim(W)\prod_{i=1}^{k}\dim(V_{j}).$$

Dem.: Para cada subconjunto finito $\Gamma = \{\gamma_1, \dots, \gamma_m\} \subseteq I \times S$, precisamos mostrar que

(1)
$$a_1 \phi_{\gamma_1} + \dots + a_m \phi_{\gamma_m} = 0$$
 só se $a_1 = \dots = a_m = 0$.

Lembre: $\phi_{\mathbf{i},s}(\mathbf{v}_{\mathbf{i}'}) = \delta_{\mathbf{i},\mathbf{i}'} \ w_s$ para todo $\mathbf{i}' \in I$.

Escreva $\gamma_j = (\mathbf{i}_j, s_j)$ e defina

$$\Omega_j = \{l \in \mathbb{Z} : 1 \le l \le m, \mathbf{i}_l = \mathbf{i}_j\}$$
 para cada $1 \le j \le m$.

Dados $a_1, \ldots, a_m \in \mathbb{F}$, se $\phi = a_1 \phi_{\gamma_1} + \cdots + a_m \phi_{\gamma_m}$, temos

$$\phi(\mathbf{v}_{\mathbf{i}_j}) = \sum_{l \in \Omega_j} a_l \ w_{s_l}$$
 para todo $1 \le j \le m$.

Veja que, como $\gamma_l \neq \gamma_{l'}$ se $l \neq l'$ e $\mathbf{i}_l = \mathbf{i}_{l'}$ se $l, l' \in \Omega_j$, devemos ter

$$s_l \neq s_{l'}$$
 para todo $l, l' \in \Omega_j, l \neq l'$.

Assim, a família $(w_{s_l})_{l \in \Omega_j}$ é uma subfamília de β e, portanto, é l.i.. Logo, $\phi(\mathbf{v_{i_j}}) = 0$ só se $a_l = 0$ para todo $l \in \Omega_j$. Variando j, (1) segue.

Suponha agora que $\dim(V_j) < \infty \ \forall \ 1 \leq j \leq k$ e, portanto, I é finito. Dada $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \ldots, V_k, W)$, precisamos encontrar família de escalares $(a_{\gamma})_{\gamma \in I \times S}$ tal que $a_{\gamma} \neq 0$ para finitos valores de γ e

$$\phi = \sum_{\gamma \in I \times S} a_{\gamma} \phi_{\gamma}.$$

Para definir tal família, veja que, para cada $\mathbf{i} \in I$, existe família de escalares $(a_{\mathbf{i},s})_{s\in S}$ com $a_{\mathbf{i},s} \neq 0$ para finitos valores de s e

$$\phi(\mathbf{v_i}) = \sum_{s \in S} a_{\mathbf{i},s} w_s.$$

Fica assim definida família de escalares $(a_{\gamma})_{\gamma \in I \times S}$ e, como I é finito, $a_{\gamma} \neq 0$ para finitos valores de γ . Além disso, para cada $\mathbf{i} \in I$, temos

$$\left(\sum_{\gamma \in I \times S} a_{\gamma} \phi_{\gamma}\right) (\mathbf{v_i}) = \sum_{\substack{\gamma = (\mathbf{i}, s): \\ s \in S}} a_{\gamma} \phi_{\gamma} (\mathbf{v_i}) = \sum_{s \in S} a_{\mathbf{i}, s} w_s = \phi(\mathbf{v_i}),$$

completando a demonstração.