Analiz 4: Ödev 1

Teslim tarihi: Salı, 23 Temmüz, 2019.

- 1. p>0 olsun. $B_p^n=\{(x_1,\ldots,x_n)\in\mathbb{R}^n,\,|x_1|^p+\ldots+|x_n|^p\leq 1\}$ kümesinin Jordan bölge olduğunu gösteriniz.
- 2. Her sonlu kümesinin Jordan bölge olduğunu gösteriniz. Sayılabilir kümeler Jordan bölgeler olmak zorunda. Neden?
- 3. $A \subset B \subset \mathbb{R}^n$ olsun. Eğer A ve B Jordan bölgeler ise, $B \setminus A$ nın Jordan bölge olduğunu gösteriniz.
- 4. $K \subset \mathbb{R}^n$ bir açık konveks bölge olsun. O zaman K kümesinin Jordan bölge olduğunu kanıtlayınız.
- 5. $\int_{\Delta_n} |x|^2$ hesaplayınız. Burada $\Delta_n := \{a \in \mathbb{R}^n \mid a_i > 0, i \in [n], a_1 + \ldots + a_n < 1\}$ sımpleks'tır.
- 6. $\int_{y=0}^{1} \int_{x=0}^{y} e^{x^2} y \, dx \, dy$ hesaplayınız.
- 7. Ders'te Gamma fonksiyon hakkında konuştuk. $x \ge 1$ için $\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dx$ olarak tanımlanır.
 - (a) $x \ge 1$ ise $\Gamma(x+1) = x\Gamma(x)$ olduğunu gösteriniz.
 - (b) Doğal sayı n için $\Gamma(n+1) = n!$ olduğunu gösteriniz.
 - (c) $\Gamma(y+1) = y\Gamma(y)$ kullanarak bunu $\operatorname{mathbbC} \setminus \{0,-1,-2,\ldots\}$ e uzatınız. Bunu iyi tanımlı olduğu gösteriniz.
 - (d) $\Gamma(1/2) = \sqrt{\pi}$ olduğunu gösteriniz.
- 8. $f:\mathbb{R}^n \to \mathbb{R}$ fonksiyonu, eğer her $a,b \in \mathbb{R}^n$ ve $t \in [0,1]$ için

$$f[ta + (1-t)b] < tf(a) + (1-t)f(b),$$

şartı sağlıyorsa, konveks denir. $f \in C^2(\mathbb{R})$ için bunlar birbirine denk olduğunu gösteriniz

- (a) f konvekstir.
- (b) $\nabla^2 f := \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]$ matrisin tüm özdeğerler pozitifdir. (Ipücü : Bunu ilk önce tek değişkenli fonksiyonler için ispatlayınız ve sonra bunu kullanız.)