RELATIONAL ALGEBRA (CHAPTER -9)

- 1) What is the main purpose of Relational Algebra?
 - The main use of Relational algebra is to query a DB to get the specific data which the user needed.
- 2) Example of Relational Algebra?
 - Data Query Language(DQL) is an example of relational algebra.
- 3) What are the operations of Single Relations?
 - ➤ Relational algebra works on relations. In single relations operations are 3 types i) Selection iii) Projection iii) Rename.
- 4) Write briefly on selection operation?
 - \triangleright Selection operation is used to select a subset of rows from a relation R that satisfies a selection condition C. It is denoted by a symbol σ (sigma). The resultant relation is given by σ_c (R). The C indicates the condition that needs to be satisfied to select specific tuples from R.

Eg. Table Name is BOOK

BookID	Title	Author	Price
B001	Rudiments of C.S.	J.Bhattacharya	450
B002	Let us C	Kanetkar	250
B003	С	Dennis Riche	180
B004	C++	Lipschus	200

i) The condition C in this case is $R=\sigma$ price>200(BOOK)

Result is =

BookID	Title	Author	Price			
B001	Rudiments of C.S.	J.Bhattacharya	450			
B002	Let us C	Kanetkar	250			

ii) The condition C in this case is R=σ price>200 or Author='Dennis Riche'(BOOK)

Result is =

BookID Title		Author	Price
B001	Rudiments of C.S.	J.Bhattachatya	450
B002	Let us C	Kanetkar	250
B003	С	Dennis Riche	180

As any one of these conditions need to be satisfied simultaneously, we have to use logical **OR operator/v** symbol.

iii) The condition C in this case is R=o price>200 and Title='Rudiments of C.S.'(BOOK)

Result is =

BookID	Title	Author	Price
B001	Rudiments of C.S.	J.Bhattacharya	450

As the conditions need to satisfied simultaneously we have to use logical AND operator/ ^ symbol.

- 5) Write briefly on Projection operation?
 - > The projection operation is used to select a subset of columns from a relation R.

It is used to create from a relation a new relation which has only some of the attributes from the original relation. It indicates the symbol Π .

Eg. i) The condition C indicates Only show the Title & Author of Book Table

$R=\prod_{Title,Author}(BOOK)$

Result is =

Title	Author
Rudiments of C.S.	J.Bhattacharya
Let us C	Kanetkar
С	Dennis Riche
C++	Lipschus

- 6) Give an example of how selection & projection operation works together?
 - > Suppose there is a condition C is that show only those Title & author whose(BOOK) price is >200

R=Π _{Title,Author}σ price>200 (BOOK)

Title	Author	
Rudiments of C.S.	J.Bhattacharya	
Let us C	Kanetkar	

- 7) Write briefly on Rename operation?
 - Rename operation can be used to change both the relation name & the names of the attributes of a relation. It is indicated by the symbol $\rho(\mathbf{rho})$.
 - eg. i) Rename the Table BOOK to BOOKS.

$\rho_{BOOKS}(BOOK)$.

ii) Rename the Title column as Bookname , Author as writer & table BOOK as Bookdetails.

ρ_{Bookdetails}(Bookname, writer) (Π Title, Author (BOOK).

- 8) What are the diff. set operations on Relation?
 - > There are 4 types of set operations on relation. These are i) Union ii) Intersection iii) Difference iv) Cartesian product.
- 9) Write briefly on Union operation?
 - ➤ Union operation when applied on 2 relations finds the data that occur in **either or both** the relations involved. It is denoted by symbol U.

eg. - Table Bio_Sc & Para_Sc

Rol1	F_Name	L_Name	Class	Sec
15	Yasmin	Dutta	XII	A
17	Raja	Sinha	XI	В
19	Tanay	Roy	XII	A
28	Tumpa	Dey	XI	В

Rol1	F_Name	L_Name	Class	Sec
11	Surya	Dutta	XII	A
17	Raja	Sinha	XI	В
13	Tanima	Roychowdhury	XII	A
28	Tumpa	Dey	XI	В

i) show the student details who are either Bio sc table or para sc table or both the table.

	-,				
Roll	F_Name	L_Name	Class	Sec	
15	Yasmin	Dutta	XII	A	
17	Raja	Sinha	XI	В	
19	Tanay	Roy	XII	A	
28	Tumpa	Dey	XI	В	
11	Surya	Dutta	XII	A	
13	Tanima	Rovchowdhurv	XII	A	

$R= Bio_Sc \cup Para_Sc$

- 10) Write briefly on intersection operation?
 - ► Intersection operation when applied on 2 relations finds the data that occur in **both** the relations involved. It is denoted by symbol ∩.

eg.-

i) show the student details who are Bio sc table & para sc table both the table.

Roll	F_Name	L_Name	Class	Sec
17	Raja	Sinha	XI	В
28	Tumpa	Dey	XI	В

R= Bio Sc \cap Para Sc.

- 11) Write briefly on difference operation?
 - Difference operation when applied on 2 relations finds the data that occur in **only occurs in one relation but not in the other** relations. It is denoted by symbol .

i) Display separately student of Bio_Sc table and Para_Sc table.

Roll	F_Name	L_Name	Class Sec
15	Yasmin	Dutta	XII
19	Tanay	Roy	XII
	~ -		

R = Bio_Sc - Para_Sc(Bio_Sc students only)

Roll	F_Name	L_Name	Class	Sec
17	Raja	Sinha 💉	XI	В
28	Tumpa	Dey 🔷	XI	В

R = Para_Sc - Bio_Sc (Para_Sc studently only)

- 12) Write short notes on Cartesian Product?
 - > The Cartesian product of 2 relation R1 & R2 is a relation that is formed by taking each tuple from R1 & combining it with every tuple from R2. The resultant product relation R has all the attributes from R1 & R2 is denoted by R = R1 X R2.

BNo	Title	Author
A1	Rudiments of C.S.	J.Bhattacharya
A2	Let us C	Kanetkar
A3	С	Dennis Riche
A4	C++	Lipschus

Table: Book

BNo	F_Name	L_Name	Class	Sec
A1	Yasmin	Dutta	XII	A
B5	Raja	Sinha	XI	В
C6	Tanay	Roy	XII	A
D28	Tumpa	Dey	XI	В

Table: Student

Costonian product of D- Pools V Student

Book.BNo	Title		Author	Student.BNo	F_Name	L_Name	Class	Sec
A1	Rudiments C.S.	of	J.Bhattacharya	A1	Yasmin	Dutta	XII	A
A1	Rudiments C.S.	of	J.Bhattacharya	A1	Raja	Sinha	XI	В
A1	Rudiments C.S.	of	J.Bhattacharya	A1	Tanay	Roy	XII	A
A1	Rudiments C.S.	of	J.Bhattacharya	A1	Tumpa	Dey	XI	В
A2	Let us C		Kanetkar	B5	Yasmin	Dutta	XII	A
A2	Let us C		Kanetkar	B5	Raja	Sinha	XI	В
A2	Let us C		Kanetkar	B5	Tanay	Roy	XII	A
A2	Let us C		Kanetkar	B5	Tumpa	Dey	XI	В
A3	С		Dennis Riche	C6	Yasmin	Dutta	XII	A
A3	С		Dennis Riche	C6	Raja	Sinha	XI	В
A3	С		Dennis Riche	C6	Tanay	Roy	XII	A
A3	С		Dennis Riche	C6	Tumpa	Dey	XI	В
A4	C++	•	Lipschus	D28	Yasmin	Dutta	XII	A
A4	C++		Lipschus	D28	Raja	Sinha	XI	В
A4	C++		Lipschus	D28	Tanay	Roy	XII	A
A4	C++		Lipschus	D28	Tumpa	Dey	XI	В

As BNo is appears in both the relations, hence to differenciate them the dot notation is used.

- 13) What is the use of Join Operations on Relations?
 - > Cartesian Product does not produce any sensible result. It only gives all possible combinations of paired tuples from the 2 relations.
 - A join is a binary operation that is used to combine related tuples from 2 relations into single tuples.
- 14) What is Theta Join?
 - When joining formed with 2 relation with a general condition is called a Theta Join.
 - Each such condition may involve one of the comparison operator like >, ≤, >=, <=, =, ≠ etc.
- $J = R \bowtie S$ Which is equivalent to the operation $J = \sigma\theta(RXS)$. Eg. – i) Display is Name of the employee whose salary is > 25000.

ii) Display is Name of the employee whose Dept is equal to I

il Biepiay is maine of the employee whose Bept i					
EId	EName	Dept			
E001	Sayan	IT			
E003	Soumya	IT			
E007	Pritam	IT			
E008	Abir	IT			
E009	Bapan	Marketing			

Table	– Employee	
		١

	pj	
EId	Salary	Bonus
E002	35000	15000
E007	38000	12000
E009	25000	10000
E010	30000	13000
E003	21000	7000

Table - Salary

Output -

i) R = Π_{SALARY} [EMPLOYEE \bowtie [EMPLOYEE.EId = SALARY.EId] AND SALARY >25000] SALARY

EId	EName	Dept	Salary	Bonus
E007	Pritam	IT	38000	12000
E009	Bapan	Marketing	25000	10000
E003	Soumya	IT	21000	7000

ii) R = ∏DEPT (EMPLOYEE ► EMPLOYEE.EId = SALARY.EId) AND DEPT="IT") SALARY

EId	EName	Dept	Salary	Bonus
E003	Soumya	IT	21000	7000

- 15) What is EquiJoin in Relations?
 - When we have a join with only equality then such a join is called an Equijoin.
 - Eg. Display only the details whose EId is common in both table
 - R = EMPLOYEE | (EMPLOYEE.EId = SALARY.EId) SALARY.
- 16) What is Natural Join?
 - ➤ A Natural Join on 2 relations is a binary operation that 1st forms a Cartesian product between the relations. It then selects only those tuples with equality on pairs of common attributes that appear in relations, & finally removes the duplicate attributes.

Eg. –						
BNo	Title	Author				
A1	Rudiments of C.S.	J.Bhattacharya				
A2	Let us C	Kanetkar				
A3	С	Dennis Riche				
A4	C++	Lipschus				

Table: Book

BNo	F_Name	L_Name	Class	Sec
A1	Yasmin	Dutta	XII	A
A2	Raja	Sinha	XI	В
A3	Tanay	Roy	XII	A
A4	Tumpa	Dey	XI	В

Table: Student

i) Display the Natural Join of 2 relations Book & Student.

output –

BNo	Title	Author	F_Name	L_Name	Class	Sec		
A1	Rudiments of C.S.	J.Bhattacharya	Yasmin	Dutta	XII	A		
A2	Let us C	Kanetkar	Raja	Sinha	XI	В		
A3	С	Dennis Riche	Tanay	Roy	XII	A		
A4	C++	Lipschus	Tumpa 🙏	Dey	XI	В		
R= Book ►Student.								