Solusi Ujian Matematika Diskrit CPK 1

Nama Mata Kuliah: Matematika Diskrit

Prodi: Teknik Informatika Semester/Kelas: II/A-Sore

Dosen: Henny Dwi Bhakti, S.Si., M.Si.

Soal 1: Mengubah ke Bentuk "Jika p, maka q"

Pada soal ini, kita diminta mengubah kalimat menjadi bentuk proposisi bersyarat "jika p, maka q".

a. "Perlu ada salju agar Hesnu bisa bermain ski."

- Kalimat ini berarti: Hesnu tidak bisa bermain ski tanpa adanya salju
- Diubah menjadi: "Jika Hesnu bisa bermain ski, maka ada salju."

b. "Anda hanya mendapat jaminan barang hanya jika anda mengembalikan kartu garansi kurang dari sebulan sejak pembelian."

- Kata "hanya jika" menunjukkan syarat yang harus dipenuhi
- Diubah menjadi: "Jika Anda mendapat jaminan barang, maka Anda telah mengembalikan kartu garansi kurang dari sebulan sejak pembelian."

c. "Untuk mendapat gelar doktor, cukup anda kuliah di universitas X."

- Kata "cukup" menunjukkan bahwa kuliah di universitas X sudah cukup untuk mendapat gelar
- Diubah menjadi: "Jika Anda kuliah di universitas X, maka Anda mendapat gelar doktor."

d. "Perlu mendaki 100 meter lagi untuk mencapai puncak gunung Semeru"

- Kalimat ini berarti: Mencapai puncak tidak mungkin tanpa mendaki 100 meter lagi
- Diubah menjadi: "Jika Anda mencapai puncak gunung Semeru, maka Anda telah mendaki 100 meter lagi."

Soal 2: Menghitung Bilangan

Kita diminta menghitung bilangan bulat dari 1 sampai 300 yang TIDAK habis dibagi 3 atau 5.

Langkah penyelesaian:

- 1. Hitung bilangan yang habis dibagi 3:
 - Bilangan-bilangan ini adalah: 3, 6, 9, 12, ..., 300

- Jumlahnya: $300 \div 3 = 100$ bilangan
- 2. Hitung bilangan yang habis dibagi 5:
 - Bilangan-bilangan ini adalah: 5, 10, 15, 20, ..., 300
 - Jumlahnya: $300 \div 5 = 60$ bilangan
- 3. Hitung bilangan yang habis dibagi keduanya (habis dibagi 15):
 - Bilangan-bilangan ini adalah: 15, 30, 45, ..., 300
 - Jumlahnya: $300 \div 15 = 20$ bilangan
- 4. Menggunakan prinsip inklusi-eksklusi:
 - Jumlah bilangan yang habis dibagi 3 ATAU 5 = 100 + 60 20 = 140 bilangan
- 5. Jumlah bilangan yang TIDAK habis dibagi 3 atau 5:
 - Total bilangan Bilangan yang habis dibagi 3 atau 5
 - 300 140 = 160 bilangan

Jadi, ada 160 bilangan bulat dari 1 sampai 300 yang tidak habis dibagi 3 atau 5.

Soal 3: Masalah Himpunan Suporter

Informasi yang diberikan:

- 60.000 suporter sepakbola
- 20.000 stiker terjual
- 36.000 bendera kecil terjual
- 12.000 gantungan kunci terjual
- 52.000 suporter membeli setidaknya satu cinderamata
- 6.000 suporter membeli bendera dan gantungan kunci
- 9.000 suporter membeli bendera dan stiker
- 5.000 suporter membeli gantungan kunci dan stiker

a. Berapa banyak suporter yang membeli ketiga jenis cinderamata?

Misalkan:

- S = pembeli stiker
- B = pembeli bendera
- G = pembeli gantungan kunci

Kita gunakan rumus inklusi-eksklusi untuk himpunan: $|S \cup B \cup G| = |S| + |B| + |G| - |S \cap B| - |S \cap G| - |B \cap G| + |S \cap B \cap G|$

Substitusi semua nilai yang diketahui: $52.000 = 20.000 + 36.000 + 12.000 - 9.000 - 5.000 - 6.000 + |S \cap B|$

Kita hitung: $52.000 = 68.000 - 20.000 + |S \cap B \cap G| |S \cap B \cap G| = 52.000 - 48.000 = 4.000$

Jadi, ada 4.000 suporter yang membeli ketiga jenis cinderamata.

b. Berapa banyak suporter yang membeli tepat satu cinderamata?

Untuk menghitung yang membeli tepat satu jenis:

- 1. Hanya membeli stiker: $|S| |S \cap B| |S \cap G| + |S \cap B| |S \cap G| = 20.000 9.000 5.000 + 4.000 = 10.000$ suporter
- 2. Hanya membeli bendera: $|B| |S \cap B| |B \cap G| + |S \cap B| |B| |B$
- 3. Hanya membeli gantungan kunci: $|G| |S \cap G| |B \cap G| + |S \cap B \cap G| = 12.000 5.000 6.000 + 4.000 = 5.000 suporter$

Total suporter yang membeli tepat satu cinderamata: 10.000 + 25.000 + 5.000 = 40.000 suporter

Soal 4: Relasi

Untuk soal nomor 4, gambar graf relasi tidak terlihat dengan jelas pada dokumen. Namun, cara menganalisis sifat-sifat relasi adalah:

- 1. Refleksif:
 - Relasi R dikatakan refleksif jika untuk setiap elemen a, (a,a) termasuk dalam relasi R
 - Pada graf, setiap simpul harus memiliki loop (garis yang menghubungkan simpul dengan dirinya sendiri)
- 2. Transitif (menghantar):
 - Relasi R dikatakan transitif jika untuk setiap (a,b) dan (b,c) dalam R, maka (a,c) juga ada dalam R
 - Pada graf, jika ada jalur dari a ke b dan dari b ke c, maka harus ada jalur langsung dari a ke c
- 3. Setangkup (simetris):
 - Relasi R dikatakan simetris jika untuk setiap (a,b) dalam R, maka (b,a) juga ada dalam R
 - Pada graf, jika ada panah dari a ke b, maka harus ada panah dari b ke a
- 4. Tolak setangkup (antisimetris):

- Relasi R dikatakan antisimetris jika untuk setiap (a,b) dan (b,a) dalam R, maka a = b (atau dengan kata lain tidak ada dua simpul berbeda yang saling terhubung dua arah)
- Pada graf, tidak boleh ada dua simpul berbeda yang saling terhubung oleh panah dua arah

Soal 5: Fungsi

a. g(x) = |x|; $g: \mathbb{R} \to \mathbb{R}$ (dari himpunan bilangan real ke bilangan real)

Cek injektif (satu-satu):

- Suatu fungsi dikatakan injektif jika setiap input yang berbeda menghasilkan output yang berbeda
- Untuk g(x) = |x|, kita punya g(-2) = 2 dan g(2) = 2
- Karena input berbeda (-2 dan 2) menghasilkan output yang sama (2), maka g TIDAK injektif

Cek surjektif (onto):

- Suatu fungsi dikatakan surjektif jika setiap elemen di codomain memiliki setidaknya satu elemen di domain yang memetakan ke sana
- Untuk nilai y < 0 di codomain, tidak ada x yang memetakan ke sana karena $|x| \ge 0$ untuk semua x
- Karena tidak semua elemen codomain (R) bisa dicapai, maka g TIDAK surjektif

Kesimpulan: g BUKAN fungsi injektif, BUKAN fungsi surjektif, dan BUKAN fungsi bijektif.

b.
$$h(x) = x^2 - 1$$
, $h: A \rightarrow B$, dengan $A = \{x \mid -1 \le x \le 1\}$ dan $B = \{y \mid -1 \le y \le 0\}$

Domain A = semua bilangan real antara -1 dan 1 (termasuk -1 dan 1) Codomain B = semua bilangan real antara -1 dan 0 (termasuk -1 dan 0)

Analisis:

- Ketika x = 0, maka $h(0) = 0^2 1 = -1$
- Ketika x = 1, maka $h(1) = 1^2 1 = 0$
- Ketika x = -1, maka $h(-1) = (-1)^2 1 = 0$
- Nilai h(x) adalah antara -1 dan 0 untuk semua x dalam domain [-1, 1]

Cek injektif:

- h(-0.5) = 0.25 1 = -0.75
- h(0.5) = 0.25 1 = -0.75
- Karena h(-0.5) = h(0.5) padahal $-0.5 \neq 0.5$, maka h TIDAK injektif

Cek surjektif:

- Untuk setiap y dalam B = [-1, 0], selalu ada nilai x dalam A yang memetakan ke y
- Untuk y = -1, ada x = 0 sehingga h(0) = -1
- Untuk y = 0, ada x = 1 dan x = -1 sehingga h(1) = h(-1) = 0
- Untuk setiap nilai y antara -1 dan 0, selalu ada dua nilai x dalam A yang memetakan ke y

Kesimpulan: h adalah fungsi SURJEKTIF tetapi BUKAN fungsi INJEKTIF, sehingga h BUKAN fungsi BIJEKTIF.