课程编号	

教师签名	批改日期
	教师签名

深圳大学实验报告

课程名称:	大学物理实验(二)
实验名称:	
学 院:	
指导教师 <u>:</u>	
报告人:	组号:
学号	实验地点
实验时间:	年月日
提交时间:	

1

一、实验目的

- 1.学习利用加热电子使热电子发射的方法测量逸出功
- 2.学习直线测定法(理查逊直线法),外延测量法等基本测量方法
- 3.学习数据处理的方法

二、实验原理

(一)能级与逸出功

1.金属传导电子的能量分布服从费米-狄拉克分布,即

$$f(E) = \frac{dN}{dE} = \frac{4\pi}{h^3} (2m)^{\frac{3}{2}} E^{1/2} \left[\exp(e^{\frac{E - E_F}{kT}} + 1)^{-1} \right]$$
(3-10-1)

其中 EF 费米能级, k 为玻尔兹曼常数 (k=1.38*1028J•K-1)。

2.从能量角度看,金属中电子是在一个势阱中运动,势阱深度为 Eb,在热力学温度为零时间,电子所具有最大能量为 EF, EF 为费米能级,这时电子逸出金属表面至少需要从外界得到能量为

 $E_0 = E_b - E_F = eV$, 其中 E 称为金属电子的逸出功,也称功函数,单位为电子伏特(eV),e 是电子电荷,V 称为逸出单位。

(二)热电子发射测量电子逸出功基本原理

- 1.热电子发射是通过提高金属温度来改变电子分布,是其中一部分电子的能量大于 E0,这些电子就能从金属中发射出来。
- 2.在高真空的电子管中,一个有被测金属丝做成的阴极 K,通过电流 If 加热,并在另一个阳极施加正向电压时,在连接两个电极将有电流 Ia 通过,如图 20-2。
- 3.由费米-狄拉克能量分布可推导出热电子发射的里查逊-杜 西曼公式为

$$I = AST^2 e^{\frac{-eV}{kT}} \tag{3-10-2}$$

其中 I 是热电子发射的电流强度(单位是 A), S 是阴极金属的有效发射面积(单位是厘米), T 是阴极的绝对温度(单位是 K), A 是与阴极化学纯度有关的系数(单位是 $A \cdot \text{cm-} 2 \cdot \text{K}^{-2}$)

图 20-2 真空电子管及外围电路

4.由于 A 和 S 难以测定,可采用里查逊直线法,对(3-10-2)两边取对数处于 T2,再做对数得到

$$\lg \frac{I}{T^2} = \lg(AS) - 0.43 \frac{eV}{kT} = \lg(AS) - 5.04 * 10^3 \frac{V}{T}$$
(3-10-3)

此式子显示, $\lg \frac{I}{T^2} = \frac{1}{T}$ 成线性关系,以这两者作图,求斜率即可得到电子的逸出电势 V。

(三)肖特基效应与外延法求零场电流 I

1.为维持阴极发射的热电子不断飞到阳极,要在阴极阳极之间加一个加速电场 Ea,由于 Ea 的存在会使阴极表面势垒 Eb 降低,因而逸出功减小,发射电流增大,这就是肖特基效应。可证明 Ea 与零场电流 Ea 并不为

$$I_a = Ie^{0.439\frac{\sqrt{E_a}}{T}}$$

对上诉式子取对数得

$$\lg I_a = \lg I + \frac{0.439}{2.30T} \sqrt{E_a}$$
 (3-10-4)

$$E_a = \frac{U_a}{r_1 \times \ln \frac{r_2}{r_2}}$$

如果把阴极和阳极做成共轴圆柱形,并略电势差及其他影响 阴极半径, r2 是阳极半径, 将 Ea 带入(3-10-4)得

 $E_a = \frac{U_a}{r_1 \times \ln \frac{r_2}{r_1}}$,其中 U_a 是加速电压,r1 是

$$\lg I_a = \lg I + \frac{0.439\sqrt{U_a}}{2.30T\sqrt{r_1 \times \ln \frac{r_2}{r_1}}}$$
(3-10-5)

由上式可知 $^{\lg I_a}$ 与 $^{\sqrt{U_a}}$ 成线性关系,以 $^{\sqrt{U_a}}$ 为横坐标, $^{\lg I_a}$ 为纵坐标作图得一直线,如图 3.11-5,此直线 的延长线与纵坐标的交点为 $\lg I$,由此可求出在一定温度下的零场电流 I 。

图 3.11-6

(四)实验电路

如图 3.11-6 所示,, 当测定了阴极温度 T, 阳极电压 Ua和发射电流 Ia后, 可通过数据处理, 等到零 场电流 I, 即可求出 eV。

(五)理想二极管与温度测试

实验中所用电子管为直流式理想二极管,二极管的阴极由直径 0.075mm 左右的纯钨丝做成,阳极为 长 1.5cm, 半径 0.42cm 的镍制圆筒, 表 3-11-7 为灯丝电流与灯丝温度 T 之间的对应数值关系。

I_f (A)	0.5	0. 55	0.6	0. 65	0. 7	0. 75	0.8
T (10^3K)	1.72	1.8	1.88	1. 96	2. 04	2. 12	2. 2

表 3-11-7

三、实验仪器:

- 1. THQYC-1 型金属电子逸出功实验仪
- 2. THQYC-1 型金属电子逸出功测试台

四、实验内容:

- 1. 将仪器面板上的三个电位器逆时针调到最小位
- 2. 仔细检查线路,实验仪与测试台用导线按编号——对应连接
- 3. 接通主机电源开关, 预热 20 分钟后开始测试
- 4. 调整理想二极管的灯丝电流, 使灯丝电流显示 0.55A
- 5. 调整理想二极管的阳极电压,分别为 16、25、36、49、64、81、100、121 电压,测出对应的阳极电流并记录
- 6. 调节灯丝电流,每次增加 0.05A, 重复上述测量, 直至 0.75A, 每改变一次灯丝电流都要预热 2 分钟
- 7. 测量结果记录如表 4-10-1

Io/(u			Ua/(V)						
Ia/(μA)		16.0	25.0	36.0	49.0	64.0	81.0	100.0	121.0
	0.55	4	4	4	4	4	5	5	5
	0.60	17	17	18	18	18	19	19	19
$I_{\rm f}/({ m A})$	0.65	59	60	61	62	63	64	65	66
	0.70	178	181	184	187	190	193	196	199
	0.75	482	492	500	508	516	524	531	539

表 4-10-1

五、数据记录:

4H LL		姓名	
组号:	:	灶石	

六、数据处理

1. 根据表 4-10-1 中的数据,换算出相应的 $\log {\rm Ia}$, $\sqrt{U_a}$, 记录到表 4-10-2

lg Ia/(A	4)			1	$\overline{U_a}$ /(V)				
8 ('	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0
	0.55	-5.39	-5.39	-5.39	-5.39	-5.39	-5.30	-5.30	-5.30
	0.60	-4.77	-4.77	-4.74	-4.74	-4.74	-4.72	-4.72	-4.72
$I_{\rm f}/({ m A})$	0.65	-4.23	-4.22	-4.21	-4.21	-4.20	-4.19	-4.19	-4.18
	0.70	-3.75	-3.74	-3.74	-3.73	-3.72	-3.71	-3.71	-3.70
	0.75	-3.32	-3.31	-3.30	-3.29	-3.29	-3.28	-3.27	-3.27

表 4-10-2

2. 根据表 4-10-2 作出 $\lg I_a - \sqrt{U_a}$ 曲线(如图 4-10-1),并用最小二乘法拟合曲线,求出截距 $\log I$,得到在不同温度下零场电流 I,并根据表 3-11-7 得到对应温度 T,换算出 $\lg \frac{I}{T^2}$ 和 $\frac{1}{T}$,记录到表 4-10-3

lg I	$I/(10^{-3}A)$	$T/(10^3 \text{K})$	1/T	$1g(I/T^2)$
-3.35	0.03	1.80	0.56	-5.99
-3.78	0.15	1.88	0.53	-5.35
-4. 26	0.56	1.96	0.51	-4.84
-4.80	1.66	2.04	0.49	-4.40
-5. 48	4. 51	2. 12	0.47	-4.00

表 4-10-3

图4-10-1

 $\lg \frac{I}{T^2} - \frac{1}{T}$ 图线 3. 根据表 4-10-3 中的数据,做出 $\lg \frac{I}{T^2} - \frac{1}{T}$ 图线 (如图 4-10-2)得到斜率 k=-2.36*10⁴,由公式 $\lg \frac{I}{T^2} = \lg(AS) - 0.43 \frac{eV}{kT} = \lg(AS) - 5.04*10^3 \frac{V}{T}$,电子的逸出电势 V=-k/5.04•10³=2.36*10⁴/(5.04•10³) =4.68V

4. 由金属电子的逸出功 $E_0 = E_b - E_F = eV$,可得金属电子逸出功 $\varphi_{= eV=4.68eV}$,理论值 $\varphi_0 = 4.54eV$,相对误差 E=|测量值-标准值|/标准值*100%=|4.68-4.54|/4.54=3.1%

七、结果陈述:

图线斜率: k=-2.36*10⁴;

逸出功: $\varphi_{=4.68eV}$;

理论值: $\varphi_0 = 4.54eV$:

相对误差: E=3.1%

八、实验总结与思考题

从实验结果看,实验结果较为精确。实验中,我们可以在灯丝电流 0.50A 和 0.80A 分别测量不同阳极电压下的 Ia,可以进一步提高实验精度。本实验中采取的里查逊直线法值得学习借鉴,在别的实验中遇到难以测量的物理量,也可以联系里查逊直线法进行处理。

思考题 1: 里查逊直线法有何优点?

- 1. 可以避开难以测量或者不易测准的物理量,得到想要的结果;
- 2. 在本实验中,用里查逊直线法可以避开 A、S的测量,直接测量 I,T 即可得到 V,使 A、S的变化只

$$et{e}^{\lg \frac{I}{T^2} - \frac{1}{T}}$$
使

思考题 2: 灯丝电流为何要保持稳定,测量中每次改变 If值时为何要预热几分钟后测量?

- 1. 灯丝温度会灯丝电流改变而改变;
- 2. 灯丝电流改变后,灯丝温度需要过一段时间才能稳定下来,需要预热等待温度稳定后进行测量,才能保证实验误差小

指导教帅批阅意见	指导	导教	帅批	悦意	15.
----------	----	----	----	----	-----

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印象	总分