1 Introduction to Rings

1.1 Basic Definitions and Examples

Definition.

- 1. A ring R is a set together with two binary operations + and \times (called addition and multiplication) satisfying the following axioms:
 - (a) (R, +) is an abelian group,
 - (b) \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$,
 - (c) the distributive laws hold in R: for all $a, b, c \in R$,

$$(a+b) \times c = (a \times c) + (b \times c)$$
 and $a \times (b+c) = (a \times b) + (a \times c)$.

- 2. The ring R is *commutative* if multiplication is commutative.
- 3. The ring R is said to have an *identity* (or *contain a 1*) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a$$
 for all $a \in R$.

Note.

- 1. We shall write ab rather than $a \times b$ for $a, b \in R$.
- 2. The additive identity of R will be denoted by 0
- 3. The additive of an element a will be denoted -a.

Note. $R = \{0\}$ is called the *zero ring*, denoted R = 0. R = 0 is the only ring where 1 = 0. We will often exclude this ring by imposing the condition $1 \neq 0$.

Definition. A ring R with identity $1 \neq 0$, is called a *division ring* (or *skew field*) if every nonzero element $a \in R$ has a multiplicative inverse, i.e., there exists $b \in R$ such that ab = ba = 1. A commutative division ring is called a *field*.

Proposition 1. Let R be a ring. Then

- 1. 0a = a0 = 0 for all $a \in R$.
- 2. (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. (-a)(-b) = ab for all $a, b \in R$.
- 4. If R has an identity 1, then the identity is unique and -a = -1(a).

Definition. Let R be a ring

- 1. A nonzero element a of R is called a zero divisor if there is a nonzero element b of R such that either ab = 0 or ba = 0.
- 2. Assume R has an identity $1 \neq 0$. An element u of R is called a *unit* in R if there is some v in R such that vu = uv = 1. The set of units in R is denoted R^{\times} .

Note.

- 1. R^{\times} forms a group under multiplication and will be referred to as the *group of units* of R.
- 2. Using the above terminology a field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times} = F \{0\}$.

Definition. A commutative ring with identity $1 \neq 0$ is called an *integral domain* if it has no zero divisors.

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If ab = ac then either a = 0 or b = c (i.e., if $a \neq 0$ we can cancel the a's). In particular, if a, b, c are elements in an integral domain and ab = ac, then either a = 0 or b = c.

Corollary 3. Any finite integral domain is a field.

Definition. A subring of the ring R is a subgroup of R that is closed under multiplication.

Note. To show that a subset of a ring R is a subring it is enough to show that it is nonempty and closed under subtraction and under multiplication.

1.2 Examples: Polynomial Rings, Matrix Rings, and Group Rings

Proposition 4. Let R be an integral domain and let p(x), q(x) be nonzero elements of R[x]. Then

- 1. $\operatorname{degree} p(x)q(x) = \operatorname{degree} p(x) + \operatorname{degree} q(x)$,
- 2. The units of R[x] are just the units of R,
- 3. R[x] is an integral domain.

1.3 Ring Homomorphisms and Quotient Rings

Definition. Let R and S be rings.

- 1. A ring homomorphism is a map $\varphi \colon R \to S$ satisfying
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$ (so φ is a group homomorphism on the additive groups) and
 - (b) $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.
- 2. The kernel of the ring homomorphism φ , denoted $\ker \varphi$, is the set of elements of R that map to 0 in S. (i.e., the kernel of φ viewed as a homomorphism of additive groups).
- 3. A bijective ring homomorphism is called an *isomorphism*.

Proposition 5. Let R and S be rings and let $\varphi \colon R \to S$ be a homomorphism.

1. The image of φ is a subring of S.

2. The kernel of φ is a subring of R. Furthermore, if $\alpha \in \ker \varphi$ then $r\alpha$ and $\alpha r \in \ker \varphi$ for every $r \in R$, i.e., $\ker \varphi$ is closed under multiplication by elements from R.

Definition. Let R be a ring, let I be a subset of R and let $r \in R$.

- 1. $rI = \{ra \mid a \in I\}$ and $Ir = \{ar \mid a \in I\}$.
- 2. A subset I of R is a left Ideal of R if
 - (a) I is a subring of R, and
 - (b) I is closed under left multiplication by elements of R, i.e., $rI \subseteq I$ for all $r \in R$.

Similarly I is a right ideal if (a) holds and in place of (b) one has

- (b)' I is closed under right multiplication by elements from R, i.e., $Ir \subseteq I$ for all $r \in R$.
- 3. A subset I that is both a left ideal and a right ideal is called an *ideal* (or, for added emphasis, a *two-sided ideal*) of R.

Proposition 6. Let R be a ring and let I be an ideal of R. Then the (additive) quotient group R/I is a ring under the binary operations:

$$(r+I) + (s+I) = (r+s) + I$$
 and $(r+I) \times (s+I) = (rs) + I$

for all $r, s \in R$. Conversely, if I is any subgroup such that the above operations are well defined, then I is an ideal of R.

Definition. When I is an ideal of R the ring R/I with the operations in the previous proposition us called the *quotient ring* of R by I.

- **Theorem 7.** 1. (The First Isomorphism Theorem for Rings) If $\varphi \colon R \to S$ is a homomorphism of rings, then the kernel of φ is an ideal of R, the image of φ is a subring of S and $R/\ker \varphi$ is isomorphic as a ring to $\varphi(R)$.
 - 2. If I is any ideal of R, then the map

$$R \to R/I$$
 defined by $r \mapsto r + I$

is a surjective ring homomorphism with kernel I (this homomorphism is called the *natural projection* of R onto R/I). Thus every ideal is the kernel of a ring homomorphism and vice versa.

Theorem 8. Let R be a ring.

- 1. (The Second Isomorphism Theorem for Rings) Let A be a subring and let B be an ideal of R. Then $A + B = \{a + b \mid a \in A, b \in B\}$ is a subring of R, $A \cap B$ is an ideal of A and $(A + B)/B \cong A/(A \cap B)$.
- 2. (The Third Isomorphism Theorem for Rings) Let I and J be ideals of R with $I \subseteq J$. Then J/I is an ideal of R/I and $(R/I)/(J/I) \cong R/J$.

3. (The Fourth or Lattice Isomorphism Theorem for Rings) Let I be an ideal of R. The correspondence $A \leftrightarrow A/I$ is an inclusion preserving bijective between the set of subrings A of R that contain I and the set of subrings of R/I. Furthermore, A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.

Definition. Let I and J be ideals of R.

- 1. Define the sum of I and J by $I + J = \{a + b \mid a \in I, b \in J\}$.
- 2. Define the *product* of I and J, denoted by IJ, to be the set of all finite sums of elements of the form ab with $a \in I$ and $b \in J$.
- 3. For any $n \geq 1$, define the n^{th} power of I, denoted I^n , to be the set consisting of all finite sums of elements of the form $a_1a_2\cdots a_n$ with $a_i\in I$ for all i. Equivalently, I^n is defined inductively by defining $I^1=I$ and $I^n=II^{n-1}$ for $n=2,3,\ldots$

1.4 Properties of Ideals

Throughout this section R is a ring with identity $1 \neq 0$.

Definition. Let A be any subset of the ring R.

- 1. Let (A) denote the smallest ideal of R containing A, called the ideal generated by A.
- 2. Let RA denote the set of all finite sums of elements of the form ra with $r \in R$ and $a \in A$ i.e., $RA = \{r_1a_2 + r_2a_2 + \ldots + r_na_n \mid r_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$ (where the convention is RA = 0 if $A = \emptyset$). Similarly, $AR = \{a_1r_2 + a_2r_2 + \ldots + a_nr_n \mid r_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$ and $RAR = \{r_1a_2r'_1 + r_2a_2r'_2 + \ldots + r_na_nr'_n \mid r_i, r'_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$
- 3. An ideal generated by a single element is called a *principal ideal*.
- 4. An ideal generated by a finite set is called a *finitely generated ideal*.

Note. When $A = \{a\}$ or $\{a_1, a_2, \ldots\}$, etc. we shall simply write (a) or (a_1, a_2, \ldots) for (A), respectively.

Note.

1. Analogous to subgroups generated by subsets of a group (section 2.4), we have

$$(A) = \bigcap_{\substack{I \text{ an ideal} \\ A \subseteq I}} I$$

- 2. RAR is the ideal generated by A.
- 3. If R is commutative then RA = AR = RAR = (A).

Proposition 9. Let I be an ideal of R.

1. I = R if and only if I contains a unit.

2. Assume R is commutative. Then R is a field if and only if its only ideals are 0 and R.

Corollary 10. If R is a field then any nonzero ring homomorphism from R into another ring is an injection.

Definition. An ideal M is an arbitrary ring S is called a maximal ideal if $M \neq S$ and the only ideals containing M are M and S, i.e., there is no ideal I such that $M \subseteq I \subseteq S$.

Proposition 11. In a ring with identity every proper ideal is contained in a maximal ideal.

Proposition 12. Assume R is commutative. The ideal M is maximal if and only if the quotient ring R/M is a field.

Definition. Assume R is commutative. An ideal P is called a *prime ideal* if $P \neq R$ and whenever the product ab of two elements $a, b \in R$ is an element of P, then at least one of a and b is an element of P.

Proposition 13. Assume R is commutative. Then the ideal P is a prime ideal in R if and only if the quotient ring R/P is an integral domain.

Corollary 14. Assume R is commutative. Every maximal ideal of R is a prime ideal.

1.5 Rings of Fractions

Theorem 15. Let R be a commutative ring. Let D be any nonempty subset of R that does not contain 0, does not contain any zero divisors, and is closed under multiplication (i.e., $ab \in D$ for all $a, b \in D$). Then there is a commutative ring Q with 1 such that Q contains R as a subring and every element of D is a unit in Q. The ring Q has the following additional properties.

- 1. Every element of Q is of the form rd^{-1} for some $r \in R$ and $d \in D$. In particular, if $D = R \{0\}$ then Q is a field.
- 2. (uniqueness of Q) The ring Q is the "smallest" ring containing R in which all elements of D becomes units, in the following sense. Let S be any commutative ring with identity and let $\varphi \colon R \to S$ be any injective ring homomorphism such that $\varphi(d)$ is a unit in S for every $d \in D$. Then there is an injective homomorphism $\Phi \colon Q \to S$ such that $\Phi|_R = \varphi$. In other words, any ring containing an isomorphic copy of R in which all elements of D become units must also contain an isomorphic copy of Q.

Definition. Let R, D and Q be as in Theorem 15.

- 1. The ring Q is called the *ring of Fractions* of D with respect to R and is denoted $D^{-1}R$.
- 2. If R is an integral domain and $D = R \{0\}$, Q is called the *field of fractions* or quotient field of R.

Note. If A is a subset of a field F, then the intersection of all the subfields of F containing A is a subfield of F and is called the *subfield generated by* A.

Corollary 16. Let R be an integral domain and let Q be the field of fractions of R. If a field F contains a subring R' isomorphic to R then the subfield of F generated by R' is isomorphic to Q.

1.6 The Chinese Remainder Theorem

Assume unless otherwise stated that all rings are commutative with identity $1 \neq 0$.

Definition. The ideals A and B of the ring R are said to be *comaximal* if A + B = R.

Theorem 17. (Chinese Remainder Theorem) Let A_1, A_2, \ldots, A_k be ideals in R. The map

$$R \to R/A_1 \times R/A_2 \times \cdots \times R/A_k$$
 defined by $r \mapsto (r + A_1, r + A_2, \dots, r + A_k)$

is a ring homomorphism with kernel $A_1 \cap A_2 \cap \ldots \cap A_k$. If for each map $i, j \in \{1, 2, \ldots, K\}$ with $i \neq j$ the ideals A_i and A_j are comaximal, then this map is surjective and $A_1 \cap A_2 \cap \ldots \cap A_k = A_1 A_2 \cdots A_k$, so

$$R/(A_1A_2\cdots A_k) = R/(A_1\cap A_2\cap \ldots \cap A_k) \cong R/A_1\times R/A_2\times \cdots \times R/A_k.$$

Corollary 18. Let n be a positive integer and let $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be its factorization into powers of distinct primes. Then

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times (\mathbb{Z}/p_2^{\alpha_2}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}),$$

as rings, so in particular we have the following isomorphism of multiplicative groups:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{\alpha_2}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^{\times}.$$