EXERCICE: OSCILLATEUR ELECTRIQUE (Correction)

A – Étude d'un condensateur

A.1.

A.2.a) Quand on ferme l'interrupteur la tension u_g passe instantanément de 0 à E volts, elle est donc représentée par la courbe 2. La courbe 2 correspond à la voie A.

Le condensateur ne se charge pas instantanément: u_C augmente exponentiellement puis tend vers une tension constante lorsque la charge est terminée. La courbe 1 correspond à la voie B.

A.2.b) E correspond à 2,5 divisions sur l'écran,

soit
$$E = 2.5 \times 2 = 5V$$

A.3.c)
$$\tau = R \times C$$
 $[\tau] = [R] \times [C]$

Or U = R×I (loi d'Ohm) et U =
$$\frac{Q}{C}$$

D'autre part
$$I = \frac{Q}{\Delta t}$$

Il vient :
$$[\tau] = \frac{[U]}{[I]} \times \frac{[Q]}{[U]} = \frac{[Q]}{[I]} = [T]$$

 τ est bien homogène à un temps.

A.3.d) La méthode de la tangente est peu précise.

Pour $t = \tau$ alors $u_C(\tau) = 0.63$.E soit $u_C(\tau) = 0.63 \times 5.0 = 3.15$ V, à l'écran environ 1,6 div.

D'autre part, pour t=5 τ , on peut considérer que la tension aux bornes du condensateur est égale à celle aux bornes du générateur.

5τ représentées par 5 div, donc τ correspond à une division.

$$\tau = 0.5 \text{ ms}$$

B - Étude de l'association d'un condensateur et d'une bobine

B.1) D'après la loi d'additivité des tensions, on a : $u_C + u_L = 0$

$$u_{C} + L\frac{di}{dt} = 0$$

$$Or \ i = \frac{dq}{dt} = C\frac{du_{C}}{dt}$$

$$u_{C} + L.C. \frac{d^{2}u_{C}}{dt^{2}} = 0$$

$$d^{2}u_{C} = 1$$

Soit l'équation différentielle :

$$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$$

B.2.a) Les oscillations sont sinusoïdales et non amorties (résistance totale du circuit négligeable)

B.2.b)
$$T'_0 = 2\pi \sqrt{LC} = 2\pi\sqrt{4LC} = 2\times 2\pi\sqrt{LC} = 2\times T_0$$

B.2.c) Énergie emmagasinée dans le condensateur : $E_c = \frac{1}{2} C \times u_C^2$ Énergie emmagasinée dans la bobine : $E_L = \frac{1}{2} L \times i^2$

À la date t = 0s, le condensateur est chargé, donc i = 0, l'énergie emmagasinée dans la bobine est nulle. OU $i = \frac{dq}{dt} = C\frac{du_C}{dt}$, et $\frac{du_C}{dt}$ est égale au coefficient directeur de la tangente à la courbe représentative de $u_C = f(t)$. Or à t = 0 s, cette tangente est horizontale (voir schéma ci-dessus:—).

La tension aux bornes du condensateur s'annule au bout d'une durée égale à $T_0/4=1$ ms, ce qui correspond à une énergie emmagasinée dans le condensateur nulle.

B.3.a) La résistance totale du circuit n'étant pas négligeable, il y a **dissipation d'énergie** sous forme de chaleur en raison de l'**effet Joule**.

B.3.b) C'est le **régime pseudo-périodique**. On observe un amortissement des oscillations électriques, l'amplitude de la tension aux bornes du condensateur (et aux bornes de la bobine) diminue au cours du temps.