Igazságértékelés függvény Gyakorlat

Logika

2020/2021 1. félév

Bevezető fogalmak

Dedukciós tétel

Legyenek $A_1, A_2, ..., A_n, B(n \ge 1)$ tetszőleges ítéletlogikai formulák.

 $\{A_1,A_2,...,A_{n-1},A_n\} \models_0 B$ pontosan akkor, ha $\{A_1,A_2,...,A_{n-1}\} \models_0 A_n \supset B$.

Az eldöntésprobléma tétele

Legyenek $A_1, A_2, ..., A_n, B$ ítéletlogikai formulák. $\{A_1, A_2, ..., A_{n-1}, A_n\} \models_0 B$ pontosan akkor, ha $\models_0 A_1 \supset A_2 \supset ... \supset A_{n-1} \supset A_n \supset B$.

Tétel

Legyenek $A_1,A_2,...,A_n,B(n\geq 1)$ tetszőleges ítéletlogikai formulák. $\{A_1,A_2,...,A_{n-1},A_n\}\models_0 B$ pontosan akkor, ha az $\{A_1,A_2,...,A_n,\neg B\}$ formulahalmaz kielégíthetetlen, vagy másképp a $A_1\wedge A_2\wedge...\wedge A_n\wedge \neg B$ formula kielégíthetetlen.

Bevezető fogalmak

Az előző tételekből látható, hogy két különböző szemantikus eldöntésproblémát tudunk vizsgálni.

1. Tetszőleges ítéletlogikai formuláról eldönteni, hogy tautológia-e.

$$\models_0 A_1 \supset A_2 \supset ... \supset A_{n-1} \supset A_n \supset B$$

2. Tetszőleges ítéletlogikai formuláról eldönteni, hogy kielégíthetetlen-e.

$$\not\models_0 A_1 \land A_2 \land ... \land A_{n-1} \land A_n \land \neg B$$

Tautológia vizsgálat

Ellenőrizzük, hogy az alábbi szemantikus következmény valóban teljesül!

1. Ha esik az eső, akkor fúj a szél. $E \supset F$

2. Esik az eső és nem fúj a szél. $E \wedge \neg F$

K. Nem esik az eső.

Ε	F	$E\supset F$	$\mid E \wedge \neg F \mid$	$\neg E$
i	i	i	h	
i	h	h	i	
h	i	i	h	
h	h	i	h	

A kérdés valójában az, hogy a következő teljesül-e:

$$\{E\supset F, E\wedge \neg F\} \models_0 \neg E$$

Tautológia vizsgálat

Ha a dedukciós tételt kétszer alkalmazzuk a következő formulát kapjuk:

$$\models_0 (E \supset F) \supset ((E \land \neg F) \supset \neg E)$$

Annak vizsgálatához,hogy a fenti formula tautológia-e,készítsük el igazságtábláját.

Ε	F	$\mid (E \supset F) \supset ((E \land \neg F) \supset \neg E)$
i	i	i
i	h	i
h	i	i
h	h	i

Látható, hogy mindenhol igaz a helyettesítési érték, így ez a formula tautológia, tehát az eredeti szemantikus következmény is teljesül.

Kielégíthetetlenség vizsgálat

Bizonyítsuk be, hogy az előző ellentmondásos formulahalmazból bármilyen formula következik!

$$\{E\supset F, E\wedge \neg F\}\models_0 \neg E$$

Vizsgáljuk a következő formulahalmazt, hogy kielégíthetetlen-e igazságtáblájával:

$$\{E\supset F, E\land \neg F, \neg \neg E\}$$

Ε	F	$E\supset F$	$E \wedge \neg F$	$\neg \neg E$
i	i	i	h	
i	h	h	i	
h	i	i	h	
h	h	i	h	

Látható már az eredeti formulahalmazból is, hogy a következményformula helyettesítési értékétől függetlenül a formulahalmaz kielégíthetetlen lesz.

SÕT! Bármilyen következményformula esetén MINDIG kielégíthetetlen lesz!

Igazságértékelés függvény fogalma

Egy formula igaz-/hamishalmazának előállításához az eddig tanultak alapján a formula igazságtáblájának felírására van szükségünk.

Azonban ezeket előállíthatjuk úgy is, hogy igazságértékelés függvény segítségével megkeressük a formula bázisának interpretációira azokat a feltételeket, amelyek biztosítják azt, hogy az az igazhalmaz, illetve hamishalmaz eleme legyen.

$$\varphi(\neg A)^i$$

$$\varphi(A \wedge B)^i$$

$$\varphi(A \vee B)^i$$

$$\varphi(A\supset B)^i$$

$$\varphi(\neg A)^h$$

$$\varphi(A \wedge B)^h$$

$$\varphi(A \vee B)^h$$

$$\varphi(A\supset B)^h$$

$$\varphi(\neg A)^i$$
 $\varphi(A \land B)^i$ $\varphi(A \lor B)^i$ $\varphi(A \supset B)^i$

$$\varphi(\neg A)^h$$
 $\varphi(A \wedge B)^h$ $\varphi(A \vee B)^h$ $\varphi(A \supset B)^h$

$$\varphi(\neg A)^h$$
 $\varphi(A \land B)^h$ $\varphi(A \lor B)^h$ $\varphi(A \supset B)^h$

$$\varphi(\neg A)^h \qquad \qquad \varphi(A \land B)^h \qquad \qquad \varphi(A \lor B)^h \qquad \qquad \varphi(A \supset B)^h$$

$$\varphi(\neg A)^{i} \qquad \varphi(A \land B)^{i} \qquad \varphi(A \lor B)^{i} \qquad \varphi(A \supset B)^{i}$$

$$| \qquad | \qquad \qquad |$$

$$\varphi(A)^{h}$$

$$\varphi(\neg A)^h$$
 $\varphi(A \land B)^h$ $\varphi(A \lor B)^h$ $\varphi(A \supset B)^h$
 $\varphi(A)^i$

$$\varphi(\neg A)^{i} \qquad \varphi(A \land B)^{i} \qquad \varphi(A \lor B)^{i} \qquad \varphi(A \supset B)^{i}$$

$$| \qquad | \qquad \qquad |$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i}$$

$$\varphi(\neg A)^{h} \qquad \varphi(A \land B)^{h} \qquad \varphi(A \lor B)^{h} \qquad \varphi(A \supset B)^{h}$$

$$arphi(
eg A)^i \qquad arphi(A \wedge B)^i \qquad arphi(A \vee B)^i \qquad arphi(A \supset B)^i \ arphi(A)^h \qquad arphi(A)^i \ arphi(A)^h \qquad arphi(A \wedge B)^h \qquad arphi(A \vee B)^h \qquad arphi(A \supset B)^h \ arphi(A)^i \ arphi(A)^i \ arphi(A \vee B)^h \qquad arphi(A \vee B)^h \qquad arphi(A \cap B)^h \ arphi(A \cap B$$

$$\varphi(\neg A)^{i} \qquad \varphi(A \wedge B)^{i} \qquad \varphi(A \vee B)^{i} \qquad \varphi(A \supset B)^{i}$$
 $| \qquad \qquad | \qquad \qquad |$
 $\varphi(A)^{h} \qquad \varphi(A)^{i}$
 $| \qquad \qquad |$
 $\varphi(B)^{i}$

$$\varphi(\neg A)^{h} \qquad \varphi(A \wedge B)^{h} \qquad \varphi(A \vee B)^{h} \qquad \varphi(A \supset B)^{h}$$
 $| \qquad \qquad |$
 $| \qquad \qquad |$
 $| \qquad \qquad |$

lgazságértékelés szabályok grafikus ábrázolása

8/11

Igazságértékelés függvény

Igazságértékelés függvény segítségével határozzuk meg az alábbi formula igaz-/hamishalmazát!

$$(\neg A \lor B) \land (A \lor \neg B)$$

Igazságértékelés függvény

Keressük először az igazhalmazt.

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^i$$

Igazságértékelés függvény

Keressük először az igazhalmazt.

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^i$$
 (1)

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} \ (1)$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$|$$

$$\varphi(\neg A \lor B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i}$$

$$|$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i}$$

$$|$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi(\neg A)^{i} \qquad \varphi(B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \underline{\varphi(B)^{i}}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i}$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \underline{\varphi(B)^{i}}$$

$$\varphi(A)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \underline{\varphi(B)^{i}}$$

$$\varphi(A)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i}$$

$$\varphi(A)^{i} \not \downarrow \qquad \varphi(\neg B)^{i}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i}$$

$$\varphi(A)^{i} \not = \varphi(\neg B)^{i} (5)$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i}$$

$$\varphi(A)^{i} \not \leftarrow \varphi(\neg B)^{i} (5)$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i}$$

$$\varphi(B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i} (6)$$

$$\varphi(A)^{i} \not \downarrow \qquad \varphi(\neg B)^{i} (5)$$

$$\varphi(B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i} (6)$$

$$\varphi(B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(A)^{i} \qquad \varphi(A)^{i} \qquad \varphi(B)^{h}$$

$$\varphi(B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{i} (1)$$

$$\varphi(\neg A \lor B)^{i} (2)$$

$$\varphi(A \lor \neg B)^{i} (4)$$

$$\varphi(\neg A)^{i} (3) \qquad \varphi(B)^{i}$$

$$\varphi(A)^{h} \qquad \varphi(A)^{i} \qquad \varphi(\neg B)^{i} (6)$$

$$\varphi(A)^{i} \not \downarrow \qquad \varphi(\neg B)^{i} (5) \qquad \varphi(B)^{h} \not \downarrow$$

$$\varphi(B)^{h}$$

Keressük először az igazhalmazt.

Az egyes ágakon az alábbi feltételeket kapjuk:

1.ág	2.ág		3.ág		4.ág
	Α	В	Α	В	
4	h	h	i	i	4

A kapott feltételek alapján az alábbi interpretációk elemei az igazhalmaznak:

Α	В	
i	i	
h	h	

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^h$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^h (1)$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^h \ (1)$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{h} (1)$$

$$\varphi(\neg A \lor B)^{h} \qquad \varphi(A \lor \neg B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{h} (1)$$

$$\varphi(\neg A \lor B)^{h} (2) \quad \varphi(A \lor \neg B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{h} (1)$$

$$\varphi(\neg A \lor B)^{h} (2) \quad \varphi(A \lor \neg B)^{h}$$

$$\varphi((\neg A \lor B) \land (A \lor \neg B))^{h} (1)$$

$$\varphi(\neg A \lor B)^{h} (2) \quad \varphi(A \lor \neg B)^{h}$$

$$\varphi(\neg A)^{h}$$

Keressük a hamishalmazt.

Az egyes ágakon az alábbi feltételeket kapjuk:

ſ	1. ág		2.ág	
ſ	Α	В	Α	В
ſ	i	h	h	i

A kapott feltételek alapján az alábbi interpretációk elemei a hamishalmaznak:

Α	В
i	h
h	i

Az előbb kiszámított igazhalmaz:

Α	В
i	i
h	h