AD-A162 355 DATABASE DESIGN FOR STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION(U) IOMA UNIV IOMA CITY APPLIED-OPTIMAL DESIGN LAB JS ARORA ET AL. OCT 84 CAD-\$\$-84-22 F/G 9/2 1/4 NL. UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

Technical Report No. CAD-SS-84.22

Database Design for Structural Analysis and Design Optimization

By

J. S. Arora, M. Haririan, J. K. Paeng, Y. S. Ryu, T. Sreekanta Murthy, and C. C. Wu

APPLIED-OPTIMAL DESIGN LABORATORY

Department of Civil Engineering
College of Engineering
The University of Iowa
Iowa City, IA 52242-1384

Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Under Grant No. AFOSR 82-0322

October 1984

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
	3. RECIPIENT'S CATALOG NUMBER		
AD-A162	5. TYPE OF REPORT & PERIOD COVERED		
4. TITLE (and Subtitie)	Annual, October 1983 to		
Database Design for Structural Analysis and	September 1984		
Design Optimization	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(s)		
J.S. Arora, M. Haririan, J.K. Paeng, Y.S. Ryu, T. Sreekanta Murthy and C.C. Wu	AFOSR 82-0322		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Applied-Optimal Design Laboratory	61102F		
College of Engineering	2307/BI '		
The University of Iowa, Iowa City, Ia 52242			
11. CONTROLLING OFFICE NAME AND ADDRESS AFOSR/NA	12. REPORT DATE October 1984		
Building 410	13. NUMBER OF PAGES		
Bolling AFB, D.C. 20332	318		
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)		
	Unclassified		
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A		
16. DISTRIBUTION STATEMENT (of this Report)			
Distribution is unlimited Approved for public redistribution unlimited	• • • • • • • • • • • • • • • • • • •		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
	Į		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
	i		
Database Design, Structural Analysis, Optimization, Database Management			
	1		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
This report presents a procedure for design of database for structural analysis and design optimization. The procedure involves three distinct steps: (i) collection of information, (ii) analysis of data flow and (iii) identification of relations and data sets. The procedure is used to design a database for analysis			
and design of systems for linear, nonlinear, static and dynamic responses. Databases of two existing analysis programs, ADINA and GIFTS, are studied to gain insights into their designs. These are the state-of-the-art analysis programs			
that create large databases. However their database management systems are			

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLET!

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

tightly coupled to the program and cannot be used for any extensions. An intelligent and flexible database management system that has been implemented on the PRIME system is described. The system implements both the numerical and relational data models. These models are judged to be more suitable for engineering applications. A detailed description of the capabilities of the system is presented. Using the system, the proposed database design will be implemented and evaluated in the future.

Unclassified

Table of Contents

```
AIR FORCE OFFICE OF SCIENTIFIC RECEIVES (AFEC.)
LIST OF FIGURES -iv
                                      MOTICE OF THE
LIST OF TABLES - v
SUMMARY - vi
                                    MATTERY J. A. S.
                                   Chief, Technical Information Division
1. INTRODUCTION - 1
2. DATABASE DESIGN PROCEDURES - 3
    2.1 INTRODUCTION - 3
    2.2 WHY A DATABASE IS NEEDED? - 3
    2.3 REQUIREMENTS OF DATABASE - 4
    2.4 INFORMATION COLLECTION STEPS - 5
    2.5 ORGANIZATION OF DATA - 5
         2.5.1 Data Set - 5
         2.5.2 Relations - 6
    2.6 GLOBAL AND LOCAL DATABASE - 6
3. ANALYSIS OF ADINA DATABASE - 8
    3.1 INTRODUCTION - 8
    3.2 FLOW OF INPUT DATA IN ADINA - 8
    3.3 STRUCTURE OF ADINA - 10
         3.3.1 What Is ADINA? - 10
         3.3.2 Organization of ADINA - 10
         3.3.3 Available Elements - 11
         3.3.4 Available Material Models - 11
         3.3.5 Usage of ADINA - 12
    3.4 DATABASE IN ADINA - 13
         3.4.1 Tape Allocation - 13
         3.4.2 Details of Opening/Closing Files - 14
    3.5 DATABASE FILES IN ADINA - 15
         3.5.1 -3.5.19 Tape 1 to Tape 19 - 16
         3.5.20-3.5.21 Tape 22 to Tape 23 - 90
                        Tape 50 - 92
         3.5.22
         3.5.23
                        Tape 56 - 92
         3.5.24-3.5.25 Tape 59 to Tape 60 - 93
    3.6 DISCUSSIONS - 110
    ANALYSIS OF GIFTS' DATABASE - 111
    4.1 INTRODUCTION - 111
         STRUCTURE OF PROGRAM GIFTS - 111
    4.2
         4.2.1 Model Generation and Editing - 111
         4.2.2 Load and Boundary Condition Generation and Editing - 112
         4.2.3 General Purpose Computational and Result Display - 112
         4.2.4 Free Vibration Analysis (Subspace Iteration) - 114
         4.2.5 Transient Response Analysis (Houbolt Method) - 115
         4.2.6 Constrained Substructure Analysis (COSUB) - 115
    4.3 DATABASE STRUCTURE - 116
    4.4 DATA SETS IN GIFTS - 116
    4.5 UTILIZATION OF DATA SETS - 116
    4.6 DETAILED DESCRIPTION OF DATA SETS - 117
```

- 4.6.1 System and Data Set Management Group 117
- **4.6.2 Model Generation Group 136**
- 4.6.3 Static Analysis Group 166
- 4.6.4 Dynamic Analysis Group 180
- 4.6.5 Substructural Analysis Group 184
- **4.6.6** Temporary Group 191
- 4.7 DISCUSSIONS 195
- 5. REQUIRED DATA FOR FEM-BASED STRUCTURAL SYNTHESIS 196
 - 5.1 INTRODUCTION 196
 - 5.2 DATA FOR PROBLEM DEFINITION 196
 - 5.2.1 Overall Control Information 196
 - 5.2.2 System Modelling Information 197
 - 5.2.3 Parameters for Analysis Control 197
 - 5.2.4 Control Information for Design Optimization 197
 - 5.2.5 Parameters for Output and Graphic Display Control 197
 - 5.2.6 Other Information 198
 - 5.3 DATA FOR SYSTEM IDEALIZATION 198
 - 5.3.1 Structure/Substructure Data 198
 - 5.3.2 Node Related Data 198
 - 5.3.3 Element Related Data 198
 - 5.3.4 Material Properties 199
 - 5.3.5 Loading Data 199
 - 5.3.6 Eigenproblem Data 200
 - 5.3.7 Other Information 200
 - 5.4 DATA FOR RESPONSE ANALYSIS 200
 - 5.4.1 Element Level Data 200
 - 5.4.2 Structure Level Data 200
 - 5.4.3 Response Data 201
 - 5.5 DATA FOR OPTIMIZATION PROBLEM DEFINITION 201
 - 5.5.1 Data for Cost Function Formulation 201
 - 5.5.2 Data for Constraints Formulation 201
 - 5.5.3 Other Information 201
 - 5.6 DATA FOR DESIGN SENSITIVITY ANALYSIS 202
 - 5.6.1 Preliminary Information 202
 - 5.6.2 Gradient Information 202
 - 5.7 DATA FOR DESIGN IMPROVEMENT 202 5.8 DATA FOR GRAPHIC DISPLAY - 203
- 6. DESIGN OF PROPOSED DATABASE 204
 - 6.1 INTRODUCTION 204
 6.2 DATA FLOW IN STRUCTURAL ANALYSIS AND
 - DESIGN SENSITIVITY/OPTIMIZATION 205
 - 6.2.1 Processing Steps in Structural Analysis 205
 - 6.3 LIST OF DATA SETS 215
 - 6.4 DESIGN OF STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION DATA SETS 219
 - 6.5 DATABASE STRUCTURE 274
- 7. IMPLEMENTATION OF DATABASE MANAGEMENT SYSTEM MIDAS 279
 - 7.1 INTRODUCTION REMARKS 279
 - 7.2 IMPLEMENTATION OF MIDAS/R 279
 - 7.2.1 Capabilities of MIDAS/R 279
 - 7.2.2 Database of MIDAS/R 279

- 7.2.3 Data Definition Commands of MIDAS/R 280
- 7.2.4 Data Manipulation Commands MIDAS/R 281
- 7.2.5 Interactive Commands 287
- **7.2.6 Program Details 290**
- 7.2.7 Limitations of MIDAS/R ~ 291
- 7.3 IMPLEMENTATION OF MIDAS/N 291
 - 7.3.1 Capabilities of MIDAS/N 292
 - 7.3.2 Database of MIDAS/N 292
 - 7.3.3 Data Definition Subroutines of MIDAS/N 293
 - 7.3.4 Data Manipulation Commands 295
 - 7.3.5 Matrix Operations Utilities 297
 - 7.3.6 Equation Solvers and Matrix Decomposition Routines 299
 - 7.3.7 Program Details 304
 - 7.3.8 Limitations of the MIDAS/N 305

8. DISCUSSION AND CONCLUSIONS - 307

REFERENCES - 308

LIST OF FIGURES

- Figure 2.1 Typical Relational Data Model 7
- Figure 3.1 Auxilary Storage Organization for Linear Element Group Information (Tape 1) 72
- Figure 3.2 Auxilary Storage Oganization for Monlinear Element Group Information (Tape 2) 73
- Figure 4.1 Structure of GIFTS Batch Module 113
- Figure 4.2 Structure of GIFTS Interactive Module 113
- Figure 4.3 Database Structure of GIFTS 118
- Figure 7.2.1 Data Type and Size of a Relation 282
- Figure 7.2.2 Layout of Data in a Typical Relation -283
- Figure 7.3.1 Logical Data Organization in MIDAS/N 294
- Figure 7.3.2 Hierarchical Level of Database Organization 306
- Figure 7.3.3 Physical Storage Structure 306

LIST OF TABLES

- Table 4.1 List of Data Sets in GIFTS 119
- Table 4.2 Data Set Utilization in GIFTS5 121
- Table 4.3 Usage of Logical Device Numbers in GIFTS5* -125
- Table 6.2.1 Data Flow in Structural Analysis 207
- Table 6.2.2 Data Flow in Design Optimization 212

SUMMARY

This report presents a procedure for design of database for structural The procedure involves three distinct analysis and design optimization. steps: (i) collection of information, (ii) analysis of data flow and (iii) identification of relations and data sets. The procedure is used to design a database for analysis and design of systems for linear, nonlinear, static and dynamic responses. Databases of two existing analysis programs, ADINA and GIFTS, are studied to gain insights into their designs. These are the state-of-the-art analysis programs that create large databases. However their database management systems are tightly coupled to the program and cannot be used for any extensions. An intelligent and flexible database management system that has been implemented on the PRIME system is described. The system implements both the numerical and relational data These models are judged to be more suitable for engineering models. A detailed description of the capabilities of the system is applications. presented. Using the sytem, the proposed database design will be implemented and evaluated in the future.

1. INTRODUCTION

Analysis and design of engineering systems involves operations on a large amount of data. With the availability of sophisticated database management systems, the data can be organized effectively in databases. A good database containing all the relevant information required in analysis and design will enable designers to use the data in an efficient manner. With the aid of a database, engineer seeks the required data directly from the database instead by conventional means such as charts and tables. The data stored in a database may be used either interactively or through application programs. During design process, new data is created and existing data in the database is modified. Database may become highly disorganized and unmanageable unless it is designed properly to allow systematic use of data. Therefore, design of efficient database is one of the important tasks needed for engineering system design and its optimization.

A database is defined as a collection of interrelated data stored together without harmful or unnecessary redundancy to serve multiple applications. The data are stored so that they are independent of programs which use the data. A common and controlled approach is used in adding new data and in modifying and retrieving existing data within the database. The data is structured so as to provide a foundation for future application development. It is important to note that database contains actual data as well as the relationship between data values.

Users in the field of structural analysis and design optimization can be application program developers, interactive users, structural system design program developers, and the database administrator. Application programmers are involved in developing special applications which are not available in existing structural design programs. However, an interactive user is generally concerned with quick retrieval and storage of data required in arbitrary sequence of computation. System program developers are those who need well-organized database to develop system analysis and design packages in an efficient way. Thus, it is necessary to cater to the need of all these users by a well-designed database.

Database design is a complex task and requiring a systematic approach and a suitable design methodology. It starts with collection of all relevant information needed in system analysis and design optimization. All the user's requirements have to be met in the design of database. The existing databases available for structural analysis and design have to be studied. The method of data organization and their good and weak aspects have to be analyzed. This will enable the new database to be designed to incorporate all the favorable features of existing databases and avoid all the weaknesses that might arise in the new database.

This report deals with the database design for structural analysis and design optimization. It is critically important to properly design a database for such applications. These applications need dynamic interaction with the database; i.e., during the run-time data needs to be fetched and new data needs to be created in the database. Improperly designed database can be more harmful than helpful. the program can be highly inefficient if a proper database is not designed and the database management system is not highly

sophisticated. This report present various steps and detailed design of a database. Databases of two well known existing finite element programs for analysis of complex systems are studied. These programs can handle linear, nonlinear, static, and dynamic analysis of advanced systems. Insights gained from the study of these databases are used to design a new database.

The requirements of a database for structural design applications are given in Chapter 2. The concepts of global and local databases are explained. Techniques of data organization are also given there. Details of ADINA's database are described in Chapter 3. Analysis of GIFTS database is given in Chapter 4. Data required for FEM-based structural synthesis are described in Chapter 5. A new database is designed in Chapter 6 based on the database requirements of Chapter 2. A database management system suitable for engineering analysis and design is described in Chapter 7. Finally, discussion and conclusions are given in the last chapter.

2. DATABASE DESIGN PROCEDURES

2.1 INTRODUCTION

For a good database design, certain well-defined procedures must be followed to meet the specified requirements. Before a database is designed, required information is collected. The information is organized to develop a data model. Based on this, we can design a suitable database meeting requirements of several application programs and interactive use. In this chapter, detailed requirements of a database, some guidelines for information collection and data organization, and concepts of global and local database are given.

A comprehensive survey of database management concepts and systems has been recently presented (Sreekanta Murthy, et al, 1983; Sreekanta Murthy, Reddy, and Arora, 1984; Sreekanta Murthy and Arora, 1984). These reviews indicate that the use of database management in scientific computing is The subject has become quite mature in business type applications. Considerable work needs to be done to properly design databases in engineering application. The scientific community has recognized this need. Therefore research efforts in the area have seen a steady growth in the recent years. General description and concepts of database management in scientific computing have been presented by Fellipa (1979, 1981). management in finite element analysis has been studied by Pahl (1981). management in FEM-Based optimization software has been discussed by Rajan and Bhatti (1983). The role and application of database management in integrated computer-aided design has been discussed by Blackburn, Storaasli and Fulton It can be observed from this review that the importance of data management and proper database design have been well recoganized. expected that suitable methods and systems will be developed and reported. More databases will be designed and implemented for engineering applications.

2.2 WHY A DATABASE IS NEEDED?

Computer programs for optimal design of large structural and mechanical systems can be developed for automatic computation based on well-known design optimization methods. Finite element techniques are usually adopted to analyze a system within a design iteration. In general, finite element techniques require large computation time and data storage. Furthermore, the amount of data handled is directly dependent on the number of iterations performed in iterative schemes. Therefore, a careful consideration of data handling aspect is necessary in design optimization.

It is important to realize that engineering design optimization and engineering analysis are fundamentally different in nature. In analysis, it is generally assumed that a solution exists and numerical methods used are stable. Also, many engineering problems require use of the data only a few times during the solution procedure. In optimal design, on the other hand, we find solutions in an iterative manner. Existence of even a nominal design satisfying constraints is not assumed, much less existence of an optimal design. Therefore, it becomes essential for the designer to exercise control over the suitable design optimization method that has to be used. In such a

case, the data used by one method should be made available for use in another method. The concept of centralized database becomes important. A centralized database which allows interaction between a finite element program and an optimization program can be used to improve design iteratively. Such a database provides an option for the designer to interrupt the program execution and provides flexibility for designer to change the design parameters. With a properly designed database when used in conjunction with interactive computer graphics offers a considerable aid to the engineer involved in design optimization.

2.3 REQUIREMENTS OF DATABASE

General requirements of a database for structural analysis and design optimization are identified as follows:

- (1) It should include all the data needed for structural analysis and design.
- (2) It should serve many applications and interactive needs.
- (3) It should be designed so that new types of data and new applications can be easily added.
- (4) It should allow individual perspectives of data. This means that if a particular user needs only a portions of data from database, provision of data access in parts must be available.
- (5) Data redundancy should be minimized. Duplication of data in the database must be avoided.
- (6) It should have flexibility for data manipulation (ADD, DELETE, INSERT, MODIFY)
- (7) Suitable data structures should be allowed such as data sets, hierarchical and relational structure (Sreekanta Murthy, et al, 1983).
- (8) It should be designed to allow for data classification based on use e.g., geometry data, material data, structural properties data, optimization data). This facilitates storing all related data in a database.
- (9) It should contain accurate information and have data integrity. Data intergrity means the correctness of data in the database.
- (10) It should hold consistent information in various data groups. Information about a particular data object represented in various data sets must be consistent. For example, Nodal coordinate data and nodal degree of freedom data must contain same value of node number.

- (11) It should be independent of application programs. The database must be designed without any reference to any particular program. This will enable impartial design of database. Also, this makes the database suitable for any application program.
- (12) Mechanisms for security and protection should be provided.

2.4 INFORMATION COLLECTION STEPS

Design of a database requires use of well defined step. Collection of information about the database is a first step. The following guidelines are used in information collection:

- (1) Discuss with users of database and find out their requirements.
- (2) Find out the data needed for analysis and optimization methods.
- (3) Write down the sequence of data usage.
- (4) Identify the data entities and assign a unique name to them.
- (5) Determine their approximate size.
- (6) Find out the properties of data entities. For example an entity 'Element' has properties such as Shape, Nodes, Material. Property identification will help in collecting data associated with a particular entity.
- (7) Find out the data needed for possible future use.

2.5 ORGANIZATION OF DATA

Collected information based on the guidelines discussed in the previous section has to be grouped together according to their properties and relations. The most common way of grouping data is based on data sets or relations. Data set approach is based on organization of data into rows, columns, or submatrices. Relational approach is based on two-dimensional tabular form of data organization. Details of these two types of data organizations are discussed in this section.

2.5.1 Data Set

A data set is collection of data in the form of rows, columns, or submatrices. The data of same type are grouped together and identified using a unique name. The type of data sets can be short integer, long integer, single and double precision reals, or character words. Data storage and retrieval in the data sets are based on row and column identification numbers. A submatrix in a data set is located using its row and column numbers. Parts of data sets may be stored or retrieved by specifying appropriate elements of a row, column, or submatrix.

Data set approach is quite useful for organization of numerical data. Large-order matrices can be easily represented using submatrix data sets.

2.5.2 Relations

Tables are the most convenient way of representing some data. A relational data model is constructed from a tabular representation of data. The rows of the table are generally referred as tuples. The columns are referred as attributes. This model can be easily implemented and quite convenient to use. A relation can be easily expanded by addition of tuples. The relational algebraic operations such as PROJECT, JOIN, and SELECT can be used to form new relations. Figure 2.1 shows a typical relational model of data for finite element technique. Relation is named TRIG and contains tuples of triangular element data. There are six attributes for this relation; element, material and connected node numbers, and thickness.

A relation can contain data types of short or long integers, single or double precision real constants, and characters. Attributes of a relation can be of different data types. For example, element number in the relation TRIG is an integer, whereas thickness is a real data type.

2.6 GLOBAL AND LOCAL DATABASE

After the data are grouped into data sets or relations, next step is to store them in a database or many databases. One approach of storing data sets or relations is based on concept of global and local databases. A global database is a central depository of data needed in many applications or users. The global database is useful in collecting all data which are common to many applications or users. Whereas a local database is used by a single user or application. The local database contains only the data required for an application program or part of the application program.

The global and local database concept is quite useful in structural analysis and design optimization. The data such as geometry, material properties, and details of structural member of a system can be stored in a global database. The application programs retrieve these data to perform various computations. During the process of computation, intermediate results have to be saved in a local database. Once the analysis and design of the structural system is finalized, the results are transferred to global database for future use.

It is possible to provide various security and protection mechanisms using global and local databases. Only those with authorized password can be allowed to access parts of the global data. "Read Only" or "Modifying Access" can be provided to various data sets. This allows consistent modification of data in databases.

TRIG

ELEMENT NO.	MATERIAL NO.	NODE 1	NODE 2	NODE 3	THICKNESS

Figure 2.1 Typical Relational Data Model

3. ANALYSIS OF ADINA DATABASE

3.1 INTRODUCTION

Designing an efficient database for structural analysis and design optimization needs an investigation of databases for the existing analysis programs. Among them, ADINA has been known to be an efficient, reliable and well-written program for linear and nonlinear static and dynamic analysis. This chapter presents details of ADINA database and related materials. Since our concern is analysis of ADINA's database, subsequent sections are devoted to the structure of program, database in ADINA and explaination of database files.

Section 3.2 contains flow of input data in ADINA. Section 3.3 describes the concept of ADINA. Its database structure is summarized in Section 3.4. Details of each tape (file) are given in Section 3.5.

3.2 FLOW OF INPUT DATA IN ADINA

This section contains the flow of input data in ADINA is described in this section. More details are given in ADINA User's Manual (Report AE81-1).

I. HEADING CARD

II. MASTER CONTROL CARDS

- Card 1 Structural Control Card
- Card 2 Structural Control Card
- Card 3 Load Control Card
- Card 4 Mass and Damping Control Card
- Card 5 Frequency Solution Control Card
- Card 6 Time Integration Method Control Card
- Card 7 Incremental Solution Strategy Control Card
- Card 8 Print-Out Directives Control Card
- Card 9 Porthole Creation Control Card

III. SOLUTION DETAILS CARDS

- 1. Block Definition Cards for Effective Stiffness Matrix Reformation Time Steps
- 2. Block Definition Cards for Equilibrium Interation Time Steps
- 3. Block Definition Cards for Print-Out Time Steps
- 4. Block Definition Cards for Nodal Quantities Print-Out
- 5. Block Definition Cards of Time Steps for Saving Nodal Response
- 6. Block Definition Cards of Time Steps for Saving Element Responses

IV. TIME FUNCTIONS DATA

- 1. Time Functions Control Card
- 2. Time Functions Data

V. NODAL POINT DATA

- 1. Definition of Skew Coordinate Systems
- 2. Defintion of Mid-surface Normal Vector Sets
- 3. Nodal Point Data
- 4. Displacement Constriants Data

VI. STRUCTURAL MASSES, DAMPERS AND MODAL DAMPING FACTORS

- 1. Concentrated Masses
- 2. Concentrated Dampers
- 3. Modal Damping Factors

VII. INITIAL CONDITIONS

- a. control card
- b. card input of initial nodal-point displacements, volocities and accelerations
- c. card input of initial temperatures

XI. TRUSS ELEMENTS

- 1. Element Group Control Card
- 2. Section and Material Property Data Cards
- 3. Element Data Cards

XII. 2/D SOLID ELEMENTS

- 1. Element Group Control Cards
- 2. Material Property Data Cards
- 3. Stress Output Table Cards
- 4. Element Data Cards

XIII. 3/D SOLID ELEMENTS

- 1. Element Group Control Card
- 2. Material Property Data Cards
- 3. Stress Output Table Cards
- 4. Element Data Cards

XIV. BEAM ELEMENT

- 1. Element Group Control Card
- 2. Geometric and Material Linear Section Property Cards
- 3. Nonlinear Beam Property Cards
- 4.1 End Release Table
- 4.2 Stress Output Table Cards
- 5. Element Data Cards

XV. ISOPARAMETRIC BEAM ELEMENTS

- 1. Element Group Control Card
- 2. Section and Material Property Data Cards
- 3. Stress Output Table Cards
- 4. Element Data Cards

XVI. PLATE/SHELL ELEMENT

- 1. Element Group Control Card
- 2. Material Property Data Cards
- 3. Stress-Resultant Output Table Cards
- 4. Element Data Cards

XVII. SHELL ELEMENTS

- 1. Element Group Control Card
- 2. Material Propety Data Cards
- 3. Stress Output Table Cards
- 4. Shell Thickness Table Cards
- 5. Element Data Cards

XXI. 2/D FLUID ELEMENTS

- 1. Element Group Control Card
- 2. Material Property Data Cards
- 3. Element Data Cards

XXII. 3/D FLUID ELEMENTS

- 1. Element Group Control Card
- 2. Material Propety Data Cards
- 3. Element Data Cards

XXXII. APPLIED LOADS DATA

- A. Structure Loads Data
 - 1. Concentrated Loads Data
 - 2. 2/D Pressure Loading Data in Y-Z Plane
 - 3. 3/D Pressure Loading Data
 - 4. 2-Node BEAM Distrubted Loading Data
 - 5. ISO/BEAM Distributed Loading Data
 - 6. PLATE/SHELL Pressure Loading Data
 - 7. SHELL Pressure Loading Data
 - 8. Mass Proportional Loading Data
 - 9. Nodal Temperature Data
 - 10. Nodal Temperature Data
- B. Substructure Loads Data

XXXIII. FREQUENCY CALCULATION CARD

- a. determinant search solution card
- b. subspace iteration method card

3.3 STRUCTURE OF ADINA

In this section, concise description of program ADINA is given. More details can be found in ADINA reports and Bathe (1982).

3.3.1 What is ADINA?

ADINA (Automatic Dynamic Incremental Nonlinear Analysis) is a computer program for the static and dynamic displacemnt and stress analysis of solids, structures and fluid-structure systems. The program can be employed to perform linear and nonlinear analysis. Since in many cases only a linear analysis is required, and a nonlinear analysis should be preceded by a linear analysis, the program has been designed to perform a linear analysis very effectively. Following a linear analysis, a nonlinear analysis can be carried out with only a relatively few input changes. The companion program ADINAT is for analysis of linear and nonlinear, steady state and transient heat transfer problems.

3.3.2 Organization of ADINA

The complete solution process in program ADINA is divided into four distinct phases:

1) Finite Element Mesh and Element Data Input

In this phase the control information and the nodal point input data are read and generated by the program. The equation numbers for the active degrees of freedom at each nodal point are established. The initial conditions are read. The element data are read and generated, the element connection arrays are calculated and all element information is stored on a tape (database file).

2) Assemblage of Constant Structure Matrices

Before the solution of equilibrium equations is carried out, the linear structural stiffness, mass, and damping matrices are assembled and stored on tape (or other low-speed storage). In addition, the effective linear structural stiffness matrix (combination of stiffness, damping and mass matrices) is calculated and stored.

3) Load Vector Calculations

The externally applied load vectors for each time (load) step are calculated and stored on a tape.

4) Step-by-Step Solution

During this phase solution of the equilibrium equations is obtained at all time (or load) points. In addition to the displacement, velocity, and acceleration vectors (whichever applicable), the element stress are calculated and printed. Before the time integration is performed, the lowest frequencies and corresponding mode shapes may be calculated. In linear analysis, dynamic solution can be obtained using mode superposition.

3.3.3 Available Elements

The program ADINA presented contains the following element types:

- (1) Truss elements
- (2) Two-dimensional solid elements
- (3) Three-dimensional solid elements
- (4) Beam element
- (5) Isoparametric beam elements
- (6) Plate/shell element
- (7) Shell elements
- (8) 2-D fluid elements
- (9) 3-D fluid elements

3.3.4 Available Material Models

Depending on the element type, the following material descriptions are presently available in ADINA.

For Truss Elements

- (a) linear elastic
- (b) nonlinear elastic
- (c) thermo-elastic
- (d) elastic-plastic
- (e) thermo-elastic-plastic and creep

For Two-dimensional Elements

- (a) isotropic linear elastic
- (b) orthotropic linear elastic
- (c) isotropic thermo-elastic
- (d) curve description model
- (e) concrete model
- (f) elastic-plastic materials, von Mises and Drucker-Prager yield conditions
- (g) thermo-elastic-plasti-creep, von Mises yield condition
- (h) Mooney-Rivlin material

For Three-dimensional Elements

- (a) isotropic linear elastic
- (b) orthotropic linear elastic
- (c) isotropic thermo-elastic
- (d) curve description model
- (e) concrete model
- (f) elastic-plastic materials, von Mises and Drucker-Prager yield conditions
- (g) thermo-elastic-plastic-creep, von Mises yield condition

For Two-node Beam Element

- (a) linear elastic
- (b) elastic-plastic, von Mises yield condition

For Isoparametric Beam Elements

- (a) linear elastic
- (b) elastic-plastic, von Mises yield condition

For Three-node Plate/Shell Element

- (a) isotropic linear elastic
- (b) orthotropic linear elastic
- (c) elastic-plastic, Ilyushin yield criterion

For Shell Element

- (a) linear elastic
- (b) elastic-plastic, von Mises yield condition

3.3.5 Usage of ADINA

In the preceding subsections, ADINA was introduced as a computer program for the static and dynamic displacement and stress analysis of solids, structures and fluid-structure systems. Because ADINA is one of the most well-tested and reliable linear and nonlinear static and dynamic analysis program, it can be used as an analysis module for any design optimization program. As an example, one can couple program ADINA with the design

optimization computer program such as IDESIGN to optimize some realistic structures. Various nonlinear (material and geometric) analysis capabilities of ADINA offers a wide range of nonlinear design optimization applications. In the near future, coupling of ADINA and IDESIGN will be accomplihised.

3.4 DATABASE IN ADINA

The database of ADINA is organized in several files. With a little effort, it is possible to access any information from the database.

Program ADINA opens 25 files at the beginning of execution and dumps the given and generated data into them (in ADINA, they are called Tapes). Following subsections describe the database file (i.e., sequential or random access, formatted or unformatted record length of each file, and unit number on which the file is opened).

3.4.1 Tape Allocation

Depending on the required information, ADINA stores various data on sequential access files (except tapes 2, 10, 16, and 17) or random access files (tapes 2, 10, 16, and 17).

- TAPE 1 stores linear element group data, and stores also substructures element group data
- TAPE 2 stores nonlinear elements group data
- TAPE 3 stores externally applied loads
- TAPE 4 stores the linear stiffness matrix (when NEGL.NE.O .or. NSUBST.NE.O only)
- TAPE 5 is the input file generated for execution when comment cards are allowed in the input stream otherwise it is the initial input file
- TAPE 6 is the output tape
- TAPE 7 stores effective linear stiffness matrix in direct time integration, and used as scratch file during model superpositon analysis
- TAPE 8 stores sequentially
- (1) ID array
- during input
 initial DISP, VEL, ACC vectors
 on output final DISP, VEL, ACC vectors and nonlinear element group
 data for restart
- TAPE 9 stores mode shapes and circular frequencies (if frequency solution was requested), and used as a scratch file during equilibrium iteration

- TAPE 10 stores D L factors of effective linear or nonlinear stiffness matrix in tme integration
- TAPE 11 stores sequentially
- (1) mass matrix (consistent mass if IMASS.EQ.2)
- (2) damping vector
- TAPE 12 is initially used as scratch in load calculation stores the effective nonlinear stiffness matrix in the time integration, for the nonlinear stiffness matrix for eigensystem solution
- TAPE 13 stores initially time function values and prescribed displacements data during time integration
- TAPE 14 stores substructures data
- TAPE 15 stores load vector for each time, substructure ID arrays and master structure nodal responses at all time steps
- TAPE 16 stores substructure factorized stiffness matrices
- TAPE 17 stores substructure nodal loads for all time steps
- TAPE 18 stores data in BFGS interation and vectors input to subspace iteration, also temporarily stores reduced substructure stiffnesses
- TAPE 19 stores vectors in subspace iteration
- TAPE 22 stores load vector during equilibrium iteration
- TAPE 23 stores substructure nodal responses at all time steps, and temporarily stores concentrated masses and dampers
- TAPE 50 is the initial input file in which comment cards are included in the input stream
- TAPE 56 stores nodal point temperatures
- TAPE 59 stores preprocessed input data (if used)
- TAPE 60 is the porthole (graphics) file for saving nodal/element responses (if requested)

3.4.2 Details of Opening/Closing Files

On prime system, current version of ADINA has the following options for each file: form (formatted or unformatted), access (sequential or random access file), and recl (record length) for each database (tape-file).

- TAPE 1 form=unformatted, access=sequential, recl=4000
- TAPE 2 access=direct, recl=12000

- TAPE 3 form=unformatted, access=sequential, recl=1000
- TAPE 4 form=unformatted, access=sequential, recl=1000
- TAPE 5 ADINA · IN, status=old
- TAPE 6 ADINA OUT, status=unknown
- TAPE 7 form=unformatted, access=sequential, recl=4000
- TAPE 8 form=unformatted, access=sequential, recl=4000
- TAPE 9 form=unformatted, access=sequential, recl=4000
- TAPE 10 access=direct, recl=12000
- TAPE 11 form=unformatted, access=sequential, recl=1000
- TAPE 12 form=unformatted, access=sequential, recl=1000
- TAPE 13 form=unformatted, access=sequential, recl=1000
- TAPE 14 form=unformatted, access=sequential, recl=1000
- TAPE 15 form=unformatted, access=sequential, recl=1000
- TAPE 16 access=direct, recl=12000
- TAPE 17 access=direct, recl=12000
- TAPE 18 form=unformatted, access=sequential, recl=1000
- TAPE 19 form=unformatted, access=sequential, recl=1000
- TAPE 22 form=unformatted, access=sequential, recl=1000
- TAPE 23 form=unformatted, access=sequential, recl=1000
- TAPE 50 form=unformatted, access=sequential, recl=1000
- TAPE 56 form=unformatted, access=sequential, recl=1000
- TAPE 59 form=formatted, access=sequential, recl=4000
- TAPE 60 form=unformatted, access=sequential, recl=4000

3.5 DATABASE FILES IN ADINA

This section contains detailed description of each database file in ADINA.

3.5.1 Tape 1

Specifications:

- sequential access file
- * stores linear element group data, also stores substructures element group data.

TAPE 1

Element Group: Truss

Description Element group control information		Variable	Dimension
		NPAR	20
NPAR: NPAR(1)=	1		
NPAR(2)	Number of truss element in this group		
NPAR(3)	Type of nonlinear anal 0. linear analysis 1. materially nonlinear only 2. updated Lagragi formulation		
NPAR(4)	Element birth and death option O. elements are active through the solution 1. elements become only active at the time of 2. elements become inactive at the time of death	birth s	
NPAR(5)	Element type code 0. general 3-D tru 1. axisymmetric truss (ring)	ss	

(Continued)

Description		Variable	Dimension
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate system		
NPAR(7)	Maximum no. of nodes used to describe any one element		
NPAR(10)	Numerical integra- tion order to be used in Gauss quadrature formula		
NPAR(15)	Material model number 0. default set to 1 1. linear elastic 2. nonlinear elastic 3. thermo-elastic 4. elastic-plastic (isotropic) 5. elastic-plastic (kinematic) 6. thermo-elastic- plastic and creep (isotropic) 7. thermo-elastic- plastic and creep (kinematic)		
NPAR(16)	Number of different sets of material/ section properties		
NPAR(17)	Number of material model constants for NPAR(15)=2		
Mass density		DEN	NPAR(16)
Cross sectio	nal area	AREA	NPAR(16)

(Continued)

Description	Variable	Dimension
Nodal D.O.F. number	LM	3*NPAR(7)*NPAR(2)
Element nodal coordinates	XYZ	3*NPAR(7)*NPAR(2)
Material property set number	MATP	NPAR(2)
Element initial strain	EPSIN	NPAR(2)
Stress printing flag	IPS	NPAR(2)
Element birth/death time	ETIMV	MM*NPAR(2) MM≈1 IF NPAR(4)>0
Element displacement at birth time	EDISB	MM*3*NPAR(7)*NPAR(2) MM=1 IF NPAR(4)>0
Working array	WA	NPAR(2)*NPAR(18)*NPAR(10)
Material constants	PROP	NPAR(17)*NPAR(16)
NPAR(15):≈ 1. Young's modulus 2. strain at		

(Continued)

Dimension Description Variable Young's modulus at point 1, E_1 Young's modulus at point 2, E₂ Young's modulus at point 16, E₁₆ mean coefficient of thermal expansion at point 1, α_1 mean coefficient of thermal expansion at point 2, α_2 mean coefficient of thermal expansion at point 16, α_{16} XNPTS = number oftemperature point default set to 16 TREF = reference temperature 4. Young's modulus, E initial yield stress, σ_{y} strain hardening modulus, E_T 5. Young's modulus, E initial yield stress, o_y strain hardening modulus, E_T 6. temperature at point 1, θ_1 temperature at point 2, θ_2 temperature at point 16, θ₁₆

(Continued)

Description

Variable

Dimension

Young's modulus at point 1, E_1 Young's modulus at point 2, E2 Young's modulus at point 16, E₁₆ yield stress in simple tension at point 1, σ_{y_1} yield stress in simple tension at point 2, oy yield stress in simple tension at point 16, σ_{y} 16 strain hardening modulus in simple tension at point 1, E_T, strain hardening modulus in simple tension at point 2, E_{T_2} strain hardening modulus in simple tension at point 16, $E_{T_{16}}$ mean coefficient of thermal expansion at point 1, α_1 mean coefficient of thermal expansion at point 2, α_2

(Continued)

Description Variable Dimension mean coefficient of thermal expansion at point 16, α_{16} creep law constants a₀ creep law constants a7 XNPTS = numberof temperature point = 0, default set to 16 XREF = reference temperature XKCRP = creep law number ALPHA = time integration parameter XISUBM = maximum number of time step subdivisions = 0; default set to 10 XINTE = maximum number of iteration per subdivision = 0; default set to 15 XNALA = algorithmin indicactor 0. set to 1 1. equal subdivisons are used per time step 2. self-adaptive size subdivisions are used per time step

TAPE 1	Element Group:	Truss	(Continued)

Description Variable Dimension TOLIL = stress calculation convergence tolerance = 0; default set to 0.005 TOLPC = inealstic strain tolerance = 0; default set to 0.10 3*NPAR(7)*NPAR(2)*NPAR(7) Global node number NODGL Element number of nodes NPAR(2) IDELTD NPAR(2)*NPAR(7) Skew coordinates flag **ISKEW**

TAPE 1 Element Group: 2/D Solid Elements

Desci	ription	Variable	Dimension
Element group control information		NPAR	20
NPAR: NPAR(1)=	2		
NPAR(2)	Number of 2/D solid element in this group		
NPAR(3)	Code indicating type of non- linear analysis 0. linear analysis 1. material non- linear analysis 2. total Lagrangian 3. updated Lagrangian		
NPAR(4)	Element birth and death option 0. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(5)	Element type code 0. axisymmetric 1. plane strain 2. plane stress 3. 3-D plane stress		
NPAR(6)	Skew coordinate system reference indicator		

Element Group: 2/D Solid Elements

(Continued)

Desc	ription	Variable	Dimension
	 0. all element nodes use the globa! system only 1. some element node d.o.f. are referred to a skew coordinate system 		
NPAR(7)	Maximum number of nodes used to describe any one element		
NPAR(8)	Degeneration indicator 0. number spatial isotropy correction 1. degenrated 8-node elements (side 1-8-4) are spatially isotropic		
NPAR(10)	Numerical inte- gration order to be used in Gauss quadrature formula		
NPAR(13)	Number of stress output location tables 0. output stresses at integration points		
NPAR(15)	Material model number > 0 and < 14 0. default set to 1 1. isotropic linear elastic		

Element Group: 2/D Solid Elements (Continued)

Description		Variable	Dimension
2.	orthotropic		
_	linear elastic		
3.	isotropic		
_	thermo-elastic		
4.	curve		
	description		
	(with tension		
	act-off or		
5.	cracking)		
9.	concrete		
	(with cracking		
6.	and crushing)		
7.	<pre>empty elastic-plastic</pre>		
, ,	(Drucker-		
	prager-cap)		
8.	elastic-plastic		
	(von Mises,		
	isotropic		
	hardening)		
9.	elastic-plastic		
	(von Mises,		
	kinematic		
	hardening)		
10.	thermo-elastic		
	plastic and		
	creep (von Mises		
	isotropic		
• •	hardening)		
11.	thermo-elastic-		
	plastic and		
	creep (von Mises,		
	kinematic		
12	hardening) empty		
	ncompressible		
10.1	nonlinear		
	elastic		
	(Mooney-Rivlin		
	plane stress		
	only)		
	user-supplied		
IPAR(16) Number	of different		
sets of	material		
propert			

Desc	ription	Variable	Dimension
NPAR(17)	Number of con- stants per property set for NPAR(15) 8. multilinear model 9. multilinear model 14. user supplied otherwise not applicable		
NPAR(20)	Dimension of storage array required for element history 0. if NPAR(15) < 14. > 0 if NPAR(15) = 14		
Nodal D.O.F.	number	LM	2*NPAR(7)*NPAR(2)
Element noda	l coordinates	YZ	2*NPAR(7):*NPAR(2)
Element numb	er of nodes	IELT	NPAR(2)
Stress print	ing flag	IPST	NPAR(2)
Element mate	rial angle	BETA	NPAR(2)
Element thic	kness	THICK	NPAR(2)
Material pro	perty set number	MATP	NPAR(2)
Mass density	set number	DEN	NPAR(16)
Material con NPAR(15):	1. Young's modulus, E possior's ratio, v 2. a-direction modulus, E b-direction modulus, E modulus, E	PROP	NPAR(17)*NPAR(16)

(Continued)

Variable Description Dimension c-direction modulus, E_c strain ratio, v_{ab} strain ratio, v_{ac} strain ratio, v_{bc} shear modulus, G_{ab} 3. temperature at point "1", θ_1 temperature at point "16", θ₁₆ Young's modulus at point "1", E_1 Young's modulus at point "16", E₁₆ Poisson's ratio at point "1", v_1 Poisson's ratio at point "16", ν_{16} mean coefficient of thermal expansion at point "1", α_1 mean coefficient of thermal expansion at point "16", a₁₆ XNPTS = number oftemperature points EQ.0; default set to 16 TREF = reference temperature volume straint at point "1" e_V ...

Element Group: 2/D Solid Elements (Continued)

Description	Variable	Dimension
e _V ³		
e <mark>4</mark> 5		
e_{V}^{5} e_{V}^{6}		
K_{-}^{1} load	ing modulus oint "1"	
κ _{LD} •	••	
κ_{LD}^3		
κ _{LD}		
κ _{ĽD}		
K _{UN} unlo bulk poin	ading modulus t "1"	
K ²	••	
KUN		
κ ⁴ υν κ ⁵ υν		
κ <mark>6</mark> UN		
G _{LD} load shea at p	ing r modulus oint "1"	
a	oading hear modulus t point "2"	
$G_{LD}^{3} \cdots G_{LD}^{4}$		
G_{LD}^{4}		

```
Description
                                     Variable
                                                              Dimension
              \mathsf{G}_{LD}^{5}
             tangent
              modulus
              at zero
              strain, Ěo
          6. Poisson's
          ratio, v
7. Young's
                modulus, E
              Poisson's
                ratio, v
              Yield function
                 parameter, \alpha
              Yield function
                 parameter, k
              Cap hardening
                 parameter, W
              Cap hardening
                 parameter, D
              Tension cut-off
              limit, . Initial cap 0_{1a} ration, 1_{1}
         8. & 9.
              a. bilinear
                  elastic-plastic
                  model
                    Young's
                     modulus, E
                    Poisson's
                     atio, v
                    Yield stress
                     in simple
                     tension \sigma_y
                    Strain
                     hardening
                     modulus, E_T
              b. multilinear
                  elastic-plastic
                  model
```

(Continued)

Description Variable Dimension Young's modulus, E Poisson's ratio, v Yield stress, σ_1 Yield strain, ϵ_1 Stress at point 2 Strain at point 2 Stress at point 3 Strain at point 3 Stress at point 4 Strain at point 4 Stress at point 7 Strain at point 7 10. & 11. $^{\theta}1$ temperature at point "1" θ₂ ··· $^{ ext{0}}$ 16 temperature at point "16" E₁ Young's modulus at point "1" E₂ ... E₁₆ Young's modulus at point "16"

Element Group: 2/D Solid Elements (Continued)

Description		Variable	Dimension
	ν ₁ Poisson's ratio at point "1"		
	ν ₂ ···		
	V ₁₆ Poisson's ratio at point "16"		
	yield yl stress in simple tension at point "1"		
	σ _{y2} •••		
	yield yl6 stress in simple tension at point "16"		
	E _T strain 1 hardening modulus in simple tension at point		
	E _{T2} •••		
	E _T strain 16 hardening modulus in simple tension at point "16"	•	
	<pre> α1 mean coef- ficient of thermal ex- pansion at point "1" </pre>		
	α ₂ ···		

(Continued)

Description Variable Dimension α₁₆ mean coefficient of thermal expansion at point "16" a_O creep law constants a₁ ... a₇ creep law constants XNPTS = numberof temperature points EQ.0; default set to 16. TREF = reference temperature XKCRP = creep law number ALPHA = timeintegration parameter XISUBM = maximum number of time step subdivisions EQ.0; default set to 10. XNITE = maximum number of iteration per subdivision EQ.0; default set to 15. XNALG = algorithmindicator EQ.0; default set to 1. EQ.1; equal size subdivisions are used

per time step

Description	Variable	Dimension
EQ.2; self- adaptive size sub- divisions are used per time stey TOLIL = stress calcualtion convergence tolerance EQ.0; default set to .005 TOLPC = inelast strain tolerance EQ.0; default set to .10 13. C1 C2 14. (prop (J,N),J=1, NPAR(17), N=1,NPAR(16)	ic	
Working array	WA	NPAR(20)*NPAR(10)**2*NPAR(2 IF(NPAR(19)>0)THEN NDWS(NPAR(15))*(NPAR(15))* NPAR(7)
Midside nodes	NOD5	NPAR(7)-4
Element expiry time array	ETIMV	MM*NPAR(2) IF(NPAR14)=1)MM=1
Element birth time nodal coordinate	s EDISB	MM*NPAR(2)*2*NPAR(7) IF(NPAR(4)=1)MM=1
Stress output location tables	ITABLE	NPAR(13)
Stress out location 1		
Stress out location 2		
Stress out location 3		

TAPE 1

Element Group: 2/D Solid Elements

Description	Variable	Dimension
Stress out location 4		
Stress out location 5		
Stress out location 6		
Stress out location 7		
Stress out location 8		
Stress out location 9		
Skew coordinates flag	ISKEW	MM*NPAR(2)*NPAR(7) IF(NPAR(6)>0)MM=1
Spatial isotropy correction indicator	ISO	MM*NPAR(2) IF(NPAR(8)>0)MM=1
Displacement at previous step	PDIS	2*NPAR(7)*NPAR(2)

Descr	ription	Variable	Dimension
Element group control information		NPAR	20
NPAR: NPAR(1)=	3		
NPAR(2)	Number of 3/D SOLID elements in this group		
NPAR(3)	Flag indicating type of nonlinear analysis O. linear analysis 1. material non- linear analysis only 2. total Lagrangian 3. updated Lagrangian		
NPAR(4)	Element birth and death option O. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate system		

(Continued)

Description Variable Dimension NPAR(7) Maximum number of nodes used to describe any one element NPAR(8) Degeneration indicator 0. no spatial isotropy corrections degenrated 20node elements are spatially isotropic (15-node prisms or 10-node tetrahedra) NPAR(10) Numberical integration order to be used in Gauss quadrature formula for r-s plane NPAR(11) Numerical integration order to be used in Gauss quadrature formula for t-direction NPAR(13) Number of stress output location tables NPAR(15) Material model number GE.O and LE.12 0. default set to 1 1. isotropic linear elastic 2. orthotropic linear elastic 3. isotropic thermo-elastic curve description (with tension cutoff or cracking)

TAPE 1 Element Group: 3/D Solid Elements (Continued)

Desci	ription	Variable	Dimension
	5. concrete (with cracking and crushing)		
	6. empty		
	7. elastic-plastic		
	(Drucker-		
	Prager-Cap)		
	8. elastic-plastic		
	(von Mises,		
	isotropic		
	hardening) 9. elastic-plastic		
	(von Mises,		
	kinematic		
	hardening)		
	10. thermo-elastic		
	plastic and		
	creep (von Mises		
	isotropic hardening)		
	11. thermo-elastic-		
	plastic and		
	creep (von Mises,		
	kinematic		
	hardening)		
	12. user-supplied		
NPAR(16)	Number of different		
M AN(10)	sets of material		
	properties		
NPAR(17)			
	stants per maerial		
	property set for		
	NPAR(15) 8.8 multilinear		
	model		
	9. multilinear		
	mode1		
	12. user supplied		
	otherwise not		
	applicable		
NPAR(18)	Number of material		
m nn(10)	axes orientation		
	sets (in orthotropic		
	linear analysis)		

Description	Variable	Dimension
NPAR(20) Dimension of storage array required for element history		
Nodal D.O.F. number	LM	3*NPAR(17)*NPAR(2)
Element nodal coordinates	XYZ	3*NPAR(17)*NPAR(2)
Element number of nodes	IELT	NPAR(2)
Element geometry number of nodes	IELTX	NPAR(2)
Stress printing flag	IPST	NPAR(2)
Spatial isotropy correction indicator	180	NPAR(2)*NPAR(8)
Material property set number	MATP	NPAR(2)
Midside nodes	NOD9	(NPAR(7)-8)*NPAR(2)
Similar stiffness and mass matrices indicator	IREUSE	NPAR(2)
Mass density set number	DEN	NPAR(16)
Material constants	PROP	NPAR(17)*NPAR(16)
NPAR(15): 1. Young's modulus, E Poission's ratio, v 2. a-direction modulus, Ea b-direction modulus, Eb c-direction modulus, Ec Strain ratio, vab Strain ratio, vac Strain ratio, vbc		

(Continued)

Dimension Variable Description Shear modulus, G_{ab} Shear modulus, Gac Shear $\begin{array}{c} \text{modulus, } \mathsf{G}_{bc} \\ \mathsf{\theta}_1 \text{ temperature} \\ \text{at point "1"} \end{array}$ $^{6}_{16}$ temperature at point "16" E₁ Young's modulus at point "1" \tilde{E}_{16}^{Z} Young's modulus at point"16" v₁ Poisson's ratio at point "1" V2 Poisson's ratio at point "16" α_1 mean coefficient of thermal expansion at point "1" ale mean coef-ficient of thermal expansion at point "16" XNPTS = numberof temperature points EQ.0; default set to 16. TREF = reference temperature 4. e_V^1 volume strain at point "1" $e_v^2 \cdots$

Description	Variable	Dimension
e _V ³		
e () 	
e $^{5}_{\gamma}$		
e (volume strain at point "6"	
â	oading oulk modulus ot point "1"	
κ _ί κ _{LD}	.D • • •	
K.	LD	
κ <mark>5</mark> κ <mark>LD</mark> κ <mark>ί</mark>	Doading Double modulus at point "6"	
ā	unloading oulk modulus ut point "l"	
κί κ <mark>3</mark> κ <mark>υ</mark> η		
κ ^Δ	JN	
κ ⁵ κ ⁰ υΝ κ ^ξ	un- JN loading bulk modulus at point "6"	
GLD s	oading shear modulus at point "1"	

```
Description
                                   Variable
                                                          Dimension
                GLD loading shear modulus
                     at point "2"
                 G_{LD}^4
             G_{LD}^{5}
             Tangent modulus
              zero strain,
              Ě
              Poisson's
                ratio v
         7. Young's
                modulus, E
              Poisson's
                ratio, v
              Yield function
                parameter, α
              Yield function
                parameter, k
              Cap hardening
                parameter, W
              Cap hardening
                parameter, D
              Tension cut-off
                limit, T
              Initial cap
                position, 0_{I_1}
          8. & 9.
              a. bilinear
                   elastic-plastic
                   model
                 Young's
                   modulus, E
                 Poisson's
                    ratio, v
                  Yield stress
                   in simple
                   tension, \sigma_y
```

(Continued)

Description Variable Dimension Strain hardening modulus, E_T b. Multilinear elasticplastic model Young's modulus, E Poisson's ratio, v Yield stress, σ_1 Yield strain, ϵ_1 Stress at point 2 Strain at point 2 Stress at point 3 Strain at point 3 Stress at point 4 Strain at point 4 Stress at point 7 Strain at point 7 10. & 11. $^{\theta}1$ temperature at point "1" $^{ heta}$ 16 temperature at point "16" E_1 Young's modulus at point "1" E₂ ...

Description	Variable	Dimension
E ₁₆ Young's modulus at point "16"		
ν ₁ Poisson's ratio at point "1"		
ν ₂ ···		
v ₁₆ Poisson's ratio at point "16"		
σ _y yield ^y l stress in simple ten- sion at point "1"		
sy ₂ oy yield yl6 stress in simple tension at point "16"	_	
E _T strain 1 hardening modulus in simple tension at point "1"		
E _T *** E _T strain 16 hardening modulus in simple tension at point "16"		
α ₁ coefficient of thermal expansion at point "1"		

(Continued)

Variable Dimension Description $^{\alpha}16$ coefficient of thermal expansion at point "16" a_O creep law constants a₁ ... a₇ creep law constants XNPTS = numberof temperature points EQ.O; default set to 16. TREF = reference temperature XKCRP = creep law number ALPHA = time integration parameter XISUBM = maximum number of time step subdivisions EQ.O; default set to 10. XNITE = maximum number of iteration per subdivision EQ.0; default set to 15. XNALG = algorithmindicator EQ.O; default set to 1. EQ.1; equal size subdivisions are used per time

step

Element Group: 3/D Solid Elements (Continued)

Description	Variable	Dimension
EQ.2; self- adaptive size sure division are used time st TOLIL = stress calcualtion convergence tolerance TOLPC = inelast strain tolerance 12. (prop(N,N), J=1,NPAR(17, N=1,NPAR(17, N=1	ons ed per eep	
Working array	WA	NPAR(20)*NPAR(10)**2*NPAR(11)
Element expiry time array	ETIMV	MM*NPAR(2) IF NPAR14)>1 MM=1
Element birth time nodal coordinates	EDISB	MM*NPAR(2)*3*NPAR(7) IF NPAR(4)>1 MM=1
Stress output location tables	ITABLE	NPAR(13)
Stress out location 1		
Stress out location 2		
•••		
Stress out location 16		
Direction cosine arrary (if NPAR(15)=0)	DCA	NPAR(18)
Material axis orientation storage vector	MAXESV	NPAR(2)
Skew coordinates flag	ISKEW	NPAR(2)*3*NPAR(7)
Displacement at previous steps	PDIS	NPAR(2)*3*NPAR(7)

TAPE 1 Element Group: Beam Elements

Desci	ription	Variable	Dimension
Element grou	p control	NPAR	20
NPAR: NPAR(1)=	4		
NPAR(2)	Number of BEAM elements in this group		
NPAR(3)	Code indicating type of nonlinear analysis 0. linear analysis 1. material nonlinear analysis only 2. updated Lagrangian		
NPAR(4)	Element birth and death option 0. elements are active through- out solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(5)	Element type code 0. two-dimensional action 1. three-dimensional action		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only		

Element Group: Beam Elements

Desci	ription	Variable	Dimension
	1. some elemen node d.o.f. are referre to a skew coordinate	, ed	
NPAR(7)	Section identification flag 0. default set to 1 1. rectangular section 2. pipe section	•	
NPAR(9)	Numerical integra- tion order for r-direction		
NPAR(10)	Numberical integration order for s-direction	!-	
NPAR(11)	Numerical integra- tion order for t-(or 0) direction		
NPAR(12)	Number of end release tables		
NPAR(13)	Number of stress output location tables EQ1 print and save nodal forces EQ.0 print and stresses at all integration points GT.0 print and stresses at selected integration points as of fined in the stress output	- save - e-	

Element Group: Beam Elements

Desc	ription	Variable	Dimension
NPAR(14)	Maximum number of stress output locations in each table		
NPAR(15)	Material model number 0. default set to 1 1. linear elastic 2. elastic-plastic		
NPAR(16)	Number of different sets of section/material properties		
Young's modu	lus	Ε	NPAR(16) IF NPAR(3)=0
Shear modulu	S	G	NPAR(16) IF NPAR(3)=0
Mass density	,	DEN	NPAR(16) IF NPAR(3)=0
Second momen	t of area about R-axis	XI	NPAR(16) IF NPAR(3)=0
Second momen	it of area about S-axis	YI	NPAR(16) IF NPAR(3)=0
Second momen	it of area about T-axis	LI	NPAR(16) IF NPAR(3)=0
Normal + she	ear section area	AREA	NPAR(16) IF NPAR(3)=0
Element noda	l coordinates	XYZ	3*NPAR(16) IF NPAR(3)=0
Nodal D.O.F.	number	LM	9*NPAR(2)
Stress print	ing flag	IPS	12*NPAR(2)
Material set	number	MATP	NPAR(2)
Material con	stants	PROP	NFAC*NPAR(17)*NPAR(16) NFAC=1 IF NPAR(3)=0 then NFAC=0
NPAR(15):	l. Young's modulus, E Poisson's ratio, v		

Element Group: Beam Elements

Description		Variable	Dimension
2.	First section dimension, DO Second section dimension, DI Young's modulus, E Poisson's ratio, v First section dimension, DO Second section dimension, DI Initial yield stress, o Strain hardening modulus, E T		
Flag for transverse	•	ISHEAR	NFAC*NPAR(16)
Working array		WA	NFAC*NPAR(9)*NPAR(10)* NPAR(11)*11*NPAR(2)
Stress output locati	ion tables	ITABLE	LL*NFAC*NPAR(13)
Stress output at integration point			LL=NPAR(14)/16 LLL=NPAR(14)-LL*16 IF(LLLGT.0)LL=LL+1 LL=LL*16
•••			
Stress output at integration point			
Stress output at integration point			
•••			
Stress output at selected integrate	• •		
Gauss elimination co	oefficients	SR	(6+48*NPAR(5))*NFAC*NPAR(2)
Element expiry time	array	ETIMV	MM*NPAR(2) IF NPAR(14)>1 MM=1

TAPE 1 Element Group: Beam Elements (Continued)

Description	Variable	Dimension
Element displacement vector	EDISP	12*MM*NPAR(2) IF (NPAR(14)>0) MM=1
Element release table	IMOMNT	6*NPAR(12)
Displacement at previous step	PDISP	12*NPAR(2)
Element rotational angle between local to global system	GAMA	NPAR(2)
Nodal skew coordinate flag	ISKEW	MM*2*NPAR(2) IF(NPAR(6)>0)MM=1
Element condensed Gauss elimination coefficients	SREL	36*MM*NFAC*NPAR(2) MM=1 IF(NPAR(12)=0) MM=0
Element recovered displacement correction	RERIT	8*MM*NPAR(2) MM=1 IF(NPAR(3)=0)MM=0

TAPE 1 Element Group: Isoparametric Beam Elements

Description		Variable	Dimension
Element grou	up control information	NPAR	20
NPAR: NPAR(1)=	5		
NPAR(2)	Number of ISO/BEAM elements in this group		
NPAR(3)	Type of analysis 0. linear analysis 1. material non- linear analysis only 2. total Lagrangian formulation		
NPAR(4)	Element death option O. elements are active through- out solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(5)	Element type code 0. default set to 1 1. rectangular cross-section		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some elements refer to skew systems		

Element Group: Isoparametric Beam Elements

Desc	ription	Variable	Dimension
NPAR(7)	Maximum number of nodes used to describe any one element		
NPAR(9)	Number of integration points along centroidal axis of element GT.O Gauss integration LT.O closed Newton-Cotes EQ.O default set to NPAR(7)		
NPAR(10)	Numberical integra- tion points on element cross section(s-direction)		
NPAR(11)	Number of integra- tion points on element cross section (t-direction)		
NPAR(13)	Number of stress output tables LT.0 force and moment output at element nodes EQ.0 stress output at all integra- tion points GE.0 number of stress output tables de- fining selective output at in- tegration points		
NPAR(14)	Maximum number of stress output location in each stress output table		

TAPE 1 Element Group: Isoparametric Beam Elements (Continued)

Description	Variable	Dimension
NPAR(15) Material model number 0. default set to 1 1. linear elastic 1. elastic-plastic (isotropic) 3. elastic-plastic (kinematic) NPAR(16) Number of different		
sets of section/ material properties		
Element nodal coordinates	XYZ	3*NPAR(7)*NPAR(2)
Element auxiliary nodal coordinates	CENTER	3*NPAR(2)
Nodal D.O.F. number	LM	6*NPAR(7)*NPAR(2)
Element number of nodes	IELT	NPAR(2)
Material property set number	MATP	NPAR(2)
Material constants	PROP	NPAR(17)*NPAR(2)
NPAR(15): 1. Young's modulus, E Poisson's ratio, v 2. Young's modulus, E Poisson's ratio, v yield stress in simple tension, σy strain hardening modulus, ET		
3. Young's modulus, E Poisson's ratio, v		

TAPE 1

Element Group: Isoparametric Beam Elements

Description	Variable	Dimension
yield stress in simple tension, σ _y strain hardening modulus, E _T		
Mass density set number	DEN	NPAR(16)
Element expiry time array	ETIMV	MM*NPAR(2) IF(NPAR14)=1)MM=1
<pre>Element birth time nodal = coordinates</pre>	EDISOL	MM*6*NPAR(7)*NPAR(2) IF(NPAR(4)>0 MM=1
Stress output printing flag	IPST	NPAR(2)
Stress output tables	ISTAB	MM*NPAR(13)*MPT IF(NPAR(14)>)MPT=NPAR(14)+1 IF(NPAR(13)>0)MM=1
Centroidal axis integration point number of first stress output location GT.O and LE.NPAR(9)		
S-axis integration point number of first stress output location GT.O and LE.NPAR(10)		
T-axis integration point number of first stress output location GT.O and LE.NPAR(11)		
Centroidal axis integration point number of second sress output location		
S-axis integration point number of second stress output location		

TAPE 1

Element Group: Isoparametric Beam Elements

Description	Variable	Dimension
T-axis integration point number of second stress output location		
•••		
•••		
•••		
Working array	WA	NPAR(18)*IABS(NPAR(9)* NPAR(10)*NPAR(11))*NPAR(2)
Skew coordinates flag	ISKEW	NM*3NPAR(7)*NPAR(2) IF(NPAR(6)>0)MM=1
Element section dimension	SECT	NSCON(NPAR(5))*NPAR(16)
Element Euler angle	EULER	MM*3*NPAR(7)*NPAR(2) IF(NPAR(3)=2)THEN MM=1
Element rotation	ROTOLD	MM*3*NPAR(7)*NPAR(2)
Not used	IELS	NPAR(2)
Gauss elimination coefficients	SR	(2*6NPAR(7))*NPAR(2)
Element total displacements	EDIS	MM*6*NPAR(7)*NPAR(2) IF NPAR(3)>1 THEN MM=1
Element total torsinoal Ritz function displacements	RITZ	MM*NPAR(2)
Element correction to recovered Ritz function displacements	RERIT	5*MM*NPAR(2)

TAPE 1 Element Group: Plate/Shell Element

Description Element group control information		Variable	Dimension
		NPAR	20
NPAR: NPAR(1)=	6		
NPAR(2)	Number of PLATE/SHELL elements in this group		
NPAR(3)	Code indicating type of nonlinear analysis 0. linear analysis 1. material non- linear analysis 2. updated Lagrangian		
NPAR(4)	Element birth and death option 0. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate system		
NPAR(11)	Integration scheme used for stiffness calculation (in nonlinear analysis)		

TAPE 1 Element Group: Plate/Shell Element (Continued)

Descr	ription	Variable 	Dimension
	GE.1 and LE.4 default set to 2 EQ.1 1-point (centroid) EQ.2 3-point (interior) EQ.3 3-point (mid-side) EQ.4 7-point (interior)		
NPAR(13)	Number of stress resultant output location tables GE.O and LE.10 EQ.O output forces/ mements at integration points		
NPAR(15)	Material model number GE.1 and LE.3 defult set to 1 1. isotropic linear elastic 2. orthotropic linear elastic 3. elastic-plastic (Ilyushin, isotropic hardening)		
NPAR(16)	Number of different sets of material properties		
Mass density	set number	DEN	NPAR(16)
Nodal D.O.F.	number	LM	18*NPAR(2)
Element noda	l coordinates	XYZ	9*NPAR(2)
Material pro	perty set number	MATP	NPAR(2)
Element thic	kness	THICI	NPAR(2)
Element stre	ss printing flag	IPS	NPAR(2)

Element Group: Plate/Shell Element

Description		Variable	Dimension
Element expiry time	array	ETIMV	MM*NPAR(2) IF(NPAR14)>0)MM=1
Element birth nodal	coordinates	EDISB	MOPT*18*NPAR(2) IF(NPAR(4)>)MOPT=1
Material constants		PROP	NMCON(NPAR(15))*NPAR(16)
NPAR(15): 1. 2.	Young's modulus, E Poisson's ratio, v Modulus Eaa Modulus Eab Modulus Ebb Modulus Gab Young's modulus E Poisson's ratio, v Yield stress in simple tension, oy Strain hardening modulus, ET Ilyushin factor, y default set to 0.0		
Working array		WA	IDWAS(NPAR(15))**NINTV (NPAR(10))*NPAR(2)
Stress resultant output location tables		ITABLE	NPAR(13)*7
Moment output location 1			
Moment output location 2			
Moment output location 3			
Moment output lo	cation 4		

TAPE 1

Element Group: Plate/Shell Element

Description	Variable	Dimension	
Moment output location 5			
Moment output location 6			
Moment output location 7			
Skew coordinates flag	ISKEW	MOPT*NPAR(2)*3 IF(NPAR(6)>0) Then MOPT=1	
Orthotropic property direction array	ВЕТА	MOPT*NPAR(2) IF(NPAR(15)=1) Then MOPT=1	
Element previous time step displacements	PDIS	MOPT*NPAR(2)*18 IF(NPAR(4)>2 OR NPAR(15)>3) Then MOPT=1	
Element moments at integration points	ELM	3*NINTV(NPAR(10))*NPAR(2)	

TAPE 1 Element Group: Shell Elements

Description Element group control information		Variable NPAR	Dimension 20
NPAR(2)	Number of SHELL elements in this group		
NPAR(3)	Flag indicating type of non- linear analysis 0. linear analysis 1. material non- linear analysis only 2. total Lagrangian		
NPAR(4)	Element birth and death option O. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(5)	Flag indicating the coordinate system 0. global Cartesian coordinate system 1. shell coordinate directions		
NPAR(6)	Skew coordinate system reference indicator		

Element Group: Shell Elements (Continued)

Desc	ription	Variable	Dimension
	 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate system 		
NPAR(7)	Maximum number of nodes used to describe any one element		
NPAR(8)	Maximum number of total nodes used to describe any one element		
NPAR(9)	Maximum number of nodes in the r or s-directions		
NPAR(10)	Gauss integration order in (r)-direction, LE.4		
NPAR(11)	Gauss integration order in (s)-direction		
NPAR(12)	Gauss integration order in (t)-direction (through element thickness)		
NPAR(13)	Number of stress output location tables		
NPAR(14)	Number of shell thickness tables		

TAPE 1	Element Group:	Shell Elements	(Continued)
--------	----------------	----------------	-------------

Desc	ription	Variable	Dimension
NPAR(15)	Material model number GE.O and LE.2 O. default set to 1 1. linear elastic 2. elastic-plastic (von Mises, isotropic hardening)		
NPAR(16)	Number of different sets of material properties		
Nodal D.O.F.	. number	LM	(3*NPAR(8)+2*NPAR(8))*NPAR(2
Element noda	l coordinates	XYZ	(3*NPAR(8)+2*NPAR(8))*NPAR(2
Element numb	per of nodes	IELTD	NPAR(2)
Element numb	er of mid-surface	IELTP	NPAR(2)
Element stre	ess printing flag	IPST	NPAR(2)
Material pro	pperty set number	MATP	NPAR(2)
Similar stif	fness and mass licator	IREUSE	NPAR(2)
Optional nod	ie array	NDOPT	NPAR(8)*NPAR(2)
Element expi	ry time array	ETIMV	NPAR(2)
Element birt coordinates	ch time nodal	EDISB	3*NPAR(8)*NPAR(2)
Mass density	,	DEN	NPAR(16)
Material cor	istants	PROP	NPAR(17)*NPAR(16)
NPAR(15):	: 1. Young's modulus, E		

Element Group: Shell Elements

(Continued)

Descripti	on	Variable	Dimension
	Poisson's ratio, v shear factors, Young's modulus, Poisson's ratio, v yield stres in simple tension, strain hardening modulus,	Ε s σ _y	
Working array		WA	NPAR(20)*NPT*NPAR(2) where NPT=NNRS*NPAR(12) NNRS=NPAR(10)*NPAR(11) IF(NNRS=2 or NNRS=3)NNRS=4 IF(NNRS=6)NNRS=7 IF(NNRS=12)NNRS=13
Stress output loc	cation tables	ITABLE	16*NPAR(16)
ITABLE(N,1)	Stress output 1	ocation 1	
ITABLE(N,2)	Stress output 1	ocation 2	
ITABLE(N,3)	•••		
ITABLE(N,4)			
ITABLE(N,5)			
ITABLE(N,6)			
ITABLE(N,7)			
ITABLE(N,8)			
ITABLE(N,9)			
ITABLE(N,10)			
ITABLE(N,11)			

TΔ	PF	1
10	<i>r</i>	

Element Group: Shell Elements

(Continued)

Description	Variable	Dimension
ITABLE(N,12)		
ITABLE(N,13)		
ITABLE(N,14)		
ITABLE(N,15)		
ITABLE(N,16) Stress output location 16		
Thickness tables	THICK	NPAR(14)*NPAR(8)
Thickness of the shell at 1st mid-surface node GT.O		
Thickness of the shell at 2nd mid-surface node EQ.O default set to THICK(N,1)		
•••		
Thickness of the shell at 8th mid-surface node EQ.O default set to THICK(N,1)		
IF NPAR(8)>0		
Thickness of the shell at 9th mid-surface node EQ.O default set to THICK(N,1)		
•		
Thickness of the shell at NPAR(8)th mid-surface node EQ.O default set to THICK(N,1)		
Skew coordinates flag	ISKEW	NPAR(2)*NPAR(7)
Element thickness table identifiers	NTHT	NPAR(2)
Initial (nodal) normal vector	VNI	3*NPAR(8)
(Nodal) normal vector at time t	VNT	3*NPAR(8)

TAPE 1

Element Group: Shell Elements (Continued)

Description	Variable	Dimension
(Nodal) vector v ₁ at time t	V1	3*NPAR(8)
Global normal-number of mid-surface nodes	NORGOL	NPAR(8)*NPAR(2)
Element base shape (triangle or quadrilateral) identifiers	ISHAP	NPAR(2)

TAPE 1 Element Group: 2/D Fuild Elements

Description Element group control information		Variable	Dimension
		NPAR	20
NPAR: NPAR(1)=	11		
NPAR(2)	Number of 2/D FLUID elements in this group		
NPAR(3)	Code indicating type of non- linear analysis 0. linear analysis 1. updated Lagrangian		
NPAR(4)	Element birth and death option 0. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(5)	Element type code 0. axisymmetric 1. plane		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate		

Element Group: 2/D Fuild Elements (Continued)

Description		Variable	Dimension
NPAR(7)	Maximum number of nodes used to describe any one element		
NPAR(10)	Numerical integra- tion order to be used in Gauss quadrature formula		
NPAR(15)	Material model number 0. default set to 1 1. inviscid, com- pressible fluid with constant bulk modulus		
NPAR(16)	Number of different sets of material properties		
NPAR(17)	Number of constants per property set		
Nodal D.O.F.	. number	LM	2*NPAR(7)*NPAR(2)
Element noda	ıl coordinates	YZ	2*NPAR(7)*NPAR(2)
Element numb	per of nodes	IELT	NPAR(2)
Element stre	ess printing flag	IPST	NPAR(2)
Element mate set number	erial property	MATP	NPAR(2)
Mass density	,	DEN	NPAR(16)
Material cor 1. Bulk mo		PROP	NPAR(17)*NPAR(16)
Working arra	ay	WA	NPAR(20)*NPAR(10)**2*NPAR(2)+ NDWS(NPAR(15))*NPAR(7)*NPAR(2)
Element mid- array	-side nodes location	NOD5	(2*NPAR(7)-1)*NPAR(2)

TAPE 1

Element Group: 2/D Fuild Elements

(Continued)

Description	Variable	Dimension
Element expiry time array	ETIMV	MM*NPAR(2) IF(NPAR(4)>0) THEN MM=1
Element birth time nodal coordinates	EDISB	MM*NPAR(2)*2*NPAR(7) IF(NPAR(6)>0 THEN MM=1
Skew coordinates flag	ISKEW	MM*NPAR(2)*2*NPAR(7) IF(NPAR(6)>0 THEN MM=1
Element degenerated flag	ISO	NPAR(2)

TAPE 1 Element Group: 3/D Fuild Elements

Description		Variable	Dimension
Element grou	p control information	NPAR	20
NPAR: NPAR(1)=	12		
NPAR(2)	Number of 3/D FLUID elements in this group		
NPAR(3)	Flag indicating type of non- linear analysis 0. linear analysis 1. updated Lagrangian		
NPAR(4)	Element birth and death option O. elements are active throughout solution 1. elements become only active at the time of birth 2. elements become inactive at the time of death		
NPAR(6)	Skew coordinate system reference indicator 0. all element nodes use the global system only 1. some element node d.o.f. are referred to a skew coordinate system	т	

Element Group: 3/D Fuild Elements

(Continued)

Desc	ription	Variable	Dimension
NPAR(7)	Maximum number of nodes used to describe any one element		
NPAR(10)	Numerical integra- tion order to be used in Gauss quadrature formulae for r-s plane		
NPAR(11)	Numerical integra- tion order to be used in Gauss quadrature formula for t-direction		
NPAR(15)	Material model number 0. default set to 1 1. inviscid, compressible fluid with constant bulk modulus		
NPAR(16)	Number of different sets of material properties		
Nodal D.O.F.	. number	LM	3*NPAR(7)*NPAR(2)
Element noda	ıl coordinates	XYZ	3*NPAR(7)*NPAR(2)
Element numb	per of nodes	IELTD	NPAR(2)
Element geom	netry number of nodes	IELTX	NPAR(2)
Element stress printing flag		IPST	NPAR(2)
Element material property set number		MATP	NPAR(2)
Element mid- array	side nodes location	NOD9	(NPAR(7)-1)*NPAR(2)
Similar stif	fness and mass licator	IREUSE	NPAR(2)

TAPE 1

Element Group: 3/D Fuild Elements (Continued)

Description	Variable	Dimension
Mass density	DEN	NPAR(16)
Material constants 1. Bulk modulus, K	PROP	NPAR(17)*NPAR(16)
Working array	WA	NDWS(NPAR(15))* NPAR(10)**2*NPAR(2)
Element expiry time array	ETIMV	MM*NPAR(2) IF(NPAR(4)>0 THEN MM=1
Element birth time nodal coordinates	EDISB	NPAR(2)*NPAR(7)
Skew coordinates flag	ISKEW	NPAR(2)*NPAR(7)
Element degenerated flag	ISO	NPAR(8)*NPAR(2)

Comment: storage organization for Tape 1 is shown in Fig. 3.1.

Tape 1
Linear Element
Group Storage

L₁, NL₁, L₂, NL₂, ····, L_{NEGL}, NL_{NEGNL} <

MAXEST = MIDEST = length of array needed for element group data.

Figure 3.1 Auxilary Storage Organization for Linear Element Group Information (Tape 1)

3.5.2 Tape 2

Specifications

- * Random access file
- · Stores nonlinear element group data

Comment:

Tape 2 is similar to Tape 1, except that it is a random access file for nonlinear element group information NEGNL>0. Details of element group data are the same as for Tape 1. Storage organization for Tape 2 is shown in Fig. 3.2.

Tape 2

(Random access unit)
Nonlinear Element
Group Storage

integration

Figure 3.2 Auxilary Storage Organization for Monlinear Element Group Information (Tape 2)

3.5.3 Tape 3

Specifications:

- Sequential access file
- Stores externally applied loads

Comment:

Program ADINA stores load vector information in 1-D array. Dimension of the array is NEQ, where

NEQ = number of equations (Total number of structural D.0.F.)

Description	Variable	Dimension
Externally applied loads	R	NEQ = number of equations

Repeat NSTE times

NSTE = number o solution time steps
(see master control card 1 in ADINA)

3.5.4 Tape 4

Specifications:

- Sequential access file
- Stores the linear stiffness matrix when NEGL # 0 or NSUBST # 0 only. (see master control card 1 in ADINA)

Comment:

Program ADINA stores linear stiffness matrix one time. Program does not store addresses of the diagnonal stiffness elements.

Description	Variable	Dimension
lements of linear tiffness matrix under he skyline	AA	ISTOH

Repeat NBLOCK times

NBLOCK = number of blocks

ISTOH = storage used under the skyline

3.5.5 Tape 5

Specifications:

Initial input file (It is ADINA·IN)

3.5.6 Tape 6

Specifications

• Output file (It is ADINA • OUT)

3.5.7 Tape 7

Specifications:

- Sequential access file
- Stores effective liner stiffness matrix in direct time integration and used as a scratch file during mode superpostion analysis

Comment:

Program ADINA stores effective linear stiffness matrix only once. It does not store addresses of the diagonal effective stiffness elements.

Description	Variable	Dimension
Elements of linear effective stiffness matrix under the skyline	AA	ISTOH

Repeat NBLOCK times

NBLOCK = number of blocks

ISTOH = storage used under the skyline

Tape 7 is used as a scratch file during mode superposition analysis. First it stores damping factors XSI as:

Description	Variable	Dimension
Damping factors	XSI	NMODES = number of nodal damping factors

Then Tape 7 is rewound and stores ϕ , where ϕ is the mode shape vector and is determined from the solution of eigenproblem:

$$K\phi = \omega^2 M\phi$$

where

K = stiffness matrix

 ω = natural frequency (rad/sec)

M = mass matrix

3.5.8 Tape 8

Specifications:

- Sequential access file
- Stores
 - (1) ID array (D.O.F. identification)
 - (2) During input:

initial displacements, velocities, and accelerations on output:

final displacements, velocities, and acceleration vectors and nonlinear element group data for a restart job.

Comment:

ID array is stored first, then during input phase, initial displacements, velocities, and accelerations are stored. Nonlinear element group data is not stored if NSUBST = number of substructures = 0 or linear analysis. Final displacements, velocities and accelerations are stored according to the different phases.

Description	Variable	Dimension
Structural D.O.F. identification	ID	NDOF*NUMNP
		NDOF = computed maximum number of d.o.f. for each node
-		NUNMP = total number of nodal points
Mid-surface normals	FMIDSS	3*MAXMSS
		MAXMSS = total number of mid-surface normal (for nonlinear analysi
Length array needed for element group data	MIDEST	scalar Only for
Element group data (see Tape 2)	EE	a nonlinea MIDEST analysis
· · · · · · · · · · · · · · · · · · ·	•	
Repe	at NEGNL tir	nes
Static or dynamic status	ISTAT	scalar ISTATO=O static anaysis ISTAT>O dynamic analysis
Time step increment	DT	scalar
Displacements at nodal points	DISP	NEQ NEQ=number of equations
Velocities at nodal point (for dynamic analysis)	VEL	NEQ
Acceleration at nodal points (for dynamic analysis)	ACC	NEQ

3.5.9 Tape 9

Specifications:

- Sequential access file
- Stores mode shapes and circular frequencies (if frequency solution was requested); also used as a scratch file during equilibrium iterations.

Comment:

This tape has been used as a scratch file to store normal vectors (FMIDSS) and \mathbf{v}_1 vectors (FMVI).

Description	Variable	Dimension
Eigenvectors	PHI	NEQ NEQ=number of equation frequencies
	•	
	Repeat NFREQ times	
Eigenvalues	ROOT	NFREQ NFREQ=number of frequencies and mode shapes to be calculated

3.5.10 Tape 10

Specifications:

- Random access file
- Stores D-L (diagonal and lower triangle) factors of effective linear or nonlinear stiffness matrix in time integration

Comment:

This is a random access file. It sotres the D-L information. The length of each record is 3000 words. If the length of a block is more than 3000 words, next record is allocated to the remainder of that record.

Description	Variable	Dimension
Factors of effective linear or nonlinear stiffness matrix	DL	ISTOH ISTOH = maximum block length

Repeat NBLOCK times

3.5.11 Tape 11

Specifications:

- Sequential access file
- Stores
 - (1) Mass matrix (consistent mass if IMASS = 2)
 IMASS = flag indicating static or dynamic analysis
 - (2) Damping factor

Comment:

On this tape lumped mass is stored once in a block, but consistent mass depends on the number of Block = NBLOCK.

For lumped mass:

Description	Variable	Dimension
LUMPED MASS	WLUMPED	NEQ
Concentrated dampers	Damp	NEQ = number of equations

For consistent mass:

Variable	Dimension
WCONSIS	ISTOH ISTOH = maximum block length
•	
	WCONSIS

Repeat NBLOCK times

Concentrated dampers Damp NEQ
NEQ = number of equations

3.5.12 Tape 12

Specifications:

- * Sequential access file
- Initially used as scratch file in load calculations. It stores the effective nonlinear stiffness matrix in time integration-or-the nonlinear stiffness matrix for eigensystem solution.

Comment:

Information on this tape is based on the requested job in analysis. If NSTE = 0 and frequency analysis is asked for, updated linear stiffness (nonlinear stiffness matrix) is stored, and if NSTE \neq 0 and nonlinear analysis is asked for, effective nonlinear stiffness matrix in time integration is stored.

Description	Variable	Dimension
Effective nonlinear or just nonlinear stiffness matrix	AA	ISTOH ISTOH = maximum block length

Repeat NBLOCK times

NBLOCK = number of blocks

3.5.13 Tape 13

Specifications:

- . Sequential access file
- *Stores initially line function values and prescribed displacement data during time integration

Comment:

Description	Variable	Dimension
Value of line function at t = 0	RGST	NTFN NTFN = number of time functions
Interpolated value of time function at each step	RG	NTFN*NSTE NSTE = number of solution time steps
Number of points used to input the related time function RV	NPTS	scalar
Function value at each point	RV	NPTS*NTFN
Related time to RV function value	TIMV	NPTS*NTFN

If number of prescribed displacement is greater than zero then following data are stored on tape.

Description	Variable	Dimension
Prescribed displacements	R	NPDIS NPDIS = number of prescribed displacements

Repeat NSTE times

NSTE = number of solution time steps

3.5.14 Tape 14

Specifications:

- Sequential access file
- *Stores substructures data

Comment:

Substructure element group data are stored on Tape 1. Substructures use linear element group data, and as a result, Tape 2 has no information related to substructures element group data.

Description	Variable	Dimension
Number of time the substructure is used	NTUSE	scalar
Number of element group used to define the substructure	NEGLS	scalar
Number of nodal point in the substructure	NUMNPS	scalar
Number of nodes to be condensed for the substructure	NODCON	scalar
No of nodes to be retained for the substructure	NODRET	scalar
X,Y,Z, translation and rotation code	IDOFS	6
Maximum nodal D.O.F. for the substructure	NDOFS	scalar
Addresses of diagonal substructure stiffness matrix	IA	NEQS NEQS = number of equation for the substructure
Number of columns per block	IA	NBLOCS NBLOCS = number of blocks for the substructure

Description	Variable	Dimension
Number of blocks for the substructure	IA	NBLOCS
Number of XYZ coordinates system use for the reused substructure	NXYZ	scalar
Identical loading for the reused-substructure	LREUSE	scalar
Number of concentrated load for the substructure	NLOADS	scalar
Total number of 2-D pressure load for the reused-substructure	NPR2S	scalar
Total number of 3-D pressure load for the reused-substructure	NPR3S	scalar
Total number of 2-node beam pressure load for the reused-substructure	NPMBS	scalar
Total number of ISO/beam pressure load for the reused-substructure	NDIDBS	scalar
Total number of plate shell pressure load for the reused-substructure	NPPLS	scalar
Total number of shell pressure load for the reused-substructure	NPSHS	scalar
	NOD3S	scalar
Direction ratio for the substructure	DIRNUM	9
Total number of d.o.f. for the substructure	ND	scalar

Description	Variable	Dimension
Nodal D.O.F. number for the reused substructure (same as LM)	LMS	ND
Print out directive indicator for the reused-substructure	ISC	scalar ISC = O no print out ISC ≠ O print out
Number of itme-step blocks for nodal and element associated print-out	NSPRIB	scalar
Number of displacement block print-out	NSPB	scalar
Block definition of print-out time steps for the reused-susbstructure	ISPRIB	3*NSPRIB
Block definition of nodal quantities print-out print-out for the reused substructure	ISPNOD	3*NSPB

Repeat NTUSE times 100p 2

Repeat NSUBST times loop 1

 ${\sf NTUSE}$ = associated number of times for the substructure

NSUBST = number of independent substructure

3.5.15 Tape 15

Specifications:

- Sequential access file
- ullet Stores load vector values for each time function, substructure ID array, ID array and master structure nodal responses (displacements at all time steps

Comment:

Description	Variable	Dimension
Value of time function at t = 0	RGST	NTFN NTFN = number of time functions
Interpolated value of time function at each step	RG	NTFN*NSTE NSTE = number of solution time steps
Number of points used to input the related time function RV	NPTS	scalar
Function value at each point	RV	NPTS*NTFN
Related time to RV function vector	TIMV	NPTS*NTFN
Substructure D.O.F. identification	ID	NDOFS*NUMNPS NDOFS = maximum nodal D.O.F. for the substructure NUMNPS = number of nodal points in the substructure
Skew coordinates system for each node in the substructure	NODSYS	NUMNPS
X-Coordinates for the substructure	X	NUMNPS
1-Coordinates for the substructure	Υ	NUMNPS

Description	Variable	Dimension
Z-Coordinates for the substructure	Z	NUMNPS
	•	

Repeat NSUBST time

NSUBST = number of independent substructure

Description	Variable	Dimension
Master nodal displacement	DISP	NEQ+NDISCE NEQ = number of equations NDISCE = number of displacements constraint equations

Repeat NSTE times

NSTE = number of solution time steps

3.5.16 Tape 16

Specifications:

- Random access file
- Stores substructural factorized stiffness matrices

Comment:

Substructural stiffness matrices are calculated and decomposed only once because only linear element groups are used in substructing.

AD-A162 355 DATABASE DESIGN FOR STRUCTURAL ANALYSIS AND DESIGN
OPTIMIZATION(U) IOMA UNIV IOMA CITY APPLIED-OPTIMAL
DESIGN LAB JS ARORA ET AL. OCT 84 CAD-SS-84-22
AFOSR-TR-85-1079 F/G 9/2 2/4 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

Description	Variable	Dimension
Factorized stiffness matrice for the substructure	SUBSTIFF	ISTOSH
substructure		ISTOSH = maximum block length for the substructure
	•	
	•	
	Repeat NBLOCS times	
•		•
	•	

Repeat NSUBST times

NBLOCS = number of blocks for the substructures

NSUBST = number of independent substructures

3.5.17 Tape 17

Specifications:

- * Random access file
- Stores externally applied loads for all time steps, and substructure nodal responses (displacements) for static analysis. In dynamic analysis, it stores externally applied loads at all time steps and nodal loads at all time steps for each substructure and reused-substructure.

Comment:

Tape 17 is used as a temporary file for nodal loads in static analysis.

Description	Variable	Dimension
External nodal loads	EXLOAD	NEQ NEQ = number of equations of the master structure

Repeat NSTE times

NSTE = number of solution time steps

Description	Variable	Dimension
Condensed nodal displace-	CODISP	NEQC
ments (internal nodes)		NEQC = number of condensed equations for the substructure
(In a static analysis)		
Substructure load (condensed and boundary nodal loads)	SUBLOAD	NEQS
		NEQS = number of equations for the substructure

Repeat NSTE times

Repeat NTUSE times

Repeat NSUBST times

NSTE = number of solution time steps

NTUSE = number of times the substructure is used

NSUBST = number of independent substructure

3.5.18 Tape 18

Specifications:

- * Sequential access file
- Stores data in BFGS iteration and vectors input to subspace iteration, also temporarily stores reduced substructure stiffness

Comment:

Data in BFGS means out of balance loads.

Description	Variable	Dimension
Out of balance load in BFGS iteration	RE	NEQ
		NEQ = number of equations

3.5.19 Tape 19

Specifications:

- * Sequential access file
- * Stores vectors in subspace iteration

Comment:

Tape 19 stores eigenvectors if IACCN = flag for usage of acceleration schemes $\neq 0$.

Description	Variable	Dimension
Eigenvectors in subspace iteration	EIGVEC	NEQ
		NEQ ≈ number of equations

Repeat NQ times

NQ = number of iteration used in subspace iteration solution if IESTYP = 1, IESTYP = 0 default set to Min(2*NFREQ,NFREQ+8)

4.5.20 Tape 22

Specifications:

- * Sequential access file
- * Stores load vector during equilibrium equation

Comment:

No informations are available on this tape if IMODES > 0. In this tape vector R^* for the solution of $K\Delta U = R$ is stored. (See Klaus jurgen Bath: finite element procedures in engineering analysis).

where R^* = Unbalanced load vector during equilibrium equation

 ΔU = Incremental displacement

K = Tangent stiffness matrix

Description	Variable	Dimension
Load vector during equilibrium equation	RSTAR	NEQ
		NEQ = number of equation in master system

3.5.21 Tape 23

Specifications:

- * Sequential access file
- * Stores substructure nodal responses (displacements) at all time, steps, also temporarily stores concentrated masses and dampers

Comment:

Substructure nodal responses.

Description	Variable	Dimension
Displacement vector of the substructure	DISP	NEQS
		NEQS = number of equations for the substructure
Velocity vectors of the substructure (In dynamic analysis)	VEL	NEQS
Acceleration vectors of the substructure in dynamic analysis	ACC	NEQS

Repeat NTUSE times

Repeat NSUBST times

Repeat NSTE times

NTUSE = number of times for the substructure

NSUBST = number of independent substructures

NSTE = number of solution time steps

Concentrated masses and dampers on Tape 23 are stored temporarily as:

Description	Variable	Dimension
Concentrated nodal	CONMASS	NEQ
masses		NEQ = number of equation for the master structure
Concentrated nodal dampers	CONDAMP	NEQ

3.5.22 Tape 50

Specifications:

 Initial input file in which comment cards are included in the input stream

Comment:

The option of using comment cards in the input stream of the data cards is directly available for a CDC computer. Additional verification may be needed for other systems. Presently, for prime computer, it is not available, no information is accessible on Tape 50.

3.5.23 Tape 56

Specifications:

- Sequential access file
- * Stores nodal point temperature in NSTE+1 (NSTE = number of solution time steps) records. 1st record is allocated to the temperature at time 0, and 2nd record devoted to temperature at time Δt and so on.

Comment:

If ITP96 = 1, temperatures are reused from Tape 56. (See master control card in ADINA).

Description	Variable	Dimension
Time of solution start	TSTART	scalar
Temperature at start time	TEMP	NUMNP NUMNP = number of nodal points
Time of temperature (t)	TIME	scalar
Temperature at time t		NUMNP NUMNP = number of nodal points

Repeat NSTE times

NSTE = number of solution time steps

3.5.24 Tape 59

Specifications:

- Sequential access file and formatted
- Stores preprocessed input data (if used)

Comment:

Tape 59 is used as a data file for preprocessor, program ADINA reads the required informations from this file if INPORT > 1(INPORT = control parameter for reading nodal and eliment information from preprocessor tape).

Comment:

If INPORT > 0 the following data is read by the program ADINA from unit 59 and therefore should not be input in the card deck.

- (1) Nodal point data described in Section V.3 (See AE81-1 User's Manual)
- (2) The ID array (identification equation number) with equation numbers associated with all active degrees of freedom if INPORT = 2.
- (3) Element data cards described in Section XI to XXX (See AE81-1 User's Manual).
- (4) Substructure nodes and elements (see XXXI.26, AE81-1 Users' Manual).

Description	Variable	Dimension
Symbol describing the coordinate system for this node	IT	character
Node number	N	scalar
Print suppersion flag	JPR	character
X,Y,Z translation and rotation boundary code	IDT	6
X-nodal coordinate	X	NUMNP
Y-nodal coordinate	Υ	NUMNP
Z-nodal coordinate	Z	NUMNP
Node number increment for node data generation	KN	scalar
Skew coordinate system for this node	NRST	scalar
Mid-surface vector set for this node	MIDS	scalar

Repeat NUMNP times

NUMNP = number of nodal points

Description	Variable	Dimension
Equation number associated with active degrees of freedom	ID	NDOF*NUMNP
		NDOF = maximum nodal active degrees of freedom
		NUMNP = number of nodal points

Repeat NUMNP times

NUMNP = number of nodal points

For truss element groups:

Description	Variable	Dimension
TRUSS element number	M	scalar
Number of nodes to describe this element	IELE	scalar
Flag for printing and saving on porthole the axial stress, strain and force in the element	IS	scalar
Material property set number	MTYP	scalar
Node generation increment used to compute node numbers for missing elements	KG	scalar
Initial axial strain in the element	EPS	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE 4

Repeat NPAR(2) times

NPAR(2) = number of truss elements in this group

For 2-D elements group:

Description	Variable	Dimension
2-D SOLID element number	M	scalar
Number of nodes to describe this element	IEL	scalar
Number of the stress table to be used for stress calculations	IPS	scalar
Material property set number assigned to this element	MTYP	scalar
Node generation parameter used to compute node numbers for missing elements	KG	scalar
Material angle β, in degrees, to be used in connection with material model "2" (linear orthotropic)	BET	scalar
Element thickness	THIC	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE8

Repeat NPAR(2) times

NPAR(2) = number of 2-D SOLID elements in this group

For 3/D SOLID elements group:

Description	Variable	Dimension
3/D SOLID element number	M	scalar
Number of nodes to be used in describing the element's displacement field	IELD	scalar
Number of nodes to be used in the description of the element's geometry	IELX	scalar
Number of the stress output location table to be used for this element (if a linear material model is used) or flag to output stress at element integration points	IPS	scalar
Material property set number assigned to this element	МТҮР	scalar
Material axes orientation set for this element	MAXES	scalar
Flag indicating that the stiffness and mass matrices for this element are the same as those for the preceding elements	IST	scalar
Node number increment for element data generation	KG	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar

Global node numbers	NODE8

Repeat NPAR(2) times

NPAR(2) = number of 3-D SOLID elements in this group

For beam element groups:

Description	Variable	Dimension
BEAM element number	M	scalar
Assemblage node number at one end (nod 1)	11	scalar
Assemblage node number at other end (node 2)	JJ	scalar
Auxiliary node in r-s local plane	KK	scalar
Material property set number	MTYP	scalar
Number of the stress table to be used for stress output	IPs	scalar
Node generation increment used to compute node numbers for missing elements	KG	scalar
Time of element birth or death	ETIME	scalar
Number of end release table	IELREL	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar

Repeat NPAR(2) times

NPAR(2) = number of beam elements in this group

For isoparameteric beam element groups:

Description	Variable	Dimension
YCO/OFAM allegands and analysis	M	
ISO/BEAM element number	M	scalar
Number of nodes to describe this element	IELD	scalar
Flag for stress output	IPS	scalar
Material property set number	MTYP	scalar
Node generation parameter	KG	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE 4

Repeat NPAR(2) times

NPAR(2) = number of isoparametric beam elements in this group

For plate/shell element groups:

Description	Variable	Dimension
PLATE/SHELL element number	M	scalar
Number of the stress- resultant table to be used for stress- resultant calculations	IPS	scalar
Material property set number assigned to this element	MTYP	scalar
Node generation parameter used to compute node numbers for missing elements (given on first card of a sequence)	KG	scalar
Material angle ß, in degrees to be used in connection with material model "2"	BET	scalar
Element thickness	THIC	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE 3

Repeat NPAR(2) times

NPAR(2) = number of plate/shell elements in this group

For shell element groups:

Description	Variable	Dimension
SHELL element number	M	scalar
Number of nodes to be used in describing the element's dis-placement field	IELD	scalar
Number of the stress output location table to be used for this element (if a liner material model is used) or flag to output stresses at element integration points	IPS	scalar
Number of the Shell Thickness Table, to be used for mid-surface nodes	NTH	scalar
Material property set number assigned to this element	MTYP	scalar
Flag indicating that the stiffness and mass matrice for this element are the same as those for the preceding element	IST	scalar
Node number increment for element	KG	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE 32

Repeat NPAR(2) times

NPAR(2) = number of shell elements in this group

For 2-D fluid element groups:

Description	Variable	Dimension
2/D FLUID element number	M	scalar
Number of nodes to describe this element	IEL	scalar
Flag to output pressures	IPS	scalar
Material property set number assigned to this element	MTYP	scalar
Node generation parameter used to compute node numbers for missing elements	KG	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers		NODE8

Repeat NPAR(2) times

NPAR(2) = number of 2-D fluid elements in this group

For 3-D fluid element groups:

Description	Variable	Dimension
3/D FLUID element number	M	scalar
Number of nodes to be used in describing the element's displacement field	IELD	scalar
Number of nodes to be used in the description of the element's geometry	IELX	scalar
Flag to output pressures	IPS	scalar
Material property set number assigned to this element	MTYP	scalar
Flag indicating that the stiffness and mass matrices for this element are the same as those for the preceding element	IST	scalar
Node number increment for element data generation	KG	scalar
Time of element birth or death	ETIME	scalar
Flag for printing global coordinates of integration points	INTLOC	scalar
Global node numbers	NODE	21

Repeat NPAR(2) times

NPAR(2) = number of 3-D fluid elements in this group

3.5.25 Tape 60

Specifications:

- Sequential access file
- The porthole (graphics) file for saving nodal/element responses (if requested)

Comment:

The porthole (graphics file) creation is employed to store data for use with ADINA-PLOT. This program can be directly used to access the stored input data and ADINA output for graphical display and selective listing operations. Current logical units in ADINA are:

- LUNODE = for the tape on which node associated data and/or results are to be written
- LU1 = for the tape on which TRUSS, 2-NODE BEAM, ISO/BEAM element data and/or results are to be written
- LU2 = for the tape on which 2/D SOLID, 2/D FLUID element data and/or results are to be written
- LU3 = for the tape on which 3/D SOLID, PLATE, SHELL and 3/D FLUID element data and/or results are to be written

Since our target is design of a database for design optimization problems, we impose same logical units to store nodal and element respones. Suppose we assign LUNODE = LU1 = LU2 = LU3 = 60. Then, following information is stored sequentially on Tape 60. Note that first value of each record on Tape 60 is a character*8 variable which defines the stored information following the record. For example, a variable like 'MATERAL6' specifies material information of plate element stored in that record. This tape is very big, we only describe a few of the data items on the tape in attached flow diagrams.

3.6 DISCUSSION

In this chapter, ADINA's database is described. Section 3.5 explains each tape. Although the section is not comprehensive, it contains the basic structure of ADINA database. Tapes 50, 59, and 60 are not database files. Tape 59 is a preprocesser input file and 60 is the porthole (graphics) file. Nodal/element responses are available on Tape 60. This can be used as a basic tape for most of the required information in design sensitivity analysis and optimization. Further information about tape allocations is given in a report by Haririan and Arora (1984).

4. ANALYSIS OF GIFTS' DATABASE

4.1 INTRODUCTION

GIFTS is a pre- and post-processing and structural analysis package based on finite element technique (Kamel and McCabe, 1979, 1981). It produces and maintains data sets containing all information of finite element analysis. Data sets are generated on the user disk in binary format.

The purpose of this chapter is to analyze the GIFTS database which may also be used for structural optimization. To access data sets, it is necessary to have a proper knowledge of the data structure used in GIFTS. Program structure is presented in Section 4.2. Brief description of each module is also given there. Section 4.3 shows the data structure of the random access files generated by GIFTS which may be permanent or temporary. Data sets generated by GIFTS are listed in Section 4.4. Section 4.5 shows the usage of data sets in each module. Detailed data set contents are described in Section 4.6. It is noted that the term 'data set' is used in place of 'data file' since each data file of GIFTS contains only one data set.

4.2 STRUCTURE OF PROGRAM GIFTS

GIFTS is a group of fully compatible modules, constituting a program library. Each module is used for specific function such as stiffness matrix computation, load and boundary condition generation, etc. To perform complete analysis using GIFTS, a number of modules needs to be executed. There are procedures for static analysis, substructuring, and dynamic analysis.

GIFTS contains both batch and interactive modules. A batch module should be run in remote batch mode. It deposits results in the database using a standard format, so that they can be accessed by the user. The only input for this case is the job name.

An interactive module follows a reasonable sequence of instructions given from a graphics terminal. It usually has plotting capabilities. Figures 4.1 and 4.2 show the structure of batch and iteractive modules of GIFTS, respectively.

Some GIFTS modules are used in a number of solution procedures. They are described below.

4.2.1 Model Generation and Editing

- BULKM is an automated 3-dimensional plate and shell model generator. It is suitable for large continuous structures that can be easily modeled by repetitive generation of points and elements.
- BULKS is a 3-dimensional solid model generator. One may ask for the display of the edges, and may add and display selected points and element slices.

- EDITM Updates and corrects BULKM models. It can also be used to generate simple models and the ones too complex for BULKM module.
- DEFCS accepts information regarding external and dependent boundary nodes in a constrained substructure.
- EDITS is a 3-dimensional solid mesh editor. It is not available in current version at the University of Iowa.

4.2.2 Load and Boundary Condition Generation and Editing

- BULKF is intended to allow only those freedoms that a model can support.
- BULKLB is a bulk load and boundary condition generator which is applied to models generated with BULKM. These include distributed line and surface loads and masses, prescribed displacements along lines and surfaces, and inertial loads. Temperatures may be also specified.
- EDITLB is a display and edit module intended to provide local modification capability for loads and boundary conditions applied by BULKLB module. It may also be used to generate simple loading on models, or loading not generated with BULKLB. Temperatures may also be specified for elements. After the DEFL module has been run, thermal and combined loads may be examined.
- LOADS is a load and boundary condition generator for solid models. Loads may be distributed on lines or surfaces. Loads and boundary conditions may be displayed on point slices.

4.2.3 General Purpose Computational and Result Display

- OPTIM is a bandwidth optimization module. It may be called several times, until the best node numbering is achieved.
- STIFF computes element stiffness matrices and assembles them into the system stiffness matrix.
- DECOM introduces kinematic boundary conditions, and decomposes the stiffness matrix using Cholesky's method.
- DEFL computes the deflections using the current loading conditions and the decomposed stiffness matrix. If temperatures are present, thermal forces will be calculated and added to the current applied loads before computation.
- STRESS computes element stresses based on current deflections.
- RESULT displays deflections and stresses.

Figure 4.2 Structure of GIFTS Interactive Module

4.2.4 Free Vibration Analysis (Subspace Iteration Method)

AUTOL is for automatic generation of starting iteration vectors for the subspace iteration method.

SUBS performs a single subspace iteration to determine the natural modes of vibration. It must be repeated as many times as necessary to obtain convergence to desired accuracy.

The program execution sequence is as follows:

BULKM model generation

BULKF determination of basic freedom pattern

OPTIM bandwidth optimization

 ${\sf BULKLB} \atop {\sf EDITLB}$ definition of number of modes and kinematic boundary conditions

AUTOL automatic load generation

STIFF computation of stiffness matrix

DECOM matrix decomposition

SUBS subspace iteration routine

RESULT display of current mode shapes and stresses.

4.2.5 Transient Response Analysis (Houbolt Method)

TRAN1 is used to specify the time stepsize to be used in the integration process. It computes the initial acceleration and the effective stiffness matrix.

TRAN2 computes the displacement for time $t = \Delta t$ by inverting the decomposed effective stiffness matrix. It computes the second effective stiffness matrix for all subsequent time steps.

TRANS computes the displacement for all time steps after $t = \Delta t$. It maintains and plots history of the displacements (upto four different freedoms).

The program execution sequence is as follows:

BULKM model generation

 $\frac{\text{BULKF}}{\text{BULKLB}}$ generation of load functions at different time values mass and damping coefficient generation

OPTIM bandwidth optimization

STIFF stiffness matrix generation

TRAN1

DECOM definition of time stepsize, and initiation of integration

TRAN2 procedure

DECOM

TRANS user controlled time integration

STRESS stresses of time steps set up by TRANS

RESULT display of time steps set up by TRANS.

4.2.6 Constrained Substructure Analysis (COSUB)

REDCS computes condensed stiffness and load matrices. It prints residual forces to check accuracy of COSUB generation.

LOCAL is used to extract the deflections of each external node of the desired COSUB from the master analysis model. It uses them to compute displacements of all the dependent boundary points, with the partial displacement matrix due to internal loading (computed by REDCS), and all of the internal nodes of the COSUB model.

The program execution sequence is as follows:

Generation of COSUB Model	Generation of Main Analysis Model
BULKM	BULKM
EDITM	EDITM
BULKF	BULKF
BULKLB	BULKLB
EDITLB	EDITLB
OPTIM	OPTIM
DEFCS	STIFF
STIFF	DECOM
DECOM	DEFL
REDCS	STRESS

Local Analysis of COSUB

LOCAL

STRESS

4.3 DATABASE STRUCTURE

GIFTS has a well defined database structure. A complete description of the database is important to a user. Following terminologies are defined to describe the database of GIFTS:

1. Logical Records (LRS)

A logical record is the smallest unique collection of data contained in a data set. For example, all data pertaining to one node or one element is called one logical record. This data is passed to and from the GIFTS system's I/O subroutines via labelled common blocks as individual logical records.

2. Physical Records (IPRS)

A physical record is a collection of data read from or written to a data set with a single I/O operation. It consists of any number of logical records.

3. Blocking Factor (IBF)

Number of logical records in a physical record is defined as the blocking factor (i.e., IPRS = IBF*LRS).

4. Logical Record Group (NLRG)

Some data sets contain a group of logical records, all of which share some common attributes in those data sets (e.g., same loading case number). Figure 4.3 shows structure of random and sequential access type databases.

4.4 DATA SETS IN GIFTS

Data sets are generated by the system automatically during the execution of any solution procedure. The data sets are either sequential or random access, and permanent or temporary. Permanent data sets exist in user's subdirectory with a name of D-G.jobname. Jobname is to be specified by the user. Temporary data sets exist only during the execution of the program, and are deleted upon successful termination of the program. Table 4.1 shows a list of data sets used in GIFTS system.

4.5 UTILIZATION OF DATA SETS

Table 4.2 shows use of data sets in various modules. A row in the table indicates the total number of data sets utilized by each module. The contents of each data set may be changed or unchanged during the execution of GIFTS. Execution procedure can be classified into three stages; pre-processing, analysis, and post-processing. It is recommended that the data sets should not be directly accessed during the analysis stage.

GIFTS Prime version utilizes up to 10 random access and 3 sequential access data sets, simultaneously. In case more than 10 random data sets are used, the module automatically closes a file before another is opened. For random-access data set utilization within a module, the labelled common block

containing the buffer should be core-resident from the time the data set is opened to the time it is closed.

During execution of GIFTS system, only 13 logical device numbers are used, and these are assigned by special GIFTS routines during execution of a module. Table 4.3 provides these numbers used in GIFTS 5.03 Prime version. It contains subroutine names which assign these numbers, so that they may be altered for other systems.

4.6 DETAILED DESCRIPTION OF DATA SETS

This section provides the detailed description of logical second contents for random access data sets, except the data sets 'PAR' and 'FIL'. For these data sets, the description is for each physical record. The contents of sequential access data sets are also described.

In GIFTS5 system, the data sets can be classified into 7 groups according to their utilization:

- 1. System and Data Set Management Group
- 2. Model Generation Group
- 3. Static Analysis Group
- 4. Dynamic Analysis Group
- 5. Substructural Analysis Group
- 6. Axisymmetric Analysis Group
- 7. Temporary Group

These data sets are generated in such a manner that the extra data sets are added to the basic groups 1, 2 and 3. For example, 8 data sets (LDT, DNT, SAV, HST, DNH, UGC, DYN, GCS) are generated during the execution of dynamic analysis (modal analysis or transient response analysis).

All random access data sets have default sizes and are varied according to the problem size. Specifications of these data sets are stored and updated via the data set 'FIL'. The following is the detailed descriptions of each data set.

4.6.1 System and Data Set Management Group

The data sets 'PAR' AND 'FIL' are classified as a system and data set management group. These data sets are utilized in all modules.

RANDOM	ACCESS	TYPE		SI	EQUENTIAL	ACCESS	TYPE	
LRS LRS								
LRS	IPRS							
LRS		NLRG				С	OLUMN-W	I SE
LRS		MENU				М	IXED DA	TA
LRS	IPRS					(Integer	+ Real)
LRS								
LRS								
LRS LRS								
LRS	IPRS							
LRS		NLRG						
LRS		NEKO						
LRS	IPRS							
LRS								
LRS								
NOTES:	IPRS	= Physical	Records,	LRS =	= Logical NLRG =	Records Logical	Record	Group.

Figure 4.3 Database Structure of GIFTS

Table 4.1 List of Data Sets in GIFTS

DATA SET	IPR	S	CONTENTS
NAME	LRS	IBF	
PAR	25	1	System and Problem Control Parameters
FIL	7	1	File Specification Management
LIN	49	10	Line Generation Logic
GRD	63	5	Grid Generation Logic
PTS	44	10	Nodal Point Generation Logic
ELT	45	10	Element Generation Logic
MAT	27	5	Material Definition Data
THS	36	5	Thickness/Area Information
SUR	65	5	Surface Generation Logic
SLD	147	1	Solid Element Generation Logic
SLI	18	10	Slice Element Generation Logic
SDY	42	5	Stiffness Matrix Directory
STF	652	1	Stiffness Matrix
S02	21	5	Stiffness Matrix Directory (Axi-symm.)
STC	652	1	Stiffness Matrix (Axi-symm.)
LDC	16	10	Nodal Point Loads
LDI	364	1	Internal Loads
LDS	16	10	Nodal Point Loads
LDT	146	1	Temporary Load, Mass and Damping coeff.
ELD	70	5	Element Loads
PLD	22	10	Point Loads
TLD	168	5	Thermal Loads
STR	16	10	Element Stresses
TEM	652	1	Element Temperature for COSUB
TMP	56	5	Element Temperature
DNH	12	10	Displacement History
DNI	364	1	Internal Deflections
DNS	16	10	Nodal Point Deflections
DNT	146	1	Previous Transient Response Data
ELS	24	10	Principal Stresses (T)
RES	168	5	Residual Stresses
UGC	364	1	Unit Generalized Displacement

Table 4.1 (Continued)

DATA SET	IPRS	5	CONTENTS
NAME	LRS	IBF	
CFR	SEQUE	NTIAL	Stress contour values
HST	SEQUE	NTIAL	Histogram of Selected D.O.F.
DYN	SEQUE	NTIAL	Condensed Matrices for Modal Analysis
SAV	SFQUE	NTIAL	Stiffness Save File
DGT	SEQUE	NTIAL	Digitizer Information for Plotting
CPF	SEQUE	NTIAL	Digitizer Information for COSUB Plot
INT	5	10	Boundary Interpolation Directory for COSUB
TOE	652	1	Transformation Matrices for COSUB
31T	652	1	Transformation Matrices for COSUB
KEE	652	1	Condensed Stiffness Matrix for COSUB
MEE	652	1	Condensed Mass Matrix for COSUB
CEE	652	1	Condensed Damping Matrix for COSUB
CLD	364	1	Condensed Load Vector for COSUB
CDN	364	1	Internal Displacements for COSUB
0 P0	2	40	Nodal Point Directory (T)
0P1	4	40	Nodal D.O.F. and Information Directory (T)
0P2	2	40	Element Information Directory (T)
0P3	1	40	List of the corner nodes for each element (T)
PTX	44	10	Temporary Nodal Points (T)
TMX	56	5	Temporary Element Temperature (T)
LDX	16	10	Temporary Nodal Point Loads (T)
SLX	18	10	Temporary Solid Element (T)

NOTES

(T): Temporary Data Sets

COSUB: Constrained Substructuring.

REMARKS

- 1. The data sets listed above refer to GIFTS5 Prime Version at CAELAB, University of Iowa.
- 2. The data sets generated in other directories are not listed here. These are as follows:
 - -SRC : User Command File generated in user's home directory in case of OLB (On-Line-Batch) mode.
 - -EST, \$EST: System Files for estimating the CPU times of
 - subsequent modules.
 - -INF : System Information File for the user in interactive mode.

Table 4.2 Data Set Utilization in GIFTS5

1.

DATA SET MODULE	PAR	FIL	LIN	GRD	SLD	SLI	PTS	ELT	MAT	THS	SUR	ELD	TLD	LDS
BULKM	х	х	Х	х			х	х	x	х	х			
EDITM	x	x	X	x			x	x	X	x	x			x
BULKF	x	X					X	X		X				
OPTIM	x	X					x	X		X				
BULKLB	x	x					x	X	x	x		X		X
EDITLB	x	x					x	x		x		X		X
STIFF	x	x					x	x	X	x				
DECOM	x	x					x							
DEFL	x	x					x	x	x	x			x	X
STRESS	x	x					x	x	x	x		x		
RESULT	x	x					x	x	x	x		x		
SAVEK	x	x												
RESIDU	x	x					x							
BULKS	х	х	х	×	х	х	х	х	×	х	x			
LOADS	×	x	x	x	x	X	x	X	X	X		×		x
AUTOL	х	х					х							х
SUBS	X	х					x							X
TRAN1	X	x					x							X
TRAN2	X	x												
TRANS	x	X					x							x
DEFCS	х	х	x				Х	х	-	х				х
REDCS	x	x					x							X
LOCAL	x	x	x				x	x	x	x				

Table 4.2 (Continued)

2.

DATA SET MODULE	PLD	LDC	LDI	SDY	STF	SD2	STC	STR	TEM	TMP	DNH	DNI	DNS	DNT	LDT
BULKM														-	
EDITM															
BULKF															
OPTIM															
BULKLB	X									x					
EDITLB										x					
STIFF				X	X										
DECOM				X	x										
DEFL		X	x	X	x			x		x		x	x		
STRESS								x		x			x		
RESULT								x					x		
SAVEK					x										
KESIDU			×												
BULKS	 -	 -													
LOADS										X					
AUTOL											-				_
SUBS			X	X	x							X	X		X
TRAN1			X	x	x										X
TRAN2				X	x									x	X
TRANS			×	×	X						X		x	X	X
DEFCS															
REDCS			x	x	x				x						
LOCAL												x	X		

Table 4.2 (Continued)

					lable	4.2	(Cor	ntinue	e d)					3.
DATA SET MODULE	ELS	RES	UGC	INT	TUE	TIE	KEE	MEE	CEE	CLD	CDN	нѕт	DYN	SAV
BULKM														
EDITM														
BULKF														
OPTIM														
BULKLB								X	x					
EDITLB		x								X				
STIFF							x							
DECOM														
DEFL														
STRESS	X													
RESULT	X													
SAVEK														X
RESIDU		x												
BULKS														
LOADS														
AUTOL														
SUBS			x										x	
TRAN1														X
TRAN2														X
TRANS												×		
DEFCS				×										
REDCS				x	x	x	x	x	x	x	x			
LOCAL					x	x					x			

Table 4.2 (Continued)

4.

DATA SET MODULE	CFR	DGT	CPF	0P0	0P1	OP2	OP3	PTX	TMX	LDX	SLX
BULKM		х						х			
EDITM		x						x		x	
BULKF		x									
OPTIM		x		x	x	x	x				
BULKLB		x							x	x	
EDITLB		x							x	x	
STIFF		x									
DECOM		x									
DEFL		x									
STRESS		x									
RESULT	x	X	x								
SAVEK		X									
RESIDU		x									
BULKS		х									x
LOADS		x								X	
AUTOL		х									
SUBS		x									
TRAN1											
TRAN2											
TRANS											
DEFCS			x								
REDCS			x								
LOCAL			X								

Table 4.3 Usage of Logical Device Numbers in GIFTS5*

Device Number	Device	Subroutine Involved
1	Terminal Input	INITIO
1	Terminal Output	OITINI
0	Line Printer	OPENLP, CLOSLP
1		SLTASN
2		(for assigning the
3 4	Random	logical device no.)
5	DiskI/O	FRESLT
7	•	(for freeing the
8		logical device no.)
9		
10		
11		
16		
17	Sequential	SLTASN
18	Disk I/O	FRESLT

^{*} Prime Version at the Computer Aided Engineering Laboratory,
University of Iowa

PAR

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 25 (words)

IBF = 1 LRS = 25

IPRN = 10 (no. of physical records)

<u>Data Set Description</u>. This data set contains general system information and problem control parameters. Each physical record has a different type of information. The number of physical records is fixed to 10.

Logical Record Contents. The following is the 10 logical record content.

1. Hardware Values: 13 integer

Location	Variable	Description
1	NWF1	Storage Units (bytes/words) per single precision
		real variable
2	NWF2	Storage Units per double precision real variable
3	NW I	Storage Units per integer (INTS)
4	NRUXM	Number of Raster Units in x-direction on main
		viewing area
5	NRUYM	Number of Raster Units in y-direction on main
		viewing area
6	NRUXO	Number of Raster Units in x-direction on offset
		viewing area
7	NRUYO	Number of Raster Units in y-direction on offset
		viewing area.
8	NRUXSC	Small character size in Raster Units
9	NRUYSC	Small character Size in Raster Units
10	NRYXLC	lange character size in Paster Units
11	NRUYLC	Large character size in Raster Units
12	NRUXDT	Number of Raster Units in x-direction of
		Digitizing Tablet
13	NRUYDT	Number of Raster Units in y-direction of
		Digitizing Tablet
14-25	-	Unused

2. GIFTS Limitations: 5 integer

Location	Variable	Description
1	NCPPEM	Max. number of corner points per element
		(27 in current version)
2	NFGM	Max. number of freedoms per group
		(18 in current version)
3	NSRM	Max. number of strings in row of stiffness
		sub-matrix BK (9 in current version)
4	NLCSM	Max. number of loading cases that can be simultaneously
		handled in solution routine (10 in current version)
5	NSTRM	Max. number of stresses per stress point including
		failure criterion (8 in current version)
6-25	-	Unused

3. Problem Size/Counters: 23 integer

Location	Variable	Description
1	NGPT	Total Number of Points
		(No. of logical records in data set 'PTS')
2	NGPA	Total number of active points
		(Acutal and Lagrange points)
3	NELTS	Total number of elements
4	NKPT	Total number of key points
5	NL	Total number of lines
6	NG	Total number of surface grids
7	NS	Total number of solid grids
8	NMATT	Total number of materials
9	NTHS	Total number of thickness groups
10	NDFPM	Max. number of degrees of freedom per node
11	NBCPT	Total number of boundary condition points
12	NUGRP	Total number of unknown groups in solution
13	NLCT	Total number of loading cases (load groups)
14	NLCA	Total number of active loading cases
15	NDST	Total Number of deflection per stress groups
		(equal to NLCA for static analyses; defined by
		user with 'SETUP' commands for Transient Response
		Analyses)
16	NGCGT	Total number of generalized coord. groups (or modes
		of vibration)
17	NGCGA	Total number of active generalized coord. groups
		(used in Transient Response by modes)
18	NSTRR	Total Number of records in stress file
19	NFILL	Number of files used (excluding 'PAR' and 'FIL' files)
20	IFREE	Unused
21	NSTEP	Number of transient response steps saved
22	NF IB	Block number of first freedom to be condensed
23	NUNKT	Total number of unknowns
24-25	IFREE(2)	Unused.

4. Problem Status: 16 integer

Location	Variable	Description
1	ISTM	Model Generation Status
		0 - Model Not Generated
		1 - Model Generated
		the following values are added to form the complete
		switch value
		2 - Thickness Group Modified
		4 - Material Added
		8 - Thickness Group Modified
		16 - Material Modified
		32 - Nodes Created, Deleted or Redefined (Moved)
		64 - Elements Added, Deleted or Modified
		128 - Material Nonlinearily Switches changed
		256 - Geometric Nonlinearity Switches changed
2	ISTPM	Point Mass Generation Switch
		O - Point Masses Not Generated
		1 - Point Masses Generated
		2 - Point Masses Modified
3	ISTBWO	Bandwidth Optimization Switch
		O - Bandwidth Not Optimized
		1 - Bandwidth Optimized
4	ISTST	Stiffness Formation Switch
		0 - Nonexistant
		1 - Stiffness Directory Present
		2 - Stiffness Directory and Matrix Present
		(Components present if Axi-symm.)
5	ISTKS	Stiffness Save Switch
		0 - Not Saved
		1 - Saved in 'SAV' data set
6	ISTLD	Load Generation Status
		0 - Not Generated
		1 - Generated
		2 - Modified

4. Problem Status: 16 integer

(Continued)

Location	Variable	Description
7	ISTBC	Boundary Condition Status
		0 - Not Imposed
		1 - Imposed
		2 - Modified
8	ISTDEC	Stiffness Decomposition Status
		0 - Not Decomposed
		1 - Decomposed
9	ISTDN	Deflection Generation Status
		0 - Not Computed
		1 - Computed
10	ISTCD	COSUB Reduction Status
		0 - Not Reduced
		1 - Stiffness Matrix Reduced
		2 - Load Matrix Reduced
		3 - Stiffness, Load Matrices Reduced
		4 - Mass, Damping Matrices Reduced
		5 - Stiffness, Mass, Damping Matrices Reduced
1.1	ICTTOC	6 - Stiffness, Mass, Damping and Load Matrices Reduced
11	ISTTRF	Transient Response Status
		0 - Unstarted 1 - Module 'TRAN1' Ran/executed
		2 - Module 'TRAN2' Ran/executed
		3 - Module 'TRANS' Ran/executed
12	ISTTRM	Transient Response Status (Modal Analysis)
16	1311101	0 - Unstarted
		>0 - Undefined
13	ISTES	Element Stress Switch
		0 - Not Computed
		1 - Computed
14	ISTESN	Element Strain Switch
-	•	=0 - Not Present
		=1 - Present

4. Problem Status: 16 integer

Location	Variable	Description
15	ISTPF	Auxiliary Plot File Status
		=0 - Not Present
		=1 - Present
16	ISTUNS	Variable to Flag GIFTS Solution Suitability
		=0 - Model can be solved by GIFTS
		>0 - Model cannot be solve by GIFTS
		The following numbers are added to obtain the
		final flag
		1 - Nonsupported Material Used
		2 - Nonsupported Element Used
		4 - Prescribed Displacements Used
		8 - Nonlinearities Expected
.7-25	IFRE(P)	Unused

5. Problem Mode Switches: 11 integer

Location	Variable	Description
1	ISWFP	Floating Precision Switch
		=1 - Single Precision
		=2 - Double Precision
2	ISWPC	Problem Class Switch
		=1 - 2-D Field
		=2 - 2-D Elastic/Plastic
		(Plane Stress/Plane Strain)
		=3 - 3-D Field
		=4 - 3-D Elastic/Plastic (Shell/Solid)
		=5 - Axisymmetric Field
		=6 - Axisymmetric Elastic/Plastic
		=7 - Axisymmetric Field (General Loading)
		=8 - Axisymmetric Elastic/Plastic (General Loading)
3	IFREE	Unused
4	ISWSY	Symmetry Switch
5	ISWTH	Thermal Stress Switch
6	ISWEM	Eigenmode Switch
7	ISWCS	Constrained Substructure Switch
8	ISWINC	Incremental Mode Switch
9	ISWTR	Transient Response Switch
		0 - None
		1 - Full D.O.F. Analysis
		2 - Modal Analysis
10	ISWMNL	Material Nonlinearity Switch
		0 - Linear
		1 - Nonlinear
11	ISWGNL	Geometric Nonlinearity Switch
		0 - Linear
		1 - Nonlinear
12-25	IFREE(14)	Unused

6. Display Box Parameters: 10 floating point

Location	Variable	Description
1-2	XMINBX	
3-4	XMAXBX	
5-6	YMINBX	White all Constitutes It the Constitute
7-8	YMAXBX	Virtual Coordinate Limits for Plot
9-10	ZMINBX	
11-12	ZMAXBX	
13-14	XMINSC	
15-16	XMAXSC	
17-18	YMINSC	Screen Coordinate Limits for Plot
19-20	YMAXSC	
21-25	IFREE(5)	

7. Additional Display Parameters: 11 floating point + 2 integer

Location	Variable	Description
1-2	SCLM	Model Scale
3-4	VDIST	Viewing Distance
5-22	TRAN(3,3)	Global-Screen Coordinate Transformation Matrix
23	ISWRNG	Failure Criteria Range Switch
		=0 - No Range Specified
		=1 - Ranges Specified
24	ISWCNT	Contour Value Switch
25	IFREE	Unused

8. Misc. Problem Parameters: 9 floating point

Location	Variable	Description
1-2	XMIN	
3-4	XMAX	
5-6	YMIN	
7-8	YMAX	Coordinate Limits of Model
9-10	ZMIN	
11-12	ZMAX	
13-14	DEL	Current Time Step Size (Transient Response)
15-16	TM	Current Time Indicator (Transient Response)
17-18	CHBW	Computational Half-Bandwidth
19-25	IFREE(7)	Unused

9. Misc. Problem Parameters: 7 floating point

Location	Variable	Description
1-2	UDBVER	Database Version Name (Alphanumeric)
3-4	ACPTI	Accumulated CPU Time
5-6	ITOIA	Accumulated I/O Time Interactive Modules
7-8	AWCTI	Accumulated Wall Clock Time
9-10	ACPTC	Accumulated CPU Time
11-12	AIOTC	Accumulated I/O Time Computational Modules
13-14	AWCTC	Accumulated Wall Clock Time
15-25	IFREE(11)	Unused

10. Misc. Problem Parameters: 9 integer

Location	Variable	Description
1	NEP	Number of External Points in Constrained Substructure Model
2	NDP	Number of Dependent Points in Constrained Substructure Model
3	NIP	Number of Internal Points in Constrained Substructure Model
4	NINT	Total Number of Interfaces Defined for Constrained Substructure
5	NIT	Total Number of Time Steps Computed (Transient)
6	NHARM	Highest Axisymmetric/General Harmonic Computed
7	IFREE	Unused
8	NARBG	Current Arbitrary Grid Number
9	NARBS	Current Arbitrary Solid Number
10-25	IFREE(16)	Unused

FIL

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 7 (words)

IBF = 1 LRS = 7

Data Set Description. This data set contains the data size parameters for all the random access data sets generated by GIFTS. The number of physical records is the number of data sets with random access type including 'FIL' itself.

Logical Record Contents (1 floating point + 5 integer)

Location	Variable	Description
1-2	EXT	Data Set Name (Alphanumeric)
3	LRS	Logical Record Size (in words)
4	LRN	Number of Logical Records Defined
5	IBF	Blocking Factor
6	IPRS	Physical Record Size (LRS*IBF)
7	IPRN	Number of Physical Records

4.6.2 Model Generation Group

The following data sets are classified as 'model generation group'. They are generated by the system during the model generation procedures. The data sets named PTS, ELT, SUR, SLI, LIN, THS, MAT, GRD and SLD fall into this group.

PTS

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 440 (words)

IBF = 10 LRS = 44

Data Set Description. This data set contains the nodal point generation logic with user node numbers and system node numbers. Each logical record consists of 10 integer and 17 floating point variables. For boundary condition points, the different variables are stored in the corresponding logical records space with a flag number NU = 32767 in the first location of the logical records.

Logical Record Contents (10 integer + 17 floating point)

Data Set: PTS

Location	Variable	Description
1	NU	User Number of System Node 'I'
		(Negative Number Flags for Deleted/Merged Node)
2	NS	System Node Number for User Node 'I'
3	ISTRKT	Structure Flag (= ITY + 8*N)
		ITY = 0 - Unassociated Node
		= 1 - Key Node
		= 2 - Internal to Boundary Line #N
		= 3 - Internal to Grid #N
		= 4 - Internal to Solid #N
4	IPTPLT	Plot Indicator
		=0 - Don't Plot
		=1 - Plot
5-6	X	
7 - 8	Y	Nodal Point Coordinates
9-10	Z	
11-16	SM(3)	Point Masses in Three Directions
17-22	C(3)	Point Damping Coefficients in Three Directions
23-38	WRKPAD(8)	Scratch Space
39	LMN	Inclined Boundary Condition Indicator
		=0 - No Inclined Boundary Conditions
		>0 - Inclined Boundary Conditions Exist for this Node.
		Transformation Matrix to B.C. Axes is the Point
		Record #LMN
40	INTP	-Kinematic Dependency Pointer to Interface File if NU>O, and NEP <nu<nep+ndp< td=""></nu<nep+ndp<>
		-Kinematic dependency pointer to Dependency File if NU>O, and NU>NEP+NDP
		-Pointer to User Number of Merge Node if NU<0
41	NLDREC	Pointer to Point Load in dataset 'PLD'
42	NBL	Number of Corresponding Unknown Block
43	NFR	Relative Number of First Unknown Within Block

Data Set: PTS

(Continued)
wer-order

Location	Variable	Description
44	MFP	Map of Freedom Pattern, Packed into the Lower-order
		Twelve Bits. From the Highest Order Bit, they are
		L(1) - L(6): Freedom Flags
		0 - Suppressed
		1 - Allowed
		L(7) - L(12): Prescribed Displacement Flags
		<pre>0 - Freedom not Prescribed</pre>
		1 - Freedom Prescribed (Displacement
		Values are stored in 'LDS' data set)
		(The values may be packed by Library Subroutine
		PKF(L,MFP) and unpacked by Library Subroutines
		UPF(MFP,L), UPF1(MFP,L,N)

Data Set:	PTS (For B	oundary Condition Points)
Location	Variable	Description
1	NU	= 32767 (Boundary Condition Point Flag)
2	NS	System Node Number for User Node 'I'
3	ISTRKT	= 0
4	IPTPLT	Plot Indicator
5-22	DC(3,3)	Direction Cosines of Local Axes (Unimplemented)
23-38	WRKPAD(8)	Scratch Space
39	NLEL	Pointer to Lagrange Element (if any)
40	NPTD	User Node Number for which this is a B.C. point
41	IFREE	Unused
42	NBL	Number of Corresponding Unknown Block
43	NFR	Relative Number of First Unknown Within Block
44	MFP	Map of Freedom Pattern (same as before)

ELT

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 450 (words)

IBF = 10 LRS = 45

Data Set Description. This data set contains element generation logic. Each logical record contains user and system element numbers for each element. Same variables are stored for every element type up to 11th location. Different variables are used for substructured element and Lagrange element from the 12th location. In the case that number of corner points are more than 8, the continuation records are stored in the next logical record space. For continuation records:

1 NEU = -32767 2-35 LCPCON(34) = List of Corner Points (continued)

36-45 - = Unused

LOGICAL RECORD CONTENTS (25 integer + 10 floating point)

Data Set: ELT

Location	Variable	Description		
1	NEU	User Element Number		
2	NFS	System Element Number for User Element 'I'		
3	ISTRKT	Structure Flag (= ITY + 8*N)		
		ITY = 0 - Unassociated Element		
		= 1 - Unused		
		= 2 - Contained in Line #N		
		= 3 - Contained to Grid #N		
		= 4 - Contained in Solid #N		

Data Set: ELT

Location	Variable	Description		
4	IELPLT	Plot Indicator		
		=0 - Don't Plot		
		=1 - Plot		
5	IT	Element Type		
		= 1 - ROD/ASM		
		= 2 - BEAM/AXP		
		= 3 - TM/TA		
		= 4 - TB		
		= 5 - QM/QA		
		= 6 - QB		
		= 7 - TET		
		= P -SLD		
		=10 - SPRING		
		=11 - LAGRANGE MULT. ELEMENT TORD = 1; DISPLACEMENT IORD = 2; CONSTRAINT		
6	IORD	Element Deflection Interpolation Order		
		= 1 - Linear		
		= 2 - Parabolic		
		= 3 - Cubic		
7	IST	Element Sub-Type		
		= 0 - Plane Stress		
		= 1 - Plane Strain		
		= 2 - Axisymmetric		
8	IAPL	Element Mode		
		= 0 - Stiffness, Stress and Display		
		= 1 - Stress and Display		
		= 2 - Display Only		
		= 3 - Pseudo Element		
9	NLDREC	Pointer to Load Record in data set 'ELD'		
10	NCP	Number of Corner Points		
11	NGP	Total Number of Points		

Data Set: ELT

Location	Variable	Description		
12	NLFLG	Nonlinearity Flags (2*NLGFLG+NLMFLG)		
		NLGFLG = 0 - No Geometric Nonlinearity		
		NLGFLG = 1 - Geometric Nonlinearity		
		NLMFLG = 0 - No Material Nonlinearity		
		NLMFLG = 1 - Material Nonlinearity		
13	NSTPT	Number of Stress Points per Layer		
14	NLAYR	Number of Layers for which Stresses Exist		
15	ISTPTR	Pointer to First Record in Stress data set 'STR'		
16	NMAT	Material Type Number		
		= 1 - Isotropic		
		= 2 - 1-D Orthotropic (Fibers)		
		= 3 - 1-D Orthotropic (Smeared Stiffner)		
		= 4 - 2-D Orthotropic		
		= 5 - Nonlinear		
		= 6 - Temperature Dependent		
		= 7 - Composite		
17	NTHS	Thickness Group Number		
18-19	FACM1	Market J. Jahran Jakim Fortung in O Discretions		
20-21	FACM2	Material Interpolation Factors in 2-Directions		
22-23	FACT1	Title I a latin Frakensia O Disching		
24-25	FACT2	Thickness Interpolation Factors in 2-Directions		
26-27	ALPHA	Angle Between Element Side 1-2 and Material Axis		
		(Orthotropic Material only Currently Unused)		
28-29	ECCEN	Eccentric Offset to Attachment Point (along Local		
		Coord. System Z-Axis) from Center of Element's		
		Thickness (only for Shell Elements)		
30-35	WRKPAD(3)	Scratch Space		
36-37	ALPHID	Alphanumeric Identifier		
38-45	LCP(8)	List of Corner Points (by System Number)		

Data Set: ELT (For Sub-Structure Elements)

Location	Variable	Description		
1-11	-	Same as Before		
12-15	IFREE(4)	Unused		
16	IPLTSW	Special Plot File Indicator		
		= 0 - None Exists		
		= 1 - Special File 'CPF' Exists		
17	NFILCS	Number of Files in COSUB Model (Used by STIFF)		
18-21	RNAME(2)	COSUR Name		
22-23	SCF	Stiffness Scale		
24-25	SCL	Load Scale		
26-29	FREE(2)	Unused		
30-35	WRKPAD(3)	Scratch Space		
36-37	ALPHID	Alphanumeric Identifier		
38-45	LCP(8)	List of Corner Points (by System Number)		
Data Set:	ELT (For L	agrange Elements)		
Location	Variable	Description		
1-11	-	Same as Before		
12-14	IFREE(3)	Unused		
15-17	LF(3) Packed Freedom Numbers for Constraint Elements			
		(Two Freedoms per Integer)		
18-29	FILL(6)	Sufficient Space Left to Occupy 5 floating pt.		
		Numbers and Remainder of One Equivalenced LF(3)		
30-35	WRKPAD(3)	Scratch Space		
36-37	ALPHID	Alphanumeric Identifier		
38-45	LCP(8)	List of Corner Points (by System Number)		

SUR

Type ;
Status ;
Data Size Parameters ;

Random Access; Permanent, INTS; IPRS = 325 (words)

IBF = 5 LRS = 65

Data Set Description. This data set contains the definition of mathematical 3-D surfaces of up to third order to which lines and grids may be projected. The surfaces are defined in some local coordinate system. Each logical record consists of 32 floating point and 1 integer values.

LOGICAL RECORD CONTENTS (32 floating point + 1 integer)

Location	Variable	Description		
1-18	ROT(3,3)	Coord. Rotation Matrix (Local to Global)		
19-24	TRAN(3)	Coord. Translation Matrix (Local to Global)		
25-64	COEF(20)	Coeff. of General 3-D Cubic Surface in Local Coord		
		to which LINES or/and Grids may be Projected after Generation		
65	IORD	Order of Surface (1, 2 or 3)		

SLI

<u>Data Set Description</u>. This data set contains the slice element generation logic for BULKS Module.

Logical Record Contents (18 integer)

Location	Variable	Description		
1	NEL	Element Number (if Element Slice)		
2	NSLD	Solid Number		
		= 3 - TM (Point Slice)		
		= 5 - QM (Point Slice)		
		= 7 - TET (Element Slice)		
		= 8 - SLD (Element Slice)		
4	IORD	Element Order		
		= 1 - Linear Interpolation		
		= 2 - Parabilic Interpolation		
		= 3 - Cubic Interpolation		
5	NCP	Number of Attachment Point		
6-9	LELT(4)	List of Adjustment Elements (if point slice)		
10	NMAT	Material Number (if Element Slice)		
11-18	LCP(8)	List of Corner Points (by System Number)		

LIN

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 490 (words)

IBF = 10 LRS = 49

<u>Data Set Description</u>. This data set contains the line generation logics for 7 different types of lines

1. Straight Line 2. Circular Arc 3. Parabolic Arc 4. Cubic Arc

5. Composite Line 6. Arbitrary Line 7. Plot Line

For line types 1-4, same variables are stored in the logical records. For line type 5-7, the different types of variables are stored.

LOGICAL RECORD CONTENTS (9 floating point + 31 integer)

Location	Variable	Description		
1-4	XNAME(2)	Line Name (Up to 8 Characters)		
5-16	BOX(2,3)	Min. and Max. Coord. Limits in 3 Axes		
17-18	ALPHID	Alphanumeric Element Identifier		
19	NSURF	Number of Surfaces to which LINE is to be		
		Projected (Max. 2)		
20-21	LSURF(2)	List of Surfaces to Which Line is to be Projected		
22	LINPLT	Plot Indicator		
		= 0 - Don't Plot		
		= 1 - Plot		
23	LINTYP	Line Type		
		= 1 - Straight Line		
		= 2 - Circular Arc		
		= 3 - Parabolic Arc		
		= 4 - Cubic Arc		
		= 5 - Composite Line		
		= 6 - Arbitrary Line		
		= 7 - Plot Line: same as Arbitrary Line,		
		Except not Allowed as Grid Boundary		
24	LINGEN	Generation Status		
		= 0 - Not Generated		
		= 1 - Generated		

Data Set: LIN (For Line Types 1-4)

Location	Variable	Description		
25	NG	Number of Grids to Which Line is Attached		
26-33	LG(8)	List of Attached Grid Numbers		
34	NPTS	Total Number of Internal Points		
35	NFP	User Number of First Internal Point		
36	IBTYP	Bias Type		
		= 0 - None		
		= 1 - End		
		= 2 - Center		
37	IBIAS	Bias Value (Integer -1000 to +1000)		
		$\frac{L(I)}{L(I+1)} = 1 + \frac{IBIAS}{100} \text{For IBIAS} > 0$ $\frac{L(I+1)}{L(I)} = 1 - \frac{IBIAS}{100} \text{For IBIAS} < 0$		
38	IELTY	Element Type		
		= 0 - None		
		= 1 - Truss		
		= 2 - Beam		
39	IORD	Order of Element (>1 for Higher Order)		
40	IELSTY	Element Sub-Type + 100*Application No.		
41	NELTS	Number of Elements		
42	NFEL	Number of First Elements		
43	NGP	Number of Geometric Point (for Beam)		
44	NMAT	Element Material Type Number		
45	NTHS	Element Thickness Group Number		
46-49	LKP(4)	List of Key Points Defining the Line		

Data Set: LIN (For Line Type 5: Composite Line)

Location	Variable	Description		
25	NG	Number of Grids to Which Line is Attached		
26-33	LG(8)	st of Attached Grid Numbers		
34	NPTS	Total Number of Internal Points		
35	NEP	er Number of First Internal Point		
36	NL	Number of Lines in Composite (Max. 9)		
37-45	LL(9)	List of Numbers of Lines Forming Composite		
46-47	LKP(2)	List of End Points of the Line		
48-49	IFREE(2)	nused		

NOTE. A sequentially numbered series of nodes is generated for the internal nodes of a composite line. These nodes are then automatically merged into the corresponding nodes of the lines comprising the composite.

Data Set: LIN (For Line Type 6: Arbitrary Line)

Location	Variable	Description		
25	NG	Number of Grids to Which Line is Attached		
26-33	LG(8)	List of Attached Grid Numbers		
34	NPTS	Total Number of Internal Points		
35	NFP	ser Number of First Internal Point		
36	NP	Number of Points in Line (Max. 9)		
37-45	LPC(9)	List of User Numbers of Points Forming Line		
46-47	LKP(2)	List of End Points of the Line		
48-49	IFREE(2)	Unused		

NOTE. A sequentially numbered series of nodes is generated for the internal nodes of an arbitrary line. These nodes are then automatically merged into the corresponding nodes of the series defined by the user.

Data Set: LIN (For Line Type 7: Plot Line)

Location	Variable	Description	
25-33	IFREE(9)	Unused	
34	NPTS	Total Number of Internal Points	
35	NFP	ser Number of First Internal Points	
36	NP	Number of Points in Line (Max. 9)	
37-45	LP(9)	List of User Numbers of Points Forming Line	
46-47	LKP(2)	List of End Points of the Line	
48-49	IFREE(2)	Unused	

NOTE. A sequentially numbered series of nodes is generated for the internal nodes of a plot time. These nodes are then merged automatically into the corresponding nodes of the series defined by the user.

THS

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 180 (words)

IBF = 5 LRS = 36

Data Set Description. This data set consists of one record group (one or more records) for every element geometric data group. The first record in the group contains the list of element property values (cross-sectional area, thickness, etc.) needed during stiffness generation, while the following records (if any) contain the user's definition of the group (cross-sectional dimensions of a beam, etc.).

Logical Record Contents. (6 integer + 15 floating point) In general, record #I contains its first record number and the remainder of each record is dependent upon the value of 'ITYPE'.

Data Set: THS (For ITYPE = 0)

Location	Variable	Description			
1	ITHPTR	First Record Number of Thickness Group Number 'I'			
		(zero if Thickness Group #I Nonexistent)			
2	ITYPE	Thickness G	Thickness Group Type (= 0) (Simple Value List)		
3	IPTRCS	Pointer to	Record in this Data Set at Which Standard		
		Element Cro	ss-Section Definiton is Stored (0 = None)		
4	LRED				
5	LGREEN	Color Level	s		
6	LBLUE				
7-36	THS(15)	List of Element Properties			
		- TRUSSES:	AREA - Cross Sectional Area		
			FREE(14) - Unused		
		- BEAMS:	AREA - Cross Sectional Area		
			AQ Areas effective in shear		
			IPP - Major Moment of Inertia		
			IQQ - Minor Moment of Inertia		
			RJ - Torsional Moment of Inertia		
			PG1 Coord. of Centroid Relative		
			QG1 to Att. Point 1.		
			PGZ Coord. of Centroid Relative		
			QGZ to ATT. Point 2		
			PO1 Coord. of Shear Center		
			Q01 Relative to Att. Point 1		
			PO2 Coord. of Shear Center		
			QO2 Relative to Att. Point 2		

Data Set: THS (For ITYPE = 0)

Location	Variable			Description
7-36	THS(15)	- TM/TA;	T	- Thickness
			FREE(14)	- Unused
		- QM/QA;	T	- Thickness
			FREE(14)	- Unused
		- TB/QB;	T	- Thickness
			BETA	- Pseudo In-Plane Rotational
				Stiffness Factor (cf. Theoretical
				Manual)
				BETA < 0 - None
				BETA = 0 - Use Default of 0.2
				BETA > 0 - Use BETA

Data Set: THS (For ITYPE = 1)

Location	Variable	Description		
1	ITHPTR	First Record Number of Thickness Group Number 'I'		
2	ITYPE	Thickness Group Type (=1) (Interpolation Value List)		
3	IPTRCS	Same as that for ITYPE = 0		
4	LRED			
5	LGREEN	Colour Levels		
6	LBLUE			
7-12	THS1(3)	Element Properties at Corner #1 (Double) or Endpoint #1 (Single)		
13-18	THS2(3)	Element Properties at Corner #2 (Double) or Endpoint #1 (Single)		
19-24	THS3(3)	Element Properties at Corner #3 (Double) or Endpoint #2 (Single)		
25-30	THS4(3)	Element Properties at Corner #4 (Double) or Endpoint #2 (Single)		
31-36	FREE(3)	Unused		

Data Set: THS (For ITYPE = 2)

Location	Variable	Description
1	ITHPTR	First Record Number of Thickness Group Number 'I'
2	ITYPE	Thickness Group Type (=2)
		(Geometric Data is to be Interpolated from the
		Following Two Cross-Section Definitons Stored with this
		Thickness Group.)
3	IPTRCS	Pointer to Record in this Data Set at Which Geometric
		Interpolation Data is Stored
4	LRED	
5	LGREEN	Color Levels
6	LBLUE	
7-36	FREE(15)	Unused

Data Set: THS (For ITYPE = 3)

Location	Variable	Description
1	ITHPTR	First Record Number of Thickness Group Number 'I'
2	ITYPE	Thickness Group Type (= 3) (Cross-Section Definition)
3	IPTRCS	Same as That for ITYPE = 0
4	ICSTYP	Standard Cross-Section Type
		= -7 - Continuation of Arbitrary Polygon Beam
		= 1 - Solid Rectangluar Beam
		= 2 - Hollow Rectangular Beam
		= 3 - Solid Rectangular Beam
		= 4 - Hollow Circular Beam
		= 5 - General I-Beam
		= 6 - Oblique Angle (Beam)
		= 7 -Arbitrary Polygon Beam
5-6	IFREE(2)	Unused

Location	Variable	Description
7-32	BMDIM(13)	Cross-Section Dimensions
		For 'ICSTYP' = 1: Solid Rectangular Beam
		H - Beam Height
		B - Beam Width
		FREE(6) - Unused
		ZA1
		YA1 Coord. of Attachment Points
		ZA2 Relative to Beam Center
		YA2
		THETA - Orientation Angle of Beam, Relative to Thin
		(Geometric) Point (Degree)
		For 'ICSTYP' = 2: Hollow Rectangular Beam
		H - Beam Height
		B - Beam Width
		TH - Side Wall Thickness
		TB - Top and Bottom Wall Thickness
		FREE(4) - Unused
		ZA1
		YA1 Coord. of Attachment Points,
		ZA2 Relative to Beam Center
		YA2
		THETA - Orientation Angle of Beam, Relative to
		Third (Geometric) Point in Degrees

(Continued) Data Set: THS (For Type = 3) Description Location Variable 7-32 BMDIM(13) Cross-Section Dimensions For 'ICSTYP' = 3: Solid Circular Beam R - Beam Radius FREE(7) - Unused ZA1 Coord. of Attachment Points, YA1 ZA2 Relative to Beam Center YA2 FREE - Unused For 'ICSTYP' = 4: Hollow Circular Beam RO - Outer Radius RI - Inner Radius FREE(6) - Unused ZA1 YA1 Coord. of Attachment Points, ZA2 Relative to Beam Center YA2 FREE - Unused For 'ICSTYP' = 5: General I-Beam H - Web Height B1 - Upper Flange Width B2 - Lower Flange Width TW - Web Thickness T1 - Upper Flange Thickness

T2 - Lower Flange Thickness

Center of Flange)
E2 - Lower Flange Offset

El - Upper Flange Offset (From Center of Web to

Location	Variable	Description
7-32	BMDIM(13)	Cross-Section Dimensions
		ZA1 YA1 Coord. of Attachment Points, ZA2 Relative to Bottom-Center of Web YA2 THETA - Orientation Angle of Beam, Relative to Third (Geometric) Point in Degrees
7-32	BMDIM(13)	Cross-Section Dimensions
		For 'ICSTYP' = 6: Oblique Angle Beam B - Width of Flanges T - Thickness of Flanges PHI - Angle Between Flanges in Degrees FREE(5) - Unused ZA1 YA1 Coord. of Attachment Points, ZA2 Relative to Beam's Appex. YA2 (Y-Axis bisects the Angle) THETA - Orientation Angle of Beam, Relative to
		Third (Geometric) Point in Degrees
		For 'ICSTYP' = 7: Arbitrary Polygon Beam <first record=""></first>
		NPTS - Number of Corner Points
		NWALLS - Number of Walls
		NCELLS - Number of Closed Cells
		FREE(5) - Unused ZA1
		YA1 Coord. of Attachment Points
		ZA2 with Respect to Local Origin YA2
		THETA - Orientation Angle of Beam

(Continued)

Location Variable Description 7-32 BMDIM(13) Cross-Section Dimensions <Second Record> Z1,Y1 - Coord. of Corner 1 with respect to Att. Pt. Z2, Y2 - Coord. of Corner 2 with respect to Att. Pt. Z3, Y3 - Coord. of Corner 3 with respect to Att. Pt. Z4,Y4 - Coord. of Corner 4 with respect to Att. Pt. Z5, Y5 - Coord. of Corner 5 with respect to Att. Pt. Z6, Y6 - Coord. of Corner 6 with respect to Att. Pt. FREE - Unused For 'ICSTYP' = -7: Continuation Records 1 VC(2,6) - Coord. (Z,Y) of up to 6 more corner points FREE - Unused For 'ICSTYP' = -7: Continuation Records 2 S11,S21 - 2 Endpoints of Side 1 S12,S22 - 2 Endpoints of Side 2 S13,S23 - 2 Endpoints of Side 3 S14,S24 - 2 Endpoints of Side 4 T1 - Thickness of Side 1 T2 - Thickness of Side 2 T3 - Thickness of Side 3 T4 - Thickness of Side 4 FREE - Unused For 'ICSTYP' = -7: Continuation Records 3 S1J, S2J - 2 Endpoints of Side J S1K,S2K - 2 Endpoints of Side K S1L, S2L - 2 Endpoints of Side L S1M, S2M - 2 Endpoints of Side M TJ - Thickness of Side J TK - Thickness of Side K TL - Thickness of Side L TM - Thickness of Side M FREE - Unused

(Continued)

Location	Variable	Description
		For 'ICSTYP' = -7: Continuation Records 4
		LCC1(13) - List of Cell Corners for Closed Cell
		Number I.
		LCWI(13) - List of Closed Cell Walls for Cell Num. 1
33-36	FREE(2)	Unused

MAT

Type

; Random Access

Status

Permanent, INTS

Data Size Parameters ;

IPRS = 135 (words)

IBF = 5

LRS = 27

<u>Data Set Description</u>. This data set contains material property data. Eight different types of materials can be handled.

Logical Record Contents (5 integer + 11 floating point)

ocation	Variable	Description
1	MATPTR	First Record Number of Material Number 'I'
		(Zero if Material #I Non-existant)
2	IMT	Material Type
		1 - Isotropic Material
		2 - 1-D Orthotropic Material (Fibers)
		3 - 1-D Orthotropic 'Smeared Stiffner'
		4 - 2-D Orthotropic Material
		5 - Nonlinear Material
		6 - Temperature Dependent Material
		7 - Composite Material
		8 - Interpolation List
		<o (negative="" -="" continuation="" material<="" of="" record="" td=""></o>
		Type being Represented)
3	LRED	
4	LGREEN	Color Levels
5	LBLUE	

Data Set: MAT (For IMT = 1)

Location	Variable	Description Young's Modulus	
6-7	E		
8-9	VNU	Poisson's Ratio	
10-11	G	Shear Modulus	
12-13	SY	Yield Stress (Von-Mises Criterion)	
14-15	RHO	Mass Density	
16-17	С	Damping Coefficient per Unit Volume	
18-19	ALPHA	Thermal Expansion Coefficient	
20-21	U	Thermal Conductivity	
22-23	TEMP	Temperature	
24-25	CV	Specific Heat (at Constant Volume) (May be used as	
		Specific Heat at Constant Pressure, etc.)	
26-27	Н	Enthalphy	

Data Set: MAT (For IMT = 2)

Location	Variable	Description
6-7	E	Young's Modulus (of Layer)
8-9	PCKDEn	Packing Density (Fraction of Layer Cross-Sectional
		Area Taken up by Fibers)
10-11	FREE	Unused
12-13	SY	Yield Stress (Tension)
14-15	RHO	Mass Density (of Layer)
16-17	C	Damping Coeff. per Unit Volume
18-19	ALPHA	Thermal Expansion Coefficient
20-21	U	Thermal Conductivity
22-23	TEMP	Temperature
24-25	CV	Specific Heat
26-27	Н	Enthalphy

Data Set: MAT (For IMT = 3)

Location	Variable	Description
6	NMAT	Pointer to Mat. Definition for the Smeared Stiffners
7	NTHS	Pointer to Cross-Section Properties for Individual Beam Comprising the Smeared Stiffners in 'THS'
8-9	SPACING	Beam Spacing (Distance Between Rows of Beams)
10-11	THETA	Angle from Mat.Plane to Individual Beam's Ref.Plane
12-13	OFFSET	Offset from Material's Reference Plane to Beam's Attachment Point
14-27	FREE(7)	Unused

Data Set: MAT (For IMT = 4 and IMT = -4)

Location	Variable	Description
6-7	E1	Young's Modulus in Principal Direction
8-9	VNU1	Poisson's Ratio in Principal Direction
10-11	G	Shear Modulus
12-13	SY1	Yield Stress in Principal Direction
14-15	RH0	Mass Density
16-17	С	Damping Coefficient per Unit Volume
18-19	ALPHA1	Thermal Expansion Coeff. (Principal Direction)
20-21	U1	Thermal conductivity (Principal Direction)
22-23	TEMP	Temperature
24-25	CV	Specific Heat
26-27	Н	Enthalpy
6-7	E2	Young's Modulus in Minor Direction
8-9	VNU2	Poisson's Ratio in Minor Direction
10-11	SHRYLD	Shear Yield Stress
12-13	SY2	Yield Stress in Minor Direction
14-17	FREE(2)	Unused
18-19	ALPHA2	Thermal Espansion Coeff. (Minor Direction)
20-21	U2	Thermal Conductivity (Minor Direction)
22-26	FREE(3)	Unused

Data Set: MAT (For IMT = 5: First Record)

Location	Variable	Description
6	NSEG	Number of Linear Segments in Approximation
8	NREC	Number of Records Needed to Represent Material (NSEG+1)
9-21	FREE(6)	Unused
22-23	TEMP	Temperature
24-27	FREE(2)	Unused

NOTE. For a nonlinear material NSEG+1 records are needed. Each linear segment is defined as an isotropic (IMT = -1) or 1-D orthotropic (IMT = -2) material, with yield stress replaced by strain value at end of segment. (First segment starts at zero.)

Data Set: MAT (For IMT = 6; First Record)

Location	Variable	Description
6	NTEMP	Number of Temperature Values at Which Properties are Defined, and Between Which to Interpolate
8 10 - 27	NREC FREE(9)	Number of Records Needed to Represent Material Unused

NOTE. For a temperature dependent material several records are needed. Temperature dependent material may be defined from any of the previously described material types. Properties at temperature value must be defined in the succeeding records:

- ISOTROPIC -- IMT = -1, NTEMP Records
- 1-D ORTHOTROPIC -- IMT = -2, NTEMP Records
- GENERAL ORTHOTROPIC -- IMT = -4, NTEMP Record Pairs NONLINEAR -- IMT = -5, NTEMP Groups

Data Set: MAT (For IMT = 7; First Record and NCOMP Record)

Location	Variable	Description
6	NCOMP	Number of Component Layers (Matrices and Fibers)
7	NREC	Number of Records to Represent Material (NCOMP+1)
8-27	FREE(9)	Unused
6	LYRPTR	Pointer to Material (ISotropic or 1-D Orthotropic including Linear, Nonlinear and Temp. Dependent) Comprising the Layer

Data Set:	MAT	(For	IMT	=	7;	First	Record	and	NCOMP	Record)	(Continued)
-----------	-----	------	-----	---	----	-------	--------	-----	-------	---------	-------------

Location	Variable	Description
7-8	THRFB	Fraction of Composite Material Thickness at Which
		Layer Begins (Bottom of Layer)
9-10	THFRT	Fraction of Composite Material Thickness at Which Layer
		Ends (Top of Layers)
		NOTE: THFRB and THFRT vary from 0 to 1
		where $0 = Bottom$
		1 = Top
11=12	GAMMA	Angle (in Radians) Between Composite Reference
		Axis and 1-D Orthotropic Material Axis (Measured C.C.W
		as Viewed from Material Top)
13-27	FREE(7)	Unused

NOTE. For a composite material several records are needed. Composite material may be made of nonlinear and temperature dependent components. It is not required that all layers be nonlinear or temperature dependent simultaneously.

Data Set: MAT (For IMT = 8)

Location	Variable	Description
6	ITYPE	Interpolation List Type
		= 1 - Linear Interpolation Between Materials
		MAT1 and MAT2
		= 2 - Bi-linear Interpolation From Materials
		MAT1, MAT2, MAT3 and MAT4
		During Interpolation, Direction 1 will be Defined
		as from Edge 1-3 to Edge 2-4. Direction 2 vill
		be Defined as from Edge 1-2 to Edge 3-4.
8	MAT1	Pointer to Previously Defined Material #1
10	MAT2	Pointer to Previously Defined Material #2
12	MAT3	Pointer to Previously Defined Material #3
14	MAT4	Pointer to Previously Defined Material #4
16 - 27	FREE(6)	Unused

NOTE. An interpolation list description consists of a header record which points to material descriptions at the boundaries of the interpolation region. All of the specified material definitions must be of the same type, varying only in the values of the assorted material properties.

GRD

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 315 (words)

IBF = 5 LRS = 63

<u>Data Set Description</u>. This data set contains grid generation logic. Stored data are dependent on grids to be generated.

Logical Record Contents (43 ingeter + 10 floating point)

Location	Variable	Description
1-4	GNAME(2)	Grid Name (Up to 8 Characters)
5-16	BOX(2,3)	Min. and Max. Coord. Limits in 3 Axes
17-18	ALPIDL	Line Element Alphanumeric Identifier
19-20	ALPIDG	Grid (Surface) Element Alphanumeric Identifier
21	LRED	
22	LGREEN	Colour Levels
23	LBLUE	
24	NSURF	Surface Number of Which Grid is to be Projected
25	IGDPLT	Plot Indicator
26	IFTYPE	Grid Type:
		1 - Parametric Grid (GRID4)
		2 - Parabolic Isoparametric Grid (GRIDP)
		3 - Parabolic Isoparametric Grid (GRIDC)
		4 - Triangular Grid (GRID3)
		5 - Transition Grid (GRIDT)
		6 - Composite Grid (COMPGRID)
		7 - Arbitrary Grid (ARBGRID)

Data Set: GRD (For IGTYPE = 1 - 3)

Location	Variable	Description
27	IGDGEN	Generation Status
		=0 - Grid not Generated
		=1 ~ Grid Generated
28	NPTS	Number of Internal Points
29	NFP	User Number of First Internal Poirt
30	ISETY	Surface Element Type (3,4,5,6) + 100*SUBTYPE (0,1,2)
31	IORDS	Surface Element Order + 100*Application
32	ISTDIR	Stiffner Direction
		=0 - No Stiffners
		=1 - Stiffners Parallel to Sides 1 and 3
		=2 - Stiffners Parallel to Sides 2 and 4
		=3 - Sitffners Parallel to Sides 1&3 and 2&4
33	ILETY	Line (Stiffner) Element Type (1,2) + 100*SUBTYPE (0,1,2
34	IORDL	Line Element Order + 100*Application
35	NELTS	Number of Elements
36	NFEL	Number of First Element
37	NMATLS	Surface Element Material Type Number
38	NTHSS	Surface Element Geometric Data Number
39	NMATLL	Line Element Material Type Number
40	NTHSL1	Geometric Data Number of Stiffners
41	NTHSL2	Parallel to 1&3 and 2&4
42	NSP	Number of Attached Surfaces
43-44	LSP(2)	List of Attached Surfaces
45-56	LDAT(3,4)	Information about Edges for each Edge:
		LDAT(1,I) - Line Number
		LDAT(2,I) - First Internal Point Number
		LDAT(3,I) - Internal Point Number Increment
57-60	LCP(4)	List of Corner Point Numbers
61-62	MM,NN	Number of Divisions in the Two Directions
63	NGP	'GRIDC' Center Point Number

Data Set: GRD (For IGTYPE = 4)

Location	Variable	Description
27	IGDEN	Generation Status
		=0 - Grid not Generated
		=1 - Grid Generated
28	NPTS	Number of Internal Points
29	NFP	User Number of First Internal Point
30	ISETY	Surface Element Type (3,4) + 100*SUBTYPE (0,1,2)
31	IORDS	Surface Element Order + 100*Application
32	ISTDIR	Stiffner Direction
		=0 - No Stiffners
		=1 - Parallel to Side 1
		=2 - Parallel to Side 2
		=3 - Parallel to Side 3
33	ILETY	Line (Stiffner) Element Type (1,2) + 100*SUBTYPE (0,1,2)
34	IORDL	Line Element Order + 100*Application
35	NELTS	Number of Elements
36	NFEL	Number of First Element
37	NMATLS	Surface Element Material Type Number
38	NTHSS	Surface Element Geometric Data Number
39	NMATLL	Line Element Material Type Number
40	NTHSL	Line Element Geometric Data Number
41	IFREE	Unused
42	NSP	Number of Attached Surfaces
43-44	LSP(2)	List of Attached Surfaces
45-56	LDAT(3,4)	Information About Edges for each Edge:
		LDAT(1,I) - Line Number
		LDAT(2,I) - First Internal Point Number
		LDAT(3,I) - Internal Point No. Increment
57-60	LCP(4)	List of Corner Point Numbers
61	MM	Number of Divisions in the Tue Division
62	NN	Number of Divisions in the Two Directions
63	IFREE	Unused

Data Set: GRD (For IGTYPE = 5, 6 and 7)

Location	Variable	Description
27	IGDEN	Generation Status
		=0 - Grid not Generated
		=1 - Grid Generated
28	NPTS	Number of Internal Points
29	NFP	User Number of First Internal Point
30	ISET	Surface Element Type (3,4,5,6) + 100*SUBTYPE (0,1,2)
31	IORDS	Surface Element Order + 100*Application
32	ISTDIR	Stiffner Direction (=0)
33-34	IFREE(2)	Unused
35	NELTS	Number of Elements (Surface Only)
36	NFEL	Number of First Element
37	NMATLS	Surface Element Naterial Type Number
38	NTHSS	Surface Element Geometric Data Number
39-41	IFREE(3)	Unused
42	NSP	Number of Attached Surfaces
43-44	LSP(2)	List of Attached Surfaces
45-56	LDAT(3,4)	Information about Edges. For Each Edge:
		LDAT(1,I) - Line Number
		LDAT(2,I) - First Internal Point Number
		LDAT(3,I) - Internal Point Number Increment
57-60	LCP(4)	List of Corner Point Numbers
61-62	MM,NN	Number of Divisions in the Two Directions
63	IFREE	Unused
27	NS	Number of Grids Forming Composite (Max. 36)
28-63	LS(36)	List of Record Numbers of Grids
20-00		
27	NELST	Number of Element Strings in Surface (Max. 18)
28-63	LELT(2,18)	List of Element Strings. For String 'I'
		LELT(1,I) - First Element in String
		LELT(2,I) - Last Element in String

SLD

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 147 (words)

IBF = 1 LRS = 147

<u>Data Set Description</u>. This data set contains solid element generation logic. Five different types of solid element can be handled.

Logical Record Contents (129 integer + 9 floating point)

Location	Variable	Description
1-4	SNAME(2)	Solid Name (up to 8 Characters)
5-16	BOX(2,3)	Min. and Max. Coord. Limits in 3 Axes
17-18	ALPHID	Alphanumeric Element Identifier
19	LRED	
20	LGREEN	Color Levels
21	LBLUE	
22	ISLPLT	Plot Indicator
		=0 - Don't Plot
		=1 - Plot
23	ISLTYP	Solid Grid Type
		=0 - Cube (6 Sides - 8 Corners)
		=1 - Prism (5 Sides - 6 Corners)
		=2 - Pyramid (5 Sides - 5 Corners)
		=3 - Tetrahedron (4 Sides - 4 Corners)
		=4 - Composite
		=5 - Arbitrary

Data Set: SLD (For ISLTYP = 0 - 3)

Location	Variable	Description
24	ISLGEN	Generation Indicator:
		=0 - Solid Not Generated
		=1 - Solid Generated
25	NPTS	Number of Internal Points
26	NFP	User Number of First Internal Point
27	IELTY	Element Type (7,8)
28	IELORD	Element Order
		=1 - Linear
		=2 - Parabolic
		≈3 - Cubic
29	NELTS	Number of Elements
30	NFEL	Number of First Element
31	NMATL	Element Natrial Type Number
32-76	ISLICE(5,9)	Information up to 9 Slices
		Each Column of LSLICE(5,9) Contains
		1 - Slice Type; 1 = Point, 2 = Element
		2 - Face No. from Which Slice is Offset
		3 - Layer No. (1 = Face)
		4 - Record No. in 'SLI' at Which Slice Elements Begin
		5 - No. of Slice Elements
77-100	LGDAT(4,6)	Grid Data up to 6 Faces. Each Column Contains
		1 - Surface Number
		2 - Starting Internal Point Number
		3 - Internal Point No. Increment in Direction 1
		4 - Internal Point No. Increment in Direction 2
101-136	LDAT(3,12)	Edge Data up to 12 Edges. Each Column Contains
		1 - Line Number
		2 - First Internal Point Number
		3 - Increment of Internal Point Numbers
137-144	LCP(8)	List of Corner Point Numbers (Max. 8)
145-147	LL,MM,NN	Total No. of Points in Three Directions

Data Set: SLD (For ISLTYP = 4)

Location	Variable	Description
24	NSLD	No. of Solid Grids Comprising Composite
25-147	LSLD(123)	List of Numbers of Solids Comprising Composite
		(Max. 123)

Data Set: SLD (For ISLTYP = 5)

Location	Variable	Description
24	NELST	No. of Element Strings in Solid (Max. 61)
25-146	LELT(2,61)	List of Element Strings. For String 'I':
		LELT(1,I) - First Element in String
		LELT(2,I) - Last Element in String
 147	IFREE	Unused

4.6.3 Static Analysis Group

After model is generated, loads and kinematic boundry conditions are specified. To perform a static analysis, first the bandwidth must be optimized to ensure efficient computation. Then the stiffness matrix is computed and decomposed. Finally, deflections and stresses are obtained. The following data sets are generated during the static analysis.

PLD

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 220 (words)

IBF = 10LRS = 22

Data Set Description. This data set contains load values for each node and each loading case. Any node may have more than one logical record. The loads are flagged as conservative or non-conservative and are linked together. If both types of loads occur for the node, they will be in the order of conservative, nonconservative.

Logical Record Contents (6 integer + 8 floating point)

Location	Variable	Description
1	NP	User Node Number
2	NLC	Loading Case Number
3	ITYPE	Load Type Indicator
		=0 - Conservative Loads
		=1 - Non-conservative Loads
4	IPTR	Pointer to Additional Records Defining
		Current Loading Case:
		= 0 - No Additional Loads
		>0 - Load Definition Continues in Logical Record #IRTR
5	LCPTR	Pointer to Record with Loads for Next Loading Case
6	NNLC	Next Loading Case Number
7-18	VLD(6)	Load Values by Component
19-20	RES	Load Resulant
21-22	RESM	Moment Resultant

NOTE. Each node record in 'PTS' has a pointer to the first record in this data set. Multiple loading cases for a single node are chained together in ascending order by loading case. The last record for one node has a pointer of zero.

ELD

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 350 (words)

IBF = 5

LRS = 70

Data Set Description. This data set contains load values for each element and each loading case. Any element may have more than one logical record. The loads are flagged as conservative, non-conservative pressure, straight acceleration or centripetal acceleration and linked together. If multiple types of loads occur in one loading case, they will be stored in the order of conservative, straight acceleration, centripetal acceleration, and non-conservative pressure. The only type of non-sonservative load supported at present is non-conservative pressure.

Each element record in 'ELT' has a pointer to the first record in this data set. Elements with no loads have no record in this data set. Elements with no loads have no records in 'ELD'. Multiple loading cases for a single element are chained together in ascending order by loading case. The last record has a pointer of zero.

Logical Record Contents (6 integer + 32 floating point)

Location	Variable	Description
1	NEL	User Element Number
2	NLC	Loading Case Number
3	ITYPE	Load Type Indicator
		=0 - Conservative Load
		=1 - Straight Acceleration Load
		=2 - Centripetal Acceleration Load
		=3 - Nonconservative Pressure Load
4	IPTR	Pointer to Additional Records
		=0 - No Additional Records
		>0 - Load Definition Continues in Record #IPTR
5	LCPTR	Pointer to Record with Loads for Next Loading Case
6	NNLC	Next Loading Case Number
7-18	F1(6)	Fraction of Element Length Between First End of Element
		and Beginning of Application of Distributed Load (in
		Component)
19-30	F2(6)	Fraction of Element Length Between Last End of Element
		and End of Application of Distributed Load
31-42	V1(6)	Distributed Load Components at Beginning of Application
43-54	V2(6)	Distributed Load Components at End of Application
55-66	VR(6)	Resultant Load Components

Data Set: ELD (For Lime Element)

(Continued)

Location	Variable	Description
67-68	RES	Resultant Load Value
69-70	RESM	Resultant Moment Value
2	-NEL	Continuation Flag (Negative of Element Number)
2-6	IFREE(5)	Unused
7-66	VCON(6,5)	Distributed Load Components at Midpoints
67-70	FREE(2)	Unused

LDS

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

Data Set Description. This data set consists of 'NLCT+1' groups of records, each group containing 'NGPT'+1 logical records. The first group (Number 0) is reserved for composite loading cases. The second group (Number 1) contains loading case 1, and so on.

The first logical record in each group is reserved for special purposes (e.g., weighting factors for composite loading cases, time values for transient response solutions, etc.)

No single physical record may contain more than one group of record. Each group must begin a new block.

It contains type of load group, time or frequency value in the first logical record in each group. From the second record, it contains loads and moments about 3-axes and their resultants.

Logical Record Contents (8 floating point)

Data Set: LDS (First Logical Record)

Location	Variable	Description
1	LDTYPE	Type of Load Group
		=0 - Simple Loading Case
		=1 - Time-varying Load Vector
		=2 - Inertia Loads (From Mode Shape Computation
		Current Frequency = VAL
		=3 - Fourier Series Component (SINE)
		=4 - Fourier Series Component (COSINE)
		=5 - Composite Loading Case
		=6 - Composite Loading Case (at Angle VAL)
2-3	VAL	Time (Sec) or Frequency (CPS) Value, or Fourier Term
4	MOD	Modification Flag
		=0 - Loads and Prescribed Displacements not Modified
		=1 - Loads Modified for this Loading Case
		=2 - Prescribed Displacements Modified
5-16	FREE(6)	Unused

Data Set: LDS (Subsequent Logical Records)

Location	Variable	Description
1-2	VX	Load in X-Direction
3-4	VY	Load in Y-Direction
5-6	٧Z	Load in Z-Direction
7-8	MX	Moment About X-Axis
9-10	NY	Moment About Y-Axis
11-12	MZ	Moment About Z-Axis
13-14	RES	Load Resultant
15-16	RESM	Moment Resultant

TMP

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 280 (words)

IBF = 5 LRS = 56

Data Set Description. This data set contains element temperature field information, two temperature values per node of each element. It has the same number of logical records as 'ELT' data set, and is organized equivalently. If element #I occupies logical records #N and #N+1 of 'ELT' data set, the elements nodal temperatures will be stored in the same manner.

Logical Record Contents (28 floating point)

Location	Variable	Description
1-56	VTMP(2,14)	Temperature Values of up to 14 Nodes (Same Order as the
		Element Corner Points in LCF Array of the Element
		Record). for Node 'I':
		VTMP(1,I) - Temp. of Node 'I', Top of Element
		VTMP(2,I) - Temp. of Node 'I', Bottom (Valid Only for
		2-D Element)

NOTE. If the element has more than 14 nodes, the tempratures are continued in the next logical record(s).

TLD

Type ; Random Access

Status : Permanent, INTS

Data Size Parameters : IPRS = 840 (words)

IBF = 5 LRS = 168

Data Set Description. This data set contains element thermal loads produced by the temperature field, six components per node. This data set has the same number of logical records as does the data set 'ELT', and is organized equivalently.

Logical Record Contents (84 floating point)

Location	Variable	Description
1-84	TLD(6,14)	Thermal Loads of up to 14 Nodes (Same Order as the
		Element Corner Points LCP Array of the Element Record)

NOTE. If the element has more than 14 nodes, the thermal loads are continued in the next logical record(s).

LDC

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

Data Set Description. This data set contains the combination of the loads applied to the model and the thermal loads resulting from the applied temperatures. It is structured the same as is the data set 'LDS', with the exception that it has no reserved record group for composite loading cases.

Logical Record Contents (8 floating point)

Location	Variable	Description
1-2	VX	Comdined Load in X-Direction
3-4	VY	Combined Load in Y-Direction
5-6	٧Z	Combined Load in Z-Direction
7-8	MX	Combined Moment About X-Axis
9-10	MY	Combined Moment About Y-Axis
11-12	MZ	Combined Moment About Z-Axis
13-14	RES	Combined Load Resultant
15-16	RESM	Combined Moment Resultant

NOTE. The first logical record contents of each group are the same as 'LDS'.

LDI

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 364 (words)

IBF = 1 LRS = 364

<u>Data Set Description</u>. This data set contains loads blocked by freedoms for solution, in groups of 'NUGRP' records. these are (NLCA+NLCSM-1)/NLCSM groups. The first group contains values for loading cases from 1 to NLCSM. The second group contains values for loading cases from NLCSM+1 to 2*NLCSM.

Logical Record Contents (4 integer + 180 floating point)

Location	Variable	Description
1	NR	Row and Column Position of this Submatrix
2	NC	in the 'LDI' Matrix
3	NF	Number of Unknowns in Group
4	NLC	Number of Loading Cases in This Submatrix
5-364	XLDI(18,10)	Loads for 'NLC' Loading Cases for all Unknowns contained in this Group (Column-Wise)

SDY

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 210 (words)

IBF = 5 LRS = 42

<u>Data Set Description</u>. This data set contains 'NUGRP' records of stiffness directory, each describing the submatrix distribution in one row of the global stiffness matrix.

Logical Record Contents (42 integer)

Location	Variable	Description
1	NFR	Number of Rows in Group (Superrow)
2	NFP	First Node Number with Freedoms in this Group
3	NLP	Last Node Number with Freedoms in this Group
4-21	LDP(18)	List Showing Rows with Prescribed Displacements
		LPD(I) = 0 - Displacement Not Prescribed
		LPD(I) = 1 - Displacement Prescribed
22	NS	Number of Submatrix Strings in the Row (Max. 9)
23	IFSPTR	Pointer to Stiffness Data Set Record Number of First
		Submatrix in the Row
24	IBAK	Pointer to the Earliest Preceding Row Which
		Interacts with the Current Row
25-42	LC(2,9)	List of Column Strings Where Non-zero Submatrix
		are Present. For String 'I':
		LC(1,I) - No. of First Column in String
		LC(2,I) - No. of Last Column in String

STF

Туре	;	Random Acce	ess
Status	;	Permanent,	INTS
Data Size Parameters	;	IPRS = 652 IBF = 1	(words)

<u>Data Set Description</u>. This data set contains the stiffness matrix. Each <u>logical record contains</u> submatrix of the stiffness matrix.

Logical Record Contents (4 integer + 324 floating point)

Location	Variable	Description
1	NR	Row and Column Position of This Submatrix
2	NC	in the Supermatrix
3	NFR	Number of Rows in Submatrix
4	NFC	Number of Columns in Submatrix
5=652	SM(18,18)	Stiffness Submatrix, Stored Column-Wise. Only the First 'NFR' Rows and First 'NFC' Col. Have any Meaning

DNS

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

Logical Record Contents (8 floating points)

Data Set: DNS (first logical record)

Location	Variable	Description
1	IDENTYP	Deflection Type
		=0 - Simple Loading Case
		=1 - Transient Response or Other Time Varying Solution
		TIME = 'VAL" Sec.
		=2 - Mode Shape - FREQ. = 'VAL' C.P.S.
		=3 - Fourier Series Component (SINE)
		=4 - Fourier Series Component (COSINE)
		=5 - Composite Loading Case
		=6 - Composite Loading Case (at Angle 'VAL')
2-3	VAL	Time or Freq. Value, or Fourier Term

Data Set: DNS (first logical record)

(Continued)

Location	Variable	Description
4	MOD	Modification Flag
		=0 - Deflections Not Modified
		=1 - Delfections Modified
5-16	FREE(6)	Unused

Data Set: DNS (subsequent logical records)

Location	Variable	Description
1-2	υ	X-Displacement
3-4	V	Y-Displacement
5-6	W	Z-Displacement
7-8	THX	Rotation About X-Axis
9-10	THY	Rotation About Y-Axis
11-12	THZ	Rotation About Z-Axis
13-14	DIS	Resultant Displacement $(\sqrt{12 + \sqrt{2 + W^2}})$
15-16	ROT	Resultant Rotation $(\sqrt{THX^2 + THY^2 + THZ^2})$

DNI

Type

; Random Access

Status

Permanent, INTS

Data Size Parameters ;

IPRS = 364 (words)

IBF = 1 LRS = 364

 $\underline{\text{Data Set Description}}.$ This data set contains deflections blocked by freedoms for solution, in group of 'NUGRP' records. It is structured exactly same as 'LDI' data set.

Logical Record Contents (4 integer + 180 floating point)

Location	Variable	Description
1	NR	Row and Column Position of this Submatrix
2	NC	in the 'DNI' Matrix
3	NF	Number of Unknowns in Group
4	NLC	Number of Loading Cases in this Submatrix
5-364	XDIN(18,10)	Deflections for 'NLC' Loading Cases (Column-wise)

STR

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

Data Set Description. This data set contains element stress and/or strain values, one per stress point per layer for each element, and one per stress point for each element. It is divided into major groups. Each major group of the data set contains one group of records for every stress point in each element. The group contains all stress, stress resultant and/or strain information for all layers of stress values at that stress point. The mode and problem class switches in 'PAR' data set detrmine which of these sets of data are actually stored in the data set. It contains a total of 'NSTRP' stress records for each loading case. The first logical record in each group is reserved for future use. The presence or absence of each of the following logical record types is determined by the values of the two status switches in 'PAR'. They are as follows:

<STRESS RESULTANTS> and <STRESSES>; Present if ISTES = 1

<STRAINS> ; Present if ISTESN = 1

<TOTAL PLASTIC STRAINS> ; Prsent if ISTESN = 1 and Either

ISWMNL > 0 or ISWGNL > 0

Logical Record Contents (8 floating point)
Data Set: STR (Stress Resultant - 1 record)

Location	Variable	Description
1-12	RST(6)	Up to 6 Stress Resultant Components Per Stress Point for Each Element
13-16	FREE(2)	Unused

Data Set: STR (Stresses - 'NLAYR' records)

Location	Variable	Description
1-12	STR(6)	Up to 6 Stress Components Per Stress Point Per Layer
		for Each Element
13-16	FC(2)	Two Failure Cirterion (in Percent)

NOTE. The layers are ordered from the bottom to the top of the element.

Data Set: STR (Strains - 'NLAYR' records)

Location	Variable	Description
1-12	STN(6)	Up to 6 Strain Components Per Stress Point Per Layer for Each Element
13-16	FREE(2)	Unused

Data Set: STR (Total Plastic Strains - 'NLAYR' records)

Location	Variable	Description
1-12	STNP(6)	Up to 6 Plastic Strain Components Per Stress Point Per Layer for Each Element
13-16	FREE(2)	Unused

NOTE. The layers are ordered from the bottom to the top of the element.

RES

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 840 (words)

IBF = 5 LRS = 168

Data Set Description. This data set contains element residual forces $\overline{RES} = K*DNS$. It has the same number of records as the data set 'ELT'. It is organized equivalently to the data set 'ELT'.

Logical Record Contents (84 floating point)

Location	Variable	Description
1-168	RES(6,14)	Residual Forces (Including Moments) of up to 14 Nodes. (Same Order as the Element Corner Points in 'LCP' of the Data Set 'ELT'.) If the Element has More Than 14 Nodes, the Residual Forces are Continued in the Next Record.

CFR

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ;

<u>Data Set Description</u>. This data set contains saved contour values and failure criterion ranges from module 'RESULT'. It will contain either or both of the following records. It depends on the values of the parameters 'ISWRNG' and 'ISWCNT' in the seventh record of the data set 'PAR'.

Total Record Contents.

1) 'ISWRNG' = 1; NRNG - Number of Failure Criterion Ranges RNG(3,10) - Saved Ranges:
RNG(1,I) - Character
RNG(2,I) - Min. F.C. Value
RNG(3,I) - Max. F.C. Value
2) 'ISWCNT' = 1; NCONTR - Number of Contour Values
VCONTR(20) - Contour Values

4.6.4 Dynamic Analysis Group

The following data sets are generated by GIFTS during the execution of dynamic analysis modules.

LDT

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 146 (words) IBF = 1LRS = 146

<u>Data Set Pescription</u>. This data set contains temporary load and mass and damping coefficient information for a transient response problem. It has a total of 'NUGRP' logical records blocked by freedoms.

Logical Record Contents (2 integer + 72 floating point)

Location	Variable	Description
1	NG	Freedom Group Number (Row of Supermatrix)
2	NF	Number of Freedoms in Group
3-38	BRT1(18)	Load Vector at Time T = DEL
38-74	BRT2(18)	Acceleration Vector at Time $t = 0$
75-110	BRT3(18)	Nodal Point Masses
111-146	BRT4(18)	Damping Coefficient

DNT

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 146 (words)

IBF = 1 LRS = 146

<u>Data Set Description</u>. This data set contains the time history of a transient response problem for the previous three time steps. It has a total of 'NUGRP' logical records blocked by freedoms.

Logical Record Contents (2 integer + 74 floating point)

Location	Variable	Description
1	NG	Freedom Group Number (Row of Supermatrix)
2	NF	Number of Freedoms in Group
3-38	DN4(18)	Empty - Will be Used for Deflection at T= TM + DEL
39-74	DN3(18)	Deflections at Time $T = TM$
75- 110	DN2(18)	Deflections at Time $T = TM - DEL$
111-146	DN1(18)	Deflections at Time $T = TM - 2*DEL$

NOTE. This data set will contain the different time history of a transient response problem if the user runs the other transient response analysis modules 'NEW1' and 'NEWS'. Velocity and acceleration vectors are stored in DN2(18) and DN1(18) instead of deflection vectors (Newmark's method employed).

DNH

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

<u>Data Set Description</u>. This data set contains the deflection history generated by transient response and incremental problems. It is structured exactly the same as the data set 'DNS', except that it will contain one set of displacements for every time step. And it will not contain resultants. The first logical record at the beginning of each set of displacements (each time step) will contain the time.

Logical Record Contents (8 floating point)

Location	Variable	Description
1-2	U	X-Displacement
3-4	٧	Y-Displacement
5-6	W	Z-Displacement
7-8	THX	Rotation About Z-Axis
9-10	THY	Rotation About Z-Axis
11-12	THZ	Rotation About Z-Axis
13-16	FREE(2)	Unused

UGC

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 364 (words)

IBF = 1 LRS = 364

<u>Data Set Description</u>. This data set contains the unit generalized coordinate vectors computed by the virbrational analysis modules (AUTOL, SAVEK, SUBS). The vectors are used as the basis for modal analysis. It is structured the same as the data set 'DNI' blocked by freedoms. There will be one vector for each mode shape.

Logical Record Contents (4 integer + 180 floating point)

Location	Variable	Description
1	NR	Row and Column Position of This Submatrix
2	NC	in the 'UGC' Supermatrix
3	NF	Number of Freedoms in Group
4	NGCGT	Number of Modes in this Group
5-365	VLD(18,10)	Normalized Mode Shapes for 'NGCGT' Modes

DATABASE DESIGN FOR STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION(U) IOMA UNIV IOMA CITY APPLIED-OPTIMAL DESIGN LAB JS ARORA ET AL. OCT 84 CAD-SS-84-22 AFOSR-TR-85-1879 F/G 9/2 AD-A162 355 3/4 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS ~1963 - A

SAV

Type

Sequential Access

Status

; Permanent

Data Size Parameters ; Dependent on Problem Scale

Data Set Description. This data set contains the saved stiffness matrix. Only non-zero submatrices of the data set 'STF' are stored. The last record in the data set contains zeros for ISA, NR, NC, NFR, NFC, NFRC, NFCC and a dummy submatrix. It has a total of 'ISA+1' records.

Record Contents

Location	Variable	Description
1	ISA	Record No. in 'STF' from Which Submatrix was Stored
2	NR	Row and Column Numbers of the Suhmatrix
3	NC	in Stiffness Supermatrix
4	NFR	Numbers of Columns and Rows in
5	NFC	Submatrix
7	NFRC	Number of Non-zero Columns and Rows
8	NFCC	in Submatrix
9-?	SM(NFRC,NFCC)	Compacked Stiffness Submatrix

HST

Type

Sequential Access

Status

Permanent

Data Size Parameters ; 15 integer + 400 floating

Data Set Description. This data set contains all information pertaining to a transient response history. It can store up to 4 degrees of freedom.

Record Contents

Location	Variable	Description
1	NH	Number of History Points Stored
2	NDH	Number of Time Steps Per History Point
3	NSL	Number of Time Steps Remaining Before Next History
		Point is Stored
4-15	LISTF(3,4)	List of Point/Freedom Conbinations for Each Row:
		LISTF(1,I) - User Node Number
		LISTF(2,I) - System Node Number
		LISTF(3,I) - Freedom Number
10-800	HIST(100,4)	History Point Values, up to a Max. of 100 Per Freedom

NOTE. The arrays 'LISTF' and 'HIST' are stored column-wise.

DYN

Type ; Sequential Access

Status ; Permanent, Real

Data Size Parameters ; Dependent on User Definition

<u>Data Set Parameters</u>. This data set contains the condensed stiffness, mass and damping matrices for use in the computation of the modes of vibration or the transient response using modal superposition.

Record Contents

CBK(NLCA, NLCA)	Condensed	Stiffness Matrix
CM(NLCA, NLCA)	Condensed	Mass Matrix
CC(NLCA,NLCA)	Condensed	Damping Matrix

4.6.5 Substructural Analysis Group

The following data sets are generated by GIFTS during the execution of constrained substructure analysis modules. (DEFCS, REDCS, LOCAL)

INT

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 50 (words)

IBF = 10LRS = 5

Data Set Description. This data set contains a series of records, each describing the order of interpolation (rigid, linear, cubic) and listing the master nodes of one interface (from which the displacements of the dependent nodes are computed).

Logical Record Contents (5 integer)

Location	Variable	Description
1	IORD	Order of Interpolation
2	NMP	Number of Master Points in Interface
3-5	L(3)	List of Master Points (Max. 3)

TDE

Type Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1

LRS = 652

Data Set Description. This data set contains submatrices of the external-dependent deflection transformation matrix (TDE). It has a total of NEG*NDG logical records.

Logical Record Contents (4 integer + 324 floating point)

Location	Variable	Description
1	NR	Row and Column Number of this Submatrix
2	NC	in the TDE Supermatrix
3	NDF	Number of Rows in Submatrix
4	NEF	Number of Columns in Submatrix
5-652	TDE(18,18)	Submatrix - Only (NDF*DEF) Components Have Any Meaning

NOTE. For the submatrix relating dependent freedom group 'NDC' to external freedom group 'NEC', the record number 'NR' is computed from the relation: NR = NDG*(NEG-1) + NDC. As the entire matrix is stored, an indicator is stored with zero value for 'NDF' to flag out zero submatrices.

TIE

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1 LRS = 652

Data Set Description. This data set contains the transformation matrix by which internal node deflections are computed from external node deflections. It has a total of NIG*NEG logical records (where NIG is the number of internal freedom groups).

Logical Record contents (4 integer + 324 floating point)

Location	Variable	Description
1	NR	Row and Column Number of This
2	NC	Submatrix in the 'TIE' Supermatrix
3	NIF	Number of Rows in Submatrix
4	NEF	Number of Columns in Submatrix
5-652	TIE(18,18)	Submatrix

NOTE. 'NR' is computed from:

NR = NIG*(NEC-1) + NIC

The individual submatrices contain the zero indicators as TDE submatrices.

KEE

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1 LRS = 652

Data Set Description. This data set contains all above-diagonal submatrices of the condensed stiffness matrix of a substructure. It has a total of (NEG*(NEG+1))/2+1 logical records, where NEG is the number of external freedom groups. The first logical record contains three coordinates of the substructure's external nodes, selected by module 'REDCS' to be used by module 'STIFF'. The record number N is counted from: N = ((NR-1)*((2*NEG+1) - (NR-1)))/2 + (NC-NR+2)

Logical Record Contents (4 integer + 324 floating point)

Location	Variable	Description
		1) The First Logical Record
1-3	NEP(3)	External Point Numbers
4-9	VC1(3)	Coordinates of the First Node
10-15	VC2(3)	Coordinates of the Second Node
16-21	VC3(3)	Coordinates of the Third Node
22-652		Unused
		2) The Subsequent Logical Records
1	NR	Row and Column Number of This Submatrix
2	NC	in the 'KEE' Supermatrix
3	NFR	Number of Rows in KEE Submatrix
4	NFC	Number of Columns in KEE submatrix
5-652	VKEE(18,18)	Submatrix

MEE

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1 LRS = 652

Data Set Description. This data set contains all above-diagonal submatrices of the condensed mass matrix of a substructure. It has (NEG*NEG+1))/2 records, where 'NEG' is the number of external freedom groups. The record number N is counted from: N = ((NR-1)*((2*NEG+1) - (NR-1))/2 + (NC-NR+1)

Logical Record Contents (4 integer + 324 floating point)

Location	Variable	Description
1	NR	Row and Column Number of this Submatrix
2	NC	in the 'MEE' Supermatrix
3	NFR	Number of Rows in this Submatrix
4	NFC	Number of Columns in this Submatrix
5-652	VMEE(18,18)	Submatrix

CEE

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1 LRS = 652

<u>Data Set Description</u>. This data set contains all above-diagonal submatrices of the condensed damping coefficient matrix of a substructure. It has (NEG*(NEG+1))/2 logical records. The record number N is counted from:

N = ((NR-1)*((2*NEG+1) - (NR-1)))/2 + (NC-NR+1)

there are no zero indicators stored with the data set.

Logical Record Contents (4 integer + 324 floating point)

	Location	Variable	Description
_	1	NR	Row and Column Number of This Submatrix
	2	NC	in the 'CEE' Supermatrix
	3	NFR	Number of Rows in this Submatrix
	4	NFC	Number of Columns in this Submatrix
	5-652	CEE(18,18)	Submatrix

CLD

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 364 (words)

IBF = 1

LRS = 364

<u>Data Set Description</u>. This data set contains the condensed load matrix for a substructure.

Logical Record Contents (4 integer + 180 floating point)

_	Location	Variable	Description
	1	NR	Row and Column Number of This Submatrix
	2	NC	in the 'CLD' Supermatrix
	3	NIF	Number of Rows in this Submatrix
	4	NLC	Number of Loading Cases in This Submatrix
	5-364	CLD(18,10)	Condensed Load Submatrix for 'NLC' Loading Cases

CDN

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 364 (words)

IBF = 1

LRS = 364

<u>Data Set Description</u>. This data set contains internal nodal displacement components due to internal loading: $K_{II}^{-1} * R_{I}$

Logical Record Contents (4 integer + 180 floating point)

Location	Variable	Description
1	NR	Row and Column Number of This Submatrix
2	NC	in the 'CDN' Supermatrix
3	NIF	Number of Rows in this Submatrix
4	NLC	Number of Loading Cases in This Submatrix
5	CDN(18,10)	Condensed Deflection Submatrix for 'NLC' Loading Cases

TEM

Type ; Random Access

Status ; Permanent, INTS

Data Size Parameters ; IPRS = 652 (words)

IBF = 1 LRS = 652

Data Set Description. This data set contains all above-diagonal submatrices of the condensed temperature matrix of a substructure. It has $(NEG^*(NEG+1))/2+1$ logical records. The first logical record contains three coordinates of the substructure's external nodes.

Logical Record Contents (4 integer + 324 floating point)

Location	Variable	Description
		1) First Logical Record
1-3	NEP(3)	External Node Numbers of the Three Nodes (Same as
		System Numbers)
4-9	VC1(3)	Coordinates of the First Node
10-15	VC2(3)	Coordinates of the Second Node
16-21	VC3(3)	Coordinates of the Third Node
22-652		Unused
		2) Subsequent Logical Records
1	NR	Row and Column Number of This Submatrix
2	NC	in the 'TEM' Supermatrix
3	NFR	Number of Rows in This Submatrix
4	NFC	Number of Columns in This Submatrix
5-652	TEM(18,18)	Submatrix

4.6.6 Temporary Group

The following data sets are temporary in GIFTS. They exist only during the execution of the module and are deleted upon its successful termination. Some of them are replaced with the old data sets.

LDX

Type ; Random Access

Status ; Temporary, INTS

Data Size Parameters ; IPRS = 160 (words)

IBF = 10 LRS = 16

Data Set Description. This data set is used for temporary storage of the records in 'LDS'. When 'NGPT' is greater than the default size number, the data set 'LDX' is generated with NGPT+1 logical records for each group. The old data set 'LDS' is deleted and replaced by the new data set 'LDX' with the name of 'LDS'.

Logical Record Contents. (8 floating point) The logical record contents are exactly the same as those of 'LDS'.

PTX

Type ; Random Access

Status ; Temporary, INTS

Data Size Parameters ; IPRS = 440 (words)

IBF = 10 LRS = 44

Data Set Description. This data set is used for temporary storage of the records in 'PTS'. When it is necessary to enlarge the size of the data set, this data set is generated. The old data set 'PTS' is deleted and included by the new data set 'PTX' with the name of 'PTS'.

Logical Record Contents. (10 integer + 17 floating point) The logical record contents are exactly the same as those of 'PTS'.

SLX

Type ; Random Access

Status ; Temporary, INTS

Data Size Parameters ; IPRS = 180 (words)

IBF = 10 LRS = 18

Data Set Description. This data set is used for temporary storage of the records in 'SLI'. When it is necessary to enlarge the size of the data set, this data set is generated. The old data set 'SLI' is deleted and replaced by the new data set 'SLX' with the name of 'SLI'.

Logical Record Contents. (18 integer) The logical record contents are exactly the same as those of 'SLI'.

TMX

Type ; Random Access

Status ; Temporary, INTS

Data Size Parameters ; IPRS = 280 (words)

IBF = 5 LRS = 56

Data Set Description. This data set is used for temporary storage of the records in 'TMP'. When it is necessary to enlarge the number of logical records for each group, it is generated. The old data set 'TMP' is deleted and replaced by the new data set 'TMX' with the name of 'TMP'.

<u>Logical Record Contents</u>. (28 floating point) The logical record contents are exactly the same as those of 'TMP'.

OPØ

Type ; Random Access

Status ; Temporary, INTS

Data Size Parameters ; IPRS = 80 (words)

IBF = 40 LRS = 2

Data Set Description. This data set contains one record for each node, containing the directory information needed to rearrange the model's nodes from the best starting point checked by the module 'OPTIM'.

Logical Record Contents (2 integer)

Location	Variable	Description
1	LMN	Dual-purpose variable. LMN Contains the Old System
		Number of the Node in Record 'I'. The Sign of LMN
		is Used as a Flag That the Freedom Grouping for
		Analysis Should be Split at This Node (the Following
		Portion of the Model has no Physical Connection to the
		Preceeding Portion)
2	LMN	The Inverse of LMN. It is the New System Number at
		Which to Find Old Point 'I'

0P1

Type

; Random Access

Status

; Temporary, INTS

Data Size Parameters ;

IPRS = 160 (words) IBF = 40

LRS = 4

 $\underline{\text{Data Set Description}}$. This data set contains one logical record for each node, containing the freedom count and directory information needed to rearrange the nodes after optimization.

Logical Record Contents (4 integer)

Location	Variable	Description
1	NF	Number of Allowed Freedoms for Node 'I'
į	LMN	Old System Number of Node in Record 'I'
ŝ	LNN	Current System Number of Node to Find Oid Node 'I'
4	LFP	Scratch Area for Bandwidth Optimization

0P2

Type

; Random Access

Status

Temporary, INTS

Data Size Parameters ;

IPRS = 80 (words)

IBF = 40

LRS = 2

Data Set Description. This data set contains one record for each element, containing directory information to the corner points stored in 'OP3'.

Logical Record Contents (2 integer)

Location	Variable	Description
1	LEP	Pointer to First Node in 'OP3'
2	NCP	Number of Corner Points in '0P3

0P3

Type Random Access

Status Temporary, INTS

Data Size Parameters ; IPRS = 40 (words)

> IBF = 40LRS = 1

Data Set Description. This data set contains one record for each node of each element. It is essentially just a long serial list of the corner node numbers, with pointers from each element to its first node in the list stored in 'OP2'.

Logical Record Contents (1 integer)

Location	Variable	Description
1	LCP	Corner Point Number

ELS

Type Random Access

Status Temporary, INTS

IPRS = 240 (words)Data Size Parameters :

IBF = 10

LRS = 24

Data Set Description. This data set contains one record for each stress point for each element, describing the principal stresses at the stress point for the current level in the element's thickness (top, middle, bottom) and the current loading case.

Logical Record Contents (12 floating point)

Location	Variable	Description
1-6	SIGMA(3)	Principal Stresses - One for 1-D Elements
		- Two for 2-D Elements - Three for 3-D Elements
7-24	TRAN(3,3)	Rotational Transformation Matrix Relating the Principal Stress Coordinate System to the Global Coordinate System

4.7 DISCUSSION

In GIFTS database, all data pertaining to a problem are stored. Database processing is strictly controlled by GIFTS data management routines. Each data set is stored in a separate random or sequential access file. More than 15 data sets are generated during solution of a problem. This causes an increase in the overhead for manipulating the data files. If the data sets are properly categorized based on the characteristics of data, several data sets should be stored in a random or sequential file.

Drawback of the GIFTS database is that it is designed with reference to its particular solution scheme. Moreover, each data set requires its own data management routines (4 or 5). More than 200 data management routines are used in GIFTS library. Therefore we can conclude that GIFTS database does not meet all requirements stated in Section 2.3. We need a centralized database which allows interaction between GIFTS program and an optimization program. This should be taken into consideration in designing the new database.

5. DATA REQUIRED FOR FEM-BASED STRUCTURAL SYNTHESIS

5.1 INTRODUCTION

For the design of an efficient database, it is necessary to identify and classify the data to be used. The purpose of this chapter is to classify and describe the required data for FEM-based structural analysis and design optimization. Based on the characteristics of data, they can be categorized as follows:

- (1) problem definition data
- (2) system idealization data
- (3) response analysis data
- (4) optimization problem formulation data
- (5) design sensitivity analysis data
- (6) design improvement data
- (7) graphic display data

In the subsequent sections, details of data classified above are listed. The capabilities considered are linear, nonlinear, static and dynamic analysis. Acceleration and/or temperature loads may be specified. Substructures may be used. Design optimization with these capabilities is considered.

5.2 DATA FOR PROBLEM DEFINITION

5.2.1 Overall Control Information

- a) title of the problem
- b) indicator for restarting job
- c) indicator for job characteristics
 - data check only
 - analysis
 - analysis and design optimization
- d) indicator for unit selection
- e) indicator for structural damage condition
- f) indicator for database version
- q) indicator for pre- and post-processor
- h) indicator for graphic display
- i) effective stiffness reformation time step
- j) number of displacement constraint data for structural analysis
- k) indicator for model generation status

5.2.2 System Modelling Information

- a) total number of substructures
- b) total number of element types
- c) number of elements for each element type
- d) total number of nodes
- e) total number of material groups
- f) number of damage conditions
- g) number of active loading cases
- h) indicator for type of BC/IC
- i) total number of solution time steps
- j) solution time interval
- k) total number of master degrees of freedom

5.2.3 Parameters for Analysis Control

- a) index for static/dynamic analysis
- b) index for linear/nonlinear analysis
- c) index for eigenproblems (vibration/buckling)
- d) index for transient response analysis
- e) index for eigensolution type
- f) index for nonlinear analysis type
- g) index for mass matrix type
- h) index for eqilibrium iteration method
- i) indices for convergence criteria
- j) maximum number of equilibrium iterations
- h) index for damping matrix type

5.2.4 Control Information for Design Optimization

- a) index for optimization problem (unconstrained/constrained)
- b) index for characteristic of cost function
- c) index for optimization algorithm selection
- d) index for design sensitivity analysis methods (direct differentiation method/adjoint variable method)
- e) index for type of constraints
- f) data for convergence check (exact/inexact)
- g) estimated number of local maximum points for each time-dependent constraint
- h) constraint tolerance for active constraint
- i) parameter for effective local maximum point
- j) control parameters for selected algorithm
- k) index for design-fixed substructure

5.2.5 Parameters for Output and Graphic Display Control

- a) indices for output options
- b) indices for graphic display options

5.2.6 Other Information

- a) indicator for printout
- b) measure of computation time

5.3 DATA FOR SYSTEM IDEALIZATION

5.3.1 Structure/Substructure Data

- a) number of substructure
- b) number of nodes in a master structure
- c) number of nodes in a substructure (boundary/internal)
- d) master node numbers
- e) number of reused substructures
- f) DOF information of a structure/substructure
- g) element type indicator in a structure/substructure
- h) number of elements in a strucure/substructure
- i) number of mid-surface vector sets
- j) damage information of a structure/substructure

5.3.2 Node Related Data

- a) node numbers
- b) node status (substructural boundary/internal)
- c) nodal coordinates
- d) nodal skew coordinate system
- e) nodal mid-surface vector set number
- f) nodal initial temperature
- q) nodal reference coordinate system
- h) DOF information
- i) nodal non-structural masses
- j) nodal damping coefficients
- k) nodal loads
- 1) nodal temperature
- m) nodal IC/BC information
- n) nodal prescribed displacement information
- o) number of prescribed nodal points
- p) equation number for global structure
- q) equation number for each substructure
- r) link between master and substructure node number

5.3.3 Element Related Data

- a) element numbers
- b) element type
- c) element connectivity information
- d) number of nodes for each element type
- e) material group numbers
- f) material interpolation factors
- g) numerical integration order
- h) element damage information

- i) element nonlinearity indictor
- j) initial stress/strain information
- k) number of layers
- 1) number of stress points per layer
- m) thickness or cross-sectional shape code
- n) thickness interpolation factors
- o) parameters for principal plane or fiber direction
- p) element load type indicator
- q) element properties

5.3.4 Material Properties

- a) material code number
- b) material model number
- c) number of constants for each material model
- d) Young's modulus (E11, E22, E33)
- e) Poisson's ratio (v12, v23, v31, v21, v13, v32)
- f) shear moduli (G12,G23,G31)
- g) yield criteria
- h) material density
- i) material interpolation type
- j) linear thermal expansion coefficients (ALPHA1, ALPHA2, ALPHA3)
- k) temperature table
- 1) strain hardening modulus
- m) stress hardening parameters
- n) index for composite/noncomposite material
- o) number of given temperatures
- p) uniaxial/biaxial/triaxial tensile/compressive ultimate stress/strain
- q) shear stress limits
- r) loading shear modulus
- s) volume strain
- t) loading/unloading bulk modulus
- u) shear factor (for thick plate and shell elements)
- v) normal/shear stiffness reduction factors
- w) creep law number and associated constants

5.3.5 Loading Data

- a) loading case number
- b) load type (conservative/nonconservative)
- c) number of concentrated loads
- d) number of distributed loads
- e) number of inertia loads
- f) number of time dependent loads
- q) number of load/time increments
- h) concentrated load information
- g) pressure information
- i) thermal load information
- j) inertia force information
- k) time dependent load information
- 1) loading function multipliers
- m) pressure multipliers

- n) inertia force multipliers
- o) reused substructure loads
- p) arrival time for applied loads

5.3.6 Eigenproblem Data

- a) number of frequencies and mode shapes
- b) dimension of subspace
- c) flag for suppressing zero frequencies
- d) subspace iteration frequencies interval
- e) maximum number of subspace iterations
- f) flag for Sturm sequence check
- g) shifting factor for subspace iteration
- h) load pattern for buckling analysis

5.3.7 Other Information

- a) damage reduction information
- b) mid-surface normal information
- c) modal damping factors

5.4 DATA FOR RESPONSE ANALYSIS

5.4.1 Element Level Data

- a) linear element stiffness matrix
- b) nonlinear element stiffness matrix
- c) element mass matrix (lumped/consistent)
- d) element load vectors

5.4.2 Structure Level Data

- a) substructure stiffness matices (boundary, internal, internal-boundary)
- b) substructure mass matrices (boundary, internal, internal-boundary)
- c) substructure damping matrices (boundary, internal, internal-boundary)
- d) condensed substructure stiffness matrices
- e) condensed substructure mass matrices
- f) condensed substructure damping matirces
- g) assembled linear stiffness matix
- h) assembled mass matrix
- i) assembled damping matrix
- j) effective substructure stiffness matrices
- k) effective linear stiffness matrix
- 1) condensed stiffness matrix for modal analysis
- m) condensed mass matrix for modal analysis
- n) condensed damping matrix for modal analysis
- o) substructure load vector for each time step
- p) load vector for each time step
- q) effective substructure load vector for each time step
- r) effective load vector for each time step

- s) decomposed effective substructure stiffness matrices
- t) decomposed effective linear stiffness matrix
- u) assembled nonlinear stiffness matrix
- v) final tangential stiffness matrix for each load step
- w) final tangential effective stiffness matrix for each load step

5.4.3 Response Data

- a) nodal displacements
- b) nodal velocities
- c) nodal accelerations
- d) element stresses/stress resultants
- e) element strains/strain resultants
- f) element forces/force resultants
- g) system buckling loads and mode shapes
- h) natural frequencies and mode shapes

5.5 DATA FOR OPTIMIZATION PROBLEM FORMULATION

5.5.1 Data for Cost Function Formulation

- a) total number of design variable groups
- b) number of design variables for each group
- c) lower/upper bounds on design variables
- d) cost function factor for each material code
- e) weighting factors for each type of cost function
- f) user supplied cost function expression

5.5.2 Data for Constraints Formulation

- a) total number of constraints (excluding explicit bounds on design variables)
- b) number of stress constraints (integral type/point-wise)
- c) number of displacemnet constraints (integral type/point-wise)
- d) number of frequency constraints
- e) displacement constraint code number for each node
- f) displacement limits for each displacement constraint code number
- g) stress limits for each material code number
- h) frequency limits for each frequency code number
- i) user supplied constraint expressions
- j) allowable stresses for beam and truss element
- k) supporting length for beam element
- number and locations of effective local maximum points for each timedependent constraint

5.5.3 Other Information

- a) augmented Lagrangian expression for multiplier methods
- b) Lagrange multipliers corresponding to active constraints
- c) penalty parameters corresponding to active constraints
- d) initial design

5.6 DATA FOR DESIGN SENSITIVITY ANALYSIS

5.6.1 Preliminary Information

- a) derivative of cost function w.r.t design variables
- b) derivatives of active constraints w.r.t design variables
- c) derivatives of active constraints w.r.t state variables
- d) derivative of augmented Lagrangian w.r.t design variables
- e) derivative of augmented Lagrangian w.r.t state variables at
- f) derivative of element stiffness matrix w.r.t design variables
- g) derivative of nonlinear element stiffness matrix w.r.t state variables
- h) derivative of element mass matrix w.r.t design varibles
- i) derivative of nonlinear element mass matrix w.r.t state variables
- j) derivative of damping matrix w.r.t design variables
- k) derivative of force vector w.r.t design variables
- 1) derivative of internal force vector w.r.t design variables
- m) for each substructure
- n) derivative of boundary force vector w.r.t design variables
- o) for each substructure
- p) derivative of active constraints w.r.t internal state variables for each substructure
- q) derivative of active constraints w.r.t boundary state variables for each substructure
- r) total derivative of state variables w.r.t design variables for direct differentiation method
- s) adjoint variable vector for gradient of cost function
- t) adjoint varaible vectors for gradient of active constraints (internal/boundary for substructure)
- u) adjoint variable vector for gradient of augmented Lagrangian
- v) derivative of element stress-displacement matrix w.r.t design variables
- w) derivative of allowable stresses w.r.t design variables
- x) derivative of gemetric stiffness matrix w.r.t. design variables
- y) derivative of nonlinear element strain-displacement matrices w.r.t. state variables
- z) derivative of element constitutive matrices w.r.t state variables

5.6.2 Gradient Information

- a) gradient of cost function
- b) gradient of augmented Lagrangian
- c) gradient of integral-type displacement constraints
- d) gradient of point-wise displacement constraints
- e) gradient of integral-type stress constraints
- f) gradient of point-wise stress constraints
- g) gradient of frequency constraints
- h) gradient of buckling constraints

5.7 DATA FOR DESIGN IMPROVEMENT

- a) upper/lower bounds of cost function
- b) design change and improved design vectors
- c) history of design variables

- d) history of cost functione) history of constraintsf) history of augmented Lagrangiang) data for Hessian update

5.8 DATA FOR GRAPHIC DISPLAY

- a) system geometryb) element geometry

6. DESIGN OF PROPOSED DATABASE

6.1 INTRODUCTION

Based on database design procedures, collected information, and analysis of existing databases, a new design of databases for structural analysis and design optimization is proposed in this chapter. In designing the database guidelines for information collection and general requirements for the database are followed.

In Section 6.2, flow of data for structural analysis and design optimization is described. Based on the data flow in structural analysis and optimization, data are catagorized into several groups according to their usage. A list of data sets are given in Section 6.3. Section 6.4 contains details of each data set. Structure of database is summarized in Section 6.5

The following notations are used in this chapter:

```
b - vector of design variable
B - element stress-displacement matrix; \sigma = Bz
C - daming matrix
CHAR - character variable
C_{mx}, C_{mv} - Coefficient applied to bending term in interaction formula and
           dependent upon column curvature caused by applied moment (refer to
           AISC Steel Construction Manual)
C_x, C_y, C_z, C_{xx}, C_{yy}, C_{zz} - nodal dampers in x, y, z directions
                          (translation and rotation)
C* - effective force gradient matrix (refer to Haug & Arora (1979));
     C^* = C_1 + Q^T C_2
C_1 - part of effective force gradient matrix
C_2 - part of effective force gradient matrix
D - constitutive matrix
dof - degree of freedom
DMAT - Real Matrix
D.V. - design variables
d(\cdot)/dz, d(\cdot)/db - partial derivative of (\(\cdot\)) w.r.t. state variable, design
                     variable, respectively
E - Young's modulus
F_{\mathbf{p}} - element nodal force vector
F_{bx}, F_{by} - allowable compressive bending stress in x-, and y-direction, respectively (refer to AISC Steel Construction Manual)
Fex, Fey - Euler stress divided by factor of safety (refer to AISC Steel Construction Manual)
F<sub>s</sub> - Allowable shear stress
I, or INT - integer variable
IVEC - integer vector
K_{\alpha} - element geometric stiffness
K<sub>s</sub> - linear element stiffness matrix
^{K}x,^{K}y - effective length factors (refer to AISC Steel Construction Manual)
```

```
l_x, l_y - unbraced length in x and y direction respectively (refer to AISC Steel
         Construction Manual)
M - mass matrix
M<sub>c</sub> - element consistent mass matrix
M<sub>d</sub> - element lumped/diagonal mass matrix
M_x, M_y, M_z, M_{xx}, M_{yy}, M_{zz} - nodal masses in x, y, z directrion
                           (translation and rotation)
M - Poison's ratio
Ruor REAL - real
RVEC - real vector
RX,RY,RZ - rotatial dof in x, y, and z direction
T - time parameter
T_i - a local maximum line points for a constraint function
y - eigenvector
z - vector of state variables
\sigma - element stress (yector \lambda - adjoint matrix (
\lambda_{\rm I} , \lambda_{\rm B} - adjoint matrices () associated with internal dof and effective boundary
         dof of substructure.
  continuation
```

6.2 DATA FLOW IN STRUCTURE ANALYSIS AND DESIGN SENSITIVITY/OPTIMIZATION

6.2.1 Processing Steps in Structural Analysis

The following are the steps for linear/nonlinear/static/dynamic analysis.

- 1) structural idealization
- 2) generate linear element stiffness matrices corresponding to linear elements.
- 3) generate substructure stiffness matrices corresponding to boundary, internal, and internal-boundary. (usually linear elements are used in substructures).
- 4) generate element mass matrices
- 5) assemble substructure linear stiffness matrices
- decompose substructural internal and boundary stiffness matrices
- 7) generate condensed substructure stiffness matrices
- 8) assemble linear stiffness matrix
- 9) assemble substructure mass matrices
- 10) condense substructure mass matrices
- 11) assemble mass matrix

- 12) form substructre damping matrices
- 13) condense substructure damping matrices
- 14) form damping matrix
- 15) form effective linear stiffness
- 16) calculate load vector for each time step and load case
- 17) impose boundary conditions
- 18) decompose effective linear stiffness in case of linear analysis
- 19) find linear and nonlinear part of element stiffness corresponding to nonlinear elements
- 20) assemble linear stiffness matrix correponding to nonlinear elements
- 21) assemble nonlinear stiffness matrix cor. eponding to nonlinear elements
- 22) generate tangential stiffness matrix for each solution time step and load case
- 23) form tangential effective stiffness matrix for each solution time step and load case
- 24) compute frequencies and buckling load factor
- 25) compute mode shape(s) associated to frequencies and buckling load factor
- 26) form effective load vector for each time step
- 27) solve for displacement (or incremental displacement) for each solution time step and load case
- 28) iterate for equilibrium (generate updated stiffness matrix)
- 29) calculate displacement, velocity and acceleration matrices
- 30) calculate element strains, stresses, and forces for each time step and load case
- 31) calculate internal displacements for each substructure, time step and load case
- 32) calculate internal velocities and accelerations for each substructure, time step and load case
- 33) calculate element strains, stresses, and forces matrices for each substructure, time step and load case

The following table describes the flow of data in structural analysis.

Table 6.2.1 Data Flow in Structural Analysis

= :	No.	=	Data generated/required		=	Data Used	===		
=:	===		######################################	=======================================		======	===		
=	1	=	overall control information	see Section 5.2.	= -	none	=		
=	1	- =	Overall control illionmation	see section s.z.	 =	Hone	=		
=	2	=	system modeling information	see Section 5.2.2	2 =	none	=		
=		=	·		=		=		
=	3	=	parameters for analysis control	see Section 5.2.	3 =	none	=		
=		=			=		=		
=	4		parameters for output and graphics	see Section 5.2.	=	nono	=		
=		=	display control	see section 5.2.) = =	none	=		
=	5		other information	see Section 5.2.0		none	=		
=	Ŭ	=	orner in ormation	500 500 1011 5424	=		=		
=	6	=	substructure numbers		=	none	=		
=		=			=		=		
=	7		number of nodes in a master struct	ure		none	=		
=	0	=		/h 4 / . . .	=		=		
=	8	=	number of nodes in a substructure	(boundary/interna) = =	none	=		
=	9	=	master node numbers			none	=		
=	,	=	master node numbers		=	HOHE	=		
=	10	=	number of reused-substructures		=	none	=		
=		=			=		=		
=	11	=	equation number information of		=	16	=		
=		=	structure/substructure		=		=		
=		=			=		=		
=	12		element type indicator in a struct	ure/substructure	=	none	=		
=	13	=	number of elements in a strucure/s	ubstructuro	=	nono	=		
=	13	=	number of elements in a structure/s	ubstructure	=	none	=		
=	14	=	number of mid-surface vector sets		=	none	=		
=		=			=		=		
=	15	=	damage information of a structure/	substructure	=	none	=		
=		=			=		=		
=	16	=	node-related data s	ee Section 5.3.2	=	none	=		
=	17	=	alament nelated data	no Costion E 2 2	=		=		
	1/		element -related data s	ee Section 5.3.3	_	none	=		
			contribution of equation number to	hypermatrix	=	none	=		
	- , • .		content to a content of the content	ny per maor 1x	=	none	=		
=	18	=	material properties s	ee Section 5.3.4	=	none	=		
					=		=		
=	19		loading data s	ee Section 5.3.5	=	none	=		
=	20	=	an af farmunati		=	none	=		
=	20	=	= no. of frequencies and mode shapes						
=		=======================================			=		=		
-					- 				

Table 6.2.1 Data Flow in Structural Analysis (continued)

======		==:	*=======	:
= No.=	Data generated/required	=	Data =	:
= =		=	used =	
======	*************************************	==:		:
= =		==	=	
= 21 =	load pattern for buckling analysis	=	none =	
30 -	James andrekin information	=	=======================================	
= 22 =	damage reduction information	=	none =	
= = = = = = = = = = = = = = = = = = = =	mid surface normal vector information	=	none =	
= =	mild surface normal vector information	=	none =	
= 24 =	modal damping factors	=	none =	
= =	modul damping ruccors	=	=	
= 25 =	linear element stiffness matrices	=	14,16,17,=	
= =	associated with linear elements		18,23 =	
= =		=		:
= 26 =	transformation matrix(structure/substructure)	=	16,17 =	:
= =		=	=	
= 27 =	assembled substructure stiffness matrices		6,10,13, =	
= =			15,16,17,=	
= =			22,25,26 =	
= =		=	=	í
= 28 =	condensed substructures stiffness matrices		11,8,27 =	
. 20	alament mana matainan		16 17 10 -	
= 29 =	element mass matrices	=	16,17,18 =	
	assembled substructure mass matrices		6,10,13, =	
= =	assembled substitution mass matrices		15,16,17,=	
= =		=	22,26,29 =	
= =		=	=	
= 31 =	condensed mass matrices (e.g., Guyan Reduction)	=	11,30 =	:
= =		=	, =	:
= 32 =	substructure damping matrices	=	16 =	:
= =	·	=	=	:
= 33 =	condensed damping matrices	=	11,32 =	:
= =		=	=	
	effective substructure linear stiffness matrices		6,27,30, =	:
= =			32 =	
=34.1=	decomposed substructure effective linear stiffness		34 =	
= =	matrices(internal and boundary)	=		
= = =	assembled linear stiffness matrix		6,9,10, =	
= 55 =	assembled linear scrinicss macrix		11,17,25	
= =			28 =	
= =		=	=	
= 36 =	assembled mass matrix	=	6,9,10 =	
= =			11,29,31 =	:
= <i>=</i>		=	· ·	
======		==:	= = = = = = = = = = = = = = = = = = =	

Table 6.2.1 Data Flow in Structural Analysis (continued)

======		:===========
= No.=	Data generated/required	= Data =
= =		= used =
======		***********
= =		= = =
= 37 =	damping matrix	= 6,9,10 =
= =		= 16,24,33 =
= 38 =	effective linear stiffness matrix	= 35,36,37 =
= =	effective filled Stifffiess matrix	= 55,55,57
=38.1=	decomposed linear stiffness matrices	= 38 =
= =		= =
= 39 =	load vectors for each solution time step,	= 6,11,15 =
= =	and load case for each substructure	= 16,18,19 =
= =		= =
	equivalent load vector for each solution time	= 11,27,39 =
= =	step and load case for each substructure	=
= = =40.1=	effective substructural load	= used = = 11,39,54,=
-40.1-	errective substructural road	= 55,56,63 =
= =		= 64,65 =
= =		= =
= 41 =	load vector for each solution time step and load	= 40, =
	case for global structure	= 6,11 =
= =		= =
= 42 =	effective load vector for each time step	= 11,36,37 =
= =	and load case for global structure	= 41,54, =
- 42 -	december 1 lines official shiffman makely	= 55,56 =
= 43 =	decomposed linear effective stiffness matrix	= 38 = =
	linear and nonlinear element stiffness matrices	= 14,16,17 =
= =	associated to nonlinear elements	= 18,23,54 =
= =	The state of the s	= =
= 45 =	assembled linear stiffness matrices associated	= 9,16,17 =
= =	to nonlinear elements	= 44 =
= =		= =
	assembled nonlinear stiffness matrices associated	
= =	TO MILL OF THE TOTAL TOT	= 44 =
= =	and load case	= =
= = = - 17 =	tangential stiffness matrix	= = =
= 4/ =	tangential stiffness matrix to nonlinear elements for each solution time step	= 45,46 = = 44 =
2 =	to nonlinear clements for each solution time step	= 77 = =
= 48 =	tangential effective stiffness matrix	= 36,37,47 =
= =	• • • • • • • • • • • • • • • • • • • •	= =
= 49 =	decomposed tangential effective stiffness matrix	= 48 =
2 =	·	= =
======	=======================================	

Table 6.2.1 Data Flow in Structural Analysis (continued)

			======================================	===	
=	No.	, =	Data generated/required	=	Data ≈
=		= 		= 	= used =
=		=		=	
=	50	=	frequencies and mode shapes	=	20,31 or =
=		=	,		36,35 or =
=		=		=	46 =
=		Ξ		=	=
	51		modal stiffness matrix		35,50 =
=	5 0	=	dal mass maked.	=	20.00
=	52	=	modal mass matrix	=	36,50 =
	53		buckling load factor and buckling mode shape		21, 44 =
=		=	backing toda ractor and backing mode shape		45 =
=	54	=	displacement(or incremental displacement)		41,42 or =
=		=	for each solution time step and each load case		49 =
=		=		=	=
=	55	=	accelerations	=	54,56 =
=		=		=	= = = = = = = = = = = = = = = = = = = =
	56		velocities		54,55 =
=	57	=	displacements from modal superpositor	=	= 50,51,52 =
=	37	=	displacements from modal superpositon	=	50,51,52 =
=	58		velocities from modal superposition		50,57 =
=	•	=	Town mount outperpositions	=	=
=	59	=	accelerations from modal superposition	=	50,57 or =
=		=		=	58 =
=		=		=	=
=	60		element strains for each solution time step		16,17,54 =
=		=	and load case		or 57 =
=	61	=	element stresses for each solution time step	=	18,54 or =
=	01		and load case		60 =
=		=	and foud case	=	=
=	62	=	element forces for each solution time step	=	25 or 44,=
=		=	and load case		54 or 57 =
=		=		=	=
=		=		=	=
=	63		•		6,11,19, =
=		=	solution time step and load case		34,54 or = 57
=		=		=	57 =
	64		internal acceleration for each substructure,		63,65 =
=	J 1	=	solution time step and load case	=	=
=		=	The second secon	=	=
=	65	=	internal velocity for each substructure,	=	63,64
=		=	solution time step and load case	=	=
=		=		=	=
= :	====	===		===	

Table 6.2.1 Data Flow in Structural Analysis (continued)

	=======================================
= No.= Data generated/required	= Data =
= =	= used =
	=======================================
: :	= =
= 66 = element strains for each solution time step	= 16,17,54 =
= = and load case of the substructure	= or 57,63 =
= =	=
= 67 = element stresses for each solution time step	= 18,54,64 =
= = and load case of the substructure	= 66 =
= =	= =
= 68 = element forces for each solution time step	= 25 or 44,=
<pre>= = and load case of the substructure</pre>	= 54 ,64 =
= =	= =

6.2.2 Processing steps in Design Optimization

The following are the typical steps for design optimization:

- 1) cost function formulation
- 2) constraint functions formulation
 - displacement constraints
 - stress constraints
 - frequency constraints
 - buckling constraint
 - user supplied constraints
- 3) check the constraints
 - evaluate the constraint functions
 - find the effective local maximum points (time measure) for each constraint in dynamic case
- 4) form the active constraint set
- 5) compute gradients of cost and constraint functions
 - design derivatives of element property matrices
 - response (state) derivatives of element property matrices
 - second order derivatives if required
- 6) compute design change
 - compute the design direction
 - determine the step size if required
- 7) find new design varibles
- 8) check the convergence criteria

The following table describes the flow of data in design optimization.

Table 6.2.2 Data Flow in Design Optimization

==	=====			=
=	No . =	Data generated/required	= Data	=
=	=		= usea	=
===	=====			
=	101			=
=	101=	control information for design optimization		=
=	=	(see Section 5.2.4)		==
_	102=	design variable data(no. of groups, no. of design		=
=	102-	variable for each group, bounds on design variable,		=
=	=	and initial design variable)		=
=	=	and initial design variable /		=
	103=	cost function factor and weighting factor		=
=	=	Toole runderon rudger and weighting rudger	=	=
=	104=	data for constraint formulation(see section 5.5.2)	= none	=
=	=	,	=	=
=	105=	data for displacement constraint check	= 16.54 or	=
=	=	·	= 57,63,104	=
=	=		=	=
=	106=	data for stress constraint check	= 17,61 or	=
=	=		= 104	=
=	=		=	=
=	107=	data for frequency constraint check	= 50,104	=
=	=		=	=
=	108=	data for buckling constraint check	00,20	=
=	100	A A Commence of the American State of the St		=
=	109=	data for user supplied constraint check	,,	=
=	=		20.,200	=
=	= 110=	constraint function status		=
=	110-	(See IDESIGN program written by J.S.ARORA)		_
=	=	(See IDESTAN program written by 0.5. ANONA)		_
	111=	Lagrangian multipliers and penalty parameters		=
=	=	for multiplier methods	400 400	=
=	=	TOT materprice meanings	400 400	=
=	=		=	=
=	112=	data for augmented Lagrangian formulation	=102,103,	=
=			=104,105,	=
=	=		=106,107,	=
=	=		=108,109	=
=	=		=110,111	=
z	=		=	z
=	113=	derivative of cost function w.r.t design variables	=102,103	::
=	=		=	=
=	114=	derivatives of constraint functions w.r.t design	=102,104,	=
=	=	variables	=110	=
=	115	1. 1. Alica of analysis for the back	= 104	=
=	115=	derivatives of constraint functions w.r.t state	=104	=
=	=	variables	=	= -
=:	- 		- ::::::::::::::::::::::::::::::::::::	

Table 6.2.2 Data Flow in Design Optimization (continued)

==	======		====		==
=	No .=	Data generated/required	=	Data used	=
_	-			useu	
==	======				
=	=		=		=
=	116=	derivatives of element constitutive matrices	=18,	,61	=
=	=	w.r.t state variables	=		=
=	=		=		=
=	117=	derivatives of linear and nonlinear element	=14.	16,17,	=
_	=	element stiffness matrices w.r.t design variables	=18,		=
_		erement scrimess matrices was at design variables		, 23	=
=	110	desirables of secliness mank of alexand shiffman	- -14	16 17	
=	118=	derivatives of nonlinear part of element stiffness		16,17,	
=	=	matrices w.r.t state variables	=18,	23,54	=
=	=		=		=
=	119=	derivatives of element stresses w.r.t design	=14,	16,17,	=
=	=	variables	=18.	,23	=
=	=		= ´		=
=	120=	derivatives of nonlinear element strain-displace-	=14	16,17,	=
=	=	ment transformation matrices w.r.t state variables		23,54	=
		ment transformation matrices weret state variables			
=	=		-01	57,63	=
=	=		=		=
=	121=	derivatives of element stresses w.r.t state	=18,	116,120	0=
=	=	variables	=		=
=	=		=		=
=	122=	derivative of element mass matrices w.r.t design	=16,	17,18	=
=	=	variables	= '		=
=	=		=		=
=	123=	derivatives of element mass matrices w.r.t state	=16.	17,18	=
=	=	variables	=54	, . , , . 0	=
_	=	Valiable 3	-34		=
_	124=	domination of demains metals of a decise		10	
		derivative of damping matrix w.r.t design		9,10,	=
=	=	variables	=10,	24,33	=
=	=		=		=
=	125=	derivative of damping matrix w.r.t state),10,	=
=	=	variables	=16,	24,33	=
=	=		=		=
=	126=	derivatives of element force vector w.r.t design	=6.1	1,15,	=
=	=	variables		18,19	=
=	=		=,	,,	=
=	127=	derivatives of element force vector w.r.t state	=6 1	1,15,	=
_	=	variables		18,19	
=		Agi ignic2	-10,	10,19	=
	120-	daminaking of allower much 1 for a constant		100	=
=	128=	derivative of element residual forces w.r.t design		,122,	=
=	=	variables	=124	,126	=
=	=		=		=
=	129=	total derivative of state variables w.r.t	=116	5,118,	=
=	=	design variables	=121	1,122,	=
=	=	- -		3,124,	=
=	=			,126	=
=	=		= -	,	=
= :	======		====		==

Table 6.2.2 Data Flow in Design Optimization (continued)

======		*===========
= No.=	Data generated/required	= Data =
= =		= used =
	:======================================	
120	doubles in the community of the communit	=111 112 .
= 130=	derivative of augmented Lagrangian w.r.t design	=111,112, =
= =	variables	=113,114 =
= 131=	designatives of augmented Lagrangian W. n. t. state	= = = = = = = = = = = = = = = = = = = =
= 121=	derivatives of augmented Lagrangian w.r.t state variables	=111,112, =
= =	variables	= = =
= 132=	adjoint variable vector for gradient of augmented	=35,36,37, =
= =	Lagrangian	=113,130, = =131 =
= =		= = =
= 133=	adjoint variable vectors for gradient of constrain	
- 100-	functions	=115 =
= =	Tunctions	-112 -
= 134=	derivatives of internal/boundary force vectors	=6,11,15,16=
= =	w.r.t design variables for each substructure	= 18,19,54 =
= =	Wallact design variables for each substitucture	=or 57,63, =
= =		=17,102 =
= 135=	derivatives of constraint functions w.r.t internal	
= 100=	boundary state variables for each substructure	, -104,120 = =
= =	boundary state variables for each substructure	2 2
= 136=	derivatives of equivalent internal force vectors	=6,54,63, =
= =	w.r.t design variables for each substructure	=117,134 =
= =	were to design variables for each substitution	= =
= 137=	derivatives of effective boundary force vectors	=6,27,34.1 =
= =	w.r.t design variables for each substructure	=54,63,117 =
= =	3	=134,136 =
= 138=	internal/boundary adjoint variable vectors for eac	
= =	substructure	=27,115 =
= =		=135, =
= 139=	derivative of allowable stresses w.r.t design	=16,17,18 =
<i>=</i> =	variables	=102 =
= =		= =
= 140=	total derivative of frequency w.r.t design	= 50,117 =
= =	variables	= 122 =
= =		= =
=140.1	derivative of eigenvector w.r.t design variables	= 50,117, =
= =		=122 =
= =		= =
= 141=	derivative of element geometric stiffness matrix	= 14,16,17 =
= =	w.r.t design variables	= 102,121 =
= =		= =
= 142=	total derivative of buckling load factor w.r.t	= 53,117, =
= =	design variables	=141 =
= =		± =
=======		######

Table 6.2.2 Data Flow in Design Optimization (continued)

= No.= Data generated/required = used
= 143= design sensitivity vector for cost function = 113 =
= 143= design sensitivity vector for cost function
= 143= design sensitivity vector for cost function
= = = = = = = = = = = = = = = = = = =
= 144= design sensitivity vector for augmented Lagrangian = 128,129, = 130,131, = 132 = 132 = 136,137 = 136,137 = 136,137 = 133,140 = 142 = 146= upper/lower bounds of cost function = none = 147= design change and improved design vectors = 102,110 = 144,145 = 146 = 148= history of design variables = 147 = 147
= = = 130,131, = 132 = 132 = 132 = 134,114 = 136,137 = 136,137 = 133,140 = 142 = 146 = 147 = 144,145 = 148 =
= = = 132
= 145= design sensitivity matrix for constraint functions = 104,114 = 136,137 = 133,140 = 142 = 146= upper/lower bounds of cost function = none = 147= design change and improved design vectors = 102,110 = 144,145 = 146 = 148= history of design variables = 147 = 14
= = = 136,137 = = 133,140 = = 142 = = 146= upper/lower bounds of cost function = none = = = = = 147= design change and improved design vectors = 102,110 = = = 144,145 = = = 148= history of design variables = 147 = = = = = = = = = = = = = = = = = = =
= = = 133,140 = 142 = 142 = 146
= = =
= 146= upper/lower bounds of cost function
= = = = = = = = = = = = = = = = = = =
= = = 144,145 = = 146 = = 148 history of design variables = 147 = = = = =
= = = = 144,145 = = 146 = = 148
= = = 146 = = 147 = = = = = = = = = = = = = = = = = = =
= = = =
= 149= history of cost function = none =
= 150= history of constraints function violation = $104,110 =$
= 151= history of augmented Lagrangian =111,112 =
= = = 148 = = 152 Handa and data of accordance = 140 151 = =
= 152= Hessian matrices of augmented Lagrangian =148,151 =
= = = = = = = = = = = = = = = = = = = =

6.3 LIST OF DATA SETS

In this section, data collected in Chapter 5 are classified into several groups based on their characteristics. Classification of data is an important step in designing an efficient database. In each data group, data sets are defined. Brief description of each data set is also presented in this section. The summary of data sets can be conveniently used as a dictionary of database.

The data set names are arranged in an alphabetical order.

Naming convention for data set is -

A: Analysis group

C: Control information

D: Design problem formulation

I: Improved design

S : Sensitivity analysis and design optimization

AAGLMT: Assembled load matrix (global) for linear statics

AALBMT : Substructure load matrix (boundary)

AASIDN: Acceleration vector (global) for dynamics/nonlinear ABCIIC: Bounadry condition and initial condition information

ABUCEL: Buckling load factor and mode shape

ACLDMT: Condensed load matrix for linear dynamics/nonlinear statics

ACODCM: Node-damping and mass matrix

ACOMPR: Composite-element properties (layered)
ACORDC: Node-coordinate for master structure
ACORDS: Node-coordinate for substructure(s)
ACSDMT: Condensed substructure damping matrix

ACSSMT : Condensed substructure mass matrix

ADESMT: Decomposed effective linear stiffness matrix (global-dynamics)

ADFTES: Decomposed final tangential effective stiffness matrix ADFTGS: Decomposed final tangential global stiffness matrix

ADGIDN: Displacement matrix (global) for linear/nonlinear dynamics

ADISPLG: Displacement matrix (global)

ADLSMT: Decomposed linear stiffness matrix (global) ADSIDN: Displacement matrix (internal) for dynamics

ADSSMT: Decomposed effective substructure stiffness matrix

ADYNLD : Dynamic load definition AEGVEC : Eigenvalues and eigenvectors

AELCON: Element-connectivity

AELDMT: Effective substructure load matrix for linear dynamics

AELGNI: Element general information

AELHYP: Equation numbers contributing to a hypermatrix

AELLOD: Element-load data for master structure AELMAS: Element-mass matrix (lumped/diagonal) AELMAT: Element-stiffness matrix (linear) AELMSC: Element-mass matrix (consistent)

AELPRO: Element-properties

AELSMT: Effective linear stiffness matrix (global-dynamics)

AELTRF : Element-transformation matrix

AESSMT: Effective substructure stiffness matrix (dynamics)

AFOREL: Element nodal force vector

AFTESM: Final tangential effective stiffness matrix AFTGSM: Final tangential global stiffness matrix

AGELMT: Global effective load matrix for linear/nonlinear dynamics

AGESMT: Generalized structural matrices for modal analysis AGLDMT: Global load matrix for linear/nonlinear dynamics

AINLOD: Inertia node-load

AISREL: Initial strain vector (element) AISTEL: Initial stress vector (element)

```
AMASHY: Assembled substructure mass matrices (internal)
AMATPR: Related linear material properties
AMIDS : Mid-surface normal vector information
ANODDF: Node-dof global structure
ANODLD: Equivalent node-load data for the master structure
ANODTM: Node-temperature
ANONMT1: Nonlinear material type 1
ANSTMT: Assembled nonlinear stiffness matrix
ASABDN: Substructure acceleration vector (boundary)
ASAIDN: Substructure acceleration vector (internal)
ASCLMT: Condensed load matrix (substructure) for linear statics
ASDISB: Substructure displacement matrix (boundary)
ASDISI : Substructure displacement matrix (internal)
ASDMAT: Substructure damping matrix (internal)
ASDMTB: Substructure damping matrix (boundary)
ASELLOD: Element-load data for substructure(s)
ASELMS: Substructure element-mass matrix (lumped/diagonal)
ASEMMC : Substructure element-mass matrix (consistent)
ASESMT : Substructure element-stiffness matrix (linear)
ASETRM: Substructure element-transformation matrix
ASFOEL: Substructure element nodal force vector
ASKEW : Skew coordinate system defintion
ASLDMT: Assembled damping matrix (global)
ASLIMT: Substructure load matrix (internal)
ASLMMT : Assembled mass matrix (global)
ASLOMB: Substructure load matrix (boundary) for linear statics
ASLOMI : Substructure load matrix (internal) for linear statics
ASLSMT: Assembled linear stiffness matrix (global)
ASMBON: Assembled substructure mass matrices (boundary)
ASMINB: Assembled substructure mass matrices (internal-boundary)
ASNOLD: Equivalent node-load data for substructure(s)
ASSBBN: Assembled substructure stiffness matrix (boundary)
ASSBIB: Assembled substructure stiffness matrix (internal-boundary)
ASSBIN: Assembled substructure stiffness matrix (internal)
ASSTAL: Substructure strain vector (element)
ASSTEL : Substructure stress vector (element)
ASTNEL: Element stiffness matrix (nonlinear)
ASTRAL : Strain vector (element)
ASTREL: Stress vector (element)
ASUBDF: Node-dof substructure(s)
ASUBGI: Substructural genreal information
ASVIDN: Substructure velocity vector (internal)
AVELDN: Velocity vector (global)
CDSIIF: Design optimization integer control information
CDSRIF: Design optimization real control information
CINTCL: Integer control information
CLGPNA: Lagrange multipliers and penalty parameters
CREAL : Real control information
CTITLE: Title of the problem
DACNIF: Constraint information
DALWST : Element allowable stresses
DDSPLT: Displacement limits
DFRQLT: Frequency limits
ICNHIS: Constraint violation history
IDGNVB : Design variables
```

```
IDSHIS : Design history
IDVGIF: Design variable group information
IDVHIS: Design variable history
IHISTA: History of augmented lagrangian
ISDGIF: Substructure design variable group information
SADJAL: Adjoint variables for augmented lagrangian gradient
SADJBB : Substructure-lamdab matrix (λΒ)
SADJII : Substructure-lamdai matrix (λΙ)
SADJNB : Lamdab matrix (adjoint variables for global dof) (\lambda B)
SCNSGD : Constraint-gradient
SCSTGD : Cost-gradient
SDALBZ: Response derivatives of augmented lagrangian
SDALDB : Augmented lagrangian gradient
SDAWDB : Differential-allowable-stress
SDCBDZ: Substructure-boundary-constraint-gradient
SDCEDB : Differential-element-damping matrix (dC/db)
SDCIDZ: Substructure-internal-constraint gradient
SDDCDZ : Differential-constitutive matrix (nonlinear material)
SDEGDB : Differential-element-stress matrix
SDEGDZ : Differential-element-stress matrix (do/dz)
SDFBDB : Subatructure-effective-boundary-force gradient (C_1 - matrix)
SDFEDB : Element-force gradient (dF<sub>e</sub>/db)
SDFEDZ : Element-force gradient (dF<sub>e</sub>/dz)
SDGVDB : Differential-eigenvector matrix
SDKGDB : Differential-element-geometric stiffness matrix (dK_q/db)
SDKGDZ : Differential-element-geometric stiffness matrix (dK_q/dz)
SDKKDB: Substructure-differential-element-stiffness matrix (dK<sub>c</sub>/db)
SDKSDB: Differential-element-stiffness matrix (dK<sub>s</sub>/db)
SDKSDZ: Differential-element-stiffness matrix (dK<sub>s</sub>/dz)
SDMCDB : Differential-element-mass matrix (dM_c/db)
SDMCDZ: Differential-element-mass matrix (dM<sub>c</sub>/dz)
SDMDDB: Differential-element-mass matrix (dM<sub>d</sub>/db)
SDMDDZ: Differential-element-mass matrix (dM_d/dz)
SDSBDZ : Differential-element-stress-displacement matrix (dB/dz)
SDSCDB: Substructure-differential-element-mass matrix (dM<sub>c</sub>/db)
SDSDDB : Substructure-differential-element-mass matrix (dM<sub>d</sub>/db)
SDSFDB : Substructure-element-force gradient (dF<sub>e</sub>/db)
SDSGDB : Substructure-differential-element-stress matrix
SUSWDB : Substructure-differential-allowable-stress
SDZBDB : Substructure-dzbdb matrix (dZ<sub>h</sub>/db for ith substructure)
SDZIDB: Substructure-dzidb matrix (dZ<sub>i</sub>/db for ith substructure)
SDZZDB: Global-dz/db matrix (dZ/db)
SFBGRD : Effective-force gradients (C^* - matrix)
SFIGRD : Substructure-internal-force gradient (C<sub>2</sub> - matrix)
SHESMT: Hessian matrix of augmented lagrangian
SNSTVY : Sensitivity matrix
SSCOB : Substructure-differential-element-damping matrix (dC/db)
```

6.4 DESIGN OF STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION DATA SETS

In this section description of data sets in each data group is presented. Sequence of data sets is based on the data flow given in Section 6.2.

CTITLE : TITLI	OF THE PROBLEM	=======================================		
= Structure	Descriptions	Designer	Job	:
= Name		Name	Name	:
= CHAR	CHAR	CHAR	CHAR	:
-		=======================================	= = = = = = = = = = = = = = = = = = = =	:====:
=				•
=				
=				=
=				•
			:3555555555555	
CINTCL : INTEG	GER CONTROL INFORMAT	ION		
= Variable	Integer value			
= Name				=
=	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		=
= CHAR	INT			=
_		=======================================		.====:
=				=
=				-
=				=
3				=
=				=
	=======================================	=======================================	:============	=====
	CONTROL INFORMATION	=======================================	:======================================	:=====
= Varible				=
= Name	Real Value			=
=		• • • • • • • • • • • • • • • • • • • •	••••••	=
= CHAR	R			=
= = = = = = = = = = = = = = = = = = = =	=======================================	=======================================	:===============	
- =				3
=				=
=				=
=				=
=				=

	SIIF : DESIGN-OPT					
=	Control	Index	======================================			===:
=	Parameter					4
=						=
=	••••••	••••••	• • • • • • • • • • • • •	• • • • • • • • • •		••=
=	CHAR	INT				=
===	**************			=======================================	******	:===
=						=
=						=
=						=
=						=
=						=
===	=======================================	=======================================	=======================================			==1
	RIF : DESIGN-OPT					
===	Control	=========	======================================		*========	===
=	Control	Value				=
=	Parameter	varue				=
=	••••••		• • • • • • • • • • • • •			=
=	CHAR	R				=
===	=======================================	=======================================		*******	==========	===
=						=
=						=
=						=
=						=
=						=
===	=======================================	=========	=======================================		=========	===
'I CD	NA : LAGRANGE MU	LTIDLIEDE AND	DONALTY DADAM	TTENE		
	'NA : LAGKANGE MU			-	::::::: :::::::::::::::::::::::::::::	
	tive Constraint					
:	Number	aug, unge	· ····································	· charty	· ar ameder 5	=
=						=
						- =
=	INT		R		R	=
:===	~=====================================	**********	=======================================	=========	*********	===
						=
• •						-
•						=
:						=
•						=

ACORDC:	NODE-		ATE FOR		R STRUCT	TURE		
= Node = Number =	Sys Node No	Cord System Type	Disp Constr Code	B.C I.C No.	Skew Coord No.	Mid-Sur. Vector Set no.	Coordinate X Y Z	•
= INT	INT	CHAR	INT	INT	INT	INT	R R R	
. Bounda	ry Cod	====== e	======	=====:	======	========	=======================================	===
. X Y Z	R _x R _y	R _z						=
. I I I		I						=
•	=====	22222	======	=====:	======		=======================================	===
•								=
•								=
	=====	======	======	=====	:======	=======================================		====
ACORDS:	NODE-	COORDIN	ATE FOR	SUBSR	ructure (s)		
======= = Substr = No.	Node No.	Sys B Node I	.I Cooi .C Sys	d Disp	Skewd	Mid-Sur.	X Y Z	===
======= = Substr = No.	Node No.	Sys B Node I No	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur.	X Y Z	•
====== = Substr = No. =	Node No.	Sys B Node I No	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	•
= Substr = No. = = INT	Node No.	Sys B Node I No	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	
= Substr = No. = INT ====================================	Node No. INT	Sys B Node I Note I INT I	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	
= Substr = No. = = INT	Node No. INT	Sys B Node I Note I INT I	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	
= Substr = No. = INT ====================================	Node No. INT	Sys B Node I Node I INT I	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	
======================================	Node No. INT	Sys B Node I Node I INT I	I Coor C Sys	rd Disp Cons	Skewd St Coord No	Mid-Sur. Vector Set No.	X Y Z	
======================================	Node No. INT	Sys B Node I Node I INT I	I Coor C Sys	rd Disp Cons	Skewd t Coord No	Mid-Sur. Vector Set No.	X Y Z	
======================================	Node No. INT	Sys B Node I Node I INT I	I Coor C Sys	rd Disp Cons	Skewd t Coord No	Mid-Sur. Vector Set No.	X Y Z	

ASUBGI	: SUBSTR	UCTURAL	GENRI	EAL INFO	RMATION			
= No .	Reused Substr	Elem	Nodes	Nodes Condens	No of Nodes Retained	Mid-sur Vector	Design Flag	Flag =
= = INT	INT	INT	INT	INT	INT	INT	INT	INT =
222222	======	=====	=====	======	========	=======	======	= = = = = = =
=								= =
=								=
=								=
=								2
========	======	======	=====	======	========	3223322	======	-
ASKEW :	SKEW CO	ORDINA	TE SYS	TEM DEFI	NTION			
					========		======	======================================
= System	m No C	nda (Fii	larl	or Eule	ion of a V r Angle			=
= •••••		• • • • • •				• • • • • • •	• • • • • •	=
= INT		INT		к к к	K K	R		=
========	2======	======	=====	======	=======================================	-======	=====	=======================================
=								=
=								=
=								=
=								=
======	======	======	=====	=======	========	======	======	
		· · · · ·			NFORMATION			
	urface							
= Set N	0.	Vector	on X	Y Z Axes				=
				• • • • • • •	•••••	• • • • • • •	• • • • • •	••••
= INT		RV			.========		=====	
=======================================								=======================================
=								ä
=								=
=								3
=								=

ANODTM		TEMPERATUI	RE		======		=======		
= Subst = Numbe	Node r Number	Number			Tempera	ture			:
= INT	INT	INT	• • • • •		R				••••••••••••••••••••••••••••••••••••••
=									
=									:
=									:
=									•
=									:
#=====	======		====	====	======	=======	======	=====	=======
ACODCM	: NODE-I	DAMPING A	ND MA	SS M	IATRIX				
======	======	=======		====	======	======	======	=====	=======
		Concentra	ated	Mass		Damping	Coeffi	cint	:
= No .	No •	M_X M_y M_z	Muu	M	M	C., C., C	- C., (C-	; -
=		x y 2		уу		-x -y -	2	уу 2	- :
=	•••••				• • • • • • •	• • • • • • •	• • • • • •		•••••
= INT	INT	R R R	R	R	R	R R R	R	R R	:
522232 -	222222	=======================================	====	====	======	======	22222	=====	========
=									•
=									:
\$:
=									:
=									
				_					
		DRY CONDI						OITAMS	N
		D.O.F						, ,	======:
= B.C	TTINE	Number	11110		and bod				•
= NO.			2		Z'	Z"			:
		=======	====	====	======	======	======	=====	=======
	R	INT =======			RVEC				
3									
=									:
=									
=									!
=									:
									,

ANODDF:			STRUCTURE
= Node	Global		e of Freedom Numbers (Equation Numbers) =
= Number =		1 2	3 4 5 6 =
= = INT	INT	IVEC	 =
	2.11.		-
=			=
=			- =
=			=
=			=
========	.2222323255	=======	************************************
	NODE-DOF SUB	STRUCTUR	
	Substr G	== = ==== lobal	Degree of Freedom
=Number	Node N	ode	Numbers (Equation Numbers)
=	Number N	umber	
=			1 2 3 4 5 6
=		INT	IVEC
=======		======	***************************************
=			
=			:
=			
=			
=======		======	***************************************
AELCON:	ELEMENT-CON	NECTIVI	
= Element	Design VR.	Number	No. of Element Connectivity =
= Number	Group No.	of Node	e Corner Node
= INT	INT	CHAR	(User node numbers)= IVEC IVEC =
========	.=========	======	************************************
= =			= =
=			=
=			=
=			# # # # # # # # # # # # # # # # # # #

AELGNI : ELEMENT GENERAL INFORMATION									
	Element Type	Elemen Nonline Indicat	nt earity or	Material Group Number	Element Damage Flag	Order of Integration Dir R S T	-=		
= = INT	CHAR	INT	• • • • •	INT	INT	INT	• =		
=======================================	=======	~======	.====	=======================================			= =		
=							:		
=							:		
=							4		
		*======		========		=======================================	==		
AELPRO : E				========		~~~~~~~~	=		
							•		
= Variable = Group No =		RV	/EC		Index for Composite Material				
=									
= INT		REAL F		REAL		REAL INT ====================================	=		
. Element		No of	Desi	gn		######################################	=		
Cross-SeGeneral						:	=		
• • • • • • • •				• • • • • • • •		••••••	=		
. CHAR/REA	L/INT ======]	[NT	=======		: :===================================	= =		
•						:	=		
•						:	=		
•						:	=		
•						•	-		

AELPRO : ELE	MENT-PROPERTIES	S (AN EXAMPLE	FOR BEAM ELE	MENT)
= Design = Variable -	Element Pr	roperties		Index for . Composite .
= Group No T	hick Area ASy	/ ASx M.I)	c M.Iy Ip	Material .
=	EAL REAL R			L INT
********	=======================================		*******	=======================================
Cross-SectType	ion Variables In c/s	Variable Numbers	of of Centroid She	ar =
. CHAR	INT	IVEC		
•				=
•				= =
•				=

AMATPR : RELATED LINEAR MATERIAL PROPERTIES								
========= = Material = Number	Material	Temperature						
= =	• • • • • • • • •	,			• • • •			
= INT	INT	REAL	RVEC		•			
-	Thermal	Cost Factor for Design						
•				*******				
. REAL		REAL :====================================	:========	=======================================				
•					•			
=========	==========		:========	=======================================				
					====			
. Stre	ss Limits	Shear St			**===			
. Prin.Dir	Minor	 Dir.	ress Limit	_	•			
	Minor	 Dir.						
Prin.Dir	Minor p. Tens.	Dir. Comp.		Factor				
Prin.Dir . Tens. Com	Minor p. Tens. REAL	Dir. Comp.		Factor REAL	•			
Prin.Dir Tens. Com	Minor p. Tens. REAL	Dir. Comp.	AL	Factor REAL				
Prin.Dir Tens. Com	Minor p. Tens. REAL	Dir. Comp.	EAL	Factor REAL				
Prin.Dir Tens. Com REAL	Minor Tens. REAL	Dir. Comp.	EAL	Factor REAL				
Prin.Dir Tens. Com REAL Normal St Reduction	Minor Tens. REAL	Dir. Comp. RE Shear Stiffness Reduction Factor	EAL	Factor REAL REAL				
Prin.Dir Tens. Com REAL Normal St Reduction	Minor Tens. REAL REAL iffness Factor	Dir. Comp. RE Shear Stiffness Reduction Factor	EAL	Factor REAL REAL				
Prin.Dir Tens. Com REAL Normal St Reduction	Minor Tens. REAL REAL iffness Factor	Dir. Comp. RE Shear Stiffness Reduction Factor	EAL	Factor REAL REAL				
Prin.Dir Tens. Com REAL Normal St Reduction	Minor Tens. REAL REAL iffness Factor	Dir. Comp. RE Shear Stiffness Reduction Factor	EAL	Factor REAL REAL				
Prin.Dir Tens. Com REAL Normal St Reduction	Minor Tens. REAL REAL iffness Factor	Dir. Comp. RE Shear Stiffness Reduction Factor	EAL	Factor REAL REAL				

AMATPR : RELA	TED LINEAR	MATERIAL PR	OPERTIES ((AN EXAMPLE)	
= Material = Number		Temperatur		ial Properties	
=			E ₁₁ E ₂	22 E33 V12 V2	3 •
= INT	INT	REAL		R R R	•
					•
•					•
	:=============	========			=======
		Density	Thermal	Cost Factor	,
· ν ₁₃ G ₁₂ (G22 G21			For Design	•
	R R	DFA1	REAL	REAL	•••••
	=======================================	*********	NLAL :========	***********	
•					•
	==========	=======================================	******		
************	=======================================	=======================================	========	=======================================	======
	s Limits		stress L	-	•
. Prin.Dir . Tens. Comp.	Minor Di . Tens. Co	r. mp.			•
. REAL	REAL		REAL	REAL	•••••
* "	=======================================		********		
•					•
	==========	=========	=======================================		•
######################################		======================================		***********	=======
Normal StirReduction		hear Stiffn eduction Fa			=
•		• • • • • • • • •	• • • • • • • •		=
REAL		REAL			========
•					=
•					=
•					<u>.</u>
•					
2532222222	=========			=======================================	========

A	NONMT1: NO	NLINEAR MATI	RIAL TYP	E 1	==>			
	Material Number	Material Model No.	Type of Yield Criteria		Tempera Table		Young's Modulus Table	•
=	INT	INT	INT	INT	RVEC	• • • • • •	RVEC	•
= :	:			========		:======		•
	Possion's Ratio Table	Mean the Coeffici Table			Strian Table	Yield Stress Table	Strain Hardening Table	•
•	RVEC	RVEC	R	VEC	RVEC	RVEC	RVEC	• • •
=:			:=======	=======				
	Creep No. No.	No. of Creep aw Constant	Cree Cons	====== p Law tants		:======		=======================================
	INT	INT	RV		••••••	• • • • • •		··= =
:	,							=======================================
:	: :							=

ANONMT2: NONLINEAR MATERIAL TYPE 2										
= Material = Number =	Material Model No.	No. of Table Points	Volume Loa Strain M Table T	ding Bulk lodulus able	Unloa Bulk Tat	nding . Modulus. ole .				
= INT	INT	INT	RVEC R	VEC	RVi	C .				
33 33 3333333					======					
•						•				
•	=======================================		=======================================							
. Loading Sh				*******						
 Modulus 						=				
. Table						=				
. RVEC	• • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • •	• • • • • • • •	• • • • • •					
	=======================================	:======	======================================		======	-				
•						=				
•						=				
•						=				
•	=========	:======	===========	:=======	:======	=				
ACOMPR : CO	MPOSITE-ELI	EMENT PRO	PERTIES (LAYE	(RED) :=======	=======	:======				
			Fiber Direc.							
= Composite = Material	Layer	./Layer	for Each Lay	Layer	Factor	Factor =				
=	• • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • •	=				
= INT	INT	RVEC	RVEC	=	RVEC	RVEC =				
=======================================	=======	=======	=========		:====:	=======================================				
=						= =				
=						=				
=						=				

ADYNLD : DYNA	MIC LOAD DEFI	NITION		
=Time Function = Number =	on No. of Ta Points	ble Tim Tab		
= INT	INT	RVE		
======================================		=======	23222222222	
= = =				= = =
-	:==========	=========	=======================================	= ====================================
ANODLD : EQUI	VALENT NODE-L	OAD DATA FO	R THE MASTER S	STRUCTURE
= Node Equa		Type Ta	me Load Valu ble (Static mber	
= I I	I	Ι	I	}
Fuction MuPressure M	ultiplier/ Multipliers	Arrival Time		======================================
R/RVEC		R	••••••	= = =
•	.=======	=======================================		
•				=======================================
.=========	:==========			- = ==================================

AELLOD : ELEMENT-L		R MASTER STRUCTURE		
= Floment load	load load	i Time Table Number		=
= 1 1	1 1	I		=
. Load Values(Sta	atic) Fu Mid Pr	uction Multiplier/ ressure multiplier	Arrival s Time	=
R R	R	R/RVEC	R	=
	 NODE-LOAD			= = = = = =
=Time Function =Number	Equation Number	Direction		=
		R		
= = = = = = = = = = = = = = = = = = =				

	SNOLD : EQUIVALENT NODE-LOAD DATA FOR SUBSTRUCTURE(S)									
= =	Substr. Number	Reused Sustr. Number	Node Number	Number	Load Case Number	Type	Time Table Number	Load Value		
- • =	I	I	I	I	I	I	I	R	•	
==	:======	=======		:======================================	=======================================	=====	= = = = = = = = = = = = = = = = = = = =		==	
•	Fuction Pressure	Multip e Multip	lier/ oliers	Arrival Time					=	
•	R/R	VEC	• • • • • • •	R	• • • • • • • • • •	• • • • •	• • • • • • •	• • • • • • • • •	• = =	
	:======	======				=====	========		= = = = = = = = = = = = = = = = = = = =	
AS	SELLOD :	ELEMEN	T-LOAD 1	DATA FOR S	UBSTRUCTUR	E(S)				
=		Number			Load L Case T			e	•	
= , =	I	I	I	I	I I	••••	I	• • • • • • • • •	• •	
==	:=======	=======================================			======================================	25222	=======================================		# = # =	
	Load Va Begin				on Multipl ure Multip		Arriv Time		:	
•	R	R	R	R/R	VEC		R		• =	
•										

AISTEL INI	TIAL STRES	S VECTO	R (ELEME	-			
= Substr. = Number = = I	Element Number	Load Case	Layer Number	Flomont	C+ =====		
= I	I	Ī	I	RVEC((6)	• • • • • • • •	=
=======================================	********	*=====	:=======	=========			====
=							=
=							=
=							=
=							=
-	=========		=======	=======================================	:=======	:======:	-
AISREL : II	NITIAL STR	AIN VEC	TOR (ELE	MENT)			
= Substr.	Flement	load	:====== laver	Element S	:======= Strain		=======================================
= Number	Number	Case	Number	Vector	or a m		=
= = I	I	I	I	Vector RVEC(6)		• • • • • • •	•••=
=				212222222			====
=							=
=							=
=							=
=							=
=======================================		222223	=======	333323333			: :==:
				NESS MATRIX	•		====
= Subst. 1	Element	Matrix	Matrix				===
		• •		Element	Stiffness	Matrix	=
= I			I	•••••	DMAT	• • • • • • • •	=
		2223£73	=======	=======================================	:========	=======	====
=							=
=							=
=							=
=							=
2							-

AELMAT : E				-	=	=========	
- Flamont	Matrix	Matrix					
= Number -	Type	Size		Eleme	nt Stif	fness Matri	x =
= I	CHAR	I		DMAT		fness Matri	· · · · · · · · · · · · · · · · · · ·
=							
=							-
=							=
- =							:
=							:
=							
========	=======	======	======	=====	:=====:		=======
105704		05 51 5W		CE0041		TO T V	
ASETRM : S	ORZIKOCIO	KE ELEME	NI-IKAN	SFURMA	IIIUN MA	1K1X	
= Subst.	Element	Matrix	Row C	olumn			
= Number	Number	Type	Size	Size	Element	Transform.	Matrix =
=	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•••••	DMAT	• • • • • • • • • •	••••••
= 1	:=======	CHAK	1 :======	1 =====	UMAI		: :========
=							:
=							2
=							
- =							•
=							:
=							=
	========		:=====	3251E	:=====:		22222332
AELTRF : E							
= Element	======= Matrix				:======	=========	=======:
= Number				Eleme	ent Trans	sformation	Matrix =
=	CHAR	I I	•••••	DMAT	• • • • • • •	• • • • • • • • • •	•••••••
========	=======	======		*****			=======
=							:
=							
=							:
=							:
=							:
=							=

ASSBIN : ASSEMBLED SUBSTRUCTURE	STIFFNESS MATRIX (INTERNAL)
= Substr Hypermatrix Null	Stiffness Submatrix =
=	=
=	=
=	=
=	=
<u>.</u>	
=	=======================================
=	- -
ASSBBN : ASSEMBLED SUBSTRUCTURE	STIFFNESS MATRIX (BOUNDARY)
= Substr Hypermatrix Null	Stiffness Submatrix =
= Substr Hypermatrix Null = Number Row Column Index	=
=	DMAT =
= 1 1 1 1	DMAT =
=	
=	
±	=
=	=
=	=
=	=
=	=
	:
	STIFFNESS MATRIX (INTERNAL-BOUNDARY)
= Substr Hypermatrix Null	
= Number Row Column Index	Stilliess Subjidtlix =
= [DMAT =
=	=
=	=
=	=
=	= -
=	= =
=	

ACSSMT : C			STIFFNESS MATRIX	
= Substr = Number	Hypermatrix Row Colum	Null n Index	Stiffness Submatrix	
= = I	I I	I	DMAT	• • • :
========	==============	=======	*************************	===
=				:
=				
=				:
=				:
=				:
========	==========	=======	SS MATRIX (LUMPED/DIAGONAL)	===:
= Substr.	Element Number	Matrix Size	Element Mass Matrix (Diagonal)	:
=	•••••	•••••	(b) agona i	• • •
= I	I	I	DVEC	:
3				:
=				:
=				=
= _				•
=				
=				
AFIMAC . FI			**************************************	
WELLWAS : EI	remeni-Mass w	41KIX (LU	MPED/DIAGONAL)	
= Element	Mati		Element Mass Matrix	==
= Number =	Size		(Diagonal)	=
= I	I	• • • • • • • •	DVEC	=
_	=======================================	=======	222222222222222222222222222222222222222	====
=				=
=				=
=				=
=				=
=				=
=				=

ASEMMC : SU				TRIX (CONSI			
Cubaka	C1	Madada	Mahada				_
= Number	Number	Туре	Size	Element	Mass I	Matrix	=
= Substr. = Number =	I	CHAR	I	D!	MAT	• • • • • • • •	•••=
**********	.=======	:========	=======		======	=======	====
=							=
=							=
=							=
=							=
=							=
=======================================	========	=======	========	********	======	=======	====
AELMSC : El	LEMENT-MAS	S MATRIX	(CONSIST	ENT)			
= Element	#2====== #2+miv	:======== M-+	.=======	= = = = = = = = = = :	======	=======	====
= Element	Type	Matrix		Floment M	acc Mati	niv	=
= Number	iyp e	3126		Liement M	ass Mac		=
= Element = Number = I	CHAR	I		DMAT	•••••	• • • • • • • • •	=
		-	=======		======	=======	====
=							=
=							=
=							=
=							=
=							=
========			.======:				====
AMASHY : AS			IRE MASS (ATRICES (1) =======	====
= Substr	Hypermat	rix Nul	1 Mass	Submatrix			=
= Number	Row Co	lumn Ind	lex				=
= Substr = Number =			• • • • • • •	• • • • • • • • •	• • • • • •	• • • • • • • •	=
= I	I	I I	DMA	N T			=
=======================================	**======	*******	=======		======		====
=							=
=							=
=							=
=							=
=							=
=							=

	ASSEMBLED			MASS I	MATRICES (BOUNDARY)
= Substr	Hyperma	atrix	Nu 11	Mass	Submatrix	
= I	I	I	I	DM/	••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •
======================================			=====	=====		:
=						;
=						•
=						:
========		=======	======			=======================================
ASMINB:	ASSEMBLED	SUBSTR	UCTURE	MASS I	MATRICES (INTERNAL	-BOUNDARY)
= Substr = Number	Hyperma Row (etrix Column	Null Index	Mass	Submatrix	= = = = = = = = = = = = : : :
= = I	I	I	 I	DM/	••••••••••••••••••••••••••••••••••••••	•••••••
========	=======================================		======	.=====		
=						:
=						:
=						:
=						:
=======	========	======	======	. 2 2 2 2 2 2		=======================================
ACSSMT :	CONDENSED	SUBSTR	UCTURE	MASS	MATRIX	
	Hyperma Row (Mass	s Submatrix	:
=	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	DM/	 AT	•••••••
=======================================					********	=======================================
=						:
#						:
=						:
=======================================		======	======			

ASDMAT : S				•	<u>-</u>	:=========
= Substr	Hyperi	matrix	Nu 1 1	Damping	Submatrix	=
					•••••••	
=========		======	======	=======================================		-
=						=
=						=
=						=
=						3
=						=
========	222 22 2	======	======			=========
ASDMTB : S	:URSTRUC	TURF DAM	IPING MA	TRIX (ROIII	NDARY)	
********	:22222	::::::::		(500:		.=========
= Substr	Hyperi	matrix	Nu 1 1	Damping	Submatrix	=
						=
=	•••••	• • • • • • •	• • • • • •	• • • • • • • •	• • • • • • • • • • • • • • •	
= I	I	I	I	DMAT		=
_	# # # # # # # # # # # # # # # # # # # #	=======	======		=======================================	======================================
-						=
-						=
=						=
=						=
========	:=====	======	======	========	=======================================	=======================================
ACSDMT : 0				DAMPING M	ATRIX	
		========				:===========
= Substr = Number	Hyper:	Matrix Column	Null Index	Damping	Submatrix	=
=					••••••	
= I	I	I	I	DMAT		=
	:=====	======		========		
2						2
=						=
=						=
=						2
= =						-
=						=

	EFFECTIVE			TIFFNESS M	ATRIX		(CS)
= Substr	Hyperma	trix	Nu 1 1	Stiffness	Subma	trix	=
= I	I	ï	ľ	DMAT	• • • • •	• • • • • •	= = =
=======================================		=====	=======	========	=====	======	
=							=
=							=
=							=
=							=
=======		=====	=======	========	=====	======	=========
	DECOMPOSED	EFFEC	TIVE SUBS	STRUCTURE S	STIFFN	ESS MAT	RIX
	Hyperma	===== triv	======: N11	:======:: Stiffnacc	:====: Submat	====== Friv	
= Number	Row C	വിധനന	Inday				=
=	• • • • • • • • •	• • • • •	• • • • • • •	• • • • • • • • •	• • • • •		- = =
= I	I	I	I 	DMAT			=
=							=
=							=
=							=
= =							=
=							=
	========	=====	=======	========	=====	*****	========
ASLSMT :	ASSEMBLED	LINEAR		SS MATRIX ((GLOBA	L) ======	===========
=	Hyperma	trix	Null	Stiffness	Submat	trix	=
=	Row C	olumn	Index				=
=	I	ĭ	I	DMAT	• • • • •	• • • • • •	==
	=======	=====	*******	:=======	=====		=======================================
= =							=
=							=
=							=
= =							=
		======	=======	:========	:====:		

ASLMMT :	ASSEMBLE	D MASS M	ATRIX (GLOBAL)		
======= = =		matrix Column		Mass Sut	omatrix	=
=	I	I	I	DMAT		=
=======================================		=======	======	=======================================		**************************************
=						=
=						=
- =						=
=						=
ASLDMT :	ASSEMBLE	D DAMPIN	G MATRI	X (GLOBAL))	
=======================================	Hvper	====== matrix	 Null	Damping	Submatrix	======================================
=	Row	Column	Index	, ,	Submatrix	=
= =		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	DMAT	• • • • • • • • • •	
2222222			======	=========		*======================================
=						=
==						2
2						=
=						=
=						=
z======	=======		======	======================================		***********
	EQUATION	NUMBERS	CONTRI	BUTING TO	A HYPERMAT	
= Substr		ermatrix	_======	Equation 1	 Numbers	¥*************************************
= Numbers	s Row	Co1 umn		•		=
= [I	I		IVEC		=
========						**************************************
=						=
=						=
=						=
=						=

ADLSMT:		ED LINEA		IESS MATRIX	X (GLOBAL)	
=	Row	matrix Column			Submatrix	=
=	I	I	I	DMAT		=
=======================================			======	:=======	=======================================	====
=						=
=						=
=						=
=						=
=======	=======	=======	======	:=	****************	:===
AELSMT :	EFFECTIV	E LINEAR	STIFFNE	SS MATRIX	(GLOBAL-DYANMICS)	:===
=		matrix Column		Stiffnes	Submatrix	=
=	I	I	I	DMAT	• • • • • • • • • • • • • • • • • • • •	=
=======================================			2235555	**********		===:
=						=
=						=
=						=
=======	======	=======	E2#2255	========	=======================================	===
		DYAMMICS		EAR STIFF	NESS MATRIX	
=	Hyper	matrix	Nu 1 1	Stiffnes	Submatrix	=
=	Kow	Column	Index			=
=	I	I	I	DMAT		=
=				22/		 S
=						=
=						3
=						=
=		======	1:22====	== 422222		=

ASLOMI :	SUBSTRUCTURE		X (INTERNAL		EAR STATICS	_
= Substr = Number	Reused Subst. No.	Hypermatr Row Cour	ix Null nn Index	Load Subr	matrix	=
= I	I	I I	I	DMAT		=
=						=
=						=
=						=
=				•		=
=						=
=						=
	SUBSTRUCTURE	==========	*******		=======================================	=
	Reused					=
= Number	Subst. No.	Row Coli	umn Index		:	=
=	• • • • • • • • • • • • • • • • • • •	T T	······		• • • • • • • • • • • • • • • • • • •	=
= [l ===========	l l		اں :========	7A; =========	=
=						=
=						=
=						=
=						=
=						=
=	•					=
=						=
=======	CONDENSED LOA				=======================================	=
= Substr	Reused Subst. No.	Hypermat	trix Null	Load :	Submatrix	=
						=
= I	I	I	I I	DMA		=
=						=
=						=
=						=
=						=
=						=
=						=
3						=
2						=
=						Ξ

AAGLMT	: ASSEMB	LED LOAD	MATRIX (G	LOBAL)	FOR LINEA	R STAT	ics	
=	Hype Row	ermatrix Column	Null Index	Load	Submatrix			=
=	I	I		DMAT	•••••	• • • • • •	• • • • • • • •	
======		= = = = = = = = = = = = = = = = = = = =	======================================	=\$====	.=======			=== =
=								=
=								=
=								=
=								=
=====	=======			2553523	:=======	:=====:	*******	====
ASLIMT	: SUBSTR	UCTURE LO	AD MATRIX	(INTER	NAL)	======		===
= Subs	tr Reused er Subst	d Load No. Case	Hyper- Row	Time Value	Null Index	Load	Vector	=
= = I ======	I ========	 I	I =========	R ======	I	DVEC		 = ====
=								=
=								=
=								=
=								=
=								=

AALBMT	: SUBSTR	UCTURE LO	AD MATRIX	(BOUND	ARY)	======		
	tr Reused er Subst.		Hyper- Row	Time Value	Null Index	Load	Vector	=
= [· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 R	· · · · · · · · · · · · · · · · · · ·	DVE	· · · · · · · · · · · · · · · · · · ·	= =
======	, 12222223:				======================================		-	
=					•			=
=								=
=								=
=								=
=								=

	CONDENSE							
= Substr = Number	Reused Subst. No	Load . Case	Hyper Row	- Time Value	Null Index	Load V	ector	=
= [Subst. No I	I	I	R =======	 I ========	DVEC		. , = = ===
=								=
=								=
=								=
=======================================	:=======	:======	:222222	.=======	E	******	======	= ===
ACI DMT .	GLOBAL LO	AN MATD	ITY END	TNEAD/NO	NI THEAD IN	2) IMANV		
	GLVDAL LU			======================================		:::::::::	E=====	==
= Load	Hyper- Row	Time	Nu11	Load V				=
= Lase	Row I	value	Index				• • • • • • •	= =
2222222	:======	:======	:=====:	======	=======	****	======	==:
=								=
=								=
=								=
2								=
*======	:=======	======	******		======================================	======	======	===
AELDMT :	EFFECTIVE	SUBSTR	RUCTURE	LOAD MATR	IX FOR LI	NEAR DYN	AMICS	
======================================	Poucod		:======: :=:::::::::::::::::::::::::::	======= 	======== N11	1024	Voctor	===
= Substr = Number	Reused Subst. No	. Case	Ro	w Valu	e Index			=
= I	I	I	I		I	DVE		· • =
*======		======	.======	=======	=======	======	======	:==
=								=
=								=
=								=
=								=
=								=

			GLOBAL				MAT		FOR			NONL					:s
= 10	had		Hynar.	_ Ti	mΔ	Nu 1 1		l nad	٧	actor							= = =
=	I	• •	Row	R		I	• • • •	DVE	Ċ	• • • • •	• • •	••••	•••	•••	• • • •	••••	= =
-	====	==:	=====	====	=====	=====	====	====	===	====	===	====	===	===	===	====	===
=																	=
=																	=
=																	=
=																	=
=																	=
===:	====	==:		====	=====	====:	====	#===	===		:===	====	===	===	:===	====	==:
ASTI	NEL	:	ELEMEN	T STI	FFNES	s mati	RIX	(NON	LIN	EAR)	:==	===	:===	:==:		====	. = =
= E1	l eme	ent	Matri	ix M	atrix			E1em	ent	Stif	fne	SS					=
= Nu	ımbe	r	Type	S	ize			Matr	ix								=
= •	I	•••	Matri Type CHAR	• • • • •	ï	• • • • •	• • • •	••••	D	MAT	• • • •	••••	•••	•••	• • •	••••	=.
===:	====	==:	======	====	=====	=====	===	====	===:	=====	:===	====	===	===	:===	====	==:
=																	=
=																	=
=																	=
=																	=
-	====	==:	=====	====	=====	=====		====	===	====	.===	====	===	===	:===	====	===
ANS	TMT:	A	SSEMBLI	ED NO	NLINE	AR ST	IFFN	ESS	MAT	RIX							
= Lo	nad	Tir	ne Hy	vperm	atrix			Nu 1 1			Sti	ffne		Sub	mat	 rix	=
= Ca) P C 1	Colum	n		Inde			501		33	Jul	mu c	' ' ^	=
=	Ī	Ï		• • • • • I	I	• • • • •	• • • •	I	• • •	• • • • •	• • •	DMA	Ţ	• • •	• • •	••••	
===:	===	===	=====	====	=====	=====	====	====	===	=====	===	====	===	===	===	====	==
=																	=
=																	=
=																	=
=																	=
=																	=
=																	=
222	====	==:	======	====	=====	====:	===	2===	===	=====	===	====	===	===	===	====	==

AFTGSM	: FINAL	TANGEN	TIAL GL		TFFNESS MATRIX
= Load = Case	C4 a a	Hyperma Row (atrix	Null Indox	Stiffness Submatrix =
= I	I	I	I	I	DMAT =
_		=======	******	======	
=					=
=					=
=					=
=					-
=					= -
=					=
ADFTGS	: DECOM	POSED F	INAL TA	NGENTIA	L GLOBAL STIFFNESS MATRIX
= Load	Time	Hyperma	atrix	Nu 11	Stiffness Submatrix =
= Case	Step	Row (Column	Index	DMAT =
=	· · · · · · · · · · · · · · · · · · ·	T	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
- 1	1	1	1	1	DMA1 =
======	.======	=======		======	**=====================================
=					=
=					=
=					
=					=
=					_
======	======	======	======	======	
					STIFFNESS MATRIX
= Load	Time	Hypermat		Nu 1 1	Stiffness Submatrix =
= Case	Step	Row Co	olumn	Index	=
= I	I	I	I	I	DMAT =
22223	=======	=======	=====	======	**********************
=					=
=					=
=					-
=					=
=					=
3					=

ADFTES			FINAL	TANGENTIAL	EFFECTIVE	STIFFNESS	MATRIX
= Load = Case	Time Step	Hypern Row	natrix Column			ess Submat	:
= I	I	Ι	I	I	D	MAT	:
=							
=							:
=							=
=							=
======	=====		======	========	========	x=======	
AEGVEC	: EIG	ENVALUES	AND E	IGENVECTORS	;		
====== = Damag		====== Mode	Eigon	**************************************			
= Cond.	No.	Number	Values			Eigenvect	ors =
= I	••••	I	R	I	••••••	DVEC	- • • • • • • • • • =
=======	=====	=======	=====	========	========	========	
=							=
=							=
- =							=
=							=
======	====	=======	=====	========	========	=======	=========
AGESMT	: GEN	ERAL I ZED	STRUC	TURAL MATRI	CES FOR MO	DAL ANALYS	IS
= Mode = Numbe	Ge: r St	neralize iffness		neralized Mass	Generalize Damping	ed	=
= = I	•••••	• • • • • • • • • • • • • • • • • • •	•••••	R	R	• • • • • • • • •	
	====	======	=====	********		=======================================	========
= =							=
=							=
=							=
= =							=

ABUCEL	: BUCKLING	LOAD FA	CTOR AND	MODE SHAPE			
= Load	Vector No. Size			Element Mod	e Shape	Vector	
- case	110. 3126	1 40001					
= I	I	I		IVEC	 =======		
=							
2							=
=							=
=							=
=							=
=							
ADISPLG	: DISPLAC	EMENT MA	TRIX (GL	OBAL)			
-	Hyper	====== natriv	Null	Displacemen	======: t Submat	====== -riv	:======::
-	Row	Column	Index	Dishiacemen	C Subma	LIIX	-
=			******				
=	I	I =======	=======	DMAT	======		:
=							
=							=
=							=
=							=
=							=
=							
ADGIDN	: DISPLACE	MENT MAT	RIX (GLO	BAL) FOR LIN	EAR/NON	LINEAR	DYNAMICS
=	Hyper-	Time	Nu11	Displacemen	t Vector	^	
=	Row		Index	· - F ·			=
=	• • • • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • • • • • •	• • • • • • •		
=	I	R	I	DVEC			=
======	=========	=======	======	=========	=====	======	========
=							=
=							
=							-
=							=
=							=

AASIDN:		RATION	VECTOR	(GLOB	AL) F	OR DYN	MICS/	NONLIN	EAR	
= =	Hyper Row	- Time Value	e In	dex	Accel	eration	n Vect	or		:
= • • • • • • • • • • • • • • • • • • •	I		I		DVEC		• • • • •	•••••		=
======== =	=====	222223	=====	=====		=====:			====:	
=										:
= ·										=
=										:
=======		222223	:=====	=====	====	22222	22222	=====	====	======
AVELDN:	VELOC I	TY VECT	FOR (GL	OBAL)						
= = =	Row	- Time Value	e In	ill idex	Veloc	ity Ve	ctor			
=	I	R	I		DVEC		• • • • • •			
=										:
= =										:
= =										3
=										•
========		======	:22222	:=====	====	339222	====	=====	====	=====
ASSTEL:	SUBSTR	UCTURE	STRESS	VECTO	R (EL	EMENT)				
= Subst. = Number	Elem. No.	Load Ti Case St	me Lay ep No	er No.	of • Pt	Vector Size	Stres Vecto	s Prin r Strs	• /	Angle
= = I	I	I I	I I	I	••••	I	RVEC	RVEC	• • • •	R =
=222222 =	=====			:=====	*===	=====	=====	=====	2222	:
= =										:
=										
= =										:

	STREL		ESS VE	CTOR	(ELE	ŒNT	·)			******	
= =	Elem. No.	Load Case	Step	No.	Strs.	. Pt	Size	Elem St Vect	ress P	rin. Strs Vector	. Angle=
=	I	I	I	I	I		I	RVEC		RVEC	R =
=									=====		=======================================
=											=
=											=
=											=
=:	=====	=====		=====	====:	===	=====	=======	=====		======
•	CCTAI	. CHD	CTDIACT	LIDE C	TDATI	u we	CTOD /	CI EMENT\			
	22222 2214F			:=====	3222 1KVTI	:===	.CIUK (ELEMENT)	======	=======	#E#####
=	Numbe	r No.	. Cas	e Ste	p No.	. S	trn. Pi	Size	Vector	n Prin. r Strain	-
=	I	I	· · · · · · · · · · · · · · · · · · ·	I	····i	• • • •	ĭ	I	RVEC	RVEC	R =
=:		=====			====	===	-		=====		******
=											=
=											=
=											=
=											=
=:	=====	====:		=====	====	===	=====;	=======	=====	=======	=======
	CTDAI	• CTD/	ATM WE	CTOD	/E1 E4	4C NT	· \				
	STRAL		===== /TW AC		•		•	:222235	======		=======
										n Prin. r Strain	
=	Ĭ	ï	ï	ï	···i	• • •	ï	RVEC	RVEC		=e
=:	z====	====:	=====	=====	====	===	=====		======	2222222	=======
=											=
=											=
=											2
=											4

ASF0	EL	:	SUBST					NODA	L F	ORCE	VE							
==== = Su = No	bst		E1 eme	nt	===== Load Case	Time	No	==== ode)•	Ve	====: ctor ize	Fo	rce	Vect	tor	Re	sult	ant oment	=
			Numbe I											• • • •	R		R :	= = -
====	===	==	=====	===	=====		====	====										=
=																	;	=
=																	:	=
=																	:	=
=																	;	=
=	===	==	=====	===	====		===:	====	===	222 3	===	====	===	====	====	::::=	=====	=
AFOR	EL	:	ELEME	NT	NODAL	. FOR	CE 1	/ECTO	R									
- F1	2== 0m0	== n+	Load	=== +	zzzzz Timo	==== boW	===: ^	==== Voc	tor	For	: 	==== Vect	or	==== 209	====	:==== :ant	====	=
= No	•	116	Case	5 7	Step	No	•	Si	ze	1011		* EC 0	.01	Ford	ce	Моте	nt	=
= I	•••	• •	I	• • •	I	I	• • • •	I		R	VEC	• • • •	•••	R	• • • •	R	• • • • •	=
====	s==	==	=====	===	====	====	===:	====	===	====	===	====	===:	====	===	====	=====	=
=																	:	=
=																		=
=																	•	=
=																		=
=																	;	=
====	===	==	=====	===	====	====	===	====	====	====	===	====	===	====	===	====	=====	=
ASD1	SB	:	DISPL	ACE	MENT	MATR	IX	(BOU!	NDAR	Y) ====	===	====	:===	====	===:	::::	=====	=
= Su = Nu	bst mbe	r	Reuse Subsr	d •No	. Ro	yperm	atr olum	ix M	Null Inde	x	Dis	plac	eme	nt S	Subn	natri	×	= =
= = [•••	• •	I	• • •	••••	 I	ï	• • • •	ï	••••	•••	-	TAM	• • • •	• • •	• • • •	••••	=
====	===	==	=====	===	====:	====	===	====	===	====	===	====	===	===#	===	====	=====	=
=																	;	=
=																		=
=																		=
=																		=
=																		=

ASDISI : SUBSTRUC			T MATRI)	•		
= Substr Reused	Hyperm	atrix !	7 1.	Displacement	Submatrix	=
= Number Subsr.No = I I	I	I	I	DMAT		=
2						====
=						=
=						≈
=						=
						====
ADSIDN : DISPLACE	EMENT MATR	IX (INT	ERNAL) F	OR DYNAMICS		====
= Substr Reused = Number Subst.No =				•		=
= I I	I	R	I	RVEC	• • • • • • • • •	==
		======	======		=======	====
=						=
=						-
=						=
=						=
=======================================		======	======			====
ASDISB : SUBSTRUC	CTURE DISP	LACEMEN	T MATRIX	((BOUNDARY)		
= Substr Reused = Number Subst.No	Hyper o. Row	Time Value	Null Index	Displacemer	nt Vector	=======================================
=	I	R	I =======	RVEC		=
=						=
=						=
=						=
=						=
=						=

ASAIDN:	SUBSTRUCTU	RE ACCE	LERATION	VECTOR	(INTERNAL)	
= Substr		Hyper Row	Time Value	Null Index	Acceleration Vecto	r :
=	I	I	R	I	DVEC	•••••
=						
=						=
= =						:
=						=
= ========		======				:
ASABDN :	SUBSTRUCTU	RE ACCEI	LERATION	VECTOR	(BOUNDARY)	=====
= Substr = Number	Subst.No.	Row	Value	Index	Acceleration Vecto	r :
=	I	I	R	I	DVEC	•••••
=======================================	23211423288					
=						:
=						•
=						
=						:
======		222222	======	=======	=======================================	=====
ASVIDN:	SUBSTRUCTU	RE VELO	CITY VEC	TOR (INT	ERNAL)	
	=========	======				
= Substr = Number =	Reused Subst.No.	Hyper Row	Time Value	Null Index	Accelaration Vecto)r :
= [I	I	R	I	RVEC	:
3						:
=						;
= =						:
-						:
=						:

constraint no.

- Cubata	Dougod	====== 		======= Null	=======================================		=====
= Substr	Subst. No.	Hyper	Time Value		Accelarati	on vector	=
					• • • • • • • • • • •		=
= [I	I	R	I	RVEC	•••••	=
=======		.======	=======	========	.========	========	====
=							=
=							=
=							=
=							=
=							=
=======	=========	:=====	:=====:	=======	.========		=====
DACNIF	: CONSTRAII	NT INFOR	RMATION				
=======	=======================================	=======			.==========		
					Constraint		
= Number	r Type		Number		ID Number		Numbe
=				Number		Number	
= T	CHA		Ī	• • • • • • • • • • • • • • • • • • •	†	ī	1
		 	- :======	- 	:===========	.======	-
. =======	********	:======		=======			======
.====== . Time . Tj		Const Statu	raint IS				=====
		Const Statu	raint				=====
		Const Statu	raint IS				•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •		••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
. Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
Tj	Value R	Const Statu Active/	raint is 'Inactive	e • • • • • • • • • • • • • • • • • • •		••••••	•••••
Tj . R .======:	Value R =======	Const Statu Active/ I	raint IS 'Inactive				
Tj . R .======:	Value R =======	Const Statu Active/ I	raint is 'Inactive 'Inactive 'Stress	e 	int , ID Numb	er = Elem	 ent no
Tj . R .======:	Value R =======	Const Statu Active/ I ================================	Stress	constrai	int , ID Numb	er = Elem	ent no
Tj . R .======:	Value R =======	Const Statu Active/ I I =================================	sraint IS Inactive Stress Displ. Freq.	constrai	int , ID Numb	er = Elem er = Equa er = Freq	ent no
Tj . R .======:	Value R =======	Const Statu Active/ I ==============================	Stress Displ. Buckl. Displ.	constrai constrai constrai constrai	int , ID Numb	er = Elem er = Equa er = Freq er = NA	ent no
Tj R -======	Value R =======	Const Statu Active/ I ================================	Stress Displ. Buckl. Displ. (ball	constrai constrai constrai constrai type bou	int , ID Numb	er = Elem er = Equa er = Freq er = NA er = Noda	ent notion ruency

DOSPLT : DISPLA	CEMENT-L	IMITS	======			====		:======	====:
= Displacement		Di	splace	ment	Lim	its			
= Constraint = Code	Norm	OR	For	Eacl	DOF				
= Number -	1 Z I	X	Y	Z	RX	RY	RZ		=
= = I	R	R	R	R	R	R	R	•••••	•••••
=======================================	:=====:	: = = = = = = =	22222	====	====	====			====:
3									
=									- -
= . =									:
			=====	====	====	2222	======	.=======	=====
DALWST : ELEMENT	T-ALLOWAE	BLE-STRE	SSES						
Element (Jnbraced	Effect.	Vecto	====: r	omput	ed A	llowable	Stress	& =
= Number 1 = 1	ength x ^L y	Length Factor ^K x ^K y	Lengt	h	F _{bx} F	by F	s ^F ex ^F e T(I),I=1	y ^C mx ^C m,	y ^F a=
= I F	R R	R R	I	••••	• • • • •		RVEC	• • • • • • • •	=
: = = # # # # # # # # # # # # # # # # #	:222222		222522 2	= ==:	====	===:	222222		=====
: :									=
• •									=
: :									=
: : : : : : : : : : : : : : : : : : : :		:222222	=====	====	2222	====	#222222	======	====
DFRQLT : FREQUE			======	====	====	====	9 2 2 2 2 2 2		82222
= Frequency = Number -	Lowe	er Bound	U 	pper	Boun	d 	-		:
= I	• • • • • • •	R	•••••	R	• • • • •	••••	• • • • • • •	••••••	
=======================================	:======:		322222	2222	====	====	*======	.======	: :====:
=									:
=									•
=									:
=									:

SC	STGD : CO	ST-GRADIE	NT				
= =	Design Va	ariable	Co	st Functio		Coefficients	=
=				Last	Current		_
= .	INT			R	R		=
=						v =	====
=							=
=							=
=							=
==					:========	BEEEEEEEeee	====
SC	NSGD : CO	NSTRAINT-	GRADIENT				
= =	======= Constrain	t Globa	al Nonzer	o Constr	:======== `aint	U # I I I I I I I I I I I I I I I I I I	====:
=	Number	Equat Number	tion Gradie	ent Value	es . T i		=
=,			• • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	•••••••	=
==	I =========	======================================	R ====================================	R :========	:========	=======================================	= ====:
=							=
=							=
=							=
=							=
==	*******	========				=======================================	====
SD	CIDZ : SU	BSTRUCTUR	E-INTERNAL-C	ONSTRAINT-	-GRADIENT		
==	Substr.	Reused		Substr.	Nonzero		====
=	Number	Substr.	Number	Equation	Gradient	Values	=
= =		Number	• • • • • • • • • • • •	Number	at Tj	at T - Tj	=
=	I	I	I	I	R	R	=
==	#=====================================						1=11: 1
=							=
=							=
=							=
				. 			

	SDCBDZ : SUBSTRUCTURE-BOUNDARY-CONSTRAINT-GRADIENT											
=	Substr	Pausad	Constrain Number	t Substr. Equation Number	Nonzero Cons Gradient Val at Tj at T	traint :						
 =	I	I	I	I	R	R						
=======================================		=======	*********									
S0	OCDZ : DI	FFERENT	IAL-CONSTI	TUTIVE MATRI	IX (MATERIAL NO	ONLINEAR)						
=		Number		dD/dz	·	= = = = = = = = = = = = = = = = = = = =						
=	I	I	I	RMAT								
= = = = = = = = = = = = = = = = = = = =						=						
SD	KSDB : DI (D	FFERENT: ERIVATIV	IAL-ELEMEN VE OF ELEM	T-STIFFNESS ENT STIFFNES	MATRIX (dKs/db SS MATRICES w.r) .t. D.V.)						
	Element Number	Desig Varia Numbe	able	trix size	dKs/db Coef	ficients = = =						
=. =	• • • • • • • •	I	I	I	DMAT	•••••••						
=======================================	==44====	****		**********		:						

SDKKDB:	SUBSTRUCTU (DERIVATIV	JRE-DIFFER /E OF ELEM	ENTIAL-	ELEMEN (FFNESS	T-STIF MATRI	FNESS ICES w	MAI	(dks, 1 D.V.)	b) =====
=Substr. = =Number	Nu	Va ımber Nu	sign riable mber	Matrix			b Coef	ficients	= - = =
= I	• • • • • • • • •	I	I	I	• • • • •	• • • • •	DMAT	•••••	··· =
_	========	:======	======	=====	=====	=====	=====	= = = = = = =	
= -									=
=									=
=									=
=									=
=									=
SDKSDZ:	DIFFERENTI (DERIVATIV	(AL-ELEMEN /E OF ELEM	T-STIFI	NESS M	ATRIX MATRI	(dKs/	dz)	STATE V.)
========	Element	Global	Matri	. Size	dKs	 /dz Co	effici	ents	=======================================
=	Licilo	Equation		. 0.20					=
=	Number	Number							=
=			• • • • • •		• • • • •			• • • • • • •	=
=	I	I	I			DMA	T		=
3332223			=====	=====	=====	=====	=====	======	=====
=									=
=									=
=									=
_									_
=									_
	********	:=======	23222		5 5 5 5 5 5 5 5	18555	=====	=252522	====
SDSGDB:	SUBSTRUCTU	JRE-DIFFER	ENTIAL	-ELEMEN	T-STRI	ESS MA	TRIX	======	====
= Subst				gn		dσ/d	b		=
= Number				iable					=
=	Number	• Number	Numl	per					=
=									=
= I	I	I	I		I		IVEC		
		~ ~ = = = = =		3252	====				
_ ·									_
=									=
=									=
=									=
=									=

SDEGD8 : DIF	FERENTIAL-E	LEMENT-STRESS MATRIX	
= Element	Design	dσ/db	=
=	Variable		=
= Number	Number		=
=			=
= • • • • • • • • • • • •	• • • • • • • • • •	I I	= RVEC =
-	:========		-
=			=
=			=
=			=
=			=
=			=======================================
SDSBDZ : DIF	FERENTIAL-E	LEMENT-STRESS-DISPLACEM	NENT MATRIX (dB/dz)
= Element = Number	Global	Matrix Size	dB/dz Coeff. =
= Number	Number NO	of Col No. of Row	=
= [I	I	DMAT =
=			=
=			=
=			=
=			=
=			=
	:2222352222	=======================================	= =====================================
SDEGDZ : DIF		LEMENT-STRESS MATRIX (d	SIG/dz)
= Element	Global	dø/dz	=
= Number	Equation		=======================================
=	Number		=
=			=
= I	I	RVEC	=
_	. = = = = = = = = =	=======================================	
=			=
=			-
=			±
=			2
=			=

SDMDDB:	DIFF (DER	ERENTIAL IVATIVE	EL OF		NSS MA MASS					D.V	I.UI	MPEC),D1A	GON
= Element = Number =		Design Variable Number	!	Matrix			dM _d /					-		=
= I	• • • • •	CHAR	• • •	I		• • • •	• • • •		DMA T		• • • •	• • • •	• • • •	. =
========	====	======	:===	.======	.====	:===:	====	~ # #	====	===	2022:	====	:====	===
=														=
=														=
=														=
=														=
SDSDDB:	SUBS (DER	TRUCTURE	-D1	(FFERENT)	(AL-EL MASS	EMEN'	T-MAS	=== S M w.r	ATRI	X (D.V	dMd/c COI	db) NSIS	STENT)
= Substr				Design	Mat	rix	Size	d	$M_{\rm d}/{\rm d}$	b C	oeff	icie	nts	=
= Number		Number		Variable Number	•									=
=				Number										-
= I		I		I	•	I				DM	AT			=
=======	====	=======			=====	====	====	===	====	===	====:	# = = :	====	===
=														=
=														2
=														=
=														=
========	=====	=======				====	=====	===	2223	===	32 22 :	====	:====	====
SDMCDB :	DIFF (DER	ERENTIAL IVATIVE	El OF	EMENT-NV	ISS NV MASS	ATRIX MATR	(dMc,	/db w.r) .t.	D.V	LU	MPEC),DIA	GON)
= Element = Number		Design Variabl	•	Matri	x Siz	e:e	dM _d ,	/db	Coe	ffi	cient	ts		3
= number		Number	е											2
= = I	••••	CHAR	•••	· · · · · · · · · · · · · · · · · · ·	• • • • •	• • • •	• • • • •		DMAT		• • • •	• • • •		=
	====		===	.======		====	====				====	====	====	===
=														=
=														=
=														=
=														=
=														=

SDSCDB:	SUBSTR DERIV	RUCTURE /ATIVE	-DIFF OF EL	FERENTI LEMENT	AL-EL Mass	EMEN Matr	T-MASS ICES w	MATRI	X (dM _c D.VC	/db) ONSIS	ENT)
= Substr. = Number =		ement ımber	٧a	esign ariable umber	Mat	rix	Size	dM _C /dl	o Coef	ficier	its = = =
= I	:=====	I	=====	I	=====	I ====		•••••	DMAT		=
=											=
= =											=
=											=
========	.=====	======	====	======	====	====	=====	=====	=====	=====	======
SDMDDZ:	DIFFER (DERIV	RENTIAL VATIVE	-ELEN Of El	GENT-MA LEMENT	SS MA' MASS I	TRIX MATR	(dM _d /d ICES w	dz) .r.t. :	State	V1 UM	IPED)
= Element		Global	=====	Matri.	x Sizo	e e	===== ۱/dM _d	dz Coei	fficie	nts	=======================================
= Number =		Equati Number	on								=
=	• • • • • •	I	• • • • •	Ĭ	• • • • •	• • • •	• • • • •	DMAT	• • • • •	• • • • •	=
========	:23224		2222	======	====	2223	=====	=====	-6-2-3	=====	=======================================
=											=
=											=
=											=
SDMCDZ:	DIFFER (DERIV	MITAE	-ELEN OF EL	LEMENT	MASS	MATR	ICES W	dz) .r.t. :			ISISTENT
= Element = Number =		Global Equati Number	on	Matri	x Size	e	dM _C	/dz Coe	effici	ents	=
= I	• • • • • •	Ĭ		ı				DAM	Γ		=
			====	:=====	====:	====	-25542				=======================================
=											=
=											=
=											=

SD	CEDB : DIFF (FOF	ERENTIAL-E R EXAMPLE :	ELEMENT	AMPING MAT	E DAMPING))) 	=====
=	Element Number	Design Variable				lb Coefficients	
= =		Number					=
=	I	I	I		RMAT		=
==:							=
=							=
= =							=
=							=
=			========	:======	.=======		= ======
SS(CDB : SUBS	FRUCTURE-DI	FFERENTI/	AL-ELEMENT	.========	4ATRIX (dC/Db)	
=	Substr. Number	Reused Substr.	Element Number	Design Variable	Matrix Size	dC/db	=
=		Number		Number			=
=	I	I	I	I	I	DMAT	=
=	========	=======	=======	======================================	=======================================		=======================================
=							=
=							=
=							=
= 							=
SD	FED8 : ELEI	MENT-FORCE	GRADIENT	(dFe/db)			
=	Element	Design	Vector		dFe/db		=
=	Number	Variable Number	Length	***			=
= . =	I		I	RVI	EC	• • • • • • • • • • • • • • • • • • • •	=
==	========		35555222	=======================================	========		
=							=
=							=
=							=
=							=

SDSFDB : SUE	SDSFDB : SUBSTRUCTURE-ELEMENT-FORCE GRADIENT (dF _e /db)									
= Substr. = Number =		Design Variable	Vector		dF _e /db	=				
= 140111561	Number	Number	Length			=				
= I	I	I	Ĭ	RVEC		=				
=======================================	=======		======			=====				
=						=				
=						± =				
=						=				
SDFEDZ : ELI	EMENT-FOR	CE GRADIE	NT (dF _e /	dz)		====				
= Element = Number		Vector		dF _e /dz	Coefficients	=				
=	Number	Length				=				
= I	I	I	• • • • • • •	RVEC		=				
= = = = = = = = = = = = = = = = = = = =	1222222					= = = = = = = = = = = = = = = = = = =				
SDZIDB : SUI	BSTRUCTURI	E-DZIDB M	 ATRIX (d	Z _i /db for	Ith Substructure)	= = = = = = = = = = = = = = = = = = =				
= Substructor = Number		l Loading	Subs		dZ _i /db Coefficien	ts =				
=	No.	Number	Numb		1 2 3 . No. of in this Substructure					
= I	I	I	I	R	RVEC	=				
= = = = = = = = = = = = = = = = = = = =	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		z = = a = = =			= = = = = = = = = = = = = = = = = = = =				
=						=====				

SDZ	BDB : SUBSTI	RUCTURE-	DZIDB MATRI	IX (dZ ^b /dl	for	Ith Substructure)	_
= =		No .	Number	Number		dZ _b /db Coefficients 1 2 3 . No. of D.V. in this Substructure	=
=	I	I	I	I	R	RVEC	=
===	=======================================	=======	========	:=====::	=====		= =
=							=
≠ -							=
=							<u>-</u>
=							=
===	******	======	=======================================	1===22222	=====		=
SDZ	ZDB : GLOBA	L-DZBD8	MATRIX (dZ,	/db)			
===	:======= Loading	====== Glob	al Time	:======)	===== dZ/db		= =
=	Condition	Equa	tion			Coefficients No. of D.V.	=
=	Number	Numb	er	1 2 3	•	. No. of D.V.	=
=	I	I	R	RVI	EC		=
							_
===	******	======					_
=== = =	:=========	======					- - -
=======================================							- - -
===		=====					=======================================
= = = = = = = = = = = = = = = = = = =		=====					
=======================================		=======	**************************************		4×200		
===		========	=========	=======	*****		
=======================================	DD . A	=======	=======================================		4220		
	.DB : Augmen	_	•		=====		
====	_	======	========	=======			
====	=========	======	Augmented	=======	ian Gr	radient Vector	
==== = De = =	=========	======	Augmented	d Lagrang	ian Gr	radient Vector	= =
==== = De = = =	esign Variab	le No.	Augmented Previous	d Lagrang s Value	ian Gr (radient Vector Current Value	= =
==== = De = = =	esign Variab	le No.	Augmented Previous	d Lagrang s Value	ian Gr (radient Vector Current Value	= =
==== = De = = =	esign Variab	le No.	Augmented Previous	d Lagrang s Value	ian Gr (radient Vector Current Value	= =
==== = De = = =	esign Variab	le No.	Augmented Previous	d Lagrang s Value	ian Gr (Current Value	= =

SDALBZ : Response Deri	vatives of Au	ugmented Lagrangian	
= Equation Number	Response Der	rivatives of Augmented Lagrangian	=
-	at t=t;	at $t=T-t_j$	-
= I ===================================	R	R	=
======================================			==:
3			=
= =			=
=			=
- 		***************************************	:==
		. •	
SFBGRD : EFFECTIVE-FO	RCE GRADIENTS	S (C" - MATRIX) 	
= Global Loading		C* - Matrix Coefficients 3 No. of Design Var.	=
<pre>= Equation Condition = Number</pre>	1 2	3 . No. of Design Var.	=
=		•••••	. =
	RVEC====================================	***********************************	===
=		•	=
=			=
=			=
=			=
=======================================			:==
		OUNDARY-FORCE GRADIENT (C1 - MATRIX)	
= Substr.Reused Su	bstr. Load	C ₁ - Matrix Coefficients	· =
= Substr. Eq = Number Number Nu	uation Case mber Number	r 1 2 3 . No. of Design Var.	=
=		in this Substructure	=
= I I	I I	RVEC	. . =
			:==
=			=
=			=
=			=======================================
=			=

SF	IGRD : S	SUBSTRUCT	TURE-INTERN	AL-FORCE 6	RADIENT (C2	- MATRIX)	
=	Substr	Reused Substr	Substr. D.O.F.	Loading Condition	C ₂ - Mat	rix Coeffici No. of Desi	ents =
= = =.	Number	Number	Number	• • • • • • • •	1 2 3 . in this Su	No. of Desi	gn Var. =
=	I	I	I		RVEC		=
==:	*=====	=======	*****	========	: = = = = = = = = = = = = = = = = = = =	: # # # # # # # # # # # # # # # # # # #	2368666666 2
=							=
=							=
=							=
=							=
==:	======	=======				:======================================	
SAI	DJII : S	SUBSTRUC	TURE-LAMDAI	MATRIX ()	(I)		
= =	Substr	Reused	Constraint	Time _	Adjoin	No. of inte	5 E
=	110 •	No.	Number	1	2 3 .	No. of inte	rnal DOF =
=.	• • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••		• • • • • • • • • • •	=
==:	 	 		K ========	KVEC ====================================	:======================================	=======================================
=							=
=							=
=							=
=							2
=							3
SA	======	=======	TURE-LAMDAB	========			
= =	Substr No.		Constraint Number			nt Variables	= =
=		No.		1	2 3 .	No. of Bound	lary DOF =
=	I	I	I	R	RVEC		=
=							=
=							=
± =							=
=							=
=							=

SADJNB: LAMDAB MATRIX	(ADJOINT VARIABLES FOR GLOBAL DOF) (AB)	
= Constraint Time	Adjoint Variables	=
= (Active)	1 2 3 No. of DOF(Global) RVEC	=
= I R	RVEC	•=
	=======================================	==
2		=
=		=
# # # # # # # # # # # # # # # # # # #		=
=		=
		==
SADJAL : ADJOINT VARIABL	ES FOR AUGMENTED LAGRANGIAN GRADIENT	
=======================================		==
<pre>= Time</pre>	Adjoint Variables	=
= Step Value	1 2 3 NDOF (No. of DOF)	=
=	RVEC	, = =
****************	RVEC	==
s s		=
=		=
: :		=
=		=
£33222£522£52£3222£		===
SDAWDB : DIFFERENTIAL-A	ULLOMARI F_STRESS	
		==
<pre>= Element Design = Number Variable</pre>	Vector do/ab	=
= Number	Length dF_{bx}/db , dF_{by}/db , dF_{ex}/db ,(BEAM) dF_a/db (TRUSS)	=
=		,) = -
=	(ntmoun(1/,1-1,nt)	- -
= I I	I RVEC	=
		===
=		=
=		2
=		=
=======================================		===

SDSWDB : SUBST	SDSWDB : SUBSTRUCTURE-DIFFERENTIAL-ALLOWABLE-STRESS											
= Substr. Elem = Number Numb	ent Design or Variab	Vector	dσ/db									
= ""	Number	Length	dF _{bx} /db,dF _b	oy/db,(BEAM) (TRUSS)	=							
=		NL	(ALWSGR(I),	, I=1,NL)	::							
= I I	I	I	RVEC	• • • • • • • • • • • • • • • • • •	=							
=		: = = = = = = = = = = = = = = = = = = =	******		=======							
=					=							
=					:2							
=					= =							
*********	========	=======================================	: = = = = = = = = = = = = = = = = = = =		ಷಕ್ಕಾ ಕುನ್ನನ್							
SDGYDB : DIFFE	DENTIAL . E1	CENVECTAD	MATDIY									
=======================================	======================================	:=====================================	=========		======							
		bal	dy/	/db	=							
= Condition = Number N	tqu Iumber Num	lation - aber			=							
-			1 2 3	. No. of Design	Var. =							
=	I	Ī	RVEC	• • • • • • • • • • • • • • • • • • • •	=							
*======================================	========	=========	=======================================		222222 -							
=					=							
=					=							
=					=							
=					=							
22222222222	=========	:======:		=======================================	======							
SDKGDB : DIFFE (DER)	RENTIAL-EL	EMENT-GEOR ELEMENT GI	METRIC STIFFNI EOMETRIC STIFF	ESS MATRIX (dK _g /db FNESS MATRICES w.r) .t.D.V.)							
<pre>= Element = Variable</pre>	Design	Matrix	Size dK _c	g/db Coefficients	=======================================							
= Number	Number				=							
= I	I	I	• • • • • • • • • • • •	DMAT	=							
=======================================	========	. = = = = = = = = = :	***********	************								
=					=							
=					=							
=					=							
=					=							
	.========				======							

	DZ : DIFFE (DER) w.r.t	RENTIAL-ELEI VATIVE OF EI . STATE.V.)	MENT-GEOME LEMENT GEO	TRIC STI METRIC S	FFNESS	MATRIX (di S MATRICES	(_g /dz)	
= E16 = = Num	ement	Global Equation Number			J	Coefficier		:
=	I	I	I	• • • • • • •		MAT	• • • • • • •	••••
2232: -	=======	==========	=========	======	======	========	:=====:	===:
=								=
=								1
=								=
=								=
2222	=======================================	:========	========		======		:======	====
		TIVITY MATR			:=======			===:
= Cc	onstraint	Hyper Matrix	(Sensitiv	ity Coe	fficients		=
= Nu	umber Active) Co	1 No Row No	1	2 3		n of Design	n Var	=
=	••••••	1 No. Row No			•••••	••••••	,,, va	•••
=	I				R	VEC		=
=								
=								=
=								=
=								=
=====	=======================================	=======================================	:=======			2222222	:======	: :==:
		Matrix of						
		ber Hyper-				n Submatri		
=		Row Co	olumn				=	
= =	 T	I	I	 I				
	_	.==========	-	_		DMAT	= =======	
=							2	
=							=	
=							=	
=							=	
-							=	

IDGNVB :	DESIGN V	ARIABLES							
= D. V. = Number =	Current Design Change	Current						Status Fixed/Fr	=
= I	• • • • • • • •	R		i	₹	R		I	=
=				=====:	232222	=====	=====	========	=====
=									=
=									=
=									-
=									=
	:======	========		=====	=====		=====	222 222	:r= e =
ISDGIF :	: SUBSTRU	CTURE-DESI	SN-VARI	ABLE-G	ROUP I	NFORM/	ATION		
= Substr	·. N	umber of	St	atus	Des	ign Va	riable	Group	
=		esign					ımber	•	=
= Number		ariable Gro	•						=
= I		I		I		IVEC			=
######################################		*********		=====	=====	=====	.=====	=======	
=									=
=									=
=									=
=									=
=======	=======	========		# ## ###	=====	====:	======	=======	=====
	: DESIGN-	VARIABLE-GI	ROUP IN	FORMAT	ION	=====		========	:====
	gn Variab		er of		Desi	gn Var	riable	Number	=
= Group = Numbe		Des	ign iable						. =
=e	=1 • • • • • • • • •	vdf.	•••••	• • • • • •		• • • • •		• • • • • • • •	-
= I			I		IV	-			=
####### #	*******	=======================================	=====	======	=====	====:	======	=======	====== =
a									=
=									=
=									=
=									=

IDSHIS : DESIGN	HISTORY	===========	=======================================	=======================================
Iteration	Cost	Convergent	Max.	=
	Function	_	Constraint	=
= Number	Value	Parameter	Violation	=
=				-
= I	R	R	R	=
=======================================	========	*********		
=				=
=				=
= -				=
_				=
=				=
**********	=======	=========		=========
IDVHIS : DESIGN	VARIABLE	HISTORY		
= Iteration	22222222		o for Each D.V. Numbon	
= Number		Design valu	e for Each D.V Number	
= ((0))))C(1 2 3	No of D.V	=
=			•••••	=
= I	RVE	C		=
	========	==========		===========
=				2
= -				-
=				=
=				***
=				=
=======================================	========	=========	. 52222222222222	==========
TOWLIS . CONCTO	ATMT VIOLA	TIAN UICTORY		
ICNHIS : CONSTR			/ :====================================	
= !teration			Function Value	
= Number				
=	1 2 3		.No of constraint No.	=
=			• • • • • • • • • • • • • • • • • • • •	
= I	RVE	C		=
=======================================				=======================================
=				=
				=
-				.
=				=
=				=

IHISTA: HISTORY OF AUGMENTNED LAGRANGIAN

===	=======================================		=======================================	78.2222X
=	Iteration	Number of	Augmented Lagrangian	:=
=	Number	Active Constraints	History	=
=				=
= -			**************************************	
=	1	L	R	=
===	=======================================	***********		======
=				=
=				=
=				=
=				=
=				=
=				=
===		=======================================	=======================================	

6.5 DATABASE STRUCTURE

In this section data sets are grouped into seven databases. The classification of the databse is made based on type of analysis and design optimization. The names and contents of these databases are as follows:

1) General data sets : GDASET
2) Linear static analysis : LISANS
3) Linear dynamic analysis : LIDANS
4) Nonlinear static analysis : NLSANS
5) Nonlinear dynamic analysis : NLDANS
6) Linear optimization (static/dynamic) : LINOPT
7) Nonlinear optimization (static/dynamic) : NLIOPT

List of data sets for each of the databases is given as follows:

GDASET:

ABCIIC: Bounadry condition and intial condition information

ACOMPR: Composite-element properties (layered)
ACORDC: Node-coordinate for master structure
ACORDS: Node-coordinate for subsrtucture(s)

ADYNLD : Dynamic load definition AELCON : Element-connectivity

AELGNI : Element general information

AELHYP: Equation numbers contributing to a hypermatrix

AELLOD: Element-load data for master structure

AELPRO : Element-properties

AELTRF : Element-transformation matrix AFOREL : Element nodal force vector

AINLOD: Inertia node-load

AISREL: Initial strain vector (element)
AISTEL: Initial stress vector (element)
AMATPR: Related linear material properties
AMIDS: Mid-surface normal vector information

ANODDF: Node-dof global structure

ANODLD: Equivalent node-load data for the master structure ANODTM: Node-temperature ANONMT1: Nonlinear material type 1 ASELLOD: Element-load data for substructure(s) ASETRM: Substructure element-transformation matrix ASFOEL: Substructure element nodal force vector ASKEW : Skew coordinate system defintion ASUBDF : Node-dof substructure(s) ASUBGI: Substructural genreal information CDSIIF: Design-optimization-integer-control information CDSRIF: Design-optimization-real-control information CINTCL: Integer control information CREAL : Real control information CTITLE: Title of the problem DACNIF: Constraint information DALWST : Element -allowable-stresses DDSPLT : Displacement-limits DFRQLT: Frequency limits

ISDGIF: Substructure-design-variable-group information

LISANS:

IDGNVB : Design variables

IDVGIF: Design-variable-group information

AAGLMT : Assembled load matrix (global) for linear statics AALBMT : Substructure load matrix (boundary) ADISPLG: Displacement matrix (global) ADLSMT: Decomposed linear stiffness matrix (global) AELMAT : Element-stiffness matrix (linear) ASCLMT: Condensed load matrix (substructure) for linear statics ASDISB: Substructure displacement matrix (boundary) ASDISI : Substructure displacement matrix (internal) ASESMT : Substructure element-stiffness matrix (linear) ASLIMT: Substructure load matrix (internal) ASLOMB: Substructure load matrix (boundary) for linear statics ASLOMI : Substructure load matrix (internal) for linear statics ASLSMT : Assembled linear stiffness matrix (global) ASNOLD: Equivalent node-load data for substructure(s) ASSBBN : Assembled substructure stiffness matrix (boundary) ASSBIB: Assembled substructure stiffness matrix (internal-boundary) ASSBIN: Assembled substructure stiffness matrix (internal) ASSTAL: Substructure strain vector (element) ASSTEL: Substructure stress vector (element)

LIDANS:

AASIDN: Acceleration vector (global) for dynamics/nonlinear
ACLDMT: Condensed load matrix for linear dynamics/nonlinear statics
ACODCM: Node-damping and mass matrix
ACSDMT: Condensed substructure damping matrix
ACSSMT: Condensed substructure mass matrix
ADESMT: Decomposed effective linear stiffness matrix (global-dynamics)

ADGIDN: Displacement matrix (global) for linear/nonlinear dynamics

```
ADSIDN: Displacement matrix (internal) for dynamics
  ADSSMT: Decomposed effective substructure stiffness matrix
  AEGVEC: Eigenvalues and eigenvectors
  AELDMT: Effective substructure load matrix for linear dynamics
  AELMAS: Element-mass matrix (lumped/diagonal)
  AELMAT : Element-stiffness matrix (linear)
  AELMSC : Element-mass matrix (consistent)
  AELSMT: Effective linear stiffness matrix (global-dynamics)
  AESSMT : Effective substructure stiffness matrix (dynamics)
  AGELMT: Global effective load matrix for linear/nonlinear dynamics
  AGESMT: Generalized structural matrices for modal analysis
  AGLDMT: Global load matrix for linear/nonlinear dynamics
  AMASHY: Assembled substructure mass matrices (internal)
  ASABDN: Substructure acceleration vector (boundary)
  ASAIDN: Substructure acceleration vector (internal)
  ASDMAT: Substructure damping matrix (internal)
  ASDMTB: Substructure damping matrix (boundary)
  ASELMS: Substructure element-mass matrix (lumped/diagonal)
  ASEMMC: Substructure element-mass matrix (consistent)
  ASLDMT: Assembled damping matrix (global)
  ASLMMT: Assembled mass matrix (global)
  ASLSMT: Assembled linear stiffness matrix (global)
  ASMBON: Assembled substructure mass matrices (boundary)
  ASMINB: Assembled substructure mass matrices (internal-boundary)
  ASSBBN : Assembled substructure stiffness matrix (boundary)
  ASSBIB : Assembled substructure stiffness matrix (internal-boundary)
  ASSBIN: Assembled substructure stiffness matrix (internal)
  ASTRAL : Strain vector (element)
  ASTREL: Stress vector (element)
  ASVIDN: Substructure velocity vector (internal)
  AVELDN: Velocity vector (global)
NLSANS:
  ABUCEL: Buckling load factor and mode shape
  ACLDMT: Condensed load matrix for linear dynamics/nonlinear statics
  AFTGSM: Final tangential global stiffness matrix
  ANSTMT: Assembled nonlinear stiffness matrix
  ASTNEL: Element stiffness matrix (nonlinear)
NLDANS:
  AASIDN: Acceleration vector (global) for dynamics/nonlinear
  ADFTES: Decomposed final tangential effective stiffness matrix
  ADFTGS: Decomposed final tangential global stiffness matrix
  ADGIDN: Displacement matrix (global) for linear/nonlinear dynamics
  AELMAS: Element-mass matrix (lumped/diagonal)
  AELMSC : Element-mass matrix (consistent)
  AFTESM: Final tangential effective stiffness matrix
  AFTGSM: Final tangential global stiffness matrix
  AGLDMT: Global load matrix for linear/nonlinear dynamics
  ANSTMT: Assembled nonlinear stiffness matrix
  ASLDMT: Assembled damping matrix (global)
  ASLMMT: Assembled mass matrix (global)
```

ASTNEL: Element stiffness matrix (nonlinear) ASTRAL: Strain vector (element) ASTREL: Stress vector (element) AVELDN: Velocity vector (global) CLGPNA: Lagrange multipliers and penalty parameters LINOPT: ICNHIS: Constraint violation history IDSHIS : Design history IDVHIS: Design variable history IHISTA: History of augmented lagrangian SADJAL : Adjoint variables for augmented lagrangian gradient SADJBB : Substructure-lamdab matrix (λ_R) SADJII : Substructure-lamdai matrix (λ_1) SADJNB : Lamdab matrix (adjoint variables for global dof) (λ_R) SCNSGD : Constraint-gradient SCSTGD : Cost-gradient SDALBZ: Response derivatives of augmented lagrangian SDALDB: Augmented lagrangian gradient SDAWDB : Differential-allowable-stress SDCBDZ: Substructure-boundary-constraint-gradient SDCEDB: Differential-element-damping matrix (dC/db) SDCIDZ: Substructure-internal-constraint-gradient SDEGDB : Differential-element-stress matrix SDFBDB : Substructure-effective-boundary-force gradient (C_1 - matrix) SDFEDB : Element-force gradient (dFe/db) SDGVDB : Differential-eigenvector matrix SDKKDB : Substructure-differential-element-stiffness matrix (dKs/db) SDKSDB : Differential-element-stiffness matrix (dKs/db) SDMCDB: Differential-element-mass matrix (dMc/db) SDMDDB: Differential-element-mass matrix (dMd/db) SDSCDB : Substructure-differential-element-mass matrix (dMc/db) SDSDDB : Substructure-differential-element-mass matrix (dMd/db) SDSFDB : Substructure-element-force gradient (dFe/db) SDSGDB: Substructure-differential-element-stress matrix SDSWDB : Substructure-differential-allowable-stress SDZBDB : Substructure-dZbdb matrix (dZ_b/db for ith substructure) SDZIDB : Substructure-dZidb matrix (dZ_i/db for ith substructure) SDZZDB: Global-dzbdb matrix (dz/db) SFBGRD : Effective-force gradients (C - matrix) SFIGRD : Substructure-internal-force gradient (C₂ - matrix) SHESMT: Hessian matrix of augmented lagrangian SNSTVY: Sensitivity matrix SSCDB : Substructure-differential-element-damping matrix (dC/db) NLIOPT: ICNHIS: Constraint violation history IDSHIS: Design history IDVHIS: Design variable history IHISTA: History of augmented lagrangian SADJAL: Adjoint variables for augmented lagrangian gradient

```
SADJNB: Lamdab matrix (adjoint variables for global dor) (\lambda_{\mathbf{g}})
SCNSGD : Constraint-gradient
SCSTGD : Cost-gradient
SDALBZ: Response derivatives of augmented lagrangian
SDALDB: Augmented lagrangian gradient
SDAWDB : Differential-allowable-stress
SDCEDB: Differential-element-damping matrix (dV/db)
SDDCDZ: Differential-constitutive matrix (material nonlinear)
SDEGDB: Differential-element-stress matrix
SDEGDZ: Differential-element-stress matrix (do/dz)
SDFEDB : Element-force gradient (dFe/db)
SDFEDZ : Element-force gradient (dFe/dz)
SDKGDB: Differential-element-geometric stiffness matrix (dKg/db)
SDKGDZ: Differential-element-geometric stiffness matrix (dKg/dz)
SDKSDB : Differential-element-stiffness matrix (dKs/db)
SDKSDZ: Differential-element-stiffness matrix (dKs/dz)
SDMCDB: Differential-element-mass matrix (dMc/db)
SDMCDZ: Differential-element-mass matrix (dMc/dz)
SDMDDB: Differential-element-mass matrix (dMd/db)
SDMDDZ: Differential-element-mass matrix (dMd/dz)
SDSBDZ : Differential-element-strain-displacement matrix (dB/dz)
SDZZDB: Global-dzbdb matrix (dz/db)
SFBGRD : Effective-force gradients C - matrix)
SHESMT: Hessian matrix of augmented lagrangian
```

SNSTVY: Sensitivity matrix

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 ~ A

7. IMPLEMENTATION OF A DATABASE MANAGEMENT SYSTEM -- MIDAS

7.1 INTRODUCTORY REMARKS

A database management system - MIDAS* has been implemented for finite element analysis and structural design optimization applications. The MIDAS implementation is based on the requirements of a database given in Chapter 2. MIDAS has two subsystems - MIDAS/R and MIDAS/N. These subsystems are capable of organizing data of relational and numerical models, respectively. The system has been installed on PRIME computer system. It relieves the burden of managing data for application programmers by providing user-friendly application commands. The system has sophisticated interactive commands to query the database. The MIDAS system can be used either interactively or through application programs. The implementation details of MIDAS/R and MIDAS/N are given in Sections 7.2 and 7.3, respectively.

7.2 IMPLEMENTATION OF MIDAS/R

In this section, capabilities, database organization, data definition, data manipulation and query commands of MIDAS/R are described. Also, details of the system architecture are given. MIDAS/R database management system is based on relational data model. The system is developed by modifying and extending the RIM program (Relational Information Management System).

7.2.1 Capabilities of MIDAS/R

MIDAS/R is written in FORTRAN-77. The system does not have any machine dependent instructions and therefore it is highly portable. It has data definition and data manipulation commands which are simple to use for application programmers. It has sophisticated interactive commands to query the database, modify the database and display the database schema. The system has capability to store, retrieve, modify and delete a database using both application call statements and interactive commands. The data can be integer, real, double-precision and character words. The data can be organized in the form of relations. The system has powerful relational algebra commands like SELECT, PROJECT and JOIN. MIDAS/R has capability to provide access to the database simultaneously for multiple users. Database security is provided through two level password system. Error recovery mechanisms are available.

7.2.2 Database of MIDAS/R

MIDAS/R has capability to create a number of databases. The databases can be used one at a time. The database can be either permanent or temporary. The size of a database is unlimited but depends only on the availability of disk space. Database of MIDAS/R can hold any number of relations each of which is identified by a unique name. A relation can store

 $^{^{\}star}$ (Management of Information for Design and Analysis of Systems)

data of a number of attributes. An attribute value can be a single data item, a vector or a matrix. Variable length rows of a relation can be stored.

7.2.3 Data Definition Commands of MIDAS/R

Data definition commands are used in an application program to define a database, relations and attributes. These commands are FORTRAN subroutine call statements. These commands were not available in RIM program. The data definition commands of MIDAS/R are described in the following paragraphs.

Database Initialization:

CALL ROBINT

This command initializes MIDAS/R. Before using any other commands of the system, this command must be used.

Database Definition:

CALL RDBDFN (NAME, STAT, IERR)

NAME = Name of the database

STAT = Permanent or temporary status of the database

IERR = Error Code

A unique database can be defined using this command. A temporary database is deleted when it is closed.

Relation Definition:

CALL RELDFN (NAME, RNAME, NCOL, CNAME, CTYPE, IELM, JELM, KEY, IERR)

NAME = Name of the database

RNAME = Relation name

NCOL = Number of attribute columns

CNAME = A vector of attribute names

CTYPE = A vector of attribute type

IELM = A vector of row size of attributes

JELM = A vector of column size of attributes

KEY = A vector of key attribute indicator

IERR Error code

A relation can be defined using this command. Relation name and attribute names must be unique in a database. A row and column intersection in a relation table can contain either a single data item, a vector or a matrix. Details of data type and layout of data in a typical relation are given in Figures 7.2.1 and 7.2.2, respectively.

Data Set Definition:

CALL RDSDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

NAME = Name of the database

DSNAME = Name of the data set

DTYPE = Data type (see Figure 7.2.1)

IELM = Row size of a attribute (see Figure 7.2.1)

JELM = Column size of a attribute (see Figure 7.2.1)

IERR = Error code

A data set is defined as a collection of data belonging to same data type such as single data item, vector, or matrix. In a sense, a data set is a relation having only one attribute. Name of data set has to be unique in a database.

Data Set Redefinition:

CALL RDRDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

Arguments are same as in data set definition. This command redefines a data set using new data type, and new attribute size. Old data set definition and its data is lost.

Data Definition Ending:

CALL RDSEND (IERR)

IERR = Error Code

After database, relations and data sets have been defined, data definition process is ended by calling this routine. During execution of this call statement, the data definition is verified and compiled internally.

7.2.4 Data Manipulation Commands MIDAS/R

Data manipulation commands open, close, store, retrieve, modify, and delete data, rename a relation or a data set, rename an attribute and copy data sets in a database. These commands were not available in the RIM program. The function and description of these commands are given in the following paragraphs.

Description	TYPE	IELM	JELM
Integer	INT	1	1
Real	REAL	1	1
Double Precision	DOUB	1	1
Integer Vector	IVEC	n	1
Real Vector	RVEC	n	1
Double Precision Vector	DVEC	n	1
Integer Matrix	IMAT		n
Real Matrix	RMAT	M	n
Double Precision Matrix	DMAT	m	n
Text or Character	TEXT	n	1

NOTE: Values of IELM and JELM if 0 indicate that data is of variable length.

Figure 7.2.1 Data Type and Size of a Relation

ktribute A Key	Attribute B Type INT	Attribute C IVEC	Attribute D IMAT
1	×	x	x x x x
			x x x x
			x x x x
			x x x x
2	x	x x x x	x x x x
			x x x x
			x x x x
			x x x x
**	••	••	••
r	x	x	x
			x x x x
			x x x x
			x

NOTE: For Attribute A IELM = 1, JELM = 1 Attribute B IELM = 1, JELM = 4 Attribute C IELM = 4, JELM = 4

Figure 7.2.2 Layout of Data in a Typical Relation

Open a Database:

CALL RDBOPN (NAME, STAT, IERR)

NAME = Name of the database

STAT = Permanent or temporary status of the database

IERR = Error code

A database closed earlier can be opened using this command. A database has to be opened before any operation on the database is performed.

Close a Database:

CALL ROBEND (IERR)

IERR = Error code

A database is closed using this command. Execution of this command transfers the system buffer data into the database and closes the file.

Store Data in a Relation:

CALL RDSPUT (NAME, DSNAME, KROW, UBUF, IERR)

NAME = Name of the database

DSNAME = Name of a relation

KROW = Row number

UBUF = User buffer which contain data

IERR = Error code

Data can be stored into a relation from application program work area (user buffer) by using this command. Data is transferred from user buffer to the specified row of a relation. If more rows have to be stored, a FORTRAN DO loop over the row number in the application program will transfer all the required rows. More details of this command are given in the user's manual (Sreekanta Murthy and Arora, 1984).

Retrieve Data from a Relation:

CALL RDSGET (NAME, DSNAME, KROW, UBUF, IERR)

Data can be retrieved from a relation into a user buffer using this command. Requested row of a relation is transfered from a relation into user buffer. FORTRAN DO loop over the row number is necessary if more than one row has to be retrieved. Data can be retrieved in the same order as it was stored by initializing row number as zero. Data of a relation satisfing certain condition (for example, attributes having certain values) can be retrieved into user buffer. User specifies the condition on data values that must be

satisfied for retrieval, by using RDSRUL command (explained later). The details for various ways of data retrieval is given in the user's manual (Sreekanta Murthy and Arora, 1984). Arguments are the same as in RDSPUT.

Modify Data in a Relation:

CALL RDSMOD (NAME, DSNAME, KROW, UBUF, IERR)

Once a database is loaded using RDSPUT command, it can be modified by calling RDSMOD. This routine modifies a row of the relation. RDSGET routine is called before calling this subroutine. A row of a relation is retrieved into user buffer and this row or a part of the row can be modified and stored back using the command. Arguments are the same as in RDSPUT.

Delete Rows of a Relation:

CALL RRWDEL (NAME, DSNAME, KROW, IERR)

Rows of a relation can be deleted using this command. This is useful in eliminating unwanted values in a relation. Arguments are the same as in RDSPUT.

Delete a Relation:

CALL RDSDEL (NAME, DSNAME, IERR)

This command deletes a relation from a database. Arguments are the same as in RDSPUT.

Rename a Relation:

CALL RDRNAM (NAME, OLDNAM, NEWNAM, IERR)

NAME = Name of a database

OLDNAM = 01d name of the relation

NEWNAM = New name of the relation

IERR = Error code

An existing relation's name can be changed to a new name using the command.

Rename an Attribute:

CALL RRNATT (NAME, DSNAME, OLDATT, NEWATT, IERR)

NAME = Name of a database

DSNAME = Relation name

OLDATT = 01d attribute name

NEWATT = New attribute name

IERR = Error code

Copy a Relation:

CALL RDSCPY (NAME1, NAME2, DSNAM1, DSNAM2, IERR)

NAME1 = Name of a database containing data

NAME2 = Name of a database where data has to be copied

DSNAM1 = Relation name containing data

DSNAM2 = Relation name to where data has to be copied

IERR = Error code

Using this command, data from one relation can be copied to another relation. Both the database and relation must have been defined before copying the data.

Condition Specification for Retrieval of Data:

CALL RDSRUL (NUM, ATNAM, COND, VALUE, BOOL, IERR)

NUM = Number of conditions

ATNAM = A vector of attribute names

COND = A vector of logical operator (EQ, GT, LT)

VALUE = A vector of attribute values

BOOL = A vector of Boolean operator (AND, OR)

IERR = Error code

As mentioned in RDSGET command, data values satisfying certain conditions can be retrieved. The conditions can be specified using RDSRUL command. This command must be executed before calling RDSGET routine. A maximum of ten conditions can be specified at a time. The following example, illustrates use of this command.

Condition on a relation X:

Attribute A•GT•15•3 •AND• Attribute B•LT•20•1

Use NUM = 2; ATNAM(1) = 'A'; ATNAM(2) = 'B'

COND(1) = 'GT'; COND(2) = 'LT';

VALUE(1) = 15.3; VALUE(2) = 20.1;

BOOL(1) = 'AND'

7.2.5 Interactive Commands

MIDAS/R provides interactive support for creating, updating, modifying, and deleting a database. Interactive commands are general and can be used in any application. The system provides terminal prompts for the users to respond with appropriate commands. The interactive session starts with a display of MENU and requests the user to choose one of the five options: CREATE, UPDATE, QUERY, COMMAND and EXIT. The interactive session ends with an EXIT command. The detailed commands for each of these options are entered at appropriate instant. They are given in the following paragraphs.

Database Definition:

CREATE XXXX

Create command branches out to interactively define a new database. System responds by requesting database, relation and attribute names, and authorization access details. User can supply these data at the prompt. Details of using this command are given in user's manual (Sreekanta Murthy and Arora, 1984).

Loading a Database:

After a database has been successfully created, it may be loaded before ending 'create' session. for user response 'Y' for the load prompt, the list of existing relations that may be loaded are displayed. The values of attributes are entered corresponding to each attribute type.

Querying a Database:

A database defined and loaded as specified in the previous paragraphs can be queried. Query will be in the COMMAND mode of interactive session. There are a number of query commands which allow users to query a database. They are described in the following paragraphs.

1. SELECT

Select command is used for displaying data of a relation. Options to display all or selected attributes are available. Several possible select options are given below:

SELECT ALL FROM [relation name]

SELECT [attribute name] FROM [relation name]

SELECT ALL FROM [relation name] WHERE [attribute name] [condition] [values] [AND/OR] ...

continuation dots indicate that upto ten conditions can be specified. The conditions have to the one of the following

- (a) [attribute name] [EQ|NE|GT|LT|LE|GE] [value]
- (b) [attribute name] [EQ|NE|GT|LT|LE|GE| [attribute name]
- (c) ROWS [EQ|NE|LT|LE|GE] [row number]

2. LISTREL

List command allows user to display information about relations and attributes. The following options are available in LISTREL command.

LISTREL

LISTREL [relation name]

LISTREL ALL

3. CHANGE

Data values in a relation can be changed using this command. The following options are available

CHANGE [attribute] TO [value] IN [relation name]

CHANGE [attribute] TO [VALUE] IN [relation name] WHERE ...

4. DELETE

This command can be used to delete selected rows in a relation:

DELETE ROWS FROM [relation name] WHERE ...

5. RENAME

Attributes and relations can be renamed using this command:

RENAME [attribute] TO [attribute] In [relation name]

RENAME RELATION [relation name] TO [relation name]

6. REMOVE

A relation can be deleted from database definition using REMOVE command:

REMOVE [relation name]

7. PROJECT

This is a relational algebra command. The function of PROJECT in to create a new relation as a subset of an existing relation. The new relation is created from an existing relation by removing attribues, rows or both.

PROJECT [relation name] FROM [relation name]

USING [attribute] [attribute] ... WHERE ...

8. JOIN

The purpose of JOIN command is to combine two relations based on specific attributes from each row. The result of JOIN command is a third relation containing all the specified attributes from both the relations.

JOIN [relation name] USING [attribute name]

WITH [relation name] USING [attribute name]

FORMING [relation name] WHERE ...

9. INPUT

This command assigns input file for MIDAS/R to read data without user interaction

INPUT [file name]

10. OUTPUT

The output of execution may be placed in a given file name. If file name is TERMINAL, then all messages and data are displayed at the terminal:

OUTPUT [file name]

11. EXIT/QUIT

The system buffer data is transferred to database files and database is closed.

12. HELP

User can obtain a description of the available commands on the terminal.

7.2.6 Program Details

MIDAS/R program has about 390 subroutines, 40,000 FORTRAN source statements, and 38 common blocks. Subroutines can be grouped into (i) initialization routines, (ii) file definition routines, (iii) input-output routines, (iv) addressing and searching routines, (v) integrity rule processing routine, (vi) memory management routines, (vii) command processing routine, (viii) relational algebra routines, and (ix) security and protection routines. A brief description of these routines is given in the following paragraphs.

Initialization routines, initialize integer, real and double precision variables. Hollerith constants are assigned to variables. Also, they initialize various common blocks and system buffer arrays. Important initialization routines are RMSTRT, BLKCLN, ZEROIT, RMCONS, and LXCONS.

File definition routines are RMOPEN, RMCLOS, F10PN, F20PN, F30PN, F1CLO, F2CLO, F3CLO, R100PN, SETIN, and SETOUT. Each database in MIDAS/R has three files. The first file contains data definition details of relations and attributes. The second file contains actual data. The third file contains keys for locating data. File definition routines open and close database files, assign a database to a logical unit, and assign input and output files.

Input-output routines carryout operations for storing and retrieving data. The main routines for storing and retrieving data are RMPUT and RMGET. They inturn call routines GETDAT and PUTDAT. These routines perform data transfer operations between system buffer and user buffer. At the lowest level, RIOIN and RIOOUT routines actually read and write data in database files. RELGET, RELPUT, RELDEL, and RELADD routines, respectively, get a table from a relation, replace current table from a relation table, delete a current table in a relation table, and add a new tuple to the relation table. Similarly, ATTGET, ATTPUT, ATTDEL and ATTADD routines operate on an attribute table.

Addressing and searching routines determine the physical storage address of data. Relations are stored in random access files. The location of a relation in the data file is specified by a index table. Indicies are assigned to relations by HTOI and IOTH routines. Searching of these indices is done by using binary tree lookup. BTADD, BTGET, BTPUT and BTREP routines add, retrieve, put and replace values in a binary tree. A call to RMFIND and RMWHERE establishes pointers to the required rows of a relation. In turn these routines call RMLOOK, RMSAV, and RMRES routines. These routines also establish pointers to selected attributes of a relation.

Integrity rule processing routines help in maintaining integrity and consistency of a database. Rules specified on attributes of relations are checked by CHKTUP routine. At any stage of execution of DBMS, rule checking flag can be assigned using RMRULE routine. PRULE routine prints out all rules assigned within a database. Rules can be specified using LODRUL routine.

Memory management routines allocate the available computer memory into a number of blocks. The system has capability to allocate 20 blocks or pages at a time. The data is first stored or retreived into these pages. If a page is used completely by a relation then another available page is allocated to the

relation. If all pages are occupied then a least recently used page is replaced. The pages not modified are overwritten by a new data. BLKDEF routine defines a new block in memory. BLKEXT allocates size of a block in terms of number of rows and number of columns. BLKCHG changes the dimension of an existing block. BLKMOV moves data between arrays. GLKCLR clears a block from memory.

Command processing routines read interactive commands in a free format, check the syntax of the user commands, interpret them with reference to system conventions and store them for future use. LXLINE routine reads a new command line. LXLENC, LXGETI, LXGETR and LXGETT identify records, integer words, real words and character words in a command line respectively. LXID, LXITEM, LXGEN, and LXEND get identification of the ith item, number of items in the last command, length of a command line, and end of a command line, respectively.

Relational algebra routines perform SELECT, JOIN and PROJECT operations on relations in a database.

Routines for security and protection of a database make password checks, assign passwords and modifies them. Seperate passwords are provided for database modification access and read access. Routines used for this purpose are HASHIN, LODPAS, and RMUSER. HASHIN routine changes 8 character password into a 16 character word. LODPAS processes passwords for relations. RMUSER sets current user identification.

7.2.7 Limitations of MIDAS/R

There are a few limitations of the MIDAS/R program. One of the limitations is that program does not have capability to operate on a number of databases simultaneously. Secondly, the maximum size of a row in a relation cannot exceed 1024 words. If the size of a row exceeds this limit, user should split the row suitably and operate on portions of a row at a time. Also, the number of attributes in a relation cannot exceed 20. The memory management scheme has fixed block size. User has no control over the block size to tune it according to the relation size. At present only five relations can be operated at a time in the system buffer as only five pointers to current relations are maintained by the DBMS. Separate external data modelling facility is not available. User has to operate on the external model which is same as the internal model. This means that there is one-to-one correspondence between external model and internal model.

7.3 IMPLEMENTATION OF MIDAS/N

MIDAS/N is a database management system to support data organization of numerical computations. MIDAS/N is implemented based on numerical data model. In this section, we describe the capabilities, database organization, data definition and data manipulation commands of MIDAS/N. Also details of program architecture and limitations of the system are given.

7.3.1 Capabilities of MIDAS/N

MIDAS/N program is written in FORTRAN 77. It has data definition and data manipulation commands to define large order matrix data and manipulate them. Large matrices such as rectangular, square, upper triangular, lower triangular and hyper matrices can be defined in the database. Matrix data can be arranged in row, column, or submatrix order. Data can be short integer, long integer, real, double-precision and character types. Data mainpulation commands of MIDAS/N can store, retrieve, modify and delete matrices. Data can be accessed in row column or submatrix order. Also individual data elements of a matrix can be accessed. Database security is provided through a password access. Error recovery mechanisms are available.

7.3.2 Database of MIDAS/N

MIDAS/N has capability to create a number of databases, upto a maximum of 20 in the current implementation. These databases can be accessed simultaneously. The databases can be permanent or temporary. A database can store data of a number of matrices, upto a maximum of 20. The size of a database and a matrix is unlimited, but only depends on the availability of disk space. Databases can be organized at a number of hierarchical levels and can be accessed using a path name. Databases and matrices are identified by a unique name. Data organization of MIDAS/N is schematically shown in Figure 7.3.1.

7.3.3 Data Definition Subroutines of MIDAS/N

Data definition subroutines of MIDAS/N can be used to define databases and matrices. These are FORTRAN call statements and can be directly interfaced with an application program. These are described in the following paragraphs.

Database Definition:

CALL NDBDFN (NAME, PTHNAM, TYPE, STAT, IERR)

NAME = Name of a database

PTHNAM = Path name in database hierarchy

TYPE = Random or sequential access file type

STAT = Permanent or temporary status of a database

IERR = Error code

This subroutine can be used to define a database. Path name specifies the hierarchy of databases that are stored in a computer system file directory organized at various levels.

Renaming a Database:

CALL NOBRNM (OLDBN, NEWBN, PTHNAM, IERR)

OLDBN = 01d database name

NEWBN = New database name

PTHNAM = Path name

IERR = Error code

This subroutine changes the name of a database.

Matrix Definition:

CALL NDSDFN (NAME, DSNAME, ISUB, JSUB, ORDER, NROW, NCOL, DTYPE, IERR)

NAME = Database name

DSNAME = Data set (Matrix) name

ISUB = Row dimension of a submatrix if present

JSUB = Column dimension of a submatrix if present

ORDER = Order of data storage (explained below)

NROW = Row size of the matrix

NCOL = Column size of the matrix

DTYPE = Data type of data elements in matrix

IERR = Error code

A matrix can be defined by calling this subroutine. Order of the matrix refers to the data storage order which can be row-wise, column-wise, or submatrix-wise. In case of a triangular matrix, order is either row-wise or column-wise. If submatrices are used, then size of a submatrix should be given.

Matrix Redefinition:

CALL NDSRDF (NAME, DSNAME, ISUB, JSUB, ORDER, NROW, NCOL, DTYPE, IERR)

This routine redefines a matrix in a different storage order. A matrix which is in either row, column or submatrix order can be redefined to any of other order (row, column, submatrix). An upper triangular matrix can be redefined to either row or column order. Similarly a lower triangular matrix can be redefined to either row or column order. Data types can be redefined as integer, real and double precision (excepts characters). Arguments are same as in matrix definition.

Figure 7.3.1 Logical Data Organization in MIDAS/N

Matrix Renaming:

CALL NDSRNM (NAME, OLDNAM, NEWNAM, IERR)

NAME = Name of a database

OLDNAM = Old name of a matrix

NEWNAM = New name of a matrix

IERR = Error code

This subroutine changes the name of a matrix.

7.3.4 Data Manipulation Commands

Data manipulation subroutines of MIDAS/N can be used to open, close, delete and compress a database, store, retrieve, delete and copy a matrix. The function and description of these commands are given in the following paragraphs.

Open a Database:

CALL NDBOPN (NAME, PTHNAM, IERR)

NAME = Name of a database

PTHNAM = Path name in database hierarchy

IERR = Error code

This subroutine can be used to open a database.

Close a Database:

CALL NDBEND (NAME, IERR)

NAME = Name of a database

IERR = Error code

This subroutine closes a database. Any modification to data in system buffer are transferred to database files.

Delete a Database:

CALL NDBDEL (NAME, PTHNAM, IERR)

This routine deletes an existing database. Arguments are same as in NDBOPN.

Compress a Database:

CALL NDBCMP (NAME, IERR)

Compresses a database. Empty spaces created due to deletion or redefinition of matrices are removed by moving data in a database. This command helps in efficient utilization of disk space.

Store a Matrix:

CALL NDSPUT (NAME, DSNAME, NSTR, NEND, ISTR, ORDER, UBUF, IROW, ICOL, IERR)

NSTR = Starting row or column or submatrix number for storing data

NEND = Ending row or columing or submatrix number for storing data

ISTR = Starting element number of each row or column

ORDER = Data storage order

UBUF = User buffer (array name)

IROW = Row dimension of the user buffer

ICOL = Column dimension of the user buffer

IERR = Error code

This command stores a matrix data from user buffer into a database. Full or part of a matrix can be stored and its size specified using NSTR and NEND. Row or column storage order can be used for a matrix whose order is defined as row-wise, column-wise or submatrix-wise in data definition. Submatrix storage order can only be used for a matrix defined with submatrix elements.

Retrieve a Matrix:

CALL NDSGET (NAME, DSNAME, NSTR, NEND, ISTR, ORDER, UBUF, IROW, ICOL, IERR)

A matrix can be retrieved into a user buffer from a database using this subroutine. Arguments are the same as defined in NDSPUT. Full or part of a matrix can be retrieved.

Retrieve a Matrix in Row Order:

CALL NDGETR (NAME, DSNAME, NSTR, NEND, ISTR, UBUFF, IROW, ICOL, IERR)

Retrieves a matrix in row order. Arguments are the same as in NDSGET.

Retrieve a Matrix in Column Order:

CALL NDGETC (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Retrieves a matrix in column order. Arguments are the same as in NDSGET.

Retrieve a Matrix in Submatrix Order:

CALL NDGETM (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, (ERR)

Retrieves a matrix in submatrix order. Matrix must have been defined to be in submatrix order during data definition. Arguments are the same as in NDSGET.

Store a Matrix in Row Order:

CALL NDPUTR (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in row order. Arguments are the same as in NDSPUT.

Store a Matrix in Column Order:

CALL NDPUTC (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in column order. Arguments are the same as in NDSPUT.

Store a Matrix in Submatrix Order:

CALL NDPUTM (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in submatrix order. Matrix should have been defined to be in submatrix order.

Copy a Matrix:

CALL NDSCPY (NAME1, DSNAME, NAME2, IERR)

NAME1 = Name of the database containing matrix data

DSNAME = Name of the datasset

NAME2 = Name of the database into which matrix has to be copied

IERR = Error code

This subroutine copies a matrix from one database to another database.

Delete a Matrix:

CALL NDSDEL (NAME, DSNAME, IERR)

IERR = Error code

Deletes a matrix from the database.

7.3.5 Matrix Operations Utilities

MIDAS/N has several routines to carry out operations on matrices stored in the database. These include matrix addition, scaling and multiplication

routines. Algorithms for these utilities are developed to utilize the storage order of the data sets; i.e., if a matrix is stored in the row order in the database, an algorithm is developed to use the matrix in that order. This is done to minimize the disk I/O and thus perform the operations efficiently. The current routines in the system are described in the following. More routines will be added as need arises.

Multiply General Matrices:

CALL NMTPYx (NAME1, DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3, IERR)

NMTPY1 - Computes AB = C

NMTPY2 - Computes $AB^T = C$

NMTPY3 - Computes $A^TB = C$

NMTPY4 - Computes $A^TB^T = C$

Add Matrices:

CALL NMADDx (NAME1, DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3, IERR)

NMADD1 - Computes A + B = C

NMADD2 - Computes A + B^T = C

NMADD3 - Computes $A^T + B = C$

NMADD4 - Computes $A^T + B^T = C$

Subtract Matrices:

CALL NMSUBx (NAME1, DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3, IERR)

NMSUB1 - Computes A - B = C

NMSUB2 - Computes $A - B^T = C$

NMSUB3 - Computes $A^T - B = C$

NMSUB4 - Computes $A^T - B^T = C$

Scale a Matrix:

CALL NMSCLx (NAME1, DSNAME1, NAME2, DSNAME2, SCALE, IERR)

NMSCL1 - Computes A*SCALE = C

NMSCL2 - Computes $A^{T*}SCALE = C$

Transpose of a Matrix:

CALL NMTRPZ (NAME1, DSNAME1, NAME2, DSNAME2, IERR)

Computes $A^T = C$

Multiply a Matrix by a Diagonal Matrix:

CALL NMTDGx (NAME1, DSNAME1, NAME2, DSNAME2, ARRAY, IERR)

NMTDG1 - Computes ARRAY*A = C

NMTDG2 - Computes ARRAY*AT

NMTDG3 - Comptes A*ARRAY = C

NMTDG4 - Computes $A^{T}*ARRAY = C$

Rearrange Rows/Columns of a Matrix:

CALL NMSRTx (NAME1, DSNAME1, NAME2, DSNAME2, ARRAY, IERR)

NMSRT1 - Rearranges rows according to the order specified in ARRAY

NMSRT2 - Rearranges columns according to the order specified in ARRAY

7.3.6 Equation Solvers and Matrix Decomposition Routines

MIDAS/N has several routines to decompose and solve a linear system of equations. The coefficient matrix may be stored in skyline or banded form. It may also be a genral matrix. In the following, these routines are described. Other equation solvers and eigenvalue extractors will be added at a later date.

Decompose a symmetric matrix by skyline method.

CALL NMSKY1 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, MAXCOL, IER)

NAME1 = Database name containing the coefficient matrix

DSNAME1 = Data set name containing the coefficient matrix stored in one dimensional form: the decomposed coefficient matrix is also stored under this name.

NAME2 = Database name containing the addresses of the diagonal elements of the coefficient matrix

DSNAME2 = Data set name containing the addresses of the diagonal elements of the coefficient matrix

NEO = Size of the coefficient matrix

MAXCOL = Maximum column height of the coefficient matrix

IER = Frror parameter

Perform backward and forward substitutions to solve the decomposed system of linear equation by the skyline method.

CALL NMSKY2 (NAME1, DSNAME1, NAME2, DSNAME3, NAME3, NEQ, MAXCOL, IER)

NAME1 = Database name containing the decomposed coefficient matrix

DSNAME1 = Data set name containing the decomposed coefficient matrix stored in one dimensional form

NAME2 = Database name containing the addresses of diagonal elements of coefficient matrix

DSNAME2 = Data set name containing the addresses of diagonal elements of coefficient matrix

NAME3 = Database name containing the R.H.S. vector at entry and solution vector on return

DSNAME3 = Data set name containing the R.H.S. vector at entry and solution vector on return.

NEQ = Size of the coefficient matrix

MAXCOL = Maximum column height of the coefficient matrix

IER = Error parameter

Solve a system of linear equations by the skyline method.

CALL NMSKY3 (NAME1, DSNAME1, NAME2, DSNAME3, NAME3, NEQ, MAXCOL, IER)

NAME1 = Database name containing the coefficient matrix stored in one dimensional form

DSNAME1 = Data set name containing the coefficient matrix stored in one dimensional form at entry, and decomposed coefficient matrix on return

NAME2 = Database name containing the addresses of diagonal elements of coefficient matrix

DSNAME2 = Data set name containing the addresses of diagonal elements of the coefficient matrix

NAME3 = Database name containing R.H.S. vector at entry and solution vector on return

DSNAME3 = Data set name containing R.H.S. vector at entry and solution vector on return

NEQ = Number of equations

MAXCOL = Maximum column height of coefficient matrix

IER = Error parameter

Decompose a symmetric banded matrix by Cholesky's method.

CALL NMBND1 (NAME1, DSNAME1, NEQ, MBND, IER)

NAME1 = Database name containing coefficient matrix at entry and decomposed coefficient matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry and decomposed coefficient matrix on return

NEQ = Size of the coefficient matrix

MBND = Half bandwidth of the coefficient matrix

IER = Error parameter

Note: The coefficient matrix is banded and is stored in a squeezed form.

Performs backward and forward substitutions to solve decomposed system of linear banded equations.

CALL NMBND2 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, MBND, IER)

NAME1 = Database name containing decomposed coefficient matrix

DSNAME1 = Data set name containing decomposed coefficient matrix

NAME2 = Database name containing R.H.S. vector at entry and solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and solution vector on return

NEO = Size of coefficient matrix

Note: The decomposed matrix is stored in a squeezed form.

Solve system of linear banded equation by Cholesky's method.

CALL NMBAND3 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, MBND, IER)

NAME1 = Database name containing the coefficient matrix at entry and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry and decomposed matrix on return

NAME2 = Database name containing the R.H.S. vector at entry and solution vector on return.

DSNAME2 = Data set name containing the R.H.S. vector at entry and solution vector on return

NEQ = size of the coefficient matrix

MBND = Half bandwidth of the coefficient matrix

IER = Error parameter

Decompose a general full matrix.

CALL NMGSL1 (NAME1, DSNAME1, NEQ, IER)

NAME1 = Database name containing the coefficient matrix at entry and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry and decomposed matrix on return

NEQ = Size of the coefficient matrix

IER = Error parameter

Perform backward and forward substitutions to solve a decomposed general system of equations.

CALL NMGSL2 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME = Database name containing the decomposed coefficient matrix

DSNAME1 = vata set name containing the decomposed coefficient matrix

NAME2 = Database name containing the R.H.S. vector at entry and solution vector on return

DSNAME2 = Data set name containing the R.H.S. vector at entry and solution vector on return

NEQ = Size of coefficient matrix

IER = Error parameter

Solve system of linear equations.

CALL NMGSL3 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME1 = Database name containing the coefficient matrix at entry and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry and decomposed matrix on return

NAME2 = Database name containing the R.H.S. vector at entry and solution vector on return

DSNAME2 = Data set name containing the R.H.S. vector at entry and solution vector on return

NEQ = Size of coefficient matrix

!ER = Error parameter

Decompose a full symmetric matrix by modified Choleshy's method.

CALL NMSYM1 (NAME1, DSNAME1, NEQ, IER)

NAME1 = Database name containing the coefficient matrix at entry and decomposed matrix on return

DSNAME1 = Data set name continaing the coefficient matrix at entry and decomposed matrix on return

NEQ = Size of coefficient matrix

IER = Error parameter

Perform backward and forward substitution to solve a decomposed symmetric system of linear equations.

CALL NMSYM2 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME1 = Database name containing the decomposed coeffcient matrix

DSNAME1 = Data set name containing the decomposed coefficient matrix

NAME2 = Database name containing R.H.S. vector at entry and solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and solution vector on return

NEO = Size of the coefficient matrix

IER = Error parameter

Solve a full symmetric system of linear equations by the modified Cholsky's method.

CALL NMSYM3 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME1 = Database name containing the coefficient matrix, at entry and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry and decomposed matrix on return

NAME2 = Database name containing R.H.S. vector, at entry and solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and solution vector on return

NEQ = Size of coefficient matrix

IER = Error parameter

7.3.7 Program Details

MIDAS/N is written in FORTRAN 77. Subroutines of the program can be grouped into (i) file definition routines, (ii) input-output routines, (iii) addressing routines, and (iv) memory management routines. A brief description of these routines is given in the following paragraphs.

File definition routines open a file unit and assign database name to be the file name. An available logical unit number is assigned to the file. Routine NDBDFN performs this function. File status and file types are assigned according to user request. File organization is shown in Figure 7.3.2.

Input-output routines perform data storage and retrieval operation. NDSPUT, NDSGET, IN\$MEM, IN\$DST, D\$ASIN, D\$READ and D\$WRITE routines do input-output operations. These routine transfer data from user buffer to system buffer and vice-versa. Also these routines check the matrix order, data type and matrix size and prints out error message if data manipulation operations are not valid.

Addressing routines IN\$MEM and IN\$DST allocate physical storage location address to matrices created in the database. The system maintains an index table to provide address of stored records. Index table provides a pointer to data defintion block which contains details of a matrix such as name, type, order, size. Data definition block is also stored at the beginning of actual data in a file. Matrix data is mapped on to physical storage space in a linear address sequence. Smallest physical data item correspond to one word

length. The physical storage structure is schematically shown in Figure 7.3.3.

Memory management routines G\$PAGE, R\$MVPG and P\$EXST allocate pages in the memory to various matrices. The scheme uses fixed number of pages of same size. The paging memory is an array in the common block MCONTNT of short integer variable. FORTRAN equivalence statement is provided to deal with other data types. The memory management scheme uses 'Least Recently Used' page replacement algorithm. A counter is maintained for each page. When a page is to be replaced the page having highest counter value becomes the candidate. Page replacement is done when no free pages are available. Page not modified is overwritten instead of replacement.

7.3.8 Limitations of the MIDAS/N

There are a few limitations in the system. Matrix size remains fixed after it is defined. Any alteration in matrix size requires data transfer to a new physical storage location. At present maximum of 20 matrices can be defined in a database. However this number can be increased by changing certain parametes in the program. The system does not support external data modelling facility. Thus, application program view of database is tied to the internal data model.

Path name to database $F \equiv A > C > F$

Figure 7.3.2 Hierarchical Level of Database Organization

Figure 7.3.3 Physical Storage Structure

8. DISCUSSION AND CONCLUSIONS

Programs for structural analysis and design of practical systems are quite complex. Data needed or generated to accomplish the task is enormous. If proper data handling facilities and/or proper databases are not used, the software can have only limited capability. Its maintenance and expansion can be very difficult or even impossible. Development of a software for analysis and design of complex systems is an evolutionary process. The system is usually written for a class of applications. It is then expanded by adding new features and capabilities to meet user's demands. This type of program evolution requires a well designed database and its management. The database management system (DBMS) must be highly sophisticated and intelligent (user The DBMS should not be a stumbling block in the range of applications a designer may be interested in. Rather, it should facilitate various applications. Such a database management system is described in the report. The system is called MIDAS which stands for Management of Information for Design and Analysis of Systems. The system has capabilities that will be highly useful in analysis and design of systems. To evaluate the system, a database for analysis and design optimization of complex structural systems is developed. A procedure for design of such a database is described and used. To properly design the database, two existing and commercially available programs for analysis of complex systems are studied. These are ADINA and GIFTS which are the state-of-the-art programs. Their databases are quite These databases are studied in detail and documented. Based on the study and the procedures discussed, a design of the database for analysis and design of complex structural systems is presented. The capabilities considered are linear, nonlinear, static and dynamic analysis. The structure can be modeled using substructures. Thermal and acceleration loads are included in the design process.

The proposed database design is considered as preliminary. In the near future, it will be implemented and evaluated using MIDAS. A class of optimum design problems will be solved using the database and its management system. Based on the study, a final design of the database can be determined.

REFERENCES

- Bathe, K.J. (1982), <u>Finite Element Procedures in Engineering Analysis</u>, Prentice-Hall, Inc., <u>Englewood Cliffs</u>, NJ.
- Blackburn, C.L., Storaasli, O.O. and Fulton, R.E. (1982), "The Role and Application of Database Management in Integrated Computer-Aided Design," AIAA J. Paper No. 82-0681, pp. 603-613.
- Fellipa, C.A. (1980), "Database Management in Scientific Computing II, Data Structures and Program Architecture", Computers and Structures, Vol. 12, pp. 131-145.
- Felippa, C.A. (1979), "Database Management in Scientific Computing I. General Description," Computers and Structures, Vol. 10, pp. 53-61.
- Haririan, M. and Arora, J.S. (1984), "Description of the Computer Program ADINA", Technical Report CAD-SS-84.7, Applied-Optimal Design Laboratory, Dept. of Civil Engineering, The University of Iowa, Iowa City, IA.
- Haririan, M. and Arora, J.S. (1984), "Description of Tapes (Files) in the Computer Program ADINA", Technical Report CAD-SS-84.18, Applied-Optimal Design Laboratory, Department of Civil Engineering, The University of Iowa, Iowa City, IA.
- Haug, E.J., Arora, J.S. (1979), "Applied Optimal Design," John Wiley and Sons.
- Kamel, H.A. and McCabe, M.W. (1981), "GIFTS Version 5.03", University of Arizona, Tucson, AZ.
- Kamel, H.A. and McCabe, M.W. (1979), "GIFTS Version 5", University of Arizona, Tucson, AZ.
- "Manual of Steel Construction" (1980), 8th Edition, American Institute of Steel Construction, Inc., Chicago, Illinois.
- Pahl, P.J., (1981) "Data Management in Finite Element Analysis", Nonlinear Finite Element Analysis in Structural Mechanics, Wunderich, W., Stein, E. and Bathe, K.J., Eds., Springer-Verlag, pp. 714-741.
- Rajan, S.D. and Phatti, M.A. (1983), "Data Management in FEM-Based Optimization Software", <u>Computers and Structures</u>, Vol. 16, No. 1-4, pp. 317-325.
- Report AE81-1 (1981), "ADINA A Finite Element Program for Automatic Dynamic Incremental Nonlinear Analysis", User's Manual for ADINA, ADINA Engineering, Inc., 71 Elton Avenue, Watertown, MA, 02172, U.S.A.
- Report AE81-2 (1981), "ADINAT A Finite Element Program for Automatic Dynamic Incremental Analysis of Temperatures", Users Manual for ADINAT, ADINA Engineering, Inc., 71 Elton Avenue, Watertown, MA, 02172, U.S.A.

Report AE83-3 (1983), "ADINA-Plot - A Program for Display of Input and Output Data Using ADINA", User's Manual for ADINA-Plot, ADINA Engineering, Inc., 71 Elton Avenue, Watertown, MA, 02172, U.S.A.

- Report AE83-5 (1983), "ADINA System Verification Manual", Verification Manual for ADINA, ADINA Engineering, Inc., 71 Elton Avenue, Watertown, MA, 02172, U.S.A.
- Sreekanta Murthy, T. and Arora, J.S. (1984), "A Survey of Database Management in Engineering", Technical Report No. CAD-SS-84. , Applied-Optimal Design Laboratory, The Department of Civil Engineering, The University of Iowa, Iowa City, IA.
- Sreekanta Murthy, T., Reddy, C.P.D. and Arora, J.S. (1984), "Database Management Concepts in Engineering Design Optimization", AIAA/ASME/ASCE/AHS Twenty-fifth Structures, Structural Mechanics and Materials Conference Part I, May 14-16, 1984, Palm Springs, CA, pp. 360-372.
- Sreekanta Murthy, T., Rajan, S.D., Reddy, C.P.D., Staley, D.T., Bhatti, M.A. and Arora, J.S. (1983), "Database Management in Design Optimization", Technical Report No. CAD-SS-83.17, Applied Optimal Design Laboratory, Department of Civil Engineering, The University of Iowa, Iowa City, IA.

END

FILMED

1-86

DTIC