Př: Vyřešte rovnici:

$$3\cos 2x + \cos x = 1 - 4'\sin^2 x$$

Př: Vyřešte rovnici:

$$\sin x + \sin 2x = \operatorname{tg} x$$

§5. Vzdálenost

Def: Nechť $A, B \in \mathbb{E}_3$. $Vzdáleností dvou bodů A,B nazýváme délku úsečky AB a označujeme ji <math>\rho(A,B)$.

Pozn: Vzdálenost bodů A, B je tedy reálné číslo $\rho(A, B) = |AB|$.

Pozn: Vzdálenost $\rho(A,B)$ můžeme považovat za zobrazení $\rho:\mathbb{E}_3\times\mathbb{E}_3\to\mathbb{R}$, které má vlastnosti: $\forall A,B,C\in\mathbb{E}_3$:

1. $\rho(A,B) \geq 0,$ přičemž $\rho(A,B) = 0 \Leftrightarrow A = B$

2. $\rho(A, B) = \rho(B, A)$

3. $\rho(A,B) + \rho(B,C) \ge \rho(A,C)$, přičemž rovnost nastává $\Leftrightarrow B \in AC$

Pozn: Uvedené vlastnosti se používají při axiomatické definici vzdálenosti.

Def: Nect $A \in \mathbb{E}_3$ je bod $\alpha \subset \mathbb{E}_3$ je rovina.

 $\mathit{Kolm\acute{y}m}$ průmětem bodu A do roviny α nazýváme bod A_0 definovaný takto:

• $A \in \alpha \Rightarrow A_0 = A$

• $A \notin \alpha \Rightarrow A_0 \Rightarrow \cap \alpha, p \perp \alpha, A \in p$

V.5.1.: Nechť $A \in \mathbb{E}_3$ je bod, $\alpha \subset \mathbb{E}_3$ je rovina. Pak platí: $\rho(A, \alpha) = \min\{\rho A, X, X \in \alpha\}$

Př: Vypočtěte vzdálenost V od podstavy pravidelného čtyřbokého jehlanu ABCDV, je li $|AB|=a, |\sphericalangle VAB|=\frac{\pi}{3}$:

$$\frac{i}{a\sqrt{2}}2$$

Def: Necť $A \in \mathbb{E}_3$ je bod $p \subset \mathbb{E}_3$ je přímka.

 $Kolmým průmětem bodu A na přímku p nazýváme bod <math>A_0$ definovaný takto:

• $A \in p \Rightarrow A_0 = A$

• $A \notin p \Rightarrow A_0 \in p \cap \alpha, p \perp \alpha, A \in p$

V.5.2.: Nechť $A \in \mathbb{E}_3$ je bod, $p \subset \mathbb{E}_3$ je přímmka. Pak platí: $\rho(A, \alpha) = \min\{\rho A, X, X \in p\}$