Mastering the Game of Go Without Human Knowledge

Lead: Liam Hinzman

Facilitators: Tahseen Shabab and Susan Cheng

* AlphaGo Zero

Overview

- Brief History of Al in Games
- What is Go and Why Should You Care?
- How AlphaGo Zero Works
- Results
- Discussion

Minimax

Heuristics

Reduces search depth

Deep Blue

- 126 million positions per second
- Hand-designed Heuristics

The Game of Go

Go is Incredibly Complex

Go is Hard for Computers

GRID SIZE

8 x 8 19 x 19

AVERAGE NUMBER OF MOVE CHOICES PER TURN

35 200-300

LENGTH OF TYPICAL GAME

60 moves 200 moves

NUMBER OF POSSIBLE GAME POSITIONS

1044 10170

EXPLOSION OF CHOICES (starting from average game position)

35 Move I 200 1225 Move 2 40 000 42 875 Move 3 8 000 000 1 500 625 Move 4 I 600 000 000

How AlphaGo Zero Works

Monte-Carlo Tree Search

Residual Network

Policy Iteration

Monte-Carlo Tree Search (MCTS)

Selection

Expansion

Tree Policy

Monte-Carlo Tree Search (MCTS)

MCTS: Advantages

- Aheuristic
- Online-search
- Works well on large trees

MCTS: Disadvantages

- Many simulation are required
- No generalization between similar states
- Performance is dependent on "rollout" policy

MCTS in AlphaGo Zero

Upper Confidence Bound for Trees (UCT)

$$Q(s,a) + c_{puct} \cdot P(s,a) \cdot rac{\sqrt{\Sigma_b N(s,b)}}{1 + N(s,a)}$$

Upper Confidence Bound for Trees (UCT)

Upper Confidence Bound for Trees (UCT)

s State a Action Q(s, a) Expected Reward P(s, a) Policy N(s, a) # of state visits $Q(s, a) + c_{puct} \cdot P(s, a) \cdot \frac{\sqrt{\Sigma}}{1 + c_{puct}}$ Exploitation Exploration	c _{puct} Hyperparameter Exploitation Exploration
--	---

AlphaGo Zero's Network Architecture

Residual Layer

Dual Heads

The policy head

The value head

Training

Self-play Worker

 π

Training Worker

$$l = (z - v)^2 - \boldsymbol{\pi}^{\mathrm{T}} \log \boldsymbol{p} + c \|\boldsymbol{\theta}\|^2$$

Evaluator

$$\pi' > \pi$$

How AlphaGo Zero Chooses a Move

1600 Simulations

$$\pi \sim N^{1/\tau}$$

Self-Play Workers

The game state

The search probabilities

The winner

Training Worker

$$l = (z - v)^2 - \pi^{\mathrm{T}} \log p + c \|\theta\|^2$$

Evaluator

400 Games

55% Win Rate

MCTS in AlphaGo Zero

5 Minute Break

AlphaGo Zero

VS

AlphaGo

Entirely self-play

Input is game board

Single network

No rollouts

Supervised learning + self-play

Input is hand-crafted features

Two networks

Rollouts were used

Results

Learning Stages

Ladders

AlphaZero

AlphaGo Zero's Gift

Discussion

Discussion

How can the AlphaGo Zero algorithm be extended to different games?

How can the sample efficiency of AlphaGo Zero be improved?

A very stable training environment is need for the algorithm.

Can this be alleviated to let AlphaZero applied to real-world problems?

Resources

Mastering the Game of Go without Human Knowledge

David Silver 2017 NIPS Talk

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero

David Silver's PhD Thesis: Reinforcement Learning and Simulation-Based Search in Computer Go

A Brief History of Game Al Up To AlphaGo - Andrey Kurenkov

AlphaGo Zero Demystified - Dylan Djian