

Statistik II

Einheit 7: Regressionsmodelle mit Interaktionen

12.06.2025 | Prof. Dr. Stephan Goerigk

Wiederholung:

Effektarten:

- 1. Haupteffekt
 - Haupteffekte beschreiben den Einfluss einer UV auf die AV unabhängig von anderen UVs (Konstanthaltung)
- 2. Interaktionseffekt
 - o Wechselwirkung zwei UVs/Pädiktoen (Interaktion) auf die AV

Abgrenzung zur mehrfaktoriellen ANOVA:

- Bei der ANOVA sind UVs immer kategorial (Mittelwertesvergleiche zw. Gruppen/Kategorien)
- Im Regressionsmodell können kategoriale und stetige UVs verwendet und auch kombiniert werden
- ightarrow Im multiplen Regressionsmodell sind weitere Arten von Interaktionen möglich

Mögliche Interaktionen von 2 Prädiktoren im multiplen Regressionsmodell

Die Regression erlaubt alle Kombinationen von Prädiktorentypen (Erweiterung des multiplen Regressionsmodells):

- 1. stetig x stetig
- 2. stetig x diskret
- 3. diskret x diskret
- ightarrow Dabei dürfen die diskreten Prädiktoren 2 oder \geq 2 Stufen haben.

Zum Vergleich - ANOVA erlaubt lediglich die Prüfung einer Art von Interaktion:

1. diskret x diskret

Beispiel: Faktoren für Erfolg einer Therapie

- ullet Datensatz für N=52 Therapeut:innen
- **Forschungsfrage:** Was kann als Prädiktor für Therapieerfolg gelten? Gibt es Interaktionen?
- Es wurden folgende Variablen gemessen:
 - Therapieerfolg (AV; 0-100 Punkte)
 - Therapieerfahrung der Therapeut:in (UV; niedrig, hoch)
 - Bereitschaft Patient:in zu konfrontieren (UV 0-100 Punkte)
 - o Empathiefähigkeit der Therapeut:in (UV; niedrig, hoch)
 - IQ der Therapeut:in (UV; $\mu = 100, \sigma = 15$)
- Die ersten 15 Fälle sind in der Tabelle rechts dargestellt.

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ
89	hoch	61	niedrig	88
54	niedrig	48	hoch	125
62	hoch	23	niedrig	108
36	niedrig	69	niedrig	77
54	niedrig	53	niedrig	90
77	hoch	39	niedrig	87
41	niedrig	62	niedrig	125
46	niedrig	62	niedrig	114
54	niedrig	61	hoch	95
71	hoch	58	hoch	109
50	niedrig	56	niedrig	92
75	hoch	44	hoch	96
51	niedrig	39	hoch	87
66	niedrig	38	hoch	93
73	hoch	32	niedrig	125

Beispiel: Faktoren für Erfolg einer Therapie

Kodierung der diskreten Variablen:

Erinnerung - Diskrete Variablen werden im Regressionsmodell dummy-kodiert:

- Therapieerfahrung (rechts dargestellt)
 - niedrig = 0 (Referenz)
 - hoch = 1
- Empathiefähigkeit
 - niedrig = 0 (Referenz)
 - hoch = 1

```
model = lm(Therapieerfolg ~ Erfahrung, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
             10 Median
## -22.720 -6.753 -1.786 6.497 20.148
## Coefficients:
              Estimate Std. Error t value
                ## (Intercept)
## Erfahrunghoch 23.132 2.713 8.525
                                            0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924, Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.000000000002591
```

ightarrow Im Modell berechnete Steigung (b) repräsentiert durchschnittlichen Unterschied in AV, wenn Person nicht zu Referenzkategoie gehört

Beispiel: Faktoren für Erfolg einer Therapie

Kodierung der diskreten Variablen:

- Theapeut:innen mit niedriger Erfahrung (Erfahrung = 0) haben Thearapieefolg von 51.72 Punkten.
- Theapeut:innen mit hoher Erfahrung (Erfahrung = 1) haben 23.13 Punkte Thearapieefolg mehr.
- Theapeut:innen mit hoher Erfahrung (Erfahrung = 1) haben Thearapieefolg von 51.72 + 23.13 = 74.85 Punkte

```
model = lm(Therapieerfolg ~ Erfahrung, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
               10 Median
## -22.720 -6.753 -1.786
## Coefficients:
                Estimate Std. Error t value
                  51.720
## (Intercept)
                              1.955 26.453 < 0.00000000000000000 ***
## Erfahrunghoch 23.132
                              2.713 8.525
                                                 0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924, Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.000000000002591
```


Beispiel: Faktoren für Erfolg einer Therapie

Modell mit 2 Prädiktoren: Erfahrung und Konfrontationsbereitschaft:

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

$$Y_i = a + b_1 \cdot X_{i1} + b_2 \cdot X_{i2} + \epsilon_i$$
 $Erfolg = b_1 \cdot Erfahrung_{(hoch)} + b_2 \cdot Konfrontationsb. + \epsilon_i$

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

$$Y_i = a + b_1 \cdot X_{i1} + b_2 \cdot X_{i2} + b_3 \cdot (X_{i1} \cdot X_{i2}) + \epsilon_i$$

$$Erfolg = b_1 \cdot Erfahrung_{(hoch)} + b_2 \cdot Konfrontationsb. + b_3 \cdot (Erfahrung_{(hoch)} \cdot Konfrontationsb.) + \epsilon_i$$

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

Mögliche Forschungsfragen im Modell:

- 1. Besteht ein Unterschied zwischen unerfahrenen und erfahrenen Therapeut:innen hinsichtlich des Therapieerfolgs? \rightarrow Steigung Erfahrung
- 2. Verändert sich der Therapieerfolg mit zunehmender Konfrontationsbereitschaft? \rightarrow Steigung Konfrontationsbereitschaft
- 3. Wie viel Varianz der AV (Therapieerfolg) kann das Gesamtmodell mit beiden Prädiktoren erklären o Bestimmtheitsmaß R^2
- → Für Fragen 1 und 2 wird der jeweils andere Prädiktor konstant gehalten.

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                10 Median
## -26.0175 -5.7825 -0.4526 4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
## (Intercept) 44.67633 4.19638 10.646 0.0000000000000242 ***
## Erfahrunghoch 23.64821 2.66084 8.887 0.00000000000086793 ***
## Konfrontativ 0.14565 0.07729 1.884
                                                      0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

- Y-Achsenabschnitt (aka. Intercept, *a*): Therapeut:innen mit Erfahrung = 0 (niedrig) und Konfrontationsbereitschaft = 0 haben 44.68 Punkte Therapieerfolg.
- Mit 1 Einheit mehr Erfahrung (1 = hoch) haben Therapeut:innen 23.65 Punkte zusätzlichen Therapieerfolg (bei Konstanthaltung von Konfrontationsbereitschaft).
- Mit 1 Einheit mehr Konfrontationsbereitschaft haben Therapeut:innen 0.15 Punkte zusätzlichen Therapieerfolg (bei Konstanthaltung von Erfahrung).

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                10 Median
## -26.0175 -5.7825 -0.4526 4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 44.67633 4.19638 10.646 0.0000000000000242 ***
## Erfahrunghoch 23.64821 2.66084 8.887 0.00000000000086793 ***
## Konfrontativ 0.14565 0.07729 1.884
                                                      0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

- Bei Konstanthaltung von Konfrontationsbereitschaft ist Erfahrung signifikant mit Therapieerfolg assoziiert (t(49) = 8.89, p < .001).
- Bei Konstanthaltung von Erfahrung ist Konfrontationsbereitschaft nicht signifikant mit Therapieerfolg assoziiert (t(49) = 1.89, p = .066).
- Das Gesamtmodell kann 62% der Varianz des Therapieerfolgs erklären $(R^2=.62).$

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                10 Median
## -26.0175 -5.7825 -0.4526 4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
## (Intercept) 44.67633 4.19638 10.646 0.0000000000000242 ***
## Erfahrunghoch 23.64821 2.66084 8.887 0.00000000000086793 ***
## Konfrontativ 0.14565 0.07729 1.884
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

Berechnung der Konfidenzintervalle:

```
## 2.5 % 97.5 %
## (Intercept) 36.243399754 53.1092660
## Erfahrunghoch 18.301052243 28.9953688
## Konfrontativ -0.009678479 0.3009798
```


Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

Beispiel: Faktoren für Erfolg einer Therapie

Achtung: Unterschiedliche Steigungsparameter für selben Pädiktor (Erfahrung) nach Hinzunahme weiterer Prädiktoren

```
model1 = lm(Therapieerfolg ~ Erfahrung, data = df)
summary(model1)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
               10 Median
                                     Max
                              30
## -22.720 -6.753 -1.786 6.497 20.148
## Coefficients:
               Estimate Std. Error t value
                                                      Pr(>|t|)
## (Intercept)
                 51.720
                            1.955 26.453 < 0.00000000000000000 ***
## Erfahrunghoch 23.132
                             2.713 8.525
                                               0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924, Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.00000000002591
```

```
model2 = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model2)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                 10 Median
                                  30
## -26.0175 -5.7825 -0.4526 4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 44.67633
                           4.19638 10.646 0.0000000000000242 ***
## Erfahrunghoch 23.64821
                           2.66084 8.887 0.0000000000086793 ***
## Konfrontativ 0.14565
                           0.07729 1.884
                                                     0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF. p-value: 0.00000000005077
```


Beispiel: Faktoren für Erfolg einer Therapie

Achtung: Unterschiedliche Steigungsparameter für selben Pädiktor (Erfahrung) nach Hinzunahme weiterer Prädiktoren

- Steigungsparameter unterscheiden sich marginal:
 - $\circ~$ Modell ohne Konfrontationsbereitschaft: $b_{Erfahrung=hoch}=$ 23.13
 - $\circ \;$ Modell mit Konfrontationsbereitschaft $b_{Erfahrung=hoch}=$ 23.65

Begründung:

- Im zweiten Modell ist der Steigungsparameter von Erfahrung für den Einfluss von Konfrontationsbereitschaft **kontrolliert** (Einfluss wurde herausgerechnet)
- Man spricht dann bei der Konfrontationsbereitschaft von einer Kovariaten (Kontrollvariable)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmender Konfrontationsbereitschaft?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmender Konfrontationsbereitschaft?
- 3. Ist der Effekt der Konfrontationsbereitschaft auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- ightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: Konfrontationsbereitschaft
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Konfrontationsbereitschaft auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können besser konfrontieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
                 10 Median
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                             73.1303
                                         5.3550 13.657 < 0.0000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                         6.2921 -2.425
                                                                    0.019140 *
                             -0.4427
                                         0.1069 -4.143
                                                                    0.000138 ***
## Konfrontativ
## Erfahrunghoch:Konfrontativ 0.8216
                                         0.1263 6.507
                                                                 0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF. p-value: < 0.000000000000000022
```

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0)
 haben bei einer Konfrontationsbereitschaft = 0 einen
 geschätzten Therapieerfolg von 73.13 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einer Konfrontationsbereitschaft = 0 einen geschätzten Therapieerfolg von -15.26 Punkten weniger, als die Referenzgruppe

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
       Min
                 10 Median
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                             73.1303
                                         5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                         6.2921 -2.425
                                                                    0.019140 *
                             -0.4427
                                         0.1069 -4.143
                                                                    0.000138 ***
## Konfrontativ
## Erfahrunghoch:Konfrontativ 0.8216
                                         0.1263 6.507
                                                                 0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF. p-value: < 0.000000000000000022
```

- Mit 1 Einheit zusätzlicher Konfrontationsbereitschaft nimmt der Therapieerfolg von Therapeut:innen mit niedriger Erfahrung um -0.44 Punkte ab (t(48)=-4.14,p<.001).
- Mit 1 Einheit zusätzlicher Konfrontationsbereitschaft nimmt der Therapieerfolg von Therapeut:innen mit hoher Erfahrung um 0.82 Punkte mehr zu, als bei der Referenzgruppe (t(48)=6.51, p<.001).
- Insgesamt nimmt der Therapieerfolg bei von Therapeut:innen mit hoher Erfahrung mit 1 Einheit zusätzlicher Konfrontationsbereitschaft also um -0.44 + 0.82 = 0.38 Punkte zu

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
       Min
                 10 Median
                                          Max
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                            Estimate Std. Error t value
                                                                   Pr(>|t|)
## (Intercept)
                             73.1303
                                         5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                            -15.2556
                                         6.2921 -2.425
                                                                   0.019140 *
## Konfrontativ
                             -0.4427
                                         0.1069 -4.143
                                                                   0.000138 ***
## Erfahrunghoch:Konfrontativ 0.8216
                                         0.1263 6.507
                                                                0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.00000000000000022
```

Berechnung der Konfidenzintervalle:

```
## 2.5 % 97.5 %
## (Intercept) 62.3634902 83.897191
## Erfahrunghoch -27.9066443 -2.604596
## Konfrontativ -0.6575726 -0.227884
## Erfahrunghoch:Konfrontativ 0.5676853 1.075428
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
                10 Median
                                          Max
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                            Estimate Std. Error t value
                                                                   Pr(>|t|)
## (Intercept)
                             73.1303
                                         5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                            -15.2556
                                         6.2921 -2.425
                                                                   0.019140 *
                             -0.4427
                                         0.1069 -4.143
                                                                   0.000138 ***
## Konfrontativ
## Erfahrunghoch:Konfrontativ 0.8216
                                         0.1263 6.507
                                                                0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF. p-value: < 0.000000000000000022
```

Interpretation der Koeffizienten:

Moderationseffekt:

• Der Unterschied zwischen den Steigungen der Gruppen mit niedriger und hoher Erfahrung ist signifikant (b=0.82,t(48)=6.51,p<.001)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
                 10
                      Median
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>|t|)
                              73.1303
## (Intercept)
                                          5.3550 13.657 < 0.0000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                          6.2921
                                                 -2.425
                                                                     0.019140 *
## Konfrontativ
                              -0.4427
                                          0.1069 -4.143
                                                                     0.000138 ***
## Erfahrunghoch:Konfrontativ 0.8216
                                          0.1263
                                                  6.507
                                                                 0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.00000000000000022
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
                 10 Median
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                             73.1303
                                          5.3550 13.657 < 0.0000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                          6.2921 -2.425
                                                                    0.019140 *
                              -0.4427
                                          0.1069 -4.143
                                                                    0.000138 ***
## Konfrontativ
## Erfahrunghoch:Konfrontativ 0.8216
                                                 6.507
                                                                 0.000000042 ***
                                          0.1263
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF. p-value: < 0.000000000000000022
```

Anmerkung:

- Output des Regressionsmodells enthält lediglich einen Signifikanztest für die Steigung der Referenzkategorie $(b_{Konfrontativ|Erfahrung=0}=-0.44, t(48)=-4.14, p<.001)$
- Steigung der anderen Gruppe lässt sich "per Hand" ausrechnen $(b_{Konfrontativ|Erfahrung=1}=$ -0.44 + 0.82 = 0.38)
- Signifikanztest prüft jedoch nur, ob $b_{Konfrontativ|Erfahrung=0} \neq b_{Konfrontativ|Erfahrung=1} \\ (t(48) = 6.51, p < .001), \text{ nicht ob } (b_{Erfahrung=1} \neq 0$

ightarrow Dafür müsste die Referenzkategorie getauscht werden, sodass hohe Erfahrung = 0 und niedrige Erfahrung = 1.

Beispiel: Faktoren für Erfolg einer Therapie

F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ relevel(Erfahrung, "hoch") * Konfrontativ, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ relevel(Erfahrung, "hoch") * Konfrontativ,
      data = df
## Residuals:
       Min
                 1Q
                     Median
## -13.0279 -4.6580 -0.1674 4.3870 19.0061
## Coefficients:
                                                 Estimate Std. Error t value
                                                                                        Pr(>|t|)
## (Intercept)
                                                 57.87472
                                                            3.30370 17.518 < 0.00000000000000000 ***
## relevel(Erfahrung, "hoch") niedrig
                                                 15.25562
                                                             6.29205
                                                                      2.425
                                                                                           0.0191 *
                                                  0.37883
                                                            0.06727 5.632
## Konfrontativ
                                                                                      0.000000911 ***
## relevel(Erfahrung, "hoch")niedrig:Konfrontativ -0.82156
                                                            0.12626 -6.507
                                                                                     0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
```

Anmerkung:

- Nun ist "hohe Erfahrung" die Referenzkategorie
- Y-Achsenabschnitt (Intercept) und Steigungen beziehen sich jetzt auf "hohe Erfahrung" = 0
- Signifikanztest für die Steigung der Referenzkategorie (hohe Erfahrung = 0) nun möglich

$$(b_{Konfrontativ|Erfahrung=0} = 0.38, t(48) = 5.63, p < .001)$$

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Die einzelnen Steigungen un deren KIs lassen sich jedoch auch automatisch anzeigen:

```
library(emmeans)
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## $emtrends
   Erfahrung Konfrontativ.trend SE df lower.CL upper.CL
   niedrig -0.443 0.1069 48 -0.658
                                                -0.228
   hoch
                     0.379 0.0673 48
                                        0.244 0.514
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate
                           SE df t.ratio p.value
   niedrig - hoch -0.822 0.126 48 -6.507 <.0001
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Signifikanz kann auch mittels Omnibustest ermittelt werden:

Für jeden Modellfaktor stellt sich die Frage: "Erklärt das Modell mit diesem Faktor signifikant mehr Varinaz als ohne den Faktor?"

- Alle 3 Effekte (2 Haupeffekt + 1 Interaktion signifikant)
- Vorsicht: Bei signifikanter Interaktion muss bei Interpretation der Haupteffekte aufgepasst werden!

ightarrow Haupteffekt Konfrontationsbereitschaft deutlich größerer p-Wert, da Effekt in beiden Gruppen gegenläufig (disordinale Interaktion)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmender Empathiefähigkeit?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmender Empathiefähigkeit?
- 3. Ist der Effekt der Empathiefähigkeit auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- ightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: Empathiefähigkeit
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Empathiefähigkeit auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können Empathie besser ausdrücken.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                                      Max
                               30
## -19.875 -5.535 -1.665 6.795 18.546
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                              48.8750
                                          2.2992 21.258 < 0.0000000000000000 ***
## Erfahrunghoch
                              21.5795
                                          3.6021 5.991
                                                                 0.000000259 ***
                              7.9028
                                          3.8319 2.062
                                                                      0.0446 *
## Empathiehoch
## Erfahrunghoch: Empathiehoch -0.4823
                                                                      0.9273
                                          5.2592 -0.092
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537, Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF. p-value: 0.000000000004051
```

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0)
 haben bei einer niedrigen Empathie (Empathie = 0) einen
 geschätzten Therapieerfolg von 48.88 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einer niedrigen Empathie (Empathie = 0) einen geschätzten Therapieerfolg von 21.58 Punkten mehr, als die Referenzgruppe

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                                     Max
                               30
## -19.875 -5.535 -1.665 6.795 18.546
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                             48.8750
                                         2.2992 21.258 < 0.0000000000000000 ***
## Erfahrunghoch
                             21.5795
                                         3.6021 5.991
                                                                 0.000000259 ***
                              7.9028
                                         3.8319 2.062
                                                                      0.0446 *
## Empathiehoch
## Erfahrunghoch: Empathiehoch -0.4823
                                                                      0.9273
                                         5.2592 -0.092
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537, Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF. p-value: 0.00000000004051
```

- Mit 1 Einheit zusätzlicher Empathiefähigkeit (Empathie=hoch) nimmt der Therapieerfolg von Therapeut:innen mit niedriger Erfahrung um 7.9 Punkte zu (t(48) = 2.06, p = .045).
- Mit 1 Einheit zusätzlicher Empathiefähigkeit (Empathie=hoch) nimmt der Therapieerfolg von Therapeut:innen mit hoher Erfahrung um -0.48 Punkte weniger zu, als bei der Referenzgruppe (t(48)=-0.09,p=.927).
- Insgesamt nimmt der Therapieerfolg bei von Therapeut:innen mit hoher Erfahrung mit 1 Einheit zusätzlicher Empathiefähigkeit also um 7.9 + (-0.48) = 7.42 Punkte zu.

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                              3Q
                                     Max
## -19.875 -5.535 -1.665 6.795 18.546
## Coefficients:
                            Estimate Std. Error t value
                                                                   Pr(>|t|)
## (Intercept)
                             48.8750
                                         2.2992 21.258 < 0.00000000000000000 ***
## Erfahrunghoch
                             21.5795
                                         3.6021 5.991
                                                                0.000000259 ***
## Empathiehoch
                              7.9028
                                         3.8319 2.062
                                                                     0.0446 *
## Erfahrunghoch: Empathiehoch -0.4823
                                         5.2592 -0.092
                                                                     0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537, Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.000000000004051
```

Berechnung der Konfidenzintervalle:

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -19.875 -5.535 -1.665 6.795 18.546
## Coefficients:
                             Estimate Std. Error t value
                                                                    Pr(>|t|)
                             48.8750
## (Intercept)
                                         2.2992 21.258 < 0.00000000000000000 ***
## Erfahrunghoch
                             21.5795
                                         3.6021
                                                 5.991
                                                                 0.000000259 ***
                              7.9028
## Empathiehoch
                                         3.8319 2.062
                                                                     0.0446 *
## Erfahrunghoch: Empathiehoch -0.4823
                                         5.2592 -0.092
                                                                     0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537, Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.000000000004051
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmendem IQ?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmendem IQ?
- 3. Ist der Effekt des IQ auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- \rightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: IQ
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Empathiefähigkeit auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können Intelligenz besser einsetzen / geringe Intelligenz kompensieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
df$I0 cent = round(df$I0 - mean(df$I0))
model = lm(Therapieerfolg ~ Erfahrung * IQ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * IQ, data = df)
## Residuals:
      Min
               10 Median
                                     Max
## -22.096 -6.900 -1.909 6.275 20.129
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                   64.1096
## (Intercept)
                             13.8693 4.622 0.0000288 ***
                              21.5182
## Erfahrunghoch
                   10.4164
                                       0.484
                                                  0.631
                   -0.1288
                             0.1428 -0.903
                                                  0.371
## Erfahrunghoch:IQ 0.1320
                              0.2125 0.621
                                                 0.537
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992, Adjusted R-squared: 0.5742
## F-statistic: 23.92 on 3 and 48 DF, p-value: 0.000000001298
```

Interpretation der Koeffizienten:

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 64.11 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 10.42 Punkten mehr, als die Referenzgruppe

VORSICHT: Effekt von Erfahrung in diesem Modell nicht mehr signifikant (t(48)=0.48,p=.631) - Wie kann dies sein?

ightarrow IQ = 0 ist kein sinnvoller Wert! ightarrow Lösung: **Zentrierung** (folgt gleich)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

- Im Omnibustest ist der Haupteffekt von Erfahrung signifikant (F(1,48)=70.96,p<.001)
- Der Faktor Erfahrung scheint also ein signifikantes Maß an Varianz zu erklären.
- Dennoch ist die Steigung nicht signifikant...

ightarrow IQ = 0 ist kein sinnvoller Wert! ightarrow Lösung: **Zentrierung** (nächste Folie)

Beispiel: Faktoren für Erfolg einer Therapie

Zentrierung - Prädiktoren ohne sinnhaften 0-Punkt:

- Einige Koeffizienten im Regressionsmodell gehen von Prädiktor = 0 aus
- Wenn 0 des Prädiktors kein sinnvoller Wert ist, wendet man eine Zentrierung an:

$$x_{izentriert} = x_i - ar{x}$$

• Von jedem Wert wird der Mittelwert abgezogen (Grand-Mean Zentrierung)

Ergebnis: zentrierte Variable

- alle Werte, die genau dem Mittelwert entsprechen sind nun 0 (neuer Nullpunkt)
- ullet Werte $>ar{x}$ sind positiv
- Werte $<ar{x}$ sind negativ
- ightarrow Beispiel: $x_{izentriert}=2$ bedeutet 2 Einheiten mehr als der Durchschnitt

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Zentrierung des IQ Prädiktors:

$$IQ_i zentriert = IQ_i - ar{IQ}$$

ullet $ar{IQ}=100$ ist der neue Nullpunkt der Variable

 \rightarrow Die neue 0 ist als "durchschnittlich intelliergent" interpretierbar

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ	IQ_cent
89	hoch	61	niedrig	88	-12
54	niedrig	48	hoch	125	25
62	hoch	23	niedrig	108	8
36	niedrig	69	niedrig	77	-23
54	niedrig	53	niedrig	90	-10
77	hoch	39	niedrig	87	-13
41	niedrig	62	niedrig	125	25
46	niedrig	62	niedrig	114	14
54	niedrig	61	hoch	95	-5
71	hoch	58	hoch	109	9
50	niedrig	56	niedrig	92	-8
75	hoch	44	hoch	96	-4
51	niedrig	39	hoch	87	-13
66	niedrig	38	hoch	93	-7
73	hoch	32	niedrig	125	25

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * IO cent, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * IQ_cent, data = df)
## Residuals:
               10 Median
                               30
                                     Max
## -22.096 -6.900 -1.909 6.275 20.129
## Coefficients:
                        Estimate Std. Error t value
                                                               Pr(>|t|)
## (Intercept)
                         51.2252
                                    2.0533 24.948 < 0.00000000000000000 ***
## Erfahrunghoch
                         23.6145
                                    2.8651 8.242
                                                        0.0000000000951 ***
                         -0.1288
                                    0.1428 -0.903
## IO cent
                                                                  0.371
## Erfahrunghoch:IQ_cent 0.1320
                                                                  0.537
                                    0.2125 0.621
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992, Adjusted R-squared: 0.5742
## F-statistic: 23.92 on 3 and 48 DF. p-value: 0.000000001298
```

Modell mit zentiertem IQ als Prädiktor:

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einem durchschnittlichen IQ (IQ=0) einen geschätzten Therapieerfolg von 51.23 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einem durchschnittlichen IQ (IQ=0) einen geschätzten Therapieerfolg von 23.61 Punkten mehr, als die Referenzgruppe \rightarrow Nun wieder signifikant (t(48)=8.24,p<.001)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * IQ_cent, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * IO cent, data = df)
## Residuals:
               10 Median
                                      Max
                               3Q
## -22.096 -6.900 -1.909 6.275 20.129
## Coefficients:
                        Estimate Std. Error t value
                                                                Pr(>|t|)
                         51.2252
## (Intercept)
                                     2.0533 24.948 < 0.00000000000000000 ***
                         23.6145
                                     2.8651
                                             8.242
                                                         0.0000000000951 ***
## Erfahrunghoch
                         -0.1288
## IO cent
                                     0.1428
                                            -0.903
                                                                   0.371
                                                                   0.537
## Erfahrunghoch:IQ_cent 0.1320
                                     0.2125
                                             0.621
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992, Adjusted R-squared: 0.5742
## F-statistic: 23.92 on 3 and 48 DF, p-value: 0.000000001298
```

Für Visualisierung muss IQ diskret gemacht werden (z.B. unter Durchschnitt, Durchschnitt, über Durchschnitt):

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (stetig x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von konfrontativeren Therapeut:innen mit zunehmendem IQ?
- → Diese Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: IQ
- Moderator: Erfahrung

Moderation: Beeinflusst die Intelligenz den Effekt der Konfrontationsfähigkeit auf den Therapieerfolg? (Beispielserklärung: Intelligentere Therapeut:innen können besser konfrontieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (stetig x stetig):

```
df$I0 cent = round(df$I0 - mean(df$I0))
model = lm(Therapieerfolg ~ Konfrontativ * IQ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Konfrontativ * IQ, data = df)
## Residuals:
      Min
               10 Median
                                     Max
## -35.991 -11.893 2.257 9.898 29.475
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 111.630738 49.145301 2.271
                -1.407004 1.000679 -1.406
## Konfrontativ
                  -0.495811 0.477318 -1.039
## Konfrontativ:IQ 0.014410 0.009679 1.489
                                               0.1431
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.03 on 48 degrees of freedom
## Multiple R-squared: 0.07545, Adjusted R-squared: 0.01766
## F-statistic: 1.306 on 3 and 48 DF, p-value: 0.2834
```

Interpretation der Koeffizienten:

- Therapeut:innen mit niedriger Konfrontativität (Konfrontativ=0) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 111.63 Punkten
- Therapeut:innen mit 1 Einheit zusätzlicher Konfrontativität haben zusätzlichen Therapieerfolg von -1.41 Punkten, im Vergleich zur Referenzgruppe
- Therapeut:innen mit 1 Einheit zusätzlichem IQ haben zusätzlichen Therapieerfolg von -0.5 Punkten, im Vergleich zur Referenzgruppe
- Therapeut:innen mit 1 Einheit zusätzlichem IQ haben bei Zunahme um 1 Punkt Konfrontativität eine zusätzliche Steigung von 0.014 Punkten.

Beispiel: Faktoren für Erfolg einer Therapie

Diskrete Prädiktoren mit > 2 Stufen:

Nehmen wir einmal an, Erfahrung der Therapeut:innen würde 3stufig definiert:

- niedrig = 0 (Referenz)
- mittel = 1
- hoch = 2

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ
52	mittel	61	niedrig	84
50	niedrig	48	niedrig	94
61	hoch	23	niedrig	86
33	niedrig	69	niedrig	139
50	niedrig	53	niedrig	126
51	mittel	39	hoch	100
89	hoch	62	hoch	118
38	niedrig	62	niedrig	96
78	hoch	61	hoch	100
80	hoch	58	hoch	95
46	niedrig	56	hoch	94
73	hoch	44	niedrig	135
61	niedrig	39	hoch	105
65	hoch	38	hoch	108
42	mittel	32	hoch	107

Beispiel: Faktoren für Erfolg einer Therapie

Diskrete Prädiktoren mit > 2 Stufen:

Dummy-Kodierung: Zerlegung der 3-stufigen in zwei 2-stufige Dummy Variablen:

Dummy-Variable 1:

- niedrig = 0 (Referenz)
- mittel = 1

Dummy-Variable 2:

- niedrig = 0 (Referenz)
- hoch = 1

Modell mit Dummy-Kodierung:

$$Erfolg = b_1 \cdot Erfahrung_{(mittel)} + b_2 \cdot Erfahrung_{(hoch)} + b_3 \cdot Konfrontationsb. \ldots \ \ \ldots + b_4 \cdot (Erfahrung_{(mittel)} \cdot Konfrontationsb.) + b_5 \cdot (Erfahrung_{(hoch)} \cdot Konfrontationsb.) + \epsilon_i$$

Beispiel: Faktoren für Erfolg einer Therapie

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
                 10
                    Median
## -18.7144 -5.1562 -0.1617 5.2746 19.2377
## Coefficients:
                               Estimate Std. Error t value
                                                                  Pr(>|t|)
                               71.4295
## (Intercept)
                                                    9.940 0.000000000000493 ***
## Erfahrungmittel
                               -20.2295
                                           8.5970 -2.353
                                                                   0.02295 *
## Erfahrunghoch
                               -18.2173
                                           9.7180 -1.875
                                                                   0.06721 .
                               -0.4322
## Konfrontativ
                                                  -2.860
                                                                   0.00635 **
                                           0.1511
## Erfahrungmittel:Konfrontativ 0.4128
                                           0.1791
                                                   2.305
                                                                   0.02572 *
## Erfahrunghoch:Konfrontativ
                                0.8832
                                           0.1962 4.503 0.000045661383946 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.376 on 46 degrees of freedom
## Multiple R-squared: 0.7173, Adjusted R-squared: 0.6866
## F-statistic: 23.34 on 5 and 46 DF, p-value: 0.00000000001343
```


Beispiel: Faktoren für Erfolg einer Therapie

- Der Omnibustest funktioniert wie bei der ANOVA (\geq 2 Stufen)
- Alle 3 Steigungen werden simultan auf Signifikanz getestet
- So wird eine α -Fehlerkumulierung verhindert
- Welche Steigungen sich genau zwischen den Gruppen unterscheiden, lässt sich mit Post-Hoc Trend-Vergleichen prüfen (nächste Folie)

Beispiel: Faktoren für Erfolg einer Therapie

```
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## $emtrends
## Erfahrung Konfrontativ.trend
                                 SE df lower.CL upper.CL
                      -0.4322 0.1511 46
                      -0.0194 0.0961 46 -0.213
                                                  0.174
## hoch
                     0.4510 0.1251 46 0.199 0.703
## Confidence level used: 0.95
## $contrasts
                   estimate SE df t.ratio p.value
## niedrig - mittel -0.413 0.179 46 -2.305 0.0651
## niedrig - hoch
                  -0.883 0.196 46 -4.503 0.0001
  mittel - hoch -0.470 0.158 46 -2.983 0.0124
## P value adjustment: tukey method for comparing a family of 3 estimates
```

- Bei Therapeut:innen mit hoher Erfahrung steigt Therapieerfolg mit zunehmender Konfrontationsbereitschaft signifikant an.
- Bei Therapeut:innen mit mittlerer Erfahrung nimmt Therapieerfolg mit zunehmender Konfrontationsbereitschaft nicht signifikant ab.
- Bei Therapeut:innen mit niedriger Erfahrung nimmt Therapieerfolg mit zunehmender Konfrontationsbereitschaft signifikant ab.

Beispiel: Faktoren für Erfolg einer Therapie

```
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## $emtrends
## Erfahrung Konfrontativ.trend
                                  SE df lower.CL upper.CL
                       -0.4322 0.1511 46
                       -0.0194 0.0961 46
                                         -0.213
   hoch
                        0.4510 0.1251 46 0.199
                                                    0.703
## Confidence level used: 0.95
## $contrasts
                   estimate SE df t.ratio p.value
## niedrig - mittel -0.413 0.179 46 -2.305 0.0651
   niedrig - hoch
                    -0.883 0.196 46 -4.503 0.0001
   mittel - hoch
                     -0.470 0.158 46 -2.983 0.0124
## P value adjustment: tukey method for comparing a family of 3 estimates
```

- $b_{Konfrontativ|Erfahrung=hoch}$ unterscheidet sich signifikant von $(b_{Konfrontativ|Erfahrung=niedrig}~(p < .001)$ und $b_{Konfrontativ|Erfahrung=mittel}~(p = .012)$
- $ullet b_{Konfrontativ|Erfahrung=neidrig}$ und $b_{Konfrontativ|Erfahrung=mittel}$ unterscheiden sich nicht signifikant (p=.065)
- P-Werte sind Tukey-korrigiert, um Typ-I Fehler zu kontrollieren

Multiple Regression mit Interaktion - stetig x stetig

Berichten der Ergebnisse nach APA

Depressivität gemessen durch BDI-II (Beck Depressions Inventar-II)

Kindheitstrauma gemessen durch CTQ (Childhood Trauma Questionnaire)

Resilienz gemessen durch CD-RISC (Connor-Davidson Resilience Scale)

Die Prädiktoren wurden für eine bessere Interpretierbarkeit zentriert.

Statistischer Bericht: (In Ihrer Klausur)

Wenn Sie in Ihrer Klausur den Output einer multiplen Regression mit Interaktion berichten sollen, könnte dies so aussehen:

Eine multiple Regression mit Interkation mit den Prädiktoren Kindheitstrauma sowie Resilienz und dem Kriterium Depressivität wurde durchgeführt. Der Prädiktor Kindheitstrauma sagt unter Konstanthaltung von Resilienz Depressivität signifikant vorher, b = 0.13, t(296) = 2.75, p = .006. Auch der Prädiktor Resilienz ist bei Konstanthaltung von Kindheitstrauma signifikant mit Depressivität assoziiert, b = -0.10, t(296) = -2.33, p = .020. Es zeigt sich ein signifikanter Moderationseffekt, b = -0.06, t(296) = -25.73, p < .001. Das Gesamtmodell erklärt einen signifikanten Anteil der Varianz in der AV Depressivität, F(3, 296) = 226.5, p < .001, $R^2 = .70$.

Multiple Regression mit Interaktion - stetig x stetig

Inhaltliche Interpretation der Modellparameter

Depressivität gemessen durch BDI-II (Beck Depressions Inventar-II)
Kindheitstrauma gemessen durch CTQ (Childhood Trauma Questionnaire)
Resilienz gemessen durch CD-RISC (Connor-Davidson Resilience Scale)
Die Prädiktoren wurden für eine bessere Interpretierbarkeit zentriert.

```
## ## Call:
## lm(formula = BDI ~ CTQ_c * CDRISC_c, data = df)
##
## Residuals:
## -28.6606 -13.7076 -0.5533 12.8185 29.0597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.562525 0.912900 28.001 <2e-16 ***
## CTQ_c 0.127812 0.046540 2.746 0.0064 **
## CTQ_c -0.097395 0.041764 -2.332 0.0204 *
## CTQ_c:CDRISC_c -0.056800 0.002208 -25.727 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.75 on 296 degrees of freedom
## Multiple R-squared: 0.6966, Adjusted R-squared: 0.6935
## F-statistic: 226.5 on 3 and 296 DF, p-value: <2.2e-16</pre>
```

Inhaltliche Interpretation

Intercept: Eine Person mit durchschnittlichen Werten auf Kindheitstrauma und Resilienz (aufgrund der Zentrierung) hätte einen erwarteten Depressionswert von 25.56.

Kindheitstrauma: Bei einer zusätzlichen Einheit Kindheitstrauma steigt die durchschnittliche Depressivität um 0.13 Einheiten (Unter Konstanthaltung von Resilienz).

Resilienz: Wenn die Resilienz um eine Einheit zunimmt, sinkt die erwartete Depressivität um 0.10 Einheiten (Unter Konstanthaltung von Kindheitstrauma).

Interaktionseffekt: Mit zunehmender Resilienz verringert sich der positive Effekt von Kindheitstrauma auf Depressivität. Resilienz wirkt damit als Moderator und schwächt den Zusammenhang zwischen Kindheitstrauma und Depressivität ab.

Multiple Regression mit Interaktion - diskret x stetig

Berichten der Ergebnisse nach APA

Kriterium: Depressivität

Prädiktor 1: Schlafqualität (stetig)

Prädiktor 2: Therapiegruppe (diskret: Warteliste / Psychotherapie)

```
##
## Call:
## lm(formula = Depressivität ~ Schlafqualität * Gruppe, data = data)
## Residuals:
      Min 1Q Median 3Q
## -7.4422 -2.0718 -0.0871 2.0012 7.8608
## Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
                                   26.4732 0.9550 27.719 < 2e-16 ***
## (Intercept)
                                   -2.2688 0.2193 -10.344 < 2e-16 ***
## Schlafqualität
## GruppePsychotherapie
                                   -5.1317 1.5693 -3.270 0.00127 **
## Schlafqualität:GruppePsvchotherapie -1.6370 0.3016 -5.427 1.68e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.988 on 196 degrees of freedom
## Multiple R-squared: 0.9242, Adjusted R-squared: 0.9231
## F-statistic: 796.8 on 3 and 196 DF, p-value: < 2.2e-16
```

Statistischer Bericht: (In Ihrer Klausur)

Wenn Sie in Ihrer Klausur den Output einer multiplen Regression mit Interaktion berichten sollen, könnte dies so aussehen:

Eine multiple lineare Regression mit Interkation wurde durchgeführt, um die Effekte von Schlafqualität und Therapiegruppe (Warteliste vs. Psychotherapie) auf Depressivität zu untersuchen. Der Prädiktor Schlafqualität sagte innerhalb der Wartelistengruppe die Depressivität signifikant vorher, b=-2.27, t(196)=-10.34, p<.001. Auch der Prädiktor Gruppenzugehörigkeit erwies sich als signifikant, b=-5.13, t(196)=-3.27, p=.001. Es zeigt sich ein signifikanter Moderationseffekt, b=-1.64, t(196)=-5.43, p<.001. Das Gesamtmodell erklärt einen signifikanten Anteil der Varianz in der AV Depressivität, F(3, 196)=796.8, p<.001, $R^2=.92$.

Multiple Regression mit Interaktion - diskret x stetig

Inhaltliche Interpretation der Modellparameter

```
Kriterium: Depressivität
Prädiktor 1: Schlafqualität (stetig)
Prädiktor 2: Therapiegruppe (diskret: Warteliste / Psychotherapie)
## Call:
## lm(formula = Depressivität ~ Schlafqualität * Gruppe, data = data)
## Residuals:
      Min 10 Median 30 Max
## -7.4422 -2.0718 -0.0871 2.0012 7.8608
## Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
                                 26.4732 0.9550 27.719 < 2e-16 ***
## (Intercept)
## Schlafqualität
## Schlafqualität -2.2688 0.2193 -10.344 < 2e-16 ***
## GruppePsychotherapie -5.1317 1.5693 -3.270 0.00127 **
## Schlafqualität:GruppePsychotherapie -1.6370 0.3016 -5.427 1.68e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.988 on 196 degrees of freedom
## Multiple R-squared: 0.9242, Adjusted R-squared: 0.9231
## F-statistic: 796.8 on 3 and 196 DF. p-value: < 2.2e-16
```

Inhaltliche Interpretation

Intercept: Eine Person aus der Warteliste (Gruppe = 0) hätte bei einer Schlafqualität von 0 eine erwartete Depressivität von 26.47.

Schlafqualität: Wenn bei einer Person aus der Wartelistegruppe die Schlafqualität um eine Einheit zunimmt, sinkt die erwartete Depressivität um 2.27 Einheiten.

Therapiegruppe: Der Mittelwertsunterschied in der Depressivität zwischen den beiden Therapiegruppe (Warteliste vs. Psychotherapie) liegt bei Konstanthaltung der Schlafqualität bei -5.13

Interaktionseffekt: Wenn bei einer Person aus der Psychotherapiegruppe (Gruppe = 1) die Schlafqualität um eine Einheit zunimmt, sinkt die Depressivität um 1.64 Einheiten mehr als in der Referenzgruppe (Gruppe = 0), also insgesamt um -2.27 - 1.64 = -3.91 Einheiten.

Multiple Regression mit Interaktion - diskret x diskret

Berichten der Ergebnisse nach APA

Kriterium: Testergebnis

Prädiktor 1: Lernstrategie (diskret: Lernstrategie A / Lernstrategie B)

Prädiktor 2: Motivation (diskret: niedrig / hoch)

```
##
## Call:
## lm(formula = Testergebnis ~ Lernstrategie * Motivation, data = df)
## Residuals:
       Min 10 Median
## -16.9633 -4.4815 0.3779 4.2736 14.0876
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
                                59.720 1.075 55.559 < 2e-16 ***
## (Intercept)
## LernstrategieB 9.416 1.510 6.236 4.58e-09 ***
## MotivationHoch 5.534 1.542 3.588 0.000454 ***
## LernstrategieB:MotivationHoch 5.853 2.114 2.768 0.006362 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.449 on 146 degrees of freedom
## Multiple R-squared: 0.6044, Adjusted R-squared: 0.5962
## F-statistic: 74.34 on 3 and 146 DF, p-value: < 2.2e-16
```

Statistischer Bericht: (In Ihrer Klausur)

Wenn Sie in Ihrer Klausur den Output einer multiplen Regression mit Interaktion berichten sollen, könnte dies so aussehen:

Eine multiple lineare Regression mit Interkation wurde durchgeführt, um die Effekte von Lernstratien (A vs. B) und Motivation (niedrig vs. hoch) auf das Testergebnis zu untersuchen. Sowohl der Prädiktor Lernstrategie, b = 9.41, t (146) = 6.24, p < .001., als auch der Prädiktor Motivation, b = 5.53, t(146) = 3.59, p < .001, konnten das Testergebnis signifikant vorhersagen. Es zeigt sich ein signifikanter Moderationseffekt, b = 5.85, t(146) = 2.77, p = .006. Das Gesamtmodell erklärte einen signifikanten Anteil der Varianz im Testergebnis, F(3, 146) = 796.8, p < .001, R^2 = .92.

Multiple Regression mit Interaktion - diskret x diskret

Inhaltliche Interpretation der Modellparameter

Kriterium: Testergebnis Prädiktor 1: Lernstrategie (diskret: Lernstrategie A / Lernstrategie B) Prädiktor 2: Motivation (diskret: niedrig / hoch) ## Call: ## lm(formula = Testergebnis ~ Lernstrategie * Motivation, data = df) ## Residuals: Min 10 Median 30 ## -16.9633 -4.4815 0.3779 4.2736 14.0876 ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## (Intercept) 59.720 1.075 55.559 < 2e-16 ***
LernstrategieB 9.416 1.510 6.236 4.58e-09 ***
MotivationHoch 5.534 1.542 3.588 0.000454 *** ## LernstrategieB:MotivationHoch 5.853 2.114 2.768 0.006362 ** ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 ## Residual standard error: 6.449 on 146 degrees of freedom ## Multiple R-squared: 0.6044, Adjusted R-squared: 0.5962 ## F-statistic: 74.34 on 3 and 146 DF, p-value: < 2.2e-16

Inhaltliche Interpretation

Intercept: Das durchschnittliche Testergebnis von Proband:innen mit Lernstrategie A und niedriger Motivation lag bei 59.72

Gruppenmittelwerte: Das durchschnittliche Testergebnis von Proband:innen mit Lernstrategie B und niedriger Motivation war um 9.42 Einheiten höher als in der Referenzgruppe (Lernstrategie A & niedrige Motivation) und lag bei 59.72 + 9.42 = 69.14

Das durchschnittliche Testergebnis von Proband:innen mit Lernstrategie A und hoher Motivation war um 5.53 Einheiten höher als in der Referenzgruppe (Lernstrategie A & niedrige Motivation) und lag bei 59.72 + 5.53 = 65.25

Für Proband:innen mit Lernstrategie B und hoher Motivation ergab sich ein geschätzter Mittelwert von 80.52 (59.72 + 9.42 + 5.53 + 5.85)

Take-aways

- Die Regression erlaubt **alle Kombinationen** von [stetig x stetig], [diskret x diskret] und [stetig x diskret] Prädiktoren.
- Testung des Interaktionseffekt entspricht Prüfung einer Moderationshypothese.
- Diskrete Variablen müssen **dummy-codiert** werden. Zur Inspektion der Steigungen aller Stufen muss **Referenzkategorie** ggf. gewechselt werden.
- Bei stetigen Prädiktoren ohne sinnhaften Nullpunkt sollte eine **Zentrierung** durchgeführt werden.
- ullet Bei > 2-stufigen diskreten Prädiktoren sollten **Omnibustests** verwendet werden, um Typ-I Fehler zu vermeiden.
- Paarweise Vergleiche von Steigungen innerhalb der Stufen eines Faktors lassen sich mit **Post-Hoc Trend Vergleichen** rechnen.