FACEGUARD-AI

Detecting Al-generated Faces using Machine Learning and Pattern Recognition

Presenters: Vani Seth and Pari Patel

Course Name: Introduction to Machine Learning and Pattern Recognition

Course Instructor: Dr. Yunxin Zhao

Problem Statement: The Rise of Al-Generated Images

- Advances in Al tools like GANs and diffusion models have made it easy to generate hyper-realistic fake images.
- These images are often indistinguishable from real photos, posing major risks:
 - Misinformation and fake news
 - Identity theft and privacy violations
 - Erosion of public trust in visual media

Stats That Matter

- Deepfake content has surged by 900% since 2018 (Deeptrace, 2023)
- Over 96% of Al-generated deepfakes are used in non-consensual contexts
- 63% of Americans worry about synthetic media spreading false information (Pew Research Center)

The need for accurate detection methods is therefore more urgent than ever.

REAL VS. A.I. PAIR I

Introduction

- Al models like GANs and Stable Diffusion create hyper-realistic human faces
- Real vs fake faces are now difficult to distinguish by eye
- Our goal: Build a system to detect Al-generated faces automatically
- Approach: Use machine learning and pattern recognition for detection

Our Dataset

- 140K Real and Fake Faces Dataset from Kaggle [1]
- contains 70,000 real faces from the Flickr dataset [2] collected by Nvidia and 70,000 fake faces generated by StyleGAN [3]
- Each image in the dataset is in RGB format and originally sized at 128×128 pixels.
- The dataset is pre-split into training and test sets for model development and evaluation.

Training Pipeline

- The training process is done for 4 different models:
 - o Training a simple CNN model
 - o Training a Deep CNN model
 - o Training a model with transfer learning
 - ResNet50
 - MobileNetV2
- All models were trained using the Adam optimizer and binary cross-entropy loss function.
- We used a batch size of 32 and trained for 10 epochs.
- To prevent overfitting, dropout layers are included.

Simple CNN Model

- The Simple CNN model consists of three convolutional layers, each followed by a max-pooling operation.
- After flattening the features, we used a fully connected dense layer with 128 neurons and a dropout layer to prevent overfitting.
- The final output layer uses a sigmoid activation function to perform binary classification.
- This architecture contains approximately 11.17 million trainable parameters.

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 222, 222, 32)	896
<pre>max_pooling2d_3 (MaxPooling2D)</pre>	(None, 111, 111, 32)	0
conv2d_4 (Conv2D)	(None, 109, 109, 64)	18,496
<pre>max_pooling2d_4 (MaxPooling2D)</pre>	(None, 54, 54, 64)	0
conv2d_5 (Conv2D)	(None, 52, 52, 128)	73,856
<pre>max_pooling2d_5 (MaxPooling2D)</pre>	(None, 26, 26, 128)	0
flatten_1 (Flatten)	(None, 86528)	0
dense_2 (Dense)	(None, 128)	11,075,712
dropout_1 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 1)	129

Total params: 11,169,089 (42.61 MB)
Trainable params: 11,169,089 (42.61 MB)

Non-trainable params: 0 (0.00 B)

Deep CNN Model

- The Deep CNN model extends the Simple CNN by incorporating additional convolutional layers
- It uses a total of six convolutional layers with increasing filter sizes and two fully connected layers
- It includes a dense layer with 256 neurons
- This results in a significantly higher capacity model with around 19.16 million trainable parameters

==== Deep CNN Architecture =====

Model: "sequential_9"

Layer (type)	Output Shape	Param #
conv2d_33 (Conv2D)	(None, 222, 222, 32)	896
batch_normalization_12 (BatchNormalization)	(None, 222, 222, 32)	128
max_pooling2d_21 (MaxPooling2D)	(None, 111, 111, 32)	0
dropout_21 (Dropout)	(None, 111, 111, 32)	0
conv2d_34 (Conv2D)	(None, 109, 109, 64)	18,496
batch_normalization_13 (BatchNormalization)	(None, 109, 109, 64)	256
max_pooling2d_22 (MaxPooling2D)	(None, 54, 54, 64)	0
dropout_22 (Dropout)	(None, 54, 54, 64)	0
flatten_7 (Flatten)	(None, 186624)	0
dense_18 (Dense)	(None, 128)	23,888,000
dropout_23 (Dropout)	(None, 128)	0
dense_19 (Dense)	(None, 1)	129

Total params: 23,907,905 (91.20 MB)
Trainable params: 23,907,713 (91.20 MB)
Non-trainable params: 192 (768.00 B)

MobileNetV 2 Model

- MobileNetV2 is a lightweight architecture optimized for mobile and embedded devices.
- Like ResNet50, it was used with pretrained weights from ImageNet, and its layers were frozen.
- We used a custom head for classification.
- With only 2.42 million total parameters and 0.16 million trainable ones, this model is also a good fit for training images.

==== MobileNetV2 Architecture =====

Model: "sequential_4"

Layer (type)	Output Shape	Param #
mobilenetv2_1.00_224 (Functional)	(None, 7, 7, 1280)	2,257,984
<pre>global_average_pooling2d_1 (GlobalAveragePooling2D)</pre>	(None, 1280)	0
dense_8 (Dense)	(None, 128)	163,968
dropout_4 (Dropout)	(None, 128)	0
dense_9 (Dense)	(None, 1)	129

Total params: 2,422,081 (9.24 MB)
Trainable params: 164,097 (641.00 KB)
Non-trainable params: 2,257,984 (8.61 MB)

ResNet50 Model

- For the ResNet50 model, we used a pretrained network trained on ImageNet as a fixed feature extractor.
- All the layers in ResNet50 were frozen, and we added a custom classification head consisting of a global average pooling layer, a dense layer with 128 units, a dropout layer, and a final sigmoid output layer.
- Although the total parameter count is approximately 23.8 million, only 0.26 million parameters are trainable, making it efficient to train

===== ResNet50 Architecture =====

Model: "sequential_3"

Layer (type)	Output Shape	Param #
resnet50 (Functional)	(None, 7, 7, 2048)	23,587,712
<pre>global_average_pooling2d (GlobalAveragePooling2D)</pre>	(None, 2048)	0
dense_6 (Dense)	(None, 128)	262,272
dropout_3 (Dropout)	(None, 128)	0
dense_7 (Dense)	(None, 1)	129

Total params: 23,850,113 (90.98 MB)
Trainable params: 262,401 (1.00 MB)
Non-trainable params: 23,587,712 (89.98 MB)

Model Predictions

Pred: Fake True: Fake (92.2%)

Pred: Real True: Fake (81.2%)

Pred: Fake True: Real (92,6%)

Pred: Fake True: Fake (57.3%)

Pred: Real True: Real (70,9%)

Pred: Real True: Real (85,4%)

Pred: Fake True: Real (94.3%)

Pred: Fake True: Fake (96.8%)

Pred: Fake True: Fake (100.0%)

True: Real (51.9%)

Performance Evaluation

ROC Curves

Confusion Matrix

F1 Scores

Validation Accuracy

Evaluating Simple CNN...

63/63 ----- 22s 346ms/step

Classification Report:

	precision	recall	f1-score	support
fake	0.81	0.69	0.74	988
real	0.74	0.84	0.78	1012
accuracy			0.77	2000
macro avg	0.77	0.77	0.76	2000
weighted avg	0.77	0.77	0.76	2000

Evaluating Deep CNN...

Classification	Report: precision	recall	f1-score	support
fake	0.55	0.86	0.67	988
real	0.70	0.32	0.44	1012
accuracy			0.59	2000
macro avg	0.62	0.59	0.56	2000
weighted avg	0.62	0.59	0.55	2000

Evaluating MobileNetV2...

63/63 ----- 28s 390ms/step

03,03			203 33011373669		
Classific	ation	Report: precision	recall	f1-score	support
f	ake	0.91	0.84	0.88	988
r	eal	0.86	0.92	0.89	1012
accur	acy			0.88	2000
macro	avg	0.89	0.88	0.88	2000
weighted	a∨g	0.89	0.88	0.88	2000

Evaluating ResNet50...

Classification	Report: precision	recall	f1-score	support
fake	0.89	0.08	0.14	988
real	0.52	0.99	0.69	1012
accuracy			0.54	2000
macro avg weighted avg	0.71 0.70	0.53 0.54	0.42 0.42	2000 2000

SIMPLE CNN

DEEP CNN

MOBILENETV2

RESNET50

Comparing Across Models: ROC Curves

Comparing Across Models: F1 Scores

Comparing Across Models: Accuracies

Conclusion

- FaceGuard-AI successfully demonstrates the capability of machine learning to detect AI-generated faces with high accuracy and reliability.
- In addressing the growing concern of synthetic media threats, we explored
 multiple model architectures ranging from simple convolutional networks to
 advanced transfer learning techniques.
- Among the evaluated models, MobileNetV2 achieved the highest macro F1score, indicating superior generalization and balanced performance across both classes.
 - Models like **MobileNetV2** are well-suited for real-world deployment scenarios where speed and accuracy are both critical.

References

- 1.https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces/data
- 2.https://www.kaggle.com/datasets/dullaz/flickrfaces-dataset-nvidia-128x128
- 3.https://www.kaggle.com/datasets/dullaz/1m-ai-generated-faces-128x128

GitHub Repo: https://github.com/paritheplatypus/FaceGuard-Al