Lecture 23 Hash Tables

FIT 1008 Introduction to Computer Science

Objectives for this lecture

- To understand what is expected from a Hash Table
- To understand
 - What is a hash function
 - The properties of a good hash function
- To be able to implement simple hash functions
- To understand the challenges posed by collisions and start looking at solutions

Dictionary ADT

- Permits access to <u>data items</u> by content, e.g., a key.
- Operations:
 - → Search
 - → Insert
 - → Deleta

```
>>> a = dict()
>>> a[123465] = "Julian"
>>> a[133123] = "Nicole"
>>> a[982211] = "David"
>>>
>>> a
{123465: 'Julian', 133123: 'Nicole', 982211: 'David'}
  keys
              values
```

```
insert
>>> a = dict()
>>> a[123465] = "Julian"
>>> a[133123] = "Nicole"
>>> a[982211] = "David"
>>>
>>> a
{123465: 'Julian', 133123: 'Nicole', 982211: 'David'}
>>>
>>>
>>> a[133123] 🚣
'Nicole'
                                             search
```

Python dictionaries are implemented using Hash Tables

Hash Tables: Motivation

- Assume we are interested in **storing** a very significant amount of data (a big N)
- Assume we are going to need to perform the following operations relatively often:
 - Search for an item
 - Insert a new item
 - You might also want to delete an item (optional)
- But we do not need to traverse them in a particular order or sort them (at least not often)

Container ADTs

- Stores and removes items independent of contents.
- **Examples** include:
 - List ADT
 - Stack ADT
 - Queue ADT.

- Core operations:
 - → add item
 - → delete item
 - → search

Stacks:

- Follow LIFO
- Therefore, not suitable for searching/deleting

Queues:

- Follow FIFO
- Therefore, not suitable for searching/deleting

Unsorted Lists:

- Searching: O(1) best and O(N) worst (*Comparison)
- Adding: O(1) best and worst
- Deleting: O(1) best and O(N) worst (*Comparison)
- Sorted Lists (worst case and *Compare):
 - Searching: O(N) if linked lists O(log N) if array (*Comparison)
 - Adding: O(N) in linked lists and arrays
 - Deleting: O(N) in linked lists and arrays (*Comparison)

Hash Tables: aim

- Hash Tables promise:
 - Constant time operations (in most cases)
 - Worst case: still O(N)
- How?
 - Using arrays: constant time access to a given position
 - But this means, each item must have an assigned position

Hash Table Data Type

Data :

- Items to be stored
- Each item must have a unique key
- Underlying Data Structure: Large Array (also referred to as the Hash Table)

Operations:

- Insert
- Search
- Delete
- Hash Function: maps a <u>unique key to an array position</u>

Overview

Hash Function's properties

Basic properties:

- Type dependent: depends on the type of the item's <u>key</u>
- Return value within array's range [0 .. TABLESIZE-1]

Desirable:

- Fast, a slow hash function will degrade performance
- Minimises collisions (two keys mapped to same position)
- Perfect Hash maps every key into a different array position
 - Perfect hash functions are rare
 - Rely on very particular properties of the keys
- Good functions approximate random functions
- Chance of a collision is 1/TABLESIZE (Universal hash)

How to define Hash Functions?

How to define Hash Functions?

033-400-03-94-530

- **033**: Supplier number (1..999, currently up to 70)
- **400**: Category code (100,150,200, 250, up to 850)
- **03**: Month of introduction (1..12)
- 94: Year of introduction (00 to 99)
- 530: Checksum (sum of all other fields mod 100)

Good practices for hashing

- Don't use non-data (no checksum)
- Modify the key until all bits count (category codes should be changed to 0..15)

What if keys are strings?

How to define Hash Functions?

- Keys are words of up to ten letters
- Hash function:
 - Convert each character into a number (0..25)
 - Add the first two characters to obtain the array position
- Example:
 - maria $\rightarrow 12 + 0 = 12$
 - bernd $\rightarrow 1 + 4 = 5$
 - malena \rightarrow 12 + 0 = 12

Observations

- All words starting with the same two characters go to the same array position (collision)
- The more elements (characters, digits, etc) in the key you use, the better the hash function (in terms of collisions)
- Careful though: considering all might be too slow

How to define Hash Functions?

- Keys are words of up to ten letters
- Hash function:
 - Convert each character into a number (0..25)
 - Add <u>all of them</u> obtain the array position
- Example:
 - maria \rightarrow 12 + 0 + 17 + 8 + 0 = 37
 - bernd $\rightarrow 1 + 4 + 17 + 13 + 3 = 38$
 - malena \rightarrow 12 + 0 + 11 + 4 + 13 + 0 = 40

Observations

- Smallest position: word a → 0 = 0
- Biggest: word zzzzzzzzzz → 10*25= 250
- But we have about 50,000 words in our dictionary!
- Many collisions: each array position would be the hash key for 200 words! Anagrams since position is disregarded
- A better hash function needs to take into account the position.

Idea: Use all characters and take into account the position.

(Have we done something like this before?)

How to define Hash Functions?

Keys are words of up to ten letters

Hash function:

- Convert each character into a number (0..25)
- Multiply each character by 26ⁱ where i is the character position
- Add them to obtain the position

Example:

- maria $\rightarrow 12^{*}26^{4} + 0^{*}26^{3} + 17^{*}26^{2} + 8^{*}26^{1} + 0^{*}26^{0} = 5'495.412$
- zzzzzzzzz is greater than 26⁹ > 5,000,000,000,000

Observations

- Good discrimination: unique position per word
- Might exceed the capability of our table (or overflow our index)
- Too big for our 50,000 words: lots of empty positions
- We want something in the range of our TABLESIZE
- If the resulting number is too big: use % TABLESIZE

array position

$$h = ((\dots (a_0x + a_1)x + \dots + a_{n-3})x + a_{n-2})x + a_{n-1})x + a_n$$

At each step we take mod

```
h = ((\dots (a_0x + a_1)x + \dots + a_{n-3})x + a_{n-2})x + a_{n-1})x + a_n
```

```
def hash_function(word):
    value = 0
    for i in range(len(word)):
        value = (value*31 + ord(word[i])) % 101
    return value
```

How to define Hash Functions?

Consider the word "Aho"

value = 0
'A' = 65 value =
$$(31 * 0 + 65) % 101 = 65$$

'h' = 104 value = $(31 * 65 + 104) % 101 = 99$
'o' = 111 value = $(31 * 99 + 111) % 101 = 49$

49

$$65*(31^2) + 104*(31^1) + 111 = 65800$$

 $65800 \mod 101 = 49$

How to define Hash Functions?

- If the key an integer and is randomly distributed then position = key % TABLESIZE is random and fast.
- Use a prime table size: If many values and TABLESIZE share common factors they will hash to the same position.
 - Example: TABLESIZE=10 and all our keys finish in 0.
 Then all keys are hashed to 0.
- If you are multiplying by a constant and taking modulo, it helps if the value and the constant have no common factors.
 - **Observation**: 26 is not prime, but **31** is.

value = (value*31 + ord(word[i])) % 101

Key	Hash value
Aho	49
Kruse	95
Standish	60
Horowitz	28
Langsam	21
Sedgewick	24
Knuth	44

This results in a sparse Table because 31 and 101 are primes

value = (value*1024 + ord(word[i])) % 128

Key	Hash value
Aho	111
Kruse	101
Standish	104
Horowitz	122
Langsam	109
Sedgewick	107
Knuth	104

Things end up close to each other... and we also get collisions...

"clustering"

value = (value*3 + ord(word[i])) % 7

Key	Hash value
Aho	0
Kruse	5
Standish	1
Horowitz	5
Langsam	5
Sedgewick	2
Knuth	1

Reasonable size...

too small a

table.

Hash Functions properties (recap)

- Type dependent
- Must return value within array's range
- Fast: not too many arithmetic operations. Still linear in the size of key.
- Minimise collisions (each position equally likely)
 - Don't use non-data
 - Use all elements (or a reasonable subset odd/even positions)
 - Use the position of each element
 - Avoid common factors
 - And of course, it must be a function! Same value, same input

$$h = ((\dots(a_0x + a_1)x + \dots + a_{n-3})x + a_{n-2})x + a_{n-1})x + a_n$$

```
def hash_function(word):
    h = 0
    a = 31
    table_size = 101
    for i in range(len(word)):
        h = (h*a + ord(word[i])) % table_size
    return h
```

The choice of *a*, *h* and *table_size* affects the performance of the hash.

(Often empirically chosen based on data)

Hash Table operations: Insert

- Apply the hash function to get a position N
- Try to insert key at position N
- Deal with collision if any

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

Aho **Standish** Kruse

6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

Collisions: two main approaches

Separate chaining:

- Each array position contains a linked list of items
- Upon collision, the element is added to the linked list

Open addressing:

- Each array position contains a single item
- Upon collision, use an empty space to store the item (which empty space depends on which technique)

Summary

- What is a hash table data type and why is it needed
- Hash Functions
 - Definition
 - Properties
 - How to define them
- Perfect hash functions
- Universal hash functions