Zbiór najważniejszych instrukcji/wiadomości z wykładów bila.

Wykład 1 – Programowanie niskopoziomowe

Języki programowania:

Wysokiego poziomu: Ada, Basic, C, C++, C#, Fortran, Java, Pascal (Delphi), SQL, ...

Niskiego poziomu: asemblery – odpowiadają kodowi wykonywanemu przez procesor

Historia powstawania procesorów:

Intel 4004

- 4 bitowy powszechnie uznawany za pierwszy mikroprocesor
- 3-poziomowy stos

Intel 8008

- pierwszy mikroprocesor 8-bitowy Intela
- 3-4 razy więcej mocy obliczeniowej niż procesory 4 bitowe

Intel 8080

- 72 instrukcje
- 8-bitowa szyna danych, pamięć adresowana 16-bitową szyną adresową.

Intel 8086

- 16 bitowy
- Głównym konstruktorem był Stephen Morse

Intel 80186

- 16 bitowy
- kilka nowych rozkazów, szybszy zegar
- niektóre instrukcje były wykonywane 10-20 razy szybciej

Intel 80286

- mniej więcej dwa razy bardziej wydajny w porównaniu
- do procesora Intel 8086
- nowy tryb adresowania pamięci (tryb chroniony)

Intel 80386

- Pierwszy 32 bitowy procesor z rodziny x86
- dodanie do procesora jednostki MMU
- 32-bitowa magistrala adresowa oraz 32-bitowa magistrala
- danych
- rozszerzone do 32-bitów rejestry
- nowe tryby adresowania
- pracować w trzech trybach: rzeczywistym, chronionym i wirtualnym

Intel 80486 nazwa handlowa i486

- 32 bitowy
- cache na dane i instrukcje
- usprawnienia spowodowały, że i486 był mniej więcej
- dwukrotnie szybszy od podobnie taktowanego 80386

Intel Pentium

- architektura superskalarna
- 64-bitowa szyna danych
- jednostka branch prediction do przewidywania skoków
- (80% skuteczność)
- przeprojektowany koprocesor (5-6x wydajniejszy niż w
- i486)

Pentium Pro - mikroprocesor szóstej generacji

- Podział kodu x86 na mikrorozkazy
- Wykonywanie poza kolejnością
- Wykonywanie spekulatywne
- Dodatkowy potok ("pipeline") dla prostych instrukcji.

Pentium II

- dodatkowe instrukcje MMX
- poprawiona obsługa programów 16-bitowych
- cache pierwszego poziomu (L1) dla kodu i danych: 16 kB

Pentium III - procesor w 32-bitowej architekturze Intela (IA-32).

- architektura RISC
- rozmiar pamięci cache pierwszego poziomu (L1) dla kodu: 16 KB
- liczba etapów przetwarzania rozkazu (w potoku): 12
- liczba jednostek zmiennoprzecinkowych: 1 (z potokowaniem)
- liczba jednostek całkowitoliczbowych: 6 potoków
- liczba jednostek MMX:2
- Instrukcje SSE
- możliwość pracy w systemie wieloprocesorowym (do 2 procesorów).

Pentium 4 – siódma generacja procesorów firmy

- architektura NetBurst
- instrukcje SSE2, w nowszych wersjach jądra SSE3
- niektóre wersje posiadają wbudowaną wielowątkowość (HyperThreading)
- zwiększona pamięć poziomu L2
- pojawia się technologia **EM64T** (2003)
- pierwszy procesor dwurdzeniowy

Intel Core 2 to ósma generacja mikroprocesorów firmy Intel w architekturze x86

- mikroarchitektura Intel Core
- wysoki współczynnik IPC (Instructions Per Cycle) około 3,5
- wspólna pamięć cache dla obu rdzeni procesora
- EM64T,
- technologia wirtualizacji,
- XD bit,
- ulepszoną technologię SpeedStep,
- wersja czterordzeniowa

Intel Core i7

- modułowa budowa
- ośmiordzeniowy Nehalem ma się składać z 731 milionów tranzystorów
- SSE 4.2.
- technologia współbieżnej wielowątkowości
- dynamiczne zarządzanie zasilaniem
- wbudowanie kontrolera pamięci RAM
- technologia Quick-Path

Zestawienie procesorów

Nazwa procesora	Rok	Maks. częstotliwość taktowania	Liczba tranzystorów
		(w momencie wprowadzenia, MHz)	(mln.)
Intel 8086	1978	8	0,029
Intel 80186	1982	12	
Intel 80286	1982	12,5	0,134
Intel 80386	1985	20	0,275
Intel i486	1989	25	1,2
Pentium	1993	66	3,1
Pentium Pro	1995	200	5,5
Pentium MMX	1995	233	4,5
Pentium II	1997	266	7
Pentium III	1999	500	8,2
Pentium 4	2000	1500	42
EM64T	2003	2200	
Pentium D	2004	3200	230
Intel Core 2	2006	3000	321
Intel Core i7	2008	3400	731

Wykład 2 – Architektura procesora

Rejestry

- AX (ang. Accumulator) jest wykorzystywany głównie do operacji arytmetycznych i logicznych.
- BX (ang. Base Registers) rejestr bazowy, głównie wykorzystywany przy adresowaniu pamięci.
- **CX** (ang. Counter Registers) rejestr często wykorzystywany jako licznik, np. przy instrukcji LOOP.
- **DX** (ang. Data Register) rejestr danych, wykorzystywany przy operacjach mnożenia i dzielenia, a także do wysyłania i odbierania danych z portów.
- SI (ang. Source Index) rejestr indeksujący pamięć, wskazuje obszar z którego przesyłane są dane.
 W połączeniu z DS tworzy adres logiczny DS:SI
- **DI** (ang. Destination Index) rejestr indeksujący pamięć, wskazuje obszar, do którego przesyłane są dane. W połączeniu z ES, tworzy adres logiczny ES:DI
- **BP** (ang. Base Pointer) rejestr stosowany do
- adresowania pamięci.
- SP (ang. Stack Pointer) wskaźnik stosu.
- **IP** (ang. Instruction Pointer) zawiera adres aktualnie wykonywanej instrukcji, może być modyfikowany przez rozkazy sterujące pracą programu.
- FLAGS rejestr znaczników.

Rejestry - segmentowe

- **CS** (ang. Code Segment) rejestr informujący o segmencie aktualnie wykonywanego rozkazu. Razem z IP tworzy adres logiczny CS:IP kolejnej instrukcji.
- **DS** (ang. Data Segment) rejestr informujący o segmencie z danymi.
- **ES** (ang. Extra Segment) rejestr informujący o segmencie dodatkowym np. przy operacjach przesyłania łańcuchów.
- SS (ang. Stack Segment) rejestr informujący o segmencie stosu

Rejestr f	flag w architektu	rze Intel x86	
bit	Skrót/wartość	opis	ty
o	CF	flaga przeniesienia (carry)	S
1	1	zarezerwowany	
2	PF	flaga parzystości (parity)	S
4	AF	flaga wyrównania (adjust)	S
6	ZF	flaga zera (zero)	S
7	SF	flaga znaku (sign)	S
8	TP	flaga umożliwiająca krokowe wykonanie (trap)	х
9	IF	flaga zezwolenia na przerwania (interrupt enable)	x
10	DF	flaga kierunku (direction)	C
11	OF	flaga przepełnienia (overflow)	S
12, 13	IOPL	poziom uprawnień we/wy (I/O privilege level, od 286)	х
14	NT	nested task flag (od 286)	Х
16	RF	flaga wznowienia (resume, od 386)	х
17	VM	flaga trybu Virtual 8086 (od 386)	х
18	AC	alignment check (od 486SX)	Х
19	VIF	Virtual interrupt flag (od Pentium)	х
20	VIP	Virtual interrupt pending (od Pentium)	x
21	ID	Identification (od Pentium)	Х
3, 5, 15, 22-31	o	zarezerwowany	

S: Znacznik stanu C: Znacznik kontrolny

X: Znacznik systemowy

Rejestry MMX

Działają na nich instrukcje całkowitoliczbowe SIMD Wykorzystują rejestry koprocesora

Rejestry XMM

Działają na nich instrukcje zmiennoprzecinkowe SIMD

Wykład 3 - Tryby adresowania, Instrukcje przesyłania

Tryb adresowania - rejestrowy

```
Argumentem instrukcji jest rejestr.
```

Przykłady:

push ebx; mov edx, ebx; inc ecx;

Tryb adresowania prosty natychmiastowy

Argumentem instrukcji jest wartość.

Przykłady:

Mov al, 5; Mov edi, offset tablea; Inz petla;

Tryb adresowania bezpośredni

Argumentem instrukcji jest adres w pamięci(wskaźnik)

Przykłady:

Mov al, [1234ec5fh] Mov edi, tabale; pobiera pierwszy element Mov zmienna, edx;

Tryb adresowania pośredni rejestrowy

```
Argumentem instrukcji jest rejestr – wskaźnik
Przykłady:
Mov al, [ecx]
Mov edi, [ebx]
Mov [edi], edx
```

Tryb adresowania pośredni – bazowy

```
Argumentem instrukcji jest wskaźnik
Przykłady:

Mov al, [ebx+5]

Mov edi, [ebx+tablica]

Mov [ebp+8], edx
```

Tryb adresowania indeksowany

```
Argumentem instrukcji jest rejestr – wskaźnik
Przykłady:
mov al, [esi]
mov edi, [esi*4+tablica]
mov [edi*8+tablica], edx
```

Tryby adresowania - pośredni - bazowo-indeksowy

```
Argumentem instrukcji jest wskaźnik: Przykłady:
```

```
mov al, [ebx+esi+3]
mov edi, [ebx+eax*4]
mov [ebp+edi*4+tablica], edx
```

Wielkość danych

```
Można określić wielkość stosowanych danych:
Przykłady:
mov al, byte ptr [ebx+esi+3]
mov cx, word ptr [ebx+eax*4]
mov dword ptr [ebp+edi*4+tablica], edx
```

mov Przesyła zawartość źródła do miejsca przeznaczenia (cel). Wpływa na flagi: -

XCHG Zamienia zawartość źródła i celu. Wpływa na flagi: -

Bswap Zamienia bajty w argumencie. Wpływa na flagi: -

bswap eax

XADD Zamienia zawartość źródła i celu, a ich sumę umieszcza w miejscu przeznaczenia (cel)

Wpływa na flagi: OSZAPC

CMPXCHG Wpływa na flagi: OSZAPC

CMPXCHG8B Wpływa na flagi: OSZAPC

PUSH Przesyła zawartość argumentu na stos. Wpływa na flagi: -

POP Przesyła zawartość stosu do celu. Wpływa na flagi: -

PUSHF/PUSHFD Przesyła zawartość Flag/EFlag na stos. Wpływa na flagi: -

POPF/POPFD Pobiera zawartość Flag/EFlag ze stosu. Wpływa na flagi: OSZAPC

PUSHA/PUSHAD Przesyła zawartość di,si,bp,bx,dx,cx,ax,edi,esi,ebp,ebx,edx,ecx,eax na stos. Wpływa na flagi: -

POPA/POPAD Przesyła zawartość stosu do di,si,bp,bx,dx,cx,ax,edi,esi,ebp,ebx,edx,ecx,eax. Wpływa na flagi: -

CWD/CDQ konwertuje z zachowaniem znaku word na doubleword/doubleword na quadword (ax na dx:ax, eax na edx:eax)
Wpływa na flagi: -

CBW/CWDE konwertuje byte (AL) na word(AX)/word(AX) na doubleword (EAX) z uwzględnieniem znaku. Wpływa na flagi: -

MOVSX Przesyła zawartość źródła do rejestru celu z uwzględnieniem znaku. Cel posiada 2 /4 razy więcej bitów. Wpływa na flagi: -

MOVZX Przesyła zawartość źródła do rejestru celu z dopisaniem na starszych bitach zer. Cel posiada 2 /4 razy więcej bitów Wpływa na flagi: -

Wykład 4 Instrukcje arytmetyczne

ADD	dodawanie całkowitoliczbowe
ADC	dodawanie z przeniesieniem
SUB	odejmowanie
SBB	odejmowanie z pożyczką
MUL	mnożenie bez znaku
IMUL	mnożenie ze znakiem
DIV	dzielenie bez znaku
IDIV	dzielenie ze znakiem
INC	inkrementacja (zwiększenie)
DEC	dekrementacja (zmniejszenie)
NEG	zmiana znaku
CMP	porównanie

INC - Wpływa na flagi: OSZAP

DEC Wpływa na flagi: OSZAP

Cała reszta instrukcji arytmetycznych wpływa na flagi OSZAPC

Instrukcje arytmetyczne BCD

Wszystkie instrukcje BCD wpływają na flagi OSZAPC

- DAA korekta upakowanego kodu BCD po dodawaniu
- DAS korekta upakowanego kodu BCD po odejmowaniu
- AAA ASCII korekta po dodawaniu
- AAS ASCII korekta po odejmowaniu
- AAM ASCII korekta po mnożeniu
- AAD ASCII korekta przed dzieleniem

Nie działają w trybie 64 bitowym !!!

Przykład dodawania liczb BCD

mov al,0 add al,al ;CF=0 petla: mov al,[esi] ;pobierz cyfrę źródła adc al,ds:[edi] ;dodaj cyfrę celu z przeniesieniem aaa ;korekta mov ds:[edi],al ;zapamiętaj cyfrę inc esi ;następna cyfra inc edi dec ecx jnz petla ;CF nie zmieniło się od AAA!!!

Wykład 5 Instrukcje logiczne, przesunięć i rotacji

Instrukcje logiczne

AND bitowa funkcja AND Wpływa na flagi: OSZAPC OSZXPO

OR bitowa funkcja OR Wpływa na flagi: OSZAPC OSZXPO

XOR bitowa funkcja OR Wpływa na flagi: OSZAPC OSZxPO

NOT bitowa funkcja NOT Wpływa na flagi: brak

Instrukcje przesunięć i rotacji

SAR przesunięcie arytmetyczne w prawo Wpływa na flagi: OSZAPC (0x)SZxPC

SHR przesunięcie logiczne w prawo Wpływa na flagi: OSZAPC (0x)SZxPC

SAL przesunięcie arytmetyczne w lewo Wpływa na flagi: **OSZAPC** (0x)SZxPC

SHL przesunięcie logiczne w lewo Wpływa na flagi: OSZAPC (0x)SZxPC

SHRD przesunięcie w prawo double Wpływa na flagi: OSZAPC (Ox)SZxPC

ROR rotacja w prawo Wpływa na flagi: OSZAPC (0x)----C ror eax,1 ror [ebx+esi*4],cl

ROL rotacja w lewo Wpływa na flagi: OSZAPC (0x)----C

cel

RCR rotacja w prawo przez przeniesienie Wpływa na flagi: OSZAPC (0x)----C

0 1 1 0 0 1 0 1

»<mark>о</mark>

RCL rotacja w lewo przez przeniesienie Wpływa na flagi: OSZAPC (0x)----C

Wykład 6 Instrukcje warunkowe i skoku

Warunki dotyczące flag:

equal/zero	ZF=1
not equal/ not zero	ZF=o
carry	CF=1
not carry	CF=o
overflow	OF=1
not overflow	OF=o
sign (negative)	SF=1
not sign (non-negative)	SF=o
parity/ parity even	PF=1
not parity/ parity odd	PF=o
	not equal/ not zero carry not carry overflow not overflow sign (negative) not sign (non-negative) parity/ parity even

Warunki porównania liczb:

• E/Z	equal/ zero	ZF=1
NE/NZ	not equal/ not zero	ZF=o
Dla liczb bez znal	ku:	
A/NBE	above/ not below or equal	CF=o i ZF=o
 AE/NB 	above or equal/ not below	CF=o
 B/NAE 	below/ not above or equal	CF=1
 BE/NA 	below or equal/ not above	CF=1 lub ZF=1
Dla liczb ze znaki	em	
 G/NLE 	greater/ not less or equal	ZF=o i SF=OF
 GE/NL 	greater or equal/ not less	SF=OF
 L/NGE 	less/ not greater or equal	SF<>OF
 LE/NG 	less or equal/ not greater	ZF=1 lub SF<>OF

Skoki warunkowe Jcc:

• JE/JZ	Skocz jeśli equal/zero
 JNE/JNZ 	Skocz jeśli not equal/not zero
 JA/JNBE 	Skocz jeśli above/not below or equal
 JAE/JNB 	Skocz jeśli above or equal/not below
 JB/JNAE 	Skocz jeśli below/not above or equal
 JBE/JNA 	Skocz jeśli below or equal/not above
 JG/JNLE 	Skocz jeśli greater/not less or equal
 JGE/JNL 	Skocz jeśli greater or equal/not less
 JL/JNGE 	Skocz jeśli less/not greater or equal
 JLE/JNG 	Skocz jeśli less or equal/not greater
 JC 	Skocz jeśli carry
JNC	Skocz jeśli not carry
 JO 	Skocz jeśli overflow
JNO	Skocz jeśli not overflow
• JS	Skocz jeśli sign (negative)
 JNS 	Skocz jeśli not sign (non-negative)
 JPO/JNP 	Skocz jeśli parity odd/not parity
 JPE/JP 	Skocz jeśli parity even/parity

Instrukcje sterujące przebiegiem programu

JMP	Skok bezwarunkowy
 JCXZ/JECXZ 	Skok jeśli zero w rejestrze CX/ECX
 LOOP 	Pętla z licznikiem ECX
 LOOPZ/LOOPE 	Pętla z licznikiem ECX i zero/equal
 LOOPNZ/LOOPNE 	Pętla z licznikiem ECX i not zero/not equal
 CALL 	Wywołanie podprogramu
 RET 	Powrót z podprogramu
 IRET 	Powrót z podprogramu obsługi przerwania
INT	Przerwanie programowe
 INTO 	Przerwanie przy przekroczeniu zakresu
 BOUND 	sprawdzenie ograniczeń indeksu tablicy
• ENTER	Wysokopoziomowe wejście do podprogramu – utworzenie ramy stosu
• LEAVE	Wysokopoziomowe wyjście z podprogramu – usunięcie ramy stosu

Instrukcje sterujące nie wpływają na żadne flagi.

Wykład 7 Operacje na znacznikach bitach i bajtach

Operacje na flagach

- STC Ustawienie CF Wpływa na flagi: C
- CLC Zerowanie CF Wpływa na flagi: C
- CMC Zanegowanie CF Wpływa na flagi: C
- CLD Zerowanie DF f lagi kierunku Wpływa na flagi: -
- STD Ustawienie DF Wpływa na flagi: D
- LAHF Przesłanie f lag do rejestru AH Wpływa na flagi: -
- SAHF Przesłanie rejestru AH do f lag Wpływa na flagi: SZAPC
- PUSHF/PUSHFD Wysłanie f lag na stos Wpływa na flagi: -
- POPF/POPFD Pobranie f lag ze stosu Wpływa na flagi: OSZAPC
- STI Ustawienie IF f lagi przerwań Wpływa na flagi: I
- CLI Zerowanie IF Wpływa na flagi: I

Operacje na bitach

- BT Testowanie bitu Wpływa na flagi: OSZAPC xxxxxC
- BTS Testowanie bitu z ustawianiem Wpływa na flagi: OSZAPC xxxxxC
- BTR Testowanie bitu z zerowaniem Wpływa na flagi: OSZAPC xxxxxC
- BTC Testowanie bitu z negacją Wpływa na flagi: OSZAPC xxxxxC
- BSF Przeszukiwanie bitów w przód Wpływa na flagi: OSZAPC xxZxxx
- BSR Przeszukiwanie bitów wstecz Wpływa na flagi: OSZAPC xxZxxx
- TEST Porównanie logiczne Wpływa na flagi: OSZAPC OSZxPO

Operacje na łańcuchach

•	MOVS/MOVSB	Prześlij łańcuch/bajtów
•	MOVS/MOVSW	Prześlij łańcuch/słów
•	MOVS/MOVSD	Prześlij łańcuch/podwójnych słów
•	CMPS/CMPSB	Porównaj łańcuchy/bajtów
•	CMPS/CMPSW	Porównaj łańcuchy/słów
•	CMPS/CMPSD	Porównaj łańcuchy/podwójnych słów
•	SCAS/SCASB	Skanuj łańcuch/bajtów
•	SCAS/SCASW	Skanuj łańcuch/słów
•	SCAS/SCASD	Skanuj łańcuch/podwójnych słów
•	LODS/LODSB	Ładuj łańcuch/bajtów
•	LODS/LODSW	Ładuj łańcuch/słów
•	LODS/LODSD	Ładuj łańcuch/podwójnych słów
•	STOS/STOSB	Zapamiętaj łańcuch/bajtów
•	STOS/STOSW	Zapamiętaj łańcuch/słów
•	STOS/STOSD	Zapamiętaj łańcuch/podwójnych słów
•	REP	Powtarzaj dopóki ECX nie jest zerem
•	REPE/REPZ	Powtarzaj dopóki equal/zero
•	REPNE/REPNZ	Powtarzaj dopóki not equal/not zero

Instrukcja CMPS/CMPSB - Wpływa na flagi: OSZAPC Instrukcja CMPS/CMPSW Wpływa na flagi: OSZAPC Instrukcja CMPS/CMPSD Wpływa na flagi: OSZAPC Instrukcja SCAS/SCASB Wpływa na flagi: OSZAPC Instrukcja SCAS/SCASW Wpływa na flagi: OSZAPC Instrukcja SCAS/SCASD Wpływa na flagi: OSZAPC Instrukcja SCAS/SCASD Wpływa na flagi: OSZAPC Reszta instrukcji nie wpływa na żadne flagi!

Przykłady użycia

Szuka wartości 77 w bufora. ZF=1 oznacza znalezienie żądanej wartości. mov al,77 mov ecx,100 mov edi,bufor repnz ds:scasb

Kopiuje zawartość bufora1 do bufora2. mov ecx,100 mov esi,bufor1 mov edi,bufor2 rep movsb

Szuka wartości <>0 w buforze. ZF=0 oznacza znalezienie żądanej wartości. mov al,0 mov ecx,100 mov edi,bufor repz ds:scasb

Zeruje zawartość bufora. mov eax,0 mov ecx,100 mov edi,bufor rep ds:stosd

Wykład 8 Operacje zmiennoprzecinkowe

Operacje przesyłania danych

FLD	załadowanie argumentu zmiennoprzecinkowego
 FST 	zapisanie wartości z wierzchołka stosu
 FSTP 	zapisanie wartości z wierzchołka stosu i usunięcie go za stosu
 FILD 	załadowanie liczby całkowitej
 FIST 	zapisanie liczby całkowitej
 FISTP 	zapisanie liczby całkowitej ze zdjęciem ze stosu
 FBLD 	załadowanie liczby BCD
 FBSTP 	zapisanie liczby BCD i zdjęcie jej ze stosu
 FXCH 	zamiana zawartości rejestrów
 FCMOVE 	przesłanie warunkowe (jeśli równe)
 FCMOVNE 	przesłanie warunkowe (jeśli nie równe)
 FCMOVB 	przesłanie warunkowe (jeśli poniżej)
 FCMOVBE 	przesłanie warunkowe (jeśli poniżej lub równe)
 FCMOVNB 	przesłanie warunkowe (jeśli nie poniżej)
 FCMOVNBE 	przesłanie warunkowe (jeśli nie poniżej lub równe)
 FCMOVU 	przesłanie warunkowe (jeśli nieuporządkowane)
 FCMOVNU 	przesłanie warunkowe (jeśli uporządkowane)

Operacje arytmetyczne

-		
•	FADD	dodawanie
•	FADDP	dodawanie ze zdjęciem ze stosu
•	FIADD	dodawanie liczby całkowitej
•	FSUB	odejmowanie
•	FSUBP	odejmowanie ze zdjęciem ze stosu
•	FISUB	odejmowanie liczby całkowitej
•	FSUBR	odejmowanie odwrotne
•	FSUBRP	odejmowanie odwrotne ze zdjęciem ze stosu
•	FISUBR	odejmowanie odwrotne liczby całkowitej
•	FMUL	mnożenie
•	FMULP	mnożenie ze zdjęciem ze stosu
•	FIMUL	mnożenie liczby całkowitej
•	FDIV	dzielenie
•	FDIVP	dzielenie ze zdjęciem ze stosu
•	FIDIV	dzielenie przez liczbę całkowitą
•	FDIVR	dzielenie odwrotne
•	FDIVRP	dzielenie odwrotne ze zdjęciem ze stosu
•	FIDIVR	dzielenie odwrotne liczby całkowitej
•	FPREM	obliczenie reszty (częściowej) z dzielenia
•	FPREM ₁	obliczenie reszty (częściowej) z dzielenia zgodne z IEEE
•	FABS	obliczenie wartości bezwzględnej
•	FCHS	zmiana znaku
•	FRNDINT	zaokrąglenie do liczby całkowitej
•	FSCALE	skalowanie przez potęgę 2
•	FSQRT	obliczenie pierwiastka kwadratowego
•	FXTRACT	obliczenie wykładnika i mantysy

Operacje ładowania stałych

 FLD1 	zapisanie +1.0 na wierzchołku stosu
FLDZ	zapisanie +o.o na wierzchołku stosu
 FLDPI 	zapisanie π na wierzchołku stosu
 FLDL₂E 	zapisanie log₂e na wierzchołku stosu
• FLDLN2	zapisanie \log_{e^2} (ln2) na wierzchołku stosu
• FLDL2T	zapisanie log ₂ 10 na wierzchołku stosu
• FLDLG2	zapisanie log, _o 2 na wierzchołku stosu

Operacje funkcji przestępnych

 FSIN FCOS FSINCOS FPTAN FPATAN F2XM1 FYL2X FYL2XP1 	Oblicza sinus Oblicza cosinus Oblicza sinus i cosinus Oblicza (częściowy) tangens Oblicza (częściowy) arcus tangens Oblicza 2 ^x – 1 Oblicza y*log ₂ x Oblicza y*log ₂ (x+1)
• FYL2XP1	Oblicza y*log ₂ (x+1)

Operacje porównania

 FCOM 	porównanie liczb zmiennoprzecinkowych
 FCOMP 	porównanie liczb zmiennoprzecinkowych i zdjęcie ze stosu
 FCOMPP 	porównanie liczb zmiennoprzecinkowych i podwójne zdjęcie ze stosu
 FUCOM 	nieuporządkowane porównanie liczb zmiennoprzecinkowych
 FUCOMP 	nieuporządkowane porównanie liczb zmiennoprzecinkowych i zdjęcie ze stosu
 FUCOMPP 	nieuporządkowane porównanie liczb zmiennoprzecinkowych i podwójne zdjęcie ze stosu
 FICOM 	porównanie z liczbą całkowitą
 FICOMP 	porównanie z liczbą całkowitą i zdjęcie ze stosu
 FCOMI 	porównanie liczb zmiennoprzecinkowych i ustawienie EFLAGS
 FUCOMI 	nieuporządkowane porównanie liczb zmiennoprzecinkowych i ustawienie EFLAGS
 FCOMIP 	porównanie liczb zmiennoprzecinkowych, ustawienie EFLAGS i zdjęcie ze stosu
 FUCOMIP 	nieuporządkowane porównanie liczb zmiennoprzecinkowych, ustawienie EFLAGS i zdjęcie ze stosu
 FTST 	porównanie z liczbą o.o
 FXAM 	sprawdzenie liczby zmiennoprzecinkowej

Instrukcja FCOM/FCOMP/FCOMPP Wpływa na flagi: C3 C2 C0

Instrukcja FICOM/FICOMP Wpływa na flagi: C3 C2 C0

Instrukcja FCOMI/FCOMIP/FUCOMI/FUCOMIP Wpływa na flagi: ZF PF CF

Instrukcja FTST Wpływa na flagi: C3 C2 C0 Instrukcja FXAM Wpływa na flagi: C3 C2 C1 C0

Operacje sterowania koprocesorem

• F	FINCSTP	zwiększenie rejestru wskaźnika stosu koprocesora
• F	FDECSTP	zmniejszenie rejestru wskaźnika stosu koprocesora
• F	FFREE	zwolnienie rejestru zmiennoprzecinkowego
• F	FINIT	inicjalizacja koprocesora po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNINIT	inicjalizacja koprocesora bez sprawdzenia zgłoszenia błędu numerycznego
• F	FCLEX	zerowanie flag błędów numerycznych po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNCLEX	zerowanie flag błędów numerycznych bez sprawdzenia zgłoszenia błędu numerycznego
• F	FSTCW	zapamiętanie rejestru sterowania po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNSTCW	zapamiętanie rejestru sterowania bez sprawdzenia zgłoszenia błędu numerycznego
• F	FLDCW	wczytanie rejestru sterowania
• F	FSTENV	zapamiętanie środowiska koprocesora po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNSTENV	zapamiętanie środowiska koprocesora bez sprawdzenia zgł. błędu numerycznego
• F	FLDENV	wczytanie środowiska koprocesora
• F	FSAVE	zapamiętanie zawartości koprocesora po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNSAVE	zapamiętanie zawartości koprocesora bez sprawdzenia zgłoszenia błędu numerycznego
• F	FRSTOR	wczytanie zawartości koprocesora
• F	FSTSW	zapamiętanie rejestru stanu po sprawdzeniu zgłoszenia błędu numerycznego
• F	FNSTSW	zapamiętanie rejestru stanu bez sprawdzenia zgłoszenia błędu numerycznego
• V	WAIT/FWAIT	czekanie na koprocesor
• F	FNOP	nic nie robi

Wykład 8 Instrukcje typu SIMD

Single Instruction Multiple Data - przetwarzanych jest wiele strumieni danych przez jeden wykonywany program – cecha tzw. **komputerów wektorowych**.

Instrukcje SIMD dzieli się na:

- MMX (MultiMedia eXtensions lub Matrix Math eXtensions) liczby całkowite.
- SSE (Streaming SIMD Extensions) liczby zmiennoprzecinkowe.

Instrukcje typu MMX

Przykłady zastosowań:

- wyświetlanie grafiki trójwymiarowej: przekształcenia geometryczne, cieniowanie, teksturowanie;
- dekodowanie obrazów JPEG i PNG;
- dekodowanie i kodowanie filmów MPEG (m.in. wyznaczanie transformat DCT i IDCT);
- filtrowanie sygnałów: obrazów statycznych, filmów, dźwięku;
- wyświetlanie grafiki dwuwymiarowej (blue box, maskowanie, przezroczystość);
- wyznaczanie transformat: Haara, FFT

Budowa rozkazów

Operacje przesłania

- MOVD przesłanie podwójnego słowa (double)
- MOVQ przesłanie poczwórnego słowa (quad)

Operacje konwersji

 PACKSSWB 	pakowanie z nasyceniem słów ze znakiem do bajtów
 PACKSSDW 	pakowanie z nasyceniem podwójnych słów ze znakiem do
słów	
 PACKUSWB 	pakowanie z nasyceniem słów bez znaku do bajtów
 PUNPCKHBW 	rozpakowanie z przeplotem starszych bajtów
 PUNPCKHWD 	rozpakowanie z przeplotem starszych słów
 PUNPCKHDQ 	rozpakowanie z przeplotem starszych podwójnych słów
 PUNPCKLBW 	rozpakowanie z przeplotem młodszych bajtów
 PUNPCKLWD 	rozpakowanie z przeplotem młodszych słów
 PUNPCKLDQ 	rozpakowanie z przeplotem młodszych podwójnych słów

Operacje arytmetyczne

• PADDB	dodawanie wektorów bajtów
• PADDW	dodawanie wektorów słów
 PADDD 	dodawanie wektorów podwójnych słów
 PADDSB 	dodawanie z nasyceniem wektorów bajtów ze znakiem
 PADDSW 	dodawanie z nasyceniem wektorów słów ze znakiem
 PADDUSB 	dodawanie z nasyceniem wektorów bajtów bez znaku
• PADDUSW	dodawanie z nasyceniem wektorów słów bez znaku
 PSUBB 	odejmowanie wektorów bajtów
 PSUBW 	odejmowanie wektorów słów
 PSUBD 	odejmowanie wektorów podwójnych słów
 PSUBSB 	odejmowanie z nasyceniem wektorów bajtów ze znakiem
 PSUBSW 	odejmowanie z nasyceniem wektorów słów ze znakiem
 PSUBUSB 	odejmowanie z nasyceniem wektorów bajtów bez znaku
 PSUBUSW 	odejmowanie z nasyceniem wektorów słów bez znaku

- PMULHW mnożenie wektorów słów i zapamiętanie starszych słów wyniku
- PMULLW mnożenie wektorów słów i zapamiętanie młodszych słów wyniku
- PMADDWD mnożenie i dodawanie wektorów słów

Operacje porównania

operacje po	OWILLIAM
 PCMPEQB 	sprawdzenie równości wektorów bajtów
PCMPEQW	sprawdzenie równości wektorów słów
 PCMPEQD słów 	sprawdzenie równości wektorów podwójnych
 PCMPGTB znakiem 	sprawdzenie większości wektorów bajtów ze
 PCMPGTW znakiem 	sprawdzenie większości wektorów słów ze
PCMPGTD słów ze znakie	sprawdzenie większości wektorów podwójnych

Operacje logiczne

PAND	bitowy iloczyn logiczny
PANDN	bitowy iloczyn logiczny z negacją
• POR	bitowa suma logiczna
• PXOR	bitowa suma modulo 2

Operacje przesunięć

PSLLW	logiczne przesunięcie w lewo wektora słów
 PSLLD 	logiczne przesunięcie w lewo wektora podwójnych słów
 PSLLQ 	logiczne przesunięcie w lewo wektora poczwórnych słów
 PSRLW 	logiczne przesunięcie w prawo wektora słów
 PSRLD słów 	logiczne przesunięcie w prawo wektora podwójnych
 PSRLQ słów 	logiczne przesunięcie w prawo wektora poczwórnych
 PSRAW 	arytmetyczne przesunięcie w prawo wektora słów
 PSRAD słów 	arytmetyczne przesunięcie w prawo wektora podwójnych

Operacje sterujące

FXSAVE	zapisanie stanu x8 ^a	7 FPU i rejestrów SIMD
--------------------------	---------------------------------	------------------------

• FXRSTOR wczytanie stanu x87 FPU i rejestrów SIMD

EMMS zwalnia wszystkie rejestry koprocesora

LDMXCSR wczytanie rejestru MXCSR

• STMXCSR zapisanie rejestru MXCSR

Instrukcja EMMS

Zwalnia wszystkie rejestry koprocesora wpisując do pól TAG[i] rejestru stanu zawartości rejestrów stosu wartość 11b (rejestr pusty). Wszystkie instrukcje MMX wpisują do pól TAG[i] 0, co oznacza liczbę prawidłową! **Operacje MMX wprowadzone z SSE.**

 PAVGB 	oblicza średnią z elementów wektorów bajtów bez znaku
 PAVGW 	oblicza średnią z elementów wektorów słów bez znaku
 PEXTRW 	wydobycie słowa
 PINSRW 	wstawienie słowa
 PMAXUB 	oblicza maksimum z elementów wektorów bajtów bez znaku
 PMAXSW 	oblicza maksimum z elementów wektorów słów ze znakiem
 PMINUB 	oblicza minimum z elementów wektorów bajtów bez znaku
 PMINSW 	oblicza minimum z elementów wektorów słów ze znakiem
 PMOVMSKB 	przesłanie maski bajtów
 PMULHUW wyniku 	mnożenie wektorów słów bez znaku i zapamiętanie starszych słów
 PSADBW 	oblicza sumę wartości bezwzględnych różnic
 PSHUFW 	tasuje słowa w rejestrze MMX