## Homework 5

- 1. None
- 2. 14.6
  - (a).  $R = \{(x, y) : |x y| \le 2\}$
  - (b). R is reflexive. Assume  $a \in A$ , NTS  $(a, a) \in R$   $a a = 0 \le 2 \to (a, a) \in R$
  - (c). R is not irreflexive. Assume  $a \in A$ , NTS  $(a, a) \in R$   $a a = 0 \le 2 \to (a, a) \in R$
  - (d). R is symmetric. Assume  $(a,b) \in R$ , NTS  $(b,a) \in R$  $\rightarrow |a-b| \leq 2$

- (e). R is not antisymmetric. Counterexample:  $(1,2) \in R, (2,1) \in R, 1 \neq 2$
- (f). R is not transitive. Counterexample:  $(1,3) \in R, (3,5) \in R, (1,5) \notin R$
- 14.7(d)  $R^{-1} = \{(x, y) : x, y \in \mathbf{N}, y | x\}$
- Prove: let  $E = \{(x, y) : x, y \in \mathbb{N}, y | x\}$
- NTS (1)  $(x,y) \in R^{-1} \longrightarrow (x,y) \in E$
- $(2) (x,y) \in E \longrightarrow (x,y) \in R^{-1}$
- Prove of (1): Assume  $(x,y) \in R^{-1} \longrightarrow (y,x) \in R$
- $\longrightarrow y|x$
- $\longrightarrow (x,y) \in E$
- Prove of (2): Assume  $(x, y) \in E \longrightarrow y|x$
- $\longrightarrow (y,x) \in R$
- $\longrightarrow (x,y) \in R^{-1}$
- 14.7(e)  $R^{-1} = \{(x, y) : x, y \in \mathbf{Z}, yx > 0\}$
- Prove: let  $E = \{(x, y) : x, y \in \mathbf{Z}, yx > 0\}$
- NTS (1)  $(x, y) \in R^{-1} \longrightarrow (x, y) \in E$
- $(2) (x,y) \in E \longrightarrow (x,y) \in R^{-1}$
- Prove of (1): Assume  $(x,y) \in R^{-1} \longrightarrow (y,x) \in R$
- $\longrightarrow yx > 0$
- $\longrightarrow$   $(x,y) \in E$
- Prove of (2): Assume  $(x, y) \in E \longrightarrow yx > 0$
- $\longrightarrow (y,x) \in R$
- $\longrightarrow (x,y) \in R^{-1}$
- 3.  $14.12 R = (\{(x,y) : x, y \in \mathbf{Z}, x \le y\}$  $R^{-1} = \{(x,y) : x, y \in \mathbf{Z}, y \le x\}$

Prove: let 
$$E = \{(x,y): x,y \in \mathbf{Z}, y \leq x\}$$
  
NTS (1)  $(x,y) \in R^{-1} \longrightarrow (x,y) \in E$   
(2)  $(x,y) \in E \longrightarrow (x,y) \in R^{-1}$   
Prove of (1): Assume  $(x,y) \in R^{-1} \longrightarrow (y,x) \in R$   
 $\longrightarrow y \leq x \longrightarrow (x,y) \in E$   
Prove of (2): Assume  $(x,y) \in E \longrightarrow y \leq x$   
 $\longrightarrow (y,x) \in R$   
 $\longrightarrow (x,y) \in R^{-1}$ 

- 4. 14.13(a)  $A = \{1, 2\}, R = \{(1, 1)\}$ 14.13(b)  $A = \emptyset, R = \emptyset$
- 5. 14.14 Prove: R is  $symmetric \iff R = R^{-1}$ NTS (1) R is  $symmetric \implies R = R^{-1}$ (2)  $R = R^{-1} \implies R$  is symmetricProve of (1):

NTS (a)  $R \subseteq R^{-1}$ (b)  $R^{-1} \subseteq R$ 

Prove of (a): let  $(x,y) \in R \longrightarrow (y,x) \in R \longrightarrow (x,y) \in R^{-1}$ Prove of (b): let  $(x,y) \in R^{-1} \longrightarrow (y,x) \in R \longrightarrow (x,y) \in R$ Prove of (2): let  $(x,y) \in R \longrightarrow (y,x) \in R^{-1} \longrightarrow (y,x) \in R \longrightarrow R$  is symmetric

14.15 Prove: R is antisymmetric  $\iff R \cap R^{-1} \subseteq \{(a,a) : a \in A\}$ NTS (1) R is antisymmetric  $\longrightarrow R \cap R^{-1} \subseteq \{(a,a) : a \in A\}$ (2)  $R \cap R^{-1} \subseteq \{(a,a) : a \in A\} \longrightarrow R$  is antisymmetric Prove of (1): let  $(x,y) \in R \longrightarrow (y,x) \in R \longrightarrow x = y$   $(y,x) \in R^{-1} \longrightarrow (x,y) \in R^{-1} \longrightarrow (x,y) \in R \cap R^{-1} \land (x,y) \in \{(a,a) : a \in A\} \longrightarrow R \cap R^{-1} \subseteq \{(a,a) : a \in A\}$ Prove of (2): let  $x R y \land y R x \longrightarrow x R y \land x R^{-1} y \longrightarrow (x,y) \in R \cap R^{-1}$  $(x,y) \in \{(a,a) : a \in A\} \longrightarrow x = y \longrightarrow R$  is antisymmetric

6. 14.17

