Probabilidad

Daniel Fraiman

Maestría en Ciencia de Datos, Universidad de San Andrés

1/24

Esperanza y Varianza

- Esperanza: nos dice dónde está "centrada" la variable
- Varianza: nos dice cuán diferentes son los valores que toma.

Esperanza y Varianza

3/24

Esperanza y Varianza

ESPERANZA DE VARIABLES ALEATORIAS

5/24

Esperanza

Esperanza

Variables Discretas

Sea X una v.a. discreta que toma los valores x_1, x_2, \ldots , con probabilidades $p_X(x_1), p_X(x_2), \ldots$, denominamos esperanza ó valor esperado de X al número

$$\mathbb{E}(X) = \sum_{i} x_{i} p_{X}(x_{i}),$$

siempre que $\sum_{i} |x_i| p_X(x_i) < \infty$. Si diverge, la esperanza no está definida.

Ejemplo

$$X = \{0, 2, 4\} \text{ con } \mathbb{P}(X = 0) = 0.2\mathbb{P}(X = 2) = 0.5, \mathbb{P}(X = 4) = 0.3$$

$$\mathbb{E}(X) = 0 \times 0.2 + 2 \times 0.5 + 4 \times 0.3 = 2.2$$

7/24

Esperanza: "centro de gravedad"

Esperanza: "centro de gravedad"

9/24

Esperanza

Variables Discretas

Sea X una v.a. continua con densidad $f_X(x)$ denominamos esperanza ó valor esperado de X al número

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx,$$

siempre que $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$. Si diverge, la esperanza no está definida.

Ejemplo

$$f_X(x) = 2 \cdot x \cdot 1_{\{0 < x < 1\}}$$

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x 2x dx = 2 \int_{0}^{1} x^2 dx = \frac{2}{3}$$

Esperanza: "centro de gravedad"

11/24

Algunos resultados sobre la Esperanza

Esperanza de una suma de v.a.

Sean $X_1, X_2, \ldots X_n$ v.a. y a_0, a_1, \ldots, a_n constantes,

$$\mathbb{E}\left(a_0 + \sum_{i=1}^n a_i X_i\right) = a_0 + \sum_{i=1}^n a_i \mathbb{E}\left(X_i\right)$$

Binomial

Sea $X \sim Bi(n, p), X = X_1 + X_2 + \dots + X_n \text{ con } X_i \sim Bernoulli(p)$

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \mathbb{E}(X_{i}) = np$$

Algunos resultados sobre la Esperanza

Esperanza de una función de una variable aleatoria

Sea X una variable aleatoria y sea Y = g(X).

$$\mathbb{E}(Y) = \mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) p_X x_i & \text{v.a. discreta} \\ \int_{-\infty}^{+\infty} g(x) f_X(x) \, dx & \text{v.a. continua} \end{cases}$$

Ejemplo

Sea $X \sim U[1,3]$, e $Y = X^2$, hallar $\mathbb{E}(Y)$.

$$\mathbb{E}(Y) = \mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \int_{1}^{3} x^2 \frac{1}{2} dx = \frac{26}{6}$$

13/24

Esperanza

Por las dudas

2 Sean
$$X$$
 e Y v.a. $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$.

VARIANZA DE VARIABLES ALEATORIAS

15/24

Varianza

Varianza

Definición

Si *X* es una variable aleatoria que tiene esperanza, se define su varianza como el número

$$Var(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$$

siempre que esta esperanza exista.

• $Var(X) \geq 0$.

Definición

Se denomina desviación estándar de X a

$$SD(X) = \sqrt{Var(X)}.$$

17/24

Varianza

Ejemplo v.a. discreta

$$X = \{0, 2, 4\} \text{ con } \mathbb{P}(X = 0) = 0.2\mathbb{P}(X = 2) = 0.5, \mathbb{P}(X = 4) = 0.3$$

$$\mathbb{E}(X) = 0 \times 0.2 + 2 \times 0.5 + 4 \times 0.3 = 2.2$$

$$Var(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}\left((X - 2, 2)^2\right)$$
$$= (0 - 2, 2)^2 \times 0, 2 + (2 - 2, 2)^2 \times 0, 5 + (4 - 2, 2)^2 \times 0, 3$$
$$= 1,96$$

Varianza

Ejemplo v.a. continua

 $X \sim U[0, 2]$, entonces $\mathbb{E}(X) = 1$.

$$Var(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}\left((X - 1)^2\right)$$
$$= \int_0^2 (x - 1)^2 \frac{1}{2} dx$$
$$= \frac{1}{3}$$

¿Hace sentido este valor? ¿cuánto vale el desvío estándar?

19/24

Esperanzas y Varianzas

X	$\mathbb{E}\left(X ight)$	Var(X)
Discretas		
Bernoulli(p)	p	p(1-p)
Bi(n,p)	np	np(1-p)
Ge(p)	1/p	$(1-p)/p^2$
$Poisson(\lambda)$	λ	λ
Continuas		
U[a,b]	(a+b)/2	$(b-a)^2/12$
$Exp(\lambda)$	$1/\lambda$	$1/\lambda^2$
$\Gamma(lpha,\lambda)$	α/λ	α/λ^2
$N(\mu,\sigma^2)$	μ	σ^2

Algunos resultados sobre la Varianza

Teorema

Sea X una v.a. con $\mathbb{E}(X)$, se cumple:

- $Var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$ (otra forma de calcular Var(X))
- $Var(a + bX) = b^2 Var(X)$

21/24

Algunos resultados sobre la Varianza

Definición: variables independientes

Decimos que las variables aleatorias X_1, X_2, \dots, X_n son independientes si para todo $x_1, x_2, \dots, x_n \in \mathbb{R}$ vale

$$P(X_1 \leq x_1 \cap \cdots \cap X_n \leq x_n) = P(X_1 \leq x_1) \cdots P(X_n \leq x_n).$$

Varianza de una suma de v.a independientes

Si
$$X_1, X_2, \dots, X_n$$
 son v.a. independientes $\rightarrow Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$

Binomial

Sea
$$X \sim Bi(n, p), X = X_1 + X_2 + \dots + X_n \text{ con } X_i \sim Bernoulli(p)$$

$$Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = np(1-p)$$

Promedios y Sumas de variables aleatorias

Esperanza y varianza de un promedio

A partir de las variables aleatorias X_1, X_2, \dots, X_n construimos una nueva v.a.:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n} =: \frac{S_n}{n}$$

Por las propiedades,

$$\mathbb{E}\left(\overline{X}_n\right) = \frac{\mathbb{E}\left(X_1\right) + \mathbb{E}\left(X_2\right) + \cdots + \mathbb{E}\left(X_n\right)}{n}.$$

$$\mathbb{E}(S_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \cdots + \mathbb{E}(X_n).$$

Si todas las variables tienen la misma esperanza, $\mathbb{E}(X_i) = \mu$, entonces

$$\mathbb{E}\left(\overline{X}_n\right) = \mu \quad \mathbf{y} \quad \mathbb{E}\left(S_n\right) = n\mu$$

23/24

Promedios y Sumas de variables aleatorias

Esperanza y varianza de un promedio

Si además X_1, X_2, \ldots, X_n son independientes entonces,

$$Var(\overline{X}_n) = Var\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{Var(X_1 + \dots + X_n)}{n^2}$$
$$= \frac{Var(X_1) + \dots + Var(X_n)}{n^2}.$$

 $Var(S_n) = Var(X_1) + \cdots + Var(X_n)$. Si además todas las variables tienen la misma varianza, $Var(X_i) = \sigma^2$, entonces

$$Var(\overline{X}_n) = \frac{\sigma^2}{n}$$
 y $Var(S_n) = n\mu$.