# CS641 Modern Cryptology

LECTURE 4

# Building Blocks

- A linear transformation on the entire block helps mixing the information well.
- A non-linear transformation is needed to make it secure.
- Therefore, a combination of the two is desirable.
- A large number of encryption algorithms use both.

# MIXING PROPERTY OF LINEAR TRANSFORMATIONS

#### THEOREM

Let  $u \in \mathbb{Z}^b$ ,  $u \neq 0$ , and  $K \in \mathbb{Z}^{b \times b}$ . Then, over random choices of K,  $K \cdot u$  is a random vector in  $\mathbb{Z}^b$ .

- Given u and c with  $u \neq 0$ , let *i*th entry of u,  $u_i$ , be non-zero.
- Let K<sub>i</sub> be the ith column of K.
- Probability that  $c = K \cdot u$  equals the probability that  $K_i = \frac{1}{u_i}(c \sum_{1 \le j \ne i \le b} u_j K_j)$ .
- Fixing all other columns of K except  $K_i$ , this is the probability that a random vector  $K_i$  equals a fixed vector.

Manindra Agrawal CS641: Lecture 4 4/19

## Invertibility of Non-Linear Transformations

- Since encrypted text is required to be decrypted, all transformations done during encryption need to be invertible.
- This is easy for linear transformations, but non-linear transformations are typically not invertible.
- So we have to find non-linear transformations that are invertible.
- There is a generic way of doing it given by Feistel.

# FEISTEL STRUCTURE

- Let f be any non-linear transformation with  $f: \{0,1\}^n \mapsto \{0,1\}^n$ .
- Define transformation g, g :  $\{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$  as:

$$g(a,b)=(b,a\oplus f(b)),$$

where  $\oplus$  is bitwise XOR.

ullet g is clearly a non-linear transformation, and it is also invertible:

$$g^{-1}(b,a')=(a'\oplus f(b),b).$$

 Therefore, we can use Feistel structure to ensure invertibility given any transformation f.

# ENCRYPTION USING FEISTEL STRUCTURE

- Function g transforms only half of input text (b is present in the output).
- We use two rounds of applications of g to transform input completely:

$$g(g(a,b)) = g(b,a \oplus f(b)) = (a \oplus f(b), b \oplus f(a \oplus f(b))).$$

• We can use any number of rounds — generally, greater number of rounds provide more security.

Manindra Agrawal CS641: Lecture 4 7/19

# HISTORY

- Designed in 1974 by a group of IBM engineers led by Walter Tuchman.
- Adopted by National Bureau of Standards (US) in 1976 as standard and named Data Encryption Standard (DES).
- One of the most widely used encryption algorithm until 2001.

Manindra Agrawal 9/19

# DES PARAMETERS

- A block cipher with blocksize = 64 bits, or 8 bytes.
- Key size = 56 bits.
- This size was sufficient in 1970s to be resistant against brute-force attacks.
- Uses Feistel structure with 16 rounds.

# DES STRUCTURE



- $R_{i+1} = L_i \oplus f(R_i, k_i)$  for  $0 \le i < 16$
- $L_{i+1} = R_i$  for  $0 \le i < 16$ .
- Function f also depends on round key  $k_i$ .

# ROUND OPERATIONS

- Key  $k_i$  is called round key for round i,  $1 \le i \le 16$ .
- Each round key is 48 bits long.
- Each is a fixed subset of 56 bits of key
  - Subsets are different for different rounds, but fixed.
- Plaintext block is  $L_0R_0$  with  $|L_0| = |R_0| = 32$  bits.
- Input to round i+1 is  $L_iR_i$  and its output is  $L_{i+1}R_{i+1}$ , with  $|L_{i+1}| = |R_{i+1}| = 32$  bits.
- As per Feistel structure,  $L_{i+1} = R_i$  for  $0 \le i < 16$ .

# Function f

- Function f is a non-linear function.
- It takes as input right half of round input (of 32 bits) and round key (of 48 bits), and produces a 32 bit output.
- It can be further divided into a series of four operations, three of which are linear and one is non-linear.

# Function f



- $R_{i+1} = L_i \oplus f(R_i, k_i)$  for  $0 \le i < 16$
- $L_{i+1} = R_i$  for  $0 \le i < 16$ .
- Function f also depends on round key  $k_i$ .

Manindra Agrawal CS641: Lecture 4

14/19

# EXPANSION E

- Takes 32 bit input and produces 48 bit output.
- Replicates 16 bits of input in the following way:
  - ▶ Input:  $b_0b_1 \cdots b_{31}$
  - Output:  $b_{31}b_0b_1b_2b_3b_4b_3b_4b_5b_6b_7b_8b_7b_8\cdots b_{29}b_{30}b_{31}b_0$

## PERMUTATION P

- Shuffles input bits as:
  - ▶ Input:  $b_0 b_1 b_2 \cdots b_{31}$
  - ► Output:  $b_{15}b_7b_{19}b_{20}b_{28}b_{11}b_{27}b_{16}\cdots b_{21}b_{10}b_3b_{24}$
- Primary aim is to shuffle bits so that in all 4-bits in a block move to different blocks, for each of the eight blocks.

### S-BOXES

- Only nonlinear operation in entire algorithm
- There are eight S-boxes, each mapping six bits to four bits.
- Each of the eight boxes are distinct transformations.

Manindra Agrawal CS641: Lecture 4 17/19

| S-1       | 0000 | 0001 | 0010      | 0011       | 0100      | 0101 | 0110 | 0111 |
|-----------|------|------|-----------|------------|-----------|------|------|------|
| 00        | 14   | 4    | 13        | 1          | 2         | 15   | 11   | 8    |
| 01        | 0    | 15   | 7         | 4          | 14        | 2    | 13   | 1    |
| 10        | 4    | 1    | 14        | 8          | 13        | 6    | 2    | 11   |
| 11        | 15   | 12   | 8         | 2          | 4         | 9    | 1    | 7    |
|           |      |      |           |            |           |      |      |      |
| S-1       | 1000 | 1001 | 1010      | 1011       | 1100      | 1101 | 1110 | 1111 |
| S-1<br>00 | 3    | 1001 | 1010<br>6 | 1011<br>12 | 1100<br>5 | 9    | 0    | 7    |
|           |      |      |           |            |           |      |      |      |
| 00        | 3    | 10   | 6         | 12         | 5         | 9    | 0    | 7    |

- Columns indexed by middle four bits of input, and rows indexed by first and last bits of input.
- Numbers are between 0 to 15 representing four bit outputs.
- Every row has all 16 numbers occurring once.

# DESIGN CHOICES

- Why 56 bit key size? Why not 64 bits?
  - Key is stored in 64 bits. In each byte, msb is used to do parity check of seven bits of key.
  - ► To catch any error occurring in other seven bits.
- Why so small S-boxes?
  - ► To store S-box tables in hardware so that algorithm can be executed fast.
  - ▶ Same reason for other choices of operations.