COMP3203 Final Exam Notes

William Findlay
December 13, 2018

Contents

1	Tes	t 1 Stuff (Brief and Important Only)	3
2	AR (2.1	Sliding Window	3 3
		2.1.2 Selective Reject	3
	2.2	Stop and Wait	4
		2.2.1 Errors in Stop and Wait	4 5
	7. AT		
3	3.1	Uncoordinated Access Control	6
	$3.1 \\ 3.2$	Ethernet	7
4	C		7
4	4.1	ordinated Access Tree Algorithm	7
	4.2	Binary Countdown	7
	4.3	Bitmap	7
_			
5		reless	7
	5.1	Cellular	7
	5.2	Ad Hoc	7 7
		5.2.2 Compass Routing	7
		5.2.3 Face Routing	7
	5.3	Bluetooth	7
6	\mathbf{GP}		7
	6.1	Three Techniques	7
	6.2	Satellites	7
7	Roi	uting	7
•	7.1	Distance Vector (RIP)	7
	7.2	Link State Protocol (LSP)	7
	7.3	MSTs	7
	7.4	Dijkstra	7
8	ΙP		7
	8.1	IPv4	7
		8.1.1 Classes of Address	7
		8.1.2 Subnets	7
		8.1.3 Subnet Masks	7
	8.2	IPv6	7
	8.3	DHCP	7
	8.4	ARP	7
		8.4.1 RARP	7
9	TC	P	7
	9.1	How it Works (Sliding Window)	7
	9.2	How it Builds Statistics	7
	9.3	Fauilibrium Model	7

1 Test 1 Stuff (Brief and Important Only)

• test 1 stuff here

2 ARQs

- (A)utomatic (R)epeat Re(Q)uests
- strategy to handle errors detected by the CRC
 - or whatever other detection method
- main types
 - stop and wait
 - sliding window
 - go back N
 - selective reject

2.1 Sliding Window

2.1.1 Go Back N

- most commonly used sliding window
- \bullet sequential frames numbered $n \mod N$
- send up to N-1 frames **before an ACK** is received
- unbounded sequence numbers is a hurdle for sliding window in non-FIFO channels

ACKs and NAKs

- if no error
 - send RR (ACK) for frame[n]
- if error
 - send REJ (NAK) for frame[n]
- if frame lost, send a NAK
- if no ACK or NAK received before timeout, assume lost

When Sender Receives a NAK/n/

• resend frame [n] and all frames sent since

When a Sender Receives No ACK or NAK

• go back to the previous ACK and resend all frames sent since

2.1.2 Selective Reject

- \bullet similar to go back N
- BUT we only resend the lost frame
 - out of order!
 - receiver needs sorting logic to store frames after a NAK

• in general, smaller window size

Figure 1: An example of the Selective Reject protocol.

2.2 Stop and Wait

- \bullet also called an \mathbf{ABP}
 - alternating bit protocol
 - because the label bits alternate between 0 and 1
- ullet you can think of it as sliding "window" with a **window size of 1**
- works only in **FIFO queues**
 - suitable for data link layer

Figure 2: A diagram of the Stop and Wait ARQ protocol.

2.2.1 Errors in Stop and Wait

• two main types

- frame errors
 - damaged frame
- ACK errors
 - damaged acknowledgement

Frame Errors

Figure 3: A lost frame error in the Stop and Wait ARQ protocol.

- frame is damaged
 - one or more bits have been altered
- discard the frame
- source waits for ACK
 - if it doesn't receive one, it will resend

ACK Errors

- frame is received but ACK is damaged
- sender will resend message
- $\bullet\,$ receiver will accept the same message twice
 - so we need to label frames
 - and label ACKs
 - use a bit for this
 - ACK[b] acknowledges frame $[b+1 \mod 2]$
 - says receiver is ready for frame [b]

2.2.2 Correctness

- satisfies:
 - safety
 - algorithm never gives an incorrect result
 - always results in a "corrected" error
 - liveness
 - never enters a deadlock condition

Figure 4: An ACK error in the Stop and Wait ARQ protocol.

3 Multiaccess

3.1 Uncoordinated Access Control

COME BACK HERE

3.2 Ethernet

4 Coordinated Access

- 4.1 Tree Algorithm
- 4.2 Binary Countdown
- 4.3 Bitmap
- 5 Wireless
- 5.1 Cellular
- 5.2 Ad Hoc
- 5.2.1 UDG
- 5.2.2 Compass Routing
- 5.2.3 Face Routing
- 5.3 Bluetooth
- 6 GPS
- 6.1 Three Techniques
- 6.2 Satellites
- 7 Routing
- 7.1 Distance Vector (RIP)
- 7.2 Link State Protocol (LSP)
- 7.3 MSTs
- 7.4 Dijkstra
- 8 IP
- 8.1 IPv4
- 8.1.1 Classes of Address
- 8.1.2 Subnets
- 8.1.3 Subnet Masks
- 8.2 IPv6