«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Информационные системы и телекоммуникации»

Методическое указание к лабораторной работе «Виртуальные локальные сети» по курсу

«Учебно-технологическая практика по инфокоммуникационным системам и сетям»

Составила: Тихомирова Е.А.

Часы: 4 часа

Оглавление

Цель работы	3
Теоретическая часть	3
Практическая часть	
Контрольные вопросы	
Литература	/

Цель работы

- 1. Изучить принцип работы виртуальных локальных сетей.
- 2. Изучить создание и настройку виртуальных локальных сетей.
- 3. Изучить настройку маршрутизации между различными виртуальными локальными сетями.

Теоретическая часть

Виртуальные локальные сети (Virtual Local Area Network – VLAN) – логический широковещательный домен, создаваемый устройством второго уровня стека протоколов TCP/IP – коммутатором.

По умолчанию в сети существует один VLAN (VLAN 1), поэтому без привлечения устройства, работающего на третьем уровне стека протоколов TCP/IP, невозможно ограничить широковещательную рассылку между узлами сети (рис. 1).

Рис. 1. Широковещательная рассылка в одном VLAN.

При выделении в локальной сети нескольких VLAN выделяется несколько широковещательных доменов – по количеству VLAN (рис. 2).

Рис. 2. Широковещательная рассылка при наличии двух VLAN в локальной сети.

В данном примере определение, к какому VLAN принадлежит кадр, осуществляется по тому, к какому VLAN относится порт, на который пришел кадр.

Таким образом, порты коммутатора, подключенные к конечным узлам, переправляют трафик только одного VLAN – VLAN, к которому они принадлежат. Но если сеть имеет топологию, изображенную на рис. 3, то соединение между двумя коммутаторами должно передавать как трафик VLAN 1, так и трафик VLAN 2.

Рис. 3. Топология сети с транковым соединением.

Появляется задача определения, какому VLAN принадлежит кадр. Это решается за счет введения коммутатором-отправителем дополнительного поля, добавляемому в кадр, – идентификатор VLAN (VLAN ID). Данное поле указывает номер VLAN, которой

предназначается кадр. Перед отправкой кадра конечному узлу (в необходимый VLAN) данное поле убирается из кадра. Соединению, позволяющее передавать кадры разных VLAN (с полем VLAN ID), называется транковым соединением (trunk).

VLAN не только ограничивают широковещательную рассылку, но являясь отдельными сетями, хоть и логическими, без устройства, работающего на третьем уровне стека протоколов TCP/IP, блокируют прохождение трафика между различными VLAN (рис. 4).

Рис. 4. Маршрутизация между различными VLAN.

Задача маршрутизатора — переправлять пакеты из одной сети в другую. В данном случае сети являются виртуальными, но задача не меняется. Необходимо, чтобы соединение между маршрутизатором и коммутатором могло передавать трафик всех необходимых VLAN. Для этого на маршрутизаторе используется протокол IEEE 802.1Q. Данный протокол включает транковый режим на субинтерфейсе маршрутизатора.

Под субинтерфейсом понимается логический интерфейс маршрутизатора, полученный путем разбиения физического интерфейса (рис. 5). Данная конфигурация иногда называется Router-on-a-stick («маршрутизатор на палочке»). Каждый субинтерфейс передает трафик только одного VLAN, к которому он принадлежит. Таким образом, при передаче трафика из одного VLAN в другой, трафик сначала посылается на маршрутизатор, после чего перенаправляется в необходимый VLAN.

Рис. 5. Разделение физического интерфейса на субинтерфейсы.

Практическая часть

Собрать и настроить топологию, заданную преподавателем. Настройку осуществить в соответствии с данными в табл. 2, 3. В качестве коммутатора использовать модель 2960, в качестве маршрутизатора – 2811.

В качестве среды моделирования использовать Cisco Packet Tracer.

Список необходимых команд приведен в табл. 1.

Конфигурирование виртуальных локальных сетей осуществляется в следующем порядке:

- 1. порт коммутатора назначается определенной VLAN. Если VLAN еще не создана, то на данном шаге происходит создание;
- 2. настраивается транковое соединение;
- 3. настраивается маршрутизация между VLAN.

Таблица 1.

Команды конфигурирования.

Команда	Описание		
encapsulation dot1q	Включает транковый режим с инкапсуляцией 802.1Q.		
идентификатор VLAN	Идентификатор VLAN – номер VLAN.		
configure terminal	Активирует режим конфигурации терминала.		
interface vlan 1	Активирует режим конфигурации интерфейса VLAN 1, в		
	котором задается ір-адрес для управления коммутатором.		
ip default-gateway адрес	Устанавливает шлюз по умолчанию для коммутатора.		
show interface vlan 1	Отображает информацию об ір-адресе коммутатора		
	(Cisco Catalyst 2950).		
show vlan	Отображает сведения обо всех настроенных сетях VLAN.		
switchport access vlan номер	Режим конфигурации интерфейса для назначения порта		
VLAN	сети VLAN		
switchport mode trunk	Режим конфигурации интерфейса для перевода порта Fast		
	Ethernet или Gigabit Ehternet в режим транкинга.		

Таблица 2.

Справочные данные.

Параметр конфигурации	Значение
enable password	iu3
enable secret password	cisco
пароль линии vty	vty
пароль консольного порта	console

Таблица 3.

Условия заданий.

Адрес первой	Маска подсети
подсети	
192.168.x.0	255.255.255.0

Где х – номер варианта студента.

Контрольные вопросы

- 1. Что такое VLAN?
- 2. Основное назначение VLAN?
- 3. Возможен ли обмен пакетами между устройствами, находящимися в разных VLAN? Если да, то при каких условиях?
- 4. Каким образом происходит определение, какому VLAN предназначается трафик?

Литература

- 1. Одом У. Официальное руководство Cisco по подготовке к сертификационным экзаменам CCENT/CCNA ICND1 640-822// Издательство: «Вильямс», 2012 720 с.
- 2. Одом У. Официальное руководство Cisco по подготовке к сертификационным экзаменам CCNA ICND2// Издательство: «Вильямс», 2012 736 с.