Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 6

з дисципліни «МНД» на тему «Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами»

ВИКОНАЛА: студентка II курсу ФІОТ групи IB-91 Бузулук М.В. Залікова - 9103

> ПЕРЕВІРИВ: ac. Регіда П. Г.

Мета: Провести трьохфакторний експеримент і отримати адекватну модель – рівняння регресії, використовуючи рототабельний композиційний план.

Варіант завдання:

No popiousy	X1		X2		X3	
№ варіанту	min	max	min	max	min	max
103	-20	30	30	80	30	45
F(X1, X2, X3)						
$0.7 + 5.4 * X1 + 4.8 * X2 + 5.3 * X3 + 1.1 * X1^2 + 0.3 * X2^2 + 8.9 * X3^2 + 8.1 * X1 * X2 + 0.2 * X1 * X3 + 3.5 * X2 * X3 + 1.9 * X1 * X2 * X3 + 1.1 * X1 * X1 * X2 * X3 + 1.1 * X1 * X1 * X1 * X2 * X3 + 1.1 * X1 $						

Лістинг програми:

```
import random
import numpy as np
import math
from prettytable import PrettyTable
from numpy.linalg import solve
from scipy.stats import f, t
n = 15
m = 3
while True:
    x1_min = -20
   x1 max = 30
    x2_min = 30
   x2_max = 80
    x3 \min = 30
   x3_max = 45
    x01 = (x1_max + x1_min) / 2
    x02 = (x2 max + x2 min) / 2
    x03 = (x3_{max} + x3_{min}) / 2
    dx1 = x1 max - x01
    dx2 = x2_max - x02
    dx3 = x3_max - x03
    xn = [[-1, -1, -1, 1, 1, 1, -1, 1, 1],
          [-1, -1, 1, 1, -1, -1, 1, 1, 1, 1],
          [-1, 1, -1, -1, 1, -1, 1, 1, 1, 1]
          [-1, 1, 1, -1, -1, 1, -1, 1, 1, 1]
          [1, -1, -1, -1, -1, 1, 1, 1, 1, 1]
          [1, -1, 1, -1, 1, -1, -1, 1, 1, 1],
          [1, 1, -1, 1, -1, -1, -1, 1, 1, 1],
          [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
          [-1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0, 0],
          [1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0, 0],
          [0, -1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0],
```

```
[0, 1.73, 0, 0, 0, 0, 0, 2.9929, 0],
           [0, 0, -1.73, 0, 0, 0, 0, 0, 0, 2.9929],
           [0, 0, 1.73, 0, 0, 0, 0, 0, 0, 2.9929],
           [0, 0, 0, 0, 0, 0, 0, 0, 0]]
    x1 = [x1_min, x1_min, x1_min, x1_min, x1_max, x1_max, x1_max, x1_max, -
1.73 * dx1 + x01, 1.73 * dx1 + x01, x01, x01, x01, x01, x01]
    x2 = [x2 \text{ min}, x2 \text{ min}, x2 \text{ max}, x2 \text{ max}, x2 \text{ min}, x2 \text{ min}, x2 \text{ max}, x2 \text{ max}, x02, x0]
2, -1.73 * dx2 + x02, 1.73 * dx2 + x02, x02, x02, x02]
    x3 = [x3_{min}, x3_{max}, x3_{min}, x3_{max}, x3_{min}, x3_{max}, x3_{min}, x3_{max}, x03, x0]
3, x03, x03, -1.73 * dx3 + x03, 1.73 * dx3 + x03, x03
    x1x2 = [0] * 15
    x1x3 = [0] * 15
    x2x3 = [0] * 15
    x1x2x3 = [0] * 15
    x1kv = [0] * 15
    x2kv = [0] * 15
    x3kv = [0] * 15
    for i in range(15):
        x1x2[i] = round(x1[i] * x2[i], 3)
        x1x3[i] = round(x1[i] * x3[i], 3)
        x2x3[i] = round(x2[i] * x3[i], 3)
        x1x2x3[i] = round(x1[i] * x2[i] * x3[i], 3)
        x1kv[i] = round(x1[i] ** 2, 3)
        x2kv[i] = round(x2[i] ** 2, 3)
        x3kv[i] = round(x3[i] ** 2, 3)
    tmp_list_a = list(zip(x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3, x1kv, x2kv, x3kv)
    plan table = PrettyTable()
    plan table.field names = ['X1', 'X2', 'X3', 'X1X2', 'X1X3', 'X2X3', 'X1X2X3',
 'X1<sup>2</sup>', 'X2<sup>2</sup>', 'X3<sup>2</sup>']
    print("Матриця планування з натуралізованими X:")
    for i in range(len(tmp list a)):
        plan_table.add_row(tmp_list_a[i])
    print(plan_table)
    def f123(X1, X2, X3):
        return 0.7 + 5.4*X1 + 4.8*X2 + 5.3*X3 + 1.1*X1*X1 + 0.3*X2*X2 + 8.9*X3*X3
 + 8.1*X1*X2 + 0.2*X1*X3 + 3.5*X2*X3 + 1.9*X1*X2*X3 + random.randint(0, 10) - 5
    y = [[f123(tmp_list_a[j][0], tmp_list_a[j][1], tmp_list_a[j][2]) for _ in ran
ge(m)] for j in range(15)]
    plan_y = PrettyTable()
    plan_y.field_names = ['y1', 'y2', 'y3']
    print("Матриця планування значень Y:")
    for i in range(len(y)):
```

```
plan_y.add_row(y[i])
    print(plan_y)
    aver_y = []
    for i in range(len(y)):
        aver_y.append(np.mean(y[i], axis=0))
    print("Середні значення Y:\n{}".format(np.array(list(map(lambda x:round(x, 5)
, aver_y)))))
    disp = []
    for i in range(len(y)):
        a = 0
        for k in y[i]:
            a += (k - np.mean(y[i], axis=0)) ** 2
        disp.append(a / len(y[i]))
    print("Дисперсія:\n{}".format(np.array(list(map(lambda x:round(x, 5), disp)))
))
    def finds_value(num):
        a = 0
        for j in range(15):
            a += aver_y[j] * tmp_list_a[j][num - 1] / 15
        return a
    def a(f, s):
        a = 0
        for j in range(15):
            a += tmp_list_a[j][f - 1] * tmp_list_a[j][s - 1] / 15
        return a
    my = sum(aver_y) / 15
    mx = []
    for i in range(10):
        number lst = []
        for j in range(15):
            number_lst.append(tmp_list_a[j][i])
        mx.append(sum(number_lst) / len(number_lst))
    determinant1 = [[1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7], m
x[8], mx[9]],
                    [mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6),
 a(1, 7), a(1, 8), a(1, 9), a(1, 10)],
                    [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6),
 a(2, 7), a(2, 8), a(2, 9), a(2, 10)],
                    [mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6),
 a(3, 7), a(3, 8), a(3, 9), a(3, 10)
                    [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6),
 a(4, 7), a(4, 8), a(4, 9), a(4, 10)],
                    [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6),
a(5, 7), a(5, 8), a(5, 9), a(5, 10)],
```

```
[mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6),
 a(6, 7), a(6, 8), a(6, 9), a(6, 10)],
                    [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6),
 a(7, 7), a(7, 8), a(7, 9), a(7, 10)],
                    [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6),
a(8, 7), a(8, 8), a(8, 9), a(8, 10)],
                    [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6),
a(9, 7), a(9, 8), a(9, 9), a(9, 10)],
                    [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(1
0, 6), a(10, 7), a(10, 8), a(10, 9), a(10, 10)]]
    determinant2 = [my, finds_value(1), finds_value(2), finds_value(3), finds_val
ue(4), finds_value(5), finds_value(6), finds_value(7),
                    finds_value(8), finds_value(9), finds_value(10)]
    beta = list(map(lambda x:round(x, 5), solve(determinant1, determinant2)))
    print("\nРівняння регресії:")
    print("y = {} + {} * X1 + {} * X2 + {} * X3 + {} * X1X2 + n + {} * X1X3 + {}
} * X2X3 + {} * X1X2X3 + {} * X11^2 + {} * X22^2 + {} * X33^2"
          .format(beta[0], beta[1], beta[2], beta[3], beta[4], beta[5], beta[6],
beta[7], beta[8], beta[9], beta[10]))
    y_i = [0] * 15
    for k in range(15):
        y_i[k] = beta[0] + beta[1] * tmp_list_a[k][0] + beta[2] * tmp_list_a[k][1
] + beta[3] * tmp list a[k][2] + \
                 beta[4] * tmp_list_a[k][3] + beta[5] * tmp_list_a[k][4] + beta[6]
] * tmp_list_a[k][5] + beta[7] * \
                 tmp_list_a[k][6] + beta[8] * tmp_list_a[k][7] + beta[9] * tmp_li
st_a[k][8] + beta[10] * tmp_list_a[k][9]
    print("Експерементальні значення:\n{}".format(np.array(list(map(lambda x:roun
d(x, 5), y_i))))
    gp = max(disp) / sum(disp)
    gt = 0.3346
    print("\nКритерій Кохрена\nGp = {}".format(gp))
    if gp < gt:
        print("Дисперсія однорідна")
    else:
        print("Дисперсія неоднорідна")
        m += 1
        continue
    sb = sum(disp) / len(disp)
    sbs = (sb / (15 * m)) ** 0.5
    f3 = (m - 1) * n
    sign coef = []
    insign coef = []
```

```
d = 11
           res = [0] * 11
           for j in range(11):
                     t_pract = 0
                      for i in range(15):
                                  if j == 0:
                                             t_pract += aver_y[i] / 15
                                  else:
                                             t_pract += aver_y[i] * xn[i][j - 1]
                                  res[j] = beta[j]
                      if math.fabs(t_pract / sbs) < t.ppf(q=0.975, df=f3):</pre>
                                  insign_coef.append(beta[j])
                                  res[i] = 0
                                  d-=1
                       else:
                                  sign_coef.append(beta[j])
           print("\nКритерій Стьюдента:")
           print("Значимі коефіцієнти регресії:", [round(i, 3) for i in sign_coef])
           print("Незначимі коефіцієнти регресії:", [round(i, 3) for i in insign_coef])
           y st = []
           for i in range(15):
                      y_st.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i] + 
es[4] * x1x2[i] + res[5] *
                                                        x1x3[i] + res[6] * x2x3[i] + res[7] * x1x2x3[i] + res[8] * x1
kv[i] + res[9] *
                                                        x2kv[i] + res[10] * x3kv[i]
           print("Значення функції відгуку зі значущими коефіцієнтами:n{}".format(np.ar
ray(list(map(lambda x:round(x, 5), y_st)))))
           print("\nКритерій Фішера")
           sad = m * sum([(y_st[i] - aver_y[i]) ** 2 for i in range(15)]) / (n - d)
           fp = sad / sb
           f4 = n - d
           print("Fp =", fp)
           if fp < f.ppf(q=0.95, dfn=f4, dfd=f3):
                       print("Математична модель адекватна")
                      break
           else:
                       print("Математична модель неадекватна")
```

Результат роботи програми:

Матри	Матриця планування з натуралізованими Х:									
į x	1 <u> </u>	X2	Х3	X1X2	X1X3	X2X3	X1X2X3	X1^2	X2^2	X3^2
-2	1 9	30	30	-600	-600	900	-18000	400	900	900
-2	0	30	45	-600	-900	1350	-27000	400	900	2025
-2	a	80	30	-1600	-600	2400	-48000	400	6400	900
-2	9	80	45	-1600	-900	3600	-72000	400	6400	2025
3	9	30	30	900	900	900	27000	900	900	900
3	9 İ	30	45	900	1350	1350	40500	900	900	2025
3	9 İ	80	30	2400	900	2400	72000	900	6400	900
3	9 İ	80	45	2400	1350	3600	108000	900	6400	2025
-38	. 25	55.0	37.5	-2103.75	-1434.375	2062.5	-78890.625	1463.062	3025.0	1406.25
48.	25	55.0	37.5	2653.75	1809.375	2062.5	99515.625	2328.062	3025.0	1406.25
5.	a	11.75	37.5	58.75	187.5	440.625	2203.125	25.0	138.062	1406.25
5.	a	98.25	37.5	491.25	187.5	3684.375	18421.875	25.0	9653.062	1406.25
5.	9	55.0	24.525	275.0	122.625	1348.875	6744.375	25.0	3025.0	601.476
5.	9	55.0	50.475	275.0	252.375	2776.125	13880.625	25.0	3025.0	2547.726
5.	ə İ	55.0	37.5	275.0	187.5	2062.5	10312.5	25.0	3025.0	1406.25
+	+				+		+	+	+	++

Матриця планування значень Y:						
y1	y2	у3				
-27113.3	-27118.3	-27112.3				
-32610.3 -85074.3	-32602.3 -85070.3	-32603.3 -85070.3				
-116445.3 71660.7	-116440.3 71650.7	-116447.3 71659.7				
109058.7	109064.7	109067.7				
176448.7 259229.7	176443.7 259222.7	176446.7 259226.7				
-144709.29375	-144715.29375	-144715.29375				
234862.68125 19107.89375	234861.68125 19110.89375	234863.68125 19112.89375				
68046.59375 26502.2155625	68045.59375 26493.2155625	68055.59375 26494.2155625				
62537.5755625	62532.5755625	62531.5755625				
43021.575	43023.575	43020.575				

```
Середні значення Ү:
[ -27114.63333 -32605.3
                                -85071.63333 -116444.3
                                                                  71657.03333
   109063.7 176446.36667 259226.36667 -144713.29375 234862.68125 19110.56042 68049.26042 26496.5489 62533.9089 43021.90833
  109063.7
                                                                   43021.908331
Дисперсія:
[ 6.88889 12.66667 3.55556 8.66667 20.22222 14. 4.22222 8. 0.66667 4.22222 20.22222 16.22222 6.88889 1.55556]
                                                               4.22222 8.22222
Рівняння регресії:
y = -43.37491 + 5.73953 * X1 + 5.15378 * X2 + 7.41837 * X3 + 8.09427 * X1X2 +
 + 0.19218 * X1X3 + 3.49351 * X2X3 + 1.90014 * X1X2X3 + 1.09788 * X11^2 + 0.29878 * X22^2 + 8.87548 * X33^2
Експерементальні значення:
[ -27115.24601 -32605.88996 -85072.47201 -116445.08346 71656.64549
  109063.28654 176445.59449 259225.51804 -144711.89191 234862.96891
   19111.05534
                   68050.48947 26497.41621 62534.74744
Критерій Кохрена
Gp = 0.14845024469820556
Дисперсія однорідна
Критерій Стьюдента:
Значимі коефіцієнти регресії: [-43.375, 5.74, 5.154, 7.418, 8.094, 0.192, 3.494, 1.9, 1.098, 0.299, 8.875]
Незначимі коефіцієнти регресії: []
Значення функції відгуку зі значущими коефіцієнтами:
[ -27115.24601 -32605.88996 -85072.47201 -116445.08346 71656.64549 109063.28654 176445.59449 259225.51804 -144711.89191 234862.96891 19111.05534 68050.48947 26497.41621 62534.74744 43021.88589]
Критерій Фішера
Fp = 0.738127169233098
   19111.05534 68050.48947 26497.41621 62534.74744 43021.88589]
 Критерій Кохрена
 Gp = 0.14845024469820556
 Дисперсія однорідна
 Критерій Стьюдента:
 Значимі коефіцієнти регресії: [-43.375, 5.74, 5.154, 7.418, 8.094, 0.192, 3.494, 1.9, 1.098, 0.299, 8.875]
 Незначимі коефіцієнти регресії: []
 Значення функції відгуку зі значущими коефіцієнтами:
 [ -27115.24601 -32605.88996 -85072.47201 -116445.08346 71656.64549 109063.28654 176445.59449 259225.51804 -144711.89191 234862.96891
    19111.05534 68050.48947 26497.41621 62534.74744 43021.88589]
 Критерій Фішера
 Fp = 0.738127169233098
 Математична модель адекватна
```