Corrente di spostamento

B(t) genera **E**(t) (Induzione elettromagnetica)

Anche $\mathbf{E}(t)$ genera $\mathbf{B}(t)$? (Induzione magnetoelettrica)

In regime stazionario: $rot \mathbf{B} = \mu_0 \mathbf{J}$

$$\Rightarrow$$
 div rot **B** = μ_0 div **J**

dove: $div rot \mathbf{B} \equiv 0$

mentre solo in regime stazionario: $div \mathbf{J} = 0$

In regime non stazionario (corrente variabile nel tempo):

$$div \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

La conservazione della carica è in contrasto con l'equazione della magnetostatica

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = \mu_{o} I = \mu_{o} \iint_{S} \mathbf{J} \cdot \mathbf{u}_{n} dS$$

Se
$$S = S_1$$
, $\phi_S(\mathbf{J}) = I \neq 0$

Se
$$S = S_2$$
, $\phi_S(\mathbf{J}) = 0$

 \Rightarrow Deve esistere una grandezza fisica J_s tale che:

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = \mu_{o} I = \mu_{o} \iint_{S} \mathbf{J}_{tot} \cdot \mathbf{u}_{n} dS = \mu_{o} \iint_{S} (\mathbf{J} + \mathbf{J}_{s}) \cdot \mathbf{u}_{n} dS$$

Dall'equazione locale: $div rot \mathbf{B} = \mu_0 div \mathbf{J}_{tot}$

$$\Rightarrow div(\mathbf{J} + \mathbf{J}_{s}) = 0 \Rightarrow div \mathbf{J} = -div \mathbf{J}_{s}$$

Leghiamo J_s al campo elettrico:

$$div \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

$$div \mathbf{D} = \rho$$

$$\Rightarrow div \mathbf{J} = -\frac{\partial}{\partial t} (div \mathbf{D}) = -div \frac{\partial \mathbf{D}}{\partial t} \quad \Rightarrow \quad \mathbf{J}_{s} = \frac{\partial \mathbf{D}}{\partial t}$$

Corrente di spostamento

Nel condensatore, le linee di forza di ∂**D**/∂t:

- coincidono con quelle di E e di D (con verso che dipende da carica/scarica)
- hanno lo stesso verso della corrente J

Le linee di forza di $\partial \mathbf{D}/\partial t$ si comportano come "fili" di corrente (correnti filiformi), che chiudono il circuito e concorrono al campo \mathbf{B}

Esempio

Determiniamo **B** generato da J_s , supponendo che il condensatore piano sia circolare di raggio R

Per simmetria, le linee di **B** sono circonferenze concentriche con il condensatore

Applichiamo la legge di Ampere lungo le linee di campo

Per
$$r < R$$
: $B \ 2\pi r = \mu_o J_s \ \pi r^2$ $\Rightarrow B = \frac{\mu_o J_s}{2} r$

Per
$$r > R$$
: $B \ 2\pi r = \mu_o J_s \ \pi R^2$ $\Rightarrow B = \frac{\mu_o J_s R^2}{2r}$

 J_s ha lo stesso ruolo di J di conduzione in condizioni analoghe di simmetria (conduttore cilindrico), ma **non** c'è moto fisico di cariche

Introducendo la corrente di spostamento:

$$rot \mathbf{B} = \mu_{\scriptscriptstyle 0} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right)$$

IV equazione di Maxwell

La IV equazione di Maxwell <u>non</u> è dimostrata, ma sono verificate sperimentalmente le molte conseguenze che ne derivano ⇒ E' valida

La corrente di spostamento ripristina la simmetria con l'equazione per il *rot* **E**:

- In regime variabile, **E** e **B** sono sempre presenti simultaneamente e sono accoppiati dalle equazioni per rot **E** e rot **B**
- E e B sono due aspetti dello stesso fenomeno, che descriviamo con il **campo elettromagnetico** (campo tensoriale)

 \mathbf{J}_{s} è definita attraverso \mathbf{D}

Nel vuoto

In presenza di dielettrici

$$\frac{\partial \mathbf{D}}{\partial t} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$\frac{\partial \mathbf{D}}{\partial t} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial \mathbf{P}}{\partial t}$$

Le variazioni di **P** contribuiscono alla "corrente": in un **E** variabile i dipoli elettrici oscillano, si ha moto di cariche e, quindi, corrente.

dipoli oscillanti

Equazioni di Maxwell

Nella loro espressione generale le equazioni di Maxwell sono scritte in una forma mista, in modo che compaiano esplicitamente solo i termini di sorgente noti cioè densità di carica libera e densità di corrente di conduzione

$$rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad rot \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
$$div \mathbf{B} = 0 \qquad div \mathbf{D} = \rho$$

Contengono quindi implicitamente le equazioni di definizione dei vettori **D** e **H**:

$$\mathbf{D} = \boldsymbol{\varepsilon}_{\scriptscriptstyle 0} \mathbf{E} + \mathbf{P} \qquad \mathbf{H} = \frac{\mathbf{B}}{\mu_{\scriptscriptstyle 0}} - \mathbf{M}$$

che rappresentano l'effetto dei mezzi materiali

Nei mezzi lineari le equazioni di Maxwell sono uguali a quelle nel vuoto a parte una costante moltiplicativa

$$\mathbf{D} = \varepsilon_{\scriptscriptstyle 0} \varepsilon_{\scriptscriptstyle r} \mathbf{E} \qquad \mathbf{B} = \mu_{\scriptscriptstyle 0} \mu_{\scriptscriptstyle r} \mathbf{H}$$

Le equazioni di Maxwell contengono tutto l'elettromagnetismo

Ad esempio: contengono la conservazione della carica e sono lineari, quindi vale la sovrapposizione degli effetti