F21T1A1

Es seien $D = \{(x, y) \in \mathbb{R}^2 : y \ge |x|\}$ und $f: D \to \mathbb{R}$; $(x, y) \to 4x^2 + 9y - \frac{1}{3}y^3$

- a) Skizzieren Sie die Menge D.
- b) Zeigen Sie, dass f auf D ein globales Maximum besitzt.
- c) Bestimmen Sie den Wert dieses globalen Maximums von f sowie sämtliche Stellen, an denen dieser Wert angenommen wird.

Zu a)

Zu b)

Für
$$(x, y) \in D$$
 $ist|x| \le y$, $also f(x, y) = 4x^2 + 9y - \frac{1}{3}y^3 \le 4y^2 + 9y - \frac{1}{3}y^3$.

Für
$$g: \mathbb{R} \to \mathbb{R}$$
; $y \to 4y^2 + 9y - \frac{1}{3}y^3$ ist $g'(y) = 8y + 9 - y^2 = (y+1)(y-9)$, also gilt $g'(y) \begin{cases} < 0 ; y \in] -\infty; -1[\\ > 0 ; y \in] -1; 9[\\ < 0 ; y \in]9; \infty[\end{cases}$ und deshalb hat g bei $y = 9$ ein globales Maximum. Damit hat $f(D)$

die obere Schranke bei 9, deshalb existiert $\sup\{f(x,y):(x,y)\in D\}\in\mathbb{R}$. Wegen f(9,9)=g(9)=162 wird dieses Supremum auch angenommen, also hat $f|_D$ ein Maximum.

Zu c)

$$gradf(x,y) = {8x \choose 9-y^2} = {0 \choose 0} \Leftrightarrow (x,y) = (0;3) \in D \ oder \ (x,y) = (0;-3) \notin D.$$

$$(Hessf)(x,y) = \begin{pmatrix} 8 & 0 \\ 0 & -2y \end{pmatrix}$$
, also ist $(Hessf)(0,3) = \begin{pmatrix} 8 & 0 \\ 0 & -6 \end{pmatrix}$ mit Eigenwerten -6, 8 mit

verschiedenen Vorzeichen, deshalb ist $(0;3) \in D$ ein Sattelpunkt und kein lokales Extremum.