Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #12

2023/05/11

Student Number:		_	
1. Prove or give a counterexample: The set	t of nilpotent operator	rs on V is a subspace of $\mathcal{L}(V)$).
证明或给出反例: V 上的幂零算子的集	合是 $\mathcal{L}(V)$ 的子空间.		
False!		⇒ S,T nilpot	ent
Consider $V = \mathbf{R}^2$, $S, T \in \mathcal{L}(V)$ satisfy	5°2=5°1=0	<u> </u>	·
Se_1 =	$= 0, Se_2 = e_1, Te_1 = 0$	$e_2, Te_2 = 0$	

then S, T are nilpotent, but $(S+T)e_1 = e_2, (S+T)e_2 = e_1, S+T$ is invertible.

2. Let V be a vector space on the complex field \mathbf{C} , prove that $N \in \mathcal{L}(V)$ is nilpotent if and only if 0 is the only eigenvalue of N.

设 V 是复数域 \mathbb{C} 上的向量空间, $N \in \mathcal{L}(V)$ 是幂零的当且仅的 0 是 N 仅有的本征值.

Proof. Let λ be an eigenvalue of N, v is the corresponding eigenvector, i.e. $Nv = \lambda v$. Since N is nilpotent, $0 = N^n = \lambda^n v \Rightarrow \lambda^n = 0 \Rightarrow \lambda = 0$.

 $\begin{array}{lll} \text{Conversely, since } \mathbf{F} = \mathbf{C}, \text{ then there exists a basis } v_1, \cdots, v_n \text{ of } V \text{ s.t. } \mathcal{M}(N; v_1, \cdots, v_n) \text{ is an upper triangular} \\ \text{matrix. } \underline{\text{Since } N \text{ only has zero eigenvalues, the diagonal entries must be 0, so } \mathcal{M}(N; v_1, \cdots, v_n)^n = 0 \Rightarrow N \text{ is} \\ \text{nilpotent.} \end{array}$

Page 2 of 2