Galactic Rotation Curves Simulator 20-Week Roadmap with Dark-Matter Extension

Johnny Nguyen B.S. Computer Science '27, Purdue University

April 20, 2025

Driven by a passion for mathematics, physics, and discovery in astronomy

GitHub Repository •

Contents

1	Overview	3
2	Week 0: Project Setup & Lab Notebook	3
3	Weeks 1–2: Vector Math & Rotations	3
4	Week 3: Kepler Orbits & Conic Sections	3
5	Weeks 4–5: Numerical Integrators 5.1 Week 4: RK4 Integrator	
6	Weeks 6–8: Stability, WebGL Shaders 6.1 Week 6: Three-Body & Lagrange Points	4 4 4
7	Weeks 9–12: React-Three-Fiber UI 7.1 Week 9: R3F Core & Shaders	5
8	Weeks 13-16: Dark-Matter Rotation Curves 8.1 Week 13: Disk Curve 8.2 Week 14: NFW Halo 8.3 Week 15: Data Integration & Plot 8.4 Week 16: 3D Orbits	5 5 6 6
9	Weeks 17–18: Documentation & Outreach	6

10 Week 19: Workshop & Community	6
11 Week 20: Reflection & Extensions	6
12 Data Sources & References	6

1 Overview

This document lays out a rigorous, 20-week plan to build an interactive 3D web app for simulating galactic rotation curves, including a research-grade Dark-Matter module. It covers fundamental derivations, algorithm implementations, custom shaders, UI controls, documentation, and outreach deliverables.

2 Week 0: Project Setup & Lab Notebook

Objectives:

- Initialize GitHub repo with CI (Vercel/GitHub Pages).
- Scaffold a lab-notebook in Markdown with MathJax/KaTeX.
- Draft Project Charter: scope, goals, timeline, key references.

Deliverables:

• Repo with README.md, /notebook/week0.md, and CI config.

3 Weeks 1–2: Vector Math & Rotations

Readings: Arfken & Weber §§1–3; Lengyel, 3D Math Primer Ch. 1–3. Exercises:

- Derive dot/cross-product identities and Rodrigues' formula.
- Implement Vector3, rotateAxis(v,axis, θ), and Quaternion classes in JS.

Deliverables:

- vector3.js, rotation.js, quaternion.js + unit tests.
- Lab notebook with LaTeX proofs (notebook/week1.md).

4 Week 3: Kepler Orbits & Conic Sections

Readings: Goldstein Ch. 3; Kleppner & Kolenkow App. A. Exercises:

- Derive polar conic equation $r(\theta) = \frac{p}{1 + e \cos \theta}$.
- Code keplerOrbit(a,e,steps) and plot in 2D.

Deliverables:

- keplerOrbit.js + demo plot.
- Notebook derivation (notebook/week2.md).

5 Weeks 4–5: Numerical Integrators

5.1 Week 4: RK4 Integrator

Readings: Numerical Recipes Ch. 16; Hairer et al. Sec. II. Exercises:

- Derive RK4 update; implement rk4Step().
- Simulate Sun–Earth; plot energy vs. time.

5.2 Week 5: Adaptive RKF45 & Leapfrog

Readings: Hairer I Sec. IV; Geometric Numerical Integration Ch. 6. Exercises:

- Implement RKF45 with error control.
- Derive and code velocity-Verlet (symplectic leapfrog).
- Benchmark energy conservation vs. step size.

Deliverables:

- rk4.js, rkf45.js, leapfrog.js + benchmark plots.
- Interactive error plot widget.

6 Weeks 6–8: Stability, WebGL Shaders

6.1 Week 6: Three-Body & Lagrange Points

Readings: Binney & Tremaine; Lagrange (1788). Exercises:

- Derive L_{1-5} positions; implement lagrange.js.
- Build restricted 3-body solver (Sun-Earth-Mars).

6.2 Week 7: Raw WebGL Pipeline

Readings: OpenGL Red Book Ch. 2-3; Rost GLSL Ch. 1-2. Exercises:

- Write MVP vertex shader and fragment shader.
- Build helper functions (initGL, compileShader, draw) and render a cube.

6.3 Week 8: Bloom Custom Effects

Readings: OpenGL ES 3.0; GPU Gems 3 Ch. 36. Exercises:

- Implement off-screen FBO + blur for bloom glow.
- Prototype grid/overlay shaders.

7 Weeks 9–12: React-Three-Fiber UI

7.1 Week 9: R3F Core & Shaders

Exercises:

- Scaffold <Canvas> scene.
- Port raw shaders into <shaderMaterial>.
- Create OrbitLine component.

7.2 Week 10: PBR & Environment

Exercises:

- Use meshPhysicalMaterial with HDRI environment.
- Load textures for planets.

7.3 Week 11: Post-Processing

Exercises:

• Add <EffectComposer> with <Bloom> and fog.

7.4 Week 12: Controls & D3 Overlay

Exercises:

- Build React sliders for model parameters.
- Integrate D3 rotation-curve plot overlay.

8 Weeks 13–16: Dark-Matter Rotation Curves

8.1 Week 13: Disk Curve

Derivation:

$$v_{\rm disk}(r) = \sqrt{\frac{G}{r}} \int_0^r 2\pi \, \Sigma_0 e^{-r'/R_d r'} \, dr'.$$

Implementation:

• Write rotationCurveDisk(rArray,,Rd) + tests.

8.2 Week 14: NFW Halo

Derivation:

$$\rho(r) = \frac{\rho_0}{(r/R_s)(1 + r/R_s)^2}, \quad v_{\text{halo}}(r) = \sqrt{\frac{GM_{\text{halo}}(< r)}{r}}.$$

Implementation:

- Write rotationCurveHalo(rArray,,Rs).
- Combine to get $v_{\text{tot}}(r)$.

8.3 Week 15: Data Integration & Plot

Exercises:

• Load 'all_g alaxies.json'; filter for selected galaxy. Plot v_{obs} , v_{disk} , and v_{tot} with D3.

8.4 Week 16: 3D Orbits

Exercises:

- Spawn particles at radii r_i with angular speed $\omega_i = v_{\text{tot}}(r_i)/r_i$.
- Sync 3D animation with 2D plot updates.

9 Weeks 17–18: Documentation & Outreach

- Embed KaTeX derivations in "Scholar Mode."
- Write a 12-page technical report.
- Publish a blog series and NPM packages.
- Record a screencast and prepare slides.

10 Week 19: Workshop & Community

- Host a campus/online workshop.
- Share on forums and collect feedback.

11 Week 20: Reflection & Extensions

- Analyze usage metrics.
- Write a "Lessons Learned" post.
- Plan future features (e.g. exoplanet ML, AR/VR).

12 Data Sources & References

- Lelli et al. (2016), "SPARC: Spitzer Photometry & Accurate Rotation Curves."
- Navarro, Frenk & White (1996), "The Structure of Cold Dark Matter Halos."
- Goldstein, H., Classical Mechanics.
- Press et al., Numerical Recipes.
- React-Three-Fiber, Drei, D3, KaTeX official docs.