Homework# 7

0756079 陳冠聞

1. PCA projection and clustering

可以發現 normalized cut 不同 cluster 間的個數較為平均。

2. PCA projection and SVM classification

可以發現使用 Linear + RBF kernel 所用的 support vector 最少 (support vector 越少代表 overfitting 的風險越小)

此處 kernel 參數採用 default (C=0, degree=3 for poly, coef0=0.0, gamma = 1/784)

3. LDA projection

同上,可以發現 normalized cut 不同 cluster 間的個數較為平均。

4. EigenFace

Top 25 EigenFaces

Reconstruction

可以看到使用越多的 eigenFace 來重建,會越像本來的臉。

Code Detail

0. Read Data

```
df_X = pd.read_csv('X_train.csv', header=None)
df_Y = pd.read_csv('T_train.csv', header=None)

X_train = df_X.values
Y_train = df_Y.values
Y_train = Y_train.reshape(Y_train.shape[0])
```

1. Use PCA to project all your data X train.csv onto 2D space

```
class PCA:
    def __init__(self, n_components=2):
        self.n components = n components
    def transform(self, X):
        X \text{ high} = \text{np.copy}(X)
        mean_mat = np.tile(self.mean_vec, (X.shape[0],1))
        diff mat = X high - mean mat
        X low = np.matmul(diff mat, self.W)
        return np.real(X_low)
    def fit(self, X):
        X_high = np.copy(X)
        mean_vec = np.mean(X high, ∅)
        mean mat = np.tile(mean vec, (X.shape[0],1))
        diff_mat = X_high - mean_mat
        cov mat = np.cov(diff mat.T)
        self.mean vec = mean vec
        eigenValues, eigenVectors = np.linalg.eig(cov hat)
        idx = eigenValues.argsort()[::-1]
        W = eigenVectors[:,idx][:, :self.n_components]
        W = W * -1
        self.W = W
        return self
pca = PCA(n_components=2)
X_low_pca = pca.fit(X_train).transform(X train)
```

2. Use LDA to project all your data X_train.csv onto 2D space

```
def __init__(self, n_components=2):
    self.n_components = n_components
        setf.mean = 0
        self.std = 1
    def transform(self, X):
        X_{high} = np.copy(X)
        X_high = (X_high - self.mean) / self.std
        X_low = np.matmul(X_high, self.W)
        return np.real(X_low)
        N, dim = X.shape
        X_{high} = np.copy(X)
        self.mean = X_high.mean()
        self.std = X high.std()
        X high = (X high - self.mean) / self.std
# Compute mean for each class (mj, nj)
        mean_vectors = []
         for c in set(Y):
             mean_vectors.append( np.mean(X_high[Y==c], axis=0) )
         self.mean_vectors = mean_vectors
        SW = np.zeros( (dim,dim) )
         for c, mv in zip(set(Y), mean_vectors):
             within_class_scattter = np.zeros((dim, dim))
                                                                              Compute Within-class
             for xi in X_high[Y==c]:
                 xi = xi.reshape(-1, 1) # make vec to mat
                                                                                       scatter
                 mj = mv.reshape(-1, 1) # make vec to mat
                 within_class_scattter += np.matmul(xi-mj, (xi-mj).T)
            SW += within_class_scattter
        # Compute between-class scatte
        SB = np.zeros( (dim,dim) )
        m = np.mean(X_high, axis=0).reshape(-1, 1)
         for c, mv in zip(set(Y), mean_vectors):
                                                                    Compute Within-class scatter
             nj = X_high[Y==c].shape[0]
             mj = mv.reshape(-1, 1) # make vec to mat
             SB += nj * np.matmul((mj-m), (mj-m).T)
        mat = np.dot(np.linalg.pinv(SW), SB)
        eigenValues, eigenVectors = np.linalg.eig(mat)
        idx = eigenValues.argsort()[::-1]
        eigenValues = eigenValues[idx]
eigenVectors = eigenVectors[:,idx]
                                                                        Compute first-k largest
        W = np.real(eigenVectors[:, 0:self.n_components])
        W /= np.linalg.norm(W, axis=0)
                                                                       eigvector of inv(SW) * SB
        self.W = W
        return self
lda = LDA(n_components=2)
X_low_lda = lda.fit(X_train, Y_train).transform(X_train)
```

3. RatioCut

```
class Spectral_clustering_rationCut:

def __init__(self, n_cluster=2, gamma=1):
    self.n_cluster = n_cluster
    self.gamma = gamma

def fit(self, X, kernel='rbf'):
    # 0. Define similarity matrix W and D
    W = []

    if kernel == 'linear':
        W = compute_linear_kernel(X)
    elif kernel == 'rbf':
        W = compute_RBF_kernel(X, self.gamma)
    elif kernel == 'rbf_linear':
        W = kernel = compute_linear_rbf_kernel(X, self.gamma)

D = np.zeros((X.shape[0], X.shape[0]))
    for d in range(X.shape[0]):
        D[d][d] = W[d].sum()

# 1. Graph Laplacian L = D - W
L = D - W

# Get first k eigenvector
    eigenValues, eigenVectors = LA.eig(L)
    idx = eigenValues.argsort()
    eigenValues = eigenValues[idx]
    eigenVectors = eigenVectors[:,idx]
    U = eigenVectors[:, 1:self.n_cluster+1]

# Do k-means
    kmeans = k_means_clustering(k=self.n_cluster)
    membership = kmeans.fit(U)
    return membership
```

4. Normalized Cut

```
class Spectral clustering normCut:
     def __init__(self, n_cluster=2, gamma=1):
           self.n_cluster = n_cluster
           self.gamma = gamma
     def fit(self, X, kernel='rbf'):
           if kernel == 'linear':
           W = compute_linear_kernel(X)
elif kernel == 'rbf':
    W = compute_RBF_kernel(X, self.gamma)
elif kernel== 'rbf_linear':
           W = kernel = compute_linear_rbf_kernel(X, self.gamma)
D = np.zeros((X.shape[0], X.shape[0]))
for d in range(X.shape[0]):
    D[d][d] = W[d].sum()
           # 1. Graph Laplacian L = D - W, L_norm = D^{-1/2} L D^{-1/2}
           L = D - W
           D_inv_sqrt = np.linalg.pinv(sqrtm(D))
           L = np.matmul(np.matmul(D_inv_sqrt, L), D_inv_sqrt)
           eigenValues, eigenVectors = LA.eig(L)
           idx = eigenValues.argsort()
eigenValues = eigenValues[idx]
eigenVectors = eigenVectors[:,idx]
U = eigenVectors[:, 1:self.n_cluster+1]
           kmeans = k_means_clustering(k=self.n_cluster)
           membership = kmeans.fit(U)
           return membership
```

5. SVM

```
svm_linear = svm.SVC(kernel='linear')
svm_linear.fit(X_low_pca, Y_train)
y_pred_svm_linear = svm_linear.support_
sv_linear_index = svm_linear.support_
print(svm_linear.n_support_)

svm_poly = svm.SVC(kernel='poly')
svm_poly.fit(X_low_pca, Y_train)
y_pred_poly.rbf = svm_poly.support_
print(svm_poly.n_support_)

svm_rbf = svm.SVC(kernel='rbf')
svm_rbf.fit(X_low_pca, Y_train)
y_pred_svm_rbf = svm_rbf.predict(X_low_pca)
sv_rbf_index = svm_rbf.support_
print(svm_rbf.n_support_)

svm_linear_rbf = svm.SVC(kernel='precomputed')
kernel = compute_linear_rbf_kernel(X_train, gamma=1/784)
svm_linear_rbf_fit(kernel, Y_train)
# y_pred_svm_rbf = svm_linear_rbf.predict(X_low_pca)
sv_linear_rbf_index = svm_linear_rbf.support_
print(svm_linear_rbf.n_support_)
Linear + RBF SVM
```

6. EigenFaces

```
imgs = []
for dir_path in img_dirs:
    imgs += read_dir_imgs(dir_path)

imgs = np.array(imgs)
imgs = imgs.reshape( (prod(imgs.shape[:1]), prod(imgs.shape[1:])) ).T

mean_vector = imgs.mean(1)
mean_face = vec2img(mean_vector)
plt.imshow(mean_face, cmap = 'gray'), plt.show()

diff_imgs = imgs - np.tile(np.array([mean_vector]).T, (1, 400))
T_trans_T = np.cov(imgs.T)

eigenValues, eigenVectors = np.linalg.eig(T_trans_T)

idx = eigenValues.argsort()[::-1]
eigenValues = eigenVectors[:,idx]
print(eigenVectors.shape)

k = 25
eigenValues = eigenValues[:k]
eigenVectors = eigenVectors[:, 0:k]

# get real eigen vector(eigen faces)
A = diff_imgs
eigenVectors = np.matmul(A, eigenVectors)
eigen_faces = np.copy(eigenVectors)
```

Read Images

Compute Mean Face And covariance matrix

Get 25 largest eigenvector And project mean face to eigenspace to get 25 eigen faces

For more detail, please check EigenFace.py and HW7.py