



# AUTOMAÇÃO RESIDENCIAL





## APRESENTAÇÃO INICIAL

OBJETIVO DO WORKSHOP

PÚBLICO ALVO

- Conhecer um projeto de automação residencial tipo "Faça você mesmo"
- Entender a arquitetura de uma casa automatizada
- Integrar as tecnologias Arduino –
   Bluetooth Android
- Ser capaz de automatizar a própria casa

- Makers que queiram automatizar a própria casa
- Estudantes e profissionais que desejam entrar no mercado de automação residencial
- Estudantes e profissionais que desejam entender a integração Arduino – Bluetooth - Android

### FLUXOGRAMA DO WORKSHOP



### O MERCADO – BRASIL / PORTO VELHO

- Nichos de atuação da Automação Residencial
  - Áudio e Vídeo
  - Segurança ( alarme, monitoramento e controle de acesso)
  - Controle de iluminação
  - Telefonia
  - Rede de dados
  - Ar condicionado e aquecimento
  - Persianas e cortinas
  - Eletrodoméstico
  - Utilidades (irrigação, bomba, aspiração e gás)
  - Gerenciamento de energia

Média de crescimento anual nos últimos 10 anos

11%

Residências aptas a receber automação

- 1,5 MILHÃO Brasil
- 40 MIL Porto Velho

Qte de empresas de Automação Integrada:

1 em PVH

## PROJETO VIZINHO POLÍCIA

• É um projeto vertical (hardware e software) de código aberto para o controle de iluminação estratégica de uma residência.



github.com/oficinamaker/automacaoresidencial/vizinhopolicia

## PROJETO – ABORDAGEM TOP DOWN

ARQUITETURA DE REDE TIPO INTERNET DAS COISAS (IOT)

- Camada de aplicação -> Android
- Camada de rede > Bluetooth ( PAN)
- Camada de dispositivo -> Arduino







#### Projeto Eletrônico

- Divisor de tensão
- Resistência do led
- Resistor pull down
- Alimentação dos módulos

## PROJETO ELETRÔNICO - CONTROLADOR











## PROJETO ELETRÔNICO - MÓDULOS



TX – Transmissor

RX – Receptor (3V3)

Vcc – Alimentação

Gnd – Alimentação

HC-05 / HC -06



#### **RÉLE E OS OPTOACOPLADORES**

IN1 – Liga/Desliga

Vcc – Alimentação

Gnd – Alimentação

c/opto – 2mA

s/opto – 20mA



#### **INTERRUPTORES E OS RESISTORES PULL DOWN**



#### LEDS E OS RESISTORES LIMITADOR DE CORRENTE



## PROJETO ELETRÔNICO - PROTOBOARD



## IDE DO ARDUINO

DECLARAÇÕES INICIAIS

VOID SETUP

**VOID LOOP** 

**PINOS** 

**VARIÁVEIS** 

INICIA COMUNICAÇÃO BLUETOOTH RECEBE OS COMANDOS DO ANDROID

Nessa primeira parte do Sketch da programação serão feitos três procedimentos, tais como:

- Definir os pinos do relé;
- Definir o pino analógico do botão pulsador;
- Incluir a biblioteca do Bluetooth.

Já na segunda parte do Sketch o **void setup** também serão vários procedimentos, tais como:

- Declarar os pinos de saídas do relé;
- Declarar o pino de entrada do botão pulsador;
- Colocar os pinos digitais do relé ligados.

Essa parte antes do **void loop** serão feitos vários procedimentos, tais como:

- Declarar a variável do estado do botão;
- Declarar os status do rele;
- Declarar o botão de comando do bluetooth.

```
#define pinRele 11
#define pinrele2 10
#define button A0

#include <SoftwareSerial.h>
SoftwareSerial btSerial(0, 1); // RX, TX
```

```
void setup() {
   pinMode(button, INPUT);
   pinMode(pinRele, OUTPUT);
   pinMode(pinrele2, OUTPUT);
   digitalWrite(pinRele, HIGH);
   digitalWrite(pinrele2, HIGH);
   btSerial.begin(9600);
}

boolean estadobotao;
boolean statusRele1 =LOW;
boolean statusRele2 = LOW;
String btComando;
```

Essa parte já dentro do **void loop**, serão feitos alguns procedimentos como:

- Leitura da do pino do botão e coloca-lo na variável estadodoboato;
- Verificação se o bluetooth está conectado;
- Se n\u00e3o estiver que possa mostra no monitor serial;

Continuando no **void loop** agora dentro do **while** os procedimentos de comando serão:

 Mostrar no monitor serial que o bluetooth esta conectado e dentro de while;

```
void loop(){
estadobotao = digitalRead(button);
Serial.println (estadobotao);
  if (estadobotao == 0) {
     digitalWrite(pinrele2, !statusRele2);
     statusRele2=!statusRele2;
     delay (500);
       Serial.println (" BluetoothConectadoForaDoWhile");
       Serial.println ("-----");
       Serial.println (estadobotao);
       while (btSerial.available()) {
         Serial.println ("BluetoothConectadoDentroDoWhile");
         Serial.println ("-----");
         Serial.println (estadobotao);
```

- Declarar uma variável de comando de recepção (comandoRec) que receba o a leitura do serial do bluetooth;
- Executar a variável botão do bluetooth(btComando) e exibir no monitor serial o comando de recepção;
- Verificar e executar os comandos "comandoRec e do btComando";
- E conforme os comandos dados atualizar os status dos pinos dos relés.

```
char comandoRec = btSerial.read();
btComando += char( comandoRec );
Serial.print(comandoRec);
  if (comandoRec == ';') {
     if (btComando == "B1;") {
         statusRele1=!statusRele1:
         digitalWrite(pinRele, statusRele1);
     if (btComando == "B2;") {
         statusRele2=!statusRele2:
         digitalWrite(pinrele2, statusRele2);
          btComando = "":
```

## PROJETO ELETROTÉCNICO



## PROJETO ELETROTÉCNICO





#### DESENVOLVIMENTO DE SOFTWARE

O **Android** é um sistema operacional para dispositivos móveis com telas sensíveis ao toque.

O **Android** é baseado no kernel Linux e possui licença código fonte aberto

Possui **80**% do mercado de dispositivos móveis do mundo

dispositivos moveis do mundo





O **App Inventor** é uma aplicação de código aberto para desenvolver aplicativos para o SO Android.

Utiliza uma linguagem baseada em JAVA com artifícios gráficos para facilitar a programação para iniciantes.

Desenvolvido por meio de uma parceria entre o **Google** e o **MIT.** 







#### DESENVOLVIMENTO DE SOFTWARE

Ola\_Mundo\_copy

Blocks

Built-in

ai2.appinventor.mit.edu/

MODO DESIGN – FRONT END





MODO PROGRAMAÇÃO – BACK END

#### DESENVOLVIMENTO DE SOFTWARE

