❖ 기본(primitive) 타입

- o 정수, 실수, 문자, 논리 리터럴을 직접 저장하는 타입
- o 메모리의 최소 기억단위인 bit가 모여 byte 형성

값의 종류	기본 타입	메모리 사용 크기		저장되는 값의 범위						
	byte	1 byte	8 bit	2 ⁷ ~2 ⁷ -1 (-128~127)						
정수	char	2 byte 16 bit		0~2 ¹⁶ -1 (유니코드: ₩u0000~₩uFFFF, 0~65535)						
	short	2 byte	16 bit	-2 ¹⁵ ~2 ¹⁵ -1 (-32,768~32,767)						
	int	4 byte	32 bit	-2 ³¹ ~2 ³¹ -1 (-2,147,483,648~2,147,483,647)						
	long	8 byte	64 bit	-2 ⁶³ ~2 ⁶³ -1						
실수	float	4 byte 32 bit		(+/-)1.4E-45 ~ (+/-)3.4E38						
	double	8 byte 64 bit		(+/-)4.9E-324 ~ (+/-)1.7E308						
논리	boolean	1 byte	8 bit	true, false						

❖ 실수의 표현

ㅇ 부동소수점 방식으로 표현

float: 부호(1bit) + 지수(8bit) + 가수(23bit) = 32bit = 4byte

1	지수 (8bit)	가수 (23bit)
107(20)		

double: 부호(1bit) + 지수(11bit) + 가수(52bit) = 64bit = 8byte

1	지수 (11bit)	가수 (52bit)
---	------------	------------

❖ 예제: ByteExample.java

```
public class ByteExample {
  public static void main(String[] args) {
     byte var1 = -128;
     byte var2 = -30;
     byte var3 = 0;
     byte var4 = 30;
     byte var5 = 127;
     // byte var6 = 128; //컴파일 에러
     System.out.println(var1);
     System.out.println(var2);
     System.out.println(var3);
     System.out.println(var4);
     System.out.println(var5);
```

❖ 예제: GarbageValueExample.java

```
public class GarbageValueExample {
  public static void main(String[] args) {
     byte var1 = 125;
     int var2 = 125;
     for (int i = 0; i < 5; i++) {
        var1++;
        var2++;
        System.out.println("var1: " + var1 + "t" + "var2: " + var2);
```

❖ 문자

- o 코드(문자셋)
 - 문자를 숫자로 매핑한 것
- ㅇ 종류
 - 아스키코드(ASCII)
 - 유니코드(Unicode)
- o 자바의 문자형
 - 유니코드를 저장
 - 영문 파트는 ASCII코드와 동일

ASCII CODE TABLE

10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자
0	0x00	NULL	22	0x16	STN	44	0x2C		66	0x42	В	88	0x58	Χ	110	0x6E	n
1	0x01	SOH	23	0x17	ETB	45	0x2D	-	67	0x43	С	89	0x59	Υ	111	0x6F	0
2	0x02	STX	24	0x18	CAN	46	0x2E		68	0x44	D	90	0x5A	Z	112	0x70	р
3	0x03	ETX	25	0x19	EM	47	0x2F	/	69	0x45	Е	91	0x5B	[113	0x71	q
4	0x04	EOT	26	0x1A	SUB	48	0x30	0	70	0x46	F	92	0x5C	₩	114	0x72	r
5	0x05	ENQ	27	0x1B	ESC	49	0x31	1	71	0x47	G	93	0x5D]	115	0x73	S
6	0x06	ACK	28	0x1C	FS	50	0x32	2	72	0x48	Н	94	0x5E	^	116	0x74	t
7	0x07	BEL	29	0x1D	GS	51	0x33	3	73	0x49	I	95	0x5F	_	117	0x75	u
8	0x08	BS	30	0x1E	RS	52	0x34	4	74	0x4A	J	96	0x60	*	118	0x76	٧
9	0x09	HT	31	0x1F	US	53	0x35	5	75	0x4B	K	97	0x61	а	119	0x77	W
10	0x0A	₩n	32	0x20	SP	54	0x36	6	76	0x4C	L	98	0x62	b	120	0x78	Х
11	0x0B	VT	33	0x21	1	55	0x37	7	77	0x4D	М	99	0x63	С	121	0x79	у
12	0x0C	FF	34	0x22	"	56	0x38	8	78	0x4E	N	100	0x64	d	122	0x7A	Z
13	0x0D	₩r	35	0x23	#	57	0x39	9	79	0x4F	0	101	0x65	е	123	0x7B	{
14	0x0E	SO	36	0x24	\$	58	0x3A	:	80	0x50	Р	102	0x66	f	124	0x7C	
15	0x0F	SI	37	0x25	%	59	0x3B	;	81	0x51	Q	103	0x67	g	125	0x7D	}
16	0x10	DLE	38	0x26	&	60	0x3C	<	82	0x52	R	104	0x68	h	126	0x7E	~
17	0x11	DC1	39	0x27		61	0x3D	=	83	0x53	S	105	0x69	i	127	0x7F	DEL
18	0x12	DC2	40	0x28	(62	0x3E	>	84	0x54	Т	106	0x6A	j			
19	0x13	DC3	41	0x29)	63	0x3F	?	85	0x55	U	107	0x6B	k			
20	0x14	DC4	42	0x2A	*	64	0x40	@	86	0x56	V	108	0x6C	-1			
21	0x15	NAK	43	0x2B	+	65	0x41	Α	87	0x57	W	109	0x6D	m			

❖ 예제: CharExample.java

```
public class CharExample {
  public static void main(String[] args) {
     char c1 = 'A'; // 문자를 직접 저창
     char c2 = 65; // 십진수로 저장
     char c3 = '\u0041'; // 16진수로 저장
     char c4 = '가'; // 문자를 직접 저장
     char c5 = 44032; // 십진수로 저장
     char c6 = '\uac00'; // 16진수로 저장
     int uniCode = c1; // 유니코드 얻기
     System.out.println(c1);
     System.out.println(c2);
     System.out.println(c3);
     System.out.println(c4);
     System.out.println(c5);
     System.out.println(c6);
     System.out.println(uniCode);
```

❖ 예제: IntExample .java

```
public class IntExample {
  public static void main(String[] args) {
     int var1 = 10; // 10진수로 저장
     int var2 = 012; // 8진수로 저장
     int var3 = 0xA; // 16진수로 저장
     System.out.println(var1);
     System.out.println(var2);
     System.out.println(var3);
  }
```

❖ 예제: LongExample.java

```
public class LongExample {
  public static void main(String[] args) {
     long var1 = 10;
     long var2 = 20L;
     // long var3 = 1000000000000; //컴파일 에러
     long var4 = 1000000000000L;
     System.out.println(var1);
     System.out.println(var2);
     System.out.println(var4);
```

❖ 예제: FloatDoubleExample.java

```
public class FloatDoubleExample {
  public static void main(String[] args) {
     // 실수값 저장
     double var1 = 3.14;
     // float var2 = 3.14; //컴파일 에러(Type mismatch)
     float var3 = 3.14F;
     // 정밀도 테스트
     double var4 = 0.1234567890123456789;
     float var5 = 0.1234567890123456789F;
     System.out.println("var1: " + var1);
     System.out.println("var2: " + var3);
     System.out.println("var4: " + var4);
     System.out.println("var5: " + var5);
```

❖ 예제: FloatDoubleExample.java

```
// e 사용하기
int var6 = 3000000;
double var7 = 3e6;
float var8 = 3e6F;
double var9 = 2e-3;
System.out.println("var6: " + var6);
System.out.println("var7: " + var7);
System.out.println("var8: " + var8);
System.out.println("var9: " + var9);
```

❖ 예제: BooleanExample.java

```
public class BooleanExample {
  public static void main(String[] args) {
     boolean stop = true;
     if (stop) {
        System.out.println("중지합니다.");
     } else {
        System.out.println("시작합니다.");
```