Can we build the button now?

One needs to press the button precisely the propagation delay of an inverter!

Pulse Trigger S-R Flip-Flops

- Compared to the level-sensitive latch, the Flip-Flops changes state only on the edge of CLK.
- "₁" denotes the pulse trigger
- Triggered at the falling edge

Pulse Trigger S-R Flip-Flops

Question: plot the waveform of Q and Q', assume the initial Q and Q_1 is 0

Pulse Trigger J-K Flip-Flops

CLK	J	K	Q	Q*
×	×	×	×	Q
	0	0	0	0
_TL	0	0	1	1
	1	0	0	1
_TL	1	0	1	1
_TL	0	1	0	0
	0	1	1	0
	1	1	0	1
_TL	1	1	1	0

Pulse Trigger J-K Flip-Flops

Question: plot the waveform of Q and Q', assume the initial Q and the output of the master stage are 0

Pulse Trigger J-K Flip-Flops

Question: plot the waveform of Q and Q', assume the initial Q and the output of the master stage are 0

• When *CLK*=1, the output of the master stage can only change once. This is different from the S-R flip flop.

Can we build the button now?

Edge Trigger Flip-Flops

CLK	D	Q	Q*
×	×	×	Q
t	0	0	0
t	0	Ī	0
t	1	0	1
t	1	1	1

- To improve the noise tolerance, it is desired to have an edge trigger FF rather than the pulse trigger FF.
- ">" denotes the edge trigger
- Triggered at the rising edge

Edge Trigger Flip-Flops

Question: plot the waveform of *Q*, assume the initial *Q* is 0

The asynchronous Edge Trigger Flip-Flops

• The asynchronous set or reset should apply to both the master and slave stage

Content

Classification based on the functionality

Timing analysis

S-R Flip-Flops

S	R	Q	Q*	
0	0	0	0	S - 18
0	0	1	1	CLK — C
0	1	0	0	R —— 11
. 0	1	1	0	
1	0	0	1	S - 1
1	0	1	1	CLK — C
1	1	0	不定	R1
1	1	1	不定	L

$$\begin{cases} Q^* = S'R'Q + SR'Q' + SR'Q = SR' + S'R'Q \\ SR = \mathbf{0} \end{cases}$$
 (约束条件)

$$\begin{cases} Q^* = S + R'Q \\ SR = \mathbf{0} \quad (约束条件) \end{cases}$$

J-K Flip-Flops

	Q*	Q	K	J
	0	0	0	0
	1	1	0	0
	0	0	1	0
$J \longrightarrow 1J \qquad \neg \longrightarrow Q$	0	1	1	0
CLK — C1 K — $1K$ $\neg \triangleright$ — Q	1	0	0	1
$K \longrightarrow 1K \neg \triangleright \longrightarrow Q$	1	1	0	1
	1	0	1	1
	0	1	1	1

T Flip-Flops

T	Q	Q*
0	0	0
0	1	1
1	0	1
1	1	0

$$Q^* = TQ' + T'Q$$

D Flip-Flops

D	Q	Q *
0	0	0
0	1	0
1	0	1
1	1	1

Content

Classification based on the functionality

Timing analysis

Setup time

• Set-up time $t_{\rm su}$ is the minimum interval required for the logic levels to be maintained prior to the triggering edge of CLK

$$t_{\rm su} = t_{\rm TG1} + 3t_{\rm INV}$$

Hold time

• Hold time $t_{\rm h}$ is the minimum interval required for the logic levels to be maintained after to the triggering edge of CLK

$$t_{\rm h} = t_{\rm INV}$$

Setup time and hold time

• Assume the propagation delay of both the inverter and transmission gate is $t_{\rm d}$

$$t_{\text{su}} = 2t_{\text{INV}} + t_{\text{TG}} - t_{\text{INV}} = t_{\text{INV}} + t_{\text{TG}}$$

 $t_{\text{h}} = 2t_{\text{INV}}$

