Tutoría 08

Problema 1: Determine las funciones de transferencia $H(\omega) = \frac{v_0}{v_i}$ para los siguientes circuitos eléctricos mostrados en la figura 1.

Figura 1. Circuitos para el problema 1

Problema 2: Según la función de transferencia $H(\omega)$ mostrada a continuación, realice el diagrama asintótico de Bode. Justifique mediante cálculos matemáticos todo el procedimiento que le permita realizar el diagrama asintótico y bosqueje en el plano \mathbf{s} el diagrama de polos y ceros.

$$H(\omega) = \frac{10}{(1+j\omega)(10+j\omega)}$$

Problema 3: Según la función de transferencia $H(\omega)$ mostrada a continuación, realice el diagrama asintótico de Bode. Justifique mediante cálculos matemáticos todo el procedimiento que le permita realizar el diagrama asintótico y bosqueje en el plano \mathbf{s} el diagrama de polos y ceros.

$$H(s) = \frac{10s(s+20)}{(s+1)(s^2+60s+400)} \qquad s = j\omega$$

Problema 4: Según el diagrama de la respuesta en magnitud mostrado en la figura 2, determine la función de transferencia que da origen a la respuesta en magnitud.

Figura 2. Diagrama asintótico de magnitud (Bode)

Problema 5: Considere el circuito de la figura 3 y que el amplificador operacional es ideal.

Figura 3. Circuito para el problema 5

- a) Determine la función de transferencia $H(\omega)$ en términos de los componentes R_1 , R_2 , C_1 y C_2 .
- b) A partir de la función de transferencia calculada en el punto anterior, determine $H(\omega)$ para $R_1=125\,k\Omega$, $R_2=10\,k\Omega$, $C_1=4\,\mu\mathrm{F}$ y $C_2=10\,\mu\mathrm{F}$. Además, dibuje el diagrama de polos y ceros de $H(\omega)$.
- c) Grafique el diagrama asintótico de Bode tanto de magnitud como de fase para $H(\omega)$.

Problema 6: Considere el circuito de la siguiente figura y que $s = j\omega$.

Figura 4. Circuito para el problema 6

- a) Determine la función de transferencia $H(s) = I_o(s)/I_s(s)$.
- b) Determine el factor de amortiguamiento ζ y la frecuencia de corte ω_n del polo cuadrático de H(s).
- c) Dibuje los diagramas de Bode de magnitud y de fase de H(s).