

When Encryption is Not Enough

Privacy Attacks in Content-Centric Networking

Cesar Ghali, Gene Tsudik_and Christopher A. Wood
University of California, Irvine
{cghali, gene.tsudik, woodc1}@uci.edu

Privacy with IP

Privacy with IP

What's revealed?

- Source and destination addresses and port #
- Timing
- Packet sizes

Privacy with CCN

Privacy with CCN

encrypted name? Interest: /a/b/c Content: <data>

What's revealed?

- Consumer and producer locations
- Timing
- Packet sizes
- Producer identity
- Interest name (and equality)

• ...

ACM ICN 2017

encrypted content?

Motivating Question

What can an adversary do with interest equality alone?

Over to encrypted databases...

Encrypted Database

Encrypted Database

Eavesdropping

Eavesdropping

0x1234...
0x4356...
0x4356...
0x1234...
0x1234...
0x1234...
0x1234...
0x9981...
0x9981...
0x9271...
0x3233...

Empirical Frequency Counts

Auxiliary Popularity Info

Frequency Analysis Attack

Frequency Analysis Attack

Back to CCN...

CCN as a Content Database

CCN as a Content Database

CCN as a Content Database

Relevant Distributions

- Real popularity distribution $\mathcal{D}_R(\mathbb{P})$
- Auxiliary information distribution $\mathcal{D}_A^{\mathcal{A}}(\mathbb{P})$
- Empirical frequency distribution $\mathcal{D}_E(\mathbb{C})$

Global Eavesdropping Adversary

- Nefarious ISPs, nation states, etc.
- Questions:
 - To what extent does auxiliary information accuracy matter?
 - To what extent does universe size matter?

Topology

Different Auxiliary and Popularity Information

Matching Auxiliary and Popularity Information

ACM ICN 2017

24

Takeaway

$$\Delta(\mathcal{D}_A^{\mathcal{A}}(\mathbb{P}), \mathcal{D}_R(\mathbb{P})) \approx 0.0$$

 $\Delta(\mathcal{D}_E(\mathbb{C}), \mathcal{D}_A^{\mathcal{A}}(\mathbb{P})) \approx 0.0$

Auxiliary Information Gap

Content Universe Size

Takeaway

Auxiliary information accuracy is not as important as sample size

Distributed Adversary

 Access point, enterprise network middlebox, compromised transit router, etc.

Questions:

- Where does the adversary have the best chance at succeeding?
- To what extent does caching dampen attack efficacy?
- Can content replication (across different producers) help?

29

Edge vs Inner Router

Cache Presence

ACM ICN 2017

31

Replication

Probing for Popularity

- What does do if it has no popularity information?
- Exploit caches to learn popularity
 - Assumes plaintext and ciphertext equivalents are fetched with equal distributions

Summary

- Caching both helps and hurts privacy
- Eavesdropping at the edge is enough
- Content replication helps bypass adversaries
- Preventing namespace enumeration is key to mitigating the attack

Future Work

- Expand simulator and widen experiments
- Analytically quantify the attack match percentage given distributions, network topologies, and cache hit probabilities
- Study attack on CDNs today

/this/is/the/end/version=0x00/chunk=0x01/PID=0x02

Questions?

Probing for Popularity

What does of it has no popularity information?

Probing for Popularity

- What does do if it has no popularity information?
- Exploit caches to learn popularity
 - Assumes plaintext and ciphertext equivalents are fetched with equal distributions

Probing Algorithm

Algorithm 1 InferPopularity

```
1: Input: \mathcal{N}, r, t_c, \epsilon
 2: Output: \alpha: \mathcal{N} \to \mathbb{N}
 3: for N \in \mathcal{N} do
        \alpha[N] = 0
 5: end for
 6: for i = 1, ..., r do
         for N \in \mathcal{N} do
 7:
 8:
             N_h = N; N_m = \text{AppendRandomComponent}(N, 128)
             t_N = \text{now}()
 9:
             Send requests for N_h and N_m in parallel and record their time of arrival in t_N^h and
10:
             \Delta_N = ||(t_N^h - t_N)| - |(t_N^m - t_N)||
11:
             if \Delta_N > \epsilon then
12:
                 \rho[N] = \rho[N] + 1
13:
             end if
14:
             Sleep for t_c
15:
16:
         end for
17: end for
18: return \alpha
```

Probe Results (S = 50)

Probe Results (S = 100)

