딥러닝과 자연어 처리: 어텐션 메커니즘과 트랜스포머 역할

Table of Contents 목차

- 1. 딥러닝 (Deep Learning) 소개
 - 1. 딥러닝이란?
 - 2. 딥러닝의 역사와 발전
 - 3. 딥러닝의 주요 구성 요소
- 2. 자연어 처리 (NLP)
 - NLP란 무엇인가?
 - NLP의 역사와 발전
- 3. 어텐션 메커니즘 소개
 - 어텐션 메커니즘 필요성
- 4. 어텐션 메커니즘의 작동 원리
 - 기본 작동 원리 설명
 - 예시를 통한 설명

- 5. 어텐션 메커니즘의 종류
 - 바다나우 어텐션
 - 셀프 어텐션
 - Scaled dot-production attention
 - Multi-head attention
- 6. 트랜스포머 모델
 - 트랜스포머 모델 소개
 - 트랜스포머의 셀프 어텐션
 - 위치 인코딩
 - Encoder와 Decoder스택
- 7. 어텐션 메커니즘의 응용
 - NLP에서의 어텐션 메커니즘 응용
 - 기타 분야에서의 응용 사례
- 8. 어텐션 메커니즘의 장점
- 9. Transformer vs. Traditional Model
- 10. 결론 및 미래 전망

딥러닝이란?

딥 러닝 (Deep Learning)은 머신러닝 (Machine Learning)의 특정한 한 분야로서 인공 신경망(Artificial Neural Network)의 층을 연속적으로 깊게 쌓아올려 데이터를 학습하는 방식.

- 다층 퍼셉트론, CNN, RNN, 등 다양한 아키텍쳐가 존재합니다.

Recurrent Neural Network

딥러닝 역사

"The foundations for all of this artificial intelligence were laid at Cornell."

- Thorsten Joachims, professor in CIS

1세대: 1958 "Perceptron" [코넬 항공 연구소 프랭크 로젠블랫]

- 뇌의 뉴런이 서로 연결되어 정보를 처리하는 구조를 모방한 알고리즘

$$y = \varphi(\sum_{i=1}^{n} w_i x_i + b)$$

2세대: Multilayer Perceptron

- Hidden layer추가

3세대: Supervised Learning – Rectified linear unit (ReLU), Dropout

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

딥러닝 주요 구성요소

입력 계층 / 은닉 계층 / 출력 계층

- 주요 응용 분야로는 이미지 인식, 자연어 처리, 자율 주행 등이 있습니다.
- 딥러닝의 핵심은 다층 구조로 복잡한 패턴을 학습화 할 수 있다는 점입니다.
- 예를 들어, 이미지 인식에서는 여러 층을 통해 점차 복잡한 특징을 추출합니다.

자연어 처리 (NLP)

Natural Language Processing (NLP)란 무엇인가요?

자연어 처리(NLP)는 인간의 언어를 해석, 조작 및 이해하는 능력을 컴퓨터에 부여하는 AI 기술입니다.

NLP 성능:

- 텍스트 및 음성 데이터를 완벽하고 효율적으로 분석하는데 중요
- 언어 속 방언, 속어, 문법적 불규칙성의 차이를 극복할 수 있다.

작업에서는 구글 번역과 같은 서비스가 NLP를 사용하여 다양한 언어를 지원합니다.

NLP의 발전

- 최종목표: 인간과 AI의 상호작용을 자연스럽고 의미 있게 만드는 것
- 주요 도전과제: 방대한 데이터셋 처리, 언어의 모호성 이해, 언어의 문맥 이해, 확장 가능한 모델 구축
 - 예) "나는 은행에서 물고기를 잡았다"
- 이러한 문제를 해결하기 위해 어텐션 메커니즘이 도입되었습니다.

어텐션 (Attention) 소개 / 필요성

- 어텐션 메커니즘은 입력 시퀀스의 관련 부분에 집중할 수 있게 하는 기술입니다.
- 이 기술은 모델이 중요한 정보에 더 많은 가중치를 부여할 수 있도록 도와줍니다.
- 자연어 처리에서 어텐션은 문맥을 이해하는데 큰 도움을 줍니다.

어텐션 메커니즘 소개

어텐션 메커니즘 작동 원리

- Query, Key, Value:
 - Query: 현재 주목하고 있는 부분
 - Key: 모든 입력 부분
 - Value: Key와 연관된 실제 값
- Attention 점수 계산:
 - Query 와 Key의 유사도를 계산하여 얻음
- **Thinking Machines** Input **Embedding** Queries Keys Values $q_1 \cdot k_2 = 96$ Score $q_1 \cdot k_1 = 112$ Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax

- 가중치 계산:
 - 소프트맥스 함수를 통해 가중치를 계산
- 가중합 계산:
 - 가중치를 통해 Value의 가중합을 구하여 중요한 정보에 집중

The self-attention calculation in matrix form

어텐션 메커니즘 작동 예시

Seq2seq model

어텐션 메커니즘 작동 예시

2-1. Attention Mechanism에서의 Encoder

어텐션 메커니즘 작동 예시

Attention을 포함한 decoder 구조

어텐션 메커니즘 작동 예시

Attention layer

어텐션 메커니즘 작동 예시

이때, Attention Weight layer에서 출력되는 값은 (0.1 0 0 0 0.1) + (0.055 0 0 0.11) + (0.8 0.8 1.6 0) + (0.045 0.045 0 0)

Weight sum layer

각 단어의 가중치와 단어 벡터의 가중합(weighted sum)

Attention 종류

l. 바다나우 어텐션 (Bahdanau Attention)

$$e_{ij} = v_a^{\mathsf{T}} \tanh(W_a s_{i-1} + U_a h_j)$$

- 2. 셀프 어텐션 (Self-Attention)
- 3. Scaled Dot-Production Attention

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

- 4. 루옹 어텐션 (Luong Attention)
- 5. 멀티헤드 어텐션 (Multi-Head Attention)

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Transformer model

2017 년 Vaswani 등이 발표한 어텐션 메커니즘만을 사용하는 모델

주요특징: 병렬 처리, 확장성, 효율성

Attention is All You Need

- 트랜스포머 모델은 어텐션 메커니즘을 기반으로 한 시퀀스 변환 모델입니다.
- 이 모델은 인코더와 디코더로 구성되어 있으며, 각각 다층의 셀프 어텐션과 feed forward신경망으로 이루어져 있습니다.
- 트랜스포머 순환 신경망 (RNN)이나 합성곱 신경망 (CNN)을 사용하지 않고도 높은 성능을 발휘합니다.
- 이 모델은 병렬화가 용이하고, 학습 속도가 빠르며, 다양한 자연어 처리 작업에서 우수한 성능을 보입니다.

지속적인 연구: 분야의 지속적인 개선과 확신 잠재력: 다양한 AI 및 머신러닝 도메인에서의 넓은 응용 가능성

Transformer에서의 셀프 어텐션 / 멀티헤드 어텐션

설명: 입력 시퀀스의 각 단어가 다른 모든 단어에 주의를 기울여 문맥을 더 효과적으로 이해 멀티헤드 어텐션: 어텐션 메커니즘을 여러 개로 분할하여 서로 다른 부분에 집중.

Attention Based Model

그녀는 주전자의 물을 컵에 따랐다. <mark>그것이</mark> 가득 찰 때까지.

'그것' = 컵

그녀는 주전자의 물을 컵에 따랐다. <mark>그것이</mark> 텅 빌 때까지.

'그것' = 주전자

Encoder and Decoder stacks

트랜스포머 모델은 위치 인코딩, 멀티-헤드 셀프 어텐션, position wise feed forward 네트워크를 통해 입력 시퀀스의 모든 위치에 주의를 기울여 출력을 생성합니다.

어텐션 메커니즘의 장점

- 성능 향상: 언어 이해와 생성에서 정확도 향상
- 문맥 인식: 시퀀스 내의 장거리 의존성을 더 잘 처리
- 확장성: 대규모 데이터셋의 효율적인 처리

Transformer vs Traditional Models

Output

중요성: 딥러닝과 어텐션 메커니즘이 NLP와 그 외 분야에 미치는 변혁적인 영향 강조

Model	BLEU			Training Cost (in FLOPS * 10 ¹⁸)	
Model	EN-DE	EN-FR	(IN FLOP EN-DE	EN-FR	
ByteNet (Kalchbrenner et al., 2016)	23.75	LIVIK	LIVE	Livii	
Deep-Att + PosUnk (Zhou et al., 2016)		39.2		100	
GNMT + RL (Wu et al., 2016)	24.6	39.92	23	140	
ConvS2S (Gehring et al., 2017)	25.16	40.46	9.6	150	
MoE (Shazeer et al., 2017)	26.03	40.56	20	120	
GNMT + RL Ensemble (Wu et al., 2016)	26.30	41.16	180	1100	
ConvS2S Ensemble (Gehring et al., 2017)	26.36	41.29	77	1200	
Transformer (base model)	27.3	38.1	3.3		
Transformer (big)	28.4	41.8	23		

Future Diretions

