BIG DATA COMPUTING 2020/21 – HOMEWORK 3

Finding the optimal silhouette value

Test your algorithm on the **synt2M.txt.gz** dataset for finding the number k of clusters that provide the best silhouette value. Search k in the range [8,12]. Report the silhouette value and the running times when running your algorithm with kstart equals to the optimal k and with M=2000, iter=10, L=16 and 16 executors.

k = 10

Silhouette = 0.9984150376628058

Time to read the input (in ms) = 61

Time to compute clustering (in ms) = 13087

Time to compute the silhouette (in ms) = 5734

Note for Python users: if the total running time of the required run exceeds 15 minutes, reduce the value of M until the running time is below 15 minutes.

Analyzing algorithm scalability

Analyze the scalability of your algorithm on the **HIGGS11M7D.txt.gz** dataset with 2, 4, 8 or 16 executors. Run your algorithm with k=5, h=1, iter=10, L=16, and M=500 (Python users: use M=50), and fill the table below with the required values.

	2 executors	4 executors	8 executors	16 executors
Time to read input (in ms)	75	59	61	63
Time to compute clustering (in ms)	109367	91035	60339	52602
Time to compute the silhouette (in ms)	103622	39868	18703	9395