MP: suite et série

Coralie RENAULT

13 septembre 2014

Exercice

- Cours : expression du terme général d'une suite linéaire récurrente d'ordre 2.
- Soit (u_n) définie par :

$$u_0 > 0, u_1 > 0, \lambda > 0, \forall n \in \mathbb{N}, u_{n+2} = \lambda \sqrt{u_{n+1}u_n}$$

Expliciter le n-ième terme u_n de la suite en fonction de n.

Exercice

Etudier la suite (u_n) définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$

Exercice

Soit $(a_n)_{n\geq 1}$ une suite complexe convergente, de limite l. Montrer que la suite $(b_n)_{n\geq 1}$ définie par :

$$\forall n \in \mathbb{N}, \, b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

converge vers l.

Exercice

Soit (u_n) une suite réelle strictement positive et strictement croissante.

Nature de la série de terme général

$$\frac{u_{n+1} - u_n}{u_n}$$

Exercice

Soit (u_n) une suite à termes positifs et décroissante. Si la série $\sum u_n$ converge, montrer que $u_n = o(\frac{1}{n})$ lorsque $n \to +\infty$

Exercice

Déterminer la nature de la série de terme général

$$u_n = \left(\frac{1}{n}\right)^{1 + \frac{1}{n}}$$

Exercice

Déterminer la nature des séries dont les termes généraux sont les suivants :

a)
$$u_n = \left(\frac{n}{n+1}\right)^{n^2}$$
 b) $u_n = \frac{1}{n\cos^2 n}$ c) $u_n = \frac{1}{(\ln n)^{\ln n}}$

Exercice

Soit (u_n) une suite vérifiant :

$$u_0 \in]0, \frac{\pi}{2}], \forall n \in \mathbb{N}, u_{n+1} = sin(u_n)$$

- Montrer que u_n tend vers 0 puis donner un équivalent de u_n lorsque n tend vers $+\infty$ Donner un développement asymptotique à deux termes de u_n .