Задача. Реклама утверждает, что из двух типов пластиковых карт «Русский экспресс» и «Супер-понт» богатые люди предпочитают первый. С целью проверки этого утверждения были обследованы среднемесячные платежи $n_1=16$ обладателей «Русского экспресса» и $n_2=11$ обладателей «Супер-понта». При этом выяснилось, что платежи по картам «Русский экспресс» составляют в среднем 563 долл. с исправленным средним квадратическим отклонением 178 долл., а по картам «Супер-понт» — в среднем 485 долл. с исправленным средним квадратическим отклонением 196 долл. Предварительный анализ законов распределения месячных расходов как среди обладателей «Русского экспресса», так и среди обладателей «Супер-понта» показал, что они достаточно хорошо описываются нормальным приближением. Проверить утверждение рекламы на уровне значимости 10 %.

- © **Решение.** Рассмотрим в этих условиях две задачи.
- 1) Сначала проверим гипотезу о равенстве дисперсий.

Пусть основная гипотеза: $H_0=\{\sigma_1=\sigma_2\}$. Выберем альтернативную гипотезу $H_1=\{\sigma_1\neq\sigma_2\}$. Для проверки гипотез рассмотрим статистику

$$T(\vec{X}_{n_{max}}, \vec{Z}_{n_{min}}) = \frac{S^2(\vec{X}_{n_{max}})}{S^2(\vec{Z}_{n_{min}})} \sim F(n_{max} - 1, n_{min} - 1),$$

где F распределение Фишера-Снедекора, n_{max} и n_{min} соответствуют s_{max}^2 и s_{min}^2 ,

$$F(n_1 - 1, n_2 - 1) = \frac{\chi^2(n_1)/n_1}{\chi^2(n_2)/n_2}.$$

Критическое множество

$$W_{\alpha} = \left\{ \left(\vec{x}_{n_{max}}, \vec{z}_{n_{min}}\right) \colon \left. T\left(\vec{x}_{n_{max}}, \vec{z}_{n_{min}}\right) \geq F_{1 - \frac{\alpha}{2}; n_{max} - 1, n_{min} - 1} \right\}.$$

Вычислим

$$T(\vec{x}_{n_{max}}, \vec{z}_{n_{min}}) = \frac{S^2(\vec{x}_{n_{max}})}{S^2(\vec{z}_{n_{min}})} = \frac{196^2}{178^2} = \frac{38416}{31684} \approx 1.21.$$

Из таблицы критических значений Фишера-Снедекора по уровню значимости $\alpha/2=0.05$ и числам степеней свободы $n_{max}-1=n_2=10$ и $n_{min}-1=n_1=15$ находим критическую точку $F_{1-\alpha/2;10,15}=2.55$.

Поскольку 1.21 < 2.55, принимаем гипотезу о равенстве дисперсий двух выборок.

Рассмотрим статистику

$$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{S^2(\vec{X}_{n_1})}{S^2(\vec{Y}_{n_2})} \sim F(n_1 - 1, n_2 - 1),$$

эта статистика может принимать и значения меньше 1. Тогда критическое множество:

$$W_{\alpha} = \left\{ \left(\vec{x}_{n_1}, \vec{y}_{n_2}\right) : \left(T\left(\vec{x}_{n_1}, \vec{y}_{n_2}\right) \geq F_{1 - \frac{\alpha}{2}; n_1 - 1, n_2 - 1}\right) \vee \left(T\left(\vec{x}_{n_1}, \vec{y}_{n_2}\right) \leq \frac{1}{F_{1 - \frac{\alpha}{2}; n_1 - 1, n_2 - 1}}\right) \right\}.$$

Вычислим эту статистику при \vec{x}_{15} , \vec{y}_{10} :

$$T(\vec{X}_{15}, \vec{Y}_{10}) = \frac{S^2(\vec{X}_{15})}{S^2(\vec{Y}_{10})} = \frac{178^2}{196^2} = \frac{31684}{38416} \approx 0.825$$

Критические значения: $F_{1-\alpha/2;15,10}\approx 2.845, \quad \frac{1}{F_{1-\alpha/2;15,10}}\approx 0.35.$ Имеем

$$0.845 \ge 2.845$$
, $0.845 \le 0.35$.

Следовательно, принимаем гипотезу о равенстве дисперсий двух выборок.

2) Теперь в предположении, что дисперсии равны, проверим гипотезу о равенстве средних. Пусть основная гипотеза: $H_0 = \{m_1 = m_2\}$. Выберем альтернативную гипотезу $H_1 = \{m_1 > m_2\}$. Для проверки гипотез рассмотрим статистику

$$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\bar{X}_{n_1} - \bar{Y}_{n_2}}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{n_1 + n_2 - 2}{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}} \sim St(n_1 + n_2 - 2).$$

Критическое множество

$$W_{\alpha} = \{ (\vec{x}_{n_1}, \vec{y}_{n_2}) : T(\vec{x}_{n_1}, \vec{y}_{n_2}) \ge t_{1-\alpha} \}.$$

Вычислим

$$T(\vec{x}_{n_1}, \vec{y}_{n_2}) = \frac{563 - 485}{\sqrt{\frac{1}{11} + \frac{1}{16}}} \sqrt{\frac{11 + 16 - 2}{10 \cdot 38416 + 15 \cdot 31684}} \approx 1.07.$$

По таблице критических точек распределения Стьюдента для односторонней области по уровню значимости $\alpha=0.1$ и числу степеней свободы 25 находим $t_{1-\alpha}=1.316$. Поскольку 1.07<1.316, принимается основная гипотеза (о равенстве средних).

Таким образом, утверждение рекламы не подтверждается имеющимися данными. •

Критические точки

распределения Фишера-Снедекора

 $(k_1 -$ число степеней свободы бо́льшей дисперсии,

 k_2 – число степеней свободы ме́ньшей дисперсии)

Уровень значимости $\alpha = 0,01$

k_1	1	2	3	4	5	6	7	8	9	10	11	12
1	4052	4999	5403	5625	5764	5889	5928	5981	6022	6056	6082	6106
2	98,49	99,01	99,17	99,25	99,30	99,33	99,34	99,36	99,38	99,40	99,41	99,42
3	34,12	30,81	29,46	28,71	28,24	27,91	27,67	27,49	27,34	27,23	27,13	27,05
4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66	14,54	14,45	14,37
5	16,26	13,27	12,06	11,39	10,97	10,67	10,45	10,27	10,15	10,05	9,96	9,89
6	13,74	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98	7,87	7,79	7,72
7	12,25	9,55	8,45	7,85	7,46	7,19	7,00	6,84	6,71	6,62	6,54	6,47
8	11,26	8,65	7,59	7,01	6,63	6,37	6,19	6,03	5,91	5,82	5,74	5,67
9	10,56	8,02	6,99	6,42	6,06	5,80	5,62	5,47	5,35	5,26	5,18	5,11
10	10,04	7,56	6,55	5,99	5,64	5,39	5,21	5,06	4,95	4,85	4,78	4,71
11	9,86	7,20	6,22	5,67	5,32	5,07	4,88	4,74	4,63	4,54	4,46	4,40
12	9,33	6,93	5,95	5,41	5,06	4,82	4,65	4,50	4,39	4,30	4,22	4,16
13	9,07	6,70	5,74	5,20	4,86	4,62	4,44	4,30	4,19	4,10	4,02	3,96
14	8,86	6,51	5,56	5,03	4,69	4,46	4,28	4,14	4,03	3,94	3,86	3,80
15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89	3,80	3,73	3,67
16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3,78	3,69	3,61	3,55
17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68	3,59	3,52	3,45

Уровень значимости $\alpha = 0,05$

k_1	1	2	3	4	5	6	7	8	9	10	11	12
1	161	200	216	225	230	234	237	239	241	242	243	244
2	18,51	19,00	19,16	19,25	19,30	19,33	19,36	19,37	19,38	19,39	19,40	19,41
3	10,13	9,55	9,28	9,12	9,01	8,94	8,88	8,84	8,81	8,78	8,76	8,74
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,93	5,91
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,78	4,74	4,70	4,68
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,03	4,00
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,63	3,60	3,57
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,34	3,31	3,28
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,13	3,10	3,07
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,97	2,94	2,91
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,86	2,82	2,79
12	4,75	3,88	3,49	3,26	3,11	3,00	2,92	2,85	2,80	2,76	2,72	2,69
13	4,67	3,80	3,41	3,18	3,02	2,92	2,84	2,77	2,72	2,67	2,63	2,60
14	4,60	3,74	3,34	3,11	2,96	2,85	2,77	2,70	2,65	2,60	2,56	2,53
15	4,54	3,68	3,29	3,06	2,90	2,79	2,70	2,64	2,59	2,55	2,51	2,48
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,45	2,42
17	4,45	3,59	3,20	2,96	2,81	2,70	2,62	2,55	2,50	2,45	2,41	2,38