Solids of revolutions.

Rogion
$$x = x^3$$
 $x > 6$ about $x = axis$.

Points of intersection

When $x > 0$ are (0.0) and (0.1) are (0.1) and (0.1) and (0.1) and (0.1) and (0.1) are (0.1) are (0.1) and (0.1) are $(0.$

Surface area

$$f(x) = \frac{x_3}{1 + x_4 + 1}$$

$$\frac{9}{(x)} = \frac{1}{x^{3}} \cdot \frac{1}{x^{4}}$$

$$\frac{1}{x^{4}} \cdot \frac{1}{x^{4}} = \frac{1}{x^{4}} \cdot \frac{1}{x^{4}}$$

$$\frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \left(\frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty}$$

Region:
$$y = \sqrt{x}$$
 $y = x^2$
 $x = \sqrt{y}$

Volume = $2\pi \int_{0}^{1} x (\sqrt{x} - x^2) dx$

$$= 2\pi \int_{0}^{2\pi} x^3 dx$$

Field: $\frac{3\pi}{10}\pi$