Exercice 1. Circuit RL série en régime sinusoïdal : représentation de Fresnel

On considère le circuit suivant, avec $R=100 \Omega$ et L=1H mis en série et soumis à une tension u(t) de fréquence 50Hz et de valeur efficace 24V (choisie comme référence) :

- 1) Exprimer et calculer l'impédance Z de ce circuit (forme cartésienne et polaire)
- 2) Exprimer et calculer le courant I qui traverse ce circuit.
- 3) Exprimer et calculer les tensions complexes VR et VL.
- 4) Tracer le diagramme vectoriel des tensions et courant.
- 5) Vérifier votre résultat en appliquant la loi des mailles
- 6) Retrouver l'expression de <u>VL</u> par l'application du diviseur de tension.

Exercice 2 : Résonance en tension aux bornes de l'inductance L

Un circuit *RLC* série est alimenté par un générateur de tension sinusoïdale $e(t) = E_0 \cos(\omega t)$.

- a. Retrouver l'équation différentielle vérifiée par la tension $u_{\mathbb{C}}$ aux bornes du condensateur.
- b. Retrouver, en notation complexe, l'expression de la tension $\underline{u}_{\mathbb{C}}$ en fonction de \underline{e} . En déduire l'amplitude complexe $\underline{U}_{\mathbb{C}^0}$ en fonction de E_0 .
- c. Retrouver l'expression de l'intensité complexe i et celle de l'amplitude complexe I_0 .
- d. Quelle relation linéaire lie la tension u_L aux bornes de l'inductance et l'intensité i ? En déduire l'expression de la tension complexe \underline{u}_L et celle de l'amplitude complexe \underline{U}_{L0} .
- e. On pose : $x = \omega/\omega_0$, avec $\omega 0 = 1/\sqrt{LC}$ et $Q = L\omega_0/R$. Déterminer l'amplitude réelle $U_{L0} = \left| \underline{U_{L0}} \right|$ en fonction de E_0 , x et Q.
- f. On pose x' = 1/x, exprimer à nouveau <u>U</u>_{L0} et U_{L0} en fonction de x'.
 Vérifier que la loi obtenue est la même que celle de l'amplitude réelle <u>U</u>_{C0} de la tension aux bornes du condensateur en fonction de x.
 - Quelle conclusion peut-on en tirer pour le tracé des courbes de résonance ?

Exercice 3. (Bonus) Résonance en intensité

On effectue l'étude de la résonance en intensité d'un circuit RLC série. Le générateur de tension sinusoïdale branché à ses bornes délivre une tension d'amplitude constante $E_0 = 6V$. On s'intéresse au régime sinusoïdal permanent. Quand on fait varier la fréquence, on observe que l'intensité du courant passe par un maximum d'amplitude $I_{0max} = 60 \text{ mA}$ pour la fréquence $f_0 = 1590 \text{ Hz}$. Pour la fréquence f = 3000 Hz, l'amplitude de l'intensité est 36 mA.

Rappels dans le cas d'un circuit RLC série : ω_0 = $1/\sqrt{LC}$ la pulsation propre, $Q=\frac{L\omega_0}{R}$ le facteur de qualité, $\alpha=\frac{1}{2Q}$ l'amortissement du circuit et $x=\frac{\omega}{\omega_0}$. L'intensité suit la relation $I_0=\frac{I_{0max}}{\sqrt{1+Q^2\left(x-\frac{1}{x}\right)^2}}$ avec I_{0max} = E_0 /R.

- a. Déterminer la pulsation propre ω_0 .
- b. Déterminer le facteur de qualité Q et le coefficient d'amortissement α.
- c. Exprimer les grandeurs L, R et C.