

Downscaling Workshop Paris, France October 16th-17th 2012

Live Discussions

WG2: Collection of ideas and uncertainties

IS-ENES Partners:

Live Discussion

Live Discussion: Summary of key points Short questions list and Priorities

- Ensembles and uncertainties
 - Impact models can be as complex as climate models
 - Impact models uncertainties
 - Subsetting if needed to a few "representative" of uncertainties span
- Scales: spatial and temporal
- Statistical downscaling and bias correction (calibration)
- Physical consistency (spatial, temporal, variables)
- Variable-dependent methods
- Errors: data observations and/or methods
- Limitations by datasets

Live Discussion

Two main themes for **two Working Groups**. New ideas but also critics of what we are currently doing. Identify key points.

1. Methods and datasets requirements: diversity of downscaling and data correction methods and datasets with strengths/limitations, wrt user needs. Trends and stationarity.

7 people

2.Collection of ideas and uncertainties: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.

8 people

- **Collection of ideas and uncertainties**: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.
- Ensembles and uncertainties
 - Impact models can be as complex as climate models
 - Impact models uncertainties
 - Subsetting if needed to a few "representative" of uncertainties span
- Scales: spatial and temporal
- Statistical downscaling and bias correction (calibration)
- Physical consistency (spatial, temporal, variables)
- Variable-dependent methods
- Errors: data observations and/or methods
- Limitations by data sets

- Collection of ideas and uncertainties: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.
- Ensembles and uncertainties
 - Impact models can be as complex as climate models
 - Impact models uncertainties
 - Start using ensembles (multi model input)
 - Stochastic models (take pdf directly; only few exist)
 - Sub-setting if needed to a few "representative" of uncertainties span
 - Span the CC range: Use dT/dP plots (for the region of interest), other variables as model's sensitivity request in relation to uncertainty of that variable
 - Not only consider delta of the mean but also higher order moments
 - Need new methods here
 - Select the best models (minimum bias)? Weighting in bayesian methods
 - Do downscaling before (local e.g. topography) / after (global generic) selection
 - Consider model family tree (models are not independent, neither are scenarios)
 - Do (part of) above close to the archive to prevent unneeded data transfer, need to facilitate

- **Collection of ideas and uncertainties**: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.
- Ensembles and uncertainties
 - Impact models can be as complex as climate models
 - Methods to choose
 - Largely climate data determined in practice
 - Impact model data demands need more attention (don't do more dsbc than needed)
 - Use local meteo/impact expertise when available to choose/tune method
 - May depend on season
 - Bias correction effects are part of the total uncertainty
 - New emergent approaches
 - Use initial state ensembles to characterise internal variability -> allow for better determination of threshold crossing
 - Time of emergence approaches, linked to (?) adaptation turning points concepts

- **Collection of ideas and uncertainties**: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.
- Ensembles and uncertainties
 - Impact models can be as complex as climate models
 - Best practice recommendations possible ?
 - Cross-fertilisation between methods used in NWP, S2D vs CC; e.g. in terms of verification
 - In stochastic methods be aware of under-sampling effects, e.g. in analogue methods / neighbour selection
 - Be aware of all sources of uncertainties (models, parameters, data, methods) don't try to reduce this too much

 Collection of ideas and uncertainties: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.

Matrix of uncertainties

- Scenario uncertainty separate; matter of choice and time horizon
- Model uncertainty (structural + parameter): span selection recommendations
 - Family tree or more objective clustering (possible?)
- IV/ initial state uncertainty: relevant for higher order statistics
- Correction uncertainty: use i.s. ensembles, different training periods
 - StarMIP
 - · Compare watermip vs agmip vs isimip products
 - · Provide globally corrected products as input to local downscaling products?
- Data uncertainty: homogenisation, correction (e.g. P-undercatch, UHI encroachment), representativeness, weather typing methodology
- 'Perfect model' approaches; stationarity verification
- How to extract the certainties: the robust patterns despite uncertainties
- TAYLORING is a long term cooperation between C, I and stat experts based on specific questions

- Collection of ideas and uncertainties: new approaches for the analysis of a large number of scenarios in the context of downscaling and climate impacts. Best practices to deal with climate scenarios and uncertainties.
- Threshold approaches

Uncertainty source		
Obs. Data		
Corr. Method	Ideally use 2-3 a-priori selected methods	
Internal Variability		
Parameter / structural		