学科与专题介绍

有限群 (V)

Jean-Pierre Serre

第七章 转移

7.1 定义

设 G 为群, H 为 G 中具有有限指标的子群, X=G/H 是 H 左陪集的集合. 对每个 $x\in X$, 在 G 中选取 x 的代表元 \bar{x} . 群 G 作用在 X 上. 若 $s\in G$ 而 $x\in X$, G 中元素 $s\bar{x}$ 在 X 中的象就是 sx. 若 $s\bar{x}$ 表示 sx 的代表元,则有 $h_{s,x}\in H$ 使 $s\bar{x}=\overline{sx}h_{s,x}$. 令

$$\operatorname{Ver}(s) = \prod_{x \in X} h_{s,x} \pmod{(H,H)},$$

其中乘积是在群 $H^{ab} = H/(H, H)$ 中来计算的.

定理 7.1 (Schur) 上面定义的映射 $\mathrm{Ver}: G \to H^{ab}$ 是同态,而且它不依赖于代表元组 $\{\bar{x}\}_{x \in X}$ 的选取.

先来证明映射 Ver 的定义没有歧义. 为此,设 $\{\bar{x}'\}_{x\in X}$ 是另一组代表元,来计算由 \bar{x}' 决定的乘积 Ver'(s). 元素 $\bar{x}'\in G^{(1)}$ 在 X 中的象为 x, 因此存在 $h_x\in H$ 使 $\bar{x}'=\bar{x}h_x$. 由于

$$\begin{split} s\bar{x}' &= s\bar{x}h_x = \overline{sx}h_{s,x}h_x \\ &= \overline{sx}h_{sx}h_{sx}^{-1}h_{s,x}h_x \\ &= (\overline{sx})'h_{sx}^{-1}h_{s,x}h_x, \end{split}$$

又由于 Hab 是交换群, 从而 2)

$$Ver'(s) = \prod h_{sx}^{-1} h_{s,x} h_x \pmod{(H,H)}$$
$$= (\prod h_{sx})^{-1} \prod h_{s,x} \prod h_x \pmod{(H,H)},$$

然而, 当 x 取遍 X 时, sx 也取遍 X, 故 $\prod h_{sx} = \prod h_x$, 从而

$$\operatorname{Ver}'(s) = \prod h_{s,x} = \operatorname{Ver}(s) \; (\operatorname{mod}(H,H)),$$

所以映射 Ver 的定义没有歧义.

现在来证明它是一个同态. 设 $s,t \in G$, 则

$$st\bar{x} = s\overline{tx}h_{t,x} = \overline{stx}h_{s,tx}h_{t,x},$$

原题: Groupes Finis. 译自: http://arxiv.org/math.GR/0503154.

¹⁾ 原文为 $\bar{x}' \in X$. —— 译注

²⁾ 下面用了简化记号,所有乘积都是对 $x \in X$ 来求的.—— 译注

由于 Hab 是交换群、从而

$$\begin{aligned} \operatorname{Ver}(st) &= \prod h_{s,tx} h_{t,x} \; (\operatorname{mod}(H, H)) \\ &= \prod h_{s,tx} \prod h_{t,x} \; (\operatorname{mod}(H, H)). \end{aligned}$$

然而, 当 x 取遍 X 时, tx 也取遍 X, 故 $\prod h_{s,tx} = \prod h_{s,x}$. 从而 $\mathrm{Ver}(st) = \prod h_{s,x} \prod h_{t,x} = \mathrm{Ver}(s)\mathrm{Ver}(t) \, (\mathrm{mod}(H,H))$.

由于 H^{ab} 是交换群, 同态 Ver 诱导了 G^{ab} 到 H^{ab} 的一个同态 (还记作 Ver), 称为 转 移.

注 对于同构来说,转移是一个 函子, 就是说, 如果 σ 是群对 (G, H) 到群对 (G', H') 上的同构、则下图交换:

$$\begin{array}{ccc}
G^{ab} & \xrightarrow{\sigma} & G'^{ab} \\
\text{Ver} & & & \downarrow \text{Ver} \\
H^{ab} & \xrightarrow{\sigma} & H'^{ab}
\end{array}$$

(只须证明, 若 $\{\bar{x}\}\$ 是 G/H 的代表元组, 则 $\{\sigma(\bar{x})\}\$ 是 G'/H' 的代表元组.)

特别, 若取 G = G', H = H' 以及 $\sigma(x) = gxg^{-1}$, 其中 $g \in N_G(H)$, 这证明了同态 Ver : $G^{ab} \to H^{ab}$ 的象集包含于 H^{ab} 中在 $N_G(H)$ 作用下不变的元素所组成的集合内.

7.2 转移的计算

设 H 是 G 的有限指标子群,令 X = G/H. 元素 $s \in G$ 作用在 X 上,设 C 是 s 在 G 中生成的循环子群,那么 C 将 X 分解成一些轨道 O_{α} . 设 $f_{\alpha} = |O_{\alpha}|$ 而 $x_{\alpha} \in O_{\alpha}$,则有 $s^{f_{\alpha}}x_{\alpha} = x_{\alpha}$. 如果 g_{α} 是 x_{α} 的代表元,那么就有

$$s^{f_{\alpha}}g_{\alpha}=g_{\alpha}h_{\alpha},\quad \sharp \pitchfork h_{\alpha}\in H.$$

命题 7.2 $\operatorname{Ver}(s) = \prod_{\alpha} h_{\alpha} = \prod_{\alpha} g_{\alpha}^{-1} s^{f_{\alpha}} g_{\alpha} \pmod{(H,H)}.$

元素 $s^i g_\alpha$, $0 \le i < f_\alpha$, 可以取为 X 的一个代表元组. 如果 $x \in X$ 的代表元形如 $s^{f_\alpha-1}g_\alpha$, 则 H 中相应的元素 $h_{s,x}$ 就等于 h_α , 而其余的 $h_{s,x}$ 都等于 1. 由此即得命题.

推论 7.3 设 φ 是 H^{ab} 到 A 的同态. 假定对于 H 中的两个元素 h,h', 只要它们在 G 中共轭, 就有 $\varphi(h) = \varphi(h')$. 那么, 对 $h \in H$, 有

$$\varphi(\operatorname{Ver}(h)) = \varphi(h)^n,$$

其中 n = (G: H).

实际上,我们有 $\varphi(\operatorname{Ver}(h)) = \prod_{\alpha} \varphi(g_{\alpha}^{-1}h^{f_{\alpha}}g_{\alpha})$. 由于元素 $g_{\alpha}^{-1}h^{f_{\alpha}}g_{\alpha}$ 与 $h^{f_{\alpha}}$ 在 G 中共轭,因此有

$$\varphi(\operatorname{Ver}(h)) = \prod_{\alpha} \varphi(h^{f_{\alpha}}) = \prod_{\alpha} \varphi(h)^{f_{\alpha}}.$$

于是,可由等式 $\sum_{\alpha} f_{\alpha} = \sum_{\alpha} |O_{\alpha}| = |X| = n$ 导出结果.

¹⁾ 注意,如果 s 属于 G 的中心,则 $g_{\alpha}^{-1}s^{f_{\alpha}}g_{\alpha}=s^{f_{\alpha}}$. 于是,这个公式导出 $\mathrm{Ver}(s)=\prod_{\alpha}s^{f_{\alpha}}=s^{n}\ (\mathrm{mod}\ (H,H))$,其中 $n=\sum_{\alpha}f_{\alpha}=(G:H)$. 下面命题 7.6 的证明要用到这一事实. —— 译注

因为 $H \subset G$, 所以有一个自然的同态 $H^{ab} \to G^{ab}$.

推论 7.4 复合同态 $G^{ab} \xrightarrow{\operatorname{Ver}} H^{ab} \longrightarrow G^{ab}$ 就是 $s \mapsto s^n$.

这由命题直接推出, 因为有

$$g_{lpha}^{-1}s^{f_{lpha}}g_{lpha}=s^{f_{lpha}}\pmod{(G,G)}$$
 以及 $\sum_{lpha}f_{lpha}=|X|=n.$

推论 7.5 若 G 为交换群,则 $Ver: G \to H$ 由 $s \mapsto s^n$ 给出.

7.3 使用转移的实例

7.3.1 第一例 (Gauss)

固定一个素数 $p \neq 2$.

设 $G = \mathbf{F}_p^*$, $H = \{\pm 1\}$. 那么, H 在 G 中的指标为 (p-1)/2, 对 $x \in \mathbf{F}_p^*$ 转移公式为 $\mathrm{Ver}(x) = x^{(p-1)/2}$. 由于这就是 Legendre 符号 $(\frac{x}{p})$, 所以这就提供了计算 $(\frac{x}{p})$ 的一个方法.

取 $S = \{1, 2, ..., (p-1)/2\}$ 为 X = G/H 的代表元组. 设 $x \in G$, $s \in S$. 如果 $xs \in S$, 则 $h_{s,x}$ 取值为 1, 否则取值为 -1. 因此,令

$$\varepsilon(x,s) =
\begin{cases}
1 & \text{if } xs \in S, \\
-1 & \text{if } xs \notin S,
\end{cases}$$

则有 $Ver(x) = \prod_{s \in S} \varepsilon(x, s)$ (Gauss 引理).

例如,对 $p \neq 2$ 来计算 $(\frac{2}{n})$.设p = 1 + 2m,则

$$\left(rac{2}{p}
ight)=(-1)^{m/2}$$
 若 m 为偶数, $\left(rac{2}{p}
ight)=(-1)^{(m+1)/2}$ 若 m 为奇数.

由此得出

$$p \equiv 1 \pmod{8} \Longrightarrow \left(\frac{2}{p}\right) = +1,$$

$$p \equiv 3 \pmod{8} \Longrightarrow \left(\frac{2}{p}\right) = -1,$$

$$p \equiv 5 \pmod{8} \Longrightarrow \left(\frac{2}{p}\right) = -1,$$

$$p \equiv 7 \pmod{8} \Longrightarrow \left(\frac{2}{p}\right) = +1.$$

这些可以归结为: $(\frac{2}{p}) = +1 \iff p \equiv \pm 1 \pmod{8}$.

7.3.2 第二例

命题 7.6 若群 G 没有桡元,并且包含一个与 $\mathbb Z$ 同构的有限指标子群 H,则 G 本身也与 $\mathbb Z$ 同构。

有必要的话,将 H 换成它的共轭子群之交, $^{1)}$ 就可以假设 H 为 G 的正规子群. 群 $^{1)}$ H 的共轭子群之交是 $H \cong \mathbb{Z}$ 的子群,因此它或者同构于 \mathbb{Z} , 或者为平凡群. 因为 H 只有有限个共轭子群,因此这个交在 G 中的指标有限,所以不会是平凡群. —— 译注

G 作用在 H 上, $^{1)}$ 因此有同态 ε : $G \to \operatorname{Aut}(H) = \{\pm 1\}$. 设 ε 的核为 G'. 那么,由于 H 为交换群,故通过内自同构作用于自身时是平凡作用,从而 $H \subset G'$. 因为 G' 平凡作用于 H 上,故 H 还含于 G' 的中心. 因此,转移同态 $\operatorname{Ver}: G'^{ab} \to H^{ab} = \mathbb{Z}$ 就等于 $x \mapsto x^n$,其 中 n = (G': H). $^{2)}$ 设 Φ 为 $\operatorname{Ver}: G' \to H^{ab}$ 的核,则由于 H 同构于 \mathbb{Z} ,因而 $\Phi \cap H = \{1\}$,从而 Φ 是有限子群,既然 G 没有挠元,故有 $\Phi = \{1\}$. 因此, G' 同构于 \mathbb{Z} . 如果 G 同构于 G',那就证完了。 $^{3)}$

如果不然,则有 (G:G')=2, $^4)$ $G'\cong \mathbb{Z}$, 并且群 G/G' 通过同态 $y\mapsto y^{\pm 1}$ 作用在 G'上. 因此,设 $x\in G-G'$ 使得对某个 $y\in G'$ 有 $xyx^{-1}=y^{-1}$. 由于 G' 在 G 中的指标为 2, 故 $x^2\in G'$. 那么,取 $y=x^2$ 就得到 $xx^2x^{-1}=x^{-2}$, 从而 $x^2=x^{-2}$. 由于 G 没有挠元,故 x=1. 因此, G 同构于 \mathbb{Z} .

注 对于非交换的自由群有一个类似的结果 (Stallings-Swan), 但却非常艰深. 参考: J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. Math. 88 (1968), 312-334; R. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610.

7.4 Sylow 子群中的转移

定理 7.7 设 H 为群 G 的 Sylow p--子群, A 为交换 p--群, $\varphi: H \to A$ 为同态. 那么

- (1) φ 可以扩张为 G 到 A 的同态之充要条件是: 若 $h,h' \in H$ 在 G 中共轭,则 $\varphi(h) = \varphi(h')$.
- (2) 如果这一条件满足的话,则扩张是唯一决定的,并由公式 $s\mapsto \varphi(\operatorname{Ver}(s))^{1/n}$ 给出,其中 n=(G:H),由于 n 与 p 互素,这个表达式是有意义的.
- (1) 必要性: 设 $\tilde{\varphi}$ 为 φ 在 G 上的扩张, 若 $h \in H$, $g \in G$ 使 $g^{-1}hg \in H$, 则由于 A 交换, 故有

$$\varphi(g^{-1}hg) = \tilde{\varphi}(g)^{-1}\varphi(h)\tilde{\varphi}(g) = \varphi(h).$$

充分性: 由于 n 与 p 互素, A 为 p-群,故 $\varphi(\operatorname{Ver}(s))^{1/n}$ 有意义 (对每个 $a \in A$, 存在唯一一个 $b \in A$ 使 $b^n = a^{5}$). 根据推论 7.3, 映射 $s \mapsto \varphi(\operatorname{Ver}(s))^{1/n}$ 就满足要求.

(2) 当 $p' \neq p$ 时, φ 在 G 的 Sylow p'-子群上必定等于 1, 所以扩张是唯一决定的. **■** 定理 7.8 设 H 为 G 的交换 Sylow p-子群, N 是 H 在 G 中的正规化子. 那么, 同态 $\text{Ver}: G^{ab} \to H^{ab} = H$ 的象集由 H 中在 N 作用下不动的元素组成 (即, H 中属于 N 的中心的元素).

¹⁾ 通过内自同构的共轭作用. --- 译注

²⁾ 不清楚为什么转移同态具有这种形式. 但由于 H 含于 G' 的中心,故若 $x \in H$ 时,根据命题 7.2 之脚注,就有 $Ver(x) = x^n$. 既然 H 为无限循环群,故 $x \neq 1$ 时,有 $x^n \neq 1$. 这就导出下面的事实, $\Phi \cap H = \{1\}$. 这个等式又说明 Φ 中的两个元素不会属于 H 的同一个陪集,因此 Φ 必为有限集. —— 译注

³⁾ 也可直接证明 G = G'. 用反证法,如果不然,则有 $x \in G$ 使 $\varepsilon(x) = -1 \in Aut(H) = \{\pm 1\}$,即 $\varepsilon(x)$ 是由 $y \mapsto y^{-1}$ 给出的 H 的自同构. 于是对所有 $y \in H$ 都有 $xyx^{-1} = y^{-1}$. 既然 H 为 G 的正规子群,故 $x^m \in H$,其中 m = (G: H). 由 $xx^mx^{-1} = x^{-m}$ 推出 $x \in G$ 中的挠元,故 x = 1,矛盾.—— 译注

⁴⁾ 如果不然, 则 $G \neq G'$. 故 $\varepsilon: G \to \operatorname{Aut}(G) = \{\pm 1\}$ 为满射, 所以 (G: G') = 2. —— 译注

⁵⁾ 由于 A 为交换 p-群而 n 与 p 互素, 所以 $a \mapsto a^n$ 是 A 的自同构, 特别是双射. —— 译注

由 §7.1 最后的注记已经知道, Ver 的象集含在 $H^N=\{h\in H|nhn^{-1}=h, \forall n\in N\}$ 内. 下面证明它们实际上相等. 我们有 $N\supset H$, 且由于 H 为 Sylow p—子群,故 (N:H)与 p 互素. 用公式

$$\varphi(h) = \left(\prod_{n \in N/H} nhn^{-1}\right)^{1/(N:H)}$$

定义一个同态 $\varphi: H \to H^N$. 注意,我们确实有 $\prod_{n \in N/H} nhn^{-1} \in H^N$,因为若 $n' \in N$,则有

$$n' \bigg(\prod_{n \in N/H} nhn^{-1} \bigg) n'^{-1} = \prod_{n \in N/H} n'nhn^{-1}n'^{-1} = \prod_{n \in N/H} nhn^{-1}.$$

此外,由于 H 交换,所以,若 $h,h' \in H$ 在 G 中共轭,它们就在 N 中共轭 (参阅 §2.4 1),从而有 $\varphi(h) = \varphi(h')$.根据推论 7.3,对 $h \in H$,有

$$\varphi(\operatorname{Ver}(h)) = \varphi(h)^n$$
.

由于对 $h \in H^N$, 有 $\varphi(h) = h$, 又由于 $Ver(h) \in H^N$, 故对 $h \in H^N$ 有

$$Ver(h) = \varphi(Ver(h)) = \varphi(h)^n$$
.

即、若 $h \in H^N$, 则 $Ver(h) = h^n$.

由于 H^N 是 p—群而 n 与 p 互素,对 H^N 的元素取 n 次幂就可得到 H^N 中所有的元素,因此有 $Im(Ver) = H^N$.

定理 7.9 设 H 为 G 的交换 Sylow p-子群, H 不等于 $\{1\}$. 假定 G 的商群都不是 p 阶循环群. 设 N 是 H 在 G 中的正规化子. 那么

- (1) H 在 N 作用下不动的元素集合 H^N 等于 {1}.
- (2) 若 r 为 H 的秩 (生成元的最少个数), 那么存在一个不等于 p 的素数 l, 它既整除 (N:H), 也整除 $\prod_{i=1}^{r} (p^i-1)$.
- (1) 如果 $H^N \neq \{1\}$, 则有一个非平凡同态 Ver : $G \to H^N$. ²⁾ 因为 H^N 是 p-群,由此可以得到 G 的一个 p 阶循环商群.
- (2) 设 H_p 是 H 中满足 $x^p=1$ 的元素组成的子群,这是 \mathbf{F}_p 上的 r 维向量空间 (因为 $H=\prod_{i=1}^r(\mathbb{Z}/p^{n_i}\mathbb{Z})$). 由 (1) 知, N 在 H_p 上的作用是非平凡的,这就定义了 $\mathrm{Aut}(H_p)\cong \mathbf{GL}_r(\mathbb{Z}/p\mathbb{Z})$ 的一个子群 Φ . 如果 l 是 Φ 的阶的一个素因子,则 l 除尽 N/H 的阶,因为 Φ 是 N/H 的商群 (实际上, Φ 通过 N 在 H 上的作用来定义,由于 H 为交换群,它平凡作用于自身,因此 Φ 实际上通过 N/H 的作用来定义 3). 因为 p 不整除 N/H 的阶,故有 $l\neq p$. 又因为 Φ 是 $\mathbf{GL}_r(\mathbb{Z}/p\mathbb{Z})$ 的子群,故 l 整除 $\mathbf{GL}_r(\mathbb{Z}/p\mathbb{Z})$ 的阶,即 $p^{r(r-1)/2}\prod_{i=1}^r(p^i-1)$. 证毕.

推论 7.10 若 p=2, 那么子群 H 不是循环群.

¹⁾ 推论 2.13.--- 译注

²⁾ 定理 7.8 说明这是一个满同态. —— 译注

³⁾ N 共轭作用在 H 上,因此也作用在 H_p 上.这诱导了一个同态 $N \to \operatorname{Aut}(H_p)$.既然 H 交换,它在 H_p 上的作用是平凡的,故 H 包含在上述同态的核内.这就诱导了一个同态 $N/H \to \operatorname{Aut}(H_p)$,而 它的象就是 Φ ,故 Φ 是 N/H 的商群. —— 译注

实际上,定理 7.9 推出 $r \ge 2$, 1)但这一结果也可直接证明:假定 Sylow 2—子群 H 为循环群,设 h 为它的一个生成元.群 G 通过平移作用在自身上.那么,元素 h 将 G 分解为 |G/H| 条轨道.对 $x \in G$, x 在 G 上平移作用的效果相当于 G 上的一个置换,将 x 指派上这个置换的符号,就得到从 G 到 $\{\pm 1\}$ 的同态.若 $|H|=2^n$,则 h 由奇数个 (确切地说,是 |G/H| 个) 形如 $(x,hx,\ldots,h^{2^n-1}x)$ 的轮换 2)组成.每个这样的轮换符号都为 -1,从而 h 的符号为 -1.于是,这就给出了从 G 到 $\{\pm 1\}$ 的一个非平凡同态,3)矛盾.

注 定理 7.9 证明了以下结果: 设 H 为 G 的交换 Sylow p-子群, 而 G 没有 p 阶循环商群, 则 $N_G(H) \neq H$ (否则 $H^N = H \neq \{1\}$).

7.5 应用:不超过 2000 的奇数阶单群

下面来证明不存在群 G 使得 G = (G, G), 并且 |G| 为 ≤ 2000 的奇数.

根据 Burnside 定理 (参阅附录之定理 A.21), 4) |G| 至少有 3 个素因子. 若 p^{α} 是它的最小素数幂因子,则有 $p^{3\alpha} < 2000$. 于是,只有 5 种可能性: $p^{\alpha} = 3,5,7,9$ 或 11.

$p^{\alpha}=3$ 的情况

群 G 有一个 3 阶的 Sylow 3-子群,它是循环群,从而是交换群.设 N 是它的正规化子.根据定理 7.9,存在不等于 3 的素数 l,它除尽 |N| 与 p-1=2.由于 |N| 为奇数,这是不可能的.

$p^{\alpha}=5$ 的情况

用与上面类似的方法排除.

$p^{\alpha} = 9$ 的情况

同样地,注意到 Sylow 3-子群的阶为 3^2 ,因此是交换群。在此情形中, r=1 或 2,用类似的论证即可排除这种情形。

$p^{\alpha}=7$ 的情况

根据定理 7.9, 必有素数 l 除尽奇数 |N| 与 p-1=6. 因此, 3 整除 |G|. 由于前面已排除了 $p^{\alpha}=3$ 或 9 的情况,故必有 3^3 整除 |G|. 根据 Burnside 定理,有不等于 3 与 7 的素数 q 整除 G 的阶. 因此 $|G| \geq 3^3 \cdot 7 \cdot q^{\beta}$,并且 $q^{\beta} \geq 11$ (因为若 q=5,已经考虑过的情况说明必有 $\beta \geq 2$). 但由于 $3^3 \cdot 7 \cdot 11 > 2000$,这是不可能的.

$p^{\alpha}=11$ 的情况

将定理 7.9 应用于 Sylow 11-子群, 知道有素数 l 整除 |N| 与 p-1=10. 根据前一种情形, 必有 $|G| \ge 11 \cdot 5^2 \cdot q^{\beta}$, 且 $q^{\beta} \ge 13$. 这是不可能的.

7.6 应用: 阶数不超过 200 的非交换单群

在本节中, 总假定 |G| < 200.

¹⁾ 此时有 $\prod_{i=1}^{r} (2^i - 1) \ge l > 1$. 故 $r \ge 2$. —— 译注

²⁾ 原文为 cycle, 亦译作"循环","圈"等等 —— 译注

³⁾ 这说明 {±1} 是 G 的 2 阶商群. —— 译注

⁴⁾ 也可见定理 5.4. — 译注

命题 7.1 (1) 假定 G = (G, G) 且 $G \neq \{1\}$, 则 G 的阶为 60, 120, 168 或者 180.

- (2) 若 G 为非交换单群,则 G 的阶为 60 或 168,并且 G 同构于 A_5 或 $\mathbf{PSL}_2(\mathbf{F}_7)$.
- (1) 由前节的结果,G 的阶为偶数. 又由于推论 7.10 断言不存在循环的 Sylow 2-子 群、因此 G 的阶还能被 4 整除.

Sylow 2-子群 H 阶为 4 的情形

那么,它必是 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. 设 $N = N_G(H)$, 则 N 非平凡地作用在 H 上 (由于 $H^N = \{1\}$, 见定理 7.9), 从而有一个非平凡的同态 $N \to \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ (这个群的阶为 6). 如果 N 映为 $\operatorname{Aut}(H)$ 的一个 2 阶子群,则 $H^N \cong \mathbb{Z}/2\mathbb{Z}$ (要证明这一点,只需考虑 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ 的自同构). 因此,3 整除 N 的阶,故也整除 G 的阶. 从而,有 5 种可能性:

- $|G| = 4 \cdot 3 \cdot 13$: 设 H 为 Sylow 13—子群, N 是它的正规化子.那么, (G:N) 是 G 的 Sylow 13—子群的个数,故 $(G:N) \equiv 1 \pmod{13}$. 由于 (G:N) 除尽 $4 \cdot 3 = 12$, 这推 出 (G:N) = 1, 故 H 是正规子群,这是不可能的.
- $|G| = 4 \cdot 3 \cdot 11$: 设 H 为 Sylow 11—子群, N 是它的正规化子。那么, (G:N) 整 除 $4 \cdot 3 = 12$,且 $(G:N) \equiv 1 \pmod{11}$. 因此,或者 (G:N) = 1,或者 (G:N) = 12. 前一种情况不可能,后一种情况推出 N = H,从而 $H^N = H$ (由于 H 为交换群),这也不可能(见定理 7.4).
- $|G| = 4 \cdot 3 \cdot 7$: 设 H 为 Sylow 7-子群, N 是它的正规化子.那么, (G:N) 整除 12, 且 $(G:N) \equiv 1 \pmod{7}$. 因此, (G:N) = 1, 这是不可能的.
- 还剩下两种情形: $|G| = 4 \cdot 3 \cdot 5 = 60$ 或 $|G| = 4 \cdot 3^2 \cdot 5 = 180$ (其余的情况可排除, 因为那时 |G| > 200).

Sylow 2-子群 H 阶为 8 的情形

有两种可能性: $|G| = 8 \cdot 3 \cdot 5$ 或 $|G| = 8 \cdot 3 \cdot 7$, 其它情形给出的 |G| 的阶都太大了. 同理、考虑阶就可将 |H| > 8 的情形排除. 这就证明了 (1).

(2) 考虑 $|G| = 4 \cdot 3^2 \cdot 5$ 与 $|G| = 8 \cdot 3 \cdot 5$ 的情形: 设 H 为 Sylow 5-子群, N 是它的正规化子. 那么, $(G:N) \equiv 1 \pmod{5}$, 并且 (G:N) 除尽 $4 \cdot 3^2$ (第一种情况) 或者 $8 \cdot 3$ (后一种情况). 在两种情况中,都只有 (G:N) = 6 这一种可能性. 设 X 为 G 的 Sylow 5-子群的集合. 群 G 可嵌入到 X 的置换群内,也就是 S_6 内. $^{1)}$ 因为 G 是单群,它实际上嵌入到了 A_6 内. $^{2)}$ 然而 A_6 的阶为 360, G 的阶为 120 或 180. 若 1 < m < 6, 则群 A_6 没有指标为 m 的子群 (这里是 3 与 2 的情形),因为否则 A_6 可以嵌入到 S_m 内,由于 $|A_6| > |S_m|$,这是不可能的. 因此,不超过 200 的非交换单群的阶只有可能是 $4 \cdot 3 \cdot 5 = 60$ 与 $8 \cdot 3 \cdot 7 = 168$.

60 阶与 168 阶单群的结构

60 阶 设 H 为 G 的 Sylow 2—子群, N 是 H 的正规化子,那么 H 不能是循环群 (推论 7.10), 因此 3 整除 |N| (定理 7.9), 故 12 整除 |N| 而 $N \neq G$, 从而 |N| = 12. 由此

¹⁾ 通过共轭, G 作用于 X 上,这给出了从 G 到 S_6 (X 的置换群) 的非平凡同态. 既然 G 为单群,这 必然是一个单同态,也就是嵌入. —— 译注

如果 G 不包含在 A₆ 内,则 G ∩ A₆ 是 G 的指标为 2 的子群,从而为正规子群.—— 译注

G/N 的阶为 5, 故有 G 到 S_5 的非平凡同态. 因为 G 是单群, 所以这将 G 嵌入到 A_5 中, 比较阶数可知 $G = A_5$.

168 阶 设 H 为 G 的 Sylow 7—子群, N 是它的正规化子. 那么 (G:N) 整除 $8\cdot 3$, 且 $(G:N)\equiv 1\pmod{7}$. 因为 $N\neq G$, 故有 (G:N)=8, 从而 |N|=21. 考虑正合列 $\{1\}\to H\to N\to N/H\to \{1\}$. 由于 H 的阶与 N/H 的阶互素,故群 N 是 H 与 N/H 的半直积 (参考 $\{4.4\}$). 于是,群 N 有两个生成元。一个是 H 的生成元 α , 满足 $\alpha^7=1$; 另一个是 N/H 的生成元 β , 满足 $\beta^3=1$. H 的自同构 $x\mapsto \beta x\beta^{-1}$ 的阶为 β , 因此,它或者是 $x\mapsto x^2$,或者是 $x\mapsto x^{-3}$. β 0 如果必要的话,将 β 4 换成 β^{-1} ,总可假定这个自同构为 $x\mapsto x^2$. 因此,有 $\beta\alpha\beta^{-1}=\alpha^2$.

设 X 为 G 的 Sylow 7-子群的集合. 那么, H 作用在 X 上,而 H 自己在看作 X 的元素时,在这个作用下稳定. 将这个元素记为 ∞ ,则有 $X=\{\infty\}\cup X_0$,且 $|X_0|=7$. 群 H 自由作用在 X_0 上 (因为 H 是 7 阶循环群). 2) 元素 β 作用在 X 上,且由于 $\beta \in N$,所以 ∞ 在它的作用下稳定. 因为 $\beta^3=1$,故存在 $x_0 \in X_0$ 使 $\beta x_0=x_0$. 3) 那么

$$X = \{x_0, \alpha x_0, \dots, \alpha^6 x_0, \infty\}.$$

将 X 等同于 $P_1(\mathbf{F}_7)$, 并将 $\alpha^i x_0$ 等同于 i.

元素 α 以如下方式作用在 $\mathbf{P}_1(\mathbf{F}_7)$ 上: 若 i<6, 则 $\alpha(i)=i+1$, 又 $\alpha(6)=0$, $\alpha(\infty)=\infty$. 元素 β 的作用为: $\beta(\infty)=\infty$, $\beta(0)=0$, 又由 $\beta\alpha=\alpha^2\beta$ 推知对每个 i 有 $\beta(i+1)=\beta(i)+2$ 及 $\beta(i)=2i$. 这样, α 在 $\mathbf{P}_1(\mathbf{F}_7)$ 上的作用相当于平移变换, β 的作用相当于伸缩变换. 设 C 为 β 在 N 中生成的循环子群,而 M 是它在 G 中的正规化子. 由于 C 是 G 的 Sylow 3—子群,定理 7.9 说明 2 整除 |M|. 群 M 非平凡地作用在 C 上 (定理 7.9), 故存在 γ 使 $\gamma C \gamma^{-1}=C$, 且 $\gamma \beta \gamma^{-1}=\beta^{-1}$. 因为 $\gamma \not\in C$, 且 $\gamma \neq \alpha^n$ (因为 $\alpha \not\in M$), 故可选取 γ 使其阶为 2^n .

元素 γ 将 C 的轨道变为 C 的轨道,因此 $\gamma(\{0,\infty\}) = \{0,\infty\}.\gamma$ 在 X 上的作用是没有不动点的,因为如若不然,则 γ 属于 H 的某个共轭子群的正规化子,于是属于 N 的某个共轭子群,但这与 2 不整除 |N| 的事实矛盾。因此必有 $\gamma(0) = \infty$, $\gamma(\infty) = 0$. 因为 ∞ 在 γ^2 作用下不动,故有 $\gamma^2 \in N$. 4 由于 γ 是偶数阶的,所以 $\gamma^2 = 1$. 因此, γ 置换两条轨道 $\{1,2,4\}$ 与 $\{3,6,5\}$. 令 $\gamma(1) = \lambda$, 则 λ 等于 3, 6 或 5. 因为 $\gamma\beta = \beta^{-1}\gamma$, 故有 $\gamma(2i) \equiv \gamma(i)/2 \pmod{7}$. 因此 $\gamma(i) = \lambda/i$, 从而 γ 是一个射影变换,即 $\gamma \in \mathbf{PGL}_2(\mathbf{F}_7)$. 因为 $-\lambda$ 是完全平方,设 $\mu^2 = -\lambda$,则有

$$\gamma(i) = \frac{-\mu}{\mu^{-1}i}.$$

因此, $\det \gamma = +1$, 故 $\gamma \in \mathbf{PSL}_2(\mathbf{F}_7)$.

¹⁾ 原文是 x → x-2.--- 译注

²⁾ $\alpha \in H$ 可以看作 X_0 上的一个置换,因为它是 7 阶元,所以它只能是一个长度为 7 的轮换 (cycle). 于是, H 中每个非单位元都是长度为 7 的轮换,即在 X_0 上没有不动点.—— 译注

³⁾ 由 $\beta^3 = 1$ 知 β 或者是一个 3 元轮换,或者是两个 3 元轮换之积. 故一定有 $x_0 \in X_0$ 不出现在 β 的 轮换分解中,即有 $\beta x_0 = x_0$. —— 译注

⁴⁾ 原文为 γ ∈ N.—— 译注

然而 α , β 与 γ 生成了群 G. 实际上,设 G' 是由这些元素生成的 G 的子群. 那么, G' 包含 N 与偶数阶元素 γ . 如果 $G' \neq G$, 则 G' 的指标为 2 或 4, 这样 G 就可以嵌入到 A_2 或 A_4 中,而这是不可能的. 因此 G = G'. 我们有一个单同态 $G \rightarrow \mathbf{PSL}_2(\mathbf{F}_7)$. 由于 这两个群的阶数相同,所以它是一个同构.

附录 特征标理论

A.1 表示与特征标

设 G 为群, K 为域. V 为 K 上的有限 n 维向量空间. 从定理 A.2 起,假定 $K=\mathbb{C}$,且 G 为 有限群.

定义 A.1 从 G 到 GL(V) 的一个给定同态 ρ 就称为 G 在 V 中的一个 线性表示. V 的维数称为表示的 次数.

注 (1) 这样就可按以下方式定义一个 G 在 V 上的作用: 对 $x \in V$, $s \in G$, 令 $s.x = \rho(s)(x)$.

- (2) 对给定的 ρ , V 称为 G 的 表示空间, 或简称为 G 的 表示, 常常将 ρ 写作 ρ_V . 如果同态 ρ_1 与 ρ_2 相应的 G 的表示为 V_1 与 V_2 , 则可定义:
- V_1 与 V_2 的直和 $V_1 \oplus V_2$: 相应的表示 $\rho: G \to \mathbf{GL}(V_1 \oplus V_2)^{-1}$ 定义为 $\rho(s) = \rho_1(s) \oplus \rho_2(s)$. 如果在 $V = V_1 \oplus V_2$ 中选取与直和分解相容的基底,则在此基底中 $\rho(s)$ 可用以下矩阵来表示:

$$\left(\begin{array}{cc} A_1(s) & 0 \\ 0 & A_2(s) \end{array}\right),$$

其中 $A_i(s)$ 是 $\rho_i(s)$ 在 V_i 的相应基底下之矩阵表示.

- 张量积 $V_1 \otimes V_2$: 对 $x \in V_1$ 与 $y \in V_2$, $\rho(s)(x \otimes y) = \rho_1(s)(x) \otimes \rho_2(s)(y)$.
- V_1 的对偶 V_1^* : 对 $l \in V_1^*$, $x \in V_1$, $\rho(s).l(x) = l(\rho_1(s^{-1}).x)$.
- $\text{Hom}(V_1, V_2)$, 可将它与 $V_1^* \otimes V_2$ 等同: 对 $x \in V_1$, $h \in \text{Hom}(V_1, V_2)$, $\rho(s).h(x) = \rho_2(s)h(\rho_1(s^{-1}).x)$.

还可定义其他一些对象.

表示的特征标

设 V 是向量空间, 给定了一组基 $(e_i)_{1 \le i \le n}$ 设 ρ 是 V 到自身的线性变换, 在这组基下的矩阵表示为 $a = (a_{ij})$, 用 $\text{Tr}(\rho) = \sum_i a_{ii}$ 来记矩阵 a 的迹 (它不依赖于基底的选取).

现在,如果 V 是有限群 G 的表示,则可在 G 上定义一个取值在 K 中的函数 χ_V 如下:

$$\chi_V(s) = \text{Tr}(\rho_V(s)),$$

其中 ρ_V 是与表示 V 相应的同态. 函数 χ_V 称为表示 V 的 特征标.

注 $\chi_V(1) = \dim V$.

¹⁾ 原文为 $\rho: G \to V_1 \oplus V_2$. —— 译注

命题 A.1

- χ_V 是中心函数, 即对 $s,t \in G$, $\chi_V(sts^{-1}) = \chi_V(t)$.
- $\bullet \quad \chi_{V_1 \oplus V_2} = \chi_{V_1} + \chi_{V_2},$
- $\bullet \quad \chi_{V_1 \otimes V_2} = \chi_{V_1} \chi_{V_2},$
- $\chi_{V^*}(s) = \chi_V(s^{-1}), \forall s \in G$,
- $\chi_{\text{Hom}(V_1,V_2)}(s) = \chi_{V_1}(s^{-1})\chi_{V_2}(s), \forall s \in G.$

下面总假定 $K = \mathbb{C}$, 且 G 为有限群. 设 V 是 G 的表示. 令

$$V^G = \{x \in V \mid s.x = x, \forall s \in G\};$$

又, 对 $x \in V$, 令

$$\pi(x) = \frac{1}{|G|} \sum_{s \in G} s.x.$$

那么, $\pi(x) \in V^G$, 且若 $x \in V^G$, 则 $\pi(x) = x$. 这证明了 π 是 V 到 V^G 上的投影算子. 映 射 π 与 G 的元素是交换的, 即对 $s \in G$ 有 $\pi(s,x) = s.\pi(x)$, 因此有

$$V = V^G \oplus \ker \pi$$
.

取一个与此分解相容的基底、则 π 的矩阵表示是

$$\begin{pmatrix}
1 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & 1 & \ddots & \vdots \\
\vdots & & \ddots & 0 & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 0
\end{pmatrix}$$

由此得到

定理 A.2 $\dim V^G = \operatorname{Tr}(\pi) = \frac{1}{|G|} \sum_{s \in G} \chi_V(s).$

推论 A.3 设 $0 \longrightarrow V' \longrightarrow V \xrightarrow{f} V'' \longrightarrow 0$ 是 G 的表示组成的正合列, $^{1)}$ 那么, V''^{G} 中的每个元素都是某个 V^{G} 中元素的象.

若 $x'' \in V''^G$, 由正合性, f 为满射,故存在 $x \in V$ 使 f(x) = x''. 那么, $\pi(x) \in V^G$,且 $f(\pi(x)) = \pi(f(x)) = \pi(x'') = x''$.

推论 $A.4^{2}$ 若 V' 是 V 的向量子空间,它在 G 的作用下稳定. 那么,存在 V' 在 V 中的补子空间,它在 G 的作用下也稳定.

设 V'' = V/V'. 考虑正合列

$$0 \longrightarrow \operatorname{Hom}(V'',V') \longrightarrow \operatorname{Hom}(V'',V) \longrightarrow \operatorname{Hom}(V'',V'') \longrightarrow 0.$$

¹⁾ 表示的正合列是向量空间的正合列, 其中的线性映射与 G 的每个元素都交换. —— 译注

²⁾ 这个推论有时称作 Maschke 定理. --- 译注

设 $x \in \mathrm{Id}_{V''} \in \mathrm{Hom}(V'', V'')$,则x在G作用下不变.因此,由推论A.3,存在 $\varphi: V'' \to V$,它在G作用下不变并且映为x.因此,若 $v \in V''$, $s \in G$,则有

$$(s^{-1}.\varphi)(v) = \varphi(v) = s^{-1}.\varphi(sv),$$

故有 $s.\varphi(v) = \varphi(s.v)$, 从而 φ 与 G 交换.

若 $p: V \to V''$ 为投影同态, 则由 $p \circ \varphi = x = \operatorname{Id}_V''$ 知 $\varphi \not\in p$ 的截口, 故有 $V = V' \oplus \operatorname{Im} \varphi$, 且 $\operatorname{Im} \varphi$ 在 G 的作用下稳定.

定义 A.2 设 $\rho: G \to \mathrm{GL}(V)$ 是 G 的线性表示. 如果 $V \neq 0$, 并且除了 0 与 V 之外,没有其它的向量子空间在 G 的作用下稳定,就称 ρ 为 不可约表示.

那么, 有下面的

定理 A.5 ,每个表示都是不可约表示的直和.

对表示 V 的维数作归纳法来证明.

若 $\dim V \le 1$, 结论显然成立. 如若不然, 则或者 V 不可约, 或者它有一个 $\ne 0$ 与 V 的 真子空间在 G 作用下稳定. 在后一种情形, 根据推论 A.4, 存在一个直和分解 $V = V' \oplus V''$, 使得 $\dim V' < \dim V$, $\dim V'' < \dim V$, 且 V' 与 V'' 都在 G 作用下稳定. 对 V' 与 V'' 应用归纳假设, 知道它们都是不可约表示的直和, 所以 V 也是.

注 上面的直和分解并不是唯一的. 例如,若 G 平凡作用于 V 上,只要将 V 写成一些直线的直和就将 V 分解成了不可约表示的直和. 如果 $\dim V \ge 2$,这样的分解当然是很多的.

A.2 正交关系

定理 A.6 (Schur) 设 $\rho_1: G \to \operatorname{GL}(V_1)$ 与 $\rho_2: G \to \operatorname{GL}(V_2)$ 是 G 的两个不可约表示, $f \not\in V_1$ 到 V_2 的同态,使得对每个 $s \in G$ 都有 $\rho_2(s) \circ f = f \circ \rho_1(s)$. 那么,

- (1) 若 V_1 与 V_2 不同构,则 f = 0.
- (2) 若 $V_1 = V_2$, $\rho_1 = \rho_2$, 则 f 是伸缩变换.
- (1) 若 $x \in \ker f$, 则对每个 $s \in G$ 都有 $(f \circ \rho_1(s)).x = (\rho_2(s) \circ f).x = 0$. 因此, $\ker f$ 在 G 作用下稳定。由于 V_1 不可约,故或者 $\ker f = 0$,或者 $\ker f = V_1$. 在前一种情形 f 为单射,后一种情形 f 为零映射。同理, $\operatorname{Im} f$ 在 G 作用下稳定,故 $\operatorname{Im} f = 0$ 或者 V_2 . 因此,若 $f \neq 0$,则 $\ker f = 0$,且 $\operatorname{Im} f = V_2$,于是 f 是 V_1 到 V_2 上的同构。这就证明了 (1).
- (2) 现在,设 $V_1 = V_2$ 且 $\rho = \rho_1 = \rho_2$,又设 $\lambda \in \mathbb{C}$ 是 f 的一个特征值. 令 $f' = f \lambda$,则 f' 不是单射. 此外又有 $\rho(s) \circ f' = \rho(s) \circ (f \lambda) = f' \circ \rho(s)$,故由第一部分的证明知道 f' = 0,故 f' 为伸缩变换.

特征标的正交性

设 f 与 g 是定义在 G 上的函数. 1) 令

$$\langle f, g \rangle = \frac{1}{|G|} \sum_{s \in G} f(s)g(s^{-1}),$$

¹⁾ 取值在 C 中. ---- 译注

这是一个标量积.

注 如果 g 是 特征标, 则有 $g(s^{-1}) = \overline{g(s)}$. 1) 因此 $\langle f, g \rangle$ 可以写成一个 Hermite 内积:

$$\langle f, g \rangle = \frac{1}{|G|} \sum_{s \in G} f(s) \overline{g(s)}.$$

定理 A.7 (特征标的正交性) 设 V 与 V' 是两个不可约表示, χ 与 χ' 为相应的特征标. 那么

$$\langle \chi, \chi' \rangle = \begin{cases} 1, & \text{ } \exists V = V' \perp \chi = \chi', \\ 0, & \text{ } \exists V \mid \xi V' \mid \chi \mid \chi \mid h. \end{cases}$$

• 考虑 $W = \operatorname{Hom}(V, V)$, 这是 G 的一个表示. 设 $\varphi \in W$, 则 φ 在 G 作用下稳定,当且仅当对每个 $s \in G$ 有 $\varphi \circ s = s \circ \varphi$. 设 W^G 是 V 的 G 不变自同态 (即在 G 作用下稳定) 的集合. 由 Schur 引理知道 $\dim W^G = 1$, 因此由定理 A.2 有

$$1 = \frac{1}{|G|} \sum_{s \in G} \chi_W(s),$$

然而 $\chi_W(s) = \chi(s)\chi(s^{-1})$, 因此 $\langle \chi, \chi \rangle = 1$.

• 如果 V 与 V' 不同构,令 W = Hom(V,V'),又令 W^G 为 V 到 V' 的 G 不变同态的集合. Schur 引理说明 $\dim W^G = 0$,从而 $\langle \chi, \chi' \rangle = 0$.

推论 A.8 G 的互不相同的不可约表示的特征标在 \mathbb{C} 上是线性无关的 (它们称为 G 的不可约特征标).

这个定理也使我们能够证明 G 的特征标 "刻划了" 它的表示.

定理 A.9 设 V 是 G 的表示,特征标为 χ_V . 设 $V = \bigoplus_{i=1}^p V_i$ 是将 V 分解为不可约表示 V_i 的直和, V_i 相应的特征标为 χ_{V_i} . 那么,如果 W 是不可约表示,特征标为 χ_W ,则与 W 同构的 V_i 之数目为 $\langle \chi_V, \chi_W \rangle$.

我们有

$$\chi_{V} = \sum_{i=1}^{p} \chi_{V_{i}},$$
$$\langle \chi_{V}, \chi_{W} \rangle = \sum_{i=1}^{p} \langle \chi_{V_{i}}, \chi_{W} \rangle.$$

然而, 由前一定理, 根据 V_i 是否与 W 同构, $\langle \chi_{V_i}, \chi_{W} \rangle$ 的取值为 1 或 0, 由此得到结论.

推论 A.10

- 与 W 同构的 V_i 之数目与特定的分解无关 (在这种意义下,分解是唯一的).
- 具有相同特征标的两个表示相互同构.
- 1) 设 g 是表示 ρ 的特征标,即 $g(s)=\operatorname{Tr}(\rho(s))$. 如果 $\lambda_1,\ldots,\lambda_n$ 是 $\rho(s)$ 的特征值,则 $\lambda_1^{-1},\ldots,\lambda_n^{-1}$ 是 $\rho(s^{-1})$ 的特征值. 注意到 $\rho(s)$ 是有限阶矩阵,因此 $\lambda_1,\ldots,\lambda_n$ 都是单位根,故有 $\lambda_i^{-1}=\overline{\lambda_i},1\leq i\leq n$. 从而 $g(s^{-1})=\sum_i\lambda_i^{-1}=\sum_i\overline{\lambda_i}=\overline{g(s)}$. 一译注

• 若 $(W_i)_{1 \leq i \leq m}$ 是 G 的全部不可约表示,则 G 的每个表示 V 都同构于一个直和 $\oplus n_i W_i$,其中 $n_i = \langle \chi_V, \chi_{W_i} \rangle$,而 $n_i W_i = W_i \oplus \cdots \oplus W_i$ $(n_i \land B \not \rightarrow)$.

A.3 特征标与中心函数

现在,来求不可约表示的数目 h (在相差一个同构的意义下),也就是求不可约特征标的数目.

一个定义在 G 上取值在 \mathbb{C} 中的函数,如果在 G 的每个共轭类上都取常值,则称为中心函数,所有中心函数的集合组成了一个 \mathbb{C} 上的向量空间 C, 它的维数就等于 G 的共轭类的个数.

定理 A.11 G 的不可约特征标 (χ_1, \ldots, χ_h) 组成了 C 的一组基 (特别, h 就是 G 的共轭类的个数).

证明这个定理要用到下面的

引理 A.12 设 V 是不可约表示,特征标为 χ ; 又设 n 为 V 的维数 (即 $n=\chi(1)$). 设 $f \in \mathcal{C}$,用下式定义一个 V 上的自同态 π_f :

$$\pi_f = \sum_{s \in G} f(s^{-1}) \rho_V(s).$$

那么, π, 是一个伸缩变换, 伸缩系数为

$$\lambda = \frac{1}{n} \sum_{s \in G} f(s^{-1}) \chi(s) = \frac{|G|}{n} \langle f, \chi \rangle.$$

若 $t \in G$,则由于 f 为中心函数,因此有

$$\pi_f.t = \sum_{s \in G} f(s^{-1})\rho_V(st) = \sum_{s \in G} f(u^{-1})\rho_V(tu),$$

其中 $u=t^{-1}st$, 从而 $\pi_f.t=t.\pi_f$. 根据定理 A.6, π_f 是伸缩变换, 又

$$\operatorname{Tr}(\pi_f) = n\lambda = \sum_{s \in G} f(s^{-1})\chi(s),$$

因此 $\lambda = \frac{|G|}{R} \langle f, \chi \rangle$.

现在可以来证明定理 A.11 了: 假如 (χ_i) 不组成 C 的基底,则存在一个非零的 $f \in C$ 与所有 χ_i 正交. 因此,上面的引理说明,对每个不可约表示, π_f 都是零,从而,对每个表示 (将其分解成直和), π_f 也是零. 现在,对一个特殊的表示来计算 π_f : 设 V 是 |G| 维空间,有一组基底 $(e_s)_{s \in G}$. 用下式定义一个 G 在 V 上的作用 ρ :

$$\rho(s).e_t = e_{st}.$$

这样定义的表示称为 G 的 正则表示 (它的特征标记为 r_G . 若 $s \neq 1$, 则 $r_G(s) = 0$, 而 $r_G(1) = |G|$). 对这个表示来计算 π_f , 则有 $\pi_f = \sum_{s \in G} f(s^{-1})\rho(s)$, 因此 $\pi_f(e_1) = \sum_{s \in G} f(s^{-1})e_s$ (因为 $e_{1,s} = e_s$). 如果 π_f 是零,则对每个 $s \in G$ 有 $f(s^{-1}) = 0$ (因为 $(e_s)_{s \in G}$ 组成一组基), 从而 f 是零,这与假设矛盾.

注 若 W 是一个不可约表示,那么正则表示中含有 n 个 W ($n = \dim W$). 实际上, 若 χ 是 W 的特征标,则

$$\langle r_G, \chi \rangle = \frac{1}{|G|} \sum_{s \in G} r_G(s^{-1}) \chi(s) = \chi(1) = \dim W.$$

因此 $r_G = \sum_{i=1}^h \chi_i(1)\chi_i$, 其中 χ_i 都是不可约特征标. 特别

$$r_G(1) = |G| = \sum_{i=1}^h \chi_i(1)\chi_i(1).$$

于是, 若 $n_i = \chi_i(1)$, 则有

$$|G| = \sum_{i=1}^h n_i^2.$$

A.4 特征标的例子

我们来对 $n \le 4$ 决定群 A_n 或者 S_n 的不可约特征标.

- (1) 平凡情形: $S_1 = A_1 = A_2 = \{1\}$, 此时只有一个不可约特征标: $\chi = 1$.
- (2) 在群 $S_2 = \{1, s\}$ (其中 $s^2 = 1$) 的情形,每个不可约特征标都是 1 次的 (这是因为,例如, $|S_2| = 2 = \sum n_i^2$, 其中 n_i 是不可约特征标 χ_i 的次数),所以有两个不可约特征标 κ :

(3) 群 $A_3 = \{1, t, t^2 | t^3 = 1\}$ 为 3 阶循环群. 由 $|A_3| = 3 = \sum n_i^2$ 推出有 3 个 1 次不可约表示,它们的特征标如下:

	1	t	t^2
χ_1	1	1	1
χ ₂	1	ρ	$ ho^2$
χ3	1	$ ho^2$	ρ

其中 ρ 是 $\neq 1$ 的三次单位根.

(4) 对称群 S_3 就是二面体群 D_3 , 它有 3 个共轭类 1, s, t, 满足关系 $s^2 = 1, t^3 = 1$, $sts^{-1} = t^{-1}$. 两个 1 次不可约特征标由 1 与置换的符号给出. 此外, 有 $\chi_1 + \chi_2 + n_3 \chi_3 = r_{S_3}$ 及 $\sum n_i^2 = |S_3| = 6 = 2 + n_3^2$, 因此, $n_3 = 2$ 而 χ_3 的次数为 2.

然后,由

$$(\chi_1 + \chi_2 + 2\chi_3)(s) = r_{S_3}(s) = 0$$

推出 $\chi_3(s) = 0$; 又由

$$(\chi_1 + \chi_2 + 2\chi_3)(t) = r_{S_3}(t) = 0$$

推出 $\chi_3(t) = -1$. 因此,有

	1	s	t
χ_1	1	1	1
χ_2	1	1	1
<i>χ</i> ₃	2	0	-1

如果将 S_3 看作为等边三角形的对称群,也可直接求出 χ_3 . 于是, s 可以看作是对于一条直线的对称变换,相应的矩阵为 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,因此它的迹为 0;而 t 可以看作为旋转 $2\pi/3$ 角度的变换,因此它的迹为 $2\cos(2\pi/3) = -1$.

(5) 群 A_4 的阶为 12, 有 4 个共轭类,代表元分别为 1,s,t,t', 其中 s 的阶为 2 (s = (a,b)(c,d)),t 的阶为 3 (t = (a,b,c)) 而 $t' = t^2$. 已经有了 A_4 的 3 阶商群的 3 个表示. 此外,有 $\chi_1 + \chi_2 + \chi_3 + n_4 \chi_4 = r_{A_4}$ 及 $\sum n_i^2 = |A_4| = 12$. 由此得到特征标表:

		1	s	t	t'
_	χ_1	1	1	1	1
	χ ₂	1	1	ρ	$ ho^2$
	χ_3	1	1	$ ho^2$	ρ
	χ_4	3	-1	0	0

如果将 A_4 看作正四面体的对称群,也可直接求出 χ_4 于是, s 可以看作相对于连接两对边中点直线的对称变换。在适当的基底下,它的矩阵表示为

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right),$$

因此. 它的迹为 -1. 此外, t 可解释为在一圆周上作轮换置换,因此,它的迹为 0.

这个结果也可用另一种方式得到: 如果 W 是一维不可约表示, 而 V 是不可约表示, 那么 $V\otimes W$ 也是不可约表示. 特别, $\chi_4\chi_2$ 是不可约表示,考虑到次数,它必定等于 χ_4 ,由此推出 $\chi_4(t)=\chi_4(t')=0$.

练习 用同样的方法可以求出群 S_4 的特征标表. S_4 有 5 个共轭类, 代表元为 $1,\sigma,s,t,\tau$, 其中 $\sigma=(a,b),s=(a,b)(c,d),t=(a,b,c),$ 而 $\tau=(a,b,c,d)$. 求出下表:

	1	σ	s	t	au
χ1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χз	2	0	2	-1	0
χ4	3	1	-1	0	-1
χ_5	3	-1	-1	0	1

A.5 整性

设 G 为有限群, ρ 是 G 的表示, χ 是它的特征标.

命题 A.13 χ 的取值都是代数整数.

(复数 x 称为一个 代数整数, 是指存在整数 n > 0 与 $a_0, \ldots, a_{n-1} \in \mathbb{Z}$, 使得

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_0 = 0.$$

所有代数整数的集合组成了 ℂ 的一个子环.)

证明 群 G 为有限群,所以,有整数 p>0 使对所有 $s\in G$ 都有 $s^p=1$,从而对每个 s 都有 $\rho(s^p)=\rho(s)^p=1$. 若 λ 是 $\rho(s)$ 的特征值,则 λ^p 是 $\rho(s)^p$ 的特征值,因此 $\lambda^p=1$. $\rho(s)$ 的每个特征值都是代数整数,而 $\chi(s)$ 是 $\rho(s)$ 的迹,也就是 $\rho(s)$ 的所有特征值之和,所以也是代数整数.

注 对每个 $s \in G$, $\rho(s)$ 都可对角化. 事实上, ρ 是 G 到 $\mathbf{GL}_n(\mathbb{C})$ 的映射,对每个 $s \in G$, 矩阵 $\rho(s)$ 都相似于一个 Jordan 矩阵 J_s , 它是一个分块对角矩阵,每块都形如

$$\left(\begin{array}{cccc} \lambda & 1 & \cdots & \times \\ & \ddots & \ddots & \vdots \\ & & \ddots & 1 \\ & & & \lambda \end{array}\right)$$

所以, $\rho(s)^p$ 相似于一个分块对角阵,其每块都形如:

$$\begin{pmatrix} \lambda^p & p\lambda^{p-1} & \cdots & \times \\ & \ddots & \ddots & \vdots \\ & & \ddots & p\lambda^{p-1} \\ & & & \lambda^p \end{pmatrix}.$$

然而 $\rho(s)^p = 1$, 这只有当 J_s 本身是对角阵时才能成立, 证毕.

(另证:对 s 生成的循环群应用定理 A.5.)

下面来说明,如何从群特征标的信息得出关于群本身的信息。先给出以下的

命题 A.14 设 G 是群, $G \neq \{1\}$. 那么, G 是单群的充要条件是: 对每个不等于 1 的不可约特征标 χ 及每个 $s \in G - \{1\}$ 都有

$$\chi(s) \neq \chi(1)$$
.

设 $(\lambda_i)_{1\leq i\leq n}$ 为 $\rho(s)$ 的特征值. 已经看到 λ_i 都是单位根, 故 $|\lambda_i|=1$. 因为 $\chi(s)=\lambda_1+\cdots+\lambda_n$ 而 $\chi(1)=n$, 所以 $\chi(s)=\chi(1)=n$ 当且仅当每个 $\lambda_i=1$. ¹⁾ 因此, $\chi(s)=n$ 当且仅当 $s\in\ker\rho$.

现在,假设 G 是单群,则 $\ker \rho$ 是 G 的正规子群,故等于 $\{1\}$ 或 G. 因此,若对某个 $s \in G - \{1\}$ 有 $\chi(s) = \chi(1)$,则 $\rho = \mathrm{Id}$,从而 $\chi = 1$. 反过来,若 G 不是单群,设 N 为 G 的一个非平凡正规子群.设 χ' 为 G/N 的非平凡特征标,相应的表示为 ρ' . 那么

$$G \longrightarrow G/N \xrightarrow{\rho'} \mathbf{GL}_n(\mathbb{C})$$

¹⁾ 这用到以下的初等结果: 若 $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ 都是单位模长, 而 $|\alpha_1 + \cdots + \alpha_n| = n$, 则 $\alpha_1 = \cdots = \alpha_n = 1$. —— 原注

定义了 G 的一个表示 ρ , 它的特征标 $\chi \neq 1$, 并且有 $s \in G - \{1\}$ 满足 $\chi(s) = \chi(1)$. 现在来推广命题 A.13.

定理 A.15 设 ρ 为群 G 的不可约表示,特征标为 χ . 若 f 为 G 上的中心函数,它取值都是代数整数. 今 $n=\chi(1)$,则 $n^{-1}\sum_{s\in G}f(s)\chi(s)$ 也是代数整数.

只要对那些在一个共轭类上取值为 1 、在其余共轭类上取值为 0 的函数来证明本定理就可以了. 若 $s \in G$, 用 Cl(s) 来记 s 的共轭类,而 c(s) 表示 Cl(s) 的基数. 设 G 上的函数 f_s 在 Cl(s) 上取值为 1, 在其它共轭类上取值为 0, 则由于 χ 为中心函数,故有

$$\frac{1}{n}\sum_{t\in G}f_s(t)\chi(t)=\frac{1}{n}\sum_{t\in Cl(s)}\chi(t)=\frac{c(s)\chi(s)}{n}.$$

因此,证明下面的定理就行了:

定理 A.16 在定理 A.15 的假设条件及上述记号下,对每个 $s \in G$, $\frac{c(s)\chi(s)}{n}$ 都是代数整数.

设 X 为 G 上取值在 \mathbb{Z} 中的中心函数之集合. 这是由 f_s 生成的 \mathbb{Z} 上的自由模. X 上有一个自然的环结构, 其乘法运算为 卷积, $(f,g) \mapsto f * g$, 定义如下:

$$f * g(s) = \sum_{uv=s} f(u)g(v).$$

可以验证, \mathcal{F}_{X} 是结合且交换的, 而 "Dirac 函数" f_{1} 是环的单位元。

对 $f \in X$, 我们配上一个自同态 $\rho(f) = \sum f(s)\rho(s)$. 根据引理 A.12, $\rho(f)$ 是伸缩变换,即可看 $\mathbb C$ 中的元素. 这样就得到一个映射 $\tilde \rho: X \to \mathbb C$, 它是一个环同态 (由公式 $\rho(f*f') = \rho(f).\rho(f')$ 推出). 因此, X 的象集 $\tilde \rho(X)$ 是 $\mathbb C$ 的子环,而作为 $\mathbb Z$ 上的模它是有限型的. 用标准的证法即可推出这个环中的元素都是代数整数. 由于 $\frac{c(s)\chi(s)}{n}$ 等于 $\tilde \rho(f_s)$,定理得证.

推论 A.17 表示 ρ 的次数整除群的阶.

实际上,设 $n = \chi(1)$,又用 $f(s) = \chi(s^{-1})$ 定义 G 上的函数 f. 那么, f 满足定理 A.15 的假设条件,因此, $n^{-1} \sum_{s \in G} \chi(s^{-1}) \chi(s)$ 是代数整数. 然而, $n^{-1} \sum_{s \in G} \chi(s^{-1}) \chi(s) = |G|/n$ 是 \mathbb{Q} 中的元素,而 \mathbb{Q} 中在 \mathbb{Z} 上整的元素只能是 \mathbb{Z} 中的元素,因此,n 整除 |G|.

推论 A.18 设 χ 为群 G 的 n 次不可约特征标, $s \in G$. 如果 c(s) 与 n 互素,则 $\frac{\chi(s)}{n}$ 是一个代数整数. 此外,若 $\chi(s) \neq 0$,则与 $\chi(s)$ 相应的 $\rho(s)$ 为伸缩变换.

如果 c(s) 与 n 互素,则根据 Bézout 定理,存在两个整数 $a,b\in\mathbb{Z}$,使 ac(s)+bn=1. 因此,

$$\frac{\chi(s)}{n} = \frac{ac(s)\chi(s)}{n} + b\chi(s).$$

根据命题 $A.13,\chi(s)$ 是代数整数,根据定理 A.16, $\frac{c(s)\chi(s)}{n}$ 也是,这就证明了推论中的第一个断言、第 2 个断言则要用到以下的

引理 A.19 若 $\lambda_1, \ldots, \lambda_n$ 都是单位根, 并且 $(\lambda_1 + \cdots + \lambda_n)/n$ 是代数整数, 那么, 或者 $\lambda_1 + \cdots + \lambda_n = 0$, 或者所有 λ_i 都相等.

引理的证明 如果 λ 为单位根,则它在 \mathbb{Z} 上的极小方程形如 $x^p-1=0$,因此, λ 的每个共轭数也是单位根. (复习一下,若 $z\in\mathbb{C}$ 为代数数,则 z 的极小方程的根就称为 z 的共轭数.) 设 $z=(\lambda_1+\cdots+\lambda_n)/n$,则由假设 z 是一个代数数,并且 z 的每个共轭数 z' 都可写为 $(\lambda'_1+\cdots+\lambda'_n)/n$,其中 λ'_1 都是单位根,因此, $|z'|\leq 1$. 将所有 z 的共轭数之乘积记作 Z,则 $|Z|\leq 1$. 此外, Z 是有理数 (除了相差一个符号之外,它是 z 的极小多项式的常数项),又是代数整数 (它是代数整数的乘积),因而, $Z\in\mathbb{Z}$. 如果 Z=0,z 有一个共轭数为 z0,因此 z=0,如果 z=0,如果 z=0,则 z2 的每个共轭数都是单位模长的,因此 z=0,故所有 z3。之和模长为 z4。所以它们必定都相等 (参考命题 z4.14 之注).

回到推论的第 2 个断言. 设 (λ_i) 为 $\rho(s)$ 的特征值,它们都是单位根,且 $\chi(s)=\mathrm{Tr}(\rho(s))=\sum \lambda_i$,故结论可由引理推出.

A.6 应用: Burnside 定理

沿用前一节的记号.

定理 A.20 设 $s \not\in G - \{1\}$ 的元素, p 为素数. 假定 c(s) (G 中与 s 共轭的元素个数) 是 p 的方幂. 那么,存在 G 的正规子群 N, $N \neq G$, 使得 s 在 G/N 中的象属于 G/N 的中心.

设 r_G 为正则表示的特征标(参阅 A.3 节). 当 $s \neq 1$ 时, $r_G(s) = 0$. 此外, $r_G = \sum n_\chi \chi$ (对所有不可约特征标求和),其中 $n_\chi = \chi(1)$. 因此有 $\sum \chi(1)\chi(s) = 0$,或者写作 $1 + \sum_{\chi \neq 1} \chi(1)\chi(s) = 0$,从而有 $\sum_{\chi \neq 1} \frac{\chi(1)\chi(s)}{p} = -\frac{1}{p}$. 由于 $-\frac{1}{p}$ 不是代数整数,所以存在不等于 1 的不可约特征标 χ ,使得 $\frac{\chi(1)\chi(s)}{p}$ 不是代数整数.特别有, $\chi(s) \neq 0$,且 p 不整除 $\chi(1)$,从而 c(s) 与 $\chi(1)$ 互素.根据推论 A.18,如果与 χ 相应的 G 的表示是 ρ ,则 $\rho(s)$ 是仲缩变换.那么,若令 $N = \ker \rho$,则群 N 是不等于 G 的正规子群.另一方面, G/N 可以与 ρ 在 $GL_n(\mathbb{C})$ 中的象等同,而 s 在 ρ 之下的象则是伸缩变换,因此属于 G/N 的中心.

现在可以推出

定理 A.21 (Burnside) 设 $p \neq q$ 为素数,则每个阶为 $p^{\alpha}q^{\beta}$ 的群都是可解群. 不妨假定 $\alpha \neq \beta$ 都非零 (否则 G 为幂零群),对 |G| 作归纳法来证明本定理.

存在 $s \in G - \{1\}$, 使 q 不整除 c(s). 实际上, $G = \{1\} \cup \{Cl(s)\}$, 其中 Cl(s) 是不同于 1 的共轭类. 因此, $|G| = 1 + \sum |Cl(s)| = 1 + \sum c(s)$. 由于 q 整除 |G|, 故存在 s 使 q 不整除 c(s). 然而, c(s) 整除 |G|, 故 c(s) 是 p 的方幂. 根据前一定理,存在 G 的正规子群 $N, N \neq G$, 使得 s 在 G/N 中的象属于 G/N 的中心. 若 $N \neq \{1\}$, 对 N 与 G/N 应用归纳假设,知道它们都是可解群,因此 G 也是可解群. 如果 $N = \{1\}$, 则 G 的中心 C 包含 s, 因而非平凡. 对 C 与 G/C 应用归纳假设,即可推出 G 是可解群.

A.7 Frobenius 定理的证明

设 G 为有限群, H 是 G 的子群。 H "不与它的共轭子群相交", 就是说, 对所有 $g \in G - H$,

$$H \cap gHg^{-1} = \{1\},$$

参见 §6.2.

定理 A.22 (Frobenius) 设 $N = \{1\} \cap \{G - \bigcup_{g \in H} gHg^{-1}\}$, 则 $N \not\in G$ 的正规子群、并且 $G \not\in H$ 与 N 的半直积.

证明的要点在于说明 H 的线性表示可以扩张到整个 G 上. 首先证明下面的

引理 A.23 设 $f \in H$ 上的中心函数,那么,存在唯一一个 G 上的中心函数 \tilde{f} , 它满足下面两个条件:

- (1) \tilde{f} 是 f 的扩张, 即, 若 $h \in H$, 则 $\tilde{f}(h) = f(h)$.
- (2) 若 $x \in N$, 则 $\tilde{f}(x) = f(1)$, 即 \tilde{f} 在N上取常值.

这个结果是容易的: 若 $x \notin N$, 则 x 可写成 ghg^{-1} , 使 $g \in G$, $h \in H$, 于是可令 $\tilde{f}(x) = f(h)$. 这个定义不依赖于 g,h 的选取, 因为, 如果 $g'h'g'^{-1} = ghg^{-1}$, 则有 $g'^{-1}ghg^{-1}g' = h'$, 因此, 或者 h = h' = 1, 或者 $g'^{-1}g \in H$. 在后一情形, h = h' 在 H 中是共轭的, 而由于 f 为中心函数, 故有 f(h) = f(h').

下面,我们用记号 $\langle \alpha, \beta \rangle_G$ 来表示相对于 G 的标量积 $\frac{1}{|G|} \sum_{s \in G} \alpha(s^{-1})\beta(s)$; 类似地,用 $\langle \alpha, \beta \rangle_H$ 来表示相对于 H 的标量积. 如果 F 为 G 上的函数,则用 F_H 来表示它在 H 上的限制.

引理 A.24 设 f 与 \tilde{f} 如前面引理所述、又设 θ 为 G 上的中心函数. 则有

$$\langle \tilde{f}, \theta \rangle_G = \langle f, \theta_H \rangle_H + f(1)\langle 1, \theta \rangle_G - f(1)\langle 1, \theta_H \rangle_H. \tag{A.1}$$

我们来证明这个等式. 如果 f=1, 则 $\tilde{f}=1$, 因此等式肯定成立. 因此,由于线性的缘故,只要对满足条件 f(1)=0 的函数 f 来验证 (A.1) 就可以了. 那么,若令 \mathcal{R} 为 H 左 陪集的一个代表元组,则当 r 取遍 \mathcal{R} 时, rHr^{-1} 给出 H 的互不相同的共轭子群. 又,H 中每个 (不等于 1 的) 元素的共轭都可唯一地写作 rhr^{-1} ,使 $r \in \mathcal{R}$, $h \in H$. 由于

$$\langle \tilde{f}, \theta \rangle_G = \frac{1}{|G|} \sum_{s \in G} \tilde{f}(s^{-1}) \theta(s),$$

而 \tilde{f} 在 H 的共轭元素之外取值都是零,所以,上面的讨论说明

$$\langle \tilde{f}, \theta \rangle_G = \frac{1}{|G|} \sum_{(r,h) \in \mathcal{R} \times H} \tilde{f}(h^{-1})\theta(h) = \langle f, \theta \rangle_H,$$

后一等式是由于 $|G| = |H| \cdot |\mathcal{R}|$.

特殊情形 若 $\theta=1$, 则有 $\langle \tilde{f},1\rangle_G=\langle f,1\rangle_H$. 1) 因此,映射 $f\mapsto \tilde{f}$ 是等距变换,换句话说,有 $\langle \tilde{f}_1,\tilde{f}_2\rangle_G=\langle f_1,f_2\rangle_H$. 实际上,若令 $f_1^*(s)=f_1(s^{-1})$,则有 2)

$$\frac{1}{|G|}\sum_{s\in G}\tilde{f}_1(s^{-1})\tilde{f}_2(s)=\langle \tilde{f}_1\tilde{f}_2^\star,1\rangle_G.$$

¹⁾ 原文为 $\langle \tilde{f}, 1 \rangle_G = \langle f, 1 \rangle_G$. 译注

²⁾ 原文为 $\frac{1}{|G|}\sum_{s\in G} \tilde{f}_1(s^{-1})f_2(s) = \langle f_1^*\tilde{f}_2,1\rangle_G$. 一译注

又因为 $\widetilde{f_1f_2} = \tilde{f_1}\tilde{f_2}$, 故有 1)

 $\langle \tilde{f}_1, \tilde{f}_2 \rangle_G = \langle \tilde{f}_1 \tilde{f}_2^*, 1 \rangle_G = \langle f_1 f_2^*, 1 \rangle_H = \langle f_1, f_2 \rangle_H.$

由此导出

命题 A.25 若 χ 为 H 的特征标, θ 是 G 的特征标,则 $(\tilde{\chi}, \theta)_G$ 是整数.

只要证明 (A.1) 式右边的每一项都是整数, 但这是显然的.

设 $\theta_1, \ldots, \theta_n$ 是 G 的全部互不相同的特征标,则有 $\tilde{\chi} = \sum c_i \theta_i$, 并且由前面证明的结果,知道每个 $c_i \in \mathbb{Z}$.

命题 A.26 假设 χ 不可约,则 c_i 中只有一个等于 1,其余等于 0.

(换句话说, $\tilde{\chi}$ 是 G 的不可约特征标.)

实际上, $\langle \tilde{\chi}, \tilde{\chi} \rangle_G = \langle \chi, \chi \rangle_H = 1 = \sum c_i^2$, 因此,有某个 c_{i_0} 的平方等于 1, 其余的 c_i 等于 0. 如果 $c_{i_0} = -1$, 则有 $\tilde{\chi} = -\theta_{i_0}$, 然而 $\tilde{\chi}(1) = \chi(1) > 0$, 又 $\theta_{i_0}(1) > 0$, 这是不可能的. 因此必有 $c_{i_0} = 1$, 即 $\tilde{\chi} = \theta_{i_0}$.

推论 A.27 如果 χ 是 H 的特征标, 则 $\tilde{\chi}$ 是 G 的特征标.

如果将 χ 分解为不可约特征标之和,结果就可由前面命题导出.

现在来证明 A.22. 选取 H 的一个表示 ρ , 要求它的核平凡,例如,可取正则表示. 设 χ 是 ρ 的特征标,由推论 A.27, $\tilde{\chi}$ 是 G 的特征标,设 $\tilde{\rho}$ 是相应于 $\tilde{\chi}$ 的 G 的表示. 如果 s 与 $H-\{1\}$ 中的某个元素共轭,则 $\tilde{\rho}(s)\neq 1$. 另一方面,若 $s\in N$,则有 $\tilde{\chi}(s)=\chi(1)=\tilde{\chi}(1)$,从而,由命题 A.14 证明中的方法,可知 $\tilde{\rho}(s)=1$. 因此有 $N=\ker\tilde{\rho}$,这证明了 N 是 G 的 正规子群.

参考文献 (略) (全文完)

(赵曼菲 译 姚景齐 校)

(上接 352 页)

Aumann: 伦理中立意味着对策理论家不需要提倡实现对策论的规范规定了. 对策论是关于自私的理论. 就象是我建议研究战争一样,对策论研究自私性. 显然,研究战争不等于提倡战争;类似地,研究自私性不是支持自私自利. 细菌学家不提倡疾病,然而他们研究疾病. 对"理性"方式在精神上的还是伦理上是正确的,对策论没有发表任何言论. 它仅仅表明理性的 —— 利己主义的 —— 实体将做些什么;不是从伦理上说他们"应该"做什么. 如果我们希望我们的世界更美好,我们最好关注一下理性动机将会把我们带往何处.

Hart: 对于我们这个迷人的访谈, 这是个非常好的结论. 谢谢您!

Aumann: 也谢谢 你, Sergiu, 为您在这个令人愉快的访谈中的出色表现.

参考文献 (略) (全文完)

(孙连菊 译 陆柱家 校)

¹⁾ 原文为 $\langle \tilde{f}_1, \tilde{f}_2 \rangle_G = \langle \tilde{f}_1^* \tilde{f}_2, 1 \rangle_G = \langle f_1^* f_2, 1 \rangle_H = \langle f_1, f_2 \rangle_H$.

译注