Decision Problems

Why formulate problems as decision problems?

- 1. Decision problems are in essence easier than the corresponding optimization problems. So by proving the decision problem is hard, the optimization problem must be as least as hard
- 2. In many cases, both the decision problem and its corresponding optimization problem are equivalent

```
\mathcal{P} = \{ \text{ Problems that can be solved in polynomial time } 
\mathcal{NP} = \{ \text{ Problems that can be verified in polynomial time } \}
```

Proposition. Naive algorithm for \mathcal{NP} problems

All problems in NP can be solved by a **generate-and-verify** algorithm with the following structure

```
1 Function Generate-and-Verify(x)
2 Generate all certificates for each c \in certificates do
3 if Verify (x,c) then
4 return True
5 return False
```

Example. Composite

Given positive integer x, does x have any factor (i.e. a composite number)

```
1 Function Composite(x)
2 Generate all certificates for for all integer c \in 2 to x-1 do
3 if c divides x then
4 return True
5 return False
```

Definition. B is an efficient certifier for a problem X, if the following properties hold:

- 1. B is a polynomial time algorithm that takes two input s, the input, and t, the certificate and returns either yes or no to the problem X
- 2. There is a polynomial time function p such that for every string $s = \{0, 1\}*$, we have $s \in X$, i.e. s is a yes solution to X, if and only if there exists a string t such that $|t| \le p(|s|)$ (i.e. $|t| \le |s|^2$ say) and B(s,t) is yes (implies the loop is not over infinite number of times, i.e. there is an upper bound on the loop)

 $s \in X$ means s is an yes instance of X

Theorem.

$$\mathcal{P}\subseteq\mathcal{NP}$$

Proof. Consider a decision problem $X \in \mathcal{P}$. This implies there exists a polynomial time algorithm A that solves X. To show $X \in \mathcal{NP}$, we want to find an efficient verifier B(s,t) for X, such that B(s,t) = A(s) for any t. Dont know...

Definition. A problem X is called \mathcal{NP} -complete (NPC) if

- 1. $x \in \mathcal{NP}$
- 2. \mathcal{NP} -hard, i.e. for every $Y \in \mathcal{NP}$, $Y \leq_p X$

Example. Prove NP

1. INDEPENDENT SET $\in \mathcal{NP}$. For the set $S = \{v_1, \dots, v_n\}$ The verification steps takes every $v_i \in S$ and check $G.Adj[v_i]$ (totals to |E|) takes k(|V| + |E|) steps at most. But $k \leq |V|$ so takes |V|(|E| + |V|)

2.

Definition. X in \mathcal{NP} means there is a certifier B(s,t) running in polynomial time such that

$$B(s,t) = \begin{cases} true & \text{for some } t \text{ where } s \text{ is a yes instance of } X \\ false & \text{for all } t \text{ where } s \text{ is a no instance of } X \end{cases}$$

coNP is the complement of problems in NP, i.e. problems whose no-instances are easy to verify

 $B(s,t) = \begin{cases} true & \text{for all } t \text{ where } s \text{ is a yes instance of } X \\ false & \text{for some } t \text{ where } s \text{ is a no instance of } X \end{cases}$

Example. Examples of coNP algorithms

- 1. Prime $\begin{array}{lll} & \textbf{Function Prime} \in co\mathcal{NP} \\ & \textbf{2} & \textbf{For input } x \\ & \textbf{3} & \textbf{for } c = 2, \cdots, x-1 \textbf{ do} \\ & \textbf{4} & \textbf{if } c \textit{ divides } x \textbf{ then} \\ & \textbf{5} & \textbf{return False} \\ & \textbf{6} & \textbf{return True} \end{array}$
- 2. Dense set $\in co\mathcal{NP}$

Proposition.

$$\mathcal{P} \subseteq co\mathcal{NP}$$

NP-completeness problems are hardest problems in NP

Example. SAT (Satisfiability problems)

- 1. Circuit-SAT Given a circuit with AND, OR, NOT gates and input set I and a single output x. The question asks if there is a set of I such that x = T (satisfiability) If the answer is yet, the circuit is satisfiable otherwise unsatisfiable.
- 2. **SAT** Since any circuit can be transformed into a boolean expression, is an equivalent question for such boolean formula, i.e. if the value of formula yields *true* or *false*
- 3. **CNF-SAT** Conjunctive normal form.

$$\phi = c_1 \wedge \cdots c_i \cdots \wedge c_k \qquad c_i = (t_{i_1} \vee \cdots \vee t_{i_i})$$

where $t_{i_j} = x_j$ or $\neg x_j$. Note every boolean expression can be converted to CNF

4. **3-SAT** A special form of CNF-SAT where each clause c_i has exactly 3 literals. Again can convert from every CNF.

Theorem. SAT is NPC. Given a boolean formula ϕ , ask the question if ϕ is satisfisable. Let X be SAT-family of problems

Proof. Prove by definition of NPC (2-part)

- 1. Prove $X \in \mathcal{NP}$. Given ϕ where t is the truth assignment of the variables in ϕ . Given t, verify ϕ is true is easy, since can just substitute variable in and evaluate using boolean expression. Hence can be verified easily
- 2. Prove $Y \leq_q X$ for all $Y \in NP$. Basic idea, every NP problem can be reduced to circuits (Circuit-SAT).

Example. Given a graph G = (V, E) Does it contain a 2 node independent set.

 \Box

Definition. Techniques for prooving NPC

To prove X is NP-hard, use a known NP-hard problem Y and show that $Y \leq_q X$

Proof. Note If $A \leq_p B$ and $B \leq_p C$ then $A \leq_q C$. So if Y is NP-hard, then $\forall Z \in \mathcal{NP}$, $Z \leq_p Y$. And since $Y \leq_p X$, so $\forall Z \in \mathcal{NP}$, $Z \leq_p X$, so X is NP-hard

Proposition. 3-SAT is NPC

Proof. Idea: Reduce it to SAT, which was shown to be NP-hard

- 1. 3-SAT $\in NP$, true...
- 2. Now we prove $CNF SAT \leq_p 3 SAT$. Given a formula ϕ in CNF, obtain an formula ϕ^{Prime} in 3-SAT, such that ϕ is satisfiable if and only if ϕ^{Prime} is satisfiable. Let $\phi = c_1 \wedge \cdots \wedge c_r$ where $c_i = (x_{j_i} \vee \cdots \vee x_{j_k})$ Want to size of each c_i to 3. For each c_i in ϕ , if
 - (a) If $c = (a_1)$ then replace c with $(a_1 \vee a_1 \vee a_1)$.
 - (b) If $c = (a_1 \vee a_2)$, then replace c with $(a_1 \vee a_1 \vee a_2)$.
 - (c) If $c = (a_1 \vee a_2 \vee a_3)$, then leave it as is.
 - (d) If $c = (a_1 \lor a_2 \lor \cdots \lor a_s)$ where s > 3, then replace c with $c^{\texttt{Prime}} = (a_1 \lor a_2 \lor a_3) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \land \cdots \land (\neg z_{s-4} \lor a_{s-2} \lor z_{s-3}) \land (\neg z_{s-3} \lor a_{s-1} \lor a_s)$ where (z_1, \cdots, z_{s-3}) are new variables. Now we prove c is satisfiable if and only if $c^{\texttt{Prime}}$ is satisfiable
 - i. (=>) There is a truth assignment $a_1, \dots a_s$ that makes c true. This implies that there is some $a_i = T$ the first i such that $a_i = T$.
 - A. If i = 1 or 2, let $z_1, \dots, z_{s-3} = F$, then every clause is true.
 - B. If i = s 1 or s, let $z_1, \dots, z_{s-3} = T$, then every clause is true
 - C. If 2 < i < s-1, let $z_1, \dots, z_{i-2} = T$ and let $z_{i-1}, \dots, z_{s-3} = F$, then every clause is true
 - ii. (<=) If there is a truth assignment that makes $c^{\texttt{Prime}}$ true, we want to show that there is a truth assignment that makes c is true. Obvious, the same assignment works