Głos jako hasło, czyli weryfikacja za pomocą głosu

Jak podejść do problemu?

Preprocessing danych - MFCC

Preprocessing danych - MFCC

Preprocessing danych - data augmentation

- Dodawanie sumów (biały, różowy, gaussowski, itd.)
- Dodawanie dźwięków w tle
- Room Impulse Response (RIR)
- Przysłanianie części częstotliwości/fragmentu sygnału
- Przyspieszenie/spowolnienie sygnału

• ...

x-vector

Inne metody embeddingu dźwięku

- i-vector
- CNN
- SincNet
- ..

LDA

PLDA

PLDA

$$V^T\Phi_wV={
m I}$$
 $V^T\Phi_bV=\Psi$ By defining, $A=V^{-T}$, we obtain $\Phi_w=AA^T$ $\Phi_b={
m A}\Psi{
m A}^{
m T}$

$$u \sim N(. | v, I)$$
 $y = m + Av$
 $v \sim N(. | 0, \Psi)$ $x = m + Au$

Ewaluacja systemu do weryfikacji głosu

$$FAR = \frac{\text{liczba próbek niewłaściwie zaakceptowana}}{\text{liczba próbek nienależąca do danej osoby}}$$

$$FRR = \frac{\text{liczba próbek niepoprawnie odrzucona}}{\text{liczba próbek należąca do danej osoby}}$$

Literatura i dodatkowe materiały

MFCC:

- https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC
- https://www.youtube.com/watch?v=4_SH2nfbQZ8

AUDIO DATA AUGMENTATION:

https://pytorch.org/audio/master/tutorials/audio_data_augmentation_tutorial.html

• x-vector:

- https://www.mathworks.com/help/audio/ug/speaker-recognition-using-x-vectors.html
- David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur.
 "Deep Neural Network Embeddings for Text-Independent Speaker Verification"
 In Proc. Interspeech 2017, pages 999–1003, 2017

PLDA:

- https://towardsdatascience.com/probabilistic-linear-discriminant-analysis-plda-explained-253b5effb96
- Sergey loffe. "Probabilistic linear discriminant analysis" In European Conference on Computer Vision, 2006.
- Kanał na YT o analizie i przetwarzaniu dźwięku:
 - https://www.youtube.com/@ValerioVelardoTheSoundofAl