Voyageur de Commerce

Algorithme exact avec programmation dynamique

Nicolas Hanusse

Directeur de Recherche CNRS, LaBRI, Université de Bordeaux

Voyageur de Commerce

Instance: Un ensemble V de points/sommets et une distance d sur V.

Question: Trouver une tournée de longueur minimum passant par tous les points de V, c'est-à-dire un ordre $v_0,...,v_{n-1}$ des points de V tel que $\sum d(v_i,v_{i+1})$ est minimum.

plusieurs variantes:

- Asymétrique/symétrique: d(A,B) = d(B,A) ?
- Métrique: inégalité triangulaire vérifiée d(A,B)+d(B,C) <= d (A,C)

Exemple

Prenons comme source **s=A**

ABCDA a poids 20+25+35+15=95

Peut-on faire avec un poids plus faible ?

Exemple

Voir http://map.vroom-project.org/

Principaux algorithmes

- Exaustif:
 - (n-1)! chemins
 - Meilleur algorithme exact: $O(n^2 2^n)$ via Programmation Dynamique
- Approximation:
 - 2-approximation via arbres de poids minimal ou 2-opt, ... $O(n^{O(1)})$
 - 3/2-approximation via algorithme de Christofides $O(n^3)$

Soit OPT la valeur optimale de la mesure coût(S) d'une solution S d'un algorithme. Un algorithme d'approximation de facteur f s'il calcule une solution S telle que :

- OPT \leq Coût(S) \leq f OPT pour les problèmes de minimisation
- OPT/ $f \le Coût(S) \le OPT$ pour les problèmes de maximisation

Programmation Dynamique

- Principe « Diviser pour régner »:
 - On suppose calculé les meilleurs résultats pour un problème de taille < k.
 - On mémorise ces résultats (souvent dans des tables)
 - Calculer le meilleur résultat pour la taille k en fonction des résultats <k en avec une opération de combinaison.
 - On itère jusqu'à obtenir la taille désirée n.
- Souvent:
 - Usage important de la mémoire
 - Calcul de combinaison « rapide »

- On suppose calculé les k-1 chemins minimaux s → ... → x passant par k-1 sommets fixés U
- Pour **t** donné, on mémorise la meilleure combinaison, le chemin de poids minimal de forme $s \rightarrow ... \rightarrow x \rightarrow t$
- Combinaison = k-1 choix pour x Min (poids($s \rightarrow ... \rightarrow x$) + d(x,t))

- On suppose calculé les k-1 chemins minimaux s → ... → x passant par k-1 sommets fixés U
- Pour **t** donné, on mémorise la meilleure combinaison, le chemin de poids minimal de forme $s \rightarrow ... \rightarrow x \rightarrow t$
- Combinaison = k-1 choix pour x Min (poids($s \rightarrow ... \rightarrow x \rightarrow t$) + d(x,t))

- On suppose calculé les k-1 chemins minimaux s → ... → x passant par k-1 sommets fixés U
- Pour **t** donné, on mémorise la meilleure combinaison, le chemin de poids minimal de forme $s \rightarrow ... \rightarrow x \rightarrow t$
- Combinaison = k-1 choix pour x Min (poids($s \rightarrow ... \rightarrow x \rightarrow t$) + d(x,t))
- On itère sur tous les ensembles U de taille k-1

- On suppose calculé les k-1 chemins minimaux s → ... → x passant par k-1 sommets fixés U
- Pour t donné, on mémorise la meilleure combinaison, le chemin de poids minimal de forme s → ... → x → t
- Combinaison = k-1 choix pour x Min (poids($s \rightarrow ... \rightarrow x \rightarrow t$) + d(x,t))
- On itère sur tous les ensembles U de taille k-1

- On suppose calculé les k-1 chemins minimaux s → ... → x passant par k-1 sommets fixés U
- Pour **t** donné, on mémorise la meilleure combinaison, le chemin de poids minimal de forme $s \rightarrow ... \rightarrow x \rightarrow t$
- Combinaison = k-1 choix pour x Min (poids($s \rightarrow ... \rightarrow x \rightarrow t$) + d(x,t))
- On itère sur tous les ensembles U de taille k-1 puis sur toutes les tailles.

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

$$OPT = L(s, V)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.				
C	indef	20 AC	Ind.				
D	indef	ind	15 AD				

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

$$L(B, \{B, C\}) = poids(A \rightarrow C) + d(C,B) = 20+25 = 45$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB			
C	indef	20 AC	Ind.				
D	indef	ind	15 AD				

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

$$L(D, \{C, D\}) = poids(A \rightarrow C) + d(C, D) = 20+30 = 50$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	L(B,{B}) = d(A,B)=10	ind	Ind.	45 ACB	37 ADB	Ind.	Min(L(C,{CD})+d(C,B), L(D,{CD}+d(D,B))=70 ADCB
С	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	Min(L(C,{CD})+d(C,B), L(D,{CD}+d(D,B))=70 ADCB
С	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	Min(37+25,45+22)=62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	

$$L(t, U) = d(s, t) \text{ si } |U| = 1$$

$$L(t, U) = \min_{x \in U - \{t\}} L(x, U - \{t\}) + d(x, t)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	Min(L(C,{CD})+d(C,B), L(D,{CD}+d(D,B))=70 ADCB
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	Min(37+25,45+22)=62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	Min(45+35,

$$L(t, U) = d(s, t) \text{ si } |U| = 1$$

$$L(t, U) = \min_{x \in U - \{t\}} L(x, U - \{t\}) + d(x, t)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	Min(L(C,{CD})+d(C,B), L(D,{CD}+d(D,B))=70 ADCB
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	Min(37+25,45+22)=62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	Min(45+35,35+30)=65 ABCD

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	Min(L(C,{CD})+d(C,B), L(D,{CD}+d(D,B))=70 ADCB
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	Min(37+25,45+22)=62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	Min(45+35,35+30)=65 ABCD

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

$$OPT = L(s, V)$$

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	70 ADCB
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	65 ABCD

$$L(t, U) = d(s, t) \text{ si } |U| = 1$$

$$L(t, U) = \min_{x \in U - \{t\}} L(x, U - \{t\}) + d(x, t)$$

$$OPT = L(s, V) = L(A, \{A, B, C, D\}) = Min(70+10, 62+20, 65+15) = 80$$
ADCBA ou ABCDA

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	ind	Ind.	45 ACB	37 ADB	Ind.	70 ADCB
C	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	65 ABCD

$$L(t,U) = d(s,t) \text{ si } |U| = 1$$

$$L(t,U) = \min_{x \in U - \{t\}} L(x,U - \{t\}) + d(x,t)$$

$$OPT = L(s, V) = L(A, \{A, B, C, D\}) = Min(70+10, 62+20, 65+15) = 80$$
ADCBA ou ABCDA

t \ U	(B) 0100	{C} 0010			{B,D} 0101		{B,C,D}
В	$L(B,{B}) = d(A,B)=10$	Ind	Ind.	45 ACB	37 ADB	Ind.	70 ADCB
С	indef	20 AC	Ind.	35 ABC	Ind.	45 ADC	62 ADBC
D	indef	ind	15 AD	Ind.	45 ABD	50 ACD	65 ABCD

Détail d'implémentation

- Bien coder les sous-ensembles: bitmap
- Facilement générer le prochain sous-ensemble: pour traiter un ensemble U, il faut avoir déjà traité tous ses sous-ensembles.

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
	0100	0010	0001	0110	0101	0011	0111
В	$L(B,{B}) = d(A,B)=10$	Ind	Ind.	45	37	Ind.	70
				ACB	ADB		ADCB
C	indef	20	Ind.	35	Ind.	45	62
		AC		ABC		ADC	ADBC
D	indef	ind	15	Ind.	45	50	65
			AD		ABD	ACD	ABCD

Analyse de complexité

- Il y a 2^n sous-ensembles de cardinalité \leq n mais il faut exclure $\{\}$ et $V \rightarrow 2^n 2$ colonnes;
- On a n-1 lignes donc $(n-1)*(2^n-2)$ entrées
- Une combinaison est un minimum sur au plus n-1 valeurs $\rightarrow O(n^2 2^n)$ calculs

t \ U	{B}	{C}	{D}	{B,C}	{B,D}	{C,D}	{B,C,D}
	0100	0010	0001	0110	0101	0011	0111
В	$L(B,{B}) = d(A,B)=10$	Ind	Ind.	45	37	Ind.	70
				ACB	ADB		ADCB
C	indef	20	Ind.	35	Ind.	45	62
		AC		ABC		ADC	ADBC
D	indef	ind	15	Ind.	45	50	65
			AD		ABD	ACD	ABCD