Next-Generation Sequencing Read Alignment

Dr. Jung Soh MOL.923 SS 2018

Read alignment vs. de novo assembly

Mapping/Aligning reads

- Possible only when we have a reference
 - Reference genome or de novo assembly
- Issues
 - RNA-seq reads spanning across exon junction
 - Reads mapping to multiple places in genome (multi-locus gene)
 - Pain of repeats
- Different from multiple sequence alignment
 - MSA: align a group of sequences (similar length)
 - Read alignment: align reads to a region of reference sequence(s)

Reasons for aligning reads

- Assemble a new genome with reference alignment
- Analyze genetic variation from reference
- Check sequencing correctness
 - Most single-organism reads should align well to reference
- Analyze taxonomy of metagenomic reads
 - Align to multiple references
- Study differential expression of transcripts
 - Possible with RNA-seq reads

NGS read alignment tools

- Many alignment tools
 - Bowtie, Bowtie2, SOAP, BWA, SHRiMP, mrFAST, mrsFAST, ZOOM, SSAHA2, Mosaik
- Mapping result
 - Mostly in SAM (sequence alignment/map) format
 - Binary version: BAM
 - Samtools commonly used to analyze SAM/BAM files

Samtools

- Command line tool to work with SAM/BAM files
 - Good for text-based analysis
 - SAM format contains lots of (often coded) information
- Collection of commands
 - Say samtools, give one command, provide options, supply input SAM/BAM
 - Examples:
 - samtools view -b align.sam
 - samtools depth -r REF:FROM-TO align.sorted.bam

End-to-end vs. local alignment

End-to-end: align all bases of a read

Read: GACTGCGATCTCGACTTCG

Reference: TCGACTGGGCGATCTCGACTTCGAAAC

Alignment:

Read: GACTG—-CGATCTCGACTTCG

Reference: TCGACTGGGCGATCTCGACTTCGAAAC

Local: some bases at ends can be unaligned (clipped)

Read: ACGGTTGCGTTAATCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Alignment:

Read: ACGGTTGCGTTAA-TCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Bowtie 2

- A widely used read alignment tool
- Two steps
 - Build index (database) from sequence files
 - Files can represent a genome, chromosome, or your own set of sequences
 - Align reads to the index
- Bowtie
 - Good for reads shorter than 50 bp
 - Only ungapped, end-to-end alignments
 - Read length upper limit of around 1000 bp

Bowtie 2 key options

- Alignment mode
 - End-to-end (default)
 - Local
- Reporting policy
 - Search for multiple alignments, report the best one (default)
 - Search for up to N multiple alignments, report each
 - Search for and report all alignments

Alignment summary

- Given as alignment rate:
 - (Reads aligned)/(Total reads)
- Calculation can be complicated for paired-end reads
 - Especially with inconsistent terms used by alignment tools

Alignment visualization

- Similar to assembly visualization
 - Reference sequences treated as contigs
 - Reference sequences often annotated (additional information)
- Many tools
 - IGV, SeqMonk, Tablet, BamView, Samtools

Lab overview

