## Deep Learning for Optical Imaging

Lecture 3a

# Pseudoinverse and Regression Multliple classes

## Outline

- Pseudoinverse
- Regression
- Multiple neurons
- Soft max

## Single Neuron



#### Direct inversion

Weight calculation by matrix inversion

$$\underline{\underline{X}}\underline{w} = \underline{t} \Rightarrow \underline{w} = \underline{\underline{X}}^{-1}\underline{t}$$

<u>X</u> is 1024 by 1024

| Images used for weight calculation | 100% |
|------------------------------------|------|
| Test 2000 new images               | 52%  |

Weights (w)



#### Database 1024 training images 2000 test images

Class 1





Class 2





Perceptron

Training accuracy: 51.00% Training accuracy: 73.44%

Test accuracy:

**ADALINE** 

Test accuracy:

71.50%

1000 iterations

50.50%



Learning rate = 0.0001 2000 iterations



#### Adaline



Training set: 
$$\{x^m, y^m\}$$
  $m = 1, M$   $y^m = \pm 1$ 

$$w_i^{t+1} = w_i^t + \Delta w_i^t$$

$$\Delta w_i^t = \alpha \frac{dg}{ds} \frac{ds}{dw_i} (y^m - y) = \alpha \frac{dg}{ds} (y^m - y) x_i^m$$

$$\alpha > 0$$

#### Regression



What is the difference between linear regression and ADALINE?

### Regression



#### Regression vs. ADALINE: digit classification





| ADALINE - Test    | 99.91% |
|-------------------|--------|
| Regression - Test | 99.29% |





| ADALINE - Test    | 96.57% |
|-------------------|--------|
| Regression - Test | 96.02% |

#### **ADALINE:**

- Sigmoid activation function
- Sigmoid slope = 0.0001
- Learning rate = 0.0001
- Epoch = 200

A threshold function is used after the regression in order to classify the outputs.

#### Regression

Linear regression finds the best linear fit relationship between the input variables (x) and the single output (y).

$$y^{(m)} = \sum_{i}^{N} \beta_{i} x_{i}^{(m)} = \overrightarrow{\beta}. \overrightarrow{x^{(m)}}$$

The model parameters  $(\beta)$  can be calculated using least-squares estimation:

$$\vec{\beta} = \min \left( \sum_{m}^{M} (\vec{\beta}.\vec{x}^{(m)} - y_i)^2 \right)$$

We can put input and out variables in matrices X and Y.

$$\vec{\beta} = \min\left(\left(X\vec{\beta} - Y\right)^2\right)$$

The optimum model parameter ( $\beta$ ) lies at gradient zero:

$$\frac{\partial \left[ \left( X \overrightarrow{\beta} - Y \right)^{2} \right]}{\partial \overrightarrow{\beta}} = 0 \to \overrightarrow{\beta} = (X^{T} X)^{-1} X^{T} Y$$

The index *m* is used for the samples. *M* is the total number of the samples. N is the dimension of the input.

## Outline

- Pseudoinverse
- Regression
- Multiple neurons
- Soft max

## Multiple neurons



$$Y_j = g(\Sigma w_{ij} x_i + w_{0j})$$

#### Multi neurons



$$S_{k} = \sum_{i}^{N} x_{i} w_{ik}$$

$$y_{k} = g\left(\sum_{i}^{N} x_{i} w_{ik}\right)$$

$$Labels: y_{k}^{(m)}$$

$$g(S_{k}) = \frac{1}{1 + e^{-S_{k}}}$$

The index *i* determines the input.

The index k determines the output.

*N* is the total number of the inputs.

*K* is the total number of the outputs.

The index m determines the sample number

#### Multi neurons: Mean squared cost function

The mean squared cost function is:

$$C = \sum_{m}^{M} \sum_{k}^{K} (y_{k}^{(m)} - y_{k})^{2}$$

The index m is used for the training samples. M is the total number of the samples. The index k is used for the outputs. K is the total number of the outputs.  $\mathbf{y^{(m)}}_k$  denotes the label for the  $k^{th}$  neuron and  $\mathbf{y}_k$  denotes the predicted output by the  $k^{th}$  neuron. Activation function is sigmoid.  $\frac{\partial C}{\partial w_k}$  calculation is as follows:

$$\frac{\partial C}{\partial w_{ik}} = \frac{\partial C}{\partial y_k} \frac{\partial y_k}{\partial s_k} \frac{\partial s_k}{\partial w_{ik}}$$

$$C = \sum_{m}^{M} \sum_{k}^{K} (y_k^{(m)} - y_k)^2 \rightarrow \frac{\partial C}{\partial y_k} = -\sum_{m}^{M} 2(y_k^{(m)} - y_k)$$

$$\Rightarrow \frac{\partial C}{\partial w_{ik}} = -\sum_{m}^{M} 2(y_k^{(m)} - y_k) y_k (1 - y_k) x_i^{(m)}$$

#### Multi neurons: Cross entropy cost function

The cross entropy cost function is:

$$C = -\sum_{m}^{M} \sum_{k}^{K} y_{k}^{(m)} \ln(y_{k})$$

*i* is the index of the inputs

*m* is the index of the training samples

*k* is the index of the outputs

 $y^{(m)}_{k}$  denotes the label for the  $k^{th}$  neuron and  $y_{k}$  denotes the predicted output by the  $k^{th}$  neuron. Activation function is sigmoid.

 $\frac{\partial C}{\partial w}$  calculation is as follows:

$$\frac{\partial C}{\partial w_{ik}} = \frac{\partial C}{\partial y_k} \frac{\partial y_k}{\partial s_k} \frac{\partial s_k}{\partial w_{ik}}$$

$$C = -\sum_{m}^{M} \sum_{k}^{K} y_k^{(m)} \ln(y_k) \to \frac{\partial C}{\partial y_k} = -\sum_{m}^{M} \frac{y_k^{(m)}}{y_k}$$

$$\Rightarrow \frac{\partial C}{\partial w_{ik}} = -\sum_{m}^{M} y_k^{(m)} (1 - y_k) x_i^{(m)}$$

#### Multiple neurons





#### **Desired output**

class1:
$$[1,0,0,...,0]$$

class3:
$$[0,0,1,...,0]$$

•

## Multiple neurons: multiple digits classification (0,1, and 2)







#### Three neurons classification

| ADALINE – Training accuracy | 96.71% |
|-----------------------------|--------|
| ADALINE – Test accuracy     | 97.01% |

| Digit 0 : Test accuracy | 99.39% |
|-------------------------|--------|
| Digit 1 : Test accuracy | 98.50% |
| Digit 2: Test accuracy  | 93.12% |

18623 training samples3147 test samples

Sigmoid activation function

#### Multiple neurons: all digits classification (0 to 9)



Ten neurons classification

| ADALINE – Training accuracy | 85.00% |
|-----------------------------|--------|
| ADALINE – Test accuracy     | 80.83% |

Higher accuracy can be reached with more iterations. However, the training is very slow that needs a lot of iterations.

10000 training samples 10000 test samples

Sigmoid activation function

| 0 | 91.60% |
|---|--------|
| 1 | 93.61% |
| 2 | 80.42% |
| 3 | 77.03% |
| 4 | 82.45% |
| 5 | 67.90% |
| 6 | 89.64% |
| 7 | 82.80% |
| 8 | 59.75% |
| 9 | 78.32% |

Accuracy of classification for

different digits

## Soft Max



$$y_{j} = g(\Sigma w_{ij} x_{i}) = \frac{e^{\sum w_{ij} x_{i}}}{\sum_{k} e^{\sum w_{ik} x_{i}}}$$

$$\frac{dg}{dw_{m}} = \frac{e^{\sum w_{ij} x_{i}}}{\sum_{k} e^{\sum w_{ik} x_{i}}} (\delta_{mj} - \frac{e^{\sum w_{im} x_{i}}}{\sum_{k} e^{\sum w_{ik} x_{i}}}) x_{i}$$

#### Softmax and Sigmoid



#### Softmax vs Sigmoid

All digits classification (0 to 9)

#### Cross entropy error loss function 400 iterations

Sigmoid test accuracy: 89.99 Softmax test accuracy: 86.16

