# H1 Lecture 1: Union-Find

# **H2** Dynamic Connectivity

#### H<sub>3</sub> Problem

Given a set of N objects, design efficient **data structure** for union-find:

- union() command: connects two objects
- find() (connected()) query: is there a path connecting the two objects.



#### Note that:

- Number of objects N can be huge
- ullet Number of *operations* M can be  $\emph{huge}$
- Find queris and union commands may be *intermixed*

**Example**: Is there a path from p to q?



## H<sub>3</sub> Modeling

#### Connections:

Assume "is connected to" is an equivalence relation:

- Reflexive: p is connected to p
- $\bullet \quad \textit{Symmetric}: \text{if} \ \ p \ \ \text{is connected ed to} \ \ q \ \text{, then} \ \ q \ \ \text{is connected to} \ \ p$
- ullet Transitivie: if p is connected to q and q is connected r, then p is connected to r

#### **Connected Components:**

Connected components are the maximal **sets** of objects that are **mutually connected**.



find() query: checks if the wo objects are in the same component

union() command: replace components containing two objects with their union

## H<sub>3</sub> Union-Find Data Type (API)

```
public class UF{
 1
 2
          public UF(int N){
 3
               initialise union-find data structure with N
 4
    objects
               */
 5
 6
          }
 7
          public void union(int p, int q){
 8
 9
10
               add connection between p and q
               */
11
          }
12
13
          public boolean connected(int p, int q){
14
               /*
15
               checks if p and q are in the same component
16
17
18
          }
19
          public int find (int p){
20
21
               /*
               component identifier for p
22
               */
23
24
          }
25
          public int count(){
26
27
28
               returns the number of components
29
               */
30
          }
31
    }
```

## **H3 Dynamic-Connectivity Client**

- Read in number of objects N from standard input
- Repeat:
  - read in pair of integers from standard input
  - if they are not yet connected, connect them and print out pair

```
public static void main(String[] args) {
   int N = StdIn.readInt();
   UF uf = new UF(N);

while (!StdIn.isEmpty()) {
   int p = StdIn.readInt();
}
```

# H2 Quick Find (Eager Approach)

#### Data Strcuture

- int[] id of size N
- Interpretations: p and q are connected if and only if (iff) they have the same id



#### Commands

find(): checks if p and q have the same id

union(): to merge components containing p and q, changes all entries whose id equials id[p] to id[q]

#### Java Implementation

```
public class QuickFindUF{
 2
         private int[] id;
 3
         public QuickFindUF(int N) {
 4
 5
               id = new int[N];
               for (int i = 0; i < N; i++){
 7
                    id[i] = i;
 8
               }
 9
          }
10
          public boolean connected(int p, int q){
11
               return id[p] == id[q]1
12
```

```
13
          }
14
          public void union(int p, int q){
15
               int pid = id[p];
16
               int qid = id[q];
17
               for (int i = 0; i < id.length; i++){
18
                    if (id[i] == pid){
19
                          id[i] = qid;
20
21
                    }
22
               }
23
24
          }
25
    }
```

#### Cost Model

| Method      | Time Complexity |
|-------------|-----------------|
| initialise  | O(N)            |
| union()     | O(N)            |
| connected() | O(1)            |

Too  $\it expensive$ : takes  $N^2$  array accesses to process sequence of N union commands on N objects

# H2 Quick Union (Lazy Approach)

#### Data Structure

- [int[] id] of sieze N
- Interpretation : id[i] is parent of i
- Root of iis id[id[id[...id[i]...]]]









#### Commands

find(): checks if p and q have the same root

 $\overline{\text{union()}}$ : to merge components containing p and q, sets the id of p's root to the id of q's root

#### Java Implementation

```
public class QuickUnionUF{
 2
         private int[] id;
 3
         public QuickUnionUF(int N){
 4
 5
               id = new int[N];
               for (int i = 0; i < N; i++){
 6
 7
                    id[i] = i;
 8
               }
 9
         }
10
          private int root(int i){
11
12
               while(i != id[i]){
13
                    i = id[i];
14
15
               return i
         }
16
17
          public boolean connected(int p, int q){
18
19
               return root(p) == root(q)
20
          }
21
          public void union(int p, int q){
22
23
               int i = root(p);
               int j = root(q);
24
               id[i] = j;
25
26
         }
27 }
```

#### Cost Model

| Method      | Time Complexity                       |  |
|-------------|---------------------------------------|--|
| initialise  | O(N)                                  |  |
| union()     | O(N) (includes cost of finding roots) |  |
| connected() | O(N) (worst case)                     |  |

#### **Quick-find** defects:

- Union too expensive ( N array accesses)
- Trees are flat, but too expensive tio keep them flat

#### **Quick-union** defects:

- Tress can get tall
- ullet Find too expensive (could be  $\,N\,$  array access)

## H2 Quick Union Improvement

## H<sub>3</sub> Improvement 1: Weighted Quick Union

- Modify quick-union to avoid tall trees
- Keep track of *size* of each tree (number of objects)
- Balance by linking root of smaller tree to root of larger tree



# always chooses the better alternative Q larger tree smaller tree tree larger tree



id[] 6 2 6 4 6 6 6 2 4 4

#### Comparison



Quick-union and weighted quick-union (100 sites, 88 union() operations)

#### Data Structure

Same as quick-union, but maintain extrac array sz[i] to count number of objects in the tree rooted at i

#### Commands

connected(): itendtical to quick-union

union(): modify quick-union to:

- Link root of smaller tree to root of larger tree
- Update the sz[] arrya

#### Java Implementation

```
public class QuickUnionUF{
 2
          private int[] id;
 3
         private int[] sz;
 4
         public QuickUnionUF(int N){
 5
               id = new int[N];
 6
 7
               sz = new int[N]
               for (int i = 0; i < N; i++){
 8
                    id[i] = i;
 9
10
               }
               for (int i = 0; i < N; i++){
11
                    sz[i] = 1;
12
13
               }
14
         }
15
         private int root(int i){
16
               while(i != id[i]){
17
18
                    i = id[i];
               }
19
               return i
20
21
         }
22
         public boolean connected(int p, int q){
23
               return root(p) == root(q)
24
25
         }
26
         public void union(int p, int q){
27
28
               int i = root(p);
               int j = root(q);
29
               if (i == j) {
30
31
                    return;
32
               }
               if (sz[i] < sz[j]) {</pre>
33
                    id[i] = j;
34
35
                    sz[j] += sz[i];
               } else {
36
37
                    id[j] = i;
                    sz[i] += sz[j]
38
39
               }
         }
40
41
   }
```

#### **Running Time**

 $oxed{connected()}$  : takes time proportional to depth of p and q

union(): takes constant time, given roots

#### **Proposition**

Depth of any node x is **at most**  $\log_2 N$  (denote  $\lg N$ )



$$N = 10$$
  
depth(x) = 3 \le 1g N

#### Proof

When does depth of x increase? It increase by 1 when tree  $T_1$  containing x is merged into another tree  $T_2$ 

- The size of the tree containing x at least doubles since  $|T_2| \geq |T_1|$
- Size of tree containing x can double at most  $\lg N$  times because if you start with 1:

$$1 imes 2^{\lg N} = x \ \lg x = \lg N \ x = N$$

| Method      | Time Complexity |
|-------------|-----------------|
| initialise  | O(N)            |
| union()     | $O(\lg N)$      |
| connected() | $O(\lg N)$      |

## H<sub>3</sub> Improvement 2: Quick Union with Path Compression

Just after computing the root of p, set the id of each examined node to point to that root.





#### Java Implementation

- Two-Pass Implementation: add second loop to root() to set the id[] of each examined node to the root
- Simpler One-Pass Variant: Make every other node in path *point to its granparent* (thereby halving path length)

```
1 private int root(int i) {
2    while (i != id[i]){
3         id[i] = id[id[i]];
4         i = id[i]
5    }
6    return i;
7 }
```

## H<sub>3</sub> Weighted Quick-Union with Path Compression: Amortised Analysis

#### **Proposition**

Starting from an empty data structure, any sequence of M union-find operations on N objects makes  $\leq c(N+M\lg^*N)$  array accesses.

- Analysis can be imprvoed to  $N+M\alpha(M,N)$  .
- Simple algorithm with fascinating mathematics

 $\lg^* N$  is the number of times you have to take the  $\lg$  of N to get 1.

| N           | lg <sup>∗</sup> N |
|-------------|-------------------|
| 1           | 0                 |
| 2           | 1                 |
| 4           | 2                 |
| 16          | 3                 |
| 65536       | 4                 |
| $2^{65536}$ | 5                 |

# H<sub>2</sub> Summary

| Algorithm                      | Worst-case Time |  |
|--------------------------------|-----------------|--|
| Quick-Find                     | MN              |  |
| Quick-Union                    | MN              |  |
| Wighted QU                     | $N + M \log N$  |  |
| QU + Path Compression          | $N + M \log N$  |  |
| Weighted QU + Path Compression | $N + M \lg^* N$ |  |

# **H2** Application: Percolation

#### Modelling

- N-by-N **grid** of sites
- Each **site** is open with probability p (or blocked with probability 1-p)

• System *percolates* iff top and bottom are connected by open sites .





#### **Example for Physical Systems**

| Model              | System     | Vacant site | Occupied site | Percolates   |
|--------------------|------------|-------------|---------------|--------------|
| Electricity        | Material   | Conductor   | Insulated     | Conducts     |
| Fluid Flow         | Material   | Empty       | Blocked       | Porous       |
| Social Interaction | Population | Person      | Empty         | Communicates |

#### Likelihood of Percolation

Depends on site vacancy probability p



#### Percolation Phase Transition

When N is large, theory guarantees a sharp threshold  $p^*$ 

- $ullet p>p^*$  : almost certainly percolates
- ullet  $p < p^*$ : almost certainly does not percolates

**Question**: What is the value of  $p^*$ 



#### **H3** Monte Carlo Simulation

N = 20

- Initialise N-by-N whole grid to be blocked
- Declare random sites open until top conneceted to bottom
- Vacancy percentage estimates  $p^*$



## H<sub>3</sub> Dynamic Connectivity Solution to Estimate Percolation Threshold

**Question**: How to check whether an N-by-N system percolates?

- Create an object for each site and index from 0 to  $N^2-1$
- Sites are in same component if connected by open sites

• *Percolates* iff any site on <u>bottom</u> row is connected to site on <u>top</u> row

## **Brute-Force Algorithm**

 $N^2$  calls to connected()



#### Efficient Algorithm

Only 1 call to connected()



**Question**: How to model opening a new site?

Mark new site as open, connect it to all of its adjacent open sites - up tp 4 calls to union()

