

10.5.2004

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 3月19日
Date of Application:

REC'D 03 JUN 2004

出願番号 特願2003-074705
Application Number:
[ST. 10/C]: [JP 2003-074705]

WIPO PCT

出願人 旭化成せんい株式会社
Applicant(s):

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 4月12日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

BEST AVAILABLE COPY

出証番号 出証特2004-3029822

【書類名】 特許願

【整理番号】 X1030225

【あて先】 特許庁長官 殿

【国際特許分類】 D04H 5/00

【発明者】

【住所又は居所】 滋賀県守山市小島町 515 番地 旭化成株式会社内

【氏名】 細川 智之

【発明者】

【住所又は居所】 滋賀県守山市小島町 515 番地 旭化成株式会社内

【氏名】 鈴鹿 隆治

【特許出願人】

【識別番号】 000000033

【氏名又は名称】 旭化成株式会社

【代表者】 山本 一元

【代理人】

【識別番号】 100103436

【弁理士】

【氏名又は名称】 武井 英夫

【選任した代理人】

【識別番号】 100068238

【弁理士】

【氏名又は名称】 清水 猛

【選任した代理人】

【識別番号】 100095902

【弁理士】

【氏名又は名称】 伊藤 穣

【選任した代理人】

【識別番号】 100108693

【弁理士】

【氏名又は名称】 鳴井 義夫

【手数料の表示】

【予納台帳番号】 033396

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9713923

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 高耐水圧ポリエステル不織布

【特許請求の範囲】

【請求項1】 ポリエステル系樹脂にポリオレフィン系樹脂を少なくとも1wt%以上添加した素材からなる纖径が $5\text{ }\mu\text{m}$ 以下である極細纖維不織布層と、纖径が $7\text{ }\mu\text{m}$ 以上であるポリエステル系樹脂を主体とした長纖維不織布層とが熱圧着により一体化された積層構造体であり、耐水圧が2kPa以上有することを特徴とする高耐水圧ポリエステル不織布。

【請求項2】 前記長纖維不織布層が、ポリエステル系樹脂にポリオレフィン系樹脂を7wt%以下添加されている樹脂からなることを特徴とする請求項1に記載の高耐水圧ポリエステル不織布。

【請求項3】 積層構造体の目付が 10 g/m^2 以上あり、且つ、長纖維不織布層の目付が 8 g/m^2 以上あり、且つ、極細纖維不織布層の目付が 2 g/m^2 以上あり、且つ、引張強力値が 13 N/3 cm 以上あることを特徴とする請求項1または2に記載の高耐水圧ポリエステル不織布。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、高耐水性能が要求されまた同時に強度や耐熱性も要求される分野、例えば建材用途として使用される透湿防水シート等に有用なポリエステル不織布に関する。

【0002】

【従来の技術】

従来より、極細纖維不織布層と長纖維不織布層とを積層して熱圧着で一体化することは広く行われている。素材として、ポリプロピレン等のポリオレフィン系樹脂を使用した場合は、疎水性素材であるため高耐水性能を得ることは出来るが、素材の融点が低く耐熱性に劣り、高強度も得られないため、それらの特性を要求される分野には適さなかった。

タイベック（登録商標）に代表されるようにポリエチレンを用いたフラッシュ

紡糸により得られた不織布でも、高耐水性及び高強力を得ることは出来るが、ポリエスチル素材と比べて耐熱性で劣ってしまう。またポリエスチル素材のみを使用した場合は、強度や耐熱性には優れているが疎水性能の点で劣り、高耐水性能を必要とされる分野には適さなかった。

【0003】

特許文献1に示されるようにポリエスチル素材を使用した長纖維不織布層とポリプロピレン等のポリオレフィン系の極細纖維不織布層とを積層させ熱圧着する方法や貼合せにより高強力で耐水性能を付与させようとする試みもされてはいるが、融点差が大きく熱圧着で一体化させる場合、極細纖維層が溶けて構造変化を生じ、そのため耐水性能が低下してしまったり、異種纖維同士であるため相溶性が悪く剥離し易いといった問題点があった。

また、特許文献2に示されるように、極細纖維不織布層にポリエスチル素材とポリオレフィン系の素材を混合して、長纖維不織布と貼合わす試みをされているが、これは高剥離強度で貼合せ柔軟性に優れ、風合いの良好なフィルター性能を有する不織布を得ることを目的としている。しかし、長纖維不織布層と極細纖維不織布層とをポリエスチル纖維のみで構成すると、柔軟性に劣ってしまう傾向にあり、柔軟性を向上させるため、極細纖維層をポリプロピレン素材にすると、異種纖維であるため両者の相溶性が悪く、両纖維の融着が不十分となり剥離強度の高い積層不織布を得ることが出来ないという問題がある。

【0004】

そこで、極細纖維層にポリエスチル素材とポリプロピレン素材との混合樹脂を使用し、ポリエスチル系重合体が略鞘部、ポリプロピレン系重合体が略芯部の構成とし、剥離強度の高い不織布を得ている。しかしながら、この方法では疎水性素材であるポリプロピレンが、略芯部を構成するため、纖維表面での疎水効果が十分に得られず、不織布積層体にした場合でも、高耐水性能を有することが出来なかった。

また、貼合せによる方法では一度不織布を生産しなければならず、時間を費やし作業工数も多くなるため経済的にも劣ってしまい好ましくない。

【0005】

【特許文献1】

特開平11-247061号公報

【特許文献2】

特開平7-207565号公報

【0006】**【発明が解決しようとする課題】**

本発明の課題は、上記従来技術の問題点を解決し、耐水性に優れ、且つ引張強度の高いポリエスチル不織布を提供するものである。

【0007】**【課題を解決するための手段】**

本発明者らは、前記課題を解決するため鋭意研究をした結果、ポリエスチル系樹脂に特定量のポリオレフィン系樹脂を混合して纖維化することで、疎水点を点在化させ、極細纖維不織布と長纖維不織布の積層不織布とすることで、上記課題を達成することを見出し、本発明をなすに至った。

【0008】

本発明は、下記の通りである。

(1) ポリエスチル系樹脂にポリオレフィン系樹脂を少なくとも1wt%以上添加した素材からなる纖径が $5\text{ }\mu\text{m}$ 以下である極細纖維不織布層と、纖径が $7\text{ }\mu\text{m}$ 以上であるポリエスチル系樹脂を主体とした長纖維不織布層とが熱圧着により一体化された積層構造体であり、耐水圧が2kPa以上有することを特徴とする高耐水圧ポリエスチル不織布。

(2) 前記長纖維不織布層が、ポリエスチル系樹脂にポリオレフィン系樹脂を7wt%以下添加されている樹脂からなることを特徴とする上記(1)に記載の高耐水圧ポリエスチル不織布。

(3) 積層構造体の目付が 10 g/m^2 以上であり、且つ、長纖維不織布層の目付が 8 g/m^2 以上であり、且つ、極細纖維不織布層の目付が 2 g/m^2 以上であり、且つ、引張強力値が 13 N/3 cm 以上であることを特徴とする上記(1)または(2)に記載の高耐水圧ポリエスチル不織布。

【0009】

以下、本発明に関して詳述する。

本発明の極細繊維不織布層は、ポリエステル系樹脂にポリオレフィン系樹脂を少なくとも1wt%以上添加することにより構成される。添加されるポリオレフィン系の素材としては、ポリプロピレンやポリエチレン等が挙げられる。ポリプロピレンに関しては、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであっても良い。ポリエチレンに関しては、LDPE（直鎖状低密度ポリエチレン）、LDPE（低密度ポリエチレン）、HDPE（高密度ポリエチレン）等のポリエチレン素材を使用しても良い。更には、ポリプロピレンとポリエチレンとの共重合体やポリプロピレン中にポリエチレンや他の添加剤を添加したポリマーであっても良い。

【0010】

本発明の極細繊維不織布層の構造の特徴としては、疎水性のポリオレフィン系樹脂が繊維表面に存在し、それが疎水点として作用する構造を呈していることである。この構造としては、繊維表面に疎水点が存在すればよく、散在した点状でも良く、完全な鞘芯構造（例えば略鞘部がポリオレフィン、略芯部がポリエステル）を得なくても良く、更に糸の表面をポリオレフィン系の素材がコートした状態になっていることがより好ましい構造といえる。

従って、使用するポリオレフィン系樹脂のポリマー粘度としては、MFRが30以上であれば良いが、糸の表面にポリオレフィンがブリードアウトし易い状態となり疎水効果を向上させるため、MFRが500以上のハイフローのポリマーを選定することが好ましい。

【0011】

ポリオレフィン系の素材を添加せず全てポリエステル系素材で構成された不織布では、カレンダーロール等を使用し潰し加工を実施しても2kPa以上の耐水性能を発現させることは出来ない。また、極細繊維層におけるポリオレフィン系樹脂の添加率を大きくすると2kPa以上の耐水性能を発現することは可能であるが、熱圧着した際に層間剥離し易い状態となり、剥離強度及び引張強度が低下してしまうため極細繊維層をガードする効果が乏しくなり、耐水性能も低下してしまう。

しまう。

より高い耐水性能を得るには、極細纖維層におけるポリオレフィン系樹脂の添加率として5～75wt%が好ましく、より好ましくは10～50wt%である。図1に、一例として、実施例で用いた代表的なポリオレフィン系樹脂であるポリプロピレン樹脂の添加量と耐水圧の関係を示した。この図より、ポリオレフィン系樹脂の添加率が10～50wt%の範囲にあると、耐水圧は7kpa以上となり極大値を示し、極めて高い耐水圧を有することがわかる。添加量が50wt%を超えると耐水圧はやや低下し、7kpaより低下する傾向にある。

【0012】

極細纖維不織布層を構成する纖維の纖径としては $5\text{ }\mu\text{m}$ 以下であり、好ましくは $0.5\text{ }-\text{ }3\text{ }\mu\text{m}$ であり、特に好ましく $0.5\text{ }-\text{ }2\text{ }\mu\text{m}$ である。纖径が細くなれば細くなるほど耐水性能は向上するが、 $0.5\text{ }\mu\text{m}$ 以下の纖径の場合には、纖維が切断しやすく、製造工程中で風綿（フライ）が発生し易い条件となり、安定した紡糸が困難となる。

紡糸工程での紡口ホール当りのポリマーの吐出量を少なくする方法もあるが、生産性が低下し経済的に好ましくない。一方、纖維径が $5\text{ }\mu\text{m}$ を超えるような纖径では、纖維間隙が生じて十分な耐水性能を得ることが出来ない。

【0013】

本発明の長纖維不織布層については、ポリエステル系樹脂を主体にしたもので良く、ポリエステル系樹脂からなるものでもよいが、ポリオレフィン系樹脂を7wt%以下添加した樹脂であることが好ましい。より好ましくは3wt%以下添加した樹脂である。

添加されるポリオレフィン系樹脂としては、ポリプロピレンやポリエチレン、その共重合体等が挙げられる。

ポリプロピレンに関しては、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであっても良い。

ポリエチレンに関しては、LLDPE（直鎖状低密度ポリエチレン）、LDPE（低密度ポリエチレン）、HDPE（高密度ポリエチレン）等のポリエチレン

素材を使用しても良い。

【0014】

更には、ポリプロピレンとポリエチレンとの共重合体やポリプロピレン中にポリエチレンや他の添加剤を添加したポリマーであっても良い。これらのポリオレフィン系樹脂を添加しない場合は、水分が表面に付着した際に疎水効果が乏しく濡れた感じとなってしまう。

また、添加率を増やすことで表面の疎水効果も向上するが、安定した紡糸が困難となるため3%以下の添加率が最も好ましい。

極細纖維不織布層と長纖維不織布層で構成される積層体の目付は 10 g/m^2 以上であり、長纖維不織布層の目付が 8 g/m^2 以上、極細纖維不織布層の目付が 2 g/m^2 以上必要である。

【0015】

本発明における耐水性能は、極細纖維不織布層の特性によりその殆どが決定されるが、極細纖維層のみの場合は、その強度不足から水圧をかけた際、目開きしてしまうため、耐水性能を十分発現させることが出来ない。また、長纖維不織布層の目付が 8 g/m^2 未満では、同様に極細纖維不織布層を保持（ガード）する強度が得られなくなってしまうため、耐水性能が低下してしまう。また、極細纖維層の目付を 2 g/m^2 未満にすると耐水性能の向上が望めず生産性の低下にも繋がるため好ましくない。

【0016】

本発明の積層体不織布は、長纖維不織布層の上から極細纖維不織布層を積層し熱圧着により一体化されることにより得られる。極細纖維不織布層においては結晶化度が低く、加熱されたプレスロールに直接接触するとロールに取られ易い状態となるため、長纖維不織布層の上から極細纖維不織布層を積層し、更にはその上から長纖維不織布層を積層させ、熱圧着で一体化させることが好ましい。構造体として例えば極細纖維不織布層を2層にしたり、長纖維不織布層を2層重ねる等の多層化としても良い。更には、これらの構造体は、熱圧着により一体化されていることが好ましい。

熱圧着させる場合、そのエンボス形状やエンボス率は特に限定されるものでは

なく、5 kPa程度までの耐水圧性能を得るには特に問題ないが、フラットロールによる圧着が最も耐水性能を発現させることが出来るので好ましい。

以上のような積層体を構成することにより、耐水圧に優れ、且つ引張強度が高いポリエステル不織布を得ることに成功した。

【0017】

【発明の実施の形態】

以下、実施例を挙げて更に説明する。

尚、各特性の評価方法は下記の通りである。

(1) 繊径 (μm)

生産された不織布の両端10cmを除き、CD方向に5等分して1cm角の試験片をサンプリングし、顕微鏡で極細纖維層及び長纖維不織布層に分け、それぞれの直径を各50点ずつ測定し、その平均値から纊径を算出した。（小数点第2位を四捨五入）

測定には、キーエンス製の高倍率マイクロスコープVH-8000を用いた。

(2) 耐水圧 (kPa)

生産された不織布の両端10cmを除き、CD方向に5等分、MD方向に3等分して計15点に関して20cm角の試験片をサンプリングし、JIS-L-1092に準じて測定を実施し、その平均値から耐水圧を算出した。

(3) 引張強度 (N/3cm)

生産された不織布の両端10cmを除き、CD方向に5等分、MD方向に3等分して計15点に関してCD、MD方向に3cm×20cmの試験片をサンプリングし、低速伸張試験型引張試験機に把握長10cmで取付け、引張速度30cm/分で試験片が破断するまで荷重を加える。MD、CD方向における、試験片の最大荷重時の強さの平均値を求めた。（小数点第2位を四捨五入）

【0018】

【実施例1～5、比較例1】

長纖維不織布層を上下にして極細纖維層が覆われた3層の積層構造体において、長纖維不織布層の目付を各25g/m²、極細纖維層の目付を10g/m²とし、フラットロールを用いて210℃の温度にて熱圧着し一体化させた。長纖維

不織布層の素材はポリエステルのみで纖径を $13 \mu\text{m}$ とし、極細纖維層においてはポリエステル素材に MFR 700 のポリプロピレンを 1 wt % (実施例 1)、10 wt % (実施例 2)、30 wt % (実施例 3)、75 wt % (実施例 4) 添加したもの及び、ポリプロピレンを添加しないポリエステル素材のみ (比較例 1) と変化させ、極細纖維層の纖径を $2 \mu\text{m}$ とした。

また、実施例 2 において長纖維不織布層のポリエステル素材にポリプロピレンを 3 wt % (実施例 5) 添加し、採取した布により強力値及び耐水性能を評価した結果を表 1 及び図 1 に示す。

極細纖維層にポリプロピレンを添加しない場合は、強力値は高くなるが、耐水性能が 2kPa を下回ってしまう。ポリプロピレンを添加することで、強力値は若干低下傾向となるが、明らかに耐水性能は向上することがわかる。

【0019】

【表 1】

表 1

	実施例 1	実施例 2	実施例 3	実施例 4	実施例 5	比較例 1
長纖維不織布層 (PP添加率) (%)	0	0	0	0	3	0
極細纖維不織布層 (PP添加率) (%)	1	10	30	75	30	0
引張強力 (N/3cm)	125.1	121.2	101.0	90.0	99.3	126.3
耐水圧 (kPa)	3.71	8.62	8.86	5.17	9.43	1.68

【0020】

【実施例 6～7】

実施例 2 と同様の方法で、極細纖維不織布層をポリエステル素材に対して 30 % の MI = 22 の HDPE (実施例 6)、MI = 55 の LDPE (実施例 7) を添加し、纖径を $2 \mu\text{m}$ とし採取した布により強力値及び耐水性能を評価した結果を表 2 に示す。

ポリプロピレンを添加した場合と同様に、ポリエチレンの種類を変えても耐水性能が向上することがわかる。

【0021】

【表2】

表2

	実施例6	実施例7
極細繊維不織布層 (添加素材)	HDPE	LDPE
引張強力 (N/3cm)	103.5	102.1
耐水圧 (kPa)	4.43	7.08

【0022】

【実施例8、9、比較例2】

実施例2と同様の方法で、極細繊維層の纖維の纖径を1.5 μm （実施例8）、2.8 μm （実施例9）、6.0 μm （比較例2）とし、採取した布により強力値及び耐水性能を評価した結果を表3に示す。

極細繊維層の纖維の纖径が5 μm を超えると強力値には殆ど変化は生じないが、極細繊維層におけるカバーリング効果が低下してしまうため、耐水性能が低下してしまう。

【0023】

【表3】

表3

	実施例8	実施例9	比較例2
極細繊維不織布層 (纖径) (μm)	1.5	2.8	6.0
引張強力 (N/3cm)	103.2	100.9	100.3
耐水圧 (kPa)	11.08	3.02	1.76

【0024】

【実施例10、比較例3、4】

実施例2と同様の方法で、総目付を10 g/m²とし、長纖維不織布層の目付

を 2 g/m^2 (実施例10)、 1 g/m^2 (比較例3)、 4 g/m^2 (比較例4) とし、採取した布により強力値及び耐水性能を評価した結果を表4に示す。

極細纖維層の目付が 1 g/m^2 では、極細纖維層の絶対量が少なくなりカバーリング効果が低下してしまうため、高耐水性能を発現することが出来ない。また、極細纖維層の目付が 4 g/m^2 では、極細纖維層における耐水性能のポテンシャルを有することは出来るが、極細纖維層を保持する長纖維不織布層の強力値が 13 N/3 cm 以下に低下してしまうため、高耐水性能を発現することが出来なくなってしまう。

【0025】

【表4】

表4

	実施例10	比較例3	比較例4
極細纖維不織布層目付 (g/m^2)	2	1	4
長纖維不織布層目付 (g/m^2)	8	9	6
引張強力 (N/3cm)	16.1	18.6	11.9
耐水圧 (kPa)	2.1	1.5	1.3

【0026】

【発明の効果】

本発明のポリエステル不織布は、従来に比べ耐水性に優れしており、引張強度も大きくまた、耐熱性にも優れているといった諸特性をバランスよく確保しているため、建材用途に使用される透湿防水シートをはじめとして各種用途に好適にかつ経済的に使用できる。

【図面の簡単な説明】

【図1】

ポリプロピレン樹脂の添加量と耐水圧の関係を示した図である。

【書類名】

図面

【図 1】

図 1 PP添加量と耐水性能

【書類名】 要約書

【要約】

【課題】 親水性のポリエスチル素材でありながら、高耐水性能を有する不織布を得る。

【解決手段】 ポリエスチル系の素材にポリオレフィン系の素材を少なくとも1%以上添加した纖径が $5 \mu\text{m}$ 以下である極細纖維不織布層と、纖径が $7 \mu\text{m}$ 以上であるポリエスチル系の長纖維不織布層とが熱圧着により一体化された積層構造体であり、耐水圧を2kPa以上とすることが出来る不織布であり、好ましくは、長纖維不織布層が、ポリエスチル系の素材にポリオレフィン系素材を7wt%未満添加した樹脂から構成され、積層構造体の目付が 10 g/m^2 以上、且つ長纖維不織布層の目付が 8 g/m^2 以上であり、引張強力値が 13 N/3 cm 以上である高耐水圧ポリエスチル不織布。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2003-074705
受付番号 50300444580
書類名 特許願
担当官 第六担当上席 0095
作成日 平成15年 3月20日

<認定情報・付加情報>

【提出日】 平成15年 3月19日

次頁無

出証特2004-3029822

【書類名】 出願人名義変更届（一般承継）
【提出日】 平成15年10月 2日
【あて先】 特許庁長官 殿
【事件の表示】 特願2003- 74705
【出願番号】
【承継人】
【識別番号】 303046303
【氏名又は名称】 旭化成せんい株式会社
【代表者】 坂本 正樹
【提出物件の目録】
【物件名】 商業登記簿謄本 1
【援用の表示】 平成03年特許願第340572号
【物件名】 承継証明書 1
【援用の表示】 平成03年特許願第340572号

特願 2003-074705

出願人履歴情報

識別番号 [000000033]

1. 変更年月日 2001年 1月 4日

[変更理由] 名称変更

住所 大阪府大阪市北区堂島浜1丁目2番6号
氏名 旭化成株式会社

特願 2003-074705

出願人履歴情報

識別番号

[303046303]

1. 変更年月日

2003年 8月20日

[変更理由]

新規登録

住 所
氏 名

大阪府大阪市北区堂島浜一丁目2番6号
旭化成せんい株式会社

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

**IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox**