

Phase-2

Student Name: Hemanth D

Register Number: 410723106011

Institution: Dhanalakshmi College of Engineering

Department: Electronics and Communication Engineering

Date of Submission: 05-05-2025

Github Repository Link:

https://github.com/hemanthdeepak/NM hemanth--DS

1. Problem Statement

Credit card fraud causes significant financial loss and erodes trust in digital transactions. Using AI-powered methods, especially classification models, we aim to identify fraudulent transactions in real time based on transaction patterns. This is a binary classification problem (fraud vs. not fraud). By automating fraud detection, we can significantly reduce manual monitoring and improve response time.

2. Project Objectives

- 1. Build models that can accurately classify transactions as fraudulent or legitimate.
- 2. Focus on maximizing recall to avoid false negatives (i.e., missing a fraud).
- 3. Ensure real-world applicability and interpretability (e.g., feature importance).
- 4. Adjust objectives based on EDA insights, especially dealing with class imbalance..

3. Flowchart of the Project Workflow

Data Description

Dataset Name and Origin:

The dataset used is the "Credit Card Fraud Detection" dataset from Kaggle.

Type of Data: Structured, tabular data.

Number of Records and Features:

The dataset contains 284,807 transactions with 30 features including anonymized features V1 to V28, Time, Amount, and the target variable Class.

Static or Dynamic Dataset: Static dataset.

Target Variable: Class (0 = Not Fraud, 1 = Fraud).

5. Data Preprocessing

Missing Values: No missing values were found in the dataset.

Duplicate Records: Duplicate rows were checked and removed if present.

Outliers: Detected using boxplots; outliers in Amount were handled using log transformation.

from sklearn.preprocessing import StandardScaler

data['norm_amount'] =

StandardScaler().fit transform(data['Amount'].values.reshape(-1,1))

data['norm_time'] = StandardScaler().fit_transform(data['Time'].values.reshape(-1,1))

data.drop(['Amount', 'Time'], axis=1, inplace=True)

Data Types: All features are numeric. No conversion needed.

Encoding Categorical Variables: Not required as all features are already numerical.

Normalization: Amount and Time were scaled using **StandardScaler** to bring them on the same scale as V1–V28.

6. Exploratory Data Analysis (EDA)

Univariate Analysis

- Class is highly imbalanced: only **0.17%** of transactions are fraudulent.
- Distribution of Amount is right-skewed; normalization improves this.
- Features V1–V28 follow near-Gaussian distributions due to PCA transformation.

Bivariate/Multivariate Analysis

- Correlation Matrix: No highly correlated independent features.
- Fraudulent transactions show distinguishable patterns in features like V14, V17, V10, and V12.
- Scatter plots reveal that certain features have strong separability between fraud and non-fraud.

Insights Summary

• Class imbalance is critical; resampling is needed. • Features V14, V10, and V17 show strong influence on predicting fraud.

7. Feature Engineering

- New Features: o Created norm_time and norm_amount.
- Feature Reduction: O No dimensionality reduction applied due to prior PCA.
- · Domain Knowledge:
 - o Used statistical insights (e.g., top feature importance from models) to finetune.

8. Model Building Models

Selected:

- Logistic Regression: Simple baseline, interpretable.
- Random Forest Classifier: Robust to overfitting, handles imbalance well.

Justification:

Both models are well-suited for binary classification with imbalanced data.

Data Split:

from sklearn.model selection import train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)

Performance Metrics:

o Accuracy, Precision, Recall, F1-Score, and AUC.
o Special focus on Recall (fraud detection sensitivity).

9. Visualization of Results & Model Insights

Confusion Matrix: Helps analyze type I and II errors.

ROC Curve: Compared AUC for both models (Random Forest had higher AUC).

Feature Importance Plot (from Random Forest):

• Top predictors: V14, V10, V17, V12.

Conclusion:

- Random Forest outperformed Logistic Regression in recall and AUC.
- Visuals confirmed the model captures key fraudulent transaction patterns.

10. Tools and Technologies Used

- **Programming Language**: Python
- IDE/Notebook: Google Colab, Jupyter Notebook
- · Libraries:

 $_{\circ}$ Data Handling: pandas, numpy $_{\circ}$

Visualization: matplotlib, seaborn o **Modeling**:

scikit-learn, imbalanced-learn $_{\circ}$ Model

Evaluation: scikit-learn metrics, plotly

• Version Control: GitHub

11. Team Members and Contributions

NAME	ROLE	RESPONSIBLE
Inbarasu I	Member	Data Collection, Data Preprocessing
Deepak kumar S	Member	Feature Engineering
Hemanth D	Member	Exploratory Data Analysis (EDA),
Gokul S	Leader	Model Building, Model Evaluation

