Analytic continuation of the inverse of the Koenig function

Techheang Meng
Department of Mathematics, UCL
(Based on joint work¹ with Rod Halburd, Risto Korhonen, Yan Liu)

Topics in Complex Dynamics 2025, 2-6 June, University of Barcelona

¹R. Halburd, R. Korhonen, Y. Liu, and T. M., On the extension of analytic solutions of first-order difference equations, *arXiv:2502.03955*.

► Equation of the form

$$y(z+1)=R(y(z)),$$

where R is a rational function.

Equation of the form

$$y(z+1)=R(y(z)),$$

where R is a rational function.

► The study of meromorphic solutions traced back to Koenig, Poincaré, Fatou, Julia and Ritts .etc.

► Equation of the form

$$y(z+1)=R(y(z)),$$

where R is a rational function.

- ► The study of meromorphic solutions traced back to Koenig, Poincaré, Fatou, Julia and Ritts .etc.
- The results of Kimura², Shimomura, Yanagihara, Baker and Liverpool³, and Azarina show that meromorphic solutions y can be obtained from analytic continuation of local solutions near a fixed point γ of R which is either repelling or neutral with multiplier 1.

²T. Kimura, Iteration of analytic functions, Funkcial. Ekvac 14, 1971.

³I.N. Baker, and L.S.O. Liverpool, The entire solutions of a polynomial difference equation, *Aequationes Mathematicae 27, 1984.*

Equation of the form

$$y(z+1)=R(y(z)),$$

where R is a rational function.

- ► The study of meromorphic solutions traced back to Koenig, Poincaré, Fatou, Julia and Ritts .etc.
- The results of Kimura, Shimomura, Yanagihara, Baker and Liverpool, and Azarina show that meromorphic solutions y can be obtained from analytic continuation of local solutions near a fixed point γ of R which is either repelling or neutral with multiplier 1.
- All meromorphic solutions y(z) are either above or y(z + E(z)), for any entire function E of period 1.

Inverse Schröder equation

► Assume that *R* is normalized of the form

$$R(w) = \frac{\lambda w + a_2 w + \dots + a_p w^p}{1 + b_1 w + \dots + b_q w^q}, \ d = \max\{p, q\} \ge 2.$$

Inverse Schröder equation

Assume that R is normalized of the form

$$R(w) = \frac{\lambda w + a_2 w + \dots + a_p w^p}{1 + b_1 w + \dots + b_q w^q}, \ d = \max\{p, q\} \ge 2.$$

▶ So the fixed point $\gamma = 0$. When 0 is repelling i.e. $|\lambda| > 1$, the meromorphic solution y is obtained by solving the Inverse Schröder equation:

$$y(z) = h(\lambda^z), \quad h(\lambda z) = R(h(w)).$$

Inverse Schröder equation

► Assume that *R* is normalized of the form

$$R(w) = \frac{\lambda w + a_2 w + \dots + a_p w^p}{1 + b_1 w + \dots + b_q w^q}, \ d = \max\{p, q\} \ge 2.$$

▶ So the fixed point $\gamma = 0$. When 0 is repelling i.e. $|\lambda| > 1$, the meromorphic solution y is obtained by solving the Inverse Schröder equation:

$$y(z) = h(\lambda^z), \quad h(\lambda z) = R(h(w)).$$

There admits a Taylor series solution

$$h(w) = c_1 w + \sum_{k \geq 2} c_k w^k$$
, where c_1 is a parameter.

 h^{-1} is called the Koenig function, h is also known as the Poincaré or Schröder function.

Local solution near attracting fixed point

▶ When 0 is attracting i.e. $0 < |\lambda| < 1$, there also exists

$$h(w) = c_1 w + \sum_{k \ge 2} c_k w^k,$$

$$y(z) = h(\lambda^z), \quad h(\lambda w) = R(h(w)).$$

Local solution near attracting fixed point

▶ When 0 is attracting i.e. $0 < |\lambda| < 1$, there also exists

$$h(w) = c_1 w + \sum_{k \ge 2} c_k w^k,$$

$$y(z) = h(\lambda^z), \quad h(\lambda w) = R(h(w)).$$

► This corresponds to an analytic non-constant solution y on the half plane $\Re z \ge \rho$.

Local solution near attracting fixed point

▶ When 0 is attracting i.e. $0 < |\lambda| < 1$, there also exists

$$h(w) = c_1 w + \sum_{k \ge 2} c_k w^k,$$

$$y(z) = h(\lambda^z), \quad h(\lambda w) = R(h(w)).$$

- ► This corresponds to an analytic non-constant solution y on the half plane $\Re z \geq \rho$.
- It is possible to analytic continue on $\mathbb C$ with possible appearance of branch points.

This function h is special:

▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$

This function h is special:

- ▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$
- ► Hypertranscendental (Becker and Bergweiler²).

²P.G. Becker, and W. Bergweiler, Hypertranscendency of conjugacies in complex dynamics, *Mathematische Annalen 301(3)*, 1995.

This function h is special:

- ▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$
- ► Hypertranscendental (Becker and Bergweiler).
- ▶ It is "nice".

This function h is special:

- ▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$
- ► Hypertranscendental (Becker and Bergweiler).
- ▶ It is "nice".

Theorem 1

This function h is special:

- ▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$
- Hypertranscendental (Becker and Bergweiler).
- ▶ It is "nice".

Theorem 1

► The Riemann surface of h has infinitely many branch points.

This function h is special:

- ▶ Solution of λ -difference equation $h(\lambda z) = R(h(w))$
- Hypertranscendental (Becker and Bergweiler).
- ▶ It is "nice".

Theorem 1

- The Riemann surface of h has infinitely many branch points.
- We can determine the surface explicitly. Hence, the special multi-valued function h is nice.

Existence of Branch points

Assume that h is meromorphic, then applying the Maximum modulus function on $h(\lambda w) = R(h(w))$:

$$M(r,h) \ge M(r|\lambda|,h)$$

= $M(r,h(\lambda w)) = M(r,R(h(w))) = M^d(r,h)$

Hence, h is not single-valued. There must be a branch point.

Existence of Branch points

Assume that h is meromorphic, then applying the Maximum modulus function on $h(\lambda w) = R(h(w))$:

$$M(r,h) \ge M(r|\lambda|,h)$$

= $M(r,h(\lambda w)) = M(r,R(h(w))) = M^d(r,h)$

Hence, h is not single-valued. There must be a branch point.

ightharpoonup There exists \hat{r} such that

$$h(\lambda w) - h(\lambda \hat{r}) = R(h(w)) - h(\lambda \hat{r}) = (h(w) - \alpha_1)^{p_1} \cdots, p_1 > 1$$

i.e., $\alpha_1 = h(\hat{r})$.

Existence of Branch points

Assume that h is meromorphic, then applying the Maximum modulus function on $h(\lambda w) = R(h(w))$:

$$M(r,h) \ge M(r|\lambda|,h)$$

= $M(r,h(\lambda w)) = M(r,R(h(w))) = M^d(r,h)$

Hence, h is not single-valued. There must be a branch point.

ightharpoonup There exists \hat{r} such that

$$h(\lambda w) - h(\lambda \hat{r}) = R(h(w)) - h(\lambda \hat{r}) = (h(w) - \alpha_1)^{p_1} \cdots, p_1 > 1$$

i.e., $\alpha_1 = h(\hat{r})$.

► This actually implies a particular case of Fatou's theorem

An immediate basin of attraction of R has a critical point.

Riemann surface of $h(\lambda w) = \lambda h(w) + h^2(w)$

Recall

$$h(w) = c_1 w + \sum_{k>2} c_k w^k.$$

Assume that $0 < \lambda < 1$ and by changing $w \to aw$, we set $c_1 = -1$. Using recurrence relation, we find that $c_n < 0$.

Riemann surface of $h(\lambda w) = \lambda h(w) + h^2(w)$

► Recall

$$h(w) = c_1 w + \sum_{k>2} c_k w^k.$$

Assume that $0 < \lambda < 1$ and by changing $w \to aw$, we set $c_1 = -1$. Using recurrence relation, we find that $c_n < 0$.

▶ Again \hat{r} is a branch point. Hence,

$$\hat{r} > 0$$
, $h(\lambda \hat{r}) = -\frac{\lambda^2}{4}$, $h(\hat{r}) = -\frac{\lambda}{2}$
 $h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2$.

Riemann surface of $h(\lambda w) = \lambda h(w) + h^2(w)$

Recall

$$h(w) = c_1 w + \sum_{k \geq 2} c_k w^k.$$

Assume that $0 < \lambda < 1$ and by changing $w \to aw$, we set $c_1 = -1$. Using recurrence relation, we find that $c_n < 0$.

Again \hat{r} is a branch point. Hence,

$$\hat{r} > 0$$
, $h(\lambda \hat{r}) = -\frac{\lambda^2}{4}$, $h(\hat{r}) = -\frac{\lambda}{2}$
 $h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2$.

Let h_0 be the Riemann sheet corresponding to $c_1w + \sum_{k\geq 2} c_kw^k$, and h_1 be the other sheet generating from the branch point at \hat{r} .

$$h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2,$$

$$\implies h_0(w), h_1(w) = -\frac{\lambda}{2} \pm \sqrt{h_0(\lambda w) + \frac{\lambda^2}{4}}.$$

$$h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2,$$

$$\implies h_0(w), h_1(w) = -\frac{\lambda}{2} \pm \sqrt{h_0(\lambda w) + \frac{\lambda^2}{4}}.$$

► So
$$h_0 + h_1 = -\lambda$$
 and $h_0(\lambda w) = R(h_i(w))$.

$$h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2,$$

$$\implies h_0(w), h_1(w) = -\frac{\lambda}{2} \pm \sqrt{h_0(\lambda w) + \frac{\lambda^2}{4}}.$$

- ► So $h_0 + h_1 = -\lambda$ and $h_0(\lambda w) = R(h_i(w))$.
- ► Hence, $\{\hat{r}\lambda^{-n}, n \ge 0\}$ is the set of branch points of h_i .

$$h(\lambda w) + \frac{\lambda^2}{4} = \left(h(w) + \frac{\lambda}{2}\right)^2,$$

$$\implies h_0(w), h_1(w) = -\frac{\lambda}{2} \pm \sqrt{h_0(\lambda w) + \frac{\lambda^2}{4}}.$$

- ► So $h_0 + h_1 = -\lambda$ and $h_0(\lambda w) = R(h_i(w))$.
- ► Hence, $\{\hat{r}\lambda^{-n}, n \ge 0\}$ is the set of branch points of h_i .
- At $w = \hat{r}$:

At $w = \hat{r}/\lambda$, there are four sheets h_0 , h_1 and other two sheets obtained from solving $h_1(\lambda w) = \lambda h_{1i}(w) + h_{1i}^2(w)$.

- ▶ However, on sheets h_{1i} , the point \hat{r} is not branched.
- ► The set of branch points of h_{1i} is $\{\hat{r}\lambda^{-n}, n \geq 1\}$.

ightharpoonup At $w = \hat{r}/\lambda^2$:

At $w = \hat{r}/\lambda^k$, the new 2^{k-1} sheets has one less branch point than the previous ones. The set of branch points of those 2^{k-1} sheets is $\{\hat{r}\lambda^{-n}, n \ge k\}$.

Higher degree (In progress)

For $h(\lambda w) = h(w)/2 + 2h^2(w) - h^3(w)$, only the critical point $(50 - 11\sqrt{22})/54 \in A_0^0$ and the branch point pattern is the same as previous example.

Higher degree (In progress)

- For $h(\lambda w) = h(w)/2 + 2h^2(w) h^3(w)$, only the critical point $(50 11\sqrt{22})/54 \in A_0^0$ and the branch point pattern is the same as previous example.
- ▶ Set $h_0 = w + \sum_{k \ge 2} c_k w^k$ and h_0 is the black line.

Higher degree (In progress)

- For $h(\lambda w) = h(w)/2 + 2h^2(w) h^3(w)$, only the critical point $(50 11\sqrt{22})/54 \in A_0^0$ and the branch point pattern is the same as previous example.
- ► Set $h_0 = w + \sum_{k>2} c_k w^k$ and h_0 is the black line.
- Example $h(\lambda^2 w) = \lambda^2 h(w) \lambda^4 h^3(w)/27$, $0 < \lambda < 1$.

Similar pattern

Critical point maps to another critical point:

$$h\left(\frac{-3}{20}w\right) = -\frac{3}{20}h(w) - \frac{12}{20}h^2(w) + h^3(w)$$

$$h\left(\frac{-3}{20}w\right) = -\frac{3}{20}h(w) - \frac{12}{20}h^2(w) + h^3(w)$$

The branch point -1/10 is quadratic. The branch point 1/2 is of fourth order and has similar pattern as above.

More patterns

► Critical points occur on the 1st iterative sheet:

$$h\left(\frac{5}{27}w\right) = \frac{5}{27}h(w) - \frac{1}{2}h^2(w) + 27h^3(w)$$

Here, the branch point corresponding to 2/3 appears on the later sheet h_1 . The pattern now is hopping on "specific" sheets instead of producing a discrete set on a line on every sheet; $h_0(\lambda w) = R(h_i(w))$ and $h_1(\lambda w) = R(h_{1i}(w))$.

More patterns (continued)

► Critical points occur on the 2nd iterative sheet:

$$h\left(\frac{1}{3}w\right) = \frac{h(w)(h(w)-1)^2}{3(1+2h(w))}.$$

There are three critical points ± 1 and 1/4.

The branch point corresponding to -1 is hopping.

Further questions

- ▶ Is it possible to construct examples where the critical points occur on the *n*-th iterative sheet?
- ➤ Simply-connectedness immediate basin of attraction yields a line and first sheet hopping pattern? Infinite connectivity case corresponds to the critical points that occur on the *n*-th iterative sheet?
- ► If the *n*-th iterative argument pattern does appear, given a degree *d* of the set of polynomial or rational functions, can we determine this *n(d)*?

- For $h(\lambda w) = R(h(w))$, is it possible to find a solution having a pole or essential singularity at w = 0? Arguments of singularities can still be used here.
- ▶ Mahler's equation: $h(w^2) = h(w)^2 + c$. At w = 1, Julia's construction of a solution with essential singularity at 0 and infinity. Is that all of it?
- ▶ Back to $y(z) = h(\lambda^z)$ shows that $y(z) = y(z + 2\pi i / \ln \lambda)$: "Determine all fundamental solutions satisfying $y(z) = y(z + 2\pi i / \ln \lambda)$ and y(z + 1) = R(y(z))".

Summary

- ▶ The inverse h^{-1} in dynamics plays the role of local conjugacy of immediate basin of attraction.
- We can describe the singularities of the function h in detail, which serves its role as a special solution of the λ -difference equation and difference equation (for y).

Thank you for your attention!