EECS 281, February 3,2015

example:	how	Χ	Ч	2	I E	mintens	maxtems		
	0	0	0	0		x'.4'. 2'			
		0	0 .		0)		X +4+ ±		
	2	0_		0	10)	y'. Y.Z	X+4+E		
	3	<u>;</u>			<u> </u>	X . 1 . ± 1			
·	<u> </u>		<u>)</u> 3	0	107	X	X +4 +21		
			(0		X . Y . Z !			
-	7	1			(1)	X.4. Z			
			·· ···································						

$$F = \sum_{X,Y,Z} (0,3,4,6,7)$$

$$= x'.4.2 + x'.4.2 + x.4.2 + x.4.$$

Gate outputs created by all input combinations.

Figure 4-10

l	6	Sı	4	ω	2		0	Row
		_	t-mort.	0	0	0	0	×
_		0	0	_		0	0	~
_	0		0	_	0		0 0 0	7
į	0		0	0	powerk		0	ī

Table 4-7

Truth table for the logic circuit of Figure 4-9.

Figure 4-11
Logic expressions for signal lines

Canonical product: product of maxterns

which function produces a 0-output. F = TT (1, 2, 5) X, 4, 2 X, 4, 2 X, 4, 2

 $F = (X + Y + 2!) \cdot (X + Y' + 2) \cdot (X + Y + 2!)$

Example: The ALARM output is 1 if the

PANIC input is 1, or if the

ENABLE input is 1 the EXITING input

is 0, and the house is not secure;

The house is SECURE if the WINDOW,

DOOR and GARAGE inputs are all 1.

ALARM = PANIC + ENABLE . EXITING . SECURE

SECURE = WINDOW. DOOR. GARAGE

Figure 4-19
Alarm circuit derived from logic expression.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Figure 4-18
Canonical-sum design for 4-bit prime-number detector.

Simplified sum-of-products realization for 4-bit prime-number detector. Figure 4-25

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Karnaugh Maps

Graphical representations of the truth table.

For n-input logic Ruchbn: array with

2ⁿ cells, & one for each

possible input combination or militern

Example:

$$F = \left(x' \cdot y + x \cdot y' + t \right)$$

use two rand gates and one and gate.

complements of the inputs are available.

$$F = \begin{pmatrix} \begin{pmatrix} x & y \end{pmatrix} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x & y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x & y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x & y \end{pmatrix}$$