MÉTODO GRÁFICO

Integrantes:

Jefry Erick Quispe Ramos Jimena Paricela Yana Daniel Mamani Huata Alexander Quispe Olgin

Planteamiento del problema

Se desea maximizar el tiempo que un estudiante universitario puede dedicar al estudio durante el día, considerando ciertas restricciones básicas como el tiempo de sueño, alimentación, clases y recreación.

Variables

- \blacksquare x: Horas de estudio en casa.
- y: Horas de estudio en la universidad.

Función Objetivo

La función objetivo es maximizar el total de horas de estudio:

Maximizar Z = ax + by

Restricciones

Según fuentes consultadas:

- Un estudiante no debería estudiar más de 5 a 6 horas efectivas en casa por productividad (fuente: Universidad de Harvard Estrategias de estudio efectivo . Estudiar durante muchas horas sin descanso no es efectivo. Es mejor estudiar en bloques más cortos y tomar descansos regulares. Esto mejora la concentración y la retención a largo plazo.").
- La universidad proporciona como máximo 6 horas de clases al día.
- El día tiene 24 horas, de las cuales al menos 7 se destinan al sueño, 4 a alimentación, higiene, transporte y recreación. Quedan 13 horas disponibles.

Entonces, las restricciones quedan así:

 $x + y \le 13$ (Tiempo disponible) $x \le 5$ (Límite de estudio en casa) $y \le 6$ (Máximo de horas de clase) $x, y \ge 0$ (No puede haber tiempo negativo)

Resolución Gráfica

Se representa gráficamente la región factible y se evalúan los vértices para encontrar el valor máximo de Z=ax+by.

Resultado: El valor máximo se alcanza en el punto (x=5,y=6), obteniendo:

$$Z = 5 + 6 = 11$$

Conclusión

El tiempo máximo saludable y permitido para que un estudiante universitario estudie en el día es de 11 horas, respetando límites realistas y saludables.