3. Übung: Vergleich dreier Reduktionsverfahren

In dieser Übung soll die Modellreduktion eines linearen Zustandsraum-Modells mittels verschiedener Reduktions-Algorithmen unter Verwendung von Matlab durchgeführt werden.

Gegeben sei das lineare Modell eines biologischen Reaktionsmodells aus Übung 2 (vgl. Abb. 1) mit den Stoffkonzentrationen A bis F, dem Eingang u als zugeführte Stoffkonzentration A und den beiden Ausgängen C und D.

Die Dynamikmatrizen liegen in der Form

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$

 $y = Cx$

Abbildung 1: Reaktionsnetzwerk (vgl. Übung 2)

vor (Herleitung siehe Übung 2) und sind auf der

Homepage der Vorlesung als mat-file verfügbar. Die Parameter k_{ij} des Modells sind analog zu Übung 2 folgendermaßen gegeben

$k_{AB} = 100$	$k_{BA} = 500$	$k_{AC} = 0$	$k_{CA} = 10$
$k_{BD} = 0.5$	$k_{DB} = 0.5$	$k_{DC} = 0.2$	$k_{FE} = 10$
$k_{CE} = 10$	$k_{EF} = 10$	$k_{FD} = 1.8$	$k_{\rm aus}=2.$

- a) Führen Sie eine modale Ordnungsreduktion nach Litz durch. Gehen Sie von einer sprungförmigen Anregung $u = u_0 \sigma(t)$ aus.
- b) Führen Sie eine Modellreduktion mittels balancierter Darstellung durch. Welche Dimension $n_{\rm r}$ sollte das reduzierte System sinnvollerweise haben?

 (Hinweis: Lösung der Lyapunov-Gleichung in Matlab mit Befehl lyap)
- c) Führen Sie eine Modellreduktion basierend auf den Krylov-Unterraummethoden durch. Wählen Sie V als orthonormale Basis des Krylov-Unterraumes $K_{q_1}\left(A^{-1},A^{-1}b\right)$ und W=V (sogenannte "einseitige" Reduktion).
- d) Vergleichen Sie die Ergebnisse der Modellreduktion anhand
 - Approximationsgenauigkeit (dynamisch),
 - Stationärer Genauigkeit,
 - Erhaltung der Stabilitätseigenschaften.
- e) Stellen Sie die Vor- und Nachteile der einzelnen Verfahren gegenüber.
- f) Zusatzaufgabe: Implementieren Sie ein zweiseitiges Krylov-Ordnungsreduktionsverfahren mit V aus Aufgabe c) und W als orthonormale Basis des Krylov-Unterraumes $K_{q_2}\left(\boldsymbol{A}^{-T},\boldsymbol{A}^{-T}\boldsymbol{C}^{T}\right)$.

Hinweis: Zum eigenen Verständnis ist es sinnvoll, nicht vorgefertigte Algorithmen aus Matlab zu verwenden, sondern die einzelnen Algorithmen der Reduktionsverfahren selbst zu schreiben (davon ausgenommen z. B. die Cholesky-Zerlegung oder Lösung der Lyapunov-Gleichung).