1 5. Lineare Gleichungssysteme

Nach [Lemma 1.8] und [Lemma 4.4] definiert jede Matrix $A:K^n\to K^m$ durch $x\mapsto Ax.$

1.1 Definition 5.1

Ist
$$A=(a_{ij})\sim(m,n)$$
 eine Matrix und $b=\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix}\in K^m,$ so heißt:
$$a_{11}x_1+\dots+a_{1n}x_n=b_1$$

$$\vdots$$

$$a_{m1}x_1+\dots+a_{mn}x_n=b_m$$

ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten.

Ist $b \neq 0$, so heißt das lineare Gleichungssystem **inhomogen**, andernfalls **homogen**. Ax = 0 heißt, dass zu dem inhomogenen System gehörende homogene lineare Gleichungssystem.

Die Menge $\mathbb{L}(A,b) = \{x \in K^n | Ax = b\} \subset K^n$ heißt der Lösungsraum des linearen Gleichungssystems $Ax = b \ (b = 0 \text{ oder } b \neq 0).$

A heißt die Koeffizientenmatrix, die Einträge a_{ij} Koeffizienten des linearen Gleichungssystems. Die Matrix (A|b) heißt die erweiterte Matrix des linearen Gleichungssystems Ax = b.

1.1.1 Bemerkung

Bezeichnet $f:K^n\to K^m$ mit f(x)=Ax die durch $A\sim (m,n)$ definiertes lineare Abbildung, so gilt:

$$\mathbb{L}(A,b)=f^{-1}(b)$$
 (Menge der Urbilder von b
 unter f)
$$\mathbb{L}(A,0)=Kerf$$

1.1.2 Beispiel

$$\begin{pmatrix} 2 & -3 & 1 \\ -1 & 2 & 4 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$$

Koeffizientenmatrix

1.2 Satz 5.2

Gegeben sei das LGS $A \cdot x = b$, wobei $A \sim (m, n)$. Sei r der Spaltenrang von A, d.h. r = dim(SR(A)). Dann gilt:

- 1) $\mathbb{L}(A,0) \subseteq K^n$ ist (n-r)-dimensionaler UVR
- 2) $\mathbb{L} = \emptyset$ oder $\mathbb{L}(A, b)$ hat folgende Form:

 $\mathbb{L}(A,b) = v + \mathbb{L}(A,0)$, wobe
i $v \in \mathbb{L}(A,b)$ eine beliebige Lösung ist

1.2.1 Beweis

(1) Sei $f: K^n \to K^m$ die durch A definierte lineare Abbildung mit $f(x) = A \cdot x$. Die Spalten von A sind genau die Bilder $f(e_j)$ der Standardbasisvektoren: $f(e_j) = A \cdot e_j = A_{\cdot j}$.

Daher sind die Spaltenvektoren von A ein EZS von Im(f), d.h. es gilt Im(f) = SR(A). Daraus folgt dim(Im(f)) = r. Mit der Dimensionsformel (siehe 6.2) folgt:

$$dim(K^n) = dim(Ker(f)) + dim(Im(f)) \iff n = dim(Ker(f)) + r$$

Daraus folgt: dim(Ker(f)) = n - r. Da $Ker(f) = \mathbb{L}(A, 0) \subseteq K^n$ ist UVR mit $dim(\mathbb{L}(A, 0)) = n - r$.

(2) Sei $w \in \mathbb{L}(A,0)$ und $v \in \mathbb{L}(A,b)$, d.h. $A \cdot w = 0$ und $A \cdot v = b$. $\implies A \cdot (v+w) = A \cdot v + A \cdot w = b + 0 = b \implies v + w \in \mathbb{L}(A,b)$ $\implies v + \mathbb{L}(A,0) \subseteq \mathbb{L}(A,b)$ Sei $v' \in \mathbb{L}(A,b)$ eine weitere Lösung, d.h. $A \cdot v' = b$. $\implies A \cdot (v-v') = A \cdot v - A \cdot v' = b - b = 0 \implies v - v' \in \mathbb{L}(A,0)$ $\implies v' \in v + \mathbb{L}(A,0) \implies \mathbb{L}(A,b) \subseteq v + \mathbb{L}(A,0)$

1.2.2 Bemerkung

- $\mathbb{L}(A,0) \neq \emptyset$, da $0 \in \mathbb{L}(A,0)$
- 0 heißt die triviale Lösung des homogenen Systems.
- Ein inhomogenes System hat nicht immer Lösungen.

1.3 Satz 5.3

Für ein inhomogenes LGS $A \cdot x = b$ mit $A \sim (m, n)$ gilt:

$$\mathbb{L}(A, b) \neq \emptyset \iff \operatorname{Spaltenrang}(A) = \operatorname{Spaltenrang}((A|b))$$

1.3.1 Beweis

Definiere: Spaltenrang(A) = Rg(A), Spaltenrang((A|b)) = Rg((A|b))Mit Rg(A) = r gilt: $r \leq Rg((A|b)) \leq r + 1$.

$$\begin{split} \mathbb{L}(A,b) \neq \emptyset &\iff \exists v \in K^n \text{ mit } A \cdot v = b \\ &\iff v_1 \cdot A_{\bullet 1} + \dots + v_n \cdot A_{\bullet n} = b \\ &\iff b \text{ ist Linearkombination der Spalten von } A \\ &\iff b \text{ ist Linearkombination der } r \text{ linear unabhängigen Spalten von } A \\ &\iff Rg((A|b)) = r \end{split}$$

1.4 Lemma 5.4

Sei $A \cdot x = b$ ein LGS und die Koeffizientenmatrix A in Zeilenstufenform, Pivots in den ersten r Spalten sitzen, $a_{11} \neq 0, \ldots, a_{rr} \neq 0, r \leq m$ und $r \leq n$:

Dann gilt:

(1) Ist $b_i \neq 0$ für ein i mit $r+1 \leq i \leq m$, so hat das LGS keine Lösung, da $0 \cdot x_1 + \ldots + 0 \cdot x_n = b_i \neq 0$ durch kein n-Tuple (x_1, \ldots, x_n) erfüllbar ist.

(2) Seien $b_{r+1} = \ldots = b_m = 0$. Dann hat das LGS Lösungen, die man wie folgt erhält:

Wir setzen k = n - r und wählen für die Unbekannten x_{r+1}, \ldots, x_n Parameter $\lambda_1, \ldots, \lambda_k$, d.h. setze $x_{r+1} = \lambda_1, \ldots, x_n = \lambda_k$. Die Parameter dürfen unabhängig voneinander beliebige Werte annehmen. Die übrigen Variablen x_1, \ldots, x_r kann man nun eindeutig in Abhängigkeit vo den Parametern berechnen. Das geschieht wie folgt:

$$r$$
-te Gleichung: $a_{rr}\cdot x_r + a_{rr+1}\cdot \lambda_1 + \ldots + a_{rn}\cdot \lambda_k = b_r$
$$a_{rr} \neq 0 \implies x_r = \frac{1}{a_{rr}}\cdot (b_r - a_{rr_1}\cdot \lambda_1 - \ldots - a_{rn}\cdot \lambda_k)$$
 Man setzt x_r in die $(r-1)$ -te Gleichung ein und berechnet man aus der

ersten Gleichung x_1 .

(3) Ist r = m, so kann man keinen Parameter einführen. Es gibt dann eine einzige Lösung (x_1, \ldots, x_n) , d.h. das LGS ist dann eindeutig lösbar.

1.4.1 Beispiel

$$(A|b) = \begin{pmatrix} 0 & 2 & 0 & 4 & 6 & 0 & 5 & 3 \\ 0 & 0 & 1 & 3 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 5 & 6 & 4 & 0 & 3 \\ 0 & 1 & 1 & 0 & 2 & 3 & 0 & 1 \\ 0 & 0 & 3 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$