A Latent Model for Representation Learning on Networks

CentraleSupélec

Abdulkadir Çelikkanat and Fragkiskos D. Malliaros

Center for Visual Computing CentraleSupélec, University of Paris-Saclay and Inria Saclay

Introduction

- Network representation learning (NRL) aims to encode a given network structure into low-dimensional vectors
- Applications in network analysis: visualization, classification, community detection and link prediction
- In this work, we propose:
- TNE Topical Node Embeddings
- Enriched feature vectors using node and cluster information

Problem Formulation

Objective

For a given graph $G = (\mathcal{V}, \mathcal{E})$, the goal is to find a mapping function

$$\Phi: \mathcal{V} \to \mathbb{R}^d$$
,

where $\Phi(v)$ indicates the representation of the vertex v in \mathbb{R}^d

• The objective function of random walk-based methods is:

$$\max_{\Phi,\widetilde{\Phi}} \sum_{v} \sum_{u \in N_{\gamma}(v)} \log \Pr(\Phi(u) | \widetilde{\Phi}(v))$$

• Approximation of the function above:

$$\max_{\Phi,\widetilde{\Phi}} \sum_{w \in \mathcal{W}} \sum_{v_i \in w} \sum_{-\gamma \le j \le \gamma} \log \Pr(\Phi(v_{i+j}) | \widetilde{\Phi}(v_i))$$

Random Walks and Communities

Many real-world networks can be expressed as a combination of nested or overlapping communities

- Each random walk can be represented as random mixtures over latent communities
- Each community can be characterized by a distribution over nodes

Figure: Graphical representation of the Latent Dirichlet Allocation (LDA) model

Figure: Schematic representation of the TNE model

Topical Node Embeddings (TNE)

- Let $t_w(v)$ be a community/topic assignment of a node v in the walk $w \in \mathcal{W}$
- The objective function to learn *topic* embeddings is:

$$\max_{\Psi,\widetilde{\Psi}} \sum_{w \in \mathcal{W}} \sum_{v_i \in w} \sum_{-\gamma \leq j \leq \gamma} \log \Pr(\Psi(v_{i+j}) | \widetilde{\Psi}(t_w(v_i)))$$

• The final embedding vector is obtained by combining node and community embeddings

$$\Phi(v) \oplus \widetilde{\Psi}(k^*),$$

where $k^* = \arg\max_k \Pr(\Phi(u)|\Psi(k))$

Experimental Results

 Downstream tasks: node classification and link prediction

		CiteSeer	DBLP	P2P	FB	arXiv
$\#$ \	Vertices	3,312	27,199	6,301	4,039	17,903
#	Edges	4,598	66,832	2,077	88,234	197,031
# (Clusters	6	4	_	_	_

Table: Networks used in the experiments

Figure: Micro- F_1 and Macro- F_1 scores for node classification over two different networks

Figure: Varying number of topics over CiteSeer

	Algorithm	Dataset		
		P2P	Facebook	arXiv
	TNE(DW)	0.5684	0.9834	0.9270
(a)	DeepWalk	0.5664	0.9812	0.9210
	TNE(N2V)	0.5703	0.9810	0.9299
	Node2Vec	0.5684	0.9809	0.9246
	TNE(DW)	0.6928	0.7686	0.7851
(b)	DeepWalk	0.6943	0.7626	0.7854
	TNE(N2V)	0.6914	0.7671	0.7847
	Node2Vec	0.6928	0.7634	0.7848
	TNE(DW)	0.4931	0.9319	0.8403
(c)	DeepWalk	0.4336	0.8863	0.7556
	TNE(N2V)	0.5525	0.9077	0.8438
	Node2Vec	0.4931	0.8988	0.7653

Table: Link prediction: AUC scores for (a) Hadamard, (b) Average and (c) Weighted-L1

> Operator Definition Hadamard $v \circ u$ Average $0.5 \cdot (v + u)$ Weighted-L1 $|v - u|_1$

Table: Operators for learning edge features

References

- [1] Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word embeddings. In AAAI, 2015.
- [2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In *KDD*, 2014.
- [3] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In *KDD*, 2016.
- [4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.