

American International University – Bangladesh Faculty of Engineering

Department of Electrical and Electronic Engineering

Course Name:	Microprocessor and Embedded Systems	Course Cod	le:	EEE 4103				
Semester:	Fall 2023-2024	Section:		L				
Faculty Name:	Protik Parvez Sheikh							
Assignment No:	3							
Student Name:	NOKIBUL ARFIN SIAM							
Student ID:	21-44793-1	Program Name:		BSc in CSE				
Submission Date:	27/12/2023	Due Date:	27/12	2/2023				

Assessment Rubrics:

COs-POIs	Excellent [28-30]	Proficient [25-27]	Good [20-24]	Acceptable [10-19]	Unacceptable [1-9]	No Response [0]	Secured Marks
CO3 P.a.4.C.3	All the problems are solved correctly. The simulation processes are clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. All necessary drawings and computations are shown.	solved correctly. The simulation processes are clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. A few necessary drawings	solved correctly. The simulation processes are not clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. Some necessary drawings	All the problems are not solved correctly. The simulation processes are not clearly described, and results are generated by combining several wrong input patterns with inappropriate outcomes. Some necessary drawings and computations are missing.	All the problems are not solved correctly. The simulation processes are not described, and results are generated by combining mostly wrong input patterns with inappropriate outcomes. Almost all the necessary drawings and computations are missing.	No responses at all	
Comments					Total marks (30)		

Questions:

- 1. Find the baud rate for the asynchronous normal operating mode when the oscillator frequency, fOSC = 24 MHz, and register data is, UBRRn = 111010100101. Calculate the baud error and comment on whether there will be any communication errors or not.
 - [For Arduino Uno, standard Baud rates maybe 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, etc.]
- 2. Determine the necessary register setup to operate a microcontroller in the fast PWM mode in inverting mode. The counter should count to a maximum value of 235 and then reset to the BOTTOM and repeat. Draw the necessary timing waveform. Use a Timer0 of the Arduino Microcontroller.
- 3. In order to control the speed and rotation of a microcontroller-based DC motor, two Fast PWM signals are set to 40% Non-Inverting PWM Duty Cycle (motor rotates clockwise) and 55% Inverting PWM Duty Cycle (motor rotates counter-clockwise). Determine the values for OCR0A (Inverting Mode) and OCR0B (Non-Inverting Mode).

CS12	CS11	CS10	Pre-scaler
0	1	0	8
0	1	1	64
1	0	0	256
1	1	1	1024

4. Compute the duty cycle and sketch the waveform obtained at port D of the Arduino. Identify the modes of operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is 8 MHz.

```
DDRD |= (1<<PD5);
pinMode(5, OUTPUT);
OCR0A = 200; // Load a value in the OCR0A register
OCR0B= 141; // Load a value in the OCR0A register
// Configure TCCR0A and TCCR0B registers for the mode and pre-scaler
TCCR0A |= (1 << COM0B1) | (1 << COM0A0) | (1<<WGM01) | (1<<WGM00);
TCCR0B |= (1<<WGM02) | (1<<CS01) | (1<<CS00);</pre>
```

Table 1: Clock select function bits and corresponding pre-scaler values (L) and Compare output mode setting bits (R)

CSn2	CSn1	CSn0	Pre- scaler	COMnA1	COMnA0	Description
0	0	1	1	0	0	The normal port operation, OC0A disconnected
0	1	0	8	0	1	WGM02 = 0; Normal port operation, OC0A disconnected WGM02 = 1; Toggle OC0A on Compare Match
0	1	1	64	1	0	Clear OC0A on Compare Match, Set OC0A at BOTTOM (non-inverting mode)
1	0	0	256	1	1	Set OC0A on Compare Match, Clear OC0A at BOTTOM (inverting mode)
1	0	1	1024			

- 5. Design an adder/subtractor circuit with one selection variable 'S' and two inputs 'A' and 'B': when S = 0 the circuit performs A + B. When S = 1 the circuit performs A B by taking the 2's complement of B.
- 6. Sketch a 2-bit Arithmetic Logic Unit (ALU) for the operations listed in Table 1.

Table 1: Functions of control variables

Binary		Functions of selection variables										
Code	\boldsymbol{A}	В	D	F with $C_{in}=0$	F with $C_{in}=1$	Н						
0 0 0	Input Data	Input Data	None	A-1	A	1's to the output Bus						
0 0 1	R1	R1	R1	A+B	A+B+1	Shift Left with $I_L = 0$						
010	R2	R2	R2	A-B-1	A-B	No Shift						
0 1 1	R3	R3	R3	A	A+1	Circulate Left with Carry						
100	R4	R4	R4	$ar{A}$	X	0's to the output Bus						
1 0 1	R5	R5	R5	AX OR B	X	-						
110	R6	R6	R6	A AND B	X	Circulate-Right with Carry						
111	R7	R7	R7	A OR B	X	Shift Right with $I_R = 0$						

- 7. Design a 3-bit shifter circuit for the listed shift functions provided in Table 1.
- 8. Develop the control words in binary and hexadecimal formats using the information provided in Table 1 for the following micro-operations:
 - i. R7←R3+R4
 - ii. R3←SHL R3
 - iii. R5←R1
 - iv. R2←SHR R5

v. R3←CRC R7

One example is shown as follows:

Micro-operation	A	В	D	F	C_{in}	Н	In Hex
R5← CRC (R3+R4)	011	100	101	001	0	110	7296h

The necessary bits for the control word are presented in Table 2.

Table 2: 16-bit control word sequence

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	\boldsymbol{A}			В			D			F		C_{in}		Н	

9. Prepare a flow chart that will count the number of 0's in register, R2, and then store the counts in register R5. Determine the outputs of the R5 (in binary) and R2 (in decimal) registers as well as of the carry flag after each clock cycle or timing state. Determine the number of states that are required to complete the operation.

Timing States		R2								R5
Timing States	1	1	0	1	0	0	1	0	0	1
T 1										
T2										
Т3										
T4										
T5										
Т6										
T7										
Т8										

given, fosc = 24 MHz

UBRRn = 111010100101 = 2749 (idecimal)

for asynchonus normal mode

Band note = fose = 24×10° 16/UBPRA+1) = 16/3749+1) = 400 bps

Band ennon note = stad. build note - colulated bound note Stand boud nate

= 300 - 400 ×100

= -39.31/2 + 21/.

So, there will be a communication ennor.

for fast pwm in inventing mode using time O to count up to 235, nequined negisters one TCCROA - to set the timeno.

CDMOA1 = 1 -> set ocoA to clean on compano mulay COMO AO = 0 -> set OCOA to clean on compane mutch.

Walmos = 1 -> set Time o to fost PWM mode.

MAMOO = 1 -) Set Time o to Fast PWM mode.

Tecpor=> to set the presonler for time O.

OCROA = 235 -) set compane valu to 235.

wave form :-

apportanimate duty cycle = 7.81.1.

Inventing made, 0 = 550/6

WE Know,

$$00P0A = 255 - \frac{2560}{100}$$

$$= 255 - \frac{256 \times 55}{100}$$

$$= 114.2 \approx 114$$

Non inventing mode:

OCROB = 256×40-1 = 101.4 = 101

į

3

0-4

It is using timeno in fast PWM mode with Prescullen of 64.

freequency, 1=8MHz

timen 0 = 8MHz = 125 KHz

spenating Inequency,

Duty cycle for OCROA,

$$0 CROA = \frac{256D}{100} - 1$$

$$\Rightarrow 200+1 = \frac{256D}{100}$$

$$\Rightarrow D = \frac{201 \times 100}{256}$$

$$= 78.52.1$$

Duty cycle for OCROB

The webform of PWM,

OCROA signed is high when D=78.52.1.

OCROB . . . D=55.47.1.

Q-5

5	F	×	Y	Cin
0	A+B	Λ	0	0
1	A-B	A	18'	1

Xj=Ai Yi=Bixors Cin=S

XOP Truth-lable

A	5	E		
0	,	0		
5	1	1		
1	0	1		
1	1	0		

2/170	00	01	11	16	107
6	A	A	^	A] ,
	A	Α	A	A	=A

Y: :5, B+5, S, B+50 B

00	01	11	10
Cin	Qin.	Cin	Cin
0	0	0	0

(i) Ry C- R3+R4

A	B	DF		Cin	H	Hen	
010	011	000	000 0		100	ucoup	

A	B	B	F	din	H	then
011	000	000	001	0	110	6016 h

(ii) PJ C PL

A	B	p	F	cin	H	Hex
001	100	000	100	0	100	30041

(ix) RZ - SHRR

Γ	A	B	0	F	din	H	Hey
Γ	010	101	000	010	0	110	5426h

WR3E Crery

A	B	0	F	Cin	H	Hen
110						cooch

Timo		Pa.							c	P5
Since	1	1	0	1	0	0	1	0	0	1
Τ,	0	1	1	0	1	0	0	ī	0	1
TL	0	0	1	1	0	1	0	0	1	1
T ₃	0	0	0	1	1	0	1	0	0	2
Ty	0	0	0	0	1	1	0	1	0	3
TS	0	0	0	8	0	1	1	0	1	3
Ti	0	0	0	0	6	0	1	1	0	14
TZ	0	0	0	0	0	0	0	1	1	19
78	0	0	0	0	0	0	6	0	1	1

