Kod ucznia	Nazwisko i imię

MATEMATYKA

10 MARCA 2020

Instrukcja dla zdającego

Czas pracy: **180 minut**

- 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–5) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne
 - zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (7–16) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj **tylko długopisu lub pióra** z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój kod (nazwisko i imię **zgodnie z ustaleniami szkolnymi).**
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

Liczba punktów do uzyskania: **50**

W zadaniach o numerach od 1 do 5 wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (1 p.)

Wskaż m, dla którego rozwiązaniem równania $x^3 - 5x^2 + x + |2m + 4| = 0$ jest liczba 2.

A.
$$m = 3 \text{ lub } m = 7$$

B.
$$m = 3$$
 lub $m = -7$

C.
$$m = -3$$
 lub $m = -7$

D.
$$m = -3$$
 lub $m = 7$

Zadanie 2. (1 p.)

Pole trójkata przedstawionego na rysunku jest równe:

A.
$$1 + \sqrt{3}$$

B.
$$3\sqrt{2}$$

C.
$$2 + \sqrt{2}$$

D.
$$2\sqrt{3}$$

Zadanie 3. (1 p.)

Przekrój osiowy stożka jest trójkątem równoramiennym o podstawie 8 i ramieniu 10.

Powierzchnia boczna stożka jest wycinkiem koła o kącie środkowym:

Zadanie 4. (1 p.)

Najmniejszym rozwiązaniem równania $sin^2 2x - cos^2 x = 0$ w przedziale $\langle 0; 2\pi \rangle$ jest liczba:

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{7}{6}\pi$$

D.
$$\frac{2}{3}\pi$$

Zadanie 5. (1 p.)

Dany jest trójkąt prostokątny o przyprostokątnych 5 i 12. Poprowadzono wysokość na przeciwprostokątną. Wysokość ta podzieliła przeciwprostokątną na odcinki w stosunku:

A.
$$\frac{5}{12}$$

B.
$$\frac{25}{169}$$

C.
$$\frac{5}{13}$$

D.
$$\frac{25}{144}$$

BRUDNOPIS

W zadaniu 6 zakoduj we wskazanym miejscu wynik zgodnie z poleceniem.

Zadanie 6. (2 p.)

W ostrosłupie prawidłowym trójkątnym krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem 30°. Wyznacz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy. Zakoduj wynik – wpisz trzy początkowe cyfry rozwinięcia dziesiętnego otrzymanego wyniku.

													d	zies	iąte	setn	e	tysi	ęczi	ne
																				_
																				Г
																				r
																				r
																				H
																				H
																				H
																				H
_																				H
	_																			L
																				L
																				L
																				L
																				Γ
																				ľ
																				t
																				t
																				t
																				t
																				H
_																				ł
_																				ł
																				ŀ
																				ļ
																				ļ
																				ļ
_																				
																				ſ
																				Γ
																				ľ
																				t
																		\neg		f
_																		-		H
_																		-		-
_																				+
_																				H
	-																			L

Rozwiązania zadań od 7 do 16 należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 7. (2 p.)

Liczba x z dzielenia przez 4 daje resztę 1. Liczba y z dzielenia przez 4 daje resztę 3. Wyznacz resztę z dzielenia liczby $x^2 + y^2$ przez 8.

Zadanie 8. (3 p.)

Wykaż, że jeżeli
$$\log_{16} 12 = a$$
, to $\log_{24} 3 = \frac{4a-2}{4a+1}$.

Zadanie 9. (3 p.)

Oblicz, ile jest czterocyfrowych liczb naturalnych parzystych, w których występuje dokładnie jedno zero.

Zadanie 10. (4 p.)

Wyznacz dziedzinę funkcji: $f(x) = |\log_2(-x^3 - 4x^2 + 3x + 18) - \log_2(-2x^2 - 2x + 12)|$.

Zadanie 11. (4 p.)

Wyznacz iloraz nieskończonego, zbieżnego ciągu geometrycznego, w którym pierwszy wyraz jest równy 6, a suma wszystkich wyrazów tego ciągu stanowi $\frac{1}{8}$ sumy ich kwadratów.

Zadanie 12. (4 p.)

W dany trapez można wpisać okrąg i jednocześnie można na tym trapezie opisać okrąg. Wysokość tego trapezu jest równa 8, a jego kąt ostry ma miarę 30°. Oblicz długość promienia okręgu opisanego na tym trapezie.

Zadanie 13. (4 p.)

Dany jest trójkąt ABC o wierzchołkach : A(-4, -1), B(-7, -5), C(4, -7). Oblicz długość odcinka AD dwusiecznej kąta przy wierzchołku A.

Zadanie 14. (6 p.)

Wykresy funkcji kwadratowych $f(x) = 3x^2 - 2mx - m$ oraz $g(x) = mx^2 + x + 3$, dla $m \ne 0$, przecinają się w dwóch punktach. Wyznacz wszystkie wartości m, dla których iloraz sumy odciętych tych punktów przez ich iloczyn jest o $\frac{1}{8}$ mniejszy od największej wartości funkcji g.

Zadanie 15. (6 p.)

W ostrosłupie prawidłowym czworokątnym pole podstawy jest dwa razy większe od pola ściany bocznej. Oblicz cosinus kąta między sąsiednimi ścianami bocznymi tego ostrosłupa.

Zadanie 16. (7 p.)

Dana jest parabola o równaniu $y = -x^2 + 9$. Na tej paraboli leży punkt P o dodatnich współrzędnych. Wyznacz współrzędne tego punktu tak, by styczna do paraboli w punkcie P ograniczała wraz z osiami układu współrzędnych trójkąt o najmniejszym polu.

BRUDNOPIS

WYPEŁNIA PISZĄCY

Nr zadania	A	В	C	D
1.				
2.				
3.				
4.				
5.				

Suma punktów									
zadania zamknięte									

WYPEŁNIA SPRAWDZAJACY

Nr zadania	0	2
6.		

Nr zadania	0	1	2	3	4	5	6	7
7.								
8.								
9.								
10.								
11.								
12.								
13.								
14.								
15.								
16.								

Suma punktów zadania otwarte

Suma punktów								
razem								