

CSC461 INTRODUCTION TO DATA SCIENCE

Dr. Muhammad Sharjeel

There's a story behind numbers, visualizing data brings them to life

- Data visualization is the method to present the data in a pictorial or graphical format
 To effectively and accurately represent information about the data
- Graphical format allows to identify new trends and patterns in the data easily
- Gives you answers to questions you didn't know you had

- Some of the main benefits of data visualization
 - Simplifies the complex quantitative information
 - Helps analyze and explore big data easily
 - Identifies the areas that need attention or improvement
 - Identifies the relationship between data points and variables
 - Explores new patterns and reveals hidden patterns in the data
- Goals of data visualization
 - Record
 - Analyze
 - Communicate

WHY VISUALIZE DATA

• 1854 London Cholera Epidemic

WHY VISUALIZE DATA

1854 London Cholera Epidemic

cluster region

cluster center

DR MUHAMMAD SHARJEEL **CSC461 - INTRODUCTION TO DATA SCIENCE**

- 1854 London Cholera Epidemic
- Cholera occurred almost entirely among those who lived near (and drank from) the Broad Street water pump
- By removing the handle of the contaminated pump, the epidemic was controlled, which had taken more than 500 lives

https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak https://www.theguardian.com/news/datablog/2013/mar/15/john-snow-cholera-map https://www.wired.com/2009/09/0908london-cholera-pump/

Anscombe's Quartet

D-l		D-II		D-III		D-IV	
X	у	X	У	X	У	X	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Are these four datasets the same?

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Anscombe's Quartet

mean var. corr.

D-I		D-II		D-III		D-IV	
х	у	X	У	X	У	X	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
0.816		0.816		0.816		0.816	

Interestingly, they all have the same mean, variance, and correlation

WHY VISUALIZE DATA

Anscombe's Quartet

However, they appear very different when graphed

WHY VISUALIZE DATA

- Anscombe's Quartet constructed in 1973 by the statistician Francis Anscombe
- Four datasets with nearly identical simple descriptive statistics
- Demonstrate the importance of graphing data

- Data visualization is the cornerstone of data science
- It is important to first visualize the data before applying more sophisticated data science methods
- There are two types of data visualization:
 - Data exploration visualization
 - Figuring out what is true
 - Data presentation visualization
 - Convincing other people it is true
- Data exploration is to put together the pieces of the puzzle
- Data presentation is to share the solved puzzle with people who can act on the insights
- Before running any analysis, always visualize the data
- If we can't identify a trend or make a prediction from our dataset, neither will an automated algorithm

- Four important types of data to understand before visualizing data
- Nominal: categorical data with no ordering
 - Example Pet: {dog, cat, rabbit}
 - Operations: =, ≠
- Ordinal: categorical data with ordering
 - Example Rating: {1,2,3,4,5}
 - \circ Operations: $=, \neq, \geq, \leq, >, <$
- Interval: numerical data in which zero has no fixed meaning
 - Example In surveys, completely agree
 - Operations: =, ≠, ≥, ≤, >, <, +, -
- Ratio: numerical data in which zero has special meaning
 - Example Temperature
 - Operations: =, \neq , \geq , \leq , >, <, +, -, \div

- Mostly data visualization revolves around charts and graphs
 - For visualizing data using charts, type and dimensionality of the underlying data is important
- Visualization types
 - o 1D: bar chart, pie chart, histogram
 - 2D: scatter plot, line plot, box plot, whisker plot, heatmap
 - 3D+: scatter matrix, bubble chart

- Data visualization using Python
 - Python offers several plotting libraries with different features for creating informative, customized, and appealing
 plots to present data in the most simple and effective way
- Standard charts
 - o matplotlib, seaborn, ggplot, altair
- Thematic maps
 - o folium, basemap, cartopy, iris
- Advanced visualizations
 - bokeh, plotly

import matplotlib.pyplot as plt

Bar plot

years = range(2000, 2006) apples = [0.3, 0.6, 0.9, 0.4, 0.65, 0.8] plt.bar(years, apples) plt.xlabel("Years")

plt.ylabel("Tons")
plt.show()

Pie chart

cars = ['Audi', 'BMW', 'Ford', 'Tesla', 'Jaguar', 'Mercedes'] data = [18, 20, 16, 45, 12, 32] plt.pie(data, labels = cars, autopct='%1.1f%%') plt.show()

Scatter plot

```
boys_grades = [30, 68, 51, 60, 55, 38, 70, 63, 28, 80]
girls_grades = [66, 80, 55, 89, 95, 60, 90, 92, 75, 65]
grades_range = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
plt.scatter(boys_grades, grades_range, marker='o')
plt.scatter(girls_grades, grades_range, marker='x')
plt.xlabel('Marks Scored', fontsize=12)
plt.ylabel('Total Marks', fontsize=12)
plt.show()
```

Line plot

```
x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x), '-', color='red', label='sin(x)')
plt.plot(x, np.cos(x), '--', label='cos(x)')
plt.axis([-1, 11, -1.5, 1.5])
plt.title("A Sine Curve")
plt.xlabel("x")
plt.ylabel("sin(x)")
plt.legend()
plt.show()
```


Heatmap

data = np.random.random((6, 8))
plt.imshow(data, cmap='YlGnBu', interpolation='nearest')
plt.show()

Histogram

x = np.random.normal(120, 60, 250)
plt.hist(x)
plt.show()

IMPORTANT GUIDELINES FOR CHARTS

- Label everything appropriately
- Work with the numbers
- Choose colors carefully
- Know your audience
- Use the correct chart

DR MUHAMMAD SHARJEFL CSC461 - INTRODUCTION TO DATA SCIENCE

Chart Chooser

DR MUHAMMAD SHARIFFI CSC461 - INTRODUCTION TO DATA SCIENCE

- Comparison
 - Bar chart
 - horizontal bar
 - column chart
- Composition
 - o 1d
- donut
- pie chart
- o 2d
- stacked percent
- stacked column
- Time series
 - Line chart
- Correlation
 - Scatter plot
 - heatmap
 - bubble chart
- Distribution
 - box plot
 - histogram

- Question: How many new users are coming every day?
- Goal: Compare values (number of users) over time (days)
- Outcome: Line chart
- Question: From where these new users are coming from?
- Goal: Display composition of data (where new users came from) over time (new users across days)
- Outcome: Area chart
- Question: What time of day sees the highest number of users?
- Goal: Comparing values (number of visits) over time (hours) across multiple dimensions (days)
- Outcome: Overlay line chart

- Question: Which referrers are driving the most traffic?
- Goal: Compare values (number of visits) across categories (referrers)
- Outcome: Bar chart
- Question: Which referrers tend to drive more traffic from desktops, and which ones from mobile devices?
- Goal: Comparing values (number of visits) across categories (referrers) and looking at composition within each (mobile vs. web traffic)
- Outcome: Stacked bar chart
- Question: How does the traffic from mobile and desktop stack up across referrers?
- Goal: Comparing values (number of visits) across categories (referrers) in multiple dimensions (mobile and desktop)
- Outcome: Grouped bar chart

- Question: Which pages are driving the most engagement based on where users are coming from to those pages?
- Goal: See at the relationship between where the users are coming from and landing pages to see how the different combinations influence average visit duration
- Outcome: Heat map
- Question: How to find out ways to divert more traffic to high-performing pages?
- Goal: See the relationship between high-performing pages and number of visits to those pages to better promote those pages

Outcome: Scatterplot

THANKS