## Short course on high-dimensional Bayesian modeling

Joseph (Joey) Antonelli and Antonio (Tony) Linero

June 24th, 2021





# Why are we here?

- High-dimensional modeling has vastly grown in popularity over the last couple of decades
- There are a few reasons for this
  - Advancements in computation
    - Especially for Bayesian approaches!
  - Increasing number of large data sets
    - Genomics, imaging, medical records, etc.
  - Advancements in statistical techniques
- Important to have at least a working understanding of these models

# Why are we here?

- Bayesian approaches can be particularly useful in this setup
  - Easily account for uncertainty
  - Introduce nonlinearity in a natural way
  - Introduce more complex structures such as hierarchical models
  - Handle missing data
- Many frequentist estimators in high dimensions don't provide inference
  - No confidence intervals for predictions or parameters
- Some work done to alleviate these issues (see Van de Geer et al. (2014); Lee et al. (2016), others)
  - Specific to certain models
  - Rely heavily on strong assumptions and asymptotics

### What we hope you take away from this

- At the end of this course, we hope you will be able to
  - Understand prior distributions for high-dimensional models
  - Understand the computational aspects involved with implementing these models
  - Code up your own MCMC using spike-and-slab prior distributions
  - Incorporate nonlinearity into your models
  - Understand the more complex nonlinear models that exist in high dimensions
- We hope that after this course, you will have the tools to try and imbed these ideas into your own research

- We are not experts in all aspects of high-dimensional Bayesian analysis!
  - We have both used these models in our own research and hope to bestow some of our ideas onto you so you don't run into the same issues that we did
- We mostly focus on spike-and-slab prior distributions and extensions to tree-based models, and do not have time to cover all high-dimensional Bayesian models and therefore certain important concepts will be left out

#### Roadmap of short course

We will build from simple models to more complex models

$$\sum_{j=1}^{p} X_{j} \beta_{j} \longrightarrow \sum_{j=1}^{p} f_{j}(X_{j}) \longrightarrow f(\boldsymbol{X})$$

- We begin with simple linear models to learn foundational concepts
  - Spike-and-slab priors
  - Sensitivity to hyperprior choices
  - How to sample from these models

### Roadmap of short course

- We will then alleviate the assumptions of this model
  - Linearity and additivity assumptions
- We will discuss grouped variable selection as a method to introduce nonlinearity as well as fully nonparametric Gaussian process regression
  - How these are used in high-dimensional scenarios
- We finish the course with tree-based models that have been shown to work remarkably well
- All along the way we will be highlighting examples and examining R code to implement these approaches.

### Notation and setup

- Y: Outcome of interest
- X: P-dimensional covariates
- N: Overall sample size
- Our goal throughout is to use  $\boldsymbol{X}$  to predict Y, i.e estimate  $E(Y|\boldsymbol{X}) = f(\boldsymbol{X})$
- Two simultaneous goals
  - Good prediction performance
  - Identifying important predictors
- Q: The true number of important predictors in X

### What do we mean by high dimensions?

- ullet Typically high-dimensional modeling refers to situations where P>N
- We won't be discussing asymptotic rates or theoretical results too much, however, it is typically assumed that P grows with N
- Throughout, we will work under the slightly broader definition of any situation where P is large enough to require high-dimensional techniques such as shrinkage or sparsity inducing prior distributions
  - Traditional models either don't apply or perform poorly
  - Interested in learning which predictors affect the outcome

#### The linear model

 To introduce the foundational concepts, we restrict to the linear model

$$Y = \sum_{j=1}^{p} X_{j}\beta_{j} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^{2})$$

 All of the following ideas apply immediately to generalized linear models

$$g^{-1}(E(Y|\mathbf{X})) = \sum_{j=1}^{p} X_j \beta_j$$

• If we assume the true parameter is  $\beta_0$ , then  $Q = ||\beta_0||_0 = \sum_{j=1}^P \mathbb{1}(\beta_{0j} \neq 0)$ 

10/50

#### The linear model

- Unknown parameters are  $(\beta, \sigma^2)$
- ullet We won't discuss prior distributions for  $\sigma^2$ 
  - Assume fixed
  - ullet Standard conjugate inverse-gamma prior for  $\sigma^2$
- ullet Will discuss prior distributions for  $oldsymbol{eta}$  that
  - Work when p is large
  - Identify nonzero elements of  $\beta_0$
  - Are easy to implement computationally

#### Prior distributions for $\beta$

• We will focus on prior distributions of the following form:

$$P(\beta_j|\gamma_j) \sim (1-\gamma_j)\delta_0 + \gamma_j \mathcal{N}(0,\sigma_\beta^2)$$
  
 $P(\gamma_j) = \tau^{\gamma_j} (1-\tau)^{1-\gamma_j}$ 

- Independent priors for each  $\beta_i$
- Note that this prior can equivalently be expressed as

$$P(\beta_j) \sim (1-\tau)\delta_0 + \tau \mathcal{N}(0, \sigma_\beta^2)$$

$$P(\beta_j|\gamma_j) \sim (1 - \gamma_j)\delta_0 + \gamma_j \mathcal{N}(0, \sigma_\beta^2)$$
$$P(\gamma_j) = \tau^{\gamma_j} (1 - \tau)^{1 - \gamma_j}$$

- Prior distribution is a two-component mixture distribution (Mitchell and Beauchamp, 1988)
  - Point mass at zero (the spike)
  - Continuous distribution (the slab)
- Intuitively this prior distribution recognizes the fact that some covariates are not important ( $\beta_j = 0$ ), while others are

- We focus on this distribution, but there are many variations of it
- The continuous spike-and-slab prior distribution is commonly used (George and McCulloch, 1993)

$$P(\beta_j|\gamma_j) \sim (1 - \gamma_j) \mathcal{N}(0, \sigma_0^2) + \gamma_j \mathcal{N}(0, \sigma_1^2)$$
$$P(\gamma_j) = \tau^{\gamma_j} (1 - \tau)^{1 - \gamma_j}$$

- $\bullet$  Here  $\sigma_0^2 < \sigma_1^2$  and is small so that you still have a spike near zero
- Leads to straightforward updates of  $\gamma_j$ , but requires good choices of both  $(\sigma_0^2, \sigma_1^2)$

#### Prior distributions for $\beta$

- This model has a number of important features
- Performs variable selection and reduces the number of nonzero parameters
  - Can investigate  $P(\gamma_j = 1 | \mathcal{D})$  for variable importance
  - $\bullet$  Can look at full posterior distribution of  $\gamma$  to identify models most supported by the data
- Still performs shrinkage of important coefficients
  - ullet Depends on the magnitude of  $\sigma_{eta}^2$

#### Prior distributions for $\beta$

- The performance of these prior distributions depends heavily on the choice of hyperpriors
- ullet au represents the prior probability that a coefficient is nonzero
  - Reflects the underlying sparsity in the model
- ullet  $\sigma_{eta}^2$  has a large impact on the resulting coefficient estimates
  - Degree of shrinkage
  - Variable selection properties

- ullet The most important (and difficult) parameters to update are  $(eta_j, \gamma_j)$
- A traditional Gibbs sampler would update from the following
  - $P(\beta_j|\cdot)$ : the full conditional for  $\beta_j$
  - $P(\gamma_j|\cdot)$ : the full conditional for  $\gamma_j$
  - Repeat for all  $j = 1, \ldots, p$
  - $P(\tau|\cdot)$ : the full conditional for  $\tau$
  - $P(\sigma_{\beta}^2|\cdot)$ : the full conditional for  $\sigma_{\beta}^2$
- This seems easy enough, right?

- Unfortunately not
- Let's look at the full conditional distribution for  $\gamma_j$ :

$$P(\gamma_j = 1 | \beta_j, \boldsymbol{\beta}_{-j}, \boldsymbol{\gamma}_{-j}, \tau, \sigma_{\beta}^2, \mathcal{D}) = 1(\beta_j \neq 0)$$

- The probability is one if  $\beta_i \neq 0$  and 0 otherwise
  - Makes sense considering that  $\gamma_j$  is a latent variable indicating whether  $\beta_j=0$  or not
- If we follow this strategy, we will never explore the full model space in our MCMC
  - ullet  $\gamma_j$  can never change from the starting values

- $\bullet$  The main way to avoid this issue is to integrate out  $\beta_j$  when updating  $\gamma_j$
- $\bullet$  A common strategy used in the model averaging literature is to integrate out all unknown parameters other than  $\gamma$  and update from

$$P(\gamma|\mathcal{D}) = \frac{P(\mathcal{D}|\gamma)P(\gamma)}{P(\mathcal{D})} = \frac{P(\mathcal{D}|\gamma)P(\gamma)}{\sum_{\gamma} P(\mathcal{D}|\gamma)P(\gamma)}$$

- Can then follow an MCMC strategy of successfully sampling from
  - $P(\gamma|\mathcal{D})$
  - $P(\boldsymbol{\beta}, \tau, \sigma_{\beta}^2 | \boldsymbol{\gamma}, \mathcal{D})$

Antonelli and Linero ISBA 2020/2021 June 24th, 2021

19/50

- This requires knowledge of the marginal likelihood of the data
- In certain settings this is analytically tractable
  - Linear regression
- In other settings, this does not have a closed form expression
  - Approximations are available in some cases
- Even when the marginal likelihood has a closed form solution, it can be computationally prohibitive

- We will instead follow a Gibbs sampling style strategy by iterating through
  - $P(\beta_i, \gamma_i | \cdot)$ : the full conditional for  $(\beta_i, \gamma_i)$
  - Repeat for all  $j = 1, \ldots, p$
  - $P(\tau|\cdot)$ : the full conditional for  $\tau$
  - $P(\sigma_{\beta}^2|\cdot)$ : the full conditional for  $\sigma_{\beta}^2$
- The key is how we sample  $(\beta_j, \gamma_j)$ 
  - Easy computationally
  - ullet Doesn't get stuck at a particular  $\gamma_j$  value

- We will sample  $(\beta_j, \gamma_j)$  successively from
  - $P(\gamma_j|\gamma_{-j},\beta_{-j},\tau,\sigma_\beta^2,\mathcal{D})$
  - $P(\beta_j|\gamma_j, \gamma_{-j}, \beta_{-j}, \tau, \sigma_{\beta}^2, \mathcal{D})$
- ullet Note that we don't condition on  $eta_j$  in the update for  $\gamma_j$ 
  - ullet Integrates over possible values of  $eta_j$  and avoids earlier problem
- ullet The update for  $eta_j$  is straightforward and is simply the full conditional we would use to update this parameter

• Now how do we update from the conditional of  $\gamma_j$  that doesn't condition on  $\beta_j$ ?

$$P(\gamma_j|\boldsymbol{\gamma}_{-j},\boldsymbol{\beta}_{-j},\tau,\sigma_{\beta}^2,\mathcal{D})$$

- This isn't straightforward, but a simple probability trick will facilitate computation
- $\bullet$  For simplicity, let's denote all parameters with the exception of  $\beta_j$  and  $\gamma_j$  as  $\pmb{\theta}$

We can re-write the quantity of interest as

$$P(\gamma_j = 1 | \boldsymbol{\theta}, \mathcal{D}) = \frac{P(\beta_j = 0, \gamma_j = 1 | \boldsymbol{\theta}, \mathcal{D})}{P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})}$$

- The quantity on the right is simpler to work with
  - No longer averaging over  $\beta_j$
- We'll see that we can re-write this in terms of quantities that are straightforward to calculate

We can re-write the quantity of interest as

$$\begin{split} \frac{P(\beta_j = 0, \gamma_j = 1 | \boldsymbol{\theta}, \mathcal{D})}{P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})} &= \frac{P(\boldsymbol{\theta}, \mathcal{D} | \beta_j = 0, \gamma_j = 1) P(\beta_j = 0, \gamma_j = 1)}{P(\boldsymbol{\theta}, \mathcal{D}) P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})} \\ &= \frac{P(\boldsymbol{\theta}, \mathcal{D} | \beta_j = 0) P(\beta_j = 0, \gamma_j = 1)}{P(\boldsymbol{\theta}, \mathcal{D}) P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})} \\ &\propto \frac{P(\beta_j = 0, \gamma_j = 1)}{P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})} \end{split}$$

- $\bullet$  The second quality held because  $\gamma_j$  is irrelevant once we condition on  $\beta_j$
- The third step held because neither  $P(\theta, \mathcal{D}|\beta_j = 0)$  or  $P(\theta, \mathcal{D})$  are functions of  $\gamma_j$

25 / 50

We can further decompose this quantity as

$$\frac{P(\beta_j = 0, \gamma_j = 1)}{P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})} = \frac{P(\beta_j = 0 | \gamma_j = 1) P(\gamma_j = 1)}{P(\beta_j = 0 | \gamma_j = 1, \boldsymbol{\theta}, \mathcal{D})}$$
$$= \frac{\tau \Phi(0; 0, \sigma_{\beta}^2)}{\Phi(0; m, \nu)}$$

- Where m and v are the mean and variance of the full conditional posterior distribution for  $\beta_j$
- $\Phi(0; a, b)$  is the density at zero for a normal distribution with mean a and variance b

26/50

• We can do the same decomposition for  $\gamma_i = 0$ :

$$P(\gamma_j = 0 | \boldsymbol{\theta}, \mathcal{D}) \propto \frac{P(\beta_j = 0 | \gamma_j = 0) P(\gamma_j = 0)}{P(\beta_j = 0 | \gamma_j = 0, \boldsymbol{\theta}, \mathcal{D})} = 1 - \tau$$

ullet So we can sample  $\gamma_j$  from a bernoulli distribution with probability given by

$$\frac{\frac{\tau\Phi(0;0,\sigma_{\beta}^2)}{\Phi(0;m,v)}}{\frac{\tau\Phi(0;0,\sigma_{\beta}^2)}{\Phi(0;m,v)}+\left(1-\tau\right)}$$

- This is extremely easy to calculate
- ullet The only computation is in the calculation of m and v
  - Already need to calculate these anyways when updating  $\beta_i$ !
- The only thing this relied on was having a closed-form update for the conditional distribution of  $\beta_j$  given all other parameters,  $P(\beta_j=0|\gamma_j=1, \pmb{\theta}, \mathcal{D})$ 
  - True for linear regression and generalized linear models
  - True in many other settings as well

- Now we've done the hard part!
- ullet We now need to update the remaining parameters  $( au,\sigma_{eta}^2)$
- One approach is to assign hyperprior distributions to each of these parameters
  - Relatively straightforward
  - Conjugate priors

- ullet Typically a beta prior distribution is assigned to  $\tau$ 
  - Conjugate
- A common choice in high-dimensional settings is to let the prior depend on the number of covariates

$$au \sim \mathcal{B}(C,p)$$

where C is a pre-specified constant

- Mean of this distribution is  $\frac{C}{C+p}$ 
  - More sparsity as p grows
- See Scott and Berger (2010) for a great paper on the impact of these different choices on variable selection

# Importance of au

- ullet Results can be fairly sensitive to the choice of au
  - Fully Bayes approach does well at finding a good solution
- True nonzero coefficients in blue, others in black



- ullet Fairly intuitive that au impacts performance of variable selection
  - Prior probability of inclusion for each covariate
- ullet Less clear is what impact  $\sigma^2_eta$  has on the resulting model
- The most obvious utility of  $\sigma_{\beta}^2$  is for shrinkage of the resulting coefficients
  - Reduce variability of resulting estimates
- Does it impact variable selection?

# Importance of $\sigma_{\beta}^2$

ullet To gain intuition, let's look at the term we used to update  $\gamma_i$ 

$$\frac{\tau\Phi(0;0,\sigma_{\beta}^2)}{\Phi(0;m,v)}$$

- ullet Clearly this is an increasing function of au
- $\sigma_{\beta}^2$  shows up in both the numerator and denominator
  - m and v are both functions of  $\sigma_{\beta}^2$

# Importance of $\sigma_{eta}^2$

- When  $\sigma_{\beta}^2$  is too small, we overly shrink coefficients and can't distinguish between the spike and slab leading to bad posterior inclusion probabilities
- ullet When  $\sigma_{eta}^2$  is too big, posterior inclusion probabilities go down



Antonelli and Linero ISBA 2020/2021 June 24th, 2021 34 / 50

ullet Can place a conjugate prior on  $\sigma_{eta}^2$ 

$$\sigma_{eta}^2 \sim \mathsf{InverseGamma}(a,b)$$

- Can also allow for a separate slab variance for each covariate (Mitra and Dunson, 2010)
  - Reduces shrinkage of larger coefficients

$$\sigma_{eta_j}^2 \sim \mathsf{InverseGamma}(a,b)$$

ullet au and  $\sigma_{eta}^2$  can both be estimated with empirical Bayes as well

 Now let's take a look at some R code to see one way in which MCMC with these models is performed

- Let's see how we can extend these ideas to the nonlinear model
- Now our goal will be to estimate the following

$$E(Y|X) = \beta_0 + \sum_{j=1}^{p} f_j(X_j)$$

- Intuitively we want to place a spike and slab prior on this function somehow
  - Either the function is a flat function at zero, or something else
  - We will see two ways to do this

• Easiest way is to make parametric assumption about  $f_j(\cdot)$ 

$$f_j(X_j) = \sum_{k=1}^K b_k(X_j)\beta_{jk}$$
$$= \widetilde{X}_j\beta_j$$

- Here,  $b_k(\cdot)$  are basis functions such as polynomials, natural cubic splines, wavelets, etc.
- $\beta_j$  is a K-dimensional vector of parameters for covariate j

Antonelli and Linero ISBA 2020/2021 June 24th, 2021

- If  $\beta_j = \mathbf{0}$ , then  $f(X_j) = 0$  and the covariate is dropped from the model
- Therefore we can use a multivariate version of the spike-and-slab prior

$$P(\beta_j|\gamma_j) \sim (1-\gamma_j)\delta_{\mathbf{0}} + \gamma_j \mathcal{N}_{\mathcal{K}}(\mathbf{0}, \Sigma_{\beta})$$

- The prior distribution is now a mixture between a point mass at the vector 0 and a multivariate normal distribution
- Similar to other grouped variable selection approaches
  - Either all in or all out

- There are effectively no differences between this and the univariate approach seen earlier
- The one difference is the choice of slab variance
  - Now a covariance matrix
- There are a couple of natural choices
  - $\bullet \ \Sigma_{\beta} = \sigma_{\beta}^{2}(\mathbf{X}_{j}^{T}\mathbf{X}_{j})^{-1}$
  - $\bullet \ \Sigma_{\beta} = \sigma_{\beta}^2 I_K$
- Can simply choose the scaled identity matrix for simplicity, and should work reasonably well

40 / 50

- What if we don't want to make parametric assumptions about  $f_i(\cdot)$ ?
- What if we don't want to specify basis functions,  $b_k(\cdot)$ ?
- The nonparametric Bayesian approach would be to place a prior on the function f<sub>i</sub>()
- The most natural choice is to place a Gaussian process prior on this function
  - Very flexible
  - Been shown to work well empirically

### Brief intro to Gaussian processes

To place a Gaussian process prior we can write

$$f_j \sim GP(\mu_j(X_j), K_j(X_j, X_j'))$$

- Here  $\mu_j(\cdot)$  is the mean function
  - Could be a linear function
  - Could be the zero function
- $K_j(X_j, X_j')$  is a kernel function that reflects the similarity/distance between  $X_j$  and  $X_j'$ 
  - Smaller distances mean larger values

#### Brief intro to Gaussian processes

 This formulation implies that for any finite collection of points, we have

$$(f_j(X_{j1}),\ldots,f_j(X_{jn}))'\sim \mathcal{N}((\mu_j(X_{j1}),\ldots,\mu_j(X_{jn}))',\Sigma_j)$$

where the (a, b) element of  $\Sigma_j$  is  $K(X_{ja}, X_{jb})$ 

- This allows the function to deviate from the pre-specified mean function  $\mu_i(\cdot)$
- The main assumption is smoothness
  - Nearby points have similar values of  $f_j(\cdot)$
  - Degree of smoothness controlled by kernel function
  - Similar in spirit to local or kernel regression

# Brief intro to Gaussian processes

 Gaussian processes can approximate nonlinear functions well without having to specify any functional form of the true function



# Gaussian processes and model averaging

• Letting  $f_j(\mathbf{X}_j)$  be the vector of n observed locations, we can specify the following prior distribution (Reich et al., 2009)

$$f_j(\mathbf{X}_j) \sim \mathcal{N}(\mathbf{0}, \sigma_j \Sigma_j)$$
  
 $\sigma_j \sim (1 - \gamma_j) \delta_0 + \gamma_j G$ 

- G is any continuous distribution that lives on the positive real line
- We use the zero mean function here and the covariance matrix  $\Sigma_j$  is the kernel matrix from before
- The variance is either zero and the covariate is not in the model, or it is positive and the covariate is included using a GP

# Gaussian processes and model averaging

 Alternatively, we could specify the spike-and-slab prior directly on the observed functions

$$f_j(\mathbf{X}_j) \sim (1 - \gamma_j)\delta_{\mathbf{0}} + \gamma_j \mathcal{N}_n(\mathbf{0}, \sigma_j \Sigma_j)$$

- The n values are either all zero together, or all nonzero
- $\bullet$   $\gamma_i$  has the same interpretation as in the simpler models
  - Importance of covariate j
  - $P(\gamma_i = 1 | \mathcal{D})$  shows the strength of this importance

# Gaussian processes and model averaging

- This looks substantially more complicated, but updating  $\gamma_j$  is equally straightforward!
- We can use the same trick to see that

$$P(\gamma_j = 1 | \mathcal{D}, \boldsymbol{\theta}) = \frac{P(f_j(\boldsymbol{X}_j) = \boldsymbol{0}, \gamma_j = 1 | \mathcal{D}, \boldsymbol{\theta})}{P(f_j(\boldsymbol{X}_j) = \boldsymbol{0} | \gamma_j = 1, \mathcal{D}, \boldsymbol{\theta})}$$

$$\propto \frac{\tau \ \Phi(\boldsymbol{0}; \boldsymbol{0}, \sigma_j \boldsymbol{\Sigma}_j)}{\Phi(\boldsymbol{0}; \boldsymbol{M}, \boldsymbol{V})}$$

where  $\Phi(\cdot)$  now corresponds to a multivariate normal density of dimension n

- ullet  $oldsymbol{M}$  and  $oldsymbol{V}$  are now the full conditional mean and variance for  $f_j(oldsymbol{X}_j)$ 
  - This full conditional distribution is a multivariate normal distribution

Antonelli and Linero ISBA 2020/2021 June 24th, 2021

# Pros and cons of Gaussian processes

- As discussed earlier, GPs are very flexible
  - Can capture basically any true function
- The main drawback is the heavy computational burden
  - Calculation of  $\boldsymbol{M}$  and  $\boldsymbol{V}$  requires inversion of an  $n \times n$  matrix
  - Extremely slow for even moderate sample sizes
  - Have to do this for each covariate!
- A number of computational speedups and approximations have been proposed to alleviate this issue
  - See Gramacy and Lee (2008); Banerjee et al. (2008, 2013)

# Overview of nonlinear spike-and-slab models

If computation time is a big concern, use the basis function approach

$$f_j(X_j) = \widetilde{X}_j \beta_j$$

- Essentially equal in computation speed as the linear model
- Not quite as flexible as a GP, but still very flexible
- We have still made the assumption of additivity in all of these models
- Some work done to alleviate this assumption in GPs (Qamar and Tokdar, 2014)

$$E(Y|X) = f_1(\mathbf{X}) + \dots, + f_k(\mathbf{X})$$

where each  $f_j$  is made up of a subset (though not necessarily just one) covariate

#### References

- BANERJEE, A., DUNSON, D. B. and TOKDAR, S. T. (2013). Efficient gaussian process regression for large datasets. *Biometrika* 100 75–89.
- BANERJEE, S., GELFAND, A. E., FINLEY, A. O. and SANG, H. (2008). Gaussian predictive process models for large spatial data sets. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 70 825–848.
- GEORGE, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. *Journal of the American Statistical Association* 88 881–889.
- Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed gaussian process models with an application to computer modeling. *Journal of the American Statistical Association* 103 1119–1130.
- LEE, J. D., SUN, D. L., SUN, Y., TAYLOR, J. E. ET AL. (2016). Exact post-selection inference, with application to the lasso.
  Annals of Statistics 44 907–927
- MITCHELL, T. J. and BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression. *Journal of the american* statistical association 83 1023–1032.
- MITRA, R. and DUNSON, D. (2010). Two-level stochastic search variable selection in glms with missing predictors. The international journal of biostatistics 6.
- QAMAR, S. and TOKDAR, S. T. (2014). Additive gaussian process regression. arXiv preprint arXiv:1411.7009 .
- REICH, B. J., STORLIE, C. B. and BONDELL, H. D. (2009). Variable selection in bayesian smoothing spline anova models: Application to deterministic computer codes. *Technometrics* 51 110–120.
- SCOTT, J. G. and BERGER, J. O. (2010). Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics 2587–2619.
- Van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R. et al. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. *Annals of Statistics* **42** 1166–1202.

Antonelli and Linero ISBA 2020/2021 June 24th, 2021 50 / 5