Análise e Síntese de Algoritmos

Algoritmos Elementares em Grafos [CLRS, Cap. 22]

2011/2012

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo

Definição e Representação de Grafos

- Procura em Largura Primeiro
- Procura em Profundidade Primeiro

Grafo

Grafo

Grafo, G = (V, E), definido por um conjunto V de vértices e um conjunto E de arcos

- Arcos representam ligações entre pares de vértices: E ⊆ V × V
 - Grafo esparso se $|E| << |V \times V|$
 - Caso contrário diz-se que é um grafo denso
- Grafos podem ser dirigidos ou não dirigidos
 - Existência (ou não) da noção de direcção nos arcos

Grafo Dirigido

Grafo Não Dirigido

Representação de Grafos

Representação dos arcos

- Matriz de adjacências: arcos representados por matriz
 - Para grafos densos
- Listas de adjacências: arcos representados por listas
 - Para grafos esparsos

Grafo Dirigido

Listas de Adjacências

Matriz de Adjacências

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0 0 0 0 0	1	0	0
6	0	0	0	0	0	1

Representação de Grafos

Representação dos arcos

- Matriz de adjacências: arcos representados por matriz
 - Para grafos densos
- Listas de adjacências: arcos representados por listas
 - Para grafos esparsos

Grafo Não Dirigido

Listas de Adjacências

Matriz de Adjacências

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
4 5	1	1	0	1	0

Representação de Grafos

Matriz de Adjacências

• $\Theta(V^2)$ para qualquer grafo

Listas de adjacências

- Tamanho das listas é |E| para grafos dirigidos
- Tamanho das listas é 2 | E | para grafos não dirigidos
- ullet Tamanho total das listas de adjacências é O(V+E)

Grafos pesados

- Existência de uma função de pesos $\omega: E \to IR$
- Função de pesos ω associa um peso a cada arco

Procura em Largura Primeiro (Breadth-First Search)

Dados G = (V, E) e vértice fonte s, o algoritmo BFS explora sistematicamente os vértices de G para descobrir todos os vértices atingíveis a partir de s

- Fronteira entre nós descobertos e não descobertos é expandida uniformemente
 - Nós à distância k descobertos antes de qualquer nó à distância k+1
- Cálculo da distância: menor número de arcos de s para cada vértice atingível
- Identificação de árvore Breadth-First (BF): caminho mais curto de s para cada vértice atingível v

BFS: Notação

Implementação

- color[v]: cor do vértice v, (branco, cinzento ou preto)
 - branco: não visitado
 - cinzento: já visitado, mas algum dos adjacentes não visitado ou procura em algum dos adjacentes não terminada
 - preto: já visitado e procura nos adjacentes já terminada
- π[v]: predecessor de v na árvore BF
- d[v]: tempo de descoberta do vértice v

Outras definições

- Caminho mais curto definido como o caminho de s para v composto pelo menor número de arcos
- $\delta(s, v)$: denota o comprimento do caminho mais curto de s a v

BFS: Pseudo-Código

```
BFS(G,s)
      for each vertex u \in V[G] - \{s\}
                                                       ⊳ Inicialização
            do color[u] \leftarrow white; d[u] \leftarrow \infty; \pi[u] \leftarrow NIL
      color[s] \leftarrow gray; d[s] \leftarrow 0; \pi[s] \leftarrow NIL
    Q = \{s\}
      while Q \neq \emptyset
                                                        6
           do u \leftarrow \text{Dequeue}(Q)
                for each v \in Adi[u]
 8
                     do if color[v] = white
                            then color[v] \leftarrow gray; d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
 9
                                   Enqueue(Q, v)
10
11
                color[u] \leftarrow black
```


S

У

BFS: Complexidade

Complexidade

Tempo de execução: O(V+E)

Inicialização: O(V)

Para cada vértice

Colocado na fila apenas 1 vez: O(V)

Lista de adjacências visitada 1 vez: O(E)

BFS: Resultados

Resultados

- Para qualquer arco (u, v) : $\delta(s, v) \leq \delta(s, u) + 1$
- Se u atingível, então v atingível
 - caminho mais curto para v não pode ser superior a caminho mais curto para u mais arco (u, v)
 - Se u não atingível, então resultado é válido (independentemente de v ser atingível)
- No final da BFS: $d[u] = \delta(s, u)$, para todo o vértice $u \in V$

Árvore Breadth-First

Árvore Breadth-First

- Árvore BF é sub-grafo de G
- Vértices atingíveis a partir de s
- Arcos que definem a relação predecessor da BFS
- $\bullet \ G_{\pi} = (V_{\pi}, E_{\pi})$
- $E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} \{s\}\}$

Árvore Breadth-First

Árvore Breadth-First

Procura Profundidade Primeiro (Depth-First Search)

Grafo pesquisado dando prioridade aos arcos dos vértices mais recentemente visitados

Resultados

Floresta Depth-First (DF)

- $G_{\pi} = (V, E_{\pi})$
- $\bullet \ E_{\pi} = \{(\pi[v], v) : v \in V \land \pi[v] \neq NIL\}$
- Floresta DF composta por várias árvores DF

Implementação

- color[v]: cor do vértice v, (branco, cinzento ou preto)
- π[v]: predecessor de v na árvore DF
- d[v]: tempo de início (de visita do vértice)
- f[v]: tempo de fim (de visita do vértice)

DFS: Pseudo-Código

```
DFS(G)
    for each vertex u \in V[G]
2
          do color[u] \leftarrow white; \pi[u] = NIL
   time ← 1
   for each vertex u \in V[G]
5
          do if color[u] = white
6
                then DFS-Visit(u)
DFS-Visit(u)
  1 color[u] \leftarrow gray
  2 d[u] \leftarrow time
  3 time \leftarrow time + 1
  4 for each v \in Adj[u]
           do if color[v] = white
                  then \pi[v] \leftarrow u
                        DFS-Visit(v)
    color[u] \leftarrow black
  9 f[u] \leftarrow time
 10 time \leftarrow time + 1
```


DFS: Complexidade

Complexidade

Tempo de execução: O(V+E)

- Inicialização: O(V)
- Chamadas a DFS-Visit dentro de DFS: O(V)
- Arcos analisados em DFS-Visit: Θ(E)
 - Chamadas a DFS-Visit dentro de DFS-Visit: O(V)
 - Mas $\sum_{v \in V} |Adj[v]| = \Theta(E)$

DFS: Resultados

Resultados

Numa DFS de G = (V, E), para cada par de vértices u e v apenas um dos 3 casos seguintes é verdade:

• Os intervalos [d[u], f[u]] e [d[v], f[v]] são disjuntos

$$d[u]$$
 $f[u]$ $d[v]$ $f[v]$

• $[d[u], f[u]] \subset [d[v], f[v]]$ e u é descendente de v na árvore DF

$$d[v]$$
 $d[u]$ $f[u]$ $f[v]$

• $[d[v], f[v]] \subset [d[u], f[u]]$ e v é descendente de u na árvore DF

$$d[u] \quad d[v] \quad f[v] \quad f[u]$$

A seguinte situação não pode ocorrer

$$d[v]$$
 $d[u]$ $f[v]$ $f[u]$

Floresta Breadth-First

Floresta Breadth-First

Classificação de arcos (u, v)

- Arcos de árvore: (tree edges)
 - arcos na floresta DF, G_π
 - (u, v) é arco de árvore se v foi visitado devido ao arco (u, v) ser visitado
- Arcos para trás: (back edges)
 - ligam vértice u a vértice v antecessor na mesma árvore DF
- Arcos para a frente: (forward edges)
 - ligam vértice v a vértice descendente na mesma árvore DF
- Arcos de cruzamento: (cross edges)
 - Na mesma árvore DF, se u (ou v) não antecessor de v (ou u)
 - Entre árvores DF diferentes

Classificação de arcos (u, v)

- Arcos de árvore: (tree edges)
 - d[u] < d[v] < f[v] < f[u]
 - color[v] = white quando (u, v) é analisado
- Arcos para trás: (back edges)
 - d[v] < d[u] < f[u] < f[v]
 - color[v] = gray quando (u, v) é analisado
- Arcos para a frente: (forward edges)
 - d[u] < d[v] < f[v] < f[u]
 - color[v] = black quando (u, v) é analisado
- Arcos de cruzamento: (cross edges)
 - d[v] < f[v] < d[u] < f[u]
 - color[v] = black quando (u, v) é analisado

DFS: Resultados

Resultados

Dado G = (V, E), não dirigido, cada arco é arco de árvore ou arco para trás

i.e., n\u00e3o existem arcos para a frente e de cruzamento

Numa floresta DF, v é descendente de u se e só se quando u é descoberto existe um caminho de vértices brancos de u para v

- v descendente de $u \Rightarrow$ existe caminho de vértices brancos de u para v
 - Qualquer vértice w descendente de u verifica $[d[w], f[w]] \subset [d[u], f[u]]$, pelo que w é branco quando u é descoberto

Resumo

Representação de grafos

- Listas de adjacências
- Matrizes de adjacências

Algoritmos Elementares

- Procura em Largura Primeiro (BFS)
 - Caminhos mais curtos no número de arcos
- Procura em Profundidade Primeiro (DFS)
 - Tempos de início (d[]) e de fim (f[])
 - Classificação de arcos