

Smile Function Decoder

パンタスパーク版

AYA002-3

このマニュアルは、DCC 用ファンクッションデコーダーの取り付け方法及び CV 設定方法 について説明しています。

ご注意

接続間違いや過負荷により、本デコーダーが故障したり、発熱したり、する場合があります。ご使用には十分お気をつけください。

1. 特徴

本デコーダーは Arduino というオープンハード、オープンソフトウエアを使用して作られております、DCC 用ファンクッションデコーダーです。

あらかじめ、パンタスパークスケッチ(プログラム)が書き込まれていますので、 すぐにご使用できます。

また、パンタスパークスケッチは、Github に公開していますので、ご自由に改造改変ができますので、カスタマイズできます。

2. 仕様

項目	詳細
CPU	Atmel ATtiny85
プログラムメモリ	8kByte
EEPROM	512Byte
SRAM	512Byte
クロック	8MHz
プラットフォーム	Arduino
DCC ライブラリ	NMRA DCC ライブラリ(2011-06-26 Initial Version)
DCC アドレス	2桁アドレス,4桁アドレス
STEP	28STEP/128STEP 自動認識
CV 値読み込み機能	無し
CV 書き込みモード	Direct モード
アナログ運転モード	機能なし(使用不可)
ファンクッション出力	2 出力
	01 端子,02 端子 機能無し
	O3 端子,室内灯など ファンクッションで On/Off できます。
	O4 端子,パンタスパーク端子
出力段 FET	FAIRCHILD FDC6561AN Nch 素子スペック(Ic=2.5A,RDS=0.145Ω)
FET 入力電流	最大 100mA
アクセサリ用出力電圧	V1,V2,V3 5V-5mA ※1kΩの抵抗が実装されています。
	V4 5V-100mA ※制限回路が無いのでご注意ください。
	V5 12V-500mA ※制限回路ないのでご注意ください。
寸法	980mil x 380mil (24.892mm x 9.652mm)
質量	約1g

3. CV 値一覧

CV	値(詳細)
1	2桁アドレス(初期設定3)
8	デコーダーの工場出荷状態に設定する(値は何でも良い)
17	4桁アドレス上位
18	4桁アドレス下位
29	2桁アドレス(2)・4桁アドレス(22)切り替え
33	F0 機能割り当て(初期設定 O)
35	F1 機能割り当て(初期設定 O)
36	F2 機能割り当て(初期設定 O)
37	F3 機能割り当て(初期設定 3)室内灯など
38	F4 機能割り当て(初期設定 4)パンタスパーク
39	F5 機能割り当て(初期設定 O)
40	F6 機能割り当て(初期設定 0)
41	F7 機能割り当て(初期設定 O)
42	F8 機能割り当て(初期設定 O)
43	F9 機能割り当て(初期設定 O)
44	F10 機能割り当て(初期設定 O)
45	F11 機能割り当て(初期設定 O)
46	F12 機能割り当て(初期設定 O)
49	前進(Forward)におけるパンタスパークの制御(初期設定 01)
50	後進(Reverse)におけるパンタスパークの制御(初期設定 01)
51	パンタスパーク点灯開始 STEP 値(初期設定 1)
52	点灯テーブル 1-1(初期設定 100)
53	点灯テーブル 1-2(初期設定 1)
54	点灯テーブル 2-1(初期設定 200)
55	点灯テーブル 2-2(初期設定 5)

※Fn 機能割り当ては、O3 端子、O4 端子を設定します。初期設定は CV37 = 3 , CV38 = 4 を割り当てていますので、F3 を押下すると、室内灯の On/OFF、F4 を押下するとパンタスパークの On/OFF ができます。

3.1 CV01:2 桁アドレス

CV01は、2桁アドレスを設定します。

工場出荷値:3

3.2 CV08:工場出荷状態

CV08 は、デコーダーの CV 値を工場出荷状態に設定するときに使用します。 08 を書き込むと CV 値がリセットされます。

3.3 CV17 · CV18:4 桁アドレス

CV17、CV18 は、4桁アドレスを設定します。 CV17:十の位と一の位、CV18:千の位と百の位

アドレス 1234 に設定する場合

関数電卓で10進数:1234を16進数:0x4d2に変換します。

0x4d2 に 0xc000 を加算します。0xc4d2。上位と下位を分けて、10 進数に変換します。

 $0xc4\rightarrow196$ $0xd2\rightarrow210$

CV17に196、CV18に210、CV29に34を書き込みます。

※DCS50K では page モードを使うと簡単です。

(PROG->PAGE->LOCO->Ad4) で4桁アドレスを設定してください。

※DCD50Kで page モードを使って、2桁アドレスに設定しても、CV29が変わらない為4桁のままになっておりますので、direct モードで CV29に2を設定してください。 ぬっきーさんサイトにある4桁アドレス計算用 CGI を使うと簡単に計算できます。

http://web.nucky.jp/dcc/decoder/old/adrs.html

3.4 CV29: 2 桁アドレス、4 桁アドレス設定

デコーダーアドレスを2桁または4桁で使用するかを設定します。

CV29:02、2桁アドレス

CV29:34、4桁アドレス

工場出荷值:02

3.5 CV33:F0 機能割り当て

F0 ボタン押下した時の動作を設定します。

F0ボタン押下で室内灯などを点灯させる場合は3を設定、パンタスパークを点灯させる場合は4を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷値:0

3.6 CV35:F1 機能割り当て

F1 ボタン押下した時の動作を設定します。

F1 ボタン押下で室内灯などを点灯させる場合は 3 を設定、パンタスパークを点灯させる場合は 4 を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷值:0

3.7 CV36:F2 機能割り当て

F2 ボタン押下した時の動作を設定します。

F2ボタン押下で室内灯などを点灯させる場合は3を設定、パンタスパークを点灯させる場合は4を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷值:0

3.8 CV37:F3 機能割り当て(室内灯など)

F3 ボタンを押下した時の動作を設定します。

F3 ボタンを押下で室内灯などを点灯させる場合は 3 を設定、パンタスパークを点灯させる場合は 4 を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷值:3

3.9 CV38:F4 機能割り当て (パンタスパーク)

F4ボタンを押下した時の動作を設定します。

F4ボタンを押下で室内灯などを点灯させる場合は3を設定、パンタスパークを点灯させる場合は4を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷値:4

3.10 CV39-CV46:F5-F12 機能割り当て

F(5-12)ボタンを押下した時の動作を設定します。

F(5-12)ボタンを押下で室内灯などを点灯させる場合は3を設定、パンタスパークを点灯させる場合は4を設定します。

3または4を設定した場合、他のFnの値を0に設定してください。

工場出荷値:4

3.10 CV49:前進時におけるパンタスパークの設定

前進時のパンタスパークの On/Off と、点灯パターンの設定します。

CV49 s1 s2

S1 0:通常パンタスパーク、1:速度に関係なく激しく点灯、2:速度に関係なく柔らかく点灯 S2 0:点灯しない、1:点灯する

工場出荷值:01

前進で点灯、速度に関係なく激しく点灯の設定例

CV49:11

3.11 CV50:後進時におけるパンタスパークの設定

後進時のパンタスパークの On/Off と、点灯パターンの設定します。

CV50 s1s2

S1 0:通常パンタスパーク、1:速度に関係なく激しく点灯、2:速度に関係なく柔らかく点灯 S2 0:点灯しない、1:点灯する

工場出荷値:01

後進で点灯、速度に関係なく柔らかく点灯の設定例 CV50:21

後進で点灯しない設定例 CV50:00

3.12 CV51:パンタスパーク点灯開始 STEP 値

パンタスパークが点灯を始める STEP 値を設定します。

128STEP フルスケールで点灯開始 STEP 値を設定します。

工場出荷値: 05 (28SETP 時は 2STEP 目で点灯開始です)

28STEP 設定で、5STEP 目から点灯させる場合 5×4.34=21.7 21か、22を設定します。

※4.34とは?

28STEP から、128STEP に変換する際の乗算値です 計算式: 126 ÷ 29 = 4.34

DCS50K だと、28STEP の最大値は29,128STEP の最大値は125

Desktopstation だと、128STEP の最大値は 126 なので、126 と 29 を採用しています。

3.13 CV52-CV55:点灯間隔の設定

速度に対する点滅間隔を設定します。

128STEP値を基準にして設定します。

工場出荷值: CV52:100, CV53:1, CV54:200, CV55:5

128STEP 時、10msec~50msec 間でランダムな点灯間隔となります。

1STEP 時、1000msec~20000msec 間でランダムな点灯間隔となります。

nSTEP時、直線補完された値のランダムな点灯間隔となります。

例、高速時の点滅間隔を緩慢にする

CV55:100 に設定すると、128STEP 時の点滅間隔が 10msec~1000msec になり、 点滅が緩慢になります。

※CV50の設定で1:速度に関係なく激しく点灯、2:速度に関係なく柔らかく点灯 に設定されていると、この機能は無効になります。

4. 外観説明

5. 実装方法

(1)新幹線に組み込む場合

P1,P2 端子 (レールへ接続)

O3 端子(12V テープ LED のマイナス端子)

V5 端子 (12V 電源: テープ LED のプラス端子: 保護抵抗が無いのでご注意)

O4 端子(5V LED カソード)

V1 端子 (5V-1kΩ内蔵端子 LED アノード)

組み込み例

KATOのE7系新幹線に実装

(2) 電車に組み込む場合(5V LED を使用する場合)

O3 端子(5V LED カドード)

O4 端子(5V LED カソード)

V1 端子(5V-1kΩ内蔵端子 LED アノード)

V2 端子(5V-1kΩ内蔵端子)

V3 端子(5V-1kΩ内蔵端子)

V4端子(5V(電流制限抵抗がついていません))

6. スケッチ変更方法

SmileWriter を使うことで、スケッチ(プログラム)の変更ができます。

Smile Function decoder パンタスパーク版 取扱説明書

初版:2016/10/04

2版: 2016/10/16 28/128STEP 自動切り替え対応、その他 CV 機能追加

3版:2016/10/22 誤記修正

Copyright@ Desktop Station

Web:http://desktopstation.net/index_jp.html Web:http://dcc.client.jp/

本製品に関する仕様、価格、デザインは予告なく変更する事があります。予めご了承ください 安全に組み立て、お使いいただくために、ご使用前は必ず「取扱説明書」をご覧ください。 誤動作、誤組み立て等によって、人身事故や物損事故に至る事が考えられますので、しっかり チェックした上でご使用してください。

当社の製品は、十分な知識がある方の監修のもとでご使用ください。