

Experiments with an Agent-oriented Reasoning System

Christoph Benzmüller

joint work with: Mateja Jamnik, Manfred Kerber, Volker Sorge

Fachrichtung Informatik Universität des Saarlandes Saarbrücken, Germany

School of Computer Science
The University of Birmingham
Birmingham, England

Motivation – Cognitive Perspective

To solve complex mathematical problems

- different specialists may have to bring in their expertise and cooperate
- a communication language is required

A single mathematician

- possesses a large repertoire of specialised reasoning and problem solving techniques
- uses experience and intuition to flexibly combine them in an appropriate way

Motivation – Existing Systems

- heterogeneous
- different niches

Motivation – Existing Systems

- heterogeneous
- different niches
- hardwired integrations
- system networks:
 MATHWEB, PROSPER integration-infrastructure

How to realise a flexible interplay?

Motivation – Flexible Integration

Higher Order ATP with LEO

 C_1 : favourite-numbers $(\lambda x \cdot \operatorname{odd}(x) \wedge \operatorname{square}(x))$ unifies (semantically) with C_2 : $\neg \operatorname{favourite-numbers}(\lambda x \cdot \operatorname{square}(x) \wedge (\operatorname{square}(x) \Rightarrow \operatorname{odd}(x)))$

iff the following first order clauses can be contradicted

First Order ATP with OTTER

 $\begin{array}{c} \mathsf{square}(N) \\ \neg \mathsf{odd}(N) \lor \neg \mathsf{square}(N) \\ \mathsf{odd}(N) \lor \neg \mathsf{square}(N) \\ \mathsf{odd}(N) \lor \mathsf{square}(N) \end{array}$

$$\frac{\texttt{Left:} A \quad \texttt{Right:} B}{\texttt{Conj:} A \land B} \land \texttt{I}$$

$$\frac{\mathtt{Ass}_1\!:\!A_1 \quad \dots \quad \mathtt{Ass}_n\!:\!A_n}{\mathtt{Conc}\!:\!C} \; \mathtt{OTTER}(\mathtt{P}_1\!:\!f_1,\dots,\mathtt{P}_m\!:\!f_m)$$

- Distributed applicability checks for: proof rules, tactics, external systems, etc.
- Applicability checks further distributed in various sub-processes
- Declarative specification/modification at run-time
- Currently more than 400 distributed processes

Realisation - Resources

Resource adapted behaviour

clock speed low

automatic proof by single ATP

clock speed medium

cooperative proof

clock speed high

attack at ND level

Experiments: resource adaptivity (in interactive sessions)

agents decide to be inactive/active wrt varying clock speed

Results – Example Classes

Ex1 Higher order ATP and first order ATP

$$\forall x, y, z \cdot (x = y \cup z) \Leftrightarrow (y \subseteq x \land z \subseteq x \land \forall v \cdot (y \subseteq v \land z \subseteq v) \Rightarrow (x \subseteq v))$$

Ex2 ND based TP, propositional ATP, and model generation

$$\forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cap z) = (x \cap z) \cup (y \cap z)$$
 10000 Examples

 $\forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cup z) = (x \cap z) \cup (y \cap z)$ 988 valid / 9012 invalid

Ex3 CAS and higher order ATP

$$\{x|x > gcd(10,8) \land x < lcm(10,8)\} = \{x|x < 40\} \cap \{x|x > 2\}$$

EX4 Tactical TP, first-order ATP, CAS, and higher order ATP

... *group-definition-1* ... ⇔ ... group-definition-2 ...

Results - ND, PL-ATP, Models

Conc
$$\vdash \forall x \square \forall y \square \forall z \square ((x \cup y) \cap z) = (x \cap z) \cup (y \cap z)$$
 Forall-I L1

L3 $\vdash ((X \cup Y) \cap Z) = (X \cap Z) \cup (Y \cap Z)$ Set-Ext L4

L4 $\vdash \forall e \square e \in ((X \cup Y) \cap Z) \leftrightarrow e \in (X \cap Z) \cup (Y \cap Z)$ Forall-I L5

L5 $\vdash E \in ((X \cup Y) \cap Z) \leftrightarrow E \in (X \cap Z) \cup (Y \cap Z)$ Def L6

. . .

L8
$$\vdash ((E \in X \lor E \in Y) \land E \in Z) \leftrightarrow$$
 OTTER $((E \in X \land E \in Z) \lor (E \in Y \land E \in Z))$

Theorem

Results - ND, PL-ATP, Models

Conc
$$\vdash \forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cup z) = (x \cap z) \cup (y \cap z)$$
 Forall-I L1 $\vdots \cdot \cdot \cdot$

L3 $\vdash ((X \cup Y) \cup Z) = (X \cap Z) \cup (Y \cap Z)$ Set-Ext L4 $\vdash \forall e \cdot e \in ((X \cup Y) \cup Z) \leftrightarrow e \in (X \cap Z) \cup (Y \cap Z)$ Forall-I L5 $\vdash E \in ((X \cup Y) \cup Z) \leftrightarrow E \in (X \cap Z) \cup (Y \cap Z)$ Def L6

L8
$$\vdash ((E \in X \lor E \in Y) \lor E \in Z) \leftrightarrow$$
 SATCHMO $((E \in X \land E \in Z) \lor (E \in Y \land E \in Z))$

Countermodel: $G \in Z \land G \not\in X \land G \not\in Y$

Related Work

- Parallel & distributed theorem proving [Bonacina 2000]
- TECHS & TEAMWORK approach [Denzinger/Fuchs 1999]
 - filtered exchange of clauses between first-order provers
 - no higher-order systems and no CAS
 - no explicit proof object
 - no user orientation
- Concurrent theorem proving [Fisher 1997]
 METATEM (temporal logics) [Fisher 1994]
- Multi agent proof-planning [Fisher/Ireland 1998]
- ... agent based architectures, layered architectures ...

Conclusion

Employ agent paradigm

to flexibly combine very heterogeneous reasoning components working on conceptually different layers in a sceptical, centralised approach that uses an expressive proof representation format.

Architecture is not restricted to theorem proving

Problems and Future Work

- Short-term goals
 - counterexamples: illustration (Venn-diagrams) & early backtracking
 - more & better agents; more case studies
- Long-term goals
 - decentralisation
 - dynamic clustering
 - communication bottleneck
 - agent interlingua

- or-parallelism
- integration with proof planning
- critical (reflecting) agents

Results - ND, CAS, HO-ATP

$$\{x|x > \gcd(10,8) \land x < lcm(10,8)\} = \{x|x < 40\} \cap \{x|x > 2\}$$

$$(\lambda x_{\bullet} x > \gcd(10,8) \land x < lcm(10,8)) = \\ (\lambda x_{\bullet} x < 40) \cap (\lambda x_{\bullet} x > 2)$$
 L1
$$\vdash (\lambda x_{\bullet} x > 2 \land x < 40) = (\lambda x_{\bullet} x < 40) \cap (\lambda x_{\bullet} x > 2)$$
 Def L3
$$\vdash (\lambda x_{\bullet} x > 2 \land x < 40) = (\lambda x_{\bullet} x < 40 \land x > 2)$$
 LEO