

Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной Дисциплина «Вычислительная математика»

Отчет по лабораторной работе №4 Вариант 25

Выполнил:

Туляков Е.В.

P32101

Преподаватель:

Рыбаков С. Д.

Санкт-Петербург 2023г Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Метод Наименьших квадратов:

Мерой отклонения многочлена $\varphi(x)$ от заданной функции f(x) на множестве точек $((x_i,y_i)$ является величина S (критерий минимизации), равная сумме квадратов разности между значениями многочлена и функции для всех точек x_0,x_1,\ldots,x_n :

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 \rightarrow min$$

Задача нахождения наилучших значений параметров a_0, a_1, \dots, a_m сводятся к некоторой минимизации отклонений ε_i .

Параметры a_0,a_1,\dots,a_m эмпирической формулы находятся из условия минимума функции $S=S(a_0,a_1,a_2,\dots,a_m)$,.

Так как здесь параметры выступают в роли независимых переменных функции S, то ее минимум найдем, приравнивая к нулю частные производные по этим переменным (m — степень многочлена, n - число точек в таблице):

$$\frac{\partial S}{\partial a_0} = 2 \sum_{i=1}^n a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i = 0$$

$$\frac{\partial S}{\partial a_1} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i = 0$$

$$\dots \dots \dots$$

$$\frac{\partial S}{\partial a_m} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i^m = 0$$

Вычислительная реализация:

$$y = \frac{5x}{x^4 + 11}$$

i	1	2	3	4	5	6	7	8	9	10	11
Х	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0.0
Υ	-0.370	-0.419	-0.456	-0.472	-0.459	-0.417	-0.351	-0.270	-0.181	-0.091	0.000

$$SX = \sum_{i=1}^{n} x_i = -11$$

$$SXX = \sum_{i=1}^{n} x_i^2 = 15.4$$

$$SY = \sum_{i=1}^{n} y_i = -3.486$$

$$SXY = \sum_{i=1}^{n} x_i y_i = 3.988$$

$$SXXX = \sum_{i=1}^{n} x_i^3 = -24.2$$

$$SXXY = \sum_{i=1}^{n} x_i^2 y_i = -6.062$$

$$SXXXX = \sum_{i=1}^{n} x_i^4 = 40.533$$

Линейная:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases} \begin{cases} 15.4a - 11b = 3.988 \\ -11x + 11b = -3.486 \end{cases} \begin{cases} a = 0.114 \\ b = -0.203 \end{cases}$$

$$y = 0.114x - 0.203$$

Квадратичная:

```
\begin{cases} cn + bSX + aSXX = SY \\ cSX + bSXX + aSXXX = SXY \\ cSXX + bSXXX + aSXXXX = SXXY \end{cases} \begin{cases} 11c - 11b + 15.4a = -3.486 \\ -11c + 15.4b - 24.2a = 3.988 \\ 15.4c - 24.2b + 40.533a = -6.062 \end{cases}
\begin{cases} a = -0.129 \\ b = -0.145 \\ c = -0.280 \end{cases}
y = -0.129x^2 - 0.145x - 0.28
\sigma_{c} = 0.096
```

$$\sigma_1 = 0.096$$

 $\sigma_2 = 0.141$

Лучшее приближение - линейное.

Код методов:

```
private static double linearApprox() {
    Dot[] dots = DotCollection.getDots();
    double[] coefficients = getLinearCoefficients(dots);
    double deviation = getDeviation(coefficients);
    save(coefficients, deviation);
    Printer.printP(coefficients, deviation);
    Printer.printR(getR(dots));
    return deviation;
}
```

```
private static double quadraticApprox() {
```

```
numberApprox++;
   Dot[] dots = DotCollection.getDots();
   double[] coefficients = getQuadraticCoefficients(dots);
   double deviation = getDeviation(coefficients);
   save(coefficients, deviation);
   Printer.printP(coefficients, deviation)
   return deviation;
private static double cubicApprox()
   numberApprox++;
   Dot[] dots = DotCollection.getDots();
   double[] coefficients = getCubicCoefficients(dots);
   double deviation = getDeviation(coefficients);
   save(coefficients, deviation);
   Printer.printP(coefficients, deviation)
   return deviation;
private static double powerApprox()
   numberApprox++;
   Dot[] dots = DotCollection.getDots();
   Dot[] cloneDots = cloneDots(dots);
   for (Dot dot : cloneDots) {
       double x = dot.getX();
       double y = dot.getY();
       dot.setX(Math.log(x));
       dot.setY(Math.log(y));
   double[] coefficients = getLinearCoefficients(cloneDots)
   double[] ab = new double[2]
```

```
ab[0] = Math.pow(Math.E, coefficients[1])
   ab[1] = coefficients[0];
   double deviation = getDeviation(ab);
   save(ab, deviation);
   Printer.printP(ab, deviation)
   return deviation;
private static double exponentialApprox()
   numberApprox++;
   Dot[] dots = DotCollection.getDots();
   Dot[] cloneDots = cloneDots(dots);
   for (Dot dot : cloneDots) {
       double y = dot.getY();
       dot.setY(Math.log(y));
   double[] coefficients = getLinearCoefficients(cloneDots);
   double[] ab = new double[2];
   ab[0] = Math.pow(Math.E, coefficients[1])
   ab[1] = coefficients[0];
   double deviation = getDeviation(ab)
   save(ab, deviation);
   Printer.printP(ab, deviation);
   return deviation;
private static double logApprox()
   numberApprox++;
   Dot[] dots = DotCollection.getDots()
   Dot[] cloneDots = cloneDots(dots);
   for (Dot dot : cloneDots) {
```

```
double x = dot.getX();
    dot.setX(Math.log(x));
}

double[] coefficients = getLinearCoefficients(cloneDots);
double deviation = getDeviation(coefficients);
save(coefficients, deviation);
Printer.printP(coefficients, deviation);
return deviation;
}
```

Результат работы:

```
1 4
2 6.079
3 7.2958
4 8.1589
5 8.8283
6 9.3753
7 9.8378
8 10.238
```

P(x)

 $(4,2732)x^{0}(0,4420) \sigma =$

			ЕХР(ONENTIAL				
X							7,00	8,00
Υ								
P(x)								
ξ								
P5(x)	= (4,5373)	3) <mark>e^(0,11</mark> 69	θ x) $\sigma = 0,8$	8188				
			LOG/	ARITHMIC				
X	1,00	2,00	LOG/ 3,00	ARITHMIC 4,00	 5,00	6,00	 7,00	8,00
X Y	1,00 4,00	2,00 6,08	LOG/ 3,00 7,30	ARITHMIC 4,00 8,16	5,00 8,83	 6,00 9,38	7,00 9,84	8,00 10,24
 X Y P(x)								
 Χ Υ Ρ(x) ξ								
 Χ Υ Ρ(x) ξ Ρ6(x)				8,16 8,1588 -0,0001				

RESULT: P6(x) is the best approximation

Вывод:

Во время выполнения лабораторной работы я изучил работу метода наименьших квадратов для построения аппроксимирующей функции, заданной в табличном виде. Программа реализует вычисление аппроксимации для элементарных функций. Выбор наилучшего приближения можно сделать, посчитав среднеквадратичное отклонение.