9 02/063

PATENT CLAIMS

- A superconducting resistive current limiter adapted for a nominal voltage U_N and carrying a nominal current I_N at a working temperature T_N, with at least one track (1) of length L_{tot} comprising a thin-film of high-temperature superconducting material with a critical current density J_C and an electrical bypass layer in contact with the film, wherein the track (1) consists of a multitude of constrictions (2) having a total length L_C and each having an approximately constant critical current I_{C,C} equal to the nominal current I_N and being separated from each other by connecting sections (3) having a critical current I_{C,S} larger than I_N, characterized in that the total resistance R_C of the constrictions (2) at working temperature T_N is adapted to cause a voltage drop equal to the nominal voltage U_N at an initial fault current I_b limited to a value below a prospective fault current.
- 2. The current limiter according to claim 1, characterized in that the resistance R_C of the constrictions (2) at an initial fault current I_b with a current density J_b of approximately 1.5 times J_C flowing in the constrictions (2) is adapted to cause a voltage drop U_C = R_C times I_b equal to the nominal voltage U_N.
- The current limiter according to claim 2, characterized in that an averaged reduced
 resistivity ρ_C of the constrictions (2) at working temperature T_N and at the initial fault current density J_b is adapted to limit the surface power density p_b dissipated by the constrictions (2).
 - 4. The current limiter according to claim 3, characterized in that the averaged reduced resistivity ρ_C of the constrictions (2) is given by $\rho_C = p_b / J_b^2$ e, wherein e is the thickness of the superconducting film at the constrictions.

25

- 5. The current limiter according to claim 4, characterized in that the conductivity of the bypass layer is higher along the constrictions (2) than along the connecting sections (3).
- 6. The current limiter according to one of claims 1 to 4, characterized in that the constrictions (2) are divided into two or more paths (20) electrically connected in parallel.