III. Линейные пространства, линейная зависимость и ранг

Определения и формулы.

Линейным пространством называется множество (элементы которого называются векторами), в котором определены операция сложения векторов и операция умножения вектора на число. Эти операции удовлетворяют определенным соотношениям:

- (1) (a + b) + c = a + (b + c) (ассоциативность операции сложения).
- (2) a + b = b + a (коммутативность операции сложения).
- (3) Существует единственный нуль-вектор (обозначаемый $\bar{0}$) такой, что для всех a верно $a + \bar{0} = \bar{0} + a = a$.
- (4) Для любого a существует единственный вектор b = -a такой, что $a + (-a) = \bar{0}$.
- (5) $(\lambda \mu)a = \lambda(\mu a)$ (ассоциативность операции умножения на число).
- (6) $\lambda(a+b) = \lambda a + \lambda b$ (дистрибутивность сложения векторов относительно умножения на число).
- (7) $(\lambda + \mu)a = \lambda a + \mu a$ (дистрибутивность сложения чисел относительно умножения на вектор).

Набор векторов $a = \{a_1, a_2, ..., a_k\}$ называется линейно зависимым, если существует такие числа $\{\lambda_1, \lambda_2, ..., \lambda_k\}$, не все из которых равны нулю, что $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_k a_k = \bar{0}$.

Набор векторов $a = \{a_1, a_2, ..., a_k\}$ называется линейно независимым, если из равенства $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_k a_k = \bar{0}$ следует, что $\lambda_i = 0$ для всех j.

Вектор b линейно выражается через набор векторов $a = \{a_1, a_2, ..., a_k\}$, если существует такие числа $\{\lambda_1, \lambda_2, ..., \lambda_k\}$, что $b = \lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_k a_k$.

Набор векторов линейно зависим тогда и только тогда, когда хотя бы один его вектор линейно выражается через остальные.

Набор векторов b линейно выражается через набор векторов $a = \{a_1, ..., a_k\}$, если каждый вектор набора b выражается через набор a.

Рангом rank(a) (или r(a)) набора a называется максимальное число линейно независимых векторов в наборе a.

Базой набора a называется его поднабор f, который, во-первых, линейно независим, во-вторых, становится линейно зависимым при добавлении любого вектора из набора a.

Поднабор f является базой набора a тогда и только тогда, когда он линейно независим и любой вектор набора a линейно выражается через поднабор f.

Число векторов во всех базах набора a одинаково и равно рангу набора a.

Теорема о двух наборах. Если набор векторов $b = \{b, b, ..., b_m\}$ выражается через набор векторов $a = \{a_1, a_2, ..., a_k\}$ и m > k, то набор b линейно зависим.

Теорема о сравнении рангов наборов. Если набор векторов b выражается через набор векторов a, то $rank(a) \ge rank(b)$.

Рангом матрицы называется ранг ее строк или столбцов, рассматриваемых как координатные векторы (эти числа совпадают).

Если в определения и теоремы выше вместо слова «набор» подставлять словосочетание «линейное пространство», то ранг называется размерностью, а база называется базисом. Линейное пространство, в котором есть конечный базис, называется конечномерным.

Примеры решения задач.

Пример 1. Найдите ранг набора векторов a (другая формулировка: найдите ранг строк матрицы A). Набор $a = \{a_1(1;1;-2), a_2(2;-3;1), a_3(1;-2;1)\}.$

Решение. Если два набора векторов выражаются друг через друга, то их ранги одинаковы. Поэтому преобразования набора векторов, подобные преобразованиям Гаусса, а именно: умножить вектор на число, прибавить к вектору другой вектор, умноженный на число, исключить или добавить нулевой вектор — не меняют ранга набора.

Эти преобразования оформляются схемой, подобной схеме Гаусса-Жордана решения однородной системы. Составляется матрица, в которой координаты векторов образуют

строки. Далее преобразованиями Гаусса она приводится к виду, где строки линейно независимы. Тогда количество строк в последней матрице является также рангом исходного набора векторов.

Для нашего набора

$$A = \begin{pmatrix} 1 & \boxed{1} & -2 \\ 2 & -3 & 1 \\ 1 & -2 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 5 & 0 & -5 \\ \boxed{3} & 0 & -3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 1 & 0 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}.$$
 В матрице $\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$ есть два базисных столбца. Значит, $rank(a) = 2$.

В исходной матрице координаты векторов можно также записывать по столбцам.

Пример 2. Найдите при всех значениях параметра Р ранг набора строк матрицы

$$A = \begin{pmatrix} 3 & 8 & P \\ -1 & -3 & 1 \\ -2 & P - 4 & 0 \end{pmatrix}.$$

Решение. Будем преобразовывать матрицу A так, как при решении однородной СЛАУ:

$$\begin{pmatrix} 3 & 8 & P \\ \hline -1 & -3 & 1 \\ -2 & P-4 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & \hline -1 & P+3 \\ -1 & -3 & 1 \\ 0 & P+2 & -2 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & -1 & P+3 \\ -1 & -3 & 1 \\ 0 & 0 & P^2+5P+4 \end{pmatrix}.$$

При данных преобразованиях ранг набора строк матрицы не меняется. Если $P^2 + 5P + 4 = (P+1)(P+4) \neq 0$, то, сократив третью строку на число $(P^2 + 5P + 4)$ и переставив первые две строки, получим треугольную матрицу с ненулевой главной диагональю, набор строк которой имеет ранг три

$$\begin{pmatrix} -1 & -3 & 1 \\ 0 & -1 & P+3 \\ 0 & 0 & 1 \end{pmatrix}.$$

диагональю, наоор строк которой имеет рангтри
$$\begin{pmatrix} -1 & -3 & 1 \\ 0 & -1 & P+3 \\ 0 & 0 & 1 \end{pmatrix}.$$
 При $P=-1$ и $P=-4$ ранг набора строк получающихся матриц
$$\begin{pmatrix} 0 & -1 & 2 \\ -1 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 и
$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

равен двум

Пример 3. Найдите коэффициенты разложения вектора b(0; 1; -1) по векторам набора $a = \{a_1(2;3;-2), a_2(1;2;3), a_3(2;3;1)\}.$

Решение. Разложение вектора b по набору векторов $a = \{a_1, a_2, ...\}$ эквивалентно наличию решения у векторного уравнения $x_1a_1 + x_2a_2 + ... = b$. В пространстве \mathbb{R}^n такое уравнение эквивалентно неоднородной СЛАУ AX = B, у которой столбцы матрицы Aсоставляют координаты векторов a_i , а столбец свободных членов B состоит из координат вектора *b*. Решим систему методом Гаусса-Жордана:

ктора *b*. Решим систему методом гаусса-жордана.
$$\begin{pmatrix} 2 & \boxed{1} & 2 & 0 \\ 3 & 2 & 3 & 1 \\ -2 & 3 & 1 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ -1 & 0 & \boxed{-1} & 1 \\ -8 & 0 & -5 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0 & 2 \\ -1 & 0 & -1 & 1 \\ \boxed{-3} & 0 & 0 & -6 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & -1 & 3 \\ 1 & 0 & 0 & 2 \end{pmatrix}.$$

Следовательно, $x_1 = 2$, $x_2 = 2$, $x_3 = -3$, откуда $b = 2a_1 + 2a_2 - 3a_3$

Пример 4. Опишите все линейные зависимости набора векторов $a = \{a_1, a_2, ...\}$. Определите ранг этого набора. Перечислите все возможные базы этого набора. Укажите, какие векторы набора нельзя выразить через остальные.

- (1) $a = \{a_1(1; -5; 2), a_2(1; -2; -1), a_3(-2; 1; 5)\}.$
- (2) $a = \{a_1(3; -7; -4), a_2(1; -3; -1), a_3(-1; 1; 3)\}$.
- (3) $a = \{a_1(3; 2; 4), a_2(0; 1; -1), a_3(2; 1; 3), a_4(5; 4; 6)\}.$

Решение. Линейная зависимость набора векторов $a = \{a_1, a_2, ...\}$ эквивалентна наличию нетривиального решения у векторного уравнения $x_1a_1 + x_2a_2 + ... = \bar{0}$. В пространстве R^n такое векторное уравнение записывается в виде однородной СЛАУ. Столбцы матрицы коэффициентов этой СЛАУ составляют координаты векторов a_i .

(1) Однородная СЛАУ имеет вид

$$\begin{cases} x_1 + x_2 - 2x_3 = 0 \\ -5x_1 - 2x_2 + x_3 = 0 \\ 2x_1 - x_2 + 5x_3 = 0 \end{cases}.$$

Решим ее помощью схемы Гаусса-Жордана:

$$\begin{pmatrix} 1 & \boxed{1} & -2 \\ -5 & -2 & 1 \\ 2 & -1 & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & -2 \\ -3 & 0 & -3 \\ \boxed{3} & 0 & 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & -3 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & -3 \\ 1 & 0 & 1 \end{pmatrix}.$$

ФНР последней системы состоит из одного вектора $f_1=(-1;3;1)$. Мы получили единственную (с точностью до множителя) линейную зависимость: $-a_1+3a_2+a_3=\overline{0}$. Итак, тройка $\{a_1,a_2,a_2\}$ линейно зависима, а линейно независимыми являются пары $\{a_1,a_2\},\ \{a_1,a_3\},\ \{a_2,a_3\}$. Любая из этих пар может служить базой набора $a,\ rank(a)=2$. Зависимость $-a_1+3a_2+a_3=\overline{0}$ показывает, что любой из трех векторов можно выразить через два других.

(2) Однородная СЛАУ имеет вид

$$\begin{cases} 3x_1 + x_2 - x_3 = 0 \\ -7x_1 - 3x_2 + x_3 = 0 \\ -4x_1 - x_2 + 3x_3 = 0 \end{cases}$$

Решим ее помощью схемы Гаусса-Жордана:

$$\begin{pmatrix} 3 & \boxed{1} & -1 \\ -7 & -3 & 1 \\ -4 & -1 & 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 & 1 & -1 \\ 2 & 0 & -2 \\ \boxed{-1} & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 5 \\ 0 & 0 & \boxed{2} \\ -1 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Такая система имеет только тривиальное решение. Итак, тройка $\{a_1, a_2, a_2\}$ линейно независима и является единственной базой набора a, rank(a) = 3. Линейная независимость означает, что ни один из трех векторов нельзя выразить через два других.

(3) Однородная СЛАУ имеет вид

$$\begin{cases} 3x_1 & +2x_3+5x_4=0\\ 2x_1+x_2+x_3+4x_4=0\\ 4x_1-x_2+3x_3+6x_4=0 \end{cases}.$$

Решим ее:

$$\begin{pmatrix} 3 & 0 & 2 & 5 \\ 2 & 1 & \boxed{1} & 4 \\ 4 & -1 & 3 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} \boxed{-1} & -2 & 0 & -3 \\ 2 & 1 & 1 & 4 \\ -2 & -4 & 0 & -6 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & -2 & 0 & -3 \\ 0 & -3 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -3 & 1 & -2 \end{pmatrix}.$$

ФНР этой системы состоит из двух векторов $f_1 = (-2; 1; 3; 0)$ и $f_2 = (-3; 0; 2; 1)$. Мы получили две не пропорциональных линейных зависимости:

$$-2a_1 + a_2 + 3a_3 = \overline{0}$$
 и $-3a_1 + 2a_3 + a_4 = \overline{0}$.

Из этого следует, что любая пара $\{a_j, a_k\}$ линейно независима, а другие векторы набора выражаются через эти два вектора. Значит, любая пара $\{a_j, a_k\}$ может служить базой набора a, rank(a) = 2.

Типовые задачи

1. Найдите ранг набора векторов или ранг набора строк матрицы A.

a)
$$a_1 = (1; -1; -2), a_2 = (2; 1; 1), a_3 = (3; 1; -2).$$

6)
$$a_1 = (-2; -1; 3), a_2 = (-3; 1; 2), a_3 = (-3; -4; 7).$$

B)
$$A = \begin{pmatrix} 3 & -2 & 4 \\ 7 & 6 & -2 \\ 2 & 4 & -3 \end{pmatrix}$$
.

$$\Gamma A = \begin{pmatrix} 4 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

д)
$$a_1 = (3;-1;0;-2)$$
, $a_2 = (0;2;2;4)$, $a_3 = (3;0;1;0)$, $a_4 = (1;1;1;1)$.

e)
$$a_1 = (2;1;0;1)$$
, $a_2 = (4;3;2;3)$, $a_3 = (-5;-1;3;-1)$, $a_4 = (1;2;3;2)$.

$$\mathbf{x}) \ A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ -1 & 3 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 3 & 1 & 0 & 0 \end{pmatrix}.$$

3)
$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ -1 & -1 & 1 & 1 \\ 1 & 3 & 2 & 1 \\ 3 & 5 & 0 & -1 \end{pmatrix}$$
.

$$\mathbf{H} \quad A = \begin{pmatrix} 3 & 1 & -2 & 1 \\ 2 & 3 & -1 & 2 \\ 1 & -2 & 2 & -1 \\ 4 & 6 & -5 & 4 \end{pmatrix}.$$

K)
$$a_1 = (1; -2; 4; -3; 2), a_2 = (3; 4; -5; 3; 1), a_3 = (-5; 0; 7; -5; -3), a_4 = (7; 6; 4; -5; 6).$$

2. Найдите ранг матрицы A при всех значениях параметра

а)
$$A = \begin{pmatrix} 2 & -5 & 3 \\ 1 & -2 & 1 \\ 0 & -1 & p + 2 \end{pmatrix}$$
. 6) $A = \begin{pmatrix} 4 & -2 & 5 \\ 2 & -1 & -3 \\ -2 & 1 & 2p - 3 \end{pmatrix}$. 8) $A = \begin{pmatrix} 4 & 2 & -6 \\ 2 & p - 1 & -3 \\ -2 & -1 & 2p - 1 \end{pmatrix}$. 7) $A = \begin{pmatrix} p^2 - 4 & 0 & p^2 - 4 \\ 2p - 4 & p^2 - 3p + 2 & 2p - 4 \\ p^2 + 2p - 8 & 2p - 4 & 2p - 4 \end{pmatrix}$. 9) $A = \begin{pmatrix} 1 & 1 & p \\ 1 + p & 2 & 0 \\ 1 & 1 & -2 \end{pmatrix}$. 9) $A = \begin{pmatrix} 1 & 3 & 2 \\ -2 & -7 & p + 1 \\ -1 & p - 2 & 1 \end{pmatrix}$. 3) $A = \begin{pmatrix} p & p & p + 1 \\ 1 & 1 & 0 \\ p^2 & p + 2 & p + 1 \end{pmatrix}$. 3) $A = \begin{pmatrix} p^2 - 3p + 2 & -2p + 2 & p^2 - 5p + 4 \\ 0 & p^2 - 1 & -2p + 2 \\ p^2 - 3p + 2 & -2p + 2 & -2p + 2 \end{pmatrix}$.

- - a) b = (-4, 15), $a_1 = (2, 3)$, $a_2 = (3, 1)$.
 - 6) $b = (2, 3), a_1 = (2, -3), a_2 = (-6, 9).$
 - B) $b = (5, 2, 1), a_1 = (2, 3, -1), a_2 = (3, -1, 2).$
 - Γ) $b = (3, -5, 2), a_1 = (1, 0, 0), a_2 = (0, 1, 0), a_3 = (1, 1, 1).$
 - \mathbf{A}) $b = (0; -7; 3), a_1 = (2; -1; 3), a_2 = (1; -1; 2), a_3 = (2; 3; 1).$
 - e) b = (-1;1;2), $a_1 = (2;3;-1)$, $a_2 = (3;2;1)$, $a_3 = (1;-1;2)$.
 - ж) $b(x) = -1 + 5x 7x^2$, $a_1(x) = 1 x^2$, $a_2(x) = 1 x + 2x^2$, $a_3(x) = 2x + x^2$.
 - 3) $b(x) = -2x^2 + 6x + 3$, $a_1(x) = x^2 + 2x 1$, $a_2(x) = -2x^2 + x + 3$, $a_3(x) = 2x^2 x 2$.
 - и) $b(x) = 5 + 4x 3x^2$, $a_1(x) = 2 + x 3x^2$, $a_2(x) = 1 + x^2$, $a_3(x) = x + x^2$.
 - K) $b(x) = 2(2\cos x 3\sin x)^2$, $a_1(x) = \sin 2x$, $a_2(x) = \cos 2x$, $a_3(x) = 1$.

л)
$$B = \begin{pmatrix} 7 & -2 \\ 7 & -2 \end{pmatrix}$$
, $A_1 = \begin{pmatrix} -3 & 2 \\ 3 & -4 \end{pmatrix}$, $A_2 = \begin{pmatrix} 2 & 3 \\ -2 & 7 \end{pmatrix}$, $A_3 = \begin{pmatrix} -3 & 5 \\ -4 & 6 \end{pmatrix}$.

- 4. Найдите все значения параметра p, при которых вектор b выражается линейно через векторы $\{a_1, a_2, ..., a_n\}$.
 - a) $b = (p; p^2 + 3), a_1 = (1; 2), a_2 = (-2; 1).$
 - 6) $b = (-4, 3), a_1 = (3, 1), a_2 = (p, -2).$
 - B) b = (-4,1;p), $a_1 = (-2,4,2)$, $a_2 = (1,-2,-1)$, $a_3 = (-1,2,3)$.
 - $a_1 = (2; 1; -3), a_2 = (1; -1; 2), a_3 = (2p + 2; 3; -7).$
 - \mathbf{A}) b = (1;3;3), $a_1 = (2; p+3;-1)$, $a_2 = (-1;1;-5)$, $a_3 = (2;4;7)$.
 - e) $b = (6; 2; 13), a_1 = (2; 4; 1), a_2 = (1; 3; 1 p), a_3 = (1; p; 1).$
 - ж) $b = (4; 2p-1; 7; -1), a_1 = (2; -1; 3; 1), a_2 = (1; -3; 2; -1), a_3 = (4; 3; 5; 5).$

- 5. Найдите все значения параметра p, при которых набор векторов $\{a_1, a_2, ...\}$ линейно зависим.
 - a) $a_1 = (3; -4; 5), a_2 = (1; -1; 2), a_3 = (0; -1; -p).$
 - 6) $a_1 = (1; -1; -2), a_2 = (-2; 2; 4), a_3 = (3; p-1; p).$
 - B) $a_1 = (1; -2; -2), a_2 = (p-1; 4; 5), a_3 = (3; -6; 2p).$
 - $a_1(x) = 2 + 2x + x^2$, $a_2(x) = 1 + 3x + x^2$, $a_3(x) = 3 + 5x + px^2$.

 - e) $a_1(x) = \sin x + p \cos x + p \cos 2x$, $a_2(x) = 3\sin x + \cos x + 2\cos 2x$, $a_3(x) = \sin x + 2\cos x \cos 2x$.
 - ж) $a_1 = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 1 & 2 \\ p & -1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 4 & 1 2p \\ 1 & 5 \end{pmatrix}$.
- 6. Найдите все значения параметра p, при которых набор $\{a_1, a_2, ..., a_n\}$ линейно независим.
 - a) $a_1 = (3;-1;-2)$, $a_2 = (-1;2;4)$, $a_3 = (-2;1;p)$.
 - 6) $a_1 = (2;1;-1)$, $a_2 = (4;p;1)$, $a_3 = (-4;-2;2)$.
 - B) $a_1 = (4;-2;-7)$, $a_2 = (1; p-2; 5)$, $a_3 = (3;-1;-3)$.
- 7. Найдите ранг набора векторов $\{a_1, a_2, ..., a_k\}$ и определите полную систему зависимостей этих векторов. Перечислите все варианты базы этого набора. Какой вектор нельзя выразить через остальные?
 - a) $a_1 = (0; 5; -1), a_2 = (2; -1; -1), a_3 = (3; 1; -2).$
 - 6) $a_1 = (4; 3; -1), a_2 = (-1; 2; 1), a_3 = (-1; 2; 3).$
 - B) $a_1 = (1; 2; -1), a_2 = (0; 0; 0), a_3 = (1; -1; 2).$
 - Γ) $a_1 = (1;0;1), a_2 = (1;1;0), a_3 = (2;-1;1), a_4 = (-1;-1;1).$
 - Д) $a_1 = (3;2;1), a_2 = (10;7;1), a_3 = (0;1;-7), a_4 = (2;1;3).$
 - e) $a_1 = (1; 2; -1)$, $a_2 = (-1; -2; 1)$, $a_3 = (-3; -6; 3)$, $a_4 = (-2; -4; 2)$.
 - ж) $a_1 = (2; -1; 3; -2), a_2 = (-4; 2; -6; 4), a_3 = (1; -1; 3; -2).$
 - 3) $a_1 = (3; -1; 1; 2), a_2 = (3; 1; -2; 3), a_3 = (6; -4; 5; 3), a_4 = (9; -1; 0; 7).$
 - и) $a_1 = (1; 2; 1; 3)$, $a_2 = (3; 1; 2; 2)$, $a_3 = (7; -1; 4; 0)$, $a_4 = (-1; 1; -3; 2)$.
 - K) $a_1 = (-2, 3, 4, -3, -1), a_2 = (3, -2, 1, 0, 4), a_3 = (2, -4, -5, 3, 2), a_4 = (5, 3, 1, -3, -3).$
 - л) $a_1 = (3; 5; -4; -6; -1)$, $a_2 = (3; 4; 1; 0; -2)$, $a_3 = (-5; -6; -5; -4; 4)$, $a_4 = (2; 3; -1; -2; -1)$.
 - $\begin{array}{l} {\rm M}) \ \ a_1 = (9; -4; 2; -1; 3) \,, \quad a_2 = (3; 1; -2; 1; 3) \,, \quad a_3 = (2; 3; -1; 2; 3) \,, \quad a_4 = (1; -2; 2; -1; -1) \,, \\ a_5 = (1; 3; \ -1; 1; -4) \,. \end{array}$

Дополнительные задачи

- 10. Существует ли набор из двух векторов, имеющий ранг нуль?
- 11. Приведите пример трех линейно зависимых векторов, один из которых нельзя выразить через два других.
- 12. Набор векторов F в R^3 таков, что ранг набора F не меняется при добавлении к нему вектора $a \neq \overline{0}$ и меняется при добавлении вектора b. Каким может быть ранг такого набора?
- 13. Приведите пример такого линейно зависимого набора F векторов в R^3 , ранг которого при добавлении произвольного вектора не меняется.
- 14. Приведите пример такого непустого набора F векторов в R^3 , ранг которого при добавлении произвольного ненулевого вектора увеличивается.

- 15. Приведите пример 3-х линейно зависимых многочленов в пространстве $P_2[x]$ многочленов степени не выше второй, не каждый из которых линейно выражается через остальные.
- 16. Приведите пример набора из 3-х векторов в R^3 , у которого есть единственная база: а) из двух векторов. б) из одного вектора.
- 17. Набор векторов $\{a_1, a_2, ..., a_n\}$ имеет ровно одну базу. Опишите все варианты, при которых это возможно.
- 18. Приведите пример набора из 3-x векторов в R^3 , у которого нет базы.
- 19. Приведите пример набора из 4-х векторов в R^3 , имеющего ровно две базы.
- 20. Приведите пример набора из четырех разных ненулевых многочленов в $P_3[x]$, имеющего ровно две базы.
- 21. Верно ли утверждение: если существует вектор, который имеет два различных разложения по векторам $\{f_i\}$, то набор $\{f_i\}$ линейно зависим?
- 22. Набор из четырех векторов в R^3 таков, что присоединение к нему произвольного вектора не меняет его ранга. Чему в этом случае равен ранг набора?
- 23. Набор из четырех векторов в R^3 таков, что присоединение к нему вектора (1;1;1) меняет его ранг, а присоединение вектора (1;2;1) или вектора (-1;1;1) не меняет его ранга. Чему в этом случае равен ранг набора?
- 24. Набор векторов $\{b_1, b_2\}$ линейно независим и линейно выражается через набор $\{a_1, a_2\}$. Докажите, что набор $\{a_1, a_2\}$ линейно выражается через набор $\{b_1, b_2\}$.
- 25. Набор векторов $\{b_1, b_2\}$ линейно независим, и наборы $\{b_1, b_2\}$ и $\{a_1, a_2, a_3\}$ линейно выражаются друг через друга. Чему может быть равен ранг набора $\{a_1, a_2, a_3\}$?
- 26. Набор векторов $\{b_1, b_2\}$ линейно независим и линейно выражается через набор $\{a_1, a_2, a_3\}$, а набор $\{a_1, a_2, a_3\}$ не выражается линейно через набор $\{b_1, b_2\}$.
 - а) Чему может быть равен ранг набора $\{a_1, a_2, a_3\}$?
 - б) Докажите, что хотя бы один из векторов a_i таков, что $r\{b_1,b_2,a_i\}=3$.
- 27. Наборы векторов $\{a_1, a_2, a_3\}$ и $\{b_1, b_2, b_3\}$ линейно выражаются друг через друга, набор $\{b_1, b_2, a_1\}$ линейно независим. Чему может быть равен ранг набора $\{a_1, a_2, a_3\}$?
- 28. Наборы векторов $\{a_1, a_2, a_3, a_4\}$ и $\{b_1, b_2, b_3\}$ линейно выражаются друг через друга.
 - а) Верно ли, что если набор $\{a_1,a_2,a_3,a_4\}$ ЛЗ, то набор $\{b_1,b_2,b_3\}$ тоже ЛЗ?
 - б) Верно ли, что если набор $\{b_1, b_2, b_3\}$ ЛНЗ, то набор $\{a_1, a_2, a_3, a_4\}$ тоже ЛНЗ?
- 29. Верно ли утверждение: если любой вектор линейного пространства R^n можно разложить по векторам $\{f_1,...,f_n\}$, то набор $\{f_1,...,f_n\}$ базис в R^n ?

Ответы на типовые задачи

- 1. a) r = 3. 6) r = 2. B) r = 2. $rac{1}{2}$
 - д) r = 3. e) r = 2. ж) r = 4.
 - 3) r = 2. W) r = 3. K) r = 3.
- 2. a) r = 2 при p = -1; r = 3 при $p \neq -1$.
 - б) r = 2 при всех p.
 - в) r=1 при p=2; r=3 при $p \neq 2$.
 - r = 0 при p = 2; r = 2 при p = -2, 1; r = 3 при прочих p.
 - д) r = 2 при p = -2, p = 1; r = 3 при прочих p.
 - e) r=1 при p=-1; r=2 при p=2; r=3 при прочих p.
 - ж) r = 2 при p = -4, -2; r = 3 при прочих p.
 - 3) r=0 при p=1; r=2 при p=2,-1; r=3 при прочих p.

```
3. a) (7; -6).
                          б) Не разлагается.
                                                     B) (1;1).
                                                                           \Gamma) (1; -7; 2).
  \pi) (3; -2; -2).
                          е) Не разлагается.
                                                     ж) (2;-3;1).
                                                                          3) (2;1;-1).
  и) (2;1;2).
                          к) (-12;-5;13).
                                                     \Pi) (1; 2;-2).
                          б) p \neq -6. в) Ни при каких p. г) p \neq -1.
4. a) При всех p.
  \mathbf{J}) При всех p.
                          e) p \neq 1.
                                             ж) p = -3.
5. a) p = 1.
                          б) При любых p. p = -1, p = -3. p = 2.
  д) p = 1, p = -5. e) p = \frac{1}{2}.
                                                ж) p = 4.
6. a) p \neq 2.
                    б) Ни при каких p. в) p \neq 3.
7. a) r=2; a_1+3a_2-2a_3=0; \{a_1,a_2\}, \{a_1,a_3\}, \{a_2,a_3\}; ни один.
  б) r = 3; тривиальная; \{a_1, a_2, a_3\}; каждый.
  B) r=2; a_2=0; \{a_1,a_3\}; a_2.
  г) r=3; -3a_1+3a_2+a_3+2a_4=0; любые три из четырех; ни один.
  д) r=2; 2a_1-a_3-3a_4=0 и a_2-2a_3-5a_4=0; ни один.
  e) r=1; a_1+a_2=0, 3a_1+a_3=0, 2a_1+a_4=0; любой вектор; ни один.
  ж) r=2; 2a_1+a_2=0; \{a_1,a_3\}, \{a_2,a_3\}; a_3.
  3) r=2; 3a_1-a_2-a_3=0 и 2a_1+a_2-a_4=0; любые два из четырех; ни один.
  и) r=3, 2a_1-3a_2+a_3=0; \{a_1,a_2,a_4\}, \{a_1,a_3,a_4\}, \{a_2,a_3,a_4\}; a_4.
  к) r = 4; тривиальная; \{a_1, a_2, a_3, a_4\}; каждый.
  л) r=2; 3a_2+a_3-2a_4=0; a_1+a_2-3a_4=0; любые два; ни один.
  M) r=4; a_1-2a_2-3a_4=0; \{a_1,a_2,a_3,a_5\}, \{a_1,a_3,a_4,a_5\}, \{a_2,a_3,a_4,a_5\}. a_3 и a_5.
           Ответы на дополнительные задачи
10. f = {\bar{0}, \bar{0}}.
11. a_1(1;0;0), a_2(1;0;0), a_3(1;1;0).
12. rank(F) = 1 или 2.
13. F = \{a_1(1; 0; 0), a_2(0; 1; 0), a_3(0; 0; 1), a_4(1; 0; 0)\}.
14. F = \{a_1(0; 0; 0)\}.
                               16. p_1(x) = 1, p_2(x) = 1, p_3(x) = x.
16. a) F = \{a_1(1;0;0), a_2(0;1;0), a_3(0;0;0)\}.
    6) F = \{a_1(1; 0; 0), a_2(0; 0; 0), a_3(0; 0; 0)\}.
17. Указание. В наборе нет поднабора из ненулевых элементов, который был бы ЛЗ.
18. F = \{a_1(0;0;0), a_2(0;0;0), a_3(0;0;0)\}.
19. F = \{a_1(1;0;0), a_2(0;1;0), a_3(0;0;1), a_4(1;0;0)\}.
20. F = \{p_1(x) = 1, p_2(x) = 2, p_3(x) = x, p_4(x) = x^2\}.
21. Верно.
22. Трем.
23. Двум.
24. Указание. Рассмотрите набор \{a_1, a_2, b_1, b_2\}.
25. Указание. Рассмотрите набор \{a_1, a_2, a_3, b_1, b_2\}.
```

б) Указание. Рассмотрите набор $\{a_1, a_2, a_3, b_1, b_2\}$.

б) Неверно.

26. а) Трем.

28. а) Неверно.

27. Трем.

29. Верно.