MatrixLab

1.3

Generated by Doxygen 1.8.13

Contents

1	Matr	rixlab		1
	1.1	Introdu	ction	1
2	![alt	tag](htt	ps://raw.githubusercontent.com/mohammadul/matrixlab/master/matrixlab.ico) Matrixlab	3
3	Data	Structi	ure Index	5
	3.1	Data S	tructures	5
4	File	Index		7
	4.1	File Lis	t	7
5	Data	Structi	ure Documentation	9
	5.1	mat_ba	ayes_model Struct Reference	9
		5.1.1	Detailed Description	9
		5.1.2	Field Documentation	9
			5.1.2.1 class_covars	9
			5.1.2.2 class_labels	10
			5.1.2.3 class_means	10
			5.1.2.4 class_priors	10
			5.1.2.5 num_of_classes	10
			5.1.2.6 num_of_features	10
	5.2	mat_gr	node Struct Reference	10
		5.2.1	Detailed Description	11
		5.2.2	Field Documentation	11
			FOOT poyt	44

ii CONTENTS

		5.2.2.2 v	11
		5.2.2.3 weight	11
5.3	mat_gr	aph Struct Reference	11
	5.3.1	Detailed Description	12
	5.3.2	Field Documentation	12
		5.3.2.1 adj	12
		5.3.2.2 dad	12
		5.3.2.3 id	12
		5.3.2.4 nedges	12
		5.3.2.5 nvertices	12
		5.3.2.6 pq	12
		5.3.2.7 val	13
		5.3.2.8 vseq	13
		5.3.2.9 weighted	13
		5.3.2.10 z	13
5.4	mat_in	t_priorityqueue Struct Reference	13
	5.4.1	Detailed Description	13
	5.4.2	Field Documentation	14
		5.4.2.1 element	14
		5.4.2.2 length	14
		5.4.2.3 p	14
		5.4.2.4 type	14
5.5	mat_in	t_queue Struct Reference	14
	5.5.1	Detailed Description	15
	5.5.2	Field Documentation	15
		5.5.2.1 head	15
		5.5.2.2 p	15
		5.5.2.3 tail	15
5.6	mat_in	t_stack Struct Reference	15
	5.6.1	Detailed Description	15

CONTENTS

	5.6.2	Field Doo	cumentation	 . 16
		5.6.2.1	length	 . 16
		5.6.2.2	p	 . 16
		5.6.2.3	stack	 . 16
5.7	mat_in	tpqnode S	Struct Reference	 . 16
	5.7.1	Detailed	Description	 . 16
	5.7.2	Field Doo	cumentation	 . 16
		5.7.2.1	data	 . 17
		5.7.2.2	priority	 . 17
5.8	mat_kc	dnode Stru	uct Reference	 . 17
	5.8.1	Field Doo	cumentation	 . 17
		5.8.1.1	idx	 . 17
		5.8.1.2	left	 . 17
		5.8.1.3	right	 . 18
		5.8.1.4	x	 . 18
5.9	mat_kc	dtree Struc	ct Reference	 . 18
	5.9.1	Field Doo	cumentation	 . 18
		5.9.1.1	_is_allocated	 . 18
		5.9.1.2	data	 . 18
		5.9.1.3	kdtree	 . 19
		5.9.1.4	length	 . 19
		5.9.1.5	ndims	 . 19
5.10	mat_m	type_prior	rityqueue Struct Reference	 . 19
	5.10.1	Detailed	Description	 . 19
	5.10.2	Field Doo	cumentation	 . 19
		5.10.2.1	element	 . 20
		5.10.2.2	length	 . 20
		5.10.2.3	p	 . 20
		5.10.2.4	type	 . 20
5.11	mat_m	type_queu	ue Struct Reference	 . 20

iv CONTENTS

	5.11.1	Detailed Description	20
	5.11.2	Field Documentation	21
		5.11.2.1 head	21
		5.11.2.2 p	21
		5.11.2.3 tail	21
5.12	mat_m	type_stack Struct Reference	21
	5.12.1	Detailed Description	21
	5.12.2	Field Documentation	21
		5.12.2.1 length	22
		5.12.2.2 p	22
		5.12.2.3 stack	22
5.13	mat_m	typepqnode Struct Reference	22
	5.13.1	Detailed Description	22
	5.13.2	Field Documentation	22
		5.13.2.1 data	22
		5.13.2.2 priority	23
5.14	mat_pe	erceptron Struct Reference	23
	5.14.1	Detailed Description	23
	5.14.2	Field Documentation	23
		5.14.2.1 class_labels	23
		5.14.2.2 class_weights	23
		5.14.2.3 istrained	24
		5.14.2.4 num_of_classes	24
		5.14.2.5 num_of_features	24
		5.14.2.6 num_of_iterations	24
5.15	mat_qir	ntnode Struct Reference	24
	5.15.1	Detailed Description	24
	5.15.2	Field Documentation	25
		5.15.2.1 data	25
		5.15.2.2 next	25
5.16	mat_qn	ntypenode Struct Reference	25
	5.16.1	Detailed Description	25
	5.16.2	Field Documentation	25
		5.16.2.1 data	25
		5.16.2.2 next	26
5.17	mat_tre	ee_node Struct Reference	26
	5.17.1	Detailed Description	26
	5.17.2	Field Documentation	26
		5.17.2.1 element	26
		5.17.2.2 left	26
		5.17.2.3 right	26

CONTENTS

6	File	Docum	entation		27
	6.1	matab	s.c File Re	eference	27
		6.1.1	Function	Documentation	27
			6.1.1.1	int_vec_abs()	27
			6.1.1.2	mat_abs()	28
	6.2	matad	d.c File Re	eference	28
		6.2.1	Function	Documentation	28
			6.2.1.1	int_vec_add()	28
			6.2.1.2	int_vec_adds()	29
			6.2.1.3	mat_add()	29
			6.2.1.4	mat_adds()	30
	6.3	matco	mpress.c F	File Reference	30
	6.4	matco	ncat.c File	Reference	30
		6.4.1	Function	Documentation	30
			6.4.1.1	int_vec_concat()	30
			6.4.1.2	mat_concat()	31
	6.5	matco	nv.c File R	eference	31
		6.5.1	Function	Documentation	32
			6.5.1.1	int_vec2_mat()	32
			6.5.1.2	mat_2int_vec()	32
			6.5.1.3	mat_vectorize()	32
			6.5.1.4	mat_vectorize_tr()	33
	6.6	matcre	at.c File F	Reference	33
		6.6.1	Function	Documentation	34
			6.6.1.1	int_vec_append()	35
			6.6.1.2	int_vec_copy()	35
			6.6.1.3	int_vec_creat()	35
			6.6.1.4	int_vec_fill()	36
			6.6.1.5	int_vec_fill_type()	36
			6.6.1.6	int_vec_free()	36

vi CONTENTS

		6.6.1.7	int_vecstack_creat()	37
		6.6.1.8	int_vecstack_free()	37
		6.6.1.9	mat_bayes_model_creat()	37
		6.6.1.10	mat_bayes_model_free()	38
		6.6.1.11	mat_colcopy()	38
		6.6.1.12	mat_copy()	38
		6.6.1.13	mat_creat()	39
		6.6.1.14	mat_creat_diag()	39
		6.6.1.15	mat_fgetmat()	40
		6.6.1.16	mat_fill()	40
		6.6.1.17	mat_fill_type()	40
		6.6.1.18	mat_free()	41
		6.6.1.19	mat_perceptron_creat()	41
		6.6.1.20	mat_perceptron_free()	41
		6.6.1.21	mat_rowcopy()	42
		6.6.1.22	mat_xcopy()	42
		6.6.1.23	mat_xjoin()	43
		6.6.1.24	matstack_append()	43
		6.6.1.25	matstack_creat()	44
		6.6.1.26	matstack_free()	44
		6.6.1.27	matvec_creat()	44
		6.6.1.28	matvec_free()	44
6.7	matdat	astruct.c F	ille Reference	45
	6.7.1	Function	Documentation	46
		6.7.1.1	mat_bs_delete()	46
		6.7.1.2	mat_bs_find()	46
		6.7.1.3	mat_bs_find_max()	46
		6.7.1.4	mat_bs_find_min()	46
		6.7.1.5	mat_bs_free()	46
		6.7.1.6	mat_bs_inorder()	46

CONTENTS vii

6.7.1.7	mat_bs_insert()	47
6.7.1.8	mat_bs_make_null()	47
6.7.1.9	mat_int_priorityqueue_creat()	47
6.7.1.10	mat_int_priorityqueue_dequeue()	47
6.7.1.11	mat_int_priorityqueue_enqueue()	47
6.7.1.12	mat_int_priorityqueue_free()	47
6.7.1.13	mat_int_priorityqueue_is_empty()	48
6.7.1.14	mat_int_priorityqueue_update()	48
6.7.1.15	mat_int_queue_creat()	48
6.7.1.16	mat_int_queue_dequeue()	48
6.7.1.17	mat_int_queue_enqueue()	48
6.7.1.18	mat_int_queue_free()	48
6.7.1.19	mat_int_queue_is_empty()	49
6.7.1.20	mat_int_stack_creat()	49
6.7.1.21	mat_int_stack_free()	49
6.7.1.22	mat_int_stack_is_empty()	49
6.7.1.23	mat_int_stack_pop()	49
6.7.1.24	mat_int_stack_push()	49
6.7.1.25	mat_mtype_priorityqueue_creat()	49
6.7.1.26	mat_mtype_priorityqueue_dequeue()	50
6.7.1.27	mat_mtype_priorityqueue_enqueue()	50
6.7.1.28	mat_mtype_priorityqueue_free()	50
6.7.1.29	mat_mtype_priorityqueue_is_empty()	50
6.7.1.30	mat_mtype_priorityqueue_update()	50
6.7.1.31	mat_mtype_queue_creat()	50
6.7.1.32	mat_mtype_queue_dequeue()	51
6.7.1.33	mat_mtype_queue_enqueue()	51
6.7.1.34	mat_mtype_queue_free()	51
6.7.1.35	mat_mtype_queue_is_empty()	51
6.7.1.36	mat_mtype_stack_creat()	51

viii CONTENTS

		6.7.1.37	mat_mtype_stack_free()	. 51
		6.7.1.38	mat_mtype_stack_is_empty()	. 51
		6.7.1.39	mat_mtype_stack_pop()	. 52
		6.7.1.40	mat_mtype_stack_push()	. 52
6.8	matdet	.c File Ref	ference	. 52
	6.8.1	Function	Documentation	. 52
		6.8.1.1	mat_cofact()	. 52
		6.8.1.2	mat_det()	. 53
		6.8.1.3	mat_minor()	. 53
6.9	matdiv.	.c File Refe	erence	. 53
	6.9.1	Function	Documentation	. 54
		6.9.1.1	int_vec_div()	. 54
		6.9.1.2	int_vec_divs()	. 54
		6.9.1.3	int_vec_divs_inv()	. 55
		6.9.1.4	int_vec_inv()	. 55
		6.9.1.5	mat_div_dot()	. 56
		6.9.1.6	mat_divs()	. 56
		6.9.1.7	mat_divs_inv()	. 57
		6.9.1.8	mat_inv_dot()	. 57
6.10) matdur	mp.c File F	Reference	. 57
	6.10.1	Function	Documentation	. 58
		6.10.1.1	int_vec_dump()	. 58
		6.10.1.2	int vec dumpf()	. 58
			int vec fdump()	
			int vec fdumpf()	
			mat dump()	
			mat_dumpf()	
			mat_fdump()	
0.44			mat_fdumpf()	
6.11	matdur	nn.c File F	Reference	. 60

CONTENTS

	6.11.1	Function	Documentation	 	61
		6.11.1.1	mat_durbin()	 	61
		6.11.1.2	mat_lsolve_durbin()	 	61
		6.11.1.3	mat_qr()	 	62
6.12	materr.	c File Refe	erence	 	62
	6.12.1	Function	Documentation	 	63
		6.12.1.1	gen_error()	 	63
		6.12.1.2	graph_error()	 	63
		6.12.1.3	int_vec_error()	 	63
		6.12.1.4	int_vecstack_error()	 	64
		6.12.1.5	mat_error()	 	64
		6.12.1.6	matstack_error()	 	64
		6.12.1.7	pq_error()	 	64
		6.12.1.8	queue_error()	 	65
		6.12.1.9	stack_error()	 	65
6.13	matfft.c	File Refe	erence	 	65
	6.13.1	Function	Documentation	 	65
		6.13.1.1	mat_fft2()	 	66
6.14	matfilte	er.c File Re	eference	 	66
	6.14.1	Function	Documentation	 	66
		6.14.1.1	mat_conv2()	 	66
6.15	matfit.c	: File Refer	rence	 	67
	6.15.1	Function	Documentation	 	67
		6.15.1.1	mat_least_squares()	 	67
		6.15.1.2	mat_linear_ls_fit()	 	68
		6.15.1.3	mat_rob_least_squares()	 	68
		6.15.1.4	mat_robust_fit()	 	68
		6.15.1.5	mat_w_least_squares()	 	69
6.16	matflip.	c File Refe	erence	 	69
	6.16.1	Function	Documentation	 	70

CONTENTS

	6.16.1.1 mat_fliplr()	70					
	6.16.1.2 mat_flipud()	70					
6.17 matfuncs.c File Reference							
6.17.1	Function Documentation	71					
	6.17.1.1mat_addfunc()	71					
	6.17.1.2mat_arccosh()	71					
	6.17.1.3mat_arcsinh()	72					
	6.17.1.4mat_arctanh()	72					
	6.17.1.5mat_bisquare_wt()	72					
	6.17.1.6mat_divfunc()	73					
	6.17.1.7mat_huber_wt()	73					
	6.17.1.8mat_logplusone()	74					
	6.17.1.9mat_mulfunc()	74					
	6.17.1.10mat_round_away_zero()	74					
	6.17.1.11mat_round_towards_zero()	75					
	6.17.1.12mat_sqrfunc()	75					
	6.17.1.13mat_sqrtfunc()	75					
	6.17.1.14mat_subfunc()	76					
	6.17.1.15 mat_bisquare_wt()	76					
	6.17.1.16 mat_gfunc()	77					
	6.17.1.17 mat_huber_wt()	77					
6.18 matgra	ph.c File Reference	77					
6.18.1	Function Documentation	78					
	6.18.1.1 mat_graph_adjlist()	78					
	6.18.1.2 mat_graph_adjm_to_adjl()	78					
	6.18.1.3 mat_graph_creat()	78					
	6.18.1.4 mat_graph_dump()	78					
	6.18.1.5 mat_graph_dumpf()	79					
	6.18.1.6 mat_graph_reverse()	79					
	6.18.1.7 mat_graph_search()	79					

CONTENTS xi

		6.18.1.8	mat_graph_visit()	. 79
6.19	matinn	erprod.c F	ile Reference	. 79
	6.19.1	Function	Documentation	. 80
		6.19.1.1	mat_innerprod()	. 80
		6.19.1.2	mat_norm_inf()	. 80
		6.19.1.3	mat_norm_one()	. 80
		6.19.1.4	mat_norm_p()	. 80
6.20	matinte	egrate.c Fil	le Reference	. 80
	6.20.1	Function	Documentation	. 81
		6.20.1.1	mat_int_qadrat()	. 81
		6.20.1.2	mat_int_simpson()	. 82
		6.20.1.3	mat_int_trapezoid()	. 82
6.21	matinv.	c File Refe	erence	. 83
	6.21.1	Function	Documentation	. 83
		6.21.1.1	mat_inv()	. 83
		6.21.1.2	mat_reg_inv()	. 83
6.22	matkdt	ree.c File I	Reference	. 84
	6.22.1	Function	Documentation	. 84
		6.22.1.1	mat_kdtree_free()	. 84
		6.22.1.2	mat_kdtree_k_nearest()	. 84
		6.22.1.3	mat_kdtree_make_tree()	. 85
		6.22.1.4	mat_kdtree_nearest()	. 85
6.23	matma	xmin.c File	e Reference	. 86
	6.23.1	Function	Documentation	. 86
		6.23.1.1	mat_max()	. 86
		6.23.1.2	mat_min()	. 86
6.24	matmd	s.c File Re	eference	. 86
	6.24.1	Function	Documentation	. 86
		6.24.1.1	mat_mds_metric()	. 87
		6.24.1.2	mat_mds_nonmetric()	. 87

xii CONTENTS

	6.24.1.3 mat_mds()	87
6.25 matmea	an.c File Reference	87
6.25.1	Function Documentation	87
	6.25.1.1 int_vec_mean()	87
	6.25.1.2 mat_mean()	88
	6.25.1.3 mat_mean_col()	88
	6.25.1.4 mat_mean_row()	89
6.26 matmiso	c.c File Reference	89
6.26.1	Function Documentation	90
	6.26.1.1mat_cart2pol()	90
	6.26.1.2mat_pol2cart()	90
	6.26.1.3 int_vec_permute_vect()	90
	6.26.1.4 int_vec_unique()	91
	6.26.1.5 mat_bsxfun()	91
	6.26.1.6 mat_calc_dist_sq()	91
	6.26.1.7 mat_cart2pol()	92
	6.26.1.8 mat_find_within_dist()	92
	6.26.1.9 mat_fnextline()	93
	6.26.1.10 mat_get_sub_matrix_from_cols()	93
	6.26.1.11 mat_get_sub_matrix_from_rows()	93
	6.26.1.12 mat_get_sub_vector()	94
	6.26.1.13 mat_nextline()	94
	6.26.1.14 mat_pick_col()	94
	6.26.1.15 mat_pick_row()	95
	6.26.1.16 mat_pol2cart()	95
	6.26.1.17 mats_isinf()	96
	6.26.1.18 mats_isnan()	96
6.27 matmul	I.c File Reference	96
6.27.1	Function Documentation	97
	6.27.1.1 int_vec_mul()	97

CONTENTS xiii

	6.27.1.2	int_vec_muls()			 	 	 	 	 	97
	6.27.1.3	mat_diagmul()			 	 	 	 	 	98
	6.27.1.4	mat_mul()			 	 	 	 	 	98
	6.27.1.5	mat_mul_dot()			 	 	 	 	 	98
	6.27.1.6	mat_mul_fast()			 	 	 	 	 	100
	6.27.1.7	mat_muls()			 	 	 	 	 	100
6.28 matpc	a.c File Re	ference			 	 	 	 	 	101
6.28.1	Function	Documentation			 	 	 	 	 	101
	6.28.1.1	mat_corcol() .			 	 	 	 	 	101
	6.28.1.2	mat_covcol() .			 	 	 	 	 	101
	6.28.1.3	mat_eig_sym()			 	 	 	 	 	101
	6.28.1.4	mat_pca()			 	 	 	 	 	102
	6.28.1.5	mat_scpcol() .			 	 	 	 	 	102
	6.28.1.6	mat_tqli()			 	 	 	 	 	102
	6.28.1.7	mat_tred2()			 	 	 	 	 	102
6.29 matpin	nv.c File Re	ference			 	 	 	 	 	102
6.29.1	Function	Documentation			 	 	 	 	 	102
	6.29.1.1	mat_pinv()			 	 	 	 	 	102
	6.29.1.2	mat_wpinv() .			 	 	 	 	 	103
6.30 matpo	ly.c File Re	ference			 	 	 	 	 	103
6.30.1	Function	Documentation			 	 	 	 	 	104
	6.30.1.1	mat_binom() .			 	 	 	 	 	104
	6.30.1.2	mat_binom_init	()		 	 	 	 	 	105
	6.30.1.3	mat_cheby() .			 	 	 	 	 	105
	6.30.1.4	mat_cheby_app	orox() .		 	 	 	 	 	105
	6.30.1.5	mat_cheby_coe	effs to p	poly() .	 	 	 	 	 	106
		mat_cheby_init								
		mat_legendre()								
		mat legendre								
		mat_poly_add()	v							

xiv CONTENTS

		6.30.1.10	0 m	at_p	oly_di	ff()				 	 107						
		6.30.1.11	1 m	at_p	oly_di	iff_ev	val()			 	 		 	 		 	108
		6.30.1.12	2 m	at_p	oly_di	v()				 	 		 	 	 	 	 108
		6.30.1.13	3 m	at_p	oly_e\	val()				 	 		 	 	 	 	 108
		6.30.1.14	4 m	at_p	oly_m	ıul()				 	 		 	 		 	 110
		6.30.1.15	5 m	at_p	oly_sc	cale(()			 	 		 	 		 	 110
		6.30.1.16	6 m	at_p	oly_sh	nift()				 	 		 	 		 	111
	6.30.2	Variable	Dod	cume	entatio	n .				 	 		 	 		 	 111
		6.30.2.1	m	at_bi	inom_	_seri	es_ta	able		 	 		 	 		 	111
		6.30.2.2	m	at_cl	heby_	serie	es_ta	able		 	 		 	 		 	 111
		6.30.2.3	m	at_le	gendı	re_s	eries	_tab	ole .	 	 		 	 		 	 111
6.31	matpre	c.c File Re	lefer	ence	.					 	 		 	 		 	 112
	6.31.1	Function	n Do	cume	entatio	on .				 	 		 	 		 	 112
		6.31.1.1	m	at_b	ayes_	clas	sifier	_tes	t() .	 	 		 	 		 	 112
		6.31.1.2	m	at_b	ayes_	clas	sifier	_trai	in() .	 	 		 	 		 	 112
		6.31.1.3	m	at_kı	means	s()				 	 		 	 		 	 112
		6.31.1.4	m	at_p	ercept	tron_	_test(() .		 	 		 	 		 	 112
		6.31.1.5	m	at_p	ercept	tron_	_train	n() .		 	 		 	 		 	 113
		6.31.1.6	m	at_p	ercept	tron_	_train	n_()		 	 	 	 	 		 	 113
6.32	matpur	suit.c File	Re	feren	ice .					 	 	 	 	 		 	 113
	6.32.1	Function	n Do	cume	entatio	on .				 	 		 	 		 	 113
		6.32.1.1	m	at_o	mp()					 	 		 	 		 	 113
6.33	matran	d.c File Re	Refer	rence	·					 	 	 	 	 		 	 114
	6.33.1	Function	n Do	cume	entatio	on .				 	 		 	 		 	 114
		6.33.1.1		_mat	_rand	() .				 	 		 	 	 	 	 114
		6.33.1.2		_mat	_rand	exp()			 	 		 	 	 	 	 114
		6.33.1.3		_mat	_rand	fun())			 	 		 	 	 	 	 114
		6.33.1.4		_mat	_rand	n()				 	 		 	 	 	 	 115
		6.33.1.5	in	t_ved	c_rand	dper	m()			 	 		 	 	 	 	 115
		6.33.1.6	m	at_ra	and()					 	 		 	 	 	 	 115

CONTENTS xv

	6.33.1.7 mat_randexp()
	6.33.1.8 mat_randfun()
	6.33.1.9 mat_randn()
	6.33.1.10 mat_randperm()
	6.33.1.11 mat_randperm_n()
	6.33.1.12 mat_set_seed()
6.33	.2 Variable Documentation
	6.33.2.1 MAT_SEED
	6.33.2.2 MAT_SET_SEED
6.34 matr	ix.c File Reference
6.35 matr	ix.h File Reference
6.35	.1 Typedef Documentation
	6.35.1.1 INT_VECSTACK
	6.35.1.2 INT_VECTOR
	6.35.1.3 mat_bayes_model
	6.35.1.4 MAT_BAYES_MODEL
	6.35.1.5 mat_gnode
	6.35.1.6 MAT_GNODE
	6.35.1.7 mat_graph
	6.35.1.8 MAT_GRAPH
	6.35.1.9 mat_int_priorityqueue
	6.35.1.10 MAT_INT_PRIORITYQUEUE
	6.35.1.11 mat_int_queue
	6.35.1.12 MAT_INT_QUEUE
	6.35.1.13 mat_int_stack
	6.35.1.14 MAT_INT_STACK
	6.35.1.15 mat_intpqnode
	6.35.1.16 MAT_INTPQNODE
	6.35.1.17 mat_kdnode
	6.35.1.18 MAT_KDNODE

xvi CONTENTS

	6.35.1.19 mat_kdtree	31
	6.35.1.20 MAT_KDTREE	31
	6.35.1.21 mat_mtype_priorityqueue	31
	6.35.1.22 MAT_MTYPE_PRIORITYQUEUE	31
	6.35.1.23 mat_mtype_queue	31
	6.35.1.24 MAT_MTYPE_QUEUE	31
	6.35.1.25 mat_mtype_stack	32
	6.35.1.26 MAT_MTYPE_STACK	32
	6.35.1.27 mat_mtypepqnode	32
	6.35.1.28 MAT_MTYPEPQNODE	32
	6.35.1.29 mat_perceptron	32
	6.35.1.30 MAT_PERCEPTRON	32
	6.35.1.31 mat_qintnode	32
	6.35.1.32 MAT_QINTNODE	33
	6.35.1.33 mat_qmtypenode	33
	6.35.1.34 MAT_QMTYPENODE	33
	6.35.1.35 MAT_TREE	33
	6.35.1.36 mat_tree_node	33
	6.35.1.37 MAT_TREE_NODE	33
	6.35.1.38 MATRIX	33
	6.35.1.39 MATSTACK	34
	6.35.1.40 MATVEC_DPOINTER	34
6.35.2	Function Documentation	34
	6.35.2.1declspec()	34
	6.35.2.2int_vec_creat()	34
	6.35.2.3int_vecstack_creat()	34
	6.35.2.4mat_addfunc()	34
	6.35.2.5mat_arccosh()	35
	6.35.2.6mat_arcsinh()	35
	6.35.2.7mat_arctanh()	35

CONTENTS xvii

6.35.2.8mat_bisquare_wt()
6.35.2.9mat_cart2pol()
6.35.2.10mat_creat()
6.35.2.11mat_divfunc()
6.35.2.12mat_fft()
6.35.2.13mat_huber_wt()
6.35.2.14mat_kd_find_median()
6.35.2.15mat_kdtree_k_nearest()
6.35.2.16mat_kdtree_make_tree()
6.35.2.17mat_kdtree_nearest()
6.35.2.18mat_lint()
6.35.2.19mat_logplusone()
6.35.2.20mat_mds_metric()
6.35.2.21mat_mds_nonmetric()
6.35.2.22mat_mulfunc()
6.35.2.23mat_pol2cart()
6.35.2.24mat_powerof2()
6.35.2.25mat_quicksort()
6.35.2.26mat_rand()
6.35.2.27mat_randexp()
6.35.2.28mat_randfun()
6.35.2.29mat_randn()
6.35.2.30mat_round_away_zero()
6.35.2.31mat_round_towards_zero()
6.35.2.32mat_sqrfunc()
6.35.2.33mat_sqrtfunc()
6.35.2.34mat_subfunc()
6.35.2.35matstack_creat()
6.35.2.36 gen_eq()
6.35.2.37 gen_error()

xviii CONTENTS

6.35.2.38 gen_gt()
6.35.2.39 gen_lt()
6.35.2.40 graph_error()
6.35.2.41 int_vec2_mat()
6.35.2.42 int_vec_abs()
6.35.2.43 int_vec_add()
6.35.2.44 int_vec_adds()
6.35.2.45 int_vec_append()
6.35.2.46 int_vec_concat()
6.35.2.47 int_vec_copy()
6.35.2.48 int_vec_creat()
6.35.2.49 int_vec_div()
6.35.2.50 int_vec_divs()
6.35.2.51 int_vec_divs_inv()
6.35.2.52 int_vec_dump()
6.35.2.53 int_vec_dumpf()
6.35.2.54 int_vec_error()
6.35.2.55 int_vec_fdump()
6.35.2.56 int_vec_fdumpf()
6.35.2.57 int_vec_fill()
6.35.2.58 int_vec_fill_type()
6.35.2.59 int_vec_find()
6.35.2.60 int_vec_free()
6.35.2.61 int_vec_inv()
6.35.2.62 int_vec_mean()
6.35.2.63 int_vec_mul()
6.35.2.64 int_vec_muls()
6.35.2.65 int_vec_permute_vect()
6.35.2.66 int_vec_randperm()
6.35.2.67 int_vec_sub()

CONTENTS xix

6.35.2.68 int_vec_subs()
6.35.2.69 int_vec_subs_neg()
6.35.2.70 int_vec_sum()
6.35.2.71 int_vec_unique()
6.35.2.72 int_vecstack_creat()
6.35.2.73 int_vecstack_error()
6.35.2.74 int_vecstack_free()
6.35.2.75 mat_2int_vec()
6.35.2.76 mat_abs()
6.35.2.77 mat_add()
6.35.2.78 mat_adds()
6.35.2.79 mat_backsubs1()
6.35.2.80 mat_bayes_classifier_test()
6.35.2.81 mat_bayes_classifier_train()
6.35.2.82 mat_bayes_model_creat()
6.35.2.83 mat_bayes_model_free()
6.35.2.84 mat_binom()
6.35.2.85 mat_binom_init()
6.35.2.86 mat_bisquare_wt()
6.35.2.87 mat_bs_delete()
6.35.2.88 mat_bs_find()
6.35.2.89 mat_bs_find_max()
6.35.2.90 mat_bs_find_min()
6.35.2.91 mat_bs_free()
6.35.2.92 mat_bs_inorder()
6.35.2.93 mat_bs_insert()
6.35.2.94 mat_bs_make_null()
6.35.2.95 mat_bsxfun()
6.35.2.96 mat_calc_dist_sq()
6.35.2.97 mat_cart2pol()

CONTENTS

6.35.2.98 mat_cheby()
6.35.2.99 mat_cheby_approx()
6.35.2.100mat_cheby_coeffs_to_poly()
6.35.2.101mat_cheby_init()
6.35.2.102mat_cholesky()
6.35.2.103mat_cofact()
6.35.2.104mat_colcopy()
6.35.2.105mat_concat()
6.35.2.10@mat_conjgrad()
6.35.2.107mat_conv2()
6.35.2.108mat_copy()
6.35.2.109mat_corcol()
6.35.2.110mat_count_words_in_line()
6.35.2.111mat_covcol()
6.35.2.112mat_creat()
6.35.2.113mat_creat_diag()
6.35.2.114mat_det()
6.35.2.115mat_diagmul()
6.35.2.11@mat_div_dot()
6.35.2.117mat_divs()
6.35.2.118mat_divs_inv()
6.35.2.119mat_dlmread()
6.35.2.120mat_dlmwrite()
6.35.2.121mat_dump()
6.35.2.122mat_dumpf()
6.35.2.123mat_durbin()
6.35.2.124mat_eig_sym()
6.35.2.125mat_error()
6.35.2.126mat_fdump()
6.35.2.127mat_fdumpf()

CONTENTS xxi

6.35.2.128mat_fft2()
6.35.2.129mat_fgetmat()
6.35.2.130mat_fill()
6.35.2.131mat_fill_type()
6.35.2.132mat_find()
6.35.2.133mat_find_within_dist()
6.35.2.134mat_flipIr()
6.35.2.135mat_flipud()
6.35.2.13@mat_fnextline()
6.35.2.137mat_free()
6.35.2.138mat_get_sub_matrix_from_cols()
6.35.2.139mat_get_sub_matrix_from_rows()
6.35.2.140mat_get_sub_vector()
6.35.2.141mat_gfunc()
6.35.2.142mat_go_next_word()
6.35.2.143mat_graph_adjlist()
6.35.2.144mat_graph_adjm_to_adjl()
6.35.2.145mat_graph_creat()
6.35.2.14@mat_graph_dump()
6.35.2.147mat_graph_dumpf()
6.35.2.148mat_graph_reverse()
6.35.2.149mat_graph_search()
6.35.2.150mat_graph_visit()
6.35.2.151mat_huber_wt()
6.35.2.152mat_innerprod()
6.35.2.153mat_int_priorityqueue_creat()
6.35.2.154mat_int_priorityqueue_dequeue()
6.35.2.155mat_int_priorityqueue_enqueue()
6.35.2.15@mat_int_priorityqueue_free()
6.35.2.157mat_int_priorityqueue_is_empty()

xxii CONTENTS

6.35.2.158mat_int_priorityqueue_update()
6.35.2.159mat_int_qadrat()
6.35.2.160mat_int_queue_creat()
6.35.2.161mat_int_queue_dequeue()
6.35.2.162mat_int_queue_enqueue()
6.35.2.163mat_int_queue_free()
6.35.2.164mat_int_queue_is_empty()
6.35.2.165mat_int_simpson()
6.35.2.16@mat_int_stack_creat()
6.35.2.167mat_int_stack_free()
6.35.2.168mat_int_stack_is_empty()
6.35.2.169mat_int_stack_pop()
6.35.2.170mat_int_stack_push()
6.35.2.171mat_int_trapezoid()
6.35.2.172mat_inv()
6.35.2.173mat_inv_dot()
6.35.2.174mat_isnumeric()
6.35.2.175mat_kdtree_free()
6.35.2.176mat_kdtree_k_nearest()
6.35.2.177mat_kdtree_make_tree()
6.35.2.178mat_kdtree_nearest()
6.35.2.179mat_kmeans()
6.35.2.180mat_least_squares()
6.35.2.181mat_legendre()
6.35.2.182mat_legendre_init()
6.35.2.183mat_linear_ls_fit()
6.35.2.184mat_lsolve()
6.35.2.185mat_lsolve_durbin()
6.35.2.186mat_lu()
6.35.2.187mat_max()

CONTENTS xxiii

6.35.2.188mat_mds()
6.35.2.189mat_mean()
6.35.2.190mat_mean_col()
6.35.2.191mat_mean_row()
6.35.2.192mat_median()
6.35.2.193mat_min()
6.35.2.194mat_minor()
6.35.2.195mat_mtype_priorityqueue_creat()
6.35.2.196mat_mtype_priorityqueue_dequeue()
6.35.2.197mat_mtype_priorityqueue_enqueue()
6.35.2.198mat_mtype_priorityqueue_free()
6.35.2.199mat_mtype_priorityqueue_is_empty()
6.35.2.200mat_mtype_priorityqueue_update()
6.35.2.201mat_mtype_queue_creat()
6.35.2.202mat_mtype_queue_dequeue()
6.35.2.203mat_mtype_queue_enqueue()
6.35.2.204mat_mtype_queue_free()
6.35.2.205mat_mtype_queue_is_empty()
6.35.2.20@mat_mtype_stack_creat()
6.35.2.207mat_mtype_stack_free()
6.35.2.208mat_mtype_stack_is_empty()
6.35.2.209mat_mtype_stack_pop()
6.35.2.210mat_mtype_stack_push()
6.35.2.211mat_mul()
6.35.2.212mat_mul_dot()
6.35.2.213mat_mul_fast()
6.35.2.214mat_muls()
6.35.2.215mat_nextline()
6.35.2.21@mat_norm_inf()
6.35.2.217mat_norm_one()

xxiv CONTENTS

6.35.2.218mat_norm_p()
6.35.2.219mat_omp()
6.35.2.220mat_order_statistic()
6.35.2.221mat_pca()
6.35.2.222mat_perceptron_creat()
6.35.2.223mat_perceptron_free()
6.35.2.224mat_perceptron_test()
6.35.2.225mat_perceptron_train()
6.35.2.226mat_perceptron_train_()
6.35.2.227mat_pick_col()
6.35.2.228mat_pick_row()
6.35.2.229mat_pinv()
6.35.2.230mat_pol2cart()
6.35.2.231mat_poly_add()
6.35.2.232mat_poly_diff()
6.35.2.233mat_poly_diff_eval()
6.35.2.234mat_poly_div()
6.35.2.235mat_poly_eval()
6.35.2.236mat_poly_mul()
6.35.2.237mat_poly_scale()
6.35.2.238mat_poly_shift()
6.35.2.239mat_qr()
6.35.2.240mat_qsort()
6.35.2.241mat_rand()
6.35.2.242mat_randexp()
6.35.2.243mat_randfun()
6.35.2.244mat_randn()
6.35.2.245mat_randperm()
6.35.2.246mat_randperm_n()
6.35.2.247mat_read_word()

CONTENTS xxv

6.35.2.248mat_reg_inv()
6.35.2.249mat_rob_least_squares()
6.35.2.250mat_robust_fit()
6.35.2.251mat_rowcopy()
6.35.2.252mat_scpcol()
6.35.2.253mat_set_seed()
6.35.2.254mat_sub()
6.35.2.255mat_submat()
6.35.2.256mat_subs()
6.35.2.257mat_subs_neg()
6.35.2.258mat_sum()
6.35.2.259mat_sum_col()
6.35.2.260mat_sum_row()
6.35.2.261mat_svd()
6.35.2.262mat_symtoeplz()
6.35.2.263mat_tic()
6.35.2.264mat_toc()
6.35.2.265mat_toc_print()
6.35.2.266mat_tqli()
6.35.2.267mat_tran()
6.35.2.268mat_tred2()
6.35.2.269mat_vectorize()
6.35.2.270mat_vectorize_tr()
6.35.2.271mat_w_least_squares()
6.35.2.272mat_wpinv()
6.35.2.273mat_xcopy()
6.35.2.274mat_xjoin()
6.35.2.275mats_isinf()
6.35.2.276mats_isnan()
6.35.2.277matstack_append()

xxvi CONTENTS

		6.35.2.27	8matstack_	_creat()			 	 	 	٠.	 	 		219
		6.35.2.27	9matstack_	_error()			 	 	 		 	 		219
		6.35.2.28	0matstack_	_free()			 	 	 		 	 		219
		6.35.2.28	1matvec_c	reat() .			 	 	 		 	 		220
		6.35.2.28	2matvec_f	ree() .			 	 	 		 	 		220
		6.35.2.28	3pq_error()			 	 	 		 	 		220
		6.35.2.28	4queue_er	ror() .			 	 	 		 	 		220
		6.35.2.28	5stack_err	or()			 	 	 		 	 		221
	6.35.3	Variable [Documenta	ition .			 	 	 		 	 		221
		6.35.3.1	mat_bino	m_serie	s_tabl	le	 	 	 		 	 		221
		6.35.3.2	mat_cheb	y_serie	s_tabl	е	 	 	 		 	 		221
		6.35.3.3	MAT_CLO	OCK_TII	ME .		 	 	 		 	 		221
		6.35.3.4	mat_lege	ndre_se	ries_t	able	 	 	 		 	 		221
		6.35.3.5	MAT_SEI	ΞD			 	 	 		 	 		222
		6.35.3.6	MAT_SE	Γ_SEEC)		 	 	 		 	 		222
6.36	matsea	arch.c File	Reference				 	 	 		 	 		222
	6.36.1	Function	Document	ation .			 	 	 		 	 		222
		6.36.1.1	int_vec_fi	nd()			 	 	 		 	 		222
		6.36.1.2	mat_find()			 	 	 		 	 		222
6.37	matsolv	ve.c File R	eference .				 	 	 		 	 		223
	6.37.1	Function	Document	ation .			 	 	 		 	 		223
		6.37.1.1	mat_back	subs1()			 	 	 		 	 		223
		6.37.1.2	mat_chole	esky() .			 	 	 		 	 		223
		6.37.1.3	mat_conj	grad() .			 	 	 		 	 		224
		6.37.1.4	mat_lsolv	e()			 	 	 		 	 		224
		6.37.1.5	mat_lu()				 	 	 		 	 		224
6.38	matsor	t.c File Re	ference .				 	 	 		 	 		225
	6.38.1	Function	Document	ation .			 	 	 		 	 		225
		6.38.1.1	mat_med	ian() .			 	 	 		 	 		225
		6.38.1.2	mat_orde	r_statist	ic() .		 	 	 		 	 		226

CONTENTS xxvii

		6.38.1.3	mat_qso	rt()			 	 	 	 	 	 	226
6.39	matstd	rels.c File	Reference				 	 	 	 	 	 	226
	6.39.1	Function	Document	ation .			 	 	 	 	 	 	227
		6.39.1.1	gen_eq()				 	 	 	 	 	 	227
		6.39.1.2	gen_gt()				 	 	 	 	 	 	227
		6.39.1.3	gen_lt() .				 	 	 	 	 	 	227
6.40	matsub	o.c File Re	ference				 	 	 	 	 	 	228
	6.40.1	Function	Document	ation .			 	 	 	 	 	 	228
		6.40.1.1	int_vec_s	sub()			 	 	 	 	 	 	228
		6.40.1.2	int_vec_s	subs() .			 	 	 	 	 	 	229
		6.40.1.3	int_vec_s	subs_ne	g() .		 	 	 	 	 	 	229
		6.40.1.4	mat_sub	()			 	 	 	 	 	 	229
		6.40.1.5	mat_sub	s()			 	 	 	 	 	 	230
		6.40.1.6	mat_sub	s_neg()			 	 	 	 	 	 	230
6.41	matsub	x.c File R	eference .				 	 	 	 	 	 	231
	6.41.1	Function	Document	ation .			 	 	 	 	 	 	231
		6.41.1.1	mat_sub	mat() .			 	 	 	 	 	 	231
6.42	matsun	n.c File Re	eference .				 	 	 	 	 	 	231
	6.42.1	Function	Document	ation .			 	 	 	 	 	 	232
		6.42.1.1	int_vec_s	sum() .			 	 	 	 	 	 	232
		6.42.1.2	mat_sum	ı()			 	 	 	 	 	 	232
		6.42.1.3	mat_sum	_col() .			 	 	 	 	 	 	233
		6.42.1.4	mat_sum	ı_row()			 	 	 	 	 	 	233
6.43	matsvd	l.c File Re	ference				 	 	 	 	 	 	233
	6.43.1	Function	Document	ation .			 	 	 	 	 	 	233
		6.43.1.1	mat_svd()			 	 	 	 	 	 	234
6.44	mattext	t.c File Re	ference				 	 	 	 	 	 	234
	6.44.1	Function	Document	ation .			 	 	 	 	 	 	234
		6.44.1.1	mat_cou	nt_word	s_in_l	ine()	 	 	 	 	 	 	234
		6.44.1.2	mat_dlmi	read() .			 	 	 	 	 	 	235

xxviii CONTENTS

	6.44.1.3 mat_dlmwrite()	235
	6.44.1.4 mat_go_next_word()	235
	6.44.1.5 mat_isnumeric()	237
	6.44.1.6 mat_read_word()	237
6.45 mattir	rs.c File Reference	238
6.45.1	Function Documentation	238
	6.45.1.1declspec()	238
	6.45.1.2 mat_toc()	238
	6.45.1.3 mat_toc_print()	238
6.45.2	Variable Documentation	239
	6.45.2.1 MAT_CLOCK_TIME	239
6.46 matto	z.c File Reference	239
6.46.1	Function Documentation	239
	6.46.1.1 mat_symtoeplz()	239
6.47 mattra	.c File Reference	239
6.47.1	Function Documentation	240
	6.47.1.1 mat_tran()	
6.48 READ	IE.md File Reference	240

Index

241

Chapter 1

Matrixlab

1.1 Introduction

Matrixlab is a generic C library for matrix routines. It contains over 250 functions for matrix operations. Many of the functions are multi-threaded.

2 Matrixlab

Chapter 2

![alt tag](https://raw.githubusercontent... com/mohammadul/matrixlab/master/matrixlab.ico) Matrixlab

A C Matrix Library Originally adapted from Small Matrix Toolbox for C programmers, ver. 0.4 by Patrick Ko Shu-pui

- · Matrixlab is a generic C library for matrix routines.
- · It contains over 250 functions for matrix operations.
- · Many of the functions are multi-threaded.
 - ** For more details and updates, visit http://mohammadulhaque.alotspace.com.

4	![alt tag](https://raw.githubusercontent.com/mohammadul/matrixlab/master/matrixlab.ico) Matrixlab

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

mat_bayes_model	
Bayes Classifier Model Structure	9
mat_gnode	
Graph Node Structure	10
mat_graph	
Graph Structure	11
mat_int_priorityqueue	
Integer Priority Queue Structure	13
mat_int_queue	
Integer Queue Structure	14
mat_int_stack	
Integer Stack Structure	15
mat_intpqnode	
Integer Priority Queue Node Structure	16
mat_kdnode	17
mat_kdtree	18
mat_mtype_priorityqueue	
Mtype Priority Queue Structure	19
mat_mtype_queue	
Mtype Queue Structure	20
mat_mtype_stack	_
Mtype Stack Structure	21
mat_mtypepqnode	
Mtype Priority Queue Node Structure	22
mat_perceptron	
Perceptron Classifier Model Structure	23
mat_qintnode	_
Integer Queue Node Structure	24
mat_qmtypenode	0.
Mtype Queue Node Structure	25
mat_tree_node Search Tree Node Structure	26
SOUTH THE WORL STRICTURE	・ソレ

6 Data Structure Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

matabs.c	. 27
matadd.c	. 28
matcompress.c	. 30
matconcat.c	. 30
matconv.c	. 31
matcreat.c	
matdatastruct.c	. 45
matdet.c	
matdiv.c	. 53
matdump.c	. 57
matdurbn.c	
materr.c	. 62
matfft.c	
matfilter.c	
matfit.c	
matflip.c	
matfuncs.c	
matgraph.c	
matinnerprod.c	
matintegrate.c	
matinv.c	
matkdtree.c	
matmaxmin.c	
matmds.c	
matmean.c	
matmisc.c	
matmul.c	
matpca.c	
matpinv.c	
matpoly.c	. 103
matprec.c	. 112
matpursuit.c	. 113
matrand.c	. 114
matrix.c	. 117
matrix h	117

8 File Index

matsearch.c
matsolve.c
matsort.c
matstdrels.c
matsub.c
matsubx.c
matsum.c
matsvd.c
mattext.c
mattimers.c
mattoepz.c
mattran.c

Chapter 5

Data Structure Documentation

5.1 mat_bayes_model Struct Reference

Bayes Classifier Model Structure.

#include <matrix.h>

Data Fields

- int num_of_classes
- int num_of_features
- INT_VECTOR class_labels
- MATRIX class_priors
- MATSTACK class_means
- MATSTACK class_covars

5.1.1 Detailed Description

Bayes Classifier Model Structure.

5.1.2 Field Documentation

5.1.2.1 class_covars

MATSTACK mat_bayes_model::class_covars

Training data class covariances

5.1.2.2 class_labels

```
INT_VECTOR mat_bayes_model::class_labels
```

Training data class label vector

5.1.2.3 class_means

```
MATSTACK mat_bayes_model::class_means
```

Training data class means

5.1.2.4 class_priors

```
MATRIX mat_bayes_model::class_priors
```

Training data prior information

5.1.2.5 num_of_classes

```
int mat_bayes_model::num_of_classes
```

Number of training class

5.1.2.6 num_of_features

```
int mat_bayes_model::num_of_features
```

Number of training features

The documentation for this struct was generated from the following file:

· matrix.h

5.2 mat_gnode Struct Reference

Graph Node Structure.

```
#include <matrix.h>
```

Collaboration diagram for mat_gnode:

Data Fields

- int v
- double weight
- struct mat_gnode * next

5.2.1 Detailed Description

Graph Node Structure.

5.2.2 Field Documentation

```
5.2.2.1 next

struct mat_gnode* mat_gnode::next

Pointer to next node

5.2.2.2 v

int mat_gnode::v

Value

5.2.2.3 weight
```

Node weight

double mat_gnode::weight

The documentation for this struct was generated from the following file:

· matrix.h

5.3 mat_graph Struct Reference

Graph Structure.

```
#include <matrix.h>
```

Collaboration diagram for mat_graph:

Data Fields

- int nvertices
- · int nedges
- int * val
- int * vseq
- int id
- MAT_GNODE * adj
- MAT_GNODE z
- int * dad
- · int weighted
- MAT_INT_PRIORITYQUEUE pq

5.3.1 Detailed Description

Graph Structure.

5.3.2 Field Documentation

```
5.3.2.1 adj
```

MAT_GNODE* mat_graph::adj

5.3.2.2 dad

int* mat_graph::dad

5.3.2.3 id

int mat_graph::id

5.3.2.4 nedges

int mat_graph::nedges

Number of edges

5.3.2.5 nvertices

int mat_graph::nvertices

Number of vertices

5.3.2.6 pq

MAT_INT_PRIORITYQUEUE mat_graph::pq

5.3.2.7 val

int* mat_graph::val

5.3.2.8 vseq

int* mat_graph::vseq

5.3.2.9 weighted

int mat_graph::weighted

5.3.2.10 z

MAT_GNODE mat_graph::z

The documentation for this struct was generated from the following file:

· matrix.h

5.4 mat_int_priorityqueue Struct Reference

Integer Priority Queue Structure.

#include <matrix.h>

Collaboration diagram for mat_int_priorityqueue:

Data Fields

- int p
- int type
- int length
- MAT_INTPQNODE element

5.4.1 Detailed Description

Integer Priority Queue Structure.

5.4.2 Field Documentation

5.4.2.1 element

```
MAT_INTPQNODE mat_int_priorityqueue::element
```

Pointer to priority queue data

5.4.2.2 length

```
int mat_int_priorityqueue::length
```

Total allocated priority queue length

5.4.2.3 p

```
int mat_int_priorityqueue::p
```

Current priority queue position

5.4.2.4 type

```
int mat_int_priorityqueue::type
```

Priority type

The documentation for this struct was generated from the following file:

· matrix.h

5.5 mat_int_queue Struct Reference

Integer Queue Structure.

```
#include <matrix.h>
```

Collaboration diagram for mat_int_queue:

Data Fields

- int p
- MAT_QINTNODE head
- MAT_QINTNODE tail

5.5.1 Detailed Description

Integer Queue Structure.

5.5.2 Field Documentation

5.5.2.1 head

```
MAT_QINTNODE mat_int_queue::head
```

Queue head node

5.5.2.2 p

```
int mat_int_queue::p
```

Current queue position

5.5.2.3 tail

```
MAT_QINTNODE mat_int_queue::tail
```

Queue tail node

The documentation for this struct was generated from the following file:

• matrix.h

5.6 mat_int_stack Struct Reference

Integer Stack Structure.

```
#include <matrix.h>
```

Data Fields

- int p
- int length
- int * stack

5.6.1 Detailed Description

Integer Stack Structure.

5.6.2 Field Documentation

5.6.2.1 length

```
int mat_int_stack::length
```

Total allocated stack length

5.6.2.2 p

```
int mat_int_stack::p
```

Current stack position

5.6.2.3 stack

```
int* mat_int_stack::stack
```

Pointer to stack data

The documentation for this struct was generated from the following file:

· matrix.h

5.7 mat_intpqnode Struct Reference

Integer Priority Queue Node Structure.

```
#include <matrix.h>
```

Data Fields

- int data
- int priority

5.7.1 Detailed Description

Integer Priority Queue Node Structure.

5.7.2 Field Documentation

5.7.2.1 data

int mat_intpqnode::data

Integer node data

5.7.2.2 priority

int mat_intpqnode::priority

Node priority

The documentation for this struct was generated from the following file:

· matrix.h

5.8 mat_kdnode Struct Reference

```
#include <matrix.h>
```

Collaboration diagram for mat_kdnode:

Data Fields

- mtype x [MAT_KDTREE_MAX_DIMS]
- int idx
- struct mat_kdnode * left
- struct mat_kdnode * right

5.8.1 Field Documentation

5.8.1.1 idx

int mat_kdnode::idx

5.8.1.2 left

struct mat_kdnode* mat_kdnode::left

5.8.1.3 right

```
struct mat_kdnode * mat_kdnode::right
```

5.8.1.4 x

```
mtype mat_kdnode::x[MAT_KDTREE_MAX_DIMS]
```

The documentation for this struct was generated from the following file:

· matrix.h

5.9 mat_kdtree Struct Reference

```
#include <matrix.h>
```

Collaboration diagram for mat_kdtree:

Data Fields

- int ndims
- · int length
- int _is_allocated
- MAT_KDNODE data
- MAT_KDNODE kdtree

5.9.1 Field Documentation

5.9.1.1 _is_allocated

```
int mat_kdtree::_is_allocated
```

5.9.1.2 data

```
MAT_KDNODE mat_kdtree::data
```

5.9.1.3 kdtree

MAT_KDNODE mat_kdtree::kdtree

5.9.1.4 length

int mat_kdtree::length

5.9.1.5 ndims

int mat_kdtree::ndims

The documentation for this struct was generated from the following file:

· matrix.h

5.10 mat_mtype_priorityqueue Struct Reference

Mtype Priority Queue Structure.

#include <matrix.h>

Collaboration diagram for mat_mtype_priorityqueue:

Data Fields

- int p
- int type
- · int length
- MAT_MTYPEPQNODE element

5.10.1 Detailed Description

Mtype Priority Queue Structure.

5.10.2 Field Documentation

5.10.2.1 element

MAT_MTYPEPQNODE mat_mtype_priorityqueue::element

Pointer to priority queue data

5.10.2.2 length

int mat_mtype_priorityqueue::length

Total allocated priority queue length

5.10.2.3 p

int mat_mtype_priorityqueue::p

Current priority queue position

5.10.2.4 type

int mat_mtype_priorityqueue::type

Priority type

The documentation for this struct was generated from the following file:

· matrix.h

5.11 mat_mtype_queue Struct Reference

Mtype Queue Structure.

#include <matrix.h>

Collaboration diagram for mat_mtype_queue:

Data Fields

- int p
- MAT_QMTYPENODE head
- MAT QMTYPENODE tail

5.11.1 Detailed Description

Mtype Queue Structure.

5.11.2 Field Documentation

5.11.2.1 head

MAT_QMTYPENODE mat_mtype_queue::head

Queue head node

5.11.2.2 p

int mat_mtype_queue::p

Current queue position

5.11.2.3 tail

MAT_QMTYPENODE mat_mtype_queue::tail

Queue tail node

The documentation for this struct was generated from the following file:

· matrix.h

5.12 mat_mtype_stack Struct Reference

Mtype Stack Structure.

#include <matrix.h>

Data Fields

- int p
- int length
- mtype * stack

5.12.1 Detailed Description

Mtype Stack Structure.

5.12.2 Field Documentation

5.12.2.1 length

int mat_mtype_stack::length

Total allocated stack length

5.12.2.2 p

int mat_mtype_stack::p

Current stack position

5.12.2.3 stack

mtype* mat_mtype_stack::stack

Pointer to stack data

The documentation for this struct was generated from the following file:

· matrix.h

5.13 mat_mtypepqnode Struct Reference

Mtype Priority Queue Node Structure.

```
#include <matrix.h>
```

Data Fields

- mtype data
- · mtype priority

5.13.1 Detailed Description

Mtype Priority Queue Node Structure.

5.13.2 Field Documentation

5.13.2.1 data

mtype mat_mtypepqnode::data

Mtype node data

5.13.2.2 priority

```
mtype mat_mtypepqnode::priority
```

Node priority

The documentation for this struct was generated from the following file:

· matrix.h

5.14 mat_perceptron Struct Reference

Perceptron Classifier Model Structure.

```
#include <matrix.h>
```

Data Fields

- int num_of_classes
- int num_of_features
- INT_VECTOR class_labels
- MATRIX class_weights
- int istrained
- int num_of_iterations

5.14.1 Detailed Description

Perceptron Classifier Model Structure.

5.14.2 Field Documentation

5.14.2.1 class_labels

```
INT_VECTOR mat_perceptron::class_labels
```

Training data class label vector

5.14.2.2 class_weights

MATRIX mat_perceptron::class_weights

Trained Classifier Weights

5.14.2.3 istrained

int mat_perceptron::istrained

Is trained

5.14.2.4 num_of_classes

int mat_perceptron::num_of_classes

Number of training classes

5.14.2.5 num_of_features

int mat_perceptron::num_of_features

Number of training features

5.14.2.6 num_of_iterations

int mat_perceptron::num_of_iterations

Number of training iterations

The documentation for this struct was generated from the following file:

· matrix.h

5.15 mat_qintnode Struct Reference

Integer Queue Node Structure.

#include <matrix.h>

Collaboration diagram for mat_qintnode:

Data Fields

- int data
- struct mat_qintnode * next

5.15.1 Detailed Description

Integer Queue Node Structure.

5.15.2 Field Documentation

5.15.2.1 data

int mat_qintnode::data

Integer node data

5.15.2.2 next

struct mat_qintnode* mat_qintnode::next

Pointer to next node

The documentation for this struct was generated from the following file:

· matrix.h

5.16 mat_qmtypenode Struct Reference

Mtype Queue Node Structure.

#include <matrix.h>

Collaboration diagram for mat_qmtypenode:

Data Fields

- mtype data
- struct mat_qmtypenode * next

5.16.1 Detailed Description

Mtype Queue Node Structure.

5.16.2 Field Documentation

5.16.2.1 data

mtype mat_qmtypenode::data

Mtype node data

5.16.2.2 next

```
struct mat_qmtypenode* mat_qmtypenode::next
```

Pointer to next node

The documentation for this struct was generated from the following file:

· matrix.h

5.17 mat_tree_node Struct Reference

Search Tree Node Structure.

```
#include <matrix.h>
```

Collaboration diagram for mat_tree_node:

Data Fields

- · mtype element
- struct mat_tree_node * left
- struct mat_tree_node * right

5.17.1 Detailed Description

Search Tree Node Structure.

5.17.2 Field Documentation

```
5.17.2.1 element
```

```
mtype mat_tree_node::element
```

Search tree node data

5.17.2.2 left

```
struct mat_tree_node* mat_tree_node::left
```

Pointer to left child node

5.17.2.3 right

```
struct mat_tree_node* mat_tree_node::right
```

Pointer to right child node

The documentation for this struct was generated from the following file:

· matrix.h

Chapter 6

File Documentation

6.1 matabs.c File Reference

Functions

MATRIX mat_abs (MATRIX A, MATRIX result)

Computes absolute value of matrix.

• INT_VECTOR int_vec_abs (INT_VECTOR A, INT_VECTOR result)

Computes absolute value of an integer vector.

6.1.1 Function Documentation

6.1.1.1 int_vec_abs()

Computes absolute value of an integer vector.

Parameters

in	Α	Input integer vector
in	result	Vector to store the result

Returns

abs(A)

Here is the call graph for this function:

6.1.1.2 mat_abs()

Computes absolute value of matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 $abs(\mathbf{A})$

Here is the call graph for this function: Here is the caller graph for this function:

6.2 matadd.c File Reference

Functions

• MATRIX mat_add (MATRIX A, MATRIX B, MATRIX result)

Adds two matrices.

• MATRIX mat_adds (MATRIX A, mtype s, MATRIX result)

Adds a scalar to a matrix.

• INT_VECTOR int_vec_add (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Adds two integer vectors.

• INT_VECTOR int_vec_adds (INT_VECTOR A, int s, INT_VECTOR result)

Adds an integer to an integer vector.

6.2.1 Function Documentation

6.2.1.1 int_vec_add()

Adds two integer vectors.

Parameters

in	Α	Input vector
in	В	Input vector
in	result	Vector to store the result

Returns

```
\mathbf{A} + \mathbf{B}
```

Here is the call graph for this function:

6.2.1.2 int_vec_adds()

Adds an integer to an integer vector.

Parameters

in	Α	Input vector
in	s	Input scalar
in	result	Vector to store the result

Returns

```
\mathbf{A} + s\mathbf{1}
```

Here is the call graph for this function:

6.2.1.3 mat_add()

```
MATRIX mat_add (

MATRIX A,

MATRIX B,

MATRIX result )
```

Adds two matrices.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

```
A + B
```

Here is the call graph for this function: Here is the caller graph for this function:

6.2.1.4 mat_adds()

```
MATRIX mat_adds (

MATRIX A,

mtype s,

MATRIX result )
```

Adds a scalar to a matrix.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

$$\mathbf{A} + s\mathbf{1}\mathbf{1}^T$$

Here is the call graph for this function: Here is the caller graph for this function:

6.3 matcompress.c File Reference

6.4 matconcat.c File Reference

Functions

- MATRIX mat_concat (MATRIX A, MATRIX B, int dim)
 - Concatenates two matrices.
- INT_VECTOR int_vec_concat (INT_VECTOR a, INT_VECTOR b, INT_VECTOR result)

Concatenates two integer vectors.

6.4.1 Function Documentation

6.4.1.1 int_vec_concat()

Concatenates two integer vectors.

Parameters

in	а	Input first vector
in	b	Input second vector
in	result	Vector to store the result

Returns

$$\left[\begin{array}{cc} a & b \end{array}\right] \text{ or } \left[\begin{array}{c} a \\ b \end{array}\right]$$

Here is the call graph for this function:

6.4.1.2 mat_concat()

Concatenates two matrices.

Parameters

in	Α	Input first matrix
in	В	Input second matrix
in	dim	Concatenation direction (ROWS/COLS)

Returns

$$\begin{bmatrix} A & B \end{bmatrix}$$
 or $\begin{bmatrix} A \\ B \end{bmatrix}$

Here is the call graph for this function: Here is the caller graph for this function:

6.5 matconv.c File Reference

Functions

INT_VECTOR mat_2int_vec (MATRIX A)

Converts a matrix to an integer vector.

• MATRIX int_vec2_mat (INT_VECTOR a, int dir)

Converts an integer vector to a matrix.

MATRIX mat_vectorize (MATRIX A, MATRIX result)

Reshapes a matrix to a vector.

MATRIX mat_vectorize_tr (MATRIX A, MATRIX result)

Reshapes transpose of a matrix to a vector.

6.5.1 Function Documentation

6.5.1.1 int_vec2_mat()

Converts an integer vector to a matrix.

Parameters

in	а	Input vector
in	dir	Conversion direction

Returns

Output matrix

Here is the call graph for this function:

6.5.1.2 mat_2int_vec()

Converts a matrix to an integer vector.

Parameters

in	Α	Input matrix
in	V	Vector to store the result

Returns

Output vector

Here is the call graph for this function: Here is the caller graph for this function:

6.5.1.3 mat_vectorize()

```
MATRIX mat_vectorize (

MATRIX A,

MATRIX result )
```

Reshapes a matrix to a vector.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

```
vec(\mathbf{A})
```

Here is the call graph for this function:

```
6.5.1.4 mat_vectorize_tr()
```

```
MATRIX mat_vectorize_tr (

MATRIX A,

MATRIX result )
```

Reshapes transpose of a matrix to a vector.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$vec(\mathbf{A}^T)$$

Here is the call graph for this function: Here is the caller graph for this function:

6.6 matcreat.c File Reference

Functions

• MATRIX mat_creat (int row, int col, int type)

Creates a matrix.

• MATSTACK matstack_creat (int len)

Creates a matrix stack.

MATSTACK matstack_append (MATSTACK s, MATRIX A)

Appends a matrix to a matrix stack.

int matstack_free (MATSTACK A)

Frees a matrix stack.

MATRIX mat_fill (MATRIX A, mtype val)

Fills a matrix with a value.

MATRIX mat_fill_type (MATRIX A, int type)

Fills a matrix to a type.

• int mat_free (MATRIX A)

Frees a matrix.

INT_VECTOR int_vec_creat (int len, int type)

Creates an integer vector.

INT VECTOR int vec fill (INT VECTOR A, int val)

Fills an integer vector with a value.

• INT_VECTOR int_vec_fill_type (INT_VECTOR A, int type)

Fills an integer vector to a type.

int int_vec_free (INT_VECTOR A)

Frees an integer vector.

INT VECSTACK int vecstack creat (int len)

Creates an integer vector stack.

int int_vecstack_free (INT_VECSTACK A)

Frees an integer vector stack.

• MAT_BAYES_MODEL mat_bayes_model_creat (void)

Creates a Bayes model.

int mat_bayes_model_free (MAT_BAYES_MODEL a)

Frees a Bayes model.

MAT PERCEPTRON mat perceptron creat (void)

Creates a perceptron.

• int mat_perceptron_free (MAT_PERCEPTRON a)

Frees a perceptron.

• MATVEC DPOINTER matvec creat (void)

Creates a matrix-vector pair.

• int matvec_free (MATVEC_DPOINTER a)

Frees a matrix-vector pair.

INT_VECTOR int_vec_append (INT_VECTOR a, int i)

Appends an integer to an integer vector.

INT_VECTOR int_vec_copy (INT_VECTOR a, INT_VECTOR result)

Copies an integer vector.

MATRIX mat_copy (MATRIX A, MATRIX result)

Copies a matrix.

• MATRIX mat_xcopy (MATRIX A, int si, int ei, int sj, int ej, MATRIX result)

Copies a sub-matrix.

MATRIX mat xjoin (MATRIX A11, MATRIX A12, MATRIX A21, MATRIX A22, MATRIX result)

Copies a sub-matrix.

MATRIX mat_rowcopy (MATRIX A, int rowa, int rowb, MATRIX result)

Copies a row from a matrix.

MATRIX mat_colcopy (MATRIX A, int cola, int colb, MATRIX result)

Copies a column from a matrix.

• int mat_fgetmat (MATRIX A, MAT_FILEPOINTER fp)

Gets matrix data from opened file.

• MATRIX mat_creat_diag (MATRIX diag_vals, MATRIX result)

Creates a diagonal matrix from a 1-d matrix.

6.6.1 Function Documentation

6.6.1.1 int_vec_append()

```
INT_VECTOR int_vec_append (  \label{eq:int_vector} \text{INT_VECTOR } a, \\ \text{int } i \text{ )}
```

Appends an integer to an integer vector.

Parameters

in	а	Input vector
in	i	Integer to append

Returns

Appended vector

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.2 int_vec_copy()

Copies an integer vector.

Parameters

in	а	Input vector
in	result	Vector to store the result

Returns

Output vector

Here is the call graph for this function:

6.6.1.3 int_vec_creat()

```
INT_VECTOR int_vec_creat (
                int len,
                int type )
```

Creates an integer vector.

Parameters

in	len	Length of the vector
in	type	Definition type (UNDEFINED/ZERO_INT_VECTOR/ONES_INT_VECTOR/SERIES_INT_VECTOR)

Returns

Output vector

Here is the call graph for this function: Here is the caller graph for this function:

```
6.6.1.4 int_vec_fill()
```

Fills an integer vector with a value.

Parameters

in	Α	Input vector
in	val	Value to fill with

Returns

Filled vector

```
6.6.1.5 int_vec_fill_type()
```

Fills an integer vector to a type.

Parameters

in	Α	Input vector
in	type	Definition type (UNDEFINED/ZERO_INT_VECTOR/ONES_INT_VECTOR/SERIES_INT_VECTOR)

Returns

Filled vector

Here is the caller graph for this function:

```
6.6.1.6 int_vec_free()
```

Frees an integer vector.

Parameters

in A Input vec

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.7 int_vecstack_creat()

Creates an integer vector stack.

Parameters

in	len	Length of the stack
----	-----	---------------------

Returns

Output vector stack

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.8 int_vecstack_free()

Frees an integer vector stack.

Parameters

```
in A Input vector stack
```

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.9 mat_bayes_model_creat()

Creates a Bayes model.

Returns

Output Bayes model

Here is the caller graph for this function:

```
6.6.1.10 mat_bayes_model_free()
```

```
int mat_bayes_model_free ( {\tt MAT\_BAYES\_MODEL} \ a \ )
```

Frees a Bayes model.

Parameters

in a Input Bayes model

Returns

Success

Here is the call graph for this function:

6.6.1.11 mat_colcopy()

```
MATRIX mat_colcopy (

MATRIX A,

int cola,

int colb,

MATRIX result )
```

Copies a column from a matrix.

Parameters

in	Α	Input matrix
in	cola	Source column
in	colb	Destination column
in	result	Matrix to store the result

Returns

Copied matrix

Here is the caller graph for this function:

6.6.1.12 mat_copy()

```
MATRIX mat_copy (

MATRIX A,

MATRIX result )
```

Copies a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.13 mat_creat()

```
MATRIX mat_creat (
            int row,
            int col,
            int type )
```

Creates a matrix.

Parameters

in	row	Number of rows
in	col	Number of columns
in	type	Definition type (UNDEFINED/ZERO_MATRIX/UNIT_MATRIX/ONES_MATRIX)

Returns

Output matrix

Here is the call graph for this function:

```
6.6.1.14 mat_creat_diag()
```

Creates a diagonal matrix from a 1-d matrix.

Parameters

in	diag_vals	Input 1-d diagonal value matrix
in	result	Matrix to store the result

Returns

Diagonal matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.15 mat_fgetmat()

Gets matrix data from opened file.

Parameters

in	Α	Matrix to store the data
in	fp	Pointer to opened file

Returns

Number of elements copied

6.6.1.16 mat_fill()

Fills a matrix with a value.

Parameters

in	Α	Input matrix
in	val	Value to fill with

Returns

Filled matrix

Here is the caller graph for this function:

6.6.1.17 mat_fill_type()

Fills a matrix to a type.

Parameters

i	n	Α	Input matrix
i	.n	type	Fill type (UNDEFINED/ZERO_MATRIX/UNIT_MATRIX/ONES_MATRIX)

Returns

Filled matrix

Here is the caller graph for this function:

6.6.1.18 mat_free()

Frees a matrix.

Parameters

in A	Input matrix
------	--------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.19 mat_perceptron_creat()

Creates a perceptron.

Returns

Output perceptron

Here is the caller graph for this function:

6.6.1.20 mat_perceptron_free()

```
int mat_perceptron_free ( {\tt MAT\_PERCEPTRON} \ a \ )
```

Frees a perceptron.

Parameters

TII a input perception	in	а	Input perceptron
------------------------	----	---	------------------

Returns

Success

Here is the call graph for this function:

6.6.1.21 mat_rowcopy()

```
MATRIX mat_rowcopy (

MATRIX A,

int rowa,

int rowb,

MATRIX result )
```

Copies a row from a matrix.

Parameters

in	Α	Input matrix
in	rowa	Source row
in	rowb	Destination row
in	result	Matrix to store the result

Returns

Copied matrix

6.6.1.22 mat_xcopy()

Copies a sub-matrix.

Parameters

in	Α	Input matrix
in	si	Start of first index, s_i
in	ei	End of first index, e_i
in	sj	Start of second index, s_j
in	ej	End of second index, e_j
in	result	Matrix to store the result

Returns

```
Extracted matrix A_{s_i:e_i,s_j:e_j}
```

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.23 mat_xjoin()

```
MATRIX mat_xjoin (

MATRIX A11,

MATRIX A12,

MATRIX A21,

MATRIX A22,

MATRIX result )
```

Copies a sub-matrix.

Parameters

in	A11	Input matrix, A_{11}
in	A12	Input matrix, A_{12}
in	A21	Input matrix, A_{21}
in	A22	Input matrix, A_{22}
in	result	Matrix to store the result

Returns

Block matrix
$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.24 matstack_append()

Appends a matrix to a matrix stack.

Parameters

in	s	Input matrix stack
in	Α	Input matrix to append

Returns

Output matrix stack

Here is the call graph for this function:

6.6.1.25 matstack_creat()

Creates a matrix stack.

Parameters

i	n	len	Length of the stack
---	---	-----	---------------------

Returns

Output matrix stack

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.26 matstack_free()

Frees a matrix stack.

Parameters

in	Α	Input matrix stack
----	---	--------------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.6.1.27 matvec_creat()

Creates a matrix-vector pair.

Returns

Output matrix-vector pair

Here is the caller graph for this function:

6.6.1.28 matvec_free()

Frees a matrix-vector pair.

Parameters

in a	Input matrix-vector pair
------	--------------------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.7 matdatastruct.c File Reference

Functions

- MAT TREE mat bs make null (void)
- MAT_TREE mat_bs_free (MAT_TREE T)
- MAT_TREE mat_bs_find (mtype x, MAT_TREE T)
- MAT_TREE mat_bs_find_min (MAT_TREE T)
- MAT TREE mat bs find max (MAT TREE T)
- MAT_TREE mat_bs_insert (mtype x, MAT_TREE T)
- MAT_TREE mat_bs_delete (mtype x, MAT_TREE T)
- int mat_bs_inorder (MAT_TREE T, int index, mtype **p_ordered)
- MAT INT STACK mat int stack creat (void)
- int mat_int_stack_free (MAT_INT_STACK s)
- void mat_int_stack_push (MAT_INT_STACK s, int value)
- int mat_int_stack_pop (MAT_INT_STACK s)
- int mat_int_stack_is_empty (MAT_INT_STACK s)
- MAT MTYPE STACK mat mtype stack creat (void)
- int mat_mtype_stack_free (MAT_MTYPE_STACK s)
- void mat_mtype_stack_push (MAT_MTYPE_STACK s, mtype value)
- mtype mat_mtype_stack_pop (MAT_MTYPE_STACK s)
- int mat_mtype_stack_is_empty (MAT_MTYPE_STACK s)
- MAT_INT_QUEUE mat_int_queue_creat (void)
- int mat_int_queue_free (MAT_INT_QUEUE s)
- void mat_int_queue_enqueue (MAT_INT_QUEUE s, int value)
- int mat int queue dequeue (MAT INT QUEUE s)
- int mat_int_queue_is_empty (MAT_INT_QUEUE s)
- MAT_MTYPE_QUEUE mat_mtype_queue_creat (void)
- int mat_mtype_queue_free (MAT_MTYPE_QUEUE s)
- void mat_mtype_queue_enqueue (MAT_MTYPE_QUEUE s, mtype value)
- mtype mat_mtype_queue_dequeue (MAT_MTYPE_QUEUE s)
- int mat_mtype_queue_is_empty (MAT_MTYPE_QUEUE s)
- MAT_INT_PRIORITYQUEUE mat_int_priorityqueue_creat (int type)
- void mat_int_priorityqueue_enqueue (MAT_INT_PRIORITYQUEUE H, int data, int priority)
- mat intpgnode mat int priorityqueue dequeue (MAT INT PRIORITYQUEUE H)
- int mat_int_priorityqueue_free (MAT_INT_PRIORITYQUEUE H)
- int mat_int_priorityqueue_update (MAT_INT_PRIORITYQUEUE H, int data, int priority, int type)
- int mat int priorityqueue is empty (MAT INT PRIORITYQUEUE H)
- MAT_MTYPE_PRIORITYQUEUE mat_mtype_priorityqueue_creat (int type)
- void mat_mtype_priorityqueue_enqueue (MAT_MTYPE_PRIORITYQUEUE H, mtype data, mtype priority)
- mat_mtypepqnode mat_mtype_priorityqueue_dequeue (MAT_MTYPE_PRIORITYQUEUE H)
- int mat mtype priorityqueue free (MAT MTYPE PRIORITYQUEUE H)
- int mat_mtype_priorityqueue_update (MAT_MTYPE_PRIORITYQUEUE H, mtype data, mtype priority, int type)
- int mat_mtype_priorityqueue_is_empty (MAT_MTYPE_PRIORITYQUEUE H)

6.7.1 Function Documentation

```
6.7.1.1 mat_bs_delete()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.2 mat_bs_find()

```
\begin{tabular}{lllll} {\tt MAT\_TREE} & {\tt mat\_bs\_find} & ( \\ & & {\tt mtype} & x, \\ & & {\tt MAT\_TREE} & T \end{tabular} \label{eq:mat_tree}
```

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.3 mat_bs_find_max()

6.7.1.4 mat_bs_find_min()

Here is the caller graph for this function:

6.7.1.5 mat_bs_free()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.6 mat_bs_inorder()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.7 mat_bs_insert()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.8 mat_bs_make_null()

Here is the caller graph for this function:

6.7.1.9 mat_int_priorityqueue_creat()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.10 mat_int_priorityqueue_dequeue()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.11 mat_int_priorityqueue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.12 mat_int_priorityqueue_free()

Here is the caller graph for this function:

6.7.1.13 mat_int_priorityqueue_is_empty()

6.7.1.14 mat_int_priorityqueue_update()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.15 mat_int_queue_creat()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.16 mat_int_queue_dequeue()

```
int mat_int_queue_dequeue ( {\tt MAT\_INT\_QUEUE}\ s\ )
```

Here is the call graph for this function:

6.7.1.17 mat_int_queue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.18 mat_int_queue_free()

```
int mat_int_queue_free ( {\tt MAT\_INT\_QUEUE}\ s\ )
```

6.7.1.19 mat_int_queue_is_empty()

6.7.1.20 mat_int_stack_creat()

Here is the call graph for this function:

6.7.1.21 mat_int_stack_free()

```
int mat_int_stack_free ( {\tt MAT\_INT\_STACK}~s~)
```

6.7.1.22 mat_int_stack_is_empty()

6.7.1.23 mat_int_stack_pop()

Here is the call graph for this function:

6.7.1.24 mat_int_stack_push()

Here is the call graph for this function:

6.7.1.25 mat_mtype_priorityqueue_creat()

Here is the call graph for this function: Here is the caller graph for this function:

```
6.7.1.26 mat_mtype_priorityqueue_dequeue()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.27 mat_mtype_priorityqueue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.7.1.28 mat_mtype_priorityqueue_free()

Here is the caller graph for this function:

6.7.1.29 mat_mtype_priorityqueue_is_empty()

6.7.1.30 mat_mtype_priorityqueue_update()

Here is the call graph for this function:

6.7.1.31 mat_mtype_queue_creat()

Here is the call graph for this function:

```
6.7.1.32 mat_mtype_queue_dequeue()

mtype mat_mtype_queue_dequeue (
```

Here is the call graph for this function:

MAT_MTYPE_QUEUE s)

```
6.7.1.33 mat_mtype_queue_enqueue()
```

```
void mat_mtype_queue_enqueue (  \begin{tabular}{ll} MAT\_MTYPE\_QUEUE & s, \\ mtype & value \end{tabular} \label{eq:mat_mtype}
```

Here is the call graph for this function:

6.7.1.34 mat_mtype_queue_free()

```
int mat_mtype_queue_free ( {\tt MAT\_MTYPE\_QUEUE}\ s\ )
```

6.7.1.35 mat_mtype_queue_is_empty()

```
int mat_mtype_queue_is_empty ( {\tt MAT\_MTYPE\_QUEUE} \ \ s \ \ )
```

6.7.1.36 mat_mtype_stack_creat()

Here is the call graph for this function:

6.7.1.37 mat_mtype_stack_free()

```
int mat_mtype_stack_free ( {\tt MAT\_MTYPE\_STACK}\ s\ )
```

6.7.1.38 mat_mtype_stack_is_empty()

```
int mat_mtype_stack_is_empty ( {\tt MAT\_MTYPE\_STACK} \ \ s \ \ )
```

6.7.1.39 mat_mtype_stack_pop()

```
mtype mat_mtype_stack_pop ( {\tt MAT\_MTYPE\_STACK} \ \ s \ \ )
```

Here is the call graph for this function:

6.7.1.40 mat_mtype_stack_push()

Here is the call graph for this function:

6.8 matdet.c File Reference

Functions

- mtype mat_minor (MATRIX A, int i, int j)
 Computes a minor of a matrix.
- mtype mat_cofact (MATRIX A, int i, int j)

Computes a cofactor of a matrix.

mtype mat_det (MATRIX A)

Computes the determinant of a matrix.

6.8.1 Function Documentation

6.8.1.1 mat_cofact()

Computes a cofactor of a matrix.

Parameters

in	Α	Input matrix
in	i	Row index
in	j	Column index

6.9 matdiv.c File Reference

53

Returns

Cofactor C_{ij}

6.8.1.2 mat_det()

```
mtype mat_det ( {\tt MATRIX} \ {\tt A} \ )
```

Computes the determinant of a matrix.

Parameters

in	Α	Input matrix

Returns

 $\det(A)$

Here is the call graph for this function: Here is the caller graph for this function:

6.8.1.3 mat_minor()

```
\label{eq:mat_minor} \begin{array}{ll} \text{mtype mat\_minor (} \\ & \text{MATRIX A,} \\ & \text{int } i, \\ & \text{int } j \end{array})
```

Computes a minor of a matrix.

Parameters

in	Α	Input matrix
in	i	Row index
in	j	Column index

Returns

Minor M_{ij}

Here is the call graph for this function:

6.9 matdiv.c File Reference

Functions

MATRIX mat_inv_dot (MATRIX A, MATRIX result)

Computes element-wise matrix inverse.

• MATRIX mat_div_dot (MATRIX A, MATRIX B, MATRIX result)

Computes element-wise matrix division.

MATRIX mat_divs (MATRIX A, mtype s, MATRIX result)

Divides a matrix by a scalar.

MATRIX mat_divs_inv (MATRIX A, mtype s, MATRIX result)

Divides a scalar by a matrix.

INT_VECTOR int_vec_div (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Computes element-wise integer vector division.

• INT_VECTOR int_vec_divs (INT_VECTOR A, int s, INT_VECTOR result)

Divides an integer vector by a scalar.

INT_VECTOR int_vec_inv (INT_VECTOR A, INT_VECTOR result)

Computes element-wise integer vector inverse.

• INT_VECTOR int_vec_divs_inv (INT_VECTOR A, int s, INT_VECTOR result)

Divides a scalar by an integer vector.

6.9.1 Function Documentation

```
6.9.1.1 int_vec_div()
```

Computes element-wise integer vector division.

Parameters

in	Α	First input vector
in	В	Second input vector
in	result	Vector to store the result

Returns

Here is the call graph for this function:

6.9.1.2 int_vec_divs()

Divides an integer vector by a scalar.

Parameters

in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

 $\frac{A}{s}$

Here is the call graph for this function:

6.9.1.3 int_vec_divs_inv()

Divides a scalar by an integer vector.

Parameters

in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

s1./A

Here is the call graph for this function:

6.9.1.4 int_vec_inv()

Computes element-wise integer vector inverse.

Parameters

in	Α	Input vector
in	result	Vector to store the result

Returns

```
1./A
```

Here is the call graph for this function:

```
6.9.1.5 mat_div_dot()
```

```
MATRIX mat_div_dot (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes element-wise matrix division.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

```
\mathbf{A}./\mathbf{B}
```

Here is the call graph for this function:

6.9.1.6 mat_divs()

Divides a matrix by a scalar.

Parameters

in	Α	Input matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

 $\frac{\mathbf{A}}{s}$

Here is the call graph for this function: Here is the caller graph for this function:

6.9.1.7 mat_divs_inv()

Divides a scalar by a matrix.

Parameters

	in	Α	Input matrix
ſ	in	s	Scalar
	in	result	Matrix to store the result

Returns

```
s\mathbf{1}\mathbf{1}^T./\mathbf{A}
```

Here is the call graph for this function:

6.9.1.8 mat_inv_dot()

Computes element-wise matrix inverse.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\mathbf{1}\mathbf{1}^T./\mathbf{A}$$

Here is the call graph for this function:

6.10 matdump.c File Reference

Functions

void mat_dump (MATRIX A)

Dumps a matrix in the stdout.

void mat_dumpf (MATRIX A, const char *s)

Dumps a matrix using a given format specifier in the stdout.

• void mat_fdump (MATRIX A, MAT_FILEPOINTER fp)

Dumps a matrix in an opened file.

• void mat_fdumpf (MATRIX A, const char *s, MAT_FILEPOINTER fp)

Dumps a matrix using a given format specifier in an opened file.

• void int_vec_dump (INT_VECTOR A)

Dumps an integer vector in the stdout.

• void int_vec_dumpf (INT_VECTOR A, const char *s)

Dumps an integer vector using a given format specifier in the stdout.

void int_vec_fdump (INT_VECTOR A, MAT_FILEPOINTER fp)

Dumps an integer vector in an opened file.

• void int_vec_fdumpf (INT_VECTOR A, const char *s, MAT_FILEPOINTER fp)

Dumps an integer vector using a given format specifier in an opened file.

6.10.1 Function Documentation

```
6.10.1.1 int_vec_dump()
```

Dumps an integer vector in the stdout.

Parameters

in A	Input vector
------	--------------

Here is the call graph for this function:

6.10.1.2 int_vec_dumpf()

Dumps an integer vector using a given format specifier in the stdout.

Parameters

j	n	Α	Input vector
j	n	s	Format specifier

Here is the call graph for this function:

6.10.1.3 int_vec_fdump()

Dumps an integer vector in an opened file.

Parameters

in	Α	Input vector
in	fp	Pointer to an opened file

Here is the call graph for this function:

6.10.1.4 int_vec_fdumpf()

Dumps an integer vector using a given format specifier in an opened file.

Parameters

	in	Α	Input vector
ĺ	in	s	Format specifier
	in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

6.10.1.5 mat_dump()

Dumps a matrix in the stdout.

Parameters

in	Α	Input matrix

Here is the call graph for this function:

6.10.1.6 mat_dumpf()

```
void mat_dumpf (
```

```
MATRIX A,
const char * s )
```

Dumps a matrix using a given format specifier in the stdout.

Parameters

in	Α	Input matrix
in	s	Format specifier

Here is the call graph for this function:

6.10.1.7 mat_fdump()

Dumps a matrix in an opened file.

Parameters

in	Α	Input matrix
in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

6.10.1.8 mat_fdumpf()

Dumps a matrix using a given format specifier in an opened file.

Parameters

in	Α	Input matrix
in	s	Format specifier
in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

6.11 matdurbn.c File Reference

Functions

MATRIX mat_durbin (MATRIX R, MATRIX result)

Runs Levinson-Durbin algorithm.

• MATRIX mat_lsolve_durbin (MATRIX A, MATRIX B, MATRIX result)

Runs Levinson-Durbin algorithm.

MATSTACK mat_qr (MATRIX A, MATSTACK qr)

Computes QR decomposition.

6.11.1 Function Documentation

6.11.1.1 mat_durbin()

Runs Levinson-Durbin algorithm.

Parameters

	in R Input n^th correlation		Input n^th correlation matrix $(n+1)\times 1$
in result Matrix to store the res		result	Matrix to store the result

$$X \text{ where } \tilde{R}X = B \text{ , } \tilde{R} = \left[\begin{array}{ccc} R[0][0] & R[1][0] & \cdots & R[n-1][0] \\ R[1][0] & R[0][0] & \cdots & R[n-2][0] \\ \vdots & \vdots & \ddots & \vdots \\ R[n-1][0] & R[n-2][0] & \cdots & R[0][0] \end{array} \right] \text{ and } B = \left[\begin{array}{ccc} R[1][0] & R[2][0] & \cdots & R[n][0] \end{array} \right]$$

Here is the call graph for this function: Here is the caller graph for this function:

6.11.1.2 mat_lsolve_durbin()

```
MATRIX mat_lsolve_durbin (

MATRIX A,

MATRIX B,

MATRIX result )
```

Runs Levinson-Durbin algorithm.

Parameters

in	Α	Input correlation matrix ${\cal A}=$	$\begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-1} \end{bmatrix}$	$r_1 \\ r_0 \\ \vdots \\ r_{n-2}$	···· ··· ··.	$\begin{bmatrix} r_{n-1} \\ r_{n-2} \\ \vdots \\ r_0 \end{bmatrix}$	
in	В	Input correlation matrix $B=$	$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$				
in result Matrix to store the result			$[r_n]$				

Returns

```
X where RX = B
```

Here is the call graph for this function:

```
6.11.1.3 mat_qr()

MATSTACK mat_qr (

MATRIX A,
```

Computes QR decomposition.

Parameters

in	Α	Input matrix
in	qr	Matrix stack to store result

MATSTACK qr)

Returns

Output QR Matrix stack

Here is the call graph for this function:

6.12 materr.c File Reference

Functions

• int gen_error (int err_)

Generates error message for general errors and exits.

• MATRIX mat_error (int err_)

Generates error message for matrix errors and exits.

MATSTACK matstack_error (int err_)

Generates error message for matrix stack errors and exits.

INT_VECTOR int_vec_error (int err_)

Generates error message for integer vector errors and exits.

• INT_VECSTACK int_vecstack_error (int err_)

Generates error message for integer vector stack errors and exits.

int stack_error (int err_)

Generates error message for stack errors and exits.

• int queue_error (int err_)

Generates error message for queue errors and exits.

• int pq_error (int err_)

Generates error message for priority queue errors and exits.

int graph_error (int err_)

Generates error message for graph errors and exits.

6.12.1 Function Documentation

6.12.1.1 gen_error()

```
int gen_error (
          int err_ )
```

Generates error message for general errors and exits.

Parameters

ſ	in	err	Error type (GEN_NOT_CONVERGED/GEN_FNOTOPEN/
			GEN_FNOTGETMAT/GEN_SIZEMISMATCH/GEN_MATH_ERROR/GEN_MALLOC/GEN_NOT↔
			_FOUND/GEN_SIZE_ERROR/GEN_BAD_TYPE)

Here is the caller graph for this function:

6.12.1.2 graph_error()

```
int graph_error (
          int err_ )
```

Generates error message for graph errors and exits.

Parameters

```
in err Error type (GRAPH_MALLOC/GRAPH_READ/GRAPH_ELSE)
```

Here is the caller graph for this function:

6.12.1.3 int_vec_error()

Generates error message for integer vector errors and exits.

Parameters

in	err	Error type (INT_VEC_MALLOC/INT_VEC_FNOTOPEN/INT_VEC_FNOTGETINT_VEC/INT_VE↔
		C_SIZEMISMATCH)

Here is the caller graph for this function:

6.12.1.4 int_vecstack_error()

Generates error message for integer vector stack errors and exits.

Parameters

in	err	Error type (INT_VECSTACK_MALLOC/INT_VECSTACK_FNOTOPEN/INT_VECSTACK_FNOT↔		
		GETINT_VEC/INT_VECSTACK_SIZEMISMATCH)		

Here is the caller graph for this function:

6.12.1.5 mat_error()

```
MATRIX mat_error (
          int err_ )
```

Generates error message for matrix errors and exits.

Parameters

iı	n	err	Error type (MAT_MALLOC/MAT_FNOTOPEN/MAT_FNOTGETMAT/MAT_SIZEMISMATCH/
			MAT_INVERSE_ILL_COND/MAT_INVERSE_NOT_SQUARE/MAT_CHOLESKY_FAILED)

6.12.1.6 matstack_error()

Generates error message for matrix stack errors and exits.

Parameters

in	err	Error type (MATSTACK_MALLOC/MATSTACK_FNOTOPEN/MATSTACK_FNOTGETMAT/MAT↔	
		STACK_SIZEMISMATCH/	
		MATSTACK_INVERSE_ERROR)	

Here is the caller graph for this function:

```
6.12.1.7 pq_error()
```

```
int pq_error (
          int err_ )
```

Generates error message for priority queue errors and exits.

Parameters

in	err	Error type (PQ_MALLOC/PQ_EMPTY)
----	-----	---------------------------------

Here is the caller graph for this function:

6.12.1.8 queue_error()

Generates error message for queue errors and exits.

Parameters

```
in err Error type (QUEUE_MALLOC/QUEUE_EMPTY)
```

Here is the caller graph for this function:

6.12.1.9 stack_error()

```
int stack_error ( int \ err\_\ )
```

Generates error message for stack errors and exits.

Parameters

```
in err Error type (STACK_MALLOC/STACK_EMPTY)
```

Here is the caller graph for this function:

6.13 matfft.c File Reference

Functions

MATSTACK mat_fft2 (MATSTACK c, int dir, MATSTACK result)
 Computes fast Fourier transform.

6.13.1 Function Documentation

6.13.1.1 mat_fft2()

Computes fast Fourier transform.

Parameters

ir	С	Complex data matrix stack
ir	dir	FFT direction (MAT_FFT2_FORWARD/MAT_FFT2_BACKWARD)
in result Matrix stack to store the result		Matrix stack to store the result

Returns

Transformed matrix stack

Here is the call graph for this function:

6.14 matfilter.c File Reference

Functions

MATRIX mat_conv2 (MATRIX A, MATRIX mask, MATRIX scratch, MATRIX result)
 Computes 2-D convolution.

6.14.1 Function Documentation

6.14.1.1 mat_conv2()

```
MATRIX mat_conv2 (

MATRIX A,

MATRIX mask,

MATRIX scratch,

MATRIX result )
```

Computes 2-D convolution.

Parameters

in	Α	Input matrix
in	mask	Input kernel/mask
in	scratch	Scratch matrix for temporary calculations
in	result	Matrix to store the result

Returns

Convolved output matrix

Here is the call graph for this function:

6.15 matfit.c File Reference

Functions

- MATRIX mat_linear_ls_fit (MATRIX A, MATRIX Y, int deg, MATRIX result)
- Performs 2-d polynomial model fitting using least squares.

 MATRIX mat_least_squares (MATRIX A, MATRIX Y, MATRIX result)
 - Solves linear equations using least squares.
- MATRIX mat_w_least_squares (MATRIX A, MATRIX Y, MATRIX w, MATRIX result) Solves linear equations using weighted least squares.
- MATRIX mat_rob_least_squares (MATRIX A, MATRIX Y, int lossfunc, MATRIX result) Solves linear equations using robust reweighted least squares.
- MATRIX mat_robust_fit (MATRIX A, MATRIX Y, int deg, int lossfunc, MATRIX result)
 Performs 2-d polynomial model fitting using robust least squares.

6.15.1 Function Documentation

6.15.1.1 mat_least_squares()

Solves linear equations using least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	result	Matrix to store the result

Returns

$$\left(\mathbf{A}^T\mathbf{A}\right)^{-1}\mathbf{A}^T\mathbf{Y}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.15.1.2 mat_linear_ls_fit()

Performs 2-d polynomial model fitting using least squares.

Parameters

in	Α	Input data column matrix
in	Y	Input observation column matrix
in	deg	Polynomial degree ${\cal N}$
in	result	Matrix to store the result

Returns

```
Polynomial co-efficient matrix \begin{bmatrix} \alpha_N & \cdots & \alpha_0 \end{bmatrix}^T
```

Here is the call graph for this function:

6.15.1.3 mat_rob_least_squares()

Solves linear equations using robust reweighted least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	lossfunc	Loss function type (MAT_LOSS_BISQUARE/MAT_LOSS_HUBER)
in	result	Matrix to store the result

Returns

Robust \mathbf{X}

Here is the call graph for this function: Here is the caller graph for this function:

6.15.1.4 mat_robust_fit()

```
MATRIX Y,
int deg,
int lossfunc,
MATRIX result )
```

Performs 2-d polynomial model fitting using robust least squares.

Parameters

in	Α	Input data column matrix
in	Y	Input observation column matrix
in	deg	Polynomial degree ${\cal N}$
in	lossfunc	Loss function type (MAT_LOSS_BISQUARE/MAT_LOSS_HUBER)
in	result	Matrix to store the result

Returns

```
Polynomial co-efficient matrix \begin{bmatrix} \alpha_N & \cdots & \alpha_0 \end{bmatrix}^T
```

Here is the call graph for this function:

6.15.1.5 mat_w_least_squares()

Solves linear equations using weighted least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	W	Input weight column matrix
in	result	Matrix to store the result

Returns

$$\left(\mathbf{A}^T\mathrm{diag}(w)\mathbf{A}\right)^{-1}\mathbf{A}^T\mathrm{diag}(w)\mathbf{Y}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.16 matflip.c File Reference

Functions

- MATRIX mat_flipIr (MATRIX A, MATRIX result)
- MATRIX mat_flipud (MATRIX A, MATRIX result)

6.16.1 Function Documentation

6.17 matfuncs.c File Reference

Functions

```
• mtype __mat_addfunc (mtype x, mtype y)
     Computes addition function.
• mtype <u>mat_subfunc</u> (mtype x, mtype y)
     Computes subtraction function.
• mtype __mat_mulfunc (mtype x, mtype y)
     Computes multiplication function.
• mtype __mat_divfunc (mtype x, mtype y)
     Computes division function.

    mtype __mat_sqrfunc (mtype x)

     Computes square function.

    mtype mat sqrtfunc (mtype x)

     Computes square root function.
• mtype __mat_huber_wt (mtype x, mtype k)
     Computes Huber weight function.

    mtype __mat_bisquare_wt (mtype x, mtype k)

     Computes bisquare weight function.
mtype __mat_arcsinh (mtype x)
     Computes inverse hyperbolic sine function.

    mtype __mat_arccosh (mtype x)

     Computes inverse hyperbolic cosine function.

    mtype __mat_arctanh (mtype x)

     Computes inverse hyperbolic tangent function.

    mtype __mat_logplusone (mtype x)
```

Computes logarithm plus one function.

mtype __mat_round_away_zero (mtype x)

Rounds a number away from zero.

• mtype __mat_round_towards_zero (mtype x)

Rounds a number towards zero.

MATRIX mat_huber_wt (MATRIX A, mtype k, mtype sigma, MATRIX result)

Computes Huber weight function element-wise on a matrix.

• MATRIX mat_bisquare_wt (MATRIX A, mtype k, mtype sigma, MATRIX result)

Computes bisquare weight function element-wise on a matrix.

MATRIX mat_gfunc (MATRIX A, mtype(*pt2func)(mtype), MATRIX result)

Computes a given function element-wise on a matrix.

6.17.1 Function Documentation

6.17.1.1 __mat_addfunc()

```
\label{eq:mat_addfunc} \begin{array}{c} \text{mtype } \underline{\quad} \text{mtype } x, \\ \\ \text{mtype } y \end{array})
```

Computes addition function.

Parameters

in	Χ	
in	У	

Returns

$$x + y$$

6.17.1.2 __mat_arccosh()

Computes inverse hyperbolic cosine function.

Parameters

Returns

$$\cosh^{-1}(x)$$

6.17.1.3 __mat_arcsinh()

```
\begin{tabular}{ll} \tt mtype & \_\_mat\_arcsinh ( \\ & \tt mtype & x ) \end{tabular}
```

Computes inverse hyperbolic sine function.

Parameters

Returns

$$\sinh^{-1}(x)$$

Here is the call graph for this function:

6.17.1.4 __mat_arctanh()

Computes inverse hyperbolic tangent function.

Parameters

Returns

$$\tanh^{-1}(x)$$

Here is the call graph for this function:

6.17.1.5 __mat_bisquare_wt()

$$\label{eq:mat_bisquare_wt} \begin{array}{c} \texttt{mtype} \ _\texttt{mat_bisquare_wt} \ (\\ \\ \texttt{mtype} \ x, \\ \\ \texttt{mtype} \ k \) \end{array}$$

Computes bisquare weight function.

Parameters

in	X	
in	k	

Returns, $\begin{cases} \left(1-\left(\frac{x}{k}\right)^2\right)^2, & \text{for } |x| \leq k, \\ 0, & \text{otherwise}. \end{cases}$

6.17.1.6 __mat_divfunc()

$$\label{eq:mat_divfunc} \begin{array}{c} \text{mtype } _\texttt{mat_divfunc} \ (\\ \text{mtype } x, \\ \text{mtype } y \) \end{array}$$

Computes division function.

Parameters

in	X	
in	У	

Returns

 $\frac{x}{y}$

6.17.1.7 __mat_huber_wt()

$$\label{eq:mathuber_wt} \begin{array}{ll} \texttt{mtype} & \underline{\quad} \texttt{mtype} & x, \\ & \texttt{mtype} & x, \end{array}$$

Computes Huber weight function.

Parameters

in	X	
in	k	

 $\begin{cases} 1, & \text{for } |x| \leq k, \\ \frac{k}{|x|}, & \text{otherwise.} \end{cases}$

6.17.1.8 __mat_logplusone()

```
\label{eq:mat_logplusone} \begin{array}{c} \texttt{mtype} \ \_\texttt{mat_logplusone} \ ( \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} )
```

Computes logarithm plus one function.

Parameters

```
in x
```

Returns

$$\log\left(1+x\right)$$

Here is the caller graph for this function:

6.17.1.9 __mat_mulfunc()

```
\label{eq:mat_mulfunc} \begin{array}{c} \text{mtype } \_\texttt{mat\_mulfunc} \; ( \\ \\ \text{mtype } x, \\ \\ \text{mtype } y \; ) \end{array}
```

Computes multiplication function.

Parameters

in	X	
in	У	

Returns

xy

Here is the caller graph for this function:

6.17.1.10 __mat_round_away_zero()

Rounds a number away from zero.

Parameters

in	X	Input value

Returns

$$\operatorname{sgn}(x) \lfloor |x| + 0.5 \rfloor$$

6.17.1.11 __mat_round_towards_zero()

```
\label{eq:mat_round_towards_zero} \begin{split} \text{mtype} & & \_\texttt{mat\_round\_towards\_zero} & \text{(} \\ & & \text{mtype} & x \text{)} \end{split}
```

Rounds a number towards zero.

Parameters

in x Input value

Returns

$$sgn(x) \lceil |x| - 0.5 \rceil$$

6.17.1.12 __mat_sqrfunc()

Computes square function.

Parameters

Returns

 x^2

Here is the caller graph for this function:

6.17.1.13 __mat_sqrtfunc()

Computes square root function.

Parameters

in	Х	
----	---	--

Returns

```
\sqrt{x}
```

Here is the caller graph for this function:

```
6.17.1.14 __mat_subfunc()
```

```
\label{eq:mat_subfunc} \begin{array}{c} \text{mtype } \_\text{mat\_subfunc (} \\ \\ \text{mtype } x, \\ \\ \text{mtype } y \ ) \end{array}
```

Computes subtraction function.

Parameters

in	Χ	
in	У	

Returns

$$x - y$$

Here is the caller graph for this function:

6.17.1.15 mat_bisquare_wt()

```
MATRIX mat_bisquare_wt (

MATRIX A,

mtype k,

mtype sigma,

MATRIX result )
```

Computes bisquare weight function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	k	Bisquare parameter

Returns

$$\mathbf{B},\,b_{ij}=f_{k}\left(a_{ij}
ight)$$
 where f_{k} is the biquare weight function

Here is the call graph for this function: Here is the caller graph for this function:

6.17.1.16 mat_gfunc()

Computes a given function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	f	Given function

Returns

$$\mathbf{B},\,b_{ij}=f\left(a_{ij}\right)$$

Here is the call graph for this function: Here is the caller graph for this function:

6.17.1.17 mat_huber_wt()

```
MATRIX mat_huber_wt (

MATRIX A,

mtype k,

mtype sigma,

MATRIX result )
```

Computes Huber weight function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	k	Huber parameter

Returns

```
\mathbf{B},\,b_{ij}=f_{k}\left(a_{ij}\right) where f_{k} is the Huber weight function
```

Here is the call graph for this function: Here is the caller graph for this function:

6.18 matgraph.c File Reference

Functions

- MAT_GRAPH mat_graph_creat (void)
- void mat_graph_adjlist (MAT_GRAPH g, int directed, int weighted, MAT_FILEPOINTER fp)
- MAT_GRAPH mat_graph_reverse (MAT_GRAPH g, MAT_GRAPH r)

- void mat_graph_adjm_to_adjl (MAT_GRAPH g, MATRIX a)
- MAT_INT_QUEUE mat_graph_search (MAT_GRAPH g, int connected, int mst)
- void mat_graph_visit (MAT_GRAPH g, int k, int connected, int mst, MAT_INT_PRIORITYQUEUE pq, MAT
 — INT_QUEUE q)
- void mat_graph_dumpf (MAT_GRAPH g, int mst, MAT_FILEPOINTER fp)
- void mat_graph_dump (MAT_GRAPH g, int mst)

6.18.1 Function Documentation

6.18.1.1 mat_graph_adjlist()

Here is the call graph for this function:

6.18.1.2 mat_graph_adjm_to_adjl()

Here is the call graph for this function:

6.18.1.3 mat_graph_creat()

6.18.1.4 mat_graph_dump()

Here is the call graph for this function:

6.18.1.5 mat_graph_dumpf()

Here is the caller graph for this function:

6.18.1.6 mat_graph_reverse()

Here is the call graph for this function:

6.18.1.7 mat_graph_search()

Here is the call graph for this function:

6.18.1.8 mat_graph_visit()

Here is the call graph for this function: Here is the caller graph for this function:

6.19 matinnerprod.c File Reference

Functions

- mtype mat_innerprod (MATRIX A, MATRIX B)
- mtype mat_norm_inf (MATRIX A)
- mtype mat_norm_one (MATRIX A)
- mtype mat_norm_p (MATRIX A, mtype p)

6.19.1 Function Documentation

Here is the call graph for this function: Here is the caller graph for this function:

```
6.19.1.2 mat_norm_inf()
```

6.19.1.3 mat_norm_one()

Here is the caller graph for this function:

```
6.19.1.4 mat_norm_p()
```

```
mtype mat_norm_p (  \begin{tabular}{ll} MATRIX $A$, \\ mtype $p$ ) \end{tabular}
```

Here is the caller graph for this function:

6.20 matintegrate.c File Reference

Functions

- mtype mat_int_trapezoid (mtype(*func)(mtype), int n, mtype lower, mtype upper)

 Computes trapezoid integration.
- mtype mat_int_simpson (mtype(*func)(mtype), int n, mtype lower, mtype upper)

 Computes Simpson's integration.
- mtype mat_int_qadrat (mtype(*func)(mtype), mtype lower, mtype upper)
 Computes Gauss quadrature integration.

6.20.1 Function Documentation

6.20.1.1 mat_int_qadrat()

Computes Gauss quadrature integration.

Parameters

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

$$\int_{a}^{b} f\left(x\right) dx$$

Here is the call graph for this function:

6.20.1.2 mat_int_simpson()

Computes Simpson's integration.

Parameters

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

$$\int_{a}^{b} f(x) \, dx$$

6.20.1.3 mat_int_trapezoid()

Computes trapezoid integration.

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

$$\int_{a}^{b} f(x) \, dx$$

6.21 matinv.c File Reference

Functions

• MATRIX mat_inv (MATRIX A, MATRIX result)

Computes the inverse of a matrix.

• MATRIX mat_reg_inv (MATRIX A, mtype r, MATRIX result)

Computes the regularized inverse of a matrix.

6.21.1 Function Documentation

```
6.21.1.1 mat_inv()
```

```
MATRIX mat_inv (

MATRIX A,

MATRIX result )
```

Computes the inverse of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$A^{-1}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.21.1.2 mat_reg_inv()

Computes the regularized inverse of a matrix.

in	Α	Input matrix
in Generat	r ed by Doxyd	Regularizing constant
in	result	Matrix to store the result

Returns

$$(A+rI)^{-1}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.22 matkdtree.c File Reference

Functions

- MAT_KDTREE mat_kdtree_make_tree (MATRIX A, MAT_KDTREE result)
 - Creates a k-d tree from a data matrix.
- int mat_kdtree_free (MAT_KDTREE t)

Frees a k-d tree.

- MATRIX mat_kdtree_nearest (MAT_KDTREE t, MATRIX A, MATRIX result)
 - Computes nearest neighbors.
- MATRIX mat_kdtree_k_nearest (MAT_KDTREE t, MATRIX A, int k, MATRIX result)

Computes k nearest neighbors.

6.22.1 Function Documentation

6.22.1.1 mat_kdtree_free()

Frees a k-d tree.

Parameters

```
in t Input k-d tree
```

Returns

Success

Here is the call graph for this function:

6.22.1.2 mat_kdtree_k_nearest()

Computes k nearest neighbors.

Parameters

in	t	Input k-d tree
in	Α	Input data matrix of size $d \times N$
in	k	Number of neighbors
in	result	Matrix to store the result

Returns

Output matrix B with index B[0][j] and squared distance B[1][j] for $j=1,2,\cdots,N$

Here is the call graph for this function:

6.22.1.3 mat_kdtree_make_tree()

Creates a k-d tree from a data matrix.

Parameters

in	Α	Input data matrix of size $d \times N$
in	result	K-d tree to store the result

Returns

Output k-d tree

Here is the call graph for this function:

6.22.1.4 mat_kdtree_nearest()

Computes nearest neighbors.

in	t	Input k-d tree
in	Α	Input data matrix of size $d \times N$
in	result	Matrix to store the result

Returns

Output matrix B with index B[0][j] and squared distance B[1][j] for $j=1,2,\cdots,N$

Here is the call graph for this function:

6.23 matmaxmin.c File Reference

Functions

- MATVEC_DPOINTER mat_max (MATRIX A, int dim)
- MATVEC_DPOINTER mat_min (MATRIX A, int dim)

6.23.1 Function Documentation

```
6.23.1.1 mat_max()
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.23.1.2 mat_min()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.24 matmds.c File Reference

Functions

- MATRIX mat_mds (MATRIX d, int dims, int type, MATRIX result)
- MATRIX __mat_mds_metric (MATRIX d, int dims, MATRIX result)
- MATRIX __mat_mds_nonmetric (MATRIX d, int dims, MATRIX result)

6.24.1 Function Documentation

```
6.24.1.1 __mat_mds_metric()
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.24.1.2 __mat_mds_nonmetric()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.24.1.3 mat_mds()

Here is the call graph for this function:

6.25 matmean.c File Reference

Functions

mtype mat_mean (MATRIX A)

Computes the mean of a matrix.

MATRIX mat_mean_row (MATRIX A, MATRIX result)

Computes row-mean of a matrix.

MATRIX mat_mean_col (MATRIX A, MATRIX result)

Computes column-mean of a matrix.

• mtype int_vec_mean (INT_VECTOR A)

Computes element-mean of an integer vector.

6.25.1 Function Documentation

Computes element-mean of an integer vector.

Parameters

in .	Α	Input integer vector
------	---	----------------------

Returns

```
mean(A)
```

6.25.1.2 mat_mean()

```
\label{eq:mat_mean} \mbox{ mtype mat\_mean (} $$ MATRIX $A$ )
```

Computes the mean of a matrix.

Parameters

A Input matrix

Returns

$$mean(\mathbf{A})$$

Here is the call graph for this function:

6.25.1.3 mat_mean_col()

Computes column-mean of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\mathbf{1}^T \mathbf{A} / \# \text{rows}$$

Here is the call graph for this function:

6.25.1.4 mat_mean_row()

Computes row-mean of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 $\mathbf{A1}/\#\mathrm{cols}$

Here is the call graph for this function: Here is the caller graph for this function:

6.26 matmisc.c File Reference

Functions

• int mats_isnan (mtype x)

Checks if scalar is NaN.

• int mats_isinf (mtype x)

Checks if scalar is infinite.

void mat_nextline (void)

Prints nextline to stdout.

void mat_fnextline (MAT_FILEPOINTER fp)

Prints nextline to file.

• MATRIX mat_bsxfun (MATRIX A, MATRIX B, mtype(*func)(mtype, mtype), MATRIX result)

Computes element-wise binary function for two matrices.

INT_VECTOR int_vec_permute_vect (int n, int k, INT_VECTOR result)

Computes a randomly permutation of first k positive integers.

• INT_VECTOR mat_get_sub_vector (INT_VECTOR a, INT_VECTOR indices)

Extracts sub-vector from an integer vector.

MATRIX mat_get_sub_matrix_from_rows (MATRIX A, INT_VECTOR indices, MATRIX result)

Extracts sub-matrix from rows of a matrix.

MATRIX mat_get_sub_matrix_from_cols (MATRIX A, INT_VECTOR indices, MATRIX result)

Extracts sub-matrix from columns of a matrix.

MATRIX mat_calc_dist_sq (MATRIX A, MATRIX d, MATRIX result)

Computes the Euclidean distances of points from a given point.

• INT_VECTOR mat_find_within_dist (MATRIX A, MATRIX d, mtype range)

Finds points within a neighborhood.

• MATRIX mat_pick_row (MATRIX A, int r, MATRIX result)

Picks a row from a matrix.

MATRIX mat_pick_col (MATRIX A, int c, MATRIX result)

Picks a column from a matrix.

- void __mat_cart2pol (mtype x, mtype y, mtype *rho, mtype *th)
- void __mat_pol2cart (mtype rho, mtype th, mtype *x, mtype *y)
- MATRIX mat_cart2pol (MATRIX A, int dim, MATRIX result)

Converts Cartesian co-ordinates to polar co-ordinates.

MATRIX mat pol2cart (MATRIX A, int dim, MATRIX result)

Converts polar co-ordinates to Cartesian co-ordinates.

• INT_VECTOR int_vec_unique (INT_VECTOR a)

Extract only the unique integers from an integer vector.

6.26.1 Function Documentation

6.26.1.1 __mat_cart2pol()

6.26.1.2 __mat_pol2cart()

6.26.1.3 int_vec_permute_vect()

```
INT_VECTOR int_vec_permute_vect (
          int n,
          int k,
          INT_VECTOR result )
```

Computes a randomly permutation of first k positive integers.

in	n	Number of random permutations to make	
in	k	Integer upto which it will consider	
in	result	Vector to store the result	

Returns

Permuted vector

Here is the call graph for this function:

6.26.1.4 int_vec_unique()

Extract only the unique integers from an integer vector.

Parameters

|--|

Returns

Unique vector

Here is the call graph for this function: Here is the caller graph for this function:

6.26.1.5 mat_bsxfun()

Computes element-wise binary function for two matrices.

Parameters

in	Α	First matrix
in	В	Second matrix
in	func	Pointer to the function
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.26.1.6 mat_calc_dist_sq()
```

```
MATRIX d,
MATRIX result )
```

Computes the Euclidean distances of points from a given point.

Parameters

in	Α	Points matrix (d x N)	
in	d	Matrix point from which the distance to be computed (d x 1)	
in	result	Matrix to store the result	

Returns

Euclidean distance matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.26.1.7 mat_cart2pol()

Converts Cartesian co-ordinates to polar co-ordinates.

Parameters

in	Α	Input matrix
in	dim	Data order ROWS/COLS

Returns

Polar co-ordinate matrix

Here is the call graph for this function:

6.26.1.8 mat_find_within_dist()

Finds points within a neighborhood.

	in	Α	Points matrix (d x N)	
	in	d	Matrix point from which the distance to be computed (d x 1)	
in range Radius to search within		Radius to search within		

Returns

Indices Vector

Here is the call graph for this function:

6.26.1.9 mat_fnextline()

```
void mat_fnextline ( {\tt MAT\_FILEPOINTER}\ fp\ )
```

Prints nextline to file.

Parameters

in fp Pointer t	o opened file
-----------------	---------------

Here is the caller graph for this function:

6.26.1.10 mat_get_sub_matrix_from_cols()

Extracts sub-matrix from columns of a matrix.

Parameters

in	Α	Input matrix
in	indices	Columns to extract
in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.26.1.11 mat_get_sub_matrix_from_rows()

Extracts sub-matrix from rows of a matrix.

Parameters

in	Α	Input matrix
in	indices	Rows to extract
in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.26.1.12 mat_get_sub_vector()
```

Extracts sub-vector from an integer vector.

Parameters

in	а	Input vector
in	indices	Indices to extracted

Returns

Extracted vector

Here is the call graph for this function:

```
6.26.1.13 mat_nextline()
```

```
void mat_nextline (
     void )
```

Prints nextline to stdout.

Here is the call graph for this function:

```
6.26.1.14 mat_pick_col()
```

Picks a column from a matrix.

Parameters

in	Α	Input matrix
in	r	Column index
in	result	Matrix to store the result

Returns

Column matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.26.1.15 mat_pick_row()
```

Picks a row from a matrix.

Parameters

	in	Α	Input matrix
	in	r	Row index
ĺ	in	result	Matrix to store the result

Returns

Row matrix

Here is the call graph for this function:

6.26.1.16 mat_pol2cart()

Converts polar co-ordinates to Cartesian co-ordinates.

	in	Α	Input matrix
ĺ	in	dim	Data order ROWS/COLS

Returns

Cartesian co-ordinate matrix

Here is the call graph for this function:

```
6.26.1.17 mats_isinf()
```

```
int mats_isinf ( \texttt{mtype} \ x \ )
```

Checks if scalar is infinite.

Parameters

in x Input scala	r
------------------	---

Returns

Zero/non-zero

6.26.1.18 mats_isnan()

Checks if scalar is NaN.

Parameters

in x	Input scalar
------	--------------

Returns

Zero/non-zero

6.27 matmul.c File Reference

Functions

- MATRIX mat_mul (MATRIX A, MATRIX B, MATRIX result)
 - Computes matrix multiplication.
- MATRIX mat_mul_fast (MATRIX A, MATRIX B, MATRIX result)

Computes fast matrix multiplication (not implemented)

• MATRIX mat_muls (MATRIX A, mtype s, MATRIX result)

Multiplies a matrix by a scalar.

• MATRIX mat_mul_dot (MATRIX A, MATRIX B, MATRIX result)

Computes element-wise matrix multiplication.

mtype mat_diagmul (MATRIX A)

Computes matrix diagonal product.

INT_VECTOR int_vec_mul (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Computes element-wise integer vector multiplication.

• INT_VECTOR int_vec_muls (INT_VECTOR A, int x, INT_VECTOR result)

Multiplies an integer vector by a scalar.

6.27.1 Function Documentation

6.27.1.1 int_vec_mul()

Computes element-wise integer vector multiplication.

Parameters

	in	Α	First input vector
	in	В	Second input vector
ĺ	in	result	Vector to store the result

Returns

```
A. * B
```

Here is the call graph for this function:

6.27.1.2 int_vec_muls()

Multiplies an integer vector by a scalar.

in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

sA

Here is the call graph for this function: Here is the caller graph for this function:

```
6.27.1.3 mat_diagmul()
```

Computes matrix diagonal product.

Parameters

in A	Input matrix
------	--------------

Returns

```
\operatorname{prod}(\operatorname{diag}(\mathbf{A}))
```

6.27.1.4 mat_mul()

```
MATRIX mat_mul (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes matrix multiplication.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

 \mathbf{AB}

Here is the call graph for this function: Here is the caller graph for this function:

```
6.27.1.5 mat_mul_dot()
```

```
MATRIX B,
MATRIX result )
```

Computes element-wise matrix multiplication.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

A. * B

Here is the call graph for this function: Here is the caller graph for this function:

6.27.1.6 mat_mul_fast()

```
MATRIX mat_mul_fast (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes fast matrix multiplication (not implemented)

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

\mathbf{AB}

Here is the call graph for this function: Here is the caller graph for this function:

6.27.1.7 mat_muls()

```
MATRIX mat_muls (

MATRIX A,

mtype s,

MATRIX result )
```

Multiplies a matrix by a scalar.

in	Α	Input matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

 $s\mathbf{A}$

Here is the call graph for this function: Here is the caller graph for this function:

6.28 matpca.c File Reference

Functions

- MATSTACK mat pca (MATRIX data, int pca type)
- MATSTACK mat eig sym (MATRIX symmat, MATSTACK result)
- MATSTACK mat_corcol (MATRIX data)
- MATSTACK mat_covcol (MATRIX data)
- MATRIX mat_scpcol (MATRIX data)
- void mat_tred2 (MATRIX a, MATRIX d, MATRIX e)
- void mat_tqli (MATRIX d, MATRIX e, MATRIX z)

6.28.1 Function Documentation

```
6.28.1.1 mat_corcol()
```

```
MATSTACK mat_corcol (

MATRIX data )
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.28.1.2 mat_covcol()
```

```
MATSTACK mat_covcol (

MATRIX data )
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.28.1.3 mat_eig_sym()
```

```
MATSTACK mat_eig_sym (

MATRIX symmat,

MATSTACK result )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.28.1.4 mat_pca()

Here is the call graph for this function:

6.28.1.5 mat_scpcol()

Here is the call graph for this function: Here is the caller graph for this function:

6.28.1.6 mat_tqli()

Here is the call graph for this function: Here is the caller graph for this function:

6.28.1.7 mat_tred2()

Here is the caller graph for this function:

6.29 matpinv.c File Reference

Functions

MATRIX mat_pinv (MATRIX A, MATRIX result)

Computes pseudo-inverse of a matrix.

MATRIX mat_wpinv (MATRIX A, MATRIX w, MATRIX result)

Computes weighted pseudo-inverse of a matrix.

6.29.1 Function Documentation

6.29.1.1 mat_pinv()

```
MATRIX mat_pinv (

MATRIX A,

MATRIX result )
```

Computes pseudo-inverse of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$(A^TA)^{-1}A^T$$

Here is the call graph for this function: Here is the caller graph for this function:

6.29.1.2 mat_wpinv()

```
MATRIX mat_wpinv (

MATRIX A,

MATRIX w,

MATRIX result )
```

Computes weighted pseudo-inverse of a matrix.

Parameters

in	Α	Input matrix
in	W	Weight matrix
in	result	Matrix to store the result

Returns

$$(A^TWA)^{-1}A^TW$$

Here is the call graph for this function: Here is the caller graph for this function:

6.30 matpoly.c File Reference

Functions

- MATRIX mat_poly_eval (MATRIX A, mtype x, int dir, MATRIX result)
 Evaluates polynomial at a point.
- MATRIX mat_poly_diff (MATRIX A, int dir, MATRIX result)

Computes derivative polynomial of a polynomial.

- MATRIX mat_poly_diff_eval (MATRIX A, mtype x, int dir, MATRIX result)
- Evaluates derivative polynomial at a point.

 MATRIX mat_poly_add (MATRIX A, MATRIX B, MATRIX result)

Adds two polynomials.

MATRIX mat_poly_mul (MATRIX A, MATRIX B, MATRIX result)

Multiplies two polynomials.

• MATSTACK mat_poly_div (MATRIX A, MATRIX B, MATSTACK result)

Divides two polynomials.

• MATRIX mat_poly_scale (MATRIX A, mtype s, MATRIX result)

Multiplies a polynomial with a scalar.

MATRIX mat_poly_shift (MATRIX A, int s, MATRIX result)

Shifts a polynomial.

void mat_cheby_init ()

Initializes the Chebyshev polynomial series.

void mat_legendre_init ()

Initializes the Legendre polynomial series.

void mat_binom_init ()

Initializes the binomial series.

• MATRIX mat_cheby (int n)

Computes the n^{th} Chebyshev polynomial.

• MATRIX mat legendre (int n)

Computes the n^{th} Legendre polynomial.

• mtype mat_binom (int n, int k)

Computes a binomial co-efficient.

• MATRIX mat_cheby_coeffs_to_poly (MATRIX coeffs, MATRIX result)

Converts Chebyshev co-efficients to a single polynomial.

MATRIX mat_cheby_approx (mtype(*f)(mtype), mtype a, mtype b, int n, MATRIX result)

Approximates a function using Chebyshev polynomials.

Variables

- MATSTACK mat_cheby_series_table
- MATSTACK mat_legendre_series_table
- MATSTACK mat_binom_series_table

6.30.1 Function Documentation

6.30.1.1 mat_binom()

Computes a binomial co-efficient.

in	n	1^{st} argument
in	k	2^{nd} argument

Returns

 $\binom{n}{k}$

Here is the call graph for this function: Here is the caller graph for this function:

```
6.30.1.2 mat_binom_init()
```

```
void mat_binom_init ( )
```

Initializes the binomial series.

Here is the call graph for this function: Here is the caller graph for this function:

6.30.1.3 mat_cheby()

```
MATRIX mat_cheby ( \inf \ n \ )
```

Computes the n^{th} Chebyshev polynomial.

Parameters

in	n	Polynomial series index
----	---	-------------------------

Returns

Output polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.30.1.4 mat_cheby_approx()

Approximates a function using Chebyshev polynomials.

in	f	Function to approximate	
in	а	Lower limit of domain of the function	
in	b	Upper limit of domain of the function	
in	n	Degree of the approximate polynomial	
in	result	Matrix to store the result	

Returns

Approximate polynomial matrix

Here is the call graph for this function:

```
6.30.1.5 mat_cheby_coeffs_to_poly()
```

Converts Chebyshev co-efficients to a single polynomial.

Parameters

	in	coeffs	Chebyshev polynomial co-efficient matrix	
ſ	in	result	Matrix to store the result	

Returns

Polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.30.1.6 mat_cheby_init()
```

```
void mat_cheby_init ( )
```

Initializes the Chebyshev polynomial series.

Here is the call graph for this function:

6.30.1.7 mat_legendre()

Computes the n^{th} Legendre polynomial.

Parameters

in n Polynomial series index

Returns

Output polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.30.1.8 mat_legendre_init()

```
void mat_legendre_init ( )
```

Initializes the Legendre polynomial series.

Here is the call graph for this function:

6.30.1.9 mat_poly_add()

```
MATRIX mat_poly_add (

MATRIX A,

MATRIX B,

MATRIX result )
```

Adds two polynomials.

Parameters

	in	Α	First input polynomial matrix
	in	В	Second input polynomial matrix
ĺ	in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.30.1.10 mat_poly_diff()

Computes derivative polynomial of a polynomial.

Parameters

	in	Α	Input polynomial matrix
	in	dir	Direction (ROWS/COLS)
ĺ	in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

6.30.1.11 mat_poly_diff_eval()

Evaluates derivative polynomial at a point.

Parameters

in	Α	Input polynomial matrix	
in	X	Value at which to evaluate the derivative	
in	dir	Direction (ROWS/COLS)	
in	result	Matrix to store the result	

Returns

Output matrix

Here is the call graph for this function:

```
6.30.1.12 mat_poly_div()
```

Divides two polynomials.

Parameters

in	Α	First input polynomial matrix
in	В	Second input polynomial matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

6.30.1.13 mat_poly_eval()

```
int dir,
MATRIX result )
```

Evaluates polynomial at a point.

Parameters

in	Α	Input polynomial matrix
in	X	Value at which to evaluate
in	dir	Direction (ROWS/COLS)
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.30.1.14 mat_poly_mul()
```

```
MATRIX mat_poly_mul (

MATRIX A,

MATRIX B,

MATRIX result )
```

Multiplies two polynomials.

Parameters

in	а	First input polynomial matrix
in	b	Second input polynomial matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.30.1.15 mat_poly_scale()
```

```
MATRIX mat_poly_scale (

MATRIX A,

mtype s,

MATRIX result )
```

Multiplies a polynomial with a scalar.

in	Α	Input polynomial matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.30.1.16 mat_poly_shift()
```

Shifts a polynomial.

Parameters

in	Α	Input polynomial matrix
in	s	Scalar shift
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.30.2 Variable Documentation

```
6.30.2.1 mat_binom_series_table
```

```
MATSTACK mat_binom_series_table
```

6.30.2.2 mat_cheby_series_table

```
MATSTACK mat_cheby_series_table
```

6.30.2.3 mat_legendre_series_table

 ${\tt MATSTACK}\ {\tt mat_legendre_series_table}$

6.31 matprec.c File Reference

Functions

- MAT_BAYES_MODEL mat_bayes_classifier_train (MATRIX data, INT_VECTOR labels)
- INT VECTOR mat bayes classifier test (MATRIX data, MAT BAYES MODEL b model)
- MAT PERCEPTRON mat perceptron train (MATRIX data, INT VECTOR labels, int num of iterations)
- MAT_PERCEPTRON mat_perceptron_train_ (MATRIX data1, MATRIX data2, MAT_PERCEPTRON p_
 model, int class_num)
- INT_VECTOR mat_perceptron_test (MATRIX data, MAT_PERCEPTRON p_model)
- MATVEC_DPOINTER mat_kmeans (MATRIX data, int k, int iters, MATVEC_DPOINTER result)

6.31.1 Function Documentation

```
6.31.1.1 mat_bayes_classifier_test()
```

Here is the call graph for this function:

6.31.1.2 mat_bayes_classifier_train()

Here is the call graph for this function:

6.31.1.3 mat_kmeans()

Here is the call graph for this function:

6.31.1.4 mat_perceptron_test()

Here is the call graph for this function:

6.31.1.5 mat_perceptron_train()

Here is the call graph for this function:

6.31.1.6 mat_perceptron_train_()

```
MAT_PERCEPTRON mat_perceptron_train_ (

MATRIX data1,

MATRIX data2,

MAT_PERCEPTRON p_model,

int class_num )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.32 matpursuit.c File Reference

Functions

• MATSTACK mat_omp (MATRIX A, MATRIX b, int k, mtype tol, MATSTACK result)

6.32.1 Function Documentation

6.32.1.1 mat_omp()

Here is the call graph for this function:

6.33 matrand.c File Reference

Functions

- MATRIX mat rand (int n, int m, MATRIX result)
- MATRIX mat randn (int n, int m, MATRIX result)
- MATRIX mat_randexp (int n, int m, mtype mu, MATRIX result)
- MATRIX mat_randfun (int n, int m, mtype(*fun)(mtype), mtype xmin, mtype xmax, MATRIX result)
- void mat_set_seed (int seed)
- mtype __mat_randfun (mtype(*fun)(mtype), mtype xmin, mtype xmax)
- mtype __mat_rand (void)
- mtype __mat_randn (void)
- mtype __mat_randexp (mtype mu)
- MATRIX mat_randperm (int m, int n, MATRIX result)
- MATRIX mat randperm n (int n, MATRIX result)
- INT_VECTOR int_vec_randperm (int n, INT_VECTOR result)

Variables

```
• unsigned int MAT_SEED = 0
```

```
• int MAT_SET_SEED = 0
```

6.33.1 Function Documentation

```
6.33.1.1 __mat_rand()
```

Here is the call graph for this function:

```
6.33.1.2 __mat_randexp()
```

```
\begin{tabular}{ll} \tt mtype & \_\_mat\_randexp & ( \\ & \tt mtype & \it mu & ) \end{tabular}
```

Here is the call graph for this function:

6.33.1.3 __mat_randfun()

Here is the call graph for this function: Here is the caller graph for this function:

```
6.33.1.4 __mat_randn()
```

Here is the call graph for this function:

6.33.1.5 int_vec_randperm()

Here is the call graph for this function:

6.33.1.6 mat_rand()

```
MATRIX mat_rand (
          int n,
          int m,
           MATRIX result )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.33.1.7 mat_randexp()

```
MATRIX mat_randexp (
                int n,
                 int m,
                 mtype mu,
                 MATRIX result )
```

Here is the call graph for this function:

6.33.1.8 mat_randfun()

```
MATRIX mat_randfun (
    int n,
    int m,
    mtype(*)(mtype) fun,
    mtype xmin,
    mtype xmax,
    MATRIX result )
```

Here is the call graph for this function:

6.33.1.9 mat_randn()

Here is the call graph for this function: Here is the caller graph for this function:

6.33.1.10 mat_randperm()

```
MATRIX mat_randperm (
          int m,
          int n,
          MATRIX result )
```

Here is the call graph for this function:

6.33.1.11 mat_randperm_n()

Here is the call graph for this function: Here is the caller graph for this function:

6.33.1.12 mat_set_seed()

```
void mat_set_seed (
     int seed )
```

Here is the caller graph for this function:

6.33.2 Variable Documentation

6.33.2.1 MAT_SEED

```
unsigned int MAT_SEED = 0
```

6.33.2.2 MAT_SET_SEED

```
int MAT_SET_SEED = 0
```

6.34 matrix.c File Reference

6.35 matrix.h File Reference

Data Structures

struct mat_int_stack

Integer Stack Structure.

struct mat_mtype_stack

Mtype Stack Structure.

struct mat_qintnode

Integer Queue Node Structure.

struct mat_int_queue

Integer Queue Structure.

• struct mat_qmtypenode

Mtype Queue Node Structure.

· struct mat_mtype_queue

Mtype Queue Structure.

· struct mat_intpqnode

Integer Priority Queue Node Structure.

• struct mat_int_priorityqueue

Integer Priority Queue Structure.

· struct mat_mtypepqnode

Mtype Priority Queue Node Structure.

• struct mat_mtype_priorityqueue

Mtype Priority Queue Structure.

• struct mat_tree_node

Search Tree Node Structure.

struct mat_bayes_model

Bayes Classifier Model Structure.

· struct mat perceptron

Perceptron Classifier Model Structure.

struct mat_gnode

Graph Node Structure.

· struct mat_graph

Graph Structure.

- · struct mat_kdnode
- struct mat_kdtree

Typedefs

typedef struct mat_int_stack mat_int_stack

Integer Stack Structure.

- typedef mat_int_stack * MAT_INT_STACK
- typedef struct mat_mtype_stack mat_mtype_stack

Mtype Stack Structure.

- typedef mat_mtype_stack * MAT_MTYPE_STACK
- typedef struct mat_qintnode mat_qintnode

Integer Queue Node Structure.

- typedef mat_qintnode * MAT_QINTNODE
- typedef struct mat_int_queue mat_int_queue

Integer Queue Structure.

- typedef mat_int_queue * MAT_INT_QUEUE
- typedef struct mat_qmtypenode mat_qmtypenode

Mtype Queue Node Structure.

- typedef mat_qmtypenode * MAT_QMTYPENODE
- typedef struct mat_mtype_queue mat_mtype_queue

Mtype Queue Structure.

- typedef mat mtype queue * MAT MTYPE QUEUE
- typedef struct mat_intpqnode mat_intpqnode

Integer Priority Queue Node Structure.

- typedef mat_intpqnode * MAT_INTPQNODE
- typedef struct mat_int_priorityqueue mat_int_priorityqueue

Integer Priority Queue Structure.

- typedef mat_int_priorityqueue * MAT_INT_PRIORITYQUEUE
- typedef struct mat_mtypepqnode mat_mtypepqnode

Mtype Priority Queue Node Structure.

- typedef mat mtypepqnode * MAT MTYPEPQNODE
- typedef struct mat_mtype_priorityqueue mat_mtype_priorityqueue

Mtype Priority Queue Structure.

- typedef mat_mtype_priorityqueue * MAT_MTYPE_PRIORITYQUEUE
- typedef struct mat_tree_node mat_tree_node

Search Tree Node Structure.

- typedef mat_tree_node * MAT_TREE_NODE
- typedef mat_tree_node * MAT_TREE
- typedef int * INT VECTOR
- typedef mtype ** MATRIX
- typedef INT_VECTOR * INT_VECSTACK
- typedef MATRIX * MATSTACK
- typedef void ** MATVEC_DPOINTER
- typedef struct mat_bayes_model mat_bayes_model

Bayes Classifier Model Structure.

- typedef mat_bayes_model * MAT_BAYES_MODEL
- typedef struct mat_perceptron mat_perceptron

Perceptron Classifier Model Structure.

- typedef mat_perceptron * MAT_PERCEPTRON
- typedef struct mat_gnode mat_gnode

Graph Node Structure.

- typedef mat gnode * MAT GNODE
- typedef struct mat_graph mat_graph

Graph Structure.

- typedef mat_graph * MAT_GRAPH
- · typedef struct mat kdnode mat kdnode
- typedef mat_kdnode * MAT_KDNODE
- typedef struct mat_kdtree mat_kdtree
- typedef mat_kdtree * MAT_KDTREE

Functions

__declspec (thread) clock_t MAT_CLOCK_TIME

Starts stopwatch timer.

int mats_isnan (mtype x)

Checks if scalar is NaN.

int mats_isinf (mtype x)

Checks if scalar is infinite.

- INT_VECTOR __int_vec_creat (int len)
- INT_VECTOR int_vec_creat (int len, int type)

Creates an integer vector.

INT_VECTOR int_vec_fill (INT_VECTOR A, int val)

Fills an integer vector with a value.

INT_VECTOR int_vec_fill_type (INT_VECTOR A, int type)

Fills an integer vector to a type.

int int vec free (INT VECTOR A)

Frees an integer vector.

- INT_VECSTACK __int_vecstack_creat (int len)
- INT_VECSTACK int_vecstack_creat (int len)

Creates an integer vector stack.

int int_vecstack_free (INT_VECSTACK A)

Frees an integer vector stack.

- MATRIX mat creat (int r, int c)
- MATRIX mat_creat (int r, int c, int type)

Creates a matrix.

MATRIX mat_creat_diag (MATRIX diag_vals, MATRIX result)

Creates a diagonal matrix from a 1-d matrix.

• MATRIX mat_fill (MATRIX A, mtype val)

Fills a matrix with a value.

MATRIX mat_fill_type (MATRIX A, int type)

Fills a matrix to a type.

int mat_free (MATRIX A)

Frees a matrix.

· MATSTACK matstack creat (int len)

Creates a matrix stack.

- MATSTACK __matstack_creat (int len)
- int matstack_free (MATSTACK A)

Frees a matrix stack.

MATSTACK matstack_append (MATSTACK s, MATRIX a)

Appends a matrix to a matrix stack.

MATVEC_DPOINTER matvec_creat (void)

Creates a matrix-vector pair.

int matvec_free (MATVEC_DPOINTER a)

Frees a matrix-vector pair.

MATRIX mat copy (MATRIX A, MATRIX result)

Copies a matrix.

• MATRIX mat_xcopy (MATRIX A, int si, int ei, int sj, int ej, MATRIX result)

Copies a sub-matrix.

MATRIX mat xjoin (MATRIX A11, MATRIX A12, MATRIX A21, MATRIX A22, MATRIX result)

Copies a sub-matrix.

• MATRIX mat_rowcopy (MATRIX A, int rowa, int rowb, MATRIX result)

Copies a row from a matrix.

MATRIX mat_colcopy (MATRIX A, int cola, int colb, MATRIX result)

Copies a column from a matrix.

• int mat_fgetmat (MATRIX A, MAT_FILEPOINTER fp)

Gets matrix data from opened file.

void mat_dump (MATRIX A)

Dumps a matrix in the stdout.

void mat dumpf (MATRIX A, const char *s)

Dumps a matrix using a given format specifier in the stdout.

void mat_fdump (MATRIX A, MAT_FILEPOINTER fp)

Dumps a matrix in an opened file.

void mat fdumpf (MATRIX A, const char *s, MAT FILEPOINTER fp)

Dumps a matrix using a given format specifier in an opened file.

void int_vec_dump (INT_VECTOR a)

Dumps an integer vector in the stdout.

• void int_vec_dumpf (INT_VECTOR a, const char *s)

Dumps an integer vector using a given format specifier in the stdout.

void int vec fdump (INT VECTOR a, MAT FILEPOINTER fp)

Dumps an integer vector in an opened file.

void int_vec_fdumpf (INT_VECTOR a, const char *s, MAT_FILEPOINTER fp)

Dumps an integer vector using a given format specifier in an opened file.

INT_VECTOR int_vec_copy (INT_VECTOR a, INT_VECTOR result)

Copies an integer vector.

INT_VECTOR int_vec_unique (INT_VECTOR a)

Extract only the unique integers from an integer vector.

INT_VECTOR int_vec_append (INT_VECTOR a, int i)

Appends an integer to an integer vector.

- INT_VECTOR int_vec_find (INT_VECTOR a, int rel_type, int n)
- INT_VECTOR int_vec_concat (INT_VECTOR a, INT_VECTOR b, INT_VECTOR result)

Concatenates two integer vectors.

• INT VECTOR mat get sub vector (INT VECTOR a, INT VECTOR indices)

Extracts sub-vector from an integer vector.

• int gen_error (int err_)

Generates error message for general errors and exits.

INT_VECTOR int_vec_error (int err_)

Generates error message for integer vector errors and exits.

INT_VECSTACK int_vecstack_error (int err_)

Generates error message for integer vector stack errors and exits.

MATRIX mat_error (int err_)

Generates error message for matrix errors and exits.

• MATSTACK matstack_error (int err_)

Generates error message for matrix stack errors and exits.

int stack_error (int err_)

Generates error message for stack errors and exits.

• int queue error (int err)

Generates error message for queue errors and exits.

int pq_error (int err_)

Generates error message for priority queue errors and exits.

• int graph error (int err)

Generates error message for graph errors and exits.

• int int_vec_sum (INT_VECTOR A)

Computes element-sum of an integer vector.

mtype int_vec_mean (INT_VECTOR A)

Computes element-mean of an integer vector.

mtype mat_sum (MATRIX A)

Computes element-sum of a matrix.

MATRIX mat sum row (MATRIX A, MATRIX result)

Computes row-sum of a matrix.

MATRIX mat sum col (MATRIX A, MATRIX result)

Computes column-sum of a matrix.

mtype mat_mean (MATRIX A)

Computes the mean of a matrix.

• MATRIX mat_mean_row (MATRIX A, MATRIX result)

Computes row-mean of a matrix.

MATRIX mat_mean_col (MATRIX A, MATRIX result)

Computes column-mean of a matrix.

INT_VECTOR int_vec_abs (INT_VECTOR A, INT_VECTOR result)

Computes absolute value of an integer vector.

• INT_VECTOR int_vec_add (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Adds two integer vectors.

INT VECTOR int vec adds (INT VECTOR A, int s, INT VECTOR result)

Adds an integer to an integer vector.

INT_VECTOR int_vec_sub (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Subtracts an integer vector from integer vector.

INT_VECTOR int_vec_subs (INT_VECTOR A, int s, INT_VECTOR result)

Subtracts an integer from integer vector.

• INT VECTOR int vec subs neg (INT VECTOR A, int s, INT VECTOR result)

Subtracts an integer vector from an integer.

• INT_VECTOR int_vec_mul (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Computes element-wise integer vector multiplication.

• INT VECTOR int vec muls (INT VECTOR A, int s, INT VECTOR result)

Multiplies an integer vector by a scalar.

• INT_VECTOR int_vec_inv (INT_VECTOR A, INT_VECTOR result)

Computes element-wise integer vector inverse.

• INT_VECTOR int_vec_div (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Computes element-wise integer vector division.

INT_VECTOR int_vec_divs (INT_VECTOR A, int s, INT_VECTOR result)

Divides an integer vector by a scalar.

• INT_VECTOR int_vec_divs_inv (INT_VECTOR A, int s, INT_VECTOR result)

Divides a scalar by an integer vector.

MATRIX mat abs (MATRIX A, MATRIX result)

Computes absolute value of matrix.

MATRIX mat add (MATRIX A, MATRIX B, MATRIX result)

Adds two matrices.

MATRIX mat_adds (MATRIX A, mtype s, MATRIX result)

Adds a scalar to a matrix.

MATRIX mat_sub (MATRIX A, MATRIX B, MATRIX result)

Subtracts a matrix from another matrix.

• MATRIX mat_subs (MATRIX A, mtype s, MATRIX result)

Subtracts a scalar from a matrix.

MATRIX mat_subs_neg (MATRIX A, mtype s, MATRIX result)

Subtracts a matrix from a scalar.

MATRIX mat_mul (MATRIX A, MATRIX B, MATRIX result)

Computes matrix multiplication.

· MATRIX mat mul fast (MATRIX A, MATRIX B, MATRIX result)

Computes fast matrix multiplication (not implemented)

MATRIX mat_mul_dot (MATRIX A, MATRIX B, MATRIX result)

Computes element-wise matrix multiplication.

MATRIX mat muls (MATRIX A, mtype s, MATRIX result)

Multiplies a matrix by a scalar.

MATRIX mat inv dot (MATRIX A, MATRIX result)

Computes element-wise matrix inverse.

MATRIX mat_div_dot (MATRIX A, MATRIX B, MATRIX result)

Computes element-wise matrix division.

MATRIX mat divs (MATRIX A, mtype s, MATRIX result)

Divides a matrix by a scalar.

MATRIX mat divs inv (MATRIX A, mtype s, MATRIX result)

Divides a scalar by a matrix.

- mtype mat innerprod (MATRIX A, MATRIX B)
- mtype mat norm inf (MATRIX A)
- mtype mat norm one (MATRIX A)
- mtype mat_norm_p (MATRIX A, mtype p)
- mtype mat_diagmul (MATRIX A)

Computes matrix diagonal product.

MATRIX mat tran (MATRIX A, MATRIX result)

Computes the transpose of a matrix.

MATRIX mat_inv (MATRIX A, MATRIX result)

Computes the inverse of a matrix.

MATRIX mat_pinv (MATRIX A, MATRIX result)

Computes pseudo-inverse of a matrix.

MATRIX mat_wpinv (MATRIX A, MATRIX w, MATRIX result)

Computes weighted pseudo-inverse of a matrix.

MATRIX mat_reg_inv (MATRIX A, mtype r, MATRIX result)

Computes the regularized inverse of a matrix.

MATRIX mat_symtoepiz (MATRIX R, MATRIX result)

Computes the symmetric Toeplitz matrix from a co-efficient matrix.

• int mat_lu (MATRIX A, MATRIX P)

Computes LU decomposition of a matrix.

- void mat backsubs1 (MATRIX A, MATRIX B, MATRIX C, MATRIX P, int xcol)
- MATRIX mat_Isolve (MATRIX A, MATRIX b, MATRIX result)

Solves linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.

MATRIX mat_cholesky (MATRIX A, MATRIX result)

Computes Cholesky factor of a matrix.

• MATRIX mat conjgrad (MATRIX A, MATRIX b, MATRIX x0, mtype tol, int miters, MATRIX result)

Solves a linear system with conjugate gradients method.

MATSTACK mat svd (MATRIX a, int niters, MATSTACK result)

Computes the SVD of a matrix.

· MATRIX mat submat (MATRIX A, int i, int j, MATRIX result)

Deletes a row and a column of a matrix.

mtype mat cofact (MATRIX A, int i, int j)

Computes a cofactor of a matrix.

mtype mat_det (MATRIX A)

Computes the determinant of a matrix.

mtype mat_minor (MATRIX A, int i, int j)

Computes a minor of a matrix.

MATSTACK mat gr (MATRIX A, MATSTACK gr)

Computes QR decomposition.

MATRIX mat_durbin (MATRIX R, MATRIX result)

Runs Levinson-Durbin algorithm.

· MATRIX mat Isolve durbin (MATRIX A, MATRIX B, MATRIX result)

Runs Levinson-Durbin algorithm.

mtype mat median (MATRIX A)

Computes the median of elements of a given matrix.

mtype mat order statistic (MATRIX A, int k)

Computes the k^{th} order statistic of elements of a given matrix.

- void __mat_quicksort (MATRIX A, int I, int r, int offset, MATRIX ind)
- MATSTACK mat_qsort (MATRIX A, int dim, MATSTACK result)

Sorts elements of a given matrix.

- · MATVEC DPOINTER mat max (MATRIX A, int dim)
- MATVEC_DPOINTER mat_min (MATRIX A, int dim)
- MATRIX mat_rand (int r, int c, MATRIX result)
- MATRIX mat randn (int r, int c, MATRIX result)
- MATRIX mat randexp (int r, int c, mtype mu, MATRIX result)
- INT_VECTOR int_vec_permute_vect (int n, int k, INT_VECTOR result)

Computes a randomly permutation of first k positive integers.

- MATRIX mat_randfun (int r, int c, mtype(*fun)(mtype), mtype xmin, mtype xmax, MATRIX result)
- void mat_set_seed (int seed)
- mtype __mat_randfun (mtype(*fun)(mtype), mtype xmin, mtype xmax)
- mtype mat rand (void)
- mtype __mat_randn (void)
- mtype __mat_randexp (mtype mu)
- MATRIX mat_randperm (int m, int n, MATRIX result)
- MATRIX mat_randperm_n (int n, MATRIX result)
- INT_VECTOR int_vec_randperm (int n, INT_VECTOR result)
- MATRIX mat least squares (MATRIX A, MATRIX Y, MATRIX result)

Solves linear equations using least squares.

MATRIX mat_w_least_squares (MATRIX A, MATRIX Y, MATRIX w, MATRIX result)

Solves linear equations using weighted least squares.

· MATRIX mat rob least squares (MATRIX A, MATRIX Y, int lossfunc, MATRIX result)

Solves linear equations using robust reweighted least squares.

MATRIX mat_linear_ls_fit (MATRIX A, MATRIX Y, int deg, MATRIX result)

Performs 2-d polynomial model fitting using least squares.

MATRIX mat_robust_fit (MATRIX A, MATRIX Y, int deg, int lossfunc, MATRIX result)

Performs 2-d polynomial model fitting using robust least squares.

MATRIX mat concat (MATRIX A, MATRIX B, int dim)

Concatenates two matrices.

MATRIX mat_get_sub_matrix_from_rows (MATRIX A, INT_VECTOR indices, MATRIX result)

Extracts sub-matrix from rows of a matrix.

· MATRIX mat get sub matrix from cols (MATRIX A, INT VECTOR indices, MATRIX result)

Extracts sub-matrix from columns of a matrix.

· MATRIX mat pick row (MATRIX A, int r, MATRIX result)

Picks a row from a matrix.

MATRIX mat pick col (MATRIX A, int c, MATRIX result)

Picks a column from a matrix.

• INT_VECSTACK mat_find (MATRIX A, int rel_type, mtype x)

- MATRIX mat_flipIr (MATRIX A, MATRIX result)
- MATRIX mat_flipud (MATRIX A, MATRIX result)
- MATRIX mat_calc_dist_sq (MATRIX A, MATRIX d, MATRIX result)

Computes the Euclidean distances of points from a given point.

• INT VECTOR mat find within dist (MATRIX A, MATRIX d, mtype range)

Finds points within a neighborhood.

- void mat cart2pol (mtype x, mtype y, mtype *rho, mtype *th)
- void __mat_pol2cart (mtype rho, mtype th, mtype *x, mtype *y)
- MATRIX mat cart2pol (MATRIX A, int dim, MATRIX result)

Converts Cartesian co-ordinates to polar co-ordinates.

MATRIX mat_pol2cart (MATRIX A, int dim, MATRIX result)

Converts polar co-ordinates to Cartesian co-ordinates.

• mtype mat addfunc (mtype x, mtype y)

Computes addition function.

mtype __mat_subfunc (mtype x, mtype y)

Computes subtraction function.

mtype __mat_mulfunc (mtype x, mtype y)

Computes multiplication function.

mtype __mat_divfunc (mtype x, mtype y)

Computes division function.

mtype __mat_sqrfunc (mtype x)

Computes square function.

mtype __mat_sqrtfunc (mtype x)

Computes square root function.

• mtype __mat_huber_wt (mtype x, mtype k)

Computes Huber weight function.

mtype __mat_bisquare_wt (mtype x, mtype k)

Computes bisquare weight function.

• mtype __mat_logplusone (mtype x)

Computes logarithm plus one function.

mtype mat arcsinh (mtype x)

Computes inverse hyperbolic sine function.

mtype __mat_arccosh (mtype x)

Computes inverse hyperbolic cosine function.

mtype __mat_arctanh (mtype x)

Computes inverse hyperbolic tangent function.

mtype __mat_round_away_zero (mtype x)

Rounds a number away from zero.

mtype __mat_round_towards_zero (mtype x)

Rounds a number towards zero.

MATRIX mat_bisquare_wt (MATRIX A, mtype k, mtype sigma, MATRIX result)

Computes bisquare weight function element-wise on a matrix.

• MATRIX mat_huber_wt (MATRIX A, mtype k, mtype sigma, MATRIX result)

Computes Huber weight function element-wise on a matrix.

• MATRIX mat gfunc (MATRIX A, mtype(*pt2func)(mtype), MATRIX result)

Computes a given function element-wise on a matrix.

MATRIX mat_bsxfun (MATRIX A, MATRIX B, mtype(*func)(mtype, mtype), MATRIX result)

Computes element-wise binary function for two matrices.

- MATSTACK mat_corcol (MATRIX data)
- · MATSTACK mat covcol (MATRIX data)
- MATRIX mat_scpcol (MATRIX data)

- void mat_tred2 (MATRIX a, MATRIX d, MATRIX e)
- void mat_tqli (MATRIX d, MATRIX e, MATRIX z)
- MATSTACK mat pca (MATRIX data, int pca type)
- MATSTACK mat_eig_sym (MATRIX symmat, MATSTACK result)
- void mat nextline (void)

Prints nextline to stdout.

• void mat_fnextline (MAT_FILEPOINTER fp)

Prints nextline to file.

- int mat powerof2 (int width, int *m, int *twopm)
- MATSTACK mat_fft2 (MATSTACK c, int dir, MATSTACK result)

Computes fast Fourier transform.

- int __mat_fft (int dir, int m, mtype *x, mtype *y)
- · MATRIX mat conv2 (MATRIX A, MATRIX mask, MATRIX scratch, MATRIX result)

Computes 2-D convolution.

INT_VECTOR mat_2int_vec (MATRIX a)

Converts a matrix to an integer vector.

MATRIX int_vec2_mat (INT_VECTOR a, int dir)

Converts an integer vector to a matrix.

MATRIX mat vectorize (MATRIX a, MATRIX result)

Reshapes a matrix to a vector.

MATRIX mat_vectorize_tr (MATRIX a, MATRIX result)

Reshapes transpose of a matrix to a vector.

• mtype mat_int_trapezoid (mtype(*func)(mtype), int n, mtype lower, mtype upper)

Computes trapezoid integration.

mtype mat_int_simpson (mtype(*func)(mtype), int n, mtype lower, mtype upper)

Computes Simpson's integration.

- mtype __mat_lint (mtype *x, mtype(*func)(mtype), mtype x0, mtype xn, mtype f0, mtype f2, mtype f3, mtype f5, mtype f6, mtype f7, mtype f9, mtype f14, mtype hmin, mtype hmax, mtype re, mtype ae)
- mtype mat_int_qadrat (mtype(*func)(mtype), mtype lower, mtype upper)

Computes Gauss quadrature integration.

• MATRIX mat_poly_eval (MATRIX A, mtype x, int dir, MATRIX result)

Evaluates polynomial at a point.

MATRIX mat_poly_diff (MATRIX A, int dir, MATRIX result)

Computes derivative polynomial of a polynomial.

MATRIX mat_poly_diff_eval (MATRIX A, mtype x, int dir, MATRIX result)

Evaluates derivative polynomial at a point.

MATRIX mat poly add (MATRIX A, MATRIX B, MATRIX result)

Adds two polynomials.

· MATRIX mat poly mul (MATRIX A, MATRIX B, MATRIX result)

Multiplies two polynomials.

MATSTACK mat_poly_div (MATRIX A, MATRIX B, MATSTACK result)

Divides two polynomials.

MATRIX mat_poly_scale (MATRIX A, mtype s, MATRIX result)

Multiplies a polynomial with a scalar.

MATRIX mat poly shift (MATRIX A, int s, MATRIX result)

Shifts a polynomial.

void mat_cheby_init ()

Initializes the Chebyshev polynomial series.

void mat_legendre_init ()

Initializes the Legendre polynomial series.

void mat_binom_init ()

Initializes the binomial series.

MATRIX mat_cheby (int n)

Computes the n^{th} Chebyshev polynomial.

• MATRIX mat legendre (int n)

Computes the n^{th} Legendre polynomial.

• mtype mat_binom (int n, int k)

Computes a binomial co-efficient.

MATRIX mat cheby coeffs to poly (MATRIX coeffs, MATRIX result)

Converts Chebyshev co-efficients to a single polynomial.

• MATRIX mat_cheby_approx (mtype(*f)(mtype), mtype a, mtype b, int n, MATRIX result)

Approximates a function using Chebyshev polynomials.

· MAT BAYES MODEL mat bayes model creat (void)

Creates a Bayes model.

• int mat_bayes_model_free (MAT_BAYES_MODEL a)

Frees a Bayes model.

MAT_PERCEPTRON mat_perceptron_creat (void)

Creates a perceptron.

• int mat perceptron free (MAT PERCEPTRON a)

Frees a perceptron.

- MAT_BAYES_MODEL mat_bayes_classifier_train (MATRIX data, INT_VECTOR labels)
- INT_VECTOR mat_bayes_classifier_test (MATRIX data, MAT_BAYES_MODEL b_model)
- MAT_PERCEPTRON mat_perceptron_train (MATRIX data, INT_VECTOR labels, int num_of_iterations)
- INT_VECTOR mat_perceptron_test (MATRIX data, MAT_PERCEPTRON p_model)
- MAT_PERCEPTRON mat_perceptron_train_ (MATRIX data1, MATRIX data2, MAT_PERCEPTRON p_

 model, int class_num)
- MATVEC_DPOINTER mat_kmeans (MATRIX data, int k, int iters, MATVEC_DPOINTER result)
- MAT_TREE mat_bs_make_null (void)
- MAT_TREE mat_bs_free (MAT_TREE T)
- MAT TREE mat bs find (mtype x, MAT TREE T)
- MAT TREE mat bs find min (MAT TREE T)
- MAT TREE mat bs find max (MAT TREE T)
- MAT_TREE mat_bs_insert (mtype x, MAT_TREE T)
- MAT_TREE mat_bs_delete (mtype x, MAT_TREE T)
- int mat_bs_inorder (MAT_TREE T, int index, mtype **ordered)
- int gen_gt (mtype a)

Checks if greater than zero.

• int gen_lt (mtype a)

Checks if less than zero.

• int gen_eq (mtype a)

Checks if equals to zero.

int mat_isnumeric (MAT_FILEPOINTER fp)

Checks if current word in an opened file is numeric or not.

• int mat go next word (MAT FILEPOINTER fp)

Moves to next word in an opened file.

int mat_count_words_in_line (MAT_FILEPOINTER fp, int *count)

Count words in current line in an opened file.

• int mat read word (MAT FILEPOINTER fp, char *c word)

Reads current word from an opened file.

MATRIX mat_dlmread (const char *fname)

Reads a matrix from a file.

void mat_dlmwrite (const char *fname, MATRIX A)

Writes a matrix to a file.

- void mat_tic (void)
- · double mat_toc (void)

Computes elapsed time from last start of timer.

· void mat toc print (void)

Computes and prints elapsed time from last start of timer on the stdout.

- MAT_INT_STACK mat_int_stack_creat (void)
- int mat_int_stack_free (MAT_INT_STACK s)
- void mat int stack push (MAT INT STACK s, int value)
- int mat int stack pop (MAT INT STACKs)
- int mat_int_stack_is_empty (MAT_INT_STACK s)
- · MAT MTYPE STACK mat mtype stack creat (void)
- int mat_mtype_stack_free (MAT_MTYPE_STACK s)
- void mat_mtype_stack_push (MAT_MTYPE_STACK s, mtype value)
- mtype mat mtype stack pop (MAT MTYPE STACK s)
- int mat_mtype_stack_is_empty (MAT_MTYPE_STACK s)
- · MAT INT QUEUE mat int queue creat (void)
- int mat_int_queue_free (MAT_INT_QUEUE s)
- void mat_int_queue_enqueue (MAT_INT_QUEUE s, int value)
- int mat int queue dequeue (MAT INT QUEUE s)
- int mat_int_queue_is_empty (MAT_INT_QUEUE s)
- MAT MTYPE QUEUE mat mtype queue creat (void)
- int mat_mtype_queue_free (MAT_MTYPE_QUEUE s)
- void mat_mtype_queue_enqueue (MAT_MTYPE_QUEUE s, mtype value)
- mtype mat mtype queue dequeue (MAT MTYPE QUEUE s)
- int mat mtype queue is empty (MAT MTYPE QUEUE's)
- MAT_INT_PRIORITYQUEUE mat_int_priorityqueue_creat (int type)
- void mat_int_priorityqueue_enqueue (MAT_INT_PRIORITYQUEUE H, int data, int priority)
- mat_intpqnode mat_int_priorityqueue_dequeue (MAT_INT_PRIORITYQUEUE H)
- int mat_int_priorityqueue_free (MAT_INT_PRIORITYQUEUE H)
- int mat_int_priorityqueue_update (MAT_INT_PRIORITYQUEUE H, int data, int priority, int type)
- int mat int priorityqueue is empty (MAT INT PRIORITYQUEUE H)
- MAT_MTYPE_PRIORITYQUEUE mat_mtype_priorityqueue_creat (int type)
- void mat_mtype_priorityqueue_enqueue (MAT_MTYPE_PRIORITYQUEUE H, mtype data, mtype priority)
- mat mtypepqnode mat mtype priorityqueue dequeue (MAT MTYPE PRIORITYQUEUE H)
- int mat mtype priorityqueue free (MAT MTYPE PRIORITYQUEUE H)
- int mat_mtype_priorityqueue_update (MAT_MTYPE_PRIORITYQUEUE H, mtype data, mtype priority, int type)
- int mat_mtype_priorityqueue_is_empty (MAT_MTYPE_PRIORITYQUEUE H)
- MATRIX mat_mds (MATRIX d, int dims, int type, MATRIX result)
- MATRIX __mat_mds_metric (MATRIX d, int dims, MATRIX result)
- MATRIX __mat_mds_nonmetric (MATRIX d, int dims, MATRIX result)
- MAT_GRAPH mat_graph_creat (void)
- void mat graph adjlist (MAT GRAPH g, int directed, int weighted, MAT FILEPOINTER fp)
- MAT_INT_QUEUE mat_graph_search (MAT_GRAPH g, int connected, int mst)
- void mat_graph_visit (MAT_GRAPH g, int k, int connected, int mst, MAT_INT_PRIORITYQUEUE pq, MAT
 — INT_QUEUE q)
- void mat_graph_dumpf (MAT_GRAPH g, int mst, MAT_FILEPOINTER fp)
- void mat_graph_dump (MAT_GRAPH g, int mst)
- void mat_graph_adjm_to_adjl (MAT_GRAPH g, MATRIX a)
- MAT_GRAPH mat_graph_reverse (MAT_GRAPH g, MAT_GRAPH r)
- MAT_KDTREE mat_kdtree_make_tree (MATRIX A, MAT_KDTREE result)

Creates a k-d tree from a data matrix.

int mat_kdtree_free (MAT_KDTREE t)

Frees a k-d tree.

- MATRIX mat_kdtree_nearest (MAT_KDTREE t, MATRIX A, MATRIX result)

 Computes nearest neighbors.
- MATRIX mat_kdtree_k_nearest (MAT_KDTREE t, MATRIX A, int k, MATRIX result)
 Computes k nearest neighbors.
- MAT_KDNODE __mat_kdtree_make_tree (MAT_KDNODE t, int len, int i, int dim)
- MAT_KDNODE __mat_kd_find_median (MAT_KDNODE kd_start, MAT_KDNODE kd_end, int idx)
- void __mat_kdtree_nearest (MAT_KDNODE root, MAT_KDNODE nd, int i, int dim, MAT_KDNODE *best, mtype *best_dist)
- void __mat_kdtree_k_nearest (MAT_KDNODE root, MAT_KDNODE nd, int i, int dim, MAT_MTYPE_PRIO
 — RITYQUEUE pq, MATRIX bmax, MATRIX bmin)
- MATSTACK mat_omp (MATRIX A, MATRIX b, int k, mtype tol, MATSTACK result)

Variables

- _Thread_local clock_t MAT_CLOCK_TIME
- unsigned int MAT_SEED
- int MAT SET SEED
- MATSTACK mat_cheby_series_table
- MATSTACK mat_legendre_series_table
- MATSTACK mat_binom_series_table

6.35.1 Typedef Documentation

```
typedef INT_VECTOR* INT_VECSTACK

Integer Vector Stack

6.35.1.2 INT_VECTOR

typedef int* INT_VECTOR

Integer Vector

6.35.1.3 mat_bayes_model

typedef struct mat_bayes_model mat_bayes_model

Bayes Classifier Model Structure.
```

Bayes Classifier Model

```
6.35.1.4 MAT_BAYES_MODEL
typedef mat_bayes_model* MAT_BAYES_MODEL
Bayes Classifier Model Pointer
6.35.1.5 mat_gnode
typedef struct mat_gnode mat_gnode
Graph Node Structure.
Graph Node
6.35.1.6 MAT_GNODE
typedef mat_gnode* MAT_GNODE
Graph Node Pointer
6.35.1.7 mat_graph
typedef struct mat_graph mat_graph
Graph Structure.
6.35.1.8 MAT_GRAPH
typedef mat_graph* MAT_GRAPH
6.35.1.9 mat_int_priorityqueue
{\tt typedef \ struct \ mat\_int\_priorityqueue \ mat\_int\_priorityqueue}
Integer Priority Queue Structure.
Integer Priority Queue
6.35.1.10 MAT_INT_PRIORITYQUEUE
typedef mat_int_priorityqueue* MAT_INT_PRIORITYQUEUE
Integer Priority Queue Pointer
```

```
6.35.1.11 mat_int_queue
typedef struct mat_int_queue mat_int_queue
Integer Queue Structure.
Integer Queue
6.35.1.12 MAT_INT_QUEUE
typedef mat_int_queue* MAT_INT_QUEUE
Integer Queue Pointer
6.35.1.13 mat_int_stack
typedef struct mat_int_stack mat_int_stack
Integer Stack Structure.
Integer Stack
6.35.1.14 MAT_INT_STACK
typedef mat_int_stack* MAT_INT_STACK
Integer Stack Pointer
6.35.1.15 mat_intpqnode
typedef struct mat_intpqnode mat_intpqnode
Integer Priority Queue Node Structure.
Integer Priority Queue Node
6.35.1.16 MAT_INTPQNODE
typedef mat_intpqnode* MAT_INTPQNODE
Integer Priority Queue Node Pointer
6.35.1.17 mat_kdnode
typedef struct mat_kdnode mat_kdnode
```

```
6.35.1.18 MAT_KDNODE
typedef mat_kdnode* MAT_KDNODE
6.35.1.19 mat_kdtree
typedef struct mat_kdtree mat_kdtree
6.35.1.20 MAT_KDTREE
typedef mat_kdtree* MAT_KDTREE
6.35.1.21 mat_mtype_priorityqueue
typedef struct mat_mtype_priorityqueue mat_mtype_priorityqueue
Mtype Priority Queue Structure.
Mtype Priority Queue
6.35.1.22 MAT_MTYPE_PRIORITYQUEUE
{\tt typedef\ mat\_mtype\_priorityqueue*\ MAT\_MTYPE\_PRIORITYQUEUE}
Mtype Priority Queue Pointer
6.35.1.23 mat_mtype_queue
typedef struct mat_mtype_queue mat_mtype_queue
Mtype Queue Structure.
Mtype Queue
6.35.1.24 MAT_MTYPE_QUEUE
typedef mat_mtype_queue* MAT_MTYPE_QUEUE
Mtype Queue Pointer
```

```
6.35.1.25 mat_mtype_stack
typedef struct mat_mtype_stack mat_mtype_stack
Mtype Stack Structure.
Mtype Stack
6.35.1.26 MAT_MTYPE_STACK
typedef mat_mtype_stack* MAT_MTYPE_STACK
Mtype Stack Pointer
6.35.1.27 mat_mtypepqnode
typedef struct mat_mtypepqnode mat_mtypepqnode
Mtype Priority Queue Node Structure.
Mtype Priority Queue Node
6.35.1.28 MAT_MTYPEPQNODE
typedef mat_mtypepqnode* MAT_MTYPEPQNODE
Mtype Priority Queue Node Pointer
6.35.1.29 mat_perceptron
typedef struct mat_perceptron mat_perceptron
Perceptron Classifier Model Structure.
Perceptron Classifier Model
6.35.1.30 MAT_PERCEPTRON
typedef mat_perceptron* MAT_PERCEPTRON
Perceptron Classifier Model Pointer
6.35.1.31 mat_qintnode
typedef struct mat_qintnode mat_qintnode
Integer Queue Node Structure.
```

Integer Queue Node

```
6.35.1.32 MAT_QINTNODE
typedef mat_qintnode* MAT_QINTNODE
Integer Queue Node Pointer
6.35.1.33 mat_qmtypenode
typedef struct mat_qmtypenode mat_qmtypenode
Mtype Queue Node Structure.
Mtype Queue Node
6.35.1.34 MAT_QMTYPENODE
typedef mat_qmtypenode* MAT_QMTYPENODE
Mtype Queue Node Pointer
6.35.1.35 MAT_TREE
typedef mat_tree_node* MAT_TREE
Search Tree Pointer
6.35.1.36 mat_tree_node
typedef struct mat_tree_node mat_tree_node
Search Tree Node Structure.
Search Tree Node
6.35.1.37 MAT_TREE_NODE
typedef mat_tree_node* MAT_TREE_NODE
Search Tree Node Pointer
6.35.1.38 MATRIX
typedef mtype** MATRIX
Mtype Matrix
```

6.35.1.39 MATSTACK

```
typedef MATRIX* MATSTACK
```

Mtype Matrix Stack

6.35.1.40 MATVEC_DPOINTER

```
typedef void** MATVEC_DPOINTER
```

Mtype Matrix - Integer Vector Pair

6.35.2 Function Documentation

```
6.35.2.1 __declspec()
```

```
__declspec (
          thread )
```

Starts stopwatch timer.

6.35.2.2 __int_vec_creat()

Here is the caller graph for this function:

6.35.2.3 __int_vecstack_creat()

```
INT_VECSTACK __int_vecstack_creat (
          int len )
```

Here is the caller graph for this function:

6.35.2.4 __mat_addfunc()

```
\label{eq:mat_addfunc} \begin{array}{c} \text{mtype } \_\texttt{mat\_addfunc} \ ( \\ \text{mtype } x, \\ \text{mtype } y \ ) \end{array}
```

Computes addition function.

Parameters

in	Χ	
in	У	

Returns

$$x + y$$

6.35.2.5 __mat_arccosh()

```
\begin{tabular}{ll} \tt mtype $\_\_$mat\_arccosh ( \\ \tt mtype $x$) \end{tabular}
```

Computes inverse hyperbolic cosine function.

Parameters

Returns

$$\cosh^{-1}(x)$$

6.35.2.6 __mat_arcsinh()

```
\begin{tabular}{ll} \tt mtype & \_\_mat\_arcsinh ( \\ & \tt mtype & x ) \end{tabular}
```

Computes inverse hyperbolic sine function.

Parameters

Returns

$$\sinh^{-1}(x)$$

Here is the call graph for this function:

$$\begin{tabular}{lll} \tt mtype & __mat_arctanh & (\\ & \tt mtype & x &) \end{tabular}$$

Computes inverse hyperbolic tangent function.

Parameters

Returns

$$\tanh^{-1}(x)$$

Here is the call graph for this function:

```
6.35.2.8 __mat_bisquare_wt()
```

```
\label{eq:matbisquare_wt} \begin{array}{c} \texttt{mtype} \ \_\_\texttt{mat\_bisquare\_wt} \ ( \\ \\ \texttt{mtype} \ x, \\ \\ \texttt{mtype} \ k \ ) \end{array}
```

Computes bisquare weight function.

Parameters

in	X	
in	k	

Returns
$$\begin{cases} \left(1-\left(\frac{x}{k}\right)^2\right)^2, & \text{for } |x| \leq k, \\ 0, & \text{otherwise}. \end{cases}$$

6.35.2.9 __mat_cart2pol()

6.35.2.10 __mat_creat()

Here is the caller graph for this function:

6.35.2.11 __mat_divfunc()

```
\label{eq:mat_divfunc} \begin{array}{c} \text{mtype } \_\text{mat\_divfunc (} \\ \\ \text{mtype } x, \\ \\ \text{mtype } y \ ) \end{array}
```

Computes division function.

Parameters

in	Х	
in	У	

Returns

 $\frac{x}{y}$

6.35.2.12 __mat_fft()

Here is the caller graph for this function:

6.35.2.13 __mat_huber_wt()

$$\label{eq:mat_huber_wt} \begin{array}{c} \text{mtype } __\text{mat}_\text{huber}_\text{wt (} \\ \\ \text{mtype } x, \\ \\ \text{mtype } k \end{array})$$

Computes Huber weight function.

Parameters

in	Χ	
in	k	

Returns

$$\begin{cases} 1, & \text{for } |x| \leq k, \\ \frac{k}{|x|}, & \text{otherwise.} \end{cases}$$

6.35.2.14 __mat_kd_find_median()

6.35.2.15 __mat_kdtree_k_nearest()

Here is the caller graph for this function:

6.35.2.16 __mat_kdtree_make_tree()

Here is the caller graph for this function:

6.35.2.17 __mat_kdtree_nearest()

Here is the caller graph for this function:

6.35.2.18 __mat_lint()

```
mtype __mat_lint (
             mtype * x,
             mtype(*)(mtype) func,
             mtype x0,
             mtype xn,
             mtype f0,
             mtype f2,
             mtype f3,
             mtype f5,
             mtype f6,
             mtype f7,
             mtype f9,
             mtype fl4,
             mtype hmin,
             mtype hmax,
             mtype re,
             mtype ae )
```

Here is the caller graph for this function:

```
6.35.2.19 __mat_logplusone()
```

```
\begin{tabular}{lll} \tt mtype & \_mat\_logplusone & ( \\ & \tt mtype & x & ) \end{tabular}
```

Computes logarithm plus one function.

Parameters

```
in x
```

Returns

```
\log(1+x)
```

Here is the caller graph for this function:

6.35.2.20 __mat_mds_metric()

```
MATRIX __mat_mds_metric (

MATRIX d,

int dims,

MATRIX result )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.21 __mat_mds_nonmetric()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.22 __mat_mulfunc()

```
\label{eq:mat_mulfunc} \begin{array}{c} \text{mtype } \underline{\quad} \text{mtype } x, \\ \\ \text{mtype } y \end{array})
```

Computes multiplication function.

Parameters

in	X	
in	У	

Returns

xy

Here is the caller graph for this function:

6.35.2.23 __mat_pol2cart()

6.35.2.24 __mat_powerof2()

```
int __mat_powerof2 (
                int width,
                int * m,
                 int * twopm )
```

Here is the caller graph for this function:

6.35.2.25 __mat_quicksort()

Here is the caller graph for this function:

6.35.2.26 __mat_rand()

Here is the call graph for this function:

```
6.35.2.27 __mat_randexp()
```

```
\begin{tabular}{lll} \tt mtype & \_\_mat\_randexp & ( \\ & \tt mtype & \it mu & ) \end{tabular}
```

Here is the call graph for this function:

```
6.35.2.28 __mat_randfun()
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.29 __mat_randn()
```

Here is the call graph for this function:

```
6.35.2.30 __mat_round_away_zero()
```

```
\label{eq:mat_round_away_zero} $$ $$ \mbox{mtype } $\underline{\mbox{mtype } x} $$ $$ $$ $$ $
```

Rounds a number away from zero.

Parameters

in	X	Input value

Returns

$$\operatorname{sgn}(x) \lfloor |x| + 0.5 \rfloor$$

6.35.2.31 __mat_round_towards_zero()

```
\label{eq:mat_round_towards_zero} \begin{split} \text{mtype} & & \_\texttt{mat\_round\_towards\_zero} & \text{(} \\ & & \text{mtype} & x \text{)} \end{split}
```

Rounds a number towards zero.

Parameters

in <i>x</i>	Input value
-------------	-------------

Returns

$$\operatorname{sgn}(x) \left[|x| - 0.5 \right]$$

6.35.2.32 __mat_sqrfunc()

Computes square function.

Parameters

Returns

 x^2

Here is the caller graph for this function:

6.35.2.33 __mat_sqrtfunc()

Computes square root function.

Parameters

Returns

 \sqrt{x}

Here is the caller graph for this function:

```
6.35.2.34 __mat_subfunc()
```

```
\label{eq:mat_subfunc} \begin{array}{c} \text{mtype } \underline{\quad} \text{mtype } x, \\ \\ \text{mtype } y \end{array} )
```

Computes subtraction function.

Parameters

in	X	
in	У	

Returns

```
x - y
```

Here is the caller graph for this function:

```
6.35.2.35 __matstack_creat()
```

Here is the caller graph for this function:

```
6.35.2.36 gen_eq()
```

```
int gen_eq ( \label{eq:mtype} \mbox{mtype $a$ )}
```

Checks if equals to zero.

Parameters

in	а	Input value

Returns

$${\rm int}\; a == 0$$

6.35.2.37 gen_error()

```
int gen_error (
          int err_ )
```

Generates error message for general errors and exits.

Parameters

in	err	Error type (GEN_NOT_CONVERGED/GEN_FNOTOPEN/
		GEN_FNOTGETMAT/GEN_SIZEMISMATCH/GEN_MATH_ERROR/GEN_MALLOC/GEN_NOT↔
		_FOUND/GEN_SIZE_ERROR/GEN_BAD_TYPE)

Here is the caller graph for this function:

Checks if greater than zero.

Parameters

in a	Input value
------	-------------

Returns

 $int \, a > 0$

6.35.2.39 gen_lt()

Checks if less than zero.

Parameters

in a	Input value
-------------	-------------

Returns

 ${\rm int}\ a<0$

6.35.2.40 graph_error()

```
int graph_error (
          int err_ )
```

Generates error message for graph errors and exits.

Parameters

in	err	Error type (GRAPH_MALLOC/GRAPH_READ/GRAPH_ELSE)	
----	-----	---	--

Here is the caller graph for this function:

```
6.35.2.41 int_vec2_mat()

MATRIX int_vec2_mat (
```

Converts an integer vector to a matrix.

INT_VECTOR a,
int dir)

Parameters

in	а	Input vector
in	dir	Conversion direction

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.42 int_vec_abs()
```

Computes absolute value of an integer vector.

Parameters

in	Α	Input integer vector
in	result	Vector to store the result

Returns

```
abs(A)
```

Here is the call graph for this function:

```
6.35.2.43 int_vec_add()
```

```
INT_VECTOR B,
INT_VECTOR result )
```

Adds two integer vectors.

Parameters

in	Α	Input vector
in	В	Input vector
in	result	Vector to store the result

Returns

```
\mathbf{A} + \mathbf{B}
```

Here is the call graph for this function:

```
6.35.2.44 int_vec_adds()
```

Adds an integer to an integer vector.

Parameters

in	Α	Input vector
in	s	Input scalar
in	result	Vector to store the result

Returns

```
\mathbf{A} + s\mathbf{1}
```

Here is the call graph for this function:

```
6.35.2.45 int_vec_append()
```

```
INT_VECTOR int_vec_append (  \begin{tabular}{ll} INT_VECTOR & a, \\ & int & i \end{tabular} \label{eq:int_vec_append}
```

Appends an integer to an integer vector.

Parameters

in	а	Input vector
in	i	Integer to append

Returns

Appended vector

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.46 int_vec_concat()

Concatenates two integer vectors.

Parameters

in	а	Input first vector
in	b	Input second vector
in	result	Vector to store the result

Returns

$$\begin{bmatrix} a & b \end{bmatrix}$$
 or $\begin{bmatrix} a \\ b \end{bmatrix}$

Here is the call graph for this function:

6.35.2.47 int_vec_copy()

Copies an integer vector.

Parameters

in	а	Input vector
in	result	Vector to store the result

Returns

Output vector

Here is the call graph for this function:

6.35.2.48 int_vec_creat()

```
INT_VECTOR int_vec_creat (
                int len,
                int type )
```

Creates an integer vector.

Parameters

in	len	Length of the vector
in	type	Definition type (UNDEFINED/ZERO_INT_VECTOR/ONES_INT_VECTOR/SERIES_INT_VECTOR)

Returns

Output vector

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.49 int_vec_div()

Computes element-wise integer vector division.

Parameters

in	Α	First input vector
in	В	Second input vector
in	result	Vector to store the result

Returns

```
A./B
```

Here is the call graph for this function:

6.35.2.50 int_vec_divs()

Divides an integer vector by a scalar.

Parameters

in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

 $\frac{A}{s}$

Here is the call graph for this function:

```
6.35.2.51 int_vec_divs_inv()
```

Divides a scalar by an integer vector.

Parameters

in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

s1./A

Here is the call graph for this function:

```
6.35.2.52 int_vec_dump()
```

Dumps an integer vector in the stdout.

Parameters

in	Α	Input vector	

Here is the call graph for this function:

6.35.2.53 int_vec_dumpf()

Dumps an integer vector using a given format specifier in the stdout.

Parameters

in	Α	Input vector
in	s	Format specifier

Here is the call graph for this function:

```
6.35.2.54 int_vec_error()
```

Generates error message for integer vector errors and exits.

Parameters

in	err	Error type (INT_VEC_MALLOC/INT_VEC_FNOTOPEN/INT_VEC_FNOTGETINT_VEC/INT_VE↔
		C_SIZEMISMATCH)

Here is the caller graph for this function:

```
6.35.2.55 int_vec_fdump()
```

Dumps an integer vector in an opened file.

Parameters

in	Α	Input vector
in	fp	Pointer to an opened file

Here is the call graph for this function:

```
6.35.2.56 int_vec_fdumpf()
```

```
const char * s, MAT_FILEPOINTER fp)
```

Dumps an integer vector using a given format specifier in an opened file.

Parameters

in	Α	Input vector
in	s	Format specifier
in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.57 int_vec_fill()
```

Fills an integer vector with a value.

Parameters

in	Α	Input vector
in	val	Value to fill with

Returns

Filled vector

```
6.35.2.58 int_vec_fill_type()
```

Fills an integer vector to a type.

Parameters

in	Α	Input vector
in	type	Definition type (UNDEFINED/ZERO_INT_VECTOR/ONES_INT_VECTOR/SERIES_INT_VECTOR)

Returns

Filled vector

Here is the caller graph for this function:

6.35.2.59 int_vec_find()

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.60 int_vec_free()
```

Frees an integer vector.

Parameters

in A	Input vector
------	--------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.61 int_vec_inv()
```

Computes element-wise integer vector inverse.

Parameters

in	Α	Input vector
in	result	Vector to store the result

Returns

1./A

Here is the call graph for this function:

```
6.35.2.62 int_vec_mean()
```

Computes element-mean of an integer vector.

Parameters

in A	Input integer vector
------	----------------------

Returns

```
mean(A)
```

6.35.2.63 int_vec_mul()

Computes element-wise integer vector multiplication.

Parameters

in	Α	First input vector
in	В	Second input vector
in	result	Vector to store the result

Returns

```
A.*B
```

Here is the call graph for this function:

6.35.2.64 int_vec_muls()

Multiplies an integer vector by a scalar.

	1	I .
in	Α	Input vector
in	s	Scalar
in	result	Vector to store the result

Returns

sA

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.65 int_vec_permute_vect()
```

```
INT_VECTOR int_vec_permute_vect (
          int n,
          int k,
          INT_VECTOR result )
```

Computes a randomly permutation of first k positive integers.

Parameters

in	n	Number of random permutations to make
in	k	Integer upto which it will consider
in	result	Vector to store the result

Returns

Permuted vector

Here is the call graph for this function:

```
6.35.2.66 int_vec_randperm()
```

Here is the call graph for this function:

```
6.35.2.67 int_vec_sub()
```

Subtracts an integer vector from integer vector.

in	Α	Input vector
in	В	Input vector
in	result	Vector to store the result

Returns

 $\mathbf{A} - \mathbf{B}$

Here is the call graph for this function:

```
6.35.2.68 int_vec_subs()
```

Subtracts an integer from integer vector.

Parameters

in	Α	Input vector
in	s	Input scalar
in	result	Vector to store the result

Returns

A - s1

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.69 int_vec_subs_neg()
```

Subtracts an integer vector from an integer.

Parameters

in	Α	Input vector
in	s	Input scalar
in	result	Vector to store the result

Returns

 $s\mathbf{1} - \mathbf{A}$

Here is the call graph for this function:

6.35.2.70 int_vec_sum()

Computes element-sum of an integer vector.

Parameters

```
in A Input integer vector
```

Returns

```
sum(A)
```

6.35.2.71 int_vec_unique()

Extract only the unique integers from an integer vector.

Parameters

in a	Input vector
------	--------------

Returns

Unique vector

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.72 int_vecstack_creat()

Creates an integer vector stack.

Parameters

in	len	Length of the stack

Returns

Output vector stack

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.73 int_vecstack_error()

Generates error message for integer vector stack errors and exits.

Parameters

in	err	Error type (INT_VECSTACK_MALLOC/INT_VECSTACK_FNOTOPEN/INT_VECSTACK_FNOT↔
		GETINT_VEC/INT_VECSTACK_SIZEMISMATCH)

Here is the caller graph for this function:

```
6.35.2.74 int_vecstack_free()
```

Frees an integer vector stack.

Parameters

in A	Input vector stack
------	--------------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.75 mat_2int_vec()
```

Converts a matrix to an integer vector.

in	Α	Input matrix	
in	V	Vector to store the result	

Returns

Output vector

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.76 mat_abs()
```

Computes absolute value of matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

```
abs(\mathbf{A})
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.77 mat_add()
```

```
MATRIX mat_add (

MATRIX A,

MATRIX B,

MATRIX result )
```

Adds two matrices.

Parameters

	in	Α	First input matrix
	in	В	Second input matrix
ĺ	in	result	Matrix to store the result

Returns

$$A + B$$

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.78 mat_adds()
```

```
MATRIX mat_adds (

MATRIX A,
```

```
\begin{array}{ll} \text{mtype } s, \\ \\ \text{MATRIX } result \end{array})
```

Adds a scalar to a matrix.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

```
\mathbf{A} + s\mathbf{1}\mathbf{1}^T
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.79 mat_backsubs1()

Here is the caller graph for this function:

6.35.2.80 mat_bayes_classifier_test()

Here is the call graph for this function:

6.35.2.81 mat_bayes_classifier_train()

Here is the call graph for this function:

6.35.2.82 mat_bayes_model_creat()

Creates a Bayes model.

Returns

Output Bayes model

Here is the caller graph for this function:

6.35.2.83 mat_bayes_model_free()

Frees a Bayes model.

Parameters

in	а	Input Bayes model
----	---	-------------------

Returns

Success

Here is the call graph for this function:

6.35.2.84 mat_binom()

```
\label{eq:mat_binom} \begin{array}{c} \text{mtype mat\_binom (} \\ & \text{int } n, \\ & \text{int } k \ ) \end{array}
```

Computes a binomial co-efficient.

Parameters

in	n	1^{st} argument
in	k	2^{nd} argument

Returns

 $\binom{n}{k}$

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.85 mat_binom_init()
```

```
void mat_binom_init ( )
```

Initializes the binomial series.

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.86 mat_bisquare_wt()

```
MATRIX mat_bisquare_wt (

MATRIX A,

mtype k,

mtype sigma,

MATRIX result )
```

Computes bisquare weight function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	k	Bisquare parameter

Returns

```
\mathbf{B},\,b_{ij}=f_{k}\left(a_{ij}
ight) where f_{k} is the biquare weight function
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.87 mat_bs_delete()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.88 mat_bs_find()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.89 mat_bs_find_max()

6.35.2.90 mat_bs_find_min()

Here is the caller graph for this function:

6.35.2.91 mat_bs_free()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.92 mat_bs_inorder()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.93 mat_bs_insert()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.94 mat_bs_make_null()

Here is the caller graph for this function:

6.35.2.95 mat_bsxfun()

Computes element-wise binary function for two matrices.

Parameters

in	Α	First matrix
in	В	Second matrix
in	func	Pointer to the function
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.96 mat_calc_dist_sq()

```
MATRIX mat_calc_dist_sq (

MATRIX A,

MATRIX d,

MATRIX result )
```

Computes the Euclidean distances of points from a given point.

Parameters

in	Α	Points matrix (d x N)	
in	d	Matrix point from which the distance to be computed (d x 1)	
in	result	Matrix to store the result	

Returns

Euclidean distance matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.97 mat_cart2pol()

Converts Cartesian co-ordinates to polar co-ordinates.

Parameters

in	Α	Input matrix
in	dim	Data order ROWS/COLS

Returns

Polar co-ordinate matrix

Here is the call graph for this function:

6.35.2.98 mat_cheby()

```
MATRIX mat_cheby (
    int n )
```

Computes the n^{th} Chebyshev polynomial.

Parameters

in <i>n</i>	Polynomial series index
-------------	-------------------------

Returns

Output polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.99 mat_cheby_approx()

Approximates a function using Chebyshev polynomials.

Parameters

in	f	Function to approximate	
in	а	Lower limit of domain of the function	
in	b	Upper limit of domain of the function	
in	n	Degree of the approximate polynomial	
in	result	Matrix to store the result	

Returns

Approximate polynomial matrix

Here is the call graph for this function:

6.35.2.100 mat_cheby_coeffs_to_poly()

Converts Chebyshev co-efficients to a single polynomial.

in	coeffs	Chebyshev polynomial co-efficient matrix
in	result	Matrix to store the result

Returns

Polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.101 mat_cheby_init()
```

```
void mat_cheby_init ( )
```

Initializes the Chebyshev polynomial series.

Here is the call graph for this function:

6.35.2.102 mat_cholesky()

```
MATRIX mat_cholesky (

MATRIX A,

MATRIX result )
```

Computes Cholesky factor of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

Cholesky factor

Here is the call graph for this function:

6.35.2.103 mat_cofact()

Computes a cofactor of a matrix.

in	Α	Input matrix
in	i	Row index
in	j	Column index

Returns

Cofactor C_{ij}

6.35.2.104 mat_colcopy()

```
MATRIX mat_colcopy (

MATRIX A,

int cola,

int colb,

MATRIX result )
```

Copies a column from a matrix.

Parameters

in	Α	Input matrix
in	cola	Source column
in	colb	Destination column
in	result	Matrix to store the result

Returns

Copied matrix

Here is the caller graph for this function:

6.35.2.105 mat_concat()

Concatenates two matrices.

Parameters

in	Α	Input first matrix	
in	В	Input second matrix	
in	dim	Concatenation direction (ROWS/COLS)	

Returns

$$\left[\begin{array}{cc}A&B\end{array}\right] \text{ or } \left[\begin{array}{c}A\\B\end{array}\right]$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.106 mat_conjgrad()

```
MATRIX mat_conjgrad (

MATRIX A,

MATRIX b,

MATRIX x0,

mtype tol,

int miters,

MATRIX result )
```

Solves a linear system with conjugate gradients method.

Parameters

in	Α	Input matrix
in	b	Observed matrix
in	result	Matrix to store the result

Returns

x

Here is the call graph for this function:

```
6.35.2.107 mat_conv2()
```

```
MATRIX mat_conv2 (

MATRIX A,

MATRIX mask,

MATRIX scratch,

MATRIX result )
```

Computes 2-D convolution.

Parameters

in	Α	Input matrix
in	mask	Input kernel/mask
in	scratch	Scratch matrix for temporary calculations
in	result	Matrix to store the result

Returns

Convolved output matrix

Here is the call graph for this function:

```
6.35.2.108 mat_copy()
```

```
MATRIX mat_copy (

MATRIX A,

MATRIX result )
```

Copies a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.109 mat_corcol()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.110 mat_count_words_in_line()

Count words in current line in an opened file.

Parameters

in	fp	Pointer to an opened file
in	count	Pointer to output count

Returns

EOF reached

Here is the caller graph for this function:

6.35.2.111 mat_covcol()

```
MATSTACK mat_covcol (

MATRIX data )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.112 mat_creat()

```
MATRIX mat_creat (
    int row,
    int col,
    int type )
```

Creates a matrix.

Parameters

in	row	Number of rows	
in	col	Number of columns	
in type Definition type (UNDEFINED/ZERO_MATRIX/UNIT_MATRIX/ONES_MATRI			

Returns

Output matrix

Here is the call graph for this function:

6.35.2.113 mat_creat_diag()

Creates a diagonal matrix from a 1-d matrix.

Parameters

in	diag_vals	Input 1-d diagonal value matrix
in	result	Matrix to store the result

Returns

Diagonal matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.114 mat_det()
```

Computes the determinant of a matrix.

Parameters

in A Input matrix

Returns

```
\det\left(A\right)
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.115 mat_diagmul()

Computes matrix diagonal product.

Parameters

in A	Input matrix
------	--------------

Returns

```
\operatorname{prod}(\operatorname{diag}(\mathbf{A}))
```

6.35.2.116 mat_div_dot()

```
MATRIX mat_div_dot (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes element-wise matrix division.

Parameters

in	Α	First input matrix
in	B Second input matrix	
in	result	Matrix to store the result

Returns

 $\mathbf{A}./\mathbf{B}$

Here is the call graph for this function:

6.35.2.117 mat_divs()

Divides a matrix by a scalar.

Parameters

in	Α	Input matrix	
in	s	Scalar	
in	result	Matrix to store the result	

Returns

 $\frac{\mathbf{A}}{s}$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.118 mat_divs_inv()

Divides a scalar by a matrix.

Parameters

in	Α	Input matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

$$s\mathbf{1}\mathbf{1}^T./\mathbf{A}$$

Here is the call graph for this function:

6.35.2.119 mat_dlmread()

Reads a matrix from a file.

Parameters

in fname Filename to read fi

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.120 mat_dlmwrite()
```

Writes a matrix to a file.

Parameters

in	fname	Filename to write into
in	Α	Input matrix

Here is the call graph for this function:

```
6.35.2.121 mat_dump()
```

Dumps a matrix in the stdout.

Parameters

in	Α	Input matrix

Here is the call graph for this function:

6.35.2.122 mat_dumpf()

Dumps a matrix using a given format specifier in the stdout.

Parameters

in	Α	Input matrix
in	s	Format specifier

Here is the call graph for this function:

6.35.2.123 mat_durbin()

```
MATRIX mat_durbin (

MATRIX R,

MATRIX result )
```

Runs Levinson-Durbin algorithm.

Parameters

in	R	Input n^th correlation matrix $(n+1)\times 1$
in	result	Matrix to store the result

$X \text{ where } \tilde{R}X = B \text{ , } \tilde{R} = \left[\begin{array}{ccc} R[0][0] & R[1][0] & \cdots & R[n-1][0] \\ R[1][0] & R[0][0] & \cdots & R[n-2][0] \\ \vdots & \vdots & \ddots & \vdots \\ R[n-1][0] & R[n-2][0] & \cdots & R[0][0] \end{array} \right] \text{ and } B = \left[\begin{array}{ccc} R[1][0] & R[2][0] & \cdots & R[n][0] \end{array} \right]$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.124 mat_eig_sym()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.125 mat_error()

Generates error message for matrix errors and exits.

in	err	Error type (MAT_MALLOC/MAT_FNOTOPEN/MAT_FNOTGETMAT/MAT_SIZEMISMATCH/
		MAT INVERSE ILL COND/MAT INVERSE NOT SQUARE/MAT CHOLESKY FAILED)

6.35.2.126 mat_fdump()

Dumps a matrix in an opened file.

Parameters

in	Α	Input matrix
in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.127 mat_fdumpf()

Dumps a matrix using a given format specifier in an opened file.

Parameters

in	Α	Input matrix
in	s	Format specifier
in	fp	Pointer to an opened file

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.128 mat_fft2()

```
MATSTACK mat_fft2 (

MATSTACK c,

int dir,

MATSTACK result )
```

Computes fast Fourier transform.

in	С	Complex data matrix stack	
in	dir	FFT direction (MAT_FFT2_FORWARD/MAT_FFT2_BACKWARD)	
in	result	Matrix stack to store the result	

Returns

Transformed matrix stack

Here is the call graph for this function:

```
6.35.2.129 mat_fgetmat()
```

Gets matrix data from opened file.

Parameters

in	Α	Matrix to store the data
in	fp	Pointer to opened file

Returns

Number of elements copied

```
6.35.2.130 mat_fill()
```

Fills a matrix with a value.

Parameters

in	Α	Input matrix
in	val	Value to fill with

Returns

Filled matrix

Here is the caller graph for this function:

```
6.35.2.131 mat_fill_type()
```

Fills a matrix to a type.

Parameters

j	Ĺn	Α	Input matrix	
i	Ĺn	type	Fill type (UNDEFINED/ZERO_MATRIX/UNIT_MATRIX/ONES_MATRIX)	

Returns

Filled matrix

Here is the caller graph for this function:

```
6.35.2.132 mat_find()
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.133 mat_find_within_dist()
```

Finds points within a neighborhood.

Parameters

in	Α	Points matrix (d x N)	
in	d	Matrix point from which the distance to be computed (d x 1)	
in	range	Radius to search within	

Returns

Indices Vector

Here is the call graph for this function:

```
6.35.2.134 mat_fliplr()
```

```
MATRIX mat_fliplr (

MATRIX A,

MATRIX result )
```

Here is the call graph for this function:

6.35.2.135 mat_flipud()

Here is the call graph for this function:

6.35.2.136 mat_fnextline()

```
void mat_fnextline ( {\tt MAT\_FILEPOINTER}\ fp\ )
```

Prints nextline to file.

Parameters

in	fp	Pointer to opened file
----	----	------------------------

Here is the caller graph for this function:

6.35.2.137 mat_free()

Frees a matrix.

Parameters

in A Input matrix

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.138 mat_get_sub_matrix_from_cols()

Extracts sub-matrix from columns of a matrix.

Parameters

in	Α	Input matrix
in	indices	Columns to extract
in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.139 mat_get_sub_matrix_from_rows()

Extracts sub-matrix from rows of a matrix.

Parameters

in	Α	Input matrix
in	indices	Rows to extract
in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.140 mat_get_sub_vector()

Extracts sub-vector from an integer vector.

in	а	Input vector
in	indices	Indices to extracted

Returns

Extracted vector

Here is the call graph for this function:

6.35.2.141 mat_gfunc()

Computes a given function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	f	Given function

Returns

```
\mathbf{B},\,b_{ij}=f\left(a_{ij}\right)
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.142 mat_go_next_word()

```
int mat_go_next_word ( {\tt MAT\_FILEPOINTER}\ fp\ )
```

Moves to next word in an opened file.

Parameters

in	fp	Pointer to an opened file
	1-	

Returns

EOF reached

6.35.2.143 mat_graph_adjlist()

Here is the call graph for this function:

```
6.35.2.144 mat_graph_adjm_to_adjl()
```

Here is the call graph for this function:

```
6.35.2.145 mat_graph_creat()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.146 mat_graph_dump()

Here is the call graph for this function:

6.35.2.147 mat_graph_dumpf()

Here is the caller graph for this function:

6.35.2.148 mat_graph_reverse()

Here is the call graph for this function:

6.35.2.149 mat_graph_search()

Here is the call graph for this function:

6.35.2.150 mat_graph_visit()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.151 mat_huber_wt()

Computes Huber weight function element-wise on a matrix.

Parameters

in	Α	Input matrix
in	k	Huber parameter

Returns

```
\mathbf{B},\,b_{ij}=f_{k}\left(a_{ij}\right) where f_{k} is the Huber weight function
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.152 mat_innerprod()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.153 mat_int_priorityqueue_creat()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.154 mat_int_priorityqueue_dequeue()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.155 mat_int_priorityqueue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.156 mat_int_priorityqueue_free()

```
int mat_int_priorityqueue_free ( {\tt MAT\_INT\_PRIORITYQUEUE}\ {\it H}\ )
```

Here is the caller graph for this function:

6.35.2.157 mat_int_priorityqueue_is_empty()

6.35.2.158 mat_int_priorityqueue_update()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.159 mat_int_qadrat()

Computes Gauss quadrature integration.

Parameters

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

```
\int_{a}^{b} f(x) dx
```

Here is the call graph for this function:

6.35.2.160 mat_int_queue_creat()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.161 mat_int_queue_dequeue()

```
int mat_int_queue_dequeue ( {\tt MAT\_INT\_QUEUE}\ s\ )
```

Here is the call graph for this function:

6.35.2.162 mat_int_queue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.163 mat_int_queue_free()

```
int mat_int_queue_free ( {\tt MAT\_INT\_QUEUE}\ s\ )
```

6.35.2.164 mat_int_queue_is_empty()

6.35.2.165 mat_int_simpson()

Computes Simpson's integration.

Parameters

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

```
\int_{a}^{b} f(x) \, dx
```

6.35.2.166 mat_int_stack_creat()

Here is the call graph for this function:

6.35.2.167 mat_int_stack_free()

```
int mat_int_stack_free ( $\operatorname{MAT\_INT\_STACK}\ s )
```

6.35.2.168 mat_int_stack_is_empty()

6.35.2.169 mat_int_stack_pop()

Here is the call graph for this function:

6.35.2.170 mat_int_stack_push()

Here is the call graph for this function:

6.35.2.171 mat_int_trapezoid()

Computes trapezoid integration.

Parameters

in	func	Function $f\left(\cdot\right)$ to integrate
in	n	Number of subdivisions
in	lower	Lower Limit
in	upper	Upper Limit

Returns

```
\int_{a}^{b} f(x) \, dx
```

6.35.2.172 mat_inv()

Computes the inverse of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 A^{-1}

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.173 mat_inv_dot()
```

```
MATRIX mat_inv_dot (

MATRIX A,

MATRIX result )
```

Computes element-wise matrix inverse.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\mathbf{1}\mathbf{1}^{T}./\mathbf{A}$$

Here is the call graph for this function:

6.35.2.174 mat_isnumeric()

```
int mat_isnumeric ( {\tt MAT\_FILEPOINTER}\ fp\ )
```

Checks if current word in an opened file is numeric or not.

Parameters

in	fp	Pointer to an opened file
----	----	---------------------------

Returns

Zero/non-zero

Here is the caller graph for this function:

6.35.2.175 mat_kdtree_free()

Frees a k-d tree.

Parameters

in	t	Input k-d tree

Returns

Success

Here is the call graph for this function:

6.35.2.176 mat_kdtree_k_nearest()

Computes k nearest neighbors.

in	t	Input k-d tree
	_	
in	Α	Input data matrix of size $d \times N$
in	k	Number of neighbors
in	result	Matrix to store the result

Returns

Output matrix B with index B[0][j] and squared distance B[1][j] for $j=1,2,\cdots,N$

Here is the call graph for this function:

```
6.35.2.177 mat_kdtree_make_tree()
```

Creates a k-d tree from a data matrix.

Parameters

ir	1	Α	Input data matrix of size $d \times N$
ir	ı	result	K-d tree to store the result

Returns

Output k-d tree

Here is the call graph for this function:

6.35.2.178 mat_kdtree_nearest()

Computes nearest neighbors.

Parameters

in	t	Input k-d tree
in	Α	Input data matrix of size $d \times N$
in	result	Matrix to store the result

Returns

Output matrix B with index B[0][j] and squared distance B[1][j] for $j=1,2,\cdots,N$

Here is the call graph for this function:

6.35.2.179 mat_kmeans()

```
int k,
int iters,
MATVEC_DPOINTER result )
```

Here is the call graph for this function:

6.35.2.180 mat_least_squares()

Solves linear equations using least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	result	Matrix to store the result

Returns

$$\left(\mathbf{A}^T\mathbf{A}\right)^{-1}\mathbf{A}^T\mathbf{Y}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.181 mat_legendre()

```
MATRIX mat_legendre ( int n)
```

Computes the n^{th} Legendre polynomial.

Parameters

in	n	Polynomial series index

Returns

Output polynomial matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.182 mat_legendre_init()
```

```
void mat_legendre_init ( )
```

Initializes the Legendre polynomial series.

Here is the call graph for this function:

6.35.2.183 mat_linear_ls_fit()

Performs 2-d polynomial model fitting using least squares.

Parameters

in	A Input data column matrix		
in	Y Input observation column matrix		
in	deg	Polynomial degree ${\cal N}$	
in	result	Matrix to store the result	

Returns

```
Polynomial co-efficient matrix \begin{bmatrix} \alpha_N & \cdots & \alpha_0 \end{bmatrix}^T
```

Here is the call graph for this function:

6.35.2.184 mat_lsolve()

```
MATRIX mat_lsolve (

MATRIX A,

MATRIX b,

MATRIX result )
```

Solves linear equations Ax = b.

Parameters

	in	Α	Input matrix ${f A}$
	in	b	Input matrix ${f b}$
ĺ	in	result	Matrix to store the result

Returns

Output matrix \mathbf{x}

Here is the call graph for this function:

```
6.35.2.185 mat_lsolve_durbin()
```

```
MATRIX mat_lsolve_durbin (

MATRIX A,

MATRIX B,

MATRIX result )
```

Runs Levinson-Durbin algorithm.

Parameters

in	Α	Input correlation matrix $A=\left[egin{array}{cccc} r_0 & r_1 & \cdots & r_{n-1} \\ r_1 & r_0 & \cdots & r_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n-1} & r_{n-2} & \cdots & r_0 \end{array} ight]$		
in	В	Input correlation matrix $B = \left[\begin{array}{c} r_1 \\ r_2 \\ \cdots \\ r_n \end{array} \right]$		
in	result	Matrix to store the result		

Returns

$$X$$
 where $RX = B$

Here is the call graph for this function:

```
6.35.2.186 mat_lu()
int mat_lu (
```

Computes LU decomposition of a matrix.

MATRIX A,
MATRIX P)

Parameters

in	Α	Input matrix overwritten by matrices L and U
in	Р	Matrix to store permutation matrix P

Returns

p Status

Here is the caller graph for this function:

6.35.2.187 mat_max()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.188 mat_mds()

Here is the call graph for this function:

```
6.35.2.189 mat_mean()
```

Computes the mean of a matrix.

Parameters

```
A Input matrix
```

Returns

```
mean(\mathbf{A})
```

Here is the call graph for this function:

```
6.35.2.190 mat_mean_col()
```

```
MATRIX mat_mean_col (

MATRIX A,

MATRIX result )
```

Computes column-mean of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\mathbf{1}^T \mathbf{A} / \# \text{rows}$$

Here is the call graph for this function:

6.35.2.191 mat_mean_row()

```
MATRIX mat_mean_row (

MATRIX A,

MATRIX result )
```

Computes row-mean of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

```
\mathbf{A1}/\#\mathrm{cols}
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.192 mat_median()
```

Computes the median of elements of a given matrix.

Parameters

in A	Input matrix
------	--------------

Returns

```
med(\{a_{ij}\})
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.193 mat_min()
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.194 mat_minor()

```
\label{eq:mat_minor} \begin{array}{ll} \text{mtype mat\_minor (} \\ & \text{MATRIX } A, \\ & \text{int } i, \\ & \text{int } j \end{array})
```

Computes a minor of a matrix.

Parameters

in	Α	Input matrix
in	i	Row index
in	j	Column index

Returns

```
Minor M_{ij}
```

Here is the call graph for this function:

6.35.2.195 mat_mtype_priorityqueue_creat()

```
MAT_MTYPE_PRIORITYQUEUE mat_mtype_priorityqueue_creat (
    int type )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.196 mat_mtype_priorityqueue_dequeue()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.197 mat_mtype_priorityqueue_enqueue()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.198 mat_mtype_priorityqueue_free()

Here is the caller graph for this function:

6.35.2.199 mat_mtype_priorityqueue_is_empty()

```
int mat_mtype_priorityqueue_update (
             MAT_MTYPE_PRIORITYQUEUE H,
              mtype data,
              mtype priority,
              int type )
Here is the call graph for this function:
6.35.2.201 mat_mtype_queue_creat()
MAT_MTYPE_QUEUE mat_mtype_queue_creat (
             void )
Here is the call graph for this function:
6.35.2.202 mat_mtype_queue_dequeue()
mtype mat_mtype_queue_dequeue (
             MAT_MTYPE_QUEUE s )
Here is the call graph for this function:
6.35.2.203 mat_mtype_queue_enqueue()
void mat_mtype_queue_enqueue (
             MAT_MTYPE_QUEUE s,
             mtype value )
Here is the call graph for this function:
6.35.2.204 mat_mtype_queue_free()
int mat_mtype_queue_free (
             MAT_MTYPE_QUEUE s )
6.35.2.205 mat_mtype_queue_is_empty()
int mat_mtype_queue_is_empty (
            MAT_MTYPE_QUEUE s )
```

6.35.2.200 mat_mtype_priorityqueue_update()

6.35.2.206 mat_mtype_stack_creat()

Here is the call graph for this function:

6.35.2.207 mat_mtype_stack_free()

```
int mat_mtype_stack_free ( {\tt MAT\_MTYPE\_STACK}\ s\ )
```

6.35.2.208 mat_mtype_stack_is_empty()

```
int mat_mtype_stack_is_empty ( {\tt MAT\_MTYPE\_STACK}\ s\ )
```

6.35.2.209 mat_mtype_stack_pop()

```
mtype mat_mtype_stack_pop ( {\tt MAT\_MTYPE\_STACK} \ \ s \ \ )
```

Here is the call graph for this function:

6.35.2.210 mat_mtype_stack_push()

Here is the call graph for this function:

6.35.2.211 mat_mul()

```
MATRIX mat_mul (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes matrix multiplication.

Parameters

in	Α	First input matrix
in	В	Second input matrix
Generat	ed/bysDon/tyg	•Matrix to store the result

Returns

AB

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.212 mat_mul_dot()
```

```
MATRIX mat_mul_dot (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes element-wise matrix multiplication.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

A. * B

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.213 mat_mul_fast()
```

```
MATRIX mat_mul_fast (

MATRIX A,

MATRIX B,

MATRIX result )
```

Computes fast matrix multiplication (not implemented)

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

AB

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.214 mat_muls()

Multiplies a matrix by a scalar.

Parameters

in	Α	Input matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

 $s\mathbf{A}$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.215 mat_nextline()

```
void mat_nextline (
     void )
```

Prints nextline to stdout.

Here is the call graph for this function:

6.35.2.216 mat_norm_inf()

6.35.2.217 mat_norm_one()

Here is the caller graph for this function:

6.35.2.218 mat_norm_p()

Here is the caller graph for this function:

6.35.2.219 mat_omp()

```
MATSTACK mat_omp (

MATRIX A,

MATRIX b,

int k,

mtype tol,

MATSTACK result )
```

Here is the call graph for this function:

```
6.35.2.220 mat_order_statistic()
```

Computes the k^{th} order statistic of elements of a given matrix.

Parameters

in	Α	Input matrix
in	k	Order

Returns

$$O_k\left(\{a_{ij}\}\right)$$

Here is the call graph for this function:

```
6.35.2.221 mat_pca()
```

Here is the call graph for this function:

6.35.2.222 mat_perceptron_creat()

Creates a perceptron.

Returns

Output perceptron

Here is the caller graph for this function:

6.35.2.223 mat_perceptron_free()

```
int mat_perceptron_free ( {\tt MAT\_PERCEPTRON~a~)}
```

Frees a perceptron.

Parameters

	in	а	Input perceptron
--	----	---	------------------

Returns

Success

Here is the call graph for this function:

6.35.2.224 mat_perceptron_test()

Here is the call graph for this function:

6.35.2.225 mat_perceptron_train()

Here is the call graph for this function:

6.35.2.226 mat_perceptron_train_()

```
MAT_PERCEPTRON mat_perceptron_train_ (

MATRIX data1,

MATRIX data2,

MAT_PERCEPTRON p_mode1,

int class_num )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.227 mat_pick_col()

Picks a column from a matrix.

Parameters

in	Α	Input matrix
in	r	Column index
in	result	Matrix to store the result

Returns

Column matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.228 mat_pick_row()

Picks a row from a matrix.

Parameters

in	Α	Input matrix
in	r	Row index
in	result	Matrix to store the result

Returns

Row matrix

Here is the call graph for this function:

6.35.2.229 mat_pinv()

Computes pseudo-inverse of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\left(A^TA\right)^{-1}A^T$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.230 mat_pol2cart()

```
MATRIX mat_pol2cart (
MATRIX A,
```

```
int dim,
MATRIX result )
```

Converts polar co-ordinates to Cartesian co-ordinates.

Parameters

in	Α	Input matrix
in	dim	Data order ROWS/COLS

Returns

Cartesian co-ordinate matrix

Here is the call graph for this function:

```
6.35.2.231 mat_poly_add()
```

```
MATRIX mat_poly_add (

MATRIX A,

MATRIX B,

MATRIX result )
```

Adds two polynomials.

Parameters

in	Α	First input polynomial matrix
in	В	Second input polynomial matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.232 mat_poly_diff()
```

```
MATRIX mat_poly_diff (

MATRIX A,

int dir,

MATRIX result )
```

Computes derivative polynomial of a polynomial.

Parameters

in	Α	Input polynomial matrix
in	dir	Direction (ROWS/COLS)
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.233 mat_poly_diff_eval()
```

Evaluates derivative polynomial at a point.

Parameters

in	Α	Input polynomial matrix
in	X	Value at which to evaluate the derivative
in	dir	Direction (ROWS/COLS)
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.234 mat_poly_div()
```

Divides two polynomials.

Parameters

in	Α	First input polynomial matrix
in	В	Second input polynomial matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

6.35.2.235 mat_poly_eval()

Evaluates polynomial at a point.

Parameters

in	Α	Input polynomial matrix
in	X	Value at which to evaluate
in	dir	Direction (ROWS/COLS)
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.236 mat_poly_mul()
```

```
MATRIX mat_poly_mul (

MATRIX A,

MATRIX B,

MATRIX result )
```

Multiplies two polynomials.

Parameters

in	а	First input polynomial matrix
in	b	Second input polynomial matrix
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function:

```
6.35.2.237 mat_poly_scale()
```

```
MATRIX mat_poly_scale (

MATRIX A,

mtype s,

MATRIX result )
```

Multiplies a polynomial with a scalar.

Parameters

in	Α	Input polynomial matrix
in	s	Scalar
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.238 mat_poly_shift()
```

Shifts a polynomial.

Parameters

in	Α	Input polynomial matrix
in	s	Scalar shift
in	result	Matrix to store the result

Returns

Output matrix

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.239 mat_qr()
```

```
MATSTACK mat_qr (

MATRIX A,

MATSTACK qr )
```

Computes QR decomposition.

Parameters

in	Α	Input matrix
in	qr	Matrix stack to store result

Returns

Output QR Matrix stack

Here is the call graph for this function:

```
6.35.2.240 mat_qsort()
```

Sorts elements of a given matrix.

Parameters

in	Α	Input matrix
in	dim	Direction of sort (ROWS/COLS)
in	result	Matrix stack to store the result

Returns

Output matrix stack of sorted A and their positions

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.241 mat_rand()
```

```
MATRIX mat_rand (
          int r,
          int c,
           MATRIX result )
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.242 mat_randexp()

```
MATRIX mat_randexp (
    int r,
    int c,
    mtype mu,
    MATRIX result )
```

Here is the call graph for this function:

6.35.2.243 mat_randfun()

```
MATRIX mat_randfun (
    int r,
    int c,
    mtype(*)(mtype) fun,
    mtype xmin,
    mtype xmax,
    MATRIX result )
```

Here is the call graph for this function:

6.35.2.244 mat_randn()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.245 mat_randperm()

Here is the call graph for this function:

6.35.2.246 mat_randperm_n()

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.247 mat_read_word()

Reads current word from an opened file.

Parameters

	in	fp	Pointer to an opened file
ſ	in	c_word	Pointer to word read

Returns

EOF reached

Here is the caller graph for this function:

```
6.35.2.248 mat_reg_inv()

MATRIX mat_reg_inv (

MATRIX A,
```

Computes the regularized inverse of a matrix.

mtype r,
MATRIX result)

Parameters

in	Α	Input matrix
in	r	Regularizing constant
in	result	Matrix to store the result

Returns

$$(A+rI)^{-1}$$

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.249 mat_rob_least_squares()
```

Solves linear equations using robust reweighted least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	lossfunc	Loss function type (MAT_LOSS_BISQUARE/MAT_LOSS_HUBER)
in	result	Matrix to store the result

Returns

Robust ${\bf X}$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.250 mat_robust_fit()

```
MATRIX mat_robust_fit (

MATRIX A,

MATRIX Y,

int deg,

int lossfunc,

MATRIX result )
```

Performs 2-d polynomial model fitting using robust least squares.

Parameters

in	Α	Input data column matrix
in	Y	Input observation column matrix
in	deg	Polynomial degree N
in	lossfunc	Loss function type (MAT_LOSS_BISQUARE/MAT_LOSS_HUBER)
in	result	Matrix to store the result

Returns

```
Polynomial co-efficient matrix \begin{bmatrix} \alpha_N & \cdots & \alpha_0 \end{bmatrix}^T
```

Here is the call graph for this function:

```
6.35.2.251 mat_rowcopy()
```

```
MATRIX mat_rowcopy (

MATRIX A,

int rowa,

int rowb,

MATRIX result )
```

Copies a row from a matrix.

Parameters

in	Α	Input matrix
in	rowa	Source row
in	rowb	Destination row
in	result	Matrix to store the result

Returns

Copied matrix

6.35.2.252 mat_scpcol()

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.253 mat_set_seed()
```

```
void mat_set_seed (
          int seed )
```

Here is the caller graph for this function:

```
6.35.2.254 mat_sub()
```

```
MATRIX mat_sub (

MATRIX A,

MATRIX B,

MATRIX result )
```

Subtracts a matrix from another matrix.

Parameters

	in	Α	First input matrix
	in	В	Second input matrix
ĺ	in	result	Matrix to store the result

Returns

```
\mathbf{A} - \mathbf{B}
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.255 mat_submat()

Deletes a row and a column of a matrix.

Parameters

ſ	in	Α	Input matrix
ľ	in	i	Row index
ŀ	in	i	Column index
	in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.256 mat_subs()

Subtracts a scalar from a matrix.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

$$\mathbf{A} - s\mathbf{1}\mathbf{1}^T$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.257 mat_subs_neg()

Subtracts a matrix from a scalar.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

$$s\mathbf{1}\mathbf{1}^T - \mathbf{A}$$

Here is the call graph for this function:

6.35.2.258 mat_sum()

Computes element-sum of a matrix.

Parameters

in A	Input matrix
------	--------------

Returns

```
sum(\mathbf{A})
```

Here is the caller graph for this function:

```
6.35.2.259 mat_sum_col()
```

```
MATRIX mat_sum_col (

MATRIX A,

MATRIX result )
```

Computes column-sum of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$\mathbf{1}^T\mathbf{A}$$

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.260 mat_sum_row()
```

```
MATRIX mat_sum_row (

MATRIX A,

MATRIX result )
```

Computes row-sum of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$\mathbf{A1}$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.261 mat_svd()

Computes the SVD of a matrix.

Parameters

in	а	Input matrix
in	niters	Iterations to use
	result	Matrix stack to store the result

Returns

```
MATSTACK ( \mathbf{U}, \mathbf{S}, \mathbf{V} )
```

Here is the call graph for this function:

6.35.2.262 mat_symtoeplz()

Computes the symmetric Toeplitz matrix from a co-efficient matrix.

Parameters

in	R	Input coefficient matrix
in	result	Matrix to store the result

Returns

```
\operatorname{symtoep}(\mathbf{R})
```

Here is the call graph for this function:

```
6.35.2.263 mat_tic()
```

```
void mat_tic (
          void )
```

```
6.35.2.264 mat_toc()
```

Computes elapsed time from last start of timer.

Returns

Elapsed time

```
6.35.2.265 mat_toc_print()
```

Computes and prints elapsed time from last start of timer on the stdout.

```
6.35.2.266 mat_tqli()
```

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.267 mat_tran()
```

```
MATRIX mat_tran (

MATRIX A,

MATRIX result )
```

Computes the transpose of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 \mathbf{A}^T

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.268 mat_tred2()

Here is the caller graph for this function:

6.35.2.269 mat_vectorize()

Reshapes a matrix to a vector.

Parameters

ſ	in	Α	Input matrix
ſ	in	result	Matrix to store the result

Returns

```
vec(\mathbf{A})
```

Here is the call graph for this function:

```
6.35.2.270 mat_vectorize_tr()
```

Reshapes transpose of a matrix to a vector.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

$$vec(\mathbf{A}^T)$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.271 mat_w_least_squares()

Solves linear equations using weighted least squares.

Parameters

in	Α	Input data matrix
in	Y	Input observation matrix
in	W	Input weight column matrix
in	result	Matrix to store the result

Returns

$$(\mathbf{A}^T \operatorname{diag}(w)\mathbf{A})^{-1} \mathbf{A}^T \operatorname{diag}(w)\mathbf{Y}$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.272 mat_wpinv()

```
MATRIX mat_wpinv (

MATRIX A,

MATRIX w,

MATRIX result )
```

Computes weighted pseudo-inverse of a matrix.

Parameters

	in	Α	Input matrix
	in	W	Weight matrix
ĺ	in	result	Matrix to store the result

Returns

$$(A^TWA)^{-1}A^TW$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.273 mat_xcopy()

```
int ei,
int sj,
int ej,
MATRIX result )
```

Copies a sub-matrix.

Parameters

in	Α	Input matrix
in	si	Start of first index, s_i
in	ei	End of first index, e_i
in	sj	Start of second index, s_j
in	ej	End of second index, e_j
in	result	Matrix to store the result

Returns

```
Extracted matrix A_{s_i:e_i,s_i:e_i}
```

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.274 mat_xjoin()

```
MATRIX mat_xjoin (

MATRIX A11,

MATRIX A12,

MATRIX A21,

MATRIX A22,

MATRIX result )
```

Copies a sub-matrix.

Parameters

in	A11	Input matrix, A_{11}
in	A12	Input matrix, A_{12}
in	A21	Input matrix, A_{21}
in	A22	Input matrix, A_{22}
in	result	Matrix to store the result

Returns

Block matrix
$$\left[\begin{array}{cc}A_{11} & A_{12}\\A_{21} & A_{22}\end{array}\right]$$

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.275 mats_isinf()

Checks if scalar is infinite.

Parameters

in <i>x</i>	Input scalar
-------------	--------------

Returns

Zero/non-zero

6.35.2.276 mats_isnan()

Checks if scalar is NaN.

Parameters

in x Input scalar

Returns

Zero/non-zero

6.35.2.277 matstack_append()

Appends a matrix to a matrix stack.

Parameters

in	s	Input matrix stack
in	Α	Input matrix to append

Returns

Output matrix stack

Here is the call graph for this function:

6.35.2.278 matstack_creat()

Creates a matrix stack.

Parameters

```
in len Length of the stack
```

Returns

Output matrix stack

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.279 matstack_error()

Generates error message for matrix stack errors and exits.

Parameters

in	err	Error type (MATSTACK_MALLOC/MATSTACK_FNOTOPEN/MATSTACK_FNOTGETMAT/MAT↔
		STACK_SIZEMISMATCH/
		MATSTACK_INVERSE_ERROR)

Here is the caller graph for this function:

6.35.2.280 matstack_free()

Frees a matrix stack.

Parameters

in	Α	Input matrix stack

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

6.35.2.281 matvec_creat()

Creates a matrix-vector pair.

Returns

Output matrix-vector pair

Here is the caller graph for this function:

```
6.35.2.282 matvec_free()
```

```
int matvec_free ( {\tt MATVEC\_DPOINTER} \ a \ )
```

Frees a matrix-vector pair.

Parameters

	in	а	Input matrix-vector pair
--	----	---	--------------------------

Returns

Success

Here is the call graph for this function: Here is the caller graph for this function:

```
6.35.2.283 pq_error()
```

```
int pq_error (
         int err_ )
```

Generates error message for priority queue errors and exits.

Parameters

```
in err Error type (PQ_MALLOC/PQ_EMPTY)
```

Here is the caller graph for this function:

```
6.35.2.284 queue_error()
```

Generates error message for queue errors and exits.

Parameters

```
in err Error type (QUEUE_MALLOC/QUEUE_EMPTY)
```

Here is the caller graph for this function:

```
6.35.2.285 stack_error()
```

Generates error message for stack errors and exits.

Parameters

```
in err Error type (STACK_MALLOC/STACK_EMPTY)
```

Here is the caller graph for this function:

6.35.3 Variable Documentation

6.35.3.1 mat_binom_series_table

```
MATSTACK mat_binom_series_table
```

6.35.3.2 mat_cheby_series_table

```
MATSTACK mat_cheby_series_table
```

6.35.3.3 MAT_CLOCK_TIME

```
\underline{\hspace{0.5cm}} \texttt{thread clock\_t MAT\_CLOCK\_TIME}
```

6.35.3.4 mat_legendre_series_table

MATSTACK mat_legendre_series_table

6.35.3.5 MAT_SEED

```
unsigned int MAT_SEED
```

6.35.3.6 MAT_SET_SEED

```
int MAT_SET_SEED
```

6.36 matsearch.c File Reference

Functions

- INT_VECTOR int_vec_find (INT_VECTOR a, int rel_type, int n)
- INT_VECSTACK mat_find (MATRIX A, int rel_type, mtype x)

6.36.1 Function Documentation

6.36.1.1 int_vec_find()

Here is the call graph for this function: Here is the caller graph for this function:

6.36.1.2 mat_find()

Here is the call graph for this function: Here is the caller graph for this function:

6.37 matsolve.c File Reference

Functions

int mat_lu (MATRIX A, MATRIX P)

Computes LU decomposition of a matrix.

- void mat_backsubs1 (MATRIX A, MATRIX B, MATRIX X, MATRIX P, int xcol)
- MATRIX mat_Isolve (MATRIX A, MATRIX b, MATRIX result)

Solves linear equations Ax = b.

MATRIX mat_cholesky (MATRIX A, MATRIX result)

Computes Cholesky factor of a matrix.

• MATRIX mat_conjgrad (MATRIX A, MATRIX b, MATRIX x0, mtype tol, int miters, MATRIX result)

Solves a linear system with conjugate gradients method.

6.37.1 Function Documentation

6.37.1.1 mat_backsubs1()

Here is the caller graph for this function:

6.37.1.2 mat_cholesky()

```
MATRIX mat_cholesky (

MATRIX A,

MATRIX result )
```

Computes Cholesky factor of a matrix.

Parameters

	in	Α	Input matrix
ſ	in	result	Matrix to store the result

Returns

Cholesky factor

Here is the call graph for this function:

6.37.1.3 mat_conjgrad()

```
MATRIX mat_conjgrad (

MATRIX A,

MATRIX b,

MATRIX x0,

mtype tol,

int miters,

MATRIX result )
```

Solves a linear system with conjugate gradients method.

Parameters

in	Α	Input matrix
in	b	Observed matrix
in	result	Matrix to store the result

Returns

x

Here is the call graph for this function:

6.37.1.4 mat_lsolve()

```
MATRIX mat_lsolve (

MATRIX A,

MATRIX b,

MATRIX result )
```

Solves linear equations Ax = b.

Parameters

in	Α	Input matrix ${f A}$
in	b	Input matrix b
in	result	Matrix to store the result

Returns

Output matrix x

Here is the call graph for this function:

6.37.1.5 mat_lu()

Computes LU decomposition of a matrix.

Parameters

in	Α	Input matrix overwritten by matrices L and U
in	P	Matrix to store permutation matrix P

Returns

p Status

Here is the caller graph for this function:

6.38 matsort.c File Reference

Functions

mtype mat_median (MATRIX A)

Computes the median of elements of a given matrix.

• mtype mat_order_statistic (MATRIX A, int k)

Computes the k^{th} order statistic of elements of a given matrix.

• MATSTACK mat_qsort (MATRIX A, int dim, MATSTACK result)

Sorts elements of a given matrix.

6.38.1 Function Documentation

6.38.1.1 mat_median()

Computes the median of elements of a given matrix.

Parameters

in	Α	Input matrix

Returns

 $med(\{a_{ij}\})$

Here is the call graph for this function: Here is the caller graph for this function:

6.38.1.2 mat_order_statistic()

Computes the k^{th} order statistic of elements of a given matrix.

Parameters

in	Α	Input matrix
in	k	Order

Returns

```
O_k\left(\{a_{ij}\}\right)
```

Here is the call graph for this function:

6.38.1.3 mat_qsort()

```
MATSTACK mat_qsort (

MATRIX A,

int dim,

MATSTACK result )
```

Sorts elements of a given matrix.

Parameters

in	Α	Input matrix
in	dim	Direction of sort (ROWS/COLS)
in	result	Matrix stack to store the result

Returns

Output matrix stack of sorted A and their positions

Here is the call graph for this function: Here is the caller graph for this function:

6.39 matstdrels.c File Reference

Functions

• int gen_gt (mtype a)

Checks if greater than zero.

• int gen_lt (mtype a)

Checks if less than zero.

• int gen_eq (mtype a)

Checks if equals to zero.

6.39.1 Function Documentation

```
6.39.1.1 gen_eq()
```

Checks if equals to zero.

Parameters

in a	Input value
-------------	-------------

Returns

```
{\rm int}\ a == 0
```

6.39.1.2 gen_gt()

Checks if greater than zero.

Parameters

in	а	Input value
----	---	-------------

Returns

int a > 0

6.39.1.3 gen_lt()

```
int gen_lt ( \label{eq:mtype} \mbox{ mtype $a$ )}
```

Checks if less than zero.

Parameters

in	а	Input value
----	---	-------------

Returns

 $int \ a < 0$

6.40 matsub.c File Reference

Functions

• MATRIX mat_sub (MATRIX A, MATRIX B, MATRIX result)

Subtracts a matrix from another matrix.

MATRIX mat_subs (MATRIX A, mtype s, MATRIX result)

Subtracts a scalar from a matrix.

MATRIX mat_subs_neg (MATRIX A, mtype s, MATRIX result)

Subtracts a matrix from a scalar.

• INT_VECTOR int_vec_sub (INT_VECTOR A, INT_VECTOR B, INT_VECTOR result)

Subtracts an integer vector from integer vector.

• INT_VECTOR int_vec_subs (INT_VECTOR A, int s, INT_VECTOR result)

Subtracts an integer from integer vector.

• INT_VECTOR int_vec_subs_neg (INT_VECTOR A, int s, INT_VECTOR result)

Subtracts an integer vector from an integer.

6.40.1 Function Documentation

```
6.40.1.1 int_vec_sub()
```

Subtracts an integer vector from integer vector.

Parameters

in	Α	Input vector
in	В	Input vector
in	result	Vector to store the result

Returns

A - B

Here is the call graph for this function:

6.40.1.2 int_vec_subs()

Subtracts an integer from integer vector.

Parameters

in	Α	Input vector
in	s	Input scalar
in	result	Vector to store the result

Returns

```
\mathbf{A} - s\mathbf{1}
```

Here is the call graph for this function: Here is the caller graph for this function:

6.40.1.3 int_vec_subs_neg()

Subtracts an integer vector from an integer.

Parameters

	in	Α	Input vector
ſ	in	s	Input scalar
ſ	in	result	Vector to store the result

Returns

$$s\mathbf{1} - \mathbf{A}$$

Here is the call graph for this function:

6.40.1.4 mat_sub()

```
MATRIX mat_sub (

MATRIX A,

MATRIX B,

MATRIX result )
```

Subtracts a matrix from another matrix.

Parameters

in	Α	First input matrix
in	В	Second input matrix
in	result	Matrix to store the result

Returns

```
A - B
```

Here is the call graph for this function: Here is the caller graph for this function:

6.40.1.5 mat_subs()

```
MATRIX mat_subs (

MATRIX A,

mtype s,

MATRIX result )
```

Subtracts a scalar from a matrix.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

$$\mathbf{A} - s\mathbf{1}\mathbf{1}^T$$

Here is the call graph for this function: Here is the caller graph for this function:

6.40.1.6 mat_subs_neg()

Subtracts a matrix from a scalar.

Parameters

in	Α	Input matrix
in	s	Input scalar
in	result	Matrix to store the result

Returns

$$s\mathbf{1}\mathbf{1}^T - \mathbf{A}$$

Here is the call graph for this function:

6.41 matsubx.c File Reference

Functions

MATRIX mat_submat (MATRIX A, int i, int j, MATRIX result)
 Deletes a row and a column of a matrix.

6.41.1 Function Documentation

6.41.1.1 mat_submat()

Deletes a row and a column of a matrix.

Parameters

in	Α	Input matrix
in	i	Row index
in	j	Column index
in	result	Matrix to store the result

Returns

Extracted matrix

Here is the call graph for this function: Here is the caller graph for this function:

6.42 matsum.c File Reference

Functions

mtype mat_sum (MATRIX A)

Computes element-sum of a matrix.

MATRIX mat_sum_row (MATRIX A, MATRIX result)

Computes row-sum of a matrix.

• MATRIX mat_sum_col (MATRIX A, MATRIX result)

Computes column-sum of a matrix.

int int_vec_sum (INT_VECTOR A)

Computes element-sum of an integer vector.

6.42.1 Function Documentation

```
6.42.1.1 int_vec_sum()
```

Computes element-sum of an integer vector.

Parameters

in A	Input integer vector
------	----------------------

Returns

sum(A)

6.42.1.2 mat_sum()

Computes element-sum of a matrix.

Parameters

in	Α	Input matrix
----	---	--------------

Returns

 $sum(\mathbf{A})$

Here is the caller graph for this function:

6.42.1.3 mat_sum_col()

Computes column-sum of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 $\mathbf{1}^T \mathbf{A}$

Here is the call graph for this function: Here is the caller graph for this function:

6.42.1.4 mat_sum_row()

```
MATRIX mat_sum_row (

MATRIX A,

MATRIX result )
```

Computes row-sum of a matrix.

Parameters

in	Α	Input matrix
in	result	Matrix to store the result

Returns

 $\mathbf{A1}$

Here is the call graph for this function: Here is the caller graph for this function:

6.43 matsvd.c File Reference

Functions

MATSTACK mat_svd (MATRIX a, int niters, MATSTACK result)
 Computes the SVD of a matrix.

6.43.1 Function Documentation

6.43.1.1 mat_svd()

Computes the SVD of a matrix.

Parameters

in	а	Input matrix
in	niters	Iterations to use
	result	Matrix stack to store the result

Returns

```
MATSTACK ( \mathbf{U}, \mathbf{S}, \mathbf{V} )
```

Here is the call graph for this function:

6.44 mattext.c File Reference

Functions

int mat_isnumeric (MAT_FILEPOINTER fp)

Checks if current word in an opened file is numeric or not.

int mat_go_next_word (MAT_FILEPOINTER fp)

Moves to next word in an opened file.

• int mat_count_words_in_line (MAT_FILEPOINTER fp, int *count)

Count words in current line in an opened file.

• MATRIX mat dlmread (const char *fname)

Reads a matrix from a file.

• int mat_read_word (MAT_FILEPOINTER fp, char *c_word)

Reads current word from an opened file.

• void mat_dlmwrite (const char *fname, MATRIX A)

Writes a matrix to a file.

6.44.1 Function Documentation

6.44.1.1 mat_count_words_in_line()

Count words in current line in an opened file.

Parameters

in	fp	Pointer to an opened file
in	count	Pointer to output count

Returns

EOF reached

Here is the caller graph for this function:

6.44.1.2 mat_dlmread()

Reads a matrix from a file.

Parameters

in fname Filename to read fro	n
-------------------------------	---

Returns

Output matrix

Here is the call graph for this function:

6.44.1.3 mat_dlmwrite()

Writes a matrix to a file.

Parameters

in	fname	Filename to write into
in	Α	Input matrix

Here is the call graph for this function:

6.44.1.4 mat_go_next_word()

```
int mat_go_next_word ( \label{eq:mat_file} \texttt{MAT\_FILEPOINTER} \ \ \textit{fp} \ )
```

Moves to next word in an opened file.

Parameters

in	fp	Pointer to an opened file
	1-	

Returns

EOF reached

6.44.1.5 mat_isnumeric()

```
int mat_isnumeric ( {\tt MAT\_FILEPOINTER}\ fp\ )
```

Checks if current word in an opened file is numeric or not.

Parameters

	in	fp	Pointer to an opened file
--	----	----	---------------------------

Returns

Zero/non-zero

Here is the caller graph for this function:

6.44.1.6 mat_read_word()

Reads current word from an opened file.

Parameters

in	fp	Pointer to an opened file
in	c_word	Pointer to word read

Returns

EOF reached

Here is the caller graph for this function:

6.45 mattimers.c File Reference

Functions

```
• __declspec (thread)
```

Starts stopwatch timer.

double mat_toc (void)

Computes elapsed time from last start of timer.

void mat_toc_print (void)

Computes and prints elapsed time from last start of timer on the stdout.

Variables

```
• _Thread_local clock_t MAT_CLOCK_TIME
```

6.45.1 Function Documentation

Starts stopwatch timer.

```
6.45.1.2 mat_toc()

double mat_toc (
```

Computes elapsed time from last start of timer.

void)

Returns

Elapsed time

6.45.1.3 mat_toc_print()

Computes and prints elapsed time from last start of timer on the stdout.

6.45.2 Variable Documentation

6.45.2.1 MAT_CLOCK_TIME

```
__thread clock_t MAT_CLOCK_TIME
```

6.46 mattoepz.c File Reference

Functions

• MATRIX mat_symtoepiz (MATRIX R, MATRIX result)

Computes the symmetric Toeplitz matrix from a co-efficient matrix.

6.46.1 Function Documentation

6.46.1.1 mat_symtoeplz()

```
MATRIX mat_symtoeplz (

MATRIX R,

MATRIX result )
```

Computes the symmetric Toeplitz matrix from a co-efficient matrix.

Parameters

	in	R	Input coefficient matrix
ĺ	in	result	Matrix to store the result

Returns

```
symtoep(\mathbf{R})
```

Here is the call graph for this function:

6.47 mattran.c File Reference

Functions

MATRIX mat_tran (MATRIX A, MATRIX result)

Computes the transpose of a matrix.

6.47.1 Function Documentation

6.47.1.1 mat_tran()

Computes the transpose of a matrix.

Parameters

i	n	Α	Input matrix
i	n	result	Matrix to store the result

Returns

 \mathbf{A}^T

Here is the call graph for this function: Here is the caller graph for this function:

6.48 README.md File Reference

Index

declspec	matmds.c, 86
matrix.h, 134	matrix.h, 139
mattimers.c, 238	mat_mds_nonmetric
int_vec_creat	matmds.c, 87
matrix.h, 134	matrix.h, 139
int_vecstack_creat	mat_mulfunc
matrix.h, 134	matfuncs.c, 74
mat_addfunc	matrix.h, 139
matfuncs.c, 71	mat_pol2cart
matrix.h, 134	matmisc.c, 90
mat_arccosh	matrix.h, 140
matfuncs.c, 71	mat_powerof2
matrix.h, 135	matrix.h, 140
mat arcsinh	mat_quicksort
matfuncs.c, 72	matrix.h, 140
matrix.h, 135	mat_rand
mat arctanh	 matrand.c, 114
matfuncs.c, 72	matrix.h, 140
matrix.h, 135	mat randexp
mat_bisquare_wt	matrand.c, 114
matfuncs.c, 72	matrix.h, 141
matrix.h, 136	mat randfun
mat_cart2pol	matrand.c, 114
matmisc.c, 90	matrix.h, 141
matrix.h, 136	mat randn
	matrand.c, 114
mat_creat	
matrix.h, 136	matrix.h, 141
mat_divfunc	mat_round_away_zero
matfuncs.c, 73	matfuncs.c, 74
matrix.h, 136	matrix.h, 141
mat_fft	mat_round_towards_zero
matrix.h, 137	matfuncs.c, 75
mat_huber_wt	matrix.h, 141
matfuncs.c, 73	mat_sqrfunc
matrix.h, 137	matfuncs.c, 75
mat_kd_find_median	matrix.h, 142
matrix.h, 137	mat_sqrtfunc
mat_kdtree_k_nearest	matfuncs.c, 75
matrix.h, 138	matrix.h, 142
mat_kdtree_make_tree	mat_subfunc
matrix.h, 138	matfuncs.c, 76
mat_kdtree_nearest	matrix.h, 143
matrix.h, 138	matstack_creat
mat_lint	matrix.h, 143
matrix.h, 138	_is_allocated
mat_logplusone	mat_kdtree, 18
matfuncs.c, 73	
matrix.h, 139	adj
mat mds metric	mat_graph, 12
— - · · · · ·	···

class_covars	matrix.h, 145
mat_bayes_model, 9	int_vec_add
class_labels	matadd.c, 28
mat_bayes_model, 9	matrix.h, 145
mat_perceptron, 23	int_vec_adds
class_means	matadd.c, 29
mat_bayes_model, 10	matrix.h, 146
class_priors	int_vec_append
mat_bayes_model, 10	matcreat.c, 34
class_weights	matrix.h, 146
mat_perceptron, 23	int_vec_concat
dad	matconcat.c, 30
mat_graph, 12	matrix.h, 147
data	int_vec_copy
mat intpgnode, 16	matcreat.c, 35
mat_kdtree, 18	matrix.h, 147
mat_mtypepqnode, 22	int_vec_creat
mat gintnode, 25	matcreat.c, 35
mat_qmtypenode, 25	matrix.h, 147 int vec div
a4ypssss, _s	matdiv.c, 54
element	matrix.h, 148
mat_int_priorityqueue, 14	int_vec_divs
mat_mtype_priorityqueue, 19	
mat_tree_node, 26	matdiv.c, 54 matrix.h, 148
	int_vec_divs_inv
gen_eq	matdiv.c, 55
matrix.h, 143	matrix.h, 149
matstdrels.c, 227	int_vec_dump
gen_error	matdump.c, 58
materr.c, 63	matrix.h, 149
matrix.h, 143	int vec dumpf
gen_gt	matdump.c, 58
matrix.h, 144	matrix.h, 149
matstdrels.c, 227	int_vec_error
gen_lt	materr.c, 63
matrix.h, 144	matrix.h, 150
matstdrels.c, 227	int_vec_fdump
graph_error	matdump.c, 58
materr.c, 63	matrix.h, 150
matrix.h, 144	int_vec_fdumpf
head	matdump.c, 59
mat_int_queue, 15	matrix.h, 150
mat_mtype_queue, 21	int_vec_fill
arypo_quous, =1	matcreat.c, 36
INT VECSTACK	matrix.h, 151
matrix.h, 128	int_vec_fill_type
INT_VECTOR	matcreat.c, 36
matrix.h, 128	matrix.h, 151
id	int_vec_find
mat_graph, 12	matrix.h, 151
idx	matsearch.c, 222
mat_kdnode, 17	int_vec_free
int_vec2_mat	matcreat.c, 36
matconv.c, 32	matrix.h, 152
matrix.h, 145	int_vec_inv
int_vec_abs	matdiv.c, 55
matabs.c, 27	matrix.h, 152

int_vec_mean	mattimers.c, 239
matmean.c, 87	MAT_GNODE
matrix.h, 152	matrix.h, 129
int_vec_mul	MAT_GRAPH
matmul.c, 97	matrix.h, 129
matrix.h, 153	MAT_INT_PRIORITYQUEUE
int_vec_muls	matrix.h, 129
matmul.c, 97	MAT_INT_QUEUE
matrix.h, 153	matrix.h, 130
int_vec_permute_vect	MAT_INT_STACK
matmisc.c, 90	matrix.h, 130
matrix.h, 154	MAT_INTPQNODE
int_vec_randperm matrand.c, 115	matrix.h, 130
matrix.h, 154	MAT_KDNODE
int vec sub	matrix.h, 130
matrix.h, 154	MAT_KDTREE
matsub.c, 228	matrix.h, 131
int vec subs	MAT_MTYPE_PRIORITYQUEUE matrix.h, 131
matrix.h, 155	MAT MTYPE QUEUE
matsub.c, 228	matrix.h. 131
int_vec_subs_neg	MAT MTYPE STACK
matrix.h, 155	matrix.h, 132
matsub.c, 229	MAT MTYPEPQNODE
int_vec_sum	matrix.h, 132
matrix.h, 155	MAT PERCEPTRON
matsum.c, 232	matrix.h, 132
int_vec_unique	MAT QINTNODE
matmisc.c, 91	matrix.h, 132
matrix.h, 156	MAT_QMTYPENODE
int_vecstack_creat	matrix.h, 133
matcreat.c, 37	MAT_SEED
matrix.h, 156	matrand.c, 116
int_vecstack_error	matrix.h, 221
materr.c, 63	MAT_SET_SEED
matrix.h, 157	matrand.c, 116
int_vecstack_free	matrix.h, 222
matcreat.c, 37	MAT_TREE_NODE
matrix.h, 157	matrix.h, 133
istrained	MAT_TREE
mat_perceptron, 23	matrix.h, 133
kdtree	MATRIX
mat kdtree, 18	matrix.h, 133
mat_natioo, To	MATSTACK
left	matrix.h, 133
mat_kdnode, 17	MATVEC_DPOINTER
mat_tree_node, 26	matrix.h, 134
length	mat_2int_vec
mat_int_priorityqueue, 14	matconv.c, 32
mat_int_stack, 16	matrix.h, 157
mat_kdtree, 19	mat_abs
mat_mtype_priorityqueue, 20	matabs.c, 27
mat_mtype_stack, 21	matrix.h, 158
MAT DAVES MODEL	mat_add
MAT_BAYES_MODEL	matadd.c, 29
matrix.h, 128	matrix.h, 158
MAT_CLOCK_TIME	mat_adds
matrix.h, 221	matadd.c, 30

matrix.h, 158	matdatastruct.c, 47
mat_backsubs1	matrix.h, 162
matrix.h, 159	mat_bsxfun
matsolve.c, 223	matmisc.c, 91
mat_bayes_classifier_test	matrix.h, 162
matprec.c, 112	mat_calc_dist_sq
matrix.h, 159	matmisc.c, 91
mat_bayes_classifier_train	matrix.h, 162
matprec.c, 112	mat_cart2pol
matrix.h, 159	matmisc.c, 92
mat_bayes_model, 9	matrix.h, 163
class_covars, 9	mat_cheby
class_labels, 9	matpoly.c, 105
class_means, 10	matrix.h, 163
class_priors, 10	mat_cheby_approx
matrix.h, 128	matpoly.c, 105
num_of_classes, 10	matrix.h, 164
num_of_features, 10	mat_cheby_coeffs_to_poly
mat_bayes_model_creat	matpoly.c, 106
matcreat.c, 37	matrix.h, 164
matrix.h, 159	mat_cheby_init
mat_bayes_model_free	matpoly.c, 106
matcreat.c, 38	matrix.h, 165
matrix.h, 159	mat_cheby_series_table
mat_binom	matpoly.c, 111
matpoly.c, 104	matrix.h, 221
matrix.h, 160	mat_cholesky
mat_binom_init	matrix.h, 165
matpoly.c, 105	matsolve.c, 223
matrix.h, 160	mat_cofact
mat_binom_series_table	matdet.c, 52
matpoly.c, 111	matrix.h, 165
matrix.h, 221	mat_colcopy
mat_bisquare_wt	matcreat.c, 38
matfuncs.c, 76	matrix.h, 166
matrix.h, 160	mat_concat matconcat.c, 31
mat_bs_delete matdatastruct.c, 46	matrix.h, 166
matrix.h, 161	mat_conjgrad
mat_bs_find	matrix.h, 166
matdatastruct.c, 46	matsolve.c, 223
matrix.h, 161	mat_conv2
mat_bs_find_max	matfilter.c, 66
matdatastruct.c, 46	matrix.h, 167
matrix.h, 161	mat copy
mat_bs_find_min	matcreat.c, 38
matdatastruct.c, 46	matrix.h, 167
matrix.h, 161	mat corcol
mat_bs_free	matpca.c, 101
matdatastruct.c, 46	matrix.h, 168
matrix.h, 161	mat_count_words_in_line
mat_bs_inorder	matrix.h, 168
matdatastruct.c, 46	mattext.c, 234
matrix.h, 161	mat_covcol
mat bs insert	
mat_bs_insert matdatastruct.c. 46	matpca.c, 101
matdatastruct.c, 46	matpca.c, 101 matrix.h, 168
	matpca.c, 101

matrix.h, 168	mat_find
mat_creat_diag	matrix.h, 176
matcreat.c, 39	matsearch.c, 222
matrix.h, 169	mat_find_within_dist
mat_det	matmisc.c, 92
matdet.c, 53	matrix.h, 176
matrix.h, 169	mat_flipIr
mat_diagmul	matflip.c, 70
matmul.c, 98	matrix.h, 176
matrix.h, 170	mat_flipud
mat_div_dot	matflip.c, 70
matdiv.c, 56	matrix.h, 176
matrix.h, 170	mat_fnextline
mat_divs	matmisc.c, 93
matdiv.c, 56	matrix.h, 177
matrix.h, 170	mat_free
mat_divs_inv	matcreat.c, 41
matdiv.c, 56	matrix.h, 177
matrix.h, 171	mat_get_sub_matrix_from_cols
mat_dlmread	matmisc.c, 93
matrix.h, 171	matrix.h, 177
mattext.c, 235	mat_get_sub_matrix_from_rows
mat_dlmwrite	matmisc.c, 93
matrix.h, 172	matrix.h, 178
mattext.c, 235	mat_get_sub_vector
mat_dump	matmisc.c, 94
matdump.c, 59	matrix.h, 178
matrix.h, 172	mat_gfunc
mat_dumpf	matfuncs.c, 76
matdump.c, 59	
·	matrix.h, 179
matrix.h, 172	mat_gnode, 10
mat_durbin	matrix.h, 129
matdurbn.c, 61	next, 11
matrix.h, 173	v, 11
mat_eig_sym	weight, 11
matpca.c, 101	mat_go_next_word
matrix.h, 173	matrix.h, 179
mat_error	mattext.c, 235
materr.c, 64	mat_graph, 11
matrix.h, 173	adj, 12
mat_fdump	dad, 12
matdump.c, 60	id, 12
matrix.h, 174	matrix.h, 129
mat fdumpf	nedges, 12
matdump.c, 60	nvertices, 12
matrix.h, 174	pq, 12
mat fft2	val, 12
matfft.c, 65	vseq, 13
	•
matrix.h, 174	weighted, 13
mat_fgetmat	z, 13
matcreat.c, 40	mat_graph_adjlist
matrix.h, 175	matgraph.c, 78
mat_fill	matrix.h, 179
matcreat.c, 40	mat_graph_adjm_to_adjl
matrix.h, 175	matgraph.c, 78
mat_fill_type	matrix.h, 179
matcreat.c, 40	mat_graph_creat
matrix.h, 175	matgraph.c, 78
•	U 1 ,

matrix.h, 180	matdatastruct.c, 48
mat_graph_dump	matrix.h, 183
matgraph.c, 78	mat_int_queue_enqueue
matrix.h, 180	matdatastruct.c, 48
mat_graph_dumpf	matrix.h, 183
matgraph.c, 78	mat_int_queue_free
matrix.h, 180	matdatastruct.c, 48
mat_graph_reverse	matrix.h, 183
matgraph.c, 79	mat_int_queue_is_empty
matrix.h, 180	matdatastruct.c, 48
mat_graph_search	matrix.h, 183
matgraph.c, 79	mat_int_simpson
matrix.h, 180	matintegrate.c, 82
mat_graph_visit	matrix.h, 183
matgraph.c, 79	mat_int_stack, 15
matrix.h, 180	length, 16
mat_huber_wt	matrix.h, 130
matfuncs.c, 77	p, 16
matrix.h, 181	stack, 16
mat_innerprod	mat_int_stack_creat
matinnerprod.c, 80	matdatastruct.c, 49
matrix.h, 181	matrix.h, 184
mat_int_priorityqueue, 13	mat_int_stack_free
element, 14	matdatastruct.c, 49
length, 14	matrix.h, 184
matrix.h, 129	mat_int_stack_is_empty
p, 14	matdatastruct.c, 49
type, 14	matrix.h, 184
mat_int_priorityqueue_creat	mat_int_stack_pop
matdatastruct.c, 47	matdatastruct.c, 49
matrix.h, 181	matrix.h, 184
mat_int_priorityqueue_dequeue	mat_int_stack_push
matdatastruct.c, 47	matdatastruct.c, 49
matrix.h, 181	matrix.h, 184
mat_int_priorityqueue_enqueue	mat_int_trapezoid
matdatastruct.c, 47 matrix.h, 182	matintegrate.c, 82 matrix.h, 184
mat int priorityqueue free	mat intpgnode, 16
matdatastruct.c, 47	data, 16
matrix.h, 182	matrix.h, 130
mat_int_priorityqueue_is_empty	priority, 17
matdatastruct.c, 47	mat inv
matrix.h, 182	matinv.c, 83
mat_int_priorityqueue_update	matrix.h, 185
matdatastruct.c, 48	mat_inv_dot
matrix.h, 182	matdiv.c, 57
mat int gadrat	matrix.h, 185
matintegrate.c, 81	mat isnumeric
matrix.h, 182	matrix.h, 186
mat int queue, 14	mattext.c, 237
head, 15	mat kdnode, 17
matrix.h, 129	idx, 17
p, 15	left, 17
tail, 15	matrix.h, 130
mat_int_queue_creat	right, 17
matdatastruct.c, 48	x, 18
matrix.h, 183	mat kdtree, 18
mat_int_queue_dequeue	_is_allocated, 18
— — 1	

data, 18	matrix.h, 191
kdtree, 18	mat_median
length, 19	matrix.h, 192
matrix.h, 131	matsort.c, 225
ndims, 19	mat_min
mat_kdtree_free	matmaxmin.c, 86
matkdtree.c, 84	matrix.h, 192
matrix.h, 186	mat_minor
mat_kdtree_k_nearest	matdet.c, 53
matkdtree.c, 84	matrix.h, 192
matrix.h, 186	mat_mtype_priorityqueue, 19
mat_kdtree_make_tree	element, 19
matkdtree.c, 85	length, 20
matrix.h, 187	matrix.h, 131
mat kdtree nearest	p, 20
matkdtree.c, 85	type, 20
matrix.h, 187	mat_mtype_priorityqueue_creat
mat kmeans	matdatastruct.c, 49
matprec.c, 112	matrix.h, 193
matrix.h, 187	mat_mtype_priorityqueue_dequeue
mat_least_squares	matdatastruct.c, 49
matfit.c, 67	matrix.h, 193
matrix.h, 188	mat_mtype_priorityqueue_enqueue
mat_legendre	matdatastruct.c, 50
— -	
matpoly.c, 106	matrix.h, 193
matrix.h, 188	mat_mtype_priorityqueue_free
mat_legendre_init	matdatastruct.c, 50
matpoly.c, 106	matrix.h, 193
matrix.h, 188	mat_mtype_priorityqueue_is_empty
mat_legendre_series_table	matdatastruct.c, 50
matpoly.c, 111	matrix.h, 193
matrix.h, 221	mat_mtype_priorityqueue_update
mat_linear_ls_fit	matdatastruct.c, 50
matfit.c, 67	matrix.h, 193
matrix.h, 188	mat_mtype_queue, 20
mat_lsolve	head, 21
matrix.h, 189	matrix.h, 131
matsolve.c, 224	p, 21
mat_lsolve_durbin	tail, 21
matdurbn.c, 61	mat_mtype_queue_creat
matrix.h, 189	matdatastruct.c, 50
mat_lu	matrix.h, 194
matrix.h, 190	mat_mtype_queue_dequeue
matsolve.c, 224	matdatastruct.c, 50
mat_max	matrix.h, 194
matmaxmin.c, 86	mat_mtype_queue_enqueue
matrix.h, 190	matdatastruct.c, 51
mat_mds	matrix.h, 194
matmds.c, 87	mat_mtype_queue_free
matrix.h, 190	matdatastruct.c, 51
mat_mean	matrix.h, 194
matmean.c, 88	mat_mtype_queue_is_empty
matrix.h, 191	matdatastruct.c, 51
mat_mean_col	matrix.h, 194
matmean.c, 88	mat_mtype_stack, 21
matrix.h, 191	length, 21
mat mean row	matrix.h, 131
matmean.c, 88	p, 22
	r·,

24

stack, 22		num_of_classes, 24
mat_mtype_stack_creat		num_of_features, 24
matdatastruct.c, 51		num_of_iterations, 24
matrix.h, 194	ma	at_perceptron_creat
mat_mtype_stack_free		matcreat.c, 41
matdatastruct.c, 51		matrix.h, 198
matrix.h, 195	ma	at_perceptron_free
mat_mtype_stack_is_en	npty	matcreat.c, 41
matdatastruct.c, 51		matrix.h, 198
matrix.h, 195	ma	at_perceptron_test
mat mtype stack pop		matprec.c, 112
matdatastruct.c, 51		matrix.h, 200
matrix.h, 195	ma	at_perceptron_train
mat_mtype_stack_push		matprec.c, 112
matdatastruct.c, 52		matrix.h, 200
matrix.h, 195		at_perceptron_train_
mat_mtypepqnode, 22		matprec.c, 113
data, 22		matrix.h, 200
matrix.h, 132	ma	at pick col
priority, 22		matmisc.c, 94
mat mul		matrix.h, 200
matmul.c, 98	ma	at_pick_row
matrix.h, 195		matmisc.c, 95
mat mul dot		matrix.h, 201
matmul.c, 98	ms	at_pinv
matrix.h, 196	inc	matpinv.c, 102
mat mul fast		matrix.h, 201
matmul.c, 100	mr	at pol2cart
matrix.h, 196	III	matmisc.c, 95
mat muls		matrix.h, 201
matmul.c, 100	mr	at_poly_add
matrix.h, 196	III	matpoly.c, 107
mat nextline		matrix.h, 202
matmisc.c, 94	mr	at_poly_diff
matrix.h, 197	1118	matpoly.c, 107
		· ·
mat_norm_inf	me	matrix.h, 202
matinnerprod.c, 80	IIIa	at_poly_diff_eval
matrix.h, 197		matpoly.c, 107
mat_norm_one		matrix.h, 203
matinnerprod.c, 80	ma	at_poly_div
matrix.h, 197		matpoly.c, 108
mat_norm_p		matrix.h, 203
matinnerprod.c, 80	ma	at_poly_eval
matrix.h, 197		matpoly.c, 108
mat_omp		matrix.h, 203
matpursuit.c, 113	ma	at_poly_mul
matrix.h, 197		matpoly.c, 110
mat_order_statistic		matrix.h, 204
matrix.h, 198	ma	at_poly_scale
matsort.c, 225		matpoly.c, 110
mat_pca		matrix.h, 204
matpca.c, 101	ma	at_poly_shift
matrix.h, 198		matpoly.c, 111
mat_perceptron, 23		matrix.h, 205
class_labels, 23	ma	at_qintnode, 24
class_weights, 23		data, 25
istrained, 23		matrix.h, 132
matrix.h, 132		next, 25

mat_qmtypenode, 25	mat_subs_neg
data, 25	matrix.h, 211
matrix.h, 133	matsub.c, 230
next, 25	mat_sum
mat_qr	matrix.h, 211
matdurbn.c, 62	matsum.c, 232
matrix.h, 205	mat_sum_col
mat_qsort	matrix.h, 212
matrix.h, 206	matsum.c, 232
matsort.c, 226	mat_sum_row
mat_rand	matrix.h, 212
matrand.c, 115	matsum.c, 233
matrix.h, 206	mat_svd
mat_randexp	matrix.h, 213
matrand.c, 115	matsvd.c, 233
matrix.h, 206	mat_symtoeplz
mat_randfun	matrix.h, 213
matrand.c, 115	mattoepz.c, 239
matrix.h, 206	mat_tic
mat_randn	matrix.h, 213
matrand.c, 115	mat_toc
matrix.h, 207	matrix.h, 213
mat_randperm	mattimers.c, 238
matrand.c, 116	mat_toc_print
matrix.h, 207	matrix.h, 214
mat_randperm_n	mattimers.c, 238
matrand.c, 116	mat_tqli
matrix.h, 207	matpca.c, 102
mat_read_word	matrix.h, 214
matrix.h, 207	mat tran
mattext.c, 237	 matrix.h, 214
mat_reg_inv	mattran.c, 240
matinv.c, 83	mat tred2
matrix.h, 208	matpca.c, 102
mat_rob_least_squares	matrix.h, 214
matfit.c, 68	mat_tree_node, 26
matrix.h, 208	element, 26
mat robust fit	left, 26
matfit.c, 68	matrix.h, 133
matrix.h, 208	right, 26
mat rowcopy	mat vectorize
matcreat.c, 42	matconv.c, 32
matrix.h, 209	matrix.h, 215
mat scpcol	mat vectorize tr
matpca.c, 102	matconv.c, 33
matrix.h, 209	matrix.h, 215
mat set seed	mat w least squares
matrand.c, 116	matfit.c, 69
matrix.h, 210	matrix.h, 215
mat sub	mat wpinv
matrix.h, 210	matpinv.c, 103
matsub.c, 229	matrix.h, 216
mat submat	mat xcopy
matrix.h, 210	
	matereat c. 42
	matcreat.c, 42
matsubx.c, 231	matrix.h, 216
matsubx.c, 231 mat_subs	matrix.h, 216 mat_xjoin
matsubx.c, 231	matrix.h, 216

matabs.c, 27	mat_int_priorityqueue_free, 47
int_vec_abs, 27	mat_int_priorityqueue_is_empty, 47
mat_abs, 27	mat_int_priorityqueue_update, 48
matadd.c, 28	mat_int_queue_creat, 48
int_vec_add, 28	mat_int_queue_dequeue, 48
int_vec_adds, 29	mat_int_queue_enqueue, 48
mat_add, 29	mat_int_queue_free, 48
mat adds, 30	mat_int_queue_is_empty, 48
matcompress.c, 30	mat int stack creat, 49
matconcat.c, 30	mat_int_stack_free, 49
int_vec_concat, 30	mat int stack is empty, 49
mat concat, 31	mat_int_stack_pop, 49
matconv.c, 31	mat_int_stack_push, 49
int_vec2_mat, 32	mat_mtype_priorityqueue_creat, 49
mat_2int_vec, 32	mat_mtype_priorityqueue_dequeue, 49
mat_vectorize, 32	mat_mtype_priorityqueue_enqueue, 50
mat_vectorize_tr, 33	mat_mtype_priorityqueue_free, 50
matcreat.c, 33	mat_mtype_priorityqueue_is_empty, 50
int_vec_append, 34	mat_mtype_priorityqueue_update, 50
int_vec_copy, 35	mat_mtype_queue_creat, 50
int_vec_creat, 35	mat_mtype_queue_dequeue, 50
int_vec_fill, 36	mat_mtype_queue_enqueue, 51
int_vec_fill_type, 36	mat_mtype_queue_free, 51
int_vec_free, 36	mat_mtype_queue_is_empty, 51
int_vecstack_creat, 37	mat_mtype_stack_creat, 51
int_vecstack_free, 37	mat_mtype_stack_free, 51
mat_bayes_model_creat, 37	mat_mtype_stack_is_empty, 51
mat_bayes_model_free, 38	mat_mtype_stack_pop, 51
mat_colcopy, 38	mat_mtype_stack_push, 52
mat_copy, 38	matdet.c, 52
mat_creat, 39	mat_cofact, 52
mat_creat_diag, 39	mat_det, 53
mat_fgetmat, 40	mat_minor, 53
mat fill, 40	matdiv.c, 53
mat_fill_type, 40	int vec div, 54
mat_free, 41	int_vec_divs, 54
mat perceptron creat, 41	int_vec_divs_inv, 55
mat_perceptron_free, 41	int_vec_inv, 55
mat rowcopy, 42	mat_div_dot, 56
mat_xcopy, 42	mat_divs, 56
mat xjoin, 43	mat_divs_inv, 56
matstack_append, 43	mat_inv_dot, 57
matstack_creat, 43	matdump.c, 57
matstack_free, 44	int_vec_dump, 58
matvec_creat, 44	int_vec_dumpf, 58
	int_vec_dump, 58
matvec_free, 44	_ ·
matdatastruct.c, 45	int_vec_fdumpf, 59
mat_bs_delete, 46	mat_dump, 59
mat_bs_find, 46	mat_dumpf, 59
mat_bs_find_max, 46	mat_fdump, 60
mat_bs_find_min, 46	mat_fdumpf, 60
mat_bs_free, 46	matdurbn.c, 60
mat_bs_inorder, 46	mat_durbin, 61
mat_bs_insert, 46	mat_lsolve_durbin, 61
mat_bs_make_null, 47	mat_qr, 62
mat_int_priorityqueue_creat, 47	materr.c, 62
mat_int_priorityqueue_dequeue, 47	gen_error, 63
mat_int_priorityqueue_enqueue, 47	graph_error, 63

int_vec_error, 63	mat_reg_inv, 83
int_vecstack_error, 63	matkdtree.c, 84
mat_error, 64	mat_kdtree_free, 84
matstack_error, 64	mat_kdtree_k_nearest, 84
pq_error, 64	mat_kdtree_make_tree, 85
queue_error, 65	mat_kdtree_nearest, 85
stack_error, 65	matmaxmin.c, 86
matfft.c, 65	mat_max, 86
mat_fft2, 65	mat_min, 86
matfilter.c, 66	matmds.c, 86
mat_conv2, 66	mat_mds_metric, 86
matfit.c, 67	mat_mds_nonmetric, 87
mat_least_squares, 67	mat_mds, 87
mat_linear_ls_fit, 67	matmean.c, 87
mat_rob_least_squares, 68	int_vec_mean, 87
mat_robust_fit, 68	mat_mean, 88
mat_w_least_squares, 69	mat_mean_col, 88
matflip.c, 69	mat_mean_row, 88
mat_flipIr, 70	matmisc.c, 89
mat_flipud, 70	mat_cart2pol, 90
matfuncs.c, 70	mat_pol2cart, 90
mat_addfunc, 71	int_vec_permute_vect, 90
mat_arccosh, 71	int_vec_unique, 91
mat_arcsinh, 72	mat_bsxfun, 91
mat_arctanh, 72	mat_calc_dist_sq, 91
mat_bisquare_wt, 72	mat_cart2pol, 92
mat_divfunc, 73	mat_find_within_dist, 92
mat_huber_wt, 73	mat_fnextline, 93
mat_logplusone, 73	mat_get_sub_matrix_from_cols, 93
mat_mulfunc, 74	mat_get_sub_matrix_from_rows, 93
mat_round_away_zero, 74	mat_get_sub_vector, 94
mat_round_towards_zero, 75	mat_nextline, 94
mat_sqrfunc, 75	mat_pick_col, 94
mat_sqrtfunc, 75	mat_pick_row, 95
mat_subfunc, 76	mat_pol2cart, 95
mat_bisquare_wt, 76	mats_isinf, 96
mat_gfunc, 76	mats_isnan, 96
mat_huber_wt, 77	matmul.c, 96
matgraph.c, 77	int_vec_mul, 97
mat_graph_adjlist, 78	int_vec_muls, 97
mat_graph_adjm_to_adjl, 78	mat_diagmul, 98
mat_graph_creat, 78	mat_mul, 98
mat_graph_dump, 78	mat_mul_dot, 98
mat_graph_dumpf, 78	mat_mul_fast, 100
mat_graph_reverse, 79	mat_muls, 100
mat_graph_search, 79	matpca.c, 101
mat_graph_visit, 79	mat_corcol, 101
matinnerprod.c, 79	mat_covcol, 101
mat_innerprod, 80	mat_eig_sym, 101
mat_norm_inf, 80	mat_pca, 101
mat_norm_one, 80	mat_scpcol, 102
mat_norm_p, 80	mat_tqli, 102
matintegrate.c, 80	mat_tred2, 102
mat_int_qadrat, 81	matpinv.c, 102
mat_int_simpson, 82	mat_pinv, 102
mat_int_trapezoid, 82	mat_wpinv, 103
matinv.c, 83	matpoly.c, 103
mat_inv, 83	mat_binom, 104

mat_binom_init, 105	mat_kdtree_k_nearest, 138
mat_binom_series_table, 111	mat_kdtree_make_tree, 138
mat_cheby, 105	mat_kdtree_nearest, 138
mat_cheby_approx, 105	mat_lint, 138
mat_cheby_coeffs_to_poly, 106	mat_logplusone, 139
mat_cheby_init, 106	mat_mds_metric, 139
mat_cheby_series_table, 111	mat_mds_nonmetric, 139
mat_legendre, 106	mat_mulfunc, 139
mat_legendre_init, 106	mat_pol2cart, 140
mat_legendre_series_table, 111	mat_powerof2, 140
mat_poly_add, 107	mat_quicksort, 140
mat_poly_diff, 107	mat_rand, 140
mat_poly_diff_eval, 107	mat_randexp, 141
mat_poly_div, 108	mat_randfun, 141
mat_poly_eval, 108	mat_randn, 141
mat_poly_mul, 110 mat_poly_scale, 110	mat_round_away_zero, 141 mat_round_towards_zero, 141
mat poly shift, 111	mat_sqrfunc, 142
matprec.c, 112	mat_sqrtfunc, 142
mat_bayes_classifier_test, 112	mat_subfunc, 143
mat bayes classifier train, 112	matstack creat, 143
mat_kmeans, 112	gen_eq, 143
mat perceptron test, 112	gen_error, 143
mat_perceptron_train, 112	gen_gt, 144
mat_perceptron_train_, 113	gen_lt, 144
matpursuit.c, 113	graph_error, 144
mat_omp, 113	INT VECSTACK, 128
matrand.c, 114	INT VECTOR, 128
mat rand, 114	int_vec2_mat, 145
mat_randexp, 114	int_vec_abs, 145
mat randfun, 114	int vec add, 145
mat_randn, 114	int_vec_adds, 146
int_vec_randperm, 115	int_vec_append, 146
MAT_SEED, 116	int_vec_concat, 147
MAT_SET_SEED, 116	int_vec_copy, 147
mat_rand, 115	int_vec_creat, 147
mat_randexp, 115	int_vec_div, 148
mat_randfun, 115	int_vec_divs, 148
mat_randn, 115	int_vec_divs_inv, 149
mat_randperm, 116	int_vec_dump, 149
mat_randperm_n, 116	int_vec_dumpf, 149
mat_set_seed, 116	int_vec_error, 150
matrix.c, 117	int_vec_fdump, 150
matrix.h, 117	int_vec_fdumpf, 150
declspec, 134	int_vec_fill, 151
int_vec_creat, 134	int_vec_fill_type, 151
int_vecstack_creat, 134	int_vec_find, 151
mat_addfunc, 134	int_vec_free, 152
mat_arccosh, 135	int_vec_inv, 152
mat_arcsinh, 135	int_vec_mean, 152
mat_arctanh, 135	int_vec_mul, 153
mat_bisquare_wt, 136	int_vec_muls, 153
mat_cart2pol, 136	int_vec_permute_vect, 154
mat_creat, 136 mat_divfunc, 136	int_vec_randperm, 154
mat_fft, 137	int_vec_sub, 154
mat_huber_wt, 137	int_vec_subs, 155 int_vec_subs_neg, 155
mat_kd_find_median, 137	int_vec_subs_neg, 155
mar_no_modian, 197	iii_veo_suiii, 100

int_vec_unique, 156	mat_cholesky, 165
int_vecstack_creat, 156	mat_cofact, 165
int_vecstack_error, 157	mat_colcopy, 166
int_vecstack_free, 157	mat_concat, 166
MAT_BAYES_MODEL, 128	mat_conjgrad, 166
MAT_CLOCK_TIME, 221	mat_conv2, 167
MAT_GNODE, 129	mat_copy, 167
MAT_GRAPH, 129	mat_corcol, 168
MAT_INT_PRIORITYQUEUE, 129	mat_count_words_in_line, 168
MAT_INT_QUEUE, 130	mat_covcol, 168
MAT_INT_STACK, 130	mat_creat, 168
MAT_INTPQNODE, 130	mat_creat_diag, 169
MAT_KDNODE, 130	mat_det, 169
MAT_KDTREE, 131	mat_diagmul, 170
MAT_MTYPE_PRIORITYQUEUE, 131	mat_div_dot, 170
MAT_MTYPE_QUEUE, 131	mat_divs, 170
MAT_MTYPE_STACK, 132	mat_divs_inv, 171
MAT_MTYPEPQNODE, 132	mat_dlmread, 171
MAT PERCEPTRON, 132	mat dlmwrite, 172
MAT_QINTNODE, 132	mat_dump, 172
MAT QMTYPENODE, 133	mat dumpf, 172
MAT_SEED, 221	mat_durbin, 173
MAT_SET_SEED, 222	mat_eig_sym, 173
MAT_TREE_NODE, 133	mat_error, 173
MAT_TREE, 133	mat_fdump, 174
MATRIX, 133	mat_fdumpf, 174
MATSTACK, 133	mat_fft2, 174
MATVEC_DPOINTER, 134	mat_fgetmat, 175
mat_2int_vec, 157	mat_fill, 175
mat_abs, 158	mat_fill_type, 175
mat_add, 158	mat_find, 176
mat_adds, 158	mat_find_within_dist, 176
mat_backsubs1, 159	mat_flipIr, 176
mat_bayes_classifier_test, 159	mat_flipud, 176
mat_bayes_classifier_train, 159	mat_fnextline, 177
mat_bayes_model, 128	mat_free, 177
mat_bayes_model_creat, 159	mat_get_sub_matrix_from_cols, 177
mat_bayes_model_free, 159	mat_get_sub_matrix_from_rows, 178
mat_binom, 160	mat_get_sub_vector, 178
mat_binom_init, 160	mat_gfunc, 179
mat_binom_series_table, 221	mat_gnode, 129
mat_bisquare_wt, 160	mat_go_next_word, 179
mat_bs_delete, 161	mat_graph, 129
mat_bs_find, 161	mat_graph_adjlist, 179
mat_bs_find_max, 161	mat_graph_adjm_to_adjl, 179
mat_bs_find_min, 161	mat_graph_creat, 180
mat_bs_free, 161	mat_graph_dump, 180
mat_bs_inorder, 161	mat_graph_dumpf, 180
mat_bs_insert, 162	mat_graph_reverse, 180
mat_bs_make_null, 162	mat_graph_search, 180
mat_bsxfun, 162	mat_graph_visit, 180
mat_calc_dist_sq, 162	mat_huber_wt, 181
mat_cart2pol, 163	mat_innerprod, 181
mat_cheby, 163	mat_int_priorityqueue, 129
mat_cheby_approx, 164	mat_int_priorityqueue_creat, 181
mat_cheby_coeffs_to_poly, 164	mat_int_priorityqueue_dequeue, 181
mat_cheby_init, 165	mat_int_priorityqueue_enqueue, 182
mat_cheby_series_table, 221	mat_int_priorityqueue_free, 182

mat_int_priorityqueue_is_empty, 182	mat_mtype_stack_creat, 194
mat_int_priorityqueue_update, 182	mat_mtype_stack_free, 195
mat_int_qadrat, 182	mat_mtype_stack_is_empty, 195
mat_int_queue, 129	mat_mtype_stack_pop, 195
mat_int_queue_creat, 183	mat_mtype_stack_push, 195
mat_int_queue_dequeue, 183	mat_mtypepqnode, 132
mat_int_queue_enqueue, 183	mat_mul, 195
mat_int_queue_free, 183	mat_mul_dot, 196
mat_int_queue_is_empty, 183	mat_mul_fast, 196
mat_int_simpson, 183	mat_muls, 196
mat int stack, 130	mat nextline, 197
mat_int_stack_creat, 184	mat_norm_inf, 197
mat_int_stack_free, 184	mat_norm_one, 197
mat_int_stack_is_empty, 184	mat_norm_p, 197
mat_int_stack_pop, 184	mat_omp, 197
mat_int_stack_push, 184	mat_order_statistic, 198
mat_int_trapezoid, 184	mat_pca, 198
mat intpgnode, 130	mat perceptron, 132
mat_inv, 185	- · ·
mat_inv_dot, 185	mat_perceptron_creat, 198
mat isnumeric, 186	mat_perceptron_free, 198
<u> </u>	mat_perceptron_test, 200
mat_kdnode, 130	mat_perceptron_train, 200
mat_kdtree, 131	mat_perceptron_train_, 200
mat_kdtree_free, 186	mat_pick_col, 200
mat_kdtree_k_nearest, 186	mat_pick_row, 201
mat_kdtree_make_tree, 187	mat_pinv, 201
mat_kdtree_nearest, 187	mat_pol2cart, 201
mat_kmeans, 187	mat_poly_add, 202
mat_least_squares, 188	mat_poly_diff, 202
mat_legendre, 188	mat_poly_diff_eval, 203
mat_legendre_init, 188	mat_poly_div, 203
mat_legendre_series_table, 221	mat_poly_eval, 203
mat_linear_ls_fit, 188	mat_poly_mul, 204
mat_lsolve, 189	mat_poly_scale, 204
mat_lsolve_durbin, 189	mat_poly_shift, 205
mat_lu, 190	mat_qintnode, 132
mat_max, 190	mat_qmtypenode, 133
mat_mds, 190	mat_qr, 205
mat_mean, 191	mat_qsort, 206
mat_mean_col, 191	mat_rand, 206
mat_mean_row, 191	mat_randexp, 206
mat_median, 192	mat_randfun, 206
mat_min, 192	mat_randn, 207
mat_minor, 192	mat_randperm, 207
mat_mtype_priorityqueue, 131	mat_randperm_n, 207
mat_mtype_priorityqueue_creat, 193	mat_read_word, 207
mat mtype priorityqueue dequeue, 193	mat_reg_inv, 208
mat_mtype_priorityqueue_enqueue, 193	mat_rob_least_squares, 208
mat_mtype_priorityqueue_free, 193	mat_robust_fit, 208
mat_mtype_priorityqueue_is_empty, 193	mat_rowcopy, 209
mat_mtype_priorityqueue_update, 193	mat scpcol, 209
mat_mtype_queue, 131	mat_set_seed, 210
mat_mtype_queue_creat, 194	mat_sub, 210
mat_mtype_queue_dequeue, 194	mat_submat, 210
mat_mtype_queue_enqueue, 194	mat subs, 211
mat_mtype_queue_free, 194	mat_subs_neg, 211
mat_mtype_queue_is_empty, 194	mat_sum, 211
	mai_3um, <u>411</u>
mat_mtype_stack, 131	mat_sum_col, 212

mat_sum_row, 212	matstdrels.c, 226
mat_svd, 213	gen_eq, <mark>227</mark>
mat_symtoeplz, 213	gen_gt, 227
mat_tic, 213	gen_lt, 227
mat_toc, 213	matsub.c, 228
mat_toc_print, 214	int_vec_sub, 228
mat_tqli, 214	int_vec_subs, 228
mat_tran, 214	int_vec_subs_neg, 229
mat_tred2, 214	mat_sub, 229
mat_tree_node, 133	mat_subs, 230
mat_vectorize, 215	mat_subs_neg, 230
mat_vectorize_tr, 215	matsubx.c, 231
mat_w_least_squares, 215	mat_submat, 231
mat_wpinv, 216	matsum.c, 231
mat_xcopy, 216	int_vec_sum, 232
mat_xjoin, 217	mat_sum, 232
mats_isinf, 217	mat_sum_col, 232
mats_isnan, 218	mat_sum_row, 233
matstack_append, 218	matsvd.c, 233
matstack_creat, 218	mat_svd, 233
matstack_error, 219	mattext.c, 234
matstack_free, 219	mat_count_words_in_line, 234
matvec_creat, 219	mat_dlmread, 235
matvec_free, 220	mat_dlmwrite, 235
pq_error, 220	mat_go_next_word, 235
queue_error, 220	mat_isnumeric, 237
stack_error, 221	mat_read_word, 237
mats_isinf	mattimers.c, 238
matmisc.c, 96	declspec, 238
matrix.h, 217	MAT_CLOCK_TIME, 239
mats isnan	mat_toc, 238
matmisc.c, 96	mat_toc_print, 238
matrix.h, 218	mattoepz.c, 239
matsearch.c, 222	mat_symtoeplz, 239
int vec find, 222	mattran.c, 239
mat find, 222	mat_tran, 240
matsolve.c, 223	matvec_creat
mat_backsubs1, 223	matcreat.c, 44
mat_cholesky, 223	matrix.h, 219
mat conjgrad, 223	matvec_free
mat Isolve, 224	matcreat.c, 44
mat_lu, 224	matrix.h, 220
matsort.c, 225	ndims
mat median, 225	mat_kdtree, 19
mat_order_statistic, 225	nedges
mat_qsort, 226	mat graph, 12
matstack_append	next
matcreat.c, 43	mat_gnode, 11
matrix.h, 218	mat_qintnode, 25
matstack_creat	mat_qmtypenode, 25
matcreat.c, 43	num_of_classes
matrix.h, 218	mat_bayes_model, 10
matstack_error	mat_perceptron, 24
materr.c, 64	num_of_features
matrix.h, 219	mat_bayes_model, 10
matstack_free	mat_perceptron, 24
matcreat.c, 44	num_of_iterations
matrix.h, 219	mat_perceptron, 24
mauran, 210	παι_ρεισεριισπ, 24

```
nvertices
    mat_graph, 12
р
    mat_int_priorityqueue, 14
    mat_int_queue, 15
    mat_int_stack, 16
    mat_mtype_priorityqueue, 20
    mat_mtype_queue, 21
    mat_mtype_stack, 22
    mat_graph, 12
pq_error
    materr.c, 64
    matrix.h, 220
priority
    mat_intpqnode, 17
    mat_mtypepqnode, 22
queue_error
    materr.c, 65
    matrix.h, 220
README.md, 240
right
    mat_kdnode, 17
    mat_tree_node, 26
stack
    mat_int_stack, 16
    mat_mtype_stack, 22
stack_error
    materr.c, 65
    matrix.h, 221
tail
    mat_int_queue, 15
    mat_mtype_queue, 21
type
    mat_int_priorityqueue, 14
    mat_mtype_priorityqueue, 20
٧
    mat_gnode, 11
val
    mat_graph, 12
vseq
    mat_graph, 13
weight
    mat_gnode, 11
weighted
    mat_graph, 13
Х
    mat_kdnode, 18
z
```

mat_graph, 13