House Price Prediction in King County (2014–2015)

Team Project | Exploratory Data Analysis | Baselines | Feature Engineering | Model Comparison

Kaan Tirpanci & Anirudh Unni

Dataset Overview

- 21 features, ~21K records
- Target: Price (House Sale Price)
- Timeframe: May 2014 May 2015
- Geography: King County, including Seattle

Business/Analytical Question

- Which features drive house prices?
- How accurately can we predict house prices using ML models?
- Learning goals: EDA, Baselines, Feature Engineering, Model Comparison, Hyperparameter Tuning

Exploratory Data Analysis: Price Distribution

Exploratory Data Analysis: Feature Correlations

Outlier detection

Exploratory Data Analysis: Correlation Matrix

Bar Plots from Correlation Matrix

Model Performance (Baseline vs Feature Engineered)

Model	R ² Train (Baseline)	R ² Test (Baseline)	RMSE Test (Baseline)	R ² Train (Engineered)	R ² Test (Engineered)	RMSE Test (Engineered)
XGBoost	0.976	0.893	112,572	0.872	0.865	142,874
Random Forest	0.981	0.890	114,416	0.873	0.854	148,765
Gradient Boosting	0.901	0.866	126,018	0.873	0.862	144,755
Decision Tree	0.999	0.778	162,746	0.743	0.729	202,517
Ridge Regression	0.701	0.695	190,451	0.807	0.807	170,526
Lasso Regression	0.701	0.695	190,473	0.807	0.808	170,364
Linear Regression	0.701	0.695	190,473	0.807	0.808	170,368
KNN Regression	0.686	0.479	249,067	0.768	0.727	203,144
AdaBoost	0.389	0.284	291,758	0.200	0.156	357,224

⁼ Best values (good generalization / lowest error)

⁼ Overfitting or poor performance

Key Takeaway: Overfitting/Underfitting Insights

Baseline (no feature engineering):

- Ensemble models: Train $R^2 \approx 0.9 \rightarrow \text{very high.}$
- Linear models: Train $R^2 \approx 0.7$
- Test R² much lower → **overfitting** is severe, especially for most Ensemble Methods Decision Tree, KNN, AdaBoost.

After feature engineering:

- Linear/Ridge/Lasso: Balanced Train vs Test R² (~0.807–0.808) → better generalization.
- Tree Ensembles (XGBoost, RF, GBM): Train R² drops closer to Test R²
 → less overfitting, but slight test performance drop.
- **Decision Tree:** Still weak (overfit + high RMSE).
- KNN: Improves Test R^2 from 0.48 \rightarrow 0.73; scaling helped.
- AdaBoost: Worst performer, both underfitting & poor accuracy.

Feature engineering improves generalization for linear models, while powerful ensembles remain best overall predictors.

Hyperparameter Tuning: ADA Boost Model

```
--- Tuning AdaBoost Regressor ---
Fitting 3 folds for each of 9 candidates, totalling 27 fits
Best AdaBoost Params: {'learning_rate': 0.1, 'n_estimators': 50}
Best AdaBoost CV RMSE: 202429.3564
```

--- Final Performance on Test Set ---Final RMSE on Test Set: 227251.2322 Final R2 Score on Test Set: 0.6584

Hyperparameter Tuning: Random Forest Model

Hyperparameter Tuning: XGBoost Model

Key Takeaways

- Top drivers: grade, sqft_living, location (lat/long, zipcode)
- Tree-based models outperform linear models
- Feature engineering + hyperparameter tuning improves model reliability (less overfitting)

