Seminární úlohy 10

1. V experimentu byla měřena závislost napětí na prodloužení při tahové deformaci kovového drátu. Byly zjištěny následující hodnoty relativního prodloužení ε a napětí σ . Chyba určení ε byla minimálně o řád menší než chyba určení σ a proto ji zanedbáváme.

ε(%)	σ (GPa)
0.10	0.11 ± 0.03
0.20	0.16 ± 0.02
0.30	0.18 ± 0.02
0.40	0.22 ± 0.03
0.50	0.33 ± 0.03
0.60	0.39 ± 0.02
0.70	0.42 ± 0.03
0.80	0.51 ± 0.02
0.90	0.63 ± 0.03
1.00	0.65 ± 0.02

Vyneste do grafu závislost σ na ε a proveďte lineární fit této závislosti metodou nejmenších čtverců. Z lineárního fitu určete Youngův modul pružnosti měřeného vzorku a jeho chybu.

Řešení:

Podle Hookova zákona platí $\sigma = E\varepsilon$ kde E je Youngův modul pružnosti. Závislost σ na ε proto budeme fitovat přímkou procházející počátkem. Chyba naměřených hodnot napětí označíme Δ . Použijeme metodu nejmenších čtverců.

Minimalizujeme
$$\chi^2(E) = \sum_{i=1}^N \frac{(\sigma_i - E\varepsilon_i)^2}{\Delta_i^2}$$
.

Funkce χ^2 nabývá minimální hodnoty pro parametr $\hat{E} = \frac{\langle \varepsilon \sigma \rangle}{\langle \varepsilon^2 \rangle} = 64.8 \text{ GPa}$,

kde symbol $\left\langle \right.$ značí zprůměrování všech naměřených hodnot s váhou $1/\Delta_i^2$, tj. například

$$\langle \varepsilon \sigma \rangle = \sum_{i=1}^{N} \frac{\varepsilon_i \sigma_i}{\Delta_i^2}.$$

Chybu odhadu parametru E spočítáme metopdou přenosu chyb a dostaneme

$$\sigma_{E} = \frac{1}{\sqrt{\langle \varepsilon^{2} \rangle}} = 1.1 \,\mathrm{GPa}$$

Naměřený Youngův modul pružnosti je $\hat{E} = (65 \pm 1) \, \text{GPa}$.

Přiložen je soubor v Excelu s výpočtem (uloha 1.xlsx).

2. Niob je kov s kubickou prostorově centrovanou strukturou. Při teoretických výpočtech elektronové struktury Nb byly zjištěny následující hodnoty energie připadající na 1 atom pro různé hodnoty mřížové konstanty *a.* Relativní chyba vypočítaných hodnot energie je 0.1%.

a (Å)	E(eV)
3.4000	-11.090
3.3000	-11.271
3.2500	-11.313
3.2000	-11.306
3.1000	-11.172
3.0000	-10.817

Proveďte parabolický fit této závislosti metodou nejmenších čtverců a z fitu najděte rovnovážnou mřížovou konstantu Nb, tj. hodnotu *a* pro kterou má systém nejnižší energii.

Řešení:

Modelová funkce je $\lambda(a|\vec{\theta}) = \theta_0 + \theta_1 a + \theta_2 a^2$. Hodnoty modelové funkce λ pro uvažované hodnoty mřížové hodnoty a můžeme zapsat jako sloupcový vektor $\lambda = A\theta$, kde matice

$$\mathbf{A} = \begin{pmatrix} 1 & a_1 & a_1^2 \\ 1 & a_2 & a_2^2 \\ \Lambda & \Lambda \\ 1 & a_N & a_N^2 \end{pmatrix}$$

Veličinu χ^2 lze vyjádřit maticovým zápisem

$$\chi^2(\vec{\theta}) = (\mathbf{E} - \mathbf{A}\mathbf{a})^T \mathbf{V}^{-1} (\mathbf{E} - \mathbf{A}\mathbf{a}),$$

Kde V je kovarianční matice náhodných proměnných E, tj. $V_{ii} = \varepsilon E_i$, kde $\varepsilon = 0.001$ je relativní chyba hodnot energie E.

Zderivujeme χ^2 lze podle parametrů θ_0 , θ_1 , θ_2 a položíme derivace rovné nule. Dostáváme soustavu 3 lineárních rovnic pro 3 neznámé, kterou můžeme zapsat maticovou rovnicí

$$\mathbf{A}^{T}\mathbf{V}^{-1}\mathbf{A}\hat{\mathbf{\theta}} = \mathbf{A}^{T}\mathbf{V}^{-1}\mathbf{E}, \tag{1}$$

Kde matice soustavy je

$$\mathbf{A}^{T}\mathbf{V}^{-1}\mathbf{A} = \begin{pmatrix} \sum_{i=1}^{N} \frac{1}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}^{2}}{(\varepsilon E_{i})^{2}} \\ \sum_{i=1}^{N} \frac{a_{i}}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}^{2}}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}^{3}}{(\varepsilon E_{i})^{2}} \\ \sum_{i=1}^{N} \frac{a_{i}^{2}}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}^{3}}{(\varepsilon E_{i})^{2}} & \sum_{i=1}^{N} \frac{a_{i}^{4}}{(\varepsilon E_{i})^{2}} \end{pmatrix}$$

Matice pravé strany soustavy rovnic (1) je

$$\mathbf{A}^{T}\mathbf{V}^{-1}\mathbf{E} = \begin{pmatrix} \sum_{i=1}^{N} \frac{E_{i}}{(\varepsilon E_{i})^{2}} \\ \sum_{i=1}^{N} \frac{a_{i} E_{i}}{(\varepsilon E_{i})^{2}} \\ \sum_{i=1}^{N} \frac{a_{i}^{2} E_{i}}{(\varepsilon E_{i})^{2}} \end{pmatrix}$$

Řešení soustavy rovnic (1) ve sloupcový vektor $\boldsymbol{\theta}$ obsahující hledané parametry paraboly.

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{A}^T \mathbf{V}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{V}^{-1} \mathbf{E} .$$

$$\hat{\boldsymbol{\theta}} = \begin{pmatrix} 81.11 \\ -57.12 \\ 8.823 \end{pmatrix}$$

Inverzní matice k matici $\mathbf{A}^T \mathbf{V}^{-1} \mathbf{A}$ byla spočítaná v Excelu v přiloženém souboru uloha2.xlsx Rovnovážná hodnota mřížového parametru odpovídá minimu energie, tj. minimu modelové funkce

λ, a spočítáme jí takto:
$$\hat{a}_{eq} = \frac{-\hat{\theta}_1}{2\theta_2} = 3.237$$
 Å.