University of British Columbia, Vancouver GEOS 300 - Microscale Weather and Climate Knox

Study Questions - Lecture 2

Let us write the general conservation equation for humidity in the air:

$$0 = \frac{\partial \rho_v}{\partial t} + u \frac{\partial \rho_v}{\partial x} + v \frac{\partial \rho_v}{\partial y} + w \frac{\partial \rho_v}{\partial z}$$
 (1)

where ρ_v is vapour density (same as absolute humidity). For the purpose of this set of questions, we assume there is no condensation or vaporization happening.

- 1. What does the term $\frac{\partial \rho_v}{\partial t}$ describe, and what is the unit of the term?
- 2. What does the term $u\frac{\partial \rho_v}{\partial x}$ describe, and what is the unit of the term?
- 3. Assume horizontally homogeneous conditions, and $\frac{\partial \rho_v}{\partial z} = -1 \,\mathrm{g}\,\mathrm{m}^{-3}\,\mathrm{m}^{-1}$. $u = 2\,\mathrm{m}\,\mathrm{s}^{-1},\ v = 0\,\mathrm{m}\,\mathrm{s}^{-1}$ and $w = 0.1\,\mathrm{m}\,\mathrm{s}^{-1}$ Is the air drying out, becoming more humid, or is the humidity staying constant?