Statistisches Praktikum - Wintersemester 2019/20

"Schwanzbeißen in der Ferkelaufzucht"

Endpräsentation

, Thi Thuy Pham, und Projektpartnerinnen: Dr. und k (LfL)

Projektbetreuer: Prof. Dr.

München, den 30. Januar 2020

Gliederung

- 1. Vorstellung des Projekts
- 2. Präsentation unserer Datengrundlage
- 3. Deskriptive Analysen
- 4. Zeitreihenanalyse
- 5. Unser Regressionsmodell
- 6. Fazit

1. Vorstellung des Projekts

- "Schwanzbeißen" als weit verbreitetes Problem in der Ferkelaufzucht (massives Tierleiden, wirtschaftliche Einbußen)
- Kupieren der Schwänze gilt als sicherstes Mittel, um Schwanzbeißen zu reduzieren
- Kupieren = Entfernung von Schwanzteilen mit einem glühenden Heißschneider; Hitze verschweißt die Wunde
- EU-Richtlinie (2008): Kupieren der Schwänze darf nicht routinemäßig vorgenommen werden
- Schwanzbeißen als "multifaktorielles Problem"

- Projektpartnerinnen: Dr. und (LfL)
- Versuche wurden im Lehr-, Versuchs- und Fachzentrum für Schweinehaltung Schwarzenau in Schwarzach am Main durchgeführt (LfL)
- Insgesamt wurden 19 einzelne Versuchsdurchgänge durchgeführt (ohne Mastvorgänge)
- Boniturschlüssel: Ziel ist die Vergleichbarkeit der einzelnen Ergebnisse
 - → Beurteilung der Schwänze nach 4 verschiedenen Parametern

Boniturschlüssel

Schwanzverletzungen: 4 Boniturnoten

0 := keine Verletzungen erkennbar

1 := oberflächliche Verletzungen (Kratzer, leichte Bissspuren)

2 := kleinflächige Verletzungen an der Schwanzspitze bis maximal 1 cm über dem Durchmesser

3 := großflächige Verletzungen an der Schwanzspitze über 1 cm des Durchmessers

Teilverluste: 4 Boniturnoten

0 := kein Teilverlust

1 := bis zu 1/3 Teilverlust

2 := bis zu 2/3 Teilverlust

3 := mehr als 2/3 Teilverlust

Weitere Parameter:

frisches Blut: ja := 1 (≙ frische Verletzung) nein := 0

Schwellung: ja := 1 (≙ deutliche Schwellung) nein := 0

Fotobeispiele für Gesamtboniturnoten der Schwänze

1.1 Versuchsbedingungen

- 3 Versuchsabteile F5, F6 und F3
- Verschiedene Versuchsbuchten in den einzelnen Abteilen

	Standardbucht	Tierwohlbucht		
Platz	2,6m x 3,9m; 28 Ferkel → Fläche/Tier: 0,35m²	2,6m x 3,9m; 20 Ferkel → Fläche/Tier: 0,5m²		
Beschäftigungsangebot	Kunststoffball an Kette	Strohraufe, "Bite-Rite", Stück Holz am Boden		
Art der Fütterung	Futterzuführung trocken; Befeuchtung mit Hilfe von seitlich zulaufenden Wasserleitungen	Zusätzlich 2x täglich Luzernehäcksel per Hand		
Wasserversorgung	je 3 Trinknippel pro Bucht zusätzlich zu Wasserzuläufen	Zusätzlich offene Tränkschale mit "Aqua-Level"		

Übersicht über die Versuchsabteile

Übersicht über die Standardausführung der Versuchsbuchten

1.2 Übersicht über die Versuchsdurchgänge

Durchgang	Behandlung 1	Behandlung 2	Behandlung 3	Behandlung 4	Sonstiges
K1 und K2: Einfluss des Kupierens	unkupiert	kupiert (2/3 der Schwänze entfernt)			Standardbucht mit 28 Ferkeln
K3 und K4: Haltungs- bedingungen	Standard (28 Ferkel)	Tierwohlbucht (20 Ferkel)			Ferkel unkupiert
K5 und K6: Besatzdichte in Tierwohlbucht	Standard (28 Ferkel)	Tierwohl 20 (20 Ferkel)	Tierwohl 27 (27 Ferkel)		Ferkel unkupiert
K7: Strategien zur Verhinderung von Schwanzbeißen	Tierwohlbucht I: + Luzerne ad libitum	Tierwohlbucht II: + Luzerne ad libitum, Beschäftigung	Maissilage ad libitum	Heu ad libitum	Tierwohlbucht mit je 20 Ferkeln unkupiert

Durchgang	Behandlung 1	Behandlung 2	Behandlung 3	Behandlung 4	Sonstiges
K8: Kupierlänge	unkupiert	1/3 kupiert "zweidrittel"	kupiert (2/3 der Schwänze entfernt)		Standardbucht mit 28 Ferkeln
K9: Vaterrasse	Besamung durch Duroc-Eber	Besamung mit Pietrain-Ebern (wie üblich)			Standardbucht mit 23 Ferkeln (Krankheit), unkupiert
K10 und K11: Platzbedarf	Tierwohlbucht 20 (20 Ferkel)	Tierwohlbucht 27 (27 Ferkel)	Standard 21 (21 Ferkel)	Standard 28 (28 Ferkel)	Ferkel unkupiert
K12 und K14: (K12 keine Daten)	Tierwohl 20 F3 ohne Einstreu	Tierwohl 20+ F3 mit Einstreu			20 Ferkel, unkupiert, Flüssig- vs. Breifütterung (F3)

Durchgang	Behandlung 1	Behandlung 2	Sonstiges
K13: Kupierlänge (vgl. K8)	1/3 kupiert "zweidrittel"	Kupiert (2/3 der Schwänze entfernt)	Standardbuchten mit 28 Ferkeln
K15, K17 und K19: Säugephase	Bewegungsbucht	Fixierungsbucht	Standardbuchten mit 24 Ferkeln
K16: pelletiertes Beschäftigungsfutter	Loses Heu aus Körben	Grascobs aus Trogschalen	Tierwohlbuchten mit 24 Ferkeln
K18: Trocken- vs. Breifutter	Trockenfutter an vier Fressplätzen	Breifutter an vier Fressplätzen	Tierwohlbuchten mit 16 Ferkeln (Tier-Fressplatz- Verhältnis 4:1)

2. Unsere Datengrundlage

- Drei verschiedene Excel-Datensätze (über 19 Versuchsabschnitte)
 - 1. Datensatz: Überblick über die einzelnen Versuche und deren Bonituren:

Variablen: Durchgang (*DG*), Behandlung, Tier-Nummer (*Tier_Nr*), Bucht, Boniturtag (*Bonitur_Lt*), Schwanzverletzung (*Sverletz*), Schwanzteilverlust (*Steilv*), frisches Blut (*fr.Blut*), Schwellung (*Schw*)

-> zusätzlich: - Hinzufügen des Datums zu jedem Boniturtag mithilfe des Endberichts,

- Variable Fensterbucht

Keine Daten für Durchgang 12!

2. Datensatz: Weitere Informationen zu den Tieren (außer Durchgang 12):

Variablen: Durchgang (*DG*), Behandlung, Tier-Nummer (*Tier_Nr*), Bucht, *Mutter, Geschlecht, Gewicht Einstallung (Gewicht_Einst), Gewicht Ausstallung (Gewicht Ausst), Zunahmen (pro Tag)*

•	DG ÷	Behandlung [‡]	Tier_Nr ‡	Bucht ‡	Mutter ‡	Geschlecht ‡	Ge wicht_Einst ‡	Ge wicht_Ausst 🔅	Zunahmen ÷
1	1	kupiert	25304	F5 B1	1427	m	9.5	35.0	0.6071429
2	1	kupiert	25307	F5 B1	1427	w	10.0	31.0	0.5000000
3	1	kupiert	25315	F5 B1	1386	w	8.0	32.5	0.5833333
4	1	kupiert	25338	F5 B1	9731	m	8.0	30.0	0.5238095
5	1	kupiert	25343	F5 B1	1375	m	10.5	31.5	0.5000000

3. Datensatz: Klimadaten (nicht vorhanden für die Durchgänge 8-10, 15 und 16):

Variablen: Datum, Uhrzeit, Luftfeuchtigkeit (jeweils in Abteil F5 und F6), Temperatur (jeweils in Abteil F5 und F6)

-> Gruppierung nach Datum: Berechnung des arithmetischen Mittels, Minimum, Maximum und Varianz in jedem Abteil an jedem Tag

_	Datum ‡	Abteil ‡	mean_rel_Luftf [‡]	mean_temp ‡	min_rel_Luftf [‡]	min_temp 💠	max_rel_Luftf	max_temp ‡	var_rel_Luftf ÷	var_temp 💠
1	2011-11-24	F5	55.43947	26.98947	52.35	26.60	58.25	27.25	3.2001608	0.046549708
2	2011-11-24	F6	52.78421	27.74211	50.90	27.70	56.60	27.90	2.2716813	0.003684211
3	2011-11-25	F5	58.89948	26.78177	51.90	26.15	69.75	27.25	16.7851839	0.074111568

• Zusammenführen in einen Datensatz:

•	DG ‡	Behandlung ‡	Tier_Nr ‡	Bucht ‡	Bonitur_Lt ‡	Sverletz ‡	Steilv ‡	fr.Blut ‡	Schw	Abteil [‡]	Fensterbucht ‡	Datum [‡]	Mutter ‡	Geschlecht ‡	Ge wicht_Einst 🗼
1	1	kupiert	25304	F5 B1	Tag 29	0	0	0	0	F5	nein	2011-11-24	1427	m	9.5
2	1	kupiert	25307	F5 B1	Tag 29	0	0	0	0	F5	nein	2011-11-24	1427	w	10.0
3	1	kupiert	25315	F5 B1	Tag 29	0	0	0	0	F5	nein	2011-11-24	1386	w	8.0
4	1	kupiert	25338	F5 B1	Tag 29	0	0	0	0	F5	nein	2011-11-24	9731	m	8.0
5	1	kupiert	25343	F5 B1	Tag 29	0	0	0	0	F5	nein	2011-11-24	1375	m	10.5

Ge wicht_Ausst 🔅	Zunahmen ‡	Sverletzjn 🗦	mean_rel_Luftf ‡	mean_temp ‡	min_rel_Luftf ‡	min_temp ‡	max_rel_Luftf [‡]	max_temp	var_rel_Luftf ‡	var_temp †
35.0	0.6071429	1	55.43947	26.98947	52.35	26.60	58.25	27.25	3.200161	0.04654971
31.0	0.5000000	1	55.43947	26.98947	52.35	26.60	58.25	27.25	3.200161	0.04654971
32.5	0.5833333	1	55.43947	26.98947	52.35	26.60	58.25	27.25	3.200161	0.04654971
30.0	0.5238095	1	55.43947	26.98947	52.35	26.60	58.25	27.25	3.200161	0.04654971
31.5	0.5000000	1	55.43947	26.98947	52.35	26.60	58.25	27.25	3.200161	0.04654971

3. Deskriptive Analysen

3.1 gestapelte proportionale Diagramme

Verteilung des Verletzungsgrads

Verteilung von frisches Blut

Verteilung von Schwellung

Multidimensionale Plots

Verteilung des Verletzungsgrads in Abhängigkeit von Schwellung

3.2 Weitere Plots: Verteilung von Verletzungsgrad in Abhängigkeit von der Behandlung

4. Zeitreihenanalyse

Verteilung von Schwanzverletzung im Laufe der Zeit

Verteilung von Schwanzverletzung im Laufe der Zeit in K1

Verteilung von Schwanzverletzung im Laufe der Zeit in K2

Verteilung von Schwanzverletzung im Laufe der Zeit in K10

5. Regressionsmodell

- Gemischtes logistisches Regressionsmodell:
 - Logistisches Modell: Regressionsmodell für binäre Zufallsgrößen mit zwei Ausprägungen
 - -> Umcodierung der abhängigen Variablen in 0/1-codierte Dummyvariablen
 - ➤ Schwanzverletzung ja/nein
 - ➤ Frisches Blut ja/nein
 - ➤ Schwellung ja/nein
 - Gemischtes Modell: Hinzufügen von zufälligen Effekten

Logistisches Regressionsmodell (Logit-Modell)

- Beispiel Schwanzverletzung:
 - Welche Effekte wirken sich positiv auf die Verhinderung von Verletzungen aus?
 - -> 1 = keine Schwanzverletzung; 0 = Schwanzverletzung
- Wahrscheinlichkeit, dass bei einem bestimmten Ferkel i keine Schwanzverletzung auftritt:

$$\pi_i = \frac{\exp(x_i'\beta)}{1 + \exp(x_i'\beta)}$$

• Somit gilt für die Chance, Schwanzverletzungen zu verhindern:

$$\frac{\text{keine Schwanzverletzung}}{\text{Schwanzverletzung}} = \frac{\pi_i}{1 - \pi_i} = \frac{P(y_i = 1 | x_i)}{P(y_i = 0 | x_i)} = \exp(x_i' \beta) =$$

$$exp(\beta_0) * exp(x_{i1}\beta_1) * \cdots * exp(x_{ik}\beta_k)$$

(Fahrmeir et al. 2009: 189 ff.)

Gemischtes lineares Modell:

- Modell mit zufälligen Effekten, speziell für Longitudinaldaten:
 - Zufälliger Effekt für jedes Ferkel (Variable Tier_Nr) über den jeweiligen Versuchszeitraum
 - Zufälliger Effekt für jeden der Versuchsdurchgänge K1-K19 (Variable: Durchgang)
- Modellgleichung: $y = X\beta + U\gamma + \varepsilon$ mit γ als zufälligen Effekten

(Fahrmeir et al. 2009: 253 ff.)

Random-Intercept-Logitmodell

• Logit-Modell + gemischtes Modell:

$$\log \frac{P(y_{ij}=1|\gamma_i)}{P(y_{ij}=0|\gamma_i)} = x'_{ij}\beta + u'_{ij}\gamma_i \text{ für } i = 1,...,m \text{ und } j = 1,...n_i$$

Interpretation über Odds-Ratio:

$$\frac{\frac{P(y_{ij} = 1 | x_{ij} + 1, \gamma_i)}{P(y_{ij} = 0 | x_{ij} + 1, \gamma_i)}}{\frac{P(y_{ij} = 1 | x_{ij}, \gamma_i)}{P(y_{ij} = 0 | x_{ij}, \gamma_i)}} = \frac{\exp((x_{ij} + 1)\beta + \gamma_i)}{\exp(x_{ij} + \gamma_i)} = \exp(\beta)$$

(Fahrmeir et al. 2009: 279)

5.1 Modell ohne Klimaeffekt

Modellgleichung:

```
Schwanzverletzung ja/nein ~ Behandlung + Geschlecht +

Zunahmen + Fensterbucht +

(1|Tier Nummer) + (1|Durchgang)
```

- Modell mit ungefähr 40 Tausend Beobachtungen pro Variable
- Standardbucht mit unkupierten Ferkeln als Referenzkategorie bei der Behandlung

```
Formula: Sverletzjn ~ Behandlung + Geschlecht + Zunahmen + Fensterbucht +
                                                                                (1 \mid Tier_Nr) + (1 \mid DG)
   Data: klimasau_reg
                       logLik deviance df.resid
      AIC
                BIC
43653.45 43868.44 -21801.72
                               43603.45
                                             40095
Random effects:
                     Std. Dev.
Groups Name
Tier_Nr (Intercept) 0.6665
         (Intercept) 0.3098
DG
Number of obs: 40120, groups:
                               Tier_Nr, 3196; DG, 18
Fixed Effects:
              (Intercept)
                                 Behandlungunkupiert
                                                           Behandlungzweidrittel
                -0.040856
                                            -0.651798
                                                                        1.172003
        Behandlungkupiert
                               BehandlungStandard 21
                                                           BehandlungTierwohl 27
                 3.115482
                                             0.460092
                                                                         1.630857
    BehandlungTierwohl 20
                            BehandlungTierwohl 20 F3
                                                       BehandlungTierwohl 20+ F3
                                             1.670812
                                                                        0.978149
                 2.099961
     BehandlungTierwohl I
                               BehandlungTierwohl II
                                                            BehandlungMaissilage
                 0.989418
                                             0.657689
                                                                        -0.119683
                                   BehandlungGrascobs
            BehandlungHeu
                                                                  BehandlungBrei
                 0.513446
                                             0.530032
                                                                        1.450677
        BehandlungTrocken
                                         BehandlungDu
                                                                    BehandlungPi
                                            -0.054979
                                                                       -0.006788
                 1.174954
                                   BehandlungBewegung
      BehandlungFixierung
                                                                     Geschlechtw
                 0.391815
                                             0.659016
                                                                        0.049899
                                       Fensterbuchtja
                 Zunahmen
                 0.097377
                                             0.022422
```

Überblick über die geschätzten Koeffizienten

Koeffizientenplot Modell ohne Klimaeffekte

Einfluss der unterschiedlichen Behandlungen - Schwanzlänge

Einfluss der unterschiedlichen Behandlungen - Buchten

Einfluss der verschiedenen Buchten auf das Verhindern von Verletzungen

Einfluss der unterschiedlichen Behandlungen – Strategien

Einfluss weiterer Behandlungsstrategien auf das Verhindern von Verletzungen

Einfluss der weiteren Variablen

Vergleich von Schwanzverletzung und frisches Blut als abhängige Variable

Abhängige Variable

- Schwanzverletzung
- Frisches Blut

5.2 Modell mit Klimaeffekt

Modellgleichung:

```
Schwanzverletzung ja/nein ~ Behandlung + Geschlecht +
Zunahmen + Fensterbucht +
mittlere Temperatur +
mittlere relative Luftfeuchtigkeit +
(1|Tier Nummer) + (1|Durchgang)
```

- Basierend auf knapp 25 Tausend Beobachtungen pro Variable
- Für K8-10, K15 und K16 keine Klimadaten vorhanden
 - -> Behandlungen, die nur in diesen Durchgängen durchgeführt wurden (z.B. K9 Vaterrasse) fallen raus

Vergleich der Modelle ohne und mit Klimaeffekt

Modell

ohne Klimaeffekt

mit Klimaeffekt

Einfluss der Klimakoeffizienten

6. Fazit

- Zeitreihen: Meist starker Anstieg nach wenigen Boniturtagen und dann langsamer Rückgang während des restlichen Durchgangs
- Kupieren mit größtem Effekt zur Verhinderung von Verletzungen durch Schwanzbeißen
- Weniger Verletzungen bei geringerer Besatzungsdichte und attraktiverem Beschäftigungsangebot
- Temperatur mit positivem und Luftfeuchtigkeit mit negativem Einfluss auf das Verhindern von Schwanzbeißen

Literaturverzeichnis

Jais und Abriel (2015): Endbericht zum Forschungsvorhaben Haltungscontrolling und Kannibalismus in der Schweinehaltung

Jais, Müller, Abriel und Schramm (2019): Endbericht zum Forschungsvorhaben Erarbeitung von Haltungs- und Managementstrategien zur Vermeidung von Kannibalismus bei Ferkeln und Mastschweinen

Fahrmeir, Kneib und Lang (2009): Regression: Modelle, Methoden und Anwendungen, Springer-Verlag Berlin Heidelberg

R-Packages

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

Kirill Müller and Hadley Wickham (2019). tibble: Simple Data Frames. R package version 2.1.3. https://CRAN.R-project.org/package=tibble

Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani (2017). ISLR: Data for an Introduction to Statistical Learning with Applications in R. R package version 1.2. https://CRAN.R-project.org/package=ISLR

Lüdecke D (2019). _sjPlot: Data Visualization for Statistics in Social Science_. doi: 10.5281/zenodo.1308157 (URL: https://doi.org/10.5281/zenodo.1308157), R package version 2.8.0, <URL: https://CRAN.R-project.org/package=sjPlot>.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra

Long JA (2019). _jtools: Analysis and Presentation of Social Scientific Data_. R package version 2.0.1, <URL:https://cran.r-project.org/package=jtools>.

Lüdecke D (2019). _sjlabelled: Labelled Data Utility Functions (Version 1.1.1)_. doi: 10.5281/zenodo.1249215 (URL: https://doi.org/10.5281/zenodo.1249215), <URL: https://CRAN.R-project.org/package=sjlabelled>.

Lüdecke D (2018). "sjmisc: Data and Variable Transformation Functions." _Journal of Open Source Software_, *3*(26), 754. doi: 10.21105/joss.00754 (URL: https://doi.org/10.21105/joss.00754).

Lionel Henry, Hadley Wickham and Winston Chang (2019). ggstance: Horizontal 'ggplot2' Components. R package version 0.3.3. https://CRAN.R-project.org/package=ggstance

Erich Neuwirth (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer

John Fox and Sanford Weisberg (2019). An R Companion to Applied Regression, 3rd Edition. Thousand Oaks, CA http://tinyurl.com/carbook

John Fox (2003). Effect Displays in R for Generalised Linear Models. Journal of Statistical Software, 8(15), 1-27. URL http://www.jstatsoft.org/v08/i15/.

Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Adrian A. Dragulescu and Cole Arendt (2018). xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.1. https://CRAN.R-project.org/package=xlsx

