

Figure 1

```
int TRAILER_calculate_trailer(int ct_x[],
                               int ct y[],
                               int ct_t[],
                               int ct length,
                               int *ct a,
                               int *ct b)
{ int i;
  int ct idx1=TRIALER_INIT_INDEX1, ct_idx2=TRIALER_INIT_INDEX2,
      ct idx3=TRIALER_INIT_INDEX3,ct idx4=TRIALER_INIT_INDEX4;
  int ct idx5=TRIALER_INIT_INDEX5,ct_idx6= TRIALER_INIT_INDEX6,
      ct idx7=TRIALER_INIT_INDEX7,ct_idx8=TRIALER_INIT_INDEX8;
  int ct sum1=0,ct_sum2=0,ct_sum3=0,ct_sum4=0;
  int ct prime[N]=
  { TRAILER_PRIME_11, TRAILER_PRIME_12, ..., TRAILER PRIME 1N
  };
  int ct primel[N1]=
  { TRAILER_PRIME_21, TRAILER_PRIME_22, ..., TRAILER_PRIME 2N1
  };
  if (!ct x || !ct_y || !ct_t ||
      ct length<40 || !ct_a || !ct_b) return 0;
  for (i=0; i < ct_length; ++i)
   // Second and third order sums.
   ct sum1+=ct prime[ct idx1]*ct prime1[ct_idx5];
    ct sum2+=ct_prime[ct_idx2]*ct_prime1[ct_idx6];
    ct sum3+=ct prime[ct idx3]*ct prime1[ct_idx7];
    ct sum4+=
    ct_prime[ct_idx6] * ct_prime[ct_idx4] *ct_prime1[ct_idx8] *
ct x[i]*ct_y[i]*ct_t[i];
  }
  return 1;
}
```


Figure 3

Figure 4

502

503

Calculate the number of times that the curvature changes sign

If Xi, Yi is the curve

The sign is taken from

$$\Delta X_i = X_i - X_{i-1}, \qquad \Delta Y_i = Y_i - Y_{i-1}$$

$$\Delta X_{i+1} = X_{i+1} - X_i$$
, $\Delta Y_{i+1} = Y_{i+1} - Y_i$

 $Val = \#(sgn(\Delta X_i \Delta Y_{i+1} \cdot \Delta Y_i \Delta X_{i+1}))$

sgn is either 1 or -1 or 0. The value is calculated as the number of times that sgn changes from 1 to -1 or from -1 to 1.

Calculate Average = $\frac{Sum}{n}$ Sum = $\sum_{k=1}^{n} Val_k$

Calculate Variance = Ssum Ssum = $\sum_{k=1}^{n} Val_k^2$

Calculate deviation

$$Dev = \frac{(Val - Average)^2}{s + Variance} \qquad s = 0.0001$$

If Dev>9 then fail

Search for sequences of the "c" coordinate that are 0011, enumerate occurrences.

- (1) x, y, t, o
- (2) x, y, t, o
- $(3) \qquad x,\,y,\,t,\,1 \qquad \rightarrow \qquad x_3,\,y_3,\,t_3$
- (4) x, y, t, 1

602

Calculate average, Average_i =
$$\frac{sum_i}{n}$$

(for both Sum_i.X, Sum_i.Y)

 $Sum_i X = \sum_{k=1}^n X_i$, $Sum_i Y = \sum_{k=1}^n Y_i$ such that X_i , Y_i are the coordinates of the clicks.

Calculate variance_i, Variance_i = $\frac{Ssum_i}{n}$ (n = the number of learned signatures)

603

Calculate deviations

$$Devi.X = \frac{(x_i - average_i.X)^2}{s + Variance_i.X}$$
 (s is 0.0001)

$$Dev_{i}.Y = \frac{(y_{i} - Average_{i}.Y)^{2}}{s + Variance_{i}.Y}$$

604

If the number of clicks is wrong or $Dev_iX > 9$ or $Dev_iY > 9$ then fail

Figure 6

Figure 7

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure14

Figure 15

Figure 21

Figure 16

Figure 17

Figure 18

Increment n by 1

Figure 19

Figure 20

Sample 3 with Agents or Nodes Located Every n (10) Samples

Figure 23

Form Geometric Characteristic Vector:

$$Val_{i} = \frac{[L_{i+1} - L_{i}] - [L_{i} - L_{i+1}]}{ArcLength [L_{i+1} \rightarrow L_{i-1}]}$$

Store n-2 Geometric Characteristic Vectors in User Profile Database as a User Authenticated Signature Profile

Figure 24

Sampled Signature with Nodes or Agents As Stored

Figure 26

Nodes Located on Curve by FCM

Figure 28

FCM to Migrate Nodes Toward Curve

Figure 27

Form Geometric Characteristic Vector:

$$Val_{i} = \frac{[L_{i+1} - L_{i}] - [L_{i} - L_{i+1}]}{ArcLength [L_{i+1} \rightarrow L_{i+1}]}$$

Store n-2 Geometric Characteristic Vectors in User Profile Database as a User Authenticated Signature Profile

Figure 29

Figure 30