EMA749 – Topologia Geral Prof. Hudson Lima

Lista 2

- Resolva os exercícios abaixo.
- 1. Prove que \mathbb{R}^n é localmente compacto e que sua compactificação de Alexandrov é homeomorfa a \mathbb{S}^n .
- 2. Prove que $X = \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \subset \mathbb{R}^2$ não é uma variedade.
- 3. Considere $\mathbb{R}^2 \subset \mathbb{R}^3$. Quais condições em $F \subset \mathbb{R}^2$ implicam $\mathbb{R}^3 \setminus F$ conexo por caminhos?
- 4. Prove que $X = \{0\} \times [-1, 1] \cup \{(x, sen(1/x)) : x > 0\}$ tem exatamente duas componentes conexas por caminhos.
- 5. Prove que quaisquer duas normas num espaço vetorial de dimensão finita definem a mesma topologia.
- 6. Sejam X e Y espaços localmente compactos que não sejam compactos. Prove que toda função contínua $f: X \to Y$ estende de maneira única para uma função $\widehat{f}: \widehat{X} \to \widehat{Y}$.
- 7. Seja X um espaço de Hausdorff localmente compacto. Prove que X é denso em \widehat{X} se e somente se X não é compacto.
- 8. Q não é localmente compacto.
- 9. Mostre que \mathbb{N} é locamente compacto e sua compactificação de Alexandrov é homeomorfa a $\{0\} \cup \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$.
- 10. Prove que a compactificação de Alexandrov é única.
- 11. Se X tem base enumerável toda base contem uma base enumerável.
- 12. Todo espaço topológico compacto metrizável tem base enumerável.
- 13. Se $f: X \to Y$ é contínua e X tem base enumerável é verdade que f(X) tem base enumerável?
- 14. Quais as componentes conexas de $\mathbb{Q}^n \subset \mathbb{R}^n$.