

Compiling Techniques - ECOTE part 5- Recursive Descent parsers DSc dr Ilona Bluemke

Elimination of left recursion

Left-recursive pair of productions:

 $A \to A\alpha \mid \beta$ where β does not begin with A Can be replaced by: $A \to \beta A'$ $A' \to \alpha A' \mid \epsilon$

In general to eliminate left-recursive among all Aproductions we group them as:

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid ... \mid \beta_n$$
 where β_i does not begin with A and replace by:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

This process will eliminate immediate left-recursion but will not eliminate left-recursion in 2 or more steps:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid e$

S is left-recursive :S \Rightarrow Aa \Rightarrow Sda

Algorithm to eliminate left-recursion from grammar

- **Grammar without cycles** ($A \Rightarrow +A$), ϵ productions, resulting grammar may have ϵ productions.
- 1. Arrange nonterminals of G in some order A₁, A_{2,...} A_n
- 2. **for** i:= 1 **to** n **do**

begin for
$$j:=1$$
 to $i-1$ do

replace each production of the form $A_i \rightarrow A_i \gamma$

by the productions:

$$\begin{array}{lll} A_i \! \to \! \delta_1 \gamma \, \big| \, \delta_2 \gamma \, \big| \, \dots \, \big| \, \delta_k \gamma & \text{where} \\ A_i \! \to \! \delta_1 \, \big| \, \delta_2 \, \big| \, \dots \, \big| \, \delta_k \, ; & \end{array}$$

eliminate immediate recursion among A_i -productions end

Exercise

Consider grammar:

- 1. $S \rightarrow a$
- 2. $S \rightarrow \land$
- 3. $S \rightarrow (T)$
- 4. $T \rightarrow T,S$
- 5. T \rightarrow S

Eliminate left recursion from this grammar

Elimination of left recursion

- Assume that S < T
- Consider S productions
 - (no recursion)
- Consider T productions: $\alpha = S$
- $T \rightarrow T$, S and $T \rightarrow S$ transformed into :
- $T \rightarrow S T' \mid S \text{ and } T' \rightarrow S T' \mid \varepsilon$

$$S \rightarrow a \mid \land \mid (T)$$

$$T \rightarrow T,S \mid S$$

Transformed into:

$$S \rightarrow a \mid \land \mid (T)$$

$$T \rightarrow S T' \mid S$$

$$T' \rightarrow S T' \mid \epsilon$$

$$G_0 = \langle \{a, +, *, (,)\}, \{A, B, S\}, P, S \rangle$$

 $P = \{S \rightarrow S + A \mid A, A \rightarrow A * B \mid B, B \rightarrow (S) \mid a\}$

- B < A < S ordering of nonterminals
 - B→(S) |a
 - A→A*B |(S) | a substitution of B

Left recursion : $A\rightarrow (S) \mid a \mid (S) \mid A' \mid a \mid A'$ $A' \rightarrow B \mid B \mid A'$

■ $S \rightarrow S + A \mid (S) \mid a \mid (S) \mid A' \mid a \mid A' \text{ (substitution of A)}$

■ $S \rightarrow S + A$ (S) | a | (S) A' | a A' (substitution of A)

Left recursion:

$$S \rightarrow (S) | a | (S) A' | a A'$$

 $S \rightarrow (S) S' | a S' | (S) A' S' | a A' S'$
 $S' \rightarrow +A S' | +A$

The same grammar but different ordering of symbols: S < A < B

- $S \rightarrow S + A \mid A => S \rightarrow AS' \mid A \mid S' \rightarrow + A \mid + AS'$
 - Reduction S' \rightarrow + S
 - S' substituted $S \rightarrow A + S A$
- $A \rightarrow A^*B$ $B => A \rightarrow BA' | BA' \rightarrow BA' \Rightarrow BA'$
 - Reduction A' \rightarrow * A
 - A' substituted $A \rightarrow B * A \mid B$
- B→(S) a

Recursive-descent parsing

Top-down parser, no backtracking

Given the current input symbol *a* and the nonterminal A which of the alternates of production

$$A \to \alpha_1 | \alpha_2 | \dots | \alpha_m$$

is the unique alternates that derives a string beginning with *a*.

A → if cond then A else A
 while cond do A
 begin A-list end
 the keywords if while begin choose the alternate

ε - production

if one alternate for A is $A\to\epsilon$, and none of the alternates derives a string beginning with **a**, then on input **a** we may expand A with

$$A \rightarrow \epsilon$$

R-D parser uses a set of recursive procedures (one for each nonterminal) to recognise its input without backtracking.

Example

Grammar without left-recursion

$$S \rightarrow AS'$$

 $S' \rightarrow + AS' \mid \varepsilon$
 $A \rightarrow BA'$
 $A' \rightarrow * BA' \mid \varepsilon$
 $B \rightarrow (S) \mid a$

Procedures:

```
void S()
     A();
  Sprime()
void A()
     B();
  Aprime()
```

```
void Sprime()
     if(symbol=='+')
  then
  advance ()
  A();
  Sprime()
```


Procedure B

```
void B()
{ if (symbol == 'a') then advance ()
else if (symbol == '(') then
      advance();
      S();
  if (symbol == ')') then
      advance(); else error();}
```


Left factoring

 $A \rightarrow \text{ if cond then } A \text{ else } A \mid \text{ if cond then } A$

On seeing symbol if it is not possible to tell which production to choose.

Left factoring –process of factoring out the common prefixes of alternates

1. $\mathbf{A} \rightarrow \alpha \beta | \alpha \gamma$

Becomes:

$$A \to \alpha A'$$

$$A' \to \beta \mid \gamma$$

2. (if-then-else)

 $S \rightarrow iCtS | iCtSeS | a$

 $C \rightarrow b$

Becomes: $S \rightarrow i C t S S' \mid a$

 $S' \rightarrow e S \mid \epsilon$

 $C \rightarrow b$

Transition diagrams for R-D parser

- plan, flowchart for lexical analyser
- plan for recursive-descent parser

- one transition diagram for each nonterminal
- labels tokens or nonterminals
- token (terminal) take this transition if that token is the next input symbol
- **nonterminal A** the transition diagram for **A** should be called

For each nonterminal do:

- 1. create an initial and final (return) state
- 2. for each production $A \rightarrow X_1 X_2 ... X_n$ create a path from the initial to the final state, with edges labelled $X_1, X_2, ... X_n$

transition diagrams:

S:

For grammar

$$S \rightarrow AS'$$

$$S' \rightarrow + AS' \mid \varepsilon$$

$$A \rightarrow BA'$$

$$A' \rightarrow * BA' \mid \varepsilon$$

$$B \rightarrow (S) \mid a$$

S': C

3

$$A: \bigcirc B \bigcirc A'$$

A':

3

$$\mathbf{3}: \quad \overset{\mathsf{(}}{\smile} \quad \overset{\mathsf{S}}{\smile} \quad \overset{\mathsf{)}}{\smile} \quad \overset{\mathsf{)}}{$$

a

Transition diagrams should be deterministic – subset construction algorithm does not work (cannot remember how many recursive calls are made).

Problems:

First symbol derived from A should not be a
First symbols derived from A and B should be different

Simplifying transition diagrams (substituting diagram in one another)

The call of S' on itself can be replaced by a jump to the initial state of S' diagram:

S':

Equivalent diagram for A':

Code example for A:

```
void A()
  B();
 while (symbol == '*')
  advance ();
  B();
```


First and Follow

If α is any string of grammar symbols, let **First(\alpha)** be the set of terminals that begin strings derived from α

$$\forall$$
 (a \in T) First_k (a) = {a}
 \forall (A \in N) First_k(A) = {x \in T*k: (A \Rightarrow *x \land |x|<=k \lor A \Rightarrow *xy \land |x|=k}

$$\mathsf{First}_{\mathsf{k}} \; (\varepsilon) = \{ \varepsilon \}$$

First_k($\alpha_1 \alpha_2 ... \alpha_n$)= First_k(α_1) \bullet_k First_k(α_2) \bullet_k ... First_k(α_n) where \bullet_k is a concatenation of the length k.

To compute $First_1(\alpha)$

for all grammar symbols α

apply the following rules until no more terminals or ϵ can be added to any First set:

- 1. if α is a **terminal** then First₁(α) is { α }
- 2. if α is **nonterminal** and if $\alpha \rightarrow a\beta$ is a production then add α to $\text{First}_1(\alpha)$, if $\alpha \rightarrow \epsilon$ is a production then add ϵ to $\text{First}_1(\alpha)$.

First₁

3. if $\alpha \rightarrow \beta_1 \beta_2 \dots \beta_n$ is a production, then for all i such that all of $\beta_1 \beta_2 \dots \beta_{i-1}$ are nonterminals and $\operatorname{First}_1(\beta_i)$, contains ϵ for $j=1,2,\dots,i-1$ (i.e. $\beta_1 \beta_2 \dots \beta_{i-1} \Rightarrow^* \epsilon$), add every non- ϵ symbol in $\operatorname{First}_1(\beta_i)$ to $\operatorname{First}_1(\alpha)$. If $\epsilon \in \operatorname{First}_1(\beta_i)$ for all $j=1,2,\dots,n$, then add ϵ to $\operatorname{First}_1(\alpha)$.

$$S \rightarrow AS'$$

 $S' \rightarrow + AS' \mid \varepsilon$
 $A \rightarrow BA'$
 $A' \rightarrow * BA' \mid \varepsilon$
 $B \rightarrow (S) \mid a$
 $First_1(B) = \{(, a\}$
 $First_1(A') = \{*, \varepsilon\}$
 $First_1(S') = \{+, \varepsilon\}$
 $First_1(S) = First_1(A) = \{(, a\}$

$$S \rightarrow a \mid \land \mid (T)$$

 $T \rightarrow S T' \mid S$
 $T' \rightarrow ,S T' \mid \varepsilon$
 $First_1(S) = \{a,(, \land)\}$
 $First_1(T) = First_1(S) = \{a, ,(, \land)\}$
 $First_1(T') = \{, \varepsilon\}$

Follow₁ (A)

The set of terminals (a) that can appear immediately to the right of A in some sentential form,

that is, $S \Rightarrow^* \alpha Aa\beta$

for some α and β .

If A can be the rightmost symbol in some sentential form, then $\varepsilon \in Follow_1$ (A).

To compute **Follow₁(A)** for all nonterminals A, apply the following rules until nothing can be added to any Follow set:

- 1. ε is Follow₁(S), where S is the start symbol
- 2. if there is a production $A \rightarrow \alpha B\beta$,

then everything in First₁(β)

but ε , is in Follow₁(B).

Note that ε may still wind up in Follow₁(B) by rule 3.

Follow₁(A)

3. if there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B\beta$ where

First₁(β) contains ϵ (i.e. $\beta \Rightarrow^* \epsilon$), then everything in

Follow₁(A) is in Follow₁(B).

$$S \rightarrow AS'$$

 $S' \rightarrow + AS' \mid \epsilon \quad A \rightarrow BA'$
 $A' \rightarrow * BA' \mid \epsilon \quad B \rightarrow (S) \mid a$
 $First_1(B) = \{(, a\} \quad First_1(A') = \{*, \epsilon\}$
 $First_1(S') = \{+, \epsilon\} \quad First_1(S) = First_1(A) = \{(, a\} \}$
 $Follow_1(S) = Follow_1(S') = \{\}, \epsilon\}$
 $Follow_1(A) = Follow_1(A') = \{+, \}, \epsilon\}$
 $Follow_1(B) = \{+, *, \}, \epsilon\}$


```
S \rightarrow a \mid \land \mid (T)
T \rightarrow S T' \mid S
T' \rightarrow S T' \mid \epsilon
First_1(S) = \{a, (, \land)\}
First_1(T) = First_1(S) = \{a, ,(, \land)\}
First_1(T') = \{, \epsilon\}
Follow<sub>1</sub>(S) = {\epsilon, ", ", ) }
Follow_1(T) = \{ \} 
Follow_1(T') = \{\}
```


Compiling Techniques - ECOTE Recursive Descent parsers end of part 5

