4. Граници на редици. Аритметични действия със сходящи редици

Галина Люцканова 26 октомври 2013 г.

Определение 4.1: Безкрайна числова редица е функция от вида:

$$f: \mathbb{N} \to \mathbb{R}$$
,

където \mathbb{N} е множеството на естествените числа и \mathbb{R} е множеството на реалните числа. За всяко n естествено число $f(n) := x_n$. Тя се бележи обикновено с $\{x_n\}_{n=1}^{\infty}$ или само $\{x_n\}$.

Определение 4.2: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена отгоре, ако съществува число $M \in \mathbb{R}$, такова че за всяко $n \in \mathbb{N}$ $a_n \leq M$.

Определение 4.3: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена отдолу, ако съществува число $M \in \mathbb{R}$, такова че за всяко $n \in \mathbb{N}$ $a_n \geq M$.

Определение 4.4: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена, ако е ограничена отгоре и ограничена отдолу.

Определение 4.5: Редицата $\{a_n\}_{n=1}^{\infty}$ е неограничена, ако не е ограничена отдолу или ограничена отгоре.

Определение 4.6: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ а е монотонно растяща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n \leq a_{n+1}$.

Определение 4.7: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ а е строго монотонно растяща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n < a_{n+1}$.

Определение 4.8: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ а е монотонно намаляваща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n \geq a_{n+1}$.

Определение 4.9: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ а е строго монотонно намаляваща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n > a_{n+1}$.

Определение 4.10: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща, ако за всяко $\varepsilon > 0$ съществува индекс на член от редицата ν , зависещ от ε , такъв че винаги когато $n > \nu$ да е изпълнено $|a_n - a| < \varepsilon$. Числото a се нарича граница на редица и съществува само ако $\{a_n\}_{n=1}^{\infty}$ е сходяща. Границата на редицата се бележи по следния начин $\lim_{n\to\infty} a_n = a$ (чете се като границата на редицата a_n при n клонящо към безкрайност е a).

Определение 4.11: Казваме, че редицата a_n клони към $+\infty$ (бележим с $\lim a_n \to +\infty$), ако за всяко число M съществува ν , такова че при $n>\nu$ е изпълнено, че $a_n\geq M$.

Определение 4.12: Казваме, че редицата a_n клони към $-\infty$ (бележим с $\lim a_n \to -\infty$), ако за всяко число P съществува ν , такова че при $n>\nu$ е изпълнено, че $a_n\leq P$.

Определение 4.13: Ако $\lim_{n\to\infty}a_n=\infty$ (т.е. a_n клони към $+\infty$ или $-\infty$), то казваме, че редицата $\{a_n\}$ е безкрайно голяма.

Определение 4.14: Ако $\lim_{n\to\infty} a_n = 0$, то казваме, че редицата $\{a_n\}$ е безкрайно малка.

Общи свойства:

- 1. Ако към една редица прибавим или премахнем краен брой елементи, то това не влияе на нейната сходимост.
- 2. Ако a_n е сходяща, то тя е ограничена.
- 3. Нека $\lim_{n\to\infty} a_n=0$, а $\{b_n\}$ е ограничена редица, то тогава $a_n.b_n\to 0$.

Признаци за съществуване на граница:

- 1. Ако $\{a_n\}$ и $\{c_n\}$ са сходящи и имат граница l и $a_n \leq b_n \leq c_n$ за $n > \nu$, където $\nu \in \mathbb{N}$. То тогава $\{b_n\}$ е сходяща и има граница l. Това свойство е известно още с името Лема за двамата полицаи.
- 2. Ако $\{c_n\}$ е сходяща и има граница l и $l \leq b_n \leq c_n$ за $n > \nu$, където $\nu \in \mathbb{N}$. То тогава $\{b_n\}$ е сходяща и има граница l. Това свойство е известно още с името лема за единия полицай.
- 3. Всяка ограничена отгоре монотонно растяща редица е сходяща.
- 4. Всяка ограничена отдолу монотонно намаляваща редица е сходяща.

Граничен преход в равенства и неравенства:

- 1. Нека $a_n \leq b_n \quad \forall n \in \mathbb{N}$. Нека a_n и b_n са сходящи и $\lim_{n \to \infty} a_n = a,$ $\lim_{n \to \infty} b_n = b.$ То тогава $a \leq b.$
- 2. Ако a_n и b_n са сходящи и с граници съответно А и В, тогава:
 - (a) $a_n + b_n$ е сходяща и клони към A + B;
 - (б) $a_n b_n$ е сходяща и клони към A B;
 - (в) $a_n \cdot b_n$ е сходяща и клони към $A \cdot B$;
 - (г) Ако $b_n \neq 0, B \neq 0$, то редицата $\frac{a_n}{b_n}$ е сходяща и клони към $\frac{A}{B}$;

<u>Теорема 4.1:</u> Нека е дадена редицата a_n , като $a_n > 0$ за всяко n. Да образуваме редицата $b_n = \frac{1}{a_n}$.

- 1. $\lim_{n\to\infty} a_n = 0$, to $\lim_{n\to\infty} \frac{1}{a_n} = \infty$
- 2. $\lim_{n\to\infty} a_n = \infty$, to $\lim_{n\to\infty} \frac{1}{a_n} = 0$

<u>Твърдение 4.1:</u> Нека $\{a_n\}$ е монотонно растяща редица и нека $a_n \to a$. Тогава $a_n \le a$.

Редицата с общ член $a_n = \left(1 + \frac{1}{n}\right)^n$ е сходяща и клони към e.

Теорема 4.2 (на Щолц) : Нека $\{a_n\}_{n=1}^{\infty}$ а и $\{a_n\}_{n=1}^{\infty}$ b са две редици от числа, като $b_n \to \infty$ и $\{a_n\}_{n=1}^{\infty}$ b е строго растяща. Тогава ако $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l$, то съществува $\lim_{n\to\infty} \frac{a_n}{b_n}$ и $\lim_{n\to\infty} \frac{a_n}{b_n} = l$.

Следствие 4.1 (на Коши): Нека $\lim_{n\to\infty} a_n = a$. Тогава $\lim_{n\to\infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = a$.

Следствие 4.2: Нека $a_n > 0$ и $\lim_{n \to \infty} a_n = a$. Тогава $\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = a$.

Следствие 4.3: Нека $a_n>0$ и $\lim_{n\to\infty}a_n=a$. Тогава $\lim_{n\to\infty}\sqrt[n]{a_1\cdot a_2\dots a_n}=a$.

Следствие 4.4: Нека $a_n>0$ и $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=a.$ Тогава $\lim_{n\to\infty}\sqrt[n]{a_n}=a.$

Задачи за сходимост на редици:

Задача 4.1: Докажете, че редицата $\{q^n\}_{n=1}^{\infty}$ при |q|<1 е безкрайно малка.

Доказателство:

Ще докажем, че $\lim_{n\to\infty} q^n = 0$ (|q| < 1).

- 1. |q| = 0, то тогава $q^n = 0^n = 0$.
- 2. |q|>0. Ще докажем, че за всяко $\varepsilon>0$ съществува индекс на член от редицата ν , зависещ от ε , такъв че винаги когато $n>\nu$ да е изпълнено $|q^n-0|<\varepsilon$. Нека $\varepsilon>0$ е фиксирано произволно число, тогава $|q^n|<\varepsilon$ т.е. $|q|^n<\varepsilon$. Логаритмуваме двете страни на последното неравенство и получаваме $n\lg|q|<\lg\varepsilon$. Понеже $\lg|q|<0$, то тогава:

$$n > \frac{\lg \varepsilon}{\lg |q|} = \nu$$

И така доказахме това, което искахме.

Задача 4.2: Докажете, че редицата $\left\{\frac{1}{n^k}\right\}$, $k \in N$, $1 \le k \le n$, редицата е безкрайно малка. Ще докажем, че $\lim_{n \to \infty} \frac{1}{n^k}$.

Доказателство:

Ще докажем, че за всяко $\varepsilon > 0$ съществува индекс на член от редицата u, зависещ от ε , такъв че винаги когато $n>\nu$ да е изпълнено $|\frac{1}{n^k}-0|<\varepsilon$. Нека $\varepsilon>0$ е фиксирано произволно число, тогава $|\frac{1}{n^k}|<\varepsilon$ т.е. $\frac{1}{n^k}<\varepsilon$. И така получаваме $n>\frac{1}{\sqrt[k]{\varepsilon}}=\nu$. При $n>\nu$ е в сила $|\frac{1}{n^k}|<\varepsilon$. следователно $\lim_{n \to \infty} \frac{1}{n^k} = 0.$

Задача 4.3: Докажете, че редицата $\{\frac{1}{n!}\}$ е безкрайно малка.

Доказателство:

$$0 < \frac{1}{n!} = \frac{1}{1 \cdot 2 \cdot \dots \cdot n} < \frac{1}{1 \cdot 2 \cdot \dots \cdot 2} = \frac{1}{2^{n-1}} = \left(\frac{1}{2}\right)^{n-1}$$

От задача 1 имаме, че $\lim_{n\to\infty}\left(\frac{1}{2}\right)^{n-1}=0$ ($q=\frac{1}{2}$). От теоремата за двамата полицаи $\lim_{n\to\infty} \frac{1}{n!} = 0.$

Намерете границата на редицата

1. Неопределеност от тип $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$

Задача 4.4: Намерете границите на редиците:

(a)
$$a_n = \frac{n^2 + n + 5}{n^2 - n + 2}$$

(6)
$$a_n = \frac{2n^2 + 5n + 2}{n^2 + 6n + 7}$$

(a)
$$a_n = \frac{n^2 + n + 5}{n^2 - n + 2}$$

(b) $a_n = \frac{2n^2 + 5n + 2}{n^2 - 6n + 7}$
(b) $a_n = \frac{n^2 + 6n + 3}{3n^2 - \frac{1}{2}n + 2}$

$$(\Gamma) \ a_n = \frac{n^3 + n + 4}{n^2 - n + 5}$$

(д)
$$a_n = \frac{n^2 + 3n + 7}{n^3 - n + 1}$$

(e)
$$a_n = \frac{n^3 + 4e^n + n^2 + 1}{n^3 + 2\pi^n + 2n^2 + 2}$$

(ж)
$$a_n = \frac{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0}{b_p n^p + b_{p-1} n^{p-1} + \ldots + b_0}$$
, като k,p са фиксирани

Решение:

За всички редици имаме неопределеност от тип $\left[\frac{\infty}{\infty}\right]$. Изкарваме най-голямата степен на n пред скоби.

(a)
$$\lim_{n \to \infty} \frac{n^2 + n + 5}{n^2 - n + 2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{1}{n} + \frac{5}{n^2}\right)}{n^2 \left(1 - \frac{1}{n} + \frac{2}{n^2}\right)} = \lim_{n \to \infty} \frac{1 + \frac{1}{n} + \frac{5}{n^2}}{1 - \frac{1}{n} + \frac{2}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{5}{n^2}}{1 - \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{5}{n^2}}{1 - \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{5}{n^2}}{1 - \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}}$$

Понеже при $n \to \infty$ $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = 0$. И така получаваме $\lim_{n \to \infty} \frac{n^2 + n + 5}{n^2 - n + 2} = \frac{1 + \lim_{n \to \infty} \frac{1}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2}}{1 - \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}} = \frac{1 + 0 + 5 \cdot 0}{1 - 0 + 2 \cdot} = \frac{1}{1} = 1$

(6)
$$\lim_{n \to \infty} \frac{2n^2 + 5n + 2}{n^2 - 6n + 7} = \lim_{n \to \infty} \frac{n^2 \left(2 + \frac{5}{n} + \frac{2}{n^2}\right)}{n^2 \left(1 - \frac{6}{n} + \frac{7}{n^2}\right)} = \lim_{n \to \infty} \frac{2 + \frac{5}{n} + \frac{2}{n^2}}{1 - \frac{6}{n} + \frac{7}{n^2}} = \frac{2 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{1 - \lim_{n \to \infty} \frac{6}{n} + \lim_{n \to \infty} \frac{7}{n^2}}$$

Понеже при $n \to \infty$ $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = 0$. И така получаваме $\lim_{n \to \infty} \frac{2n^2 + 5n + 2}{n^2 - 6n + 7} = \frac{2 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{1 - \lim_{n \to \infty} \frac{6}{n} + \lim_{n \to \infty} \frac{7}{n^2}} = \frac{2}{1} = 2$

(B)
$$a_n = \frac{n^2 + 6n + 3}{3n^2 - \frac{1}{2}n + 2}$$

$$(\Gamma) \ a_n = \frac{n^3 + n + 4}{n^2 - n + 5}$$

(д)
$$a_n = \frac{n^2 + 3n + 7}{n^3 - n + 1}$$

(e)
$$a_n = \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_p n^p + b_{p-1} n^{p-1} + \dots + b_0}$$

2. Граници с радикали:

(a)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + n} - \sqrt{n}}{n + \sqrt[3]{n^2 + 1}}$$

(6)
$$\lim_{n\to\infty} \sqrt{n^2 + 5n + 2} - \sqrt{n^2 + 4n + 2}$$

3. Докажете следните важни граници:

(a)
$$\lim_{n\to\infty} \frac{n}{a^n} = 0$$

(6)
$$\lim_{n \to \infty} \frac{n^{\alpha}}{a^n} = 0$$

(B)
$$\lim_{n \to \infty} \frac{a^n}{n!} = 0$$

(г)
$$\lim_{n\to\infty} \frac{\log_a n}{n} = 0$$
 при $a>1$

"Скорост "на клонение към ∞ при $a>1,\ \alpha>1$: $\log_a n,\ n,\ a^\alpha,\ a^n,\ n!.$

4. Докажете следните следствия на основната граница $\left(1+\frac{1}{n}\right)^n=e$:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+k} = e, k \in \mathbb{Z}$$

(6)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n+k} \right)^n = e, \ k \in \mathbb{Z}$$

(B)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{n+k} = e, k \in \mathbb{Z}$$

$$(\Gamma) \lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^{n+k} = e, \ k \in \mathbb{Z}$$

(д)
$$\lim_{n\to\infty} \left(1+\frac{k}{n}\right)^{n+k} = e^k, k \in \mathbb{Z}$$

(e)
$$\lim_{n \to \infty} \left(1 - \frac{k}{n}\right)^{n+k} = e^{-k}, k \in \mathbb{Z}$$

$$(\mathbb{X}) \lim_{n \to \infty} \left(1 + \frac{1}{nk}\right)^n = \sqrt[k]{e}, k \in \mathbb{N}$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x, x \in \mathbb{R}$$

(и) Нека
$$\lim_{n\to\infty} x_n = x$$
. Тогава $\lim_{n\to\infty} \left(1 + \frac{x_n}{n}\right)^n = e^x, x \in \mathbb{R}$

5. Приложете основната граница $\left(1+\frac{1}{n}\right)^n=e$ и следствията от нея (няма нужда да ги помните, важно е да можете да си ги изведете) в пресмятането на следните граници:

(a)
$$\lim_{n \to \infty} \left(\frac{n^2 - 4}{n^2 - 16} \right)^n$$

(6)
$$\lim_{n \to \infty} \left(\frac{(n+1)(n+3)(n+5)}{(n+2)(n+4)(n+6)} \right)^n$$

(B)
$$\lim_{n \to \infty} \left(\frac{n^2 + 3n + 2}{n^2 + 5n + 7} \right)$$