Instituto de Informática - UFRGS

o de Informática - UFRGS

Sistemas Operacionais

Políticas de substituição de páginas

Aula 17

Introdução

- Paginação por demanda
 - Na ocorrência de *page-fault* é necessário realizar *page-in*
 - Duas situações:
 - Com memória disponível (quadro): simplesmente executa page-in
 - Sem memória disponível (quadro): necessário liberar um quadro e executa page-in.

2

- Manter uma ocupação eficiente da memória
- Mecanismo de memória virtual realiza duas decisões
 - Página a ser substituída
 - Quantidade de memória (quadros) alocado para cada processo

Sistemas Operacionais

Política de substituição

- Objetivo principal
 - Substituir a página que provavelmente não será referenciada em um futuro próximo.
- Critérios gerais de escolha
 - Determinar a página menos necessária
 - Otimizações: nem toda página necessita sofrer page-out
 - Páginas não modificadas
 - Páginas *read-only* (código)
 - Páginas que nunca deve ser substituídas (frame locking ou pinning)
 - e.g.: código e estruturas de dados do sistema operacional, buffers de E/S

Algoritmos de substituição de páginas

- ☐ Implementam uma política de substituição
- □ Algoritmos básicos
 - MIN ou OPT: algoritmo ótimo (referencial)
 - FIFO (First-in, first-out): critério de "antiguidade"
 - LRU (least recently used): critério de utilização
 - VMIN ou VOPT: variação do algoritmo ótimo
 - Working set: critério de conjunto de páginas em uso

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Sistemas Operacionais

ituto de Inf Carissimi -8-ma

Avaliação dos algoritmos de substituição

- □ Baseado em *string* de referência
 - Modelo que representa o traço de execução de um programa
 - 1 ≤ *m* ≤ *n*
 - m: número de página alocada em memória por um processo
 - n: número de páginas distintas no string de referência
 - Simula uma sequência de acessos a páginas
 - e.g.: string de referência: 6 4 7 2 3 1 5 6 7 8 9 1 2 9 3 5 6
- □ Critérios de avaliação
 - Número de falta de páginas
 - Quantidade total de páginas carregadas na memória

Sistemas Operacionais

First-In, First-Out (FIFO)

- □ Quadros na memória principal são alocados a páginas na forma de um buffer circular
 - Simples implementação
 - Substitui a página que está a mais tempo na memória
- Exemplo:

String referência	2	3	1	а	b	3	1	1	С	d	1	a
Página física 0	2	2	2	2	b	b	b	b	b	b	b	a
Página física 1		3	3	3	3	3	3	3	С	С	С	С
Página física 2			1	1	1	1	1	1	1	d	, d	d
Página física 3				а	а	а	а	а	а	a	1/	1
lógica a ser substituída	2	2	2	2	3	3	3	3	1	а	b	С
tempo	1	2	3	4	5	6	7	8	9	10	11	12

Algoritmo ótimo

- □ Seleciona para substituição uma página que não é mais necessária ou que será referenciada dentro do maior intervalo de tempo
 - Impossível de se ter conhecimento do "futuro"
 - Emprego de aproximações
 - Serve como um ponto de referência para comparar aproximações

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

5

Sistemas Operacionais

Problemas com FIFO

- Não considera o uso da página
 - Página substituída pode ser necessária logo em seguida
- □ Anomalia de Belady
 - Taxa de falha pode aumentar enquanto que a quantidade de quadros alocados aumenta

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Sistemas Operacionais

Página

Least Recently Used* (LRU)

- ☐ Página a ser substituída é a página que foi referenciada a mais tempo
 - Pelo princípio da localidade, esta página deve ser a de menor probabilidade de ser referenciada em um futuro próximo
 - Cada página deve possuir a "data" da última referência
- Exemplo:

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Instituto de Informática - UFRGS A. Carissimi-8-mai-12

String referência	2	3	1	а	b	3	1	1	С	d	1	а
Página física 0	2	2	2	2	b	b	b	b	b	d	d	d
Página física 1		3	3	3	3	3	3	3	3	3	3	а
Página física 2			1	1	1	1	1	1	1	1	1	1
Página física 3				а	а	а	а	а	С	С	С	С
Página lógica a ser substituída	2	2	2	2	3	1	а	а	b	3	3	С
tempo	1	2	3	4	5	6	7	8	9	10	11	12

*Menos recentemente usada Sistemas Operacionais

Implementação de *Least Recently Used* (LRU)

- □ Contadores por entrada da tabela de páginas
 - Tempo da última referência (time stamp)
 - Desvantagem é o overhead

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

11

- Atualização da entrada na tabela de páginas
- Seleção da página vítima
- ☐ Uma aproximação é empregar uma pilha
 - Página referenciada é inserida no topo da pilha
 - Topo da pilha está a página referenciada mais recentemente
 - Base da pilha está a página referenciada menos recentemente
 - Na realidade se trata de um lista duplamente encadeada
- □ Desvantagem: custo de processamento (*software*)

10 Sistemas Operacionais

Aproximações de LRU via suporte de hardware

- ☐ Hardware (MMU) deve suportar bit(s) de referência
- ☐ Bit(s) de referência podem ser utilizados para aproximar LRU
 - Bit de referência = 1 (página acessada); 0 (página não acessada)
 - Substitui página cujo bit de referência é igual a zero
 - Desvantagem: não se sabe o "uso passado" e a ordem
- Melhoria: Algoritmo de histórico de bits de referência
 - Incluir vários bits de referência adicionais (registrador)
 - A cada Δt consulta o bit de referência e atualiza registrador (shift register)

Exemplo: construção de histórico de bits de referência

Histórico dos Bits de Referência após cada amostragem

Desvantagem: custo de implementação em hardware (área) e em software (processamento)

Sistemas Operacionais

Algoritmo de segunda chance (relógio)

- ☐ Aproxima o LRU empregando um único bit de referência (bit r)
 - Também denominado de bit de uso ou bit de acesso
- ☐ Mantém uma lista circular com todas as páginas residentes na memória e um ponteiro para a página "próxima vítima"
 - Ordenamento FIFO
 - "Segunda chance" vem do fato que a página com bit r=1, recebe a chance de ser referenciado antes da próxima seleção de vítima
- ☐ Funcionamento: se o ponteiro aponta para uma página com:
 - Bit r = 0: a página é substituída e o ponteiro avança de uma unidade
 - Bit r = 1 o bit é zerado e o ponteiro é incrementado de uma unidade

Sistemas Operacionais

Esquematização do algoritmo de segunda chance

Algoritmo de segunda chance melhorado

- □ Evitar que página a ser substituída seja escrita no disco (*page-out*)
 - Páginas não modificadas na memória podem ser sobre-escritas
 - Hardware deve prover bit sujo (dirty bit); indicação se página foi modificada
- □ Seleção da página vítima é feita com base no bit re no bit sujo (s)
 - Bit r=1; s=1: zera bit r, incrementa ponteiro de uma unidade
 - Usada recentemente e modificada
 - Bit r=1; s=0: zera bit r, incrementa ponteiro de uma unidade
 - Usada recentemente e n\u00e3o modificada
 - Bit r=0; s=1: zera bit s, incrementa ponteiro de uma unidade
 - Não usada recentemente, mas modificada
 - Bit r=0; s=0: página a ser substituída, incrementa ponteiro de uma unidade
 - Não usada recentemente, nem modificada

Variação do Algoritmo ótimo (VMIN ou VOPT)

- □ Ajusta o número de páginas em memória de acordo com as futuras referências
- Princípio básico:
 - Página P é acessada no instante de tempo t
 - Se página P não será acessada nas próximas τ referências, ela pode ser removida da memória
 - Define um janela de tempo (t; $t + \tau$)
 - Tamanho da janela é τ + 1 acessos
- $\ \square$ Fator $\ \tau$ é uma constante de projeto de sistema
- □ Não realizável devido a necessidade de conhecimento do futuro

13

15

Sistemas Operacionais

Sistemas Operacionais

16

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Modelo working-set

- Aproximação do algoritmo VMIN que estima o futuro com base no passado
- Baseado no princípio da localidade
- \Box Idéia é examinar as τ referências mais recentes em um instante t
 - Conjunto de páginas acessadas por um processo no intervalo (t τ ; t)
 - Forma o working set do processo
 - τ é constante do projeto do sistema

 τ = 10 unidades

Sistemas Operacionais

17

19

Problemas com working set

Estimar o valor de τ

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

- τ = valor pequeno: não abrange toda a localidade do processo
- τ = valor grande: abrange várias localidades
 - $\tau = \infty$: abrange todo o programa
- □ Custo da implementação em tempo de processamento
 - Working set é recalculado a cada referência
 - Para reduzir o custo emprega-se aproximações baseadas no bit de referência em data de acesso (time stamp)

Sistemas Operacionais 18

Definição e manutenção do working set (aproximação 1)

- □ Aproximação baseada na consulta periódica do bit de referência
 - Aumento da frequência de interrupção e do número de bits de referência melhora a precisão da aproximação
- Tamanho da janela é δ x n
- □ Página é eliminada do *working set* quando chega a zero

Definição e manutenção do *working set* (aproximação 2)

- □ Baseada no bit de referência e no tempo de acesso
- A cada δ referências:

```
se (bit_r == 1) então {
    bit_r = 0;
    tempo_acesso = tempo_atual;
}
senão {
    toff = tempo_atual - tempo_acesso;
    se (toff > tmax ) Remove página do WS;
}

δ referências

δ referências
```

20

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Usando working set para controlar thrashing

- □ Define-se WSS_i como o *working set size* do processo *P*_i
- $\ \square\ \Sigma\ WSS_i$ é a quantidade total de quadros necessários no sistema em um dado instante
- \Box *Thrashing* ocorre quando Σ WSS_i > m (quantidade de quadros)
 - Suspende um ou mais processos para evitar essa situação
 - Realização de swap (processo "vítima" inteiro para o disco)

Sistemas Operacionais

Método de frequência de falta de páginas (PFF*)

- ☐ Forma de gerenciar a alocação de memória de um processo
 - Não informa QUAIS páginas devem ser substituídas, mas sim QUANTAS páginas podem ser substituídas
- ☐ Indica quando se deve aumentar o diminuir a quantidade de memória alocada a um processo
 - Controla o tamanho do conjunto de alocação com base na taxa de falta:
 - Taxa alta: processo necessita de mais quadros
 - Taxa baixa: processo pode liberar quadros
 - Objetivo é manter a taxa de faltas de página dentro de um limite razoável

Sistemas Operacionais *Page Fault Frequency - PFF

22

Método da frequência de falta de páginas

Leituras complementares

- □ A. Tanenbaum. <u>Sistemas Operacionais Modernos</u> (3ª edição), Pearson Brasil, 2010.
 - Capítulo 3: seção 3.4
- □ A. Silberchatz, P. Galvin; <u>Sistemas Operacionais</u>. (7^a edição). Campus, 2008.
 - Capítulo 9: seção 9.4 e 9.5
- □ R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Bookman 4ª edição, 2010
 - Capítulo 7 (seções 7.2 e 7.3)

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

Instituto de Informática - UFRGS A. Carissimi -8-mai-12

21

23

Sistemas Operacionais 24