1

Assignment 5

Sachinkumar Dubey - EE20MTECH11009

Download all python codes from

https://github.com/sachinomdubey/Matrix-theory/ Assignment5/codes

and latex-tikz codes from

https://github.com/sachinomdubey/Matrix-theory/ Assignment5

0.1 Problem

(Geolin 1.9) AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB.

0.2 Explanation

In order to prove that line PQ is the perpendicular bisector of AB, two conditions need to be met:

- 1) AM=BM
- 2) $PM \perp AB$

These conditions can be proved using cosine law in vector form and some vector theory. The solution is as follow:

0.3 Solution

It is given that the points P and Q are equidistant from the points A and B. Thus we can write:

$$\|\mathbf{PA}\| = \|\mathbf{PB}\|$$
 (0.3.1)

$$\|\mathbf{Q}\mathbf{A}\| = \|\mathbf{Q}\mathbf{B}\| \tag{0.3.2}$$

Using the law of cosine, we can write:

$$\|\mathbf{AQ}\|^2 = \|\mathbf{PA}\|^2 + \|\mathbf{PQ}\|^2 - 2\|\mathbf{PA}\| \|\mathbf{PQ}\| \cos\Theta$$
(0.3.3)

$$\|\mathbf{BQ}\|^2 = \|\mathbf{PB}\|^2 + \|\mathbf{PQ}\|^2 - 2\|\mathbf{PB}\|\|\mathbf{PQ}\|\cos\phi$$
(0.3.4)

From equations 0.3.1 0.3.2 0.3.3 and 0.3.4, we can write:

$$\cos\Theta = \cos\phi \tag{0.3.5}$$

$$\therefore \Longrightarrow \Theta = \phi \qquad (0.3.6)$$

Again using the law of cosine, we can write:

$$\|\mathbf{AM}\|^2 = \|\mathbf{PA}\|^2 + \|\mathbf{PM}\|^2 - 2\|\mathbf{PA}\|\|\mathbf{PM}\|\cos\Theta$$
(0.3.7)

$$\|\mathbf{BM}\|^2 = \|\mathbf{PB}\|^2 + \|\mathbf{PM}\|^2 - 2\|\mathbf{PB}\|\|\mathbf{PM}\|\cos\phi$$
(0.3.8)

From equations 0.3.1 and 0.3.6, we can write:

$$\|\mathbf{BM}\|^2 = \|\mathbf{PA}\|^2 + \|\mathbf{PM}\|^2 - 2\|\mathbf{PA}\|\|\mathbf{PM}\|\cos\Theta$$
(0.3.9)

From equations 0.3.7 and 0.3.9, we can write:

$$||\mathbf{AM}||^2 = ||\mathbf{BM}||^2 \qquad (0.3.10)$$

$$\therefore ||\mathbf{AM}|| = ||\mathbf{BM}|| \qquad (0.3.11)$$

Thus, Segment PQ bisects segment AB. From the figure, the vector \mathbf{AB} can be written as:

$$\mathbf{AB} = \mathbf{AP} + \mathbf{PB} \tag{0.3.12}$$

Also, the vector **PM** can be written as:

$$PM = PA + AM \qquad (0.3.13)$$

The point M is the midpoint of the segment AB, therefore the vector AM is:

$$\mathbf{AM} = \frac{1}{2}\mathbf{AB} \tag{0.3.14}$$

$$\therefore \mathbf{PM} = \mathbf{PA} + \frac{1}{2}\mathbf{AB} \tag{0.3.15}$$

From equation 0.3.12:

$$\mathbf{PM} = \mathbf{PA} + \frac{1}{2}(\mathbf{AP} + \mathbf{PB}) \tag{0.3.16}$$

$$PM = PA + \frac{1}{2}AP + \frac{1}{2}PB$$
 (0.3.17)

$$PM = PA - \frac{1}{2}PA + \frac{1}{2}PB$$
 (0.3.18)

$$\mathbf{PM} = \frac{1}{2}(\mathbf{PA} + \mathbf{PB}) \tag{0.3.19}$$

For $PM \perp AB$, The dot product of vectors **AB** and **PM** should be zero. Using equations 0.3.12 and 0.3.19:

$$\mathbf{AC}^{T}\mathbf{PM} = (\mathbf{AP} + \mathbf{PB})^{T} \frac{1}{2} (\mathbf{PA} + \mathbf{PB}) \quad (0.3.20)$$

$$\mathbf{AC}^{T}\mathbf{PM} = \frac{1}{2}(\mathbf{AP}^{T} + \mathbf{PB}^{T})(\mathbf{PA} + \mathbf{PB}) \quad (0.3.21)$$

$$\mathbf{AC}^{T}\mathbf{PM} = \frac{1}{2}(-\mathbf{PA}^{T} + \mathbf{PB}^{T})(\mathbf{PA} + \mathbf{PB}) \quad (0.3.22)$$

$$\mathbf{AC}^{T}\mathbf{PM} = \frac{1}{2}(\mathbf{PB}^{T}\mathbf{PB} - \mathbf{PA}^{T}\mathbf{PA}) \quad (0.3.23)$$

$$\mathbf{AC}^{T}\mathbf{PM} = \frac{1}{2}(\|\mathbf{PB}\|^{2} - \|\mathbf{PA}\|^{2})$$
 (0.3.24)

$$\mathbf{AC}^T \mathbf{PM} = 0 \qquad (0.3.25)$$

Thus, Segment PQ is perpendicular bisector of segment AB.