Inference for Two-Stage Extremum Estimators

Aristide Houndetoungan 1 and Abdoul Haki $\rm Maoude^2$

 $^1\mathrm{Cy}$ Cergy Paris Université

²Concordia University

EDHEC Business School November 8, 2023

Sequential Estimation Methods

- When to use two-stage estimation approaches?
 - Endogeneity issues (e.g., instrumental variable models),
 - Missing data (e.g., survey data, Network data),
 - Selection problem,
 - Many DGPs (e.g., multivariate time series modeling),
 - Latent regressors (e.g., expectation about a decision, willingness to pay).

Procedure:

- **1** First stage: Estimation of a parameter or a function β_0 .
- **2** Second stage: The estimator $\hat{\beta}_n$ is plugged into another model to estimate a second parameter θ_0 .

The estimator $\hat{\theta}_n$ of θ_0 is called *plug-in* or *two-stage* estimator.

Sequential Estimation Methods

- Asymptotic properties of $\hat{\boldsymbol{\theta}}_n$
 - Challenging as it depends on the sampling error from the first stage.
 - Is the asymptotic distribution of $\hat{\theta}_n$ necessarily normal?
 - Even in such a case, the asymptotic variance is difficult to compute.
 - What if the first-stage estimator converges slowly?
 - What if the first stage is a Bayesian estimator, which may not be normally distributed (Zellner and Rossi 1984)?

Solutions

- Both estimators are asymptotically normally distributed. But computing the variance of $\hat{\theta}_n$ may not be easy (Ackerberg, Chen, and Hahn 2012).
- ② Bootstrap approach (Efron 1992; Gonçalves and White 2005). Time-consuming and sometimes infeasible for complex models. Theoretical justification may not be easy (e.g., LASSO models).

Sequential Estimation Methods

- Asymptotic properties of $\hat{\boldsymbol{\theta}}_n$
 - Challenging as it depends on the sampling error from the first stage.
 - Is the asymptotic distribution of $\hat{\theta}_n$ necessarily normal?
 - Even in such a case, the asymptotic variance is difficult to compute.
 - What if the first-stage estimator converges slowly?
 - What if the first stage is a Bayesian estimator, which may not be normally distributed (Zellner and Rossi 1984)?

Solutions:

- **1** Both estimators are asymptotically normally distributed. But computing the variance of $\hat{\theta}_n$ may not be easy (Ackerberg, Chen, and Hahn 2012).
- ② Bootstrap approach (Efron 1992; Gonçalves and White 2005). Time-consuming and sometimes infeasible for complex models. Theoretical justification may not be easy (e.g., LASSO models).

- Two- (or multiple-) stage estimation strategy where the second stage leads to an extremum estimator.
- The first-stage estimator, $\hat{\beta}_n$, is general (but consistent): M-estimator, GMM estimator, Minimum distance estimator, nonparametric estimator, Bayesian estimator (e.g., posterior mean).
- Objective function at the second stage:

$$Q_n(\boldsymbol{\theta}, y_{1:n}, \boldsymbol{x}_{1:n}, \hat{\boldsymbol{\beta}}) = \frac{1}{n} \sum_{i=1}^n q_{n,i}(\boldsymbol{\theta}, \ \hat{\boldsymbol{\beta}}_n),$$

where i can be time for time series models

• $\hat{\boldsymbol{\theta}}_n = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q_n(\boldsymbol{\theta}, y_{1:n}, \boldsymbol{x}_{1:n}, \hat{\boldsymbol{\beta}})$. We refer to this class as the *conditional* extremum estimator.

- Two- (or multiple-) stage estimation strategy where the second stage leads to an extremum estimator.
- The first-stage estimator, $\hat{\beta}_n$, is general (but consistent): M-estimator, GMM estimator, Minimum distance estimator, nonparametric estimator, Bayesian estimator (e.g., posterior mean).
- Objective function at the second stage:

$$Q_n(\boldsymbol{\theta}, y_{1:n}, \boldsymbol{x}_{1:n}, \hat{\boldsymbol{\beta}}) = \frac{1}{n} \sum_{i=1}^n q_{n,i}(\boldsymbol{\theta}, \hat{\boldsymbol{\beta}}_n),$$

where i can be time for time series models.

• $\hat{\boldsymbol{\theta}}_n = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q_n(\boldsymbol{\theta}, y_{1:n}, \boldsymbol{x}_{1:n}, \hat{\boldsymbol{\beta}})$. We refer to this class as the *conditional* extremum estimator.

- Novel simulation-based approach to estimate the asymptotic variance and asymptotic CDF of $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0)$.
- Why this method?
 - Versatility: We do not impose a specific class for $\hat{\beta}_n$, nor a specific convergence rate.
 - 2 Accounts for the sampling error from the first stage
 - **3** Computationally more attractive than the bootstrap method. It eliminates the need for multiple computations of $\hat{\beta}_n$ and $\hat{\theta}_n$.
 - $\hat{\beta}_n$ may not be normally distributed asymptotically (Bayesian estimators in the first stage).
 - **6** Consequently, $\hat{\theta}_n$ may also not be normally distributed asymptotically.
 - **®** $\mathbb{E}(\sqrt{n}(\hat{\theta}_n \theta_0))$ may not converge to zero, but $\sqrt{n}(\hat{\theta}_n \theta_0) = O_p(1)$ (biased estimators).
- Empirical application: Peer effects on adolescent smoking habits when network data are partially observed.

- Novel simulation-based approach to estimate the asymptotic variance and asymptotic CDF of $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0)$.
- Why this method?
 - Versatility: We do not impose a specific class for $\hat{\beta}_n$, nor a specific convergence rate.
 - 2 Accounts for the sampling error from the first stage.
 - **3** Computationally more attractive than the bootstrap method. It eliminates the need for multiple computations of $\hat{\beta}_n$ and $\hat{\theta}_n$.
 - **4** $\hat{\beta}_n$ may not be normally distributed asymptotically (Bayesian estimators in the first stage).
 - **6** Consequently, $\hat{\boldsymbol{\theta}}_n$ may also not be normally distributed asymptotically.
 - **6** $\mathbb{E}(\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0))$ may not converge to zero, but $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) = O_p(1)$ (biased estimators).
- Empirical application: Peer effects on adolescent smoking habits when network data are partially observed.

Conditional Extremum Estimator: An Example

• IV approach in nonparametric models:

$$y_i = \rho(d_i, \mathbf{x}_i) + \varepsilon_i,$$

where ρ is an unknown function and d_i is an endogenous treatment.

- Approximate ρ using a series: $\rho(\mathbf{w}_i) = \sum_{j=1}^J p_j(\mathbf{w}_i)\theta_{0,j}$, where $\mathbf{w}_i = (d_i, \mathbf{x}_i')'$, p_1, \ldots, p_J are polynomial functions, J is an integer, and $\theta_0 = (\theta'_{0,1}, \ldots, \theta'_{0,J})'$ (Johnsson and Moon 2021).
- GMM method in the second stage using the moment function $m_i = z_i' \{ y_i \sum_{j=1}^J \mathbb{E}(p_j(w_i)|z_i)\theta_{0,j} \}$, where z_i is a vector of instruments.
- First stage: $\mathbb{E}(p_j(\boldsymbol{w}_i)|\boldsymbol{z}_i)$ is unknown and should be estimated.

Conditional Extremum Estimator: An Example

IV approach in nonparametric models:

$$y_i = \rho(d_i, \mathbf{x}_i) + \varepsilon_i,$$

where ρ is an unknown function and d_i is an endogenous treatment.

- Approximate ρ using a series: $\rho(\boldsymbol{w}_i) = \sum_{j=1}^J p_j(\boldsymbol{w}_i)\boldsymbol{\theta}_{0,j}$, where $\boldsymbol{w}_i = (d_i, \boldsymbol{x}_i')'$, p_1, \ldots, p_J are polynomial functions, J is an integer, and $\boldsymbol{\theta}_0 = (\boldsymbol{\theta}_{0,1}', \ldots, \boldsymbol{\theta}_{0,J}')'$ (Johnsson and Moon 2021).
- GMM method in the second stage using the moment function $m_i = z_i' \{ y_i \sum_{j=1}^J \mathbb{E}(p_j(w_i)|z_i)\theta_{0,j} \}$, where z_i is a vector of instruments.
- First stage: $\mathbb{E}(p_j(\boldsymbol{w}_i)|\boldsymbol{z}_i)$ is unknown and should be estimated

Conditional Extremum Estimator: An Example

• IV approach in nonparametric models:

$$y_i = \rho(d_i, \mathbf{x}_i) + \varepsilon_i,$$

where ρ is an unknown function and d_i is an endogenous treatment.

- Approximate ρ using a series: $\rho(\boldsymbol{w}_i) = \sum_{j=1}^J p_j(\boldsymbol{w}_i)\boldsymbol{\theta}_{0,j}$, where $\boldsymbol{w}_i = (d_i, \boldsymbol{x}_i')'$, p_1, \ldots, p_J are polynomial functions, J is an integer, and $\boldsymbol{\theta}_0 = (\boldsymbol{\theta}'_{0,1}, \ldots, \boldsymbol{\theta}'_{0,J})'$ (Johnsson and Moon 2021).
- GMM method in the second stage using the moment function $\boldsymbol{m}_i = \boldsymbol{z}_i' \{ y_i \sum_{j=1}^J \mathbb{E}(p_j(\boldsymbol{w}_i)|\boldsymbol{z}_i)\boldsymbol{\theta}_{0,j} \}$, where \boldsymbol{z}_i is a vector of instruments.
- First stage: $\mathbb{E}(p_j(\boldsymbol{w}_i)|\boldsymbol{z}_i)$ is unknown and should be estimated.

Related to the Literature

- Classical inference methods:
 - **1** $\hat{\beta}_n$ and $\hat{\theta}_n$ are extremum estimators that converge at the same rate (Newey 1984; Hotz and Miller 1993).
 - **2002**). $\hat{\beta}_n$ is \sqrt{n} -consistent and asymptotically normally distributed (Murphy and Topel 2002).
 - **3** $\hat{\boldsymbol{\theta}}_n$ is asymptotically invariant to infinitesimal variations in the first-stage estimator (Chernozhukov, Chetverikov, et al. 2018; Chernozhukov, Escanciano, et al. 2022).
- Resampling methods:
 - Bootstrap (Efron 1982; Chen, Linton, and Van Keilegom 2003)
 - Poor (wo)man's bootstrap: relies only on the estimation of one-dimensional parameters (Honoré and Hu 2017)
 - Sast bootstrap (Armstrong, Bertanha, and Hong 2014; Gonçalves, Hounyo, et al. 2022).
- High-dimensional modeling (Belloni, Chernozhukov, and Hansen 2014; Cattaneo, Jansson, and Ma 2019).

Related to the Literature

- Classical inference methods:
 - **1** $\hat{\beta}_n$ and $\hat{\theta}_n$ are extremum estimators that converge at the same rate (Newey 1984; Hotz and Miller 1993).
 - **2002**). $\hat{\beta}_n$ is \sqrt{n} -consistent and asymptotically normally distributed (Murphy and Topel 2002).
 - **3** $\hat{\theta}_n$ is asymptotically invariant to infinitesimal variations in the first-stage estimator (Chernozhukov, Chetverikov, et al. 2018; Chernozhukov, Escanciano, et al. 2022).
- Resampling methods:
 - 1 Bootstrap (Efron 1982; Chen, Linton, and Van Keilegom 2003).
 - Poor (wo)man's bootstrap: relies only on the estimation of one-dimensional parameters (Honoré and Hu 2017)
 - § Fast bootstrap (Armstrong, Bertanha, and Hong 2014; Gonçalves, Hounyo, et al. 2022).
- High-dimensional modeling (Belloni, Chernozhukov, and Hansen 2014; Cattaneo, Jansson, and Ma 2019).

Related to the Literature

- Classical inference methods:
 - **1** $\hat{\beta}_n$ and $\hat{\theta}_n$ are extremum estimators that converge at the same rate (Newey 1984; Hotz and Miller 1993).
 - **2002**). $\hat{\beta}_n$ is \sqrt{n} -consistent and asymptotically normally distributed (Murphy and Topel 2002).
 - **3** $\hat{\boldsymbol{\theta}}_n$ is asymptotically invariant to infinitesimal variations in the first-stage estimator (Chernozhukov, Chetverikov, et al. 2018; Chernozhukov, Escanciano, et al. 2022).
- Resampling methods:
 - 1 Bootstrap (Efron 1982; Chen, Linton, and Van Keilegom 2003).
 - Poor (wo)man's bootstrap: relies only on the estimation of one-dimensional parameters (Honoré and Hu 2017)
 - § Fast bootstrap (Armstrong, Bertanha, and Hong 2014; Gonçalves, Hounyo, et al. 2022).
- High-dimensional modeling (Belloni, Chernozhukov, and Hansen 2014; Cattaneo, Jansson, and Ma 2019).

Outline

- Asymptotic Theory: Why Having a Sequential Estimator is an Issue?
- Our Method
 Asymptotic Variance
 Asymptotic Distribution
- Monte Carlo Simulations
- Empirical Application

• First-order condition at the second stage:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial}{\partial\boldsymbol{\theta}}q_{n,i}(\hat{\boldsymbol{\theta}}_{n},\ \hat{\boldsymbol{\beta}}_{n})=0. \tag{1}$$

• First-order Taylor approximation of (1) around θ_0 :

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1}(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n), \tag{2}$$

where $\dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0,\hat{\boldsymbol{\beta}}_n) = \frac{\partial}{\partial \boldsymbol{\theta}} q_{n,i}(\boldsymbol{\theta}_0,\hat{\boldsymbol{\beta}}_n)$ and $\mathbf{A}_0 = -(1/n) \sum_{i=1}^n \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}} q_{n,i}(\boldsymbol{\theta}_0,\hat{\boldsymbol{\beta}}_n)$.

• If β_0 were known (single-step estimation strategy):

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1}(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \boldsymbol{\beta}_0),$$
 (3)

• A central limit theorem (CLT) can be applied to

$$\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0,\boldsymbol{\beta}_0) := (1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0,\boldsymbol{\beta}_0) \stackrel{\text{a}}{\sim} N(0,\boldsymbol{\Sigma}_0).$$

$$\Longrightarrow \sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{\text{a}}{\sim} N(0, \ \boldsymbol{A}_0^{-1}\boldsymbol{\Sigma}_0\boldsymbol{A}_0^{-1}).$$

• Conditions: Either the variables $\dot{q}_{n,i}(\theta_0,\beta_0)$'s are independent across i, or the correlation between $\dot{q}_{n,i}(\theta_0,\beta_0)$ and $\dot{q}_{n,j}(\theta_0,\beta_0)$ vanishes as $|i-j| \to \infty$ (weak dependence).

• If β_0 were known (single-step estimation strategy):

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1}(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \boldsymbol{\beta}_0),$$
 (3)

• A central limit theorem (CLT) can be applied to

$$\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \boldsymbol{\beta}_0) := (1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \boldsymbol{\beta}_0) \stackrel{\text{a}}{\sim} N(0, \boldsymbol{\Sigma}_0).$$

$$\Longrightarrow \sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{\text{a}}{\sim} N(0, \mathbf{A}_0^{-1} \boldsymbol{\Sigma}_0 \mathbf{A}_0^{-1}).$$

• Conditions: Either the variables $\dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0,\boldsymbol{\beta}_0)$'s are independent across i, or the correlation between $\dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0,\boldsymbol{\beta}_0)$ and $\dot{\boldsymbol{q}}_{n,j}(\boldsymbol{\theta}_0,\boldsymbol{\beta}_0)$ vanishes as $|i-j|\to\infty$ (weak dependence).

Two-stage estimators:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1}(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n), \tag{4}$$

- For any i and j, $\dot{q}_{n,i}(\theta_0, \hat{\beta}_n)$ and $\dot{q}_{n,j}(\theta_0, \hat{\beta}_n)$ are dependent.
- The weak dependence assumption does not hold, and a CLT cannot be applied without setting new conditions.
- We characterize the asymptotic behavior of $(1/\sqrt{n}) \sum_{i=1}^{n} \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)$ in a general context.

Outline

• Asymptotic Theory: Why Having a Sequential Estimator is an Issue?

② Our Method Asymptotic Variance

Asymptotic Distribution

- Monte Carlo Simulations
- Empirical Application

Taylor approximation:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \underbrace{(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}_{\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}.$$
 (5)

- Assumptions:
 - $\mathbf{0}$ $\hat{\boldsymbol{\theta}}_n$ is a consistent estimator.

 - 3 $\lim_{n\to\infty} \mathbb{V}(\mathcal{E}_n)$ and $\lim_{n\to\infty} \mathbb{E}(\mathbf{V}_n)$ exist.
- Implications

 - **3** However, it is possible that $\sqrt{n}(\mathbb{E}(\hat{\theta}_n) \theta_0) \to 0$. We can accommodate situations in which $\hat{\beta}_n$ is a high-dimensional vector, which implies a biased $\sqrt{n}(\hat{\theta}_n \theta_0)$.

Taylor approximation:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \underbrace{(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}_{\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}.$$
 (5)

- Assumptions:
 - $\mathbf{0}$ $\hat{\boldsymbol{\theta}}_n$ is a consistent estimator.

 - 3 $\lim_{n\to\infty} \mathbb{V}(\mathcal{E}_n)$ and $\lim_{n\to\infty} \mathbb{E}(\mathbf{V}_n)$ exist.
- Implications:

 - **3** However, it is possible that $\sqrt{n}(\mathbb{E}(\hat{\boldsymbol{\theta}}_n) \boldsymbol{\theta}_0) \neq 0$. We can accommodate situations in which $\hat{\boldsymbol{\beta}}_n$ is a high-dimensional vector, which implies a biased $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0)$.

- $\mathbb{V}(\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) = \mathbf{A}_0^{-1} \boldsymbol{\Sigma}_0 \mathbf{A}_0^{-1}$, where $\boldsymbol{\Sigma}_0 = \lim \mathbb{V}(\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n))$.
- The usual estimator of \mathbf{A}_0 is $\hat{\mathbf{A}}_n = -(1/\sqrt{n}) \sum_{i=1}^n \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} q_{n,i}(\hat{\boldsymbol{\theta}}_n, \hat{\boldsymbol{\beta}}_n)$. How to estimate $\boldsymbol{\Sigma}_0$?
- Law of iterated variances. Let $\Sigma_n = \mathbb{V}(\dot{q}_n(\theta_0, \hat{\beta}_n))$.

$$\Sigma_{n} = \mathbb{E}(\mathbb{V}(\dot{q}_{n}(\theta_{0}, \hat{\beta}_{n})|\hat{\beta}_{n})) + \mathbb{V}(\mathbb{E}(\dot{q}_{n}(\theta_{0}, \hat{\beta}_{n})|\hat{\beta}_{n})),$$

$$\Sigma_{n} = \mathbb{E}(\mathbb{V}_{n}) + \mathbb{V}(\mathcal{E}_{n}).$$
(6)

 Sampling errors in both stages are disentangled in (6). This makes it easier to construct a consistent estimator for Σ₀.

- $\mathbb{V}(\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) = \mathbf{A}_0^{-1} \boldsymbol{\Sigma}_0 \mathbf{A}_0^{-1}$, where $\boldsymbol{\Sigma}_0 = \lim \mathbb{V}(\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n))$.
- The usual estimator of \mathbf{A}_0 is $\mathbf{\hat{A}}_n = -(1/\sqrt{n}) \sum_{i=1}^n \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} q_{n,i}(\hat{\boldsymbol{\theta}}_n, \hat{\boldsymbol{\beta}}_n)$. How to estimate $\mathbf{\Sigma}_0$?
- Law of iterated variances. Let $\Sigma_n = \mathbb{V}(\dot{q}_n(\theta_0, \hat{\beta}_n))$.

$$\Sigma_{n} = \mathbb{E}(\mathbb{V}(\dot{q}_{n}(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\beta}}_{n})|\hat{\boldsymbol{\beta}}_{n})) + \mathbb{V}(\mathbb{E}(\dot{q}_{n}(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\beta}}_{n})|\hat{\boldsymbol{\beta}}_{n})),$$

$$\Sigma_{n} = \mathbb{E}(\mathbf{V}_{n}) + \mathbb{V}(\mathcal{E}_{n}).$$
(6)

 Sampling errors in both stages are disentangled in (6). This makes it easier to construct a consistent estimator for Σ₀.

Asymptotic Variance: Estimation

- Assumption: The practitioner possesses $\hat{\mathcal{D}}_n$, a valid estimator of the asymptotic distribution of $\hat{\beta}_n$. They can also simulate from $\hat{\mathcal{D}}_n$.
- For some large integer κ , let $\hat{\beta}_n^{(1)}, \ldots, \hat{\beta}_n^{(\kappa)}$ be independent simulations from $\hat{\mathcal{D}}_n$.
- We define $\hat{\mathbf{V}}_{n,s}$ and $\hat{\mathcal{E}}_{n,s}$ as the empirical counterparts of \mathbf{V}_n and \mathcal{E}_n by replacing θ_0 with $\hat{\theta}_n$, β_0 with $\hat{\beta}_n$, and $\hat{\beta}_n$ with $\hat{\beta}_n^{(s)}$, for $s = 1, \ldots, \kappa$.
- We show that a consistent estimator of the asymptotic variance of $\hat{\theta}_n$ is:

$$\hat{\mathbb{V}}_{\text{asym}} = \frac{\hat{\mathbf{A}}_n^{-1} \hat{\mathbf{\Sigma}}_n^{\kappa} \hat{\mathbf{A}}_n^{-1}}{n},\tag{7}$$

where
$$\hat{\Sigma}_n^{\kappa} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{\mathbf{V}}_{n,s} + \frac{1}{\kappa-1} \sum_{s=1}^{\kappa} (\hat{\mathcal{E}}_{n,s} - \hat{\Omega}_n^{\kappa}) (\hat{\mathcal{E}}_{n,s} - \hat{\Omega}_n^{\kappa})'$$
 and $\hat{\Omega}_n^{\kappa} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{\mathcal{E}}_{n,s}$.

Asymptotic Variance: Estimation

- Assumption: The practitioner possesses $\hat{\mathcal{D}}_n$, a valid estimator of the asymptotic distribution of $\hat{\beta}_n$. They can also simulate from $\hat{\mathcal{D}}_n$.
- For some large integer κ , let $\hat{\beta}_n^{(1)}$, ..., $\hat{\beta}_n^{(\kappa)}$ be independent simulations from $\hat{\mathcal{D}}_n$.
- We define $\hat{\mathbf{V}}_{n,s}$ and $\hat{\mathcal{E}}_{n,s}$ as the empirical counterparts of \mathbf{V}_n and \mathcal{E}_n by replacing $\boldsymbol{\theta}_0$ with $\hat{\boldsymbol{\theta}}_n$, β_0 with $\hat{\boldsymbol{\beta}}_n$, and $\hat{\boldsymbol{\beta}}_n$ with $\hat{\boldsymbol{\beta}}_n^{(s)}$, for $s = 1, \ldots, \kappa$.
- We show that a consistent estimator of the asymptotic variance of $\hat{\theta}_n$ is:

$$\hat{\mathbb{V}}_{\text{asym}} = \frac{\hat{\mathbf{A}}_n^{-1} \hat{\mathbf{\Sigma}}_n^{\kappa} \hat{\mathbf{A}}_n^{-1}}{n},\tag{7}$$

where
$$\hat{\mathbf{\Sigma}}_{n}^{\kappa} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{\mathbf{V}}_{n,s} + \frac{1}{\kappa-1} \sum_{s=1}^{\kappa} (\hat{\mathcal{E}}_{n,s} - \hat{\mathbf{\Omega}}_{n}^{\kappa})(\hat{\mathcal{E}}_{n,s} - \hat{\mathbf{\Omega}}_{n}^{\kappa})'$$
 and $\hat{\mathbf{\Omega}}_{n}^{\kappa} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{\mathcal{E}}_{n,s}$.

Asymptotic Variance: Example with the IV Approach

- Instrumental variable model: $y_i = \theta_0 d_i + \varepsilon_i$, where d_i is an endogenous treatment variable, for which we have an instrument z_i .
- First stage: $\mathbb{E}(d_i|\mathbf{z}_i) = \mathbf{z}_i'\boldsymbol{\beta}_0$, where $\boldsymbol{\beta}_0$ is estimated by OLS.
- Second stage: We estimate an OLS regression, where the objective function is $Q_n(\theta, \mathbf{y}_n, \hat{\boldsymbol{\beta}}_n) = \frac{1}{2} \sum_{i=1}^n (y_i \theta(\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n))^2$.

$$\dot{\boldsymbol{q}}_{n,i}(y_i, \hat{\boldsymbol{\beta}}_n) = -2(y_i - \theta_0(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n) \quad \text{and} \quad \hat{\mathbf{A}}_n = \frac{2}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2,$$

$$\Rightarrow \mathbf{V}_n = \frac{4}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2 \sigma_0^2 \quad \text{and} \quad \mathcal{E}_n = \frac{2\theta_0}{\sqrt{n}} \sum_{i=1}^n (\beta_0(\boldsymbol{z}_i) - (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n).$$

- We estimate $\mathbb{E}(\mathbf{V}_n)$ by $\hat{\mathbb{E}}(\mathbf{V}_n) = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{v}_s$ where $\hat{v}_s = \frac{4}{n} \sum_{i=1}^{n} (\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)})^2 \hat{\sigma}_n^2$.
- We estimate $\mathbb{V}(\mathcal{E}_n)$ by $\hat{\mathbb{V}}(\mathcal{E}_n) = \frac{1}{\kappa 1} \sum_{s=1}^{\kappa} (\hat{e}_s \bar{e})^2$, where $\hat{e}_s = \frac{2\hat{\theta}_n}{\sqrt{n}} \sum_{i=1}^n (\hat{\beta}_n(z_i) z_i' \hat{\beta}_n^{(s)}) z_i' \hat{\beta}_n^{(s)}, \ \bar{e} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{e}_s$.
- A consistent estimator of the asymptotic variance of $\hat{\theta}_n$ is $\frac{\hat{\mathbb{E}}(\hat{v}) + \hat{\mathbb{V}}(\hat{e})}{n\hat{\mathbb{A}}_n^2}$.

Asymptotic Variance: Example with the IV Approach

- Instrumental variable model: $y_i = \theta_0 d_i + \varepsilon_i$, where d_i is an endogenous treatment variable, for which we have an instrument z_i .
- First stage: $\mathbb{E}(d_i|z_i) = z_i'\beta_0$, where β_0 is estimated by OLS.
- Second stage: We estimate an OLS regression, where the objective function is $Q_n(\theta, \mathbf{y}_n, \hat{\boldsymbol{\beta}}_n) = \frac{1}{n} \sum_{i=1}^n (y_i \theta(\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n))^2$.

$$\dot{\boldsymbol{q}}_{n,i}(y_i,\hat{\boldsymbol{\beta}}_n) = -2(y_i - \theta_0(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n) \quad \text{and} \quad \hat{\boldsymbol{A}}_n = \frac{2}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2,$$

$$\Longrightarrow \mathbf{V}_n = \frac{4}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2 \sigma_0^2 \quad \text{and} \quad \mathcal{E}_n = \frac{2\theta_0}{\sqrt{n}} \sum_{i=1}^n (\beta_0(\boldsymbol{z}_i) - (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n).$$

- We estimate $\mathbb{E}(\mathbf{V}_n)$ by $\hat{\mathbb{E}}(\mathbf{V}_n) = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{v}_s$ where $\hat{v}_s = \frac{4}{n} \sum_{i=1}^{n} (\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)})^2 \hat{\sigma}_n^2$.
- We estimate $\mathbb{V}(\mathcal{E}_n)$ by $\hat{\mathbb{V}}(\mathcal{E}_n) = \frac{1}{\kappa 1} \sum_{s=1}^{\kappa} (\hat{e}_s \bar{e})^2$, where $\hat{e}_s = \frac{2\hat{\theta}_n}{\sqrt{\kappa}} \sum_{i=1}^{n} (\hat{\beta}_n(z_i) z_i' \hat{\beta}_n^{(s)}) z_i' \hat{\beta}_n^{(s)}, \ \bar{e} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{e}_s$.
- A consistent estimator of the asymptotic variance of $\hat{\theta}_n$ is $\frac{\hat{\mathbb{E}}(\hat{v}) + \hat{\mathbb{V}}(\hat{e})}{n\hat{\mathbb{A}}_n^2}$.

Asymptotic Variance: Example with the IV Approach

- Instrumental variable model: $y_i = \theta_0 d_i + \varepsilon_i$, where d_i is an endogenous treatment variable, for which we have an instrument z_i .
- First stage: $\mathbb{E}(d_i|z_i) = z_i'\beta_0$, where β_0 is estimated by OLS.
- Second stage: We estimate an OLS regression, where the objective function is $Q_n(\theta, \mathbf{y}_n, \hat{\boldsymbol{\beta}}_n)) = \frac{1}{n} \sum_{i=1}^n (y_i \theta(\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n))^2$.

$$\dot{\boldsymbol{q}}_{n,i}(y_i,\hat{\boldsymbol{\beta}}_n) = -2(y_i - \theta_0(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n) \quad \text{and} \quad \hat{\boldsymbol{A}}_n = \frac{2}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2,$$

$$\Longrightarrow \mathbf{V}_n = \frac{4}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2 \sigma_0^2 \quad \text{and} \quad \mathcal{E}_n = \frac{2\theta_0}{\sqrt{n}} \sum_{i=1}^n (\beta_0(\boldsymbol{z}_i) - (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n).$$

- We estimate $\mathbb{E}(\mathbf{V}_n)$ by $\hat{\mathbb{E}}(\mathbf{V}_n) = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{v}_s$ where $\hat{v}_s = \frac{4}{n} \sum_{i=1}^{n} (\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)})^2 \hat{\sigma}_n^2$.
- We estimate $\mathbb{V}(\mathcal{E}_n)$ by $\hat{\mathbb{V}}(\mathcal{E}_n) = \frac{1}{\kappa 1} \sum_{s=1}^{\kappa} (\hat{e}_s \bar{e})^2$, where $\hat{e}_s = \frac{2\hat{\theta}_n}{\sqrt{n}} \sum_{i=1}^n (\hat{\beta}_n(\mathbf{z}_i) \mathbf{z}_i' \hat{\beta}_n^{(s)}) \mathbf{z}_i' \hat{\beta}_n^{(s)}, \ \bar{e} = \frac{1}{\kappa} \sum_{s=1}^{\kappa} \hat{e}_s$.
- A consistent estimator of the asymptotic variance of $\hat{\theta}_n$ is $\frac{\hat{\mathbb{E}}(\hat{v}) + \hat{\mathbb{V}}(\hat{e})}{n\hat{\mathbf{A}}_n^2}$.

Asymptotic Distribution

Taylor approximation:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \underbrace{(1/\sqrt{n}) \sum_{i=1}^n \dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}_{\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n)}.$$
 (8)

- Conditional CLT: We apply a CLT to $\dot{q}_n(\theta_0, \hat{\beta}_n)$ conditional on $\hat{\beta}_n$.
- Conditional on $\hat{\boldsymbol{\beta}}_n$, $\mathbf{V}_n^{-1/2}(\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0,\hat{\boldsymbol{\beta}}_n)-\mathcal{E}_n)$ converges in distribution to $N(0,\boldsymbol{I})$.
- If $\hat{\boldsymbol{\beta}}_n$ is no longer a random variable, the dependence across i in $\dot{\boldsymbol{q}}_{n,i}(\boldsymbol{\theta}_0,\hat{\boldsymbol{\beta}}_n)$ only depends on the outcome $\boldsymbol{y}_{1:n}$. The weak dependence condition holds if it does in the case of a single-step estimation approach.

Asymptotic Distribution

• Taylor approximation:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n).$$
 (9)

Theorem

Let $\psi_n = \mathbf{A}_0^{-1} \mathbf{V}_n^{1/2} \boldsymbol{\zeta} + \mathbf{A}_0^{-1} \mathcal{E}_n$, where $\boldsymbol{\zeta} \sim N(0, \boldsymbol{I})$. Let F be asymptotic CDF of ψ_n . We have $\lim \mathbb{P}(\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \leq \boldsymbol{t}) = F(\boldsymbol{t})$.

- Intuition: Equation (9) \Longrightarrow $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \mathbf{V}_n^{1/2} \underbrace{\left(\mathbf{V}_n^{-1/2} \left(\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n) \mathcal{E}_n\right)\right)}_{\text{Asy. Normal by the CLT}} + \mathbf{A}_0^{-1} \mathcal{E}_n.$
- The first term in ψ_n is the sampling error from the second stage, whereas the second term captures the sampling error from the first stage.
- $\sqrt{n}(\mathbb{E}(\hat{\theta}_n) \theta_0) \to \mathbf{A}_0^{-1} \lim_{n \to \infty} \mathbb{E}(\mathcal{E}_n)$ and may not be zero.
- The $\alpha/2$ and $(1 \alpha/2)$ quantiles of $\hat{\theta}_n \hat{\psi}_n/\sqrt{n}$ are the bounds of the (1α) confidence interval (CI) of θ_0 .

Asymptotic Distribution

Taylor approximation:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n).$$
 (9)

Theorem

Let $\psi_n = \mathbf{A}_0^{-1} \mathbf{V}_n^{1/2} \boldsymbol{\zeta} + \mathbf{A}_0^{-1} \mathcal{E}_n$, where $\boldsymbol{\zeta} \sim N(0, \boldsymbol{I})$. Let F be asymptotic CDF of ψ_n . We have $\lim \mathbb{P}(\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \leq \boldsymbol{t}) = F(\boldsymbol{t})$.

- Intuition: Equation (9) \Longrightarrow $\sqrt{n}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) \approx \mathbf{A}_0^{-1} \mathbf{V}_n^{1/2} \underbrace{\left(\mathbf{V}_n^{-1/2} \left(\dot{\boldsymbol{q}}_n(\boldsymbol{\theta}_0, \hat{\boldsymbol{\beta}}_n) \mathcal{E}_n\right)\right)}_{\text{Asy. Normal by the CLT}} + \mathbf{A}_0^{-1} \mathcal{E}_n.$
- The first term in ψ_n is the sampling error from the second stage, whereas the second term captures the sampling error from the first stage.
- $\sqrt{n}(\mathbb{E}(\hat{\boldsymbol{\theta}}_n) \boldsymbol{\theta}_0) \to \mathbf{A}_0^{-1} \lim_{n \to \infty} \mathbb{E}(\mathcal{E}_n)$ and may not be zero.
- The $\alpha/2$ and $(1 \alpha/2)$ quantiles of $\hat{\boldsymbol{\theta}}_n \hat{\boldsymbol{\psi}}_n/\sqrt{n}$ are the bounds of the (1α) confidence interval (CI) of $\boldsymbol{\theta}_0$.

Asymptotic Distribution: Example with the IV Approach (Continued)

• We have

$$\dot{\boldsymbol{q}}_{n,i}(y_i,\hat{\boldsymbol{\beta}}_n) = -2(y_i - \theta_0(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n) \quad \text{and} \quad \hat{\boldsymbol{A}}_n = \frac{2}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2,$$

$$\Longrightarrow \boldsymbol{V}_n = \frac{4}{n} \sum_{i=1}^n (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n)^2 \sigma_0^2 \quad \text{and} \quad \mathcal{E}_n = \frac{2\theta_0}{\sqrt{n}} \sum_{i=1}^n (\beta_0(\boldsymbol{z}_i) - (\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n))(\boldsymbol{z}_i'\hat{\boldsymbol{\beta}}_n).$$

• Let $\zeta_1, \ldots, \zeta_{\kappa}$ be κ independent draws from N(0,1). We can obtain a simulation of $\sqrt{n}(\hat{\boldsymbol{\theta}}_n)$ by

$$\hat{oldsymbol{\psi}}_{n,s} = rac{\sqrt{\hat{v}_s}\zeta_s + \hat{e}_s}{\hat{\mathbf{A}}_n},$$

where $\hat{v}_s = \frac{4}{n} \sum_{i=1}^n (\mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)})^2 \hat{\sigma}_n^2$ and $\hat{e}_s = \frac{2\hat{\theta}_n}{\sqrt{n}} \sum_{i=1}^n (\hat{\beta}_n(\mathbf{z}_i) - \mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)}) \mathbf{z}_i' \hat{\boldsymbol{\beta}}_n^{(s)},$ $\bar{e} = \frac{1}{r} \sum_{s=1}^{\kappa} \hat{e}_s.$

Outline

- Asymptotic Theory: Why Having a Sequential Estimator is an Issue?
- Our Method
 Asymptotic Variance
 Asymptotic Distribution
- **3** Monte Carlo Simulations
- Empirical Application

Monte Carlo Simulations

• DGP A: treatment effect model (Roy model):

$$y_i = d_i y_i(1) + (1 - d_i) y_i(0), \quad y_i(0) = u_{0i}, \quad y_i(1) = 0.5 + u_{1i}, \quad d_i = \mathbf{1}\{p_i \ge v_i\},$$

 $p_i = 0.1 + 0.7 z_i, \quad z_i, v_i \sim \text{Uniform}[0, 1], \quad u_{0i} \sim \text{Uniform}[-1, 1],$
 $u_{1i} | v_i \sim \text{Uniform}[-0.5, 1.5 - 2v_i].$

• $\mathbb{E}(y_i|p_i) = \theta_{0,1} + \theta_{0,2}p_i + \theta_{0,3}p_i^2$, where true value of $\boldsymbol{\theta}_0 = (\theta_{0,1}, \ \theta_{0,2}, \ \theta_{0,3})'$ is (0, 1, -1/2)'. We are interested in the marginal treatment effect at $p_i = 0.5$: $\tau_{MTE} = \theta_{0,2} + 2\theta_{0,3}p_i$.

Monte Carlo Simulations

• DGP B is a Poisson model with a latent covariate:

$$y_i \sim \mathcal{P}(\exp(\theta_{0,1} + \theta_{0,2}p_i)), \quad p_i = \sin^2(\pi z_i), \quad z_i \sim \mathcal{U}[0,10], \quad d_i \sim \mathcal{B}(p_i).$$

• The practitioner observes (y_i, z_i) for all i but only observes d_i for a representative subsample of size $n^* = \lfloor n^{\alpha_n} \rfloor$, where $\lfloor . \rceil$ is the rounding to the nearest integer and $\alpha_n \in \{1, 0.95, 0.90, 0.85\}$.

Monte Carlo Simulations

• DGP C is a multivariate time series model of k_n returns $y_{1,i}, \ldots, y_{k_n,i}$, where i is time. Each $y_{p,i}$, for $p = 2, \ldots, k_n$, follows an AR(1)-GARCH(1, 1) model:

$$y_{p,i} = \phi_{p,0} + \phi_{p,1}y_{p,i-1} + \sigma_{p,i}\varepsilon_{p,i}, \quad \sigma_{p,i}^2 = \beta_{p,0} + \beta_{p,1}\sigma_{p,i-1}^2\varepsilon_{p,i-1}^2 + \beta_{p,2}\sigma_{p,i-1}^2,$$

where $\phi_{p,0} = 0$, $\phi_{p,i-1} = 0.4$, $\beta_{p,0} = 0.05$, $\beta_{p,1} = 0.05$, $\beta_{p,2} = 0.9$, and $\varepsilon_{p,i}$ follows

where $\phi_{p,0} = 0$, $\phi_{p,i-1} = 0.4$, $\beta_{p,0} = 0.05$, $\beta_{p,1} = 0.05$, $\beta_{p,2} = 0.9$, and $\varepsilon_{p,i}$ follows a standardized Student distribution of degree of freedom $\nu_p = 6$.

- k_n takes values in $\{2, 3, 5, 8\}$.
- We account for the correlation between the returns using the Clayton copula of parameter $\theta_0 = 4$.

Outline

- Asymptotic Theory: Why Having a Sequential Estimator is an Issue?
- Our Method
 Asymptotic Variance
 Asymptotic Distribution
- Monte Carlo Simulations
- Empirical Application

Peer Effects on Adolescent Smoking Habits

- We study peer effects on adolescent smoking habits using the Add Health survey.
- 26% of the declared best friends are untraceable to schoolmates due to "error codes." The number of friends that a student can declare should not exceed five boys and five girls. 41% of the students declare 5 male friends or 5 female friends.
- Linear probability peer effect model:

$$y_{r,i} = \alpha_{0,r} + \theta_{0,1} \sum_{j=1}^{n_r} \frac{g_{r,ij}}{n_{r,i}} y_{r,j} + x'_{r,i} \theta_{0,2} + \sum_{j=1}^{n_r} \frac{g_{r,ij}}{n_{r,i}} x'_{r,j} \theta_{0,3} + \varepsilon_{r,i},$$

where $g_{r,ij} = 1$ if j is an i's friend and $g_{r,ij} = 0$ otherwise and $y_{r,i}$ is an indicator variable that takes one if student i in school r smokes and zero otherwise.

Peer effects on adolescent smoking habits

- Two-stage simulated GMM, where the network distribution is estimated in the first stage (Boucher and Houndetoungan 2023).
- The simulated GMM proposes a consistent moment function using network simulations from the estimated distribution.

	Standa	rd error	95% confidence interval		
Coef	$\operatorname{SdErr}\ 1$	$\operatorname{SdErr}\ 2$	Normal 1	Normal 2	Simulations
Using the network as given					
0.739	0.059		$[0.623,\ 0.855]$		
Controlling for missing network data					
0.383	0.123	0.135	$[0.141,\ 0.624]$	$[0.117,\ 0.648]$	$[0.151,\ 0.674]$

Conclusion

- We propose a new simulation-based method to estimate the asymptotic variance and asymptotic CDF of sequential estimators.
- We consider a large class of first-stage estimators.
- The assumption of asymptotic normality at the second stage is unnecessary.
- Conditional on the first-stage estimator, the inference problem is similar to that
 of single-step extremum estimators, yielding asymptotic normality.
- We account for the sampling error from the first stage using simulations from an estimator of the asymptotic distribution of the first stage.
- The approach is easily implementable and does not require multiple computations.