浙江理工大学 2020—2021 学年第 一 学期 《编译原理(双语)》期末试卷(A)卷 (试题共5页)

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

- (10 points) Write English description for the languages generated by following regular expression:
- 1) 0+(0|1)1+

1001、011、0001、0011:长度到为3的容存串,1个以上的0后面跟着1个以上的1

2)0*(100*)*1*
1,0,01,0001,7包含110冰仔查写符单

- 2. (12 points)
- a. Please check out which strings can be generated by the regular expression (ab|b)*cc? abbc, abab, bc, babc, aaabc
- b. Please check out which strings can be generated by the regular expression (b | a)b+(ba)*?

 abe, abb, ababa, axis, bbb
- c. please determine which strings can be accepted by the NFA.

3. (12 points) Consider the following regular expression from the alphabet {a,b}:

b*a | bb

- a. Use Thompson's construction to make an NFA from the regular expression (show it as a state diagram).
- b. Use subset construction to create a DFA equivalent to the NFA you gave for part A.

F→ (E) |i

Please list all non-terminals and terminals in this grammar, and give the start symbol of the grammar.

=> term/num => term>fae/mm

5. (10 points) Given the grammar

$$exp \rightarrow exp + term | exp - term | term$$

 $term \rightarrow term * factor | term / factor | factor$
 $factor \rightarrow (exp) | number$

Write down leftmost derivations for: 3*(6-5) and rightmost derivations for 16*6/4 exp=) term => term/factor

6. (25 point) Consider the following grammar:

$$S \rightarrow Sb$$
 $S \rightarrow Ab$ $S \rightarrow b$ $A \rightarrow Aa$ $A \rightarrow a$

- a. remove the left recursion. (5 point)
- b. Construct First and Follow sets for the nonterminals of the resulting grammar. (6 point)
- c. Construct the LL(1) parsing table for the resulting grammar. (6 point)
- d. show the action of LL(1) parser that used the parsing table to recognize the following string:

 b. Gromon' Park Proc Gromon' Park Proc C MAAI Q

a. S7 Sb Ab b=>	S-> ANGLES
A > Aala	5-7 P2,18
	A → aA'
	A'→aA' E
	11-JUA C

grammar	Pass	Pass 2
Z⇒VPZ PZ,	First (5)= (6)	first(s)={b,a}
S'⇒bs' E	First (5') : 50, 2}	
A → a A'	First (A):{a}	
A'→aA' E	First (A) fa. E)	
•		

٠,	First (s)= {ab}
	First (s')= {b, }
	First (A)= [a]
	First (A)= (a. E)
	,

grammar*	Pass	Pass 2
S→AP2,1P2,	Follow (S): {\$] Follow (A): {b} Follow (S'): {\$}	
S'→bs' E		
Å⇒aA'	Follow (A) = (b)	13,744
A'→aA' E		

Follow(S)={\$}	
Follow(A)={b}	
follow(s): {\$}	
Follow (A') = { b}	

Powsing Stack	Input String	Action
\$5	000abb\$	S→Abs'
\$S'bA	aaabb \$	A→αA'
\$56Aa	ахарь\$	watch
\$s'bA'	aabbs	A-)0.A'
\$5'bA'a	nabb\$	match
\$5'bA'	abb \$	A'→αA'
\$5'bA'a	abb \$	match
\$5'bA'	bb\$	A'→e
\$5'b	bbs	motoh
\$s'	b\$	ś⇒bs'
\$ 5°b	b\$	match
\$s'	\$	5'→2
\$	4	accept

S->bs'

5'-b5' 5'7E

S S→AbS'

A A-aA'

A' A' >aA' A' >E

number

7.(10 points

grammar:

digit -

7.(10 points)write an attribute grammar for the integer value of a number given by following grammar:

number→digit number | digit

digit $\rightarrow 0|1|2|3|4|5|6|7|8|9$

Gramar Rule	Semantic Rules	
mumber 1-> number 2 digi	t number 1 valv= numberz	wortifip + 01×10v.
number > dright	number val = digit.val	
digit 70	digit.val=0	1
digit->1	digit.val=	+
2	2	
3	3	
1 4	1 4	

ulting grammar. (6 point)

point)

to recognize the following string:

8. (15 point)Consider the following grammar with numbered productions

5) T -> z

Construct the SLR parsing tables for the grammar. In particular, show the following:

b. The DFA to recognize viable prefixes, including the set of items for each state.

浙江理工大学 2020—2021 学年第一学期 《编译原理(双语)》期末试卷(A)卷标准答案和评分标准

1.Sol: (10 points)

1) 001, 011, 0001, 0011; any string of length 3 or greater that is one or more 0's are followed by one or more 1's.

2) 0, 1, 01, 0101; any string that has no substring 110

2. Sol:(12 points)

- a) abbe abab bcc babcc anabe
- b) aba, abb, ababa, aab, bbb
- c) aab bab bab aaabb abababab

3. Sol: (12 points)

Thompson's Construction

part B. Use subset construction to create a DFA equivalent to the NFA you gave for part A. Show your work. Show it as a state table, using the sets from the NFA as the names for the new states, as we did in examples in lecture.

Start state: [1]

第1页共5页

4.Solu: (6 points)

The set of the terminals $VT = \{+, -, *, /, (.), i\}$. The set of the nonterminals $VN = \{E, T, F\}$. With E being the start symbol

5. 10 points

The leftmost derivations for the expression 3*(6-5) and 16*6/4:

Exp => term => term * factor => factor * factor => num * factor => num * (exp) => num*(exp - term) => num*(term - term) => num*(factor - term) => num*(num - term)=> num*(num - factor)=>num*(num - factor)=>num*(num-num)

Exp => term => term/factor =>term / 4 => term*factor/4 =>term* 6/4 => factor *6/4 => 16*6/4

6.solu:

for the grammar G:

Rewritten the grammar as:

Sash Sah Sah Aa Aa

- a) S > bS' S > AbS' S' > bS' S' > a A > aA' A' > aA' A' > a
- b) First and follow sets

 $S \rightarrow First(S) = \{ b, a \} Follow(S) = \{ S \}$ $S' \rightarrow First(S') = \{ b, s \} Follow(S') = \{ S \} \}$ $A \rightarrow First(A) = \{ a \} Follow(A) = \{ b \} \}$ $A' \rightarrow First(A') = \{ a, s \} Follow(A') = \{ b \} \}$

c) LL(1) Parsing table:

銀3页共5页

L		A	В
M*	[12357]	[6 10]	[3458]
N	[6 10]	-	[2436]
	[3458]	[6 10]	
)	[3459 10]	[6 10]	[3459 10]
	[345]	-	[345]
		[6 10]	[345]

^{*}Indicates Final state

四 共 5 页

	a	ь	\$
S	S→AbS'	S→bS'	
S'		S'→bS'	$S' \rightarrow \epsilon$
A	A→aA'		
A'	A'→ a A'	A' → ε	

Parsing stack	Input string	Action
\$ S	aaabb\$	S→AbS'
\$ S'bA	aaabb\$	A→aA*
\$ S'bA'a	aaabb\$	match
\$ S'bA'	aabb\$	A→aA'
\$ S'bA'a	aabb\$	match
\$ S'bA'	abb\$	
\$ S'bA'a		A→aA'
\$ S'bA'	abb\$	match
\$ S'b	bb\$	A'→ ε
\$ S'	bb\$	match
S S*b	b\$	S'→bS'
S'	bS	match
	\$	accept

7. sol:

Grammar Rule	
Number1 → number2 digit	Semantic Rules
Number > digit	-autoci I.val = namel
digit >0	number 1 val = number 2 val * 10+digit val
digit-)1	digit_val = 0.
digit→2	digit.val = 1.
digit >3	digit.val = 2
digit→4	digit.val = 3.
digit→5	digit.val = 4.
digit >6	digit.val = 5.
digit→7	digit.val=6.
digit→8	digit val = 7,
digit→9	digit val = 8.
	digit.val=9

8 sofu

But here is an LALR(1) DFA for the grammar. Because state 8 contains a reduce-reduce conflict, the grammar is not LALR(1).

But here is an LALR(1) DFA for the grammar. Because state 8 contains a reduce-reduce conflict, the grammar is not LALR(1).

