

BUM - 12 ÚNAVA MATERIÁLU

Autoři cvičení: Prof. Ing. Stanislav Věchet, CSc., Ing. Josef Zapletal, Ph.D., ÚMVI FSI VUT v Brně

Ve cvičení probíhá druhá zápočtová písemka na témata: Diagram Fe-Fe₃C; Zkouška tahem; Zkoušky tvrdosti; Zkouška rázem v ohybu

Pro absolvování cvičení je nutné orientovat se v pojmech:

Mez únavy a způsob jejího určení, amplituda napětí, plastická deformace, deformace pod mezí kluzu, růst únavové trhliny, Wöhlerova křivka,

Literatura

- 1. Klesnil, M. Lukáš, P.: Únava kovových materiálů při mechanickém namáhání, Academia, 1975, Praha.
- 2. Münsterová, E. a kol.: Fyzikální metalurgie a mezní stavy materiálu, edice VUT Brno, 1989, Brno
- 3. Polák, J.: Cyclic plasticity and low cyclic fatigue life of metals, Academia, Praha 1991, 2. vydání
- 4. Ptáček, L. a kol.: Nauka o materiálu I, CERM akademické nakladatelství s.r.o., Brno, 2001

ĭ⊗Úkoly k řešení ∡

- 1. Vysvětlete stručně co je únava materiálu
- 2. Popište a graficky znázorněte tři stádia únavového procesu.
- 3. Zakreslete a popište průběh základních charakteristických zatěžovacích cyklů při namáhání tahem a tlakem. Definujte a určete parametry asymetrie *P* a *R*.

4. U studovaných materiálů stanovte z naměřených hodnot životnosti (tab. 1) Wöhlerovu křivku a určete mez únavy σ_C . Pro vyhodnocení použijte metodu grafické aproximace v semilogaritmickém souřadném systému $\sigma_a - \log N$.

Tab. 1. Hodnoty životnosti při zatěžování symetrickým cyklem tah-tlak

ADI litina		Ocel na odlitky	ČSN 422714.1	Al slitina 7075 T6	
σ _a [MPa]	$N_{ m f}$	σ _a [MPa]	$N_{ m f}$	σ _a [MPa]	$N_{ m f}$
670	890	400	119	525	436
640	2280	350	645	500	552
570	8000	300	10724	450	2138
540	12600	260	34746	425	3032
500	23600	234	202537	400	4671
440	57000	221	631000	350	12000
416	106000	208	1800000	300	30046
370	170500	200	6070000	250	60790
350	320000	195	21600000	200	241871
325	700000	195	125799000	200	232861
320	2704400			180	1044575
312	10000000			160	11000000
312	96672000			150	46000000
				142	110000000

Rastr pro sestrojení Wöhlerových křivek

5. Nakreslete zjednodušený Smithův diagram, kdy se uvažuje lineární závislost amplitudy napětí na středním napětí cyklu. Vyberete si ocel z přiložené tabulky a sestrojte dva diagramy pro zatěžování tahem-tlakem a ohybem (parametry označeny indexem _o). Z diagramu pro tah-tlak určete mezní hodnotu napětí σ_h pro míjivý zátěžný cyklus v tahu. Hodnoty mechanických vlastností jsou uvedeny v tab. 2.

Tab. 2. Mechanické vlastnosti vybraných ocelí pro stanovení Smithových diagramů

Materiál	R _{p0,2} [MPa]	R _m [MPa]	R _{eo} [MPa]	R _{mo} [MPa]	σ _C [MPa]	σ _{oC} [MPa]
12 030.6	425	575	630	1180	210	290
12 060.6	555	725	885	1665	305	350
14 140.7	860	985	1320	2130	360	400
14 331.7	955	1140	1420	2320	380	450