IN3063/INM702 - Programming and Mathematics for Artificial Intelligence

10.B - RNNs

michael.garcia-ortiz@city.ac.uk

A lot of data has a temporal dimension

- As humans, all our experiences have temporality
 - Moving objects
 - Ego-motion
 - Causality

Humans learn naïve physics

• When very young, we don't have a notion of naïve physics

Sound, and sequences of words

• Temporal order of sounds matters a lot

Sequence of words

Sequence of letters

Recurrent Neural Networks

Transition from one time-step to the next

$$egin{aligned} h_t &= \sigma_h(W_h x_t + U_h h_{t-1} + b_h) \ y_t &= \sigma_y(W_y h_t + b_y) \end{aligned}$$

• Limitations: Vanishing gradient

Long Short-Term Memory

- Input gate: regulates the input
- Forget gate: regulates what is kept in memory
- Output gate: regulates what is useful for current output

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \end{aligned}$$

$$egin{aligned} ilde{c}_t &= \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ c_t &= f_t \circ c_{t-1} + i_t \circ ilde{c}_t \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

GRU

- Simplified LSTM
- Only two gates: update and reset gates

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \end{aligned}$$

$$egin{aligned} \hat{h}_t &= \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ h_t &= (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

RNNs in PyTorch

- Already Implemented
- But, take care about the order:
 - Sequence length, Batch size, Input size

nn.RNN	Applies a multi-layer Elman RNN with $tanh$ or $ReLU$ non-linearity to an input sequence.
nn.LSTM	Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
nn . GRU	Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

Word embeddings

- Convert a word into a vector
- Use sequences of text to learn an embedding

Sequence encoding

- Encode a sequence into a vector of representation
- Example: sentiment analysis

Encoder

Encoder-decoder architectures

• Encode a sequence, decode a sequence target output words • Example: translation suis étudiant </s> [loss layer projection layer hidden layer 2 hidden layer 1 embedding layer suis étudiant student <s> Je

encoding

decoding

Sequence generation

• Example: Image captioning

State encoding

An agent moves around and tries to solve tasks

 Sequence of past observations is much more informative than still image

We can learn the state of an agent

Lab 10 – part 2

- IMDB sentiment classification
- 25000 training points / 25000 testing points
- Sentences in English associated with good/bad review
- (I will not provide solutions for this one)

