Approximate Minimum-Weight Partial Matching under Translation

Pankaj Agarwal 1 Haim Kaplan 2 Geva Kipper 2 Wolfgang Mulzer 3 Günter Rote 3 Micha Sharir 2 Allen Xiao 1

¹Duke University

²Tel Aviv University

³Freie Universität Berlin

December 2018

Example

Cost function

- ▶ Given point sets A, B, with |A| = m and |B| = n, match A into an m-subset of B after translation t.
- For matching M and translation t, define the root-mean-sqaure (RMS) cost of the matching:

$$cost(M, t) := \left[\frac{1}{m} \sum_{(a,b) \in M} ||a + t - b||^p \right]^{1/2}$$

- ▶ Can generalize to p-th power/p-th root (versus 2), and matching of size k (versus m).
- Best matching cost at each translation:

$$cost^*(t) := \min_{\mathsf{matching}} cost(M, t)$$

Cost function under perturbations

▶ How many distinct matchings appear in $cost^*(t)$?

How many distinct matchings? (1-dimensional)

$$\operatorname{cost}^*(t) \coloneqq \min_{\mathsf{matching}\ M} \operatorname{cost}(M,t)$$

How many distinct matchings? (2-dimensional)

- ► How many distinct matchings appear in $cost^*(t)$?
- ▶ What is the combinatorial complexity of M?

Questions and prior results

- 1. How quickly can we *compute* t^* , a global minimum of $cost^*(t)$?
- 2. What is the *combinatorial complexity of* \mathfrak{M} ?
 - ▶ [Rote 10]: in 1D, at most m(n-m)+1.
 - ▶ [Ben-Avraham *et al.* 14]: $O(n^2m^{3.5}(e \ln m + e)^m)$

- lackbox Open to find t^* in polytime, and whether ${\mathfrak M}$ has polynomial complexity.
- Approximation?

Approximating M (1-dimensional)

Our results (approximation helps)

1. How quickly can we *compute* t^* , a global minimum of $cost^*(t)$?

Theorem

In $\operatorname{poly}(m,n,\varepsilon^{-1})$ time, can compute a $(1+\varepsilon)$ approximation to $\operatorname{cost}^*(t^*)$ by exploring the cells of $\widetilde{\mathbb{M}}$.

2. What is the *combinatorial complexity of* M? Is it polynomial?

Theorem

In $\operatorname{poly}(m,n,\varepsilon^{-1})$ time, can construct a $(1+\varepsilon)$ approximate diagram $\widetilde{\mathcal{M}}$ of complexity $O(n\varepsilon^{-2}\log\varepsilon^{-1})$.

Overview

- 1. The set of point-to-point translations give a constant approximate diagram of size mn.
- 2. Using exponential grids, constant $\to (1+\varepsilon)$ approximation of size $O(mn\varepsilon^{-2}\log\varepsilon^{-1})$.
- 3. Reduce size to $O(n\varepsilon^{-2}\log \varepsilon^{-1})$ by clustering.

Point-to-point translations

- Point-to-point translations [Cabello et al. 08]:
 - $T := \{t_{ba} = (b a) \mid a \in A, b \in B\}$
- ▶ Enough to look at the optimal matching of each $t \in T$.

Constant approximate diagram from point-to-point translations

 $ightharpoonup \widetilde{\mathcal{M}}$ is a constant-approximate diagram.

$O(1) \rightarrow (1+\varepsilon)$ approximation

 $\begin{array}{c} \bullet & (1+\varepsilon) \text{ approximate diagram of size} \\ O(|T|\varepsilon^{-2}\log\varepsilon^{-1}) = O((mn)\varepsilon^{-2}\log\varepsilon^{-1}) \end{array}$

Near-linear size: clustering T

- Any O(1) approx. diagram is enough for the $(1+\varepsilon)$ diagram.
- ▶ Reduce size from $O(mn) \rightarrow O(n)$.

Open questions

- 1. Is the complexity of $\mathfrak M$ polynomial?
- 2. Approximate diagrams for rotations? Rigid transforms?

The End

Thank you.