Computing remnant mass of binary black hole mergers using EMRI surrogate model

Estuti Shukla

Indian Institute of Science Education and Research, Kolkata
e16ms068@iiserkol.ac.in

Physics Colloquium, UMass Dartmouth

September 3, 2020

Binary black hole mergers

GW150914 was the first direct observation of gravitational waves emanating from the coalescence of binary black hole system made by LIGO observatories on 14^{th} September, 2015.

Phases of a binary black hole system

Figure: Inspiral-Merger-Ringdown¹

¹B. P. Abbott et al. "Observation of Gravitational Waves from a Binary Black Hole Merger". In: *Phys. Rev. Lett.* 116 (6 2016), p. 061102.

GW150914²

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$
Final black hole mass	$62^{+4}_{-4} M_{\odot}$
Final black hole spin	$0.67^{+0.05}_{-0.07}$
Luminosity distance	$410^{+160}_{-180} \mathrm{\ Mpc}$
Source redshift z	$0.09^{+0.03}_{-0.04}$

²Abbott et al., "Observation of Gravitational Waves from a Binary Black Hole Merger".

Extreme mass ratio inspirals (EMRIs)

Figure: EMRI (Credits- NASA)

- Orbit of a relatively light object (neutron star, stellar black hole) around a much heavier object(supermassive black hole).
- ▶ It gradually decays due to emission of gravitational waves.
- ▶ The waves are computed using black hole perturbation theory.

Final mass of the remnant

Credits- LIGO Caltech

Surrogate modeling

Motivation

- ► LIGO doesn't directly measure the remnant mass after the merger and thus we require a waveform model along with mathematical framework to compute it.
- ► Numerical relativity simulations are unable to simulate mass ratios much beyond 15.
- ▶ They become computationally very expensive.
- LISA would need a vast range of mass ratios.

Surrogate modeling

Modeling

- The model uses point particle perturbation theory.
- At large mass ratios, the smaller BH is modeled as point-particle in with no internal structure.
- ▶ It generates a metric perturbation about the background spacetime.
- Einstein equation becomes a linear differential equation for the perturbation (the Teukolsky equation).

EMRI surrogate model³

- ► Teukolsky equation is solved at 30 different values for mass ratio from 3 to 10⁴.
- ▶ Then the training data is used to build model.
- ► The full surrogate model looks like:

$$h_{\mathcal{S}}(t,\theta,\phi;q) = \sum_{l,m} h_{\mathcal{S}}^{l,m}(t;q)_{-2} Y_{l,m}(\theta,\phi)$$

$$h_s^{l,m}(t;q) = A_s^{l,m}(t;q)e^{-i\phi_s^{l,m}(t;q)}$$

Newest inspiral-merger-ringdown model to cover mass ratios in the intermediate mass-ratio regime (10 to 10⁴).

 $^{^3}$ Nur E. M. Rifat et al. "Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries". In: *Phys. Rev. D* 101 (8 2020), p. 081502.

Energy flux and Bondi mass⁴

Energy Flux emitted in GWs-

$$\frac{dE}{dt} = \lim_{r \to \infty} \frac{r^2}{16\pi} \sum_{l,m} |\dot{h}^{l,m}|^2 \tag{1}$$

Integration constant-

$$\frac{E_0}{M} = \left(\frac{5}{1024} \frac{q^3}{(1+q)^6} \dot{E_0}\right)^{1/5} \tag{2}$$

Time-dependent(Bondi) mass of the binary-

$$M(t) = M - E(t) + E_0 \tag{3}$$

⁴Davide Gerosa, Fran çois Hébert, and Leo C. Stein. "Black-hole kicks from numerical-relativity surrogate models". In: *Phys. Rev. D* 97 (10 2018), p. 104049.

Main features of the code

- Written in python 2.7.
- trapz (uses trapezoidal rule) function from scipy.integrate module for integration
- ▶ PN formula used for calculating the constant of integration.
- Written in modular style so that it can be integrated into other modules easily.

0.0006

1.0000 (a) 0.9999 0.9998

Figure: q=100

-6000

-4000 -2000

-12000 -10000 -8000

Results

Mass ratio (q)	Remnant Bondi mass
10	0.9933059810395991
100	0.9997870047973797
1000	0.999994445043402
10,000	0.9999999056356944

Table: Remnant mass obtained by implementing the code

Sanity check

- ► To verify results we require information about remnant mass values for mass ratios between 10<q<10,000.
- ▶ Most models provide values for q<=8. Thus hard to corroborate results.
- ► For q=8, EMRISur using my code gave 0.9907173749485071.
- Other models used-NRSur3dq8Remnant⁵ (0.9893060467437979 with error-0.0001327823469476848) and NRHybSur3dq8⁶ (0.992376698721572)

⁵Vijay Varma et al. "High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants". In: *Phys. Rev. Lett.* 122 (1 2019), p. 011101.

⁶Vijay Varma et al. "Surrogate model of hybridized numerical relativity binary black hole waveforms". In: *Phys. Rev. D* 99 (6 2019), p. 064045.

Future work

- Develop codes for emitted linear momentum and post-merger kick.
- Testing the code for upcoming surrogate model which accounts for spin of the black holes.
- Making the code open source as part of the BHP toolkit (https://bhptoolkit.org/EMRISurrogate/).

Thank You!