САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчёт по лабораторной работе №4
«Дискретные регуляторы с заданными характеристиками переходных процессов»
по дисциплине
«Дискретные системы управления»
Вариант 9

Выполнили: студенты потока 1.2

Дюжев В. Д. Лалаянц К. А.

Преподаватель:

Краснов А.Ю.

ОГЛАВЛЕНИЕ

Вве	едение	1
1	Цель работы	1
2	Данные варианта	1
	новная часть Апериодический регулятор с T = 1	2 2
Вы	волы	3

ДСУ

Введение

Цель работы

Изучение различных дискретных алгоритмов управления с заданными характеристиками переходных процессов.

Данные варианта

- T: 0.5
- *a*: 1.8
- b: 7.7
- ζ: 0.69
- ω_d : 5
- K_{ν} : 0.1

Основная часть

ОУ имеет вид:

$$G(s) = \frac{e^{-1.8s}}{1 + 7.7s}$$

Для разомкнутой системы, представляющей из себя последовательно: R – вход; D – регулятор; HG – OY + $ЭH\Pi$; Y – выход. Передаточная функция замкнутой системы имеет вид

$$\frac{Y(z)}{R(z)} = \frac{D(z)HG(z)}{1 + D(z)HG(z)}$$

Пусть $T = \frac{Y(z)}{R(z)}$ — желаемое поведение системы, тогда

$$D(z) = \frac{1}{HG(z)} \frac{T(z)}{1 - T(z)}$$

Апериодический регулятор с T=1

Апериодический регулятор – это регулятор, который обеспечивает слежение за ступенчатым входным сигналом, но с задержкой в один или несколько периодов дискретности, т. е. требуется, чтобы реакция системы была равна единице для каждого интервала дискретности после приложения единичного ступенчатого входного воздействия. В таком случае желаемая передаточная функция будет иметь вид

$$T(z) = z^{-k},$$

где $k \ge 3$.

$$D(z) = \frac{1}{HG(z)} \frac{z^{-3}}{1 - z^{-3}}$$

Выводы

В ходе выполнения работы ознакомились с методами синтеза классических регуляторов для дискретных систем. Теоретические выкладки, сделанные в соответствующей секции были подтверждены во время про ведения экспериментов, что можно наблюдать на графиках моделирования.