Package 'AgroTech'

October 12, 2022

```
Type Package
Title Data Analysis of Pesticide Application Technology
Version 1.0.2
Date 2022-09-14
Maintainer Rodrigo Yudi Palhaci Marubayashi <marubayashi@uel.br>
Description In total it has 7 functions, three for calculating machine calibration, which determine ap-
      plication rate (L/ha), nozzle flow (L/min) and amount of prod-
      uct (L or kg) to be added. to the tank with each sprayer filling. Two func-
      tions for graphs of the flow distribution of the nozzles (L/min) in the applica-
      tion bar and, of the temporal variability of the meteorological conditions (air temperature, rela-
      tive humidity of the air and wind speed). Two functions to determine the spray de-
      posit (uL/cm2), through the methodology called spectrophotome-
      try, with the aid of bright blue (Palladini, L.A., Rae-
      tano, C.G., Velini, E.D. (2005), <doi:10.1590/S0103-90162005000500005>) or metallic mark-
      ers (Chaim, A., Castro, V.L.S.S., Corre-
      les, F.M., Galvão, J.A.H., Cabral, O.M.R., Nicolella, G. (1999), <doi:10.1590/S0100-
      204X1999000500003>). The package supports the analysis and representation of information, us-
      ing a single free software that meets the most diverse areas of activity in application technology.
Encoding UTF-8
RoxygenNote 7.2.1
Imports ggplot2, gridExtra, xlsx, readxl, ggrepel, stats, nortest,
      lmtest, crayon, utils
License GPL (>= 2)
Depends R (>= 3.6)
NeedsCompilation no
Author Rodrigo Yudi Palhaci Marubayashi [aut, cre]
       (<https://orcid.org/0000-0003-2778-8654>),
      Gabriel Danilo Shimizu [aut, ctb]
       (<https://orcid.org/0000-0001-8524-508X>),
      Otavio Jorge Grigoli Abi Saab [aut, ctb]
       (<https://orcid.org/0000-0002-1757-636X>)
Repository CRAN
```

Date/Publication 2022-09-14 20:30:02 UTC

2 example_markblue

R topics documented:

Index	1	5
	vartemp	3
	product	
	markmet	
	markblue	
	flowrat	
	flowpres	
	flowgrap	5
	example_meteorological	4
	example_markmet	3
	example_markbluecurve	3
	example_markblue	2

example_markblue

Dataset: Example markblue

Description

The data are part of an experiment that studied the spray deposit

Usage

data(example_markblue)

Format

data.frame containing data set
curva Vector with curves
TRATAMENTO Numeric vector with treatment
repe Numeric vector with repetition
Abs Numeric vector with absorbance
area Numeric vector with area

Author(s)

Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br> Gabriel Danilo Shimizu Otavio Jorge Grigoli Abi Saab

Examples

data(example_markblue)

example_markbluecurve Dataset: Example markbluecurve

Description

The data are part of an experiment that studied the spray deposit

Usage

```
data(example_markbluecurve)
```

Format

data.frame containing data set

curva Vector with curve

Amostra Numeric vector with sample

Abs Numeric vector with absorbance

ppm Numeric vector with concentration

Author(s)

Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br> Gabriel Danilo Shimizu

Otavio Jorge Grigoli Abi Saab

Examples

data(example_markbluecurve)

example_markmet

Dataset: Example markmet

Description

The data are part of an experiment that studied the spray deposit

Usage

```
data(example_markmet)
```

Format

```
data.frame containing data set
trat Vector with treatment
repe Numeric vector with repetition
ppm Numeric vector with concentration
```

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

Examples

```
data(example_markmet)
```

```
example_meteorological
```

Dataset: Example meteorological

Description

The data come from a meteorological station on a rural property in the city of Rolandia/PR

Usage

```
data("example_meteorological")
```

Format

```
data.frame containing data set
tempo Numeric vector with time
temp Numeric vector with air temperature
ur Numeric vector with relative humidity
vento Numeric vector with wind speed
```

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

Examples

```
data(example_meteorological)
```

flowgrap 5

flowgrap

Flow graphic of nozzles on spray bar

Description

This is a function to check the conditions of the spray nozzles

Usage

```
flowgrap(
  file,
  pointsize = 3.5,
  xsup = 1.1,
  xinf = 0.9,
  pointcolor = "red",
  xlab = "Nozzle number",
  ylab = NA
)
```

Arguments

file Numerical vector with the flows pointsize Point size (default 3.5)

xsup Upper limit

xinf Bottom limit

pointcolor Point color (red)

xlab x axis legend

ylab y axis legend

Value

Returns graph of ggplot2

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

6 flowpres

References

ANDEF Associacao Nacional de Defesa Vegetal. Manual de tecnologia de aplicacao de produtos fitossanitarios. Campinas: Linea Creativa, 2004. 50p.

BOLLER, W.; RAETANO, C. G. Bicos e pontas de pulverizacao de energia hidraulica, regulagens e calibracao de pulverizadores de barras. In: ANTUNIASSI, U. R.; BOLLER, W. (Organizadores). Tecnologia de aplicacao para culturas anuais. Passo Fundo: Aldeia Norte; Botucatu: FEPAF, 2011. p.51-82.

SPRAYING SYSTEMS CO. Catalogo 51A-PT - Produtos de pulverização para agricultura. Wheaton: Spraying Systems Co., 2014. 160p.

Examples

```
resp=c(881,854,865,876,906.3,
874.7,868.3,878.7,872.7,901.7,
823.3,889.7,861.3,900.3,890.3,
886.7,916.7,872,912.7,894)
flowgrap(resp)
# flowgrap("file.xlsx")
```

flowpres

Flow calculation as a function of working pressure

Description

This is a function to determine the flow rate of a spray nozzle as a function of the working pressure

Usage

```
flowpres(q1, q2, p1, p2)
```

Arguments

q1	Nozzle flow 1 (L/min)
q2	Nozzle flow 2 (L/min)
p1	Nozzle pressure 1 (bar)
n2	Nozzle pressure 2 (bar)

Details

Nozzle flow 1:

$$q1 = \frac{\sqrt{p1}}{\sqrt{p2}} * q2$$

Nozzle flow 2:

$$q2 = \frac{q1}{\frac{\sqrt{p1}}{\sqrt{p2}}}$$

flowrat 7

Nozzle pressure 1:

$$p1 = (\sqrt{p2} * \frac{q1}{q2})^2$$

Nozzle pressure 2:

$$p2 = \left(\frac{\sqrt{p1}}{\left(\frac{q1}{q2}\right)}\right)^2$$

Value

Returns values of flow (L/min) or pressure (bar)

Author(s)

Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br> Gabriel Danilo Shimizu

Otavio Jorge Grigoli Abi Saab

References

ANDEF Associacao Nacional de Defesa Vegetal. Manual de tecnologia de aplicacao de produtos fitossanitarios. Campinas: Linea Creativa, 2004. 50p.

BOLLER, W.; RAETANO, C. G. Bicos e pontas de pulverizacao de energia hidraulica, regulagens e calibracao de pulverizadores de barras. In: ANTUNIASSI, U. R.; BOLLER, W. (Organizadores). Tecnologia de aplicacao para culturas anuais. Passo Fundo: Aldeia Norte; Botucatu: FEPAF, 2011. p.51-82.

SPRAYING SYSTEMS CO. Catalogo 51A-PT - Produtos de pulverização para agricultura. Wheaton: Spraying Systems Co., 2014. 160p.

See Also

flowrat product

Examples

```
flowpres(q1=NA,q2=0.80,p1=1.00,p2=2.80)
flowpres(q1=0.48,q2=0.80,p1=1.00,p2=NA)
```

flowrat

Calculation of required spray nozzle flow

Description

This is a function to determine the required flow rate of a spray nozzle

Usage

```
flowrat(Q, q, V, W = 50)
```

8 flowrat

Arguments

Q Application rate (L/ha)
q Nozzle flow (L/min)
V Sprayer speed (km/h)

W Spacing between spray nozzles (cm)

Details

Application rate (L/ha):

$$Q = \frac{60000 * q}{V * W}$$

Nozzle flow (L/min):

$$q = \frac{Q*(V*W)}{60000}$$

Sprayer speed (km/h):

$$V = \frac{\frac{60000*q}{Q}}{W}$$

Spacing between spray nozzles (m):

$$W = \frac{\frac{60000*q}{Q}}{V}$$

Value

Returns values for flow, application rate, sprayer speed, spacing between spray tips

Note

60000 Units conversion factor

Author(s)

Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>

Gabriel Danilo Shimizu

Otavio Jorge Grigoli Abi Saab

References

ANDEF Associacao Nacional de Defesa Vegetal. Manual de tecnologia de aplicacao de produtos fitossanitarios. Campinas: Linea Creativa, 2004. 50p.

BOLLER, W.; RAETANO, C. G. Bicos e pontas de pulverizacao de energia hidraulica, regulagens e calibracao de pulverizadores de barras. In: ANTUNIASSI, U. R.; BOLLER, W. (Organizadores). Tecnologia de aplicacao para culturas anuais. Passo Fundo: Aldeia Norte; Botucatu: FEPAF, 2011. p.51-82.

SPRAYING SYSTEMS CO. Catalogo 51A-PT - Produtos de pulverização para agricultura. Wheaton: Spraying Systems Co., 2014. 160p.

markblue 9

See Also

flowpres product

Examples

```
flowrat(Q = 190,q = NA,V = 10,W = 50)
```

markblue

Spray deposit (glowing blue marker)

Description

This is a function to determine spray deposit using bright blue marker and then after performing tests of assumptions, analysis of variance and comparison of means

Usage

```
markblue(
  d1,
  d2,
  vl,
  ci,
  ncu2 = 1,
  ntrat2 = 2,
  nrep2 = 3,
  nresp2 = 5,
  naf2 = 6,
  analysis = TRUE,
  design = "DIC",
  transf = 1,
  quali = TRUE,
  grau = 1,
  test = "parametric",
  mcomp = "tukey",
  ylab = expression(mu ~ cm^2),
  save.xlsx = FALSE
)
```

Arguments

d1	Curved worksheet
d2	Experiment worksheet
vl	Wash volume (mL)
ci	Initial marker concentration
ncu2	Column referring to the curve (<i>default</i> is 1)

10 markblue

ntrat2	Column referring to treatment
nrep2	Column referring to repetition
nresp2	Column referring to absorbance
naf2	Sheet area (cm2)
analysis	Perform statistical analysis
design	Experiment design
transf	Data transformation
quali	Qualitative or quantitative treatment (default is TRUE)
grau	degree of the polynomial (when treatment is quantitative)
test	Parametric or Nonparametric (default is "parametric")
mcomp	Mean comparison test (default is "tukey")
ylab	y axis name (default is expression(mu~cm^2))

Value

save.xlsx

Returns the comparison between the treatments of the experiment

Note

Curve name on the curve worksheet (d1) must be the same as the curve name on the experiment worksheet (d2)

Want to export in excel format (default is FALSE)

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

References

No reference

See Also

markmet

Examples

markmet 11

```
ntrat2 = 2,
nrep2 = 3,
nresp2 = 4,
naf2 = 5)
```

markmet

Spray deposit (metallic marker)

Description

This is a function to determine spray deposit using metallic markers and then after performing tests of assumptions, analysis of variance and comparison of means

Usage

```
markmet(
  ppm,
 white,
 ۷L,
 AL,
  analysis = TRUE,
  trat,
  block,
  design = "DIC",
  transf = 1,
  quali = TRUE,
  grau = 1,
  test = "parametric",
 mcomp = "tukey",
 ylab = expression(mu ~ cm^2),
  save.xlsx = FALSE
)
```

Arguments

ppm	Concentração
white	White reading
VL	Wah volume (mL)
AL	blade area (cm2)
analysis	Perform statistical analysis
trat	Vector with treatment
block	Vector with block (if design = "DBC")
design	Experiment design
transf	Data transformation
quali	Qualitative or quantitative treatment (<i>default</i> is TRUE)

12 product

grau	degree of the polynomial (when treatment is quantitative)
test	Parametric or Nonparametric (default is "parametric")
mcomp	Mean comparison test (default is "tukey")
ylab	y axis name (default is expression(mu~cm^2))
save.xlsx	Want to export in excel format (default is FALSE)

Value

Returns the comparison between the treatments of the experiment

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

References

No reference

See Also

markblue

Examples

product

Amount of phytosanitary product per spray tank

Description

This is a function to determine the amount of commercial product to be placed in the sprayer tank at each fill

Usage

```
product(Ct, Dose, Q)
```

vartemp 13

Arguments

Ct	Spray tank volumetric capacit	v (L)

Dose Product dose to be applied (L/ha, mL/ha, kg/ha, g/ha)

Q Application rate (L/ha)

Value

Returns values for amount of product (L or kg)

Author(s)

Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>

Gabriel Danilo Shimizu

Otavio Jorge Grigoli Abi Saab

References

ANDEF Associacao Nacional de Defesa Vegetal. Manual de tecnologia de aplicacao de produtos fitossanitarios. Campinas: Linea Creativa, 2004. 50p.

BOLLER, W.; RAETANO, C. G. Bicos e pontas de pulverizacao de energia hidraulica, regulagens e calibracao de pulverizadores de barras. In: ANTUNIASSI, U. R.; BOLLER, W. (Organizadores). Tecnologia de aplicacao para culturas anuais. Passo Fundo: Aldeia Norte; Botucatu: FEPAF, 2011. p.51-82.

SPRAYING SYSTEMS CO. Catalogo 51A-PT - Produtos de pulverização para agricultura. Wheaton: Spraying Systems Co., 2014. 160p.

See Also

flowpres flowrat

Examples

```
product(Ct = 800, Dose = 200, Q = 100)
```

vartemp

Temporal variability graph of weather conditions

Description

This is a function to check weather conditions in agricultural spraying

14 vartemp

Usage

```
vartemp(
  file,
  nx = 1,
  ny = 2,
  variable = NA,
  ylab = "Dependent",
  xlab = "Independent",
  size.text = 12,
  size.title = 12,
  size.strip = 12,
  size.lty = 0.7
)
```

Arguments

file	Excel file (xlsx)
nx	Time
ny	Weather conditions
variable	Variable name
ylab	y axis (Dependent)
xlab	x axis (Independent)
size.text	Size text (<i>default</i> is 12)
size.title	Size title (<i>default</i> is 12)
size.strip	Size strip (<i>default</i> is 12)
size.lty	Size line (<i>default</i> is 0.7)

Value

Returns graph of ggplot2

Author(s)

```
Rodrigo Yudi Palhaci Marubayashi, <marubayashi@uel.br>
Gabriel Danilo Shimizu
Otavio Jorge Grigoli Abi Saab
```

References

No reference

Examples

```
data("example_meteorological")
vartemp(example_meteorological)
```

Index

```
\ast datasets
    example_markblue, 2
    example_markbluecurve, 3
    example_markmet, 3
    example_meteorological, 4
example_markblue, 2
example_markbluecurve, 3
example_markmet, 3
example\_meteorological, 4
flowgrap, 5
flowpres, 6, 9, 13
flowrat, 7, 7, 13
markblue, 9, 12
markmet, 10, 11
product, 7, 9, 12
vartemp, 13
```