1. Calculate $\Gamma(5)$, $\Gamma(2)$, $\Gamma(3/2)$ and $\Gamma(7/2)$.

$$\Gamma(5) = (5-1)! = 4! = \boxed{24}$$

$$\Gamma(2) = (2-1)! = \boxed{1}$$

$$\Gamma(3/2) \Rightarrow \Gamma(1/2) = \sqrt{\pi}, \quad \Gamma(\alpha) > 1 \text{ then } \Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

$$\Gamma(3/2) = (3/2 - 1)\Gamma(3/2 - 1)$$

$$= \boxed{\frac{1}{2}\sqrt{\pi}}$$

$$\Gamma(7/2) = (7/2 - 1)\Gamma(7/2 - 1) = (5/2)\Gamma(5/2)$$

$$= (5/2)(5/2 - 1)\Gamma(5/2 - 1) = (5/2)(3/2)\Gamma(3/2)$$

$$= (15/4)(1/2)\sqrt{\pi}$$

$$= \boxed{\frac{15}{8}\sqrt{\pi}}$$

- 2. A sample of asking prices for 2BR/2BA houses in two large U.S. cities were collected. Let $\overline{X_n}$ and $\overline{Y_m}$ be the sample average asking prices for the two cities. All prices are assumed to be independent, within cities and between cities. Let $\mu_X = 268$ and $\mu_Y = 260$ be the average values for the individual houses in the two cities (units are thousands of dollars), and let $\sigma_X = 22$ and $\sigma_Y = 20$ be the standard deviations (also in thousands of dollars).
 - (a) Find the expected value and the variance of $\overline{X_n}$ $\overline{Y_m}$. (Note that the sample sizes, n and m, need not be equal. (Your answer will have both n and m in it.)

$$\mathbb{E}(\overline{X}_n - \overline{Y}_m) = \mathbb{E}(\overline{X}_n) - \mathbb{E}(\overline{Y}_m)$$

$$= 268 - 260 = \boxed{8}$$

$$\operatorname{var}(\overline{X}_n - \overline{Y}_m) = \operatorname{var}(\overline{X}_n)/n + (-1)^2 \operatorname{var}(\overline{Y}_m)/m$$

$$= \boxed{\frac{22}{n} + \frac{20}{m}}$$

(b) If asking prices are normally distributed and the samples are of sizes n=10 and m=12, is there enough information to calculate $P(-0.2 \le \overline{X}_n - \overline{Y}_m - 7.0 \le 0.2)$? Why or why not? If yes, estimate the value.

$$\overline{X}_{10} - \overline{Y}_{12} \sim N\left(8, \frac{22}{10} + \frac{20}{12}\right) \approx N(8, 0.1887)$$

$$P(-0.2 \le \overline{X}_n - \overline{Y}_m - 7.0 \le 0.2) = P()$$

- (c) If the distribution of the asking prices is unknown, and the samples are of sizes n = 36 and m = 25, is there enough information to calculate $P(-0.2 \le \overline{X}_n \overline{Y}_m 7.0 \le 0.2)$? Why or why not? If yes, estimate the value.
- (d) If the distribution of the asking prices is unknown (not necessarily normal), and the samples are of sizes n=36 and m=49, is there enough information to calculate $P(-0.2 \le \overline{X}_n \overline{Y}_m 7.0 \le 0.2)$? Why or why not? If yes, estimate the value.
- 3. Let X_1, \dots, X_n be independent Exponential(θ) random variables.
 - (a) Show that \overline{X} is biased for θ .
 - (b) Show that \overline{X} is unbiased for $1/\theta$.