Kombinační logické obvody

Úvod

Tato otázka slouží jako úvod k sekvenčním logickým obvodům. 90 % věcí co je tady je potřeba ve všech třech posledních otázkách.

Definice

Kombinační obvod je logický obvod, který má na každou kombinaci vstupů pouze jeden výstup. Změna se v obvodu projevuje okamžitě. Může pro jejich znázornění použít pravdivostní tabulkou (vypsané všechny možnosti, které se můžou stát). Závisí pouze na okamžitých kombinacích vstupních proměnných a nezávisí na jejich předchozích hodnotách.

Rozdíly oproti sekvenčním

Kombinační nemají paměť a tím pádem jsou závislé pouze na vstupech obvodu. Druhým důležitým rozdílem je že nemají clock a reagují ihned.

Návrh kombinačních obvodů

Návrh kombinačních obvodů oproti těm sekvenčním je poměrně jednoduchý. Vyplývá to především z principu jejich fungování. Můžeme si je totiž rozepsat pomocí Booleovi algebry (viz. Otázka 26). Výsledkem je finální podoba obvodu.

Pro realizaci kombinačních obvodů je možné použít:

- Pevné paměti (konstanta)
- programovatelná logická pole
- NAND, AND, NOR, OR apod.

Část ALU (Arithmetical logic unit), která dělá matematické operace je zkonstruována tak aby používala tuto logiku.

Základní hradla

AND

Základní logická brána. Chová se tak jak je vyobrazeno v tabulce nalevo. Můžeme jít použít v P a N MOSFETech. Umí efektivně najít minimum mezi 2 čísly.

A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

OR

Druhá ze dvou hlavních a základních bran. Chová se tak jako tabulka vlevo. Umí efektivně najít maximum mezi 2 čísly. Jsou používané v tranzistorech, a i v CMOSu.

A	R	X
0	0	0
0	1	0
1	0	0
1	1	1

0

1

0

NOT

Digitální obraceč, který implementuje logickou negaci. Je vyobrazen pod ANDem napravo. Používá se skoro všude. CMOS, PMOS, NMOS atd...

XOR

Poslední a trochu složitější obvod. Skládá se ze 4 hradel NAND nebo NOR. Jeho základní schopnost je nerovnost. Je součástí polovičních sčítaček, generátorů a na detektory sekvencí.

Pokročilejší obvody

Komparátor

Porovnává 2 binární hodnoty. Používá se v procesorech a v mikrokontrolerech. Máme 2 typy komparátorů:

- Logický (Digitální) jen rovnost 0 a 1 (Ne, Ano).
- Aritmetický Umí i větší než a menší než

Typickým příkladem logického je NXOR. Pro Aritmetický máme v Logisimu také vlastní hradlo (normální komparátor).

Multiplexor

Multiplexor určuje podle zadané adresy (indexu), který z mnoha vstupů propustí jedním výstupem. Multiplexor se skládá z hradel AND, NOT, a OR, ale v Logisimu ho máme taky jako samostatnou jednotku. Multiplexor má kromě vstupů, jednoho výstupu a adres ještě jeden pouze binární vstup na zapnutí a vypnutí

Např. Při 8 vstupech si zvolíme 3bitový multiplexor (2³ možných adres) a poté pouze posíláme multiplexoru, které z 8 vstupům poslat svým jedním výstupem.

Demultiplexor

Opak multiplexoru. Podle adresy se přepíná jeden vstup na více výstupů.

Adder

Half

Poloviční sčítačka – skládá se z hradel XOR a AND. Přenáší číslo do vyššího řádu. Je součástí úplné sčítačky. Má dva výstupy a vstupy, jeden je součet a druhý je přenos do vyššího řádu. Ten se užije v plné sčítačce.

Full

Je součástí každého procesoru v ALU. Také jsou potřeba na výpočty adres, indexů, operátorů atd.

1 – 4bitová sčítačka (3 poloviční sčítačky)

Zdroje

- https://en.wikipedia.org/wiki/XOR_gate 1.
- https://en.wikipedia.org/wiki/OR_gate https://en.wikipedia.org/wiki/AND_gate
- https://en.wikipedia.org/wiki/Inverter (logic gate)
 https://en.wikipedia.org/wiki/XOR_gate#/media/File:XOR_from_NAND.svg
- https://en.wikipedia.org/wiki/Multiplexer 6.
- https://en.wikipedia.org/wiki/Comparator