

UNIVERSITÀ DEGLI STUDI DI MESSINA FACOLTÀ DI MATEMATICA E INFORMATICA

Manuale d'uso del progetto: Politiche di sostituzione delle pagine (FIFO e LRU)

A cura di: Salvatore Nitopi (Mat. 438141) Docente: Agreste Santa

Descrizione generale del progetto

Obiettivo:

L'obiettivo è l'implementazione di un applicativo che analizzi gli algoritmi di sostituzione delle pagine FIFO (First-in, First-out), LRU (Least Recently Used) e algoritmi che approssimano LRU. Supponiamo vi siano n processi e che la memoria venga assegnata in maniera proporzionale alla dimensione del processo.

Criteri generali:

Il progetto è stato realizzando utilizzando il linguaggio di programmazione Python.

La versione di Python utilizzata è 2.7.10

Per utilizzare il del programma memory.py è necessaria la libreria "prettytable.py" (nella stessa directory dell'applicativo).

La libreria "prettytable.py" viene utilizzata per stampare i dati in output in una tabella (Fonte: https://github.com/dprince/python-prettytable)

E' consigliabile allargare la finestra del terminale almeno a 160x50

Manuale utente

L'applicativo va lanciato seguendo la seguente sintassi:

\$ python memory.py <Numero Max di Frame> <Numero Min Frame per Processo> <Numero di Processi> <Lunghezza della Successione dei riferimenti>

Nel caso in cui la sintassi non venga rispettata, viene visualizzato un messaggio a schermo:

```
Host-01:sistemi_operativi salvatorenitopi$ python memory.py

Parametri non validi:
python memory.py 0 0 0 0

Parametri richiesti:

<max_frame> Numero massimo di frame
<p_min_frame> Numero minimo di frame per processo
<n_processi> Numero dei processi
<l_riferimenti> Lunghezza della successione dei riferimenti

Esempio:
python memory.py <max_frame> <p_min_frame> <n_processi> <l_riferimenti>

Progetto realizzato da: Salvatore Nitopi
```

Successivamente viene richiesto all'utente di inserire la dimensione di ogni singolo processo e di scegliere l'algoritmo da utilizzare.

```
Host-01:sistemi_operativi salvatorenitopi$ python memory.py 3 1 2 5
Inserisci la dimensione del processo 0: 2
Inserisci la dimensione del processo 1: 3

1)Usa FIFO

2)Usa LRU

Quale Algoritmo vuoi usare?
```

In seguito il programma esegue l'algoritmo scelto e stampa a schermo l'output.

Host-01:sistemi_operativi salvatorenitopi\$ python memory.py 3 1 2 5 Inserisci la dimensione del processo 0: 2 Inserisci la dimensione del processo 1: 3								
1)Usa FIFO								
2)Usa LRU								
Quale Algoritmo vuoi usare? 1								
Calcolo dimensione totale processi: 5								
+		+	+	+	+			
ID	Page	Referenze	Processo	PageFault	Frames	Conclusioni		
1 0 0	010	[1, 1, 1, 1, 0]	0] 3	PageFault processo 0: 0 con 3 frames		
		[0, 0, 1, 0, 2]		2	3	PageFault processo 1: 2 con 3 frames		
		[1, 1, 1, 1, 0]		0	4	PageFault processo 0: 0 con 4 frames		
		[0, 0, 1, 0, 2]		1	4	PageFault processo 1: 1 con 4 frames		
		[1, 1, 1, 1, 0]		0	5	PageFault processo 0: 0 con 5 frames		
01110	01020	[0, 0, 1, 0, 2]	1	1	5	PageFault processo 1: 1 con 5 frames		
+	+	+	+	+	+			
Totale PageFault: 4								

Ad ogni esecuzione viene stampata una tabella (vedi esempio) dove vengono elencati: Gli id dei processi, le pagine possedute da ciascun processo, referenze, processo corrente, PageFault, numero di frames, Commento conclusivo.

Una copia dell'output viene salvata in un file denominato: test_000.txt dove 000 sarà sostituito al timestamp dell'esecuzione.

Attenzione: le prime due colonne rappresentano lo stato della memoria, quindi gli id dei processi e le pagine possedute da ciascun processo devono essere interpretati come segue:

Linea ciano: al processo con ID 0 corrisponde la pagina 0 Linea verde: al processo con ID 0 corrisponde la pagina 0

Linea gialla: al processo con ID 2 corrisponde la pagina 2 Linea arancione: al processo con ID 2 corrisponde la pagina 1 al processo con ID 2 corrisponde la pagina 0 Linea rossa: al processo con ID 1 corrisponde la pagina 2 Linea viola: al processo con ID 1 corrisponde la pagina 1 Linea grigia: Linea magenta: al processo con ID 1 corrisponde la pagina O al processo con ID 0 corrisponde la pagina 1 Linea marrone: al processo con ID O corrisponde la pagina O Linea blu:

Class Diagram

Analisi e Commenti

Lanciando l'applicativo più volte utilizzando i parametri:

Numero massimo di frame: 1

Numero minimo di frame per processo: 3

Numero processi: 2

Lunghezza della successione dei riferimenti: 11

Dimensione processi: 5

e aumentando il numero di frame (come richiesto) incrementando esclusivamente il parametro: max_frame (Numero massimo di frame) è possibile generare la seguente tabella ed il seguente grafico:

Numero Massimo di Frame	FIFO	LRU
1	59	71
2	47	63
3	39	47
4	44	39
5	23	18
6	14	14
7	11	11
8	7	7
9	4	2
10	2	2

• FIFO • LRU

Si può quindi affermare che entrambi sono ottimi algoritmi per la gestione della memoria ma dipendono dalla sequenza delle referenze del processo. Infatti il grafico risultante è molto simile a quelli teorici, ma per evidenziare l'anomalia di Belady sono state necessarie numerose prove visto che le referenze vengono generate casualmente dall'applicativo.