Josh Park Prof. Shkredov

MA 45401-H01 – Galois Theory Honors Homework 7 (Mar 14)

Spring 2025 Page 1

Exercise 7.1. Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.

Solution. We know that a field extension $F_1: F_2$ is normal iff it is a splitting field extension for some $f \in F_2[t]$.

Exercise 7.2.1. Let K-L be algebraic, $a \in L$ and $\sigma: K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.

Solution. \Box

Exercise 7.2.2. Let L: K be a splitting field for $f \in K[t]$. Prove that if f is separable, then L: K is separable.

 \Box

Exercise 7.3. Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.

 \Box

Exercise 7.4. Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.

Solution. \Box