Systèmes dynamiques

TD n°8

Yann Chaubet

10 novembre 2020

Exercice 1

1. On considère une fonction f définie au voisinage de $0 \in \mathbb{R}^n$ telle que $\mathrm{d} f_0 = 0$, et $\varphi = (\varphi^1, \dots, \varphi^n)$ un difféomorphisme local au voisinage de 0, tel que $\varphi(0) = 0$.

On calcule

$$\begin{split} \partial_k \partial_\ell (f \circ \varphi) &= \sum_i \partial_k \left([(\partial_i f) \circ \varphi] \partial_\ell \varphi^i \right) \\ &= \sum_i [(\partial_i f) \circ \varphi] \partial_k \partial_\ell \varphi^i + \sum_{j,i} [(\partial_i \partial_j f) \circ \varphi] (\partial_k \varphi^i) (\partial_\ell \varphi^j). \end{split}$$

Puisque $df_0 = 0$ on obtient

$$\operatorname{Hess}_{f \circ \varphi}(0) = (\mathrm{d}\varphi_0)^{\top} \operatorname{Hess}_f(0)(\mathrm{d}\varphi_0),$$

ce qui conclut.

2. On remarque qu'une fonction de Morse a un nombre fini de points critiques, car ils sont isolés.

De plus la condition " $\operatorname{Hess}_f(0)$ est non dégénérée" est ouverte, ce qui conclut.

3. On suppose $\varphi_{\tau}(x) = x$ avec $\tau > 0$. Calculons

$$\begin{split} \partial_t f(\varphi_t(x)) &= \mathrm{d} f_{\varphi_t(x)}(X(\varphi_t(x))) \\ &= -\mathrm{d} f_{\varphi_t(x)}(\nabla^g f(\varphi_t(x))) \\ &= -g_{\varphi_t(x)}(\nabla^g f(\varphi_t(x)), \nabla^g f(\varphi_t(x))) \leqslant 0. \end{split}$$

Puisque $f(\varphi_{\tau}(x)) = x$ avec $\tau > 0$ on obtient que pour tout $t \in [0, \tau]$, $\nabla^g f(\varphi_t(x)) = 0$.

4. C'est la même démonstration : f décroît strictement le long des lignes de flots de X qui ne sont pas réduites à un point. Ainsi si $\nabla_g f(x) \neq 0$, on a que $f(\varphi_t(x)) < f(x) - \varepsilon$ pour tout $t > \delta$ (pour certains $\delta, \varepsilon > 0$) et donc $\varphi_t(x)$ ne peut pas repasser près de x pour $t > \delta$.

5. Soit $x \in M$, et p une valeur d'adhérence de $(\varphi_t(x))_{t \ge 0}$. Alors de même que précédemment, on a $\nabla^g f(p) = 0$.

Comme $t \mapsto f(\varphi_t(x))$ décroît, on a $f(\varphi_t(x)) \ge f(p)$ pour tout t.

Par hypothèse, des coordonnées (x^1, \ldots, x^n) autour de p telles que

$$f(x^1, \dots, x^n) = f(p) + \sum_{i=1}^r (x^i)^2 - \sum_{i=r+1}^n (x^i)^2,$$

et

$$-\nabla^g f = 2(-x^1, \dots, -x^r, x^{r+1}, \dots, x^n).$$

Ainsi, le fait que $f(\varphi_t(x)) \ge p$ pour tout t implique que si $\varphi_t(x)$ est assez proche de p, on a nécessairement $\varphi_t(x) \in \{x^{r+1} = \cdots = x^n = 0\}$, car sinon on aurait $f(\varphi_{t'}(x)) < f(p)$ pour un t' > t.

Ceci montre que $\varphi_t(x) \to p$ quand $t \to +\infty$. De même on montre que $\varphi_{-t}(x) \to q$ quand $t \to +\infty$ avec $q \in \text{Crit}(f)$.

Exercice 2

1. Soit E un ensemble et $A \subset \mathcal{P}(E)$ une algèbre de Boole, c'est-à-dire que $\emptyset \neq A$ et pour tous $A, B \in \mathcal{A}$ on a

$$A \setminus B \in \mathcal{A}$$
 et $A \cup B \in \mathcal{A}$.

Soit $\mu: \mathcal{A} \to [0, \infty]$ une mesure sur \mathcal{A} , c'est-à-dire que $\mu(\emptyset) = 0$ et pour toute séquence $(E_i) \in \mathcal{A}^{\mathbb{N}}$ telle $E_i \cap E_j = \emptyset$ si $i \neq j$ on a

$$\bigcup_{i \in \mathbb{N}} E_i \in \mathcal{A} \quad \Longrightarrow \quad \sum_{i \in \mathbb{N}} \mu(E_j) = \mu\left(\bigcup_{i \in \mathbb{N}} E_i\right).$$

Théorème (Carathéodory)

Il existe une mesure $\mu^* : \sigma(A) \to [0, \infty]$ qui étend μ . Si μ est σ -finie, alors μ^* est unique.

2. Le théorème est le suivant.

Théorème (Classe monotone)

On suppose que Π est un π -système (i.e. un sous-ensemble de parties de E stable par intersections finies). Alors

$$\bigcap_{\mathcal{C}}\mathcal{C}=\sigma(\Pi),$$

où l'intersection porte sur l'ensemble des classes monotones $\mathcal C$ telles que $\Pi \subset \mathcal C$.

Exercice 2

- 1. $\mathcal{F}^{\otimes \mathbb{N}}$ est par définition la tribu engendrée par les cylindres.
- **2.** Si $A = A_1 \cup \cdots \cup A_n$ avec $A_i \in \mathcal{S}$ et $A_i \cap A_j = \emptyset$ si $i \neq j$, on pose

$$\mu(A) = \sum_{i=1}^{n} \mu(A_i).$$

Si A s'écrit aussi $A'_1 \cup \cdots \cup A'_m$, alors

$$\sum_{j=1}^{m} \mu(A_i') = \sum_{i,j} \mu(A_i' \cap A_j) = \sum_{j=1}^{n} \mu(A_j),$$

donc $\mu(A)$ ne dépend pas de la décomposition choisie.

On vérifie alors facilement que μ définit bien une mesure sur S.

3. (a) On a

$$\int_A H_{k+1}(x_0,\ldots,x_k,x) dP(x)$$

$$= \int_{A} \sum_{n>0} \left(\prod_{i>k+1} P(S_{j}^{n}) \right) \left(\prod_{i=0}^{k} 1_{S_{i}^{n}}(x_{i}) \right) 1_{S_{k+1}^{n}}(x) dP(x) =$$

3. (b) On a

$$\int_{A} H_0(x) dP(x) = \int_{A} \sum_{n \ge 0} \left(\prod_{i \ge 0} P(S_j^n) \right) 1_{S_0^n}(x) dP(x) = \sum_{n \ge 0} \mu(S^n) < 1.$$

Ainsi il existe $x_0 \in A$ tel que $H_0(x_0) < 1$.

On suppose construits $x_0, \ldots, x_k \in A$ tels que $H_k(x_0, \ldots, x_k) < 1$. Alors par (a) on a

$$\int_A H_{k+1}(x_0, \dots, x_k, x) dP(x) = H_k(x_0, \dots, x_k) < 1.$$

Ainsi il existe $x_{k+1} \in A$ tel que $H_{k+1}(x_0, \dots, x_{k+1}) < 1$.

3. (c) Par la question **2.**, l'application μ s'étend uniquement en une mesure additive sur l'ensemble des unions de cylindres. On veut appliquer le théorème de Carathédory.

Pour cela, on aimerait montrer que μ est σ -additive (il suffit de le montrer sur les cylindres). Soit (S^n) une suite de cylindres deux-à-deux disjoints telle que $X = \cup_n S^n$. On suppose par l'absurde que $\sum_n \mu(S^n) < 1$.

Par (b), il existe une suite $\mathbf{x} = (x_n)$ telle que $H_k(x_0, \dots, x_k) < 1$ pour tout k. Soit $m \in \mathbb{N}$ tel que $x \in S^m$, et $i_m \in \mathbb{N}$ tel que $S_i^m = A$ pour tout $j > i_m$.

Alors on a

$$\left(\prod_{i>i_m} P(S_i^m)\right) \left(\prod_{i=0}^{i_m} 1_{S_i^m}(x_i)\right) = 1,$$

et donc

$$H_{i_m}(x_0, \dots x_{i_m}) \geqslant \left(\prod_{j > i_m} P(S_i^m)\right) \left(\prod_{i=0}^{i_m} 1_{S_i^m}(x_i)\right) = 1,$$

ce qui est absurde.

Montrons maintenant que μ est invariante par le décalage $\sigma: X \to X$. défini par

$$\sigma:(x_n)\mapsto (x_{n+1}).$$

Soit $S = S_0 \times S_1 \times \cdots$ un cylindre. Alors

$$\sigma^{-1}(S) = A \times S_0 \times S_1 \times \cdots,$$

et donc $\mu(\sigma^{-1}(S)) = \mu(S)$.

Cette égalité est donc aussi vraie pour tout $S \in \mathcal{F}^{\otimes \mathbb{N}}$.

4. La seule difficulté est la σ -additivité. On se donne une suite de cylindres (S^n) comme précédemment.

On pose

$$F_N = \mathcal{C}\left(\bigcup_{n \leqslant N} S^n\right).$$

Alors F_N est une suite décroissante de compacts, telle que l'intersection $\bigcap_N F_N$ est vide.

Ceci implique que $F_N = \emptyset$ si N est assez grand, et donc $\bigcup_{n \geqslant N} S^n = A^{\mathbb{N}}$. En particulier $\mu(\bigcup_{n \leqslant N} S^n) = 1$.

5. P_M est additive car si $\mathbf{w} = (w_0, \dots, w_p) \in A^{p+1}$ on a d'un côté

$$\mu\left(\bigcup_{i=1}^{m} C_{n,i\mathbf{w}}\right) = \mu(C_{n+1,\mathbf{w}}) = v_{w_0} \prod_{i=0}^{p-1} m_{w_j,w_{j+1}},$$

et de l'autre, puisque v = Mv,

$$\sum_{i=1}^{m} \mu(C_{n,i\mathbf{w}}) = \sum_{i=1}^{m} v_i m_{i,w_0} \prod_{j=0}^{p-1} m_{w_j,w_{j+1}} = \left(\prod_{j=0}^{p-1} m_{w_j,w_{j+1}}\right) \underbrace{\sum_{i=1}^{m} v_i m_{i,w_0}}_{}.$$

 v_{w_0}

L'existence et l'unicité de P_M sont alors claires par le même raisonnement qu'aux questions précédentes. Il suffit donc de montrer que P_M est une mesure de probabilités invariante par le décalage. C'est une mesure de probabilités :

$$P_M(X) = \sum_{w \in A} \mu(C_{0,w}) = \sum_{i=1}^m v_i = 1.$$

De plus P_M est σ -invariante car $\sigma^{-1}(C_{n,\mathbf{w}}) = C_{n+1,\mathbf{w}}$.

6. On se donne un mot $\mathbf{w} = (w_0, \dots, w_p)$. Alors

$$P^{\otimes \mathbb{N}}(C_{n,\mathbf{w}}) = \prod_{j=0}^{p} P(\{w_j\}) = P(\{w_0\}) \prod_{j=0}^{p-1} M(P)_{w_j,w_{j+1}},$$

ce qui conclut car si $v = (P(\{1\}), \dots, P(\{m\}))$ on a vM(P) = v.

7. Soit $\mathbf{w} = (w_0, \dots, w_p) \in A^{p+1}$. Alors $x \in H(C_{n,\mathbf{w}})$ si et seulement si

$$\forall j = 0, \dots, p, \quad m^{n+j} x \in \left[\frac{w_j - 1}{m}, \frac{w_j}{m} \right] \mod \mathbb{Z}.$$

Par suite on a, puisque $x\mapsto m^nx$ préserve la mesure de Lebesgue sur $\mathbb{R}/\mathbb{Z},$

$$Leb(H(C_{n,\mathbf{w}})) = Leb\left(\bigcap_{j=0}^{p} \left\{ x \in \mathbb{R}/\mathbb{Z}, \ m^{j} x \in I_{j} \right\} \right) = \frac{1}{m^{p+1}}$$

Or

$$\mu_m^{\otimes \mathbb{N}}(C_{n,\mathbf{w}}) = \prod_{j=1}^p P(\{w_j\}) = \frac{1}{m^{p+1}}.$$

8. L'ensemble $\complement Z$ des points m-adiques est dénombrable, notons le $\{y_k, \ k \in \mathbb{N}\}$. On a alors

Leb
$$(CZ) = \sum_{k} \mu(\{y_k\}) = 0.$$

9. Si $\mathbf{x} \in H^{-1}(Z)$, alors \mathbf{x} ne stationne pas à 1 ni m à partir d'un certain rang.

On a

$$H(\sigma(\mathbf{x})) = \sum_{k=1}^{\infty} \frac{x_{k+1} - 1}{m^k} \mod \mathbb{Z}$$
$$= mH(\mathbf{x}) \mod \mathbb{Z}.$$

Il est clair que $x \in \mathbb{R}/\mathbb{Z}$ qui n'est pas m-adique admet exactement un antécédent par H, en regardant les nombres $x_k \in \{1, \ldots, m\}$ $(k \in \mathbb{N}_{\geqslant 1})$ tels que

$$x_k - 1 = \lfloor m^k x \rfloor \mod m,$$

qui ne stationnent jamais à 1 où m.