Probabilistic Categorial Grammar From/to Intensional Categories to/from Probabilities

Cem Bozşahin

bozsahin@metu.edu.tr COGS542 November 28, 2023

Cognitive Science Department, The Informatics Institute, ODTÜ

The Verb

The verb is the argument-taker par excellence. Its form (root, stem, finite) appears to make a difference IN REFERENCE in all languages.

- (1) a. Mary would *to run/*runs/run.
 - b. Mary wants *run/*runs/to run.
 - c. Mary *run/*to run/runs.
- (a) is reference to construction of possible worlds, (b) to such constructed possible worlds, and (c) to actual or imaginarily realized worlds.

Category choice may reveal decision points for the INTENDED reference:

- (2) a. She played the piano for an hour/*in an hour.
 - She played the sonata *for an hour/in an hour.
 - c. She played the sonata for a year.
 - d. She played the piano in a year.

They can be thought of arising from the following choices:

- (3) a. played :: $(S \setminus NP)/NP$: $\lambda x \lambda y . play' xy$
 - b. played :: $(S\NP)/Long/Piece: \lambda y \lambda x \lambda z.perform'(iter'x(play'yz))z$
 - c. played :: $(S\NP)/Period/Instrmnt: \lambda y \lambda x \lambda z.practice'(iter'x(play'yz))z$
 - d. played :: $(S \ NP) / PP_{\rm schdl} / NP_{\rm score}: \lambda y \lambda x \lambda z. perform' (iter' x (play' yz)) z$
 - e. played :: $(S\NP)/PP_{\rm duration}/NP_{\rm tool}: \lambda y \lambda x \lambda z. practice'(iter' x (play' yz))z$

Compositionality in combinators may have something to say about these aspects.

- Thematic structure
- Argument structure
- Word order
- Tense
- Aspect
- Mood

A brief history of Linguistics

- Thematic structure from argument structure
- Argument structure from thematic structure
- syntax suffices
- semantics suffices
- Categorial grammarians: it is the correspondence, which seems necessary and sufficient
 - argument from necessity: syntactic identity of semantic differences (e.g. control verbs, ECM, raising)
 - argument from sufficiency: composition (surface constituency)
- How do we get syntactic forms, logical forms and phonological forms ON THE FLY?
- These "interfaces" must be quite trivial

Language of Thought

- There seems to be a universal conceptual space (things, actions, events)
- That space seems to be asymmetric
- All human languages are probably homomorphic in that space
- Since languages differ in surface structure, surface structure cannot be homomorphic to that space
- That brings us to WORD ORDER
- How do we capture BOTH aspects if parsing is a reflex? (Garrett)

Asymmetry and structure

- (4) a. The window broke. init'(broken'w')
 - b. The stone broke the window. $\lambda z. cause'(init'(broken'w'))st'z$
 - c. The man broke the window with a stone. cause'(init'(broken'w'))st'man'

init'state': an inchoative event culminating in state state'

What are these primes and LFs? Hypotheses about LOT.

Surface structure

(5) a. persuades :: $(S \setminus NP_{3s})/VP_{to-inf}/NP$ English

b. promises :: $(S\NP_{3s})/VP_{to-inf}/NP$

c. expects :: $(S \setminus NP_{3s})/VP_{\text{to-inf}}/NP$

d. broke :: $(S \setminus NP)/PP/NP$

e. broke :: $(S \setminus NP)/NP$

f. broke :: *S**NP*

g. gwelodd (saw.3s) :: $(S/NP)/NP_{3s}$ Welsh

h. iniutusan (order) :: $(S_{\mathrm{DV}}/\mathit{VP})/\mathit{NP}_{\mathrm{ANG,AGR}}/\mathit{NP}_{\mathrm{NG}}$ Tagalog

i. savundum (defended.1s) :: $S \setminus S'_{acc}$ Turkish

j. viu (saw.3s) :: $(S \setminus NP_{3s})/NP$ Portuguese

Categories: surface and argument structure

- (6) a. The window broke.
 - broke :: $S \setminus NP : \lambda x.init'(broken'x)$
 - b. The stone broke the window.

broke :: $(S\NP)/NP : \lambda x \lambda y \lambda z.cause'(init'(broken'x))y z$

c. The man broke the window with a stone.

$$(S\NP)/PP/NP : \lambda x \lambda y \lambda z. cause'(init'(broken'x)) y z$$

We get thematic structure as an inference over predicate-argument structure

Question

If surface structure is not homomorphic to universal conceptual structure, how do children learn the word order of their language?

Linguistic architecture

- projection to constituents of *string* :: *syn:sem*
- serialization of feature geometry from *string* and *syn*
 - normalization from syn and sem
 - - \downarrow inference and valuation

Conjecture

- Syntax is a HIDDEN variable for the child (NB. necessity of correspondence).
- She has to infer a CATEGORY from form-meaning pairs only (NB. sufficiency of correspondence).
- These pairs are subject to universal combinatorics. (ANALYSIS)
- These inferences set up a MENTAL GRAMMAR.
- Such grammars are necessarily PROBABILISTIC.
- Change the nature of categories, and we might end up with PLANS and SCRIPTS.

Now with full categories

- (7) a. persuades :: $(S \setminus NP_{3s})/VP_{\text{to-inf}}/NP : \lambda x \lambda p \lambda y. \textit{persuade'}(px) xy$ b. promises ::
 - ($S\NP_{3s}$)/ VP_{to-inf}/NP : $\lambda x \lambda p \lambda y$.promise'(py)xy
 - c. expects :: $(S \setminus NP_{3s})/VP_{\text{to-inf}}/NP$: $\lambda x \lambda p \lambda y. expect'(px)y$
 - d. broke :: $(S \setminus NP)/PP/NP$: $\lambda x \lambda y \lambda z$.cause'(init' broken' x) yz
 - e. broke :: $(S \setminus NP)/NP$: $\lambda x \lambda y \lambda z$.cause'(init' broken' x)yz
 - f. broke :: $S \setminus NP$: $\lambda x.init'(broken'x)$
 - g. gwelodd (saw.3s) :: $(S/NP)/NP_{3s}$: $\lambda x \lambda y.saw'yx$
 - h. iniutusan (order) :: $(S_{\rm DV}/VP)/NP_{\rm ANG,AGR}/NP_{\rm NG}: \lambda x \lambda y \lambda p. order'(py)yx$
 - i. savundum (defended.1s) :: $S_{\mathrm{pd}} \backslash S'_{\mathrm{acc}}$: $\lambda p.defend'pi' \land topic'i'$
 - j. viu (saw.3s) :: $(S \setminus NP_{3s})/NP_{rex}$: $\lambda x \lambda y.saw' xy$

Categorial Word order: not a metrical concept

(8) a. $(S\NP)/NP$: $\lambda x \lambda y . verb' xy$	(SVO)
b. $(S/NP)\NP: \lambda x \lambda y.verb'yx$	(SVO')
c. $(S/NP)\NP: \lambda x \lambda y.verb'xy$	(OVS)
d. $(S \setminus NP)/NP$: $\lambda x \lambda y . verb' yx$	(OVS')
e. $(S\NP)\NP: \lambda x \lambda y. verb' xy$	(SOV)
f. $(S\NP)\NP: \lambda x \lambda y.verb'yx$	(OSV)
g. $(S/NP)/NP$: $\lambda x \lambda y$.verb'xy	(VOS)
h. $(S/NP)/NP$: $\lambda x \lambda v. verb' vx$	(VSO)

Categorial Word order: not a metrical concept

(9) a. $(S \setminus NP)/NP$: $\lambda x \lambda y . verb' xy$	(SVO)	English
b. $(S/NP)\NP: \lambda x \lambda y.verb'yx$	(SVO')	Huastec
c. $(S/NP)\NP: \lambda x \lambda y.verb'xy$	(OVS)	Hixkaryana
d. $(S\NP)/NP$: $\lambda x \lambda y . verb' y x$	(OVS')	Päri
e. $(S\NP)\NP: \lambda x \lambda y.verb'xy$	(SOV)	Turkish
f. $(S\NP)\NP: \lambda x \lambda y.verb'yx$	(OSV)	Dyirbal
g. $(S/NP)/NP$: $\lambda x \lambda y . verb' x y$	(VOS)	Tagalog
h. $(S/NP)/NP$: $\lambda x \lambda y . verb' y x$	(VSO)	Welsh

A Micro Word-order Thought Experiment

- Syntax is a HIDDEN variable for the child.
- She has to infer a CATEGORY from form-meaning pairs only.
- These pairs are subject to universal combinatorics. (ANALYSIS)
- These inferences set up a MENTAL GRAMMAR.
- Such grammars are necessarily PROBABILISTIC.
- All word orders are available to the child IN THE BEGINNING.

My Lab in Cyberspace: TheBench

github.com/bozsahin/thebench

Probabilistic CG

L: Logical Form

S: Sentence

- D: Derivation
- ullet Hidden variable problem: heta are weights of lexical assumptions

$$\arg\max_{L} P(L \mid S; \bar{\theta}) = \arg\max_{L} \sum_{D} P(L, D \mid S; \bar{\theta}) \qquad (1)$$

- Ds are inferred, not observed.
- Relating probabilities and weights (hence categories):

$$P(L, D \mid S; \bar{\theta}) = \frac{e^{\bar{f}(L, D, S) \cdot \bar{\theta}}}{\sum_{L} \sum_{D} e^{\bar{f}(L, D, S) \cdot \bar{\theta}}}$$
(2)

• f(L, D, S): some local measure function (use counts etc.)

Parameter estimation: weight update

- Assume a mental grammar.
- Assume some data to be true (training set)
- What is assumed is form-meaning correspondence
- Parse-to-learn to re-estimate the parameters

Learning workflow

TRAINING SET

threw the dog mommy: throw (def dog) mommy; the dog ate the biscuit : eat (def biscuit) (def dog); the eat ate the biscuit : eat (def biscuit) (def cat); mommy ate the biscuit : eat (def biscuit) mommy; he biscuit ate mommy: eat (def biscuit) mommy; % not favor OVS mommy threw the ball : throw (def ball) mommy; mommy threw the dog : throw (def dog) mommy:

GRAMMAR updated GRAMMAR

Log-likelihood of training data S_i, L_i

Log-linear model of structure prediction

$$O(\bar{\theta}) = \sum_{i=1}^{n} \log P(L_i \mid S_i; \bar{\theta}) = \sum_{i=1}^{n} \log(\sum_{D} P(L_i, D \mid S_i; \bar{\theta})) \quad (3)$$

Derivative: How well each parameter serves training

$$\frac{\partial O}{\partial \theta_j} = E_{f_j(L_i, D, S_i) P(D|S_i, L_i; \bar{\theta})} - E_{f_j(L, D, S_i) P(L, D|S_i; \bar{\theta})}$$
(4)

Which is

$$\frac{\partial O}{\partial \theta_j} = \sum_{i=1}^n \sum_D f_j(L_i, D, S_i) P(D \mid S_i, L_i; \bar{\theta}) - \sum_{i=1}^n \sum_L \sum_D f_j(L, D, S_i) P(L, D \mid S_i; \bar{\theta})$$
(5)

Roughly, the expected value of item j's contribution to correct parses - contribution to all parses

NB. Both are expected values, not counts.

Too many items: we apply Stochastic Gradient to re-estimate

Initialize
$$\bar{\theta}$$
 to some value.

for
$$k = 0 \cdots N - 1$$

for $i = 1 \cdots n$
 $\bar{\theta} = \bar{\theta} + \frac{\alpha_0}{1 + c(i + kn)} \frac{\partial \log P(L_i | S_i; \bar{\theta})}{\partial \bar{\theta}}$

(6)

Micro-world experiment

- All possibilities for all verbs are entered in initial mental grammar.
- Give a set of utterances whose meanings are assumed to be known.
- Train the categories on probabilities coming from the parses.
- Some will increase, some decrease, some stay the same.
- How big is the difference from initial grammar?

The training set

```
the dog ate the biscuit : eat (def biscuit) (def dog);
the cat ate the biscuit : eat (def biscuit) (def cat);
mommy ate the biscuit : eat (def biscuit) mommy;
the biscuit ate mommy: eat (def biscuit) mommy;
mommy threw the ball : throw (def ball) mommy;
mommy threw the dog : throw (def dog) mommy;
threw the dog mommy: throw (def dog) mommy;
the dog saw mommy : see mommy (def dog) ;
mommy saw the dog : see (def dog) mommy;
the dog walked: walk (def dog);
the cat slept : sleep (def cat);
the cat walked : walk (def cat);
the dog : def dog;
the cat: def cat:
mommy: mommy;
```

Verb categories update: 3 verbs total \times 8 categories

Ate parameters

Threw parameters

Saw parameters

Summary

- These conditions are quite realistic for the child.
- A computationally efficient grammatical theory can attack the hidden-variable problem in syntax
- to fast convergence without brain switches,
- to meet the timeframe of language acquisition and the size of grammars children learn.
- Having a correspondence is the prerequisite (necessity).
- Having a compositional correspondence may be sufficient.