Assignment 5 FTS

Li Yuntian

October 13, 2022

1.
$$y_t = \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2}$$

(a)

$$\mu = E(y_t) = 0$$

$$Var(E_t) = \gamma_0 = (1 + \theta_1^2 + \theta_2^2)\sigma^2$$

(b)

$$\gamma_1 = E[(\varepsilon_t - \mu)(\varepsilon_{t-1} - \mu)] = (1 + \theta_1^2 + \theta_2^2)\sigma^2$$

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = (1 + \theta_1^2 + \theta_2^2)^{-1}(1 + \theta_1^2 + \theta_2^2)$$
(1)

$$\gamma_2 = E[(\varepsilon_t - \mu)(\varepsilon_{t-2} - \mu)] = -\theta_2 \sigma^2$$

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = (1 + \theta_1^2 + \theta_2^2)^{-1} (-\theta_2)$$
(2)

For i > 2

$$\gamma_i = E[(\varepsilon_t - \mu)(\varepsilon_{t-i} - \mu)] = 0$$

$$\rho_i = \frac{\gamma_i}{\gamma_0} = 0$$
(3)

- (c) Since it is a MA process, the stationarity always holds. The necessary and sufficient condition for invertibility is that all roots of the eigenequation are in the unit circle.
- 2. $y_t = c + \alpha_1 y_{t-1} + ... + \alpha_p y_{t-p} + e_t$, $e_t = \phi_1 e_{t-1} + ... + \phi_m e_{t-m} + \varepsilon_t$. Prove that $y_t \sim AR(m+p)$. Pf. Denote $1 \alpha_1 L ... \alpha_p L^p$ as $\alpha(L)$, and $1 \phi_1 L ... \phi_m L^m$ as $\phi(L)$. $\varepsilon_t = \phi(L) e_t$, and $e_t = \varepsilon_t \phi(L)^{-1}$, then $\alpha(L) y_t = c + \varepsilon_t \phi(L)^{-1}$, $\alpha(L) \phi(L) y_t = \phi(L) c + \varepsilon_t$, conforming to the expression of AR model. $\alpha(L) \phi(L) = \alpha_p L^p \phi_m L^m + ... = \alpha_p \phi_m L^{p+m} + ...$, and thus $y_t \sim AR(m+p)$.
- 3. $y_t = c + \alpha_1 y_{t-1} + \varepsilon_t \theta_1 \varepsilon t 1$
 - (a) Converting to MA form. We rewrite the equation.

$$(1 - \alpha_1 L)y_t = c + (1 - \theta_1 L)\varepsilon_t$$

$$y_t = (1 - \alpha_1 L)^{-1}c + (1 - \alpha_1 L)^{-1}(1 - \theta_1 L)\varepsilon_t$$

$$= (1 - \alpha_1 L)^{-1}c + (1 + \alpha_1 L + \alpha_1^2 L^2 + ...)(1 - \theta_1 L - \theta_1^2 L^2 - ...)\varepsilon_t$$

$$= (1 - \alpha_1 L)^{-1}c + \varepsilon_t - [(\theta_1 - \alpha_1)\varepsilon_{t-1} + \alpha_1(\theta_1 - \alpha_1)\varepsilon_{t-2} + ...]$$
(4)

(b) Converting to AR form. rewrite the equation.

$$(1 - \alpha_1 L)y_t = c + (1 - \theta_1 L)\varepsilon_t$$

$$(1 - \alpha_1 L)(1 + \theta_1 L + \theta_1^2 L^2 + \dots)y_t = (1 - \theta_1 L)^{-1}c + \varepsilon_t$$

$$(1 - \alpha_1 L)(1 - \theta_1 L)y_t = (1 - \theta_1 L)^{-1}c + \varepsilon_t$$

$$y_t + (\theta_1 - \alpha_1)y_{t-1} + \theta_1(\theta_1 - \alpha_1)y_{t-2} + \dots = (1 - \theta_1 L)^{-1}c + \varepsilon_t$$

So

$$y_t = (\alpha_1 - \theta_1)y_{t-1} + \theta_1(\alpha_1 - \theta_1)y_{t-2} + \dots + (1 - \theta_1 L)^{-1}c + \varepsilon_t$$
 (5)

(c) If $\alpha_1 = \theta_1$. Then (4) turns into $y_t = (1 - \alpha_1 L)^{-1} c + \varepsilon_t$, and (5) turns into $y_t = (1 - \theta_1 L)^{-1} c + \varepsilon_t$.