ω_1 is Countably Reasonable

September 7, 2016

We assume AD for these notes.

1 Pointclasses

Definition 1.0.1. We say that $\Gamma \subseteq \mathcal{P}(\mathbb{R})$ is a **pointclass** if whenever $f : \mathbb{R} \to \mathbb{R}$ is continuous, and $A \in \Gamma$, $f^{-1}[A] \in \Gamma$.

If Γ is a pointclass, then $\check{\Gamma} = \{\mathbb{R} - A : A \in \Gamma\}$; we also set $\Delta = \Gamma \cap \check{\Gamma}$.

 Γ is **selfdual** iff $\Gamma = \check{\Gamma}$.

Definition 1.0.2. Suppose Γ is a pointclass. $A \subseteq \mathbb{R}$ is **universal** for Γ iff whenever $B \in \Gamma$, there is a continuous function $f : \mathbb{R} \to \mathbb{R}$ so that $B = f^{-1}[A]$. If A is universal for Γ , then $A \notin \check{\Gamma}$.

Definition 1.0.3. A regular norm on a set $A \subseteq \omega^{\omega}$ is a map ϕ from A onto an ordinal.

Let Γ be a point class. A norm $\phi: A \to \text{On}$ is a Γ -norm iff there are $\Gamma, \check{\Gamma}$ binary relations \leq_{ϕ}^{Γ} , so that for all $y \in A$,

$$\forall x \left[(x \in A \land \phi(x) \leq \phi(y)) \iff x \leq_{\phi}^{\Gamma} y \iff x \leq_{\phi}^{\check{\Gamma}} y \right].$$

A pointclass Γ has the **prewellordering property** (pwo(Γ)) if every $A \in \Gamma$ admits a Γ -norm.

Definition 1.0.4. A prewellorder is a relation \leq satisfying all of the properties of a well-order except that we allow $a \leq b$ and $b \leq a$ when $a \neq b$.

The existence of a regular norm on a set is equivalent to the existence of a prewellorder.

 \prec is a Γ -prewellorder iff the derived norm is a Γ -norm.

If \leq is a prewellorder on A, then $|\leq|$ is the rank of \leq .

Remark 1.0.1. Π_1^1 has the prewellordering property.

Definition 1.0.5. Suppose that Γ has the prewellordering property. Then

$$\delta(\mathbf{\Gamma}) = \sup\{| \leq | \leq \text{ is a } \Delta \text{ norm}\}.$$

Theorem 1.0.1. $\delta(\Pi_1^1) = \omega_1$.

Proposition 1.0.1. Suppose Γ is a non-selfdual pointclass closed under \forall^1 , \vee and that $pwo(\Gamma)$. Suppose $P \in \Gamma - \check{\Gamma}$, and $\phi: P \to \alpha$ is a regular Γ -norm. Let $\gamma < \alpha$. Then

$$\{x \in P : \phi(x) \le \gamma\} \in \Delta$$

Proof. Let $A = \{x \in P : \phi(x) \le \gamma\}$. Let $y \in P$ be so that $\phi(y) = \gamma$. Then

$$x \in A \iff x \in P \land \phi(x) \le \phi(y).$$

But then $x \in A \iff x \leq_{\phi}^{\Gamma} y$ and $x \in A$ iff $x \leq_{\phi}^{\check{\Gamma}} y$. This shows that $A \in \Delta$.

Theorem 1.0.2. Let Γ be non-selfdual and closed under \forall^1, \wedge, \vee , and assume $pwo(\Gamma)$. Suppose P is a universal Γ set and $\phi: P \to \delta(\Gamma)$ is a Γ -norm. Suppose $A \subseteq P$ is in $\check{\Gamma}$. Then $\phi[A]$ is bounded below $\delta(\Gamma)$.

2 Partition Properties

Definition 2.0.6. If $f: \alpha \to \text{On}$, then f has uniform cofinality ω iff there is a function $f': \omega \times \alpha \to \text{On so that}$

$$(\forall \beta < \alpha) [f(\beta) = \sup\{f'(\beta', n) : n < \omega\}]$$

and

$$(\forall \beta < \alpha)(\forall n, m \in \omega) [n < m \implies f'(\beta, n) < f'(\beta, m)].$$

Definition 2.0.7. We say $f: \alpha \to \text{On}$ is **of the correct type** if f is increasing, everywhere discontinuous, and of uniform cofinality ω .

Definition 2.0.8. Let κ be a cardinal and $\lambda \leq \kappa$. Then $[\kappa]^{\lambda}$ is the set of increasing function from λ to κ .

We write $\kappa \to (\kappa)^{\lambda}$ to mean the following: for every $P : [\kappa]^{\lambda} \to 2$, there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and P is constant on $[H]^{\lambda}$.

We write $\kappa \stackrel{cub}{\to} (\kappa)^{\lambda}$ to mean the following: for every $P : [\kappa]^{\lambda} \to 2$, there is a club $C \subseteq \kappa$ and an $i \in 2$ so that for all $f : \lambda \to C$ of the correct type, P(f) = i.

Proposition 2.0.2. For all cardinals κ and ordinals $\lambda \leq \kappa$:

- 1. if $\kappa \stackrel{cub}{\rightarrow} (\kappa)^{\lambda}$, then $\kappa \rightarrow (\kappa)^{\lambda}$, and
- 2. if $\kappa \to (\kappa)^{\omega \lambda}$, then $\kappa \stackrel{cub}{\to} (\kappa)^{\lambda}$.

Proof. We prove part 1. So suppose that $\kappa \stackrel{cub}{\to} (\kappa)^{\lambda}$. Let $P : [\kappa]^{\lambda} \to 2$. Then there is a club $C \subseteq \kappa$ an $i \in 2$ so that for all $f : \lambda \to C$ of the correct type, P(f) = i. Let $f_C : \kappa \to C$ be the enumeration of C. Define $g : \kappa \to \kappa$ by

$$g(\alpha) = \sup\{f_C(\beta) : \beta < \alpha + \omega\}$$

Let $H = g[\kappa]$. Note that $H \subseteq C$ and $|H| = \kappa$. Let $f : \lambda \to H$ be increasing. Define $f' : \lambda \times \omega \to \kappa$ by

$$f'(\beta, n) = f_C(g^{-1}(f(\beta)) + n).$$

Then f' witnesses that f has uniform cofinality ω . Also, f is everywhere discontinuous. So P(f) = i.

Definition 2.0.9. κ has the strong partition property if $\kappa \to (\kappa)^{\kappa}$. κ has the weak partition property if $\kappa \to (\kappa)^{\lambda}$ for all $\lambda < \kappa$.

Remark 2.0.2. Under the axiom of choice, $\kappa \to (\kappa)^{\omega}$ is false for all cardinals κ .

3 Reasonability

Definition 3.0.10. Let κ be a regular cardinal, $\lambda \in \text{On}$, $\lambda \leq \kappa$. We say κ is λ -reasonable iff there is a non-selfdual pointclass Γ closed under \exists^1 , and a map $\phi : \omega^\omega \to \mathcal{P}(\lambda \times \kappa)$ so that

- 1. $(\forall F: \lambda \to \kappa)(\exists x \in \omega^{\omega})[\phi(x) = F],$
- 2. $(\forall \beta < \lambda)(\forall \gamma < \kappa)[R_{\beta,\gamma} \in \Delta]$, where

$$x \in R_{\beta,\gamma} \iff [(\beta,\gamma) \in \phi(x) \land (\forall \gamma' < \kappa)[(\beta,\gamma') \in \phi(x) \implies \gamma' = \gamma]],$$

3. Suppose $\beta < \lambda$, $A \in \exists^1 \Delta$, and $A \subseteq R_\beta$, where $R_\beta = \bigcup_{\gamma < \kappa} R_{\beta,\gamma}$. Then

$$(\exists \gamma_0 < \kappa)(\forall x \in A)(\exists \gamma < \gamma_0)[x \in R_{\beta,\gamma}].$$

We κ is **reasonable** iff if is κ -reasonable.

Theorem 3.0.3 (Martin). If κ is $\omega \lambda$ -reasonable, then $\kappa \to (\kappa)^{\lambda}$.

Proof. Let Γ , Δ , and ϕ be witnesses to the fact that κ is $\omega \lambda$ -reasonable. We will show that $\kappa \stackrel{cub}{\to} (\kappa)^{\lambda}$. Claim 1. Δ is closed under $< \kappa$ unions and intersections. We do not prove this.

Let $P: [\kappa]^{\lambda} \to 2$. Consider the following game:

where II wins under the following criteria:

- If there is a least $\beta < \omega \lambda$ so that $x \notin R_{\beta}$ or $y \notin R_{\beta}$, then II wins if $x \notin R_{\beta}$.
- Otherwise, let $f_x, f_y : \omega \lambda \to \kappa$ be the functions x and y determine. Define $f_{x,y} : \lambda \to \kappa$ by

$$f_{x,y}(\beta) = \sup\{\max(f_x(\beta'), f_y(\beta')) : \beta' < \omega(\beta+1)\}.$$

II wins iff $P(f_{x,y}) = 1$.

First assume that II has a winning strategy τ . For $\beta < \omega \lambda$ and $\gamma < \kappa$, define $S_{\beta,\gamma} \subseteq \omega^{\omega}$ by

$$x \in S_{\beta,\gamma} \iff (\forall \beta' \le \beta)(\exists \gamma' \le \gamma)[x \in R_{\beta',\gamma'}].$$

Note that $S_{\beta,\gamma} \in \Delta$. Hence, for all $\beta < \omega \lambda$ and $\gamma < \kappa$, $\tau[S_{\beta,\gamma}] \in \exists^1 \Delta$. Note also that $\tau[S_{\beta,\gamma}] \subseteq R_{\beta}$. Thus there is a $\delta_0 < \kappa$ so that for all $y \in \tau[S_{\beta,\gamma}]$, there is a $\delta < \delta_0$ so that $y \in R_{\beta,\delta}$. Define $\psi : \omega \lambda \times \kappa \to \kappa$ by

$$\psi(\beta, \gamma) = \sup \{ \phi(y)(\beta) : y \in \tau[S_{\beta, \gamma}] \}.$$

Note that if $\gamma \leq \gamma'$, then $\psi(\beta, \gamma) \leq \psi(\beta, \gamma')$. For $\beta < \omega \lambda$, let $C_{\beta} \subseteq \kappa$ be the set of points closed under $\psi(\beta, \cdot)$. Let $C = \bigcap_{\beta < \omega \lambda} C_{\beta}$. Note that C is a club and if $\beta < \omega \lambda$ and $\gamma \in C$, then $\psi(\beta, \gamma) \in C$. Let C' be the limit points of C.

Suppose $F: \lambda \to C'$ is of the correct type. We will show that P(F) = 1. Let x be so that $\phi(x)$ determines a function $f_x: \omega \lambda \to C$ with

$$F(\beta) = \sup\{f_x(\beta') : \beta' < \omega(\beta + 1)\}\$$

and so that $f_x(\beta) \geq \beta$ for all β . Let $y = \tau(x)$. As II is winning and $x \in R_{\beta}$ for all β , $y \in R_{\beta}$ for all β as well. So y determines a function $f_y : \omega \lambda \to \kappa$. Fix $\beta < \omega \lambda$. Then $x \in S_{\beta, f_x(\beta)}$ and $x \in S_{\beta+1, f_x(\beta+1)}$, and $f_x(\beta)$, $f_x(\beta+1)$ are least with this property. Now $y \in \tau[S_{\beta, f_x(\beta)}]$, and $\psi(\beta, f_x(\beta)) = \min\{\alpha \in C : \alpha \geq f_x(\beta)\} \leq f_x(\beta+1)$. Thus $f_y(\beta) \leq f_x(\beta+1)$. So $F = f_{x,y}$, and therefore P(F) = 1.

Theorem 3.0.4. Let Γ be a non-selfdual pointclass closed under \forall^1, \wedge, \vee , and assume $pwo(\Gamma)$. Let $\delta = \delta(\Gamma)$. Then $\delta \to (\delta)^{\lambda}$ for all $\lambda < \omega_1$.

Proof. Fix λ , and a fix a bijection $\pi : \omega \to \lambda$. Fix a **Γ**-universal set P and a Γ-norm ψ on P. Say ψ is onto δ . Define $\phi : \mathbb{R} \to \mathcal{P}(\lambda \times \delta)$ by

$$(\beta, \gamma) \in \phi(x) \iff (x_{\pi^{-1}(\beta)} \in P \land \psi(x_{\pi^{-1}(\beta)}) = \gamma).$$

 ϕ and Γ will show that δ is λ -reasonable. We show that ϕ satisfies condition 1. Let $F: \lambda \to \delta$. Fix $\beta < \lambda$. Let $n = \pi^{-1}(\beta)$. Let x_n be so that $\psi(x_n) = F(\beta)$. Let $x = \langle x_0, x_1, \cdots \rangle$. Then $\phi(x) = F$. So condition 1 is satisfied. We now check condition 2. Let $\beta < \lambda$ and $\gamma < \delta$. Then

$$x \in R_{\beta,\gamma} \iff [(\beta,\gamma) \in \phi(x) \land (\forall \gamma' < \delta)[(\beta,\gamma') \in \phi(x) \implies \gamma' = \gamma]]$$

$$\iff [(x_{\pi^{-1}(\beta)} \in P \land \psi(x_{\pi^{-1}(\beta)}) = \gamma) \land (\forall \gamma' < \delta)[\psi(x_{\pi^{-1}(\beta)}) = \gamma' \implies \gamma' = \gamma]]$$

$$\iff [x_{\pi^{-1}(\beta)} \in P \land \psi(x_{\pi^{-1}(\beta)}) = \gamma]$$

which shows that $R_{\beta,\gamma} \in \Delta$. So condition 3 is satisfied.

We now show that condition 3 is satisfied. Fix $\beta < \lambda$ and $A \in \exists^1 \Delta$ so that $A \subseteq R_{\beta}$. Since Γ is closed under \forall^1 , $\check{\Gamma}$ is closed under \exists^1 . Thus $A \in \check{\Gamma}$. Since $A \subseteq R_{\beta}$, $A_{\beta} = \{x_{\pi^{-1}(\beta)} : x \in A\} \subseteq P$. Note also that $A_{\beta} \in \check{\Gamma}$. So $\psi[A_{\beta}]$ is a bounded subset of δ . Therefore there is a $\gamma_0 < \delta$ so that for all $x \in A_{\beta}$, $\psi(x) < \gamma_0$. But then for all $x \in A$, there is a $\gamma < \gamma_0$ so that $x \in R_{\beta,\gamma}$. So condition 4 is satisfied.

Corollary 3.0.1. ω_1 has the weak partition property. I.e., $\omega_1 \to (\omega_1)^{\alpha}$ for all $\alpha < \omega_1$.

Proof. Recall that Π_1^1 is a non-selfdual pointclass closed under \wedge , \vee , and \forall^1 , that pwo(Π_1^1), and that $\omega_1 = \delta(\Pi_1^1)$.