Chapter 4

Decidable Theories of First-Order Logic

In this part of the book, we will look into constraint-based techniques for verification. The idea is to take a correctness property and encode it as a set of constraints. By solving the constraints, we can decide whether the correctness property holds or not.

The constraints we will use are formulas in *first-order logic* (FOL). FOL is a very big and beautiful place, but neural networks only live in a small and cozy corner of it—the corner that we will explore in this chapter.

4.1 Propositional Logic

We begin with the purest of all, *propositional logic*. A formula φ in propositional logic is over Boolean variables that are traditionally given the names p, q, r, ... A formula φ is defined using the following grammar:

$$\varphi:-$$
 true false var Variable $| \varphi \wedge \varphi |$ Conjunction (and) $| \varphi \vee \varphi |$ Disjunction (or) $| \neg \varphi |$ Negation (not)

Essentially, a formula in propositional logic defines a circuit with Boolean variables, AND gates (\land), OR gates (\lor), and NOR gates (\neg). At the end of the day, all programs can be defined as circuits, because everything is a bit on a computer and there is a finite amount of memory, and therefore a finite number of variables.

As an example, here is a formula $\varphi \triangleq (p \land q) \lor \neg r$. Observe the use of \triangleq ; this is to denote that we are syntactically defining φ to be the formula on the right of \triangleq , as opposed to saying that the two formulas are semantically equivalent (more on this in a bit). We will use $fv(\varphi)$ to denote the set of *free* variables appearing in the formula. For now, it is the set of all variables that are syntactically present in the formula; for example, in $fv(\varphi) = \{p, q, r\}$.

Interpretations

Let φ be a formula over a set of variables $fv(\varphi)$. An interpretation I of φ is a map from variables $fv(\varphi)$ to true or false. For example,

$$I = \{p \mapsto \mathsf{true}, q \mapsto \mathsf{true}, r \mapsto \mathsf{false}\}$$

Given an interpretation I of a formula φ , we will use $I(\varphi)$ to denote the formula where we have replaced each variable $fv(\varphi)$ with its interpretation in I. For example, applying I above to $(p \land q) \lor \neg r$, we get

$$(true \land true) \lor \neg false$$

Satisfiability

We will define the following evaluation or simplification rules for a formula:

$$\begin{array}{lll} \operatorname{eval}(\operatorname{true}) & = & \operatorname{true} \\ \operatorname{eval}(\operatorname{false}) & = & \operatorname{false} \\ \\ \operatorname{eval}(\operatorname{true} \wedge \varphi) & = & \operatorname{eval}(\varphi) \\ \operatorname{eval}(\varphi \wedge \operatorname{true}) & = & \operatorname{eval}(\varphi) \\ \\ \operatorname{eval}(\operatorname{false} \wedge \varphi) & = & \operatorname{false} \\ \operatorname{eval}(\varphi \wedge \operatorname{false}) & = & \operatorname{false} \\ \\ \operatorname{eval}(\operatorname{false} \vee \varphi) & = & \operatorname{eval}(\varphi) \\ \operatorname{eval}(\varphi \vee \operatorname{false}) & = & \operatorname{eval}(\varphi) \\ \operatorname{eval}(\operatorname{true} \vee \varphi) & = & \operatorname{true} \\ \\ \operatorname{eval}(\varphi \vee \operatorname{true}) & = & \operatorname{true} \\ \end{array}$$

$$eval(\neg true) = false$$

 $eval(\neg false) = true$

If a given formula has no free variables, then applying these rules repeatedly, you will get true or false. We will use $eval(\varphi)$ to denote the simplest form of φ we can get by repeatedly applying the above rules.

A formula φ is *satisfiable* (SAT) if and only if there exists an interpretation *I* such that

$$eval(I(\varphi)) = true$$

in which case we will say that *I* is a *model* of φ and denote it

$$I \models \varphi$$

We will also use $I \not\models \varphi$ to denote that I is not a model of φ . It follows from our definitions that $I \not\models \varphi$ iff $I \models \neg \varphi$.

Equivalently, a formula φ is *unsatisfiable* (UNSAT) if and only if for every interpretation I we have $eval(I(\varphi)) = false$.

Validity and equivalence

To prove properties of neural networks, we will be asking *validity* questions. A formula φ is valid iff every possible interpretation I is a model of φ . It follows that a formula φ is valid if and only if $\neg \varphi$ is unsatisfiable.

We will say that two formulas, φ_1 and φ_2 , are *equivalent* if and only if every model I of φ_1 is a model of φ_2 , and vice versa. We will denote equivalence as $\varphi_1 \equiv \varphi_2$.

Implication and bi-implication

We will often use an *implication* $\varphi_1 \Rightarrow \varphi_2$ to denote the formula

$$\neg \varphi_1 \lor \varphi_2$$

Similarly, we will use a *bi-implication* $\varphi_1 \iff \varphi_2$ to denote the formula

$$(\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1)$$

4.2 First-Order Theories

We can now extend propositional logic using *theories*.