Discussion 10

2022.05.19

林维嘉 linwj@shanghaitech.edu.cn

Outline

Unsupervised Learning

- Clustering
- Dimension Reduction

Types of Learning

- Supervised Learning
 - Classification
 - Regression
- Semi-supervised Learning
- Active Learning
- Unsupervised Learning
 - Clustering
 - Dimension Reduction
- Reinforcement Learning

• ...

Clustering Analysis

- Top-down
- Bottom-up
- Key questions:
 - How to measure proximity?
 - How to choose the number of clusters?
 - Initialization

K-means

Input: A set of n data points $\{x_1, x_2, ..., x_n\}$ in \mathbb{R}^d and target # clusters \mathbb{R}^d

Output: k representatives $c_1, c_2, ..., c_k$ in R^d

Objective: choose $c_1, c_2, ..., c_k$ to minimize

$$\min_{c} \sum_{i=1}^{n} \min_{j \in \{1,2,\dots,k\}} ||x_i - c_j||^2$$

Lloyd's method

Input: A set of n data points $\{x_1, x_2, ..., x_n\}$ in \mathbb{R}^d

Initialize: centers $c_1, c_2, ..., c_k$ in R^d and clusters $C_1, C_2, ..., C_k$ in any way.

Repeat until there is no further change in the cost.

- For each $j: C_j \leftarrow \{x \in S \text{ whose closest center is } c_j\}$
- For each $j: c_j \leftarrow \text{mean of } C_j$

Basic Algorithm:

- Calculate the Laplacian L
- Calculate the first k eigenvectors (the eigenvectors corresponding to the k smallest eigenvalues of L)
- Consider the matrix formed by the first k eigenvectors; the l-th row defines the features of graph node l
- Cluster the graph nodes based on these features (e.g. using k-means clustering)

Construct a graph for all the data points: G = (V, E, W)

- *V*: vertices, in this case each data point is a vertex
- *E*: edges between two vertices
- W: weighted adjacency matrix, w_{ij} denotes the weight of the vertex between v_i and v_j
 - Non-negative: $w_{ij} \ge 0$
 - Symmetric: $w_{ij} = w_{ji}$
- Take the clustering problem as a graph cut problem

First, we can construct a similarity matrix S of all the data points.

e.g. Euclidean Distance,
$$s_{ij} = ||x_i - x_j||_2^2$$

Then, based on S, we can construct weighted adjacency matrix W

• ε-neighborhood graph

$$w_{ij} = \begin{cases} 0, s_{ij} > \varepsilon \\ \varepsilon, s_{ij} \le \varepsilon \end{cases}$$

KNN graph

$$w_{ij} = \begin{cases} 0, v_i \notin knn(v_j) \text{ or } v_j \notin knn(v_i) \\ \frac{1}{s_{ij}}, v_i \in knn(v_j) \text{ and } v_j \in knn(v_i) \end{cases}$$

• Fully connected graph

$$w_{ij} = e^{-\frac{||x_i - x_j||_2^2}{2\sigma^2}}$$

Degree matrix *D*: diagonal

$$D_{ii} = \sum_{j=1}^{n} w_{ij}$$

Unnormalized Graph Laplacian matrix: L = D - W

Properties of *L*:

(1)
$$\forall f \in R^n, f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$$

- (2) L is symmetric and positive semi-definite
- (3) L's smallest eigenvalue is 0 and its corresponding eigenvector is the all one vector $\bf 1$
- (4) L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Proof Property (1) by the definition of d_i

Plug
$$L = D - W$$

$$f^{T}Lf = f^{T}Df - f^{T}Wf$$

$$= \sum_{i=1}^{n} D_{ii}f_{i}^{2} - \sum_{i,j=1}^{n} w_{ij}f_{i}f_{j}$$

$$= \frac{1}{2} \left[\sum_{i=1}^{n} D_{ii}f_{i}^{2} - 2 \sum_{i,j=1}^{n} w_{ij}f_{i}f_{j} + \sum_{j=1}^{n} D_{jj}f_{j}^{2} \right]$$

$$= \frac{1}{2} \left[\sum_{i=1}^{n} \left(\sum_{j=1}^{n} w_{ij} \right) f_{i}^{2} - 2 \sum_{i,j=1}^{n} w_{ij}f_{i}f_{j} + \sum_{j=1}^{n} \left(\sum_{i=1}^{n} w_{ji} \right) f_{j}^{2} \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n} w_{ij}(f_{i} - f_{j})^{2}$$

Property (2) is obvious by Property (1)

Proof Property (3)

$$L\mathbf{1} = (D - W)\mathbf{1}$$
$$= D\mathbf{1} - W\mathbf{1}$$

$$= \begin{bmatrix} D_{11} \\ \vdots \\ D_{nn} \end{bmatrix} - \begin{bmatrix} \sum_{j=1}^{n} w_{1j} \\ \vdots \\ \sum_{j=1}^{n} w_{nj} \end{bmatrix}$$
$$= \mathbf{0} = 0 \times \mathbf{1}$$

Property (4) is obvious by Property (1)-(3)

Normalized Graph Laplacian matrix:

$$L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$
$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{sym} and L_{rw} :

(1)
$$\forall f \in R^n, f^T L_{sym} f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (\frac{f_i}{\sqrt{D_{ii}}} - \frac{f_j}{\sqrt{D_{jj}}})^2$$

- (2) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{\frac{1}{2}}u$
- (3) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $Lu = \lambda Du$
- (4) 0 is an eigenvalue of L_{rw} with the constant one vector $\mathbf{1}$ as eigenvector; 0 is an eigenvalue of L_{sym} with eigenvector $D^{\frac{1}{2}}\mathbf{1}$
- (5) L_{sym} and L_{rw} are positive semi-definite and have n non-negative, real-valued eigenvalues $0=\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$

G = (V, E): an undirected graph with non-negative weights

Given a subset $A \subset V$, we denote its complement $V \setminus A$ by \bar{A}

For two subsets $A, B \subset V$, we define:

$$W(A,B) = \sum_{v_i \in A, v_j \in B} w_{ij}$$

The non-empty sets A_1,A_2,\ldots,A_k form a partition of the graph G=(V,E) if $A_i\cap A_j=\emptyset$ and $A_1\cup\cdots\cup A_k=V$

For a partition $A_1, A_2, ..., A_k$, we define:

$$cut(A_1, A_2, ..., A_k) = \frac{1}{2} \sum_{i=1}^{k} W(A_i, \overline{A_i})$$

How to measure the "size" of a subset $A \subset V$?

- $|A| \leftarrow$ the number of vertices in A
- $vol(A) \leftarrow \sum_{i \in A} D_{ii}$

RatioCut:

$$RatioCut(A_1, A_2, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

Ncut:

$$NCut(A_1, A_2, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{vol(A_i)}$$

RatioCut Case:

We define k indicator vectors $h_j = \left[h_{1j}, h_{2j}, \dots, h_{nj}\right]^T$

$$h_{ij} = \begin{cases} \frac{1}{\sqrt{|A_j|}}, & \text{if } v_i \in A_j \\ 0, & \text{otherwise} \end{cases}$$

where i = 1, 2, ..., n and j = 1, 2, ..., k

Let us consider: $h_p^T L h_p = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (h_{ip} - h_{jp})^2$

$$= \frac{1}{2} \sum_{v_i \in A_p, v_j \in \overline{A_p}} w_{ij} \left(\frac{1}{\sqrt{|A_p|}} - 0 \right)^2 + \frac{1}{2} \sum_{v_i \in \overline{A_p}, v_j \in A_p} w_{ij} \left(\frac{1}{\sqrt{|A_p|}} - 0 \right)^2$$

$$= \frac{1}{2} \frac{1}{|A_p|} \left[W(A_p, \overline{A_p}) + w(\overline{A_p}, A_p) \right]$$

$$= \frac{cut(A_p, \overline{A_p})}{|A_p|}$$

Let $H = [h_1, h_2, ..., h_k] \in \mathbb{R}^{n \times k}$, which contains those k indicator vectors as columns.

Note that the columns in H are orthonormal to each other, that is $H^TH = I$

$$h_p^T L h_p = (H^T L H)_{pp}$$

$$RatioCut(A_1, A_2, ..., A_k) = \sum_{i=1}^{k} \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

$$= \sum_{i=1}^{k} h_i^T L h_i$$

$$= \sum_{i=1}^{k} (H^T L H)_{ii}$$

$$= Tr(H^T L H)$$

The problem of minimizing $RatioCut(A_1, A_2, ..., A_k)$ can be rewritten as:

$$\min_{A_1,...,A_k} Tr(H^T L H)$$

$$s_{\bullet} t_{\bullet} H^T H = I$$

Still NP-hard !!!

Relaxation: allow the entries of the matrix H to take arbitrary real values.

$$\min_{H \in R^{n \times k}} Tr(H^T L H)$$
s.t. $H^T H = I$

Recall: L has n non-negative, real-valued eigenvalues $0=\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$

According to Rayleigh-Ritz theorem, the solution is given by choosing H as the matrix which contains the first k eigenvectors of L as columns.

NCut Case:

We define k indicator vectors $h_j = \left[h_{1j}, h_{2j}, \dots, h_{nj}\right]^T$

$$h_{ij} = \begin{cases} \frac{1}{\sqrt{vol(A_j)}}, & if \ v_i \in A_j \\ 0, & otherwise \end{cases}$$

where i = 1, 2, ..., n and j = 1, 2, ..., k

$$h_p^T L h_p = \frac{cut(A_p, \overline{A_P})}{vol(A_p)}$$

Let $H = [h_1, h_2, ..., h_k] \in \mathbb{R}^{n \times k}$, which contains those k indicator vectors as columns.

Note that $H^TH = I$

$$h_p^T L h_p = (H^T L H)_{pp}$$
$$h_p^T D h_p = 1 \Rightarrow H^T D H = I$$

The problem of minimizing $NCut(A_1, A_2, ..., A_k)$ can be rewritten as:

$$\min_{A_1,...,A_k} Tr(H^T L H)$$

$$s.t. H^T D H = I$$

Relaxation: allow the entries of the matrix H to take arbitrary real values.

$$\min_{H \in R^{n \times k}} Tr(H^T L H)$$
s.t. $H^T D H = I$

Let
$$B = D^{\frac{1}{2}}H \Rightarrow H = D^{-\frac{1}{2}}B$$

$$\min_{H \in R^{n \times k}} Tr(B^T D^{-\frac{1}{2}} L D^{-\frac{1}{2}} B)$$

$$s.t. B^T B = I$$

According to Rayleigh-Ritz theorem, the solution is given by choosing B as the matrix which contains the first k eigenvectors of L_{sym} as columns.

Basic Algorithm:

- Calculate the Laplacian L
- Calculate the first k eigenvectors (the eigenvectors corresponding to the k smallest eigenvalues of L)
- Consider the matrix formed by the first k eigenvectors; the l-th row defines the features of graph node l
- Cluster the graph nodes based on these features (e.g. using k-means clustering)

PCA

A set of n data points $\{x_1, x_2, ..., x_n\}$ in R^D , $X \in R^{D \times n}$

Principal components: let $v_1, v_2, ..., v_d$ denote the d principal component

- Projections of data $(d \ll D)$
- Mutually Uncorrelated (orthogonal)

$$v_i.v_j = 0$$
, $i \neq j$ and $v_i.v_j = 1$, $i = j$

Ordered in variance

PCA

Centralization: $x_i - \bar{x}$

Covariance matrix: $\frac{1}{n}XX^T$

Objective function:

$$\max_{V} V^{T} X X^{T} V$$

$$s. t. V^{T} V = I$$

Apply Lagrange Multiplier:

$$(XX^T)V = V\Lambda$$

where Λ is a diagonal matrix

Kernel PCA

$$\phi: R^D \to R^p \ (D < P) \ F: R^p$$

Data matrix: $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{D \times n}$; $\phi(X) = [\phi(x_1), \phi(x_2), ..., \phi(x_N)] \in \mathbb{R}^{P \times n}$

Centralization

Covariance matrix: $C_F = \frac{1}{n} \sum_{i=1}^n \phi(x_i) \phi(x_i)^T = \frac{1}{n} \phi(X) \phi(X)^T$

Eigenvalue Decomposition: $C_F P = \lambda P$

Consider
$$\lambda \neq 0 \Rightarrow P = \frac{1}{n} \frac{1}{\lambda} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T P = \frac{1}{n} \sum_{i=1}^{n} \alpha_i \phi(x_i) = \frac{1}{n} \phi(X) \alpha$$

Kernel PCA

$$\frac{1}{n}\phi(X)\phi(X)^T\frac{1}{n}\phi(X)\alpha=\lambda\frac{1}{n}\phi(X)\alpha$$

$$\Rightarrow \frac{1}{n}\phi(X)^T\phi(X)\phi(X)^T\phi(X)\alpha=\lambda\phi(X)^T\phi(X)\alpha$$
 Let $K=\phi(X)^T\phi(X)$
$$\frac{1}{n}KK\alpha=\lambda K\alpha$$
 where $K\in R^{n\times n}$ and $K_{ij}=\phi(x_i)^T\phi(x_j)$