問題1

 $n \in \mathbb{Z}$ に対して、 \mathbb{Z}_n を考える. \mathbb{Z}_n が話に関して群になることはよく知られている。

- 1. \mathbb{Z}_3 , および \mathbb{Z}_4 の積に関する表を作り、どちらも環となることを確認せよ.
- 2. 一般の $n \in \mathbb{N}$ に対して、 $(\mathbb{Z}_n, +, \times)$ が環になることを確認せよ.
- 3. \mathbb{Z}_3 , \mathbb{Z}_4 はそれぞれ整域であるかどうかを判定せよ.
- 4. \mathbb{Z}_3 , \mathbb{Z}_4 はそれぞれ体であるかどうか判定せよ.
- 5. 体は整域であることを示せ.
- 6. 素数 p に対して、 $(\mathbb{Z}_p, +, \times)$ は体になることを示せ.

解答

- 1. 略
- 2. 略
- 3. \mathbb{Z}_3 について 3 は素数であり、問題 6 から体.したがって、整域
 - \mathbb{Z}_4 について $[2] \in \mathbb{Z}_4$ は $[2] \cdot [2] = [4] = [0]. よって、<math>[2]$ は [2] の零因子なので、 \mathbb{Z}_4 は整域でない.
- ₹ Z₃について
 - Z₄について
 Z₄は整域でないので、体でもない。
- 5. 1

問題 2

Rを環、そのイデアルをJとする

- 1. Jがイデアルであることの定義をかけ
- 2. イデアルJに単位元が含まれれば、J=Rとなることを示せ
- 3. 体には自明なイデアルしかないことを示せ
- 4. 剰余環 R/J における加法と乗法の定義を書け.また、乗法が矛盾なく定義できることを示せ

解答

- 1. Rの部分集合 J がイデアルとは以下の二つを満たしてることである
 - (a) J が R の加法に関する部分群
 - (b) $\forall a \in J, \ \forall r \in R, \ r \cdot a \in J.$
- 2. $J \subset R$ は明らか

 $R \subset J$ を示す。

 $1 \in J$ であることから、 $\forall r \in R$ に対して、 $r = r \cdot 1 \in J$.よって、 $R \subset J$.

3. K を体とし, $I \subset K$ をイデアルであり、 $I \neq \emptyset$ とする $a \in I$ という元が存在してそれを固定する。 $1 = a^{-1} \cdot a \in I$. よって問題 3 より I = K

以上から K には自明なイデアルしかない

- 4. $x+J, y+J \in R/J$ に対して
 - 加法 (x+J)+(y+J)=(x+y)+J つまり、[x]+[y]=[x+y]
 - 積 $(x+J)(y+J) = (xy) + J \ \mbox{つまり、} [x] \cdot [y] = [xy]$
 - well-defined 性について
 - イデアルはアーベル群であるから正規部分群であるので、加法にたいしては well-defined
 - 積について

 $a\in[x],b\in[y]$ とする。 したがって、 $\exists j_1,j_2\in J\ s.t.\ a=x+j_1,b=y+j_2.$ $[a]\cdot[b]=[ab]=[(x+j_1)(y+j_2)]=[xy+xj_2+yj_1+j_1j_2]=[xy].\ (J\ はイデアルであることから、<math>xj_2+yj_1+j_1j_2\in J)$ よって、well-defined

問題3

環 $\mathbb Z$ の部分集合 $\{3059,4807\}$ に対して、それによって生成されるイデアル J を以下で定める $J=(3059,4807)=\{3059r_1+4807r_2\mid r_1,r_2\in\mathbb Z\}$ J は単項イデアルであることを示したい

- 1. 3059 と 4807 の最大公約数を求めよ
- 2. (1) で求めた最大公約数を g とし、g の生成する \mathbbm{Z} 上のイデアル K を以下で定めると、 $K\subset J$ となることを示せ

 $K = (g) = \{ gr \mid r \in \mathbb{Z} \}$

3. $J \subset K$ となることを示せ

問題 4

R,S を環として、 $\phi:R\to S$ を環の準同型とする

- 1. $\phi(0) = 0$, $\phi(-a) = -\phi(a)$ を確かめよ
- 2. $Im(\phi)$ は S の部分環となることを示せ
- 3. R が体の時、 ϕ は零写像でなければ単射であることを示せ

解答

- 1. φは群の準同型でもあるので明らか
- 2. $Im(\phi)$ は ϕ の群準同型の性質から明らかに S の和に関する部分群 $\forall a,b \in Im(\phi)$ に対して、 $\exists x,y \in R \ s.t. \ a = \phi(x), b = \phi(y).$ $a \cdot b = \phi(x) \cdot \phi(y) = \phi(xy) \in Im(\phi).$ $1_S = \phi(1_R) \in Im(\phi).$ 以上から、 $Im(\phi)$ は S の部分環
- 3. $Ker(\phi) = 0$ を示す.

 $Ker(\phi)$ は R のイデアルであり、R は体なので R のイデアルは自明なものしかない。 したがって、 $Ker(\phi)=(0_R)$ or R.しかし、 $\phi(1_R)=1_S\neq 0_S$ より $Ker(\phi)\neq R$.したがって、 $Ker(\phi)=(0_R)$.