Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Automne
Mode d'évaluation	Examen écrit
Session	Janvier
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0

Combinatorics of integer partitions

14M258 |

Objectifs

A partition of a positive integer n is a non-increasing sequence of numbers whose sum is n, the partitions of 3 being (3), (2,1) and (1,1,1). Though simple to define, these objects are very deep combinatorially. The goal of this course is to present different aspects of the theory of integer partitions (mostly combinatorial, but also number theoretic and algebraic): generating functions, partition identities, congruences, asymptotics...

Description

- 1. Generating functions.
- 2. Graphical representation .
- 3. Q-series.
- 4. Q-binomial coefficients.
- 5. Partition identities.
- 6. Congruences.
- 7. Asymptotics.