AT 指令手册

(V1.3.1)

地址:南京市浦口高新区星火路 20号

电话: 156 5102 8736

邮箱: sales@rejeee.com

网址: www.rejeee.com

修订历史

日期	版本	描述	作者/修改者 审核
2018-02-24	V0.1	文档创建,指令初稿	Jason
2018-06-27	V0.2	完善 AT 指令说明及示例	Jason
2019-01-01	V1.0	文档更新,合并基站与终端指令	Felix
		说明,统一风格	
2019-05-05	V1.1	补充指令说明,部分指令为单独	Felix
		基站适用或单独终端适用。	
2019-06-15	V1.2	补 充 指 令 AT+TFIX 和	Felix
		AT+RFIX,支持 SF6	
		增加 AT+TYPE 终端配置描述说	
		明,默认无需修改	
2019-07-29	V1.3	补充指令 AT+FNB 配置退避策	Felix
		略	
		补充 AT+RXW 配置接收窗口	
	V1.3.1	补充 RXW 与 LCP 使用说明	Felix

指令备注说明,默认基站和终端都适用,特殊指令标注如下:

- * 只作用终端
- ◆ 只作用基站

另外,为了兼容旧版本的 ATW 指令,GW1 上旧的 ATW 与 AT 效果一致,其它 GW2、GW1P、KL9、HL9 终端模组都只支持 AT 前缀。

1 / 20 <u>www.rejeee.com</u> 2019-06-15

目 录

附录: A	AT 指令说明	. 4
1.1	短指令	5
	特殊字符"+++"	. 5
	AT 测试指令	. 5
	ATI 版本信息	5
	ATZ 恢复默认参数	. 5
	ATR 软件复位命令	. 5
	ATT 退出配置模式	. 5
	ATH 帮助指令	. 6
1.2	查询指令	7
	AT+CFG? 查询接收配置参数	7
	AT+ID? 查询设备标识	7
	AT+CSQ? 查询无线接收信号质量	
	AT+AK? 查询密钥	. 7
	AT+ADDR?查询单播地址	. 7
	AT+MADDR? 查询组播地址(*)	8
	AT+SYNC? 查询同步字配置	. 8
	AT+POW? 查询发射功率	8
	AT+BW? 查询带宽	. 8
	AT+CR? 查询编码率	. 8
	AT+CRC? 查询无线 CRC 开关	
	AT+TFREQ?查询发射频点	. 8
	AT+RFREQ?查询接收频点	8
	AT+FREQA? 查询网关 A 通道起始频点 (◆)	. 8
	AT+FREQB? 查询网关 B 通道起始频点 (◆)	8
	AT+TSF? 查询发射扩频因子	9
	AT+RSF? 查询接收扩频因子	9
1.3	设置指令	10
	AT+NET= <x> 设置网络模式(*)</x>	10
	AT+AK= <x> 设置 AES 秘钥</x>	10
	AT+ADDR= <x> 设置单播地址</x>	10
	AT+MADDR= <x> 设置组播地址(*)</x>	10
	AT+MODE= <x> 设置调制方式</x>	11
	AT+TPREM= <x> 设置前导码</x>	
	AT+RPREM= <x> 设置前导码</x>	11
	AT+LDR= <x> 设置低速率优化</x>	
	AT+SYNC= <x> 设置同步字</x>	11
	AT+POW= <x> 设置发送功率</x>	11
	AT+BW= <x> 设置带宽</x>	
	AT+CR= <x> 设置编码速率</x>	12
	AT+TFREQ= <x> 设置发送频率</x>	
	AT+RFREQ= <x> 设置接收频点</x>	12

AT 指令手册

AT+FREQA= <x> 设置通道 A 起始频点(◆)</x>	
AT+FREQB= <x> 设置通道 B 起始频点(◆)</x>	
AT+TSF= <x> 设置发送扩频因子</x>	.13
AT+RSF= <x> 设置接收扩频因子 (*)</x>	
AT+TIQ= <x> 设置发送载波反转</x>	.13
AT+RIQ= <x> 设置接收载波反转</x>	
AT+SIP= <x> 设置序号及协议功能</x>	.14
AT+ACK= <x> 设置模块应答开关(*)</x>	14
AT+BRATE= <x> 设置串口波特率</x>	.14
AT+PAR= <x> 设置串口奇偶校验</x>	15
AT+TYPE= <x> 设置基站数据格式</x>	.15
AT+TYPE= <x> 设置终端特殊配置</x>	.15
AT+TX= <x> 设置发送数据</x>	
AT+RX= <x> 设置接收测试</x>	
AT+LCP= <x> 设置链路检测周期</x>	
AT+LFT= <x> 设置存活周期 (◆)</x>	
AT+LAT= <x> 设置纬度 (◆)</x>	16
AT+LGT= <x> 设置经度(◆)</x>	.17
AT+EL= <x> 设置休眠时间(*)</x>	
AT+PARAM= <x> 设置扩展参数 (*)</x>	.17
AT+CMD= <x> 扩展命令 (*)</x>	
AT+TFIX= <x> 固定发送长度(*)</x>	
AT+RFIX= <x> 固定接收长度 (*)</x>	
AT+FNB= <x> 退避策略 (*)</x>	.18
AT+RXW= <x> 接收窗口时间(*)</x>	18

附录: AT 指令说明

本手册中所有命令行必须以"AT"作为开头,以回车换行(<CR><LF>)作为结尾。只有在 AT 引脚检测为高时,才能响应指令,否则模块将处于透传模式。指令响应格式为 <CR><LF>响应内容<CR><LF>。

整本手册里,只有<响应内容>被自始自终介绍,而<CR><LF>被有意省略了。<响应内容>和设置参数值<x>为十六进制字符串。设备串口支持多种波特率,网关默认使用115200,终端默认使用9600,8位数据位,无校验位,1位停止位。

在 AT 配置模式下,每一条 AT 指令都有回响,用户在使用时须等待指令的回响结果再做下一步操作,如果命令执行失败,响应对应错误代码。常见命令错误代码如下。

错误代码	代码含义	错误代码	代码含义
ER00	语法错误	ER05	保存失败
ER01	参数错误	ER06	缓冲区满
ER02	执行失败	ER07	发送超时
ER03	信道忙	ER08	命令不支持
ER04	长度错误	ER09	不可读

1.1 短指令

特殊字符"+++"

命令语句	回响内容	说明
+++	OK	网关进入配置模式

当模块 AT 脚置低或悬空时,发送特殊字符"+++"(无需回车结尾),可使模块进入 配置模式。如需退出配置模式,可使用"ATT"指令。

AT 测试指令

命令语句	回响内容	说明
AT	OK	查询是否支持 AT 命令

此命令将不做任何动作,在 AT 模式下模块随时都可以接收此命令。

ATI 版本信息

命令语句	回响内容	说明
ATI	+ATI: <version 1="">, <version 2=""></version></version>	查询设备版本信息
		Version 1 为硬件版本
		Version 2 为软件版本

+ATI:2,2020 +ATI:1,2017

上述为 GW1 显示内容,分别对应下行固件版本和上行固件版本,如果是 GW1P、GW2 或终端则只有一行。

ATZ 恢复默认参数

命令语句	回响内容	说明
ATZ	OK	恢复默认参数

此命令解析正确则立即恢复默认配置并返回 "OK"。

目前终端模组恢复默认设置 OK 后会自动重启设备,基站暂时未加入重启动作,只恢复默认参数。

ATR 软件复位命令

命令语句	回响内容	说明
ATR	OK	模块重启

ATT 退出配置模式

命令语句	回响内容	说明
ATT	OK	退出配置模式进入透传

ATH 帮助指令

命令语句	回响内容	说明
ATH	示意如下	查询所支持的 AT 命令

AT ATH ATI ATZ ATR ATT AT+CFG? AT+ID? AT+CSQ? AT+AK? AT+ADDR? AT +MADDR? AT +SYNC? AT+POW? AT+BW? AT+CR? AT+CRC? AT+TFREQ? AT+RFREQ? AT+TSF? AT+RSF? AT+RET=2X AT+AK=32X AT+ADDR=8X AT +MADDR=8X AT +MODE=2X AT +TPREM=4X AT +RPREM=4X AT+LDR=2X AT+SYNC=2X AT +POW=2X AT +BW=2X AT +CR=2X AT+CRC=2X AT+TFREQ=8X AT+RFREQ=8X AT+RFFE2X AT+RSF=2X AT+TIQ=2X AT+RIQ=2X AT+SIP=2X AT+ACK=2X

不同产品及版本所支持的 AT 指令和数量有部分差异,以具体产品显示为准。

1.2 查询指令

AT+CFG? 查询接收配置参数

	命令语句	回响内容	说明
	AT+CFG?	示意如下	不同基站终端版本有所差
			别,大同小异

TFREQ: 506.5MHz POW: 20 dBm 125kHz BW: TSF: 12 CR: 4/5 MODE: LORA PREM: ON CRC: TIQ: ON AUTO RFREQ: SYNC: 475.5 475.7 475.9 476.1 476.3 476.5 476.7 476.9 0x12 TYPE: SIMPLE IP: OFF AES: OFF LCP: 0 LFT: 0

GW1 基站

终端

TFREQ:

RFREQ:

POW:

BW:

TSF

RSF: CR:

MODE

SYNC:

PREM:

CRC:

TIQ: RIQ:

SEQ

IP:

ACK:

LDR:

PAR:

Node to Gateway 475.5MHz 506.5MHz

20 dBm

125

12

12

4/5

LORA

0x12

8,8

ON

OFF

ON

OFF

AUTO

None

AT+ID? 查询设备标识

命令语句	回响内容	说明
AT+ID?	+ID: <hex></hex>	查询设备 ID

此命令用于查询设备 ID

发送	AT+ID?
应答	+ID: xxxxxxxxxxxxx

注意: ① ID 号设备是唯一识别号。② 用户只能读取操作,不能修改。

AT+CSO? 查询无线接收信号质量

命令语句	回响内容	说明
AT+CSQ?	+CSQ:SNR,RSSI	示例: +CSQ:9,-92

注意:此命令只支持终端产品,且接收数据后才有,否则返回 ER09。

AT+AK? 查询密钥

命令语句	正确回响内容	说明
AT+AK?	+AK: <hex></hex>	内容为十六进制字符串

注意:密钥仅显示最后 4 个字节。如果 AK 配置非 0,则对应开启 AES 功能。否则关闭。

发送	AT+AK?
应答	+AK:************************************

AT+ADDR? 查询单播地址

命令语句	回响内容	说明
AT+ADDR?	+ADDR: <hex></hex>	示例: +ADDR:00000140

注意: ① 单播地址默认为 ID 后 4 个字节。② 用户可修改

AT+MADDR? 查询组播地址(*)

命令语句	回响内容	说明	
AT+MADDR?	+MADDR: <hex></hex>	示例	:
		+MADDR:CACBB801	

注意: ① 组播地址默认为 ID 前 4 个字节。② 用户可修改

AT+SYNC? 查询同步字配置

命令语句	回响内容	说明
AT+SYNC?	+SYNC: <hex></hex>	示例: +SYNC:12

AT+POW? 查询发射功率

命令语句	回响内容	说明
AT+POW?	+POW: <hex></hex>	示例: +POW:14

代表 Power 为 20

AT+BW? 查询带宽

命令语句	回响内容	说明
AT+BW?	+BW: <hex></hex>	示例: +BW:07

代表 Bandwidth 为 125KHz, 具体类型参考对应设置命令

AT+CR? 查询编码率

命令语句	回响内容	说明
AT+CR?	+CR: <hex></hex>	示例: +CR:01

代表 Code Rate 为 4/5, 具体类型参考对应设置命令

AT+CRC? 查询无线 CRC 开关

命令语句	回响内容	说明
AT+CRC?	+CRC: <hex></hex>	示例: +CRC:01

代表是否开启无线 CRC

AT+TFREQ? 查询发射频点

命令语句	回响内容	说明
AT+TFREQ?	+TFREQ: <hex></hex>	示例: +TFREQ:1E3093A0

AT+RFREQ? 查询接收频点

命令语句	回响内容	说明
AT+RFREQ?	+RFREQ: <hex></hex>	示例: +RFREQ:1C578DE0

AT+FREQA? 查询网关 A 通道起始频点(◆)

台	冷 令语句	回响内容	说明
Α	T+FREQA?	+FREQA: <hex></hex>	示例: +FREQA:1C578DE0

AT+FREOB? 查询网关 B 通道起始频点(◆)

命令语句	回响内容	说明
AT+FREQB?	+FREQB: <hex></hex>	示例: +FREQB:1C63C2E0

AT+TSF? 查询发射扩频因子

命令语句	回响内容	说明
AT+TSF?	+TSF: <hex></hex>	示例: +TSF:0C

代表发送扩频为 SF12, 具体参数参考对应设置命令

AT+RSF? 查询接收扩频因子

命令语句	回响内容	说明
AT+RSF?	+RSF: <hex></hex>	示例: +RSF:0C

代表接收扩频为 SF12

9 / 20 <u>www.rejeee.com</u> 2019-06-15

1.3 设置指令

以下指令<x>用于代表配置参数,并不是指令格式。具体内容请参考说明或示例。

AT+NET=<x> 设置网络模式(*)

命令语句	正确回响内容	说明
$AT+NET=<_X>$	OK	模块通信网络模式
		00: 定频模式
		01: 跳频模式

示例<01>: 设置终端联网模式

发送	AT+NET=01	
应答	OK	

说明: 定频模式通常用于点对点通信测试, 跳频模式通常用于点对基站通信。

注意: 此命令只支持终端产品

AT+AK=<x> 设置 AES 秘钥

命令语句	正确回响内容	说明
AT+AK?	OK	

注意:设备默认未配置密钥,配置密钥之后自动开启 AES 功能,如需关闭 AES,只需将密钥配置全"0"即可关闭。AES 功能需要收发端都开启同样秘钥,否则数据无法正确显示及输出。

发送	AT+AK=11223344556677889900112233445566	
应答	OK	

AT+ADDR=<x> 设置单播地址

			_
命令语句	正确回响内容	说明	
AT+ADDR= <x></x>	OK	x 为 4 字节模块单播地址	

注意: ADDR 值, 默认取自模块 ID 的后 4 个字节, 为防止 ADDR 重复, 建议不要配置该值。当开启模块地址功能时,模块接收数据时会匹配接收数据的目标地址,如与自身 ADDR 匹配则输出数据, 否则做丢弃处理。

AT+MADDR=<x> 设置组播地址(*)

命令语句	正确回响内容	说明
AT+MADDR= <x></x>	OK	x 为 4 字节模块组播地址

注意: MADDR 值,默认取自模块 ID 的前 4 个字节,用户可根据不同分组配置不同值。 当开启模块地址功能时,模块接收数据时会匹配接收数据的目标地址,如与自身组播地址 MADDR 匹配则输出数据,否则做丢弃处理。基站通过在发送数据中嵌入组播地址可实现模 块分组接收功能。

AT+MODE=<x> 设置调制方式

命令语句	正确回响内容	说明
AT+MODE= <x></x>	OK	x 为模块调制选择
		<00>: FSK 调制方式
		<01>: LoRa 调制方式

注意: FSK 调制方式配置项较多,目前模块暂不支持更多配置。

AT+TPREM=<x> 设置前导码

命令语句	正确回响内容	说明
AT+TPREM= <x></x>	OK	x 为前导码值
		<0008>: 默认值 8

AT+RPREM=<x> 设置前导码

	· · · •	
命令语句	正确回响内容	说明
AT+RPREM= <x></x>	OK	x 为前导码值
		<000A>: 默认值 10

注意:由于该值不常修改,因此旧版本为单字节配置,新版本支持2字节配置以匹配寄存器取值范围。

AT+LDR=<x> 设置低速率优化

== == \$\frac{1}{2} \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f		
命令语句	正确回响内容	说明
$AT+LDR=<_X>$	OK	<00>: AUTO 方式
		BW=125K 时 SF11、SF12
		开启 BW=250K 时 SF12 开
		启
		<01>: SF7~SF12 全部开启
		<02>: SF7~SF12 全部关闭

注意:发送端与接收端低速率配置必须一致才能正常通信。目前,除了基站接收低速率优化固定是 AUTO,发送可配置。终端收发 LDR 可配置且使用同一个参数。

AT+SYNC=<x> 设置同步字

命令语句	正确回响内容	说明
AT+SYNC= <x></x>	OK	默认同步字 0x12

注意: 发送端与接收端同步字必须一致才能正常通信。

AT+POW=<x> 设置发送功率

命令语句	回响内容	说明
AT+POW= <x></x>	OK	发射功率值(十六进制)

<14>: POW 值设置为 20dBm

发送	AT+POW=14
应答	OK

AT+BW=<x> 设置带宽

命令语句	正确回响内容	说明
$AT+BW=<_X>$	OK	设置带宽值
		<07>: 125K
		<08>: 250K
		<09>: 500K

AT+CR=<x> 设置编码速率

命令语句	正确回响内容 说明	
AT+CR= <x></x>	OK	设置编码率
		<01>: 4/5
		<02>: 4/6
		<03>: 4/7
		<04>: 4/8

AT+TFREQ=<x> 设置发送频率

命令语句	回响内	容	说明		
AT+TFREQ= <x></x>	OK		x 为频率值	(十六进制)	
			示	例	:
			AT+TFREQ	=1E3093A0	

<1E3093A0>: 对应的频点为 506.5MHz

AT+RFREQ=<x> 设置接收频点

命令语句	回响内容	说明
AT+RFREQ= <x></x>	OK	x为频点值对应的十六进制
		字符串,4字节(8字符)

<8X>: 接收起始频点,每个频点间隔 200KHz,总计 8 个频点。

<1C578DE0>: 对应的接收起始频点为 475.5MHz

发送	AT+RFREQ=1C578DE0
应答	OK

AT+FREQA=<x> 设置通道 A 起始频点(◆)

命令语句	回响内容	说明
AT+FREQA= <x></x>	OK	x为频点值对应的十六进制
		字符串,4字节(8字符)

<8X>: 接收起始频点,每个频点间隔 200KHz,总计 4 个频点。

AT+FREQB=<x> 设置通道 B 起始频点(◆)

命令语句	回响内容	说明
AT+FREQB= <x></x>	OK	x为频点值对应的十六进制

字符串,4字节(8字符)

<8X>: 接收起始频点,每个频点间隔 200KHz,总计 4 个频点。

注意:通过上述两个命令,网关支持通道 A 和 B 分别配置频点。但是需要将默认接收频点配置设置为 0 才能使用。默认优先使用 AT+RFREQ=<x>设置的频点。

A 和 B 通道频点至少相隔 600KHz(即不能重叠),以满足单个通道 4 个频点的设置。 此命令只支持网关设置

AT+TSF=<x> 设置发送扩频因子

- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×-	~~ →	
命令语句	回响内容	说明
$AT+TSF=<_X>$	OK	X为SF值(十六进制)

<0C>: SF 值设置为 12

发送	AT+TSF=0C		
应答	OK		

AT+RSF=<x> 设置接收扩频因子(*)

命令语句	回响内容	说明
AT+RSF= <x></x>	OK	X为SF值(十六进制)

<0C>: SF 值设置为 12

发送	AT+RSF=0C
应答	OK

AT+TIQ=<x> 设置发送载波反转

命令语句	正确回响内容	说明
AT+TIQ= <x></x>	OK	载波反转
		<00>: 载波不反转
		<01>: 载波反转

注意: 网关发送反转与节点接收反转配置必须一致才能正常通信。

<01>: 配置发送载波反转

发送	AT+TIQ=01
应答	OK

AT+RIO=<x> 设置接收载波反转

命令语句	正确回响内容	说明
AT+RIQ= <x></x>	OK	载波反转
		<00>: 载波不反转
		<01>: 载波反转

AT+SIP=<x> 设置序号及协议功能

命令语句	正确回响内容	说明
AT+SIP= <x></x>	OK	<00>: 默认
		<01>: 打开协议功能
		<10>: 打开包序号功能
		<11>:打开节点包序号及协
		议功能

注意:参数高 4 位代表序号(SEQ)功能,低 4 位代表协议(IP)功能。

当节点开启协议功能时,网关需同时打开协议功能,此时网关就可以输出节点的单播地址 ADDR 和数据内容,输出时前 4 个字节为模块的 ADDR(低位在前,高位在后),数据内容紧随其后。

如开启包序号功能,则输出时前 2 个字节为模块的发送包序号(低位在前,高位在后),数据内容紧随其后。

示例: 打开协议功能

发送	AT+SIP=01
应答	OK

AT+ACK=<x> 设置模块应答开关(*)

命令语句	正确回响内容	说明
AT+ACK= <xx></xx>	OK	<00>: 不应答(默认)
		<01>: 应答

注意:由于AT模式下发送数据不开接收,因此ACK目前暂只针对透传模式。且需开启IP功能。

AT+BRATE=<x> 设置串口波特率

命令语句	正确回响内容	说明
AT+ BRATE= <xx></xx>	OK	<00>: 1200bps
		<01>: 2400bps
		<02>: 4800bps
		<03>: 9600bps (默认)
		<04>: 19200bps
		<05>: 38400bps
		<06>: 57600bps
		<07>: 115200bps(模组最
		高支持)
		<08>: 230400bps
		<09>: 380400bps

AT+PAR=<x> 设置串口奇偶校验

命令语句	正确回响内容	说明
$AT+PAR=<_X>$	OK	<00>: None
		<01>: Even
		<02>: Odd

AT+TYPE=<x> 设置基站数据格式

命令语句	回响内容	说明
AT+TYPE= <x></x>	OK	串口数据输出格式选择

<00>: 数据格式一:SIMPLE 透传数据

<01>: 数据格式二:TLV TLV 格式输出,对应基站 V2 版本

<02>: 数据格式三:FRAME 帧格式输出数据的十六进制字符和信号质量

<03>: 数据格式四:JSON

<04>: 数据格式四:TLV V1 客户定制版本

发送	AT+TYPE=01
应答	OK

AT+TYPE=<x> 设置终端特殊配置

命令语句	回响内容	说明
AT+TYPE= <x></x>	OK	定制化参数

TYPE 对应的参数各 Bit 说明

7~6	5	4	3~0
保留参数	碰撞检测方式	硬件增益选择	定制化参数
RFU	0 能量侦听(默认)	0 PA Boost (默认)	
	1 信号侦听	1 RFO	

AT+TX=<x> 设置发送数据

本模块除了可以使用透传命令传输数据外,还可以使用 AT 命令进行数据发送。为了匹配正常的 ASCII 命令格式,通过 AT+TX 命令发送数据时,需要将发送的数据对于字节的 ASCII 码转成十六进制的字符串,相关说明如下所示。

命令语句	正确回响内容	说明
$AT+TX=<_X>$	OK	<x>数据内容(十六进制)</x>

<123456>: 发送十六进制数据 0x12,0x34,0x56

发送	AT+TX=123456	
应答	成功返回OK,失败则返回错误码	

AT+RX=<x> 设置接收测试

本模块除了可以使用透传命令传输数据外,还可以使用 AT 命令进行接收测试。

命令语句	正确回响内容	说明
$AT+RX=<_X>$	OK	<00> 关闭接收
		<01> 开启接收测试模式

注意:本命令主要用于性能测试,配置不保存。即系统复位后关闭。也可以用本命令主动关闭。如果用于基站,则为工厂测试模式,打印 FRAME 格式(基站在 AT 模式下不打印接收数据,需切换到透传,如 ATT 命令)。

AT+LCP=<x> 设置链路检测周期

命令语句	回响内容	说明
AT+LCP= <x></x>	OK	2个字节的十六进制字符串
		单位秒,如果设置为0,则
		不开启 LCP 检测功能
		默认参数不开启

<0708>: LCP 设置为 1800 秒

发送	AT+LCP=0708
应答	OK

- (◆)针对基站,LCP为1301检测周期,用于判断1301是否正常。
- (*)针对终端模组,LCP为模块休眠周期,休眠周期到开启LoRa信号监测,用于空中唤醒。

AT+LFT=<x> 设置存活周期(◆)

命令语句	回响内容	说明
$AT+LFT=<_X>$	OK	2个字节的十六进制字符串
		单位秒,如果设置为0,则
		不开启 Life Time 检测功能
		默认参数不开启

AT+LAT=<x> 设置纬度(◆)

命令语句	回响内容	说明
$AT+LAT=<_X>$	OK	X为4个字节纬度浮点数对
		应的十六进制字符串,4字
		节(8字符)

<41E1DA2D>: 对应的纬度为 28.23153

AT+LGT=<x> 设置经度(◆)

命令语句	回响内容	说明
AT+LGT= <x></x>	OK	X为4个字节纬度浮点数对
		应的十六进制字符串,4字
		节 (8 字符)

<42EA1252>: 对应的纬度为 117.03578

发送	AT+LGT=42EA1252
应答	OK

AT+EL=<x> 设置休眠时间(*)

命令语句	正确回响内容	说明
AT+EL= <x></x>	OK	<x>为2个字节休眠时间十</x>
		六进制字符串形式

注意:

- 1. 参数形式为 16 进制数据,例如: <0020>为 32 秒,最长 12 小时<A8C0>。
- 2. 如定时时间未到,亦可通过 wakeup 引脚唤醒。
- 3. 0000: 长期低功耗模式,可通过 wakeup 引脚或者复位模块的方式唤醒。
- 4. 参数配置不保存, 重启失效

针对 HL9 模组, LCP 与休眠不能同时配置。由于 HL9 支持低功耗串口, 在波特率 9600 及以下可由串口直接唤醒模组。AT+EL 休眠功能可使用 LCP 相关配置实现, 因此<=9600 暂不支持 AT+EL 命令。

如<= 9600,配置 LCP,模组则自动周期性休眠。当有串口数据推入自动唤醒发送。发送完后自动进入 LCP 周期性休眠。如果只做上行操作,则 LCP 配置最大(0xFFFF 接近18 小时),可有效节约功耗,且发送数据无需再每次执行休眠而由模组自动完成。

AT+PARAM=<x> 设置扩展参数(*)

命令语句	正确回响内容	说明
$AT+PARAM=<_X>$	备用命令,定制化需求	<x>数据内容(十六进制,</x>
	使用	最多 16 字节,即 32 字符)

AT+CMD=<x> 扩展命令(*)

命令语句	正确回响内容	说明
$AT+CMD=<_X>$	备用命令,定制化需求	<x>数据内容(十六进制)</x>
	使用	

AT+TFIX=<x> 固定发送长度(*)

命令语句	回响内容	说明
AT+TFIX= <x></x>	OK	1个字节的十六进制字符串
		,如果设置为0,则不固定
		发送长度

如果需要使用 SF6 收发,则必须固定收发长度。

AT+RFIX=<x> 固定接收长度(*)

命令语句	回响内容	说明
AT+TFIX= <x></x>	OK	1个字节的十六进制字符串
		,如果设置为0,则不固定
		长度

如果需要使用 SF6 收发,则必须固定收发长度。

AT+FNB=<x> 退避策略(*)

命令语句	回响内容	说明
AT+FNB= <x></x>	OK	1个字节的十六进制字符串

FNB 的参数各 Bit 说明

7	6~0
0 失败则丢弃	退避次数,系统内部默认最低4次
1 失败仍然发送	

最高位表示: 如果退避失败是否强制发送。

该参数主要用于,如节点过多同时或集中式上报情况,而接收信道单一。如采用 127x 方式做类似网关功能或集中器。则可以适当增加退避次数来避免数据被模组丢弃。

AT+RXW=<x> 接收窗口时间(*)

命令语句	回响内容	说明
$AT+RXW=<_X>$	OK	1个字节的十六进制字符串
		,单位秒。需要配合 LCP
		配置

说明:发送完成后 RXW 秒关闭接收,需要配置 LCP 数值,则关闭后进入 LCP 秒休眠。如果 LCP 配置为 0,则相当于不主动休眠,则 RXW 参数无意义。

设计该功能用于满足类似有应答需求和功耗需求的业务场合。AT+RXW 参数配置为发送后开启多少秒接收窗口,收到数据或超时时间(RXW 数值)到,如 LCP>0 则关闭接收进入休眠。因此该命令需要与 LCP 指令配合实现功耗要求。

具体使用差异如下表格描述说明,请参考。

场景模式	LCP	RXW	备注
透传	0	0	默认配置,LCP 为 0 不主动休眠。持续接收,类似
			LoRaWAN Class C
透传	0	>0	LCP 为 0,不主动休眠。因此发送完成后继续打开接收,
			RXW 参数无意义,相当于无效
周期性侦听	>0	0	空中唤醒功能,周期性休眠
窗口式接收	>0	>0	类似 LoRa Class A 功能,发送完成开启 RXW 秒接收后
			关闭,自动进入休眠(LCP 为休眠时间)

