Curved Yang-Mills gauge theories and their recent applications

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Table of contents

- Curved Yang-Mills gauge theory
- 2 An attempt of classification
- Applications: Singular foliations (joint work w/ Camille Laurent-Gengoux)
- Future Prospects

Classical formalism	CYMH G I
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M \times \mathfrak{a}$	

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of E & E -connections
	& L-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M \times \mathfrak{q}$	

Remarks (Why a "curved theory"?)

cYM

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \rightsquigarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

cYM

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

- Adjoint connection \leftrightarrow Ehresmann connection on P.
- **2** As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

•0000000000000000

cYM

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

Foliations

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- **2** As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

cYM

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \Big[\mathsf{PT}^P_{\gamma}(p), \mathsf{PT}^0_{\gamma}(v)\Big],$$

Lie algebra g as trivial bundle w/ canonical flat connection

cYM

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^P_{\gamma}(p) \cdot \kappa_{\gamma}, \kappa_{\gamma}^{-1} \cdot \mathsf{PT}^0_{\gamma}(v)\right],$$

Lie algebra g as trivial bundle w/ canonical flat connection, κ_{γ} values in G & "suitable"

Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

- How to formulate gauge theory such that it is invariant under
- ② Are there curved theories which are **not** equivalent to classical

cYM

Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

Motivation (S.-R. F.)

- How to formulate gauge theory such that it is invariant under field redefinitions?
- ② Are there curved theories which are **not** equivalent to classical ones?

cYM

Definition (LGB actions)

Foliations

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathscr{T} * \mathscr{G} := \mathscr{T}_{\phi} \times_{\pi_{\mathscr{C}}} \mathscr{G} \to \mathscr{T}_{\phi}(t,g) \mapsto t \cdot g$, satisfying the following properties:

$$\phi(t \cdot g) = \phi(t), \tag{1}$$

$$(t \cdot g) \cdot h = t \cdot (gh), \tag{2}$$

$$t \cdot e_{\phi(t)} = p \tag{3}$$

for all $t \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\phi(t)}$, where $e_{\phi(t)}$ is the neutral element of $\mathcal{G}_{\phi(t)}$.

cYM

Definition (Principal bundle)

Foliations

A surjective submersion $\pi_{\mathscr{P}} \colon \mathscr{P} \to L'$, with \mathscr{G} -action

$$\mathscr{P} * \mathscr{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{G}$

simply transitive on $\pi_{\mathscr{P}}$ -fibres of \mathscr{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g\colon \mathscr{P}_\mathsf{X} o \mathscr{P}_\mathsf{X}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g:\mathscr{P}_{\mathsf{X}} o\mathscr{P}_{\mathsf{X}}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connection on \mathscr{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\Psi(x)}$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT^{\mathscr{P}}_{\gamma}$ in \mathscr{P} :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p)\cdot g$$

where $\gamma: I \to L'$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

- 0 $\mathcal{G} \cong 1 \times G$
- 2 Equip \mathcal{G} with canonical flat connection

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

Back to the roots

- 2 Equip \mathscr{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal{T}}: \mathcal{T} \to L'$ so that one has a commuting diagram

1 Ehresmann connection: \mathscr{G} preserving $\pi_{\mathscr{T}}$ and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(t \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(t) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g)$$

2 Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathcal{G}_{\phi(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathscr{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

- On G: Multiplicative Yang-Mills connection
- On \(\mathcal{P} \): Ehresmann connection

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathscr{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Foliations

Definition (Principal bundle connection, [S.-R. F.])

- On G: Multiplicative Yang-Mills connection
- On \mathscr{P} : Ehresmann connection

Remarks

There is a simplicial differential δ on $\mathscr{G} \stackrel{\pi_{\mathscr{G}}}{\to} L$ with Lie algebra bundle q

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the definition of the multiplicative Yang-Mills connection is equivalent to the compatibility conditions

- Connection closed
- Curvature exact ([S.-R. F.])

Remarks

cYM

On the Lie algebra bundle q we have a connection ∇^{g} with

$$\nabla^{\mathscr{G}}([\mu,\nu]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad \text{([S.-R. F.])}$$

Given a short exact sequence of algebroids

$$g \hookrightarrow E \longrightarrow TL$$

with splitting $\chi : TL \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Remarks

On the Lie algebra bundle q we have a connection ∇^{g} with

$$\nabla^{\mathscr{G}}([\mu,\nu]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad \text{([S.-R. F.])}$$

Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Given a multiplicative Yang-Mills connection on \mathcal{G} :

Definition (Generalized curvature/field strength F of A, [S.-R. F.])

We define

0000000000000000000000

$$F := \mathrm{d}^{\pi_{\mathscr{P}}^* \nabla} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi_{\mathscr{P}}^* \mathscr{Q}} + \pi_{\mathscr{P}}^! \zeta.$$

Theorem (Lagrangian, [S.-R. F.])

- κ be an Ad-invariant fibre metric on q,
- M a spacetime, and * its Hodge star operator,
- \bullet $(U_i)_i$ open covering of M with subordinate gauges $s_i \in \Gamma(\mathscr{P}|_{II_i}).$

Then the Lagrangian $\mathfrak{L}_{CYM}[A]$, defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}[K^!A] = \mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms K.

cYM

Back to the roots

- $\mathfrak{G}\cong M\times G$
- 2 Equip $\mathcal G$ with canonical flat connection

Example (Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, [S.-R. F.])

Let P be the Hopf bundle

$$SU(2) \cong \mathbb{S}^3 \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Define $\mathscr{P} := \mathscr{G}$ as the inner group bundle of P,

$$\mathscr{G} := c_{\mathrm{SU}(2)}(P) := (P \times \mathrm{SU}(2)) / \mathrm{SU}(2).$$

This principal $c_{SU(2)}(P)$ -bundle admits the structure as curved Yang-Mills gauge theory; there is no description as classical gauge theory.

An attempt of classification

Definition (Field redefinition, [S.-R. F.])

Let $\lambda \in \Omega^1(L; q)$, then we define the **field redefinitions** by

$$\begin{split} \widetilde{A}^{\lambda} &\coloneqq A - \pi_{\mathscr{D}}^{!} \lambda, \\ \widetilde{\nabla}^{\lambda} &\coloneqq \nabla + \operatorname{ad} \circ \lambda, \\ \widetilde{\zeta}^{\lambda} &\coloneqq \zeta + \operatorname{d}^{\widetilde{\nabla}^{\lambda}} \lambda + \frac{1}{2} [\lambda \stackrel{\wedge}{,} \lambda]_{\mathscr{Q}}, \end{split}$$

where $A \in \Omega^1(\mathcal{P}; \pi_{\varnothing}^* q)$ is the connection 1-form on \mathcal{P} .

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\bullet \ \ \widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\bullet \ \ \widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta,$$

and $d^{\nabla}\zeta$ has values in the centre of g.

Proof.

Bianchi identity given by $d^{\nabla} \zeta$.

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{q}) = [\nabla_{Y}\mu,\nu]_{q} + [\mu,\nabla_{Y}\nu]_{q}, \tag{4}$$

$$R_{\nabla}(Y, Z)\mu = [\zeta(Y, Z), \mu]_{\alpha} \tag{5}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(q)$.

Foliations

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta,$$

and $d^{\nabla}\zeta$ has values in the centre of q.

Proof.

Bianchi identity given by $d^{\nabla} \zeta$.

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{\mathcal{Q}}) = [\nabla_{Y}\mu,\nu]_{\mathcal{Q}} + [\mu,\nabla_{Y}\nu]_{\mathcal{Q}}, \tag{4}$$

$$R_{\nabla}(Y, Z)\mu = [\zeta(Y, Z), \mu]_{\alpha} \tag{5}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(q)$.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra g has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $d^{\nabla}\zeta \neq 0$.

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\sigma} \circ \zeta$ it may still be that ∇ becomes flat.

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\mathscr{Q}} \circ \zeta$ it may still be that ∇ becomes flat.

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof

Recall

$$\begin{split} \nabla_{Y} \Big([\mu, \nu]_{\mathcal{Q}} \Big) &= [\nabla_{Y} \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla_{Y} \nu]_{\mathcal{Q}}, \\ R_{\nabla} (Y, Z) \mu &= [\zeta(Y, Z), \mu]_{\mathcal{Q}}, \\ \widetilde{\nabla}_{Y}^{\lambda} \mu &= \nabla_{Y} \mu - [\lambda(Y), \mu]_{\mathcal{Q}}, \end{split}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof.

Recall

$$\nabla_{Y}([\mu,\nu]_{\mathcal{Q}}) = [\nabla_{Y}\mu,\nu]_{\mathcal{Q}} + [\mu,\nabla_{Y}\nu]_{\mathcal{Q}},$$

$$R_{\nabla}(Y,Z)\mu = [\zeta(Y,Z),\mu]_{\mathcal{Q}},$$

$$\tilde{\nabla}_{Y}^{\lambda}\mu = \nabla_{Y}\mu - [\lambda(Y),\mu]_{\mathcal{Q}},$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

We have

$$\mathrm{d}^{\Xi}\mathrm{d}^{\nabla}\zeta=0.$$

We define the **obstruction class** by

$$\mathrm{Obs}(\Xi) := \left[\mathrm{d}^{\nabla} \zeta \right]_{\mathrm{d}^{\Xi}}.$$

We have

$$\mathrm{d}^{\Xi}\mathrm{d}^{\nabla}\zeta=0.$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$\mathrm{Obs}(\Xi) \coloneqq \left[\mathrm{d}^\nabla \zeta\right]_{\mathrm{d}^\Xi}.$$

We have

$$\mathrm{d}^{\Xi}\mathrm{d}^{\nabla}\zeta=0.$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$\mathrm{Obs}(\Xi) \coloneqq \left[\mathrm{d}^\nabla \zeta\right]_{\mathrm{d}^\Xi}.$$

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

We have

$$\mathrm{d}^{\Xi}\mathrm{d}^{\nabla}\zeta=0.$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$\mathrm{Obs}(\Xi) \coloneqq \left[\mathrm{d}^\nabla \zeta\right]_{\mathrm{d}^\Xi}.$$

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

If L is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If L is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. London Mathematical Society Lecture Note Series, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If L is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Foliations

Example (Zero obstruction class not necessarily pre-classical)

Let P be the Hopf fibration

$$SU(2) \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Then for the adjoint bundle

$$g := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2) := \left(\mathbb{S}^7 \times \mathfrak{su}(2)\right) / \mathrm{SU}(2)$$

we have a non-flat ∇ satisfying the compatibility conditions such that all of its field redefinitions are not flat either, but $\mathrm{Obs}(\Xi) = 0$.

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $Obs(\Xi) = 0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4$?

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $Obs(\Xi) = 0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4$? → Integration

Applications: Singular foliations

(joint work w/ Camille Laurent-Gengoux)

Singular Foliations:

 Gauge Theory (Ex.: Singular foliation \leftrightarrow Symmetry breaking \rightarrow Higgs mechanism)

Foliations

- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry

Foliations

cYM

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is involutive.
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Foliations

cYM

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$.

Foliations

00000000000000000

• it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Idea: Relation to gauge theory

cYM

Theorem (\mathscr{F} -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{l}, \tau_{l'})$.
- For a contractible loop γ_0 at 1: PT_{γ_0} values in Inner (τ_l) .

Example of a transverse foliation τ :

Remarks

- Inner(τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_l and fix the origin

Idea

Idea

Generators of \mathcal{F} given by $\mathcal{F}_{projectable}$:

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, $\mathbb{H}(X)$ its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Foliations

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \dots$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}} + \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on *G* and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on T generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

We have

$$\begin{split} [\mathbb{H}(X),\overline{\nu}] &= \overline{\nabla_X^{\mathcal{G}} \nu}, \\ [\mathbb{H}(X),\mathbb{H}(X')] &= \mathbb{H}([X,X']) + \overline{\zeta(X,X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on *G* and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on T generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X^{\mathcal{G}} \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; \mathcal{Q})$.

Idea (Leaf *L* simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

cYM

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- ② P a principal G-bundle, equipped with an ordinary connection

Foliations

3 $\mathscr{G} := (P \times G)/G$, the inner group bundle

cYM

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- ② P a principal G-bundle, equipped with an ordinary connection

Foliations

- $\mathfrak{G} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$
- $\mathfrak{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

0000000000000

- $\mathfrak{F} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$

Remarks

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathscr{G} acts on \mathscr{T} (canonically from the left).

Foliations

00000000000000000

Proposition ([C. L.-G., S.-R. F.])

The associated connection on \mathcal{G} is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Foliations

000000000000000000

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.

Summary

cYM

Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model τ_l
- Principal Inner(τ_l)-bundles over L

If \mathscr{G} acts faithfully on \mathscr{T} , then a curved Yang-Mills gauge theory can be flattened if and only if P is flat.

Eoliations

0000000000000000

Summary

Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model τ_l
- Principal Inner(τ_I)-bundles over L

Remarks (Classification of curved Yang-Mills gauge theories)

If \mathscr{G} acts faithfully on \mathscr{T} , then a curved Yang-Mills gauge theory can be flattened if and only if P is flat.

Future Prospects

Remarks (Future prospects)

- Total space and Atiyah bundles of groupoid-based principal bundles
- Further applications of curved gauge theories (existence of Cartan connections,...)
- Field redefinitions as natural symmetry in associated applications

Thank you!