ESC201T : Introduction to Electronics

Lecture 25: Amplifiers-1

B. Mazhari Dept. of EE, IIT Kanpur

Voltage Amplification

$$V_o = G \times V_i$$

 $G > 1$ and constant

Consider a 3-terminal unilateral linear device

$$R_i = \text{input resistance} = V_i / I_i$$
; Transconductance: $g_m = \frac{I_o}{V_i}$

Output conductance:
$$g_o = 1/r_o = \frac{Io}{V_o}|_{V_i = 0}$$

Voltage Amplifier

$$A_V = \frac{V_o}{V_S} = -g_m r_o \times \frac{R_L}{r_o + R_L} \times \frac{R_i}{R_i + R_S}$$

$$|A_V| \le g_m \times r_o$$

Necessary Condition for Voltage Amplification : $g_m \times r_o > 1$

Voltage Amplification

$$g_m r_o \gg 1$$

$$g_m >> g_o$$

Transconductance >> Output Conductance

Transistor

Transistor

Trans-resistor

Current I_O is much more sensitive to V_{IN} than V_O

$$g_m r_o >> 1$$

In the ideal case r_o is infinite

$$A_{V} = \frac{V_{o}}{V_{S}} = -g_{m}r_{o} \times \frac{R_{L}}{r_{o} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}} = -g_{m}R_{L} \times \frac{R_{i}}{R_{i} + R_{S}}$$

We would ideally like input resistance R_i to be infinite as well!

$$A_V = -g_m R_L$$

Note that we have power gain as well which is essential for calling a device as an Amplifier

An ideal 3-terminal device for Voltage Amplification

Ideal Transistor Characteristics

Ideal Transistor (IT)

Making a voltage amplifier with an ideal transistor is straightforward

In practice there is no element which has the characteristics of ideal transistor!

How do we use elements such as X, Y etc to make amplifiers?

Ideal Characteristics

How do we use device X to make an amplifier?

$$I_O = 0 \Rightarrow V_O = 0$$

No Amplification

How do we use device X to make an Amplifier?

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages. This process is called BIASING

How should one choose the bias voltage V_B ?

 $v_S = 0.5V Sin \omega t$

Quiescent point or Bias point

$$V_O = -I_O R_L$$

Output voltage is distorted!

Need to choose a proper value of biasing Voltage

Unnecessary Power Dissipation

Optimum Biasing?

How do we get rid of unwanted dc voltage at the output?

$$I_o = g_m \times (V_i - V_\alpha)$$
 for $V_i > V_\alpha$

Ac Analysis

What happens if both dc voltage source and signal source have one terminal as ground?

Note the role of R_{B}

Amplifier Schematic

