Attack Methodology

NMAP

DURATION: 0'30

Basic scan

Command	Description
nmap 10.0.0.1	Scan a single host IP
nmap 192.168.10.0/24	Scan a range
nmap 10.1.1.5-100	Scan the range of IPs between 10.1.1.5 up to 10.1.1.100
nmap -iL hosts.txt	Scan the IP addresses listed in text file "hosts.txt"
nmap 10.1.1.3 10.1.1.6 10.1.1.8	Scan the 3 specified IPs only
nmap www.somedomain.com	First resolve the IP of the domain and then scan its IP address

Scan types

Command	Description
nmap -s\$ 10.1.1.1	TCP SYN scan
nmap -sT 10.1.1.1	TCP connect scan
nmap -sU 10.1.1.1	UDP scan
nmap -sn 10.1.1.0/24	Do a Ping scan only / No port scan (often called ping sweep)
nmap -Pn 10.1.1.1	Don't ping the hosts, assume they are up.

Nicolas VIEUX Version: 0.0.9 Update: 13/04/2022

NMAP (UDP Scan 1/3):-sU

- While most popular services on the Internet run over the TCP protocol, UDP services are widely deployed (DNS 53, SNMP 161/162, and DHCP 67/68).
- ▶ UDP scanning is generally slower and more difficult than TCP. This is a mistake to unscan UDP port, as exploitable UDP services are quite common and attackers don't ignore the whole protocol.
- UDP scan works by sending a UDP packet to every targeted port. For most ports, this packet will be empty (no payload), but for a few of the more common ports a protocol-specific payload will be sent. Based on the response, or lack thereof, the port is assigned to one of four states, as shown below:

Response	State			
Any UDP response from target port (unusual)	open			
No response received (even after retransmissions)	open filtered			
ICMP port unreachable error (type 3, code 3)	closed			
Other ICMP unreachable errors (type 3, code 1, 2, 9, 10, or 13)	filtered			

NMAP (UDP Scan 2/3):-sU

- ▶ The most curious element of this table may be the open | filtered state. It'is the biggest challenges with UDP scanning: open ports rarely respond to empty probes.
- ▶ UDP Scan example:

```
krad# nmap -sU -v felix

Starting Nmap ( http://nmap.org )
Nmap scan report for felix.nmap.org (192.168.0.42)
(The 997 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
53/udp open|filtered domain
67/udp open|filtered dhcpserver
111/udp open|filtered rpcbind
MAC Address: 00:02:E3:14:11:02 (Lite-on Communications)

Nmap done: 1 IP address (1 host up) scanned in 999.25 seconds
```

- This scan of "felix" demonstrates the open | filtered ambiguity issue as well as another problem: UDP scanning can be slow.
- Scanning a thousand ports took almost 17 minutes in this case due to ICMP response rate limiting performed by the OS target.

NMAP (UDP Scan 3/3):-sU

- Nmap provides ways to work around UDP scan problems.
- ▶ The reason these services don't respond often is that the empty packets Nmap sends are considered invalid.
- Unfortunately, UDP services generally define their own packet structure rather than adhering to some common general format.
- ▶ An SNMP packet looks completely different than a SunRPC, DHCP, or DNS request packet.
- ▶ To send the proper packet for every popular UDP service, Nmap would need a large database defining their probe formats (nmap-service-probes).
- When version scanning is enabled with -sV (or -A), it will send UDP probes to every open | filtered port (as well as known open ones). If any packet return a response from an open | filtered port, the state is changed to open.

```
krad# nmap -sUV -F felix.nmap.org
Starting Nmap ( http://nmap.org )
 map scan report for felix.nmap.org (192.168.0.42)
Not shown: 997 closed ports
       STATE
                     SERVICE
                                VERSION
                     domain
53/udp
       open
                                ISC BIND 9.2.1
67/udp open filtered dhcpserver
111/udp open
                     rpcbind
                                2 (rpc #100000)
MAC Address: 00:02:E3:14:11:02 (Lite-on Communications)
Nmap done: 1 IP address (1 host up) scanned in 1037.57 seconds
```

NMAP (TCP SYN Scan): -sS

- SYN scan is the default and most popular scan option for good reason:
 - It can be performed quickly (scanning thousands of ports per second),
 - It's not hampered by intrusive firewalls (because it never completes TCP connections),
 - ▶ It also allows clear, reliable differentiation between open, closed, and filtered states.

Response	State			
TCP SYN/ACK response	open			
TCP RST response	closed			
No response received (even after retransmissions)	filtered			
ICMP unreachable error (type 3, code 1, 2, 3, 9, 10, or 13)	filtered			

NMAP: SYN scan of open port 22

```
krad# nmap -p22,113,139 scanme.nmap.org

Starting Nmap ( http://nmap.org )
Nmap scan report for scanme.nmap.org (64.13.134.52)
PORT STATE SERVICE
22/tcp open ssh
113/tcp closed auth
139/tcp filtered netbios-ssn
Nmap done: 1 IP address (1 host up) scanned in 1.35 seconds
```


NMAP: SYN scan of closed port 113

```
krad# nmap -p22,113,139 scanme.nmap.org

Starting Nmap ( http://nmap.org )
Nmap scan report for scanme.nmap.org (64.13.134.52)
PORT STATE SERVICE
22/tcp open ssh
113/tcp closed auth
139/tcp filtered netbios-ssn
Nmap done: 1 IP address (1 host up) scanned in 1.35 seconds
```


NMAP: SYN scan of filtered port 139

```
krad# nmap -p22,113,139 scanme.nmap.org

Starting Nmap ( http://nmap.org )
Nmap scan report for scanme.nmap.org (64.13.134.52)
PORT STATE SERVICE
22/tcp open ssh
113/tcp closed auth
139/tcp filtered netbios-ssn
Nmap done: 1 IP address (1 host up) scanned in 1.35 seconds
```


NMAP: TCP connect scan

```
krad~> nmap -T4 -sT scanme.nmap.org

Starting Nmap ( http://nmap.org )
Nmap scan report for scanme.nmap.org (64.13.134.52)
Not shown: 994 filtered ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp closed smtp
53/tcp open domain
70/tcp closed gopher
80/tcp open http
113/tcp closed auth

Nmap done: 1 IP address (1 host up) scanned in 4.74 seconds
```


Other TCP scan type (based on TCP flags)

Command	Description
nmap -sN 10.1.1.1	Scan TCP with not set any bits (TCP flag header is 0)
nmap -sF 10.1.1.1	Scan TCP with sets just the TCP FIN bit.
nmap -sX 10.1.1.1	Scan TCP with sets the FIN, PSH, and URG flags, lighting the packet up like a Christmas tree.

	TCP segment header																																
Offsets	Octet	0 1 2 3																															
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1											1	0				
0	0		Source port Destination port																														
4	32		Sequence number																														
8	64	Acknowledgment number (if ACK set)																															
12	96	Data offset Reserved 000 N S R E G K H T N N C R C S S Y I N N Window Size																															
16	128	Checksum Urgent pointer (if URG set)																															
20	160		Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)																														

Response	State				
No response received (even after retransmissions)	open filtered				
TCP RST packet	closed				
ICMP unreachable error (type 3, code 1, 2, 3, 9, 10, or 13)	filtered				

NMAP: TCP FIN or URG or PUSH scan

```
# nmap -sF -T4 docsrv.caldera.com
Starting Nmap ( http://nmap.org )
Nmap scan report for docsrv.caldera.com (216.250.128.247)
Not shown: 961 closed ports
PORT
         STATE
                        SERVICE
7/tcp
         open filtered echo
         open filtered discard
9/tcp
11/tcp
         open filtered systat
13/tcp
         open filtered daytime
         open filtered netstat
15/tcp
19/tcp
         open filtered chargen
21/tcp
         open filtered ftp
22/tcp
         open filtered ssh
23/tcp
         open filtered telnet
25/tcp
         open filtered smtp
37/tcp
         open filtered time
79/tcp
         open filtered finger
80/tcp
         open filtered http
110/tcp
         open filtered pop3
         open filtered rpcbind
111/tcp
         open filtered msrpc
l35/tcp
```


NMAP: ACK scan (-sA)

▶ ACK scan is used to map out firewall rulesets, determining whether they are stateful or not and which ports are filtered.

```
krad# nmap -sA -T4 scanme.nmap.org

Starting Nmap ( http://nmap.org )
Nmap scan report for scanme.nmap.org (64.13.134.52)
Not shown: 994 filtered ports
PORT STATE SERVICE
22/tcp unfiltered ssh
25/tcp unfiltered smtp
53/tcp unfiltered domain
70/tcp unfiltered gopher
80/tcp unfiltered http
113/tcp unfiltered auth
Nmap done: 1 IP address (1 host up) scanned in 4.01 seconds
```

Response	State
TCP RST response	unfiltered
No response received (even after retransmissions)	filtered
ICMP unreachable error (type 3, code 1, 2, 3, 9, 10, or 13)	filtered

Basic port scan

Command	Description
nmap -p80 10.1.1.1	Scan only port 80 for specified host
nmap -p20-23 10.1.1.1	Scan ports 20 up to 23 for specified host
nmap -p80,88,8000 10.1.1.1	Scan ports 80,88,8000 only
nmap -p- 10.1.1.1	Scan ALL ports for specified host
nmap -sS -sU -p U:53,T:22 10.1.1.1	Scan ports UDP 53 and TCP 22
nmap -p http,ssh 10.1.1.1	Scan http and ssh ports for specified host

Identify Versions of Services and Operating Systems

Command	Description
nmap -sV 10.1.1.1	Version detection scan of open ports (services)
nmap -0 10.1.1.1	Identify Operating System version
nmap -A 10.1.1.1	This combines OS detection, service version detection, script scanning and traceroute.

Nicolas VIEUX Version: 0.0.9 Update: 13/04/2022

Scan timings

Command	Description
nmap -T0 10.1.1.1	Slowest scan (to avoid IDS)
nmap -T1 10.1.1.1	Sneaky (to avoid IDS)
nmap -T2 10.1.1.1	Polite (10 times slower than T3)
nmap -T3 10.1.1.1	Default scan timer (normal)
nmap -T4 10.1.1.1	Aggressive (fast and fairly accurate)
nmap -T5 10.1.1.1	Very Aggressive (might miss open ports)

Output types

Command	Description
nmap -oN [filename] [IP hosts]	Normal text format
nmap -oG [filename] [IP hosts]	Grepable file (useful to search inside file)
nmap -oX [filename] [IP hosts]	XML file
nmap -oA [filename] [IP hosts]	Output in all 3 formats supported

Nicolas VIEUX Version: 0.0.9 Update: 13/04/2022

Discover live hosts

Command	Description
nmap -PS22-25,80 10.1.1.0/24	Discover hosts by TCP SYN packets to specified ports (in our example here the ports are 22 to 25 and 80)
nmap -Pn 10.1.1.0/24	Disable port discovery. Treat all hosts as online.
nmap -PE 10.1.1.0/24	Send ICMP Echo packets to discover hosts.
nmap -sn 10.1.1.0/24	Ping scan.

▶ **NSE scripts** (for more information : https://nmap.org/book/man-nse.html)

Command	Description
nmapscript <filename> <category> <directory></directory></category></filename>	Runs a script with the following format.
nmap –script "http-*" 10.1.1.0/24	Loads all scripts whose name starts with http-, such as http-auth and http-open-proxy. The argument toscript had to be in quotes to protect the wildcard from the shell.
nmap –script "http-*"script-args 'user=foo' 10.1.1.3	Lets you provide arguments to NSE scripts. Arguments are a comma-separated list of name=value pairs.

Example of an NSE script

```
root@bt:/usr/share/nmap/scripts# nmap -p 135,139,445 --script=smb-pwdump.nse --script-args=smbuser=administrator,smbpass=lamepassword 192.168.0.190
Starting Nmap 5.35DC1 ( http://nmap.org ) at 2010-09-29 12:18 CDT
Nmap scan report for 192.168.0.190
Host is up (0.0013s latency).
PORT
       STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 08:00:27:BE:EF:6B (Cadmus Computer Systems)
Host script results:
 smb-pwdump:
 Administrator:500 => D53AD4A74DD31D5476FDE78389BE2CE2:C1D90F01AB325FA3194D22AA2D201211
 SUPPORT 388945a0:1001 => NO PASSWORD*************************E550E0A3B401BFA01673C201C735072A
 testaccount1:1003 => E52CAC67419A9A2238F10713B629B565:5835048CE94AD0564E29A924A03510EF
  testaccount2:1004 => E52CAC67419A9A22F96F275E1115B16F:E22E04519AA757D12F1219C4F31252F4
 testaccount3:1005 => E52CAC67419A9A221B087C18752BDBEE:BD7DFBF29A93F93C63CB84790DA00E63
Nmap done: 1 IP address (1 host up) scanned in 1.02 seconds
root@bt:/usr/share/nmap/scripts#
```

© Nicolas VIEUX Version: 0.0.9 Update: 13/04/2022

Always more

Command	Description
nmap -p80,443 100.100.100.0/24 -oG — nikto.pl -h —	Find HTTP servers and then run nikto against them
nmap -p80,443script http-waf-detectscript-args="http-waf-detect.aggro,http-waf-detect.detectBodyChanges" www.site.fr	Detect if a Website is protected by WAF
nmap -Pn -sV -p80script=vulners 10.0.0.6	Find well known vulnerabilities related to an open port

► Test it: https://tryhackme.com/room/nmap01