"Octo-Robot"

Presentation Outline

- Intro what were we trying to accomplish
- Robot Hardware & "Firmware"
- Low Level Robot Command Speed Run
- First Robotics Java Emulation Code
- First Robotics Example Code

Goals

What is it

Inexpensive Trainer for First Robotics Programming

- Hardware Features
 - Two motors
 - Two encoders
 - Sonar Range Finder
 - Status Lights

- "Driven" from a PC
 - Like a remote controlled car,
 - But student robot code is doing the driving

Goals

"Make it easy to start First Robotics programming"

Goals

Inexpensive and friendly (parts cost <\$50)

- Programmed like a competition robot
 - Visual Studio Code Java Environemnt
 - First Robotics Smart Dash Board
 - First Robotics like hardware interfaces

- Enough hardware for basic Robot tasks
 - Encoders for PID Controllers + Sonar Range Finder

Robot Hardware

Battery Pack

Motor Controller

I.O.T. Microcontroller

Status Lights

Sonic Range Finder

Robot Hardware

Right Motor

Right Encoder

Left Motor

Left Encoder

Rear Wheel

The Robot Creates a WiFi Access Point

Robots have unique SSIDs. Password is graciousp

Computer Connects to WiFi access point

The computer & robot form a private "intranet"

Listening to 192.168.4.1 Port 4999

The Robot Listens to a TCP/IP Socket

Web Servers work in a similar way

Connect to 192.168.4.1 Port 4999

Listening to 192.168.4.1

Port 4999

The Java Code on the laptop connects to the robot

Like a browser connecting to a web server

The Physical Robot is Pretty Basic

- First Robitics Competition Robot
 - Robo Rio is the brains of the robot
 - Robo Rio talks to devices like motors through a bus
 - Libraries for talking to the devices are provided
- Trainer "Oct-Robot"
 - Your PC is the true brains of the robot
 - PC talks to devices like motors through the WIFI
 - Libraries for talking to the devices are provided

Low Level Robot Command Speed Run

Low Level Commands - Connecting

Command that connects to robot

Robot's Address and port

Robot saying "I'm listening & ready"

Low Level Commands - Motor

Tell Left Motor to go at 100%. This is something I typed in by hand

Robot saying "I got the command"

Low Level Commands - Motor

Tell Right Motor to go at 100%.

Robot saying "I got the command"

Low Level Commands - Motor

Tell Right Motor to go at -100%.

"Go counter clockwise instead of clockwise"

Low Level Commands - Encoder

Low Level Commands - Encoder

Encoder Position Changes while the wheel runs at 100%

Encoder Speed is about the same

94141 = 1.44 rot/s 97260 = 1.48 rot/s

Raw Commands - "motora"

"motora" sets all motors. Setting all motors to 0 stops the robot

Low Level Commands - "encoderr"

L.L. Command - Spam Sensor Data

```
andrew@miles: ~ 

File Edit View Search Terminal Help

oencoderr

# Got: encoderr

encoderr -1575 0

encoderr

# Got: encoderr

encoderr

datasend=1
```

datasend=1 tells the robot to send encoder and sonar range finder data every 1/10th of a second

datasend=0 turns this off.

L.L. Command - Spam Sensor Data

TODO

- TODO
 - TODO

First Robotics Example Code

TODO

- TODO
 - TODO