The OSI Model - Network Layer (Layer 3)

- Purpose:
 - Enables connectivity between end devices on different networks (beyond a LAN).
 - Provides logical addressing (IP addresses) and selects paths from source to destination.
- Devices at Layer 3:
 - o Routers: Operate at this layer and separate different networks.

Routing

- Switches (Layer 2):
 - Connect devices within the same LAN but do not separate networks.
- Routers (Layer 3):
 - Connect multiple LANs and split networks, assigning each LAN a unique IP network address.
 - o Example:
 - **Network 1:** 192.168.1.0/24 (Subnet Mask: 255.255.255.0).
 - **Network 2:** 192.168.2.0/24.
- Router Interface IPs:

V

- Each interface on a router connects to a specific LAN and has its own IP address:
 - **G0/0 (LAN1):** 192.168.1.254/24.
 - **G0/1 (LAN2):** 192.168.2.254/24.
- Broadcast Behavior:
 - o A broadcast stays within its LAN and does not cross a router.

IPv4 Addressing and Headers

- IPv4 Address Format:
 - 32-bit binary number split into 4 octets.
 - o Represented in **dotted decimal format** (e.g., 192.168.1.254).
- Binary Conversion Example:
 - o IP: 192.168.1.254.
 - o Binary: 11000000.10101000.00000001.11111110.
 - Each octet corresponds to 8 bits (values: 128, 64, 32, 16, 8, 4, 2, 1).
- Field Details in IPv4 Header:
 - o Contains source IP address and destination IP address.

Decimal to Binary Conversion

1. Example: 221

o Subtract the value of each binary slot from the decimal number:

■ 221 - 128 = $93 \rightarrow 1$ in the 128 slot.

■ $93 - 64 = 29 \rightarrow 1$ in the 64 slot.

■ 29 - 32 is not possible \rightarrow **0** in the 32 slot.

■ Continue: 11011101.

2. Example: 127

o Result: 01111111.

IPv4 Address Components

- Network Portion and Host Portion:
 - Represented by the prefix length (e.g., /24).
 - /24 means the first 24 bits are the network portion.
 - Example: 192.168.1.0/24 → Network: 192.168.1, Host: last octet.

IPv4 Address Classes

Class	First octet	First octet numeric range	
Α	0xxxxxxx	0-127	
В	10xxxxxx	128-191	
С	110xxxxx	192-223	
D	1110xxxx	224-239	
E	1111xxxx	240-255	

• Classes: Determine the structure of the network portion.

Class A:

■ Range: 0-126 (127 is reserved for loopback: used to test the 'network stack' (think OSI, TCP/IP model) on the local device).

Network Prefix: /8.Netmask: 255.0.0.0.

o Class B:

Range: 128-191.
Network Prefix: /16.
Netmask: 255.255.0.0.

Class C:

Range: 192-223.Network Prefix: /24.

■ Netmask: 255.255.255.0.

Class D: Reserved for multicast addresses.Class E: Reserved for experimental purposes.

Network Address and Broadcast Address

Network Address:

○ Host portion = all **0s.**

o Example: 192.168.1.0/24.

o Identifies the network itself and cannot be assigned to hosts.

Broadcast Address:

Host portion = all 1s.

o Example: 192.168.1.255.

Used to send packets to all devices in the network.

• Usable Host Addresses:

o Range: 1 to 254 in a /24 subnet.

Two addresses (network and broadcast) are reserved.

Leading bits	Size of network number bit field	Size of rest bit field	Number of networks	Addresses per network
0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)
10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)
110	24	8	2,097,152 (2 ²¹)	2 56 (2⁸)
	0 10	bits field 0 8 10 16	bits field field 0 8 24 10 16 16	bits field networks 0 8 24 128 (2 ⁷) 10 16 16 16,384 (2 ¹⁴)

254

- 1. **Binary:** 100110100100111001101111100100000
 - o Octets: 154.78.111.32.
 - o Prefix: /16 → Network: 154.78, Host: 111.32.
- 2. Binary: 00001100100000001111101100010111
 - o Octets: 12.128.251.23.
 - o Prefix: /8 → Network: 12, Host: 128.251.23.

Key Notes

- **Prefix Length:** Determines the size of the network portion.
- Netmask: Defines the boundary between the network and host portions.
 - o Example: /24 → Netmask: 255.255.25.0.
- **Subnetting:** Dividing an IP range into smaller sub-networks to improve efficiency and security.