TREES

Topics Covered

- Basic Trees concepts and terminology
- Memory Representation of tree
- Binary Trees
- Traversing Binary trees
- Complete and extended binary tree
- General Trees

Non-linear List

- A non linear list in data structure is a special type of list having one or more successor
- Non-linear list divided into two categories

Tree

- A tree is a finite nonempty set of elements.
- It is an abstract model of a hierarchical structure.
- Trees are used extensively in computer science to represent algebraic formula, an efficient method for searching large, dynamic list and in file system

Nature View of a Tree

Computer Scientist's View

- **Node**: each of the elements or data that constructs tree. i.e. A, B, C, D, E, F
- **Edges:** Finite set of directed lines that connects node
- **Root:** The first Node of tree(If tree is not empty) i.e. A
- **In Degree :** The number of edges comes into particular node

Node	In Degree
A	О
В	1
С	1
D	1
E	1
F	1
G	1

• Out Degree: The number of edges comes out particular node

Node	Out Degree
A	2
В	2
С	2
D	О
E	О
F	О
G	О

• **Total Degree :** Summation of Indegree and outdegree

Nod e	Indegree	outdegree	degree
A	0	2	2
В	1	2	3
С	1	2	3
D	1	О	1
E	1	0	1
F	1	0	1
G	1	0	1

N.B: Each node except root node of tree must have an indegree of 1

- **Leaf** : Nodes that have outdegree o i.e. no successor. i.e. D, E,F,G
- **Internal Node** : A node that is not root or leaf node. It is found in middle portion of tree i.e. B,C
- **Parent Node:** Nodes that have outdegree greater than o i.e. it has successor node i.e. A, B, C
- **Child Node:** Nodes that have indegree 1 i.e. one predecessor
 - i.e. B, C, D, E, F, G, H
- **Sibling**: Nodes having same parent i.e. B,C are sibling and D, E and F,G are sibling
- **Path:** A sequence of connected node from one node to another. i.e. path from root to D is ABD, path from C to G is CG
- **Ancestor of a Node :** Any node in the path from root to that node. i.e. Ancestor of D is A,B
- **Descendent of a Node :** All node in the path from that node to the leaf node. i.e. Descendent of : B is D

- **Level/depth:** level of a node is its distance from root. i.e. root has o distance from itself, so root is at level o
 - the children of the root are at level 1 and their children are at level 2 and so on
- Height: Maximum level of any node in the tree.i.e. 2
- **Subtrees:** A tree may be divided into subtrees. The first node of the subtree is considered as root and is used to name the subtree. i.e BDE, CFG

Use of tree

Tree represents a hierarchy for. e.g. the organization structure of a company.

- Table of contents of a book
- Unix or Windows file system

Use of tree

Unix or Windows file system

Trees

- Every tree node:
 - object useful information
 - children pointers to its children

A Tree Representation

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes

Left Child, Right Sibling Representation

Inclass Exercise Draw the tree

Tree Traversal

- Two main methods:
 - Preorder
 - Postorder
- Recursive definition
- Preorder:
 - visit the root
 - traverse in preorder the children (subtrees)
- Postorder
 - traverse in postorder the children (subtrees)
 - visit the root

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (degree of two)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, OR
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Complete Binary tree

- Every nodes (except leaf) having two nodes.
- Maximum number of nodes in Level i is 2^{i} i.e. nodes in level $0=2^{0}=1$, level $1=2^{1}=2$
- In a tree of height h
 - No. of leaf/leaves at level h is 2h
- If the tree has n nodes then,
- $n \le 2^{h+1} 1$ => h >= log₂ (n+1) -1
- A binary tree has at least height of log₂ (n+1) -1 which is a complete binary tree

Minimum height of a Binary trees

- A binary tree of height h has,
- > At most 2ⁱ nodes in level i
- ightharpoonup At most $2^0 + 2^1 + 2^2 + \dots + 2^h = 2^{h+1} 1$ nodes
- If the tree has n nodes then,
- $n \le 2^{h+1} 1$ => h >= $\log_2 (n+1) - 1$
- A binary tree has at least height of $\log_2(n+1)$ -1 which is a complete binary tree

Maximum height of a Binary trees

- If the tree has n nodes then the height is n-1
- This is obtained when every node has exactly one child (except leaf node)

Near Complete Binary Tree

• If a tree has the minimum height for its nodes and all nodes in the last level are found on the left is called near complete binary tree.

Binary Tree Traversal

- Each Node of the tree must be processed once and only once in a predetermined sequence
- Two general approach-
 - Depth First traversal
 - Breadth first traversal
- **Depth First traversal**, the processing proceeds along a path from the root through one child to the most descendent of that first child before processing a second child
- **Breadth first traversal (level by level)**, the processing proceeds horizontally from the roots to all its children (left to right usually) i.e. A B C D E F G

Depth First Traversal

- Three Standard traversal techniques :
- Preorder traversal

- Visit the root
- Visit the left subtree
- Visit the right subtree

2. Inorder traversal

- Visit the left subtree
- Visit the root
- Visit the right subtree

i.e. A B C D E F G I J K

Depth First Traversal

- Three Standard traversal techniques
- Postorder traversal

- Visit the left subtree
- Visit the right subtree
- Visit the root

i.e. A C B E D I G K J F

Expression Trees

- An expression tree is a binary tree with following properties :
- > Each leaf is an operand
- ➤ The root and internal nodes are operator
- > Sub trees are sub expressions with the root being an operator

$$a * (b + c) + d$$

Infix Traversal

```
Algorithm infix (tree)
   if (tree not empty)
       if(tree token is an operand)
         print (tree token)
       else
         print ( open parenthesis)
         infix (tree left subtree)
         print (tree token)
         infix (tree right subtree)
         print (close parenthesis)
        end if
      end if;
```

$$((a * (b + c)) + d)$$

Prefix Traversal

```
Algorithm prefix (tree)

if (tree not empty)

print (tree token)

prefix (tree left subtree)

prefix (tree right subtree)

end if;
```


Postfix Traversal

```
Algorithm postfix (tree)

if (tree not empty)

postfix (tree left subtree)

postfix (tree right subtree)

print (tree token)

end if;
```


abc+*d+