Question 1:

Sunco processes;

- 1.OIL into
- 1.a AVIATION FUEL
- 1.b **HEATING OIL**

Output from distillation may be sold

- A. **DIRECTLY** or
- B. processed in the CATALYTIC CRACKER

Answer for A

Decision Variables

- 1. OIL
- 2. AVIATION_DIRECTLY
- 3. AVIATION_CCRACKER
- 4. HEATING_OIL_DIRECTLY
- 5. HEATING_OIL_CCRACKER

Objective Function

Max Z: 40 HEATING _OIL_ DIRECTLY + 90 HEATING_OIL_CCRACKER + 60 AVIATION_DIRECTLY + 130 AVIATION_CCRACKER - 40 OIL

Constraints

Answer for B

#Google Colab is used for solution

!pip install pulp

```
from pulp import LpVariable, LpMaximize, LpStatus, LpProblem, LpInteger
prob= LpProblem("asdas",LpMaximize)
OIL = LpVariable("Purchased Barrels of Oil", lowBound=0, cat='Continuous')
AVIATION_DIRECTLY = LpVariable("Aviation Fuel Barrels Sold Directly", lowBound=0, cat='Continuous')
AVIATION_CCRACKER = LpVariable("Aviation Fuel Barrels Sold Processed In the Catalytic Cracker",
lowBound=0, cat='Continuous')
HEATING_OIL_DIRECTLY = LpVariable("Heating Oil Barrels Sold Directly", lowBound=0, cat='Continuous')
HEATING_OIL_CCRACKER = LpVariable("Heating Oil Barrels Sold Processed In the Catalytic Cracker",
lowBound=0, cat='Continuous')
#LP Model to maximize profit
prob += 60*AVIATION_DIRECTLY + 130*AVIATION_CCRACKER + 40*HEATING_OIL_DIRECTLY +
90*HEATING_OIL_CCRACKER - 40*OIL
#available barrel supply
prob += OIL <= 20, "MAX SUPPLY"
#Total aviation fuel must be half of distillation
prob += 0.5*OIL - AVIATION_DIRECTLY - AVIATION_CCRACKER == 0, "MAX_AVIATION_FUEL"
#Total heating oil must be half of distillation
prob += 0.5*OIL - HEATING_OIL_DIRECTLY - HEATING_OIL_CCRACKER == 0, "MAX_HEATING_OIL"
#total hours is 8, we need to divide our factor to max barrel can produced per hour
#for AVIATION 1000 barrels per hour, HEATING 1000 barrels per 45 minutes which is 0.75
prob += AVIATION CCRACKER + 0.75*HEATING OIL CCRACKER <= 8, "MAX CRACKER HOUR"
```

The prob is solved using PuLP's choice of Solver

```
prob.solve()
# The status of the solution is printed to the screen
print("Status:", LpStatus[prob.status])
# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
  print(v.name, "=", v.varValue)
# The optimised objective function value is printed to the screen
print("Total Cost of the Process = ", prob.objective.value(), '$')
import pandas as pd
#Report sensivity Analysis
print("\nSensivity Analysis")
Cons_Sensivity_Report = [{'Constraint_Name':name,'Slack':c.slack,"Shadow_Price":c.pi}
             for name, c in prob.constraints.items()]
print(pd.DataFrame(Cons_Sensivity_Report))
print("\n")
Variable_Sensitivity_Report = [{'Variable_Name': v.name, 'Value':v.varValue,'Reduced_Cost': v.dj}
                 for v in prob.variables()]
print(pd.DataFrame(Variable_Sensitivity_Report)[['Variable_Name','Value','Reduced_Cost']])
OUTPUT:
```

```
Status: Optimal
Aviation_Fuel_Barrels_Sold_Directly = 2.0
Aviation_Fuel_Barrels_Sold_Processed_In_the_Catalytic_Cracker = 8.0
Heating_Oil_Barrels_Sold_Directly = 10.0
Heating_Oil_Barrels_Sold_Processed_In_the_Catalytic_Cracker = 0.0
Purchased_Barrels_of_Oil = 20.0
Total Cost of the Process = 760.0 $
Sensivity Analysis
   Constraint_Name Slack Shadow_Price
0 MAX_SUPPLY -0.0 10.0
1 MAX_AVIATION_FUEL -0.0 -60.0
2 MAX_HEATING_OIL -0.0
                                   -40.0
3 MAX_CRACKER_HOUR -0.0
                                   70.0
                                       Variable Name Value Reduced Cost
0 Aviation_Fuel_Barrels_Sold_Directly 2.0 0.0 1 Aviation_Fuel_Barrels_Sold_Processed_In_the_Ca... 8.0 0.0
                  Heating_Oil_Barrels_Sold_Directly 10.0
                                                                     0.0
3 Heating_Oil_Barrels_Sold_Processed_In_the_Cata... 0.0
                                                                    -2.5
                           Purchased_Barrels_of_Oil 20.0
                                                                    0.0
```

Answer for C

Yes, it is profitable. If we look at Shadow Price of MAX_SUPPLY, we can see how it will affect how much more profit you would get by increasing the amount of that resource by one unit, which can be seen, its positive value.

Answer for D

Shadow Price of per oil purchase is 10\$, so every x unit we purchase, our profit will increase 10*x unit.

Answer for E

Shadow Price of per hour for Catalytic Cracker is 70\$, but our supply is not limitless, so it will increase for certain time, but when we used all of our barrels, it will became useless.

Question 2:

Answer for A

#Decision Variables

- 1. regular1 => Week 1 Regular Production
- 2. regular2 => Week 2 Regular Production
- 3. regular3 => Week 3 Regular Production
- 4. regular4 => Week 4 Regular Production
- 5. regular5 => Week 5 Regular Production
- 6. regular6 => Week 6 Regular Production
- 7. overtime1 => Week 1 Overtime Production
- 8. overtime2 => Week 2 Overtime Production
- 9. overtime3 => Week 3 Overtime Production
- 10. overtime4 => Week 4 Overtime Production
- 11. overtime5 => Week 5 Overtime Production
- 12. overtime6 => Week 6 Overtime Production
- 13. extra1 => Week 1 Extra Production
- 14. extra2 => Week 2 Extra Production
- 15. extra3 => Week 3 Extra Production
- 16. extra4 => Week 4 Extra Production
- 17. extra5 => Week 5 Extra Production

#Objective Function for Minimize Z

Minimize Z =

\$190*(regular1+regular2+regular3+regular4+regular5+regular6)+\$260*(overtime1+overtime2+overtime3+overtime4+overtime5+overtime6)+\$10*(extra1+extra2+extra3+extra4+extra5)

#Constraints

regular1+overtime1-extra1 = 105	Week 1 Orders
regular2+overtime2+extra1-extra2 = 170	Week 2 Orders
regular3+overtime3+extra2-extra3 = 230	Week 3 Orders
regular4+overtime4+extra3-extra4 = 180	Week 4 Orders
regular5+overtime5+extra4-extra5 = 150	Week 5 Orders
regular6+overtime6+extra5 = 250	Week 6 Orders

regular1, regular2, regular3, regular4, regular5, regular6 <= 160 **Upbound for Regular Production** overtime1, overtime2, overtime3, overtime4, overtime5, overtime6 <= 50 **Upbound for Overtime Production**

regular1, regular2, regular3, regular4, regular5, regular6, overtime1, overtime2, overtime3, overtime4, overtime5, overtime6, extra1+extra2+extra3+extra4+extra5 >= 0 Lowbound for All Variables

Answer for B

#Google Colab is used for solution

#Adding install pulp in case of code run seperated from first question solution !pip install pulp

from pulp import LpVariable, LpMinimize, LpStatus, LpProblem

prob = LpProblem("Minimize_Cost_Problem",LpMinimize)

#Decision Variables of LP

```
regular1 = LpVariable("Week 1 Regular Production", lowBound=0, upBound=160)
regular2 = LpVariable("Week 2 Regular Production", lowBound=0, upBound=160)
regular3 = LpVariable("Week 3 Regular Production", lowBound=0, upBound=160)
regular4 = LpVariable("Week 4 Regular Production", lowBound=0, upBound=160)
regular5 = LpVariable("Week 5 Regular Production", lowBound=0, upBound=160)
regular6 = LpVariable("Week 6 Regular Production", lowBound=0, upBound=160)
```

```
overtime1 = LpVariable("Week 1 Overtime Production", lowBound=0, upBound=50)
overtime2 = LpVariable("Week 2 Overtime Production", lowBound=0, upBound=50)
overtime3 = LpVariable("Week 3 Overtime Production", lowBound=0, upBound=50)
```

```
overtime4 = LpVariable("Week 4 Overtime Production", lowBound=0, upBound=50)
overtime5 = LpVariable("Week 5 Overtime Production", lowBound=0, upBound=50)
overtime6 = LpVariable("Week 6 Overtime Production", lowBound=0, upBound=50)
extra1 = LpVariable("Week 1 Extra Production", lowBound=0)
extra2 = LpVariable("Week 2 Extra Production", lowBound=0)
extra3 = LpVariable("Week 3 Extra Production", lowBound=0)
extra4 = LpVariable("Week 4 Extra Production", lowBound=0)
extra5 = LpVariable("Week 5 Extra Production", lowBound=0)
#Objective Function for Minimize Z
190*(regular1+regular2+regular3+regular4+regular5+regular6)+260*(overtime1+overtime2+overtime3+o
vertime4+overtime5+overtime6)+10*(extra1+extra2+extra3+extra4+extra5)
#Constraints of Problem
prob += regular1+overtime1-extra1 == 105, "Week 1 Orders"
prob += regular2+overtime2+extra1-extra2 == 170, "Week 2 Orders"
prob += regular3+overtime3+extra2-extra3 == 230, "Week 3 Orders"
prob += regular4+overtime4+extra3-extra4 == 180, "Week 4 Orders"
prob += regular5+overtime5+extra4-extra5 == 150, "Week 5 Orders"
prob += regular6+overtime6+extra5 == 250, "Week 6 Orders"
prob.solve()
print("Status:", LpStatus[prob.status])
```

```
for v in prob.variables():
  print(v.name, "=", v.varValue)
print("Total Cost of the Process = ", prob.objective.value())
import pandas as pd
#Report sensivity Analysis
print("\nSensivity Analysis")
Cons_Sensivity_Report = [{'Constraint_Name':name,'Slack':c.slack,"Shadow_Price":c.pi}
             for name, c in prob.constraints.items()]
print(pd.DataFrame(Cons_Sensivity_Report))
print("\n")
Variable_Sensitivity_Report = [{'Variable_Name': v.name, 'Value':v.varValue,'Reduced_Cost': v.dj}
                 for v in prob.variables()]
print(pd.DataFrame(Variable_Sensitivity_Report)[['Variable_Name','Value','Reduced_Cost']])
OUTPUT:
```

```
Status: Optimal
Week 1 Extra Production = 55.0
Week 1 Overtime Production = 0.0
Week 1 Regular Production = 160.0
Week_2_Extra_Production = 45.0
Week 2 Overtime Production = 0.0
Week 2 Regular Production = 160.0
Week 3 Extra Production = 0.0
Week_3_Overtime_Production = 25.0
Week_3_Regular_Production = 160.0
Week 4 Extra Production = 0.0
Week 4 Overtime Production = 20.0
Week_4_Regular_Production = 160.0
Week 5 Extra Production = 40.0
Week 5 Overtime Production = 30.0
Week_5_Regular_Production = 160.0
Week_6_Overtime_Production = 50.0
Week 6 Regular Production = 160.0
Total Cost of the Process = 216300.0
Sensivity Analysis
  Constraint Name Slack Shadow Price
   Week 1 Orders
                   -0.0
                                 240.0
                  -0.0
1
   Week_2_Orders
                                 250.0
2
   Week_3_Orders -0.0
                                 260.0
3
   Week 4 Orders
                    -0.0
                                 260.0
4
   Week 5 Orders -0.0
                                 260.0
   Week 6 Orders
5
                    -0.0
                                 270.0
                 Variable Name Value
                                       Reduced Cost
0
       Week_1_Extra_Production
                                 55.0
                                                 0.0
1
    Week_1_Overtime_Production
                                  0.0
                                                20.0
2
     Week_1_Regular_Production
                               160.0
                                               -50.0
3
       Week 2 Extra Production
                                 45.0
                                                 0.0
    Week_2_Overtime_Production
4
                                  0.0
                                               10.0
5
     Week_2_Regular_Production
                                160.0
                                               -60.0
6
       Week_3_Extra_Production
                                  0.0
                                               10.0
7
    Week 3 Overtime Production
                                 25.0
                                                 0.0
8
     Week_3_Regular_Production
                                160.0
                                               -70.0
       Week_4_Extra_Production
9
                                  0.0
                                               10.0
   Week_4_Overtime_Production
                                 20.0
10
                                                 0.0
     Week 4 Regular Production 160.0
11
                                              -70.0
       Week 5 Extra Production
12
                                 40.0
                                                 0.0
13
   Week 5 Overtime Production
                                 30.0
                                                 0.0
14
    Week_5_Regular_Production
                               160.0
                                               -70.0
   Week_6_Overtime_Production
15
                                 50.0
                                              -10.0
     Week 6 Regular Production
16
                                160.0
                                               -80.0
```

Answer for C

Highest Shadow Price belongs to Week 6, so I would choose Week 6.

Question 3:

Answer for A

DecisionVariables;

N => Necklace

B => Bracelet

Maximize Profit;

$$Max Z = N*400$ + B*300$$$

Constraints;

N*3 + B*2 <= 18

N*2 + B*4 <= 20

N <= 4

B >= 0, N >= 0

Answer for B

For 1st Constraint =>

Max N => N =6, B = 0

Max B => N = 0, B = 9

For 2nd Constraint =>

Max N => N = 10, B = 0

Max B => N = 0, B = 5

Graph Is

