Polarization Game over Social Networks

Xilin Zhang joint work with Emrah Akyol and Zeynep Ertem

April 1, 2023

*Binghamton University

Problem Setting

Problem Setting

Problem Setting

Nash and Stackelberg Equilibria

There are two notions of equilibrium of interest: (Generalized) Nash and Stackelberg.

Generalized Nash Equilibrium

A tuple (i_A, s_{A}) and (i_B, s_{B}) is a GNE if these three are simultaneously satisfied:

$$i_{A}, s_{A} = \underset{i_{A} \in \mathcal{S}_{A}, s_{A} \in [0, 1]}{\operatorname{arg max}} P$$

$$i_{B}, s_{B} = \underset{i_{B} \in \mathcal{S}_{B}, s_{B} \in [0, 1]}{\operatorname{arg min}} P$$

$$i_{A} \neq i_{B}$$

- Fictitious play is a method to find Nash Equilibrium (?)
- In a two-player zero-sum game, it is guaranteed that fictitious play will converge to an NE
- We need a modified version of FP to find the GNE.

Prior Work

- Limited prior work on polarization dynamics over social networks.
 - * Minimizing polarization (Chen and Racz, 2021)
 - * Maximizing polarization (Musco et al., 2018)
 - * Change network parameters (Zhu et al., 2021)
- ➤ Some focuses on minimization or maximization of polarization but not the game setting where both players (maximizer and minimizer) exist.
 - * New models of opinion dynamics (Perra and Rocha, 2019)

Equilibrium Details

- Fictitious play (FP) is commonly used to find NE in clasical zerosum games.
- ▶ Here, we modify fictitious play so that it can used to determine GNE. We first need the following:

Theorem

For a given i_A , i_B , pair, $s_A \in \{0, 1\}$ and

$$s_{i^{B}} = \frac{-\sum_{j \neq i_{B}} s_{j} (a_{j} - \frac{1}{n})^{T} (a_{i} - \frac{1}{n})}{(a_{i} - \frac{1}{n})^{T} (a_{i} - \frac{1}{n})}$$

where a_i is the i'th column of $A = (I + L)^{-1}$ and L is the Laplacian of the network.

- Proof Sketch: Note that $\mathbf{z'} = (I + L)^{-1}\mathbf{s}$ and $P(\mathbf{z'})$ is convex in $\mathbf{z'}$. Since P is linear in \mathbf{s} , we are maximizing/minimizing a convex functional. Maximizer is on the boundary and the minimizer can be found by KKT conditions.
- \triangleright Exhaustive search for i_A , i_B .

Main Takeaway

- ▶ The novel setting requires new tools to analyze generalized NE
- Heuristics inspiration of determining GNE to avoid computationally demanding method
 - * maximizer → less connected(lonely) agent
 - * minimizer → extreme opinion

Simulation - Karate Network

Data

Nodes

Edaes

Network

Player	М	ах	Min	
Probability	75%	25%	90%	10%
Nodes	11	16	6	29
Innate opinion	0.77	0.51	0.72	0.21
New opinion	1	1	0	1

Table Karate Network NE result.

	Max	Min	
Nodes	16	6	
Innate opinion	0.51	0.72	
New opinion	1	0	
Polarization	0.	17	

Table Karate Network Maxmin result.

	Maximizer	r Minimizer	
Nodes	11	6	
Innate opinion	0.77	0.72	
New opinion	1	0.1	

Introduction Game Experiments Summary References

Source

Simulation - Change innate opinion

Player	М	ах	Min	
Probability	75%	25%	90%	10%
Nodes	11	16	6	33
Innate opinion	0.77	0.51	0.72	0.29
New opinion	1	1	0	1

Table Karate Network NE result.

	Max	Min	
Nodes	11	33	
Innate opinion	0.77	0.29	
New opinion	1	1	
Polarization	0.	16	

Table Karate Network Maxmin result.

Simulation - Twitter Network

Data	Nodes	Edges	Network	Source
Twitter(elections)	548	5,271	undirected	De et al. (2014)

Player		Max		Min		
Probability	45%	45%	10%	40%	40%	20%
Nodes ID	202	351	490	529	37	199
Innate opinion	0.56	0.64	0.57	0.49	0.60	0.23
New opinion	0	0	0	0.76	0.8	0.7

Table Twitter Network NE result.

	Max	Min
Nodes	396	199
Innate opinion	0.65	0.23
New opinion	0	0.71
Polarization	0.	26

Table Twitter Network Maxmin result.

Simulation - Reddit Network

overleaf_Reddit1.png

Data	Nodes	Edges	Network	Source
Reddit(politics network)	553	94,312	undirected	De et al. (2014)

Player	Max		Min		
Probability	29%	71%	84%	16%	
Node ID	50	481	245	284	
Innate opinion	0.5	0.5	0.409	0.625	
New opinion	1	1	0.5	0.29	

Table Reddit Network NE result.

 Max
 Min

 Nodes
 481
 284

 Innate opinion
 0.5
 0.63

 New opinion
 1
 0

 Polarization
 0.07

Table Reddit Network Maxmin result.

Summary

- Maximizer tend to choose the node with low centrality and neutral opinion.
- ▶ Minimizer tends to choose the node with min/max opinion among all agents.
- ► Any questions/Comments? ⇒ xzhan176@binghamton.edu

References

- Chen, M. F. and Racz, M. Z. (2021). An adversarial model of network disruption: Maximizing disagreement and polarization in social networks. *IEEE Transactions on Network Science and Engineering*.
- De, A., Bhattacharya, S., Bhattacharya, P., Ganguly, N., and Chakrabarti, S. (2014). Learning a linear influence model from transient opinion dynamics. In *Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management*, pages 401–410.
- Musco, C., Musco, C., and Tsourakakis, C. E. (2018). Minimizing polarization and disagreement in social networks. In *Proceedings of the 2018 world wide web conference*, pages 369–378.
- Perra, N. and Rocha, L. E. (2019). Modelling opinion dynamics in the age of algorithmic personalisation. *Scientific reports*, 9(1):1–11.
- Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. *Journal of anthropological research*, 33(4):452–473.
- Zhu, L., Bao, Q., and Zhang, Z. (2021). Minimizing polarization and disagreement in social networks via link recommendation. *Advances in Neural Information Processing Systems*, 34:2072–2084.

Back-up Slides

Twitter Opinion.png Reddit Opinion.png Karate Opinion.png	Twitter Opinion.png
---	---------------------