

\[\langle 1 \rangle 2 \rangle 3 \rangle 4 \rangle 5 \rangle 6 \rangle 7 \]

♦ ♦ SOMMAIRE

- I. Contexte scientifique
- II. Analyse d'une épidémie
- III. Conception de la digitalisation
- IV. Conjoncture infectieuse
- V. Conjoncture économique
- VI. Statut final de l'implémentation
- VII.Expérimentation illustrative

- Simulation actuelle d'une épidémie.
 - Modélisation réductrice : objets dans un rectangle.
 - Système contagieux discutable.
 - Critère économique très limité.
 - Evaluation simpliste des stratégies de restriction.
 - Existence de plusieurs projets plus élaborés.

♦ Modélisation SIR et autres variantes.

β : Contacts/jours * Probabilitéde transmission du virus.

 γ : Inverse de λ .

 $R0: \beta * \lambda$

Chaque jour, γ individus deviennent rétablis après avoir passé λ jours infectés précédemment.

- Un petit tour sur l'apprentissage automatique.
 - Apprentissage non supervisée.
 - Apprentissage supervisée.
 - Apprentissage par renforcement.
 - Bibliothèques Python:
 Pandas, Spark, Scikit Learn,
 Keras, TensorFlow, Pytorch, Rlib

- Progression de l'apprentissage par renforcement.
 - DeepMind (Google), "Machine de Turing neuronale".

Jeu des Échecs : AlphaZero

Jeu de Go : AlphaGo

Aide médicale rénale : Streams

Jeu Starcraft : AlphaStar

Repliement des protéines : AlphaFold

- OpenAI (Elon Musk).
- Autres projets : Jeu DOTA 2, Voitures autonomes

1 2 3 4 5 6 7

Granulation des échelles épidémiques.

- Sélection de la stratégie.
 - Besoin d'évaluations infectieuses et économiques.
 - Avoir une approche unique des simulations existantes.
 - Solutions combinatoires pour gérer une épidémie.
 - Conception:

Environnement adaptable aux données d'import.

Décomposable et recyclable.

Facilement améliorable au fil des évolutions.

Décomposition de la digitalisation.

Université de Lille

POLYTECH° UNIVER LUXEM

CONCEPTION DE LA DIGITALISATION

0 1 2 3 4 5 6 7

- Digitalisation statique des espaces.
 - Lecture d'un fichier Openstreetmap.
 - Reclassification des espaces.
 - Caractérisation des éléments :

Aire.

Localisation.

- Maniement des distances géographiques.

- ♦ CONCEPTION DE LA DIGITALISATION
- Digitalisation statique des individus.
 - Données démographiques.
 - Âges et classes socio-dynamiques.
 - Socle individuel:

Logement.

Travail.

Modélisation des individus extérieurs.

- Digitalisation dynamique.
 - Scénarios sous 24H.
 - Hyperparamètres.
 - SumoMobility.
 - Réseau routier.
 - Relier les espaces et les routes.
 - Différents transports.

Université de Lille

POLYTECH°

UNIVERSITÉ LUXEMBO

♦ CONCEPTION DE LA DIGITALISATION

\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7

- Application des digitalisations.
 - Affluences détaillées dans les espaces.
 - Support des évaluations.
 - Période de temps prédéfinie.
 - Application de solutions combinatoires.
 - Plusieurs conditions d'arrêt.

Université de Lille

POLYTECH°

UNIVERSITÉ LUXEMBO

♦ CONJONCTURE INFECTIEUSE

0 1 2 3 4 5 6 7

Schéma épidémiologiste.

Etat réel VS état connu.

Modèle SIR approfondi.

S: Susceptible

E: Phase d'incubation

A: Malade asymptomatique

I-: Malade standard

I+: Malade grave

R: Guérit

D: Décédé

V: Vacciné

- Contamination des individus.
 - Promiscuité avec des individus infectés dans les espaces.
 - Particules persistantes dans les espaces et les individus.
 - Seuil critique de contamination.
 - Plusieurs données de modulation :

Aire des espaces.

Transports publics.

Implication extérieur.

- Caractéristiques des individus infectés.
 - Durée d'incubation aléatoire.
 - Score infectieux aléatoire.
 - Répartition avec des seuils.
 - Emission de particules.
 - Guérison & Soins.
 - Mortalité conditionnel.

- Exploitation du fichier openstreetmap.
 - Au niveau de chaque espace et de chaque individu.
 - Considération temporelle de l'économie.
 - Fonctions économiques différentes ; cas particuliers.
 - Plusieurs données de modulation :

Aire des espaces.

Rôle des individus.

Télétravail & Livraison.

Bilan non exhaustif.

IMPLÉMENTÉ	NON IMPLÉMENTÉ
 Lecture automatique d'un fichier Openstreetmap. Classification des espaces. Liaison automatique des routes et des espaces. Mise à jour automatique des états infectieux. Application automatique des scénarios sous SumoMobility pour chaque jour de digitalisation. 	 Création des scénarios selon plusieurs hyperparamètres. Gestion calendaire du temps. Classification efficiente des individus. Parallélisation des implémentations. Évaluations sanitaires et économiques du territoire. Apprentissage par renforcement avec plusieurs critères.

♦ Essai sur le campus Belval.

± 3 ≥ 11 x:417.21, y:1346.08 lat:49.507330, lon:5.939905

- Résultats épidémiologiques.
 - 600 individus implémentés.
 - 40 jours de digitalisation.
 - Scénarios totalement aléatoires chaque jour.
 - Aucune implication extérieure.
 - Individus très connectés entre eux.
 - 5 infectés en phase d'incubation au premier jour.

niversité e Lille

OLYTECH° UNIVERSITÉ DU LUXEMBOURG

Fin

PERSPECTIVES D'ÉVOLUTION

Plusieurs infections

Modification de la cartographie

dans les espaces l'environnement

Autres complexités de

Observations empiriques du R0

> Ajout du critère/objectif psychologique

Considération multi-territoriale

Dynamiques

Exploration des décisions potentielles

- Motivations du projet.
 - Approche réaliste et adaptable à chaque société.
 - Décisions applicable à chaque territoire spécifiquement.
 - Conjoncture infectieuse inédite.
 - Mesure économique réaliste et adapté aux types d'espace.
 - Non utilisation de données personnelles.
 - Possibilité de dissocier/recycler l'implémentation.
 - Aide à la décision VS simulations actuelles de prédiction.

- Utilisation des données.
 - Pas de données personnelles.
 - Digitalisation statique : cartographie, démographie, etc.
 - Digitalisation dynamique : affluences globales, etc.
 - Couche infectieuse : épidémique, etc.
 - Conception des "boîtes noires" entre elles.

Questions

♦ ANNEXE

- Format Openstreetmap.
 - Chemin de noeuds fermée.
 - Mesures géographiques.
 - Calcul de l'aire et de la localisation moyenne.
 - Délimitation du territoire étudié. Limite "administrative".
 - Propension intérieur/frontalière du territoire.
 - Non liaison des routes et des espaces.

Questions

♦ ANNEXE

- Gestion des distances géographiques.
 - 2 méthodes de calcul.

- API Python Shapely.

- Latitudes: ϕ_A et ϕ_B
- Longitudes: λ_A et λ_B
- S_{A-B} = arc cos (sin ϕ_A sin ϕ_B + cos ϕ_A cos ϕ_B cos (λ_B - λ_A))

- Nombre d'individus à implémenter.
 - Concordance du fichier Openstreetmap avec limite d'un territoire.
 - Corrélation avec taille du fichier.
 - Corrélation avec le total d'aire des logements du territoire.
 - Nombre d'individus extérieurs.

Questions

- Dase de donnée des espaces/individus.
 - Classement en type et sous-type.
 - Design pattern Singleton.
 - Accès direct aux éléments depuis la Database.
 - Fonction interne de filtration.
 - Affichage intelligent.

Questions

ANNEXE

- Socle individuel.
 - Assignation des logements/travails.
 - Différentes méthodes d'assignation.
 - Individus proches dans les logements/travails.
 - Possible ajout des visites amicales et familiales.
 - Possible ajout des habitudes psychologiques.
 - Cas particulier: enfants, etc.

♦ ANNEXE

- Construction des scénarios.
 - 4 H : Réveil & Sommeil des individus.
 - Etat infectieux : état connu, état réel.
 - Décision territoriale.
 - Type de jour et Type de quotidien.
 - Rôle des espaces/individus.
 - Diverses propensions.
 - Fonctions de sélection. Contrainte temporelle.

Questions

Questions

- ♦ SumoMobility.
 - Génie civile. Réseau routier et temps de trajet.
 - Différents types de transport.
 - Duarouter. Calcul des itinéraires.
 - Gestion des transports publics. Contrainte de stationnement.
 - Transformation des scénarios en itinéraires.
 - Complexité des individus automobilistes.
 - Bugs et exécution.

- Implication extérieur.
 - Gestion "incontrôlable" des états extérieurs.
 - Individus extérieurs courants et inhabituels : quantités.
 - Décisions frontalières et évaluations sanitaires.
 - Ressources sanitaires accessibles et demandés à l'extérieur.
 - Propension frontalière des mouvements extérieurs.
 - Origine des départs/arrivées.

♦ ANNEXE

- Contamination des susceptibles.
 - Persistance des particules :
 Nombre de jour fixe au sein de l'individu.

 Durée en heure fixe dans un espace.
 - Espaces : catégorie, aire, etc.
 - Montant de particules aléatoires à l'extérieur.
 - Transport en commun.

Questions

Questions

- Malade asymptomatique.
 - Autoguérison.
 - Distribution tardive des rémissions.
 - Insensibilités aux soins et aggravations.
 - Quantité d'émission de particules ?
 - Pas de réflexes infectieux.
 - Données observés discutables.

Questions

- Malade standard.
 - Autoguérison. Soins et aggravations.
 - Quantité d'émission de particules ?
 - Réflexes infectieux.
 - Propension à l'identification de son état.
 - Seul cas de transition entre état : aggravation en grave.

- Malade grave.
 - Autoaggravation. Soins et aggravations.
 - Caractérisation de la mortalité infectieuse.
 - Quantité d'émission de particules ?
 - Réflexes infectieux. Survie indépendantes des décisions.
 - Etat déjà identifié.

- Poursuite des états malades.
 - Mortalité conditionnel à la dynamique.
 - Guérison : connu selon quel délai.
 - Différence entre individus guéris réels et connus.

- Détails de la conception infectieuses.
 - Attribution du score infectieux et valeures négatives.
 - Flexibilités des proportions des gravités infectieuses.
 - Flexibilités des caractéristiques d'une infection :

Résistance.

Mortalité.

Contagiosité.

- Tests, Soins et Vaccins.
 - Délai avant accessibilité : défini ou aléatoire.
 - Catégorie d'espace d'acquisition.
 - Délai avant apparition des effets.
 - Soins positifs et négatifs : variation du score infectieux.
 - Matrice de confusion des tests et validités.
 - Aspect quantitatif des disponibilités en temps et géographie.

Université de Lille

POLYTECH°

UN
LULLE

Questions

- Automatisation des évaluations.
 - Fonctions lambda économique et sanitaire.
 - Facteurs uniques selon les catégories.
 - Utilisation de clé communes et de None.

- ♦ ANNEXE
- Overfitting de la réalité.
 - Dynamique au sein des espaces.
 - Contamination à l'air ambiant.
 - Contamination dans les véhicules personnels.
 - Possibilités de Sumo Mobility.

- Plusieurs infections.
 - Immunisation des individus en cas de contamination d'autres infections.
 - Mutation aléatoire : apparition, fréquence et gravité.
 - Mutation manuelle.

Université de Lille

POLYTECH*
UNIVER
LUXEM

- ♦ ANNEXE
- Diversité des dynamiques.
 - Cas atypique de professions/logements.
 - Soit ratio commun de scénarios aléatoires.
 - Soit catégorie unique à scénarios aléatoires.

Questions

- Evolution des paramètres.
 - Evolutions démographiques.
 - Modification des socles individuels.
 - Faillite économique des espaces.
 - Evolution des ressources sanitaires disponibles.
 - Prédiction des évolutions infectieuses.

- **♦** ANNEXE
- Conception multi-territoriale.
 - Théorie des jeux.
 - Volonté d'unifier avec une concurrence positive.
 - Gestion mémoire différenciée.

- Contraintes dynamiques avancés.
 - Quantité limitée d'individus présents simultanément dans un espace.
 - Besoin de respecter des créneaux horaires.
 - Respect des horaires d'ouverture.
 - Préférence collective de déplacement.

Questions

- Respect des gestes barrières.
 - Soit ratio commun de scénarios aléatoires.
 - Soit catégorie unique à scénarios aléatoires.
 - Abaissement du seuil de contamination.
 - Augmentation de l'émission de particules.

- Tester, alerter et protéger.
 - Socle individuel.
 - Nombre de jours de recherche des cas contacts.
 - Seuil de durée minimale de promiscuité avec le malade.
 - Répartition des proximités en espaces et jours.
 - Décisions sur les cas contacts : identification et dynamique.
 - Apparition d'un nouvelle état infectieux : Alertés.

- Décisions combinatoires.
 - Contraintes sur les individus : âge, état connu, dynamique.
 - Contraintes sur les espaces : catégorie, aire.
 - Contraintes sur les scénarios : temps, distance.
 - Contraintes sur les états infectieux : état connu, soins, tests, vaccins.
 - Possibilités d'agencer les décisions entre elles.
 - Effets à contraindre manuellement sur l'environnement.

Questions

- Gestion du temps de digitalisation.
 - Chaque observation : nombre de jour fixe.
 Plusieurs évaluations quotidiennes.
 - Sélection des décisions combinatoires.
 - Limite algorithmique du temps.
 - Conditions de défaites : sanitaires & économiques.
 - Condition de victoire utopique.
 - Données intermédiaires pour perfectionner l'environnement.

- Parallélisation des implémentations.
 - Lecture fichier Openstreetmap peu parallélisable.
 - Recherche locale des routes les plus proches.
 - Créations des individus/scénarios avec un "maître".
 - Traductions des scénarios en itinéraires ; duarouter.
 - Exécution et résultats de Sumo Mobility
 - Évaluations économiques et sanitaires.
 - Sélection des décisions combinatoires.

- Dynamique dans les espaces.
 - Retour sur les simulations épidémiques déjà existantes.
 - Mouvement chaotique avec contraintes architecturales.
 - Contamination discutable à cette échelle.
 - Pas de données personnelles.
 - Très intéressant pour la recherche des propensions à contaminer ses occupants selon les catégories.

- Modification des données cartographiques.
 - Ajout d'espaces d'un point de vue stratégique.
 - Localisation, aire et ressources associées.
 - Un espace de recherche très important.

- ANNEXE
- Critère psychologique.
 - Impact des décisions sur leurs successions.
 - Impact psychologique des espaces visités dans la dynamique de chaque individu.

- Analyse épidémiologiste des résultats.
 - Détermination du taux de reproduction des agents infectieux.
 - Permet d'avoir un autre moyen d'approcher la réalité.
 - Possibilité de trouver un lien entre :
 - Données épidémiques observées.
 - Contamination en particules.
 - Infection en antigènes & anticorps.