

Chapter 3 Crystal Structure

一、晶体的特性

晶体	非 晶 体(无定形体)
1. 具有规则的几何外形	没有一定的外形
如: 食盐具有立方体外形	如:玻璃、沥青、石蜡等
2. 具有固定的熔点 如: 冰在0°C(熔点)熔化, >0°C液态, <0°C固态.	无固定的熔点 非晶体 $\stackrel{\Delta}{\longrightarrow}$ 粘度大的物质 $\stackrel{\Delta}{\longrightarrow}$ 粘度小的物质 $\stackrel{\Delta}{\longrightarrow}$ 流动性熔体
3. 显各向异性	显各向同性

结点─晶体中规则排列的微粒抽象为几何学中的点

结点

点阵(直线点阵、平面点阵(格子)、空间点阵(格子) 或晶格

(a)

晶胞

晶胞参数

共七种晶系

Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$

Monoclinic $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$

Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

十四种点阵型式

二、晶体的基本类型及其结构

1. 晶体四大基本类型:

晶体基本 类 型	晶体中 的质点	质点间 作用力	熔沸点	硬度	举例
金属晶体	金属原子 或正离子	金属键	较高 部分低	较大 部分小	W, Na
离子晶体	正离子 负离子	离子键	较高	较大	NaCl
分子晶体	分子	分子间作 用力或氢键	低	小	于冰(CO ₂)
原子晶体 (共价晶体)	原子	共价键	高	大	SiO ₂ , SiC,

2. 金属晶体的堆积结构

(1) 非密置堆积

(a) 简单立方堆积

重叠堆积

简单立方堆积

晶胞:简单立方晶胞

配位数:6

每个角上的原子被8个晶胞共用 晶胞内的原子数: 8×(1/8)=1

空间利用率 = 一个原子的体积/立方体的体积

$$= (4/3 \pi r^3)/(2r)^3 = 52\%$$

(b) 体心立方堆积

第三层与 第一层重叠

体心立方堆积

晶胞:体心立方晶胞

含 2个原子 (体心1 + 角8×1/8) = 2

配位数:8(可由体心原子直接看出)

求空间利用率:设球的半径为r,则两个球的体积为

$$2 \times 4/3 \pi r^3 = 8/3 \pi r^3$$

(立方体的对角线长c)² = (边长a)² + (底边对角线长b)²

$$(4r)^2 = a^2 + (2^{1/2} a)^2$$
 a =

$$a = 4/3^{1/2} r$$

则空间利用率 =
$$\frac{8/3 \pi r^3}{a^3} = \frac{8/3 \pi r^3}{\left(\frac{4}{\sqrt{3}}\right)^3 r^3}$$

$$= 68 \%$$

密置堆积

面心立方密堆积

六方密堆积

(a) 面心立方密堆积 ——> 晶胞: 面心立方晶胞, (ABCABC...) 含4个(6×0.5 + 8×(1/8

晶胞: 面心立方晶胞, 含4个(6×0.5 + 8×(1/8))原子. 配位数:12 空间利用率: 74%

被第二层掩盖的四面体空隙

面心立方密堆积

没被第二层掩盖的八面体空隙,被第三层掩盖

(b) 六方密堆积 **→** (ABAB...)

晶胞: 六方晶胞,

含6个 (12×(1/6) + 2×(1/2) + 3)原子

空间利用率: 74%

配位数: 12

金属原子堆积方式	晶格类型	配位数	原子空间利用率%
简单立方堆积	简单立方	6	52
(1)体心立方堆积	体心立方	8	. 68
Ⅰ 面心立方密堆积	面心立方	12	74
Ⅰ 六方密堆积	六方	12	74

表 13.3 金属元素的晶体结构

Li (I)	Be ∎	В —			(I		立方 堆 立方密				
Na (1)	Mg I	Al I			I		密堆积	ጥ		٠	
K (I)	Ca I	Sc I	Tí I	(I)	Cr	Mn (I)	Fe	Co	Ni - I	Cu I	Zn I
Rb (I)	Sr I	Y	Zr I	Nb (I)	Mo (I)	Tc	Ru II	Rh I	Pd I	Ag I	Cd II
Cs (I)	Ba (I)	La I	Hf ■	Ta I	W (I)	Re	Os Ĭ	Ir I	Pt I	Au I	Hg —

3. 离子晶体

负离子半径大于正离子,负离子堆积占主导

负离子密堆积,正离子在空隙中.

AB型的二元离子化合物,晶体的常见基本类型为:

CsCl型

NaCl型

立方ZnS型

(1) CsCl型(负离子按简单立方堆积排列)

晶胞中正离子数:1(体心)

晶胞中负离子数: 8×1/8 (角顶) = 1

配位数 — 正离子: 8

(2) NaCl型(负离子按面心立方密堆积排列)

品胞中 ← 正离子数: 12 × 1/4(棱)+1(中心) = 4 负离子数: 8×1/8 (角顶)+6 ×1/2 = 4

配位数一厂正离子:6

(3) 立方ZnS型(负离子按面心立方密堆积排列)

配位数:

正离子: 4

负离子:4

晶胞中正离子数: 4(中心)

晶胞中负离子数:

8×1/8 (角顶) + 6×1/2 (面心)

= 4

(4) 离子半径比定则

例如: NaCl型

$$2(r_+ r_+)^2 = (2r_-)^2$$

$$(\mathbf{r}_{+} + \mathbf{r}_{+})^{2} = 2 \mathbf{r}_{-}^{2}$$

$$\mathbf{r}_{-} + \mathbf{r}_{+} = \sqrt{2} \mathbf{r}_{-}$$

$$r_{+} / r_{-} = 0.414$$

阳阴离子半径比	特征	晶体结构 类型
$0.732 > r_{+} / r_{-} > 0.414$	阴阳离子刚好接触, 阴离 子与阴离子可接触或不接 触	NaCl型
$0.414 > r_{+} / r_{-} > 0.215$	阴阳离子不接触,阴离子接触,排斥力大,不稳定,转向配位数小的ZnS型。	ZnS型
$1 > r_{+} / r_{-} > 0.732$	r ₊ 大,可与更多的阴离子接触,转向配位数大的 CsCl型。	CsCl型

配 位 数: 4 6

结构类型: ZnS NaCl CsCl

例

推测LiF、TICI、ZnSe的晶体结构类型

解: LiF: r₊ / r₋ = 60 / 136 = 0.44 NaCl型

TICl: $r_{+}/r_{-} = 147/181 = 0.81$ CsCl型

ZnSe: $r_{+}/r_{-} = 74/198 = 0.37$ ZnS型

4. 分子晶体

由共价分子(极性和非极性分子)构成的晶体。

如: H_2 、 O_2 、 P_2 、 S_4 、 S_8 Cl_2 、 NH_3 、 CH_4 、 CO_2 (干冰)、 H_2S 、 C_{60}

对于球形和近似球形的分子,通常采用最紧密堆积方式。

其它分子晶体堆积时因有分子取向问题, 堆积比较复杂,

取决于分子的形状和大小。

5. 共价晶体 (原子晶体)

晶格质点: 中性原子

原子间键: 共价键

如: SiC (金刚砂)

SiO₂(石英砂)

C(金刚石)

整个晶体就无限数目的原子构成的一个巨大分子。

石墨晶体中的化学键

混合晶型: 共价键 原子(共价)晶体 分子晶体 类金属晶体 类金属键

范德华引力

碳原子是sp²杂化,与临近的3个碳原子 以σ键结合,形成六角对称性的无限网状结构 剩下的一个p轨道重叠形成离域大π键。

三、化学键键型和晶体构型的变异

1. 键型和晶型的变化

多数晶体的原子之间存在过渡性键型 ──── 过渡性的晶型

离子键 NaCl

Na₂O MgCl₂离子键(离子晶体)

Na₃P MgO AlCl₃ 过渡型(过渡型)

NaSi₂ Mg₃P₂ Al₂O₃ SiCl₄ 共价键(分子晶体)

NaGa₃ Mg₂Si AlP SiO₂ PCl₅ 共价键(离子晶体*)

NaHg₃ Mg₂Al₃ SiP₂ P₂O₅ (SF₆) 共价键(分子晶体)

金属键 Na— Mg— Al— Si— P— S— Cl₂共价键

表 13.8 第三周期元素氯化物及氧化物键型与晶型变化情况

_ ·	1						
	NaCl	MgCl ₂	AlCl ₃	sici.	PCls	(SI	F ₆)
熔点/℃	801	714	193	-68	166		56
化学键型	离子键	离子键	过渡型	共价键	共价键	共 化	钟
晶体结构	离子晶体	离子晶体	过渡型	分子晶体	离子晶体*	分子	晶体
•	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₃	SO ₃	Cl ₂ O ₇
熔点/℃	920	2802	2027	1700	24	16. 9	-91. 5
化学键型	离子键	离子键	离子键 ***	共价键	共价键	共价键	共价键
晶体结构	离子晶体	离子晶体	离子晶体	原子晶体	分子晶体	分子晶体	分子晶体

^{*} PCl₅ 固态为离子晶体: [PCl₇] [PCl₇]。

2. 离子极化及其对晶体结构的影响

(1) 离子极化

理想离子键 离子在周围异电荷离子电场的 共价键 (电子云球形对称)作用下被诱导极化,电子云变形 (偏离球形分布)

(2) 极化作用的强弱

极化力? 变形性?

负离子的变形性高于正离子

正离子的极化力高于负离子

主要考虑正离子对负离子的极化

- a. 阳离子
 - (i) Z/r² 越大, 离子的极化能力越强。
 - (ii) 8 电子< 9~17 电子< 18 电子和18+2电子

b. 阴离子

(i) 负电荷越大, 同周期离子的变形性越大, 如: $O^{2-} > F^-$ 。

(ii) 半径越大, 变形性越大。F-< Cl-< Br-< I-

c. 附加极化:某些含有d电子的阳离子容易被极化变形,增加了极化作用。

表 13.9 离子的变形性与极化能力的变化*

1	Li ⁺ 0. 034 (2. 78)	Be ²⁺ 0.009 (20.8)	B ³⁺ 0. 0033 (75)		O ²⁻ 4. 32 (1. 02)	Γ- 1.16 (0.541)
	Na+ 0.199 (1.11)	Mg ²⁺ 0.105 (4.73)	Aí ³⁺ 0.058 (12)	Si ⁴⁺ 0. 0184 (23. 8)	S ² - 11. 3 (0. 591)	C1 ⁻ 4. 07 (0. 305)
	K ⁺ 0. 923 (0. 565)	Ca ²⁺ 0.52 (2.04)	Sc ³⁺ 0. 318 (4. 57)	Ti ⁴⁺ 0. 206 (8. 65)	Se ²⁻ 11. 7 (0. 51)	Br ⁻ 5. 31 (0. 263)
-	Rb+ 1.56 (0.457)	Si ²⁺ 0. 96 (1. 57)	Y ³⁺ 0. 61 (3. 47)	Zr ⁴⁺ (6. 25)	Te ²⁻ 15.6 (0.409)	I ⁻ 7. 90 (0. 214)
-	Cs ⁺ 2. 69 (0. 35)	Ba ²⁺ 1.72 (1.10)	La ³ 1.16 (2.27)	0.81 (3.92)		
7					 	· /

高子半径减小:正价数增加,变形性减小,极化力增加; 阴离子负价数减少,变形性减小,极化力减小

3. 离子极化对化合物性质的影响

(1) 对键型和溶解度的影响

AgBr AgF AgCl 过渡型 过渡型 离子型 极化作用逐渐增强 共价性逐渐增强 颜色加深 溶解度逐渐减少

Cu+的半径与Na+相近,但它们的卤化物和氢氧化物的溶解度相差很大?

AgI

共价型

(2) 对晶格类型的影响

离子间的极化作用越强

离子键向共价键过渡

核间距缩短

向配位数减少的晶格类型转化

表 13.10	离子极化对	├AgX 晶型结构的影响
MC 10. 10		^^6^^ ER == 24 17 H 1 70 P P 7

		AgF	AgCl	AgBr	AgI
实	险值 r₀/pm	246	277	289	281
(r ⁺	+r-) /pm	246	294	309	333
键?	<u>헬</u>	离子键	过渡	型键	共价键
晶化	本类型	NaCl 型	NaC	1型	ZnS 型

^{*} r+及r-采用Goldschmidt 半径数据。

4. 电负性差对键型的影响

表 13.11 电负性差值与单键离子性百分数之间关系

离子性%	$X_{\mathbf{A}} - X_{\mathbf{X}}$	离子性%	$X_{A}-X_{X}$	离子性%
1 "	1.2	30	2.2	70
4	1, 4	39	2.4	76
9	1.6	47	2.6	82
15	1.8	55	2.8	86
22	2. 0	63	3.0	89
. *		:	3. 2	92

3.20 AX 型化合物单键的离子性百分数与电负性差值之间的关系 (摘自 L. 鲍林 "化学键的本质"译本 p. 89,图 3.8)

Honework

p 334, (10); 13.3;

p 335, 13.12; 13.13;