1 STROINO UCENIE

1.1 Problemski prostor, ocenjevanje znanja

1.2 Evalviranje hipotez

Pomembni kriteriji:

- · konsistentnost hipotez z primeri (ucnimi)
- · splosnost (tocnost za nevidene primere)
- · razumljivost hipotez

TP=true positive, TN-true negative, FP-false positive (napaka 1. tipa), FN-false negative (napaka 2. tipa)

Klasifikacijska tocnost = $\frac{TP+TN}{TP+TN+FP+FN} = \frac{TP+TN}{N}$ Obcutljivost/senzitivnost = $TPR = \frac{TP}{TP+FN}$

1.3 Gradnja odlocitvenih dreves

Za koliko se entropija zmanjsa po delitvi z Atributom A:

Informacijski prispevek: $Gain(A) = H(A) - I_{res}(A)$

 $I_{\text{res}} = -\sum_{v_i \in A} p_{v_i} \sum_{c} p(c|v_i) \log_2 p(c|v_i)$

Razmerje inofrmacijskega prispevka atributa A:

 $IGR(A) = \frac{Gain(A)}{H(A)}$

1.3.1 TDIDT (Top down induction decision tree) algoritem

Pozresen algoritem, ki lokalno izbira najbolsi atribut.

- kratkoviden algoritem

1.3.2 BINARIZACIJA ATRIBUTOV

Aleternativa za resevanje problematike z vecvrednostnimi atributi: Strategije (za primer $B = \{Y, G, R, B\}$):

- [{Y},{R,G,B}] (one-vs-all)
- $[\{Y,R\},\{G,B\}]$
- · vpeljava bianrnih atributov za vsako barvo

Primer $B = \{Y, G, R\}$, konstruiramo 3 nove binarne atribute:

barva	Y	Ğ	R	
Y	1	0	0	Prednost: manjse vejanje drevesa.
$G \rightarrow$	0	1	0	riednost. manjse vejanje drevesa.
R	0	0	1	

1.4 Ucenje iz sumnih podatkov (rezanje)

tocnost t...verjetnost pravilnosti klasifikacije

napaka e ... 1 - t

relativna frekvenca $p = \frac{n}{N}$

m-ocena $p = \frac{n + p_a * m}{N + m}$

m... koliko zaupam apriorni verjetnosti

p_a apriorna verjetnost (domenski ekspert lahko pove)

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

1.4.1 MEP (MINIMAL ERROR PRUNNING)

e...staticna napaka,E...vzvratna napaka, $e \le E \rightarrow$ rezemo poddrevo

$$e_L(d) = 1 - t = 1 - \frac{13+1}{20+2} = 0.363$$

 $E_L(d) = 12/20 \cdot e_L(d_1) + 8/20 \cdot e_L(d_d) = \frac{12}{20} \cdot (1 - \frac{7+1}{12+2}) + \frac{8}{20} (1 - \frac{13+1}{20+2})$

1.4.2 REP (REDUCED ERROR PRUNNING)

Dela dobro ce imamo veliko rezalno mnozico.

Obicajno uporabljamo relativno frekvenco za ocenjevanje verjet-

 $G(v) = \#napak_T - \#napak_T$

 $G(v) \ge 0 \Rightarrow$ rezemo podrevo

e(C) = 3 $e_T = 2 + 3 = 5$

 $G(C) = 5 - 3 = 2 \ge 0 \rightarrow \text{rezemo}$

1.5 Ocenjevanje uspesnosti modelov

tocnost t ... verjetnost pravilnosti klasifikacije

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

 $t_{L1} = \frac{2+1}{3+3} = 0.5, t_{L2} = \frac{4+1}{7+3} = 0.5, t_{L3} = \frac{2+1}{2+3} = 0.6$

tocnost drevesa: $t_D = 3/12 \cdot 0.5 + 7/12 \cdot 0.5 + 2/12 \cdot 0.6 = 0.5167$

e = 1 - (P(B = 0)P(R = 0|B = 0) + P(B = 1)P(R = 1|B = 1))

1.6 OBRAVNANVA MANKAJOCIH ATRIBUTOV, NAVINI BAYESOV KLASI-FIKATOR

1.6.1 NAIVNI BAYES

Ce poznamo razred, kam klasificiramo ce nepoznamo atributov:

Klasifikator:
$$\operatorname{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(x_i | c)$$

c...razred, $x_i...$ atributi Verjetnost::

 $P(C = c|x_1,...,x_n) = \frac{P(C = c)P(X_1 = x_i|C = c)P(X_2 = x_j|C = c)...}{P(X_1 = x_i)P(X_2 = x_j)...}$

$X \setminus Y$	Razred A	Razred B		
p_a	$P(A) = \frac{2}{3}$	$P(B) = \frac{1}{3}$		
spol	P(M A)	P(M B)		
visina	$P(V \ge 175 A)$	$P(V \geq 175 B)$		
teza	$P(T \ge 65 A)$	$P(T \ge 65 B)$		
$P(y) \prod_{i=1}^{n} P(x_i y)$	•••			

1.6.2 Nomogragmi

Ciljni razred $C = c_T$

$$X_{X_i=x_j} = \ln\left(\frac{P(X_i = x_j | C = c_T)}{P(X_i = x_j | C = \overline{c_T})}\right)$$

1.7 K-NAJBLIZJIH SOSEDOV

++++++				0 (2)	2
	x	Y	Razred D(X	0(2,3)	
6 .	0	6	+	3.6	13
2	2	6	+	3	9
	0	5	+	2.83	8
T(2,3)	1	5	+	2.24	2
	2	5		2	4
1	1	2	-	1.414	2 -> -
1 1 1	3	2		1.414	2
^ 2 , 4	1	1	-	2.236	2
	3	1	-	2.236	ς

2 Vrste ucenia

2.1 NADZOROVANO UCENJE (SUPERVISED LEARNING)

Ucni primeri so podani/oznaceni kot vrednosti vhodov in izhodov.

 $(\vec{x}_1, \vec{y}_1), (\vec{x}_2, \vec{y}_2), \dots, (\vec{x}_N, \vec{y}_N)$

 $\vec{x_i}$... atributi, $\vec{y_i}$... ciljna spremenljivka

Locimo dve vrsti problemov:

- 1. Klasifikacijski problemi y_i diskretna
- 2. Regresijski problemi y_i zvezna

2.1.1 Lokalno utezena regresija

$$h(\vec{x}_{i}) = \frac{\sum_{i=1}^{k} w_{i} \cdot f(\vec{x}_{i})}{\sum_{i=1}^{k} w_{i}}, w_{i}(d) \dots \text{utez}$$

Α	В	С	dolžina	d(xixi)	Wi	W:-f(~	<u>:)</u>
0	0	0	9	4	115	9/5	
0	0	0	10	4	115	2	
0	1	1	9	2_	413	3	1. () S. w f(x;)
0	2	0	12	2	113	4	N(Xq) = 1
0	2	1	12	1	112	6	$h(x_7) = \begin{cases} \frac{x_1}{x_1} w_1 \cdot f(x_1) \\ \frac{x_2}{x_1} v_2 \cdot \frac{x_1}{x_2} \\ \frac{x_2}{x_3} = 41.353 \end{cases}$
1	0	0	12	3	1/4	3	= 20
1	0	0	15	3	114	15/4	26 = 11.359
1	1	1	11	1	112	MIL	15
1	1	1	15	1	112	1512	-
1	1	1	9	1	112	912	
1	2	0	9	1	112	512	
1	2	1	12	0	1	12	
					76	1111	•
Z lokalno uteženo regresijo želimo napovedati dolžino postrvi z atributi $x_j=\{A=1,B=2,C=1\}$. Pri izračunu uporabi:							
	ttansko razd funkcijo w_i		rjenje razo	falj,			

2.1.2 REGRESIJSKA DREVESA

Linearna regresija je poseben primer regresijskega drevesa.

V listih regresijskega drevesa vcasih napovemo kar povprecno vrednost.

2.2 Nenadzorovano ucenie (unsupervised learning)

Ucni primeri niso oznaceni (nimajo ciljne spremenljivke), ucimo se vzorcev v podatkih, (npr. grucenje)

2.2.1 HIERARHICNO GRUCENIE

Poveze po podobnosti med primeri, primer zacne kot samostojna gruca, na koncu vsi primeri pripadajo eni gruci

Dendrogram: drevo, ki predstavlja grucenje.

Single-linkage: povezava med grucami je najkrajse razdalje med primeroma iz razlicnih gruc.

Complete-linkage: povezava med grucami je najdaljsa razdalja med primeroma iz razlicnih gruc.

Average-linkage: povezava med grucami je povprecna razdalja med primeroma iz razlicnih gruc.

2.2.2 K-MEANS

- 1. V prostor dodamo k centroidov, ki predstavljajo gruce.
- 2. Izracunamo ketri centroid je najblizji vsakemu primeru.
- 3. Izracunamo nove centre gruc = $\frac{1}{|G|} \sum_{i=0}^{\infty} x_i$
- 4. Ponovimo korake 2 in 3 dokler se centri ne premaknejo.

2.3 Spodbujevalno ucenje - reinforcement learning

Inteligentni agent se uci iz zaporedja nagrad in kazni

2.4 Ocenievanie ucenia

2.4.1 Precno preverianie

Poseben primer veckratnega ucenja in testiranja

k-kratno precno preverjanje

- celo ucno mnozico razbij na k disjunktnih podmnozic
- za vsako od k podmnozic:
- uporabi mnozico kot testno mnozico
- uporabi preostalih k-1 mnozic kot ucno mnozico
- povpreci dobljenih k ocen tocnosti v koncno oceno

Pri precnem preverjanju uporabimo vse podatke za testiranje in vse za ucenje

Metoda leave one out je poseben primer precnega preverjanja Imamo dve hipotezi A in B. Izkase se, da A bolje napoveduje na ucnih podatkih B pa na testnih. Potem je B verjetno boljsa hipoteza

3 Preiskovanje

NEINFORMIRANI PREISKOVALNI ALGORITMI

3.1.1 ISKANJE V SIRINO

3.1.2 ISKANJE V GLOBINO

Izboljsave:

- · Iskanje s sestopanjem
- · depth-limited-search (vnapej definiramo globino l (dolocimo preko domenskega znanja))

3.1.3 ITERATIVNO POGLABLJANJE

problem gobinsko omejenega iskanja -> nastavitev meje l Mejo l postopoma povecujemo za 1, dokler ne najdemo resitve.

• popolnost: Da

• optimalnost: Da

casovna zahtevnost O(b^d)

prostorska zahtevnost O(bd)

Boljse od iskanja v globino/sirino

3.1.4 DVOSMERNO ISKANJE

Ideja: pognati vzporedni iskanji od zacetka do cilja in od cilja do

Motivacija:

Implemenatcija dvosmernega iskanja

· ciljno vozlisce mora biti znano

 originalni problemski prostor preslikamo v dvosmerni prosto stanj E1, E2 dosegljiv iz E in S1,S2,S3 dosegljiv iz S (S,E) -> (S1, E1), (S1, E2), (S2, E1), (S2, E2)... Vozlisce (Si, Ei) je v dvosmernem prostur ciljo vozlisce ce velja E=S (soda dolzina na isto mesto pridemo iz obeh strani) ali S->E (liha pot sosednja)

3.1.5 CENOVNO - OPTIMALNO ISKANIE

- · posplositev iskanja v sirino (iskanje v sirino je optimalno, ce so cene vseh povezav enake 1)
- · dijkstra basically (sam do zadnga noda)
- https://stackoverflow.com/a/14587449

3.2 Informirani preiskovalni algoritmi

3.2.1 HEVRISTICNO PREISKOVANJE

ideja: preiskovanje usmerjamo z dodatnim znanjem (ocenitven funcija za obetavnost vozlisca)

hevristika je ocenitvena funkcija za obetavnost vozlisca

- optimisticna/dopustna: $h(n) \le h^*(n)$ (h^* je optimalna ocena)
- optimalna: $h(n) = h^*(n)$
- pesimisticna: $h(n) \ge h^*(n)$

3.2.2 POZRESNO PREISKOVANJE/ GREEDY BEST-FIRST SEARCH

h(n) hevristicna ocena

vrednotenje vozlisca f(n) = h(n) hevristicna ocena ... npr manhattan distance (zracna razdalja)

- · popolnost (ali najde vedno resitev): Ne
- optimalnost: Ne
- casovna zahtevnost $O(b^m)$, kjer je m najvecja globina drevesa

3.2.3 A*

A* is informed version of dijkstra (uses heuristics and pg) Vozlisca vrednotimo: f(n) = g(n) + h(n)

g(n) cena poti do n (znano),

h(n) cena od n do najblizjega cilja (ocena)

prioritetna vrsta (max glede na f(n)) Basically dijkstra + h(n) (A*

is basically an informed variation of Dijkstra.)

- popolnost: Da (ce ustreza pogoju dopustnosti)
- optimalnost: Da (ce ustreza pogoju dopustnosti)
- casovna zahtevnost $O(b^m)$, kjer je m najvecja globina drevesa

3.2.4 IDA* (Iterative deepening A*)

DFS with heuristics and iterative bound (value)

Ucinkovitost

- neucinkovit ce vozlisca raznolika f(n)
- prednost: ne hrani vec vseh vozlisc kot A*
- optimalen: ce razvija v prioritetnem vrsntem redu, h(n) mora biti monotona|konsistentna (h(n) skos pada) (posledicno tudi dopustna)

$$h(n) \le c(n, n') + h(n')$$

(h naslednjega vozlisca manjsi ker je blizji cilja) • monotona \rightarrow dopustna (proti primer h(n) = 0)

3.2.5 Kakovost hevristicnih funkcij

7	2	4
5		6
8	3	1

Primer igra 8 ploscic

- -h₁: stevilo ploscic ki niso na pravem mestu (8)
- vsota manhattanskih razdalj ploscic do pravega mesta(3+1+2+2+2+3+3+2=18)

Kakovost h ocenimo z:

- stevilom generirarnih vozlisc
- z efektivnim faktorjem vejanja (koliko vozlisc N je algoritem generiral da je na globini d nasel resitev)

	števi	število generiranih vozlišč			efektivni faktor vejanja		
Globina	IDS	A*(h₁)	A*(h ₂)	IDS	A*(h ₁)	A*(h ₂)	
2	10	6	3	2,45	1,79	1,79	
4	112	13	12	2,87	1,48	1,45	
6	680	20	18	2,73	1,34	1,30	
8	6384	39	25	2,80	1,33	1,24	
10	47127	93	39	2,79	1,38	1,22	
12	3644035	227	73	2,78	1,42	1,24	
14	?	539	113	?	1,44	1,23	
16	?	1301	211	?	1,45	1,25	
18	?	3056	363	?	1,46	1,26	
20	?	7276	676	?	1,47	1,27	
22	?	18094	1219	?	1,48	1,28	
24	?	39135	1641	?	1,48	1,26	

Vidimo $h_2(n) \ge h_1(n) \forall n$ pravimo h_2 **dominira** h_1

3.3 Lokalno preiskovalni algoritmi

3.3.1 PLEZANJE NA HRIB

Ne pomnemo poti do cilja, ampak samo trenutno stanje Koristni v primerih:

- ce nas zanima samo kakovost resitve (in ne pot do cilja)
- resevanje optimizacijskih problemov (kjer je podana kriterijska funkcija za oceno kakovosti resitve)

Prednosti:

majhna poraba prostora

Primer 4 kraljice na sahovnici - kriterijska funkcija: maksimiziramo - (minus) stevilo kraljic, ki se medsebojno napadajo

Tezave:

- lokalni maksimumi
- "rame, plaote" (kriterijska funkcija konstantna vrednost)
- · grebeni (za plezanje navzgor je potreben sestop po pobocju

Resevanje iz lokalnih maksimumov:

- · koraki vstran: ce ima naslednje stanje isto vrednost kriterijske funkcie, dovolimo premik v to stanje
- stohasticno plezanje na hrib: iz mnozice boljsih stanj, verjetnos tno izberemo naslednje stanje (pri cemer upostevamo da imajo boljsa stanja vecjo verjetnost izbora)
- nakljucni ponovni zagon: veckrat pozeni plezanje na hrib iz nakljucnih stanj dokler ne najdes resitve

3.3.2 SIMULIRANO OHLAJANJE

algoritem ki izvira iz metalurgije (ko je jeklo tekoce, so molekule v njem bolj gibljive; ko se ohlaja se strjuje in molekuele se umirjajo)

- generiramo nakliucne sosede trenutnega stania
- ce najdemo boljse stanje ga izberemo
- ce najdemo slabse stanje, ga izberemo z doloceno verjetnostjo

verjetnost izbire neoptimalnega stanja s casom pada (nizanje temperature)

3.3.3 Lokalno iskanje v snopu

Algoritem:

- v spominu hrani k aktualnih stanj namesto enega
- izberi k optimalnih stanj od sosedov aktualnih stanj
- ponavaljaj do ustavitnega pogoja

3.4 Preiskovanje grafov AND/OR, nedeterministicno okolje

Pomagajo resevati probleme z dekompozicijo na manjse probleme Uporabnost:

- princip deli in vladaj
- · iskanje v nedeterministicnih okoljih
- · igre med dvema nasprotnikoma s popolno informacijo (sah, dama)
- · ekspertno resevanje problem

Primer graf dekompozicja v dva manjsa problema skozi g in f Resitveno drevo je resitev AND/OR grafov

3.4.1 AO

- posplositev A* na grafe AND/OR
- popoln in optimalen ⇔ h(n) ne precenjuje dejanske cene do

F(N)... ocena za usmerjanje preiskovanja

H(N)... dinamicna hevristicna ocena

Postopek:

- Razvij najcenejse vozlisce
 - ce list in koncno (oznaci), preveri 3. korak, nadaljuj v 1.
 - ce list in ni koncno (oznaci) vrednost vozlisca = ∞
- Posodobi vse predhodnike
 - v AND starsih, cena starsa = \sum sinov + povezava v
 - v OR starsih, cena starsa = min(sinovi) + povezava v
- 3. Koncaj ko obstaja pot od zacetnega vozlisca, po kateri v AND vozliscih po vseh sinovih prides do cilja, v OR vozliscih v vsaj enem

3.4.2 Preiskovanje v nedeterministicnem okolju:

Nedeterministican akcija - ista akcija lahko obrodi razlicna ciljna stanja

Do resitve ni vec poti temvec drevesa (uporbljamo AND/OR grafe) Vozsilca OR mozne akcije, vozlisca AND vejanja v mozna stanja, ki so rezultat nedeterministicnih akcij

3.5 Preiskovanje brez informacij o stanju

Okolja smo razdelili na transparent (agent lahko zazna popolno informacija) in netransparentna (brez informacije o stanju) Kej ce imamo opravka z netraspranetim okoljem?

- izvajamo preiskovanje prostora verjetnih stanj in ne prostora dejanskih stanj
- izvajamo s postokopom omejevanja moznozsti kandidatnih stanj
- 3.6 IGRANJE IGER

- m globina - b

- 3.6.1 Predstavitev problema
- 3.6.2 ALGORITEM MINIMAX

3.6.3 REZANIE ALFA-BETA

4 PLANIRANIE

plan zaporedje akcij, ki pripelje od zacetnega do koncnega stanja

4.1 PLANIRANIE S SREDSTVI IN CILII (STRIPS)

Agentu opisemo svet in postavimo fizikalne omejitve.

Ne zagotovalja optimalne resitve, obravnavamo le en cilj naenkrat (ko ga dosezemo, se lahko ostali izgubijo) = Sussmanova anomalija Akcija move(X, From, To)

- pogoj: cond=[clr(X), on(X,F), clr(T)] → pogoji za izvajanje ak-
- poz. ucinki: adds=[on(X, T), clr(F)] → nova stanja,
- neg. ucinki: dels=[on(X, F), clr(T)] → izbrisana stanja,
- omejitve: constr=[F ≠ T, X≠ F, X≠ T, block(X)] → omejitve akcij (fizikalne omejitve),

- 1. Izberi se neresen cilj iz mnozice CILJEV
- 2. Izberi akcijo, ki izbrani cilj doda v stanje
- 3. Omogoci izbrano akcijo (izpolni pogoje)
- 4. Izvedi akcijo (ki izopolni najvec pogojev)
- 5. Ce obstajajo nereseni cilji ⇒ 1.

Primer dfs. zlaganie kock

4.2 Planiranje z regresiranjem ciljev (STRIPS)

Resitev za sussmanovo anomalijo

Zacnemo v ciljih, regresiramo do zacetka ($G_i \subset S_0$):

- 1. $G_{i+1} = G_i \cup \operatorname{cond}(A) \operatorname{adds}(A)$
- 2. POGOJ: $G_i \cap dels(A) = \emptyset$
- 3. Preveri da ni protislovja (npr. $G_{i+1} = [on(b,c),...,c(c),...]$)

- \rightarrow zactno_stanje = [on(a,1), on(b,a), c(b), on(c,3), c(c)] \rightarrow hocemo da zacetno_stanje ⊂ G_i
- 1. $G_0 = [on(a,b), on(b,c)]$
 - on(a,b): $A_0 = move(a, From, b)$
 - From = 1
 - POGOJ: $G_0 \cap \text{dels}(A_0) = \emptyset \checkmark$
 - $G_1 = [on(a,b), on(b,c), c(a), c(b), on(a,1)] [c(1), on(a,b)] \checkmark$
- 2. $G_1 = [on(b,c),c(a),c(b),on(a,1)]$
 - $c(a): A_1 = move(X, a, To)$
 - X = c, To = 2
 - POGOJ: $G_1 \cap \text{dels}(A_1) = \emptyset \checkmark$
 - $G_2 = [\underline{\text{on}(b,c)},c(a),c(b),\text{on}(a,1),\underline{c(c)},c(2),\text{on}(c,a)]$ -[c(a), on(c,2)] **X**(protislovje)
 - on(b,c): $A_2 = move(b, From, c)$
 - From = 3
 - POGOJ: $G_2 \cap \text{dels}(A_2) = \emptyset \checkmark$
 - $G_2 = [on(b,c),c(a),c(b),on(a,1),c(c),c(b),on(b,3)] \checkmark$
- 3. $G_2 = ...$

4.3 RAZPOREJANJE OPRAVIL (PDDL)

Razsirimo lahko notacijo (PDDL):

Akcija1 < Akcija2: Akcija1 se mora zgoditi pred Akcijo2

Resources podajo stevila razpolozljivih resursov

DURATION opredejljuje trajanje posamezne akcije

CONSUME opredeljuje (trajno) porabo dolocene kolicine resursov

USE opredeljuje (zacasno) zasedenost kolicine resursov med

Metoda kriticne poti

kriticna pot: pot, ki je **najdaljsa** in doloca dolzino trajanja celotnega plana vsaki akciji priredimo par [**ES**, **LS**]

- ES: najbolj zgodnji mozen zacetek (Earliest Start)
- $ES(start) = 0, ES(B) = \max_{A < B} [ES(A) + Duration(A)]$
- LS: najbolj pozen mozen zacetek (Latest Start)
- LS(Finish) = ES(Finish), $LS(A) = \min_{A \prec B} [LS(B) Duration(A)]$

rezerva(slack)=LS-ES (casovna rezerva) Algoritem po hevristiki minimum slack → na vsaki iteraciji ima prednost akcija ki ima izpolnjene predhodnike in najnizji slack, nato posodobi [ES in LS] za celotni graf in ponovi.

5 SKLEPANJE

5.1 Bayesovske mreze

Baye. mreza = Usmerjen graf, kjer so podane zahtevane verjetnosti:

- Za vozlisca **brez starsev** verjetnosti $P(v_i)$
- Za vozlisca z **starsi** pogojne verjetnosti vseh kombinacij starsev

Pravila verjetnostnega sklepanja:

- 1. **Konjunkcija**: $P(X_1X_2 | C) = P(X_1 | C)P(X_2 | X_1C)$
- 2. Gotov dogodek: $P(X \mid ... X ...) = 1$
- 3. Nemogoc dogodek: $P(X \mid ... \overline{X}...) = 0$
- 4. Negacija: $P(\overline{X} \mid C) = 1 P(X \mid C)$
- 5. Ce je Y naslednik od X in je Y vsebovan v pogojnem delu: $P(X \mid YC) = P(X \mid C) \cdot \frac{P(Y \mid XC)}{P(Y \mid C)}$
- 6. Ce pogojni del ne vsebuje naslednika od X:
- (a) ce X **nima** starsev: P(X | C) = P(X), P(X) je podan
- (b) ce ima X starse S: $P(X \mid C) = \sum_{S \in P_X} P(X \mid S)P(S \mid C)$
- 7. Iz 6b zgoraj: $P(i \mid gc) = P(i \mid g)$

5.2 Ovojnica Markova

Ce so podani **starsi, otroci** in **starsi otrok**, je vozlisce X **neodvisno** od vseh ostalih vozlisc.

A in B v mrezi sta neodvisni ⇔ obstaja mnozica vozlisc E, ki d-locuje A in B, potem sledi: (P(A|EB) = P(A|E))

za vsako neusmerjeno pot P med A in B v bayesovski mreži:

za vsako vozlišče X na poti P:

analiziraj pogoj za pripadnost X množici E glede na tip:

divergentno ali zaporedno vozlišče: X∈E

konvergentno vozlišče: Xin nasledniki ∉ E

S_x = množice vozlišče, ki ustrezajo pogoju za X

S_p = U_X(S_X) // množice, ki d-ločujejo samo na poti P

(unija množic za vozlišča na poti)

E = ∩_PS_P // množice, ki d-ločujejo v celi mreži
(presek množic za vse možne poti)

DIVELGENTNO

X ∈ E

A

R

E

K

B

X ∉ E

! pri konvergentnem izlocimo tudi vse naslednike X

Primer d-locevanje vozlisc c in d

b $\in E: \{\{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}$ a $\in E: \{\{a\}, \{a, b\}, \{e, e\}, \{a, b, e\}\}$ n coli zeleni poti: $\{\{a\}, \{b\}, \{a, b\}, \{a, e\}, \{b, e\}, \{a, b, e\}\}$ e $\notin E: \{\{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}$ n coli oranzini poti: $\{\{1, \{a\}, \{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}\}$ $E = \{\{a\}, \{b\}, \{a, b\}, \{b, e\}, \{a, b, e\}\}$

 $\rightarrow P(d|ca) = P(d|a), P(d|cb) = P(d|b), P(d|cab) = P(d|ab), \\ P(d|cbe) = P(d|be), P(d|cabe) = P(d|abe)$