Decision Trees

Nhung Le

Decision Tree

• Muc tiêu:

 Đi đến một kết luận dựa vào chia nhóm các chi tiết thông tin đã có.

• Phương pháp:

- Đặt mục tiêu: vd. tối đa Information
 Gain
- Với mỗi nhánh (vd. feature), đi qua các giá trị của nhánh trong dự liệu ban đầu
- Chọn giá trị cut-off giúp đạt mục tiêu (ví dụ tối đa Information Gain)

Decision Tree

Bài toán: xét xem có nên đi chơi golf không

- 1. Đặt mục tiêu (*objective*): tối đa *Information Gain* (*IG giá trị thông tin nhận được*)
- 2. Chọn nhánh (feature): chọn feature mang lại nhiều giá trị thông tin nhất (vd. **maximize information gain**) thì sẽ đánh giá feature đấy trước.
- 3. Chọn **cutoff value** (giá trị phân chia) ở mỗi nhánh (feature)
 - **Categorical** (giá trị phân loại): vd. Thời tiết (mưa hay nắng). Nếu mưa -> không chơi golf, nếu nắng -> đánh giá tiếp nhiệt độ
 - Numerical (giá trị số): Vd. Nhiệt độ, có các giá trị từ 15 đến 30 -> đi
 qua từng giá trị và xem tại giá trị nào khi phân chia nhóm sẽ mang
 lại IG lớn nhất để làm cutoff value.

Note:

- Outlook: Thời tiết
- Temperature: Nhiệt độ

Decision Tree - Information Gain

Maximizing Information Gain = Minimizing Entropy

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Nguồn: information gain

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf		
Yes	No	
9	5	

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

Nguồn: entropy

Decision Tree - Entropy

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	1
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

 $\mathbb{E}(PlayGolf, Outlook)$

$$= \mathbb{P}(\textit{Sunny}) * \mathbb{E}(3,2) + \mathbb{P}(\textit{Overcast}) * \mathbb{E}(4,0) + \mathbb{P}(\textit{Rainy}) * \mathbb{E}(2,3)$$

$$= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$$

$$= 0.693$$

Note:

- Outlook: Thời tiết

- Overcast: Lượng mây

Nguồn: entropy

Tree Models - Úng dụng

Decision Tree Classification **Tree models** được sử dụng rộng rãi trong bài toán phân loại hay dự đoán khi **không có linear relationship** giữa X và Y

Decision Tree Regression

Ứng dụng:

- Dự đoán giá bất động sản
- Dự đoán giá cổ phiếu
- Nhận dạng hành vi ăn cắp thẻ tín dụng

Nguồn: application

Appendix

Linear Regression - Úng dụng

- Nghiên cứu thị trường
- Dự đoán doanh số bán hàng, tỉ suất người xem một show truyền hình
- Dự báo thời tiết

Nguồn: application

Linear Regression vs. Tree Models

	Linear Regression	Tree Models
PROs	SimpleComputational efficiencyNot prone to overfitting	 Interpretability Complicated relationship (rule based) Trained on a small dataset
CONs	 Multiple constraints (e.g., Linearity assumption, independence of variables) Less interpretable Need large data set Difficult to have a linear relationship in a large dataset 	Prone to overfittingAffected by noise

Random Forest

Random Forest

Looks sort of soluble

I know it's soluble

As soluble

As soluble

I guess it's insoluble

Trong rừng cây, mỗi cây sẽ đưa ra một quyết định.

Kết quả cuối cùng có thể tính bằng cách 1/ lấy giá trị trung bình hoặc 2/ quyết định của số đông.

Nguồn: random forest

Random Forest - Randomness

Node splitting in a random forest model is based on a random subset of features for each tree.

- Random sampling: Mỗi cây trong Random Forest sẽ được huấn luyện (train) với một nhóm data ngẫu nhiên
- Random feature selection: mỗi cây trong Random Forest sẽ sử dụng một nhóm features (subset of features) khác nhau để đảm bảo sự độc lập (independence)