Lista 1

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

- 1. Capítulo lido
- 2. (1.5.3)
 - (a) papel
 - (b) papel
 - (c) papel
 - (1.5.6) Seja G um grafo qualquer com n vértices. Suponha, por contradição, que não existam dois vértices em G com o mesmo grau. Logo, como existem n vértices no grafo, os n possíveis graus que um vértice pode ter são $\{0,1,\ldots,n-1\}$, logo podemos dizer que estes são os graus dos vértices de G. No entanto, isso é absurdo, pois existiram um vértice de grau 0 e um vértice de grau n-1 em um grafo com n vértices, o que não faz sentido. Logo, a premisa inicial estava errada, e podemos afirmar que todo grafo com n vértices, $n \geq 2$, possui dois vértices com o mesmo grau.
 - (1.5.11) indução?
- 3. (2.8.3) Seja G um grafo com número cromático igual a X(G). Sabemos que, para qualquer par de cores c_1, c_2 da coloração mínima, deve existir ao menos uma aresta entre vértices v_1 , com cor c_1 , e v_2 , com cor c_2 . Caso contrário, todos os vértices com cor c_2 , poderiam ser coloridas com a cor c_1 (sem perda de generalidade), o que seria contraditório com o fato da coloração ser mínima. Logo, para cada par de cores na coloração, deve existir ao menos uma aresta, e como cada aresta conecta exatamente dois vértices, temos que $\binom{e(G) \geq X(G)}{2}$.
 - (2.8.9) Seja G um grafo bipartido.
 - (2.8.15) A prova por ser feita por indução no número de arestas da árvore. A solução é trivial para o caso base em que e(T)=1. Para e(T)=1, T é uma aresta e trivialmente é subgrafo de qualquer grafo G com $\delta(G)\geq 1$. Suponha que o resultado vale para qualquer árvore com k arestas. Seja T uma árvore qualquer com k+1 arestas e $T'=T-\{v\}$ para alguma folha $v\in V(T)$.
- 4. (3.5.1)

- (3.5.5)
- (3.5.6)
- (3.5.7)
- (3.5.8)
- (3.5.9)