Binary Search Trees: Splay Trees: Introduction

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

- Understand the motivation behind a splay tree.
- Implement the splay operation.

Non Uniform Inputs

■ Search for random elements $O(\log(n))$ best possible.

Non Uniform Inputs

- Search for random elements $O(\log(n))$ best possible.
- If some items more frequent than others, can do better putting frequent queries near root.

Trees.

ldea

- Want common nodes near root.
- Don't know which those nodes will be.
- Bring the queried node to the root.

Loop

If you keep doing this you can get stuck in a loop.

Loop

If you keep doing this you can get stuck in a loop.

 $O(n^2)$ time for O(n) operations. Need something better.

Modification

Zig-Zig

Modification

Zig-Zag

Modification

If just below root: Zig

Splay

```
Splay(N)
```

```
Determine proper case Apply Zig-Zig, Zig-Zag, or Zig as appropriate if N.Parent \neq null: Splay(N)
```

Problem

Which of the following is the result of splaying the highlighted node?

Problem

Which of the following is the result of splaying the highlighted node?

Next Time

How to use the splay operation to rebalance your tree.