

CS100 #05

Boolean Expression Simplification

Vadim Surov

Recap: Boolean Expression Simplification

- Digital computers contain circuits that implement Boolean logic.
- The simpler that we can make a Boolean expression, the smaller the circuit that will result.
- With this in mind, we always want to reduce our Boolean expressions to their simplest form.
- There are a number of Boolean identities that help us to do this.

Boolean Identities: Trivial

Logical Inverse	0' = 1	1' = 0
Involution	A'' = A	
Dominance	A+1=1	A · 0=0
Identity	A+0=A	A · 1=A
Idempotence	A+A=A	A·A=A
Complementarity	A+A'=1	A · A'=0
Commutativity	A+B=B+A	A·B=B·A
Associativity	(A+B)+C=A+(B+C)	(A · B) · C=A · (B · C)

Boolean Identities: Non-Trivial

Distributivity	A · (B+C)=A · B+A · C	$A+B\cdot C=(A+B)\cdot (A+C)$
Absorption	A · (A+B)=A	A+A·B=A
DeMorgan's	A+B=(A'·B')'	A · B=(A'+B')'
Unnamed	A+A'·B=A+B	
This one is usefull in assignment	XY+X'Z+YZ= XY+X'Z	

Absorption 1

$$A + (A \cdot B) = (A \cdot 1) + (A \cdot B)$$

 $= A \cdot (1 + B)$
 $= A \cdot 1$
 $\therefore A + (A \cdot B) = A$

Absorption 2

$$A \cdot (A + B) = (A \cdot A) + (A \cdot B)$$

$$= A + (A \cdot B)$$

$$= (A \cdot 1) + (A \cdot B)$$

$$= A \cdot (1 + B)$$

$$= A \cdot 1$$

$$\therefore A \cdot (A + B) = A$$

Chain Of Absorptions

• A+AB+AC+AD+AE+ ... = A

Let's prove last one

$$XY+X'Z+YZ = XY+X'Z$$

$$XY+X'Z+1YZ => XY+X'Z+(X+X')YZ =>$$

$$XY+X'Z+XYZ+X'YZ => (XY+XYZ)+(X'Z+X'YZ) =>$$

$$XY+X'Z$$

$$AB + BC(B + C)$$

$$A + B(A + C) + AC$$

$$\overline{A + BC}$$

Breaking long bar between A and B; Breaking both bars between B and C

Applying identity
$$\overline{\overline{A}} = A$$
 to $\overline{\overline{B}}$ and $\overline{\overline{C}}$

$$\overline{\overline{A} + BC} + \overline{AB}$$

Breaking longest bar

Applying identity
$$\overline{A} = A$$
wherever double bars of equal length are found

(A + BC) (AB)

Distributive property

AAB + BCAB

Applying identity $AA = A$
to left term; applying identity $AA = A$
to left term; applying identity $AA = A$
to left term; applying identity $AA = A$
to left term

AB + 0

Applying identity $AA = A$
to left term; applying identity $AA = A$
to left term; applying identity $AA = A$
to left term

AB + 0

Applying identity $AA = A$

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$\overline{A}BC + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}B\overline{C}$$

Factoring BC out of 1st and 4th terms

 $BC(\overline{A} + \overline{A}) + \overline{A}\overline{B}C + \overline{A}B\overline{C}$

Applying identity $\overline{A} + \overline{A} = 1$
 $BC(1) + \overline{A}B\overline{C} + \overline{A}B\overline{C}$

Applying identity $1A = A$
 $BC + \overline{A}B\overline{C} + \overline{A}B\overline{C}$

Factoring B out of 1st and 3rd terms

 $B(C + \overline{A}C) + \overline{A}B\overline{C}$

Applying rule $A + \overline{A}B = A + B$ to the $C + \overline{A}C$ term

References

 https://www.allaboutcircuits.com/textbook/digital/chpt-7/bo olean-algebraic-identities/