CS 524: Introduction to Optimization Lecture 26: Quadratic programs

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

November 3, 2023

Quadratic forms

• **Linear functions:** sum of terms of the form $c_i x_i$ where the c_i are parameters and x_i are variables. General form:

$$c_1x_1+\cdots+c_nx_n=c^{\mathsf{T}}x$$

• Quadratic functions: sum of terms of the form $q_{ij}x_ix_j$ where q_{ij} are parameters and x_i are variables. General form:

$$q_{11}x_1^2 + q_{12}x_1x_2 + \cdots + q_{nn}x_nx_n$$
 (n² terms)

$$= \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} q_{11} & \dots & q_{1n} \\ \vdots & \ddots & \vdots \\ q_{n1} & \dots & q_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x^{\mathsf{T}} Q x$$

Quadratic forms

Example:
$$4x^2 + 6xy - 2yz + y^2 - z^2$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 4 & 6 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

In general:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{T} \begin{bmatrix} 4 & p_2 & q_2 \\ p_1 & 1 & r_2 \\ q_1 & r_1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \begin{cases} p_1 + p_2 = 6 \\ q_1 + q_2 = 0 \\ r_1 + r_2 = -2 \end{cases}$$

$$p_1 + p_2 = 6$$

$$q_1 + q_2 = 0$$

$$r_1 + r_2 = -2$$

Symmetric:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 4 & 3 & 0 \\ 3 & 1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Quadratic forms

Any quadratic function $f(x_1, ..., x_n)$ can be written in the form x^TQx where Q is a symmetric matrix $(Q = Q^T)$.

Proof: Suppose $f(x_1, ..., x_n) = x^T R x$ where R is not symmetric. Since it is a scalar, we can take the transpose:

$$x^{\mathsf{T}}Rx = (x^{\mathsf{T}}Rx)^{\mathsf{T}} = x^{\mathsf{T}}R^{\mathsf{T}}x$$

Therefore:

$$x^{\mathsf{T}}Rx = \frac{1}{2} (x^{\mathsf{T}}Rx + x^{\mathsf{T}}R^{\mathsf{T}}x) = x^{\mathsf{T}}\frac{1}{2}(R + R^{\mathsf{T}})x$$

So we're done, because $\frac{1}{2}(R+R^{T})$ is symmetric!

Gradients and Hessians

• Given a function $f: \mathbb{R}^n \to \mathbb{R}$

Gradient

- The multi-dimension analog of the derivative of a function
- The gradient of f, $\nabla(f): \mathbb{R}^n \to \mathbb{R}^n$ is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Hessian

- The multi-dimension analog of the second derivative of a function
- The Hessian of f, $\nabla^2(f): \mathbb{R}^n \to \mathbb{R}^{n \times n}$ is a matrix made up of all second partial derivatives

Examples

$$f(x) = \frac{1}{2}x^{T}Qx + c^{T}x + \alpha$$
$$\nabla f(x) = Qx + c, \ \nabla^{2}f(x) = Q$$

- The following are some examples of convex functions:
- Exponential, x^a (when $a \ge 1$ or a < 0 on interval $(0, \infty)$), $|x|^p$, $-\log(x)$, negative entropy: $x \log x$, norms, max of linear, x^2/y , $\log(\text{sum}(\exp))$, geometric means
- Also there is a calculus that determines when compositions, etc are convex.
- When is a quadratic convex?

Eigenvalues and eigenvectors

If $A \in \mathbb{R}^{n \times n}$ and there is a vector v and scalar λ such that

$$Av = \lambda v$$

Then v is an **eigenvector** of A and λ is the corresponding **eigenvalue**. Some facts:

- The eigenvalues and eigenvectors can be complex.
- There are n (eigenvalue, eigenvector) pairs. Define:

$$V = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$
 and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Then:

$$AV = V\Lambda$$

• If there are *n linearly independent* eigenvectors, we say that *A* is **diagonalizable** and then *V* is invertible and:

$$A = V \Lambda V^{-1}$$

Eigenvalues and eigenvectors

If $A \in \mathbb{R}^{n \times n}$ is **symmetric**, then

- All eigenvalues of A are real.
- A is diagonalizable and its eigenvectors can be chosen to be orthonormal. So: $||v_i|| = 1$ and $v_i^T v_j = 0$ for $i \neq j$.
- We can write the factorization of A as:

$$A = V \Lambda V^{\mathsf{T}}$$

• Matrices that satisfy $V^{-1} = V^{\mathsf{T}}$ are called **orthogonal**. They represent isometries (preserve distances and angles).

Eigenvalue example

Consider the quadratic: $7x^2 + 4xy + 6y^2 + 4yz + 5z^2$.

A simple question: are there values that make this negative? equivalent to:

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Eigenvalue decomposition:

$$\begin{bmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$

Eigenvalues are 3, 6, 9.

Recap

Question: Is $x^T Qx$ ever negative?

Answer: Look at the eigenvalues of Q:

- $Q = V \Lambda V^T$
- Define new coordinates $z = V^T x$.
- $x^T Q x = x^T V \Lambda V^t x = z^T \Lambda z = \lambda_1 z_1^2 + \dots + \lambda_n z_n^2$

If all $\lambda_i \geq 0$, then $x^T Q x \geq 0$ for any x.

If some $\lambda_k < 0$, set $z_k = 1$ and all other $z_i = 0$. Then find corresponding x using x = Vz, and $x^TQx < 0$.

Positive (semi)definite matrices

For a matrix $Q = Q^T$, the following are equivalent:

- $\mathbf{Q} \quad \mathbf{x}^T \mathbf{Q} \mathbf{x} > 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n$
- 2 all eigenvalues of Q satisfy $\lambda_i > 0$

A matrix with the property is called positive semidefinite (PSD). The notation is $Q \succ 0$.

For a matrix $Q = Q^T$, the following are equivalent:

- $\mathbf{Q} \times^T Q x > 0$ for all $0 \neq x \in \mathbb{R}^n$
- 2 all eigenvalues of Q satisfy $\lambda_i > 0$
- 3 The determinant of all leading principal minors of Q are > 0

A matrix with the property is called positive definite (PD).

The notation is $Q \succ 0$.

Positive definite matrices

Name	Definition	Notation
Positive semidefinite	all $\lambda_i \geq 0$	$Q\succeq 0$
Positive definite	all $\lambda_i > 0$	$Q \succ 0$
Negative semidefinite	all $\lambda_i \leq 0$	$Q \preceq 0$
Negative definite	all $\lambda_i < 0$	$Q \prec 0$
Indefinite	everything else	(none)

Some properties:

- If $P \succeq 0$ then $-P \preceq 0$
- If $P \succeq 0$ and $\alpha > 0$ then $\alpha P \succeq 0$
- If $P \succeq 0$ and $Q \succeq 0$ then $P + Q \succeq 0$
- Every $R = R^T$ can be written as R = P Q for some appropriate choice of matrices $P \succeq 0$ and $Q \succeq 0$.

The Hessian

Written out in full:

$$\nabla^{2}f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

Characterization of Convexity (see Lecture 7)

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex on a domain \mathcal{D} if and only if $\nabla^2 f(x)$ is positive semi-definite $\forall x \in \mathcal{D}$

Quadratic Programming

Simple description of QP:

min
$$f(x) := \frac{1}{2}x^{T}Qx + c^{T}x$$
 s.t. $Ax \le b$.

- Note from above that Q can be taken as symmetric.
- For the objective function $f(x) = \frac{1}{2}x^TQx + c^Tx$, the gradient is $\nabla f(x) = Qx + c$ (this formula valid only if Q is indeed symmetric.)
- Hessian is $\nabla^2 f(x) = Q$.
- If $Q \succeq 0$, it is a convex QP
 - feasible set is a polyhedron
 - contours of f are ellipsoids
 - solution can be on boundary or in the interior
 - relatively easy to solve (CPLEX, Gurobi, etc)
- If $Q \not\succeq 0$, it is very hard to solve in general (baron)

Quadratic programs

$$\min f(x) := \frac{1}{2}x^T Q x + c^T x \text{ s.t. } Ax \le b.$$

First case:

If the ellipsoid center is feasible, then it is also the optimal point.

11_25

Quadratic programs

min
$$f(x) := \frac{1}{2}x^T Q x + c^T x$$
 s.t. $Ax \le b$.

Second case:

If the ellipsoid center is infeasible, optimal point is on the boundary. (not always at a vertex!)

11-26

Where do quadratics commonly occur?

- 1. As a regularization or penalty term
 - $(\cos t) + \lambda ||x||^2$: standard L_2 regularizer
 - (cost) + $\lambda x^T Q x$ (with $Q \succ 0$): weighted L_2 regularizer
- 2. Hard norm bounds on a decision variable
 - ▶ $||x||^2 \le r$: a way to ensure that x doesn't get too big.
- 3. Allowing some tolerance in constraint satisfaction
 - ▶ $||Ax b||^2 \le e$: we allow a tolerance e.
- 4. Energy quantities (physics/mechanics)
 - examples: $\frac{1}{2}mv^2$, $\frac{1}{2}kx^2$, $\frac{1}{2}CV^2$, $\frac{1}{2}I\omega^2$, $\frac{1}{2}VE\varepsilon^2$. (kinetic) (spring) (capacitor) (rotational) (strain)
- 5. Covariance constraints (statistics)

QCP: Quadratically constrained program

QCP

- $q_k(x) = (c^k)^T x + x^T Q^k x$ $\forall k \in \{0 \cup \mathcal{I} \cup \mathcal{E}\}$
- QCP is convex if $q_k(x)$ is a convex function of $x \ \forall k \in \{0 \cup \mathcal{I}\}$ and $q_k(x)$ is a linear function of $x \ \forall k \in \mathcal{E}$
- Of course, can have linear inequality constraints as well.
- Solve convex QCP using CPLEX, Gurobi, Mosek, Xpress, SCIP¹
- These (commercial) solvers should be the fastest. Most also have MIQCP capabilities
- Nonconvex QCP can be attempted by conopt, knitro, baron and lindoglobal

¹SCIP is very good, but not commercial