

Objective

This example demonstrates the use of PSoC® 6 MCU to implement a voice recorder.

Overview

This project shows how PSoC 6 MCU can be used to record audio data, store it and play it back. It uses a digital microphone with the pulse-density modulation (PDM) to pulse-code modulation (PCM) converter hardware block. All the audio data captured by the microphone is stored to an external flash memory. After the recording is completed, you can play the audio data over Inter-IC Sound (I²S), which interfaces with an audio codec. You can record/stop/play/pause/resume with CapSense® buttons. You can control the audio volume with the CapSense slider. The TFT LCD displays the current state of the voice recorder, the volume, and the time of the record/play.

Figure 1 shows the high level-block diagram of this application.

Figure 1. Block Diagram

UDB = Universal Digital Blocks

QSPI = Quad-SPI

SMIF = Serial Memory Interface

TFT = Thin-Film Transistor

Requirements

Tool: PSoC Creator™ 4.2; Peripheral Driver Library (PDL) 3.0.1

Programming Language: C (Arm® GCC 5.4.1)

Associated Parts: All PSoC 6 MCU parts

Related Hardware: CY8CKIT-062-WiFi-BT, CY8CKIT-028-TFT

Software Setup

Check if all the latest components are available in PSoC Creator. Go to menu Tools > Find New Components. Install all the new components in the list, if any.

Hardware Setup

This example requires the CY8CKIT-028-TFT shield to be connected to CY8CKIT-062-WiFi-BT PSoC 6 Pioneer Kit. Keep SW5 and SW7 in their default positions. Refer to the Kit Guide for more information. You also need a headphone or speaker connected to the audio jack on the CY8CKIT-028-TFT shield. The SW1 position should match the type of headphone/speaker used – OMTP [Open Mobile Terminal Platform] or AHJ [American Headset Jack].

Operation

- 1. Connect the CY8CKIT-028-TFT shield to the Pioneer Kit.
- 2. Connect a headphone or speaker to the audio jack on the CY8CKIT-028-TFT.
- 3. Connect the Pioneer Kit to your PC using the provided USB cable through the USB connector (J10).
- 4. Build the project and program it into the PSoC 6 MCU device. Choose **Debug > Program**. When building the project, DO NOT replace the **FreeRTOSConfig.h** file. For more information on device programming, see PSoC Creator Help. Flash for both CPUs is programmed in a single program operation.

After pressing the RST button, the following screen appears on the TFT LCD display.

5. Press the left CapSense button (BTN0) on CY8CKIT-062 to start recording. The following screen appears on the TFT LCD.

- 6. Play a sound, or speak over the microphone (PDM MIC) on CY8CKIT-028-TFT while recording.
- 7. Press the left CapSense button again to stop recording. The following screen appears on the LCD.

8. Press the right CapSense button (BTN1) to play the recording. The following screen appears on the LCD.

3

9. Listen to the recorded audio using the headphone or speaker. You can pause/resume any time by pressing the right CapSense button again. If paused, the following screen appears on the LCD:

10. To change the volume, slide your finger on the CapSense slider to the right (increase volume) or to the left (decrease volume).

Design and Implementation

The CY8CKIT-028-TFT shield contains the audio codec AK4954A, an audio jack, a digital microphone, and a Newhaven 2.4-inch 240x320 TFT LCD display with a Sitronix ST7789 display controller. This allows you to record audio using the microphone and play it with the audio codec. The display is used to report the current state of the voice recorder – IDLE, RECORDING, PLAYING, or PAUSED. The Pioneer kit contains two CapSense buttons and a slider. The buttons trigger the actions supported by the voice recorder. Figure 2 shows how the transitions between states occur.

BTN0

BTN0

BTN0

BTN0

BTN0

BTN0

BTN0

BTN0

BTN0

BTN1

BTN1

BTN1

BTN1

BTN1

BTN1

BTN1

BTN1

BTN1

Figure 2. States and Transitions

Each state is linked to a different icon displayed in the LCD. The Operation section shows the screenshots of each state. The screen also shows the current volume in percent, and the time duration of the record/play. The GraphLCDIntf Component drives the LCD. It is configured to have an 8-bit wide bus. The example uses an open-source graphics library for embedded system called µGUI. The firmware uses this library to draw text and figures on the LCD display.

When recording, the PDM/PCM hardware block captures the data from the digital microphone. All the data written to its internal FIFO is transferred (using DMAs) to a circular buffer placed in the SRAM. The DMA is configured to generate interrupts when a certain amount of data is transferred. On each interrupt, the application transfers data from the circular buffer to the external memory over QuadSPI (SMIF). This memory is placed on Pioneer Kit and uses NOR flash technology (\$25FL512S).

When playing, the I²S hardware block streams the recorded data. The application reads the data from the external memory and places it in a ping-pong buffer. While writing in the ping buffer, a DMA controller transfers the data from the pong buffer to the I²S TX FIFO. Figure 3 shows the overall transfers performed by the application.

Figure 3. Overall Transfers

When in the IDLE or PAUSED states, no transfers are performed.

To minimize writing in the same sector of the external memory multiple times, a wearing level mechanism is implemented. On initialization, the application scans the external memory to locate the last sector written by the application. Every time a new record is started, the application erases and writes new data in the next sector available. This mechanism reduces the number of times the same sector is erased/written. The same sector will only be erased/written when all other sectors are used.

The firmware uses FreeRTOS to execute the processes required by this application. All tasks run in the Arm® Cortex®-M4 CPU. The following tasks are created:

- 1. RecorderTask: handles recording and playing. It controls the transfers between the FIFOs, SRAM, and external memory.
- 2. TouchTask: handles CapSense touches on the buttons and slider.
- 3. EventsTask: handles any events that occur, such as touches from CapSense or recording/playing events.
- 4. GraphicsTask: handles updates and draws on the LCD.

Other RTOS elements used for synchronization and communication are:

- Event Queue: used to notify EventsTask when specific events occur. The RecorderTask and TouchTask are senders.
- GUI Queue: used to notify GraphicsTask to update or draw something on the screen. RecorderTask and EventsTask are senders.
- 3. SMIF Semaphore: used to lock the SMIF interface for accessing the external memory.
- 4. DMA Event Group Bits: used to notify RecorderTask that a DMA interrupt occurred.

Components and Settings

Table 1 lists the PSoC Creator Components used in this example, how they are used in the design, and the non-default settings required so they function as intended.

Table 1. PSoC Creator Components

Component	Instance Name	Purpose	Non-default Settings
PDM to PCM	PDM_PCM	Interface the digital microphone	See Figure 4
SMIF	SMIF_1	Interface the external flash memory	SMIF Datalines[0:1] checked SMIF Datalines[2:3] checked SMIF SPI Slave Select 0 checked Generate code from cy_smif.cysmif file checked All other parameters unchecked See Figure 5 for SMIF Configuration Tool (Launch by clicking with right mouse button over the SMIF component)
DMA	DMA_Record	Transfer data from PDM/PCM RX FIFO to SRAM	Trigger Input/Output are checked See Figure 6
DMA	DMA_PlayLeft	Transfer data from SRAM to I2S TX FIFO (left channel)	Trigger Input/Output are checked See Figure 7

Component	Instance Name	Purpose	Non-default Settings	
DMA	DMA_PlayRight	Transfer data from SRAM to I2S TX FIFO (right channel)	Trigger Input/Output are checked See Figure 8	
I2S	I2S	Interface the audio codec	See Figure 9	
SCB (I2C Master)	Codecl2CM	Configure the audio codec	Mode: Master	
CapSense	CapSense	Scan capacitive buttons and a slider	See Figure 10 to Figure 13	
GraphicLCDIntf	GraphicLCDIntf	Interface the TFT LCD Display	Bus Width: 8 bit	
Interrupt	DMA_PDM_IRQ	Track the recording transfers		
Interrupt	DMA_I2S_IRQ	Track the playing transfers		
Clock	Clk_HF4	Master clock for the audio codec		
Clock	Clock_Graphics	Clock for GraphicLCDIntf		
Digital Input Pin	PDM_DATA	PDM Data input		
Digital Output Pin	PDM_CLK	PDM Clock output		
Digital Output Pin	TX_SDO	I2S TX Data output		
Digital Output Pin	TX_SCK	I2S TX Clock output		
Digital Output Pin	TX_WS	I2S TX Word Select output		
Digital Output Pin	Pin_d_c	Data/Command signal for the LCD		
Digital Output Pin	Pin_ncs	Active-LOW chip select for the LCD		
Digital Output Pin	Pin_nwr	Active-LOW write control signal for LCD		
Digital Output Pin	Pin_nrd	Active-LOW read control signal for LCD		
Digital Output Pin	Intf_nreset	Active-LOW reset signal for the LCD HW Connection is Unchecked		
Bidirectional Pin	Pin_LSB	8-bit pin bus for the LCD	Number of pins: 8	
Digital Output Pin	RED_LED	Assert when an error is detected	Initial drive state: High HW Connection is Unchecked	

For information on the hardware resources used by a Component, see the Component datasheet.

Figure 4 through Figure 10 highlight the non-default settings for each Component in this example.

Figure 4. PDM/PCM Configuration Window

Figure 5. SMIF Tool Configuration

Cancel

Datasheet

Configure 'DMA_Record' ? × Name: DMA_Record Channel **Descriptors** Built-in **4** Þ PDM_to_SRAM □ Descriptor Descriptor Name Trigger on every element transfer completion Trigger output Trigger on every X loop transfer completion Interrupt PDM_to_SRAM Chain to descriptor Channel state on completion Enable ☐ Input trigger options One transfer per trigger
Retrigger after 16 Clk_Slow cycles Trigger input type Trigger deactivation and retriggering □ Transfer setting Data element size Halfword (2 bytes) Source and destination transfer width Word to Halfword ☐ X loop transfer 256 Number of data elements to transfer Source increment every cycle by 0 Destination increment every cycle by ☐ Y loop transfer 32 Number of X-loops to execute Source increment every cycle by O Destination increment every cycle by 256 Data element size

Figure 6. DMA_Record Configuration Window

Figure 7. DMA_PlayLeft Configuration Window

This parameter sets up the data element size parameter in the descriptor

OK

Figure 8. DMA_PlayRight Configuration Window

Figure 9. I2S Configuration Window

Figure 10. CapSense Configuration Window - Basic

Figure 11. CapSense Configuration Window - Advanced / General

Figure 12. CapSense Configuration Windows - Advanced / CSD and CSX Settings

Figure 13. CapSense Configuration Window – Advanced / Widget details / Buttons

Figure 14 through Figure 16 shows the changes made in the clock configuration.

Figure 14. Source Clocks Configuration

Figure 15. FLL/PLL Configuration

Figure 16. High Frequency Clocks Configuration

Reusing This Example

This example is designed for the CY8CKIT-062-WiFi-BT PSoC 6 Pioneer kit. To port the design to a different PSoC 6 MCU device and/or kit, change the target device using Device Selector and update the pin assignments in the Design Wide Resources Pins settings as needed.

In some cases, a resource used by a code example (for example, an IP block) is not supported on another device. In such cases, the example will not work. If you build the code targeted at such a device, you will get errors. See the device datasheet for information on what a particular device supports.

This example also uses an external 17.2032 ECO placed on CY8CKIT-062-WiFi-BT PSoC 6 Pioneer kit. If you are using another kit that does not contain such ECO, edit the clock configuration to source the PLL from the IMO.

Related Documents

Application Notes				
AN210781 – Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity	Describes the PSoC 6 BLE, and how to build this code example			
AN217666 – PSoC 6 MCU Interrupts	Describes how to use interrupts in PSoC 6 MCU			
PSoC Creator Component Datasheets				
Inter-IC Sound Bus (I2S) Component	Sends digital audio streaming data to external I ² S devices			
Inter-Integrated Circuit (I2C) Component	Supports I ² C slave, master, and master-slave operation configurations.			
PDM to PCM Decoder Component	Converts a PDM signal to PCM.			
Direct Memory Access (DMA) Component	Transfers data to and from memory and registers.			
Capacitive Sensing (CapSense) Component	Scan capacitive buttons, sliders, touch pad, proximity sensors			
Serial Memory Interface (SMIF) Component	Interface external serial memories			
Device Documentation				
PSoC 6 MCU: PSoC 63 with BLE Datasheet (PRELIMINARY)				
PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual				
PSoC 6 MCU: PSoC 63 with BLE Register Technical Reference Manual				
PSoC 6 MCU: PSoC 62 Datasheet				
PSoC 6 MCU: PSoC 62 Register Technical Reference Manual				
Development Kit (DVK) Documentation				
CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit				
CY8CKIT-062-WiFi-BT PSoC 6 Pioneer Kit				

16

Document History

Document Title: CE222221 - PSoC 6 MCU Voice Recorder

Document Number: 002-22221

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	6001270	RLOS	01/05/2018	New code example
*A	6261637	RLOS	06/26/2018	Added a few acronyms Fixed some minor typos Added Software Setup section
*B	6406806	SRDS	12/10/2018	Added the TFT display model details.
*C	6509595	SRDS	03/15/2019	Updated the TFT display link. Updated template

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

USB Controllers

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

cypress.com/memory Memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

cypress.com/usb Wireless Connectivity

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, nonexclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.