Telecommunications Networking

Part of EE2T21

Ir. Niels L.M. van Adrichem &

Dr. ir. Fernando Kuipers

Network Architectures and Services (NAS)

Course material

- 2 out of 4 ECTS (2/2 for EE8001)
- All announcements via FeedbackFruits
 - https://secure.feedbackfruits.com/#groups/81105
- Discussion forum, direct questions here
- Book:
 - Data Communications Networking;
 ISBN 978-94-91075-01-8
 - Chapters 1-7.5: EE2T21(Telecommunications Networking)
 - Chapters 7.5-13: CS4055(High Performance Data Networking)

Mininet lab & Tour

Delft University of Technology

- Mininet homework lab: Learn to configure network switches and routers, use Wireshark
- 5 exercises, 0.2 bonus per exercise
- 100 % 1st exams
- 50 % Retake
- 0 % otherwise

• Perhaps we will organize a tour of the TUDelft datacenter... To be confirmed.

- Homework is optional, though recommended
- Hand in before class x @ 13:30
 - Make and hand-in assignment using Google
 Forms @ FeedbackFruits page
 - Late assignments are not graded (no matter the excuse)
 - Suggestions for better hand-in tools are appreciated
- Start class with explanation of due assignment
- Finish remaining time working on exercise

Examination

- Goal of the course: understanding of different network concepts
- What do I expect from you?
 - Able to explain concepts: what? why? relation with others?
- Examination: what?
 - Only chapters 1 up to, and including, 7.5. No Appendices, no footnote-sized text, no homework nor lab material.
- Examination: how?
 - Written and closed book

Examination

Delft University of Technology

• When:

- 25/05: Partial exam chapter 1, 2 and 4 (possibly also chapter 3)
- 29/06: Partial exam chapter (3,) 5, 6 and 7-7.5
- 25/07: Re-exam chapter 1-7.5

Delft University of Technology

- My ideal course:
 - You read the material in advance
 - I give a brief summary
 - We discuss the material and your questions
 - We put theory to practice (instead of only theory)

• What's your ideal?

Tentative schedule

Delft University of Technology

Before class read:	and complete:
--------------------	---------------

• 21/04: Chapter 1 Install Mininet

• 28/04: Chapter 2 Exercise 1

• 12/05: Chapter 4 Exercise 2

• 19/05: Chapter 3 Exercise 3

• 26/05: Chapter 5 No exercise

• 02/06: Chapter 6 Exercise 4

• 09/06: Chapter 7 Exercise 5

• T.B.A.: Q&A Session

Telecommunications Networking

Delft University of Technology

1. Introduction

- 2. Local Area Networking
- 3. Error Control and Retransmission Protocols
- 4. Architectural Principles of the Internet
- 5. Flow Control in Internet: TCP
- 6. Routing Algorithms
- 7. Routing Protocols
- 8. The principles of ATM
- 9. Traffic Management in ATM
- 10. Scheduling
- 11. Quality of Service
- 12. Quality of Service routing
- 13. Peer-to-peer networks

Communication applications

Delft University of Technology

Email

facebook

Post-it messages

How to communicate with post-its in a classroom?

Telecommunications

Delft University of Technology

- Purpose: Transfer information from $A \leftarrow \rightarrow B$
- Basic Needs and Network Functionality

topology, network infrastructure
 Network design

reachability, scope
 Addressing structure

description of info
 Traffic profile

finding path from A to BRouting

installing/reserving network resources
 Signaling

forwarding and schedulingSwitching

Hierarchy in Networking

Access: e.g. ADSL network or mobile GSM network

Core: Optical backbone network

Topology: USnet

Delft University of Technology

Topological: SURFnet

Surfnet6 Photonic Layer Groningen1 Horlingen Assen1

SURFnet

Hamburg

Contain complexity

Delft University of Technology

Many have tried to visualize or contain the complete Internet

• AT&T Labs Internet Map (already from 2007...)

Clear need to contain complexity

Basic Address Types

Delft University of Technology

It all starts with identifiers

unicast:

for one-to-one communication

Multicast (*broadcast):

for one-to-many communication

anycast:

for one-to-nearest communication

Connection Oriented and Connectionless

TUDelft Open System Interconnect (OSI)

PDNTSPA

Delft University of Technology

Physical Data Network Transport Service Presentation Application
Please Do Not Throw Salami Pizza Away

Three Basic OSI concepts

Service

- defines what the layer does
- Interface
 - tells the processes above it how to access the service
 - parameter specification
- Protocol
 - set of rules for communication between peers
 - the layer can use any protocol to provide its service

Layers and Interfaces

OSI model

Postal Service Example

SAP: Service Access Point

Header overhead

Pros & Cons of Layering

PRO: simplify design

- divide complex problem into smaller, more manageable pieces (independent & parallel execution)
- hiding implementation details from other layers: easy to upgrade a part of the system
- re-use of functionality: many upper layers can share services of lower layers

CON: poor performance

limited info exchange between layers

OSI versus TCP/IP

7	Application	Application
6	Presentation	
5	Session	
4	Transport	Transport
3	Network	Internet
2	Data Link	Host-to-
1	Physical	network

Questions Ch. 1

- Explain what connection oriented (CO)
 forwarding is and explain what connectionless
 (CL) forwarding is.
- Present the 7 OSI layers in the correct order and explain the purpose of layers 1,2,3,4,7.
- Explain the four communication modes: unicast, multicast, broadcast and anycast.

Mininet + Wireshark

Mininet

An Instant Virtual Network on your Laptop (or other PC)

