Sprawozdanie Obliczenia Naukowe - Lista 3

Kamil Włodarski

27 listopada 2022

1 Zadanie 1, 2, 3

1.1 Opis problemu

Pierwsze trzy zadania polegają na oprogramowaniu algorytmów obliczających przybliżone miejsca zerowe funkcji metodami:

- 1. metoda bisekcji
- 2. metoda Newtona (stycznych)
- 3. metoda siecznych

1.1.1 Metoda bisekcji

Metoda bisekcji, zwana także metodą równego podziału czy połowienia, opiera się na twierdzeniu Bolzana-Cauchy'ego:

Jeżeli funkcja ciągła f(x) ma na końcach przedziału domkniętego wartości różnych znaków, to wewnątrz tego przedziału, istnieje co najmniej jeden pierwiastek równania f(x) = 0

Funkcja abyśmy mogli znaleźć miejsce zerowe funkcji musi spełniać ona następujące warunki:

- \bullet ciagla w przedziale [a, b]
- $f(a) \cdot f(b) \leq 0$

Metoda bisekcji polega na iteracyjnym wybieraniu środka przedziału [a,b] (oznaczamy go c), a następnie sprawdzeniu jakiego znaku jest f(c) - wtedy zależnie od niego zastępuję się a lub b przez c w taki sposób, aby $f(a) \cdot f(b) \leq 0$. Kończymy iterować jeżeli $|f(c)| \leq \varepsilon$ lub $|b-a| \leq \delta$, gdzie δ i ε to wybrane przez nas stałe decydujące o dokładności wyniku. Wybrane punkty początkowe nie muszą być równo odległe od miejsca zerowego.

1.1.2 Metoda Newtona

Metoda Newtona, zwana także metodą stycznych, opiera się na liczeniu punktów przecięcia stycznych do funkcji f z osią OX, a następnie prowadzeniu kolejnych stycznych do funkcji w współrzędnych odpowiadających punktom przecięcia. Aby metoda ta zadziałała, musimy zwrócić uwagę na 2 rzeczy.

- 1. wybrany punkt początkowy x_0 (dla którego liczymy pierwszą styczną) musi znajdować się dość blisko szukanego pierwiastka
- 2. wartość $f'(x_n)$ dla dowolnej z kolejnych iteracji nie może być zbyt bliska zeru

W obu powyższych przypadkach niedokładność obliczeń doprowadziłaby do błędnych wyników. Wadą tej metody jest potrzeba znajomości pochodnej funkcji w celu wyznaczenia stycznej.

1.1.3 Metoda Siecznych

Metoda siecznych, zwana także metodą Eulera lub cięciw, opiera się na wyznaczaniu miejsc przecięcia siecznych wykresu funkcji z osią OX, a następnie wykorzystywanie odciętej tych punktów do wyznaczania kolejnych siecznych. Pierwsza sieczna zaczyna się w punkcie $(x_0, f(x_0))$ i kończy w punkcie $(x_1, f(x_1))$ przecinając punkt x_2 na osi OX - kolejna sieczna w iteracji rozpoczyna się w $(x_1, f(x_1))$ i kończy w $(x_2, f(x_2))$. Metoda ta umożliwia "przybliżenie" przebiegu wykresu funkcji za pomocą kolejnych prostych, a przez to trafienie w końcu na punkt odpowiednio bliski szukanemu zeru. Tutaj również ważne jest wybranie punktu odpowiednio bliskiego szukanego pierwiastka

1.2 Rozwiązanie

Funkcje zaimplementowano zgodnie ze specyfikacją w pliku "Solvers.jl"

2 Zadanie 4

2.1 Opis problemu

Zadanie polega na znalezieniu pierwiastka równania:

$$\sin(x) - (\frac{1}{2}x)^2 = 0 \tag{1}$$

stosując wcześniej przygotowane algorytmy z odpowiednio dobranymi parametrami

2.2 Wyniki

$\operatorname{algorytm}$	x	f(x)	ilość iteracji	
metoda bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	
metoda Newtona	1.933749984135789	4.995107540040067e-6	13	
metoda siecznych	1.933753644474301	1.564525129449379e-7	4	
wolfram alpha	1.9337537628270212533	-	-	

Tabela 1: Wyniki zadanie 4

2.3 Wnioski

Wszystkie algorytmy osiągnęły poprawne wyniki z założoną dokładnością, jedyną większą różnicą pomiędzy nimi była ilość iteracji.

3 Zadanie 5

3.1 Opis problemu

Zadanie polega na znalezieniu punktów przecięcia funkcji:

- y = 3x
- $y = e^x$

możemy to zrobić wyliczając miejsce zerowe funkcji:

$$f(x) = e^x - 3x$$

3.2 Wyniki

Do obliczeń wykorzystano przedziały początkowe:

$$[a_1, b_1] = [0, 1]$$

$$[a_2, b_2] = [1, 2]$$
(2)

Otrzymano następujące wyniki:

pierwiastek	wartość	wartość dokładna
x_1	0.619140625	0.619061
x_2	1.5120849609375	1.51213

Tabela 2: Wyniki zadanie 5

3.3 Wnioski

Jak widać metoda bisekcji pozwala na poprawne obliczenie punktów przecięcia funkcji, ale ważne do tego jest ustalenie odpowiednich przedziałów, aby zagwarantować znalezienie wszystkich szukanych wartości.

4 Zadanie 6

4.1 Opis Problemu

Zadanie polega na znalezieniu miejsc zerowych funkcji:

$$f_1(x) = e^{1-x} - 1$$

$$f_2(x) = xe^{-x}$$
(3)

Wykorzystując przygotowane wcześniej algorytmy

4.2 Wyniki

metoda	parametry	x	$f_1(X)$	iteracje	błąd
metoda bisekcji	a = 0, b = 3	1.0000076293945312	-7.6293654275305656e-6	17	0
metoda Newtona	$x_0 = 0.5$	0.9999999998878352	1.1216494399945987e-10	4	0
metoda Newtona	$x_0 = 100$	100.0	-1.0	1	2
metoda siecznych	a = 0.5, b = 1.5	0.9999999624498374	3.755016342310569e-8	5	0
wolfram alpha	-	1	0	-	-

Tabela 3: Wyniki dla funkcji f_1

metoda	parametry	x	$f_1(X)$	iteracje	błąd
metoda bisekcji	a = -1, b = 2	7.62939453125e-6	7.62933632381113e-6	17	0
metoda Newtona	$x_0 = 0.5$	-3.0642493416461764e-7	-3.0642502806087233e-7	5	0
metoda Newtona	$x_0 = 100$	100.0	3.7200759760208363e-42	0	0
metoda Newtona	$x_0 = 1$	1.0	0.36787944117144233	1	2
metoda siecznych	a = 0.5, b = 1.5	1.7791419742860986e-8	1.779141942632637e-8	8	0
wolfram alpha	-	0	0	-	-

Tabela 4: Wyniki dla funkcji f_2

4.3 Wnioski

Dla odpowiednich parametrów początkowych algorytmy znajdują odpowiednie rozwiązania w niewielkiej ilości iteracji. Warto zwrócić uwagę na szczególne przypadki dla metody Newtona która zawraca błędne odpowiedzi lub wyrzuca błędy dla $x_0>1$. wynika to z tego że $\lim_{x\to\infty} f_1'=0$ oraz $\lim_{x\to\infty} f_2'=0$ stąd wyliczane wartości są niedokładne w naszej arytmetyce. Zauważmy również że dla $x_0=1$ mamy $f_2'(x_0)=0$ a więc nie możemy wyznaczyc kolejnej stycznej w tym punkcie.