Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МФТИ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Лабораторная работа Исследование стандартных и выполненных контейнеров на языке C++

Выполнил Агибалов Сергей Б03-003

Оглавление

Capacity и size для контейнера vector	3
Insert для контейнеров vector и subvector	4
Erase для контейнеров vector и subvector	5
Random access для контейнеров vector и subvector	6
Push_front для контейнеров forward_list и subforward_list	8
Pop_front для контейнеров forward_list и subforward_list	9
Обход контейнеров	10
Вывод	11

Capacity и size для контейнера vector

На этом графике мы можем видеть, что при переполнении память выделяется не на один элемент, а на следующую степень двойки: 2, 4, 8, 16 и т.д.

Insert для контейнеров vector и subvector

На этом графике мы можем видеть, что сложность вставки O(n) для обоих контейнеров, коэффициент при O(n) у subvector больше.

Erase для контейнеров vector и subvector

На этом графике мы можем видеть, что сложность удаления O(n) для обоих контейнеров, коэффициент при O(n) у subvector больше.

Random access для контейнеров vector и subvector

На этом графике мы можем видеть, что сложность доступа O(1) для обоих контейнеров, коэффициенты примерно равны.

Чтобы рассмотреть детали приблизим начало и построим в логарифмическом масштабе:

На данном графике можно увидеть кэш процессора и подтвердить, что сложность O(1), а коэффициент у subvector немного больше.

Push_front для контейнеров forward_list и subforward_list

На этом графике мы можем видеть, что сложность доступа O(1) для обоих контейнеров, коэффициент у subforward_list немного больше.

Pop_front для контейнеров forward_list и subforward_list

На этом графике мы можем видеть, сложность доступа: O(1) для обоих контейнеров, коэффициент у subforward_list заметно больше.

Обход контейнеров

На этом графике мы можем видеть, сложность обхода: O(n) для всех алгоритмов, судить об отношении коэффициентов у разных контейнеров.

Вывод

В ходе лабораторной работы были проверены сложности разных функций у стандартных и выполненных контейнеров на языке C++:

Insert	Erase	Random	Push_front	Pop_front	Bypass
		access			
O(n)	O(n)	O(1)	O(1)	O(1)	O(n)

Полученные данные согласуются с табличными (cppreference.com), значит лабораторная выполнена верно.

Все программы, файлы с данными, исходники графиков и графопостроитель (на Python) вы можете найти по ссылке: Laboratory_work.