Lógica Digital - Circuitos Secuenciales Organización del Computador I

David Alejandro González Márquez

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

6.02.2018

Agenda

- Introducción
- Flip-flops
- Contadores
- Circutos secuenciales

Introducción

Circuitos Combinacionales

La salida esta determinada únicamente por la entrada del circuito

Circuitos Secuenciales

La salida esta determinada por la entrada y el *estado* del circuito

- Las entradas del circuito combinacional son las entradas (E) junto con las salidas de la memoria (Q_n)
- El bloque combinacional genera la salida del circuito (S) y el nuevo estado del mismo (Q_{n+1})

¿Cómo almacenar un bit?

Proponemos el siguiente circuito:

Si cambiamos el valor S=1, luego que el circuito se *estabiliza*, la salida valdrá Q=1

Si ahora cambiamos S=0, obtendremos como resultado que el valor de salida Q continuará en 1

¿Cómo construir un biestable?

- Supongamos que inicialmente S = 0, $\overline{R} = 1$ y Q = 0
- Si S = 1 y $\overline{R} = 1$ entonces la salida Q valdrá 1
- Si luego S=0 y $\overline{R}=1$ entonces la salida Q continuará en 1
- Ahora si S = 0 y $\overline{R} = 0$ entonces la salida Q cambiará a 0

Flip-Flops (1/4)

Flip-Flop RS

Flip-Flop RS con Clock

	tn	t_{n+1}
S	R	Q
0	0	Q_0
0	1	0
1	0	1
1	1	×

Ecuación Característica:

$$Q = S + \overline{R} \cdot Q_0$$

Flip-Flops (2/4)

Flip-Flop RS Maestro-Esclavo

Flip-Flop D a partir de RS

Flip-Flops (3/4)

Flip-Flop JK

t_n					t_{n+1}
	clk	J	K	Q_n	Q_{n+1}
	1	0	0	Q_0	Q_0
	1	0	1	Q_0	0
	1	1	0	Q_0	1
	1	1	1	Q_0	$\overline{Q_0}$
	0	J_0	K_0	Q_0	Q_0

Ecuación Característica:

$$Q = J \cdot \overline{Q_0} + \overline{K} \cdot Q_0$$

Flip-Flops (4/4)

Flip-Flop JK Maestro-Esclavo

	$ t_{n+1}$			
clk	S	R	Q_n	Q_{n+1}
l	0	0	Q_0	Q_0
l	0	1	Q_0	0
l	1	0	Q_0	1
ಒ	1	1	Q_0	$\overline{Q_0}$
0	S_0	R_0	Q_0	Q_0

Ecuación Característica:

$$Q = J \cdot \overline{Q_0} + \overline{K} \cdot Q_0$$

Funcionamiento de un Flip-Flop JK Maestro-Esclavo

Flip-Flop JK Maestro-Esclavo

Circuito combinacional con Flip-Flops

- C1: circuito combinacional encargado de generar el nuevo estado del circuito.
 Debe setear las entradas de cada flip-flop según corresponda.
- C2: circuito combinacional encargado de generar la salida del circuito.
 Su única misión es generar las líneas de salida requeridas.
- FF: Conjunto de flip-flops de alguno o varios tipos.

Contador

- Un contador es un circuito secuencial sincrónico que por cada ciclo de reloj genera una combinación en su salida.
 - La cantidad de estados por los que pase, define su módulo.
- Los contadores sincrónicos pueden ser:
 - Módulo potencia de dos

Contador

Módulo arbitrario (cambio de estado forzado)

Contador

3 Módulo arbitrario y cuenta arbitraria

Registros

- Un registro es un conjunto de n flip-flops asociados, que permiten almacenar temporariamente una palabra o grupo de n bits
- Los tipos de registro dependen de la forma en que los datos son leídos o almacenados:
 - Registro paralelo-paralelo
 - Registro serie-paralelo
 - Registro paralelo-serie
 - 4 Registro serie-serie
 - 5 Registro de desplazamiento
 - 6 Registro de desplazamiento circular

Registros

Registro paralelo-paralelo

Registro serie-paralelo

Registro paralelo-serie

Registro serie-serie

Registros de desplazamiento

Registro de desplazamiento

Registro de desplazamiento circular

Ejercicio 1: Contadores

Construir un contador de 3 bits que respete la siguiente secuencia:

Paso	s ₂	s_1	<i>s</i> ₀
1	0	0	0
2	1	0	1
3	0	0	0
4	0	1	0

 El circuito va a estar compuesto por un contador y un circuito combinacional que trasforme la cuenta en las salidas que buscamos

 Sabemos armar un contador módulo 4, así que sólo resta diseñar la tabla de verdad para el circuito combinacional

q0	q1	<i>s</i> ₀	s_1	s ₂
0	0	0	0	0
0	1	1	0	1
1	0	0	0	0
1	1	0	1	0

q0	q1	<i>s</i> ₀	s_1	<i>s</i> ₂
0	0	0	0	0
0	1	1	0	1
1	0	0	0	0
1	1	0	1	0

Luego las ecuaciones son:

$$s0 = \overline{q0} \cdot q1$$

 $s1 = q0 \cdot q1$
 $s2 = \overline{q0} \cdot q1$

Ejercicio 2: Circuitos secuenciales genéricos

Construir un circuito secuencial que respete la siguiente tabla característica:

<i>e</i> 0	$q0_n$	$q1_n$	<i>s</i> 0	$q0_{n+1}$	$q1_{n+1}$
0	0	0	0	0	1
0	0	1	1	1	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

 Debemos obtener las expresiones que definan los próximos estados y la salida del circuito

e0	$q0_n$	$q1_n$	<i>s</i> 0	$q_{0_{n+1}}$	$q1_{n+1}$
0	0	0	0	0	1
0	0	1	1	1	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

Nuevos estados:

$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n}) q1_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot \overline{q1_n}) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

Salida del circuito:

$$s0 = (e0 + q0_n + q1_n) \cdot (\overline{e0} + q0_n + q1_n)$$

Nuevos estados:

$$\begin{array}{ll} q0_{n+1} & = & (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n}) \\ q1_{n+1} & = & (\overline{e0} \cdot \overline{q0_n} \cdot \overline{q1_n}) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n}) \\ & = & (\overline{e0} \cdot \overline{q1_n}) \cdot (\overline{q0_n} + q0_n) \\ & = & (\overline{e0} \cdot \overline{q1_n}) \cdot 1 \\ & = & \overline{e0} \cdot \overline{q1_n} \end{array}$$

Salida del circuito:

$$s0 = (e0 + q0_n + q1_n) \cdot (\overline{e0} + q0_n + q1_n)$$

$$= (e0 \cdot \overline{e0}) + (q0_n + q1_n)$$

$$= 0 + (q0_n + q1_n)$$

$$= q0_n + q1_n$$

$$\begin{array}{rcl} q0_{n+1} & = & \left(\overline{e0} \cdot \overline{q0_n} \cdot q1_n\right) + \left(\overline{e0} \cdot q0_n \cdot \overline{q1_n}\right) \\ q1_{n+1} & = & \overline{e0} \cdot \overline{q1_n} \\ s0 & = & q0_n + q1_n \end{array}$$

$$\begin{array}{rcl} q0_{n+1} & = & \left(\overline{e0} \cdot \overline{q0_n} \cdot q1_n\right) + \left(\overline{e0} \cdot q0_n \cdot \overline{q1_n}\right) \\ q1_{n+1} & = & \overline{e0} \cdot \overline{q1_n} \\ s0 & = & q0_n + q1_n \end{array}$$

Ejercicio 3: Construcción de circuitos secuenciales por bloques

La conjetura de Collatz, es un famoso problema matemático aún no resuelto. Esta conjetura enuncia la siguiente función $f: \mathbb{N} \to \mathbb{N}$, aplicable a cualquier número entero positivo:

$$f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ 3n+1 & \text{si } n \text{ es impar} \end{cases}$$

Se dice que si se toma cualquier número y se aplica esta función reiteradas veces, el resultado siempre converge a 1.

- Construir un circuito combinatorio que realice la función f(n) para una entrada de 5 bits.
- 2 Construir un circuito secuencial, que aplique reiteradas veces la función anterior por cada ciclo de reloj.
- Modificar el circuito anterior de forma que si el valor de entrada es 1, entonces la salida también sea 1.

Ejercicio 3: Primer intento...

- Debemos construir una tabla de verdad de 5 entradas y 5 salidas
- Esto corresponde a 32 posiciones y 5 funciones, una para cada salida
- Resolver una tabla de verdad de estas dimensiones resulta muy complejo y puede llevar a errores
- Otra opción, pensar en bloques y reutilizar circuitos conocidos

entrada

salida

entrada

n/2

3n+1

salida

salida

Resolver la operación de división por dos es simple, ya que se trata de un desplazamiento a derecha

La operación 3n + 1 se puede escribir como:

$$n + n + n + 1$$

$$2n + n + 1$$

- Para el primer caso, utilizaríamos dos circuitos sumadores
- En la segunda opción, tan solo se utiliza un circuito sumador, ya que la multiplicación por dos se realiza mediante un desplazamiento
- Elegimos la segunda opción . . . 2n + n + 1

Circutos secuen<u>ciales</u>

Resta considerar como resolvemos el selector.

Para eso utilizamos un conjunto de 5 multiplexores.

Ejercicio 3: Segundo punto...

- Construir un circuito secuencial, que aplique reiteradas veces la función anterior por cada ciclo de reloj.
- En el segundo punto nos piden aplicar la función reiteradas veces a un número dado
- Para esto necesitamos un registro donde almacenar el resultado

Ejercicio 3: Segundo punto...

- Construir un circuito secuencial, que aplique reiteradas veces la función anterior por cada ciclo de reloj.
- Una vez almacenado el resultado en un registro
- Se puede realimentar el circuito de forma que el resultado sea la próxima entrada a nuestra función

Ejercicio 3: Tercer punto...

Modificar el circuito anterior de forma que si el valor de entrada es 1, entonces la salida también sea 1.

- Para el tercer punto, se debe considerar si la entrada es 1
- En ese caso, debemos fijar la salida a 1

¿Preguntas?

