Artificial Neural Network

by Dane Brown

ML like the Human Brain

Single Perceptron

- solves linear problems with a decision boundary function
- Can attain similar accuracy as linear SVM if you fidget with parameters and get lucky
- Multilayer Perceptron (MLP)
 - hidden layers allow for a complex decision boundary
 - solves linear/non-linear problems

Check it out -> CV_ML

Remember linear classifiers prefer sharper features like digits

Can we plot an OR function 'linearly'?

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
_1	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 > -w_0$

One possible solution is

$$w_0 = -1, w_1 = 1.1, w_2 = 1.1$$

- Can we plot an XOR function 'linearly'?
- No, cannot separate red from blue points

$\overline{x_1}$	x_2	XOR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 < -w_0$

But two perceptrons can Check it out -> CV_ML

Check it out -> CV_ML

 Train a perceptron and show the resulting decision boundary for this easy blobs data (again)

• The perceptron learnt the decision boundary of the form: $12x_1 - 4.1x_2 + 3.0 >= 0$

Decision boundary difficult blobs data

MLPs

- How to make the perceptron more powerful and create nonlinear decision boundaries?
 - add layers
 - tune more
- MLPs combine multiple perceptrons to form a larger neural network that represents a more complex decision boundary. They have:
 - input layer
 - hidden layer(s)
 - output layer (as labels for classification)

MLP in OpenCV

Check it out -> CV_ML

Let's find that decision boundary in OpenCV!

MLP in OpenCV

- You expected a large performance increase?
- Try adding more neurons to the hidden layer

Artificial Neural Network (ANN): What works best?

- Activation functions (AF) are important for ANNs
 - Allow complex and non-linear functional mappings between the inputs and response variable
 - Convert a input signal of a node in an ANN to an output signal
 - That output signal is used as input in the next layer in the stack

Artificial Neural Network (ANN)

AF:

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

MLP vs. CNN

- Shallow MLP vs. Shallow CNN in Keras
- CNN specifically effective for image processing

MLP

- MLP with one hidden layer
- same number of neurons as there are inputs (784)
- relu activation is used for the hidden layer
- Softmax activation on output layer
- Logarithmic loss function
- ADAM gradient descent algorithm is fast and is used to learn the weights.
- Fit and evaluate the model over 10 epochs with updates every 200 images as batches

Check it out -> CV_ML

Convolution Neural Network (CNN): State-of-the-Art for CV

- Convolutional layer with 32 5×5 feature maps and relu activation.
- Pooling layer 2x2
- Regularization layer using **Dropout**.
- Randomly exclude 20% neurons, avoid overfitting
- Flatten the layers as one fully connected layer
- Fully connected layer with 128 neurons and relu
- Ditto: Softmax, Log, ADAM, fit in batches

Check it out -> CV_ML