THE	TANK	CS	73.1	_
 1-1 6				
E & 8	1.72		Arri 3	

CONSTANTS AND EQUATIONS

FALL 2007

PHYSICS 215	CONST	FALL 2007	
Electrostatics $F_{12} = \frac{K q_1 q_2 }{r^2}$	Energy $\Delta U = q \Delta V$ $U = rac{Kq_1q_2}{r}$	Circuits $C = \frac{Q}{\Delta V_C} = \frac{\varepsilon_0 A}{d}$	Magnetism $ec{F}=qec{v} imesec{B}$ $ec{F}=Iec{L} imesec{B}$
$\vec{F} = q\vec{E}$	$U_C = \frac{1}{2}C(\Delta V_c)^2$	$\Delta V = IR$ $P = I\Delta V$	$ar{\mu} = NIar{A}$
$\bar{E} = \frac{Kq}{r^2}\hat{r}$		$V(t) = V_{\text{max}} (1 - e^{-t/\tau})$ $V(t) = V_0 e^{-t/\tau}$	$ec{ au} = ec{\mu} imes ec{B}$ $ec{B} = rac{\mu_o}{4\pi} rac{I \Delta ec{s} imes \hat{r}}{r^2}$
$\Phi_e = \int ar{E} \cdot dar{A}$ surface		$I(t) = \frac{V_0}{R} e^{-t/\tau}$ $\tau = RC$	$B = \frac{\mu_0 I}{2\pi d}$
$\Delta V = -\int_{s_i}^{s_f} E_s ds$			$ \begin{array}{rcl} 2\pi d \\ \Phi_m &= & \int \vec{B} \cdot d\vec{A} \end{array} $
$E_s = -\frac{dV}{ds}$	Current $Q = I\Delta t$	Waves	surface $\mathcal{E} = \Delta V = -\frac{d\Phi_m}{dt}$
$V_{\infty \to r} = \frac{Kq}{r}$	$J = \frac{I}{A}$	$D(x,t) = A\sin(kx \pm \omega t + \phi_o)$	Maxwell's Equations
$K = \frac{1}{4\pi\varepsilon_o}$	Optics	$v = \lambda f \qquad k = \frac{2\pi}{\lambda}$ $\omega = 2\pi f$	$ \oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_o} $ $ \oint \vec{B} \cdot d\vec{A} = 0 $
	$d\sin\theta_{_{m}} = m\lambda$ $a\sin\theta_{_{p}} = p\lambda$	ω – <i>Σ</i> η	$\oint \vec{B} \cdot d\vec{s} = \mu_o I_{through} + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$
Vector Identities $ \vec{A} \times \vec{B} = AB\sin\theta$	$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o}$		$ \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{M}}{dt} $
$\vec{A} \cdot \vec{B} = AB\cos\theta$	$\alpha = 1.22\lambda/D$		

Physical Constants		Order Prefixes		es	Unit Conversions	
Electron Mass	m _e	9.11 x 10 ⁻³¹ kg	T	"tera"	10^{12}	1 F = 1 C/V
Proton Mass	$\mathbf{m}_{\mathbf{p}}$	1.67 x 10 ⁻²⁷ kg	G	"giga"	10^{9}	1 V = 1 J/C
Elementary Charge	e	1.60 x 10 ⁻¹⁹ C	M	"mega"	10^{6}	1 A = 1 C/s
Coulomb Law Constant	\mathbf{K}	$9 \times 10^9 \mathrm{Nm}^2/\mathrm{C}^2$	k	"kilo"	10^{3}	$1 \Omega = 1 \text{ V/A}$
Permittivity of Free Space	€0	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{Nm}^2$	c	"centi"	10^{-2}	1 W = 1 J/s
Permeability of Free Space	μ_{o}	$4 \pi \times 10^{-7} \text{ N/A}^2$	m	"milli"	10 ⁻³	$1 \text{ Wb} = 1 \text{ Tm}^2$
Planck's Constant	h	$6.63 \times 10^{-34} \mathrm{Js}$	μ	"micro"	10 ⁻⁶	1 H = 1 Vs/A = 1 Wb/A
Bohr Radius	$a_{\rm B}$	5.29 x 10 ⁻¹¹ m	n	"nano"	10 ⁻⁹	$1 \text{ T} = 1 \text{ N/Am} = 10^4 \text{ Gauss (G)}$
Speed of Light in Vacuum	c	$3.00 \times 10^8 \text{ m/s}$	p	"pico"	10 ⁻¹²	$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$
Stefan-Boltzmann	σ	$5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$	f	"femto"	10 ⁻¹⁵	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Boltzmann's	\boldsymbol{k}	$1.38 \times 10^{-23} \text{ J/K}$				1 Angstrom (Å) = 10^{-10} m
Gravitational Acceleration	g	9.81 m/s^2				

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$