

PRIORITIZING INVESTMENTS IN WATERSHED SERVICES IN HIMACHAL PRADESH:

Overview of Modeling Approach

Adrian Vogl Natural Capital Project

INVESTING IN WATERSHED SERVICES FOR HYDROPOWER

- World Bank partnered with the Natural Capital Project to provide technical assistance on ecosystems modeling and valuation.
- Goals
 - Demonstrate a method that can complement and improve the targeting of investments in watershed management by incorporating watershed-scale services
 - Demonstrate how targeted management can improve ecosystem services
 - Develop a framework for valuing forest management for hydropower production

THE NATURAL CAPITAL PROJECT PARTNERSHIP

OUR GOALS

Advance science of ecosystem services

Create userfriendly approaches & tools

Build and tell success stories

Get information about natural capital into decisions

Make decisions with better outcomes for people and nature

THE NATURAL CAPITAL APPROACH

Quantify, map and value the benefits provided by terrestrial, freshwater and marine systems

THE NATURAL CAPITAL PROJECT TOOLBOX

SITE SELECTION

- 5 pilot sites
- Selection Criteria:
 - Importance for hydropower production
 - Catchment area located entirely within HP
 - Range of conditions (land use and biophysical)
 - Data availability
 - Land uses
 - Flow and sediment data for calibration/validation
 - Valuation

Facility	Area (ha)
Chaba	18,878
Ghanvi I	11,741
SVP Bhaba	27,182
Nathpa Jhakri	73,486
Baspa II	99,007

MODELING APPROACH - PHASE I

- GOAL 1
 - Demonstrate method for targeting investments in watershed services in 5 pilot areas

RIOS MODEL

GOALS

- Invest in watershed services with limited budget
- Maximize improvement in multiple services

QUESTIONS

- Which activities are most costeffective?
- Where should they be done?

RIOS Steps

natural capital

Choose Objectives

Diagnostic Screening

Biophysical effectiveness

People impacted

Impact score maps

RIOS Steps

RIOS Steps

Diagnostic Screening

Biophysical effectiveness

People impacted

Impact score maps

Activity Costs

Cost-effectiveness maps per activity

Select Activities

Stakeholder preferences

Feasibility/ Restrictions

WHAT activities to invest in and WHERE

MODELING APPROACH - PHASE I

- GOAL 1
 - Demonstrate method for targeting investments in watershed services in 5 pilot areas

- GOAL 2
 - Demonstrate potential improvement in services from targeted activities (water yield and sediment retained)

natural capital

PORTFOLIOS AND RETURN ON INVESTMENT (SERVICE DELIVERY)

Methods:

- Generated Investment Portfolios using RIOS for each study area, at five budget levels
- Budget levels correspond to an amount that would result in different amounts of available land in activities: 5%, 15%, 25%, 35%, and 45%
- Used InVEST water yield and sediment model to calculate the change in water and sediment that would result from implementation of each portfolio.
- Modified the base InVEST water yield model to account for the gross estimated contribution from snow and glacial melt (based on model validation)

THE NATURAL CAPITAL APPROACH

Portfolio 1

Portfolio 2

Portfolio 3

Portfolio 4

Portfolio 5

THE NATURAL CAPITAL APPROACH

INVEST MODEL - WATER YIELD

Actual Evapotranspiration mm/year

Water yield mm/year

Water supply m³/year

Energy/value for hydropower Kw/currency over timespan

INVEST MODEL - SEDIMENT

Potential Soil loss
Calculated from USLE
Tons/year

Sediment RetainedTons/year

Sediment Exported
Tons/year

Value of Sediment Removal for Water Quality/Dredging Currency over time period

+ Total export to reservoir

THE NATURAL CAPITAL APPROACH

MODELING APPROACH - PHASE I

Relative Change in Physical Flows

MODEL VALIDATION

WATER YIELD

Compared modeled to observed water yield for two catchments

Ghanvi

Baspa

MODEL VALIDATION

SEDIMENT

Compared modeled to observed sediment load for two catchments

Ghanvi

Baspa

natural capital

MODEL VALIDATION

ADJUST OUTPUTS

- Accounting for glacier/snow melt
 - Model predicts only rainfall runoff
 - Model predictions modified to reflect estimated 60% contribution from glacier/snow melt
- Accounting for other sediment sources
 - Model lacking landslide/gully erosion
 - Model predictions modified to reflect estimated contribution from other sediment sources (~50%)

PROJECT

natural capital

MODELING APPROACH - PHASE I

- GOAL 3
 - Compare with CAT Planning process

GOAL 3 - RESULTS

- CAT Plan determined activity areas by visiting villages, talking to people, getting stakeholder input
- RIOS is done from remote, satellite-data based land cover map
- Direct comparison is not possible because of different data sources and methods
- Emphasizes need to coordinate the on-the-ground knowledge with model inputs so the two processes can inform each other
- RIOS provides landscape context and CAT in-depth process provides ground-truthing, feasibility, and stakeholder buyin.

RIOS AND CAT PLANNING

ACKNOWLEDGMENTS

InVEST

Rich Sharp, Heather Tallis, Taylor Ricketts, Anne Guerry, Spencer Wood, Becky Chaplin-Kramer, Eric Nelson, Driss Ennaanay, Stacie Wolny, Nasser Olwero, Kari Vigerstol, Derrick Pennington, Guillermo Mendoza, J. Aukema, J. Foster, J. Forrest, D. Cameron, Katie Arkema, E. Lonsdorf, C. Kennedy, Gregg Verutes, C.K. Kim, Greg Guannel, Michael Papenfus, Jodie Toft, M. Marsik, Joey Bernhardt, Robb Griffin, Kathryn Glowinski, Nicolas Chaumont, N., Adam Perelman, Martin Lacayo, Lisa Mandle, and Perrine Hamel.

RIOS in Himachal Pradesh

 Stacie Wolny, Perrine Hamel, Urvashi Narain, Rich Sharp, James Douglass, Heather Tallis, and S.S. Negi.

ENVIRONMENT

University of Minnesota Driven to Discover

