Efficient Pre-Copy Live Migration of Virtual Machines for

High Performance Computing in Cloud Computing Environments

Kasidit Chanchio and Jumpol Yaothanee

vasabilab

Department of Computer Science, Faculty of Science and Technology Thammasat University, THAILAND

Introduction

- Many VMs in modern Clouds are used for running HPC applications
- HPC applications are long-running applications
- They are usually computation-intensive and memory-intensive
 - Instances with over 8 vcpus and 64 GB Ram are offered by AWS and Google compute
 - They are used for scientific computation, big data analysis, enterprise applications, etc.

VM Live Migration

- VM live migration is a mechanism to move a VM from a source to destination host
- It is highly transparent to applications because the implementation is in the hypervisor
- Advantages:
 - Provide resiliency in case of partial failures
 - Load balancing
 - Move computation to data

Problem Statements

- The most-popular VM live migration mechanism, namely the pre-copy, is <u>NOT</u> effective and <u>NOT</u> efficient
- It requires manual configurations in order to work properly
- Prior to launching a migration, users must define the <u>maximum tolerable downtime</u> that is suitable to VM execution
 - This parameter is hard to define

Memory-Bound Pre-copy Live Migration of VMs

- This paper presents the Memory-bound Precopy Live Migration (MPLM) mechanism
- It <u>does NOT</u> require the <u>maximum tolerable</u> <u>downtime</u> parameter
- It always complete within a Memory-Bound period of time
- It is implemented on top of the pre-copy implementation of QEMU-KVM-2.9.0

Pre-copy Mechanism

Stage 1: Setup stuffs

Stege 2: Transfer VM's memory while the VM is running

Repeat until the remaining data in memory are <u>low</u> enough (to send within the max downtime)

Stage 3: Stop & transfer the rests

Problems of the Pre-copy Mechanism

- The default maximum tolerable downtime is 300 milliseconds, OK for light workloads
- The maximum tolerable downtime parameter is hard to define for HPC applications
- Set maximum tolerable downtime too Low
 - Exceedingly long live migration time
- Set maximum tolerable downtime too High
 - High downtime

MPLM

Stage 1. Setup:

Create <u>migration thread</u>, track memory updates

Stage 2. Transfer memory while VM is running:

- 2.1. Divide Memory Pages into two groups: the non-dirty-page and dirty-page groups
- 2.2. Transfer the non-dirty pages and dirty pages in <u>a multiplexing</u> manner
- 2.3. Stop live migration when all the non-dirty pages are transferred

Stage 3. Stop VM and Transfer remaining dirty pages

Stage 2's Live Data Transfer

MPLM Performances

- Total Migration time = Live Migration time +
 Migration Downtime
- Live Migration time = a period of time Stage 2 operates
- Downtime = a period of time the VM stops at Stage 3
- The higher dirty page generation, the longer the migration downtime

Experiments

- We use two AMD Opteron host servers as the source and destination hosts
- Create a VM with 8 vcpus and 8 GB of Ram
- Run one of the 4 OpenMP Class C NAS Parallel Benchmarks (below) on the VM
 - MG, IS, SP, BT
- Migrate the VM over a 1 Gbps network

Notations

- "KVM" represents KVM's pre-copy mechanism
- "MPLM" represents MPLM mechanism
- "Migtime" = Total migration time
 - (including downtime)
- "Downtime" = Migration downtime
- For KVM, X-axis represents the maximum tolerable downtime
- Y-axis represents actual time in seconds

Multi-Grid Solver (MG)

Maximum Tolerable Downtime

Multi-Grid Solver (MG)

Maximum Tolerable Downtime

Integer Sort (IS)

Maximum Tolerable Downtime

Integer Sort (IS)

Scalar Penta-diagonal solver (SP)

Maximum Tolerable Downtime

Scalar Penta-diagonal solver (SP)

Block Tri-diagonal solver (BT)

Maximum Tolerable Downtime

Block Tri-diagonal solver (BT)

Conclusion

- MPLM provides a middle way
- MPLM does not require Manual Configuration
- MPLM is Effective: take a predictable time to complete
- MPLM is Efficient: low migration time& low downtime
- MPLM is Good for large data center where automatic resource management is favorable

Backup

