

Fundamentos Estatísticos para Análise Estática de Instrumentos – Parte 1

Prof. Jean Tavares

19/10/2020

SUMÁRIO

- Introdução
- Objetivo de um Sistema de Medição
- Requisitos para o Processo Estatístico
 - Fundamentos de Estatística
 - Matlab/ Octave
 - Histograma
 - Intervalo de Confiança
 - Critério de Chauvenet
 - Teste Qui-quadrado
 - Análise de Regressão
 - Propagação de Erro

Introdução: Fontes de Erros no Sistema de Medição

A saída do instrumento, y(t) pode ser vista como uma série de entradas.

3 Princiapais Tipos de Entrada: Entrada Desejada (**ED**): x(t)Entrada Modificante (**EM**): $x_m(t)$ Entrada de Interferência (**EI**): $x_i(t)$

Exemplo de EM: Temperatura,
Umidade, Pressão, Vibração,
Campos eletromagnéticos.
Exemplo de EI: Atrito, campos
eletromagnéticos, tensões
termoelétricas e galvanométricas

Introdução: Tipos de Incertezas Estáticas

Caracterização Estática de Instrumentos:

- Desempenho em estado estacionário
- Relação entre a Grandeza a ser Medida e o Sinal de Saída y(t) do Sensor
- Incertezas inerentes ao resultado:
 - Efeitos sistemáticos
 - Efeitos aleatórios

Introdução: Tipos de Incertezas Estáticas

CARACTERÍSTICAS DOS ERROS:

SISTEMÁTICO (ou BIAS): a média do estimador é diferente do valor VERDADEIRO da variável → b

ALEATÓRIO (ou RANDOM): O valor do estimador apresenta DISPERSÃO em torno do valor médio. → Var

BIAS PEQUENO ALEATÓRIO GRANDE BIAS GRANDE ALEATÓRIO PEQUENO

Objetivo do Sistema de Medição

O objetivo de uma medição é determinar os valores do mesurando, ou seja, da grandeza a ser medida. Isso inclui um procedimento de medição e o resultado é apenas uma estimativa do valor do mesurando e, portanto, o resultado da medição deve incluir uma declaração da incerteza associada.

Sistema de Medição (SM)

Instrumentação

Física

- Analógico
- •Digital

Interface com

Sistema Real

Medidas

Sistema de coleta de dados

Amostragem:

- Finita
- Discreta

Processo Estatístico

Sistema

Computacional

Função

Densidade de

Probabilidade

- Valores espúrios
- Testes de

Aderência

Resultado Estatístico

- Média
- Desvio
- Variância
- Amplitude
- ·Intervalo de

Confiança ou Erro

•Representa o sistema real*

Requisitos Para Processo Estatístico dos Dados

- Fundamentos de Estatística
- Matlab/ Octave
- Histograma
- Intervalo de Confiança
- Critério de Chauvenet
- Teste Qui-quadrado
- Análise de Regressão
- Propagação de Erro

Requisitos:

MAPL

Fundamentos de Estatística

- Uma característica desejável do instrumento é não ser tendencioso, ou seja, não polarizado e sem viés.
- Um instrumento n\u00e3o tendencioso ou n\u00e3o polarizado tem a mesma probabilidade de indicar valores inferiores ou superiores.
- Matematicamente, a Função Densidade de Probabilidade (FDP) de um instrumento não tendencioso node ser escrita como:

$$P(y < y_0) = \int_{-\infty}^{y_0} f_{\mathbf{p}}(y) dy = \int_{y_0}^{\infty} f_{\mathbf{p}}(y) dy = P(y_0 < y).$$

onde y_0 é o valor médio das medidas.

Requisitos: Fundamentos de Estatística

Variáveis Aleatórias:

- Discretas. Exemplo: resultado de um dado;
- 2) Contínuas. Exemplo: temperatura de um motor.

FUNÇÃO de DENSIDADE de PROBABILIDADE:

$$p(x) = \frac{dP(x)}{dx} \iff P(x) = \int_{-\infty}^{x} p(x)dx$$

$$p(x) \in [0 \quad \infty] \quad e \quad \int_{-\infty}^{\infty} p(x) dx = 1$$

A Função Densidade de Probabilidade informa a probabilidade da variável *x* assumir um valor dentro de um determinado intervalo.

FUNÇÃO de DISTRIBUIÇÃO de PROBABILIDADE:

$$P(x) = PROB(x \le X)$$

 $se \quad a \le b \Rightarrow P(a) \le P(b)$
 $P(-\infty) = 0 \quad e \quad P(\infty) = 1$

Requisitos: Fundamentos de Estatística

Considerando uma fdp GAUSSIANA de MÉDIA NULA → fdp NORMAL

$$P[z \le z_1] = \int_{0}^{z_1} p(z) dz = \phi(z_1)$$

$$P[z \le z_1] = \int_{-\infty}^{z_1} p(z) dz = \phi(z_1) \qquad P[z \le -z_1] = \int_{-\infty}^{z_1} p(z) dz = \int_{z_1}^{\infty} p(z) dz = 1 - \phi(z_1)$$

$$P[-z_1 \ge z \ge z_1] = \phi(z_1) - 1 + \phi(z_1) = 2\phi(z_1) - 1 = \alpha$$

STANDARD STATISTICAL TABLES

Req Func

1. Areas under the Normal Distribution

The table gives the cumulative probability up to the standardised normal value z i.e. z

P[$\mathbb{Z} < z$] = $\int_{-\infty}^{\mathbb{Z}} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}\mathbb{Z}^2) d\mathbb{Z}$

tica

								0	Z	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
Z	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90
P	0.9986	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Requisitos: Fundamentos de Estatística

Há outros tipos de Função de Distribuição de Probabilidade. Por exemplo a FDP Uniforme

$$p(x) = (b - a)^{-1} \quad \text{para } a \le x \le b$$

$$p(x) = 0 \qquad \text{para } x \text{ for a}$$

Requisitos: Fundamentos de Estatística

- •Em instrumentação, as duas características mencionadas no contexto de funções de densidade de probabilidade p(x) e de distribuição de probabilidade P(x) estão relacionadas às características de exatidão e precisão de instrumentos.
 - •Precisão significa a aptidão de um instrumento de medição fornecer indicações muito próximas, quando se mede o mesmo mensurando, sob as mesmas condições (Aleatório). Por exemplo, quanto menos dispersa for a função (menor σ), mais preciso será o instrumento em questão.
 - •Exatidão é a aptidão de um instrumento para dar respostas próximas ao valor verdadeiro do mensurando (Bias). Por exemplo, quanto mais próximo a média dos valores coletados de um valor desejado, mais exato é o instrumento.

Requisitos: Matlab/ Octave

PROPRIEDADE FUNÇÕES FÓRMULAS

do MATLAB

- MÍNIMO DA AMOSTRA: min() L = $min(u_1 u_2 u_3 u_n)$

- MÁXIMO DA AMOSTRA: max() U = $max(u_1 u_2 u_3 u_n)$

AMPLITUDE DA AMOSTRA: range()
 R = U - L

- MEDIANA DA AMOSTRA: median() MD= $(u_{n/2-1}+u_{n/2+1})/2$ n-par

(com valores ordenados) MD= $u_{n/2}$ n-impar

MÉDIA DA AMOSTRA: mean() ū = SOMA(ui)/n

- VARIÂNCIA DA AMOSTRA: var() $\sigma^2 = SOMA(ui - \bar{u})^2/(n-1)$

DESVIO PADRÃO: std() σ = SQRT(σ²)

- SIMETRIA DA AMOSTRA: skewness() $S_K = SOMA(ui - \bar{u})^3 / (n \sigma^3)$

- AGUDEZA DA AMOSTRA: kurtosis() $K_T = SOMA(ui - \bar{u})^4/(n \sigma^4)$

Requisitos: Matlab

disttool: visualizar as fdp disponíveis e a influência dos parâmetros característicos.

xxxpdf e xxxcdf: funções para gerar as fdp e as acumuladas (xxx indica o tipo de distribuição - help pdf lista os nomes das fdp disponíveis)

xxxİNV: inversa das fdp, sendo xxx o tipo de distribuição. Estas funções são úteis para o cálculo de Intervalos de Confiança e Testes de Hipóteses.

EXEMPLO: gerar fdp GAUSSIANA de média NULA e DESVIOS PADRÃO 1 e 2

x = [-3 : 0.1 :3]; %um vetor de dados

f1 = normpdf (x, 0, 1); %gera fdp Normal

f2 = normpdf(x, 0, 2); %gera fdp Normal

plot (x, f1, x, f2) % gráficos das fdp

Requisitos: Matlab

A PROBABILIDADE ACUMULADA:

plot (x, cdf1, x, cdf2)

% gráficos das ACUMULADAS

Requisitos: Matlab

FUNÇÃO INVERSA da PROBABILIDADE

Determinar o INTERVALO [x] com probabilidade α:

 $x = xxxinv (\alpha, média, desvio padrão)$

Seja P = [0.005 0.995]; um vetor de probabilidades entre 0.005 e 0.995, ou seja um FAIXA de PROBABILIDADE α = 0.995 – 0.005 \Rightarrow 99 %

x = norminv (P, 0, 1); gera o INTERVALO x com fdp NORMAL de média 0 e desvio padrão 1, com 99% de probabilidade (CONFIANÇA)

RESULTA o INTERVALO: $x = [-2.5758 \ 2.5758]$

Requisitos: Histograma

HISTOGRAMA (ESTIMADOR da fdp)

Seja u = { $u_1 u_2 u_N$ } uma amostra FINITA e DISCRETA das medidas obtidas num experimento.

O HISTOGRAMA da amostra pode ser construído para ESTIMAR a fdp das medidas u, de acordo com as seguintes etapas:

- Ordenar u e determinar a amplitude da amostra (R).
- Agrupar as medidas em k CLASSES (bins) de amplitudes calculadas por um critério estatístico. (ver slide seguinte)
- 3. Determinar o número (nok) de ocorrências das medidas na CLASSE k.
- 4. Calcular a frequência relativa em cada CLASSE: $f_k = n_{ok}/N$.
- 5. Calcular a frequência acumulada f_a até cada CLASSE k.
- 6. Fazer os gráficos: $n_{ok} \times k$, $f_k \times k$, $f_a \times k$.
- Testar a fdp teórica que melhor se ajusta ao histograma.

Requisitos: Histograma

HISTOGRAMA: CONSIDERAÇÕES SOBRE O NÚMERO DE CLASSES (nk):

- 1. Se N ≤ 20
- \rightarrow n_k = 5
- 2. Se 20 < N < 40 → número de OCORRÊNCIAS em cada classe ≥ 5
- 3. Se N > 40
- → critério de KENDAL & STUART: n_k = 1.87*(N-1)^{0.4}

Requisitos: Histograma

HISTOGRAMA — EXEMPLO: Foram realizadas 20 testes experimentais para medir a tensão de escoamento de um aço, resultando: $S_{\rm e}$ [MPa] (Na tabela abaixo os dados já estão em ordem crescente):

teste	S _e	teste	S _e	teste	S _e	teste	S _e	teste	S _e
1	448	5	510	9	539	13	551	17	579
2	471	6	519	10	543	14	554	18	590
3	498	7	530	11	545	15	559	19	600
4	507	8	536	12	546	16	570	20	619

N = 20 LIMITES: L = 448 e U = 619

RANGE: R = U - L = 171 MEDIANA: MD = 533.5

MÉDIA: mean = 540.7 DESVIO PADRÃO: Std = 41.7

AMPLITUDE das CLASSES: para $n_k = 5$ \rightarrow $A_k = R/5 = 34.2$;

Requisitos: Histograma

Organizando as CLASSES: N = $20 \rightarrow n_k = 5$

CLASSE	A _k	n _{ok}	$f_k = n_{ok}/20$) f _a	
1	448 - 482	2	2/20	2/20	
2	482 - 516	3	3/20	5/20	
3	516 - 550	7	7/20	12/20	
4	550 - 584	5	5/20	17/20	
5	584 - 619	3	3/20	20/20	

 $se = [se_1 se_2se_{20}]; % vetor das medidas.$

% A função **hist (se, nk)** gera o histograma com as medidas contidas no vetor **se** com **nk** classes.

hist (se,5) -

% gera o histograma com 5 classes

% e plota (se, nok)

Requisitos: Histograma

Uso do Matlab para criar o HISTOGRAMA: Frequência ACUMULADA

```
% com nk = 5 (cinco classes)

[nok, x] = hist (se,5) % retorna
nok e x = ponto médio da classe
na(1)=0;

for j=1:5, % cria nac
na(j+1)=na(j)+nok(j);

end

fa = na/20; % frequência
acumulada
plot (se, fa, x, fa, 'or ') % plota
```


A frequência acumulada é usada para realizar o TESTE de HIPÓTESE sobre a fdp assumida para os dados

Um processo de medição gera VÁRIAS AMOSTRAS para a variável (x):

QUESTÃO: a MÉDIA das MÉDIAS AMOSTRAIS é um bom estimador da média de x?

<u>CASO 1</u>: Se x é uma variável <u>COM fdp DESCONHECIDA</u> tal que E[x] = μ e VAR[x] = σ^2 são CONHECIDAS. Colhidas amostras discretas e finitas {x} de tamanho N, e calculados os estimadores das médias amostrais \overline{x} tem-se:

se
$$N$$
 é grande $(N > 20)$:
$$E[\overline{x}] = \mu \quad e \quad VAR[\overline{x}] = \frac{\sigma^2}{N}$$

$$Como \quad \mu \quad e \quad \sigma \quad são \quad ctes \quad \Rightarrow \quad \overline{x} \quad tem \quad fdp \quad GAUSSIANA.$$

$$Neste \ caso: \quad z = \frac{(\overline{x} - \mu)}{\sqrt{N}} \quad tem \quad fdp \quad Gaussiana \quad NORMAL.$$

Este fato permite calcular o INTERVALO (D) de \overline{x} que contém μ com um determinado nível de probabilidade (CONFIANÇA = α)

$$\begin{split} P(-z_1 \leq z \leq z_1) &= \alpha = 2\,\phi(z_1) - 1 \quad como: z = \frac{\sqrt{N}\,(\overline{x} - \mu)}{\sigma} \\ \alpha &= P\!\left(\overline{x} - \frac{z\sigma}{\sqrt{N}} \leq \quad \mu \quad \leq \overline{x} + \frac{z\sigma}{\sqrt{N}}\right) \quad \rightarrow \quad \boxed{D = \frac{z\sigma}{\sqrt{N}}} \end{split}$$

EXEMPLO:

Um componente elétrico tem duração (vida) cujo valor tem desvio padrão σ = 4 horas. Montou-se uma amostra com N = 100 componentes que foram ensaiados para determinar suas durações. A média amostral da vida do componente resultou \overline{x} = 501.2 horas.

Qual o INTERVALO de CONFIANÇA para a MÉDIA com confiança 95%?

CASO 2: NÃO SE CONHEÇE PREVIAMENTE o valor do DESVIO PADRÃO → ele pode ser estimado pela VARIÂNCIA AMOSTRAL:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} \neq \sigma^{2}$$

A MÉDIA AMOSTRAL NÃO tem fdp GAUSSIANA, mesmo se N é grande. MAS tem fdp t-Student:

$$t = \frac{\overline{x} - \mu}{S / \sqrt{N}} \quad tem \ fdp \quad t - student$$

$$\alpha = P\left(\overline{x} - t_{d, \frac{1 + \alpha}{2}} \frac{S}{\sqrt{N}} \right) \leq \mu \leq \overline{x} + t_{d, \frac{1 + \alpha}{2}} \frac{S}{\sqrt{N}}\right)$$

$$\rightarrow D = t_{d, \frac{1 + \alpha}{2}} \frac{S}{\sqrt{N}} \quad \acute{e} \ o \ DESVIO \ de \ \mu.$$

$$sendo \ d = N - 1 \quad e \quad \alpha \ a \ Confiança$$

EXEMPLO: Foram realizadas 10 medidas da resistência elétrica de um componente elétrico resultando: Média amostral = 10.48 Ω e Desvio Padrão Amostral = 1.36 Ω. (o desvio padrão é desconhecido)

Qual é o intervalo de confiança para a MÉDIA com probabilidade de $\alpha = 90\%$?

 $(1 + \alpha)/2 = 0.95$, $d = N - 1 = 9 \rightarrow TABELA$ ou $tinv((1 + \alpha)/2, d)$

Resulta: $t_{9.0.95} = 1.833$

EXEMPLO: Foram realizadas 10 medidas da resistência elétrica de um componente elétrico resultando: Média amostral = 10.48 Ω e Desvio Padrão Amostral = 1.36 Ω. (o desvio padrão é desconhecido)

Qual é o intervalo de confiança para a MÉDIA com probabilidade de $\alpha = 90\%$?

 $(1 + \alpha)/2 = 0.95$, d = N - 1 = 9 \rightarrow TABELA ou tinv((1+ \alpha)/2,d)

Resulta: $t_{9.0.95} = 1.833$

Logo: D = 1.833 x 1.36 / $10^{1/2}$ = 0.79 Ω

O intervalo será: $9.69 \le \mu \le 11.27$ com 90% de confiança

Requisitos: Critério de Chauvenet

OBJETIVO: REMOVER da amostra os valores que tenham dispersão em relação à MÉDIA superior a um VALOR PADRÃO.

Seja a amostra $\{x\} = \{x_1 \ x_2 \ x_3 \ x_N \}$ com média \overline{x} e desvio padrão S_x

Define-se o desvio relativo à média: $DR(x_i) = |x_i - \overline{x}| / S_x$.

Se DR(x_i) > DRo → x_i é REMOVIDO da amostra, e

RECALCULAM-SE os novos valores da Média e do Desvio amostrais.

DRo é a Taxa PADRÃO de desvio em relação à Média Amostral, definida por CHAUVENET, em função do tamanho da amostra (N).

HIPÓTESE: DRo tem fdp NORMAL

O critério de CHAUVENET pode ser aplicado apenas UMA vez.

Requisitos: Critério de Chauvenet

Usando o Matlab:

p(Dro) é Normal

Dro(N) = norminv (1-1/(4*N), 0, 1)

1.383 1.534
1.534
1.645
1.803
1.960
2.128
2.326
2.576
2.807
3.144
3.291
3.481

OBJETIVO: Verificar a HIPÓTESE feita sobre a fdp ADOTADA para uma variável, a partir de uma amostra finita e discreta (tamanho N).

TÉCNICA: Construir o histograma com n_k CLASSES e comparar o número de ocorrências OBSERVADO com aquele OBTIDO com a fdp ASSUMIDA. A variável X² definida abaixo tem fdp QUI-QUADRADO:

$$X^{2} = \sum_{k=1}^{n_{k}} \frac{(n_{o} - n_{e})_{k}^{2}}{n_{ek}}$$

n_o – número OBSERVADO de ocorrências na CLASSE k

n_e – número de ocorrências ESPERADO na CLASSE k, para a fdp sob teste.

X_n² - variável com fdp QUI-QUADRADO

n - número de graus de liberdade estatísticos

$$n = n_k - 1 - n_p$$

n_k – número de Classes

n_p – número de parâmetros da fdp testada

Dados X² e n → TABELA → α = Confiança do Teste de Hipótese

Usando o Matlab:

$$\beta = \text{chi2cdf}(X^2, n)$$
 \Rightarrow $\alpha = 1 - \beta = \text{CONFIANÇA}$

Verificar se $\{x\}$ tem fdp GAUSSIANA (μ , $\sigma \rightarrow n_p = 2$), e calcular a CONFIANÇA (α)

```
x=[10.02 10.2 10.26 10.2 10.22 10.13 9.97 10.12 10.09 9.9...
10.05 10.17 10.42 10.21 10.23 10.11 9.98 10.1 10.04 9.81];
```

```
% tamanho da amostra = 20
N= length (x);
nk= 6;
                 % número de classes
                 % ordenando x
xs= sort (x);
R=xs(20) - xs(1); % amplitude da amostra
                 % amplitude da classe
ak= R/nk:
xb= mean (x);
                 % media amostral
sx = std(x);
                 % desvio padrão amostral
                 % cálculo do Histograma com nk classes
hist (x, nk)
no=hist(x, nk); % número observado de ocorrências
lik= zeros(1,nk); % limites das classes (aloca espaço)
for j=1:nk,
lik (j)=xs(1) + j*ak;
end
ne=zeros(1,nk); % número esperado de ocorrências
ne(1)=normcdf(lik(1), xb, sx)*N;
for j=2:nk,
  ne(j)=(normcdf(lik(j), xb, sigx)-normcdf(lik(j-1), xb, sigx))*N;
end
```


N = 20

 $n_{\nu} = 6$

 $a_{\nu} = 0.1017$

xb = 10.112

sigx = 0.138

VERIFICAR se $\{x\}$ tem fdp GAUSSIANA (μ , $\sigma \rightarrow n_p = 2$), e calcular a CONFIANÇA (α)

CLASSE	n _o	n _e	$(n_o - n_e)^2/n_e$
1 (9.8100, 9.9117)	2	1.48	0.1804
2 (9.9117, 10.0133)	2	3.29	0. 5079
3 (10.0133, 10.1150)	6	5.43	0.0607
4 (10.1150, 10.2167)	6	5.33	0.0842
5 (10.2167, 10.3183)	3	3.12	0.0048
6 (10.3183, 10.4200)	1	1.09	0.0074
		Σ=	0.8453

Cálculo da Confiança

```
dr= (no - ne).^2./ne; % diferenças normalizadas
```

xi2= sum(dr); % variável Xi2

np = 2; % número de parâmetros da gaussiana

ngl= nk - np - 1; % graus de liberdade estatístico

alfa=1-chi2cdf(xi2,ngl); % confiança da hipótese = 0.8386

OBSERVAÇÕES:

- O NÍVEL de CONFIANÇA da variável Qui quadrado pode ser calculada pela função chi2cdf(xi2,ngl) que fornece a probabilidade acumulada P(chi2 < xi2) = 1 – α
- 2. A função [h, P, stats] = chi2gof(x) fornece:
 - h = 0 → hipótese aceita com 95 % de confiança (=1 rejeitada)
 - P: valor da probabilidade ou confiança do resultado
 - stats: informações adicionais....

OBJETIVO: Criar um MODELO MATEMÁTICO (f) que representa a relação entre pelo menos DOIS CONJUNTOS DE DADOS.

{x} é uma amostra da ENTRADA do SM

{y} uma amostra da SAÍDA do SM

DETERMINAR y = f(x), tal que | $y_{\text{medido}} - y$ | seja MÍNIMO.

FUNÇÕES do MATLAB: ajuste polinomial

p = polyfit (x, y, n); %retorna os coeficientes do polinômio

(p) de <u>grau n</u> ajustado aos dados x e y.

ya = polyval (p, x); %retorna os valores do polinômio

de coeficientes p em cada x.

Dr = y - ya; %calcula diferença entre os valores

ajustados e os medidos.

R = sum (Dr./ya).^2; %calcula o resíduo quadrático de (y) em

relação à função ajustada (ya).

EXEMPLO: Num ensaio de CALIBRAÇÃO ESTÁTICA foi medida a saída {y} do SM para entradas PADRÃO {x}. Neste caso os valores y são contaminados por ruído, porém têm valores crescentes nos limites da faixa de operação do SM (tendência).

x = -8.8:0.5:10; % 38 valores de x y = 2*x + randn (1,38); %saída medida p = polyfit (x, y, 1); %ajuste linear ya = polyval (p, x); %saída ajustada dr = (y - ya)./ya; %desvio relativo

ya -- 0.31209 +2.011 x

GRÁFICOS

plot (x, ya, x, y, 'or ') %ajuste stem (x, dr) %desvio

EXEMPLO: Com os mesmos dados do exemplo anterior, Uma forma alternativa é o uso da função regress() do Matlab.

Monta-se uma matriz X = [ones (n,1) x] com a 1^a coluna com n valores 1 e a 2^a coluna com os n valores de x.

[pr ,inter95, resi] = regress (y, X); RETORNAM:

pr – coeficientes do polinômio (α=95 %)
 resi – os resíduos do ajuste em cada x
 inter95 – os intervalos de confiança de pr

Se y = m x +b, com α = 95 %: b = -0.312 \in [-0.6178 -0.0064] m = 2.011 \in [1.9554 2.0665]

REGRESSÃO MÚLTIPLA LINEAR

A saída {y} do SM é devida a várias entradas SIMULTÂNEAS

$$\{x_1\}, \{x_2\}, ..., \{x_k\}: \rightarrow y = f(x_1, x_2, ..., x_k).$$

OBJETIVO: DETERMINAR A SUPERFÍCIE QUE MELHOR AJUSTA A RESPOSTA DO SM PARA AS ENTRADAS.

METODOLOGIA:

MODELO: $y = a + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$, sendo a, b_1, \dots, b_k constantes

FUNCIONAL: $F^2 = [y_i - (a + b_1 x_{1i} + b_2 x_{2i} + + b_k x_{ki})]^2$

Condições de mínimo: Derivadas Parciais de F² em relação às constantes:

a,
$$b_1$$
, ...e $b_k = 0$ \rightarrow (k+1) equações e (k+1) incógnitas

A mesma função regress (y, X); é usada para calcular o AJUSTE, os ERROS, os INTERVALOS de CONFIANÇA e outras informações estatísticas.

A matriz [X] contém na primeira coluna um vetor de n valores 1 e nas demais colunas os vetores das ENTRADAS $\{x_1\}$ $\{x_k\}$.

{y} é o vetor da SAÍDA.

O comando [b, bint, r, rint, stats] = regress (y, X); retorna:

b - coeficientes a, b1, ... bk

bint – intervalos de confiança (95%) para os coeficientes.

r – os resíduos do ajuste

rint – os intervalos de confiança para os coeficientes

stats – informações estatísticas adicionais

Ver no HELP do toolbox de estatística o item MULTIPLE LINEAR REGRESSION

<u>CASO A</u> - Os ERROS de um processo de medição podem estar distribuídos em cada um dos componentes do SM: conhecidos o erro no sensor, o erro no condicionador e o erro no indicador, calcular o ERRO do RESULTADO da MEDIÇÃO feita com o SM.

<u>CASO B</u> - Várias medições independentes de grandezas físicas são combinadas para calcular o RESULTADO de um experimento: medição do diâmetro d com incerteza Δd e medição da altura h com incerteza Δh . Calcular a incerteza ΔV do volume V calculado a partir da expressão $V = \pi d^2 h/4$.

Estes dois problemas podem ser formulados considerando:

- a) Se a incerteza de cada componente (ou medida) for conhecida, como calcular a INCERTEZA GLOBAL do SM?
- b) Se a incerteza TOTAL DESEJADA for especificada, como determinar os LIMITES das INCERTEZAS de CADA componente do SM (ou de cada MEDIDA)?

Seja uma grandeza y = f $(x_1, x_2, ..., x_n)$, sendo f uma função <u>conhecida</u> das n variáveis independentes x_i . Os x_i podem ser:

CASO A: medidas nas saídas de diferentes SM, ou

CASO B: saídas intermediárias dos componentes de um SM.

Conhecidos os erros ∆x_i → CALCULAR ∆y

$$y \pm \Delta y = f(x_1 \pm \Delta x_1, x_2 \pm \Delta x_2, ..., x_n \pm \Delta x_n)$$

Expandindo f em uma série de TAYLOR e considerando Δx_i pequenos, de modo que os termos (Δx_i)ⁿ ≈ 0, para n ≥ 2, RESULTA:

$$f(x_i + \Delta x_i) = f(x_i) + \sum \Delta x_i \frac{\partial f}{\partial x_i} \quad \Rightarrow \quad \Delta y_i = \sum \Delta x_i \frac{\partial f}{\partial x_i}$$

Erro ABSOLUTO

$$\Delta y_i = \sum \left| \Delta x_i \, \frac{\partial f}{\partial x_i} \right|$$

$$\frac{\Delta y_i}{\overline{y}}$$

Se Δy for ESPECIFICADO, pode-se estimar os limites necessários para cada um dos Δx_i , considerando que suas CONTRIBUIÇÕES para o erro da saída são IDÊNTICAS:

$$\Delta x_i \approx \frac{\Delta y}{n \frac{\partial f}{\partial x_i}} \tag{1}$$

Com os valores dos Δx_{im} obtidos nas medições das variáveis x_i é possível compara-los com os valores calculados por (1).

Caso alguns dos ∆x_{im} > ∆x_i → REFAZER a MEDIÇÃO destas vaiáveis

Conhecidas as **MÉDIAS** $\overline{x_i}$ e **DESVIOS PADRÃO** S_{xi} das variáveis $\mathbf{x_i}$, o **DESVIO PADRÃO** S_y , da variável $\mathbf{y_i}$, é calculado conforme as OPERAÇÕES ALGÉBRICAS efetuadas com as $\mathbf{x_i}$:

ADIÇÃO ou SUBTRAÇÃO :
$$S_y = \sqrt{{S_{x1}}^2 + {S_{x2}}^2 + \dots + {S_{xn}}^2}$$

$$MULTIPLICAÇÃO: S_y = \overline{x_1}\overline{x_2}....\overline{x_n}\sqrt{\frac{S_{x1}^2}{\overline{x_1}^2} + \frac{S_{x2}^2}{\overline{x_2}^2} + + \frac{S_{xn}^2}{\overline{x_n}^2}}$$

DIVISÃO
$$y = \frac{x_1}{x_2}$$
: $S_y = \frac{\overline{x_1}}{\overline{x_2}} \sqrt{\frac{S_{x1}^2}{\overline{x_1}^2} + \frac{S_{x2}^2}{\overline{x_2}^2}}$

EXPONENCIAÇÃO
$$y = x_1^k$$
: $S = k \overline{x_1}^{k-1} S_{x_1}$

1. Calcular o volume de um cilindro: $V = \pi d^2 h/4$ conhecendo os DESVIOS PADRÃO e as MÉDIAS das medidas do diâmetro (d) e da altura (h).

Valores ESTIMADOS: média $d_m = 1$, desvio padrão $S_d = 0.005$

média $h_m = 4$, desvio padrão $S_h = 0.040$

Usando os valores médios do diâmetro (d_m) e da altura (h_m) resulta:

$$V_{\rm m} = \pi d_{\rm m}^2 h_{\rm m} / 4 = \pi 1^2 4/4 = 3.14596$$

O desvio padrão do VOLUME resulta:

$$S_v = d_m^2 h_m [2 S_d^2/d_m^2 + S_h^2/h_m^2]^{1/2} = 0.049$$

