

CA3080

Operational Transconductance Amplifier (OTA)

May 1998

Features

•	Slew Rate (Unity Gain, Compensated)50V/ms
•	Adjustable Power Consumption 10 μ W to 30 μ W
•	Flexible Supply Voltage Range ±2V to ±15V
•	Fully Adjustable Gain0 to gmR _L Limit
•	Tight g _M Spread: - CA3080 2:1
	- CA3080A
	Extended a Linearity 3 Decades

Applications

· Sample and Hold

Multiplier

Multiplexer

Comparator

Voltage Follower

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
CA3080	0°C to +70°C	8 Pin Can
CA3080A	-55°C to +125°C	8 Pin Can
CA3080AE	-55°C to +125°C	8 Lead Plastic DIP
CA3080AM	-55°C to +125°C	8 Lead SOIC
CA3080AM96	-55°C to +125°C	8 Lead SOIC*
CA3080E	0°C to +70°C	8 Pin Can
CA3080M	0°C to +70°C	8 Lead SOIC
CA3080M96	0°C to +70°C	8 Lead SOIC*

Denotes Tape and Reel

Description

The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductance-amplifier (OTA) concept described in Application Note ICAN-6668, "Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers".

The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance (g_M) is directly proportional to the amplifier bias current (I_{ABC}).

The CA3080 and CA3080A types are notable for their excellent slew rate (50V/us), which makes them especially useful for multiplexer and fast unity-gain voltage followers. These types are especially applicable for multiplexer applications because power is consumed only when the devices are in the "ON" channel state.

The CA3080A is rated for operation over the full military-temperature range (-55°C to +125°C) and its characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplex, etc. Operational transconductance amplifiers are also useful in programmable power-switch applications, e.g., as described in Application Note AN6048. "Some Applications of a Programmable Power Switch/Amplifier" (CA3094, CA3094A, CA3094B).

Specifications CA3080, CA3080A

Absolute Maximum Ratings

Operating Conditions

Supply Voltage (Between V+ and V- Terminal)
Input Voltage V+ to V-
Input Signal Current
Amplifier Bias Current (I _{ABC})2mA
Power Dissipation
Output Short Circuit Duration (Note 1) No Limitation
Junction Temperature
Junction Temperature (Plastic Package) +150°C
Lead Temperature (Soldering 10 Sec.) +300°C

Operating Temperature Range	
CA3080	0°C to +70°C
CA3080A	55°C to +125°C
Storage Temperature Range	65°C to +150°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications For Equipment Design, $T_A = +25$ °C, Unless Otherwise Specified

		TEST CONDITIONS		CA3080 LIMITS		
PARAMETERS	SYMBOL	V+ = 15V, V- = -15V I _{ABC} = 500μA	MIN	TYP	MAX	UNITS
Input Offset Voltage	V_{IO}		-	0.4	5	mV
mpat onoct voltage		$T_A = 0 \text{ to } +70^{\circ}\text{C}$	-	-	6	mV
Input Offset Current	I _{IO}		-	0.12	0.6	μΑ
Input Bias Current	I _I		-	2	5	μΑ
input bias Guirent		$T_A = 0 \text{ to } +70^{\circ}\text{C}$	-	-	7	μΑ
Forward Transconductance (Large Signal)	9м		6700	9600	13000	μmho
Tolward Hansconductance (Large Signal)		$T_A = 0 \text{ to } +70^{\circ}\text{C}$	5400	-	-	μmho
Peak Output Current	I _{OM}	$R_L = 0\Omega$	350	500	650	μΑ
reak Output Current		$R_L = 0\Omega$, $T_A = 0$ to $+70^{\circ}$ C	300	-	-	μΑ
Peak Output Voltage:	V+ _{OM}	R _L = ∞				
Positive			12	13.5	-	V
Negative	V- _{OM}	R _L = ∞	-12	-14.4	-	V
Amplifier Supply Current	I _A		0.8	1	1.2	mA
Device Dissipation	P _D		24	30	36	mW
Input Offset Voltage Sensitivity:	$\Delta V_{IO}/\Delta V+$					
Positive			-	-	150	μV/V
Negative	$\Delta V_{IO}/\Delta V$ -	1	-	-	150	μV/V
Common-Mode Rejection Ratio	CMRR		80	110	-	dB
Common-Mode Input-Voltage	V_{ICR}		12 to -12	13.6 to -14.6	-	V
Input Resistance	R _I		10	26	-	kΩ

NOTE

1. Short circuit may be applied to ground or to either supply.

Specifications CA3080, CA3080A

Electrical Specifications

Typical Values Intended Only for Design Guidance, $T_{\rm A}$ = +25 $^{\rm o}$ C, Unless Otherwise Specified

		TEST CONDITIONS			
PARAMETERS	SYMBOL	V+ = 15V, V- = -15V I _{ABC} = 500μA	CA3080 TYP	UNITS	
Input Offset Voltage	V _{IO}	$I_{ABC} = 5\mu A$	0.3	mV	
Input Offset Voltage Change	ΔV_{IO}	$I_{ABC} = 500\mu A$ to $I_{ABC} = 5\mu A$	0.2	mV	
Peak Output Current	I _{OM}	$I_{ABC} = 5\mu A$	5	μΑ	
Peak Output Voltage:		$I_{ABC} = 5\mu A$			
Positive	V+ _{OM}		13.8	V	
Negative	V- _{OM}	1	-14.5	V	
Magnitude of Leakage Current		$I_{ABC} = 0, V_{TP} = 0$	0.08	nA	
		$I_{ABC} = 0, V_{TP} = 36V$	0.3	nA	
Differential Input Current		$I_{ABC} = 0$, $V_{DIFF} = 4V$	0.008	nA	
Amplifier Bias Voltage	V_{ABC}		0.71	V	
Slew Rate:	SR				
Maximum (Uncompensated)			75	V/μs	
Unity Gain (Compensated)			50	V/µs	
Open-Loop Bandwidth	BW _{OL}		2	MHz	
Input Capacitance	C _I	f = 1 MHz	3.6	pF	
Output Capacitance	C _O	f = 1 MHz	5.6	pF	
Output Resistance	R _O		15	МΩ	
Input-to-Output Capacitance	C _{I-O}	f = 1 MHz	0.024	pF	
Propagation Delay	t _{PHL} , t _{PLH}	I _{ABC} = 500μA	45	ns	

Electrical Specifications For Equipment Design, $T_A = +25$ °C, Unless Otherwise Indicated

		TEST CONDITIONS	CA3080A LIMITS			
PARAMETERS	SYMBOL	V+ = 15V, V- = -15V I _{ABC} = 500μA	MIN	TYP	MAX	UNITS
Input Offset Voltage	V_{IO}	$I_{ABC} = 5\mu A$	-	0.3	2	mV
			-	0.4	2	mV
		$T_A = -55 \text{ to } +125^{\circ}\text{C}$	-	-	5	mV
Input Offset Voltage Change	ΔV_{IO}	$I_{ABC} = 500\mu A$ to $I_{ABC} = 5\mu A$	-	0.1	3	mV
Input Offset Current	I _{IO}		-	0.12	0.6	μΑ
Input Bias Current	I _I		-	2	5	μΑ
		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	-	-	15	μΑ
Forward Transconductance (Large Signal)	g_{M}		7700	9600	12000	μmho
		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	4000	-	-	μmho
Peak Output Current	I _{OM}	$I_{ABC} = 5\mu A, R_L = 0\Omega$	3	5	7	μΑ
		$R_L = 0\Omega$	350	500	650	μΑ
		$R_L = 0\Omega$, $T_A = -55^{\circ}C$ to $+125^{\circ}C$	300	-	-	μΑ

Specifications CA3080, CA3080A

Electrical Specifications For Equipment Design, $T_A = +25^{\circ}C$, Unless Otherwise Indicated (Continued)

		TEST CONDITIONS	CA	CA3080A LIMITS		
PARAMETERS	SYMBOL	V+ = 15V, V- = -15V I _{ABC} = 500μA	MIN	TYP	MAX	UNITS
Peak Output Voltage:		$I_{ABC} = 5\mu A, R_L = \infty$				
Positive	V+ _{OM}		12	13.8	-	V
Negative	V- _{OM}		-12	-14.5	-	V
Positive	V+ _{OM}	R _L = ∞	12	13.5	-	V
Negative	V- _{OM}		-12	-14.4	-	V
Amplifier Supply Current	I _A		0.8	1	1.2	mA
Device Dissipation	P _D		24	30	36	mW
Input Offset Voltage Sensitivity:						
Positive	$\Delta V_{IO}/\Delta V^{+}$		-	-	150	μV/V
Negative	$\Delta V_{1O}/\Delta V^{-}$		-	-	150	μV/V
Magnitude of Leakage Current		$I_{ABC} = 0, V_{TP} = 0$	-	0.08	5	nA
Magnitude of Leakage Current		I _{ABC} = 0, V _{TP} = 36V	-	0.3	5	nA
Differential Input Current		$I_{ABC} = 0$, $V_{DIFF} = 4V$	-	0.008	5	nA
Common-Mode Rejection Ratio	CMRR		80	110	-	dB
Common-Mode Input-Voltage Range	V _{ICR}		12 to -12	13.6 to -14.6	-	V
Input Resistance	R _I		10	26	-	kΩ

$\textbf{Electrical Specifications} \qquad \text{Typical Values Intended Only for Design Guidance, T}_{A} = +25^{\circ}\text{C}, \text{ Unless Otherwise Specified}$

		TEST CONDITIONS		
PARAMETERS	SYMBOL	V+ = 15V, V- = -15V I _{ABC} = 500μA	CA3080A TYP	UNITS
Amplifier Bias Voltage	V_{ABC}		0.71	V
Slew Rate:				
Maximum (Uncompensated)	SR		75	V/μs
Unity Gain (Compensated)			50	V/μs
Open-Loop Bandwidth	BW _{OL}		2	MHz
Input Capacitance	C _I	f = 1 MHz	3.6	pF
Output Capacitance	C _O	f = 1 MHz	5.6	pF
Output Resistance	R _O		15	MΩ
Input-to-Output Capacitance	C _{I-O}	f = 1 MHz	0.024	pF
Input Offset Voltage Temperature Drift	$\Delta V_{IO}/\Delta T$	$I_{ABC} = 100\mu A$, $T_A = -55^{\circ}C$ to $+125^{\circ}C$	3.0	μV/°C
Propagation Delay	t _{PHL} , t _{PLH}	I _{ABC} = 500μA	45	ns

Typical Performance Curves

FIGURE 1. INPUT OFFSET VOLTAGEVS AMPLIFIER BIAS CURRENT

FIGURE 2. INPUT OFFSET CURRENT VS AMPLIFIER BIAS CURRENT

FIGURE 3. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 4. PEAK OUTPUT CURRENT VS AMPLIFIER BIAS CURRENT

FIGURE 5. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 6. AMPLIFIER SUPPLY CURRENT VS AMPLIFIER BIAS CURRENT

Typical Performance Curves (Continued)

FIGURE 7. TOTAL POWER DISSIPATION VS AMPLIFIER BIAS CURRENT

FIGURE 8. TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 9. LEAKAGE CURRENT TEST CIRCUIT

FIGURE 10. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 11. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

FIGURE 12. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE

Typical Performance Curves (Continued)

FIGURE 13. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 14. AMPLIFIER BIAS VOLTAGE VS AMPLIFIER BIAS CURRENT

FIGURE 15. INPUT AND OUTPUT CAPACITANCE vs AMPLIFIER BIAS CURRENT

FIGURE 16. OUTPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 17. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT

FIGURE 18. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY VOLTAGE

Applications

FIGURE 19. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND ASSOCIATED WAVEFORM

FIGURE 20. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz

(a) Two-Tone Output Signal From The Function Generator. A Square-Wave Signal Modulates The External Sweeping Input to Produce 1Hz and 1MHz, Showing the 1,000,000/1 Frequency Range of the Function Generator.

(b) Triple-Trace of the Function Generator Sweeping to 1MHz. The Bottom Trace is the Sweeping Signal and the Top Trace is the Actual Generator Output. The Center Trace Displays the 1MHz signal Via Delayed Oscilloscope Triggering of the Upper Swept Output Signal

FIGURE 21. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS

FIGURE 22. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGUREATION

FIGURE 23. SAMPLE AND HOLD CIRCUIT

Top Trace: Output Signal (5V/Div. and 2µs/Div.)

Bottom Trace: Input Signal

(5V/Div. and 2μs/Div.)

Center Trace: Difference of Input and Output Signals Through Tektronix Amplifier 7A13

(5mV/Div. and 2μs/Div.)

FIGURE 24. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: System Output

(100mV/Div. and 500ns/Div.)

Bottom Trace: Sampling Signal

(20V/Div. and 500ns/Div.)

FIGURE 25. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: Output

(50mV/Div. and 200ns/Div.)

Bottom Trace: Input

(50mV/Div. and 200ns/Div.)

FIGURE 26. INPUT AND OUTPUT RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

FIGURE 27. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER

FIGURE 28. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLIE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER

Top Trace: Output

(5V/Div. and 2µs/Div.)

Center Trace: Differential Comparison of Input and Output

(2mV/Div. and 2µs/Div.)

Bottom Trace: Input

(5V/Div. and 2µs/Div.)

Top Trace: Output

(20mV/Div. and 100ns/Div.)

Bottom Trace: Input

(200mV/Div. and 100ns/Div.)

FIGURE 29. LARGE-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

FIGURE 30. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

FIGURE 31. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS