User Gender Prediction Using Browser Interaction Pattern

Electrical and Computer Engineering | Carnegie Mellon University

Heng-Tze Cheng | Feng-Tso Sun

Motivation & Problem

Motivation

- User demographic profile (gender/age): important for customized web service / targeted advertising
- Hard to acquire labels directly through form-based survey: burden on users, security & privacy issues

Previous Work

Use visited webpage/URL history, text features

Research Problems

- How to predict a user's gender using browser UI interaction history?
- How to use the unlabeled data to improve the prediction accuracy?

Dataset

Firefox 4 Beta Interface Test Pilot dataset

- The history of browser UI interaction collected from 1,134 users (567 male, 567 female) within a test duration of 7 days
- Each sample X is in the format of (U, C, t)
 "User U used the UI component C at time t"
- Target gender label Y = {Male, Female}

Feature Extraction & Gender Classification

UI Usage Histogram Feature

- The percentage of time spent on each of the 14 UI categories
- The percentage of time spent on each of the 94 UI items

UI Item Transition Rate Feature

 Mean, median, and standard deviation of the time difference of successive UI item click

Within-Category UI Usage Interval Feature

Mean, median, and standard deviation of the time interval within the same UI category identifier

Dimensionality Reduction

Use Principle Component Analysis (PCA): Reduce 139 original feature dimensions to 20 dimensions

Supervised Learning

- Compare Naïve Bayes, Decision Tree, k-NN, and SVM
- Experiment setting: 10-fold cross validation

Semi-Supervised Learning

- Self-Training Algorithm
 - For each iteration train a classifier from labeled data L
 - Classify samples in unlabeled data U
 - Add m most-confident classifications to L (m = 10)
- Experiment setting: Initial |L| = 85, |U| = 766, |TestSet| = 283 (25%)

Experimental Results

Feature/Classifier Combinations

- k-NN and Decision Tree achieve
 72% accuracy using all features
- UIHistogram & UIInterval more useful than UITransition

Parameter Selection

Semi-Supervised Learning Result

- 67% accuracy with initial 85 labeled data
- 766 unlabeled data were provided
- Converged to 72% after 50 iterations