Lista 3. Distribuição Exponencial e suas Propriedades. (sexta 25/09/2020)

Exercício 1. Veja figura acima. Três sistemas estão representadas. Cada sistema A, B, C consiste em três componentes. Um sistema funciona, se existe a passagem de esquerda para direita. Cads componente i, i = 1, 2, 3, tem a sua vida útil T_i exponencialmente distribuída com respectiva taxa λ_i . Seja X_A, X_B, X_C tempos de funcionamento dos sistemas $A, B \in C$ respectivamente. Achar densidades de tempos de X_A, X_B, X_C .

Exercício 2. (Exercício 18, Ross) Sejam X, Y independentes exponenciais com taxas λ e μ respectivamente. Definimos variável I, independente de X e Y

$$I = \begin{cases} 1, \text{ com probabilidade } \frac{\lambda}{\lambda + \mu}; \\ 0, \text{ com probabilidade } \frac{\mu}{\lambda + \mu}; \end{cases}$$

definimos variável Z

$$Z = \begin{cases} X, \text{ se } I = 1; \\ -Y, \text{ se } I = 0; \end{cases}$$

Achar densidade $f_Z(z)$ e função de distribuição cumulativa $F_Z(z)$.

Exercício 3. Consideramos um correio com dois funcionários. Suponha que três pessoas $A, B \in C$ entram no correio. $A \in B$ foram as primeiras atendidas e C ficou esperando. Qual é a probabilidade de que A estará no correio quando $B \in C$ já foram embora se

- 1. o tempo de atendimento de cada funcionário é exatamente 10 minutos?
- 2. o tempo de atendimento é igual a i com a probabilidade 1/3, i = 1, 2, 3.?
- 3. o tempo de atendimento é exponencial com média $1/\mu$?

Qual é a distribuição do tempo de espera da pessoa C se o tempo de atendimento dos funcionários do correio

- 1. são independentes e identicamente distribuídos com a distribuição exponencial com média $1/\lambda$?
- 2. são independentes com as distribuições exponenciais com parâmetros λ_1 e λ_2 para os funcionários 1 e 2, respectivamente?

Exercício 4. X,Y tem distribuição exponencial com taxas λ,μ . Seja $Z=\max\{X,Y\}$. Achar densidade, função de distribuição cumulativa e esperança de v.a. Z.

Referências

[1] S.M.Ross Introduction to probability models. Ninth Edition, Elsevier, 2007.