Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Кафедра Вычислительной Техники Дисциплина: Информатика

Лабораторная работа N7 "Работа с системой компьютерной вёрстки ТЕХ"

Смирнова Ольга Денисовна РЗ114

 ${
m Cahkt-} \Pi$ етербург 2020

....емой волны. Амплитуды радиосигналов, принимаемых антенной от передатчиков, одинаковы. При одновременной работе передатчиков мощность принимаего сигнала меняется в очень широких пределах. Объясните явление и оцените суммарный процент времени, в течении которого мощность принимаемого сигнала составляет менее 1/1000 среднего значения принимаемой мощности. Отражением радиосигналов от земли пренебречь. P.A.nekcandpos

Решение задач М1451-1460, Ф1468-1477

М1451. Даны натуральные числа а и b такие, что число $\frac{a+1}{b}+\frac{b+1}{a}$ является целым. Докажите, что наибольший общий делитель чисел a,b не превосходит числа $\sqrt{a+b}$.

Пусть d - наибольший общий делитель чисел а и b. Так как

$$\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}$$

и аb делится на d^2 , то a^2+b^2+a+b делится на d^2 . Число a^2+b^2 также делится на d^2 . Поэтому a+b делится на d^2 и $\sqrt{a+b}>d$.

А.Голованов, Е.Малинникова

М1452.Окружности S_1 и S_2 касаются внешним образом в точке F. Прямая l касается S_1 и S_2 в точках A и B соответственно. Прямая, параллельная прямой l, касается S_2 в точке C и перекает S_1 в точках D и E. Докажите, что а)точки A, F и C лежат на одной прямой; δ) общая хорда окружностей, описанных около треугольников ABC и BDE, проходит через точку F.

а) Первое решение. Так как касательные к окружности S в точках B и C параллельны, то BC - ее диаметр, и \angle BFC = 90 . Докажем, что и \angle AFB = 90 . Проведем через точку F общую касательную к окружностям (см.рисунок), пусть она пересекает прямую l в точке K.Из равенства отрезков касательных, приведенных к окружности из одной точки, следует, что треугольник AKF и BKF равнобедренные. Следовательно,

 $\angle AFB = \angle AFK + \angle KFB = \angle FAB + \angle FBA = 180^{\circ}/2 = 90^{\circ}$

Второе решение. Рассмотрим гомотетию с центром F и коэффициентом, равным - r_2/r_1 , где r_1 и r_2 – радиусы окружностей S_1 и S_2 . При этом гомотетии S_1 переходит в S_2 , а прямая 1 – касательная к S_1 - переходит в паралельную прямую - касательную к S_2 . Следовательно, точка A переходит в точку C, поэтому точка F лежит на отрезке AC.

б) Ниже мы покажем, что центр окружности BDE находится в точку А. Посколько центр окружности ABC есть середина

 $AC(\angle ABC=90^\circ)$, а $\angle BFC=90^\circ$ (см.первое решение п. а)), отсюда будет следовать, что BF есть перпендикуляр, опущенный из общей точки окружностей BDE и ABC на прямую, соединяющею их общую хорду. Итак, нам достаточно доказать, что AD=AE=AB. Первое Из этих равенств очевидно (ибо касательная к S_1 в точке A параллельна DE). Пусть r_1 и r_2 — радиусы S_1 и S_2 . Опуская перпендикуляр AP на DE, найдем, что $AP=BC=2r_2$, и по теореме Пифагора для треугольников APD и O_1 PD, где O_1 — центр S_1 ,

 $PD^2=O_1D^2-O_1P^2=r_1^2-(2r_2-r_1)^2=4r_1r_2-4r_2^2,$ $AD^2=AP^2+PD^2=4r_1r_2.$ Но легко найти, что общая касательная AB окружностей S_1 и S_2 равна $2\sqrt{r_1r_2}.$ A. Калинин, B. Дубровский

M1453. Существует ли квадратный трехчлен P(x) с целыми коэффициентами такой, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами? Ответ: существует.

Рассмотрим квадратный трехчлен

$$P(x) = x(9x+2)$$

Если
$$n = \underbrace{11..11}_k$$
, то $9n + 2 = \underbrace{100..001}_{k-1}$. Следовательно, $P(n) = \underbrace{11..11}_k * \underbrace{100..001}_{k-1} = \underbrace{11..11}_{2k}$.

Значит, этот квадратный трехчлен удовлетворяет условию. $A. \Pi$ ерлин

 ${\bf M1454}.$ Прямоугольник ${\bf m}$ imes ${\bf n}$ разрезан на уголки:

Докажите, что разность между количеством уголков вида а и количеством уголков вида в делится на 3.

Ясно, что если прямоугольник $m \times n$ разрезан на уголки, то mn делится на 3. Расставим в клетках прямоугольниках числа так, как показано на рисунке.

1	2	3	4	 n-3	n-2	n-1	n
2	3	4	5	 n-2	n-1	n	n+1
3	4	5	6	 n-1	n	$^{\mathrm{n+1}}$	n+2
							•••
m-1	m	m+1	m+2	 m+n-5	m+n-4	m+n-3	m+n-2
m	m+1	m+2	m+3	 m+n-4	m+n-3	m+n-2	m+n-1

Сумма всех этих чисел равнаmn(m+n)/2. Сумма чисел, стоящих в уголке вида а, дает при делении на 3 остаток 2; сумма чисел, стоящих в уголке вида b, - остаток 1 (или, что то же самое, -2); сумма чисел, стоящих в уголках вида с и d, делятся на 3. Если n_a и n_b – количества уголков вида а и вида b соответственно, то сумма всех чисел в прямоугольнике имеет вид $3N+2(n_a-n_b)$, где N – некоторое целое число. Из равенства.

		Total				
		A	В	С	D	Total
Range	min	4	8	15	16	43
Trange	max	23	42	25	34	124
Another	27	50	40	50	167	

Time	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1
5	1	5	10	10	5