Analog Circuits Mini Project-1

Sahukari Chaitanya Varun EE19BTECH11040 MOS Charecteristics and Modelling

September 26, 2021

From the model files downloaded, we were able observe many parameter operating on a given MOS transistors. In the following exercise, we find a region of operation which ensures us the operation to be in saturation region with significant gain.

1 General Procedure

The procedure is common for all the MOSFET's we operate on.

- 1. Firstly, we need to adjust the V_{ds} as per the given value from the supply. For this purpose we use a pair of op-amps, one for required amplification other acting as a buffer.
- 2. Now, we do a dc sweep with the V_{gs} keeping V_{ds} constant and also plot its derivative on the same plot.
- 3. From the graph obtained above, using a scale, we try to draw line for the approximate linear behaviour of the derivative (as derivative is proportional to $V_{gs} V_T$). Then try to locate the endpoints of the linear region and find the centre point of this segment.
- 4. Call the corresponding V_{gs} as V_{gs0} and corresponding gain as g_{m0} . Extrapolate the line segment to the $I_{ds} = 0$ to find the corresponding threshold voltage V_T .

5. With obtained values, find $\beta = \mu^* C_{ox}$ as

$$\beta = \frac{g_{m0}}{\frac{W}{L}(V_{gs0} - V_T)}$$

where W and L are the given size parameters.

- 6. Now find the range of voltage where the g_m has an error within 50% of the estimated g_{m0} .
- 7. Now as we know the V_{gs0} , using it do dc sweep for V_{ds} to get the graphs of I_{ds} vs V_{ds} and the derivative, g_{ds} vs V_{ds} . Find the corresponding I_{ds} and g_{ds} (i.e, g_{ds0}) for the earlier operated V_{ds} (i.e, 0.55V).
- 8. Now find λ as

$$\lambda = \frac{g_{ds0}}{I_{ds}}$$

9. The procedure is defined in reference to NMOS and for PMOS, the same thing applies, by taking the modulus over the parameters.

2 Circuits and Outputs

2.1 Voltage Divider

Figure 1: V_{ds} from V_{dd}

Figure 2: V_{ds} when used in operation

2.2 Short Channel NMOS

Given parameters are $W=1\mu m$ and L=65nm. The following are the required circuits and graphs.

Figure 3: Circuit used for simulations

For the following plots, we follow a convention:

The points marked in red are the approximate endpoints of saturation region and the red line is the approximate line of interpolation.

The points in black show V_{gs0} , point marked in pink shows the threshold voltage.

The points marked in grey represent the range of voltages for g_m to lie with in 50% error region for sweep in V_{gs} and the corresponding values at V_{ds0} in V_{ds} sweep.

The green curve represent the current I_{ds} and blue curve represents its derivative wrt to the sweeping parameter.

Figure 4: I_{ds} vs V_{gs}

Figure 5: I_{ds} vs V_{ds}

Figure 6: Range of V_{gs} for g_m to lie with in the 50% error

- $V_{gs0} = 392.817 \text{mV}$
- $g_{m0} = 628.08101 \ \mu \text{U}$
- $V_T = 282 \text{mV}$
- $\bullet \ \beta = 400.255 \ \mu \mho \ V^{-1}$
- $I_{ds} = 52.607 \mu A$
- $g_{ds0} = 90.327 \mu \mho$
- $\lambda = 2.18036 \ V^{-1}$
- Range of V_{gs} for g_m with in 50% error: (356.938mV,458.072mV)

2.3 Long Channel NMOS

Given parameters are W = 1μ m and L = 1μ . The following are the required circuits and graphs.

Figure 7: Circuit used for simulation

Figure 8: I_{ds} vs V_{gs}

Figure 9: I_{ds} vs V_{ds}

- $V_{gs0} = 566.3317 \text{mV}$
- $g_{m0} = 77.55579 \ \mu \text{U}$
- $V_T = 401.478 \text{mV}$
- $\beta=470.45~\mu \mho~V^{-1}$
- $I_{ds} = 7.2320 \mu A$
- $g_{ds0} = 226.918 \mu \mho$
- $\lambda = 0.03549 \ V^{-1}$
- Range of V_{gs} for g_m with in 50% error: (485.946mV,656.186mV)

2.4 Small Channel PMOS

Given parameters are W = $1\mu m$ and L = 1μ . The following are the required circuits and graphs.

Figure 10: Circuit used for simulation

Figure 11: I_{sd} vs V_{gs}

Figure 12: I_{sd} vs V_{ds}

- $|V_{gs0}| = 356.002 \text{mV}$
- $g_{m0} = 244.048 \ \mu \mho$
- $|V_T| = 218.297 \text{mV}$
- $\beta = 0.115196$ m $\mho~V^{-1}$
- $|I_{ds}| = 18.309 \mu A$
- $g_{ds0} = 49.989 \mu \mho$
- $\lambda = 2.9746 \ V^{-1}$
- \bullet Range of $|V_{gs}|$ for g_m with in 50% error: (294.1176mV,474.89362mV)

2.5 Long Channel PMOS

Given parameters are W = 1μ m and L = 1μ . The following are the required circuits and graphs.

Figure 13: Circuit used for simulation

Figure 14: $|I_{ds}|$ vs V_{gs}

Figure 15: $|I_{ds}|$ vs V_{ds}

- $V_{gs0} = 577.7093 \text{mV}$
- $g_{m0} = 12.637 \ \mu \text{U}$
- $V_T = 315.12 \text{mV}$
- $\beta = 481.246 \ \mu \ V^{-1}$
- $I_{ds} = 1.710 \mu A$
- $g_{ds0} = 669.2744 \mu \text{U}$
- $\lambda = 0.4033 \ V^{-1}$
- Range of V_{gs} for g_m with in 50% error: (485.946mV,656.186mV)

3 Observations and Conclusions

- 1. There are many intrinsic parameters in a MOSFET which can affect the characteristics.
- 2. The characteristics seem more deviated for short channel mosfets than long channel mosfets.
- 3. The affect of λ is more in short channel mosfets.
- 4. The estimates are not exact and can vary. With increase in precision and accuracy of measurements gives a better.