Ejercicio 10

Consigna

Considere la siguiente definición inductiva de la relación $S \subseteq \mathbb{N} \times \mathbb{N}$:

- 1. Si $n \in \mathbb{N}$, entonces $\langle n, n \rangle \in S$
- 2. Si $\langle n, m \rangle \in S$, entonces $\langle n, m+1 \rangle \in S$
- (a) Indique cuáles de las siguientes afirmaciones son correctas y justifique su respuesta usando la definición de ${\cal S}.$
 - $\langle 0,0\rangle \in S$
 - $0 \in S$
 - $\langle \pi, \pi \rangle \in S$
 - $\langle 2, 3 \rangle \in S$
 - $\langle 3, 2 \rangle \in S$
- (b) Enuncie el principio de inducción primitiva para S.
- (c) Considere la siguiente definición inductiva de la relación $Q \subseteq \mathbb{N} \times \mathbb{N}$:
- 1. Si $n \in \mathbb{N}$, entonces $\langle 0, n \rangle \in Q$
- 2. Si $\langle n, m \rangle \in Q$, entonces $\langle n+1, m+1 \rangle \in Q$

Demuestre que S = Q.

Resolución (parte a)

- $\langle 0, 0 \rangle \in S$: porque $0 \in \mathbb{N}$ y usando la regla (i)
- $0 \notin S$: porque 0 no es un par ordenado
- $\langle \pi, \pi \rangle \notin S$: porque $\pi \notin \mathbb{N}$
- $\langle 2,3\rangle\in S$: usando la regla (i) para decir que $\langle 2,2\rangle\in S$ y la regla (ii) para construir $\langle 2,3\rangle\in S$
- $\langle 3,2 \rangle \notin S$: supongamos que si pertenece a S, como los dos naturales son distintos, necesariamente tenemos que haber construido el elemento por la regla (ii); entonces $\langle 3,1 \rangle \in S$, por el mismo razonamiento: $\langle 3,0 \rangle \in S$ y $\langle 3,-1 \rangle \in S$. Pero esto es absurdo, porque $-1 \notin \mathbb{N}$

Resolución (parte b)

Enunciemos el PIP para el conjunto S:

Sea una propiedad $P(\langle n, m \rangle)$ para los elementos $\langle n, m \rangle \in S$; si se cumplen:

- 1. Sea $n \in \mathbb{N}, P(\langle n, n \rangle)$ es verdadera
- 2. Si $P(\langle n, m \rangle)$, entonces $P(\langle n, m+1 \rangle)$

Entonces, P se cumple para todos los elementos de S

Resolución (parte c)

Sea $Q \subseteq \mathbb{N} \times \mathbb{N}$:

1. Si $n \in \mathbb{N}$, entonces $\langle 0, n \rangle \in Q$

2. Si
$$\langle n, m \rangle \in Q$$
, entonces $\langle n+1, m+1 \rangle \in Q$

Quiero probar que S=Q, por lo que seguiremos una dinámica similar a la del ejercicio 9, y probaremos que $S\subseteq Q$ y $Q\subseteq S$. Utilicemos el PIP de S para probar la siguiente propiedad: $P(\langle n,m\rangle):\langle n,m\rangle\in Q$

PASO BASE

$$P(\langle n, n \rangle) \quad \forall n \in \mathbb{N}$$
:

Esto se verifica viendo que por la regla (i) de Q, $\langle 0,0 \rangle \in Q$, y usando la regla (ii) puedo construir todos los pares de naturales donde ambos son iguales.

PASO INDUCTIVO

(H)
$$P(\langle n, m \rangle) : \langle n, m \rangle \in Q$$

(I) $P(\langle n, m+1 \rangle) : \langle n, m+1 \rangle \in Q$

Ahora bastaría con probar $\langle n,m+1\rangle\in Q$ $\forall \langle n,m\rangle\in Q.$ Para esto podemos usar el PIP sobre Q

Sea $P'(\langle n', m' \rangle) : \langle n', m' + 1 \rangle \in Q$ sobre el conjunto Q:

(SUB) PASO BASE
$$P'(\langle 0, n \rangle) : \langle 0, n+1 \rangle \text{ con } n \in \mathbb{N}$$

Esto se cumple por la regla (i), $(0, n) \in Q \quad \forall n \in \mathbb{N}$

(SUB) PASO INDUCTIVO

(H)
$$P'(\langle n', m' \rangle) : \langle n', m' + 1 \rangle \in Q$$

(I) $P'(\langle n' + 1, m' + 1 \rangle) : \langle n' + 1, m' + 2 \rangle \in Q$

Asumimos (H), es decir que $\langle n', m'+1 \rangle \in Q$, a partir de esto, usando la regla (ii) tenemos que: $\langle n'+1, m'+2 \rangle \in Q$; esto es lo que queriamos probar.

Esto implica que $P'(\langle n',m'\rangle):\langle n',m'+1\rangle\in Q$ se cumple para todo $\langle n',m'\rangle\in Q$

Por lo tanto, probamos que $P(\langle n,m \rangle): \langle n,m \rangle \in Q.$ Es decir, probamos que $P \subseteq Q$

Faltaría probar que $Q\subseteq P$, pero la prueba es básicamente un espejo de la que acabamos de realizar.