

Experiment No-2

Date: 23/11/2021

Aim: To calculate effort Estimation using Cocomo for library management system

BASIC COCOMO MODEL:

The basic cocomo model estimates effort in a function of the estimated kloc in the proposed project The basic cocomo model is very simple, quick and applicable to small to medium organic-type projects. It is given as follows:

> Effort = a, x(K LOC) a2 PM Time = b, x Cffort) b2 months P = Effort/Time

where kloc is estimated size of the software Product expressed in bilo lines of code and Pis the number of persons required to complete the work.

al, azibiliba are constants for each category of software products.

Time is the estimated time to develop the software, expressed in months.

Effort is the total effort required to develop the software, expressed in months. (PMS)

		79		73
•	47	•		
-	м	w	ш	

	(Material libera)			The second secon	The state of the s
Software	, project categor	y a	02	bi	62
organ	ic	2.5	1.06	25	0.36
semi-	3.0	1.13	2.5	0.34	
Embec	dded	3.4	1.20	2.5	0.33

The formula to calculate the development effort based on the above table are

organic : Effort = 2.5 (KLOC) 1.06 pm

Semi detached: Effort = 3.0 (KLOC) 1.13 pm

embedded: Effort = 3.4 (KLOC) 120 Pm

The six major components of library management system are

Login/Register - 85 Loc

Search Reserve a book - 120 LOC

Book transaction - 160 LOC

maintain Inventory. - 250 LOC

feed bo CF - 100 LOC

Account maintenance - 200 LOC

Total LOC= 85+120+160+250+100+200

: 830 LOC

- 0.83 KLOC

.. value of KLOC = 0.83

To calculate development effort,

```
organic: effort = 2.5 ( KLOC) 1.06 pm
                     = 2.5(0.83) 1.06 pm
                     = 2.5 * 0.82077
                      = 2.05/193 PM
```

Semi detached: effort: 3.0(kLoc) 1.8 pm · 3.0(0.83) 1.13 = 3-0 * 0-8 (013 = 2.430409 pm

embedded: Effort: 3.4(rloc)1.20pm = 3.4 (0.83) 1.20 pm = 3.4 × 0.79963

= 2.71877 PM

To calculate development time, Time = b1 x (kloc) b2 m

organic: Time = 2.5 x (0.83) 0.36 M

= 2.5 * 0.93517

= 233780 M

semi detached: time = 2.5 x (0.83) m = 2.34653 m

embedded: time: 2.5 x (0.83) 0.33 m 2.3509 M

Intermediate cocomo model:

The effort and time are calculated using cost drivers considering the various aspects of Product development environment. These cost drivers are used to adjust the project complexity for estimation of effort and these are termed as effort adjustment factors (enf)

Initial effort (G) = a1 x (KLOC) 2

CAF= CA GX CAF2 X ---- XCAFn

Total development effort (E) = G XEAF

Pevelopment time (T) = b, x(E2) b2

KLO C= 0.83

The parameters considered are

Data base size - nominal - 1.00

Application Experience - nomial - 1.00

Use of software tool - high - 0.91

main storage - high - 106

virtual machine Experience - 1000 - 1.10

virtual machine volatility-low - 0.87

e= 2.5 x (0.83) 1.06 x (1.00 x1-00 x0.91 x 1.06 x 1.10×0.87)

= 2.5 X 0.8207 X 0.9231

 $T = 2.5 \times (e)^{0.36} = 2.5 \times (1.89397)^{0.36} = 3.14625 \text{ m}$ = 1.89397 PM

Petailed cocomo model:

The detailed cocomo model inherits all the features of the intermediate cocomo model for the overall estimation of the project cost. The detailed cocomo model uses different effort multipliers (cost drivers) for each phase of the Project.

> effort = Upf pm Time = TPD months.

The total KLOC 9 s 0.83.

Percentag Project tupe	e distributi Plan and requirement	on of the System design	de 1010	ment effo code & unit test	Integration &
organic	6	16	26	42	16
organic	6	16	24	38	22

Percentage distribution of the development time

Project type		system	detailed	code &	Integration & test
Project Type	requirement	cocsiq17	211	39	18
organic	10	19	24		26
organic	12	19	21	34	26

Table 2

effort(E) = 1.89397 PM

CLOC = 0.83

plan and requirement:

Plan and requirement(°10) = 6+(6-6)/(32-2)*0.83 = 6% Effort = 0.06 x 1.89397 PM

= 0.1136382 Pm

System Design:

System Design = 16+(16-16)/(32-2) x 0.83 = 16% Effort = 0.16 x 8 9 3 9 7 PM = 0.3030352 PM

petailed design: 24+(26-24)(32-2) x 0.83 = 25% effort= 0.25 x1.89397 PM

= 0.4734925 PM

code and unittest:

petailed design = 38+(42-38)/(32-2) x0.83 = 39%

effort = 0.39 × 1.89397 = 0.73 86483 PM

Integration and Test:

Detailed design = 22+(16-22)/(32-2) x0.83 = 24%

Effort = 0.24x1.89397 = 0.454528 PM