1 If \mathcal{H} is a Hilbert space, $\mathcal{A} = \mathcal{B}(\mathcal{H})$ is a C*-algebra where for each A in $\mathcal{B}(\mathcal{H})$, A*=the adjoint of A

VII.X.Y pg Z (TODO) $\langle Ah, k \rangle = \langle h, A^*k \rangle = \overline{\langle A^*k, h \rangle} \\ \langle A^*k, h \rangle = \langle k, A^{**}h \rangle = \overline{\langle A^{**}h, k \rangle}$

The above are justified by the definition of the adjoint and inner product, for all values h and k in \mathcal{H} .

Taking the complex conjugate of the bottom row shows that $\langle Ah, k \rangle = \langle A^{**}h, k \rangle$, hence A=A**.

 $\langle (AB)^*h, k \rangle = \langle h, (AB)k \rangle = \langle h, A(B(k)) \rangle = \langle A^*h, Bk \rangle = \langle B^*A^*h, k \rangle$ Hence, $(AB)^* = B^*A^*$ $\langle (\alpha A + B)^*h, k \rangle = \langle h, (\alpha A + B)k \rangle = \langle h, \alpha Ak + Bk \rangle$ $\langle \bar{\alpha}A^*h + B^*h, k \rangle$

2 If X is a compact Hausdorff space, show that X is totally disconnected if and only if C(X) is the closed linear span of its projections (\equiv hermitian idempotents)

VII.X pg Y (TODO)

Assume X is totally disconnected. To make things simpler assume $X = [0,1] \cap \mathbb{Q}$. Consider a bounded function f. Ignoring net vs sequence issues (TODO: is this justified?), we must show that f can be written as the convergence of $a_1e_1 + a_2e_2 + ...$ where $a_n \in \mathbb{C}$ and e_n are hermitian idempotents.

In this context, a hermitian idempotent is one whose range is $\{0,1\}$, since those are the only real numbers equal to their own square. Consider a series of function e_{q_1}, e_{q_2} , where for each $q_i \in X$, define

$$e_{q_i}(x) = \begin{cases} 1 & x = q_i \\ 0 & x \neq q_i \end{cases}$$

f can therefore be written as a countably infinite linear sum of such a series, thus is in the closed linear span of the projections.

Assume C(X) is the closed linear span of its projections. ???