Valutazione empirica sull'efficacia del Test-Driven Development per sistemi embedded

Relatori: Prof. Giuseppe Scanniello, Prof. Simone Romano

Candidato: Michelangelo Esposito - 0522500982

TEST-DRIVEN DEVELOPMENT

Opposto al testing tradizionale (NO-TDD)

Partire dalla definizione dei casi di test:

- Fase Red
- Fase Green
- Fase Refactor

SISTEMI EMBEDDED

Sistemi incorporati in dispositivi per fornire funzionalità specifiche

- Dipendenza hardware
- Risorse limitate
- Assenza di interfaccia utente

Complicazioni per il testing

FOCUS DELLA RICERCA

TDD vs NO-TDD per lo sviluppo di sistemi embedded

LETTERATURA

Studi empirici su TDD

Impatto di TDD su sistemi tradizionali

Studi su TDD per sistemi embedded

Impatto di TDD su sistemi embedded

STUDIO SPERIMENTALE

Partecipazione di 9 studenti del corso di Embedded Systems

- Analisi dei dati (quantitativi e qualitativi)
- Implicazioni pratiche

STUDIO SPERIMENTALE

Esperimento 1

- Due task sperimentali
- Simulazione hardware
- Raccolta feedback tramite questionari

Esperimento 2

- Un task sperimentale
- Simulazione hardware
- Hardware reale
- Raccolta feedback tramite interviste

TASK SPERIMENTALI

Tre sistemi implementati dai partecipanti:

ESTRAZIONE DATI

RISULTATI

Box plot

Forest plot

RISULTATI - QUESTIONARI

RISULTATI - INTERVISTE

Apprendimento TDD

"It's hard to think the other way around [...] but I think TDD is very useful and if you are used to it, it can really improve your programming"

TDD per sistemi embedded

"TDD gives you immediate feedback which I feel is important for ES development."

"(TDD) can be very helpful with more complex systems"

Deployment hardware

"Nice to see it run and test by yourself with hardware and with the sensors"

"Really cool to implement because I wanted to see it in action on real hardware."

IMPLICAZIONI

1 RICERCATORI

Replicare lo studio:

- Sviluppatori esperti
- Studi longitudinali

DOCENTI 2

Corsi universitari:

- Insegnare TDD
- Focus hardware

Grazie per l'attenzione

FASI DELLO STUDIO

Pipeline TDD

Proposta da James W. Grenning

Embedded TDD Cycle:

- Implementazione con TDD
- Test di unità su hardware
- Suite di accettazione su hardware

ANALISI DATI

Statistiche descrittive

Analisi tematica interviste

Rappresentazione grafica

02

Meta-analisi esperimenti

03

VARIABILI DIPENDENTI

Qualità esterna

$$QLTY = \frac{\sum_{i=1}^{\#TUS} QLTY_i}{\#TUS} * 100$$

$$QLTY_i = \frac{\#ASSERT_i(PASS)}{\#ASSERT_i(ALL)}$$

$$\#TUS = \sum_{i=1}^{n} \begin{cases} 1 & \#ASSERT_i(PASS) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Produttività

$$PROD = \frac{\#ASSERT(PASS)}{\#ASSERT(ALL)} * 100$$

Testing effort

Numero di casi di test