CS & IT FOR THE SERVING

Operating System

Deadlock

DPP Discussion Notes

#Q. Consider a system with 3 processes A, B and C. All 3 processes require 6 resources each to execute. The minimum number of resources the system should have such that deadlock can never occur, is _____?

[NAT]

#Q.

Consider a system with 5 processes that share 15 instances of the same resource type. Each process can request a maximum of R instances. Resource instances can be requested and released only one at a time. The largest value of K that will always avoid deadlock is ___?

No. of processes
$$(n) = 5$$

Manimum resources = 15
 (N)
 $n(K-1)+1 \le 15$
 $n(K-1)+1 \le$

#Q.

Consider the following process scenario with 5 processes P1, P2, P3, P4 and P5; and 4 types of recourses A, B, C and D. The system has total 3, 14, 11 and 12 instances of resources A, B, C and D respectively.

Process	Allocation	Max	Need
	A B C D	A B C D	A B C D
P1	0 0 0 2	0 3 1 2	0 3 1 0
P2	1 0 0 0	1 7 5 0	0 7 5 0
Р3	1 3 5 4	2 3 5 6	1 0 0 (2)
P4	0 6 3 2	0 6 5 4	0 0 3 3
P5	0 0 1 4	0 6 5 6	0 6 4 2

Here allocation denotes the total allocated instances of each resource type. And Max denotes the maximum required instances of each resource type. Which of the following is true regarding the deadlock avoidance?

The system is in safe state and safe sequence is <P1, P2, P3, P4, P5>

The system is in safe state and safe sequence is <P1, P3, P2, P4, P5>

The system is in safe state and safe sequence is <P1, P4, P3, P2, P5>

Current available =
$$1520$$

 $7, \checkmark$ + 0002
 1522

 P_{3} + 1354 $2876) P_{2} P_{4} P_{5}$

+0632 1002411154 1154 3 5 4 2 410

 C_{D} .

#Q. Consider the following scenario:

Process	Max	Allocation	
P1	5	0	
P2	4	0	
Р3	6	0	
P4	2	0	

Minimum number of available resources required to have system deadlock

Consider the following scenario:

Process	Max	Allocation	Need
P1	4	1	3
P2	8	3	5
Р3	3	1	2
P4	4	0	4

Minimum number of <u>not allocated</u> available resources required to have

system deadlock free is ___? P_1 P_2 P_3 P_4 P_4 P_4 P_5 P_4 P_5 P_4 P_5 P_4 P_5 P_6 P_7 P_7 P_8 P_8 P_8 P_8 P_8 P_8 P_8 P_9 P_9

A computer has 23 tape drives, with n number of processes competing for them. Each process may need 5 drives. The maximum value of n for the system to be deadlock free is ____?

$$n(5-1)+1 \leq R$$
 $n(4)+1 \leq 23$
 $+n \leq 22 = [5.5]$
 $n \leq 5$

THANK - YOU