Name : ABID ALI

Student_no : 2019380141

Homework -7

Operating System

1 Consider the following snapshot of a system:

	Allocation	Max	Available		
	ABCD	ABCD	ABCD		
P_0	0012	0012	1520		
P_1	1000	1750			
P_2	1354	2356			
P_3	0632	0652			
P_4	0014	0656			

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?
- c. If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?

Answer No:1

a. Need = Max.- Allocation

The values of **Need** for processes P0 through P4 respectively are (0, 0, 0, 0), (0, 7, 5, 0), (1, 0, 0, 2), (0, 0, 2, 0), and (0, 6, 4, 2).

b. The system is in a safe state, Yes. With **Available** being equal to (1, 5, 2, 0), either process P0 or P3 could run. Once process P3 runs, it releases its resources, which allow all other existing processes to run.

						Ans No. 1(d)	
		Allocation	_	Available ABCD	(ABCD)		
14 1		ABCD	ABCD	1520	0000	0	
	Po	0012	0012		0750	(5)	
	JP1	1000	1750	1532	0 430		
	P2	1354	2356	2886	1002	(2)	
	ρ ₃	0632	0652	214118	0020	0	
	, P4	0014	0656	2 14 12 12	0642	40-0	
	50m =	29/012				3 14 12 12	
	Safe Seg Yes	the system in system in	of avail	safe 3to	te. Boca me. We	use, Total and can say that,	

c.

The request can be granted immediately. This results in the value of **Available** being (1, 1, 0, 0). One ordering of processes that can finish is P0, P2, P3, P1, and P4.

2 Consider the following snapshot of a system:

	Allocation	Max	Available		
	ABCD	ABCD	ABCD		
P_0	2001	4212	3321		
P_1	3121	5252			
P_2	2103	2316			
P_3	1312	1424			
P_4	1432	3665			

Answer the following questions using the banker's algorithm:

- a. Illustrate that the system is in a safe state by demonstrating an order in which the processes may complete.
- b. If a request from process P1 arrives for (1, 1, 0, 0), can the request be granted immediately?
- c. If a request from process P4 arrives for $(0,\,0,\,2,\,0)$, can the request be granted immediately

Answer No:2

(a)

(b)

The request can be granted immediately. This results in the value of **Available** being (2, 2, 2, 1). One ordering of processes that can finish is P0, P3, P4, P1, and P2.

(c)

Pq
$$\rightarrow$$
 (0,0,2,0)

Need (P4) \rightarrow Mox. - Allocation

Need (P4) \rightarrow Mox. - Allocation

Need (P4) \rightarrow Mox. - Allocation

 $= 3665 - 1432$
 $= 2233$

© Request \leq need \vee
 $= 2233$
© Request \leq available \vee
 $= 3321$
 $= 3321$
 $= 3321 - 0020$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $= 3301$
 $=$

			2100		18.1
Po	Allocation ABCD 2001	Max ABCD 4212	Available ABCD (2213)	Need \ 2211 0	
Pi	3121	5252	4214	2131 5	
P2	2103	2316	7629	01120	
P3	1312	3665	8 10711	22139	T + a
	9989	0 00	P.		Total ABCD 1111912
		P. P2 P3 P4			
	4/				

The request can be granted immediately. This results in the value of **Available** being (2, 2, 1, 3). One ordering of processes that can finish is P0, P2, P3, P4, and P1.