Kỳ vọng 2

Toán Chuyên Đề

HUST

Ngày 5 tháng 11 năm 2016

Tài liệu tham khảo

- ► Eric Lehman, F Thomson Leighton & Albert R Meyer, Mathematics for Computer Science, 2013 (Miễn phí)
- Michael Mitzenmacher và Eli Upfal, Probability and Computing, 2005
- Nguyễn Tiến Dũng và Đỗ Đức Thái, Nhập Môn Hiện Đại Xác Suất & Thống Kê.

Định lý

Với mọi biến ngẫu nhiên R_1, R_2, \dots, R_n ,

$$\operatorname{Ex}[R_1 + R_2 + \dots + R_n] = \operatorname{Ex}[R_1] + \operatorname{Ex}[R_2] + \dots + \operatorname{Ex}[R_n].$$

Kỳ vọng của phân phối nhị thức

Câu hỏi

Tung n đồng xu, mỗi đồng có xác suất xảy ra mặt ngửa là p. Kỳ vọng của số mặt ngửa bằng bao nhiều? Đăt

 $J\!=\!$ số mặt ngửa

Vậy thì J có phân phối nhị thức với tham số n và p:

$$\Pr[J=k] = \binom{n}{k} p^k (1-p)^{n-k}.$$

Một lời giải khó

$$\operatorname{Ex}[J] = \sum_{k=0}^{n} k \cdot \Pr[J = k] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \frac{pn}{n}.$$

Một lời giải dễ

Xét các biến ngẫu nhiên chỉ báo

$$J_i = \begin{cases} 1 & \text{n\'eu d\`ong xu th\'u i ng\'ua} \\ 0 & \text{ngược lại} \end{cases}$$

Vậy thì số mặt ngửa là

$$J = J_1 + J_2 + \dots + J_n.$$

Ta được

$$\operatorname{Ex}[J] = \sum_{i=1}^{n} \Pr[J_i = 1] = pn.$$

Chứng minh bằng phương pháp xác suất

Ta cũng vừa chứng minh đẳng thức phức tạp

$$\sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = pn.$$

Bài toán (Coupon Collector)

- Giả sử mỗi hộp bỏng ngô có kèm một chiếc tem.
- ▶ Có n loại tem khác nhau: xanh, đỏ, tím, vàng, cam...
- Nếu bạn sưu tầm được đủ mỗi loại tem ít nhất một chiếc thì bạn sẽ được nhận phần thưởng.
- Giả sử chiếc tem trong mỗi hộp bỏng ngô được chọn ngẫu nhiên và theo phân phối đều.
- Hỏi rằng bạn phải mua bao nhiêu hộp bỏng ngô thi mới được mỗi loại ít nhất một chiếc tem?

Ý tưởng

- ► Giả sử ta có 5 loại tem và ta có dãy tem sau đây xanh đỏ đỏ tím xanh đỏ vàng xanh nâu
- Ta phân hoạch thành các đoạn

$$\underbrace{\mathsf{xanh}}_{X_0} \quad \underbrace{\mathsf{do}}_{X_1} \quad \underbrace{\mathsf{do}}_{X_2} \quad \underbrace{\mathsf{tím}}_{X_2} \quad \underbrace{\mathsf{xanh}}_{X_3} \quad \mathsf{do} \quad \mathsf{vàng} \quad \underbrace{\mathsf{xanh}}_{X_4} \quad \mathsf{nâu}$$

theo quy tắc kết thúc một đoạn ngay khi ta gặp loại tem mới.

Lời giải bài toán Coupon Collector

- Xét X_k là đô dài của đoan thứ k.
- \blacktriangleright Tổng số hộp bỏng ngô ta phải mua để có đủ n loại tem là

$$T = X_0 + X_1 + X_2 + \cdots + X_{n-1}.$$

Kỳ vọng của X_k

- Bắt đầu đoạn thứ k ta có k loại tem khác nhau, và đoạn thứ k kết thúc khi ta có loại tem mới.
- Mỗi hộp bỏng ngô có thể kèm một kiểu tem mới với xác suất là

$$\frac{n-k}{n}$$
.

Vậy thì

$$\operatorname{Ex}[X_k] = \frac{n}{n-k}.$$

Tại sao?

Lời giải bài toán Coupon Collector

$$\operatorname{Ex}[T] = \operatorname{Ex}[X_0 + X_1 + \dots + X_{n-1}]$$

$$= \operatorname{Ex}[X_0] + \operatorname{Ex}[X_1] + \dots + \operatorname{Ex}[X_{n-1}]$$

$$= \frac{n}{n-0} + \frac{n}{n-1} + \dots + \frac{n}{3} + \frac{n}{2} + \frac{n}{1}$$

$$= n\left(\frac{1}{n-0} + \frac{1}{n-1} + \dots + \frac{1}{3} + \frac{1}{2} + \frac{1}{1}\right)$$

$$\approx n \ln n.$$

Ví dụ

Trung bình ta cần tung con xúc xắc khoảng

$$6 \times (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6) \approx 14.7$$

lần để có đủ cả $6~{\rm mặt}$ xuất hiện.

Định lý

Xét không gian xác suất S và các sự kiện $A_1, A_2, \ldots, A_n \subseteq S$, vậy kỳ vọng của số lượng sự kiện xuất hiện bằng

$$\Pr[A_1] + \Pr[A_2] + \dots + \Pr[A_n]$$

Chứng minh.

Đặt

$$T_i(w) = egin{cases} 1 & ext{n\'eu} \ w \in A_i \ 0 & ext{ngược lại} \end{cases}$$

tức $T_i=1$ nếu và chỉ nếu A_i xảy ra; và đặt

$$T = T_1 + T_2 + \cdots + T_n.$$

Ta có

$$\operatorname{Ex}[T] = \sum_{i=1}^{n} \operatorname{Ex}[T_{i}]$$

$$= \sum_{i=1}^{n} \Pr[T_{i} = 1]$$

$$= \sum_{i=1}^{n} \Pr[A_{i}].$$

Ví dụ Tung n đồng xu và đặt

$$A_i = \mbox{ sự kiện đồng xu thứ i ngửa} \label{eq:tau}$$
 $T = \mbox{ số mặt ngửa khi tung n đồng}$

Ta có

$$\operatorname{Ex}[T] = \Pr[A_1] + \Pr[A_2] + \dots + \Pr[A_n]$$

= 1/2 + 1/2 + \dots + 1/2
= n/2

Chứng minh khó hơn

$$\begin{split} \operatorname{Ex}[T] &= \sum_{i=1}^n i \cdot \Pr[T=i] \\ &= \sum_{i=1}^n i \cdot \binom{n}{i} 2^{-n} \quad \text{(Giả sử các sự kiện này độc lập)} \\ &= n/2 \end{split}$$

Chứng minh bằng phương pháp xác suất

Như vậy ta đã chứng minh đẳng thức

$$\sum_{i=1}^{n} i \binom{n}{i} = n \cdot 2^{n-1}$$

Định lý

$$\underbrace{\Pr[T \ge 1]} \le \operatorname{Ex}[T]$$

xác suất ít nhất một sự kiện A_i xuất hiện

Chứng minh.

$$\operatorname{Ex}[T] = \sum_{i=1}^{\infty} \Pr[T \ge 1]$$
$$\ge \Pr[T \ge 1].$$

Hệ quả

$$\Pr[T \geq 1] \leq \sum_{i=1}^{\infty} \Pr[A_i].$$

Ví dụ

ullet Nếu n=1000 và $\Pr[A_i]=1/100$, vậy thì

$$\operatorname{Ex}[T] = 10.$$

lacktriangle Nếu với mọi i,j ta có $\Pr[A_i \mid A_j] = 1$, vậy thì

$$\Pr[T \ge 1] = 1/100 < 10.$$

Định lý (Luật Murphy)

Xét các sự kiện độc lập A_1, \ldots, A_n . Vậy thì

$$\Pr[T=0] \le e^{-\operatorname{Ex}[T]}.$$

Chứng minh.

$$\begin{split} \Pr[T=0] &= \Pr[\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}] \\ &= \prod_{i=1}^n \Pr[\overline{A_i}] & \text{(do độc lập)} \\ &= \prod_{i=1}^n (1 - \Pr[A_i]) & \text{(do } 1 - x \leq e^{-x}) \\ &\leq \prod_{i=1}^n e^{-\Pr[A_i]} = e^{-\sum_{i=1}^n \Pr[A_i]} = e^{-\operatorname{Ex}[T]}. \end{split}$$

Hệ quả

Nếu mong đợi ít nhất 10 sự kiện độc lập xuất hiện, vậy thì xác suất **không** có sự kiện nào xuất hiện $\leq e^{-10} < 1/22,000$.

Định lý (Luật tích)

Với mọi cặp biến ngẫu nhiên độc lập R_1, R_2

$$\operatorname{Ex}[R_1 \cdot R_2] = \operatorname{Ex}[R_1] \cdot \operatorname{Ex}[R_2].$$

Ví dụ

Tung hai con xúc xắc sáu mặt độc lập và đặt

 $R_i = ext{ k\'et}$ quả của con xúc xắc i

Ta có

$$\operatorname{Ex}[R_1 \cdot R_2] = \operatorname{Ex}[R_1] \cdot \operatorname{Ex}[R_2]$$

= 7/2 \cdot 7/2 = 49/4.

Điều kiện độc lập là cần thiết

Ví dụ

$$\operatorname{Ex}[R_1 \cdot R_1] = \operatorname{Ex}[R_1^2]$$

$$= \sum_{i=1}^6 i^2 \Pr[R_1 = i]$$

$$= \frac{1}{16} (1 + 4 + 9 + 16 + 25 + 36)$$

$$= 15 \frac{1}{6} \neq \left(3 \frac{1}{2}\right)^2 = \operatorname{Ex}[R_1]^2$$

Hệ quả

Nếu R_1, R_2, \dots, R_n là các biến ngẫu nhiên độc lập, vậy thì

 $\operatorname{Ex}[R_1 \cdot R_2 \cdots R_n] = \operatorname{Ex}[R_1] \cdot \operatorname{Ex}[R_2] \cdots \operatorname{Ex}[R_n].$

Chứng minh rằng: Với mọi hằng số a,b và mọi biến ngẫu nhiên R,

$$\operatorname{Ex}[a \cdot R + b] = a \cdot \operatorname{Ex}[R] + b.$$

Câu hỏi Liệu đẳng thức

$$\operatorname{Ex}\left[\frac{1}{R}\right] = \frac{1}{\operatorname{Ex}[R]}$$

có đúng?

Nghịch lý RISC về kích thước mã nguồn

Benchmark	RISC	CISC	CISC/RISC
E-string search	150	120	8.0
F-bit test	120	180	1.5
Ackerman	150	300	2.0
Rec Sort	2800	1400	0.5
	3220	2000	

Trung bình [CISC/RISC]
$$=\frac{1}{4}\times(0.8+1.5+2.0+0.5)$$
 $=1.2$

Kết luân

"Các chương trình CISC là dài hơn 20% về trung bình."

Nghịch lý RISC về kích thước mã nguồn 2

Benchmark	RISC	CISC	RISC/CISC
E-string search	150	120	1.25
F-bit test	120	180	0.67
Ackerman	150	300	0.5
Rec Sort	2800	1400	2.0
Trung bình			1.1

Kết luân

"Các chương trình RISC là dài hơn 10% về trung bình."

Tại sao?

- ightharpoonup Xét biến ngẫu nhiên R là độ dài của chương trình viết bằng RISC,
- ightharpoonup và biến ngẫu nhiên C là độ dài của chương trình viết bằng CISC.
- ► Tính toán

$$\operatorname{Ex}[C/R] = 1.2$$

Kết luận "chương trình CISC là dài hơn 20% về trung bình" có nghĩa rằng

$$\operatorname{Ex}[C] = 1.2 \operatorname{Ex}[R]$$

Một kết luận hợp lý

$$\begin{split} \operatorname{Ex}[R] &= \sum_{i \in Range(R)} i \cdot \Pr[R = i] \\ &= \frac{150}{4} + \frac{120}{4} + \frac{150}{4} + \frac{2800}{4} = 805. \end{split}$$

$$\begin{split} \operatorname{Ex}[\mathit{C}] &= \sum_{i \in \mathit{Range}(\mathit{C})} i \cdot \Pr[\mathit{C} = \mathit{i}] \\ &= \frac{120}{4} + \frac{180}{4} + \frac{300}{4} + \frac{1400}{4} = 500. \end{split}$$

Vậy $\operatorname{Ex}[R]/\operatorname{Ex}[C] = 1.61$.

Kết luân

"Chương trình RISC là dài hơn 61% về trung bình."