Math 322

rctcwyvrn

August 2020

1 Lecture 1

Definition: Partition

Let X be a set, X_i subsets such that each $x \in X$ is in exactly one X_i (they make a **disjoint union of** X)

• The X_i are then a **partition** of X

• Note: The X_i maybe of differing sizes

• There may also be an infinite number of them

Definition: Equivalence relation

Elements of X are uniquely grouped by which X_i they're in, so we can use this to define an **equivalence relation** (\sim) ie: $\alpha \sim \beta$ if they live in the same X_i

Properties

• Reflexive: $x \sim x$ always

• Transitive: $a \sim b$ and $b \sim c$ means $a \sim c$

• Symmetric: $x \sim y$ implies $y \sim x$

Definition: Equivalence classes

Given a partition $\{X_i\}$ of X, you can form a new set whose elements are the sets $X_0, X_1, X_2 \dots$ This is called X/\sim .

Elements of that set are equivalence classes

- If $\alpha \in X_i$ then α is called a **representative** of the equivalence class X_i
- Notation: $X_i = [\alpha] = \overline{\alpha}$
- We can also define a **projection** from X to X/\sim , which sends α to its equivalence class

$$\pi: X \to X/\sim \tag{1}$$

$$\alpha \mapsto [\alpha]$$
 (2)

• Sends all the elements of a partition into the one equivalence class

Example: Odds and evens

Let X be the integers, with the partition X_1 evens, X_2 odds then X/\sim is the two element set.

Note: Even though both the odds and the evens have infinite size, the quotient set has only two elements

Example: Integers mod N

Define $x \sim y$ if they have the same remainder mod N.

- N equivalence classes (one for each remainder, $0 \dots N-1$)
- Notation: $\mathbb{Z}/N\mathbb{Z}$ (reason later (quotient groups)
- If N=2 then it's just the evens and odds example from before
- If N = 7 then there's 7 elements, the equivalence classes for 0, 1, 2, 3, 4, 5, 6

Division of integers (in \mathbb{Z}) (Some stuff very closely related to math 312, which we aren't going to prove)

- Let a, b integers , a > 0
- Then we have b = qa + r, $0 < r \le a 1$, q integer
- Note: the quotient and remainder are unique
- $a|b\iff r=0$ divisible iff the remainder is zero
- We get that any integer n is unique defined by the primes that make it up

Lemma:

If a, b have no common factors, then $\exists m, n \in \mathbb{Z} : ma + mb = 1$

• Notation: (a, b): greatest common factor

• Notation: [a, b]: least common multiple

Example:

7, 5 share no common factors, m = -2, n = 3, -14 + 15 = 1

Remark: Division turns out to generate the basic structural properties of $\mathbb Z$

Lemma:

Suppose now that a, b share a gcd d, then $\exists m, n \in \mathbb{Z} : ma + mb = d$. So the earlier lemma is just a special case (when the gcd is 1)

• Note: because d divides both a and b, then it should be able to divide ma + nb for any m, n