The First Fundamental Theorem of Calculus for 1-Forms (Part b)

Thomas Cohn

Recall from Wednesday:

1-form $\omega = \omega_1 dx_1 + \cdots + \omega_n dx_n$ for ω_i scalar functions. Then ω is closed $\stackrel{\text{def}}{\Leftrightarrow} D_k \omega_i = D_i \omega_k$.

$$\Leftarrow \omega \text{ is } \underbrace{\text{exact}}_{\substack{\text{FTC1a} \\ \Leftrightarrow}} \overset{\text{def}}{\underset{Y_{\alpha}}{\bigoplus}} \omega = df$$
 FTC1a
$$\int\limits_{Y_{\alpha}} \omega = 0 \text{ when } \alpha \in C^2_{pw}([a,b],A), \text{ and } \alpha(a) = \alpha(b).$$

Thm: FTC1b for 1-forms

 ω closed 1-form on $A \subseteq \mathbb{R}^n$ open and convex $\Rightarrow \omega$ is exact on A.

Lemma: (1) ω C^1 closed 1-form, α C^1 map $\Rightarrow \alpha^* \omega$ closed.

Lemma: (2) ω C^1 1-form on open set containing $R^{\text{box}} \subseteq \mathbb{R}^2 \Rightarrow \int_{\text{Bd } R(\text{counterclockwise})} \omega = \int_R (D_1 \omega_2 - D_2 \omega_1)$

Cor: Also assume ω closed. Then $\int_{\operatorname{Bd} R} \omega = 0$.

Ex: $\omega = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$

Exercise: ω closed on $\mathbb{R}^2 \setminus \left\{ \vec{0} \right\}$ Exercise: $\omega = d(\arctan \frac{y}{x})$ on $(0, +\infty) \times \mathbb{R}$

Part for $\alpha:[0,2\pi]\to\mathbb{R}^2,\ t\mapsto(\cos t,\sin t),\ \mathrm{have}\int\limits_{\Omega}\omega=\int\limits_{\Omega}^{2\pi}-\sin td\cos t+\cos td\sin t=\int\limits_{\Omega}^{2\pi}1dt=2\pi\neq0.$

Hence, ω is not exact.

Proof of lemma 2:
$$\int_{\text{Bd }R} \omega = \int_{a_1}^{b_1} \omega_1(x_1, a_2) dx_1 + \int_{a_2}^{b_2} \omega_2(b_1, x_2) dx_2 - \int_{a_1}^{b_1} \omega_1(x_1, b_2) dx_1 - \int_{a_2}^{b_2} \omega_2(a_1, x_2) dx_2 = \int_{a_1}^{b_1} \int_{a_2} D_{a_2}(a_1, a_2) dx_1 + \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_2 = \int_{a_1}^{b_2} \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_1 + \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_2 = \int_{a_1}^{b_2} D_{a_2}(a_1, a_2) dx_1 + \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_2 = \int_{a_1}^{b_2} D_{a_2}(a_1, a_2) dx_1 + \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_2 = \int_{a_1}^{b_2} D_{a_2}(a_1, a_2) dx_1 + \int_{a_2}^{b_2} D_{a_2}(a_1, a_2) dx_2 = \int_{a_2}^{b_2} D$$

$$= -\int_{a_1}^{b_1} \int_{a_2}^{b_2} D_2 \omega_1(x_1, x_2) dx_2 dx_1 + (\text{reverse}) = \int_{R} D_1 \omega_2 - D_2 \omega_1. \checkmark$$

Proof of FTC1b

Check that $\int_{C}^{C} \omega = 0$ when $\alpha \in C^{2}_{pw}([a, b], A), \ \alpha(a) = \alpha(b)$.

Define $\tilde{\alpha}: [a,b] \times [0,1] \to A$. $\tilde{\alpha}$ is affine on each vertical line segment. $\tilde{\alpha}$ is C^2 on each subbox R_j .

So
$$\int_{\operatorname{Bd} R_j} \tilde{\alpha}^* \omega = 0$$
 by lemma 2 corollary. Thus $0 = \sum_{\operatorname{Bd} R_j} \tilde{\alpha}^* \omega = \int_{\operatorname{Bd} R} \tilde{\alpha}^* \omega = \int_{[a,b]} \alpha^* \omega$.

Remark: FTC1b also works for A C^2 -diffeomorphic to a convex set.

$$\omega \text{ closed on } A \xrightarrow{\underline{\text{Lemma 1}}} \gamma^* \omega \text{ closed on } B$$

$$\xrightarrow{\underline{\text{FTC1b}}} \gamma^* \omega = df \text{ on } B$$

$$\Rightarrow \beta^* \gamma^* \omega = \beta^* df$$

$$\Rightarrow \omega = (\gamma \circ \beta)^* \omega d\beta^* f$$

Hence, ω closed but not exact on $\mathbb{R}^2 \setminus \left\{ \vec{0} \right\}$, so $\mathbb{R}^2 \setminus \left\{ \vec{0} \right\}$ is not diffeomorphic to a convex set.

Thm: $\exists E \subset [0,1]$ such that

(1) t_1, t_2 distinct rational numbers $\Rightarrow (E + t_1) \cap (E + t_2) = \emptyset$

$$(2) \mathbb{R} = \bigcup_{t \in \mathbb{O}} (E + t)$$

(2) $\mathbb{R} = \bigcup_{t \in \mathbb{Q}} (E + t)$ Proof: \mathbb{Q} is a subgroup of \mathbb{R} . So we get an equivalence relation on \mathbb{R} : $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. Equivalence classes are called <u>cosets</u>. Thus \mathbb{R} is the disjoint union of cosets, where each coset is dense, and each coset C can be written as $C = \mathbb{Q} + x$ for some $x \in C \cap [0,1]$. For each coset, pick such an x (we can do this because of the axiom of choice).

For every $y \in \mathbb{R}$, y has a unique representation y = x + t for $x \in E$, $t \in \mathbb{Q}$.

Therefore,
$$\mathbb{R} = \bigcup_{t \in \mathbb{Q}} (E + t)$$
. \square

 $A^{\operatorname{osso}\mathbb{R}^k} \stackrel{\alpha}{\to} M \subset \mathbb{R}^n$, $\alpha \in C^r$, and α injective. Then each $D\alpha(\vec{x})$ has maximal rank.