<u>exo13</u>

1- E' \rightarrow E\$

 $2-E \rightarrow E+E$

3- E → E * E

4- $E \rightarrow int$

	ACTION				GO_TO
	Terminaux				Non terminaux
	+	*	int	\$	E
0(10)	Erreur	Ereur	S2	Erreur	1
1(I1)	S3	S4	Erreur	accepté	Erreur
2(12)	r4	r4	r4	r4	Erreur
3(I3)	Erreur	Erreur	S2	Erreur	5
4(14)	Erreur	Erreur	S2	Erreur	6
5(15)	S3 r2	S4 r2	r2	r2	Erreur
6(16)	S3 r3	S4 r3	r3	r3	Erreur

Enoncé : Avec la table ci dessus, analysez le mot x + y * z

-en privilégiant le shift

Entée	Pile	Règle
<u>x</u> +y*z\$	0	Empiler x et état courant=2
<u>+</u> y*z\$	0x2	r4:E → int (int =1→dépiler 2)
<u>+</u> y*z\$	0E	E à l'état 0 devient →1
<u>+</u> y*z\$	0E1	Empiler + et état courant=3
<u>y</u> *z\$	0E1+3	Empiler y et état courant=2
<u>*</u> z\$	0E1+3E	r4:E → int (int =1→dépiler 2)
<u>*</u> z\$	0E1+3E5	Empiler * et état courant=4
<u>z</u> \$	0E1+3E5*4	Empiler z et état courant=2
\$	0E1+3E5*4z2	r4:E → int (int =1→dépiler 2)

\$	0E1+3E5*4E6	r3: E → E * E (E * E =3→dépiler 6)
<u>\$</u>	0E1+3E5	r2: E → E + E(E + E =3→dépiler 6)
\$	0E1	accepté

-en privilégiant le reduce

Entée	Pile	Règle		
<u>x</u> +y*z\$	0	Empiler x et état courant=2		
<u>+</u> y*z\$	0x2	r4:E → int (int =1→dépiler 2)		
<u>+</u> y*z\$	0E	E à l'état 0 devient →1		
<u>+</u> y*z\$	0E1	Empiler + et état courant=3		
<u>ұ</u> *z\$	0E1+3	Empiler y et état courant=2		
<u>*</u> z\$	0E1+3E	r4:E → int (int =1→dépiler 2)		
<u>*</u> z\$	0E1+3E5	r2:E \rightarrow E + E (E+E =3 \rightarrow dépiler 6)		
<u>*</u> z\$	0E1	Empiler * et état courant=4		
<u>z</u> \$	0E1*4	Empiler z et état courant=2		
\$	0E1*4z2	r4:E → int (int =1→dépiler 2)		
\$	0E1*4E6	r3: E → E * E (E * E =3→dépiler 6)		
\$	0E1	accepté		

conclusion:

- Lors qu'on privilégie le shift alors on privilégie la multiplication
- Lors qu'on privilégie le reduce alors on privilégie la l'addition