Généralités sur les sommes/séries et les intégrales

Sommes/séries classiques

▶ Sommes
$$\sum_{k=0}^{n} k^0 = n+1$$
, $\sum_{k=0}^{n} k^1 = \frac{n(n+1)}{2}$, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$,

▶ Sommes géométriques
$$\forall q \neq 1$$
, $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$, et si $|q| < 1$, $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$.

- ▶ Loi géométrique
 - * Modélisation du rang d'apparition du premier succès à la répétition de $\mathcal{B}(p)$.
 - * Pour $X \hookrightarrow \mathcal{G}(p)$, on a $X(\Omega) = \mathbb{N} \setminus \{0\}$, et $\forall k \geq 1$, $\mathbb{P}(X = k) = pq^{k-1}$,
 - * Interprétation du reste $\sum_{k=N+1}^{+\infty} \mathbb{P}(X=k) = q^N$ comme fonction d'anti-répartition $\mathbb{P}(X>N)$.

Manipulation de sommmes/séries

- ▶ Pratique du changement d'indice Dans $\sum_{k=0}^{N} u_{k+1}$, on pose i = k+1, et on substitue dans le t.g. et les bornes.
- ▶ Sommation télescopique

* Formule
$$\sum_{k=n}^{p} (u_{k+1} - u_k) = u_{p+1} - u_n$$
.

- \star Exemples d'application de la décomposition en éléments simples.
- ▶ Séries à termes positifs : les sommes partielles ∕, donc convergent ssi elles sont majorées.

Intégration

Cadre théorique cette semaine : On intégre une fonction continue sur un segment, puis passage à la limite aux bornes.

- ▶ Propriétés générales Linéarité, Chasles, positivité.
- ▶ Intégrales et primitives $\int_a^b f(t)dt = F(b) F(a)$ si F est C^1 sur [a,b] et F' = f.
- ▶ Primitives usuelles
 - * Fonctions puissances: pour $a \neq -1$: $\int x^a dx = \frac{1}{a+1} x^{a+1}$, et $\int \frac{dx}{x} = \ln(x)$.
 - * Exponentielles: pour $a \neq 0$: $\int e^{ax} dx = \frac{1}{a} e^{ax}$.
- ▶ Intégration par parties pour u, v de classe $C^1 : \int_a^b u'v = [uv]_a^b \int_a^b uv'$

* Exemple de
$$\int_1^x \ln(t) dt = x \ln(x) + 1 - x$$
, pour $x > 0$.

- ▶ Pratique du changement de variables sur un segment
 - \otimes Hypothèses $\varphi:[a,b]\to\mathbb{R}$ de classe $\mathcal{C}^1,\,f$ continue sur $\varphi([a,b])$.

$$\circledast$$
 Formule $\int_a^b f(\varphi(t)) \, \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx$

 \otimes Notation: on a posé $x = \varphi(t)$ et $dx = \varphi'(t) dt$. Alors $t = a \leadsto x = \varphi(a) \dots$