CS181 Section 3 Linear Classification

1 Linear Classifiers

The goal in classification is to take an input vector x and assign it to one of K discrete classes C_k where k = 1, ..., K. The input space is thus divided into **decision regions** whose boundaries are called **decision boundaries or surfaces**.

1.1 Discriminant Functions with Binary Responses

A discriminant function is one that directly assigns each vector x to a specific class. We first assume two classes, i.e. our responses are binary and K = 2. Linear classification seeks to divide the 2 classes by a linear separator in the feature space - if d = 2 the separator is a line; if d = 3 the separator is a plane; for general d the separator is a (d - 1)-dimensional hyperplane.

The simplest representation of a linear discriminant function is obtained by taking a linear function of the input vector as such:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

The corresponding decision boundary is defined by the relation $y(\mathbf{x}) = 0$, which corresponds to the (d-1)-dimensional hyperplane within the d-dimensional input space. \mathbf{w} is orthogonal to every vector lying within the decision surface (prove this!) so \mathbf{w} determines the orientation of the decision boundary. Furthermore, w_0 (called the **bias** or negative threshold), determines the location of the decision boundary.

$$\mathbf{w}^T(\mathbf{x}_A - \mathbf{x}_B) = 0$$

where \mathbf{x}_A , \mathbf{x}_B both lie on the decision boundary.

$$\frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||} = -\frac{w_0}{||\mathbf{w}||}$$

In more compact notation, if $\tilde{\mathbf{w}} = (w_0, \mathbf{w})$ and $\tilde{\mathbf{x}} = (x_0, \mathbf{x})$, then

$$y(\mathbf{x}) = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

1.2 Fisher's Linear Discriminant

A useful way of thinking about linear classification is in terms of dimensionality reduction. We take a d-dimensional vector x and project it down into 1 dimension with $\mathbf{w}^T \mathbf{x}$. In the two-class problem where there are N_1 data points in C_1 and N_2 in C_2 , we want to maximize the separation of the mean class vectors (to make it easier to find a linear separator):

$$m_2 - m_1 = w^T (\mathbf{m}_2 - \mathbf{m}_1)$$

as well as minimize total within-class variance for the whole dataset:

$$s_1^2 + s_2^2$$
, where $s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$

All this is encapsulated in the Fisher's criterion:

$$J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

which if we try to maximize results in the Fisher's linear discriminant (derivation in Bishop):

$$\mathbf{w} \propto \mathbf{S}_w^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

1.3 Perceptron Algorithm

Another well-known example of a linear discriminant model is the Perceptron Algorithm. It corresponds to a 2-class model where the input vector \mathbf{x} is first transformed using a fixed non-linear transformation to give a feature vector $\phi(\mathbf{x})$ which is used to construct a generalized linear model of the form:

$$y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$$

where f() is an activation function (inverse of what is called link function in most statistics literature). The perceptron algorithm proposes an alternative error function known as the **perceptron criterion** given by:

$$E_P(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \phi_n t_n$$

M represents all the misclassified patterns. We then apply stochastic gradient descent to this error function, where the change in weight vector is given by:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_{v}(\mathbf{w}) = \mathbf{w}^{(\tau)} + \eta \phi_{n} t_{n}$$

 η is the learning rate parameter and τ is an integer that indexes the steps of the algorithm. Note that as the weight vector evolves during training, the set of patterns that are misclassified will also change.

2 Practice Problems

1. Hyperplanes and Discriminant functions

Suppose we have the discriminant function $y(x) = w^T x + w_0$, and if $y(x) \ge 0$ we assign x to C_1 , and if y(x) < 0 we assign x to C_2 . Show that for any x_0, x_1 on the decision boundary $(x_0 - x_1)$ is perpendicular to the vector w.

2. Convex Hulls and Linear Seperability

Define the convex hull of a set of data points $(\{x_i\})$ as the set

$$\left\{\sum_{i}\alpha_{i}x_{i} \mid \alpha_{i} \geq 0, \sum_{i}\alpha_{i} = 1\right\}$$

Additionally, define that two sets of points are linearly separable if there exists a vector w and w_0 such that $w^T x_n + w_0 > 0$ for all points in the first set and $w^T y_n + w_0 < 0$. Show that if two sets of points $\{x_i\}$ and $\{y_i\}$ are linearly separable, their convex hulls do not intersect.

3. Perceptron Algorithm

Consider the perceptron algorithm which is a binary classification algorithm that finds the best linear hyperplane to separate the basis-transformed input values. The error function that is minimized is 0 when the algorithm correctly labels a data point and otherwise:

$$E_p(\boldsymbol{w}) = -\sum_{n \in M} \boldsymbol{w}^\mathsf{T} \phi(\boldsymbol{x}_n) t_n,$$

where we sum over the mislabeled values and $t_n = 1$ if the correct classification is C_1 and $t_n = -1$ if the correct classification is C_2 . Derive the Stochastic Gradient Descent relation to optimize the weight vector for this error function.

4. Thresholded Discriminant Functions

Suppose we have the discriminant function $y(x) = w^{\mathsf{T}}x + w_0$, but that rather than assigning x to \mathcal{C}_1 when $y(x) \geq 0$ and to \mathcal{C}_2 otherwise (as in Bishop 4.1.1), we instead assign x to \mathcal{C}_1 when $y(x) \geq \eta$ for some η and to \mathcal{C}_2 otherwise. Do we gain any generality by moving to this thresholded decision rule? Why or why not?

5. Maximizing Separation Between Classes (Bishop 4.4)

Suppose, as in Fisher's Discriminant Analysis, that we want to find the vector w that maximizes the distance between the means of two classes C_1 , C_2 that are projected onto it. That is, we want to maximize

$$w^{\mathsf{T}}(m_2 - m_1),$$
 (Bishop 4.2.2)

where $m_k = \frac{1}{N_k} \sum_{x \in C_k} x$.

- (a) Show that by maximizing the criterion above subject to the constraint that $w^Tw=1$, we find that $w_{\text{max}} \propto (m_2-m_1)$. That is, $w_{\text{max}} = \alpha(m_2-m_1)$ for some α .
- (b) Geometrically, what is the interpretation of w_{\max} ?

6. Fisher Criterion in Matrix Form (Bishop 4.5)

The Fisher Criterion is defined as

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},$$
 (Bishop 4.2.5)

where

$$m_k = \mathbf{w}^\mathsf{T} \mathbf{m}_k$$

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{\mathbf{x} \in \mathcal{C}_k} \mathbf{x}$$

$$s_k^2 = \sum_{\mathbf{x} \in \mathcal{C}_k} (\mathbf{w}^\mathsf{T} \mathbf{x} - m_k)^2$$

Show that we can write I(w) in matrix form as

$$J(w) = \frac{w^{\mathsf{T}} S_B w}{w^{\mathsf{T}} S_W w},$$

where

$$S_B = (m_2 - m_1)(m_2 - m_1)^{\mathsf{T}}$$

and

$$S_W = \sum_{x \in \mathcal{C}_1} (x - m_1)(x - m_1)^\mathsf{T} + \sum_{x \in \mathcal{C}_2} (x - m_2)(x - m_2)^\mathsf{T}$$

7. Parsimonious models

Softmax used in logistic regression is expressed as:

$$\Pr(t_k = 1 \mid x, \{w_{k'}\}_{k'=1}^K) = \frac{\exp\{w_k^\mathsf{T} x\}}{\sum_{k'=1}^K \exp\{w_{k'}^\mathsf{T} x\}}.$$

Show that the model for softmax is not parsimonious. That is, the solution w_k is not unique. Then, show how to add a contraint to make the model parsimonious.

8. Classification with Same-Mean Different-Variance Gaussians (McKay 39.4)

Consider the task of recognizing which of two Gaussian distributions a data point $\mathbf{x} = (x_1, x_2, \dots, x_D)$ comes from. We will assume that the two distributions have exactly the same mean but different variances. Let the probability that \mathbf{x} is in class C_i (where $i \in \{0,1\}$) be given by

$$\Pr(\mathbf{x}|C_i) = \prod_{j=1}^{D} \mathcal{N}(x_j|\mu_j, \sigma_{ij})$$

Show that $P(C_0|x)$ can be written in the form

$$P(C_0|x) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{y} + \theta)}$$

where y_i is an appropriate function of x_i , $y_i = g(x_i)$, and θ is some constant.

9. LED with Errors (McKay 39.5)

Consider an LED display with 7 elements numbered as shown below.

The state of the display is a vector \mathbf{x} . When the controller wants the display to show character number s, e.g. s=2, each element x_j ($j \in \{1,2,\ldots,7\}$) either adopts its intended state $c_j(s)$ with probability 1-f or is flipped with probability f. We will say $x_i=1$ if the element is on and $x_i=0$ if it isn't.

Assuming that 1) the LED displays an 8 (so that $x_i = 1$ for all $i \in \{1, 2, ..., 7\}$) and 2) you know that the true s was either a 2, 3, or 8 with prior probabilities p_2, p_3, p_8 respectively, what is the probability of s = 8. More specifically, compute $P(s = 8 | x_1 = 1, x_2 = 1, ..., x_7 = 1, s \in \{2, 3, 8\})$.

10. Logistic sigmoid function (Bishop, 4.7)

Show that the logistic sigmoid function

$$\sigma(a) = \frac{1}{1 + e^{-a}}\tag{1}$$

satisfies the property $\sigma(-a) = 1 - \sigma(a)$, and that it's inverse is given by

$$\sigma^{-1}(p) = \log \frac{p}{1-p} \tag{2}$$

If we use $\sigma(a)$ to model a probability, p, what is an interpretation of the logistic inverse function?

11. Exponential Family

A distribution is part of the exponential family if we can rewrite its density function in the following way, given a parameter p and θ , a function of p:

$$f(x|p) = h(x)e^{\theta T(x) - A(\theta)}$$

Here, h and T are functions of x, and A is a function of θ . θ is known as the natural parameter of the distribution. Show that the Bernoulli distribution is part of the exponential family, and find its natural parameter. Recall the Bernoulli PMF:

$$f(x|p) = p^x (1-p)^{1-x}$$

How does the natural parameter relate to the logistic function given below, which we use for logistic regression to solve binary classification?

$$f(x) = \frac{e^x}{1 + e^x}$$

12. Margin distances

Consider the hyperplane given by $w^Tx + b = 0$. For an arbitrary data point x, what is the distance between x and the hyperplane, in terms of w and b?