ALGEBRA LINEARE E GEOMETRIA

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, S. Di Ruzza

4º appello — 5 febbraio 2019

Esercizio 1. Sia A una matrice quadrata (non nulla) tale che $A^n = 0$, per qualche intero n > 0. Dimostrare che tutti gli autovalori di A sono nulli.

Esercizio 2. È vero o falso che una matrice triangolare superiore è sempre una matrice a scala? (la risposta deve essere adeguatamente motivata).

Esercizio 3. Dati i vettori $w_1 = (1, 0, 2, -1), w_2 = (1, 1, -1, 0) \in \mathbb{R}^4$, sia W il sottospazio vettoriale generato da w_1 e w_2 .

- (a) Determinare per quale valore di α il vettore $(1,3,\alpha,2)$ appartiene a W.
- (b) Scrivere un sistema di equazioni lineari che abbia W come insieme delle soluzioni.
- (c) Sia $U \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_3 + 3x_4 = 0$. Completare la base $\{w_1, w_2\}$ di W a una base di U.

Esercizio 4. Sia f l'endomorfismo di \mathbb{R}^3 la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & -2 \\ 1 & -2 & 5 \end{pmatrix}$$

- (a) È possibile stabilire, senza calcolare gli autovalori e autovettori, se la matrice A è simile a una matrice diagonale? (la risposta deve essere giustificata).
- (b) Si determinino il polinomio caratteristico, gli autovalori e gli autospazi della matrice A.
- (c) Si determini una base ortonormale di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.

Esercizio 5. Sia $U \subset \mathbb{R}^4$ un sottospazio vettoriale e U^{\perp} il suo ortogonale. Sapendo che U ha equazione $2x_1 - x_2 + 3x_4 = 0$,

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Si determini una base ortogonale dell'intersezione tra U e il sottospazio $V \subset \mathbb{R}^4$ di equazione $x_1 x_3 2x_4 = 0$.
- (c) Dato v = (1, 1, -3, 9) si determini il vettore $u \in U$ che rende minima la norma di v u.

Esercizio 6. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sono dati i punti P=(-2,-1,3) e Q=(2,3,1), appartenenti al piano π di equazione 2x-y+2z-3=0.

- (a) Si scrivano le equazioni parametriche della retta r passante per il punto A=(1,-2,2) e parallela alla retta per $P\in Q$.
- (b) Si scriva l'equazione cartesiana del piano σ , contenente i punti P e Q, che forma un angolo retto con il piano π .
- (c) Sul piano σ si determinino due punti R e S tali che il quadrilatero PRQS sia un quadrato (si intende che il segmento PQ è una delle due diagonali di tale quadrato).

Cognome ______ Nome _____ Matricola _____

ALGEBRA LINEARE E GEOMETRIA

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, S. Di Ruzza

4º appello — 5 febbraio 2019

Esercizio 1. Sia A una matrice quadrata (non nulla) tale che $A^n = 0$, per qualche intero n > 0. Dimostrare che tutti gli autovalori di A sono nulli.

Esercizio 2. È vero o falso che una matrice triangolare superiore è sempre una matrice a scala? (la risposta deve essere adeguatamente motivata).

Esercizio 3. Dati i vettori $w_1 = (0, 2, -1, 3), w_2 = (1, -1, 0, -1) \in \mathbb{R}^4$, sia W il sottospazio vettoriale generato da w_1 e w_2 .

- (a) Determinare per quale valore di α il vettore $(3, 1, -2, \alpha)$ appartiene a W.
- (b) Scrivere un sistema di equazioni lineari che abbia W come insieme delle soluzioni.
- (c) Sia $U \subset \mathbb{R}^4$ il sottospazio di equazione $x_2 x_3 x_4 = 0$. Completare la base $\{w_1, w_2\}$ di W a una base di U.

Esercizio 4. Sia f l'endomorfismo di \mathbb{R}^3 la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

- (a) È possibile stabilire, senza calcolare gli autovalori e autovettori, se la matrice A è simile a una matrice diagonale? (la risposta deve essere giustificata).
- (b) Si determinino il polinomio caratteristico, gli autovalori e gli autospazi della matrice A.
- (c) Si determini una base ortonormale di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.

Esercizio 5. Sia $U \subset \mathbb{R}^4$ un sottospazio vettoriale e U^{\perp} il suo ortogonale. Sapendo che U ha equazione $x_1 - 3x_3 + 2x_4 = 0$,

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Si determini una base ortogonale dell'intersezione tra U e il sottospazio $V \subset \mathbb{R}^4$ di equazione $x_2 + 2x_3 x_4 = 0$.
- (c) Dato v = (0, 2, 8, -2) si determini il vettore $u \in U$ che rende minima la norma di v u.

Esercizio 6. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sono dati i punti P=(-3,2,3) e Q=(1,0,-1), appartenenti al piano π di equazione x-2y+2z+1=0.

- (a) Si scrivano le equazioni parametriche della retta r passante per il punto A=(-1,3,1) e parallela alla retta per P e Q.
- (b) Si scriva l'equazione cartesiana del piano σ , contenente i punti P e Q, che forma un angolo retto con il piano π .
- (c) Sul piano σ si determinino due punti R e S tali che il quadrilatero PRQS sia un quadrato (si intende che il segmento PQ è una delle due diagonali di tale quadrato).

Cognome _____ Nome ____ Matricola ____

ALGEBRA LINEARE E GEOMETRIA

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, S. Di Ruzza

4º appello — 5 febbraio 2019

Esercizio 1. Sia A una matrice quadrata (non nulla) tale che $A^n = 0$, per qualche intero n > 0. Dimostrare che tutti gli autovalori di A sono nulli.

Esercizio 2. È vero o falso che una matrice triangolare superiore è sempre una matrice a scala? (la risposta deve essere adeguatamente motivata).

Esercizio 3. Dati i vettori $w_1 = (2, -1, 0, -3), w_2 = (1, 0, 1, 1) \in \mathbb{R}^4$, sia W il sottospazio vettoriale generato da w_1 e w_2 .

- (a) Determinare per quale valore di α il vettore $(7, \alpha, 3, -3)$ appartiene a W.
- (b) Scrivere un sistema di equazioni lineari che abbia W come insieme delle soluzioni.
- (c) Sia $U \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + 5x_2 x_4 = 0$. Completare la base $\{w_1, w_2\}$ di W a una base di U.

Esercizio 4. Sia f l'endomorfismo di \mathbb{R}^3 la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

- (a) È possibile stabilire, senza calcolare gli autovalori e autovettori, se la matrice A è simile a una matrice diagonale? (la risposta deve essere giustificata).
- (b) Si determinino il polinomio caratteristico, gli autovalori e gli autospazi della matrice A.
- (c) Si determini una base ortonormale di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.

Esercizio 5. Sia $U \subset \mathbb{R}^4$ un sottospazio vettoriale e U^{\perp} il suo ortogonale. Sapendo che U ha equazione $3x_1 + x_3 - 2x_4 = 0$,

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Si determini una base ortogonale dell'intersezione tra U e il sottospazio $V \subset \mathbb{R}^4$ di equazione $x_1 x_2 + 3x_4 = 0$.
- (c) Dato v = (9, -3, -1, -1) si determini il vettore $u \in U$ che rende minima la norma di v u.

Esercizio 6. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sono dati i punti P=(0,-4,-1) e Q=(2,0,3), appartenenti al piano π di equazione 2x+y-2z+2=0.

- (a) Si scrivano le equazioni parametriche della retta r passante per il punto A=(3,-1,-2) e parallela alla retta per $P\in Q$.
- (b) Si scriva l'equazione cartesiana del piano σ , contenente i punti P e Q, che forma un angolo retto con il piano π .
- (c) Sul piano σ si determinino due punti R e S tali che il quadrilatero PRQS sia un quadrato (si intende che il segmento PQ è una delle due diagonali di tale quadrato).

ALGEBRA LINEARE E GEOMETRIA

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, S. Di Ruzza

4º appello — 5 febbraio 2019

Esercizio 1. Sia A una matrice quadrata (non nulla) tale che $A^n = 0$, per qualche intero n > 0. Dimostrare che tutti gli autovalori di A sono nulli.

Esercizio 2. È vero o falso che una matrice triangolare superiore è sempre una matrice a scala? (la risposta deve essere adeguatamente motivata).

Esercizio 3. Dati i vettori $w_1 = (3, -2, 1, 0), w_2 = (1, -1, 0, -1) \in \mathbb{R}^4$, sia W il sottospazio vettoriale generato da w_1 e w_2 .

- (a) Determinare per quale valore di α il vettore $(\alpha, -1, 2, 3)$ appartiene a W.
- (b) Scrivere un sistema di equazioni lineari che abbia W come insieme delle soluzioni.
- (c) Sia $U \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_2 x_3 = 0$. Completare la base $\{w_1, w_2\}$ di W a una base di U.

Esercizio 4. Sia f l'endomorfismo di \mathbb{R}^3 la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- (a) È possibile stabilire, senza calcolare gli autovalori e autovettori, se la matrice A è simile a una matrice diagonale? (la risposta deve essere giustificata).
- (b) Si determinino il polinomio caratteristico, gli autovalori e gli autospazi della matrice A.
- (c) Si determini una base ortonormale di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.

Esercizio 5. Sia $U \subset \mathbb{R}^4$ un sottospazio vettoriale e U^{\perp} il suo ortogonale. Sapendo che U ha equazione $2x_1 - 3x_2 + x_4 = 0$,

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Si determini una base ortogonale dell'intersezione tra U e il sottospazio $V \subset \mathbb{R}^4$ di equazione $3x_1 x_2 x_3 = 0$.
- (c) Dato v = (-2, 8, -4, 0) si determini il vettore $u \in U$ che rende minima la norma di v u.

Esercizio 6. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sono dati i punti P=(-3,-3,-2) e Q=(1,-1,2), appartenenti al piano π di equazione 2x-2y-z-2=0.

- (a) Si scrivano le equazioni parametriche della retta r passante per il punto A=(-1,3,2) e parallela alla retta per $P\in Q$.
- (b) Si scriva l'equazione cartesiana del piano σ , contenente i punti P e Q, che forma un angolo retto con il piano π .
- (c) Sul piano σ si determinino due punti R e S tali che il quadrilatero PRQS sia un quadrato (si intende che il segmento PQ è una delle due diagonali di tale quadrato).