Rafael dos Reis Ferreira da Costa - 45464 - MIEI Mark: 3.8/5 (total score: 3.8/5)

		+29/1/4+
	Departamento de Matemá Criptografia	tica Faculdade de Ciências e Tecnologia — UNL 8/7/2018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1	← Marque o seu número de aluno preenchendo completamente os quadrados respectivos da grelha ao lado (■) e escreva o nome completo, o número e o curso abaixo.
	2 2 2 2 2 3 3 3 3 3 4 4 4 5 5 5 5 5	Nome: Rafael dos Reis Ferreira da
	6 6 6 6 6 7 7 7 7 7 8 8 8 8 8	Curso: MIEI. Número de aluno: 45464 O exame é composto por 10 questões de escolha múltipla. Nas questões marque a resposta certa preenchendo completamente o quadrado respec-
	99999	tivo () com caneta azul ou preta, cada resposta certa vale 0,5 valores, cada resposta errada desconta 0,2 valores e marcações múltiplas anulam a questão. Se a soma das classificações das questões de escolha múltipla der um número negativo, será atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se definir uma multiplicação tal que \mathbb{F}_n é um corpo
0.5/0.5	satisfazer. Um princípio de K	n é um número primo ímpar. n número primo. n é um número primo. de Kerckhoff são princípios que todos os sistemas criptográficos devem ferckhoff fundamental diz que a segurança de um sistema criptográfico
0.5/0.5		lo segredo do algoritmo. thino, mas não do segredo da chave.
	Questão 3 Qual destes p	rotocolos criptográficos é assimétrico?
0.5/0.5	☐ AES ☐ DES	☑ ElGamal☑ Vigenère
	Questão 4 O Discrete Logarithm Pro	$ablem\;(DLP)$ para a congruência $g^x\equiv h\;(\operatorname{mod} p)$ é:
0.5/0.5	Determine p , dados g , h Determine g , dados h , g	

4

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam número secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ par enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemera</i> Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocole criptográfico de <i>ElGamal</i> que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 Duas mensagens podem ser codificadas pelo mesmo ciphertext. A encriptação torna-se lenta. A quebra do protocolo é fácil. Dois ciphertexts podem encriptar a mesma mensagem.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
0.5/0.5	 O protocolo pode ser quebrado em tempo polinomial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	A probabilidade de um plaintext é independente do ciphertext. O protocolo pode ser quebrado em tempo exponencial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e divisão é difícil. Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
0.5/0.5	Mulitplicação é fácil e factorização é difícil.
	\square Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
-0.2/0.5	\square A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	$lacksquare$ A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	\boxtimes A solução do <i>DLP</i> é mais complicada sobre curvas elípticas do que em \mathbb{F}_{p}^{*} .

Raquel Rodrigues Ferreira - 49847 - MIEI Mark: 2.2/5 (total score: 2.2/5)

+82/1/18+

	Departamento de Matemá Criptografia	tica 8/7/2	Faculdade de Ciências e Tecnologia — UNL 2018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2		imero de aluno preenchendo completamente os qua- grelha ao lado () c escreva o nome completo, o ixo.
	3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6	Nome: Raque	1 Rodrigues Ferreiro Número de aluno: 49843
	7 7 7 7 8 8 8 8 8 8 9 9 9 9	marque a resposta cer tivo () com caneta cada resposta errada o questão. Se a soma da	por 10 questões de escolha múltipla. Nas questões rta preenchendo completamente o quadrado respecazul ou preta, cada resposta certa vale 0,5 valores, desconta 0,2 valores e marcações múltiplas anulam a se classificações das questões de escolha múltipla der será atribuído 0 valores como resultado final.
	Questão 1 Considere o g		definir uma multiplicação tal que \mathbb{F}_n é um corpo
-0.2/0.5			n é um número primo impar. n é uma potência de um número primo. cípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
-0.2/0.5	só da complexidade da só do segredo do algorit do segredo da chave e d só da chave, mas não de	thmo, mas não do seg lo segredo do algoritn	uo.
-0.2/0.5	Questão 3 Qual destes proposed Vigenère DES	rotocolos criptográfico	os é assimétrico? AES ElGamal
	Questão 4 O Discrete Logarithm Pro	blem (DLP) para a c	ongruência $g^x \equiv h \pmod p$ é:
0.5/0.5			Determine p , dados g , $h \in x$. Determine x , dados g , $h \in p$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
-0.2/0.5	A quebra do protocolo é fácil. A encriptação torna-se lenta. Dois ciphertexts podem encriptar a mesma mensagem.
	Duas mensagens podem ser codificadas pelo mesmo ciphertext. Questão 8 Um protocolo criptográfico tem a propriedade de total secrecu se e só ser
0.5/0.5	 Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se: O protocolo pode ser quebrado em tempo polinomial. O protocolo pode ser quebrado em tempo exponencial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	A probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0.5/0.5	 Mulitplicação é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0.5/0.5	 A operação de "adição" é mais fácil sobre curvas elípticas do que em F_p*. A solução do DLP é mais complicada sobre curvas elípticas do que em F_p*. A exponenciação é mais rápida sobre curvas elípticas do que em F_p*. A operação de "adição" é mais complicada sobre curvas elípticas do que em F_p*.
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

Ricardo Boto Semblano da Silva - 41951 - MIEI Mark: 3.3/5 (total score: 3.3/5)

+91/1/60+

	Departamento de Matemá Criptografia	itica 8/7/2	Faculdade de Ciências e Tecnologia — UNL 2018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	drados respectivos da número e o curso aba	imero de aluno preenchendo completamente os qua- grelha ao lado () e escreva o nome completo, o ixo.
	3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6	Nome:	
	7 7 7 7 7 8 8 8 8 8 8 9 9	marque a resposta certivo () com caneta cada resposta errada o questão. Se a soma da	por 10 questões de escolha múltipla. Nas questões rta preenchendo completamente o quadrado respec- azul ou preta, cada resposta certa vale 0,5 valores, lesconta 0,2 valores e marcações múltiplas anulam a as classificações das questões de escolha múltipla der será atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, e só se:	rupo Z/nZ. Pode-se	definir uma multiplicação tal que \mathbb{F}_n é um corpo
0.5/0.5		m número primo.	n é um número par. n é um número primo ímpar.
			cípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
0.5/0.5	só do segredo do algorido só da complexidade da do segredo da chave e do só da chave, mas não de	encriptação. lo segredo do algorita	no.
	Questão 3 Qual destes pa	rotocolos criptográfic	os é assimétrico?
0.5/0.5	☐ Vigenère ☐ AES		ElGamal DES
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	eongruência $g^{oldsymbol{ au}}\equiv h\ (\mathrm{mod} p)$ é:
0.5/0.5			Determine p , dados g , $h \in x$. Determine x , dados g , $h \in p$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0/0.5	\boxtimes A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. \square A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. \square A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$. \square A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.2/0.5	 ☐ A encriptação torna-se lenta. ☑ Dois ciphertexts podem encriptar a mesma mensagem. ☐ A quebra do protocolo é fácil.
	 Duas mensagens podem ser codificadas pelo mesmo ciphertext. Questão 8 Um protocolo criptográfico tem a propriedade de total secrecu, se. e só se:
	 Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se: O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
0.5/0.5	A probabilidade de um plaintext é independente do ciphertext. O protocolo pode ser quebrado em tempo exponencial. O protocolo pode ser quebrado em tempo polinomial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0.5/0.5	 Mulitplicação é fácil e factorização é difícil. Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0.5/0.5	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	☐ A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* . A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	•

Ricardo João Duarte Pinheiro - 41631 - MIEI Mark: 1.4/5 (total score: 1.4/5)

•			+68/1/46	<u>;</u> +
	Departamento de Matemá Criptografia	itica 8/7/2	Faculdade de Ciências e 018	Tecnologia — UNI Exame Final
	Número de almo 0 0 0 0 0 1 1 1 1		imero de aluno preenchendo o grelha ao lado () e escrevixo.	
	2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4	Nome: Rica ob	João Quarte P	linhein O
	5 5 5 5 6 6 6 6 7 7 7 7 7	Curso: HIEI	Número de aluno:	
	8 8 8 8 8 9 9 9 9 9	marque a resposta cer tivo () com caneta cada resposta errada d questão. Se a soma da	por 10 questões de escolha n rta preenchendo completamer azul ou preta, cada resposta desconta 0,2 valores e marcações es classificações das questões de será atribuído 0 valores como	nte o quadrado respec certa vale 0,5 valores ões múltiplas anulam a de escolha múltipla de
	Questão 1 Considere o g se, e só se:	grupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se o	definir uma multiplicação ta	al que \mathbb{F}_n é um corpo
-0.2/0.5	n é um número primo n é um número primo.		n é uma potência de n é um número par.	um número primo.
	Questão 2 Os princípios satisfazer. Um princípio de F deve depender:		cípios que todos os sistemas diz que <i>a segurança de um</i>	
0/0.5	 do segredo da chave e ≤ só da chave, mas não d só da complexidade da só do segredo do algori 	do segredo do algoritm encriptação.	ю.	**
	Questão 3 Qual destes p	protocolos criptográfico	os é assimétrico?	
0.5/0.5	ElGamal Vigenère		☐ AES ☐ DES	
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	ongruência $g^x \equiv h \pmod{p}$	é:
0.5/0.5	Determine h , dados g , Determine x , dados g ,			

-0.2/0.5	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0/0.5	 □ A quebra do protocolo é fácil. ☑ Duas mensagens podem ser codificadas pelo mesmo ciphertext. □ A encriptação torna-se lenta. □ Dois ciphertexts podem encriptar a mesma mensagem.
0.5/0.5	 Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se: O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts. O protocolo pode ser quebrado em tempo exponencial. O protocolo pode ser quebrado em tempo polinomial. A probabilidade de um plaintext é independente do ciphertext.
0/0.5	Questão 9 — O funcionamento do RSA é baseado no seguinte: \square Exponenciação em \mathbb{F}_p^* é fácil e o $Discrete$ $Logarithm$ $Problem$ é difícil. \square Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil. \square Mulitplicação é fácil e divisão é difícil. \square Mulitplicação é fácil e factorização é difícil.
-0.2/0.5	 Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente): A operação de "adição" é mais fácil sobre curvas elípticas do que em F_p*. A exponenciação é mais rápida sobre curvas elípticas do que em F_p*. A operação de "adição" é mais complicada sobre curvas elípticas do que em F_p*. A solução do DLP é mais complicada sobre curvas elípticas do que em F_p*.

Ricardo Miguel Gonçalves Leitao - 47296 - MIEI Mark: 2.2/5 (total score: 2.2/5)

•			+11/1/40+
Departar Criptogra	nento de Matemática afia	Faculdade 8/7/2018	e de Ciências e Tecnologia — UNI Exame Final
	0 0 0 drados		no preenchendo completamente os quado () e escreva o nome completo, o
2 2 1 3 3 (4 (5 5 (3 3 3 4 4 4 4	1105	Gonfaluer Leitat
6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 5	7 7 7 O exan 8 8 8 marque tivo (cada re questão	ne é composto por 10 quest a resposta certa preenchen) com caneta azul on preta sposta errada desconta 0,2 v . Se a soma das classificaçõe	ões de escolha múltipla. Nas questões do completamente o quadrado respecto, cada resposta certa vale 0,5 valores, alores e marcações múltiplas anulam a es das questões de escolha múltipla der o 0 valores como resultado final.
Questão : sc, e só se:	1 Considere o grupo Z/		nultiplicação tal que \mathbb{F}_n é um corpo
-0.2/0.5	un número par. m número primo.		número primo ímpar. na potência de um número primo.
Questão 2 satisfazer. deve depend	Um princípio de Kerckhofl	choff são princípios que too fundamental diz que a seg	los os sistemas criptográficos devem gurança de um sistema criptográfico
0.5/0.5 do seg	complexidade da encripta gredo da chave e do segred chave, mas não do segred segredo do algorithmo, m	do do algoritmo. o do algoritmo.	e.
Questão 3	Qual destes protocolo	s criptográficos é assimétr	ico?
0.5/0.5 ElGar Vigen		☐ DES ☐ AES	
Questão 4 O Discre	ete Logarithm Problem (D	LP) para a congruência g	$x \equiv h \pmod{p}$ é:
0.5/0.5	mine g , dados h , $p \in x$. nine x , dados g , $h \in p$.	Determi	ine p , dados g , $h \in x$. ine h , dados g , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
-0.2/0.5	 A quebra do protocolo é fácil. □ Dois ciphertexts podem encriptar a mesma mensagem. ☑ Duas mensagens podem ser codificadas pelo mesmo ciphertext. □ A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
-0.2/0.5	O protocolo pode ser quebrado em tempo polinomial.
	A probabilidade de um plaintext é independente do ciphertext.
	O protocolo pode ser quebrado em tempo exponencial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e factorização é difícil.
-0.2/0.5	Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e divisão é difícil.
	Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
	\square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
0.5/0.5	\square A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .