INTEGER-ANTIMAGIC SPECTRA OF FAN, WHEEL AND GEAR GRAPHS

Wai Chee Shiu*

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

Abstract

Let A be a non-trivial abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling $f:E(G)\to A\setminus\{0\}$ such that the induced vertex labeling $f^+:V(G)\to A$, defined by $f^+(v)=\sum_{uv\in E(G)}f(uv)$, is injective. The integer-antimagic spectrum of a graph G is the set $IAM(G)=\{k\mid G \text{ is }\mathbb{Z}_k\text{-antimagic and }k\geq 2\}$. In this article, we provide a constructive proof for a join graph $G\vee K_1$ obtained from a given graph G with a special edge labeling. In particular, we determine the integer-antimagic spectra of fan and wheel graphs. The integer-antimagic spectrum of gear graph is also determined.

AMS Subject Classification: Primary 05C78; Secondary 05C15

Keywords: Group antimagic, fan graph, wheel graph, gear graph

1. Introduction and Some Known Results

Let G be a connected simple graphs. For any nontrivial abelian group A (written additively), let $A^* = A \setminus \{0\}$, where 0 is the additive identity of A. Let a mapping $f: E(G) \to A^*$ be an edge labeling of G and $f^+: V(G) \to A$ be its induced labeling, which is defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$. If there exists an edge labeling f whose induced labeling f^+ on V(G) is injective, then we say that f is an A-antimagic labeling and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the set $IAM(G) = \{k \mid G \text{ is } \mathbb{Z}_k\text{-antimagic and } k \geq 2\}$. Clearly $IAM(G) \subseteq \{k \mid k \geq |V(G)|\}$.

The concept of A-antimagicness property for a graph G (introduced in [1]) naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling is a constant map) (for example, see [5, 6]). It is also a variation of anti-magic labeling problem

^{*}E-mail address: wcshiu@math.hkbu.edu.hk.

(for example, see [10]) and edge-graceful labeling problem (for example, see [11]). The integer-antimagic spectra of some famous classes of graphs were determined [1, 3, 8, 7, 9].

Lemma 1.1 ([1, Lemma 1]). For $m \ge 1$, a graph of order 4m + 2 is not \mathbb{Z}_{4m+2} -antimagic.

For integers $a \le b$, let [a, b] denote the set of integers from a to b, inclusive.

Proposition 1.2. All elements in [a,b] are distinct after taking modulo k for $k \ge b-a+1$.

Let f be an edge labeling of G and f^+ be its induced vertex labeling. Let

$$I_f(G) = \{ f^+(v) \mid v \in V(G) \}.$$

In order to check whether the graph G is \mathbb{Z}_k -antimagic, it suffices to check whether $|I_f(G)| = |V(G)|$.

There are antimagic labelings for paths and cycles described in [1] and a minor correction described in [9]. For those labelings, we have the following corollaries.

Corollary 1.3 (Corollary 2.5 [9]). For $m \ge 1$, there is an edge labeling g for each of the following paths such that $I_g(P_{4m}) = [1, 4m]$, $I_g(P_{4m+1}) = [2, 4m+2]$, $I_g(P_{4m+2}) = [1, 4m+3] \setminus \{2\}$, and $I_g(P_{4m-1}) = [1, 4m-1]$.

Corollary 1.4 (Corollary 2.6 [9]). For $n \ge 1$, there is an edge labeling f for each of the following cycles such that $I_f(C_{4n-1}) = [3,4n+1]$, $I_f(C_{4n}) = [3,4n+2]$, $I_f(C_{4n+1}) = [2,4n+2]$ and $I_f(C_{4n+2}) = [3,4n+5] \setminus \{4n+2\}$.

For $S \subset \mathbb{Z}$ and $a \in \mathbb{Z}$, we define the set $a + S = \{a + s \mid s \in S\}$.

Lemma 1.5. Let G be a graph with a perfect matching. Let $g: E(G) \to \mathbb{Z}$, $a \in \mathbb{Z}$. There is a labeling h such that $I_h(G) = a + I_g(G)$.

Proof. Let M be a perfect matching of G. Define h(e) = a + g(e) if $e \in M$ and h(e) = g(e) if $e \notin M$. Then h is the required labeling.

Hence the following results are special cases of Lemma 1.5.

Corollary 1.6 (Lemma 3.2 [8]). Suppose that $n \ge 2$ and let $g : E(C_{2n}) \to \mathbb{Z}$, $c \in \mathbb{Z}$. There is a labeling h such that $I_h(C_{2n}) = c + I_g(C_{2n})$, where the range of h is a subset of $[1, n+2] \cup [c+2, c+n+1]$.

Corollary 1.7 (Lemma 3.1 [9]). Let $g: E(P_{2n}) \to \mathbb{Z}$ be a labeling and $c \in \mathbb{Z}$. There exists a labeling h such that $I_h(P_{2n}) = c + I_g(P_{2n})$, where the range of h is a subset of $[1, n+1] \cup [c+1, c+n]$.

Theorem 1.8 (Theorem 3.7 [8]). Suppose $f : E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 1 \pmod{4}$ such that $f^+ : V(G) \to [b-p+1,b]$ is bijective. Then, b must be even.

Theorem 1.9 (Theorem 3.3 [8]). Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $1 \le b-p < a < b$. Then, b-a is odd.

Theorem 1.10 (Theorem 3.9 [8]). Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order $p \equiv 3 \pmod{4}$ such that $f^+: V(G) \to [b-p+1,b]$ is bijective. Then, b must be odd.

2. Useful Lemmas

In this section, we will construct a group-antimagic join graph from a given graph with a special edge labeling.

Lemma 2.1. Suppose $f: E(G) \to [1,4m-2]$ is a labeling of a graph G of order 4m-1 such that $f^+: V(G) \to [c,c+4m-2]$ is bijective, where $1 \le c \le 4m-1$. Then the join graph $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \ge 4m$.

Proof. Let u be the vertex of K_1 . By Theorem 1.10, c must be odd. Let c = 2r + 1 for some $0 \le r \le 2m - 1$. Then $r + 2m \in [2r + 1, 2r + 4m - 1]$. There is a unique vertex $v \in V(G)$ such that $f^+(v) = r + 2m$. We shall extend the labeling f to the graph $G \vee K_1$ and denote the new labeling by g. That is, g(e) = f(e) for all $e \in E(G)$.

For $w \neq v$, g(uw) = 2m - r if $2r + 1 \leq f^+(w) \leq r + 2m - 1$; and g(uw) = -2m + r if $r + 2m + 1 \leq f^+(w) \leq 4m - 1$; g(uw) = -1 if $f^+(w)$ is odd and $f^+(w) \geq 4m$; and g(uw) = 1 if $f^+(w)$ is even and $f^+(w) \geq 4m$. Finally, let g(uv) = r + 2m.

Then one can check that $I_g(G \vee K_1) = [2r+1, 2r+4m]$. Note that $2m-r \not\equiv 0 \pmod{k}$ for k > 4m.

Thus by Proposition 1.2, $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \geq 4m$.

Lemma 2.2. Suppose $f: E(G) \to [1, p-1]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [1, p]$ is bijective. Then the join graph $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \ge p+1$.

Proof. Let u be the vertex of K_1 .

Let $v \in V(G)$ such that $f^+(v) = p$. Then let g(uv) = 2 and g(uw) = 1 for $w \neq v$. One can check that $I_g(G \vee K_1) = [2, p+2]$.

Alternatively, let $v' \in V(G)$ such that $f^+(v') = 1$. Then let h(uv') = p - 1 and h(uw) = -1 for $w \neq v'$. One can check that $I_h(G \vee K_1) = [0, p]$.

Hence $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \geq p+1$.

Lemma 2.3. Suppose $f: E(G) \to [1,4m-1]$ is a labeling of a graph G of order 4m such that $f^+: V(G) \to [c,c+4m-1]$ is bijective, where c is even and $2 \le c \le 4m-1$. Then the join graph $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \ge 4m+1$.

Proof. Let *u* be the vertex of K_1 . Let c = 2r for some $1 \le r \le 2m - 1$.

Suppose r is even. Since $r+2m \in [2r+1,2r+4m-1]$, there is a unique vertex $v \in V(G)$ such that $f^+(v) = r+2m$. Similar to the proof of Lemma 2.1 we extend f to g. For vertex w with $c \le f^+(w) \le r+2m-1$, define g(uw)=1 if $f^+(w)$ is even and g(uw)=-1 if $f^+(w)$ is odd; for vertex w with $r+2m+1 \le f^+(w) \le 2r+4m-1$, define g(uw)=1 if $f^+(w)$ is odd and g(uw)=-1 if $f^+(w)$ is even. Finally, define g(uv)=r+2m-1. Then $g^+(v)=2r+4m-1$ and $g^+(u)=r+2m$. Other vertex labels cover $[2r,r+2m-1] \cup [r+2m+1,2r+4m-2] \cup \{2r+4m\}$. Hence $I_g(G \vee K_1)=[2r,2r+4m]$. Thus g is a \mathbb{Z}_k -antimagic labeling for $G \vee K_1$.

Suppose r is odd. There is a unique vertex $v \in V(G)$ such that $f^+(v) = r + 2m - 1$. For vertex $w \neq v$, define g(uw) = 1 if $f^+(w)$ is even and g(uw) = -1 if $f^+(w)$ is odd. Finally, define g(uv) = r + 2m + 1. Then $g^+(v) = 2r + 4m$ and $g^+(u) = r + 2m$. Other vertex labels cover $[2r, r + 2m - 1] \cup [r + 2m + 1, 2r + 4m - 1]$. Hence $I_g(G \vee K_1) = [2r, 2r + 4m]$. Thus g is a \mathbb{Z}_k -antimagic labeling for $G \vee K_1$.

Lemma 2.4. Suppose $f: E(G) \to [1,4m+1]$ is a labeling of a graph G of order 4m+2 such that $f^+: V(G) \to [c,c+4m+2] \setminus \{a\}$ is bijective, where $m \ge 1$, c is odd and $1 \le c < a < c+4m+2$. If $2c \le a$, then the join graph $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \ge 4m+3$.

Proof. From Theorem 1.9 we know that a is even. Note that, the condition $2c \le a$ implies that $a/2 \in [c, c+4m+2]$.

Let u be the vertex of K_1 . There are vertices $y, v_1, v_2 \in V(G)$ such that $f^+(y) = a/2$, $f^+(v_1) = a - 1$ and $f^+(v_2) = a + 1$. Note that y, v_1 and v_2 are distinct.

Suppose a/2 is even. Choose $x \in V(G)$ such that $f^+(x) = a/2 - 1$. Define g(ux) = a/2 + 1, g(uy) = -1, $g(uv_1) = 2$, $g(uv_2) = -2$. For other unlabeled edges, define g(uw) = 1 for odd $f^+(w)$ from c to a-2 and for even $f^+(w)$ from a+2 to c+4m+2; otherwise labeled by -1.

Suppose a/2 is odd and greater than 1. Choose $x \in V(G)$ such that $f^+(x) = a/2 + 1$. Define g(ux) = a/2 - 1, g(uy) = 1, other unlabeled edges are defined as the previous case.

If a/2 = 1, then c = 1. Let $v_1, v_2 \in V(G)$ such that $f^+(v_1) = 1$ and $f^+(v_2) = 3$. Define $g(uv_1) = 2$ and $g(uv_2) = -1$; for $w \notin \{v_1, v_2\}$, define g(uw) = 1 for even $f^+(w)$ and g(uw) = -1 for odd $f^+(w)$.

Lemma 2.5. Suppose $f: E(G) \to [1,4m]$ is a labeling of a graph G of order 4m+1 such that $f^+: V(G) \to [c,c+4m]$ is bijective, where $2 \le c \le 4m$. Then the join graph $G \vee K_1$ is \mathbb{Z}_k -antimagic for $k \ge 4m+3$.

Proof. By Theorem 1.8 we know that c = 2r for some $r \ge 1$. Let u be the vertex of K_1 .

Suppose r is even. Let $v_1, v_2 \in V(G)$ such that $f^+(v_1) = r + 2m$ and $f^+(v_2) = 2r + 4m$. Define $g(uv_1) = r + 2m$ and $g(uv_2) = 2$ first. Then $g^+(v_1) = 2r + 4m$ and $g^+(v_2) = 2r + 4m + 2$. Let $w_1, w_2, w_3 \in V(G)$ such that $f^+(w_1) = r + 2m + 1$, $f^+(w_2) = r + 2m + 2$ and $f^+(w_3) = 2r + 4m - 1$. Define $g(uw_1) = g(uw_2) = -1$ and $g(uw_3) = 2$. Then $g^+(w_1) = r + 2m$, $g^+(w_2) = r + 2m + 1$, $g^+(w_3) = 2r + 4m + 1$. For vertex $w \notin \{v_1, v_2, w_1, w_2, w_3\}$, define g(uw) = 1 for even $f^+(w)$ with $2r \le f^+(w) \le r + 2m - 2$; g(uw) = -1 for odd $f^+(w)$ with $2r + 1 \le f^+(w) \le r + 2m - 1$, and g(uw) = -1 for even $f^+(w)$ with $r + 2m + 4 \le f^+(w) \le 2r + 4m - 2$; g(uw) = 1 for odd $f^+(w)$ with $r + 2m + 3 \le f^+(w) \le 2r + 4m - 3$. Then $g^+(u) = r + 2m + 2$ and the set of those $g^+(w)$'s is $[2r, r + 2m - 1] \cup [r + 2m + 3, 2r + 4m - 2]$. Hence $I_g(G \lor K_1) = [2r, 2r + 4m + 2] \setminus \{2r + 4m - 1\}$.

Suppose r is odd. Let $v_1, v_2 \in V(G)$ such that $f^+(v_1) = r + 2m - 1$ and $f^+(v_2) = 2r + 4m$. Define $g(uv_1) = r + 2m + 1$ and $g(uv_2) = 2$ first. Then $g^+(v_1) = 2r + 4m$ and $g^+(v_2) = 2r + 4m + 2$. Let $w_1, w_2, w_3 \in V(G)$ such that $f^+(w_1) = r + 2m$, $f^+(w_2) = r + 2m + 1$ and $f^+(w_3) = r + 2m + 2$. Define $g(uw_1) = 2$, $g(uw_2) = -1$ and $g(uw_3) = -3$. Then $g^+(w_1) = r + 2m + 2$, $g^+(w_2) = r + 2m$, $g^+(w_3) = r + 2m - 1$. For vertex $w \notin \{v_1, v_2, w_1, w_2, w_3\}$, define g(uw) = 1 for even $f^+(w)$ and g(uw) = -1 for odd $f^+(w)$. Then $g^+(u) = r + 2m + 1$ and the set of those $g^+(w)$'s is $[2r, r + 2m - 2] \cup [r + 2m + 3, 2r + 4m - 1]$. Hence $I_g(G \vee K_1) = [2r, 2r + 4m + 2] \setminus \{2r + 4m + 1\}$.

But for c = 2, we can extend f to a simpler labeling h as follows:

Let $v' \in V(G)$ such that $f^+(v') = 4m + 2$. Define h(uv') = 3 and h(uw) = 1 for $w \neq v'$. Then $I_h(G \vee K_1) = [3, 4m + 5] \setminus \{4m + 4\}$. By Proposition 1.2 we have the lemma.

3. Applications

The *fan graph* F_n of order n is the join graph $P_{n-1} \vee K_1$. The *wheel graph* W_n of order n is the join graph $C_{n-1} \vee K_1$.

Theorem 3.1. For $m \ge 1$, the fan graph F_{4m} and the wheel graph W_{4m} are \mathbb{Z}_k -antimagic for $k \ge 4m$.

Proof. Combining Lemma 2.1, and Corollary 1.3 or 1.4, we have the theorem. \Box

Example 3.1. Following are the labelings of P_7 and C_7 defined in [1], respectively.

According to the proof of Lemma 2.1 we have labelings of F_8 and W_8 below, respectively.

Following is a labeling for F_8 defined in the proof of Lemma 2.2.

These labelings respectively induce \mathbb{Z}_k -antimagic labelings for F_8 and W_8 , for $k \ge 8$.

Theorem 3.2. For $m \ge 1$, the fan graph F_{4m+1} and the wheel graph W_{4m+1} are \mathbb{Z}_k -antimagic for $k \ge 4m+1$.

Proof. Combining Lemma 2.2 and Corollary 1.3 we show that F_{4m+1} is \mathbb{Z}_k -antimagic for all $k \ge 4m+1$.

From Corollary 1.4 and Corollary 1.6, there is a labeling h such that $I_h(C_{4m}) = [4, 4m + 3]$. By Lemma 2.3 we obtain that W_{4m+1} is \mathbb{Z}_k -antimagic for all $k \ge 4m + 1$.

Example 3.2. Following are the original labelings of P_8 and C_8 defined in [1], and a modified labeling of C_8 , respectively.

According to the proofs of Lemmas 2.2 and 2.3 we have labelings of F_9 and W_9 below, respectively.

Theorem 3.3. For $m \ge 1$, the fan graph F_{4m+3} and the wheel graph W_{4m+3} are \mathbb{Z}_k -antimagic for $k \ge 4m+3$.

Proof. Combining Corollary 1.3 or 1.4 and Lemma 2.4 we have the theorem. \Box

Example 3.3. Following are the labelings of P_{10} and C_{10} defined in [1], respectively.

According to the proof of Lemma 2.4 we have labelings of F_{11} and W_{11} below, respectively.

Theorem 3.4. For $m \ge 1$, the fan graph F_{4m+2} and the wheel graph W_{4m+2} are \mathbb{Z}_k -antimagic for $k \ge 4m+3$.

Proof. Combining Corollary 1.3 or 1.4 and Lemma 2.5 we have the theorem. \Box

Example 3.4. Following are the labelings of P_9 and C_9 defined in [1], respectively.

According to the proof of Lemma 2.5 we have (general) labelings of F_{10} and W_{10} below, respectively.

According to the proof of Lemma 2.5 we have simpler labelings of F_{10} and W_{10} below, respectively.

Combining the above results, we summarize as follows:

Theorem 3.5. For $n \ge 4$,

$$IAM(W_n) = IAM(F_n) = \begin{cases} [n, \infty), & \text{if } n \not\equiv 2 \pmod{4}; \\ [n+1, \infty), & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Note that $IAM(F_3) = IAM(C_3) = [4, \infty)$ (see [1]).

4. Further Results

Let $V(W_p) = \{u, v_1, \dots, v_{p-1}\}$, where $v_1v_2 \cdots v_{p-1}v_1$ is a (p-1)-cycle and u is the hub (or the center) of the wheel, i.e., $\deg(u) = p-1$. The edge uu_i , $1 \le i \le p-1$ is called a spoke of the wheel. Let $S = \{uv_i \mid 1 \le i \le p-1\}$ be the set of all spokes. Let $\varnothing \ne A \subset S$. The graph $W_p(A) = W_p - (S \setminus A)$ is called a broken wheel graph (or broken wheel, for short) [4]. Let k be a factor of p-1 with $k \ge 2$. Let $A_k = \{uv_{ik+1} \mid 0 \le i \le (p-1)/k-1\}$. The graph $RW_p(k) = W_p(A_k)$ is called a regular broken wheel. Here, we only focus on $RW_{2n+1}(2)$. In some articles, for example [2], $RW_{2n+1}(2)$ is also called a gear graph and denoted by G_n . For simplicity, we shall use this notation for the rest of this paper.

Theorem 4.1. *For* $n \ge 2$, IAM $(G_n) = [2n+1, \infty)$.

Proof. For convenience, let $v_{2n+1} = v_1$. For $1 \le i \le 2n$, define

$$f(uv_i) = 1$$
 for even i and $f(v_iv_{i+1}) = \begin{cases} i, & i \text{ is odd;} \\ n, & i \text{ is even.} \end{cases}$

Then $f^+(u) = n$ and $f^+(v_i) = n + i$ for $1 \le i \le 2n$. Thus $I_f(G_n) = [n, 3n]$ and hence G_n is \mathbb{Z}_k -antimagic for $k \ge 2n + 1$.

Example 4.1. Following is the labeling of G_5 .

Corollary 4.2. For $n \ge 2$, $IAM(G_n \lor K_1) = [2n+2,\infty)$ for odd n and $IAM(G_n \lor K_1) = [2n+3,\infty)$ for even n.

Proof. This follows from Lemmas 2.1 and 2.5.

Let G and H be connected simple graphs. Let $u \in V(G)$ and $v \in V(H)$. The graph $G^{uv}H$ is obtained from G and H by add a new edge (bridge) uv. By using the constructions described in [9, 8] we may construct many \mathbb{Z}_k -antimagic graphs of the form $G^{uv}H$, where H is either a path, a cycle, or a complete graph.

References

- [1] Chan W. H., Low R. M. and Shiu W. C., On group-antimagic graphs, *Congr. Numer.*, **217** (2013), 21–31.
- [2] Lau G. C. and Shiu W. C., On SD-prime labeling of graphs, to appear in *Utilitas Math*.
- [3] Roberts D. and Low R. M., Group-antimagic labelings of multi-cyclic graphs, *Theory and Applications of Graphs*, **3** (1) (2016), Art. 6.
- [4] Shiu W. C. and Lau G. C., Some results on *k*-edge-magic broken wheel graphs, *J. Graph Labeling*, **1** (2015), 65–79.
- [5] Shiu W. C. and Low R. M., Group magicness on complete *N*-partite graphs, *JCMCC*, **58** (2006), 129–134.
- [6] Shiu W. C. and Low R. M., Group-magic labelings of graphs with deleted edges, *Australas. J. Combin.*, **57** (2013), 3–19.
- [7] Shiu W. C. and Low R. M., Integer-antimagic spectra of complete bipartite graphs and complete bipartite graphs with a deleted edge, *Bull. of ICA*, **76** (2016), 54–68.
- [8] Shiu W. C. and Low R. M., The integer-antimagic spectrum of dumbbell graphs, *Bull.* of *ICA*, 77 (2016), 89–110.
- [9] Shiu W. C., Sun P. K. and Low R. M., The integer-antimagic spectra of tadpole and lollipop graphs, *Congr. Numer.*, **225** (2015), 5–22.
- [10] Wang T-M. and Hsiao C-C., On anti-magic labeling for graph products, *Discrete Math.*, **308** (2008), 3624–3633.
- [11] Wang T-M., Hsiao C-C. and Lee S-M., A note on edge-graceful spectra for square of paths, *Discrete Math.*, **308** (2008), 5878–5885.

Received: January 11, 2017; Accepted: December 18, 2017