DM - CORRECTION

Exercice 1.

1. $(b) \Rightarrow (a)$ Soit $(M_n)_{n \in \mathbb{N}}$ une suite décroissante de sous-A-modules de M. L'ensemble $E := \{M_n \mid n \in \mathbb{N}\}$ est un ensemble non vide de sous-A-modules de M. Par hypothèse, E admet un élément minimal M_{n_0} pour un $n_0 \in \mathbb{N}$. Par définition d'un élement minimal, on a alors

$$\forall n \in \mathbb{N}, \ M_{n_0} \subset M_n$$

En particulier, pour $n \ge n_0$, on a $M_{n_0} \subset M_n$ et $M_n \subset M_{n_0}$ (car la suite $(M_n)_{n \in \mathbb{N}}$ est décroissante). On a donc $M_n = M_{n_0}$ pour $n \ge n_0$, autrement dit la suite $(M_n)_{n \in \mathbb{N}}$ est stationnaire (à partir du rang n_0), d'où (a).

- $(a) \Rightarrow (b)$ On raisonne par contraposée. Soit E un ensemble non vide de sous-A-modules de M qui n'admette pas d'élément minimal, et soit $M_0 \in E$ (on peut prendre un tel élément car E est non-vide). Comme M_0 n'est pas minimal, il existe dans $E \setminus \{M_0\}$ un M_1 tel que $M_1 \subsetneq M_0$. Comme à son tour M_1 n'est pas minimal, il existe $M_2 \in E \setminus \{M_0, M_1\}$ tel que $M_2 \subsetneq M_1$. On construit ainsi par récurrence (et axiome du choix) une suite $(M_n)_{n \in \mathbb{N}}$ qui est strictement décroissante pour l'inclusion. Cela contredit la propriété (a).
- 2. Soit E un A-espace vectoriel de dimension finie. Soit $(E_n)_{n\in\mathbb{N}}$ une suite décroissante de sous-espaces vectoriels de E. La suite $(\dim E_n)_{n\in\mathbb{N}}$ est une suite décroissante d'entiers positifs : elle est stationnaire. Il existe donc n_0 tel que dim $E_n = \dim E_{n_0}$ pour $n \ge n_0$. Comme on a par hypothèse que $E_n \subset E_{n_0}$ pour $n \ge n_0$, l'égalité des dimensions entraı̂ne $E_n = E_{n_0}$ pour $n \ge n_0$. La suite $(E_n)_{n\in\mathbb{N}}$ est donc stationnaire et E est artinien.
- 3. Pour $n \ge 2$, l'anneau $\mathbb{Z}/n\mathbb{Z}$ est fini et non nul, il admet en particulier un nombre fini d'idéaux. Les sous- $\mathbb{Z}/n\mathbb{Z}$ -modules de $\mathbb{Z}/n\mathbb{Z}$ sont exactement ses idéaux. L'ensemble des sous- $\mathbb{Z}/n\mathbb{Z}$ -modules de $\mathbb{Z}/n\mathbb{Z}$ est donc fini. On sait qu'une suite (infinie) et strictement décroissante doit prendre une infinité de valeurs, donc la condition (a) est vérifiée ici, et $\mathbb{Z}/n\mathbb{Z}$ est artinien.
- 4.(a) Soit $N \leq M$ un sous-A-module de M. Si E est un ensemble non vide de sous-A-modules de N, il s'agit a foriori d'un ensemble non vide de sous-A-modules de M. L'ensemble E admet donc un élément minimal pour l'inclusion car M est Artinien. La condition (b) est donc vérifiée pour N, qui est donc artinien.
- (b) Soit $N \leq M$ un sous-A-module de M. On considère le quotient P := M/N ainsi que la projection canonique $\pi : M \to P$. Soit $(P_n)_{n \in \mathbb{N}}$ une suite décroissante de sous-A-modules de P. La suite $(\pi^{-1}(P_n))_{n \in \mathbb{N}}$ est une suite de sous-A-modules de M (qui contiennent N). On montre que la suite $(\pi^{-1}(P_n))_{n \in \mathbb{N}}$ est décroissante. Soit $m \geq n$, et soit $x \in \pi^{-1}(P_m)$. On a $\pi(x) \in P_m \subset P_n$, donc $x \in \pi^{-1}(P_n)$ et $\pi^{-1}(P_m) \subset \pi^{-1}(P_n)$. Par hypothèse d'artinianité sur M, la suite $(\pi^{-1}(P_n))_{n \in \mathbb{N}}$ est stationnaire : il existe $n_0 \in \mathbb{N}$ tel que $n \geq n_0$ entraı̂ne $\pi^{-1}(P_n) = \pi^{-1}(P_{n_0})$. On sait que les sous-modules de P sont en bijection avec les sous-modules de M contenant N via l'application $X \mapsto \pi^{-1}(X)$. L'égalité $\pi^{-1}(P_n) = \pi^{-1}(P_{n_0})$ entraı̂ne alors l'égalité $P_n = P_{n_0}$. La suite $(P_n)_{n \in \mathbb{N}}$ est alors stationnaire, et P est artinien.
- (c) Soit $f: M \to M$ un endomorphisme injectif. On montre par récurrence que, pour $n \ge 0$, f^n est aussi injectif. Le cas n = 0 est clair, le cas n = 1 est vrai par hypothèse. Supposons maintenant que f^n est injectif pour un certain $n \ge 0$. Soit $x \in \text{Ker } f^{n+1}$, on a $f^{n+1}(x) = 0 = f(f^n(x))$. Comme f est injectif, on en conclut que $f^n(x) = 0$, et donc x = 0 car f^n est injectif. On a donc $\text{Ker } f^n = \{0\}$ pour tout $n \ge 0$.

On considère ensuite la suite de sous-modules $(\operatorname{Im}(f^n))_{n\in\mathbb{N}}$. Il s'agit d'une suite décroissante car

$$\forall y \in \operatorname{Im}(f^{n+1}), \ y = f^{n+1}(x) \Rightarrow y = f^n(f(x)) \in \operatorname{Im}(f^n)$$

Comme M est artinien, il existe un rang $n \ge 0$ tel que $\text{Im}(f^n) = \text{Im}(f^{n+1})$. Soit maintenant $y \in M$. On a $f^n(y) \in \text{Im}(f^n) = \text{Im}(f^{n+1})$, il existe donc un certain $x \in M$ tel que $f^n(y) = f^{n+1}(x)$. Comme f^n est injectif, cela entraı̂ne $y = f(x) \in \text{Im } f$. Donc Im f = M et f est surjectif, ce qui conclut.

Exercice 2.

- $1.(a) \Rightarrow (b)$ Soit I un idéal contenant x. Comme x est une unité, I contient $x^{-1}x = 1_A$. Pour tout $a \in A$, I contient alors $a.1_A = a$, autrement dit I = A. L'élément x ne peut donc être contenu dans un idéal maximal de A. En effet un idéal maximal n'est pas égal à A et nous avons montré que A est le seul idéal contenant x.
- $(b) \Rightarrow (a)$ Soit I = (x) l'idéal engendré par x dans A. Si $I \neq A$, alors I est contenu dans un idéal maximal \mathfrak{m} de A. Donc $x \in I \subset \mathfrak{m}$ est contenu dans un idéal maximal, ce qui contredit l'hypothèse. On a donc (x) = A, en particulier il existe un élément $y \in A$ tel que $yx = 1_A \in (x)$. Comme A est commutatif on a $xy = yx = 1_A$, y est donc l'inverse de x. Cela prouve (a).
- 2. Le radical \sqrt{A} est défini par une intersection d'idéaux de A. Or une intersection d'idéaux est toujours un idéal. Le radical \sqrt{A} est donc un idéal de A.
- 3. Soient $x \in \sqrt{A}$ et $y \in A$. Comme \sqrt{A} est un idéal, on a $xy \in \sqrt{A}$. Si 1 + xy n'est pas inversible, alors il appartient à un idéal maximal \mathfrak{m} d'après la question 1. On sait que $xy \in \mathfrak{m}$ par définition du radical \sqrt{A} . On a donc $1_A = 1_A + xy xy \in \mathfrak{m}$, ce qui contredit $\mathfrak{m} \neq A$. On obtient donc bien que $1 + xy \in A^{\times}$.
- 4. Soit k un corps, les idéaux de k sont (0) et k lui même. Comme $k/k = \{0\}$ n'est pas un corps, le seul idéal maximal de k est (0) (c'est bien un idéal maximal car k/(0) = k est un corps). Le radical de k est donc $\sqrt{k} = (0)$. Soit ensuite $x \in \sqrt{\mathbb{Z}}$. Par la question précédente, l'entier xy+1 doit être inversible pour tout $y \in \mathbb{Z}$. En particulier on doit avoir $x+1 \in \mathbb{Z}^\times = \{\pm 1\}$ et $-x+1 \in \mathbb{Z}^\times = \{\pm 1\}$. On en déduit $x \in \{-2,0\}$ et $-x \in \{-2,0\}$. La seule possibilité est alors x=0, d'où $\sqrt{Z}=0$.
- 5.(a) On peut prendre par exemple $(\mathbb{Z}, \mathbb{Z}, \mathbb{Z})$. De façon générale, (A, A, M) marchera toujours car AM contient $1_AM = M$.
- (b) Comme on a IM = M, on peut écrire x_i comme un élément de IM. Il existe une combinaison linéaire finie

$$x_i = \sum_{k=1}^p \alpha_k m_k$$

où les $(m_k)_{k \in [\![1,p]\!]}$ sont dans M et les $(\alpha_k)_{k \in [\![1,p]\!]}$ sont dans I. Comme M est de type fini, on peut décomposer les m_k comme combinaison linéaire de la famille $(x_j)_{j \in [\![1,r]\!]}$:

$$\forall k \in [1, p], \ m_k = \sum_{j=1}^{r} \beta_{k,j} x_j$$

En remplaçant m_k par sa décomposition dans la combinaison linéaire donnant x_i , on obtient

$$x_i = \sum_{k=1}^{p} \alpha_k \sum_{j=1}^{r} \beta_{k,j} x_j = \sum_{j=1}^{r} \left(\sum_{k=1}^{p} \alpha_k \beta_{k,j} \right) x_j$$

Comme les α_k sont dans I, on a alors

$$\forall j \in [1, r], \ \alpha_{i,j} := \sum_{k=1}^{p} \alpha_k \beta_{k,j} \in I$$

et on a bien la décomposition voulue.

(c)(i) Le j-ème coefficient du vecteur AX est donné par $\sum_{j=1}^r \alpha_{i,j} x_j = x_i$. On a donc AX = X et PX = 0 d'après la question précédente. En multipliant cette égalité par la transposée P' de la comatrice de P, on obtient $0 = P'PX = \det(P)I_rX = \det(P)X$. Autrement dit $\det(P)x_i = 0$ pour $i \in [1, r]$.

(ii) Soit $x \in M$, par hypothèse on a une combinaison linéaire

$$x = \sum_{i=1}^{r} \lambda_i x_i$$

On a alors

$$\det(P)x = \sum_{i=1}^{r} \lambda_i \det(P)x_i = \sum_{i=1}^{r} \lambda_i 0 = 0$$

(d) Par définition du déterminant, on a

$$\det(P) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) p_{\sigma(1),1} \cdots p_{\sigma(n),n}$$

Si σ n'est pas triviale, il existe un i tel que $\sigma(i) \neq i$. Le terme $p_{\sigma(i),i}$ est donc de la forme $-\alpha_{\sigma(i),i} \in I$. Donc $\varepsilon(\sigma)p_{\sigma(1),1}\cdots p_{\sigma(n),n} \in I$ comme produit d'éléments de A avec au moins un élément de I. Le terme correspondant à $\sigma = \operatorname{Id}$ est

$$p_{1,1}\cdots p_{n,n} = (1_A - \alpha_{1,1})\cdots (1_A - \alpha_{n,n})$$

en développant ce produit, on s'aperçoit qu'il est de la forme $1_A + x$ avec $x \in I$. Au total, on a donc que $\det(P)$ est de la forme $1_A + y$ avec $y \in I$. Comme $\det(P)M = \{0\}$, on a bien le résultat voulu.

6. Par les questions précédentes, il existe un élément de la forme $1_A + y$, avec $y \in I \subset \sqrt{A}$, et tel que $(1_A + y)M = \{0\}$. Par la question 3, on a $1_A + y \in A^{\times}$, donc $1_A = (1_A + y)^{-1}(1_A + y)$ annule M et $M = \{0\}$.