Tremplin: Séance 4

W. JALLET - https://github.com/ManifoldFR

29 mars 2018

Exercices

Dans toute la suite, on notera]a,b[l'intervalle ouvert d'extrémités a et b, qui sont des nombres réels ou $\pm \infty$.

1 Exercice (A team of highly trained monkeys): Un chimpanzé est assis devant une machine à écrire. La tête d'écriture de la machine défile de gauche à droite, et on considère que le singe la fait se déplacer à gauche avec une probabilité $p \in]0,1[$.

On se place dans l'espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})^1$.

On notera G l'évènement « la tête d'écriture est déplacée à gauche », et R l'évènement « la tête d'écriture est déplacée à droite ». Ainsi, on a avec ces notations

$$\mathbb{P}(G) = p.$$

1. Quelle est la probabilité $\mathbb{P}(R)$ que le singe déplace la tête d'écriture à droite?

On va analyser la trajectoire – aléatoire – de la tête d'écriture sur le papier. On introduit la famille de variables aléatoires réelles $(X_t)_{t\in\mathbb{N}}$ sur Ω , telle que X_t correspond à la position de la tête d'écriture à l'instant t.

2. Soient $t \in \mathbb{N}$ et k un entier. Quelle est la loi de X_{t+1} conditionnellement à l'évènement $[X_t = k]$?

^{1.} La notion d'espace probabilisé provient de la théorie classique des probabilités du mathématicien Kolmogorov. Ω est l'univers, \mathcal{T} est l'ensemble des évènements, et \mathbb{P} est la mesure de probabilité.

3. Soit $t \in \mathbb{N}^*$. Quelle est la probabilité que $X_t = k$ en fonction de la loi de X_{t-1} .

C'est un peu compliqué. On trouve un système d'équations qui lie la loi de X_t à celle de X_{t-1} .

Fig. 1: Marche aléatoire (random walk en anglais) de la tête d'écriture de la machine à écrire.

Pour pouvoir calculer l'espérance et la variance de la position X_t , on va devoir passer par autre chose. Pour tout $t \geq 0$, on définit le pas entre les instants t-1 et t par

$$\xi_t = X_t - X_{t-1}$$

(On conviendra que $X_{-1} = 0$.)

4. Quelle est la loi de ξ_t ?

Bonus Quelle est la loi de $2\xi_t - 1$?

^{2.} Pour les Spé Maths : Quand la valeur de t est bornée (disons $t \leq N \in \mathbb{N}$), on peut réduire le système à un nombre fini d'équations, et le représenter par une matrice dite stochastique.

5. Justifier que

$$\sum_{i=0}^{t} \xi_i = X_t.$$

6. À quelle condition le singe fait-il, en moyenne, du surplace ? (c'est-à-dire $\mathbb{E}(X_t)=0$ pour tout t?)

Enfin, on va calculer la variance de X_t .

- 7. Justifier que les variables ξ_t sont indépendantes.
- 8. En déduire la variance $\mathbb{V}(X_t)$.

Pour aller plus loin... Si on met un singe devant une machine à écrire, qui appuie au hasard sur les touches, va-t-il un jour réécrire toute l'œuvre de Shakespeare?