

F81866

6 UARTs Super IO With 128 Bytes FIFO and Power Saving Functions

Release Date: Nov, 2011

Version: V0.14P

F81866 Datasheet Revision History

Version	Date	Page	Revision History			
V0.10P	2010/12/03	-	Preliminary			
V0.11P	2010/12/29	- 10, 14 25 25 103 173	 ■ Made Clarification and Correction ■ Change Name: Pin 123 DTR1#/PWM_DUTY → DTR1#/FAN40_100 Pin 73 VSB5V (V5A) → 5VSB (V5A) ■ Add Strapping Name: Pin 99 FANCTL1→ FANCTL1/PWM_DC1 Pin 101 FANCTL2→ FANCTL2/PWM_DC2 Pin 103 GPIO70/PE/FANCTL3(GPIO70/PE/FANCTL3/P WM_DC3 ■ Add Function Description ■ Add Registers Description ■ Add Top Marking Information 			
V0.12P	2011/3/15		 ■ Made Clarification and Correction ■ Modify pin 124 RTS1#/I2C_ADDR to RTS1#/Config4E_2E ■ Modify pin 126 SOUT1/Config4E_2E to SOUT1/I2C_ADDR ■ Add KBC_EN_STRP to pin 5 ■ Add IRQ Channel Register for GPIO0X/1X/5X/8X (index 70/71/72/73) ■ Add One Local Temp. and its Registers ■ Add CIR Function via pin 71 & 76 ■ Add GPIO Function Description at section 6.6 			
V0.13P	2011/5/4	8 8, 136 112 15-18 174	 Made Clarification and Correction Update Serial ID Description Add GPIO8x Scan Code Description & Registers (LDN 06) Update PS/2 Swap Register — Index FEh, bit 7 Modify SCL/SDA (Pin 61/62/67/68/71/76) Description. Add 0.1u to ATXPG_IN pin (See Application Circuit Sheet 1), & ERP circuit 			
V0.14P	2011/11/15		 Made Clarification and Correction I2C Protocol Select – Index EFh bit 3-0 Update All Register Reset Type Add ACPI Related Description & Timing (see section 6.8) Add AMD TSI & Intel PECI 3.0 (see section 6.10) Add Multi Function Registers Update Application Circuit (Add Soft Start Circuit to 5VSB & FAN Power) Update PS/2 Swap Register — Index FEh 			

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Fintek for any damages resulting from such improper use or sales.

Table of Content

1.	General Description	12
2.	Features	12
3.	Block Diagram	17
4.	Pin Configuration	18
5.	Pin Description	19
5.1	Power Pin	19
5.2	Clock	20
5.3	LPC Interface	20
5.4	FDC	20
5.5	Parallel Port (LPT Port)	22
5.6	Hardware Monitor	23
5.7	KBC Function	24
5.8	ACPI, ERP	25
5.9	UART	27
6.	Function Description	30
6.1	Power on Strapping Option	30
6.2	FDC	30
6.3	Parallel Port	30
6.4	Hardware Monitor	34
<u>6.</u>	4.1 General Description	34
6.4.1.	1 Voltage	
6.4.1.2	2 Temperature Sensor	36
(1) Mc	onitor Temperature from "thermistor"	36
(2) Mc	onitor Temperature from "thermal diode"	36
Over	Temperature Signal (OVT#)	36
Tempe	erature PME#	37
6.4.1.3	3 Fan	37
Fan s	peed count	37
Fan s	peed control	38
(1)	DAC Fan Control	38
(2)	PWM Duty Fan Control	38
Fan S	peed Control Mechanism	39
(1)	Manual mode	41
(2)	Auto mode	41

Stage auto mode	41
A. Stage auto mode (PWM Duty)	41
B. Stage auto mode (RPM%)	42
Linear auto mode	43
A. Linear auto mode (PWM Duty I)	43
B. Linear auto mode (RPM%)	44
PWMOUT Duty-cycle operating process	45
Fan Speed Control with Multi-temperature	46
FAN_FAULT#	48
6.4.2 Hardware Monitor Device Registers	<u>48</u>
6.4.2.1 Configuration Setting	48
FAN, Voltage Start up Register — Index 01h	48
Case Open, Alert, OVT Mode Register — Index 02h	49
Case Open Status Register — Index 03h	49
6.4.2.2 PECI/TSI/I2C Setting	49
TSI Or IBEX Control Register — Index 08h	49
I2C Address Control Register — Index 09h	49
PECI, TSI, IBEX, Beta Register — Index 0Ah	50
CUP Socket Select Register — Index 0Bh	50
TCC Register — Index 0Ch	50
TSI Offset Register — Index 0Dh	51
Configuration Register — Index 0Fh	51
TSI Temperature 0 – Index E0h	51
TSI Temperature 1 – Index E1h	51
TSI Temperature 2 Low Byte – Index E2h	52
TSI Temperature 2 High Byte – Index E3h	52
TSI Temperature 3 – Index E4h	52
TSI Temperature 4 – Index E5h	52
TSI Temperature 5 – Index E6h	53
TSI Temperature 6 – Index E7h	53
TSI Temperature 7 – Index E8h	
I2C Data Buffer 9 – Index E9h	53
Block Write Count Register – Index ECh	
I2C Command Byte/TSI Command Byte – Index EDh	
I2C Status – Index EEh	
I2C Protocol Select – Index EFh	55
6.4.2.3 PECI 3.0 & Temperature Setting	55

PECI 3.0 Command and Register	55
PECI Configuration Register — Index 40h	55
PECI Master Control Register — Index 41h	55
PECI Master Status Register — Index 42h	56
PECI Master DATA0 Register — Index 43h	56
PECI Master DATA1 Register — Index 44h	56
PECI Master DATA2 Register — Index 45h	56
PECI Master DATA3 Register — Index 46h	57
PECI Master DATA4 Register — Index 47h	57
PECI Master DATA5 Register — Index 48h	57
PECI Master DATA6 Register — Index 49h	57
PECI Master DATA7 Register — Index 4Ah	57
PECI Master DATA8 Register — Index 4Bh	57
PECI Master DATA9 Register — Index 4Ch	57
PECI Master DATA10 Register — Index 4Dh	58
PECI Master DATA11 Register — Index 4Eh	58
PECI Master DATA12 Register — Index 4Fh	58
HWM Manual Control Register — Index 50h	58
HWM Manual Control Status Register 1— Index 51h	58
HWM Manual Control Status Register 2— Index 52h	59
HWM RAW Data Register 1— Index 55h	59
HWM RAW Data Register 2— Index 56h	59
Temperature Register	59
Temperature PME# Enable Register — Index 60h	59
Temperature Interrupt Status Register — Index 61h	60
Temperature Real Time Status Register — Index 62h	60
Temperature BEEP Enable Register — Index 63h	61
T1 OVT and High Limit Temperature Select Register — Index 64h	61
OVT and Alert Output Enable Register 1 — Index 66h	62
Temperature Sensor Type Register — Index 6Bh	
TEMP1 Limit Hystersis Select Register — Index 6Ch	62
TEMP2 and TEMP3 Limit Hystersis Select Register — Index 6Dh	
DIODE OPEN Status Register — Index 6Fh	
Temperature — Index 70h- 8Dh	
T1 Slope Adjust Register — Index 7Fh	
Temperature Filter Select Register —Index 8Eh	
6.4.2.4 Voltage Setting	65

Voltage-Protect Shut Down Enable Register — Index 10h	65
Voltage-Protect Status Register — Index 11h	65
Voltage-Protect Configuration Register— Index 12h	65
Voltage1 PME# Enable Register — Index 14h	66
Voltage1 Interrupt Status Register — Index 15h	66
Voltage1 Exceeds Real Time Status Register 1 — Index 16h	66
Voltage1 BEEP Enable Register — Index 17h	67
Voltage Protection Power Good Select Register — Index 3Fh	67
Voltage reading and limit— Index 20h- 3Ah	67
6.4.2.5 Fan Control Setting	68
FAN PME# Enable Register — Index 90h	68
FAN Interrupt Status Register — Index 91h	68
FAN Real Time Status Register — Index 92h	68
FAN BEEP# Enable Register — Index 93h	69
FAN Type Select Register — Index 94h (FAN_PROG_SEL = 0)	69
Fan1 Base Temperature Register – Offset 94h (FAN_PROG_SEL = 1)	70
FAN1 Temperature Adjustment Rate Register — Index 95h (FAN_PROG_SEL = 1)	70
FAN mode Select Register — Index 96h (FAN_PROG_SEL = 0)	71
FAN mode Select Register — Index 96h (FAN_PROG_SEL = 1)	72
Faster Fan Filter Control Register — Index 97h	72
Auto FAN1 and FAN2 Boundary Hystersis Select Register — Index 98h	73
Auto FAN3 Boundary Hystersis Select Register — Index 99h	73
Fan3 Control Register — Index 9Ah	73
Auto Fan Up Speed Update Rate Select Register — Index 9Bh (FAN_PROG_SEL = 0)	74
Auto Fan Down Speed update Rate Select Register — Index 9Bh (FAN_PROG_SEL = 1)	74
FAN1 and FAN2 START UP DUTY-CYCLE/VOLTAGE — Index 9Ch	75
FAN3 START UP DUTY-CYCLE/VOLTAGE — Index 9Dh	75
FAN PROGRAMMABLE DUTY-CYCLE/VOLTAGE LOADED AFTER POWER-ON — Index 9Eh	76
Fan Fault Time Register — Index 9Fh	76
A. FAN1 Index A0h~AFh	76
VT1 BOUNDARY 1 TEMPERATURE – Index A6h	77
VT1 BOUNDARY 2 TEMPERATURE – Index A7	77
VT1 BOUNDARY 3 TEMPERATURE – Index A8h	78
VT1 BOUNDARY 4 TEMPERATURE – Index A9	78
FAN1 SEGMENT 1 SPEED COUNT – Index AAh	78
FAN1 SEGMENT 2 SPEED COUNT – Index ABh	78
FAN1 SEGMENT 3 SPEED COUNT Register – Index ACh	79

FAN1 S	EGMENT 4 SPEED COUNT Register – Index ADh	79
FAN1 S	EGMENT 5 SPEED COUNT Register – Index AEh	79
FAN1 T	emperature Mapping Select – Index AFh	79
В.	FAN2 Index B0h~BFh	80
VT2 BC	DUNDARY 1 TEMPERATURE – Index B6h	81
VT2 BC	OUNDARY 2 TEMPERATURE – Index B7	81
VT2 BC	OUNDARY 3 TEMPERATURE – Index B8h	82
VT2 BC	OUNDARY 4 TEMPERATURE – Index B9	82
FAN2 S	EGMENT 1 SPEED COUNT – Index BAh	82
FAN2 S	EGMENT 2 SPEED COUNT – Index BBh	82
FAN2 S	EGMENT 3 SPEED COUNT Register – Index BCh	83
FAN2 S	EGMENT 4 SPEED COUNT Register – Index BDh	83
FAN2 S	EGMENT 5 SPEED COUNT Register – Index BEh	83
FAN2 T	emperature Mapping Select – Index BFh	83
C.	FAN3 Index C0h- CFh	84
VT3 BC	OUNDARY 1 TEMPERATURE – Index C6h	85
VT3 BC	OUNDARY 2 TEMPERATURE – Index C7	85
VT3 BC	OUNDARY 3 TEMPERATURE – Index C8h	86
VT3 BC	OUNDARY 4 TEMPERATURE – Index C9h	86
FAN3 S	EGMENT 1 SPEED COUNT – Index CAh	86
FAN3 S	EGMENT 2 SPEED COUNT – Index CBh	86
FAN3 S	EGMENT 3 SPEED COUNT - Index CCh	87
FAN3 S	EGMENT 4 SPEED COUNT – Index CDh	87
FAN3 S	EGMENT 5 SPEED COUNT – Index CEh	87
FAN3 T	emperature Mapping Select – Index CFh	87
6.5	Keyboard Controller	88
Comma	ands	91
PS/2 wa	akeup function	92
6.6	GPIO	92
<u>6.6.</u>	1 GPIO Access Method	92
6.6.	2 GPIOx status	<u> 94</u>
6.7	Watchdog Timer Function	98
6.8	ACPI Function	
6.9	UART	110
6.9.1	UART Device Register	110
6.9.2	Programmable Baud Rate	114
6.10	AMD TSI and Intel PECI 3.0 Functions	115

6.11	Over Voltage Protection	116
7. F	Register Description	117
7.1	Global Control Registers	117
7.2	Multifunction Function Register Mapping Table	125
7.3	FDC Device Configuration Registers (LDN CR00)	133
7.4	Parallel Port Device Configuration Registers (LDN CR03)	136
7.5	Hardware Monitor Device Configuration Registers (LDN CR04)	137
7.6	KBC Device Configuration Registers (LDN CR05)	138
7.7	GPIO Device Configuration Registers (LDN CR06)	139
7.7.1	GPIO Configuration Registers	139
7.7.2	GPIO IRQ Channel Select Configuration Registers	140
7.7.3	GPIO IRQ Sharing Configuration Registers	141
7.7.4	GPIO0x Configuration Registers	142
7.7.5	GPIO1x Configuration Registers	148
7.7.6	GPIO2x Configuration Registers	151
7.7.7	GPIO4x Configuration Registers	155
7.7.8	GPIO5x Configuration Registers	157
7.7.9	GPIO6x Configuration Registers	160
7.7.10	GPIO7x Configuration Registers	162
7.7.11	GPIO8x Configuration Registers	164
7.7.12	GPIO8x Scan Code Configuration Registers	167
7.8	WDT Device Configuration Registers (LDN CR07)	175
7.8.1	WDT Device Base Address Enable Register — Index 30h	175
7.8.2	Base Address High Register — Index 60h	175
7.8.3	Base Address Low Register — Index 61h	175
7.8.4	Watchdog Control Configuration Register 1 — Index F5h	175
7.8.5	Watchdog Timer Configuration Register 2 — Index F6h	176
7.8.6	Watchdog PME Enable Configuration Register 2 — Index FAh	176
7.9	PME, ACPI and ERP Device Configuration Registers (LDN CR0A)	176
7.9.1	PME Device Enable Register — Index 30h	177
7.9.2	PME Event Enable 1 Register — Index F0h	177
7.9.3	PME Event Status 1 Register — Index F1h	178
7.9.4	PME Event Enable 2 Register — Index F2h	178
7.9.5	PME Event Status 2 Register — Index F3h	179
7.9.6	ACPI Control Register 1 — Index F4h	180
7.9.7	ACPI Control Register 2 — Index F5h	180
7.9.8	ACPI Control Register 3 — Index F6h	181

7.9.9	LED Control Register 1 — Index F8h	. 181
7.9.10	LED Control Register 2 — Index F9h	. 182
7.9.11	LED Control Register 3 — Index FAh	. 182
7.9.12	DSW Delay Register — Index FCh	. 183
7.9.13	RI De-bounce Select Register — Index FEh	. 184
7.9.14	ERP Enable Register — Index E0h	. 184
7.9.15	ERP Control Register 1 — Index E1h	. 184
7.9.16	ERP Control Register 2 — Index E2h	. 184
7.9.17	ERP PWSIN De-bounce Register — Index E3h	. 185
7.9.18	ERP RSMRST De-bounce Register — Index E4h	. 185
7.9.19	ERP PWSOUT Pulse Width Register — Index E5h	. 185
7.9.20	ERP PWSIN De-bounce Register — Index E6h	. 185
7.9.21	ERP Deep S5 Delay Register — Index E7h	. 185
7.9.22	ERP Wakeup Enable Register — Index E8h	. 185
7.9.23	ERP Deep S3 Delay Register — Index E9h	. 186
7.9.24	ERP Mode Select Register — Index ECh	. 186
7.9.25	ERP WDT Control Register — Index EDh	. 186
7.9.26	ERP WDT Time Register — Index EEh	. 187
7.10	UART1 Device Configuration Registers (LDN CR10)	. 187
7.10.1	UART 1 Device Enable Register — Index 30h	. 187
7.10.2	Base Address High Register — Index 60h	. 187
7.10.3	Base Address Low Register — Index 61h	. 187
7.10.4	IRQ Channel Select Register — Index 70h	. 187
7.10.5	IRQ Share Register — Index F0h	. 188
7.10.6	Clock Register — Index F2h	. 188
7.10.7	9bit-mode Slave Address Register — Index F4h	. 188
7.10.8	9bit-mode Slave Address Mask Register — Index F5h	. 189
7.10.9	FIFO Select Register — Index F6h	. 189
7.11	UART2 Device Configuration Registers (LDN CR11)	. 189
7.11.1	UART 2 Device Enable Register — Index 30h	. 190
7.11.2	Base Address High Register — Index 60h	. 190
7.11.3	Base Address Low Register — Index 61h	. 190
7.11.4	IRQ Channel Select Register — Index 70h	. 190
7.11.5	IRQ Share Register — Index F0h	. 190
7.11.6	Clock Register — Index F2h	. 191
7.11.7	9bit-mode Slave Address Register — Index F4h	. 191
7.11.8	9bit-mode Slave Address Mask Register — Index F5h	. 192

7.11.9	FIFO Select Register — Index F6h	. 192
7.12	UART3 Device Configuration Registers (LDN CR12)	. 192
7.12.1	UART 3 Device Enable Register — Index 30h	. 193
7.12.2	Base Address High Register — Index 60h	. 193
7.12.3	Base Address Low Register — Index 61h	. 193
7.12.4	IRQ Channel Select Register — Index 70h	. 193
7.12.5	IRQ Share Register — Index F0h	. 193
7.12.6	Clock Register — Index F2h	. 194
7.12.7	9bit-mode Slave Address Register — Index F4h	. 194
7.12.8	9bit-mode Slave Address Mask Register — Index F5h	. 195
7.12.9	FIFO Select Register — Index F6h	. 195
7.13	UART4 Device Configuration Registers (LDN CR13)	. 195
7.13.1	UART 4 Device Enable Register — Index 30h	. 196
7.13.2	Base Address High Register — Index 60h	. 196
7.13.3	Base Address Low Register — Index 61h	. 196
7.13.4	IRQ Channel Select Register — Index 70h	. 196
7.13.5	IRQ Share Register — Index F0h	. 196
7.13.6	Clock Register — Index F2h	. 197
7.13.7	9bit-mode Slave Address Register — Index F4h	. 197
7.13.8	9bit-mode Slave Address Mask Register — Index F5h	. 198
7.13.9	FIFO Select Register — Index F6h	. 198
7.14	UART5 Device Configuration Registers (LDN CR14)	. 199
7.14.1	UART 5 Device Enable Register — Index 30h	. 199
7.14.2	Base Address High Register — Index 60h	. 199
7.14.3	Base Address Low Register — Index 61h	. 199
7.14.4	IRQ Channel Select Register — Index 70h	. 199
7.14.5	IRQ Share Register — Index F0h	. 199
7.14.6	Clock Register — Index F2h	. 200
7.14.7	9bit-mode Slave Address Register — Index F4h	. 200
7.14.8	9bit-mode Slave Address Mask Register — Index F5h	. 201
7.14.9	FIFO Select Register — Index F6h	. 201
7.15	UART6 Device Configuration Registers (LDN CR15)	. 202
7.15.1	UART 6 Device Enable Register — Index 30h	. 202
7.15.2	Base Address High Register — Index 60h	. 202
7.15.3	Base Address Low Register — Index 61h	. 202
7.15.4	IRQ Channel Select Register — Index 70h	. 202
7.15.5	IRQ Share Register — Index F0h	. 203

7.15.6	IR Mode Select Register — Index F1h	203			
7.15.7	Clock Register — Index F2h	203			
7.15.8	9bit-mode Slave Address Register — Index F4h	204			
7.15.9	9bit-mode Slave Address Mask Register — Index F5h	204			
7.15.1	0 FIFO Select Register — Index F6h	204			
3.	Electrical Characteristics	206			
9.	Ordering Information	209			
10.	Top Marking Specification				
11.	Package Dimensions 210				
12.	Application Circuit	.211			

1. General Description

The F81866 is the featured IO chip for Industrial PC system. Equipped with one IEEE 1284 parallel port, 6 UART ports with Multi drop function (9-bit protocol), KBC, SIR, ACPI management function, portable CIR with RC6 and one FDC. Each UART provides 16/32/64/128 bytes FIFO. The UART supports legacy speeds up to 115.2K bps as well as even higher baud rates of 230K, 460K, or 921K bps to support higher speed modems. The F81866 supports the enhanced parallel port (EPP) and the extended capabilities port (ECP). The F81866 supports keyboard and mouse interface which is 8042-based keyboard controller. The F81866 integrated with hardware monitor, 7 sets of voltage sensor, 3 sets of creative auto-controlling smart fans and 2 temperature sensor pins for the accurate dual current type temperature measurement for CPU thermal diode or external transistors 2N3906 and one local temperature.

The F81866 provides flexible features for multi-directional application. For instance, supports 72 GPIO pins, IRQ sharing function designed in UART feature for particular usage and accurate current mode H/W monitor will be worth in measurement of temperature. Others, the F81866 supports newest Intel PECI 3.0 interfaces for new generational CPU temperature usage, INTEL IBX PEAK, I2C and AMD TSI for temperature reading.

In order to save the current consumption when the system is in the soft off state which is so called power saving function. The power saving function supports the system boot-on not only by pressing the power button but also by the wake-up events via GPIO0x, GPIO1x, RI1#, and RI2#. When the system enters the S3/S4/S5 state, F81866 can cut off the VSB power rail which supplies power source to the devices like the LAN chip, the chipset, the SIO, the audio codec, DRAM, and etc. The PC system can be emulated to G3-like state when the system enters S3/S4/S5 states. At the G3-like state, the F81866 consumes 5VSB power rail only. The integrated two control pins are utilized to turn on or off VSB power rail in the G3-like status. The turned on VSB rail is supplied to a wake up device to fulfill a low power consumption system which supports a wake up function.

These features as above description will help you more and improve the product value. The F81866 is in the package of 128-LQFP. (14mm*14mm)

2. Features

General Functions

- Comply with LPC 1.1
- ➤ Support ACPI 3.0
- Support WDT Reset Function
- Support WDT wake up while ERP function is enabled

- Provide 4 sets of GPIO (GPIO0x/1x/5x/8x) SMI event via PME# or SIRQ
- Provide different SIRQ channels for GPIO0x/1x/5x/8x
- Support portable remote control via CIR RC6
- Provide one FDC, KBC and Parallel Port
- Provide 6 fully functional UART and 1 SIR
 - ✓ Programmable 16/32/64/128 bytes FIFO
 - ✓ Multi drop function
 - ✓ Support IRQ Sharing function.
 - ✓ Provide auto flow control function
- H/W monitor functions
 - ✓ Support OVP & UVP for 3VCC and VIN2&3
 - ✓ Support smart fan FQST for FAN 1
 - ✓ Support PECI 3.0
 - ✓ Support IBX PCH temperature reading via I2C
 - ✓ Support AMD TSI
- > 72 GPIO Pins for flexible application
- Provide Serial ID
- Support LED blinking function
- Provide Power Saving Function (Comply ERP lot 6.0)
- Support Intel Deep Sleep Well (DSW) Timing Sequence
- Provide wake-up events via power button, GPIO0x, GPIO1x, RI1#, and RI2#
- Provide ATX emulates AT function
- > 14.318/24/48 MHz clock input
- Packaged in 128-LQFP

FDC

- Compatible with IBM PC AT disk drive systems
- Variable write pre-compensation with track selectable capability
- Support vertical recording format
- > DMA enable logic
- ➤ 16-byte data FIFOs
- Support floppy disk drives and tape drives
- Detects all overrun and under run conditions
- Built-in address mark detection circuit to simplify the read electronics
- Completely compatible with industry standard 82077
- ➤ 360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate

Parallel Port

- One PS/2 compatible bi-directional parallel port
- ➤ Support Enhanced Parallel Port (EPP) Compatible with IEEE 1284
- Support Extended Capabilities Port (ECP) Compatible with IEEE 1284
- Enhanced printer port back-drive current protection

Hardware Monitor Functions

- ➤ 2 dual current type (±3°C) thermal inputs for CPU thermal diode and 2N3906 transistors
- > Provide one local temperature
- > Support temperature monitoring via thermistor
- ➤ Temperature range: -60°C~127°C
- 8 sets voltage monitoring (4 external and 4 internal powers)
- ➤ High limit signal (PME#) for Vcore
- > 3 fan speed monitoring inputs
- > 3 fan speed PWM/DC control outputs
- FANCTRL 1~3 provides 4 frequency (23.5/11.75/5.875KHz, & 200Hz) select via the registers
- Issue PME# and OVT# hardware signals output
- Case intrusion detection circuit

Support PECI 3.0

I2C Interface

- Support slave interface to report the hardware monitor data
- Support master interface to get the thermal data via PCH & MXM module

Support AMD TSI Interface

Keyboard Controller

- compatibility with the 8042
- ➤ Support PS/2 mouse
- > Hardware Gate A20 and Hardware Keyboard Reset
- > Support KB, Mouse wake up and swap function

GPIO Function

- ➤ Total 72 pins GPIO
- ➤ Interrupt status (wake up) support via GPIO0x and GPIO1x
- Support different SIRQ channels via GPIO0x, GPIO1x, GPIO5x and GPIO8x

- > All GPIO supports digit IO for Input/Output control, Output data control, input status.
- Support High/Low Level/Pulse, Open Drain/Push Pull function selection
- ➤ All GPIO could be accessed via 3 ways: configuration register port (4E/2E), index/data port and directly access to GPIO only (digital I/O). Please refer to the GPIO function description for detail.

Watch Dog Timer

- Time resolution minute/second
- Maximum 256 minutes or 256 seconds
- Output signal via WDTRST#/PWOK
- ➤ WDT could also wake up PME#, PSWOUT#

Power Saving Function

- ➤ G3-like Timing Control
- ➤ Comply With ERP Lot 6.0
- Built in Soft Start Function for Two Control Pins with VSB Power Sources Control.
- Event In via GPIO0x, GPIO1x, RI1#, and RI2#

Support Intel Cougar Point Timing (DSW)

UART

- Provide 6 fully functional UART
- 6 high-speed 16C550/16C650/16C750/16C850 compatible UARTs
- Provide auto flow control function
- ➤ Baud rate supports 115.2K, max. up to 1.5M
- Support IRQ 3,4,5,6,7,8,9,10,11 sharing
- Provide Multi drop (9-bits) Function for Gaming Machine
- Support IrDA version 1.0 SIR protocol (Multi with UART 6)
- Support Ring-In Wake Up via RI1# and RI2#

Infrared

➤ Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps (Multi with UART 6)

Provide ATX Emulates AT Function

Provide Serial ID Function

Provide 16 bytes for fixed Fintek serial ID

- Provide 16 bytes for customer serial ID
 - ✓ Use serial ID tool (DOS & Window) to update the customer serial ID
 - ✓ Check F81866_110402PA for the detail porting guide

Provide Scan Code Function (KB Emulation Key Code)

- Support scan code via GPIO81~GPIO87
- ➤ Windows OS can detect the system volume control signal without any driver installation.
- Support KB code set 1 (except "Pause" key)
- See register for the detail setting

CIR

- > Provide simple functions such as Up/Down/Left/Right/Enter/Power ON/Power OFF
- Support KB code set 1 (except "Pause" key)

Package

> 128-pin LQFP (14mm * 14mm) green package

Noted: Patented TW207103 TW207104 TW220442 US6788131 B1 TWI235231 TW237183 TWI263778

3. Block Diagram

4. Pin Configuration

5. Pin Description

I/O_{16st} I_{IV}/O_{D8. 1v} - TTL level bi-directional pin with schmitt trigger, 16mA source/sink capability.

I/OOD_{12st 5v}

- Low level bi-directional pin. Outupt with 8 mA drive and 1mA sink capability.

register, with 12 mA source/sink capability, 5V tolerance.

I/OOD_{14st 5v}

- TTL level bi-directional pin with schmitt trigger, output can be selected to open drian or

- TTL level bi-directional pin, output can be selected to open drian or push pull by the

push pull by the register, with 14 mA source/sink capability, 5V tolerance.

I/OOD_{8st,5v}

- TTL level bi-directional pin, output can be selected to open drian or push pull by register,

with 8 mA source/sink capability, 5V tolerance.

I/OD_{16st.5v}

- TTL level bi-directional pin with schmitt trigger, open drain output with 16 mA sink capability, 5V tolerance.

- Open drain output pin with 16 mA sink capability, pull-up $10k\Omega$.

OD_{16.u10} I/O_{12st,5v}

- TTL level bi-directional pin with schmitt trigger, 12 mA sink capability, 5V tolerance.

O₈

Output pin with 8 mA source/sink capability.

O₁₂

- Output pin with 12 mA source/sink capability.

O₁₄ 016 - Output pin with 14 mA source/sink capability. - Output pin with 16 mA source/sink capability.

 $OOD_{12,5v}$

- Open drian or push pull by the register, with 12 mA source/sink capability, 5V tolerance.

AOUT

- Analog output pin.

 $OD_{12.5v}$

- Open-drain output pin with 12 mA sink capability, 5V tolerance. - Open-drain output pin with 14 mA sink capability, 5V tolerance.

 $OD_{14.5v}$ $\mathsf{OD}_{\mathsf{24t},\mathsf{5v}}$

- TTL level Open-drain output pin with 24 mA sink capability, 5V tolerance.

I/OD_{12st 5v}

- TTL level bi-directional pin with schmitt trigger, open drain output with 12mA source-sink capability. 5V tolerance.

I/O_{8st, 5v}

- TTL level bi-directional pin with schmitt trigger, 8 mA sink capability, 5V tolerance.

 $IN_{st,lv}$

- Low voltage, TTL level input pin with schmitt trigger.

 $IN_{t.5v}$

- TTL level input pin,5V tolerance.

 IN_{st}

- TTL level input pin with schmitt trigger.

 $IN_{st.5v}$

- TTL level input pin with schmitt trigger, 5V tolerance.

 $IN_{t,\;u47,5v}$

- TTL level input pin, pull-up $47k\Omega$, 5V tolerance.

AIN

- Analog Input pin.

Ρ

- Power.

5.1 **Power Pin**

Pin	Pin Name	Туре	Description
31, 119	3VCC	Р	Power supply voltage input with 3.3V.
			3.3V internal standby power regulates from 5VSB for
60	I_VSB3V	Р	internal circuit usage. Strongly recommend to place
			0.1uF for the compensation.
84	VBAT	Р	Battery voltage. Place 1000pF for monitoring.
73	5VSB (V5A)	Р	5V standby power supply.
97	3VSB	Р	Analog Power with 3.3V standby.
88	AGND	Р	Analog GND.
22, 128	GND	Р	Digital GND.

5.2 Clock

Pin	Pin Name	Туре	PWR	Description
32	PCICLK	IN _{st}	3VCC	33MHz PCI clock input.
33	CLKIN	IN _{st}	3VCC	System clock input. According to the input frequency 14.318/24/48MHz (default 48MHz).

5.3 LPC Interface

Pin	Pin Name	Туре	PWR	Description
23	LRESET#	IN _{st}	3VCC	Reset signal. It can connect to PCIRST# signal on the host.
24	LDRQ#	O ₁₆	3VCC	Encoded DMA Request signal.
25	SERIRQ	I/O _{16st}	3VCC	Serial IRQ input/Output.
26	LFRAME#	IN_{st}	3VCC	Indicates start of a new cycle or termination of a broken cycle.
27-30	LAD[0:3]	I/O _{16st}	3VCC	These signal lines communicate address, control, and data information over the LPC bus between a host and a peripheral.
32	PCICLK	IN _{st}	3VCC	33MHz PCI clock input.

5.4 FDC

Pin	Pin Name	Туре	PWR	Description
	GPIO50	I/OOD _{14st, 5v}		General Purpose IO.
9	DENSEL#	OD _{14,5v}	3VCC	Drive Density Select. Set to 1 – High data rate.(500Kbps, 1Mbps) Set to 0 – Low data rate. (250Kbps, 300Kbps)
	RTS6#	O ₁₄		UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data.
	GPIO51	I/OOD _{14st, 5v}		General Purpose IO.
10	MOA#	OD _{14,5v}	3VCC	Motor A On. When set to 0, this pin enables disk drive 0. This is an open drain output.
	SIN6	IN _{st,5v}		UART Serial Input. Used to receive serial data through the communication link.
	GPIO52	I/OOD _{14st, 5v}		General Purpose IO.
11	DRVA#	OD _{14,5v}	3VCC	Drive Select A. When set to 0, this pin enables disk drive A. This is an open drain output.
	SOUT6	O ₁₄		UART Serial Output. Used to transmit serial data out to the communication link.
	GPIO53	I/OOD _{14st, 5v}		General Purpose IO.
12	WDATA#	OD _{14,5v}	3VCC	Write data. This logic low open drain writes pre-compensation serial data to the selected FDD. An open drain output.
	DCD6#	IN _{st,5v}		Data Carrier Detect. An active low signal indicates

				the modem or data set has detected a data carrier.
	GPIO54	I/OOD		
13	DIR#	I/OOD _{14st, 5v} OD _{14,5v}	3VCC	General Purpose IO. Direction of the head step motor. An open drain output. Logic 1 = outward motion Logic 0 = inward motion
	RI6#	IN _{st,5v}		Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set.
	GPIO55	I/OOD _{14st, 5v}		General Purpose IO.
14	STEP#	OD _{14,5v}	3VCC	Step output pulses. This active low open drain output produces a pulse to move the head to another track.
	CTS6#	IN _{st,5v}		Clear To Send is the modem control input.
	GPIO56	I/OOD _{14st, 5v}		General Purpose IO.
15	HDSEL#	OD _{14,5v}	3VCC	Head select. This open drain output determines which disk drive head is active. Logic 1 = side 0 Logic 0 = side 1
	DTR6#	O ₁₄		UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate.
	GPIO57	I/OOD _{14st, 5v}	3VCC	General Purpose IO.
	WGATE#	OD _{14,5v}		Write enable. An open drain output.
16	DSR6#	IN _{st,5v}		Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
-	GPIO60	I/OOD _{12, 5v}		General Purpose IO.
17	RDATA#	IN _{st,5v}	3VCC	The read data input signal from the FDD.
	DCD5#	IN _{st,5v}		Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier.
-	GPIO61	I/OOD _{12st, 5v}		General Purpose IO.
18	TRK0#	IN _{st,5v}	3VCC	Track 0. This Schmitt-triggered input from the disk drive is active low when the head is positioned over the outermost track.
	RI5#	IN _{st,5v}		Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set.
	GPI062	I/OOD _{12st, 5v}		General Purpose IO.
19	INDEX#	IN _{st,5v}	3VCC	This Schmitt-triggered input from the disk drive is active low when the head is positioned over the beginning of a track marked by an index hole.
	CTS5#	IN _{st,5v}		Clear To Send is the modem control input.
	GPIO63	I/OOD _{12st, 5v}		General Purpose IO.
20	WPT#	IN _{st,5v}	3VCC	Write protected. This active low Schmitt input from the disk drive indicates that the diskette is write-protected.

	DTR5#	O ₁₂		UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate.
	GPIO64	I/OOD _{12st, 5v}	3VCC	General Purpose IO.
21	DSKCHG#	$IN_{st,5v}$		Diskette change. This signal is active low at power on and whenever the diskette is removed.
21	DSR5#	$IN_{st,5v}$		Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.

5.5 Parallel Port (LPT Port)

Pin	Pin Name	Туре	PWR	Description
	FANIN3	IN _{st,5v}		Fan 3 tachometer input.
102	SLCT	IN _{st,5v}	3VCC	An active high input on this pin indicates that the printer is selected. Refer to the description of the parallel port for definition of this pin in ECP and EPP mode.
	GPIO70	I/OOD _{12st, 5v}		General purpose IO.
	PE	IN _{st,5v}		An active high input on this pin indicates that the printer has detected the end of the paper. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
103	FANCTL3	OOD _{12,5v} AOUT	3VCC	Fan 3 control output. This pin provides PWM duty-cycle output or a DAC voltage output.
	PWM _DAC3	IN _{st,5v}		Power on Strapping pin: 1: PWM mode. 0: Default is DAC mode for FANCTL3 (internal pull down 100kΩ).
	GPIO71	I/OOD _{12st, 5v}		General purpose IO.
104	BUSY	IN _{st,5v}	3VCC	An active high input indicates that the printer is not ready to receive data. Refer to the description of the parallel port for definition of this pin in ECP and EPP mode.
	GPIO72	I/OOD _{12st, 5v}	3VCC	General purpose IO.
105	ACK#	IN _{st,5v}		An active low input on this pin indicates that the printer has received data and is ready to accept more data. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
	GPIO73	I/OOD _{12st, 5v}		General purpose IO.
106	SLIN#	I/OOD _{12st,5v}	3VCC	Output line for detection of printer selection. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
	GPIO74	I/OOD _{12st, 5v}		General purpose IO.
107	INIT#	I/OOD _{12st,5v}	3VCC	Output line for the printer initialization. Refer to the description of the parallel port for the definition of this

				pin in ECP and EPP mode.
	GPIO75	I/OOD _{12st, 5v}		General purpose IO.
108	ERR#	IN _{st,5v}	3VCC	An active low input on this pin indicates that the printer has encountered an error condition. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
	GPIO76	I/OOD _{12st, 5v}		General purpose IO.
109	AFD#	I/OOD _{12st,5v}	3VCC	An active low output from this pin causes the printer to auto feed a line after a line is printed. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
	GPIO77	I/OOD _{12st, 5v}		General purpose IO.
110	STB#	I/OOD _{12st,5v}	3VCC	An active low output is used to latch the parallel data into the printer. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
	GPIO80	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
111	PD0	I/O _{12st,5v}		Parallel port data bus bit 0. Refer to the description of the parallel port for the definition of this pin in ECP and EPP mode.
440	GPIO81	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
112	PD1	I/O _{12st,5v}		Parallel port data bus bit 1.
140	GPIO82	I/OOD _{12st, 5v}	21/00	General purpose IO. Support scan code function.
113	PD2	I/O _{12st,5v}	3VCC	Parallel port data bus bit 2.
114	GPIO83	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
114	PD3	I/O _{12st,5v}	3,00	Parallel port data bus bit 3.
115	GPIO84	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
113	PD4	I/O _{12st,5v}	3,00	Parallel port data bus bit 4.
116	GPIO85	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
110	PD5	I/O _{12st,5v}	3,00	Parallel port data bus bit 5.
117	GPIO86	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
117	PD6	I/O _{12st,5v}	3,00	Parallel port data bus bit 6.
118	GPIO87	I/OOD _{12st, 5v}	3VCC	General purpose IO. Support scan code function.
118	PD7	I/O _{12st,5v}		Parallel port data bus bit 7.

5.6 Hardware Monitor

Pin	Pin Name	Туре	PWR	Description
	BEEP	OD _{24t,5v}		Beep pin.
	GPIO16	I/OOD _{24st,5v}		General purpose IO.
71	SDA I _{Iv} /OD _{24st, 5v} I_VSB3V		I2C Interface DATA pin. AMD TSI & Intel PCH (IBX	
		Π _V / ΟD _{24st, 5v}		Peak) data pin.
	CIRRX#	IN _{st,5v}		CIR receiver input.
70	PECI	I _{Iv} /O _{D8, S1}	I_VSB3V	PECI interface pin.
72	GPIO17	I/OOD _{12st,5v}		General purpose IO.
75	OVT#	OD _{12,5v}	I_VSB3V	Over temperature signal output.

	ALERT#	OD _{12,5v}		Alert a signal when temperature over limit setting.
	GPIO20	I/OOD _{12st,5v}		General purpose IO.
76	SCL	I _{Iv} /OD _{12st, 5v}	I_VSB3V	I2C Interface CLOCK pin. Clock output for AMD TSI & Intel PCH (IBX Peak).
	CIRRX#	IN _{st,5v}		CIR receiver input.
85	COPEN#	IN _{st,5v}	VBAT	Case Open Detection #. This pin is connected to a specially designed low power CMOS flip-flop backed by the battery for case open state preservation during power loss.
89	D-	AIN	3VSB	Analog GND for thermal diode/transistor temperature.
90	D2+	AIN	3VSB	Thermal diode/transistor temperature sensor input.
91	D1+(CPU)	AIN	3VSB	CPU thermal diode/transistor temperature sensor input. This pin is for CPU use.
92	VREF	AOUT	3VSB	Voltage reference output.
93	VIN4	AIN	3VSB	Voltage Input 4.
94	VIN3	AIN	3VSB	Voltage Input 3. Support OVP & UVP function, and default is disable alarm mode.
95	VIN2	AIN	3VSB	Voltage Input 2. Support OVP & UVP function, and default is disable alarm mode.
96	VIN1 (Vcore)	AIN	3VSB	Voltage Input for Vcore.
98	FANIN1	IN _{st,5v}	3VCC	Fan 1 tachometer input.
	FANCTL1	OOD _{12,5v} AOUT		Fan 1 control output. This pin provides PWM duty-cycle output or a DAC voltage output (internal pull down $100k\Omega$, default).
99			3VCC	Power on Strapping pin:
	PWM DAC1	IN _{st,5v}		1: PWM mode.
	1 WWI _B/(C)	TI VST,5V		0: Default is DAC mode for FANCTL1 (internal pull down $100k\Omega$).
100	FANIN2	IN _{st,5v}	3VCC	Fan 2 tachometer input.
	FANCTL2	OOD _{12,5v} AOUT		Fan 2 control output. This pin provides PWM duty-cycle output or a DAC voltage output (internal pull down $100k\Omega$, default).
101			3VCC	Power on Strapping pin:
	PWM DAC2	IN s.		1: PWM mode.
	PWM _DAC2	IN _{st,5v}		0: Default is DAC mode for FANCTL2 (internal pull down $100k\Omega$).

5.7 KBC Function

Pin	Pin Name	Туре	PWR	Description
34	KBRST#	OD _{16,u10}	3VCC	Keyboard reset. This pin is high after system reset. Internal pull high 3.3V with $10k\Omega$.
35	GA20	OD _{16,u10}	3VCC	Gate A20 output. This pin is high after system reset. Internal pull high 3.3V with $10k\Omega$.
63	KDATA	I/OD _{16st,5V}	I_VSB3V	PS/2 Keyboard Data.

64	KCLK	I/OD _{16st,5V}	I_VSB3V	PS/2 Keyboard Clock.
	MDATA	I/OD _{16st,5V}	I VSB3V	PS/2 Mouse Data.
61	SCL	I _{Iv} /OD _{16st, 5v}		I2C Interface CLOCK pin. Clock output for AMD TSI & Intel PCH (IBX Peak).
	MCLK	I/OD _{16st,5V}		PS/2 Mouse Clock.
62	SDA	I _{Iv} /OD _{16st, 5v}	I_VSB3V	I2C Interface DATA pin. AMD TSI & Intel PCH (IBX Peak) data pin.

5.8 ACPI, ERP

Pin	Pin Name	Туре	PWR	Description
				Standby power rail control pin 0. This pin controls an
				external PMOS to turn on or off the standby power
52	ERP_CTRL0#	OD _{12,5V}	I VSB3V	rail.
32			1_VOD3V	In the S5 state, the default is set to 1 to cut off the
				standby power rail.
	GPIO00	I/OOD _{12st,5v}		General purpose IO.
				Standby power rail control pin 1. This pin controls an
				external PMOS to turn on or off the standby power
53	ERP_CTRL1#	OD _{12,5V}	I VSB3V	rail.
00			1_10001	In the S5 state, the default is set to 1 to cut off the
		·		standby power rail.
	GPIO01	I/OOD _{12st,5v}		General purpose IO.
			I_VSB3V	This pin asserts low when the PCH is planning to
5 4	SUS_WARN#	IN _{st}		enter the DSW power state. It can detect 5VDUAL
54				level with delay setting supported. The delay time is 1ms~8S (default 4s)
	GPIO02	I/OOD _{12st,5v}		General purpose IO.
				This pin must wait SUSWARN# signal for entering
55	SUS_ACK#	OD _{12,5v}	I_VSB3V	DSW power state.
	GPIO03	I/OOD _{12st,5v}		General purpose IO.
	SLP_SUS#	$IN_{st,Iv}$	I_VSB3V	This pin asserts low which comes from PCH to shut
56				off suspend power rails externally to enhance power
	GPI004	I/OOD _{12st,5v}		saving function. General purpose IO.
	GPIO05	I/OOD _{12st,5v}		General purpose IO.
57		1,000 1251,50	I_VSB3V	UART Serial Output. Used to transmit serial data out to
	SOUT5	O ₁₂	_	the communication link.
	GPIO06	I/OOD _{12st,5v}		General purpose IO.
58	CINE		I_VSB3V	UART Serial Input. Used to receive serial data
	SIN5	IN _{t,5v}		through the communication link.
	GPIO07	I/OOD _{12st,5v}		General purpose IO.
59	RTS5#	O ₁₂	I_VSB3V	UART Request To Send. An active low signal informs
				the modem or data set that the controller is ready to
				send data.

				101000
6F	GPIO10	I/OOD _{12st,5v}	LVCDav	General purpose IO.
65	LED_VSB	OOD _{12,5V}	I_VSB3V	Power LED for VSB.
	GPIO11	I/OOD _{12st,5v}	1) (ODO) (General purpose IO.
66	LED_VCC	OOD _{12,5V}	I_VSB3V	Power LED for VCC.
	CCI			I2C Interface CLOCK pin. Clock output for AMD TSI
	SCL	I _{Iv} /OD _{12st, 5v}		& Intel PCH (IBX Peak).
67	GPIO12	I/OOD _{12st,5v}	I_VSB3V	General purpose IO.
	IDTV	0		SIR Data Infrared Transmitter Output. UART 6 can't
	IRTX	O ₁₂		be used if this function is valid.
	SDA	I _{Iv} /OD _{12st, 5v}		I2C Interface DATA pin. AMD TSI & Intel PCH (IBX
		1 ₁₀ / OD _{12st, 5v}		Peak) data pin.
68	GPIO13	I/OOD _{12st,5v}	I_VSB3V	General purpose IO.
	IRRX	IN _{st,5v}		SIR Data Infrared Receiver input. UART 6 can't be
	IIXIX			used if this function is valid.
	GPIO14	I/OOD _{12st,5v}		General purpose IO.
69			I VSB3V	Power on trapping: ATX emulates AT function
	ATX_AT_TRAP	IN _{t,5v}		1: ATX mode (Default, internal pull high $47k\Omega$).
	MDTDOT!	0.5		0: AT mode.
70	WDTRST#	OD _{12,5v}	I_VSB3V	Watch dog timer signal output.
	GPIO15	I/OOD _{12st,5v}		General purpose IO.
	PME#	00		Generated PME event. It supports the PCI PME#
74	PIVIC#	OD _{12,5v}	I_VSB3V	interface. This signal allows the peripheral to request the system to wake up.
	GPIO65	I/OOD _{12st,5v}		General purpose IO.
	ATXPG IN	IN _{st,5v}		ATX Power Good input.
77	GPIO21	I/OOD _{12st,5v}	I_VSB3V	General purpose IO.
	PWSIN#	IN _{st,5v}		Main power switch button input.
78	GPIO22	I/OOD _{12st,5v}	I_VSB3V	General purpose IO.
				Panel Switch Output. This pin is low active and pulse
79	PWSOUT#	OD _{12,5V}	I_VSB3V	1
	GPIO23	I/OOD _{12st,5v}		General purpose IO.
	S3#	IN _{st,5v}		S3# Input is Main power on-off switch input.
80	GPIO24	I/OOD _{12st,5v}	I_VSB3V	General purpose IO.
	DO 01/4			Power supply on-off control output. Connect to ATX
81	PS_ON#	OD _{12,5v}	I_VSB3V	power supply PS_ON# signal.
	GPIO25	I/OOD _{12st,5v}		General purpose IO.
				PWOK function, It is power good signal of VCC,
82	PWOK	OD _{12,5V}	VBAT	which is delayed 400ms (default) as VCC arrives at
02			VBAI	2.8V.
	GPIO26	I/OD _{12st,5v}		General purpose IO.
	DOMEST"	0.0		Resume Reset# function, It is power good signal of
83	RSMRST#	OD _{12,5V}	VBAT	3VSB, which is delayed 66ms as 3VSB arrives at
	CDIO27	I/OD		2.8V.
	GPIO27	I/OD _{12st,5v}		General purpose IO. It is power good signal of 5VSB which is delayed
86	DPWROK	OD _{12,5v}	VBAT	66ms as 5VSB arrives at 4.4V. Couple this pin to
	DI WITOIT	JD 12,5V	V DAI	PCH when system supports Intel DSW state function.
			1	

	GPIO66	I/OD _{12st,5v}		General purpose IO.
87	S5#	IN _{st,5v}	I_VSB3V	S5# input. This pin companies with S3# to indicate the operating state from S0 to S3 and S4/S5 sleep states.
	GPIO67	I/OD _{12st,5v}		General purpose IO.

5.9 UART

Pin	Pin Name	Туре	PWR	Description
1	DCD2#	IN _{st,5v}	3VCC	Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier.
2	RI2#	IN _{st,5v}	I_VSB3V	Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set. Support wake up function.
3	CTS2#	IN _{st,5v}	3VCC	Clear To Send is the modem control input.
	DTR2#	O ₈		UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate.
4			3VCC	Power on Strapping pin for over voltage protection (OVP).
	OVP_Mode	IN _{t,u47, 5v}		1: Default is disabled; internal pull high $47k\Omega$.
	_			Voltage protection function is enabled via setting the
				related registers.
				0: Enable OVP function.
	RTS2#	O ₈		UART Request To Send. An active low signal informs the modem or data set that the controller is ready to
5			3VCC	send data.
	KBC_EN_TRAP	INI		Power on Strapping pin
	NBO_EN_TRAP	IN _{t,u47, 5v}		1: KBC enable (Default, internal pull high 47k Ω).0: KBC disable.
6	DSR2#	IN _{st,5v}	3VCC	Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
7	SOUT2	O ₈	3VCC	UART Serial Output. Used to transmit serial data out to the communication link.
8	SIN2	IN _{st,5v}	3VCC	UART Serial Input. Used to receive serial data through the communication link.
36	DCD3#	IN _{st,5v}	3VCC	Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier.
	GPIO30	I/OOD _{8st, 5v}		General Purpose IO.
37	RI3#	IN _{st,,5v}	3VCC	Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set.
	GPIO31	I/OOD _{8st, 5v}		General Purpose IO.

38 GPIO32 INODDs. 59 SVCC General Purpose IO.					
General Purpose IO. UNATS Data Terminal Ready. An active low signal informs the modern or data set that controller is ready to communicate. GPIO33 I/OOD _{bat. 5v} General Purpose IO. UART Request To Send. An active low signal informs the modern or data set that controller is ready to communicate. GPIO34 I/OOD _{bat. 5v} General Purpose IO. UART Request To Send. An active low signal informs the modern or data set that the controller is ready to send data. General Purpose IO. Data Set Ready. An active low signal indicates the modern or data set is ready to establish a communication link and transfer data to the UART. GPIO35 I/OOD _{bat. 5v} General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link. GPIO37 I/OOD _{bat. 5v} General Purpose IO. UART Serial Input. Used to receive serial data through the communication link. GPIO41 I/OOD _{bat. 5v} General Purpose IO. Data Carrier Detect. An active low signal indicates the modern or data set has detected a data carrier. GPIO40 I/OOD _{bat. 5v} General Purpose IO. Ring Indicator. An active low signal indicates the modern or data set has detected a data carrier. General Purpose IO. Ring Indicator. An active low signal indicates that a fing signal is being received from the modern or data set. GPIO41 I/OOD _{bat. 5v} General Purpose IO. GPIO42 I/OOD _{bat. 5v} General Purpose IO. UART Data Terminal Ready. An active low signal informs the modern or data set that controller is ready to communication. GPIO44 I/OOD _{bat. 5v} General Purpose IO. UART Data Terminal Ready. An active low signal informs the modern or data set that controller is ready to communication. GPIO44 I/OOD _{bat. 5v} General Purpose IO. UART Request To Send. An active low signal informs the modern or data set that controller is ready to communication. General Purpose IO. UART Request To Send. An active low signal informs the modern or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{bat. 5v} General Purpose IO.	20	CTS3#	IN _{st,5v}	31/00	Clear To Send is the modem control input.
DTR3#	30	GPIO32	I/OOD _{8st, 5v}	3000	General Purpose IO.
40 RTS3# O _B 3VCC GPIO34 I/OOD _{Bat, 5v} O _B 3VCC General Purpose IO. 41 DSR3# IN _{k1,5v} 3VCC GPIO35 I/OOD _{Bat, 5v} 3VCC GPIO41 I/OOD _{Bat, 5v} 3VCC GPIO42 I/OOD _{Bat, 5v} 3VCC GPIO43 I/OOD _{Bat, 5v} 3VCC GPIO44 I/OOD _{Bat, 5v} 3VCC GPIO44 I/OOD _{Bat, 5v} 3VCC GPIO45	39	DTR3#	O ₈	3VCC	informs the modem or data set that controller is ready
the modem or data set that the controller is ready to send data. GPIO34 I/OODsec. sv DSR3# INst.5v 3VCC GPIO35 I/OODsec. sv GPIO36 I/OODsec. sv GPIO37 I/OODsec. sv GPIO38 I/OODsec. sv GPIO39 I/OODsec. sv GPIO37 I/OODsec. sv GPIO37 I/OODsec. sv GPIO41 I/OODsec. sv GPIO42 I/OODsec. sv GPIO42 I/OODsec. sv GPIO43 I/OODsec. sv GPIO43 I/OODsec. sv GPIO43 I/OODsec. sv GPIO44 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO41 I/OODsec. sv GPIO42 I/OODsec. sv GPIO43 I/OODsec. sv GPIO44 I/OODsec. sv GPIO44 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO41 I/OODsec. sv GPIO44 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO49 I/OODsec. sv GPIO41 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO49 I/OODsec. sv GPIO41 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO49 I/OODsec. sv GPIO49 I/OODsec. sv GPIO40 I/OODsec. sv GPIO41 I/OODsec. sv GPIO45 I/OODsec. sv GPIO45 I/OODsec. sv GPIO46 I/OODsec. sv GPIO47 I/OODsec. sv GPIO48 I/OODsec. sv GPIO49 I/OODsec. sv GPIO40 I/OODsec. sv GPIO		GPIO33	I/OOD _{8st, 5v}		General Purpose IO.
DSR3# IN _{ML5V} 3VCC GPIO35 I/OOD _{Bat, 5v} Oa SOUT3 Oa SIN3 IN _{ML5V} OB SOUT3 OB SIN3 IN _{ML5V} OB SOUT3 OB SIN3 IN _{ML5V} OB SIN3 IN _{ML5V} OB CALL OF CALL OB SOUT3 OB SIN3 IN _{ML5V} OB CALL OB	40	RTS3#	O ₈	3VCC	the modem or data set that the controller is ready to
DSR3# IN _{Nt.5v} 3VCC GPIO35 I/OOD _{Sat.5v} General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link. General Purpose IO. UART Serial Input. Used to receive serial data through the communication link. General Purpose IO. UART Serial Input. Used to receive serial data through the communication link. General Purpose IO. Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier. General Purpose IO. Data Carrier Detect. An active low signal indicates the modem or data set. Serial Input. Used to receive serial data through the communication link. General Purpose IO. Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier. General Purpose IO. General Purpose IO. General Purpose IO. Clear To Send is the modem control input. General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. UART Request To Send. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link. Used to transmit serial data out to the communication link. Used to transmit serial data out to the communication link. Used to transmit serial data out to the communication link. Used to transmit serial data out to the communication link. URRT Serial Output. Used to transmit serial data out to the communication link. Used to tran		GPIO34	I/OOD _{8st, 5v}		General Purpose IO.
42 SOUT3 O ₈ GPIO36 I/OOD _{Bat. 5v} A3VCC GPIO37 I/OOD _{Bat. 5v} BCPIO4# IN _{st.5v} GPIO40 I/OOD _{Bat. 5v} A5 RI4# IN _{st.5v} GPIO41 I/OOD _{Bat. 5v} GPIO42 I/OOD _{Bat. 5v} GPIO42 I/OOD _{Bat. 5v} A7 DTR4# O ₈ BTR4# O ₈ A7 DTR4# O ₈ GPIO43 I/OOD _{Bat. 5v} GPIO44 I/OOD _{Bat. 5v} GPIO44 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} A8 RTS4# O ₈ GPIO44 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} SOUT4 O ₈ SVCC GPIO45 I/OOD _{Bat. 5v} SVCC GPIO41 I/OOD _{Bat. 5v} GPIO42 I/OOD _{Bat. 5v} SVCC GPIO45 I/OOD _{Bat. 5v} GPIO45 I/OOD _{Bat. 5v} SVCC GPIO45 I/OOD _{Bat. 5v} SVCC GPIO47 I/OOD _{Bat. 5v} SVCC GPIO48 I/OOD _{Bat. 5v} SVCC GPIO49 I/OOD _{Bat. 5v} SVCC GPIO40 I/OOD _{Bat. 5v}	41	DSR3#	IN _{st,5v}	3VCC	modem or data set is ready to establish a
42 SOUT3 O ₈ 3VCC to the communication link. GPIO36 I/OOD _{8st.5v} to the communication link. General Purpose IO. UART Serial Input. Used to receive serial data through the communication link. General Purpose IO. UART Serial Input. Used to receive serial data through the communication link. General Purpose IO. Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier. General Purpose IO. Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set. General Purpose IO. CIS4# IN _{st.5v} 3VCC GPIO42 I/OOD _{8st.5v} 3VCC GPIO42 I/OOD _{8st.5v} 3VCC GPIO43 I/OOD _{8st.5v} 3VCC GPIO43 I/OOD _{8st.5v} 3VCC GPIO44 I/OOD _{8st.5v} 3VCC GPIO45 I/OOD _{8st.5v} 3VCC GPIO45 I/OOD _{8st.5v} 3VCC GPIO45 I/OOD _{8st.5v} 3VCC GPIO41 I/OOD _{8st.5v} 3VCC GPIO42 I/OOD _{8st.5v} 3VCC GPIO43 I/OOD _{8st.5v} 3VCC GPIO44 I/OOD _{8st.5v} 3VCC GPIO44 I/OOD _{8st.5v} 3VCC GPIO45 I/OOD _{8st.5v} 3VCC GPIO46 I/OOD _{8st.5v} 3VCC GPIO47 I/OOD _{8st.5v} 3VCC GPIO48 I/OOD _{8st.5v} 3VCC GPIO49 I/OOD _{8s}		GPIO35	I/OOD _{8st, 5v}		General Purpose IO.
SIN3 IN _{at.5v} 3VCC GPIO37 I/OOD _{8st.5v} 3VCC GPIO4# IN _{at.5v} 3VCC GPIO4# IN _{at.5v} 3VCC GPIO4# IN _{at.5v} 3VCC GPIO40 I/OOD _{8st.5v} 3VCC GPIO40 I/OOD _{8st.5v} 3VCC GPIO40 I/OOD _{8st.5v} 3VCC GPIO41 I/OOD _{8st.5v} 3VCC GPIO42 I/OOD _{8st.5v} 3VCC GPIO42 I/OOD _{8st.5v} 3VCC GPIO43 I/OOD _{8st.5v} 3VCC GPIO44 I/OOD _{8st.5v} 3VCC GPIO44 I/OOD _{8st.5v} 3VCC GPIO45 I/OOD _{8st.5v} GPIO44 IVOOD _{8st.5v} GPIO44 IVOOD _{8st.5v} GPIO45 IVOOD _{8st.5v} General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. UART Request To Send. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	42	SOUT3	O ₈	3VCC	•
43 SIN3 IN _{st.5v} 3VCC through the communication link. GPIO37 I/OOD _{8st.5v} Ceneral Purpose IO. DCD4# IN _{st.5v} 3VCC GPIO40 I/OOD _{8st.5v} 3VCC GPIO40 I/OOD _{8st.5v} SVCC GPIO41 IN _{st.5v} 3VCC GPIO41 IN _{st.5v} 3VCC GPIO41 IN _{st.5v} 3VCC GPIO42 IN _{OOD_{8st.5v} SVCC GPIO42 IN_{OOD_{8st.5v} SVCC GPIO43 IN_{ood_{8st.5v} SVCC GPIO43 IN_{ood_{8st.5v} SVCC GPIO43 IN_{ood_{8st.5v} SVCC GPIO43 IN_{ood_{8st.5v} SVCC GPIO44 IN_{ood_{8st.5v} SVCC GPIO44 IN_{ood_{8st.5v} SVCC GPIO45 IN_{ood_{8st.5v} SVCC GPIO46 IN_{ood_{8st.5v} SVCC GPIO47 IN_{ood_{8st.5v} SVCC GPIO48 IN_{ood_{8st.5v} SVCC GPIO49 IN_{ood_{8st.5v} SVCC GPIO45 IN_{ood_{8st.5v} SVCC}}}}}}}}}}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>		GPIO36	I/OOD _{8st, 5v}		General Purpose IO.
DCD4# IN _{st.5v} 3VCC GPIO40 I/OOD _{8st.5v} 3VCC General Purpose IO. RI4# IN _{st.5v} 3VCC General Purpose IO. Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set. General Purpose IO. Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set. General Purpose IO. CTS4# IN _{st.5v} 3VCC General Purpose IO. CTS4# O ₈ 3VCC UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. DATA Request To Send. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	43	SIN3	IN _{st,5v}	3VCC	•
Adding the communication link and transfer data out to the communication link and transfer data out to the communication link. INst.5v SOUT4 I/OODsst.5v I/OOD		GPIO37	I/OOD _{8st, 5v}		General Purpose IO.
RI4# IN _{st,5v} 3VCC Seneral Purpose IO. GPIO41 I/OOD _{8st,5v} 3VCC General Purpose IO. GPIO42 I/OOD _{8st,5v} 3VCC General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. GPIO43 I/OOD _{8st,5v} General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. GPIO43 I/OOD _{8st,5v} UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st,5v} Data Set Ready. An active low signal informs the modem or data set that the controller is ready to send data. GPIO45 I/OOD _{8st,5v} Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	44	DCD4#	IN _{st,5v}	3VCC	_
RI4# IN _{st,5v} 3VCC ring signal is being received from the modem or data set. General Purpose IO.		GPIO40	I/OOD _{8st, 5v}		General Purpose IO.
46 CTS4# IN _{st,5v} 3VCC General Purpose IO. 47 DTR4# O ₈ 3VCC GPIO42 I/OOD _{8st,5v} 3VCC GPIO43 I/OOD _{8st,5v} General Purpose IO. 48 RTS4# O ₈ 3VCC GPIO44 I/OOD _{8st,5v} General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. DSR4# IN _{st,5v} 3VCC GPIO45 I/OOD _{8st,5v} 3VCC SOUT4 O ₈ 3VCC UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	45	RI4#	IN _{st,5v}	3VCC	ring signal is being received from the modem or data
46 GPIO42 I/OOD _{8st, 5v} 3VCC General Purpose IO. 47 DTR4# O ₈ 3VCC UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. GPIO43 I/OOD _{8st, 5v} General Purpose IO. 48 RTS4# O ₈ 3VCC UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st, 5v} General Purpose IO. DSR4# IN _{st,5v} 3VCC OBREAL AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AN ACTIVE IOW SIGNAL INDICATE IN THE MODEM OF DATA SET READY. AND ACTIVE IOW SIGNAL INTERPREDION. GPIO45 I/OOD _{8st,5v} 3VCC UART Serial Output. Used to transmit serial data out to the communication link.		GPIO41	I/OOD _{8st, 5v}		General Purpose IO.
GPIO42 I/OOD _{8st, 5v} General Purpose IO. UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate. GPIO43 I/OOD _{8st, 5v} General Purpose IO. UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st, 5v} General Purpose IO. DATA Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. General Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{8st, 5v} General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	46	CTS4#	IN _{st,5v}	3VCC	Clear To Send is the modem control input.
47 DTR4# O ₈ 3VCC informs the modem or data set that controller is ready to communicate. GPIO43 I/OOD _{8st, 5v} RTS4# O ₈ 3VCC UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st, 5v} DSR4# IN _{st,5v} 3VCC Seneral Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{8st, 5v} GPIO45 O ₈ 3VCC UART Serial Output. Used to transmit serial data out to the communication link.		GPIO42	I/OOD _{8st, 5v}		<u> </u>
48 RTS4# O ₈ 3VCC UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st, 5v} General Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{8st, 5v} General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.	47	DTR4#	O ₈	3VCC	informs the modem or data set that controller is ready
the modem or data set that the controller is ready to send data. GPIO44 I/OOD _{8st, 5v} BOSR4# IN _{st,5v} GPIO45 GPIO45 SOUT4 O ₈ 3VCC the modem or data set that the controller is ready to send data. General Purpose IO. Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.		GPIO43	I/OOD _{8st, 5v}		
Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{8st, 5v} General Purpose IO. SOUT4 O ₈ 3VCC UART Serial Output. Used to transmit serial data out to the communication link.	48	RTS4#	O ₈	3VCC	the modem or data set that the controller is ready to
DSR4# IN _{st,5v} 3VCC modem or data set is ready to establish a communication link and transfer data to the UART. GPIO45 I/OOD _{8st,5v} General Purpose IO. UART Serial Output. Used to transmit serial data out to the communication link.		GPIO44	I/OOD _{8st, 5v}		General Purpose IO.
SOUT4 O ₈ UART Serial Output. Used to transmit serial data out to the communication link.	49	DSR4#	IN _{st,5v}	3VCC	modem or data set is ready to establish a
50 SOU14 O ₈ 3VCC to the communication link.		GPIO45	I/OOD _{8st, 5v}		General Purpose IO.
GPIO46 I/OOD _{8st, 5v} General Purpose IO.	50	SOUT4	O ₈	3VCC	·
		GPIO46	I/OOD _{8st, 5v}		General Purpose IO.

	SIN4	IN _{st,5v}	0.400	UART Serial Input. Used to receive serial data
51			3VCC	through the communication link.
	GPIO47	I/OOD _{8st, 5v}		General Purpose IO.
120	DCD1#	IN _{st,5v}	3VCC	Data Carrier Detect. An active low signal indicates the modem or data set has detected a data carrier.
121	RI1#	IN _{st,5v}	I_VSB3V	Ring Indicator. An active low signal indicates that a ring signal is being received from the modem or data set. Support wake up function.
122	CTS1#	IN _{st,5v}	3VCC	Clear To Send is the modem control input.
	DTR1#	O ₈	3VCC	UART Data Terminal Ready. An active low signal informs the modem or data set that controller is ready to communicate.
123	FAN_40_100	IN _{t,u47, 5v}	3VCC	Power on strapping pin: 1(Default): (Internal pull high 47k Ω) Power on fan speed default duty is 40%.(PWM) 0: (External pull down) Power on fan speed default duty is 100%.(PWM)
	RTS1#	O ₈	3VCC	UART Request To Send. An active low signal informs the modem or data set that the controller is ready to send data.
124	Config4E_2E	IN _{t,u47, 5v}	3VCC	Power on strapping: 1(internal pull high 47kΩ,Default) Configuration register:4E/4F 0 Configuration register:2E/2F
125	DSR1#	IN _{st,5v}	3VCC	Data Set Ready. An active low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
	SOUT1	O ₈		UART Serial Output. Used to transmit serial data out to the communication link.
126	I2C_ADDR	IN _{t,u47, 5v}	3VCC	Power on strapping pin: 1: (internal pull high 47kΩ, default) Power on I2C slave address is 0x5C. 0: (external pull down) Power on I2C slave address is 0x5A.
127	SIN1	IN _{st,5v}	3VCC	UART Serial Input. Used to receive serial data through the communication link.

6. Function Description

6.1 Power on Strapping Option

The F81866 provides eight pins for power on hardware strapping to select required functions. See below table for the detail:

Pin No.	Symbol	Value	Description
			Disable (default): internal pull high 47k Ω . Voltage
1	OVP Mode	1	protection function is enabled via setting the related
4	OVF_INIOGE		registers.
		0	Enable OVP function.
60	ATV AT TDAD	1	ATX mode (default, internal pull high $47k\Omega$).
69	ATX_AT_TRAP	0	AT mode.
00	DWW DAC1	1	PWM mode.
99	PWM_DAC1	0	DAC mode (default, internal pull down 100k Ω)
101	DWW DACS	1	PWM mode.
101	PWM_DAC2	0	DAC mode (default, internal pull down 100k Ω)
103		1	PWM mode.
103	PWM_DAC3	0	DAC mode (default, internal pull down 100k Ω)
400	EANIAO 400	1	Power on fan speed default duty is 40%. (Default)
123	FAN40_100	0	Power on fan speed default duty is 100%.
124	0	1	Configuration Register I/O port is 4E/4F. (Default)
124	Config4E_2E	0	Configuration Register I/O port is 2E/2F.
126	ISC ADDD	1	The I2C slave address is 0X5C (Default)
126	I2C_ADDR	0	The I2C slave address is 0X5A

6.2 FDC

The Floppy Disk Controller provides the interface between a host processor and one floppy disk drive. It integrates a controller and a digital data separator with write pre-compensation, data rate selection logic, microprocessor interface, and a set of registers. The FDC supports data transfer rates of 250 Kbps, 300 Kbps, 500 Kbps, 1 Mbps and 2 Mbps. It operates in PC/AT mode.

The FDC configuration is handled by software and a set of Configuration registers. Status, Data, and Control registers facilitate the interface between the host microprocessor and the disk drive, providing information about the condition and/or state of the FDC. These configuration registers can select the data rate, enable interrupts, drives, and DMA modes, and indicate errors in the data or operation of the FDC/FDD.

6.3 Parallel Port

The parallel port in F81866 supports an IBM XT/AT compatible parallel port (SPP), bi-directional parallel port (BPP), Enhanced Parallel Port (EPP), Extended Capabilities Parallel Port (ECP) mode. Refer to the configuration registers for more information on selecting the mode of operation.

The below content is about the Parallel Port device register descriptions. All the registers are for software porting reference.

Parallel Port Data Register — Base + 0

Bit	Name	R/W	Default	Description
7-0	DATA	R/W	00h	The output data to drive the parallel port data lines.

ECP Address FIFO Register — Base + 0

Name	R/W	Default	Description
			Access only in ECP Parallel Port Mode and the ECP_MODE programmed in the Extended Control Register is 011.
ECP_AFIFO	R/W	00h	The data written to this register is placed in the FIFO and tagged as an Address/RLE. It is auto transmitted by the hardware. The operation is only defined for forward direction. It divide into two parts: Bit 7:
			0: bits 6-0 are run length, indicating how many times the next byte to appear (0 = 1time, 1 = 2times, 2 = 3times and so on). 1: bits 6-0 are ECP address. Bit 6-0 : Address or RLE depends on bit 7.
			ECP_AFIFO R/W 00h

Device Status Register — Base + 1

Bit	Name	R/W	Default	Description
7	BUSY_N	R	-	Inverted version of parallel port signal BUSY.
6	ACK_N	R	-	Version of parallel port signal ACK#.
5	PERROR	R	-	Version of parallel port signal PE.
4	SELECT	R	-	Version of parallel port signal SLCT.
3	ERR_N	R	-	Version of parallel port signal ERR#.
2-1	Reserved	R	11	Reserved. Return 11b when read.
0	TMOUT	R	-	This bit is valid only in EPP mode. Return 1 when in other modes. It indicates that a 10uS time out has occurred on the EPP bus. 0: no time out error. 1: time out error occurred, write 1 to clear.

<u>Device Control Register — Base + 2</u>

Bit	Name	R/W	Default	Description
7-6	Reserved	1	11	Reserved. Return 11b when read.
				0: the parallel port is in output mode.
5	DIR	R/W	0	1: the parallel port is in input mode.
				It is auto reset to 1 when in SPP mode.
4	ACKIRQ_EN	R/W	0	Enable an interrupt at the rising edge of ACK#.
3	SLIN	R/W	0	Inverted and then drives the parallel port signal SLIN#.
3	SLIIV	FX/ V V	U	When read, the status of inverted SLIN# is return.

2	INIT_N	R/W	0	Drives the parallel port signal INIT#. When read, the status of INIT# is return.
1	AFD	R/W	0	Inverted and then drives the parallel port signal AFD#. When read, the status of inverted AFD# is return.
0	STB	R/W	0	Inverted and then drives the parallel port signal STB#. When read, the status of inverted STB# is return.

EPP Address Register — Base + 3

Bit	Name	R/W	Default	Description
7-0	EPP_ADDR	R/W	00h	Write this register will cause the hardware to auto transmit the written data to the device with the EPP Address Write protocol. Read this register will cause the hardware to auto receive data from the device by with the EPP Address Read protocol.

EPP Data Register — Base + 4 - Base + 7

Bit	Name	R/W	Default	Description
7-0	EPP_DATA	R/W	00h	Write this register will cause the hardware to auto transmit the written data to the device with the EPP Data Write protocol. Read this register will cause the hardware to auto receive data from the device by with the EPP Data Read protocol.

Parallel Port Data FIFO — Base + 400h

Bit	Name	R/W	Default	Description
7-0	C_FIFO	R/W	00h	Data written to this FIFO is auto transmitted by the hardware to the device by using standard parallel port protocol. It is only valid in ECP and the ECP_MODE is 010b. The operation is only for forward direction.

ECP Data FIFO — Base + 400h

Bit	Name	R/W	Default	Description
7-0	ECP_DFIFO	R/W	00h	Data written to this FIFO when DIR is 0 is auto transmitted by the hardware to the device by using ECP parallel port protocol. Data is auto read from device into the FIFO when DIR is 1 by the hardware by using ECP parallel port protocol. Read the FIFO will return the content to the system. It is only valid in ECP and the ECP_MODE is 011b.

ECP Test FIFO — Base + 400h

Bit	Name	R/W	Default	Description
7-0	T_FIFO	R/W	00h	Data may be read, written from system to the FIFO in any Direction. But no hardware handshake occurred on the parallel port lines. It could be used to test the empty, full and threshold of the FIFO. It is only valid in ECP and the ECP_MODE is 110b.

ECP Configuration Register A — Base + 400h

Bit	Name	R/W	Default	Description
7	IRQ_MODE	R	0	0: interrupt is ISA pulse. 1: interrupt is ISA level. Only valid in ECP and ECP_MODE is 111b.
6-4	IMPID	R	001	000: the design is 16-bit implementation. 001: the design is 8-bit implementation (default). 010: the design is 32-bit implementation. 011-111: Reserved. Only valid in ECP and ECP_MODE is 111b.
3	Reserved	-	-	Reserved.
2	BYTETRAN_N	R	1	0: when transmitting there is 1 byte waiting in the transceiver that does not affect the FIFO full condition. 1: when transmitting the state of the full bit includes the byte being transmitted. Only valid in ECP and ECP_MODE is 111b.
1-0	Reserved	R	00	Return 00 when read. Only valid in ECP and ECP_MODE is 111b.

ECP Configuration Register B — Base + 401h

Bit	Name	R/W	Default	Description
				0: only send uncompressed data.
7	COMP	R	0	1: compress data before sending.
				Only valid in ECP and ECP_MODE is 111b.
6	Decembed)	1	Reserved. Return 1 when read.
0	Reserved	R		Only valid in ECP and ECP_MODE is 111b.
	ECP_IRQ_CH	R	001	000: the interrupt selected with jumper.
				001: select IRQ 7 (default).
				010: select IRQ 9.
				011: select IRQ 10.
5-3				100: select IRQ 11
				101: select IRQ 14.
				110: select IRQ 15.
				111: select IRQ 5.
				Only valid in ECP and ECP_MODE is 111b.
2-0	ECP_DMA_CH	R	011	Return the DMA channel of ECP parallel port.
				Only valid in ECP and ECP_MODE is 111b.

Extended Control Register — Base + 402h

Bit	Name	R/W	Default	Description
7-5	ECP_MODE	R/W	000	000: SPP Mode. 001: PS/2 Parallel Port Mode. 010: Parallel Port Data FIFO Mode. 011: ECP Parallel Port Mode. 100: EPP Mode. 101: Reserved. 110: Test Mode. 111: Configuration Mode. Only valid in ECP.
4	ERRINTR_EN	R/W	0	0: disable the interrupt generated on the falling edge of ERR#. 1: enable the interrupt generated on the falling edge of ERR#.
3	DAMEN	R/W	0	0: disable DMA. 1: enable DMA. DMA starts when SERVICEINTR is 0.
2	SERVICEINTR	R/W	1	0: enable the following case of interrupt. DMAEN = 1: DMA mode. DMAEN = 0, DIR = 0: set to 1 whenever there are writeIntrThreshold or more bytes are free in the FIFO. DMAEN = 0, DIR = 0: set to 1 whenever there are readIntrThreshold or more bytes are valid to be read in the FIFO.
1	FIFOFULL	R	0	0: The FIFO has at least 1 free byte. 1: The FIFO is completely full.
0	FIFOEMPTY	R	0	0: The FIFO contains at least 1 byte. 1: The FIFO is completely empty.

6.4 Hardware Monitor

6.4.1 General Description

6.4.1.1 Voltage

For the 8-bit ADC has the 8mv LSB, the maximum input voltage of the analog pin is 2.048V. Therefore the voltage under 2.048V (ex:1.5V) can be directly connected to these analog inputs. The voltage higher than 2.048V should be reduced by a factor with external resistors so as to obtain the input range. Only 3Vcc is an exception for it is main power of the F81866. Therefore 3Vcc can directly connect to this chip's power pin and need no external resistors. There are two functions in this pin with 3.3V. The first function is to supply internal analog power of the F81866 and the second function is that voltage with 3.3V is connected to internal serial resistors to monitor the +3.3V voltage. The internal serial resistors are two 150K Ω , so that the internal reduced voltage is half of +3.3V (See figure 6-1).

There are four voltage inputs in the F81866 and the voltage divided formula is shown as follows:

$$VIN = V_{+12V} \times \frac{R_2}{R_1 + R_2}$$
 where V_{+12V} is the analog input voltage, for example.

If we choose R1=20K, R2=2K, the exact input voltage for V+12v will be 1.09V, which is within the tolerance. As for application circuit, it can be refer to the figure shown as follows.

Fig 6-1

PME# interrupt for voltage is shown as figure 6-2. Voltage exceeding or going below high limit will cause an interrupt if the previous interrupt has been reset by writing "1" all the interrupt Status Register.

Fig 6-2

6.4.1.2 Temperature Sensor

The F81866 monitors two remote temperature sensors. These sensors can be measured from -60°C to 127°C for thermal diode & thermistor. More detail please refers to the register description.

Remote-sensor transistor manufacturers

Manufacturer	Model Number
Panasonic	2SB0709 2N3906
Philips	PMBT3906

(1) Monitor Temperature from "thermistor"

The F81866 can connect two thermistors to measure environment temperature or remote temperature. The specification of thermistor should be considered to (1) β value is 3435K (2) resistor value is 10K Ω at 25°C. In the Figure 6-1, the thermistor is connected by a serial resistor with 10K Ω , then connected to VREF.

(2) Monitor Temperature from "thermal diode"

Also, if the CPU, GPU or external circuits provide thermal diode for temperature measurement, the F81866 is capable to these situations. The build-in reference table is for PNP 2N3906 transistor. In the Figure 6-1, the transistor is directly connected into temperature pins.

Over Temperature Signal (OVT#)

OVT# alert for temperature is shown as figure 6-3. When monitored temperature exceeds the over-temperature threshold value, OVT# will be asserted until the temperature goes below the hysteresis temperature.

Fig 6-3

Temperature PME#

PME# interrupt for temperature is shown as figure 6-4. Temperature exceeding high limit or going below hysteresis will cause an interrupt if the previous interrupt has been reset by writing "1" all the interrupt Status Register.

*Interrupt Reset when Interrupt Status Registers are written 1

Fig 6-4

6.4.1.3 Fan

Fan speed count

Inputs are provided by the signals from fans equipped with tachometer outputs. The level of these signals should be set to TTL level, and maximum input voltage cannot be over 5V. If the input signals from the tachometer outputs are over the 5V, the external trimming circuit should be added to reduce the voltage to obtain the input specification.

Determine the fan counter according to:

$$Count = \frac{1.5 \times 10^6}{RPM}$$

In other words, the fan speed counter (12 bit resolution) has been read from register, the fan speed can be evaluated by the following equation.

$$RPM = \frac{1.5 \times 10^6}{Count}$$

As for fan, it would be best to use 2 pulses (4 phases fan) tachometer output per round. So the parameter "Count" under 5 bit filter is 4096~64 and RPM is 366~23438 based on the above equation. If using 8 phases fan, RPM would be from 183~11719.

Fan speed control

The F81866 provides 2 fan speed control methods:

1. DAC FAN CONTROL 2. PWM DUTY CYCLE

(1) DAC Fan Control

The range of DC output is 0~VCC, controlled by 8-bit register. 1 LSB is about 0.013V (VCC=3.3V). The output DC voltage is amplified by external OP circuit, thus to reach maximum FAN OPERATION VOLTAGE, 12V. The output voltage will be given as followed:

$$Output_voltage (V) = VCC \times \frac{Programmed 8bit Register Value}{256}$$

And the suggested application circuit for linear fan control would be:

Fig 6-5

(2) PWM Duty Fan Control

The duty cycle of PWM can be programmed by a 8-bit register. The default duty cycle is set to 100%, that is, the default 8-bit registers is set to FFh. The expression of duty can be represented as follows.

$$Duty_cycle(\%) = \frac{Programmed 8bit Register Value}{255} \times 100\%$$

Fig 6-6

Fan Speed Control Mechanism

There are some modes to control fan speed and they are 1.Manual mode, 2. Auto mode (Stage & Linear). More detail, please refer to the description of registers & below figure.

Fig 6-7 Fan type & mode selection flow

Each fan can be controlled by 8 kinds of temperature inputs: (1) T1 temperature (2) T2 temperature (3) T3 temperature (4) PECI temperature (5) 4 suits I2C master temperature.

FAN 1	Related Register
FAN_PROG_SEL	Index 9Fh [7]
FAN Type Select	Index 94 [1:0]
FAN mode Select	Index 96 [1:0]
FAN count reading	Index A0h~A1h
FAN expect speed	Index A2h~A3h
FAN full speed count	Index A4h~A5h
BOUNDARY	Index A6h~A9h
SEGMENT SPEED	Index AAh~AEh
FAN1 Temperature Mapping	Index AFh

FAN 2	Related Register
FAN_PROG_SEL	Index 9Fh [7]
FAN Type Select	Index 94 [3:2]
FAN mode Select	Index 96 [3:2]
FAN count reading	Index B0h~B1h
FAN expect speed	Index B2h~B3h
FAN full speed count	Index B4h~B5h
BOUNDARY	Index B6h~B9h
SEGMENT SPEED	Index BAh~BEh
FAN1 Temperature Mapping	Index BFh

FAN 3	Related Register
CLK_TUNE_PROG_EN	Global Control Register : index 27h [0]
Multi Function	Global Control Register : index 2Bh [1:0]
FAN_PROG_SEL	Index 9Fh [7]
FAN Type Select	Index 94 [5:4]
FAN mode Select	Index 96 [5:4]
FAN count reading	Index C0h~C1h
FAN expect speed	Index C2h~C3h
FAN full speed count	Index C4h~C5h
BOUNDARY	Index C6h~C9h
SEGMENT SPEED	Index CAh~CEh
FAN1 Temperature Mapping	Index CFh

(1) Manual mode

For manual mode, it generally acts as the software fan speed control.

(2) Auto mode

In auto mode, the F81866 provides the automatic fan speed control related to the temperature variation of CPU/GPU or the system. The F81866 can provide four temperature boundaries and five intervals, and each interval has its related fan speed count. All these values should be set by BIOS first. Take FAN1 for example, the 4 temperature boundaries could be set from the register 0xA6 to 0xA9 and the five intervals for fan speed control could be set from register 0xAA to 0xAE. The hysteresis setting $(0 \sim 15^{\circ}C)$ could also be found in the register 0x98.

There are two kinds for the auto modes they are the stage auto mode and the linear auto mode. The "FAN1_INTERPOLATION_EN" in the register 0xAFh is used for the linear auto mode enable. The following examples explain the differences for the stage auto mode and linear auto mode.

Stage auto mode

In this mode, the fan keeps in a same speed for each temperature interval. And there are two types of fan speed setting: PWM Duty and RPM %.

A. Stage auto mode (PWM Duty)

Set the temperature limits as 70°C, 60°C, 50°C, 40°C and the duty as 100%, 90%, 80%, 70%, 60%

Fig 6-8 Stage mode fan control illustration

- a. Once the temperature is under 40°C, the lowest fan speed keeps in the 60% PWM duty.
- b. Once the temperature is over 40°C, 50°Cand 60°C, the fan speed will vary from 70%, 80% to 90% PWM duty and increasing with the temperature level.
- c. For the temperature higher than 70°C, the fan speed keeps in 100% PWM duty.
- d. If set the hysteresis is 3°C (default 4°C), once the temperature becomes lower than 67°C, the fan speed would reduce to 90% PWM duty.

B. Stage auto mode (RPM%)

Set the temperature as 70°C, 60°C, 50°C, 40°C and the corresponding fan speed is 6,000 RPM, 5,400 RPM, 4,800 RPM, 4,200 RPM, and 3,600 RPM (assume the Max Fan Speed is 6,000 RPM).

Fig 6-9 Stage mode fan control illustration

- a. Once the temperature is lower than 40°C, the lowest fan speed keeps in 3,600 RPM (60% of full speed).
- b. Once the temperature is higher than 40°C, 50°C and 60°C, the fan speed will vary from 4,200 RPM to 5,400 RPM and increasing with the temperature level.
- c. For the temperature higher than 70°C, the fan speed keeps in the full speed 6,000 RPM.
- d.If the hysteresis is set as 3°C (default 4°C), once temperature gets lower than 67°C, the fan speed would reduce to 5,400 RPM.

Linear auto mode

Furthermore, F81866 also supports linear auto mode. The fan speed would increase or decrease linearly with the temperature. There are also PWM Duty and RPM% modes for it.

A. Linear auto mode (PWM Duty I)

Set the temperature as 70°C, 60°C, 50°C and 40°C and the duty is 100%, 80%, 70%, 60% and 50%.

Fig 6-10 Linear mode fan control illustration

- a. Once the temperature is lower than 40°C, the lowest fan speed keeps in the 50% PWM duty
- b. Once the temperature becomes higher than 40°C, 50°C and 60°C, the fan speed will vary from 50% to 80% PWM duty linearly with the temperature variation. The temp.-fan speed monitoring flash interval is 1sec.
- c. Once the temperature goes over 70°C, the fan speed will directly increase to 100% PWM duty (full speed).
- d. If set the hysteresis is 5°C (default is 4°C), once the temperature becomes lower than 65°C (instead of 70°C), the fan speed will reduce from 100% PWM duty and decrease linearly with the temperature.

B. Linear auto mode (RPM%)

Set the temperature as 70°C, 60°C, 50°C, 40°C and the corresponding fan speed is 6,000 RPM, 4,800 RPM, 4,200 RPM, 3,600 RPM and 3,000 RPM (assume the Max Fan Speed is 6,000 RPM).

Fig 6-11 Linear mode fan control illustration

- a. Once the temperature is lower than 40°C, the lowest fan speed keeps in 3,000 RPM (50% of full speed).
- b. Once the temperature is over 40°C,50°C and 60°C, the fan speed will vary from 3,000 to 4,800 RPM almost linearly with the temperature variation because the temp.-fan speed monitoring flash interval is 1sec.
- c. Once the temperature goes over 70°C, the fan speed will directly increase to full speed 6,000 RPM
- d. If the hysteresis is 5°C (default is 4°C), once the temperature becomes lower than 65°C (instead of 70°C), the fan speed wull reduce from full speed and decrease linearly with the temperature.

PWMOUT Duty-cycle operating process

In both "Manual RPM" and "Temperature RPM" modes, the F81866 adjust PWMOUT duty-cycle according to current fan count and expected fan count. It will operate as follows:

- 1. When expected count is 0xFFF, PWMOUT duty-cycle will be set to 0x00 to turn off fan.
- 2. When expected count is 0x000, PWMOUT duty-cycle will be set to 0xFF to turn on fan with full speed.
- If both (1) and (2) are not true,
 When PWMOUT duty-cycle decrease to MIN_DUTY(≠ 00h), obviously the duty-cycle will

decrease to 00h next, the F81866 will keep duty-cycle at 00h for 1.6 seconds. After that, the F81866 starts to compare current fan count and expected count in order to increase or decrease its duty-cycle. This ensures that if there is any glitch during the period, the F81866 will ignore it.

Fan Speed Control with Multi-temperature

F81866 supports Multi-temperature for Fan 1 control. Fan 1 can be controlled up to 2 kinds of temperature inputs. This function works with linear auto mode which can extend to two linear slopes for Fan 1 control. As below graph shows, this machine can support more silence fan control in low temperature and high fan speed in the high temperature segment. More detail setting please refers to the related registers.

Figure 6-13 Support 2 Linear Application with Multi-Temp. Setting

In the figure below, TFan1 is the scaled temperature for fan1. T1 is the real temperature for the fan1 sensor. Ta is another temperature data which can be used for linearly scale up or scale down the fan1 speed curve. Tb would be the point which starts the temperature scaling. The slope for the temperature curve over and under Tb would be Ctup and Ctdn.

1. Ctup, Ctdn Can be Programmed to 1, $\frac{1}{2}$, $\frac{1}{4}$, 0

2. Ta Can be Selected to the Same Temp. Source (Ex:T1)

In application, we can set the Ta as the 2^{nd} sensor temperature and Tb as the temperature which starts the scaling. So if the 2^{nd} sensor temperature Ta is higher or lower than Tb, the fan1 speed would be changed with it.

Figure 6-15

FAN_FAULT#

Fan_Fault# will be asserted when the fan speed doesn't meet the expected fan speed within a programmable period (default is 11 seconds) or when fan stops with respect to PWM duty-cycle which should be able to turn on the fan. There are two conditions may cause the FAN_FAULT# event.

(1). When PWM_Duty reaches 0xFF, the fan speed count can't reach the fan expected count on time. (Figure 6-16)

Fig 6-16

(2). After the period of detecting fan full speed, when PWM_Duty > Min. Duty, and fan count is still in 0xFFF.

6.4.2 Hardware Monitor Device Registers

Before the device registers, the following is a register map order which shows a summary of all registers. Please refer to each register if you want more detail information.

Register index01 ~ CR03 → Configuration Registers

Register index08 ~ CREF → PECI/TSI/I2C Control Register

Register CR40 ~ CR8E → PECI 3.0 Command and temperature Setting Register

Register CR10 ~ CR3A → Voltage Setting Register

Register CR90 ~ CRCF → Fan Control Setting Register

→ Fan1 Detail Setting CRA0 ~ CRAF

→Fan2 Detail Setting CRB0 ~ CRBF

→Fan3 Detail Setting CRC0 ~ CRCF

6.4.2.1 Configuration Setting

FAN, Voltage Start up Register — Index 01h

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	0h	-	0	Reserved
2	POWER_DOWN	R/W	5VSB	0	Hardware monitor function power down function.
1	FAN_START	R/W	5VSB	1 1	enable startup of fan monitoring operations. Put the part in the standby mode.

0	V_T_START	R/W	5VSB	1	enable startup of temperature and voltage monitoring operations Put the part in the standby mode.	
---	-----------	-----	------	---	---	--

Case Open, Alert, OVT Mode Register — Index 02h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	1	0	Dummy register.
6	CASE_BEEP_EN	R/W	5VSB	0	Disable case open event output via BEEP. Enable case open event output via BEEP.
5-4	OVT_MODE	R/W	5VSB	0	00: The OVT# will be low active level mode. 01: The OVT# will be low pulse mode. 10: The OVT# will indicate by 1Hz LED function. 11: The OVT# will indicate by (400/800HZ) BEEP output.
3	Reserved	R/W	-	0	Dummy register.
2	CASE_SMI_EN	R/W	5VSB	0	0: Disable case open event output via PME. 1: Enable case open event output via PME.
1-0	ALERT_MODE	R/W	5VSB	0	00: The ALERT# will be low active level mode. 01: The ALERT# will be high active level mode. 10: The ALERT# will indicate by 1Hz LED function. 11: The ALERT# will indicate by (400/800HZ) BEEP output.

Case Open Status Register — Index 03h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	R/W	1	0	Reserved
0	CASE_STS	R/W	VBAT	. ()	Case open event status write 1 to clear if case open event cleared. (This bit is powered by VBAT.)

6.4.2.2 PECI/TSI/I2C Setting

TSI Or IBEX Control Register — Index 08h

Bit	Name	R/W	Reset	Default	Description
7-1	TSI_ADDR	R/W	5VSB	26h	AMD TSI or Intel IBEX slave address.
0	Reserved	-	-	-	Reserved

I2C Address Control Register — Index 09h

Bit	Name	R/W	Reset	Default	Description
7-1	I2C_ADDR	R/W	5VSB	0	I2CADDR[7:1] is the slave address sent by the embedded master when using a block write command
0	Reserved	R/W	-	0	Reserved

PECI, TSI, IBEX, Beta Register — Index 0Ah

Bit	Name	R/W	Reset	Default	Description
7	BETA EN2	R/W	5VSB	0	0: disable the T2 beta compensation.
	<u> </u>	1000	OVOD	·	1: enable the T2 beta compensation.
6	BETA EN1	R/W	5VSB	0	0: disable the T1 beta compensation.
	DE I7 CENT	1000	OVOD	Ů	1: enable the T1 beta compensation.
					This bit is used to select AMD TSI or Intel IBEX when TSI_EN is set to 1.
5	INTEL_SEL	R/W	5VSB	1	0: Select AMD
					1: Select Intel
4	MVM MODE	R/W	LRESE	0	Reserved
4	MXM_MODE	R/VV	T#	U	Reserved
					PECI (VTT) voltage selection.
					00: VTT is 1.23V
3-2	VTT_SEL	R/W	5VSB	0	01: VTT is 1.13V
					10: VTT is 1.00V
					11: VTT is 1.00V
1	TSI_EN	R/W	5VSB	0	Set this bit 1 to enable AMD TSI or Intel IBEX function
0	PECI_EN	R/W	LRESET#	0	Set this bit 1 to enable Intel PECI function

CUP Socket Select Register — Index 0Bh

Bit	Name	R/W	Reset	Default	Description
					Select the Intel CPU socket number.
					0000: no CPU presented. PECI host will use Ping () command to find the
			5VSB	0	CPU address.
7-4	7-4 CPU_SEL	R/W			0001: CPU is in socket 0, i.e. PECI address is 0x30.
' -					0010: CPU is in socket 0, i.e. PECI address is 0x31.
					0100: CPU is in socket 0, i.e. PECI address is 0x32.
					1000: CPU is in socket 0, i.e. PECI address is 0x33.
					Others are reserved.
3-1	Reserved	-	-	0	Reserved.
0	DOMAIN1_EN	R/W	5VSB	()	If the CPU is selected as dual core. Set this register 1 to read the temperature of domain1.

TCC Register — Index 0Ch

Bit	Name	R/W	Reset	Default	Description
					TCC Activation Temperature.
					When PECI is enabled, the absolute value of CPU temperature is
7-0	-0 TCC_TEMP R/W 5VSB	5VSB	8'h55	calculated by the equation:	
					CPU_TEMP = TCC_TEMP + PECI Reading.
					The range of this register is -128 ~ 127°C.

TSI Offset Register — Index 0Dh

Bit	Name	R/W	Reset	Default	Description
					This byte is used as the offset to be added to the CPU temperature
7-0	7-0 TSI_OFFSET R/W 5VS	5VSB	0	reading of AMD_TSI.	
					The range of this register is -128 ~ 127°C.

Configuration Register — Index 0Fh

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	0	Reserved.
1-0	DIG_RATE_SEL	R/W	5VSB	0	Reserved for Fintek use only

TSI Temperature 0 – Index E0h

Bit	Name	R/W	Reset	Default	Description
					This is the AMD TSI reading if AMD TSI enable.
	TCL TEMPO	D///	5VSB		And will be highest temperature among CPU, MCH and PCH if Intel
	TSI_TEMP0	R/W	3738	-	temperature interface enable. The range is 0~255°C. To access this byte,
					MCH_BANK_SEL must set to "0".
			5VSB		This byte is used as multi-purpose:
7.0					The received data of receive protocol.
7-0					The first received byte of read word protocol.
	IOC DATAG				3. The 10 th received byte of read block protocol.
	I2C_DATA0	R/W		8'h00	The sent data for send byte protocol and write byte protocol.
					The first send byte for write word protocol.
					The first send byte for write block protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 1 – Index E1h

Bit	Name	R/W	Reset	Default	Description
	TSI_TEMP1	R	5VSB	-	This is the high byte of Intel temperature interface PCH reading. The range is 0~255°C. To access this byte, MCH_BANK_SEL should be set to "0".
7-0	I2C_DATA1	R/W	5VSB	8'h00	This byte is used as multi-purpose: 1. The second received byte of read word protocol. 2. The 11 th received byte of read block protocol. 3. The second send byte for write word protocol. 4. The second send byte for write block protocol. To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 2 Low Byte - Index E2h

Bit	Name	R/W	Reset	Default	Description
					This is the low byte of Intel temperature interface CPU reading. The
					reading is the fraction part of CPU temperature. Bit 0 indicates the error
		В	EV/CD		status.
	TSI_TEMP2_LO	R	5VSB	-	0: No error.
7-0					1: Error code.
					To access this byte, MCH_BANK_SEL should be set to "0".
		R/W	5VSB		This is the 12 th byte of the block read protocol.
	I2C_DATA2			8'h00	This byte is also used as the 3rd byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 2 High Byte - Index E3h

Bit	Name	R/W	Reset	Default	Description
					This is the high byte of Intel temperature interface CPU reading. The
	TSI_TEMP2_HI	R	5VSB	-	reading is the decimal part of CPU temperature.
7.0					To access this byte, MCH_BANK_SEL should be set to "0".
7-0					This is the 13 th byte of the block read protocol.
	I2C_DATA3	R/W 5V	5VSB	8'h00	This byte is also used as the 4th byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 3 – Index E4h

Bit	Name	R/W	Reset	Default	Description
					This is the high byte of Intel temperature interface MCH reading. The
	TSI_TEMP3	R	5VSB	-	range is 0~255°C.
7-0					To access this byte, MCH_BANK_SEL should be set to "0".
7-0					This is the 14 th byte of the block read protocol.
	I2C_DATA4	R/W 5VSE	5VSB	8'h00	This byte is also used as the 5th byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 4 – Index E5h

Bit	Name	R/W	Reset	Default	Description
					This is the high byte of Intel temperature interface DIMM0 reading. The
7-0	TSI_TEMP4	R	5VSB	-	range is 0~255°C.
					To access this byte, MCH_BANK_SEL should be set to "0".

				This is the 15 th byte of the block read protocol.
I2C_DATA5	R/W	5VSB	8'h00	This byte is also used as the 6th byte of block write protocol.
				To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 5 – Index E6h

Bit	Name	R/W	Reset	Default	Description
	TSI TEMP5	R	5VSB	_	This is the high byte of Intel temperature interface DIMM1 reading. The range is 0~255°C.
7-0	1012.11.0		0.00		To access this byte, MCH_BANK_SEL should be set to "0".
7-0					This is the 16 th byte of the block read protocol.
	I2C_DATA6	R/W	5VSB	8'h00	This byte is also used as the 7th byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 6 – Index E7h

Bit	Name	R/W	Reset	Default	Description
	TSI TEMP6	R	5VSB	_	This is the high byte of Intel temperature interface DIMM2 reading. The range is 0~255°C.
7-0	10_121110		0.00		To access this byte, MCH_BANK_SEL should be set to "0".
7-0					This is the 17 th byte of the block read protocol.
	I2C_DATA7	R/W	5VSB	8'h00	This byte is also used as the 8th byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

TSI Temperature 7 – Index E8h

Bit	Name	R/W	Reset	Default	Description
7-0	TSI_TEMP7	R	5VSB		This is the high byte of Intel temperature interface DIMM3 reading. The range is 0~255°C. The above 9 bytes could also be used as the read data of block read protocol if the TSI is disable or pending.
7-0	I2C_DATA8	R/W	5VSB	8'h00	This is the 18 th byte of the block read protocol. This byte is also used as the 9th byte of block write protocol. To access this byte, MCH_BANK_SEL should be set to "1".

I2C Data Buffer 9 - Index E9h

Bit	Name	R/W	Reset	Default	Description
					This is the 18 th byte of the block read protocol.
7-0	I2C_DATA9	R/W	5VSB	FFh	This byte is also used as the 9th byte of block write protocol.
					To access this byte, MCH_BANK_SEL should be set to "1".

Block Write Count Register – Index ECh

Bit	Name	R/W	Reset	Default	Description
7	MCH_BANK_SEL	R/W	5VSB	0	This bit is used to select the register in index E0h to E9h. Set "0" to read the temperature bank and "1" to access the data bank.
6	Reserved	-	-	0	Reserved
5-0	BLOCK_WR_CNT	R/W	5VSB	0	Use the register to specify the byte count of block write protocol. Support up to 10 bytes.

I2C Command Byte/TSI Command Byte - Index EDh

Bit	Name	R/W	Reset	Default	Description
					There are actual two bytes for this index. TSI_CMD_PROG select which byte to be programmed:
7-0	12C CMD/TSI CMD	R/W	5VSB	0/1	0: I2C_CMD, which is the command code for write byte/word, read
7-0 IZC_GVID/TSI_GVID R/VV	3736		byte/word, block write/read and process call protocol.		
					1: TSI_CMD, which is the command code for Intel temperature interface
					block read protocol and the data byte for AMD TSI send byte protocol.

I2C Status - Index EEh

l i					
Bit	Name	R/W	Reset	Default	Description
					Set 1 to pending auto TSI accessing. (In AMD model, auto accessing will
7	TSI PENDING	R/W	LRESET#	0	issue a send-byte followed a receive-byte; In Intel model, auto accessing
	1011 1140140	1000	LRESET#	0	will issue a block read).
					To use the SCL/ SDA as I2C master, set this bit to "1" first.
6	TSI_CMD_PROG	R/W	5VSB	0	Set 1 to program TSI_CMD.
5	PROC KILL	R/W	5VSB	0	Kill the current I2C transfer and return the state machine to idle. It will set
5	PROC_NILL	F/W	3798	U	a fail status if the current transfer is not completed.
4	EAII CTC	R	EVCD	0	This is set when PROC_KI LL kill an un-completed transfer. It will be
4	FAIL_STS	ĸ	5VSB	0	auto cleared by next I2C transfer.
2	IOC ADT EDD	J	EV/OD		This is the arbitration lost status if I2C command is issued. Auto cleared
3	I2C_ABT_ERR	R	5VSB	0	by next I2C command.
	100 TO EDD	0	EV (OD		This is the timeout status if I2C command is issued. Auto cleared by next
2	I2C_TO_ERR	R	5VSB	0	I2C command.
1	DC NAC EDD	ם	EV/CD	0	This is the NACK error status if I2C command is issued. Auto cleared by
1	I2C_NAC_ERR	R	5VSB	0	next I2C command.
	IOC DEADY	Б	EV/CD	4	0: I2C transfer is in process.
0	I2C_READY	R	5VSB	1	1: Ready for next I2C command.

I2C Protocol Select - Index EFh

Bit	Name	R/W	Reset	Default	Description
7	IOC CTADT	W		0	Write "1" to trigger I2C transfer with the protocol specified by
/	I2C_START	VV	-	0	I2C_PROTOCOL.
6-4	Reserved	-	-	-	Reserved.
					Select what protocol if I2C transfer is triggered.
					0001b: send byte.
					0010b: write byte.
					0011b: write word.
		R/W			0100b: Reserved.
					0101b: block write.
3-0	I2C_PROTOCOL		5VSB		0111b: quick command (write).
					1001b: receive byte.
					1010b: read byte.
					1011b: read word.
					1101b: block read.
					1111b: Reserved
					Otherwise: reserved.

6.4.2.3 PECI 3.0 & Temperature Setting

PECI 3.0 Command and Register

PECI Configuration Register — Index 40h

	· = or oomigarano						
Bit	Name	R/W	Reset	Default	Description		
7	RDIAMSR_CMD_EN	R/W	5VSB	()	When PECI temperature monitoring is enabled, set this bit 1 will generate a RdIAMSR() command before a GetTemp() command.		
6	C3_UPDATE_EN	R/W	5VSB	()	If RDIAMSR_CMD_EN is not set to 1, the temperature data is not allowed to be updated when the completion code of RdIAMSR() is 0x82.		
5-4	Reserved	R	-	-	Reserved		
3	C3_PTEMP_EN	R/W	5VSB	()	Set this bit 1 to enable updating positive value of temperature if the completion code of RdIAMSR() is 0x82.		
2	C0_PTEMP_EN	R/W	5VSB	0	Set this bit 1 to enable updating positive value of temperature if the completion code of RdIAMSR() is not 0x82 and the bit 8 of completion code is not 1 either.		
1	C3_ALL0_EN	R/W	5VSB	()	Set this bit 1 to enable updating temperature value 0x0000 if the completion code of RdIAMSR() is 0x82.		
0	C0_ALL0_EN	R/W	5VSB	0	Set this bit 1 to enable updating temperature value 0x0000 if the completion code of RdIAMSR() is not 0x82 and the bit 8 of completion code is not 1 either.		

PECI Master Control Register — Index 41h

Bit	Name	R/W	Reset	Default	Description
7	PECI_CMD_START	W	5VSB	-	Write 1 to this bit to start a PECI command when using as a PECI master. (PECI_PENDING must be set to 1)

6-5	Reserved	R	-	-	Reserved
4	PECI_PENDING	R/W	5VSB	0	Set this bit 1 to stop monitoring PECI temperature.
3	Reserved	R	-	-	Reserved
2-0	PECI_CMD	R/W	5VSB	3'h0	PECI command to be used by PECI master. 000: PING() 001: GetDIB() 010: GetTemp() 011: RdIAMSR() 100: RdPkgConfig() 101: WrPkgConfig() others: Reserved

PECI Master Status Register — Index 42h

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	R	-	-	Reserved
2	ABORT_FCS	R/WC	5VSB	-	This bit is the Abort FCS status of PECI master commands. Write this bit 1 or read this byte will clear this bit to 0.
1	PECI_FCS_ERR	R/WC	5VSB	-	This bit is the FCS error status of PECI master commands. Write this bit 1 or read this byte will clear this bit to 0.
0	PECI_FINISH	R/WC	5VSB	_	This bit is the Command Finish status of PECI master commands. Write this bit 1 or read this byte will clear this bit to 0.

PECI Master DATA0 Register — Index 43h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA0	R/W	5VSB	0	For RdIAMSR(), RdPkgConfig() and WrPkgConfig() command, this byte represents "Host ID[7:1] & Retry[0]". Please refer to PECI interface specification for more detail.

PECI Master DATA1 Register — Index 44h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA1	R/W	5VSB	0	For RdIAMSR(), this byte represents "Processor ID". For RdPkgConfig() and WrPkgConfig(), this byte represents "Index". Please refer to PECI interface specification for more detail.

PECI Master DATA2 Register — Index 45h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA2	R/W	5VSB	0	For RdIAMSR(), this byte is the least significant byte of "MSR Address". For RdPkgConfig() and WrPkgConfig(), this byte is the least significant byte of "Parameter". Please refer to PECI interface specification for more detail.

PECI Master DATA3 Register — Index 46h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA3	R/W	5VSB	0	For RdIAMSR(), this byte is the most significant byte of "MSR Address". For RdPkgConfig() and WrPkgConfig(), this byte is the most significant byte of "Parameter". Please refer to PECI interface specification for more detail.

PECI Master DATA4 Register — Index 47h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA4	R/W	5VSB	0	For GetDIB(), this byte represents "Device Info" For GetTemp(), this byte represents the least significant byte of temperature. For RdIAMSR() and RdPkgConfig(), this byte is "Completion Code". For WrPkgConfig(), this byte represents "DATA[7:0]"

PECI Master DATA5 Register — Index 48h

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA5	R/W	5VSB	0	For GetDIB(), this byte represents "Revision Number" For GetTemp(), this byte represents the most significant byte of temperature. For RdIAMSR() and RdPkgConfig(), this byte represents "DATA[7:0]" For WrPkgConfig(), this byte represents "DATA[15:8]"

PECI Master DATA6 Register — Index 49h

Bit	Name	R/W	Reset	Default	Description	
7-0	PECI DATA6	R/W	5VSB		For RdIAMSR() and RdPkgConfig(), this byte represents	"DATA[15:8]".
	-				For WrPkgConfig(), this byte represents "DATA[23:16]"	

PECI Master DATA7 Register — Index 4Ah

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA7	R/W	5VSB	0	For RdIAMSR() and RdPkgConfig() , this byte represents "DATA[23:16]". For WrPkgConfig(), this byte represents "DATA[31:24]"

PECI Master DATA8 Register — Index 4Bh

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA8	R/W	5VSB		For RdIAMSR() and RdPkgConfig() , this byte represents "DATA[31:24]".
					For WrPkgConfig(), this byte represents "AW FCS"

PECI Master DATA9 Register — Index 4Ch

Bit	Name	R/W	Reset	Default	Description
7-0 PECI DATA	PECI DATA9	R/W	5VSB	0	For RdIAMSR(), this byte represents "DATA[39:32]".
1-0	FECI_DATA9	17/ / /	3736	0	For WrPkgConfig(), this byte represents "Completion Code"

PECI Master DATA10 Register — Index 4Dh

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA10	R/W	5VSB	0	For RdIAMSR(), this byte represents "DATA[47:40]".

PECI Master DATA11 Register — Index 4Eh

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA11	R/W	5VSB	0	For RdIAMSR(), this byte represents "DATA[55:48]".

PECI Master DATA12 Register — Index 4Fh

Bit	Name	R/W	Reset	Default	Description
7-0	PECI_DATA12	R/W	5VSB	0	For RdIAMSR(), this byte represents "DATA[63:56]".

HWM Manual Control Register — Index 50h

Bit	Name	R/W	Reset	Default	Description
7	LOAD_CH	W	-	-	Write 1 to load a temperature or voltage channel to be converted
6	STOP_CH	R/W	5VSB	0	Set to 1 when load a channel will generate a one-shot conversion.
5	HOLD_CH	R/W	5VSB	0	Set to 1 when load a channel will keep converting this channel.
4:0	CHANNEL	R/W	5VSB	0	First channel to be converted when LOAD_CH is set to 1. 00000: VCC 00001: VIN1 00010: VIN2 00011: VIN3 00100: VIN4 00101: VSB3V 00110: VBAT 00111: 5VSB 10000: Intel PECI 10001: T1 110010: T2 11000: AMD TSI/Intel IBEX

HWM Manual Control Status Register 1—Index 51h

Bit	Name	R/W	Reset	Default	Description				
7	Reserved	-	-	-	Reserved				
6	V_CONV_STS	R	5VSB	-	At least one of the voltage channels had finish converting.				
5	PECI_CONV_STS	WC	5VSB	-	PECI channel had finish converting				
4	TSI_CONV_STS	WC	5VSB	-	TSI channel had finish converting				
3	Reserved	-		-	Reserved				
2	T2_CONV_STS	WC	5VSB	-	T2 channel had finish converting				
1	T1_CONV_STS	WC	5VSB	-	T1 channel had finish converting				
0	Reserved	-		-	Reserved				

HWM Manual Control Status Register 2—Index 52h

Bit	Name	R/W	Reset	Default	Description
7	5VSB_CONV_STS	WC	5VSB	-	5VSB voltage channel had finish converting
6	VBAT_CONV_STS	WC	5VSB	-	VBAT voltage channel had finish converting
5	VSB3V_CONV_STS	WC	5VSB	-	VSB3V voltage channel had finish converting
4	VIN4_CONV_STS	WC	5VSB	-	VIN4 voltage channel had finish converting
3	VIN3_CONV_STS	WC	5VSB	-	VIN3 voltage channel had finish converting
2	VIN2_CONV_STS	WC	5VSB	-	VIN2 voltage channel had finish converting
1	VIN1_CONV_STS	WC	5VSB	-	VIN1 voltage channel had finish converting
0	VCC_CONV_STS	WC	5VSB	-	VCC voltage channel had finish converting

HWM RAW Data Register 1—Index 55h

Bit	Name	R/W	Reset	Default	Description
7-0	RAW_DATA_L	R	5VSB	0	Low byte of HM converting raw data

HWM RAW Data Register 2—Index 56h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved
1-0	RAW_DATA_H	R	5VSB	0	The highest two bits of HM converting raw data

Temperature Register

Temperature PME# Enable Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	-	0	Reserved
6	EN_ T2_OVT_PME	R/W	5VSB	0	If set this bit to 1, PME# signal will be issued when TEMP2 exceeds OVT
					setting.
			-1.40-		If set this bit to 1, PME# signal will be issued when TEMP1 exceeds OVT
5	EN_T1_OVT_PME	R/W	5VSB	0	setting.
4	EN_T0_OVT_PME	R/W	5VSB	()	If set this bit to 1, PME# signal will be issued when TEMP0 exceeds OVT
					setting.
3	Reserved	R/W	-	0	Reserved
2	EN TO EVO DME	DAM	5VSB		If set this bit to 1, PME# signal will be issued when TEMP2 exceeds high
2	EN_ T2_EXC_PME	R/W	5VSB	0	limit setting.
4	EN TA EVO DME	DAV	E) (OD		If set this bit to 1, PME# signal will be issued when TEMP1 exceeds high
	EN_ T1_EXC_PME	R/W	5VSB		limit setting.
0	EN_T0_EXC_PME	R/W	5VSB	()	If set this bit to 1, PME# signal will be issued when TEMP0 exceeds high limit setting.

Temperature Interrupt Status Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	-	0	Reserved
					This bit gets 1 to indicate TEMP2 temperature sensor has exceeded
6	T2_OVT_STS	R/W	3VCC	0	OVT limit or below the "OVT limit –hysteresis". Write 1 to clear this bit,
					write 0 to ignore.
					This bit gets 1 to indicate TEMP1 temperature sensor has exceeded
5	T1_OVT_STS	R/W	3VCC	0	OVT limit or below the "OVT limit –hysteresis". Write 1 to clear this bit,
					write 0 to ignore.
4	TO OVT STS	R/W	3VCC		A one indicates TEMP0 temperature sensor has exceeded OVT limit or below the "OVT limit –hysteresis". Write 1 to clear this bit, write 0 will be
7	10_071_313	IN/ VV	3000		ignored.
3	Reserved	R/W	-	0	Reserved
					This bit gets 1 to indicate TEMP2 temperature sensor has exceeded
2	T2_EXC _STS	R/W	3VCC	0	high limit or below the "high limit –hysteresis" limit. Write 1 to clear this
					bit, write 0 to ignore.
					This bit gets 1 to indicate TEMP1 temperature sensor has exceeded
1	T1_EXC _STS	R/W	3VCC	0	high limit or below the "high limit –hysteresis" limit. Write 1 to clear this
					bit, write 0 to ignore.
0	T0_EXC_STS	R/W	3VCC		A one indicates TEMP0 temperature sensor has exceeded high limit or below the "high limit –hysteresis" limit. Write 1 to clear this bit, write 0
	10_EXO_010	1000	3700		will be ignored.

Temperature Real Time Status Register — Index 62h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	_	0	Reserved
6	T2_OVT	R/W	3VCC	0	Set when the TEMP2 exceeds the OVT limit. Clear when the TEMP2 is below the "OVT limit –hysteresis" temperature.
5	T1_OVT	R/W	3VCC	0	Set when the TEMP1 exceeds the OVT limit. Clear when the TEMP1 is below the "OVT limit –hysteresis" temperature.
4	T0_OVT	R/W	3VCC	1 ()	Set when the TEMP0 exceeds the OVT limit. Clear when the TEMP0 is below the "OVT limit –hysteresis" temperature.
3	Reserved	R/W	-	0	Reserved
2	T2_EXC	R/W	3VCC	0	Set when the TEMP2 exceeds the high limit. Clear when the TEMP2 is below the "high limit –hysteresis" temperature.
1	T1_EXC	R/W	3VCC	0	Set when the TEMP1 exceeds the high limit. Clear when the TEMP1 is below the "high limit –hysteresis" temperature.
0	T0_EXC	R/W	3VCC		Set when the TEMP0 exceeds the high limit. Clear when the TEMP0 is below the "high limit –hysteresis" temperature.

Temperature BEEP Enable Register — Index 63h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	-	0	Reserved
0	EN TO OVE DEED	DAM	EV (OD	0	If set this bit to 1, BEEP signal will be issued when TEMP2 exceeds OVT
6	EN_T2_OVT_BEEP	R/W	5VSB	_	limit setting.
_	EN TA OVE DEED	DAM	EV (OD		If set this bit to 1, BEEP signal will be issued when TEMP1 exceeds OVT
5	EN_T1_OVT_BEEP	R/W	5VSB	0	limit setting.
4	EN TO OVT BEEP	R/W	5VSB	1 ()	If set this bit to 1, BEEP signal will be issued when TEMP0 exceeds OVT
					limit setting.
3	Reserved	R/W	-	0	Reserved
	EN TO EVO DEED	5.44	E) (O.D.		If set this bit to 1, BEEP signal will be issued when TEMP2 exceeds high
2	EN_T2_EXC_BEEP	R/W	5VSB	0	limit setting.
	EN T4 EVO DEED	5.44	-1.40-		If set this bit to 1, BEEP signal will be issued when TEMP1 exceeds high
1	EN_T1_EXC_BEEP	R/W	5VSB	0	limit setting.
0	EN TO EXC BEEP	R/W	5VSB	()	If set this bit to 1, BEEP signal will be issued when TEMP0 exceeds high
					limit setting.

T1 OVT and High Limit Temperature Select Register — Index 64h

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	R/W	1	0	Reserved
					Select the source temperature for T1 OVT Limit.
					0: Select T1 to be compared to Temperature 1 OVT Limit.
					1: Select CPU temperature from PECI to be compared to Temperature 1
5-4	OVT TEMP SEL	R/W	5VSB	0	OVT Limit.
5-4	OVT_TEMP_SEL	R/VV	5VSB	•	2: Select CPU temperature from AMD TSI or Intel PCH I2C to be
					compared to Temperature 1 OVT Limit.
					3: Select the MAX temperature from Intel PCH I2C to be compared to
					Temperature 1 OVT Limit.
3-2	Reserved	R/W	-	0	Reserved
					Select the source temperature for T1 High Limit.
					0: Select T1 to be compared to Temperature 1 High Limit.
					1: Select CPU temperature from PECI to be compared to Temperature 1
1.0	LICH TEMP OF	R/W	EVCD		High Limit.
1-0	HIGH_ TEMP_SEL	R/VV	5VSB		2: Select CPU temperature from AMD TSI or Intel PCH I2C to be
					compared to Temperature 1 High Limit.
					3: Select the MAX temperature from Intel PCH I2C to be compared to
					Temperature 1 High Limit.

OVT and Alert Output Enable Register 1 — Index 66h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R/W	1	0	Reserved
6	EN_T2_ALERT	R/W	5VSB	0	Enable temperature 2 alert event (asserted when temperature over high limit)
5	EN_T1_ALERT	R/W	5VSB	0	Enable temperature 1 alert event (asserted when temperature over high limit)
4	EN_T0_ALERT	R/W	5VSB	()	Enable temperature 0 alert event (asserted when temperature over high limit)
3	Reserved	R/W	-	0	Reserved
2	EN_T2_OVT	R/W	5VSB	0	Enable over temperature (OVT) mechanism of temperature2.
1	EN_T1_OVT	R/W	5VSB	1	Enable over temperature (OVT) mechanism of temperature1.
0	EN_T0_OVT	R/W	5VSB	0	Enable over temperature (OVT) mechanism of temperature0.

Temperature Sensor Type Register — Index 6Bh

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	RO	-	0	Reserved
3	Reserved	RO	-	0	Reserved
2	T2_MODE	R/W	5VSB	1 1	0: TEMP2 is connected to a thermistor. 1: TEMP2 is connected to a BJT. (default)
1	T1_MODE	R/W	5VSB	1 1	0: TEMP1 is connected to a thermistor 1: TEMP1 is connected to a BJT.(default)
0	Reserved	R	-	0	Reserved

TEMP1 Limit Hystersis Select Register — Index 6Ch

Bit	Name	R/W	Reset	Default	Description
7-4	7-4 TEMP1_HYS	R/W	5VSB	4h	Limit hysteresis. (0~15°C)
' '		1000			Temperature and below the (boundary – hysteresis).
3-0	TEMP0_HYS	R/W	5VSB	ı 4n	Limit hysteresis. (0~15°C) Temperature and below the (boundary – hysteresis).

TEMP2 and TEMP3 Limit Hystersis Select Register — Index 6Dh

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	R	-	0	Reserved
3-0	TEMP2 HYS	R/W	5VSB	4h	Limit hysteresis. (0~15°C)
3-0	TEMPZ_HTS	F/W	3736		Temperature and below the (boundary – hysteresis).

DIODE OPEN Status Register — Index 6Fh

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	R	-	-	Reserved
5	PECI_OPEN	R	3VCC	-	When PECI interface is enabled, "1" indicates an error code (0x0080 or 0x0081) is received from PECI slave.
4	TSI_OPEN	R	3VCC	-	When TSI interface is enabled, "1" indicates the error of not receiving NACK bit or a timeout occurred.
3	Reserved	R	-	-	Reserved
2	T2_DIODE_OPEN	R	3VCC	-	"1" indicates external diode 2 is open or short
1	T1_DIODE_OPEN	R	3VCC	-	"1" indicates external diode 1 is open or short
0	T0_DIODE_OPEN	RO	3VCC	-	This register indicates the abnormality of temperature 0 measurement.

Temperature — Index 70h-8Dh

Address	Attribute	Reset	Default Value	Description
70h	RO	3VCC		Temperature 0 reading. The unit of reading is 1°C.At the moment of reading this register.
71h	Reserved	3VCC	FFh	Reserved
72h	R	3VCC		Temperature 1 reading. The unit of reading is 1°C.At the moment of reading this register.
73h	R	3VCC		Reserved
74h	R	3VCC		Temperature 2 reading. The unit of reading is 1°C.At the moment of reading this register.
75-79h	R	3VCC		Reserved
7Ah	R	3VCC		The data of CPU temperature from digital interface after IIR filter. (Available if Intel IBX or AMD TSI interface is enabled)
7Bh	R	3VCC		The raw data of PCH temperature from digital interface. (Only available if Intel IBX interface is enabled)
7Ch	R	3VCC		The raw data of MCH read from digital interface. (Only available if Intel IBX interface is enabled)
7Dh	R	3VCC		The raw data of maximum temperature between CPU/PCH/MCH from digital interface. (Only available if Intel IBEX interface is enabled)
7Eh	R	3VCC		The data of CPU temperature from digital interface after IIR filter. (Only available if PECI interface is enabled)
80h	R/W	5VSB	64h	Temperature sensor 0 OVT limit. The unit is 1°C.
81h	R/W	5VSB	55h	Temperature sensor 0 high limit. The unit is 1°C.
82h	R/W	5VSB	64h	Temperature sensor 1 OVT limit. The unit is 1°C.

83h	R/W	5VSB	55h	Temperature sensor 1 high limit. The unit is 1°C.
84h	R/W	5VSB	64h	Temperature sensor 2 OVT limit. The unit is 1°C.
85h	R/W	5VSB	55h	Temperature sensor 2 high limit. The unit is 1°C.
86-8Bh	R			Reserved
8C~8Dh	R		FFH	Reserved

T1 Slope Adjust Register — Index 7Fh

Bit	Name	R/W	Reset	Default		Descrip	otion
7-4	Reserved	-	-	-	Reserved		
3	T1_ADD	R/W	5VSB	i On	This bit is the sign below for detail.	gn bit for T1 reading	slope adjustment. See T1_SCALE
2-0	T1_SCALE	R/W	1	0h	T1_ADD X 0 0 1 1	T1_SCALE 00 01 10 11 01 10	Slope No adjustment 15/16 31/32 63/64 17/16 33/32 65/64

Temperature Filter Select Register —Index 8Eh

Bit	Name	R/W	Reset	Default	Description
					The queue time for second filter to quickly update values.
					00: 8 times.
7-6	IIR-QUEUR3	R/W	5VSB	2'b10	01: 12 times.
					10: 16 times. (default)
					11: 24 times.
					The queue time for second filter to quickly update values.
		R/W	5VSB	2'b10	00: 8 times.
5-4	IIR-QUEUR2				01: 12 times.
					10: 16 times. (default)
					11: 24 times.
					The queue time for second filter to quickly update values.
					00: 8 timers.
3-2	IIR-QUEUR1	R/W	5VSB		01: 12 times.
					10: 16 times. (default)
					11: 24 times.

					The queue time for second filter to quickly update values. (for CPU
					temperature from PECI or TSI interface)
1.0	4.0 JID OLIFUD DIG DAW 5VCD		00: 8 timers.		
1-0	IIR-QUEUR_DIG	R/W	5VSB		01: 12 times.
					10: 16 times. (default)
			11: 24 times.		

6.4.2.4 Voltage Setting

Voltage-Protect Shut Down Enable Register — Index 10h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	0	Reserved.
6	V3_VP_EN	R/W	VBAT*	0	Voltage-Protect shut down enable for VIN3
5	V2_VP_EN	R/W	VBAT*	0	Voltage-Protect enable for VIN2
4-1	Reserved	-	-	0	Reserved
0	VCC_VP_EN	R/W	VBAT*	0	Voltage-Protect shut down enable for 3VCC

Voltage-Protect Status Register — Index 11h

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	-	-	0	Reserved.
0	V_EXC_VP	R/WC	VBAT/ 5VSB*	0	This bit is voltage-protect status. Once one of the monitored voltages (3VCC, VIN2, VIN3) over its related over-voltage limits or under its related under-voltage limits and if the related voltage-protect shut down enable bit is set, this bit will be set to 1. Write a 1 to this bit will clear it to 0. (This bit is powered by VBAT)

^{*}Reset by VBAT when OVP_MODE is "0", Reset by 5VSB when OVP_MODE is "1"

Voltage-Protect Configuration Register—Index 12h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	ı	1	-	Reserved.

					PSON# de-active time select in alarm mode of voltage protection. 00: PSON# tri-state 0.5 sec and then inverted of S3# when over voltage or under voltage occurred. 01: PSON# tri-state 1 sec and then inverted of S3# when over voltage or
3-2	PU_TIME	R/W	VBAT	2'h1	under voltage occurred.
					10: PSON# tri-state 2 sec and then inverted of S3# when over voltage or
					under voltage occurred.
					11: PSON# tri-state 4 sec and then inverted of S3# when over voltage or
				under voltage occurred.	
					VP_EN_DELAY could set the delay time to start voltage protecting after
			VBAT		VDD power is ok when OVP_MODE is 1. (OVP_MODE is strapped by
					RTS1# pin)
1-0	VP_EN_DELAY	R/W		2'h2	00: bypass
					01: 50ms
					10: 100ms
					11: 200ms

Voltage1 PME# Enable Register — Index 14h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	0	Reserved
1	EN_V1_PME	R/W	5VSB	1 ()	A one enables the corresponding interrupt status bit for PME# interrupt. Set this bit 1 to enable PME# function for VIN1.
0	Reserved	-	-	-	Reserved

Voltage1 Interrupt Status Register — Index 15h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved		-	0	Reserved
1	V1_EXC_STS	R/W	5VSB	-	This bit is set when the VIN1 is over the high limit. Write 1 to clear this bit, write 0 will be ignored.
0	Reserved	-	-	-	Reserved

Voltage1 Exceeds Real Time Status Register 1 — Index 16h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved		-	0	Reserved
1	V1_EXC	RO	5VSB	()	A one indicates VIN1 exceeds the high limit. A zero indicates VIN1 is in the safe region.
0	Reserved		-	0	Reserved

Voltage1 BEEP Enable Register — Index 17h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved		-	0	Reserved
1	EN_V1_BEEP	R/W	5VSB	_	A one enables the corresponding interrupt status bit for BEEP output of VIN1.
0	Reserved		1	0	Reserved

Voltage Protection Power Good Select Register — Index 3Fh

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	0	Reserved
					0: OVP/UVP power good signal is 3VCCOK (3VCC > 2.8V)
0	OVP_RST_SEL	R/W	VBAT	0	1: OVP power good signal is PWOK.
					OVP function wont' start detecting until power good.

Voltage reading and limit—Index 20h- 3Ah

Address	Attribute	Reset	Default Value	Description
20h	R	3VCC		3VCC reading. The unit of reading is 8mV.
21h	R	3VCC		VIN1 (Vcore) reading. The unit of reading is 8mV.
22h	R	3VCC		VIN2 reading. The unit of reading is 8mV.
23h	R	3VCC		VIN3 reading. The unit of reading is 8mV.
24h	R	3VCC		VIN4 reading. The unit of reading is 8mV.
25h	R	3VCC		VSB3V reading. The unit of reading is 8mV.
26h	R	3VCC		VBAT reading. The unit of reading is 8mV.
0.71	1	01/00		5VSB reading. The unit of reading is 8 mV. The 5VSB voltage
27h	R	3VCC		to be monitored is internally divided by 3.
28h-2Ch	R		FF	Reserved
2Dh	RO	3VCC		FAN1 present fan duty reading
2Eh	RO	3VCC		FAN2 present fan duty reading
2Fh	RO	3VCC		FAN3 present fan duty reading
30	RO	VBAT	89	3VCC under-voltage protection limit. The unit is 8mV
31	R/W	VBAT	F2	3VCC over-voltage protection limit. The unit is 8 mV
32~35h	R		FF	Reserved
36h	R/W	VBAT	E2	VIN2 over-voltage limit (V2_OVV_LIMIT). The unit is 8mv.
3011	R/VV	VDAI	E2	(This byte is powered by VBAT.)
37h	R/W	VBAT	E1	VIN3 over-voltage limit (V3_OVV_LIMIT). The unit is 8mv.
3/11	FX/ V V	VDAI		(This byte is powered by VBAT.)
38h	R/W	VBAT	83	VIN2 under-voltage limit (V2_UVV_LIMIT). The unit is 8mv
3011	FV/ V V	VDAI	03	(This byte is powered by VBAT)

39h	R/W	VBAT	96	VIN3 under-voltage limit (V3_UVV_LIMIT). The unit is 8mv
3911	FC/VV	VDAI		(This byte is powered by VBAT)
3Ah	0.41 51/00	5VSB	FF	VIN1 OVP limit. The unit is 8mv (This byte is powered by
SAII	R/W	3V3B	FF	VBAT)

6.4.2.5 Fan Control Setting

FAN PME# Enable Register — Index 90h

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	R	-	0	Reserved
0	2 EN_FAN3_PME R/W	DAA	EV/CD		A one enables the corresponding interrupt status bit for PME# interrupt
2		5VSB	0	Set this bit 1 to enable PME# function for Fan3.	
4	1 EN_FAN2_PME R/		-1.40-	0	A one enables the corresponding interrupt status bit for PME# interrupt.
1		R/W	5VSB		Set this bit 1 to enable PME# function for Fan2.
0	EN FANA DME	R/W	5VSB	0	A one enables the corresponding interrupt status bit for PME# interrupt.
0	EN_FAN1_PME				Set this bit 1 to enable PME# function for Fan1.

FAN Interrupt Status Register — Index 91h

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	R	-	0	Reserved
0	2 FAN3_STS R/W	DAA	3VCC		This bit is set when the fan3 count exceeds the count limit. Write 1 to
2		R/W	3000		clear this bit, write 0 will be ignored.
1	1 FAN2_STS R/W	D.04/	3VCC		This bit is set when the fan2 count exceeds the count limit. Write 1 to
'		R/VV			clear this bit, write 0 will be ignored.
0	FANIA CTC	R/W	3VCC		This bit is set when the fan1 count exceeds the count limit. Write 1 to
U	0 FAN1_STS				clear this bit, write 0 will be ignored.

FAN Real Time Status Register — Index 92h

T									
Bit	Name	R/W	Reset	Default	Description				
7-3	Reserved		-	0	Reserved				
2	FAN3 EXC	R	3VCC		This bit set to high mean that fan3 count can't meet the expected count over than SMI time (CR9F) or when duty not zero but fan stop over then 3				
2	TANO_EXO		0000		sec.				
1	1 FAN2_EXC R	3VCC		This bit set to high mean that fan2 count can't meet expect count over					
'		IX	3000	- -	than SMI time (CR9F) or when duty not zero but fan stop over then 3 sec.				
0	FAN1_EXC	R	3VCC		This bit set to high mean that fan1 count can't meet expect count over				
0					than SMI time (CR9F) or when duty not zero but fan stop over then 3 sec.				

FAN BEEP# Enable Register — Index 93h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6	FULL_WITH_	R/W	5VSB	0	Set one will enable FAN to force full speed when T2 over high limit.
	T2_EN	1000	JVOD		Set one will chable I Aiv to lorde fall speed when 12 over high limit.
5	FULL_WITH_	R/W	5VSB	0	Set one will enable FAN to force full speed when T1 over high limit.
5	T1_EN	K/VV	3736		Set one will enable PAN to force full speed when 1 1 over high limit.
4	Reserved	-	-	-	Reserved
3	Reserved	-	-	-	Reserved.
2	EN_FAN3_BEEP	R/W	5VSB	0	A one enables the corresponding interrupt status bit for BEEP.
1	EN_FAN2_BEEP	R/W	5VSB	0	A one enables the corresponding interrupt status bit for BEEP.
0	EN_FAN1_BEEP	R/W	5VSB	0	A one enables the corresponding interrupt status bit for BEEP.

FAN Type Select Register — Index 94h (FAN_PROG_SEL = 0)

Bit	Name	R/W		Default	Description
		10/11	Neset		-
7-6	Reserved	-	-	-	Reserved.
					00: Output PWM mode (push pull) to control fans.
					01: Use linear fan application circuit to control fan speed by fan's power
					terminal.
5-4	FAN3_TYPE	R/W	3VCC	00	10: Output PWM mode (open drain) to control Intel 4-wire fans.
3-4	TANO_TTTE	1000	3000		11: Reserved.
					Bit 0 is power on trap by FANCTRL3
					0: FANCTRL3 is pull up by external resistor.
					1: FANCTRL3 is pull down by internal 100K Ω resistor.
					00: Output PWM mode (push pull) to control fans.
					01: Use linear fan application circuit to control fan speed by fan's power
					terminal.
3-2	FANO TVDE	R/W	21/00	00	10: Output PWM mode (open drain) to control Intel 4-wire fans.
3-2	FAN2_TYPE	R/W	3VCC		11: Reserved.
					Bit 0 is power on trap by FANCTRL2
					0: FANCTRL2 is pull up by external resistor.
					1: FANCTRL2 is pull down by internal 100K Ω resistor.

			3VCC	00	00: Output PWM mode (push pull) to control fans.
					01: Use linear fan application circuit to control fan speed by fan's power
					terminal.
1-0	FANA TVDE	R/W			10: Output PWM mode (open drain) to control Intel 4-wire fans.
1-0	FAN1_TYPE				11: Reserved.
					Bit 0 is power on trap by FANCTRL1
					0: FANCTRL1 is pull up by external resistor.
					1: FANCTRL1is pull down by internal 100K Ω resistor.

S: Register default values are decided by trapping.

Fan1 Base Temperature Register – Offset 94h (FAN_PROG_SEL = 1)

Bit	Name	R/W	Reset	Default	Description
					This register is used to set the base temperature for FAN1 temperature
					adjustment.
			5VSB		The FAN1 temperature is calculated according to the equation:
	FANIA DAGE			0	Tfan1 = Tnow + (Ta – Tb)*Ct
7-0	FAN1_BASE	R/W			Where Tnow is selected by FAN1_TEMP_SEL_DIG and
	_TEMP				FAN1_TEMP_SEL.
					Tb is this register, Ta is selected by TFAN1_ADJ_SEL and Ct is selected
					by TFAN1_ADJ_UP_RATE/TFAN1_ADJ_DN_RATE.
					To access this register, FAN_PROG_SEL (CR9F [7]) must set to "1".

FAN1 Temperature Adjustment Rate Register — Index 95h (FAN_PROG_SEL = 1)

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6-4	TFAN1_ADJ_UP _RATE		5VSB	3'h0	This selects the weighting of the difference between Ta and Tb if Ta is higher than Tb. 3'h1: 1 (Ct = 1) 3'h2: 1/2 (Ct= 1/2) 3'h3: 1/4 (Ct = 1/4) 3'h4: 1/8 (Ct = 1/8) otherwise: 0 To access this byte, FAN_PROG_SEL must set to "1".
3	Reserved	-		-	Reserved

	TFAN1_ADJ_DN _RATE	R/W	5VSB	3'h0	This selects the weighting of the difference between Ta and Tb if Ta is
2-0					lower than Tb.
					3'h1: 1 (Ct = 1)
					3'h2: 1/2 (Ct= 1/2)
					3'h3: 1/4 (Ct = 1/4)
					3'h4: 1/8 (Ct = 1/8)
					otherwise: 0
					To access this byte, FAN_PROG_SEL must set to "1".

FAN mode Select Register — Index 96h (FAN_PROG_SEL = 0)

			I	1	(FAN_PROG_SEL = 0)
Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	1	-	-	Reserved
		R/W	VBAT		00: Auto fan speed control. Fan speed will follow different temperature by
					different RPM defined in 0xC6-0xCE.
					01: Auto fan speed control. Fan speed will follow different temperature by
					different duty cycle defined in 0xC6-0xCE.
5-4	FAN3 MODE				10: Manual mode fan control. User can write expected RPM count to
3-4	TANS_WODE				0xC2-0xC3, and F81866 will adjust duty cycle (PWM fan type) or voltage
					(linear fan type) to control fan speed automatically.
					11: Manual mode fan control. User can write expected duty cycle (PWM
					fan type) or voltage (linear fan type) to 0xC3, and F81866 will output this
					desired duty or voltage to control fan speed.
	FAN2_MODE	R/W	VBAT	01	00: Auto fan speed control. Fan speed will follow different temperature by
					different RPM defined in 0xB6-0xBE.
					01: Auto fan speed control. Fan speed will follow different temperature by
					different duty cycle (voltage) defined in 0xB6-0xBE.
3-2					10: Manual mode fan control. User can write expected RPM count to
3-2					0xB2-0xB3, and F81866 will adjust duty cycle (PWM fan type) or voltage
					(linear fan type) to control fan speed automatically.
					11: Manual mode fan control, user can write expected duty cycle (PWM
					fan type) or voltage (linear fan type) to 0xB3, and F81866 will output this
					desired duty or voltage to control fan speed.

1-0	FAN1_MODE	R/W	VBAT	01	00: Auto fan speed control. Fan speed will follow different temperature by different RPM defined in 0xA6-0xAE. 01: Auto fan speed control. Fan speed will follow different temperature by different duty cycle defined in 0xA6-0xAE. 10: Manual mode fan control, user can write expected RPM count to 0xA2-0xA3, and F81866 will auto control duty cycle (PWM fan type) or voltage (linear fan type) to control fan speed automatically. 11: Manual mode fan control, user can write expected duty cycle (PWM fan type) or voltage (linear fan type) to 0xA3, and F81866 will output this desired duty or voltage to control fan speed.
-----	-----------	-----	------	----	---

FAN mode Select Register — Index 96h (FAN_PROG_SEL = 1)

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	-	-	-	Reserved
2-0	TFAN1_ADJ_SEL	R/W	5VSB	0h	This selects which temperature to be used as Ta for Fan1 temperature adjustment. 000: PECI (CR7Eh) 001: T1 (CR72h) 010: T2 (CR74h) 011: T3 (CR76h) 100: IBEX/TSI CPU temperature (CR7Ah) 101:IBEX PCH temperature (CR7Bh). 110: IBEX MCH temperature (CR7Ch). 111: IBEX maximum temperature (CR7Dh). otherwise: Ta will be 0. To access this register FAN_PROG_SEL must set to "1".

Faster Fan Filter Control Register — Index 97h

Bit	Name	R/W	Reset	Default	Description
7-3	Reserved	-	-	-	Reserved.
2	FLT_FAST3	R/W	5VSB	0	Set this bit 1 if FAN3 is using a faster fan.
1	FLT_FAST2	R/W	5VSB	0	Set this bit 1 if FAN2 is using a faster fan.
0	FLT_FAST1	R/W	5VSB	0	Set this bit 1 if FAN1 is using a faster fan.

Auto FAN1 and FAN2 Boundary Hystersis Select Register — Index 98h

Bit	Name	R/W	Reset	Default	Description
					Boundary hysteresis. (0~15°C)
7-4	FAN2_HYS	R/W	5VSB	4h	Segment will change when the temperature over the boundary
					temperature and below the (boundary – hysteresis).
					Boundary hysteresis. (0~15°C)
3-0	FAN1_HYS	R/W	5VSB	4h	Segment will change when the temperature over the boundary
					temperature and below the (boundary – hysteresis).

Auto FAN3 Boundary Hystersis Select Register — Index 99h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
					Boundary hysteresis. (0~15°C)
3-0	FAN3_HYS	R/W	5VSB	2h	Segment will change when the temperature over the boundary
					temperature and below the (boundary – hysteresis).

Fan3 Control Register — Index 9Ah

Bit	Name	R/W	Reset	Default	Description
7	Reserved	ı	-	ı	Reserved.
					This bit and FAN3_PWM_FREQ_SEL are used to select FAN3 PWM
					frequency. NEW_FREQ_SEL3 = { FREQ_SEL_ADD3,
					FAN3_PWM_FREQ_SEL}
6	FREQ_SEL_ADD3	R/W	5VSB	0	00: 23.5 KHz
					01: 11.75 KHz
					10: 5.875 KHz
					11: 220 Hz
					This bit and FAN2_PWM_FREQ_SEL are used to select FAN2 PWM
		R/W	5VSB		frequency. NEW_FREQ_SEL2 = { FREQ_SEL_ADD2,
					FAN2_PWM_FREQ_SEL}
5	FREQ_SEL_ADD2			0	00: 23.5 KHz
					01: 11.75 KHz
					10: 5.875 KHz
					11: 220 Hz

4	FREQ_SEL_ADD1	R/W	5VSB	0	This bit and FAN1_PWM_FREQ_SEL are used to select FAN1 PWM frequency. NEW_FREQ_SEL1 = { FREQ_SEL_ADD1, FAN1_PWM_FREQ_SEL} 00: 23.5 KHz 11: 5.875 KHz 11: 220 Hz
3-2	Reserved	R/W	-	0	Reserved (Keep the value of these two bits "0")
1-0	Reserved	-	-	-	Reserved

Auto Fan Up Speed Update Rate Select Register — Index 9Bh (FAN_PROG_SEL = 0)

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	-	-	-	Reserved.
					Fan3 duty update rate:
					00: 2Hz
5-4	FAN3_UP_RATE	R/W	5VSB	01	01: 5Hz (default)
					10: 10Hz
					11: 20Hz
		R/W	5VSB		Fan2 duty update rate:
				01	00: 2Hz
3-2	FAN2_UP_RATE				01: 5Hz (default)
					10: 10Hz
					11: 20Hz
					Fan1 duty update rate:
			5VSB		00: 2Hz
1-0	FAN1_UP_RATE	R/W		01	01: 5Hz (default)
					10: 10Hz
					11: 20Hz

Auto Fan Down Speed update Rate Select Register — Index 9Bh (FAN_PROG_SEL = 1)

Bit	Name	R/W	Reset	Default	Description
					0: Fan down rate disable
_	7 UP_DN_RATE_EN	DAM	E) (OD		1: Fan down rate enable
/		R/W	5VSB		Set this bit 1 to use different fan up/down rate. If this bit is not set to 1, the
					fan up/down rate will follow FAN_UP_RATE.
	DIDEOT LOAD EN			0	0: Direct load disable
6	DIRECT_LOAD_EN	R/W	5VSB		1: Direct load enable for manual duty mode

					Fan3 duty update rate:
					00: 2Hz
5-4	FAN3_DN_RATE	R/W	5VSB	01	01: 5Hz (default)
					10: 10Hz
					11: 20Hz
					Fan2 duty update rate:
					00: 2Hz
3-2	FAN2_DN_RATE	R/W	5VSB	01	01: 5Hz (default)
					10: 10Hz
				11: 20Hz	
					Fan1 duty update rate:
			5VSB		00: 2Hz
1-0	FAN1_DN_RATE	R/W			01: 5Hz (default)
					10: 10Hz
					11: 20Hz

FAN1 and FAN2 START UP DUTY-CYCLE/VOLTAGE — Index 9Ch

Bit	Name	R/W	Reset	Default	Description
7-4	FAN2_STOP _DUTY	R/W	5VSB	5h	When fan start, the FAN_CTRL2 will increase duty-cycle from 0 to this (value x 8) directly. And if fan speed is down, the FAN_CTRL 2 will decrease duty-cycle to 0 when the PWM duty cycle is less than this (value x 4).
3-0	FAN1_STOP _DUTY	R/W	5VSB	5h	When fan start, the FAN_CTRL 1 will increase duty-cycle from 0 to this (value x 8 directly. And if fan speed is down, the FAN_CTRL 1 will decrease duty-cycle to 0 when the PWM duty cycle is less than this (value x 4).

FAN3 START UP DUTY-CYCLE/VOLTAGE — Index 9Dh

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	1	1	-	Reserved.
	FAN3_STOP_ DUTY	R/W	5VSB	5h	When fan start, the FAN_CTRL 3 will increase duty-cycle from 0 to this
3-0					(value x 8 directly. And if fan speed is down, the FAN_CTRL 3 will
3-0					decrease duty-cycle to 0 when the PWM duty cycle is less than this
					(value x 4).

FAN PROGRAMMABLE DUTY-CYCLE/VOLTAGE LOADED AFTER POWER-ON — Index 9Eh

Bit	Name	R/W	Reset	Default	Description
7-0	PROG DUTY VAL	R/W	5VSB	66h	This byte will be immediately loaded as Fan duty value after VDD is
7-0	FROG_DOTT_VAL	IV VV	3736		powered on if it has been programmed before shut down.

Fan Fault Time Register — Index 9Fh

Bit	Name	R/W	Reset	Default	Description
7	FAN_PROG_SEL	R/W	5VSB	0	Set this bit to "1" will enable accessing registers of other bank.
6	FAN_MNT_SEL	R/W	5VSB	0	Set this bit to monitor a slower fan.
5	Reserved	-	-	-	Reserved
					0: The Fan Duty is 100% and will be loaded immediately after VDD is
					powered on if CR9E is not been programmed before shut down. (pull
					down by external resistor)
4	FULL_DUTY_SEL	R/W	3VCC	-	1: The Fan Duty is 40% and will be loaded immediately after VDD is
					powered on if CR9E is not been programmed before shut down. (pull up
					by internal 47K Ω resistor).
					This register is power on trap by DTR1#/FAN40_100.
					This register determines the time of fan fault. The condition to cause fan
					fault event is:
					When PWM_Duty reaches FFh, if the fan speed count can't reach the fan
					expect count in time.
2.0		R/W	EVED		The unit of this register is 1 second. The default value is 11 seconds.
3-0	F_FAULT_TIME	R/VV	5VSB		(Set to 0, means 1 seconds; Set to 1, means 2 seconds.
					Set to 2, means 3 seconds)
					Another condition to cause fan fault event is fan stop and the PWM duty is
					greater than the minimum duty programmed by the register index
					9C-9Dh.

A. FAN1 Index A0h~AFh

	7.1. 17.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.										
Address	Attribute	Reset	Default	Description							
A0h	RO	3VCC	8'h0f	FAN1 count reading (MSB). At the moment of reading this register, the LSB will be latched. This will prevent from data updating when reading. To read the fan count correctly, read MSB first and followed read the LSB.							
A1h	RO	3VCC	8'hff	FAN1 count reading (LSB).							

				RPM mode(CR96 bit0=0):
				FAN1 expect speed count value (MSB), in auto fan mode (CR96
A2h	R/W	VBAT	8'h00	bit1→0) this register is auto updated by hardware.
				Duty mode(CR96 bit0=1):
				This byte is reserved byte.
				RPM mode(CR96 bit0=0):
				FAN1 expect speed count value (LSB) or expect PWM duty, in auto
	R/W	VBAT	8'h01	fan mode this register is auto updated by hardware and read only.
A 2 h				Duty mode(CR96 bit0=1):
A3h				The Value programming in this byte is duty value. In auto fan mode
				(CR96 bit1→0) this register is updated by hardware.
				Ex: 5→ 5*100/255 %
				255 → 100%
				FAN1 full speed count reading (MSB). At the moment of reading this
A 4 b	D/M/	EVCD.	0,,	register, the LSB will be latched. This will prevent from data updating
A4h	R/W	5VSB	8'h03	when reading. To read the fan count correctly, read MSB first and
				followed read the LSB.
A5h	R/W	5VSB	8'hff	FAN1 full speed count reading (LSB).

VT1 BOUNDARY 1 TEMPERATURE - Index A6h

Bit	Name	R/W	Reset	Default	Description				
					The first boundary temperature for VT1 in temperature mode.				
					When VT1 temperature exceeds this boundary, expected FAN1 value will be loaded from segment 1 register (index AAh).				
	DOLINDATMD4	D///	E) (OD	3Ch					
7-0	BOUND1TMP1 F	R/W	5VSB	(60°C)	When VT1 temperature is under this boundary – hysteresis, expected				
					FAN1 value will be loaded from segment 2 register (index ABh).				
					This byte is a 2's complement value ranged from -128°C ~ 127°C.				

VT1 BOUNDARY 2 TEMPERATURE - Index A7

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND2TMP1	R/W	5VSB	32 (50°C)	The 2nd BOUNDARY temperature for VT1 in temperature mode. When VT1 temperature is exceed this boundary, FAN1 expected value will load from segment 2 register (index ABh). When VT1 temperature is below this boundary – hysteresis, FAN1 expected value will load from segment 3 register (index ACh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT1 BOUNDARY 3 TEMPERATURE - Index A8h

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND3TMP1	R/W	5VSB	28h (40°C)	The 3rd BOUNDARY temperature for VT1 in temperature mode. When VT1 temperature is exceed this boundary, FAN1 expected value will load from segment 3 register (index ACh). When VT1 temperature is below this boundary – hysteresis, FAN1 expected value will load from segment 4 register (index ADh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT1 BOUNDARY 4 TEMPERATURE - Index A9

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND4TMP1	R/W	5VSB	1Eh (30°C)	The 4th BOUNDARY temperature for VT1 in temperature mode. When VT1 temperature is exceed this boundary, FAN1 expected value will load from segment 4 register (index ADh). When VT1 temperature is below this boundary – hysteresis, FAN1 expected value will load from segment 5 register (index AEh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

FAN1 SEGMENT 1 SPEED COUNT - Index AAh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN1_MODE(CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of
					the full speed in this temperature section. Ex:
7-0	SEC1SPEED1	R/W	5VSB	FFh (100%)	100%:full speed: User must set this register to 0. 60% full speed: (100-60)*32/60, so user must program 21 to this reg. X% full speed: The value programming in this byte is ((100-X)*32/X 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN1 SEGMENT 2 SPEED COUNT - Index ABh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN1_MODE(CR96)
					2'b00: The value that set in this byte is the relative expect fan speed % of
7-0	SEC2SPEED1	R/W	(85%) 2'b01: The	the full speed in this temperature section.	
					2'b01: The value that set in this byte is mean the expect PWM duty-cycle
					in this temperature section.

FAN1 SEGMENT 3 SPEED COUNT Register – Index ACh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN1_MODE(CR96)
					2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section.
7-0	SEC3SPEED1	R/W	5VSB	B2h (70%)	
				(/	2'b01: The value that set in this byte is mean the expect PWM duty-cycle
					in this temperature section.

FAN1 SEGMENT 4 SPEED COUNT Register – Index ADh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN1_MODE(CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section.
7-0	SEC4SPEED1	R/W	5VSB	99h (60%)	
				` ,	2'b01: The value that set in this byte is mean the expect PWM duty-cycle
					in this temperature section.

FAN1 SEGMENT 5 SPEED COUNT Register - Index AEh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN1_MODE(CR96)
				80h	2'b00: The value that set in this byte is the relative expect fan speed % of
7-0	SEC5PEED1	R/W	5VSB	(50%)	the full speed in this temperature section.
					2'b01: The value that set in this byte is mean the expect PWM duty-cycle
					in this temperature section.

FAN1 Temperature Mapping Select – Index AFh

ı	17tt Tomporator mapping coloc maximum								
Bit	Name	R/W	Reset	Default	Description				
7	FAN1_TEMP	DAA		•	This bit companies with FAN1_TEMP_SEL select the temperature source				
′	_SEL_DIG	R/W	5VSB	0	for controlling FAN1.				
					This bit and FREQ_SEL_ADD1 are used to select FAN1 PWM frequency.				
			5VSB	0	NEW_FREQ_SEL1 = { FREQ_SEL_ADD1, FAN1_PWM_FREQ_SEL}				
	FAN1_PWM	DAA			00: 23.5 KHz				
6	_FREQ_SEL	R/W			01: 11.75 KHz				
					10: 5.875 KHz				
					11: 220 Hz				
5	FAN1_UP_T_EN	R/W	5VSB	0	Set 1 to force FAN1 to full speed if any temperature over its high limit.				

	FAN1_				
4	INTERPOLATION_E	R/W	5VSB	1	Set 1 will enable the interpolation of the fan expect table.
	N				
					This register controls the FAN1 duty movement when temperature over
					highest boundary.
					0: The FAN1 duty will increases with the slope selected by
3	FAN1_JUMP	R/W	5VSB	1	FAN1_RATE_SEL register.
	_HIGH_EN				1: The FAN1 duty will directly jumps to the value of SEC1SPEED1
					register.
					This bit only activates in duty mode.
					This register controls the FAN1 duty movement when temperature under
		R/W	5VSB	1	(highest boundary – hysteresis).
	FAN1_JUMP				0: The FAN1 duty will decreases with the slope selected by
2	LOW EN				FAN1_RATE_SEL register.
					1: The FAN1 duty will directly jumps to the value of SEC2SPEED1
					register.
					This bit only activates in duty mode.
					This registers company with FAN1_TEMP_SEL_DIG select the
					temperature source for controlling FAN1. The following value is
					comprised by {FAN1_TEMP_SEL_DIG, FAN1_TEMP_SEL}
					000: fan1 follows PECI temperature (CR7Eh)
					001: fan1 follows temperature 1 (CR72h).
1-0	FAN1 TEMP SEL	R/W	5VSB	01	010: fan1 follows temperature 2 (CR74h).
			3V3B	01	011: fan1 follows temperature 0 (CR70h).
					100: fan1 follows IBX/TSI CPU temperature (CR7Ah)
					101: fan1 follows IBX PCH temperature (CR7Bh).
					110: fan1 follows IBX MCH temperature (CR7Ch).
					111: fan1 follows IBX maximum temperature (CR7Dh).
					Others are reserved.

B. FAN2 Index B0h~BFh

Address	Attribute	Reset	Default Value	Description
				FAN2 count reading (MSB). At the moment of reading this
DOF	DO	21/00		register, the LSB will be latched. This will prevent from data
B0h	RO	3VCC	8'h0f	updating when reading. To read the fan count correctly, read
				MSB first and followed read the LSB.
B1h	RO	3VCC	8'hff	FAN2 count reading (LSB).

B2h	R/W	VBAT	8'h00	RPM mode(CR96 bit2=0): FAN2 expect speed count value (MSB), in auto fan mode(CR96 bit3→0) this register is auto updated by hardware. Duty mode (CR96 bit2=1): This byte is reserved byte.
B3h	R/W	VBAT	8'h01	RPM mode(CR96 bit2=0): FAN2 expect speed count value (LSB) or expect PWM duty, in auto fan mode this register is auto updated by hardware and read only. Duty mode(CR96 bit2=1): The Value programming in this byte is duty value. In auto fan mode (CR96 bit3→0) this register is updated by hardware. Ex: 5→ 5*100/255 % 255 → 100%
B4h	R/W	5VSB	8'h03	FAN2 full speed count reading (MSB). At the moment of reading this register, the LSB will be latched. This will prevent from data updating when reading. To read the fan count correctly, read MSB first and followed read the LSB.
B5h	R/W	5VSB	8'hff	FAN2 full speed count reading (LSB).

VT2 BOUNDARY 1 TEMPERATURE - Index B6h

Bit	Name	R/W	Reset	Default	Description
					The first boundary temperature for VT2 in temperature mode.
					When VT2 temperature exceeds this boundary, FAN2 expect value will load from segment 1 register (index Bah).
7-0	DOLIND4TMD2	R/W	EV/OD	3Ch	
7-0	BOUND1TMP2	R/VV	5VSB	(60°C)	When VT2 temperature is under this boundary – hysteresis, FAN2 expect
					value will load from segment 2 register (index BAh).
					This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT2 BOUNDARY 2 TEMPERATURE – Index B7

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND2TMP2	R/W	5VSB	32 (50°C)	The 2nd BOUNDARY temperature for VT2 in temperature mode. When VT2 temperature is exceed this boundary, FAN2 expected value will load from segment 2 register (index BBh). When VT2 temperature is below this boundary – hysteresis, FAN2 expected value will load from segment 3 register (index BCh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT2 BOUNDARY 3 TEMPERATURE - Index B8h

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND3TMP2	R/W	5VSB	28h (40°C)	The 3rd BOUNDARY temperature for VT2 in temperature mode. When VT2 temperature is exceed this boundary, FAN2 expected value will load from segment 3 register (index BCh). When VT2 temperature is below this boundary – hysteresis, FAN2 expected value will load from segment 4 register (index BDh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT2 BOUNDARY 4 TEMPERATURE – Index B9

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND4TMP2	R/W	5VSB	1Eh (30°C)	The 4th BOUNDARY temperature for VT2 in temperature mode. When VT2 temperature is exceed this boundary, FAN2 expected value will load from segment 4 register (index BDh). When VT2 temperature is below this boundary – hysteresis, FAN2 expected value will load from segment 5 register (index BEh). This byte is a 2's complement value ranging from -128°C ~ 127°C.

FAN2 SEGMENT 1 SPEED COUNT - Index BAh

Bit	Name	R/W	Reset	Default	Description
7-0	SEC1SPEED2	R/W	5VSB	FFh (100%)	The meaning of this register is depending on the FAN2_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section. Ex: 100%:full speed: User must set this register to 0. 60% full speed: (100-60)*32/60, so user must program 21 to this reg. X% full speed: The value programming in this byte is → (100-X)*32/X 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN2 SEGMENT 2 SPEED COUNT - Index BBh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN2_MODE (CR96)
					2'b00: The value that set in this byte is the relative expect fan speed %
7-0	SEC2SPEED2	R/W	5VSB	D9h (85%)	of the full speed in this temperature section.
					2'b01: The value that set in this byte is mean the expect PWM
					duty-cycle in this temperature section.

FAN2 SEGMENT 3 SPEED COUNT Register – Index BCh

Bit	Name	R/W	Reset	Default	Description
7-0	SEC3SPEED2	R/W	5VSB	B2h (70%)	The meaning of this register is depending on the FAN2_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section. 2'b01: The value that set in this byte is mean the expect PWM
					duty-cycle in this temperature section.

FAN2 SEGMENT 4 SPEED COUNT Register – Index BDh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN2_MODE (CR96)
	7.0	SEC4SPEED2 R/W 5VSB 99h (60%) of the full speed in this temperature section.	5VSB	99h	2'b00: The value that set in this byte is the relative expect fan speed %
7-0	SEC4SPEED2				of the full speed in this temperature section.
			2'b01: The value that set in this byte is mean the expect PWM		
					duty-cycle in this temperature section.

FAN2 SEGMENT 5 SPEED COUNT Register - Index BEh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN2_MODE (CR96)
				80h	2'b00: The value that set in this byte is the relative expect fan speed %
7-0	SEC5PEED2	R/W	5VSB	(50%)	of the full speed in this temperature section.
					2'b01: The value that set in this byte is mean the expect PWM
					duty-cycle in this temperature section.

FAN2 Temperature Mapping Select – Index BFh

Bit	Name	R/W	Reset	Default	Description
7	FAN2_TEMP_	DAM	EV/CD		This bit companies with FAN2_TEMP_SEL to select the temperature
,	SEL_DIG	R/W	5VSB	0	source for controlling FAN2.
					This bit and FREQ_SEL_ADD2 are used to select FAN2 PWM
			5VSB	0	frequency. NEW_FREQ_SEL2 = { FREQ_SEL_ADD2,
	544 P 5444	R/W			FAN2_PWM_FREQ_SEL}
6	FAN2_PWM_ FREQ SEL				00: 23.5 KHz
	FREQ_SEL				01: 11.75 KHz
					10: 5.875 KHz
					11: 220 Hz
5	FAN2_UP_T_EN	R/W	5VSB	0	Set 1 to force FAN2 to full speed if any temperature over its high limit.

4	FAN2_	R/W	5VSB	1	Set 1 will enable the interpolation of the fan expect table.
	INTERPOLATION_EN				
					This register controls the FAN2 duty movement when temperature over
					highest boundary.
	FAN2_JUMP_				0: The FAN2 duty will increases with the slope selected by
3	HIGH EN	R/W	5VSB	1	FAN2_RATE_SEL register.
	TIIOI I_LIV				1: The FAN2 duty will directly jumps to the value of SEC1SPEED2
					register.
					This bit only activates in duty mode.
					This register controls the FAN2 duty movement when temperature under
				1	(highest boundary – hysteresis).
			5VSB		0: The FAN2 duty will decreases with the slope selected by
2	FAN2_JUMP_	R/W			FAN2_RATE_SEL register.
	LOW_EN				1: The FAN2 duty will directly jumps to the value of SEC2SPEED2
					register.
					This bit only activates in duty mode.
					This registers companying with FAN2_TEMP_SEL_DIG select the
					temperature source for controlling FAN2. The following value is
					comprised by {FAN2_TEMP_SEL_DIG, FAN2_TEMP_SEL}
					000: fan2 follows PECI temperature (CR7Eh)
					001: fan2 follows temperature 1 (CR72h).
10	FAN2 TEMP SEL	DAA	EVCD	40	010: fan2 follows temperature 2 (CR74h).
1-0	PAINZ_TEIVIP_SEL	R/W	5VSB	10	011: fan2 follows temperature 0 (CR70h).
					100: fan2 follows IBEX/TSI CPU temperature (CR7Ah)
					101: fan2 follows IBEX PCH temperature (CR7Bh).
					110: fan2 follows IBEX MCH temperature (CR7Ch).
					111: fan2 follows IBEX maximum temperature (CR7Dh).
					Otherwise: reserved.

C. FAN3 Index C0h- CFh

Address	Attribute	Reset	Default Value	Description
C0h	RO	3VCC	8'h0F	FAN3 count reading (MSB). At the moment of reading this register, the LSB will be latched. This will prevent from data updating when reading. To read the fan count correctly, read MSB first and followed read the LSB.
C1h	RO	3VCC	8'hff	FAN3 count reading (LSB).

C2h	R/W	VBAT	8'h00	RPM mode(CR96 bit4=0): FAN3 expect speed count value (MSB), in auto fan mode (CR96 bit5→0) this register is auto updated by hardware. Duty mode(CR96 bit4=1): This byte is reserved byte.
C3h	R/W	VBAT	8'h01	RPM mode(CR96 bit4=0): FAN3 expect speed count value (LSB) or expect PWM duty, in auto fan mode this register is auto updated by hardware and read only. Duty mode(CR96 bit4=1): The Value programming in this byte is duty value. In auto fan mode (CR96 bit5→0) this register is updated by hardware. Ex: 5→ 5*100/255 % 255 → 100%
C4h	R/W	5VSB	8'h03	FAN3 full speed count reading (MSB). At the moment of reading this register, the LSB will be latched. This will prevent from data updating when reading. To read the fan count correctly, read MSB first and followed read the LSB.
C5h	R/W	5VSB	8'hff	FAN3 full speed count reading (LSB).

VT3 BOUNDARY 1 TEMPERATURE - Index C6h

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND1TMP3	R/W	5VSB	3Ch (60°C)	The first boundary temperature for VT3 in temperature mode. When VT3 temperature exceeds this boundary, FAN3 expect value will load from segment 1 register (index CAh). When VT3 temperature is under this boundary – hysteresis, FAN3 expect value will load from segment 2 register (index CAh).
					This byte is a 2's complement value ranging from -128°C ~ 127°C.

VT3 BOUNDARY 2 TEMPERATURE – Index C7

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND2TMP3	R/W	5VSB	32 (50°C)	The 2nd BOUNDARY temperature for VT3 in temperature mode. When VT3 temperature is exceed this boundary, FAN3 expected value will load from segment 2 register (index CBh). When VT3 temperature is below this boundary – hysteresis, FAN3 expected value will load from segment 3 register (index CCh). This byte is a 2's complement value ranging from-128°C ~ 127°C.

VT3 BOUNDARY 3 TEMPERATURE - Index C8h

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND3TMP3	R/W	5VSB	28h (40°C)	The 3rd BOUNDARY temperature for VT3 in temperature mode. When VT3 temperature is exceed this boundary, FAN3 expected value will load from segment 3 register (index CCh). When VT3 temperature is below this boundary – hysteresis, FAN3 expected value will load from segment 4 register (index CDh). This byte is a 2's complement value ranging from-128°C ~ 127°C.

VT3 BOUNDARY 4 TEMPERATURE – Index C9h

Bit	Name	R/W	Reset	Default	Description
7-0	BOUND4TMP3	R/W	5VSB	1Eh (30°C)	The 4th BOUNDARY temperature for VT3 in temperature mode. When VT3 temperature is exceed this boundary, FAN3 expected value will load from segment 4 register (index CDh). When VT3 temperature is below this boundary – hysteresis, FAN3 expected value will load from segment 5 register (index CEh). This byte is a 2's complement value ranging from-128°C ~ 127°C.

FAN3 SEGMENT 1 SPEED COUNT - Index CAh

Bit	Name	R/W	Reset	Default	Description
					The meaning of this register is depending on the FAN3_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section.
7-0	SEC1SPEED3	R/W	5VSB		Ex:100%:full speed: User must set this register to 0. 60% full speed: (100-60)*32/60, so user must program 21 to this reg. X% full speed: The value programming in this byte is ((100-X)*32/X 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN3 SEGMENT 2 SPEED COUNT - Index CBh

Bit	Name	R/W	Reset	Default	Description					
					The meaning of this register is depending on the FAN3_MODE (CR96)					
					2'b00: The value that set in this byte is the relative expect fan speed % of					
7-0	SEC2SPEED3	R/W	5VSB	D9h (85%)	the full speed in this temperature section.					
					2'b01: The value that set in this byte is mean the expect PWM duty-cycle					
					in this temperature section.					

FAN3 SEGMENT 3 SPEED COUNT - Index CCh

Bit	Name	R/W	Reset	Default	Description
7-0	SEC3SPEED3	R/W	5VSB	B2h (70%)	The meaning of this register is depending on the FAN3_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section. 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN3 SEGMENT 4 SPEED COUNT - Index CDh

Bit	Name	R/W	Reset	Default	Description
7-0	SEC4SPEED3	R/W	5VSB	(60%)	The meaning of this register is depending on the FAN3_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section. 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN3 SEGMENT 5 SPEED COUNT - Index CEh

Bit	Name	R/W	Reset	Default	Description
7-0	SEC5SPEED3	R/W	5VSB	(50%)	The meaning of this register is depending on the FAN3_MODE (CR96) 2'b00: The value that set in this byte is the relative expect fan speed % of the full speed in this temperature section. 2'b01: The value that set in this byte is mean the expect PWM duty-cycle in this temperature section.

FAN3 Temperature Mapping Select – Index CFh

Bit	Name	R/W	Reset	Default	Description
7	FAN3_TEMP_	DAY	EV/OD		This bit companies with FAN3_TEMP_SEL select the temperature
/	SEL_DIG	R/W	5VSB	0	source for controlling FAN3.
					This bit and FREQ_SEL_ADD3 are used to select FAN3 PWM
					frequency. NEW_FREQ_SEL3 = { FREQ_SEL_ADD3,
			J 5VSB	0	FAN3_PWM_FREQ_SEL}
6		R/W			00: 23.5 KHz
	FREQ_SEL				01: 11.75 KHz
					10: 5.875 KHz
					11: 220 Hz
5	FAN3_UP_T_EN	R/W	5VSB	0	Set 1 to force FAN3 to full speed if any temperature over its high limit.
4	FAN3_	R/W	EV/CD	4	Cat 4 will anable the internelation of the fan expect table
4	4 INTERPOLATION_EN		5VSB	1	Set 1 will enable the interpolation of the fan expect table.

3	FAN3_JUMP_ HIGH_EN	R/W	5VSB	1	This register controls the FAN3 duty movement when temperature over highest boundary. 0: The FAN3 duty will increases with the slope selected by FAN3_RATE_SEL register. 1: The FAN3 duty will directly jumps to the value of SEC1SPEED3 register. This bit only activates in duty mode.
2	FAN3_JUMP_ LOW_EN	R/W	5VSB	1	This register controls the FAN3 duty movement when temperature under (highest boundary – hysteresis). 0: The FAN3 duty will decreases with the slope selected by FAN3_RATE_SEL register. 1: The FAN3 duty will directly jumps to the value of SEC2SPEED3 register. This bit only activates in duty mode.
1-0	FAN3_TEMP_SEL	R/W	5VSB	11	This registers companying with FAN3_TEMP_SEL_DIG select the temperature source for controlling FAN3. The following value is comprised by {FAN3_TEMP_SEL_DIG, FAN3_TEMP_SEL} 000: fan3 follows PECI temperature (CR7Eh) 001: fan3 follows temperature 1 (CR72h). 010: fan3 follows temperature 2 (CR74h). 011: fan3 follows temperature 0 (CR70h). 100: fan3 follows IBEX/TSI CPU temperature (CR7Ah) 101: fan3 follows IBEX PCH temperature (CR7Bh). 110: fan3 follows IBEX MCH temperature (CR7Ch). 111: fan3 follows IBEX maximum temperature (CR7Dh). Otherwise: reserved.

6.5 Keyboard Controller

The KBC circuit provides the functions included a keyboard and/or a PS/2 mouse, and can be used with IBM-compatible personal computers or PS/2-based systems. The controller receives serial data from the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a byte of data in its output buffer. The controller will assert an interrupt to the system when data are placed in its output buffer.

Output Buffer

COMMAND	FUNCTION							
20h	Read Command Byte							
	Write Command Byte							
	BIT DESCRIPTION							
	0 Enable Keyboard Interrupt							
	1 Enable Mouse Interrupt							
	2 System flag							
60h	3 Reserve							
	4 Disable Keyboard Interface							
	5 Disable Mouse interface							
	6 IBM keyboard Translate Mode							
	7 Reserve							
A7h	Disable Auxiliary Device Interface							
A8h	Enable Auxiliary Device Interface							
A9h	Auxiliary Interface Test 8'h00: indicate Auxiliary interface is ok. 8'h01: indicate Auxiliary clock is low. 8'h02: indicate Auxiliary clock is high 8'h03: indicate Auxiliary data is low 8'h04: indicate Auxiliary data is high							
AAh	Self-test Return 55h if self test succeeds							
ABh	keyboard Interface Test 8'h00: indicate keyboard interface is ok. 8'h01: indicate keyboard clock is low. 8'h02: indicate keyboard clock is high 8'h03: indicate keyboard data is low 8'h04: indicate keyboard data is high							
ADh	Disable Keyboard Interface							
AEh	Enable Keyboard Interface							
C0h	Read Input Port(P1) and send data to the system							
C1h	Continuously puts the lower four bits of Port1 into STATUS register							
C2h	Continuously puts the upper four bits of Port1 into STATUS register							
CAh	Read the data written by CBh command.							
CBh	Written a scratch data. This byte could be read by CAh command.							

D1h	Only set/reset GateA20 line based on the system data bit 1
D2h	Send data back to the system as if it came from Keyboard
D3h	Send data back to the system as if it came from Muse
D4h	Output next received byte of data from system to Mouse
FEh	Low pulse on KBRST# about 6μS

The output buffer is an 8-bit read-only register at I/O address 60h. The keyboard controller uses the output buffer to send the scan code received from the keyboard and data bytes required by commands to the system.

Input Buffer

The input buffer is an 8-bit write-only register at I/O address 60h or 64h. Writing to address 60h sets a flag to indicate a data write; writing to address 64h sets a flag to indicate a command write. Data written to I/O address 60h is sent to keyboard through the controller's input buffer only if the input buffer full bit in the status register is "0".

Status Register

The status register is an 8-bit read-only register at I/O address 64h that holds information about the status of the keyboard controller and interface. It may be read at any time.

BIT	BIT FUNCTION	DESCRIPTION
0	Output Buffer Full	Output buffer empty Output buffer full
1	Input Buffer Full	0: Input buffer empty 1: Input buffer full
2	System Flag	This bit may be set to 0 or 1 by writing to the system flag bit in the command byte of the keyboard controller (KCCB). It defaults to 0 after a power-on reset.
3	Command/Data	0: Data byte 1: Command byte
4	Inhibit Switch	Keyboard is inhibited Keyboard is not inhibited
5	Mouse Output Buffer	O: Muse output buffer empty House output buffer full
6	General Purpose Time-out	0: No time-out error 1: Time-out error
7	Parity Error	0: Odd parity 1: Even parity (error)

Commands

COMMAND	FUNCTION								
20h	Read Comma	Read Command Byte							
	Write Comma	Write Command Byte							
	BIT	BIT DESCRIPTION							
	0	0 Enable Keyboard Interrupt							
	1	Enable Mouse Interrupt							
	2	System flag							
60h	3	Reserve							
	4	Disable Keyboard Interface							
	5	Disable Mouse interface							
	6	IBM keyboard Translate Mode							
	7	Reserve							
A 71.	District A	and Davids Interfere							
A7h		ary Device Interface							
A8h		ary Device Interface							
	Auxiliary Inter								
	8'h00: indicate Auxiliary interface is ok. 8'h01: indicate Auxiliary clock is low.								
A9h	8'h02: indicate Auxiliary clock is high								
		8'h03: indicate Auxiliary data is low							
	8'h04: indicate Auxiliary data is high								
	Self-test								
AAh	Return 55h if	self test succeeds							
	keyboard Interface Test								
		8'h00: indicate keyboard interface is ok.							
ABh		8'h01: indicate keyboard clock is low.							
7.5.11		8'h02: indicate keyboard clock is high							
		8'h03: indicate keyboard data is low 8'h04: indicate keyboard data is high							
ADh	Disable Keybo								
AEh	Enable Keybo								
C0h	Read Input Port(P1) and send data to the system								
C1h	-	puts the lower four bits of Port1 into STATUS register							
C2h	-	puts the upper four bits of Port1 into STATUS register							
CAh		a written by CBh command.							
CBh		tch data. This byte could be read by CAh command.							
D0h		alue to the system							
D1h	Only set/reset	GateA20 line based on the system data bit 1							
D2h	Send data ba	ck to the system as if it came from Keyboard							

D3h	Send data back to the system as if it came from Muse
D4h	Output next received byte of data from system to Mouse
FEh	Low pulse on KBRST# about 6μS

KBC Command Description

PS/2 wakeup function

The KBC supports keyboard and mouse wakeup function. KBC will assert PME or PWSOUT# signal. Those wakeup conditions are controlled by the configuration register.

6.6 GPIO

F81866 has 72 pins GPIO in total. All GPIO supports digit IO for Input/Output control, Output data control, input status and High/Low Level/Pulse, Open Drain/Push Pull function selection. The GPIO0x and GPIO1x support interrupt status. The GPIO0x, GPIO1x, GPIO5x, and GPIO8x have different SIRQ channels. The GPIO8x supports the scan code function, please see registers for detail. Please see 6.6.1 section for GPIO access methods and status:

6.6.1 GPIO Access Method

There are nine sets of GPIO in F81866 which can be accessed by three ways as below:

- Configuration register port: Use 0x4E/0x4F (or 0x2E/0x2F) port with logic device number 0x06. Please refer to configuration register for detail.
- Index/Data port: The index port is base address + 0 and data port is base address + 1. To
 access the GPIO register, user should first write index to index port and then read/write
 from/to data port. The index for each register is same as the definition in configuration
 register.
- 3. Digital I/O: This way could access GPIO data register only. It is used for quickly control the GPIO pins. The register for each address is as list:

*Available when GPIO_DEC_RANGE is set "1" (Configuration register index 0x27, bit 5)

	GPIO Digital I/O Registers											
Offset	Register Name	Default Value										
	Register Name	MSB						LSB				
0h	Index Port	1	1	1	1	1	1	1	1			
1h	Data Port	-	-	-	-	-	-	-	-			
2h	GPIO8 Data Port	-	-	-	-	-	-	-	-			
3h	GPIO7 Data Port	-	-	-	-	-	-	-	-			
4h	GPIO6 Data Port	-	-	-	-	-	-	-	-			
5h	GPIO5 Data Port	-	-	-	-	-	-	-	-			
6h	GPIO0 Data Port											
7h	GPIO1 Data Port	-	-	-	-	-	-	-	-			

8h*	GPIO2 Data Port	-	-	-	-	-	-	-	1
9h*	GPIO3 Data Port	-	-	-	-	-	-	-	-
Ah*	GPIO4 Data Port	-	-	-	-	-	-	-	-
B-Fh*	Reserved	-	-	-	-	-	-	-	-

GPIO8 Data Port — Index 02h

Bit	Name	R/W	Reset	Default	Description
					GPIO8 Data Control
7-0	GPIO8_DATA	R/W	LRESET#		Write data to this byte will change the value of GPIO80_VAL ~ GPIO87_VAL in configuration register as writing data to index 0x89.
					Read data from this byte will read the pin status of GPIO80_IN \sim GPIO87_IN as the value in index 0x8A

GPIO7 Data Port — Index 03h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO7_DATA	R/W	LRESET#	-	GPIO7 Data Control Write data to this byte will change the value of GPIO70_VAL ~ GPIO77_VAL in configuration register as writing data to index 0x81. Read data from this byte will read the pin status of GPIO70_IN ~ GPIO77_IN as the value in index 0x82

GPIO6 Data Port — Index 04h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO6_DATA	R/W	LRESET#	-	GPIO6 Data Control Write data to this byte will change the value of GPIO60_VAL ~ GPIO67_VAL in configuration register as writing data to index 0x91. Read data from this byte will read the pin status of GPIO60_IN ~ GPIO67_IN as the value in index 0x92

GPIO5 Data Port — Index 05h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO5_DATA	R/W	LRESET#	-	GPIO5 Data Control Write data to this byte will change the value of GPIO50_VAL ~ GPIO57_VAL in configuration register as writing data to index 0xA1. Read data from this byte will read the pin status of GPIO50_IN ~ GPIO57_IN as the value in index 0xA2

GPIO0 Data Port — Index 06h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO0_DATA	R/W	5VSB	-	GPIO0 Data Control Write data to this byte will change the value of GPIO00_VAL ~ GPIO07_VAL in configuration register as writing data to index 0xF1. Read data from this byte will read the pin status of GPIO00_IN ~ GPIO07_IN as the value in index 0xF2

GPIO1 Data Port — Index 07h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO1_DATA	R/W	5VSB	-	GPIO1 Data Control Write data to this byte will change the value of GPIO10_VAL ~ GPIO17_VAL in configuration register as writing data to index 0xE1. Read data from this byte will read the pin status of GPIO10_IN ~ GPIO17_IN as the value in index 0xE2

*GPIO2 Data Port — Index 08h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO2_DATA	R/W	5VSB	-	GPIO2 Data Control, this byte is available when GPIODEC_RANGE is set. Write data to this byte will change the value of GPIO20_VAL ~ GPIO27_VAL in configuration register as writing data to index 0xD1. Read data from this byte will read the pin status of GPIO20_IN ~ GPIO27_IN as the value in index 0xD2

*GPIO3 Data Port — Index 09h

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO3_DATA	R/W	LRESET#	-	GPIO3 Data Control, this byte is available when GPIODEC_RANGE is set. Write data to this byte will change the value of GPIO30_VAL ~ GPIO37_VAL in configuration register as writing data to index 0xC1. Read data from this byte will read the pin status of GPIO30_IN ~ GPIO37_IN as the value in index 0xC2

GPIO4 Data Port — Index 0Ah

Bit	Name	R/W	Reset	Default	Description
7-0	GPIO4_DATA	R/W	LRESET#	-	GPIO4 Data Control, this byte is available when GPIODEC_RANGE is set. Write data to this byte will change the value of GPIO40_VAL ~ GPIO47_VAL in configuration register as writing data to index 0xB1. Read data from this byte will read the pin status of GPIO40_IN ~ GPIO47_IN as the value in index 0xB2

6.6.2 GPIOx status

- Z means high impendence.
- If the external circuit is pull high then the pin status is "H"; else if the external circuit is pull low then the pin status is "L".
- User define means by programming the configure register.

6.6.2.1 GPIO0x

			PIN ST	ATUS		Register	Desistes	Pin
Pin	Name	G3 -> S5	S0	S3	S5	Power Well	Register Reset Signal	Power Well
52	GPIO00	L	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
53	GPIO01	L	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
54	GPIO02	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
55	GPIO03	L	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
56	GPIO04	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
57	GPIO05	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
58	GPIO06	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
59	GPIO07	Z	user define	user define	user define	I VSB3V	5VSB	I VSB3V

6.6.2.2 GPIO1x

	Name		PIN ST	ATUS		Register	Danieten	Pin
Pin		G3 -> S5	S0	S3	S 5	Power Well	Register Reset Signal	Power Well
65	GPIO10	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
66	GPIO11	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
67	GPIO12	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
68	GPIO13	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
69	GPIO14	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
70	GPIO15	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
71	GPIO16	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
72	GPIO17	Z	user define	user define	user define	I VSB3V	5VSB	I VSB3V

6.6.2.3 **GPIO2x**

			PIN ST	ATUS		Register	Design	Pin
Pin	Name	G3 -> S5	S0	S3	S 5	Power Well	Register Reset Signal	Power Well
76	GPIO20	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
77	GPIO21	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
78	GPIO22	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
79	GPIO23	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
80	GPIO24	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
81	GPIO25	Z	user define	user define	user define	I_VSB3V	5VSB	I_VSB3V
82	GPIO26	Ĺ	user define	user define	user define	I_VSB3V	5VSB	VBAT
83	GPIO27	Ĺ	user define	user define	user define	I_VSB3V	5VSB	VBAT

^{*} GPIO26 and GPIO27 have no push pull function.

6.6.2.4 GPIO3x

			PIN ST	ATUS		Register	Danistan	Pin
Pin	Name	G3 -> S5	S0	S 3	S 5	Power Well	Register Reset Signal	Power Well
36	GPIO30	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
37	GPIO31	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
38	GPIO32	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
39	GPIO33	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
40	GPIO34	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
41	GPIO35	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
42	GPIO36	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
43	GPIO37	Ζ	user define	Z	Z	I VSB3V	LRESET#	3VCC

6.6.2.5 GPIO4x

			PIN ST	ATUS		Register	Desistan	Pin
Pin	Name	G3 -> S5	S0	S3	S 5	Power Well	Register Reset Signal	Power Well
44	GPIO40	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
45	GPIO41	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
46	GPIO42	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
47	GPIO43	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
48	GPIO44	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
49	GPIO45	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
50	GPIO46	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
51	GPIO47	Z	user define	Z	Z	I VSB3V	LRESET#	3VCC

6.6.2.6 **GPIO5x**

			PIN ST	ATUS		Register	Dogiotor	Pin
Pin	Name	G3 -> S5	S0	S3	S5	Power Well	Register Reset Signal	Power Well
9	GPIO50	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
10	GPIO51	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
11	GPIO52	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
12	GPIO53	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
13	GPIO54	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
14	GPIO55	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
15	GPIO56	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
16	GPIO57	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC

6.6.2.7 GPIO6x

			PIN ST	ATUS		Register	Dominton	Pin
Pin	Name	G3 -> S5	S0	S3	S5	Power Well	Register Reset Signal	Power Well
17	GPIO60	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
18	GPIO61	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
19	GPIO62	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
20	GPIO63	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
21	GPIO64	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
74	GPIO65	Z	user define	Z	Z	I_VSB3V	LRESET# *	I_VSB3V
86	GPIO66	Ĺ	user define	Z	Z	I_VSB3V	LRESET# *	VBAT
87	GPIO67	Z	user define	Z	Z	I VSB3V	LRESET# *	VBAT

^{*} GPIO66 and GPIO67 have no push pull function.

6.6.2.8 **GPIO7x**

			PIN ST	ATUS		Register	Do minton	Pin
Pin	Name	G3 -> S5	S0	S3	S 5	Power Well	Register Reset Signal	Power Well
103	GPIO70	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
104	GPIO71	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
105	GPIO72	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
106	GPIO73	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
107	GPIO74	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
108	GPIO75	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
109	GPIO76	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
110	GPIO77	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC

6.6.2.9 **GPIO8x**

			PIN ST	ATUS	Register	Dominton	Pin	
Pin	Name	G3 -> S5	S0	S 3	S 5	Power Well	Register Reset Signal	Power Well
111	GPIO80	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
112	GPIO81	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
113	GPIO82	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
114	GPIO83	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
115	GPIO84	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
116	GPIO85	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
117	GPIO86	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC
118	GPIO88	Z	user define	Z	Z	I_VSB3V	LRESET#	3VCC

6.7 Watchdog Timer Function

Watch dog timer is provided for system controlling. If time-out can trigger one signal to high/low level/pulse, the signal is depend on register setting.

The time unit has two ways from 1sec or 60sec. In pulse mode, there are four pulse widths can be selected (1ms/25ms/125ms/5sec). Others, please refer the device register description as below.

Watchdog Timer Configuration Register 1—base address + 05h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R	-	0	Reserved
6	WDTMOUT_STS	R/W	5VSB	()	If watchdog timeout event occurred, this bit will be set to 1. Write a 1 to this bit will clear it to 0.
5	WD_EN	R/W	5VSB	0	If this bit is set to 1, the counting of watchdog time is enabled.
4	WD_PULSE	R/W	5VSB	0	Select output mode (0: level, 1: pulse) of RSTOUT# by setting this bit.
3	WD_UNIT	R/W	5VSB	0	Select time unit (0: 1sec, 1: 60 sec) of watchdog timer by setting this bit.
2	WD_HACTIVE	R/W	5VSB		Select output polarity of RSTOUT# (1: high active, 0: low active) by setting this bit.
1-0	WD_PSWIDTH	R/W	5VSB	0	Select output pulse width of RSTOUT# 0: 1 ms

Watchdog Timer Configuration Register 2 — base address + 06h

Bit	Name	R/W	Reset	Default	Description
7-0	WD_TIME	R/W	5VSB	0	Time of watchdog timer

Watchdog PME Control Register — base address + 0Ah

Bit	Name	R/W	Reset	Default	Description
		1	-1.40-		The PME Status.
7	WDT_PME	R	5VSB		This bit will set when WDT_PME_EN is set and the watchdog timer is 1 unit before time out (or time out).
6	WDT PME EN	R/W	5VSB	0	0: Disable Watchdog PME.
U	VVD1_I IVIL_LIV	10,44	300	U	1: enable Watchdog PME.
5-1	Reserved				Reserved.
0	WDOUT EN	R/W	5VSB	0	0: disable Watchdog time out output via WDTRST#.
	WDOOT_EN	1 1 7 7 7	0.00		1: enable Watchdog time out output via WDTRST#.

6.8 ACPI Function

The Advanced Configuration and Power Interface (ACPI) is a system for controlling the use of power in a computer. It lets computer manufacturer and user to determine the computer's power usage dynamically.

There are three ACPI states that are of primary concern to the system designer and they are designated S0, S3 and S5. S0 is a full-power state; the computer is being actively used in this state. The other two are called sleep states and reflect different power consumption when power-down. S3 is a state that the processor is powered down but the last procedural state is being stored in memory which is

still active. S5 is a state that memory is off and the last procedural state of the processor has been stored to the hard disk. Take S3 and S5 as comparison, since memory is fast, the computer can quickly come back to the full-power state, the disk is slower than the memory and the computer takes longer time to come back to the full-power state. However, since the memory is off, S5 draws the minimal power comparing to S0 and S3.

ACPI includes three sub items as below:

- Power Control (Include wake up via sleep state, wake up stage detection, AC loss & resume control methods)
- 2. Intel Power Saving Function (Deep Sleep Well, DSW: see next section for the detail)
- 3. EU Power Saving Function (EUP/ERP Command Lot 6.0: see next section for the detail)

Where item 2 & 3 could be coexisted via ERP_CTRL0# (follow SLP_SUS#) & ERP_CTRL1# (After the system enters S3 1.024s & S5 6.4s, EUP/ERP mode could be achieved).

Before entering into the main section, let's check out the related hardware control signal first.

Before entering into the main section, let's check out the related hardware control signal first.									
Control Signal	Power On/Off Control (AC Resume)	Power Management Event	Wake up	Intel DSW Hand Shaking	EUP/ERP Control				
RSMRST#	\Diamond			_					
S3#	\Diamond								
S5#	\Diamond								
PWSIN#	\Diamond								
PWSOUT#	\Diamond		☆★						
ATXPG_IN	\Diamond								
PS_ON#	\Diamond								
PWOK	\Diamond								
PME#		\Diamond	☆★						
PS/2 KB/MS			☆★						
RI1#/RI2#			☆★						
GPIO0x/GPIO1x			☆★						
SLP_SUS#				\Diamond					
SUS_ACK#				\Diamond					
SUS_WARN#				\Diamond					
ERP_CTRL0#				\Diamond	\Diamond				
ERP_CTRL1#					\Diamond				

- ★: Wake up via ERP
- ☆: Wake up via System

6.8.1. Power Control

6.8.1.1. Wake Up Via Sleep State

When the system is at the normal sleep state (S3, S4, S5) or deep sleep (G3') state, F81866 could wake up via PWSOUT# & PME#. See below for the related registers:

Wake up by PME#	Index 0x2D		CR0A Index 0xE0, 0xE8	CR0A Index 0xF0~0xF3
Normal Sleep State	\Diamond			\Diamond
EUP/ERP	\Diamond		\Diamond	
Wake up by PWSOUT#	Index 0x2D	CR 0A Index 0x30	CR0A Index 0xE0, 0xE8	CR0A Index 0xF4
Normal Sleep State	\Diamond	\Diamond		\Diamond
EUP/ERP	\Diamond	\Diamond	\Diamond	

^{⇒:} Supported

6.8.1.2. Wake Up Stage Detection

F81866 is counted on the chipset SLP_S3#, SLP_S4#/SLP_S5# stage, to decide the wake up stage as below:

ACPI Stage	SLP_S3#	SLP_S4# /SLP_S5#
S0	Н	Н
S 3	L	Н
S5	L	L

H: High; L: Low

Power saving mode would be activated via CR0A index E0 bit 7.

6.8.1.3. AC Loss & Resume Control Methods

There are 4 modes under power loss state via setting ACPI control register. The always on, always off, keep last state & bypass mode. In keep last state mode, one register will latch the status before power loss. If it is power on before power loss, it will automatically power on when power is resumed. If it is power off before power loss, it will remain power off when power is resumed. See below for the detail:

When AC resume, the system is in off state and waiting for the wakeup events. See below for the timing: **VBAT VSB** RSMRST# Always off S3# (S5)PS_ON# PSIN# PSOUT# VCC3V When AC resume, inverting the S3 signal to PS_ON#. See below for the timing: **VBAT VSB Bypass** RSMRST# (follow the S3# chipset after PS_ON# G3 stage) PSIN# PSOUT# VCC3V ATXPG_IN, VCC (PWOK), VSB (RSMRST) and S3 signals to detect the sleep state while AC loss occur. One of the signal (ATXPG_IN or VCC under 2.8V or VSB under 2.8V) sinks low, SIO will latch the S3 signal to decide the system to be at "always on" or "always off" mode. See below table: Signal **ATXPG VSB** VCC **AC** resume AC loss state Keep last state AC loss in S0/S1 (S3=1) Always on AC loss in S3/S4/S5 (S3=0) Always off

6.8.2. Intel Power Saving Function Deep Sleep Well (DSW)

The F81866 supports Intel Cougar Point (CPT) Chipset timing for Sandy Bridge (Sugar Bay or Huron River Platform). There are 4 pins for CPT control: SUS WARN#, SUS ACK#, SLP SUS# and DPWROK.

For entering the Intel Deep Sleep Well (DSW) state, the PCH will assert SUS_WARN# (low level) and turn off 5VDUAL. After the level of 5VDUAL is lower than 1.05V, F81866 will assert SUS_ACK# to inform PCH it is ready for entering DSW. Finally, PCH will ramp down the internal VccSUS and assert SLP_SUS# to F81866. F81866 will turn off the 5VSB and 3VSB by ERP_CTRL0# and enter the DSW state.

To exit DSW state, PCH will de-assert SLP_SUS#, turn on the SUS rail FETs and ramp up internal 1.05V VccSUS. After the SUS rails voltages are up, RSMRST# will be desserted and the PCH will release SUS_WARN# so that the 5VDUAL will ramp up.

Because the DSW function is controlled by the F81866 instead of controlled by the PCH directly, there will be more wakeup events such as LAN, KB/Mouse, GPIO0x, GPIO1x, SIO RI# wake up rather than the 3 wakeup events (RTC, Power Button and GPIO27) for Intel DSW.

In order to achieve the lower power consumption, F81866 provides the ERP_CTRL1# to turn off the V3A so that the system can enter the Fintek G3' state.

The block diagram below shows how the connection and control method for F81866 and PCH.

The register for setting this mode is at CR0A, index 0xEC [7:6]. When choose Intel DSW mode, ERP_CTRL0#, & ERP_CTRL1# would follow SLP_SUS#. When choose Intel DSW + Fintek G3' mode, ERP_CTRL0# would follows SLP_SUS#, & ERP_CTRL1# will enter Fintek ERP mode after entering DSW mode for 6.4s (default, the time is programmable).

In sum, there are three blocks in this mode (Please refer to the application circuit for the HW schematic):

a. DSW Control Block:

- a-1 SLP_SUS#: SIO input pin from CPT PCH SLP_SUS#.
- a-2 SUS_WARN#: SIO input pin from CPT PCH SUS_WARN#.
- a-3 SUS ACK#: SIO output pin to CPT PCH SUSACK#.
- a-4 DPWROK: SIO output pin to CPT PCH DPWROK.

b. ERP Control Block:

- b-1 ERP_CTRL0#: Support "CPT PCH DSW" control mode which is a low active signal to turn on/off 3VSB/5VSB power source by P MOSFET.
- b-2 ERP_CTRL1#: Support "Fintek G3' " control mode which is a low active signal to turn on/off 3VA/5VA power source by P MOSFET.

c. Wake Up Event Block:

Power Button	External LAN	PCH Internal LAN	PS2 KB/Mouse	SIO RI#	RTC	GPIO0x/1x
V	V	X	V	X	X	V

Note:

By pressing/triggering any of the above pin, the system could wake up from the sleep (S4/S5) DSW and G3' mode.

V: Supported.

X: does not supported.

6.8.3. Power Saving Controller (Fintek ERP Mode)

The two pins, ERP_CTRL0# and ERP_CTRL1#, which control the standby power rail on/off to fulfill the purpose which decreases the power consumption when the system is in the sleep state or the soft-off state. These two pins connected to the external PMOSs and the defaults are high in the sleep state in order to cut off all the standby power rails to save the power consumption. If the system needs to support wake-up function, the two pins can be programmable to set which power rail to turn on. The programmable register is powered by the battery. So, the setting is kept even the AC power is lost when the register is set. At the power saving state (FINTEK calls it G3' state), the F81866 consumes 5VSB power rail only to realize a low power consumption system.

The register for setting this mode is at CR0A, index 0xEC [7:6]. When choose Fintek G3' mode, ERP_CTRL0# & ERP_CTRL1# will enter S5. After entering S5 for 6.4s (default, the time is programmable), these two pins would send high level signal and then cut off all the power sources except ATX_5VSB (power consumption is about 15mW). In order to avoid the inrush current from ATX_5VSB, F81866 also provide the soft start circuits at these two pins. See the related register for the soft start circuit (CR0A, index 0xEC [4]).

In sum, there are two blocks in this mode (Please refer to the application circuit for the HW schematic):

a. EUP Control Block:

ERP_CTRL0# and ERP_CTRL1# are low active signals to turn on/off 5VSB power source by P MOSFET.

b. Wake Up Event Block via:

Power Button	External LAN	PCH Internal LAN	PS2 KB/Mouse	SIO RI#	RTC	GPIO0x/1x
V	V	X	V	X	X	V

Note:

By pressing/triggering any of the above pin, the system could wake up from the sleep (S4/S5) DSW and G3' mode.

V: Supported.

X: Does not supported.

6.8.4. ACPI Timing

See below for the related ACPI timing:

6.8.4.1. G3 To S0

6.8.4.2. G3 To S0 (only DSW)

6.8.4.3. G3 To S0 (DSW & ERP, AC Resume Green Bold Line)

6.8.4.4. DSW To S0

6.8.4.5. S0 to DSW

6.8.4.6. S0 to G3'

- RSMRST# signal: Powered by VBAT sink low.
- DPWROK/PWOK signal: Powered by VBAT sink low.
- 3VSB 2.8V/2.5V and gate SLP_SUS#/DPWROK for Intel mode

6.8.5. PWOK Signals

PWOK is delayed 400ms (default) as VCC arrives 2.8V, and the delay timing can be programmed via register ($100ms \sim 400ms$).

6.9 UART

The F81866 provides up to 6 UART ports and supports IRQ sharing for system application. They are compatible with 16C550/16C650/16C750 and 16C850 .The UARTs are used to convert data between parallel format and serial format. They convert parallel data into serial format on transmission and serial format into parallel data on receiver side. The serial format is formed by one start bit, followed by five to eight data bits, a parity bit if programmed and one (1.5 or 2) stop bits. The UARTs include complete modem control capability and an interrupt system that may be software trailed to the computing time required to handle the communication link. They have FIFO mode to reduce the number of interrupts presented to the host. Both receiver and transmitter have a 128-byte FIFO.

The UART control register control & define the asynchronous protocol data communications including data length, stop bit, parity & baud rate selection.

The below content is about the UARTs device register descriptions. All the registers are for software porting reference.

6.9.1 UART Device Register

Receiver Buffer Register — Base + 0

Bit	Name	R/W	Reset	Default	Description
7-0	חחח	R	I DECET!		The data received.
7-0	RBR	ĸ	LRESET#	00h	Read only when LCR [7] is 0

Transmitter Holding Register — Base + 0

Bit	Name	R/W	Reset	Default	Description
7.0	7.0 TUD W	W	L DECET#		Data to be transmitted.
7-0	THR	VV	LRESET#	00h	Write only when LCR [7] is 0

Divisor Latch (LSB) - Base + 0

Bit	Name	R/W	Reset	Default	Description
7-0 DH R/W	LRESET#	Baud generator divisor low byte.			
7-0	DLL	K/VV	LRESE I#	01h	Access only when LCR [7] is 1.

Divisor Latch (MSB) — Base + 1

Bit	Name	R/W	Reset	Default	Description
7.0	7.0 DIM 5	R/W		001-	Baud generator divisor high byte.
7-0	DLM	Ft/ VV	LRESET#	00h	Access only when LCR [7] is 1.

Interrupt Enable Register (IER) — Base + 1

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	-	-	Reserved.
					This bit is used only in 9-bit mode and always returns "0" when 9-bit mode is disabled.
4	SM2	R/WC	LRESET#	0	0: The receiver could receive data byte.
					1: The receiver could only receive address byte and issue an interrupt when
					the address is received.
3	EDSSI	R/W	LRESET#	0	Enable Modem Status Interrupt. Access only when LCR [7] is 0.
2	ELSI	R/W	LRESET#	0	Enable Line Status Error Interrupt. Access only when LCR [7] is 0.
1	ETBFI	R/W	LRESET#	1 ()	Enable Transmitter Holding Register Empty Interrupt. Access only when LCR [7] is 0.
0	ERBFI	R/W	LRESET#	0	Enable Received Data Available Interrupt. Access only when LCR [7] is 0.

Interrupt Identification Register (IIR) - Base + 2

Bit	Name	R/W	Reset	Default	Description
7	FIFO. FN	0			0: FIFO is disabled
1	FIFO_EN	R	LRESET#	0	1: FIFO is enabled.
	FIFO. FN	0			0: FIFO is disabled
6	FIFO_EN	R	LRESET#	0	1: FIFO is enabled.
5-4	Reserved	-	LRESET#	-	Reserved.
					000: Interrupt is caused by Modem Status
					001: Interrupt is caused by Transmitter Holding Register Empty
3-1	IRQ_ID	R	LRESET#	00	010: Interrupt is caused by Received Data Available.
					110: Interrupt is caused by Character Timeout
					011: Interrupt is caused by Line Status.
0	IRQ PENDN	R	LRESET#	1 1	1: Interrupt is not pending.
0	IRQ_PENDIN	K			0: Interrupt is pending.

FIFO Control Register — Base + 2

Bit	Name	R/W	Reset	Default	Description
					00: Receiver FIFO trigger level is 1. 01: Receiver FIFO trigger level is 4.
7-6	RCV_TRIG	W	LRESET#	\cap	10: Receiver FIFO trigger level is 4.
					11: Receiver FIFO trigger level is 14.
5-3	Reserved	-	LRESET#	-	Reserved.
2	CLRTX	R	LRESET#	0	Reset the transmitter FIFO.
1	CLRRX	R	LRESET#	0	Reset the receiver FIFO.
0	FIFO EN	R	LRESET#	()	0: Disable FIFO.
	1 11 0_211		LIKEOLIN		1: Enable FIFO.

Line Control Register (LCR) — Base + 3

Bit	Name	R/W	Reset	Default	Description
7	DLAB	R/W	LRESET#	0	0: Divisor Latch can't be accessed.
1	DLAD	17/00	LRESE 1#	U	1: Divisor Latch can be accessed via Base and Base+1.
6	SETBRK	R/W	LRESET#	0	0: Transmitter is in normal condition.
O	SEIBKK	17/1/	LRESE I#	U	1: Transmit a break condition.
5	STKPAR	R/W	LRESET#	0	XX0: Parity Bit is disable
4	EPS	R/W	LRESET#	0	001: Parity Bit is odd.
· '	Li 0	1000	LIKEOL 1#		011: Parity Bit is even
3	PEN	R/W	LRESET#	0	101: Parity Bit is logic 1
	. —				111: Parity Bit is logic 0
					0: Stop bit is one bit
2	STB	R/W	LRESET#	0	1: When word length is 5 bit stop bit is 1.5 bit
					else stop bit is 2 bit
					00: Word length is 5 bit
1-0	WLS	R/W	LRESET#	00	01: Word length is 6 bit
1-0	VVLO	17///	LKESE1#	00	10: Word length is 7 bit
					11: Word length is 8 bit

MODEM Control Register (MCR) — Base + 4

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	LRESET#	-	Reserved.
4	LOOP	R/W	LRESET#	0	0: UART in normal condition. 1: UART is internal loop back
3	OUT2	R/W	LRESET#	0	O: All interrupt is disabled. Interrupt is enabled (disabled) by IER.
2	OUT1	R/W	LRESET#	0	Read from MSR[6] while in loop back mode
1	RTS	R/W	LRESET#	0	0: RTS# is forced to logic 1 1: RTS# is forced to logic 0
0	DTR	R/W	LRESET#	0	0: DTR# is forced to logic 1 1: DTR# is forced to logic 0

Line Status Register (LSR) — Base + 5

Bit	Name	R/W	Reset	Default	Description
7	RCR ERR	R	LRESET#	0	0: No error in the FIFO when FIFO is enabled
,	NON_LIN	11	LINESE 1#	U	1: Error in the FIFO when FIFO is enabled.
6	TEMT	R	LRESET#	1	0: Transmitter is in transmitting.
0	I CIVI I	K	LRESE I#	ı	1: Transmitter is empty.
5	THRE	R	LRESET#	1	0: Transmitter Holding Register is not empty.
5	HINE	K	LRESE I#	ı	1: Transmitter Holding Register is empty.
4	BI	R	L DEOET#	0	0: No break condition detected.
4	DI	K	LRESET#		1: A break condition is detected.
3	FE	R	. DEOET#	0	0: Data received has no frame error.
3	ГС	K	LRESET#	U	1: Data received has frame error.
2	PE	R	L DECET#	0	0: Data received has no parity error.
	FE	K	LRESET#	U	1: Data received has parity error.
1	OE	R	L DECET#	0	0: No overrun condition occurred.
I	UE	ĸ	LRESET#	U	1: An overrun condition occurred.
0	DR	R	L DECET#	0	0: No data is ready for read.
U	υK	ĸ	LRESET#	U	1: Data is received.

MODEM Status Register (MSR) — Base + 6

Bit	Name	R/W	Reset	Default	Description
7	DCD	R	1	_	Complement of DCD# input. In loop back mode, this bit is equivalent to OUT2 in MCR.
6	RI	R	1	-	Complement of RI# input. In loop back mode , this bit is equivalent to OUT1 in MCR $$
5	DSR	R	1	-	Complement of DSR# input. In loop back mode , this bit is equivalent to DTR in MCR $$
4	CTS	R	1	-	Complement of CTS# input. In loop back mode , this bit is equivalent to RTS in MCR $$
3	DDCD	R	LRESET#	0	No state changed at DCD#. State changed at DCD#.
2	TERI	R	LRESET#	0	0: No Trailing edge at RI#. 1: A low to high transition at RI#.
1	DDSR	R	LRESET#	1	0: No state changed at DSR#. 1: State changed at DSR#.
0	DCTS	R	LRESET#	1	No state changed at CTS#. State changed at CTS#.

Scratch Register — Base + 7

Bit	Name	R/W	Reset	Default	Description
7-0	SCR	R/W	LRESET#	00h	Scratch register.

6.9.2 Programmable Baud Rate

The below table shows the use of baud generator with the different frequency 1.8461 MHZ, 14.769 MHZ, 24MHZ:

$$BaudRate = \frac{COM_CLK}{Divisor*16}$$

	BAUD RATI	E FROM DIF	FERENT PRE-DIVI	DER	
PRE-DIV: 13 1.8461MHz	PRE-DIV: 1.625 14.769MHz	PRE-DIV: 1.0 24MHz	DECIMAL DIVISOR USED TO GENRATE 16X CLOCK	ERROR PERCENTAGE	
50	400	650	2308	0	
75	600	975	1538	0	
110	880	1430	1049	0	
135	1080	1755	855	0	
150	1200	1950	769	0	
300	2400	3900	385	0	
600	4800	7800	192	0	
1200	9600	15600	96	0	
1800	14400	23400	64	0.01%	
2000	16000	26000	58	0.01%	
2400	19200	31200	48	0.01%	
3600	28800	46800	32	0.01%	
4800	38400	62400	24	0.01%	
7200	57600	93600	16	0.01%	
9600	76800	124800	12	0.01%	
19200	153600	249600	6	0.01%	
38400	307200	499200	3	0.01%	
57600	460800	748800	2	0.01%	
115200	921600	1497600	1	0.01%	

6.10 AMD TSI and Intel PECI 3.0 Functions

The F81866 provides Intel PECI/AMD TSI interfaces for new generational CPU temperature sensing. In AMD TSI interface, there are SIC and SID signals for temperature information reading from AMD CPU. The SIC signal is for clocking use, the other is for data transferring. More detail, please refer register description.

In Intel PECI interface, the F81866 can connect to the CPU directly. The F81866 can read the temperature data from CPU, then the fan control machine of F81866 can implement the Fan to cool down the CPU temperature. The application circuit is as below.

Please see below for the Intel PECI 3.0 Spec. commands. The F81866 integrated most of those commands for the future advantage application. More detail, please refer to the register descriptions.

F81866 Support	PECI 3.0 Command Name	PECI 1.0 Command Name	Status
V	Ping()	Ping()	
V	GetTemp()	GetTemp()	
V	GetDIB()		
V	RdIAMSR()		
-	WrIAMSR()		
-	RdPCIConfigLocal()		Not Available in Mobile/DT
-	WrPCIConfigLocal()		Not Available in Mobile/DT
-	RdPCIConfig()		Not Available in Mobile/DT
-	WrPCIConfig()		Not Available in Mobile/DT
V	RdPkgConfig()		
V	WrPkgConfig()		

6.11 Over Voltage Protection

F81866A over voltage protection function could protect the damage from voltage spikes via over voltage protection (OVP) function. Voltage protection function is enabled via setting the related register. When the force mode occurs, the system would shut down and then can not boot at all. Only re-plugging the power code (cut off VSB) could re-activate or re-boot the system at the force mode.

7. Register Description

The configuration register is used to control the behavior of the corresponding devices. To configure the register, using the index port to select the index and then writing data port to alter the parameters. The default index port and data port are 0x4E and 0x4F respectively. Pull down the RTS1# pin to change the default value to 0x2E/0x2F. To enable configuration, the entry key 0x87 must be written to the index port. To disable configuration, write exit key 0xAA to the index port. Following is an example to enable configuration and disable configuration by using debug.

-o 4e 87

-o 4e 87 (enable configuration)
-o 4e aa (disable configuration)

The Following is a register map (total devices) grouped in hexadecimal address order, which shows a summary of all registers and their default value. Please refer to each device chapter if you want more detail information.

7.1 Global Control Registers

"-" Reserved or Tri-State

	Global Control	Registers							
Register 0x[HEX]	Register Name	MSE	Default Value MSB LSB						
02	Software Reset Register	-	-	-	-	-	-	-	0
07	Logic Device Number Register (LDN)	0	0	0	0	0	0	0	0
20	Chip ID Register	0	0	0	1	0	0	0	0
21	Chip ID Register	0	0	0	1	0	0	0	0
23	Vendor ID Register	0	0	0	1	1	0	0	1
24	Vendor ID Register	0	0	1	1	0	1	0	0
25	I2C Address Register	0	0	0	0	0	0	0	0
26	Clock Select Register	0	0	-	0	0	0	1	1
27	Port Select Register	1/0	1/0	0	1/0	0	0	-	0
28	Multi Function Select 1 Register	-	1	1	0	0	0	0	0
28	Multi Function Select 2 Register	-	-	-	-	-	-	0	0
29	Multi Function Select 3 Register	0	0	0	0	0	0	1	1
29	10Hz Clock Divisor High Byte	0	0	0	0	0	0	1	1
2A	10Hz Clock Divisor Low Byte	-	-	-	-	-	-	-	-
2A	10Hz Clock Divisor Low Byte	1	1	1	0	0	1	1	1
2B	10Hz Fine Tune Clock Count High Byte	-	-	-	-	-	-	-	-
2C	10Hz Fine Tune Clock Count Low Byte	-	-	-	-	-	-	-	-
2C	GPIO0 Enable Register	-	-	-	0	0	0	0	0

2C	GPIO1 Enable Register	-	1	1	1	1			
2C	GPIO2 Enable Register	0	0	0	0	0	0	0	0
2D	Wakeup Control Register	-	-	-	-	1	0	0	0

7.1.1 Software Reset Register — Index 02h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
0	SOFT_RST	R/W	-	0	Write 1 to reset the register and device powered by VDD (VCC).

7.1.2 Logic Device Number Register (LDN) — Index 07h

Bit	Name	R/W	Reset	Default	Description
					00h: Select FDC device configuration registers.
					03h: Select Parallel Port device configuration registers.
					04h: Select Hardware Monitor device configuration registers.
					05h: Select KBC device configuration registers.
					06h: Select GPIO device configuration registers.
			1		07h: Select WDT device configuration registers.
7-0	LDN	R/W			0Ah: Select PME, ACPI and ERP device configuration registers.
7-0	LDN	IT/VV	LRESET#	0011	10h: Select UART1 device configuration registers.
					11h: Select UART2 device configuration registers.
					12h: Select UART3 device configuration registers.
					13h: Select UART4 device configuration registers.
					14h: Select UART5 device configuration registers.
					15h: Select UART6 device configuration registers.
					Otherwise: Reserved.

7.1.3 Chip ID Register — Index 20h

Bit	Name	R/W	Reset	Default	Description
7-0	CHIP_ID1	R	-	10h	Chip ID 1.

7.1.4 Chip ID Register — Index 21h

Bit	Name	R/W	Reset	Default	Description
7-0	CHIP_ID2	R	-	10h	Chip ID2.

7.1.5 Vendor ID Register — Index 23h

Bit	Name	R/W	Reset	Default	Description
7-0	VENDOR_ID1	R	1	19h	Vendor ID 1.

7.1.6 Vendor ID Register — Index 24h

Bit	Name	R/W	Reset	Default	Description
7-0	VENDOR_ID2	R	1	34h	Vendor ID 2.

7.1.7 I2C Address Select Register — Index 25h

Bit	Name	R/W	Reset	Default	Description
7-1	I2C ADDR	R/W	5VSB		I2C address is used to R/W hardware monitor registers. The default address is determined by I2C_ADDR power on strap pin.
7-1	I2C_ADDR	R/W	5VSB	U	It could also be changed by writing this byte with the entry key 0x19, 0x34. The default value is 0x2E which indicates the address is 0x5C.
					0: disable I2C ARA.
0	EN_ARA_MODE	R/W	5VSB	0	1: enable I2C ARA.

7.1.8 Clock Select Register — Index 26h

Bit	Name	R/W	Reset	Default	Description
7-6	CLK_SEL	R/W	5VSB	0	The clock source of CLKIN. 00: CLKIN is 48MHz 10: CLKIN is 24MHz 01: CLKIN is 14.318MHz. 10: Reserved.
5	Reserved		1	-	Reserved.
4	MO_PIN_LVL_SEL	R/W	5VSB		MCLK/MDATA input level select. 0: TTL level. 1: Low level with 0.6V low and 0.9V high.
3	PIN76_LVL_SEL	R/W	5VSB		PIN 76 input level select. 0: TTL level. 1: Low level with 0.6V low and 0.9V high.
2	PIN71_LVL_SEL	R/W	5VSB		PIN 71 input level select. 0: TTL level. 1: Low level with 0.6V low and 0.9V high.
1	PIN68_LVL_SEL	R/W	5VSB		PIN 68 input level select. 0: TTL level. 1: Low level with 0.6V low and 0.9V high.
0	PIN67_LVL_SEL	R/W	5VSB		PIN 67 input level select. 0: TTL level. 1: Low level with 0.6V low and 0.9V high.

7.1.9 Port Select Register — Index 27h

Bit	Name	R/W	Reset	Default	Description
					0: Force Mode.
7	OVP_MODE	R/W	VBAT*	-	1: Alarm Mode.
					The default value is determined by power on strap.
					0: ATX Mode.
6	AT_MODE	R/W	5VSB	-	1: AT Mode.
					The default value is determined by power on strap.
_	CDIO DEC DANCE	D/\/	21/00	0	0: The GPIO I/O space is 8-byte.
5	GPIO_DEC_RANGE	R/W	3VCC	0	1: The GPIO I/O space is 16-byte.

4	PORT_4E_EN	R/W	5VSB*	-	0: The configuration register port is 2E/2F. 1: The configuration register port is 4E/4F. This register is power on trapped by RTS1#/ Config4E_2E. Pull down to select port 2E/2F. This bit is accessed by the host side only.
3-2	GPIO_PROG_SEL	R/W	5VSB		Index 0x2C register select. 00: GPIO0_EN 01: GPIO1_EN 10: GPIO2_EN 11: Reserved.
1	Reserved	-	-	-	Reserved.
0	CLK_TUNE_PROG_ EN	R/W	3VCC	0	Set "1" to enable index 0x29, 0x2A, 0x2B, 0x2C function as clock fine tune register.

7.1.10Multi-function Select 1 Register — Index 28h (Available when GPIO_PROG_SEL[0] = 0)

					r — Index 28n (Available when GPIO_PROG_SEL[U] = U)
Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	1	-	Reserved
					Pin 9 ~ 21 function select.
6	FDC_GP_EN	R/W	5VSB	1	These pins are controlled by FDC_GP_EN, UART5_FUNC_SEL, and UART6_FUNC_SEL.
					If all these bits are clear to "0", the function would be FDC.
					Pin 102 ~ 118 function select.
5	LPT_GP_EN	R/W	5VSB	1	0: Functions as parallel port.
					1: Functions as GPIO7x/GPIO8x.
				0	Pin 61, 62 function select.
4	MO_I2C_EN	R/W	5VSB		0: PS/2 mouse interface MCLK/MDATA.
					1: I2C SCL/SDA.
		R/W		0	UART 5 Function Select.
					00: No UART 5 pin.
3-2	UART5_FUNC_SEL		5VSB		01: Simple UART, only SIN5 and SOUT5 are available. Pin 57 will be function as SOUT5 and Pin 58 will be function as SIN5.
					10: Simple UART with RTS#. Pin 59 will be function as RTS5#.
					11: Full UART, pin 57 ~ 59, 17 ~ 21 will function as UART 5 pins.
					UART6 Function Select.
				0	00: No UART6 pin.
1-0	UART6 FUNC SEL	R/W	5VSB		01: Simple UART, only SIN6 and SOUT6 are available. Pin 10 will be function
					as SOUT6 and Pin 11 will be function as SIN6.
					10: Simple UART with RTS#. Pin 9 will be function as RTS6#.
					11: Full UART, pin 9 ~ 16 will function as UART 6 pins.

7.1.11 Multi-function Select 2 Register — Index 28h (Available when GPIO_PROG_SEL[0] = 1)

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved
1	CIR_PIN76_EN	R/W	VBAT	U	0: Disable CIRRX# from pin76. The pin function is ALERT#/GPIO20/SCL. 1: Enable CIRRX# from pin76.
0	CIR_PIN71_EN	R/W	VBAT	0	0: Disable CIRRX# from pin71. The pin function is BEEP/GPIO16/SDA. 1: Enable CIRRX# from pin71.

7.1.12Multi Function Select 3 Register — Index 29h (Available when CLK_TUNE_PROG_EN = 0)

Bit	Name	R/W	Reset	Default	Description
					UART4 Function Select.
				0	00: No UART4 pin. Pin 44 ~ 51 are all GPIOs.
7-6	UART4_FUNC_SEL	R/W	5VSB		01: Simple UART, only SIN4 and SOUT4 are available. Pin 50 will be function as SOUT4 and Pin 51 will be function as SIN4.
					10: Simple UART with RTS# function only. Pin 48 will be function as RTS4#.
					11: Full UART, pin 44 ~ 51 will be function as UART pins.
					UART3 Function Select.
					00: No UART3 pin. Pin 36 ~ 43 are all GPIOs.
5-4	UART3_FUNC_SEL	R/W	5VSB		01: Simple UART, only SIN3 and SOUT3 are available. Pin 42 will be function as SOUT3 and Pin 43 will be function as SIN3.
					10: Simple UART with RTS# function only. Pin 40 will be function as RTS3#.
					11: Full UART, pin 36 ~ 43 will be function as UART pins.
					0: Disable SCL from pin 76.
	3 SCL_PIN76_EN R/W				1: Enable SCL from pin 76.
3		5VSB		There is only one slave in the current design, it is recommended to select only one pin for SCL. When multi pins are selected, the priority of these bits is MO_I2C_EN > SCL_PIN76_EN > SCL_PIN67_EN.	
					0: Disable SDA from pin 76.
					1: Enable SDA from pin 76.
2	SDA_PIN71_EN	R/W	5VSB	0	There is only one slave in the current design, it is recommended to select only one pin for SDA. When multi pins are selected, the priority of these bits is MO_I2C_EN > SDA_PIN71_EN > SDA_PIN68_EN.
					0: Disable SDA from pin 68.
					1: Enable SDA from pin 68.
1	SDA_PIN68_EN	R/W	5VSB	1	There is only one slave in the current design, it is recommended to select only one pin for SDA. When multi pins are selected, the priority of these bits is MO_I2C_EN > SDA_PIN71_EN > SDA_PIN68_EN.
					0: Disable SCL from pin 67.
			5VSB		1: Enable SCL from pin 67.
0	SCL_PIN67_EN	R/W		1	There is only one slave in the current design, it is recommended to select only one pin for SCL. When multi pins are selected, the priority of these bits is MO_I2C_EN > SCL_PIN76_EN > SCL_PIN67_EN.

7.1.1310Hz Clock Divisor High Byte — Index 29h (Available when CLK_TUNE_PROG_EN = 1)

Bit	Name	R/W	Reset	Default	Description
7	FINE_TUNE_START	W	-	-	Write "1" to start the fine tune mechanism. The hardware will start to count 10 cycle internal 500KHz clock with 48MHz clock. The count will present in index 0x2A, 0x2B.
6-4	Reserved	-	-	-	Reserved.
3-0	CLK10HZ_DIV	R/W	VBAT	1 4 N S	The divisor of 10Hz clock. Internal 10Hz clock is used to generate WDT event. It is divided from 10KHz clock and could be fine tune by change its divisor.

7.1.1410Hz Clock Divisor Low Byte — Index 2Ah (Available when CLK_TUNE_PROG_EN = 0)

Bit	Name	R/W	Reset	Default	Description
7-0	Reserved	R/W	1	0	Reserved.

7.1.1510Hz Clock Divisor Low Byte — Index 2Ah (Available when CLK_TUNE_PROG_EN = 1)

Bit	Name	R/W	Reset	Default	Description
7-0	CLK10HZ_DIV	R/W	VBAT		The divisor of 10Hz clock. Internal 10Hz clock is used to generate WDT event. It is divided from 10KHz clock and could be fine tune by change its divisor.

7.1.16Multi Function Select 4 Register — Index 2Bh (Available when CLK_TUNE_PROG_EN = 0)

Bit	Name	R/W	Reset	Default	Description
7	GPIO67_EN	R/W	VBAT	_	Pin 87 function select 0: Pin 87 functions as S5#. 1: Pin 87 functions as GPIO67.
6	GPIO66_EN	R/W	VBAT		Pin 86 function select 0: Pin 86 functions as DPWROK. 1: Pin 86 functions as GPIO66.
5	GPIO65_EN	R/W	VBAT		Pin 74 function select 0: Pin 74 functions as PME#. 1: Pin 74 functions as GPIO65.
4-2	Reserved	-	-	-	Reserved
1	FANIN3_EN	R/W	VBAT		Pin 102 function select 0: Pin 102 functions as SCLT. 1: Pin 102 functions as FANIN3.
0	FANCTRL3_EN	R/W	VBAT		Pin 103 function select. 0: Pin 103 functions as GPIO70/PE. 1: Pin 103 functions as FANCTRL3.

7.1.1710Hz Clock Fine Tune Count High Byte — Index 2Bh (Available when CLK_ TUNE_PROG_EN = 1)

Bit	Name	R/W	Reset	Default	Description
7	FINE_TUNE_ST	ı	5VSB	-	This bit indicates the fine tune mechanism is in process.

6-4	Reserved	-	-	-	Reserved
3-0	FINE_TUNE_CNT	R/W	5VSB	4'h3	This is the count of 10 cycles of internal 500KHz clock with 48MHz clock.

7.1.1810Hz Clock Fine Tune Count Low Byte — Index 2Ch (Available when CLK_TUNE_PROG_EN = 1)

Bit	Name	R/W	Reset	Default	Description
7-0	FINE_TUNE_CNT	R/W	5VSB	4'h3	This is the count of 10 cycles of internal 500KHz clock with 48MHz clock.

7.1.19GPIO0 Enable Register — Index 2Ch (Available when CLK_ TUNE_PROG_EN = 0 and GPIO_PROG_SEL = 2'b00)

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	-	- Reserved	
4	GPIO04_EN	R/W	VBAT	Pin 56 function select. 0: Pin 56 functions as SLP_SUS#. 1: Pin 56 functions as GPIO04.	
3	GPIO03_EN	R/W	VBAT	Pin 55 function select. 0 0: Pin 55 functions as SUS_ACK#. 1: Pin 55 functions as GPIO03.	
2	GPIO02_EN	R/W	VBAT	Pin 54 function select. 0 0: Pin 54 functions as SUS_WARN#. 1: Pin 54 functions as GPIO02.	
1	GPIO01_EN	R/W	VBAT	Pin 53 functions as Gricoz. O: Pin 53 functions as ERP_CTRL1#. 1: Pin 53 functions as GPIO01.	
0	GPIO00_EN	R/W	VBAT		Pin 52 function select. 0: Pin 52 functions as ERP_CTRL0#. 1: Pin 52 functions as GPIO00.

7.1.20GPIO1 Enable Register — Index 2Ch (Available when CLK_ GPIO_PROG_SEL PROG_EN = 0 and GPIO_PROG_SEL = 2'b01)

Bit	Name	R/W	Reset	Default	Description
7	GPIO17_EN	R/W	VBAT		Pin 72 function select. 0: Pin 72 functions as PECI. 1: Pin 72 functions as GPIO17.
6	GPIO16_EN	R/W	VBAT	0	Pin 71 function select. 0: Pin 71 functions as BEEP. 1: Pin 71 functions as GPIO16.
5	GPIO15_EN	R/W	VBAT	Pin 70 function select. 0 0: Pin 70 functions as WDTRST#. 1: Pin 70 functions as GPIO15.	
4	Reserved	-	-	-	Reserved

3	GPIO13_EN	R/W	VBAT	1	Pin 68 function select. 0: Pin 68 functions as IRRX. 1: Pin 68 functions as GPIO13. If SDA_PIN68_EN is set, pin 68 will be function as SDA.
2	GPIO12_EN	R/W	VBAT	1	Pin 67 function select. 0: Pin 67 functions as IRTX. 1: Pin 67 functions as GPIO12. If SCL_PIN67_EN is set, pin 67 will be function as SCL.
1	GPIO11_EN	R/W	VBAT	1	Pin 66 function select. 0: Pin 66 functions as LED_VCC. 1: Pin 66 functions as GPIO11.
0	GPIO10_EN	R/W	VBAT	1	Pin 65 function select. 0: Pin 65 functions as LED_VSB. 1: Pin 65 functions as GPIO10.

7.1.21GPIO2 Enable Register — Index 2Ch (Available when CLK_ TUNE_PROG_EN = 0 and GPIO_PROG_SEL = 2'b10)

Bit	Name	R/W	Reset	Default	Description	
					Pin 83 function select.	
7	GPIO27_EN	R/W	VBAT	0	0: Pin 83 functions as RSMRST#.	
					1: Pin 83 functions as GPIO27.	
					Pin 82 function select.	
6	GPIO26_EN	R/W	VBAT	0	0: Pin 82 functions as PWOK.	
					1: Pin 82 functions as GPIO26.	
					Pin 81 function select.	
5	GPIO25_EN	R/W	VBAT	0	0: Pin 81 functions as PSON#.	
					1: Pin 81 functions as GPIO25.	
					Pin 80 function select.	
4	GPIO24_EN	R/W	VBAT	0	0: Pin 81 functions as S3#.	
					1: Pin 81 functions as GPIO24.	
					Pin 79 function select.	
3	GPIO23_EN	R/W	VBAT	0	0: Pin 68 functions as PWSOUT#.	
					1: Pin 68 functions as GPIO23.	
					Pin 78 function select.	
2	GPIO22_EN	R/W	VBAT	0	0: Pin 78 functions as PWSIN#.	
					1: Pin 78 functions as GPIO22.	
					Pin 77 function select.	
1	GPIO21_EN	R/W	VBAT	0	0: Pin 77 functions as ATXPG_IN.	
					1: Pin 77 functions as GPIO21.	
					Pin 76 function select.	
0	GPIO20 EN	R/W	VBAT	0	0: Pin 76 functions as ALERT#.	
U	GFIOZU_EN	17/1/	VDAI		1: Pin 76 functions as GPIO20.	
					Pin 76 will be function as SCL: if SCL_PIN76_EN is set.	

7.1.22Wakeup Control Register — Index 2Dh

Bit	Name	R/W	Reset	Default		Desc	cription	
7-4	Reserved	-	1	-	Reserved			
3	WAKEUP_EN	R/W	VBAT	1	0: disable KB/Mouse wakeup function. 1: enable KB/Mouse wakeup function. 2. Lattice the standard of the sta			
					Select the keyboar several key select a	• •	company with KEY_SEL_ADD, there are	
					KEY_SEL_ADD	KEY_SEL	Wake Key	
					0	00	Ctrl + Esc	
	2-1 KEY_SEL R/			00	0	01	Ctrl + F1	
2-1		R/W	VBAT		0	10	Ctrl + Space	
					0	11	Any Key	
					1	00	Windows Wakeup Key	
					1	01	Windows Power Key	
					1	10	Ctrl + Alt + Backspace	
					1	11	Ctrl + Alt + Delete	
					Select the mouse w	vakeup key.		
0	MO_SEL	R/W	VBAT	0	0: Wakeup by mou	0: Wakeup by mouse clicking.		
	l				1: Wakeup by mou	se clicking or move	ement.	

7.2 Multifunction Function Register Mapping Table

7.3.1 Multi Function Register Mapping For FDC

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN9	GPIO50/DENSEL#/RTS6#	DENSEL	
PIN10	GPIO51/MOA#/SIN6	MOA#	
PIN11	GPIO52/DRVA#/SOUT6	DRVA#	
PIN12	GPIO53/WDATA#/DCD6#	WDATA#	
PIN13	GPIO54/DIR#/RI6#	DIR#	This is a second of the second
PIN14	GPIO55/STEP#/CTS6#	STEP#	INDEX 27H BIT3-2 = 00
PIN15	GPIO56/HDSEL#/DTR6	HDSEL#	INDEX 28H BIT6 AND BIT3-0 = 0
PIN16	GPIO57/WGATE#/DSR6#	WGATE#	INDEX 27H BITO = 0
PIN17	GPIO60/RDATA#/DCD5#	RDATA#	
PIN18	GPIO61/TRK0#/RI5#	TRK0#	
PIN19	GPIO62/INDEX#/CTS5#	INDEX#	
PIN20	GPIO63/WPT#/DTR5#	WPT#	
PIN21	GPIO64/DSKCHG#/DSR5#	DSKCHG#	

7.3.2 Multi Function Register Mapping For Parallel Port (LPT)

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN102	FANIN3/SLCT	SLCT	
PIN103	GPIO70/PE/FANCTRL3/PWM_	PE	
	DAC3		4
PIN104	GPIO71/BUSY	BUSY	
PIN105	GPIO72/ACK#	ACK#	
PIN106	GPIO73/SLIN#	SLIN#	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PIN107	GPIO74/INIT#	INIT#	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PIN108	GPIO75/ERR#	ERR#	INDEX 28H BIT1-0 = 00
PIN109	GPIO76/AFD#	AFD#	INDEX 2BIT BIT 1-0 = 00
PIN110	GPIO77/STB#	STB#	
PIN111	GPIO80/PD0	PD0	
PIN112	GPIO81/PD1	PD1	
PIN113	GPIO82/PD2	PD2	
PIN114	GPIO83/PD3	PD3	
PIN115	GPIO84/PD4	PD4	
PIN116	GPIO85/PD5	PD5	
PIN117	GPIO86/PD6	PD6	
PIN118	GPIO87/PD7	PD7	

7.3.3 Multi Function Register Mapping For Hardware Monitor

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
			INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN71	BEEP/GPIO16/SDA/CIRRX#	BEEP	INDEX 29H BIT2 = 0
			INDEX 2CH BIT6 = 0
			INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN76	ALERT#/GPIO20/SCL/CIRRX#	ALERT#	INDEX 29H BIT3 = 0
			INDEX 2CH BIT0 = 0
DINAGO	FANING/OLOT	FANING	INDEX 27H BIT0 = 0
PIN102	FANIN3/SLCT	FANIN3	INDEX 2BH BIT1 = 1
DINIAGO	GPIO70/PE/FANCTRL3/PWM_	EANICEDI 2	INDEX 27H BIT0 = 0
PIN103	DAC3	FANCTRL3	INDEX 2BH BIT0 = 1

7.3.4 Multi Function Register Mapping For KBC (PS/2 Mouse)

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN61	MDATA/SCL	MDATA	INDEX 27H BIT3-2 = 00
PIN62	MCLK/SDA	MCLK	INDEX 28H BIT4 = 0

7.3.1 Multi Function Register Mapping For GPIO0x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN52		GPIO00	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PINOZ	ERP_CTRL0#/GPIO00	GFIO00	INDEX 2CH BIT0 = 1
PIN53	EDD CTDI 1#/CDIO01	GPIO01	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PINOS	ERP_CTRL1#/GPIO01	GFIOUT	INDEX 2CH BIT1 = 1
PIN54	SUS WARN#/CDIO03	GPIO02	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PIN34	SUS_WARN#/GPIO02	GFI002	INDEX 2CH BIT2 = 1
PIN55	CITE VCK#/CDIO03	GPIO03	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PINOS	SUS_ACK#/GPIO03	GFI003	INDEX 2CH BIT3 = 1
PIN56	SLD SHS#ICDIOM	GPIO04	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PINOO	SLP_SUS#/GPIO04	GF1004	INDEX 2CH BIT4 = 1
PIN57	GPIO05/SOUT5	GPIO05	INDEX 27H BIT3-2 = 00
PIN58	GPIO06/SIN5	GPIO06	INDEX 27H BIT3-2 = 00 INDEX 28H BIT3-2 = 00
PIN59	GPIO07/RTS5#	GPIO07	INDEX 200 BIT3-2 = 00

7.3.2 Multi Function Register Mapping For GPIO1x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN65	CDIO10/LED VSD	ODIO40	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PINOS	GPIO10/LED_VSB	GPIO10	INDEX 2CH BIT0 = 1
PIN66	GPIO11/LED_VCC	GPIO11	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PINOO	GPIOTI/LED_VCC	GPIOTI	INDEX 2CH BIT1 = 1
			INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN67	SCL/GPIO12/IRTX	GPIO12	INDEX 29H BIT0 = 0
			INDEX 2CH BIT2 = 1
			INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN68	SDA/GPIO13/IRRX	GPIO13	INDEX 29H BIT1 = 0
			INDEX 2CH BIT3 = 1
PIN69	GPIO14/ATX_AT_TRAP	GPIO14	SINGLE FUNCTION
DINZO	WDTDST#/CDIO15	CDIO15	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN70	WDTRST#/GPIO15	GPIO15	INDEX 2CH BIT5 = 1
PIN71	BEEP/GPIO16/SDA/CIRRX#	GPIO16	INDEX 27H BIT3-2 = 01 AND BIT0 = 0

			INDEX 29H BIT2 = 0
			INDEX 2CH BIT6 = 1
DINZO	DECUCDIO17	CDIO47	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN72	PECI/GPIO17	GPIO17	INDEX 2CH BIT7 = 1

7.3.3 Multi Function Register Mapping For GPIO2x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
			INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN76	ALERT#/GPIO20/SCL/CIRRX#	GPIO20	INDEX 29H BIT3 = 0
			INDEX 2CH BIT0 = 1
PIN77	ATXPG_IN/GPIO21	GPIO21	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
FIINTT	ATAFG_IN/GFI021	GFIOZI	INDEX 2CH BIT1 = 1
PIN78	PWSIN#/GPIO22	GPIO22	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
FIINTO	PWSIN#/GPIO22	GPIU22	INDEX 2CH BIT2 = 1
PIN79	PWSOUT#/GPIO23	GPIO23	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
1 1147 3			INDEX 2CH BIT3 = 1
PIN80	S3#/GPIO24	GPIO24	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
1 11100			INDEX 2CH BIT4 =1
PIN81	PS_ON#/GPIO25	GPIO25	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
1 IIVO1			INDEX 2CH BIT5 = 1
PIN82	PWOK/GPIO26	GPIO26	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
FIINOZ	PWOK/GPIO26		INDEX 2CH BIT6 = 1
PIN83	PSMPST#/CPIO27	GPIO27	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
FINOS	RSMRST#/GPIO27		INDEX 2CH BIT7 = 1

7.3.4 Multi Function Register Mapping For GPIO3x

	3		
PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN36	DCD3#/GPIO30	GPIO30	
PIN37	RI3#/GPIO31	GPIO31	
PIN38	CTS3#/GPIO32	GPIO32	
PIN39	DTR3#/GPIO33	GPIO33	INDEX 27H BIT0 = 0
PIN40	RTS3#/GPIO34	GPIO34	INDEX 29H BIT5-4 = 00
PIN41	DSR3#/GPIO35	GPIO35	
PIN42	SOUT3/GPIO36	GPIO36	
PIN43	SIN3/GPIO37	GPIO37	

7.3.5 Multi Function Register Mapping For GPIO4x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN44	DCD4#/GPIO40	GPIO40	
PIN45	RI4#/GPIO41	GPIO41	
PIN46	CTS4#/GPIO42	GPIO42	
PIN47	DTR4#/GPIO43	GPIO43	INDEX 27H BIT0 = 0
PIN48	RTS4#/GPIO44	GPIO44	INDEX 29H BIT7-6 = 00
PIN49	DSR4#/GPIO45	GPIO45	
PIN50	SOUT4/GPIO46	GPIO46	
PIN51	SIN4/GPIO47	GPIO47	

7.3.6 Multi Function Register Mapping For GPIO5x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN9	GPIO50/DENSEL#/RTS6#	GPIO50	
PIN10	GPIO51/MOA#/SIN6	GPIO51	
PIN11	GPIO52/DRVA#/SOUT6	GPIO52	
PIN12	GPIO53/WDATA#/DCD6#	GPIO53	INDEX 27H BIT3-2 = 00
PIN13	GPIO54/DIR#/RI6#	GPIO54	INDEX 28H BIT6 = 1 AND BIT1-0 = 00
PIN14	GPIO55/STEP#/CTS6#	GPIO55	
PIN15	GPIO56/HDSEL#/DTR6	GPIO56	
PIN16	GPIO57/WGATE#/DSR6#	GPIO57	

7.3.7 Multi Function Register Mapping For GPIO6x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN17	GPIO60/RDATA#/DCD5#	GPIO60	
PIN18	GPIO61/TRK0#/RI5#	GPI061	INDEX 2711 DIT2 2 - 00 AND DIT0 - 0
PIN19	GPIO62/INDEX#/CTS5#	GPIO62	INDEX 27H BIT3-2 = 00 AND BIT0 = 0 INDEX 28H BIT6 = 1 AND BIT3-2 = 00
PIN20	GPIO63/WPT#/DTR5#	GPIO63	INDEX 200 BIT0 - 1 AND BIT3-2 - 00
PIN21	GPIO64/DSKCHG#/DSR5#	GPIO64	
PIN74	PME#/GPIO65	GPIO65	INDEX 27H BIT0 = 0
PIN/4			INDEX 2BH BIT5 = 1
DINIOC	DDWD OK ODLOGO	0.71000	INDEX 27H BIT0 = 0
PIN86	DPWROK/GPIO66	GPIO66	INDEX 2BH BIT6 = 1
PIN87	S5#/GPIO67	GPIO67	INDEX 27H BIT0 = 0
			INDEX 2BH BIT7 = 1

7.3.8 Multi Function Register Mapping For GPIO7x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN103	GPIO70/PE/FANCTRL3/PWM_ DAC3	GPIO70	INDEX 27H BIT3-2 = 00 AND BIT0 = 0 INDEX 28H BIT5 = 1 INDEX 2BH BIT0 =0
PIN104	GPIO71/BUSY	GPIO71	
PIN105	GPIO72/ACK#	GPIO72	
PIN106	GPIO73/SLIN#	GPIO73	INDEX 27H DIT2 2 - 00 AND DIT0 - 0
PIN107	GPIO74/INIT#	GPIO74	INDEX 27H BIT3-2 = 00 AND BIT0 = 0
PIN108	GPIO75/ERR#	GPIO75	INDEX 28H BIT5 = 1
PIN109	GPIO76/AFD#	GPIO76	
PIN110	GPIO77/STB#	GPIO77	

7.3.9 Multi Function Register Mapping For GPIO8x

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN111	GPIO80/PD0	GPIO80	
PIN112	GPIO81/PD1	GPIO81	
PIN113	GPIO82/PD2	GPIO82	
PIN114	GPIO83/PD3	GPIO83	INDEX 27H BIT3-2 = 00
PIN115	GPIO84/PD4	GPIO84	INDEX 28H BIT5 = 1
PIN116	GPIO85/PD5	GPIO85	
PIN117	GPIO86/PD6	GPIO86	
PIN118	GPIO87/PD7	GPIO87	

7.3.10Multi Function Register Mapping For WDT

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN70	WDTRST#/GPIO15	WDTRST#	INDEX 27H BIT3-2 = 01 AND INDEX BIT0 = 0
FIIN/U	WDTRST#/GPIOTS	WDIRSI#	INDEX 2CH BIT5 = 0

7.3.11 Multi Function Register Mapping For ERP, LED

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN52		ERP_CTRL0#	INDEX 27H BIT3-2 AND BIT0 = 0
PIN52	ERP_CTRL0#/GPIO00		INDEX 2CH BIT0 = 0
DINISO	EDD OTDLAWODIOM	EDD OTDI 4#	INDEX 27H BIT3-2 AND BIT0 = 0
PIN53	ERP_CTRL1#/GPIO01	ERP_CTRL1#	INDEX 2CH BIT1 = 0
PIN54	SUS_WARN#/GPIO02	SUS_WARN#	INDEX 27H BIT3-2 AND BIT0 = 0
			INDEX 2CH BIT2 = 0

PIN55	SUS_ACK#/GPI003	SUS_ACK#	INDEX 27H BIT3-2 AND BIT0 = 0 INDEX 2CH BIT3 = 0
			INDEX 2CH BIT3 = 0 INDEX 27H BIT3-2 AND BIT0 = 0
PIN56	SLP_SUS#/GPIO04	SLP_SUS#	INDEX 2CH BIT4 = 0
			INDEX 27H BIT0 = 0
PIN86	DPWROK/GPIO66	DPWROK	INDEX 2BH BIT6 = 0
PIN65	GPIO10/LED_VSB	LED_VSB	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN66	GPIO11/LED_VCC	LED_VCC	INDEX 2CH BIT1-0 = 00
DINIZZ	ATVDO INVODICO	ATVDO IN	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN77	ATXPG_IN/GPIO21	ATXPG_IN	INDEX 2CH BIT1 = 0
DINIZO	PWSIN#/GPIO22	PWSIN#	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN78			INDEX 2CH BIT2 = 0
DINIZO	PWSOUT#/GPIO23	PWSOUT#	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN79			INDEX 2CH BIT3 = 0
DINIOO	00///07/004	S3#	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN80	S3#/GPIO24	53#	INDEX 2CH BIT4 = 0
DINIOA	DO ONWODIOSE	DO 01//	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN81	PS_ON#/GPIO25	PS_ON#	INDEX 2CH BIT5 = 0
DINIOO	DWOKIODIOGO	DIMOK	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN82	PWOK/GPIO26	PWOK	INDEX 2CH BIT6 = 0
DINIOO	DOMDOT#JODIO97	DCMDCT#	INDEX 27H BIT3-2 = 10 AND BIT0 = 0
PIN83	RSMRST#/GPIO27	RSMRST#	INDEX 2CH BIT7 = 0
DIMOZ	05#/05/007	05#	INDEX 27H BIT0 = 0
PIN87	S5#/GPIO67	S5#	INDEX 2BH BIT7 =0

7.3.12Multi Function Register Mapping For IR

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN67	SCL/GPIO12/IRTX	IRTX	INDEX 27H BIT3-2 = 01 AND BIT0 = 0
PIN68	SDA/GPIO13/IRRX	IRRX	INDEX 29H BIT1-0 = 00
1 11400	ODA OF TO TO MICHAE	IIIIOX	INDEX 2CH BIT3-2 = 00

7.3.13 Multi Function Register Mapping For CIR

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN71	BEEP/GPIO16/SDA/CIRRX#	CIRRX#	INDEX 27H BIT3-2 = 01 AND INDEX BIT0 = 0
			INDEX 28H BIT0 = 1
PIN76	ALERT#/GPIO20/SCL/CIRRX#	CIRRX#	INDEX 27H BIT3-2 = 01 AND INDEX BIT0 = 0
			INDEX 28H BIT1 = 1

7.3.14Multi Function Register Mapping For I2C

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN61	MDATA/SCL	SCL	INDEX 27H BIT3-2 = 00
PIN62	MCLK/SDA	SDA	INDEX 28H BIT4 = 1
PIN71	BEEP/GPIO16/SDA/CIRRX#	SDA	INDEX 27H BIT0 = 0
PIN76	ALERT#/GPIO20/SCL/CIRRX#	SCL	INDEX 29H BIT3-2 = 11

7.3.15 Multi Function Register Mapping For UART 1 & UART 2

UART 1 & 2 are pure pins.

7.3.16 Multi Function Register Mapping For UART 3

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
	-		
PIN36	DCD3#/GPIO30	DCD3#	
PIN37	RI3#/GPIO31	RI3#	INDEX 27H BIT0 = 0
PIN38	CTS3#/GPIO32	CTS3#	INDEX 29H BIT5-4 = 01 ONLY SIN3/SOUT3
PIN39	DTR3#/GPIO33	DTR3#	AVAILABLE
PIN40	RTS3#/GPIO34	RTS3#	INDEX 29H BIT5-4 = 10 ONLY SIN3/SOUT3/RTS3#
PIN41	DSR3#/GPIO35	DSR3#	AVAILABLE
PIN42	SOUT3/GPIO36	SOUT3	INDEX 29H BIT5-4 = 11 FULL UART
PIN43	SIN3/GPIO37	SIN3	

7.3.17 Multi Function Register Mapping For UART 4

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN44	DCD4#/GPIO40	DCD4#	
PIN45	RI4#/GPIO41	RI4#	INDEX 27H BIT0 = 0
PIN46	CTS4#/GPIO42	CTS4#	INDEX 29H BIT7-6 = 01 ONLY SIN4/SOUT4
PIN47	DTR4#/GPIO43	DTR4#	AVAILABLE
PIN48	RTS4#/GPIO44	RTS4#	INDEX 29H BIT7-6 = 10 ONLY SIN4/SOUT4/RTS4#
PIN49	DSR4#/GPIO45	DSR4#	AVAILABLE
PIN50	SOUT4/GPIO46	SOUT4	INDEX 29H BIT7-6 = 11 FULL UART
PIN51	SIN4/GPIO47	SIN4	

7.3.18Multi Function Register Mapping For UART 5

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN17	GPIO60/RDATA#/DCD5#	DCD5#	INDEX 27H BIT3-2 = 00
PIN18	GPIO61/TRK0#/RI5#	RI5#	INDEX 28H BIT3-2 = 01 ONLY SIN5/SOUT5

PIN19	GPIO62/INDEX#/CTS5#	CTS5#	AVAILABLE
PIN20	GPIO63/WPT#/DTR5#	DTR5#	INDEX 28H BIT3-2 = 10 ONLY SIN5/SOUT5/RTS5#
PIN21	GPIO64/DSKCHG#/DSR5#	DSR5#	AVAILABLE
PIN57	GPIO05/SOUT5	SOUT5	INDEX 28H BIT3-2 = 11 FULL UART
PIN58	GPIO06/SIN5	SIN5	
PIN59	GPIO07/RTS5#	RTS5#	

7.3.19Multi Function Register Mapping For UART 6

PIN No.	PIN FULL NAME	PIN SELECT	CONFIGURE REGISTER
PIN9	GPIO50/DENSEL#/RTS6#	RTS6#	
PIN10	GPIO51/MOA#/SIN6	SIN6	INDEX 27H BIT3-2 = 00
PIN11	GPIO52/DRVA#/SOUT6	SOUT6	INDEX 28H BIT1-0 = 01 ONLY SIN6/SOUT6
PIN12	GPIO53/WDATA#/DCD6#	DCD6#	AVAILABLE
PIN13	GPIO54/DIR#/RI6#	RI6#	INDEX 28H BIT1-0 = 10 ONLY SIN6/SOUT6/RTS6#
PIN14	GPIO55/STEP#/CTS6#	CTS6#	AVAILABLE
PIN15	GPIO56/HDSEL#/DTR6#	DTR6#	INDEX 28H BIT1-0 = 11 FULL UART
PIN16	GPIO57/WGATE#/DSR6#	DSR6#	

7.3 FDC Device Configuration Registers (LDN CR00)

"-" Reserved or Tri-State

Degister Ov[HEV]	Domintor Name	Default Value								
Register 0x[HEX]	Register Name	MSB						LSB		
30	FDC Device Enable Register	-	ı	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	1	1	
61	Base Address Low Register	1	1	1	1	0	0	0	0	
70	IRQ Channel Select Register	-	-	-	-	0	1	1	0	
74	DMA Channel Select Register	-	-	-	-	-	0	1	0	
F0	FDD Mode Register	-	-	-	0	1	1	1	0	
F2	FDD Drive Type Register	-	-	-	-	-	-	1	1	
F4	FDD Selection Register	-	-	-	0	0	-	0	0	

FDC Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
0	FDC_EN	R/W	LRESET#	1 1	0: disable FDC. 1: enable FDC.

Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	03h	The MSB of FDC base address.

Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	F0h	The LSB of FDC base address.

IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description	
7-4	Reserved	-	-	-	Reserved.	
3-0	SELFDCIRQ	R/W	LRESET#	06h	Select the IRQ channel for FDC.	

DMA Channel Select Register — Index 74h

Bit	Name	R/W	Reset	Default	Description	
7-3	Reserved	-	-	-	Reserved.	
2-0	SELFDCDMA	R/W	LRESET#	010	Select the DMA channel for FDC.	

FDD Mode Register — Index F0h

	1 BB mode Register Index For							
Bit	Name	R/W	Reset	Default	Description			
7-5	Reserved	-	-	-	Reserved.			
					FDC Software Write Protect.			
4	FDC_SW_WP	R/W	LRESET#	0	0: Write protect is determined by WPT# pin.			
					1: Enable Write Protect.			
					00: Model 30 mode.			
3-2	IE MODE	R/W	I DEOET#		01: PS/2 mode.			
3-2	IF_MODE	IK/VV	LRESET#		10: Reserved.			
					11: AT mode (default).			
4	FDMAMODE	DAA		4	0: enable burst mode.			
1	FDMAMODE	DDE R/W	LRESET#	# 1	1: non-busrt mode (default).			
0	Reserved	R/W	-	0	Reserved.			

FDD Drive Type Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved.
1-0	FDD_TYPE	R/W	LRESET#	11	FDD drive type.

FDD Selection Register — Index F4h

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	-	_	Reserved.

4-3	FDD_DRT	R/W	LRESET#	00	Data rate table select, refer to table A. 00: select regular drives and 2.88 format. 01: reserved. 10: 2 mega tape. 11: reserved.
2	Reserved	-	-	-	Reserved.
1-0	FDD_DT	R/W	LRESET#	00	Drive type select, refer to table B.

TABLE A

Data Rate Ta	ble Select	Data	Rate	Selected	Data Rate	DENSEL
FDD_DRT[1]	FDD_DRT[0]	DATARATE1	DATARATE0	MFM	FM	
		0	0	500K	250K	1
		0	1	300K	150K	0
0	0	1	0	250K	125K	0
		1	1	1Meg		1
	1	0	0	500K	250K	1
		0	1	500K	250K	0
0		1	1	0	250K	125K
		1	1	1Meg		1
		0	0	500K	250K	1
		0	1	2Meg		0
1	0	1	0	250K	125K	0
		1	1	1Meg		1

TABLE B

Drive	Туре	DDV/DENIO	Damada
FDD_DT1	FDD_DT0	DRVDEN0	Remark
0	0	DENSEL	4/2/1 MB 3.5" 2/1 MB 5.25" 1/1.6/1 MB 3.5" (3-Mode)
0	1	DATARATE1	
1	0	DENSEL#	
1	1	DATARATE0	

7.4 Parallel Port Device Configuration Registers (LDN CR03)

"-" Reserved or Tri-State

Degister Ov[HEV]	Dogistar Nama	Default Value								
Register 0x[HEX]	Register Name	MSB					LSB			
30	Parallel Port Device Enable Register	-	-	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	1	1	
61	Base Address Low Register	0	1	1	1	1	0	0	0	
70	IRQ Channel Select Register	-	-	-	-	0	1	1	1	
74	DMA Channel Select Register	-	-	-	0	-	0	1	1	
F0	PRT Mode Select Register	0	1	0	0	0	0	1	0	

Parallel Port Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	1	Reserved
0	PRT_EN	R/W	LRESET#	1 1	0: disable Parallel Port. 1: enable Parallel Port.

Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	03h	The MSB of Parallel Port base address.

Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	78h	The LSB of Parallel Port base address.

IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELPRTIRQ	R/W	LRESET#	7h	Select the IRQ channel for Parallel Port.

DMA Channel Select Register — Index 74h

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	_	-	Reserved.
4	ECP_DMA_MODE	R/W	LRESET#	0	0: non-burst mode DMA. 1: enable burst mode DMA.
3	Reserved	-	-	-	Reserved.
2-0	SELPRTDMA	R/W	LRESET#	011	Select the DMA channel for Parallel Port.

PRT Mode Select Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
					Interrupt mode in non-ECP mode.
7	SPP_IRQ_MODE	R/W	LRESET#	0	0: Level mode.
					1: Pulse mode.
6-3	ECP_FIFO_THR	R/W	LRESET#	1000	ECP FIFO threshold.
					000: Standard and Bi-direction (SPP) mode.
					001: EPP 1.9 and SPP mode.
					010: ECP mode (default).
2-0	PRT MODE	R/W	L DECET#	010	011: ECP and EPP 1.9 mode.
2-0	PRI_MODE	FC/VV	LRESET#		100: Printer mode.
					101: EPP 1.7 and SPP mode.
					110: Reserved.
					111: ECP and EPP1.7 mode.

7.5 Hardware Monitor Device Configuration Registers (LDN CR04)

"-" Reserved or Tri-State

Desigter Ov[UEV]	Dogistar Name	Default Value								
Register 0x[HEX]	Register Name	MSB				LSB				
30	H/W Monitor Device Enable Register	-	-	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	1	0	
61	Base Address Low Register	1	0	0	1	0	1	0	1	
70	IRQ Channel Select Register	-	-	-	-	0	0	0	0	

Hardware Monitor Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
0	HM_EN	R/W	LRESET#	1	0: disable Hardware Monitor. 1: enable Hardware Monitor.

Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	02h	The MSB of Hardware Monitor base address.

Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	95h	The LSB of Hardware Monitor base address.

IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELHMIRQ	R/W	LRESET#	0000	Select the IRQ channel for Hardware Monitor.

7.6 KBC Device Configuration Registers (LDN CR05)

"-" Reserved or Tri-State

Desister Ov[HEV]	Dogistar Nama	Default Value								
Register 0x[HEX]	Register Name	MSB						LSB		
30	KBC Device Enable Register	-	-	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	0	0	
61	Base Address Low Register	0	1	1	0	0	0	0	0	
70	KB IRQ Channel Select Register	-	-	-	-	0	0	0	0	
72	Mouse IRQ Channel Select Register	-	-	-	-	0	0	0	0	
FE	PS/2 Swap Register	0	-	-	0	0	0	0	1	

KBC Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	ı	-	Reserved
0	KBC_EN	R/W	3VCC	1 1	0: disable KBC. 1: enable KBC.

Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	l 00h	The MSB of KBC command port address. The address of data port is command port address + 4

Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	l 60h	The LSB of KBC command port address. The address of data port is command port address + 4.

KB IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELKIRQ	R/W	LRESET#	0h	Select the IRQ channel for keyboard interrupt.

Mouse IRQ Channel Select Register — Index 72h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELMIRQ	R/W	LRESET#	0h	Select the IRQ channel for PS/2 mouse interrupt.

PS/2 Swap Register — Index FEh

Bit	Name	R/W	Reset	Default	Description
7-5	Reserved	-	ı	-	Reserved

4	KB_MO_SWAP	R/W	VBAT	0	Keyboard Mouse Swap. 0: Keyboard/Mouse is not swapped. 1: Keyboard/Mouse is swapped. This bit could be programmed by user.
3-0	KBC_TEST_BIT	R/W	VBAT	3h	Fintek test mode bits.

7.7 GPIO Device Configuration Registers (LDN CR06)

7.7.1 GPIO Configuration Registers

"-" Reserved or Tri-State

Register	Pogistar Nama	Default Value									
0x[HEX]	Register Name	MSB				LSB					
30	GPIO Device Enable Register	-	-	ı	-	-	ı	-	0		
60	Base Address High Register	0	0	0	0	0	0	0	0		
61	Base Address Low Register	0	1	1	0	0	0	0	0		

GPIO Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
O CDIO EN	DAM	I DECET#	0	0: disable GPIO I/O port.	
U	GPIO_EN	IT/VV	LRESET#	0	1: enable GPIO I/O port.

Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_BASE_ADDR_HI	R/W	LRESET#	00h	The MSB of GPIO I/O port address.

Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	Name BASE_ADDR_LO		Reset		The LSB of KBC data port address. When GPIO_DEC_RANGE is "0", only 8 bytes are decoded: Base + 0: index port. Base + 1: data port. Base + 2: GPIO8 data register. Base + 3: GPIO7 data register. Base + 4: GPIO6 data register. Base + 5: GPIO5 data register. Base + 6: GPIO0 data register. Base + 7: GPIO1 data register. If GPIO_DEC_RANGE is set to "1", more 8 bytes are decoded: Base + 8: GPIO2 data register. Base + 9: GPIO3 data register. Base + 10: GPIO4 data register. Otherwise: Reserved. There are three ways to access the GPIO registers. 1. Use configuration register port 0x4E/0x4F (or 0x2E/0x2F), the LDN for GPIO is 0x06. 2. Use GPIO index/data port. Write index to index port first and then read/write the register. 3. Use digital I/O port. The way only access GPIO data register. Write data to this port will control the data output register. And read this port will read the

7.7.2 GPIO IRQ Channel Select Configuration Registers

Register	Danieter Neme	Default Value									
0x[HEX]	Register Name	MSB			LSB						
70	GPIO0 IRQ Channel Select Register	-	-	-	-	0	0	0	1		
71	GPIO1 IRQ Channel Select Register	-	-	-	-	0	0	0	1		
72	GPIO5 IRQ Channel Select Register	-	-	-	-	0	0	0	1		
73	GPIO8 IRQ Channel Select Register	-	-	-	-	0	0	0	1		

GPIO0 IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description			
7-4	Reserved	-	-	-	Reserved.			
3-0	SELGP0IRQ	R/W	LRESET#	1h	Select the IRQ channel for GPIO0 interrupt.			

GPIO1 IRQ Channel Select Register — Index 71h

Bit	Name	R/W	Reset	Default	Description				
7-4	Reserved	-	-	-	Reserved.				
3-0	SELGP1IRQ	R/W	LRESET#	1h	Select the IRQ channel for GPIO1 interrupt.				

GPIO5 IRQ Channel Select Register — Index 72h

Bit	Name	R/W	Reset	Default	Description			
7-4	Reserved	-	-	-	Reserved.			
3-0	SELGP5IRQ	R/W	LRESET#	1h	Select the IRQ channel for GPIO5 interrupt.			

GPIO8 IRQ Channel Select Register — Index 73h

Bit	Name	R/W	Reset	Default	Description	
7-4	Reserved	-	-	-	Reserved.	
3-0	SELGP8IRQ	R/W	LRESET#	1h	Select the IRQ channel for GPIO8 interrupt.	

7.7.3 GPIO IRQ Sharing Configuration Registers

Register	Pogistar Nama	Default Value									
0x[HEX]	Register Name	MSB			LSB						
7E	GPIO IRQ Share Enable Register	-	-	-	-	0	0	0	0		
7F	GPIO IRQ Share Mode Register	0	0	0	0	0	0	0	0		

GPIO IRQ Sharing Enable Register — Index 7Eh

h-	GFIO ING Sharing Enable Register — Index 7Eh									
Bit	Name	R/W	Reset	Default	Description					
7-4	Reserved	-	-	-	Reserved.					
3	GP8 IRQ SHARE	DAM	LDEGET#		0: GPIO8 IRQ is not sharing with other dievices.					
3	GFO_IKQ_SHAKE	FC/ VV	LRESET#	U	1: GPIO8 IRQ is sharing with other devices.					
2	GP5 IRQ SHARE	D/M/	LRESET#	0	0: GPIO5 IRQ is not sharing with other dievices.					
2	GF5_IKQ_SHARE	FC/ VV	LKESE1#		1: GPIO5 IRQ is sharing with other devices.					
1	CD4 IDO SHADE	DAM	LRESET#		0: GPIO1 IRQ is not sharing with other dievices.					
!	GP1_IRQ_SHARE	R/W	LKESE1#	0	1: GPIO1 IRQ is sharing with other devices.					
0	CDO IDO SHADE	DAM	LRESET#		0: GPIO0 IRQ is not sharing with other dievices.					
0	GP0_IRQ_SHARE	K/W	LKESE1#	0	1: GPIO0 IRQ is sharing with other devices.					

GPIO IRQ Sharing Mode Register — Index 7Fh

Bit	Name	R/W	Reset	Default	Description
7-6	GP8_IRQ_MODE	R/W	LRESET#	0	GPIO8 IRQ sharing mode: 00 : Sharing IRQ active low Level. 01 : Sharing IRQ active high edge. 10 : Sharing IRQ active high Level. 11 : Reserved.
				This bit is effective when IRQ is sharing with other device (GP8_IRQ_SHARE is "1").	

5-4	GP5_IRQ_MODE	R/W	LRESET#	0	GPIO5 IRQ sharing mode: 00 : Sharing IRQ active low Level. 01 : Sharing IRQ active high edge. 10 : Sharing IRQ active high Level. 11 : Reserved. This bit is effective when IRQ is sharing with other device (GP5_IRQ_SHARE is "1").
3-2	GP1_IRQ_MODE	R/W	LRESET#	0	GPIO1 IRQ sharing mode: 00 : Sharing IRQ active low Level. 01 : Sharing IRQ active high edge. 10 : Sharing IRQ active high Level. 11 : Reserved. This bit is effective when IRQ is sharing with other device (GP1_IRQ_SHARE is "1").
1-0	GP0_IRQ_MODE	R/W	LRESET#	0	GPIO0 IRQ sharing mode: 00 : Sharing IRQ active low Level. 01 : Sharing IRQ active high edge. 10 : Sharing IRQ active high Level. 11 : Reserved. This bit is effective when IRQ is sharing with other device (GP0_IRQ_SHARE is "1").

7.7.4 GPIO0x Configuration Registers

Register	Degister Name		Default Value							
0x[HEX]	Register Name	MSB			LSB					
F0	GPIO0 Output Enable Register	0	0	0	0	0	0	0	0	
F1	GPIO0 Output Data Register	0	0	0	0	1	1	1	1	
F2	GPIO0 Pin Status Register	-	-	-	-	-	-	-	-	
F3	GPIO0 Drive Enable Register	0	0	0	0	0	0	0	0	
F4	GPIO0 Output Mode 1 Register	0	0	0	0	0	0	0	0	
F5	GPIO0 Output Mode 2 Register	0	0	0	0	0	0	0	0	
F6	GPIO0 Pulse Width Select 1 Register	0	0	0	0	0	0	0	0	
F7	GPIO0 Pulse Width Select 2 Register	0	0	0	0	0	0	0	0	
F8	GPIO0 SMI Enable Register	0	0	0	0	0	0	0	0	
F9	GPIO0 SMI Status Register	0	0	0	0	0	0	0	0	

GPIO0 Output Enable Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
7	GPIO07_OE	R/W	5VSB	0	0: GPIO07 is input.
,	GPIOU7_OE	FC/ V V	500	U	1: GPIO07 is output.
6	GPIO06_OE	R/W	5VSB	0	0: GPIO06 is input.
O	GPIO00_OE	FC/ V V	5000	U	1: GPIO06 is output.
5	CDIONS OF	R/W	5VSB	0	0: GPIO05 is input.
5	GPIO05_OE	FC/ V V	500	U	1: GPIO05 is output.
4	GPIO04_OE	R/W	5VSB	0	0: GPIO04 is input.
4	GF1004_0E	FC/ V V	500		1: GPIO04 is output.
3	GPIO03 OE	R/W	5VSB	0	0: GPIO03 is input.
3	GF1003_0E	IN/VV	50		1: GPIO03 is output.
2	GPIO02 OE	R/W	5VSB	0	0: GPIO02 is input.
	GP1002_0E	FC/ V V	5720	U	1: GPIO02 is output.
1	GPIO01 OE	R/W	5VSB	0	0: GPIO01 is input.
'	GF1001_0E	17/ 1/1	מטעט	U	1: GPIO01 is output.
0	001000 05	D 0 4 /	5VSB	0	0: GPIO00 is input.
U	GPIO00_OE	R/W	5V 5B	0	1: GPIO00 is output.

GPIO0 Output Data Register — Index F1h (This byte could be also written by base address + 6)

Bit	Name	R/W	Reset	Default	Description
7	GPIO07_VAL	R/W	5VSB	0	GPIO07 supports pulse mode. When pulse mode is selected, write "1" to this bit will assert a pulse from GPIO07. Auto clear when pulse is finished. When level mode is selected, write 0/1 to this bit will set the level of GPIO07. 0: outputs 0 when in output mode. 1: outputs 1 when in output mode. GPIO07 will be tri-state if GPIO07_DRV is clear to "0".
6	GPIO06_VAL	R/W	5VSB	0	GPIO06 supports pulse mode. When pulse mode is selected, write "1" to this bit will assert a pulse from GPIO06. Auto clear when pulse is finished. When level mode is selected, write 0/1 to this bit will set the level of GPIO06. 0: outputs 0 when in output mode. 1: outputs 1 when in output mode. GPIO06 will be tri-state if GPIO06_DRV is clear to "0".
5	GPIO05_VAL	R/W	5VSB	0	GPIO05 supports pulse mode. When pulse mode is selected, write "1" to this bit will assert a pulse from GPIO05. Auto clear when pulse is finished. When level mode is selected, write 0/1 to this bit will set the level of GPIO05. 0: outputs 0 when in output mode. 1: outputs 1 when in output mode. GPIO05 will be tri-state if GPIO05_DRV is clear to "0".

4	GPIO04_VAL	R/W	5VSB	0	GPIO04 supports pulse mode. When pulse mode is selected, write "1" to this bit will assert a pulse from GPIO04. Auto clear when pulse is finished. When level mode is selected, write 0/1 to this bit will set the level of GPIO04. 0: outputs 0 when in output mode. 1: outputs 1 when in output mode. GPIO04 will be tri-state if GPIO04_DRV is clear to "0".1: GPIO04 outputs 1 when in output mode.
3	GPIO03_VAL	R/W	5VSB	1	0: GPIO03 outputs 0 when in output mode. 1: GPIO03 outputs 1 when in output mode.
2	GPIO02_VAL	R/W	5VSB	1	0: GPIO02 outputs 0 when in output mode. 1: GPIO02 outputs 1 when in output mode.
1	GPIO01_VAL	R/W	5VSB	1	0: GPIO01 outputs 0 when in output mode. 1: GPIO01 outputs 1 when in output mode.
0	GPIO00_VAL	R/W	5VSB	1	0: GPIO00 outputs 0 when in output mode. 1: GPIO00 outputs 1 when in output mode.

GPIO0 Pin Status Register — Index F2h (This byte could be also read by base address + 6)

Bit	Name	R/W	Reset	Default	Description
7	GPIO07_IN	R	-	-	The pin status of GPIO07/RTS5#.
6	GPIO06_IN	R	-	-	The pin status of GPIO06/SIN5.
5	GPIO05_IN	R	-	-	The pin status of GPIO05/SOUT5.
4	GPIO04_IN	R	-	-	The pin status of SLP_SUS#/GPIO04.
3	GPIO03_IN	R	-	-	The pin status of SUS_ACK#/GPIO03.
2	GPIO02_IN	R	-	-	The pin status of SUS_WARN#/GPIO02.
1	GPIO01_IN	R	-	-	The pin status of ERP_CTRL1#/GPIO01.
0	GPIO00_IN	R	-	-	The pin status of ERP_CTRL0#/GPIO00.

GPIO0 Drive Enable Register — Index F3h

Bit	Name	R/W	Reset	Default	Description
					GPIO07 Drive Enable.
7	GPIO07_DRV_EN	R/W	5VSB	0	0: GPIO07 is open drain.
					1: GPIO07 is push pull.
					GPIO06 Drive Enable.
6	GPIO06_DRV_EN	R/W	5VSB	0	0: GPIO06 is open drain.
					1: GPIO06 is push pull.
					GPIO05 Drive Enable.
5	GPIO05_DRV_EN	R/w	5VSB	0	0: GPIO05 is open drain.
					1: GPIO05 is push pull.
					GPIO04 Drive Enable.
4	GPIO04_DRV_EN	R/W	5VSB	0	0: GPIO04 is open drain.
					1: GPIO04 is push pull.
					GPIO03 Drive Enable.
3	GPIO03_DRV_EN	R/W	5VSB	0	0: GPIO03 is open drain.
					1: GPIO03 is push pull.

2	GPIO02_DRV_EN	R/W	5VSB	0	GPIO02 Drive Enable. 0: GPIO02 is open drain. 1: GPIO02 is push pull.
1	GPIO01_DRV_EN	R/W	5VSB	0	GPIO01 Drive Enable. 0: GPIO01 is open drain. 1: GPIO01 is push pull.
0	GPIO00_DRV_EN	R/W	5VSB	0	GPIO00 Drive Enable. 0: GPIO00 is open drain. 1: GPIO00 is push pull.

GPIO0 Output Mode 1 Register — Index F4h

Bit	Name	R/W	Reset	Default	Description
					GPIO03 output mode select:
					00: Level mode.
7-6	GPIO03 MODE	R/W	5VSB	00b	01: Inverted level mode.
7-0	GI 1003_IVIODE	17///	3730	OOD	10: High pulse mode.
					11: Low pulse mode.
					The pulse width is determined by GPIO03_PW_SEL.
					GPIO02 output mode select:
					00: Level mode.
5-4	GPIO02 MODE	R/w	5VSB	00b	01: Inverted level mode.
J- 4	GF1002_IVIODE	IT/W	3038		10: High pulse mode.
					11: Low pulse mode.
					The pulse width is determined by GPIO02_PW_SEL.
					GPIO01 output mode select:
					00: Level mode.
3-2	GPIO01_MODE	R/W	5VSB	00b	01: Inverted level mode.
3-2	GI IOUI_IVIODE	17///	3730	OOD	10: High pulse mode.
					11: Low pulse mode.
					The pulse width is determined by GPIO01_PW_SEL.
					GPIO00 output mode select:
			5VSB	00b	00: Level mode.
1-0	GPIO00 MODE	R/W			01: Inverted level mode.
1-0	GI TOOU_INIODE				10: High pulse mode.
					11: Low pulse mode.
					The pulse width is determined by GPIO00_PW_SEL.

GPIO0 Output Mode 2 Register — Index F5h

Bit	Name	R/W	Reset	Default	Description
					GPIO07 output mode select:
					00: Level mode.
7-6	CDIO07 MODE	R/W	5VSB	00b	01: Inverted level mode.
7-0	GPIO07_MODE	K/VV	3V3B		10: High pulse mode.
					11: Low pulse mode.
					The pulse width is determined by GPIO07_PW_SEL.

5-4	GPIO06_MODE	R/w	5VSB	00b	GPIO06 output mode select: 00: Level mode. 01: Inverted level mode. 10: High pulse mode. 11: Low pulse mode. The pulse width is determined by GPIO06_PW_SEL.
3-2	GPIO05_MODE	R/W	5VSB	00b	GPIO05 output mode select: 00: Level mode. 01: Inverted level mode. 10: High pulse mode. 11: Low pulse mode. The pulse width is determined by GPIO05_PW_SEL.
1-0	GPIO04_MODE	R/W	5VSB	00b	GPIO04 output mode select: 00: Level mode. 01: Inverted level mode. 10: High pulse mode. 11: Low pulse mode. The pulse width is determined by GPIO04_PW_SEL.

GPIO0 Pulse Width Select 1 Register — Index F6h

Bit	Name	R/W	Reset	Default	Description
					GPIO03 pulse width select:
					00: 500us.
7-6	GPIO03_PW_SEL	R/W	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO02 pulse width select:
					00: 500us.
5-4	GPIO02_PW_SEL	R/w	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO01 pulse width select:
					00: 500us.
3-2	GPIO01_PW_SEL	R/W	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO00 pulse width select:
				00b	00: 500us.
1-0	GPIO00_PW_SEL	R/W	5VSB		01: 1ms.
					10: 20ms.
					11: 100ms.

GPIO0 Pulse Width Select 2 Register — Index F7h

Bit	Name	R/W	Reset	Default	Description
					GPIO07 pulse width select:
					00: 500us.
7-6	GPIO07_PW_SEL	R/W	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO06 pulse width select:
					00: 500us.
5-4	GPIO06_PW_SEL	R/w	5VSB		01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO05 pulse width select:
					00: 500us.
3-2	GPIO05_PW_SEL	R/W	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.
					GPIO04 pulse width select:
					00: 500us.
1-0	GPIO04_PW_SEL	R/W	5VSB	00b	01: 1ms.
					10: 20ms.
					11: 100ms.

GPIO0 SMI Enable Register — Index F8h

Bit	Name	R/W	Reset	Default	Description
7	GPIO07_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO07_SMI_ST is set.
6	GPIO06_SMI_EN	R/W	5VSB	0	O: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO06 SMI ST is set. 1: Enable SMI event via PME# or SIRQ if GPIO06 SMI ST is set.
5	GPIO05_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO05_SMI_ST is set.
4	GPIO04_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO04_SMI_ST is set.
3	GPIO03_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO03_SMI_ST is set.
2	GPIO02_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO02_SMI_ST is set.
1	GPIO01_SMI_EN	R/W	5VSB	0	Disable SMI event. Enable SMI event via PME# or SIRQ if GPIO01_SMI_ST is set.
0	GPIO00_SMI_EN	R/W	5VSB	0	Disable SMI event. Enable SMI event via PME# or SIRQ if GPIO00_SMI_ST is set.

GPIO0 SMI Status Register — Index F9h

Bit	Name	R/W	Reset	Default	Description
					0: No SMI event.
7	GPIO07_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO07 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
6	GPIO06_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO06 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
5	GPIO05_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO05 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
4	GPIO04_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO04 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
3	GPIO03_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO03 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
2	GPIO02_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO02 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
1	GPIO01_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO01 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
0	GPIO00_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO00 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.

7.7.5 GPIO1x Configuration Registers

Register	Dogistar Nama	Default Value									
0x[HEX]	Register Name	MSB			LSB						
E0	GPIO1 Output Enable Register	0	0	0	0	0	0	0	0		
E1	GPIO1 Output Data Register	1	1	1	1	1	1	1	1		
E2	GPIO1 Pin Status Register	-	-	-	-	-	-	-	-		
E3	GPIO1 Drive Enable Register	0	0	0	0	0	0	0	0		
E8	GPIO1 SMI Enable Register	0	0	0	0	0	0	0	0		
E9	GPIO1 SMI Status Register	0	0	0	0	0	0	0	0		

GPIO1 Output Enable Register — Index E0h

Bit	Name	R/W	Reset	Default	Description
7	GPIO17 OE	R/W	5VSB	0	0: GPIO17 is in input mode.
	GFIOT7_OE	17/11/	3736	U	1: GPIO17 is in output mode.
	CDIO4C OF	D/\/	EVOD	0	0: GPIO16 is in input mode.
6	GPIO16_OE	R/W	5VSB	0	1: GPIO16 is in output mode.

5	GPIO15_OE	R/W	5VSB	0	0: GPIO15 is in input mode. 1: GPIO15 is in output mode.
4	GPIO14_OE	R/W	5VSB	0	0: GPIO14 is in input mode. 1: GPIO14 is in output mode.
3	GPIO13_OE	R/W	5VSB	0	0: GPIO13 is in input mode. 1: GPIO13 is in output mode.
2	GPIO12_OE	R/W	5VSB	0	0: GPIO12 is in input mode. 1: GPIO12 is in output mode.
1	GPIO11_OE	R/W	5VSB	0	0: GPIO11 is in input mode. 1: GPIO11 is in output mode.
0	GPIO10_OE	R/W	5VSB	0	0: GPIO10 is in input mode. 1: GPIO10 is in output mode.

GPIO1 Output Data Register — Index E1h (This byte could be also written by base address + 7)

Bit	Name	R/W	Reset	Default	Description
7	GPIO17_VAL	R/W	5VSB	1	0: GPIO17 outputs 0 when in output mode. 1: GPIO17 outputs1 when in output mode.
6	GPIO16_VAL	R/W	5VSB	1	0: GPIO16 outputs 0 when in output mode. 1: GPIO16 outputs1 when in output mode.
5	GPIO15_VAL	R/W	5VSB	1	0: GPIO15 outputs 0 when in output mode. 1: GPIO15 outputs 1 when in output mode.
4	GPIO14_VAL	R/W	5VSB	1	0: GPIO14 outputs 0 when in output mode. 1: GPIO14 outputs 1 when in output mode.
3	GPIO13_VAL	R/W	5VSB	1	0: GPIO13 outputs 0 when in output mode. 1: GPIO13 outputs 1 when in output mode.
2	GPIO12_VAL	R/W	5VSB	1	0: GPIO12 outputs 0 when in output mode. 1: GPIO12 outputs 1 when in output mode.
1	GPIO11_VAL	R/W	5VSB	1	0: GPIO11 outputs 0 when in output mode. 1: GPIO11 outputs 1 when in output mode.
0	GPIO10_VAL	R/W	5VSB	1	0: GPIO10 outputs 0 when in output mode. 1: GPIO10 outputs 1 when in output mode.

GPIO1 Pin Status Register — Index E2h (This byte could be also read by base address + 7)

Bit	Name	R/W	Reset	Default	Description
7	GPIO17_IN	R	-	-	The pin status of PECI/GPIO17.
6	GPIO16_IN	R	-	-	The pin status of BEEP/GPIO16/SDA/CIRRX#.
5	GPIO15_IN	R	-	-	The pin status of WDTRST#/GPIO15.
4	GPIO14_IN	R	1	- The pin status of GPIO14/AT_ATX_TRAP.	
3	GPIO13_IN	R	-	-	The pin status of SDA/GPIO13/IRRX.
2	GPIO12_IN	R	-	-	The pin status of SCL/GPIO12/IRTX
1	GPIO11_IN	R	-	-	The pin status of GPIO11/LED_VCC.
0	GPIO10_IN	R	-	-	The pin status of GPIO10/LED_VSB.

GPIO1 Drive Enable Register — Index E3h

Bit	Name	R/W	Reset	Default	Description
7	GPIO17_DRV_EN	R/W	5VSB	0	0: GPIO17 is open drain in output mode. 1: GPIO17 is push pull in output mode.
6	GPIO16_DRV_EN	R/W	5VSB	()	0: GPIO16 is open drain in output mode. 1: GPIO16 is push pull in output mode.
5	GPIO15_DRV_EN	R/W	5VSB	()	0: GPIO15 is open drain in output mode. 1: GPIO15 is push pull in output mode.
4	GPIO14_DRV_EN	R/W	5VSB	0: GPIO14 is open drain in output mode. 1: GPIO14 is push pull in output mode.	
3	GPIO13_DRV_EN	R/W	5VSB	0	0: GPIO13 is open drain in output mode. 1: GPIO13 is push pull in output mode.
2	GPIO12_DRV_EN	R/W	5VSB	0	0: GPIO12 is open drain in output mode. 1: GPIO12 is push pull in output mode.
1	GPIO11_DRV_EN	R/W	VBAT		0: GPIO11 is open drain in output mode. 1: GPIO11 is push pull in output mode. This bit is powered by VBAT.
0	GPIO10_DRV_EN	R/W	VBAT		0: GPIO10 is open drain in output mode. 1: GPIO10 is push pull in output mode. This bit is powered by VBAT.

GPIO1 SMI Enable Register — Index E8h

Bit	Name	R/W	Reset	Default	Description
7	GPIO17_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO17_SMI_ST is set.
6	GPIO16_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO16_SMI_ST is set.
5	GPIO15_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO15_SMI_ST is set.
4	GPIO14_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO14_SMI_ST is set.
3	GPIO13_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO13_SMI_ST is set.
2	GPIO12_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO12_SMI_ST is set.
1	GPIO11_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO11_SMI_ST is set.
0	GPIO10_SMI_EN	R/W	5VSB	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO10_SMI_ST is set.

GPIO1 SMI Status Register — Index E9h

Bit	Name	R/W	Reset	Default	Description
					0: No SMI event.
7	GPIO17_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO17 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
6	GPIO16_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO16 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
5	GPIO15_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO15 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
4	GPIO14_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO14 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
3	GPIO13_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO13 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
2	GPIO12_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO12 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
1	GPIO11_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO11 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
0	GPIO10_SMI_ST	R/W	5VSB	0	1: A SMI event will set if GPIO10 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.

7.7.6 GPIO2x Configuration Registers

Register	Dominton Name	Default Value									
0x[HEX]	Register Name	MSB			LSB						
D0	GPIO2 Output Enable Register	0	0	0	0	0	0	0	0		
D1	GPIO2 Output Data Register	1	1	1	1	1	1	1	1		
D2	GPIO2 Pin Status Register	-	-	-	-	-	-	-	-		
D3	GPIO2 Drive Enable Register	0	0	0	0	0	0	0	0		

GPIO2 Output Enable Register — Index D0h

Bit	Name	R/W	Reset	Default	Description	
7	GPIO27 OE	R/W	5VSB	0	0: GPIO27 is in input mode.	
,	GPIO27_OE	FC/ V V	5000	0	1: GPIO27 is in output mode.	
6	CDIO26 OF	R/W	5VSB	0	0: GPIO26 is in input mode.	
0	GPIO26_OE	FK/VV	3738	0	1: GPIO26 is in output mode.	
5	CDIO2E OF	R/W	5VSB	0	0: GPIO25 is in input mode.	
5	GPIO25_OE	FK/VV	3738	0	1: GPIO25 is in output mode.	

4	GPIO24_OE	R/W	5VSB	0	0: GPIO24 is in input mode. 1: GPIO24 is in output mode.
3	GPIO23_OE	R/W	5VSB	0	0: GPIO23 is in input mode. 1: GPIO23 is in output mode.
2	GPIO22_OE	R/W	5VSB	0	0: GPIO22 is in input mode. 1: GPIO22 is in output mode.
1	GPIO21_OE	R/W	5VSB	0	0: GPIO21 is in input mode. 1: GPIO21 is in output mode.
0	GPIO20_OE	R/W	5VSB	0	0: GPIO20 is in input mode. 1: GPIO20 is in output mode.

GPIO2 Output Data Register — Index D1h (This byte could be also written by base address + 8 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description
7	GPIO27 VAL	R/W	5VSB	1	0: GPIO27 outputs 0 when in output mode.
	01.1021_17.12		0100	•	1: GPIO27 outputs1 when in output mode.
6	GPIO26 VAL	R/W	5VSB	1	0: GPIO26 outputs 0 when in output mode.
O	GFIO20_VAL	FX/VV	5V5B	Į.	1: GPIO26 outputs1 when in output mode.
5	CDIO25 VAI	R/W	5VSB	1	0: GPIO25 outputs 0 when in output mode.
Э	GPIO25_VAL	K/VV	3738	I	1: GPIO25 outputs 1 when in output mode.
4	CDIO24 VAI	DAM	EVCD	1	0: GPIO24 outputs 0 when in output mode.
4	GPIO24_VAL	R/W	5VSB		1: GPIO24 outputs 1 when in output mode.
3	CDIO22 VAI	DAM	5VSB	4	0: GPIO23 outputs 0 when in output mode.
3	GPIO23_VAL	R/W	3738	1	1: GPIO23 outputs 1 when in output mode.
0	CDIO22 VAI	DAM	EVCD	1	0: GPIO22 outputs 0 when in output mode.
2	GPIO22_VAL	R/W	5VSB	'	1: GPIO22 outputs 1 when in output mode.
4	CDIO24 VAI	DAM	EVCD	4	0: GPIO21 outputs 0 when in output mode.
1	GPIO21_VAL	R/W	5VSB	1	1: GPIO21 outputs 1 when in output mode.
0	0 00000 1/41 0044 51/01	EVCD	1	0: GPIO20 outputs 0 when in output mode.	
0	GPIO20_VAL	R/W	5VSB	I	1: GPIO20 outputs 1 when in output mode.

GPIO2 Pin Status Register — Index D2h (This byte could be also read by base address + 8 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description
7	GPIO27_IN	R	-	-	The pin status of RSMRST#/GPIO27.
6	GPIO26_IN	R	i	-	The pin status of PWOK/GPIO26.
5	GPIO25_IN	R	-	-	The pin status of PS_ON#/GPIO25.
4	GPIO24_IN	R	i	-	The pin status of S3#/GPIO24.
3	GPIO23_IN	R	i	-	The pin status of PWSOUT#/GPIO23.
2	GPIO22_IN	R	i	-	The pin status of PWSIN#/GPIO22.
1	GPIO21_IN	R	•	-	The pin status of ATXPG_IN#/GPIO21.
0	GPIO20_IN	R	-	-	The pin status of ALERT#/GPIO20/SCL/CIRRX#.

GPIO2 Drive Enable Register — Index D3h

Bit	Name	R/W	Reset	Default	Description
7	GPIO27_DRV_EN	R/W	5VSB	0	0: GPIO27 is open drain in output mode. 1: GPIO27 is push pull in output mode.
6	GPIO26_DRV_EN	R/W	5VSB	()	0: GPIO26 is open drain in output mode. 1: GPIO26 is push pull in output mode.
5	GPIO25_DRV_EN	R/W	5VSB	0	0: GPIO25 is open drain in output mode. 1: GPIO25 is push pull in output mode.
4	GPIO24_DRV_EN	R/W	5VSB	1 0	0: GPIO24 is open drain in output mode. 1: GPIO24 is push pull in output mode.
3	GPIO23_DRV_EN	R/W	5VSB	1 0	0: GPIO23 is open drain in output mode. 1: GPIO23 is push pull in output mode.
2	GPIO22_DRV_EN	R/W	5VSB	0	0: GPIO22 is open drain in output mode. 1: GPIO22 is push pull in output mode.
1	GPIO21_DRV_EN	R/W	5VSB	1 0	0: GPIO21 is open drain in output mode. 1: GPIO21 is push pull in output mode.
0	GPIO20_DRV_EN	R/W	5VSB	0	0: GPIO20 is open drain in output mode. 1: GPIO20 is push pull in output mode.

7.8.1. GPIO3x Configuration Registers

Register	Dogistar Name	Default Value									
0x[HEX]	Register Name	MSB			LSB						
C0	GPIO3 Output Enable Register	0	0	0	0	0	0	0	0		
C1	GPIO3 Output Data Register	1	1	1	1	1	1	1	1		
C2	GPIO3 Pin Status Register	-	-	-	-	-	-	-	-		
C3	GPIO3 Drive Enable Register	0	0	0	0	0	0	0	0		

GPIO3 Output Enable Register — Index C0h

Bit	Name	R/W	Reset	Default	Description
7	GPIO37 OE	R/W	LRESET#	0	0: GPIO37 is input.
1	GF1037_0E	FX/ V V	LRESE I#	0	1: GPIO37 is output.
6	GPIO36 OE	R/W	LRESET#	0	0: GPIO36 is input.
O	GF1030_0E	FC/ V V	LRESE I#	U	1: GPIO36 is output.
5	GPIO35 OE	D/M	LRESET#	0	0: GPIO35 is input.
5	GP1035_0E	FC/ V V	LRESE I#	O	1: GPIO35 is output.
4	CDIO34 OF	R/W	L DEOET#	0	0: GPIO34 is input.
4	GPIO34_OE	FK/VV	LRESET#		1: GPIO34 is output.
3	CDIO33 OF	R/W	L DEOET#	0	0: GPIO33 is input.
3	GPIO33_OE	FK/VV	LRESET#	O	1: GPIO33 is output.
2	CDIO33 OF	DAM	L DEOET#	0	0: GPIO32 is input.
	GPIO32_OE	R/W	LRESET#	U	1: GPIO32 is output.
1	1 GPIO31_OE R/W LRESI	L DEOET#	0	0: GPIO31 is input.	
I		LRESET#	U	1: GPIO31 is output.	

0	GPIO30 OE	R/W	LRESET#	0	0: GPIO30 is input.
U	GF1030_OE	FX/ V V	LRESE I#	0	1: GPIO30 is output.

GPIO3 Output Data Register — Index C1h (This byte could be also written by base address + 9 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description
7	GPIO37_VAL	R/W	LRESET#	1	0: GPIO37 outputs 0 when in output mode. 1: GPIO37 outputs 1 when in output mode.
6	GPIO36_VAL	R/W	LRESET#	1	0: GPIO36 outputs 0 when in output mode. 1: GPIO36 outputs 1 when in output mode.
5	GPIO35_VAL	R/W	LRESET#	1	0: GPIO35 outputs 0 when in output mode. 1: GPIO35 outputs 1 when in output mode.
4	GPIO34_VAL	R/W	V LRESET# 1		0: GPIO34 outputs 0 when in output mode. 1: GPIO34 outputs 1 when in output mode.
3	GPIO33_VAL	R/W	LRESET#	1	0: GPIO33 outputs 0 when in output mode. 1: GPIO33 outputs 1 when in output mode.
2	GPIO32_VAL	R/W	LRESET#	1	0: GPIO32 outputs 0 when in output mode. 1: GPIO32 outputs 1 when in output mode.
1	GPIO31_VAL	R/W	LRESET#	1	0: GPIO31 outputs 0 when in output mode. 1: GPIO31 outputs 1 when in output mode.
0	GPIO30_VAL R/W LRESET# 1 0: GPIO30 outputs 0 when in output mode. 1: GPIO30 outputs 1 when in output mode.		·		

GPIO3 Pin Status Register — Index C2h (This byte could be also read by base address + 9 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description				
7	GPIO37_IN	R	-	-	The pin status of SIN3/GPIO37.				
6	GPIO36_IN	R	-	-	The pin status of SOUT3/GPIO36.				
5	GPIO35_IN	R	-	-	he pin status of DSR3#/GPIO35.				
4	GPIO34_IN	R	-	-	The pin status of RTS3#/GPIO34.				
3	GPIO33_IN	R	-	-	The pin status of DTR3#/GPIO33.				
2	GPIO32_IN	R	-	-	The pin status of CTS3#/GPIO32.				
1	GPIO31_IN	R		-	The pin status of RI3#/GPIO31.				
0	GPIO30_IN	R	-	-	The pin status of DCD3#/GPIO30.				

${\bf GPIO3\ Drive\ Enable\ Register -- Index\ C3h}$

Bit	Name	R/W	Reset	Default	Description
					GPIO37 Drive Enable.
7	GPIO37_DRV_EN	R/W	LRESET#	0	0: GPIO37 is open drain.
					1: GPIO37 is push pull.

i 					
					GPIO36 Drive Enable.
6	GPIO36_DRV_EN	R/W	LRESET#	0	0: GPIO36 is open drain.
					1: GPIO36 is push pull.
					GPIO35 Drive Enable.
5	GPIO35_DRV_EN	R/w	LRESET#	0	0: GPIO35 is open drain.
					1: GPIO35 is push pull.
					GPIO34 Drive Enable.
4	GPIO34_DRV_EN	R/W	LRESET#	0	0: GPIO34 is open drain.
					1: GPIO34 is push pull.
					GPIO33 Drive Enable.
3	GPIO33_DRV_EN	R/W	LRESET#	0	0: GPIO33 is open drain.
					1: GPIO33 is push pull.
					GPIO32 Drive Enable.
2	GPIO32_DRV_EN	R/W	LRESET#	0	0: GPIO32 is open drain.
					1: GPIO32 is push pull.
					GPIO31 Drive Enable.
1	GPIO31_DRV_EN	R/W	LRESET#	0	0: GPIO31 is open drain.
					1: GPIO31 is push pull.
					GPIO30 Drive Enable.
0	GPIO30_DRV_EN	R/W	LRESET#	0	0: GPIO30 is open drain.
					1: GPIO30 is push pull.

7.7.7 GPIO4x Configuration Registers

Register	Dogistar Nama	Default Value								
0x[HEX]	Register Name	MSB			LSB					
В0	GPIO4 Output Enable Register	0	0	0	0	0	0	0	0	
B1	GPIO4 Output Data Register	1	1	1	1	1	1	1	1	
B2	GPIO4 Pin Status Register	-	-	-	-	-	-	-	-	
В3	GPIO4 Driver Enable Register	0	0	0	0	0	0	0	0	

GPIO4 Output Enable Register — Index B0h

			T	1	
Bit	Name	R/W	Reset	Default	Description
7	GPIO47 OE	R/W	L DECET#	0	0: GPIO47 is input.
7 GPIO47_OE	FC/ V V	LRESET#	U	1: GPIO47 is output.	
6 GPIO46_OE	CDIO46 OF	R/W	L DEOET#	0	0: GPIO46 is input.
0	6 GPIO46_OE	FC/ V V	LRESET#	U	1: GPIO46 is output.
_	001045 05	DAA	LRESET#	0 1	0: GPIO45 is input.
5	GPIO45_OE	R/W			1: GPIO45 is output.
4	CDIO44 OF	R/W		0	0: GPIO44 is input.
4	GPIO44_OE	R/VV	LRESET#	0	1: GPIO44 is output.
	CDIO42 OF	DAA		0	0: GPIO43 is input.
3	GPIO43_OE	R/W	LRESET#	0	1: GPIO43 is output.

2	GPIO42_OE	R/W	LRESET#	0	0: GPIO42 is input. 1: GPIO42 is output.
1	GPIO41_OE	R/W	LRESET#	0	0: GPIO41 is input. 1: GPIO41 is output.
0	GPIO40_OE	R/W	LRESET#	0	0: GPIO40 is input. 1: GPIO40 is output.

GPIO4 Output Data Register — Index B1h (This byte could be also written by base address + 10 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description
7	GPIO47_DATA	R/W	LRESET#	1	0: GPIO47 outputs 0 when in output mode.
,	OI IO41_DAIA	1000	LKLSL1#	'	1: GPIO47 outputs 1 when in output mode.
6 GPIO46_DATA		R/W	LRESET#	1	0: GPIO46 outputs 0 when in output mode.
		17///	LRESE I#	'	1: GPIO46 outputs 1 when in output mode.
5	GPIO45 DATA	R/W	LRESET#	1	0: GPIO45 outputs 0 when in output mode.
5	01 1043_DATA	11///	LRESET#		1: GPIO45 outputs 1 when in output mode.
4	GPIO44_DATA	R/W	LRESET#	1	0: GPIO44 outputs 0 when in output mode.
	GFIO44_DATA				1: GPIO44 outputs 1 when in output mode.
3	GPIO43 DATA	R/W	LRESET#	1 1 1	0: GPIO43 outputs 0 when in output mode.
3	GFIO43_DATA	FX/VV			1: GPIO43 outputs 1 when in output mode.
2	GPIO42 DATA	R/W	LRESET#	1	0: GPIO42 outputs 0 when in output mode.
	GFIO42_DATA	FX/VV	LRESE I#	1	1: GPIO42 outputs 1 when in output mode.
1	CDIO41 DATA	D/\\/	LRESET#	1	0: GPIO41 outputs 0 when in output mode.
ı	GPIO41_DATA	FX/ V V	LKESE I#	1	1: GPIO41 outputs 1 when in output mode.
0	GPIO40_DATA	R/W	L DECET#	1	0: GPIO40 outputs 0 when in output mode.
	GFIO40_DATA	rt/VV	LRESET#	I	1: GPIO40 outputs 1 when in output mode.

GPIO4 Pin Status Register — Index B2h (This byte could be also read by base address + 10 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description				
7	GPIO47_ST	R	-	-	The pin status of SIN4/GPIO47.				
6	GPIO46_ST	R	1	-	he pin status of SOUT4/GPIO46.				
5	GPIO45_ST	R	-	-	he pin status of DSR4#/GPIO45.				
4	GPIO44_ST	R	-	-	The pin status of RTS4#/GPIO44.				
3	GPIO43_ST	R	-	-	The pin status of DTR4#/GPIO43.				
2	GPIO42_ST	R	-	-	The pin status of CTS4#/GPIO42.				
1	GPIO41_ST	R	1	-	The pin status of RI4#/GPIO41.				
0	GPIO40_ST	R	-	-	The pin status of DCD4#/GPIO40.				

GPIO4 Drive Enable Register — Index B3h

Bit	Name	R/W	Reset	Default	Description
					GPIO47 Drive Enable.
7	GPIO47_DRV_EN	R/W	LRESET#	0	0: GPIO47 is open drain.
					1: GPIO47 is push pull.
					GPIO46 Drive Enable.
6	GPIO46_DRV_EN	R/W	LRESET#	0	0: GPIO46 is open drain.
					1: GPIO46 is push pull.
					GPIO45 Drive Enable.
5	GPIO45_DRV_EN	R/w	LRESET#	0	0: GPIO45 is open drain.
					1: GPIO45 is push pull.
					GPIO44 Drive Enable.
4	GPIO44_DRV_EN	R/W	LRESET#	0	0: GPIO44 is open drain.
					1: GPIO44 is push pull.
					GPIO43 Drive Enable.
3	GPIO43_DRV_EN	R/W	LRESET#	0	0: GPIO43 is open drain.
					1: GPIO43 is push pull.
					GPIO42 Drive Enable.
2	GPIO42_DRV_EN	R/W	LRESET#	0	0: GPIO42 is open drain.
					1: GPIO42 is push pull.
					GPIO41 Drive Enable.
1	GPIO41_DRV_EN	R/W	LRESET#	0	0: GPIO41 is open drain.
					1: GPIO41 is push pull.
					GPIO40 Drive Enable.
0	GPIO40_DRV_EN	R/W	LRESET#	0	0: GPIO40 is open drain.
					1: GPIO40 is push pull.

7.7.8 GPIO5x Configuration Registers

Register	Domintor Name	Default Value									
0x[HEX]	Register Name	MSB				LSB					
A0	GPIO5 Output Enable Register	0	0	0	0	0	0	0	0		
A1	GPIO5 Output Data Register	1	1	1	1	1	1	1	1		
A2	GPIO5 Pin Status Register	-	-	-	-	-	-	-	-		
А3	GPIO5 Drive Enable Register	0	0	0	0	0	0	0	0		
A8	GPIO5 SMI Enable Register	0	0	0	0	0	0	0	0		
A9	GPIO5 SMI Status Register	0	0	0	0	0	0	0	0		

GPIO5 Output Enable Register — Index A0h

Bit	Name	R/W	Reset	Default	Description
7	GPIO57 OE	R/W	L DECET#	0	0: GPIO57 is in input mode.
	GPIOS7_OE	IT/VV	LRESET#	0	1: GPIO57 is in output mode.
6	CDIOSS OF	DAA	I DEOET#	0	0: GPIO56 is in input mode.
6	GPIO56_OE	R/W	LRESET#	0	1: GPIO56 is in output mode.

5	GPIO55_OE	R/W	LRESET#	0	0: GPIO55 is in input mode. 1: GPIO55 is in output mode.
4	GPIO54_OE	R/W	LRESET#	0	0: GPIO54 is in input mode. 1: GPIO54 is in output mode.
3	GPIO53_OE	R/W	LRESET#	0	0: GPIO53 is in input mode. 1: GPIO53 is in output mode.
2	GPIO52_OE	R/W	LRESET#	0	0: GPIO52 is in input mode. 1: GPIO52 is in output mode.
1	GPIO51_OE	R/W	LRESET#	0	0: GPIO51 is in input mode. 1: GPIO51 is in output mode.
0	GPIO50_OE	R/W	LRESET#	0	0: GPIO50 is in input mode. 1: GPIO50 is in output mode.

GPIO5 Output Data Register — Index A1h (This byte could be also written by base address + 5)

Bit	Name	R/W	Reset	Default	Description
7	GPIO57 DATA	R/W	LRESET#	1	0: GPIO57 outputs 0 when in output mode.
,	GFIO37_DATA	IN/VV	LRESE I#	'	1: GPIO57 outputs 1 when in output mode.
6	GPIO56 DATA	R/W	LRESET#	1	0: GPIO56 outputs 0 when in output mode.
O	GI 1030_DATA	1 1 / V V	LRESE I#	'	1: GPIO56 outputs 1 when in output mode.
5	GPIO55 DATA	R/W	LRESET#	1	0: GPIO55 outputs 0 when in output mode.
5	GFI000_DATA	IN/VV	LRESE I#	'	1: GPIO55 outputs 1 when in output mode.
4	GPIO54 DATA	R/W	LDECET#	1	0: GPIO54 outputs 0 when in output mode.
4	GFIO34_DATA	IN/VV	LRESET#	ı	1: GPIO54 outputs 1 when in output mode.
3	GPIO53 DATA	R/W	LRESET#	1	0: GPIO53 outputs 0 when in output mode.
3	GI 1033_DATA	1 1 / V V	LRESE I#	'	1: GPIO53 outputs 1 when in output mode.
2	GPIO52_DATA	R/W	LRESET#	1	0: GPIO52 outputs 0 when in output mode.
2	GFIO32_DATA	IN/VV	LRESE I#	'	1: GPIO52 outputs 1 when in output mode.
1	GPIO51 DATA	R/W	LRESET#	1	0: GPIO51 outputs 0 when in output mode.
ı	GFIOST_DATA	17/1/	LKESE I#	'	1: GPIO51 outputs 1 when in output mode.
0	GPIO50 DATA	R/W	LRESET#	1	0: GPIO50 outputs 0 when in output mode.
U	GFI030_DATA	FX/VV	LKESE I#	1	1: GPIO50 outputs 1 when in output mode.

GPIO5 Pin Status Register — Index A2h (This byte could be also read by base address + 5)

Bit	Name	R/W	Reset	Default	Description
7	GPIO57_ST	R	-	-	The pin status of GPIO57/WGATE#/DSR6#.
6	GPIO56_ST	R	-	-	The pin status of GPIO56/HDSEL#/DTR6#.
5	GPIO55_ST	R	-	-	The pin status of GPIO55/STEP#/CTS6#.
4	GPIO54_ST	R	-	-	The pin status of GPIO54/DIR#/RI6#.
3	GPIO53_ST	R	-	-	The pin status of GPIO53/WDATA#/DCD6#.
2	GPIO52_ST	R	-	-	The pin status of GPIO52/DRVA#/SOUT6.
1	GPIO51_ST	R	•	-	The pin status of GPIO51/MOA#/SIN6.
0	GPIO50_ST	R	-	-	The pin status of GPIO50/DENSEL#/RTS6#.

GPIO5 Drive Enable Register — Index A3h

Bit	Name	R/W	Reset	Default	Description
					GPIO57 Drive Enable.
7	GPIO57_DRV_EN	R/W	LRESET#	0	0: GPIO57 is open drain.
					1: GPIO57 is push pull.
					GPIO56 Drive Enable.
6	GPIO56_DRV_EN	R/W	LRESET#	0	0: GPIO56 is open drain.
					1: GPIO56 is push pull.
					GPIO55 Drive Enable.
5	GPIO55_DRV_EN	R/w	LRESET#	0	0: GPIO55 is open drain.
					1: GPIO55 is push pull.
					GPIO54 Drive Enable.
4	GPIO54_DRV_EN	R/W	LRESET#	0	0: GPIO54 is open drain.
					1: GPIO54 is push pull.
					GPIO53 Drive Enable.
3	GPIO53_DRV_EN	R/W	LRESET#	0	0: GPIO53 is open drain.
					1: GPIO53 is push pull.
					GPIO52 Drive Enable.
2	GPIO52_DRV_EN	R/W	LRESET#	0	0: GPIO52 is open drain.
					1: GPIO52 is push pull.
					GPIO51 Drive Enable.
1	GPIO51_DRV_EN	R/W	LRESET#	0	0: GPIO51 is open drain.
					1: GPIO51 is push pull.
					GPIO50 Drive Enable.
0	GPIO50_DRV_EN	R/W	LRESET#	0	0: GPIO50 is open drain.
					1: GPIO50 is push pull.

GPIO5 SMI Enable Register — Index A8h

Bit	Name	R/W	Reset	Default	Description
7	GPIO57_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO57_SMI_ST is set.
6	GPIO56_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO56_SMI_ST is set.
5	GPIO55_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO55_SMI_ST is set.
4	GPIO54_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO54_SMI_ST is set.
3	GPIO53_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO53_SMI_ST is set.
2	GPIO52_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO52_SMI_ST is set.
1	GPIO51_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO51_SMI_ST is set.
0	GPIO50_SMI_EN	R/W	LRESET#	0	0: Disable SMI event. 1: Enable SMI event via PME# or SIRQ if GPIO50_SMI_ST is set.

GPIO5 SMI Status Register — Index A9h

Bit	Name	R/W	Reset	Default	Description
					0: No SMI event.
7	GPIO57_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO57 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
6	GPIO56_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO56 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
5	GPIO55_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO55 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
4	GPIO54_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO54 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
3	GPIO53_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO53 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
2	GPIO52_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO52 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
1	GPIO51_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO51 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
0	GPIO50_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO50 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.

7.7.9 GPIO6x Configuration Registers

Register	Desister News	Default Value									
0x[HEX]	Register Name	MSB			LSB						
90	GPIO6 Output Enable Register	0	0	0	0	0	0	0	0		
91	GPIO6 Output Data Register	1	1	1	1	1	1	1	1		
92	GPIO6 Pin Status Register	-	-	-	-	-	-	-	-		
93	GPIO6 Drive Enable Register	0	0	0	0	0	0	0	0		

GPIO6 Output Enable Register — Index 90h

Bit	Name	R/W	Reset	Default	Description
7	CDIO67 OF	DAA	I DEOET#		0: GPIO67 is in input mode.
	GPIO67_OE	FK/VV	LRESET#		1: GPIO67 is in output mode.
6	CDIOSS OF	DAA	I DEOET#	•	0: GPIO66 is in input mode.
6	GPIO66_OE	IK/VV	LRESET#	0	1: GPIO65 is in output mode.
5	CDIOSE OF	DAA	L DEOET#	0	0: GPIO65 is in input mode.
5	GPIO65_OE	IK/VV	LRESET#	0	1: GPIO65 is in output mode.

4	GPIO64_OE	R/W	LRESET#	0	0: GPIO64 is in input mode. 1: GPIO64 is in output mode.
3	GPIO63_OE	R/W	LRESET#	0	0: GPIO63 is in input mode. 1: GPIO63 is in output mode.
2	GPIO62_OE	R/W	LRESET#	0	0: GPIO62 is in input mode. 1: GPIO62 is in output mode.
1	GPIO61_OE	R/W	LRESET#	0	0: GPIO61 is in input mode. 1: GPIO61 is in output mode.
0	GPIO60_OE	R/W	LRESET#	0	0: GPIO60 is in input mode. 1: GPIO60 is in output mode.

GPIO6 Output Data Register — Index 91h (This byte could be also written by base address + 4)

Bit	Name	R/W	Reset	Default	Description
7	GPIO67_VAL	R/W	LRESET#	1	0: GPIO67 outputs 0 when in output mode. 1: GPIO67 outputs 1 when in output mode.
6	GPIO66_VAL	R/W	LRESET#	1	0: GPIO66 outputs 0 when in output mode. 1: GPIO66 outputs 1 when in output mode.
5	GPIO65_VAL	R/W	LRESET#	1	0: GPIO65 outputs 0 when in output mode. 1: GPIO65 outputs 1 when in output mode.
4	GPIO64_VAL	R/W	LRESET#	1	0: GPIO64 outputs 0 when in output mode. 1: GPIO64 outputs 1 when in output mode.
3	GPIO63_VAL	R/W	LRESET#	1	0: GPIO63 outputs 0 when in output mode. 1: GPIO63 outputs 1 when in output mode.
2	GPIO62_VAL	R/W	LRESET#	1	0: GPIO62 outputs 0 when in output mode. 1: GPIO62 outputs 1 when in output mode.
1	GPIO61_VAL	R/W	LRESET#	1	0: GPIO61 outputs 0 when in output mode. 1: GPIO61 outputs 1 when in output mode.
0	GPIO60_VAL	R/W	LRESET#	1	0: GPIO60 outputs 0 when in output mode. 1: GPIO60 outputs 1 when in output mode.

GPIO6 Pin Status Register — Index 92h (This byte could be also read by base address + 4)

Bit	Name	R/W	Reset	Default	Description
7	GPIO67_IN	R	•	-	The pin status of S5#/GPIO67.
6	GPIO66_IN	R	-	-	The pin status of DPWROK/GPIO66.
5	GPIO65_IN	R	-	-	The pin status of PME#/GPIO65.
4	GPIO64_IN	R	-	-	The pin status of GPIO64/DSKCHG#/DSR5#.
3	GPIO63_IN	R	-	-	The pin status of GPIO63/WPT#/DTR5#.
2	GPIO62_IN	R	-	-	The pin status of GPIO62/INDEX#/CTS5#.
1	GPIO61_IN	R	-	-	The pin status of GPIO61/TRK0#/RI5#.
0	GPIO60_IN	R	ī	-	The pin status of GPIO60/RDATA#/DCD5#.

GPIO6 Drive Enable Register — Index 93h

Bit	Name	R/W	Reset	Default	Description
7	GPIO67_DRV_EN	R/W	LRESET#	0	0: GPIO67 is open drain in output mode. 1: Reserved.
6	GPIO66_DRV_EN	R/W	LRESET#	0	0: GPIO66 is open drain in output mode. 1: GPIO66 is push pull in output mode.
5	GPIO65_DRV_EN	R/W	LRESET#	0	0: GPIO65 is open drain in output mode. 1: GPIO65 is push pull in output mode.
4	GPIO64_DRV_EN	R/W	LRESET#	0	0: GPIO64 is open drain in output mode. 1: GPIO64 is push pull in output mode.
3	GPIO63_DRV_EN	R/W	LRESET#	0	0: GPIO63 is open drain in output mode. 1: GPIO63 is push pull in output mode.
2	GPIO62_DRV_EN	R/W	LRESET#	0	0: GPIO62 is open drain in output mode. 1: GPIO62 is push pull in output mode.
1	GPIO61_DRV_EN	R/W	LRESET#	0	0: GPIO61 is open drain in output mode. 1: GPIO61 is push pull in output mode.
0	GPIO60_DRV_EN	R/W	LRESET#	0	0: GPIO60 is open drain in output mode. 1: GPIO60 is push pull in output mode.

7.7.10GPIO7x Configuration Registers

Register	Dogistar Name	Default Value									
0x[HEX]	Register Name	MSB			LSB						
80	GPIO7 Output Enable Register	0	0	0	0	0	0	0	0		
81	GPIO7 Output Data Register	1	1	1	1	1	1	1	1		
82	GPIO7 Pin Status Register	-	-	-	-	-	-	-	-		
83	GPIO7 Drive Enable Register	0	0	0	0	0	0	0	0		

GPIO7 Output Enable Register — Index 80h

Bit	Name	R/W	Reset	Default	Description
7	GPIO77_OE	R/W	LRESET#	()	0: GPIO77 is in input mode. 1: GPIO77 is in output mode.
6	GPIO76_OE	R/W	LRESET#	()	0: GPIO76 is in input mode. 1: GPIO75 is in output mode.
5	GPIO75_OE	R/W	LRESET#	()	0: GPIO75 is in input mode. 1: GPIO75 is in output mode.
4	GPIO74_OE	R/W	LRESET#	()	0: GPIO74 is in input mode. 1: GPIO74 is in output mode.
3	GPIO73_OE	R/W	LRESET#	()	0: GPIO73 is in input mode. 1: GPIO73 is in output mode.
2	GPIO72_OE	R/W	LRESET#	()	0: GPIO72 is in input mode. 1: GPIO72 is in output mode.
1	GPIO71_OE	R/W	LRESET#	0	0: GPIO71 is in input mode. 1: GPIO71 is in output mode.

0	GPIO70_OE	R/W	LRESET#		0: GPIO70 is in input mode. 1: GPIO70 is in output mode.
---	-----------	-----	---------	--	--

GPIO7 Output Data Register — Index 81h (This byte could be also written by base address + 3)

Bit	Name	R/W	Reset	Default	Description
7	GPIO77 VAL	R/W	LRESET#	1	0: GPIO77 outputs 0 when in output mode.
					1: GPIO77 outputs 1 when in output mode.
6	GPIO76 VAL	R/W	LRESET#	1	0: GPIO76 outputs 0 when in output mode.
O	GPIO70_VAL	FC/VV	LRESE I#	I	1: GPIO76 outputs 1 when in output mode.
5	CDIO75 VAI	R/W	LRESET#	1	0: GPIO75 outputs 0 when in output mode.
Э	GPIO75_VAL	R/VV	LRESE I#	I	1: GPIO75 outputs 1 when in output mode.
4	CDIO74 VAI	DAM		1	0: GPIO74 outputs 0 when in output mode.
4	GPIO74_VAL	R/W	LRESET#		1: GPIO74 outputs 1 when in output mode.
3	CDIO72 \/AI	R/W	LRESET#	1	0: GPIO73 outputs 0 when in output mode.
3	GPIO73_VAL	FC/VV	LKESE I#	ı	1: GPIO73 outputs 1 when in output mode.
2	CDIO72 VAI	DAM	LRESET#	1	0: GPIO72 outputs 0 when in output mode.
2	GPIO72_VAL	R/VV	LRESE I#	I	1: GPIO72 outputs 1 when in output mode.
1	CDIO71 VAI	R/W	L DECET#	1	0: GPIO71 outputs 0 when in output mode.
'	GPIO71_VAL	FX/VV	LRESET#	Į Į	1: GPIO71 outputs 1 when in output mode.
0	0 001070 \/AI 07	D 444	L DEGET#	1 1	0: GPIO70 outputs 0 when in output mode.
0	GPIO70_VAL	R/W	LRESET#		1: GPIO70 outputs 1 when in output mode.

GPIO7 Pin Status Register — Index 82h (This byte could be also read by base address + 3)

Bit	Name	R/W	Reset	Default	Description
7	GPIO77_IN	R	1	-	The pin status of GPIO77/STB#.
6	GPIO76_IN	R	-	-	The pin status of GPIO76/AFD#.
5	GPIO75_IN	R	-	-	The pin status of GPIO75/ERR#.
4	GPIO74_IN	R	1	- The pin status of GPIO74/INIT#.	
3	GPIO73_IN	R	1	-	The pin status of GPIO73/SLIN#.
2	GPIO72_IN	R	-	-	The pin status of GPIO72/ACK#.
1	GPIO71_IN	R	•	-	The pin status of GPIO71/BUSY.
0	GPIO70_IN	R	-	-	The pin status of GPIO70/PE/FANCTRL3/PWM_DAC3.

GPIO7 Drive Enable Register — Index 83h

Bit	Name	R/W	Reset	Default	Description
7	CDIO77 DDV EN	DAM	LRESET#	0	0: GPIO77 is open drain in output mode.
/	GPIO77_DRV_EN	K/VV	LKESE1#	0	1: GPIO77 is push pull in output mode.
6	CDIO7C DDV EN	DAM	. DEGET#	0	0: GPIO76 is open drain in output mode.
6	GPIO76_DRV_EN	R/VV	LRESET#	0	1: GPIO76 is push pull in output mode.
_	CDIO75 DDV FN	DAM	. DEGET#	0	0: GPIO75 is open drain in output mode.
5	GPIO75_DRV_EN	K/VV	LRESET#	0	1: GPIO75 is push pull in output mode.

4	GPIO74_DRV_EN	R/W	LRESET#	0	0: GPIO74 is open drain in output mode. 1: GPIO74 is push pull in output mode.
3	GPIO73_DRV_EN	R/W	LRESET#	0	0: GPIO73 is open drain in output mode. 1: GPIO73 is push pull in output mode.
2	GPIO72_DRV_EN	R/W	LRESET#	0	0: GPIO72 is open drain in output mode. 1: GPIO72 is push pull in output mode.
1	GPIO71_DRV_EN	R/W	LRESET#	0	0: GPIO71 is open drain in output mode. 1: GPIO71 is push pull in output mode.
0	GPIO70_DRV_EN	R/W	LRESET#	0	0: GPIO70 is open drain in output mode. 1: GPIO70 is push pull in output mode.

7.7.11 GPIO8x Configuration Registers

Register	Dogistor Name	Default Value									
0x[HEX]	Register Name	MSB			LSB						
88	GPIO8 Output Enable Register	0	0	0	0	0	0	0	0		
89	GPIO8 Output Data Register	1	1	1	1	1	1	1	1		
8A	GPIO8 Pin Status Register	-	-	-	-	-	1	-	-		
8B	GPIO8 Drive Enable Register	0	0	0	0	0	0	0	0		
8E	GPIO8 SMI Enable Register	0	0	0	0	0	0	0	0		
8F	GPIO8 SMI Status Register	0	0	0	0	0	0	0	0		

GPIO8 Output Enable Register — Index 88h

n——									
Bit	Name	R/W	Reset	Default	Description				
7	GPIO87 OE	R/W	LRESET#	0	0: GPIO87 is in input mode.				
	0. 1007_02		LITEOLIN	ŭ	1: GPIO87 is in output mode.				
6	GPIO86_OE	R/W	LRESET#	0	0: GPIO86 is in input mode.				
0	G11000_OL	10///	LRESE I#		1: GPIO85 is in output mode.				
5	CDIO95 OF	R/W	L DECET#	0	0: GPIO85 is in input mode.				
5	GPIO85_OE	K/VV	LRESET#	U	1: GPIO85 is in output mode.				
4	GPIO84 OE	R/W	LRESET#	0	0: GPIO84 is in input mode.				
4	GF1004_0E	IN/VV	LRESE I#	U	1: GPIO84 is in output mode.				
3	GPIO83 OE	R/W	LRESET#	0	0: GPIO83 is in input mode.				
3	GF1003_0E	IN/VV	LRESE I#	0	1: GPIO83 is in output mode.				
2	GPIO82 OE	R/W	L DECET#	0	0: GPIO82 is in input mode.				
2	GPIO62_OE	K/VV	LRESET#	U	1: GPIO82 is in output mode.				
1	CDIO91 OF	R/W	LDECET"	0	0: GPIO81 is in input mode.				
·	GPIO81_OE	Ft/VV	LRESET#	U	1: GPIO81 is in output mode.				
0	CDIOSO OF	R/W	L DECET#	0	0: GPIO80 is in input mode.				
U	GPIO80_OE	LC/ VV	LRESET#	U	1: GPIO80 is in output mode.				

GPIO8 Output Data Register — Index 89h (This byte could be also written by base address + 2)

Bit	Name	R/W	Reset	Default	Description
7	GPIO87_VAL	R/W	LRESET#	1	0: GPIO87 outputs 0 when in output mode. 1: GPIO87 outputs 1 when in output mode.
6	GPIO86_VAL	R/W	LRESET#	1	O: GPIO86 outputs 0 when in output mode. 1: GPIO86 outputs 1 when in output mode.
5	GPIO85_VAL	R/W	LRESET#	1	0: GPIO85 outputs 0 when in output mode. 1: GPIO85 outputs 1 when in output mode.
4	GPIO84_VAL	R/W	LRESET#	1	0: GPIO84 outputs 0 when in output mode. 1: GPIO84 outputs 1 when in output mode.
3	GPIO83_VAL	R/W	LRESET#	1	0: GPIO83 outputs 0 when in output mode. 1: GPIO83 outputs 1 when in output mode.
2	GPIO82_VAL	R/W	LRESET#	1	0: GPIO82 outputs 0 when in output mode. 1: GPIO82 outputs 1 when in output mode.
1	GPIO81_VAL	R/W	LRESET#	1	0: GPIO81 outputs 0 when in output mode. 1: GPIO81 outputs 1 when in output mode.
0	GPIO80_VAL	R/W	LRESET#	1	0: GPIO80 outputs 0 when in output mode. 1: GPIO80 outputs 1 when in output mode.

GPIO8 Pin Status Register — Index 8Ah (This byte could be also read by base address + 2)

Bit	Name	R/W	Reset	Default	Description
7	GPIO87_IN	R	1	-	The pin status of GPIO87/PD7.
6	GPIO86_IN	R	1	-	The pin status of GPIO86/PD6.
5	GPIO85_IN	R	1	-	The pin status of GPIO85/PD5.
4	GPIO84_IN	R	-	-	The pin status of GPIO84/PD4.
3	GPIO83_IN	R	-	-	The pin status of GPIO83/PD3.
2	GPIO82_IN	R	-	-	The pin status of GPIO82/PD2.
1	GPIO81_IN	R	-	-	The pin status of GPIO81/PD1.
0	GPIO80_IN	R	-	-	The pin status of GPIO80/PD0.

GPIO8 Drive Enable Register — Index 8Bh

Bit	Name	R/W	Reset	Default	Description
7	GPIO87_DRV_EN	R/W	LRESET#	0	0: GPIO87 is open drain in output mode. 1: GPIO87 is push pull in output mode.
6	GPIO86_DRV_EN	R/W	LRESET#	0	0: GPIO86 is open drain in output mode. 1: GPIO86 is push pull in output mode.
5	GPIO85_DRV_EN	R/W	LRESET#	1 0	0: GPIO85 is open drain in output mode. 1: GPIO85 is push pull in output mode.
4	GPIO84_DRV_EN	R/W	LRESET#	1 ()	0: GPIO84 is open drain in output mode. 1: GPIO84 is push pull in output mode.
3	GPIO83_DRV_EN	R/W	LRESET#	0	0: GPIO83 is open drain in output mode. 1: GPIO83 is push pull in output mode.

2	GPIO82_DRV_EN	R/W	LRESET#	0	0: GPIO82 is open drain in output mode. 1: GPIO82 is push pull in output mode.
1	GPIO81_DRV_EN	R/W	LRESET#	0	0: GPIO81 is open drain in output mode. 1: GPIO81 is push pull in output mode.
0	GPIO80_DRV_EN	R/W	LRESET#	0	0: GPIO80 is open drain in output mode. 1: GPIO80 is push pull in output mode.

GPIO8 SMI Enable Register — Index 8Eh

Bit	Name	R/W	Reset	Default	Description
7	GPIO87 SMI EN	D/W	LRESET#	0	0: Disable SMI event.
,	GI 1007_SIVII_LIV	17///	LRESE I#		1: Enable SMI event via PME# or SIRQ if GPIO87_SMI_ST is set.
6	CDIOSE SMI EN	D/\\/	LRESET#	0	0: Disable SMI event.
O	GPIO86_SMI_EN	FC/ V V	LRESE I#	U	1: Enable SMI event via PME# or SIRQ if GPIO86_SMI_ST is set.
5	GPIO85 SMI EN	D/\\/	LRESET#	0	0: Disable SMI event.
5	GF1005_3WII_EN	FX/VV	LRESE I#	O	1: Enable SMI event via PME# or SIRQ if GPIO85_SMI_ST is set.
4	CDIO04 SMI EN	D/M/	LRESET#	0	0: Disable SMI event.
4	GPIO84_SMI_EN	FC/ V V	LRESE I#		1: Enable SMI event via PME# or SIRQ if GPIO84_SMI_ST is set.
3	GPIO83 SMI EN	D/M/	LRESET#	0	0: Disable SMI event.
3	GI 1003_SIVII_LIV	17///	LRESE I#	0	1: Enable SMI event via PME# or SIRQ if GPIO83_SMI_ST is set.
2	GPIO82 SMI EN	D/\\/	LRESET#	0	0: Disable SMI event.
	GF1002_3WII_EN	FX/VV	LRESE I#	U	1: Enable SMI event via PME# or SIRQ if GPIO82_SMI_ST is set.
1	CDIO01 SMI EN	D/M/	LRESET#	0	0: Disable SMI event.
I	GPIO81_SMI_EN	FX/ V V	LKESE I#	U	1: Enable SMI event via PME# or SIRQ if GPIO81_SMI_ST is set.
0	GPIO80_SMI_EN	D/M/	LRESET#	0	0: Disable SMI event.
U	GF1000_SIVII_EN	FX/ V V	LKESE I#	U	1: Enable SMI event via PME# or SIRQ if GPIO80_SMI_ST is set.

GPIO8 SMI Status Register — Index 8Fh

Bit	Name	R/W	Reset	Default	Description
	 -				0: No SMI event.
7	GPIO87_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO87 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
	<u> </u>				0: No SMI event.
6	GPIO86_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO86 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
	<u> </u>				0: No SMI event.
5	GPIO85_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO85 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
4	GPIO84_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO84 input is changed.
	<u> </u>				This bit is available in input mode. Write "1" to this bit will clear the status.
					0: No SMI event.
3	GPIO83_SMI_ST	R/W	LRESET#	0	1: A SMI event will set if GPIO83 input is changed.
					This bit is available in input mode. Write "1" to this bit will clear the status.

2	GPIO82_SMI_ST	R/W	LRESET#	0	0: No SMI event. 1: A SMI event will set if GPIO82 input is changed. This bit is available in input mode. Write "1" to this bit will clear the status.
1	GPIO81_SMI_ST	R/W	LRESET#		0: No SMI event. 1: A SMI event will set if GPIO81 input is changed. This bit is available in input mode. Write "1" to this bit will clear the status.
0	GPIO80_SMI_ST	R/W	LRESET#		0: No SMI event. 1: A SMI event will set if GPIO80 input is changed. This bit is available in input mode. Write "1" to this bit will clear the status.

7.7.12GPIO8x Scan Code Configuration Registers

Register	Register Name		Default Value								
0x[HEX]	Register Nume	MSB	1	1	1	1	LS	В	1		
D8	GPIO8 Make Code 0 Register	0	0	0	0	0	0	0	0		
D9	GPIO8 Make Code 1 Register	0	0	0	0	0	0	0	0		
DA	GPIO8 Make Code 2 Register	0	0	0	0	0	0	0	0		
DB	GPIO8 Make Code 3 Register	0	0	0	0	0	0	0	0		
DC	GPIO8 Make Code 4 Register	0	0	0	0	0	0	0	0		
DD	GPIO8 Make Code 5 Register	0	0	0	0	0	0	0	0		
DE	GPIO8 Make Code 6 Register	0	0	0	0	0	0	0	0		
DF	GPIO8 Make Code 7 Register	0	0	0	0	0	0	0	0		
C8	GPIO8 Pre Code 0 Register	1	1	1	0	0	0	0	0		
C9	GPIO8 Pre Code 1 Register	1	1	1	0	0	0	0	0		
CA	GPIO8 Pre Code 2 Register	1	1	1	0	0	0	0	0		
СВ	GPIO8 Pre Code 3 Register	1	1	1	0	0	0	0	0		
CC	GPIO8 Pre Code 4 Register	1	1	1	0	0	0	0	0		
CD	GPIO8 Pre Code 5 Register	1	1	1	0	0	0	0	0		
CE	GPIO8 Pre Code 6 Register	1	1	1	0	0	0	0	0		
CF	GPIO8 Pre Code 7 Register	1	1	1	0	0	0	0	0		
B8	GPIO8 Scan Code 0 Control Register	0	0	0	0	0	0	0	0		
В9	GPIO8 Scan Code 1 Control Register	0	0	0	0	0	0	0	0		
BA	GPIO8 Scan Code 2 Control Register	0	0	0	0	0	0	0	0		
BB	GPIO8 Scan Code 3 Control Register	0	0	0	0	0	0	0	0		
BC	GPIO8 Scan Code 4 Control Register	0	0	0	0	0	0	0	0		
BD	GPIO8 Scan Code 5 Control Register	0	0	0	0	0	0	0	0		
BE	GPIO8 Scan Code 6 Control Register	0	0	0	0	0	0	0	0		
BF	GPIO8 Scan Code 7 Control Register	0	0	0	0	0	0	0	0		
AE	GPIO8 Function Select 1 Register	0	0	0	0	0	0	0	0		
AF	GPIO8 Function Select 2 Register	0	0	0	0	0	0	0	0		

GPIO8 Make Code 0 Register — Index D8h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE0	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 0 is occurred. The scan code events will set KBC OBF and put their make/break code into KBC output buffer. The break code is make code + 0x80. The source of event is GPIO80.

GPIO8 Make Code 1 Register — Index D9h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE1	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 1 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO81.

GPIO8 Make Code 2 Register — Index DAh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE2	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 2 occur. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO82.

GPIO8 Make Code 3 Register — Index DBh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE3	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 3 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO83.

GPIO8 Make Code 4 Register — Index DCh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE4	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 4 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO84.

GPIO8 Make Code 5 Register — Index DDh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE5	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 5 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO85.

GPIO8 Make Code 6 Register — Index DEh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE6	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 6 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO86.

GPIO8 Make Code 7 Register — Index DFh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_MAKE_CODE7	R/W	5VSB	0	This byte is used to assert the make code when the scan code event 7 is occurred. The scan code events will set KBC OBF and put their make/break code into the KBC output buffer. The break code is make code + 0x80. The source of event is GPIO87.

GPIO8 Pre-Code 0 Register — Index C8h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE0	R/W	5VSB	l 0xE0	This byte is used to assert the pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 1 Register — Index C9h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE1	R/W	5VSB	l ()x⊢()	This byte is used to assert the pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 2 Register — Index CAh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE2	R/W	5VSB	l ()x⊢()	This byte is used to assert the pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 3 Register — Index CBh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE3	R/W	5VSB	()x⊢()	This byte is used to assert a pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 4 Register — Index CCh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE4	R/W	5VSB	()x⊢()	This byte is used to assert a pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 5 Register — Index CDh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE5	R/W	5VSB	I 0xE0	This byte is used to assert a pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 6 Register — Index CEh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE6	R/W	5VSB	l ()x⊢()	This byte is used to assert a pre-code before the make/break code when it is enabled.

GPIO8 Pre-Code 7 Register — Index CFh

Bit	Name	R/W	Reset	Default	Description
7-0	GP_PRE_CODE7	R/W	5VSB	()x⊢()	This byte is used to assert a pre-code before the make/break code when it is enabled.

GPIO8 Scan Code 0 Control Register — Index B8h

Bit	Name	R/W	Reset	Default	Description
7	GP0_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.
6	GP0_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.
5	GP0_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.
4	GP0_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.
3-2	GP0_DELAY_TIME	R/W	5VSB		The delay time for repeating the make code 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.
0	GP0_REP_TIME	R/W	5VSB		The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.

GPIO8 Scan Code 1 Control Register — Index B9h

Bit	Name	R/W	Reset	Default	Description
7	GP1_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.
6	GP1_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.
5	GP1_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.

4	GP1_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" Pre-code → Make/Break code.	
3-2	GP1_DELAY_TIME	R/W	5VSB	0	The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.	
0	GP1_REP_TIME	R/W	5VSB	0	The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.	

GPIO8 Scan Code 2 Control Register — Index BAh

Bit	Name	R/W	Reset	Default	Description			
7	GP2_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.			
6	GP2_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.			
5	GP2_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.			
4	GP2_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.			
3-2	GP2_DELAY_TIME	R/W	5VSB		The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.			
0	GP2_REP_TIME	R/W	5VSB		The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.			

GPIO8 Scan Code 3 Control Register — Index BBh

Bit	Name	R/W	Reset	Default	Description					
7	GP3_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.					
6	GP3_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.					
5	GP3_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.					
4	GP3_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.					

3-2	GP3_DELAY_TIME	R/W	5VSB	0	The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.
0	GP3_REP_TIME	R/W	5VSB	0	The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.

GPIO8 Scan Code 4 Control Register — Index BCh

Bit	Name	R/W	Reset	Default	Description			
7	GP4_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.			
6	GP4_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.			
5	GP4_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.			
4	GP4_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.			
3-2	GP4_DELAY_TIME	R/W	5VSB		The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.			
0	GP4_REP_TIME	R/W	5VSB		The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.			

GPIO8 Scan Code 5 Control Register — Index BDh

Bit	Name	R/W	Reset	Default	Description			
7	GP5_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.			
6	GP5_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.			
5	GP5_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.			
4	GP5_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.			
3-2	GP5_DELAY_TIME	R/W	5VSB	0	The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.			

0	GP5_REP_TIME	R/W	5VSB	0	The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.
---	--------------	-----	------	---	--

GPIO8 Scan Code 6 Control Register — Index BEh

Bit	Name	R/W	Reset	Default	Description				
7	GP6_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.				
6	GP6_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.				
5	GP6_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.				
4	GP6_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.				
3-2	GP6_DELAY_TIME	R/W	5VSB	0	The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.				
0	GP6_REP_TIME	R/W	5VSB		The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.				

GPIO8 Scan Code 7 Control Register — Index BFh

Bit	Name	R/W	Reset	Default	Description					
7	GP7_CTRL_EN	R/W	5VSB	0	Set "1" will assert a left "Ctrl" key code first when scan code event occurred.					
6	GP7_ALT_EN	R/W	5VSB	0	Set "1" will assert a left "Alt" key code first when scan code event occurred.					
5	GP7_SHIFT_EN	R/W	5VSB	0	Set "1" will assert a left "Shift" key code first when scan code event occurred.					
4	GP7_PRE_EN	R/W	5VSB	0	Set "1" will assert a left pre-code first when scan code 0 event occurred. When multiple keys are enabled, the sequence is "Ctrl" → "Alt" → "Shift" → Pre-code → Make/Break code.					
3-2	GP7_DELAY_TIME	R/W	5VSB		The delay time for repeating the make code. 00: 0.5 second. 01: 1 second. 10: 1.5 second. 11: 2 second.					
0	GP7_REP_TIME	R/W	5VSB		The repeat time for repeating the make code. 00: 20Hz. 01: 10Hz. 10: 5Hz. 11: 2Hz.					

GPIO8 Function Select 1 Register — Index AEh

Bit	Name	R/W	Reset	Default	Description
					00: GPIO83 function.
7.6	CDIO92 ELING SEL	R/W	5VSB	0	01: Scan Code 3 function.
7-6	GPIO83_FUNC_SEL	FC/VV	3736		10: Reserved.
					11: Reserved.
					00: GPIO82 function.
5-4	CDIO92 ELING SEL	R/W	5VSB	0	01: Scan Code 2 function.
3-4	-4 GPIO82_FUNC_SEL F	K/VV			10: Reserved.
					11: Reserved.
					00: GPIO81 function.
3-2	GPIO81_FUNC_SEL	R/W	5VSB	0	01: Scan Code 1 function.
3-2	GFIO01_FUNC_SEL	IN/ V V	3736		10: Reserved.
					11: Reserved.
					00: GPIO80 function.
1.0	CDIOON ELING SEL	R/W	5VSB	0	01: Scan Code 1 function.
1-0	1-0 GPIO80_FUNC_SEL				10: Reserved.
					11: Reserved.

GPIO8 Function Select 2 Register — Index AFh

Bit	Name	R/W	Reset	Default	Description
					00: GPIO87 function.
7-6	CDIO07 ELING SEL	R/W	5VSB	0	01: Scan Code 7 function.
7-0	'-6 GPIO87_FUNC_SEL	FC/VV	3736	0	10: Reserved.
					11: Reserved.
					00: GPIO86 function.
5 A	GPIO86_FUNC_SEL	R/W	5VSB	0	01: Scan Code 6 function.
3-4	5-4 GPIO86_FUNC_SEL	FC/VV			10: Reserved.
					11: Reserved.
					00: GPIO85 function.
3-2	GPIO85_FUNC_SEL	R/W	5VSB	0	01: Scan Code 5 function.
3-2	GFIO05_FUNC_SEL	FC/VV	3736		10: Reserved.
					11: Reserved.
					00: GPIO84 function.
1.0	1-0 GPIO84_FUNC_SEL	R/W	5VSB	0	01: Scan Code 4 function.
1-0					10: Reserved.
					11: Reserved.

Remark

GPIO also provides index/data port to access the whole GPIO registers. The index port is base address + 0 and data port is base address + 1. The index for each register is the same as the one for configuration register. For example, to write GPIO0 output enable register 0xAA, below is the procedure:

- 1. Write index port 0xF0.
- 2. Write data port 0xAA.

7.8 WDT Device Configuration Registers (LDN CR07)

"-" Reserved or Tri-State

Pagistar Ov[UEV]	Pogistar Nama	Default Value								
Register 0x[HEX]	Register Name	MSB				LSB				
30	WDT Device Enable Register	-	-	-	-	-	-	-	0	
60	Base Address High Register	0	0	0	0	0	0	0	0	
61	Base Address Low Register	0	0	0	0	0	0	0	0	
F5	WDT Control Register	0	0	0	0	0	0	0	0	
F6	WDT Timer Register	0	0	0	0	0	0	0	0	
FA	WDT PME Enable Register	0	0	0	1	-	-	-	0	

7.8.1 WDT Device Base Address Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	1	0	Reserved
0	WDT_EN	R/W	5VSB	0	0: disable WDT base address. 1: enable WDT base address.

7.8.2 Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	5VSB	00h	The MSB of WDT base address.

7.8.3 Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	5VSB	00h	The LSB of WDT base address.

7.8.4 Watchdog Control Configuration Register 1 — Index F5h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	R	-	0	Reserved
6	WDTMOUT_STS	R/W	5VSB	()	If watchdog timeout event occurred, this bit will be set to 1. Write a 1 to this bit will clear it to 0.
5	WD_EN	R/W	5VSB	0	If this bit is set to 1, the counting of watchdog time is enabled.
4	WD_PULSE	R/W	5VSB	0	Select output mode (0: level, 1: pulse) of RSTOUT# by setting this bit.
3	WD_UNIT	R/W	5VSB	0	Select time unit (0: 1sec, 1: 60 sec) of watchdog timer by setting this bit.
2	WD_HACTIVE	R/W	5VSB	()	Select output polarity of RSTOUT# (1: high active, 0: low active) by setting this bit.
1-0	WD_PSWIDTH	R/W	5VSB	0	Select output pulse width of RSTOUT# 0: 1 ms

7.8.5 Watchdog Timer Configuration Register 2 — Index F6h

Bit	Name	R/W	Reset	Default	Description
7-0	WD_TIME	R/W	5VSB	0	Time of watchdog timer (0~255)

7.8.6 Watchdog PME Enable Configuration Register 2 — Index FAh

Bit	Name	R/W	Reset	Default	Description
					0: No WDT PME occurred.
7	WDT_PME	R	5VSB	0	1: WDT PME occurred.
					The WDT PME is occurred one unit before WDT timeout.
6 WDT PME EN	R/W	5VSB	0	0: Disable Watchdog PME.	
0	WDT_PME_EN	N PC/VV	5V3B	U	1: enable Watchdog PME.
5	Reserved	R	-	0	Reserved
					WDT Clock Source Select
4	WDT_CLK_SEL	R/W	5VSB	1	0: Internal 1KHz clock.
					1: 1KHZ clock driven by CLKIN.
3-1	Reserved	R	•	0	Reserved
0	WDOLIT EN	R/W	5VSB	0	0: disable Watchdog time out output via WDTRST#.
U	0 WDOUT_EN R/W	SVSD	U	1: enable Watchdog time out output via WDTRST#.	

7.9 PME, ACPI and ERP Device Configuration Registers (LDN CR0A)

"-" Reserved or Tri-State

Register 0x[HEX]	D :: N				Defaul	t Valu	<u>е</u>		
	Register Name	MSB							
30	PME Device Enable Register	-	-	-	-	-	-	-	0
F0	PME Event Enable 1 Register	0	0	0	0	0	0	0	0
F1	PME Event Status 1 Register	-	-	-	-	-	-	-	-
F2	PME Event Enable 2 Register	0	0	0	0	0	0	0	0
F3	PME Event Status 2 Register	-	-	-	-	-	-	-	-
F4	ACPI Control Register 1	-	-	0	0	0	1	1	1
F5	ACPI Control Register 2	-	0	0	1	1	1	-	-
F6	ACPI Control Register 3	0	-	-	0	0	-	-	-
F8	LED Control Register 1	-	0	0	0	0	0	0	0
F9	LED Control Register 2	-	0	0	0	-	0	0	0
FA	LED Control Register 3	-	-	-	-	0	1	1	1
FC	DSW Delay Register	-	-	-	-	-	-	0	0
FE	RI De-bounce Select Register	0	0-	-	-	-	-	0	0
E0	ERP Enable Register	-	-	0	0	1	1	0	0
E1	ERP Control Register 1	1	0	0	0	0	0	0	-
E2	ERP Control Register 2	_	0	0	0	0	0	0	0
E3	ERP PWSIN De-bounce Register	0	0	0	1	0	0	1	1

E4	ERP RSMRST De-bounce Register	0	0	0	0	1	0	0	1
E5	ERP PWSOUT Pulse Register	1	1	0	0	0	1	1	1
E6	ERP PSON De-bounce Register	0	0	0	1	0	0	1	1
E7	ERP Deep S5 Delay Register	0	1	1	0	0	0	1	1
E8	ERP Wakeup Enable Register	0	-	0	1	0	0	0	0
E9	ERP Deep S3 Delay Register	0	0	0	0	1	1	1	1
EC	ERP Mode Select Register	0	0	0	1	0	1	-	-
ED	ERP WDT Control Register	-	-	-	-	-	-	0	0
EE	ERP WDT Time Register	0	0	0	0	0	0	0	0

7.9.1 PME Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	1	•	-	Reserved
0	PME_EN	R/W	5VSB	0	PME global enable register. 0: disable PME. 1: enable PME.

7.9.2 PME Event Enable 1 Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6	WDT_PME_EN	R/W	5VSB		WDT PME event enable. 0: disable WDT PME event. 1: enable WDT PME event.
5	GP_PME_EN	R/W	5VSB		GPIO PME event enable. 0: disable GPIO PME event. 1: enable GPIO PME event.
4	MO_PME_EN	R/W	5VSB		Mouse PME event enable. 0: disable mouse PME event. 1: enable mouse PME event.
3	KB_PME_EN	R/W	5VSB		Keyboard PME event enable. 0: disable keyboard PME event. 1: enable keyboard PME event.
2	HM_PME_EN	R/W	5VSB	0	Hardware monitor PME event enable. 0: disable hardware monitor PME event. 1: enable hardware monitor PME event.
1	PRT_PME_EN	R/W	5VSB		Parallel port PME event enable. 0: disable parallel port PME event. 1: enable parallel port PME event.
0	FDC_PME_EN	R/W	5VSB		FDC PME event enable. 0: disable FDC PME event. 1: enable FDC PME event.

7.9.3 PME Event Status 1 Register — Index F1h

Bit	Name	R/W	Reset	Default	Description
7	ERP_PME_ST	R/WC	5VSB	_	ERP PME event status. 0: ERP has no PME event. 1: ERP has a PME event to assert. Write 1 to clear to be ready for next PME event.
6	WDT_PME_ST	R/WC	5VSB	-	WDT PME event status. 0: WDT has no PME event. 1: WDT has a PME event to assert. Write 1 to clear to be ready for next PME event.
5	GP_PME_ST	R/WC	5VSB	-	GPIO PME event status. 0: GPIO has no PME event. 1: GPIO has a PME event to assert. Write 1 to clear to be ready for next PME event.
4	MO_PME_ST	R/WC	5VSB	-	Mouse PME event status. 0: Mouse has no PME event. 1: Mouse has a PME event to assert. Write 1 to clear to be ready for next PME event.
3	KB_PME_ST	R/WC	5VSB		Keyboard PME event status. 0: Keyboard has no PME event. 1: Keyboard has a PME event to assert. Write 1 to clear to be ready for next PME event.
2	HM_PME_ST	R/WC	5VSB		Hardware monitors PME event status. 0: Hardware monitor has no PME event. 1: Hardware monitor has a PME event to assert. Write 1 to clear to be ready for next PME event.
1	PRT_PME_ST	R/WC	5VSB	_	Parallel port PME event status. 0: Parallel port has no PME event. 1: Parallel port has a PME event to assert. Write 1 to clear to be ready for next PME event.
0	FDC_PME_ST	R/WC	5VSB		FDC PME event status. 0: FDC has no PME event. 1: FDC has a PME event to assert. Write 1 to clear to be ready for next PME event.

7.9.4 PME Event Enable 2 Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
					RI2# PME event enable.
7	RI2_PME_EN	R/W	5VSB	0	0: disable RI2# PME event.
					1: enable RI2# PME event.
					RI1# PME event enable.
6	RI1_PME_EN	R/W	5VSB	0	0: disable RI1# PME event.
					1: enable RI1# PME event.

					UART 6 PME event enable.
5	UART6_PME_EN	R/W	5VSB	0	0: disable UART 6 PME event.
					1: enable UART 6 PME event.
					UART 5 PME event enable.
4	UART5_PME_EN	R/W	5VSB	0	0: disable UART 5 PME event.
					1: enable UART 5 PME event.
					UART 4 PME event enable.
3	UART4_PME_EN	R/W	5VSB	0	0: disable UART 4 PME event.
					1: enable UART 4 PME event.
					UART 3 PME event enable.
2	UART3_PME_EN	R/W	5VSB	0	0: disable UART 3 PME event.
					1: enable UART 3 PME event.
					UART 2 PME event enable.
1	UART2_PME_EN	R/W	5VSB	0	0: disable UART 2 PME event.
					1: enable UART 2 PME event.
					UART 1 PME event enable.
0	UART1_PME_EN	R/W	5VSB	0	0: disable UART 1 PME event.
					1: enable UART 1 PME event.

7.9.5 PME Event Status 2 Register — Index F3h

Bit	Name	R/W	Reset	Default	Description
	RI2_PME_ST	R/WC	5VSB		RI2# PME event status.
7					0: RI2# has no PME event.
	TUZ_T WE_OT	10000	3736		1: RI2# has a PME event to assert. Write 1 to clear to be ready for next PME
					event.
6	RI1_PME_ST R/WC		WC 5VSB	-	RI1# PME event status.
		R/WC			0: RI1# has no PME event.
					1: RI1# has a PME event to assert. Write 1 to clear to be ready for next PME
					event.
	UART6_PME_ST	R/WC	5VSB	-	UART 6 PME event status.
5					0: UART 6 has no PME event.
					1: UART 6 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.

					UART 5 PME event status.
4 UART5_PMI	LIADTE DIAE OT	R/WC	5VSB	-	0: UART 5 has no PME event.
	UART5_PME_ST				1: UART 5 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.
			5VSB	-	UART 4 PME event status.
2	3 UART4_PME_ST	R/WC			0: UART 4 has no PME event.
3					1: UART 4 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.
2 UAF		R/WC	5VSB	-	UART 3 PME event status.
	UART3 PME ST				0: UART 3 has no PME event.
2	2 UART3_PME_ST				1: UART 3 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.
	1 UART2_PME_ST R/WC		C 5VSB	-	UART 2 PME event status.
1		DAMO			0: UART 2 has no PME event.
'		R/WC			1: UART 2 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.
0	UART1_PME_ST	R/WC	5VSB	-	UART 1 PME event status.
					0: UART 1 has no PME event.
					1: UART 1 has a PME event to assert. Write 1 to clear to be ready for next
					PME event.

7.9.6 ACPI Control Register 1 — Index F4h

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	-	-	-	Reserved.
5	EN_GPWAKEUP	R/W	VBAT	0	Set one to enable GPIO SMI event asserted via PWSOUT#.
4	EN_KBWAKEUP	R/W	VBAT	0	Set one to enable keyboard wakeup event asserted via PWSOUT#.
3	EN_MOWAKEUP	R/W	VBAT	0	Set one to enable mouse wakeup event asserted via PWSOUT#.
2-1	PWRCTRL	R/W	VBAT	11	The ACPI Control the PSON_N to always on or always off or keep last state 00 : keep last state 10 : Always on 01 : Bypass mode. 11: Always off
0	VSB_PWR_LOSS	R/W	5VSB	1	When 5VSB power lose, it will set to 1, and write 1 to clear it

7.9.7 ACPI Control Register 2 — Index F5h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved.

6-5	PWOK_DELAY	R/W	5VSB	0	The additional PWOK delay. 00: no delay (default) 01: 100ms. 10: 200ms 11: 400ms.
4-3	VDD_DELAY	R/W	5VSB	11	The PWOK delay timing from VDD3VOK by followed setting 00 : 100ms 01 : 200ms 10 : 300ms 11 : 400ms (default)
2	VINDB_EN	R/W	5VSB	1	Enable the ATXPG de-bounce. (10us)
1-0	Reserved	-	-	-	Reserved.

7.9.8 ACPI Control Register 3 — Index F6h

Bit	Name	R/W	Reset	Default	Description
7	02 05				Select the KBC S3 condition source.
/	S3_SEL	R/W	5VSB	0	Enter S3 state when internal VDD3VOK signal de-asserted. Enter S3 state when S3# is low or the TS3 register is set to 1.
					Ţ,
6-5	Reserved	-	5VSB	-	Reserved.
4	PSON_DEL_EN	R/W	5VSB	0	PSON# is the inverted of S3# signal. PSON# will sink low only if the time after the last turn-off elapse at least 4 seconds.
3	WDT_PWOK_EN	R/W	5VSB	0	Set "1" to this bit will enable WDT timeout event asset from PWOK pin.
2-0	Reserved	-		-	Reserved.

7.9.9 LED Control Register 1 — Index F8h

Bit	Name	R/W	Reset	Default	Description
7	LED_VCC_INV_DIS	R/W	VBAT	0	0: LED_VCC clock output is inverted. 1: LED_VCC clock output is not inverted.
6	LED_VCC_DS3	R/W	VBAT	0	0: Disable LED_VCC deep S3 mode. 1: Enable LED_VCC deep S3 mode. Output 75% duty 0.25HZ clock.
5-4	LED_VCC_S5_MODE	R/W	VBAT		The three bits {LED_VCC_S5_MODE_ADD, LED_VCC_S5_MODE [1:0]} select the LED_VCC mode in S5 state. 000: Sink low. 001: Tri-state or drive high control by GPIO11_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 110: 0.125Hz clock with 25% duty.* 111: 0.25Hz clock with 25% duty.* *When LED_VCC_INV_DIS is set to "1" the duty is 25%, otherwise, the duty is 75%.

3-2	LED_VCC_S3_MODE	R/W	VBAT	00	The three bits {LED_VCC_S3_MODE_ADD, LED_VCC_S3_MODE [1:0]} select the LED_VCC mode in S3 state. 000: Sink low. 001: Tri-state or drive high control by GPIO11_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 110: 0.125Hz clock with 50% duty. 111: 0.25Hz clock with 25% duty.* *When LED_VCC_INV_DIS is set to "1" the duty is 25%, otherwise, the duty is 75%.
1-0	LED_VCC_S0_MODE	R/W	VBAT	00	The three bits {LED_VCC_S0_MODE_ADD, LED_VCC_S0_MODE [1:0]} select the LED_VCC mode in S0 state. 000: Sink low. 001: Tri-state or drive high control by GPIO11_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 110: 0.125Hz clock with 50% duty. 111: 0.25Hz clock with 25% duty.* *When LED_VCC_INV_DIS is set to "1" the duty is 25%, otherwise, the duty is 75%.

7.9.10 LED Control Register 2 — Index F9h

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6	LED_VSB_S5_MODE_ADD	R/W	VBAT	0	Refer to LED_VSB_S5_MODE.
5	LED_VSB_S3_MODE_ADD	R/W	VBAT	0	Refer to LED_VSB_S3_MODE.
4	LED_VSB_S0_MODE_ADD	R/W	VBAT	0	Refer to LED_VSB_S0_MODE.
3	Reserved	-	-	-	Reserved
2	LED_VCC_S5_MODE_ADD	R/W	VBAT	0	Refer to LED_VCC_S5_MODE.
1	LED_VCC_S3_MODE_ADD	R/W	VBAT	0	Refer to LED_VCC_S3_MODE.
0	LED_VCC_S0_MODE_ADD	R/W	VBAT	0	Refer to LED_VCC_S0_MODE.

7.9.11 LED Control Register 3 — Index FAh

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6	LED_VSB_DS3	R/W	VBAT	1 0	0: Disable LED_VSB deep S3 mode. 1: Enable LED_VSB deep S3 mode. Output 0.25HZ clock with 25% duty.

5-4	LED_VSB_S5_MODE	R/W	VBAT	00	The three bits {LED_VSB_S5_MODE_ADD, LED_VSB_S5_MODE [1:0]} select the LED_VSB mode in S5 state. 000: Sink low. 001: Tri-state or drive high control by GPIO10_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 110: 0.125Hz clock with 25% duty.*
3-2	LED_VSB_S3_MODE	R/W	VBAT	00	The three bits {LED_VSB_S3_MODE_ADD, LED_VSB_S3_MODE [1:0]} select the LED_VSB mode in S3 state. 000: Sink low. 001: Tri-state or drive high control by GPIO10_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 111: 0.25Hz clock with 25% duty.*
1-0	LED_VSB_S0_MODE	R/W	VBAT	00	The three bits {LED_VSB_S0_MODE_ADD, LED_VSB_S0_MODE [1:0]} select the LED_VSB mode in S0 state. 000: Sink low. 001: Tri-state or drive high control by GPIO10_DRV_EN. 010: 0.5Hz clock with 50% duty. 011: 1Hz clock with 50% duty. 100: 0.125Hz clock with 50% duty. 101: 0.25Hz clock with 50% duty. 111: 0.25Hz clock with 25% duty.*

7.9.12DSW Delay Register — Index FCh

Bit	Name	R/W	Reset	Default	Description
7	Reserved	-	-	-	Reserved
6	CIR_PME_ST	R/WC	5VSB	-	CIR wakeup PME event status. 0: CIR wakeup has no PME event. 1: CIR wakeup a PME event to assert. Write 1 to clear to be ready for next PME event.
5	Reserved	-	-	-	Reserved
4	CIR_PME_EN	R/WC	5VSB	-	CIR event enable. 0: Disable CIR PME event. 1: Enable CIR PME event.
3-0	DSW_DELAY	R/W	5VSB	7	This is the delay time between SUS_WARN# and SUS_ACK#. The unit is 0.5 sec. Default time is 3.5s ~ 4s. The default could be trimmed to 0s ~ 0.5s.

7.9.13RI De-bounce Select Register — Index FEh

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved
1-0	RI_DB_SEL	R/W	5VSB		Select RI# de-bounce time. 00: reserved. 01: 200us. 10: 2ms. 11: 20ms.

7.9.14ERP Enable Register — Index E0h

Bit	Name	R/W	Reset	Default	Description
7	ERP_EN	R/W	VBAT	0	0 : disable ERP function 1: enable ERP function
6	S3_BACK	R/W	VBAT	0	This bit will set "1" when system is back from S3 state.
5-2	Reserved	-	-	-	Reserved
1	RING_PME_EN	R/W	VBAT		RING1 PME event enable. 0: disable RING1 PME event. 1: enable RING1 PME event, when RING1 falling edge detect
0	RING_PWSOUT_EN	R/W	VBAT		RING1 PWSOUT event enable. 0: disable RING1 PWSOUT event. 1: enable RING1 PWSOUT event, when RING1 falling edge detect

7.9.15ERP Control Register 1 — Index E1h

Bit	Name	R/W	Reset	Default	Description
7-6	Reserved	-	1	-	Reserved
5	S3_ERP_CTRL1#_DIS	R/W	VBAT	()	If clear to "0" ERP_CTRL1# will output Low when S3 state. Else If set to "1" ERP_CTRL1# will output High when S3 state.
4	S3_ERP_CTRL0#_DIS	R/W	VBAT	. ()	If clear to "0" ERP_CTRL0# will output Low when S3 state. Else If set to "1" ERP_CTRL0# will output High when S3 state.
3	S5_ERP_CTRL1#_DIS	R/W	VBAT	1 1	If clear to "0" ERP_CTRL1# will output Low when S5 state. Else If set to "1" ERP_CTRL1# will output High when S5 state.
2	S5_ERP_CTRL0#_DIS	R/W	VBAT	1 1	If clear to "0" ERP_CTRL0# will output Low when S5 state. Else If set to "1" ERP_CTRL0# will output High when S5 state.
1	AC_ERP_CTRL1#_DIS	R/W	VBAT	0	If clear to "0" ERP_CTRL1# will output Low when after AC lost. Else If set to "1" ERP_CTRL1# will output High when after AC lost.
0	AC_ERP_CTRL0#_DIS	R/W	VBAT	0	If clear to "0" ERP_CTRL0# will output Low when after AC lost. Else If set to "1" ERP_CTRL0# will output High when after AC lost.

7.9.16 ERP Control Register 2 — Index E2h

Bit	Name	R/W	Reset	Default	Description
7	AC_LOST	R	5VSB	1	This bit is AC lost status and writes 1 to this bit will clear it.

6	Reserved	R/W	VBAT	0	Reserved
5	VSB_CTRL_EN[1]	R/W	VBAT	1'b0	0: Disable ERP_CTRL1# assert RSMRST low 1: Enable ERP_CTRL1# assert RSMRST low
4	VSB_CTRL_EN[0]	R/W	VBAT	1'b0	0: Disable ERP_CTRL0# assert RSMRST low 1: Enable ERP_CTRL0# assert RSMRST low
3-2	Reserved	R/W	VBAT	0	Reserved
1	RSMRST_DET_5V_N	R/W	VBAT	0	Device detects 5VSB power ok (4.4V) and VSB3V_IN become high, and after ~50ms de-bounce time RSMRST will become high. But when user set this bit to 1. RSMRST will not check 5VSB power ok.
0	Reserved	R	-	-	Reserved

7.9.17ERP PWSIN De-bounce Register — Index E3h

Bit	Name	R/W	Reset	Default	Description
7-0	PWSIN_DEB_TIME	R/W	VBAT	13h	PWSIN# pin input de-bounce time. The unit is 1ms, default is 20ms.

7.9.18ERP RSMRST De-bounce Register — Index E4h

Bit	Name	R/W	Reset	Default	Description
7-0	RSMRST_DEB_TIME	R/W	VBAT	9h	RSMRST internal de-bounce time. The unit is 1ms and default is 10ms.

7.9.19 ERP PWSOUT Pulse Width Register — Index E5h

Bit	Name	R/W	Reset	Default	Description
7-0	PWS_OUT_PW	R/W	VBAT	C7h	PWS_OUT output pulse width. The unit is 1ms and default is 200ms.

7.9.20ERP PWSIN De-bounce Register — Index E6h

Bit	Name	R/W	Reset	Default	Description
7-0	PSON_DEB_TIME	R/W	VBAT	13h	PSON# pin input de-bounce time. The unit is 1ms, default is 10ms.

7.9.21 ERP Deep S5 Delay Register — Index E7h

Bit	Name	R/W	Reset	Default	Description
7-0	DS5_DELAY_TIME	R/W	VBAT	63h	The delay time from S5 state to deep S5 state. The unit is 64ms and default is 6.4 sec.

7.9.22 ERP Wakeup Enable Register — Index E8h

Bit	Name	R/W	Reset	Default	Description
7	RI2_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable RI2# event to wakeup system.
6	Reserved	-	1	1	Reserved
5	RI1_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable RI1# event to wakeup system.

4	Reserved	R/W	VBAT	0	Reserved
3	GP_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable GPIO event to wakeup system.
2	TMOUT_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable Timeout event to wakeup system.
1	MO_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable Mouse event to wakeup system.
0	KB_WAKEUP_EN	R/W	VBAT	0	Set this bit to enable Keyboard event to wakeup system.

7.9.23ERP Deep S3 Delay Register — Index E9h

Bit	Name	R/W	Reset	Default	Description
7-0	DS3_DELAY_TIME	R/W	VBAT	ı ⊢n	The delay time from S3 state to deep S3 state. The unit is 64ms and default is 1.024 sec.

7.9.24ERP Mode Select Register — Index ECh

Bit	Name	R/W	Reset	Default	Description
7-6	ERP_MODE	R/W	VBAT	0	00: Fintek G3' mode. 01: Intel DSW + Fintek G3' mode. 10: Reserved. 11: Intel DSW mode.
5	DPWROK_CTRL_EN	R/W	VBAT	0	Set "1" to enable DPWROK reset by ERP_CTRL1#.
4	SOFT_START_EN	R/W	VBAT	1	0: disable ERP soft start. 1: enable ERP soft start.
3-2	SOFT_START_RATE	R/W	VBAT	1h	The soft start rate. 00: 5ms. 01: 10ms. 10: 27ms. 11: 54ms.
1-0	Reserved	-	-	-	Reserved

7.9.25ERP WDT Control Register — Index EDh

i				ı	
Bit	Name	R/W	Reset	Default	Description
	EDD WD TIME(44.40)	D 04/			Time of ERP watchdog timer.
7-6	ERP_WD_TIME[11:10]	R/W	VBAT	-	Write index EEh will load watchdog time.
7-5	Reserved	R	ı	-	Reserved
4	ERP_WDTMOUT_STATUS	R	VBAT	-	Watchdog timeout status.
3-2	ERP_WD_TIME[9:8]	R/W	VBAT	-	Reserved
1	WD_UNIT	R/W	VBAT	0	ERP WDT unit. It is the time unit of ERP_WD_TIME. 0: 1sec.
	_				1: 60 sec.
0	WD_EN	R/W	VBAT	0	Set "1" to enable ERP WDT. Auto clear if timeout occurred.

7.9.26ERP WDT Time Register — Index EEh

Bit	Name	R/W	Reset	Default	Description
7-0	ERP_WD_TIME	R/W	VBAT	0	Time of ERP watchdog timer.

7.10 UART1 Device Configuration Registers (LDN CR10)

"-" Reserved or Tri-State

Register 0x[HEX]	Pogistor Namo	Default Value									
	Register Name	MSB					LSB				
30	Device Enable Register	-	-	-	-	-	-	-	1		
60	Base Address High Register	0	0	0	0	0	0	1	1		
61	Base Address Low Register	1	1	1	1	1	0	0	0		
70	IRQ Channel Select Register	-	-	-	-	0	1	0	0		
F0	IRQ Share Register	0	0	0	0	-	-	0	0		
F2	Clock Select Register	-	ı	ı	-	-	-	0	0		
F4	9bit-mode Slave Address Register	0	0	0	0	0	0	0	0		
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0		
F6	FIFO Mode Register	0	0	0	0	0	-	0	0		

7.10.1UART 1 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	_	-	Reserved
0	UART 1_EN	R/W	LRESET#	1	0: disable UART 1 I/O Port. 1: enable UART 1 I/O Port.

7.10.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	03h	The MSB of UART 1 base address.

7.10.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	F8h	The LSB of UART 1 base address.

7.10.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELUR1IRQ	R/W	LRESET#	4h	Select the IRQ channel for UART 1.

7.10.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
					0: normal UART function
7	9BIT_MODE	R/W	LRESET#	0	1: enable 9-bit mode (multi-drop mode).
					In the 9-bit mode, the parity bit becomes the address/data bit.
					This bit works only in 9-bit mode.
6	6 AUTO_ADDR		LRESET#	0	0: the SM2 bit will be cleared by host, so that data could be received.
			LIXEGE I#		the SM2 bit will be cleared by hardware according to the sent address and the given address (or broadcast address derived by SADDR and SADEN)
5	RS485_INV	R/W	LREST#	0	Invert RTS# if RS485_EN is set.
					0: RS232 driver.
4	4 RS485_EN		LRESET#	_	1: RS485 driver. RTS# is driven high automatically when transmitting
					data, otherwise is kept low.
3-2	Reserved	-	-	-	Reserved.
					IRQ_MODE1 and IRQ_MODE0 will select the UART1 interrupt mode if IRQ sharing is enabled.
					00 : Sharing IRQ active low Level mode.
1	IRQ_MODE0	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
				This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).	
0	IRQ_SHARE	R/W	LRESET#	0	0 : IRQ is not sharing with the other device.
	IINQ_OFIAINE	17/11	LIXESE I#	U	1 : IRQ is sharing with the other device.

7.10.6Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved.
1-0	UART1_CLK_SEL	R/W	LRESET#	0	Select the clock source for UART1. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.

7.10.79bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADDR	R/W	LRESET#	00h	broadcast address. Following description determines the g 1. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.10.89bit-mode Slave Address Mask Register — Index F5h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADEN	R/W	LRESET#	00h	broadcast address. Following description determines the gas address: If bit n of SADEN SADDR is don't care. 4. broadcast address: If bit n of ORe that bit. The remaining bit which is address. Ex.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care s "1" is compared to the received
					SADDR SADEN	0101_1100b
						1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.10.9FIFO Select Register — Index F6h

Bit	Name	R/W	Reset	Default	Description
7	TX_DEL_1BIT	R/W	LREST#	0	0: TX will start transmit immediately after writing THR.
,	TX_DEL_1011	17///	LREST#	U	1: TX will delay 1 bit time to transmit after writing THR.
6	TX_INT_MODE	R/W	LRESET#	0	0: TX will assert interrupt when THR is empty.
	TX_IIV1_WODE	TX_IIVI_INIOBE TVV ERECET#			1: TX will assert interrupt when THR and shift register is empty.
	5-4 RXFTHR_MODE R/W LRESET#			The RX FIFO threshold select.	
				0	00: FIFO threshold is set by RXFTHR.
5-4			LRESET#		01: FIFO threshold will be 2X of RXFTHR.
					10: FIFO threshold will be 4X of RXFTHR.
					11: FIFO threshold will be 8X of RXFTHR.
					IRQ_MODE1 and IRQ_MODE0 will select the UART1 interrupt mode if IRQ
					sharing is enabled.
					00 : Sharing IRQ active low Level mode.
3	IRQ_MODE1	R/W	LREST#		01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
2	Reserved	-	-	-	Reserved.
					Select the FIFO depth.
		00: 16-byte FIFO.		00: 16-byte FIFO.	
1-0	FIFO_MODE	R/W	LRESET#	00h	01: 32-byte FIFO.
					10: 64-byte FIFO.
					11: 128-byte FIFO.

7.11 UART2 Device Configuration Registers (LDN CR11)

"-" Reserved or Tri-State

Register 0x[HEX]	Register Name	Default Value									
	Negister Name	MSB	1			LSB					
30	Device Enable Register	-	-	-	-	-	-	-	1		

60	Base Address High Register	0	0	0	0	0	0	1	0
61	Base Address Low Register	1	1	1	1	1	0	0	0
F0	IRQ Share Register	-	-	-	-	0	0	1	1
F2	Clock Select Register	0	0	0	0	-	-	0	0
F4	9bit-mode Slave Address Register	-	-	-	-	-	-	0	0
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0
F0	IRQ Share Register	0	0	0	0	0	0	0	0
F6	FIFO Mode Register	0	0	0	0	0	-	0	0

7.11.1UART 2 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	_	-	Reserved
0	0 UART2_EN	R/W	LRESET#	1 1	0: disable UART 2 I/O Port.
U					1: enable UART 2 I/O Port.

7.11.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	02h	The MSB of UART 2 base address.

7.11.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-1	BASE_ADDR_LO	R/W	LRESET#	F8h	The LSB of UART 2 base address.

7.11.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description	
7-4	Reserved	-	-	-	Reserved.	
3-0	SELUR12RQ	R/W	LRESET#	3h	Select the IRQ channel for UART 2.	

7.11.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
7	9BIT_MODE	R/W	LRESET#	0	0: normal UART function 1: enable 9-bit mode (multi-drop mode). In the 9-bit mode, the parity bit becomes the address/data bit.
6	AUTO_ADDR	R/W	LRESET#	0	This bit works only in 9-bit mode. 0: the SM2 bit will be cleared by host, so that data could be received. 1: the SM2 bit will be cleared by hardware according to the sent address and the given address (or broadcast address derived by SADDR and SADEN)
5	RS485_INV	R/W	LRESET#	0	Invert RTS# if RS485_EN is set.

4	RS485_EN	R/W	LRESET#	0	0: RS232 driver. 1: RS485 driver. RTS# is driven high automatically when transmitting data, otherwise is kept low.
3-2	Reserved	-	-	-	Reserved.
					IRQ_MODE1 and IRQ_MODE0 will select the UART2 interrupt mode if IRQ sharing is enabled.
		R/W	LRESET#		00 : Sharing IRQ active low Level mode.
1 IRQ_MODE0	IRQ_MODE0				01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
0	IRQ SHARE	R/W	LRESET#	0	0 : IRQ is not sharing with the other device.
J	0 IRQ_SHARE		LRESE I#	U	1 : IRQ is sharing with the other device.

7.11.6Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved.
1-0	UART2_CLK_SEL	R/W	LRESET#	00b	Select the clock source for UART2. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.

7.11.79bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADDR	R/W	LRESET#	00h	broadcast address in 9-bit mode. The broadca Following description determines the 5. given address: If bit n of SADE SADDF 6. broadcast address: If bit n of ORG that bit. The remaining bit whi	N will determine the given address and a UART will response to both given and st address. given address and broadcast address: in is "0", then the corresponding bit of a is don't care. and SADDR and SADEN is "0", don't care in it is compared to the received address. Ex. 0101_1100b 1111_1001b 0101_1xx0b 1111_11x1b

7.11.89bit-mode Slave Address Mask Register — Index F5h

Bit	Name	R/W	Reset	Default	Desc	cription
7:0	SADEN	R/W	LRESET#	00h	broadcast address in 9-bit mode. The broadcast address. Following description determines the graph of the gra	
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.11.9FIFO Select Register — Index F6h

Bit	Name	R/W	Reset	Default	Description
7	TX_DEL_1BIT	R/W	LRESET#	0	0: TX will start transmit immediately after writing THR.
			_	_	1: TX will delay 1 bit time to transmit after writing THR.
6	TX_INT_MODE	R/W	LRESET#	0	0: TX will assert interrupt when THR is empty.
				_	1: TX will assert interrupt when THR and shift register is empty.
		The RX FIFO threshold select.		The RX FIFO threshold select.	
				00: FIFO threshold is set by RXFTHR.	
5-4	RXFTHR_MODE	R/W	LRESET#	0	01: FIFO threshold will be 2X of RXFTHR.
					10: FIFO threshold will be 4X of RXFTHR.
					11: FIFO threshold will be 8X of RXFTHR.
					IRQ_MODE1 and IRQ_MODE0 will select the UART2 interrupt mode if IRQ
					sharing is enabled.
					00 : Sharing IRQ active low Level mode.
3	IRQ_MODE1	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
2	Reserved	-	LRESET#	-	Reserved.
					Select the FIFO depth.
					00: 16-byte FIFO.
1-0	FIFO_MODE	D_MODE R/W LREST# 00h 01: 32-byte FIFO.		01: 32-byte FIFO.	
					10: 64-byte FIFO.
					11: 128-byte FIFO.

7.12 UART3 Device Configuration Registers (LDN CR12)

"-" Reserved or Tri-State

Register 0x[HEX]	Dogistov Namo	Default Value								
	Register Name	MSB					LSB			
30	Device Enable Register	-	-	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	1	1	

61	Base Address Low Register	1	1	1	0	1	0	0	0
F0	IRQ Share Register	-	-	-	-	0	0	1	1
F2	Clock Select Register	0	0	0	0	-	-	0	0
F4	9bit-mode Slave Address Register	-	-	-	-	-	-	0	0
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0
F0	IRQ Share Register	0	0	0	0	0	0	0	0
F6	FIFO Mode Register	0	0	0	0	0	1	0	0

7.12.1 UART 3 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description			
7-1	Reserved	-	-	-	Reserved			
0	UART3_EN	R/W	LRESET#	1	0: disable UART 3 I/O Port. 1: enable UART 3 I/O Port.			

7.12.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	03h	The MSB of UART 3 base address.

7.12.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	E8h	The LSB of UART 3 base address.

7.12.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description	
7-4	Reserved	-	-	-	Reserved.	
3-0	SELUART3IRQ	R/W	LRESET#	3h	Select the IRQ channel for UART 3.	

7.12.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
7	9BIT_MODE	R/W	LRESET#	0	0: normal UART function 1: enable 9-bit mode (multi-drop mode). In the 9-bit mode, the parity bit becomes the address/data bit.
6	AUTO_ADDR	R/W	LRESET#	0	This bit works only in 9-bit mode. 0: the SM2 bit will be cleared by host, so that data could be received. 1: the SM2 bit will be cleared by hardware according to the sent address and the given address (or broadcast address derived by SADDR and SADEN)
5	RS485_INV	R/W	LRESET#	0	Invert RTS# if RS485_EN is set.
4	RS485_EN	R/W	LRESET#	0	0: RS232 driver. 1: RS485 driver. RTS# is driven high automatically when transmitting data, otherwise is kept low.

3-2	Reserved	-	-	-	Reserved.
					IRQ_MODE1 and IRQ_MODE0 will select the UART3 interrupt mode if IRQ sharing is enabled.
1 IRQ_MODE0				00 : Sharing IRQ active low Level mode.	
	IRQ_MODE0	R/W	LRESET#		01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
0 IRQ SHARE		R/W	LRESET#	0	0 : IRQ is not sharing with other device.
<u> </u>	0 INQ_SHARE				1 : IRQ is sharing with other device.

7.12.6Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description			
7-2	Reserved	-	-	-	Reserved.			
1-0	UART3_CLK_SEL	R/W	LRESET#	00b	Select the clock source for UART3. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.			

7.12.79bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADDR	R/W	LRESET#		broadcast address. Following description determines the g 9. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.12.89bit-mode Slave Address Mask Register — Index F5h

Bit	Name	R/W	Reset	Default	Desc	cription
7:0	SADEN	R/W	LRESET#	00h	broadcast address. Following description determines the gamma. 11. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.12.9FIFO Select Register — Index F6h

Bit	Name	R/W	Reset	Default	Description
7	TX_DEL_1BIT	R/W	LRESET#	0	0: TX will start transmit immediately after writing THR.
-				_	1: TX will delay 1 bit time to transmit after writing THR.
6	TX_INT_MODE	R/W	LRESET#	0	0: TX will assert interrupt when THR is empty.
Ŭ	1//		LINEOL III	Ŭ	1: TX will assert interrupt when THR and shift register is empty.
					The RX FIFO threshold select.
					00: FIFO threshold is set by RXFTHR.
5-4	RXFTHR_MODE	R/W	LRESET#	0	01: FIFO threshold will be 2X of RXFTHR.
					10: FIFO threshold will be 4X of RXFTHR.
					11: FIFO threshold will be 8X of RXFTHR.
					IRQ_MODE1 and IRQ_MODE0 will select the UART3 interrupt mode if IRQ
					sharing is enabled.
					00 : Sharing IRQ active low Level mode.
3	IRQ_MODE1	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
2	Reserved	-	1	-	Reserved.
					Select the FIFO depth.
					00: 16-byte FIFO.
1-0	FIFO_MODE	DDE R/W LRESET# 00h 01: 32-byte FIFO.		01: 32-byte FIFO.	
	_				10: 64-byte FIFO.
					11: 128-byte FIFO.

7.13 UART4 Device Configuration Registers (LDN CR13)

"-" Reserved or Tri-State

Register 0x[HEX]	Dogistar Nama	Default Value								
	Register Name	MSB	}		LSB					
30	Device Enable Register	-	-	-	-	-	-	-	1	
60	Base Address High Register	0	0	0	0	0	0	1	0	

61	Base Address Low Register	1	1	1	0	1	0	0	0
70	IRQ Channel Select Register	1	-	-	-	0	0	1	1
F0	IRQ Share Register	0	0	0	0	-	-	0	0
F2	Clock Select Register	1	-	-	-	-	-	0	0
F4	9bit-mode Slave Address Register	0	0	0	0	0	0	0	0
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0
F6	FIFO Mode Register	0	0	0	0	0	ı	0	0

7.13.1UART 4 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	1	-	Reserved
0	UART4_EN	R/W	LRESET#	1	0: disable UART 4 I/O Port. 1: enable UART 4 I/O Port.

7.13.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	03h	The MSB of UART 4 base address.

7.13.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	E8h	The LSB of UART 4 base address.

7.13.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELUART4IRQ	R/W	LRESET#	3h	Select the IRQ channel for UART 4.

7.13.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	eset Default Description	
7	9BIT_MODE	R/W	LRESET#	0	0: normal UART function 1: enable 9-bit mode (multi-drop mode). In the 9-bit mode, the parity bit becomes the address/data bit.
6	AUTO_ADDR	R/W	LRESET#	0	This bit works only in 9-bit mode. 0: the SM2 bit will be cleared by host, so that data could be received. 1: the SM2 bit will be cleared by hardware according to the sent address and the given address (or broadcast address derived by SADDR and SADEN)
5	RS485_INV	R/W	LRESET#	0	Invert RTS# if RS485_EN is set.
4	RS485_EN	R/W	LRESET#	0	0: RS232 driver. 1: RS485 driver. RTS# is driven high automatically when transmitting data, otherwise is kept low.

3-2	Reserved	-	LRESET#	-	Reserved.
					IRQ_MODE1 and IRQ_MODE0 will select the UART4 interrupt mode if IRQ sharing is enabled.
					00 : Sharing IRQ active low Level mode.
1	IRQ_MODE0	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.
					10 : Sharing IRQ active high Level mode.
					11 : Reserved.
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).
0	IRQ SHARE	R/W	V LRESET#	0	0 : IRQ is not sharing with other device.
	II.Q_OLIANL	17/44		J	1 : IRQ is sharing with other device.

7.13.6Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved.
1-0	UART4_CLK_SEL	R/W	LRESET#	00b	Select the clock source for UART4. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.

7.13.79bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADDR	R/W	LRESET#		broadcast address. Following description determines the game 13. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
				SADDR	0101_1100b	
					SADEN	1111_1001b
					Given Address	0101_1xx0b
				Broadcast Address	1111_11x1b	

7.13.89bit-mode Slave Address Mask Register — Index F5h

This byte accompanying with SADDR will determine		Name R/W	Reset	Default	Desc	cription
broadcast address in 9-bit mode. The UART will rebroadcast address. Following description determines the given address 15. given address: If bit n of SADEN is "0", then the SADDR is don't care. 16. broadcast address: If bit n of ORed SADDR at that bit. The remaining bit which is "1" is compaddress. Ex. SADDR SADDR SADEN Given Address Broadcast Address	0	SADEN R/W	LRESET#	00h	broadcast address in 9-bit mode. The broadcast address. Following description determines the control of the second	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care

7.13.9FIFO Select Register — Index F6h

	7.13.9FIFO Select Register — Index F6n						
Bit	Name	R/W	Reset	Default	Description		
7	TX_DEL_1BIT	R/W	LRESET#	0	0: TX will start transmit immediately after writing THR.		
,	TX_DEL_TDIT	1000	LKESE1#	0	1: TX will delay 1 bit time to transmit after writing THR.		
6	TX_INT_MODE	R/W	LRESET#	0	0: TX will assert interrupt when THR is empty.		
U	TX_IIVT_MODE	1000	LKESE1#	0	1: TX will assert interrupt when THR and shift register is empty.		
					The RX FIFO threshold select.		
					00: FIFO threshold is set by RXFTHR.		
5-4	RXFTHR_MODE	R/W	LRESET#	0	01: FIFO threshold will be 2X of RXFTHR.		
					10: FIFO threshold will be 4X of RXFTHR.		
					11: FIFO threshold will be 8X of RXFTHR.		
					IRQ_MODE1 and IRQ_MODE0 will select the UART4 interrupt mode if IRQ		
					sharing is enabled.		
					00 : Sharing IRQ active low Level mode.		
3	IRQ MODE1	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.		
			EREOE III	Ü	10 : Sharing IRQ active high Level mode.		
					-		
					11 : Reserved.		
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).		
2	Reserved	-	-	-	Reserved.		
					Select the FIFO depth.		
					00: 16-byte FIFO.		
1-0	FIFO_MODE	R/W	LRESET#	00h	01: 32-byte FIFO.		
	0022				10: 64-byte FIFO.		
					11: 128-byte FIFO.		

7.14 UART5 Device Configuration Registers (LDN CR14)

"-" Reserved or Tri-State

Register 0x[HEX]	Devietes News				Defa	ult Valu	ıe		
	Register Name	MSB						LSB	_
30	Device Enable Register	-	-	-	-	-	-	-	0
60	Base Address High Register	0	0	0	0	0	0	0	0
61	Base Address Low Register	0	0	0	0	0	0	0	0
70	IRQ Channel Select Register	-	-	-	-	0	0	1	1
F0	IRQ Share Register	0	0	0	0	-	-	0	0
F2	Clock Select Register	0	0	0	0	-	-	0	0
F4	9bit-mode Slave Address Register	-	-	-	-	-	-	0	0
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0
F0	IRQ Share Register	0	0	0	0	0	0	0	0
F6	FIFO Mode Register	0	0	0	0	0	-	0	0

7.14.1 UART 5 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
0	UART5 EN	R/W	L DECET#	0	0: disable UART 5 I/O Port.
U	UARTS_EN	FC/VV	LRESET#		1: enable UART 5 I/O Port.

7.14.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	00h	The MSB of UART 5 base address.

7.14.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	00h	The LSB of UART 5 base address.

7.14.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description
7-4	Reserved	-	-	-	Reserved.
3-0	SELUART5IRQ	R/W	LRESET#	3h	Select the IRQ channel for UART 5.

7.14.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	Default	Description
					0: normal UART function
7	9BIT MODE	R/W	LRESET#	0	1: enable 9-bit mode (multi-drop mode).
	_				In the 9-bit mode, the parity bit becomes the address/data bit.

6	AUTO_ADDR	R/W	LRESET#	0	This bit works only in 9-bit mode. 0: the SM2 bit will be cleared by host, so that data could be received. 1: the SM2 bit will be cleared by hardware according to the sent address and the given address (or broadcast address derived by SADDR and SADEN)	
5	RS485_INV	R/W	LRESET#	0	Invert RTS# if RS485_EN is set.	
4	RS485_EN	R/W	LRESET#	0	0: RS232 driver. 1: RS485 driver. RTS# is driven high automatically when transmitting data, otherwise is kept low.	
3-2	Reserved	-	LRESET#	- Reserved.		
1	IRQ_MODE0	R/W	LRESET#	0	IRQ_MODE1 and IRQ_MODE0 will select the UART5 interrupt mode if IRQ sharing is enabled. 00 : Sharing IRQ active low Level mode. 01 : Sharing IRQ active high edge mode. 10 : Sharing IRQ active high Level mode. 11 : Reserved. This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).	
0	IRQ_SHARE	R/W	LRESET#	0	0 : IRQ is not sharing with other device. 1 : IRQ is sharing with other device.	

7.14.6Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	-	-	-	Reserved.
1-0	UART5_CLK_SEL	R/W	LRESET#	00b	Select the clock source for UART5. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.

7.14.79bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Description			
7-0	SADDR	R/W	LRESET#		broadcast address. Following description determines the gamma. 17. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care		
					SADDR	0101_1100b		
					SADEN	1111_1001b		
					Given Address	0101_1xx0b		
				Broadcast Address	1111_11x1b			

7.14.89bit-mode Slave Address Mask Register — Index F5h

Bit	Name	R/W	Reset	Default	Desc	cription
7:0	SADEN	R/W	LRESET#	00h	broadcast address. Following description determines the gamma 19. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.14.9FIFO Select Register — Index F6h

l 							
Bit	Name	R/W	Reset	Default	Description		
7	TX_DEL_1BIT	R/W	LRESET#	0	0: TX will start transmit immediately after writing THR.		
,	IX_DEL_IBII	FX/ V V	LRESET#	U	1: TX will delay 1 bit time to transmit after writing THR.		
6	TX_INT_MODE	R/W	LRESET#	0	0: TX will assert interrupt when THR is empty.		
U	TX_IIVT_IVIODE	1000	LKESEI#	U	1: TX will assert interrupt when THR and shift register is empty.		
					The RX FIFO threshold select.		
					00: FIFO threshold is set by RXFTHR.		
5-4	RXFTHR_MODE	R/W	LRESET#	0	01: FIFO threshold will be 2X of RXFTHR.		
					10: FIFO threshold will be 4X of RXFTHR.		
					11: FIFO threshold will be 8X of RXFTHR.		
					IRQ_MODE1 and IRQ_MODE0 will select the UART5 interrupt mode if IRQ		
					sharing is enabled.		
					00 : Sharing IRQ active low Level mode.		
3	IRQ_MODE1	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.		
					10 : Sharing IRQ active high Level mode.		
					11 : Reserved.		
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).		
2	Reserved	-	-	-	Reserved.		
					Select the FIFO depth.		
					00: 16-byte FIFO.		
1-0	FIFO_MODE	R/W	LRESET#	00h	01: 32-byte FIFO.		
					10: 64-byte FIFO.		
					11: 128-byte FIFO.		

7.15 UART6 Device Configuration Registers (LDN CR15)

"-" Reserved or Tri-State

Register 0x[HEX]	Pogistor Namo			[Default Value										
Register ux[nex]	Register Name	MSB		•	•			LSB							
30	Device Enable Register	-	-	-	-	-	-	-	0						
60	Base Address High Register	0	0	0	0	0	0	0	0						
61	Base Address Low Register	0	0	0	0	0	0	0	0						
70	IRQ Channel Select Register	-	-	-	-	0	0	1	1						
F0	IRQ Share Register	0	0	0	0	0	0	0	0						
F1	IR Mode Register	-	-	-	0	0	1	0	0						
F2	Clock Select Register	-	-	-	0	0	0	0	0						
F4	9bit-mode Slave Address Register	-	-	-	-	-	-	0	0						
F5	9bit-mode Slave Address Mask Register	0	0	0	0	0	0	0	0						
F0	IRQ Share Register	0	0	0	0	0	0	0	0						
F6	FIFO Mode Register	0	0	0	0	0	-	0	0						

7.15.1UART 6 Device Enable Register — Index 30h

Bit	Name	R/W	Reset	Default	Description
7-1	Reserved	-	-	-	Reserved
0	UART6 EN	R/W	LRESET#	0	0: disable UART 6 I/O Port.
0	UARTO_EN	IK/VV	LRESE I#		1: enable UART 6 I/O Port.

7.15.2Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_HI	R/W	LRESET#	00h	The MSB of UART 6 base address.

7.15.3Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	00h	The LSB of UART 6 base address.

7.15.4IRQ Channel Select Register — Index 70h

Bit	Name	R/W	Reset	Default	Description	
7-4	Reserved	-	-	-	Reserved.	
3-0	SELUART6IRQ	R/W	LRESET#	3h	Select the IRQ channel for UART 6.	

7.15.5IRQ Share Register — Index F0h

Bit	Name	R/W	Reset	Default	Description	
					0: normal UART function	
7	9BIT_MODE	R/W	LRESET#	_	1: enable 9-bit mode (multi-drop mode).	
					In the 9-bit mode, the parity bit becomes the address/data bit.	
					This bit works only in 9-bit mode.	
6	AUTO ADDR	R/W	LRESET#	0	0: the SM2 bit will be cleared by host, so that data could be received.	
	AOTO_ADDIX	1000	LKLOL1#		1: the SM2 bit will be cleared by hardware according to the sent address and	
					the given address (or broadcast address derived by SADDR and SADEN)	
5	RS485_INV	R/W	LRESET#	0	=	
					0: RS232 driver.	
4	RS485_EN	R/W	LRESET#	0	1: RS485 driver. RTS# is driven high automatically when transmitting	
					data, otherwise is kept low.	
3	DVW4C ID	DAA		0	0 : No reception delay when SIR is changed from TX to RX.	
3	RXW4C_IR	R/W	LRESET#	U	1 : Reception delay 4 character-time when SIR is changed from TX to RX.	
2	TXW4C_IR	R/W	LRESET#	0	data, otherwise is kept low. 0 : No reception delay when SIR is changed from TX to RX.	
	TXW4C_IX	17///	LRESET#	U	1: RS485 driver. RTS# is driven high automatically when transmitting data, otherwise is kept low. 0: No reception delay when SIR is changed from TX to RX. 1: Reception delay 4 character-time when SIR is changed from TX to RX. 0: No transmission delay when SIR is changed from RX to TX. 1: Transmission delay 4 character-time when SIR is changed from RX to TX. IRQ_MODE1 and IRQ_MODE0 will select the UART5 interrupt mode if IRQ	
					IRQ_MODE1 and IRQ_MODE0 will select the UART5 interrupt mode if IRQ	
					sharing is enabled.	
					00 : Sharing IRQ active low Level mode.	
1	IRQ_MODE0	R/W	LRESET#	0	01 : Sharing IRQ active high edge mode.	
					10 : Sharing IRQ active high Level mode.	
					11 : Reserved.	
					This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).	
0	IRQ SHARE	R/W	LRESET#	0	0 : IRQ is not sharing with other device.	
	ind_oninte	1000	LINESE I#	U	1 : IRQ is sharing with other device.	

7.15.6IR Mode Select Register — Index F1h

	111010111110			,							
Bit	Name	R/W	Reset	Default	Description						
7-5	Reserved	-	-	-	Reserved. Return 010b when read.						
4-3	IRMODE1 IRMODE0	R/W	LRESET#	00b	0X: Disable IR1 function. 10 : Enable IR1 function, active pulse is 1.6uS. 11 : Enable IR1 function, active pulse is 3/16 bit time.						
2	HDUPLX	R/W	LRESET#	1	0 : Full Duplex function for IR self test. 1 : Half Duplex function. Return 1 when read.						
1	TXINV_IR	R/W	LRESET#	0	0 : IRTX is not inversed. 1 : Inverse the IRTX.						
0	RXINV_IR	R/W	LRESET#	0	0 : IRRX is not inversed. 1 : Inverse the IRRX.						

7.15.7Clock Register — Index F2h

Bit	Name	R/W	Reset	Default	Description
7-2	Reserved	1	1	-	Reserved.

1-0	UART6_CLK_SEL	R/W	LRESET#	00b	Select the clock source for UART6. 00: 1.8432MHz. 01: 18.432MHz. 10: 24MHz. 11: 14.769MHz.
-----	---------------	-----	---------	-----	--

7.15.89bit-mode Slave Address Register — Index F4h

Bit	Name	R/W	Reset	Default	Desc	cription
7-0	SADDR	R/W	LRESET#	00h	broadcast address. Following description determines the g 21. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
			 -		Broadcast Address	1111_11x1b

7.15.99bit-mode Slave Address Mask Register — Index F5h

Bit	Name	R/W	Reset	Default	Desc	cription
7:0	SADEN	R/W	LRESET#	00h	broadcast address. Following description determines the g 23. given address: If bit n of SADEN SADDR is don't care.	UART will response to both given and given address and broadcast address: is "0", then the corresponding bit of ed SADDR and SADEN is "0", don't care
					SADDR	0101_1100b
					SADEN	1111_1001b
					Given Address	0101_1xx0b
					Broadcast Address	1111_11x1b

7.15.10 FIFO Select Register — Index F6h

Bit	Name	R/W	Reset	Default	Description	
7	TX DEL 1BIT	R/W	LRESET#		· · · · · · · · · · · · · · · · · · ·	
,	1X_BEE_1B11	1000	EREOL1#	Ŭ	Description 0: TX will start transmit immediately after writing THR. 1: TX will delay 1 bit time to transmit after writing THR. 0: TX will assert interrupt when THR is empty. 1: TX will assert interrupt when THR and shift register is empty. The RX FIFO threshold select. 00: FIFO threshold is set by RXFTHR. 0 01: FIFO threshold will be 2X of RXFTHR. 10: FIFO threshold will be 4X of RXFTHR. 11: FIFO threshold will be 8X of RXFTHR.	
6	TY INT MODE	D/M/	LRESET# 0	0	0: TX will assert interrupt when THR is empty.	
O	TX_INT_WODE	: INT MODE 18/M 1 DECET# 1 () 1		1: TX will assert interrupt when THR and shift register is empty.		
					The RX FIFO threshold select.	
					00: FIFO threshold is set by RXFTHR.	
5-4	RXFTHR_MODE	R/W	LRESET#	0	01: FIFO threshold will be 2X of RXFTHR.	
					10: FIFO threshold will be 4X of RXFTHR.	
					11: FIFO threshold will be 8X of RXFTHR.	

3	IRQ_MODE1	R/W	LRESET#	0	IRQ_MODE1 and IRQ_MODE0 will select the UART5 interrupt mode if IRQ sharing is enabled. 00 : Sharing IRQ active low Level mode. 01 : Sharing IRQ active high edge mode. 10 : Sharing IRQ active high Level mode. 11 : Reserved. This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1).	
2	Reserved	-	-	-	This bit is effective at IRQ is sharing with the other device (IRQ_SHARE, bit 1). Reserved.	
1-0	FIFO_MODE	R/W	LRESET#	00h	Select the FIFO depth. 00: 16-byte FIFO. 01: 32-byte FIFO. 10: 64-byte FIFO. 11: 128-byte FIFO.	

8. Electrical Characteristics

8.1 Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Power Supply Voltage	-0.5 to 5.5	V
Input Voltage	-0.5 to VDD+0.5	V
Operating Temperature	-40 to +85 (F81866-I) 0 to +70 (F81866)	°C
Storage Temperature	-55 to 150	° C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device

8.2 DC Characteristics

(T_A = 70° C, 3VCC = 3.3V \pm 10%, GND = 0V)

Parameter	Conditions	MIN	TYP	MAX	Unit
3VCC Voltage Range		3.0	3.3	3.6	V
5VSB Voltage Range		4.5	5.0	5.5	V
3VSB Voltage Range		3.0	3.3	3.6	V
VBAT Voltage Range		2.4	3.0	3.6	V
3VCC Average Operating Current			20		mA
5VSB Average Operating Current			10		mA
5VSB Standby Current			3		mA
3VSB Average Operating Current			3		mA
3VSB Standby Current			1		mA
VBAT Standby Current			1		uA
3VCC Power on Reset Threshold			2.8		V
5VSB Power on Reset Threshold			4.3		V
3VSB Power on Reset Threshold			2.8		V
Temperature Error Demete Diede	$60^{\circ}\text{C} < \text{T}_{\text{D}} < 100^{\circ}\text{C}, 3\text{VSB} = 3.0\text{V to }3.6\text{V}$		± 1	± 3	°C
Temperature Error, Remote Diode	$0 ^{\circ}\text{C} < \text{T}_{\text{D}} < 60 ^{\circ}\text{C}$ $100 ^{\circ}\text{C} < \text{T}_{\text{D}} < 127 ^{\circ}\text{C}$		± 2	± 5	C
Temperature Resolution			1		°C
Diada sauras aurrent	High Level		95		uA
Diode source current	Low Level		10		uA

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
IN	IN _{st} -TTL level input pin with schmitt trigger.						
Input Low Voltage	VIL			8.0	V		
Input High Voltage	VIH	2.0			V		
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μΑ	VIN = 0V	
IN _{st, Iv} -Lov	IN _{st, Iv} -Low volgate, TTL level input pin with schmitt trigger.						
Input Low Voltage	VIL			0.4	V		
Input High Voltage	VIH	1.0			V		
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μА	VIN = 0V	
	IN _{t,5V} -TTL level input pin, 5V tolerance.						
Input Low Voltage	VIL			8.0	V		

Input High Voltage	VIH	2.0			V		
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μΑ	VIN = 0V	
		put pin v	with sch	mitt trigge	1	rance.	
Input Low Voltage	VIL			0.8	V		
Input High Voltage	VIH	2.0			V		
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1	<u> </u>		μΑ	VIN = 0V	
IN _{t, u47, 5V} -TTL level input pin, pull up 47k Ω , 5V tolerance.							
Input Low Voltage	VIL	0.0		0.8	V		
Input High Voltage	VIH	2.0		. 4	V	\(\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\	
Input High Leakage	ILIH	.i.ai4la () Ai	+1	μA	VIN = VDD	
		in with t	1	k/source c			
Output High Current	IOL		-8		mA	VOH = 2.4V	
Output Low Current	IOL Output r	in with 1	+8	ak/course	mA	VOL = 0.4V	
		in with		nk/source			
Output High Current Output Low Current	IOL		-12 +12		mA mA	VOH = 2.4V VOL = 0.4V	
·		in with 1		nk/source			
Output High Current	IOL	in with	-14	INSOUICE	mA	VOH = 2.4V	
Output Low Current	IOL		+14		mA	VOL = 0.4V	
		in with 1		nk/source			
Output High Current	IOL	/// W/(// /	-16	INSOUICE	mA	VOH = 2.4V	
Output Low Current	IOL		+16		mA	VOL = 0.4V	
OD _{14,5v} -Open		ut nin w		L Δ sink can			
Output Low Current	IOL		+14	A SIIIK Cap	mA	VOL = 0.4V	
OD _{16,u10} -Open drai		in with 1		ık capabili		l .	
Output Low Current	IOL		+16	п саравт	mA	VOL = 0.4V	
OD _{12,5V} -Open		put pin w		A sink cap		ı	
Output Low Current	IOL		+12		mA	VOL = 0.4V	
OD _{24t,5v} -Open	drain out	put pin w	ith 24 m	A sink cap	ability, 5	V tolerance.	
Output Low Current	IOL		+24	•	mA	VOL = 0.4V	
OOD _{12, 5v} - Open drain or pu	sh pull by	the regi	ster, witl	n 12 mA si	nk/sourc	e capability, 5V tolerance.	
Output High Current	IOL		-12		mA	VOH = 0.4V	
Output Low Current	IOL		+12		mA	VOL = 0.4V	
I/O _{12st,5v} -TTL level bi-direction		schmitt	trigger,	with 12 mA	sink/so	urce capability, 5V tolerance.	
Input Low Voltage	VIL			0.8	V		
Input High Voltage	VIH	2.0			V		
Output High Current	IOL		-12		mA	VOH = 2.4V	
Output Low Current	IOL		+12		mA	VOL = 0.4V	
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μΑ	VIN = 0V	
I/O _{8st, 5v} -TTL level bi-directional pin with schmitt trigger, with 8 mA sink/source capability, 5V tolerance.							
Input Low Voltage	VIL	ļ	ļ	0.8	V		
Input High Voltage	VIH	2.0	ļ		V		
Output High Current	IOL	ļ	-8		mA	VOH = 2.4V	
Output Low Current	IOL	ļ	+8		mA	VOL = 0.4V	
Input High Leakage	ILIH	1		+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1	••••		μΑ	VIN = 0V	
I/OOD _{12st, 5v} -TTL level bi-directional pin with schmitt trigger, output with 12 mA sink/source capability or open drain with 12mA sink capability, 5V tolerance.							
Innut Law Vettage	T T	in with 1	∠mA sınl İ			erance.	
Input Ligh Voltage	VIL	2.0		0.8	V		
Input High Voltage	VIH	2.0	<u> </u>		V		

0.10.1151.0.001	101	l	40			1/011 0 41/	
Output High Current	IOL		-12		mA	VOH = 2.4V	
Output Low Current	IOL		+12		mA .	VOL = 0.4V	
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μА	VIN = 0V	
I/OOD _{14st, 5v} -TTL level bi-directional pin with schmitt trigger, output with 14 mA sink/source capability or open drain with 14mA sink capability, 5V tolerance.							
		n with 1	4mA sını	1		rance.	
Input Low Voltage	VIL			0.8	V		
Input High Voltage	VIH	2.0			V	1/2/1	
Output High Current	IOL		-14		mA	VOH = 2.4V	
Output Low Current	IOL		+14		mA .	VOL = 0.4V	
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μΑ	VIN = 0V	
I/OOD _{8st, 5v} -TTL level bi-direction	-			-		sink/source capability or open	
		8mA sin	k capab	lity, 5V tol		<u> </u>	
Input Low Voltage	VIL			0.8	V		
Input High Voltage	VIH	2.0			V		
Output High Current	IOL		-8		mA	VOH = 2.4V	
Output Low Current	IOL		+8		mA	VOL = 0.4V	
Input High Leakage	ILIH			+1	μΑ	VIN = VDD	
Input Low Leakage	ILIL	-1			μΑ	VIN = 0V	
I/OD _{16st,5v} -TTL level bi-direction	al pin with			-	n output	with16 mA sink capability, 5V	
	T	to	olerance			T	
Input Low Voltage	VIL			0.8	V		
Input High Voltage	VIH	2.0			V		
Output Low Current							
	IOL		+16		mA	VOL = 0.4V	
Input High Leakage	ILIH		+16	+1	μΑ	VIN = VDD	
Input Low Leakage	ILIH ILIL	-1			μ Α μ Α	VIN = VDD VIN = 0V	
•	ILIH ILIL	with sch	mitt trig	ger, open d	μΑ μΑ drain out	VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct	ILIH ILIL tional pin	with sch	mitt trig	ger, open o V toleranc	μΑ μΑ drain out e.	VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage	ILIH ILIL tional pin Vt-	with sch cap	mitt trig	ger, open d	μΑ μΑ drain out e. V	VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage	ILIH ILIL tional pin Vt- Vt+	with sch	mitt triggability, 5	ger, open o V toleranc	μΑ μΑ drain out e.	VIN = VDD VIN = 0V put with 12mA source-sink	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current	ILIH ILIL tional pin Vt-	with sch cap	mitt trig	ger, open o V toleranc	μΑ μΑ drain out e. V	VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage	ILIH ILIL tional pin Vt- Vt+	cap	mitt triggability, 5	ger, open o V toleranc	μΑ μΑ drain out e. V	VIN = VDD VIN = 0V put with 12mA source-sink	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current	ILIH ILIL tional pin Vt- Vt+ IOL	with sch cap	mitt triggability, 5	ger, open o V toleranc 0.8	μΑ μΑ drain out e. V V mA	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage I/O _{16st} - TTL level	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL bi-directic	2.0 -1	mitt triggability, 5	ger, open o V toleranc 0.8 +1 mitt trigge	μΑ μΑ drain out e. V MA μΑ μΑ μΑ μΑ μΑ	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage Input Low Leakage Input Low Threshold Voltage	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL	2.0 -1	mitt triggability, 5	ger, open o V toleranc 0.8 +1	μΑ μΑ drain out e. V V mA μΑ	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage I/O _{16st} - TTL level	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL bi-directic	2.0 -1	mitt triggability, 5	ger, open o V toleranc 0.8 +1 mitt trigge	μΑ μΑ drain out e. V MA μΑ μΑ μΑ μΑ μΑ	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage Input Low Leakage Input Low Threshold Voltage	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL bi-direction Vt-	2.0	mitt triggability, 5	ger, open o V toleranc 0.8 +1 mitt trigge	μΑ μΑ drain out e. V mA μΑ μΑ μΑ μΑ μΑ γ, 16 mA	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage I/O _{16st} - TTL level Input Low Threshold Voltage Input High Threshold Voltage	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL bi-direction Vt- Vt+	2.0	mitt triggability, 5	ger, open o V toleranc 0.8 +1 mitt trigge	μΑ μΑ drain out e. V MA μΑ μΑ μΑ μΑ μΑ γ, 16 mA V	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V sink capability.	
Input Low Leakage I/OD _{12st, 5v} - TTL level bi-direct Input Low Threshold Voltage Input High Threshold Voltage Output Low Current Input High Leakage Input Low Leakage Input Low Leakage Input Low Threshold Voltage Input High Threshold Voltage Output High Current	ILIH ILIL tional pin Vt- Vt+ IOL ILIH ILIL bi-directio Vt- Vt+ IOH	2.0	mitt triggability, 5 +12 and schi	ger, open o V toleranc 0.8 +1 mitt trigge	μΑ μΑ drain out e. V mA μΑ μΑ μΑ ν μΑ ν σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	VIN = VDD VIN = 0V put with 12mA source-sink VOL = 0.4V VIN = VDD VIN = 0V sink capability. VOH = 2.4V	

9. Ordering Information

Part Number	Package Type	Production Flow		
F81866D-I	128-LQFP Green Package	Industrial, -40°C to +85°C		
F81866D	128-LQFP Green Package	Commercial, 0°C to +70°C		

10.Top Marking Specification

The version identification is shown as the bold red characters. Please refer to below for detail:

1st Line: Fintek Logo

 $2^{
m nd}$ Line: Device Name where last alphabet always means package code & -I means the industrial item ightarrow

F81866D/F81866D-I

- 3rd Line: Assembly Plant Code (X) + Assembled Year Code (X) + Week Code (XX) + Fintek Internal Code (XX) + IC Version (X) where A means version A, B means version B, ...
- 4th Line: Wafer Fab Code (XXXX...XX)
 - : Pin 1 Identifier

11.Package Dimensions

8888888888888888888888888888888888

TOP VIEW

124X e

4X aga H T-U Z

PIN1 CORNER

E/2

Feature Integration Technology Inc.

E1

E1/2

Headquarters

3F-7, No 36, Tai Yuan St.,

Chupei City, Hsinchu, Taiwan 302, R.O.C.

TEL: 886-3-5600168 FAX: 886-3-5600166

www: http://www.fintek.com.tw

eee NOTES:

ddd

- 1.JEDEC NO. : N/A.
- 2.DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

0.07

- 3.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION, ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE, DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H .
- 4.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

Taipei Office

Bldg. K4, 7F, No.700, Chung Cheng Rd., Chungho City, Taipei, Taiwan 235, R.O.C.

TEL: 866-2-8227-8027 FAX: 866-2-8227-8037

Please note that all datasheet and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this datasheet belong to their respective owner

12.Application Circuit

Rev Code>

FAN CONTROL FOR PWM OR DC

