WHAT IS CLAIMED IS:

1. A compound of structural formula I:

a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:

n is 0, 1, or 2;

a and b are each independently chosen from a double bond and a single bond;

- X and Y are each independently chosen from hydrogen, halogen, hydroxy, C₁₋₄ alkoxy, hydroxymethyl, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms; or
- X and Y, together with the carbon atom to which they are attached, can optionally form a C₃₋₆ cycloalkyl group;
- R¹ is chosen from hydrogen, carbonyl(C₁₋₃ alkyl), hydroxy, C₁₋₄ alkoxy, halogen, hydroxymethyl, (C₀₋₆ alkyl)₂amino, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms;
- R⁴ is chosen from halogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CH₂)_n-phenyl, and (CH₂)_n-naphthyl; and
- wherein R⁴ is optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio; or
- R⁴, together with the carbon atom to which it is attached, form a carbonyl or a cyclopropyl group and provided that a represents a single bond; or
- R¹ and R⁴, together with the atoms to which they are attached, form a 5- or 6-membered ring system optionally containing an additional heteroatom chosen from O, S, and NC₁₋₄ alkyl;

R² is hydrogen or C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁₋₄ alkoxy, and C₁₋₄ alkylamino; R³ is selected from

- (CH₂)_n-aryl, wherein said aryl is optionally substituted with one or more substituents independently chosen from R⁵, and
- (CH₂)_n-heteroaryl, wherein said heteroaryl is optionally substituted with one or more substituents independently chosen from R⁵;
- C₁₋₁₀ alkyl, wherein said C₁₋₁₀ alkyl is optionally substituted with one or more substituents independently chosen from R⁶; or
- R² and R³, together with the nitrogen atom to which they are attached, form a 5- or 6-membered saturated ring fused with a 5- or 6-membered aromatic ring system having 0, 1, or 2 heteroatoms selected from N, O, and S; and
- wherein any methylene (CH₂) carbon atom in (CH₂)_n is optionally substituted with one or more groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl optionally substituted with one or more halogen moieties; or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;
- R^5 is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, (carbonyl)₀₋₁C₂₋₁₀ alkenyl, (carbonyl)₀₋₁C₂₋₁₀ alkynyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁,

C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, heterocycloalkyl,

C₁₋₄acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₀₋₁₀ alkylamino C₀₋₁₀ alkylaminocarbonyl, di-(C₁₋₁₀ alkyl)amino C₀₋₁₀ alkyl, arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (arylC₀₋₁₀ alkyl)2amino C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

(C3-8 cycloalkyl C0-10 alkyl)2amino C0-10 alkyl,

(C₃₋₈ heterocyclyl C₀₋₁₀ alkyl)2amino C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino,

(C₁₋₁₀ alkyl)₂aminocarbonylamino, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino,

C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino,

 $(C_{1-10} \text{ alkyl})_{2}$ aminocarbonyl $C_{0-10} \text{ alkyl}$, (aryl $C_{1-10} \text{ alkyl})_{1-2}$ aminocarbonyl $C_{0-10} \text{ alkyl}$, $C_{0-10} \text{ alkyl}$, alkyl aminocarbonyl $C_{0-10} \text{ alkyl}$,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂ aminocarbonyl,

(aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl,

C₀₋₁₀ alkyl carbonylamino(C₀₋₁₀ alkyl), C₀₋₁₀ alkoxy carbonylamino(C₀₋₁₀ alkyl),

carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy C₃₋₈ cycloalkyl, C₁₋₁₀ alkoxy,

C₁₋₁₀alkyloxy C₀₋₁₀alkyl, C₁₋₁₀ alkylcarbonyloxy, C₀₋₁₀alkyl carbonylC₀₋₁₀alkoxy,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy, C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy,

aryl C₀₋₁₀ alkylcarbonyloxy, C₁₋₁₀ alkylcarbonyloxy amino,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy amino, aryl C₀₋₁₀ alkylcarbonyloxy amino,

(C₁₋₁₀ alkyl)₂aminocarbonyloxy, (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy,

(C₃₋₈ heterocyclyl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy,

(C3-8 cycloalkyl C0-10alkyl)₁₋₂aminocarbonyloxy, hydroxy (carbonyl)₀₋₁C₀₋₁₀alkyl,

hydroxycarbonylC₀₋₁₀alkoxy, hydroxycarbonylC₀₋₁₀alkyloxy, C₁₋₁₀ alkylthio,

C₁₋₁₀ alkylsulfinyl, aryl C₀₋₁₀ alkylsulfinyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfinyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfinyl, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfonyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfonyl,

C₁₋₁₀ alkylsulfonylamino, aryl C₁₋₁₀ alkylsulfonylamino,

 C_{3-8} heterocyclyl C_{1-10} alkylsulfonylamino, C_{3-8} cycloalkyl C_{1-10} alkylsulfonylamino, cyano, nitro, perfluoro C_{1-6} alkyl, and perfluoro C_{1-6} alkoxy;

wherein R⁵ is optionally substituted with one or more groups chosen from: OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O_b(C₁-10)perfluoroalkyl, and NH₂; and

R⁶ is halogen, hydroxy, C₁₋₄ alkoxy, CONH₂, and C₁₋₄ alkylamino, wherein R⁶ is optionally substituted with one or more groups chosen from: OH, (C₁₋₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O_b(C₁₋₁₀)perfluoroalkyl, NH₂, and -O_b(C₁₋₁₀)alkyl optionally substituted with one or more halogen moieties.

The compound of Claim 1, wherein R³ is chosen from
(CH₂)_n-aryl, wherein said aryl is optionally substituted with one or more substituents
independently chosen from R⁵, and
(CH₂)_n-heteroaryl, wherein said heteroaryl is optionally substituted with one or more
substituents independently chosen from R⁵.

- 3. The compound of Claim 2, wherein in R³, said aryl is chosen from phenyl, naphthyl, tetrahydro-naphthyl, indanyl, and biphenyl, and wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 4. The compound of Claim 3, wherein said aryl is chosen from phenyl, and naphthyl and wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 5. The compound of Claim 2, wherein in R³, said heteroaryl is chosen from azabenzimidazole, acridinyl, carbazolyl, cinnolinyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinolyl, quinoxalinyl, isoquinolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, oxadiazolyl, triazolyl, imidizopyridinyl, tetrazolyl, and indanyl; wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 6. The compound of Claim 5, wherein said heteroaryl is chosen from azabenzimidazole, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinolyl, quinoxalinyl, isoquinolyl, thienyl, imidazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidyl, pyrazinyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, triazolyl, imidizopyridinyl, and tetrazolyl; wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 7. The compound of Claim 1, wherein R¹ is chosen from hydrogen, and C₁₋₃ alkyl optionally substituted with one to seven fluorine atoms.

- 8. The compound of Claim 7, wherein R¹ is chosen from hydrogen and methyl.
- 9. The compound of Claim 1, wherein R⁴ is chosen halogen, C₁₋₆ alkyl, and (CH₂)_n-phenyl, wherein R⁴ is optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio.
- 10. The compound of Claim 9, wherein R^4 is chosen from halogen and C_{1-6} alkyl, optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C_{1-4} alkoxy, and C_{1-4} alkylthio.
 - 11. The compound of Claim 10, wherein R⁴ is CH₃.
- 12. The compound of Claim 1, wherein R⁴, together with the carbon atom to which it is attached, forms a carbonyl or a cyclopropyl group.
- 13. The compound of Claim 12, wherein R⁴, together with the carbon atom to which it is attached, forms a cyclopropyl group.
- 14. The compound of Claim 1, wherein R⁵ is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₁₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₁₋₁₀ alkyl carbonyl C₀₋₁₀ alkyl, C₁₋₁₀ alkyl carbonyl C₀₋₁₀ alkyl, C₁₋₁₀ alkyl, C₀₋₁₀ alkyl, C

CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O_b(C₁₋₁₀)perfluoroalkyl, and NH₂.

15. The compound of Claim 14, wherein R² is chosen from hydrogen and C₁₋₄ alkyl, optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁₋₄ alkoxy, and C₁₋₄ alkylamino.

16. The compound of Claim 1, selected from:

```
N-[3-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(5-cyanopyrid-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[6-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[3-cyano-pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(3-methyl-benzimidazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-\text{nitro-benzimidazol-}2-\text{yl}) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(1,3-\text{benzothiazol-}2-y1) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(4-chloro-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-methyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-methoxy-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(5,6-dimethyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(4-methyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-fluoropyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(2-methyl-3-bromo-pyrid-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N,N-methyl(pyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-methylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[5-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-chloropyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(1,3-\text{pyrimid}-2-\text{yl}) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(1,3-\text{pyrazin-}4-\text{yl}) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(benzimidazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(2-methyl-pyrid-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(pyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(pyridin-3-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(pyridin-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
```

```
N-[(3-carboxamido)-pyridin-6-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-cyanopyridin-3-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-methylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-aminopyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[(6-trifluoromethyl)-pyrid-3-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-ethylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-fluoro-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(2-ethylpyridin-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(2-ethylpyridin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(2-methyl-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(pyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(pyridin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(6-cyanopyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(6-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(6-aminopyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -[(6-trifluoromethyl)-pyrid-3-yl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide:
N -(2-chloro-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(5-fluoro-pyrid-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(6-ethylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(5-cyclopropyl-1,3,4-thiadiazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(2-methyl-3-bromo-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide:
N, N-methyl(pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(5-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[5-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(5-chloropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide:
N -(1,3-pyrimid-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(1,3-pyrazin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(5-fluoropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(benzimidazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[(5-carboxyl)-pyrid-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[(4-carboxyl)phenyl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[(4-carboxyl-3-chloro)phenyl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[2-chloro(4-methoxycarbonyl)phenyl]-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
```

- N -(1,3-pyrimid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-[5-(ethoxycarbonyl) -1,3-thiazol-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -[4-(trifluoromethyl)-5-(ethoxycarbonyl) -1,3-thiazol-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -[4-hydroxy-5-(ethoxycarbonyl) -1,3-pyrimid-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -(6-methylpyridin-2-yl)-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -[(4-carboxamido)phenyl] -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(2-methyl-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -(pyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -(4,6-dimethylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(benzimidazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -(6-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(6-cyanopyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(5-fluoropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -(5-chloropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-[5-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -[(5-carboxyl)-pyrid-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-[(5-cyclopropyl-1,3,4-thiadiazol-2-yl] 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[4,6-dimethyl-pyridin-2-yl] 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-(benzimidazol-2-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[5-cyano-pyridin-2-yl] 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide:
- N-(1,3-pyrimid-4-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[3-methyl-pyridin-2-yl] 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[(5-carboxamido)pyrid2-1] -- 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-(isoquinolin-3-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[6-(trifluoromethyl)pyridin-2-yl]- 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-(4-azabenzimidazol-2-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-(1H-imidazo[4,5-b] pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide; and pharmaceutically acceptable salts and stereoisomers thereof.
- 17. The use of the compound of any one of Claims 1-16 or a pharmaceutically acceptable salt or stereoisomer thereof in the preparation of a medicament for the treatment or prevention

of a condition selected from: weakened muscle tone, osteoporosis, osteopenia, glucocorticoid-induced osteoporosis, periodontal disease, bone fracture, bone damage following bone reconstructive surgery, sarcopenia, frailty, aging skin, male hypogonadism, postmenopausal symptoms in women, atherosclerosis, hypercholesterolemia, hyperlipidemia, obesity, aplastic anemia, hematopoietic disorders, arthritic condition and joint repair, HIV-wasting, prostate cancer, cancer cachexia, muscular dystrophies, Alzheimer's disease, cognitive decline, sexual dysfunction, sleep apnea, benign prostate hyperplasia, depression, premature ovarian failure, and autoimmune disease, in a mammal in need thereof.

- 18. The use of Claim 17, wherein said condition is osteoporosis.
- 19. A pharmaceutical composition comprising a compound of any one of Claims 1-16 or a salt or stereoisomer thereof and a pharmaceutically acceptable carrier.
- A composition of Claim 19, further comprising an active ingredient selected from: an estrogen or an estrogen derivative, alone or in combination with a progestin or progestin derivative, a bisphosphonate, an antiestrogen or a selective estrogen receptor modulator, an $\alpha \beta$ 3 integrin receptor antagonist, a cathepsin K inhibitor, n HMG-CoA reductase inhibitor, an osteoclast vacuolar ATPase inhibitor, an antagonist of VEGF binding to osteoclast receptors, an activator of peroxisome proliferator-activated receptor γ , calcitonin, a calcium receptor antagonist, parathyroid hormone or analog thereof, a growth hormone secretagogue, human growth hormone, insulin-like growth factor, a p38 protein kinase inhibitor, bone morphogenetic protein, an inhibitor of BMP antagonism, a prostaglandin derivative, vitamin D or vitamin D derivative, vitamin K or vitamin K derivative, ipriflavone, fluoride salts, dietary calcium supplements, and osteoprotegerin.
 - 21. A composition of Claim 21, wherein said bisphosphonate is alendronate.
- 22. A process for making a pharmaceutical composition comprising combining a compound according to any one of Claims 1 to 16 or salt or stereoisomer thereof and a pharmaceutically acceptable carrier.
- 23. A method of Claim 17, wherein the arthritic condition is selected from rheumatoid arthritis and osteoarthritis.