NEWTON RAPHSON METHOD

Dr. M. Mesbahuddin Sarker IIT,JU

Newton-Raphson Method

Let x_0 be an approximate root of the equation f(x) = 0 and

Let $\mathbf{x} = \mathbf{x}_0 + \mathbf{h}$ be an exact root so that $f(\mathbf{x}_0 + \mathbf{h}) = 0$, where \mathbf{h} being a small quantity. Now expanding $f(\mathbf{x}_0 + \mathbf{h})$ by Taylor's series, we get –

$$f(x_0+h)=f(x_0)+hf'(x_0)+\frac{\hbar^2}{2!}hf''(x_0)+......$$

$$f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) = 0 \quad : \quad x_0 + h = 0$$

Since h is very small, neglecting the second and higher order terms of h, we obtain an approximate value of h say h from the above equation.

$$f(x_0) + h_1 f'(x_0) = 0 \Rightarrow h_1 = -\frac{f(x_0)}{f'(x_0)}$$
(1)

A better approximation than x_0 is therefore may lie at x_1 where

$$\mathbf{x_1} = \mathbf{x_0} + \mathbf{h_1}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 from (1)

Now using x_1 in the place of x_0 and x_2 in the place of x_1 we get

Now replace x_1 for x_0 and x_2 for x_1

 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$, which is little better than before e.g. x_1 .

Similarly

 $X_3 = x_2 \ \ \text{-} \frac{f(x_2)}{f'(x_2)}$, which is little better than $x_2.$

....

Continuing like this, we iterate this process until

$$X_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$
, where $n = 0,1,2,3,...$

This method of successive approximation is called the Newton-Raphson Method.

The method can be used for both algebraic and transcendental equations and works for complex equation with complex coefficients.

Ex: Find the root of $2x^3-3x-6=0$ by NR method correct to five decimal places.

Sol:

Let
$$f(x) = 2x^3 - 3x - 6$$

 $f'(x) = 6x^2 - 3$

here,
$$f(1)=-7<0$$

$$f(2) = 4 > 0$$

So, at least one root lies between 1 and 2, let $x_0=1.5\,$

By NR method, we get,

$$egin{aligned} x_{n+1} &= x_n - rac{f(x_n)}{f'(x_n)} \ &= x_n - rac{2x_n^3 - 3x_n - 6}{6x_n^2 - 3} \ &= rac{x_n(6x_n^2 - 3) - (2x_n^3 - 3x_n - 6)}{6x_n^2 - 3} \ &= rac{6x_n^3 - 3x_n - 2x_n^3 + 3x_n + 6}{6x_n^2 - 3} \ &= rac{4x_n^3 + 6}{6x_n^2 - 3} \end{aligned}$$

From (i) putting $x_0=1.5\,\mathrm{we}$ get

$$x_1 = \frac{4(1.5)^3 + 6}{6(1.5)^2 - 3} = 1.8571$$
 $x_2 = \frac{4(1.8571)^3 + 6}{6(1.8571)^2 - 3} = 1.7871$
 $x_3 = \frac{4(1.7871)^3 + 6}{6(1.7871)^2 - 3} = 1.7838$
 $x_4 = \frac{4(1.7838)^3 + 6}{6(1.7838)^2 - 3} = 1.7838$

Hence the required root is 1.7838.

Ex: $x^3-6x+4=0$ Correct to five decimal places by NR method.

Sol:

Let
$$f(x)=x^3-6x+4$$
 $f'(x)=3x^2-6$

here,
$$f(0)=4>0$$
 $f(1)=-1<0$

So at least one root lies between 0 and 1, let $x_0=0.5$

By NR method we get,

$$egin{aligned} x_{n+1} &= x_n - rac{f(x_n)}{f'(x_n)} \ &= x_n - rac{x_n^3 - 6x_n + 4}{3x_n^2 - 6} \ &= rac{x_n(3x_n^2 - 6) - (x_n^3 - 6x_n + 4)}{3x_n^2 - 6} \ &= rac{3x_n^3 - 6x_n - x_n^3 + 6x_n - 4}{3x_n^2 - 6} \ &= rac{2x_n^3 - 4}{3x_n^2 - 6} \quad ...(i) \end{aligned}$$

Taking $x_0 = 0.5$ the relation (i) gives

$$x_{1} = \frac{2(0.5)^{3} - 4}{3(0.5)^{2} - 6} = \frac{2(0.125) - 4}{3(0.25) - 6} = \frac{0.25 - 4}{0.75 - 6} = \frac{-3.75}{-5.25} = 0.71428$$

$$x_{2} = \frac{2(0.71428)^{3} - 4}{3(0.71428)^{2} - 6} = \frac{2(0.3644) - 4}{3(0.5099) - 6} = \frac{0.7288 - 4}{1.5297 - 6} = \frac{-3.2712}{-4.4703} = 0.73189$$

$$x_{3} = \frac{2(0.73189)^{3} - 4}{3(0.73189)^{2} - 6} = \frac{2(0.3923) - 4}{3(0.5357) - 6} = \frac{0.7846 - 4}{1.6071 - 6} = \frac{-3.2154}{-4.3929} = 0.73205$$

$$x_{4} = \frac{2(0.73205)^{3} - 4}{3(0.73205)^{2} - 6} = \frac{2(0.3926) - 4}{3(0.5360) - 6} = \frac{0.7852 - 4}{1.6080 - 6} = \frac{-3.2148}{-4.3920} = 0.73205$$

So the required root is 0.73205.

Ex: $3x - \cos(x) - 1 = 0$ by NR method correct to six decimal places.

Sol:

Let
$$f(x) = 3x - \cos(x) - 1$$

 $f'(x) = 3 + \sin(x)$

Here,
$$f(0) = -1 - 1 = -2 < 0$$
 $f(1) = 3 - \cos(1) - 1 = 2 - 0.5403 = 1.4597 > 0$

So one root lies between 0 and 1.

Iteration 1:

•
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

•
$$x_1 = 0.5 - \frac{3(0.5) - \cos(0.5) - 1}{3 + \sin(0.5)}$$

• $x_1 \approx 0.607097$

Iteration 2:

•
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

• $x_2 \approx 0.607102$

Iteration 3:

•
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

• $x_3 \approx 0.607102$

So the answer is 0.607102

Ex: Find the root of $\cos x - xe^x = 0$ by NR.

Sol:

Let
$$f(x) = \cos x - xe^x$$
 $f'(x) = -\sin x - e^x - xe^x$ $f(0) = 1 > 0$ $f(1) = -2.17798 < 0$

By NR method we get,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - \frac{\cos x_n - x_n e^{x_n}}{-\sin x_n - e^{x_n} - x_n e^{x_n}}$$

$$= \frac{-x_n \sin x_n - x_n e^{x_n} - x_n^2 e^{x_n} - \cos x_n + x_n e^{x_n}}{-\sin x_n - e^{x_n} - x_n e^{x_n}}$$

$$= \frac{-x_n^2 e^{x_n} - x_n \sin x_n - \cos x_n}{-\sin x_n - e^{x_n} - x_n e^{x_n}}$$

$$= \frac{x_n^2 e^{x_n} + x_n \sin x_n + \cos x_n}{\sin x_n + e^{x_n} + x_n e^{x_n}}$$

$$= \frac{x_n^2 e^{x_n} + x_n \sin x_n + \cos x_n}{\sin x_n + e^{x_n} + x_n e^{x_n}}$$
 (1)

Taking $x_0=0.5$ in eqn. (1),

$$egin{align*} x_1 &= rac{(0.5)^2 e^{0.5} + 0.5 \sin 0.5 + \cos 0.5}{\sin 0.5 + e^{0.5} + 0.5 e^{0.5}} = 0.51803 \ x_2 &= rac{(0.51803)^2 e^{0.51803} + 0.51803 \sin 0.51803 + \cos 0.51803}{\sin 0.51803 + e^{0.51803} + 0.51803 e^{0.51803}} = 0.51776 \ x_3 &= rac{(0.51776)^2 e^{0.51776} + 0.51776 \sin 0.51776 + \cos 0.51776}{\sin 0.51776 + e^{0.51776} + 0.51776 e^{0.51776}} pprox 0.51776 \end{split}$$

So the required root is 0.51776.

Ex:
$$x \log_{10} x - 1.2 = 0$$
 [Five decimal $\implies f(2), f(3)$]

Let:

$$\begin{split} f(x) &= x \log_{10} x - 1.2 \\ f'(x) &= \log_{10} x + x \cdot \frac{1}{x \ln 10} = \log_{10} x + \frac{1}{\ln 10} \\ f(2) &= 2 \log_{10} 2 - 1.2 = 2(0.3010) - 1.2 = 0.6020 - 1.2 = -0.5979 < 0 \\ f(3) &= 3 \log_{10} 3 - 1.2 = 3(0.4771) - 1.2 = 1.4313 - 1.2 = 0.2313 > 0 \end{split}$$

By NR method:

$$egin{aligned} x_{n+1} &= x_n - rac{f(x_n)}{f'(x_n)} \ & \ x_{n+1} &= x_n - rac{x_n \log_{10} x_n - 1.2}{\log_{10} x_n + rac{1}{\ln 10}} \end{aligned}$$

By putting $x_0=2.5$

$$egin{align*} x_1 &= 2.5 - rac{2.5 \log_{10} 2.5 - 1.2}{\log_{10} 2.5 + rac{1}{\ln 10}} = 2.7465 \ &x_2 &= 2.7465 - rac{2.7465 \log_{10} 2.7465 - 1.2}{\log_{10} 2.7465 + rac{1}{\ln 10}} = 2.7406 \ &x_3 &= 2.7406 - rac{2.7406 \log_{10} 2.7406 - 1.2}{\log_{10} 2.7406 + rac{1}{\ln 10}} = 2.7406 \ \end{aligned}$$

So the one root is 2.7406.