III. kolo kategorie Z9

Z9–III–1

Adéla napsala na tabuli dvě kladná celá čísla a dala Lukášovi a Petrovi za úkol určit kladný rozdíl druhých mocnin těchto dvou čísel. Lukáš místo toho určil druhou mocninu rozdílu daných dvou čísel. Vyšlo mu tak číslo o 4038 menší než Petrovi, který výpočet provedl správně.

Která dvě čísla mohla Adéla napsat na tabuli? Určete všechny možnosti.

(L. Růžičková)

Z9-III-2

Na ostrově žijí dva druhy domorodců: Poctivci, kteří vždy mluví pravdu, a Lháři, kteří vždy lžou. Když cizinec potkal tři domorodce, Alana, Bruna a Ctibora, zeptal se jich, do které skupiny patří.

Alan sdělil: "Bruno je Lhář."

Bruno řekl: "Alan a Ctibor jsou buď oba Lháři, anebo oba Poctivci."

Ctibor se nevyjádřil.

Mohl cizinec u některého z těchto domorodců s jistotou určit, jestli je Poctivec, či Lhář? $(M.\ Volfová)$

Z9-III-3

Když číslo X vydělím číslem Y, dostanu číslo Z a zbytek 27. Když číslo X vydělím číslem Z, dostanu číslo $1,1 \cdot Y$ a zbytek 3.

Která čísla X, Y, Z vyhovují uvedeným podmínkám? Určete všechny možnosti.

(L. Hozová)

Z9-III-4

Je dána kružnice se středem S a poloměrem 39 mm. Do kružnice máme vepsat trojúhelník ABC tak, aby velikost strany AC byla 72 mm a bod B ležel v polorovině určené přímkou AC a bodem S.

Ze zadaných údajů vypočtěte, jakou velikost má mít výška trojúhelníku ABC z vrcholu B, aby úloha měla dvě řešení. Popište všechny možnosti. (M. Krejčová)

III. kolo kategorie Z9

Z9–III–1

Adéla napsala na tabuli dvě kladná celá čísla a dala Lukášovi a Petrovi za úkol určit kladný rozdíl druhých mocnin těchto dvou čísel. Lukáš místo toho určil druhou mocninu rozdílu daných dvou čísel. Vyšlo mu tak číslo o 4038 menší než Petrovi, který výpočet provedl správně.

Která dvě čísla mohla Adéla napsat na tabuli? Určete všechny možnosti.

(L. Růžičková)

Možné řešení. Čísla napsaná na tabuli označíme a a b, přičemž budeme předpokládat, že $a \ge b$. Ze zadání postupně plyne

$$(a-b)^2 = a^2 - b^2 - 4038,$$

$$a^2 - 2ab + b^2 = a^2 - b^2 - 4038,$$

$$2ab - 2b^2 = 4038,$$

$$b(a-b) = 2019,$$

kde čísla b a a-b jsou podle předpokladů kladná.

Rozklad čísla 2019 na prvočinitele je $3 \cdot 673$. Číslo 2019 lze proto vyjádřit jako součin dvou kladných celých čísel následujícími způsoby:

$$2019 = 1 \cdot 2019 = 2019 \cdot 1 = 3 \cdot 673 = 673 \cdot 3.$$

Pořadí součinitelů zdůrazňujeme kvůli všem možným přiřazením b a a-b. Odpovídající dvojice čísel (a,b) jsou $(2\,020,1)$, $(2\,020,2\,019)$, (676,3) a (676,673).

Hodnocení. 1 bod za sestavení výchozí rovnice; 2 body za úpravu do tvaru součinu; 1 bod za rozklad na prvočinitele; 2 body za určení vyhovujících dvojic.

Při jiném postupu řešení hodnoťte 2 body za určení vyhovujících dvojic a 4 body za kvalitu komentáře, zejména zdůvodnění, že víc řešení neexistuje.

Z9–III–2

Na ostrově žijí dva druhy domorodců: Poctivci, kteří vždy mluví pravdu, a Lháři, kteří vždy lžou. Když cizinec potkal tři domorodce, Alana, Bruna a Ctibora, zeptal se jich, do které skupiny patří.

Alan sdělil: "Bruno je Lhář."

Bruno řekl: "Alan a Ctibor jsou buď oba Lháři, anebo oba Poctivci."

Ctibor se nevyjádřil.

Mohl cizinec u některého z těchto domorodců s jistotou určit, jestli je Poctivec, či Lhář? $(M.\ Volfová)$

Možné řešení. Nejprve předpokládejme, že Alan je Poctivec. V takovém případě by jeho výrok byl pravdivý a Bruno by byl Lhář. Brunův výrok by tedy nebyl pravdivý a to by

znamenalo, že Alan a Ctibor by patřili do různých skupin. Protože Alan je Poctivec, Ctibor by byl Lhář.

Nyní předpokládejme, že Alan je Lhář. V takovém případě by jeho výrok nebyl pravdivý a Bruno by byl Poctivec. Brunův výrok by tedy byl pravdivý a to by znamenalo, že Alan a Ctibor by patřili do stejné skupiny. Protože Alan je Lhář, Ctibor by byl také Lhář.

S jistotou lze určit, že Ctibor je Lhář.

Jiné řešení. Uvažme všechny možné případy, kdy u každého ze tří domorodců (A, B, C) uvažujeme každý ze dvou případů (P, L). Celkem dostáváme osm možností, které postupně porovnáme s výroky Alana a Bruna. Případný spor s některým z těchto výroků je vyznačen v posledním řádku tabulky:

A	Р	Р	Р	P	L	L	L	L
В	Р	Р	L	L	P	Р	L	L
С	P	L	P	L	P	L	P	L
spor s	A	АВ	В		В	·	A	АВ

S jistotou lze určit, že Ctibor je Lhář.

Hodnocení. 2 body za správný závěr; 4 body za kvalitu komentáře.

Z9–III–3

Když číslo X vydělím číslem Y, dostanu číslo Z a zbytek 27. Když číslo X vydělím číslem Z, dostanu číslo $1,1 \cdot Y$ a zbytek 3.

Která čísla $X,\,Y,\,Z$ vyhovují uvedeným podmínkám? Určete všechny možnosti.

(L. Hozová)

Možné řešení. Ze zadání máme dvě rovnosti:

$$X = Y \cdot Z + 27 = 1.1 \cdot Y \cdot Z + 3.$$

Úpravami druhé rovnosti dostáváme $0,1 \cdot Y \cdot Z = 24$, tedy $Y \cdot Z = 240$. Dosazením zpět zjišťujeme, že X = 267.

Dělení se zbytkem se týká celých čísel. Všechna čísla X, Y, Z a $1,1\cdot Y$ proto musí být celá. Odtud zejména plyne, že číslo Y musí být násobkem 10. Zbytek po dělení je menší než dělitel. Proto musí být $Z \ge 4$ a $Y \ge 28$, což spolu s předchozím závěrem dává $Y \ge 30$.

Z rovnosti $Y\cdot Z=240$ a požadavku $Z\geqq 4$ dostáváme $Y\leqq 240: 4=60$. Obdobně z požadavku $Y\geqq 30$ dostáváme $Z\leqq 240: 30=8$. Takto jsme odhalili dvě vyhovující dvojice čísel Y a Z. Všechna řešení dostaneme systematickým rozborem možností v rámci uvedených omezení:

Y	30	40	50	60
Z	8	6		4

Vyhovující trojice čísel (X, Y, Z) jsou (267,30,8), (267,40,6) a (267,60,4).

Hodnocení. Po 1 bodu za vyjádření $Y \cdot Z = 240$ a X = 267; po 1 bodu za každé ze tří řešení; 1 bod za kvalitu komentáře.

Poznámka. V uvedeném řešení lze s výhodou využít prvočíselný rozklad $240 = 2^4 \cdot 3 \cdot 5$.

Z9–III–4

Je dána kružnice se středem S a poloměrem 39 mm. Do kružnice máme vepsat trojúhelník ABC tak, aby velikost strany AC byla 72 mm a bod B ležel v polorovině určené přímkou AC a bodem S.

Ze zadaných údajů vypočtěte, jakou velikost má mít výška trojúhelníku ABC z vrcholu B, aby úloha měla dvě řešení. Popište všechny možnosti. (M. Krejčová)

Možné řešení. Velikost strany AC je vskutku menší než průměr kružnice, tedy tato strana neobsahuje střed S. Výška trojúhelníku ABC z vrcholu B může být libovolně malá, ale nemůže být libovolně velká: tato výška je největší, právě když obsahuje střed S. V takovém případě má úloha jediné řešení (odpovídající trojúhelník je rovnoramenný) a velikost výšky je rovna velikosti úsečky PB_0 jako na obrázku:

Velikost PB_0 je rovna součtu velikostí úseček PS a SB_0 . Velikost úsečky SB_0 je rovna poloměru kružnice, tj. 39 mm. Velikost úsečky PS určíme pomocí Pythagorovy věty v pravoúhlém trojúhelníku APS:

$$|PS| = \sqrt{|AS|^2 - |AP|^2} = \sqrt{39^2 - 36^2} = \sqrt{225} = 15 \text{ (mm)}.$$

Tedy mezní velikost výšky je 39+15=54 (mm). Úloha má dvě řešení, pokud je výška z vrcholu B menší než 54 mm (a větší než 0 mm).

Hodnocení. 3 body za vyjádření mezní hodnoty; 3 body za rozbor možností a kvalitu komentáře.

Odpovědi založené na odhadu nebo měření z narýsovaného obrázku hodnoťte 0 body.