1/21

Lecture 4

Linear stability of parallel flows I

AE209 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline

2/21

- 1. Concept of parallel flows
- 2. Linearised equation for inviscid parallel shear flows
- 3. Normal mode solution
- 4. When does an instability occur?

Lecture outline 3/21

1. Concept of parallel flows

- i formation the military of the state of the
- in some of the contract of the

Parallel shear flows

4/21

Parallel shear flows

The flow configuration, the base flow of which is given by

$$\mathbf{U} = (U(y), 0, 0)$$

Examples

Plane Couette flow, Poiseulle flow, Pipe flow, and etc.

Lecture outline 6/21

2. Linearised equation for inviscid parallel shear flows

7/21

Euler equation

$$\nabla \cdot \mathbf{u} = 0$$
Consider
$$\mathbf{u}(x, y, z, t) = (U(y), 0, 0) + \varepsilon \mathbf{u}'(x, y, z, t),$$

$$p(x, y, z, t) = P(x, y) + \varepsilon p'(x, y, z, t)$$

 $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p$

and neglect the terms at $\mathit{O}(\varepsilon^2)$. Then,

$$\Delta \circ \vec{n} = D$$

$$\frac{2F}{9\vec{n}_1} + (\vec{n} \cdot \Delta)\vec{n}_1 + (\vec{n} \cdot \Delta)\vec{n} = -\Delta b$$

9/21

1) Equation for wall-normal velocity

$$\nabla^{2} \cdot \left[\frac{\partial v'}{\partial t} + U \frac{\partial v'}{\partial x} = -\frac{\partial p'}{\partial y} \right] \qquad \frac{\partial}{\partial y} \nabla^{2} p = -2 \frac{dU}{dy} \frac{\partial v}{\partial x} \right]$$

$$\left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \nabla^2 - \frac{d^2 U}{dy^2} \frac{\partial}{\partial x} \right] v' = 0$$

9

10/21

2) Equation for wall-normal vorticity

$$\eta' = \frac{\partial u'}{\partial z} - \frac{\partial w'}{\partial x}$$

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \eta' = -\frac{dU}{dy} \frac{\partial v'}{\partial z}$$

= Use continuity to retrieve

11/21

Velocity and vorticity form of linearised Euler equation

$$\left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \nabla^2 - \frac{d^2 U}{dy^2} \frac{\partial}{\partial x} \right] v' = 0$$

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \eta' + \frac{dU}{dy} \frac{\partial v'}{\partial z} = 0$$

with the boundary condition,

$$v' = \eta' = 0$$
 at solid boundary and/or the far field

and the initial condition,

$$v'(x, y, z, t = 0) = v'_0(x, y, z)$$

$$\eta'(x, y, z, t = 0) = \eta'_0(x, y, z)$$

Lecture outline	12/21
3. Normal mode solution	

Normal mode solution

14/21

For example,

$$\frac{\partial v'}{\partial t} = \frac{\partial}{\partial t} \left(\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right) = -\overline{\lambda} \stackrel{\sim}{\mathcal{N}} \stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t}.$$

$$\frac{\partial^{2} U}{\partial t} = \frac{\partial^{2} U}{\partial t} \left(\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right) = -\overline{\lambda} \stackrel{\sim}{\mathcal{N}} \stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t}.$$

$$\frac{\partial^{2} U}{\partial x} \stackrel{\sim}{\partial x} = \frac{\partial^{2} U}{\partial x} \stackrel{\sim}{\mathcal{N}} \left[\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right] = \overline{\lambda} \stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t}.$$

$$\nabla^{2} v' = \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \right] \left(\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right)$$

$$= \left[- \mathcal{A}^{2} + \frac{\partial^{2}}{\partial y^{2}} \right] \left(\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right)$$

$$= \left[- \mathcal{A}^{2} + \frac{\partial^{2}}{\partial y^{2}} \right] \left(\stackrel{\sim}{\mathcal{N}} e^{\overline{\lambda} \partial x - \lambda \omega t} \right)$$

Normal mode solution

13/21

Consider two-dimensional case such that

$$\left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \nabla^2 - \frac{d^2 U}{dy^2} \frac{\partial}{\partial x} \right] v' = 0$$

 $\frac{1}{2} - a^2 x = 6$ $\Rightarrow x = ce^{\lambda t}$

Then, the normal mode solution takes the following form:

Assure

 $\frac{v'(x,y,t) = \widetilde{v}(y)e^{i(\alpha x - \omega t)} + \underline{c.c}}{\text{complex conjugate}}$ where $\alpha \in R$ and $\omega \in C$. Complex

Real. Complex Known. Unknown.

(Prescribed)

Rayleigh equation

15/21

Rayleigh equation

Remark

Let $\omega = \alpha c$ and $D \equiv d/dy$. Then, we get

$$(U-c)(D^2-\alpha^2)\widetilde{v}-D^2U\widetilde{v}=0$$
 eigenfunction with the boundary condition, Prescribed by a real pumber.
$$\widetilde{v}=0 \quad \text{at solid boundary and/or the far field}$$

 $\widetilde{v}=0$ at solid boundary and/or the far field

If $\alpha \in R$ is given, then $c \in C$ becomes unknown with \widetilde{v} , resulting in eigenvalue problem.

Lecture outline

17/21

r ggarnyr iir aranii fu se

4. When does an instability occur?

When does an instability occur?

Theorem: Rayleigh inflection point criterion (Triverse is NOT true)

If there exist perturbations with $c_i > 0$, then d^2U/dy^2 must be zero at some $y \in \Omega$ ($\Omega = [a,b]$ is the flow domain in y).

Proof Assume $C_{\overline{x}} > 0$ Complex conjugate of $\overline{U} = 0$ by $\overline{U} = 0$

Rayleigh inflection point criterion

20/21

Remark 1

The presence of some inflection points is a necessary condition for linear instability.

Remark 2

The presence of an infection point is often a sign of instability.

Thestabilite

Lecture outline

21/21

- 1. Concept of parallel flows
- 2. Linearised equation for inviscid parallel shear flows
- 3. Normal mode solution
- 4. Rayleigh thereom