University of Canterbury Deep Learning

# **Deep Learning**

Andy Ming / Quelldateien

## Table of contents

| De  | etails                                   | 1 |
|-----|------------------------------------------|---|
|     | Science of Arrays                        | 1 |
| VI: | achine Learning Concepts                 | 1 |
| •   | Types of Learning                        | 2 |
|     | Types of Problems                        | 2 |
|     | Maschine Learning Pipeline               | 2 |
|     | Dataset                                  | 2 |
|     |                                          | 2 |
|     | Preprocessing                            | 2 |
|     | Train Model                              | 2 |
|     |                                          | 2 |
|     | Loss Function                            | 2 |
|     | Gradient Descent                         |   |
|     | Stochastic Gradient Descent (SGD)        | 3 |
|     | Optimization                             | 3 |
|     | Automatic Differentiation                | 3 |
|     | Diagnosis Problems                       | 3 |
| ٦,  | eep Learning Concepts                    | 3 |
| ,   | Multi-Dimensional Arrays & Memory Models | 3 |
|     | Neural Networks                          | 3 |
|     | Perceptron                               | 3 |
|     | Multi-Layer                              | 4 |
|     | Sequential and Recurrent Networks        | 4 |
|     | Latent Space                             | 4 |
|     | •                                        | 4 |
|     | Transfer Learning                        | 4 |
|     | Training Methods and Tricks              | 4 |
| De  | eep Learning Problems, Models & Research | 4 |
|     | Computer Graphics and Vision             | 4 |
|     | Natural Language                         | 4 |
|     | Audio and Video Synthesis                | 4 |
|     | Search using Deep Reinforcment Learning  | 4 |
|     | Anomaly Detection                        | 4 |
|     | Irregular Networks                       | 4 |
|     | iregular Networks                        | 4 |

# Elementwise sum; both produce an array z = x + yz = np.add(x, y)

Use Boradcasting to work with arrays of different sizes:

```
# We will add the vector v to each row of the
\hookrightarrow matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10,

→ 11, 12]])
v = np.array([1, 0, 2])
y = x + v.T # Add v to each row of x using
\hookrightarrow broadcasting
print(y) # Prints "[[ 2 2 4]
                    [557]
                      [8 8 10]
                      [11 11 13]]"
```

Do Matrix Multiplications, remember that matrices of shape  $100x20 \times 20x40$  equal a output shape of 100x40:

```
C = np.dot(A,B)
F = np.matmul(D,E)
```

Reason:



## **Machine Learning Concepts**

Machine Learning == Function Approximation

## **Details**

## Science of Arrays .....



Use Arrays wisely

Don't loop over elements in a array. Use numpy functions to do elementwise operations:



University of Canterbury Deep Learning



### Types of Learning .....



## Types of Problems .....

## Maschine Learning Pipeline .....



#### **Dataset**

Annotated Datasets like MNIST (Handwritten digits).

#### **Preprocessing**

Split the dataset into Train, Validation, and Test sets

- Train set used to adjust the parameters of the model
- ${\it Validation set}$  used to test how well we're doing as we develop
- Prevents overfitting, something you will learn later!
- Test set used to evaluate the model once the model is done



#### Train Model

- 1. **Initialization**: Set all weights  $w_i$  to 0.
- 2. Iteration Process:

- Repeat for *N* iterations, or until the weights no longer change:
  - For each training example  $\mathbf{x}^k$  with label  $a^k$ :
    - 1. Calculate the prediction error:
      - \* If  $a^k f(\mathbf{x}^k) = 0$ , continue (no change to weights).
    - 2. Otherwise, update each weight  $w_i$  using:

$$w_i = w_i + \lambda \left( a^k - f(\mathbf{x}^k) \right) x_i^k$$

• where  $\lambda$  is a value between 0 and 1, representing the learning rate.

## Optimizing with Gradient Descent .....

#### **Loss Function**

Function *L* which measures how "wrong" a network is. We want our network to answer right with **high probability**.



To get a probability for **binary classification**, we introduce a **probability layer**. One of the possible function is **Softmax** 

$$p_j = \frac{e^{l_j}}{\sum_k e^{l_k}}$$

For every output j it takes every logit (output of network before activation/probability is applied)  $l_j$  in the exponent to ensure positivity. Dividing it by the sum of all logits ensures that  $\sum_k p_k = 1$ 

To get the loss L we apply a loss-function, low probability  $\rightarrow$  high loss. We use **Cross Entropy Loss** 



### **Gradient Descent**

$$\Delta w_{j,i} = -\alpha \frac{\partial L}{\partial w_{i,i}}$$

 $\alpha$ : learning rate (typically 0.1-0.001)

L: loss function

 $w_{j,i}$ : one single weight

To compute  $-\alpha \frac{\partial L}{\partial w_{i,i}}$  use the chain rule

University of Canterbury Deep Learning



```
## Backpropagation on batch learning
\# y = expected - (f(x)>0)
labels_OH = np.zeros((labels.size, self.num_classes),

    dtype=int)

labels_OH[np.arange(labels.size),labels] = 1 #
→ One-Hot encoding
predictions = np.argmax(outputs, axis=1)
predictions_OH = np.zeros_like(outputs)
predictions_OH[np.arange(outputs.shape[0]),
    predictions] = 1
y = labels_OH - predictions_OH
# db = y*1
gradB = np.mean(y, axis=0) # average over batch
\# dW = y*x
y = y.reshape((outputs.shape[0],1,self.num_classes))
  inputs.reshape((outputs.shape[0], self.input_size[0] * self.input_size[1],1))
dW = inputs*y
gradW = np.mean(dW, axis=0) # average over batch
```

#### **Stochastic Gradient Descent (SGD)**

Train a network on batches, small subsets of training data.

```
# Stochastic Gradient Descent
for start in range(0, len(train_inputs),
   model.batch_size):
    inputs =
→ train_inputs[start:start+model.batch_size]
   labels =
  train labels[start:start+model.batch size]
    # For every batch, compute then descend the
    \hookrightarrow gradients for the model's weights
   outputs = model.call(inputs)
   gradientsW, gradientsB =
   model.back_propagation(inputs, outputs, labels)
    model.gradient_descent(gradientsW, gradientsB)
```

- Training process is *stochastic / non-deterministic*: batches are a random subsample.
- The gradient of a random-sampled batch is a unbiased estimator of the overall gradient of the dataset.
- Pick a large enough batch size for stable updates, but small enough to fit your GPU

#### **Optimization**

#### Automatic Differentiation .....

## Diagnosis Problems .....

## **Deep Learning Concepts -**



Common Misconception

**Deep Learning != AI**, Just because deep learning algorithms are used doesn't mean there is any intelligence involved. Deep Learning != Brain, Modern deep nets don't depend solely on biologically mimiced neural nets any more. A fully connected layer represents such a neural net the closest.

#### Deep Learning ==:

- 1. Differentiable functions, composed to more complex diff. func.
- 2. A deep net is a differentiable function, some inputs are optimizable parameters
- 3. Differentiable functions produce a computation graph, which can be traversed backwards for gradient-based optimization

## Multi-Dimensional Arrays & Memory Models ....

### Neural Networks ·····

#### Perceptron



#### Predicting with a Perceptron:

- 1. Multiply the inputs  $x_i$  by their corresponding weight  $w_i$
- 2. Add the bias b
- 3. Binary Classifier, greater than 0, return 1, else return 0

$$f_{\Phi}(\mathbf{x}) = \begin{cases} 1, & \text{if } b + \mathbf{w} \cdot \mathbf{x} > 0 \\ 0, & \text{otherwise} \end{cases}$$

### Parameters

Weights: "importance of the input to the output"

- Weight near 0: Input has little meaning to the output
- Negative weight: Increasing input → decreasing output

Bias: "a priori likelihood of positive class"

- Ensures that even if all inputs are 0, there is some result
- Can also be written as a weight for a constant 1 input

University of Canterbury Deep Learning

$$[x_0, x_1, x_2, \dots, x_n] \cdot [w_0, w_1, w_2, \dots, w_n] + b$$
  
=  $[x_0, x_1, x_2, \dots, x_n, 1] \cdot [w_0, w_1, w_2, \dots, w_n, b]$ 

## **Multi-Class Perceptron**



**Biary Classifier**: Only one output can be active  $\hat{y} = \operatorname{argmax}(f(x^k))$ , thus the update terms are

$$\Delta w_i = \begin{cases} 0, & \text{for } a^k = \hat{y} \\ -x_i^k, & \text{for } \hat{y} = 1, a^k = 0 \\ x_i^k, & \text{for } \hat{y} = 0, a^k = 1 \end{cases}$$

## Multi-Layer



| Sequential and Recurrent Networks              |
|------------------------------------------------|
| Latent Space ·····                             |
| Transfer Learning                              |
| Training Methods and Tricks                    |
| Deep Learning Problems, Models & Research      |
| Research                                       |
| Computer Graphics and Vision                   |
| Computer Graphics and Vision  Natural Language |
|                                                |
| Natural Language                               |
| Natural Language  Audio and Video Synthesis    |