程序代写代做。CS编

 \square D of an arbitrary $m \times n$ real matrix A. Show that the which orthogonal matrices U and V are used.

LIZV = ATA Hirat)vT) ar (ATA-AI)

Weathat? estutotes (V)

Assignment Project Exam Help

the σ_i^* are the roots of $\det(A^TA - \lambda I)$, counting multiplicity, Email Mentages @ 163. comwe take the

positive square roots to obtain the σ_j from σ_j^2)

1b. (4 points) Suppose $A_s Q_m \times n$ matrix with real entries. Prove that $||A||_2 = \sigma_1$, where σ_1 is

the largest singular value of A and we recall the definition

https://tutorcs $A_{x\neq 0}$ om

for
$$x \neq 0$$
,
$$||SV|| = ||SV|| = ||SV||$$

2. (8 points) Compute the LDL^T factorization of $A = \begin{pmatrix} 3 & 3 & 1 \\ 3 & a & 2 \\ 1 & 2 & b \end{pmatrix}$, assuming it exists. Which values of a and b cause (12) the right of a and b cause (12) the right of a and b cause (13) the positive of a and b cause (14) the positive of a and b cause (15) the right of a and a and b cause (15) the right of a and a and b cause (15) the right of a and a and

(i)
$$a \neq 7$$
, $b \neq \frac{\alpha/3}{\alpha - 7}$
(ii) $a > 3$, $b > \frac{\alpha/3}{\alpha - 7}$

- 3. A real 3×3 matrix A, not necessarily symmetric, has eigenvalues 5, 3 and 0 with corresponding eigenvectors u, v and w, all unit vectors. Suppose z is a unit vector orthogonal to u and to v.
- (a) (3 points) Find any solution of Ax = b if b = 2u + 3v.
- (b) (5 points) Find the triming min lest square follows: $\frac{1}{2}$ Find the answer will contain ww^T somewhere in the formula. Justify your answer.)

(a)
$$Ax = b = 2u + 7V$$

WeChat: cstutorcs

x = 2 MAssignment Project Exam Help?

Email: tutorcs@163.com

(b)
$$b = 2u + 3v + 42$$

 $QQ: 749389476$
 $R(A) = span(2)$

LS solution criterion

4. (8 points) Compute the polar decomposition A = Q|A| of

i.e., compute the matrix entries of the partial isometry Q with the same nullspace as A and the symmetric, positive sem A and the symmetric A and A

$$Q = UV^{T} = \frac{1}{9} \begin{pmatrix} 2 & 1 \\ 2 & -2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \end{pmatrix}$$

$$= \frac{1}{9} \left(\frac{5}{2} + \frac{2}{7} \right)$$

5. (8 points) Draw the tilted ellipse $(5/2)x^2 + 2xy + y^2 = 1$ and find the half-lengths of its major and minor axes from the eigenvalues of the corresponding matrix S for which $(5/2)x_1^2 + 2x_1x_2 + x_2^2 = x_1x_2 + x_2x_1x_2 + x_1x_1x_2 + x_1x_1x_1 + x_1x_1x_2 + x_1x_1x_1 + x_1x_1x_1 + x_1x_1x_2 + x_1x_1x_1 + x_1x_1x_1$

