A MELL calculus based on contraposition

Work in progress with Eduardo Bonelli and Leopoldo Lerena

December 12, 2024

Pablo Barenbaum

Universidad Nacional de Quilmes (CONICET), Argentina Universidad de Buenos Aires, Argentina

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calculi

An intuitionistic fragment

Conclusion

Complementary materia

MLL in natural deduction style — Intuitionistic / Classical

$$A, B, \dots := \alpha \mid \alpha^{\perp} \mid A \otimes B \mid A \multimap B$$

$$(A \otimes B)^{\perp} \stackrel{\text{def}}{=} A \multimap B^{\perp} \qquad (A \multimap B)^{\perp} \stackrel{\text{def}}{=} A \otimes B^{\perp}$$

$$\overline{A \vdash A}^{\text{ax}}$$

$$\frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B} \otimes_{i} \qquad \frac{\Gamma_{1} \vdash A \otimes B \quad \Gamma_{2}, A, B \vdash C}{\Gamma_{1}, \Gamma_{2} \vdash C} \otimes_{e}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \circ_{i} \qquad \frac{\Gamma_{1} \vdash A \multimap B \quad \Gamma_{2} \vdash A^{\perp}}{\Gamma_{1}, \Gamma_{2} \vdash B} \circ_{e} \circ_{e_{1}} \qquad \frac{\Gamma_{1} \vdash A \multimap B \quad \Gamma_{2} \vdash B^{\perp}}{\Gamma_{1}, \Gamma_{2} \vdash A^{\perp}} \circ_{e_{2}}$$

What is missing to recover classical MLL?

 \multimap_{e_2} is modus tollens

Motivation

Can we derive a calculus for MLL from this system?

Start with a **term assignment**:

$$t ::= a \mid \langle t, s \rangle \mid t[\langle a, b \rangle := s] \mid \lambda a. t \mid t @ s \mid t \P s$$

$$\overline{a : A \vdash a : A}^{ax}$$

$$\frac{\Gamma_{1} \vdash t : A \quad \Gamma_{2} \vdash s : B}{\Gamma_{1}, \Gamma_{2} \vdash \langle t, s \rangle : A \otimes B} \bigotimes_{i} \frac{\Gamma_{1} \vdash t : A \otimes B \quad \Gamma_{2}, a : A, b : B \vdash s : C}{\Gamma_{1}, \Gamma_{2} \vdash t[\langle a, b \rangle := s] : C} \bigotimes_{e}$$

$$\frac{\Gamma, a : A \vdash t : B}{\Gamma \vdash \lambda a. t : A \multimap B} \stackrel{\circ}{\longrightarrow}_{i} \frac{\Gamma_{1} \vdash t : A \multimap B \quad \Gamma_{2} \vdash s : A}{\Gamma_{1}, \Gamma_{2} \vdash t @ s : B} \stackrel{\circ}{\longrightarrow}_{e_{1}}$$

$$\frac{\Gamma_{1} \vdash t : A \multimap B \quad \Gamma_{2} \vdash s : B^{\perp}}{\Gamma_{1}, \Gamma_{2} \vdash t \P s : A^{\perp}} \stackrel{\circ}{\longrightarrow}_{e_{2}}$$

The term constructor $t \triangleleft s$ is called contra-application.

The λ_{MLI} -calculus — Reduction?

How can we reduce a $\multimap_i/\multimap_{e_2}$ redex?:

$$(\lambda a. t) \blacktriangleleft s \rightarrow ?$$

The typing derivation for the left-hand side is:

$$\frac{\Gamma_{1}, a: A \vdash t: B}{\Gamma_{1} \vdash \lambda a. t: A \multimap B} \multimap_{i} \quad \Gamma_{2} \vdash s: B^{\perp}}{\Gamma_{1}, \Gamma_{2} \vdash (\lambda a. t) \blacktriangleleft s: A^{\perp}} \multimap_{e_{2}}$$

Key construction

The following rule is admissible:

$$\frac{\Gamma_1, a: A \vdash t: B \quad \Gamma_2 \vdash s: B^{\perp}}{\Gamma_1, \Gamma_2 \vdash t\{a \mid s\}: A^{\perp}}$$
CONTRA

where $t\{a \mid s\}$ is a meta-level operation called contrasubstitution.

Contrasubstitution — Examples

$$\frac{\Gamma_1, a: A \vdash t: B \quad \Gamma_2 \vdash s: B^{\perp}}{\Gamma_1, \Gamma_2 \vdash t\{a \mid s\}: A^{\perp}}$$
CONTRA

The construction of $t\{a \mid s\}$ proceeds by induction on t.

Example — variable

$$\frac{\overline{a:A\vdash a:A}}{\Gamma_2\vdash a\{a\slass\}:A^\perp} \xrightarrow{\mathtt{CONTRA}} \quad \leadsto \quad \mathsf{Take} \ a\{a\slass\} \stackrel{\mathrm{def}}{=} s.$$

Note. The case $b\{a \mid s\}$ is impossible by the typing constraints.

Example — ⊗-introduction (left case)

$$\frac{\Gamma_{11}, a : A \vdash t_1 : B_1 \quad \Gamma_{12}, \vdash t_2 : B_2}{\Gamma_{11}, \Gamma_{12} a : A \vdash \langle t_1, t_2 \rangle : B_1 \times B_2} \otimes_i \quad \Gamma_2 \vdash s : B_1 \multimap B_2^{\perp}}{\Gamma_{11}, \Gamma_{12}, \Gamma_2 \vdash \langle t_1, t_2 \rangle \{a \ s\} : A^{\perp}}$$

$$\sim \qquad \text{Take } \langle t_1, t_2 \rangle \{a \ s\} \stackrel{\text{def}}{=} t_1 \{a \ s \ t_2\}.$$

Contrasubstitution — Definition

The full definition of contrasubstitution is given by:

- ▶ Informally, t{a \ b} turns t "inside-out".
 The ocurrence of a becomes the new root of the term.
 The root of t becomes a free occurrence of b.
 Introductions become eliminators of the dual connective.
- Contrasubstitution relies crucially on linearity.

Contrasubstitution — Properties

Definition (Structural equivalence)

The equivalence \approx allows \otimes -eliminators to "float" (permutative rules):

$$\mathsf{C}\langle \dots t[\langle a,b\rangle := s] \dots \rangle \approx \mathsf{C}\langle \dots t \dots \rangle [\langle a,b\rangle := s]$$

Let $t\{a:=s\}$ stand for the usual meta-level substitution.

Lemma ("Sub/contra" interaction)

```
1a. t\{a \ s\}\{b \ r\} \approx t\{b := s\}\{a \ r\} \text{ if } b \in \text{fv}(t)
1b. t\{a \ s\}\{b \ r\} \approx s\{b \ t\{a := r\}\} \text{ if } b \in \text{fv}(s)
2a. t\{a \ s\}\{b := r\} = t\{b := r\}\{a \ s\} \text{ if } b \in \text{fv}(t)
2b. t\{a \ s\}\{b := r\} = t\{a \ s\{b := r\}\} \text{ if } b \in \text{fv}(s)
3a. t\{a := s\}\{b \ r\} \approx s\{b \ t\{a := r\}\} \text{ if } b \in \text{fv}(t)
3b. t\{a := s\}\{b \ r\} \approx t\{a := s\{b \ r\}\} \text{ if } b \in \text{fv}(s)
```

Corollary (Involutivity) $t\{a \ b\}\{b \ a\} \approx t$

The λ_{MLI} -calculus — Reduction

Let L, L', ... stand for lists of \otimes -eliminators: L ::= $\square \mid L[\langle a, b \rangle := t]$.

Reduction rules

(at a distance; cf. Accattoli & Kesner, 2010)

$$t[\langle a,b\rangle := \langle s,r\rangle L] \rightarrow t\{a := s\}\{b := r\}L$$

$$(\lambda a. t)L @ s \rightarrow t\{a := s\}L$$

$$(\lambda a. t)L \P s \rightarrow t\{a \setminus s\}L$$

Note. Reduction is only defined over typable terms.

Example — reduction in λ_{MLL}

The λ_{MLL} -calculus — Properties

Theorem

The λ_{MLL} -calculus enjoys the following properties:

- 1. **Logical soundness/completeness.** $\vdash \Gamma, A$ is valid in MLL iff there is a term t such that $\Gamma^{\perp} \vdash t : A$.
- 2. Subject reduction.

If $\Gamma \vdash t : A$ and $t \rightarrow s$ then $\Gamma \vdash s : A$.

- 3. Structural equivalence is a strong bisimulation. If $t \approx s \rightarrow s'$ there exists t' such that $t \rightarrow t' \approx s'$.
- 4. Confluence modulo structural equivalence.

5. Strong normalization.

Typable terms have no infinite reduction paths. (Easy by linearity).

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calcul

An intuitionistic fragment

Conclusion

Complementary materia

The λ_{MFII_0} -calculus — First steps

 $\lambda_{\mathsf{MELL_0}}$ uses two contexts, as DILL:

(Barber, 1996)

- ▶ **Unrestricted** contexts Δ, Δ', \ldots binding variables u, v, \ldots
- ▶ Linear contexts Γ, Γ', \ldots binding variables a, b, \ldots

We have considered many variants and combinations of rules.

Example — some possible !-introduction rules

$$\frac{\Delta; \cdot \vdash A}{\Delta; \cdot \vdash !A}!_{i} \qquad \frac{\Delta; ?A^{\perp} \vdash \bot}{\Delta; \cdot \vdash !A}!'_{i} \qquad \frac{\Delta; A^{\perp} \vdash \bot}{\Delta; \cdot \vdash !A}!''_{i}$$

Example — some possible ?-introduction rules

$$\frac{\Delta;\Gamma\vdash\bot}{\Delta:\Gamma\vdash?A}\mathsf{w}\quad \frac{\Delta;\Gamma\vdash A}{\Delta:\Gamma\vdash?A}\mathsf{d}\quad \frac{\Delta;\Gamma,!A^{\perp}\vdash?A}{\Delta:\Gamma\vdash?A}\mathsf{c}\qquad \frac{\Delta,A^{\perp};\Gamma\vdash\bot}{\Delta:\Gamma\vdash?A}?_{i}\quad \dots$$

Most of the combinations we tried seemed to be unsatisfactory. (Due to the failure of completeness, confluence, involutivity, etc.).

The $\lambda_{\mathsf{MELL}_0}$ -calculus — Syntax

Formulae are defined as follows:

$$A, B, \ldots := \alpha \mid \alpha^{\perp} \mid A \otimes B \mid A \otimes B \mid \mathbb{1} \mid \perp \mid \mathbb{1} \mid A \mid A \mid A$$

- ▶ Units are needed to formulate the rules for exponentials.
- ▶ We also switch to A ? B. As usual, $A \multimap B \stackrel{\text{def}}{=} A^{\perp} ? B$.

The syntax of terms becomes:

The
$$\lambda_{\mathsf{MELL}_0}$$
-calculus — Typing rules

(1/2)

The rules for linear variables and \otimes are as before.

Typing rules for unrestricted variables and \Im

$$\frac{\Delta; \Gamma_{1} \cdot A \cdot B \cdot A \cdot A \cdot A \cdot B \cdot B^{\perp} \vdash t : \bot}{\Delta; \Gamma_{1} \cdot \Gamma_{2} \vdash t \cdot B \cdot B} \gamma_{i}$$

$$\frac{\Delta; \Gamma_{1} \vdash t : A \cdot B \quad \Delta; \Gamma_{2} \vdash t : A^{\perp}}{\Delta; \Gamma_{1}, \Gamma_{2} \vdash t \cdot B \cdot B} \gamma_{e_{1}} \quad \frac{\Delta; \Gamma_{1} \vdash t : A \cdot B \quad \Delta; \Gamma_{2} \vdash t : B^{\perp}}{\Delta; \Gamma_{1}, \Gamma_{2} \vdash t \cdot B \cdot B} \gamma_{e_{2}}$$

Typing rules for units

$$\frac{\Delta; \Gamma_{1} \vdash t : A \quad \Delta; \Gamma_{2} \vdash s : \mathbb{1}}{\Delta; \Gamma_{1}, \Gamma_{2} \vdash t[\star := s] : A} \mathbb{1}_{e}$$

$$\frac{\Delta; \Gamma_{1} \vdash t : A \quad \Delta; \Gamma_{2} \vdash s : A^{\perp}}{\Delta; \Gamma_{1}, \Gamma_{2} \vdash t \not \downarrow s : \bot} \bot_{i}$$

The
$$\lambda_{\text{MELL}_0}$$
-calculus — Typing rules

(2/2)

Typing rules for exponentials

$$\frac{\triangle; a: A^{\perp} \vdash t: \bot}{\triangle; \vdash !a.t: !A}!_{i} \quad \frac{\triangle, u: A; \Gamma_{1} \vdash t: B}{\triangle; \Gamma_{1}, \Gamma_{2} \vdash t[!u:=s]: B}!_{e}$$

$$\frac{\triangle, u: A^{\perp}; \Gamma \vdash t: \bot}{\triangle; \Gamma \vdash ?u.t: ?A}?_{i} \quad \frac{\triangle; a: A \vdash t: \bot}{\triangle; \Gamma \vdash t: \bot}?_{e}$$

Contrasubstitution — Extension for units and exponentials

Contrasubstitution for units

Contrasubstitution for exponentials

- $\blacktriangleright t\{a \mid s\}$ is only defined when a is a linear variable.
- ▶ Some cases are impossible, e.g. $\star \{a \ | s\}$ or $(!a.t)\{b \ | s\}$.
- ▶ If \triangle ; Γ , $a: A^{\perp} \vdash t: \bot$ then \triangle ; $\Gamma \vdash t\{a \mid x \}: A$.

Reduction rules

Now L, L', . . . are lists of eliminators of *positive* connectives $(\otimes, 1, !)$:

$$\mathsf{L} \, ::= \, \Box \, \mid \, \mathsf{L}[\langle \mathsf{a}, \mathsf{b} \rangle := \mathsf{t}] \, \mid \, \mathsf{L}[\star := \mathsf{t}] \, \mid \, \mathsf{L}[! \, \mathsf{u} := \mathsf{t}]$$

Reduction rules

Note

There are no steps $t[\star := \star] \to t$. Instead, we shall have $t[\star := \star] \approx t$. (This makes \approx a strong bisimulation—there may be other ways).

Structural equivalence

Definition (Surface contexts)

A context S is *surface* if its hole is not inside a "!a. \square " nor a " \square [?u := t]".

Definition (Structural equivalence)

```
S\langle t[p:=r] \rangle \approx S\langle t \rangle[p:=r] if S is surface and p is a positive pattern (\star, \langle a, b \rangle, !u) t[\star := \star] \approx t t[\star := s] \approx s[\star := t] t\{a \mid \star \} \not \downarrow r \approx t\{a := r\}
```

Note

The equations only apply if the LHS and the RHS are both well-typed. In particular, the third equation requires $t: \mathbb{1}$.

Example

If
$$t: \bot$$
, $t = a\{a:=t\} \approx a\{a \mid \mid \star \} \notin t = \star \notin t$
$$t \notin s \approx s \notin t \qquad \langle t, s \rangle \notin r \approx (r \blacktriangleleft s) \notin t \qquad \dots$$

Structural equivalence

Theorem (Alternative characterization)

Structural equivalence is completely characterized by:

```
\begin{split} & S\langle t \rangle [\mathbf{p} := r] & \approx & S\langle t [\mathbf{p} := r] \rangle \\ & t [\star := \star] & \approx & t \\ & t [\star := s] & \approx & s [\star := t] \\ & \star \rlap{/}_{\rlap{}} t & \approx & t \\ & (s \blacktriangleleft t) \rlap{/}_{\rlap{}} r & \approx & t \rlap{/}_{\rlap{}} (s @ r) \\ & \langle r, t \rangle \rlap{/}_{\rlap{}} s & \approx & r \rlap{/}_{\rlap{}} (s @ r) \\ & \langle ?(a, b).s) \rlap{/}_{\rlap{}} t & \approx & s [\langle a, b \rangle := t] \\ & (?u.s) \rlap{/}_{\rlap{}} t & \approx & s [!u := t] \\ & (!a.t) \rlap{/}_{\rlap{}} s & \approx & t [?a := s] \\ & (r \rlap{/}_{\rlap{}} t) \rlap{/}_{\rlap{}} s & \approx & r \rlap{/}_{\rlap{}} t [\star := s] \\ \end{split}
```

The λ_{MELL_0} -calculus — Properties

Theorem

The λ_{MELL_0} -calculus enjoys the following properties:

1. Logical soundness/completeness.

 $\vdash \Gamma, A$ is valid in MELL₀ iff there is a term t such that $\cdot; \Gamma^{\perp} \vdash t : A$.

2. Subject reduction.

If Δ ; $\Gamma \vdash t : A$ and $t \rightarrow s$ then Δ ; $\Gamma \vdash s : A$.

3. Structural equivalence is a strong bisimulation.

If $t \approx s \rightarrow s'$ there exists t' such that $t \rightarrow t' \approx s'$.

4. Confluence modulo structural equivalence.

5. Strong normalization.

Typable terms have no infinite reduction paths.

Sketch of the reducibility model

Let \mathcal{T}_A denote the terms of type A and SN_A the strongly normalizing terms of type A. Let us write:

- $\blacktriangleright \ t \lhd_A X \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ (t \in \mathcal{T}_A \implies t \in X)$ if $X \subseteq \mathcal{T}_A$.

 - ▶ If $X \subseteq \mathcal{T}_A$ and $Y \subseteq \mathcal{T}_B$:

$$\begin{array}{ccc} (X \underline{\otimes} Y) & \stackrel{\mathrm{def}}{=} & \{ \langle t, s \rangle \in \mathcal{T}_{A \otimes B} \mid t \in X \land s \in Y \} \\ \underline{?X} & \stackrel{\mathrm{def}}{=} & \{ ?u.t \in \mathcal{T}_{?A} \mid \forall s \in X, \ t \{ u := s \} \lhd_{\perp} \mathsf{SN}_{\perp} \} \end{array}$$

Definition (Reducibility candidates)

Theorem (Adequacy)

Let Δ ; $\Gamma \vdash t : A$. Then for every $\sigma \vDash \Delta$, Γ we have that $t^{\sigma} \lhd_{A} \llbracket A \rrbracket$.

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calculi

An intuitionistic fragment

Conclusion

Complementary materia

Calculi for classical and linear logic

It is well-known that classical logic can be embedded into linear logic.

Danos, Joinet & Schellinx, 1997

Q and T translations

There are several calculi in correspondence with classical logic:

- 1. Parigot, 1992 $\lambda \mu$ -calculus
- 2. Krivine, \sim 1993
- 3. Barbanera & Berardi, 1996
- 4. Curien & Herbelin, 2000 $\bar{\lambda}\mu\tilde{\mu}$ -calculus
- 5. Munch-Maccagnoni, 2014
- 6. B. & Freund, 2021

. . .

and classical linear logic:

- 1. Albrecht, Crossley & Jeavons, 1997
- 2. Bierman, 1999
- 3. Martini & Masini, 1997

. . .

Translation of Parigot's $\lambda\mu$ into λ_{MELL_0}

(1/2)

Parigot's $\lambda\mu$ can be translated into λ_{MELL_0} . The translation is based on Danos et al.'s **T** translation.

Syntax of $\lambda\mu$

$$A, B, \dots ::= \perp \mid \alpha \mid A \supset B$$

 $M, N, \dots ::= x \mid \lambda x. M \mid M N \mid \mu \alpha^{\neg A}.M^{\perp} \mid [\alpha^{\neg A}]M^{A}$

Reduction in $\lambda\mu$

$$\begin{array}{cccc} (\lambda x. \ M) \ N & \to & M\{x := N\} \\ (\mu \alpha. M) \ N & \to & \mu \alpha. (M\{\alpha \lhd N\}) \\ [\alpha](\mu \alpha. M) & \to & M \\ \mu \alpha. [\alpha] M & \to & M & \alpha \notin \mathsf{fv}(M) \end{array}$$

 $M\{\alpha \triangleleft N\}$ replaces subterms of M of the form $[\alpha]O$ by $[\alpha](O\ N)$.

Translation of Parigot's $\lambda \mu$ into λ_{MELL_0} (2/2) T-translation for $\lambda \mu$ (formulae)

$$\begin{array}{ccc}
\bot^{\mathsf{T}} & \stackrel{\mathrm{def}}{=} & \bot \\
\alpha^{\mathsf{T}} & \stackrel{\mathrm{def}}{=} & \alpha \\
(A \supset B)^{\mathsf{T}} & \stackrel{\mathrm{def}}{=} & ?!(A^{\mathsf{T}})^{\bot} ??B^{\mathsf{T}}
\end{array}$$

T-translation for $\lambda\mu$ (terms)

$$x^{\mathsf{T}} \stackrel{\text{def}}{=} x \not \downarrow ! k$$

$$(\lambda x. M)^{\mathsf{T}} \stackrel{\text{def}}{=} \Re(a, b).M^{\mathsf{T}}[! x := a][! k := b] \not \downarrow k$$

$$(M N)^{\mathsf{T}} \stackrel{\text{def}}{=} M^{\mathsf{T}} \{k := \langle ! ? k.N^{\mathsf{T}}, ! k \rangle \}$$

$$([\alpha]M)^{\mathsf{T}} \stackrel{\text{def}}{=} M^{\mathsf{T}} \{k := \alpha\} \not \downarrow k$$

$$(\mu \alpha. M)^{\mathsf{T}} \stackrel{\text{def}}{=} M^{\mathsf{T}} \{k := \star\} \{\alpha := k\}$$

where !t abbreviates !a.($t \notin a$).

Theorem ($\lambda\mu$ simulation)

If $M \to N$ in $\lambda \mu$, then $M^{\mathsf{T}} \to \equiv N^{\mathsf{T}}$ in $\lambda_{\mathsf{MELL_0}}$.

Other translations

We have (so far) also given simulations for:

- ► Call-by-value $\lambda \mu$ ($\lambda \mu_V$) (Py, 1998)
- ightharpoonup Curien & Herbelin's $\bar{\lambda}\mu\tilde{\mu}$
- Hasegawa's μDCLL

(Q-translation)

(T-translation)

(CBN Girard's translation)

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calcul

An intuitionistic fragment

Conclusion

Complementary materia

Intuitionistic MELL₀

Definition (Input and output formulae)

Definition (IMELL₀)

(cf. Danos, 1990)

A MELL₀ sequent $\vdash \Gamma$ is *intuitionistic* iff Γ is of the form $\iota_1, \ldots, \iota_n, o$.

A sequent $\vdash \Gamma$ is *valid in* IMELL₀ if and only if it has a derivation in MELL₀ that involves only intuitionistic sequents.

Intuitionistic λ_{MELL_0}

Definition (Intuitionistic λ_{MELL_0})

A λ_{MELL_0} typing judgment is *intuitionistic* if it is of one of the two following forms:

- 1. Δ ; $\Gamma \vdash t : o$
- 2. Δ ; Γ , $a : \iota_1 \vdash t : \iota_2$

where Δ and Γ contain only output formulae.

A judgment Δ ; $\Gamma \vdash t : A$ is *valid in* $\lambda_{\mathsf{IMELL_0}}$ if and only if it has a derivation in $\lambda_{\mathsf{MELL_0}}$ that involves only intuitionistic judgments.

Theorem (Intuitionistic soundness and completeness)

The following are equivalent:

- ightharpoonup ⊢ Γ, A is valid in IMELL₀.
- ► There is a term t such that \cdot ; $\Gamma^{\perp} \vdash t : A$ is valid in $\lambda_{\mathsf{IMELL_0}}$.

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calcul

An intuitionistic fragment

Conclusion

Complementary materia

Conclusion

This work (in progress)

- New calculi for MLL / MELL.
 Key construction: contrasubstitution.
- ▶ Good properties: confluence (modulo \approx), strong normalization.
- ► It enjoys a form of the subformula property. (Not in this talk)
- Translations from classical calculi via T and Q translations.
- Intuitionistic fragment based on input/output formulae.

Future work

- ► Relate with proof nets. (cf. Linear Substitution Calculus)
- Extensions: additives, fixed points, 1st/2nd order quantifiers, ...
- ▶ Is there a way to formulate an untyped version of λ_{MELL_0} ?
- ► Translations for other classical/linear/process calculi.
- **.**..

Outline

A calculus for MLL

A calculus for MELL (with units)

Translations of classical calcul

An intuitionistic fragment

Conclusion

Complementary material

λ_{MII} -calculus

Example — structural equivalence is required for confluence If $a \in fv(t)$, then:

$$(\lambda a. (\lambda b. \langle d, c \rangle [\langle c, d \rangle := b]) \blacktriangleleft t) \blacktriangleleft s$$

$$t\{a \backslash \langle d, c \rangle\} [\langle c, d \rangle := s] \approx t\{a \backslash \langle d, c \rangle [\langle c, d \rangle := s]\}$$

Structural equivalence

Some derived equations

```
\begin{array}{lll} \star \rlap/ t & \approx & t \\ t_1 \rlap/ t_2 & \approx & t_2 \rlap/ t_1 \\ t \{ a \backslash \backslash \backslash \backslash \rbrace [ \star := r ] & \approx & t \{ a \backslash \backslash \backslash \backslash \rbrace \rbrace \\ t [ \star := s ] & \approx & t \rlap/ s & t : \bot \\ \star [ \star := t ] & \approx & t \\ t \{ a \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \rbrace & \approx & t \{ a := r \} & t : \bot \end{array}
```

Translation of
$$\lambda \mu_V$$
 into λ_{MELL_0}

(1/2)

Syntax of $\lambda\mu_V$ (Py, 1998)

$$A, B, \dots ::= \perp \mid \alpha \mid A \supset B$$

 $M, N, \dots ::= x \mid \lambda x. M \mid M N \mid \mu \alpha^{-A}.M^{\perp} \mid [\alpha^{-A}]M^{A}$
 $V ::= x \mid \lambda x. M$

Reduction in $\lambda \mu_V$

$$\begin{array}{cccc} (\lambda x. M) & V & \to & M\{x := V\} \\ (\mu \alpha. M) & V & \to & \mu \alpha. (M\{\alpha \lhd V\}) \\ V & (\mu \alpha. M) & \to & \mu \alpha. (M\{\alpha \lhd^{\star}V\}) \\ [\alpha](\mu \alpha. M) & \to & M \\ \mu \alpha. [\alpha] M & \to & M & \alpha \notin \mathsf{fv}(M) \end{array}$$

 $M\{\alpha \lhd V\}$ replaces subterms of M of the form $[\alpha]O$ by $[\alpha](O\ V)$. $M\{\alpha \lhd^{\star}V\}$ replaces subterms of M of the form $[\alpha]O$ by $[\alpha](V\ O)$.

Translation of
$$\lambda \mu_V$$
 into λ_{MELL_0} (2/2)

Q-translation for $\lambda \mu_V$ (formulae)

$$\begin{array}{ccc}
\bot^{\mathbf{Q}} & \stackrel{\text{def}}{=} & \bot \\
\alpha^{\mathbf{Q}} & \stackrel{\text{def}}{=} & \alpha \\
(A \supset B)^{\mathbf{Q}} & \stackrel{\text{def}}{=} & (A^{\mathbf{Q}})^{\bot} ?? ?B^{\mathbf{Q}} \\
A^{\mathbf{Q}} & \stackrel{\text{def}}{=} & !A^{\mathbf{Q}}
\end{array}$$

Q-translation for $\lambda \mu_V$ (terms)

$$\begin{array}{ccc}
x^{\mathbf{Q}} & \stackrel{\text{def}}{=} & x \\
(\lambda x. M)^{\mathbf{Q}} & \stackrel{\text{def}}{=} & \Re(a, b).M^{\mathbf{Q}}[!x := a][!k := b] \\
V^{\mathbf{Q}} & \stackrel{\text{def}}{=} & !V^{\mathbf{Q}} \not\downarrow k \\
(MN)^{\mathbf{Q}} & \stackrel{\text{def}}{=} & M^{\mathbf{Q}} \{k := ?v.N^{\mathbf{Q}} \{k := v \blacktriangleleft !k\}\} \\
([\alpha]M)^{\mathbf{Q}} & \stackrel{\text{def}}{=} & M^{\mathbf{Q}} \{k := \alpha\} \not\downarrow k \\
(\mu \alpha. M)^{\mathbf{Q}} & \stackrel{\text{def}}{=} & M^{\mathbf{Q}} \{k := \star\} \{\alpha := k\}
\end{array}$$

Theorem ($\lambda \mu_V$ simulation)

If $M \to N$ in $\lambda \mu_V$, then $M^{\mathbb{Q}} \leftrightarrow^* \equiv N^{\mathbb{Q}}$ in $\lambda_{\mathsf{MELL_0}}$.

Translation of $\bar{\lambda}\mu\tilde{\mu}$ into $\lambda_{\rm MELL_0}$ Syntax of $\bar{\lambda}\mu\tilde{\mu}$

$$A, B, \ldots ::= \alpha \mid A \supset B$$

$$v, v', \dots := x^A \mid \underbrace{\mu \alpha^{\neg A}. c^{\perp}}_{A} \mid \underbrace{\lambda x^A. v^B}_{A \supset B}$$

(1/2)

$$E, E', \dots ::= \alpha^{\neg A} \mid \underbrace{v^A \cdot E^{\neg B}}_{\neg (A \supset B)}$$

$$c,c',\ldots$$
 ::= $(v^A \mid E^{\neg A})$

Reduction in $\bar{\lambda}\mu\tilde{\mu}$

$$\langle \lambda x. v_1 \mid v_2 \cdot E \rangle \rightarrow \langle v_1 \{ x := v_2 \} \mid E \rangle$$

 $\langle \mu \alpha. c \mid E \rangle \rightarrow c \{ \alpha := E \}$

Translation of $\bar{\lambda}\mu\tilde{\mu}$ into λ_{MELL_0} (2/2) T-translation for $\bar{\lambda}\mu\tilde{\mu}$ (formulae and judgments)

$$\alpha^{\mathsf{T}} \stackrel{\text{def}}{=} \alpha$$

$$(A \supset B)^{\mathsf{T}} \stackrel{\text{def}}{=} ?!(A^{\mathsf{T}})^{\perp} ??B^{\mathsf{T}}$$

$$c : \Gamma \vdash \Delta \mapsto ?\Gamma^{\mathsf{T}}, \Delta^{\mathsf{T}^{\perp}}; \cdot \vdash c^{\mathsf{T}} : \bot$$

$$E : \Gamma \mid A \vdash \Delta \mapsto ?\Gamma^{\mathsf{T}}, \Delta^{\mathsf{T}^{\perp}}; \cdot \vdash c^{\mathsf{T}} : !(A^{\mathsf{T}^{\perp}})$$

$$v : \Gamma \vdash A \mid \Delta \mapsto ?\Gamma^{\mathsf{T}}, \Delta^{\mathsf{T}^{\perp}}; \cdot \vdash c^{\mathsf{T}} : ?A^{\mathsf{T}}$$

T-translation for $\bar{\lambda}\mu\tilde{\mu}$ (terms)

$$x^{\mathsf{T}} \stackrel{\text{def}}{=} x$$

$$(\mu\alpha. c)^{\mathsf{T}} \stackrel{\text{def}}{=} ?\alpha. c^{\mathsf{T}}$$

$$(\lambda x. v)^{\mathsf{T}} \stackrel{\text{def}}{=} ?u.(u \not ? ? (a, b).(v^{\mathsf{T}} \not ! b [! x := a]))$$

$$\alpha^{\mathsf{T}} \stackrel{\text{def}}{=} ! \alpha$$

$$(v \cdot E)^{\mathsf{T}} \stackrel{\text{def}}{=} ! \langle ! v^{\mathsf{T}}, E^{\mathsf{T}} \rangle$$

$$\langle v \mid E \rangle^{\mathsf{T}} \stackrel{\text{def}}{=} v^{\mathsf{T}} \not ! E^{\mathsf{T}}$$

Translation of Hasegawa's $\mu DCLL$

(1/2)

Syntax of $\mu DCLL$

$$A, B ::= \bot | \alpha | A \supset B | A \multimap B$$

$$M, N ::= x | \underbrace{\Lambda x^{A} . M^{B}}_{A \supset B} | \underbrace{M^{A \supset B} \bullet N^{A}}_{A} | \underbrace{\lambda x^{A} . M^{B}}_{A \multimap B} | \underbrace{M^{A \multimap B} @ N^{A}}_{B}$$

$$| \underbrace{[\alpha^{\neg A}] M^{A}}_{A} | \underbrace{\mu \alpha^{\neg A} . M^{\bot}}_{A}$$

Equivalence in μ DCLL

```
\begin{array}{lll} (\Lambda x.\,M) \bullet N & \doteq & M\{x := N\} \\ (\lambda x.\,M) @ N & \doteq & M\{x := N\} \\ N \; (\mu \alpha.M) & \doteq_{\mu-R} & \mu \alpha. (M\{\alpha \lhd^{\star} N\}) \\ \mu \alpha. [\alpha] M & \doteq & M & \alpha \notin \mathsf{fv}(M) \end{array}
```

Translation of Hasegawa's
$$\mu DCLL$$

Translation for μ DCLL (formulae)

$$\begin{array}{cccc}
\bot^{\mathsf{H}} & \stackrel{\text{def}}{=} & \bot \\
\alpha^{\mathsf{H}} & \stackrel{\text{def}}{=} & \alpha \\
(A \supset B)^{\mathsf{H}} & \stackrel{\text{def}}{=} & ?(A^{\mathsf{H}})^{\bot} \, \Im \, B^{\mathsf{H}} \\
(A \multimap B)^{\mathsf{H}} & \stackrel{\text{def}}{=} & (A^{\mathsf{H}})^{\bot} \, \Im \, B^{\mathsf{H}}
\end{array}$$

Translation for μ DCLL (terms)

$$x^{\mathsf{H}} \stackrel{\text{def}}{=} x$$

$$(\Lambda x. M)^{\mathsf{H}} \stackrel{\text{def}}{=} \Re(a, k).(M^{\mathsf{H}}[!x := a] \not\downarrow k)$$

$$(M \bullet N)^{\mathsf{H}} \stackrel{\text{def}}{=} M^{\mathsf{H}} @!N^{\mathsf{H}}$$

$$(\lambda x. M)^{\mathsf{H}} \stackrel{\text{def}}{=} \Re(x, k).(M^{\mathsf{H}} \not\downarrow k)$$

$$(M @ N)^{\mathsf{H}} \stackrel{\text{def}}{=} M^{\mathsf{H}} @ N^{\mathsf{H}}$$

$$([\alpha]M)^{\mathsf{H}} \stackrel{\text{def}}{=} M^{\mathsf{H}} \not\downarrow \alpha$$

$$(\mu \alpha. M)^{\mathsf{H}} \stackrel{\text{def}}{=} M^{\mathsf{H}} \not\downarrow \alpha$$