Année scolaire 2019 - 2020

 $\frac{\text{Classe}}{\text{Heure}} : \mathbf{7}^{le} \mathbf{E} \cdot \mathbf{A}$ $\frac{\text{Heure}}{\text{Heure}} : \mathbf{4} \text{ heures}$

DEVOIR DU PREMIER TRIMESTRE

Math'ematiques

Problème 1

Dans le plan affine euclidien, on considère le rectangle ABCD et DEC un triangle isocèle rectangle en E, le point E n'est pas sur [AB] tels que AB = 2; BC = 1 et DE = CE et g la fonction scalaire de Leibniz associée aux points pondérés (A, 1), (B, 1), (C, 1) (D, 1), (E, 2)

- 1. Construire l'isobarycentre G_1 des points A,B,C et le barycentre G_2 des points pondérés (D,1) et (E,2)
- 2. Démontre que $g(G)=\frac{g(A)+g(B)+g(C)+g(D)+2g(E)}{12}$ et que g(A)=g(B)=20 ; g(C)=g(D)=g(E)=14
- 3. a. Déduis-en que $g(M) = 6MG^2 + \frac{41}{6}$ b. Quel est l'ensemble (E_a) des points M du plan tels que : $MA^2 + MB^2 + MC^2 + MD^2 + 2ME^2 = 8$
- 4. Quel est l'ensemble (E_b) des points M du plan tels que : $MA^2 + MB^2 + MC^2 + MD^2 + 2ME^2 = 3$
- 5. Soit W le plan vectoriel associé à \mathcal{P} et f la fonction vectorielle de Leibniz associée aux points pondérés (E,2),(D,-1),(C,-1) définie par $f(M) = 2\overrightarrow{ME} \overrightarrow{MD} \overrightarrow{MC}$
- a. Montre que f est une fonction qui admet un vecteur constant que l'on précisera.
- b. Détermine et construis l'ensemble E_2 des points M de $\mathcal P$ tels que : $2MA^2-MD^2-MC^2=-2$

Problème 2

Dans l'espace orienté muni d'un repère orthonormé direct $(O; \vec{i}, \vec{j})$, on considère le point A(1,1,1) et les plans (P) et (Q) d'équation respectives : x+y+z-1=0 et x+y-2z-4=0

- 5. a. Démontre que les plan (P) et (Q) sont perpendiculaires.
 - b. Donne un repère de leur droite d'intersection (Δ)
- 6. a. Vérifie si $A \in (\Delta)$?

- 7. Calcule la distance du point A à la droite (Δ) .
- 8. Soit (D) la droite passant par A et perpendiculaire au plan (P).
 - a. Détermine une représentation paramétrique de (D).
 - b. En déduis les coordonnées du point H, projeté orthogonal du point A sur le plan (P) .
- 9. Soit (R) le plan passant par A et perpendiculaire aux plans (P) et (Q)
 - a. Détermine une équation cartésienne du plan (R).
 - b. Détermine $(P) \cap (Q) \cap (R)$

Problème 3

On considère les nombres complexes $Z_1 = 1 + i\sqrt{3}$; $Z_2 = 1 - i$; $Z_3 = \frac{Z_1}{Z_2}$; $Z_4 = (i - \sqrt{3})^5$; $Z_5 = (-\sqrt{2} - i\sqrt{2})^3$ et $Z_6 = \frac{Z_4^4}{Z_5^2}$; $Z_7 = Z_4^5 \times Z_5^3$

- 11. Écris \mathbb{Z}_1 et \mathbb{Z}_2 sous forme trigonométrique .
- 12. Donne la forme algébrique et trigonométrique de Z_3 .
- 13. a. Donne la forme algébrique de Z_4 et de Z_5 .
 - b. Déduis le calcul de Z_6 et de Z_7