Le modèle Relationnel des données

La logique après le concept

Sommaire

- Objectifs
- Le modèle relationnel
 - Les dépendances fonctionnelles
 - Identifiant
 - Matrice des dépendances fonctionnelles
 - Les relations
 - Les formes normales
- Elaboration du modèle relationnel : passage du MCD au MLD-R
- Pour conclure

Objectifs

• <u>Précédemment</u>: Le MCD nous donne le concept de note future base.

- <u>Maintenant</u>: Le **Modèle Logique de Données** est ce qui va nous permettre de modéliser la structure selon la quelle les données seront stockées dans la future base de données -> On passe du concept à l'adaptation technique.
 - ➤II est donc adapté à une famille de SGBD (**SGBDR**, SGBDO, Serveur XML, ...).
 - ➤ Pour les SGBDR -> Modèle Relationnel de Données (MRD ou MLD-R)

Le modèle relationnel

Principes du modèle relationnel :

- Formaliser la structure de stockage des données:
 C'est une organisation qui repose sur l'utilisation de tableaux à deux dimensions -> Assure la cohérence et la redondance des valeurs.
- Formaliser la manipulation des données:
 On verra plus tard que consulter des données réparti sur plusieurs tables concernant un individus repose sur la théorie du calcul et de l'algèbre relationnels.

Les dépendances fonctionnelles

Elles servent à définir les liens entre les métadonnées du dictionnaire vu précédemment.

Exemple:

Il existe une dépendance fonctionnelle entre CO_ID et CO_NOM si pour une valeur connue de CO_ID la valeur correspondante de CO_NOM est connue.

CO_ID est considéré comme la source.

CO_NOM est considéré comme la cible.

Les dépendances fonctionnelles

Exemples:

- CO ID \rightarrow CO NOM
- CO ID \rightarrow CO PRENOM
- CO_ID → CO_NAISSANCE
- CL_ID → CL_NOM

De même, il existe une dépendance entre la liste d'attributs (CO_NOM, CO_PRENOM, CO_NAISSANCE) et l'attribut CO_ID si pour une combinaison de valeurs de cette liste la valeur de CO_ID est connue.

• (CO_NOM, CO_PRENOM, CO_NAISSANCE) → CO_ID

Identifiant

Si pour un ensemble d'attribut {CO_ID, CO_NOM, CO_PRENOM, CO_NAISSANCE, CO_SEXE, CO_ADRESSE, ...} l'un d'entre eux est la source d'une dépendance fonctionnel pour tous les autres, alors il est un **identifiant**.

Dans un modèle relationnel l'identifiant est appelé <u>clé primaire</u>.

Identifiant

Exemples:

- CO_ID → CO_NOM
- CO ID \rightarrow CO PRENOM
- CO_ID → CO_NAISSANCE
- CO ID \rightarrow CO SEXE
- CO_ID → CO_ADRESSE

CO_ID est la clé primaire

L'identification des coureurs peut se faire en utilisant le numéro de licence. Dans ce cas l'identifiant est dit **naturel**.

Matrice des dépendances fonctionnelles

Cible\Source	CL_ID	CO_ID	
CL_ID			
CL_NOM	*		
CL_VILLE	*		
CO_ID			
CO_NOM		*	
CO_PRENOM		*	
CO_NAISSANCE		*	
CO_SEXE		*	

Les relations

1. Le domaine :

C'est l'ensemble de définition de la colonne d'un tableau.

Exemple:

- CL ID: entier
- CL NOM : chaîne de caractère
- CL_VILLE: liste des villes françaises {Arcachon, Bordeaux, Paris, ...}
- CO_SEXE : numérique {1 : homme, 2 : femme}

Les relations

2. Le produit cartésien :

C'est l'ensemble de toutes les combinaisons possibles des valeurs prise par deux domaines.

CL_VILLE	CO_SEXE
Arcachon	1
Arcachon	2
Bordeaux	1
Bordeaux	2
Paris	1
Paris	2

Les relations

3. Relation:

C'est un sous ensemble du produit cartésien d'une liste de domaine. <u>Exemple</u>: la relation COUREUR (CO_ID, CO_NOM, CO_PRENOM, IN DOSSARD).

Coureur	CO_ID	CO_NOM	CO_PRENOM	IN_DOSSARD
	5	Dupond	Pierre	31, 18, 2
	1	Bensaoud	Muhammad	31
	14	Laplace	Richard	39, 96

Les formes normales

La compréhension des formes normales c'est ce qui va détailler le modèle relationnel et permettre de mieux comprendre la conception appliquée généralement de manière intuitive.

Trois types de formes normale.

Première forme normale

Une relation est en première forme normale si :

- Elle possède une clé primaire qui domine tous les champs qui la compose.
- Tout attribut qu'elle contient est non décomposable.

Coureur	CO_ID	CO_NOM	CO_PRENOM
	5	Dupond	Pierre
	1	Bensaoud	Muhammad
	14	Laplace	Richard

Il n'existe pas de dépendance fonctionnelle entre les attributds CO_ID et IN_DOSSARD.

Deuxième forme normale

Une relation est en deuxième forme normale si et seulement si :

- Elle est en première forme normale
- Tout attribut n'appartenant pas à la clé primaire ne dépend pas d'une partie de la clé.

Exemple: Pour cette relation la clé primaire est composé de 2 attributs.

Coureur	CO_ID	IN_DOSSARD	CO_NOM	CO_PRENOM	IN_DATE
	5	31	Dupond	Pierre	18/11/2019
	5	18	Dupond	Pierre	18/11/2019
	5	2	Dupond	Pierre	19/11/2019
	1	31	Bensaoud	Muhammad	16/11/2019
	14	39	Laplace	Richard	17/11/2019
	14	39	Laplace	Richard	18/11/2019

Deuxième forme normale

Pour obtenir une deuxième forme normale on va créer deux relations :

Coureur	CO_ID	CO_NOM	CO_PRENOM
	5	Dupond	Pierre
	1	Bensaoud	Muhammad
	14	Laplace	Richard

INSCRIPTION	CO_ID	IN_DOSSARD	IN_DATE
	5	31	18/11/2019
	5	18	18/11/2019
	5	2	19/11/2019
	1	31	16/11/2019
	14	39	17/11/2019
	14	39	18/11/2019

Troisième forme normale

Une relation est en troisième forme normale si et seulement si :

- Elle est en deuxième forme normale.
- Tout attribut n'appartenant pas à la clé primaire ne dépend pas d'un autre attribut non clé.

Troisième forme normale

Soit la relation INSCRIPTION (CO_ID, IN_DOSSARD, IN_DATE, ..., EP_ID, EP_NOM, EP_DISTANCE).

INSCRIPTION	CO_ID	IN_DOSSARD	IN_DATE	•••	EP_ID	EP_NOM	EP_DISTANCE
	5	31	18/11/2019		1	Corrida Pédestre	10km
	5	18	18/11/2019		2	Grand prix de la colline	20km
	5	2	19/11/2019		3	Course de la sainte barbe	50km
	1	31	16/11/2019		3	Course de la sainte barbe	50km
	14	39	17/11/2019		1	Corrida Pédestre	10km
	14	39	18/11/2019		2	Grand prix de la colline	20km

Troisième forme normale

EPREUVE	EP_ID	EP_NOM	EP_DISTANCE
	1	Corrida Pédestre	10km
	2	Grand prix de la colline	20km
	3	Course de la sainte barbe	50km

COUREUR	CO_ID	CO_NOM	CO_PRENOM
	5	Dupond	Pierre
	1	Bensaoud	Muhammad
	14	Laplace	Richard

INSCRIPTION	CO_ID	IN_DOSSARD	IN_DATE	EP_ID
	5	31	18/11/2019	1
	5	18	18/11/2019	2
	5	2	19/11/2019	3
	1	31	16/11/2019	3
	14	39	17/11/2019	1
	14	39	18/11/2019	2

Chaque entité devient une relation

Entité

Relation

Occurrence

COUREUR

CO_ID

CO_NOM

CO_PRENOM

CO_NAISSANCE

CO_SEXE

COUREUR (CO_ID, CO_NOM, CO_PRENOM, CO_NAISSANCE, CO_SEXE)

• 5, DUPOND, Pierre, 03/01/1990, homme

• 1, BENSAOUD, Muhammad, 06/08/2002, homme

Il faut maintenant traduire les association en fonction des cardinalités. Deux cas possible selon la valeur maximal :

- Une cardinalité à un maximum égal à 1.
- Une cardinalité dont le maximum égal à N.

• Une cardinalité à un maximum égal à 1 :

On ajoute un attribut à l'entité/relation portant cette cardinalité. Ce nouvel attribut fait référence à l'identifiant de l'entité/relation opposée.

Il s'agit d'une **clé étrangère**, c'est-à-dire une référence à une clé primaire.

Notation: #CLE_ETRANGERE

• Une cardinalité à un maximum égal à 1 :

On à donc la relation INSCRIPTION(IN-DATE, IN_CATEGORIE, #CO_ID)

• Une cardinalité à un maximum égal à N :

Dans ce cas une nouvelle relation est créer du nom de l'association. Comme précédemment, les clés étrangères sont créées à partir de toute les clés primaires des relations liées.

La clé primaire de cette nouvelle relation est composée de toutes les clés étrangères nouvellement ajoutées.

De ce fait les clés ajouté sont à la fois des clés étrangères et des parties de la clé primaire.

• Une cardinalité à un maximum égal à N :

On à donc la relation INSCRIPTION(<u>#CO_ID</u>, <u>#EP_ID</u>, IN_DOSSARD, IN_DATE, IN_CATEGORIE, #CO_ID)

Pour conclure

Une bonne conception permet d'éviter des problèmes techniques de mise en œuvre et d'optimiser le stockage et l'exploitation des données.

MCD	Relation	SGBD
Entité	Relation	Table
Association	Relation	Table
Identifiant	Clé primaire	Clé primaire
	Clé étrangère	Clé étrangère
Attribut, propriété	Attribut	Colonne, champ
Occurrence, instance	Occurrence	Occurrence, enregistrement