MATH 2132 Tutorial 6.

Recall that a first order equation is separable if it can be written as $\frac{dy}{dx} = \frac{M(x)}{N(y)}$ and can be solved by separating and integrating: $\int N(y) dy = \int M(x) dx.$

Example: Consider $\frac{dy}{dx} - \chi^2 y^2 = \chi^2.$

Solve for the solution satisfying y (0)=1

Solution: First we solve for dy and get

 $\frac{dy}{dx} = \chi^2 + \chi^2 y^2 = \chi^2 (1 + y^2).$

Then separating: $\frac{1}{1+y^2} dy = x^2 dx$ and integrating: $\int \frac{1}{1+y^2} dy = \int x^2 dx$

We get
$$arctan(y) = \frac{1}{3}x^3 + C$$
.

Solve for y by taking tan of both sides, we get
$$y = \tan \left(\frac{1}{3}x^3 + C\right)$$
.

Then applying the initial condition
$$y(0)=1$$
 gives $1=\tan(\frac{1}{3}\cdot 0^3+C)=\tan(C)$.

Therefore
$$C = \frac{T}{4} \pm 2k\pi$$
. We take $C = \frac{T}{4}$ and get $y = \tan\left(\frac{1}{3}x^3 + \frac{T}{4}\right)$.

Example: Find the solution to
$$\frac{dy}{dx} = 2\sqrt{y}$$
, $y(0) = 4$.

Solution: We separate
$$\frac{1}{\sqrt{y'}} dy = 2 dx$$
integrate
$$\int y'^2 dy = \int 2 dx$$

$$\Rightarrow 2y^{1/2} = 2x + c$$

$$\Rightarrow$$
 $y^{1/2} = x + C$ (here $C = \frac{\text{previous } C}{2}$, in other words we absorb the division into the constant)

$$\Rightarrow y = (x+C)^2$$
.

With the initial condition, we then get
$$4 = y(0) = (0+2)^2$$

 $= (0+2)^2$
 $= (0+2)^2$

So there are two candidate solutions:
$$y = (x+2)^2$$
 and $y = (x-2)^2$. For these solutions to work out, they need to satisfy the given differential equation.

We check:

$$\frac{d}{dx}(x\pm 2)^{2} = 2\sqrt{(x\pm 2)^{2}}$$

$$\Rightarrow 2(x\pm 2) = 2\sqrt{(x\pm 2)^{2}}$$
but recall that $\sqrt{z^{2}} = |z|$, so this means
$$2(x\pm 2) = 2|x\pm 2|$$

Depending on the x value we plug in, this equation may or may not be true.

At least it must be true at the value X=0, because that II the X-value of the initial condition y(0)=4.

So with X=0 we get two possibilities;

2(0+2) = 2|0+2| $\Rightarrow 4 = 4$, which is true, or

2(0-2) = 2|0-2| $\Rightarrow -4 = 4$, which is not true.

So the corrects solution is $y = (x+2)^2$.

Example: Sometimes you cannot solve for y, then it is oh to give an implicit solution.

For example, $\frac{dy}{dx} = \frac{x+1}{8+2\pi \sin(\pi y)}$

is separable and has solution y satisfying. $8y - 2\cos(\pi y) = \frac{1}{2}x^2 + x + C$.

Here, you cannot solve for y so it is left in this form.

Recall an equation is first-order linear if it can be written as
$$\frac{dy}{dx} + P(x)y = Q(x).$$
Then the general solution is
$$y = \frac{\int Q(x)e^{\int P(x)dx}}{e^{\int P(x)dx}}dx + C$$

$$e^{\int P(x)dx} = \mu(x) \text{ is called the integrating factor.}$$
Example: Solve the DE
$$\frac{dy}{dx} + 3x^2y = 6x^2$$
Solution:

We have $P(x) = 3x^2$, $Q(x) = 6x^2$, so
$$\mu(x) = e^{\int P(x)dx} = e^{x^3}$$
and then
$$\int Q(x)\mu(x)dx = \int e^{x^3}6x^2dx$$

$$= \int 2e^{x}du$$

$$= 2e^{x^3} + C$$

So the solution is

$$y = \frac{2e^{x^{3}} + C}{e^{x^{3}}} = 2 + e^{-x^{3}}C.$$

Example: Find the solution to

$$x^{2}y' + xy = 1, \quad x > 0 \quad y(1) = 2.$$

Solution:

We put the equation into the correct form:

$$y' + \frac{1}{x}y = \frac{1}{x^{2}}$$

and identify $P(x) = 1x$, $Q(x) = \frac{1}{x^{2}}$.

Then $\mu(x) = e^{\int \frac{1}{x} dx} = \ln |x| = x$ since

$$x > 0.$$

Then $\int Q(x)\mu(x)dx = \int \frac{1}{x^{2}} \cdot x \, dx = \int \frac{1}{x} dx = \ln(x) + C.$

So the general solution is

$$y = \frac{\ln(x) + C}{x}$$

Then $y(1) = 2$, or

$$2 = \frac{\ln(1) + C}{x} = 0 + C$$

So the solution is

$$y = \frac{\ln(x) + C}{x}$$

Then solution is

We also saw 2 kinds of second-order and one kind of first-order equation that can be reduced to separable/linear by substitution:

The kinds are:

- (i) A second order DE containing no y. Then set V=y', V'=y", rolve.
- (ii) A second order DE containing no X.
 Then set $V = \frac{dy}{dx}$ and $\frac{d^2y}{dx^2} = V \frac{dv}{dy}$.
- (ii) Bernoulli equations $\frac{dy}{dx} + P(x)y = Q(x)y^n.$

Example: Solve $y' + \frac{4}{x}y = x^3y^2$, y(2) = -1 x>0. Solution: This is Bernoulli with n=2, so set y' = y'.

Now divide by y2:

 $\frac{1}{y^2} \frac{dy}{dx} + 4 \frac{2}{x} \frac{dy}{y} = x^3$

Then substituting gives
$$V = y'$$
, $V' = -y^2 y'$

we get

 $-V' + \frac{4}{x}V = -x^3$.

Now we solve for V :

 $V' - \frac{4}{x}V = -x^3$, so $P(x) = \frac{4}{x}$, $Q(x) = -x^3$

we calculate $\mu(x) = e^{Pur)dx} = -4ln|x|$
 $= e^{-ln|x^4|} = x^{-4}$

Then $\int Q(x) \mu(x) dx = \int -x^3 x^4 dx = -ln|x| + C$
 $= -ln(x) + C$
 $= -ln(x) + C$
 $= -ln(x) + C$
 $= x^4(C - ln(x))$

or in other words, $y' = x^4(C - ln(x))$

Then $y(2) = -1$ gives

 $y = \frac{1}{16(C - ln(2))} \Rightarrow C = ln 2 - \frac{1}{16}$

So
$$y = \frac{1}{x^4 (\ln 2 - \frac{1}{4} - \ln(x))}$$

Example: Solve
$$1+2y^2\frac{d^2y}{dx^2}=0$$
, with $y(0)=1$, $y'(0)=1$.

$$1 + 2y^2 v \frac{dv}{dy} = 0$$

or
$$v \frac{dv}{dy} = \frac{1}{2y^2}$$

$$\Rightarrow \int V dV = -\int \frac{1}{2y^2} dy$$

$$\Rightarrow \frac{v^2}{2} = \frac{1}{2y} + C$$

Now to save time, we can use y'(0)=1 here and get

$$|=y'(0) \Rightarrow \frac{1^2}{2} = \frac{1}{2(1)} + C \Rightarrow C = 0.$$
 $|=y(0)|$

So
$$\frac{v^2}{2} = \frac{1}{2y}$$
 or $\frac{1}{2} \left(\frac{dy}{dx}\right)^2 = \frac{1}{2y}$

So
$$\frac{dy}{dx} = \pm \frac{1}{\sqrt{y'}}$$
 are Point $y(0)=1$ and $y'(0)=1$
 $1 = \pm \frac{1}{\sqrt{1'}} = \pm 1$,

so we should by keep the '+' above and not the '-'. So

$$\frac{dy}{dx} = + \frac{1}{\sqrt{y'}} \quad \text{or}$$

$$-\frac{\partial y}{\partial x} = \int \sqrt{y} \, dy = \int dx$$

$$\Rightarrow \frac{2}{3} y^{32} = x + C$$

But
$$y(0)=1$$
 gives $\frac{2}{3}(1)^{3/2}=0+0$

$$\Rightarrow C = \frac{2}{3}.$$

$$80 \quad \frac{2}{3}y^{3/2} = x + \frac{2}{3}$$

$$y = (1 + \frac{3}{2} \times)^{\frac{2}{3}}$$