Factored Item Similarity Models (*FISM*_{rmse})

Weike Pan

College of Computer Science and Software Engineering Shenzhen University

Outline

- Introduction
- Method
- Experiments
- Conclusion
- References

Recommendation with Implicit Feedback

• We may represent users' implicit feedback in a *matrix* form:

 If we can estimate the missing values (denoted as "?") in the matrix or rank the items directly, we can make recommendations for each user.

Notations (1/2)

Table: Some notations.

n	user number
m	item number
$u \in \{1, 2, \dots, n\}$	user ID
$i, i' \in \{1, 2, \ldots, m\}$	item ID
r _{ui}	observed rating of user <i>u</i> on item <i>i</i>
\mathcal{P}	the whole set of observed (user, item) pairs
$\mathcal{A}, \mathcal{A} = \rho \mathcal{P} $	a sampled set of unobserved (user, item) pairs

Notations (2/2)

Table: Some notations.

$b_u \in \mathbb{R}$	user bias
$b_i \in \mathbb{R}$	item bias
$ extbf{ extit{d}} \in \mathbb{R}$	number of latent dimensions
$V_{i\cdot}, W_{j\cdot} \in \mathbb{R}^{1 imes d}$ $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{m imes d}$	item-specific latent feature vector
$\mathbf{V}, \mathbf{W} \in \mathbb{R}^{m \times d}$	item-specific latent feature matrix
r̂ _{ui}	predicted rating of user <i>u</i> on item <i>i</i>
T	iteration number in the algorithm

Factored Item Similarity Model (FISM)

FISM with different loss functions,

- FISM_{rmse}
- FISM_{auc}

Prediction Rule

The predicted rating of user u on item i,

$$\hat{r}_{ui} = b_u + b_i + \bar{U}_{u}^{-i} V_{i}^{T}$$
 (1)

where,

$$\bar{U}_{u\cdot}^{-i} = \frac{1}{|\mathcal{I}_{u}\setminus\{i\}|^{\alpha}} \sum_{i'\in\mathcal{I}_{u}\setminus\{i\}} W_{i'\cdot}, \ 0 \leq \alpha \leq 1$$

Note that when $i \notin \mathcal{I}_u$, $\mathcal{I}_u = \mathcal{I}_u \setminus \{i\}$.

Objective Function

The objective function of $FISM_{rmse}$,

$$\min_{\Theta} \sum_{(u,i)\in\mathcal{P}\cup\mathcal{A}} f_{ui} \tag{2}$$

where $\Theta = \{V_i, W_{i'}, b_u, b_i\}, i, i' = 1, \dots, m, u = 1, \dots, n, \text{ and } i' = 1, \dots, m, u = 1, \dots, n, u = 1, \dots, n, u = 1, \dots, u = 1, \dots,$

$$f_{ui} = \frac{1}{2}(r_{ui} - \hat{r}_{ui})^2 + \frac{\alpha_v}{2}||V_{i.}||_F^2 + \frac{\alpha_w}{2}\sum_{i' \in \mathcal{I}_u \setminus \{i\}}||W_{i'.}||_F^2 + \frac{\beta_u}{2}b_u^2 + \frac{\beta_v}{2}b_i^2$$

Notes:

- ullet pairs ${\cal P}$ is the whole set of observed (user, item) pairs
- A is a sampled set of unobserved (user, item) pairs
- According to the loss function, we can see that FISM_{rmse} is a pointwise method

Gradients

For each $(u, i) \in \mathcal{P} \cup \mathcal{A}$, we have the gradients,

$$\nabla b_{u} = \frac{\partial f_{ui}}{\partial b_{u}} = -\mathbf{e}_{ui} + \beta_{u}b_{u}$$

$$\nabla b_{i} = \frac{\partial f_{ui}}{\partial b_{i}} = -\mathbf{e}_{ui} + \beta_{v}b_{i}$$

$$\nabla V_{i.} = \frac{\partial f_{ui}}{\partial V_{i.}} = -\mathbf{e}_{ui}\bar{U}_{u.}^{-i} + \alpha_{v}V_{i.}$$

$$\nabla W_{i'.} = \frac{\partial f_{ui}}{\partial W_{i'.}} = -\mathbf{e}_{ui}\frac{1}{|\mathcal{I}_{u}\setminus\{i\}|^{\alpha}}V_{i.} + \alpha_{w}W_{i'.}, i' \in \mathcal{I}_{u}\setminus\{i\}$$

where $e_{ui} = r_{ui} - \hat{r}_{ui}$. Note that $r_{ui} = 1$ if $(u, i) \in \mathcal{P}$, and $r_{ui} = 0$ if $(u, i) \in \mathcal{A}$.

Update Rules

For each $(u, i) \in \mathcal{P} \cup \mathcal{A}$, we have the update rules,

$$\begin{array}{lcl} b_u & = & b_u - \gamma \nabla b_u \\ b_i & = & b_i - \gamma \nabla b_i \\ V_{i\cdot} & = & V_{i\cdot} - \gamma \nabla V_{i\cdot} \\ W_{i'\cdot} & = & W_{i'\cdot} - \gamma \nabla W_{i'\cdot}, i' \in \mathcal{I}_u \backslash \{i\} \end{array}$$

where $e_{ui} = r_{ui} - \hat{r}_{ui}$. Note that $r_{ui} = 1$ if $(u, i) \in \mathcal{P}$, and $r_{ui} = 0$ if $(u, i) \in \mathcal{A}$.

Algorithm

```
    Initialize the model parameters Θ

 2: for t = 1, ..., T do
        Randomly pick up a set \mathcal{A} with |\mathcal{A}| = \rho |\mathcal{P}|
 4: for each (u,i) \in \mathcal{P} \cup \mathcal{A} in a random order do 5: Calculate \bar{U}_{u\cdot}^{-i} = \frac{1}{|\mathcal{I}_u \setminus \{i\}|^{\alpha}} \sum_{i' \in \mathcal{I}_u \setminus \{i\}} W_{i'}.
                Calculate \hat{r}_{ii} = b_{ii} + b_i + \bar{U}_{ii}^{-i} V_{i}^T
 7: Calculate e_{ui} = r_{ui} - \hat{r}_{ui}
8: Update the b_u, b_i, V_i and W_{i'}, i' \in \mathcal{I}_u \setminus \{i\}
            end for
10: end for
```

Figure: The SGD algorithm for FISM_{rmse}.

Data Set

- We use the files u1.base and u1.test of MovieLens100K¹ as our training data and test data, respectively.
- user number: n = 943; item number: m = 1682.
- u1.base (training data): 80000 rating records, and the density (or sparsity) is 80000/943/1682 = 5.04%.
- u1.test (test data): 20000 rating records.
- Pre-processing (for simulation): we only keep the (user, item) pairs with ratings 4 or 5 in u1.base and u1.test as preferred (user, item) pairs, and remove all other records. Finally, we obtain u1.base.OCCF and u1.test.OCCF.

¹http://grouplens.org/datasets/

Evaluation Metrics

Pre@5: The precision of user u is defined as,

$$Pre_u@k = \frac{1}{k} \sum_{\ell=1}^k \delta(i(\ell) \in \mathcal{I}_u^{te}),$$

where $\delta(x) = 1$ if x is true and $\delta(x) = 0$ otherwise. Then, we have $Pre@k = \sum_{u \in \mathcal{U}^{te}} Pre_u@k/|\mathcal{U}^{te}|$.

• Rec@5: The recall of user u is defined as,

$$extit{Rec}_{u}@k = rac{1}{|\mathcal{I}_{u}^{ extit{te}}|} \sum_{\ell=1}^{k} \delta(extit{i}(\ell) \in \mathcal{I}_{u}^{ extit{te}}),$$

which means how many preferred items are recommended in the top-k list. Then, we have $Rec@k = \sum_{u \in \mathcal{U}^{te}} Rec_u@k/|\mathcal{U}^{te}|$.

Initialization of Model Parameters

We use the statistics of training data to initialize the model parameters,

$$b_{u} = \sum_{i=1}^{m} y_{ui}/m - \mu$$

$$b_{i} = \sum_{u=1}^{n} y_{ui}/n - \mu$$

$$V_{ik} = (r - 0.5) \times 0.01, k = 1, \dots, d$$

$$W_{i'k} = (r - 0.5) \times 0.01, k = 1, \dots, d$$

where r (0 $\leq r <$ 1) is a random variable, and $\mu = \sum_{u=1}^{n} \sum_{i=1}^{m} y_{ui}/n/m$.

Parameter Configurations

We fix $\alpha =$ 0.5 and $\gamma =$ 0.01, and search the best values of the following parameters,

- $\alpha_{V} = \alpha_{W} = \beta_{U} = \beta_{V} \in \{0.001, 0.01, 0.1\}$
- $T \in \{100, 500, 1000\}$

Finally, we use $\alpha=$ 0.5, $\gamma=$ 0.01, $\rho=$ 3, d= 20, $\alpha_{v}=\alpha_{w}=\beta_{u}=\beta_{v}=$ 0.001 and T= 100, which performs best in our experiments.

It takes about 75 seconds for training.

Results

Table: Prediction performance of PopRank and *FISM*_{rmse} on MovieLens100K (u1.base.OCCF, u1.test.OCCF).

	PopRank	FISM _{rmse}
Pre@5	0.2338	0.3846
Rec@5	0.0571	0.1270

Conclusion

• Learning factored (item, item) similarities is helpful.

Homework

- Implement FISM_{rmse} and conduct empirical studies on u2.base.OCCF, u2.test.OCCF of MovieLens100K with similar pre-processing
- Read the KDD 2013 paper [Kabbur et al., 2013], and study the algorithm of FISM_{auc}

Kabbur, S., Ning, X., and Karypis, G. (2013).

Fism: Factored item similarity models for top-n recommender systems.

In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13, pages 659–667, New York, NY, USA. ACM.