Quiz2

Due Mar 30 at 11:59pm **Points** 50 **Questions** 24

Available Mar 16 at 12am - Apr 6 at 11:59pm 22 days Time Limit None

Allowed Attempts Unlimited

Instructions

Dear students,

Answer all questions. You can consult other students. You can take your time until the due date. You have unlimited attempts.

All questions in this quiz are open book. You may work or discuss in groups.

Cheers,

:)

Jagan

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
KEPT	Attempt 2	27 minutes	38 out of 50 *	
LATEST	Attempt 2	27 minutes	38 out of 50 *	
	Attempt 1	71 minutes	29 out of 50 *	

^{*} Some questions not yet graded

(I) Correct answers will be available on Apr 9 at 12am.

Score for this attempt: 38 out of 50 *

Submitted Mar 24 at 7:13pm This attempt took 27 minutes.

Question 1 1 / 1 pts

For non-linear relationships, correlations can give correct results.
True
False

Question 2	1 / 1 pts
Correlations are never distorted if the data is not standardized.	
O True	
False	

Question 3	1 / 1 pts
Linear Regression cannot not be applied on every dataset.	
True	
False	

Question 4 1 / 1 pts

Higher level aggregations may have more variations than lower level aggregations.

True	
False	

Question 5 Dimensionality reduction helps to eliminate irrelevant attributes or reduce possible noise. True False

Question 6	1 / 1 pts
Discretized values in a decision tree may be combined into a si branch if order is not preserved.	ngle
True	
False	

Question 7 If a branch separates all records into a single class, then the purity is very low. True

False

Question 8	1 / 1 pts
XOR function mappings can easily be classified by decision tr	ees.
True	
False	

Question 9	1 / 1 pts
Jaccard coefficient ignores 00 combinations since it is meant to skewness when 00 combinations are common and irrelevant.	eliminate
True	
False	

Question 10	1 / 1 pts
Bias toward selecting an attribute at a node of the decision tree happen if the attribute has many branches.	may
True	
False	

Question 11	5 / 5 pts
Gini Index	1- (∑[P(j t)]^2 for all j) ▼
Interactions	Cannot classify properly ▼
Dividing Gain by SplitINFO	Can overcome disadvant ▼
Misclassification Error	1- (max(P(i t)) for all i) ▼
Underfitting	Model too simple ▼

Question 12	2 / 2 pts
Decision trees use a find the best tree.	approach which often is unable to
greedy	

Question 13	2 / 2 pts
A continuous attribute range may be split at the point where the index values is	ne GINI

least

Question 14	2 / 2 pts
The loss function for linear regression is the squa	re of the difference
between the original Y value and the	Y value.
predicted	

Question	n 15	2 / 2 pts
splitting.	= GINI measure before splitting - GINI measure	after
Gain		

Incorrect

Question 16	0 / 2 pts
The process of the best way to get good	data before calculating correlations is correlations.
transforming	

Question 17	2 / 2 pts
BoxPlots are centric to median	
Answer 1:	
median	

Question 18	2 / 2 pts
Standardization transformation is centric to Mean	
Answer 1:	
Mean	

Question 19	2 / 2 pts			
The Mean of the transformed data after standardization becomes 0 :				
Answer 1:				
0				

Question 20 2 / 2 pts

The standard deviation of the new transformed data after standardization is 1 :

Λ	n	0	_	4

1

Question 21	2 / 2 pts
Outliers are values outside the range between Q1 - 1.5 + 1.5 * IQR :	5 * IQR and this Q3
Answer 1:	
Q3 + 1.5 * IQR	

Question 22	2.5 / 2.5 pts
Is this statement true? When outliers are important the to change the current minimum and maximum for no	·
True	
False	

Question 23

2.5 / 2.5 pts

Is this statement true? When outliers are not significant then it is important to change the maximum and minimum by subtracting outlier end points from minimum and maximum to get the new minimum and maximum.

True

Question 24

Not yet graded / 10 pts

Read this article and provide your summary of the article:

https://statisticsbyjim.com/regression/interpret-r-squared-regression/

Also discuss your understanding of the equation:

$$R^2 = SSR/SST = 1 - SSE/SST$$

(Note: All of you will get full points for this question for answering. Do bit worry about quality. The purpose is: the paper gives you a new perspective of how to look at things.)

Your Answer:

R^2 describes how good of a fit your data has with the ideal best fit curve. An R^2 value close to 1 indicates a strong correlation, while an R^2 value close to 0 indicates a low correlation. We can sometimes draw statistical conclusions from either high or low R^2 value.

Quiz Score: 38 out of 50