จุฬาลงกรณ์มหาวิทยาลัย	ชื่ _อ ภูมิพัฒน์ ชัยประเสริฐสุด
้ คณะวิศวกรรมศาสตร์	เลขประจำตัว <mark>6432133721</mark>
ภาควิชาวิศวกรรมคอมพิวเตอร์	หมายเลขเครื่อง
2110-263 DIGITAL COMPUTER LOGIC LAB I	วันที่ 25 สิงหาคม 2565

2. ตารางความจริงและวงจรตรรกะ

<u>วัตถุประสงค์</u>

- 1 เพื่อให้นิสิตสามารถสร้างตารางความจริงได้
- 2. เพื่อให้นิสิตสามารถเขียนสมการบูลลีนจากตารางความจริงได้
- 3. เพื่อให้นิสิตสามารถสร้างวงจรเชิงตรรกะจากสมการบูลลีนได้

<u>บทน้ำ</u>

ตารางความจริง คือ ตารางที่มีอินพุททั้งหมดให้ค่าครบทุกค่า และแต่ละค่าของอินพุทจะให้ค่า เอาท์พุทเป็นอย่างไร เช่น

А	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

เป็นตารางความจริงที่มีอินพุท 2 ค่า คือ A และ B มีเอาท์พุท 1 ค่า คือ Output การเขียนตารางความจริง จะต้องใส่ค่าของอินพุทให้ ครบทุกค่า ซึ่งในตัวอย่างนี้มีเพียง 2 อินพุท จึงให้ค่าอินพุทได้ทั้งหมด 4 ค่า คือ 00,01,10,11 การเขียนค่าลงตารางนั้นจะต้องใส่ให้เรียงกัน ไปตามลำดับ (เพื่อให้เป็นมาตรฐานเดียวกัน) ส่วนค่าเอาท์พุทที่จะใส่ ลงไปนั้นเป็นค่าที่จะเกิดขึ้นจริงๆตามค่าของอินพุทนั้นๆ

ในกรณีที่มีอินพุทมากกว่า 2 ค่า ก็ใช้หลักการเดียวกัน เพียงแต่จำนวนค่าอินพุททั้งหมดแตกต่างกัน เช่น ถ้ามีอินพุท 3 ค่า จะมีจำนวนคาอินพุททั้งหมด 8 ค่า ดังนี้คือ 000, 001, 010, 011, 100, 101, 110

สมการบูลลีน ถูกศึกษาเป็นครั้งแรกโดย George Boole เป็นสมการทางคณิตศาสตร์ ที่ใช้ช่วย ในการออกแบบวงจรตรรกะและคอมพิวเตอร์ สามารถเขียนได้ 2 รูปแบบคือ

- Canonical sum-of-products (Minterm)
- Canonical Product-of-sum (Maxterm)

เพื่อให้การอธิบายง่ายขึ้น ขอให้ดูตัวอย่างตารางสมมุติข้างล่าง

X ₁	X ₂	X ₃	Minterm	Maxterm	$f(x_1, x_2, x_3)$
0	0	0	$m_0 = x'_1 x'_2 x'_3$	$M_0 = X_1 + X_2 + X_3$	0
0	0	1	$m_1 = x'_1 x'_2 x_3$	$M_0 = X_1 + X_2 + X_3'$	0
0	1	0	$m_2 = x'_1 x_2 x'_3$	$M_0 = X_1 + X_2 + X_3$	1
0	1	1	$m_3 = x'_1 x_2 x_3$	$M_0 = X_1 + X_2' + X_3'$	1
1	0	0	$m_4 = x_1 x_2' x_3'$	$M_0 = x'_1 + x_2 + x_3$	1
1	0	1	$m_5 = x_1 x_2' x_3$	$M_0 = X'_1 + X_2 + X'_3$	0
1	1	0	$m_6 = x_1 x_2 x_3'$	$M_0 = x'_1 + x'_2 + x_3$	0
1	1	1	$\mathbf{m}_7 = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$M_0 = X'_1 + X'_2 + X'_3$	1

เราสามารถเขียนสมการบูลลีนทั้งสองแบบได้ดังนี้

• เขียนในรูปแบบของ Canonical sum-of-products ให้เลือกเฉพาะ $f(x_1,x_2,x_3)$ ที่เป็น 1 นำมา เขียน Product term และ OR กัน ก็จะได้ดังนี้

$$f(x_1, x_2, x_3) = x'_1 x_2 x'_3 + x'_1 x_2 x_3 + x_1 x'_2 x'_3 + x_1 x_2 x_3$$
 (1)

แต่ละนิพจน์เรียกว่า minterm ดังนั้นอาจเขียนสมการใหม่ได้เป็น

$$f(x_1,x_2,x_3) = m_2 + m_3 + m_4 + m_7$$

หรืออาจเขียนย่ออีกอย่างได้เป็น

$$f(x_1, x_2, x_3) = \sum_{m} (2, 3, 4, 7)$$

เขียนในรูปแบบของ Canonical product-of-sums ให้เลือกเฉพาะ f(x₁,x₂,x₃) ที่เป็น 0 นำมา
เขียน Sum term และ AND กัน ก็จะได้ดังนี้

$$f(x_1,x_2,x_3) = (x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$$
(2)

แต่ละนิพจน์เรียกว่า maxterm ดังนั้นอาจเขียนสมการใหม่ได้เป็น

$$f(x_1, x_2, x_3) = M_0 \bullet M_1 \bullet M_5 \bullet M_6$$

หรืออาจเขียนย่ออีกอย่างได้เป็น

$$f(x_1, x_2, x_3) = \prod M(0, 1, 5, 6)$$

การสร้างวงจรตรรกะ จากสมการบูลลีน เราสามารถเขียนวงจรตรรกะได้ โดยใช้เกทพื้นฐาน ได้แก่ AND gate , OR gate และ NOT gate ได้อย่างตรงไปตรงมา

ตัวอย่าง จากสมการที่ 1 นำมาเขียนวงจรจะได้

หรือจะใช้สมการที่ 2 มาเขียนวงจรก็จะได้

การทดลอง

ใช้ Binary Switch เป็นอุปกรณ์ป้อนอินพุท และ Binary Probe เป็นอุปกรณ์เพื่อแสดงผล แต่ละข้อให้ สร้างวงจรรวมในหน้าเดียว, ใช้ binary switch เพียง set เดียว และนำ output มาวางเรียงกันเพื่อให้ตรวจสอบ ผลการทำงานของวงจรง่าย (ข้อแนะนำ:ใช้การตั้งชื่อสัญญาณแทนการลากสายสัญญาณ จะประหยัดเวลาได้ มาก)

1. จากตารางของวงจร XOR คือ output ของวงจรจะเป็น 1 เมื่อ input ของวงจรต่างกัน จงเขียน สมการบูลลีนทั้งแบบ Sum-of-products และ Product-of-sums แล้วสร้างวงจรจากสมการทั้งสอง และตรวจสอบการทำงานของวงจร

	_		Sum-of-products	Product-of-sums
Α	В	Output	A'B + AB'	(A + B)(A' + B')
0	0	0	○ —A'	
0	1	1	1	A' B
1	0	1	1 - B	A-B'-
1	1	0		A B
	•			A'

2. จงเขียนตารางความจริงของวงจร 1 bit Full Adder ให้สมบูรณ์และเขียนสมการบูลลีนทั้งแบบ Sum-of-products และ Product-of-sums (ไม่ต้อง minimize) แล้วสร้างวงจรจากสมการทั้งสอง โดยมีอินพุทคือ A, B และ Cin และมีเอาท์พุทคือ Sum และ Cout

А	В	Cin 🔽	Sum 🔽	Cout 🔽
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum-of-products

SUM: A'B'Cin + A'BCin' + AB'Cin' + ABCin Cout: A'BCin + AB'Cin + ABCin' + ABCin Product-of-sums

SUM: (A+B+Cin)(A+B'+Cin')(A'+B+Cin')(A'+B'+Cin) Cout: (A+B+Cin)(A+B+Cin')(A+B'+Cin)(A'+B+Cin)

- 3. จงเขียนตารางความจริงแล้วออกแบบและสร้างวงจร comparator ที่มี 4 input คือ A, B, C และ D และมี 3 output คือ Z1, Z2 และ Z3 โดยที่ A และ B ประกอบเป็นค่าของเลขจำนวนที่หนึ่ง (N1) และ C และ D ประกอบเป็นค่าของเลขจำนวนที่สอง (N2) เช่น ถ้า AB = 10 เลข N1 ก็มีค่า 10 (เท่ากับ 2 ในฐานสิบ) ค่าของ Z แสดงผลการเปรียบเทียบขนาดเลขทั้งสองจำนวน โดย Z1 เป็น 1 เมื่อ N1 > N2 Z2 เป็น 1 เมื่อ N1 < N2 และ Z3 เป็น 1 เมื่อ N1 = N2 (จะสังเกตว่า ที่ input ใดๆ จะ มีค่า Z เป็นหนึ่งเพียงตัวเดียวเท่านั้น) ให้เขียนสมการบูลลีนและสร้างวงจรทั้งแบบ Sum-of-products และ Product-of-sums ด้วย จะ minimize หรือไม่ก็ได้</p>
- 4. จงเขียนตารางความจริงแล้วออกแบบและสร้างวงจร ที่มี 3 input คือ X0, X1 และ Selector และมี 1 output คือ Z โดยที่ ค่าของ Z ควบคุมโดย input Selector คือ ถ้า input Selector เป็น 0 ค่าของ Z จะเป็น X0 แต่ถ้า input Selector เป็น 1 ค่าของ Z จะเป็น X1 วงจรนี้เรียกว่า Multiplexer เนื่องจาก วงจรเลือก 1 input จาก 2 input จะเรียกสั้นๆว่า MUX 2:1 ให้เขียนสมการบูลลีนที่ minimize แล้ว และสร้างวงจรทั้งแบบ Sum-of-products และ Product-of-sums ด้วย
- 5. จงออกแบบ และ สร้างวงจร MUX 4:1 คือวงจรมี 4 input คือ X0, X1, X2 และ X3 และมี input ที่ ใช้ในการเลือก 2 input คือ S1 S0 และ 1 output คือ Z โดยค่าที่ออกมาที่ Z จะเป็น input ใดขึ้นกับ ค่าของ S1 S0 ตามตาราง

S1	S0	Z
0	0	X0
0	1	X1
1	0	X2
1	1	X3

ข้อแนะนำ ใช้วงจรจากข้อ 4.

A	В	C .	D .	Z1 🔻	Z2 .	Z3 🔽
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Sum-of-products

Z1: A'BC'D' + AB'C'D' + ABC'D' + ABC'D + ABCD' = BC'D' + ABD' + AC' Z2: A'B'C'D + A'B'CD' + A'B'CD + A'BCD + A'BCD + AB'CD = A'B'D + B'CD + A'C Z3: A'B'C'D' + A'BC'D + AB'CD' + ABCD

Product-of-sums

```
Z1: (A+B+C+D)(A+B+C+D')(A+B+C'+D)(A+B+C'+D')(A+B'+C+D')(A+B'+C'+D)(A+B'+C'+D')(A'+B+C'+D')(A'+B+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+B'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C'+D')(A'+C
```

Z2: (A+B+C+D)(A+B'+C+D)(A+B'+C+D')(A'+B+C+D)(A'+B+C+D')(A'+B+C+D)(A'+B'+C+D)(A'+D)(

Z3: (A+B+C+D')(A+B+C'+D)(A+B+C'+D')(A+B'+C+D)(A+B'+C'+D)(A+B'+C'+D')(A'+B+C+D')(A'+B+C+D')(A'+B'+C+D')(A'+B'+C+D')(A'+B'+C+D')(A'+B'+C'+D)(A'+C'+D)(A'+C'+

XO .	X1 -	Selecto	Z 🔽
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Sum-of-products

$$X0'X1S + X0X1'S' + X0X1S' + X0X1S = X0S' + X1S$$

Product-of-sums

$$(X0+X1+S)(X0+X1+S')(X0+X1'+S)(X0'+X1+S') = (X0+S)(X1+S')$$