GEFRAN

SAE J1939 GRA-GRN

Sortie numérique

Code 80526 Édition 03-2019

TABLE DES MATIERES

1. Champ d'application	2
2. Abréviations et termes	
3. Documents de référence	
4. Raccordements électriques et schéma fonctionnel	
5. Définitions par défaut SAE J1939	8
6. Guide de démarrage	
7. Comment modifier le nom	
8. Comment modifier la vitesse de transmission	12
9. Comment modifier l'adresse source	13

1. CHAMP D'APPLICATION

Ce document constitue la définition SAE J1939 de Gefran pour les capteurs rotatifs monotour à effet Hall.

2. ABRÉVIATIONS ET TERMES

Tableau 1. Abréviations et termes.

Abréviation / Terme	Définition ou Signification
SAE	Society of Automotive Engineers
ECU	Electronic Control Unit (Unité de commande électronique)
CA	Controller Application (Application du contrôleur)
PDU	Protocol Data Unit (unité de données de protocole)
NMT	Gestion du réseau
PGN	Numéro du groupe de paramètre
AC	Demande d'adresse
MSB	Most Significant Byte (octet le plus significatif)
LSB	Least Significant Byte (octet le moins significatif)
SOF	Start Of Frame (Début de trame)
RTR	Remote Transmission Request (Demande de transmission à distance)
CRC	Cyclic Redundancy Check (Contrôle de redondance cyclique)
ACK	Acknowledgment (Acquittement)
EOF	End Of Frame (Fin de trame)
SRR	Substitute Remote Request (Demande à distance de remplacement)
IDE	Identifier Extension (extension de l'identifiant)
POST	Power On Self Test (Puissance sur l'auto-test)
CW	Sens horaire
CCW	Sens anti-horaire

3. DOCUMENTS DE RÉFÉRENCE

Tableau 2. Normes subordonnées à la J1939.

Document	Contenu				
J1939 – Méthode recommandée pour un réseau de véhicule série de communications et de contrôle					
J1939/11 – Couche physique – 250k bits/s, paire torsadée blindée	Caractéristiques physiques du bus;				
J1939/13 – Connecteur de diagnostic non embarqué	Connecteur standard à des fins diagnostiques.				
J1939/21 – Couche liaison de données	Trame CAN (identificateur 29 bits, PGN etc.), fonctions de protocole de transport, et 5 types de messages : Commandes, Demandes, Diffusions/Réponses, Acquittement, et Fonctions de groupe.				
J1939/31 – Couche Réseau	Services et fonctions nécessaires pour l'intercommunication entre les différents segments d'un réseau J1939.				
J1939/71 – Couche Application de véhicule	Paramètres standards regroupés ensemble dans une trame de message et affectés d'un PGN.				
J1939/73 – Couche application - Diagnostics	Fonctions et messages d'accès aux données de diagnostic et de calibrage.				
J1939/81 – Gestion Réseau	Informations sur le contenu d'un nom de l'ECU et comment l'ECU demande un adressage à l'aide de ce nom.				

4. RACCORDEMENTS ÉLECTRIQUES ET SCHÉMA FONCTIONNEL

Tableau 3. Version DEUTSCH avec arbre : raccordements.

DEUTSCH DT04-6P	Signification
1	0V (MASSE)
2	+Vs (+9 +36 Vcc)
3	NC
4	NC
5	CAN-L
6	CAN-H

Figure 1. Schémas mécaniques du capteur rotatif à effet Hall de Gefran : Version DEUTSCH avec arbre.

Tableau 4. Version AMP avec arbre: raccordements.

AMP Superseal 6 P 282108-1	Signification
1	0V (MASSE)
2	+Vs (+9 +36 Vcc)
3	NC
4	NC
5	CAN-L
6	CAN-H

Figure 2. Schémas mécaniques du capteur rotatif à effet Hall de Gefran : Version AMP avec arbre.

Tableau 5. Version MP avec arbre: raccordements.

AMP Superseal 6 P 282108-1	Signification
1	OV (MASSE)
2	+Vs (+9 +36 Vcc)
3	NC
4	NC
5	CAN-L
6	CAN-H

Figure 3. Schémas mécaniques du capteur rotatif à effet Hall de Gefran : Version AMP sans arbre.

Tableau 6. Version câble sans arbre : raccordements.

Sortie 6 fils 18 AWG 1,65 mm OD	Signification
NOIR	MASSE
ROUGE	+ ALIMENTATION 1
JAUNE	N.C.
VERT	N.C.
BLEU	CAN-L
BLANC	CAN-H

Figure 4. Schémas mécaniques du capteur rotatif à effet Hall de Gefran : version câble sans arbre.

Remarque : veuillez-vous assurer que l'extrémité du CANbus est terminée. L'impédance mesurée entre CAN H et CAN L doit être de $60~\Omega$, ce qui signifie que le câble doit être raccordé à une résistance de 120~ohms sur chacune des extrémités de la ligne de bus. En interne, le transmetteur n'est pas terminé avec la résistance de 120~ohms. Ne pas confondre les lignes de signal du CANbus, sinon la communication avec le transmetteur est impossible.

Figure 5. Capteur rotatif à effet Hall de Gefran : schéma fonctionnel.

5. DÉFINITIONS PAR DÉFAUT SAE J1939

Débit de données : 250 Kbps.
Capacité d'adresse arbitraire : 1.
Vitesse de transmission : 100 ms.

· Identificateur: 18FF0B15h.

• PGN: 65291 (0FF0Bh) - « Propriétaire B ».

• Adresse source: 21 (15h)

Priorité : 6.Données :

- Octet 0, 1 : Position de l'angle 1 entier non signé 16 bits : 0...3600 (CW, position angle 0...360°; résolution 0.1°).

- Octet 2, 3: Angle 2 position 0...3600 (CCW, position angle 0...360°; résolution 0.1°).

- Octet 4, 5, 6: 0xFF - Non utilisé.

- Byte 7 : Code d'erreur.

• Message de diagnostic : DM13 uniquement pris en charge.

Le débit de données actuel des capteurs rotatifs monotour à effet Hall de Gefran avec sortie SAE J1939 est de 250 Kbps. Un message standard contenant 8 octets de données possède 128 bits (hormis les bits utilisés pour le remplissage de bits), qui correspond en temps à environ 500 μ s.

Figure 6. Format de message SAE J1939/21.

J1939 utilise l'identificateur de 29 bits défini dans le protocole CAN 2.0B indiqué dans Tableau 7.

L'appareil est configuré comme un appareil avec Capacité d'adresse arbitraire, il peut donc demander d'autres adresses, en envoyant le message Adresse demandée avec l'adresse source dans la plage de 128 à 247 inclus. S'il ne reçoit aucun autre message Adresse demandée avec la même adresse source ou s'il gagne l'arbitrage, l'appareil utilise cette adresse et démarre les communications réseau habituelles avec cette adresse. Si aucune adresse n'est disponible dans la plage 128 à 247 (arbitrage toujours perdu), l'appareil envoie le message Impossible de demander une adresse à l'aide de l'adresse NULLE (254). Dans ce cas, les communications réseau habituelles sont suspendues.

lableau 7. Structure de l'Identificateur 29 bits.						
bits	1 bit	1 bit	8 bits	8bits		

			3 bits	1 bit	1 bit	8 bits	8bits	8bits
					Format PDU	Spécifique PDU		
	-	Priorité	Réservé Priorité	Page de données	< 240: PDU1	Adresse de destination	Adresse source	
					≥ 240: PDU2	Extension de groupe		

6. GUIDE DE DÉMARRAGE

- 1. Lorsque le capteur est activé, il envoie un message Adresse demandée conformément à PGN 60928 comme indiqué dans l'exemple de Figure 7 à la page 10. Le message est composé de :
 - Identificateur : 18EEFFXXh (décrit dans Tableau 8).
 - Champ de données : nom du périphérique (décrit dans Tableau 9).
- 2. Une fois que le capteur a obtenu une adresse valide, il commence à envoyer le message de position d'angle conformément à PGN 65291 comme indiqué dans l'exemple Figure 8 à la page 10. Le message est composé de :
 - Identificateur: 0x18FF0BXXh (décrit dans Tableau 11).
 - Champ de données : angle de position (décrit dans Tableau 12).

En cas d'erreur, lee message de position d'angle est envoyé avec l'Angle 1 et l'Angle 2 MSB = 0xFF et LSB = 0xFF.

Tableau 8. PGN 60928 Adresse demandée : Définition Identificateuri.

	18h			18h EEh FFh			
000	110	0	0	1110 1110	1111 1111	0001 0101	
	3 bits	1 bit	1 bit	8 bits	8bits	8bits	
-	Priorité : 6	Réservé	Réservé Page de Format PDU : Spécifique PI données PDU1 de dest			Adresse source	
		PGN 60928 (0EE00h)					

Tableau 9. PGN 60928 Adresse demandée : Définition du nom.

XXh	XXh	X	Xh	5Bh	X	Kh	XXh	XXh			XXh	
xxxx xxxx	xxxx xxxx	100	x xxxx	0101 1011	xxxx x	xxx	XXXX XXXX	xxxx xxx	0	х	XXX	xxxx
8 bits	8 bits	3 bits	5 bits	8 bits	5 bits	3 bits	8 bits	7 bits	1 bit	1 bit	3 bits	4 bits
Numéro d'identité, LSB	Numéro d'identité	Code fabricant, LSB	Numéro d'identité, MSB	Code fabricant, MSB	Instance de fonction	Instance ECU	Fonction	Système de véhicule	Bit réservé	Bit d'adresse arbitraire	Groupe de l'industrie	Instance de système de véhicule

Tableau 10. Définition de nom Gefran J1939 pour les capteurs rotatifs monotour à effet Hall.

Champ	Description
Arbitraire	0: Appareil avec Capacité d'adresse unique (non mis en œuvre)
Bit d'adresse	1: Appareil avec Capacité d'adresse arbitraire
Groupe de l'industrie	2: Équipement agricole et forestier
	3: Équipement de construction
Instance de système de véhicule	0
Système de véhicule	0
Bit réservé	0

Champ	Description
Fonction	142 (8Eh): Capteur rotatif
Instance de fonction	0
Instance ECU	0
Code fabricant	732 (2DCh): Gefran S.p.A.
Numéro d'identité	Programmé par GEFRAN

Tableau 11. PGN 65291 Propriétaire B : Définition de l'identificateur.

		18h		FFh	0Bh	XXh
000	110	0	0	1111 1111	0000 1011	0001 0101
	3 bits	1 bit	1 bit	8 bits	8bits	8bits
-	Priorité : 6 Réservé Page de données		Format PDU : PDU2	Spécifique PDU : extension de groupe	Adresse source	
				PGN 65291 (0FF0)Bh)	

Tableau 12. PGN 65291 Propriétaire B : définition position d'angle.

XXh	XXh	XXh	XXh	FFFFFFh	XXh
xxxx xxxx xxxx		xxxx xxxx xxxx xxxx		1111 1111 1111 1111 1111 1111	xxxx xxxx
8 bits	8 bits	bits 8 bits 8 bits		24 bits	8 bits
Angle 1, MSB	• • • • •		Angle 2, LSB		Code d'erreur
l					00h: Aucune erreur
Type de dor	Type de données : Entier		/pe de données :		01h: Erreur de puce du capteur Angle 1
non sigr	né 16 bits on: 0.1 deq		signé 16 bits n : 0.1 deg	Réservé	02h: Erreur de puce du capteur Angle 2
Direction de	l'angle : CW		Direction de l'angle : CCW		03h: Erreur de puce du capteur Angle 1 et 2
Ex.: 008Ah = 138 = 13.8 deg			Ex.: 0D7Ch = 3452 = 345.2 deg		20h: Erreur somme de contrôle du programme
					40h: Erreur somme de contrôle du paramètre

Figure 7. Exemple : Message d'Adresse demandée.

Figure 8. Exemple : message de position d'angle.

7. COMMENT MODIFIER LE NOM

Le nom du capteur peut être configuré en envoyant le Message 1 configurable exclusivement - Spécifique à la destination conformément à PGN 45312 comme indiqué dans l'exemple de Figure 9 à la page 11. Le message est composé de :

• Identificateur: 18B1XXXXh (décrit dans Tableau 13)

Remarque : veuillez noter que l'Adresse de destination est l'adresse du capteur, tandis que l'Adresse source correspond à l'adresse du contrôleur CAN de l'utilisateur qui envoie le message.

• Champ de données : Message 1 configurable exclusivement (décrit dans Tableau 14).

Tableau 13. Message 1 configurable exclusivement PGN 45312 : Définition de l'identificateur.

	18h			B1h	XXh	XXh			
000	110	0	0	1011 0001	1011 0001 xxxx xxxx				
	3 bits	1 bit	1 bit	8 bits	8 bits 8bits				
-	i nonce.		donnees			Format PDU : PDU1	Spécifique PDU : Adresse de destination	Adresse source	
	6			PGN 45312 (0E	3100h)]			

Tableau 14. Message 1 configurable exclusivement PGN 45312 : définition du message.

67656672h	XXh		XXh	XXh		XXh		
0110 0111 0110 0101 0110 0110 0111 0010	xxxx x	xxx	xxxx xxxx	xxxx xxx	0	x	xxx	xxxx
32 bits	5 bits	3 bits	8 bits	7 bits	1 bit	1 bit	3 bits	4 bits
Code ASCII : « gefr »	Instance de fonction		Fonction	Système de véhicule	Bit réservé	Bit d'adresse arbitraire	Groupe de l'industrie	Instance de système de véhicule

Figure 9. Exemple : Comment modifier le nom.

8. COMMENT MODIFIER LA VITESSE DE TRANSMISSION

La vitesse de transmission du capteur peut être configurée en envoyant le Message 2 configurable exclusivement - Spécifique à la destination conformément à PGN 45568 comme indiqué dans l'exemple de Figure 10 à la page 12. Le message est composé de :

• Identificateur : 18B2XXXXh (décrit dans Tableau 15)

Remarque : veuillez noter que l'Adresse de destination est l'adresse du capteur, tandis que l'Adresse source correspond à l'adresse du contrôleur CAN de l'utilisateur qui envoie le message.

• Champ de données : Message 2 configurable exclusivement (décrit dans Tableau 16).

		18h		B2h	XXh	XXh	
000	110	0	0	1011 0010	xxxx xxxx		
	3 bits	1 bit	1 bit	8 bits	8bits		
-	Priorité :	Dulguitá - Réserve		Format PDU : PDU1	Spécifique PDU : Adresse de destination	Adresse source	
	0			PGN 45568 (0B	200h)		

Tableau 16. Message 2 configurable exclusivement PGN 45568 : définition du message.

67656672h	XXh	XXh	0000h
0110 0111 0110 0101 0110 0110 0111 0010	XXXX XXXX	xxxx xxxx	0000 0000 0000 0000
32 bits	8 bits	8 bits	16 bits
	Vitesse de transmission, LSB	Vitesse de transmission, MSB	
	Type de données : E		
Code ASCII : « gefr »	Résoluti	Réservé	
	Plage : 1		
	0 = arrêt tra		
	Ex.: 0032h =		

Figure 10. Exemple : Comment modifier la vitesse de transmission

9. COMMENT MODIFIER L'ADRESSE SOURCE

L'adresse source du capteur peut être configurée en envoyant le Message Adresse commandée conformément à PGN 65240 (FED8h). Étant donné que ce message fait une longueur de 9 bits, il est envoyé en utilisant le message d'annonce de diffusion du protocole de transport conformément à PGN 60416 et PGN 60160, comme indiqué dans l'exemple de Figure 11 à la page 14. Trois messages doivent être envoyés :

- a. Protocole de transport Gestion des connexions
- Identificateur : 1CECFFXXh (décrit dans Tableau 17)
- Champ de données: Protocole de transport Gestion des connexions (décrit dans Tableau 18).

Tableau 17. Protocole de transport PGN 60416 - Gestion des connexions Définition de l'identificateur.

		1Ch ECh FFh				XXh
000	111	0	0	1110 1100	1111 1111	xxxx xxxx
	3 bits	1 bit	1 bit	8 bits	8bits	8bits
-	Driegité : Reserve		Format PDU : PDU1	Spécifique PDU : Adresse de destination	Adresse source	
	, , , , , , , , , , , , , , , , , , ,			PGN 60416 (01	EC00h)	

Tableau 18. Protocole de transport PGN 60416 - Gestion des connexions Définition du Message d'annonce de diffusion

20h	09h	00h	02h	FFh	D8h	FEh	00h
0110 0111	0000 1001	0000 0000	0000 0010	1111 1111	1101 1000	1111 1110	0000 0000
8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits
Octet de commande	Taille total du message, nombre d'octets LSB	Taille total du message, nombre d'octets MSB	Nombre total de paquets	Réservé	PGN du message mis en paquet, LSB	PGN du message mis en paquet	PGN du message mis en paquet, MSB

- b. Protocole de transport Transfert de données : paquet 1
- Identificateur : 1CEBFFXXh (décrit dans Tableau 19)
- Champ de données : Protocole de transport Transfert de données : paquet 1 (décrit dans Tableau 20).

Tableau 19. Protocole de transport PGN 60160 - Transfert des données : Définition de l'identificateur.

	1Ch			EBh	FFh	XXh
000	111	0	0	1110 1011 1111 1111		xxxx xxxx
	3 bits	1 bit	1 bit	8 bits	8bits	
-	Priorité :	Duiguitá Reserve °		Spécifique PDU : Adresse de destination	Adresse source	
	,			PGN 60160 (0E	EB00h)	

Tableau 20. Protocole de transport PGN 60416 - Transfert des données : paquet 1.

01h	XXh	XXh	X	Xh	5Bh	XX	(h	XXh	ХХ	(h
0000 0001	xxxx xxxx	xxxx xxxx	100	x xxxx	0101 1011	xxxx x	xxx	xxxx xxxx	xxxx xxx	0
8 bits	8 bits	8 bits	3 bits	5 bits	8 bits	5 bits	3 bits	8 bits	7 bits	1 bit
Numéro de séquence	Numéro d'identité, LSB	Numéro d'identité	Code fabricant, LSB	Numéro d'identité, MSB	Code fabricant, MSB	Instance de fonction	Instance ECU	Fonction	Système de véhicule	Bit réservé

- c. Protocole de transport Transfert de données : paquet 2
- Identificateur : 1CEBFFXXh (décrit dans Tableau 19)
- Champ de données : Protocole de transport Transfert de données : paquet 2 (décrit dans Tableau 21).

Tableau 21. Protocole de transport PGN 60416 - Transfert des données : paquet 2.

02h	XXh			XXh	FFFFFFFFh
0000 0010	Х	xxx	XXXX	xxxx xxxx	1111 1111 1111 1111 1111 1111 1111 1111 1111
8 bits	1 bit	3 bits	4 bits	8 bits	
Numéro de séquence	Bit d'adresse arbitraire	Groupe de l'industrie	Instance de système de véhicule		Réservé

Figure 11. Exemple: Comment modifier l'adresse source.

NOTES	

