

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2_

Название:	Трудоёмкость алгоритмов умножения матриц				
Дисциплина:	Анализ алгоритмов				
Студент	<u>ИУ7-52Б</u>	(H)	В.А. Иванов		
П	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель		(Подпись, дата)	(И.О. Фамилия)		

Оглавление

B	веде	ние	3
1	Ана	алитическая часть	4
2	Koı	нструкторская часть	6
	2.1	Классический алгоритм умножения	6
	2.2	Алгоритм Винограда	6
	2.3	Оптимизированный алгоритм Винограда	6
	2.4	Требования к программному обеспечению	7
	2.5	Заготовки тестов	7
3	Tex	снологическая часть	13
	3.1	Выбор языка программирования	13
	3.2	Листинг кода	13
	3.3	Результаты тестирования	17
	3.4	Оценка трудоёмкости	20
	3.5	Оценка времени	21
4	Исс	следовательская часть	23
	4.1	План экспериментов	23
	Зак	лючение	23
	4.2	Результат экспериментов	23
	Резу	ультат экспериментов	23
		Сравнительный анализ	24
	Cpa	внительный анализ	24
За	клю	очение	2 5
\mathbf{C}_1	писо	к литературы	26

Введение

Трудоёмкость алгоритма - это зависимость стоимости операций от линейного размера входа [1].

Модель вычислений трудоёмкости имеет следующие оценки.

- Оценка стоимости базовых операций. Базовые операции имеют стоимость 1.
- Оценка циклов. Включает в себя стоимость тела цикла, сравнения и инкремента.
- Оценка условного оператора if. Производится оценка обоих случаев.

Оценка характера трудоёмкости даётся по наиболее быстрорастущему слагаемому. Такая оценка играет важную роль в разработке и анализе алгоритмов, так как позволяет судить об оптимальности использования алгоритма при тех или иных входных данных.

В данной лабораторной оценивается трудоёмкость классического алгоритма умножения матриц и алгоритма Винограда.

1. Аналитическая часть

Целью лабораторной работы является оценка трудоёмкости алгоритма умножения матриц и получение практического навыка оптимизации алгоритмов.

Выделены следующие задачи лабораторной работы:

- математическое описание операции умножения матриц;
- описание и реализация алгоритмов умножения матриц;
- описание применённых к алгоритму Винограда способов оптимизации;
- проведение замеров процессорного времени работы алгоритмов при различных размерах матриц (серия экспериментов для чётного размера и для нечётного);
- оценка трудоёмкости алгоритов;
- проведение сравнительного анализа алгоритмов на основании экспериментов.

Умножение матриц - операция над матрицами A[M*N] и B[N*Q]. Результатом операции является матрица С размерами M*Q, в которой элемент $c_{i,j}$ задаётся формулой

$$c_{i,j} = \sum_{k=1}^{N} (a_{i,k} \cdot b_{k,j}) \tag{1.1}$$

Для оптимизиции трудоёмкости умножения матриц таким методом можно воспользоваться следующими соотношениями.

Пусть u, v - элементы матриц A, B соотв., участвующие в вычислении значения элемента матрицы C. Тогда данный элемент вычисляется как

$$u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4 (1.2)$$

Такое выражение можно представить как

$$(u_1+v_2)(v_1+u_2)+(u_3+v_4)(v_3+u_4)-u_1u_2-u_3u_4-v_1v_2-v_3v_3$$
 (1.3)

В этом выражении вычитаемые можно вычислить однократно и применить их для всех столбцов и строк, где они используются. Данные действия испольняются в алгоритме Винограда. Таким образом удаётся снизить трудоёмкость алгоритма за счёт снижения количества операций. В случае, если матрица нечётный размер N, требуется производить дополнительные вычисления для крайних строк и столбцов. Поэтому алгоритм наиболее эффективен в случае матриц, у которых N является чётным.

2. Конструкторская часть

Рассмотрим и произведём вычисление трудоёмкости для классического алгоритма и алгоритма Винограда для умножения матриц [MxN] и B[NxQ]

2.1. Классический алгоритм умножения

Данный алгоритм непосредственно использует вышеприведённую формулу. Для вычисления каждого элемента матрицы С совершается циклический обход k элементов из таблиц A и B.

Схема алгоритма приведена на рисунке 2.1.

2.2. Алгоритм Винограда

Цель алгоритма заключается в сокращении доли умножений в самом трудоёмком участке кода. Используя вышеописанные соотношения, сначала вычисляются и заносятся в массив вчиатемые для каждого столбца и каждой строки. После происходит вычисление элементов матрицы С. В случае нечётного N дополнительно происходит проход умножения по неучтённым элементам.

Схема алгоритма приведена на рисунках 2.2. и 2.3.

2.3. Оптимизированный алгоритм Винограда

Для понижения трудоёмкости вышеописанного алгоритма Винограда можно произвести следующие оптимизации:

- При вычислении ячеек С, промежеточный результат записывается в временную переменную, которая после получения результата переносится в матрцу С. Таким образом снижено количество операций высчитывания адреса.
- Цикл по слагаемым (с переменной k) изменён на аналогичный с шагом 2. Таким образом, внутри цикла не требуется

производить умножение k на 2.

- Также введена переменная k1, равная k-1. Она, как и k, увеличивается на каждом проходе цикла на 2, и таким образом вместо 2 операций (k-1) за цикл остаётся одна.
- Вычисление массива multi заменено на высчитывание значения mi = multi[i] внутри общего цикла. Таким образом удалось избавиться от накладных расходов для цикла и от выделения и освобождения памяти под массив.

Схема алгоритма приведена на рисунках 2.4. и 2.5.

2.4. Требования к программному обеспечению

Для полноценной проверки и оценки алгоритмов необходимо выполнить следующее.

- 1. Обеспечить возможность консольного ввода двух матриц и выбора алгоритма для умножения. Программа должна вывести результирующую матрцу.
- 2. Реализовать функцию замера процессорного времени, затраченного функцией. Для этого также создать возможность ввода размера матрицы, на которых будет выполнен замер.

2.5. Заготовки тестов

При проверке алгоритмов необходимо будет использовать следующие классы тестов:

- матрицы размером 1х1, квадратные матрицы;;
- две или одна пустая матрица;
- чётный и нечётный размер N;

Рис. 2.1 — Классический алгоритм умножения матриц

Рис. 2.2 — Алгоритм Винограда (часть 1)

Рис. 2.3 — Алгоритм Винограда (часть 2)

Рис. 2.4 — Оптимизированный алгоритм Винограда (часть 1)

Рис. 2.5 — Оптимизированный алгоритм Винограда (часть 2)

3. Технологическая часть

3.1. Выбор языка программирования

В качестве языка программирования был выбран C++, так как имеется опыт работы с ним, и с библиотеками, позволяющими провести исследование и тестирование программы. Также в языке имеются средства для отключения оптимизации компилятора.

3.2. Листинг кода

Реализация алгоритмов умножения матриц представлена на листингах 3.1-3.2.

Листинг 3.1 — Функция умножения матриц классическим алгоритмом.

```
1 #include "classic.h"
2 #pragma optimize ( "", off )
3 mat t classic mult(mat t a, mat t b, int m, int n, int q)
4
5
    mat t c = create mat(m, q);
6
7
    for (int i = 0; i < m; i++)
8
      for (int j = 0; j < q; j++)
9
         c[i][j] = 0;
10
         for (int k = 0; k < n; k++)
11
           c[i][j] += a[i][k] * b[k][j];
12
13
14
    return c;
15| \}
16 #pragma optimize ( "", on )
```

Листинг 3.2 — Функция умножения матриц алгоритмом Винограда.

```
#include "winograd.h"
```

```
3 #pragma optimize ( "", off )
  arr t calc mi(mat ta, int m, int n)
6|{
    arr_t mi = create_arr(m);
8
    for (int i = 0; i < m; i++)
9
       mi[i] = 0;
10
       for (int k = 0; k < n / 2; k++)
11
12
         mi[i] += a[i][2*k] * a[i][2*k + 1];
13
14
    return mi;
|15|
  arr t calc mj(mat t b, int n, int q)
17|\{
18
    arr t mj = create arr(q);
    for (int j = 0; j < q; j++)
19
20
21
       mj[j] = 0;
22
       for (int k = 0; k < n / 2; k++)
         mj[j] += b[2*k][j] * b[2*k + 1][j];
23
24
25
    return mj;
26 }
27 mat t winograd mult (mat ta, mat tb, int m, int n, int q)
28 {
29
    mat t c = create mat(m, q);
    arr t mi = calc mi(a, m, n);
30
31
    arr t mj = calc mj(b, n, q);
    for (int i = 0; i < m; i++)
32
33
       for (int j = 0; j < q; j++)
34
       {
35
         c[i][j] = -(mi[i] + mj[j]);
36
         for (int k = 0; k < n / 2; k++)
```

```
c[i][j] += (a[i][2*k] + b[2*k + 1][j]) *
37
                 (a[i][2*k + 1] + b[2*k][j]);
38
39
      }
    if (n % 2)
40
       for (int i = 0; i < m; i++)
41
         for (int j = 0; j < q; j++)
42
           c[i][j] += a[i][n-1] * b[n-1][j];
43
44
    return c;
|45|
46
47 #pragma optimize ( "", on )
```

Листинг 3.3 — Оптимизированая функция умножения матриц алгоритмом Винограда.

```
1 #include "winograd h"
2
3 #pragma optimize ("", off)
5 arr t calc mj(mat t b, int n, int q)
6
    arr t mj = create arr(q);
    for (int j = 0; j < q; j++)
8
9
10
      double mjj = 0;
      for (int k = 1; k < n; k += 2)
11
         mjj += b[k][j] * b[k - 1][j];
12
13
      mj[j] = mjj;
14
15
    return mj;
16|}
17
18 mat_t winograd_mult(mat_t a, mat_t b, int m, int n, int q)
19 | {
```

```
20
     mat t c = create mat(m, q);
21
     arr t mj = calc mj(b, n, q);
22
23
     for (int i = 0; i < m; i++)
24
     {
       double mi_i = 0;
25
26
       for (int k = 1; k < n; k += 2)
         mi i += a[i][k] * a[i][k - 1];
27
28
29
       for (int j = 0; j < q; j++)
30
         double cij = -(mi_i + mj[j]);
31
32
         int k = 1;
         int k1 = 0;
33
         for (; k < n; k += 2, k1 += 2)
34
           cij += (a[i][k] + b[k1][j]) * (a[i][k1] + b[k][j]);
35
         c[i][j] = cij;
36
37
       }
    }
38
39
     if (n % 2)
40
41
       int n minus 1 = n - 1;
42
       for (int i = 0; i < m; i++)
43
44
         for (int j = 0; j < q; j++)
           c[i][j] += a[i][n minus1] * b[n minus1][j];
45
    }
46
47
    free arr(&mj);
48
49
     return c;
50 }
51
52 #pragma optimize ( "", on )
```

3.3. Результаты тестирования

Для тестирования написанных функций был создан отдельный файл с вышеописаными классами тестов. Тестирование функций проводилось за счёт сравнения результов двух функций.

Состав тестов приведён в листинге 3.4.

Листинг 3.4 — Модульные тесты

```
1|#include "tests.h"
2 // Сравнение результата умножения разными способами
3 bool cmp funcs (mat ta, mat tb, intm, int n, int q)
4 {
    mat_t c1 = classic_mult(a, b, m, n, q);
5
    mat t c2 = winograd mult(a, b, m, n, q);
6
    bool flag = cmp matrix(c1, c2, m, q);
7
    free mat(\&c1, m, q);
9
    free mat(\&c2, m, q);
    return flag;
10
11|}
12
13 // Матрицы с размером 1x1
  void size one test()
15|{
    mat t a = create mat(1, 1);
16
    mat t b = create mat(1, 1);
17
18
    a[0][0] = 0;
19
    b[0][0] = 1;
20
    if (! cmp funcs(a, b, 1, 1, 1))
21
22
    {
      std::cout << __FUNCTION__ << " - FAILED\n";
23
24
      return:
25
    }
```

```
26
27
     a[0][0] = 3;
    b[0][0] = 4;
28
    if (!_cmp_funcs(a, b, 1, 1, 1))
29
30
     {
       std::cout << __FUNCTION__ << " - FAILED\n";
31
32
       return;
     }
33
34
    free_mat(\&a, 1, 1);
35
    free mat(\&b, 1, 1);
36
37
    std::cout << __FUNCTION__ << " - OK\n";
38
39 }
40|// Нулевые матрицы
41 void _void _test()
42 {
    mat t a = random matrix(3, 2);
43
    mat_t b = void_matrix(2, 1);
44
    if (!_cmp_funcs(a, b, 3, 2, 1))
45
46
       std::cout << FUNCTION << " - FAILED\n";</pre>
47
       return;
48
     }
49
50
    free mat(\&a, 3, 2);
    a = void matrix(3, 2);
51
     if (!_cmp_funcs(a, b, 3, 2, 1))
52
53
    {
       std::cout << FUNCTION << " - FAILED\n";
54
55
       return;
56
    free mat(\&a, 3, 2);
57
     free mat(\&b, 2, 1);
58
     std::cout << FUNCTION << " - OK\n";
```

```
60 }
61// Квадратные матрицы
62 void square test()
63 | {
    mat t a = random matrix(4, 4);
64
    mat t b = random matrix (4, 4);
65
66
     if (! cmp funcs(a, b, 4, 4, 4))
67
68
       std::cout << __FUNCTION__ << " - FAILED\n";
69
70
       return;
71
    }
72
    free mat(\&a, 4, 4);
73
    free mat(\&b, 4, 4);
74
    std::cout << __FUNCTION__ << " - OK\n";
75
76 }
77 // Матрицы нечётного размера
78 void odd test()
79 {
    mat t a = random matrix(5, 3);
80
81
    mat t b = random matrix (3, 7);
82
     if (! cmp funcs(a, b, 5, 3, 7))
83
84
     {
       std::cout << FUNCTION << " - FAILED\n";
85
86
       return;
     }
87
88
     free mat(\&a, 5, 3);
89
    free mat(\&b, 3, 7);
90
    std::cout << __FUNCTION__ << " - OK\n";
91
92 }
93
```

Все тесты пройдены успешно.

3.4. Оценка трудоёмкости

Произведём оценку трудоёмкости алгоритов. Будем считать, что умножаются матрицы A[M*N] и B[N*Q]

Классический алгоритм умножения.

$$f_{cls} = 2 + M \cdot (4 + Q \cdot (4 + 3 + N \cdot (2 + 2 + 1 + 2 + 1 + 2)))$$

$$f_{cls} = 2 + 4M + 7QM + 10MNQ$$

Алгоритм умножения Винограда.

$$f_{win} = (2 + M(2 + 1 + 3 + \frac{N}{2}(3 + 2 + 3 + 1 + 4))) + (2 + Q(2 + 1 + 3 + \frac{N}{2}(3 + 2 + 3 + 1 + 4))) + 2 + M(2 + 2 + Q(2 + 5 + 3 + \frac{N}{2}(3 + 3 + 1 + 8))) + 1 + \begin{cases} 0, & \text{л.с.} \\ 2 + M \cdot (2 + 2 + Q \cdot (2 + 3 + 3 + 1 + 3)), & \text{x.c.} \end{cases}$$

$$f_{win} = 7 + 10M + \frac{13}{2}MN + 6Q + \frac{13}{2}NQ + 10MQ + \frac{23}{2}MNQ + \begin{cases} 0, & \text{л.c.} \\ 2 + 4M + 12MQ, & \text{x.c.} \end{cases}$$

Оптимизированный алгоритм умножения Винограда.

$$f_{opt_win} = (2 + Q \cdot (2 + 1 + 2 + (N/2) \cdot (2 + 2 + 1 + 2 + 1 + 3) + 1)) + 2 + (N/2) \cdot (2 + 2 + 1 + 2 + 1 + 3) + (N/2) \cdot (2 + 2 + 1 + 2 + 1 + 2 + 1 + 3) + (N/2) \cdot (2 + 2 + 1 + 2 + 1 + 3) + (N/2) \cdot (2 + 2 + 1$$

$$M \cdot (2+1+2+(N/2) \cdot (2+1+2+1+3) + 2 + Q \cdot (2+4+3+(N/2) \cdot (3+1+5)) + 1 + \begin{cases} 0, & \text{ s.c.} \\ 2+2+M \cdot (2+2+Q \cdot (2+3+2+1+2)), & \text{ x.c.} \end{cases}$$

$$f_{opt_win} = 5 + 6Q + 5.5NQ + 7M + 4.5MN + 9MQ + 7.5MNQ + \begin{cases} 0, & \text{ s.c.} \\ 4+4M+10MQ, & \text{ x.c.} \end{cases}$$

3.5. Оценка времени

Для замера процессорного времени исполнения функции используется функция QueryPerformanceCounter библиотеки windows.h[2]. Проведение измерений производится в функции, приведённой в листинге 3.5.

Листинг $3.5-\Phi$ ункция замера процессорного времени работы

```
функции
  void test_time(mat_t(*f)(mat_t, mat_t, int, int, int), int n)
|2|
    cout << "\Размери матрицы: " << n << endl;
3
    mat t a = random matrix(n, n);
4
    mat t b = random matrix(n, n);
5
    mat t c;
6
    int count = 0;
7
8
    start counter();
    while (get counter() < 3.0 * 1000) {
9
      c = f(a, b, n, n, n);
10
      free mat(\&c, n, n);
11
12
      count++;
13
    double t = get counter() / 1000;
14
    cout << "Выполнено" << count << " операций за " << t << "
15
     секунд" << endl;
```

```
16 cout << "Время: " << t / count << endl;
17 free_mat(&a, n, n);
18 free_mat(&b, n, n);
19 }
```

4. Исследовательская часть

4.1. План экспериментов

Измерения процессорного времени проводятся на квадратных матрица. Содержание матриц сгенерировано случайным образом. Ввиду разного поведения алгоритма Винограда для чётных и нечётных размерностей, время работы изучается двумя сериями экспериментов с размерностями матриц:

- 1. 50, 100, 200, 400, 800;
- 2. 51, 101, 201, 401, 801.

Для повышения точности, каждый замер производится пять раз, за результат берётся среднее арифметическое.

4.2. Результат экспериментов

По результатам измерений процессорного времени можно составить таблицу 4.1 и таблицу 4.2

Таблица 4.1 — Чётная размерность матриц. Результат измерений процессорного времени (в секундах)

	50	100	200	400	800
Классический	$5.1 \cdot 10^{-4}$	$4.2 \cdot 10^{-3}$	0.037	0.32	3.54
Виноград		$2.9 \cdot 10^{-3}$			
Опт.Виноград	$3.2\cdot 10^{-4}$	$2.7 \cdot 10^{-3}$	0.023	0.20	2.31

Таблица 4.2 — Нечётная размерность матриц. Результат измерений процессорного времени (в секундах)

	51	101	201	401	801
Классический	$5.0 \cdot 10^{-4}$	$4.1 \cdot 10^{-3}$	0.034	0.35	3.48
Виноград	$3.7 \cdot 10^{-4}$	$3.0 \cdot 10^{-3}$	0.023	0.27	2.60
Опт.Виноград	$3.3\cdot 10^{-4}$	$2.5 \cdot 10^{-3}$	0.023	0.21	2.27

Эксперименты проводились на компьютере с характеристика-

ми:

- OC Windows 10, 64 бит;
- Процессор Intel Core i7 8550U (1800 МГц);
- Объем ОЗУ: 8 ГБ.

4.3. Сравнительный анализ

По результатам экспериментов можно заключить следующее.

- Оптимизированный алгоритм Винограда затрачивает меньше времени, чем неоптимизированный алгоритм умножения на всех исследованных размерах матриц.
- Алгоритм Винограда затрачивает меньше времени, чем классический алгоритм умножения на всех исследованных размерах матриц.
- Существенных различий в процессорном времени при умножении матриц чётных и нечётных размеров у алгоритмп Винограда не выявлено.
- При увеличении размера матриц в 2 раза, наблюдается рост затраченного процессорного времени для обоих алгоритмов примерно в 8-10 раз, что соответсвует расчётам их трудоёмкости.

Заключение

В ходе лабораторной работы достигнута поставленная цель: оценка трудоёмкости алгоритма умножения матриц и получение практического навыка оптимизации алгоритмов. Решены все задачи работы.

Были изучены и описаны понятия трудоёмкости и операции умножения матриц. Также были описаны и реализованы алгоритмы умножения матриц. Был оптимизирован алгоритм Винограда. Проведены замеры процессорного времени работы каждого алгоритма при различных размерах матриц (в том числе чётных и нечётных), оценена трудоёмкость. На основании оценок и экспериментов проведён сравнительный анализ.

Список литературы

- 1. Трудоёмкость программ [Электронный ресурс] Режим доступа: http://ermak.cs.nstu.ru/cprog/html/041.htm , свободный (дата обращения: 27.09.2020).
- 2. QueryPerformanceCounter function [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/enus/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter, свободный (дата обращения: 28.09.2020).