

计算机网络实验报告: eNSP

Computer Network

61520217 管中珩

58121122 韩晨旭

58121124 张博彦

58121127 查愉馨

58121132 徐朔

58121307 宋润景

指导老师: 董晓

日期: 2023年6月11日

目录

1	基于	· 交换机的简单二层网络	1
	1.1	任务描述	1
	1.2	执行过程	1
2	基于	- VLAN 的二层交换网络	3
	2.1	任务描述	3
	2.2	执行过程	4
		2.2.1 VLAN 隔离	4
		2.2.2 VLAN 互通	6
	2.3	实验中遇到的问题	7
3	IPv4	4 网络配置	8
	3.1	IPv4 网络配置	8
		3.1.1 实验说明	8
		3.1.2 任务描述	8
		3.1.3 实验组网	8
		3.1.4 操作步骤	8
		3.1.5 实验验证	10
	3.2	DHCP 配置	10
		3.2.1 任务描述	10
		3.2.2 操作步骤	11
		3.2.3 实验验证	11
4	IP 🏿	网络路由配置 网络路面配置 网络路面 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎	14
	4.1	静态路由	14
		4.1.1 任务描述	14
		4.1.2 实验组网	14
		4.1.3 操作过程	14
		4.1.4 实验验证	15
	4.2	OSPF 路由	17
		4.2.1 任务描述	
		4.2.2 实验组网	
		4.2.3 操作过程	17
		4.2.4 实验验证	18
	4.3	BGP 配置	20
		4.3.1 实验任务	
		4.3.2 实验组网	
		4.3.3 操作步骤	21
		4.3.4 实验验证	22

1 基于交换机的简单二层网络

1.1 任务描述

基于交换机搭建一个简单的二层网络、保证3台主机间能够相互ping通、并理解MAC地址学习过程。

1.2 执行过程

在 eNSP 中搭建网络结构见图1,交换机型号为 S5700,其中,PC 机 IP 和 MAC 地址见表1。

表 1: PC 机 IP&MAC 对应关系

IP	MAC
10.10.10.1	54-89-98-59-48-D6
10.10.10.2	54-89-98-2A-7B-FF
10.10.10.3	54-89-98-F9-03-E5
	10.10.10.1 10.10.10.2

图 1: 二层网络架构示意图

分别设置 PC1、PC2、PC3 的 IP 地址为 10.10.10.1、10.10.10.2、10.10.10.3,在 PC1 上尝试 ping 其他两台主 机的结果见图2。在 PC2 和 PC3 上 ping 测试同样成功,此处不再展示。在 PC1 上对 PC2(10.10.10.2) 进行 ping 测试时,对交换机 LSW1 的 0/0/2 端口进行抓包(图3),可以看到 LSW1(HuaWeiTe_59:48:d6) 首先广播了一个

```
PC>ping 10.10.10.2
Ping 10.10.10.2: 32 data bytes, Press Ctrl_C to break
From 10.10.10.2: bytes=32 seq=1 ttl=128 time=63 ms
From 10.10.10.2: bytes=32 seq=2 ttl=128 time=78 ms
From 10.10.10.2: bytes=32 seq=3 ttl=128 time=62 ms
From 10.10.10.2: bytes=32 seq=4 ttl=128 time=63 ms
From 10.10.10.2: bytes=32 seq=5 ttl=128 time=62 ms
 -- 10.10.10.2 ping statistics ---
  5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
  round-trip min/avg/max = 62/65/78 ms
PC>ping 10.10.10.3
Ping 10.10.10.3: 32 data bytes, Press Ctrl_C to break
From 10.10.10.3: bytes=32 seq=1 ttl=128 time=78 ms
From 10.10.10.3: bytes=32 seq=2 ttl=128 time=94 ms
From 10.10.10.3: bytes=32 seq=3 ttl=128 time=62 ms
From 10.10.10.3: bytes=32 seq=4 ttl=128 time=63 ms
From 10.10.10.3: bytes=32 seq=5 ttl=128 time=78 ms
  - 10.10.10.3 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
  round-trip min/avg/max = 62/75/94 ms
```

图 2: ping 测试

ARP 报文,由于 PC2 与 LSW2 连接,因此随后 LSW2(HuaWeiTe_2a:7b:ff)对 LSW1 进行回复,这样,LSW1 就学习到了 PC2 的 MAC 地址。

21 36.719000	HuaweiTe_59:48:d6	Broadcast	ARP	60 Who has 10.10.10.2? Tell 10.10.10.1
22 36.766000	HuaweiTe_2a:7b:ff	HuaweiTe_59:48:d6	ARP	60 10.10.10.2 is at 54:89:98:2a:7b:ff
23 36.797000	10.10.10.1	10.10.10.2	ICMP	74 Echo (ping) request id=0x5358, seq=1/256, ttl=128 (reply in 24)
24 36,829000	10.10.10.2	10.10.10.1	ICMP	74 Echo (ping) reply id=0x5358, seg=1/256, ttl=128 (request in 23)

图 3: ping 测试时 LSW1 0/0/2 端口抓包结果

在 PC1 主机上 ping 完 PC2 和 PC3 后,我们打开 LSW1 命令行输入display mac-address (图4),可以看到 LSW1 已经学习到了三个 PC 机 MAC 地址与连接端口的映射。由于 PC1 通过 0/0/1 端口与 LSW1 相连,所以 PC1 的 MAC 地址与 0/0/1 端口绑定。而 PC2 和 PC3 需要分别由 LSW2 和 LSW3 进行 ARP 报文的回复,且均需要经过 0/0/2 端口,因此这两个主机的 MAC 地址均与 0/0/2 端口绑定。我们也注意到,三个表项均是动态的,当存活期限到达后,表项将会老化。此外,由于交换机默认 PVID 为 1,因此三个 PC 机的 VLAN 均为 1,即同属于 VLAN ID 为 1 的虚拟局域网。

MAC Address	VLAN/ VSI/SI	PEVLAN	CEVLAN	Port	Type	LSP/LSR-ID MAC-Tunnel
5489-9859-48d6	1		_	GE0/0/1	dynamic	0/-
5489-982a-7bff	1	_	-	GE0/0/2	dynamic	0/-
5489-98f9-03e5	1	_	_	GE0/0/2	dynamic	0/-

图 4: LSW1 MAC 表

2 基于 VLAN 的二层交换网络

交换机通过 MAC 地址转发,假设一台主机发送了一个单播帧,当交换机中 MAC 表项不存在目标地址记录,则会进行洪泛(将该帧复制发送给多个交换机),从而造成带宽占用,产生不必要的垃圾流量。在传统以太网中,交换机可以隔离冲突域,但无法隔离广播域。这个问题可以通过引入 VLAN 来解决,利用 VLAN 划分多个广播域,只有在同一个广播域中的主机才能够收到彼此发送的信息。

在本次实验中,我们采用基于接口的 VLAN 划分方式,具体而言,当数据帧尝试通过交换机的某一接口流入或流出时,交换机将根据接口对应的 VLAN ID 对数据帧进行处理(是否加/脱 Tag,是否允许通过等)。

以太网二层接口类型有 Access 接口、Trunk 接口、Hybrid 接口。其中 Access 接口常用于交换机与主机的连接。其特点是只能处理预先设定的缺省 VLAN ID(即 PVID),因此,通过 Access 接口流出的数据帧均为 Untagged 帧。当数据帧为 Untagged 帧且从 Access 接口流入时,交换机会为其加上 PVID Tag。当数据帧尝试从 Access 接口流出时,若其 Tag 与接口 PVID 相同,则交换机会将 Tag 脱下;若其 Tag 与接口 PVID 不同,则交换机将不允许该数据帧从接口流出。

Trunk 接口则常用于交换机间的连接。其特点是可以设置一个允许通行的 VLAN ID 表,这就保证了部分与 PVID 不同的数据帧可以在传输过程中保留标签。Untagged 数据帧或 Tag 在表中的数据帧可以流入流出。其对 Untagged 帧流入的处理与 Access 接口相同,均会打上 PVID 标签。当在通行表但 VLAN ID 与 PVID 不同的帧尝试流出时,标签将仍然保留。

2.1 任务描述

配置 VLAN,隔离广播域。可以通过调整 Trunk 接口上的 VLAN,观察各设备上 MAC 学习情况,理解交换机转发过程,理解 VLAN 概念以及其与接口的关系。

在 VLAN 隔离实验中,验证目标为: PC1 与 PC3 使用不同的 VLAN 隔离,不能互通。

在 VLAN 互通实验中,验证目标为:

- 1. 验证各种情况下, PC 间互通情况。
- 2. 验证各种情况下交换机 MAC 学习情况。观察交换机上学习到哪些 MAC 地址,学习在哪个 VLAN 中,哪个端口上。
- 3. 可以变更 Trunk VLAN,观察 MAC 学习情况。

图 5: VLAN 架构示意图

2.2 执行过程

2.2.1 VLAN 隔离

实验要求搭建的网络结构及 VLAN 对应接口细节见图5。对于 1 号交换机的设置,我们遵循如下步骤:

- 1 <Huawei> sys // 进入系统视图
- 2 [Huawei] sys s1 // 修改系统名称为s1
- 3 [s1] vlan batch 10 20 30 // 批量创建VLAN, 对应ID分别为10 20 30
- 4 [s1] int g0/0/1 // 进入1号交换机接口GE0/0/1视图
- 5 [s1-GigabitEthernet0/0/1] port link-type access // 设置接口类型为access
- 6 [s1-GigabitEthernet0/0/1] port default vlan 10 // 设置缺省VLAN ID (PVID) 为10
- 7 [s1-GigabitEthernet0/0/1] quit // 退出接口视图
- 8 [s1] int g0/0/2 // 进入1号交换机接口GE0/0/2视图
- 9 [s1-GigabitEthernet0/0/2] port link-type trunk // 设置接口类型为trunk
- 10 [s1-GigabitEthernet0/0/2] port trunk allow-pass vlan 10 // 设置trunk接口允许通过的VLAN ID为10
- 11 [s1] quit // 退出接口视图
- 12 [s1] // Ctrl+Z
- 13 <s1> save // 保存配置文件

其余交换机的配置大同小异,在本文中不再展开叙述。经过上述配置,使用display vlan命令观察各交换机的VLAN配置情况,见图6。符合架构图中列出的要求。由于交换机各接口默认VLANID为1,因此我们可以发现未设置的其他接口均属于Untagged VLAN1。

(a) 1 号交换机 VLAN 配置

```
U: Up; D: Down; TG: Tagged; UT: Untagged;

MP: Vlan-mapping; ST: Vlan-stacking;

#: ProtocolTransparent-vlan; *: Management-vlan;

VID Type Ports

1 common UT:GEO/0/2(U) GEO/0/3(U) GEO/0/4(D) GEO/0/5(D) GEO/0/10(D) GEO/0/10(D) GEO/0/10(D) GEO/0/10(D) GEO/0/11(D) GEO/0/12(D) GEO/0/13(D) GEO/0/14(D) GEO/0/15(D) GEO/0/15(D) GEO/0/14(D) GEO/0/19(D) GEO/0/19(D) GEO/0/22(D) GEO/0/22(D) GEO/0/23(D) GEO/0/24(D)

10 common TG:GEO/0/2(U)

20 common UT:GEO/0/1(U)

30 common TG:GEO/0/3(U)

VID Status Property MAC-LRN Statistics Description

1 enable default enable disable VLAN 0001 enable default enable disable VLAN 0010

20 enable default enable disable VLAN 0020
30 enable default enable disable VLAN 0020
```

(b) 2 号交换机 VLAN 配置

(c) 3 号交换机 VLAN 配置

图 6: 各交换机 VLAN 配置情况

配置完毕后,我们尝试从 PC1 上ping 10.10.10.3 (ping PC3),并同时对 1 号交换机的 GE0/0/1、GE0/0/2; 2 号交换机的 GE0/0/2、GE0/0/3 和 3 号交换机的 GE0/0/1、GE0/0/2 接口进行抓包。根据图5的配置,ARP 报文从 1 号 PC 广播后应当流入 1 号交换机,并由 1 号交换机继续转发至 2 号交换机,并被 2 号交换机在 GE0/0/3 端口处拦截。ping 测试的结果见图7。报文抓取的结果可见图8。正如我们所预想的,仅有 1 号交换机的 GE0/0/1 和 2 号交换机的 GE0/0/2 抓取到了 ARP 广播报文。这也很好解释: PC1 发送了一个 Untagged ARP 广播被 1 号交换机的 GE0/0/1 端口接收,由于 1 号交换机的 GE0/0/2 接口和 2 号交换机的 GE0/0/2 接口均允许 VID 为 10 的数据帧通过,因此 1 号交换机继续转发这个 ARP 广播,并被 2 号交换机的 GE0/0/2 端口接收。但 2 号交换机的 GE0/0/3 端口仅允许 VID 为 30 的数据帧通过,因此 ARP 广播报文被拦截,PC3 无法收到该报文,因而无法进行回应,因此其余端口没有抓取到报文。

```
PC>ping 10.10.10.3

Ping 10.10.10.3: 32 data bytes, Press Ctrl_C to break From 10.10.10.1: Destination host unreachable From 10.10.10.1: Destination host unreachable

From 10.10.10.3 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

图 7: PC1 ping PC3 测试结果

23 47.750000	HuaweiTe_59:48:d6	Broadcast	ARP	60 Who has 10.10.10.3? Tell 10.10.10.1
24 48.032000	HuaweiTe_8b:25:00	Spanning-tree-	(for STP	119 MST. Root = 32768/0/4c:1f:cc:16:5d:26
25 48.750000	HuaweiTe_59:48:d6	Broadcast	ARP	60 Who has 10.10.10.3? Tell 10.10.10.1
26 49.750000	HuaweiTe_59:48:d6	Broadcast	ARP	60 Who has 10.10.10.3? Tell 10.10.10.1
27 50.250000	HuaweiTe_8b:25:00	Spanning-tree-	(for STP	119 MST. Root = 32768/0/4c:1f:cc:16:5d:26
28 50.750000	HuaweiTe_59:48:d6	Broadcast	ARP	60 Who has 10.10.10.3? Tell 10.10.10.1
29 51.750000	HuaweiTe 59:48:d6	Broadcast	ARP	60 Who has 10.10.10.3? Tell 10.10.10.1

(a) 1 号交换机 GEO/0/1 抓取结果

- 1					
	31 64.500000	HuaweiTe_59:48:d6	Broadcast	ARP	64 Who has 10.10.10.3? Tell 10.10.10.1
	32 65.484000	HuaweiTe_59:48:d6	Broadcast	ARP	64 Who has 10.10.10.3? Tell 10.10.10.1
	33 65.547000	HuaweiTe_16:5d:26	Spanning-tree	-(for STP	119 MST. Root = 32768/0/4c:1f:cc:16:5d:20
	34 66.484000	HuaweiTe_59:48:d6	Broadcast	ARP	64 Who has 10.10.10.3? Tell 10.10.10.1
	35 67.468000	HuaweiTe_59:48:d6	Broadcast	ARP	64 Who has 10.10.10.3? Tell 10.10.10.1
	36 67.750000	HuaweiTe_16:5d:26	Spanning-tree	-(for STP	119 MST. Root = 32768/0/4c:1f:cc:16:5d:20
	37 68.484000	HuaweiTe_59:48:d6	Broadcast	ARP	64 Who has 10.10.10.3? Tell 10.10.10.1

(b) 2 号交换机 GE0/0/2 抓取结果

图 8: PC1 ping PC3 测试过程中报文抓取结果

至此, VLAN 隔离实验完成。

2.2.2 VLAN 互通

本节实验中,我们需要变更 2 号交换机 access VLAN 配置,分别变化为 VLAN 10 和 VLAN30,测试 PC1 和 PC2 是否可以互通,PC2 和 PC3 是否可以互通。我们首先将接口改为 VLAN 10。打开 2 号交换机命令行,输入以下指令:

- 1 <s2> sys // 进入系统视图
- 2 [s2] int g0/0/1 // 进入GE0/0/1接口视图
- 3 [s2-GigabitEthernet0/0/1] undo port default vlan // 撤销PVID设置 (PVID变为1)
- 4 [s2-GigabitEthernet0/0/1] port default vlan 10 // 将PVID重设为10
- 5 [s2-GigabitEthernet0/0/1] quit // 退出接口视图

VLAN 10 将 2 号交换机的 GE0/0/1 PVID 变为 10 后, PC1 和 PC2 可以互通, PC2 和 PC3 不可互通。此时 1 号交换机能够学到 PC1 和 PC2 的 MAC 地址, PC1 的 MAC 地址在 VLAN 10、GE0/0/1 上, PC2 的 MAC 地址在 VLAN 10、GE0/0/2 上(图9a)。2 号交换机能学习到 PC1 和 PC2 的 MAC 地址, PC1 的 MAC 地址在 VLAN 10、GE0/0/2 上, PC2 的 MAC 地址在 VLAN 10、GE0/0/1 上(图9b)。3 号交换机无法学习到任何 MAC 地址(因为是在 PC2 上 ping PC3)。

MAC Address	VLAN/	DEWLAN	CEVLAN	Port	Type	LSP/LSR-ID
nac address	VSI/SI	FEVERIV	CEVHAN		1990	MAC-Tunnel
5489-9859-48d6	10	_	_	GEO/O/1	dynamic	0/-
5489-982a-7bff	10	_	_	GEO/0/2	dynamic	0/-

(a) 1 号交换机 MAC 学习结果

MAC Address	VLAN/ VSI/SI	PEVLAN	CEVLAN	Port	Туре	LSP/LSR-ID MAC-Tunnel
5489-9859-48d6	10	_	_	GEO/0/2	dynamic	0/-
5489-982a-7bff	10	_	_	GEO/O/1	dynamic	0/-

(b) 2 号交换机 MAC 学习结果

图 9: 交换机 MAC 学习结果 (VLAN 10)

VLAN 30 将 2 号交换机的 GE0/0/1 PVID 变为 30 后, PC1 和 PC2 不可互通, PC2 和 PC3 可以互通。此时 1 号交换机仅能学到 PC1 的 MAC 地址(因为是在 PC1 上 ping PC2),在 VLAN 10、GE0/0/1 上。2 号交换机能够学习到 PC2 和 PC3 的 MAC 地址, PC2 的 MAC 地址在 VLAN 30、GE0/0/1 上,PC3 的 MAC 地址在 VLAN 30、GE0/0/3 上。3 号交换机可以学到 PC2 和 PC3 的 MAC 地址,PC2 的 MAC 地址在 VLAN 30、GE0/0/2 上,PC3 的 MAC 地址在 VLAN 30、GE0/0/1 上。

更改交换机间的 trunk 端口 allow-pass VID 得到的结果及分析过程与以上过程相似,本文中不再展示。

2.3 实验中遇到的问题

本机系统为 Windows11, 首次我采用 VirtualBox 5.2.32 版本配合 eNSP, 但在实验过程中当开启全部 3 台交换机后,一定会有一台交换机命令行连续输出 # 号,无法进行交互。在检查完防火墙设置和 VirtualBox 虚拟网

卡地址无误后,我尝试了lodetr /R指令更新系统性能计数器,问题仍然存在,随后我尝试重启电脑,结果问题变得更加严重: 所有交换机命令行均无法交互。之后通过搜索我找到了eNSP、VirtualBox 关联性,查看 VirtualBox 网卡,安装提示兼容性,百度关闭内核隔离这篇文章,其中提到 Windows11 必须安装 VirtualBox 5.2.44 版本。在重装 VirtualBox 和 eNSP 后,重启电脑,并在打开 eNSP 前先运行 Oracle VM VirtualBox.exe 程序,随后运行搭建好的拓扑网络,问题得到解决。但之后我在开机期间切换了一次 WLAN 网络,重新打开 eNSP 后交换机命令行又无法交互,尝试重启电脑后解决。事实证明,华为 eNSP 的兼容性较弱,稳定性不强,在实验过程中容易在配置问题上浪费比实际实验更长的时间。近期华为 eNSP Lite 即将发布,建议教研组在以后的教学中更新实验手册,转换至新 eNSP 平台,或使用其他替代模拟软件(如 EVE 等),或收集高频的配置问题作为 FAQ,以此来突出实验的核心目的,减少不必要的困难。

3 IPv4 网络配置

3.1 IPv4 网络配置

3.1.1 实验说明

以 1 号同学为例:

- 1) PC 机地址配置为 10.10.10.2, 对应的接入交换机 VLANIF 接口地址配置为 10.10.10.1;
- 2) 交换机至 AR 间接口地址配置为 100.10.10.1, AR 接口地址配置为 100.10.10.2;

3.1.2 任务描述

- 1) 配置交换机与 PC 机间的接口 IP 地址
- 2) 配置交换机与 AR 间的接口 IP 地址

3.1.3 实验组网

图 10: IPv4 静态网络配置

3.1.4 操作步骤

配置 Switch 1,交换机需要通过 VLANIF 配置 IP 地址。

- 1 #与PC连接的端口,首先设置二层
- 2 [Switch_1] vlan batch 10 100
- 3 [Switch_1] interface gigabitethernet 0/0/1
- 4 [Switch_1-GigabitEthernet0/0/1] port link-type access

5 [Switch_1-GigabitEthernet0/0/1] port default vlan 10 6 [Switch_1-GigabitEthernet0/0/1] quit 7 #对应的VLAN上启用三层 8 [Switch_1] interface vlanif 10 9 [Switch_1-Vlanif10] ip address 10.10.10.1 24 10 [Switch_1-Vlanif10] quit 11 #与路由器连接的端口,首先设置二层 12 [Switch_1] interface gigabitethernet 0/0/2 13 [Switch_1-GigabitEthernet0/0/2] port link-type access [Switch_1-GigabitEthernet0/0/2] port default vlan 100 14 15 [Switch_1-GigabitEthernet0/0/2] quit 16 #对应的VLAN上启用三层 17 [Switch_1] interface vlanif 100 18 [Switch_1-Vlanif10] ip address 100.10.10.1 24 19 [Switch_1-Vlanif10] quit 20 # 配置AR路由器,路由器可以直接在物理口配置IP地址,不需要配置VLAN 21 [AR_1] interface gigabitethernet 0/0/0 22 [AR_1-GigabitEthernet0/0/0] undo portswitch //与AR 型号相关,本实验使用AR下行接口缺省是二层口,需要转换为3层口。 23 [AR_1-GigabitEthernet0/0/0] ip address 100.10.10.2 24

其它交换机/AR 根据分配的 IP 地址/VLAN 做配置,配置类似,这里不做具体描述

图 11: p1-ping-交换机

3.1.5 实验验证

- 1. PC 机能够 ping 通 10.10.10.1 (见图11)
- 2. 交换机上能够 ping 通 100.10.10.2 (见图12)

```
_ _ X
🛃 LSW1
 LSW1
The device is running!
(Huawei>
(Huawei>ping 100.10.10.1
 PING 100.10.10.1: 56 data bytes, press CTRL_C to break
   Reply from 100.10.10.1: bytes=56 Sequence=1 ttl=255 time=20 ms
   Reply from 100.10.10.1: bytes=56 Sequence=2 ttl=255 time=1 ms
   Reply from 100.10.10.1: bytes=56 Sequence=3 ttl=255 time=30 ms
   Reply from 100.10.10.1: bytes=56 Sequence=4 ttl=255 time=20 ms
   Reply from 100.10.10.1: bytes=56 Sequence=5 ttl=255 time=30 ms
 --- 100.10.10.1 ping statistics ---
   5 packet(s) transmitted
   5 packet(s) received
   0.00% packet loss
   round-trip min/avg/max = 1/20/30 ms
(Huawei>
```

图 12: 交换机 ping 路由器

3.2 DHCP 配置

PC 机可以通过 DHCP 获取 IP 地址,便于部署,现网一般采用此种方式进行 IP 地址分配管理。现网通常使用专用 DHCP server 管理 IP 地址,本实验采用在交换机上部署 DHCP server 方式。

3.2.1 任务描述

- 1) 配置交换机启用 DHCP server
- 2) PC 机抓取 DHCP 报文,观察交互流程

图 13: DHCP 配置示意图

3.2.2 操作步骤

实验要求搭建的网络结构和对应接口细节见图13。对于1号交换机的设置,我们遵循如下步骤:

- 1 <Huawei> sys // 进入系统视图
- 2 [Huawei] dhcp enable //使能DHCP Server
- 3 在3.3.2 已经配置了接口IP地址,在此配置基础上增加地址池配置:
- 4 [Huawei] interface vlanif 10 //选择接口网段作为IP地址池网段
- 5 [Huawei-Vlanif10] dhcp select interface #可选,设置DHCP分配的网关地址。
- 6 [Huawei-Vlanif10] dhcp server dns-list 114.114.114.114 #设置DHCP分配的DNS服务器地址。
- 7 [Huawei] quit // 退出接口视图
- 8 <Huawei> save // 保存配置文件

其他交换机配置类似。仅需修改对应的 vlanif 即可完成配置。

3.2.3 实验验证

配置完毕后,我们从以下几个方面实验验证 DHCP 相关知识。

- 1. 查看 DHCP 地址池信息 在 1 号交换机上我们输入命令display ip pool interface vlanif10, 得到结果见图14。在其他交换机上输入同样的命令(需修改对应的 vlanif-ID), 也可以得到各自的 DHCP 池信息, 它们都是相似的。
- **2.** PC 机上抓包查看 DHCP 报文交互流程,查看 DHCP 报文中分配的 IP 地址,网关地址,DNS 地址 我们在 ensp 中用 wireshark 抓包并分析,得到的部分抓包结果如下:

```
[Huawei]display ip pool interface vlanif10
                 : vlanifl0
 Pool-name
 Pool-No
                 : 0
 Lease
                 : 1 Days 0 Hours 0 Minutes
 Domain-name
                 : 114.114.114.114
 DNS-server0
 NBNS-server0
 Netbios-type
 Position
                   Interface
                                   Status
                                                     : Unlocked
 Gateway-0
                 : 10.10.10.1
                 : 255.255.255.0
 Mask
 VPN instance
         Start
                         End
                                 Total Used Idle(Expired)
                                                               Conflict
                                                                         Disable
     10.10.10.1
                    10.10.10.254
                                                                              0
                                   253
                                                     253(0)
                                                                     0
```

图 14: 一号交换机 DHCP 地址池信息

12 图 15: Request 信息

图 16: Reply 信息

3) PC 机上查看分配到的 IP 地址,网关地址,DNS 地址等我们在 PC1 上查看 ipconfig, 得到的信息如下:

```
      PC>ipconfig

      Link local IPv6 address
      : fe80::5689:98ff:fe35:3675

      IPv6 address
      :: / 128

      IPv6 gateway
      ::

      IPv4 address
      : 10.10.10.254

      Subnet mask
      : 255.255.255.0

      Gateway
      : 10.10.10.1

      Physical address
      : 54-89-98-35-36-75

      DNS server
      : 114.114.114.114
```

图 17: PC1 网络配置信息

在其他 PC 上查询相关信息,同样可以得到对应的结果。

4 IP 网络路由配置

4.1 静态路由

静态路由在不同网络环境中有不同的目的:

- 1. 当网络结构比较简单时,只需配置静态路由就可以使网络正常工作。
- 2. 在复杂网络环境中, 配置静态路由可以改进网络的性能, 并可为重要的应用保证带宽。

在现网中, 经常采用静态路由方式配置缺省路由。

4.1.1 任务描述

在 AR 路由器上配置 200.10.70.1 这个地址,这个地址不通过路由协议发布。通过配置静态路由方式,PC 机能够 ping 通此 IP 地址。

4.1.2 实验组网

实验要求搭建的网络结构如下图18

图 18: 静态路由配置

4.1.3 操作过程

```
<Huawei>sys//进入系统视图
2
    [Huawei]interface loopback 0//使用loopback接口来承载IP地址
3
    [Huawei-LoopBack0] ip address 200.10.70.1 255.255.255.255./AR路由器增加一个IP地址 200.10.70.1
4
5
    [Huawei]ip route-static 10.10.10.0 255.255.255.0 100.10.10.1//AR路由器配置至10.10.10.0网段的静态路由
6
    [Huawei]ip route-static 10.10.20.0 255.255.255.0 100.10.20.1//AR路由器配置至10.10.20.0网段的静态路由
7
    [Huawei]ip route-static 10.10.30.0 255.255.255.0 100.10.30.1//AR路由器配置至10.10.30.0网段的静态路由
8
9
    [Huawei]ip route-static 200.10.70.1 255.255.255.255 100.10.10.2//在SW1上配置至AR路由器200.10.70.1的路由。
10
    [Huawei]ip route-static 200.10.70.1 255.255.255.255 100.10.20.2//在SW2上配置至AR路由器200.10.70.1的路由。
11
    [Huawei]ip route-static 200.10.70.1 255.255.255.255 100.10.30.2//在SW3上配置至AR路由器200.10.70.1的路由。
```

4.1.4 实验验证

1. PC 机能够 ping 通 200.10.70.1:

图 19: PC1 上运行的结果

```
_ 🗆 X
PC2
   基础配置
                               组播
                                        UDP发包工具
                                                         串口
  Welcome to use PC Simulator!
 PC>ping 200.10.70.1
Ping 200.10.70.1: 32 data bytes, Press Ctrl_C to break
From 200.10.70.1: bytes=32 seq=1 ttl=254 time=63 ms
From 200.10.70.1: bytes=32 seq=2 ttl=254 time=31 ms
From 200.10.70.1: bytes=32 seq=3 ttl=254 time=47 ms
 From 200.10.70.1: bytes=32 seq=4 ttl=254 time=31 ms
 From 200.10.70.1: bytes=32 seq=5 ttl=254 time=31 ms
    -- 200.10.70.1 ping statistics ---
   5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 31/40/63 ms
 PC>
```

图 20: PC2 上运行的结果

```
_ 🗆 X
FPC3
            命令行
                     组播
                            UDP发包工具
  基础配置
                                        串口
 Link local IPv6 address...... fe80::5689:98ff:fe4f:606
 IPv6 address..... :: / 128
 IPv6 gateway....::::
 IPv4 address..... 10.10.30.254
 Subnet mask..... 255.255.255.0
 Gateway....: 10.10.30.1
 Physical address...... 54-89-98-4F-06-06
 DNS server..... 114.114.114.114
 PC>ping 200.10.70.1
Ping 200.10.70.1: 32 data bytes, Press Ctrl_C to break From 200.10.70.1: bytes=32 seq=1 ttl=254 time=62 ms
From 200.10.70.1: bytes=32 seq=2 ttl=254 time=47 ms
From 200.10.70.1: bytes=32 seq=3 ttl=254 time=47 ms
From 200.10.70.1: bytes=32 seq=4 ttl=254 time=47 ms
 From 200.10.70.1: bytes=32 seq=5 ttl=254 time=47 ms
    200.10.70.1 ping statistics ---
  5 packet(s) transmitted
   5 packet(s) received
   0.00% packet loss
   round-trip min/avg/max = 47/50/62 ms
```

图 21: PC3 上运行的结果

2. 理解静态路由配置中,下一跳地址的作用。例如在本实验中,交换机配置的下一跳地址为何是 100.10.10.2 而不是 100.10.10.1?

在静态路由配置中,"下一跳地址"是指数据包在离开当前路由器后应该前往的下一个路由器的 IP 地址。下一跳地址的作用是指定数据包的目的地。当一个路由器收到一个数据包时,它会检查数据包的目标 IP 地

址,并查找它的路由表以确定下一跳地址。下一跳地址告诉路由器数据包应该被转发到哪个路由器,以便最终到达目标网络或主机。因此在该实验中,交换机下一跳地址应该是下一个路由器分配的地址,即 AR 路由器,而非自己本身的交换机

4.2 OSPF 路由

OSPF 路由协议是用于 IP 网络的链路状态路由协议。该协议使用链路状态路由算法的内部网关协议(IGP), 在单一自治系统(AS)内部工作。

在网络中使用 OSPF 协议后,大部分路由将由 OSPF 协议自行计算和生成,无须网络管理员人工配置,当网络拓扑发生变化时,协议可以自动计算、更正路由,极大地方便了网络管理。

4.2.1 任务描述

本实验的任务目标为:

- 1. AR 与 3 台交换机启用 OSPF 路由协议。
- 2. 3 台 PC 机能够互通 ping 通

4.2.2 实验组网

实验要求搭建的网络结构及 VLAN 对应接口细节见图22

图 22: OSPF 配置组网

4.2.3 操作过程

1. 交换机上启用 OSPF 并发布路由

[Switch_1]interface loopback 0 //配置ospf router-id , 作为OSPF 路由器标识。
[Switch_1_Loopbak0] ip address 200.10.10.1 255.255.255.255
[Switch_1] ospf 1 router-id 200.10.10.1 //2号交换机用 200.10.20.1, 3号为200.10.30.1, 岛二设置为200.20.10.1, 200.20.20.1, 200.20.30.1
[Switch_1-ospf-1] area 0 //本实验仅部署area 0
[Switch_1-ospf-1-area-0.0.0.0] network 100.10.10.0 0.0.0.255 //与路由器间接口上使能OSPF, 并把这个网段路由发布出去
至PC机网段,可以有两种方式:
A) 用import direct 路由方式发布出去。这是引入外部路由方式
[Switch_1-ospf-1-area-0.0.0.0] quit
[Switch_1-ospf-1] import-route direct

2. AR1 上启用 OSPF

```
1 #配置ospf router-id , 作为OSPF 路由器标识。
2 [AR_1]interface loopback 0
3 [AR_1_Loopbak0] ip address 200.10.70.1 255.255.255.255
4 [AR_1] ospf 1 router-id 200.10.70.1 //另一个岛中AR2的设定为200.10.80.1
5 #OSPF 设置network 的接口
6 [AR_1-ospf-1] area 0
7 [AR_1-ospf-1-area-0.0.0.0] network 100.10.10.0 0.0.0.255 //To switch1
8 [AR_1-ospf-1-area-0.0.0.0] network 100.10.20.0 0.0.0.255 //To switch2
9 [AR_1-ospf-1-area-0.0.0.0] network 100.10.30.0 0.0.0.255 //To switch3
10 [AR_1-ospf-1-area-0.0.0.0] quit
```

其它的交换机/AR 根据分配的 IP 地址,做配置类似,这里不做具体描述

11 [Switch_1-ospf-1-area-0.0.0.0] network 10.10.10.0 0.0.0.255

4.2.4 实验验证

1. 查看 OSPF 是否建立

在一号交换机上使用 display ospf peer 命令,见图23,其中可以看到一号交换机已经与正确的 routerID (即 AR 的 ID 200.10.70.1) 联系了。其他交换机也能成功验证 ospf 建立,这里不多赘述。

图 23: display ospf peer

2. 查看各设备上路由

在一号交换机上使用 display ospf routing 和 display ip routing 命令,见图24和图25,其中可以看到一号交换机正确展示了交换机 ar1 下所有相关设备的路由信息。其他交换机也能成功验证路由建立,这里不多赘述。

```
[sl]display ospf routing
      OSPF Process 1 with Router ID 200.10.10.1
              Routing Tables
Routing for Network
Destination
                    Cost
                                      NextHop
                                                       AdvRouter
                                                                       Area
                          Type
100.10.10.0/24
                    1
                          Transit
                                      100.10.10.1
                                                       200.10.10.1
                                                                       0.0.0.0
                                                       200.10.20.1
100.10.20.0/24
                          Transit
                                      100.10.10.2
                                                                       0.0.0.0
                    2
100.10.30.0/24
                    2
                          Transit
                                      100.10.10.2
                                                       200.10.30.1
                                                                       0.0.0.0
Routing for ASEs
                    Cost
Destination
                               Type
                                          Tag
10.10.20.0/24
                    1
                                          1
                                                       100.10.10.2
                                                                       200.10.20.1
10.10.30.0/24
                                          1
                                                       100.10.10.2
                                                                       200.10.30.1
200.10.10.1/32
                    1
                                          1
                                                       100.10.10.2
                                                                       200.10.30.1
Total Nets: 6
                Inter Area: 0 ASE: 3 NSSA: 0
Intra Area: 3
```

图 24: display ospf routing

```
sl]display ip routing
Route Flags: R - relay, D - download to fib
Routing Tables: Public
         Destinations : 11
                                  Routes : 11
Destination/Mask
                    Proto
                             Pre
                                  Cost
                                            Flags NextHop
                                                                    Interface
     10.10.10.0/24
                    Direct
                             0
                                  0
                                               D
                                                   10.10.10.1
                                                                    Vlanif10
    10.10.10.1/32
                   Direct
                             0
                                  0
                                               D
                                                   127.0.0.1
                                                                    Vlanif10
    10.10.20.0/24
                    O ASE
                             150
                                               D
                                                   100.10.10.2
                                                                    Vlanif100
                             150
    10.10.30.0/24
                    O ASE
                                               D
                                                   100.10.10.2
                                                                    Vlanif100
    100.10.10.0/24
                                  0
                                                   100.10.10.1
                                                                    Vlanif100
                    Direct
                                               D
    100.10.10.1/32
                             0
                                                   127.0.0.1
                                                                    Vlanif100
                    Direct
                                  0
                                               D
                                                                    Vlanif100
    100.10.20.0/24
                             10
                                                   100.10.10.2
                                               D
                                                                    Vlanif100
    100.10.30.0/24
                             10
                                                   100.10.10.2
                             0
                                  0
                                                                    InLoopBack0
      127.0.0.0/8
                    Direct
                                               D
                                                   127.0.0.1
                                                                    InLoopBack0
     127.0.0.1/32
                    Direct
                             0
                                  0
                                               D
                                                   127.0.0.1
   200.10.10.1/32
                    Direct
                             0
                                  0
                                               D
                                                   127.0.0.1
                                                                    LoopBack0
```

图 25: display ip routing

3. PC 机能够互相 ping 通

见图26, 其中可以看到建立 ospf 后三台 PC 能够互相 ping 通(通过 DHCP 分配的 ip 见 ipconfig 列出的数据)。

图 26: 三台 PC 呈环形互相 ping 包

4.3 BGP 配置

4.3.1 实验任务

- 1. 验证 BGP 协议
- 2. 两个组内的 PC 机能够相互 ping 通

4.3.2 实验组网

1. 组网图

图 27: BGP 组网

2. 实验拓扑图

图 28: BGP 组网

4.3.3 操作步骤

1. 配置 AR 间接口 IP 地址

- 1 [AR_1] interface gigabitethernet 0/0/3
- 2 [AR_1-GigabitEthernet0/0/0] ip address 150.10.70.1 24
- 3 [AR_2] interface gigabitethernet 0/0/3
- 4 [AR_2-GigabitEthernet0/0/0] ip address 150.10.70.2 24

2. AR1 BGP 配置

- 1 #标识自己
- 2 [AR_1] bgp 65107 // 自治系统号
- 3 [AR_1-bgp] router-id 200.10.70.1
- 4 #找到对方路由器
- 5 [AR_1-bgp] peer 150.10.70.2 as-number 65108 //对端IP地址, 对端自治系统号
- 5 #引入路由,对外发布。路由协议可以引入多种其他的路由协议,比如static静态路由,direct直连路由,ospf路由等。可以根据 现网应用情况选择。
- 7 [AR_1-bgp] ipv4-family unicast
- 8 [AR_1-bgp-af-ipv4] import-route direct //引入直连路由
- 9 [AR_1-bgp-af-ipv4] import-route ospf 1 //引入OSPF路由
- 10 [AR_1-bgp] quit

3. AR1 OSPF 引入 BGP 路由

- 1 [AR_1] ospf
- 2 [AR_1-ospf-1] import-route bgp

4. AR2 配置类似

```
1 [AR_2] bgp 65108
2 [AR_2-bgp] router-id 200.10.70.2
3 [AR_2-bgp] peer 150.10.70.1 as-number 65107
4 [AR_2-bgp] ipv4-family unicast
5 [AR_2-bgp-af-ipv4] import-route direct //引入直连路由
6 [AR_2-bgp-af-ipv4] import-route ospf 1 //引入OSPF路由
7 [AR_2-bgp] quit
8 [AR_2] ospf
9 [AR_2-ospf-1] import-route bgp
```

4.3.4 实验验证

1. 查看各设备路由情况

使用命令 display ip routing-table 在路由器 ar1 和交换机 s1 上列出路由列表(其他交换机和另一个路由器同理),可以由图看出拓扑图内所有的 ip 地址都可被列出,**整个网络已经实现各部分连通**,见图29和图30。 其他设备的 ip routing 也能成功显示连通,这里不多赘述。

2. PC 间 ping 情况

以拓扑图上最左边和最右边的两个 PC 为例,他们隶属于不同的 AR 下的子网,可以相互 ping 通,见图31。 其他 PC 间也可以 ping 通,这里不再赘述。

图 31: BGP 组网

[arl]display ip rou Route Flags: R - re			load to fil			
Route Flags: R - Fe		down				
Routing Tables: Pub						
Destinatio	ns : 22		Routes : 2	24		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10.10.10.0/24	O_ASE	150	1	D	100.10.10.1	GigabitEthernet
10.10.20.0/24	O_ASE	150	1	D	100.10.20.1	GigabitEthernet
10.10.30.0/24	O_ASE	150	1	D	100.10.30.1	GigabitEthernet
10.20.10.0/24	EBGP	255	1	D	150.10.70.2	GigabitEthernet
10.20.20.0/24	EBGP	255	1	D	150.10.70.2	GigabitEthernet
10.20.30.0/24	EBGP	255	1	D	150.10.70.2	GigabitEthernet
100.10.10.0/24	Direct	0	0	D	100.10.10.2	GigabitEthernet
100.10.10.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
100.10.20.0/24	Direct	0	0	D	100.10.20.2	GigabitEthernet
100.10.20.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
100.10.30.0/24	Direct	0	0	D	100.10.30.2	GigabitEthernet
0/0/2 100.10.30.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/2 100.20.10.0/24	EBGP	255	0	D	150.10.70.2	GigabitEthernet
0/0/3 100.20.20.0/24	EBGP	255	0	D	150.10.70.2	GigabitEthernet
0/0/3 100.20.30.0/24	EBGP	255	0	D	150.10.70.2	GigabitEthernet
0/0/3 127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBack0
150.10.70.0/24	Direct	0	0	D	150.10.70.1	GigabitEthernet
0/0/3 150.10.70.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/3 200.10.10.1/32	O_ASE	150	1	D	100.10.10.1	GigabitEthernet
0/0/0	O_ASE	150	1	D	100.10.20.1	GigabitEthernet
0/0/1	O_ASE	150	1	D	100.10.30.1	GigabitEthernet
0/0/2 200.10.70.1/32 200.10.80.1/32	Direct EBGP	0 255	0	D D	127.0.0.1 150.10.70.2	LoopBack0 GigabitEthernet
0/0/3 More						

图 29: 路由器 ar1 的 ip routing-table

outing Tables: Pub Destinatio			Routes	: 18		
estination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10.10.10.0/24	Direct	0	0	D	10.10.10.1	Vlanif10
10.10.10.1/32	Direct	0	0	D	127.0.0.1	Vlanif10
10.10.20.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
10.10.30.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
10.20.10.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
10.20.20.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
10.20.30.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
100.10.10.0/24	Direct	0	0	D	100.10.10.1	Vlanif100
100.10.10.1/32	Direct	0	0	D	127.0.0.1	Vlanif100
100.10.20.0/24	OSPF	10	2	D	100.10.10.2	Vlanif100
100.10.30.0/24	OSPF	10	2	D	100.10.10.2	Vlanif100
100.20.10.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
100.20.20.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
100.20.30.0/24	O ASE	150	1	D	100.10.10.2	Vlanif100
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBack0
200.10.10.1/32	Direct	0	0	D	127.0.0.1	LoopBack0
200.10.80.1/32	O ASE	150	1	D	100.10.10.2	

图 30: 交换机 s1 的 ip routing-table