基于 PyTorch 实现 MNIST 手写数字识别

1. 手写数字数据集 MNIST 简介

MNIST 是一个非常有名的手写体数字识别数据集(手写数字灰度图像数据集), 在很多资料中, 这个数据集都会被用作深度学习的入门样例。

MNIST 数据集是由 0 到 9 的数字图像构成的。训练图像有 6 万张,测试图像有 1 万张。 MNIST 数据集是 NIST 数据集的一个子集,它包含了 60000 张图片作为训练数据,10000 张 图片作为测试数据。由 250 个不同的人手写而成。

每一张图片都有对应的标签数字,训练图像一共有 60000 张,供研究人员训练出合适的模型。测试图像一共有 10000 张,供研究人员测试训练的模型的性能。

这些手写图片都是 2828 像素, 灰度图像。

但是它们并不是作为图像文件存储的, 而是作为 28x28 的二维数组保存起来的。数组中的每个元素对应数组中的每个像素。

MNIST 数据集包含四个文件,如下

数据集	MNIST中的文件名	下载地址	文件大小
训练集图像	train-images-idx3-ubyte.gz	http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz	9912422字节
训练集标签	train-labels-idx1-ubyte.gz	http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz	28881字节
测试集图像	t10k-images-idx3-ubyte.gz	http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz	1648877字节
测试集标签	t10k-labels-idx1-ubyte.gz	http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz	4542字节

MNIST 数据集的官方网站: http://yann.lecun.com/exdb/mnist/

人工智能程序设计实训 2024, 邹老师班级

下载方法主要有两种,官网下载到本地或者 python 下载(dataloader 方法也可以)。

ipynb_checkpoints	2023/6/26 14:17	文件夹	
displaydata.ipynb	2023/6/26 14:18	Jupyter 源文件	309 KB
🌠 mnist.rar	2023/6/26 14:24	WinRAR 压缩文件	21,503 KB
t10k-images.idx3-ubyte	1998/1/26 23:07	IDX3-UBYTE 文件	7,657 KB
🌠 t 10 k-images-idx 3-ubyte.gz	2023/6/26 14:14	WinRAR 压缩文件	1,611 KB
t10k-labels.idx1-ubyte	1998/1/26 23:07	IDX1-UBYTE 文件	10 KB
🌠 t 10 k-labels-idx 1-ubyte.gz	2023/6/26 14:14	WinRAR 压缩文件	5 KB
train-images.idx3-ubyte	1996/11/18 23:36	IDX3-UBYTE 文件	45,938 KB
🌠 train-images-idx3-ubyte.gz	2023/6/26 14:14	WinRAR 压缩文件	9,681 KB
train-labels.idx1-ubyte	1996/11/18 23:36	IDX1-UBYTE 文件	59 KB
🌃 train-labels-idx1-ubyte.gz	2023/6/26 14:13	WinRAR 压缩文件	29 KB

2. 解析 MNIST 数据集

不同于我们常见到的数据集图片通过 jpg 这样的图片格式保存,标签通过 txt、xml、json 等常规文本文件保存。MNIST 的图片和标签均通过二进制文件进行保存,也就是我们无法直接在 Windows 中查看手写数字的图片和标签,必须要先解码。

也可查看文件 display.ipynb (anaconda jupyter notebook 打开)

https://blog.csdn.net/KRISNAT/article/details/130670596?ops_request_misc=&request_id=&biz_id=102&utm_term=mnist%E6%95%B0%E6%8D%AE%E9%9B%86%E4%B8%8B%E8%BD%BD&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-1-130670596.nonecase&spm=1018.2226.3001.4187

3. 基于 PyTorch 深度学习框架, 搭建 LeNet 实现 MNIST 手写数字识别

大致结构:

- 输入-> 卷积层+激活函数+池化层 -> 卷积层+激活函数+池化层
 - -> 线性层+激活函数-> 线性层+激活函数->线性层(分类器,输出节点10,对应10 种手写数字)

4.实验内容:

基于 PyTorch 深度学习框架编程实现如下图所示的网络 (MNIST_Net):

具体的要求如下:

- 1.实现 MNIST_Net 的结构。
- 2.导入 MNIST 数据集的训练子集进行训练,输出训练过程中的 Loss 变化曲线图以及测试集正确率变化曲线图。
- 3.保存训练模型, 截屏显示最后测试的模型精度。
- 4.将代码、训练好的模型、两个曲线图和截屏的测试精度图放到文件夹, 待教辅老师检查。