Title

D. Zack Garza

January 12, 2020

Contents

1	Thu	rsday January 9th																	1
	1.1	Representability						 											1
	1.2	Projective Space						 											6

1 Thursday January 9th

1.1 Representability

Last time: Fix an S-scheme, i.e. a scheme over S.

Then there is a map

$$\begin{split} \operatorname{Sch}/S &\to \operatorname{Fun}(\operatorname{Sch}/S^{op}, Sets) \\ x &\mapsto h_x(T) = \operatorname{hom}_{Sch/S}(T,x). \end{split}$$

where $T' \xrightarrow{f} T$ is given by

$$h_x(f): h_x(T) \to h_x(T')$$

$$T \mapsto x \to \text{triangles}$$

of the form

Lemma (Yoneda): $hom_{Fun}(h_x, F) = F(x)$.

Corollary: $\hom_{Sch/S}(x,y) \cong \hom_{fun}(h_x,h_y)$.

Definition: A moduli functor is amap

$$F: (Sch/S)^{op} \to \operatorname{Sets}$$

$$F(x) = \text{ "Families of something over } x \text{"}$$

$$F(f) = \text{"Pullback"}.$$

Figure 1: Image

A moduli space for that "something" appearing above is an $M \in \text{Obj}(Sch/S)$ such that $F \cong h_M$. Now fix S = Spec(k).

Remarks:

 h_m is the functor of points over M

- 1. $h_m(\operatorname{Spec}(k)) = M(\operatorname{Spec}(k)) \cong$ "families over $\operatorname{Spec}(k) = F(\operatorname{Spec}(k))$.
- 2. $h_M(M) \cong F(M)$ are families over M, and $\mathrm{id}_M \in \mathrm{Mor}_{Sch/S}(M,M) = \xi_{Univ}$ is the universal family
- 3. Every family is uniquely the pullback of ξ_{Univ}

This makes it much like a classifying space.

For $T \in Sch/S$,

$$h_M \xrightarrow{\cong} F$$

$$f \in h_M(T) \xrightarrow{\cong} F(T) \ni \xi = F(f)(\xi_{Univ}).$$

where $T \xrightarrow{f} M$ and $f = h_M(f)(\mathrm{id}_M)$.

4. If M and M' both represent F then $M \cong M'$ up to unique isomorphism.

$$\xi_M$$
 $\xi_{M'}$

$$M \xrightarrow{f} M'$$

$$M' \xrightarrow{g} M$$

$$\xi_{M'}$$
 ξ_{M}

which shows that f, g must be mutually inverse by using universal properties.

Example: A length 2 subscheme of $\mathring{\mathbf{A}}_k^1$ then $F(S) = \{V(x^2 + bx + c)\} \subset \mathring{\mathbf{A}}_5'$ where $b, c \in \mathcal{O}_s(s)$, which is functorially bijective with $\{b, c \in \mathcal{O}_s(s)\}$ and F(f) is pullback.

Then F is representable by $\mathring{A}_{k}^{2}(b,c)$ and the universal object is given by $V(x^{2}+bx+c)\subset\mathring{A}^{1}(?)\times\mathring{A}^{2}(b,c)$ where $b,c\in k[b,c]$.

Moreover, F'(S) is the set of effective Cartier divisors in \mathring{A}'_5 which are length 2 for every geometric fiber. F''(S) is the set of subschemes of \mathring{A}'_5 which are length 2 on all geometric fibers. In both cases, F(f) is always given by pullback.

Problem: F'' is not a good moduli functor, as it is not representable. Consider Speck[ε].

Figure 2: Image

We think of $T_p F'^{,"}$ as the tangent space at p.

If F is representable, then it is actually the Zariski tangent space.

$$M(\operatorname{Spec} k[\varepsilon]) \longrightarrow M(\operatorname{Spec} k)$$
 $\subset \qquad \subset$
 $T_pM \longrightarrow p$

Moreover, $T_pM = (m_p/m_p^2)^{\vee}$, and in particular this is a k-vector space. To see the scaling structure, take $\lambda \in k$.

$$\lambda : k[\varepsilon] \to k[\varepsilon]$$

$$\varepsilon \mapsto \lambda \varepsilon$$

$$\lambda^* : \operatorname{Spec}(k[\varepsilon]) \to \operatorname{Spec}(k[\varepsilon])$$

$$\lambda : M(\operatorname{Spec}(k[\varepsilon])) \to M(\operatorname{Spec}(k[\varepsilon]))$$

$$\supset T_pM \to T_pM \subset .$$

Conclusion: If F is representable, for each $p \in F(\operatorname{Spec} k)$ there exists a unique point of T_pF that are invariant under scaling.

1. If $F, F', G \in Fun((Sch/S)^{op}, Sets)$, there exists a fiber product

$$F \times_G F' \longrightarrow F'$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longrightarrow G$$

where $(F \times_G F')(T) = F(T) \times_{G(T)} F'(T)$.

- 2. This works with the functor of points over a fiber product of schemes $X \times_T Y$ for $X, Y \to T$, where $h_{X \times_T Y} = h_X \times_{h_t} h_Y$.
- 3. If F, F', G are representable, then so is the fiber product $F \times_G F'$.
- 4. For any functor $F:(Sch/S)^{op}\to Sets$, for any $T\xrightarrow{f}S$ there is an induced functor $F_T:(Sch/T)\to Sets$ given by $x\mapsto F(x)$.
- 5. F is representable by M/S implies that F_T is representable by $M_T = M \times_S T/T$.

1.2 Projective Space

Consider $\mathbb{P}^n_{\mathbb{Z}}$, i.e. "rank 1 quotient of an n+1 dimensional free module".

Claim: $\mathbb{P}^n_{\mathbb{Z}}$ represents the following functor

$$F: Sch^{op} \to \mathrm{Sets}$$

$$F(S) = \mathcal{O}_s^{n+1} \to L \to 0/\sim.$$

where \sim identifies diagrams of the following form:

$$\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow \cong \qquad \qquad \qquad \qquad \downarrow \cong$$

$$\mathcal{O}_s^{n+1} \longrightarrow M \longrightarrow 0$$

and F(f) is given by pullbacks.

Remark: \mathbb{P}_S^n represents the following functor:

$$F_S: (Sch/S)^{op} \to \operatorname{Sets}$$

 $F_S(T) = \mathcal{O}_T^{n+1} \to L \to 0/\sim.$

This gives us a cleaner way of gluing affine data into a scheme.

Proof of claim:

Note: $\mathcal{O}^{n+1} \to L \to 0$ is the same as giving n+1 sections $s_1, \dots s_n$ of L, where surjectivity ensures that they are not the zero section.

So $F_i(S) = \left\{ \mathcal{O}_s^{n+1} \to L \to 0 \right\} / \sim$, with the additional condition that $s_i \neq 0$ at any point.

There is a natural transformation $F_i \to F$ by forgetting the latter condition, and is in fact a subfunctor.

$$F \leq G$$
 is a subfunctor iff $F(s) \hookrightarrow G(s)$.

Claim 2: It is enough to show that each F_i and each F_{ij} are representable, since we have natural transformations:

$$\begin{array}{ccc}
F_i & \longrightarrow & F \\
\uparrow & & \uparrow \\
F_{ij} & \longrightarrow & F_j
\end{array}$$

and each $F_{ij} \to F_i$ is an open embedding (on the level of their representing schemes).

Example: For n = 1, we can glue along open subschemes

For n=2, we get overlaps of the following form:

This claim implies that we can glue together F_i to get a scheme M. We want to show that M represents F. F(s) (LHS) is equivalent to an open cover U_i of S and sections of $F_i(U_i)$ satisfying the gluing (RHS).

Going from LHS to RHS isn't difficult, since for $\mathcal{O}_s^{n+1} \to L \to 0$, U_i is the locus where $s_i \neq 0$ and by surjectivity, this gives a cover of S.

RHS to LHS comes from gluing.

Proof of Claim 2: $F_i(S) = \{\mathcal{O}_S^{n+1} \to L \cong \mathcal{O}_s \to 0, s_i \neq 0\}$, but there are no conditions on the sections other than s_i , so specifying $F_i(S)$ is equivalent to specifying n-1 functions $f_1 \cdots \hat{f_i} \cdots f_n \in \mathcal{O}_S(s)$ with $f_k \neq 0$. We know this is representable by \mathring{A}^n .

We also know F_{ij} is obviously the same set of sequences, where now $s_j \neq 0$ as well, so we need to specify $f_0 \cdots \hat{f_i} \cdots f_j \cdots f_n$ with $f_j \neq 0$. This is representable by $\mathring{\mathbf{A}}^{n-1} \times \mathbb{G}_m$, i.e. $\operatorname{Spec} k[x_1, \cdots, \hat{x_i}, \cdots, x_n, x_j^{-1}]$. Moreover, $F_{ij} \hookrightarrow F_i$ is open.

What is the compatibility we are using to glue? For any subset $I \subset \{0, \dots, n\}$, we can define $F_I = \{\mathcal{O}_s^{n+1} \to L \to 0, s_i \neq 0 \text{ for } i \in I\} = \underset{i \in I}{\times} F_i$, and $F_I \to F_J$ when $I \supset J$.