CSC373S: Algorithm Design, Analysis & Complexity

LECTURE 27

Wednesday March 15, 2017

based on notes by Denis Pankratov

Complexity Theory (cont.)

 $L \in NPC$ implies that:

- 1. $L \in NP$
- 2. $(\forall \tilde{L} \in NP)(\tilde{L} \leq_p L)$

<u>Definition:</u> A **Boolean** circuit is a *directed acyclic graph* so that:

- 1. Leaves are labelled with variables, e.g. $x_1, ..., x_n$
- 2. Internal nodes are labelled with \bigcirc , \bigcirc , \bigcirc in-degree (\bigcirc) = in-degree (\bigcirc) = 2, in-degree (\bigcirc) = 1
- 3. There is a single output node:

Figure 1: Example

Circuit Sat Problem Input: C - circuit

Output: 1 if \exists assignment to vars of C so that C outputs 1 on that assignment

0 otherwise

$$L_{C-SAT} = \{ \langle C \rangle | C \text{ is satisfiable} \}$$

Theorem (version of Cook's theorem)

$$L_{C-SAT} \in NPC$$

Proof:

1. $L_{C-SAT} \in NP$

Verifier on input

$$x = < C > -$$
circuit

 $y=<\tau>-$ assignment to vars of C

Evaluates C on τ , returns whatever C returns.

Verifier runs in *polytime*:

 $< C> \in L_{C-SAT} \Leftrightarrow \in \tau$ verifier outputs 1 on $(< C>, <\tau>)$

2. Let $L \in NP$

Given x need to construct circuit C efficiently so that $x \in L \Leftrightarrow < C > \in L_{C-SAT}$ Let A be a polytime verifier for L, $\exists k_1 > 0$ so that $(\forall x)(x \in L \Leftrightarrow \exists y : |y| \le |x|^{k_1} \cap A(x, y) = 1)$

<u>Idea:</u> C will have y as inputs & will simulate A(x,y)

Let T(|x|) denote the runtime of A on input |x|

 $\exists k_2 > 0$ so that $T(|x|) \leq |x|^{k_2}$ (A is polytime)

Let c_i be the state of the computer running A on input (x, y)

c_i :	Code of A	Program counter	x	y	memory
	constant	constant	x	$ x ^{k_1}$	$ x ^{k_2}$

Let M be the circuit implementing a single step (processor): c_i to c_{i+1}

Figure 2: We stack T(|x|) copies of M

Figure 3: Get circuit C': what happens when we unroll the process with time

C' has poly(|x|) depth & poly(|x|) width $\Rightarrow C'$ is of poly size

To get C:

applying a restriction
$$\begin{cases} \text{hard-code } x \\ 0's \text{ for memory} \\ 0's \text{ for PC} \\ \text{code of } A \text{ to code of } A \end{cases}$$

```
x \in L \Leftrightarrow \exists y : |y| \le |x|^{k_1} \text{ and } A(x,y) = 1
\Leftrightarrow \exists y C(y) = 1
\Leftrightarrow < C > \in L_{C-SAT}
```

Given x, you can construct C in polynomial time

Figure 4: Visualization

Note:

 $\mathcal{O}(|x|^{k_2})$ with vertical arrow

 $\mathcal{O}(|x| + |x|^{k_1} + |x|^{k_2})$ with horizontal arrow

Exercise: Show \leq_p is transitive if $L_1 \leq_p L_2 \& L_2 \leq L_3$ then $L_1 \leq_p L_3$

Claim: If $L_1 \in NPC$ & $L_1 \leq_p L_2$, then L_2 is NP-hard. Moreover, if $L_2 \in NP$, then $L_2 \in NPC$

<u>Proof:</u> Let $\tilde{L} \in NP$, then $\tilde{L} \leq_p L_1(l_1 \in NPC) \Rightarrow$ by transitivity $\tilde{L} \leq_p L_2$

Claim: $L_{3-SAT} \in NPC$

Proof:

- 1. $L_{3-SAT} \in NP$ (last lecture)
- 2. $L_{C-SAT} \leq_p L_{3-SAT}$ Need to show (NTS): given circuit C, we can construct in polytime formula φ so that:
 - φ is 3 CNF
 - C is satisfiable $\Leftrightarrow \varphi$ is satisfiable

Figure 5: Visualization

- (1) Keep vars x_i For each internal node u, introduce a new variable y_u intended meaning y_u has the value of the circuit evaluated on x at gate u
- (2) Add clauses:

Figure 6: Clause

Figure 7: Clauses

- (3) Add clause y_u where u is the output gate
- (4) Convert all clauses into CNFs

$$\begin{array}{c|cccc} y_{u_1} & y_u & y_u \leftrightarrow y_{u_1} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \neg (y_u \leftrightarrow \neg y_{u_1}) \equiv (\neg y_{u_1} \land \neg y_u) \lor (y_u \land y_u) \end{array}$$