Análise Matemática B

Folha 1

1. Determine o centro a, o raio de convergência R e o intervalo de convergência I das seguintes séries de potências.

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n} x^n$$

b)
$$\sum_{n=0}^{+\infty} \frac{(x+3)^n}{3^n}$$

c)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x-10)^n$$

$$d) \sum_{n=1}^{+\infty} n^n x^n$$

e)
$$\sum_{n=1}^{+\infty} \frac{3^n (x-4)^{2n}}{n^2}$$

f)
$$\sum_{n=0}^{+\infty} \frac{(x-3)^{2n} n^2}{4^n}$$

g)
$$\sum_{n=2}^{+\infty} \frac{nx^n}{n^3 - 1}$$

h)
$$\sum_{n=1}^{+\infty} \frac{x^n}{n!}$$
 sol: $a = 0$, $R = +\infty$, $I =]-\infty, +\infty[$

i)
$$\sum_{n=0}^{+\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}$$
 sol: $a = 0$, $R = +\infty$, $I =]-\infty, +\infty[$

j)
$$\sum_{n=0}^{+\infty} \frac{(x+2)^{n-1}}{n^2}$$
 sol: $a = -2$, $R = 1$, $I = [-3, -1]$

1)
$$\sum_{n=0}^{+\infty} \frac{(x+5)^n}{(2n-1)(2n)}$$
 sol: $a = -5$, $R = 1$, $I = [-6, -4]$

m)
$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{(n+2)!}$$
 sol: $a = 1$, $R = +\infty$, $I =]-\infty, +\infty[$

- 2. Considere a série $\sum_{n=1}^{+\infty} \frac{x^n}{(1+b)^{n+1}}$ e determine o valor de b>0 de forma que o seu raio de convergência seja R=3.
- 3. Sabendo que $\frac{1}{1-x} = 1 + x + \dots + x^n \dots = \sum_{n=0}^{+\infty} x^n$ quando |x| < 1, determine a representação em série de potências de x das seguintes funções:

a)
$$\frac{1}{1-x^4}$$

b)
$$\frac{1}{2+x}$$

c)
$$\frac{x}{1-x^2}$$

d)
$$\frac{1}{6-x-x^2}$$

e)
$$\ln(1-x)$$

$$f) \ln \frac{1+x}{1-x}$$

g)
$$\int_0^x \frac{dt}{6-t-t^2}$$

4. Seja f(x) uma função definida pelas séries de potências dadas. Escreva uma série de potências para f'(x) e encontre o seu raio de convergência.

a)
$$f(x) = \sum_{n=0}^{+\infty} n^2 x^n$$

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

c)
$$f(x) = \sum_{n=0}^{+\infty} 2^{n/2} (x+1)^{2n}$$

5. Seja f(x) uma função definida pelas séries de potências dadas. Determine uma série de potências para $\int_0^x f(t)dt$ e encontre o seu raio de convergência.

a)
$$f(t) = \sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{(2n)!}$$

b)
$$f(t) = \sum_{n=0}^{+\infty} \frac{t^n}{2^{n+1}}$$

c)
$$f(t) = \sum_{n=0}^{+\infty} \frac{t^{2n+1}}{(2n+1)!}$$

d)
$$f(t) = \sum_{n=1}^{+\infty} \frac{t^n}{n^3}$$

- 6. Sabendo que o desenvolvimento da função $\sin x$ em série de potências de x é $\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, determine o desenvolvimento em série de potências de x da função $\cos x$
 - a) usando derivação;
 - b) usando primitivação.