Fundamentos de Análisis Matemático, MMA 2024-25.

ENTREGA 3

NOMBRE: Gonzalo Ortega Carpintero

(Para entregar el jueves, 5 de diciembre)

1.- (Lema de Van der Corput) Sea $\Phi \in \mathcal{C}^2(\mathbb{R})$ una función a valores reales, monótona y con $|\Phi'(x)| \ge 1$ en el intervalo [a,b]. Demuestra que

$$\left| \int_{a}^{b} e^{i\Phi(x)} dx \right| \leq 4.$$

Indicaciones: Escribe $e^{i\Phi(x)} = \Phi'(x)e^{i\Phi(x)}\frac{1}{\Phi'(x)}$ y usa integración por partes. Luego observa que $\frac{d}{dx}\left(\frac{1}{\Phi'(x)}\right)$ no cambia de signo por ser $\Phi'(x)$ monótona.

2.- Demuestra que existe una constante C > 0, finita, de forma que $\forall \lambda \in \mathbb{R}$ y $\forall a < b$ se tiene

$$\left| \int_{a}^{b} e^{i(\lambda x^{2} + x)} \frac{dx}{|x|^{1/2}} \right| \leqslant C$$

INDICACIONES: Podemos suponer que $0 \le a < b$. Haz un cambio de variables para que la integral quede de la forma $\int_{a'}^{b'} e^{i\Phi(y)} dy$. Finalmente, encuentra las regiones de monotonía de $\Phi'(x)$ y donde, además, $|\Phi'(x)| \ge 1$. Deberás considerar los casos $\lambda > 0$ (fácil) y $\lambda < 0$ por separado.

SOL.: