Machine Learning

06048203

X1		X2	Х3	X4
\$	179.43	56.784	34.6181	3.55
\$	641.87	62.054	47.7306	1.692
\$	556.30	64.13	55.596	1.559
\$	578.47	63.377	52.7121	1.679
\$	591.16	61.553	46.1315	1.984
\$	242.03	58.29	39.2952	2.942
\$	364.66	59.93	42.4628	2.494
\$	190.68	57.271	36.2725	3.419
\$	547.23	63.763	54.1971	1.634
\$	359.69	59.375	41.5105	2.128
\$	438.08	60.484	43.493	2.47
\$	637.17	62.525	49.428	1.725

Normalization

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

[0;1]

Standardization

$$X' = \frac{X - \mu}{\sigma}$$

$$[-3; +3]$$


```
70,000 $
60,000 $
52,000 $
```


Normalization

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

0.444

45 yrs44 yrs40 yrs

0.444

0.75 0

- Integer Encoding
 - Directly convert categories into integers 1,2,3...N

Country
USA
MEX
CAN
USA

- Integer Encoding
 - Possible issue is implied ordering and relationship (ordinal variable)

Country	Country
USA	1
MEX	2
CAN	3
USA	1

- Integer Encoding
 - Pros:
 - Very easy to do and understand.
 - Does not increase number of features.
 - Cons:
 - Implies ordered relationship between categories.

- One Hot Encoding (Dummy Variables)
 - Convert categories into individual features that are either 0 or 1

Country
USA
MEX
CAN
USA

- One Hot Encoding (Dummy Variables)
 - Convert categories into individual features that are either 0 or 1

Country		USA	MEX	CAN
USA		1	0	0
MEX		0	1	0
CAN		0	0	1
USA		1	0	0

- One Hot Encoding (Dummy Variables)
 - No ordered relationship is implied between categories.

Country		USA	MEX	CAN
USA		1	0	0
MEX		0	1	О
CAN		0	0	1
USA		1	0	0

- One Hot Encoding (Dummy Variables)
 - We can try to reduce this feature column expansion by creating higher level categories.
 - For example, regions or continents instead of countries.

- One Hot Encoding (Dummy Variables)
 - Consider a binary category (only two options):

- One Hot Encoding (Dummy Variables)
 - Consider a binary category (only two options):

Vertical Direction	UP	DOW N
UP	1	0
DOWN	О	1
UP	1	0
DOWN	0	1

- One Hot Encoding (Dummy Variables)
 - The new columns are duplicate information with inverted encoding.

- One Hot Encoding (Dummy Variables)
 - Easily fixed by simply dropping last column.

- One Hot Encoding (Dummy Variables)
 - This can be extended to more than 2 categories:

Country	USA	MEX
USA	1	O
MEX	O	1
CAN	0	0
USA	1	0

- One Hot Encoding (Dummy Variables)
 - Pros:
 - No ordering implied.
 - Cons:
 - Potential to create many more feature columns and coefficients.
 - Dummy variable trap consideration.
 - Not easy to add new categories.

Dealing with Outliers

- Often a data set will have a few points that are extreme outliers.
- It's often better to simply remove these few points from the data set in order to have a more generalized model.

- Outlier Considerations
 - Definition of an Outlier
 - Range and Limits
 - Percentage of Data
 - These are both very domain dependant!

- Outlier Considerations
 - Range and Limits
 - We need to decide what will constitute an outlier with some methodology:
 - InterQuartile Range
 - Standard Deviation
 - Visualized or Domain Limit Value

- Outlier Considerations
 - Percentage of Data
 - Keep in mind if a large percentage of your data is being labeled as an outlier, then you actually just have a wide distribution, not outliers!
 - Limit outliers to a few percentage points a most.

- Outlier Considerations
 - Utilize visualization plots to be able to see and identify outlier points.
 - Keep in mind, this will create caveats for your future model (e.g. Model not suitable for houses priced over \$10 Million)

- Keep in mind, there is no 100% correct outlier methodology that will apply to every situation.
- Let's explore the Ames Data Set for outliers!

Dealing with Missing Data

PART ONE: EVALUATING WHAT IS MISSING

Missing Data

- Make sure you've viewed the "Missing Data" lecture in the pandas section before continuing with this series of lectures!
- Many concepts and methods referred to here were explained in those lectures.

Missing Data

Working with the Ames data set, in Part
One we will focus on evaluating just how
much data is missing.

Dealing with Missing Data

PART TWO: FILLING DATA FOR ROWS

Missing Data

 Recall we just calculated percentage of data missing per feature column:

Missing Data

 Let's first work on considering features that have a very small percent missing.

- In the case of just a few rows missing the feature data, we'll consider either dropping these few rows or filling in with a reasonable assumption based off domain knowledge.
- Let's jump to the notebook to explore our options!

Dealing with Missing Data

PART THREE: FEATURE COLUMNS

 We are now dealing with missing data that goes beyond our 1% threshold.

 In other words, more than 1% of rows are missing some of these feature values.

- Two main approaches here:
 - Fill in the missing values
 - Drop the feature column
 - Let's consider the pros and cons of each approach...

- Dropping the feature column:
 - Very simple to do.
 - No longer need to worry about that feature in the future.
 - Potential to lose a feature with possible important signal.
 - Should consider drop feature approach when many rows are NaN.

- Filling in the missing feature data:
 - Potentially changing ground truth in data.
 - Must decide on reasonable estimation to filled value.
 - Must apply transformation to all future data for predictions.

- Filling in the missing feature data:
 - Simplest case:
 - Replace all NaN values with a reasonable assumption (e.g. zero if assumed NaN implied zero)
 - Harder cases:
 - Must use statistical methods based on other columns to fill in NaN values.

- Filling in the missing feature data:
 - Statistical Estimation:
 - Dataset about people with some age data missing.
 - Could use current career/education status to fill in data (e.g. people currently in college fill in with 20 yrs)

- Let's explore both approaches!
 - Important note!
 - Realistically on the Ames data set, many NaN values are probably actually correctly "zero". But we want to show the methodology for multiple approaches!

Dealing with Categorical Data

Categorical Data

 We're going to jump straight to the transformation of the data, but make sure to have watched the section introduction lecture in full for a detailed discussion on dummy variables and one hot encoding!