Problem 1

(2+3+5 points)

- a) Find the (complex) roots of the polynomial $p(x) = 2x^2 + 12x + 26$.
- b) Find the values of parameter b for which the equation $bx^2 bx + 2 = 0$ has no real roots.
- c) Find all roots (real or complex) of the polynomial $p(x) = x^6 x^5 3x^4 3x^3 22x^2 + 4x + 24x +$

Hint: x = 3 is a root. Divide out the associated linear factor and continue with more roots that are easy to guess.

Problem 2

(3+3+4 points and (2+3) bonus points)

Assuming that z = a + ib is a complex number, compute real and imaginary parts of

- a) $\frac{1}{(z^*)^2}$
- b) $\frac{2+z}{2z+2}$
- c) $(z^*)^2 z$

Bonus: |x| is the absolute value function:

In the case of $x \in \mathbb{C}$: $|x| = \sqrt{xx^*}$

In the case of $x \in \mathbb{R}$: $|x| = \sqrt{x^2}$ or in other words |x| = x if $x \ge 0$; |x| = -x if x < 0.

In both cases $|x| \in \mathbb{R}$ and $|x| \ge 0$.

- d) Compute $\left|\frac{1-i}{2+i}\right|$. Use the definition of the absolute value function for complex numbers.
- d) Characterize the set of real numbers x that satisfy $|4x + 2| \le |2x 3|$.

 Hint: You cannot directly work with $|\cdot|$. Use the definition of absolute value for real numbers to change the inequality into an equivalent problem without $|\cdot|$. For that, you can apply certain functions to both sides of the inequality without changing the inequality.

Problem 3

(4+3+3 points)

Proof the following for complex numbers z and w, i.e. $z, w \in \mathbb{C}$.

a)
$$\frac{z^*}{w^*} = (\frac{z}{w})^*$$

b)
$$Re(z) = \frac{z+z^*}{2}$$

c)
$$\operatorname{Im}(z) = \frac{z-z^*}{2i}$$

 $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are the real and complex part of z, respectively. I.e. if z=a+bi, then $\operatorname{Re}(z)=a$ and $\operatorname{Im}(z)=b$.