

מה נלמד?

- מושגי יסוד 📗 🚺
- ?איך מחשב עובד
- קידוד תכנית התפתחות לאורך זמן 📗 🔾
 - דור שלישי שפות עיליות 📗 🚺
 - שלבים בפתרון בעיה 📗 🔼
 - מהו אלגוריתם | 06

10 | מושגי יסוד

- מבנה מערכת מחשב
 - חומרה
 - תוכנה -
- סוגי מערכות הפעלה -
- בעלי תפקידים בתעשיית ההייטק

מושגי יסוד | 01

- חומרה -
- תוכנה -
- מערכות הפעלה -

משתמש

יישומים

[לקוח/ שרת]

מערכת הפעלת ראשית

[Linux, Unix, Mac, Win]

מערכת הפעלה ראשית

[BIOS]

חומרה ייעודית או גנרית

[לוח אם, ספק, מעבד, כונן, זיכרון, מסך מקלדת]

מושגי יסוד | חומרה | 01

ברזלים

- GB/16GB 8 זיכרון עבודה, למשל
 - לוח אם
- דיסק קשיח SSD/HDD בד"כ ■
- ברטיס מסך הקשר בין הלוח למסך מכיל מאיץ גרפי בד"כ
 - מסך •
 - מקלדת
 - עכבר ■
 - מדפסת

מושגי יסוד | תוכנה | 01

המח

- דפדפן אינטרנט
 - אנטי וירוס ■
 - תוכנת דוא"ל ■
- מעבד תמלילים
- גיליון אלקטרוני

מושגי יסוד | סוגי מערכות הפעלה | 01

- Windows •
- Desktop -
 - Server -
 - Linux •
 - OS/X -
 - Mobile •
 - IOS -
- Android -

מושגי יסוד | בעלי תפקידים בתעשיית ההייטק | 01

- IT Operator מנהל רשת/תשתיות Windows
 - מפתחי תוכנה Software Developer
 - QA Developer בודקי תוכנה
 - מנהל תשתיות נתונים DBA
 - DevOps הדבר החם הנוכחי

?איך מחשב עובד | 02

- רעיון
- מבנה מחשב
- ארביטקטורה
- עיבוד נתונים

איך מחשב עובד רעיון | 02

- מודל הפקיד
- לוח הוראות
- חלונות קלט/ פלט
 - מגירות
 - מכונת חישוב
 - מכונת כתיבה

איך מחשב עובד | מבנה המחשב | 02

- תפקיד המעבד ביצוע פעולות.
- סוגי קלט פלט ברטיסים מחוררים, סרטים, מסך , מקלדת ובו.'

איך מחשב עובד | עיבוד נתונים | 02

y=ax+b :דוגמת חישוב הפונקציה

קוד פקודה	כתובת בזכרון
add	16
mul	17
add	18
Store	19

clear

End

כתובת	משתנים
16	A
17	X
18	b
19	y

103 | קידוד תוכנית | התפתחות לאורך זמן

- דור ראשון שפת מכונה
 - דור שני אסמבלי ■
- דור שלישי שפה עילית 📮

קידוד תכנית \leftarrow התפתחות לאורך זמן 03

סידוד תכנית → דור ראשון: שפת המכונה ∪ קידוד תכנית

קוד	כתובת
010	00000
011	10000
101	10001
011	10010
111	10011
000	00000

קוד	כתובת
2	0
3	16
5	17
3	18
7	19
0	0

חוסר יעילות, קשה לתכנות ולהבנה

סמבלי: אסמבלי ← קידוד תכנית קידוד תכנית סמבלי

clr

add a

mul x

add b

str y

halt

תרגום חד חד ערכי

מתרגם פשוט

יש צורך לזכור בע"פ ■

y=ax+b היינו רוצים לכתוב

סידוד תכנית ← דור שלישי: שפה עילית | 03

int a = 5;

int x = 6;

int b = 7;

int y = a*x + b;

System.out.println("result : " + y);

קוד קריא

מתרגם פשוט

- יתרונות השפה העילית
- חסרונות השפה העילית -

סידוד תכנית ← קידוד תכנית | 04

- את השפות העיליות ניתן להתאים אישית ע"י בניית ספריותשל פונקציות
 - השפות משמשות לכל מיני מטרות
 - יש גם שפות שמיועדות לנושאים ספציפיים
 - SQL -
 - HTML -

סידוד תכנית ← יתרונות השפה העילית | 04

- קל לקריאה, כתיבה, תיקון
- קל לאירוח במחשבים שונים, מערכות הפעלה שונות
 - **בלים:**
 - מהדר compiler המרה משפה עילית לשפת מכונה
- (... בהמשך..) , Linker, assembler, debugger, profiler -

סרונות השפה העילית ← קידוד תכנית

- צריך קומפיילר (מהדר)
- מהירות נחשבת איטית מאוד היות והדברים לא נעשים "קרוב לחשמל"

05 | שלבים בפתרון בעיה

שלבים בפתרון בעיה | 05

- הגדרת הבעיה באופן מדויק
 - קלט -
 - פלט -
- פיתוח אלגוריתם לפתרון הבעיה (שיטה)
 - החלק האינטליגנטי ביותר
 - קידוד (החלק הטבני)

אלגוריתם | 06

אלגוריתם | 06

הגדרה אוסף סופי של הוראות שביצוען צעד אחר צעד, מוביל לפתרון בעיה כלשהיא

- סופי בביצוע -
- רצף הגיוני (חשיבות לסדר הפעולות)
 - עונה על כל האפשרויות •
- חד משמעי וברור (אין מקום לשיקול דעת) -
 - הוראות ברות ביצוע למכונה •

