Lecture Outline

Reminders to self:

ECE2060

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone

Last Lecture

- Hazards in combinatorial logic
- Started Multiplexers

Today's Lecture

- Continue Multiplexers
- Brief look at CMOS gates at transistor level
- Three-state buffers / Tri-state outputs

Handouts and Announcements

Announcements

- Homework: No new assignment today
- Homework Reminder:
 - HW 8-1 and 8-2 Due: 11:59pm Thursday 2/16
- Participation Quiz 7 available starting 12:25pm today
 - Due 12:25pm Thursday 2/16
 - Available until 12:25pm Friday 2/17 with late penalty
- Read for Friday: pages 271-275

Handouts and Announcements

Announcements

- Mini-Exam 3 Reminder
 - Available 5pm Monday 2/20 through 5:00pm Tuesday 2/21
 - Due in Carmen PROMPTLY at 5:00pm on 2/21
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 3 and 4 from Au20 also available

Multiplexers

- Multiplexers often used to select data which is to be processed or stored in digital system design
- *N* identical MUX connected in parallel, with shared control, can be used to select between *N*-bit data words
- A 4-bit example:
 - (x_3, x_2, x_1, x_0) and (y_3, y_2, y_1, y_0) are the two 4-bit data words to select between
 - (z_3, z_2, z_1, z_0) is the output data word

- Compact notation showing 4-bit buses at inputs and output ⇒
 - Thick line to represent bus
 - Diagonal mark with number designates number of bits on bus

Digital MOSFET circuit symbols

- MOSFET is a type of transistor, dominant in modern digital ICs
- Two varieties: NMOS and PMOS
- Three terminal device: <u>Gate</u>, <u>Drain</u>, <u>Source</u> (arrow in symbol)
- Digital-circuit designers often use a different circuit symbol for the MOSFET when it is used for implementing logic
- Which terminal is source and which is drain inferred from circuit:

COLLEGE OF ENGINEERING

$\overline{PMOS} + NMOS = CMOS$

CMOS Inverter

ECE2060

Sketch in wires for input and output

If you were to turn on both FETs

- Tries to short power supply to ground
- Large current flow and power dissipation
- Heat and damage

COLLEGE OF ENGINEERING

ECE2060

CMOS Logic-Gate Circuits

- •Derived from CMOS inverter, but individual transistors replaced by networks of transistors
 - PU FET replaced by a Pull-Up Network (PUN) of PMOS FETs
 - PD FET replaced by a Pull-Down Network (PDN) of NMOS FETs
- •Both networks operated by input variables, in complementary way similar to PMOS and NMOS
 - •PDN network establishes path to ground for input combinations that require low output (Y=0, $V_Y=0$)
 - At same time, PUN does **not** establish path to V_{DD}
 - •PUN network establishes path to V_{DD} for input combinations that require high output ($Y_{=1}, V_{Y} = V_{DD}$)
 - At same time, PDN does **not** establish path to ground

CMOS Logic-Gate Circuits

NOR and NAND

ECE2060

• A and B = 1: Both PMOS off, no output • A or B = 1: At least one connection to V_{DD} active low PMOS off, no • A or B = 0: At V_{DD} output connection to V_{DD} least one PMOS • A and B = 0: Both PMOS on, output on, output connected to V_{DD} connected to V_{DD} Q_{PA} $B \circ - \circ$ Direllel Q_{NA} Q_{NB} Q_{NB} Q_{NA} $B \circ -$ • A and B = 1: Both NMOS on, output • A or B = 1: At least one connected to ground active high NMOS on, • A or B = 0: At least output connected to ground $Y = \overline{AB}$ one NMOS off, no $Y = \overline{A + B}$ • A and B = 0: Both NMOS connection to ground off, no connection to ground

To make an OR, follow this with 2-FET inverter: 6 transfer

To make an AND, follow this with 2-FET inverter: 6 the 9

CMOS Logic-Gate Circuits XOR

CMOS Logic-Gate Circuits

- But can do better by directly applying these PUN and PDN concepts
- · Transistor-Level Design

- •PDN network establishes path to ground for input combinations that require low output $(Y = 0, v_Y = 0)$
- At same time, PUN does <u>not</u> establish path to V_{DD}
- •PUN network establishes path to V_{DD} for input combinations that require high output $(Y = 1, v_Y = V_{DD})$
- At same time, PDN does **not** establish path to ground

Generic 3-input example

CMOS Logic-Gate Circuits

ECE2060

XOR – by direct synthesis of PUN and PDN

PUN synthesis: $Y = A \overline{B} + \overline{A} B$

PDN synthesis: $\overline{Y} = \overline{A} \overline{B} + \overline{A} B = \overline{A} \overline{B} \overline{A} B$

Two additional inverters are needed, to generate \overline{A} and \overline{B}

Complement of variables from equation applied at PMOS inputs, since they are active-low

Including the two inverters: 12 transistas

Inverter delay + 1 gate-delay

Adder/Subtractor

In a previous lecture saw an adder/subtractor circuit in which XOR gates were used to

- invert the bits of B when SUB = 1 (subtraction), and
- not invert them when SUB = 0 (addition)

Adder/Subtractor

ECE2060

Buffers

- A gate output can only be connected to a limited number of other device inputs without degrading the digital system's performance
- A simple buffer may be used to increase the driving capability of a gate output
- Figure 9-10 shows a buffer connected between a gate output and several gate inputs

- Tying the <u>outputs</u> of two gates together is **BAD**
- Tying gate outputs \neq OR
- Gates FORCE a wire to 1 or 0
- Gates FORCE the voltage on a wire to High (e.g. 3 V) or Low (e.g. 0 V)
- Three-state logic permits two or more outputs to be wired together
- In the third state the output of the gate is "high impedance"
 - Hi-Z
 - It is effectively disconnected from the logic circuit inside the gate
- Also known as "Tri-state" Buffers

- Other reasons for adding a buffer (even if not tri-state)
 - Add a delay (for example: to keep two-level logic in time-step with three-level logic)
 - Increase output current driving capability (for wh)
- Three-state buffer logic symbol & logical equivalent:

- Four types of three-state buffer
- All have same three output states:

 - "High Impedance"

ECE2060

Four types of three-state buffer

Non-inverting and inverting tri-state buffers with active-low enable.

ECE2060

Data selection using three-state buffers

FIGURE 9-13
Data Selection
Using Three-State
Buffers

© Cengage Learning 2014

- Logically equivalent to 2-to-1 MUX introduced last lecture:
 - $B = 0 \rightarrow D = A$, lower buffer in high-Z state
 - $B = 1 \rightarrow D = C$, upper buffer in high-Z state
- Can be implemented with 6 transistors, vs 4 before
 - Inverter (2) + two "pass-transistor" PMOS/NMOS pairs (2x2)
 - Inverter (1) + three NAND gates (3×4 /gate) = 14

- Data selection using 3-state buffers
 - CMOS multiplexer
 - Note NMOS and PMOS in "pass-transistor" pairs
 - NMOS active-high
 - PMOS active-low
 - Need both to confidently pass signal for both high and low states of *A* or *C*
 - NMOS does good job of passing logic 0
 - PMOS does good job of passing logic 1
 - Inverter also needed, from *B*

Three-State Buffers

Straight-through/Cross-through MUX

- •
- •

•

- Two outputs tied together
- But only one active at a time
- Other in high-Z state

- Three-state bus as alternative to MUX data selector
- Example: 4-bit adder with one operand sourced from four different locations

- A bus controller is needed to ensure that only one of EnA, EnB, EnC, and EnD are true at any time
- Outputs of the other buffers must be in
- Device known as

can be used for bus control