1 NAMENSKA FOTOGRAFIJA

1.1 PORTRET

1.2 NOČNA ASTRO-FOTOGRAFIJA

1.2.1 Nastavitve

primernost opazovanja

- na spletni strani:
 - light pollution kako svetlo je nebo zaradi luči (čim manj tem bolje)
 - full moon dates kakšni bodo pogoji za opazovanje (luna, vreme)
 - heavens above neverjetno velika baza podatkov o vidnosti satelitov

nastavitev fotoaparata

- F = naj bo najbolj odprta F2.8 zato, da dobimo čim več svetlobe
- 2s delay = da se malce umerijo tresljaji
- RAW = da imamo podatek za vsak pixel posebej (ne JPG ker je že skompresirano)
- auto rotate = OFF, če imamo tracker se lahko orientacija fotografije spremeni
- noise reduction = OFF to bomo naredili v programu
- ISO = načeloma z ISO povečamo ojačanje... zato povečamo tudi šum. Vendar vedno pa temu ni tako (novi fotoaparati). Vendar ko povečamo ISO, izgubimo dinamični razpon v temnih delih slike. Zato tale vir predlaga, da raje fotografiramo z ISO 200 in s tem obdržimo nekoliko večji dinamični razpon temnejših delov fotografije. Vendat naslednji vir predlaga nastavitev ISO na višje vrednosti, ker imamo tako manjši input-referred read noise povzeto po Photons to Photos.
- t = če imamo trcker ni težav lahko tudi 2 min

poravnanje s severnico

- najprej zbalansiramo fotoaparat in pritrdilno ploščo
- odstranimo ploščo in začnemo s poravnoamo
- na oko ocenimo poravnavo s severnico
- nastavimo zemljepisno širino 46.5°
- z vijaki točno nastavimo smer severnice
- za bolj točno nastavitev lahko uporabimo app. PolarFinder Pro (Android) saj je severnica 0.5° odmaknjena od severa

dr. David Rihtaršič

ostrenje

- fotoaparat nastavimo na manual focus
- v povečanem oknu opazujemo zvezde in jih skušamo narediti čim manjše.
- ko imamo zadovoljivo izostreno, se navadno pojavi več zvezd
- nastavitev ostrine z Bathinovo masko:
 - na objektiv dodamo bathinovo masko in
 - nastavimo ostrino nastavimo tako, da se žarki sekajo točno v enem presečišču...
 - če slika ni ostra, nastane razlika med presečiščem od X-žarkov in I-žarkov

Slika 1: Primer ostrenja z Bathinovim filtrom.

čas osvetljevanja

- pri nastavitvah časa osvetljevanja smo najverjetneje omejeni s kvaliteto naše opreme = ali tracker lepo sledi vrtenju zemlje
- s traskerjem in objektivom f=200mm in če smo nekoliko bolj previdni lahko dobimo dobre fotografije že pri 30s.
- nastavitev časa lahko ugotovimo preko histograma:

dr. David Rihtaršič

- na zaslon dodamo histogram
- in čas nastavimo tako, da imamo krivuljo nekoliko ločeno od levega roba 1/4 od roba
 - * tako zagotovimo, da smo podatke ločili od ground noise flore-a
 - * lahko histogram pogledamo za vsako barvo RGB tako da vemo, da so vse tri barve ločene od robu

• če nimamo trackerja

MFN rule lahko najdete na tej tej strani in vpišete podatke npr.: 4/3", 4736px, 3.64um,
75mm, ... in dobimo, da lahko slikamo 3.1s, da se ne bodo videlo premikov zvezd zaradi rotacije zemlje dsegljivo tudi na PhotoPill app (android)

število posnetkov Število vseh posnetkov mora biti tako, da se čas vseh fotk sešteje v cca 30 min... to pomeni, pri času 3s potrebujemo 600 posnetkov... več je bolje... vsaj 30 fotk.

kalibracija Posnamemo kalibracijske posnetke...:

- darkens ob enakem času in enakih ISO ter enaki temperaturi, nastavitveh posnamemo nekaj fotk (dobimo podatke o šumu zaradi temperature, ojačanja...)
- baiases ob zelo kratkem času t=1/4000s posnamemo nekaj fotk, tako dobimo podatke o šumu zaradi elektronike ADC ojačanje...
- flats pri istih nastavitvaf in temperaturi času damo čez objektiv belo blago in ga osvetljimo z enakomerno belo svetlobo (telefon z belo sliko), čas osvetljevanja nastavimo na 50% pri enaki ISO vrednosti.

dr. David Rihtaršič