Gennaio 2018

Esercizio 0

0.1

La media campionaria è uno stimatore non distorto per μ ? $E(X)=\mu$

$$E(\overline{X}) = rac{1}{n} \sum_{i=1}^n E(X_i) = rac{n}{n} E(X) = E(X)$$

0.2

Grafico delle funzioni di ripartizione?

0.3

$$X \sim Expon(\lambda)$$

$$E(X)=rac{1}{\lambda}$$
 quindi

$$\lambda = \frac{1}{E(X)}$$

0.4

$$Var(X) = rac{1}{\lambda^2} = E(X)^2$$

Deviazione standard = $\sqrt{\overline{Var(X)}} = E(X)$

0.5

L'esponenziale B ha il parametro con valore più alto perchè per p più alto F_X è maggiore (vedi punto 2)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as st
import numpy as np
import statsmodels.api as sm
from scipy.stats import expon
from scipy.stats import geom
```

Esercizio 1

```
In [2]:
dati = pd.read_csv("astici.csv",delimiter=",",decimal=".")
dati.columns
Out[2]:
Index(['kg.di.pesce', 'settore.di.pesca', 'forza.del.mare', 'peso.astic
e'], dtype='object')
1.1
In [3]:
len(dati)
Out[3]:
281
1.2
In [4]:
len(dati['settore.di.pesca'].unique())
Out[4]:
9
1.3
In [5]:
len(dati[dati['settore.di.pesca'] == 'A'])
Out[5]:
37
```

In [6]:

dati['settore.di.pesca'].value_counts().plot.bar()
plt.show()

1.5

Settore B

1.6

In [7]:

```
p = len(dati[dati['settore.di.pesca'] == "B"])/len(dati)
p * 100
```

Out[7]:

23.843416370106763

In [8]:

```
dati['forza.del.mare'].head()
#CATEGORICO
```

Out[8]:

0 9

1 9

2 9

3 7 4 8

Name: forza.del.mare, dtype: int64

1.8

In [9]:

```
dati['forza.del.mare'].value_counts().sort_index().plot.bar()
plt.show()
```


In [10]:

```
#1.9
ecdf = sm.distributions.ECDF(dati['forza.del.mare'])
x = np.arange(dati['forza.del.mare'].min(), dati['forza.del.mare'].max()+1)
y = ecdf(x)
plt.step(x,y)
plt.show()
```


1.10

In [11]:

```
sm.qqplot(dati['forza.del.mare'],line="45")
plt.show()
```


Il Q-Q Plot è la rappresentazione grafica dei quantili di una distribuzione. Confronta la distribuzione cumulata della variabile osservata con la distribuzione cumulata della normale. Se la variabile osservata presenta una distribuzione normale, i punti di questa distribuzione congiunta si addensano sulla diagonale che va dal basso verso l'alto e da sinistra verso destra. In questo caso i punti non si distribuiscono su questa diagonale e quindi possiamo affermare che non è approssimativamente normale.

1.11

```
In [12]:
dati['forza.del.mare'].mean()
Out[12]:
3.804270462633452

1.12
In [13]:
dati['forza.del.mare'].mode()
Out[13]:
0    3
dtype: int64

Il valore della forza del mare riscontrato più spesso è stato il 3.
```

1.13

```
In [14]:
```

```
dati['peso.astice'].head()
#QUANTITATIVO CONTINUO
```

```
Out[14]:
```

```
0 29.9
```

- 2 29.9
- 3 29.9
- 4 28.4

Name: peso.astice, dtype: float64

^{1 29.3}

In [15]:

```
#1.14 QUANTITATIVO CONTINUO -> HIST?
dati['peso.astice'].plot.hist()
plt.show()
```


1.15

In [16]:

```
#EVIDENZIARE GLI OUTLIER
dati['peso.astice'].plot.box()
plt.show()
```


1.16

In [17]:

```
astici_filtrato = dati[dati['peso.astice'] != dati['peso.astice'].min()]
```

In [18]:

```
print(astici_filtrato['peso.astice'].var(),astici_filtrato['peso.astice'].mean())
```

40.49094930875574 19.354285714285737

1.18

$$P(|X-E(X)|<10) \ 2\Phi(rac{10\sqrt{n}}{\sigma})-1$$

In [19]:

```
import math
n = len(astici_filtrato['peso.astice'])
X = st.norm()
sigma = astici_filtrato['peso.astice'].std()
pi = (10*math.sqrt(n))/sigma
2*X.cdf(pi)-1
```

Out[19]:

1.0

1.19

In [20]:

```
#RELAZIONE TRA peso.astice e forza.del.mare
plt.scatter(dati['peso.astice'],dati['forza.del.mare'])
plt.show()
```


In questo grafico è evidente una relazione tra i due caratteri. La relazione evidenziata è lineare positiva.

In [21]:

```
#RELAZIONE TRA peso.astice e kg.di.pesce.
plt.scatter(dati['peso.astice'],dati['kg.di.pesce'])
plt.show()
```


In questo grafico invece non si evidenzia nessun tipo di relazione tra i duie caratteri in quanto i puntini sono tutti sparsi.

1.20

In [22]:

```
#INDICE CHE INDICA LA RELAZIONE: INDICE DI CORRELAZIONE
dati["peso.astice"].corr(dati["forza.del.mare"])
```

Out[22]:

0.9156381240896676

Esercizio 2

In [23]:

```
#FUNZIONE CUMULATIVA EMPIRICA
ecdf = sm.distributions.ECDF(dati['kg.di.pesce'])
x = np.arange(dati['kg.di.pesce'].min(), dati['kg.di.pesce'].max()+1)
y = ecdf(x)
plt.step(x,y)
plt.show()
```


2.2

```
In [24]:
```

```
dati['kg.di.pesce'].var()/len(dati)
```

Out[24]:

0.346324073964187

In [25]:

```
dati['kg.di.pesce'].mean()
```

Out[25]:

10.078838086708181

2.3

La media campionaria è sempre uno stimatore non deviato, mentre la varianza bisogna verificare

In [26]:

dati['kg.di.pesce'].hist()
plt.show()

Il grafico appena proposto suggerisce che kg.di.pesce potrebbe distribuirsi come un esponenziale in quanto il grafico approssima molto bene quello della distribuzione esponenziale. Poi sappiamo che nell'aponenziale il valore atteso a le deviazione standard si equivalgono e anche in questo caso se stimo i due valori sono molto vicini tra di loro.

In [27]:

dati["kg.di.pesce"].describe()

Out[27]:

count	281.000000
mean	10.078838
std	9.864941
min	0.020205
25%	2.886564
50%	7.182464
75%	13.533704
max	46.633104

Name: kg.di.pesce, dtype: float64

2.5

$$\lambda = \frac{1}{E(X)}$$

In [28]:

1/(dati["kg.di.pesce"].mean())

Out[28]: