705final

ShanZhong

May 3, 2019

Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-16

first we load the data and remove id number check the distribution of log expenditures

distribution of log medical expense

Create an algorithm to filter the data first check for missing value define

filter data that have over 1000 missing values

```
##
         list.name list.missing
##
      1:
             PANEL
                             569
##
      2: FCSZ1231
##
      3: FCRP1231
                              35
##
      4: RUSIZE31
                              27
##
      5: RUSIZE42
                               0
##
## 1319: SAQWT09F
                               0
## 1320: DIABW09F
## 1321:
            VARSTR
## 1322:
            VARPSU
              MSCD
## 1323:
```

Detect factors in the data

generate create factor and numeric data
calculate pvalue for each of the factor variables
take the average of estimate value and p-value
calculate pvalue for each of the numeric variables
choose a level of p-value that can filter unrelated variables
utlize a lasso method to reduce parameters

```
##
     user system elapsed
   147.27
             0.01 147.31
##
## Call: glmnet(x = as.matrix(dat.combine), y = as.numeric(y), family = "binomial")
##
##
         Df
                  %Dev
                          Lambda
  [1,]
          0 -2.168e-13 1.669e-01
  [2,]
##
          2 3.800e-02 1.521e-01
   [3,]
             7.331e-02 1.386e-01
##
  [4,]
          4 1.081e-01 1.263e-01
##
  [5,]
          5 1.396e-01 1.151e-01
##
   [6,]
          6 1.683e-01 1.048e-01
   [7,]
          7 1.931e-01 9.553e-02
          7 2.142e-01 8.704e-02
##
  [8,]
## [9,]
         7 2.322e-01 7.931e-02
```

```
## [10,]
           8 2.486e-01 7.226e-02
## [11,]
           9
              2.660e-01 6.584e-02
## [12,]
          10
              2.816e-01 5.999e-02
## [13,]
              2.959e-01 5.466e-02
          11
## [14,]
          15
              3.105e-01 4.981e-02
## [15,]
          16
              3.267e-01 4.538e-02
## [16,]
          18
              3.426e-01 4.135e-02
## [17,]
          19
              3.590e-01 3.768e-02
## [18,]
          21
              3.760e-01 3.433e-02
## [19,]
          22
              3.933e-01 3.128e-02
## [20,]
          22
              4.101e-01 2.850e-02
## [21,]
              4.263e-01 2.597e-02
          22
## [22,]
          22
              4.420e-01 2.366e-02
## [23,]
              4.573e-01 2.156e-02
          22
## [24,]
          22
              4.722e-01 1.965e-02
## [25,]
          23
              4.867e-01 1.790e-02
## [26,]
          24
              5.011e-01 1.631e-02
   [27,]
          25
              5.152e-01 1.486e-02
              5.290e-01 1.354e-02
   [28,]
          26
   [29,]
          27
              5.425e-01 1.234e-02
## [30,]
          29
              5.557e-01 1.124e-02
## [31,]
          30
              5.686e-01 1.024e-02
## [32,]
              5.811e-01 9.333e-03
          30
## [33,]
          29
              5.932e-01 8.504e-03
## [34,]
          30
              6.048e-01 7.749e-03
   [35,]
          37
              6.161e-01 7.060e-03
   [36,]
          37
              6.270e-01 6.433e-03
##
## [37,]
          38
              6.373e-01 5.862e-03
## [38,]
          39
              6.472e-01 5.341e-03
## [39,]
          42
              6.567e-01 4.866e-03
## [40,]
          44
              6.658e-01 4.434e-03
## [41,]
          45
              6.743e-01 4.040e-03
## [42,]
              6.824e-01 3.681e-03
## [43,]
              6.901e-01 3.354e-03
          51
   [44,]
          56
              6.975e-01 3.056e-03
## [45,]
          57
              7.046e-01 2.785e-03
## [46,]
          61
              7.112e-01 2.537e-03
## [47,]
          64
              7.175e-01 2.312e-03
## [48,]
          70
              7.236e-01 2.107e-03
## [49,]
              7.297e-01 1.919e-03
          71
  [50,]
              7.353e-01 1.749e-03
          73
   [51,]
          75
              7.404e-01 1.594e-03
   [52,]
          84
              7.454e-01 1.452e-03
## [53,]
          88
              7.501e-01 1.323e-03
## [54,]
          91
              7.544e-01 1.205e-03
## [55,]
          94
              7.587e-01 1.098e-03
## [56,]
          98
              7.624e-01 1.001e-03
## [57,] 103
              7.661e-01 9.119e-04
## [58,] 110
              7.694e-01 8.309e-04
## [59,] 114
              7.727e-01 7.570e-04
## [60,] 116
              7.756e-01 6.898e-04
## [61,] 122
              7.784e-01 6.285e-04
## [62,] 124
              7.809e-01 5.727e-04
## [63,] 130 7.833e-01 5.218e-04
```

```
## [64,] 133 7.855e-01 4.754e-04
## [65,] 148 7.875e-01 4.332e-04
## [66,] 153 7.895e-01 3.947e-04
## [67,] 155
             7.913e-01 3.597e-04
## [68,] 157
             7.929e-01 3.277e-04
## [69,] 165
            7.944e-01 2.986e-04
## [70,] 168 7.958e-01 2.721e-04
## [71,] 170
             7.971e-01 2.479e-04
## [72,] 178
             7.983e-01 2.259e-04
## [73,] 181
             7.994e-01 2.058e-04
## [74,] 194
             8.006e-01 1.875e-04
## [75,] 200
             8.017e-01 1.709e-04
## [76,] 214
             8.028e-01 1.557e-04
## [77,] 221
             8.037e-01 1.419e-04
## [78,] 221
             8.045e-01 1.293e-04
## [79,] 227
             8.053e-01 1.178e-04
## [80,] 241
             8.061e-01 1.073e-04
## [81,] 244
             8.068e-01 9.778e-05
## [82,] 250
             8.075e-01 8.909e-05
## [83,] 261
             8.084e-01 8.118e-05
## [84,] 269
             8.088e-01 7.396e-05
## [85,] 266 8.102e-01 6.739e-05
## [86,] 276
             8.106e-01 6.141e-05
             8.117e-01 5.595e-05
## [87,] 274
## [88,] 281 8.124e-01 5.098e-05
## [89,] 286
             8.126e-01 4.645e-05
## [90,] 293
             8.130e-01 4.233e-05
## [91,] 297
             8.140e-01 3.856e-05
## [92,] 305 8.141e-01 3.514e-05
## [93,] 306
             8.144e-01 3.202e-05
## [94,] 309
             8.152e-01 2.917e-05
## [95,] 324 8.152e-01 2.658e-05
```

from the lasso model, we find some interesting variables

Still we have some variables that are useless, we delete them

First we see the prediction performance(%Dev) based on number of variables choosed (DF)

then we fit a glm model with 80 parameters to choose significant variables

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##
## Call: glm(formula = paste("y~", paste(variable, collapse = "+")), family = "binomial",
## data = dat)
##
## Coefficients:
## (Intercept) RUSIZE53 RUSIZE09 REFPRS09 ENDRFM53
## 3.204e-01 2.955e-02 -6.034e-02 -1.687e-03 -1.239e-02
```

```
##
        AGE31X
                      EDUCYR
                                  RFREL53X
                                                BMINDX53
                                                                 PCS42
##
     3.359e-03
                   4.071e-02
                                -4.383e-03
                                               1.087e-02
                                                           -4.223e-03
      DDBDYS53
##
                   BUSNP09X
                                  WCMPP09X
                                                CHLDP09X
                                                             TOTTCH09
##
     6.242e-03
                   2.453e-05
                                               1.531e-05
                                                             3.615e-04
                                 1.165e-04
##
      OBTOTV09
                     OBDRV09
                                  OBCHIRO9
                                                OBNURS09
                                                              OBETCH09
##
    -2.895e-02
                   5.071e+00
                                 3.364e+00
                                               1.816e+00
                                                             5.757e-02
                     OPDRV09
                                                              AMTOTC09
##
      OBASST09
                                  AMCHIRO9
                                                AMASST09
##
    -9.006e+00
                   5.296e+00
                                 1.426e+00
                                               1.349e+01
                                                             2.167e+00
##
       ERTOTO9
                     DVTOT09
                                   DVGEN09
                                               DVORTH09
                                                             DVOTCH09
##
     4.553e+00
                   4.243e+00
                                 6.416e-01
                                              -4.601e+00
                                                             1.757e-02
##
      VISTCH09
                   FAMWT09F
                                  DIABW09F
                                                  VARSTR
                                                                 PANEL
##
     3.381e-02
                   2.932e-06
                                 7.017e-05
                                                           -9.572e-02
                                               1.583e-03
##
      FCRP1231
                    RUCLAS31
                                  RUCLAS53
                                                RUCLAS09
                                                                 MSA53
##
                   3.433e-01
                                 2.458e-01
     8.787e-02
                                                      NA
                                                            -2.316e-01
##
         MSA09
                      RESP31
                                    RESP42
                                                  RESP53
                                                                RESP09
##
                  -3.469e-02
                                -8.702e-02
                                               8.230e-02
                                                                    NA
            NA
##
       PROXY53
                     PROXY09
                                                                   SEX
                                  BEGRFY31
                                                INSCOP42
##
     5.775e-01
                                 5.702e-04
                                              -2.003e-01
                                                             3.427e-01
                          NA
##
      RACETHNX
                    SPOUIN09
                                                             MNHLTH31
                                     HIDEG
                                               RTHLTH31
##
     1.929e-01
                  -2.070e-01
                                 2.871e-02
                                               2.802e-02
                                                             1.219e-01
##
        HIBPDX
                        MIDX
                                    EMPHDX
                                                  CHOLDX
                                                                DIABDX
##
    -9.258e-01
                   2.688e-01
                                 4.698e-01
                                              -5.133e-01
                                                            -6.061e-01
##
      ADLHLP31
                   DENTCK53
                                  BPCHEK53
                                               EXRCIS53
                                                             PHYACT53
    -3.099e-01
                   7.700e-02
                                -2.084e-01
                                              -7.785e-02
                                                             1.285e-01
##
##
      SEATBE53
                   ADILCR42
                                  ADRTCR42
                                                ADAPPT42
                                                             ADSMOK42
##
     5.302e-02
                  -5.483e-02
                                -4.000e-01
                                               1.444e-01
                                                             2.170e-01
##
      ADDRBP42
                    ADREST42
                                  ADINSA42
                                               HAVEUS42
                                                             MDUNAB42
                   5.884e-03
##
    -3.266e-01
                                -4.154e-02
                                              -2.108e-01
                                                             2.122e-01
      MDDLAY42
                                                             HRWGIM31
##
                    PMUNAB42
                                                 EMPST31
                                  PMDLAY42
##
     5.069e-01
                  -2.180e-01
                                -3.870e-01
                                               2.628e-02
                                                           -1.923e-01
##
      HRWGIM42
                    HRWGIM53
                                  WAGIMP09
                                                IRAIMP09
                                                              REFIMP09
##
    -2.725e-01
                  -2.808e-01
                                -4.291e-02
                                              -6.110e-02
                                                            -1.413e-02
##
      CSHIMP09
                    SSIIMP09
                                  OTHIMPO9
                                                 OPAFE09
                                                               OPAMA09
     1.275e-01
                                                             1.175e+00
##
                   6.818e-02
                                 3.231e-01
                                              -5.847e-01
##
       STAJL09
                    PUBFE09X
                                  PUBJU09X
                                                 PNGFE09
                                                               POUMA09
                  -3.253e-01
##
    -1.147e+00
                                 1.137e-01
                                               5.141e-01
                                                             1.456e-01
##
       HPDMY09
                     HPDJL09
                                   HPOFE09
                                                INSFE09X
                                                              INSDE09X
##
    -1.575e+00
                   8.973e-01
                                 3.690e-01
                                              -9.574e-02
                                                            -1.657e-01
##
       MCREV09
                     UNINS09
                                  TRIST31X
                                                MCRPD09X
                                                              OTPUBB42
##
    -5.789e-02
                   1.341e-01
                                 2.617e-01
                                              -4.467e-02
                                                           -8.386e-01
##
      INSAT42X
                      VARPSU
##
     5.303e-02
                  -7.053e-02
  Degrees of Freedom: 22674 Total (i.e. Null); 22572 Residual
## Null Deviance:
                         22400
## Residual Deviance: 4482 AIC: 4688
```

Then we choose variable manully

Here is some interesting parameters I found

family total income

FAMINC09 , WCMPP09X # child support CHLDP09X # uninsured UNINS09 # education HIDEG EDUCYR # wear eyeglasses WRGLAS42 # ASTHMA DIAGNOSIS ASTHDX # HIGH CHOLESTEROL DIAGNOSIS CHOLDX # HIGH BLOOD PRESSURE HIBPDX # DIABETES DIAGNOSIS DIABDX # PERCEIVED HEALTH STATUS RTHLTH42 RTHLTH53 # PERCEIVED mental HEALTH STATUS MNHLTH31 # race RACETHNX # real race: language the responsdent use when interviewed INTVLANG # Age AGE42X AGE09X # military servicers to adjust for age ACTDTY42 # TIME SNCE LST BLOOD PRES CHK BPCHEK53 # we use the SPOUID09 to represent marriage SPOUID09 # smoke ADSMOK42 # Weight DIABW09F PERWT09F BMINDX53 # DR CHECKED BLOOD PRESSURE ADDRBP42 # SEX SEX

our model achieved a pred rate of 86%

```
## [1] 16
##
## Call:
  {\tt glm(formula = paste("y~", paste(variable.final, collapse = "+")),}
##
       family = "binomial", data = dat)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -3.4946
             0.1300
                      0.2821
                               0.4609
                                         2.4878
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.792047
                           0.915034
                                    -6.330 2.45e-10 ***
                                      3.907 9.36e-05 ***
## WCMPP09X
                0.110861
                           0.028377
## UNINS092
                0.841660
                           0.048580 17.325 < 2e-16 ***
## EDUCYR
                0.058210
                           0.007281
                                     7.994 1.30e-15 ***
                                     2.795 0.005184 **
## HIBPDX1
                2.056028
                           0.735505
## HIBPDX2
                1.199838
                           0.734332
                                     1.634 0.102276
## MNHLTH311
                0.698585
                           0.425380
                                     1.642 0.100536
## MNHLTH312
                0.772877
                           0.426011
                                      1.814 0.069644
                           0.426451
## MNHLTH313
                0.987050
                                      2.315 0.020637 *
## MNHLTH314
                           0.438471
                1.355624
                                     3.092 0.001990 **
## MNHLTH315
                1.589919
                           0.482805
                                     3.293 0.000991 ***
## RACETHNX2
               -0.169079
                           0.074195 -2.279 0.022677 *
## RACETHNX3
                0.250546
                           0.100046
                                      2.504 0.012269 *
## RACETHNX4
                0.522642
                           0.075697
                                      6.904 5.04e-12 ***
## INTVLANG2
               -0.087240
                           0.078489
                                     -1.111 0.266355
## INTVLANG3
               -0.416198
                           0.129158
                                     -3.222 0.001271 **
               -0.006587
## INTVLANG91
                           0.231308
                                    -0.028 0.977280
## AGEO9X
                0.007397
                           0.001642
                                     4.505 6.65e-06 ***
## BPCHEK531
                1.643713
                           0.098554 16.678 < 2e-16 ***
## BPCHEK532
                0.205454
                           0.105021
                                      1.956 0.050429 .
## BPCHEK533
               -0.153173
                           0.117676
                                     -1.302 0.193037
## BPCHEK534
               -0.197666
                           0.147909
                                     -1.336 0.181419
## BPCHEK535
               -0.356650
                           0.139336
                                     -2.560 0.010478 *
```

```
## BPCHEK536
              -0.250019
                          0.143905 -1.737 0.082319 .
                          0.046251 -1.670 0.094857 .
## SPOUID09995 -0.077254
               0.256896
## ADSMOK422
                          0.054656
                                   4.700 2.60e-06 ***
## DIABWO9F
                          0.019075
                                   7.675 1.66e-14 ***
               0.146397
## PERWTO9F
               0.163780
                          0.038426
                                    4.262 2.02e-05 ***
## ADDRBP421
               0.480189
                          0.143764
                                   3.340 0.000837 ***
## ADDRBP422
              -0.565298
                          0.146294 -3.864 0.000111 ***
## SEX2
               0.636867
                          0.044406 14.342 < 2e-16 ***
## MSCD1
               0.826862
                          0.155982
                                    5.301 1.15e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 22399 on 22674 degrees of freedom
## Residual deviance: 14346 on 22643 degrees of freedom
## AIC: 14410
##
## Number of Fisher Scoring iterations: 6
## [1] 0.8635061
```

I do not investage much on exp size

```
##
## Call:
## lm(formula = paste("y.exp~", paste(variable.final, collapse = "+")),
##
      data = dat1)
##
## Residuals:
     Min
             1Q Median
                           30
                                 Max
## -7.3597 -0.9239 0.0132 0.9455
                              6.0926
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                 5.892 3.89e-09 ***
## (Intercept) 4.5209797 0.7673616
## WCMPP09X
                                6.985 2.95e-12 ***
             0.0849468 0.0121616
## UNINSO92
             0.7404139
                       0.0343445
                                21.558 < 2e-16 ***
## EDUCYR
             0.0300569 0.0039467
                                 7.616 2.75e-14 ***
## HIBPDX1
             0.1607412 0.6608213
                                0.243 0.807819
## HIBPDX2
            ## MNHLTH311
            ## MNHLTH312
            -0.4063380 0.3390559 -1.198 0.230761
## MNHLTH313
            ## MNHLTH314
             0.1504386 0.3407976 0.441 0.658906
## MNHLTH315
             0.5968805 0.3478806
                                 1.716 0.086222 .
## RACETHNX2
            -0.1631866  0.0427434  -3.818  0.000135 ***
## RACETHNX3
            -0.2474574   0.0557966   -4.435   9.26e-06 ***
             0.1565277
                       0.0416285
                                 3.760 0.000170 ***
## RACETHNX4
## INTVLANG2
            ## INTVLANG3
            -0.3182110 0.0875854
                                -3.633 0.000281 ***
## INTVLANG91 -0.2142246 0.1427964 -1.500 0.133577
## AGEO9X
             0.0151792
                       0.0007661 19.813 < 2e-16 ***
                                 4.617 3.93e-06 ***
## BPCHEK531
             0.3844666 0.0832797
```

```
## BPCHEK532
             ## BPCHEK533
## BPCHEK534
             -0.4443636 0.1460667
                                 -3.042 0.002352 **
## BPCHEK535
             -0.3108232
                       0.1399185
                                 -2.221 0.026332 *
## BPCHEK536
             -0.1228210
                        0.1470341
                                 -0.835 0.403547
                        0.0230559
                                  2.072 0.038320 *
## SPOUID09995 0.0477617
## ADSMOK422
              0.0618476 0.0301756
                                  2.050 0.040419 *
## DIABWO9F
              0.0706118
                        0.0041838 16.877 < 2e-16 ***
## PERWTO9F
              0.0658048
                        0.0202414
                                  3.251 0.001152 **
## ADDRBP421
              0.1531442
                        0.0907750
                                  1.687 0.091606 .
## ADDRBP422
             -0.4739475
                        0.0978355
                                 -4.844 1.28e-06 ***
## SEX2
                        0.0227799 13.876 < 2e-16 ***
              0.3161047
## MSCD1
              0.7182481
                        0.0397367
                                 18.075 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.472 on 18213 degrees of freedom
## Multiple R-squared: 0.2943, Adjusted R-squared: 0.2931
## F-statistic: 245.1 on 31 and 18213 DF, p-value: < 2.2e-16
```

example of first 20

```
Г17
         991.6905 1588.6455
                               823.1827
                                           493.7461
                                                      330.5855
                                                                1666.6511
## [7]
        3000.2421 1315.7195
                              1627.5436
                                          1290.2789
                                                     4278.8135 24037.5120
## [13]
        3052.6292 3668.1913
                               6260.2542
                                           437.7869
                                                     2544.1481
                                                                 949.9147
## [19]
        4648.4086 7296.7739
## [1] 2191.052
```

generate a report for male and female

```
sd
              mean
                                    low
## 40male 1028.153 746.4256
                             -434.8415
                                         2491.147
## 65male 2984.245 2693.2222 -2294.4701 8262.961
## 80male 5272.994 4159.8546 -2880.3209 13426.309
##
                mean
                           sd
                                     low
## 40female 1580.050 1242.116 -854.4971
                                          4014.597
## 65female 3946.030 3077.172 -2085.2278
                                         9977.288
## 80female 6983.977 4353.756 -1549.3847 15517.338
```

our lasso model catched the variables we want, which is great!