

Controlo de Voo

Projeto nº36 - Patrulha Chipmunk: condição de vo
o2

Ana Beatriz Bezerra, nº 86607

Gonçalo Fontes Neve, nº 87198

Professor José Raul Azinheira

Mestrado Integrado em Engenharia Aeroespacial

Instituto Superior Técnico

30 de Maio de 2019

Índice

1	Introdução	2
2	Determinação e análise do modelo estudado	2
3	Sistema de aumento de estabilidade	4
4	Controlo de atitude e trajectória	4
5	Inclusão dos sensores e actuadores	6
6	Simulação no domínio do tempo/análise complementar	8
7	Conclusões	10
8	Bibliografia	10

1 Introdução

O presente relatório tem o intuito de descrever a metodologia utilizada no desenvolvimento de um sistema de controlo de uma aeronave Chipmunk em condição de voo 2 a realizar a trajetória de uma patrulha. O processo começou pelo estudo do sistema em si do ponto de vista de estabilidade quer em anel aberto como anel fechado. depois de garantida a estabilidade e qualidades de voo de nível 1 procedeu-se a garantir o seguimento de ângulos de referência para que fosse possível controlar a atitude da aeronave. A partir daqui tentou aproximar-se o voo de um caso real modelando diversos sistemas com os erros que estes introduzem. Por último tentou-se formular um programa que fornecesse à aeronave as referências necessárias ao longo do tempo para que esta seguisse a trajetória traçada.

2 Determinação e análise do modelo estudado

Na presente secção pretende-se determinar as qualidades de voo da aeronave para posterior análise e melhoramento.

A equação da dinâmica lateral é dada por

$$\dot{x} = egin{bmatrix} Y_{eta} & Y_p + W_0 & Y_r - U_0 & g*cos(heta_0) & 0 \ L'_{eta} & L'_p & L'_r & 0 & 0 \ N'_{eta} & N'_p & N'_r & 0 & 0 \ 0 & 1 & tan(heta_0) & 0 & 0 & 0 \ 0 & 0 & rac{1}{cos(heta_0)} & 0 & 0 \end{bmatrix} \cdot egin{bmatrix} X + egin{bmatrix} Y_{\delta A} & Y_{\delta R} \ L'_{\delta A} & L'_{\delta R} \ N'_{\delta A} & N'_{\delta R} \ 0 & 0 \ 0 & 0 \end{bmatrix} \cdot egin{bmatrix} u & , & com \dot{x} = egin{bmatrix} eta \ p \ r \ \phi \ \psi \end{bmatrix}$$

nas quais se assume para todos os estados, à semelhança do estado β , que $L'_{\beta} = L_{\beta} + \frac{I_{xz}}{I_{xx}}L_{\beta}$ e $N'_{\beta} = N_{\beta} + \frac{I_{xz}}{I_{zz}}N_{\beta}$.

Para a obtenção das matrizes do problema e posterior cálculo de pólos e respetivas frequências naturais e amortecimentos, para além dos dados fornecidos para a condição de voo 2 é necessário considerar que $W_0 = U_0 * sen(\alpha_0)$ (m/s), $\theta_0 = \alpha_0 + \gamma_0 = 3.69^\circ$, $g = 9.81(m/s^2)$ e $Y_{\delta A} = 0$. Obtem-se assim,

Scilab 6.0.2 Cor	nsole				Scilab 6.0.2 Console	
a =					p =	
-0.0592	0.0650581	-0.9943	0.1874836	0.	00.01	8
-4.5691	-3.5254	-0.0606	0.	0.	-20.931 0.	
1.3916	-0.0177	-0.1928	0.	0.	0.12 -0.75	9
0.	1.	0.0644918	0.	0.	0. 0.	
0.	0.	1.0020774	0.	0.	0. 0.	

Figura 1: Matrizes A e B obtidas no Scilab


```
Scilab 6.0.2 Console

wn e z do sistema aberto; polos;

0. -1.
3.518154 1.
0.0206294 1.
1.2894484 0.0925266
1.2894484 0.0925266

0.
-3.518154
-0.0206294
-0.1193083 + 1.28391691
-0.1193083 - 1.28391691
```

Figura 2: Pólos do sistema e respetivos ω_n e ξ do anel aberto obtidos no Scilab

Admitindo que a aeronave é de classe IV e que a fase de voo é de categoria C facilmente se pode tirar conclusões face à qualidade de voo. O modo espiral está estável logo é de Nível 1. Para o modo de rolamento puro é possível obter-se uma constante de tempo $T_2 = 0.28424s$ que corresponde ao Nível 1 e finalmente para o modo de rolamento holandês obtem-se os valores $\omega_n = 1.2894484$, $\xi = 0.0925266$ e $\xi\omega_n = 0.119308$ característicos de um nível 2. Note-se que existe um pólo marginalmente estável, relativo à introdução do ângulo de guinda ψ como 5° estado, que em nada influenciará a classificação do movimento lateral. Assim, pode-se classificar o movimento como sendo de nível 2.

Figura 3: Comportamente do sistema com degaus de $\delta_A=\delta_R=0.05$ rad $=2.86^\circ$ em anel aberto

No gráfico da figura 3 está representada a resposta do sistema em anel aberto a um degrau das entradas $\delta_A = \delta_R = 0.05$ rad. O facto do modo de rolamento holândes ser de nível 2 provoca a grande oscilação em algumas das variáveis do modo lateral.

3 Sistema de aumento de estabilidade

Com o objetivo de ter o movimento lateral de nível 1 procede-se ao aumento de estabilidade com recurso à realimentação positiva da razão de guinada para a entrada δ_R . Com o auxílio da função de transferência $\frac{r(s)}{\delta_R(s)}$ e respetivo Lugar Geométrico das Raízes (LGR) escolhe-se um ganho $K_r=2.6$ para o qual se tem um maior amortecimento do rolamento holandês.

Figura 4: Pólos do sistema e respetivos ω_n e ξ do anel fechado obtidos no Scilab

Note-se que com esta realimentação o modo espiral mantém-se estável, amortecido e torna-se ligeiramente mais rápido e o rolamento puro permanece praticamente inalterado, ou seja, mantém-se em nível 1. Relativamente ao rolamento holandês tem-se $\omega_n = 0.9983414$, $\xi = 0.855351$ e $\xi\omega_n = 0.853891$. Pode-se aferir que foi atingido o nível 1 para o modo e destaca-se o elevado amortecido obtido com esta realimentação. O pólo relativo ao estado adicional ψ mantém-se com esta realimentação. Assim, o sistema é de nível 1 com as qualidades completamente adequadas à fase de voo.

4 Controlo de atitude e trajectória

Apesar da grande estabilidade obtida na secção anterior pode-se optar pelo uso do regulador quadrático linear (LQR) para o aumento da rapidez de resposta. Para tal são necessárias as matrizes de ponderação dos estados e entradas, respetivamente, Q e R, que foram calculadas com recurso ao método de Bryson e a consequente atribuição de valores máximos das perturbações dos estados e das entradas.


```
-10.897532
-> Q, R
                                                                     -1.1198372 - 1.5136367i
                                                                     -0.018774
                                                                     -1.4513737
                                                 0.
             51.293849
                                                 ο.
 ο.
             Ο.
 ο.
                         51.293849
                                     ο.
                                                 ο.
                                                                    frequencias angulares e coef. de amort. com lqr
 ο.
             0.
                         ο.
                                     131.31225
                                                 0.
 0.
                                                 1.3131225
                                                                      0.018774
                                                                      1.4513737
                                                                      1.882852
                                                                                   0.5947559
                                                                      1.882852
                                                                                   0.5947559
 205.1754
                                                                      10.897532
            205.1754
       (a) Matrizes Q e R obtidas no Scilab
                                                                              (b) Pólos e respetivos \omega_n e \xi
```

Figura 5: Sistema com LQR obtido no Scilab

As diferencas entre as frequências naturais e coeficientes de amortecimento entre sistemas com a realimentação da razão de guinada e o uso de LQR não são significativas e todos os modos se mantêm em nível 1. O valor do coeficiente de amortecimento do rolamento holandês diminui mantendo-se aceitável ($\xi = 0.5947559 \simeq 0.6$) e a resposta do sistema ficou mais rápida como comprovado na figura 6.

Figura 6: Comportamento do sistema com degraus de $\delta_A=\delta_R=0.05$ rad= 2.86° e implementação de LQR

Seguidamente, procedeu-se ao controlo de atitude, ou seja, ao seguimento automático da atitude de referência que neste caso involve os ângulos de derrapagem β_{ref} e de guinada ψ_{ref} . A solução resulta do uso do sistema anterior, com a implementação do LQR, acoplado de uma ganho inicial F de forma a que o anel fechado tenha um ganho unitário entre a referência e a saída.

Para o cálculo do ganho F, que é o inverso do ganho estático G, é necessário conssentir para um sistema em anel fechado que $x_e = -(A - BK)^{-1} * B * u_e$ e que $y_e = -C(A - BK)^{-1} * B * u_e = G_{ue}$. Posto isto, e através da elaboração do anel fechado com uso de LQR em diagrama de blocos, como

representado na figura 7, foi possível visualizar o seguimento de β e de ψ pedidos.

Figura 7: Controlo de atitude implementado no Xcos do Scilab

Figura 8: Comportamento do sistema em anel fechado com degraus de $\beta_{ref}=0.05$ rad = 2.86° e de $\psi_{ref}=1$ rad = 57.30°

Pelos gráficos obtidos é possível concluir-se que o sistema realiza um bom seguimento dos estados. O tempo de estabelecimento a 2% está próximo dos 100 segundos para todos os estados. Para adquirir os gráficos da figura 8 não se ultrapassaram os limites impostos para δ_A e δ_R que são respestivamente, $\pm 17^{\circ}$ e $\pm 23^{\circ}$.

5 Inclusão dos sensores e actuadores

Após o controlo de atitude segue-se a modelação de sensores e atuadores para o sistema.

Os sensores são incorporados para a medição das grandezas físicas e consequente conversão dessas em sinais analógicos.

Para a inserção dos mesmos foram especificadas para os diferentes estados algumas condições de acordo com o enunciado, assim, sempre que aplicável:

• Gamas de medida foram modeladas com blocos de saturação que representam os respetivos

intervalos;

- Ruído branco modelado com um bloco *random generator* ligado a um relório com a frequência pedida;
- Offsets modelados por simples blocos de soma;
- Constante de tempo (apenas para o sensor do ângulo de derrapagem) foi modelada através da respetiva função tranferência;

Contudo, como o controlador funciona com sinais digitais e à saída do bloco da figura 9 a unidade é o Volt, foi criado um inversor de forma a ser possível a conversão de sinal (circuito inversor). Este circuito assegura que as suas saídas são dadas em SI.

Figura 9

Relativamente aos atuadores, necessários para transformação do sinal digital proveniente do controlador em defleções das superfícies de controlo foram também implementadas as restrições entre as quais estão a frequência de amostragem de 40 Hz, as saturações de $\delta_A = \pm 17^{\circ}$ e $\delta_R = \pm 23^{\circ}$, as constantes de tempo de 100 ms e velocidades máximas de 1rad/s para essas mesmas superfícies. estas restrições foram modeladas respetivamente através de blocos de amostragem (S/H) ligados a um relógio com a respetiva frequência; blocos de saturação; função de transferência e rate limiter

Figura 10: Atuadores implementados no Xcos

É visível pelo gráfico da figura 11 que ocorre o seguimento dos estados β e ψ como esperado mas com alguma variação devido à presença de ruído nos sensores implementados. Para além disto, e por análise do gráfico referente às entradas, conclui-se que os valores máximos estipulados para δ_A e δ_R nunca foram ultrapassados apesar da presença de rúido à semelhança do gráfico dos estados.

Figura 11: Comportamento do sistema com inserção de sensores, inversores, atuadores e degraus de $\beta_{ref}=0.05~{\rm rad}=2.86^\circ$ e de $\phi ref=1~{\rm rad}=57.30^\circ$

6 Simulação no domínio do tempo/análise complementar

Para se atingir o objetivo da patrulha é necessário seguir-se uma trajetória.

Para tal, recorre-se ao ângulo de rumo $(\lambda = \beta + \psi)$, no qual se assume que $\beta = \beta_{ref} = 0^{\circ}$ para todo o percurso. A relação entre o ângulo λ e a posição do avião no referencial da Terra é descrita pela integração do seguinte sistema de equações:

- $\dot{N} = U_0 cos(\lambda) + \dot{N_w}$
- $\dot{E} = U_0 sen(\lambda) + \dot{E_w}$

Note-se que apenas será tido em conta a presença de vento constante a 10 m/s vindo de Norte. Tudo isto está representado num bloco de cinemática do xcos intitulado "posição: N,E, lambda":

Para além disto, o equipamento de GPS foi introduzido com as características indicadas no enunciado. Este sistema simula a receção da posição (N,E) e retorna a posição com ajustes para a resolução

horizontal, frequência de amostragem e ruído introduzido. Este sistema utiliza apenas a velocidade-solo (com a respetiva influência do vento), o ângulo de guinada com as integrações necessárias (e a hipotese de introdução de um offset na posição inicial) para determinar a posição do avião para cada instante desenhando a sua trajetória num gráfico Oxy, em que o smieixo positivo x aponta na direção E: Este e o smi eixo positivo y aponta na direção N: Norte.

Para o cálculo do Rmin, necessário para o conhecimento das sucessivas posições do avião, utilizouse a expressão $U_0 = R_{min}\dot{\psi} = R_{min}\frac{g}{U_0}tan(\phi_{max}) \Leftrightarrow R_{min} = \frac{(U_0)^2}{g*tan(\phi_{max})} = 481.394$ m na qual se assumiu que $\phi_{max} = 30^\circ$.

Na aplicação do seguimento da trajetória delineada pela patrulha o ângulo de guinada ψ que é introduzido na entrada do seguimento deste ângulo tem de ser corrigido devido à influência do vento. Esta correção é dada entre o ângulo ideal, ψ_I e o ângulo real, ψ_R por uma diferença $|delta\psi\rangle$, tal que $\psi_R = \psi_I + \Delta\psi$, de acordo com o diagrama da figura 12.

Figura 12: Diagrama vetorial de velocidades

A solução da equação acima é não linear, contudo recorreu-se às funções de cálculo numérico do SciLab para aproximar a solução de modo a obter o ângulo corrigido que a função trajetoria.sci dará ao sistema para que este faça o seguimento desejado.

Figura 13: Sistema de controlo final implementado no xcos

Na figura 14 está exemplificado um dos ensaios realizados no domínio do tempo que comprova como apenas faltaria descrever a trajetória de uma patrulha na função trajetoria.sci para atingir todos os objetivos do trabalho.

(a) Trajetória resultante no ensaio realizado

(b) Saidas do movimento lateral para o ensaio realizado

Figura 14: Exemplo de ensaio realizado na simulação no domínio do tempo

7 Conclusões

Na realização deste projeto começamos por determinar as caraterísticas do movimento lateral da aeronave em estudo, tendo verificado que em anel aberto apesar de estável o sistema não era de nível 1. Por isso, procedemos à sua estabilização, através duma lógica SISO, o que nos permitiu cumprir os requisitos de amortecimento e qualidades de voo impostos. Passámos depois ao controlo de atitude/trajetória, onde utilizamos um LQR, que permite tanto a estabilização como, após correção do ganho estático do anel fechado através de uma matriz de pré-multiplicação, o seguimento de ângulos de referência, neste caso, de derrapagem e guinada. De seguida procedeu-se à modelação dos sistemas reais: Atuadores, Sensores e sistema de localização. O sistema de controlo obtido, apesar de não apresentar um tão bom seguimento das trajetórias impostas como o anterior devido à simulação de sistemas reais que introduzem erro no sistema mas consegue ser suficientemente fiável.

Contudo não foi possível concretizar toda a trajetória da partulha por falta de tempo. Contudo apenas a descrição da patrulha por uma função chamada trajetoria.sci. Nesta dever-se-ia utilizar condições baseadas na posição (E,N) do avião para comandar diferentes ângulos de guinada de acordo com a trajetória, tendo em conta que = $\psi + \beta$, com $\beta = 0$. A correção necessária devido à influência do vento é feita também dentro desta função. Consideramos que os objetivos traçados inicialmente foram quase totalmente cumpridos e que com as várias etapas percorridas durante este projeto foi possível compreender melhor o tema e aumentar as nossas competências a nível do controlo de voo, lidando com um sistema completo estudando o seu movimento lateral.

8 Bibliografia

1. José R. Azinheira, Controlo de Voo, Fevereiro 2016 2. Donald McLean, Automatic Flight Control Systems, Prentice Hall, 1990