EAIiIB	Michał Kilian		Rok II	Grupa 5a	
Temat:			Numer ćwiczenia:		
Wahadło proste			0		
Data wykonania 10.10.2018r.	Data oddania 12.10.2018r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła pro stego

Wahadło matematyczne to punktowa masa m zawieszona na nieważkiej i nierozciągliwej lince poruszająca w jednorodnym polu grawitacyjnym. W doświadczeniu wykorzystamy bardzo dobre przybliżenie takiego układu jakim jest ciężka metalowa kulka zawieszona na nitce.

Aby znacząco uprościć obliczenia przyjmiemy $\sin\theta\approx\theta$ co jest prawdą dla małych wartości kąta θ zgodnie z twierdzeniem Taylora. Dzięki temu ograniczamy wpływ oporu powietza na wyniki, a z uproszczonego równania ruchu wahadła uzyskujemy następujacą zależność

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie T - okres drgań, l - długość nici, g - przyspieszenie grawitacyjne. Po przekształceniu otrzymujemy wzór roboczy pozwalający na wyznaczenie wartości przyspieszenia grawitacyjnego dla Ziemi

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

2 Wykonanie ćwiczenia

- 1. Zapoznać się z budową mikroskopu
- 2. Na obu powierzchniach płytki zrobić kreski, jedna nad drugą cienkim pisakiem (ewentualnie wykorzystać istniejące kreski)
- 3. Zmierzyć śrubą mikrometryczną grubość płytki d w pobliżu kresek.
- 4. Ustaw badaną płytkę na stoliku mikroskopu w uchwycie i dobierz ostrość tak by uzyskać kontrastowy obraz. Regulując położenie stolika pokrętłem 7a zaobserwuj górny i dolny ślad zaznaczony na płytce.
- 5. Pokrętłem 7b przesuń stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na górnej powierzchni płytki.
- 6. Odczytaj położenie a_q wskazówki czujnika mikrometrycznego.
- 7. Przesuń stolik mikroskopu do położenia, w którym widoczny jest ślad na dolnej powierzchni płytki (pokrętłem 7b).
- 8. Ponownie odczytaj położenie a_d wskazó
Wki czujnika.
- 9. Odczyty zanotuj w tabeli 1, 2 lub 3.

3 Wyniki pomiarów

Obliczenie grubości rzeczywistej dla płytki szklanej WSTAWIĆ OBLICZENIA

Tablica 1:

materiał: szkło						
grubość rzeczywista $d = WSTAWIĆ[mm]$						
_	epewność	u(d) = 0,01[mm]				
	Walsazan	ie czujnika	grubość			
lp.	WSKazan	ie czujnika	pozorna			
	$a_d[\mathrm{mm}]$	$a_g[\mathrm{mm}]$	$h = a_d - a_g[\text{mm}]$			
1	4,19	1,13	3,06			
2	4,23	1,02	3,21			
3	4,22	1,14	3,08			
4	4,21	1,15	3,06			
5	4,17	1,17	3,00			
6	4,16	1,19	2,97			
7	4,16	1,17	2,99			
8	4,21	1,15	3,06			
9	4,19	1,17	3,02			
10	4,19	1,19	3,00			

średnia grubość pozorna h - niepewność u(h) -

Obliczenie grubości rzeczywistej dla płytki pleksiglasowej WSTAWIĆ OBLICZENIA

Tablica 2:

materiał: pleksiglas						
grubość rzeczywista d $= { m WSTAWI\acute{C}[mm]}$						
niepewność $u(d) = 0,01[mm]$						
lp.	Wskazan	ie czujnika	grubość pozorna			
	$a_d[\mathrm{mm}]$	$a_g[\mathrm{mm}]$	$h = a_d - a_g[\text{mm}]$			
1	4,39	1,74	2,65			
2	4,38	1,80	2,38			
3	4,36	1,74	2,62			
4	4,35	1,79	2,56			
5	$4,\!35$	1,76	2,59			
6	4,42	1,82	2,60			
7	4,39	1,76	2,63			
8	4,38	1,79	2,59			
9	4,41	1,78	2,63			
10	4,33	1,78	2,55			

średnia grubość pozorna h - niepewność u(h) -

4 Opracowanie wyników pomiarów

- 1. Oblicz wartość średnią średnicy drutu d. Niepewność tej wartości wyznaczyć nie metodą typu A lecz B, na podstawie działki elementarnej przyrządu. Zapisz wynik.
- 2. Na podstawie masy obciążników oblicz i wpisz do tabeli wartości siły rozciągającej.
- 3. Na podstawie wskazań czujników cz \uparrow oraz cz \downarrow (dla siły rosnącej oraz malejącej) oblicz średnią wartość wydłużenia jako $\Delta l = (cz \uparrow + cz \downarrow)/4$. (Przy obliczaniu średniej dzielimy przez 4 a nie przez 2 by uwzględnić też działanie dźwigni). Wyniki wpisz do tabeli.
- 4. Przedstaw na wykresie zależność średniego wydłużenia Δ l w funkcji przyłożonej siły rozciągającej F.
- 5. Zaznacz na wykresie np. strzałkami punkty, które w twojej ocenie odbiegają od prostoliniowego przebiegu.
- 6. Do punktów pozostałych dopasuj prostą. Możesz posłużyć się programem komputerowym dostępnym w laboratorium. W wyniku otrzymasz wartość współczynnika nachylenia prostej a oraz jego niepewność u(a).
- 7. Wykorzystując wzór roboczy $E = \frac{4l}{\pi d^2 a}$ oblicz wartość modułu Younga.
- 8. Oblicz niepewność wartości E wykorzystując prawo przenoszenia niepewności względnej.
- 9. Zmierzoną wartość modułu Younga porównaj z wartością tablicową dla danego materiału. Rozstrzygnij, czy otrzymany wynik zgadza się z wartością tablicową w granicach niepewności rozszerzonej.

Obliczenia dla drutu stalowego

- Ad. 1: Średnia wartość średnicy drutu wynosi $\frac{1,30+1,29+1,27}{3} \approx 1,29[mm]$ niepewność typu B jest równa najmniejszej podziałce i wynosi 1[mm].
- Ad. 2: Wartości siły rozciągającej można znaleźć w tabeli.
- Ad. 3: Średnie wartości wydłużenia można znaleźć w tabeli.
- Ad. 4:

- Ad. 5: Żaden z puntów nie odstaje w sposób znaczący znaczący od dopasowanej prostej.
- Ad. 6: Uzyskane korzystając z programu Excel wartości $a=0,01495\ u(a)=0,00052$

Ad. 7: Podstawiając wartości do wzoru
$$E = \frac{4l}{\pi d^2 a}$$
 otrzymujemy $E = \frac{4*106*10^{-2}}{3,14*(1,29*10^{-3})^2*0,01495} \approx 54,25 [GPa]$ Ad. 8: Niepewność $\frac{u_c(E)}{E} = \sqrt{\left(\frac{-u(a)}{a}\right)^2 + \left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2*u(d)}{d}\right)^2}$

$$u_c(E) = 54,25 * \sqrt{\left(\frac{-0,00052}{0,01495}\right)^2 + \left(\frac{0,1}{106}\right)^2 + \left(\frac{-2*0,01}{1,29}\right)^2} = 2,07[GPa]$$

Niepewność rozszerzona $U(E) = 2 * u_c(E) = 4,14[GPa]$

Ad. 9: Wartość tabelaryczną modułu Younga dla stali określa przedział 210-220 GPa co oznacza, że otrzymany wynik nie jest zgodny w granicach niepewności rozszerzonej.

Obliczenia dla drutu mosiężnego

Ad. 1: Średnia wartość średnicy drutu wynosi $\frac{1,67+1,67+1,66}{3} \approx 1,67[mm]$ niepewność typu B jest równa najmniejszej podziałce i wynosi 1[mm].

Ad. 2: Wartości siły rozciagającej można znaleźć w tabeli.

Ad. 3: Średnie wartości wydłużenia można znaleźć w tabeli.

Ad. 4:

Ad. 5: Żaden z puntów nie odstaje w sposób znaczący znaczący od dopasowanej prostej.

Ad. 6: Uzyskane korzystając z programu Excel wartości $a=0,01611\ u(a)=0,00090$

Ad. 7: Podstawiając wartości do wzoru
$$E = \frac{4l}{\pi d^2 a}$$
 otrzymujemy $E = \frac{4*106,1*10^{-2}}{3,14*(1,67*10^{-3})^2*0,01611} \approx 30,24 [GPa]$ Ad. 8: Niepewność $\frac{u_c(E)}{E} = \sqrt{\left(\frac{-u(a)}{a}\right)^2 + \left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2*u(d)}{d}\right)^2}$

$$u_c(E) = 30,24\sqrt{\left(\frac{-0,00090}{0,01611}\right)^2 + \left(\frac{0,1}{106,1}\right)^2 + \left(\frac{-2*0,01}{1,67}\right)^2} = 1,74[GPa]$$

Niepewność rozszerzona $U(E) = 2 * u_c(E) = 3,48[GPa]$

Ad. 9: Wartość tabelaryczna modułu Younga dla mosiądzu wynosi 100 GPa co oznacza, że otrzymany wynik nie jest zgodny w granicach niepewności rozszerzonej.

5 Wnioski

Wyliczony moduł Younga dla drutu stalowego nie jest zgodny w granicach niepewności z tabelaryczną wartością modułu Younga dla stali $(54, 25 \pm 2, 07)GPa \notin (210 - 220GPa)$.

Wyliczony moduł Younga dla drutu mosiężnego nie jest zgodny w granicach niepewności z tabelaryczną wartością modułu Younga dla mosiądzu $(30,24\pm1,74)GPa\neq 100GPa$.

Różnica w otrzymanych wynikach może wynikać z błędów grubych uzyskanych podczas obliczania wartości średnicy drutu.