

(1.7)

(1.7)

(1.6)

(1.6)

(1.6)

(1.7)

(1.7)

(1.7)

Probabilidades e Estatística D Teste 2 - 22 de Maio

2023/2024 Duração: 1h30

N _V V	
FACULDADE DE CIÊNCIAS E TECNOLOGIA	

	Nome	completo:								
	$N.^{0}$ al	luno:	_ Curso:							
pon	ndente. recta te	Se pretender an	ular uma re icada na pr	esposta já assi: ova. Uma resp	nalada, rasu oosta incorre	re por co ecta desc	ompleto o re	espectivo qua	X no quadrado cor adrado. Uma respo não resposta nada v	osta
		imero de clientes 0.05/minuto. Di					. ,		esso de Poisson de t	axa
1.7)	(a)	A probabilidad	e de chegar	no máximo 1	utente à loj	a, entre a	as 10:00 e as	10:30 horas	, é:	
		$\boxed{\mathbf{A}} 1.5e^{-1.5}$	B 1	$-e^{-1.5}$	$2.5e^{-1.5}$	D 1	n.o.			
1.7)	(b)	Sabendo que o 12:10, a probab					2:00 e que 1	não chegara	m mais clientes até	às
		$lacksquare$ e^{-1}	$lacksquare$ B e^-	-200 C	e^{-400}	D	n.o.			
1.6)	(c)	O valor espera	do do tempo	o, em minutos,	que decorre	e entre as	chegadas de	os $10^{0} e 12^{0}$	clientes é:	
		A 10	B 40) [20	D	n.o.			
1.6)	(d)			-				-	rês horas, $N(180)$, res nestas primeiras	
		A 0.8413	B 0.	1587	0.3707	D	0.6293	E n.o.		
	2. Seja	X uma v.a. con	n distribuiçê	ão Normal send	$\operatorname{do} E(X) =$	$\delta - 1 e V$	$Y(X) = \delta^2, ($	$\delta \in \mathbb{R}^+$).		
.6)	(a)	Se $P(X \leq \delta) =$	= 0.9772, en						_	
		A	2	B 1	C	,		1/4	E n.o.	`
1.7)	(b)						te da v.a. X		e a $P(X > Z + \sqrt{2})$).
		A	0.1587			0.8413		0.9772	E n.o.	
1.7)	(c)	Considerando a $]0,2[, a P[(Z \leq$							o uniforme no interv	/alo
		A	0.4875	B 0.9750	C	0.4750	D	0.8315	E n.o.	
1.7)	(d)	Dado as v.a.'s	$X_1, X_2, \dots X_n$	X_{35} independent	ntes com X_i	$\sim N$ (δ -	$-1,\delta^2$, $i=$	$=1,\cdots 35, ex$	ntão:	
		A	$\bar{X} \sim N \left(\delta\right)$	$(\delta - 1, \frac{\delta^2}{\sqrt{35}})$	В	$\bar{X} \stackrel{a}{\sim} \Lambda$	$V\left(\delta-1, \frac{\delta^2}{\sqrt{3}}\right)$	$\overline{\overline{5}}$		
		C	$\frac{\bar{X} - \delta + 1}{\delta / \sqrt{35}}$	$\sim N\left(0,1\right)$	D	$\sqrt{35}\frac{\bar{X}}{}$	$\frac{-\delta+1}{\delta} \stackrel{a}{\sim} N$	V(0,1)	E n.o.	

3. Seja X uma população cuja distribuição depende do conhecimento dos parâmetros, $\theta \in]-\infty, 0[$ e $\beta \in]0, +\infty$									
	3.	Seia X	uma população	cuia distribuição	depende do co	onhecimento dos	parâmetros. $\theta \in$	$]-\infty$. 0[e	$\beta \in [0, +\infty]$

Para uma amostra aleatória $(X_1, X_2, \dots, X_n), n \in \mathbb{N},$ e $n \geq 2$, considere as seguintes estatísticas:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \quad \text{e} \quad M_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Tenha em conta a seguinte informação:

$$E(X) = \frac{\theta}{2}, \quad V(X) = \frac{\theta^2}{4(2\beta + 1)}$$

(1.6) (a) Os estimadores dos momentos para os parâmetros
$$\theta$$
 e β , respectivamente, θ^* e β^* têm expressões:

(b) Admita que $\beta=1$. Considere a seguinte estatística e a informação sobre a mesma:

$$N_n = \min(X_1, X_2, \dots, X_n), \quad E(N_n) = \theta \frac{n}{n+1}, \quad V(N_n) = \theta^2 \frac{n}{(n+1)^2 (n+2)}$$

i. Duas das seguintes estatísticas são centradas para o parâmetro θ. Seleccione-as marcando com um X no quadrado correspondente. Em caso de resposta, terá a cotação da alínea se indicar as duas opções corretas, caso contrário terá uma penalização de 0.2 valores.

- (1.7) ii. Considere $\hat{\theta} = 2\overline{X}$ e $\tilde{\theta} = \frac{n+1}{n}N_n$ dois estimadores do parâmetro θ .
 - $\hat{\theta}$ é o mais eficiente $\hat{\theta}$ é o mais eficiente $\hat{\theta}$ é o mais eficiente $\hat{\theta}$ e $\hat{\theta}$ são igualmente eficientes
- (1.7) iii. Usando o estimador $\hat{\theta} = 2\overline{X}$, para uma amostra de dimensão n = 1200 e admitindo que $\theta = -1$, o valor aproximado de $P\left(\left|\hat{\theta}+1\right|>0.02\right)$ é:
 - A 0.8849
- B 0.2302
- \bigcirc 0.9044
- D = 0.2739
- E n.o.

Probabilidades e Estatística D Teste 2 - 22 de Maio

2023/2024 Duração: 1h30

Em cada pergunta apenas uma das respostas está correcta. Assinale a sua resposta com um X no quadrado correspondente. Se pretender anular uma resposta já assinalada, rasure por completo o respectivo quadrado. Uma resposta correcta tem a cotação indicada na prova. Uma resposta incorrecta desconta 0.2 valores e uma não resposta nada vale nem desconta. n.o. significa nenhuma das outras opções de resposta.

- 1. O número de clientes que chegam a uma loja de informática em t minutos, N(t), é um Processo de Poisson de taxa $\beta = 0.05/\text{minuto}$. Diariamente, a loja de informática abre às 9:00 horas. Num determinado dia,
- (1.7) (a) A probabilidade de chegar no máximo 1 utente à loja, entre as 10:00 e as 10:30 horas, é:
- (1.7) (b) Sabendo que o 10° cliente chegou à loja de informática às 12:00 e que não chegaram mais clientes até às 12:10, a probabilidade do 11° cliente chegar após as 12:30 é:
- (1.6) (c) O valor esperado do tempo, em minutos, que decorre entre as chegadas dos 10° e 12° clientes é:
 - A 20 B 10 C 40 D n.o.
- (1.6) (d) Sabendo que, o número de clientes que chegam à loja de informática nas primeiras três horas, N(180), tem distribuição de Poisson, a probabilidade aproximada de que cheguem mais de 12 clientes nestas primeiras três horas é:

 - 2. Seja X uma v.a. com distribuição Normal sendo $E(X) = \delta 1$ e $V(X) = \delta^2$, $(\delta \in \mathbb{R}^+)$.
- (1.7) (b) Admita que $\delta = 1$ e considere a v.a. $Z \sim N(0,1)$ independente da v.a. X. Determine a $P(X > Z + \sqrt{2})$.
- (1.7) (b) Admita que $\delta = 1$ e considere a v.a. $Z \sim N(0,1)$ independente da v.a. X. Determine a $P(X > Z + \sqrt{2})$
- A 0.7611 B 0.8413 C 0.1587 D 0.9772 E n.o.
- (1.7) (c) Considerando as v.a.'s independentes Z e W tais que $Z \sim N$ (0, 1) e W com distribuição uniforme no intervalo]0,2[, a $P[(Z \le 1.96) \cap (W \le 1)]$ é (valores arredondados com 4 casas decimais):
 - A 0.4750 B 0.9750 C 0.4875 D 0.8315 E n.o.
- $(1.7) \qquad \text{(d)} \ \ \text{Dado as v.a.'s} \ X_1, X_2, \dots X_{35} \ \text{independentes com} \ X_i \sim N\left(\delta-1, \delta^2\right), \quad i=1, \cdots 35, \ \text{ent\~ao}:$

$$\boxed{ \textbf{A} } \quad \frac{\bar{X} - \delta + 1}{\delta/\sqrt{35}} \sim N\left(0,1\right) \qquad \qquad \boxed{ \textbf{B} } \quad \bar{X} \overset{a}{\sim} N\left(\delta - 1, \frac{\delta^2}{\sqrt{35}}\right)$$

$$ar{\mathbb{C}}$$
 $ar{X} \sim N\left(\delta - 1, \frac{\delta^2}{\sqrt{35}}\right)$ $ar{\mathbb{D}}$ $\sqrt{35} \frac{ar{X} - \delta + 1}{\delta} \stackrel{a}{\sim} N\left(0, 1\right)$ $ar{\mathbb{E}}$ n.o.

3. Seja X uma população cuja distribuição depende do conhecimento dos parâmetros, $\theta \in]-\infty, 0[$ e $\beta \in]0, +\infty$									
	3.	Seia X	uma população	cuia distribuição	depende do co	onhecimento dos	parâmetros. $\theta \in$	$]-\infty$. 0[e	$\beta \in [0, +\infty]$

Para uma amostra aleatória $(X_1, X_2, \dots, X_n), n \in \mathbb{N},$ e $n \geq 2$, considere as seguintes estatísticas:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \quad \text{e} \quad M_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Tenha em conta a seguinte informação:

$$E(X) = \frac{\theta}{2}, \quad V(X) = \frac{\theta^2}{4(2\beta + 1)}$$

(1.6) (a) Os estimadores dos momentos para os parâmetros
$$\theta$$
 e β , respectivamente, θ^* e β^* têm expressões:

(b) Admita que $\beta = 1$. Considere a seguinte estatística e a informação sobre a mesma:

$$N_n = \min(X_1, X_2, \dots, X_n), \quad E(N_n) = \theta \frac{n}{n+1}, \quad V(N_n) = \theta^2 \frac{n}{(n+1)^2 (n+2)}$$

i. Duas das seguintes estatísticas são centradas para o parâmetro θ. Seleccione-as marcando com um X no quadrado correspondente. Em caso de resposta, terá a cotação da alínea se indicar as duas opções corretas, caso contrário terá uma penalização de 0.2 valores.

$$\overline{\mathbb{A}}$$
 $\overline{X}/2$ $\overline{\mathbb{B}}$ $\frac{n+1}{n}N_n$ $\overline{\mathbb{C}}$ $\frac{n+1}{n}\overline{X}$ $\overline{\mathbb{D}}$ $2\overline{X}$ $\overline{\mathbb{E}}$ S^2

(1.7) ii. Considere $\hat{\theta} = 2\overline{X}$ e $\tilde{\theta} = \frac{n+1}{n}N_n$ dois estimadores do parâmetro θ .

 $ar{\mathbb{A}}$ $\tilde{\theta}$ é o mais eficiente $ar{\mathbb{B}}$ $\hat{\theta}$ é o mais eficiente $ar{\mathbb{C}}$ $\hat{\theta}$ e $\tilde{\theta}$ são igualmente eficientes

(1.7) iii. Usando o estimador $\hat{\theta} = 2\overline{X}$, para uma amostra de dimensão n = 1200 e admitindo que $\theta = -1$, o valor aproximado de $P\left(\left|\hat{\theta}+1\right|>0.02\right)$ é:

 $lacksquare 0.2739 \qquad lacksquare B \quad 0.9044 \qquad lacksquare C \quad 0.8849 \qquad lacksquare D \quad 0.2302 \qquad lacksquare E \quad \mathrm{n.o.}$