LIGHT UNFLAVORED MESONS (S=C=B=0)

For I=1 $(\pi,\ b,\ \rho,\ a)$: $u\overline{d},\ (u\overline{u}-d\overline{d})/\sqrt{2},\ d\overline{u};$ for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57039\pm0.00018$$
 MeV (S = 1.8) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$

 $F_A = 0.0119 \pm 0.0001$

 F_V slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

$$R = 0.059^{+0.009}_{-0.008}$$

 π^- modes are charge conjugates of the modes below.

LF

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	F	raction (Γ	_i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{\mu^+\nu_\mu}{\mu^+\nu_\mu\gamma}$	[<i>b</i>]	(99.9877	0±0.0000	04) %	30
$\mu^{\dot{+}} u_{\mu} \gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ u_e$	[<i>b</i>]	(1.230	± 0.004	$) \times 10^{-4}$	70
$e^+ u_e\gamma$	[c]	(7.39	±0.05	$) \times 10^{-7}$	70
$e^+ \nu_e \pi^0$		(1.036	±0.006	$) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2		$) \times 10^{-9}$	70
$\mu^+ u_{\mu} u \overline{ u}$	<	< 9		$\times 10^{-6} 90\%$	30
$e^+ \nu_e \nu_{\overline{\nu}}$	<	< 1.6		$\times 10^{-7} 90\%$	70
Lepton Family number (LF) or Lepton number (L) violating modes					
$\mu^+ \overline{ u}_e$ L	[d] <	< 1.5		$\times10^{-3}~90\%$	30
$\mu^+ u_{ m e}$ LF	[d] <	< 8.0		$\times 10^{-3} 90\%$	30

< 1.6

 $\times 10^{-6} 90\%$

Created: 8/11/2022 09:37

30

HTTP://PDG.LBL.GOV

$$\pi^{0}$$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9768\pm0.0005$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.43\pm0.13)\times10^{-17}$ s (S $=1.2$) $c\tau=25.3$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	-
2γ	(98.823±0.03	34) %	S=1.5	67
$e^+e^-\gamma$	(1.174 ± 0.03)	35) %	S=1.5	67
γ positronium	(1.82 ± 0.29	$9) \times 10^{-9}$		67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.10)	$6) \times 10^{-5}$		67
e^+e^-	(6.46 ± 0.33	$3) \times 10^{-8}$		67
4 γ	< 2	$\times 10^{-8}$	CL=90%	67
$ u \overline{ u}$	[e] < 4.4	$\times 10^{-9}$	CL=90%	67
$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$	CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$	CL=90%	67
$ u_{ au} \overline{ u}_{ au}$	< 2.1	$\times 10^{-6}$	CL=90%	67
$\gamma u \overline{ u}$	< 1.9	\times 10 ⁻⁷	CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times10^{-8}$ CL=90%	67
μ^+ e $^-$	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.2	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times10^{-10}\text{CL}{=}90\%$	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass
$$m=547.862\pm0.017$$
 MeV
Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \quad (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

HTTP://PDG.LBL.GOV

Page 2

Other decay parameters

 $\pi^0\pi^0\pi^0$ Dalitz plot $lpha=-0.0288\pm0.0012$ (S = 1.1) Parameter Λ in $\eta \to \ell^+\ell^-\gamma$ decay = 0.716 \pm 0.011 GeV/ c^2

η DECAY MODES	Fractio	on (Γ_i/Γ)	Scale factor/ Confidence level	
	Neutral mo	dec		
neutral modes		96±0.30) %	S=1.3	_
2γ	•	36±0.18) %	S=1.1	274
$3\pi^0$,	57±0.21) %	S=1.2	179
$\pi^02\gamma$	`	$(55\pm 0.22) \times 1$	_	257
$2\pi^0 \dot{2}\gamma$	< 1.2		0^{-3} CL=90%	238
4 γ	< 2.8	8 × 1	0^{-4} CL=90%	274
invisible	< 1.0		0^{-4} CL=90%	_
	Charged mo	des		
charged modes	(28.0	04±0.30) %	S=1.3	_
$\pi^+\pi^-\pi^0$	(23.0	02±0.25) %	S=1.2	174
$\pi^+\pi^-\gamma$	(4.2	28±0.07) %	S=1.1	236
$e^+e^-\gamma$	(6.9	$9~\pm 0.4~) imes 1$	0^{-3} S=1.2	274
$\mu^+\mu^-\gamma$,	$1~\pm 0.4~) imes 1$	0^{-4}	253
e^+e^-			0^{-7} CL=90%	274
$\mu^+\mu^-$		$8 \pm 0.8) \times 1$		253
$2e^{+}2e^{-}$		$40 \pm 0.22) \times 1$		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$,	$68\pm0.11)\times1$		235
$e^{+}e^{-}\mu^{+}\mu^{-}$	< 1.6		0^{-4} CL=90%	253
$2\mu^{+}2\mu^{-}$	< 3.6		0^{-4} CL=90%	161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$	< 3.6		0^{-4} CL=90%	113
$\pi^+ e^- \overline{\nu}_e + \text{c.c.}$	< 1.		0^{-4} CL=90%	256
$\pi^{+}\pi^{-}2\gamma$	< 2.3		0-3	236
$\pi^+\pi^-\pi^0\gamma$	< 6		0^{-4} CL=90%	174
$\pi^0 \mu^+ \mu^- \gamma$	< 3	\times 1	0^{-6} CL=90%	210
	e conjugation (C			
	conjugation $ imes$ l			
•	mily number (<i>LF</i>	, -		
$\pi^0\gamma$	$C \qquad [f] < 9$		0^{-5} CL=90%	257
$\pi^+\pi^-$	P,CP < 4.4		0^{-6} CL=90%	236
$2\pi^{0}$	P,CP < 3.5		0^{-4} CL=90%	238
$2\pi^0\gamma$	<i>C</i> < 5		0^{-4} CL=90%	238
$3\pi^0\gamma$	<i>C</i> < 6		0^{-5} CL=90%	179
3γ	C < 1.6	5 × 1	0^{-5} CL=90%	274

$4\pi^0$	P,CP	< 6.9	\times 10 ⁻⁷	CL=90%	40
$\pi^{0} e^{+} e^{-}$	С	[g] < 8	\times 10 ⁻⁶	CL=90%	257
$\pi^0 \mu^+ \mu^-$	С	[g] < 5	\times 10 ⁻⁶	CL=90%	210
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 6	\times 10 ⁻⁶	CL=90%	264

$$f_0(500)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

also known as σ ; was $f_0(600)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = 400 to 800 MeV Full width (Breit-Wigner) = 100 to 800 MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	_
$\gamma\gamma$	seen	_

ρ (770)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=775.26\pm0.23~{\rm MeV}$ Full width $\Gamma=149.1\pm0.8~{\rm MeV}$

ho(770) DECAY MODES	Fr	action (Γ_i/Γ)		Scale factor/ Confidence level	-			
$\pi\pi$	~	100	%		363			
$ ho$ (770) $^{\pm}$ decays								
$\pi^{\pm}\gamma$		(4.5 ± 0.5)	$) \times 10^{-4}$	S=2.2	375			
$\pi^{\pm}\eta$	<	6	$\times 10^{-3}$	CL=84%	152			
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	<	2.0	\times 10 ⁻³	CL=84%	254			
	$ ho$ (770) 0 decays							
$\pi^+\pi^-\gamma$		(9.9 ± 1.6)	$) \times 10^{-3}$		362			
$\pi^{0}\gamma$		(4.7 ± 0.8)	$) \times 10^{-4}$	S=1.7	376			
$\eta\gamma$		(3.00 ± 0.21	$) \times 10^{-4}$		194			
$\eta \gamma \atop \pi^0 \pi^0 \gamma$		(4.5 ± 0.8	,		363			
$\mu^+\mu^-$	[<i>h</i>]	(4.55 ± 0.28	$) \times 10^{-5}$		373			
e^+e^-	[<i>h</i>]	(4.72 ± 0.05	$) \times 10^{-5}$		388			
$\pi^+\pi^-\pi^0$		$(1.01^{+0.54}_{-0.36}$	$\pm 0.34) \times 10^{-4}$		323			
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$		(1.8 ± 0.9)	$) \times 10^{-5}$		251			
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$		(1.6 ±0.8	_		257			

HTTP://PDG.LBL.GOV

Page 4

 $\pi^{0} e^{+} e^{-}$

< 1.2

 $\times 10^{-5}$

CL=90%

376

 ω (782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.66\pm0.13~{\rm MeV}~{\rm (S=2.0)}$ Full width $\Gamma=8.68\pm0.13~{\rm MeV}$

		Scale factor/	•
ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\pi^+\pi^-\pi^0$	(89.2 \pm 0.7) %	6	327
$\pi^0 \gamma$	(8.35±0.27) %	% S=2.2	380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})$	% S=1.2	366
neutrals (excluding $\pi^0 \gamma$)	(7 +8)>	$< 10^{-3}$ S=1.1	_
$\eta\gamma$	(4.5 \pm 0.4) $>$	$< 10^{-4}$ S=1.1	200
$\pi^{0} e^{+} e^{-}$	$(7.7 \pm 0.6) >$	< 10 ⁻⁴	380
$\pi^{0}\mu^{+}\mu^{-}$	(1.34 ± 0.18)	$< 10^{-4}$ S=1.5	349
e^+e^-	(7.38 ± 0.22)	$< 10^{-5}$ S=1.9	391
$\pi^+\pi^-\pi^0\pi^0$	< 2 >	$< 10^{-4}$ CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6	$< 10^{-3}$ CL=95%	366
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 >	$< 10^{-3}$ CL=90%	256
$\pi^0\pi^0\gamma$	(6.7 ± 1.1) >	< 10 ⁻⁵	367
$\eta \pi^{0} \gamma$	< 3.3	$< 10^{-5}$ CL=90%	162
$\mu^+\mu^-$	$(7.4 \pm 1.8) >$	< 10 ⁻⁵	377
3γ	< 1.9	$< 10^{-4}$ CL=95%	391
Charge conjugation	on (C) violating	modes	
$\eta \pi^0$ c	< 2.1		162
		$< 10^{-4}$ CL=90%	367
•		$< 10^{-4}$ CL=90%	330
invisible		$< 10^{-5}$ CL=90%	_

 $\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.188\pm0.006~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	(42.5 ± 0.5)) %	232
$ ho^0 \gamma$ (including non-resonant $\pi^+ \pi^- \gamma$)	(29.5 ± 0.4)) %	165
$\pi^0\pi^0\eta$	(22.4 ± 0.5)) %	239
$\omega\gamma$	(2.52 ± 0.07) %	159

HTTP://PDG.LBL.GOV

Page 5

$\omega e^+ e^-$	(2.0 ± 0.4	$) \times 10^{-4}$		159
$\gamma\gamma$	(2.307 ± 0.033)	3) %		479
$3\pi^0$	(2.50 ± 0.17	$) \times 10^{-3}$		430
$\mu^+\mu^-\gamma$	(1.13 ± 0.28	$) \times 10^{-4}$		467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	(2.0 ± 0.4)	$) \times 10^{-5}$		401
$\pi^+\pi^-\pi^0$	(3.61 ± 0.17)	$) \times 10^{-3}$		428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 ± 0.5	$) \times 10^{-3}$		428
$\pi^{\mp} ho^{\pm}$	(7.4 ± 2.3)	$) \times 10^{-4}$		106
$\pi^{0} \rho^{0}$	< 4	%	90%	111
$2(\pi^{+}\pi^{-})$	(8.4 ± 0.9	$) \times 10^{-5}$		372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4)			376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	$\times10^{-3}$	90%	298
$2(\pi^{+}\pi^{-})2\pi^{0}$	< 1	%	95%	197
$3(\pi^{+}\pi^{-})$	< 3.1	$\times10^{-5}$	90%	189
$K^{\pm}\pi^{\mp}$	< 4	$\times10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	(2.42 ± 0.10)	$) \times 10^{-3}$		458
$\pi^+e^-\nu_e$ + c.c.	< 2.1	$\times 10^{-4}$	90%	469
$\gamma e^+ e^-$	(4.91 ± 0.27			479
$\pi^0 \gamma \gamma$	(3.20 ± 0.24)			469
$\pi^0 \gamma \gamma$ (non resonant)	(6.2 ± 0.9)			_
$\eta\gamma\gamma$	< 1.33	$\times 10^{-4}$	90%	322
$4\pi^{0}$	< 4.94		90%	380
e^+e^-	< 5.6	$\times10^{-9}$	90%	479
invisible	< 6	$\times 10^{-4}$	90%	_
	•	_		

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.8	$\times 10^{-5}$	90%	458
$\pi^{0} \pi^{0}$	P,CP	<	4	\times 10 ⁻⁴	90%	459
$\pi^0 e^+ e^-$	С	[g] <	1.4	$\times 10^{-3}$	90%	469
$\eta e^+ e^-$	С	[g] <	2.4	$\times 10^{-3}$	90%	322
3γ	C	<	1.0	\times 10 ⁻⁴	90%	479
$\mu^+\mu^-\pi^0$	C	[g] <	6.0	\times 10 ⁻⁵	90%	445
$\mu^+\mu^-\eta$	С	[g] <	1.5	\times 10 ⁻⁵	90%	273
$e\mu$	LF	<	4.7	\times 10 ⁻⁴	90%	473

$f_0(980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 8/11/2022 09:37

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=$ (980–1010) -i (20–35) MeV $^{[i]}$ Mass m= 990 \pm 20 MeV $^{[i]}$ Full width $\Gamma=$ 10 to 100 MeV $^{[i]}$

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	476
KK	seen	36
$\gamma \gamma$	seen	495

$$a_0(980)$$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=(960\text{--}1030)-i~(20\text{--}70)~\text{MeV}^{[i]}$ Mass $m=980\pm20~\text{MeV}^{[i]}$ Full width $\Gamma=50~\text{to}~100~\text{MeV}^{[i]}$

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
$K\overline{K}$	seen	†
$\eta'\pi$	seen	†
$ ho\pi$	not seen	137
$\gamma \gamma$	seen	490

$\phi(1020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 8/11/2022 09:37

Mass $m=1019.461\pm0.016$ MeV Full width $\Gamma=4.249\pm0.013$ MeV (S =1.1)

ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ lence level	•
K ⁺ K ⁻	(49.1 ± 0.5)) %	S=1.3	127
$K_I^0 K_S^0$	(33.9 ± 0.4)) %	S=1.2	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.4 ± 0.4)) %	S=1.2	_
$\eta\gamma$	$(1.301\pm0.029$	5) %	S=1.2	363
$\pi^{0}\gamma$	(1.32 ± 0.05	$) \times 10^{-3}$		501
$\ell^+\ell^-$	_			510
e^+e^-	(2.979 ± 0.033)	$3) \times 10^{-4}$	S=1.3	510
$\mu^+\mu^-$	(2.85 ± 0.19	$) \times 10^{-4}$		499
$\eta e^+ e^-$	(1.08 ± 0.04	$) \times 10^{-4}$		363
$\pi^+\pi^-$	(7.3 ± 1.3	$) \times 10^{-5}$		490
$\omega \pi^0$	(4.7 ± 0.5	$) \times 10^{-5}$		171
$\omega\gamma$	< 5			209
$ ho\gamma$	< 1.2	$\times 10^{-5}$	CL=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3	•		490
$f_0(980)\gamma$	(3.22 ± 0.19	$) \times 10^{-4}$	S=1.1	29

HTTP://PDG.LBL.GOV

Page 7

$\pi^{0} \pi^{0} \gamma$	(1.12 ± 0.06) $\times 10^{-4}$	492
$\pi^+\pi^-\pi^+\pi^-$	$(3.9 \begin{array}{cc} +2.8 \\ -2.2 \end{array}) \times 10^{-6}$	410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	$< 4.6 \times 10^{-6} \text{ CL}=90\%$	342
$\pi^0 e^+ e^-$	$(1.33 \begin{array}{c} +0.07 \\ -0.10 \end{array}) \times 10^{-5}$	501
$\pi^0 \eta \gamma$	(7.27 ± 0.30) $\times 10^{-5}$ S=1.5	346
$a_0(980)\gamma$	$(7.6 \pm 0.6) \times 10^{-5}$	39
$K^0\overline{K}^0\gamma$	$< 1.9 \times 10^{-8} \text{ CL} = 90\%$	110
$\eta'(958)\gamma$	(6.21 ± 0.21) $\times 10^{-5}$	60
$\eta \pi^0 \pi^0 \gamma$	$<$ 2 $\times 10^{-5}$ CL=90%	293
$\mu^+\mu^-\gamma$	$(1.4 \pm 0.5) \times 10^{-5}$	499
$ ho \gamma \gamma$	$< 1.2 \times 10^{-4} \text{ CL}=90\%$	215
$\eta\pi^+\pi^-$	$< 1.8 \times 10^{-5} \text{ CL} = 90\%$	288
$\eta \mu^+ \mu^-$	$< 9.4 \times 10^{-6} \text{ CL} = 90\%$	321
$\eta U \rightarrow \eta e^+ e^-$	$< 1 \times 10^{-6} \text{ CL} = 90\%$	_
invisible	$< 1.7 \times 10^{-4} \text{ CL}=90\%$	_

Lepton Family number (LF) violating modes

 $e^{\pm}\,\mu^{\mp}$ LF < 2 imes 10 $^{-6}$ CL=90% 504

h₁(1170)

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1166\pm 6~{\rm MeV}$ Full width $\Gamma=375\pm 35~{\rm MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $ho\pi$ seen 305

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (I	Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega\pi$ [D/S amplitude ratio = 0.277	seen ± 0.027]			348
$\pi^{\pm}\gamma$	(1.6 ± 0)	$0.4) \times 10^{-1}$	-3	607
ηho	seen			†
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50	%	84%	535
K^* (892) $^\pm$ K^\mp	seen			†
$(\kappa \overline{\kappa})^{\pm} \pi^0$	< 8	%	90%	248
$K_S^0 K_L^0 \pi^\pm$	< 6	%	90%	235

HTTP://PDG.LBL.GOV

Page 8

$K^0_SK^0_S\pi^\pm$	<	2	%	90%	235
	<	1.5	%	84%	147

a₁(1260) ^[j]

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

Mass $m=1230\pm40$ MeV $^{[i]}$ Full width $\Gamma=250$ to 600 MeV $^{[i]}$

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
3π	seen	577
$(ho\pi)_{S-wave}$, $ ho o\pi\pi$	seen	353
$(ho\pi)_{ extsf{D}-wave}, ho o\pi\pi$	seen	353
$(ho(1450)\pi)_{S-wave},~ ho ightarrow~\pi\pi$	seen	†
$(ho(1450)\pi)_{D-wave},~ ho o~\pi\pi$	seen	†
$\mathit{f}_{0}(500)\pi$, $\mathit{f}_{0} ightarrow\pi\pi$	seen	_
$\mathit{f}_{0}(980)\pi$, $\mathit{f}_{0} ightarrow\pi\pi$	not seen	179
$f_0(1370)\pi$, $f_0 o \pi\pi$	seen	†
$f_2(1270)\pi$, $f_2 \to \pi\pi$	seen	†
$\pi^{+}\pi^{-}\pi^{0}$	seen	576
$\pi^{0}\pi^{0}\pi^{0}$	not seen	577
$KK\pi$	seen	250
$K^*(892)K$	seen	†
$\pi \gamma$	seen	608

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.5\pm0.8~{
m MeV}$ Full width $\Gamma=186.7^{+2.2}_{-2.5}~{
m MeV}~{
m (S}=1.4)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\pi\pi$	$(84.2 \begin{array}{c} +2.9 \\ -0.9 \end{array}) \%$	S=1.1	623
$\pi^{+}\pi^{-}2\pi^{0}$	($7.7 \begin{array}{c} +1.1 \\ -3.2 \end{array}$) %	S=1.2	563
$K\overline{K}$	$(4.6 \ ^{+ 0.5}_{- 0.4}) \%$	S=2.7	404
$2\pi^{+}2\pi^{-}$	(2.8 \pm 0.4) %	S=1.2	560
$\eta\eta_{_{_{-}}}$	(4.0 \pm 0.8) $ imes$	10^{-3} S=2.1	326
$4\pi^0$	(3.0 ± 1.0) $ imes$	10^{-3}	565
$\gamma\gamma$	(1.42 ± 0.24) $ imes$	10^{-5} S=1.4	638
$\eta\pi\pi$	< 8 ×	10^{-3} CL=95%	478
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4 ×	10^{-3} CL=95%	293
e^+e^-	< 6 ×	10 ⁻¹⁰ CL=90%	638

HTTP://PDG.LBL.GOV

Page 9

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

		Scale factor/	-
f ₁ (1285) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
4π	(32.7± 1.9) %	S=1.2	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(21.8 \pm 1.3) \%$	S=1.2	566
$2\pi^+2\pi^-$	$(10.9 \pm \ 0.6) \%$	S=1.2	563
$ ho^{0}\pi^{+}\pi^{-}$	$(10.9 \pm 0.6) \%$	S=1.2	336
$\rho^0 \rho^0$	seen		†
$4\pi^0$	< 7 × 1	10^{-4} CL=90%	568
$\eta\pi^+\pi^-$	$(35 \pm 15)\%$		479
$\eta\pi\pi$	$(52.2 \pm 2.0) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow K\overline{K}$]	$(38 \pm 4)\%$		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	$(9.0\pm~0.4)~\%$	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^+\pi^-\pi^0$	$(3.0\pm\ 0.9) \times 1$	_{L0} -3	603
$ ho^{\pm}\pi^{\mp}$	< 3.1 × 1	10^{-3} CL=95%	390
$\gamma ho^{f 0}$	($6.1\pm~1.0$) %	S=1.7	406
$\phi\gamma$	$(7.4\pm\ 2.6)\times 1$	10^{-4}	236
e^+e^-	< 9.4 × 1	10^{-9} CL=90%	641

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m = 1294 \pm 4 \text{ MeV}$ (S = 1.6)

Full width $\Gamma = 55 \pm 5 \text{ MeV}$

$\eta(1295)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^+\pi^-$	seen	487
$a_0(980)\pi$	seen	248
$\eta \pi^0 \pi^0$	seen	490
$\eta(\pi\pi)_{\mathcal{S} ext{-wave}}$	seen	-

$\pi(1300)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

Mass $m=1300\pm 100$ MeV $^{[i]}$ Full width $\Gamma=200$ to 600 MeV $^{[i]}$

HTTP://PDG.LBL.GOV

Page 10

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S extsf{-}wave}$	seen	_

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1318.2\pm0.6$ MeV (S = 1.2) Full width $\Gamma=107\pm5$ MeV $^{[i]}$

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(70.1 \pm 2.7) %	S=1.2	624
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	(5.5 \pm 0.9) $ imes$	10^{-3}	288
$\pi^{\pm}\gamma$	(2.91 ± 0.27) $ imes$	10^{-3}	652
$\gamma\gamma$	(9.4 \pm 0.7) \times	10^{-6}	659
e^+e^-	< 5 ×	10 ⁻⁹ CL=90%	659

$f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^{+}2\pi^{-}$	seen	612
$\pi^{+}\pi^{-}2\pi^{0}$	seen	615
ho ho	seen	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_
π (1300) π	seen	†
$a_1(1260)\pi$	seen	35
$\eta\eta$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†

HTTP://PDG.LBL.GOV

Page 11

$$\gamma\gamma$$
 seen 685 e^+e^- not seen 685

$\pi_1(1400)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

Coupled channel analyses favor the existence of only one broad 1 $^-$ + isovector state consistent with $\pi_1(1600)$ in the 1400–1600 MeV region. See the review on "Spectroscopy of Light Meson Resonances." See also $\pi_1(1600)$.

Mass
$$m=1354\pm25$$
 MeV (S = 1.8)
Full width $\Gamma=330\pm35$ MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556
$ ho$ (770) π	not seen	442

$\eta(1405)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1475)$.

Mass
$$m=1408.8\pm 2.0$$
 MeV (S = 2.2) Full width $\Gamma=50.1\pm 2.6$ MeV (S = 1.7)

$\eta(1405)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K\overline{K}\pi}$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)_{S ext{-}wave}$	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
ho ho	<58 %	99.85%	†
$ ho^{oldsymbol{ ho}}_{\gamma}^{ ho}$	seen		491
$K^*(892) K$	seen		123

$h_1(1415)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

was $h_1(1380)$

Mass
$$m=1416\pm 8$$
 MeV (S = 1.5)
Full width $\Gamma=90\pm 15$ MeV

HTTP://PDG.LBL.GOV

Page 12

$$f_1(1420)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m = 1426.3 \pm 0.9 \text{ MeV}$ (S = 1.1)

Full width $\Gamma=54.5\pm2.6~\text{MeV}$

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	438
$K\overline{K}^*(892)+$ c.c.	seen	163
$\eta\pi\pi$	possibly seen	573
$\phi \gamma$	seen	349

ω (1420) [k]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1410\pm 60~{
m MeV}~^{[i]}$ Full width $\Gamma=290\pm 190~{
m MeV}~^{[i]}$

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	480
$\omega\pi\pi$	seen	437
$b_1(1235)\pi$	seen	112
e^+e^-	seen	705

$a_0(1450)$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Created: 8/11/2022 09:37

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1474\pm19~{
m MeV}$

Full width $\Gamma=265\pm13~\text{MeV}$

Branching fractions are given relative to the one **DEFINED AS 1**.

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi \eta$	0.093 ± 0.020	627
$\pi \underline{\eta'(958)}$	$0.033\!\pm\!0.017$	410
$K\overline{K}$	$0.082\!\pm\!0.028$	547
$\omega \pi \pi$	DEFINED AS 1	484
$a_0(980)\pi\pi$	seen	342
$\gamma \gamma$	seen	737

$$\rho$$
(1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1465\pm25~{\rm MeV}^{~[i]}$ Full width $\Gamma=400\pm60~{\rm MeV}^{~[i]}$

ρ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	55
$K\overline{K}$	seen	541
<u>K</u> +K-	seen	541
$K\overline{K}^*(892)+$ c.c.	possibly seen	229
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

$\eta(1475)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 8/11/2022 09:37

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1405)$.

Mass $m=1475\pm 4$ MeV (S = 1.4) Full width $\Gamma=90\pm 9$ MeV (S = 1.6)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	477
$K\overline{K}^*$ (892) $+$ c.c.	seen	244
$a_0(980)\pi$	seen	396
$\gamma\gamma$	seen	738
$K_S^0 K_S^0 \eta$	possibly seen	†
$\gamma \phi$ (1020)	possibly seen	385

$$f_0(1500)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m = 1506 \pm 6 \text{ MeV}$ (S = 1.4)

Full width $\Gamma=112\pm9$ MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	(34.5±2.2) %	1.2	741
$\pi^+\pi^-$	seen		740
$2\pi^0$	seen		741
4π	$(48.9\pm3.3)\%$	1.2	692
$4\pi^0$	seen		692
$2\pi^+2\pi^-$	seen		687
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
π (1300) π	seen		145
$a_1(1260)\pi$	seen		219
$\eta \eta$	$(6.0\pm0.9)\%$	1.1	517
$\eta \eta'(958)$	$(2.2\pm0.8)\%$	1.4	20
$K\overline{K}$	$(8.5\pm1.0)\%$	1.1	569
$\gamma\gamma$	not seen		753

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1517.4\pm2.5$ MeV (S = 2.8) Full width $\Gamma=86\pm5$ MeV (S = 2.2)

f' ₂ (1525) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
KK	(87.6±2.2) %	1.1	576
$\eta\eta$	$(11.6\pm2.2)~\%$	1.1	525
$\pi\pi$	$(8.3\pm1.6)\times10^{-3}$		747
$\gamma\gamma$	$(9.5\pm1.1)\times10^{-7}$	1.1	759

$\pi_1(1600)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances" and a note in PDG 06, Journal of Physics **G33** 1 (2006). See also $\pi_1(1400)$.

Mass
$$m=1661^{+15}_{-11}$$
 MeV (S $=1.2$)
Full width $\Gamma=240\pm50$ MeV (S $=1.7$)

HTTP://PDG.LBL.GOV

Page 15

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	803
$ ho^{0}\pi^{-}$	seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
$\eta'(958)\pi^-$	seen	543
$f_1(1285)\pi$	seen	314

a₁(1640)

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Mass $m=1655\pm16$ MeV (S =1.2) Full width $\Gamma=254\pm40$ MeV (S =1.8)

a ₁ (1640) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	800
$f_2(1270)\pi$	seen	314
$\sigma\pi$	seen	_
$ ho\pi_{S-wave}$	seen	638
$ ho\pi_{D-wave}$	seen	638
$\omega\pi\pi$	seen	607
$f_1(1285)\pi$	seen	309
$a_1(1260)\eta$	not seen	†

$\eta_{2}(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-}+)$$

Mass $m=1617\pm 5~{\rm MeV}$ Full width $\Gamma=181\pm 11~{\rm MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta\pi^+\pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [/]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1670\pm30$ MeV $^{[i]}$ Full width $\Gamma=315\pm35$ MeV $^{[i]}$

HTTP://PDG.LBL.GOV

Page 16

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	647
$ ho$ (1450) π	seen	145
$\omega \pi \pi$	seen	617
$\begin{array}{c} \omega\eta \\ { m e^+e^-} \end{array}$	seen	500
e^+e^-	seen	835
$\pi^0 \gamma$	not seen	830

$\omega_{3}(1670)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{\rm MeV}$ Full width $\Gamma=168\pm 10~{\rm MeV}$

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Mass $m=1670.6^{+2.9}_{-1.2}~{\rm MeV}~{\rm (S=1.3)}$ Full width $\Gamma=258^{+8}_{-9}~{\rm MeV}~{\rm (S=1.2)}$

π_2 (1670) DECAY MODES	Fraction (Γ_i)	/Γ) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(95.8±1.	4) %		808
$f_2(1270)\pi$	(56.3 ± 3.3)	2) %		327
$ ho\pi$	(31 ± 4)) %		647
$\sigma\pi$	(10 ± 4)) %		_
$\pi(\pi\pi)_{S}$ -wave	(8.7±3.	4) %		_
$\pi^{\pm}\pi^{+}\pi^{-}$	(53 ± 4)) %		806
$K\overline{K}^*$ (892) $+$ c.c.	(4.2 ± 1.4)	4) %		453
ωho	$(2.7\pm1.)$,		302
$\pi^{\pm}\gamma$		$(2) \times 10^{-4}$		829
$\gamma \gamma$	< 2.8	\times 10 ⁻⁷	90%	835
$\eta\pi$	< 5	%		739
$\pi^{\pm} 2\pi^{+} 2\pi^{-}$	< 5	%		735
$ ho$ (1450) π	< 3.6		97.7%	145
$b_1(1235)\pi$	< 1.9	$\times 10^{-3}$	97.7%	364
$f_1(1285)\pi$	possibly	seen		322
$a_2(1320)\pi$	not seen			291

$$\phi$$
(1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm 20$ MeV ^[i] Full width $\Gamma=150\pm 50$ MeV ^[i]

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{KK^*(892)}$ + c.c.	seen	462
$K_{\underline{S}}^{0}K\pi$ $K\overline{K}$	seen	621
	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta\gamma$	seen	751

$\rho_{3}(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1688.8\pm 2.1~{\rm MeV}$ Full width $\Gamma=161\pm 10~{\rm MeV}$ (S =1.5)

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
4π	$(71.1 \pm 1.9)\%$	790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	(67 \pm 22) %	787
$\omega\pi$	$(16 \pm 6) \ \%$	655
$\pi\pi$	(23.6 \pm 1.3) %	834
$K\overline{K}\pi$	(3.8 ± 1.2) %	629
$K\overline{K}$	($1.58\pm~0.26$) %	1.2 685
$\eta \pi^+ \pi^-$	seen	727
$ ho$ (770) η	seen	520
$\pi\pi ho$	seen	633
$a_2(1320)\pi$	seen	307
ρρ	seen	335

ρ (1700)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 8/11/2022 09:37

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1720\pm20$$
 MeV $^{[i]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)
Full width $\Gamma=250\pm100$ MeV $^{[i]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)

ρ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	seen	803
$ ho\pi\pi$	seen	653
$ ho^0 \pi^+ \pi^-$	seen	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	450
$\pi(1300)\pi$	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi \pi$	seen	849
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
KK	seen	704
e^+e^-	seen	860
π^0_{ω}	seen	674
$\pi^{0} \gamma$	not seen	855

a₂(1700)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1698\pm40~{
m MeV}$ Full width $\Gamma=265\pm60~{
m MeV}$

a ₂ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	(3.6 ± 1.1) %	754
$\gamma \gamma$	$(1.13\pm0.30)\times10^{-6}$	849
$ ho\pi$	seen	664
$f_2(1270)\pi$	seen	350
$K\overline{K}$	(1.9 \pm 1.2)%	691
$\omega\pi^-\pi^0$	seen	634
ωho	seen	338

$f_0(1710)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 8/11/2022 09:37

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1704\pm12~{
m MeV}$

Full width $\Gamma=123\pm18$ MeV

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}$	seen	694
$\eta\eta$	seen	652
$\pi\pi$	seen	841
$\gamma \gamma$	seen	852
$\omega \omega$	seen	337

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=1810^{+~9}_{-11}~{\rm MeV}~{\rm (S=2.2)}$$
 Full width $\Gamma=215^{+7}_{-8}~{\rm MeV}$

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	878
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	624
$f_0(1370)\pi^-$	seen	366
$f_0(1500)\pi^-$	not seen	247
$ ho\pi^-$	not seen	731
$\eta\eta\pi^-$	seen	660
$a_0(980)\eta$	seen	471
$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	441
$f_0(1370)\pi^-$	not seen	366
$f_0(1500)\pi^-$	seen	247
$\eta \eta'(958) \pi^-$	seen	373
$K_0^*(1430)K^-$	seen	†
$K^*(892)K^-$	not seen	568

ϕ_3 (1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Created: 8/11/2022 09:37

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~{
m (S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}$	seen	785
$K\overline{K}^*(892) + \text{c.c.}$	seen	602

$$\eta_2(1870)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Mass $m=1842\pm 8~{\rm MeV}$ Full width $\Gamma=225\pm 14~{\rm MeV}$

η_2 (1870) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi\pi$	seen	816
$a_2(1320)\pi$	seen	434
$f_2(1270)\eta$	seen	119
$a_0(980)\pi$	seen	651
$\gamma\gamma$	seen	921

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass
$$m=1874^{+26}_{-5}~\text{MeV}~(\text{S}=1.6)$$

Full width $\Gamma=237^{+33}_{-30}~\text{MeV}~(\text{S}=1.2)$

π_2 (1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\eta\eta\pi^-}$	seen	702
$a_0(980)\eta$	seen	528
$a_2(1320) \eta$	seen	76
$f_0(1500)\pi$	seen	308
$f_1(1285)\pi$	seen	485
$\omega \pi^- \pi^0$	seen	744

f₂(1950)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass
$$m=1936\pm12$$
 MeV (S $=1.3$)
Full width $\Gamma=464\pm24$ MeV

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\overline{K}^*(892)$	seen	377
$\pi^+\pi^-$	seen	958
$\pi^0\pi^0$	seen	959
4π	seen	921
$\eta \eta_{_}$	seen	798
$K\overline{K}$	seen	833
$\gamma \gamma$	seen	968
$p\overline{p}$	seen	238

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

was $a_4(2040)$

Mass
$$m=1967\pm16$$
 MeV (S = 2.1) Full width $\Gamma=324^{+15}_{-18}$ MeV

a ₄ (1970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K\overline{K}}$	seen	851
$\pi^+\pi^-\pi^0$	seen	959
$ ho\pi$	seen	825
$f_2(1270)\pi$	seen	559
$\omega \pi^{-} \pi^{0}$	seen	801
ωho	seen	601
$\eta\pi$	seen	902
$\eta'(958)\pi$	seen	743

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}$ MeV Full width $\Gamma=202\pm60$ MeV

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\phi\phi}$	seen	†
$K\overline{K}$	seen	876

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Created: 8/11/2022 09:37

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega\omega$	seen	637
$\pi\pi$	$(17.0 \pm 1.5)~\%$	1000
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848
$\eta \eta$ 4π 0	< 1.2 %	964
$\gamma\gamma$	seen	1009
$a_2(1320)\pi$	seen	567

$$\phi$$
(2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=2162\pm7$ MeV $^{[i]}$ (S =1.1) Full width $\Gamma=100^{+31}_{-23}$ MeV $^{[i]}$ (S =2.5)

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	1081
$\phi f_0(980)$	seen	399
$K^+K^-\mathit{f}_0(980) ightarrow$	seen	_
$K^{+}K^{-}\pi^{+}\pi^{-}$ $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$	seen	_
$K^{*0}K^{\pm}\pi^{\mp}$	not seen	761
$K^*(892)^0 \overline{K}^*(892)^0$	not seen	612

$f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
$K\overline{K}$	seen	1037
$rac{\gamma}{\Lambda \overline{\Lambda}}$	seen	1149
$\Lambda \overline{\Lambda}$	seen	273

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 8/11/2022 09:37

Mass $m = 2345^{+50}_{-40} \text{ MeV}$ Full width $\Gamma = 322^{+70}_{-60} \text{ MeV}$

Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
seen	580
seen	1037
	seen

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=493.677\pm0.016$$
 MeV $^{[n]}$ (S = 2.8) Mean life $\tau=(1.2380\pm0.0020)\times10^{-8}$ s (S = 1.8) $c\tau=3.711$ m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \to \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%$ [o]

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_{\mu}$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$
 $K^+ \to \mu^+ \nu_{\mu} \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$
 $K^+ \to \pi^0 \mu^+ \nu_{\mu}$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $\mathbf{g}^{[p]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$$

K^{\pm} decay form factors [a,q]

Assuming $\mu\text{-}e$ universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e3}^{+}) = (2.959 \pm 0.025) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7)$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.956 \pm 0.025) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu3}^{+}) = (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5)$
 $\lambda_{0}(K_{\mu3}^{+}) = (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6)$

 K_{e3} form factor quadratic fit

$$\lambda'_+~(K_{e3}^\pm)$$
 linear coeff. = $(2.59\pm0.04)\times10^{-2}$ $\lambda''_+(K_{e3}^\pm)$ quadratic coeff. = $(0.186\pm0.021)\times10^{-2}$

$$\lambda'_{+}$$
 (LINEAR $K_{\mu 3}^{\pm}$ FORM FACTOR FROM QUADRATIC FIT)
= $(24 \pm 4) \times 10^{-3}$

$$\lambda''_+$$
 (QUADRATIC $K_{\mu3}^\pm$ FORM FACTOR) $= (1.8 \pm 1.5) imes 10^{-3}$

$$M_V$$
 (VECTOR POLE MASS FOR $K_{
m e3}^{\pm}$ DECAY) $= 890.3 \pm 2.8$ MeV

$$M_V$$
 (VECTOR POLE MASS FOR $K_{\mu 3}^\pm$ DECAY) $= 878 \pm 12$ MeV

$$M_S$$
 (SCALAR POLE MASS FOR $K_{\mu3}^\pm$ DECAY) $= 1215 \pm 50$ MeV

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN K_{e3}^\pm DECAY) $=$ $(2.460 \pm 0.017) imes 10^{-2}$

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN $K_{\mu 3}^\pm$ DECAY) = $(25.4 \pm 0.9) \times 10^{-3}$

In(C) (DISPERSIVE SCALAR FORM FACTOR in
$$K_{\mu3}^{\pm}$$
 decays) = $(182\pm16)\times10^{-3}$

$$K_{e3}^+$$
 $\left| f_S/f_+ \right| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2}$

$$K_{e3}^+$$
 $|f_T/f_+| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2}$

$$K_{u3}^{+}$$
 $|f_S/f_+| = (0.2 \pm 0.6) \times 10^{-2}$

$$K_{\mu 3}^{+} |f_T/f_+| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K^{+} \rightarrow e^{+} \nu_{e} \gamma |F_{A} + F_{V}| = 0.133 \pm 0.008 \text{ (S} = 1.3)$$

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma |F_A + F_V| = 0.165 \pm 0.013$$

$$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} + F_{V}| = 0.165 \pm 0.013$$

 $K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} - F_{V}| < 0.49, \text{ CL} = 90\%$

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma \left| F_A - F_V \right| = -0.153 \pm 0.033 \quad (S = 1.1)$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$$\mathsf{A}_{FB}(\mathsf{K}_{\pi\,\mu\,\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\,\mu}) > 0) - \Gamma(\cos(\theta_{K\,\mu}) < 0)}{\Gamma(\cos(\theta_{K\,\mu}) > 0) + \Gamma(\cos(\theta_{K\,\mu}) < 0)} < 2.3 \times 10^{-2}, \; \mathsf{CL}$$

$$= 90\%$$

 ${\it K}^-$ modes are charge conjugates of the modes below.

K+ DECAY MODES	Fraction (Γ_i/Γ)		cale factor/ dence level(N	
Leptoni	c and semileptonic me	odes		
$e^+ u_e$	(1.582±0.00	_		247
$\mu^+ \nu_{\mu}$	(63.56 ±0.11	.) %	S=1.2	236
$\pi^0 e^{\stackrel{r}{+}} \nu_e$	(5.07 ± 0.04)	1)%	S=2.1	228
Called K_{e3}^+ .	•	,		
$\pi^0 \mu^+ u_\mu$	(3.352±0.03	(3) %	S=1.9	215
Called $K_{\mu 3}^+$.	(0.002±0.00	70	3 1.3	210
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ± 0.04	1) × 10 ⁻⁵	S=1.1	206
$\pi^+\pi^-e^+\nu_e$	(4.247 ± 0.02)	•	5—1.1	203
$\pi^+\pi^-\mu^+\nu_\mu$	(1.4 ± 0.9)	,		151
$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	< 3.5	•	CL=90%	135
n n e ν_e	₹ 5.5	X 10	CL=90/0	133
0	Hadronic modes			
$\pi^+\pi^0$	(20.67 ± 0.08)	,	S=1.2	205
$\pi^{+}\pi^{0}\pi^{0}$	$(1.760\pm0.02$		S=1.1	133
$\pi^+\pi^+\pi^-$	(5.583 ± 0.02)	<u>'</u> 4) %		125
Leptonic and s	semileptonic modes wi	ith photon	S	
$\mu^+ u_\mu \gamma$	$[r,s]$ (6.2 \pm 0.8	-		236
$\mu^+ \nu_\mu \gamma (SD^+)$	$[a,t]$ (1.33 ± 0.22			_
$\mu^+ \nu_{\mu}^{\rho} \gamma (SD^+ INT)$		× 10 ⁻⁵	CL=90%	_
•	[a,t] < 2.6		CL=90%	_
$e^+ u_e\gamma$	(9.4 ± 0.4)			247
$\pi^0 e^{\stackrel{\bullet}{+} \stackrel{\circ}{\nu_e} \gamma}$	$[r,s]$ (2.66 ± 0.09	,		228
$\pi^0 e^+ \nu_e \gamma$ (SD)	[a,t] < 5.3		CL=90%	228
$\pi^0 \mu^+ \frac{e^{\gamma} (1-\gamma)}{\nu_\mu \gamma}$	$[r,s]$ (1.25 ± 0.25			215
$\pi^0 \pi^0 e^+ \nu_e \gamma$		× 10 ⁻⁶	CL=90%	206
	nodes with photons or			
$\pi^+\pi^0\gamma(INT)$	(-4.2 ± 0.9)			_
$\pi^+\pi^0\gamma(DE)$	$[r,u]$ (6.0 \pm 0.4			205
$\pi^{+}\pi^{0}e^{+}e^{-}$	(4.24 ± 0.14)			205
$\pi^+\pi^0\pi^0\gamma$	$[r,s]$ (7.6 $^{+6.0}_{-3.0}$	$) \times 10^{-6}$		133
$\pi^+\pi^+\pi^-\gamma$	$[r,s]$ (7.1 ± 0.5	$) \times 10^{-6}$		125
$\pi^+ \gamma \gamma$	$[r]$ (1.01 ± 0.06			227
$\pi^+ 3\gamma$	[r] < 1.0	$\times 10^{-4}$	CL=90%	227
$\pi^+ e^+ e^- \gamma$	(1.19 ± 0.13	$(3) \times 10^{-8}$		227

Leptonic modes with $\ell \overline{\ell}$ pairs

$e^+ u_e u \overline{ u}$	<	6	$\times10^{-5}$	CL=90%	247
$\mu^+ u_{\mu} u \overline{ u}$	<	1.0	$\times 10^{-6}$	CL=90%	236
$e^+ \nu_e e^+ e^-$	(2.48 ± 0.20	$) \times 10^{-8}$		247
$\mu^+ u_\mue^+e^-$	($7.06\ \pm0.31$	$) \times 10^{-8}$		236
$e^+ \nu_e \mu^+ \mu^-$	(1.7 ± 0.5	$) \times 10^{-8}$		223
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	$\times 10^{-7}$	CL=90%	185

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+ e^+ e^-$	<i>S</i> 1	(3.00 ± 0.09	$) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	($) \times 10^{-8}$	S=2.6	172
$\pi^+ u \overline{ u}$	<i>S</i> 1	($1.14 \begin{array}{l} +0.40 \\ -0.33 \end{array}$	$) \times 10^{-10}$		227
$\pi^+\pi^0 u\overline{ u}$	S1	<	4.3	$\times 10^{-5}$	CL=90%	205
$\mu^- \nu e^+ e^+$	LF	<	2.1	$\times 10^{-8}$	CL=90%	236
$\mu^+ \nu_{\mathbf{e}}$	LF	[d]	4	$\times 10^{-3}$	CL=90%	236
$\pi^+\mu^+e^-$	LF	<	1.3	$\times 10^{-11}$	CL=90%	214
$\pi^+\mu^-e^+$	LF	<	6.6	$\times 10^{-11}$	CL=90%	214
$\pi^-\mu^+e^+$	L	<	4.2	$\times 10^{-11}$	CL=90%	214
$\pi^-e^+e^+$	L	<	2.2	$\times 10^{-10}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-11}$	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3	$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+\gamma$		[v] <	2.3	\times 10 ⁻⁹	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=497.611\pm0.013~{
m MeV}~{
m (S}=1.2)$$
 $m_{K^0}-m_{K^\pm}=3.934\pm0.020~{
m MeV}~{
m (S}=1.6)$

Mean square charge radius

$$\langle \mathit{r}^2 \rangle = -0.077 \pm 0.010 \; \mathrm{fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [q]

Asymmetry A_T in K^0 - \overline{K}^0 mixing $= (6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [q]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [x]
 $\left(\Gamma_{K^0} - \Gamma_{\overline{K}^0} \right) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

 ${
m Re}({
m x_+}),~{
m \textit{K}}_{
m e3}~{
m parameter}=(-0.9\pm3.0)\times10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $au=(0.8954\pm0.0004)\times 10^{-10}$ s $(\mathsf{S}=1.1)$ Assuming CPT

Mean life $au = (0.89564 \pm 0.00033) imes 10^{-10}$ s Not assuming $extit{CPT}$

 $c\tau = 2.6844$ cm Assuming *CPT*

CP-violation parameters [y]

$$Im(\eta_{+-0}) = -0.002 \pm 0.009$$

$$Im(\eta_{000}) = -0.001 \pm 0.016$$

$$\left|\eta_{000}
ight| = \left|A(K_S^0 o 3\pi^0)/A(K_L^0 o 3\pi^0)
ight| \ < \ 0.0088, \ {\sf CL} = 90\%$$

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

κ_{S}^{0} decay modes

Fraction	(Γ_i/Γ)

Scale factor/
$$p$$

Confidence level (MeV/ c)

	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	$(69.20\pm0.05)~\%$	206
$\pi^+\pi^-\pi^0$	$(3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

$$\begin{array}{lllll} \pi^{+}\pi^{-}\gamma & & [s,z] & (1.79\pm0.05)\times10^{-3} & 206 \\ \pi^{+}\pi^{-}e^{+}e^{-} & & (4.79\pm0.15)\times10^{-5} & 206 \\ \pi^{0}\gamma\gamma & & [z] & (4.9\pm1.8)\times10^{-8} & 230 \\ \gamma\gamma & & (2.63\pm0.17)\times10^{-6} & S=3.1 & 249 \end{array}$$

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [aa] $(7.04 \pm 0.08) \times 10^{-4}$ 229

HTTP://PDG.LBL.GOV

Page 28

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^0$	CP	< 2.6	\times 10 ⁻⁸	CL=90%	139
$\mu^+\mu^-$	S1	< 2.1	\times 10 ⁻¹⁰	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	249
$\pi^0 e^+ e^-$	<i>S</i> 1	$[z]$ (3.0 $^{+1}_{-1}$.	$\frac{5}{2}$) × 10 ⁻⁹		230
$\pi^0 \mu^+ \mu^-$	<i>S</i> 1	$(2.9 \begin{array}{c} +1. \\ -1. \end{array}$	$_{2}^{5}) \times 10^{-9}$		177

K_L^0

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} \textit{m}_{\textit{K}_{\textit{L}}} - \textit{m}_{\textit{K}_{\textit{S}}} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad (\text{S} = 1.3) \quad \text{Assuming } \textit{CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming } \textit{CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming } \textit{CPT} \\ \text{Mean life } \tau = (5.116 \pm 0.021) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ \textit{c}\tau = 15.34 \; \text{m} \end{array}$$

Slope parameters [p]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+\pi^-\pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0\pi^0\pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [q]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e 3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$
 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming $\mu\text{-}e$ universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$$

Created: 8/11/2022 09:37

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (2.51 \pm 0.06) \times 10^{-2} \text{ (S} = 1.5)$$

 $\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \text{ (S} = 2.0)$

$$\begin{array}{lll} \mathcal{K}_{e3}^{0} & \left| f_{S}/f_{+} \right| = (1.5^{+1.4}_{-1.6}) \times 10^{-2} \\ \mathcal{K}_{e3}^{0} & \left| f_{T}/f_{+} \right| = (5^{+4}_{-5}) \times 10^{-2} \\ \mathcal{K}_{\mu 3}^{0} & \left| f_{T}/f_{+} \right| = (12 \pm 12) \times 10^{-2} \\ \mathcal{K}_{L} \rightarrow \ell^{+}\ell^{-}\gamma, \, \mathcal{K}_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{K^{*}} = -0.205 \, \pm \\ & 0.022 & (S = 1.8) \\ \mathcal{K}_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, \, \mathcal{K}_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{DIP} = -1.69 \, \pm \\ & 0.08 & (S = 1.7) \\ \mathcal{K}_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} \colon a_{1}/a_{2} = -0.737 \pm 0.014 \, \text{GeV}^{2} \\ \mathcal{K}_{L} \rightarrow \pi^{0}2\gamma \colon & a_{V} = -0.43 \pm 0.06 & (S = 1.5) \end{array}$$

CP-violation parameters [y]

$$A_L = (0.332 \pm 0.006)\%$$

 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\eta_{00}/\eta_{+-}| = 0.9950 \pm 0.0007$ [bb] (S = 1.6)
 $|Re(\epsilon'/\epsilon)| = (1.66 \pm 0.23) \times 10^{-3}$ [bb] (S = 1.6)

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.3) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

$$\begin{array}{l} \textit{CP} \; \text{asymmetry} \; \textit{A} \; \text{in} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\, e^+\, e^- = (13.7 \pm 1.5)\% \\ \textit{\beta}_{\textit{CP}} \; \text{from} \; \textit{K}_L^0 \rightarrow \; e^+\, e^-\, e^+\, e^- = -0.19 \pm 0.07 \\ \textit{\gamma}_{\textit{CP}} \; \text{from} \; \textit{K}_L^0 \rightarrow \; e^+\, e^-\, e^+\, e^- = 0.01 \pm 0.11 \quad (S = 1.6) \\ \textit{j} \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008 \\ \textit{f} \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\pi^0 = 0.004 \pm 0.006 \\ \left|\eta_{+-\gamma}\right| = (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} = (44 \pm 4)^\circ \\ \left|\epsilon_{+-\gamma}'\right|/\epsilon \; < \; 0.3, \; \text{CL} = 90\% \\ \left|g_{E1}\right| \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\gamma < \; 0.21, \; \text{CL} = 90\% \end{array}$$

T-violation parameters

$${
m Im}(\xi) \ {
m in} \ {
m K}_{\mu 3}^0 = -0.007 \pm 0.026$$

CPT invariance tests

HTTP://PDG.LBL.GOV

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta S = -\Delta Q$ in $\mathcal{K}_{\ell 3}^{0}$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

$Im \ x = 0.00$	012 ± 0.0021			
K ⁰ _L DECAY MODES	Fra	action (Γ_i/Γ)	Scale factor/ Confidence level(
	Semilepto	onic modes		
$\pi^{\pm} e^{\mp} \nu_e$ Called K_{e3}^0 .	•	$(40.55 \pm 0.11)\%$	S=1.7	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K_{\mu3}^{0}$.	[aa]	(27.04 ±0.07)%	S=1.1	216
$(\pi \mu \operatorname{atom}) \nu$		$(1.05 \pm 0.11) \times 10$	₎ –7	188
$\pi^0\pi^{\pm}e^{\mp}\nu$		$(5.20 \pm 0.11) \times 10$		207
$\pi^{\pm}\mathrm{e}^{\mp}\nu\mathrm{e}^{+}\mathrm{e}^{-}$	[aa]	(1.26 ± 0.04) \times 10	₎ –5	229
Hadronic modes, includi	ng Charge con	jugation×Parity \	/iolating (<i>CPV</i>)	modes
$3\pi^0$		$(19.52 \pm 0.12)\%$	S=1.6	139
$\pi^+\pi^-\pi^0$		$(12.54 \pm 0.05)\%$		133
$\pi^{+}\pi^{-}$		$(1.967\pm0.010)\times10$		206
$\pi^0\pi^0$	CPV	$(8.64 \pm 0.06) \times 10^{-2}$	S=1.8	209
S	emileptonic mo	odes with photons		
$\pi^{\pm}\mathrm{e}^{\mp} u_{\mathrm{e}}\gamma$	[s,aa,dd]	$(3.79 \pm 0.06) \times 10^{-2}$	₎ –3	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$		$(5.65 \pm 0.23) \times 10^{-2}$)-4	216
Hadro	onic modes wit	th photons or $\ell \overline{\ell}$ p	pairs	
$\pi^{0}\pi^{0}\gamma$	<	2.43 × 10	$^{-7}$ CL=90%	209
$\pi^+\pi^-\gamma$	[s,dd]	$(4.15 \pm 0.15) \times 10$	S=2.8	206
$\pi^+\pi^-\gamma(DE)$		$(2.84 \pm 0.11) \times 10$		206
$\pi^0 2\gamma$	[dd]	$(1.273\pm0.033)\times10$)-6	230
$\pi^0 \gamma e^+ e^-$		$(1.62 \pm 0.17) \times 10^{-1}$)-8	230
Oth	er modes with	photons or $\ell \overline{\ell}$ pa	irs	
2γ		$(5.47 \pm 0.04) \times 10$	S=1.1	249
3γ	<	7.4×10	$^{-8}$ CL=90%	249
$e^+e^-\gamma$		$(9.4 \pm 0.4) \times 10^{-2}$	S=2.0	249
$\mu^+\mu^-\gamma$		$(3.59 \pm 0.11) \times 10$	S=1.3	225

Page 31

$$e^{+}e^{-}\gamma\gamma$$
 [dd] (5.95 ±0.33) × 10⁻⁷ 249
 $\mu^{+}\mu^{-}\gamma\gamma$ [dd] (1.0 +0.8)×10⁻⁸ 225

Charge conjugation \times Parity (CP) or Lepton Family number (LF) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\mu^+\mu^-$	S1 (6	.84 ± 0.11) $\times 10^{-9}$		225
e^+e^-	<i>S</i> 1 (9	$^{+6}_{-4}$) × 10 ⁻¹	.2	249
$\pi^{+}\pi^{-}e^{+}e^{-}$		$.11 \pm 0.19) \times 10^{-7}$		206
$\pi^0 \pi^0 e^+ e^-$	<i>S1</i> < 6	$.6 \times 10^{-9}$	CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S1</i> < 9	$.2 \times 10^{-1}$	1 CL=90%	57
$\mu^+\mu^-e^+e^-$	<i>S</i> 1 (2	.69 ± 0.27) $ imes 10^{-9}$	1	225
$e^{+}e^{-}e^{+}e^{-}$	<i>S</i> 1 (3	.56 ± 0.21) $ imes 10^{-8}$		249
$\pi^{0}\mu^{+}\mu^{-}$	CP, $S1$ [ee] < 3			177
$\pi^0e^+e^-$	CP, $S1$ [ee] < 2	$.8 \times 10^{-1}$	0 CL=90%	230
$\pi^0 \nu \overline{\nu}$	CP, $S1$ [ff] < 3	$.0 \times 10^{-9}$	CL=90%	230
$\pi^0\pi^0 u\overline{\nu}$	<i>S1</i> < 8	1×10^{-7}	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF [aa] < 4			238
$e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$	<i>LF</i> [aa] < 4			225
$\pi^0 \mu^{\pm} e^{\mp}$	LF [aa] < 7			217
$\pi^0\pi^0\mu^\pme^\mp$	<i>LF</i> < 1	.7	0 CL=90%	159

Lorentz invariance violating modes

$$\pi^{0}\gamma$$
 < 1.7 × 10⁻⁷ CL=90% 230

K*(700)

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV Mass (Breit-Wigner) = 845 \pm 17 MeV Full width (Breit-Wigner) = 468 \pm 30 MeV

K ₀ *(700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	100 %	256

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass (T-Matrix Pole \sqrt{s}) = (890 \pm 14) -i (26 \pm 6) MeV $K^*(892)^\pm$ hadroproduced mass $m=891.67\pm0.26$ MeV $K^*(892)^\pm$ in τ decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7)

HTTP://PDG.LBL.GOV

Page 32

 $K^*(892)^\pm$ hadroproduced full width $\Gamma=51.4\pm0.8$ MeV $K^*(892)^\pm$ in τ decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	× 10 ⁻³	307
$\mathcal{K}^{\pm} \gamma$	(9.8 ± 0.9)	× 10 ⁻⁴	309
$K\pi\pi$	< 7	× 10 ⁻⁴ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1253\pm7$ MeV (S = 2.2) Full width $\Gamma=90\pm20$ MeV $^{[i]}$

<i>p</i> MeV/ <i>c</i>)
†
†
286
†
†
528

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~(S=1.6)$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0 ± 3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
${\kappa_0^*(1430)\pi} \over {\gamma \kappa^0}$	not seen	†
$\gamma \mathcal{K}^{0}$	seen	613
$K\phi$	seen	†

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1414\pm15$ MeV (S = 1.3) Full width $\Gamma=232\pm21$ MeV (S = 1.1)

HTTP://PDG.LBL.GOV

Page 33

K*(1410) DECAY MODES	Fraction (I	Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6 ± 1)	1.3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
$\gamma \mathcal{K}^0$	< 2.3	\times 10 ⁻⁴	90%	619
$K\phi$	seen			†

K*(1430)

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50$ MeV ^[i] Full width $\Gamma=270\pm 80$ MeV ^[i]

K ₀ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}$ $\overset{2.7}{3.4})$ %	486
$K \eta'(958)$	seen	†

K₂*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1427.3\pm1.5$ MeV (S = 1.3) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=100.0\pm2.1$ MeV $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K ₂ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		620
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		420
$K^*(892)\pi\pi$	$(13.4\pm2.2)~\%$		373
$K\rho$	$(8.7\pm0.8)\%$	S=1.2	320
$K\omega$	$(2.9\pm0.8)\%$		313
$K^+\gamma$	$(2.4\pm0.5)\times10^{-1}$	3 S=1.1	628
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10^{-}$	S=1.3	488
$K\omega\pi$	< 7.2 × 10	4 CL=95%	106
$\kappa^0 \gamma$	< 9 × 10 ⁻	4 CL=90%	627

K(1460)

$$I(J^P) = \frac{1}{2}(0^-)$$

K(1460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	seen	_
$K \rho$	seen	_
$K_0^*(1430)\pi$	seen	-
$\mathcal{K}\phi$	seen	_

$K_1(1650)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1650\pm 50$ MeV Full width $\Gamma=150\pm 50$ MeV

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K* (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K \rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})\%$	618
$K\phi$	seen	387
$K\eta$	$(1.4^{+1.0}_{-0.8})\%$	683

K₂(1770) [gg]

$$I(J^P) = \frac{1}{2}(2^-)$$

Created: 8/11/2022 09:37

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	seen	287
$K^*(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K\omega$	seen	607

K*(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1779\pm 8$ MeV (S =1.2) Full width $\Gamma=161\pm 17$ MeV (S =1.1)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		616
$K^*(892)\pi$	$(20 \pm 5)\%$		657
$K\pi$	$(18.8 \pm \ 1.0) \%$		815
$K\eta$	$(30 \pm 13)\%$		721
$K_2^*(1430)\pi$	< 16 %	95%	292

K₂(1820) [gg]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

K ₂ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$	seen	819
$K_2^*(1430)\pi$	seen	328
$K^*(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

$K_2^*(1980)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=1994^{+60}_{-50}$$
 MeV (S = 2.8) Full width $\Gamma=348^{+50}_{-30}$ MeV (S = 1.3)

K [*] ₂ (1980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	possibly seen	791
$K \rho$	possibly seen	762
$K f_2(1270)$	possibly seen	424
$K\phi$	seen	627
$K\eta$	seen	850

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass
$$m=2048^{+8}_{-9}$$
 MeV (S = 1.1)
Full width $\Gamma=199^{+27}_{-19}$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9 ± 1.2) %	960
$K^*(892)\pi\pi$	$(9 \pm 5)\%$	804
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	770
$ ho$ K π	$(5.7 \pm 3.2) \%$	744
ω K π	$(5.0\pm3.0)~\%$	740
ϕ K π	(2.8 ± 1.4) %	597
ϕ K*(892)	(1.4 ± 0.7) %	368

CHARMED MESONS $(C = \pm 1)$

 $D^+ = c\overline{d}, \ D^0 = c\overline{u}, \ \overline{D}{}^0 = \overline{c}u, \ D^- = \overline{c}d,$ similarly for D^* 's

 \mathcal{D}^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1869.66\pm0.05$$
 MeV Mean life $\tau=(1033\pm5)\times10^{-15}$ s $c au=309.8~\mu\mathrm{m}$

c-quark decays

$$\Gamma(c \to \ell^+ \, \text{anything}) / \Gamma(c \to \, \text{anything}) = 0.096 \pm 0.004 \, ^{[hh]}$$

 $\Gamma(c \to \, D^*(2010)^+ \, \text{anything}) / \Gamma(c \to \, \text{anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_L^0 e^{\pm}\nu) = (-0.6 \pm 1.6)\%$$

$$A_{CP}(K_S^0 \pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K_L^0 K^{\pm}) \text{ in } D^{\pm} \to K_L^0 K^{\pm} = (-4.2 \pm 3.4) \times 10^{-2}$$

$$A_{CP}(K^{\mp} 2\pi^{\pm}) = (-0.18 \pm 0.16)\%$$

$$A_{CP}(K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{0}) = (-0.3 \pm 0.7)\%$$

$$A_{CP}(K_S^0 \pi^{\pm} \pi^{0}) = (-0.1 \pm 0.7)\%$$

$$A_{CP}(K_S^0 \pi^{\pm} \eta) \text{ in } D^{\pm} \to K_S^0 \pi^{\pm} \eta = (-0.9 \pm 3.1) \times 10^{-2}$$

$$A_{CP}(K_S^0 \pi^{\pm} \pi^{+} \pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(K^{\pm} \pi^{+} \pi^{-} \pi^{0}) \text{ in } D^{\pm} \to K^{\pm} \pi^{+} \pi^{-} \pi^{0} = -0.04 \pm 0.06$$

$$A_{CP}(\pi^{\pm}\pi^{0}) = (0.4 \pm 1.3)\% \quad (S = 1.7)$$

$$A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.8)\% \quad (S = 1.2)$$

$$A_{CP}(\pi^{\pm}\pi^{0}\eta) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\pi^{0}\eta = (-6 \pm 7) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta\eta) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta'(958)) = (-0.6 \pm 0.7)\%$$

$$A_{CP}(\overline{K}^{0}/K^{0}K^{\pm}) = (0.11 \pm 0.17)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (-0.01 \pm 0.07)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{S}^{0}K^{\pm}\pi^{0} = (1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K^{\pm}K^{*0}) = (0.37 \pm 0.29)\%$$

$$A_{CP}(K^{\pm}K^{*0}) = (-0.3 \pm 0.4)\%$$

$$A_{CP}(K^{\pm}K^{*0}) = (0.01 \pm 0.09)\% \quad (S = 1.8)$$

$$A_{CP}(K^{\pm}K_{0}^{*}(1430)^{0}) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm}K_{0}^{*}(1430)^{0}) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm}K_{0}^{*}(700)) = (-12_{-13}^{+18})\%$$

$$A_{CP}(a_{0}(1450)^{0}\pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}\eta) \text{ in } D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}\eta = (3 \pm 5) \times 10^{-2}$$

$$A_{CP}(K^{\pm}\pi^{0}) = (-3 \pm 5)\%$$

$$A_{CP}(K^{\pm}\pi^{0}) = (-3 \pm 5)\%$$

$$A_{CP}(K^{\pm}\eta) \text{ in } D^{\pm} \rightarrow K^{\pm}\eta = (-6 \pm 11) \times 10^{-2}$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} \ [ii]$$

D⁺ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K^0} \ell^+ \nu_\ell = 0.719 \pm 0.011 \quad (\mathsf{S} = 1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -3 \pm 12 \quad (\mathsf{S} = 1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \ell^+ \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \ell^+ \nu_\ell \ (\ell = e \text{ or } \nu) = (8.4 \pm 0.4) \times 10^{-2} \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta e^+ \nu_e = -5.3 \pm 2.7 \quad (\mathsf{S} = 1.9) \\ r_V \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega e^+ \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \rightarrow \omega e^+ \nu_e = 1.06 \pm 0.16 \\ \end{array}$$

$$\begin{array}{l} r_{v} \equiv \textit{V}(0)/\textit{A}_{1}(0) \text{ in } D^{+}, D^{0} \rightarrow \rho \, e^{+} \, \nu_{e} = 1.64 \pm 0.10 \quad (\text{S} = 1.2) \\ r_{2} \equiv \textit{A}_{2}(0)/\textit{A}_{1}(0) \text{ in } D^{+}, D^{0} \rightarrow \rho \, e^{+} \, \nu_{e} = 0.84 \pm 0.06 \\ r_{v} \equiv \textit{V}(0)/\textit{A}_{1}(0) \text{ in } \overline{\textit{K}}^{*}(892)^{0} \, \ell^{+} \, \nu_{\ell} = 1.49 \pm 0.05 \quad (\text{S} = 2.1) \\ r_{2} \equiv \textit{A}_{2}(0)/\textit{A}_{1}(0) \text{ in } \overline{\textit{K}}^{*}(892)^{0} \, \ell^{+} \, \nu_{\ell} = 0.802 \pm 0.021 \\ r_{3} \equiv \textit{A}_{3}(0)/\textit{A}_{1}(0) \text{ in } \overline{\textit{K}}^{*}(892)^{0} \, \ell^{+} \, \nu_{\ell} = 0.0 \pm 0.4 \\ \Gamma_{L}/\Gamma_{T} \text{ in } \overline{\textit{K}}^{*}(892)^{0} \, \ell^{+} \, \nu_{\ell} = 1.13 \pm 0.08 \\ \Gamma_{+}/\Gamma_{-} \text{ in } \overline{\textit{K}}^{*}(892)^{0} \, \ell^{+} \, \nu_{\ell} = 0.22 \pm 0.06 \quad (\text{S} = 1.6) \end{array}$$

Scale factor/

Created: 8/11/2022 09:37

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)				
Inclusive modes							
e^+ semileptonic	(16.07 ± 0.30)) %	_				
μ^+ anything	$(17.6 \pm 3.2$) %	_				
K^- anything	(25.7 ± 1.4)) %	_				
$\overline{\mathit{K}}^{0}$ anything $+~\mathit{K}^{0}$ anything	(61 ± 5)) %	_				
K^+ anything	(5.9 ± 0.8)) %	_				
$K^*(892)^-$ anything	(6 ± 5)) %	_				
$\overline{K}^*(892)^0$ anything	(23 ± 5)) %	_				
$K^*(892)^0$ anything	< 6.6	% CL=90%	_				
η anything	(6.3 ± 0.7)) %	_				
η' anything	(1.04 ± 0.18) %	_				
ϕ anything	(1.12 ± 0.04) %	_				
Leptonic and	semileptonic mod	des					
$e^+ u_e$	< 8.8	$\times 10^{-6}$ CL=90%	935				
$\gamma e^+ \nu_e$	< 3.0	\times 10 ⁻⁵ CL=90%	935				
$\mu^+ u_\mu$	$(3.74\pm0.17$	$) \times 10^{-4}$	932				
$\frac{\tau^+ \nu_{\tau}}{\overline{K}^0 e^+ \nu_e}$	(1.20 ± 0.27)	$) \times 10^{-3}$	90				
$\overline{K}^0 e^+ \nu_e$	(8.72 ± 0.09)) %	869				
$\overline{K}{}^{0}\mu^{+}\nu_{\mu}$	(8.76 ± 0.19)) %	865				
$K^-\pi^+e^+\nu_e$	(4.02 ± 0.18)) % S=3.2	864				
$\overline{K}^*(892)^{0}e^+ u_e$, $\overline{K}^*(892)^{0} ightarrow$	(3.77 ± 0.17)) %	722				
$K^-\pi^+$	`	•					
$({\it K}^-\pi^+)_{[0.8-1.0]{ m GeV}}{ m e}^+ u_e$	(3.39 ± 0.09) %	864				
$(K^-\pi^+)_{S-wave}e^+\nu_e$	(2.28 ± 0.11	$) \times 10^{-3}$	_				
$\overline{K}^*(1410)^0 e^+ \nu_e$,	< 6	$\times 10^{-3}$ CL=90%	_				
$\overline{K}^*(1410)^0 \rightarrow K^-\pi^+$							
$\overline{K}_{2}^{*}(14\dot{3}0)^{0}e^{+} u_{e}$,	< 5	\times 10 ⁻⁴ CL=90%	_				
$K_2^*(1430)^0 \to K^-\pi^+$							

Page 39

HTTP://PDG.LBL.GOV

V = −+ a+ nanwasanant	7 10=361 000	0/ 0/4
$\frac{K^-\pi^+e^+\nu_e}{K^*(892)^0e^+\nu_e}$ nonresonant	$< 7 \times 10^{-3} \text{CL} = 90^{\circ}$	
	$(5.40 \pm 0.10)\%$ S=1	
$K^-\pi^+\mu^+\nu_{\mu}$	$(3.65 \pm 0.34)\%$	851
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$,	(3.52 ± 0.10) %	717
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		
$K^-\pi^+\mu^+\nu_\mu$ nonresonant	$(1.9 \pm 0.5) \times 10^{-3}$	851
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(5.27 ± 0.15) %	717
$K^-\pi^+\pi^0\mu^+ u_{\mu}$	$< 1.5 \times 10^{-3} \text{CL} = 90^{\circ}$	% 825
$\overline{K}_1(1270)^0 \overset{'}{e^+} u_e, \ \overline{K}_1^0 ightarrow$	$(1.06 \pm 0.15) \times 10^{-3}$	_
$\frac{K^-\pi^+\pi^0}{\overline{K}_0^*(1430)^0\mu^+ u_\mu}$	4	
$K_0^*(1430)^0 \mu^+ \nu_\mu$	$< 2.3 \times 10^{-4} \text{CL} = 90^{\circ}$	
$\overline{K}^*(1680)^0 \mu^+ \nu_{\mu}$	$< 1.5 \times 10^{-3} \text{CL} = 90^{\circ}$	
$\pi^0 e^+ \nu_e$	$(3.72 \pm 0.17) \times 10^{-3}$ S=2	.0 930
$\pi^0\mu^+ u_\mu$	$(3.50 \pm 0.15) \times 10^{-3}$	927
$\eta e^+ \nu_e$	$(1.11 \pm 0.07) \times 10^{-3}$	855
$\eta \mu^+ u_{\mu}$	$(1.04 \pm 0.11) \times 10^{-3}$	851
$\pi^-\pi^+e^+\nu_e$	$(2.45 \pm 0.10) \times 10^{-3}$	924
$f_0(500)^0e^+ u_e$, $f_0(500)^0 ightarrow$	$(6.3 \pm 0.5) \times 10^{-4}$	_
$\pi^+\pi^-$		
$ ho^0e^+ u_e$	$(2.18 \begin{array}{c} + & 0.17 \\ - & 0.25 \end{array}) \times 10^{-3}$	774
$ ho^0 \mu^+ u_\mu$	$(2.4 \pm 0.4) \times 10^{-3}$	770
$\omega e^+ \nu_e$	$(1.69 \pm 0.11) \times 10^{-3}$	771
$\omega \mu^+ \nu_\mu$	$(1.77 \pm 0.21) \times 10^{-3}$	767
$\eta'(958)e^{+}\nu_{e}$	$(2.0 \pm 0.4) \times 10^{-4}$	690
$a(980)^0 e^+ \nu_e$, $a(980)^0 \rightarrow \eta \pi^0$	$(1.7 + 0.8 \ -0.7) \times 10^{-4}$	_
$b_1(1235)^0 e^+ \nu_e, \ b_1^0 \to \omega \pi^0$	$< 1.75 \times 10^{-4} \text{CL} = 90^{\circ}$	0/
$\phi e^+ \nu_e$	< 1.75	
$D^0 e^+ \nu_e$	< 1.3	
		/0 J
Hadronic m	odes with a \overline{K} or $\overline{K}K\overline{K}$	
$\kappa_{S}^{0}\pi^{+}$	$(1.562\pm 0.031)\%$ S=1	.7 863
$\mathcal{K}_{L}^{0}\pi^{+}$	(1.46 ± 0.05) %	863
$K^-2\pi^+$	$[jj]$ (9.38 \pm 0.16) % S=1	.6 846
$(K^\pi^+)_{S- ext{wave}}\pi^+$	(7.52 ± 0.17) %	846
$\overline{K}_0^*(1430)^0\pi^+$,	[kk] (1.25 ± 0.06) %	382
$\overline{K}_0^*(1430)^0 ightarrow K^-\pi^+$		
\overline{K}^* (892) $^0\pi^+$,	(1.04 ± 0.12) %	714
$\overrightarrow{K}^*(892)^0 \rightarrow K^-\pi^+$		
$\overline{\mathit{K}}^{*}(1410)^{0}\pi^{+}$, $\overline{\mathit{K}}^{*0}$ $ ightarrow$	not seen	381
$\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$,	4	
	[kk] (2.3 ± 0.7) × 10 ⁻⁴	371
$\overline{\mathit{K}}_{2}^{*}(1430)^{0} \rightarrow \ \mathit{K}^{-}\pi^{+}$		

f (000) - +		,	1.50	1	0.22	١.	10-4		660
$f_0(980)\pi^+$, $f_0(980) ightarrow~\pi^+\pi^-$		(1.50	土	0.33) ×	10 ⁻⁴		669
$f_0(1370)\pi^+$,		(8	+	4) ×	10-5		_
$f_0(1370) \rightarrow \pi^+\pi^-$		(•	_	•) ^	. 10		
$f_2(1270)\pi^+$,		(5.0	\pm	0.9) ×	10^{-4}		485
$f_2(1270) \to \pi^+\pi^-$		`				,			
$ ho(1450)^0\pi^+$,	<	< 1	8			×	10^{-5} C	L=95%	338
$ ho(1450)^0 ightarrow \pi^+\pi^-$									
$f_0(1500)\pi^+$,		(1.1	\pm	0.4) ×	10^{-4}		_
$f_0(1500) \to \pi^+\pi^-$							_		
$f_0(1710)\pi^+$,	<	< !	5			×	10 ⁻⁵ C	L=95%	_
$f_0(1710) \to \pi^+\pi^-$			_				5.		
$f_0(1790)\pi^+$,	<	< '	7			×	10 ⁻⁵ C	L=95%	_
$f_0(1790) o \pi^+ \pi^- \ (\pi^+ \pi^+)_{S-wave} \pi^-$			1 0				10 ⁻⁴ C	I OE0/	909
$2\pi^+\pi^-$ nonresonant			1.2 1.1				10 °C		909
$\pi^+ 2\pi^0$	<			+	0.4		10^{-3}	L=95/0	909
$2\pi + \pi - \pi^0$					0.08				883
$3\pi^{+}2\pi^{-}$		•				,	10 ⁻³	S=1.1	845
$\eta \pi^+$							10^{-3}		848
$\eta \pi^+ \pi^0$		•				•	10^{-3}	S=2.2	831
$\eta 2\pi^+\pi^-$							10^{-3}		798
$\eta \pi^+ 2\pi^0$		•				•	10^{-3}		801
$\eta \eta \pi^+$							10^{-3}		700
$\omega \pi^+$							10^{-4}		764
$\omega \pi^+ \pi^0$							10^{-3}		742
$\eta'(958)\pi^+$							10^{-3}		681
$\eta'(958)\pi^+\pi^0$		(1.6	±	0.5) ×	10 ⁻³		654
Hadronic n	nodes	w	ith a	K	\overline{K} p	air			
$K_S^0 K^+$		(3.04	\pm	0.09) ×	10^{-3}	S=2.2	793
$K_I^{0}K^{+}$		(3.21	\pm	0.16) ×	10^{-3}		793
$K_S^{ar{0}}K^+\pi^0$		(5.07	\pm	0.30) ×	10^{-3}		744
$K^*(892)^+ K_S^0$		(2.89	\pm	0.30) ×	10^{-3}		612
$\overline{K}^*(892)^0 K^{+}$		(5.2	\pm	1.4) ×	10^{-4}		613
$K_L^0 K^+ \pi^0$		(5.24	\pm	0.31) ×	10^{-3}		744
$K^+K^-\pi^+$	[<i>jj</i>]	(9.68	\pm	0.18) ×	10^{-3}		744
$K^{+}\overline{K}^{*}(892)^{0}$,		(:	2.49	+	0.08) ×	10-3		613
$\overline{K}^*(892)^{0} \rightarrow K^-\pi^+$		`		_	0.13	,			
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$,		(1.82	\pm	0.35) ×	10^{-3}		_
$\overline{K}_0^*(1430)^0 \to \ K^-\pi^+$									
$K^{+}\overline{K}_{2}^{*}(1430)^{0}, \ \overline{K}_{2}^{*} \rightarrow$		(1.6	+	1.2 0.8) ×	⟨ 10 ⁻⁴		_

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

$K^+\pi^0$	$(2.08 \pm 0.21) \times 10^{-4}$ S=1.4	864
$K^+ \eta$	(1.25 \pm 0.16) \times 10 ⁻⁴ S=1.1	776
$K^+ \eta'(958)$	$(1.85 \pm 0.20) \times 10^{-4}$	571
$K^+\pi^+\pi^-$	$(4.91 \pm 0.09) \times 10^{-4}$	846
$\mathcal{K}^+ ho^0$	$(1.9 \pm 0.5) \times 10^{-4}$	679
$K^*(892)^0\pi^+$, $K^*(892)^0 ightarrow$	$(2.3 \pm 0.4) \times 10^{-4}$	714
$K^{+}\pi^{-} \atop K^{+}f_{0}(980),\; f_{0}(980) ightarrow \pi^{+}\pi^{-}$	(4.4 \pm 2.6) \times 10 ⁻⁵	_
$K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 ightarrow$	$(3.9 \pm 2.7) \times 10^{-5}$	_
$K^+\pi^+\pi^-$ nonresonant	not seen	846
$K^+\pi^+\pi^-\pi^0$	$(1.21 \pm 0.09) \times 10^{-3}$	817
$K^+\pi^+\pi^-\pi^0$ nonresonant	$(1.10 \pm 0.07) \times 10^{-3}$	817
$K^+\omega$	$(5.7 {+}{2.5} \\ {-} 2.1) \times 10^{-5}$	675
2K ⁺ K ⁻	(6.14 \pm 0.11) $ imes$ 10 ⁻⁵	550
ϕ (1020) 0 K^{+}	$< 2.1 \times 10^{-5} \text{CL} = 90\%$	_
$K^+ \phi$ (1020), $\phi \rightarrow K^+ K^-$	(4.4 \pm 0.6) $ imes$ 10 ⁻⁶	_
$K^+(K^+K^-)$ _{S-wave}	$(5.77 \pm 0.12) \times 10^{-5}$	550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

•	\ /·	•	•	,	
$\pi^{+} e^{+} e^{-}$	C1	< 1.1		$\times 10^{-6}$ CL=90%	930
$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		\times 10 ⁻⁵ CL=90%	925
$\pi^+\phi$, ϕo e^+e^-		[00] (1.7	$+\ 1.4 \\ -\ 0.9$	$) \times 10^{-6}$	_
$\pi^{+} \mu^{+} \mu^{-}$	C1	< 6.7		$\times 10^{-8} CL = 90\%$	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[oo] (1.8	\pm 0.8	$) \times 10^{-6}$	_
$\rho^+\mu^+\mu^-$	C1	< 5.6		$\times 10^{-4}$ CL=90%	757
$K^+e^+e^-$		[pp] < 8.5		$\times 10^{-7}$ CL=90%	870
$K^{+}\pi^{0}e^{+}e^{-}$		< 1.5		\times 10 ⁻⁵ CL=90%	864
$K_S^0 \pi^+ e^+ e^-$		< 2.6		$\times 10^{-5}$ CL=90%	_
$K_S^{0}K^{+}e^{+}e^{-}$		< 1.1		\times 10 ⁻⁵ CL=90%	792
$K^+\mu^+\mu^-$		[pp] < 5.4		$\times 10^{-8} CL = 90\%$	856
$\pi^+e^+\mu^-$	LF	< 2.1		$\times 10^{-7}$ CL=90%	927
$\pi^+e^-\mu^+$	LF	< 2.2		$\times 10^{-7}$ CL=90%	927
$K^+e^{+}\mu^-$	LF	< 7.5		$\times 10^{-8}$ CL=90%	866
$K^+e^-\mu^+$	LF	< 1.0		$\times 10^{-7}$ CL=90%	866
π^-2e^+	L	< 5.3		\times 10 ⁻⁷ CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 1.4		$\times 10^{-8}$ CL=90%	918
$\pi^-e^+\mu^+$	L	< 1.3		$\times 10^{-7}$ CL=90%	927
$\rho^{-}2\mu^{+}$	L	< 5.6		$\times 10^{-4}$ CL=90%	757
K^-2e^+	L	< 9		$\times 10^{-7}$ CL=90%	870
$K_S^0 \pi^- 2e^+$		< 3.3		$\times 10^{-6}$ CL=90%	863
$K^{-}\pi^{0}2e^{+}$		< 8.5		\times 10 ⁻⁶ CL=90%	864
$K^-2\mu^+$	L	< 1.0		$\times 10^{-5}$ CL=90%	856
$K^-e^+\mu^+$	L	< 1.9		$\times 10^{-6}$ CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5		$\times 10^{-4}$ CL=90%	703
<u>Λ</u> e ⁺	L,B	< 1.1		$\times 10^{-6}$ CL=90%	602
$\overline{\Lambda}e^+$	L,B	< 6.5		$\times 10^{-7}$ CL=90%	602
$\sum_{0}^{0} e^{+}$	L,B	< 1.7		$\times 10^{-6}$ CL=90%	554
$\overline{\Sigma}{}^0 e^+$	L,B	< 1.3		$\times 10^{-6}$ CL=90%	554

$$D^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 8/11/2022 09:37

Mass
$$m=1864.84\pm0.05$$
 MeV $m_{D^\pm}-m_{D^0}=4.822\pm0.015$ MeV Mean life $\tau=(410.3\pm1.0)\times10^{-15}$ s $c au=123.01~\mu{\rm m}$

Mixing and related parameters

$$\left| m_{D_1^0} - m_{D_2^0} \right| = (0.997 \pm 0.116) \times 10^{10} \ \hbar \ \text{s}^{-1}$$
 $\left(\Gamma_{D_1^0} - \Gamma_{D_2^0} \right) / \Gamma = 2y = (1.23 \pm 0.11) \times 10^{-2}$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\%$$

$$A_{CP}(2K_0^0) = (-1.9 \pm 1.1)\%$$
 (S = 1.1)
$$A_{CP}(\pi^+\pi^-) = (0.13 \pm 0.14)\%$$

$$A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\%$$

$$A_{CP}(\rho\gamma) = (6 \pm 15) \times 10^{-2}$$

$$A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2}$$

$$A_{CP}(\pi^+\pi^-\pi^0) = (0.3 \pm 0.4)\%$$

$$A_{CP}(\eta\pi^+\pi^-) \text{ in } D^0, \overline{D}^0 \to \eta\pi^+\pi^- = (0.9 \pm 1.3) \times 10^{-2}$$

$$A_{CP}(\eta(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\% [qq]$$

$$A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\% [qq]$$

$$A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% [qq]$$

$$A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (0 \pm 70)\% [qq]$$

$$A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\% [qq]$$

$$A_{CP}(\rho(1450)^-\pi^+ \to \pi^+\pi^-\pi^0) = (6 \pm 9)\% [qq]$$

$$A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (5 \pm 14)\% [qq]$$

$$A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (8 \pm 11)\% [qq]$$

$$A_{CP}(\rho(1700)^-\pi^+ \to \pi^+\pi^-\pi^0) = (8 \pm 11)\% [qq]$$

$$A_{CP}(f_0(980)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 35)\% [qq]$$

$$A_{CP}(f_0(1370)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% [qq]$$

$$A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% [qq]$$

$$A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\% [qq]$$

```
A_{CP}(\sigma(400)\pi^0 \to \pi^+\pi^-\pi^0) = (6 \pm 8)\%^{[qq]}
A_{CP}(nonresonant \pi^+\pi^-\pi^0) = (-13 \pm 23)\% [qq]
A_{CP}(a_1(1260)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (5 \pm 6)\%
A_{CP}(a_1(1260)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (14 \pm 18)\%
A_{CP}(\pi(1300)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (-2 \pm 15)\%
A_{CP}(\pi(1300)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (-6 \pm 30)\%
A_{CP}(a_1(1640)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (9 \pm 26)\%
A_{CP}(\pi_2(1670)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (7 \pm 18)\%
A_{CP}(\sigma f_0(1370) \rightarrow 2\pi^+ 2\pi^-) = (-15 \pm 19)\%
A_{CP}(\sigma \rho(770)^0 \rightarrow 2\pi^+ 2\pi^-) = (3 \pm 27)\%
A_{CP}(2\rho(770)^0 \rightarrow 2\pi^+2\pi^-) = (-6 \pm 6)\%
A_{CP}(2f_2(1270) \rightarrow 2\pi^+ 2\pi^-) = (-28 \pm 24)\%
A_{CP}(\pi^+\pi^-\pi^0\eta) in D^0, \overline{D}{}^0 \to \pi^+\pi^-\pi^0\eta = (-6 \pm 6) \times 10^{-2}
A_{CP}(K^+K^-\pi^0) = (-1.0 \pm 1.7)\%
A_{CP}(K^*(892)^+K^- \rightarrow K^+K^-\pi^0) = (-0.9 \pm 1.3)\%^{[qq]}
A_{CP}(K^*(1410)^+K^- \rightarrow K^+K^-\pi^0) = (-21 \pm 24)\%^{[qq]}
A_{CP}((K^{+}\pi^{0})_{S-wave}K^{-} \rightarrow K^{+}K^{-}\pi^{0}) = (7 \pm 15)\%^{[qq]}
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\%^{[qq]}
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\%^{[qq]}
A_{CP}(a_0(980)^0\pi^0 \to K^+K^-\pi^0) = (-5 \pm 16)\%^{[qq]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[qq]}
A_{CP}(K^*(892)^-K^+ \to K^+K^-\pi^0) = (-5 \pm 4)\%^{[qq]}
A_{CP}(K^*(1410)^-K^+ \rightarrow K^+K^-\pi^0) = (-17 \pm 29)\%^{[qq]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\%^{[qq]}
A_{CP}(K^+K^-\eta) in D^0, \overline{D}{}^0 \rightarrow K^+K^-\eta = (-1.4 \pm 3.5) \times 10^{-2}
A_{CP}(\phi(1020)\eta \to K^+K^-\eta) \text{ in } D^0, \overline{D}{}^0 \to \phi(1020)\eta = (-2 \pm 1000)\eta
     4) \times 10^{-2}
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_{S}^{0}\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_{S}^{0}\eta') = (1.0 \pm 0.7)\%
A_{CP}(K_{S}^{0}\phi) = (-3 \pm 9)\%
A_{CP}(K^-\pi^+) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp} \pi^{\pm}) = (12.7 \pm 1.5)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{\mp}\pi^{\pm}\eta) in D^{0}, \overline{D}^{0} \rightarrow K^{\mp}\pi^{\pm}\eta = (-1.9 \pm 1.6) \times 10^{-2}
A_{CP}(K_S^0\pi^0\eta) in D^0, \overline{D}{}^0 \to K_S^0\pi^0\eta = (-3.9 \pm 3.3) \times 10^{-2}

A_{CP}(K^{\mp}\pi^{\pm}\pi^0\eta) in D^0, \overline{D}{}^0 \to K^{\mp}\pi^{\pm}\pi^0\eta = (-8 \pm 5) \times 10^{-2}
A_{CP}(K^*(892)^-\pi^+ \rightarrow K_S^0\pi^+\pi^-) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
```

$$A_{CP}(\overline{K}^0\rho^0 \to K_S^0\pi^+\pi^-) = (-0.1 \pm 0.5)\%$$

$$A_{CP}(\overline{K}^0\omega \to K_S^0\pi^+\pi^-) = (-13 \pm 7)\%$$

$$A_{CP}(\overline{K}^0f_0(980) \to K_S^0\pi^+\pi^-) = (-0.4 \pm 2.7)\%$$

$$A_{CP}(\overline{K}^0f_0(1370) \to K_S^0\pi^+\pi^-) = (-4 \pm 5)\%$$

$$A_{CP}(\overline{K}^0f_0(1370) \to K_S^0\pi^+\pi^-) = (-1 \pm 9)\%$$

$$A_{CP}(\overline{K}^0f_0(600) \to K_S^0\pi^+\pi^-) = (-3 \pm 5)\%$$

$$A_{CP}(K_S^0f_0(600) \to K_S^0\pi^+\pi^-) = (-3 \pm 5)\%$$

$$A_{CP}(K_S^0(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (-2 \pm 9)\%$$

$$A_{CP}(K_S^0(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (-2 \pm 9)\%$$

$$A_{CP}(K_S^0(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%$$

$$A_{CP}(K_S^0(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%$$

$$A_{CP}(K_S^0(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K_S^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K_S^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K_S^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K_S^*(1270)^+K^- \to K_S^0\pi^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K_S^*(1270)^+K^- \to K_S^0\pi^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K_S^*(1270)^+K^- \to K_S^0\pi^+K^-) = (-1 \pm 32)\%$$

$$A_{CP}(K_S^*(1270)^+K^- \to K_S^0\pi^+K^-) = (-7 \pm 17)\%$$

$$A_{CP}(K_S^*(1410)^+K^- \to K_S^0\pi^+K^-) = (-1 \pm 14)\%$$

$$A_{CP}(K_S^*(1680)^+K^- \to K_S^0\pi^+K^-) = (-1 \pm 14)\%$$

$$A_{CP}(K_S^*($$

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in $D^0 \to \pi^+\pi^-\pi^0$ decays = $(97.3 \pm 1.7)\%$ CP-even fraction in $D^0 \to K^+K^-\pi^0$ decays = $(73 \pm 6)\%$ CP-even fraction in $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays = $(76.9 \pm 2.3)\%$ CP-even fraction in $D^0 \to K_S^0\pi^+\pi^-\pi^0$ decays = $(23.8 \pm 1.7)\%$ CP-even fraction in $D^0 \to K^+K^-\pi^+\pi^-$ decays = $(75 \pm 4)\%$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.154 \pm 0.029)\%$$

χ^2 tests of *CP*-violation (*CPV*) p-values

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (2.9 \pm 2.2) \times 10^{-3} \ [ii]$$

 $A_{\text{Tviol}}(K_S\pi^+\pi^-\pi^0) \text{ in } D^0, \ \overline{D}{}^0 \to K_S\pi^+\pi^-\pi^0 = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES	F	raction	(Γ_i/Γ)	Scale factor/ p Confidence leve(MeV/ c)
	Topolog	gical m	odes	
0-prongs	[<i>rr</i>]	(15	\pm 6) %
2-prongs		(71	\pm 6) %
4-prongs	[<i>ss</i>]	(14.6	\pm 0.5) %
6-prongs	[tt]	(6.5	\pm 1.3	$) \times 10^{-4}$

HTTP://PDG.LBL.GOV

Page 48

Inclusive modes

e^+ anything	[uu] (6.49 ± 0.11) %	_
μ^+ anything	(6.8 ± 0.6) %	_
K^- anything	(54.7 \pm 2.8) % S=1.3	_
\overline{K}^0 anything $+ K^0$ anything	$(47 \pm 4) \%$	_
K^+ anything	$(3.4 \pm 0.4)\%$	_
$K^*(892)^-$ anything	$(15 \pm 9) \ \%$	_
$\overline{K}^*(892)^0$ anything	$(9 \pm 4)\%$	_
$K^*(892)^+$ anything	< 3.6 % CL=90%	_
$K^*(892)^0$ anything	$(2.8 \pm 1.3)\%$	_
η anything	$(9.5 \pm 0.9)\%$	_
η' anything	$(2.48 \pm 0.27)\%$	_
ϕ anything	(1.08 ± 0.04) %	_
invisibles	$< 9.4 \times 10^{-5} CL = 90\%$	_

Semileptonic modes

•••••••	prome moues		
$K^-e^+ u_e$	$(3.549\pm\ 0.026)\%$	S=1.2	867
$\mathcal{K}^-\mu^+ u_\mu$	(3.41 ± 0.04) %		864
$K^*(892)^{-}e^+\nu_e$	($2.15~\pm~0.16$) %		719
$K^*(892)^- \mu^+ u_{\mu}$	(1.89 ± 0.24) %		714
$K^-\pi^0e^+\nu_e$	$\left(\begin{array}{ccc} 1.6 & + & 1.3 \\ - & 0.5 \end{array}\right)\%$		861
$\overline{K}{}^0\pi^-e^+ u_e$	(1.44 \pm 0.04) %		860
$(\overline{K}{}^0\pi^-)$ s $-wave$ $e^+\nu_e$	$(7.9 \pm 1.7) \times 10^{-4}$		860
$K^-\pi^+\pi^-e^+\nu_e$	$(2.8 \ \stackrel{+}{-} \stackrel{1.4}{1.1} \) imes 10^{-4}$		843
$K_1(1270)^- e^+ \nu_e$	(1.01 ± 0.18) $\times 10^{-3}$		511
$\mathcal{K}^-\pi^+\pi^-\mu^+ u_\mu$	$< 1.3 \times 10^{-3}$	CL=90%	821
$(\overline{K}^*(892)\pi)^- \mu^+ \nu_{\mu}$	$< 1.5 \times 10^{-3}$	CL=90%	692
$\pi^- e^+ \nu_e$	$(2.91 \pm 0.04) \times 10^{-3}$		927
$\pi^-\mu^+ u_\mu$	$(2.67 \pm 0.12) \times 10^{-3}$	S=1.3	924
$\pi^-\pi^0e^+ u_e$	$(1.45 \pm 0.07) \times 10^{-3}$		922
$ ho^-$ e $^+$ $ u_{ m e}$	$(1.50 \pm 0.12) \times 10^{-3}$	S=1.9	771
$ ho^-\mu^+ u_\mu$	$(1.35 \pm 0.13) \times 10^{-3}$		767
$a(980)^- e^+ \nu_e$, $a^- \to \eta \pi^-$	(1.33 $^{+}_{-}$ 0.34) \times 10 ⁻⁴		_
$b_1(1235)^- e^+ \nu_e, \ b_1^- o \ \omega \pi^-$	$< 1.12 \times 10^{-4}$	CL=90%	_

Hadronic modes with one \overline{K}

$K^-\pi^+$		(3.947 ± 0.030) %	S=1.2	861
$K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$		($1.240\pm~0.022$) %		860
		$(10.0 \pm 0.7) \times 10^{-3}$		860
$\kappa_{\mathcal{S}}^{ar{b}}\pi^{+}\pi^{-}$	[<i>jj</i>]	(2.80 \pm 0.18) %	S=1.1	842
$K_S^0 ho^0$		$(6.3 \ \ \stackrel{+}{-} \ \stackrel{0.6}{0.8} \ \) \times 10^{-3}$		674
$K^0_S\omega$, $\omega o \pi^+\pi^-$		$(2.0\pm0.6)\times10^{-4}$		670

HTTP://PDG.LBL.GOV

Page 49

$\overline{K}^*(1680)^0\pi^0$, $\overline{K}^{*0} ightarrow$		(1.0	± 0	$0.4) \times 10^{-3}$		_
$K_S^0 f_2(1270), f_2 \rightarrow 2\pi^0$				1) × 10 ⁻⁴		_
$2K_S^0$, one $K_S^0 ightarrow \ 2\pi^0$		(3.2	\pm 1	$1.1) \times 10^{-4}$		_
$K^{-}2\pi^{+}\pi^{-}$	[<i>jj</i>]	(8.22	± 0	0.14) %	S=1.1	813
$\mathcal{K}^-\pi^+ ho^0$ total		(6.87	± 0	0.31) %		609
$K^-\pi^+ ho^0$ 3-body		(6.1	\pm 1	1.6) $\times 10^{-3}$		609
$\overline{K}^*(892)^0 ho^0$, $\overline{K}^{*0} o$		(1.01	± 0	0.05) %		416
$rac{{\cal K}^-\pi^+}{{\cal K}^*(892)^0} ho^0$ transverse, $rac{{\cal K}^*0}{{\cal K}^{*0}} ightarrow {\cal K}^-\pi^+$		(1.2	± 0).4)%		417
$K^{-}a_{1}(1260)^{+}, a_{1}^{+} \rightarrow \rho^{0}\pi^{+}$		(4.32	± 0	0.32) %		327
$K_1(1270)^-\pi^+$, $K_1^- o$		(3.9	± 0	$0.4) \times 10^{-3}$		_
$K^-\pi^+\pi^-$ total $K_1(1270)^-\pi^+,~K_1^- ightarrow$		(6.6	± 2	2.3) × 10 ⁻⁴		484
$\overline{K}^*(892)^0\pi^-, \ \overline{K}^{*0} \rightarrow K^-\pi^+$						
$K^-2\pi^+\pi^-$ nonresonant		(1.81	± 0	0.07) %		813
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	[xx]	(5.2				813
$\mathcal{K}^0_{S} \eta, \ \eta ightarrow \ \pi^+ \pi^- \pi^0$				0.03×10^{-3}		772
$K_{S}^{0}\omega$, $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$,		$(0.6) \times 10^{-3}$		670
$K^{-}\frac{3}{\pi^{+}}\frac{7}{2\pi^{0}}$				0.23) %		815
$K^{-}2\pi^{+}\pi^{-}\pi^{0}$		•		0.4) %		771
$\overline{K}^*(892)^0\pi^+\pi^-\pi^0, \ \overline{K}^{*0} \to K^-\pi^+$		`		0.6) %		643
$K^{-} \overset{\kappa}{\pi^{+}} \overset{\pi^{+}}{\omega}, \ \omega \rightarrow \ \pi^{+} \pi^{-} \pi^{0}$		(28	+ 0	0.5) %		605
$\overline{K}^*(892)^0\omega, \overline{K}^{*0}\rightarrow$		•		$3.0) \times 10^{-3}$		410
$ \begin{array}{c} K^{-}\pi^{+}, \omega \rightarrow \\ K^{0}\eta\pi^{0} \end{array} $ $ K^{0}\eta\pi^{0} $ (222)		(0.0				.20
$\kappa^0_{n\pi^0}$		(1 01	+ 0	0.05) %		721
$K_S^0 a_0(980), \ a_0 \to \eta \pi^0$				0.28) %		
$\overline{K}^*(892)^0\eta$, $\overline{K}^{*0} \rightarrow K^0_S\pi^0$						
$K^{-}\pi^{+}\eta$				0.7×10^{-3}	C 1 4	701
•		,		0.05) %	S=1.4	721
$K^*(892)^0 \eta, K^{*0} \to K^- \pi^+$				$0.8 \ 0.6 \) \times 10^{-3}$		-
$a_0(980)^+ K^-, a_0^+ \to \eta \pi^+$			·	(0.9) (0.7) (0.7)		-
$K_2^*(1980)^-\pi^+, \ K_2^{*-} o K^-\eta$		(2.2	+ 1 - 1	7) × 10 ⁻⁴		_
$\mathcal{K}^-\pi^+\pi^0\dot{\eta}$		•		$0.27) \times 10^{-3}$		656
$\kappa_{S}^{0}\pi^{+}\pi^{-}\eta$				0.21×10^{-3}		651
$K_{\mathcal{S}}^{0} 2\pi^{0} \eta$				$0.26 \) \times 10^{-3}$		656
$K_S^0 2\pi^+ 2\pi^-$		(2.66	± 0	$0.30) \times 10^{-3}$		768

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

$K_{\mathcal{S}}^{0}\eta$	(5.09 ± 0.13	$3) \times 10^{-3}$		772
$K_{S}^{0}\omega$	(1.11 ± 0.06	5)%		670
$K_S^0 \eta'(958)$	(9.49 ± 0.32)	$2) \times 10^{-3}$		565
$\overline{K}^*(892)^0 \pi^+ \pi^- \pi^0$	(1.9 ± 0.9) %		643
$\overline{K}^*(892)^0 \eta$	(1.41 ± 0.12	2)%		583
$K^-\pi^+\omega$	(3.1 ± 0.6) %		605
$\overline{K}^*(892)^0 \omega$	(1.1 ± 0.5) %		410
$K^-\pi^+\eta'(958)$	(6.43 ± 0.34)	4) \times 10 ⁻³		479
$K_S^0 \eta'(958) \pi^0$	(2.52 ± 0.27)	7) $\times 10^{-3}$		479
$\overline{K}^*(892)^0 \eta'(958)$	< 1.0	$\times 10^{-3}$	CL=90%	119

Hadronic modes with three K's

Pionic modes

	Pionic modes		
$\pi^+\pi^-$	$(1.454 \pm 0.024) \times 10^{-3}$	S=1.4	922
$2\pi^0$	$(8.26 \pm 0.25) \times 10^{-4}$		923
$\pi^{+}\pi^{-}\pi^{0}$	(1.49 ± 0.06) %	S=2.1	907
$\rho^+\pi^-$	(1.01 ± 0.04) %		764
$ ho^0 \pi^0$	$(3.86 \pm 0.23) \times 10^{-3}$		764
$\rho^-\pi^+$	$(5.15 \pm 0.25) \times 10^{-3}$		764
$\rho(1450)^{+}\pi^{-}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0}$	$(1.6 \pm 2.1) \times 10^{-5}$		_
$\rho(1450)^0 \pi^0, \ \rho^0 \to \pi^+ \pi^-$	$(4.5 \pm 2.0) \times 10^{-5}$		_
$ ho(1450)^-\pi^+, \ \rho^- o \ \pi^-\pi^0$	$(2.7 \pm 0.4) \times 10^{-4}$		_
$\rho(1700)^{+}\pi^{-}, \rho^{+} \rightarrow \pi^{+}\pi^{0}$	$(6.1 \pm 1.5) \times 10^{-4}$		_
$\rho(1700)^0 \pi^0, \ \rho^0 \to \ \pi^+ \pi^-$	$(7.4 \pm 1.8) \times 10^{-4}$		_
$\rho(1700)^-\pi^+, \ \rho^- \to \ \pi^-\pi^0$	$(4.8 \pm 1.1) \times 10^{-4}$		_
$f_0(980)\pi^0$, $f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.9) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(1.22 \pm 0.22) \times 10^{-4}$		_
$f_0(1370)\pi^0$, $f_0 \to \pi^+\pi^-$	$(5.5 \pm 2.1) \times 10^{-5}$		_
$f_0(1500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(5.8 \pm 1.6) \times 10^{-5}$		_
$f_0(1710)\pi_0^0$, $f_0 \to \pi^+\pi^-$	$(4.6 \pm 1.6) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2 \to \pi^+\pi^-$	$(1.97 \pm 0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.3 \pm 0.4) \times 10^{-4}$		907
$3\pi^0$	$(2.0 \pm 0.5) \times 10^{-4}$		908
$2\pi^{+}2\pi^{-}$	$(7.56 \pm 0.20) \times 10^{-3}$		880
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(4.53 \pm 0.31) \times 10^{-3}$		_
$2\pi^+\pi^-$ total			
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(3.13 \pm 0.21) \times 10^{-3}$		_
$ ho^{f 0}\pi^{+}$ S-wave			
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(1.9 \pm 0.5) \times 10^{-4}$		_
$ ho^0\pi^+$ <i>D</i> -wave			
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(6.4 \pm 0.7) \times 10^{-4}$		_
$\sigma\pi^+$,		
$a_1(1260)^-\pi^+$, $a_1^- o$	$(2.3 \pm 0.9) \times 10^{-4}$		_
$\rho^0\pi^-S$ -wave			
$a_1(1260)^-\pi^+, \ a_1^- o \ \sigma \pi^-$	(6.0 ± 3.4) $\times 10^{-5}$		_
$\pi(1300)^{+}\pi^{-}, \ \pi(1300)^{+} \rightarrow$	$(5.1 \pm 2.7) \times 10^{-4}$		_
$\sigma \pi^+$	(0.1 ± 2) // 20		
$\pi(1300)^-\pi^+, \ \pi(1300)^- \rightarrow$	$(2.3 \pm 2.2) \times 10^{-4}$		_
$\sigma\pi^-$			
$egin{array}{c} \sigma\pi^- \ a_1(1640)^+\pi^-$, $a_1^+ ightarrow$	$(3.2 \pm 1.6) \times 10^{-4}$		_
$ ho^{0}\pi^{+}$ <i>D</i> -wave			
$a_1(1640)^+\pi^-$, $a_1^+ o\sigma\pi^+$	(1.8 ± 1.4) $ imes 10^{-4}$		_
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \rightarrow$	$(2.0 \pm 0.9) \times 10^{-4}$		_
$f_2(1270)^0 \pi^+, f_2^0 \rightarrow$,		
$\pi^{+}\pi^{-}$			
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \rightarrow \ \sigma\pi^+$	$(2.6 \pm 1.0) \times 10^{-4}$		_
2(/ / / /	(= ===) // ===		

$2\rho^0$ total				$0.13) \times 10^{-3}$		518	
$2 ho_{_{_{a}}}^{0}$, parallel helicities	(8.3	\pm	$3.2) \times 10^{-5}$		_	
$2 ho^0$, perpendicular helici-	(4.8	\pm	0.6) \times 10 ⁻⁴		-	
ties $2 ho^0$, longitudinal helicities	(1.27	土	$0.10) \times 10^{-3}$		_	
$2\rho(770)^{0}$, <i>S</i> -wave				1.3) \times 10 ⁻⁴		_	
$2\rho(770)^{0}$, <i>P</i> -wave				1.3 $) \times 10^{-4}$		_	
$2\rho(770)^{0}$, <i>D</i> -wave				3.0) $\times 10^{-4}$		_	
Resonant $(\pi^+\pi^-)\pi^+\pi^-$				$0.12) \times 10^{-3}$		_	
3-body total	(, , , , ,			
$\sigma \pi^+ \pi^-$	(6.2	\pm	$0.9) \times 10^{-4}$		_	
$\sigma \rho (770)^0$				$2.5) \times 10^{-4}$		_	
$f_0(980)\pi^+\pi^-, f_0 \to$				0.5) $\times 10^{-4}$		- - - -	
$f_2(1270)\pi^+\pi^-, f_2 \rightarrow$				0.6) × 10 ⁻⁴		_	
$\pi^+\pi^-$		0) / L			
$2f_2(1270), f_2 \rightarrow \pi^+\pi^-$	(1.6	\pm	1.8) \times 10 ⁻⁴		_	
$\mathit{f}_{0}(1370)\sigma$, f_{0} $ ightarrow$	(1.6	\pm	$0.5) \times 10^{-3}$		_	
$\pi^{+}\pi^{-}2\pi^{0}$							
$\pi^{+} \pi^{-} 2\pi^{0}$,			0.09) %		882	
$\eta\pi^{z}$				$0.6) \times 10^{-4}$	S=1.1	846	
$\omega\pi^{0}$				$0.35) \times 10^{-4}$		761	
$\omega \eta$				$0.18) \times 10^{-3}$	S=1.1	648	
$2\pi^{+}2\pi^{-}\pi^{0}$				$0.5) \times 10^{-3}$		844	
$\eta \pi^+ \pi^-$				$0.07) \times 10^{-3}$		827	
$\omega \pi^+ \pi^-$	'			$0.20) \times 10^{-3}$		738	
$\omega \pi^0 \pi^0$		1.10		$\times 10^{-3}$	CL=90%	740	
$\eta 2\pi^{0}$				1.3) \times 10 ⁻⁴		829	
$\pi^{+}\pi^{-}\pi^{0}\eta$				$0.22) \times 10^{-3}$		797	
$3\pi^{+}3\pi^{-}$				1.2) \times 10 ⁻⁴		795	
$\eta'(958)\pi^0$				1.0) \times 10 ⁻⁴		678	
$\eta'(958)\pi^+\pi^-$				1.7) \times 10 ⁻⁴		650	
$\frac{2\eta}{2}$				$0.19) \times 10^{-3}$	S=2.2	754	
$2\eta\pi^0$	`			$2.2) \times 10^{-4}$		699	
3η		1.3		$\times 10^{-4}$	CL=90%	421	
$\eta\eta'(958)$	(1.01	±	$0.19) \times 10^{-3}$		537	
Hadronic modes with a $K\overline{K}$ pair							
K^+K^-	(4.08	\pm	$0.06) \times 10^{-3}$	S=1.6	791	
$2K_S^0$	(1.41	\pm	$0.05) \times 10^{-4}$	S=1.1	789	
$K_S^0 K^- \pi^+$	(3.3	\pm	$0.5) \times 10^{-3}$	S=1.1	739	
$K_{\underline{S}}^{0}K^{-}\pi^{+}$ $K^{*}(892)^{0}K_{S}^{0}, \overline{K}^{*0} \rightarrow$				$1.6)\times10^{-5}$		608	
$K^-\pi^+ \ K^*(892)^+K^-, \ K^{*+} ightarrow \ K_0^5\pi^+$	(1.89	\pm	$0.30) \times 10^{-3}$		_	
1.5 "							

$\overline{K}^*(1410)^0K^0_S,\ \overline{K}^{*0} ightarrow$	(1.3	±	1.9	$)\times10^{-4}$		_
$K^-\pi^+ \ K^*(1410)^+ K^-, \ K^{*+} ightarrow \ K^0_S \pi^+$	(3.2	\pm	1.9) × 10 ⁻⁴		-
$(K^-\pi^+)_{S-wave}K^0_S$	(6.0	\pm	2.9	$) \times 10^{-4}$		739
$(K_S^0\pi^+)_{S-wave}K^-$					$) \times 10^{-4}$		739
$a_0(980)^-\pi^+$, $a_0^- o K_S^0K^-$	(1.3	\pm	1.4	$) \times 10^{-4}$		_
$a_0(1450)^-\pi^+$, $a_0^- o$	(2.5	\pm	2.0	$) \times 10^{-5}$		_
$K_S^0 K^-$							
$a_2(1320)^-\pi^+, a_2^- \rightarrow$	(5	±	5	$) \times 10^{-6}$		-
$K_{S}^{0}K^{-}$,				· 5		
$\rho(1450)^-\pi^+, \ \rho^- \to \ K_S^0K^-$					$) \times 10^{-5}$		
$K_S^0 K^+ \pi^-$					$) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K_S^0, K^{*0} \rightarrow$	(1.12	土	0.21) × 10 ⁻⁴		608
$K^{+}\pi^{-}$ $K^{*}(892)^{-}K^{+}$, $K^{*-}\to$ $K^{0}_{S}\pi^{-}$	(6.2	±	1.0) × 10 ⁻⁴		-
$K^*(1410)^0K^0_{\mathcal{S}},\;\;K^{*0} ightarrow$	(5	±	8	$)\times 10^{-5}$		_
$K^{+}\pi^{+}$ $K^{*}(1410)^{-}K^{+}, K^{*-} \rightarrow$ $K^{0}\pi^{-}$	(2.6	±	2.0) × 10 ⁻⁴		-
$K_S^0\pi^- \ (K^+\pi^-)_{S-wave}K_S^0$	(27		1 0) × 10 ⁻⁴		739
$(K_S^0\pi^-)_{S-wave}K_S^+$					$) \times 10$ $) \times 10^{-4}$		739
$a_0(980)^+\pi^-, a_0^+ \rightarrow K_S^0K^+$					$) \times 10^{-4}$		-
$a_0(1450)^+\pi^-, a_0^+ \rightarrow$					$) \times 10^{-5}$		_
$K^0_{\mathcal{S}}K^+$	(5.2	_	2.5) / 10		
$ ho(1700)^{+}\pi^{-}, \ \rho^{+} ightarrow K_{S}^{0}K^{+}$					$) \times 10^{-5}$		_
$K^+K^-\pi^0$					$) \times 10^{-3}$		743
$K^*(892)^+ K^-, \ K^*(892)^+ ightarrow K^+ \pi^0$	(1.52	±	0.07	$) \times 10^{-3}$		-
$K^*(892)^-K^+, K^*(892)^- \rightarrow K^-\pi^0$	(5.4	±	0.4	$) \times 10^{-4}$		_
$(K^{-}\pi^{0})_{S-wave}K^{-}$	(2.43	\pm	0.18	$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}K^+$					$) \times 10^{-4}$		743
$\mathit{f}_{0}(980)\pi^{0}$, $\mathit{f}_{0} ightarrow\ \mathit{K}^{+}\mathit{K}^{-}$	(3.6	\pm	0.6	$) \times 10^{-4}$		_
$\phi\pi^0$, $\phi \to K^+K^-$				0.4	$) \times 10^{-4}$		_
$2K_{S}^{0}\pi^{0}$		5.9			× 10 ⁻⁴		740
$K^+K^-\eta$					$) \times 10^{-5}$		514
$\phi(1020)\eta$					$) \times 10^{-4}$		489
$K^+K^-\eta$ nonresonant				0.0) × 10 ⁻⁵		514
$2K_S^0\eta$					$) \times 10^{-4}$		508
$K^+K^-\pi^0\pi^0$	(6.9	\pm	8.0	$) \times 10^{-4}$		681

$K^+K^-\pi^+\pi^-$	(2.47 \pm 0.11) \times 10 ⁻³	677
$\phi(\pi^+\pi^-)_{S-wave}, \ \phi \rightarrow$	$(10 \pm 5) \times 10^{-5}$	614
$(\phi ho^0)_{S-wave},\;\;\phi ightarrow\;K^+K^-$	$(6.9 \pm 0.6) \times 10^{-4}$	250
$(\phi \rho^0)_{P-wave}, \phi \rightarrow K^+K^-$	$(4.0 \pm 1.9) \times 10^{-5}$	_
$(\phi \rho^0)_{D-wave}, \phi \rightarrow K^+K^-$	$(4.2 \pm 1.4) \times 10^{-5}$	_
$(K^*(892)^0\overline{K}^*(892)^0)_{S-wave}$	$(2.24 \pm 0.13) \times 10^{-4}$	_
$K^{*0} \rightarrow K^{\pm}\pi^{\mp}$	(2.2. ± 0.10) × 10	
$(K^*(892)^0\overline{K}^*(892)^0)_{P-wave}$	(1.20 \pm 0.08) $\times10^{-4}$	_
$(K^* \to \underline{K}^{\pm} \pi^{\mp} (K^* (892)^0)_{D-wave},$		
$(K^*(892)^{\circ}K^*(892)^{\circ})_{D-wave},$	$(4.7 \pm 0.4) \times 10^{-5}$	_
$K^* \rightarrow K^{\pm} \pi^{\mp} \ K^* (892)^0 (K^- \pi^+)_{S-wave}$	(14 + 06) × 10-4	
3-body, $K^{*0} \rightarrow K^+\pi^-$	$(1.4 \pm 0.6) \times 10^{-4}$	_
$K_1(1270)^+ K^-, K_1^+ \rightarrow K^+ \pi$	(14 + 00) × 10-4	
$K_1(1270)^+K^-$, $K_1^+ \rightarrow K^{*0}\pi^+$	$(1.4 \pm 0.9) \times 10^{-4}$	_
$K_1(1270)^+K^-, K_1^+ \rightarrow$	$(1.5 \pm 0.5) \times 10^{-4}$	_
$K^*(1430)^0\pi^+$, $K^{*0}\to$,	
$K^+\pi^-$		
$K_1(1270)^+ K^-, K_1^+ \rightarrow$	$(2.2 \pm 0.6) \times 10^{-4}$	_
$ ho^0 K^+$		
$K_1(1270)^+ K^-, K_1^+ o$	(1.5 \pm 1.2) \times 10 ⁻⁵	_
ω (782) K^+ , $\omega ightarrow \ \pi^+\pi^-$		
$K_1(1270)^-K^+,\;\;K_1^- ightarrow$	$(1.3 \pm 0.4) \times 10^{-4}$	_
$ ho^{0}K^{-}$		
$\mathit{K}_{1}(1400)^{+}\mathit{K}^{-}$, K_{1}^{+} $ ightarrow$	(4.6 \pm 0.4) $ imes$ 10 ⁻⁴	_
$K^*(892)^0\pi^+$, $K^{*0} ightarrow$		
$K^+\pi^-$	_	
$K^*(1410)^-K^+, K^{*-} \to$	$(7.0 \pm 1.1) \times 10^{-5}$	_
$K^{*0}\pi^{-}$	(0 0 2 2) × 10=5	
$K_1(1680)^+ K^-$, $K_1^+ ightarrow K^{*0} \pi^+$, $K^{*0} ightarrow K^+ \pi^-$	$(8.9 \pm 3.2) \times 10^{-5}$	_
$K^+K^-\pi^+\pi^-$ non-resonant	$(2.7 \pm 0.6) \times 10^{-4}$	_
$2K_S^0\pi^+\pi^-$	$(5.3 \pm 0.9) \times 10^{-4}$	673
	$(3.3 \pm 0.3) \times 10^{-3}$	677
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$ $K_{S}^{0}K^{+}\pi^{-}\pi^{0}$	$(6.5 \pm 0.7) \times 10^{-4}$	677
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$		
$K_{S}^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$		
$\mathbf{n} \cdot \mathbf{n} = \pi \cdot \pi - \pi^2$	$(3.1 \pm 2.0) \times 10^{-3}$	600

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

$\phi\pi^{0}$	$(1.17 \pm 0.04) \times 10^{-3}$	645
$\phi \eta$	$(1.8 \pm 0.5) \times 10^{-4}$	489
$\phi\omega$	$(6.5 \pm 1.0) \times 10^{-4}$	238

Radiative modes

$ ho^{0} \gamma$	(1.82 ± 0.32) $>$	10^{-5}		771
$\omega \gamma$	< 2.4	< 10 ⁻⁴	CL=90%	768
$\phi\gamma$	(2.81 ± 0.19) $>$	< 10 ⁻⁵		654
$K^*(892)^0 \gamma$	$(4.1 \pm 0.7) >$	$< 10^{-4}$		719

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

$\Delta C = 2$ forbidden via mixing (C2M) modes							
$K^+\ell^-\overline{ u}_\ell$ via $\overline{D}{}^0$		< 2.2	$\times 10^{-5}$	CL=90%	_		
K^{+} or $K^{*}(892)^{+}e^{-}\overline{\nu}_{e}$ via		< 6	$\times10^{-5}$	CL=90%	-		
$\overline{D}{}^0$ $K^+\pi^-$	DC	(1.50 \pm	$0.07) \times 10^{-4}$	S=3.0	861		
$K^+\pi^-$ via DCS		($1.363\pm$	$0.025) \times 10^{-4}$		_		
$\mathit{K}^{+}\pi^{-}$ via $\overline{\mathit{D}}{}^{0}$		< 1.6	$\times10^{-5}$	CL=95%	861		
$K_S^0 \pi^+ \pi^- \text{in } D^0 o \overline{D}{}^0$		< 1.8	× 10 ⁻⁴	CL=95%	_		
$K^*(892)^+\pi^-, K^{*+} \rightarrow K^0_S\pi^+$	DC	(1.13 +	$^{0.60}_{0.34}$) \times 10 ⁻⁴		711		
$K_0^*(1430)^+\pi^-, K_0^{*+} \to K_S^0\pi^+$	DC	< 1.4	× 10 ⁻⁵		-		
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_S^0\pi^+$	DC	< 3.4	× 10 ⁻⁵		_		
$K^+\pi^-\pi^0$	DC	($3.05 \pm$	$0.15\) \times 10^{-4}$		844		
$K^+\pi^-\pi^0$ via $\overline{D}{}^0$		(7.6 +	$^{0.5}_{0.6}) \times 10^{-4}$		_		
$K^+\pi^+2\pi^-$ via DCS		(2.49 \pm	$0.07) \times 10^{-4}$		_		
$K^{+}\pi^{+}2\pi^{-}$	DC	($2.65 \pm$	$0.06) \times 10^{-4}$		813		
$K^+\pi^+2\pi^-$ via \overline{D}^0		(7.9 \pm	$3.0) \times 10^{-6}$		812		
μ^- anything via $\overline{D}{}^0$		< 4	× 10 ⁻⁴	CL=90%	-		

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

	•	`	•		
$\gamma \gamma$	C1	< 8.5	\times 10 ⁻⁷	CL=90%	932
e^+e^-	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times10^{-9}$	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	< 4	$\times10^{-6}$	CL=90%	928
$\pi^0\mu^+\mu^-$	C1	< 1.8	$\times10^{-4}$	CL=90%	915
ηe^+e^-	C1	< 3	$\times10^{-6}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	$\times 10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 7	$\times10^{-6}$	CL=90%	922
$ ho^{0}e^{+}e^{-}$	C1	< 1.0	$\times10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	(9.6 ± 1)	1.2) \times 10 ⁻⁷		894
$\pi^+\pi^-\mu^+\mu^-$ (non-res)		< 5.5	\times 10 ⁻⁷	CL=90%	_
$ ho^0\mu^+\mu^-$	C1	< 2.2	$\times10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	< 6	\times 10 ⁻⁶	CL=90%	768

HTTP://PDG.LBL.GOV

Page 57

$\omega \mu^+ \mu^-$	C1	<	8.3			$\times 10^{-4}$	CL=90%	751
$K^{-}K^{+}e^{+}e^{-}$	C1	<	1.1			$\times 10^{-5}$	CL=90%	791
$\phi e^+ e^-$	C1	<	5.2			$\times10^{-5}$	CL=90%	654
$K^{-}K^{+}\mu^{+}\mu^{-}$	C1	(1.54	± 0	0.32	$) \times 10^{-7}$		710
$K^-K^+\mu^+\mu^-$ (non-res)		,	3.3		•	$\times 10^{-5}$	CL=90%	_
$\phi \mu^+ \mu^-$	C1	<	3.1			$\times 10^{-5}$	CL=90%	631
$\overline{K}^0 e^+ e^-$		[pp]	2.4			$\times 10^{-5}$	CL=90%	866
$\overline{\mathcal{K}}{}^{0}\mu^{+}\mu^{-}$		[pp]				$\times 10^{-4}$	CL=90%	852
${\it K}^-\pi^+e^+e^-$, $675<$		(4.0	± 0).5	$) \times 10^{-6}$		_
$m_{ee}~<$ 875 MeV								
$K^-\pi^+e^+e^-$, 1.005 <		<	5			\times 10 ⁻⁷	CL=90%	_
$m_{ee} < 1.035 \text{ GeV}$						10-5	CI 000/	710
$\overline{K}^*(892)^0 e^+ e^-$	C1	[<i>pp</i>] <				$\times 10^{-5}$	CL=90%	719
$K^-\pi^+\mu^+\mu^-$	C1		3.59			$\times 10^{-4}$	CL=90%	829
$K^-\pi^+\mu^+\mu^-$, 675 <		(4.2	± 0).4) × 10 ⁻⁶		_
$m_{\mu\mu} < 875 \text{ MeV}$						Б		
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[pp] <				$\times 10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	<				$\times 10^{-4}$	CL=90%	863
$\mu^{\pm} e^{\mp}$	LF	[aa] <				$\times 10^{-8}$	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[aa] <				$\times 10^{-7}$	CL=90%	924
$\eta e^{\pm} \mu^{\mp}$	LF	[aa] <				$\times 10^{-6}$	CL=90%	848
$\pi^{+}\pi^{-}e^{\pm}\mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁶	CL=90%	911
$ ho^0 e^{\pm} \mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁷	CL=90%	767
$\omega e^{\pm} \mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁶	CL=90%	764
$K^-K^+e^{\pm}\mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁶	CL=90%	754
$\phi e^{\pm} \mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁷	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁶	CL=90%	863
$K^{-}\pi^{+}e^{\pm}\mu^{\mp}$	LF	[aa] <				\times 10 ⁻⁶	CL=90%	848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$	LF	[aa] <				$\times 10^{-6}$	CL=90%	714
$2\pi^{-}2e^{+}$	L		9.1			\times 10 ⁻⁷	CL=90%	922
$2\pi^{-}2\mu^{+}$	L		1.52			\times 10 ⁻⁶	CL=90%	894
$K^{-}\pi^{-}2e^{+}$	L		5.0			\times 10 ⁻⁷	CL=90%	861
$K^{-}\pi^{-}2\mu^{+}$	L		5.3			$\times 10^{-7}$	CL=90%	829
$2K^{-}2e^{+}$	L		3.4			$\times 10^{-7}$	CL=90%	791
$2K^{-}2\mu^{+}$	L	<				$\times 10^{-7}$	CL=90%	710
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	L	<	3.06			$\times 10^{-6}$	CL=90%	911
$K^{-}\pi^{-}e^{+}\mu^{+}$	L	<				\times 10 ⁻⁶	CL=90%	848
$2K^{-}e^{+}\mu^{+}$	L		5.8			\times 10 ⁻⁷	CL=90%	754
<i>pe</i> −	L,B	[zz] <				$\times 10^{-5}$	CL=90%	696
$\overline{p}e^+$	L,B	[aaa] <	1.1			$\times 10^{-5}$	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2006.85\pm0.05$$
 MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.014\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7 ±0.9)%	43
$D^0\gamma$	(35.3 ± 0.9) %	137
$D^0 e^+ e^-$	$(3.91\pm0.33)\times10^{-3}$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

$$m_{D^*(2010)^+} - m_{D^+} = 140.603 \pm 0.015 \; {
m MeV}$$

$$m_{D^*(2010)^+} - m_{D^0} = 145.4258 \pm 0.0017 \text{ MeV}$$

Full width $\Gamma=83.4\pm1.8~\text{keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	(30.7±0.5) %	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2300)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Created: 8/11/2022 09:37

was $D_0^*(2400)$

Mass
$$m=2343\pm 10$$
 MeV (S = 1.5)
Full width $\Gamma=229\pm 16$ MeV

D_0^* (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi^{\pm}$	seen	411

 $D_1(2420)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2422.1\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^0}-m_{D^{*+}}=411.8\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^\pm}-m_{D_1(2420)^0}=4\pm4$ MeV Full width $\Gamma=31.3\pm1.9$ MeV (S = 2.8)

 $\overline{D}_1(2420)$ modes are charge conjugates of modes below.

D ₁ (2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2007)^0 \pi$	seen	359

 $D_1(2430)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2412\pm 9~\text{MeV}$ Full width $\Gamma=314\pm 29~\text{MeV}$

$D_1(2430)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $D^*(2010)^+\pi^-$

seen

345

$D_2^*(2460)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=2461.1^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=6.2)}$$
 $m_{D_2^*(2460)^0}-m_{D^+}=591.5^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^0}-m_{D^{*+}}=450.9^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{\rm MeV}$ Full width $\Gamma=47.3\pm0.8~{\rm MeV}~{\rm (S=1.5)}$

 $\overline{D}_2^*(2460)$ modes are charge conjugates of modes below.

<i>D</i> ₂ *(2460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi^-$	seen	509
$D^*(2010)\pi^-$	seen	389

D₃*(2750)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=2763.1\pm3.2~{
m MeV}~{
m (S}=2.1)$ Full width $\Gamma=66\pm5~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 60

<i>D</i> ₃ *(2750) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D\pi$	seen	743
$D^+\pi^-$	seen	739
$D^0\pi^\pm$	seen	743
$D^*\pi$	seen	639
$D^{*+}\pi^-$	seen	639

CHARMED, STRANGE MESONS $(C=\pm 1, S=\pm 1)$ (including possibly non- $q\overline{q}$ states)

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_s^{\pm}

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.35\pm0.07~{
m MeV}$$
 $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05~{
m MeV}$ Mean life $\tau=(504\pm4)\times10^{-15}~{
m s}~({
m S}=1.2)$ $c au=151.2~{
m \mu m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (-0.2 \pm 2.5)\%$$

$$A_{CP}(\tau^{\pm}\nu) \text{ in } D_s^+ \to \tau^+\nu_{\tau}, D_s^- \to \tau^-\overline{\nu}_{\tau} = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (0.09 \pm 0.26)\%$$

$$A_{CP}(K^{\pm}K_L^0) \text{ in } D_s^{\pm} \to K^{\pm}K_L^0 = (-1.1 \pm 2.7) \times 10^{-2}$$

$$A_{CP}(K^+K^-\pi^{\pm}) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(\phi\pi^{\pm}) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_s^0\pi^0) = (-2 \pm 6)\%$$

$$A_{CP}(2K_s^0\pi^{\pm}) = (3 \pm 5)\%$$

$$A_{CP}(K^+K^-\pi^{\pm}\pi^0) = (0.0 \pm 3.0)\%$$

$$A_{CP}(K^+K^0\pi^+\pi^-) = (-6 \pm 5)\%$$

$$A_{CP}(K_s^0K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(K_s^0K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.4)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.4)\%$$

$$A_{CP}(\eta\pi^{\pm}\pi^0) = (-1 \pm 4)\%$$

$$A_{CP}(\eta^{\prime}\pi^{\pm}\pi^0) = (0 \pm 8)\%$$

$$A_{CP}(K^{\pm}\pi^0) = (2 \pm 4)\%$$
 (S = 1.2)

$$A_{CP}(\overline{K}^{0}/K^{0}\pi^{\pm}) = (0.4 \pm 0.5)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (0.20 \pm 0.18)\%$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$$

$$A_{CP}(K_{S}^{0}\pi^{+}\pi^{0}) \text{ in } D_{s}^{\pm} \to K_{S}^{0}\pi^{+}\pi^{0} = (3 \pm 6)\%$$

$$A_{CP}(K^{\pm}\eta) = (1.8 \pm 1.9)\%$$

$$A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} \ [ii]$$

$D_s^+ \to \phi \ell^+ \nu_\ell$ form factors

$$\begin{array}{l} r_2 = 0.84 \pm 0.11 \quad (S = 2.4) \\ r_v = 1.80 \pm 0.08 \\ \Gamma_L/\Gamma_T = 0.72 \pm 0.18 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta \, e^+ \nu_e = 0.446 \pm 0.007 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta' \, e^+ \nu_e = 0.48 \pm 0.05 \\ f_+(0) \left| V_{cd} \right| \text{ in } D_s^+ \rightarrow \ K^0 \, e^+ \nu_e = 0.162 \pm 0.019 \\ r_v \equiv V(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 1.7 \pm 0.4 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 0.77 \pm 0.29 \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \mu^+ \nu_\mu = 243 \pm 5 \text{ MeV} \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \tau^+ \nu_\tau = 245.3 \pm 3.0 \text{ MeV} \end{array}$$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

Scale factor/ pFraction (Γ_i/Γ) Confidence level (MeV/c)

Inclusive modes									
e^+ semileptonic	[bbb]	(6.33	± 0.15) %		_			
π^+ anything		(119.3	± 1.4) %		_			
π^- anything		(43.2	± 0.9) %		_			
π^0 anything		(123	± 7) %		_			
K^- anything		(18.7	±0.5) %		_			
K^+ anything		(28.9	±0.7) %		_			
K_S^0 anything		(19.0	± 1.1) %		_			
η anything	[ccc]	(29.9	± 2.8) %		_			
ω anything		(6.1	± 1.4) %		_			
η' anything	[ddd]	(10.3	± 1.4) %	S=1.1	_			
$f_0(980)$ anything, $f_0 ightarrow \pi^+ \pi^-$		< 1.3		%	CL=90%	_			
ϕ anything		(15.7	± 1.0) %		_			
K^+K^- anything		(15.8	±0.7) %		_			
$K_S^0K^+$ anything		(5.8	±0.5) %		_			

HTTP://PDG.LBL.GOV

Page 62

$K_S^0 K^-$ anything	(1.9	± 0.4) %	_
$2K_S^0$ anything	(1.70	± 0.32) %	_
$2K^{+}$ anything	<	2.6	\times 10 ⁻³ CL=90%	_
$2K^-$ anything	<	6	\times 10 ⁻⁴ CL=90%	-

Leptonic and semileptonic modes

•		•	
$e^+ u_e$	<	8.3 $\times 10^{-5}$ CL=90%	984
$\mu^+ u_\mu$	(5.43 ± 0.15) $\times 10^{-3}$	981
$\tau^+ \nu_{ au}$	(5.32 ± 0.11)%	182
$\gammae^+ u_e$	<	$1.3 \times 10^{-4} \text{CL} = 90\%$	984
$K^+K^-e^+ u_e$		_	851
$\phi\mathrm{e^+} u_\mathrm{e}$	[eee] (2.39 \pm 0.16) % S=1.3	720
$\phi \mu^+ u_{\mu}$	(1.9 ± 0.5) %	715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[eee] (3.03 ± 0.24)%	_
$\eta\mathrm{e^+} u_\mathrm{e}$	[eee] ($2.32\ \pm0.08$) %	908
η^\prime (958) $e^+ u_e$	[eee] ($8.0 \pm 0.7) \times 10^{-3}$	751
$\eta \mu^+ u_{\mu}$	(2.4 ± 0.5) %	905
$\eta'(958)\mu^+ u_{\mu}$	(1.1 ± 0.5) %	747
$\omega e^+ \nu_e$	[fff] <	$\times 10^{-3}$ CL=90%	829
$K^0 e^+ u_e$	($3.4 \pm 0.4) \times 10^{-3}$	921
$K^*(892)^0 e^+ \nu_e$	[eee] ($2.15 \pm 0.28) \times 10^{-3} $ S=1.1	782
$a_0(980)^0e^+ u_e,\;\;a_0(980)^0 ightarrow$	<	1.2 $\times 10^{-4} \text{CL} = 90\%$	_
$\pi^{0}\eta$			

Hadronic modes with a $K\overline{K}$ pair

$K^+K^0_S$	($1.453 \pm 0.035) \%$		850
$K^+K_I^{0}$	(1.49 ± 0.06) %		850
$K^+\overline{K}^{ar{0}}$	($2.95\ \pm0.14$) %		850
$K^+K^-\pi^+$ [jj]	(5.38 ± 0.10) %	S=1.1	805
$\phi\pi^+$ [eee,ggg]	(4.5 \pm 0.4) %		712
$\phi \pi^+, \phi \to K^+ K^- $ [ggg]	($2.22\ \pm0.06$) %		712
$K^+\overline{K}^*(892)^0$, \overline{K}^{*0} $ ightarrow$	($2.58\ \pm0.06$) %		416
$K^{-}\pi^{+}$,			
$f_0(980)\pi^+$, $f_0 ightarrow K^+K^-$	(1.11 ± 0.19) %		732
$\mathit{f}_{0}(1370)\pi^{+}$, $\mathit{f}_{0} ightarrow \mathit{K}^{+}\mathit{K}^{-}$	(7.1 ± 2.9) $\times 10^{-4}$		_
$\mathit{f}_{0}(1710)\pi^{+}$, $\mathit{f}_{0} ightarrow \ \mathit{K}^{+}\mathit{K}^{-}$	(6.7 ± 2.8) $\times 10^{-4}$		198
$K^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^* o$	($1.76 \pm 0.25 \times 10^{-3}$		218
$K^-\pi^+$				
$K^{+}K_{S}^{0}\pi^{0}$	(1.52 \pm 0.22)%		805
$2K_S^0\pi^+$	(7.7 ± 0.6) $\times 10^{-3}$		802
$K^0 \overline{K}{}^0 \pi^+$		_		802
	(5.4 ± 1.2)%		683
$K^+K^-\pi^+\pi^0$	($5.50\ \pm0.24$) %	S=1.3	748
ϕho^+ [eee]	($5.59\ \pm0.34$) %		401

$$\begin{array}{c} \overline{K}_1(1270)^0 \, K^+, \\ \overline{K}_1(1270)^0 \, \to K^- \rho^+ \\ \overline{K}_1(1270)^0 \, \to K^+ (892) \pi \\ \overline{K}_1(1270)^0 \, \to K^* (892) \pi \\ \overline{K}_1(1400)^0 \, K^+, \\ \overline{K}_1(1400)^0 \, \to K^* (892) \pi \\ a_0(980)^0 \, \rho^+, \ a_0(980)^0 \, \to \\ K^+ \, K^- \\ f_1(1420)^0 \, \pi^+, \ f_1(1420)^0 \, \to \\ K^+ \, (1420)^0 \, \pi^+, \ f_1(1420)^0 \, \to \\ a_0(980)^0 \, \pi^0, \ a_0(980)^0 \, \to \\ K^+ \, K \\ \eta(1475) \, \pi^+, \ \eta(1475) \, \to \\ a_0(980)^0 \, \pi^0, \ a_0(980)^0 \, \to \\ K^+ \, K^- \\ \chi^0(1475) \, K^+, \\ \eta(1475) \, K^+, \\ \eta(1475) \, K^+, \\ \eta(1475) \, K^+, \\ \eta(1475) \, K^0, \ \eta \, \to \\ K^- \, (892)^+ \, \overline{K}^* (892)^0 \\ \text{[eee]} \, (\ 5.64 \pm 0.35 \)\% \\ K^- \, K^- \, \pi^+ \\ \eta(1475) \, \pi^+, \ \eta \, \to \\ K^- \, (892)^+ \, K^-, \ \overline{K}^{*+} \, \to \\ K^0_S \, \pi^+ \\ \eta(1475) \, \pi^+, \ \eta \, \to \\ K^- \, (892)^+ \, K^-, \ \overline{K}^{*+} \, \to \\ K^0_S \, \pi^+ \\ \eta(1475) \, \pi^+, \ \eta \, \to \\ K^- \, (892)^+ \, K^-, \ \overline{K}^{*+} \, \to \\ K^0_S \, \pi^+ \\ \eta(1475) \, \pi^+, \ \eta \, \to \\ K^0_S \, K^- \\ f_1(1285) \, \pi^+, \ f_1 \, \to \\ a_0(980)^- \, \pi^+, \ a_0^- \, \to \\ K^0_S \, K^- \\ f_1(1285) \, \pi^+, \ f_1 \, \to \\ a_0(980)^- \, \pi^+, \ a_0^- \, \to \\ K^0_S \, K^- \\ K^+ \, K^- \, 2\pi^+ \pi^- \\ \phi \, a_1(1260)^+, \ \phi \, \to K^+ \, K^- \\ \phi \, a_1(1260)^+, \ \phi \, \to K^+ \, K^- \\ K^+ \, K^- \, 2\pi^+ \pi^- \, \text{nonresonant} \\ (9 \, 2\pi^+ \, \pi^- \, \text{nonresonant} \\ (9 \, 27 \, \times) \times 10^{-4} \, \text{669} \\ (7.8 \, \pm 3.3 \,) \times 10^{-4} \, \text{669} \\ \end{cases}$$

Hadronic modes without K's

$\omega \eta \pi^+$	[eee] <				CL=90%	654
$\eta'(958) \rho^+ \ \eta'(958) \pi^+ \pi^0$	[ddd,eee] ($\pm 1.5 \\ \pm 0.8$,		465 720
$\eta'(958)\pi^+\pi^0$ nonres	`			%	CL=90%	720
Modes with one or three K's						

iviodes	with one	e or three A S	
$K^+\pi^0$	(7.4 ± 0.5) $ imes 10^{-4}$	917
$K_S^0\pi^+$	($1.10~\pm 0.05~) \times 10^{-3}$	916
$\mathcal{K}^{+}\eta$	[eee] ($1.73 \pm 0.08) \times 10^{-3}$	835
$K^+\omega$		8.7 ± 2.5) $\times 10^{-4}$	741
$K^+ \eta'(958)$		$2.64~\pm 0.24~) \times 10^{-3}$	646
$K^+\pi^+\pi^-$		6.5 \pm 0.4) \times 10 ⁻³	900
$\mathcal{K}^+ ho^{0}$	($2.5 \pm 0.4 \times 10^{-3}$	745
$\mathcal{K}^+ ho (1450)^0$, $ ho^0 ightarrow \ \pi^+ \pi^-$	($6.9 \pm 2.4 \times 10^{-4}$	_
$K^*(892)^0\pi^+$, K^{*0} $ ightarrow$	(1.40 ± 0.24) $\times 10^{-3}$	775
$K^+\pi^- \ K^*(1410)^0\pi^+$, $K^{*0} o K^+\pi^-$	(1.22 ± 0.28) $\times 10^{-3}$	_
$K^*(1430)^0\pi^+$, K^{*0} $ o$	($5.0 \pm 3.4) \times 10^{-4}$	_
$K^+\pi^-$ $K^+\pi^+\pi^-$ nonresonant	($1.03 \pm 0.34) \times 10^{-3}$	900
$K^0\pi^+\pi^0$	(1.08 ±0.06) %	899
$K_{S}^{0} 2\pi^{+}\pi^{-}$	(2.8 ± 1.0) $\times 10^{-3}$	870
$K^+\omega\pi^0$	[eee] <	8.2 $\times 10^{-3}$ CL=90%	684
$K^+\omega\pi^+\pi^-$	[eee] <	5.4×10^{-3} CL=90%	603
$K^+\omega\eta$	[eee] <	7.9 $\times 10^{-3}$ CL=90%	366
$2K^{+}K^{-}$		$2.15~\pm 0.20~) \times 10^{-4}$	628
ϕK^+ . $\phi \rightarrow K^+ K^-$		$8.8 \pm 2.0 \times 10^{-5}$	_

Doubly Cabibbo-suppressed modes

$$2K^{+}\pi^{-}$$
 (1.276 ± 0.031) × 10^{-4} 805
 $K^{+}K^{*}(892)^{0}$, $K^{*0} \rightarrow$ (6.0 ± 3.4) × 10^{-5} –

Baryon-antibaryon mode

$$p\overline{n}$$
 (1.22 ±0.11)×10⁻³ 295
 $p\overline{p}e^+\nu_e$ < 2.0 ×10⁻⁴CL=90% 296

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

$\pi^{+} e^{+} e^{-}$		[<i>pp</i>] <	5.5	_	\times 10 ⁻⁶ CL=90%	979
$\pi^+\phi$, $\phi \rightarrow e^+e^-$		[00] (6	$^{+8}_{-4}$	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$		[pp] <	1.8		\times 10 ⁻⁷ CL=90%	968
$K^+e^+e^-$	1	<	3.7		$\times 10^{-6}$ CL=90%	922
$K^+\mu^+\mu^-$	1	<	1.4		$\times 10^{-7} CL = 90\%$	909

Created: 8/11/2022 09:37

HTTP://PDG.LBL.GOV Page 66

$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times10^{-3}$ CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.1	$\times 10^{-6}$ CL=90%	976
$\pi^+e^-\mu^+$	LF	<	9.4	$\times 10^{-7} CL = 90\%$	976
$K^+e^+\mu^-$	LF	<	7.9	$\times 10^{-7} CL = 90\%$	919
$K^+e^-\mu^+$	LF	<	5.6	$\times 10^{-7} CL = 90\%$	919
π^-2e^+	L	<	1.4	$\times 10^{-6}$ CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	8.6	$\times 10^{-8}$ CL=90%	968
$\pi^-\mathrm{e}^+\mu^+$	L	<	6.3	$\times 10^{-7} CL = 90\%$	976
K^-2e^+	L	<	7.7	$\times 10^{-7} CL = 90\%$	922
$K^-2\mu^+$	L	<	2.6	$\times 10^{-8}$ CL=90%	909
$K^-e^+\mu^+$	L	<	2.6	$\times 10^{-7} CL = 90\%$	919
$K^*(892)^- 2\mu^+$	L	<	1.4	\times 10 ⁻³ CL=90%	765

$$I(J^P) = 0(??)$$

 $_{J^{oldsymbol{P}}}^{oldsymbol{ extstyle -}}$ is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 D_s^{*-} modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ \begin{array}{c} D_s^+ \gamma \\ D_s^+ \pi^0 \\ D_s^+ e^+ e^- \end{array} $	(93.5±0.7) %	139
$D_s^+ \pi^0$	(5.8±0.7) %	48
$D_s^+ e^+ e^-$	$(6.7\pm1.6)\times10^{-3}$	139

$D_{s0}^*(2317)^{\pm}$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 $\overline{J^P}$ is natural, low mass consistent with 0^+ .

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2317.8\pm0.5~{
m MeV}$$
 $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.5~{
m MeV}$ Full width Γ $<3.8~{
m MeV}$, CL $=95\%$

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

$D_{s0}^{*}(2317)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ	Γ) Confidence level	(MeV/c)
$D_s^+ \pi^0$	$(100^{+}_{-20})^{\circ}$	%	298
$D_s^+ \gamma$	< 5	% 90%	323
HTTP://PDG LBL GOV	Page 67	Created: 8/11/202	2 00.37

HTTP://PDG.LBL.GOV

Page 67

$D_s^*(2112)^+ \gamma$	<	6	%	90%	_
$D_s^+ \gamma \gamma$	<	18	%	95%	323
$D_s^*(2112)^+\pi^0$	<	11	%	90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{+}\pi^{0}\pi^{0}$	<	4	$\times 10^{-3}$	90%	194
$D_s^+ \pi^0 \pi^0$		not seen			205

$D_{s1}(2460)^{\pm}$

$$I(J^P) = 0(1^+)$$

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{\pm}}=491.1\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$ \begin{array}{c} D_{s}^{*+} \pi^{0} \\ D_{s}^{+} \gamma \\ D_{s}^{+} \pi^{+} \pi^{-} \end{array} $	(48 ±11)%		297
$D_s^+\gamma$	(18 \pm 4) %		442
$D_{s}^{+}\pi^{+}\pi^{-}$	($4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-2.4})\%$		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass
$$m=2535.11\pm0.06$$
 MeV $m_{D_{s1}(2536)^{\pm}}-m_{D_{s}^{*}(2111)}=422.9\pm0.4$ MeV $m_{D_{s1}(2536)^{\pm}}-m_{D^{*}(2010)^{\pm}}=524.85\pm0.04$ MeV $m_{D_{s1}(2536)^{\pm}}-m_{D^{*}(2007)^{0}}=528.26\pm0.05$ MeV (S = 1.2) Full width Γ = 0.92 ± 0.05 MeV

Branching fractions are given relative to the one **DEFINED AS 1**. $D_{\rm S1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	0.028 ± 0.005		176

HTTP://PDG.LBL.GOV

Page 68

$D^*(2007)^0 K^+$	DEFINED AS 1		167
D^+K^0	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+} \gamma \\ D_{s}^{+} \pi^{+} \pi^{-}$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$D_{s2}^*(2573)$

$$I(J^P) = 0(2^+)$$

Mass $m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$ $m_{D_{s2}^*(2573)}-m_{D^0}=704\pm3.2~{\rm MeV}$ Full width $\Gamma=16.9\pm0.7~{\rm MeV}$

 $D_{\rm s2}^*(2573)^-$ modes are charge conjugates of the modes below.

D_{s2}^* (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	$p ext{ (MeV/}c)$
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238
$D^+K^0_S$	seen	422
$D^{*+}K_S^0$	seen	225

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass $m=2714\pm 5$ MeV (S =1.5) Full width $\Gamma=122\pm 10$ MeV

D_{s1}^* (2700) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	579
$D^{+} {\cal K}^{0}_{S} \ D^{*0} {\cal K}^{+}$	seen	573
	seen	438
$D^{*+}K^0_S$	seen	431

$D_{s3}^*(2860)^{\pm}$

$$I(J^P) = 0(3^-)$$

Mass $m=2860\pm7~{
m MeV}$ Full width $\Gamma=53\pm10~{
m MeV}$

D_{s3}^* (2860) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 \mathcal{K}^+$	seen	710
$D^+K^0_S$	seen	704

HTTP://PDG.LBL.GOV

Page 69

 $D^{*0}K^+$ seen 589 $D^{*+}K^0_S$ seen 584

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- B^{\pm} mass, mean life, *CP* violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions

Created: 8/11/2022 09:37

● B* mass

• $B_1(5721)^+$ mass

• $B_1(5721)^0$

mass

 \bullet $B_2^*(5747)^+$

mass

 \bullet $B_2^*(5747)^0$

mass

• $B_J^*(5970)^+$

mass

• $B_J^*(5970)^0$

mass

 \bullet B_s^0

mass, mean life, $B_s^0 - \overline{B}_s^0$ mixing, CP violation, branching fractions

 \bullet B_s^*

mass

• $B_{s1}(5830)^0$

mass

 \bullet $B_{s2}^*(5840)^0$

mass

 $\bullet B_c^{\pm}$

mass, mean life, branching fractions

At the end of Baryon Listings:

 $\bullet \Lambda_b$

mass, mean life, branching fractions

• $\Lambda_b(5912)^0$

mass, mean life

• $\Lambda_b(5920)^0$

mass, mean life

 $\bullet \Sigma_b$

mass

 $\bullet \Sigma_b^*$

mass

- \equiv_b^0 , \equiv_b^- mass, mean life, branching fractions
- $\Xi_b'(5935)^-$ mass
- $\Xi_b(5945)^0$ mass
- $\Xi_b^*(5955)^-$ mass
- Ω_b^- mass, branching fractions
- b-baryon Admixture mean life, branching fractions

$$B^{\pm}$$

$$I(J^P) = \frac{1}{2}(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.34\pm0.12$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \to J/\psi(1S)K^{+}) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

$$A_{CP}(B^{+} \to J/\psi(1S)\pi^{+}) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$$

$$A_{CP}(B^{+} \to J/\psi\rho^{+}) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \to J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \to \eta_{c}K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \to \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \to \psi(2S)K^{+}) = 0.012 \pm 0.020 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \to \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \to \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18$$

$$A_{CP}(B^{+} \to \chi_{c0}K^{+}) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \to \chi_{c1}K^{+}) = -0.009 \pm 0.033$$

$$A_{CP}(B^{+} \to \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \to \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \to D^{0}\ell^{+}\nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^{+} \to D^{0}\ell^{+}\nu_{\ell}) = -0.007 \pm 0.007$$

$$A_{CP}(B^{+} \to D_{CP(+1)}\pi^{+}) = -0.0080 \pm 0.0024$$

$$A_{CP}(B^{+} \to D_{CP(-1)}\pi^{+}) = 0.017 \pm 0.026$$

```
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+}) = 0.02 \pm 0.05
A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D K^+) = 0.10 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^+) = 0.02 \pm 0.11
A_{CP}(B^+ \to \overline{D}^0 K^+) = -0.017 \pm 0.005
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.31 \pm 0.11
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) = (-4 \pm 8) \times 10^{-3}
A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D K^+) = 0.07 \pm 0.30
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.30 \pm 0.20
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.05 \pm 0.09
A_{CP}(B^+ \to \overline{D}{}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.35 \pm 0.16
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+) = -0.03 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = -0.016 \pm 0.020
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}\pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.10 \pm 0.09
A_{CP}(B^+ \to [K_5^0 K^- \pi^+]_D K^+) = -0.04 \pm 0.08
A_{CP}(B^+ \to [K_S^{0}K^-\pi^+]_D\pi^+) = 0.003 \pm 0.015
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.034 \pm 0.020
A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+) = 0.08 \pm 0.05
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+) = 0.02 \pm 0.10
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+) = 0.007 \pm 0.017
A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = -0.020 \pm 0.011
A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+) = 0.132 \pm 0.015 \quad (S = 1.8)
A_{ADS}(B^+ \rightarrow DK^+) = -0.451 \pm 0.026
A_{ADS}(B^+ \to D\pi^+) = 0.129 \pm 0.014
A_{ADS}(B^+ \to D^*(D\gamma)K^+) = -0.6 \pm 1.3
A_{ADS}(B^+ \to D^*(D\pi^0)K^+) = 0.72 \pm 0.29
A_{ADS}(B^+ \to D^*(D\gamma)\pi^+) = 0.08 \pm 0.13
A_{ADS}(B^+ \to D^*(D\pi^0)\pi^+) = -0.14 \pm 0.06
A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = -0.33 \pm 0.35
A_{ADS}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.01 \pm 0.09
A_{CP}(B^+ \to D_{CP(-1)}K^+) = -0.10 \pm 0.07
A_{CP}(B^+ \to [K^+ K^-]_D K^+ \pi^- \pi^+) = -0.04 \pm 0.06
```

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.05 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}\pi^{-}\pi^{+}) = 0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.019 \pm 0.015$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.001$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.000 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.010 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.09 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.01 \pm 0.010$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.01 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{-}K^{+}]_{D}\pi^{+}] = -0.01 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}] = -0.01 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{+}]_{D}\pi^{+}] = -0.01 \pm 0.011$$

$$A_{CP$$

$$A_{CP}(B^{+} \rightarrow f'_{2}(1525)^{0}K^{+}) = -0.08^{+0.05}_{-0.04}$$

$$A_{CP}(B^{+} \rightarrow \rho^{0}K^{+}) = 0.37 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{+}\pi^{0}) = 0.07 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow K^{0}_{0}(1430)^{0}\pi^{+}) = 0.061 \pm 0.032$$

$$A_{CP}(B^{+} \rightarrow K^{0}_{0}(1430)^{+}\pi^{0}) = 0.26^{+0.18}_{-0.14}$$

$$A_{CP}(B^{+} \rightarrow K^{0}_{0}(1430)^{+}\pi^{0}) = 0.26^{+0.18}_{-0.24}$$

$$A_{CP}(B^{+} \rightarrow K^{0}_{2}(1430)^{0}\pi^{+}) = 0.05^{+0.29}_{-0.24}$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{0}) = -0.06 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{0}) = -0.03 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{0}) = 0.07 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{0}) = 0.12 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow K^{0}\pi^{0}) = 0.12 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}) = 0.12 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}) = -0.03 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}) = -0.04 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{0}K^{1}) = -0.46 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{0}K^{1}) = -0.21 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{0}K^{0}) = 0.025 \pm 0.031$$

$$A_{CP}(B^{+} \rightarrow K^{0}K^{0}) = 0.025 \pm 0.031$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.12 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.12 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.12 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.11 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{1}K^{0}(1430)^{0}) = 0.10 \pm$$

$$A_{CP}(B^{+} \rightarrow \rho^{0} \pi^{+}) = 0.009 \pm 0.019$$

$$A_{CP}(B^{+} \rightarrow f_{2}(1270)\pi^{+}) = 0.40 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \rho^{0}(1450)\pi^{+}) = -0.11 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \rho_{3}(1690)\pi^{+}) = -0.80 \pm 0.28$$

$$A_{CP}(B^{+} \rightarrow f_{6}(1370)\pi^{+}) = 0.72 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \text{ nonresonant}) = -0.14^{+0.23}_{-0.16}$$

$$A_{CP}(B^{+} \rightarrow \rho^{+} \pi^{0}) = 0.02 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow \rho^{+} \rho^{0}) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \omega \pi^{+}) = -0.04 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \omega \pi^{+}) = -0.14 \pm 0.07 \quad (S = 1.4)$$

$$A_{CP}(B^{+} \rightarrow \eta \pi^{+}) = 0.11 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow \eta^{\prime} \pi^{+}) = 0.06 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \eta^{\prime} \pi^{+}) = 0.06 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \rho^{-} \pi^{0}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \rho^{-} \pi^{0}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \rho^{-} \pi^{0}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.02 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.01 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.11 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.11 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.14 \pm 0.23$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+} \ell^{+} \ell^{-}) = -0.12 \pm 0.24$$

$$\gamma = (65.9^{+3.3})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{+}) = (127.7^{+3.6})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{+}) = (1011^{+0.016}_{-0.034})$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (10104^{+0.013}_{-0.014})$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (1014^{+0.013}_{-0.014})$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (1014^{+0.013}_{-0.014})$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (1014^{+0.013}_{-0.014})$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50

and their assumed D, $D_{\rm S},~D^{*},~{\rm and}~\psi$ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^\pm X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B⁺ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

Semilepto	nic an	d I	eptoi	nic	modes		
$\ell^+ \nu_\ell X$	[iii]	(]	10.99	\pm	0.28) %		_
$e^+ \nu_e X_c$		(1	8.01	\pm	0.4) %		_
$\ell^+ u_\ell X_u$		(1.65	\pm	$0.21) \times 10^{-3}$		_
$D\ell^+ u_\ell X$		(9.6	\pm	0.7) %		_
$\overline{D}{}^0_{}\ell^+ u_{\ell}$	[iii]	(2.30	\pm	0.09) %		2310
$\overline{D}{}^0 \tau^+ \nu_{ au}$		(7.7	\pm	$2.5) \times 10^{-3}$		1911
\overline{D}^* (2007) 0 ℓ^+ ν_ℓ	[iii]	(5.58	\pm	0.22) %		2258
$\overline{D}^*(2007)^0 au^+ u_ au$		(1.88	\pm	0.20) %		1839
$D^-\pi^+\ell^+ u_\ell$		(4.4	\pm	$0.4) \times 10^{-3}$		2306
$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell, \ \overline{D}_0^{*0} \rightarrow$		(2.5	\pm	0.5) \times 10 ⁻³		_
$\overline{D}_{2}^{-}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow$		(1.53	±	$0.16) \times 10^{-3}$		2065
$D^{(*)} {}_{n} \pi \ell^+ u_\ell(n \ \geq \ 1)$		(1.85	\pm	0.25) %		_
$D^{*-}\pi^+\ell^+ u_\ell$		($0.4) \times 10^{-3}$		2254
$\overline{D}_1(2420)^{\stackrel{\circ}{0}}\ell^+\nu_\ell$, $\overline{D}_1^0\to$		($0.20 \) \times 10^{-3}$		2084
$\overline{D}_{1}^{\prime -} (2430)^{0} \ell^{+} u_{\ell}, \ \overline{D}_{1}^{\prime 0} ightarrow$		(2.7	±	$0.6) \times 10^{-3}$		_
$egin{array}{c} D^{*-}\pi^+ \ \overline{D}_2^*(2460)^0\ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow D^{*-}\pi^+ \end{array}$		(1.01	±	$0.24) \times 10^{-3}$	S=2.0	2065
$\overline{D}{}^0\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		(1.6	\pm	$0.4) \times 10^{-3}$		2301
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		(8	\pm	5) \times 10 ⁻⁴		2248
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$		(6.1	\pm	$1.0)\times10^{-4}$		_
$D_s^- K^+ \ell^+ u_\ell$		(3.0	+	$^{1.4}_{1.2}$) $\times10^{-4}$		2242
D_s^{*-} K $^+$ ℓ^+ $ u_\ell$		(2.9	\pm	$1.9)\times 10^{-4}$		2185
$\pi^0\ell^+ u_\ell$		(7.80	\pm	$0.27) \times 10^{-5}$		2638
$\eta \ell^+ u_{\ell}$		($0.5)\times10^{-5}$		2611
$\eta'\ell^+ u_\ell$		($0.8) \times 10^{-5}$		2553
$\omega \ell^+ u_\ell$	[iii]	($0.09) \times 10^{-4}$		2582

$ ho^0\ell^+ u_\ell$	[<i>iii</i>] ($1.58 \pm 0.11) \times 10^{-4}$	2583
$\pi^+\pi^-\ell^+ u_\ell$	'	$2.3 \pm 0.4 \times 10^{-4}$	2636
$ ho\overline{ ho}\ell^+ u_\ell$	($5.8 \begin{array}{c} + & 2.6 \\ - & 2.3 \end{array}) \times 10^{-6}$	2467
$ ho \overline{ ho} \mu^+ u_\mu$	($5.32 \ \pm \ 0.34 \) \times 10^{-6}$	2446
$ ho \overline{ ho} e^+ u_e$	(8.2 $^{+}_{-}$ $^{4.0}_{3.3}$) \times 10 ⁻⁶	2467
$\mathrm{e^+} \nu_\mathrm{e}$	<	9.8×10^{-7}	CL=90% 2640
$\mu^+ u_\mu$	<	8.6×10^{-7}	CL=90% 2639
$ au^+ u_ au$	($1.09 \pm 0.24) \times 10^{-4}$	S=1.2 2341
$\ell^+ u_\ell\gamma$	<	3.0×10^{-6}	CL=90% 2640
$e^+ u_e\gamma$	<	4.3×10^{-6}	CL=90% 2640
$\mu^+ \nu_\mu \gamma$	<	3.4×10^{-6}	CL=90% 2639
$\mu^{+}\mu^{-}\mu^{+}\nu_{\mu}$	<	1.6×10^{-8}	CL=95% 2634

Inclusive modes

	ve illoues	
$D^0 X$	$(8.6 \pm 0.7)\%$	_
$\overline{D}{}^{0}X$	(79 ± 4) %	_
D^+X	$(2.5\pm0.5)\%$	_
D^-X	$(9.9\pm1.2)\%$	_
$D_s^+ X$	(7.9	-
$D_s^- X$	($1.10 \stackrel{+}{} \stackrel{0.40}{})\%$	-
$\Lambda_c^+ X$	$\left(\begin{array}{ccc}2.1&+&0.9\\&-&0.6\end{array}\right)\%$	-
$\overline{\Lambda}_c^- X$	$\left(\begin{array}{cc}2.8&+\begin{array}{cc}+&1.1\\-&0.9\end{array}\right)\%$	_
$\overline{c}X$	(97 ± 4) %	_
cX	(23.4 + 2.2) %	_
$c/\overline{c}X$	(120 ± 6) %	_

D, D^* , or D_s modes

	2,2,0.	5ouc			
$\overline{D}{}^0\pi^+$	(4.68 ±	$0.13) \times 10^{-3}$		2308
$D_{CP(+1)}\pi^+$	[jjj] ($2.05 \pm$	$0.20) \times 10^{-3}$		_
$D_{CP(-1)}\pi^+$	[jjj] (2.1 \pm	$0.4) \times 10^{-3}$		_
$\overline{D}{}^0 \rho^+$	($1.34~\pm$	0.18) %		2237
$\overline{D}{}^0K^+$	($3.69 \pm$	$0.16) \times 10^{-4}$		2281
$D_{CP(+1)}K^+$	[jjj] ($1.83 \pm$	$0.08) \times 10^{-4}$		-
$D_{CP(-1)}K^+$	[;;;] ($1.99~\pm$	$0.19) \times 10^{-4}$		_
$D^0 K^+$	($3.64~\pm$	$0.25) \times 10^{-6}$		2281
$[K^-\pi^+]_DK^+$	[kkk] <	2.8	\times 10 ⁻⁷	CL=90%	_
$[K^{+}\pi^{-}]_{D}K^{+}$	[kkk] <	2.0	\times 10 ⁻⁵	CL=90%	_
$[K^-\pi^+\pi^0]_D K^+$	5	een			_
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$	5	een			_
$[K^-\pi^+\pi^+\pi^-]_D K^+$	S	seen			_

HTTP://PDG.LBL.GOV

Page 78

[\(\mu + \ \ _ + \] \(\mu + \ _ \)								
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$			een			7		_
$[K^-\pi^+]_D\pi^+$	[kkk]					$) \times 10^{-7}$		_
$[K^{+}\pi^{-}]_{D}\pi^{+}$		(1.7	土	0.4	$) \times 10^{-4}$		_
$[K^-\pi^+\pi^0]_D\pi^+$		Se	een					_
$[K^{+}\pi^{-}\pi^{0}]_{D}^{-}\pi^{+}$		S	een					_
$[K^-\pi^+\pi^+\pi^-]_D\pi^+$		S	een					_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$		S	een					_
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$		(4.6	\pm	0.9	$) \times 10^{-6}$		_
$[K_S^0 K^+ \pi^-]_D K^+$		Se	een					_
$[K_S^0 K^- \pi^+]_D K^+$		se	een					_
$[K^*(892)^+K^-]_DK^+$		Se	een					_
$[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$		se	een					_
$[K^*(892)^+K^-]_D\pi^+$		Se	een					- - - -
$[K_{S}^{0}K_{T}^{+}\pi^{-}]_{D}\pi^{+}$			een					_
$[K^*(892)^-K^+]_D\pi^+$			een					_
$\overline{D}^0 K^*(892)^+$		(+	0.4) × 10 ⁻⁴		2213
$D_{CP(-1)}K^*(892)^+$	[<i>jiji</i>]	($) \times 10^{-4}$		
$D_{CP(+1)}K^*(892)^+$	[<i>jiji</i>]	($) \times 10^{-4}$		_
$D^0 K^*(892)^+$	D 33 1	() × 10 ⁻⁶		2213
$\overline{D}^0 K^+ \pi^+ \pi^-$		(
$\overline{D}^0 K^+ \overline{K}^0$		($) \times 10^{-4}$		2237
		($) \times 10^{-4}$		2189
$\frac{\overline{D}{}^{0} K^{+} \overline{K}^{*} (892)^{0}}{\overline{D}{}^{0} + \cdots + \cdots}$		($) \times 10^{-4}$	•	2072
$\overline{D}{}^{0}\pi^{+}\pi^{+}\pi^{-}$		($) \times 10^{-3}$	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant		($) \times 10^{-3}$		2289
$\overline{D}{}^0\pi^+\rho^0$		($) \times 10^{-3}$		2208
$\overline{D}^0 a_1(1260)^+$		($) \times 10^{-3}$		2123
$\overline{D}{}^0\omega\pi^+$		($) \times 10^{-3}$		2206
$D^*(2010)^-\pi^+\pi^+$		($) \times 10^{-3}$		2247
$D^*(2010)^- K^+ \pi^+$		($) \times 10^{-5}$		2206
$\overline{D}_1(2420)^0\pi^+$, $\overline{D}_1^0 ightarrow$		(8.4	\pm	1.5	$) \times 10^{-4}$		2081
$D^*(2010)^-\pi^+$								
$D^{-}\pi^{+}\pi^{+}$		(1.07	\pm	0.05	$) \times 10^{-3}$		2299
$D^-K^+\pi^+$		(7.7	\pm	0.5	$) \times 10^{-5}$		2260
$D_0^*(2300)^0 K^+, D_0^{*0} \rightarrow$						$) \times 10^{-6}$		_
$D_2^+(2460)^0$ K+, D_2^{*0} $ o$		(2.32	±	0.23) × 10 ⁻⁵		_
$D^-\pi^+ \ D_1^*(2760)^0 K^+, \ D_1^{*0} \to$		(3.6	±	1.2) × 10 ⁻⁶		_
$D^{+} K_{0}^{D^{-} \pi^{+}}$			2.0			× 10 ⁻⁶	CL 000/	2278
$D^+K^+\pi^-$							CL=90%	
						$) \times 10^{-6}$	CL 000/	2260
$D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$		<	6.3			× 10 ⁻⁷	CL=90%	_
$D^+\pi^-$								

$D^+ K^{*0}$		<	4.9			$\times 10^{-7}$	CL=90%	2211
$D^+\overline{K}^{*0}$		<	1.4				CL=90%	2211
$\overline{D}^*(2007)^0\pi^+$		(5.18	\pm	0.15	$) \times 10^{-3}$		2256
$D_{CP(+1)}^{*0}\pi^{+}$	[///]	(2.9	\pm	0.6	$) \times 10^{-3}$		_
$D_{CP(-1)}^{*0}\pi^{+}$	[///]	(2.6	\pm	1.0	$) \times 10^{-3}$		_
$\overline{D}^*(2007)^0 \omega \pi^+$		(4.5			$) \times 10^{-3}$		2149
$\overline{D}^*(2007)^0 \rho^+$		($) \times 10^{-3}$		2181
$\overline{D}^*(2007)^0 K^+$		() × 10 ⁻⁴		2227
$\overline{\mathcal{D}}^{*0}_{CP(+1)} \mathcal{K}^+$	[///]	() × 10 ⁻⁴		_
$\overline{D}_{CP(-1)}^{*0}K^+$	[///]	() × 10 ⁻⁴		_
$D^*(2007)^0K^+$		(4.5	±	1.2	$) \times 10^{-6}$		2227
$\overline{D}^*(2007)^0 K^*(892)^+$		($) \times 10^{-4}$		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$		<	1.06			× 10 ⁻³	CL=90%	2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$		($) \times 10^{-3}$		2009
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$		(0.12			2236
$\overline{D}^*(2007)^0 a_1(1260)^+$		(1.9	\pm	0.5) %		2063
$\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0$		(1.8	\pm	0.4) %		2219
$\overline{D}^{*0}3\pi^{+2}\pi^{-}$		(5.7	\pm	1.2	$) \times 10^{-3}$		2196
$D^*(2010)^+\pi^0$		<	3.6			$\times 10^{-6}$		2255
$D^*(2010)^+ K^0$		<	9.0			$\times 10^{-6}$	CL=90%	2225
$D^*(2010)^-\pi^+\pi^+\pi^0$		(1.5	\pm	0.7) %		2235
$D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$		(2.6	\pm	0.4	$) \times 10^{-3}$		2217
$\overline{D}^{**0}\pi^+$	[nnn]	(5.7	\pm	1.2	$) \times 10^{-3}$		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$		(1.5	\pm	0.6	$) \times 10^{-3}$	S=1.3	2081
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}_1^0)$		(2.5	+	1.6 1.4	$) \times 10^{-4}$	S=3.9	2081
$rac{\overline{D}{}^0\pi^+\pi^-)}{\overline{D}_1(2420)^0\pi^+ imesB(\overline{D}{}^0_1 o$		(2.2	\pm	1.0) × 10 ⁻⁴		2081
$\overline{D}{}^0\pi^+\pi^-$ (nonresonant))		(, , , ,		
$\overline{D}_1(2430)^0\pi^+, \ \overline{D}_1^0\rightarrow$		(3.5	±	0.6	$) \times 10^{-4}$		2079
$D^*(2010)^-\pi^+$								
$\overline{D}(2550)^0\pi^+$, $\overline{D}^0\to$		(7.2	\pm	1.4	$) \times 10^{-5}$		_
$D^*(2010)^-\pi^+$						_		
$\overline{D}_{J}^{*}(2600)^{0}\pi^{+}, \overline{D}_{J}^{*0} \rightarrow$		(6.8	\pm	1.3	$) \times 10^{-5}$		_
$D^*(2010)^-\pi^+$						4		
$\overline{\underline{D}}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{\underline{D}}_{2}^{*0} \rightarrow D^{-}\pi^{+}$	Γ	•				$) \times 10^{-4}$		_
$\overline{D}_2^*(2462)^0\pi^+$, $\overline{D}_2^{*0}\to$		(2.2	\pm	1.0	$) \times 10^{-4}$		_
$\overline{D}{}^{0}\pi^{-}\pi^{+}$						4		
$\overline{D}_2^*(2462)^0\pi^+, \ \overline{D}_2^{*0} \rightarrow$		<	1.7			\times 10 ⁻⁴	CL=90%	-
$\overline{D}{}^0\pi^-\pi^+$ (nonresonant)								
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0} \rightarrow$		(2.2	\pm	1.1	$) \times 10^{-4}$		-
$D^*(2010)^-\pi^+$								

$\overline{D}_{0}^{*}(2400)^{0}\pi^{+}$	(6.4	±	1.4	$) \times 10^{-4}$		2136
\times B($\overline{D}_0^*(2400)^0 \rightarrow D^-\pi^+$)					4		
$\overline{D}_1(2421)^0\pi^+$, $\overline{D}_1^0 \rightarrow D^{*-}\pi^+$	($) \times 10^{-4}$		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0} \rightarrow$	(1.98	土	0.30) × 10 ⁻⁴		_
$\overline{D}_{1}^{\prime\prime}(2427)^{0}\pi^{+}, \ \overline{D}_{1}^{\prime0} \rightarrow$	(3.5	±	0.9	$)\times10^{-4}$	S=1.5	_
$\overline{D}_1^{*-}\pi^+ \times B(\overline{D}_1^0 o \overline{\overline{D}}_1^0)$	<	6			\times 10 ⁻⁶	CL=90%	2081
$\overline{D}^{*0}\pi^{+}\pi^{-}$)		1 4			v 10=3	CL 000/	1006
$\overline{D}_{1}^{*}(2420)^{0} \rho^{+}$ $\overline{D}_{2}^{*}(2460)^{0} \pi^{+}$		1.4				CL=90% CL=90%	1996
$\overline{D}_2^*(2460)^0\pi^+ \times B(\overline{D}_2^{*0} \to$	<	1.3				CL=90% CL=90%	2063
$\frac{D_2(2400)^*\pi^+\times B(D_2^*\rightarrow D^{*0}\pi^+\pi^-)}{D^{*0}\pi^+\pi^-)}$	<	2.2			× 10 °	CL=90%	2063
$\overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0} ightarrow$	(8.4	±	2.1	$) \times 10^{-5}$		_
$\overline{D}(2740)^{0}\pi^{+}, \ \overline{D}^{0} \rightarrow$	(3.3	±	1.5) × 10 ⁻⁵		_
$D^*(2010)^-\pi^+ \over \overline{D}_3^*(2750)^0\pi^+$, $\overline{D}_3^{*0} o$	(1.10	±	0.32	$) \times 10^{-5}$		1913
$D^*(2010)^-\pi^+$ $\overline{D}_3^*(2760)^0\pi^+$,	(1.00	土	0.22) × 10 ⁻⁵		_
$\overline{D}_{3}^{*}(2760)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$	`				•		
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+},$	(2.0	\pm	1.4	$) \times 10^{-6}$		_
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$	•				•		
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	<	4.7			$\times10^{-3}$	CL=90%	1977
$\overline{D}^{0}D_{s}^{+}$	(9.0	\pm	0.9	$) \times 10^{-3}$		1815
$D_{s0}^{*}(2317)^{+}\overline{D}{}^{0}, D_{s0}^{*+} \rightarrow$	($)\times 10^{-4}$		1605
$D_s^+ \pi^0$					4		
$D_{s0}(2317)^+\overline{D}{}^0\times$	<	7.6			× 10 ⁻⁴	CL=90%	1605
$B(D_{s0}(2317)^+ \to D_s^{*+} \gamma)$					4		
$D_{s0}(2317)^{+}\overline{D}^{*}(2007)^{0}\times$	(9	\pm	7	$) \times 10^{-4}$		1511
$B(D_{s0}(2317)^+ \to D_s^+ \pi^0)$							
$D_{sJ}(2457)^+\overline{D}{}^0$	(3.1	+	1.0 0.9	$)\times10^{-3}$		_
$D_{s,J}$ (2457) $^+\overline{D}^0 imes$	(4.6	+	1.3	$) \times 10^{-4}$		_
$B(D_{sJ}(2457)^+ o D_s^+ \gamma)$				1.1			
$D_{s,J}(2457)^+\overline{D}{}^0 imes$	<	2.2			$\times10^{-4}$	CL=90%	_
$B(D_{sJ}(2457)^+ o$							
$D_s^+ \pi^+ \pi^-)$							
$D_{sJ}(2457)^{+} \overline{D}{}^{0} \times$	<	2.7			$\times 10^{-4}$	CL=90%	_
$B(D_{sJ}(2457)^+ \to D_s^+ \pi^0)$							

D_{sJ} (2457) $^+$ $\overline{D}{}^0$ $ imes$	<	9.8			× 10 ⁻⁴	CL=90%	_
$B(D_{sJ}(2457)^+ o \ D_s^{*+}\gamma)$							
$D_{sJ}(2457)^{+}\overline{D}^{*}(2007)^{0}$	(1.20	\pm	0.30) %		_
$D_{s,J}(2457)^+ \overline{D}^*(2007)^0 \times$	(1.4	+	0.7	$) \times 10^{-3}$		_
$B(D_{sJ}(2457)^+ o \ D_s^+ \gamma)$				0.0			
$\overline{D}{}^{0} D_{s1}(2536)^{+} \times$	(4.0	\pm	1.0	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ o$	`				,		
$D^*(2007)^0 K^+ +$							
$D^*(2010)^+ K^0)$							
$\overline{D}{}^{0}D_{s1}(2536)^{+} imes$	(2.2	\pm	0.7	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^{+} \rightarrow$							
$D^*(2007)^0 K^+)$							
$\overline{D}^*(2007)^0 D_{s1}(2536)^+ \times$	(5.5	\pm	1.6	$) \times 10^{-4}$		1339
$B(D_{s1}(2536)^+ o$							
$D^*(2007)^0K^+)$					_		
$\overline{D}{}^{0}D_{s1}(2536)^{+}\times$	(2.3	\pm	1.1	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ \to D^{*+}K^0)$					4		
$\overline{D}{}^{0}D_{sJ}(2700)^{+} \times$	(5.6	\pm	1.8	$) \times 10^{-4}$	S=1.7	_
$B(D_{sJ}(2700)^+ \to D^0 K^+)$					4		
$\overline{D}^{*0} D_{s1}(2536)^+, D_{s1}^+ \to$	(3.9	\pm	2.6	$) \times 10^{-4}$		1339
$D^{*+}K^{0}$,				6		
$\overline{D}{}^{0}D_{sJ}(2573)^{+}, \ D_{sJ}^{+} \rightarrow$	(8	士:	15	$) \times 10^{-6}$		_
$D^0 K^+$		0			10-4	CI 000/	1006
$\overline{D}^{*0}D_{sJ}(2573), \ D_{sJ}^{+} \rightarrow$	<	2			× 10 '	CL=90%	1306
$D^0 K^+ \over D^* (2007)^0 D_{sJ} (2573), \ D^+_{sJ} ightarrow$	<	E			× 10-4	CL=90%	1306
$D^{0}K^{+}$	_	5			× 10	CL=90/0	1300
$\overline{D}^0 D_s^{*+}$	(7.6	+	1.6) × 10 ⁻³		1734
$\overline{D}^{*}(2007)^{0}D_{s}^{+}$	($) \times 10^{-3}$		1737
$\overline{D}^*(2007)^0 D_s^{*+}$	(
, `, ' 3	(1.71			,		1651
$D_s^{(*)+}\overline{D}^{**0}$	(1.2	· .		_
$\overline{D}^*(2007)^0 D^*(2010)^+$	(\pm	1.7	$) \times 10^{-4}$		1713
$\overline{D}^0 D^*(2010)^+ + \overline{D}^*(2010)^0 D^+$	<	1.30			%	CL=90%	1792
$\overline{D}^*(2007)^0 D^+$,						
$\overline{D}{}^{0}D^{*}(2010)^{+}$	($) \times 10^{-4}$		1792
$\overline{D}^0 D^+$ $\overline{D}^0 D^+ K^0$	($) \times 10^{-4}$		1866
	($) \times 10^{-3}$		1571
$\frac{D^+ \overline{D}^* (2007)^0}{\overline{D}^* (2007)^0 D^+ K^0}$	($) \times 10^{-4}$		1791
$\overline{D}^{0}D^{*}(2010)^{+}K^{0}$	($) \times 10^{-3}$		1475
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	($) \times 10^{-3}$ $) \times 10^{-3}$		1476
$\overline{D}^0 D^0 K^+$	($) \times 10^{-3}$	S=2.6	1362 1577
$\overline{D}^*(2007)^0 D^0 K^+$	($) \times 10^{-3}$	3=2.0	1481
D (2001) D I	(2.20	ㅗ	0.23) \ 10 ,		1401

$\overline{D}{}^0 D^* (2007)^0 K^+$	(6.3	\pm	0.5	$) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(1.12	\pm	0.13) %		1368
$D^{-}D^{+}K^{+}$	(2.2	\pm	0.7	$) \times 10^{-4}$		1571
$X_0(2900)D^+, X_0 o D^-K^+$	() × 10 ⁻⁵		_
$X_1(2900)D^+, X_1 \rightarrow D^-K^+$	(6.7	±	2.3	$)\times 10^{-5}$		_
$D \cap K^+$ $D \cap D^+ K^+$ nonresonant	(53	+	1.8) × 10 ⁻⁵		1571
$D^-D^*(2010)^+K^+$	(6.3			$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	($) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	($) \times 10^{-3}$		1363
$(\overline{D}+\overline{D}^*)(D+D^*)K$	(0.30			1303
$D^{+}_{\pi}0$	($) \times 10^{-5}$		2270
$D_{s}^{+}\pi^{0}$ $D_{s}^{*+}\pi^{0}$	(工	0.5	_	CI 000/	2270
D_s^+ π^-	<	2.6				CL=90%	2215
$D_{s}^{\dagger} \eta$	<	4				CL=90%	2235
$D_{s}^{*+} \eta$	<	6				CL=90%	2178
$D_s^+ \rho^0$	<	3.0			$\times 10^{-4}$	CL=90%	2197
$D_s^{*+} \rho^0$	<	4			$\times 10^{-4}$	CL=90%	2138
$D_{s}^{*+}\pi^{0}$ $D_{s}^{+}\eta$ $D_{s}^{*+}\eta$ $D_{s}^{+}\rho^{0}$ $D_{s}^{*+}\rho^{0}$ $D_{s}^{+}\omega$ $D_{s}^{+}\omega$	<	4			$\times 10^{-4}$	CL=90%	2195
$D_{s}^{*+}\omega$	<	6			$\times 10^{-4}$	CL=90%	2136
$D_s^+ a_1(1260)^0$	<	1.8				CL=90%	2079
$D_s^{*+} a_1 (1260)^0$	<	1.3				CL=90%	2015
$D_s^+ K^+ K^-$	(7.2	+	1 1) × 10 ⁻⁶	02 00,0	2149
$D^+\phi$	<	4.2	_			CL=90%	2141
$D_{s}^{+} \phi$ $D_{s}^{*+} \phi$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{*+} \overline{K}^{0}$	<	1.2				CL=90%	2079
$D_s \psi$						CL=90%	
$D_s^* + \overline{Z}_0$	<	8					2242
D, K	<	9				CL=90%	2185
$D_{s}^{+} \overline{K}^{*} (892)^{0}$	<	4.4				CL=90%	2172
$D_s^+ K^{*0}$	<	3.5			\times 10 ⁻⁶	CL=90%	2172
$D_s^{*+} \overline{K}^* (892)^0$	<	3.5			$\times 10^{-4}$	CL=90%	2112
$D_{s}^{-}\pi^{+}K^{+}$	(1.80	\pm	0.22	$) \times 10^{-4}$		2222
$D_{\varepsilon}^{*-}\pi^{+}K^{+}$	(1.45	\pm	0.24	$) \times 10^{-4}$		2164
$D_{\epsilon}^{3}\pi^{+}K^{*}(892)^{+}$	<				$\times 10^{-3}$	CL=90%	2138
$D_{s}^{s} - \pi^{+} K^{*}(892)^{+}$	<	7			$\times 10^{-3}$		2076
$D_s^- K^+ K^+$) × 10 ⁻⁶		2149
$D_s^{*-}K^+K^+$	<				× 10 ⁻⁵	CL 000/	
D _s K K	<	1.5			× 10 °	CL=90%	2088
Charmo	niur	n mo	des	5			
$\eta_c K^+$	($) \times 10^{-3}$		1751
$\eta_c K^+, \ \eta_c \rightarrow \ K_S^0 K^\mp \pi^\pm$	(2.7	\pm	0.6	$) \times 10^{-5}$		_
$\eta_c K^*(892)^+$	(1.1	+	0.5	$) \times 10^{-3}$		1646
~ \ \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	2.0	_	U.4	10-4	CI 000/	1604

$$\eta_c \, K^+ \qquad (1.09 \pm 0.08) \times 10^{-3} \qquad 1751$$
 $\eta_c \, K^+, \quad \eta_c \to K_S^0 \, K^\mp \pi^\pm \qquad (2.7 \pm 0.6) \times 10^{-5} \qquad -4$
 $\eta_c \, K^* (892)^+ \qquad (1.1 + 0.5 - 0.4) \times 10^{-3} \qquad 1646$
 $\eta_c \, K^+ \pi^+ \pi^- \qquad < 3.9 \qquad \times 10^{-4} \, \text{CL} = 90\% \qquad 1684$

HTTP://PDG.LBL.GOV Page 83

$\eta_c K^+ \omega(782)$	<	5.3			\times 1	0^{-4}	CL=90%	1475
$\eta_c K^+ \eta$	<	2.2			\times 1	0^{-4}	CL=90%	1588
$\eta_c K^+ \pi^0$	<	6.2			\times 1	0^{-5}	CL=90%	1723
$\eta_c(2S)K^+$	() × 1			1320
$\eta_c(2S)K^+, \ \eta_c \rightarrow p\overline{p}$	(0.8				_
$\eta_c(2S)K^+, \ \eta_c \rightarrow$	(3.4	+	2.3 1.6				_
$K_{S}^{0}K^{\mp}\pi^{\pm}$	`		_	1.0	,			
$\eta_c(2S)\breve{K}^+, \ \eta_c \rightarrow \ p\overline{p}\pi^+\pi^-$	(1.12	\pm	0.18) × 1	0^{-6}		_
$h_c(1P)K^+$, $h_c \rightarrow J/\psi \pi^+\pi^-$	<	3.4			\times 1	0^{-6}	CL=90%	1401
$X(3730)^0 K^+$, $X^0 \rightarrow \eta_c \eta$	<	4.6			\times 1	0^{-5}	CL=90%	_
$X(3730)^0 K^+, X^0 \to \eta_c \pi^0$	<	5.7			\times 1	0^{-6}	CL=90%	_
$\eta_{c2}(1D)K^+, \ \eta_{c2} \rightarrow \ h_c \gamma$	<						CL=90%	_
$\eta_{c2}(1D)\pi^+ K_S^0, \ \eta_{c2} \rightarrow h_c \gamma$	<						CL=90%	_
$\psi_2(3823)K^+, \ \psi_2 \rightarrow$							CL-3070	
$\psi_2(3023)K^+, \ \psi_2 \rightarrow J/\psi \pi^+ \pi^-$	(2.8	土	0.0) × 1	0 .		_
$\chi_{c1}(3872)K^{+}$	(2 1	+	0.7	$) \times 1$	0^{-4}		1141
$\chi_{c0}(3915)K^{+}$	<						CL=90%	1101
							CL—90/0	1101
$\chi_{c0}(3915)K^+, \ \chi_{c0} \to D^+D^-$	(3.3) × 1	_	CI 000/	_
$\chi_{c0}(3915)K^+, \ \chi_{c0} \to \ \eta_c \eta$	<						CL=90%	_
$(Xchi)_{c0}(3915)K^+, \ \chi_{c0} \to$	<	1.7			\times 1	0-3	CL=90%	_
$\eta_c \pi^0$						_		
$X(4014)^0 K^+, X^0 \rightarrow \eta_c \eta$		3.9					CL=90%	_
$X(4014)^{0}K^{+}, X^{0} \rightarrow \eta_{c}\pi^{0}$	<	1.2					CL=90%	_
$Z_c(3900)^0 K^+, Z_c^0 \to$	<	4.7			\times 1	0-5	CL=90%	_
$\eta_c \pi^+ \pi^-$						_		
$X(4020)^{0}K^{+}, X^{0} \rightarrow$	<	1.6			\times 1	0^{-5}	CL=90%	_
$\eta_c \pi^+ \pi^-$						4		
$\chi_{c1}(3872)K^*(892)^+$	<	6					CL=90%	940
$\chi_{c1}(3872)^+ K^0, \ \chi_{c1}^+ \rightarrow [ooo]$	<	6.1			\times 1	0-6	CL=90%	_
$J/\psi(1S)\pi^+\pi^0$								
$\chi_{c1}(3872)K^0\pi^+$	(2.8	\pm	1.2) imes 1	0^{-4}		1085
$Z_c(4430)^+ K^0, Z_c^+ \to J/\psi \pi^+$	<	1.5			\times 1	0^{-5}	CL=95%	_
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow$	<	4.7			\times 1	0^{-5}	CL=95%	_
ψ (2S) π^+								
$\psi(4230)^{0}K^{+}, \ \psi^{0} \rightarrow$	<	1.56			\times 1	0-5	CL=95%	_
$J/\psi \pi^+ \pi^-$								
$\chi_{c0}(3915)K^+$, $\chi_{c0} o J/\psi\gamma$	<	1.4			\times 1	0^{-5}	CL=90%	_
$\chi_{c0}(3915)K^{+}, \ \chi_{c0} \rightarrow$	<	3.8			\times 1	0^{-5}	CL=90%	_
$\chi_{c1}(1P)\pi^0$								
$X(3930)^0 K^+$, $X^0 o J/\psi \gamma$	<	2.5			\times 1	0-6	CL=90%	_
$J/\psi(1S)K^+$	(1.02	0±	0.01	9) × 1			1684
$J/\psi(1S)K^0\pi^+$					$) \times 1$			1651
$J/\psi(1S)K^+\pi^+\pi^-$	($) \times 1$		S=2.5	1612
- / T (/··· //	(J.1	_		, ^ -	-	5 2.5	-012

$J/\psi(1S) K^+ K^- K^+ \chi_{c0}(3915) K^+, \chi_{c0} \rightarrow p\overline{p}$	•				$) \times 10^{-5} \\ \times 10^{-8}$	CL=95%	1252 —
$J/\psi(1S)K^*(892)^+ \ J/\psi(1S)K(1270)^+$					$) \times 10^{-3}$ $) \times 10^{-3}$		1571 1402
$J/\psi(1S)K(1400)^+$	<	5			\times 10 ⁻⁴	CL=90%	1308
$J/\psi(1S)\eta K^+ \ \chi_{c1-odd}(3872)K^+, \ \chi_{c1-odd} o J/\psi \eta$					$) \times 10^{-4} \times 10^{-6}$	CL=90%	1510 —
ψ (4160) K^+ , $\psi o J/\psi \eta$	<	7.4			\times 10 ⁻⁶	CL=90%	_
$J/\psi(1S)\eta'K^+ \ J/\psi(1S)\phiK^+$	< (8.8 5.0	+	0.4	$\times 10^{-5}$) $\times 10^{-5}$	CL=90%	1273 1227
$J/\psi(1S) K_1(1650), K_1 \rightarrow$					$) \times 10^{-6}$		
ϕK^+				Ü			
$J/\psi(1S) K^*(1680)^+, \ K^* o \phi K^+$	(3.4	+	1.9 2.2) × 10 ⁻⁶		-
$J/\psi(1S)K_2^*(1980),\;\;K_2^* o \ \phiK^+$	(1.5	+	0.9 0.5) × 10 ⁻⁶		-
$J/\psi(1S)K(1830)^+,\ K(1830)^+ o \phiK^+$	(1.3	+	1.3 1.1	$)\times10^{-6}$		-
$\chi_{c1}(4140)K^+, \ \chi_{c1} \rightarrow J/\psi(1S)\phi$	(10	±	4) × 10 ⁻⁶		-
$\chi_{c1}(4274)K^+, \ \chi_{c1} \rightarrow J/\psi(1S)\phi$	(3.6	+	2.2 1.8) × 10 ⁻⁶		_
$\chi_{c0}(4500)K^+, \ \chi_c^0 ightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7) × 10 ⁻⁶		_
$\chi_{c0}(4700)K^+$, $\chi_{c0} ightarrow J/\psi(1S)\phi$	(6	+	5 4	$) \times 10^{-6}$		_
$J/\psi(1S)\omega K^+$	(3.20	+	0.60 0.32	$) \times 10^{-4}$		1388
$\chi_{c0}(3915)K^+, \ \chi_{c0} \rightarrow J/\psi \omega$	(3.0	+	0.9 0.7	$)\times10^{-5}$		1103
$J/\psi(1S)\pi^+$	•				$) \times 10^{-5}$		1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$					$) \times 10^{-5}$		1635
$\psi(2S)\pi^{+}\pi^{+}\pi^{-} \ J/\psi(1S) ho^{+}$	($) \times 10^{-5}$ $) \times 10^{-5}$	S=1.4	1304 1611
$J/\psi(1S) p^+$ $J/\psi(1S) \pi^+ \pi^0$ nonresonant	(7.3	工		$\times 10^{-6}$		1717
$J/\psi(1S)$ λ Homesonant $J/\psi(1S)$ $a_1(1260)^+$	<	1.2			× 10 × 10 -3		1415
$J/\psi(1S) p \overline{p} \pi^+$	<	5.0				CL=90%	643
$J/\psi(1S) p \overline{\Lambda}$	(1.46	\pm		$) \times 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1			\times 10 ⁻⁵		_
$J/\psi(1S)D^{+}$	<	1.2				CL=90%	871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<	2.5			× 10 ⁻⁵	CL=90%	665

. (> -					_		
$\psi(2S)\pi^+$					$) \times 10^{-5}$		1347
$\psi(2S)K^+$	(6.24	\pm	0.20	$) \times 10^{-4}$		1284
$\psi(2S)K^*(892)^+$	(6.7	\pm	1.4	$) \times 10^{-4}$	S=1.3	1116
$\psi(2S) K^+ \pi^+ \pi^-$	(4.3	\pm	0.5	$) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^{+}$	(4.0			$) \times 10^{-6}$		418
$\psi(3770)K^{+}$	(4.3		1.1	4		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	Ì	1.5			$) \times 10^{-4}$	S=1.4	1218
$\psi(3770)K+,\psi\to D^+D^-$	(9.4) × 10 ⁻⁵		1218
$\psi(3770)K^+, \ \psi \rightarrow \ p\overline{p}$	<	2				CL=95%	_
$\psi(4040)K^{+}$	<	1.3				CL=90%	1003
ψ (4040) K^+ , $\psi \rightarrow D^+D^-$	(+	0.5	$) \times 10^{-5}$	CL-3070	_
$\psi(4160)K^+$	(5.1			$) \times 10^{-4}$		868
$\psi(4160)K^+, \ \psi \rightarrow \overline{D}{}^0D^0$	(8		5	$) \times 10^{-5}$		-
$\psi(4160)K^+, \ \psi \rightarrow D^+D^-$	(1.5			$) \times 10^{-5}$		
ψ (4100)K ⁺ , $\psi \rightarrow D$ D ψ (4415)K ⁺ , $\psi \rightarrow D^+D^-$	($) \times 10^{-5}$		_
	(工		$\times 10^{-7}$	CL 000/	1501
$\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-$	<	1				CL=90%	1531
$\chi_{c0} K^+$	(1.51	+	0.15	$) \times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<	2.1			$\times 10^{-4}$	CL=90%	1341
$\chi_{c1}(1P)\pi^+$	(2.2	\pm	0.5	$) \times 10^{-5}$		1468
$\chi_{c1}(1P)K^+$	($) \times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	(3.0	\pm	0.6	$) \times 10^{-4}$	S=1.1	1265
$\chi_{c1}(1P)K^0\pi^+$	(5.8			$) \times 10^{-4}$		1370
$\chi_{c1}(1P)K^{+}\pi^{0}$	(3.29			$) \times 10^{-4}$		1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	() × 10 ⁻⁴		1319
$\chi_{c1}(2P)K^+, \ \chi_{c1}(2P) \rightarrow$	<				$\times 10^{-5}$	CL=90%	_
$\pi^+\pi^-\chi_{c1}(1P)$							
$\chi_{c2}K^+$	(1.1	\pm	0.4	$) \times 10^{-5}$		1379
$\chi_{c2}K^+, \chi_{c2} \rightarrow p\overline{p}\pi^+\pi^-$	<	1.9			× 10 ⁻⁷		_
$\chi_{c2} K^*(892)^+$	<				× 10 ⁻⁴	CL=90%	1228
$\chi_{c2}K^0\pi^+$	($) \times 10^{-4}$		1336
$\chi_{c2}K^{+}\pi^{0}$	•	6.2		0.20	× 10 ⁻⁵	CL=90%	1339
$\chi_{c2}K^{+}\pi^{+}\pi^{-}$				0.19	$) \times 10^{-4}$	32 3370	1284
$\chi_{c2}(3930)K^+, \ \chi_{c2} \rightarrow D^+D^-$	(1.6	+	0.6) × 10 ⁻⁵		_
$\chi_{c2}(3930)\pi^+, \ \chi_{c2} \to \pi^+\pi^-$		1			× 10 ⁻⁷	CI =90%	1437
$h_c(1P)K^+$					$) \times 10^{-5}$	CL=30/0	1401
$h_c(1P)K^+, h_c \rightarrow p\overline{p}$					× 10 ⁻⁸	CI -05%	1401
$n_c(1)$ n_c n_c p_p		0.4			× 10	CL—93/0	
K or		mode			_		
$K^0\pi^+$					$) \times 10^{-5}$		2614
$K^+\pi^0$					$) \times 10^{-5}$		2615
η^\prime K $^+$	(7.04	\pm	0.25	$) \times 10^{-5}$		2528
$\eta' K^*(892)^+$	(4.8	+	1.8 1.6	$) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^+$	(5.2	\pm	2.1	$) \times 10^{-6}$		_
-							

$\eta' K_2^*(1430)^+$	(2.8	\pm	0.5	$) \times 10^{-5}$		2346
$\eta K^{ar{+}}$	(2.4	\pm	0.4	$) \times 10^{-6}$	S=1.7	2588
$\eta K^*(892)^+$	(1.93	\pm	0.16	$) \times 10^{-5}$		2534
$\eta K_0^* (1430)^+$	(1.8	\pm	0.4	$) \times 10^{-5}$		_
$\eta K_2^*(1430)^+$	(9.1	\pm	3.0	$) \times 10^{-6}$		2414
$\eta(1295){\sf K}^+\! imes{\sf B}(\eta(1295) ightarrow \eta\pi\pi)$	(2.9	+	0.8 0.7	$)\times10^{-6}$		2455
$\eta(1405) K^+ imes B(\eta(1405) o$	<	1.3			× 10 ⁻⁶	CL=90%	2425
$\eta\pi\pi) \ \eta(1405) {f K}^+ imes {\sf B}(\eta(1405) ightarrow \ {f K}^* {f K})$	<	1.2			× 10 ⁻⁶	CL=90%	2425
$\eta(1475)K^+ \times B(\eta(1475) \rightarrow$	(1.38	+	0.21) × 10 ⁻⁵		2407
K* K)				0.10			
$f_1(1285)K^+$	<	2.0				CL=90%	2458
$f_1(1420)K^+ \times B(f_1(1420) \to$	<	2.9			\times 10 ⁻⁶	CL=90%	2420
$\eta\pi\pi$) $f_1(1420)K^+ \times B(f_1(1420) \to K^*K)$	<	4.1			× 10 ⁻⁶	CL=90%	2420
K^*K) $\phi(1680)K^+ \times B(\phi(1680) \rightarrow K^*K)$	<	3.4			× 10 ⁻⁶	CL=90%	2344
$K^*K) \\ f_0(1500)K^+$	(3.7	_	2.2) × 10 ⁻⁶		2398
ωK^+	($) \times 10^{-6}$		2558
$\omega K^*(892)^+$	<	7.4		0.4		CL=90%	2503
$\omega(\kappa\pi)_0^{*+}$	(2.8	+	0.4	$) \times 10^{-5}$	CL=30/0	2303
$\omega K_0^*(1430)^+$	(2.4			$) \times 10^{-5}$		_
$\omega K_{2}^{*}(1430)^{+}$	($) \times 10^{-5}$		2379
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	(3.9	_	0.4		CL=90%	2319
$\eta \pi^+$	<	3.9			X 10	CL=9076	_
$a_0(980)^0K^+\! imes\!{\sf B}(a_0(980)^0 o$	<	2.5			\times 10 ⁻⁶	CL=90%	_
$\eta \pi^0$)							
$K^*(892)^0\pi^+$	•				$) \times 10^{-5}$		2562
$K^*(892)^+\pi^0$	•				$) \times 10^{-6}$		2563
$K^+\pi^-\pi^+$					$) \times 10^{-5}$		2609
$\mathcal{K}^+\pi^-\pi^+$ nonresonant	(1.63	+	0.21	$) \times 10^{-5}$		2609
ω (782) K^+	(6	\pm	9	$) \times 10^{-6}$		2558
$egin{aligned} {\mathcal K}^+ \mathit{f}_0(980) imes B(\mathit{f}_0(980) ightarrow \ \pi^+ \pi^-) \end{aligned}$	(9.4	+	1.0 1.2) × 10 ⁻⁶		2522
$f_2(1270)^0 K^+$	(1.07	+	0.27	$) \times 10^{-6}$		_
$f_0(1370)^0 K^+ \times$	<	1.07			× 10 ⁻⁵	CL=90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-)$						22,0	
$\rho^{0}(1450)K^{+}\times$	<	1.17			$\times10^{-5}$	CL=90%	_
$B(\rho^0(1450) \to \pi^+\pi^-)$							

$f_2'(1525)K^+ \times$	<	3.4			\times 10 ⁻⁶	CL=90%	2394
$B(f_2'(1525) ightarrow \ \pi^+ \pi^-) \ \mathcal{K}^+ ho^0$	(3.7	+	0.5) × 10 ⁻⁶		2559
$K_0^*(1430)^0\pi^+$	(3.9			$) \times 10^{-5}$	S=1.4	2445
$K_2^*(1430)^0\pi^+$	(5.6	+	2.2	$) \times 10^{-6}$		2445
$\overset{-}{K^*}(1410)^0\pi^+$	<	4.5		1.0		CL=90%	2448
$K^*(1680)^0\pi^+$	<	1.2			$\times10^{-5}$	CL=90%	2358
$K^+\pi^0\pi^0$	(1.62	\pm	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ \times B(f_0 \to \pi^0 \pi^0)$	(2.8	\pm	8.0	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6				CL=90%	2609
$K^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0\pi^+$	<	4.0				CL=90%	2489
$K_1(1400)^0 \pi^+$	<	3.9				CL=90%	2451
$K^0\pi^+\pi^0$	<	6.6		0.00		CL=90%	2609
$K_0^*(1430)^+\pi^0$	(1.19) × 10 ⁻⁵		_
$K^0 ho^+$	(7.3	+	1.0 1.2	$) \times 10^{-6}$		2558
$K^*(892)^+\pi^+\pi^-$	(7.5	\pm	1.0	$) \times 10^{-5}$		2557
$K^*(892)^+ \rho^0$	(4.6	\pm	1.1	$) \times 10^{-6}$		2504
$K^*(892)^+ f_0(980)$	(4.2	\pm	0.7	$) \times 10^{-6}$		2466
$a_1^+ K^0$	(3.5	\pm	0.7	$) \times 10^{-5}$		_
$b_1^+ {\mathcal K}^0 imes {\mathsf B}(b_1^+ o \omega \pi^+)$	(9.6	\pm	1.9	$) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	(9.2	\pm	1.5	$) \times 10^{-6}$		2504
$K_1(1400)^+ \rho^0$	<	7.8				CL=90%	2388
$K_2^*(1430)^+ \rho^0$	<	1.5			$\times 10^{-3}$	CL=90%	2381
$b_1^0 {\mathsf K}^+ imes {\mathsf B}(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^+ \mathcal{K}^{*0} \! imes B(b_1^+ o \ \omega \pi^+)$	<	5.9			$\times 10^{-6}$	CL=90%	_
$b_1^{ar{0}} K^{*+} imes B(b_1^{ar{0}} o \ \omega \pi^0)$	<	6.7			$\times 10^{-6}$	CL=90%	_
$K^+\overline{K}^0$	(1.31	\pm	0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}^0 K^+ \pi^0$	<	2.4			$\times 10^{-5}$	CL=90%	2578
$K^+ K^0_S K^0_S$	(1.05	\pm	0.04	$) \times 10^{-5}$		2521
$f_0(980)K^+$, $f_0 o \ K^0_SK^0_S$	(1.47	\pm	0.33	$) \times 10^{-5}$		_
$f_0(1710)K^+,\ f_0 ightarrow \ K^0_SK^0_S$	(4.8	+	4.0 2.6	$) \times 10^{-7}$		_
$\mathit{K}^{+}\mathit{K}^{0}_{\mathit{S}}\mathit{K}^{0}_{\mathit{S}}$ nonresonant	(2.0	\pm	0.4	$) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1			$\times 10^{-7}$	CL=90%	2577
$K^+K^-\pi^+$	(5.2	\pm	0.4	$) \times 10^{-6}$		2578
$K^+K^-\pi^+$ nonresonant					$) \times 10^{-6}$		2578
$K^+\overline{K}^*(892)^0$	($) \times 10^{-7}$		2540
$K^+ \overline{K}_0^* (1430)^0$	($) \times 10^{-7}$		2421
$\pi^+(K^+K^-)$ s-wave	(8.5	\pm	0.9	$) \times 10^{-7}$		2578
$K^+K^+\pi^-$	<	1.1			× 10 ⁻⁸	CL=90%	2578

_	8 79			× 10 ⁻⁵	CI =90%	2578
						2394
<						2524
(2485
<					CL=90%	2524
(3.40	\pm	0.14	$) \times 10^{-5}$	S=1.4	2523
(8.8				S=1.1	2516
(9.4	\pm	3.2	$) \times 10^{-6}$		2522
<	1.1			× 10 ⁻⁶	CL=90%	2449
(4.3	±	0.7) × 10 ⁻⁶		_
<	8			× 10 ⁻⁷	CL=90%	2344
(1.1	±	0.6	$) \times 10^{-6}$		2336
(2.38	+	0.28 0.50) × 10 ⁻⁵		2523
(3.6	\pm	0.5	$) \times 10^{-5}$		2466
(S=1.7	2460
(8.3	\pm	1.6	$) \times 10^{-6}$		_
(6.1	\pm	1.9	$) \times 10^{-6}$		2380
<	3.2					2339
<				_	CL=90%	_
(•		-
(8.4	\pm				2332
<	1.50					_
<	1.63			$\times 10^{-5}$	CL=90%	_
<	3.6			$\times 10^{-6}$	CL=90%	_
(4.2	\pm	8.0	$) \times 10^{-6}$	S=2.2	2306
<	2.5					2338
<						2374
						-
(3.92	\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
(4.4	+	0.7 0.6	$) \times 10^{-5}$		2491
(7.9	\pm	0.9	$) \times 10^{-6}$		2588
(2.9	+	1.0 0.9	$) \times 10^{-6}$		2528
(S=1.2	2516
(2.58	\pm	0.15	$) \times 10^{-5}$	S=1.3	2609
(•		2562
(8.2	\pm	0.9	$) \times 10^{-6}$		2559
		(1.8	(1.8 ± < 1.18 (9.1 ± < 6.1 (3.40 ± (8.8 + (9.4 ± < 1.1 (4.3 ± < 8 (1.1 ± (2.38 + (3.6 ± (10.0 ± (8.3 ± (6.1 ± < 3.2 < 4.3 (7.0 ± (8.4 ± < 1.50 < 1.63 < 3.6 (4.2 ± < 2.5 < 1.9 < 3.2 (3.92 ± (4.4 + (7.9 ± (2.9 + (2.58 ± (2.33 ±	(1.8 ± 0.5 < 1.18 (9.1 ± 2.9 < 6.1 (3.40 ± 0.14 (8.8 + 0.7 0.6 (9.4 ± 3.2 < 1.1 (4.3 ± 0.7 < 8 (1.1 ± 0.6 (2.38 + 0.28 0.50 (3.6 ± 0.5 (10.0 ± 2.0 (8.3 ± 1.6 (6.1 ± 1.9 < 3.2 < 4.3 (7.0 ± 1.6 (8.4 ± 2.1 < 1.50 < 1.63 < 3.6 (4.2 ± 0.8 < 2.5 < 1.9 < 3.2 (4.4 + 0.7 0.6 (7.9 ± 0.9 (2.7 ± 0.4 (2.58 ± 0.15 (2.33 ± 0.12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$(K^+\pi^-)_{NR}\pi^+\gamma$	$(9.9 \ \stackrel{+}{-} \stackrel{1.7}{2.0} \) imes 10^{-6}$	2609
$K^0\pi^+\pi^0\gamma$	$(4.6\pm0.5)\times10^{-5}$	2609
$K_1(1400)^+ \gamma$	$(10 + 5 \atop -4) \times 10^{-6}$	2453
K^* (1410) $^+$ γ	$(2.7 \begin{array}{cc} + 0.8 \\ - 0.6 \end{array}) \times 10^{-5}$	-
$K_0^*(1430)^0\pi^+\gamma$	($1.32 \ ^{+}_{-} \ 0.26 \) \times 10^{-6}$	2445
$K_2^*(1430)^+ \gamma$	$(1.4 \pm 0.4)\times 10^{-5}$	2447
$K^*(1680)^+\gamma$	(6.7	2360
$K_3^*(1780)^+ \gamma$	$< 3.9 \times 10^{-5} \text{ CL}=90\%$	2340
$K_4^*(2045)^+ \gamma$	$< 9.9 \times 10^{-3} \text{ CL} = 90\%$	2242

Light unflavored meson modes

Light unhavored meson modes							
$\rho^+\gamma$	($) \times 10^{-7}$		2583	
$\pi^+\pi^0$	($) \times 10^{-6}$	S=1.2	2636	
$\pi^+\pi^+\pi^-$	(\) × 10 ⁻⁵		2630	
$ ho^0\pi^+$	(8.3		$) \times 10^{-6}$		2581	
$\pi^{+} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$	<	1.5		\times 10 ⁻⁶	CL=90%	2545	
$\pi^+ f_2(1270)$	(2.2	+ 0.7 - 0.4	$) \times 10^{-6}$		2484	
$\rho(1450)^0\pi^+, \ \rho^0 \to \pi^+\pi^-$	(1.4	+ 0.6 - 0.9	$) \times 10^{-6}$		2434	
$ ho(1450)^0 \pi^+, \ ho^0 o \ K^+ K^-$	(1.60	± 0.14) × 10 ⁻⁶		_	
$f_0(1370)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.0			CL=90%	2460	
$f_0(500)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.1		\times 10 ⁻⁶	CL=90%	_	
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	$+\ \ 1.5 \\ -\ \ 1.1$	$) \times 10^{-6}$		2630	
$\pi^+\pi^0\pi^0$	<	8.9		$\times 10^{-4}$	CL=90%	2631	
$ ho^+\pi^0$	(1.09	± 0.14	$\times 10^{-5}$		2581	
$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	<	4.0		$\times 10^{-3}$	CL=90%	2622	
$ ho^+ ho^0$	(2.40	± 0.19	$) \times 10^{-5}$		2523	
$ ho^{+} f_{0}(980), \ f_{0} ightarrow \ \pi^{+} \pi^{-}$	<	-			CL=90%	2486	
$a_1(1260)^+\pi^0$	($) \times 10^{-5}$		2494	
$a_1(1260)^0\pi^+$	($) \times 10^{-5}$		2494	
$\omega \pi^+$	($) \times 10^{-6}$		2580	
$\omega \rho^+$	(1.59	± 0.21	$\times 10^{-5}$		2522	
$\eta \pi^+$	(4.02	± 0.27	$() \times 10^{-6}$		2609	
ηho^+	(7.0	± 2.9	$) \times 10^{-6}$	S=2.8	2553	
$\eta'\pi^+$	(± 0.9	,	S=1.9	2551	
$\eta' \rho_{\perp}^{+}$	($) \times 10^{-6}$		2492	
$\phi\pi^+$	(3.2	\pm 1.5	$) \times 10^{-8}$		2539	
$\phi \rho^+$	<	3.0			CL=90%	2480	
$a_0(980)^0\pi^+$, $a_0^0\to \eta\pi^0$	<	5.8		$\times 10^{-6}$	CL=90%	_	
$a_0(980)^+\pi^0$, $a_0^+\to \eta\pi^+$	<	1.4		× 10 ⁻⁶	CL=90%	_	

$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	<	8.6		$\times10^{-4}$	CL=90%	2608
$ ho^{0}$ a $_{1}(1260)^{+}$	<	6.2		$\times 10^{-4}$	CL=90%	2433
$ ho^0$ a $_2(1320)^+$	<	7.2		$\times 10^{-4}$	CL=90%	2410
$b_1^0\pi^+$, $b_1^0 o\omega\pi^0$	(6.7	\pm 2.0	$) \times 10^{-6}$		_
$b_1^+\pi^0$, $b_1^+ o\omega\pi^+$	<	3.3		$\times 10^{-6}$	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	6.3		$\times 10^{-3}$	CL=90%	2592
$b_1^+ ho^0$, $b_1^+ ightarrow \ \omega \pi^+$	<	5.2		$\times 10^{-6}$	CL=90%	_
$a_1(1260)^{\frac{1}{+}}a_1(1260)^0$	<	1.3		%	CL=90%	2336
$b_1^0 ho^+$, $b_1^0 o\omega\pi^0$	<	3.3		$\times 10^{-6}$	CL=90%	_

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

$h^+\pi^0$	(1.6 +	$\begin{array}{c} 0.7 \\ 0.6 \end{array}) \times 10^{-5}$	2636
ωh^+	(1.38 +	$0.27 \ 0.24$) × 10 ⁻⁵	2580
$h^+ X^0$ (Familon)	<	4.9	$\times10^{-5}$	CL=90% -
$K^+ \dot{X}^0$, $X^0 \rightarrow \mu^+ \mu^-$	<	1	\times 10 ⁻⁷	CL=95% -

Baryon modes

$ ho\overline{\Lambda}\phi$	(8.0	\pm	2.2	$) \times 10^{-7}$		2119
$\overline{p}\Lambda K^+K^-$	(3.7	\pm	0.6	$) \times 10^{-6}$		2132
$\Lambda \overline{\Lambda} \pi^+$	<	9.4				CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(3.4	\pm	0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2	+	1.2 0.9	$)\times 10^{-6}$		2098
$\Lambda(1520)\overline{\Lambda}K^{+}$	(2.2	\pm	0.7	$) \times 10^{-6}$		2126
$\Lambda \overline{\Lambda}(1520) K^+$	<	2.08			$\times 10^{-6}$		2126
$\Delta^0 p$	<	1.38			$\times10^{-6}$	CL=90%	2403
$\Delta^{++}\overline{p}$	<	1.4			$\times10^{-7}$	CL=90%	2403
$D^+ p \overline{p}$	<	1.5			$\times10^{-5}$	CL=90%	1860
$D^*(2010)^+ p \overline{p}$	<	1.5			$\times10^{-5}$	CL=90%	1786
$\overline{D}^0 p \overline{p} \pi^+$	(3.72	\pm	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	($) \times 10^{-4}$		1709
$D^- p \overline{p} \pi^+ \pi^-$	(1.66	\pm	0.30	$) \times 10^{-4}$		1705
$D^{*-}p\overline{p}\pi^{+}\pi^{-}$	($) \times 10^{-4}$		1621
$p\overline{\Lambda}^{0}\overline{D}^{0}$	($) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<	5			$\times 10^{-5}$	CL=90%	_
$\overline{\Lambda}_{c}^{-} p \pi^{+}$	(2.3	\pm	0.4	$) \times 10^{-4}$	S=2.2	1980
$\sqrt[6]{\Lambda}_{c}^{-} \Delta(1232)^{++}$	<	1.9				CL=90%	1928
$\overline{\Lambda}_c^c \Delta_X^c (1600)^{++}$	(+	1.0) × 10 ⁻⁵		_
$\overline{\Lambda}_c^- \Delta_X^{(2420)}^{++}$	($) \times 10^{-5}$		_
	1 (
$(\overline{\Lambda}_c^- p)_s \pi^+$ [qqq			土	0.7	$) \times 10^{-5}$	- 0/	
$\overline{\Sigma}_c(2520)^0 p$	<	3				CL=90%	1904
$\sum_{c} (2800)^0 p$	($) \times 10^{-5}$		_
$\overline{\Lambda}_c^- p \pi^+ \pi^0$	(1.8			$) \times 10^{-3}$		1935
$\overline{\Lambda}_c^- p \pi^+ \pi^+ \pi^-$	(2.2	\pm	0.7	$) \times 10^{-3}$		1880
$\overline{\Lambda}_c^- p \pi^+ \pi^+ \pi^- \pi^0$	<	1.34			%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(4.9	\pm	0.7	$) \times 10^{-4}$		739
$\Xi_c(2930)\Lambda_c^+, \ \Xi_c ightarrow \ K^+\Lambda_c^-$	(1.7	\pm	0.5	$) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$		2.9			$) \times 10^{-5}$		1938
$\overline{\Sigma}_{c}(2455)^{0}p\pi^{0}$	(3.5	\pm	1.1) × 10 ⁻⁴		1896
$\overline{\Sigma}_{c}(2455)^{0}p\pi^{-}\pi^{+}$	() × 10 ⁻⁴		1845
T (24EE) = -+ -+) × 10 ⁻⁴		1845
$\overline{\Lambda}_{c}(2593)^{-}/\overline{\Lambda}_{c}(2625)^{-}p\pi^{+}$					× 10 ⁻⁴	CL=90%	_
$\overline{\Xi}^0\Lambda^+$					$) \times 10^{-4}$		1144
$\frac{-c}{\equiv 0}$ A^+ ${\equiv 0}$ \rightarrow ${\equiv +}_{\pi^-}$					$) \times 10^{-5}$		1144
$\frac{-c}{\equiv}0$ $A+\frac{-c}{\equiv}0$ $A + \pi^-$	(•		
$\frac{-c}{=0}$ A^+ $\frac{-c}{=0}$ $A^ A^-$	($) \times 10^{-5}$		1144
$= \stackrel{\cdot}{c} \stackrel{\wedge}{\wedge} \stackrel{\cdot}{c}, = \stackrel{\cdot}{c} \rightarrow pK K \pi^{+}$	($) \times 10^{-6}$		_
$\Lambda_{c} = C$	<	6.5			× 10 ⁻⁴		1023
$ \frac{Z_{c}(2455)}{\Lambda_{c}(2593)^{-}/\Lambda_{c}(2625)^{-}p\pi^{+}} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}^{+}\pi^{-} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+}\pi^{-} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow pK^{-}K^{-}\pi^{+} $ $ \Lambda_{c}^{+}\overline{\Xi}_{c}^{0} $ $ \Lambda_{c}^{+}\overline{\Xi}_{c}^{-}(2645)^{0} $ $ \Lambda_{c}^{+}\overline{\Xi}_{c}^{-}(2645)^{0} $	<	7.9			$\times 10^{-4}$	CL=90%	_
$\Lambda_c^+ \overline{\Xi}_c(2790)^0$	(1.1	\pm	0.4	$) \times 10^{-3}$		_
The state of the s							

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

11010111119 1110000, 017			July House at Gu	(–	_ ,	
$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	(1.78 ± 0.23	10^{-8}		2634
$\pi^+ u \overline{ u}$	B1	<	1.4	$\times 10^{-5}$	CL=90%	2638
$K^+\ell^+\ell^-$	B1	[<i>iii</i>] (4.7 ± 0.5	10^{-7}	S=2.3	2617
$K^+e^+e^-$	B1	(5.6 ± 0.6	10^{-7}		2617
$\mathcal{K}^+\mu^+\mu^-$	B1	(4.53 ± 0.35	10^{-7}	S=1.8	2612
$K^+\mu^+\mu^-$ nonreso-	B1	(4.37 ± 0.27			2612
nant						
$K^+\tau^+\tau^-$	B1	<	2.25		CL=90%	1687
$K^+ \overline{\nu} \nu$	B1	<	1.6		CL=90%	2617
$\rho^+ u \overline{ u}$	B1	<	3.0		CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[iii] (1.01 ± 0.11	$) \times 10^{-6}$	S=1.1	2564
$K^*(892)^+ e^+ e^-$	B1	($1.55 \begin{array}{c} + & 0.40 \\ - & 0.31 \end{array}$	$) \times 10^{-6}$		2564
$K^*(892)^+ \mu^+ \mu^-$	B1	(9.6 ± 1.0	10^{-7}		2560
$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564
$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(4.3 ± 0.4	$\times 10^{-7}$		2593
$\phi K^+ \mu^+ \mu^-$	B1	() × 10 ⁻⁸		2490
$\overline{\Lambda} p \nu \overline{\nu}$		<	3.0	$\times 10^{-5}$	CL=90%	2430
π^+ e ⁺ μ^-	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^{+}e^{-}\mu^{+}$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	$\times 10^{-7}$	CL=90%	2637
$\pi^{+} e^{+} \tau^{-}$	LF	<	7.4	$\times 10^{-5}$	CL=90%	2338
$\pi^+e^- au^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	2338
$\pi^+ e^\pm au^\mp$	LF	<	7.5	$\times 10^{-5}$	CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2	$\times 10^{-5}$	CL=90%	2334
$\pi^{+}\mu^{-}\tau^{+}$	LF	<	4.5	$\times 10^{-5}$	CL=90%	2334
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2	$\times 10^{-5}$	CL=90%	2334
$K^+e^+\mu^-$	LF	<	7.0	$\times 10^{-9}$	CL=90%	2616
$K^+e^-\mu^+$	LF	<	6.4	$\times 10^{-9}$	CL=90%	2616
$K^+ e^{\pm} \mu^{\mp}$	LF	<	9.1		CL=90%	2616
$K^+e^+\tau^-$	LF	<	4.3	$\times 10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5	$\times 10^{-5}$	CL=90%	2312
$\mathit{K}^{+}\mathrm{e}^{\pm} au^{\mp}$	LF	<	3.0	$\times10^{-5}$	CL=90%	2312
$K^+\mu^+\tau^-$	LF	<	4.5	$\times 10^{-5}$	CL=90%	2298
$K^{+}\mu^{-}\tau^{+}$	LF	<	2.8	$\times 10^{-5}$	CL=90%	2298
$K^+\mu^{\pm}\tau^{\mp}$	LF	<	4.8		CL=90%	2298
$K^*(892)^+e^+\mu^-$	LF	<	1.3	$\times 10^{-6}$	CL=90%	2563
$K^*(892)^+ e^- \mu^+$	LF	<	9.9	$\times 10^{-7}$	CL=90%	2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4		CL=90%	2563
$\pi^{-}e^{+}e^{+}$	L	<	2.3		CL=90%	2638
		,			•	

$\pi^-\mu^+\mu^+$	L	<	4.0	$\times10^{-9}$	CL=95%	2634
$\pi^{-} e^{+} \mu^{+}$	L	<	1.5	$\times 10^{-7}$	CL=90%	2637
$ ho^-$ e ⁺ e ⁺	L	<	1.7	$\times 10^{-7}$	CL=90%	2583
$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-7}$	CL=90%	2578
$ ho^-\mathrm{e}^+\mu^+$	L	<	4.7	$\times 10^{-7}$	CL=90%	2582
$K^{-}e^{+}e^{+}$	L	<	3.0	$\times 10^{-8}$	CL=90%	2617
$\mathcal{K}^-\mu^+\mu^+$	L	<	4.1	$\times10^{-8}$	CL=90%	2612
$K^{-}e^{+}\mu^{+}$	L	<	1.6	$\times 10^{-7}$	CL=90%	2616
$K^*(892)^-e^+e^+$	L	<	4.0	$\times 10^{-7}$	CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7}$	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times 10^{-7}$	CL=90%	2563
$D^-e^+e^+$	L	<	2.6	$\times 10^{-6}$	CL=90%	2309
$D^-\mathrm{e}^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%	2307
$D^{-}\mu^{+}\mu^{+}$	L	<	6.9	$\times 10^{-7}$	CL=95%	2303
$D^{*\dot{-}}\mu^{\dot{+}}\mu^{+}$	L	<	2.4	$\times 10^{-6}$	CL=95%	2251
$D_{s}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7}$	CL=95%	2267
$\overline{D}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6}$	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6		CL=90%	_
$\Lambda^0 e^+$	L,B	<	3.2		CL=90%	_
$\frac{1}{\sqrt{0}} \frac{1}{\mu^+}$	_,_ L,B	<	6		CL=90%	_
$\frac{1}{\sqrt{10}}e^+$	_,_ L,B	<	8		CL=90%	_
	•			_	, -	

B⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.66\pm0.12$$
 MeV $m_{B^0}-m_{B^\pm}=0.32\pm0.05$ MeV Mean life $\tau_{B^0}=(1.519\pm0.004)\times10^{-12}$ s $c au=455.4~\mu{\rm m}$ $au_{B^+}/ au_{B^0}=1.076\pm0.004$ (direct measurements)

B^0 - \overline{B}^0 mixing parameters

$$\begin{array}{l} \chi_d \; (B^0\text{-}\overline{B}{}^0 \; \text{mixing probability}) = 0.1858 \pm 0.0011 \\ \Delta m_{B^0} = m_{B_H^0} - m_{B_L^0} = (0.5065 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ & = (3.334 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d = \Delta m_{B^0}/\Gamma_{B^0} = 0.769 \pm 0.004 \\ \text{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \text{Re}(\mathbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\mathbf{z}) = -0.007 \pm 0.004 \; \text{ps}^{-1} \\ \text{Re}(\mathbf{z}) = (-4 \pm 4) \times 10^{-2} \quad (\mathbf{S} = 1.4) \\ \text{Im}(\mathbf{z}) = (-0.8 \pm 0.4) \times 10^{-2} \end{array}$$

CP violation parameters

$$\begin{aligned} &\text{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (-0.5 \pm 0.4) \times 10^{-3} \\ &A_{T/CP}(B^0 \leftrightarrow B^0) = 0.005 \pm 0.018 \\ &A_{CP}(B^0 \to B^0) = 0.005 \pm 0.014 \\ &A_{CP}(B^0 \to [K^+K^-]_D K^*(892)^0) = -0.05 \pm 0.10 \\ &A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0) = 0.047 \pm 0.029 \\ &A_{CP}(B^0 \to [K^+\pi^-\pi^+\pi^-]_D K^*(892)^0) = 0.037 \pm 0.034 \\ &A_{CP}(B^0 \to [K^-\pi^+]_D K^*(892)^0) = 0.19 \pm 0.19 \\ &A_{CP}(B^0 \to [K^-\pi^+\pi^+\pi^-]_D K^*(892)^0) = -0.01 \pm 0.24 \\ &R_d^+ = \Gamma(B^0 \to [\pi^+K^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+]_D K^{*0}) = \\ &0.064 \pm 0.021 \\ &R_d^- = \Gamma(\overline{B}^0 \to [\pi^-K^+]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+K^-]_D K^{*0}) = \\ &0.095 \pm 0.021 \\ &A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0) = -0.18 \pm 0.14 \\ &A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0) = -0.03 \pm 0.15 \\ &R_d^+ = \Gamma(B^0 \to [\pi^+K^-\pi^+\pi^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+\pi^+\pi^-]_D K^{*0}) = 0.074 \pm 0.026 \\ &R_d^- = \Gamma(\overline{B}^0 \to [\pi^-K^+\pi^+\pi^-]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+K^-\pi^+\pi^-]_D K^{*0}) = 0.072 \pm 0.025 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = -0.072 \pm 0.18 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = -0.19 \pm 0.17 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = -0.19 \pm 0.17 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = 0.14 \pm 0.18 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = 0.14 \pm 0.18 \\ &A_{CP}(B^0 \to \eta^*K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \kappa^*(1430)^0) = -0.07 \pm 0.10 \pm 0.13 \\ &A_{CP}(B^0 \to \kappa^*(1430)^0) = -0.07 \pm 0.10 \pm 0.13 \\ &A_{CP}(B^0 \to \kappa^*(1430)^0) = -0.27 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(1430)^0 + \pi^-) = -0.27 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(1430)^0 + \pi^-) = -0.27 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(1430)^0 + \pi^-) = -0.27 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(1430)^0 + \pi^-) = -0.29 \pm 0.24 \\ &A_{CP}(B^0 \to K^*(1430)^0 + \pi^-) = -0.27 \pm 0.14 \\ &A_{$$

```
A_{CP}(B^0 \to f_0(980)K_S^0) = 0.28 \pm 0.31
A_{CP}(B^0 \to (K\pi)_0^{*0}\pi^0) = -0.15 \pm 0.11
A_{CP}(B^0 \to K^{*0} \tilde{\pi^0}) = -0.15 \pm 0.13
A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05
A_{CP}(B^0 \to K^*(892)^0 \rho^0) = -0.06 \pm 0.09
A_{CP}(B^0 \to K^{*0} f_0(980)) = 0.07 \pm 0.10
A_{CP}(B^0 \to K^{*+} \rho^-) = 0.21 \pm 0.15
A_{CP}(B^0 \to K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05
A_{CP}(B^0 \rightarrow a_1^- K^+) = -0.16 \pm 0.12
A_{CP}(B^0 \to \bar{K^0}K^0) = -0.6 \pm 0.7
A_{CP}(B^0 \to K^*(892)^0 \phi) = 0.00 \pm 0.04
A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4
A_{CP}(B^0 \to \phi(K\pi)_0^{*0}) = 0.12 \pm 0.08
A_{CP}(B^0 \to \phi K_2^*(1430)^0) = -0.11 \pm 0.10
A_{CP}(B^0 \to K^*(892)^0 \gamma) = -0.006 \pm 0.011
A_{CP}(B^0 \to K_2^*(1430)^0 \gamma) = -0.08 \pm 0.15
A_{CP}(B^0 \to X_s \gamma) = -0.009 \pm 0.018
A_{CP}(B^0 \to \rho^+ \pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)
A_{CP}(B^0 \to \rho^- \pi^+) = -0.08 \pm 0.08
A_{CP}(B^0 \rightarrow a_1(1260)^{\pm}\pi^{\mp}) = -0.07 \pm 0.06
A_{CP}(B^0 \to b_1^- \pi^+) = -0.05 \pm 0.10
A_{CP}(B^0 \to p\overline{p}K^*(892)^0) = 0.05 \pm 0.12
A_{CP}(B^0 \to p \overline{\Lambda} \pi^-) = 0.04 \pm 0.07
A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.05 \pm 0.10
A_{CP}(B^0 \to K^{*0} e^+ e^-) = -0.21 \pm 0.19
A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.034 \pm 0.024
C_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.02 \pm 0.08
S_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.83 \pm 0.09
C_{D^{*+}D^{-}}^{-} (B^0 \to D^*(2010)^+D^-) = -0.03 \pm 0.09 (S = 1.1)
S_{D^{*+}D^{-}}(B^0 \rightarrow D^*(2010)^+D^-) = -0.80 \pm 0.09
C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-}) = 0.01 \pm 0.09 \quad (S = 1.6)
S_{D^{*+}D^{*-}} (B^0 \rightarrow D^{*+}D^{*-}) = -0.59 \pm 0.14 \quad (S = 1.8)
C_{+}^{-} (\bar{B}^{0} \to D^{*+}D^{*-}) = 0.00 \pm 0.10 \quad (S = 1.6)
S_{+}(B^{0} \rightarrow D^{*+}D^{*-}) = -0.73 \pm 0.09
C_{-}(B^{0} \rightarrow D^{*+}D^{*-}) = 0.19 \pm 0.31
S_{-}(B^{0} \rightarrow D^{*+}D^{*-}) = 0.1 \pm 1.6 \quad (S = 3.5)
C(B^0 \rightarrow D^*(2010)^+ D^*(2010)^- K_5^0) = 0.01 \pm 0.29
S(B^0 \rightarrow D^*(2010)^+ D^*(2010)^- K_S^{0}) = 0.1 \pm 0.4
C_{D^+D^-}(B^0 \to D^+D^-) = -0.22 \pm 0.24 \quad (S = 2.5)
S_{D^+D^-}(B^0 \rightarrow D^+D^-) = -0.76^{+0.15}_{-0.13} \text{ (S = 1.2)}
C_{J/\psi(1S)\pi^0} (B^0 \to J/\psi(1S)\pi^0) = 0.03 \pm 0.17 \quad (S = 1.5)
```

$$\begin{split} & \mathbf{S}_{J/\psi(1S)\pi^0} (\mathbf{B^0} \to J/\psi(1S)\pi^0) = -0.88 \pm 0.32 \quad (S = 2.2) \\ & C(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.06 \\ & \mathbf{S}(\mathbf{B^0} \to J/\psi(1S)\rho^0) = -0.66 \pm 0.12 \\ & C_{D^{(*)}}h^0 \left(B^0 \to D^{(*)}_{CP}h^0\right) = -0.02 \pm 0.08 \\ & \mathbf{S}_{D^{(*)}_{CP}h^0} \left(B^0 \to D^{(*)}_{CP}h^0\right) = -0.66 \pm 0.12 \\ & C_{K^0\pi^0} \left(B^0 \to K^0\pi^0\right) = 0.00 \pm 0.13 \quad (S = 1.4) \\ & \mathbf{S}_{K^0\pi^0} \left(B^0 \to K^0\pi^0\right) = 0.58 \pm 0.17 \\ & C_{\eta'(958)K_S^0} \left(B^0 \to \eta'(958)K_S^0\right) = -0.04 \pm 0.20 \quad (S = 2.5) \\ & S_{\eta'(958)K_S^0} \left(B^0 \to \eta'(958)K_S^0\right) = 0.43 \pm 0.17 \quad (S = 1.5) \\ & C_{\eta'K^0} \left(B^0 \to \eta'K^0\right) = 0.63 \pm 0.06 \\ & C_{WK_S^0} \left(B^0 \to \eta'K^0\right) = 0.06 \pm 0.4 \quad (S = 3.0) \\ & S_{WK_S^0} \left(B^0 \to WK_S^0\right) = 0.70 \pm 0.21 \\ & C\left(B^0 \to K_S^0\pi^0\pi^0\right) = -0.21 \pm 0.20 \\ & S\left(B^0 \to K_S^0\pi^0\pi^0\right) = 0.89^{+0.27}_{-0.30} \\ & C_{\rho^0K_S^0} \left(B^0 \to \rho^0K_S^0\right) = -0.04 \pm 0.20 \\ & S_{\rho^0K_S^0} \left(B^0 \to \rho^0K_S^0\right) = 0.50^{+0.17}_{-0.21} \\ & C_{\rho^0K_S^0} \left(B^0 \to \rho^0K_S^0\right) = 0.50 \pm 0.16 \\ & S_{\rho^0K_S^0} \left(B^0 \to f_0(980)K_S^0\right) = -0.5 \pm 0.5 \\ & C_{f_2K_S^0} \left(B^0 \to f_2(1270)K_S^0\right) = -0.5 \pm 0.5 \\ & C_{f_2K_S^0} \left(B^0 \to f_2(1300)K_S^0\right) = 0.13 \pm 0.35 \\ & S_{K^0\pi^+\pi^-} \left(B^0 \to K_S^0\pi^+\pi^- \text{nonresonant}\right) = -0.01 \pm 0.26 \\ & C_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ & S_{K_S^0K_S^0} \left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm$$

$$\begin{split} & \mathbf{S}_{\phi \mathbf{K}_{\mathbf{S}}^{\mathbf{S}}} (\mathbf{B}^{\mathbf{O}} \to \phi \mathbf{K}_{\mathbf{S}}^{\mathbf{O}}) = 0.59 \pm 0.14 \\ & C_{K_S} \kappa_S \kappa_S (B^0 \to K_S \kappa_S \kappa_S) = -0.14 \pm 0.12 \\ & S_{K_S} \kappa_S (\mathbf{K}_S} (\mathbf{B}^0 \to K_S \kappa_S \kappa_S) = -0.82 \pm 0.17 \\ & C_{K_S^0 \pi^0} \gamma (B^0 \to K_S^0 \pi^0 \gamma) = 0.36 \pm 0.33 \\ & S_{K_S^0 \pi^0 \gamma} (B^0 \to K_S^0 \pi^0 \gamma) = -0.8 \pm 0.6 \\ & C_{K_S^0 \pi^+ \pi^- \gamma} (B^0 \to K_S^0 \pi^+ \pi^- \gamma) = -0.39 \pm 0.20 \\ & S_{K_S^0 \pi^+ \pi^- \gamma} (B^0 \to K_S^0 \pi^+ \pi^- \gamma) = 0.14 \pm 0.25 \\ & C_{K^{*0} \gamma} (B^0 \to K^* (892)^0 \gamma) = -0.04 \pm 0.16 \quad (S = 1.2) \\ & S_{K^{*0} \gamma} (B^0 \to K^* (892)^0 \gamma) = -0.15 \pm 0.22 \\ & C_{\eta \kappa^0 \gamma} (B^0 \to \eta \kappa^0 \gamma) = 0.1 \pm 0.4 \quad (S = 1.4) \\ & S_{\eta \kappa^0 \gamma} (B^0 \to \eta \kappa^0 \gamma) = -0.5 \pm 0.5 \quad (S = 1.2) \\ & C_{K^0 \phi \gamma} (B^0 \to \kappa^0 \phi \gamma) = -0.3 \pm 0.6 \\ & S_{K^0 \phi \gamma} (B^0 \to \kappa^0 \phi \gamma) = -0.3 \pm 0.6 \\ & S_{K^0 \phi \gamma} (B^0 \to \kappa^0 \phi \gamma) = -0.05 \pm 0.19 \\ & S(B^0 \to \kappa^0 \rho^0 \gamma) = -0.04 \pm 0.23 \\ & C(B^0 \to \kappa^0 \rho^0 \gamma) = -0.8 \pm 0.7 \\ & C_{\pi \pi} (B^0 \to \pi^+ \pi^-) = -0.314 \pm 0.030 \\ & S_{\pi \pi} (B^0 \to \pi^+ \pi^-) = -0.670 \pm 0.030 \\ & C_{\pi^0 \eta} (B^0 \to \phi^0 \pi^0) = -0.33 \pm 0.22 \\ & C_{\rho \pi} (B^0 \to \rho^0 \pi^0) = -0.33 \pm 0.22 \\ & C_{\rho \pi} (B^0 \to \rho^0 \pi^-) = 0.05 \pm 0.07 \\ & \Delta C_{\rho \pi} (B^0 \to \rho^0 \pi^-) = 0.27 \pm 0.06 \\ & \Delta S_{\rho \pi} (B^0 \to \rho^0 \pi^-) = 0.27 \pm 0.24 \\ & S_{\rho^0 \eta^0} (B^0 \to \rho^0 \pi^0) = -0.23 \pm 0.34 \\ & C_{a_{1}\pi} (B^0 \to a_{1}(1260)^+ \pi^-) = -0.21 \pm 0.11 \\ & S_{a_{1}\pi} (B^0 \to a_{1}(1260)^+ \pi^-) = -0.21 \pm 0.12 \\ & \Delta C_{a_{1}\pi} (B^0 \to a_{1}(1260)^+ \pi^-) = -0.21 \pm 0.12 \\ & \Delta C_{a_{1}\pi} (B^0 \to a_{1}(1260)^+ \pi^-) = -0.21 \pm 0.12 \\ & C(B^0 \to b_{1}^- \kappa^+) = -1.04 \pm 0.24 \\ & C_{\rho^0 \rho^0} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho^0 \rho^0} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho^0 \rho^0} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho^0 \rho^0} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.05 \pm 0.95 \\ & | S_{\rho\rho} (B$$

$$\cos 2\beta \ (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} \ (S = 1.6)$$

$$\cos 2\beta \ (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} \ h^0) = 0.91 \pm 0.25$$

$$(S_+ + S_-)/2 \ (B^0 \to D^{*-} \pi^+) = -0.039 \pm 0.011$$

$$(S_- - S_+)/2 \ (B^0 \to D^{*-} \pi^+) = -0.046 \pm 0.023$$

$$(S_- - S_+)/2 \ (B^0 \to D^- \pi^+) = -0.022 \pm 0.021$$

$$S_+ \ (B^0 \to D^- \pi^+) = 0.058 \pm 0.023$$

$$S_- \ (B^0 \to D^- \pi^+) = 0.038 \pm 0.023$$

$$S_- \ (B^0 \to D^+ \pi^-) = 0.038 \pm 0.023$$

$$S_- \ (B^0 \to D^+ \pi^-) = 0.038 \pm 0.023$$

$$S_- \ (B^0 \to D^- \pi^+) = -0.024 \pm 0.032$$

$$(S_- - S_+)/2 \ (B^0 \to D^- \rho^+) = -0.10 \pm 0.06$$

$$C_{\eta_c \ K_S^0} \ (B^0 \to \eta_c \ K_S^0) = 0.08 \pm 0.13$$

$$S_{\eta_c \ K_S^0} \ (B^0 \to \eta_c \ K_S^0) = 0.08 \pm 0.13$$

$$S_{\eta_c \ K_S^0} \ (B^0 \to \eta_c \ K_S^0) = 0.93 \pm 0.17$$

$$C_{C_{\overline{C}K}(*)0} \ (B^0 \to c_{\overline{C}K}(*)0) = (-0.5 \pm 1.5) \times 10^{-2}$$

$$\sin(2\beta) = 0.699 \pm 0.017$$

$$C_{J/\psi \ (nS) \ K^0} \ (B^0 \to J/\psi \ (nS) \ K^0) = 0.701 \pm 0.017$$

$$C_{J/\psi \ (nS) \ K^0} \ (B^0 \to J/\psi \ (nS) \ K^0) = 0.701 \pm 0.017$$

$$C_{J/\psi \ K^{*0}} \ (B^0 \to J/\psi \ K^{*0}) = 0.03 \pm 0.10$$

$$S_{J/\psi \ K^{*0}} \ (B^0 \to \chi_{c0} \ K_S^0) = -0.7 \pm 0.5$$

$$C_{\chi_{c0} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} \ K_S^0} \ (B^0 \to \chi_{c1} \ K_S^0) = 0.06 \pm 0.00$$

$$\sin(2\beta_{eff}) \ (B^0 \to K^+ \ K^- \ K_S^0) = 0.08 \pm 0.10$$

$$\sin(2\beta_{eff}) \ (B^0 \to K^- \ K_S^0) = 0.06 \pm 0.00$$

$$\sin(2\beta_{eff}) \ (B^0 \to K^- \ K_S^0) = 0.06 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^- \ K_S^0) = 0.06 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^- \ K_S^0) = 0.00 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^- \ K_S^0) = 0.00 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^- \ K_S^0) = 0.00 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^- \ K_S^0) = 0.00 \pm 0.00$$

$$2\beta_{eff} \ (B^0 \to D^$$

 $\overline{B}{}^0$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

_				Sca	ale factor/	p
B ⁰ DECAY MODES	F	rac	tion (Γ_i/Γ)	Confid	lence level	(MeV/c)
$\ell^+ u_\ell X$	[iii]	(10.33± 0.28)	%		_
$e^{+\nu_e}X_c$		•	10.1 ± 0.4			_
$\ell^+ \nu_\ell X_\mu$		(1.51± 0.19)	$\times 10^{-3}$		_
$D\ell^+ u_\ell X$		(9.3 ± 0.8)			_
$D^-\ell^+ u_\ell$	[iii]	(2.24± 0.09)	%		2309
$D^- au^+ u_ au$		(1.05 ± 0.23)	%		1909
$D^*(2010)^-\ell^+ u_\ell$	[iii]	(4.97± 0.12)	%		2257
$D^*(2010)^- au^+ u_ au$		(1.58± 0.09)	%	S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+ u_\ell$		($4.1~\pm~0.5~)$	$\times 10^{-3}$		2308
$D_0^*(2300)^-\ell^+\nu_\ell, \ D_0^{*-}\to$		($3.0 \ \pm \ 1.2 \)$	\times 10 ⁻³	S=1.8	_
$D_2^*(2460)^-\ell^+ u_\ell, \ D_2^{*-} o$		(1.21± 0.33)	× 10 ⁻³	S=1.8	2065
$rac{\overline{D}{}^0\pi^-}{\overline{D}^{(*)}}$ n $\pi\ell^+ u_\ell$ (n $\geq~1)$		(2.3 ± 0.5)	%		_
$\overline{D}^{*0}\pi^-\ell^+ u_\ell$		•	5.8 ± 0.8)	_	S=1.4	2256
$D_1(2420)^{-}\widetilde{\ell}^+ u_\ell$, $D_1^- ightarrow$		(2.80± 0.28)	_		_
$D_1^{*0}\pi^ D_1'(2430)^-\ell^+\nu_\ell, \ D_1'^- \to 0$		($3.1~\pm~0.9~)$	× 10 ⁻³		_
$D_2^{*0}\pi^- \ D_2^{*(2460)^-}\ell^+ u_\ell, \ D_2^{*-} ightarrow \ \overline{D}^{*0}\pi^-$		($6.8 ~\pm~ 1.2~)$	× 10 ⁻⁴		2065
$D^{+}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		(1.3 ± 0.5)	× 10 ⁻³		2299
$D^{*-}\pi^+\pi^-\ell^+ u_\ell$		($1.4~\pm~0.5~)$			2247
$ ho^-\ell^+ u_\ell$	[iii]	(2.94± 0.21)	$\times 10^{-4}$		2583
$\pi^-\ell^+ u_\ell$	[iii]		1.50± 0.06)			2638
$\pi^- au^+ u_ au$		<			CL=90%	2339

Inclusive modes

$K^{\pm}X$	$(78 \pm 8)\%$		_
$D^0 X$	(8.1 ± 1.5) %		_
$\overline{D}{}^0 X$	$(47.4 \pm 2.8)\%$		_
D^+X	< 3.9 %	CL=90%	_
D^-X	(36.9 ± 3.3) %		_
$D_s^+ X$	$(10.3 + 2.1 \atop -1.8)\%$		_
$D_s^- X$	< 2.6 %	CL=90%	_
$D_s^- X$ $\Lambda_c^+ X$	< 3.1 %	CL=90%	_
$\overline{\Lambda}_c^- X$	$(5.0 \ \frac{+}{-} \ \frac{2.1}{1.5}) \%$		_
$\overline{c}X$	(95 ± 5) %		_
cX	$(24.6 \pm 3.1)\%$		_
\overline{c}/cX	$(119 \pm 6) \ \%$		_

D, D^* , or D_s modes

D , D^* , or D_s modes								
$D^-\pi^+$	($2.51 \pm$	$0.08) \times 10^{-3}$		2306			
$D^- \rho^+$	($1.2) \times 10^{-3}$		2235			
$D^- \mathcal{K}^0 \pi^+$	($0.9\)\times 10^{-4}$		2259			
$D^-K^*(892)^+$	($0.7) \times 10^{-4}$		2211			
$D^-\omega\pi^+$	($0.6) \times 10^{-3}$		2204			
D^-K^+	($2.05\pm$	$0.08) \times 10^{-4}$		2279			
$D^ K^+$ π^+ π^-	($3.5~\pm$	$0.8) \times 10^{-4}$		2236			
$D^-K^+\overline{K}^0$	<	3.1	\times 10 ⁻⁴	CL=90%	2188			
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	(8.8 ±	$1.9) \times 10^{-4}$		2070			
$\overline{D}{}^0\pi^+\pi^-$	(8.8 ±	$0.5) \times 10^{-4}$		2301			
$D^*(2010)^-\pi^+$	($2.74\pm$	$0.13) \times 10^{-3}$		2255			
$\overline{D}{}^0{\mathcal K}^+{\mathcal K}^-$	($6.1~\pm$	$0.5) \times 10^{-5}$		2191			
$D^-\pi^+\pi^+\pi^-$	($6.0~\pm$	$0.6) \times 10^{-3}$		2287			
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	t ($3.9~\pm$	$1.9) \times 10^{-3}$		2287			
$D^-\pi^+ ho^0$	($1.1~\pm$	$1.0) \times 10^{-3}$		2206			
$D^- a_1 (1260)^+$	($6.0~\pm$	$3.3) \times 10^{-3}$		2121			
$D^*(2010)^-\pi^+\pi^0$	($1.5~\pm$	0.5) %		2248			
$D^*(2010)^- ho^+$	($6.8~\pm$	$0.9) \times 10^{-3}$		2180			
$D^*(2010)^-K^+$	($2.12\pm$	$0.15) \times 10^{-4}$		2226			
$D^*(2010)^-K^0\pi^+$	($3.0~\pm$	$0.8) \times 10^{-4}$		2205			
$D^*(2010)^- K_{\underline{}}^*(892)^+$	($3.3~\pm$	$0.6) \times 10^{-4}$		2155			
$D^*(2010)^- K^+ \overline{K}^0$	<	4.7	\times 10 ⁻⁴	CL=90%	2131			
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007			
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.21\pm$	$0.29) \times 10^{-3}$		2235			
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	- ($0.0~\pm$	$2.5) \times 10^{-3}$		2235			
resonant	_							
$D^*(2010)^-\pi^+\rho^0$	($3.2) \times 10^{-3}$		2150			
$D^*(2010)^- a_1(1260)^+$	($1.30\pm$	0.27) %		2061			

$\overline{D}_1(2420)^0\pi^-\pi^+, \ \overline{D}_1^0 ightarrow$	($1.47\pm$	$0.35) \times 10^{-4}$		_
$D^{*-}\pi^{+}$ $D^{*}(2010)^{-}K^{+}\pi^{-}\pi^{+}$ $D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	•		0.4) × 10 ⁻⁴ 0.27) %		2181 2218
$D^{*-}3\pi^{+'}2\pi^{-}$	•		$0.9) \times 10^{-3}$		2195
$D^*(2010)^- \omega \pi^+$			$0.18) \times 10^{-3}$	S=1.2	2148
$\overline{D}_1(2430)^0\omega, \ \overline{D}_1^0 ightarrow D^{*-}\pi^+$			$_{0.4}^{0.8}$) \times 10 ⁻⁴		1992
$D^{*-}\rho(1450)^+, \ \rho^+ \to \ \omega \pi^+$	(1.07+	$0.40 \\ 0.34) \times 10^{-3}$		_
$\overline{D}_1(2420)^0\omega, \ \overline{D}_1^0\to$			$2.2) \times 10^{-5}$		1995
$\overline{D}_2^{*-}\pi^+ \overline{D}_2^0$ 0 0 0 0 0 0 0	(4.0 ±	1.4) × 10 ⁻⁵		1975
$D^{*-}\pi^+ \ D^{*-}b_1(1235)^+$, $b_1^+ o$	<	7	× 10 ⁻⁵	CI -00%	_
		,	× 10	CL=90/0	
$\overline{D}^{**-}\frac{\omega \pi^+}{\pi^+}$	[nnn] (1.9 ±	$0.9\)\times 10^{-3}$		_
$D_1(2420)^-\pi^+$, $D_1^- ightarrow$	(9.9 +	$^{2.0}_{2.5}$) $ imes$ 10 ⁻⁵		-
$D^-\pi^+\pi^-$ $D_1(2420)^-\pi^+, D_1^- \to$	<	3.3	× 10 ⁻⁵	CL=90%	_
$D_{2}^{*-}\pi^{+}\pi^{-}$ $D_{2}^{*}(2460)^{-}\pi^{+}, (D_{2}^{*})^{-} \rightarrow D_{2}^{0}\pi^{-}$	(2.38±	$0.16) \times 10^{-4}$		2062
$\overline{D}_0^*(2400)^-\pi^+, (D_0^*)^- \to D^0\pi^-$	(7.6 ±	$0.8)\times 10^{-5}$		2090
$D_2^*(2460)^-\pi^+, (D_2^*)^- \to D^{*-}\pi^+\pi^-$	<	2.4	× 10 ⁻⁵	CL=90%	-
$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	<	4.9	$\times10^{-3}$	CL=90%	1974
$D^{\overline{0}} \overline{D}{}^{0}$	(1.4 \pm	$0.7) \times 10^{-5}$		1868
$D^{*0}\overline{D}^{0}$	<	2.9	\times 10 ⁻⁴	CL=90%	1794
D^-D^+	($0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}(CP$ -averaged)	($0.6) \times 10^{-4}$		_
$D^-D_s^+$	($7.2~\pm$	$0.8) \times 10^{-3}$		1812
$D^*(2010)^-D_s^+$	($8.0~\pm$	$1.1) \times 10^{-3}$		1735
$D^{-}D_{s}^{*+}$	(7.4 ±	$1.6) \times 10^{-3}$		1732
$D^*(2010)^-D_s^{*+}$	(0.14) %		1649
$D_{s0}(2317)^- K^+, D_{s0}^- \rightarrow D_{s}^- \pi^0$	($1.4) \times 10^{-5}$		2097
$D_{s0}(2317)^-\pi^+, \ D_{s0}^- \rightarrow$	<	2.5	$\times 10^{-5}$	CL=90%	2128
$D_s^- \pi^0$ $D_{sJ}(2457)^- K^+, \ D_{sJ}^- \to D_{sJ}^- \pi^0$	<	9.4	× 10 ⁻⁶	CL=90%	_
$D_s^-\pi^0$					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^- D_{sJ}(2700)^+, \;\; D_{sJ}^+ ightarrow \ D^0 {\cal K}^+$	($7.1 \pm 1.2) \times 10^{-4}$		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>D</i> / \	(73 + 12) × 10 ⁻⁷		2306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^+ a^-$	_	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D^{*+} a^{-}			CL=30/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_s^+ ρ^-	`		CI00%	2130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{*+}a^{-}$				_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s = 0$ $D_s^+ = (1260)^-$				2080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,				2013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^{d_2}$				_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s \stackrel{d_2}{\sim} V^+$				-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^* + V^+$		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	`			2172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^{*-} K^*(892)^+$	($3.2 \begin{array}{c} + & 1.5 \\ - & 1.3 \end{array}) \times 10^{-5}$		2112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		($9.7 \pm 1.4) \times 10^{-5}$		2222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^{*-}\pi^+K^0$	<	1.10×10^{-4}	CL=90%	2164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	($1.7 \pm 0.5) \times 10^{-4}$		2198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^- \pi^+ K^* (892)^0$	<	3.0×10^{-3}	CL=90%	2138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^{*-}\pi^+K^*(892)^0$	<	1.6×10^{-3}	CL=90%	2076
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{D}^{0}K^{0}$	($5.2 \pm 0.7) \times 10^{-5}$		2280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		($8.8 \pm 1.7 \times 10^{-5}$		2261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{0}K^{*}(1410)^{0}$			CL=90%	2062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{D^0}{2}K_0^*(1430)^0$	(2058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>~</u> · · · · ·	(2057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		($1.9 \pm 0.9 \times 10^{-5}$		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{0}\pi^{-}$,	0.00 0.05) 10=5		2020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_2(2400)$ K, $D_2 \rightarrow \overline{D}_0$	($2.03\pm 0.35) \times 10^{-3}$		2029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_3^*(2760)^-K^+, D_3^{*-} \rightarrow$	<	1.0×10^{-6}	CL=90%	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{D}{}^0\pi^-$		_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{\circ}K^{+}\pi^{-}$ nonresonant				2261
		•	•		_
$\overline{D}{}^0\pi^0$ (2.63 ± 0.14) $\times 10^{-4}$ 2308 $\overline{D}{}^0\rho^0$ (3.21 ± 0.21) $\times 10^{-4}$ 2237			_		_
$\overline{D}{}^{0} \rho^{0}$ (3.21± 0.21) × 10 ⁻⁴ 2237	$\frac{1}{D}$ 0 π 0				2308
$D = \frac{1.50 \pm 0.21}{1.50 \pm 0.21} \times 10^{-1}$	$\frac{\overline{D}}{\overline{D}}$ f_2		$1.56\pm 0.21) \times 10^{-4}$		_

$\overline{D}{}^0_{}\eta$	($2.36 \pm 0.32)$	\times 10 ⁻⁴	S=2.5	2274
$\overline{D}{}^0\eta'$	(1.38 ± 0.16)	\times 10 ⁻⁴	S=1.3	2198
$\overline{D}{}^0 \omega$	(2.54± 0.16)	\times 10 ⁻⁴		2235
$D^0\phi$	<	2.3	\times 10 ⁻⁶	CL=95%	2183
$D^0 K^+ \pi^-$	(5.3 ± 3.2)	\times 10 ⁻⁶		2261
$D^0 K^* (892)^0$	(3.0 ± 0.6)			2213
$\overline{D}^{*0}\gamma$	<	2.5	$\times 10^{-5}$	CL=90%	2258
$\overline{D}^*(2007)^0\pi^0$	(2.2 ± 0.6)	× 10 ⁻⁴	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	5.1			2182
$\overline{D}^*(2007)^0 \eta$		2.3 ± 0.6)			2220
$\overline{D}^*(2007)^0 \eta'$	(1.40± 0.22)			2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	(6.2 ± 2.2	_		2249
$\overline{D}^*(2007)^0 K^0$	(3.6 ± 1.2	_		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<	6.9	_	CL=90%	2157
$D^*(2007)^0 K^*(892)^0$	<	4.0			2157
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	(2.7 ± 0.5)			2219
$D^*(2010)^+D^*(2010)^-$	(8.0 ± 0.6)			1711
$\overline{D}^*(2007)^0 \omega$	(3.6 ± 1.1)		S=3.1	2180
$D^*(2010)^+D^-$	(6.1 ± 1.5			1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<			CL=90%	1715
$D^{-}D^{0}K^{+}$	(1.07± 0.11)			1574
$D^-D^*(2007)^0K^+$	•	3.5 ± 0.4			1478
$D^*(2010)^- D^0 K^+$	(2.47± 0.21)	_		1479
$D^*(2010)^- D^*(2007)^0 K^+$	(1.06 ± 0.09			1366
$D^{-}D^{+}K^{0}$	(7.5 ± 1.7			1568
$D^*(2010)^- D^+ K^0 +$	(6.4 ± 0.5	_		1473
$D^-D^*(2010)^+K^0$	`	,	-		
$D^*(2010)^- D^*(2010)^+ K^0$	(8.1 ± 0.7)	× 10 ⁻³		1360
$D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	(8.0 ± 2.4)			1336
$D^{*+}K^{0}$	`	,	-		
$\overline{D}^0 D^0 K^0$	(2.7 ± 1.1)	× 10 ⁻⁴		1574
$D^0\overline{D}{}^0K^+\pi^-$		3.5 ± 0.5			1476
$\overline{D}{}^{0} D^{*} (2007)^{0} K^{0} +$	Ì	1.1 ± 0.5			1478
$\overline{D}^*(2007)^0 D^0 K^0$	•	,			
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	(2.4 ± 0.9)	$\times 10^{-3}$		1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68± 0.26)			_
		,			
Charmo			10-4		1751
$\eta_c K^0$		8.0 ± 1.1)			1751
$\eta_c(1S) K^+ \pi^-$		6.0 ± 0.7)			1722
$\eta_c(1S) K^+ \pi^- (NR)$	(6.2 ± 1.3)			_
$X(4100)^- K^+, X^- \rightarrow$	($2.0 \ \pm \ 1.0 \)$	× 10 2		_
$\eta_c \pi^- \\ \eta_c (1S) K^* (1410)^0$	1	10	_{v 10} –4		1205
	(1.9 ± 1.5)			1395
$\eta_c(1S) K_0^* (1430)^0$	($1.6~\pm~0.4~)$	× 10 ,		1388

HTTP://PDG.LBL.GOV Page 105

$\eta_c(1S) K_2^*(1430)^0$	($5.0 ^{+}_{-} ^{2.3}_{2.7}) \times 10^{-5}$		1386
$\eta_c(1S) K^*(1680)^0$		-2.7 3 ± 4) $\times 10^{-5}$		1166
$\eta_c(1S)K_0^*(1950)^0$		$4.4 + 3.0 \times 10^{-5}$		1100
		1.0		_
$\eta_c K^* (892)^0$	($5.2 {+} {0.8} 0.9) \times 10^{-4}$	S=1.6	1646
$\eta_c(2S)K_S^0, \ \eta_c \rightarrow \ p\overline{p}\pi^+\pi^-$	($4.2 \ ^{+} \ ^{1.4} \) \times 10^{-7}$		_
$\eta_c(2S)K^{*0}$			CL=90%	1159
$h_c(1P)K_S^0$	<	1.4×10^{-5}		1401
$h_c(1P)K^{*0}$		4×10^{-4}	CL=90%	1253
$J/\psi(1S)K^0$		$8.91\pm 0.21) \times 10^{-4}$		1683
$J/\psi(1S)K^{+}\pi^{-}$		$1.15 \pm 0.05) \times 10^{-3}$		1652
$J/\psi(1S) K^*(892)^0$		$1.27 \pm 0.05) \times 10^{-3}$		1572
$J/\psi(1S)\eta K_{S}^{0}$		$5.4 \pm 0.9 \times 10^{-5}$	GL 000/	1508
$J/\psi(1S)\eta'K_S^0$	<			1271
$J/\psi(1S)\phi K^0$		$4.9 \pm 1.0 \times 10^{-5}$	S=1.3	1224
$J/\psi(1S)\omega K^0$	•	$2.3 \pm 0.4 \times 10^{-4}$ $2.1 \pm 0.9 \times 10^{-5}$		1386
$\chi_{c0}(3915), \ \chi_{c0} \to \ J/\psi \omega \ J/\psi (1S) K (1270)^0$	•	$1.3 \pm 0.5 \times 10^{-3}$		1102 1402
$J/\psi(1S)\pi^0$		$1.66 \pm 0.10) \times 10^{-5}$		1728
$J/\psi(1S)\eta$		$1.08 \pm 0.10) \times 10^{-5}$	S=1.5	1673
$J/\psi(1S)\pi^+\pi^-$		$4.00\pm 0.15) \times 10^{-5}$	0 1.0	1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	E	CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	($8.8 \ ^{+}_{-} \ ^{1.2}_{1.6} \) \times 10^{-6}$		_
$J/\psi(1S) f_2$	($3.3 \ ^{+}_{-} \ 0.5 \) \times 10^{-6}$	S=1.5	_
$J/\psi(1S) ho^0$	(2.55^{+}_{-} $\stackrel{0.18}{0.16}$) \times 10^{-5}		1612
$J/\psi(1S) f_0(980), \ f_0 ightarrow$	<	1.1×10^{-6}	CL=90%	_
$J/\psi(1S)\rho(1450)^{0}, \ \rho^{0} \rightarrow$	($2.9 \ ^{+}_{-} \ ^{1.6}_{0.7} \) \times 10^{-6}$		_
$J/\psi ho(1700)^{0}$, $ ho^{0} ightarrow \pi^{+} \pi^{-}$	($2.0~\pm~1.3~)\times10^{-6}$		_
$J/\psi(1S)\omega$	($1.8 \ ^{+}_{-} \ ^{0.7}_{0.5} \) imes 10^{-5}$		1609
$J/\psi(1S)K^+K^-$	($2.54 \pm 0.35) \times 10^{-6}$		1534
$J/\psi(1S)$ a $_0(980),~~a_0 ightarrow K^+$ K^-	($4.7 \pm 3.4) \times 10^{-7}$		_
$J/\psi(1S)\phi$	<	1.1×10^{-7}	CL=90%	1520
$J/\psi(1S)\eta'(958)$	•	$7.6 \pm 2.4 \times 10^{-6}$		1546
$J/\psi(1S)K^{0}\pi^{+}\pi^{-}$	($4.5 \pm 0.4 \times 10^{-4}$		1611
$J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.}$	<			1467
$J/\psi(1S)K^{0}K^{+}K^{-}$		$2.5 \pm 0.7) \times 10^{-5}$	S=1.8	1249
$J/\psi(1S) K^0 \rho^0$	($5.4 \pm 3.0 \times 10^{-4}$		1390

$\chi_{c1}\pi^+\pi^-K^0$	(3.2 ± 0.5	$) \times 10^{-4}$		1318
$\chi_{c1}\pi^-\pi^0K^+$	($3.5\ \pm\ 0.6$	$) \times 10^{-4}$		1321
$\chi_{c2}K^0$	<	1.5	$\times 10^{-5}$	CL=90%	1379
$\chi_{c2} K^* (892)^0$	($4.9 ~\pm~ 1.2$	$) \times 10^{-5}$	S=1.1	1228
$\chi_{c2}\pi^-K^+$	(7.2 ± 1.0	$) \times 10^{-5}$		1338
$\chi_{c2}\pi^+\pi^-K^0$	<	1.70	$\times 10^{-4}$	CL=90%	1282
$\chi_{c2}\pi^-\pi^0K^+$	<	7.4	$\times 10^{-5}$	CL=90%	1286
$\psi(4660)K^0$, $\psi \rightarrow \Lambda_c^+ \Lambda_c^-$	<	2.3	$\times 10^{-4}$	CL=90%	_
$\psi(4230)^{0}K^{0}, \ \psi^{0} \to$	<	1.7	$\times10^{-5}$	CL=90%	_
$J/\psi \pi^+ \pi^-$					

K or K* modes

K or K* modes								
$K^+\pi^-$	($1.96\pm$	$0.05) \times 10^{-5}$		2615			
$\mathcal{K}^0\pi^0$	($9.9~\pm$	$0.5) \times 10^{-6}$		2615			
$\eta' K^0$	($6.6~\pm$	$0.4) \times 10^{-5}$	S=1.4	2528			
$\eta' K^*(892)^0$	($0.6) \times 10^{-6}$		2472			
$\eta' K_0^* (1430)^0$	($6.3~\pm$	$1.6) \times 10^{-6}$		2346			
$\eta' K_2^* (1430)^0$	($1.37\pm$	$0.32) \times 10^{-5}$		2346			
$\eta {\it K}^0$	(1.23 +	$^{0.27}_{0.24})\times 10^{-6}$		2587			
$\eta K^*(892)^0$	($1.59\pm$	$0.10) \times 10^{-5}$		2534			
$\eta K_0^* (1430)^0$	($1.10\pm$	$0.22) \times 10^{-5}$		2415			
$\eta K_2^* (1430)^0$	(9.6 ±	$2.1) \times 10^{-6}$		2414			
ωK^0	(4.8 ±	$0.4) \times 10^{-6}$		2557			
$a_0(980)^0K^0$, $a_0^0 o \eta\pi^0$	<	7.8	\times 10 ⁻⁶	CL=90%	_			
$b_1^0 {\it K}^0$, $b_1^0 ightarrow \omega \pi^0$	<	7.8	$\times10^{-6}$	CL=90%	_			
$a_0(980)^{\pm}K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	1.9	$\times10^{-6}$	CL=90%	_			
$b_1^- K^+$, $b_1^- ightarrow \ \omega \pi^-$	(7.4 ±	$1.4) \times 10^{-6}$		_			
$\emph{b}_{1}^{ar{0}} \emph{K}^{*0}$, $\emph{b}_{1}^{ar{0}} ightarrow \ \emph{\omega} \pi^{0}$	<	8.0		CL=90%	_			
$b_1^- K^{*+}$, $b_1^- ightarrow \omega \pi^-$	<	5.0	\times 10 ⁻⁶	CL=90%	_			
$a_0(1450)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	3.1		CL=90%	_			
$K_S^0 X^0$ (Familon)	<	5.3	\times 10 ⁻⁵	CL=90%	_			
$\omega K^* (892)^0$	($2.0~\pm$	$0.5) \times 10^{-6}$		2503			
$\omega(K\pi)^{*0}_0$	($1.84\pm$	$0.25) \times 10^{-5}$		_			
$\omega K_0^* (1430)^0$	($1.60\pm$	$0.34) \times 10^{-5}$		2380			
$\omega K_{2}^{*}(1430)^{0}$	($1.01 \pm$	$0.23) \times 10^{-5}$		2380			
$\omega K^{\mp} \pi^-$ nonresonant	(5.1 ±	1.0) \times 10 ⁻⁶		2542			
$\mathcal{K}^+\pi^-\pi^0$	($0.32) \times 10^{-5}$		2609			
$K^+ ho^-$	(7.0 ±	$0.9) \times 10^{-6}$		2559			
$K^+ ho$ (1450) $^-$	($2.4~\pm$	$1.2) \times 10^{-6}$		_			
$\mathcal{K}^+ ho$ (1700) $^-$	(7) \times 10 ⁻⁷		_			
$(\mathit{K}^{+}\pi^{-}\pi^{0})$ nonresonant	($0.6) \times 10^{-6}$		2609			
$(K\pi)_0^{*+}\pi^-$, $(K\pi)_0^{*+} o$	(3.4 ±	$0.5) \times 10^{-5}$		_			
$K^+\pi^0$								

$(K\pi)_0^{*0}\pi^0$, $(K\pi)_0^{*0}\to$	($8.6 \ \pm \ 1.7 \) \times 10^{-6}$		_
${K^+\pi^-\atop K_2^*(1430)^0\pi^0}$	<	4.0×10^{-6}	CL=90%	2445
$K_2^*(1430)^n \pi^0$		7.5 $\times 10^{-6}$		2358
$K_{x}^{*0}\pi^{0}$		$6.1 \pm 1.6 \times 10^{-6}$	CL—90/0	2330
$K^0 \pi^+ \pi^-$		$4.97\pm 0.18) \times 10^{-5}$		2609
$K^0\pi^+\pi^-$ nonresonant	•	$1.39 + 0.26 \times 10^{-5}$	C 16	
		0.10		2609
$K^{0}\rho^{0}$		$3.4 \pm 1.1 \times 10^{-6}$	S=2.3	2558
$K^*(892)^+\pi^-$	($7.5 \pm 0.4 \times 10^{-6}$	6 00	2563
$K_0^*(1430)^+\pi^-$	($3.3 \pm 0.7 \times 10^{-5}$	S=2.0	_
$K_{X}^{*+}\pi^{-}$		$5.1 \pm 1.6 \times 10^{-6}$	GL 000/	_
$K^*(1410)^+\pi^-, K^{*+} o K^0\pi^+$	<	3.8×10^{-6}	CL=90%	_
$(K\pi)_0^{*+}\pi^-, (K\pi)_0^{*+} \to K^0\pi^+$	($1.62 \pm 0.13) \times 10^{-5}$		-
$f_0(980) K^0, f_0 \rightarrow \pi^+ \pi^-$	(8.1 \pm 0.8) \times 10 ⁻⁶	S=1.3	2522
$K^0 f_0(500)$		$1.6 ^{+}_{-} ^{2.5}_{1.6}) \times 10^{-7}$		_
$K^0 f_0(1500)$		$1.3 \pm 0.8 \times 10^{-6}$		2397
	•			
$f_2(1270) K^0$	($2.7 + 1.3 \times 10^{-6}$		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	($1.8 \pm 0.7 \times 10^{-6}$		_
$K^*(892)^0\pi^0$	($3.3 \pm 0.6 \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$	($3.65 \pm 0.34) \times 10^{-6}$		2445
$K^*(1680)^+\pi^-$	($1.41 \pm 0.10) \times 10^{-5}$	GL 000/	2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$ $\rho^{0}K^{+}\pi^{-}$		2.3×10^{-4}	CL=90%	2600
'	(,		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$	($1.4 \ ^{+}_{-} \ 0.5_{0.6} \) \times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<		CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$		$5.5 \pm 0.5 \times 10^{-5}$		2557
$K^*(892)^0 ho^0$	($3.9 \pm 1.3) \times 10^{-6}$	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \to \pi \pi$	($3.9 {}^{+}_{-} {}^{2.1}_{1.8}) \times 10^{-6}$	S=3.9	2466
$K_1(1270)^+\pi^-$	<	3.0×10^{-5}		2489
$K_1(1400)^+\pi^-$			CL=90%	2451
$a_1(1260)^- K^+$		$1.6 \pm 0.4 \times 10^{-5}$		2471
$K^*(892)^+\rho^-$		$1.03\pm 0.26) \times 10^{-5}$		2504
$K_0^*(1430)^+ \rho^-$		$2.8 \pm 1.2) \times 10^{-5}$		_
$K_1(1400)^0 \rho^0$		3.0×10^{-3}	CL=90%	2388
$K_0^*(1430)^0 \rho^0$		2.7 ± 0.6) $\times 10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$		$2.7 \pm 0.9 \times 10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$		$8.6 \pm 2.0 \times 10^{-6}$		_
$K^+K^ K^0\overline{K}^0$		$7.8 \pm 1.5 \times 10^{-8}$		2593
K~K~	($1.21\pm 0.16) \times 10^{-6}$		2593

$K^0K^-\pi^+$	($6.7 \pm 0.5 \times 10^{-6}$	5	2578
$K^*(892)^\pm K^\mp$	<		7 CL=90%	2540
$\overline{K}^{*0}K^{0} + K^{*0}\overline{K}^{0}$	<	9.6 × 10	7 CL=90%	_
$K^+K^-\pi^0$	($2.2 \pm 0.6) \times 10^{-6}$	õ	2579
$K^0_SK^0_S\pi^0$	<	9 × 10	7 CL=90%	2578
$K_{S}^{0}K_{S}^{0}\eta$	<	1.0×10^{-6}	CL=90%	2515
$K_S^{reve{0}}K_S^{reve{0}}\eta'$	<	2.0×10^{-6}	CL=90%	2453
$K^{0}K^{+}K^{-}$	($2.68\pm 0.11) \times 10^{-1}$	5	2522
$\mathcal{K}^{0}\phi$	($7.3 \pm 0.7) \times 10^{-6}$	5	2516
$f_0(980) K^0$, $f_0 \to K^+ K^-$	($7.0 \ ^{+} \ ^{3.5} \) \times 10^{-}$	5	_
$f_0(1500) K^0$	($1.3 \ ^{+}_{-} \ 0.7 \) \times 10^{-}$	5	2397
$f_2'(1525)^0 K^0$	($\begin{array}{ccc} 3 & + & 5 \\ - & 4 \end{array}) \times 10^{-1}$	7	_
$f_0(1710)K^0$, $f_0 \to K^+K^-$	($4.4 \pm 0.9) \times 10^{-6}$		_
$K^0K^+K^-$ nonresonant	($3.3 \pm 1.0 \times 10^{-1}$		2522
$K_S^0 K_S^0 K_S^0$	($6.0 \pm 0.5) \times 10^{-6}$	S=1.1	2521
$f_0(980) {\cal K}^0, \;\; f_0 ightarrow \;\; {\cal K}^0_S {\cal K}^0_S$	($2.7 \pm 1.8) \times 10^{-6}$	ō	_
$f_0(1710) K^0$, $f_0 \rightarrow K^0_S K^0_S$	($5.0 {}^{+}_{-} {}^{5.0}_{2.6}) imes 10^{-1}$	7	_
$f_2(2010)K^0,\;\;f_2 o\;K^0_SK^0_S$	($5 \pm 6) \times 10^{-3}$	7	_
$K^0_S K^0_S K^0_S$ nonresonant	($1.33\pm 0.31) \times 10^{-1}$	5	2521
$K_{S}^{0}K_{S}^{0}K_{I}^{0}$	<	1.6×10^{-1}	5 CL=90%	2521
$K^*(892)^{0}K^{+}K^{-}$	($2.75\pm 0.26) \times 10^{-1}$	5	2467
$K^*(892)^0\phi$	($1.00\pm 0.05) \times 10^{-1}$	5	2460
$K^+K^-\pi^+\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 \pm 1.3 \times 10^{-6}$	_	2524
$K^*(892)^0 \overline{K}^*(892)^0$	($8.3 \pm 2.4 \times 10^{-1}$		2485
$K^+K^+\pi^-\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<		CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<		7 CL=90%	2485
$K^*(892)^+ K^*(892)^-$	<		CL=90%	2485
$K_1(1400)^0 \phi \ \phi (K\pi)_0^{*0}$	<		3 CL=90%	2339
		$4.3 \pm 0.4 \times 10^{-6}$		_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$ [ttt]				-
$K_0^*(1430)^{\bar{0}}K^-\pi^+$	<		CL=90%	2403
$K_0^*(1430)^0\overline{K}^*(892)^0$	<		CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$			CL=90%	2222
$K_0^*(1430)^0 \phi$		$3.9 \pm 0.8) \times 10^{-6}$		2333
$K_{\bullet}^{*}(1430)^{0}K^{*}(892)^{0}$	<		CL=90%	2360
$K_0^*(1430)^0 K_0^*(1430)^0$	<		CL=90%	2222
$K^*(1680)^0 \phi$			CL=90%	2238
$K^*(1780)^0 \phi$	<	2.7×10^{-6}	CL=90%	_

$K^*(2045)^0 \phi$	<	1.53	$\times10^{-5}$	CL=90%	_
$K_2^*(1430)^0 \rho^0$			$\times10^{-3}$		2381
$K_2^*(1430)^0 \phi$	(6.8 ±	$0.9) \times 10^{-6}$	S=1.2	2332
$\mathcal{K}^{ar{0}}\phi\phi$	(3.7 ±	$0.7) \times 10^{-6}$	S=1.3	2305
$\eta'\eta'K^0$	<	3.1	\times 10 ⁻⁵	CL=90%	2337
$\eta K^0 \gamma$	($7.6~\pm$	$1.8) \times 10^{-6}$		2587
η' K^0 γ	<	6.4	\times 10 ⁻⁶	CL=90%	2528
$K^0 \phi \gamma$	($2.7~\pm$	$0.7) \times 10^{-6}$		2516
$K^+\pi^-\gamma$	($4.6~\pm$	$1.4) \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	($4.18\pm$	$0.25) \times 10^{-5}$	S=2.1	2565
$K^*(1410)\gamma$	<	1.3	\times 10 ⁻⁴	CL=90%	2451
$K^+\pi^-\gamma$ nonresonant	<	2.6	\times 10 ⁻⁶	CL=90%	2615
$K^*(892)^0 X(214), X \to$	[uuu] <	2.26	$\times 10^{-8}$	CL=90%	_
$\kappa^0 \frac{\mu^+ \mu^-}{\pi^+ \pi^- \gamma}$					
	($1.99\pm$	$0.18) \times 10^{-5}$		2609
$K^+\pi^-\pi^0\gamma$	`		$0.4) \times 10^{-5}$		2609
$K_1(1270)^0_{2}\gamma$	<		$\times 10^{-5}$		2491
$K_1(1400)^0_2 \gamma$	<		\times 10 ⁻⁵	CL=90%	2454
$K_2^*(1430)^0 \gamma$	($1.24\pm$	$0.24) \times 10^{-5}$		2447
$K^*(1680)^0 \gamma$	<	2.0	\times 10 ⁻³	CL=90%	2360
$K_3^*(1780)^0 \gamma$	<	8.3	$\times 10^{-5}$	CL=90%	2340
$K_4^*(2045)^0\gamma$	<	4.3	$\times 10^{-3}$	CL=90%	2243
1.1.					

Light unflavored meson modes

$\rho_{\cdot}^{0}\gamma$	(8.6 ±	$1.5) \times 10^{-7}$		2583
$\rho^{0}X(214), X \to \mu^{+}\mu^{-}$	[<i>uuu</i>] <	1.73	$\times 10^{-8}$	CL=90%	_
$\omega \gamma$	(4.4 +	$^{1.8}_{1.6}$) $ imes$ 10 ⁻⁷		2582
$\phi\gamma$	<	1.0	\times 10 ⁻⁷	CL=90%	2541
$\pi^+\pi^-$	($5.12\pm$	$0.19) \times 10^{-6}$		2636
$\pi^0\pi^0$	($1.59\pm$	$0.26) \times 10^{-6}$	S=1.4	2636
$\eta\pi^{0}$	(4.1 \pm	$1.7) \times 10^{-7}$		2610
$\eta\eta$	<	1.0	$\times 10^{-6}$	CL=90%	2582
$\eta' \pi^0$	($1.2~\pm$	$0.6) \times 10^{-6}$	S=1.7	2551
$\eta'\eta'$	<	1.7	\times 10 ⁻⁶	CL=90%	2460
$\eta'\eta$.	<	1.2	\times 10 ⁻⁶	CL=90%	2523
$\eta' ho^{0}$	<	1.3	\times 10 ⁻⁶	CL=90%	2492
$\eta' f_0(980)$, $f_0 ightarrow \pi^+ \pi^-$	<	9	\times 10 ⁻⁷	CL=90%	2454
$\eta ho^{f 0}$	<	1.5	\times 10 ⁻⁶	CL=90%	2553
$\eta f_0(980)$, $f_0 ightarrow \pi^+ \pi^-$	<	4	\times 10 ⁻⁷	CL=90%	2516
$\omega \eta$	(9.4 +	$^{4.0}_{3.1}$) $ imes$ 10 ⁻⁷		2552
$\omega \eta'$	(1.0 +	$^{0.5}_{0.4}$) $\times10^{-6}$		2491
$\omega \rho^0$	<	1.6	$\times 10^{-6}$	CL=90%	2522

			_		
$\omega f_0(980)$, $f_0 \rightarrow \pi^+\pi^-$	<			CL=90%	2485
$\omega\omega$	(1.2 ± 0.4	$) \times 10^{-6}$		2521
$\phi \pi^0$	<				2540
$\phi \eta$	<	5			2511
$\phi \eta'$	<	5	$\times 10^{-7}$	CL=90%	2448
$\phi \pi^+ \pi^-$	(1.8 ± 0.5	$) \times 10^{-7}$		2533
ϕho^{0}	<	3.3	$\times 10^{-7}$	CL=90%	2480
$\phi f_0(980), f_0 \to \pi^+ \pi^-$	<	3.8	$\times 10^{-7}$	CL=90%	2441
$\phi \omega$	<	7	$\times 10^{-7}$	CL=90%	2479
$\phi\phi$	<	2.7	$\times 10^{-8}$	CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp}$, $a_0^{\pm}\to~\eta\pi^{\pm}$	<	3.1	$\times 10^{-6}$	CL=90%	_
$a_0(1450)^\pm\pi^\mp$, $a_0^\pm\to~\eta\pi^\pm$	<	2.3	\times 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-\pi^0$	<	7.2	$\times 10^{-4}$	CL=90%	2631
$ ho^0\pi^0$	(2.0 ± 0.5	_		2581
$\rho^{\mp}\pi^{\pm}$	•	2.30± 0.23	_		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	'	1.12		CL=90%	2621
$\rho^0 \pi^+ \pi^-$	<			CL=90%	2575
$\rho^0 \rho^0$	(9.6 ± 1.5	_		2523
$f_0(980)\pi^+\pi^-$, $f_0 \rightarrow$	<	3.0	· _	CI =90%	_
$\pi^+\pi^-$		3.0	× 10	GE 3070	
$ ho^0 f_0(980), f_0 o \pi^+ \pi^-$	(7.8 ± 2.5	$) \times 10^{-7}$		2486
$f_0(980) f_0(980), f_0 \rightarrow$	<	1.9		CL=90%	2447
$\pi^+\pi^-$, $f_0 \rightarrow \pi^+\pi^-$					
$f_0(980) f_0(980), f_0 \rightarrow \pi^+ \pi^-,$	<	2.3	\times 10 ⁻⁷	CL=90%	2447
$f_0 \rightarrow K^+ K^-$					
$a_1(1260)^{\mp}\pi^{\pm}$	[aa] (2.6 ± 0.5	$) \times 10^{-5}$	S=1.9	2494
$a_2(1320)^{\mp}\pi^{\pm}$		6.3			2473
$\pi + \pi - \pi^{0} \pi^{0}$	<			CL=90%	2622
$ ho^+ ho^-$	(2523
$a_1(1260)^0\pi^0$	<	1.1		CL=90%	2495
$\omega \pi^0$	<			CL=90%	2580
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$		9.0		CL=90%	2609
$a_1(1260)^+ \rho^-$		6.1		CL=90%	2433
$a_1(1260)^0 \rho^0$		2.4		CL=90%	2433
$b_1^{\mp}\pi^{\pm}, b_1^{\mp} \rightarrow \omega\pi^{\mp}$		1.09± 0.15			_
$b_1^0 \pi^0, b_1^0 \to \omega \pi^0$	<			CL=90%	_
$b_1^- \rho^+$, $b_1^- \rightarrow \omega \pi^-$		1.4			_
					_
$b_1^0 ho^0$, $b_1^0 o \omega \pi^0$		3.4			_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$				CL=90%	2592
$a_1(1260)^+ a_1(1260)^-, a_1^+ \rightarrow$	(1.18± 0.31	$) \times 10^{-5}$		2336
$2\pi^+\pi^-$, $a_1^- ightarrow 2\pi^-\pi^+$					
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%	2572

Baryon modes

	Dui yon m	ioucs		
ρ p		$1.25 \pm 0.32) \times 10^{-}$		2467
$\rho \overline{\rho} \pi^+ \pi^-$		$2.87 \pm 0.19) \times 10^{-}$		2406
$p\overline{p}K^{+}\pi^{-}$	($6.3~\pm~0.5~)\times10^{-}$		2306
$p\overline{p}K^0$	($2.66 \pm 0.32) \times 10^{-}$		2347
$\Theta(1540)^+\overline{p}, \ \Theta^+ \rightarrow \ pK_S^0$	[vvv] <	5 × 10	8 CL=90%	2318
$f_J(2220)K^0$, $f_J o p\overline{p}$	<	4.5 × 10 ⁻	⁷ CL=90%	2135
$p \overline{p} K^* (892)^0$	($1.24^{+}_{-}~^{0.28}_{0.25}) imes 10^{-}$	6	2216
$f_J(2220)K_0^*, f_J o p\overline{p}$	<	1.5 × 10	⁷ CL=90%	_
$p\overline{p}K^+K^-$	($1.21 \pm 0.32) \times 10^{-}$	7	2179
$ ho \overline{ ho} \pi^0$	($5.0~\pm~1.9~) imes 10^-$	7	2440
<i>p p</i> p p	<	2.0 × 10 ⁻	⁷ CL=90%	1735
$ ho \overline{\Lambda} \pi^-$	($3.14 \pm 0.29) \times 10^{-}$	6	2401
$ \rho \overline{\Lambda} \pi^- \gamma $	<		⁷ CL=90%	2401
$p\overline{\Sigma}(1385)^-$	<	2.6 × 10 ⁻	⁷ CL=90%	2363
$\Delta(1232)^{+}\overline{p} + \Delta(1232)^{-}p$	<	1.6 × 10	6	_
$\Delta^0 \overline{\Lambda}$	<	9.3 × 10 ⁻	⁷ CL=90%	2364
$p\overline{\Lambda}K^-$	<	8.2 × 10 ⁻	⁷ CL=90%	2308
$p\overline{\Lambda}D^-$	($2.5~\pm~0.4~)\times10^-$	5	1765
$p\overline{\Lambda}D^{*-}$	($3.4~\pm~0.8~)\times10^{-}$	5	1685
$\frac{p}{\Lambda} \overline{\Sigma}{}^0 \pi^-$	<			2383
$\overline{\Lambda}\Lambda$	<	3.2 × 10 ⁻	⁷ CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	($4.8 \ ^{+}_{-} \ ^{1.0}_{0.9} \) imes 10^{-}$	6	2250
$\overline{\Lambda}\Lambda K^{*0}$	($2.5 {+} {0.9 \atop -} 0.8) imes 10^{-}$	6	2098
$\overline{\Lambda}\Lambda D^0$	(1.00^{+}_{-} $\stackrel{0.30}{0.26}) \times 10^{-}$	5	1662
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<		5 CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<		3 CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<		4 CL=90%	2335
$\overline{D}{}^0 p \overline{p}$	($1.04 \pm 0.07) \times 10^{-}$		1863
$D_s^{-1} \overline{\Lambda} p$	(2.8 ± 0.9)×10 ⁻		1710
$\overline{D}^{*}(2007)^{0} p \overline{p}$	(9.9 ± 1.1) × 10 ⁻		1788
$D^*(2010)^- p \overline{n}$	($1.4 \pm 0.4 \times 10^{-1}$		1785
$D^- \rho \overline{\rho} \pi^+$		$3.32 \pm 0.31) \times 10^{-}$		1786
$D^*(2010)^- p \overline{p} \pi^+$	($4.7 \pm 0.5 \times 10^{-1}$		1708
$\frac{\overline{D}^0}{\overline{D}^0} p \overline{p} \pi^+ \pi^-$	($3.0 \pm 0.5 \times 10^{-1}$		1708
$\overline{D}^{*0} p \overline{p} \pi^{+} \pi^{-}$	($1.9 \pm 0.5 \times 10^{-1}$		1623
$O = \frac{1}{2} - \frac{1}{2} O + O = \frac{1}{2} O$	<		6 CL=90%	_
$\Theta_{c} \overline{p} \pi^{+}$, $\Theta_{c} \rightarrow D^{*-} p$	<		5 CL=90%	_
$\frac{\overline{\Sigma}^{}\Delta^{++}}{\Sigma}$	<		4 CL=90%	1839
$\Theta_c p \pi^+, \ \Theta_c \rightarrow D^- p$ $\Theta_c \overline{p} \pi^+, \ \Theta_c \rightarrow D^{*-} p$ $\overline{\Sigma}_c^{} \Delta^{++}$ $\overline{\Lambda}_c^{-} p \pi^+ \pi^ \overline{\Lambda}_c^{-} p$	($1.02\pm 0.14) \times 10^{-}$		1934
$\frac{1}{\Lambda}$		$1.54 \pm 0.18) \times 10^{-1}$		2021
''c P	(1.34 ± 0.10) × 10		2021

$\overline{\Lambda}_{c}^{-} \rho \pi^{0}$	(1.55± 0.19	$9) \times 10^{-4}$		1982
$\Sigma_c(2455)^- p$	<	2.4	$\times10^{-5}$		_
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{0}$	<	5.07		CL=90%	1883
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74	$\times10^{-3}$	CL=90%	1821
$\overline{\Lambda}_c^- p \pi^+ \pi^-$ (nonresonant)	($5.5\ \pm\ 1.0$	$)\times 10^{-4}$	S=1.3	1934
$\overline{\Sigma}_c(2520)^{}p\pi^+$	(1.02± 0.18	$(3) \times 10^{-4}$		1860
$\overline{\Sigma}_c(2520)^0 p \pi^-$	<	3.1	$\times 10^{-5}$	CL=90%	1860
$\overline{\Sigma}_c$ (2455) 0 p π^-	(1.08 ± 0.16	$(5) \times 10^{-4}$		1895
$\overline{\Sigma}_c(2455)^0 N^0$, $N^0 o$	($6.4\ \pm\ 1.7$	$)\times10^{-5}$		_
$_$ $p\pi^-$					
$\overline{\Sigma}_c(2455)^{} \rho \pi^+$	(1.83 ± 0.24	$(1) \times 10^{-4}$		1895
$\Lambda_c^- p K^+ \pi^-$	($3.4\ \pm\ 0.7$	$) \times 10^{-5}$		1786
$\overline{\Sigma}_c(2455)^{} ho K^+, \ \overline{\Sigma}_c^{} ightarrow$	($8.8~\pm~2.5$	$)\times 10^{-6}$		1754
$\overline{\Lambda}_c^-\pi^-$					
$\overline{\Lambda}_c^- \pi^ \Lambda_c^- p K^* (892)^0$	<	2.42	× 10 ⁻⁵	CL=90%	1647
		2.42 2.0 ± 0.4		CL=90%	1647 1588
$\Lambda_{c}^{-} p K^{*} (892)^{0}$			$)\times 10^{-5}$		
$\Lambda_{c}^{-} p K^{*} (892)^{0}$ $\Lambda_{c}^{-} p K^{+} K^{-}$	($2.0\ \pm\ 0.4$	$\begin{array}{c})\times10^{-5}\\\times10^{-5}\end{array}$		1588
$\Lambda_{c}^{-} p K^{*} (892)^{0}$ $\Lambda_{c}^{-} p K^{+} K^{-}$ $\Lambda_{c}^{-} p \phi$ $\Lambda_{c}^{-} p \overline{p} p$ $\overline{\Lambda_{c}^{-}} \Lambda K^{+}$	(2.0 ± 0.4 1.0	$) \times 10^{-5} \times 10^{-5} \times 10^{-6}$		1588 1567
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} p $ $ \Lambda_{c}^{-} p \overline{p} p $	(< <	2.0 ± 0.4 1.0 2.8	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \end{array}$	CL=90%	1588 1567 677
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} $ $ \overline{\Lambda_{c}^{-}} \Lambda K^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\Lambda_{c}^{-}} (2593)^{-} / \overline{\Lambda_{c}} (2625)^{-} p $	(< < (2.0 ± 0.4 1.0 2.8 4.8 ± 1.1	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \\ \times 10^{-5} \end{array}$	CL=90% CL=95%	1588 1567 677 1767
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} $ $ \overline{\Lambda_{c}^{-}} \Lambda K^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\Lambda_{c}^{-}} (2593)^{-} / \overline{\Lambda_{c}} (2625)^{-} p $	(< (< <	2.0 ± 0.4 1.0 2.8 4.8 ± 1.1 1.6	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-4} \end{array}$	CL=90% CL=95%	1588 1567 677 1767
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} $ $ \overline{\Lambda_{c}^{-}} \Lambda K^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\Lambda_{c}^{-}} (2593)^{-} / \overline{\Lambda_{c}} (2625)^{-} p $	(< < ((2.0 ± 0.4 1.0 2.8 4.8 ± 1.1 1.6 1.1	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-4} \\)\times 10^{-3} \end{array}$	CL=90% CL=95% CL=90%	1588 1567 677 1767 1319
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} p $ $ \overline{\Lambda_{c}^{-}} \Lambda K^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $ $ \overline{\overline{\Lambda_{c}^{-}}} \Lambda_{c}^{+} $ $ \overline{\overline{\Xi_{c}^{-}}} \Lambda_{c}^{+} $	(< < ((2.0 ± 0.4 1.0 2.8 4.8 ± 1.1 1.6 1.1 1.2 ± 0.8	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-4} \\)\times 10^{-3} \\)\times 10^{-5} \end{array}$	CL=90% CL=95% CL=90%	1588 1567 677 1767 1319 —
$ \Lambda_{c}^{-} p K^{*} (892)^{0} $ $ \Lambda_{c}^{-} p K^{+} K^{-} $ $ \Lambda_{c}^{-} p \overline{p} p $ $ \overline{\Lambda_{c}^{-}} \Lambda K^{+} $ $ \overline{\Lambda_{c}^{-}} \Lambda_{c}^{+} $	(< < ((2.0 ± 0.4 1.0 2.8 4.8 ± 1.1 1.6 1.1 1.2 ± 0.8 2.4 ± 1.1	$\begin{array}{c})\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\)\times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-4} \\)\times 10^{-3} \\)\times 10^{-5} \\)\times 10^{-6} \end{array}$	CL=90% CL=95% CL=90%	1588 1567 677 1767 1319 —

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B=1$ weak neutral current (B1) modes

$\gamma \gamma$	B1	<	3.2	$\times10^{-7}$ CL=90%	2640
e^+e^-	B1	<	2.5	$\times 10^{-9}$ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$\times 10^{-7} \text{ CL}=90\%$	2640
$\mu^+\mu^-$	В1	(7	$) \times 10^{-11}$ S=1.8	2638
$\mu^+\mu^-\gamma$	B1	<	2.0	$\times10^{-9}$ CL=95%	2638
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	6.9	\times 10 ^{-10} CL=95%	2629
SP , $S ightarrow~\mu^+\mu^-$,	B1	[xxx] <	6.0	$\times10^{-10}$ CL=95%	_
$P ightarrow~\mu^+\mu^-$					
$\tau^+\tau^-$	B1	<	2.1	$\times 10^{-3}$ CL=95%	1952
$\pi^0\ell^+\ell^-$	B1	<	5.3	$\times10^{-8}$ CL=90%	2638
$\pi^0e^+e^-$	B1	<	8.4	$\times10^{-8}$ CL=90%	2638
$\pi^0\mu^+\mu^-$	B1	<	6.9	$\times10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times10^{-8}$ CL=90%	2611

HTTP://PDG.LBL.GOV

Page 114

			_		
B1	<	1.08	\times 10 ⁻⁷	CL=90%	2611
B1	<	1.12			2607
B1	<	9	$\times 10^{-6}$	CL=90%	2638
B1	[iii] (3.3 ±	$0.6) \times 10^{-7}$		2616
B1	(2.5 +	$^{1.1}_{0.9}$) \times 10 ⁻⁷	S=1.3	2616
B1	($3.39\pm$	$0.35) \times 10^{-7}$	S=1.1	2612
B1	<	2.6	$\times10^{-5}$	CL=90%	2616
B1	<	4.0	$\times 10^{-5}$	CL=90%	2583
В1	[<i>iii</i>] (9.9 +	$^{1.2}_{1.1}$) $ imes$ 10 ⁻⁷		2565
B1	(1.03+	$^{0.19}_{0.17})\times 10^{-6}$		2565
B1	(9.4 ±	$0.5) \times 10^{-7}$		2560
В1	($2.1~\pm$	$0.5) \times 10^{-8}$		2626
В1	<	1.8	$\times 10^{-5}$	CL=90%	2565
В1	<	2.4	$\times10^{-5}$	CL=90%	_
В1	<	1.6	$\times10^{-5}$	CL=90%	2640
B1	<	1.27	$\times10^{-4}$	CL=90%	2541
LF	[aa] <	1.0	$\times10^{-9}$	CL=90%	2639
LF	<	1.4	$\times10^{-7}$	CL=90%	2637
LF	<	3.8	$\times 10^{-8}$	CL=90%	2615
LF	<	1.6	$\times10^{-7}$	CL=90%	2563
LF	<	1.2	$\times10^{-7}$	CL=90%	2563
LF	<	1.8	$\times10^{-7}$	CL=90%	2563
LF	[aa] <	1.6	$\times10^{-5}$	CL=90%	2341
LF	[aa] <	1.4			2340
L,B	<	1.4	$\times 10^{-6}$	CL=90%	2143
L,B	<	4	$\times 10^{-6}$	CL=90%	2145
	B1 CF	B1 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

B^{\pm}/B^0 ADMIXTURE

CP violation

$$A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.011$$

 $A_{CP}(B \to s\gamma) = 0.015 \pm 0.011$
 $A_{CP}(B \to (s+d)\gamma) = 0.010 \pm 0.031$
 $A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11$
 $A_{CP}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4) = -0.06 \pm 0.22$
 $A_{CP}(B \to X_s \ell^+ \ell^-) (10.1 < q^2 < 12.9 \text{ or } q^2 > 14.2 \text{ GeV}^2/c^4)$
 $= 0.19 \pm 0.18$
 $A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15$
 $A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13$
 $A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07$

$$\begin{array}{l} \textit{A}_{CP}(\textit{B} \rightarrow \textit{\eta} \, \text{anything}) = -0.13^{+0.04}_{-0.05} \\ \Delta \textit{A}_{CP}(\textit{X}_{\textit{s}} \, \gamma) = \textit{A}_{CP}(\textit{B}^{\pm} \rightarrow \textit{X}_{\textit{s}} \, \gamma) - \textit{A}_{CP}(\textit{B}^{0} \rightarrow \textit{X}_{\textit{s}} \, \gamma) = \\ 0.041 \pm 0.023 \\ \overline{\textit{A}}_{CP}(\textit{B} \rightarrow \textit{X}_{\textit{s}} \, \gamma) = (\textit{A}_{CP}(\textit{B}^{+} \rightarrow \textit{X}_{\textit{s}} \, \gamma) + \textit{A}_{CP}(\textit{B}^{0} \rightarrow \textit{X}_{\textit{s}} \, \gamma))/2 = 0.009 \pm 0.012 \\ \Delta \textit{A}_{CP}(\textit{B} \rightarrow \textit{K}^{*} \, \gamma) = \textit{A}_{CP}(\textit{B}^{+} \rightarrow \textit{K}^{*+} \, \gamma) - \textit{A}_{CP}(\textit{B}^{0} \rightarrow \textit{K}^{*0} \, \gamma) = 0.024 \pm 0.028 \\ \overline{\textit{A}}_{CP}(\textit{B} \rightarrow \textit{K}^{*} \, \gamma) = (\textit{A}_{CP}(\textit{B}^{+} \rightarrow \textit{K}^{*+} \, \gamma) + \textit{A}_{CP}(\textit{B}^{0} \rightarrow \textit{K}^{*0} \, \gamma))/2 = -0.001 \pm 0.014 \\ \end{array}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that B($\Upsilon(4S) \rightarrow B\overline{B}$) = 100%.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Semileptonic and leptonic modes

```
\ell^+ \nu_{\ell} anything
                                              [iii,yyy]
                                                                 10.84 \pm 0.16) %
   D^-\ell^+\nu_\ell anything
                                                   [iii]
                                                                   2.6 \pm 0.5) %
   \overline{D}^0 \ell^+ \nu_\ell anything
                                                   [iii]
                                                                  7.3 \pm 1.5 ) %
   \overline{D}\ell^+\nu_\ell
                                                                   2.42 \pm 0.12)%
                                                                                                                       2310
   D^{*-}\ell^{+}\nu_{\ell} anything
                                                 [zzz]
                                                                   6.7 \pm 1.3 \times 10^{-3}
   \overline{D}^* \ell^+ \nu_{\ell}
                                                                  4.95 \pm 0.11)%
                                               [aaaa]
                                                                                                                       2257
   \overline{D}^{**}\ell^+\nu_{\ell}
                                                                   2.7 \pm 0.7 ) %
                                            [iii,bbaa]
        \overline{D}_1(2420)\ell^+\nu_\ell anything
                                                                   3.8 \pm 1.3 \times 10^{-3}
                                                                                                         S = 2.4
       \overline{D}\pi \ell^+ \nu_\ell anything +
                                                                   2.6 \pm 0.5 ) %
                                                                                                          S = 1.5
             \overline{D}^*\pi\ell^+\nu_\ell anything
        \overline{D}\pi \ell^+ \nu_\ell anything
                                                                   1.5 \pm 0.6 ) %
       \overline{D}^* \pi \ell^+ \nu_\ell anything
                                                                   1.9 \pm 0.4) %
       \overline{D}_2^*(2460)\ell^+\nu_\ell anything
                                                                   4.4 \pm 1.6 \times 10^{-3}
```

HTTP://PDG.LBL.GOV

Page 116

```
D^{*-}\pi^+\ell^+\nu_\ell anything
                                                              1.00 \pm 0.34)%
   \overline{D}\,\pi^+\,\pi^-\,\ell^+\,\nu_\ell
                                                              1.62 \pm 0.32 \times 10^{-3}
                                                                                                               2301
   \overline{D}^*\pi^+\pi^-\ell^+\nu_\ell
                                                              9.4 \pm 3.2 \times 10^{-4}
                                                                                                               2247
   D_{\epsilon}^{-}\ell^{+}\nu_{\ell} anything
                                                                                \times 10^{-3} CL=90%
                                                [iii] <
       D_s^- \ell^+ \nu_\ell K^+ anything
                                                                                   \times 10^{-3} CL=90%
                                                [iii] <
                                                              5
       D_s^- \ell^+ \nu_\ell K^0 anything
                                                                                   \times 10^{-3} CL=90%
                                                [iii] <
   X_c \ell^{\tilde{+}} \nu_\ell
                                                             10.65 \pm 0.16) %
   X_{II}\ell^+\nu_\ell
                                                              1.91 \pm 0.27 \times 10^{-3}
       X_{\mu}e^{+}\nu_{e}
                                                              1.57 \pm 0.19 \times 10^{-3}
       X_u \mu^+ \nu_\mu
                                                           1.62 \pm 0.21 \times 10^{-3}
   K^+ \ell^+ \nu_\ell anything
                                                              6.3 \pm 0.6 ) %
                                                [iii] (
   K^-\ell^+\nu_\ell anything
                                                                                 ) \times 10^{-3}
                                                                      \pm 4
                                                [iii] (
   K^0/\overline{K}^0\ell^+\nu_\ell anything
                                                              4.6 \pm 0.5 ) %
                                                [iii] (
\overline{D}\tau^+\nu_{\tau}
                                                              8.2 \pm 0.8 \times 10^{-3}
                                                                                                               1911
\overline{D}^* \tau^+ \nu_{\tau}
                                                              1.46 \pm 0.08 ) %
                                                                                                               1838
                                           D, D^*, or D_s modes
D^{\pm} anything
                                                             23.1 \pm 1.2 ) %
D^0/\overline{D}{}^0 anything
                                                             61.6 \pm 2.9 ) %
                                                                                                   S=1.3
D^*(2010)^{\pm} anything
                                                             22.5 \pm 1.5 ) %
\overline{D}^*(2007)^0 anything
                                                             26.0 \pm 2.7 ) %
D_s^{\pm} anything
                                                              8.3 \pm 0.8 ) %
                                               [aa] (
D_s^{*\pm} anything
                                                              6.3 \pm 1.0) %
D_s^{*\pm}\overline{D}^{(*)}
                                                              3.4 \pm 0.6 ) %
DD_{s0}(2317)
                                                                                                               1605
                                                            seen
\overline{D}D_{s,J}(2457)
                                                            seen
D^{(*)} \overline{D}^{(*)} K^0 +
                                                              7.1 \begin{array}{c} + & 2.7 \\ - & 1.7 \end{array} ) %
                                         [aa,ccaa] (
     D^{(*)}\overline{D}^{(*)}K^{\pm}
b \rightarrow c \overline{c} s
                                                             22
                                                                      \pm 4
                                                                                 ) %
D_s^{(*)} \overline{D}^{(*)}
                                                              3.9 \pm 0.4 ) %
                                        [aa,ccaa] (
D^*D^*(2010)^{\pm}
                                                                               \times 10^{-3} CL=90%
                                               [aa] <
                                                              5.9
                                                                                                               1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                                \times 10^{-3} CL=90%
                                                              5.5
                                               [aa] <
DD^{\pm}
                                                                                   \times 10^{-3} CL=90%
                                               [aa] <
                                                                                                               1866
D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                        [aa,ccaa]
                                                                                 ) %
\overline{D}^*(2010)\gamma
                                                                                \times 10^{-3} CL=90%
                                                     <
                                                              1.1
                                                                                                               2257
D_s^+ \pi^-, D_s^{*+} \pi^-, D_s^+ \rho^-,
                                                                                  \times 10^{-4} CL=90%
                                               [aa] <
     D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0},
     D_s^+ \eta, D_s^{*+} \eta, D_s^+ \rho^0,
     D_s^{*+} \rho^0 , D_s^+ \omega , D_s^{*+} \omega
D_{s1}(2536)^+ anything
                                                                                   \times 10^{-3} CL=90%
                                                              9.5
```

Charmonium modes

$J/\psi(1S)$ anything	(1.094	$4\pm$	0.032	2) %	S=1.1	_
$J/\psi(1S)({ m direct})$ anything	(7.8	\pm	0.4	$) \times 10^{-3}$	S=1.1	_
$\psi(2S)$ anything	(3.07	\pm	0.21	$) \times 10^{-3}$		_
$\chi_{c1}(1P)$ anything	(3.55	\pm	0.27	$) \times 10^{-3}$	S=1.3	_
$\chi_{c1}(1P)$ (direct) anything	(3.08	\pm	0.19	$) \times 10^{-3}$		_
$\chi_{c2}(1P)$ anything	(10.0	\pm	1.7	$) \times 10^{-4}$	S=1.6	_
$\chi_{c2}(1P)$ (direct) anything	(7.5	\pm	1.1	$) \times 10^{-4}$		_
$\eta_{oldsymbol{c}}(1S)$ anything	<	9			$\times 10^{-3}$	CL=90%	_
$K\chi_{c1}(3872)$	(2.3	\pm	0.7	$) \times 10^{-4}$		1141
$KX(3940), X \to D^{*0}D^0$	<	6.7			$\times 10^{-5}$	CL=90%	1084
$K\chi_{c0}(3915)$, $\chi_{c0} ightarrow \omega J/\psi$ [ddaa]	(7.1	\pm	3.4	$) \times 10^{-5}$		1103
1.5	1.54						

	K or K*	mode	es			
K^\pm anything	[aa] (78.9	\pm 2.5) %		_
\mathcal{K}^+ anything	(66	\pm 5) %		_
K^{-} anything	(13	\pm 4) %		_
K^0/\overline{K}^0 anything	[aa] (64	\pm 4) %		_
$K^*(892)^{\pm}$ anything	(18	\pm 6) %		_
	[aa] (14.6	\pm 2.6) %		_
$\mathcal{K}^*(892)\gamma$	(4.2	± 0.6	$) \times 10^{-5}$		2565
η K γ	(8.5	$^{+}$ 1.8 $^{-}$ 1.6	$) \times 10^{-6}$		2588
$\mathcal{K}_1(1400)\gamma$	<	1.27		\times 10 ⁻⁴	CL=90%	2454
$K_2^*(1430)\gamma$	(1.7	$^{+}$ 0.6 $^{-}$ 0.5	$) \times 10^{-5}$		2447
$K_2(1770)\gamma$	<	1.2		$\times 10^{-3}$	CL=90%	2342
$K_3^*(1780)\gamma$	<	3.7		$\times 10^{-5}$	CL=90%	2340
$K_4^*(2045)\gamma$	<	1.0		$\times 10^{-3}$	CL=90%	2243
$K \eta'(958)$	(8.3	\pm 1.1	$) \times 10^{-5}$		2528
$K^*(892)\eta'(958)$	(4.1	\pm 1.1	$) \times 10^{-6}$		2472
$K\eta$	<	5.2			CL=90%	2588
$K^*(892)\eta$	($) \times 10^{-5}$		2534
$\frac{K}{F}\phi\phi$	(2.3	± 0.9	$) \times 10^{-6}$		2306
$\frac{\overline{b}}{\overline{c}} \rightarrow \frac{\overline{s}}{\overline{c}} \gamma$	(3.49		$) \times 10^{-4}$		_
$\overline{\underline{b}} ightarrow \overline{d} \gamma$	(9.2	± 3.0	$) \times 10^{-6}$		_
$\overline{b} ightarrow \overline{s}$ gluon	<	6.8		%	CL=90%	_
η anything	(2.6	+ 0.5 - 0.8) × 10 ⁻⁴		_
η' anything	(4.2	\pm 0.9	$) \times 10^{-4}$		_
$K^+_{\underline{z}}$ gluon (charmless)	<	1.87		$\times 10^{-4}$	CL=90%	_
K^0 gluon (charmless)	(1.9	\pm 0.7	$) \times 10^{-4}$		_

Light unflavored meson modes

π^\pm anything	[aa,eeaa]	(358	± 7) %		_
$\pi^{f 0}$ anything		(235	±11) %		_
η anything		(17.6	\pm 1.6) %		_
$ ho^{f 0}$ anything		(21	\pm 5) %		_
ω anything		<	81		%	CL=90%	_
ϕ anything		(3.43	± 0.12) %		_
ϕK^* (892)		<	2.2		$\times 10^{-5}$	CL=90%	2460
π^+ gluon (charmless)		(3.7	\pm 0.8	$) \times 10^{-4}$		_
" gluon (charmless)		(3.1	± 0.6) × 10		_

Baryon modes

	Daryon n	lloues		
$\Lambda_c^+ \ / \ \overline{\Lambda}_c^-$ anything	($3.6~\pm~0.4$) %	_
Λ_c^+ anything	<	1.3	% CL=90)% –
$\overline{\Lambda}_c^-$ anything	<	7	% CL=90)% –
$\overline{\varLambda}_c^-\ell^+$ anything	<	9	$\times10^{-4}$ CL=90)% –
$\overline{\Lambda}_c^- e^+$ anything	<	1.8	$\times 10^{-3} \text{ CL} = 90$)% –
$\overline{\varLambda}_c^- \mu^+$ anything	< -	1.4	\times 10 ⁻³ CL=90)% –
$\overline{\Lambda}_c^- p$ anything	(2.04 ± 0.33	3) %	_
$\overline{\Lambda}_c^- p e^+ \nu_e$	<	8	$\times10^{-4}$ CL=90	0% 2021
$\overline{\Sigma}_{c}^{}$ anything	(3.3 ± 1.7	$) \times 10^{-3}$	_
$\overline{\Sigma}_{c}^{-}$ anything	<	8	$\times10^{-3}$ CL=90)% –
$\overline{\Sigma}_{c}^{0}$ anything	(3.7 ± 1.7	$) \times 10^{-3}$	_
$\overline{\Sigma}_c^{0} N(N = p \text{ or } n)$	<	1.2	$\times 10^{-3} \text{ CL} = 90$)% 1938
Ξ_c^0 anything, $\Xi_c^0 o \Xi^- \pi^+$	(1.93 ± 0.30	$) \times 10^{-4}$ S=1	1.1 –
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$	$) \times 10^{-4}$	_
$ ho/\overline{ ho}$ anything	[aa] (8.0 ± 0.4) %	_
p/\overline{p} (direct) anything	'	$5.5 \pm \ 0.5$	•	_
$\overline{p}e^+\nu_e$ anything			$\times 10^{-4}$ CL=90)% –
$\Lambda/\overline{\Lambda}$ anything	[aa] (4.0 ± 0.5) %	_
Λ anything		een		_
Λ anything $\overline{\Xi}^-/\overline{\Xi}^+$ anything		een) 10=3	_
baryons anything		2.7 ± 0.6 6.8 ± 0.6		_
$p\overline{p}$ anything	•	2.47 ± 0.0	•	_
$\Lambda \overline{p}/\overline{\Lambda}p$ anything		2.5 ± 0.4		_
$\Lambda \overline{\Lambda}$ anything		5	· .)% –

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

se^+e^-	B1	(6.7 ± 1.7	$) \times 10^{-6}$ S=2.0	_
$s\mu^+\mu^-$	B1	(4.3 ± 1.0	$) \times 10^{-6}$	_
$s\ell^+\ell^-$	B1	[<i>iii</i>] (5.8 ± 1.3	$) \times 10^{-6}$ S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9	$\times10^{-8}$ CL=90%	2638
πe^+e^-	B1	<	1.10	$\times10^{-7}$ CL=90%	2638

HTTP://PDG.LBL.GOV

Page 119

1				0		
$\pi \mu^+ \mu^-$	В1	<	5.0	× 10 ⁻⁸	CL=90%	2634
Ke^+e^-	B1	(4.4 ± 0	.6) \times 10 ⁻⁷		2617
$K^*(892)e^+e^-$	B1	(1.19 ± 0	$.20) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	(4.4 ± 0	$.4) \times 10^{-7}$		2612
$K^*(892)\mu^+\mu^-$	B1	(1.06 ± 0	0.09×10^{-6}		2560
$K\ell^+\ell^-$	B1	(4.8 ± 0	$.4) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	(1.05 ± 0	$10) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6	\times 10 ⁻⁵	CL=90%	2617
$K^* \nu \overline{\nu}$	B1	<	2.7	\times 10 ⁻⁵	CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8	\times 10 ⁻⁶	CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8	\times 10 ⁻⁵	CL=90%	2583
$se^\pm\mu^\mp$	LF	[aa] <	2.2	\times 10 ⁻⁵	CL=90%	_
$\pie^{\pm}\mu^{\mp}$	LF	<	9.2	\times 10 ⁻⁸	CL=90%	2637
$ hoe^{\pm}\mu^{\mp}$	LF	<	3.2	\times 10 ⁻⁶	CL=90%	2582
K $e^\pm \mu^\mp$	LF	<	3.8	$\times 10^{-8}$	CL=90%	2616
K^* (892) $e^\pm\mu^\mp$	LF	<	5.1	$\times 10^{-7}$	CL=90%	2563

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $au=(1.5672\pm0.0029)\times10^{-12}$ s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged b-hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral b-hadron admixture $au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$

$$\begin{array}{l} \tau_{\rm charged~\it b-hadron}/\tau_{\rm neutral~\it b-hadron} = 1.09 \pm 0.13 \\ \left|\Delta\tau_{\it b}\right|/\tau_{\it b,\overline{\it b}} = -0.001 \pm 0.014 \end{array}$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

b DECAY MODES

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

cor(
$$B_s^0$$
, b-baryon) = 0.064
 $cor(B_s^0$, $B^{\pm} = B^0$) = -0.633
 $cor(b$ -baryon, $B^{\pm} = B^0$) = -0.813.

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	(40.8 ± 0.7) % -
B^0	(40.8 ± 0.7) %
B_s^0	(10.0 \pm 0.8) %
<i>b</i> -baryon	(8.4 ± 1.1) %

DECAY MODES

Semileptonic and leptonic modes

u anything		$(23.1 \pm 1.5)\%$		_
$\ell^+ u_\ell$ anything	[<i>iii</i>]	$(~10.69\pm~0.22)~\%$		_
$e^+ u_e$ anything		($10.86\pm~0.35)$ %		_
$\mu^+ u_\mu$ anything		$(\ 10.95 {+\atop -}\ 0.29 {0.25})\ \%$		_
$D^-\ell^+ u_\ell$ anything	[<i>iii</i>]	$(2.2 \pm 0.4)\%$	S=1.9	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$		_

HTTP://PDG.LBL.GOV

Page 121

```
D^-\pi^-\ell^+\nu_\ell anything
                                                           (2.6 \pm 1.6) \times 10^{-3}
\overline{D}^0 \ell^+ \nu_{\ell} anything
                                                              6.79 \pm 0.34) \%
                                                   [iii]
   \overline{D}{}^0\pi^-\ell^+\nu_\ell anything
                                                           (1.07 \pm 0.27)\%
   \overline{D}{}^0\pi^+\ell^+\nu_\ell anything
                                                           (2.3 \pm 1.6) \times 10^{-3}
D^{*-}\ell^+\nu_\ell anything
                                                   [iii] (2.75\pm0.19)\%
   D^{*-}\pi^-\ell^+\nu_\ell anything
                                                           (6 \pm 7) \times 10^{-4}
   D^{*-}\pi^+\ell^+\nu_\ell anything
                                                           (4.8 \pm 1.0) \times 10^{-3}
       \overline{D}_{i}^{0}\ell^{+}\nu_{\ell} anything \times
                                             [iii,ffaa] ( 2.6 \pm 0.9 ) \times 10^{-3}
            B(\overline{D}_i^0 \rightarrow D^{*+}\pi^-)
                                             [iii,ffaa] ( 7.0 \pm 2.3 ) \times 10^{-3}
       D_i^- \ell^+ \nu_\ell anything \times
            \mathsf{B}(D_i^- 	o D^0\pi^-)
       \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell anything
                                                                     \times 10^{-3} CL=90%
            \times B(\overline{D}_2^*(2460)^0 \rightarrow D^{*-}\pi^+)
                                                        (4.2 + 1.5 \atop -1.8) \times 10^{-3}
       D_2^*(2460)^- \ell^+ \nu_{\ell} anything
            \times B(D_2^*(2460)^- \rightarrow
            D^0 \pi^-
       \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} anything
                                                        (1.6 \pm 0.8) \times 10^{-3}
            \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
            D^{-}\pi^{+})
                                                   [iii] ( 1.7 \pm 0.5 ) \times 10<sup>-3</sup>
charmless \ell \overline{\nu}_{\ell}
\tau^+ \nu_{\tau} anything
                                                           (2.41 \pm 0.23)\%
    D^{*-} \tau \nu_{\tau} anything
                                                           (9 \pm 4) \times 10^{-3}
\overline{c} \rightarrow \ell^- \overline{\nu}_\ell anything
                                                   [iii] (8.02 \pm 0.19)\%
c \rightarrow \ell^+ \nu anything
                                                          (1.6 + 0.4)\%
                                Charmed meson and baryon modes
\overline{D}^0 anything
                                                          (58.7 \pm 2.8)\%
D^0 D_s^{\pm} anything
                                                  [aa] (9.1 + 4.0 )\%
D^{\mp}D_{\epsilon}^{\pm} anything
                                                  [aa] (4.0 + 2.3)\%
\overline{D}^0 D^0 anything
                                                  [aa] (5.1 + 2.0)\%
                                                  [aa] (2.7 + 1.8 )\%
D^0 D^{\pm} anything
D^{\pm}D^{\mp} anything
                                                                                \times 10^{-3} CL=90%
                                                  [aa] <
D^- anything
                                                          (22.7 \pm 1.6)\%
D^*(2010)^+ anything
                                                          (17.3 \pm 2.0)\%
D_1(2420)^0 anything
                                                          (5.0 \pm 1.5)\%
D^*(2010)^{\mp}D_s^{\pm} anything
                                                [aa] (3.3 + 1.6 )\%
D^0 D^* (2010)^{\pm} anything
                                                  [aa] (3.0 + 1.1 \atop -0.0)\%
```

$D^*(2010)^\pmD^\mp$ anything	[aa] $(2.5 + 1.2)\%$	_
$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything	2.0	_
$\overline{D}D$ anything	$(10 \begin{array}{c} +11 \\ -10 \end{array}) \%$	_
$D_2^*(2460)^0$ anything	$(4.7 \pm 2.7)\%$	_
D_s^- anything	(14.7 ± 2.1) %	_
D_s^+ anything	(10.1 ± 3.1) %	_
Λ_{c}^{+} anything	$(7.7 \pm 1.1)\%$	_
\overline{c}/c anything [[eeaa] (116.2 \pm 3.2) %	_
Cha	rmonium modes	
$J/\psi(1S)$ anything	$(1.16\pm~0.10)~\%$	_
$\psi(2S)$ anything	$(3.06\pm0.30)\times10^{-3}$	- - - - -
$\chi_{c0}(1P)$ anything	(1.5 ± 0.6) %	-
$\chi_{c1}(1P)$ anything	(1.4 ± 0.4) %	-
$\chi_{c2}(1P)$ anything	$(6.2 \pm 2.9) \times 10^{-3}$	-
$\chi_c(2P)$ anything, $\chi_c o \phi \phi$	$< 2.8 \times 10^{-7} \text{ CL}=95\%$	-
$\eta_c(1S)$ anything	$(5.6 \pm 0.9) \times 10^{-3}$	-
$\eta_c(2S)$ anything, $\eta_c \to \phi \phi$	$(3.9 \pm 1.4) \times 10^{-7}$	-
$\chi_{c1}(3872)$ anything, $\chi_{c1} \rightarrow$	$<$ 4.5 $\times 10^{-7}$ CL=95%	-
χ_{c0} (3915) anything, $\chi_{c0} ightarrow \phi$	$<$ 3.1 $\times 10^{-7}$ CL=95%	_
K	or K* modes	
$\overline{s}\gamma$	$(3.1 \pm 1.1) \times 10^{-4}$	-
$\overline{S}\overline{\nu}\nu$ B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	-
K^{\pm} anything	$(74 \pm 6)\%$	-
K_S^0 anything	(29.0 ± 2.9) %	-
	Pion modes	
π^{\pm} anything	$(397 \pm 21)\%$	-
	[eeaa] (278 \pm 60)%	-
ϕ anything	(2.82± 0.23) %	-
E	Baryon modes	
p/\overline{p} anything	(13.1 ± 1.1) %	-
$\Lambda/\overline{\Lambda}$ anything	(5.9 ± 0.6) %	-
b-baryon anything	(10.2 ± 2.8) %	-
	Other modes	
charged anything [[eeaa] (497 \pm 7)%	-
hadron ⁺ hadron ⁻	$(1.7 \ ^{+} \ ^{1.0}_{-} \) \times 10^{-5}$	_
charmless	$(7 \pm 21) \times 10^{-3}$	_
Charmicss	(121) × 10 -	_

$\Delta B = 1$ weak neutral current (B1) modes

 $\mu^+\mu^-$ anything

1 < 3.

 $\times 10^{-4}$ CL=90%

B*

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5324.71 \pm 0.21$$
 MeV $m_{B^*} - m_B = 45.21 \pm 0.21$ MeV $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21$ MeV

B* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

 $B\gamma$

seen

45

 $B_1(5721)$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^+$$
 mass $= 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV $B_1(5721)^0$ mass $= 5726.1 \pm 1.3$ MeV $(S=1.2)$ $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV $(S=1.2)$ $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV $(S=1.2)$ Full width $\Gamma(B_1(5721)^+) = 31 \pm 6$ MeV $(S=1.1)$ Full width $\Gamma(B_1(5721)^0) = 27.5 \pm 3.4$ MeV $(S=1.1)$

 $B_1(5721)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $B^*\pi$

seen

365

 $B_2^*(5747)$

$$I(J^P) = \frac{1}{2}(2^+)$$
 I, J, P need confirmation.

$$B_2^*(5747)^+$$
 mass $= 5737.2 \pm 0.7$ MeV $m_{B_2^{*+}} - m_{B^0} = 457.5 \pm 0.7$ MeV $B_2^*(5747)^0$ mass $= 5739.5 \pm 0.7$ MeV $(S = 1.4)$ $m_{B_2^{*0}} - m_{B_1^0} = 13.4 \pm 1.4$ MeV $(S = 1.3)$ $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV $(S = 1.4)$ Full width $\Gamma(B_2^*(5747)^+) = 20 \pm 5$ MeV $(S = 2.2)$ Full width $\Gamma(B_2^*(5747)^0) = 24.2 \pm 1.7$ MeV

HTTP://PDG.LBL.GOV

Page 124

B [*] ₂ (5747) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B\pi$	seen	420
$B^*\pi$	seen	376

B_J(5970)

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

$$B_J(5970)^+$$
 mass $m=5964\pm 5$ MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm 5$ MeV $B_J(5970)^0$ mass $m=5971\pm 5$ MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm 5$ MeV $B_J(5970)^+$ full width $\Gamma=62\pm 20$ MeV $B_J(5970)^0$ full width $\Gamma=81\pm 12$ MeV

B_{J} (5970) DECAY MODESFraction (Γ_{i}/Γ) p (MeV/c) $B\pi$ possibly seen633 $B^{*}\pi$ seen592

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P)=0(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.92\pm0.10$$
 MeV $m_{B_s^0}-m_B=87.42\pm0.14$ MeV Mean life $\tau=(1.520\pm0.005)\times10^{-12}$ s $c\tau=455.7~\mu\mathrm{m}$
$$\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.084\pm0.005)\times10^{12}~\mathrm{s}^{-1} \quad (\mathrm{S}=1.7)$$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1693 \pm 0.0004) \times 10^{-8} \ \text{MeV}$$

$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 27.01 \pm 0.10$$

$$\chi_s \ (B_s^0 - \overline{B}_s^0 \ \text{mixing parameter}) = 0.499318 \pm 0.000005$$

HTTP://PDG.LBL.GOV

Page 125

CP violation parameters in B_s^0

$$\begin{array}{l} \operatorname{Re}(\epsilon_{\mathcal{B}_s^0}) \ / \ (1 + \left| \epsilon_{\mathcal{B}_s^0} \right|^2) = (-0.15 \pm 0.70) \times 10^{-3} \\ C_{KK}(\mathcal{B}_s^0 \to K^+K^-) = 0.162 \pm 0.035 \\ S_{KK}(\mathcal{B}_s^0 \to K^+K^-) = 0.14 \pm 0.05 \quad (S = 1.3) \\ r_B(\mathcal{B}_s^0 \to D_s^\mp K^\pm) = 0.37^{+0.10}_{-0.09} \\ r_B(\mathcal{B}_s^0 \to D_s^\mp K^\pm) = 0.37^{+0.10}_{-0.09} \\ r_B(\mathcal{B}_s^0 \to D_s^\mp K^\pm) = (358 \pm 14)^\circ \\ \delta_B(\mathcal{B}_s^0 \to D_s^\pm K^\mp) = (358 \pm 14)^\circ \\ \delta_B(\mathcal{B}_s^0 \to D_s^\pm K^\mp) = (-6^{+10}_{-13})^\circ \\ CP \ \text{Violation phase} \ \beta_s = (2.5 \pm 1.0) \times 10^{-2} \ \text{rad} \\ \left| \lambda \right| \ (\mathcal{B}_s^0 \to J/\psi(1S)\phi) = 1.001 \pm 0.018 \quad (S = 1.2) \\ \left| \lambda \right| = 0.999 \pm 0.017 \\ A, \ CP \ \text{violation parameter} = -0.79 \pm 0.08 \\ C, \ CP \ \text{violation parameter} = 0.17 \pm 0.06 \\ S, \ CP \ \text{violation parameter} = 0.17 \pm 0.06 \\ S, \ CP \ \text{violation parameter} = 0.17 \pm 0.06 \\ A_{CP}^L(\mathcal{B}_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06 \\ A_{CP}^L(\mathcal{B}_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}^L(\mathcal{B}_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}(\mathcal{B}_s^0 \to [K^+K^-]_D \overline{K}^*(892)^0) = -0.04 \pm 0.07 \\ A_{CP}(\mathcal{B}_s^0 \to [\pi^+K^-]_D K^*(892)^0) = -0.01 \pm 0.04 \\ A_{CP}(\mathcal{B}_s^0 \to [\pi^+K^-]_D K^*(892)^0) = 0.06 \pm 0.13 \\ S(\mathcal{B}_s^0 \to \phi \gamma) = 0.43 \pm 0.32 \\ C(\mathcal{B}_s^0 \to \phi \gamma) = 0.11 \pm 0.31 \\ A^\Delta(\mathcal{B}_s^0 \to \phi \gamma) = 0.11 \pm 0.31 \\ A^\Delta(\mathcal{B}_s^0 \to \phi \gamma) = -0.7 \pm 0.4 \\ \Delta_{\mathcal{A}_\perp} < 1.2 \times 10^{-12} \ \text{GeV}, \ \text{CL} = 95\% \\ \Delta_{\mathcal{A}_\parallel} = (-0.9 \pm 1.5) \times 10^{-14} \ \text{GeV} \\ \Delta_{\mathcal{A}_N} = (1.0 \pm 2.2) \times 10^{-14} \ \text{GeV} \\ \Delta_{\mathcal{A}_N} = (-3.8 \pm 2.2) \times 10^{-14} \ \text{GeV} \\ Re(\xi) = -0.022 \pm 0.033 \\ Im(\xi) = 0.004 \pm 0.011 \\ \end{array}$$

These branching fractions all scale with $B(\overline{b} \rightarrow B_s^0)$.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " B^0 - \overline{B}^0 Mixing"

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s ⁰ DECAY MODES	I	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\overline{D_s^-}$ anything		(62 ± 6) %		_
$\ell \nu_\ell X$		(9.6 \pm 0.8) %		_
$e^+ \nu X^-$		(9.1 \pm 0.8) %		_
$\mu^+ \nu X^-$		$(10.2 \pm 1.0)\%$		_
$D_s^-\ell^+ u_\ell$ anything	[ggaa]			_
$D_s^{*-}\ell^+ u_\ell$ anything		$(5.4 \pm 1.1)\%$		_
$D_s^-\mu^+ u_\mu$		(2.44 ± 0.23) %		2321
$D_s^{*-}\mu^+\nu_{\mu}$		$(5.3 \pm 0.5)\%$	2	2266
$D_{s1}(2536)^{-}\mu^{+}\nu_{\mu}, \ D_{s1}^{-} \rightarrow D^{*-}K_{S}^{0}$		(2.7 ± 0.7) \times	10 ⁻³	_
$D_{s1}(2536)^- X \mu^+ \nu, \ D_{s1}^- \rightarrow \overline{D}{}^0 K^+$		(4.4 \pm 1.3) \times	10 ⁻³	_
$D_{s2}(2573)^- X \mu^+ \nu, \ D_{s2}^- \rightarrow \overline{D}{}^0 K^+$		(2.7 \pm 1.0) \times	10 ⁻³	_
$\kappa^-\mu^+ u_\mu$		($1.06\pm~0.09$) $ imes$	10^{-4}	2660
$D_s^-\pi^+$		($2.98\pm~0.14) \times$	10 ⁻³	2320
$D_s^- ho^+$		(6.8 \pm 1.4) \times	10-3	2249
$D_s^- \pi^+ \pi^+ \pi^-$		(6.1 \pm 1.0) \times	10 ⁻³	2301
$D_{s1}(2536)^-\pi^+, D_{s1}^- \to D_{s1}^-\pi^+\pi^-$		(2.4 \pm 0.8) \times	10 ⁻⁵	-
$D_s^- \pi^+ \pi^ D_s^\mp K^\pm$		(2.25± 0.12)×	10-4	2293
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$		(3.2 \pm 0.6) \times	10^{-4}	2249
$D_s^+D_s^-$		(4.4 \pm 0.5) \times	10^{-3}	1824
$D_s^- D_s^+$		(2.8 \pm 0.5) \times	10 ⁻⁴	1875
D^+D^-		(2.2 \pm 0.6) \times	10 ⁻⁴	1925
$D^0 \overline{D}{}^0$		(1.9 \pm 0.5) \times	10^{-4}	1930
$D_s^{*-}\pi^+$		(1.9 $^+$ 0.5) $ imes$	10 ⁻³	2265
$D_s^{*\mp} K^{\pm}$		$(1.32^{+}_{-}0.40_{-}) \times$	10^{-4}	_
$D_s^{*-}\rho^+$		(9.5 \pm 2.0) \times	10^{-3}	2191
$D_{s}^{*+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$		($1.39\pm~0.17$) %		1742
$D_{s}^{*+}D_{s}^{*-}$		($1.44\pm~0.21$) %	S=1.1	1655
$D_{s}^{*-} \rho^{+}$ $D_{s}^{*+} D_{s}^{-} + D_{s}^{*-} D_{s}^{+}$ $D_{s}^{*+} D_{s}^{*-}$ $D_{s}^{(*)+} D_{s}^{(*)-}$ $D_{s}^{*-} D_{s}^{+}$ $D_{s}^{*0} \overline{K}^{0}$		(4.5 \pm 1.4) %		_
$D^{*-}D_s^+$		(3.9 \pm 0.8) \times	10^{-4}	1801
$\overline{D}^{*0}\overline{K}^{0}$		(2.8 \pm 1.1) \times		2278
D° K°		(4.3 \pm 0.9) \times		2330
$\overline{D}{}^0{\it K}^-\pi^+$		($1.04\pm~0.13$) $ imes$	10^{-3}	2312

$\overline{D}^0 \overline{K}^* (892)^0$	(4.4 \pm 0.6) $\times10^{-4}$		2264
$\overline{D}^0 \overline{K}^*(1410)$	$(3.9 \pm 3.5) \times 10^{-4}$		2117
$\overline{D}^0 \overline{K}_0^* (1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		2113
$\overline{D}{}^0\overline{K}_2^*(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		2112
$\overline{D}^0_{\underline{J}} \overline{K}^* (1680)$	$< 7.8 \times 10^{-5}$	CL=90%	1997
$\overline{D}^0\overline{K}_0^*(1950)$	$< 1.1 \times 10^{-4}$	CL=90%	1890
$\overline{D}^0 \overline{K}_3^*(1780)$		CL=90%	1970
$\overline{D}^0 \overline{K}_4^*(2045)$	$< 3.1 \times 10^{-5}$	CL=90%	1835
$\overline{D}{}^0{\cal K}^-\pi^+$ (non-resonant)	$(2.1 \pm 0.8) \times 10^{-4}$		2312
$D_{s2}^{*}(2573)^{-}\pi^{+}, D_{s2}^{*} \rightarrow \overline{D}{}^{0}K^{-}$	$(2.6 \pm 0.4) \times 10^{-4}$		_
$D_{s1}^*(2700)^- \pi^+, D_{s1}^* \to \overline{D}^0 \kappa^-$	$(1.6 \pm 0.8) \times 10^{-5}$		_
$D_{s1}^*(2860)^-\pi^+, \ D_{s1}^* o \overline{D}{}^0K^-$	$(5 \pm 4) \times 10^{-5}$		_
$D_{s3}^{*}(2860)^{-}\pi^{+}, D_{s3}^{*} \rightarrow \overline{D}{}^{0}K^{-}$	(2.2 ± 0.6) $\times 10^{-5}$		_
$\overline{D}^0 K^+ K^-$	$(5.6 \pm 0.9) \times 10^{-5}$		2243
$\overline{D}^0 f_0(980)$	$< 3.1 \times 10^{-6}$	CL=90%	2242
$\overline{D}{}^0 \phi$	$(3.0 \pm 0.5) \times 10^{-5}$		2235
$\overline{D}^{*0} \phi$	$(3.7 \pm 0.6) \times 10^{-5}$		2178
$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CL=90%	_
$\eta_{c}\phi$	$(5.0 \pm 0.9) \times 10^{-4}$		1663
$\eta_c \pi^+ \pi^-$	$(1.8 \pm 0.7) \times 10^{-4}$		1840
$J/\psi(1S)\phi$	$(1.04\pm 0.04) \times 10^{-3}$		1588
$J/\psi(1S)\phi\phi$	$(1.20^{+}_{-}0.14)\times10^{-5}$		764
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$	CL=90%	1787
$J/\psi(1S)\eta$	$(4.0 \pm 0.7) \times 10^{-4}$	S=1.4	1733
$J/\psi(1S)\underline{K}_{S}^{0}$	$(1.92\pm 0.14) \times 10^{-5}$		1743
$J/\psi(1S)\overline{K}^{*}(892)^{0}$	$(4.1 \pm 0.4) \times 10^{-5}$		1637
$J/\psi(1S)\eta'$	$(3.3 \pm 0.4) \times 10^{-4}$		1612
$J/\psi(1S)\pi^{+}\pi^{-}$	$(2.02\pm 0.17) \times 10^{-4}$		1775
$J/\psi(1S) f_0(500), f_0 \to \pi^+\pi^-$	$< 4 \times 10^{-6}$	CL=90%	_
$J/\psi(1S)\rho$, $\rho \to \pi^+\pi^-$	$< 3.4 \times 10^{-6}$	CL=90%	_
$J/\psi(1S) f_0(980), f_0 \rightarrow$	$(1.24\pm 0.15) \times 10^{-4}$	S=2.1	_
$J/\psi(1S) f_2(1270), \ \ f_2 ightarrow \pi^+\pi^-$	$(1.0 \pm 0.4) \times 10^{-6}$		-
$J/\psi(1S) f_2(1270)_0, f_2 \rightarrow \pi^+\pi^-$	$(7.3 \pm 1.7) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel}, f_2 \rightarrow$	$(1.05\pm\ 0.33)\times10^{-6}$		_
$\pi^+\pi^-$			

$$J/\psi(1S)f_2(1270)_{\perp}, \quad f_2 \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_0(1370), \quad f_0 \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_0(1500), \quad f_0 \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2'(1525)_0, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2'(1525)_{\parallel}, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2'(1525)_{\parallel}, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2'(1525)_{\perp}, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2'(1525)_{\perp}, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_2(1525)_{\perp}, \quad f_2' \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)f_0(1790), \quad f_0 \rightarrow \\ \pi^+\pi^-$$

$$J/\psi(1S)K^0\pi^+\pi^-$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^++c.c.$$

$$J/\psi(1S)K^0\pi^-\pi^-+c.c.$$

$$J/\psi$$

$\phi f_2(1270), f_2(1270) \rightarrow$	($6.1 \ ^+ \ ^- 1.8 \) imes 10^{-7}$	-
$\phi \rho^0$ $\pi^+ \pi^-$	$(2.7 \pm 0.8) \times 10^{-7}$	2526
$\phi \pi^+ \pi^-$	$(3.5 \pm 0.5) \times 10^{-6}$	2579
$\phi \dot{\phi}$	$(1.85\pm 0.14) \times 10^{-5}$	2482
$\phi \phi \phi$	$(2.2 \pm 0.6) \times 10^{-6}$	2165
$\pi^+ K^-$	$(5.8 \pm 0.7) \times 10^{-6}$	2659
K^+K^-	$(2.66\pm0.22)\times10^{-5}$	2638
$K_0^0\overline{K}^0$	$(1.76\pm\ 0.31) \times 10^{-5}$	2637
$K^0 \pi^+ \pi^-$	$(9.5 \pm 2.1) \times 10^{-6}$	2653
$K^0 K^{\pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$	2622
$K^*(892)^-\pi^+$	$(2.9 \pm 1.1) \times 10^{-6}$	2607
$K^*(892)^{\pm}K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$	2585
$K_0^*(1430)^{\pm}K^{\mp}$	$(3.1 \pm 2.5) \times 10^{-5}$	_
$K_2^*(1430)^{\pm} K^{\mp}$	(1.0 ± 1.7) \times 10^{-5}	_
$K^*(892)^0 \overline{K}{}^0 + \text{c.c.}$	$(2.0 \pm 0.6) \times 10^{-5}$	2585
$K_0^*(1430)\overline{K}^0+{ m c.c.}$	$(3.3 \pm 1.0) \times 10^{-5}$	2468
$K_2^*(1430)^0\overline{K}^0+\text{c.c.}$	$(1.7 \pm 2.2) \times 10^{-5}$	2467
$K_{S}^{0}\overline{K}^{*}(892)^{0}+\text{c.c.}$	$(1.6 \pm 0.4) \times 10^{-5}$	2585
$K^{0}K^{+}K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$	2568
$\overline{K}^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90% 2550
$\overline{K}^*(892)^0 K^*(892)^0$	$(1.11\pm~0.27)\times10^{-5}$	2531
$\phi K^* (892)^0$	$(1.14\pm~0.30)\times10^{-6}$	2507
$p\overline{p}$	$< 1.5 \times 10^{-8}$	CL=90% 2514
$p\overline{p}K^+K^-$	(4.5 \pm 0.5) $ imes$ 10 ⁻⁶	2231
$p\overline{p}K^{+}\pi^{-}$	$(1.39\pm 0.26) \times 10^{-6}$	2355
$ ho \overline{\overline{ ho}} \pi^+ \pi^-$	$(4.3 \pm 2.0) \times 10^{-7}$	2454
$p\overline{\Lambda}K^-+$ c.c.	$(5.5 \pm 1.0) \times 10^{-6}$	2358
$\Lambda_c^- \Lambda \pi^+$	$(3.6 \pm 1.6) \times 10^{-4}$	1979
$\Lambda_c^- \Lambda_c^+$	$< 8.0 \times 10^{-5}$	CL=95% 1405

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

			` '		
$\gamma \gamma$	B1	< 3.1	$\times 10^{-6}$	CL=90%	2683
$\phi\gamma$	B1	(3.4 \pm	$0.4) \times 10^{-5}$		2587
$\mu^+\mu^-$	В1	($3.01\pm$	$0.35) \times 10^{-9}$		2681
e^+e^-	B1	< 9.4	$\times 10^{-9}$	CL=90%	2683
$ au^+ au^-$	В1	< 6.8	$\times 10^{-3}$	CL=95%	2011
$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	< 2.5	$\times 10^{-9}$	CL=95%	2673
SP , $S ightarrow~\mu^+\mu^-$,	B1	[xxx] < 2.2	$\times 10^{-9}$	CL=95%	_
$P ightarrow~\mu^+\mu^-$					
$\phi(1020)\mu^{+}\mu^{-}$	B1	(8.4 \pm	$0.4) \times 10^{-7}$		2582

$$I(J^P) = 0(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

seen

Mass
$$m=5415.4^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.9)$$
 $m_{B_s^*}-m_{B_s}=48.5^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.9)$

B* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$B_s \gamma$$

$B_{s1}(5830)^0$

$$I(J^P) = 0(1^+)$$
I. J. P need confirmation.

Mass
$$m=5828.70\pm0.20~{
m MeV}$$
 $m_{B_{s1}^0}-m_{B^{*+}}=503.99\pm0.17~{
m MeV}$ Full width $\Gamma=0.5\pm0.4~{
m MeV}$

$B_{s1}(5830)^{0}$ DECAY MODES

Fraction (Γ_i/Γ)

(Me\//c)

seen

97

$B_{s2}^*(5840)^0$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.86\pm0.12$$
 MeV $m_{B_{s2}^{*0}}-m_{B^{+}}=560.52\pm0.14$ MeV Full width $\Gamma=1.49\pm0.27$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

B_{s2}^* (5840) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
B ⁺ K ⁻	DEFINED AS 1	252
$B^{*+}K^-$	0.093 ± 0.018	141

HTTP://PDG.LBL.GOV

Page 131

$$B^0 K_S^0$$
 0.43 ±0.11 245 $B^{*0} K_S^0$ 0.04 ±0.04 -

BOTTOM, CHARMED MESONS $(B = C = \pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m=6274.47\pm0.32$$
 MeV $m_{B_c^+}-m_{B_s^0}=907.8\pm0.5$ MeV Mean life $\tau=(0.510\pm0.009)\times10^{-12}$ s

 $\boldsymbol{B}_{\boldsymbol{C}}^{-}$ modes are charge conjugates of the modes below.

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
1/-//15\0+			
$J/\psi(1S)\ell^+\nu_\ell$ anything	seen		
$J/\psi(1S)\mu^+ u_\mu$	seen		2372
$J/\psi(1S) au^+ u_ au$	seen		1932
$J/\psi(1S)\pi^+$	seen		2370
$J/\psi(1S)K^+$	seen		2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen		2350
$J/\psi(1S)a_1(1260)$	not seen		2169
$J/\psi(1S)K^+K^-\pi^+$	seen		2203
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen		2309
$\psi(2S)\pi^+$	seen		2051
$J/\psi(1S) D^0 K^+$	seen		1539
$J/\psi(1S)D^*(2007)^0K^+$	seen		1411
$J/\psi(1S) D^*(2010)^+ K^{*0}$	seen		919
$J/\psi(1S)D^+K^{*0}$	seen		1122
$J/\psi(1S)D_s^+$	seen		1821
$J/\psi(1S)D_{S}^{*+}$	seen		1727
$J/\psi(1S) ho \overline{\overline{ ho}} \pi^+$	seen		1791
$\chi_c^0 \pi^+$	$(2.4^{+0.9}_{-0.8}) imes 10^{-}$	-5	2205
$ ho \overline{ ho} \pi^+$	not seen		2970
$D^0 K^+$	seen		2837

HTTP://PDG.LBL.GOV

Page 132

$D^0\pi^+$	not see	en		2858
$D^{*0}\pi^{+}$	not see	n		2814
$D^{*0}K^+$	not see	en		2792
$D_s^+ \overline{D}{}^0$	< 7.2	\times 10 ⁻⁴	90%	2483
$D_{s}^{+}D^{0}$	< 3.0	$\times10^{-4}$	90%	2483
$D^{+}\overline{D}{}^{0}$	< 1.9	$\times 10^{-4}$	90%	2521
D^+D^0	< 1.4	$\times 10^{-4}$	90%	2521
$D_s^{*+}\overline{D}^0$	< 5.3	$\times 10^{-4}$	90%	2425
$D_{c}^{+}\overline{D}^{*}(2007)^{0}$	< 4.6	$\times10^{-4}$	90%	2427
$D_s^{3+}D^{0}$	< 9	$\times10^{-4}$	90%	2425
$D_s^+ D^* (2007)^0$	< 6.6	$\times10^{-4}$	90%	2427
$D^{*}(2010)^{+}\overline{D}{}^{0}$	< 3.8	$\times10^{-4}$	90%	2467
$D^*(2010)^+\overline{D}{}^0$, $D^{*+} o$	not see	en		_
$D^+\pi^0/\gamma$				
$D^{+}\overline{D}^{*}(2007)^{0}$	< 6.5	\times 10 ⁻⁴	90%	2466
$D^*(2007)^+ D^0$	< 2.0	\times 10 ⁻⁴	90%	_
$D^*(2010)^+D^0$, $D^{*+}\to$	not see	en		2467
$D^+\pi^0/\gamma$				
$D^{+}D^{*}(2007)^{0}$	< 3.7	× 10 ⁻⁴	90%	2466
$D_s^{*+} \overline{D}^* (2007)^0$	< 1.3	$\times 10^{-3}$	90%	2366
$D_s^{*+} D^* (2007)^0$	< 1.3	$\times10^{-3}$	90%	2366
$D^*(2010)^+ \overline{D}^*(2007)^0$	< 1.0	$\times 10^{-3}$	90%	2410
$D^*(2010)^+ D^*(2007)^0$	< 7.7	$\times10^{-4}$	90%	2410
$D^{+} K^{*0}$	not see	en		2783
$D^+\overline{K}^{*0}$	not see	en		2783
$D_s^+ K^{*0}$	not see	n		2751
$D_s^+ \overline{K}^{*0}$	not see	en		2751
$D_s^+\phi$	not see	en		2727
$D_{s}^{+} K^{*0}$ $D_{s}^{+} \overline{K}^{*0}$ $D_{s}^{+} \phi$ $K^{+} K^{0}$	not see	en		3098
$B_s^0 \pi^+ / B(\overline{b} \rightarrow B_s)$	seen			_

 $B_c(2S)^{\pm}$

$$I(J^P)=0(0^-)$$

Created: 8/11/2022 09:37

Mass $m=6871.2\pm1.0~{
m MeV}$

$B_c(2S)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B_c^+\pi^+\pi^-$	seen	504

cc MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_c(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2983.9 \pm 0.4 \text{ MeV}$ (S = 1.2) Full width $\Gamma=32.0\pm0.7~\text{MeV}$

 $\eta_{\mathcal{C}}(1\mathcal{S})$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Decays	involvin	ig hadr	onic r	resonances
---------------	----------	---------	--------	------------

Decays invo	Tring induiting resonances		
$\eta'(958)\pi\pi$	(4.1 ± 1.7) %		1323
$\eta'(958) K \overline{K}$	(3.5 ± 1.5) %		1131
ho ho	(1.8 ± 0.5) %		1275
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	($2.0~\pm0.7$) %		1278
$K^*(892)\overline{K}^*(892)$	$(6.9 \pm 1.3) \times 10^{-3}$		1196
$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	($1.1~\pm0.5$) %		1073
$\phi K^+ K^-$	$(2.9 \pm 1.4) \times 10^{-3}$		1104
$\phi\phi$	$(1.74\pm0.19)\times10^{-3}$		1089
$\phi 2(\pi^+\pi^-)$	$< 4 \times 10^{-3}$	90%	1251
$a_0(980)\pi$	seen		1327
$a_2(1320)\pi$	< 2 %	90%	1196
$K^*(892)\overline{K}+$ c.c.	< 1.28 %	90%	1310
$f_2(1270)\eta$	< 1.1 %	90%	1145
$f_2(1270)\eta'$	seen		984
$\omega \omega$	$(2.9 \pm 0.8) \times 10^{-3}$		1270
$\omega \phi$	$< 2.5 \times 10^{-4}$	90%	1185
$f_2(1270) f_2(1270)$	$(9.8 \pm 2.5) \times 10^{-3}$		774
$f_2(1270)f_2'(1525)$	$(9.5 \pm 3.2) \times 10^{-3}$		524
$f_0(500)\eta$	seen		_
$f_0(500) \eta'$	seen		_
$f_0(980)\eta$	seen		1264
$f_0(980) \eta'$	seen		1130
$f_0(1500)\eta$	seen		1025
$f_0(1710)\eta'$	seen		653
$f_0(2100)\eta'$	seen		†
$f_0(2200)\eta$	seen		498
$a_0(1320)\pi$	seen		_
$a_0(1450)\pi$	seen		1123
$a_0(1700)\pi$	seen		_
$a_0(1950)\pi$	seen		860

$K_0^*(1430)\overline{K}$ $K_2^*(1430)\overline{K}$ $K_2^*(1430)\overline{K}$	seen seen	- -
$K_0^*(1950)\overline{K}$	seen	_
	Decays into stable hadrons	
$K\overline{K}\pi$	(7.3 ± 0.4) %	1381

	Decays into stable hadrons		
$K\overline{K}\pi$	(7.3 \pm 0.4) %		1381
$K\overline{K}\eta$	(1.36 ± 0.15) %		1265
$\eta \pi^+ \pi^-$	($1.7~\pm0.6$) %		1428
$\eta 2(\pi^+ \pi^-)$	(4.4 ± 1.6) %		1386
$K^+K^-\pi^+\pi^-$	$(6.6 \pm 1.1) \times 10^{-3}$		1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	($3.5~\pm0.6$) %		1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.6 ± 1.9) %		_
$K^+ K^- 2(\pi^+ \pi^-)$	$(7.5 \pm 2.4) \times 10^{-3}$		1254
$2(K^+K^-)$	$(1.43\pm0.30)\times10^{-3}$		1056
$\pi^+\pi^-\pi^0$	$< 5 \times 10^{-4}$	90%	1476
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.7 ± 1.4) %		1460
$2(\pi^{+}\pi^{-})$	$(9.1 \pm 1.2) \times 10^{-3}$		1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(15.8 ± 2.3) %		1409
$3(\pi^+\pi^-)$	($1.7~\pm0.4$) %		1407
p p	$(1.44\pm0.14)\times10^{-3}$		1160
$p \overline{p} \pi^0$	$(3.6 \pm 1.5) \times 10^{-3}$		1101
$\Lambda \overline{\Lambda}$	$(1.06\pm0.23)\times10^{-3}$		991
$K^{+}\overline{p}\Lambda + c.c.$	$(2.5 \pm 0.4) \times 10^{-3}$		772
$\overline{\Lambda}(1520)\Lambda+\text{c.c.}$	$(3.1 \pm 1.3) \times 10^{-3}$		694
$\Sigma + \overline{\Sigma} -$	$(2.1 \pm 0.6) \times 10^{-3}$		901
<u>=-</u> =+	$(9.0 \pm 2.6) \times 10^{-4}$		692
$\pi^+\pi^-\rho\overline{\rho}$	$(5.3 \pm 2.1) \times 10^{-3}$		1027

Radiative decays

$$\gamma\gamma$$
 ($1.61\pm0.12)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.1	$\times 10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP	<	4	\times 10 ⁻⁵	90%	1486
K^+K^-	P,CP	<	6	\times 10 ⁻⁴	90%	1408
$K_S^0 K_S^0$	P,CP	<	3.1	$\times 10^{-4}$	90%	1407

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 8/11/2022 09:37

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.6\pm1.7$ keV (S = 1.1)

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)			
hadrons	(87.7 ± 0.5) %	_			
virtual $\gamma ightarrow ext{ hadrons}$	$(13.50 \pm 0.30)\%$	_			
ggg	$(64.1 \pm 1.0)\%$	_			
γ gg	$(8.8 \pm 1.1)\%$	_			
e^+e^-	(5.971± 0.032) %	1548			
${ m e^+e^-}\gamma$ [hhaa	$[0.88 \pm 1.4] \times 10^{-1}$	3 1548			
$\mu^+\mu^-$	($5.961\pm~0.033)~\%$	1545			
Decays involving	ng hadronic resonances				
$ ho\pi$	(1.69 ± 0.15) %	S=2.4 1448			
$ ho^0 \pi^0$	(5.6 \pm 0.7) \times 10 $^-$	3 1448			
$a_2(1320)\rho$	(1.09 ± 0.22) %	1123			
$\eta \pi^+ \pi^-$	(3.8 \pm 0.7) \times 10 ⁻	4 1487			
$\eta \pi^{+} \pi^{-} \pi^{0}$	(1.17 ± 0.20) %	1470			
$\eta \pi^+ \pi^- 3\pi^0$	$(4.9 \pm 1.0) \times 10^{-}$	_			
$\eta \rho$	$(1.93 \pm 0.23) \times 10^{-}$				
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	$(1.2 \pm 0.4) \times 10^{-}$	4 628			
$\eta \phi \pi^+ \pi^-$	< 2.52 × 10 ⁻	4 CL=90% -			
$\eta \phi(2170) ightarrow \ \eta K^*(892)^0 \overline{K}^*(892)^0$	< 2.52 × 10	CL=90% -			
+0 -	$[0.01] (2.2 \pm 0.4) \times 10^{-1}$	3 1278			
$\eta K^*(892)^0 \overline{K}^*(892)^0$	$[0] (\ 2.2 \ \pm \ 0.4 \) imes 10^{-1} $ $(\ 1.15 \ \pm \ 0.26 \) imes 10^{-1} $				
$\rho \eta'(958)$	$(8.1 \pm 0.8) \times 10^{-}$				
$\rho^{\pm} \pi^{\mp} \pi^{+} \pi^{-} 2\pi^{0}$	$(2.8 \pm 0.8)\%$	1364			
$\rho + \frac{\pi}{\rho} + \frac{\pi}{\rho} - \frac{\pi}{\pi} + \frac{\pi}{\pi} - \frac{\pi}{\pi}$ 0	$(6 \pm 4) \times 10^{-}$				
$ ho^{\mp} K^{\pm} K_{5}^{0}$	$(1.9 \pm 0.4) \times 10^{-}$				
$\rho(1450)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	$(2.3 \pm 0.7) \times 10^{-}$				
$\rho(1450)^{\pm} \pi^{\mp} \rightarrow K_{5}^{0} K^{\pm} \pi^{\mp}$	$(3.5 \pm 0.6) \times 10^{-}$				
$\rho(1450)^0 \pi^0 \to K^+ K^- \pi^0$	$(2.7 \pm 0.6) \times 10^{-}$				
$ ho$ (1450) η' (958) $ ightarrow$	$(3.3 \pm 0.7) \times 10^{-}$				
$\pi^{+}\pi^{-}\eta'(958)$	(0.0 ± 0) // 20				
$\rho(1700)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(1.7 ± 1.1) \times 10^-	4 _			
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$	$(8 \pm 40) \times 10^{-}$				
$\omega \pi^0$	$(4.5 \pm 0.5) \times 10^{-}$				
$\omega \pi^0 ightarrow \pi^+ \pi^- \pi^0$	$(1.7 \pm 0.8) \times 10^{-}$				
$\omega \pi^+ \pi^-$	(7.2 \pm 1.0) \times 10 ⁻				
$\omega \pi^0 \pi^0$	(3.4 ± 0.8) \times 10^-	3 1436			
$\omega 3\pi^0$	(1.9 ± 0.6) \times 10^-				
$\omega f_2(1270)$	(4.3 \pm 0.6) \times 10 $^-$				
$\omega\eta$	(1.74 \pm 0.20) \times 10 $^-$				
$\omega \pi^+ \pi^- \pi^0$	(4.0 ± 0.7) \times 10^-				
$\omega \pi^{0} \eta$	$(3.4 \pm 1.7) \times 10^{-}$	4 1363			

$\omega \pi^+ \pi^+ \pi^- \pi^-$	(8.5	\pm	3.4	$) \times 10^{-3}$		1392
$\omega\pi^+\pi^-2\pi^0$	(3.3	\pm	0.5) %		1394
$\omega \eta' \pi^+ \pi^-$	(1.12	\pm	0.13	$) \times 10^{-3}$		1173
$\omega \eta'$ (958)	(1.89	\pm	0.18	$) \times 10^{-4}$		1279
$\omega f_0(980)$					$) \times 10^{-4}$		1267
$\omega f_0(1710) ightarrow \omega K \overline{K}$	($) \times 10^{-4}$		878
$\omega f_1(1420)$	(6.8	\pm		$) \times 10^{-4}$		1062
$\omega f_2'(1525)$	<	2.2			\times 10 ⁻⁴	CL=90%	1007
$\omega X(1835) \rightarrow \omega p \overline{p}$		3.9				CL=95%	_
$\omega X(1835), X \to \eta' \pi^+ \pi^-$					\times 10 ⁻⁵		_
$\omega K \pm K_S^0 \pi^{\mp}$	[aa] ($) \times 10^{-3}$		1210
ω Κ Κ	($) \times 10^{-3}$		1268
$\omega K^*(892)\overline{K} + \text{c.c.}$					$) \times 10^{-3}$		1097
$\eta' K^{*\pm} K^{\mp}$					$) \times 10^{-3}$		_
$\eta' K^{*0} \overline{K}^0 + \text{c.c.}$					$) \times 10^{-3}$		1000
$\eta' h_1(1415) \rightarrow \eta' K^* \overline{K} + \text{c.c.}$					$) \times 10^{-4}$		_
$\eta' \underline{h_1}(1415) \rightarrow \eta' K^{*\pm} K^{\mp}$					$) \times 10^{-4}$		_
$\overline{K} K^*(892) + ext{c.c.} ightarrow K_S^c K^\pm \pi^\mp$	(5.0	士	0.5	$) \times 10^{-3}$		_
3	,		_	0 8	3		
$K^+ K^* (892)^- + \text{c.c.}$				1.0) × 10 ⁻³	S=2.9	1373
$K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow$	(2.69	+	0.13 0.20	$) \times 10^{-3}$		_
$K^+K^-\pi^0 \ K^+K^*(892)^- + ext{c.c.} ightarrow$	(3.0	\pm	0.4) × 10 ⁻³		_
$K^0 K^{\pm} \pi^{\mp} + \text{c.c.}$	(, = -		
$K^0\overline{K}^*(892)^0+$ c.c.	(4.2	\pm	0.4	$) \times 10^{-3}$		1373
$K^0\overline{K}^*$ (892) $^0+$ c.c. $ ightarrow$	(3.2	\pm	0.4	$) \times 10^{-3}$		_
$K^0K^{\pm}\pi^{\mp}$ + c.c.					2		
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$					$) \times 10^{-3}$		1343
$K^*(892)^{\pm} K^{\mp} \pi^0$					$) \times 10^{-3}$		1344
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.}$					$) \times 10^{-3}$		1342
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.} \rightarrow$	(6.7	\pm	2.2	$) \times 10^{-4}$		_
$\mathcal{K}^0_\mathcal{S}\mathcal{K}^0_\mathcal{S}\pi^+\pi^-$							
$K^*(892)^0 K_S^0 o \gamma K_S^0 K_S^0$	(6.3	+	0.6 0.5	$) \times 10^{-6}$		_
$K^*(892)^0 K_S^0 \pi^0$	(7	\pm	4	$) \times 10^{-4}$		1343
$K^*(892)^{\pm} K^*(700)^{\mp}$	(1.1	+	1.0 0.6	$) \times 10^{-3}$		_
$K^*(892)^0 \overline{K}^*(892)^0$	(2.3	\pm	0.6	$) \times 10^{-4}$		1266
$K^*(892)^{\pm}K^*(892)^{\mp}$	(1.00	+	0.22 0.40	$) \times 10^{-3}$		1266
$\mathcal{K}_1(1400)^\pm\mathcal{K}^\mp$	(3.8	\pm	1.4) × 10 ⁻³		1170
$K^*(1410)\overline{K} + \text{c.c} \rightarrow$					$) \times 10^{-5}$		_
$K^{\pm}K^{\mp}\pi^{0}$	·						

$K^*(1410)\overline{K} + \text{c.c.} \rightarrow$	(8	±	6	$)\times 10^{-5}$		_
$K_{\mathcal{S}}^{0} K^{\pm} \pi^{\mp} \ K_{2}^{st}(1430) \overline{K} + ext{c.c.} ightarrow$	(1.0	\pm	0.5) × 10 ⁻⁴		_
$\kappa^{\pm}\kappa^{\mp}\pi^{0}$							
$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$	(4.0	\pm	1.0	$) \times 10^{-4}$		_
$ K_S^0 K^{\pm} \pi^{\mp}$					•		
$\overline{K}_{2}^{*}(1430)K + \text{c.c.}$	<	4.0			$\times 10^{-3}$	CL=90%	1158
$K_2^*(1430)^+ K^- + \text{c.c.} \rightarrow K^+ K^- \pi^0$	(2.69	+	0.25 0.19) × 10 ⁻⁴		_
$K_2^*(1430)^+K_5^0\pi^-+\text{c.c.}$	(3.6	±	1.8	$) \times 10^{-3}$		1116
$\overline{K}_{2}^{2}(1430)^{0}K^{*}(892)^{0}+\text{c.c.}$) × 10 ⁻³		1011
$K_2^2(1430)^- K^*(892)^+ + \text{c.c.}$,) × 10 ⁻³		1011
$K_2^*(1430)^-K^*(892)^++$) × 10 ⁻⁴		_
c.c. →	`				,		
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.}$							
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	<	2.9			$\times 10^{-3}$	CL=90%	601
$\overline{K}_2(1770)^0 K^*(892)^0 + \text{c.c.} \rightarrow$	(6.9	\pm	0.9	$) \times 10^{-4}$		_
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$							
$K_2^*(1980)^+ K^- + \text{c.c.} ightarrow K^+ K^- \pi^0$	(1.10	+	0.60 0.14	$) \times 10^{-5}$		_
	(6.0	+	2.9) 10 - 6		
$K_4^*(2045)^+ K^- + \text{c.c.} \rightarrow K^+ K^- \pi^0$	(6.2	÷	1.6) × 10 ⁻⁶		_
$K_1(1270)^{\pm}K^{\mp}$	<	3.0			\times 10 ⁻³	CL=90%	1240
$K_1(1270)K_S^0 \to \gamma K_S^0 K_S^0$					$) \times 10^{-7}$		_
$a_2(1320)^{\pm}\pi^{\mp}$	[aa] <					CL=90%	1263
$\phi \pi^0$		10-6					1377
$\phi \pi^+ \pi^-$	(9.4	\pm	1.5	$) \times 10^{-4}$	S=1.7	1365
$\phi \pi^0 \pi^0$	(5.0	\pm	1.0	$) \times 10^{-4}$		1366
$\phi 2(\pi^+\pi^-)$					$) \times 10^{-3}$		1318
$\phi\eta$					$) \times 10^{-4}$	S=1.5	1320
$\phi \eta'(958)$					$) \times 10^{-4}$	S=2.2	1192
$\phi \eta \eta'$					$) \times 10^{-4}$		885
$\phi f_0(980)$	`				$) \times 10^{-4}$	S=1.9	1178
$ \phi f_0(980) \rightarrow \phi \pi^+ \pi^- \phi f_0(980) \rightarrow \phi \pi^0 \pi^0 $	($) \times 10^{-4}$		_
$\phi \pi_0(980) \rightarrow \phi \pi^0 \pi^0 \pi^0 + \pi^- $	(1.8		0.5	$) \times 10^{-4}$ $) \times 10^{-6}$		_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0$ $\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0$	(1.0 0.6	$) \times 10^{-6}$		1045
$\phi f_0(980) \rightarrow \phi \pi \rho \pi$ $\phi f_0(980) \eta \rightarrow \eta \phi \pi^+ \pi^-$	($) \times 10^{-4}$		1045 —
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$	`			1.4	$) \times 10^{-6}$		_
$\phi f_2(1270)$	`	3.2			$) \times 10^{-4}$		1036
$\phi f_1(1285)$	`	2.6		0.5	$) \times 10^{-4}$		1032
	`				•		

$\phi f_1(1285) ightarrow$		(9)	4 +	2.8) × 10 ⁻⁷		952
$\phi \pi^0 f_0(980) \rightarrow$		(3.	• _	2.0) \ 10		932
$\phi \pi^0 \pi^+ \pi^-$							
ϕ $f_1(1285) ightarrow$		(2.	1 ±	2.2	$) \times 10^{-7}$		955
$\phi\pi^0 f_0(980) ightarrow \phi 3\pi^0$							
$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$		(2.			$) \times 10^{-5}$		946
$\phi f_2'(1525)$		8)	\pm	4	$) \times 10^{-4}$		877
$\phi X(1835) \rightarrow \phi p \overline{p}$	<	< 2.	1		$\times 10^{-7}$		-
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$		< 2.			$\times 10^{-4}$		578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	<	< 6.			$\times 10^{-5}$		_
$\phi K \overline{K}$					$) \times 10^{-3}$		1179
$\phi f_0(1710) \rightarrow \phi K \overline{K}$					$) \times 10^{-4}$		875
$\phi K^+ K^-$					$) \times 10^{-4}$		1179
$\phi K_S^0 K_S^0$) × 10 ⁻⁴		1176
$\phi K^{\pm} K_S^0 \pi^{\mp}$	[<i>aa</i>]	(7.			$) \times 10^{-4}$		1114
$\phi K^*(892)\overline{K} + \text{c.c.}$					$) \times 10^{-3}$		969
$b_1(1235)^{\pm}\pi^{\mp}$	[<i>aa</i>]				$) \times 10^{-3}$		1300
$b_1(1235)^0\pi^0$					$) \times 10^{-3}$		1300
$f_2'(1525)K^+K^-$			06 ±	0.35	$) \times 10^{-3}$		897
$\Delta(1232)^+\overline{p}$	<	< 1			× 10 ⁻⁴		1100
$\Delta(1232)^{++} \bar{p} \pi^{-}$					$) \times 10^{-3}$		1030
$\Delta(1232)^{++}\overline{\Delta}(1232)^{}$					$) \times 10^{-3}$		938
$\Sigma (1385)^0 p K^-$				3.2	$) \times 10^{-4}$		646
$\Sigma(1385)^{0}\overline{\Lambda} + \text{c.c.}$		< 8.3		0.5	× 10 ⁻⁶		911
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)					$) \times 10^{-4}$		855
$\Sigma (1385)^{-} \overline{\Sigma} (1385)^{+} \text{ (or c.c.)}$ $\Sigma (1385)^{0} \overline{\Sigma} (1385)^{0}$	[<i>aa</i>]				$) \times 10^{-3}$		697
` '_ ` '				0.08	$) \times 10^{-3} \times 10^{-6}$		697
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$ $\overline{\Lambda}(1520)\Lambda + \text{c.c.}$		< 4. < 1.			$\times 10^{-3}$		807
=0 =0	•			0.04	$\times 10^{-3}$		818
$\Xi(1530)^{-} \overline{\Xi}^{+} + \text{c.c.}$					$) \times 10^{-4}$		600
$\Xi(1530)^0 \overline{\Xi}^0$					$) \times 10^{-4}$		608
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$	[iiaa] «			1.7	$\times 10^{-5}$		_
$K_S^0 p K^- \overline{n} + \text{c.c.}$	[maa]	` 1.	-		× 10	CL-3070	
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	[iiaa] «	< 2	1		× 10 ⁻⁵	CL=90%	_
$\Theta(1540)K_S^0\overline{p} \rightarrow K_S^0\overline{p}K^+n$	[iiaa] <				× 10 ⁻⁵		_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$					× 10 ⁻⁵		_
$\overline{\Theta}(1540)K^0 p \to K_S^0 p K^{-} \overline{n}$					\times 10 \times 10 \times 10 \times 10 \times		_ _ _
$O(1370)N_S p \rightarrow N_S p N \Pi$	[IIAA] <	\ 1.	T		× 10 °	CL=90 70	_
	ays into	stal	ole ha	adron	ıs		
$2(\pi^{+}\pi^{-})\pi^{0}$		(3.	71 ±	0.28) %	S=1.3	1496

$2(\pi^{+}\pi^{-})\pi^{0}$	(3.71 ± 0.28) %	S=1.3	1496
$3(\pi^{+}\pi^{-})\pi^{0}$	(2.9 \pm 0.6) %		1433
$\pi^{+}\pi^{-}3\pi^{0}$	(1.9 ± 0.9) %		1497
$\pi^{+}\pi^{-}4\pi^{0}$	$(6.5 \pm 1.3) \times 10^{-3}$		1470

HTTP://PDG.LBL.GOV

Page 139 Created: 8/11/2022 09:37

$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	(1.41 ± 0.22) %	142	1
$\rho^+\rho^-\pi^0$	$(6.0 \pm 1.1) \times 10^{-3}$	129	
$\pi^{+}\pi^{-}\pi^{0}$	$(2.10 \pm 0.08)\%$	S=1.6 153	3
$2(\pi^{+}\pi^{-}\pi^{0})$	(1.61 ± 0.20) %	146	8
$\pi^{+}\pi^{-}\pi^{0}\mathit{K}^{+}\mathit{K}^{-}$	($1.20~\pm~0.30$) %	136	8
$\pi^+\pi^-$	$(1.47 \pm 0.14) \times 10^{-4}$	154	2
$2(\pi^{+}\pi^{-})$	$(3.57 \pm 0.30) \times 10^{-3}$	151	7
$3(\pi^{+}\pi^{-})$	$(4.3 \pm 0.4) \times 10^{-3}$	146	6
$2(\pi^{+}\pi^{-})3\pi^{0}$	$(6.2 \pm 0.9)\%$	143	5
$4(\pi^{+}\pi^{-})\pi^{0}$	$(9.0 \pm 3.0) \times 10^{-3}$	134	5
$2(\pi^{+}\pi^{-})\eta$	$(2.29 \pm 0.28) \times 10^{-3}$	144	6
$3(\pi^{+}\pi^{-})\eta$	$(7.2 \pm 1.5) \times 10^{-4}$	137	9
$2(\pi^{+}\pi^{-}\pi^{0})\eta$	$(1.6 \pm 0.5) \times 10^{-3}$	138	1
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$	$(2.4 \pm 0.5) \times 10^{-3}$	144	8
$ \rho^{\pm}\pi^{\mp}\pi^{0}\eta $	$(1.9 \pm 0.8) \times 10^{-3}$	132	
K^+K^-	$(2.86 \pm 0.21) \times 10^{-4}$	146	
$K_S^0 K_L^0$	$(1.95 \pm 0.11) \times 10^{-4}$	S=2.4 146	
$K_{\underline{S}}^{0}K_{\underline{S}}^{0}$	$< 1.4 \times 10^{-8}$	CL=95% 146	6
$K\overline{K}\pi$	$(6.1 \pm 1.0) \times 10^{-3}$	144	2
$K^{+}K^{-}\pi^{0}$	$(2.88 \pm 0.12) \times 10^{-3}$	144	2
$K_S^0 K^{\pm} \pi^{\mp}$	$(5.6 \pm 0.5) \times 10^{-3}$	144	0
$K_S^0 K_L^0 \pi^0$	$(2.06 \pm 0.26) \times 10^{-3}$	144	0
$K^*(892)^0 \overline{K}^0 + \text{c.c.} \rightarrow$	$(1.21 \pm 0.18) \times 10^{-3}$	-	-
$K_S^0 K_L^0 \pi^0$	4		
$K_2^*(1430)^0 \overline{K}^0 + \text{c.c.} \rightarrow$	$(4.3 \pm 1.3) \times 10^{-4}$	-	-
$K_S^0 K_L^0 \pi^0$	2		
$K^{+}K^{-}\pi^{+}\pi^{-}$	$(6.86 \pm 0.28) \times 10^{-3}$	140	7
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(2.13 \pm 0.22) \times 10^{-3}$	141	
$K_S^0 K_L^0 \pi^+ \pi^-$	$(3.8 \pm 0.6) \times 10^{-3}$	140	6
$K_{S}^{0}K_{L}^{\overline{0}}\pi^{0}\pi^{0}$	$(1.9 \pm 0.4) \times 10^{-3}$	140	8
$K_{S}^{\bar{0}}K_{L}^{\bar{0}}\eta$	$(1.45 \pm 0.33) \times 10^{-3}$	132	8
$\kappa_{S}^{0} \kappa_{S}^{0} \pi^{+} \pi^{-} K^{\mp} \kappa_{S}^{0} \pi^{\pm} \pi^{0}$	$(1.68 \pm 0.19) \times 10^{-3}$	140	6
$\mathcal{K}^{\mp}\mathcal{K}^0_S\pi^{\pm}\pi^0$	$(5.7 \pm 0.5) \times 10^{-3}$	140	8
$K^+ K^- 2(\pi^+ \pi^-)$	$(3.1 \pm 1.3) \times 10^{-3}$	132	0
$K^+K^-\pi^+\pi^-\eta$	$(4.7 \pm 0.7) \times 10^{-3}$	122	1
$2(K^+K^-)$	$(7.2 \pm 0.8) \times 10^{-4}$	113	1
$K^+K^-K^0_SK^0_S$	$(4.2 \pm 0.7) \times 10^{-4}$	112	7
$p\overline{p}$	$(2.120 \pm 0.029) \times 10^{-3}$	123	2
$p\overline{p}\pi^0$	$(1.19 \pm 0.08) \times 10^{-3}$	S=1.1 117	6
$p \overline{p} \pi^+ \pi^-$	$(6.0 \pm 0.5) \times 10^{-3}$	S=1.3 110	7
$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	[$ijaa$] (2.3 \pm 0.9) \times 10 ⁻³	S=1.9 103	3
$p\overline{p}\eta$	$(2.00 \pm 0.12) \times 10^{-3}$	94	8
$p\overline{p}\rho$	$< 3.1 \times 10^{-4}$	CL=90% 77	4

_	(0 0 1 0) 10-1		
$p\overline{p}\omega$	$(9.8 \pm 1.0) \times 10^{-4}$	S=1.3	768
$p\overline{p}\eta'(958)$	$(1.29 \pm 0.14) \times 10^{-4}$	S=2.0	596
$p\overline{p}a_0(980) o p\overline{p}\pi^0\eta$	$(6.8 \pm 1.8) \times 10^{-5}$		_
$ ho \overline{ ho} \phi$	$(5.19 \pm 0.33) \times 10^{-5}$		527
$ ho \overline{n} \pi^-$	$(2.12 \pm 0.09) \times 10^{-3}$		1174
n n	$(2.09 \pm 0.16) \times 10^{-3}$		1231
$n\overline{n}\pi^+\pi^-$	$(4 \pm 4) \times 10^{-3}$		1106
nN(1440)	seen		978
n N (1520)	seen		928
nN(1535)	seen		917
$\Lambda \overline{\Lambda}$	$(1.89 \pm 0.09) \times 10^{-3}$	S=2.8	1074
$\Lambda \overline{\Lambda} \pi^0$	$(3.8 \pm 0.4) \times 10^{-5}$	3—2.0	998
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(4.3 \pm 1.0) \times 10^{-3}$		903
$\Lambda \overline{\Lambda} \eta$	$(1.62 \pm 0.17) \times 10^{-4}$		672
·='	1	S=1.2	950
		3=1.2	
$pK^{-}\overline{\Lambda}+c.c.$ $pK^{-}\overline{\Sigma}^{0}$	$(8.6 \pm 1.1) \times 10^{-4}$		876
	$(2.9 \pm 0.8) \times 10^{-4}$		819
$\overline{\Lambda}$ n K_S^0 + c.c.	$(6.5 \pm 1.1) \times 10^{-4}$		872
$\Lambda \overline{\Sigma} + \text{c.c.}$	$(2.83 \pm 0.23) \times 10^{-5}$		1034
$\Sigma + \overline{\Sigma} -$	$(1.07 \pm 0.04) \times 10^{-3}$		992
$\sum_{i=0}^{0} \overline{\sum_{i=0}^{0}}$	$(1.172\pm 0.032) \times 10^{-3}$	S=1.4	988
<u>=</u> − = +	$(9.7 \pm 0.8) \times 10^{-4}$	S=1.4	807
Radi	ative decays		
	•	C 1 F	111
$\gamma \eta_c(1S)$	$(1.7 \pm 0.4)\%$	S=1.5	111
$\gamma \eta_{m{c}}(1S) ightarrow 3 \gamma$	$(3.8 + 1.3 \ -1.0) \times 10^{-6}$	S=1.1	_
$\gamma\eta_{m{c}}(1S) ightarrow \ \gamma\eta\eta\eta'$	$(4.9 \pm 0.8) \times 10^{-5}$		_
3γ	$(1.16 \pm 0.22) \times 10^{-5}$		1548
4γ	_		
	$< 9 \times 10^{-6}$	CL=90%	1548
5γ		CL=90% CL=90%	1548 1548
$\frac{5\gamma}{\gamma\pi^0}$	$< 1.5 \times 10^{-5}$		1548
$\gamma \pi^0$	$< 1.5 \times 10^{-5}$ (3.56 ± 0.17) $\times 10^{-5}$		1548 1546
$\gamma \pi^0$ $\gamma \pi^0 \pi^0$	< 1.5	CL=90%	1548 1546 1543
$\gamma \pi^{0} \\ \gamma \pi^{0} \pi^{0} \\ \gamma 2\pi^{+} 2\pi^{-}$	$< 1.5 \times 10^{-5}$ $(3.56 \pm 0.17) \times 10^{-5}$ $(1.15 \pm 0.05) \times 10^{-3}$ $(2.8 \pm 0.5) \times 10^{-3}$		1548 1546 1543 1517
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$	< 1.5	CL=90%	1548 1546 1543
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$ $\gamma f_{2}(1270) f_{2}(1270)$ (non reso-	$< 1.5 \times 10^{-5}$ $(3.56 \pm 0.17) \times 10^{-5}$ $(1.15 \pm 0.05) \times 10^{-3}$ $(2.8 \pm 0.5) \times 10^{-3}$	CL=90%	1548 1546 1543 1517
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$	< 1.5	CL=90%	1548 1546 1543 1517 878
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$ $\gamma f_{2}(1270) f_{2}(1270)$ (non resonant) $\gamma \pi^{+} \pi^{-} 2\pi^{0}$	< 1.5	CL=90%	1548 1546 1543 1517 878 —
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$ $\gamma f_{2}(1270) f_{2}(1270)$ (non resonant) $\gamma \pi^{+} \pi^{-} 2\pi^{0}$ $\gamma K_{S}^{0} K_{S}^{0}$	< 1.5	CL=90% S=1.9	1548 1546 1543 1517 878 — 1518 1466
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$ $\gamma f_{2}(1270) f_{2}(1270)$ (non resonant) $\gamma \pi^{+} \pi^{-} 2\pi^{0}$ $\gamma K_{S}^{0} K_{S}^{0}$ $\gamma (K \overline{K} \pi) [J^{PC} = 0^{-+}]$	< 1.5	CL=90%	1548 1546 1543 1517 878 — 1518 1466 1442
$\gamma \pi^{0}$ $\gamma \pi^{0} \pi^{0}$ $\gamma 2\pi^{+} 2\pi^{-}$ $\gamma f_{2}(1270) f_{2}(1270)$ $\gamma f_{2}(1270) f_{2}(1270)$ (non resonant) $\gamma \pi^{+} \pi^{-} 2\pi^{0}$ $\gamma K_{S}^{0} K_{S}^{0}$	< 1.5	CL=90% S=1.9	1548 1546 1543 1517 878 — 1518 1466

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

 $\begin{array}{c}
\gamma \eta \\
\gamma \eta \pi^{0} \\
\gamma a_{0}(980)^{0} \rightarrow \gamma \eta \pi^{0}
\end{array}$

Page 141

< 2.5

 $(1.085\pm\ 0.018)\times 10^{-3}$

 $\times 10^{-6}$

 $(2.14 \pm 0.31) \times 10^{-5}$

1500

1497

CL=95%

				. 6		
					CL=95%	_
						1487
						_
•				•	S=1.3	1400
		±	0.8		CI 000/	1340
				_		1338
			0.22		CL=90%	1258
					C 0.1	1336
`						1166 1223
`						1223
•				,	3—1.0	1225
•					S=1 3	1223
		_	0.1			-
						_
						_
			0.9	_		1048
						_
					CL=90%	_
(3.14	+	0.50) × 10 ⁻⁴		752
					S=1.3	1286
(2.58	+	0.60	$) \times 10^{-5}$		_
						1283
						_
						_
						1220
						1183
						_
						_
						_
) × 10 ⁻⁴	S=1.5	1177
(8.0	+	0.7 0.5	$) \times 10^{-5}$		_
(3.4	\pm	1.4	$) \times 10^{-5}$		_
(2.8	\pm	1.8	$) \times 10^{-4}$		_
						_
(9.5	+	1.0 0.5	$) \times 10^{-4}$	S=1.5	1075
				$) \times 10^{-4}$		_
						_
			• • •			
(2.5	土	0.6) × 10 ⁻⁴		_
		(6.1 (6.2 (5.25 (4.5 < 5.4 < 8.8 (1.61 (4.0 (2.8 (7.8 (3.0 (1.7 < 8.2 < 2.63 < 1.86 (1.3 (1.98 < 4.80 (3.14 (1.64 (2.58 (6.1 (7.9 (1.09 (1.7 (1.59 (4.5 (5.7 (8.0 (3.4 (2.8 (3.8 (9.5 (3.1 (2.4	(6.2 ± (5.25 ± (4.5 ± < 5.4 < 8.8 (1.61 ± (4.0 ± (2.8 ± (7.8 ± (3.0 ± (1.7 ± < 8.2 < 2.63 < 1.86 (1.3 ± (1.98 ± < 4.80 (3.14 + (1.64 ± (2.58 + (6.1 ± (7.9 ± (1.109 ± (1.7 + (1.59 + ((6.1 ± 1.0) (6.2 ± 2.4) (5.25 ± 0.07) (4.5 ± 0.8) < 5.4 < 8.8 (1.61 ± 0.33) (4.0 ± 1.2) (2.8 ± 0.6) (7.8 ± 2.0) (3.0 ± 0.5) (1.7 ± 0.4) < 8.2 < 2.63 < 1.86 (1.3 ± 0.9) (1.98 ± 0.33) < 4.80 $(3.14 + 0.50)$ (1.98 ± 0.33) < 4.80 $(3.14 + 0.50)$ (1.64 ± 0.12) $(2.58 + 0.60)$ (1.64 ± 0.12) $(2.58 + 0.60)$ (1.64 ± 0.12) $(2.58 + 0.60)$ (1.64 ± 0.12) (1.64 ± 0.12) (1.64 ± 0.12) (1.64 ± 0.12) (2.61 ± 0.8) (4.2 ± 1.5) (1.1 ± 0.4) (7.9 ± 1.3) (1.09 ± 0.24) $(1.7 + 0.6)$ $(1.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$\gamma f_0(1750) \rightarrow \gamma K_S^0 K_S^0$	(1.11	+	0.20 0.33	$)\times10^{-5}$		-
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	(5.4	+	3.5 2.4	$) \times 10^{-5}$		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	(2.0	±	1.4	$) \times 10^{-4}$		_
$\gamma f_2(1950) \rightarrow$) × 10 ⁻⁴		_
$\gamma K^*(892) \overline{K}^*(892)$					_		
$\gamma f_4(2050)$,				$) \times 10^{-3}$		891
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	(1.13	+	0.60 0.30	$) \times 10^{-4}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(6.2	\pm	1.0	$) \times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(5.9	\pm	1.3	$) \times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$	(2.72	+	0.19 0.50	$) \times 10^{-4}$		_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$		3.9			\times 10 ⁻⁵	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma K K$					$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$					$) \times 10^{-5}$		_
$\gamma f_0(2330) \rightarrow \gamma K_S^0 K_S^0$					$) \times 10^{-5}$		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	(5.6	+	2.4 2.2	$) \times 10^{-5}$		_
$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$	(5.5	+	4.0 1.5	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.7	+	0.6 0.8	$)\times10^{-4}$	S=1.6	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	+	1.5 0.9	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3	+	2.0 1.3	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	<	3.56			$\times 10^{-6}$	CL=90%	_
$\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	+	0.7 0.8	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K^+ K^- \eta'$	(1.8	\pm	0.7	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta'$	(1.2	\pm	0.5	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma \eta \eta \eta'$					$\times 10^{-6}$	CL=90%	_
$\gamma p \overline{p}$			\pm	1.0	$) \times 10^{-4}$		1232
$\gamma p \overline{p} \pi^+ \pi^-$		7.9			\times 10 ⁻⁴	CL=90%	1107
$\gamma \Lambda \overline{\Lambda}$		1.3			$\times 10^{-4}$	CL=90%	1074
$\gamma A \rightarrow \gamma$ invisible $\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[kkaa] <				$\begin{array}{c} \times10^{-6} \\ \times10^{-6} \end{array}$	CL=90%	_
$\gamma A \rightarrow \gamma \mu \cdot \mu$	[<i>llaa</i>] <	5			× 10 °	CL=90%	_
0 1	Dalitz		•		_		
$\pi^{0} e^{+} e^{-}$					$) \times 10^{-7}$		1546
$\eta e^+ e^-$					$) \times 10^{-5}$		1500
$\eta'(958)e^+e^- \ \eta U o \eta e^+e^-$	([nnaa] <			0.18	$) \times 10^{-5} \times 10^{-7}$	CL=90%	1400
$\eta'(958) U \rightarrow \eta'(958) e^+e^-$	[nnaa] < [nnaa] <				\times 10 \times 10 -7	CL=90% CL=90%	_
$\phi e^{+}e^{-}$		1.2			× 10 ⁻⁷	CL=90%	1381
1					-	•	

W	eak	de	cays
v v	car	uc	cavs

$D^-e^+ u_e^{}+{ m c.c.}$	< 7.1	$\times 10^{-8}$	CL=90%	984
$\overline{D}{}^0 e^+ e^- + \text{c.c.}$	< 8.5	$\times 10^{-8}$	CL=90%	987
$D_s^- e^+ \nu_e + \text{c.c.}$	< 1.3	$\times 10^{-6}$	CL=90%	923
$D_s^{*-}e^+\nu_e^{}+ { m c.c.}$	< 1.8	$\times 10^{-6}$	CL=90%	828
$D^{-}\pi^{+}$ + c.c.	< 7.5	$\times 10^{-5}$	CL=90%	977
$\overline{D}{}^{0}\overline{K}{}^{0}+$ c.c.	< 1.7	$\times 10^{-4}$	CL=90%	898
$\overline{D}{}^{0}\overline{K}{}^{*0}+$ c.c.	< 2.5	$\times 10^{-6}$	CL=90%	670
$D_s^- \pi^+ + \text{c.c.}$	< 1.3	$\times 10^{-4}$	CL=90%	915
$D_{s}^{-} \rho^{+} + \text{c.c.}$	< 1.3	$\times 10^{-5}$	CL=90%	663

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

$\gamma\gamma$	С	< 2.7	$\times 10^{-7}$	CL=90%	1548
$\gamma\phi$	C	< 1.4	$\times 10^{-6}$	CL=90%	1381
$e^{\pm}\mu^{\mp}$	LF	< 1.6	$\times 10^{-7}$	CL=90%	1547
$e^{\pm} au^{\mp}$	LF	< 7.5	× 10 ⁻⁸	CL=90%	1039
$\mu^{\pm} au^{\mp}$	LF	< 2.0	$\times 10^{-6}$	CL=90%	1035
$\Lambda_c^+ e^- + \text{c.c.}$		< 6.9	× 10 ⁻⁸	CL=90%	_

Other decays

invisible $< 7 \times 10^{-4} \text{ CL}=90\%$

$\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.71\pm0.30~{\rm MeV}$ Full width $\Gamma=10.8\pm0.6~{\rm MeV}$

$\chi_{c0}(1P)$ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Hadronic decays

Hadronic decays						
$2(\pi^{+}\pi^{-})$	$(2.34\pm0.18)~\%$	1679				
$ ho^{0}\pi^{+}\pi^{-}$	$(9.1 \pm 2.9) \times 10^{-3}$	1607				
$f_0(980) f_0(980)$	$(6.6 \pm 2.1) \times 10^{-4}$	1391				
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(3.3 \pm 0.4)\%$	1680				
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}$ + c.c. $4\pi^{0}$	(2.9 \pm 0.4) %	1607				
$4\pi^0$	$(3.3 \pm 0.4) \times 10^{-3}$	1681				
$\pi^+\pi^-$ K $^+$ K $^-$	$(1.81\pm0.14)~\%$	1580				
$K_0^*(1430)^0\overline{K}_0^*(1430)^0 o$	$(9.8 \ ^{+4.0}_{-2.8}) \times 10^{-4}$	_				
$\pi^+\pi^-$ K $^+$ K $^-$						
$K_0^*(1430)^0\overline{K}_2^*(1430)^0+ ext{ c.c.} ightarrow$	$(8.0 \begin{array}{c} +2.0 \\ -2.4 \end{array}) \times 10^{-4}$	_				
$\pi^+\pi^-K^+K^-$						
$K_1(1270)^+K^-+$ c.c. $ ightarrow$	$(6.3 \pm 1.9) \times 10^{-3}$	_				
$\pi^+\pi^-$ K $^+$ K $^-$						

HTTP://PDG.LBL.GOV

Page 144

$K_1(1400)^+K^-+$ c.c. $ ightarrow$ $\pi^+\pi^-K^+K^-$	< 2.7	× 10 ⁻³	CL=90%	-
$f_0(980) f_0(980)$	$(1.6 \begin{array}{c} +1 \\ -0 \end{array}$	$^{0.0}_{0.9}$) × 10 ⁻⁴		1391
$f_0(980) f_0(2200)$	$(7.9 \begin{array}{c} +2 \\ -2 \end{array})$	$\frac{1.0}{1.5}$) × 10 ⁻⁴		586
$f_0(1370) f_0(1370)$ $f_0(1370) f_0(1500)$	< 2.7 < 1.7	$\begin{array}{l} \times10^{-4} \\ \times10^{-4} \end{array}$	CL=90% CL=90%	1019 920
$f_0(1370) f_0(1710)$	$(6.7 \begin{array}{c} +3 \\ -2 \end{array})$	$(1.5) \times 10^{-4}$		740
$f_0(1500) f_0(1370)$ $f_0(1500) f_0(1500)$ $f_0(1500) f_0(1710)$ $K^+ K^- \pi^+ \pi^- \pi^0$ $K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$ $K^+ K^- \pi^0 \pi^0$ $K^+ \pi^- \overline{K}^0 \pi^0 + \text{c.c.}$ $\rho^+ K^- K^0 + \text{c.c.}$	(8.6 ± 0) (4.2 ± 0)	,	CL=90% CL=90% CL=90%	920 804 581 1545 1543 1582 1581 1458
$K^*(892)^- K^+ \pi^0 \to K^+ \pi^- \overline{K}^0 \pi^0 + \text{c.c.}$	(4.6 ± 1)	$2) \times 10^{-3}$		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$ $K^{+}K^{-}\eta\pi^{0}$ $3(\pi^{+}\pi^{-})$ $K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + c.c.$ $K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$ $\pi\pi$ $\pi^{0}\eta$ $\pi^{0}\eta'$ $\pi^{0}\eta'$ $\eta\eta'$ $\eta\eta'$ $\eta\eta'$ $\omega\omega$ $\omega\phi$ $\omega K^{+}K^{-}$ $K^{+}K^{-}$	(3.0 ± 0) (1.20 ± 0) (7.5 ± 1) (1.7 ± 0) (8.51 ± 0) < 1.8 < 1.1 < 1.6 (3.01 ± 0) (9.1 ± 1) (2.17 ± 0) (9.7 ± 1) (1.94 ± 0) (6.05 ± 0)	$\begin{array}{c} 0.6) \times 10^{-3} \\ 0.6) \times 10^{-3} \\ 0.6) \times 10^{-3} \\ 0.33) \times 10^{-3} \\ 0.33) \times 10^{-4} \\ 0.10^{-3} \\ 0.10^{-3} \\ 0.10^{-3} \\ 0.10^{-3} \\ 0.10^{-3} \\ 0.10^{-4} \\ 0.10^{-4} \\ 0.10^{-4} \\ 0.10^{-4} \\ 0.21) \times 10^{-3} \\ 0.31) \times 10^{-3} \\ 0.31) \times 10^{-3} \\ 0.31) \end{array}$	CL=90%	1579 1468 1633 1523 1456 1702 1661 1570 383 1617 1521 1413 1517 1447 1457 1634
$K_{S}^{0}K_{S}^{0}$ $\pi^{+}\pi^{-}\eta$ $\pi^{+}\pi^{-}\eta'$ $\overline{K}^{0}K^{+}\pi^{-} + \text{c.c.}$ $K^{+}K^{-}\pi^{0}$ $K^{+}K^{-}\eta$ $K^{+}K^{-}K_{S}^{0}K_{S}^{0}$ $K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$ $K^{+}K^{-}K^{+}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-$	< 2.0 < 4 < 9 < 6 < 2.3 (1.4 ±0 (5.8 ±0	$(0.17) \times 10^{-3}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-4}$ $(0.5) \times 10^{-3}$ $(0.5) \times 10^{-4}$ $(0.29) \times 10^{-3}$	CL=90% CL=90% CL=90% CL=90% CL=90%	1633 1651 1560 1610 1611 1512 1331 1327

$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-4}$		1381
$\overline{K}^0K^+\pi^-\phi$ + c.c.	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^{+}K^{-}\pi^{0}\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi \phi$	$(8.0 \pm 0.7) \times 10^{-4}$		1370
$\phi \phi \eta$	$(8.4 \pm 1.0) \times 10^{-4}$		1100
$p\overline{p}$	$(2.21\pm0.08)\times10^{-4}$	C 12	1426
$p\overline{p}\pi^0$	$(7.0 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$ $(5.2 \pm 0.6) \times 10^{-4}$		1187
$p\overline{p}\omega$	$(6.0 \pm 1.4) \times 10^{-5}$		1043
$ \begin{array}{l} \rho \overline{ ho} \phi \\ \rho \overline{ ho} \pi^+ \pi^- \end{array} $	$(0.0 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	876 1320
$p\overline{p}\pi^0\pi^0$	$(2.1 \pm 0.7) \times 10^{-3}$ $(1.04\pm 0.28) \times 10^{-3}$	3=1.4	1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.04\pm0.26)\times10^{-4}$ $(1.22\pm0.26)\times10^{-4}$		890
$p\overline{p}K^0_SK^0_S$	$(1.22\pm0.20)\times10$ < 8.8 $\times10^{-4}$	CL=90%	884
$p\overline{n}\pi^-$	$(1.27\pm0.11)\times10^{-3}$	CL=90/0	1376
$\overline{p}n\pi^+$	$(1.27 \pm 0.11) \times 10$ $(1.37 \pm 0.12) \times 10^{-3}$		1376
$p \overline{n} \pi^- \pi^0$	$(2.34\pm0.21)\times10^{-3}$		1321
$\frac{\overline{p}}{\overline{p}}n\pi^{+}\pi^{0}$	$(2.31\pm0.18) \times 10^{-3}$		1321
$\Lambda \overline{\Lambda}$	$(3.59\pm0.15)\times10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.33\pm0.13)\times10^{-3}$ $(1.18\pm0.13)\times10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$<5 \times 10^{-4}$	CL=90%	1153
$\Sigma(1385)^+\overline{\Lambda}\pi^-+\text{c.c.}$	$< 5 \times 10^{-4}$	CL=90%	1083
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.	< 5 × 10 ⁻⁴	CL=90%	1083
$K^{+} \overline{p} \Lambda + c.c.$	$(1.25\pm0.12)\times10^{-3}$	S=1.3	1132
$nK_S^{\dot{0}}\overline{\Lambda} + c.c.$	$(6.6 \pm 0.5) \times 10^{-4}$		1129
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	$(4.8 \pm 0.9) \times 10^{-4}$		845
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	$(2.9 \pm 0.7) \times 10^{-4}$		859
$\Lambda(1520)\overline{\Lambda}(1520)$ $\Sigma^{0}\overline{\Sigma}^{0}$	$(3.1 \pm 1.2) \times 10^{-4}$		780
$\sum_{i=0}^{\infty} \overline{\sum}_{i=0}^{\infty}$	$(4.68\pm0.32)\times10^{-4}$		1222
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(3.52\pm0.27)\times10^{-4}$		1089
$\Sigma^0 \overline{p} K^+ + ext{c.c.}$	$(3.03\pm0.20)\times10^{-4}$		1090
$\Sigma^{+} \overline{\Sigma}^{-}$	$(4.6 \pm 0.8) \times 10^{-4}$	S=2.6	1225
$\Sigma^{-}\overline{\Sigma}^{+}$	$(5.1 \pm 0.5) \times 10^{-4}$		1217
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$(1.6 \pm 0.6) \times 10^{-4}$		1001
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$	$(2.3 \pm 0.7) \times 10^{-4}$		1001
$K = \Lambda = \frac{1}{2} + \text{c.c.}$	$(1.94\pm0.35)\times10^{-4}$		873
<u>=</u> 0 <u>=</u> 0 =- <u>=</u> +	$(3.1 \pm 0.8) \times 10^{-4}$		1089
	$(4.8 \pm 0.7) \times 10^{-4}$		1081
$\eta_c \pi^+ \pi^-$	$< 7 \times 10^{-4}$	CL=90%	307
	Radiative decays		
- 1/-/(1C)	(1.40 0.05) 0/		202

$\gamma J/\psi(1S)$	$(1.40 \pm 0$.05) %		303
$\gamma \rho^{0}$	< 9	$\times 10^{-6}$	CL=90%	1619

$\gamma \omega$	< 8	\times 10 ⁻⁶	CL=90%	1618
$\gamma \phi$	< 6	\times 10 ⁻⁶	CL=90%	1555
$\gamma \gamma$	(2.04 ± 0.6)	$.09) \times 10^{-4}$		1707
$e^+e^-J/\psi(1S)$	(1.33 ± 0.00)	$(29) \times 10^{-4}$		303
$\mu^+\mu^ J/\psi(1S)$	< 1.9	$\times 10^{-5}$	CL=90%	226

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Scale factor/

Created: 8/11/2022 09:37

Mass $m=3510.67\pm0.05~{\rm MeV}~{\rm (S}=1.2)$ Full width $\Gamma=0.84\pm0.04~{\rm MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence leve	•
Hadro	onic decays		
$3(\pi^{+}\pi^{-})$	$(5.8 \pm 1.4) \times$	10^{-3} S=1.	2 1683
$2(\pi^{+}\pi^{-})$	(7.6 \pm 2.6) \times	$_{10}^{-3}$	1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.19\pm0.15)\%$		1729
$\rho^{+}_{z}\pi^{-}\pi^{0}$ + c.c.	$(1.45\pm0.24)\%$		1658
$ ho^0 \pi^+ \pi^-$	($3.9~\pm 3.5$) $ imes$	10 ⁻³	1657
$4\pi^{0}$	(5.4 \pm 0.8) \times		1729
$\pi^+\pi^-K^+K^-$	(4.5 ± 1.0) $ imes$		1632
$K^+K^-\pi^0\pi^0$	(1.12 ± 0.27) $ imes$	10^{-3}	1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.15\pm0.13)\%$	2	1598
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	(7.5 \pm 0.8) \times		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	(8.6 ± 1.4) $ imes$	10^{-3}	1632
$\rho^- K^+ \overline{K}{}^0 + \text{c.c.}$	(5.0 ± 1.2) $ imes$		1514
$K^*(892)^0\overline{K}^0\pi^0 \rightarrow$	(2.3 ± 0.6) \times	10 ⁻³	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	(1 10 0 24)	10-3	1500
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(1.12\pm0.34) \times$		1523
$K^+K^-\eta$	$(6.9 \pm 2.9) \times$		1630
$\frac{K+K-\eta}{K^0}K^+\pi^-$ + c.c.	$(3.2 \pm 1.0) \times$		1566
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(7.0 \pm 0.6) \times$		1661
$K^*(892)^+K^- + c.c.$	$(10$ ± 4 $) imes (1.4 \pm 0.6) imes$		1602 1602
$K_{I}^{*}(1430)^{0}\overline{K}^{0} + \text{c.c.} \rightarrow$		10 ⁻⁴ CL=90%	
3	\ 0	10 CL—907	O
$K_S^0 K^+ \pi^- + \text{c.c.}$		10-3	/
$K_{J}^{*}(1430)^{+}K^{-} + \text{c.c.} \rightarrow$	< 2.1 ×	10^{-3} CL=90%	· –
$K_{S}^{0}K^{+}\pi^{-}$ + c.c.		2	
$K^+K^-\pi^0$	$(1.81\pm0.24) \times$		1662
$\eta \pi^+ \pi^-$	(4.62±0.23) ×		1701
$a_0(980)^+\pi^- + \text{c.c.} \to \eta\pi^+\pi^-$	(3.2 ±0.4) ×		2 –
$a_2(1320)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$	(1.76±0.24) ×		_
$a_2(1700)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	(4.6 ± 0.7) \times	10-5	_

$f_2(1270)\eta \rightarrow \eta \pi^+ \pi^-$	(3.5 ± 0.6) $\times 10^{-4}$		_
$f_4(2050)\eta \to \eta \pi^+ \pi^-$	$(2.5 \pm 0.9) \times 10^{-5}$		_
$\pi_1(1400)^+\pi^- + \text{c.c.} \rightarrow$	$< 5 \times 10^{-5}$	CL=90%	_
$\eta \pi^{+} \pi^{-} \\ \pi_{1}(1600)^{+} \pi^{-} + \text{c.c.} \rightarrow $	$< 1.5 \times 10^{-5}$	CL=90%	-
$\eta\pi^+\pi^- \ \pi_1(2015)^+\pi^- + ext{c.c.} ightarrow \eta\pi^+\pi^-$	< 8 × 10 ⁻⁶	CL=90%	_
$f_2(1270)\eta$	$(6.7 \pm 1.1) \times 10^{-4}$		1467
$\pi^+\pi^-\eta'$	$(2.2 \pm 0.4) \times 10^{-3}$		1612
$K^{+}K^{-}\eta'(958)$	$(8.8 \pm 0.9) \times 10^{-4}$		1461
$K_0^*(1430)^+ K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		_
$f_0(980)\eta'(958)$	$(1.6 \begin{array}{c} +1.4 \\ -0.7 \end{array}) \times 10^{-4}$		1460
$f_0(1710)\eta'(958)$	$(7 ^{+7}_{-5}) \times 10^{-5}$		1118
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1229
$\pi^{0} f_{0}(980) \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$(3.5 \pm 0.9) \times 10^{-7}$		_
$K^{+} \frac{\overline{K}}{K^{*}} (892)^{0} \pi^{-} + \text{c.c.}$	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.4 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K^{0}_{S}K^{0}_{S}$	$<$ 4 \times 10 ⁻⁴	CL=90%	1390
$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	(3.5 ± 1.0) $\times 10^{-5}$		1387
$K^{+}K^{-}K^{+}K^{-}$	$(5.4 \pm 1.1) \times 10^{-4}$		1393
$K^+K^-\phi$	$(4.1 \pm 1.5) \times 10^{-4}$		1440
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$K^+K^-\pi^0\phi$	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^+ \pi^- \pi^0$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega\omega$	$(5.7 \pm 0.7) \times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	$(2.7 \pm 0.4) \times 10^{-5}$		1503
$\phi\phi$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
$\phi\phi\eta$	$(3.0 \pm 0.5) \times 10^{-4}$		1172
$p\overline{p}$	$(7.60\pm0.34)\times10^{-5}$		1484
$ ho \overline{ ho} \pi^0$	$(1.55\pm0.18)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.45\pm0.25)\times10^{-4}$		1254
$p\overline{\underline{p}}\omega$	$(2.12\pm0.31)\times10^{-4}$	-	1117
$ \rho \overline{\rho} \phi $	$< 1.7 \times 10^{-5}$	CL=90%	962
$ \rho \overline{\rho} \pi^+ \pi^- $	$(5.0 \pm 1.9) \times 10^{-4}$	GL 000/	1381
$p\overline{p}\pi^0\pi^0$	$< 5 \times 10^{-4}$	CL=90%	1385
$p\overline{p}K^+K^-$ (non-resonant)	$(1.27\pm0.22)\times10^{-4}$	CL 000/	974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
p π π - = n - +	$(3.8 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$\rho \overline{n} \pi^- \pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383

$\overline{p} n \pi^+ \pi^0$	$(1.01\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.27\pm0.08)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(2.9 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\Lambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^{+}\overline{p}\Lambda$ +c.c.	$(4.2 \pm 0.4) \times 10^{-4}$	S=1.2	1203
$nK_S^0\overline{\Lambda} + \text{c.c.}$	$(1.66\pm0.17)\times10^{-4}$		1200
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	$(4.9 \pm 0.7) \times 10^{-4}$		935
$K^+\overline{p}\Lambda(1520)+$ c.c.	$(1.7 \pm 0.4) \times 10^{-4}$		951
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 9 \times 10^{-5}$	CL=90%	880
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}}$	$(4.2 \pm 0.6) \times 10^{-5}$		1288
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(1.53\pm0.12)\times10^{-4}$		1163
$\Sigma^0 \overline{ ho} K^{+} + \text{c.c.}$	$(1.46\pm0.10)\times10^{-4}$		1163
$\Sigma^{+}\overline{\Sigma}^{-}$	$(3.6 \pm 0.7) \times 10^{-5}$		1291
$\Sigma - \overline{\Sigma} +$	$(5.7 \pm 1.5) \times 10^{-5}$		1283
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 9 \times 10^{-5}$	CL=90%	1081
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.35\pm0.24)\times10^{-4}$		963
$\underline{\underline{=}}^0 \underline{\underline{\underline{=}}}^0$	$< 6 \times 10^{-5}$	CL=90%	1163
<u>=-</u> =+	$(8.0 \pm 2.1) \times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_
$K_S^0 K_S^0$	$< 6 \times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	$< 3.2 \times 10^{-3}$	CL=90%	413
	Radiative decays		
$\gamma J/\psi(1S)$	(34.3 ±1.0) %		389
$\gamma \rho^0$	$(2.16\pm0.17)\times10^{-4}$		1670
$\gamma\omega$	$(6.8 \pm 0.8) \times 10^{-5}$		1668
$\gamma \omega = \gamma \phi$	$(2.4 \pm 0.5) \times 10^{-5}$		1607
$\gamma \gamma$	$< 6.3 \times 10^{-6}$	CL=90%	1755
$e^{+}e^{-}J/\psi(1S)$	$(3.46\pm0.22)\times10^{-3}$	00/0	389
$\mu^{+}\mu^{-}J/\psi(1S)$	$(2.33\pm0.29)\times10^{-4}$		335
r - r / 7 (/	(======================================		

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m = 3525.38 \pm 0.11 \text{ MeV}$ Full width $\Gamma=0.7\pm0.4~\text{MeV}$

h _C (1P) DECAY MODES	Fraction (Γ	_i /Γ) (Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi \ J/\psi(1S)\pi^+\pi^- \ p\overline{p}$	not seer < 2.3 < 1.5	× 10 ⁻³ × 10 ⁻⁴		312 305 1492

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 149

Created: 8/11/2022 09:37

. _+	(0 0 1 0	(6) 10-3		1000
$p\overline{p}\pi^+\pi^-$		$(0.6) \times 10^{-3}$		1390
$p\overline{p}\pi^0\pi^0$	< 5	\times 10 ⁻⁴	90%	1394
$\pi^{+}\pi^{-}\pi^{0}$	$(1.6\pm0$	$(0.5) \times 10^{-3}$		1749
$\pi^+\pi^-\pi^0\eta_{\perp}$	(7.2±2	$(.3) \times 10^{-3}$		1695
$2\pi^{+}2\pi^{-}\pi^{0}$	(8.1±1	$8) \times 10^{-3}$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 9	$\times 10^{-3}$	90%	1661
$K^+K^-\pi^+\pi^-$	< 6	\times 10 ⁻⁴	90%	1640
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.2±0	$(0.8) \times 10^{-3}$		1606
$K^+K^-\pi^+\pi^-\eta$	< 2.3	$\times 10^{-3}$	90%	1480
$\mathcal{K}^+\mathcal{K}^-\pi^0$	< 6	\times 10 ⁻⁴	90%	1670
$\mathit{K^{+}K^{-}\pi^{0}\eta}$	< 2.1	$\times 10^{-3}$	90%	1532
$K^+K^-\eta$	< 9	$\times 10^{-4}$	90%	1574
$2K^{+}2K^{-}\pi^{0}$	< 2.4	$\times 10^{-4}$	90%	1339
$K_S^0 K^{\pm} \pi^{\mp}$	< 6	\times 10 ⁻⁴	90%	1668
$K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$	(2.8±1	$1.0) \times 10^{-3}$		1604
Ra	adiative decays	5		
$\gamma\eta$	(4.7 ± 2)	$(0.1) \times 10^{-4}$		1720
$\gamma \eta'(958)$		$(0.4) \times 10^{-3}$		1633
$\gamma \eta_c(1S)$	(50 ±9			500

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.17\pm0.07~{\rm MeV}$ Full width $\Gamma=1.97\pm0.09~{\rm MeV}$

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	$(1.02\pm0.09)\%$		1751
$\pi^+\pi^-\pi^0\pi^0$	$(1.83\pm0.23)\%$		1752
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	$(2.19\pm0.34)\%$		1682
$4\pi^0$	$(1.11\pm0.15)\times1$	10	1752
$\mathcal{K}^+\mathcal{K}^-\pi^0\pi^0$	$(2.1 \pm 0.4) \times 1$	10	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	$(1.38\pm0.20)\%$		1657
$ ho^-$ K $^+$ $\overline{ m K}{}^0$ $+$ c.c.	$(4.1 \pm 1.2) \times 1$	10	1540
K^* (892) 0 $K^ \pi^+$ $ ightarrow$	$(2.9 \pm 0.8) \times 1$	10	_
$K^{-}\pi^{+}K^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{0}\overline{K^{0}}\pi^{0} \rightarrow K^{+}\pi^{-}\overline{K^{0}}\pi^{0} + \text{c.c.}$	(3.8 \pm 0.9) \times 3	10-3	_
$K^*(892)^- K^+ \pi^0 \to$	(3.7 ± 0.8) \times 3	10 ⁻³	_
$K^+\pi^-\overline{K}^0\pi^0+ ext{ c.c.} \ K^*(892)^+\overline{K}^0\pi^- o \ K^+\pi^-\overline{K}^0\pi^0+ ext{ c.c.}$	(2.9 ± 0.8) \times 3	10 ⁻³	-

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 150

	_		
$K^+K^-\eta\pi^0$	$(1.3 \pm 0.4) \times 10^{-3}$		1549
$K^{+}K^{-}\pi^{+}\pi^{-}$	$(8.4 \pm 0.9) \times 10^{-3}$		1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.17\pm0.13)\%$		1623
$K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.3 \pm 0.8) \times 10^{-3}$		1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+$ c.c.	$(2.1 \pm 1.1) \times 10^{-3}$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	$(2.3 \pm 0.4) \times 10^{-3}$		1538
$3(\pi^{+}\pi^{-})$	$(8.6 \pm 1.8) \times 10^{-3}$		1707
$\phi \phi$	$(1.06\pm0.09)\times10^{-3}$		1457
$\phi\phi\eta$	$(5.3 \pm 0.6) \times 10^{-4}$		1206
$\omega\omega$	$(8.4 \pm 1.0) \times 10^{-4}$		1597
$\omega K^+ K^-$	$(7.3 \pm 0.9) \times 10^{-4}$		1540
$\omega\phi$	$(9.6 \pm 2.7) \times 10^{-6}$		1529
$\pi\pi$	$(2.23\pm0.09)\times10^{-3}$		1773
$ ho^0 \pi^+ \pi^-$	$(3.7 \pm 1.6) \times 10^{-3}$		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	$(2.0 \pm 0.4) \times 10^{-5}$		1765
$\rho(770)^{\pm}\pi^{\mp}$	$(6 \pm 4) \times 10^{-6}$		_
$\pi^+\pi^-\eta$	$(4.8 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.0 \pm 1.8) \times 10^{-4}$		1636
$\eta\eta$	$(5.4 \pm 0.4) \times 10^{-4}$		1692
K+ K-	$(1.01\pm0.06)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.2 \pm 0.4) \times 10^{-4}$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.44\pm0.21)\times10^{-4}$		1627
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.27)\times10^{-4}$		1627
$K_2^*(1430)^{\pm}K^{\mp}$	$(1.48\pm0.12)\times10^{-3}$		_
$K_2^*(1430)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.17)\times10^{-3}$		1443
$K_3^*(1780)^{\pm} K^{\mp}$	$(5.2 \pm 0.8) \times 10^{-4}$		1445
$K_3^*(1780)^0 \overline{K}^0 + \text{c.c.}$			1074
	$(5.6 \pm 2.1) \times 10^{-4}$		1274
$a_2(1320)^0\pi^0$	$(1.29\pm0.34)\times10^{-3}$		_
$a_2(1320)^{\pm}\pi^{\mp}$	$(1.8 \pm 0.6) \times 10^{-3}$		1530
$\overline{K}^{0}K^{+}\pi^{-}$ + c.c.	$(1.28\pm0.18)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.0 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.2 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$(2.2 \pm 0.5) \times 10^{-5}$		1600
$\eta'\eta'$	$(4.6 \pm 0.6) \times 10^{-5}$		1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.2 \pm 0.5) \times 10^{-3}$		1655
$K^{+}K^{-}K^{0}_{S}K^{0}_{S}$	$< 4 \times 10^{-4}$	90%	1418
$K_S^0 K_S^0 K_S^0 K_S^0$	$(1.13\pm0.18)\times10^{-4}$		1415
$K^+K^-K^+K^-$	$(1.65\pm0.20)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.42\pm0.29)\times10^{-3}$		1468
$\overline{K}^0K^+\pi^-\phi+\text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
	· · · · · · · · · · · · · · · · · · ·		

$p\overline{p}$	$(7.33\pm0.33)\times10^{-5}$		1510
$p\overline{p}\pi^0$	$(4.7 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.74\pm0.25)\times10^{-4}$		1285
$p \overline{p} \omega$	$(3.6 \pm 0.4) \times 10^{-4}$		1152
$p\overline{p}\phi$	$(2.8 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p\overline{p}\pi^0\pi^0$	$(7.8 \pm 2.3) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(1.91\pm0.32)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	90%	1007
$p\overline{n}\pi^{-}$	(8.5 ± 0.9) $ imes 10^{-4}$		1463
$\overline{p}n\pi^+$	$(8.9 \pm 0.8) \times 10^{-4}$		1463
$p\overline{n}\pi^-\pi^0$	$(2.17\pm0.18)\times10^{-3}$		1411
$\overline{p}n\pi^+\pi^0$	$(2.11\pm0.18)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(1.83\pm0.16)\times10^{-4}$		1384
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.25\pm0.15)\times10^{-3}$		1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.6 \pm 1.5) \times 10^{-4}$		1255
$\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}+\text{c.c.}$	< 4 × 10 ⁻⁴	90%	1192
Σ (1385) $^-\overline{\Lambda}\pi^++$ c.c.	$< 6 \times 10^{-4}$	90%	1192
$K^{+}\overline{p}\Lambda + c.c.$	$(7.8 \pm 0.5) \times 10^{-4}$		1236
$nK_{S}^{0}\overline{\Lambda}$ + c.c.	$(3.58\pm0.28)\times10^{-4}$		1233
$K^*(892)^{+} \overline{p} \Lambda + \text{c.c.}$	$(8.2 \pm 1.1) \times 10^{-4}$		976
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	$(2.8 \pm 0.7) \times 10^{-4}$		992
$\Lambda(1520)\overline{\Lambda}(1520)$	$(4.6 \pm 1.5) \times 10^{-4}$		924
$\sum_{i=0}^{n} \overline{\sum}_{i=0}^{n}$	$(3.7 \pm 0.6) \times 10^{-5}$		1319
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(8.2 \pm 0.9) \times 10^{-5}$		1197
$\Sigma^0 \overline{n} K^+ + c c$	$(9.1 \pm 0.8) \times 10^{-5}$		1197
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$ $\Sigma^+ \overline{\Sigma}^-$	$(3.4 \pm 0.7) \times 10^{-5}$		1322
$\frac{}{\Sigma} - \frac{}{\Sigma} +$	$(4.4 \pm 1.8) \times 10^{-5}$		1314
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 1.6 \times 10^{-4}$	90%	1118
$\Sigma(1385)^{-}\frac{\Sigma(1385)^{+}}{\Sigma(1385)^{+}}$	$< 8 \times 10^{-5}$	90%	1118
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.76\pm0.32)\times10^{-4}$	30,0	1004
=0 = 0	$< 1.0 \times 10^{-4}$	90%	1197
=0 <u>=</u> 0 =- <u>=</u> +	$(1.42\pm0.32)\times10^{-4}$	3070	1189
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5 %	90%	185
$\pi^0 \eta_c$	$< 3.2 \times 10^{-3}$	90%	511
$\eta_c(1S)\pi^+\pi^-$	$< 5.4 \times 10^{-3}$	90%	459
76(-)			
1///16)	Radiative decays		
$\gamma J/\psi(1S)$	(19.0 ± 0.5) %		430
$\gamma \rho^{0}$	$< 1.9 \times 10^{-5}$	90%	1694
$\gamma \omega$	$< 6 \times 10^{-6}$	90%	1692
$\gamma \phi$	$< 7 \times 10^{-6}$	90%	1632
$\gamma \gamma$	$(2.85\pm0.10)\times10^{-4}$		1778

$$e^+e^-J/\psi(1S)$$
 (2.15 ± 0.14) \times 10^{-3} 430 $\mu^+\mu^-J/\psi(1S)$ (2.02 ± 0.33) \times 10^{-4} 381

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.5\pm1.1~{\rm MeV}~{\rm (S=1.2)}$$
 Full width $\Gamma=11.3^{+3.2}_{-2.9}~{\rm MeV}$

$\eta_{c}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)			
hadrons	not seen					
$K\overline{K}\pi$	$(1.9\pm1.2)\%$					
$K\overline{K}\eta$	(5 \pm 4) \times	10^{-3}	1637			
$2\pi^{+}2\pi^{-}$	not seen		1792			
$ ho^0 ho^0$	not seen		1645			
$3\pi^{+}3\pi^{-}$	not seen		1749			
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen					
$K^{*0}\overline{K}^{*0}$	not seen	1585				
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0)\%$					
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen					
$K_S^0 K^- 2\pi^+\pi^- + \text{c.c.}$	seen					
$2K^{+}2K^{-}$	not seen		1470			
$\phi\phi$	not seen		1506			
$p\overline{p}$	seen		1558			
$ ho \overline{ ho} \pi^+ \pi^-$	seen		1461			
$\gamma\gamma$	(1.9 ± 1.3) $ imes$	10^{-4}	1819			
$\gamma J/\psi(1S)$	< 1.4 %	90%	500			
$\pi^+\pi^-\eta$	not seen		1766			
$\pi^+\pi^-\eta'$	not seen		1680			
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	537			

$\psi(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.10\pm0.06$ MeV (S = 5.9) Full width $\Gamma=294\pm8$ keV

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons	(97.85 ±0.13)%	6	_
virtual $\gamma ightarrow $ hadrons	(1.73 ± 0.14) $\%$	% S=1.5	_
ggg	(10.6 \pm 1.6) %	o de la companya de l	_
γ g g	(1.03 ± 0.29) $\%$	o de la composição de l	_

HTTP://PDG.LBL.GOV

Page 153

light hadrons	(15.4 ± 1.5) %	_
K^0_S anything	$\begin{pmatrix} 16.0 & \pm 1.1 & \end{pmatrix} \%$	_
e^+e^-	$(7.93 \pm 0.17) \times 10^{-3}$	1843
$\mu^+\mu^{ au^+ au^-}$	$(8.0 \pm 0.6) \times 10^{-3}$	1840
$ au^+ au^-$	$(3.1 \pm 0.4) \times 10^{-3}$	489

Decays into $J/\psi(1S)$ and anything

$J/\psi(1S)$ anything	(61.4 \pm 0.6) %	_
$J/\psi(1S)$ neutrals	(25.38 ± 0.32) %	_
$J/\psi(1S)\pi^+\pi^-$	(34.68 ± 0.30) %	477
$J/\psi(1S)\pi^0\pi^0$	(18.24 ± 0.31)%	481
$J/\psi(1S)\eta$	(3.37 ± 0.05) %	199
$J/\psi(1S)\pi^0$	$(1.268\pm0.032)\times10^{-3}$	528

Hadronic decays

Hadronic decays						
$\pi^+\pi^-$	(7.8	± 2.6	$) \times 10^{-6}$		1838	
$\pi^+\pi^-\pi^0$			$) \times 10^{-4}$	S=1.7	1830	
$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(3.2	±1.2	$) \times 10^{-5}$	S=1.8	_	
$\rho(2150)\pi\to~\pi^+\pi^-\pi^0$	(1.9	$^{+1.2}_{-0.4}$	$) \times 10^{-4}$		_	
$2(\pi^{+}\pi^{-})$	(2.4	± 0.6	$) \times 10^{-4}$	S=2.2	1817	
$ ho^0 \pi^+ \pi^-$	(2.2		$) \times 10^{-4}$	S=1.4	1750	
$2(\pi^+\pi^-)\pi^0$	(2.9		$) \times 10^{-3}$	S=4.7	1799	
$\rho a_2(1320)$	(2.6	± 0.9	$) \times 10^{-4}$		1500	
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	(5.3		$) \times 10^{-3}$		1800	
$\pi^{+}\pi^{-}4\pi^{0}$	(1.4	± 1.0	$) \times 10^{-3}$		1778	
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	< 2.7			CL=90%	1737	
$3(\pi^{+}\pi^{-})$	(3.5		$) \times 10^{-4}$	S=2.8	1774	
$2(\pi^{+}\pi^{-}\pi^{0})$	(4.8	±1.5	$) \times 10^{-3}$		1776	
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5	± 1.6	$) \times 10^{-3}$		1746	
$2(\pi^{+}\pi^{-})3\pi^{0}$	(1.42	±0.31	,		1748	
$\eta \pi^+ \pi^-$	< 1.6			CL=90%	1791	
$\eta \pi^+ \pi^- \pi^0$			$) \times 10^{-4}$		1778	
$\eta 2(\pi^{+}\pi^{-})$	(1.2	± 0.6	$) \times 10^{-3}$		1758	
$\eta \pi^+ \pi^- \pi^0 \pi^0$	< 4			CL=90%	1760	
$\eta \pi^{+} \pi^{-} 3\pi^{0}$	< 2.1			CL=90%	1736	
$\eta^{2}(\pi^{+}\pi^{-}\pi^{0})$	< 2.1			CL=90%	1705	
$\rho\eta$			$) \times 10^{-5}$	S=1.1	1717	
$\eta'\pi^+\pi^-\pi^0$	(4.5		$) \times 10^{-4}$		1692	
$\eta' ho$	(1.9	$^{+1.7}_{-1.2}$	$) \times 10^{-5}$		1625	
$\omega \pi^0$	(2.1		$) \times 10^{-5}$		1757	
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748	
$\omega \pi^+ \pi^- 2\pi^0$	(8.7		$) \times 10^{-3}$		1715	
$b_1^\pm \pi^\mp$	(4.0		$) \times 10^{-4}$	S=1.1	1635	
$\omega f_2(1270)$	(2.2	± 0.4) × 10 ⁻⁴		1515	

HTTP://PDG.LBL.GOV Page 154

2 2		
$\omega \pi^0 \pi^0$	$(1.11 \pm 0.35) \times 10^{-3}$	1749
ω 3 π^0	$< 8 \times 10^{-4} \text{ CL} = 90\%$	1736
$b_1^0\pi^0$	$(2.4 \pm 0.6) \times 10^{-4}$	_
$\omega\eta$	$< 1.1 \times 10^{-5} \text{ CL}=90\%$	1715
$\omega \eta'$	$(3.2 \begin{array}{cc} +2.5 \\ -2.1 \end{array}) \times 10^{-5}$	1623
$\phi \pi^0$	$< 4 \times 10^{-7} \text{ CL}=90\%$	1699
$\phi \pi^+ \pi^-$	$(1.18 \pm 0.26) \times 10^{-4}$ S=1.5	1690
$\phi f_0(980) \to \pi^+ \pi^-$	$(7.5 \pm 3.3) \times 10^{-5}$ S=1.6	_
	· _	1654
$\phi\eta$	$(3.10 \pm 0.31) \times 10^{-5}$	1654
$\eta \phi(2170), \;\; \phi(2170) ightarrow \ \phi f_0(980), \;\; f_0 ightarrow \;\; \pi^+ \pi^-$	$< 2.2 \times 10^{-6} \text{ CL}=90\%$	_
	(154 + 0.00) 10-5	1555
$\phi \eta'$	$(1.54 \pm 0.20) \times 10^{-5}$	1555
$\phi f_1(1285)$	$(3.0 \pm 1.3) \times 10^{-5}$	1436
$\phi \eta(1405) \rightarrow \phi \pi^+ \pi^- \eta$	$(8.5 \pm 1.7) \times 10^{-6}$	_
$\phi f_2'(1525)$	$(4.4 \pm 1.6) \times 10^{-5}$	1325
$K^{+}K^{-}$	$(7.5 \pm 0.5) \times 10^{-5}$	1776
$K^+K^-\pi^+$	$(7.3 \pm 0.5) \times 10^{-4}$	1754
$K^+K^-\pi^0$	$(4.07 \pm 0.31) \times 10^{-5}$	1754
$K_S^0 K_S^0$	$< 4.6 \times 10^{-6}$	1775
$\kappa_{S}\kappa_{S}$		
$K_S^{0}K_L^{0}$ $K_S^{0}K_L^{0}\pi^{0}$	$(5.34 \pm 0.33) \times 10^{-5}$	1775
	$< 3.0 \times 10^{-4} \text{ CL} = 90\%$	1753
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(2.6 \pm 1.3) \times 10^{-4}$	1728
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.26 \pm 0.09) \times 10^{-3}$	1694
$\omega f_0(1710) \rightarrow \omega K^+ K^-$	$(5.9 \pm 2.2) \times 10^{-5}$	_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	$(8.6 \pm 2.2) \times 10^{-4}$	_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{c.c.}$	$(9.6 \pm 2.8) \times 10^{-4}$	_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	$(7.3 \pm 2.6) \times 10^{-4}$	_
$K^*(892)^0 K^- \rho^+ + \text{c.c.}$	$(6.1 \pm 1.8) \times 10^{-4}$	_
	$(2.2 \pm 0.4) \times 10^{-4}$	1724
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$		
$K_{S}^{0}K_{L}^{0}\pi^{0}\pi^{0}$ $K_{S}^{0}K_{L}^{0}\eta$	$(1.3 \pm 0.6) \times 10^{-3}$	1726
$K_S^0 K_L^0 \eta$	$(1.3 \pm 0.5) \times 10^{-3}$	1661
$K^+K^- ho^0$	$(2.2 \pm 0.4) \times 10^{-4}$	1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	$(1.9 \pm 0.5) \times 10^{-4}$	1417
$K^+K^-\pi^+\pi^-\eta$	$(1.3 \pm 0.7) \times 10^{-3}$	1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(1.9 \pm 0.9) \times 10^{-3}$	1654
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	$(1.00 \pm 0.31) \times 10^{-3}$	1611
$K^+K^*(892)^- + \text{c.c.}$	$(2.9 \pm 0.4) \times 10^{-5}$ S=1.2	1698
$2(K^+K^-)$	$(6.3 \pm 1.3) \times 10^{-5}$	1499
$2(K^+K^-)\pi^0$	$(1.10 \pm 0.28) \times 10^{-4}$	1440
$K^+K^-\phi$		
$K_1(1270)^{\pm} K^{\mp}$	$(7.0 \pm 1.6) \times 10^{-5}$	1546
	$(1.00 \pm 0.28) \times 10^{-3}$	1588
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-4}$	1674
$\eta {\sf K}^+ {\sf K}^-$, no $\eta \phi$	$(3.49 \pm 0.17) \times 10^{-5}$	1664

$X(1750)\eta ightarrow K^+K^-\eta$	$(4.8 \pm 2.8) \times 10^{-6}$	_
$K_1(1400)^\pmK^\mp$	$< 3.1 \times 10^{-4} \text{ CL}=90\%$	1532
$K_2^*(1430)^\pmK^\mp$	$(7.1 \begin{array}{cc} +1.3 \\ -0.9 \end{array}) \times 10^{-5}$	_
$K^*(892)^0 \overline{K}{}^0 + \text{c.c.}$	$(1.09 \pm 0.20) \times 10^{-4}$	1697
$\omega K^+ K^-$	(1.62 ± 0.11) $\times 10^{-4}$ S=1.1	1614
$\omega K_S^0 K_S^0$	$(7.0 \pm 0.5) \times 10^{-5}$	1612
$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-4}$	1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	$(6.1 \pm 1.2) \times 10^{-5}$	1252
$\omega \overline{K}^*(892)^0 K^0$	$(1.68 \pm 0.30) \times 10^{-4}$	1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	$(5.8 \pm 2.2) \times 10^{-5}$	1250
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$ c.c.	$(1.6 \pm 0.4) \times 10^{-5}$	_
$\omega X(1440) \rightarrow \omega K^+ K^- \pi^0$	(1.09 ± 0.26) $ imes 10^{-5}$	_
$\omega f_1(1285) \to \omega K_S^0 K^- \pi^+ +$	$(3.0 \pm 1.0) \times 10^{-6}$	_
$\omega f_1^{\text{c.c.}} \rightarrow \omega K^+ K^- \pi^0$	$(1.2 \pm 0.7) \times 10^{-6}$	_
$p\overline{p}$	$(2.94 \pm 0.08) \times 10^{-4}$	1586
n n	$(3.06 \pm 0.15) \times 10^{-4}$	1586
$p\overline{p}\pi^0$	$(1.53 \pm 0.07) \times 10^{-4}$	1543
$N(940)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(6.4 \begin{array}{c} +1.8 \\ -1.3 \end{array}) \times 10^{-5}$	_
$N(1440)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(7.3 \begin{array}{cc} +1.7 \\ -1.5 \end{array}) \times 10^{-5} \text{S=}2.5$	_
$N(1520)\overline{p}+ \text{c.c.} \rightarrow p\overline{p}\pi^0$	$(6.4 \begin{array}{cc} +2.3 \\ -1.8 \end{array}) \times 10^{-6}$	_
$N(1535)\overline{p}+ { m c.c.} ightarrow \ p\overline{p}\pi^0$	$(2.5 \pm 1.0) \times 10^{-5}$	_
$N(1650)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(3.8 \begin{array}{c} +1.4 \\ -1.7 \end{array}) \times 10^{-5}$	_
$N(1720)\overline{p}+ { m c.c.} ightarrow p\overline{p}\pi^0$	($1.79 \ ^{+0.26}_{-0.70}$) $\times 10^{-5}$	_
$N(2300)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(2.6 \begin{array}{c} +1.2 \\ -0.7 \end{array}) \times 10^{-5}$	_
$N(2570)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(2.13 \ ^{+0.40}_{-0.31}) \times 10^{-5}$	_
$ ho \overline{ ho} \pi^+ \pi^-$	$(6.0 \pm 0.4) \times 10^{-4}$	1491
$p\overline{p}K^+K^-$	$(2.7 \pm 0.7) \times 10^{-5}$	1118
$p\overline{p}\eta$	$(6.0 \pm 0.4) \times 10^{-5}$	1373
$N(1535)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\eta$	$(\begin{array}{cc} 4.5 & ^{+0.7}_{-0.6} \end{array}) \times 10^{-5}$	_
$p\overline{p}\pi^+\pi^-\pi^0$	$(7.3 \pm 0.7) \times 10^{-4}$	1435
$p\overline{p}\rho^0$	$(5.0 \pm 2.2) \times 10^{-5}$	1252
$p\overline{p}\omega$	$(6.9 \pm 2.1) \times 10^{-5}$	1247
$P\overline{P}\eta'$	$(1.10 \pm 0.13) \times 10^{-5}$	1141
$p\overline{p}\phi$	$(6.1 \pm 0.6) \times 10^{-6}$ < 1.82 $\times 10^{-7}$ CL=90%	1109
$\phi X(1835) o p \overline{p} \phi$ $p \overline{n} \pi^-$ or c.c.	$< 1.82 \times 10^{-7} \text{ CL} = 90\%$ $(2.48 \pm 0.17) \times 10^{-4}$	_
$p\overline{n}\pi^-\pi^0$	$(3.2 \pm 0.7) \times 10^{-4}$	1492
	(,	- · • •

$\Lambda \overline{\Lambda}$		(3.81	± 0.13) ×	10^{-4}	S=1.4	1467
$\Lambda \overline{\Lambda} \pi^0$		<	2.9		×	10^{-6}	CL=90%	1412
$\Lambda \overline{\Lambda} \eta$		(2.5	± 0.4) ×	10^{-5}		1197
$\Lambda \overline{\Lambda} \pi^+ \pi^-$		(2.8	± 0.6	$)$ \times	10^{-4}		1346
$\Lambda \overline{p} K^+$		(1.00	±0.14	$)$ \times	10^{-4}		1327
$\Lambda \overline{p} K^*(892)^+ + \text{c.c.}$		(6.3	±0.7	$)$ \times	10^{-5}		1087
$\Lambda \overline{p} K^+ \pi^+ \pi^-$		(1.8	± 0.4	$) \times$	10^{-4}		1167
$\overline{\Lambda}nK_S^0$ + c.c.		(8.1	± 1.8	$) \times$	10^{-5}		1324
$\Delta^{++}\overline{\Delta}^{}$		(1.28	±0.35) ×	10^{-4}		1371
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$		(1.40	±0.13) ×	10^{-4}		1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$		(1.54	±0.14) ×	10^{-4}		1379
$\Lambda \overline{\Sigma}{}^0 + \text{c.c.}$		(1.6	±0.7) ×	10^{-6}		1437
$\Sigma^0 \overline{p} K^+ + ext{c.c.}$		(1.67	± 0.18) ×	10^{-5}		1291
$\Sigma^{+}\overline{\Sigma}^{-}$		(2.43	±0.10) ×	10^{-4}	S=1.4	1408
$\Sigma^0 \overline{\Sigma}{}^0$		(2.35	±0.09) ×	10^{-4}	S=1.1	1405
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$		(8.5	±0.7	$)$ \times	10^{-5}		1218
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$		(8.5	± 0.8) ×	10^{-5}		1218
$\Sigma(1385)^0 \Sigma(1385)^0$		(6.9	±0.7	$) \times$	10^{-5}		1218
<u>=- =</u> + <u>=0 =</u> 0		(2.87	±0.11	$)$ \times	10^{-4}	S=1.1	1284
		(2.3	± 0.4	$) \times$	10^{-4}	S=4.2	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$		•	6.8	±0.4	,			1025
$\Lambda \stackrel{=}{=} + K^{-} + c.c.$		(3.9	±0.4	$) \times$	10^{-5}		1114
$\Xi(1530)^{-}\overline{\Xi}(1530)^{+}$				±0.07				1025
$\Xi(1530)^{-}\overline{\Xi}^{+}$				± 1.2				1165
$\Xi(1530)^0 \overline{\Xi}{}^0$		(5.3	±0.5				1169
$\Xi(1690)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$		(5.2	± 1.6) ×	10^{-6}		_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$		(1.20	±0.32) ×	10-5		_
$\Sigma^0 = \overset{\text{c.c.}}{\Xi^+} K^- + \text{c.c.}$						_		
				± 0.4				1060
$\Omega^{-}\overline{\Omega}^{+}$				± 0.30			S=1.3	774
$\eta_c \pi^+ \pi^- \pi^0$			1.0				CL=90%	512
$h_c(1P)\pi^0$				± 1.3				85
$\Lambda_c^+ \overline{p} e^+ e^- + \text{c.c.}$			1.7				CL=90%	830
	[iiaa]	<	8.8		×	10^{-6}	CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$								
	[iiaa]	<	1.0		×	10^{-5}	CL=90%	_
$\Theta(1540)K_S^0\overline{p} \to K_S^0\overline{p}K^+n$	[iiaa]	<	7.0		×	10^{-6}	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	[iiaa]	<	2.6		×	10^{-5}	CL=90%	_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^{0} p K^{-} \overline{n}$	[iiaa]	<	6.0		×	10^{-6}	CL=90%	_
	adiati	ve	deca	vs				
$\gamma \chi_{c0}(1P)$	_ u u l			±0.20) %			261
$(X_{c0})^{\perp I}$		(9.13) /0	1		474

$\gamma \chi_{c0}(1P)$	(9.79 \pm 0.20)%	261
$\gamma \chi_{c1}(1P)$	(9.75 \pm 0.24)%	171

$\gamma \chi_{c2}(1P)$		(9.52	±0.20) %		128
$\gamma \eta_c(1S)$		(3.4	±0.5	$) \times 10^{-3}$	S=1.3	635
$\gamma \eta_c(2S)$		(7	± 5	$) \times 10^{-4}$		48
$\gamma \pi^0$		(1.04	±0.22	$) \times 10^{-6}$	S=1.4	1841
$\gamma 2(\pi^+\pi^-)$		(4.0	± 0.6	$) \times 10^{-4}$		1817
$\gamma 3(\pi^+\pi^-)$			1.7		$\times 10^{-4}$	CL=90%	1774
$\gamma \eta'(958)$		(1.24	± 0.04	$) \times 10^{-4}$		1719
$\gamma f_2(1270)$		(2.73	$+0.29 \\ -0.25$	$) \times 10^{-4}$	S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$		(3.1	±1.7	$) \times 10^{-5}$		1588
$\gamma f_0(1500)$		(9.3	± 1.9	$) \times 10^{-5}$		1535
$\gamma f_2'(1525)$		($) \times 10^{-5}$		1531
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$		(3.5		$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$		(6.6		$) \times 10^{-5}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$		(4.8		$) \times 10^{-6}$		1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$		(3.2	± 1.0	$) \times 10^{-6}$		1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$			5.8			CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K K$			9.5			CL=90%	1168
$\gamma\eta$		•			$) \times 10^{-7}$		1802
$\gamma \eta \pi^+ \pi^-$		`	8.7	± 2.1) × 10 ⁻⁴		1791
$\gamma \eta (1405) \rightarrow \gamma K K \pi$		<				CL=90%	1569
$\gamma \eta(1405) \rightarrow \gamma \eta \pi^+ \pi^-$		`		±2.5	$) \times 10^{-5}$	CI 000/	_
$\gamma \eta(1405) ightarrow \gamma f_0(980) \pi^0 ightarrow \gamma \pi^+ \pi^- \pi^0$		<	5.0		× 10 '	CL=90%	_
$\gamma \eta (1475) \rightarrow \gamma K \overline{K} \pi$		<	1.4		× 10 ⁻⁴	CL=90%	_
$\gamma \eta(1475) \rightarrow \gamma \eta \pi^+ \pi^-$			8.8			CL=90%	_
$\gamma K^{*0}K^{+}\pi^{-} + \text{c.c.}$			3.7	± 0.9	$) \times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$		•	2.4) × 10 ⁻⁴		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$		(2.6	± 0.5	$) \times 10^{-4}$		1753
$\gamma K + K^- \pi^+ \pi^-$		(1.9	± 0.5	$) \times 10^{-4}$		1726
$\gamma K^{+} K^{-} 2(\pi^{+} \pi^{-})$		<	2.2		$\times 10^{-4}$	CL=90%	1654
$\gamma 2(K^+K^-)$		<	4		$\times 10^{-5}$	CL=90%	1499
$\gamma p \overline{p}$		(3.9	±0.5	$) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) o \gamma \rho \overline{\rho}$		•			$) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$		(7.2	± 1.8	$) \times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma p \overline{p}$		(4.6	$^{+1.8}_{-4.0}$	$)\times10^{-6}$		_
$\gamma X o \gamma p \overline{p}$	[ooaa]	<	2		$\times 10^{-6}$	CL=90%	_
$\gamma p \overline{p} \pi^+ \pi^-$					$) \times 10^{-5}$		1491
$\gamma \gamma$		<	1.5		\times 10 ⁻⁴	CL=90%	1843
$\gamma\gamma$ J/ ψ		(3.1	$^{+1.0}_{-1.2}$	$)\times 10^{-4}$		542
$e^+e^-\eta'$		(1.90	± 0.26	$)\times 10^{-6}$		1719

ψ (3770)

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Scale factor/

Created: 8/11/2022 09:37

Mass $m=3773.7\pm0.4$ MeV (S = 1.4) Full width $\Gamma=27.2\pm1.0$ MeV

ψ (3770) DECAY MODES	Fraction	(Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$D\overline{D}$	(93	+8 -9)%	S=2.0	287
$D^0 \overline{D}{}^0$	(52	+4 -5)%	S=2.0	287
D^+D^-	(41	±4)%	S=2.0	254
$J/\psi X$	(5.0	± 2.2) $\times 1$	0-3	_
$J/\psi \pi^+ \pi^-$	(1.93	$3\pm0.28)\times1$	0-3	561
$J/\psi \pi^0 \pi^0$	(8.0	±3.0) $\times1$		565
$J/\psi \eta$	(9	± 4) $\times 1$		361
$J/\psi \pi^0$	< 2.8		0^{-4} CL=90%	604
e^+e^-	(9.6	±0.7) $\times1$	0^{-6} S=1.3	1887
I	Decays to light h	adrons		
$b_1(1235)\pi$	< 1.4	$\times 1$	0^{-5} CL=90%	1684
$\phi \eta'$	< 7	\times 1	0^{-4} CL=90%	1607
$\omega \eta'$	< 4	\times 1	0^{-4} CL=90%	1672
$ ho^0 \eta'$	< 6	\times 1	0^{-4} CL=90%	1674
$\phi \eta$	(3.1	±0.7) $\times1$		1703
$\omega \eta$	< 1.4		0^{-5} CL=90%	1762
$\rho^0 \eta$	< 5		0^{-4} CL=90%	1764
$\phi \pi^0$	< 3		0^{-5} CL=90%	1746
$\omega \pi^0$	< 6		0^{-4} CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5		0^{-6} CL=90%	1874
$ ho\pi$	< 5		0^{-6} CL=90%	1805
$K^*(892)^+ K^- + \text{c.c.}$	< 1.4		0^{-5} CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2		0^{-3} CL=90%	1745
$K_S^0 K_L^0$	< 1.2		0^{-5} CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12		0^{-3} CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	$\times 1$	0^{-3} CL=90%	1844

Page 159

$2(\pi^+\pi^-\pi^0)$	<	5.85	%	CL=90%	1821
$\omega\pi^+\pi^-$	<	6.0	$\times 10^{-4}$	CL=90%	1794
$3(\pi^{+}\pi^{-})$	<	9.1	$\times 10^{-3}$	CL=90%	1820
$3(\pi^+\pi^-)\pi^0$	<	1.37	%	CL=90%	1792
$3(\pi^+\pi^-)2\pi^0$	< :	11.74	%	CL=90%	1760
$\eta \pi^+ \pi^-$	<	1.24	$\times 10^{-3}$	CL=90%	1836
$\pi^{+}\pi^{-}2\pi^{0}$	<	8.9	$\times 10^{-3}$	CL=90%	1862
$ ho^0\pi^+\pi^-$	<	6.9	$\times 10^{-3}$	CL=90%	1796
η 3 π	<	1.34	$\times 10^{-3}$	CL=90%	1824
$\eta 2(\pi^+\pi^-)$	<	2.43	%	CL=90%	1804
$\eta ho^{0}\pi^{+}\pi^{-}$	<	1.45	%	CL=90%	1708
η' 3 π	<	2.44	$\times 10^{-3}$	CL=90%	1741
$K^+K^-\pi^+\pi^-$	<	9.0	$\times 10^{-4}$	CL=90%	1773
$\phi \pi^+ \pi^-$	<	4.1	$\times 10^{-4}$	CL=90%	1737
$K^+K^-2\pi^0$	<	4.2	$\times 10^{-3}$	CL=90%	1774
$4(\pi^{+}\pi^{-})$	<	1.67	%	CL=90%	1757
$4(\pi^+\pi^-)\pi^0$	<	3.06	%	CL=90%	1720
$\phi f_0(980)$	<	4.5	\times 10 ⁻⁴	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	<	2.36	$\times 10^{-3}$	CL=90%	1741
$\mathit{K^+K^- ho^0\pi^0}$	<	8	\times 10 ⁻⁴	CL=90%	1624
$\mathcal{K}^+\mathcal{K}^- ho^+\pi^-$	<	1.46	%	CL=90%	1623
ω K $^+$ K $^-$	<	3.4	$\times 10^{-4}$	CL=90%	1664
$\phi\pi^+\pi^-\pi^0$	<	3.8	$\times 10^{-3}$	CL=90%	1723
$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	<	1.62	%	CL=90%	1694
$K^{*+}K^{-}\pi^{+}\pi^{-}+$ c.c.	<	3.23	%	CL=90%	1693
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	<	1.03	%	CL=90%	1702
$K^+K^-2(\pi^+\pi^-)\pi^0$	<	3.60	%	CL=90%	1661
$\eta K^+ K^-$	<	4.1	\times 10 ⁻⁴	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%	1624
$ ho^0$ K $^+$ K $^-$	<	5.0	$\times 10^{-3}$	CL=90%	1666
$2(K^+K^-)$	<	6.0	\times 10 ⁻⁴	CL=90%	1552
$\phi K^+ K^-$	<	7.5	$\times 10^{-4}$	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$	<	2.9	\times 10 ⁻⁴	CL=90%	1494
$2(K^+K^-)\pi^+\pi^-$	<	3.2	$\times 10^{-3}$	CL=90%	1426
$K_S^0 K^- \pi^+$	<	3.2	$\times 10^{-3}$	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times 10^{-3}$	CL=90%	1665
$K_{S}^{0}K^{-2}\pi^{+}\pi^{-}$		8.7	\times 10 ⁻³	CL=90%	1740
$K_{c}^{0}K^{-}\pi^{+}\rho^{0}$		1.6	%	CL=90%	1621
$K_0^{S}K^-\pi^+\eta$			%		
		1.3		CL=90%	1670
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$		4.18	%	CL=90%	1703
$K_S^0 K^- 2\pi^+ \pi^- \eta$	<	4.8	%	CL=90%	1570

$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$	<	1.22	%	CL=90%	1658
$K_{S}^{0}K^{-}\pi^{+}2\pi^{0}$	<	2.65	%	CL=90%	1742
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}$	<	4.9	$\times 10^{-3}$	CL=90%	1491
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	<	3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	<	2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.		9.7	$\times 10^{-3}$	CL=90%	1722
$p\overline{p}\pi^0$	<		× 10 ⁻⁵	CL=90%	1595
$p \overline{p} \pi^+ \pi^-$		5.8	\times 10 ⁻⁴	CL=90%	1544
, , <u>Λ</u> <u>Λ</u>		1.2	$\times 10^{-4}$	CL=90%	1522
$p\overline{p}\pi^+\pi^-\pi^0$	<	1.85	$\times 10^{-3}$	CL=90%	1490
$\omega \rho \overline{\rho}$ $\Lambda \overline{\Lambda} \pi^0$	<	2.9	$\times 10^{-4}$	CL=90%	1310
$\Lambda \overline{\Lambda} \pi^0$	<	7	$\times10^{-5}$	CL=90%	1469
$p\overline{p}2(\pi^+\pi^-)$	<	2.6	$\times 10^{-3}$	CL=90%	1426
$\eta p \overline{p}$	<	5.4	$\times 10^{-4}$	CL=90%	1431
$\eta ho \overline{ ho} \pi^+ \pi^-$	<	3.3	\times 10 ⁻³	CL=90%	1284
$ ho^{f 0}$ p $\overline{f p}$	<	1.7	$\times 10^{-3}$	CL=90%	1314
p p K+K-	<	3.2	\times 10 ⁻⁴	CL=90%	1186
$\eta p \overline{p} K^+ K^-$	<	6.9	\times 10 ⁻³	CL=90%	737
$\pi^0 p \overline{p} K^+ K^-$	<	1.2	\times 10 ⁻³	CL=90%	1094
$\phi \underline{p} \overline{p}$	<	1.3	\times 10 ⁻⁴	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	<	2.5	\times 10 ⁻⁴	CL=90%	1405
$\Lambda \overline{p} K^+$	<	2.8	\times 10 ⁻⁴	CL=90%	1387
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	<	6.3	\times 10 ⁻⁴	CL=90%	1234
ΛΛ <u>η</u>	<	1.9	\times 10 ⁻⁴	CL=90%	1263
$\Sigma^{+}\frac{\Sigma}{\Sigma}$	<	1.0	\times 10 ⁻⁴	CL=90%	1465
$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} 0$	<	4	\times 10 ⁻⁵	CL=90%	1462
<u>=</u> + <u>=</u> − =0 <u>=</u> 0	<	1.5	\times 10 ⁻⁴	CL=90%	1347
<u>=0</u> =0	<	1.4	\times 10 ⁻⁴	CL=90%	1353
Radia	tive	decays			
		•	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c1}$	(2.49±0.23)	\times 10 ⁻³		254
$\gamma \chi_{c0}$		6.9 ± 0.6			342
$\gamma \eta_c$	<	,	$\times 10^{-4}$	CL=90%	707
$\gamma \eta_c(2S)$	<	9	$\times 10^{-4}$	CL=90%	134
$\gamma \eta'$	<	1.8	$\times 10^{-4}$	CL=90%	1765
$\gamma\eta$	<	1.5	$\times 10^{-4}$	CL=90%	1847
$\gamma \pi^0$	<	2	\times 10 ⁻⁴	CL=90%	1884

$\psi_2(3823)$

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Mass $m=3823.7\pm0.5$ MeV (S = 1.1) Full width Γ < 5.2 MeV, CL = 90%

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 161

Branching fractions are given relative to the one **DEFINED AS 1**.

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^+\pi^- \ J/\psi(1S)\pi^0\pi^0$	< 0.06	90%	607
$J/\psi(1S)\pi^0\pi^0$	< 0.11	90%	610
$J/\psi(1S)\pi^0$	< 0.030	90%	646
$J/\psi(1S)\eta$	< 0.14	90%	431
$\chi_{c0}\gamma$	< 0.24	90%	387
$\chi_{c1}\gamma$	DEFINED AS 1		300
$\chi_{c2}\gamma$	$0.28 \begin{array}{l} +0.14 \\[-4pt] -0.11\end{array}$		258

$\psi_{3}(3842)$

$$I^G(J^{PC}) = 0^-(3^{--})$$

J, P need confirmation.

Seen by a single experiment only.

Mass
$$m=3842.71\pm0.20$$
 MeV
Full width $\Gamma=2.8\pm0.6$ MeV

ψ_3 (3842) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^+D^-	seen	443
$D^0 \overline{D}{}^0$	seen	463

$\chi_{c1}(3872)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 8/11/2022 09:37

also known as X(3872)

Mass
$$m=3871.65\pm0.06~{
m MeV}$$
 $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4~{
m MeV}$ Full width $\Gamma=1.19\pm0.21~{
m MeV}~({
m S}=1.1)$

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	< 2.8 × 1	90%	1936
$\pi^+\pi^-J/\psi(1S)$	(3.8 ± 1.2) %		650
$\pi^+\pi^-\pi^0 J/\psi(1S)$	not seen		588
$\omega \eta_c(1S)$	< 33 %	90%	368
$\omega J/\psi(1S)$	$(4.3\pm\ 2.1)\%$		†
$\phi\phi$	not seen		1646
$D^0 \overline{D}{}^0 \pi^0$	$(49 \ \ \overset{+18}{-20} \)\ \%$		116
$\overline{D}^{*0}D^0$	$(37 \pm 9)\%$		†

$\gamma\gamma$	< 11	%	90%	1936	
$D^{0} \overline{D}^{0}$	< 29	%	90%	519	
D^+D^-	< 19	%	90%	502	
$\pi^0_{c2}\chi_{c2}$	< 4	%	90%	273	
$\pi^0 \chi_{c1}$	$(3.4\pm\ 1.6$	5) %		319	
$\pi^0 \chi_{c0}$	< 70	%	90%	_	
$\pi^+\pi^-\eta_c(1S)$	< 14	%	90%	745	
$\pi^+\pi^-\chi_{c1}$	< 7	$\times 10^{-3}$	90%	218	
$p\overline{p}$	< 2.4	\times 10 ⁻⁵	95%	1693	
Radiative decays					
$\gamma D^+ D^-$	< 4	%	90%	502	
$\gamma \frac{D^+D^-}{\gamma \overline{D}^0D^0}$	< 6	%	90%	519	
$\gamma J/\psi$	(8 ± 4)	$) \times 10^{-3}$		697	
$\gamma \chi_{c1}$	< 9	$\times 10^{-3}$	90%	344	
$\gamma \chi_{c2}$	< 3.2	%	90%	303	
$\gamma \psi(2S)$	(4.5± 2.0	0) %		181	
<i>C</i> -viola	ting decays				
$\eta J/\psi$	< 1.8	%	90%	491	

 $Z_c(3900)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

was X(3900)

Mass
$$m=3887.1\pm2.6$$
 MeV (S = 1.7)
Full width $\Gamma=28.4\pm2.6$ MeV

Z_c (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\pi \ h_{c}\pi^{\pm}$	seen	699
$h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^- (D \overline{D}^*)^{\pm}$	not seen	759
	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	152
D^-D^{*0} + c.c.	seen	143
$\omega\pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	510
$D^{+}D^{*-}$ + c.c	seen	_
$D^0\overline{D}^{*0}$ + c.c	seen	-

$$\chi_{c0}(3915)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

was X(3915)

Mass
$$m=3921.7\pm1.8~{\rm MeV}~{\rm (S}=1.5)$$
 Full width $\Gamma=18.8\pm3.5~{\rm MeV}$

χ_{c0} (3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\omega J/\psi}{\overline{D}^{*0} D^0}$	seen	231
	not seen	312
D^+D^-	seen	591
$\pi^+\pi^-\eta_c(1S)$	not seen	788
$\eta_c \eta_c$	not seen	668
$ \eta_c \eta \eta_c \pi^0 K K $	not seen	817
$K\overline{K}$	not seen	1898
$\gamma \gamma$	seen	1961
$\pi^0 \chi_{c1}$	not seen	368

$\chi_{c2}(3930)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass
$$m=3922.5\pm1.0$$
 MeV (S = 1.7)
Full width $\Gamma=35.2\pm2.2$ MeV (S = 1.2)

χ_{c2} (3930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma$	seen	1961
$D\overline{D}$	seen	607
D^+D^-	seen	592
$D^0 \overline{D}{}^0$	seen	607
$\pi^+\pi^-\eta_c(1S)$	not seen	788
$K\overline{K}$	not seen	1898

X(4020)[±]

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

Mass
$$m=4024.1\pm1.9~{\rm MeV}$$
 Full width $\Gamma=13\pm5~{\rm MeV}~({\rm S}=1.7)$

$X(4020)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$ $D^*\overline{D}^*$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_{c}\pi^{+}\pi^{-} \ J/\psi(1S)\pi^{\pm}$	not seen	872
$J/\psi(1S)\pi^\pm$	not seen	811

HTTP://PDG.LBL.GOV

Page 164

ψ (4040) [ppaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4039\pm 1~{\rm MeV}$ Full width $\Gamma=80\pm 10~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ_i/Γ_i)	_) Co	nfidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.07\pm0.16$	$() \times 10^{-5}$		2019
$D\overline{D}$	seen			775
$D^0 \overline{D}{}^0$	seen			775
D^+D^-	seen			763
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen			575
$D_{-}^{*}(2010)^{+}D^{-}+$ c.c.	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen			226
$D_{0}^{*}(2010)^{+}D^{*}(2010)^{-}$	seen			193
$D^{0}D^{-}\pi^{+}+c.c.$ (excl.	not seen			_
$D^*(2007)^0 \overline{D}^{0'} + \text{c.c.},$				
$D^*(2010)^+D^-$ +c.c.)				
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	seen	2		452
$J/\psi \pi^+ \pi^-$	< 4	$\times 10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%	797
$J/\psi \eta$	(5.2 ± 0.7)	•		675
$J/\psi \pi^0$	< 2.8	\times 10 ⁻⁴	90%	823
$J/\psi \pi^+\pi^-\pi^0$	< 2	$\times 10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$	90%	494
$\chi_{c2}\gamma$	< 5	× 10 ⁻³	90%	454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	403
$\phi \pi^{+} \pi^{-}$	< 3	$\times 10^{-3}$	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	\times 10 ⁻⁴	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$	90%	1636

$\Lambda \overline{\Lambda} \eta$	< 3.0	$\times 10^{-4}$	90%	1452
$\Lambda \overline{\Lambda}$	< 6	$\times 10^{-6}$	90%	1683
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.3	$\times 10^{-4}$	90%	1632
$\Sigma^0 \overline{\Sigma}{}^0$	< 7	$\times 10^{-5}$	90%	1630
<u>=+=</u> -	< 1.6	$\times 10^{-4}$	90%	1527
=0 $=0$	< 1.8	$\times 10^{-4}$	90%	1533
$\mu^+\mu^-$	(9 ± 6)	$) \times 10^{-6}$		2017

$\chi_{c1}(4140)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4140)

Mass
$$m=4146.5\pm3.0~{\rm MeV}~{\rm (S=1.3)}$$
 Full width $\Gamma=19^{+7}_{-5}~{\rm MeV}$

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	216
$\gamma\gamma$	not seen	2073

ψ (4160) ^[ppaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4191\pm 5~{
m MeV}$ Full width $\Gamma=70\pm 10~{
m MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9 \pm 3.3) \times 10^{-}$	-6	2096
$\mu^+_{}\mu^-$	seen		2093
$D\overline{D}$	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}$ + c.c.	seen		798
$D^*(2007)^0\overline{D}{}^0+$ c.c.	seen		802
$D^*(2010)^+ D^- + \text{c.c.}$	seen		792
$D^*\overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592

$D^0 D^- \pi^+ + \text{c.c.}$ (excl. $D^*(2007)^0 \overline{D}{}^0 + \text{c.c.},$ $D^*(2010)^+ D^- + \text{c.c.})$	not seen			-
$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	seen			_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_{s}^{+}D_{s}^{-}$	not seen			719
$D_s^{*+}D_s^-+\text{c.c.}$	seen			385
$J/\psi \pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	919
$J/\psi \pi^0 \pi^0$	< 3	$\times 10^{-3}$	90%	922
$J/\psi K^+ K^-$	< 2	$\times10^{-3}$	90%	407
$J/\psi \eta$	< 8	$\times10^{-3}$	90%	822
$J/\psi \pi^0$	< 1	$\times10^{-3}$	90%	944
$J/\psi \eta'$	< 5	$\times 10^{-3}$	90%	457
$J/\psi \pi^{+} \pi^{-} \pi^{0}$	< 1	$\times10^{-3}$	90%	879
$\psi(2S)\pi^{+}\pi^{-}$	< 4	$\times 10^{-3}$	90%	396
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 8	$\times 10^{-3}$	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	$\times 10^{-3}$	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\phi\pi^+\pi^-$	< 2	$\times 10^{-3}$	90%	1961
$\gamma \chi_{c1}(3872)$	< 1.8	$\times 10^{-3}$	90%	308
$\gamma \chi_{c0}(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	$\times 10^{-4}$	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	$\times 10^{-4}$	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	$\times 10^{-4}$	90%	_
$\gamma \chi_{c0}(3915) \rightarrow \gamma \gamma J/\psi$	< 1.26	$\times 10^{-4}$	90%	_
$\gamma X(3930) \rightarrow \gamma \gamma J/\psi$	< 8.8	$\times 10^{-5}$	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	$\times 10^{-4}$	90%	_
$p\overline{p}p\overline{p}$	not seen			834
$\Lambda \overline{\Lambda}$	< 1.5	\times 10 ⁻⁶	90%	1774

ψ (4230)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4230); was $\psi(4260)$

Mass $m=4222.7\pm2.6$ MeV (S = 1.7) Full width $\Gamma=49\pm8$ MeV (S = 3.5)

ψ (4230) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\mu^+\mu^-$	$(3.1\pm2.8)\times10^{-5}$	2107
, , ,		

HTTP://PDG.LBL.GOV

Page 167

(1.2)		
$\eta_c(1S)\pi^+\pi^-$	not seen	1027
$\eta_c(1S)\pi^+\pi^-\pi^0$	seen	992
$J/\psi \pi^+ \pi^-$	seen	942
$J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$	seen	_
$Z_c(3900)^{\pm}\pi^{\mp}, Z_c^{\pm} \rightarrow J/\psi\pi^{\pm}$	seen	_
$J/\psi \pi^0 \pi^0$	seen	944
$J/\psi K^+ K^-$	seen	460
$J/\psi K_S^0 K_S^0$	not seen	447
$J/\psi \eta$	seen	848
$J/\psi \pi^0$	not seen	966
$J/\psi \eta'$	seen	504
$J/\psi \pi^{+} \pi^{-} \pi^{0}$	not seen	904
$J/\psi \eta \pi^0$	not seen	770
$J/\psi \eta \eta$	not seen	211
$\psi(2S)\pi^{+}\pi^{-}$	seen	426
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	seen	171
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	not seen	527
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	not seen	477
$h_c(1P)\pi^+\pi^-$	seen	583
$\phi\pi^+\pi^-$	not seen	1976
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^ D \overline{D}$	not seen	_
	not seen	987
$D^0 \overline{D}{}^0$	not seen	987
D^+D^-	not seen	978
$D^*\overline{D}$ +c.c.	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	652
$D^*(2010)^+ D^*(2010)^-$	not seen	641
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$		
$D^*(2010)^+D^-$ +c.c.)		
$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+ D^*(2010)^-)$		
$D^0 D^*(\underline{2010})^- \pi^+ + \text{c.c.}$	seen	716
$D_1(2420)\overline{D} + \text{c.c.}$	not seen	†
$D^*\overline{D}^*\pi$	not seen	367
$D_s^+ D_s^-$	not seen	760
$D_{s}^{+}D_{s}^{-}$ $D_{s}^{*+}D_{s}^{-}$ +c.c. $D_{s}^{*+}D_{s}^{*-}$	not seen	615
$D_{s}^{*+}D_{s}^{*-}$	not seen	†
p p	not seen	1890
• •		

$ ho \overline{ ho} \pi^0$	not seen	1854
$p\overline{p}\eta$	not seen	1712
$p\overline{p}\omega$	not seen	1610
Ξ-Ξ+	not seen	1645
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	not seen	2087
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	not seen	2071
$K_S^0 K^\pm \pi^\mp$	not seen	2032
$egin{array}{l} {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \ {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \pi^{0} \ {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \eta \end{array}$	not seen	2009
$K^0_SK^\pm\pi^\mp\eta$	not seen	1917
$K^+K^-\pi^0$	not seen	2033
$K^+K^-\pi^+\pi^-$	not seen	2008
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-\pi^0$	not seen	1981
$K^+K^+K^-K^-$	not seen	1813
$K^+K^+K^-K^-\pi^0$	not seen	1762
$ ho \overline{ ho} \pi^+ \pi^-$	not seen	1810
$p\overline{p}\pi^+\pi^-\pi^0$	not seen	1764
p <u>p</u> p <u>p</u>	not seen	864
$\Lambda \overline{\Lambda}$	not seen	1791

Radiative decays

	_	
$\eta_c(1S)\gamma$	possibly seen	1055
$\eta_c(1S)\pi^0\gamma$	not seen	1049
$\chi_{c1}\gamma$	not seen	650
$\chi_{c2}\gamma$	not seen	612
$\chi_{c1}(3872)\gamma$	seen	334

$\chi_{c1}(4274)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4274)

Mass
$$m=4286^{+8}_{-9}~{\rm MeV}~{\rm (S}=1.7)$$
 Full width $\Gamma=51\pm7~{\rm MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$J/\psi\phi$	seen	522

ψ (4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 8/11/2022 09:37

also known as Y(4360); was X(4360)

$$\psi$$
(4360) MASS = 4372 \pm 9 MeV (S = 2.9) ψ (4360) WIDTH = 115 \pm 13 MeV (S = 2.2)

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c \pi^+ \pi^-$	seen	721
ψ (2S) $\pi^+\pi^-$	seen	577
ψ (3770) $\pi^{+}\pi^{-}$	possibly seen	493
ψ_2 (3823) $\pi^+\pi^-$	possibly seen	442
$J/\psi\eta$	seen	981
$D_1(2420)\overline{D}+ ext{c.c.}$	possibly seen	426
$p\overline{p}\eta$	not seen	1805
$p\overline{p}\omega$	not seen	1707

$$\psi$$
(4415) $^{[ppaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm 4~{\rm MeV}$ Full width $\Gamma=62\pm 20~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{D}\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	seen		1067
$D_{-}^{*}(2010)^{+}D^{-}+\text{c.c.}$	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}^*(2007)^0 + \text{c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + c.c.$	seen		919
$D^0 D^- \pi^+ ({ m excl.} \ D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
_+c.c., $D^*(2010)^+D^-$ +c.c.			
$D\overline{D}_{2}^{*}(2460) \rightarrow D^{0}D^{-}\pi^{+}+c.c.$	(10 ± 4)%		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$	< 11 %	90%	926
$D_1(2420)\overline{D}+$ c.c.	possibly seen		537
$D_s^+ D_s^-$	not seen		1006
$\omega\chi_{c2}$	possibly seen		330
$D_s^{*+}D_s^- + \text{c.c.}$	seen		_
$D_{s}^{*+}D_{s}^{*-}$	not seen		652
$\psi_2(3823)\pi^+\pi^-$	possibly seen		492

ψ (3770) $\pi^+\pi^-$	possibly se	een		541
$J/\psi \eta$ <	6	\times 10 ⁻³	90%	1022
$\chi_{c1}\gamma$ <	8	\times 10 ⁻⁴	90%	817
\(\cup \(\cup \)	4	\times 10 ⁻³	90%	780
4 4	3.1	\times 10 ⁻⁶	90%	1908
e^+e^-	(9.4 ± 3.2)	\times 10 ⁻⁶		2210
$\mu^+\mu^-$	(2.0 ± 1.0)	$\times 10^{-5}$		2208

$Z_c(4430)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

G, C need confirmation.

was $X(4430)^{\pm}$

Quantum numbers not established.

Mass
$$m=4478^{+15}_{-18}~{
m MeV}$$
 Full width $\Gamma=181\pm31~{
m MeV}$

Z_c (4430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

ψ (4660)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 8/11/2022 09:37

also known as Y(4660); was X(4660)

$$\begin{array}{l} \psi(\text{4660})\;\text{MASS} = \text{4630} \pm \text{6 MeV} \quad (\text{S} = 1.4) \\ \psi(\text{4660})\;\text{WIDTH} = 72^{+14}_{-12}\;\text{MeV} \quad (\text{S} = 1.7) \end{array}$$

ψ (4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	not seen	2315
$\psi(2S)\pi^+\pi^-$	seen	809
$J/\psi \eta$	not seen	1192
$D^0 D^{*-} \pi^+$	not seen	1153
$\chi_{c1}\gamma$	not seen	984
$\chi_{c2}\gamma$	not seen	949
$\chi_{c2} \gamma$ $\Lambda_c^+ \Lambda_c^-$	seen	363
$D_s^+ D_{s1}(2536)^-$	seen	534

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=9398.7\pm2.0~{\rm MeV}~{\rm (S=1.5)}$ Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4672
$2h^{+}2h^{-}$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma \gamma$	not seen		4699
$\begin{array}{c} \gamma \gamma \\ \mu^+ \mu^- \\ \tau^+ \tau^- \end{array}$	$< 9 \times 10^{-3}$	90%	4698
$ au^+ au^-$	<8 %	90%	4350

T(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 8/11/2022 09:37

Mass $m=9460.30\pm0.26$ MeV (S = 3.3) Full width $\Gamma=54.02\pm1.25$ keV

T(1S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\tau^+\tau^-$	(2.60 ±0.10) %	4384
e^+e^-	(2.38 ± 0.11) %	4730
$\mu^+\mu^-$	(2.48 ± 0.05) %	4729
На	dronic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24)) %	_
$J/\psi(1{\cal S})$ anything	(5.4 ± 0.4)	$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_{m c}$	< 2.2	$\times 10^{-6}$ CL=90%	3623
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times 10^{-6}$ CL=90%	3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2)	$) \times 10^{-6}$	3382
$J/\psi(1S)\chi_{c2}$	< 1.4	$\times 10^{-6}$ CL=90%	3359
$J/\psi(1S)\eta_c(2S)$	< 2.2	$\times 10^{-6}$ CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4	$\times 10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3020

HTTP://PDG.LBL.GOV

Page 172

X(4350) anything, $X ightarrow$	<	8.1	× 1	10-6	CL=90%	_
$J/\psi(1S)\phi$				_		
$Z_c(3900)^\pm$ anything, $Z_c o J/\psi(1S)\pi^\pm$	<	1.3	× 1	10 ⁻⁵	CL=90%	_
$Z_c(4200)^\pm$ anything, $Z_c o$	<	6.0	× 1	10 ⁻⁵	CL=90%	_
$J/\psi(1S)\pi^\pm \ Z_c(4430)^\pm$ anything, $Z_c o$	<	4.9	×I	₁₀ -5	CL=90%	_
$J/\psi(1S)\pi^{\pm}$		5.7	V 1	10-6	CL=90%	_
X_{cs}^{\pm} anything, $~X ightarrow \ J/\psi {\it K}^{\pm}$	<	5.7	X.	10 -	CL=90%	_
ψ (4230) anything, $\psi ightarrow J/\psi(1S)\pi^+\pi^-$	<	3.8	× 1	10 ⁻⁵	CL=90%	_
ψ (4230) anything, $\psi ightarrow J/\psi(1S) K^+ K^-$	<	7.5	× I	10 ⁻⁶	CL=90%	-
$\chi_{c1}(4140)$ anything, $\chi_{c1} \rightarrow$	<	5.2	× 1	10-6	CL=90%	_
$J/\psi(1S)\phi$						
χ_{c0} anything	<	4	× I	10^{-3}	CL=90%	_
χ_{c1} anything	(1.90 ± 0.35)	\times 1	10^{-4}		_
$\chi_{c1}(1P)X_{tetra}$	<	3.78	\times 1	10^{-5}	CL=90%	_
χ_{c2} anything	(2.8 ± 0.8)				_
$\psi(2S)$ anything		1.23 ± 0.20)				_
$\psi(2S)\eta_c$		3.6			CL=90%	3345
$\psi(2S)\eta_c$ $\psi(2S)\chi_{c0}$		6.5			CL=90%	3124
					CL=90% CL=90%	
$\psi(2S)\chi_{c1}$		4.5			CL=90% CL=90%	3070
$\psi(2S)\chi_{c2}$		2.1				3043
$\psi(2S)\eta_c(2S)$		3.2			CL=90%	2994
$\psi(2S)X(3940)$		2.9			CL=90%	2797
$\psi(2S)X(4160)$		2.9			CL=90%	2645
ψ (4230) anything, $\psi ightarrow \psi(2S)\pi^+\pi^-$	<	7.9	× I	10 ⁻⁵	CL=90%	_
		5.2	1	10-5	CL=90%	
ψ (4360) anything, $\psi ightarrow \psi(2S)\pi^+\pi^-$	_	5.2	X .	10	CL=90/6	
ψ (4660) anything, $\psi ightarrow$	<	2.2	× I	10 ⁻⁵	CL=90%	_
$\psi(2S)\pi^{+}\pi^{-}$				5	GL 000/	
$X(4050)^\pm$ anything, $X o \psi(2S)\pi^\pm$	<	8.8	× I	10-5	CL=90%	_
$Z_c(4430)^\pm$ anything, $Z_c o \psi(2S)\pi^\pm$	<	6.7	× 1	10 ⁻⁵	CL=90%	-
$\chi_{c1}(3872)$ anything	<	2.5	× I	10^{-4}	CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$		2.23			CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$		8.1			CL=90%	_
$Z_c(3900)^+ Z_c(3900)^-$		1.8			CL=90%	_
$X(4050)^{+}X(4050)^{-}$		1.58			CL=90%	_
$X(4250)^+ X(4250)^-$		2.66			CL=90%	_
7(1230) 7(1230)		2.00	^ -		CL-90/0	

$X(4050)^{\pm}X(4250)^{\mp}$	$< 4.42 \times 10^{-5} \text{ CL}=90\%$	_
$Z_c(4430)^+ Z_c(4430)^-$	$< 2.03 \times 10^{-5} \text{ CL}=90\%$	_
$X(4055)^{\pm}X(4055)^{\mp}$	$< 2.33 \times 10^{-5} \text{ CL}=90\%$	_
$X(4055)^{\pm}Z_{c}(4430)^{\mp}$	$< 4.55 \times 10^{-5} \text{ CL} = 90\%$	_
$ ho\pi$	$< 3.68 \times 10^{-6} \text{ CL}=90\%$	4697
$\omega\pi^0$	$< 3.90 \times 10^{-6} \text{ CL}=90\%$	4697
$\pi^+\pi^-$	$< 5 \times 10^{-4} \text{ CL} = 90\%$	4728
K^+K^-	$< 5 \times 10^{-4} \text{ CL} = 90\%$	4704
$p\overline{p}$	$< 5 \times 10^{-4} \text{ CL} = 90\%$	4636
$\pi^+\pi^-\pi^0$	$(2.1 \pm 0.8) \times 10^{-6}$	4725
$\phi K^+ K^-$	$(2.4 \pm 0.5) \times 10^{-6}$	4622
$\omega \pi^+ \pi^-$	$(4.5 \pm 1.0) \times 10^{-6}$	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(4.4 \pm 0.8) \times 10^{-6}$	4667
$\phi f_2'(1525)$	$< 1.63 \times 10^{-6} \text{ CL}=90\%$	4551
$\omega f_2(1270)$	$< 1.79 \times 10^{-6} \text{ CL}=90\%$	4611
$\rho(770) a_2(1320)$	$< 2.24 \times 10^{-6} \text{ CL}=90\%$	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	$(3.0 \pm 0.8) \times 10^{-6}$	4578
$K_1(1270)^{\pm} \tilde{K}^{\mp}$	$< 2.41 \times 10^{-6} \text{ CL}=90\%$	4634
$K_1(1400)^{\pm}K^{\mp}$	$(1.0 \pm 0.4) \times 10^{-6}$	4613
$b_1(1235)^{\pm}\pi^{\mp}$	$< 1.25 \times 10^{-6} \text{ CL}=90\%$	4649
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.28 ± 0.30) $\times 10^{-5}$	4720
$K_{S}^{0}K^{+}\pi^{-}+$ c.c.	$(1.6 \pm 0.4) imes 10^{-6}$	4696
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(2.9 \pm 0.9) \times 10^{-6}$	4675
$K^*(892)^-K^+ + \text{c.c.}$	$< 1.11 \times 10^{-6} \text{ CL} = 90\%$	4675
$f_1(1285)$ anything	$(4.6 \pm 3.1) \times 10^{-3}$	_
$D^*(2010)^\pm$ anything	$(2.52 \pm 0.20)\%$	_
$f_1(1285)X_{tetra}$	$<$ 6.24 $\times 10^{-5}$ CL=90%	_
$\frac{1}{2}H$ anything	$(2.85 \pm 0.25) \times 10^{-5}$	_
Sum of 100 exclusive modes	(1.200±0.017) %	_
	•	

Radiative decays

	-	
$\gamma \pi^+ \pi^-$	$(6.3 \pm 1.8) \times 10^{-5}$	4728
$\gamma \pi^0 \pi^0$	$(1.7 \pm 0.7) \times 10^{-5}$	4728
$\gamma\pi\pi$ (S-wave)	$(4.6 \pm 0.7) \times 10^{-5}$	4728
$\gamma \pi^{0} \eta$	$< 2.4 \times 10^{-6} \text{ CL}=90\%$	4713
γ K $^+$ K $^-$	[qqaa] (1.14 ± 0.13) $ imes 10^{-5}$	4704
$\gamma \rho \overline{\rho}$	$[rraa] < 6 \times 10^{-6} CL=90\%$	4636
$\gamma 2h^+2h^-$	$(7.0 \pm 1.5) \times 10^{-4}$	4720
$\gamma 3h^+3h^-$	$(5.4 \pm 2.0) \times 10^{-4}$	4703
γ 4 h +4 h -	$(7.4 \pm 3.5) \times 10^{-4}$	4679
$\gamma \pi^+ \pi^- K^+ K^-$	$(2.9 \pm 0.9) \times 10^{-4}$	4686
$\gamma 2\pi^+ 2\pi^-$	$(2.5 \pm 0.9) \times 10^{-4}$	4720
$\gamma 3\pi^+ 3\pi^-$	$(2.5 \pm 1.2) \times 10^{-4}$	4703
γ 2 π^+ 2 π^- K $^+$ K $^-$	$(2.4 \pm 1.2) \times 10^{-4}$	4658

$\gamma \pi^+ \pi^- \rho \overline{\rho}$		(1.5	± 0.6				4604
$\gamma 2\pi^+ 2\pi^- \rho \overline{\rho}$		(4			10-5		4563
$\gamma 2K^+2K^-$		•		±2.0				4601
$\gamma \eta'$ (958)			1.9				CL=90%	4682
$\gamma\eta$			1.0			_	CL=90%	4714
$\gamma f_0(980)$	<		3				CL=90%	4678
$\gamma f_2'(1525)$				± 0.6				4608
$\gamma f_2(1270)$		`		± 0.06	,			4644
$\gamma \eta$ (1405)	<	<	8.2				CL=90%	4625
$\gamma f_0(1500)$	<		1.5				CL=90%	4610
$\gamma f_0(1500) \rightarrow \gamma K^+ K^-$		(1.0	± 0.4				_
$\gamma f_0(1710)$	<		2.6				CL=90%	4577
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$				±0.32				_
$\gamma f_0(1710) \rightarrow \gamma \pi^+ \pi^-$				±2.0		_		_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	<		1.4				CL=90%	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	<		1.8			_	CL=90%	_
$\gamma f_4(2050)$			5.3				CL=90%	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$		<					CL=90%	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$		<					CL=90%	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$		<					CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$			1.1				CL=90%	_
$\gamma \eta(2225) \rightarrow \gamma \phi \phi$			3				CL=90%	4469
$\gamma \eta_c(1S)$			2.9				CL=90%	4260
$\gamma \eta_c(2S)$			4				CL=90%	4031
$\gamma \chi_{c0}$	<	<	6.6		×	(10-5	CL=90%	4114
$\gamma \chi_{c1}$		(4.7	$+2.4 \\ -1.9$) >	10 ⁻⁵		4079
$\gamma \chi_{c2}$	<	<	7.6		×	10^{-6}	CL=90%	4062
$\gamma \chi_{c1}(3872)$	<	<	4				CL=90%	3938
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	<	<	2.8		×	10^{-6}	CL=90%	_
$\pi^+\pi^-\pi^0J/\psi$								
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	<	3.0				CL=90%	_
$\gamma \chi_{c1}$ (4140) $ ightarrow \phi J/\psi$	<	<	2.2				CL=90%	_
$\gamma X_{\underline{}}$	[ssaa] <	<	4.5				CL=90%	_
$\gamma X \overline{X} (m_X < 3.1 \text{ GeV})$	[ttaa] <	<	1				CL=90%	_
$\gamma X \overline{X} (m_X < 4.5 \text{ GeV})$	[uuaa] <	<	2.4				CL=90%	_
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$	[vvaa] <	<	1.78				CL=95%	_
$\gamma a_{\underline{1}}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$	[xxaa] <	<	9				CL=90%	_
$\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}$	[qqaa] <	<	1.30		×	10-4	CL=90%	_
$\gamma a_1^0 ightarrow \gamma g g$	[yyaa] <	<	1		9/	6	CL=90%	_
$\gamma a_1^{ar{0}} ightarrow \gamma s \overline{s}$	[yyaa] <	<	1		×	10-3	CL=90%	_
Lenton Family	numbo	- 1	I E	violati	~~	modes		

Lepton Family number (LF) violating modes

$$\mu^{\pm}\, au^{\mp}$$
 LF < 6.0 $imes 10^{-6}$ CL=95% 4563

Other decays

invisible	< 3.0	$\times10^{-4}$ CL=90%	_
hadrons	(97 ± 5)) %	_

$$\chi_{b0}(1P)$$
 [zzaa]
$$I^G(J^{PC}) = 0^+(0^{++})$$
 J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \text{ MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_{i}	/Γ) Confic	lence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	(1.94±0.	27) %		391
D^0X	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 1.6	\times 10 ⁻⁴	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$ $2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	\times 10 ⁻⁴	90%	4905
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	($1.1 \pm 0.$	6) \times 10 ⁻⁴		4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	\times 10 ⁻⁴	90%	4846
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	\times 10 ⁻⁴	90%	4828
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	4827
$3\pi^{+}3\pi^{-}$	< 8	\times 10 ⁻⁵	90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	\times 10 ⁻⁴	90%	4881
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	($2.4 \pm 1.$	$2) \times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times10^{-3}$	90%	4808
$4\pi^+4\pi^-$	< 8	$\times10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times10^{-5}$	90%	3836
$J/\psi \psi(2S)$	< 1.2	\times 10 ⁻⁴	90%	3571
$\psi(2S)\psi(2S)$	< 3.1	\times 10 ⁻⁵	90%	3273
$J/\psi(1S)$ anything	< 2.3	$\times 10^{-3}$	90%	_

$$\chi_{b1}(1P)^{[zzaa]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma \gamma (1S)$	(35.2 ±2.0) %		423
$D^0 X$	$(12.6 \pm 2.2) \%$		_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	(2.0 \pm 0.6) $ imes$	10^{-4}	4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 \pm 0.5) $ imes$	10^{-4}	4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 6 ×	10^{-4} 90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0 \pm 2.5) \times	10^{-4}	4921
HTTP://PDG.LBL.GOV	Page 176 Ci	reated: 8/11/2022	2 09:37

$2\pi^{+}2\pi^{-}$ K^{+} K^{-}	($1.5 \pm 0.$	$(5) \times 10^{-4}$		4878
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	($3.5 \pm 1.$	$(2) \times 10^{-4}$		4863
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	(8.6 ± 3 .	$(2) \times 10^{-4}$		4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3 ± 3 .	$(3) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}$	($1.9 \pm 0.$	$6) \times 10^{-4}$		4921
$3\pi^{+}3\pi^{-}2\pi^{0}$	($1.7 \pm 0.$	$(5) \times 10^{-3}$		4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	($2.6 \pm 0.$	$(8) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5 ± 2 .	$(6) \times 10^{-4}$		4825
$4\pi^+4\pi^-$	($2.6 \pm 0.$	$(9) \times 10^{-4}$		4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	($1.4 \pm 0.$	$(6) \times 10^{-3}$		4867
ω anything	($4.9 \pm 1.$	4) %		_
ωX_{tetra}	< 4.44	$\times 10^{-4}$	90%	_
$J/\psiJ/\psi$	< 2.7	\times 10 ⁻⁵	90%	3857
$J/\psi\psi(2S)$	< 1.7	$\times10^{-5}$	90%	3594
$\psi(2S)\psi(2S)$	< 6	$\times10^{-5}$	90%	3298
$J/\psi(1S)$ anything	< 1.1	$\times 10^{-3}$	90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	$\times 10^{-4}$	90%	_

$h_b(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m = 9899.3 \pm 0.8 \text{ MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\eta_b(1S)\gamma$	(52^{+6}_{-5}) %	488	

$$\chi_{b2}$$
(1*P*) [zzaa]

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma \gamma (1S)$	(18.0±1.0) %		442
$D^0 X$	< 7.9 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	$(8 \pm 5) \times 10$	₎ —5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	90%	4901
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10$	₀ -4	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10$	₀ -4	4931
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4) \times 10$	₀ -4	4888
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(2.1\pm0.9)\times10$	₎ -4	4872
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(3.9\pm1.8)\times10$	₎ -4	4855
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5 × 10	90%	4854

HTTP://PDG.LBL.GOV

Page 177

$3\pi^{+}3\pi^{-}$	(7.0±	$(3.1) \times 10^{-5}$		4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	($1.0\pm$	$(0.4) \times 10^{-3}$		4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8	\times 10 ⁻⁵	90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(3.6±	$(1.5) \times 10^{-4}$		4835
$4\pi^{+}4\pi^{-}$	(8 ±	$(4) \times 10^{-5}$		4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.8±	$(0.7) \times 10^{-3}$		4877
$J/\psiJ/\psi$	< 4	\times 10 ⁻⁵	90%	3869
$J/\psi \psi(2S)$	< 5	\times 10 ⁻⁵	90%	3608
$\psi(2S)\psi(2S)$	< 1.6	\times 10 ⁻⁵	90%	3313
$J/\psi(1S)$ anything	(1.5±	$(0.4) \times 10^{-3}$		_

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.26\pm0.31~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=31.98\pm2.63~{\rm keV}$

r(2 s) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	-
$\overline{ \gamma(1S)\pi^+\pi^-}$	(17.85± 0.26)	%		475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4)	%		480
$\tau^+\tau^-$	$(2.00\pm\ 0.21)$	%		4686
$\mu^+\mu^-$	$(1.93\pm\ 0.17)$	%	S=2.2	5011
e^+e^-	$(1.91\pm\ 0.16)$	%		5012
$\Upsilon(1S)\pi^0$	< 4	$\times 10^{-5}$	CL=90%	531
$\Upsilon(1S)\eta$	(2.9 ± 0.4)	\times 10 ⁻⁴	S=2.0	126
$J/\psi(1{\cal S})$ anything		$\times 10^{-3}$	CL=90%	4533
$J/\psi(1S)\eta_{m c}$	< 5.4	$\times 10^{-6}$	CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times 10^{-6}$	CL=90%	3808
$J/\psi(1S)\chi_{c1}$	< 1.2	\times 10 ⁻⁶	CL=90%	3765
$J/\psi(1S)\chi_{c2}$		\times 10 ⁻⁶	CL=90%	3744
$J/\psi(1S)\eta_{c}(2S)$	< 2.5	\times 10 ⁻⁶	CL=90%	3707
$J/\psi(1S)X(3940)$		\times 10 ⁻⁶	CL=90%	3555
$J/\psi(1S)X(4160)$	< 2.0	\times 10 ⁻⁶	CL=90%	3442
χ_{c1} anything	(2.2 ± 0.5)	\times 10 ⁻⁴		_
$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	\times 10 ⁻⁵	CL=90%	_
χ_{c2} anything	(2.3 ± 0.8)	\times 10 ⁻⁴		_
$\psi(2S)\eta_c$		\times 10 ⁻⁶	CL=90%	3732
$\psi(2S)\chi_{c0}$	< 4.7	\times 10 ⁻⁶	CL=90%	3536
$\psi(2S)\chi_{c1}$	< 2.5	\times 10 ⁻⁶	CL=90%	3488
$\psi(2S)\chi_{c2}$	< 1.9	\times 10 ⁻⁶	CL=90%	3464
$\psi(2S)\eta_c(2S)$	< 3.3	\times 10 ⁻⁶	CL=90%	3422
$\psi(2S)X(3940)$	< 3.9	\times 10 ⁻⁶	CL=90%	3250
$\psi(2S)X(4160)$	< 3.9	\times 10 ⁻⁶	CL=90%	3120

HTTP://PDG.LBL.GOV

Page 178

- ()						
$Z_c(3900)^+ Z_c(3900)^-$	< 1.0	\times 10 ⁻⁶	CL=90%	_		
$Z_c(4200)^+ Z_c(4200)^-$	< 1.67	$\times 10^{-5}$	CL=90%	_		
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 7.3	\times 10 ⁻⁶	CL=90%	_		
$X(4050)^+ X(4050)^-$	< 1.35	$\times 10^{-5}$	CL=90%	_		
$X(4250)^+ X(4250)^-$	< 2.67	\times 10 ⁻⁵	CL=90%	_		
$X(4050)^{\pm}X(4250)^{\mp}$	< 2.72	$\times 10^{-5}$	CL=90%	_		
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	$\times 10^{-5}$	CL=90%	_		
$X(4055)^{\pm}X(4055)^{\mp}$	< 1.11	$\times 10^{-5}$	CL=90%	_		
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 2.11	$\times10^{-5}$	CL=90%	_		
$\overline{{}^{2}H}$ anything	(2.78 + 0)	$^{.30}_{.26}) \times 10^{-5}$	S=1.2	_		
hadrons	-) %		_		
ggg	(58.8 ± 1	.2)%		_		
$\gamma g g$	(1.87± 0			_		
$\phi K^+ K^-$	•	$.4) \times 10^{-6}$		4910		
$\omega \pi^+ \pi^-$	< 2.58	× 10 ⁻⁶	CL=90%	4977		
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$		$.7) \times 10^{-6}$		4952		
$\phi f_2'(1525)$	< 1.33	× 10 ⁻⁶	CL=90%	4842		
$\omega f_2(1270)$	< 5.7	$\times10^{-7}$	CL=90%	4899		
$\rho(770) a_2(1320)$	< 8.8	× 10 ⁻⁷	CL=90%	4894		
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$		$.6) \times 10^{-6}$		4869		
$K_1(1270)^{\pm}K^{\mp}$	< 3.22	× 10 ⁻⁶	CL=90%	4921		
$K_1(1400)^{\pm} K^{\mp}$	< 8.3	× 10 ⁻⁷	CL=90%	4901		
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	× 10 ⁻⁷	CL=90%	4935		
$\rho\pi$	< 1.16	× 10 × 10 ⁻⁶	CL=90%	4981		
$\pi^{+}\pi^{-}\pi^{0}$	< 8.0	× 10 × 10 ⁻⁷	CL=90%	5007		
$\omega \pi^0$	< 1.63	× 10 × 10 ⁻⁶	CL=90% CL=90%	4980		
$\pi^+\pi^-\pi^0\pi^0$		$\times 10^{-5}$.28) $\times 10^{-5}$	CL—9070	5002		
$K_S^0 K^+ \pi^- + \text{c.c.}$		$(.28) \times 10^{-6}$		4979		
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	•	,	CL 000/			
	< 4.22	$\times 10^{-6}$	CL=90%	4959		
$K^*(892)^-K^+ + \text{c.c.}$	< 1.45		CL=90%	4960		
$f_1(1285)$ anything		$.6) \times 10^{-3}$	GL 000/	_		
$f_1(1285)X_{tetra}$		$\times 10^{-5}$	CL=90%	_		
Sum of 100 exclusive modes	(2.90± 0	$.30) \times 10^{-3}$		_		
Radiative decays						
$\gamma \chi_{b1}(1P)$	(6.9 ± 0	.4) %		130		
$\gamma \chi_{b2}(1P)$	(7.15± 0			110		
$\gamma \chi_{b0}(1P)$	(3.8 ± 0	,		162		
$\gamma f_0(1710)$	< 5.9	× 10 ⁻⁴	CL=90%	4867		
$\gamma f_2'(1525)$	< 5.3		CL=90%	4897		
$\gamma f_2(1270)$	< 2.41	_	CL=90%	4930		
	< 2.41	_	CL=90% CL=90%			
$\gamma \eta_c(1S)$		_	CL=90% CL=90%	4567		
$\gamma \chi_{c0}$	< 1.0		CL=90% CL=90%	4430		
$\gamma \chi_{c1}$	< 3.6	× 10 °	CL=90%	4397		
HTTP://PDG.LBL.GOV	Page 179	Created:	8/11/2022	09:37		

$\gamma \chi_{c2}$	< 1.5	$\times 10^{-5}$	CL=90%	4381
$\gamma \chi_{c1}(3872)$	< 2.1	$\times 10^{-5}$	CL=90%	4264
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	< 2.4	$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^0J/\psi$				
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	< 2.8	$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	< 1.2	$\times 10^{-6}$	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	< 1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	$(5.5 \begin{array}{c} + 1.1 \\ - 0.9 \end{array}$	$) \times 10^{-4}$	S=1.2	605
$\gamma \eta_{\it b}(1S) ightarrow \ \gamma$ Sum of 26 exclu-	< 3.7	$\times 10^{-6}$	CL=90%	_
sive modes		6		
$\gamma X_{b\overline{b}} \rightarrow \gamma Sum of 26 exclusive$	< 4.9	$\times 10^{-6}$	CL=90%	_
modes		4		
,	< 1.95		CL=95%	_
$\gamma A^0 ightarrow \gamma$ hadrons	< 8	$\times 10^{-5}$	CL=90%	_
$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	< 8.3	$\times 10^{-6}$	CL=90%	_
	// ->			

Lepton Family number (LF) violating modes

$\Upsilon_2(1D)$

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

was $\Upsilon(1D)$

Mass $m = 10163.7 \pm 1.4 \text{ MeV}$ (S = 1.7)

$ au_2$ (1 D) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \Upsilon(1S)$	not seen	426
$\pi^+\pi^ \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$\chi_{b0}(2P)^{[zzaa]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10232.5 \pm 0.4 \pm 0.5 \text{ MeV}$

x _{b0} (2P) DECAY MODES	Fraction (Γ	_i /Γ) C	onfidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \ \varUpsilon(2S)$	(1.38 ± 0.00)	.30) %		207
$\gamma \Upsilon(1S)$	(3.8 ± 1)	$.7) \times 10^{-3}$	3	743
$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 3.4	\times 10 ⁻¹	90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻¹	90%	5063
-				

HTTP://PDG.LBL.GOV

Page 180

$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 2.2	$\times 10^{-4}$	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	$\times 10^{-4}$	90%	5092
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5050
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5035
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	< 1.1	$\times 10^{-3}$	90%	5019
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10 ⁻⁵	90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	$\times10^{-3}$	90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	4999
$4\pi^+4\pi^-$	< 1.7	\times 10 ⁻⁴	90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	\times 10 ⁻⁴	90%	5039

$\chi_{b1}(2P)^{[zzaa]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50$$
 MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \ \varUpsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	135
$\gamma \ \varUpsilon(2S)$	$(18.1 \pm 1.9)\%$	230
$\gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	(8.8 ± 1.7) %	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104
$2\pi^{+}2\pi^{-}$ K $^{+}$ K $^{-}$	$(10 \pm 4) \times 10^{-5}$	5062
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} $2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^+4\pi^-$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$$h_b(2P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m = 10259.8 \pm 1.2 \text{ MeV}$

h _b (2P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
hadrons	not seen	_
$\eta_b(1S)\gamma$	(22 ± 5) %	825
$\eta_b(2S)\gamma$	(48±13) %	257

$\chi_{b2}(2P)^{[zzaa]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

χ_{b2} (2P) DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \ \varUpsilon(1S)$	$(1.10^{+0.3}_{-0.3}$	³⁴ ₀) %		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1.2)	!)%		242
$\gamma \Upsilon(1S)$	(6.6 ± 0.8)) %		777
$\pi \pi \chi_{b2}(1P)$	(5.1 ± 0.9)) × 10	-3	229
$D^0 X$	< 2.4	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.1	\times 10	-4 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	× 10	-5 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	× 10	-4 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1.6)) × 10	-4	5110
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(9 ± 4)) × 10 ⁻⁷	-5	5068
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	(2.4 ± 1.1)) × 10	-4	5054
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} $2\pi^{0}$	(4.7 ± 2.3)) × 10	-4	5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	\times 10	-4 90%	5036
$3\pi^{+}3\pi^{-}$	(9 ± 4)) × 10 ⁻¹	-5	5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 ± 0.4)) × 10	-3	5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0.7)) × 10	-4	5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 ± 1.7)) × 10	-4	5017
$4\pi^{+}4\pi^{-}$	(9 ± 5)) × 10 ⁻⁷	-5	5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 ± 0.5)) × 10	-3	5058

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.2\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=20.32\pm1.85$ keV

HTTP://PDG.LBL.GOV

Page 182

$ ag{7(2S)}$ anything $ ag{10.6 \pm 0.8 \)\%}$ $ ag{2.82 \pm 0.18 \ \%}$ S=1.6	
	190
(===== ====) //	190
$\Upsilon(2S)\pi^0\pi^0$ (1.85± 0.14)%	
$\Upsilon(2S)\gamma\gamma$ (5.0 \pm 0.7)%	327
$\Upsilon(2S)\pi^0$ < 5.1 $\times 10^{-4}$ CL=90%	298
$\Upsilon(1S)\pi^{+}\pi^{-}$ (4.37± 0.08)%	813
$\Upsilon(1S)\pi^0\pi^0$ (2.20± 0.13)%	816
$\Upsilon(1S)\eta$ < 1 $\times 10^{-4}$ CL=90%	677
$\Upsilon(1S)\pi^0$ < 7 $\times 10^{-5}$ CL=90%	846
$h_b(1P)\pi^0$ < 1.2 × 10 ⁻³ CL=90%	426
$h_b(1P)\pi^0 \to \gamma \eta_b(1S)\pi^0$ (4.3 ± 1.4) × 10 ⁻⁴	_
$h_b(1P)\pi^+\pi^-$ < 1.2 × 10 ⁻⁴ CL=90%	353
$\tau^{+}\tau^{-}$ (2.29± 0.30) %	4863
$\mu^{+}\mu^{-}$ (2.18± 0.21) % S=2.1	5177
$e^{+}e^{-}$ (2.18± 0.20) %	5178
hadrons $(93 \pm 12)\%$	_
ggg (35.7 ± 2.6)%	_
$\frac{\gamma g g}{^2 H}$ anything $\left(\begin{array}{cc} 9.7 \pm 1.8 \end{array}\right) \times 10^{-3}$ $\left(\begin{array}{cc} 2.33 \pm 0.33 \end{array}\right) \times 10^{-5}$	_
2H anything $(2.33\pm 0.33) \times 10^{-5}$	_
Radiative decays	
$\gamma \chi_{b2}(2P)$ (13.1 ± 1.6) % S=3.4	86
$\gamma \chi_{b1}(2P)$ (12.6 ± 1.2)% S=2.4	99
$\gamma \chi_{b0}(2P)$ (5.9 \pm 0.6)% S=1.4	122
$\gamma \chi_{b2}(1P)$ (10.0 ± 1.0) × 10 ⁻³ S=1.7	434
$\gamma \chi_{b1}(1P)$ (9 ± 5)×10 ⁻⁴ S=1.8	452
$\gamma \chi_{b0}(1P)$ (2.7 ± 0.4) × 10 ⁻³	484
$\gamma \eta_b(2S)$ < 6.2 × 10 ⁻⁴ CL=90%	350
$\gamma \eta_b(1S)$ (5.1 ± 0.7) × 10 ⁻⁴	912
$\gamma A^0 \rightarrow \gamma \text{ hadrons}$ < 8 $\times 10^{-5}$ CL=90%	_
$\gamma X \rightarrow \gamma + \ge 4 \text{ prongs}$ [bbbb] < 2.2 $\times 10^{-4}$ CL=95%	_
$\gamma a_1^0 \to \gamma \mu^+ \mu^- < 5.5 \times 10^{-6} \text{ CL}=90\%$	_
$\gamma a_1^{\bar{0}} \rightarrow \gamma \tau^+ \tau^-$ [ccbb] < 1.6 $\times 10^{-4}$ CL=90%	_
Lepton Family number (LF) violating modes	
$e^{\pm} au^{\mp}$ LF < 4.2 $ imes 10^{-6}$ CL=90%	5025
$\mu^{\pm} au^{\mp}$ LF $<$ 3.1 \times 10 ⁻⁶ CL=90%	5025

$\chi_{b1}(3P)^{[zzaa]}$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

 ${\it J}$ needs confirmation.

Mass $m=10513.4\pm0.7~\mathrm{MeV}$

HTTP://PDG.LBL.GOV

Page 183

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(1S)\gamma$	seen	1000
$\Upsilon(2S)\gamma$	seen	479
$\Upsilon(3S)\gamma$	seen	157

$$\chi_{b2}(3P)^{[zzaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

J needs confirmation.

Mass $m=10524.0\pm0.8~\mathrm{MeV}$

$\chi_{b2}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\gamma(3S)\gamma$	seen	167

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as $\Upsilon(10580)$

Mass $m=10579.4\pm1.2$ MeV Full width $\Gamma=20.5\pm2.5$ MeV

T(4S) DECAY MODES	Fraction (Γ_i)	Г) Со	nfidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 ± 0.6)	5)%		331
D_s^+ anything $+$ c.c.	(17.8 ± 2.6)	5)%		_
$B^0\overline{\overline{B}{}^0}$	(48.6 ± 0.6)	5)%		326
$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	\times 10 ⁻⁷	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	$(1.57\pm0.0$	$(8) \times 10^{-5}$	5	5290
$ ho^+ ho^-$	< 5.7	\times 10 ⁻⁶	90%	5233
$K^*(892)^0 \overline{K}^0$	< 2.0	\times 10 ⁻⁶	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 ⁻²	95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6	5)%		5240
$\phi \eta$	< 1.8	\times 10 ⁻⁶	90%	5226
$\phi\eta'$	< 4.3	\times 10 ⁻⁶	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
$ ho\eta'$	< 2.5	\times 10 ⁻⁶	90%	5217
$\varUpsilon(1S)$ anything	< 4	\times 10 ⁻³	90%	1053
\varUpsilon (1S) $\pi^+\pi^-$	(8.2 ± 0.4)	∤) × 10 ⁻⁵	5	1026

$\varUpsilon(1S)\eta$	$(1.81\pm0.18)\times10^{-4}$	92	4
$\Upsilon(1S)\eta'$	$(3.4 \pm 0.9) \times 10^{-5}$	-	_
$\Upsilon(2S)\pi^+\pi^-$	(8.2 ± 0.8) $\times 10^{-5}$	46	8
$h_b(1P)\pi^+\pi^-$	not seen	60	0
$h_b(1P)\eta$	$(2.18\pm0.21)\times10^{-3}$	39	0
$\eta_b(1S)\omega$	$< 1.8 \times 10^{-4}$	90%	_
$\overline{^2H}$ anything	$< 1.3 \times 10^{-5}$	90%	_

Double Radiative Decays

$$\gamma \gamma \Upsilon(\mathsf{D})
ightarrow \gamma \gamma \eta \Upsilon(1S)$$
 < 2.3 $\times 10^{-5}$ 90%

$Z_b(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

was X(10610)

Mass $m=10607.2\pm2.0$ MeV Full width $\Gamma=18.4\pm2.4$ MeV

<i>Z_b</i> (10610) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
$\Upsilon(2S)\pi^+$	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
$\Upsilon(3S)\pi^+$	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^{+}\overline{B}{}^{0}$	not seen	505
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})\%$	-

$Z_b(10650)$

$$I^G(J^{PC}) = 1^+(1^+-)$$

I, G, C need confirmation.

Created: 8/11/2022 09:37

was $X(10650)^{\pm}$

Mass $m=10652.2\pm1.5~{\rm MeV}$ Full width $\Gamma=11.5\pm2.2~{\rm MeV}$

 $Z_b(10650)^-$ decay modes are charge conjugates of the modes below.

<i>Z_b</i> (10650) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(1S)\pi^+$	$(1.7^{+0.8}_{-0.6}) \times 10^{-3}$	1117
Υ (2S) π^+	$(1.4^{+0.6}_{-0.4})\%$	595
Υ (3 <i>S</i>) π^+	$(1.6^{+0.7}_{-0.5})\%$	259
$h_b(1P)\pi^+$	$(8.4^{+2.9}_{-2.4})\%$	714
$h_b(2P)\pi^+$	(15 ± 4)%	360
$B^{+}B^{0}$	not seen	703
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^0$	not seen	_
$B^{*+}\overline{B}^{*0}$	$(74 \begin{array}{cc} +4 \\ -6 \end{array})\%$	122

T(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 10885.2^{+2.6}_{-1.6} \text{ MeV}$ Full width $\Gamma = 37 \pm 4 \text{ MeV}$

7(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	(76.2 +2.7) %		_
В <u>В</u>	(5.5 ± 1.0) %		1322
$B\overline{B}^*+$ c.c.	(13.7 ± 1.6) %		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1127
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1015
$B\overline{B}\pi$	(0.0 ± 1.2)%		1015
$B^*\overline{B}\pi + B\overline{B}^*\pi$	(7.3 \pm 2.3) %		_
$B^*\overline{B}^*\pi$	(1.0 ± 1.4) %		739
$B\overline{B}\pi\pi$	< 8.9 %	90%	551
$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 \pm 3.1) %		905
$B_s \overline{B}_s$	$(5 \pm 5) \times$	₁₀ -3	905
$B_s \overline{B}_s^* + \text{c.c.}$	$(1.35\pm0.32)\%$		_
$B_s^*\overline{B}_s^*$	(17.6 \pm 2.7) %		543
no open-bottom	($3.8 \stackrel{+}{-} \stackrel{5.0}{-} 0.5$) %		_
e^+e^-	(8.3 ± 2.1) $ imes$	10^{-6}	5443
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5395
$\Upsilon(1S)\pi^+\pi^-$	(5.3 \pm 0.6) $ imes$	10 ⁻³	1306
$\Upsilon(1S)\eta$	(8.5 ± 1.7) \times	10-4	1229
$\Upsilon(1S)\eta'$	< 6.9 ×	10^{-5} 90%	985

$\Upsilon(2S)\pi^+\pi^-$	(7.8 ±1.3	$) \times 10^{-3}$		783
$\Upsilon(2S)\eta$	($4.1\ \pm0.6$	$) \times 10^{-3}$		639
$\Upsilon(3S)\pi^+\pi^-$	($4.8 \begin{array}{l} +1.9 \\ -1.7 \end{array}$	$) \times 10^{-3}$		440
$\Upsilon(1S) K^+ K^-$	(6.1 ±1.8	$) \times 10^{-4}$		959
$\eta \ \varUpsilon_{J}(1D)$	($4.8\ \pm1.1$	$) \times 10^{-3}$		_
$h_b(1P)\pi^+\pi^-$	($3.5 \begin{array}{c} +1.0 \\ -1.3 \end{array}$	$) \times 10^{-3}$		903
$h_b(2P)\pi^+\pi^-$	($5.7 \begin{array}{c} +1.7 \\ -2.1 \end{array}$	$) \times 10^{-3}$		544
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	($2.5\ \pm2.3$	$) \times 10^{-3}$		894
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	<	6.3		90%	894
$\chi_{b0}(1P)\omega$	<	3.9		90%	631
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	<	4.8	$\times 10^{-3}$	90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.85 ± 0.33	$3) \times 10^{-3}$		861
$\chi_{b1}(1P)\omega$	(1.57 ± 0.30	$0) \times 10^{-3}$		582
$\chi_{b1}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	($5.2\ \pm1.9$	$) \times 10^{-4}$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0.30	$0) \times 10^{-3}$		841
$\chi_{b2}(1P)\omega$	($6.0\ \pm2.7$	$) \times 10^{-4}$		552
$\chi_{b2}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(6 ± 4	$) \times 10^{-4}$		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	<	3.8	$\times 10^{-5}$	90%	_
$\eta_b(1S)\omega$	<	1.3	$\times 10^{-3}$	90%	1177
$\eta_b(2S)\omega$	<	5.6	\times 10 ⁻³	90%	399

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

ϕ anything	$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$
D^0 anything $+$ c.c.	(108 ±8)% -
D_s anything $+$ c.c.	(46 ±6) % -
J/ψ anything	(2.06±0.21) % –
B^0 anything $+$ c.c.	(77 ±8) % —
B^+ anything $+$ c.c.	(72 ±6) % -

T(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=11000\pm4$ MeV Full width $\Gamma=24^{+8}_{-6}$ MeV

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(5.4^{+1.9}_{-2.1}) \times 10^{-6}$	5500
$\chi_{b,I}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) \times 10^{-3}$	1007

HTTP://PDG.LBL.GOV

Page 187

 $\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$ seen 975 $\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$ seen 956

NOTES

- [a] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} , but they are model dependent and for the summary value we use the best laboratory limit, which includes any final state of invisible particles.
- [f] Forbidden by angular momentum conservation.
- [g] C parity forbids this to occur as a single-photon process.
- [h] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e \mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [i] Our estimate. See the Particle Listings for details.
- [j] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [k] See also the $\omega(1650)$.
- [/] See also the $\omega(1420)$.
- [n] See the note in the K^{\pm} Particle Listings.
- [o] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [p] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [q] For more details and definitions of parameters see the Particle Listings.
- [r] See the K^{\pm} Particle Listings for the energy limits used in this measurement.

- [s] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [t] Structure-dependent part.
- [u] Direct-emission branching fraction.
- [v] Violates angular-momentum conservation.
- [x] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [y] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= |\eta_{+-}| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon' \\ \eta_{00} &= |\eta_{00}| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \;, \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \;, \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \;. \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [z] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [aa] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [bb] $\text{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [cc] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [dd] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [ee] Allowed by higher-order electroweak interactions.
- [ff] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.

- [gg] See our minireview under the $K_2(1770)$ in the 2004 edition of this *Review*.
- [hh] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
 - [ii] See the Particle Listings for the (complicated) definition of this quantity.
 - [jj] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [kk] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [//] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_5 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [nn] The unseen decay modes of the resonances are included.
- [oo] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [pp] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [qq] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [rr] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [ss] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [tt] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [uu] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.17 \pm 0.17 %.
- [vv] This is a doubly Cabibbo-suppressed mode.
- [xx] Submodes of the $D^0 oup K^0_S \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [yy] This branching fraction includes all the decay modes of the resonance in the final state.
- [zz] This limit is for either D^0 or $\overline{D}{}^0$ to pe^- .

- [aaa] This limit is for either D^0 or $\overline{D}{}^0$ to $\overline{p}e^+$.
- [bbb] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an η , η' , ϕ , K^0 , or K^{*0} is 5.99 \pm 0.31 %.
- [ccc] This fraction includes η from η' decays.
- [ddd] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [eee] This branching fraction includes all the decay modes of the final-state resonance.
- [fff] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [ggg] We decouple the $D_s^+ o \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ o \phi \pi^+$, $\phi o K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ o K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi o K^+ K^-$ branching fraction 0.491.
- [hhh] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
 - [iii] An ℓ indicates an e or a μ mode, not a sum over these modes.
 - [jjj] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 system.
- [kkk] D denotes D^0 or \overline{D}^0 .
 - [///] D_{CP+}^{*0} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [nnn] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [ooo] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [ppp] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [qqq] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [rrr] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [sss] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [ttt] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².

- [uuu] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- $[vvv] \Theta(1540)^+$ denotes a possible narrow pentaguark state.
- [xxx] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [yyy] These values are model dependent.
- [zzz] Here "anything" means at least one particle observed.
- [aaaa] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [bbaa] D^{**} stands for the sum of the $D(1\,{}^{1}\!P_{1})$, $D(1\,{}^{3}\!P_{0})$, $D(1\,{}^{3}\!P_{1})$, $D(1\,{}^{3}\!P_{2})$, $D(2\,{}^{1}\!S_{0})$, and $D(2\,{}^{1}\!S_{1})$ resonances.
- [ccaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ddaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [eeaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [ffaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ggaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [hhaa] For $E_{\gamma} > 100$ MeV.
- [iiaa] $\Theta(1540)$ is a hypothetical pentaquark state of 1.54 GeV/c² mass and a width of less than 25 MeV/c².
- [jjaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [kkaa] For a narrow state A with mass less than 960 MeV.
- [llaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [nnaa] For a dark photon U with mass between 100 and 2100 MeV.
- [ooaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [ppaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
- [qqaa] $2m_{ au} < M(au^+ au^-) < 9.2 \; {\sf GeV}$
- [rraa] $2 \text{ GeV} < m_{K^+K^-} < 3 \text{ GeV}$
- [ssaa] X = scalar with m < 8.0 GeV
- [ttaa] $X\overline{X}$ = vectors with m < 3.1 GeV
- [uuaa] X and \overline{X} = zero spin with m < 4.5 GeV
- $[\textit{vvaa}]~1.5~\text{GeV} < \textit{m}_{\textit{X}} < 5.0~\text{GeV}$
- [xxaa] 201 MeV < M($\mu^+\mu^-$) < 3565 MeV

- [yyaa] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.
- [zzaa] Spectroscopic labeling for these states is theoretical, pending experimental information.
- [aabb] $1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$
- $[bbbb]~1.5~{
 m GeV} < m_X < 5.0~{
 m GeV}$
- [ccbb] For $m_{\tau^+\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.