Physics 3A Lab

Accelerated Motion in 1-Dimension

Name	Instructor OK
------	---------------

INTRODUCTION

In this experiment we shall analyze motion in 1-dimension. We will consider a body accelerating at a *nearly constant rate* down a nearly frictionless slope to test a hypothesis originally proposed by Galileo.

MOTION WITH UNIFORM GRAVITATIONAL ACCELERATION

Galileo was the first physicist to systematically study accelerated motion. He concluded that, in the absence of air resistance, all bodies accelerate *vertically* under the influence of gravity at *exactly the same rate*,

$$a = g = 980.0 \text{ cm/s}^2$$

Vertical Motion

independent of their weight. On the other hand, a body placed on a horizontal frictionless surface has NO acceleration,

What will happen to a body placed on a sloping surface, like that shown below, which is neither vertical ($\mathbf{a} = \mathbf{g}$) nor horizontal ($\mathbf{a} = \mathbf{0}$)?

Figure 1: Geometry of air track inclined at angle θ . **a** is the acceleration of the air car down the track. **g** is the vertical acceleration of gravity.

It seems reasonable that such a body will accelerate at a rate somewhere between ${\bf 0}$ and ${\bf g}$, the exact value depending on the SLOPE of the surface. A detailed analysis led Galileo to the prediction:

$$a = g \sin \theta$$
 Galileo's Equation

where θ is the angle between the slope and the horizontal. We will test this hypothesis in today's experiment by measuring the acceleration of an air car on a nearly frictionless air track inclined at various angles.

_					
D	RO	\sim E	n	ID	_
	RU		IJ	JIC	Е.

1.	Watch the introduction video by Tim McKnew to become familiar with the operation
	of the air track and video analysis software, Tracker. Then watch the data run video
	which shows the raw video of a run followed by the Tracker analysis of it. The data
	video also includes each run's height, h.

	g =	cm/s ²		
2.	Obtain	n a value for the acceleration of gravity in	the	lab.

3.	The air track is lifted under one leg by a certain height h. The distance between the
	legs on the air track is exactly 100.0 cm. Based on this information, calculate the
	angles of inclination of the air track. $Sin(\theta) = h/100$. A small error in calculation will
	make a big difference in the accuracy of the results.

Run Number	Height, h (cm)	Angle, θ

4. The video analysis produces motion data in columns as time t, position along the track x, position perpendicular to the track y, and velocity along the track v_x. Make a copy of the <u>Accelerated Motion Data Google Sheet</u>. For all four data runs, make a plot of x versus t. Sketch the plots below. Describe the motion shown in two of the plots, especially any features. [Hint: use the data video to help!]

Instructor OK

- 5. For **EACH ANGLE**, do **ALL** of the following:
 - a. Record your precise angles in the table below.
 - b. Use Galileo's equation to calculate a theoretical acceleration, \mathbf{a}_{th} , for each angle. Enter them into the table.
 - c. Plot a graph of **v** vs **t** below the plot of x vs t. Add a linear trendline to the velocity plot [Customize -> Series -> check "Trendline" and under Label -> "Use Equation"]. Study both plots to determine a reasonable range of values over which to perform a linear fit on the v vs t data. Adjust the data range of the velocity and time data.
 - d. Use the linear trendline equation to determine the average acceleration of the air car. Enter the experimental value of a_{exp} into the Table. Calculate the % error of the experimental value of **a** from the **a** predicted by Galileo's theory.
 - e. If the % error is large, summon your instructor for immediate help.

	Results for Ac	celeration on Inc	lined Air Track	
Run	θ (°)	ath (cm/s ²)	a _{exp} (cm/s ²)	% Error
Level track				N/A
1st angle				
2nd angle				
3rd angle				

6.	For a level track the acceleration should be zero. How do you account for the
	difference between theory and measurement, if any? How could this affect your later
	results?

7.	Have your	work	checked	by	your	instructor.
----	-----------	------	---------	----	------	-------------

	4		017
ıns	stru	ıctor	OK

_			_	
Oı.	IECTIC	NIC TO	$\Delta \Lambda MC$	WFR'

5.	On the basis of your measurements, how valid is Galileo's hypothesis?
4.	It is often stated that Galileo never actually measured the acceleration of a body falling vertically but always used an inclined plane at a relatively shallow angle. Considering the technology available in his time, why might he have done this?
3.	Suppose the acceleration, <i>a</i> , of the air car in this experiment was not actually constant. How could you tell this from your graphs of <i>v</i> versus <i>t</i> ? What would the graphs look like if <i>a</i> were decreasing? Increasing?
` ,	Testing certain values of Galileo's prediction Show that Galileo's hypothesis gives reasonable results for acceleration in the limiting cases of a horizontal air track and a vertical air track. At what angle would you get an acceleration equal to $\frac{1}{2}$ g?
1.	How do your measured accelerations compare with the theoretical ones? Are they consistently high or low? Can you explain the discrepancies between the values?