Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №14

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Указатели

Задание 6

Студенты:

Соболь В.

Темнова А.С.

<u>Группа: 13541/3</u>

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Скрипт	4
3.	Решение 1а	5
	3.1. Исходный код	5
	3.2. Моделирование	
	3.3. Синтез	
	3.4. C/RTL моделирование	9
4.	Решение 2а	9
	4.1. Исходный код	9
	4.2. Моделирование	
	4.3. Синтез	
	4.4. C/RTL моделирование	
5.	Вывол	12

1. Задание

- 1. Создать проект lab14 6
- 2. Микросхема: xa7a12tcsg325-1q
- 3. В папке source текст функции pointer_multi Познакомътесъ с ним.
- 4. Познакомьтесь с тестом.
- 5. Исследование:
- 6. Solution 1a
 - Осуществить моделирование
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму

Обратить внимание на реализацию интерфейсов.

- 7. сделать выводы по работе с указателями.
- 8. Solution_2a предложить другой вариант функции без использования указателей + создать тест
 - Осуществить моделирование
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile

- * Resource profile
- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 9. Сравнить два решения (solution 1a и solution 2a) и сделать выводы

2. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab14 6 ptr
2
3
  add files pointer multi.c
  add_files -tb pointer_multi_test.c
  add files -tb result.golden.dat
  set top pointer multi
8
  open_solution -reset solution_1a
  set_part \{xa7a12tcsg325-1q\}
10
  create clock -period 10ns
11
  set clock uncertainty 0.1
12
13
14 csim design
15 csynth design
16 cosim design -trace level all
17
18
  open project -reset lab14 6 no ptr
19
20 add_files no_ptr.c
21 add files -tb pointer multi test.c
22 add files -tb result.golden.dat
23 set top pointer multi
24
25
  open solution -reset solution 2a
26
  set\_part \ \{xa7a12tcsg325-lq\}
27
  create_clock -period 10ns
28
29
  set clock uncertainty 0.1
30
31 csim_design
32 csynth design
  cosim design -trace level all
33
34
35
  exit
```

Рис. 2.1. Скрипт

3. Решение 1а

3.1. Исходный код

Ниже приведен исходный код устройства и теста.

```
#include "pointer multi.h"
2
3
  dout_t pointer_multi (sel_t sel, din_t pos) {
     static const dout_t a[8] = \{1, 2, \overline{3}, 4, 5, 6, 7, 8\};
4
5
     static const dout_t b[8] = \{8, 7, 6, 5, 4, 3, 2, 1\};
6
7
     dout_t* ptr;
8
     if (sel)
9
       ptr = a;
10
     _{
m else}
11
       ptr = b;
12
13
     return ptr[pos];
14|}
```

Рис. 3.1. Исходный код устройства

```
#ifndef _POINTER_MULTI_H_
#define _POINTER_MULTI_H_

#include <stdio.h>
#include <stdbool.h>

typedef unsigned char din_t;

typedef int dout_t;

typedef bool sel_t;

dout_t pointer_multi (bool sel, din_t pos);

#endif
```

Рис. 3.2. Заголовочный файл

```
1 #include "pointer multi.h"
2
3 int main () {
     \operatorname{din}_{t}\operatorname{idx}=0;
4
5
     sel t mem sel=true;
6
     dout t dout;
7
8
     int i, retval=0;
9
     FILE
                    *fp;
10
11
     // Save the results to a file
     fp=fopen("result.dat", "w");
12
13
     // Call the function
14
     // Create Input Data
15
     for(i=0; i<8;++i)
16
        dout=pointer_multi ( mem_sel, idx);
17
        fprintf(fp, "%d_\N", dout);
18
19
       idx=idx+1;
20
       mem sel=!mem sel;
21
22
23
     fclose (fp);
24
     // Compare the results file with the golden results
25
     retval = system("diff_--brief_-w_result.dat_result.golden.dat");
26
27
     if (retval != 0) {
        printf("Test_failed__!!!\n");
28
29
        retval=1;
30
     } else {
31
        printf("Test_passed_!\n");
32
33
34
     // Return 0 if the test passed
35
     return retval;
36|}
```

Рис. 3.3. Исходный код теста

3.2. Моделирование

Ниже приведены результаты моделирования.

Рис. 3.4. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

3.3. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	4.627	0.10

□ Latency (clock cycles)

□ Summary

Latency		Interval		
min	max	min	max	Туре
1	1	1	1	none

Рис. 3.5. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	4
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	0	-	8	2
Multiplexer	-	-	-	15
Register	-	-	2	-
Total	0	0	10	21
Available	40	40	16000	8000
Utilization (%)	0	0	~0	~0

Рис. 3.6. Utilization estimates

Рис. 3.7. Performance profile

Рис. 3.8. Scheduler viewer

	Resource\Control Step	C0	C1
1	⊡I/O Ports		
2	pos_r	read	
3	sel		read
4	ap_return		ret
5	⊡Memory Ports		
6	a(p0)	re	ad
7	b (0q) d	re	ad
8	-Expressions		
9	tmp_1_fu_66		select

Рис. 3.9. Resource viewer

3.4. С/RTL моделирование

Рис. 3.10. Временная диаграмма

Как видно по результатам, задержка в данном решении составляет 1 такт.

4. Решение 2а

4.1. Исходный код

Ниже приведен исходный код устройства.

```
#include "pointer_multi.h"

dout_t pointer_multi (sel_t sel, din_t pos) {
   if (sel){
      return 1 + pos;
   } else {
      return 8 - pos;
   }
}
```

Рис. 4.1. Исходный код устройства

Исходный код заголовочного файла и теста соответствуют предыдущему решению.

4.2. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.2. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

4.3. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

∃ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	3.485	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Interval		
min	max	min	max	Туре
0	0	0	0	none

Рис. 4.3. Performance estimates

Utilization Estimates

Summary

BRAM_	18K	DSP48	E FF	LUT
-		-	-	-
-		-	0	42
-		-	-	-
-		-	-	-
-		-	-	-
-		-	-	-
-		-	-	-
	0	(0 0	42
	40	4	016000	8000
	0	(0 0	~0
	BRAM	- - - - - - -		0 0 0

- Dotail

Рис. 4.4. Utilization estimates

Рис. 4.5. Performance profile

Operation\Control Step	0
pos_read(read) sel_read(read) tmp_1(+) tmp_3(-) p_0(select)	

Рис. 4.6. Scheduler viewer

	Resource\Control S	C0
1	⊡I/O Ports	
2	pos_r	read
3	sel	read
4	ap_return	ret
5	Expressions	
6	tmp_1_fu_36	+
7	tmp_3_fu_46	-
8	p_0_fu_56	select

Рис. 4.7. Resource viewer

4.4. C/RTL моделирование

Рис. 4.8. Временная диаграмма

Как видно по результатам, задержка в данном решении отсутствует. Также, в сравнении с предыдущим решением, значительно снизились затраты ресурсов.

5. Вывод

В ходе данной лабораторной работы было выяснено, что по возможности следует избегать работы с массивами и указателями, так как это влечёт за собой дополнительные расходы.