# Fonctions holomorphes

Christophe Antonini<sup>1</sup>, Olivier Teytaud<sup>2</sup>, Pierre Borgnat<sup>3</sup>, Annie Chateau<sup>4</sup>, and Edouard Lebeau<sup>5</sup>

<sup>1</sup>Enseignant en CPGE, Institut Stanislas, Cannes <sup>2</sup>Chargé de rechercher INRIA, Université d'Orsay, Orsay <sup>3</sup>Chargé de recherche CNRS, ENS Lyon, Lyon <sup>4</sup>Maitre de conférence, Université Montpellier-2, Montpellier <sup>5</sup>Enseignant en CPGE, Lycée Henri Poincaré, Nancy

26 juillet 2023



Compléments sur les fonctions holopmorphes.

## 1 Fonctions holomorphes

Un ouvrage de référence est [1], dont nous suivons ici la démarche. Après les généralités (1.1), on verra le théorème de Cauchy (1.2), quelques éléments de topologie (1.3), et enfin divers éléments périphériques rassemblés en section "zoologie" (1.4).

## 1.1 Généralités

On va ici se préoccuper de fonctions de  $\Omega$  dans  $\mathbb{C}$ , avec  $\Omega$  un ouvert de  $\mathbb{C}$ .

## Définition 0.1 dérivable au sens complexe en $a \in \Omega$ si

Une fonction est dite **dérivable au sens complexe en**  $a \in \Omega$  **si**  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$  existe et est finie. On note alors cette limite f'(a).

Une fonction est dite **holomorphe sur**  $\Omega$  si elle est dérivable au sens complexe en tout point de  $\Omega$ . On note  $H(\Omega)$  l'ensemble des fonctions holomorphes sur  $\Omega$ .

On notera D(a,r) (resp. D'(a,r)) avec r > 0 l'ensemble des x de  $\Omega$  tels que |x-a| < r (resp. 0 < |x-a| < r).

Un domaine est un ouvert connexe non vide.

On remarque immédiatement que :

- $H(\Omega)$  est un anneau pour l'addition et la multiplication usuelles, et on a pour  $f, g \in H(\Omega)$ : (f+g)'=f'+g' et (fg)'=f'g+fg'.
  - la composée de deux fonctions holomorphes est holomorphe, avec  $(f \circ g)' = g' \times (f' \circ g)$ .
  - tout polynôme est holomorphe sur  $\mathbb C$
  - l'inverse d'une fonction holomorphe ne s'annulant pas est holomorphe
  - l'exponentielle complexe est holomorphe sur  $\mathbb C$
- toute série entière est holomorphe à l'intérieur de son disque de convergence; et si  $f(z) = \sum_{n=0}^{\infty} c_n \cdot (z-a)^n$ , alors  $f'(z) = \sum_{n=1}^{\infty} n \cdot c_n \cdot (z-a)^{n-1}$

## 1.2 Le théorème de Cauchy

On verra ici le théorème de Cauchy et de très nombreuses implications importantes; les fonctions holomorphes sont indéfiniment dérivables, une fonction holomorphe est localement bijective, au voisinage de tout point où sa dérivée est non nulle, les zéros des fonctions holomorphes non nulles sont isolés, une fonction holomorphe est entièrement déterminée dans un disque par ses valeurs à la frontière de ce disque (attention au détails des hypothèses, notamment de connexité, plus bas).

#### Proposition 0.1

Soit  $\mu$  une mesure complexe sur un espace mesurable X,  $\phi$  une fonction complexe mesurable,  $\Omega$  un ouvert du plan qui ne rencontre pas  $\phi(X)$ . Alors avec

$$f(z) = \int_{X} \frac{d\mu(t)}{\phi(t) - z}$$

définie pour  $z \in \Omega$ , on a  $f \in H(\Omega)$ .

#### Démonstration

- •On développe en série entière  $1/(\phi(t)-z)$  sur un disque suffisamment petit pour être inclus dans  $\Omega$  et pour que la convergence soit uniforme.
- On permute alors l'intégrale et la somme (merci la convergence uniforme), et on obtient bien le résultat désiré.

## Définition 0.2 **courbe**

On appelle **courbe** une application continue d'un intervalle [a, b] de  $\mathbb{R}$  dans  $\mathbb{C}$ .

On appelle **chemin** une application continue  $C^1$  par morceaux d'un intervalle [a,b] de  $\mathbb{R}$  dans  $\mathbb{C}$ .

Une courbe ou un chemin  $\gamma$  est dit **fermé** si  $\gamma(a) = \gamma(b)$ .

Etant donné  $\gamma$  une courbe, on note  $\gamma^*$  l'image de [a,b] par  $\gamma$ .

Etant donné  $\gamma$  un chemin et f une fonction continue sur  $\gamma^*$ , on note  $\int_{\gamma} f(z).dz$  l'intégrale  $\int_{[a,b]} f(t).\gamma'(t).dt$ , on appelle cette intégrale l'intégrale de f le long de  $\gamma$ .

Deux chemins  $\gamma$  et  $\tilde{\gamma}$  sont dits équivalents, si pour toute fonction f continue sur  $\gamma^*$  et  $\tilde{\gamma}^*$  l'intégrale de f le long de  $\gamma$  est égale à l'intégrale de f le long de  $\tilde{\gamma}$ .

La **longueur** d'un chemin  $\gamma$  est  $\int_{-b}^{b} |\gamma'(t)| dt$ .

On appelle indice de z pour  $z\in\Omega$  par rapport à  $\gamma,$  avec  $\Omega$  le complémentaire de  $\gamma^*,$  le complexe

 $Ind_{\gamma}(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{dt}{t - z}$ 

**Remarque** si  $\phi$  est une fonction  $C^1$  de [a,b] dans [c,d], si  $\gamma$ ,  $\tilde{\gamma}$  sont des chemins d'intervalles de définitions respectifs [a,b] et [c,d] tels que  $\gamma = \tilde{\gamma} \circ \phi$  alors l'intégrale le long de  $\gamma$  est la même que l'intégrale le long de  $\gamma'$ ; c'est-à-dire qu'un reparamétrage  $C^1$  transforme un chemin en un chemin équivalent.

## Théorème 0.2 Indice

Soit  $\Omega$  le complémentaire de  $\gamma^*$ . L'indice de z par rapport à  $\gamma$  est entier, constant sur chaque composante connexe de  $\Omega$ , et nul sur la seule composante connexe de  $\Omega$  qui ne soit pas bornée.

#### Démonstration

- •Pour voir qu'il y a une seule composante connexe non bornée, c'est facile, il suffit de voir que  $\gamma^*$  est inclus dans un disque; le complémentaire de ce disque est connexe et donc inclus dans une composante connexe.
- •Pour voir que l'indice est un entier, on suppose l'arc défini sur [0,1], on considère la fonction qui à t associe  $\exp(\int_0^t \frac{\gamma'(u)}{\gamma(u)-z}.du)$ . En dérivant cette fonction, on obtient qu'elle est proportionnelle à  $\gamma(t)-z$ . Ainsi,

$$\exp\left(2i\pi Ind_{\gamma}(z)\right) = 1.$$

- •On déduit de ça que notre fonction prend la valeur 1 en 1, ce qui est juste ce qu'il nous fallait pour que l'indice soit entier.
- •L'indice est constant sur chaque composante connexe, puisqu'il est continu et que chaque composante connexe a donc une image connexe.
- $ullet |\frac{1}{2i\pi}\int_0^1 \frac{\gamma'(s).ds}{\gamma(s)-z}| \leq |\frac{M}{2\pi}\int_0^1 \gamma'(s).ds|$ , avec M un majorant de  $|\frac{1}{\gamma(s)-z}|$ . M tendant vers 0 pour z tendant vers l'infini, l'indice est de module inférieur à 1 pour z assez grand, et donc il est nul sur la composante connexe non bornée.

Quelques remarques:

- On montre facilement que l'indice d'un point z par rapport au chemin  $[0,1] \to \mathbb{C}, t \mapsto e^{2i\pi .t}$ , est 1 si |z| < 1 et 0 sinon.
- Il peut être adéquat de prendre le temps d'établir qu'une seule composante connexe est non bornée.
- On montre facilement que l'intégrale de la dérivée d'une fonction holomorphe le long d'une chemin fermé est nulle. Par suite, l'intégrale d'un polynôme le long d'un chemin fermé est nulle.

## LEMME 0.3 Théorème de Cauchy dans le cas d'un triangle dans un convexe

Soit un triangle de sommets a, b et c. L'intégrale le long de ce triangle est en fait l'intégrale suivant [a,b], plus l'intégrale suivant [c,a].

On suppose  $\Omega$  convexe contenant a, b et c.

Alors soit f une fonction continue sur  $\Omega$ , et holomorphe sur  $\Omega \setminus \{p\}$ , avec  $p \in \Omega$ .

Alors l'intégrale de f le long du triangle est nulle.

(On montrerait facilement le même résultat pour un carré où n'importe quel autre polygone, en le triangulant)

#### Démonstration

Il faut distinguer trois cas

•p n'est sur aucun des trois côtés du triangle. Alors on coupe le triangle en quatre plus petits triangles, comme sur la figure ?? (schéma de gauche), et on constate que l'intégrale sur au moins l'un des triangles doit être de valeur absolue le quart de la valeur absolue de l'intégrale le long du gros triangle; or la longueur du petit triangle est la moitié de la longueur du gros. On construit ainsi par récurrence une suite de triangles  $\mathbb{D}_n$  de longueur  $L.2^{-n}$ . On considère le point x, intersection des triangles.

Soit  $\epsilon$  un réel > 0. f est dérivable en x. Il existe donc un triangle  $\mathbb{D}_n$  tel que pour z dans  $\mathbb{D}_n$ ,  $f(z) - f(x) - f'(x) \cdot (z - x)$  est de module inférieur à  $\epsilon \cdot |z - x|$ . Or l'intégrale d'une fonction polynôme sur un chemin fermé est nulle, puisqu'un polynôme est la dérivée d'un autre polynôme.

On obtient ainsi que l'intégrale le long du petit triangle est majorée par  $\epsilon \cdot (2^{-n} \cdot L)^2$ ; et puisque l'intégrale sur le grand triangle initial est majorée par  $4^n$  fois le module de l'intégrale sur le triangle  $\mathbb{D}^n$ , on en déduit que cette intégrale est nulle.

- •On suppose maintenant que p est égal à a (b ou c se traitent bien sûr de même). Alors on place x et y comme sur la figure ?? (schéma de droite); l'intégrale de f sur les triangles xyb et ybc est nulle; et celle sur axy peut être rendue aussi petite qu'on le souhaite, puisqu'il suffit de faire tendre x et y vers a (rappelons que f est continue, sur un compact, donc bornée).
- ullet Supposons maintenant que p soit un point de ]a,b[; il suffit alors de raisonner sur abp, bcp et cap pour conclure.



Attention Ceux qui ont un peu d'avance auront constaté que l'hypothèse implique en fait que f soit holomorphe sur tout  $\Omega$ ; mais nous avons besoin de notre lemme avec ces hypothèses-ci afin d'arriver à prouver les résultats qui suivent.

On passe maintenant à une version un peu plus forte :

## Théorème de Cauchy dans un ensemble convexe

On suppose  $\Omega$  ouvert et convexe, p dans  $\Omega$ , f continue sur  $\Omega$  et  $f \in H(\Omega \setminus \{p\})$ . Alors l'intégrale de f le long de  $\gamma$  est nulle pour tout chemin  $\gamma$  fermé tel que  $\gamma^* \subset \Omega$ . **Démonstration** On fixe un point a de  $\Omega$ , et on définit F(z) pour z dans  $\Omega$  comme l'intégrale sur [a,z] de f.

On raisonne alors sur des triangles a, z, x pour considérer la limite de  $\frac{F(z)-F(x)}{z-x}$  pour x tendant vers z. On montre facilement que cette limite est f, et donc que f est une dérivée et est continue, et donc le résultat est clair.

## THÉORÈME 0.5 Formule de Cauchy dans un ensemble convexe

On se donne  $\gamma$  un chemin fermé dans un ouvert convexe  $\Omega$ , et f holomorphe sur  $\Omega$ . Si  $z \in \Omega$  et  $z \notin \gamma^*$  alors

$$f(z).Ind_{\gamma}(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(u)}{u-z}.du$$

#### Démonstration

On se donne z vérifiant les hypothèses. On définit alors g par  $g(u) = \frac{f(u) - f(z)}{u - z}$  si  $u \in \Omega$  et  $u \neq z$ , et g(z) = f'(z).

La fonction g est continue, et holomorphe en tout point de  $\Omega \setminus \{z\}$ , donc d'après le théorème 0.4, on a  $\int_{\gamma} g(u).du = 0$ . En coupant g en ses deux termes  $\frac{f(u)}{u-z}$  et  $\frac{f(z)}{u-z}$ , on obtient le résultat désiré. On arrive maintenant à un résultat fondamental d'analyse complexe, facilement démontrable

On arrive maintenant à un résultat fondamental d'analyse complexe, facilement démontrable grâce aux résultats qui précèdent.

## THÉORÈME 0.6 Développement en série entière des fonctions holomorphes

Toute fonction holomorphe est développable en série entière.

**Démonstration** On se donne a dans  $\Omega$ , et un disque suffisamment réduit D(a,r) centré en a pour être inclus dans  $\Omega$ .

Alors on applique la formule de Cauchy (théorème 0.5) à f sur le convexe D(a,r), avec pour  $\gamma$  l'application de [0,1] dans  $\mathbb C$  définie par  $t\mapsto a+re^{2i\pi.t}$ .

On obtient une expression de f(z) qui permet d'appliquer la proposition 0.1, et on a fini.

Remarquons qu'une fonction holomorphe est développable en série entière, donc sa dérivée est développable en série entière, donc sa dérivée est holomorphe. La dérivée d'une fonction holomorphe est donc une fonction holomorphe. En fait une fonction  $\mathbb{C}$ -dérivable (i.e. dérivable au sens complexe) est  $C^{\infty}$ .

Enfin un théorème qui peut servir et qui n'est pas difficile à montrer avec les outils que nous avons définis ci-dessus :

#### Théorème de Morera

Soit f une fonction continue complexe dans un ouvert  $\Omega$  dont l'intégrale sur tout triangle est nulle. Alors f est holomorphe sur  $\Omega$ .

#### Démonstration

ullet On considère un disque ouvert D inclus dans  $\Omega$  centré sur a.

- •On construit une fonction F sur D dont f est la dérivée, par  $F(z) = \int_{[a,z]} f(u).du$  (on utilise le fait que le disque est convexe).
  - $\bullet F$  est holomorphe, donc sa dérivée f est holomorphe.
- •Puisque tout cela est valable pour n'importe quel disque inclus dans  $\Omega$ , f est holomorphe sur  $\Omega$ . Application Voir le théorème 0.13.

Maintenant on va voir plein de conséquences de ces importants théorèmes.

#### Théorème 0.8

Soit f une fonction holomorphe sur  $\Omega$  un ouvert connexe. Soit Z l'ensemble des z tels que f(z)=0. Alors soit Z est égal à  $\Omega$ , soit Z n'a pas de point d'accumulation dans  $\mathbb C$ .

Si Z n'est pas  $\Omega$  alors peut pour tout a dans Z trouver un entier positif unique m tel que  $f(z) = (z-a)^m g(z)$ , avec g holomorphe non nulle en a. L'ensemble des zéros de f est dans ce cas au plus dénombrable.

**Apllication** On verra une belle application de ce théorème avec le théorème de Runge 0.23. **Démonstration** Soit Z' l'ensemble des points d'accumulation de Z.  $Z' \subset Z$ , car f étant continue, Z est fermé.

On considère le développement en série entière de f sur un disque D centré sur a quelconque dans Z :

$$f(z) = \sum_{n \in \mathbb{N}} c_n . (z - a)^n$$

pour tout  $z \in D$ .

Si les  $c_n$  ne sont pas tous nuls, on considère le plus petit entier m tel que  $c_m \neq 0$ . On sait alors que g, définie par  $g(z) = \frac{f(z)}{(z-a)^m}$  si  $z \neq a$  et  $g(a) = c_m$ , vérifie les conditions demandées. Par continuité de g, on peut alors déduire que a est un point isolé de Z, puisque g est non nul sur un voisinage de a.

Le fait que Z ne contienne aucun point d'accumulation implique que Z contient un nombre fini de points sur toute boule de rayon n, et donc que Z est au plus dénombrable.

De tout ça on déduit que si a est dans Z', alors il y a un disque autour de a qui est aussi dans Z'. Donc Z' est ouvert, puisqu'il contient un disque centré sur a pour tout a dans Z'. Mais il est aussi fermé, puisqu'il est un ensemble de points d'accumulations. Donc s'il n'est pas vide et que l'on travaille dans un connexe, Z' est égal à  $\Omega$ .

On remarque au passage que deux fonctions holomorphes égales sur un ensemble ayant un point d'accumulation sont donc nécessairement égales (leur différence est holomorphe et nulle sur un ensemble ayant un point d'accumulation). Ce résultat est connu sous le nom de **principe de prolongement analytique**.

## Définition 0.3 ordre

On appelle m l'**ordre** du zéro de f en a.

Si f est holomorphe sur un ouvert  $\Omega$  privé d'un point a, et n'est pas holomorphe en a, on dit que f admet une **singularité isolée** en a.

La singularité est dite **artificielle** si en changeant f(a) on peut rendre f holomorphe en a.

#### Théorème 0.9

Si f admet une singularité isolée en a et est bornée sur un voisinage de a, alors la singularité est artificielle.

### Démonstration

- •On définit h par  $h = (z \mapsto (z a)^2 \cdot f(z))$ , et h(a) = 0.
- h est holomorphe, on la développe en série entière,  $h(z) = \sum_{n\geq 2} c_n \cdot (z-a)^n$  (h est nulle et de dérivée nulle en a, puisque f est bornée sur un certain voisinage de a).
  - •Il ne reste alors plus qu'à poser  $f(a) = c_2$ .

On peut faire encore plus fort :

## Théorème 0.10

Soit  $f \in H(\Omega \setminus \{a\})$ , alors l'un des cas suivants se produit :

- f admet une singularité artificielle en a ou pas de singularité du tout
- il existe des  $c_i$  en nombre fini tels que  $z\mapsto f(z)-\sum \frac{c_i}{(z-a)^i}$  admette une singularité artificielle en a.
  - L'image de tout voisinage de a par f est dense dans  $\mathbb C$

#### Démonstration

- •Supposons qu'on ne soit pas dans le troisième cas, et choisissons z tel que z n'appartienne pas à l'adhérence de f(D'(a,r)) avec r>0.
  - Définissons  $g(z) = \frac{1}{f(z)-w}$
- g est holomorphe sur D'(a,r), et est bornée dans un voisinage de a; donc g est prolongeable en une fonction holomorphe sur D(a,r).
- $\bullet$ Si  $g(a) \neq 0$ , alors f est prolongeable en une fonction holomorphe, et on n'en parle plus, c'est le premier cas.
  - •Sinon, alors on considère m l'ordre du zéro de g en a, et on développe en série entière  $z \mapsto \frac{(z-a)^m}{g(z)}$ .
  - •La suite est laissée en exercice au lecteur.

## Définition 0.4 partie principale du pôle de f en a

Dans le deuxième cas, $\sum_{i=1}^{m} \frac{c_i}{(z-a)^i}$  est appelé **partie principale du pôle de** f **en** a; m est appelé l'ordre du pôle en a.

 $c_1$  est appelé **résidu** de f en a; on le note Res(f;a).

Dans le troisième cas, on dit que f a une **singularité essentielle** en a.

Dans le premier cas, on dit que f a une **singularité artificielle** en a.

Le théorème suivant relie les coefficients d'une série entière aux intégrales sur le cercle unité :

## Théorème 0.11

On se donne f une série entière :

$$f(z) = \sum_{n \in \mathbb{N}} c_n . (z - a)^n$$

pour |z| < R. Alors pour tout r tel que 0 < r < R on a

$$\sum_{\mathbb{N}} |c_n|^2 \cdot r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(a + re^{i\theta})|^2 \cdot d\theta$$

**Démonstration** Considérer la formule de Parseval (voir théorème ??), avec la base des  $\theta \mapsto e^{-in\theta}$ . Quelques corollaires pas trop difficiles :

- une fonction holomorphe sur  $\mathbb C$  est soit constante soit non bornée
- si f holomorphe n'est pas constante sur un domaine (i.e. ouvert connexe)  $\Omega$ , alors tout voisinage de a contient un point b tel que |f(b)| > |f(a)|.

Autre corollaire:

## Théorème 0.12 Estimations de Cauchy

f holomorphe sur un disque ouvert D de rayon R, |f| bornée par M sur D, alors  $|f^{(n)}(a)| \le \frac{n! M}{Dn}$  pour tout  $n \ge 0$ .

**Apllication** Ceci servira pour le théorème 0.13 et pour le théorème ??. Passons maintenant à des propriétés de passage à la limite :

#### Théorème 0.13

Soit  $f_n$  une suite de fonctions holomorphes sur  $\Omega$  tendant vers f uniformément sur tout compact de  $\Omega$ . Alors f est holomorphe, et les  $f'_n$  convergent uniformément sur tout compact vers f'.

#### Démonstration

- f est continue comme limite uniforme sur tout compact d'une suite de fonctions continues.
- •Pour le caractère holomorphe de f, on regarde ce qu'il se passe sur des diques ouverts ( $\Omega$  étant réunion de tels disques) et il suffit ensuite de considérer l'intégrale de f sur le contour d'un triangle inclus dans un disque (un tel disque étant convexe); l'intégrale d'une limite uniforme étant la limite de l'intégrale, on déduit que l'intégrale de f sur tout triangle est nulle. Le théorème de Morera (voir théorème 0.7) permet de conclure.
- •On utilise ensuite le théorème 0.12 pour voir que  $|f'(z) f'_n(z)| \le \frac{1}{r} ||f f_n||_K$ , avec K un compact ; d'où la convergence uniforme des dérivées, et le résultat désiré.

## Théorème des résidus

On suppose  $\Omega$  convexe,  $a_1, ..., a_n$  des points distincts de  $\Omega$ , et f holomorphe sur  $\Omega \setminus \{a_1, ..., a_n\}$ . On suppose que f admet un pôle en chaque  $a_i$ , et on se donne un chemin fermé  $\gamma$  ne passant pas par les  $a_i$ . Alors

$$\frac{1}{2i\pi} \int_{\gamma} f(z).dz = \sum_{k=1}^{n} Res(f; a_k).Ind_{\gamma}(a_k)$$

**Démonstration** On applique le théorème de Cauchy à la fonction f moins ses parties principales en les  $a_i$ ; l'intégrale de cette fonction est donc nulle. Il ne reste alors qu'à considérer l'intégrale des parties principales, ce qui est facile au vu de résultats antérieurs (voir le théorème 0.2, et le fait que  $x^n$  pour  $n \neq -1$  a une primitive holomorphe sur  $\mathbb{C} \setminus \{0\}$ ).

### Théorème 0.15

- •Si f est holomorphe et admet un zéro d'ordre m en a, alors le résidu de f'/f en a est m.
- •Si f est holomorphe sur  $\Omega \setminus \{a\}$ , alors le résidu de f'/f en a est égal à -m.

**Démonstration** Pas dur; il suffit de réécrire la fonction soit en divisant par  $(z-a)^m$  (premier • ), soit en soustrayant la partie principale du pôle (second • ).

#### Théorème 0.16

Soit f une fonction holomorphe, et  $\gamma$  un chemin  $\theta \mapsto a + re^{i\theta}$ , avec  $\overline{D}(a,r)$  inclus dans  $\Omega$ . On définit  $\Gamma = f \circ \gamma$ . Soit w n'appartenant pas à  $\Gamma^*$ .

Alors le nombre de zéros de f - w dans D(a, r), comptés avec leurs ordres de multiplicité, est égal à l'indice de w par rapport à  $\Gamma$ .

**Démonstration** Le nombre de zéros de f-w dans D(a,r) est égal à la somme des résidus de f'/(f-w) dans D(a,r), et cette somme est bien l'indice de w par rapport à  $\Gamma$ .

## Théorème de l'image ouverte

On se donne  $\Omega$  un ouvert connexe, i.e. un domaine, et f holomorphe sur  $\Omega$ . Alors si f n'est pas constante, et pour tout  $z_0$  dans  $\Omega$ , f induit sur un voisinage ouvert V de  $z_0$  une application surjective de V sur un ouvert W, telle que pour tout w dans  $W \setminus \{w_0 = f(z_0)\}$ , il y ait exactement m points distincts  $z \in V$  dont l'image par f est w, avec m l'ordre du zéro de  $f - w_0$  en  $z_0$ .

#### Démonstration

- •on considère un cercle orienté suffisamment petit autour de  $w_0$  pour que le disque D de même centre et de même rayon ne comporte pas de zéro ni de  $f w_0$  ni de f' dedans, à part  $z_0$  lui-même.
  - •on considère le contour de ce cercle suffisamment petit
- •on considère l'image par f de ce contour, et la composante connexe W de  $w_0$  dans le complémentaire de cette image (W est ouvert comme composante connexe d'un ouvert, le complémentaire de l'image d'un compact étant évidemment ouvert puisque complémentaire d'un compact (rappelons que l'image d'un compact par une application continue est un compact)).
  - •on prend alors pour V l'intersection du disque ouvert D et de l'image réciproque de W.
- •L'indice de  $w_0$  par rapport à  $\Gamma = f \circ \gamma$  est m, ainsi donc que l'indice de tout w dans V. D'où le résultat

Remarquons un corollaire intéressant, qui donne son nom à ce théorème; l'image de tout ouvert par une fonction holomorphe est un ouvert.

Il est clair au vu du théorème précédent que si l'on a f'(z) non nul, avec f holomorphe, alors on a localement une bijection autour de z. On peut améliorer ce résultat ; la réciproque locale, est elle aussi holomorphe ; cela fait l'objet du théorème suivant.

#### Théorème 0.18

Soit f holomorphe, f de dérivée non nulle en a alors on peut trouver un ouvert V contenant a tel que f induise une bijection de V sur f(V); la réciproque de f est holomorphe sur f(V).

**Démonstration** Tout ce qui reste à prouver est le caractère holomorphe de la réciproque g de f sur f(V).

Pour cela on considère  $\frac{g(z)-g(a)}{z-a}$ , on utilise la continuité de g (qui découle du fait que f est une application ouverte, i.e. que l'image de tout ouvert par une fonction holomorphe est une fonction holomorphe), et le fait que f'(a) est non nul, et tout ça coule de source...

On va maintenant montrer que l'on a le droit de modifier "un peu" une courbe sans changer l'indice d'un point par rapport à cette courbe.

### Théorème 0.19

Si  $\gamma_1$  et  $\gamma_2$  sont deux chemins d'intervalle de paramétrage [0,1] et si pour tout  $t \in [0,1]$  on a  $|\gamma_1(t) - \gamma_2(t)| < |\gamma_1(t)|$ , alors  $Ind_{\gamma_1}(0) = Ind_{\gamma_2}(0)$ .

### Démonstration

- •On pose  $\gamma = \gamma_2/\gamma_1$ .
- •On a alors  $\frac{\gamma'}{\gamma} = \frac{\gamma_2'}{\gamma_2} \frac{\gamma_1'}{\gamma_1}$ , donc en intégrant sur [0,1] on déduit que la différence entre l'indice de 0 par rapport à  $\gamma_2$  et l'indice de 0 par rapport à  $\gamma_1$  est l'indice de 0 par rapport à  $\gamma_2$ .
  - • $|1 \gamma(t)| < 1$ ; donc l'indice de 0 par rapport à  $\gamma$  est 0.

## COROLLAIRE 0.20 Théorème de Rouché

f et g holomorphes sur  $\Omega$ , le disque fermé de centre a et de rayon r étant inclus dans  $\Omega$ , et |f(z) - g(z)| < |f(z)| sur le cercle de centre a et de rayon r. Alors f et g ont le même nombre de zéros sur le disque ouvert de centre a et de rayon r (en comptant leurs multiplicités).

**Démonstration** On considère  $\gamma(t) = e^{2i\pi t}$ , et  $\gamma_1 = f \circ \gamma$  et  $\gamma_2 = g \circ \gamma$ . On applique alors le théorème précédent.

**Apllication** Cela servira notamment pour montrer le théorème 0.25. Ainsi que le rappelle Rudin dans [1], on peut aussi utiliser ce résultat pour montrer que tout polynôme à coefficients dans  $\mathbb{C}$  de degré  $n \geq 1$  a n racines n dans  $\mathbb{C}$  (en montrant que tout polynôme de degré n a le même nombre de zéros que  $z^n$ , dans un disque de rayon suffisamment grand).

## 1.3 Topologie de $H(\Omega)$

La topologie de  $H(\Omega)$  est précisée en section ??.

## 1.3.1 Approximation de fonctions holomorphes par des fractions rationnelles

<sup>1.</sup> En comptant les multiplicités des racines, on a exactement n racines.

## Lemme 0.21

Soit K un compact de  $\mathbb{C}$ , inclus dans un ouvert  $\Omega$ . Alors il existe  $\Gamma_1, \Gamma_2, ..., \Gamma_n$  des segments orientés dans  $\Omega \setminus K$  tels que pour toute fonction holomorphe f sur  $\Omega$  et pour tout k dans K

$$f(z) = \sum_{l=1}^{n} \frac{1}{2i\pi} \int_{\Gamma_l} \frac{f(t)}{t - z} dt$$

#### Démonstration

On aura besoin pour cette démonstration du lemme qui suit :

## Lemme 0.22 Intuitif pour les topologistes

Il existe  $\eta > 0$  tel que la distance entre un point k de K à un point du complémentaire de  $\Omega$  soit toujours  $> \eta$ .

 $begindivde monstration begintext\ endtext$ 

- Supposons le contraire. Alors, on peut construire une suite de points  $(k_n)_{n\in\mathbb{N}}$  de K à distance  $\leq 1/n$  de  $X\setminus K$ .
- On pourrait alors extraire une suite convergente (par le théorème de Bolzano-Weierstrass ??, puisque  $\mathbb{C}$  est muni d'une topologie métrique!), et le point limite serait à une distance 0 du fermé complémentaire de  $\Omega$ , et serait donc dans K sans être dans  $\Omega$ , ce qui est contradictoire.

Nous allons utiliser le  $\eta$  ainsi construit dans la démonstration du lemme 0.21 :

— On construit une grille recouvrant le compact K, avec un maillage inférieur à  $\eta/2$ , comme indiqué sur la figure ??. Cette grille est donc faite de carrés.



- On considère alors les contours  $\gamma_1$ , ...,  $\gamma_{4p}$ , orientés positivement, des carrés  $C_1$ , ...,  $C_p$  intersectant K.
- On conserve alors seulement les segments des contours qui ne sont parcourus qu'une fois (les autres étant parcourus deux fois, une fois dans chaque sens).
- On note ces segments orientés  $\Gamma_1, ..., \Gamma_n$ .
- On se donne alors f holomorphe sur  $\Omega$ , et z à l'intérieur de l'un des carrés du maillage,  $z \in K$ . La fonction g qui à t appartenant à la réunion des  $\gamma_l$  associe  $\frac{f(t)-f(z)}{t-z}$  est continue.
- On calcule alors

$$\sum_{l=1}^{n} \frac{1}{2i\pi} \int_{\Gamma_l} \frac{g(t)}{t-z} dt$$

— Cette somme est égale à

$$\sum_{l=1}^{p} \frac{1}{2i\pi} \int_{\gamma_l} \frac{g(t)}{t-z} dt$$

- Par le lemme 0.3, étendu au cas d'un carré, on en déduit que cette somme est nulle.
- Donc

$$\sum_{l=1}^{n} \frac{1}{2i\pi} \int_{\Gamma_l} \frac{f(t)}{t-z} dt$$

$$= \sum_{l=1}^{n} \frac{1}{2i\pi} \int_{\Gamma_l} \frac{f(z)}{t-z} dt$$

$$= f(z) \sum_{l=1}^{n} \frac{1}{2i\pi} \int_{\Gamma_l} \frac{1}{t-z} dt$$

$$= f(z)$$

— Il ne reste qu'à prolonger par continuité pour avoir le résultat souhaité. enddivdemonstration

#### Théorème 0.23 Runge, version faible, lemme pour la version forte

Soit K un compact de  $\mathbb{C}$ , inclus dans un ouvert  $\Omega$ .

Soit Z une partie de  $\mathbb C$  contenant au moins un point dans chaque composante connexe de  $(\mathbb C \cup \{\infty\}) \setminus K$ .

Alors l'ensemble des fractions rationnelles dont les pôles sont inclus dans Z est dense dans l'ensemble des fonctions holomorphes sur  $\Omega$ , pour la topologie de la convergence uniforme sur K.

## Démonstration

- Soit FR l'ensemble des fractions rationnelles dont les zéros sont inclus dans Z.
- D'après le corollaire  $\ref{eq:continue}$ , il suffit de montrer que toute forme linéaire continue nulle sur toutes les fractions rationnelles de FR est nulle sur toute application holomorphe sur  $\Omega$ .
- •D'après le théorème de représentation de Riesz ??, il nous suffit donc de montrer qu'étant donnée une mesure de Borel complexe  $\mu$  sur K telle que l'intégrale pour  $\mu$  sur K de tout élément de FR soit nulle, l'intégrale sur K pour  $\mu$  de f holomorphe est nulle.

- •Soit donc une telle mesure complexe  $\mu$ , et f holomorphe sur  $\Omega$ .
- •Définissons, pour  $t \in (\mathbb{C} \cup \{\infty\}) \setminus K$ ,

$$h(t) = \int_{K} \frac{d\mu(k)}{k - t}$$

- $\bullet h$  est holomorphe, au vu de la proposition 0.1.
- •Soit z dans Z et n'appartenant pas à K; notons  $V_z$  la composante connexe de  $(\mathbb{C} \cup \{\infty\}) \setminus K$  contenant z. On va montrer que h est nulle sur cette composante connexe; pour cela, par le théorème 0.8, il sera suffisant de montrer que h est nulle sur un voisinage de z.
- Supposons tout d'abord  $z=\infty$ . L'objectif est donc de montrer que pour t assez grand en module, h(t)=0.

Ecrivons, pour k dans K et t quelconque,

$$\frac{1}{k-t} = -\frac{1}{t} \frac{1}{1-k/t} = -\sum_{l=0}^{\infty} \frac{k^l}{t^{l+1}}$$

La convergence étant uniforme en k pour t suffisamment grand, on peut alors intervertir l'intégrale et la somme dans l'équation 21 et on obtient bien h(t) = 0.

- Supposons maintenant que  $z \neq \infty$ 

Ecrivons, pour k dans K et t quelconque,

$$\frac{1}{k-t} = \frac{1}{(k-z)-(t-z)} = \frac{1}{k-z} \times \frac{1}{1-\frac{t-z}{k-z}} = \sum_{l=0}^{\infty} \frac{(t-z)^l}{(k-z)^{l+1}}$$

La convergence étant uniforme en k pour t suffisamment proche de z, on peut alors intervertir l'intégrale et la somme dans l'équation (21) et on obtient bien h(t) = 0.

ullet On applique alors le lemme 0.21, pour pouvoir exprimer f comme une intégrale sur un contour hors de K:

$$\int_K f d\mu = \int_K \frac{1}{2i\pi} \sum_l \int_{\Gamma_l} \frac{f(t)}{t-k} dt \ d\mu(k)$$

Et par le théorème Fubini??,

$$\begin{split} &= \frac{1}{2i\pi} \sum_{l} \int_{\Gamma_{l}} f(t) \int_{K} \frac{1}{t-k} d\mu(k) \ dt \\ &= -\frac{1}{2i\pi} \sum_{l} \int_{\Gamma_{l}} f(t) h(t) dt \\ &= 0 \end{split}$$

d'où le résultat tant attendu!

On peut facilement passer à la topologie de la convergence uniforme sur tout compact.

En outre, le cas où K est simplement connexe (i.e. son complémentaire a une seule composante connexe) donne lieu à un corollaire important.

- $C \setminus \Omega$ , alors f est dans l'adhérence de l'ensemble des fractions rationelles à pôles dans Z pour la topologie de la convergence uniforme sur tout compact.
- •Si f est une fonction holomorphe définie sur un ouvert simplement connexe  $\Omega$ , alors il existe une suite de polynômes convergeant uniformément vers f sur tout compact.

#### Corollaire 0.24

Deux corollaire importants:

•Si f est une fonction holomorphe définie sur un ouvert  $\Omega$ , si Z est un ensemble contenant au moins un point dans chaque composante connexe de  $\hat{}$ 

#### Démonstration

- •On définit les  $K_n$  comme dans le lemme ??, et on définit  $F_n$  comme étant une fraction rationnelle tel que  $|f(z) F_n(z)| \le 1/n$  pour z dans  $K_n$ .
- •Dans le deuxième cas, on peut simplement imposer  $Z = \{\infty\}$ , et on obtient bien une suite de polynômes.

## 1.4 Zoologie des applications holomorphes

On étudiera ici le théorème de Montel sur le nombre de zéros des fonctions holomorphes, la non-majoration de fonctions holomorphes par des polynômes, les limites en l'infini de fonctions holomorphes.

#### 1.4.1 Théorème de Montel

#### Théorème de Montel

Soit  $\Omega$  un ouvert connexe de  $\mathbb{C}$ , K compact de  $\Omega$ ,  $M \geq 0$ , m > 0,  $k \in K$ . Alors il existe un certain Nombre Max De Zeros tels que le nombre de zéros de f dans K, pour f holomorphe bornée  $^2$  par M sur K et telle que  $|f'(k)| \geq m$ , est majoré par Nombre Max De Zeros.

## Démonstration

- •On considère l'ensemble  $U_n$  des applications f holomorphes sur  $\Omega$  telles que le nombre de zéros de f sur K soit  $< n \ (n \in \mathbb{N} \cup \{+\infty\})$ ; on montre que  $U_n$  est ouvert.
  - Pour cela donnons-nous f dans  $U_n$
  - Soit Nombre Zeros le nombre de zéros de f dans K. Nombre Zeros, par définition de  $U_n$ , est fini.
- Considérons les disques fermés  $\overline{D}(z_i, \epsilon_i)$  inclus dans  $\Omega$ , et tels que f ne s'annule pas sur le disque ouvert, sauf peut-être en  $z_i$ .
  - Il est clair que les disques ouverts  $D(z_i, \epsilon_i)$  recouvrent K.
  - On en extrait un nombre fini. Les  $D(z_i, \epsilon_i)$  pour  $i \in I$ , avec I fini, recouvrent donc K.
- On considère alors Les Cercles le compact constitué des cercles de rayon  $\epsilon_i$  et de centre les  $z_i$  pour i dans I.
  - On considère alors  $\eta$  l'inf de f sur LesCercles .
- On considère alors l'ensemble V des fonctions g telles que  $\sup_{LesCercles} |g-f|$  est inférieur strictement à  $\eta$ . Par le théorème de Rouché 0.20, les fonctions g dans V ont un nombre de 0 égal au nombre de zéros de f.
  - Le résultat est ainsi prouvé.
- ullet On en déduit donc que l'application qui à f associe son nombre de zéros sur K est semi-continue supérieurement.
- •L'ensemble  $\mathcal{F}$  des applications f bornées en module par M sur K et telles que  $|f'(k)| \geq m$  étant compact, le nombre de zéros est borné, le maximum est atteint (car une application semi-continue supérieurement sur un compact atteint son maximum, voir proposition ??), et il n'est pas infini par la condition  $|f'(k)| \geq m$ .

## 1.4.2 Fonctions holomorphes majorées par un polynôme

Théorème 0.26

Soit f une fonction holomorphe sur  $\mathbb{C}$ , et P un polynôme, avec  $|f| \leq |P|$ . Alors f est un polynôme, de degré  $\leq$  au degré de P.

#### Démonstration

Il suffit d'utiliser le théorème 0.12, qui nous dit que

$$|f^{(n)}(0)| \le n!M/R^n$$

avec M un majorant de |f| sur le disque de centre 0 et de rayon R. Puisque  $M \leq L + K \times R^p$  (par hypothèse), on en déduit :

$$|f^{(n)}(0)| \le n!(L + K \times R^p)/R^n$$

et donc  $f^{(n)} = 0$  pour n > p, d'où le résultat.

## 1.4.3 Fonctions holomorphes tendant vers l'infini en l'infini

Théorème 0.27

Soit f une fonction holomorphe sur  $\mathbb{C}$ . On suppose

$$\lim_{|z| \to \infty} |f(z)| = \infty$$

Alors f est une fonction polynôme.

## Démonstration

- $\bullet$ Soit Z l'ensemble des zéros de f.
- ullet Au vu de l'hypothèse, pour z assez grand en module,  $|f(z)| \ge 1$ . Donc Z est inclus dans un compact K.
- $\bullet$ Si Z est infini, alors Z possède un point d'accumulation dans K, et donc d'après le théorème 0.8~f est nulle. Ce cas étant résolu, on peut supposer Z fini.
- •On considère alors 1/f. C'est une fonction holomorphe sur le complémentaire de Z. Sur Z, en utilisant le théorème 0.8, on constate que 1/f admet des pôles, et non pas des singularités essentielles ; on peut donc lui soustraire une fraction rationnelle P/Q, afin que 1/f P/Q soit holomorphe.
  - $\bullet 1/f P/Q$  est majoré par un polynôme, donc d'après le théorème 0.26 c'est un polynôme.
  - $\bullet 1/f P/Q = R$ , avec R un polynôme, donc f est une fraction rationnelle.
  - $\bullet f$  étant holomorphe, f n'a pas de pôle, et donc se simplifie en un polynôme.

## Références

[1] W. Rudin, Analyse réelle et complexe, Masson 1992.