

Всероссийская олимпиада по физике имени Дж. К. Максвелла

Заключительный этап Экспериментальный тур

Комплект задач подготовлен Центральной предметно-методической комиссией по физике Всероссийской олимпиады школьников

Авторы задач

7 класс	8 класс	
1. Замятнин М.	1. Замятнин М.	
2. Замятнин М.	2. Кармазин С.	

Общая редакция — Ерофеев И., Замятнин М., Кармазин С., Слободянин В. Вёрстка — Ерофеев И., Корепанов Г., Утешев И.

354349, Краснодарский край, г. Сочи Образовательный центр «Сириус»

7 класс

Задача 1. Скрытая масса

Оборудование. Закрытая трубка со стальным шариком внутри, магнит, линейка, электронные весы, две опоры (канцелярские клипсы), миллиметровая бумага формата А5 для построения графиков.

Рис. 1

- 1. Определите массу магнита $m_{\rm M}$.
- 2. Соберите установку (рис. 1) и получите зависимость показаний m весов от расстояния x между шариком и опорой, расположенной на весах.
- 3. Постройте на миллиметровой бумаге график зависимости m(x).
- 4. Используя график и, если необходимо, проведя дополнительные измерения, определите массу трубки m_{T} и массу шарика m_{II} .

ВНИМАНИЕ. Не забудьте записать номер выданной трубки! Результаты могут существенно различаться на разных установках.

Примечание. Имейте в виду, что магнит, находящийся на расстоянии менее 5 см от весов, может существенно искажать их показания! Будьте аккуратны с магнитом: от сильных ударов он может расколоться!

Задача 2. Пустота

Коэффициентом пустотности сыпучих веществ β называют отношение объёма воздушных полостей к общему объёму вещества.

- 1. Оцените массу стакана и массу линейки.
- 2. Определите коэффициент пустотности β неутрамбованного (насыпного) песка.
- 3. Найдите плотность ρ песчинок (плотность самого вещества крупинок песка без учёта воздушных полостей).

Плотность воды $\rho_0 = 1{,}00 \text{ г/см}^3$.

Примечание. Дополнительно песок выдаваться не будет!

Оборудование. Поднос, деревянная линейка 40 см, два пластиковых стакана с неградуированными рисками, стакан с водой, стакан с сухим песком, шприц 20 мл, ложечка, салфетки для поддержания порядка, карандаш, скотч. Ножницы по требованию.

8 класс

Задача 1. Серые массы

Оборудование. Закрытая однородная трубка с однородным цилиндром и стальным шариком внутри, магнит, линейка 50 см, электронные весы, две опоры (канцелярские клипсы), миллиметровая бумага формата А5 для построения графиков.

- 1. Определите массу магнита $m_{\rm M}$.
- 2. Определите массы трубки $m_{\rm T}$, шарика $m_{\rm m}$ и цилиндра $m_{\rm q}$.

ВНИМАНИЕ. Не забудьте записать номер выданной трубки! Результаты могут существенно различаться на разных установках.

Примечание. Имейте в виду, что магнит, находящийся на расстоянии менее 5 см от весов, может существенно искажать их показания! Будьте аккуратны с магнитом: от сильных ударов он может расколоться!

Задача 2. Гексагон

Исследуемая электрическая цепь состоит из шести резисторов с двумя возможными номиналами сопротивлений: R_1 и R_2 , соединённых последовательно в кольцо (рис. 2).

- 1. Определите значения сопротивлений резисторов R_1 и R_2 .
- 2. Нарисуйте схему цепи, отметьте узлы A–F и укажите на схеме сопротивления резисторов.
- 3. Исследуйте зависимость показаний мультиметра, включённого в режиме вольтметра (диапазон 20 В), от нагрузочного сопротивления $R_{\rm H}$ в цепи (рис. 3) для всех его возможных значений.
- 4. Постройте график полученной зависимости в координатах, в которых эта зависимость линейна.

- 5. По графику определите величину внутреннего сопротивления вольтметра.
- 6. Оцените погрешность полученного результата.

Сопротивлением батарейки можно пренебречь.

Оборудование. Кольцо резисторов, мультиметр (режим амперметра отключён!), батарейка «крона», провод, два зажима типа «крокодил», два листа миллиметровой бумаги формата А5.

Возможные решения

7 класс

На различных установках численные значения приведенных в авторских решениях величин могут существенно отличаться.

Задача 1. Скрытая масса

Поскольку магнит вблизи весов искажает их показания, невозможно определить его массу прямым взвешиванием. Положив трубку на весы, обнулим их показания кнопкой «TARE». Прикрепим магнит к концу трубки со стальным шариком и определим его массу:

$$m_{\rm M} = 13,17 \pm 0,03$$
 г.

Установим трубку на клипсы-опоры. Измерим расстояние между ними:

$$L = 50.0 \pm 0.1$$
 cm.

С помощью магнита будем фиксировать положение шарика внутри трубки и снимать показания весов для системы с магнитом $m_1(x)$ (таб. 1).

Запишем правило моментов относительно опоры, находящейся на столе, для систем с магнитом и без:

$$m_1(x)gL = (m_{\text{III}} + m_{\text{M}})g(L - x) + m_{\text{T}}gL/2,$$
 (1)
 $m(x)gL = m_{\text{III}}g(L - x) + m_{\text{T}}gL/2.$ (2)

Вычитая из уравнения (1) уравнение (2), получим

55.2 65.4711.015.061.5252,3 19.0 58.1750,0 23,054.4147.327.051.0645.031.047.3042.3 35.043.4539.539.0 40,10 37,243.036.04 34.2

32,69

Таблина 1

 m_1 , Γ

m, Γ

31,9

x, cm

47.0

 $m(x) = m_1(x) - m_{\rm M} \frac{L - x}{L}.$

искомую зависимость:

Показания весов m и m_1 отличаются на известную величину, что позволяет

нам пересчитать значения в таблице 1.

Теоретическая зависимость, полученная из уравнения (2), имеет вид:

$$m(x) = -\frac{m_{\text{\tiny III}}}{L}x + \left(m_{\text{\tiny III}} + \frac{m_{\text{\tiny T}}}{2}\right).$$

Построив график m(x), определим массу шарика по угловому коэффициенту наклона k (рис. 4):

$$m_{\rm III} = -kL = 32.3 \pm 0.5 \text{ r.}$$

Масса трубки с шариком составляет $m_{\scriptscriptstyle \rm T}+m_{\scriptscriptstyle \rm III}=82{,}18\pm0{,}03$ г, откуда масса трубки:

$$m_{\rm T} = 59.9 \pm 0.5 \,$$
 г.

Задача 2. Пустота

Будем использовать карандаш в качестве опоры для рычага из линей-ки.

1. Оценим массу линейки. Зафиксируем длины плеч линейки примерно в отношении 1:3, расположим стаканы на равных расстояниях ($l_{\rm cr}=8~{\rm cm}$) от опоры (стаканы будут уравновешивать друг друга). В стакан на краю линейки будем доливать воду до тех пор, пока система не

придёт в равновесие. Объём налитой воды $V_{\rm B}=19$ мл. Из правила моментов получим:

$$\rho_0 V_{\scriptscriptstyle \rm B} l_{\rm ct} = m_{\scriptscriptstyle \rm J} l_{\scriptscriptstyle \rm I\!IM},$$

где $l_{\text{цм}}=10.2$ см — расстояние от центра масс линейки до карандаша, получим массу линейки $m_{\scriptscriptstyle \rm J}\approx 15$ г.

2. Для оценки массы стакана расположим пустой стакан на краю линейки. Сдвигая линейку относительно опоры, найдем положение равновесия (при длинах плеч $l_1=18,8~{\rm cm}$ и $l_2=22,2~{\rm cm}$). Центр стакана находится на расстоянии $l=16~{\rm cm}$ от точки опоры. Записав правило моментов:

$$m_{^{^{_{\scriptstyle \Pi}}}}\frac{l_1}{L}\cdot\frac{l_1}{2}+m_{^{_{\mathrm{CT}}}}\cdot l=m_{^{_{\scriptstyle \Pi}}}\frac{l_2}{L}\cdot\frac{l_2}{2},$$

найдем $m_{\rm cr} \approx 2$ г.

3. Насыпем песок в пустой стакан до определённой риски. С помощью шприца нальём в другой стакан такой же объём воды V.

Дольём в стакан с песком воду до выравнивания её уровня с уровнем поверхности песка. Определим объём полостей в песке $V_{\rm n}$ и рассчитаем коэффициент пустотности:

$$\beta = \frac{V_{\text{II}}}{V} = 0.38 \pm 0.03.$$

4. Для определения плотности песка используем сухой песок известного объёма V. Уравновесим на концах линейки два стакана — один с песком, другой с необходимым для равновесия объемом воды V_0 . Масса воды будет равна массе песка, откуда искомая плотность:

$$\rho = \frac{m}{V - V_{\text{II}}} = \frac{\rho_0 V_0}{V(1 - \beta)} = 2,55 \pm 0,15 \text{ r/cm}^3.$$

x, cm

11.0

13,0

15,0 17.0

19,0

21,0

23,0

25.0

27.0

29,0

31.0

m, Γ

58,23

56,64

54,46

52,87

51,16

49,30

47,35

45,15

43,59

41,89

39.93

8 класс

На различных установках численные значения приведенных в авторских решениях величин могут *существенно* отличаться.

Задача 1. Серые массы

Поскольку магнит вблизи весов искажает их показания, невозможно определить его массу прямым взвешиванием. Положив трубку на весы, обнулим их показания кнопкой «TARE». Прикрепим магнит к концу трубки со стальным шариком и определим его массу:

$$m_{\rm M}=13{,}36\pm0{,}05$$
 г.

Будем перемещать шарик магнитом в сторону цилиндра, пока на некотором расстоянии $l_{\rm kp}$ от конца трубки магнит не «отщёлкнется» от шарика (на этом расстоянии шарик упрется в цилиндр). Длина цилиндра равна:

$$l = l_{
m kp} - R = 18,5 - 1,0 = 17,5 \pm 0,5$$
 см,

Таблица 2

где $R=1,0\pm0,3$ см — оценочное значение радиуса шарика.

Рис. 5

Переместив цилиндр в конец трубки, установим большую клипсу под его центром тяжести C. Малую клипсу поставим на весы и установим на неё другой конец трубки. В такой системе цилиндр не вносит вклад в показания весов.

Снимем зависимость показаний весов m от расстояния x от правого конца трубки до шарика с магнитом.

Запишем правило моментов относительно точки C:

$$N\left(L-\frac{l}{2}\right) = mg\left(L-\frac{l}{2}\right) = m_{\mathrm{T}}g\frac{L-l}{2} + (m_{\mathrm{III}}+m_{\mathrm{M}})g\left(L-\frac{l}{2}-x\right),$$

где $L = 50.0 \pm 0.1$ см — длина трубки.

Показания весов линейно зависят от x:

$$m(x) = \left(\frac{L - l}{2L - l}m_{\text{\tiny T}} + m_{\text{\tiny III}} + m_{\text{\tiny M}}\right) - \frac{m_{\text{\tiny III}} + m_{\text{\tiny M}}}{L - l/2}x,$$

По угловом коэффициенту наклона $k=0.60\pm0.01$ г/см графика m(x) определим массу шарика $m_{\rm m}$ (рис. 6):

$$m_{\rm m} = k(L - l/2) - m_{\rm m} = 27.8 \pm 0.5$$
 г.

Отметим, что длину L-l/2 мы можем получить прямым измерением расстояния между точками опоры.

Массу трубки $m_{\scriptscriptstyle \rm T}$ найдём из графика. Например, при $x=25~{\rm cm}$:

$$m_{\text{\tiny T}} = \frac{m(x)(2L-l) - (m_{\text{\tiny III}} + m_{\text{\tiny M}})(2L-l-2x)}{L-l} = 77 \pm 2 \text{ r.}$$

Окончательно, масса цилиндра $m_{\rm II}$ определяется как разность между полной массой трубки с цилиндром $m_{\rm TI}$, измяремой напрямую, и массой трубки $m_{\rm T}$:

$$m_{\text{II}} = m_{\text{тII}} - m_{\text{T}} = 19 \pm 2$$
 г.

Задача 2. Гексагон

Измерим сопротивления между парами противоположных выводов $(A-D,\,B-E,\,C-F)$ гексагона. Они равны друг другу: $R_d=910$ кОм. Следовательно, в схеме есть три резистора R_1 и три резистора R_2 .

Измерив сопротивления R_d между парами соседних выводов, убедимся, что, начиная при обходе гексагона по часовой стрелке от точки A, величины резисторов образуют последовательность $\{R_1, R_1, R_2, R_1, R_2, R_2\}$.

Измерим сопротивление между выводами *В* и *D*:

$$R_{BD} = \frac{2}{3} \left(R_1 + R_2 \right) = 813$$
 кОм.

Закоротив выводы B и D проводом с зажимами типа «крокодил», измерим сопротивление между выводами C и D:

$$R_{CD} = \frac{R_1 R_2}{R_1 + R_2} = 289$$
 кОм.

Решая полученную систему уравнений, находим $R_1 = 750$ кОм и $R_2 = 470$ кОм.

Соберём цепь, схема которой изображена на рис. 3. Для этого, сняв «крокодил» с одного конца провода, подключим этот провод к вольтметру, а оставшийся на проводе зажим «крокодил» — к батарейке. Второй «крокодил» наденем на штекер провода от вольтметра и подключим ко второму контакту батарейки. Подключая щупы к различным выводам гексагона, измерим показания вольтметра (таб. 3):

$$U = \frac{R_V}{R_{\rm H} + R_V} U_0,$$

где $U_0 = 9,4$ В — напряжение батарейки, измеряемое вольтметром непосредственно, R_V — искомое сопротивление вольтметра.

Полученную зависимость преобразуем к виду:

$$\frac{1}{U} = \frac{1}{U_0} + \frac{R_{\rm H}}{R_V U_0}.$$

Контакты	$R_{\rm H}$, кОм	U, B	U^{-1}, B^{-1}
AB	593	5,75	0,174
AC	892	4,84	0,207
AD	921	4,77	0,210
CD	421	6,44	$0,\!155$
BD	826	5,02	0,199
AE	708	5,36	0,187
$ ext{без } R$	0	9,16	$0,\!109$

Таблица 3

Строим график зависимости $U^{-1}(R_{\rm H})$ (рис. 7), по угловому коэффициенту k определяем сопротивление вольтметра:

$$R_V = \frac{1}{kU_0} = 970$$
 кОм.

