OOPD 合成器架构介绍

历史回顾

Übercompositor, 我们开始开发 U4 的时候的合成器架构

- 父子结构, Renderer Compositor, Browser Compositor
- 子合成器通过 DelegatingRenderer 输出 CompositorFrame(DrawQuad)
- 父合成器通过 DelegatedRendererLayer 接收子合成器的输出, 嵌套到自己的Layer 树, 再通过自己的 DelegatingRenderer 输出最终的 CompositorFrame
- 最终 Display Compositor 通过 GLRenderer 输出合成的 GL 指令, 通过 CommandBuffer 输出到 GPU 进程

Pre Übercompositor

问题

灵活性差, 合成器父子结构难以运行时灵活变化

额外开销高, 性能差

理论上应该也可以支持OOPIF, Offscreen Canvas, 但如果要实现会过于复杂, 并且性能上存在巨大损耗, 嵌套越深, 损耗越大

OOPD

更松散, 动态而灵活的方式, 通过 Surface 嵌套实现的 Surface 层级结构

合成器被弱化成更抽象的CompositorFrameSink

- 一个 CompositorFrameSink 的 Client 可以是一个完整的合成器
- 也可以是一个更简单的 Frame Generator(比如 Offscreen Canvas)

一套统一的合成器架构整合了Chromium 历史上诸多不同类型的合成器,同时适用于 WebView, Chrome 浏览器, Chrome OS 等诸多不同环境

关键接口/类

CompositorFrameSink - Client 端的 Frame Generator 用来提交 CompositorFrame 的 mojo 接口

- AsyncLayerTreeFrameSink Layer Compositor (Renderer/Browser)
- SynchronousLayerTreeFrameSink WebView 专用, 因为同步 Pull 模式的需要, 默认不使用标准的 CompositorFrameSink 接口来提交 CompositorFrame
- CanvasResourceDispatcher Offscreen Canvas

CompositorFrameSinkClient - Client 端 CompositorFrameSink 的使用者用来接收Service 端的回调

FrameSinkManager - Privileged Client 端用来创建一个 CompositorFrameSink 接口的 mojo 接口

- Privileged Client Browser
- Unprivileged Client Renderer

Surface ID

- FrameSink ID 唯一标记一个 CompositorFrameSink, 一般由 Renderer 统一分配
- LocalSurface ID CompositorFrameSink Client 自己分配,一般分配一个,但是会随着Size, Scale 发生变化,变化时会通知自己的Embedder,通过 CompositorFrameSink submit CF 时需要指定 LocalSurface ID

SurfaceDrawQuad - Embedder 用来嵌入子Surface 的内容, 通过 SurfaceDrawQuad 的嵌套定义了一棵 Surface 树

SurfaceLayer/SurfaceLayerImpl - cc 用来嵌入子Surface 的图层, 产生SurfaceDrawQuad

FrameSinkManagerImpl - FrameSinkManager 对应的 Service 端的实现

CompositorFrameSinkSupport - CompositorFrameSink 对应的 Service 端的实现

SurfaceManager - Service 端用来管理所有 Surface 的实现, 一个 CompositorFrameSink Client 可以分配多个不同的 Surface

Display - Display Composior 实现的主入口,跟一棵 Surface 树的 Root Surface 绑定,调用 Draw 时触发合成输出

- OutputSurface 定义一个输出的 Surface, 通常跟外部的 Window Surface 对应
- GLRenderer/SkiaRenderer 合成输出的渲染器
- SurfaceAggregator Service 端从 Root Surface 开始,对一棵 Surface 树进行遍历聚集产生对应最终 CompositorFrame