6. Intelligent transportation: Smart intersections

金力 Li Jin li.jin@sjtu.edu.cn

上海交通大学密西根学院 Shanghai Jiao Tong University UM Joint Institute

Outline

- Technological basis
 - Connected and autonomous vehicles
 - Vehicle platooning
- Simplified formulation
 - Modeling
 - Decision making
 - Final project option 1
- State-of-the-art formulation
 - Modeling
 - Decision making
 - String stability

Outline

- Background
 - Signalized & unsignalized intersections
 - Connected & autonomous vehicles
 - Vehicle-to-infrastructure connectivity
- Trajectory planning
 - For a single vehicle
 - For multiple vehicles
- Vehicle sequencing
 - Modeling & formulation
 - Optimization

Signalized intersection

Signalized intersection: Fixed cycle design

• Data:

- Traffic demand in each direction
- Saturation rate & response time
- Decision variables
 - Green ratio/time in each direction
- Constraint
 - Safety (no simultaneous greens)
 - Technical constraint (switching frequency)
- Objective
 - Ensure bounded waiting time #
 - Minimize average waiting time

Signalized intersection: Adaptive cycles

• Data:

- Saturation rate & response time
- Real-time traffic state on each lane
- Decision variables
 - Signaling in the next decision period
 - Or, policy for signaling
- Constraint
 - Safety (no simultaneous greens)
 - Technical constraint (switching frequency)
- Objective
 - Ensure bounded waiting time
 - Minimize expected waiting time

Unsignalized intersection

- Typically, vehicles are supposed to stop as they arrive at the intersection.
- Then, vehicles cross according to convention or rule.
- Could be chaotic...
- http://heze.dzwww.com/qx/yc/201908/t20190810_1
 7039691.htm

Hierarchical control system

- Upper level: sequencing
 - A centralized controller (e.g. RSU) determines the sequence of CAVs
 - Sequencing leads to time windows for each CAV to cross
- Lower level: trajectory planning
 - A CAV plans its trajectory to ensure crossing during the allocated time window (absorbing delay en route)
 - Vehicle following or coordination needed

Outline

- Background
 - Signalized & unsignalized intersections
 - Connected & autonomous vehicles
 - Vehicle-to-infrastructure connectivity
- Trajectory planning
 - For a single vehicle
 - For multiple vehicles
- Vehicle sequencing
 - Modeling & formulation
 - Optimization

- We have seen the term "reference trajectory" for multiple times.
- How do we generate that?
- Consider a vehicle that enters the preparation zone at time t=0.
- Initial speed $v[0] \in \mathbb{R}_{\geq 0}$.
- Suppose that the RSU requires it to enter the crossing zone at time t_1 .
- Let u[t] be the acceleration.

- At each time step, a cost of $u^2[t]$ is induced.
- You can interpret this cost as a measure for comfort.
- Less acceleration/deceleration -> higher comfort.
- Hence, we need to determine

$$u[0], u[1], ..., u[t_1]$$

such that

$$\sum_{t=0}^{t_1} u^2[t]$$

is minimized.

 Note: this is open-loop decision making, since we are planning the reference trajectory.

Data:

- Specified time for crossing t_1
- Initial position x[0] = 0 and initial speed $v[0] = v_0$.

Decision variable (essentially):

• Time series of acceleration u[t], $t=0,1,2,\ldots$, t_1-1 .

Constraint:

• Kinematics:

$$x[t+1] = x[t] + v[t]\delta, v[t+1] = v[t] + u[t]\delta.$$

• Crossing on time: $x[t_1] = L$.

Objective: minimize $\sum_{t=0}^{t_1} u^2[t]$

Formulation of optimization problem

These four elements are essential for every optimization or optimal control problem:

Data:

Information based on which you make decisions.

Decision variables:

Quantity that you can select; influences outcome

Constraints:

Restrictions on allowable decisions.

Objective function:

Evaluation of various outcomes

Trajectory planning in standard optimization presentation:

$$\min \sum_{t=0}^{t_1} u^2[t]$$
s.t. $x[t+1] = x[t] + v[t]\delta$, $t = 0,1,...,t_1 - 1$, $v[t+1] = v[t] + u[t]\delta$, $t = 0,1,...,t_1 - 1$, $x[t_1] = L$.

- Note 1: never forget the range for t as a generic time.
- Note 2: strictly speaking, x[t] and v[t], in addition to u[t], are not data and are also "decision variables" in the above formulation in a technical sense. However, x[t] and v[t] are essentially determined by u[t].

Control-theoretic formulation

- In the above formulation, $\{u[t]; \forall t\}$ are all independent decision variables.
- Alternatively, we can make the following restriction: $u[t] = \mu(x[t], v[t]).$
- That is, instead of selecting u[t] independently, we force them to be dependent of the state.
- The function $\mu: \mathbb{R}^2 \to \mathbb{R}$ is actually a control policy.
- Hence, the formulation on the previous slide is said to be policy-free.
- Compared with the policy-based formulation.
- Tradeoff between computation load and performance.

Optimal control problem

Consider a linear system

$$\begin{bmatrix} x[t+1] \\ v[t+1] \end{bmatrix} = \begin{bmatrix} 1 & \delta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x[t] \\ v[t] \end{bmatrix} + \begin{bmatrix} 0 \\ \delta \end{bmatrix} u[t].$$

- Cost over one time step = $u^2[t]$.
- Initial condition $0, v_0$.
- Cumulative cost $J_t(x_0, v_0) = \sum_{\tau=0}^t u^2[\tau]$.
- Objective: find u[t] for all t to minimize cumulative cost.
- This is called linear quadratic regulation (LQR):
- 1. Linear dynamics,
- 2. Quadratic objective function.

Optimal control problem

• In CT:

$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ u \end{bmatrix}$$

- u = acceleration (control input)
- Boundary conditions: x(0) = 0, $x(t_1) = L$, $v(0) = v_0$.
- Instantaneous cost $L(u) = u^2$.
- Cumulative cost

$$J_t = \int_{\tau=0}^t u^2(\tau) d\tau.$$

Also called linear quadratic regulation.

Generic formulation

Consider an LTI system

$$\dot{x} = Ax + Bu$$

- Suppose that we want to drive the system from the initial state x(0) to the target state x(T) = 0
- Instantaneous cost

$$L(t) = \frac{1}{2}x^{T}(t)Qx(t) + \frac{1}{2}u^{T}(t)Ru(t)$$

The cost induced during the control process is given by

$$\frac{1}{2}x^{T}(T)Qx(T) + \int_{s=0}^{T} L(s)ds$$

• Linear feedback u = -Kx

[Not required] LQR optimal control

- Linear-quadratic regulator (LQR)
- Design task: obtain the optimal gain matrix K for u = -Kx
- Conclusion:
- 1. Let *P* be the solution matrix to the matrix Riccati equation

$$PA + A^{T}P + Q - PBR^{-1}B^{T}P = 0.$$

1. Then the optimal *K* is given by

$$K = -R^{-1}B^TP.$$

- Design task: pick Q and R (i.e. cost function)
- Reference: Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control (Vol. 40, p. 146). New Jersey: Prentice hall.

Consider a collection of vehicles

Each vehicle arrive at time

$$S_1, S_2, \dots, S_n$$
.

- Crossing times $t_1, t_2, ..., t_n$.
- Initial speeds $\phi_1, \phi_2, ..., \phi_n$.
- For each vehicle i, we need to select the time series of acceleration $u_i[t]$ for $s_i \le t < t_i$.
- Similar to the single-vehicle, problem, but with significant differences in terms of formulation and presentation!

First complication 1: multiple directions.

- For ease of presentation, consider two orthogonal orbits only.
- Only keeping straight; no turning.
- Label these two directions as 1 & 2.
- So, we need to adjust the notations:
- For direction $k \in \{1,2\}$, there are n_k vehicles with

Arrival times:
$$s_1^k$$
, s_2^k , ..., $s_{n_k}^k$;

Crossing times:
$$t_1^k$$
, t_2^k , ..., $t_{n_k}^k$;

Initial speeds: ϕ_1^k , ϕ_2^k , ..., $\phi_{n_k}^k$.

First complication 2: safe distance.

For vehicles from the same direction

$$x_{i-1}^{k}[t] - x_{i}^{k}[t] \ge d + hv_{i}^{k}[t],$$
 for all $i = 1, 2, ..., n_{k}$ and for $k = 1, 2,$ for all $t: s_{i}^{k} \le t \le t_{i-1}^{k}.$

For vehicles on different orbits,

$$\left|x_i^1[t] - x_j^2[t]\right| \ge d'$$

for all $1 \le i \le n_1$ and $1 \le j \le n_2$, for all $t: \max\{t_i^1 - T, t_i^2 - T\} \le t \le \min\{t_i^1, t_i^2\}$.

Need to know how to write the index conditions!

$$\min \sum_{t=0}^{T} \sum_{k} \sum_{i} \left(u_{i}^{k}[t]\right)^{2}$$
s.t.
$$x_{i}^{k}[t+1] = x_{i}^{k}[t] + v_{i}^{k}[t]\delta, \forall i, \forall t, \forall k,$$

$$v_{i}^{k}[t+1] = v_{i}^{k}[t] + u_{i}^{k}[t]\delta, \forall i, \forall t, \forall k,$$

$$x_{i-1}^{k}[t] - x_{i}^{k}[t] \geq d + hv_{i}^{k}[t], \forall i, \forall t, \forall k,$$

$$\left|x_{i}^{1}[t] - x_{j}^{2}[t]\right| \geq d', \forall i, \forall j, \forall t,$$

$$0 \leq v_{i}^{k}[t] \leq \bar{v}, \quad -\bar{a} \leq u_{i}^{k}[t] \leq \bar{a}, \forall i, \forall t, \forall k,$$

$$x_{i}^{k}[s_{i}^{k}] = 0, \quad v_{i}^{k}[s_{i}^{k}] = \phi_{i}^{k}, \forall i, \forall k,$$

$$x_{i}^{k}[t_{i}^{k}] = L, \forall i, \forall k.$$

Size of problem

- In the above formulation, $\{u_i^k[t]; \forall i, \forall k, \forall t\}$ are all independent decision variables.
- If there are 100 vehicles and if every vehicle spends 50 time units (e.g. sec) in the system, then we have 5000 decision variables.
- Technically, $v_i^k[t]$ and $x_i^k[t]$ are also decision variables.
- Hence, the above formulation will involve 15,000 decision variables.
- Hence, this formulation is inefficient.
- In practice, this may not be problematic, since this is decision making on a longer time scale.

Outline

- Background
 - Signalized & unsignalized intersections
 - Connected & autonomous vehicles
 - Vehicle-to-infrastructure connectivity
- Trajectory planning
 - For a single vehicle
 - For multiple vehicles
- Vehicle sequencing
 - Modeling & formulation
 - Optimization

Hierarchical coordination

- So, how do we obtain t_i^k in the first place?
- This results from a higher-level decision-making mechanism:

vehicle sequencing.

- A hierarchical decision-making framework
 - Upper level: scheduling/sequencing
 - Lower level: trajectory planning
- Such a hierarchical framework makes practical sense:
 - A centralized controller determines vehicle sequencing
 - Then, each vehicle determines its own trajectory to fulfill the designated sequencing

Sequencing problem

- Consider two CAVs (labeled 1 & 2) consecutively crossing the intersection
- Suppose CAV i crosses the intersection at time t_i
- What constraints are imposed on the crossing times?
 - If vehicle i enters the control zone at time s_i , it cannot cross until $s_i + \Delta$, where Δ is the nominal traverse time.
 - The crossing times t_1 , t_2 should be staggered to meet safety condition.

Sequencing problem

- Hence, we can forget about trajectories and only consider the arrival (entering) and departure (crossing) times.
- Scenario: a symmetric double one-way intersection
- No traffic signal; based on vehicle coordination.

Sequencing problem

- Since two directions are symmetric, we assume identical nominal traverse time Δ for all vehicles.
- Thus, we can "shift" the time axis a bit and proceed as if $\Delta = 0$ for all vehicles.
- Hence, we can formulate the sequencing problem as follows:
- 1. Data: arrival times s_i^k and minimal headway θ_{ij} ;
- 2. Decision variable: departure times t_i^k ;
- 3. Constraints: FIFO in one direction, safety;
- 4. Objective: min total travel time.

Minimal headway

- If a class-j vehicle (vehicle 2) crosses the intersection after a class-i vehicle (vehicle 1), the headway therebetween should be no less than θ_{ij} .
- How to determine safe headway θ ?
- Simple case:
 - Vehicle 1 & 2 are from the same direction
 - Minimal headway: as in platooning
- More complex case #
 - Vehicle 1 & 2 on intersecting orbits: safety constraint
 - Vehicle 1 & 2 on non-intersecting orbits: no constraint
- In our case, $\theta_{11} = \theta_{22} < \theta_{12} = \theta_{21}$.

First-in-first-out (FIFO)

- We assume that vehicles from the same direction cross on a FIFO basis.
- That is, no overtaking.
- Vehicles from different directions can also be forced to cross on a FIFO basis.
- But that will be more restrictive and questionable in terms of performance (i.e., travel time or fuel) improvement.
- However, FIFO is considered to be more fair than alternative sequencing policies.

Optimization formulation

- Suppose that we need to sequence $n_1 + n_2$ vehicles.
- Then we can determine the departure times as follows:

$$\min \sum_{k} \sum_{i} (t_{i}^{k} - s_{i}^{k})$$
s.t. $t_{i}^{k} - s_{i}^{k} \geq 0, \forall i, \forall k,$

$$t_{i}^{k} - t_{i-1}^{k} \geq \theta_{11}, \forall i, \text{ (note that } \theta_{11} = \theta_{22})$$

$$|t_{i}^{1} - t_{i}^{2}| \geq \theta_{12}, \forall i, j, \text{ (note that } \theta_{12} = \theta_{21})$$

- This formulation looks perfect but has two major drawbacks:
- 1. How can you obtain arrival times s_i^k ?
- 2. What if the $(n_1 + n_2 + 1)$ th vehicle arrives?

Problem formulation

- We now present a control-theoretic formulation.
- Two one-way orthogonal orbits without turning.
- State: $X_k(t) = \#$ of CAVs waiting in direction k
- At each time step, a CAV arrives in direction k with probability $p_k \in [0,1]$
- At each time step, the intersection can discharge at most one CAV
 - Same-direction headway $\theta_{11} = \theta_{22} = 1$ [time step]
 - Orthogonal-direction headway $\theta_{12}=\theta_{21}=2$ [time steps] (very fake number)
 - We can use an auxiliary dummy variable to formulate it

System dynamics

- A bit complex; fasten you seatbelt...
- System state $X(t) = \left[X_1[t], X_2[t]\right]^T \in \mathbb{Z}_{\geq 0}^2$
 - $X_k[t]$ = # of CAVs waiting in direction k
- The above is not enough, we need an auxiliary state $Y = \{0,1,2\}$, which is the "previous vehicle class"
 - Y[t] = k if a class-k vehicle was discharged at t
 - Y[t] = 0 if no vehicle was discharged at t
- Action $A[t] \in \{1,2\}$
 - A[t] = k essentially (but not exactly) means direction k is being discharged at time t,
 - If $X_1[t] = X_2[t] = 0$, A[t] has no impact.

Queuing mechanism

- Let $\Delta X_k[t]$ be the # of vehicles arriving in direction k over one time step.
- Typically we cannot deterministically predict ΔX_k .
- Instead, we consider

$$\Delta X_k[t] = \begin{cases} 1 & \text{with probability } p_k, \\ 0 & \text{with probability } 1 - p_k. \end{cases}$$

- $X_k[t+1] =$ $\begin{cases} (X_k[t] + \Delta X_k[t] 1)_+ & \text{if } A[t] = k \text{ and } if \ Y[t] = k \text{ or } 0 \\ X_k(t) + \Delta X_k[t] & \text{otherwise} \end{cases}$
- $(\cdot)_+$ represents the positive part of a function

$$(\xi)_{+} = \begin{cases} \xi & \xi \ge 0 \\ 0 & o.w. \end{cases}$$

Stochastic process

- That is, $X_k[t]$ cannot be deterministically predicted.
- Instead, we characterize its distribution.
- In other words, given $X_k[t]$, we do not talk about $X_k[t+1]$, but we talk about $\Pr\{X_k[t+1] = x|X[t], A[t]\}, x \in \mathbb{Z}_{\geq 0}$.
- The process $\{X[t]; t > 0\}$ (which takes values from $\mathbb{Z}^2_{\geq 0}$) is said to be a stochastic process.
- For stochastic processes, instead of considering the evolution of X[t] directly, we consider the evolution of the distribution of X[t].
- You can simulate with random number generators.

Discharging mechanism

• If we discharged a class-1 vehicle at time t, we can immediately discharge another class-1 vehicle at time t+1:

$$Y[t] = 1, Y[t + 1] = 1.$$

• If we discharged a class-1 vehicle at time t, we cannot discharge a class-2 vehicle until time t+2.

$$Y[t] = 1, Y[t + 1] = 0, Y[t + 2] = 2.$$

- If no vehicle is discharged at time t, we can discharge a vehicle of either class at time t+1
 - Case 1: empty intersection
 - Case 2: switching over

- p(x', y'|x, y, a) = probability that X[t+1] = x', Y[t+1] = y' conditional on X[t] = x, Y[t] = y, A[t] = a.
- Notational convention:
 - Capital letter = random variables: X, Y, A
 - Lower-case letter = numbers x, y, a
 - CDF $F_X(x)$, PMF $p_X(x)$, PDF $f_X(x)$
 - Avoid writing " $\Pr\{x=1\}$ " or "f(X) is increasing in X"
- Suppose that $X(t) = [2,3]^T$, Y(t) = 1, and A(t) = 1.
 - $Pr\{X(t+1) = *, Y(t+1) = *\}=?$
 - Pr{[1,3],1}=(1-p1)(1-p2), Pr{[2,3],1}=p1(1-p2), Pr{[1,4],1}=(1-p1)p2, Pr{[2,4],1}=p1p2

Suppose that $X(t) = [2,3]^T$, Y(t) = 1, and A(t) = 1.

Suppose that
$$X(t) = [2,3]^T$$
, $Y(t) = 1$, and $A(t) = 2$.

Suppose that
$$X(t) = [2,3]^T$$
, $Y(t) = 0$, and $A(t) = 1$.

Suppose that
$$X(t) = [0,3]^T$$
, $Y(t) = 0$, and $A(t) = 1$.

Suppose that $X(t) = [0,0]^T$, Y(t) = 0, and A(t) = 2.

A quick note on dynamic programming

The process $\{X(t), Y(t); t = 0,1,2,...\}$ is a discrete-time, discrete-state Markov process.

- Markov processes
- Markov decision processes
- Agent-environment interface
- Reference: Sutton, Richard S., and Andrew G. Barto.
 Reinforcement learning: An introduction. MIT Press,
 2018.

http://incompleteideas.net/book/RLbook2020.pdf
(Optional)

Markov process

- Stochastic process: random variables evolving over time
 - Flip a coin
 - Count vehicles
 - Measure power demand
- Mathematically, we use a time-varying random variable S_t to describe a stochastic process
- $\Pr\{S_t = s | S_{t-1}, ... S_1, S_0\}$
- Markov process: the distribution of S_t only depends on S_{t-1} and does not depend on S_0, \ldots, S_{t-2}
- $\Pr\{S_t = s | S_{t-1}, \dots S_1, S_0\} = \Pr\{S_t | S_{t-1}\}$

Андрей А. Марков Andrey A. Markov 安德烈·A·马尔可夫 1856-1922

Agent-environment interface

- Markov decision process: at each time, we can take some action that affects the evolution of the stochastic process
- Agent-environment loop in a MDP

- MDP trajectory:
 - Time sequence t = 0, 1, 2, ...
 - State: $S_t \in S$
 - Action: $A_t \in \mathcal{A}(s)$
 - Reward: $R_t \in \mathcal{R}$
 - Trajectory: S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , ...

45

Dynamics

We use function p to describe dynamics of MPD:

$$p(s',r|s,a)$$
: = Pr{ $S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a$ }

- Reward may or may not be random
- For intersection control, we can set r = -|x|.
- With a slight abuse of notation, state-transition probabilities

$$p(s'|s,a) := \Pr\{S_t = s' | S_{t-1} = s, A_{t-1} = a\}$$

$$= \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

Reward

Expected reward

$$r(s,a) \coloneqq \mathrm{E}\{R_t|S_{t-1} = s, A_{t-1} = a\}$$
$$= \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

Three-argument function

$$r(s, a, s') := E\{R_t = r | S_{t-1} = s, A_{t-1} = a, S_t = s'\}$$

$$= \sum_{r \in \mathcal{P}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$

MDP formulation for vehicle sequencing

- State $S(t) = (X(t), Y(t)) \in \mathbb{Z}_{\geq 0}^2 \times \{0, 1, 2\}$
- Action $A(t) \in \{1,2\}$
- Dynamics (transition probabilities)

$$p(s'|s,a) = p(x',y'|x,y,a)$$

- Reward $R(t) = -\|X(t)\|_1 = -X_1(t) X_2(t)$
- Return $G(t) = \sum_{s=t}^{\infty} \gamma^{s-t} R(s)$ (why discounted?)
- The control problem is to find a policy

$$\mu \colon \mathbb{Z}^2_{\geq 0} \times \{0,1,2\} \to \{1,2\}$$
$$\mu \colon (x,y) \mapsto a$$

that maximizes the expected return.

Sequencing policy

- First in first out (FIFO)
 - Fair, easy
- Minimal switch-over (MSO)
 - Efficient, but maybe unfair
- Longer queue first (LQF)
 - Fairer
- Two metrics for evaluation
 - Throughput: maximal demand that the intersection can accommodate
 - Waiting time: Queuing delay experienced by vehicles

Summary

- Background
 - Signalized & unsignalized intersections
 - Connected & autonomous vehicles
 - Vehicle-to-infrastructure connectivity
- Trajectory planning
 - For a single vehicle
 - For multiple vehicles
- Vehicle sequencing
 - Modeling & formulation
 - Optimization