Department of Electrical Engineering, IIT Kanpur EE250: Control Systems Analysis Tutorial 2 03 Feb 2021

- 1. A Signal Flow Graph is shown in Figure 1. Find the transfer function between the input node and the output node, using Mason's gain formula.
- 2. A low-pass filter is shown in Figure 2. $R = 1k\Omega$, $C = 1\mu F$ Construct a signal flow graph connecting input $V_1(s)$ and output $V_2(s)$ and showing internal signals $I_1(s)$, $I_2(s)$, and $V_2(s)$. Find $T(s) = \frac{V_3(s)}{V_1(s)}$
- 3. The block diagram of a feedback control system is shown in Fig. 3.
 - (a) Apply the SFG formula to the block diagram to find the transfer functions

$$\frac{Y(s)}{R(s)}\Big|_{N=0}$$
 $\frac{Y(s)}{N(s)}\Big|_{R=0}$

Express Y(s) in terms of R(s) and N(s) when both inputs are applied simultaneously.

- (b) Find the desired relation among the transfer functions $G_1(s)$, $G_2(s)$, $G_3(s)$, $G_4(s)$, $H_1(s)$ and $H_2(s)$ so that the output Y(s) is not affected by the disturbance signal N(s) at all.
- 4. The block diagram of the position-control system of the electronic word processor is shown in Fig. 4.
 - (a) Find the loop transfer function $\frac{\Theta_0(s)}{\Theta_e(s)}$ through block diagram reduction (the outer feedback path is open)
 - (b) Find the closed-loop transfer function $\frac{\Theta_o(s)}{\Theta_r(s)}$ through block diagram reduction.

Figure 1: Problem 1

Figure 2: Problem 2

Figure 3: Problem 3

Figure 4: Problem 4