Materi 8

- Recurrence Relations
- 2. Solving Recurrence Relations
- 3. Divide-and-Conquer Algorithms and Recurrence Relations
- 4. Generating Functions
- 5. Inclusion-Exclusion
- 6. Applications of Inclusion-Exclusion

Recurrence Relations

Tujuan Instruksional Khusus

Memahami konsep recurrent relation

Definisi

Recurrence Relation untuk baris $\{a_n\}$ adalah sebuah persamaan yang mengekspresikan a_n dalam satu atau lebih term baris sebelumnya, yaitu a_0 , a_1 ,, a_{n-1}

Sebuah baris dikatakan sebagai solusi dari Recurrence Relation bila semua term memenuhi Recurrence Relation

Initial conditions pada Baris

Initial conditions adalah term yang mengawali term pertama yang dihasilkan oleh recurrence relation

$$a_n = a_{n-1} - a_{n-2}$$
 for $n = 2, 3, 4 ...$ i.c. $n = 0, 1$
 $a_0 = 3, a_1 = 5$

$$a_2 = a_1 - a_0 = 2$$
, $a_3 = a_2 - a_1 = 2 - 5 = -3$

Contoh: fibonacci(n)

$$fib_n = fib_{n-1} + fib_{n-2}$$
 for $n = 2, 3, 4 ...$

i.c.
$$n = 0, 1$$
: $fib_0 = 0, fib_1 = 1$

Contoh: compound interest

$$P_n = P_{n-1} + (0.06)P_{n-1}$$
 for $n = 1, 2, 3, 4 ...$

i.c.
$$n = 0$$
: $P_0 = 10.000.000$

Contoh: Tower of Hanoi

Sejumlah piringan dengan diameter berbeda-beda harus dipindahkan satu per satu dari tiang-1 ke tiang-3 dengan bantuan tiang-2. Selanjutnya piringan dengan ukuran lebih kecil tidak boleh berada di bawah piringan yang lebih besar.

Banyaknya pemindahan n piringan dinotasikan dengan H_n.

Algoritma:

Pindahkan (n-1) piringan teratas dari tiang-1 ke tiang-2; H_{n-1}

Pindahkan 1 piringan terbesar dari tiang-1 ke tiang-3; 1

Pindahkan (n-1) piringan teratas dari tiang-2 ke tiang-3; H_{n-1}

$$Maka : H_n = H_{n-1} + 1 + H_{n-1}$$

$$= 2 H_{n-1} + 1$$
 dengan i.c. $H_1 = 1$

i.c.
$$H_1 = 1$$

$$H_n = 2 H_{n-1} + 1$$
 & $H_1 = 1$

$$H_n = 2 H_{n-1} + 1$$

$$= 2 (2H_{n-2} + 1) + 1 = 2^2H_{n-2} + 2 + 1$$

$$=2^{2}(2H_{n-3}+1)+2+1=2^{3}H_{n-3}+2^{2}+2+1$$

$$=2^{3}(2H_{n-4}+1)+2^{2}+2+1=2^{4}H_{n-4}+2^{3}+2^{2}+2+1$$

• • • • • • • • • • • • • • • •

$$n-i=1$$

$$i = n - 1$$

$$H_n = 2^{n-1}H_1 + 2^{n-2} + 2^{n-3} \dots + 2^3 + 2^2 + 2 + 1$$

$$=2^{n-1}+2^{n-2}+2^{n-3}....+2^3+2^2+2+1=2^n-1$$

Contoh Soal

Selesaikan reccurence relation berikut

- 1. x(n) = x(n-1) + 5; untuk x(1) = 0
- 2. X(n) = 3x(n-1); untuk x(1) = 4
- 3. X(n) = x(n-1) + n; n>0; x(0) = 0
- 4. X(n) = x(n/2) + n; n>1, x(1) = 1, $n \mod 2 = 0$; (hint: $n=2^k$)

Solving Recurrence Relations

Teorema

```
Teorema 1: a_n = c_1 a_{n-1} + c_2 a_{n-2} dan i.c. a_0 dan a_1
\mathbf{r}^2 - \mathbf{c_1} \mathbf{r} - \mathbf{c_2} = \mathbf{0} \quad \text{memiliki} \quad \underline{\text{dua akar } \mathbf{r_1} \text{ dan } \mathbf{r_2} \text{ yang berbeda;}}
\mathbf{deret} \; \{a_n\} \; \mathbf{adalah} \; \mathbf{solusi} \; \mathbf{dari} \; \mathbf{r.r.} \quad a_n = c_1 a_{n-1} + c_2 a_{n-2}
\text{jika dan hanya jika} \; a_n = \alpha_1 r_1^n + \alpha_2 r_2^n
\text{untuk} \; n = 0, 1, 2, \dots \text{ dan } \alpha_1, \alpha_2 \text{ adalah konstanta}
```

Teorema 2:
$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
 dan i.c. a_0 & a_1
$$r^2 - c_1 r - c_2 = 0$$
 memiliki akar kembar r_0 deret $\{a_n\}$ adalah solusi dari r.r. $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ jika dan hanya jika $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ untuk $n = 0, 1, 2, ...$ dan α_1, α_2 adalah konstanta

$$a_{n} = 6 a_{n-1} - 9a_{n-2}$$
 $a_{0} = 1, a_{1} = 6$

Akar kembar dari $r^{2} - 6r + 9 = 0$ adalah $r_{0} = 3$
 $a_{n} = \alpha_{1}r_{0}^{n} + \alpha_{2}nr_{0}^{n} = \alpha_{1} \times 3^{n} + \alpha_{2} \times n \times 3^{n}$
 $\alpha_{1} = a_{0} = 1$
 $\alpha_{2} = (a_{1} - a_{0}r_{0}) / r_{0} = (6 - 1 \times 3) / 3 = 1$
 $a_{n} = 1 \times 3^{n} + 1 \times n \times 3^{n}$
 $= 3^{n} + n \times 3^{n} = (n+1) 3^{n}$

Theorem 3:

 $c_1, c_2, \dots c_k$ are real numbers

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} \dots - c_{k} = 0$$
 has k distinct roots $r_{1}, r_{2}, \dots, r_{k}$

A sequence $\{a_n\}$ is a solution of the r.r. $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$

iff
$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n \dots + \alpha_k r_k^n$$
 for $n = 0, 1, 2, \dots$

where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are constants

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$
 dengan *i.c.* $a_0 = 2, a_1 = 5, a_2 = 15$

$$r^3 - 6r^2 + 11r - 6 = 0 \rightarrow r_1 = 1, r_2 = 2, r_3 = 3$$

$$a_0 = \alpha_1 r_1^0 + \alpha_2 r_2^0 + \alpha_3 r_3^0 \rightarrow 2 = \alpha_1 + \alpha_2 + \alpha_3$$

$$a_1 = \alpha_1 \mathbf{r}_1^{\ 1} + \alpha_2 \mathbf{r}_2^{\ 1} + \alpha_3 \mathbf{r}_3^{\ 1} \rightarrow 5 = \alpha_1 + 2\alpha_2 + 3\alpha_3$$

$$a_2 = \alpha_1 r_1^2 + \alpha_2 r_2^2 + \alpha_3 r_3^2 \rightarrow 15 = \alpha_1 + 4\alpha_2 + 9\alpha_3$$

$$\alpha_1 > 1$$
, $\alpha_2 = -1$, $\alpha_3 = 2$

The part with relation
$$J$$
 and i found in $U_n=\alpha_1r_1^n+\alpha_2r_2^n+\alpha_3r_3^n=1-2^n+2\times 3^n$

Theorem 4:

 $c_1, c_2, \dots c_k$ are real numbers

 $r^k - c_1 r^{k-1} - c_2 \, r^{k-2} \, \ldots - c_k = 0 \text{ has t distinct roots } r_1, \, r_2, \, \ldots \, , \, r_t$

with multiplicities $m_1, m_2, ..., m_t$ respectively and $m_1 + m_2 + ... + m_t = k$

Then a sequence $\{a_n\}$ is a solution of the r.r. $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$

$$\begin{split} \text{iff} & \quad a_{n} = (\alpha_{1,0} + \alpha_{1,1} \, n \, + \ldots + \alpha_{1,m_{1}-1} \, n^{m_{1}-1}) \, \mathbf{r}_{1}^{\, n} \\ & \quad + \, (\alpha_{2,0} + \alpha_{2,1} \, n \, + \ldots + \alpha_{2,m_{2}-1} \, n^{m_{2}-1}) \mathbf{r}_{2}^{\, n} \\ & \quad + \ldots \, + (\alpha_{t,0} + \alpha_{t,1} \, n \, + \ldots + \alpha_{t,m_{t}-1} \, n^{m_{t}-1}) \mathbf{r}_{t}^{\, n} \end{split}$$

for $n=0,\,1,\,2,\,\ldots$, where $\alpha_{i,j}$ are constants for $1\leq i\leq t$ and $0\leq j\leq m_i-1$

Penjelasan:

Jika akar-akar karakteristik adalah 2, 2, 2, 5, 5, 9, maka

$$r_1 = 2$$
, $m_1 = 3$; $r_2 = 5$, $m_2 = 2$; $r_3 = 9$, $m_3 = 1$ ($t = 3$, $k = 6$, $m_1 + m_2 + m_3 = 6$)

$$a_{n} = -3a_{n-1} - 3a_{n-2} - a_{n-3} \quad i.c. \ a_{0} = 1, a_{1} = -2, a_{2} = -1$$

$$c_{1}, = -3, c_{2} = -3, c_{3} = -1$$

$$r^{3} + 3r^{2} + 3r + 1 = 0 \rightarrow (r + 1)^{3} = 0 \rightarrow r = -1 \text{ (dengan multiplicity } m_{1} = 3)$$

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1} \mathbf{n} + \alpha_{1,2} \mathbf{n}^{2}) \mathbf{r}^{n} = (\alpha_{1,0} + \alpha_{1,1} \mathbf{n} + \alpha_{1,2} \mathbf{n}^{2}) \mathbf{r}^{n}$$

$$a_{0} = (\alpha_{1,0} + \alpha_{1,1} \times 0 + \alpha_{1,2} \times 0) \times (-1)^{0} \rightarrow 1 = \alpha_{1,0}$$

$$a_{1} = (\alpha_{1,0} + \alpha_{1,1} \times 1 + \alpha_{1,2} \times 1) \times (-1)^{1} \rightarrow -2 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2}$$

$$a_{2} = (\alpha_{1,0} + \alpha_{1,1} \times 2 + \alpha_{1,2} \times 4) \times (-1)^{2} \rightarrow -1 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2}$$

$$\alpha_{1,0} = 1, \alpha_{1,1} = 3, \alpha_{1,2} = -2$$

Jadi
$$a_n = (\alpha_{1,0} + \alpha_{1,1} n + \alpha_{1,2} n^2) r^n = (1 + 3n - 2n^2) (-1)^n$$

Tugas

Ex 8.2 no. 4 (b.d.f), 12, 41