CS5222 Advanced Architectures

Project 2 Part 2 Report

FPGA Lab

Nguyen Dang Phuc Nhat (A0184583U)

Table of Contents

1 Fixed-point Validation	1
2 Fixed-point Design	1
3 FPGA Inference Run	3
4 Section 4	4
5 References	4

1 Fixed-point Validation

I resorted to using the formulae for full-range quantization. It did not work as I expected: '127/range' is a proper scale but it didn't help with lowering accuracy. The value of 'range' can be determined by the actual value ranges of reg.coef_ and reg.intercept_

Therefore, I used '(2^18 - 1)/range' and the achieved validation error is 17.82%

```
Min/Max of coefficient values [-0.209865321585, 0.246998497499]
Min/Max of intersect values [-0.125379550542, 0.254461343394]
Misclassifications (float) = 13.77%
Misclassifications (fixed) = 17.82%
```

2 Fixed-point Design

Similarly to part 1, I have pipelined aggressively by pipelining the input/output reading loops as well as the matrix multiplication loop.

Arrays 'in_buf' and 'weight_buf' are partitioned into 32 blocks each. This is possible because we are using 8-bit integers, which are 4 times smaller than 32-bit floats in part 1. Through testing, I have found that 512 for 'TILING' provides the highest speedup.

```
+----+----+-----+-----+-----+
| Latency | Interval | Pipeline|
| min | max | min | max | Type |
+-----+
| 442919| 442919| 442920| 442920| none |
+-----+
```

After normalization, the speedup is 532.5x compared to the baseline design.

Hardware utilization for this design:

+	·+	+	+-	+
Name	BRAM_18K	DSP48E	FF	LUT
+	·+	+	+-	+
DSP	l -I	129	-1	-1
Expression	l -I	-1	0	4020
FIF0	l -I	-1	-1	-1
Instance	0	0	8672	9184
Memory	274	-1	4096	512
Multiplexer	l -I	-1	-1	8252
Register	l -I	-1	9427	96
+	++	+	+-	+
Total	274	129	22195	22064
+	·+	+	+-	+
Available	280	220	106400	53200
+	·+	+	+-	+
Utilization (%)	97	58	20	41
+	·+	+		+

BRAM_18K is almost fully utilized. This will result in placement issues when compiling for the FPGA board.

For a realistic design that can be compiled successfully, I scaled down TILING to 128.

The speedup compared to baseline is still over 500x.

To be precise, it is 531.82x faster than the baseline design.

Hardware utilization is also a bit lower than the 512-TILING design.

+				
Name	BRAM_18K	DSP48E		LUT
DSP	-I	129		-1
Expression	i -i	-i	0	4001
FIF0	I -I	-1	-1	-1
Instance	0	0	8672	9184
Memory	262	-1	4096	512
Multiplexer	l -I	-1	-1	8252
Register	l -I	-1	8895	96
+	·+	+	+-	+
Total	262	129	21663	22045
+	·+	+	+-	+
Available	280	220	106400	53200
+	·+	+	+-	+
Utilization (%)	93	58	20	41
+		+		+

BRAM_18K memory usage is now 93%. This is sufficient for placement in the compiling process.

3 FPGA Inference Run

When running on the FPGA, the validation error is 18.54%. As for speedup, the highest I have seen is a 55.21x speedup over the CPU. This is not as high as expected (60-70x). The reason might be the aggressive pipelining attempts.

```
FPGA accuracy: 18.54% validation error CPU accuracy: 18.54% validation error FPGA has a 55.21x speedup
```

4 Design Analysis

In this part, I will be writing about the 128-TILING design, where 'in_buf' and 'weight_buf' are partitioned into 32 blocks each.

There are 127 instances of multipliers. However, MACs should also be seen as a kind of multiplier. Therefore, in total, there are 256 multipliers instantiated in the design.

As for the pipelines, all of them have initiation interval II = 1. This, of course, is the optimal value.

* Loop:								
i	i	Latency		Iteration	Initiation		Trip	i
Loop Name	1	min	max	Latency	achieved	target	Count	Pipelined
- LOAD_OFF_1	-+- 	 5	 5	- - 2	1	 1	 5	
- LOAD_W_1	i	350	350	35	-i	-1	10	no
+ LOAD_W_2	Ť	32	32	2	1	1	32	yes
- LT	Τ	443136	443136	6924	-1	-1	64	no
+ LOAD_I_1	1	4480	4480	35	-1	-1	128	no
++ LOAD_I_2	Τ	32	32	2	1	1	32	yes
+ L1_L2	1	1287	1287	9	1	1	1280	yes
+ STORE_0_1	1	1152	1152	9	-1	-1	128	no
++ STORE_0_2	1	6	6	3	1	1	5	yes
+	-+-		+	+-	+		+	+

As the II's of pipelines are all optimal, the only way to increase performance is by increasing the throughput of the AXI port. Therefore, the design is bandwidth-limited.