Гамма-функция (факториальная функция), являясь одной из простейших неэлементарных функций, осуществляет естественное распространение факториала на вещественные (комплексные) значения аргумента. Эта задача была решена Эйлером, который ввел и исследовал *гамма-функцию* $\Gamma(x)$, для которой

$$\Gamma(n+1)=n!.$$

Первая формула, предложенная Эйлером для гамма-функции, имела вид

$$\Gamma(x) = \frac{1}{x} \prod_{n=1}^{\infty} \left\{ \left(1 + \frac{1}{n} \right)^x \left(1 + \frac{x}{n} \right)^{-1} \right\}.$$

Эта формула может быть записана в виде

$$\Gamma(x) = \frac{1}{x}e^{-\gamma x} \prod_{n=1}^{\infty} \left\{ \left(1 + \frac{x}{n}\right)^{-1} e^{\frac{x}{n}} \right\}, \quad (1)$$

где

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right),$$

$$\gamma = 0,5772156649 \dots$$

Постоянная γ называется **постоянной Эйлера**. Сам Эйлер вычислил ее значение с 20 десятичными знаками.

Для гамма-функции получены интегральные представления, одно их них

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt , \quad \text{Re}x > 0, \tag{2}$$

принимается за определение гамма-функции.

Применение к формуле (2) общей теории несобственных интегралов, зависящих от параметра, позволяет вывести ряд различных свойств этой функции. В частности, показано, что при x > 0 функция $\Gamma(x)$ является непрерывно дифференцируемой, причем

$$\frac{d}{dx}\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}\ln t dt.$$

При больших значениях переменной справедлива формула Стирлинга

$$\Gamma(x) \sim \sqrt{2\pi} x^{x - \frac{1}{2}} e^{-x}, \qquad x \to +\infty.$$
 (3)

Для уточнения формулы используют *ряд Стирлинга*

$$\ln\Gamma(x) = x \ln x - x - \frac{1}{2} \ln x + \frac{1}{2} \ln 2\pi - \frac{1}{12x} + \frac{1}{720x^3} - \cdots$$

Для приближенного вычисления факториала во многих случаях достаточно использовать формулу

$n! \sim \sqrt{2\pi n}e^{-n}n^n$

Гамма-функция $\Gamma(x)$ удовлетворяет трем функциональным соотношениям:

$$\Gamma(x+1) = x\Gamma(x)$$
 (формула приведения),

$$\Gamma(x)\Gamma(1-x)=rac{\pi}{\sin\pi x}$$
 (формула дополнения),

$$2^{2x-1}\Gamma(x)\Gamma\left(x+\frac{1}{2}\right)=\pi^{1/2}\Gamma(2x),$$

которые играют важную роль при различных преобразованиях и вычислениях, связанных с этой функцией.

Проверить формулы справа.

$$\Gamma(1) = 0! = 1$$

$$\Gamma(2)=1!=1$$

$$\Gamma(3)=2!=2$$

$$\Gamma(4) = 3! = 6$$

$$\Gamma(5)=4!=24$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}.$$

$$\Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}.$$

$$\Gamma\left(\frac{7}{2}\right) = \frac{15}{8}\sqrt{\pi}.$$

$$\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}.$$

$$\Gamma\left(-\frac{3}{2}\right) = \frac{4}{3}\sqrt{\pi}.$$

$$\Gamma\left(rac{1}{2}+n
ight)=rac{(2n)!}{4^nn!}\sqrt{\pi}$$

$$\Gamma\left(rac{1}{2}-n
ight)=rac{(-4)^n n!}{(2n)!}\sqrt{\pi}$$

$$\Gamma(x+n) = (x+n-1)(x+n-2) ... (x+1)x\Gamma(x).$$

<u>Замечание</u>. Формула приведения следует из формулы (2) интегрированием по частям.

В связи с гамма-функцией рассматривают факториальные образования, которые широко используются в различных приложениях.

Факториальные степени (символ Похгаммера). Убывающий факториал определяется как

$$x^{\underline{n}} = x(x-1)(x-2) \dots (x-n+1)$$

возрастающий факториал определяется

$$x^{\overline{n}} = x(x+1)(x+2) \dots (x+n-1).$$

Значение обоих факториалов принимается равным 1 для n = 0.

Необходимо проявлять осторожность при интерпретации символа Похгаммера $(x)_n$. В зависимости от контекста, символ Похгаммера $(x)_n$ может представлять убывающий факториал $x^{\overline{n}}$ или возрастающий факториал $x^{\overline{n}}$, определённые выше.

В комбинаторике символ $(x)_n$ используется для представления убывающего факториала. В теории специальных функций (в частности, гипергеометрической функции) символ Похгаммера $(x)_n$ используется для представления возрастающего факториала.

Факториальные степени можно расширить на вещественные (комплексные) значения n с помощью гамма-функции:

$$x^{\underline{n}} = \frac{\Gamma(x+1)}{\Gamma(x-n+1)}$$
 и $x^{\overline{n}} = \frac{\Gamma(x+n)}{\Gamma(x)}$.

Эйлер ввел и исследовал и *бета-функцию* B(x,y), связанную с гамма-функцией соотношением

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

При x>0, y>0 для бета-функции справедливо интегральное представление

$$B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt.$$

Подобно тому, как гамма-функция является обобщением факториала, бетафункция является обобщением биномиальных коэффициентов

$$\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}.$$

Биноминальные коэффициенты

$$\binom{n}{k} = C_n^k = \frac{n!}{k! (n-k)!}.$$

Биномиальные коэффициенты для рациональных значений

Область определения биномиальных коэффициентов можно расширить, а именно:

Def: функция

$$\binom{a}{k} = \begin{cases} \frac{a(a-1)(a-2)...(a-k+1)}{k!}, & k>0, \\ 1, & k=0, \end{cases}$$

определенная для $\forall a \in R, k \in N \cup \{0\}$, называется биномиальным коэффициентом. Для $\mathbf{a} \in \mathbf{Z}_+$ оба определения для биномиального коэффициента совпадают.

$$C_5^3 = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{3!4 \cdot 5}{3!2} = 10$$

$$C_2^5 = 0$$

$$\binom{-2}{3} = \frac{-2(-2-1)(-2-2)}{3!} = \frac{-2(-3)(-4)}{3!} = -4$$

$$\binom{\sqrt{2}}{4} = \frac{\sqrt{2}(\sqrt{2}-1)(\sqrt{2}-2)(\sqrt{2}-3)}{4!} = \frac{13-9\sqrt{2}}{12}$$

Таб	пица	Треугольник Паскаля											
n	$\binom{\mathfrak{n}}{\mathfrak{0}}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{\mathfrak{n}}{4}$	$\binom{\mathfrak{n}}{5}$	$\binom{\mathfrak{n}}{6}$	$\binom{\mathfrak{n}}{7}$	$\binom{n}{8}$	$\binom{n}{9}$	$\binom{n}{10}$	0	$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$ $C_n^k = n!$
0	1											2	$\bigcap_{1} C_n^k = \frac{n!}{k!(n-k)!}$
1	1	1										3	$\begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$
2	1	2	1									4	1 4 6 4 1
3	1	3	3	1								-	
4	1	4	6	4	1							5	1 5 10 10 5 1
5	1	5	10	10	5	1						6	$\begin{array}{c c} 1 & 6 & 15 & 20 & 15 & 6 & 1 \end{array}$
6	1	6	15	20	15	6	1					7	1 7 21 35 35 21 7 1
7	1	7	21	35	35	21	7	1				8	1 8 28 56 70 56 28 8 1
8	1	8	28	56	70	56	28	8	1			9	
9	1	9	36	84	126	126	84	36	9	1		9	1 9 36 84 126 126 84 36 9 1
10	1	10	45	120	210	252	210	120	45	10	1	10	1 10 45 120 210 252 210 120 45 10 1

Бета-функция удовлетворяет двумерному разностному уравнению

$$B(x,y) - B(x+1,y) - B(x,y+1) = 0.$$

Бином Ньютона:

$$(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^m x^m + \dots + C_n^n x^n = \sum_{m=0}^n C_n^m x^m.$$

3амечание. Функция $(1+x)^n$ является *производящей функцией* для биномиальных коэффициентов.

Систематические методы пересчета основаны на понятии производящей функции.

Пусть x = 1. Получим

$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$$
.

Пусть x = -1:

$$C_n^0 - C_n^1 + C_n^2 + \dots + (-1)^n C_n^n = 0.$$

Складывая (вычитая) два последних равенства и деля результат на 2, получим

$$C_n^0 + C_n^2 + C_n^4 + \dots + C_n^n = 2^{n-1}$$
, $C_n^1 + C_n^3 + C_n^5 + \dots + C_n^{n-1} = 2^{n-1}$, если n четно, $C_n^0 + C_n^2 + C_n^4 + \dots + C_n^{n-1} = 2^{n-1}$, $C_n^1 + C_n^3 + C_n^5 + \dots + C_n^n = 2^{n-1}$, если n нечетно

Свойства чисел C_n^m (биномиальных коэффициентов).

1.
$$C_n^m = C_n^{n-m}$$
. **2.** $C_n^0 = C_n^n = 1$. **3.** $C_n^1 = C_n^{n-1} = n$.

Некоторые соотношения, содержащие биномиальные коэффициенты

Определим зависящий от x многочлен $\binom{x}{k}$ (или C_x^k) при помощи равенства

$${\binom{x}{k}} = (-1)^k \frac{\Gamma(k-x)}{\Gamma(k+1)\Gamma(-x)} = \begin{cases} \frac{1}{k!} x(x-1)(x-2) \dots (x-k+1), \\ k=1,2,3,\dots \end{cases}$$

Справедливы соотношения

$$\binom{x}{k} = \frac{x^{\underline{k}}}{k!} = \frac{x(x-1)(x-2)\dots(x-k+1)}{k!} =$$

$$= (-1)^k \frac{-x(-x+1)(-x+2)\dots(-x+k-1)}{k!} = (-1)^k \frac{(-x)^{\overline{k}}}{k!}$$

Биномиальные коэффициенты $\binom{x}{0}$, $\binom{x}{1}$, $\binom{x}{2}$, ... являются *целозначными многочленами* от x, то есть принимают целые значения при целых x. Более того, они образуют базис целозначных многочленов, в котором все целозначные многочлены степени n выражаются как линейные комбинации $\binom{x}{k}$, k=0,1,...,n, с целыми коэффициентами. Запишите несколько первых элементов этого базиса.

$$\begin{pmatrix} x \\ 0 \end{pmatrix} = 1, \qquad \begin{pmatrix} x \\ 1 \end{pmatrix} = x, \qquad \begin{pmatrix} x \\ 2 \end{pmatrix} = \frac{x(x-1)}{2!} = \frac{x^2}{2} - \frac{x}{2},$$

$$\begin{pmatrix} x \\ 3 \end{pmatrix} = \cdots, \begin{pmatrix} x \\ 4 \end{pmatrix} = \cdots.$$

Например,
$$3x^3 - 5x^2 + 7x - 1 = -1 \cdot {x \choose 0} + 5 \cdot {x \choose 1} + 8 \cdot {x \choose 2} + 18 \cdot {x \choose 3}$$

Указание. 1) Данный многочлен записали в виде линейной комбинации с неопределенными коэффициентами

$$3x^3 - 5x^2 + 7x - 1 = \alpha_1 \cdot {\binom{x}{0}} + \alpha_2 \cdot {\binom{x}{1}} + \alpha_3 \cdot {\binom{x}{2}} + \alpha_4 \cdot {\binom{x}{3}}$$

2) Представили биномиальные коэффициенты в виде многочленов.

- 3) Сравнили коэффициенты при одинаковых степенях x в левой и правой частях равенства. Получили систему линейных алгебраических уравнений.
- 4) Решили систему линейных алгебраических уравнений.
- 5) Записали ответ.

Алгоритмы вычисления

Биномиальные коэффициенты можно вычислить с помощью рекуррентной формулы

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$$

если на каждом шаге n хранить значения $\binom{n}{k}$ при $k=0,1,\ldots,n$. Этот алгоритм особенно эффективен, если <u>нужно получить все значения</u> $\binom{n}{k}$ при фиксированном n. Алгоритм требует O(n) памяти ($O(n^2)$ при вычислении всей таблицы биномиальных коэффициентов) и $O(n^2)$ времени (в предположении, что каждое число занимает единицу памяти и операции с числами выполняются за единицу времени).

При фиксированном значении k биномиальные коэффициенты могут быть вычислены по рекуррентной формуле

$$\binom{n}{k} = \frac{n}{n-k} \binom{n-1}{k}$$

с начальным значением $\binom{k}{k} = 1$.

Если требуется вычислить коэффициенты $\binom{n}{k}$ при фиксированном значении n, можно воспользоваться формулой

$$\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$$

при начальном условии $\binom{n}{0} = 1$.