

Background:
1) Seidel's exact sequence & its variants
(Seidel) $HF(S^n, L_1) \otimes HF(L_0, S^n) \longrightarrow HF(L_0, L_1) \longrightarrow HF(L_0, T_{S^n}L_1)$
(Seidel, fraed pt version) HFY(\(\tau_0 f\)) -> HF(f) HT(f(s^1), S^1)
(Wehrheim-Woodward, family version
HF(CoLo) Coli) - + HF(Lo, TcLi)
Lag. composition,
C = Sphenical Coisotropic.
X We will provide new proofs of these results.

Mak-W: Construction & Cobordism formalism works for	
a) Clean surgeries b) immersed Lag.	
3) Huybrechts-Thomas conjecture: Phom(E,E)2H	(\$`)
Seidel: Lag Sn = mirror > spherical object { E& w = E	
Dehn twist $<$ mirror $>$ f \rightarrow Cone $(hom (E, F) \otimes E \rightarrow F)$)
Huybrechts-Thomas: Hom (Ep, Ep) 2 H (C)	р ^ћ)
Las CP = mirror > projective object 1	
Dehn-tuists $(mirror)$ \Rightarrow $f \rightarrow Cone (hom(E,f) \otimes E [-2] \rightarrow hom(E,f)$	<u>-}}⊗</u> {
Question: Really	

Basic Idea: A Mirror Proof
Spherical / Projective twist are defined by
Fourier-Mukai transforms, e.g. Pe = FMcone (2018-10)
Philosophy: 1) Symplectic Fourier-Mukai =
Lagrangian composition Lo -Lo,
2) Cone in Fuk 2 Lagrangian cobordism/ Surgery
Cobordisn/surgery in prods. Mirror > Cones on Fith- Kernels.
Coboraisn/surgery in from.
Graph of Dehn twists

		geodeste flows	
Jet	-up: (1) Let Y(s) b	e a function whose graph	$(\psi^{-1})^{(n)} = 0$
	(2) DCLICM	, ND conormal bale	(b) (c) (V(S)
	(3) of is the Ha	m. flow gen by 11p11	γ ^(h) = 0
		- φ _{νι πριιγ} (No D) [[C	ow handle
		on of pti	Dital by D
) travels along direction. The (dual of) tangent vec	
	3) $ \phi_{\ell}(p) = p $		

Motivation for flow handles:
1. Easy to define on clean intersection
2. Easy to construct Lag. Cobordism
3. Easy to compare with Dehn twists
Def: (Model Dehn Twist on S = S") (= TT when S=S")
In T'S, consider admissible $\psi(0) = 2\pi \tau$ length
Py(IIpII) Smoothly extend to Zero Section good.
then to is the extension.
=> flow handle is exactly the image of same flow

L=S $\subset T^*S$ $S=S^n$, RP^n , CP^n Example: exotic sphere --γγ ζχε[0,π], Hym Dp = opposite divisor When $S=S^n$, $H_{\psi^{T}}=T_S(F_p)=S^n\#_pF_p$ > Dehn. twist is isotopic to a surgery. When $S = CP^n$, $H_{YTT} = CP^n #_p F_p$ immersed Lay S_{J} $H_{Y^{ZTT}} = CP^n #_p CP^n #_p F_p = CCP^n F_p$

Further Extensions (E2-flow surgeries) DmcIn lag 2n TL = Enm Em (example: L= product)

(implicitly identified with TL) Assume E2/D transverse to D. => flow handle along E2. Concretely, assume $E_1 \perp E_2$, take Han function $\Psi(\alpha, p) = \Psi(\|\pi_{E_2}(p)\|)$

Combine with MWW-functor. Can be removed when LHS D: Fuk (M×M) - Fun (Fuktim), Fuktim) => functor-level cone => object cone / STOS -> Id -> Pzon hom(Sn,L)@Sn-1L-1 TsnL Corollary: Sympa (W) is split generated by Dehn twists (Mak-W., along vainshing cycles, when WEADE. Keating) when W=An-Milnor fiber in dimW=4, Sympc(W) is generated (as a group/Ham) by U.C.

A few remarks: D New info: In monotone cases, Seidel's LES holds for coefficients Z/Zz, Refore it is known only for Dovikov Coefficients. 2) Serdel's exact sequence for general symp, mfds: Ongoing - i) Lag. Cobordism for general symp. mfds FOOD =) (i) Isom. HF(A, L, XL2) = HF(L1, L2)

4) (General Remarks on Lagrangian Surgeries)
Algebraic "surgery" = Cone of chain cx/objects: Cone (A \$\Perces\$ B) = A[1] \$\Perces\$ B
Cone (A C)B) = A[I] DB
deg = 0 1 C
i) this means the only categorically meaningful Lag
i) this means the only categorically meaningful Lag Surgeries are a deg = 0 intersections (CF°(L1,Lz))
ii) Two Lag. surgeries Ze
correspond to CF(L1, L2) and CF(L2, L1), resp.
=> to get meaningful objects needs grading shifts
=> resolving two intersections of 7 deg creates
=> tesolving two intersections of # deg creates problems (obstructions on Li#Lz)

Rank-1 trick recovers Fooo's surgery exact seg. Thun: (F000) L, MLz = 2p3 + technical conditions, then Li [p] Lz - Li#p Lz is an exact triangle. (Also due to Biran - Cornea) * Can be extended to LithLz = D a Submid. L, EDJ, L2 -> L, #DLz with extra top. Constraint. [I]

Fp#p(L,#Lz) = generalized surgery Claim: Theorem: (Mak-W.) When L 15 = 17+3 S[-2] Cp^{n-1} S[pt] [1] * Works for all S=RP, CPh --- (different grading shift) This matches Huybrechts-Thomas also for connecting maps.

Lemma. HF(NX), V) is well-defined and invariant under choices if 1) isotopy lies inside bottleneck. 2) near bothereck, take product cx structures. Key point: => compactness Theorem: (Mak-W.) When Li satisfy certain deg. restriction Cone (L, -> Lz - . -> L'n) 2 Cone (L'1 -> - . -> L'n)

Some Prospects: 1) IRP objects & twists. (suggested by R. Thomas)
All stories told above holds for char = 2,
most hold for char = 0, except IRP! When char=0, Lag. RP -> spherical object, Mystery 1. How to tell TRP from Sn-objects? Mystery 2 Will get contradiction when naively "upgrade" RP - twist formula to C- coefficient. Answer: Blindsded by spin structures! Expected: (Rp, 50) # (Rp, 51) # L = TRp L. Definition. An RP - pair in the derived cat Da) Is a pair of spherical objects (S-, S+)
such that thom (S-, S+) = 0 (+ more axioms) => RP"-twist E Aut(Db(x)) (ongoing with C.-Y. Mak)

2) Where to find Probjects: Hyperkähler mfds ex 1: P° = X2°, => Opr is P°-object. ex2: TC: X -> P Lag. Sib. of irreducible hol. Symp. $+H^*(X,Q_X)=H^*(\mathbb{P}^n,\mathbb{C}).$ $\oplus Ext^{p}(\mathcal{E}, \mathcal{E} \otimes \Omega^{2}) = \oplus H^{p}(\mathbb{P}^{n}, \Omega^{2})$ Then IT'E is P-object. Expectation: Interesting Lag. CP's should be found in mirrors of hyperkählers. (SYZ is usually nicely behaved) Lag. CP - section?

More	difficulties	when c	ortinuation	n maps &	é chain	homotopies
are	involved.	DOK f	or 1 î	ntersection	on.	
In g	ereral,				s L	
V	K(CF(L,S))	- copies	s of im	imersed :	spheres	
Extrem	nely diffic	alt Prob	olems:			
gap # 1	well-def	HF (no fish	Hail) !	out No) †
X	Well-def	Continual	ion map		-> but	- NOT
gap <	Well-def	chain ho	motopy			
With	nout appropri	ate grad	ing gaps	= need	s explici	+ counts

