A more precise mass measurement of the Λ_c baryon

Carter Eikenbary

University of Cincinnati

April 26, 2021

Standard Model

Standard Model of Elementary Particles

Figure: Modern classification of elementary particles²

- Hadrons: Particles composed of quarks
- Baryons: Three quarks or anti-quarks
- Mesons: Quark/anti-quark pair
- Λ_c^+ composed of up,down, and charm quark

Background of the LHCb collaboration

Figure: Cross section view of LHCb Detector¹

- Single-arm forward spectrometer
- Primarily observes beauty and charm hadron decays
- Used to study CP violation

Analysis goal and procedure

Goal: Create sample of $\Lambda_c \to pK^+K^-$ events with high statistical precision.

<u>Procedure:</u> Set selection criteria on decay kinematics and particle identification.

Preliminary cuts on ProbNN variables

ProbNN Preliminary Cuts	
Variable	Cut
Proton_ProbNNp	> 0.6
Product of ProbNNx	> 0.4

- Ensuring each event includes a p, K⁺, and K⁻
- ProbNNx: Probability of charged track being a specific hadron

Further cuts on ProbNN variables

PID Cuts	
Variable	Cut
$Proton_{-}ProbNNp$	> 0.9
Product of ProbNNx	> 0.8

- Improving signal:background while maintaining statistical significance
- Remove regions where background is greater than signal.

Cuts on decay kinematics

- Dalitz Plot: Visualization of resonances between final-state particles
- $\phi(1020) \to K^+K^-$ is a possible resonance in decay
- Most signal events have intermediate $\phi(1020)$

Fitting

Double Gaussian Signal + Linear Background

Pull: Visualization of a fit's quality at each bin center.

Systematic uncertainties

(After momentum corrections)

$\frac{\text{Equation for Systematic Error}}{\sigma_{\textit{sys}} = \sigma_{\textit{stat}} \sqrt{1 - \chi^2 / \textit{NDF}}}$

Total Systematic Error $0.036 \,\mathrm{MeV}/c^2$

Results

Analysis Measurement: $(228x.xx \pm 0.05\pm??) \, \mathrm{MeV}/c^2$ Current PDG Value: $(2286.46 \pm 0.14) \, \mathrm{MeV}/c^2$

Future Work & References

- Test different fit functions
- Vary bin sizes
- Study momentum correction dependence
- LHCb collaboration, A.A Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005
- Standard Model of Elementary Particles. Courtesy to Wikipedia: 'Standard Model of Elementary Particles' by Cush-Own work by uploader, PBS NOVA, Fermilab, Office of Science, United States Department of Energy, Particle Data Group.

This work was supported by the National Science Foundation

Systematic uncertainties

Total Systematic Error $0.05974 \text{MeV}/c^2$

