Synthetic differential geometry via examples

Daniel Miller

August 7, 2016

1 The main examples

Synthetic differential geometry (SDG) lives inside a topos \mathcal{E} , where we have fixed a commutative ring object R. We will construct two examples, denoted \mathcal{E}_{sm} and \mathcal{E}_{alg} , which represent "smooth" and "algebraic" theories. Their construction works in parallel, starting with a Lawvere theory \mathbb{T} . The theory \mathbb{T}_{sm} has as objects all finite-dimensional \mathbf{R} -vector spaces, with morphisms all smooth maps. The theory \mathbb{T}_{alg} has as objects all finite free k-modules (with polynomial maps) for some fixed base ring k. That is, for E, F finite free k-modules, we put $\lim_{\mathbb{T}_{alg}}(E, F) = \mathrm{S}(E^{\vee}) \otimes F$.

The category $\mathsf{Alg}_{\mathbb{T}}$ of \mathbb{T} -algebras is, by definition, the category of product-preserving functors $\mathbb{T} \to \mathsf{Set}$. In particular, if $W \in \mathbb{T}$ is a commutative ring object (we shall call such objects "Weil algebras") then $\mathsf{hom}(W,-)\colon \mathbb{T} \to \mathsf{Set}$ is a commutative ring object in $\mathsf{Alg}_{\mathbb{T}}$. Write $\mathsf{Wei}_{\mathbb{T}}$ for the category of commutative ring objects in $\mathsf{Alg}_{\mathbb{T}}$.

When $\mathbb{T}=\mathbb{T}_{\mathrm{sm}}$, write C^{∞} -Alg = $\mathrm{Alg}_{\mathbb{T}_{\mathrm{sm}}}$; we call objects of C^{∞} -Alg "smooth algebras." Write $C^{\infty}\colon \mathrm{Man}^{\circ}\to \mathrm{Alg}_{\mathbb{T}_{\mathrm{sm}}}$ for the functor $C^{\infty}(M)(V)=\mathrm{hom}_{\mathrm{sm}}(M,V)$. It is known that C^{∞} is fully faithful. In particular, if $V\in\mathbb{T}_{\mathrm{sm}}$, then $C^{\infty}(V)\in C^{\infty}$ -Alg, and $C^{\infty}(V)(U)=\mathrm{hom}_{\mathrm{sm}}(V,U)$.

For $\mathbb{T}=\mathbb{T}_{\mathrm{alg}}$, the category $\mathsf{Alg}_{\mathbb{T}_{\mathrm{alg}}}=\mathsf{Alg}_k$, the category of "honest" k-algebras. Namely, if A is a k-algebra, consider the functor $E\mapsto A\otimes_k E$ (this is a functor because polynomial maps of finite free modules still make sense after base change). It is easy to check that all objects of $\mathsf{Alg}_{\mathbb{T}_{\mathrm{alg}}}$ are of this form.

If \mathbb{T} is a Lawvere theory, put $\mathsf{Aff}_{\mathbb{T}} = \mathsf{Alg}_{\mathbb{T}}^{\circ}$, and write $\mathsf{Spec} \colon \mathsf{Alg}_{\mathbb{T}}^{\circ} \to \mathsf{Aff}_{\mathbb{T}}$ for the obvious equivalence. Put $\mathcal{E}_{\mathbb{T}} = \widehat{\mathsf{Aff}}_{\mathbb{T}}$. For $A \in \mathsf{Alg}_{\mathbb{T}}$, we also write $\mathsf{Spec}(A)$ for the presheaf $\mathsf{Spec}(B) \mapsto \mathsf{hom}_{\mathsf{Alg}_{\mathbb{T}}}(A,B)$.