Quiz 1 – Lösungen

- 1. Gibt es eine nichtleere endliche Sprache $L \neq \{\lambda\}$ über dem Alphabet $\{a,b\}$, die die Bedingung $L^2 = L$ erfüllt?
 - ∫a √ Nein

Lösung: Es gibt keine solche Sprache! Angenommen, es gäbe eine nichtleere endliche Sprache $L \neq \{\lambda\}$, so dass $L^2 = L$, dann gäbe es ein Wort $w \in L$ mit $|w| = \max\{|v| \mid v \in L\}$. Da $L \neq \{\lambda\}$ gilt, folgt $|w| \geq 1$. Aus unserer Annahme $L^2 = L$ folgt des Weiteren, dass $w^2 \in L$ gelten muss. Dies ist aber ein Widerspruch zur Annahme, dass w ein Wort maximaler Länge ist $(|w^2| > |w|)!$

- 2. Sei $L_1 = \{\{0\}^*\{1\}^*\}^*$ und $L_2 = \{\{0,1\}^3\}^*$. Welche Aussage ist korrekt?
 - $\bigcirc L_1 = L_2 \quad \sqrt{L_1 \neq L_2}$

Lösung: Die Länge aller Wörter in L_2 sind ein Vielfaches von 3, folglich sind L_1 und L_2 nicht gleich, da z.B $0 \in L_1$ aber $0 \notin L_2$.

3. Seien $L_1,\,L_2$ und L_3 Sprachen über einem Alphabet $\Sigma.$ Dann gilt

$$L_1L_2 \cup L_1L_3 = L_1(L_2 \cup L_3)$$

 $\sqrt{\text{Wahr}}$ \bigcirc Falsch

Lösung: Siehe Lemma 2.1 auf Seite 21 im Buch.

4. Seien $L_1,\,L_2$ und L_3 Sprachen über einem Alphabet $\Sigma.$ Dann gilt

$$L_1L_2 \cap L_1L_3 = L_1(L_2 \cap L_3)$$

 \bigcirc Wahr $\sqrt{$ Falsch

Lösung: Gegenbeispiel (über Σ_{Bool}): $L_1 = \{\lambda, 1\}$, $L_2 = \{0\}$ und $L_3 = \{10\}$. Somit $L_1(L_2 \cap L_3) = \emptyset$ und $L_1L_2 \cap L_1L_3 = \{10\}$

5. Wir betrachten die Sprache

$$L = \{p, pq, pp, pqp, pqqp\}$$

Gibt es zwei Sprachen $L_1 \neq \{\lambda\}$ und $L_2 \neq \{\lambda\}$ über dem Alphabet $\Sigma = \{p, q\}$, so dass $L = L_1 \cdot L_2$? Falls ja, bestimme L_1 und L_2 . Falls nein, begründe warum solche Sprachen nicht existieren können.

Lösung: $L_1 = \{p, pq\}$ und $L_2 = \{\lambda, p, qp\}$ somit

$$L_1 \cdot L_2 = \{p, pp, pqp, pq, pqp, pqqp\}$$
$$= \{p, pq, pp, pqp, pqqp\} = L$$

6. Schreibe einen Algorithmus \mathcal{A} (in Pseudocode), welcher folgendes Entscheidungsproblem löst: $(\Sigma_{10}, \{x \in (\Sigma_{10})^* \mid x \text{ ist durch } 3 \text{ teilbar}\})$

Alternative Darstellung:

Eigabe: $x \in (\Sigma_{10})^*$

Ausgabe: Ja, falls x durch 3 teilbar ist. Nein, sonst.

Lösung:

- 1: function A(x)
- 2: $\mathbf{return} \times \mathbf{mod} \ 3 = 0$