Printed Page: NAS103

(Following Paper ID and Numbers to be filled in your Answer book)														
Paper ID:	1	9	9	1	2	5	Roll No.:							
raper ib.		<i></i>	<i></i>				Non No	<u> </u>					l .	

	B.TECH (SEM. I) (ODD SEM) THEORY EXAMINATE ENGINEERING MATHEMATIC		15-16		
Time	e: 3 Hours Section-A			[Total Marks: 1	00]
O 1 A	ttempt all parts. All parts carry equal marks. Write answer of each	nart in	chart	(2x10 = 2	2O)
	Find the derivative of $y = x2$. Sin x at x = 0.	i part in s	SHOLL.	(2XIU = /	20)
(a)	,				
(b)	If $x^2 = au + bv$, $y^2 = au - bv$, then find — —				
(c)	If $x = u (1 + v)$, $y = v (1 + u$, find ———				
(d)	What is the maximum values of function $f = 1 - x^2 y^2$?				
(e)	For what value of 'K' the rank of matrix				
(f)	The Eigen values of A are 2,3,1 then find the Eigen values of				
(g)	Evaluate				
(h)	Find the value of –.				
(i)	Find the unit normal at the surface at the point	t			
(j)	If is the position vector, the value of				
	Section- B				
Note	e: Attempt any five questions from this section.			(10x5 = 5	iO)
Q.2	If m $\sin^{-1} x = \sin^{-1} y$, Find the value of yn at $x = 0$.				
Q.3	If u , v , w are the roots of the equation $(x - a)^3 + (x - b)^3 + (x - c)^3 =$	$(x - c)^3 =$	0, then find	I ———	
Q.4	The angles of a triangle are calculated from the sides If s	small cha	ange	are made in sides.	
	Show that approximately — v	vhere i	is the area of	f triangle and A,B,C ar	e
	the angles apposite to a,b,c respectively, verify that				
Q.5	Find the Eigen values and corresponding Eigen vectors of				
Q.6	Verify Cayley-Hamilton theorem for ,				
	Hence evaluate +				

Q.7 Show that — — — the integral being taken through the volume bounded by planes

Q.8	Change the order of Integration	n in	a	nd hence evaluate the same.					
Q.9	Verify the Green's theorem to	where C is the l	the boundary of the						
	closed region bounded by								
		S	ection- C						
Note:	Attempt any two questions fron	this section.			(15x2 = 30)				
Q.10	(i) Find the derivative of	hence	prove that	=					
	(ii) Find the value of so that	the equation		satisfies the relation					
				_					
	(iii) Verify Euler's theorem for	the function	_	_					
Q.11	(i) If								
	(ii) Investigate the values of $\boldsymbol{\lambda}$	and μ so that eq	uation						
	have (i) no solution (ii) a unio	que solution (iii)	infinite solut	ion.					
	(iii) Evaluate the area enclosed	l between	and the stra	and the straight line					
Q.12	(i) Show that			. Hence show that –					
	(ii) Show that the vector field	— where	is irriga	tional. Find the scalar potential.					
	(iii) If	evaluate	arround th	ne curve C consisting of					