Erzeugung von Röntgenstrahlung

Erzeugung von Röntgenstrahlung:

Grundprinzip: Photoelektrischer Effekt

- Erzeugung freier Elektronen durch Erhitzen einer Schwermetallwendel (Kathode)
- Beschleunigung im elektrischen Feld (100 150 kV)
- Abbremsung in Anodenmaterial
 (Umsetzung 99 % E_{kin} in Wärme, 1 % in Röntgenstrahlung)
- Bremsstrahlung, charakteristische Strahlung
- Vakuum (< 10⁻⁵ mbar); Vermeidung WW mit Luftmolekülen

Erzeugung von Röntgenstrahlung:

W. Crookes 1904

Frequenz der Röntgenstrahlung:

Elektronenergie nach Durchlaufen der Beschleunigungsspannung:

$$E_{kin} = e \cdot U_A$$

$$\text{mit } E_{Photo} = h \cdot \mathbf{n}$$

$$\Rightarrow \mathbf{n} = \frac{e}{h} \cdot U_A$$

Frequenz der Röntgenstrahlung linear abh. von Röhrenspannung

U _A	λ=1/υ	Strahlungsart		
1 kV	1.242 nm	weich		
10 kV	0.124 nm	mittel		
100 kV	0.012 nm	hart		

Bohrsches Atommodell

Energie der Röntgenstrahlung:

1. Bremsstrahlung:

Beschleunigte Elektronen geraten in Nähe eines Atomkerns (zwischen Kern und K-Schale)

- Ablenkung durch Coulomb-Potential des Kerns und der Hüllenelektronen
- Abbremsung (Umwandlung von E_{kin} in e.m. Energie)
- Abstrahlung der Energie als "Bremsstrahlung"

Energie der Bremsstrahlung hängt von Flugbahn ab

⇒ breites Energiespektrum!

Energie der Röntgenstrahlung:

1. Bremsstrahlung:

räumliche Intensitätsverteilung der Bremsstrahlung ("Strahlungskeulen")

Energie der Röntgenstrahlung:

2. Charakteristische Strahlung:

Beschleunigte Elektronen schlagen gebundene Elektronen aus K- (oder L-) Schale ⇒ Ionisation

Auffüllen der freien Stelle durch freies Elektron oder aus äußerer Schale Freisetzen der Energiedifferenz ($h\mathbf{u}=E_m-E_n$) als Quant mit charakteristischer Frequenz v

Energie der charakteristischen Strahlung nur materialabhängig!

Energie der Röntgenstrahlung:

2. Charakteristische Strahlung:

Berechnung der Energie der Kα-Strahlung

Mosleysches Gesetz:

$$E_{Ka} = \frac{3}{4} \cdot R_{\infty} (Z - 1)^2$$
 mit $R_{\infty} = \text{Rydbergkonstante} \ (3.29 \cdot 10^{15} \, \text{s}^{-1})$
$$Z = \text{Ordnungszahl}$$

Energie der Röntgenstrahlung:

3. Gesamtes Energiespektrum:

Erzeugung von Röntgenstrahlung:

- Frequenz abh. von Röhrenspannung
- Energie abh. von Materialeigenschaften
- ⇒ Anforderungen an Anodenmaterial:
 - Hohe Ordnungszahl Z (Ausbeute an Rö.-Strahlen steigt prop. mit Z)
 - Hoher Schmelzpunkt T_{max}
 - Hohe Wärmeleitfähigkeit κ
 - Qualitätsmaß = $Z \cdot T_{\text{max}} \cdot \kappa$

Am meisten verwendet: Wolfram oder Wolfram-Rhenium

Erzeugung von Röntgenstrahlung:

Qualitätskriterien für Röntgenquellen in der medizinischen Bildgebung

hohe Leistung

⇒ kurze Belichtungszeit

- kleiner Fokus

⇒ Schärfe

- einstellbare Quantenenergie

⇒ Kontrast

- kostengünstige Herstellung

- wenig Wartung, lange Lebensdauer

Erzeugung von Röntgenstrahlung:

Qualitätskriterien für Röntgenquellen in der medizinischen Bildgebung

Eine hohe Leistung und ein kleiner Fokus

kann durch Verwendung einer

schräg gestellten Anode

und durch eine

rotierende Anode (Drehanode)

erreicht werden

Generierung von Röntgenstrahlung (Drehanode):

Wärmeabführung durch Rotation

Aufbau einer Drehanode:

Anodenmaterial:

Element Ordnungszahl		Temperatur fähi	Wärmeleit-	Festanoden		Drehanoden		
Z	fähigkeit λ [W] [cm K]		$ZT_{max}\lambda$	Reihen- folge	√λρα	ZT _{max} √λρc	Reihen- folge	
Cu Mo Ag Ta	29 42 47 73	1032 2167 832 2587	3,98 1,38 4,18 0,55	119113 125599 163450 103868	8 7 4 9	3,68 1,88 3,18 1,13	110135 171106 124350 213402	10 8 9 6
W	74	2757	1,3	265223	1	1,81	369273	1
Re Os Ir Pt Au U	75 76 77 78 79 92	2557 2280 2220 1742 (1063) (1132)	0,71 0,87 1,46 0,71 3,14 0,25	136160 150754 249572 96472 263687 26036	6 5 3 10 2 11	1,38 1,77 2,06 1,41 2,81 0,75	264650 306706 352136 191585 235975 78108	4 3 2 7 5

Generierung von Röntgenstrahlung (Drehanode):

Aufbau einer drehenden Röntgenanode zur Erzeugung harter Bremsstrahlung für medizinische Anwendungen:

Erzeugung von Röntgenstrahlung:

Beispiel: Straton-Röhre (Siemens, 2003)

direkte Anodenkühlung Mechanik außerhalb Vakuum Rotationszeit: 0.37 sec Sub-mm Volumen-Scans bei 500 mAs für 20 sec (64 mm/sec) Dosisreduktion unabh. von Patientengröße u. Anatomie

Wirkungsgrad h und Strahlungsleistung *D*:

$$h = \frac{\text{Strahlungsleistung}}{\text{elektrische Leistung}} = k \cdot Z \cdot U_A$$
 [%]

wobei

 $k = 1.1 \cdot 10^{-9} [V^{-1}]$

Z = Ordnungszahl des Anodenmaterials

 U_A = Röhrenspannung

Beispiel: Wolfram-Anode, Z=74, $U_A=125$ kV $\Rightarrow \eta = 1.02$ % (in der Praxis < 1% wg. Filterung und Ausblendung; Rest: Wärme)

$$D \equiv Z \cdot I \cdot U_A^2$$

wobei

/= Röhrenstrom (weitestgehend fest vorgeschrieben!)

Einfluss von Röhrenspannung und -strom:

- Flussdichte der Röntgenstrahlung: $\psi \sim Z \cdot I \cdot U_a^n$
- Röhrenspannung bestimmt "Härte" der Strahlung Potentieller Einfluss (ungefiltert: *n*=2; mit Filter bis *n*=5)
- Röhrenstrom bestimmt Photonenanzahl/sec Linearer Einfluss

Röntgenstrahlung:

Klassifizierung

Strahlungsart	λ_{min} - λ_{max} [nm]	f _{min} - f _{max} [GHz]	E [keV]
überweich	0.25 - 0.06	1.2 10 ⁹ - 3.3 10 ⁹	5.0 - 13.6
weich	0.06 - 0.02	3.3 10 ⁹ - 1.5 10 ¹⁰	13.6 - 62
mittelhart	0.02 - 0.01	1.5 10 ¹⁰ - 3.0 10 ¹⁰	62 - 124
hart	0.01 - 0.005	$3.0\ 10^{10}$ - $6.0\ 10^{10}$	124 - 248
überhart	< 0.005	> 6.0 10 ¹⁰	> 248

Typische CT-Röntgenröhre:

Beschleunigungsspannung 120 kV

Wolfram-Anode: ~ 20 - 120keV

Ionisierung von lebendem Gewebe bereits bei 15 eV!!