General Relativity

Cian Luke Martin

2024-11-07

Contents

1	Lecture: Introduction 1.1 Differentiable Manifolds	2
2	Lecture: Smooth Functions on Manifolds2.1Smooth Functions2.2Curves and Vectors	4 5
3	Lecture: Tangent Spaces3.1 The Tangent Space is a Vector Space	6 8
4		9 11 11
5	5.1 Change of Bases	12 12 13 14
6	6.1 Integral curves	15 15 16 17
7	7.1 Lorentzian signature	18 19 20
8	8.1 Geodesic Equation	20 20 22
9		2 4

	9.2	Geodesics	27
10	10.1	Normal Coordinates	
11	11.1	The Riemann Tensor The Riemann Tensor Geodesic Deviation	
12		Symmetries of the Riemann tensor	

Lecture: Introduction 1

11/10/2024

General Relativity is our best theory of gravitation on the largest scales. It is classical, geometrical and dynamical.

Differentiable Manifolds 1.1

The basic object of study in differential geometry is the (differentiable) manifold. This is an object which 'locally looks like \mathbb{R}^n ', and has enough structure to let us do calculus.

Definition 1.1: A differentiable manifold of dimension n is a set M, together with a collection of coordinate charts $(O_{\alpha}, \phi_{\alpha})$ where

- $O_{\alpha} \subset M$ are subsets of M such that $\cup_{\alpha} O_{\alpha} = M$,
- ϕ_{α} is a bijective map (one to one and onto) from $O_{\alpha} \to U_{\alpha}$, an open subset of \mathbb{R}^n ,
- If $O_{\alpha} \cap O_{\beta} \neq \emptyset$, then $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is a smooth (infinitely differentiable) map from $\phi_{\alpha}(O_{\alpha} \cap O_{\beta}) \subset U_{\alpha} \text{ to } \phi_{\beta}(O_{\alpha} \cap O_{\beta}) \subset U_{\beta}.$

Note. We could replace smooth with finite differentiability (e.g. k-differentiable) but it is not particularly interesting.

Further, these charts define a topology of $M, \mathcal{R} \subset M$ is open iff $\phi_{\alpha}(\mathcal{R} \cap O_{\alpha})$ is open in \mathbb{R}^n for all α .

Every open subset of M is itself a manifold (restrict charts to \mathcal{R}).

Definition 1.2: The collection $\{(O_{\alpha}, \phi_{\alpha})\}$ is called an **atlas**. Two atlases are **compatible** if their union is an atlas. An atlas A is **maximal** if there exists no atlas B with $A \subseteq B$.

Every atlas is contained in a maximal atlas (consider the union of all compatible atlases). We can assume without loss of generality we are working with the maximal atlas.

Examples.

i) If $U \subset \mathbb{R}^n$ is open, we can take O = U and

$$\phi: O \to U \tag{1}$$

$$\phi\left(x^{i}\right) = x^{i},\tag{2}$$

and $\{(U,\phi)\}$ is an atlas.

ii) $S^1 = \{ \mathbf{p} \in \mathbb{R}^2 \mid |p| = 1 \}$. If $\mathbf{p} \in S^1 \setminus \{ (-1,0) \} = \mathcal{O}_1$, there is a unique $\theta_1 \in (-\pi, \pi)$ such that $\mathbf{p} = (\cos \theta_1, \sin \theta_1)$.

If $\mathbf{p} \in S^1 \setminus \{(1,0)\} = \mathcal{O}_2$, then there is a unique $\theta_2 \in (0,2\pi)$ such that $\mathbf{p} = (\cos \theta_2, \sin \theta_2)$ such that

$$\phi_1: \mathbf{p} \to \theta_1, \text{ for } \mathbf{p} \in \mathcal{O}_1, U_1 = (-\pi, \pi),$$
 (3)

$$\phi_2: \mathbf{p} \to \theta_2, \text{ for } \mathbf{p} \in \mathcal{O}_2, U_2 = (0, 2\pi).$$
 (4)

We have that $\phi_1(\mathcal{O} \cap \mathcal{O}_2) = (-\pi, 0) \cup (0, \pi)$ and

$$\phi_2 \circ \phi_1^{-1}(\theta) = \begin{cases} \theta, & \theta \in (0, \pi), \\ \theta + 2\pi, & \theta \in (-\pi, 0). \end{cases}$$
 (5)

This is smooth where defined and similarly for $\phi_1 \circ \phi_2^{-1}$ and thus S_1 is a 1-manifold.

iii) $S^n = \{\mathbf{p} \in \mathbb{R}^{n+1} \mid |\mathbf{p}| = 1\}$. We define charts by stereographic projection if $\{\mathbf{E}_1, \dots, \mathbf{E}_{n+1}\}$ is a standard basis for \mathbb{R}^{n+1} and $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a standard basis for \mathbb{R}^n , we write

$$\mathbf{p} = p^i \mathbf{e}_i. \tag{6}$$

We set $\mathcal{O}_1 = S^n \setminus \{E_{n+1}\}$ and

$$\phi_1(\mathbf{p}) = \frac{1}{1 - n^{n+1}} \left(p^i \mathbf{e}_i \right), \tag{7}$$

and $\mathcal{O}_2 = S^n \setminus \{-E_{n+1}\}$ such that

$$\phi_2(\mathbf{p}) = \frac{1}{1 + n^{n+1}} \left(p^i \mathbf{e}_i \right). \tag{8}$$

We have $\phi_1\left(\mathcal{O}_1\cap\mathcal{O}_2\right)=\mathbb{R}^n\setminus\{0\}$ and $\phi_2\circ\phi_1^{-1}\left(\mathbf{x}\right)=\frac{\mathbf{x}}{|\mathbf{x}|^2}$.

Proof. Take $\mathbf{x} \in \phi_1 (\mathcal{O}_1 \cap \mathcal{O}_2) \subset \mathbb{R}^n$. We have that $\phi_1^{-1}(\mathbf{x}) = \frac{1}{1+x_jx^j} (2x^i, x^jx_j - 1)$ which satisfies $|\phi_1^{-1}(\mathbf{x})| = 1$ and is an inverse as

$$\phi_1 \circ \phi_1^{-1}(x_i) = \frac{1}{1 - \frac{x^j x_j - 1}{1 + x_j x^j}} \frac{2x^i}{1 + x_j x^j}$$
(9)

$$= \frac{1 + x_j x^j}{1 + x_j x^j - (x^j x_j - 1)} \frac{2x^i}{1 + x_j x^j}$$
 (10)

$$= \frac{1}{2}2x^i = x^i. {(11)}$$

Similarly, we have

$$\phi_2 \circ \phi_1^{-1}(x_i) = \frac{1}{1 + \frac{x^j x_j - 1}{1 + x_j x^j}} \frac{2x^i}{1 + x_j x^j}$$

$$= \frac{1 + x_j x^j}{1 + x_j x^j + (x^j x_j - 1)} \frac{2x^i}{1 + x_j x^j}$$
(12)

$$= \frac{1 + x_j x^j}{1 + x_j x^j + (x^j x_j - 1)} \frac{2x^i}{1 + x_j x^j}$$
(13)

$$= \frac{1}{2x_j x^j} 2x^i = \frac{x^i}{|x|^2},\tag{14}$$

which is well defined on $\mathbb{R}^n \setminus \{0\}$ as desired.

This is smooth on $\mathbb{R}^n \setminus \{0\}$ and similarly for $\phi_1 \circ \phi_2^{-1}$. Thus S^n is an *n*-manifold.

Lecture: Smooth Functions on Manifolds $\mathbf{2}$

14/10/2024

Smooth Functions

Suppose M, N are manifolds of dim n, n' respectively. Let $f: M \to N$ and $p \in M$. We pick charts $(\mathcal{O}_{\alpha}, \phi_{\alpha})$ for M and $(\mathcal{O}'_{\beta}, \phi'_{\beta})$ for N with $p \in \mathcal{O}_{\alpha}$ and $f(p) \in \mathcal{O}_{\beta}$.

Then $\phi_{\beta}' \circ f \circ \phi_{\alpha}^{-1}$ maps an open neighbourhood of $\phi_{\alpha}(p)$ in $U_{\alpha} \subset \mathbb{R}^{n}$ to $U_{\beta}' \subset \mathbb{R}^{n'}$.

Definition 2.1: If $\phi'_{\beta} \circ f \circ \phi_{\alpha}^{-1} : (U_{\alpha} \subset \mathbb{R}^n) \to (U'_{\beta} \subset \mathbb{R}^{n'})$ is smooth for all possible choices of charts, we say $f: M \to N$ is **smooth**.

Note. A smooth map $\Psi: M \to N$ which has a smooth inverse Ψ^{-1} is called a **diffeomorphism** and this implies n = n'.

Also, if $N = \mathbb{R}$ or \mathbb{C} , we sometimes call f a scalar field. Further if M is an (open) interval such that $M = I \subset \mathbb{R}$, then $f: I \to N$ is a smooth curve in N.

Lastly, if f is smooth in one atlas, it is smooth with respect to all compatible atlases.

Examples.

1) Recall $S^1 = \{ \mathbf{x} \in \mathbb{R}^2 \mid |x| = 1 \}$. Let $f(x, y) = x, f: S^1 \to \mathbb{R}$. Using previous charts,

$$f \circ \phi_1^{-1} : (-\pi, \pi) \to \mathbb{R} \tag{15}$$

$$f \circ \phi_1^{-1}(\theta_1) = \cos \theta_1,\tag{16}$$

and similarly,

$$f \circ \phi_2^{-1} : (0, 2\pi) \to \mathbb{R} \tag{17}$$

$$f \circ \phi_2^{-1}(\theta_2) = \cos \theta_2. \tag{18}$$

In both cases, f is smooth.

2) If (\mathcal{O}, ϕ) is a coordinate chart on M, write for $\mathbf{p} \in \mathcal{O}$,

$$\phi\left(\mathbf{p}\right) = \left(x^{1}\left(\mathbf{p}\right), x^{2}\left(\mathbf{p}\right), \cdots, x^{n}\left(\mathbf{p}\right)\right),\tag{19}$$

then $x^i(\mathbf{p})$ defines a map from \mathcal{O} to \mathbb{R} . This is a smooth map for each $i=1,\dots,n$. If (\mathcal{O}',ϕ') is another overlapping coordinate chart, then $x^i\circ\phi'^{-1}$ is the *i*th component of $\phi\circ\phi'^{-1}$, which is smooth.

3) We can define a smooth function chart by chart. For simplicity, we take $N = \mathbb{R}$. Let $\{(\mathcal{O}_{\alpha}, \phi_{\alpha})\}$ be an atlas on M. Define smooth functions $F_{\alpha}: U_{\alpha} \to \mathbb{R}$, and suppose that

$$F_{\alpha} \circ \phi_{\alpha} = F_{\beta} \circ \phi_{\beta},\tag{20}$$

on $\mathcal{O}_{\alpha} \cap \mathcal{O}_{\beta}$ for all α, β . Then for $\mathbf{p} \in M$, we can define $f(\mathbf{p}) = F_{\alpha} \circ \phi_{\alpha}(\mathbf{p})$ where $(\mathcal{O}_{\alpha}, \phi_{\alpha})$ is any chart with $\mathbf{p} \in \mathcal{O}_{\alpha}$ as this is constant by construction of F. f is smooth as

$$f \circ \phi_{\beta}^{-1} = F_{\alpha} \circ \underbrace{\phi_{\alpha} \circ \phi_{\beta}^{-1}}_{\text{always smooth}}$$
 (21)

In practice, we often don't distinguish between f and its **coordinate chart representation** F_{α} . This coordinate chart representation F_{α} captures f but maps from $U_{\alpha} \subset \mathbb{R}^n$ rather than from subsets of M. One can think of $F_{\alpha} = f \circ \phi_{\alpha}^{-1}$ as finding the point on M that ϕ_{α} mapped from and evaluating f at that point.

2.2 Curves and Vectors

For a surface in \mathbb{R}^3 , we have a notion of a tangent space at a point, consisting of all vectors tangent to the surface. Such tangent spaces are vector spaces (copies of \mathbb{R}^2). Different points have different tangent spaces.

In order to define the tangent space for a manifold, we first consider tangent vectors of a curve.

Recall that a smooth map from an interval $\lambda: I \subset \mathbb{R} \to M$ is a smooth curve in M.

If $\lambda(t)$ is a smooth curve in \mathbb{R}^n and $f:\mathbb{R}^n\to\mathbb{R}$ is a smooth function, then for $f(\lambda(t)):\mathbb{R}\to\mathbb{R}$, the chain rule gives

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[f\left(\lambda\left(t\right)\right)\right] = \mathbf{X}\left(t\right) \cdot \nabla f\left(\lambda\left(t\right)\right),\tag{22}$$

where $\mathbf{X}(t) = \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}$ is the **tangent vector** to λ at t. The idea is that we identify the tangent vector $\mathbf{X}(t)$ with the differential operator $\mathbf{X}(t) \cdot \nabla$.

Definition 2.2: Let $\lambda: I \to M$ be a smooth curve with $\lambda(0) = \mathbf{p}$. The **tangent vector** to λ at \mathbf{p} is the linear map $X_{\mathbf{p}}$ from the space of smooth functions, $f: M \to \mathbb{R}$ given by

$$X_{\mathbf{p}}(f) = \frac{\mathrm{d}}{\mathrm{d}t} f(\lambda(t)) \bigg|_{t=0}.$$
 (23)

We observe a few things of note.

1) $X_{\mathbf{p}}$ is linear such that $X_{\mathbf{p}}(f+ag) = X_{\mathbf{p}}(f) + aX_{\mathbf{p}}(g)$ for f, g smooth and $a \in \mathbb{R}$.

2) $X_{\mathbf{p}}$ satisfies the Leibniz rule,

$$X_{\mathbf{p}}(fg) = (X_{\mathbf{p}}(f))g + fX_{\mathbf{p}}(g). \tag{24}$$

3) If (\mathcal{O}, ϕ) is a chart with $\mathbf{p} \in \mathcal{O}$, we write

$$\phi\left(\mathbf{p}\right) = \left(x^{1}\left(\mathbf{p}\right), \cdots, x^{n}\left(\mathbf{p}\right)\right). \tag{25}$$

Let $F = f \circ \phi^{-1}$, $x^{i}(t) = x^{i}(\lambda(t))$ and $\mathbf{x}(t) = \phi(\lambda(t))$. Then we have

$$f \circ \lambda (t) = f \circ \phi^{-1} \circ \phi \circ \lambda (t) = F \circ \mathbf{x}(t), \qquad (26)$$

and thus the tangent vector defined in Eq. (23) can also be written as

$$X_{\mathbf{p}}(f) \equiv \frac{\mathrm{d}}{\mathrm{d}t} \left(f\left(\lambda\left(t\right)\right) \right) \bigg|_{t=0} = \frac{\partial F\left(x\right)}{\partial x^{\mu}} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \bigg|_{t=0}, \tag{27}$$

where $\frac{\partial F}{\partial x^{\mu}}$ depends on f and ϕ and $\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}$ depends on λ and ϕ .

3 Lecture: Tangent Spaces

16/10/2024

3.1 The Tangent Space is a Vector Space

Proposition 3.1: The set of tangent vectors to curves at **p** forms a vector space, $T_{\mathbf{p}}M$ of dimension $n = \dim M$. We call $T_{\mathbf{p}}M$, the **tangent space** to M at **p**.

Proof. Given $X_{\mathbf{p}}, Y_{\mathbf{p}}$ are tangent vectors, we need to show that $\alpha X_{\mathbf{p}} + \beta Y_{\mathbf{p}}$ is a tangent vector for $\alpha, \beta \in \mathbb{R}$. Let λ, κ be smooth curves with $\lambda(0) = \kappa(0) = \mathbf{p}$ and whose tangent vectors at \mathbf{p} are $X_{\mathbf{p}}$ and $Y_{\mathbf{p}}$ respectively. Let (\mathcal{O}, ϕ) be a chart with $p \in \mathcal{O}$ such that $\phi(\mathbf{p}) = 0$. We call this a *chart centered at* \mathbf{p} .

Let $\nu\left(t\right)=\phi^{-1}\left[\alpha\phi\left(\lambda\left(t\right)\right)+\beta\phi\left(\kappa\left(t\right)\right)\right]$ where notice $\nu\left(0\right)=\phi^{-1}\left(0\right)=\mathbf{p}.$

From Eq. (27), we have that if Z_p is the tangent to ν at \mathbf{p} , we have

$$Z_{\mathbf{p}}(f) = \frac{\mathrm{d}}{\mathrm{d}t} \left(f\left(\nu\left(t\right)\right)\right) \bigg|_{0} \tag{28}$$

$$= \frac{\partial F}{\partial x^{\mu}} \bigg|_{0} \frac{\mathrm{d}}{\mathrm{d}t} \left[\alpha x^{\mu} \left(\lambda \left(t \right) \right) + \beta x^{\mu} \left(\kappa \left(t \right) \right) \right] \bigg|_{t=0}$$
(29)

$$= \alpha \frac{\partial F}{\partial x^{\mu}} \left| \frac{\mathrm{d}}{\mathrm{d}t} x^{\mu} \left(\lambda \left(t \right) \right) \right|_{t=0} + \beta \frac{\partial F}{\partial x^{\mu}} \left| \frac{\mathrm{d}}{\mathrm{d}t} x^{\mu} \left(\kappa \left(t \right) \right) \right|_{t=0}$$
 (30)

$$= \alpha X_{\mathbf{p}}(f) + \beta X_{\mathbf{p}}(f), \qquad (31)$$

as desired. Therefore $T_{\mathbf{p}}M$ is a vector space.

To see that $T_{\mathbf{p}}M$ is n-dimensional, consider the curves

$$\lambda_{\mu}(t) = \phi^{-1}\left(0, \cdots, 0, \underbrace{t}_{\text{\muth component}}, 0, \cdots, 0\right). \tag{32}$$

We denote the tangent vector to λ_{μ} at **p** by $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$.

Note. This is **not** a differential operator.

However observe that by definition, we have

$$\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}(f) = \left.\frac{\partial F}{\partial x^{\mu}}\right|_{\phi(\mathbf{p})=0},\tag{33}$$

and thus it acts like a differential operator in \mathbb{R}^n on the coordinates of the chart.

The vectors $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$ are linearly independent. Otherwise $\exists \alpha^{\mu} \in \mathbb{R}$ not all zero such that

$$\alpha^{\mu} \left(\frac{\partial}{\partial x^{\mu}} \right)_{\mathbf{p}} = 0, \tag{34}$$

which implies

$$\alpha^{\mu} \frac{\partial F}{\partial x^{\mu}} = 0, \tag{35}$$

for all F. Setting $F = x^{\nu}$ gives $\alpha^{\nu} = 0$ and thus these vectors are linearly independent and spanning. They are therefore a basis for the vector space.

Further one can see that $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$ form a basis for $T_{\mathbf{p}}M$, since if λ is any curve with tangent $X_{\mathbf{p}}$ at \mathbf{p} , we have

$$X_{\mathbf{p}}(f) = \frac{\partial F}{\partial x^{\mu}} \bigg|_{x=0} \frac{\mathrm{d}}{\mathrm{d}t} x^{\mu} \left(\lambda(t)\right) = X^{\mu} \left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}} (f), \tag{36}$$

where $X^{\mu} = \frac{\mathrm{d}}{\mathrm{d}t}x^{\mu} \left(\lambda\left(t\right)\right)\Big|_{t=0}$ are the **components** of $X_{\mathbf{p}}$ with respect to the basis $\left\{\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}\right\}_{\mu=1,\cdots,n}$ for $T_{\mathbf{p}}M$.

Note. The basis $\{\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}\}_{\mu=1,\cdots,n}$ depends on the coordinate chart ϕ .

Suppose we choose another chart (\mathcal{O}', ϕ') , again centered at **p**. We write $\phi' = \left(\left(x'\right)^1, \cdots, \left(x'\right)^n\right)$. Then if $F' = f \circ \phi'^{-1}$, we have

$$F(x) = f \circ \phi^{-1}(x) \tag{37}$$

$$= f \circ \phi'^{-1} \circ \phi' \circ \phi^{-1} (x) \tag{38}$$

$$=F'\left(x'\left(x\right)\right). \tag{39}$$

Therefore,

$$\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}(f) = \left.\frac{\partial F}{\partial x^{\mu}}\right|_{\phi(\mathbf{p})} \tag{40}$$

$$= \left(\frac{\partial x'^{\nu}}{\partial x^{\mu}}\right) \bigg|_{\phi(\mathbf{p})} \left(\frac{\partial F'}{\partial x'^{\nu}}\right) \bigg|_{\phi'(\mathbf{p})} \tag{41}$$

$$= \left(\frac{\partial x'^{\nu}}{\partial x^{\mu}}\right) \Big|_{\phi(\mathbf{p})} \left(\frac{\partial}{\partial x'^{\nu}}\right)_{\mathbf{p}} (f). \tag{42}$$

We then deduce that

$$\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}} = \left(\frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right) \Big|_{\phi(\mathbf{p})} \left(\frac{\partial}{\partial x^{\prime \nu}}\right)_{\mathbf{p}}.$$
(43)

Let X^{μ} be components of $X_{\mathbf{p}}$ with respect to the basis $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$, and X'^{μ} be components of $X_{\mathbf{p}}$ with respect to the basis $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$ such that

$$X_{\mathbf{p}} = X^{\mu} \left(\frac{\partial}{\partial x^{\mu}} \right)_{\mathbf{p}} = X'^{\mu} \left(\frac{\partial}{\partial x'^{\mu}} \right)_{\mathbf{p}}$$
 (44)

$$=X^{\mu} \left(\frac{\partial x^{\prime \sigma}}{\partial x^{\mu}}\right) \left(\frac{\partial}{\partial x^{\prime \sigma}}\right)_{\mathbf{p}},\tag{45}$$

and therefore

$$X^{\prime\mu} = \left(\frac{\partial x^{\prime\mu}}{\partial x^{\nu}}\right) X^{\nu}. \tag{46}$$

Note. We do note have to choose a coordinate basis such as $\left(\frac{\partial}{\partial x^{\mu}}\right)_{\mathbf{p}}$. With respect to a general basis $\{e_{\mu}\}$, for $T_{\mathbf{p}}M$, we can write $X_{\mathbf{p}} = X^{\mu}e_{\mu}$ for $X^{\mu} \in \mathbb{R}$.

We always use summation convention, contracting covariant indices with contravariant indices.

3.2 Covectors

Recall that if V is a vector space over \mathbb{R} , the dual space V^* is the space of linear maps $\phi: V \to \mathbb{R}$. If V is n-dimensional then so is V^* (the spaces are then isomorphic). Given a basis $\{e_{\mu}\}$ for V, we can define the dual basis $\{f^{\mu}\}$ for V^* by requiring that

$$f^{\mu}(e_{\nu}) = \delta^{\mu}_{\ \nu} = \begin{cases} 1, & \text{if } \mu = \nu, \\ 0, & \text{if } \mu \neq \nu. \end{cases}$$
 (47)

If V is finite dimensional, then $V^{**} = (V^*)^* \simeq V$. Namely, to an element $X \in V$, we assign the linear map

$$\Lambda_X: V^* \to \mathbb{R},\tag{48}$$

$$\Lambda_X(\omega) = \omega(X), \tag{49}$$

for $\omega \in V^*$.

Definition 3.1: The dual space of $T_{\mathbf{p}}M$ is denoted $T_{\mathbf{p}}^*M$ and is called the **cotangent space** to M at \mathbf{p} . An element of this space is a **covector** at \mathbf{p} . If $\{e_{\mu}\}$ is a basis for $T_{\mathbf{p}}M$ and $\{f^{\mu}\}$ is the dual basis for $T_{\mathbf{p}}^*M$, we can expand a covector η as

$$\eta = \eta_{\mu} f^{\mu},\tag{50}$$

for **components** $\eta_{\mu} \in \mathbb{R}$.

4 Lecture: Tensors

18/10/2024

4.1 Tangent bundle

Notice that

$$\eta(e_{\nu}) = \eta_{\mu} f^{\mu}(e_{\nu}) = \eta_{\mu} \delta^{\mu}_{\ \nu} = \eta_{\nu},$$
(51)

and thus we can get the components of η by acting it on basis vectors in the tangent space. Further as we have $X = X^{\mu}e_{\mu}$,

$$\eta\left(X\right) = \eta\left(X^{\mu}e_{\mu}\right) \tag{52}$$

$$=X^{\mu}\eta\left(e_{\mu}\right)\tag{53}$$

$$=X^{\mu}\eta_{\mu},\tag{54}$$

and thus the action of the covector η on the vector X is essentially a contraction between the components.

Recall that a vector X is defined by its action on a function $f, X : f \to \mathbb{R}$, eating a smooth function and returning the rate of change as one moves in the direction of X.

Analogously, given a function f, one can consider a linear operator of that function being eaten by a generic vector X.

Definition 4.1: If $f: M \to \mathbb{R}$ is a smooth function, then we can define a covector $(df)_{\mathbf{p}} \in T_{\mathbf{p}}^*M$, the **differential** of f at \mathbf{p} , by

$$\left(df\right)_{\mathbf{p}}(X) = X\left(f\right),\tag{55}$$

for any $X \in T_{\mathbf{p}}M$. This is also sometimes called the **gradient** of f at \mathbf{p} .

If f is constant, X(f) = 0 which implies $(df)_{\mathbf{p}} = 0$.

If (\mathcal{O}, ϕ) is a coordination chart with $\mathbf{p} \in \mathcal{O}$ and $\phi = (x^1, \dots, x^n)$ then we can set $f = x^{\mu}$ to find $(dx^{\mu})_{\mathbf{p}}$. Observe

$$(dx^{\mu})_{\mathbf{p}} \left(\frac{\partial}{\partial x^{\nu}} \right)_{\mathbf{p}} = \left(\frac{\partial x^{\mu}}{\partial x^{\nu}} \right)_{\phi(\mathbf{p})} = \delta^{\mu}_{\nu}. \tag{56}$$

Therefore the coordinate differentials $\{(dx^{\mu})_{\mathbf{p}}\}$ is the dual basis to $\{(\frac{\partial}{\partial x^{\mu}})_{\mathbf{p}}\}$.

In this basis, we can compute

$$\left[(df)_{\mathbf{p}} \right]_{\mu} = (df)_{\mathbf{p}} \left(\frac{\partial}{\partial x^{\mu}} \right)_{\mathbf{p}} = \left(\frac{\partial}{\partial x^{\mu}} \right)_{\mathbf{p}} f = \left(\frac{\partial F}{\partial x^{\mu}} \right)_{\phi(\mathbf{p})}. \tag{57}$$

This justifies the language of gradient.

Exercise 1: Show that if (\mathcal{O}', ϕ') is another chart with $\mathbf{p} \in \mathcal{O}'$, then

$$(dx^{\mu})_{\mathbf{p}} = \left(\frac{\partial x^{\mu}}{\partial (x')^{\nu}}\right)_{\phi'(\mathbf{p})} \left(d(x')^{\nu}\right)_{\mathbf{p}},\tag{58}$$

where $x(x') = \phi \circ (\phi')^{-1}$, and hence if η_{μ}, η'_{μ} are components with respect to these bases,

$$\eta_{\mu}' = \left(\frac{\partial x^{\nu}}{\partial (x')^{\mu}}\right)_{\phi'(\mathbf{p})} \eta_{\nu}. \tag{59}$$

Proof.

Definition 4.2 (Tangent bundle): We can glue together the tangent spaces $T_{\mathbf{p}}M$ as \mathbf{p} varies to get a new 2n dimensional manifold TM, the **tangent bundle**. We define the tangent bundle to be

$$TM := \bigcup_{\mathbf{p} \in M} \{\mathbf{p}\} \times T_{\mathbf{p}}M. \tag{60}$$

Namely, it is the set of ordered pairs (\mathbf{p}, X) , with $\mathbf{p} \in M$, $X \in T_{\mathbf{p}}M$.

If $\{(\mathcal{O}_{\alpha}, \phi_{\alpha})\}$ is an atlas on M, we obtain an atlas for TM by setting

$$\mathcal{O}_{\alpha} = \bigcup_{\mathbf{p} \in \mathcal{O}_{\alpha}} \{\mathbf{p}\} \times T_{\mathbf{p}} M, \tag{61}$$

and

$$\widetilde{\phi}_{\alpha}\left(\left(p,X\right)\right) = \left(\phi\left(\mathbf{p}\right),X^{\mu}\right) \in \mathcal{U}_{\alpha} \times \mathbb{R}^{n} = \widetilde{\mathcal{U}}_{2},\tag{62}$$

where X^{μ} are the components of X with respect to the coordinate basis of ϕ_{α} .

Exercise 2: If (\mathcal{O}, ϕ) and (\mathcal{O}', ϕ') are two charts on M, show that on $\widetilde{U} \cap \widetilde{U}'$, if we write $\phi' \circ \phi^{-1}(x) = x'(x)$, then

$$\widetilde{\phi}' \circ \widetilde{\phi}^{-1} \left(x, X^{\mu} \right) = \left(x' \left(x \right), \left(\frac{\partial \left(x' \right)^{\mu}}{\partial x^{\nu}} \right)_{x} X^{\nu} \right). \tag{63}$$

Deduce that TM is a (differentiable) manifold.

Proof.

A similar construction permits us to define the cotangent bundle $T^*M = \bigcup_{\mathbf{p} \in M} \{\mathbf{p}\} \times T^*_{\mathbf{p}} M$.

Exercise 3: Show that the map $\Pi: TM \to M$ which projects onto the point such that

$$(\mathbf{p}, X) \mapsto \mathbf{p},$$
 (64)

is smooth.

Proof.

4.2 Abstract Index Notation

We have used Greek letters μ, ν etc. to label components of vectors (or covectors) with respect to the basis $\{e_{\mu}\}$ (respectively $\{f^{\mu}\}$). Equations involving these quantities refer to a specific basis.

Example. Taking $X^{\mu} = \delta^{\mu}$, this says X^{μ} only has one non-zero component in the current basis. This won't be true in other bases as X^{μ} transforms.

We know some equations do hold in all bases, for example,

$$\eta\left(X\right) = X^{\mu}\eta_{\mu}.\tag{65}$$

To capture this, we use abstract index notation. We denote a vector with X^a , where the Latin index a does not denote a component, rather it tells us X^a is a vector. Similarly, we denote a covector η by η_a .

If an equation is true in all bases, we can replace Greek indices by Latin indices, for example

$$\eta\left(X\right) = X^{a}\eta_{a} = \eta_{a}X^{a},\tag{66}$$

or

$$X(f) = X^{a}(df)_{a}. (67)$$

Such notation tells us that the expression is **independent** of the choice of basis. One can go back to Greek letter by picking a basis and swapping $a \to \mu$.

4.3 Tensors

Definition 4.3: A **tensor** of type (r, s) at p is a multilinear map

$$T: \underbrace{T_{\mathbf{p}}^{*}(M) \times \cdots \times T_{\mathbf{p}}^{*}(M)}_{r \text{ factors}} \times \underbrace{T_{\mathbf{p}}(M) \times \cdots \times T_{\mathbf{p}}(M)}_{s \text{ factors}} \to \mathbb{R}, \tag{68}$$

where multilinear map means linear in each argument.

Examples.

- A tensor of type (0,1) is a linear map $T_{\mathbf{p}}(M) \to \mathbb{R}$, i.e. it is a covector.
- A tensor of type (1,0) is a linear map from $T_{\mathbf{p}}^{*}(M) \to \mathbb{R}$, i.e. an element of $\left(T_{\mathbf{p}}^{*}(M)\right)^{*} \simeq T_{\mathbf{p}}(M)$ thus it is a vector.
- We can define a (1,1) tensor, δ by $\delta(\omega,X) = \omega(X)$ for any covector ω and vector X.

Definition 4.4: If $\{e_{\mu}\}$ is a basis for $T_{\mathbf{p}}M$ and $\{f^{\mu}\}$ is the dual basis, the components of an (r,s) tensor T are

$$T^{\mu_1 \cdots \mu_r}_{\nu_1 \cdots \nu_s} = T(f^{\mu_1}, \cdots, f^{\nu_r}, e_{\nu_1} \cdots e_{\nu_s}).$$
(69)

In abstract index notation we write T as $T^{a_1\cdots a_r}_{\quad b_1\cdots b_s}$.

Note. Tensors of type (r,s) at p form a vector space over \mathbb{R} of dimension n^{r+s} .

Examples.

1) Consider the δ tensor above. It has components

$$\delta^{\mu}_{\ \nu} := \delta\left(X, \omega\right) = f^{\mu}\left(e_{\nu}\right),\tag{70}$$

which recovers our expected Kronecker delta δ^{μ}_{ν} .

2) Consider a (2,1) tensor T. If $\omega, \eta \in T_{\mathbf{p}}^*M$, $X \in T_{\mathbf{p}}M$,

$$T(\omega, \eta, X) = T(\omega_{\mu} f^{\mu}, \eta_{\nu} f^{\nu}, X^{\sigma} e_{\sigma})$$
(71)

$$= \omega_{\mu} \eta_{\nu} X^{\sigma} T \left(f^{\mu}, f^{\nu}, e^{\sigma} \right) \tag{72}$$

$$= \omega_{\mu} \eta_{\nu} X^{\sigma} T^{\mu\nu}_{\quad \sigma} \,. \tag{73}$$

which in abstract index notation is $T(\omega, \eta, X) = \omega_a \eta_b X^c T^{ab}_{\ c}$. This generalised to higher ranks.

5 Lecture: Tensor Fields

21/10/2024

I now drop the bold face on $\mathbf{p} \in M \to p \in M$.

5.1 Change of Bases

We've seen how components of X or η change with respect to a coordinate basis $(X^{\mu}, \eta_{\nu}, \text{ respectively})$. Under a change of coordinates, we don't only have to consider coordinate bases.

Suppose $\{e_{\mu}\}$ and $\{e'_{\mu}\}$ are two bases for T_pM with dual bases $\{f^{\mu}\}$ and $\{f'^{\mu}\}$.

We can expand

$$f'^{\mu} = A^{\mu}_{\ \nu} f^{\nu} \text{ and } e'_{\mu} = B^{\nu}_{\ \mu} e_{\nu},$$
 (74)

but

$$\delta^{\mu}_{\nu} = f^{\prime \mu} \left(e^{\prime}_{\nu} \right) \tag{75}$$

$$=A^{\mu}_{\tau}f^{\tau}\left(B^{\sigma}_{\nu}e_{\sigma}\right)\tag{76}$$

$$=A^{\mu}_{\ \tau}B^{\sigma}_{\ \nu}f^{\tau}\left(e_{\sigma}\right)\tag{77}$$

$$=A^{\mu}_{\tau}B^{\sigma}_{\mu}\delta^{\tau}_{\sigma}\tag{78}$$

$$=A^{\mu}_{\sigma}B^{\sigma}_{\nu},\tag{79}$$

Thus $B^{\mu}_{\ \nu} = (A^{-1})^{\mu}_{\ \nu}$.

If $e_{\mu}=\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}$ and $e'_{\mu}=\left(\frac{\partial}{\partial x^{\mu}}\right)_{p}$. We've already seen

$$A^{\mu}_{\ \nu} = \left(\frac{\partial x'^{\mu}}{\partial x^{\nu}}\right)_{\phi(p)} \qquad \qquad B^{\mu}_{\ \nu} = \left(\frac{\partial x^{\mu}}{\partial x'^{\nu}}\right)_{\phi(p)}. \tag{80}$$

Therefore we see that a change of bases induces a transformation of tensor components. For example, if T is a (1,1)-tensor,

$$T^{\mu}_{\ \nu} = T(f^{\mu}, e_{\nu})$$
 (81)

$$T'^{\mu}_{\ \nu} = T(f'^{\mu}, e'_{\nu})$$
 (82)

$$= T \left(A^{\mu}_{\sigma} f^{\sigma}, \left(A^{-1} \right)^{\tau}_{\ \nu} e_{\tau} \right) \tag{83}$$

$$= A^{\mu}_{\sigma} \left(A^{-1} \right)^{\tau}_{\nu} T \left(f^{\sigma}, e_{\tau} \right) \tag{84}$$

$$=A^{\mu}_{\sigma}\left(A^{-1}\right)^{\tau}_{\nu}T^{\sigma}_{\tau}.\tag{85}$$

5.2 Tensor operations

Definition 5.1: Given an (r, s) tensor, we can form an (r - 1, s - 1) tensor by **contraction**.

For simplicity assume T is a (2,2) tensor. Define a (1,1) tensor S by

$$S(\omega, X) = T(\omega, f^{\mu}, X, e_{\mu}). \tag{86}$$

To see that this is independent of the choice of basis, observe that a different basis would give

$$S(\omega, X) = T\left(\omega, f'^{\mu}, X, e'_{\mu}\right) = T\left(\omega, A^{\mu}_{\sigma} f^{\sigma}, X, \left(A^{-1}\right)^{\tau}_{\mu} e_{\tau}\right) \tag{87}$$

$$= A^{\mu}_{\sigma} \left(A^{-1} \right)^{\tau}_{\mu} T \left(\omega, f^{\sigma}, X, e_{\tau} \right) \tag{88}$$

$$= \delta_{\sigma}^{\tau} T\left(\omega, f^{\sigma}, X, e_{\tau}\right) \tag{89}$$

$$= T(\omega, f^{\sigma}, X, e_{\sigma}) = S(\omega, X), \qquad (90)$$

and thus we have basis independence as desired. Thus we write the components of these tensors as

$$S^{\mu}_{\ \nu} = T^{\mu\sigma}_{\ \nu\sigma} \,, \tag{91}$$

which in abstract index notation, is written

$$S^a_{\ b} = T^{ac}_{\ bc}.$$
 (92)

This can be generalized to contract any pair of covariant (lower) and contravariant (upper) indices on an arbitrary tensor.

Another way to form new tensors is to use a tensor product.

Definition 5.2: If S is a (p,q) tensor and T is an (r,s) tensor then $S \otimes T$ is a (p+r,q+s) tensor given by

$$S \otimes T\left(\omega^{1}, \cdots, \omega^{p}, \eta^{1}, \cdots, \eta^{r}, X_{1}, \cdots, X_{q}, Y_{1}, \cdots, Y_{s}\right), \tag{93}$$

which in abstract index notation can be written

$$(S \otimes T)^{a_1 \cdots a_p b_1 \cdots b_r}_{c_1 \cdots c_q d_1 \cdots d_s} = S^{a_1 \cdots a_p}_{c_1 \cdots c_q} T^{b_1 \cdots b_r}_{d_1 \cdots d_s}. \tag{94}$$

Exercise 4: For any (1,1) tensor T, in a basis we have

$$T = T^{\mu}_{\ \nu} e_{\mu} \otimes f^{\nu}. \tag{95}$$

Proof.

The final tensor operations we require are anti-symmetrization and symmetrization.

Definition 5.3: If T is a (0,2) tensor, we can define two new tensors

$$S(X,Y) = \frac{1}{2} (T(X,Y) + T(Y,X))$$
 (96)

$$A(X,Y) = \frac{1}{2} (T(X,Y) - T(Y,X)), \qquad (97)$$

which in abstract index notation become

$$S_{ab} = \frac{1}{2} \left(T_{ab} + T_{ba} \right) \tag{98}$$

$$A_{ab} = \frac{1}{2} \left(T_{ab} - T_{ba} \right), \tag{99}$$

one also writes $S_{ab} = T_{(ab)}$ and $A_{ab} = T_{[ab]}$ to denote symmetrization and antisymmetrization respectively.

These operations can be applied to any pair of matching indices. Similarly, to symmetrize over n indices we sum over all permutations and divide by n!, and identically to antisymmetrize, with the addition of a minus sign for odd permutations.

For example,

$$T^{(abc)} = \frac{1}{3!} \left(T^{abc} + T^{bca} + T^{cab} + T^{acb} + T^{cba} + T^{bac} \right)$$
 (100)

$$T^{[abc]} = \frac{1}{3!} \left(T^{abc} + T^{bca} + T^{cab} - T^{acb} - T^{cba} - T^{bac} \right). \tag{101}$$

Lastly, to exclude indices from symmetrization, we use vertical lines such that

$$T^{(a|b|c)} = \frac{1}{2} \left(T^{abc} + T^{cba} \right).$$
 (102)

5.3 Tensor Bundles

Definition 5.4: The space of (r, s) tensors at a point p is the vector space $(T_s^r)_p M$. These can be glued together to form the **bundle** of (r, s)-tensors, which we write

$$T_{s}^{r}M = \bigcup_{p \in M} \{p\} \times (T_{s}^{r})_{p} M.$$
 (103)

If (\mathcal{O}, ϕ) is a coordinate chart on M, set

$$\widetilde{\mathcal{O}} = \bigcup_{p \in \mathcal{O}} \{p\} \times (T_s^r)_p M \subset T_s^r M, \tag{104}$$

where $\widetilde{\phi}\left(p,S_{p}\right)=\left(\phi\left(p\right),S^{\mu_{1}\cdots\mu_{r}}_{\phantom{\mu_{1}\cdots\mu_{s}}}\right)$

 $T_{s}^{r}M$ is a manifold with a natural smooth map $\Pi:T_{s}^{r}M\to M$ such that $\Pi\left(p,S_{p}\right)=p$.

Definition 5.5: An (r, s) tensor field is a smooth map $T: M \to T^r_s M$ such that $\Pi \circ T = \mathrm{id}$ (namely, that $T: p \mapsto (p, S_p)$). If (\mathcal{O}, ϕ) is a coordinate chart on M then

$$\widetilde{\phi} \circ T \circ \phi^{-1}(x) = (x, T^{\mu_1 \cdots \mu_r}_{\nu_1 \cdots \nu_s}(x)), \qquad (105)$$

which is smooth provided the components $T^{\mu_1\cdots\mu_r}{}_{\nu_1\cdots\nu_s}(x)$ are smooth functions of x.

One can think of a tensor field as defining a tensor at every point with respect to the coordinate basis at that point.

If $T_s^r M = T_0^1 M \sim TM$, the tensor field is called a **vector field**. In a local coordinate patch, if X is a vector field, we can write

$$X(p) = (p, X_p), \tag{106}$$

with $X_p = X^{\mu}(x) \left(\frac{\partial}{\partial x^{\mu}}\right)_p$.

In particular, $\frac{d}{dx^{\mu}}$ are always smooth but only defined locally.

6 Lecture: The metric tensor

23/10/2024

A vector field can be thought of as we usually do, as placing a vector at every point on the manifold. A vector field can also act on a function $f: M \to \mathbb{R}$ to give a new function

$$Xf\left(p\right) = X_{p}\left(f\right),\tag{107}$$

which in a coordinate basis becomes

$$Xf(p) = X^{\mu}(\phi(p)) \left. \frac{\partial F}{\partial x^{\mu}} \right|_{\phi(p)}, \tag{108}$$

which we now think of as a function of p across the manifold.

6.1 Integral curves

Definition 6.1: Given a vector field X on M, we say a curve $\lambda: I \to M$, is an **integral curve** of X if its tangent vector at every point along it is X. Namely, denote the tangent vector to λ at t by $\frac{d\lambda}{dt}(t)$, then

$$\frac{\mathrm{d}\lambda}{\mathrm{d}t}(t) = X_{\lambda(t)},\tag{109}$$

 $\forall t \in I.$

Through each point p, an integral curve passes, and is unique up to reparametrization or curve extension.

To see that this is true, pick a chart ϕ with $\phi = (x^1, \dots, x^n)$ and assume $\phi(p) = 0$. In this chart, Eq. (109) becomes

$$\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}\left(t\right) = X^{\mu}\left(x\left(t\right)\right),\tag{110}$$

where $x^{\mu}(t) = x^{\mu}(\lambda(t))$. Assuming without loss of generality that $\lambda(0) = p$, we get an initial condition that $x^{\mu}(0) = 0$.

Standard ODE theory gives us that Eq. (110) with an initial condition has a solution unique up to extension.

6.2Commutators

Suppose X and Y are two vector fields and $f: M \to \mathbb{R}$ is smooth. Then X(Y(f)) is a smooth function. Is it of the form K(f) for some vector field K? No, as

$$X(Y(fg)) = X(fX(g) + gY(f)) = X(Y(fg))$$

$$(111)$$

$$= X \left(fX \left(g \right) \right) + X \left(gY \left(f \right) \right) \tag{112}$$

$$= fX\left(Y\left(g\right)\right) + gX\left(Y\left(f\right)\right) + X\left(f\right)Y\left(g\right) + X\left(g\right)Y\left(f\right), \tag{113}$$

and thus the Leibniz rule does not hold, implying this cannot be a vector field. However notice that the last two terms that ruin this are symmetric in f and g, and thus if we instead consider

$$[X,Y](f) = X(Y(f)) - Y(X(f)),$$
 (114)

then the Leibniz rule will hold and (while we have not show it explicitly) this does in fact define a vector field.

To see this, use coordinate bases such that

$$[X,Y](f) = X\left(Y^{\nu}\frac{\partial F}{\partial x^{\nu}}\right) - Y\left(X^{\mu}\frac{\partial F}{\partial x^{\mu}}\right)$$
(115)

$$=X^{\mu}\frac{\partial}{\partial x^{\mu}}\left(Y^{\nu}\frac{\partial F}{\partial x^{\nu}}\right) - Y^{\nu}\frac{\partial}{\partial x^{\nu}}\left(X^{\mu}\frac{\partial F}{\partial x^{\mu}}\right) \tag{116}$$

$$=X^{\mu}Y^{\mu}\frac{\partial^{2}F}{\partial x^{\mu}\partial x^{\nu}}-Y^{\nu}X^{\mu}\frac{\partial^{2}F}{\partial x^{\nu}\partial x^{\mu}}+X^{\mu}\frac{\partial Y^{\nu}}{\partial x^{\mu}}\frac{\partial F}{\partial x^{\nu}}-Y^{\nu}\frac{\partial X^{\mu}}{\partial x^{\nu}}\frac{\partial F}{\partial x^{\mu}}.$$
 (117)

As mixed partials on smooth functions in \mathbb{R}^n commute, the first two terms cancel leaving

$$[X,Y](f) = X^{\mu} \frac{\partial Y^{\nu}}{\partial x^{\mu}} \frac{\partial F}{\partial x^{\nu}} - Y^{\nu} \frac{\partial X^{\mu}}{\partial x^{\nu}} \frac{\partial F}{\partial x^{\mu}}$$

$$= \left(X^{\mu} \frac{\partial Y^{\nu}}{\partial x^{\nu}} - Y^{\mu} \frac{\partial X^{\nu}}{\partial x^{\mu}} \right) \frac{\partial F}{\partial x^{\nu}}$$

$$(118)$$

$$= \left(X^{\mu} \frac{\partial Y^{\nu}}{\partial x^{\nu}} - Y^{\mu} \frac{\partial X^{\nu}}{\partial x^{\mu}}\right) \frac{\partial F}{\partial x^{\nu}} \tag{119}$$

$$= [X, Y]^{\nu} \frac{\partial F}{\partial x^{\nu}},\tag{120}$$

where $[X,Y]^{\nu} = X^{\mu} \frac{\partial Y^{\nu}}{\partial x^{\mu}} - Y^{\mu} \frac{\partial X^{\nu}}{\partial x^{\mu}}$ are the components of the commutator.

Since f is arbitrary, the expression

$$[X,Y] = [X,Y]^{\nu} \frac{\partial}{\partial x^{\nu}},\tag{121}$$

is valid only once one has chosen a coordinate basis.

6.3 The metric tensor

We're familiar from Euclidean geometry (and special relativity) with the fact that the fundamental object of when discussing distance and angles (time intervals/rapidity) is an inner product between vectors.

Definition 6.2: A metric tensor at $p \in M$ is a (0,2)-tensor g, satisfying two conditions:

- i) g is symmetric such that $g(X,Y) = g(Y,X), \forall X,Y \in T_pM$, i.e. $g_{ab} = g_{ba}$,
- ii) g is non-degenerate, $G(X,Y) = 0, \forall Y \in T_pM \Leftrightarrow X = 0.$

Sometimes we write $g\left(X,Y\right)=\left\langle X,Y\right\rangle =\left\langle X,Y\right\rangle _{q}=X\cdot Y.$

By adapting the Gram-Schmidt algorithm, we can always find a basis $\{e_{\mu}\}$ for the tangent space at p, T_pM , such that

$$g(e_{\mu}, e_{\nu}) = \begin{cases} 0, & \mu \neq \nu, \\ +1 \text{ or } -1, & \mu = \nu. \end{cases}$$
 (122)

Note this basis is not unique, but the **signature** (the number of +1's and -1's) does not depend on the choice of basis (Sylvestre's Law of inertia).

If g has signature $(++\cdots+)$ we say it is **Riemannian**.

If g has signature $(-+\cdots+)$, we say it is **Lorentzian**.

Definition 6.3: A Riemannian manifold (or respectively a Lorentzian manifold) is a pair (M, g) where M is a manifold and g is a Riemannian (or respectively Lorentzian) metric tensor field.

On a Riemannian manifold, the norm of a vector is

$$|X| = \sqrt{g(X,X)},\tag{123}$$

and the angle between $X, Y \in T_pM$, is given by

$$\cos \theta = \frac{g(X,Y)}{|X||Y|}. (124)$$

The length ℓ of a curve $\lambda:(a,b)\to M$ is given by

$$\ell(\lambda) = \int_{a}^{b} \left| \frac{\mathrm{d}\lambda}{\mathrm{d}t} (t) \right| \mathrm{d}t. \tag{125}$$

Exercise 5: If $\tau:(c,d)\to(a,b)$ with $\frac{\mathrm{d}t}{\mathrm{d}\tau}>0$ and $\tau(c)=a,\,\tau(d)=b$, then

$$\widetilde{\lambda} = \lambda \circ \tau : (c, d) \to M, \tag{126}$$

is a reparametrization of λ such that $\ell\left(\widetilde{\lambda}\right)=\ell\left(\lambda\right)$.

Proof.

7 Lecture: Proper time

25/10/2024

In a coordinate basis, $g = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$. We often write

$$dx^{\mu} dx^{\nu} = \frac{1}{2} (dx^{\mu} \otimes dx^{\nu} + dx^{\nu} \otimes dx^{\mu}), \qquad (127)$$

and by convention often write $g = ds^2$ so that

$$g = ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$
 (128)

Examples.

- i) \mathbb{R}^n with $g = ds^2 = (dx^1)^2 + \cdots + (dx^n)^2 = \delta_{\mu\nu} dx^{\mu} dx^{\nu}$ is called **Euclidean space**. Any chart covering \mathbb{R}^n in which the metric takes this form is called **Cartesian**.
- ii) $\mathbb{R}^{1+3} = \{(x^0, x^1, x^2, x^3)\}$ with

$$g = ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$
(129)

$$= \eta_{\mu\nu} \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu} \,, \tag{130}$$

is **Minkowski space**. A coordinate chart covering \mathbb{R}^{1+3} in which the metric takes this form is called an **inertial frame**.

iii) On $S^2 = \{ \mathbf{x} \in \mathbb{R}^3 \mid |\mathbf{x}| = 1 \}$. Define a chart by

$$\phi^{-1}: (0,\pi) \times (-\pi,\pi) \to S^2 \tag{131}$$

$$(\theta, \phi) \mapsto (\cos \theta \cos \phi, \sin \theta \sin \phi, \cos \theta),$$
 (132)

In this chart, the round metric is

$$g = \mathrm{d}s^2 = \mathrm{d}\theta^2 + \sin^2\theta \,\mathrm{d}\phi^2 \,. \tag{133}$$

This covers $S^2 \setminus \{|\mathbf{x}| = 1, \ x^2 = 0, \ x' \le 0\}$. To cover the rest, let

$$\tilde{\phi}^{-1}: (0,\pi) \times (-\pi,\pi) \to S^2$$
 (134)

$$(\theta', \phi') \mapsto (-\sin \theta' \cos \phi', \cos \theta', \sin \theta' \sin \phi'). \tag{135}$$

This covers $S^2 \setminus \{ |\mathbf{x}| = 1, \ x^3 = 0, \ x' \ge 0 \}$ and thus setting

$$g = d\theta'^2 + \sin^2 \theta' \, d\phi'^2 \,. \tag{136}$$

Defines a metric on all of S^2 .

Since g_{ab} is non-degenerate, it is invertible as a matrix in any basis. We can check that the inverse defines a symmetric (2,0) tensor, g^{ab} satisfying

$$g^{ab}g_{bc} = \delta_c^a. (137)$$

Example. In the ϕ coordinates of the S^2 example.

$$g^{\mu\nu} = \left(1, \frac{1}{\sin^2 \theta}\right). \tag{138}$$

An important property of the metric is that it induces a canonical identification of T_pM and T_p^*M . Given $X^a \in T_pM$, we define a covector $g_{ab}X^b = X_a$ and given $\eta_a \in T_p^*M$ we define a vector $g^{ab}\eta_b = \eta^a$.

In Euclidean space (\mathbb{R}^3, δ) we often do this without realising.

More generally, this allows us to raise tensor indices with g^{ab} and lower them with g_{ab} . Namely, if T^{ab}_{c} is a (2,1) tensor, then T_{a}^{bc} is the (2,1) tensor given by

$$T_a^{bc} = g_{ad}g^{ce}T^{db}_{e}. (139)$$

7.1 Lorentzian signature

At any point p in a Lorentzian manifold we can find a basis $\{e_{\mu}\}$ such that

$$g(e_{\mu}, e_{\nu}) = \eta_{\mu\nu} = \text{diag}(-1, 1, \dots, 1).$$
 (140)

This basis is not unique. Namely, if $e'_{\mu} = \left(A^{-1}\right)^{\nu}_{\ \mu} e_{\nu}$ is another such basis, then

$$\eta_{\mu\nu} = g\left(e'_{\mu}, e'_{\nu}\right) = \left(A^{-1}\right)^{\sigma}_{\ \mu} \left(A^{-1}\right)^{\tau}_{\ \nu} g\left(e_{\sigma}, e_{\tau}\right) \left(A^{-1}\right)^{\sigma}_{\ \mu} \left(A^{-1}\right)^{\tau}_{\ \nu} \tag{141}$$

$$= \left(A^{-1}\right)^{\sigma}_{\tau} \left(A^{-1}\right)^{\tau}_{\nu} \eta_{\sigma\tau} \tag{142}$$

$$\Rightarrow A^{\mu}_{\ \kappa} A^{\nu}_{\ \rho} \eta_{\mu\nu} = \eta_{\kappa\rho},\tag{143}$$

which is the condition that $A^{\mu}_{\ \nu}$ is a **Lorentz transformation**.

The tangent space at p has $\eta_{\mu\nu}$ as a metric tensor (in this basis) so has the structure of Minkowski space.

Definition 7.1:
$$X \in T_pM$$
 is

$$\begin{cases} \text{spacelike,} & \text{if } g\left(X,X\right) > 0, \\ \text{null-like/light-like,} & \text{if } g\left(X,X\right) = 0, \\ \text{timelike,} & \text{if } g\left(X,X\right) < 0. \end{cases} \tag{144}$$

A curve $\lambda: I \to M$ in a Lorentzian manifold is spacelike/timelike/null if the tangent vector is spacelike/timelike/null everywhere respectively.

A spacelike curve has a well-defined **length**, given by the same formula as in the Riemannian case. For a timelike curve $\lambda:(a,b)\to M$, the relevant quantity is the **proper time**

$$\tau(\lambda) = \int_{a}^{b} = \sqrt{-g_{ab} \frac{\mathrm{d}\lambda^{a}}{\mathrm{d}u} \frac{\mathrm{d}\lambda^{b}}{\mathrm{d}u}} \,\mathrm{d}u.$$
 (145)

If $g_{ab} \frac{\mathrm{d}\lambda^a}{\mathrm{d}u} \frac{\mathrm{d}\lambda^b}{\mathrm{d}u} = -1$ for all u, then λ is parametrised by proper time.

In this case we call the tangent vector

$$u^a \equiv \frac{\mathrm{d}\lambda^a}{\mathrm{d}u},\tag{146}$$

the **4-velocity** of λ .

7.2 Curves of extremal proper time

Suppose $\lambda:(0,1)\to M$ is timelike, satisfies $\lambda(0)=p,\ \lambda(1)=q$ and extremizes proper time among all such curves. This is a variational problem, associated to (in a coordinate chart),

$$\tau [\lambda] = \int_0^1 G(x^{\mu}(u), \dot{x}^{\mu}(u)) du, \qquad (147)$$

with

$$G(x^{\mu}(u), \dot{x}^{\mu}(u)) = \sqrt{-g_{\mu\nu}(x(u))\dot{x}^{\mu}(u)\dot{x}^{\nu}},$$
(148)

where $\dot{x} = \frac{dx}{du}$. The Euler Lagrange equation is

$$\frac{\mathrm{d}}{\mathrm{d}u} \left(\frac{\partial G}{\partial \dot{x}^{\dot{\mu}}} \right) = \frac{\partial G}{\partial x^{\mu}}.\tag{149}$$

We can compute

$$\frac{\partial G}{\partial \dot{x}^{\mu}} = -\frac{1}{G} g_{\mu\nu} \dot{x}^{\nu} \tag{150}$$

$$\frac{\partial G}{\partial x^{\mu}} = -\frac{1}{2G} \frac{\partial}{\partial x^{\mu}} (g_{\sigma\tau}) \dot{x}^{\sigma} \dot{x}^{\tau}$$

$$= -\frac{1}{2G} g_{\sigma\tau,\mu} \dot{x}^{\sigma} \dot{x}^{\tau}.$$
(151)

$$= -\frac{1}{2G} g_{\sigma\tau,\mu} \dot{x}^{\sigma} \dot{x}^{\tau}. \tag{152}$$

This does not have a unique solution as one can re-parametrize the curve without changing the proper time τ .

Lecture: Christoffel Symbols

28/10/2024

Geodesic Equation

Therefore we fix the parameterisation such that the curve is parameterized by the proper time τ itself. Doing this, since

$$\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} = \dot{x}^{\mu} \frac{\mathrm{d}u}{\mathrm{d}\tau} \text{ and } -1 = g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}, \tag{153}$$

we have that

$$-1 = g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} \left(\frac{\mathrm{d}u}{\mathrm{d}\tau}\right)^2 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\tau} = \frac{1}{\sqrt{G}},\tag{154}$$

which then implies

$$\frac{1}{G}\frac{\mathrm{d}}{\mathrm{d}u} = \frac{\mathrm{d}}{\mathrm{d}\tau}.\tag{155}$$

Returning to the Euler Lagrange equation, we find that we can write it as

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(g_{\mu\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right) = \frac{1}{2} g_{\nu\rho,\mu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau}.$$
 (156)

This then becomes

$$g_{\mu\nu}\frac{\mathrm{d}^2 x^{\nu}}{\mathrm{d}\tau^2} + g_{\mu\nu,\rho}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} - \frac{1}{2}g_{\sigma\rho,\mu}\frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} = 0.$$
 (157)

Where notice that we can replace

$$g_{\mu\nu,\rho} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} = g_{\mu(\nu,\rho)} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau}, \tag{158}$$

as it is symmetric in ν and ρ .

Thus, notice that we can write this as

$$\frac{\mathrm{d}^2 x^{\nu}}{\mathrm{d}\tau^2} + \Gamma_{\mu}^{\ \nu}{}_{\rho} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} = 0, \tag{159}$$

where

$$\Gamma_{\mu}{}^{\nu}{}_{\rho} \equiv \frac{1}{2} g^{\nu\sigma} \left(g_{\mu\sigma,\rho} + g_{\sigma\rho,\mu} - g_{\nu\rho,\sigma} \right), \tag{160}$$

are the Christoffel symbols of g.

Notes.

• These symbols have a symmetry such that

$$\Gamma_{\nu \rho}^{\mu} = \Gamma_{\rho \nu}^{\mu}. \tag{161}$$

- Christoffel symbols are **not** tensor components as they do not transform desirably under coordinate transformations.
- Solutions to Eq. (159) are obtainable with standard ODE theory. Such solutions are called **geodesics**.
- The same equation governs curves of extremal length in a Riemannian manifold (or spacelike curves in a Lorentzian manifold) parameterized by arc-length.

Exercise 6: Show that Eq. (159) can be obtained as the Euler-Lagrange equation for the Lagrangian

$$L = -g_{\mu\nu} \left(x \left(\tau \right) \right) \dot{x}^{\mu} \left(\tau \right) \dot{x}^{\nu} \left(\tau \right). \tag{162}$$

Examples.

1) In Minkowski space, in an inertial frame $g_{\mu\nu} = \eta_{\mu\nu}$ so $\Gamma_{\mu\rho}^{\nu} = 0$ and the geodesic equation is

$$\frac{\mathrm{d}^2 x^\mu}{\mathrm{d}\tau^2} = 0,\tag{163}$$

which has geodesics (solutions) which are straight lines.

2) The Schwarzschild metric in Schwarzschild coordinates is a metric on $M = \mathbb{R}_t \times (2m, \infty)_r \times S^2_{\theta,\phi}$ given by

$$ds^{2} = -f dt^{2} + \frac{dr^{2}}{f} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}), \qquad (164)$$

where $f = 1 - \frac{2m}{r}$.

One can then write the Lagrangian as

$$L = f \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 - \frac{1}{f} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau}\right)^2 - r^2 \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau}\right)^2 - r^2 \sin^2\theta \left(\frac{\partial\phi}{\partial t}\right)^2. \tag{165}$$

The Euler-Lagrange equation for $t(\tau)$ is

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\partial L}{\partial t'} \right) = \frac{\partial L}{\partial t},\tag{166}$$

where $t' = \frac{dt}{d\tau}$. This gives us

$$2\frac{\mathrm{d}}{\mathrm{d}\tau}\left(f\frac{\mathrm{d}t}{\mathrm{d}\tau}\right) = 0,\tag{167}$$

which implies

$$f\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2} + \frac{\mathrm{d}f}{\mathrm{d}r} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right) = 0. \tag{168}$$

Comparing this to the geodesic equation Eq. (159), we see

$$\Gamma_{1\ 0}^{\ 0} = \Gamma_{0\ 1}^{\ 0} = \frac{1}{2} \frac{1}{f} \frac{\mathrm{d}f}{\mathrm{d}r},\tag{169}$$

and $\Gamma_{\mu \ \nu}^{\ 0}=0$ otherwise. The rest of the symbols can be found from the other Euler Lagrange equations.

8.2 Covariant Derivative

For a function $f: M \to \mathbb{R}$, we know that

$$\frac{\partial f}{\partial x^{\mu}}$$
 are the components of a covector $(df)_a$. (170)

For a vector field we can't just differentiate it's components as the basis vectors themselves can have spatial dependence.

Exercise 7: Show that if V is a vector field, then

$$T^{\mu}_{\ \nu} := \frac{\partial V^{\mu}}{\partial x^{\nu}},\tag{171}$$

are not the components of a (1,1) tensor.

Definition 8.1: A covariant derivative ∇ on a manifold M is a map sending smooth vector fields X, Y to a vector field $\nabla_X Y$ satisfying

i) linearity in the first vector such that

$$\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z,\tag{172}$$

ii) linearity in the second such that

$$\nabla_X (Y + Z) = \nabla_X Y + \nabla_X Z, \tag{173}$$

iii) and a Leibniz rule such that

$$\nabla_X (fY) = f \nabla_X Y + (\nabla_X f) Y, \tag{174}$$

where $\nabla_X f = X(f)$ and X, Y, Z are smooth vector fields and f, g are functions.

Note. This first condition implies that $\nabla Y : X \mapsto \nabla_X Y$ is a linear map of T_pM to itself and so defines a (1,1) tensor, which we call the covariant derivative of Y.

In abstract index notation, one can write

$$\left(\nabla Y\right)_{b}^{a} = \nabla_{b} Y^{a} \text{ or } Y_{:b}^{a}. \tag{175}$$

Definition 8.2: In a basis $\{e_{\mu}\}$ the **connection components** $\Gamma_{\nu}^{\ \mu}{}_{\rho}$ are defined by

$$\nabla_{e_{\rho}} e_{\nu} = \Gamma_{\nu \rho}^{\mu} e_{\mu}. \tag{176}$$

Once we know these connection components, they completely determine ∇ . Namely, take

$$\nabla_X Y = \nabla_{X^{\mu} e_{\mu}} \left(Y^{\nu} e_{\nu} \right) \tag{177}$$

$$\stackrel{\mathrm{i}}{=} X^{\mu} \nabla_{e_{\mu}} \left(Y^{\nu} e_{\nu} \right) \tag{178}$$

$$\stackrel{\text{ii) } \& \text{ iii)}}{=} X^{\mu} \left(e_{\mu} \left(Y^{\nu} \right) e_{\nu} + Y^{\sigma} \nabla_{e_{\mu}} e_{\sigma} \right) \tag{179}$$

$$= \left(X^{\mu} e_{\mu} \left(Y^{\nu}\right) + \Gamma_{\sigma \ \mu}^{\ \nu} Y^{\sigma} X^{\mu}\right) e_{\nu}. \tag{180}$$

Hence the components of the covariant derivative can be written as

$$\left(\nabla_X Y\right)^{\nu} = X^{\mu} \left(e_{\mu} \left(Y^{\nu}\right) + \Gamma_{\sigma \mu}^{\nu} Y^{\sigma}\right),\tag{181}$$

or identically, in different notation,

$$Y^{\nu}_{:\mu} = e_{\mu} \left(Y^{\nu} \right) + \Gamma^{\nu}_{\sigma \mu} Y^{\sigma} \tag{182}$$

$$=Y^{\nu}_{,\mu} + \Gamma^{\nu}_{\sigma\mu}Y^{\sigma},\tag{183}$$

where $Y^{\nu}_{,\mu} = \frac{\partial Y^{\nu}}{\partial x^{\mu}}$.

Note. Remember that $\Gamma_{\mu}{}^{\nu}{}_{\sigma}$ are not the components of a tensor, hence we call them *symbols*, like the Levi-Civita symbol $\varepsilon_{\mu\nu\rho\tau}$.

We extend ∇ to arbitrary tensor field by requiring the Leibniz property holds.

Example. For a tensor field η , we define

$$(\nabla_X \eta)(Y) := \nabla_X (\eta(Y)) - \eta(\nabla_X Y). \tag{184}$$

In component form, we can write this as

$$(\nabla_X \eta) Y = X^{\mu} e_{\mu} (\eta_{\sigma} Y^{\sigma}) - \eta_{\sigma} (\nabla_X Y)^{\sigma}$$
(185)

$$= X^{\mu} e_{\mu} (\eta_{\sigma}) Y^{\sigma} + X^{\mu} \eta_{\sigma} e_{\mu} (Y^{\sigma}) - \eta_{\sigma} (X^{\nu} e_{\nu} (Y^{\sigma}) + X^{\nu} \Gamma_{\tau}^{\sigma} Y^{\tau})$$
(186)

$$= \left(e_{\mu} \left(\eta_{\sigma}\right) - \Gamma_{\sigma \mu}^{\nu} \eta_{\nu}\right) X^{\mu} Y^{\sigma},\tag{187}$$

and thus as $\nabla \eta$ is linear in both X and Y, it is a (0,2) tensor (it also transforms appropriately). Therefore, with respect to our basis, we have

$$\nabla_{\mu}\eta_{\sigma} = e_{\mu} \left(\eta_{\sigma} \right) = \Gamma_{\sigma \ \mu}^{\ \nu} \eta_{\nu} =: \eta_{\sigma;\mu} \tag{188}$$

$$\Rightarrow \eta_{\sigma;\mu} = \eta_{\sigma,\mu} - \Gamma_{\sigma,\mu}^{\nu} \eta_{\nu}. \tag{189}$$

9 Lecture: Connection Components

30/10/2024

Exercise 8: In a coordinate basis

$$T^{\mu_{1}\cdots\mu_{r}}_{\nu_{1}\cdots\nu_{s};\rho} = T^{\mu_{1}\cdots\mu_{r}}_{\nu_{1}\cdots\nu_{s},\rho} + \Gamma^{\mu_{1}}_{\rho\sigma}T^{\sigma\mu_{2}\cdots\mu_{r}}_{\nu_{1}\cdots\nu_{s}} + \dots + \Gamma^{\mu_{r}}_{\rho\sigma}T^{\mu_{1}\cdots\mu_{r-1}\sigma}_{\nu_{1}\cdots\nu_{s}} - \Gamma^{\mu_{1}}_{\nu_{1}\cdots\nu_{s}} - \dots - \Gamma^{\mu_{s}}_{\nu_{s}}\Gamma^{\mu_{1}\cdots\mu_{r}}_{\nu_{1}\cdots\nu_{s-1}\sigma}.$$
(190)

Remark. If $T^a_{\ b}$ is a (1,1) tensor, then $T^a_{\ b;c}$ is a (1,2) tensor and we can take further covariant derivatives,

$$(T^a_{b;c})_{;d} = T^a_{b;cd} = \nabla_d \nabla_c T^a_{b},$$
 (192)

In general $T^a_{b;cd} \neq T^a_{b;dc}$. If f is a function $f_{;a} = (df)_a$ is a covector. In a coordinate basis $f_{;\mu} = f_{,\mu}$ which implies

$$f_{;\mu\nu} = f_{,\mu\nu} - \Gamma_{\mu\ \nu}^{\ \sigma} f_{,\sigma} \tag{193}$$

$$\Rightarrow f_{;[\mu\nu]} = -\Gamma_{[\mu}{}^{\sigma}{}_{\nu]}f_{,\sigma}. \tag{194}$$

Definition 9.1: A connection (eq. covariant derivative) is **torsion free** or symmetric if

$$\nabla_a \nabla_b f - \nabla_b \nabla_a f = 0. \tag{195}$$

For any f, in a coordinate basis, this is equivalent to

$$\Gamma^{\rho}_{[\mu \ \nu]} = 0 \Leftrightarrow \Gamma^{\rho}_{\mu \ \nu} = \Gamma^{\rho}_{\nu \ \mu}. \tag{196}$$

Lemma 9.1: If ∇ is torsion free, then for X, Y vector fields

$$\nabla_X Y - \nabla_Y X = [X, Y]. \tag{197}$$

Proof. In a coordinate basis,

$$(\nabla_X Y - \nabla_Y X)^{\mu} = X^{\sigma} Y^{\mu}_{;\sigma} - Y^{\sigma} X^{\mu}_{;\sigma}$$

$$\tag{198}$$

$$= X^{\sigma} \left(Y^{\mu}_{,\sigma} + \Gamma^{\mu}_{\rho \ \sigma} Y^{\rho} \right) - Y^{\sigma} \left(X^{\mu}_{,\sigma} + \Gamma^{\mu}_{\rho \ \sigma} X^{\rho} \right) \tag{199}$$

$$= X^{\sigma} \left(Y^{\mu}_{,\sigma} + \Gamma_{\rho}{}^{\mu}{}_{\sigma} Y^{\rho} \right) - Y^{\sigma} \left(X^{\mu}_{,\sigma} + \Gamma_{\rho}{}^{\mu}{}_{\sigma} X^{\rho} \right)$$

$$= [X, Y]^{\mu} + 2X^{\sigma} Y^{\rho} \Gamma_{[\rho}{}^{\mu}{}_{\sigma]}.$$

$$(200)$$

This is a tensor equation so if it is true in one basis, it is true in all.

Note. Even if ∇ is torsion free, $\nabla_a \nabla_b X^c \neq \nabla_b \nabla_a X^c$ in general.

The Levi-Civita Connection 9.1

For a manifold with metric, there is a preferred connection.

Theorem 9.1 (Fundamental Theorem of Riemannian geometry): If (M,g) is a manifold with a metric, there is a unique torsion free connection ∇ satisfying $\nabla q = 0$. This is called the Levi-Civita connection.

Proof. Suppose such a connection exists. By the Leibniz rule, if X, Y, Z are smooth vector fields, then

$$X\left(g\left(Y,Z\right)\right) = \nabla_X\left(g\left(Y,Z\right)\right) \tag{201}$$

$$= (\nabla_X g)(Y, Z) + g(\nabla_X Y, Z) + g(Y, \nabla_X Z) \tag{202}$$

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$
(203)

$$\Rightarrow Y\left(g\left(Z,X\right)\right) = g\left(\nabla_{Y}Z,X\right) + g\left(Z,\nabla_{Y}X\right) \tag{204}$$

$$\Rightarrow Z(g(X,Y)) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y). \tag{205}$$

Taking Eq. (203) + Eq.(204) - Eq.(205),

$$X\left(g\left(Y,Z\right)\right)+Y\left(g\left(Z,X\right)\right)-Z\left(g\left(X,Y\right)\right)=g\left(\nabla_{X}Y+\nabla_{Y}X,Z\right)+g\left(\nabla_{X}Z-\nabla_{Z}X,Y\right)\tag{206}$$

$$+g\left(\nabla_{X}Z-\nabla_{Z}X,Y\right)+g\left(\nabla_{Y}Z-\nabla_{Z}Y,X\right). \tag{207}$$

As
$$\nabla_X Y - \nabla_Y X = [X, Y]$$
, this becomes
$$X(g(Y, Z)) + Y(g(Z, X) - Z(g(X, Y))) = 2g(\nabla_X Y, Z) - g([X, Y], Z) \tag{208}$$

$$-g([Z, X], Y) + g([Y, Z], X).$$
 (209)

Therefore

$$g(\nabla_X Y, Z) = \frac{1}{2} \left(X(g(y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) \right)$$
 (210)

$$+g([X,Y],Z) + g([Z,X]Y) - g([Y,Z],X)$$
, (211)

and therefore $\nabla_X Y$ is uniquely determined since g is non-degenerate and X,Y and Z are general.

Conversely, we can use this expression to define $\nabla_X Y$. We then need to check the properties of a symmetric connection hold.

Example. Observe that

$$g(\nabla_{fX}Y, Z) = \frac{1}{2} \left(fX(g(y, Z)) + Y(fg(Z, X)) - Z(fg(X, Y)) \right)$$

$$+ g([fX, Y], Z) + g([Z, fX]Y) - g([Y, Z], fX)$$

$$= \frac{1}{2} \left(fXg(Y, Z) + fY(g(Z, X) - fZ(g(X, Y))) + (Y(f)g(Z, X) - Z(f)g(X, Y)) \right)$$

$$+ g(f[X, Y] - Y(f)X, Z) + g(f[Z, X] + Z(f)X, Y) - fg([Y, Z], X)$$

$$= g(f\nabla_X Y, Z),$$
(214)

which implies

$$g\left(\nabla_{fX}Y - f\nabla_{X}Y\right) = 0, (215)$$

 $\forall Z$. Therefore $\nabla_{fX}Y = f\nabla_XY$ as g is non-degenerate.

Exercise 9: Check the other properties.

In a coordinate basis, we can compute

$$g\left(\nabla_{e_{\mu}}e_{\nu}, e_{\sigma}\right) = \frac{1}{2} \left(e_{\mu}\left(g\left(e_{\nu}, e_{\sigma}\right)\right) + e_{\nu}\left(g\left(e_{\sigma}, e_{\mu}\right) - e_{\sigma}\left(g\left(e_{\mu}, e_{\nu}\right)\right)\right)\right)$$
(216)

$$g\left(\Gamma_{\nu \mu}^{\tau} e_{\tau}, e_{\sigma}\right) = \Gamma_{\nu \mu}^{\tau} g_{\tau\sigma} = \frac{1}{2} \left(g_{\sigma\nu,\mu} + g_{\sigma\mu,\nu} - g_{\mu\nu,\sigma}\right). \tag{217}$$

This provides

$$\Gamma_{\nu \mu}^{\tau} = \frac{1}{2} g^{\sigma \tau} \left(g_{\sigma \nu, \mu} + g_{\mu \sigma, \nu} - g_{\mu \nu, \sigma} \right),$$
 (218)

which is exactly the form of the Christoffel symbols.

Thus if ∇ is a Levi-Civita connection, we can raise/lower indices and it commutes with covariant differentiation.

9.2 Geodesics

We found that a curve extremizing proper time τ satisfies

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma_{\nu\rho}^{\mu} (x(\tau)) \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} = 0. \tag{219}$$

The tangent vector X^a to the curve has components $X^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}$, we get a vector field of which the geodesic is an integral curve. We note that

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \right) \tag{220}$$

$$= \frac{\mathrm{d}X^{\mu}}{\mathrm{d}x^{\nu}} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}$$

$$= X^{\mu}_{,\nu} X^{\nu}.$$
(221)

$$=X^{\mu}_{,\nu}X^{\nu}.$$
 (222)

Using the geodesic equation, Eq. (219) we have

$$X^{\mu}_{,\nu}X^{\nu} + \Gamma_{\nu\rho}^{\mu}X^{\nu}X^{\rho} = 0 \Leftrightarrow X^{\nu}X^{\mu}_{;\nu} = 0 \Leftrightarrow \nabla_X X = 0.$$
 (223)

We can extend this to any connection.

Definition 9.2: Let M be a manifold with connection ∇ . An affinely parameterized geodesic satisfies

$$\nabla_X X = 0, \tag{224}$$

where X is the tangent vector to the curve.

Lecture: Parallel Transport 10

01/11/2024

Note. If we reparameterize $t \to t(u)$ then

$$\underbrace{\frac{\mathrm{d}x^{\mu}}{\mathrm{d}u}}_{Y} = \underbrace{\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}}_{X} \underbrace{\frac{\mathrm{d}t}{\mathrm{d}u}}_{X},\tag{225}$$

so $X \to Y = hX$ with h > 0. Notice

$$\nabla_Y Y = \nabla_{hX} (hX) = h (\nabla_X (hX)) = h^2 \nabla_X X + hX \cdot X (h) = fY, \tag{226}$$

with $f = X(h) = \frac{d(h)}{dt} = \frac{1}{h} \frac{dh}{du} = \frac{1}{h} \frac{d^2t}{du^2}$. Therefore

$$\nabla_Y Y = 0 \Leftrightarrow t = \alpha u + \beta, \tag{227}$$

for $\alpha, \beta \in \mathbb{R}$ and $\alpha > 0$.

Theorem 10.1: Given $p \in M$, $X_p \in T_PM$, there exists a unique **affinely parameterized geodesic** $\lambda: I \to M$ satisfying

$$\lambda(0) = p, \qquad \dot{\lambda}(0) = X_p. \tag{228}$$

Proof. Choose coordinate with $\phi(p)=0,\ x^{\mu}(t)=\phi(\lambda(t))$ satisfies $\nabla_X X=0$ with $X=X^{\mu}\frac{\partial}{\partial x^{\mu}},\ X^{\mu}=\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}$. This becomes

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}t^2} + \Gamma_{\nu}^{\ \mu}{}_{\sigma} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}t} = 0, \tag{229}$$

$$\frac{\mathrm{d}^{2}x^{\mu}}{\mathrm{d}t^{2}} + \Gamma_{\nu}{}^{\mu}{}_{\sigma} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}t} = 0, \tag{229}$$
 with $x^{\mu}\left(0\right) = 0$ and $\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}\left(0\right) = X_{p}^{\mu}$.

This has a unique solution $x^{\mu}: (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ for ε sufficiently small by standard ODE theory.

Postulate 10.1: In general relativity, free particles move along geodesics of the Levi-Civita connection. These are timelike for massive particles and null for massless particles.

Normal Coordinates 10.1

If we fix $p \in M$, we can map T_pM into M by setting $\psi(X_p) = \lambda_{X_p}(1)$ where λ_{X_p} is the unique affinely parameterized geodesic with $\lambda_{X_p}(0)=0$ and $\dot{\lambda}_{X_p}(0)=X_p$. Notice that $\lambda_{\alpha X_p}(t)=0$ $\lambda_{X_p}(\alpha t)$ for $\alpha \in \mathbb{R}$, since if $\widetilde{\lambda}(t) = \lambda_{X_p}(\alpha t)$, this is an affine reparametrization so is still a geodesic and $\widetilde{\lambda}(0) = p$, where also $\dot{\widetilde{\lambda}}(0) = \alpha \dot{\lambda}_{X_p}(0) = \alpha X_p$. Moreover $\alpha \mapsto \psi(\alpha X_p) = \lambda_{X_p}(\alpha)$ is an affinely parameterized geodesic.

Claim. If $U \subset T_PM$ is a sufficiently small neighbourhood of the origin, then $\psi: T_PM \to M$ is one to one and onto.

Definition 10.1: Suppose $\{e_{\mu}\}$ is a basis for T_pM . We construct normal coordinates at pas follows. For $q \in \psi(U) \subset M$. We define

$$\phi(q) = (X^1, \dots, X^n), \qquad (230)$$

where X^{μ} are components of the unique $X_{p} \in U$ with $\psi\left(X_{p}\right) = q$ with respect to the basis

By our previous observation, the curve given in normal coordinates by $X^{\mu}(t) = tY^{\mu}$ for Y^{μ} constant is an affinely parameterized geodesic. Thus from the geodesic equation Eq. (229).

$$\Gamma_{\nu\sigma}^{\mu}(Y)Y^{\nu}Y^{\sigma} = 0. \tag{231}$$

Setting t=0, we deduce (as such Y are arbitrary) that $\Gamma_{(\nu \sigma)}^{\mu}\Big|_{p}=0$. So if ∇ is torsion free, $\Gamma_{\nu \sigma}^{\mu} = 0$ in normal coordinates. Note that as Γ is not a tensor, this does not hold in other

Claim. If ∇ is the Levi Civita connection of a metric, then

$$g_{\mu\nu,\rho}\bigg|_{p} = 0. \tag{232}$$

$$g_{\mu\nu,\rho} = \frac{1}{2} \left(g_{\mu\nu,\rho} + g_{\rho\nu,\mu} - g_{\mu\rho,\nu} \right) + \frac{1}{2} \left(g_{\mu\nu,\rho} + g_{\mu\rho,\nu} - g_{\rho\nu,\mu} \right)$$

$$= \Gamma_{\mu}^{\ \sigma}_{\ \rho} g_{\sigma\nu} + \Gamma_{\rho}^{\ \sigma}_{\ \nu} g_{\sigma\mu},$$
(233)

$$=\Gamma_{\mu\ \alpha}^{\ \sigma}g_{\sigma\nu} + \Gamma_{\alpha\ \nu}^{\ \sigma}g_{\sigma\mu},\tag{234}$$

We can always choose the basis $\{e_{\mu}\}$ for T_pM on which we base the normal coordinates to be orthonormal.

Lemma 10.1: On a Riemannian (or Lorentzian) manifold, we can choose normal coordinates at p such that $g_{\mu\nu,\rho}|_{p}=0$, and

$$g_{\mu\nu}\Big|_{p} = \begin{cases} \delta_{\mu\nu}, & \text{Riemannian,} \\ \eta_{\mu\nu}, & \text{Lorentzian.} \end{cases}$$
 (235)

Proof. The curve given in normal coordinates by $t \mapsto (t, 0, \dots, 0)$ is the affinely parameterized geodesic with $\lambda(0) = p$ and $\dot{\lambda}(0) = e_1$ by the previous argument. But by the definition of a coordinate basis, this vector is $\left(\frac{\partial}{\partial x_1}\right)_p$, so if $\{e_\mu\}$ is orthonormal, at p the set $\{\left(\frac{\partial}{\partial x^\mu}\right)_p\}$

Curvature: Parallel Transport

Suppose $\lambda: I \to M$ is a curve with tangent vector $\dot{\lambda}(t)$. We say a tensor field T is **parallel transported** along λ if

$$\nabla_{\dot{\gamma}} T = 0, \tag{236}$$

on λ .

If λ is an affinely parameterized geodesic, then $\dot{\lambda}$ is parallel transported along λ . A parallel transported tensor is determined everywhere on λ by its value at one point.

Example. If T is a (1,1) tensor, then in coordinates its parallel transport can be written as

$$0 = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} T^{\nu}_{\sigma;\mu} \tag{237}$$

$$0 = \frac{1}{dt} T^{\nu}_{\sigma;\mu}$$

$$= \frac{dx^{\mu}}{dt} \left(T^{\nu}_{\sigma,\mu} + \Gamma^{\nu}_{\rho \mu} T^{\rho}_{\sigma} - \Gamma^{\rho}_{\sigma \mu} T^{\nu}_{\rho} \right).$$

$$(237)$$

However, $T^{\nu}_{\sigma,\mu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} (T^{\nu}_{\sigma})$, so

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} T^{\nu}_{\sigma} + \left(\Gamma^{\nu}_{\rho \mu} T^{\rho}_{\sigma} - \Gamma^{\rho}_{\sigma \mu} T^{\nu}_{\rho} \right) \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}. \tag{239}$$

This is a linear ODE for $T^{\nu}_{\sigma}(x(t))$ so ODE theory gives us a unique solution once $T^{\mu}_{\sigma}(x(0))$ specified.

Parallel transport along a curve from p to q gives an isomorphism between tensors at p and q. This isomorphism critically depends on the choice of curve in general.

11 Lecture: The Riemann Tensor

04/11/2024

11.1 The Riemann Tensor

The Riemann tensor captures the extent to which parallel transport depends on the curve we take.

Definition 11.1: Given X, Y, Z are smooth vector fields, and ∇ is a connection, we define

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{240}$$

Then

$$(R(X,Y)Z)^a = R^a_{bcd}X^cY^dZ^b, (241)$$

for a (1,3) tensor R^a_{bcd} , called the **Riemann curvature tensor**.

Note. This tensor does not depend on any derivatives of X, Y or Z.

Proof. Suppose f is a smooth function. Then

$$R(fX,Y)Z = \nabla_{fX}\nabla_{Y}Z - \nabla_{Y}\nabla_{fX}Z - \nabla_{[fX,Y]}Z \tag{242}$$

$$= f \nabla_X \nabla_Y Z - \nabla_Y (f \nabla_X Z) - \nabla_{f[X,Y] - Y(f)X} Z \tag{243}$$

$$= f \nabla_X \nabla_Y Z - f \nabla_Y \nabla_X Z - Y(f) \nabla_X Z - f \nabla_{[X,Y]} Z + Y(f) \nabla_X Z \qquad (244)$$

$$= f\nabla_X \nabla_Y Z - f\nabla_Y \nabla_X Z - f\nabla_{[X,Y]} Z \tag{245}$$

$$= fR(X,Y)Z. \tag{246}$$

Since R(X,Y)Z = -R(Y,X), we have R(X,fY) = fR(X,Y)Z.

Exercise 10: R(X,Y)(fZ) = fR(X,Y)Z

Proof.

Now suppose we pick a basis $\{e_{\mu}\}$ with dual basis $\{f^{\mu}\}$, then

$$R(X,Y)Z = R(X^{\rho}e_{\rho}, Y^{\sigma}e_{\sigma})(Z^{\nu}e_{\nu}) = X^{\rho}Y^{\sigma}Z^{\nu}R(e_{\rho}, e_{\sigma})e_{\nu}$$
(247)

$$= \left(R^{\mu}_{\ \nu\rho\sigma} X^{\rho} Y^{\sigma} Z^{\nu} \right) e_{\mu}, \tag{248}$$

where $R^{\mu}_{\nu\rho\sigma} = f^{\mu}(R(e_{\rho}, e_{\sigma})e_{\nu})$ are components of R^{a}_{bcd} in this basis. Since this result holds in one basis, it holds in all as we showed the linearity properties in a coordinate independent fashion.

In a coordinate basis, $e_{\mu} = \frac{\partial}{\partial x^{\mu}}$ and $[e_{\mu}, e_{\nu}] = 0$ so

$$R(e_{\mu}, e_{\sigma}) e_{\nu} = \nabla_{e_{\sigma}} (\nabla_{e_{\sigma}} e_{\nu}) - \nabla_{e_{\sigma}} (\nabla_{e_{\sigma}} e_{\nu}) - \nabla_{e_{\sigma}} (\Gamma_{\nu \sigma}^{\tau} e_{\tau}) - \nabla_{e_{\sigma}} (\Gamma_{\nu \sigma}^{\tau} e_{\tau})$$

$$(249)$$

$$= \partial_{\rho} \left(\Gamma^{\tau}_{\nu\sigma} \right) e_{\tau} + \Gamma^{\tau}_{\nu\sigma} + \Gamma^{\tau}_{\nu\sigma} \Gamma^{\mu}_{\tau\rho} e_{\mu} - \partial_{\sigma} \left(\Gamma^{\tau}_{\nu\rho} \right) e_{\tau} - \Gamma^{\tau}_{\nu\rho} \Gamma^{\tau}_{\nu\rho} \Gamma^{\mu}_{\tau\sigma} e_{\mu}. \tag{250}$$

Therefore,

$$R^{\mu}_{\ \nu\rho\sigma} = \partial_{\rho} \left(\Gamma_{\nu\ \sigma}^{\ \mu} \right) - \partial_{\sigma} \left(\Gamma_{\nu\ \rho}^{\ \mu} \right) + \Gamma_{\nu\ \sigma}^{\ \tau} \Gamma_{\tau\ \rho}^{\ \mu} - \Gamma_{\nu\ \rho}^{\ \tau} \Gamma_{\tau\ \sigma}^{\ \mu}, \tag{251}$$

where in normal coordinates one can drop the last two terms.

Example. Take the Levi-Civita connection ∇ of Minkowski space in an inertial frame, $\Gamma_{\mu\sigma}^{}=0$ so $R^{\mu}_{\nu\sigma\tau}=0$ hence $R^{a}_{bcd}=0$. Such a connection is called **flat**.

Conversely, for a Lorentzian spacetime, with flat Levi-Civita connection, we can locally find coordinates such that $g_{\mu\nu} = \text{diag}(-1, 1, \dots, 1)$.

Note. One must be cautious as

$$(\nabla_X \nabla_Y Z)^c = X^a \nabla_a (Y^b \nabla_b Z^c) \neq X^a Y^b \nabla_a \nabla_b Z^c. \tag{252}$$

Hence

$$(R(X,Y)Z)^{c} = X^{a}\nabla_{a}\left(Y^{b}\nabla_{b}Z^{c}\right) - Y^{a}\nabla_{a}\left(X^{b}\nabla_{b}Z^{c}\right) - [X,Y]^{b}\nabla_{b}Z^{c}$$

$$(253)$$

$$= X^a Y^b \nabla_a \nabla_b Z^c - Y^a X^b \nabla_a \nabla_b Z^c + (\nabla_X Y - \nabla_Y X - [X, Y])^b \nabla_b Z^c$$
 (254)

$$=X^a Y^b R^c_{\ dab} Z^d. \tag{255}$$

So if ∇ is torsion free

$$\nabla_a \nabla_b Z^c - \nabla_b \nabla_a Z^c = R^c{}_{dab} Z^d, \tag{256}$$

which is called the **Ricci identity**. See Exercise Sheet 2.

We can construct a new tensor from R^a_{bcd} by contraction.

Definition 11.2: The **Ricci tensor** is the (0,2) tensor

$$R_{ab} = R^c_{acd}. (257)$$

Suppose X, Y are vector fields satisfying [X, Y] = 0.

We construct a rectangle with points A, B, C and D and define it by flowing from A to B a distance ε along an integral curve of X, We then flow from B to C a distance ε along an integral curve of Y. Then we return flowing in the opposite direction along both curves in sequence. Since [X,Y], we indeed return to the start.

Claim. If Z is parallel transported around ABCD to a vector Z', then

$$(Z - Z')^{\mu} = \varepsilon^2 R^{\mu}_{\nu\rho\sigma} Z^{\nu} X^{\rho} Y^{\sigma} + \mathcal{O}\left(\varepsilon^3\right). \tag{258}$$

11.2 Geodesic Deviation

Let ∇ be a symmetric connection. Suppose $\lambda: I \to M$ is an affinely parameterized geodesic through p. We can pick normal coordinate centered at p such that λ is given by $t \mapsto (t, 0, \dots, 0)$.

Suppose we start a geodesic with $|s| \ll 1$ and

$$x_s^{\mu}(0) = sx_0^{\mu}$$
 $\dot{x}_s^{\mu}(0) = sx_1^{\mu} + (1, 0, \dots, 0).$ (259)

Then we find

$$x_s^{\mu}(t) = x^{\mu}(s,t) = (t,0,\cdots,0) + sY^{\mu}(t) + \mathcal{O}(s^2),$$
 (260)

where

$$Y^{\mu}(t) = \frac{\partial x^{\mu}}{\partial s} \bigg|_{s=0}, \tag{261}$$

are components of a vector field along λ measuring the infinitesimal deviation of the geodesics. We have

$$\frac{\partial^{2} x^{\mu}}{\partial t^{2}} + \Gamma_{\nu \sigma}^{\mu} \left(x^{\mu} \left(s, t \right) \right) \frac{\partial x^{\nu}}{\partial t} \frac{\partial x^{\sigma}}{\partial t} = 0. \tag{262}$$

We take the partial derivative of this with respect to s at s=0 and see that, with $T^{\mu} \equiv \frac{\partial x^{\mu}}{\partial t} \bigg|_{s=0}$,

$$\left. \frac{\partial^2 Y^{\mu}}{\partial t^2} + \partial_{\rho} \left(\Gamma_{\nu}^{\mu}{}_{\sigma} \right) \right|_{s=0} T^{\nu} T^{\sigma} Y^{\rho} + 2 \Gamma_{\rho}^{\mu}{}_{\sigma} \frac{\partial Y^{\rho}}{\partial t} T^{\sigma} = 0 \tag{263}$$

$$\Rightarrow T^{\nu} \left(T^{\sigma} Y^{\mu}_{,\sigma} \right)_{,\nu} + \partial_{\rho} \left(\Gamma_{\nu}^{\ \mu}_{\ \sigma} \right) \bigg|_{s=0}^{s=0} T^{\nu} T^{\sigma} Y^{\rho} + 2 \Gamma_{\rho}^{\ \mu}_{\ \sigma} \frac{\partial Y^{\rho}}{\partial t} T^{\sigma} = 0.$$
 (264)

At p = 0, $\Gamma = 0$ so

$$T^{\nu} \left(T^{\sigma} Y^{\mu}_{;\sigma} - \Gamma_{\rho}^{\mu}{}_{\sigma} T^{\sigma} Y^{\rho} \right)_{:\nu} + \left(\partial_{\rho} \Gamma_{\nu}^{\mu}{}_{\sigma} \right)_{\rho} T^{\nu} T^{\sigma} Y^{\rho} = 0. \tag{265}$$

12 Lecture $_{06/11/2024}$

Notice that we can write this expression (as the terms quadratic in Γ are zero here) equivalently as

$$(\nabla_T \nabla_T Y)^{\mu} + R^{\mu}_{\sigma\rho\nu} T^{\nu} T^{\sigma} Y^{\rho} = 0. \tag{266}$$

Therefore,

$$\nabla_T \nabla_T Y + R(Y, T) T = 0. \tag{267}$$

This is the geodesic deviation or Jacobi equation.

12.1 Symmetries of the Riemann tensor

From the definition, it is clear that

$$R^{a}_{bcd} = -R^{a}_{bdc} \Leftrightarrow R^{a}_{b(cd)} = 0. \tag{268}$$

Proposition 12.1: If ∇ is torsion free, then

$$R^{a}_{[bcd]} = 0.$$
 (269)

Proof. Fix $p \in M$, and choose normal coordinates at p. Work in a coordinate basis. Then $\Gamma_{\mu \ \nu}^{\ \sigma}\Big|_{p} = 0$ and $\Gamma_{\mu \ \nu}^{\ \sigma} = \Gamma_{\nu \ \mu}^{\ \sigma}$ everywhere.

Then

$$R^{\mu}_{\ \nu\rho\sigma} = \partial_{\rho} \left(\Gamma_{\nu \ \sigma}^{\ \mu} \right) \bigg|_{p} = \partial_{\sigma} \left(\Gamma_{\nu \ \rho}^{\ \mu} \right) \bigg|_{p}, \tag{270}$$

implies that

$$R^{\mu}_{\left[\nu\rho\sigma\right]}\Big|_{p} = 0. \tag{271}$$

As p is arbitrary, $R^{\mu}_{[\nu\rho\sigma]} = 0$ everywhere.

Proposition 12.2: If ∇ is torsion free, then the (differential) Bianchi identity holds such that

$$R^a_{\ b[cd:e]} = 0.$$
 (272)

Proof. Choose coordinates as above. Then $R^{\mu}_{\ \nu\rho\sigma;\tau}\Big|_{p} = R^{\mu}_{\ \nu\rho\sigma,\tau}\Big|_{p}$.

Schematically, we have $R \sim \partial \Gamma + \Gamma \Gamma$ and thus $\partial R \sim \partial \partial \Gamma + \partial \Gamma \cdot \Gamma$, where as $\Gamma \Big|_p = 0$, we deduce

$$R^{\mu}_{\ \nu\rho\sigma,\tau}\Big|_{p} = \partial_{\tau}\partial_{\rho}\Gamma_{\nu}^{\ \mu}_{\ \sigma}\Big|_{p} - \partial_{\tau}\partial_{\sigma}\left(\Gamma_{\nu}^{\ \mu}_{\ \rho}\right)\Big|_{p}. \tag{273}$$

By the symmetry of the mixed partial derivatives, we see that $R^{\mu}_{\nu[\rho\sigma,\tau]}\Big|_p=0$. Since p is arbitrary, the result follows.

Suppose ∇ is the Levi-Civita connection of a manifold with metric g. We can lower an index with g_{ab} and consider R_{abcd} .

Proposition 12.3: R_{abcd} satisfies

$$R_{abcd} = R_{cdab}. (274)$$

This also implies that $R_{(ab)cd} = 0$.

Proof. Pick normal coordinates at some point p so that $\partial_{\mu}g_{\nu\rho}=0$. We notice that

$$0 = \partial_{\mu} \delta_{\sigma}^{\nu} \bigg|_{p} = \partial_{\mu} \left(g^{\nu \tau} g_{\tau \sigma} \right) \bigg|_{p} = \left(\partial_{\mu} g^{\nu \tau} \right) g_{\tau \sigma} \bigg|_{p}. \tag{275}$$

Thus $\partial_{\mu}g^{\nu\tau}\Big|_{p}=0$ and hence

$$\partial_{\rho} \Gamma_{\nu \mu}^{\sigma} \Big|_{p} = \partial_{\rho} \left(\frac{1}{2} g^{\mu \tau} \left(g_{\tau \sigma, \nu} + g_{\nu \tau, \sigma} - g_{\nu \sigma, tau} \right) \right) \Big|_{p}$$
 (276)

$$= \frac{1}{2} g^{\mu\tau} \left(g_{\tau\sigma,\nu\rho} + g_{\nu\tau,\sigma\rho} - g_{\nu\sigma,\tau\rho} \right) \bigg|_{p}. \tag{277}$$

We then have that

$$R_{\mu\nu\rho\sigma}\bigg|_{p} = g_{\mu\kappa}\bigg(\partial_{\rho}\Gamma_{\nu}{}^{\kappa}{}_{\sigma} - \partial_{\sigma}\Gamma_{\nu}{}^{\kappa}{}_{\rho}\bigg)\bigg|_{p} \tag{278}$$

$$= \frac{1}{2} \left(g_{\mu\sigma,\nu\rho} + g_{|nu\rho,\mu\sigma} - g_{\nu\sigma,\mu\rho-g_{|mu\rho,\nu\sigma}} \right) \bigg|_{p}.$$
 (279)

This satisfies that $R_{\mu\nu\rho\sigma}\Big|_p = R_{\rho\sigma\mu\nu}\Big|_p$ and thus is true everywhere.

Corollary 12.1: The Ricci tensor is symmetric such that

$$R_{ab} = R_{ba}. (280)$$

Proof.

$$R_{ab} = R^{c}_{acb} = g^{cd}R_{cadb} = g^{cd}R_{dbca} = R_{ba}.$$
 (281)

Definition 12.1: The Ricci scalar (scalar curvature) is

$$R = R_a{}^a = g^{ab}R_{ab}. (282)$$

The **Einstein tensor** is

$$G_{ab} = R_{ab} - \frac{1}{2}g_{ab}R. (283)$$

Exercise 11: The (contracted) Bianchi identity implies $\nabla_a G^a_{b} = 0$

12.2 Diffeomorphisms and the Lie Derivative

Suppose $\phi:M\to N$ is a smooth map, then ϕ induces maps between corresponding vector bundles.

Definition 12.2: Given $f: N \to \mathbb{R}$, the **pull back** of f by ϕ is the map $\phi^* f: M \to \mathbb{R}$ given by $\phi^* f(p) = f(\phi(p))$.

Definition 12.3: Given $X \in T_PM$, we define the **push forward** of X by ϕ , $\phi_*X \in T_{\phi(p)}N$ as follows.

Let $\lambda: I \to M$ be a curve with $\lambda(0) = p$. $\dot{\lambda}(0) = X$. Then $\tilde{\lambda} = \phi \circ \lambda$ where $\tilde{\lambda}: I \to N$ gives a curve in N with $\tilde{\lambda}(0) = \phi(p)$. We set $\phi_* X = \dot{\tilde{\lambda}}(0)$.

Note. If $f: N \to \mathbb{R}$, then

$$\phi_* X(f) = \frac{\mathrm{d}}{\mathrm{d}t} \left(f \circ \widetilde{\lambda}(t) \right) \Big|_{t=0}$$
(284)

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(f \circ \phi \circ \lambda \left(t \right) \right) \bigg|_{t=0}$$
(285)

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\phi^* f \circ \lambda \left(t \right) \right) \bigg|_{t=0}$$
(286)

$$= X\left(\phi^*f\right). \tag{287}$$

Exercise 12: If x^{μ} are coordinate on M near p, and y^{α} are coordinates on N near $\phi(p)$. Then ϕ gives a map $y^{\alpha}(x^{\mu})$. Show that in a coordinate basis

$$(\phi_* X)^{\alpha} = \left(\frac{\partial y^{\alpha}}{\partial x^{\mu}}\right)_p x^{\mu},\tag{288}$$

or

$$\phi_* \left(\frac{\partial}{\partial x^{\mu}} \right)_p = \left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} \right)_p \left(\frac{\partial}{\partial y^{\alpha}} \right)_{\phi(p)}. \tag{289}$$

On the cotangent bundle, we go backwards.

Definition 12.4: If $\eta \in T_{\phi(p)}^*N$, then the pullback of η , $\phi^*\eta \in T_p^*M$ is defined by

$$\phi^* \eta \left(X \right) = \eta \left(\phi_* X \right), \tag{290}$$

 $\forall X \in T_pM$.

Proof.

Note. If $f: N \to \mathbb{R}$, then $\phi^*(df)[X] = df[\phi_*X] = \phi_*X(f) = X(\phi^*f) = d(\phi^*f)[X]$.

As X is arbitrary, we have

$$\phi^* df = d\left(\phi^* f\right),\tag{291}$$

namely pullbacks commute with differentials.

Exercise 13: With notation as before,

$$(\phi^* \eta)_{\mu} = \left(\frac{\partial y d\alpha}{\partial x^{\mu}}\right) \eta_{\alpha} \qquad \qquad \phi^* (dy^{\alpha})_p = \left(\frac{\partial y^{\alpha}}{\partial x^{\mu}}\right)_p (dx^{\mu})_p. \tag{292}$$

Proof.

tongon A*T at

We can extend the pull-back to map a (0,s) tensor T at $\phi(p) \in N$ to a (0,s) tensor ϕ^*T at $p \in M$ by requiring that

$$\phi^* T(X_1, \dots, X_s) = T(\phi_* X_1, \dots, \phi_* X_s),$$
(293)

 $\forall X_i \in T_pM$. Similarly, we can push forward a (s,0) tensor S at $p \in M$ to a (s,0) tensor ϕ_* at $\phi(p) \in N$ by

$$\phi * S(\eta_1, \cdots, \eta_s) = S(\phi^* \eta_1, \cdots \phi^* \eta_s), \qquad (294)$$

 $\forall \eta_1, \cdots, \eta_s \in T^*_{\phi(p)} N.$

If $\phi: M \to N$ has the property that $\phi_*: T_pM \to T_{\phi(p)}N$ is injective (one-to-one), we say ϕ is an immersion (this requires dim $N \ge \dim M$).

If N is a manifold with metric g, and $\phi: M \to N$ is an immersion, we can consider ϕ^*g . If g is Riemannian, then ϕ^*g is non-degenerate and positive definite so defines a metric on M, the **induced metric**.