Chapitre 7

Forme trigonométrique.

Sommaire.

1	Nombres complexes de module 1 et trigonométrie.	1
	1.1 Paramétrisation du cercle trigonométrique par $\theta \mapsto e^{i\theta}$	1
	1.2 Applications à la trigonométrie	2
2	Forme trigonométrique d'un nombre complexe non nul.	ş
	2.1 Exemples et applications	9
	2.2 Un peu de géométrie	
3	Exercices.	Ę

Les propositions marquées de \star sont au programme de colles.

Nombres complexes de module 1 et trigonométrie.

Paramétrisation du cercle trigonométrique par $\theta \mapsto e^{i\theta}$

Définition 1

On note $\mathbb U$ l'ensemble des nombres complexes de module 1:

$$\mathbb{U} = \{ \omega \in \mathbb{C} \mid |\omega| = 1 \}.$$

Si on identifie C avec le plan muni d'un repère orthonormé, alors U est le cercle trigonométrique.

Définition 2

Soit $\theta \in \mathbb{R}$. On note $e^{i\theta}$ (« exponentielle de $i\theta$ ») le nombre complexe de module 1 suivant :

$$e^{i\theta} := \cos\theta + i\sin\theta$$

 $e^{i\theta} := \cos \theta + i \sin \theta.$ Par définition même de $e^{i\theta}$, on a $\cos \theta = \text{Re}(e^{i\theta})$ et $\sin \theta = \text{Im}(e^{i\theta})$.

Proposition 3: Paramétrisation de U

$$\forall z \in \mathbb{C} \quad z \in \mathbb{U} \iff \exists \theta \in \mathbb{R} \ z = e^{i\theta}.$$

Par conséquent,

$$\mathbb{U} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}.$$

Preuve:

- Supposons $\exists \theta \in \mathbb{R} \mid z = e^{i\theta}$. Alors $|z|^2 = |e^{i\theta}|^2 = \cos^2 \theta + \sin^2 \theta = 1$ donc $|z| = 1 : z \in \mathbb{U}$.
- \implies Supposons |z|=1, notons M le point d'affixe $z, \exists \theta \in \mathbb{R} \mid M=(\cos\theta,\sin\theta), \, \mathrm{donc} \, z=\cos\theta+\sin\theta=e^{i\theta}$.

Exemple 4

$$\begin{split} -1 &= e^{i\pi}, \qquad 1 = e^{i0} = e^{2i\pi}, \qquad i = e^{i\frac{\pi}{2}}, \qquad -i = e^{-i\frac{\pi}{2}} \\ \frac{\sqrt{2}}{2} &+ \frac{\sqrt{2}}{2}i = e^{i\frac{\pi}{4}}, \qquad \frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i\frac{\pi}{3}}, \qquad \frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{i\frac{\pi}{6}}. \end{split}$$

Le rapport entre les nombres $e^{i\theta}$ qui ont été définis ci-dessus et la fonction exponentielle définie sur \mathbb{R} est à ce stade de l'année encore flou. On se contente pour l'instant de remarquer que ces deux exponentielles partagent la même propriété de morphisme.

Proposition 5: Propriété de morphisme pour e^i .

$$\forall \theta, \theta' \in \mathbb{R} \quad e^{i(\theta+\theta')} = e^{i\theta} \cdot e^{i\theta'}.$$

Par conséquent, pour tout θ, θ' réels,

$$(e^{i\theta}) - 1 = e^{-i\theta} = \overline{e^{i\theta}}, \quad e^{i(\theta - \theta')} = \frac{e^{i\theta}}{e^{i\theta'}} \quad \text{et} \quad \forall k \in \mathbb{Z} \quad (e^{i\theta})^k = e^{ik\theta}.$$

$$e^{i\theta} = e^{i\theta'} \iff \theta \equiv \theta'[2\pi]$$

Preuve:

Soient $\theta, \theta' \in \mathbb{R}$. On a

$$e^{i\theta}e^{i\theta} = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta') = \dots = \cos(\theta + \theta') + i\sin(\theta + \theta') = e^{i(\theta + \theta')}$$

On retiendra notamment, que $\forall \omega \in \mathbb{U}, \ \overline{\omega} = \omega^{-1}$.

1.2 Applications à la trigonométrie.

Proposition 6: Formule d'Euler.

$$\forall \theta \in \mathbb{R}, \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Preuve:

Soit $\theta \in \mathbb{R}$. On a

- $2\cos\theta = 2\operatorname{Re}(e^{i\theta}) = e^{i\theta} + \overline{e^{ei\theta}} = e^{i\theta} + e^{-i\theta}$.
- $2i\sin(\theta) = 2i\operatorname{Im}(e^{i\theta}) = e^{i\theta} \overline{e^{i\theta}} = e^{i\theta} e^{-i\theta}$

Méthode: Linéarisation des puissances de cos et sin. 🛨

Soient p et q deux entiers naturels. Pour linéariser $(\cos \theta)^p(\sin \theta)^q$, on peut toujours :

- transformer $\cos\theta$ et $\sin\theta$ par les formules d'Euler;
- développer grâce à la formule du binôme de Newton;
- regrouper les exponentielles conjuguées de $e^{ik\theta}$ et $e^{-ik\theta}$;
- reconnaître des termes $\cos(k\theta)$ et $\sin(k\theta)$ $(k \in \mathbb{N})$ par les formules d'Euler.

On peut ainsi transformer $(\cos \theta)^p(\sin \theta)^q$ en une combinaison linéare de termes $\cos(k\theta)$ et $\sin(k\theta)$ où $k \in \mathbb{N}$.

Exemple 7

Soit $\theta \in \mathbb{R}$. Linéariser $(\cos \theta)^4$, $(\sin \theta)^3$ et $(\cos \theta)^3 \sin \theta$. Calculer $\int_0^{\pi} (\cos x)^4 dx$.

Solution:

1.

$$\cos^4 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^4 = \frac{1}{2^4} \left((e^{i\theta})^4 + 4(e^{i\theta})^3 e^{-i\theta} + 6(e^{i\theta})^3 (e^{-i\theta})^2 + 4e^{i\theta} (e^{-i\theta})^3 + (e^{-i\theta})^4 \right)$$

$$= \frac{1}{2^4} \left(e^{4i\theta} + 4e^{2i\theta} + 6 + 4e^{-2i\theta} + e^{-4i\theta} \right) = \frac{1}{2^4} \left(2\cos(4\theta) + 9\cos(2\theta) + 6 \right)$$

$$= \frac{1}{2^3} \left(\cos(4\theta) + 4\cos(2\theta) + 3 \right)$$

(...) 4.

$$\int_0^{\pi} (\cos x)^4 dx = \frac{1}{2^3} \int_0^{\pi} \cos(4x) dx + \frac{4}{2^3} \int_0^{\pi} \cos(2x) dx + \frac{3}{2^3} \int_0^{\pi} dx$$
$$= \frac{1}{2^3} \left[\frac{\sin(4x)}{4} \right]_0^{\pi} + \frac{4}{2^3} \left[\frac{\sin(2x)}{2} \right]_0^{\pi} + \frac{3}{2^3} \left[x \right]_0^{\pi}$$
$$= \frac{1}{2^3} (0 - 0) + \frac{4}{2^3} (0 - 0) + \frac{3}{2^3} \pi = \frac{3\pi}{8}$$

Méthode : Technique de l'angle moitié.

Cette factorisation permet de faire apparaître une formule d'Euler :

$$1 + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\theta/2} + e^{i\theta/2} \right) = e^{i\frac{\theta}{2}} \cdot 2\cos\left(\frac{\theta}{2}\right).$$

$$1 - e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\theta/2} - e^{i\theta/2} \right) = -2i \sin\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}$$

Pour factoriser $e^{ia} + e^{ib}$, on peut factoriser par $e^{i\frac{a+b}{2}}$: (angle moyen).

Exemple 8: 🛨

Pour $\theta \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$, on établit les formules

$$\sum_{k=0}^{n} \cos(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \quad \text{et} \quad \sum_{k=0}^{n} \sin(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

Solution:

Puisque $\theta \not\equiv 0[2\pi], e^{i\theta} \not\equiv 1$ et donc:

$$\begin{split} \sum_{k=0}^n e^{ik\theta} &= \frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}} = \frac{e^{i\frac{n+1}{2}\theta} \left(e^{-i\frac{n+1}{2}\theta} - e^{i\frac{n+1}{2}\theta}\right)}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2} - e^{i\frac{\theta}{2}}}\right)} \\ &= e^{i(n/2)\theta} \cdot \frac{-2i\sin\left(\frac{(n+1)\theta}{2}\right)}{-2i\sin\left(\frac{\theta}{2}\right)} = e^{i(n/2)\theta} \cdot \frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \end{split}$$

2

En passant à la partie réelle/imaginaire, on obtient bien les égalités.

Exemple 9: Somme de cos, somme de sin. *

Soient $p, q \in \mathbb{R}$. On retrouve les égalités:

$$\begin{array}{rclcrcl} \cos p + \cos q & = & 2\cos\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right) & & \sin p + \sin q & = & 2\cos\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right) \\ \cos p - \cos q & = & -2\sin\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right) & & \sin(p) - \sin(q) & = & 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right) \end{array}$$

Solution:

1.

$$\begin{aligned} \cos p + \cos q &= \operatorname{Re}(e^{ip}) + \operatorname{Re}(e^{iq}) = \operatorname{Re}(e^{ip} + e^{iq}) = \operatorname{Re}\left(e^{i\frac{p+q}{2}}\left(e^{i\frac{p-q}{2}} + e^{-i\frac{p-q}{2}}\right)\right) \\ &= 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \end{aligned}$$

2.

$$\begin{split} \sin p + \sin q &= \operatorname{Im}(e^{ip}) + \operatorname{Im}(e^{iq}) = \operatorname{Im}(e^{ip} + e^{iq}) = \operatorname{Im}\left(e^{i\frac{p+q}{2}}\left(e^{i\frac{p-q}{2}} + e^{-i\frac{p-q}{2}}\right)\right) \\ &= 2\cos\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right) \end{split}$$

Proposition 10: Formule de Moivre.

$$\forall \theta \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$$

Méthode : « Délinéarisation » : exprimer $\cos(n\theta)$ et $\sin(n\theta)$ en fonction de $\cos\theta$ et $\sin\theta$. \star

On peut toujours

• écrire la formule de Moivre:

$$\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$$

- développer par la formule du binôme de Newton;
- identifier les parties réelles et imaginaires.

On exprime ainsi $\cos(n\theta)$ et $\sin(n\theta)$ en fonction de $\cos\theta$ et $\sin\theta$. En utilisant la relation $\cos^2\theta + \sin^2\theta = 1$, on poursuit les simplifications.

On obtiendra toujours deux polynômes T_n et U_{n-1} tels que

$$cos(n\theta) = T_n(cos \theta)$$
 et $sin(n\theta) = (sin \theta)U_{n-1}(cos \theta)$

Exemple 11

Exprimer $\cos 3\theta$ et $\sin 5\theta$ en fonction de $\cos \theta$ et de $\sin \theta$.

Solution:

1.

$$\cos 3\theta = \operatorname{Re}((\cos \theta + i \sin \theta)^3) = \operatorname{Re}(\cos^3 \theta + 3i \cos^2 \theta \sin \theta - 3 \cos \theta \sin^2 \theta - i \sin^3 \theta)$$
$$= \cos^3 \theta - 3 \cos \theta \sin^2 \theta = \cos^3 \theta - 3 \cos \theta (1 - \cos^2 \theta) = 4 \cos^3 \theta - 3 \cos \theta.$$

2.

$$\sin 5\theta = \text{Im}(e^{5i\theta}) = \text{Im}((\cos \theta + i \sin \theta)^5) = 5\cos^4 \theta \sin \theta - 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta$$
$$= \sin \theta \left[5\cos^4 \theta - 10\cos^2 \theta (1 - \cos^2 \theta) + (1 - \cos^2 \theta)^2 \right]$$
$$= \sin \theta \left[16\cos^4 \theta - 12\cos^2 \theta + 1 \right]$$

2 Forme trigonométrique d'un nombre complexe non nul.

2.1 Exemples et applications.

Proposition 12

Tout nombre complexe z non nul peut s'écrire sous forme trigonométrique:

$$z = re^{i\theta}$$
, où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

- Le nombre r est le module de z,
- On appelle θ un **argument** de z.

Preuve:

Soit $z \in \mathbb{C} \setminus \{0\}$. On a $\frac{z}{|z|} \in \mathbb{U}$ donc il existe $\theta \in \mathbb{R}$ tel que $\frac{z}{|z|} = e^{i\theta}$, donc $z = |z|e^{i\theta}$.

Méthode : Passer de la forme algébrique à la forme trigonométrique.

Pour mettre un nombre complexe non nul sous forme trigonométrique, il suffit de mettre son module en facteur. On va peut-être reconnaître un argument classique $(\frac{\pi}{3}, \frac{\pi}{4}, ...)$. Sinon, on peut exprimer l'argument à l'aide de la fonction arctan, comme dans l'exemple ci-dessous.

Exemple 13: De la forme algébrique à la forme trigonométrique, et réciproquement.

1. Mettre les nombres suivants sous forme trigonométrique.

$$-1$$
, $1-i$, $\sin \theta + i \cos \theta \ (\theta \in \mathbb{R})$, i^{35}

Donner la forme trigonométrique de 1+2i et expliciter son argument.

- (a) Donner la forme algébrique de $(\sqrt{3} + i)^{666}$.
 - (b) Soit $\theta \not\equiv 0[2\pi]$. Donner la forme algébrique de $\frac{e^{i\theta}-1}{e^{i\theta}+1}$.

Solution:

$$\begin{array}{l}
\boxed{1.} -1 = e^{i\pi}; \ 1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}; \ \sin\theta + i\cos\theta = e^{i\theta} \ \text{et} \ i^{35} = -i = e^{i\frac{\pi}{2}}. \\
\text{Et} \ 1 + 2i = \sqrt{5}\left(\frac{1}{\sqrt{5}} + i\frac{2}{\sqrt{5}}\right) = \sqrt{5}\left(\frac{\sqrt{5}}{5} + i\frac{2\sqrt{5}}{5}\right).
\end{array}$$

$$\exists \theta \in \mathbb{R} \mid \frac{1}{\sqrt{5}} + i \frac{2}{\sqrt{5}} = e^{i\theta} \iff \begin{cases} \cos \theta = \frac{1}{\sqrt{5}} \\ \sin \theta = \frac{2}{\sqrt{5}} \end{cases} \quad \text{donc } \tan \theta = \frac{2\sqrt{5}}{5} \frac{5}{\sqrt{5}} = 2.$$

On a $\cos \theta > 0$ donc $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors $\theta = \arctan(2)$ et $1 + 2i = \sqrt{5}e^{i\arctan(2)}$.

$$2.a$$
 $\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2e^{i\pi/6}$.

Alors
$$(\sqrt{3}+i)^{666} = (2e^{i\frac{\pi}{6}})^{666} = 2^{666}e^{666i\frac{\pi}{6}} = 2^{666}e^{111i\pi} = -2^{666}$$
.

Alors
$$(\sqrt{3} + i)^{666} = (2e^{i\frac{\pi}{6}})^{666} = 2^{666}e^{666i\frac{\pi}{6}} = 2^{666}e^{111i\pi} = -2^{666}.$$

$$2.b) \frac{e^{i\theta} - 1}{e^{i\theta} + 1} = \frac{e^{i\theta/2}(e^{i\theta/2} - e^{-i\theta/2})}{e^{i\theta/2}(e^{i\theta/2} + e^{i\theta/2})} = \frac{2i\sin(\theta/2)}{2\cos(\theta/2)} = i\tan(\theta/2).$$

Exemple 14

Transformation de $a\cos t + b\sin t$ en $A\cos(t-\varphi)$.

Solution:

Soients $a, b, t \in \mathbb{R}$, on note z = a + ib.

$$a\cos(t) + b\sin(t) = a\frac{e^{it} + e^{-it}}{2} + b\frac{e^{it} - e^{-it}}{2i} = \frac{1}{2}(ae^{it} + ae^{-it} + ibe^{it} + ibe^{-it}) = \frac{1}{2}(\overline{z}e^{it} + ze^{-it})$$

Il existe donc $r \in \mathbb{R}_+$ et $\varphi \in \mathbb{R}$ tels que $z = re^{i\varphi}$ où $r = \sqrt{a^2 + b^2}$.

$$a\cos t + b\sin t = \frac{1}{2}(re^{-i\varphi}e^{it} + re^{i\varphi}e^{-it}) = \frac{1}{2}(re^{i(t-\varphi)} + re^{i(t-\varphi)}) = r\cos(t-\varphi).$$

Proposition 15: Égalité de formes trigonométriques : presque-unicité de l'écriture.

$$\forall r, r' \in \mathbb{R}_+^*, \quad \forall \theta, \theta' \in \mathbb{R} \quad re^{i\theta} = r'e^{i\theta'} \iff \begin{cases} r = r' \\ \theta \equiv \theta'[2\pi] \end{cases}$$

Exemple 16: *

Comme on le verra dans la troisième partie de ce sours, la forme trigonométrique est particulièrement adaptée à la résolution de problèmes « multiplicatifs ».

En guise d'exemple, on résout sur \mathbb{C} l'équation $z^3 = -4|z|$.

Solution:

Soit $z \in \mathbb{Z}$. On sait que 0 est solution, on suppose $z \neq 0 : \exists (r, \theta) \in \mathbb{R}_+^* \times \mathbb{R} \mid z = re^{i\theta}$.

$$z^{3} = -4|z| \iff r^{3}e^{3i\theta} = 4re^{i\pi}$$

$$\iff r^{3} = 4r \quad \text{et} \quad 3\theta \equiv \pi[2\pi]$$

$$\iff r = 2 \quad \text{et} \quad \theta \equiv \frac{\pi}{3} \left[\frac{2\pi}{3}\right]$$

L'équation possède 4 solutions : 0; $2e^{i\pi/3}$; -2; $2e^{-i\pi/3}$.

Définition 17

Parmi l'infinité d'arguments d'un même nombre complexe non nul, un seul appartient à l'intervalle $]-\pi,\pi]$. On l'appelle **argument principal** de z et on le note arg(z).

Proposition 18

Soient $z, z' \in \mathbb{C}^*$. On a

$$\arg(zz') \equiv \arg(z) + \arg(z')[2\pi]$$
 et $\arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z')[2\pi]$.

4

2.2 Un peu de géométrie.

On travaille ici dans le plan muni d'un repère orthonormé direct. On rappelle que si A et B sont deux points du plan d'affixes respectives a et b, on appelle **affixe du vecteur** \overrightarrow{AB} le nombre complexe b-a. Il s'agit de l'affixe du point M tel que $\overrightarrow{OM} = \overrightarrow{AB}$.

Proposition 19

Soient A, B, C, D quatres points du plan distincts deux-à-deux, d'affixes respectives a, b, c et d.

$$\left| \frac{d-c}{b-a} \right| = \frac{\|\overrightarrow{CD}\|}{\|\overrightarrow{AB}\|}.$$

Le nombre $\arg\left(\frac{d-c}{b-a}\right)$ est une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{CD}).$

Corrolaire 20

Soient A, B, C, D quatre points du plan distincts deux-à-deux d'affixes a, b, c, d.

- (AB)//(CD) $\iff \frac{d-c}{b-a} \in \mathbb{R}.$
- En particulier, A, B, C sont alignés ssi $\frac{c-a}{b-a} \in \mathbb{R}$.
- $(AB)\bot(CD) \iff \frac{d-c}{b-a} \in i\mathbb{R}.$

Preuve:

Preuves sur l'autre poly.

3 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

Calculer $(1+i)^2023$.

Solution:

On a:

$$(1+i)^{2023} = (\sqrt{2}e^{i\frac{\pi}{4}})^{2023} = \sqrt{2}^{2023}e^{i\frac{2023\pi}{4}} = \sqrt{2}^{2023}e^{-i\frac{\pi}{4}}$$

Exercice 2: $\Diamond \Diamond \Diamond$

Soient trois réels x, y, z tels que $e^{ix} + e^{iy} + e^{iz} = 0$. Montrer que $e^{2ix} + e^{2iy} + e^{2iz} = 0$.

Solution:

On a :

$$e^{ix} + e^{iy} + e^{iz} = 0 \iff e^{-ix} + e^{-iy} + e^{-iz} = 0$$

Et:

$$(e^{ix} + e^{iy} + e^{iz})^2 = e^{2ix} + e^{2iy} + e^{2iz} + 2(e^{ixy} + e^{ixz} + e^{iyz})$$

$$\iff e^{2ix} + e^{2iy} + e^{2iz} = -2(e^{ixy} + e^{ixz} + e^{iyz})$$

Or:

$$2(e^{ixy} + e^{ixz} + e^{iyz}) = 2e^{i(x+y+z)}(e^{-ix} + e^{-iy} + e^{-iz}) = 0$$

Ainsi,

$$e^{2ix} + e^{2iy} + e^{2iz} = 0$$

Exercice 3: ♦♦♦

1. Déterminer les formes algébriques et trigonométriques du nombre

$$\frac{1+i\sqrt{3}}{2-2i}$$

2. En déduire l'expression de $\cos(\frac{7\pi}{12})$ et de $\sin(\frac{7\pi}{12})$ à l'aide de radicaux.

Solution:

1. On a :

$$\frac{1+i\sqrt{3}}{2-2i} = \frac{1-\sqrt{3}}{4} + i\frac{1+\sqrt{3}}{4} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}(1-\sqrt{3})}{4} + i\frac{\sqrt{2}(1+\sqrt{3})}{4} \right)$$

2. On a :

$$\begin{cases} \cos(\frac{7\pi}{12}) = \cos(\frac{\pi}{4} + \frac{\pi}{6}) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{2}(1 - \sqrt{3})}{4} \\ \sin(\frac{7\pi}{12}) = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \frac{\sqrt{2}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{2}(1 + \sqrt{3})}{4} \end{cases} \quad \text{Donc} : \frac{1 + i\sqrt{3}}{2 - 2i} = \frac{1}{\sqrt{2}}e^{i\frac{7\pi}{12}}$$

Exercice 4: $\Diamond \Diamond \Diamond$

Soit un réel θ . Linéariser $(\cos \theta)^5$ et $(\sin \theta)^6$.

Solution:

On a:

$$(\cos \theta)^5 = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$$

$$= \frac{1}{32} \left(e^{5i\theta} + 5e^{3i\theta} + 10e^{i\theta} + 10e^{-i\theta} + 5e^{-3i\theta} + e^{-5i\theta}\right)$$

$$= \frac{1}{32} \left(2\cos(5\theta) + 10\cos(3\theta) + 20\cos(\theta)\right)$$

$$= \frac{1}{16} \left(\cos(5\theta) + 5\cos(3\theta) + 10\cos(\theta)\right)$$

Et:

$$(\sin \theta)^{6} = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{6}$$

$$= -\frac{1}{64} \left(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4i\theta} + e^{-6i\theta}\right)$$

$$= -\frac{1}{64} \left(2\cos(6\theta) - 12\cos(4\theta) + 30\cos(2\theta) - 20\right)$$

$$= \frac{1}{32} \left(10 + 6\cos(4\theta) - 15\cos(2\theta) - \cos(6\theta)\right)$$

Exercice 5: ♦♦◊

- 1. Soit x un réel. Exprimer $\cos(5x)$ comme un polynome en $\cos(x)$.
- 2. Montrer que $\cos^2\left(\frac{\pi}{10}\right)$ est racine du trinôme $x\mapsto 16x^2-20x+5$.
- 3. En déduire l'égalité $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.

Solution:

1. On a :

$$\cos(5x) = \text{Re}\left((\cos(x) + i\sin(x))^5\right)$$

$$= \cos^5(x) - 10\cos^3(x)\sin^2(x) + 5\cos(x)\sin^4(x)$$

$$= \cos^5(x) - 10\cos^3(x)(1 - \cos^2(x)) + 5\cos(x)(1 - 2\cos^2(x) + \cos^4(x))$$

$$= 16\cos^5(x) - 20\cos^3(x) + 5\cos(x)$$

2. Posons $x = \cos^2\left(\frac{\pi}{10}\right)$ On a :

$$\cos\left(5 \cdot \frac{\pi}{10}\right) = 16\cos^5\left(\frac{\pi}{10}\right) - 20\cos^3\left(\frac{\pi}{10}\right) + 5\cos\left(\frac{\pi}{10}\right)$$

$$\iff 16\cos^4\left(\frac{\pi}{10}\right) - 20\cos^2\left(\frac{\pi}{10}\right) + 5 = 0$$

$$\iff 16x^2 - 20x + 5 = 0$$

Ainsi $\cos^2\left(\frac{\pi}{10}\right)$ est racine de ce trinôme.

3. On a :

$$\cos^2\left(\frac{\pi}{10}\right) = \frac{1 + \cos(\frac{\pi}{5})}{2}$$

Soit $x \in \mathbb{R}$, on a:

$$16x^2 - 20x + 5 = 0$$

$$\iff x = \frac{5 \pm \sqrt{5}}{8}$$

Ainsi, $\frac{1+\cos(\frac{\pi}{5})}{2} = \frac{5+\sqrt{5}}{8} \operatorname{car} \cos(\pi/5) > \cos(\pi/3) = 0.5$. On en déduit que $\cos(\frac{\pi}{5}) = \frac{1+\sqrt{5}}{4}$.

Exercice 6: ♦♦◊

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer $S = \sum_{k=0}^{n} {n \choose k} \cos(kx)$

Solution:

Notons : $S' = \sum_{k=0}^{n} {n \choose k} \sin(kx)$. On a :

$$S + iS' = \sum_{k=0}^{n} {n \choose k} \left(e^{ix}\right)^k = (1 + e^{ix})^n = \left(e^{\frac{ix}{2}}\right)^n \left(e^{-\frac{ix}{2}} + e^{\frac{ix}{2}}\right)^n = e^{\frac{inx}{2}} 2^n \cos^n \left(\frac{x}{2}\right)$$

Donc $S = \operatorname{Re}\left(2^n \cos^n\left(\frac{x}{2}\right) e^{\frac{inx}{2}}\right) = 2^n \cos^n\left(\frac{x}{2}\right) \operatorname{Re}\left(e^{\frac{inx}{2}}\right).$

Or, on a:

$$\operatorname{Re}\left(e^{\frac{inx}{2}}\right) = \operatorname{Re}\left(\cos\left(\frac{nx}{2}\right) + i\sin\left(\frac{nx}{2}\right)\right) = \cos\left(\frac{nx}{2}\right)$$

En conclusion:

$$S = 2^n \cos\left(\frac{x}{2}\right) \cos\left(\frac{nx}{2}\right)$$

Exercice 7: ♦♦◊

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$. On note

$$D_n(x) = \sum_{k=-n}^n e^{ikx}$$
 et $F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$.

- 1. Montrer que $D_n(x) = \frac{\sin((n+\frac{1}{2})x)}{\sin\frac{x}{2}}$.
- 2. Montrer que $F_n(x) = \frac{1}{n} \left(\frac{\sin(\frac{nx}{2})}{\sin \frac{x}{2}} \right)^2$.

Solution:

1.

$$\sum_{k=-n}^{n} e^{ikx} = \sum_{k=-n}^{n} \left(e^{ix}\right)^k = e^{-nx} \frac{1 - e^{ix(2n+1)}}{1 - e^{ix}} = \frac{e^{-inx} - e^{ix(n+1)}}{1 - e^{ix}}$$

$$= \frac{e^{ix/2} \left(e^{-ix(n+1/2)} - e^{ix(n+1/2)}\right)}{e^{ix/2} \left(e^{-ix/2} - e^{ix/2}\right)} = \frac{-2i\sin(x(n+\frac{1}{2}))}{-2i\sin(\frac{x}{2})} = \frac{\sin((n+\frac{1}{2})x)}{\sin\frac{x}{2}}$$

2.

$$\frac{1}{n} \sum_{k=0}^{n-1} D_k(x) = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\sin((k+\frac{1}{2})x)}{\sin\frac{x}{2}} = \frac{1}{n \sin\frac{x}{2}} \sum_{k=0}^{n-1} \sin((k+\frac{1}{2})x)$$

Calculons la somme des $\sin((k+1/2)x)$

$$\begin{split} \sum_{k=0}^{n-1} \sin((k+\frac{1}{2})x) &= \operatorname{Im} \left(\sum_{k=0}^{n-1} e^{ix(k+\frac{1}{2})} \right) = \operatorname{Im} \left(e^{ix\frac{1}{2}} \sum_{k=0}^{n-1} e^{ixk} \right) = \operatorname{Im} \left(e^{ix\frac{1}{2}} \frac{1 - e^{inx}}{1 - e^{ix}} \right) \\ &= \operatorname{Im} \left(e^{i\frac{x}{2}} \frac{e^{i\frac{nx}{2}} (\sin(\frac{nx}{2}))}{e^{i\frac{x}{2}} (\sin(\frac{x}{2}))} \right) = \operatorname{Im} \left(e^{i\frac{nx}{2}} \frac{\sin(\frac{nx}{2})}{\sin(\frac{x}{2})} \right) = \frac{\sin^2(\frac{nx}{2})}{\sin(\frac{x}{2})} \end{split}$$

Donc:

$$F_n(x) = \frac{1}{n \sin \frac{x}{2}} \cdot \frac{\sin^2(\frac{nx}{2})}{\sin \frac{x}{2}} = \frac{\sin^2 \frac{nx}{2}}{n \sin^2 \frac{x}{2}} = \frac{1}{n} \left(\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}}\right)^2$$

Exercice 8: ♦♦♦

Soit un quadrilatère ABCD du plan. On construit les points E, F, G, H à l'extérieur du quadrilatère tels que les triangles EBA, FCB, GDC et HAD soient des triangles directs, isocèles et rectangles en E, F, G, H. Démontrer que

 $\overrightarrow{EG} \perp \overrightarrow{FH}$ et EG = FH.

Solution:

Pas de solution.

Exercice 9: ♦♦♦

Trouver les nombres complexes d'affixe $z\in\mathbb{C}$ tels que $1,z^2$ et z^4 sont alignés.

Solution :

C'est évident lorsque $z \in \{0, 1\}$. Supposons $z \notin \{0, 1\}$.

Soit $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ tels que $z = re^{i\theta}$.

On a:

$$\begin{split} 1, z^2, z^4 \text{ align\'es} &\iff \frac{z^4 - 1}{z^2 - 1} \in \mathbb{R} \iff \frac{(z^2 - 1)(z^2 + 1)}{z^2 - 1} \in \mathbb{R} \\ &\iff z^2 + 1 \in \mathbb{R} \iff z^2 \in \mathbb{R} \iff r^2 e^{2i\theta} = r^2 e^{-2i\theta} \\ &\iff e^{2i\theta} = e^{-2i\theta} \iff e^{4i\theta} = 1 \iff \theta = \frac{n\pi}{2}, n \in \mathbb{N} \end{split}$$

Donc $z \in \mathbb{R} \cup i\mathbb{R}$.