CSCI567 Machine Learning (Fall 2014)

Drs. Sha & Liu

{feisha,yanliu.cs}@usc.edu

September 23, 2014

Outline

- Administration
- 2 Linear regression

A few announcements

- Homework 1 successfully submitted
- Pls start working on Homework 2

Outline

- Administration
- 2 Linear regression
 - Motivation
 - Algorithm
 - Univariate solution
 - Probabilistic interpretation
 - Solution
 - Multivariate solution in matrix form
 - Computational and numerical optimization
 - Ridge regression

Regression

Predicting a continuous outcome variable

- Predicting a company's future stock price using its pat and existing financial info
- Predicting the amount of rain fall
- Predicting ...

Regression

Predicting a continuous outcome variable

- Predicting a company's future stock price using its pat and existing financial info
- Predicting the amount of rain fall
- Predicting ...

Key difference from classification

- We measure prediction errors differently.
- This will lead to quite different learning models and algorithms.

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Interior Features

Features used to predict

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007.

Details provided by i-Tech MLS and may not match the public record. Learn More.

Kitchen Information Laundry Information Heating & Cooling Remodeled + Inside Laundry . Wall Cooling Unit(s) . Oven Banne Community Features Monthly Rent: \$2,350 Unit 2 Information Units in Complex (Total): 5 Unit 5 Information Multi-Family Information . F of Baths: 1 . # of Rects: 3 · # Leased 5 . World Bather 2 + Unfurnished Unfumished . Monthly Rent: \$2,250 . Owner Pays Water Monthly Rent: \$2,325 Unit 3 Information . Tenant Pays Bectricity, Tenant Pays Gas Unfurnished Unit 6 Information Unit 1 Information # of Beds: 3 . # of Beds: 2 . A of Baths: 1 . # of Reds: 3 . # of Baths: 1 . # of Baths: 1 . Monthly Rent: \$2,250 Unfumished Unfurnished Monthly Rept: \$1,700 Property / Lot Details

· Automatic Gate, Lawn, Sidewalks

. Square Footage Source: Public Records

. Corner Lot, Near Public Transit

Property Information

Updated/Remodeled

- Parking / Garage, Exterior Features, Utilities & Financing
- Parking Information . # of Parking Spaces (Total): 12 Green Certification Rating: 0.00 · Parking Space . Green Location: Transportation, Walkebillty
- Building Information

Property Features

Lot Size (Sq. Ft.): 9.649

Lot Size (Acres): 0.2215

Lot Information

Automatic Gate, Card/Code Access

. Lot Size Source: Public Records.

- Gated . Green Walk Score: 0 . Green Year Certified 0
- Location Details, Misc. Information & Listing Information

Location Information Expense Information Operating: \$37,664 . Capitalization Rate (%): 6.25 Actual Annual Gross Rent: \$128,331 Gross Rent Multiplier: 11.29

Financial Information

Tax Parcel Number: 5040017019

 Listing Terms: Cash, Cash To Existing Loan . Buyer Financing: Cash

Correlation between square footage and sale price

(Unlike classification, the colors of the dots in this scatterplot do not mean anything.)

Possibly linear relationship

 $\mathsf{Sale}\ \mathsf{price} \approx \mathsf{price_per_sqft}\ \times\ \mathsf{square_footage}\ +\ \mathsf{fixed_expense}$

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price
2000	800K
2100	907K
1100	312K
5500	2,600K

Reduce prediction error

How to measure errors?

- The classification error(hit or miss) is not appropriate for continuous outcomes.
- We can look at the absolute difference: | prediction sale price

However, for simplicity, we look at the *squared* errors: $(prediction - sale price)^2$

sqft	sale price	prediction	error	squared error
2000	800K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^{2}
5500	2,600K	2,600K	0	0

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	800K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^{2}
5500	2,600K	2,600K	0	0
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the residual/remaining unexplainable_stuff is minimized.

Linear regression

Setup

- ullet Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ is called *weights, parameters*, or *parameter*

vector

 w_0 is called *bias*.

We also sometimes call $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$ parameters too! So please pay attention to contexts when you read papers, textbooks, or assigned reading material.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Goal

Minimize prediction error as much as possible

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

Other definitions of errors are also possible
 We will see an example very soon.

A simple case: x is just one-dimensional

Identify stationary points, by taking derivative with respect to parameters, and setting to zeroes

$$\left\{ \begin{array}{l} \frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{array} \right. \Rightarrow \left(\begin{array}{cc} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array} \right) \left(\begin{array}{c} w_0 \\ w_1 \end{array} \right) = \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array} \right)$$

Why minimizing RSS is a sensible thing?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0, \sigma^2)$ is a Gaussian random variable

• Likelihood of one training sample (x_n, y_n)

$$p(y_n|x_n) = N(w_0 + w_1 x, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2}}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_{n} \log p(y_n|x_n)$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)$$
$$= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\begin{split} \log P(\mathcal{D}) &= \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n) \\ &= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\} \\ &= -\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{\mathsf{N}}{2} \log \sigma^2 - \mathsf{N} \log \sqrt{2\pi} \end{split}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\begin{split} \log P(\mathcal{D}) &= \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n) \\ &= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\} \\ &= -\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{\mathsf{N}}{2} \log \sigma^2 - \mathsf{N} \log \sqrt{2\pi} \\ &= -\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \log \sigma^2 \right\} + \mathsf{const} \end{split}$$

i.i.d stands for independently and identically distributed.

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

ullet Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s = \sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + N \frac{1}{s} \right\} = 0$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s=\sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

$$\to \sigma^2 = s = \frac{1}{\mathsf{N}} \sum_n [y_n - (w_0 + w_1 x_n)]^2$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Additionally

$$\sigma^{2} = \frac{1}{N} \sum_{n} [y_{n} - (w_{0}^{LMS} + w_{1}^{LMS} x_{n})]^{2}$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Additionally

$$\sigma^{2} = \frac{1}{N} \sum_{n} [y_{n} - (w_{0}^{LMS} + w_{1}^{LMS} x_{n})]^{2}$$

Remarks

- LMS is the same as the maximum likelihood estimation when the noise is assumed to be *Gaussian*.
- The remaining residuals provide a maximum likelihood estimate of the noise's variance.

NB. We sometimes call it least square solutions too.

Solution when x is one-dimensional

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} \sum_{n} 1 & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \end{pmatrix} = \begin{pmatrix} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} w_{0}^{LMS} \\ w_{1}^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_{n} 1 & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{pmatrix}$$

NB. We sometimes call it least square solutions too.

LMS when x is D-dimensional

$RSS(\tilde{m{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

LMS when x is D-dimensional

$RSS(\tilde{m{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n) (y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$

LMS when $oldsymbol{x}$ is D-dimensional

$RSS(\tilde{m{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n) (y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$
$$= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2y_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const.}$$

LMS when x is D-dimensional

$RSS(\tilde{m{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$\begin{split} RSS(\tilde{\boldsymbol{w}}) &= \sum_{n} (y_{n} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}) (y_{n} - \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}) \\ &= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2 y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const.} \\ &= \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \text{const.} \end{split}$$

$RSS(ilde{m{w}})$ in new notations

Design matrix and target vector

$$m{X} = \left(egin{array}{c} m{x}_1^{
m T} \ m{x}_2^{
m T} \ dots \ m{x}_N^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes D}, \quad m{ ilde{X}} = (m{1} \quad m{X}) \in \mathbb{R}^{{\sf N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_N \end{array}
ight)$$

$RSS(ilde{m{w}})$ in new notations

Design matrix and target vector

$$m{X} = \left(egin{array}{c} m{x}_1^{\mathrm{T}} \ m{x}_2^{\mathrm{T}} \ dots \ m{x}_N^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes D}, \quad m{ ilde{X}} = (m{1} \quad m{X}) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_N \end{array}
ight)$$

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} \right\} + \mathrm{const}$$

Solution in matrix form

Normal equation

Take derivative with respect to $ilde{m{w}}$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}}} \propto \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} = 0$$

This leads to the least-mean-square (LMS) solution

$$ilde{m{w}}^{LMS} = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}} m{y}$$

23 / 33

Solution in matrix form

Normal equation

Take derivative with respect to $ilde{m{w}}$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}}} \propto \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} = 0$$

This leads to the least-mean-square (LMS) solution

$$ilde{oldsymbol{w}}^{LMS} = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

Verify the solution when D = 1

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

◆□ → ◆問 → ◆ 目 → ◆ 目 ・ 夕 Q (~)

Mini-Summary

- Linear regression is the linear combination of features. $f: \mathbf{x} \to y$, with $f(\mathbf{x}) = w_0 + \sum_d w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$
- If we minimize residual sum squares as our learning objective, we get a closed-form solution of parameters.
- Probabilistic interpretation: maximum likelihood if assuming residual is Gaussian distributed
- Other interpretations exist: if interested, please consult the slides from last year's lectures.

Computational complexity

Bottleneck of computing the solution

$$oldsymbol{w} = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}oldsymbol{y}$$

is to invert the matrix $\tilde{{m X}}^{\rm T} \tilde{{m X}} \in \mathbb{R}^{({\sf D}+1) \times ({\sf D}+1)}$

How many operations do we need?

- On the order of $O((\mathsf{D}+1)^3)$ (using Gauss-Jordan elimination) or $O((\mathsf{D}+1)^{2.373})$ (recent advances in computing)
- Impractical for very large D

(Batch) Gradient descent

• Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - ① Compute the gradient (ignoring the constant factor) $abla RSS(\tilde{m{w}}) = \tilde{m{X}}^{\mathrm{T}} \tilde{m{X}} \tilde{m{w}}^{(t)} \tilde{m{X}}^{\mathrm{T}} m{y}$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - ① Compute the gradient (ignoring the constant factor) $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$
 - ② Update the parameters $\tilde{\boldsymbol{w}}^{(t+1)} = \tilde{\boldsymbol{w}}^{(t)} \eta \nabla RSS(\tilde{\boldsymbol{w}})$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - ① Compute the gradient (ignoring the constant factor) $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$
 - ② Update the parameters $\tilde{\pmb{w}}^{(t+1)} = \tilde{\pmb{w}}^{(t)} \eta \nabla RSS(\tilde{\pmb{w}})$
 - $0 t \leftarrow t+1$

(Batch) Gradient descent

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - ① Compute the gradient (ignoring the constant factor) $\nabla RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}^{(t)} \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$
 - ② Update the parameters $\tilde{\boldsymbol{w}}^{(t+1)} = \tilde{\boldsymbol{w}}^{(t)} \eta \nabla RSS(\tilde{\boldsymbol{w}})$
 - \bullet $t \leftarrow t+1$

What is the complexity here?

Why would this work?

If gradient descent converges, it will converge to the same solution using matrix inversion.

This is because $RSS(ilde{m{w}})$ is a convex function in its parameters $m{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}}$$

Why would this work?

If gradient descent converges, it will converge to the same solution using matrix inversion.

This is because $RSS(ilde{m{w}})$ is a convex function in its parameters $m{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}}$$
$$\Rightarrow \frac{\partial^{2} RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}} \tilde{\boldsymbol{w}}^{\mathrm{T}}} = 2 \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$$

Why would this work?

If gradient descent converges, it will converge to the same solution using matrix inversion.

This is because $RSS(ilde{m{w}})$ is a convex function in its parameters $m{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}}$$
$$\Rightarrow \frac{\partial^{2} RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}} \tilde{\boldsymbol{w}}^{\mathrm{T}}} = 2 \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$$

as $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is positive semidefinite, because for any $m{v}$

$$\boldsymbol{v}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{v} = \|\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{v}\|_{2}^{2} \geq 0$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Widrow-Hoff rule: update parameters using one example at a time

• Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - $oldsymbol{0}$ random choose a training a sample $oldsymbol{x}_t$
 - 2 Compute its contribution to the gradient (ignoring the constant factor)

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - $oldsymbol{0}$ random choose a training a sample $oldsymbol{x}_t$
 - 2 Compute its contribution to the gradient (ignoring the constant factor)

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

3 Update the parameters $ilde{m{w}}^{(t+1)} = ilde{m{w}}^{(t)} - \eta m{g}_t$

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - $oldsymbol{0}$ random choose a training a sample $oldsymbol{x}_t$
 - 2 Compute its contribution to the gradient (ignoring the constant factor)

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

- $\mathbf{0}$ Update the parameters $ilde{m{w}}^{(t+1)} = ilde{m{w}}^{(t)} \eta m{g}_t$
- \bullet $t \leftarrow t+1$

Widrow-Hoff rule: update parameters using one example at a time

- Initialize \tilde{w} to $\tilde{w}^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - $oldsymbol{0}$ random choose a training a sample $oldsymbol{x}_t$
 - 2 Compute its contribution to the gradient (ignoring the constant factor)

$$\boldsymbol{g}_t = (\tilde{\boldsymbol{x}}_t^{\mathrm{T}} \tilde{\boldsymbol{w}}^{(t)} - y_t) \tilde{\boldsymbol{x}}_t$$

- $\mathbf{0}$ Update the parameters $ilde{m{w}}^{(t+1)} = ilde{m{w}}^{(t)} \eta m{g}_t$
- \bullet $t \leftarrow t+1$

What is the complexity here?

Mini-summary

- Batch gradient descent computes the exact gradient.
- Stochastic gradient descent computes the gradient pretending only one instance.
 Its expectation equals to the true gradient.
- Other forms can be used.
 Mini-batch: trade-off between accuracy of estimating gradient and computational cost
- Similar ideas extend to other optimization problems in machine learning.
 - For large-scale problems, stochastic gradient descent often works well.

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Can you think of any reasons why that could happen?

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the parameters.

What if $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ is not invertible

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the parameters.

Answer 2: X columns are not linearly independent. Intuitively, there are two features that are perfectly correlated. In this case, solution is not unique.

Ridge regression

Intuition: what does a non-invertible $ilde{X}^{\mathrm{T}} ilde{X}$ mean?

where $\lambda 1 > \lambda_2 > \cdots > \lambda_r > 0$ and r < D.

Ridge regression

Intuition: what does a non-invertible $ilde{X}^{\mathrm{T}} ilde{X}$ mean?

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \lambda_r & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{U}$$

where $\lambda 1 > \lambda_2 > \cdots > \lambda_r > 0$ and r < D.

Fix the problem by adding something positive

$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} + \lambda m{I} = m{U}^{\mathrm{T}}\mathsf{diag}(\lambda_1 + \lambda, \lambda_2 + \lambda, \cdots, \lambda)m{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix

Regularized least square (ridge regression)

Solution

$$ilde{m{w}} = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{ ext{T}} m{y}$$

Regularized least square (ridge regression)

Solution

$$ilde{m{w}} = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{ ext{T}} m{y}$$

This is equivalent to adding an extra term to $RSS(ilde{m{w}})$

$$\underbrace{\frac{1}{2} \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} \right\}}_{RSS(\tilde{\boldsymbol{w}})} + \underbrace{\frac{1}{2} \lambda \|\tilde{\boldsymbol{w}}\|_{2}^{2}}_{\text{regularization}}$$

Regularized least square (ridge regression)

Solution

$$ilde{m{w}} = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{ ext{T}} m{y}$$

This is equivalent to adding an extra term to $RSS(ilde{m{w}})$

$$\underbrace{\frac{1}{2} \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} \right\}}_{RSS(\tilde{\boldsymbol{w}})} + \underbrace{\frac{1}{2} \lambda \|\tilde{\boldsymbol{w}}\|_{2}^{2}}_{\text{regularization}}$$

Benefits

- Numerically more stable, invertible matrix
- Prevent overfitting more on this later

How to choose λ ?

Again, λ is referred as *hyperparameter*, to be distinguished from w.

- Use validation or cross-validation
- Other approaches such as Bayesian linear regression we will describe them briefly later

linear regression versus nearest neighbors

Parametric versus non-parametric

- Parametric
 - The size of the model does not grow with respect to the size of the training dataset.
 - In linear regression, there are D+1 parameters, irrelevant to how many training instances we have.
- Non-parametric
 - The size of the model grows with respect to the size of the training dataset.
 - In nearest neighbor classification, the training dataset itself needs to be kept in order to make prediction. Thus, the size of the model is the size of the training dataset.

Non-parametric does not mean parameter-less. It just means the number of parameters is a function of the training dataset.

