Примеры вопросов и задач к устному экзамену по механике, необходимых для получения положительной оценки

Кинематика материальной точки

- Найти скорость произвольной точки колеса, катящегося по плоскости без проскальзывания.
- Найти нормальное и тангенциальное ускорение в верхней точке траектории тела, брошенного под углом к горизонту.

Законы Ньютона. Импульс. Реактивное движение

- ullet В течение времени au на систему тел действовала сила $ec{F}(t)$. Найти изменение импульса системы.
- ullet Найти зависимость скорости от времени v(t) для тела, падающего с небольшой высоты вертикально без начальной скорости, если сила сопротивления воздуха пропорциональна скорости тела.
- Найти ускорение ракеты массы m, движущейся вертикально в поле тяжести g, если скорость истечения газов равна u, расход топлива μ .

Работа силы. Энергия

- Сформулировать закон изменения механической энергии системы тел. При каких условиях механическая энергия системы сохраняется?
- Дать определение консервативной силы. Являются ли консервативными следующие силы: тяжести, упругости, сухого трения, сопротивления воздуха?
- Получить выражение для потенциальной энергии пружины, для которой задана зависимость силы упругости от смещения F(x).
- \bullet Потенциальная энергия тела равна $\Pi(x)$. Найти силу, действующую на тело по оси x.

Системы частиц. Столкновения

- Дать определение центра инерции системы. Сформулировать теорему о движении центра инерции.
- Сформулировать теорему Кёнига.
- Относительная скорость двух частиц m_1 , m_2 равна u. Записать их суммарную кинетическую энергию в системе центра инерции.
- Найти минимальную кинетическую энергию, которая должна иметь частица массы m, чтобы вступить в реакцию с покоящейся частицей той же массы, если энергия, поглощаемая в этой реакции равна E.

Момент импульса

- Дать определение вектора момента импульса материальной точки.
- Сформулировать закон изменения момента импульса системы материальных точек. При каких условиях момент импульса сохраняется?
- Найти вектор \vec{M} момента силы \vec{F} , приложенной к точке с радиус-вектором \vec{r} .

Закон всемирного тяготения. Движение тел в поле тяготения

- Получить выражение для потенциальной энергии гравитационного взаимодействия двух точечных масс m, находящихся на расстоянии r.
- Получить выражения для 1-й и 2-й космических скоростей.
- Полная энергия тела в поле тяжести в некоторый момент положительна (отрицательна, равна нулю). По какого рода траектории будет двигаться тело в дальнейшем?
- Изобразить трактерию движения планеты вокруг Солнца. Сформулировать закон площадей Кеплера.
- Вывести 3-й закон Кеплера для круговых орбит.

Вращение твёрдого тела вокруг неподвижной оси

- ullet Диск массы m радиуса R может вращаться вокруг перпендикулярной оси, проходящей через центр. Найти угловое ускорение диска, если к нему по касательной приложена сила F.
- Твёрдое тело вращается вокруг фиксированной оси z с угловой скоростью ω . Момент инерции I_z . Найти момент импульса относительно оси z и кинетическую энергию тела.
- Получить выражение для момента инерции однородного стержня/плоского диска относительно оси, перпендикулярной стержню/плоскости диска.
- Сформулировать теорему Гюйгенса—Штейнера.

Плоское движение твердого тела. Качение

- Найти кинетическую энергию осесимметричного тела с известным моментом инерции (шар, цилиндр и т.п.), катящегося без проскальзывания по плоскости со скоростью v.
- Найти ускорение осесимметричного тела с известным моментом инерции (шара, сфера, цилиндр и т.п.), скатывающегося без проскальзывания по наклонной плоскости.
- Обруч радиуса R раскрутили до угловой скорости ω и поставили на шероховатую поверхность. Найти установившуюся скорость качения обруча.

Гироскопы

- Найти угловую скорость прецессии гироскопа, подвешенного за центр масс, ось которого горизонтальна.
- Ось гироскопа вращается с угловой скоростью $\vec{\Omega}$. Найти момент сил, действующих на гироскоп, если скорость вращения ротора равна ω , момент инерции относительно оси симметрии I.

Механические колебания

- Вывести формулу для периода малых колебаний физического маятника, подвешенного в поле тяжести.
- Математическому маятнику длины ℓ сообщили малую скорость v в положении равновесия. Записать закон изменения угла отклонения маятника от времени.
- Написать дифференциальное уравнение и его решение для колебаний груза, подвешенного в поле тяжести на пружине с учётом сопротивления воздуха, пропорционального скорости.
- Добротность колебательной системы равна $Q\gg 1$. Найти относительное изменение амплитуды колебаний за период.

Неинерциальные системы отсчёта

- Найти период малых колебаний математического маятника длины ℓ , подвешенного в вагоне, движущемся по горизонтали с ускорением a.
- Карусель вращается с постоянной угловой скоростью ω . Записать силы инерции, действующие на движущееся тело в системе отсчёта, вращающейся вместе с каруселью (центр системы совпадает с центром карусели).
- Записать выражение для потенциальной энергии материальной точки в поле центробежных сил.

Основы теории упругости

- ullet Найти коэффициент жёсткости k стержня при его продольном растяжении. Длина стержня ℓ , площадь сечения S, модуль Юнга E.
- Найти относительное изменение диаметра стержня круглого сечения S, растягиваемого силой F. Модуль Юнга E, коэффициент Пуассона μ .
- Найти распределение напряжений в стержне, подвешенном за один из своих концов в однородном поле тяжести.
- Найти объёмную плотность энергии растянутого/сжатого стержня.
- Написать выражение для скорости звука в тонком стержне.

Основы специальной теории относительности

- \bullet Импульс релятивистской частицы массы m равен p. Найти полную и кинетическую энергии частицы.
- \bullet Энергия фотона равна E. Найти импульс фотона.
- Собственное время жизни релятивистской частицы, движущейся свободно со скоростью v, равно τ_0 . Найти расстояние, которое частица пройдет в лабораторной системе до распада.