Analisi di algoritmi per il Motif Finding

Tommaso Papini Gabriele Bani tommaso.papini1@stud.unifi.it gabriele.bani@stud.unifi.it

Un po' di background

DNA:

- sequenza di nucleotidi
- 4 tipi di nucleotide: A, T, C, G
- I-mer: sottosequenza di DNA di lunghezza /

Motifs

In biologia può essere necessario ricavare certe sequenze di DNA "nascoste"

- √ pattern di nucleotidi ripetuti (I-mer)
- √ utili a capire determinati comportamenti biologici
 - sequenze di attivazione di geni specifici

Un po' di background

DNA:

- sequenza di nucleotidi
- 4 tipi di nucleotide: A, T, C, G
- I-mer: sottosequenza di DNA di lunghezza /

Motifs

In biologia può essere necessario ricavare certe sequenze di DNA "nascoste"

- √ pattern di nucleotidi ripetuti (I-mer)
- ✓ utili a capire determinati comportamenti biologici
 - sequenze di attivazione di geni specifici

Il problema del Motif Finding

Il problema del Motif Finding consiste nel ricavare un set di t l-mer da un insieme di t sequenze di DNA.

Input

- DNA: matrice di nucleotidi $t \times n$
 - t sequenze di DNA
 - ognuna di lunghezza *n*
- 1: lunghezza del motif cercato

Output

 \checkmark $s=(s_1,s_2,\ldots,s_t)$: lista di t posizioni iniziali di l-mer il più simili tra loro

Il problema del Motif Finding

Il problema del Motif Finding consiste nel ricavare un set di t l-mer da un insieme di t sequenze di DNA.

Input

- DNA: matrice di nucleotidi $t \times n$
 - t sequenze di DNA
 - ognuna di lunghezza *n*
- 1: lunghezza del motif cercato

Output

 \checkmark $s=(s_1,s_2,\ldots,s_t)$: lista di t posizioni iniziali di l-mer il più simili tra loro

Il problema del Motif Finding

Il problema del Motif Finding consiste nel ricavare un set di t l-mer da un insieme di t sequenze di DNA.

Input

- DNA: matrice di nucleotidi $t \times n$
 - t sequenze di DNA
 - ognuna di lunghezza *n*
- 1: lunghezza del motif cercato

Output

 \checkmark $s=(s_1,s_2,\ldots,s_t)$: lista di t posizioni iniziali di l-mer il più simili tra loro

Un primo esempio

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

Un primo esempio

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

Mutazioni random

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA
GGATGgAtCTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGAaGCAACcCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAAGATTATAATGTCGGTCCtTGgAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCCAtTTTCAAC
TACATGATCTTTTGATGgcACTTGGATGAGGGAATGATGC

Come trovare l'I-mer più simile tra tutti?

Allineamento

CGGGGCT ATcCAgCT GGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAggGGCAACTCCAAAGCGGACAAA

GGATGgAtCTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGAaGCAACcCCAGGAGCGCCTTTGCTGGTTCTACCTG

 $AATTTTCTAAAAAGATTATAATGTCGGTCC\, t \textbf{\textit{TGgAACT}} \, TC$

CTGCTGTACAACTGAGATCATGCTGCATGCcAtTTTCAAC

TACATGATCTTTTGATGgcACTTGGATGAGGGAATGATGC

Profilo e Consenso

		Α	Т	C	C	Α	G	C	T
		G	G	G	C	Α	Α	C	T
		Α	T	G	G	Α	T	C	T
Allineamento		Α	Α	G	C	Α	Α	C	C
Anneamento		T.	T	G	G	Α	Α	C	Т
		Α	T	G	C	C	Α	\T.	Τ
		Α	T	G	G	C	Α	C	T
Profilo	Α	5	1	0	0	5	5	0	0
	T	1	5	0	0	0	1	1	6
	G	1	1	6	3	0	1	0	0
	C	0	0	1	4	2	0	6	1
Consenso		Α	T	G	С	Α	Α	С	T

Come definire la "bontà" di un set di l-mer?

Funzione score

Si definisce una funzione score sul vettore $s = (s_1, s_2, \dots, s_t)$ di posizioni iniziali:

$$Score(s, DNA) = \sum_{j=1}^{I} M_{P(s)}(j)$$

dove

- \checkmark P(s): matrice profile su s
- \checkmark $M_{P(s)}(j)$: elemento massimo nella colonna j-esima di P(s)

Si cerca il set di posizioni iniziali s che massimizzi Score(s, DNA)!

Come definire la "bontà" di un set di l-mer?

Funzione score

Si definisce una funzione score sul vettore $s=(s_1,s_2,\ldots,s_t)$ di posizioni iniziali:

$$Score(s, DNA) = \sum_{j=1}^{I} M_{P(s)}(j)$$

dove

- $\checkmark P(s)$: matrice profile su s
- \checkmark $M_{P(s)}(j)$: elemento massimo nella colonna j-esima di P(s)

Si cerca il set di posizioni iniziali s che massimizzi Score(s, DNA)!

Come definire la "bontà" di un set di l-mer?

Funzione score

Si definisce una funzione score sul vettore $s = (s_1, s_2, \dots, s_t)$ di posizioni iniziali:

$$Score(s, DNA) = \sum_{j=1}^{l} M_{P(s)}(j)$$

dove

- $\checkmark P(s)$: matrice profile su s
- \checkmark $M_{P(s)}(j)$: elemento massimo nella colonna j-esima di P(s)

Si cerca il set di posizioni iniziali s che massimizzi Score(s, DNA)!

Score: l'esempio di prima

		Α	Τ	C	C	Α	G	C	T
		G	G	G	C	Α	Α	C	T
		Α	Т	G	G	Α	Т	C	T
All:manmanta		Α	Α	G	C	Α	Α	C	C
Allineamento		T	T	G	G	Α	Α	C	Т
		Α	T	G	C	C	Α	T	T
		Α	Т	G	G	C	Α	C	T
Profilo	Α	5	1	0	0	5	5	0	0
	Т	1	5	0	0	0	1	1	6
	G	1	1	6	3	0	1	0	0
	C	0	0	1	4	2	0	6	1
Consenso		Α	T_{Λ}	G	С	Α	Α	С	T

Score(s, DNA) = 5 + 5 + 6 + 4 + 5 + 5 + 6 + 6 = 42

Score: l'esempio di prima

		Α	T	C	C	Α	G	C	T
Allineamento		G	G	G	C	Α	Α	C	T
		Α	T	G	G	Α	Т	C	T
		Α	Α	G	C	Α	Α	C	C
		T	T	G	G	Α	Α	C	Т
		Α	T	G	C	C	Α	T	T
		Α	Т	G	G	C	Α	C	T
Profilo	Α	5	1	0	0	5	5	0	0
	Т	1	5	0	0	0	1	1	6
	G	1	1	6	3	0	1	0	0
	C	0	0	1	4	2	0	6	1
Consenso	7	Α	/T/	G	С	Α	Α	С	T

$$Score(s, DNA) = 5 + 5 + 6 + 4 + 5 + 5 + 6 + 6 = 42$$

Quanto può valere lo score?

$$Score(s, DNA) = \begin{cases} I \cdot t, & \text{nel caso migliore} \\ \\ \frac{I \cdot t}{4}, & \text{nel caso peggiore} \end{cases}$$

- ✓ It corrisponde al caso in cui tutti gli l-mer sono identici
- $\sqrt{\frac{lt}{4}}$ corrisponde al caso in cui gli l-mer siano diversi in tutte le posizioni

Quanto può valere lo score?

$$Score(s, DNA) = \begin{cases} I \cdot t, & \text{nel caso migliore} \\ \frac{I \cdot t}{4}, & \text{nel caso peggiore} \end{cases}$$

- √ It corrisponde al caso in cui tutti gli l-mer sono identici
- $\sqrt{\frac{lt}{4}}$ corrisponde al caso in cui gli l-mer siano diversi in tutte le posizioni

Quanto può valere lo score?

$$\mathit{Score}(s,\mathit{DNA}) = egin{cases} I \cdot t, & \mathsf{nel\ caso\ migliore} \ \\ rac{I \cdot t}{4}, & \mathsf{nel\ caso\ peggiore} \end{cases}$$

- ✓ It corrisponde al caso in cui tutti gli l-mer sono identici
- $\sqrt{\frac{lt}{4}}$ corrisponde al caso in cui gli l-mer siano diversi in tutte le posizioni

Algoritmi brute force

Forza bruta

In informatica il metodo "forza bruta" (o ricerca esaustiva della soluzione) è un algoritmo di risoluzione di un problema dato che consiste nel verificare tutte le soluzioni teoricamente possibili fino a che si trova quella effettivamente corretta.

L'idea

Esamina tutte le possibili combinazioni delle posizioni di partenza s e prendi quella con maggior *Score*.

- Posizioni iniziali: s = (1, ..., 1)
- Posizioni finali: $s = ((n-l+1), \dots, (n-l+1))$

Si utilizza il metodo *NextElement* per passare da un elemento al successivo in ordine alfabetico.

L'idea

Esamina tutte le possibili combinazioni delle posizioni di partenza s e prendi quella con maggior *Score*.

- Posizioni iniziali: s = (1, ..., 1)
- Posizioni finali: s = ((n l + 1), ..., (n l + 1))

Si utilizza il metodo *NextElement* per passare da un elemento al successivo in ordine alfabetico.

L'idea

Esamina tutte le possibili combinazioni delle posizioni di partenza s e prendi quella con maggior *Score*.

- Posizioni iniziali: s = (1, ..., 1)
- Posizioni finali: s = ((n l + 1), ..., (n l + 1))

Si utilizza il metodo *NextElement* per passare da un elemento al successivo in ordine alfabetico.

Pseudocodice

```
1: procedure SimpleMotifSearch(DNA, t, n, l)
        s \leftarrow (1, 1, \dots, 1)
        bestScore \leftarrow Score(s, DNA)
3:
        while true do
4:
5:
            s \leftarrow NextElement(s, t, n - l + 1)
            if Score(s, DNA) > bestScore then
6:
                bestScore \leftarrow Score(s, DNA)
7:
8:
                bestMotif \leftarrow s
            end if
9:
            if s = (1, 1, ..., 1) then
10:
                return bestMotif
11:
            end if
12:
        end while
13:
14: end procedure
```

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\sqrt{(n-l+1)^t}$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Costo

 $\mathcal{O}(t \ln^t)$

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\sqrt{(n-l+1)^t}$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Costo

 $\mathcal{O}(t \ln^t)$

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\checkmark (n-l+1)^t$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Costo $\mathcal{O}(t \ln^t)$

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\checkmark (n-l+1)^t$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Costo

 $\mathcal{O}(t \ln^t)$

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- \checkmark $(n-l+1)^t$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tI per calcolare la matrice Profilo
- √ 41 per calcolare Score

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\checkmark (n-l+1)^t$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Complessità

Quante iterazioni fa l'algoritmo?

- √ vengono esaminate tutte le possibili combinazioni
 - (n-l+1) possibili scelte per ogni posizione iniziale
 - t posizioni iniziali (una per ogni sequenza)
- $\checkmark (n-l+1)^t$ possibili combinazioni di posizioni iniziali

Quanti passi per calcolare Score?

- √ tl per calcolare la matrice Profilo
- √ 41 per calcolare Score

Branch & bound

L'idea

Ottimizza Simple Motif Search evitando di analizzare sequenze non ottimali

- √ enumerazione delle sequenze tramite alberi
- √ funzione di Score ottimistico
 - Score parziale su un nodo interno
 - Score ideale per le restanti posizioni

Branch & bound Un esempio

Branch & bound Un esempio

Branch & bound

Si esegue una visita in profondità dell'albero

- √ calcola lo Score ottimistico per ogni nodo
- ✓ scarta i sottoalberi con Score ottimistico sub-ottimo

Score ottimistico

Score ottimistico =
$$Score(s, i, DNA) + (t - i) \cdot I$$

- \checkmark Score(s, i, DNA): Score parziale relativo alle prime i sequenze di DNA
- \checkmark $(t-i) \cdot I$: Score parziale delle restanti posizioni (supponendole identiche)
- √ NextVertex per passare al prossimo vertice (DFS)
- ✓ Skip per passare al prossimo vertice saltando il sottoalbero attuale

Branch & bound

Si esegue una visita in profondità dell'albero

- √ calcola lo Score ottimistico per ogni nodo
- √ scarta i sottoalberi con *Score ottimistico* sub-ottimo

Score ottimistico

Score ottimistico =
$$Score(s, i, DNA) + (t - i) \cdot I$$

- \checkmark Score(s, i, DNA): Score parziale relativo alle prime i sequenze di DNA
- \checkmark $(t-i) \cdot I$: Score parziale delle restanti posizioni (supponendole identiche)
- √ NextVertex per passare al prossimo vertice (DFS)
- ✓ Skip per passare al prossimo vertice saltando il sottoalbero attuale

Si esegue una visita in profondità dell'albero

- √ calcola lo Score ottimistico per ogni nodo
- ✓ scarta i sottoalberi con Score ottimistico sub-ottimo

Score ottimistico

Score ottimistico =
$$Score(s, i, DNA) + (t - i) \cdot I$$

- \checkmark Score(s, i, DNA): Score parziale relativo alle prime i sequenze di DNA
- \checkmark $(t-i) \cdot I$: Score parziale delle restanti posizioni (supponendole identiche)
- √ NextVertex per passare al prossimo vertice (DFS)
- √ Skip per passare al prossimo vertice saltando il sottoalbero attuale

Si esegue una visita in profondità dell'albero

- √ calcola lo Score ottimistico per ogni nodo
- ✓ scarta i sottoalberi con Score ottimistico sub-ottimo

Score ottimistico

Score ottimistico =
$$Score(s, i, DNA) + (t - i) \cdot I$$

- \checkmark Score(s, i, DNA): Score parziale relativo alle prime i sequenze di DNA
- \checkmark $(t-i) \cdot I$: Score parziale delle restanti posizioni (supponendole identiche)
- √ NextVertex per passare al prossimo vertice (DFS)
- √ Skip per passare al prossimo vertice saltando il sottoalbero attuale

Si esegue una visita in profondità dell'albero

- √ calcola lo Score ottimistico per ogni nodo
- ✓ scarta i sottoalberi con Score ottimistico sub-ottimo

Score ottimistico

Score ottimistico =
$$Score(s, i, DNA) + (t - i) \cdot I$$

- \checkmark Score(s, i, DNA): Score parziale relativo alle prime i sequenze di DNA
- \checkmark $(t-i) \cdot I$: Score parziale delle restanti posizioni (supponendole identiche)
- √ NextVertex per passare al prossimo vertice (DFS)
- ✓ Skip per passare al prossimo vertice saltando il sottoalbero attuale

Pseudocodice

```
procedure BranchAndBoundMotifSearch(DNA, t, n, l)
        s \leftarrow (1, 1, \ldots, 1)
        bestScore \leftarrow 0
      i \leftarrow 1
5:
       while i > 0 do
6:
            if i < t then
7:
                 optimisticScore \leftarrow Score(s, i, DNA) + (t - i)I
8:
                if optimisticScore < bestScore then
9:
                    (s,i) \leftarrow Skip(s,i,(n-l+1))
10:
                 else
                     (s, i) \leftarrow NextVertex(s, i, t, (n - l + 1))
11:
12:
                 end if
13:
             else
14:
                 if Score(s, DNA) > bestScore then
15:
                     bestScore \leftarrow Score(s, DNA)
16:
                     bestMotif \leftarrow s
17:
                 end if
18:
                 (s, i) \leftarrow NextVertex(s, i, t, (n - l + 1))
19:
             end if
20:
         end while
21:
         return bestMotif
    end procedure
```

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni
 - $L = (n-l+1)^t$ foglie
- \checkmark N + L passi totali

Quanto passi per calcolare Score?

✓ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni
 - $L = (n-l+1)^t$ foglie
- $\sqrt{N+L}$ passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni
 - $L = (n l + 1)^t$ foglie
- \checkmark N + L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni
 - $L = (n l + 1)^t$ foglie
- \checkmark N + L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni

-
$$L = (n - l + 1)^t$$
 foglie

 \checkmark N+L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti *Skip*

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni

-
$$L = (n - l + 1)^t$$
 foglie

 \checkmark N + L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t \ln^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni
 - $L = (n l + 1)^t$ foglie
- \checkmark N + L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t l n^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Complessità

Quante iterazioni?

- √ una per ogni nodo interno/foglia (caso pessimo)
 - $N = \frac{(n-l+1)^t-1}{(n-l+1)-1}$ nodi interni

-
$$L = (n - l + 1)^t$$
 foglie

 \checkmark N+L passi totali

Quanto passi per calcolare Score?

√ come prima!

Costo

 $\mathcal{O}(t l n^t)$

- √ più costoso nel caso pessimo
- √ conveniente se esegue tanti Skip

Algoritmi greedy

Greedy

Un algoritmo **greedy** è un algoritmo che cerca di ottenere una soluzione ottima da un punto di vista globale attraverso la scelta della soluzione più golosa ad ogni passo locale

L'idea

Scansiona ogni sequenza di DNA una sola volta e prendi l'I-mer che massimizza lo *Score parziale*

- ✓ ciclo di inizializzazione per calcolare i primi due l-mer
 - brute force
- √ i restanti l-mer scelti secondo lo Score parziale

L'idea

Scansiona ogni sequenza di DNA una sola volta e prendi l'I-mer che massimizza lo *Score parziale*

- ✓ ciclo di inizializzazione per calcolare i primi due l-mer
 - brute force
- √ i restanti l-mer scelti secondo lo Score parziale

L'idea

Scansiona ogni sequenza di DNA una sola volta e prendi l'I-mer che massimizza lo *Score parziale*

- ✓ ciclo di inizializzazione per calcolare i primi due l-mer
 - brute force
- √ i restanti l-mer scelti secondo lo *Score parziale*

Pseudocodice

```
1: procedure GreedyMotifSearch(DNA, t, n, l)
         bestMotif \leftarrow (1, 1, ..., 1)
        s \leftarrow (1, 1, \ldots, 1)
        for s[1] \leftarrow 1 to n-l+1 do
 5:
             for s[2] \leftarrow 1 to n-l+1 do
 6:
                 if Score(S, 2, DNA) > Score(bestMotif, 2, DNA) then
 7:
                     bestMotif[1] \leftarrow s[1]
8:
                     bestMotif[2] \leftarrow s[2]
9:
                 end if
10:
             end for
11:
         end for
12:
         s \leftarrow bestMotif
13:
         for i \leftarrow 3 to t do
14:
             for s[i] \leftarrow 1 to n-l+1 do
15:
                 if Score(S, i, DNA) > Score(bestMotif, i, DNA) then
16:
                      bestMotif[i] \leftarrow s[i]
17:
                 end if
18:
             end for
19:
             s[i] \leftarrow bestMotif[i]
20:
         end for
21:
         return bestMotif
22: end procedure
```

Complessità

Quanti passi fanno i primi due cicli?

- $\sqrt{(n-l+1)}$ cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tl + 4l) passi

Quanti passi fanno i secondi due cicli?

- $\sqrt{(t-3)}$ passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca Score due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- √ in ogni ciclo si invoca *Score* due volte
 - 2(tl + 4l) passi

Quanti passi fanno i secondi due cicli?

- $\sqrt{(t-3)}$ passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca *Score* due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2 \ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tl + 4l) passi

Quanti passi fanno i secondi due cicli?

- $\sqrt{(t-3)}$ passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca *Score* due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tl + 4l) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca *Score* due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tl + 4l) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca *Score* due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tI + 4I) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca *Score* due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2 \ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tI + 4I) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca Score due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2 \ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tI + 4I) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca Score due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$

$$= \mathcal{O}(t\ln(n+t))$$

Complessità

Quanti passi fanno i primi due cicli?

- \checkmark (n-l+1) cicli ognuno
- ✓ in ogni ciclo si invoca *Score* due volte
 - 2(tI + 4I) passi

Quanti passi fanno i secondi due cicli?

- \checkmark (t-3) passi il ciclo esterno
- \checkmark (n-l+1) passi il ciclo interno
- √ in ogni ciclo si invoca Score due volte
 - come prima!

$$\mathcal{O}(t\ln^2 + t^2\ln) =$$
 $= \mathcal{O}(t\ln(n+t))$

Esattezza e approssimazione

GreedyMotifSearch potrebbe non calcolare la soluzione ottima!

- √ algoritmo greedy approssimato (non esatto)
- Di quanto viene approssimata la soluzione trovata?
 - √ fattore di approssimazione sconosciuto!

CONSENSUS

Esiste un'implementazione (CONSENSUS) di GreedyMotifSearch

- √ risultati spesso vicini all'ottimo
- √ complessità molto bassa

Esattezza e approssimazione

GreedyMotifSearch potrebbe non calcolare la soluzione ottima!

√ algoritmo greedy approssimato (non esatto)

Di quanto viene approssimata la soluzione trovata?

√ fattore di approssimazione sconosciuto!

CONSENSUS

Esiste un'implementazione (CONSENSUS) di GreedyMotifSearch

- √ risultati spesso vicini all'ottimo
- √ complessità molto bassa

Esattezza e approssimazione

GreedyMotifSearch potrebbe non calcolare la soluzione ottima!

√ algoritmo greedy approssimato (non esatto)

Di quanto viene approssimata la soluzione trovata?

√ fattore di approssimazione sconosciuto!

CONSENSUS

Esiste un'implementazione (CONSENSUS) di GreedyMotifSearch

- √ risultati spesso vicini all'ottimo
- √ complessità molto bassa

Algoritmi randomizzati

Random

Gli algoritmi randomizzati sono algoritmi che impiegano un certo grado di casualità durante la loro esecuzione al fine di ottenere delle buone prestazioni nel caso medio

L'idea

Crea un profilo su un vettore s casuale, calcola, per ogni sequenza, l'I-mer che ha più probabilità di aver generato tale profilo e ripeti sul nuovo profilo ottenuto

Come si definisce la probabilità che un l-mer a abbia generato un profilo P?

- $\checkmark Prob(a|P) = \prod_{i=1}^{I} p_{a_i,i}$
- \checkmark con $P(s)=(p_{ij})$ matrice profilo costruita su s

L'idea

Crea un profilo su un vettore s casuale, calcola, per ogni sequenza, l'I-mer che ha più probabilità di aver generato tale profilo e ripeti sul nuovo profilo ottenuto

Come si definisce la probabilità che un l-mer a abbia generato un profilo P?

$$\checkmark Prob(a|P) = \prod_{i=1}^{I} p_{a_i,i}$$

 \checkmark con $P(s)=(p_{ij})$ matrice profilo costruita su s

L'idea

Crea un profilo su un vettore s casuale, calcola, per ogni sequenza, l'I-mer che ha più probabilità di aver generato tale profilo e ripeti sul nuovo profilo ottenuto

Come si definisce la probabilità che un l-mer a abbia generato un profilo P?

- $\checkmark Prob(a|P) = \prod_{i=1}^{I} p_{a_i,i}$
- \checkmark con $P(s) = (p_{ij})$ matrice profilo costruita su s

Pseudocodice

```
1: procedure GreedyProfileMotifSearch(DNA, t, n, l)
        s \leftarrow vettore casuale di posizioni iniziali in DNA
 2:
        P \leftarrow P(s)
 3:
 4:
        bestScore \leftarrow 0
        while Score(s, DNA) > bestScore do
 5:
            bestScore \leftarrow Score(s, DNA)
 6:
            for i \leftarrow 1 to t do
 7:
                 a \leftarrow l-mer dell'i-esima sequenza più probabile per P
 8:
                 s[i] \leftarrow posizione iniziale di a
 9:
            end for
10:
        end while
11:
12:
        return s
13: end procedure
```

Complessità

Quante iterazioni esegue il while?

- \checkmark al più $t \cdot (n l + 1)$
- √ in ogni ciclo si calcola *Score* due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - ★ (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

Complessità

Quante iterazioni esegue il while?

- ✓ al più $t \cdot (n-l+1)$
- √ in ogni ciclo si calcola *Score* due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - \star (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

Costo $\mathcal{O}(\ln^2 t^2)$

Complessità

- ✓ al più $t \cdot (n-l+1)$
- √ in ogni ciclo si calcola Score due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - \star (n-l+1) |-mer da controllare
 - * il calcolo di ogni probabilità richiede / passi

Complessità

- ✓ al più $t \cdot (n l + 1)$
- ✓ in ogni ciclo si calcola *Score* due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - \star (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

Complessità

Quante iterazioni esegue il while?

- ✓ al più $t \cdot (n l + 1)$
- ✓ in ogni ciclo si calcola *Score* due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - \star (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

Costo $\mathcal{O}(\ln^2 t^2)$

Complessità

- ✓ al più $t \cdot (n l + 1)$
- √ in ogni ciclo si calcola Score due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - ★ (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

Complessità

- ✓ al più $t \cdot (n l + 1)$
- √ in ogni ciclo si calcola Score due volte
 - 2(tl + 4l) passi
- √ ciclo for
 - t passi totali
 - in ogni passo si cerca l'I-mer con probabilità più alta
 - ★ (n-l+1) |-mer da controllare
 - \star il calcolo di ogni probabilità richiede / passi

L'idea

Simile a *GreedyProfileMotifSearch* ma aggiornando ad ogni passo una sola sequenza (scelta in modo casuale) anziché tutte e scegliendo l'I-mer migliore in modo probabilistico e non greedy

Pseudocodice

```
1: procedure GibbsSampling(DNA, t, n, I)
        s \leftarrow vettore casuale di posizioni iniziali in DNA
 2:
 3:
        repeat
             x \leftarrow \text{indice di una sequenza di DNA scelta casualmente}
 4:
             P \leftarrow P(s) calcolata sulle restanti t-1 sequenze
 5:
             for i \leftarrow 1 to n - l + 1 do
 6:
                 a \leftarrow l-mer della sequenza x-esima con posizione iniziale i
 7:
 8:
                 p_i \leftarrow \text{probabilità che } a \text{ abbia generato } P
             end for
 9:
             j \leftarrow scelta casuale sulla distribuzione (p_1, p_2, \dots, p_{n-l+1})
10:
             s[x] \leftarrow i
11:
12:
         until convergenza
         return s
13:
14: end procedure
```

Complessità

Assumendo la stessa funzione obiettivo di *GreedyProfileMotifSearch*:

- √ stessi passi di prima
- √ eccetto il ciclo sulle sequenze
 - viene analizzata una sola sequenza per ciclo

Costo $O(\ln^2 t)$

Complessità

- √ stessi passi di prima
- √ eccetto il ciclo sulle sequenze
 - viene analizzata una sola sequenza per ciclo

Conclusioni

		Costo	Esattezza
Forza bruta	Simple MS	$\mathcal{O}(t l n^t)$	√ ✓
	Branch & Bound	$\mathcal{O}(t l n^t)$	√
Greedy	Greedy MS	$\mathcal{O}(tln(n+t))$	
Randomizzati	Greedy Profile MS	$\mathcal{O}(\ln^2 t^2)$	
	Gibbs Sampling	$\mathcal{O}(\ln^2 t)$	

Fine!

Domande?

Fine!

Domande?

Appendice

NextElement

```
1: procedure NextElement(a, L, k)
        for i \leftarrow L to 1 do
            if a[i] < k then
 3:
                a[i] \leftarrow a[i] + 1
 4:
                 return a
 5:
            end if
 6:
            a[i] \leftarrow 1
 7:
        end for
 8:
        return a
 9:
10: end procedure
```

Appendice NextVertex

```
1: procedure NextVertex(a, i, L, k)
        if i < L then
            a[i+1] \leftarrow 1
 3:
            return (a, i + 1)
 4:
        else
 5:
            for j \leftarrow L to 1 do
 6:
                if a[i] < k then
 7:
                     a[i] \leftarrow a[i] + 1
 8:
 9:
                     return (a, j)
                end if
10:
            end for
11:
        end if
12:
        return (a,0)
13:
14: end procedure
```

Appendice Skip

```
1: procedure Skip(a, i, k)

2: for j \leftarrow i to 1 do

3: if a[j] < k then

4: a[j] \leftarrow a[j] + 1

5: return (a, j)

6: end if

7: end for

8: return (a, 0)

9: end procedure
```