Задача 1

Дан треугольник ABC и пусть вектор $\mathbf{a} = \overline{AB}$, а вектор $\mathbf{b} = \overline{AC}$.

Построить векторы:
$$\mathbf{k} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$$
, $\mathbf{l} = \frac{1}{2}(\mathbf{a} - \mathbf{b})$, $\mathbf{m} = \frac{1}{2}(\mathbf{b} - \mathbf{a})$, $\mathbf{n} = -\frac{1}{2}(\mathbf{a} + \mathbf{b})$.

Задача 2

Точки Р и Q являются серединами сторон BC и CD параллелограмма ABCD.

Записать векторы \overline{BC} и \overline{DC} через векторы $\mathbf{p} = \overline{AP}$ и $\mathbf{q} = \overline{AQ}$.

Other:
$$\overline{BC} = \frac{2}{3}(2\mathbf{q} - \mathbf{p})$$
, $\overline{DC} = \frac{2}{3}(2\mathbf{p} - \mathbf{q})$.

Задача 3

В треугольнике ABC проведены медианы AD, BE и CF.

Найти сумму векторов \overline{AD} , \overline{BE} и \overline{CF} .

OTBET: $\overline{AD} + \overline{BE} + \overline{CF} = \mathbf{O}$.

Задача 4 (*)

Доказать, что вектор \overline{OC} , идущий из произвольной точки плоскости O в центр C правильного многоугольника $A_1A_2...A_n$ равен среднему арифметическому векторов $\overline{OA_1}$,

$$\overline{OA_2}$$
,..., $\overline{OA_n}$, r.e. $\overline{OC} = \frac{1}{n} (\overline{OA_1} + \overline{OA_2} + ... + \overline{OA_n})$.

Задача 5 (*)

Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1.

Задача 6 (*)

В треугольнике ABC проведена биссектриса AD угла A.

Требуется выразить вектор \overline{AD} через векторы $\mathbf{a} = \overline{AB}$ и $\mathbf{b} = \overline{AC}$.

Залача 7 (*)

Доказать утверждение: для $\forall a, b \; \exists ! c \colon c = a - b$, т.е. для любых векторов a и b существует единственный вектор c такой, что c = a - b.

Задача 8 (*)

Доказать утверждение: для $\forall \mathbf{a} \neq \mathbf{O}$ и $\forall \mathbf{b} \parallel \mathbf{a} \ \exists \lambda \colon \mathbf{b} = \lambda \mathbf{a}$, т.е. для любого ненулевого вектора \mathbf{a} и коллинеарного ему вектора \mathbf{b} существует число λ такое, что $\mathbf{b} = \lambda \mathbf{a}$.

Задача 9 (*)

Доказать второе и четвёртое утверждения теоремы о признаках линейной зависимости.

Задача 10

Доказать, что для неколлинеарных векторов из равенства $\lambda_1 \mathbf{a} + \mu_1 \mathbf{b} = \lambda_2 \mathbf{a} + \mu_2 \mathbf{b}$ следует равенство $\lambda_1 = \lambda_2$ и $\mu_1 = \mu_2$.

08.09.2014 20:03:46 стр. 1 из 1