,	, , , , , , , , , , , , , , , , , , , ,	
Name:		Student No.:

- ?. Let P, Q and R be propositions defined as follows:
- P: Bus 1 is late. Q: Bus 2 is late. R: I get to work.

The compound proposition 'If bus 1 is late or bus 2 is late, then I do not get to work.' can be expressed as

- (A) $R \Rightarrow [(\mathbf{not} \ P) \ \mathbf{or} \ (\mathbf{not} \ Q)]$, (B) $R \Rightarrow [(\mathbf{not} \ P) \ \mathbf{or} \ Q]$,
- $(C) \ R \Rightarrow \underline{[(\textbf{not} \ P) \ \textbf{and} \ (\textbf{not} \ Q)]}, \quad (D) \ P \Rightarrow [(\textbf{not} \ Q) \ \textbf{and} \ (\textbf{not} \ R)]$

Answer: C

The compound statement is $(P \text{ or } Q) \Rightarrow (\text{not} R)$. Using $A \Rightarrow B \equiv (\text{not } B) \Rightarrow (\text{not} A)$, this is equivalent to $\text{not}(\text{not} R) \Rightarrow \text{not } (P \text{ or } Q)$ which in turn is equivalent to $R \Rightarrow [(\text{not } P) \text{ and } (\text{not } Q)]$.

- ?. The negation of $P \Rightarrow Q$ is equivalent to
- $(A)\ P\ \text{and}\ Q,\ \ (B)\ P\ \text{and}\ (\text{not}\ Q),\ \ (C)\ (\text{not}\ P)\ \text{and}\ Q,\ \ (D)\ (\text{not}\ P)\ \text{and}\ (\text{not}\ Q)$ $Answer:\ \boxed{B}$

We know $P \Rightarrow Q$ is equivalent to $(\mathbf{not}P)$ or Q so its negation is equivalent to $\mathbf{not} [(\mathbf{not}P) \text{ or } Q]$ or P and $(\mathbf{not}Q)$.

- ?. The negation of the statement 'All tests are not difficult.' is the following:
- (A) All tests are not difficult. (B) All tests are difficult.
- (C) Some tests are not difficult. (D) Some tests are difficult.

Answer: D

Let 't' be a test and P(t) the predicate 'Test t is difficult'. Then the original statement can be expressed as $\forall t, \mathbf{not}(P(t))$ and its negation is $\exists t, \mathbf{not}(\mathbf{not}(P(t)))$ or $\exists t, P(t)$. This is the statement 'At least one test is difficult'.

?. A sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ is defined inductively by $x_1 = 5$ and $x_{k+1} = 2x_k - 3$ for $k \ge 1$.

The numbers x_4 and x_5 take the following values respectively:

(A) 19 and 34, (B) 18 and 35, (C) 19 and 35, (D) 18 and 33.

Answer: C

$$x_2 = 2x_1 - 3 = 7$$
, $x_3 = 2x_2 - 3 = 11$, $x_4 = 2x_3 - 3 = 19$, $x_5 = 2x_4 - 3 = 35$.