Ad Soyad: Öğrenci No:

MEKATRONİK BÖLÜMÜ BİLGİSAYARLI KONTROL SİSTEMLERİ

Ders Kodu:	MKT2002		Tarih:	10.03.2025	
Sınav Türü:	Ödev 1		Saat:	10:00	
Dönemi:	2024-2025		Süre:	90dk	

	Toplam
Puan:	100
Not:	110

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Soru: Aktif süspansiyon sistemi için diferansiyel denklem takımı

$$\frac{dx_1}{dt} = x_2 - x_4
\frac{dx_2}{dt} = \frac{-k_s}{m_s} x_1 - \frac{b_s}{m_s} x_2 + \frac{b_s}{m_s} x_4 + \frac{1}{m_s} w + \frac{1}{m_s} u
\frac{dx_3}{dt} = x_4
\frac{dx_4}{dt} = \frac{k_s}{m_{us}} x_1 + \frac{b_s}{m_{us}} x_2 - \frac{k_{us}}{m_{us}} x_3 - \frac{b_s + b_{us}}{m_{us}} x_4 - \frac{1}{m_{us}} w - \frac{1}{m_{us}} u$$
(1)

olarak verilmiştir ve Şekil 1 ile gösterilmektedir. x_1 gövdenin yer değiştirmesi, x_2 gövdenin hızı, x_3 tekerin yer değiştirmesi ve x_4 ise tekerin dikey hızıdır. Fark denklemlerini elde ediniz. **Çözüm:** Birinci dereceden türev

Açıklama	Değişken	Değer
Gövde kütlesi	m_s	2.45
Süspansiyon kütlesi	m_{us}	1
Süspansiyon yay sabiti	k_s	900
Teker yay sabiti	k_{us}	1250
Süspansiyon damper katsayısı	b_s	7.5
Teker damper katsayısı	b_{us}	5

Tablo 1: Süspansiyon modeli parametreleri

$$\frac{dx}{dt} = \frac{x(k) - x(k-1)}{T} \tag{2}$$

olarak ayrıklaştırılabilir. Bu durumda denklemler

$$\frac{x_1(k) - x_1(k-1)}{T} = x_2(k-1) - x_4(k-1)$$

$$\frac{x_2(k) - x_2(k-1)}{T} = \frac{-k_s}{m_s} x_1(k-1) - \frac{b_s}{m_s} x_2(k-1) + \frac{b_s}{m_s} x_4(k-1) + \frac{1}{m_s} w(k-1) + \frac{1}{m_s} u(k-1)$$

$$\frac{x_3(k) - x_3(k-1)}{T} = x_4(k-1)$$

$$\frac{x_4(k) - x_4(k-1)}{T} = \frac{k_s}{m_{us}} x_1(k-1) + \frac{b_s}{m_{us}} x_2(k-1) - \frac{k_{us}}{m_{us}} x_3(k-1) - \frac{b_s + b_{us}}{m_{us}} x_4(k-1) - \frac{1}{m_{us}} w(k-1) - \frac{1}{m_{us}} u(k-1)$$

$$(3)$$

ve

$$\begin{split} x_1(k) &= x_1(k-1) + Tx_2(k-1) - Tx_4(k-1) \\ x_2(k) &= \frac{-k_s T}{m_s} x_1(k-1) + \frac{m_s - b_s T}{m_s} x_2(k-1) + \frac{b_s T}{m_s} x_4(k-1) + \frac{T}{m_s} u(k-1) \\ x_3(k) &= x_3(k-1) + Tx_4(k-1) - Tw(k-1) \\ x_4(k) &= \frac{k_s T}{m_{us}} x_1(k-1) + \frac{b_s T}{m_{us}} x_2(k-1) - \frac{k_{us} T}{m_{us}} x_3(k-1) + \frac{m_{us} - b_s T - b_{us} T}{m_{us}} x_4(k-1) + \frac{b_{us} T}{m_{us}} w(k-1) - \frac{T}{m_{us}} u(k-1) \\ &= \frac{T}{m_{us}} x_1(k-1) + \frac{T}{m_{us}} x_2(k-1) - \frac{T}{m_{us}} x_3(k-1) + \frac{T}{m_{us}} x_3(k-1) + \frac{T}{m_{us}} x_4(k-1) + \frac{T}{m_{us}}$$

Ad Soyad: Öğrenci No:

Şekil 1: Aktif süspansiyon sistemi ve modeli

olarak yazılabilmektedir. Değerler yerine yazılırsa

$$\begin{split} x_1(k) &= x_1(k-1) + 0.001x_2(k-1) - 0.001x_4(k-1) \\ x_2(k) &= -0.36x_1(k-1) + 0.997x_2(k-1) + 0.003x_4(k-1) \\ x_3(k) &= x_3(k-1) + 0.001x_4(k-1) - 0.001w(k-1) \\ x_4(k) &= 0.9x_1(k-1) + 0.0075x_2(k-1) - 1.25x_3(k-1) + 0.9875x_4(k-1) + 0.005w(k-1) \end{split} \tag{5}$$

Extra: Fark denklemlerini kullanarak u girişine sıfır ve $w=0.04sin(2\pi10t)$ uygulayınız ve $x_1,\ x_2,\ x_3$ ve x_4 değişkenlerini çiziniz. Çizimi $0-1\,s$ arasında oluşturunuz.

Ad Soyad: Öğrenci No:

Şekil 2: Extra soru için elde edilen çizim