Consecuencia lógica y satisfacibilidad

Clase 03

IIC 1253

Prof. Cristian Riveros

Outline

Consecuencia lógica

Satisfacibilidad

Modelación en lógica proposicional

Si Pedro estudia para la I1, entonces obtendrá un buena nota.

Pedro y Sofía estudiaron para la I1.

Por lo tanto, Pedro obtendrá una buena nota.

¿cómo formalizamos esta deducción el lógica proposicional?

¿Cuáles son nuestras proposiciones básicas?

PE := Pedro estudia para la l1

SE := Sofía estudia para la I1

BN := Pedro obtiene una buena nota.

¿Cuáles son nuestras proposiciones compuestas?

 $PE \rightarrow BN := Si Pedro estudia para la I1, entonces obtendrá un buena nota.$

PE ∧ SE := Pedro y Sofía estudiaron para la I1

Modelación en lógica proposicional

¿por qué podemos hacer esta deducción?

PE	SE	BN	PE → BN	$PE \wedge SE$	BN
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	1	1	1	1

Modelación en lógica proposicional (otro ejemplo)

	PE ∨ SE	PΕ	:=	Pedro estudia para la I1
	¬PE ∨ SE	SE	:=	Sofía estudia para la I1
-	SF.	BN	:=	Pedro obtiene una buena nota

¿por qué podemos hacer esta deducción?

PΕ	SE	PE ∨ SE	$\neg PE \lor SE$	SE
0	0	0	1	0
0	1	1	1	1
1	0	1	0	0
1	1	1	1	1

Modelación en lógica proposicional (anti-ejemplo)

 $PE \rightarrow BN$ PE := Pedro estudia para la I1 $PE \lor SE$ SE := Sofía estudia para la I1 BN := Pedro obtiene una buena nota.

¿por qué esta deducción es errónea?

PE	SE	BN	PE → BN	$PE \vee SE$	BN	
0	0	0	1	0	0	
0	0	1	1	0	1	
0	1	0	1	1	0	×
0	1	1	1	1	1	
1	0	0	0	1	0	
1	0	1	1	1	1	
1	1	0	0	1	0	
1	1	1	1	1	1	

Consecuencia lógica

Sea Σ = $\{\varphi_1,\ldots,\varphi_m\}$ un conjunto de formulas con variables p_1,\ldots,p_n .

Definición

■ Diremos que φ es consecuencia lógica de Σ si, y solo si, para toda valuación v_1, \ldots, v_n se tiene que:

```
si para todo i \le m \varphi_i(v_1, \dots, v_n) = 1, entonces \varphi(v_1, \dots, v_n) = 1.
```

- Si φ es consecuencia lógica de Σ , entonces escribiremos $\Sigma \vDash \varphi$.
- Diremos que $\varphi_1, \dots, \varphi_m$ son premisas y φ la conclusión.

Ejemplo

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

1. Modus ponens: $\{p, p \rightarrow q\} \models q$

p	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

2. Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$

p	q	$\neg q$	$p \rightarrow q$	$\neg p$
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	1	0

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

3. **Resolución**: $\{p \lor q, \neg q \lor r\} \models p \lor r$

р	q	r	$p \lor q$	$\neg q \lor r$	p∨r
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Sobre consecuencia lógica

¿cuales de las siguientes afirmaciones son verdaderas?

 $\blacksquare \ \{1\} \vDash \varphi \ \ \text{entonces} \ \ \varphi \ \text{es una } \ \textbf{tautología}.$

- Si α es una contradicción, entonces $\{\alpha\} \vDash \varphi$ para toda formula φ . \checkmark
- Si $\{\varphi_1, \dots, \varphi_m\} \vDash \varphi$, entonces $\{\varphi_1, \dots, \varphi_m, \alpha\} \vDash \varphi$ para toda formula α .

Demuestre estas afirmaciones.

Algunas reglas de consecuencia lógica

- 1. Modus ponens: $\{p, p \rightarrow q\} \models q$
- 2. Modus tollens: $\{ \neg q, p \rightarrow q \} \models \neg p$
- 3. Silogismo: $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$
- 4. Silogismo disyuntivo: $\{p \lor q, \neg p\} \models q$
- 5. Conjunción: $\{p, q\} \models p \land q$
- 6. Simplificación conjuntiva: $\{p \land q\} \models p$
- 7. Aplificación disyuntiva: $\{p\} \models p \lor q$
- 8. Demostración condicional: $\{p \land q, p \rightarrow (q \rightarrow r)\} \models r$
- 9. Demostración por casos: $\{p \rightarrow r, q \rightarrow r\} \models (p \lor q) \rightarrow r$

Composición y consecuencia lógica

Sean $\Sigma = \{\varphi_1(p_1, \dots, p_n), \dots, \varphi_m(p_1, \dots, p_n)\}$ y β_1, \dots, β_n formulas proposicionales.

Definición

La **composición** $\Sigma(\beta_1,...,\beta_n)$ es el conjunto resultante de componer cada formula en Σ con $\beta_1,...,\beta_n$, esto es:

$$\Sigma(\beta_1,\ldots,\beta_n) = \{\varphi_1(\beta_1,\ldots,\beta_n),\ldots,\varphi_m(\beta_1,\ldots,\beta_n)\}$$

Teorema

Sean Σ un conjunto de formulas y $\varphi(p_1,\ldots,p_n)$, β_1,\ldots,β_n formulas.

Si
$$\Sigma \vDash \varphi$$
, entonces $\Sigma(\beta_1, \ldots, \beta_n) \vDash \varphi(\beta_1, \ldots, \beta_n)$.

Demuestre este teorema (muy similar al caso de equivalencia lógica)

¿cómo demostramos que $\Sigma \vDash \varphi$?

- 1. Verificando todas las valuaciones (tabla de verdad).
- 2. Deducimos φ desde Σ usando alguna de las reglas anteriores.

¿cómo demostramos que $\Sigma \vDash \varphi$?

Ejemplo

```
j es verdad que \{p, p \rightarrow q, s \lor r, \neg s \land \neg t\} \models q \land r?
```

- 1. p (Premisa)
- 2. $p \rightarrow q$ (Premisa)
- 3. q (Modus Ponens 1 y 2)
- 4. $s \lor r$ (Premisa) 5. $\neg s \to r$ (equivalencia con 4.)
- 5. $\neg s \rightarrow r$ (equivalencia con 4.) 6. $\neg s \land \neg t$ (Premisa)
- 7. $\neg s$ (Simplificación conjuntiva 6)
- 8. r (Modus Ponens 5 y 7)
- 9. $q \wedge r$ (Conjunción 3 y 8)
 - ¿alguna estrategia mejor?

Outline

Consecuencia lógica

Satisfacibilidad

Satisfacción de un conjunto de formulas

Definiciones

• $\varphi(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\varphi(v_1,\ldots,v_n) = 1$$

EXECUTE Se dice satisfacible si existe una valuación v_1, \ldots, v_n :

$$\Sigma(v_1,\ldots,v_n) = 1$$

 Σ es inconsistente si NO es satisfacible.

¿qué propiedad cumple la tabla de verdad de una formula satisfacible? ¿y la del conjunto?

Satisfacción de un conjunto de formulas

Definiciones

• $\varphi(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\varphi(v_1,\ldots,v_n) = 1$$

\Sigma se dice satisfacible si existe una valuación v_1, \ldots, v_n :

$$\Sigma(v_1,\ldots,v_n) = 1$$

 \blacksquare Σ es inconsistente si NO es satisfacible.

¿cuál de las siguientes formulas/conjuntos son satisfacibles?

- $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$

Consecuencia lógica vs satisfacibilidad

Teorema

 $\{\varphi_1,\dots,\varphi_m\} \vDash \varphi \quad \text{si, y solo si,} \quad \{\varphi_1,\dots,\varphi_m,\neg\varphi\} \text{ es inconsistente}.$

Demostración (⇒)

Suponga que $\{\varphi_1, \ldots, \varphi_m\} \vDash \varphi$.

PD: para toda v_1, \ldots, v_n se cumple que $\{\varphi_1, \ldots, \varphi_m, \neg \varphi\}(v_1, \ldots, v_n) = 0$.

Tomamos una valuación cualquiera v_1, \ldots, v_n y:

- 1. Si $\{\varphi_1, ..., \varphi_m\}(v_1, ..., v_n) = 0$,
 - $\therefore \{\varphi_1,\ldots,\varphi_m,\neg\varphi\}(v_1,\ldots,v_n)=0 \quad \checkmark$
- 2. Si $\{\varphi_1, \ldots, \varphi_m\}(v_1, \ldots, v_n) = 1$, entonces:
 - $\varphi(v_1,\ldots,v_n)=1$ (¿por qué?)
 - $\neg \varphi(v_1,\ldots,v_n)=0$

$$\therefore \{\varphi_1,\ldots,\varphi_m,\neg\varphi\}(v_1,\ldots,v_n)=0 \quad \checkmark$$

Consecuencia lógica vs satisfacibilidad

Teorema

$$\{\varphi_1,\ldots,\varphi_m\} \vDash \varphi$$
 si, y solo si, $\{\varphi_1,\ldots,\varphi_m,\neg\varphi\}$ es inconsistente.

Demostración (←)

Suponga que $\{\varphi_1, \ldots, \varphi_m, \neg \varphi\}$ es inconsistente.

PD1: para toda v_1, \ldots, v_n ,

si
$$\{\varphi_1,\ldots,\varphi_m\}(v_1,\ldots,v_n)=1$$
, entonces $\varphi(v_1,\ldots,v_n)=1$.

Sea v_1, \ldots, v_n una valuación cualquiera tal que $\{\varphi_1, \ldots, \varphi_m\}(v_1, \ldots, v_n) = 1$.

PD2: $\varphi(v_1, ..., v_n) = 1$.

$$\{\varphi_1,\ldots,\varphi_m\}(v_1,\ldots,v_n)=1$$
 entonces $\neg\varphi(v_1,\ldots,v_n)=0$ (¿por qué?)
entonces $\varphi(v_1,\ldots,v_n)=1$

Satisfacibilidad y representación de problemas

Problema

Dada una fórmula φ , queremos verificar si φ es satisfacible.

¿cómo podemos hacer esto eficientemente?

- El problema de satisfacción es un problema fundamental tanto en ciencia de la computación como en ingeniería.
- Muchos otros problemas pueden ser resueltos usando este problema.

Sudoku

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
6 5								
7			3					5
	1			9				
							6	

(Libro Rosen)

¿tiene solución este sudoku?

Sudoku

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

Reglas del Sudoku

- 1. Cada fila debe tener los dígitos $\{1,2,\ldots,9\}$.
- 2. Cada columna debe tener los dígitos $\{1, 2, \dots, 9\}$.
- 3. Cada cuadrado 3x3 debe tener los dígitos $\{1,2,\ldots,9\}$.
- 4. Cada celda puede contener un solo dígito.

¿cómo usamos satisfacibilidad para resolver sudoku?

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

Para un sudoku S cualquiera, vamos a construir un conj, de formulas Σ_S :

S tiene solución si, y solo si, Σ_S es satisfacible.

¿cuáles son nuestras variables proposicionales?

¿cuáles son nuestras variables proposicionales?

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

Para $1 \le i \le 9$, $1 \le j \le 9$ y $1 \le n \le 9$, definimos la variable $p_{i,j,n}$ tal que:

 $p_{i,j,n}$ será verdadero ssi colocamos el número n en el casillero (i,j)

(¿cuántas variables tenemos?)

¿cómo nos aseguramos que una valuación para las variables $p_{i,j,n}$ codifique una solución para S?

¿cómo codificamos los valores iniciales del tablero?

	2	9				4		
			5			1		
	4							
				4	2			
6 5							7	
5								
7			3					5
	1			9				
							6	

Para cada casillero (i,j) no-vacío en S con valor n, tendremos una formula:

$$p_{i,j,n}$$

Ejemplo: para nuestro tablero sudoku

$$p_{1,2,2}$$
, $p_{1,3,9}$, $p_{1,7,4}$, $p_{2,4,5}$, $p_{2,7,1}$, ..., $p_{9,8,6}$

¿cómo codificamos las otras restricciones?

1. ¿cómo verificamos que cada fila contiene todos los números?

$$\bigwedge_{i=1}^{9} \left(\bigwedge_{n=1}^{9} \left(\bigvee_{j=1}^{9} p_{i,j,n} \right) \right)$$

2. ¿cómo verificamos que cada columna contiene todos los números?

$$\bigwedge_{j=1}^{9} \left(\bigwedge_{n=1}^{9} \left(\bigvee_{i=1}^{9} p_{i,j,n} \right) \right)$$

¿cómo codificamos las otras restricciones?

3. ¿cómo verificamos que cada cuadrado de 3x3 tiene todos los números?

$$\bigwedge_{i=0}^{2} \bigwedge_{j=0}^{2} \bigwedge_{n=1}^{9} \left(\bigvee_{k=1}^{3} \bigvee_{l=1}^{3} p_{3i+k,3j+l,n} \right)$$

4. ¿cómo verificamos que cada celda tenga un solo valor?

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \left(\bigwedge_{n=1}^{9} \left(p_{i,j,n} \to \bigwedge_{\substack{1 \le n' \le 9, \\ n \to n'}} \neg p_{i,j,n'} \right) \right)$$

¿cómo usamos satisfacibilidad para resolver sudoku?

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

Para un tablero S, considere el conjunto Σ_S de todas las formulas definidas anteriormente. Entonces tendremos que:

S tiene solución si, y solo si, Σ_S es satisfacible.

Demuestre esta última afirmación.