Special Limits

- 1. If an >0, the an >0 provided p>0. [In particular \frac{1}{np} \rightarrow 0 \to p>0]
- 2. If an → a with a≥0, the an → ar yp>0.

 [We have proved this when p=1/2 and ypeN directly from definition using limit laws the general case will be proven after we discuss cardinalty.]
- 3. limi r"=0 if Ir/<1.

 N>00

 [Proven (using Binomial Than) at end of "Raby Squeeze" notes]
- 4. $\lim_{n\to\infty} \frac{n^p}{x^n} = 0$ if |x| > 1 and $p \in \mathbb{R}$. Conly intereshing if p > 0! [See below for proof]
- 5. limi $\frac{x^n}{n!} = 0$ $\forall x \in \mathbb{R}$ (and intereshing f(x) > 1)

 [Easy application of "Ratio Test"]
- 6. limi log(n) n>00 pp00 [We will prove this later in the cause, after differentialing]

[We will discuss this limit later in the course .]

Application of Limit Laws using these special limits.

1 Evaluate the following limits or explain why they diverge.

(a)
$$\lim_{n\to\infty} \frac{2n!-n}{3^n+7n!}$$

(b)
$$\lim_{n\to\infty} \frac{n^2 \cos(n)}{2^n}$$

(c)
$$\lim_{n\to\infty} \left(\frac{\sqrt{n!}}{3^n} + (-1)^n\right)$$
.

limit laws & "special limit 5"

(a): Since
$$\frac{2n!-n}{3^n+7n!} = \frac{2-\frac{1}{(n-1)!}}{\frac{3^n}{n!}+7} \xrightarrow{N} \frac{2-0}{0+7} = \frac{2}{7}$$
.

if follows that $\frac{2n!-n}{3^n+7n!} \to \frac{2}{7}$.

"special limit 4"

(b): Since $\left|\frac{n^2\cos(n)}{2n}\right| \leq \frac{n^2}{2n}$ and $\frac{n^2}{2n} \to 0$ if follows from "Baby Squeeze" that $\frac{n^2\cos(n)}{2n} \to 0$.

(c): Let an= $\frac{\sqrt{n}}{3n} + (-1)^n$. Note that $\frac{\sqrt{n}}{3n} \rightarrow 0$.

If limit an exists, then it would follow from the "sum limit law" that $(-1)^n = an - \frac{\sqrt{n}}{3n}$ would also be consequent difference of two conveyent sequences

But (-1) is divergent, so {an} must be too.

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(-1)^{n+1}3^{n+1}}{(n+1)^{n+1}(n+2)} \cdot \frac{F^n(n+1)}{(-1)^n 3^n}\right| = 3\frac{1}{n+2} \cdot \left(\frac{n}{n+1}\right)^n$$

$$\longrightarrow 3(0)\left(\frac{1}{e}\right) = 0 < 1$$

$$\lim_{n \to \infty} \frac{1}{n+1} \cdot \frac{1}{n+1}$$

it follow from the "Raho Test" that Timi an = 0.

Some Proofs of Special Limits

Claim 1 line np = 0 if 1x1>1 and p>0.

Proof By "Special Limit 1" it suffices to show that

(*) limi $\frac{n}{yn} = 0 \quad \forall y > 1$

[Since (lething $y=|x|^{1/p}$) we would then get $\frac{n^p}{|x|^n} \rightarrow 0$]

But (*) fullows immediately from the "Ratio Test". I

Claim 2 lim x 1/n=1 V x>0.

Proof Suppose x>1, ten y:= x/n-1>0.

Since X = (1+y) > My (by Binomial Thm)

 $\Rightarrow 0 \le y \le \frac{x}{n}$

Since $\frac{\times}{n} \rightarrow 0$ it follow "Baby Squeeze" that $y \rightarrow 0 \iff \times h \rightarrow 1$.

Since $a_n \rightarrow 1 \iff \frac{1}{a_n} \rightarrow 1$ (limit laws)

the result also fullows when O<X<1. I

Claim 3: lim n'h=1

Proof Let y = n'n-1>0. Since n= (1+y) = n(n+1) y 2

> 0 ≤ y ≤ \(\frac{2}{n+1}\). Since \(\sigma_{n+1}^2\) > 0 result fullows by "
Baby Gueze" r