参考答案

第一章 无穷级数

第一节 数项级数的收敛与发散

A类题

1.略. 2. (1) 收敛; (2) 收敛; (3) 发散; (4) 收敛; (5) 发散. 3.提示:反证.

4. 略.

B类题

1. 略. 2. 略.

第二节 正项级数

A类题

1.略. 2.(1) 收敛; (2) 收敛; (3) 发散; (4) 收敛. 3.(1) 收敛; (2) 收敛;

(3) 收敛; (4) 收敛; (5) a>1 时收敛,1≥a>0 时发散; (6) 发散.

4. (1) 收敛; (2) 收敛; (3) 收敛; (4) 收敛; (5) 收敛; (6) 发散.

5.(1) 收敛; (2) 收敛; (3) 收敛; (4) 收敛.

B类题

1.(1) 收敛; (2) 收敛; (3) 发散; (4) 收敛; (5) 发散; (6) 发散; (7) 收敛; (8) 收敛;

(9) $|a| \neq 1$ 时收敛, |a| = 1 时发散; (10) b < a 时收敛, b > a 时发散, b = a 时不能确定.

2. 略. 3. 略. 4. 略. 5. 略.

第三节 一般级数

A类题

1. 略. 2. (1) \times ; (2) \times ; (3) \checkmark ; (4) \times ; (5) \checkmark ; (6) \times ; (7) \times ; (8) \times .

3. (1) 条件收敛; (2) 绝对收敛; (3) 绝对收敛; (4) 条件收敛; (5) 条件收敛;

(6) 条件收敛. 4. 略. 5. 略. 6. 条件收敛.

B类题

1. 略. 2. 略.

第四节 函数项级数的基本概念

A类题

1. 略.

2. 提示: (1) $\left| \frac{\cos nx}{2^n} \right| \leqslant \frac{1}{2^n}$; (2) $\left| \frac{\sin nx}{n^2} \right| \leqslant \frac{1}{n^2}$; (3) $\left| \frac{x^n}{n^{3/2}} \right| \leqslant \frac{1}{n^{3/2}}$;

(4)
$$\left| \frac{(-1)^n (1 - e^{-nx})}{n^2 + x^2} \right| \leqslant \frac{1}{n^2}.$$

3.(1) 利用莱布尼茨定理中的余项估计, $|r_n(x)| \leq \frac{1}{n^2}$; (2) 该级数不收敛.

B类题

1. 和函数 $S(x) = \frac{x^2}{e^x - 1}$,估计利用 $|S_n(x) - S(x)|$. 2. 略.

第二章 多元函数的微分学

第一节 多元函数的极限与连续

A类题

1. (1) $\frac{x^2 - y^2}{2x}$; (2) 0; (3) $\frac{xy}{x^2 + y^2}$. 2. (1) C; (2) A; (3) C. 3. $\frac{xy}{x^2}$.

4. $f(x) = \sqrt{1+x^2}$.

B类是

1. (1) $\frac{1}{2}$; (2) 0; (3) 1. 2. 8.

第二节 偏导数和全微分

A类题

1.(1) 3cos5; (2) 必要;充分; (3) ye^{xy} dx+xe^{xy} dy; (4) dx+dy.

2. (1) D; (2) C; (3) D; (4) D.

3. (1)
$$z_x = 2x \ln(x^2 + y^2) + \frac{2x^3}{x^2 + y^2}$$
, $z_y = \frac{2yx^2}{x^2 + y^2}$;

(2)
$$z_x = \frac{x - y}{x^2 + y^2}$$
, $z_y = \frac{x + y}{x^2 + y^2}$;

(3)
$$z_x = y^x \ln y \cdot \ln xy + \frac{1}{x} y^x$$
, $z_y = x y^{x-1} \ln(xy) + \frac{1}{y} y^x$.

4.
$$du = dx + \left(\frac{1}{2}\cos\frac{y}{2} + ze^{x}\right)dy + ye^{x}dz$$
. 5. 略.

B类别

略.

C类影

略

第三节 复合函数的微分化

A类题

1. (1)
$$\frac{(t-2)e^t}{t^3}\cos\frac{e^t}{t^2}$$
; (2) $4x\cos(x^2-2y)$; (3) $\frac{u-v}{u^2+v^2}$.

2.
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \frac{\partial z}{\partial u} + \frac{1}{y} \frac{\partial z}{\partial v};$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial v} = \frac{1}{2} \sqrt{\frac{x}{y}} \frac{\partial z}{\partial u} - \frac{x}{y^i} \frac{\partial z}{\partial v};$$

1. $5x^2 - 3y^2 = 1$, **2.** $(x+5)^2 + (y-3)^2 + z^2 = 121$. **3.** $5x^2 - 4x - 16y^2 - 16z^2 + 4 = 0$.

第二章 无穷级数

第一节 幂级数及其收敛性

- 1. 略.
- **2.** (1) R = -1, (-1,1); (2) $R = \infty, (-\infty, +\infty);$ (3) R = 1, [-1,1); (4) R = 3, [0,6);
- (5) R=4,(-4,4); (6) $R=\infty,(-\infty,+\infty);$ (7) $R=\frac{1}{3},(-\frac{4}{3},-\frac{2}{3});$ (8) R=5,(-2,8);
- (9) R=1,[4,6); (10) R=e,(-e,e); (11) $R=\frac{1}{\sqrt{2}},\left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right].$
- 3. (1) $S(x) = \frac{2x}{(1-x)^3}$, 收敛域为(-1,1);
- (2) $S(x) = \begin{cases} -\frac{1}{x} \ln\left(1 \frac{x}{2}\right), & -2 \le x < 0, 0 < x < 2, \text{ way } \text{ when } 1 = 2, 2 \end{cases}$
- (3) $S(x) = \frac{1}{1-x} + \frac{1}{x} \ln(1-x), |x| < 1, x \neq 0, S(0) = 0, \text{ which is the property of the property of$
- (4) $S(x) = (2x^2 + 1)e^{x^2}$,收敛域为 $(-\infty, +\infty)$.

(土田平市) 計平(E) 本計平(I) A B 类题

- 1. (1) $(-\infty,0)$ \bigcup $(0,+\infty)$; (2) $\left[\frac{1}{2},\infty\right)$; (3) $\left(\frac{1}{e},e\right]$.
- **2.** (1) 当|x|>3 或 x=3 时级数发散; (2) 当 x<-8 或 x>-2 时级数发散.
- **3.** (1) $\frac{3}{4}$; (2) $-\frac{8}{27}$; (3) $\frac{\pi}{8}$; (4) $\frac{22}{27}$. **4.** $\frac{\pi}{8}$

第二节 Taylor 级数

- 2. (1) $\frac{x}{1+x-2x^2} = \frac{1}{2} \sum_{\mu=0}^{+\infty} \left[1-(-2)^{\mu}\right] x^{\mu}, |x| < \frac{1}{2};$
- (2) $\sin^2 x = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{(2x)^n}{2(2n)!}, -\infty < x < +\infty;$
- (3) $\frac{x}{\sqrt{1-2x}} = \sum_{i=1}^{+\infty} \frac{(2n-1)!!}{n!} x^{i+1}, -\frac{1}{2} \leqslant x < \frac{1}{2};$
- $(4) \int_{0}^{x} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^{n} (x)^{2n+1}}{(2n+1)n!}, -\infty < x < +\infty.$

3. (1)
$$\frac{1}{x} = \sum_{n=0}^{+\infty} (-1)^n (x-1)^n$$
, $0 < x < 2$;

$$(2)\,\frac{2x+1}{x^2+x-2} = \sum_{n=0}^{+\infty} \, (-1)^n \Big(1 + \frac{1}{4^{n-1}}\Big) (x-2)^n \,,\, 1 < x < 3 \,;$$

(3)
$$\ln \frac{1}{x^2 + 2x + 2} = \sum_{n=1}^{+\infty} (-1)^n \frac{(x+1)^{2n}}{n}, -2 \leqslant x \leqslant 0;$$

$$(4) \cos x = \frac{1}{2} \sum_{n=0}^{+\infty} (-1)^n \left[\frac{1}{(2n)!} \left(x + \frac{\pi}{3} \right)^{2n} + \frac{\sqrt{3}}{(2n+1)!} \left(x + \frac{\pi}{3} \right)^{2n+1} \right], -\infty < x < +\infty.$$

B类点

$$\arctan\frac{4+x^2}{4-x^2} = \frac{\pi}{4} + \sum_{n=0}^{+\infty} (-1)^n \frac{x^{(n+2)}}{(2n+1)4^{2n+1}}, \ |\ x| \leqslant 2.$$

第三节 周期函数的 Fourier 级数

A类题

- 1. 略.
- 2. (1) $f(x) = -\frac{\pi}{4} \sum_{n=1}^{+\infty} \left\{ \frac{2}{\pi (2n-1)^2} \cos(2n-1)x \frac{1}{n} [1-2(-1)^n] \sin x \right\}, (-\infty < x < +\infty,$

 $x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$), 当 $x = 2k\pi, (k = 0, \pm 1, \pm 2, \cdots)$ 时,级数收敛于 $-\frac{\pi}{2}$,

当
$$x = (2k+1)π$$
, $(k = 0, \pm 1, \pm 2, \cdots)$ 时,级数收敛于 π;

(2)
$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\cos(2n+1)x}{(2n+1)^2}, -\pi < x < \pi;$$

(3)
$$f(x) = \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 - 1} \cos 2nx, -\infty < x < +\infty;$$

$$(4) \ f(x) = \frac{1}{2a\pi} (1 - e^{cx}) + \frac{1}{\pi} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{a^2 + n^2} \cos nx + \frac{1}{\pi} \sum_{n=1}^{+\infty} \frac{n \lceil (-1)^n - 1 \rceil}{a^2 + n^2} \sin nx, (-\infty < x < 1)$$

 $+\infty$, $x \neq k\pi$, k = 0, ± 1 , ± 2 , ...), 当 $x = 2k\pi$, $(k = 0, \pm 1, \pm 2, ...)$ 时,级数收敛于 $\frac{1}{2}$, 当

$$x=(2k+1)\pi, (k=0,\pm1,\pm2,\cdots)$$
 时,级数收敛于 $\frac{1}{2}\mathrm{e}^{-\mathrm{ex}}$;

$$(5) \frac{\pi - x}{2} = \sum_{i=1}^{+\infty} \frac{\sin nx}{n}, \ 0 < x < 2\pi ;$$

(6)
$$f(x) = 1 - \frac{1}{2}\cos x + 2\sum_{n=2}^{+\infty} \frac{(-1)^{n+1}}{n^2 - 1}\cos nx$$
, $(-\pi < x < \pi)$, 当 $x = \pm \pi$ 时,级数收敛于 0.

3.
$$S(\pm \pi) = 1 - \pi + \pi^2$$
, $S(0) = \frac{1}{2}$.

B类是

1. (1)
$$a_n = a_n (n = 0, 1, 2, \dots), b_n = -\beta_n (n = 0, 1, 2, \dots);$$

(2)
$$a_n = -\alpha_n (n = 0, 1, 2, \dots), b_n = \beta_n (n = 0, 1, 2, \dots).$$

2. 略

第四节 任意区间上的 Fourier 级数

A类题

1. (1)
$$f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{+\infty} \frac{1}{2n+1} \sin(\frac{2n+1}{2}\pi x)$$
, $(-2 \le x \le 2, x \ne 0)$, 当 $x = 0$ 时,级数收敛于 $\frac{1}{2}$;

$$2 + \frac{1}{\pi} \sum_{n=0}^{+\infty} 2n + 1^{-n} \left(\frac{2}{2} \right)^{n}$$

$$(2) \ f(x) = -\frac{1}{2} + \sum_{n=1}^{+\infty} \left[\frac{6}{\pi^{2} n^{2}} \left[1 - (-1)^{n} \right] \cos \frac{n\pi x}{3} + (-1)^{n} \frac{6}{n\pi} \sin \frac{n\pi x}{3} \right] (x \neq 3(2k+1), k = 0,$$

$$+1, +2, \dots);$$

(3)
$$f(x) = \frac{16}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{(4n^2 - 1)^2} \sin 2\pi x, -\frac{\pi}{2} < x < \frac{\pi}{2};$$

(4)
$$f(x) = \frac{2}{3} - \frac{9}{2\pi^2} \sum_{n=1}^{+\infty} \frac{1}{n^2} \cos \frac{2n\pi x}{3} + \frac{1}{2\pi^2} \sum_{n=1}^{+\infty} \frac{\cos 3n\pi x}{n^2}, \ 0 \leqslant x \leqslant 3.$$

2.
$$f(x) = \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos(2n-1)x}{(2n-1)^2}, \ 0 < x \le \pi.$$

3. 提示:将 $f(x) = \frac{\pi}{4} \text{在}(0,\pi)$ 内展开成正弦级数.

4.
$$f(x) = -\frac{8}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \cos\left(\frac{2n+1}{2}\pi x\right), \ 0 < x < 2.$$

5.
$$x = 2\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{\sin nx}{n}$$
, $0 \leqslant x \leqslant \pi$; $x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$, $0 \leqslant x \leqslant \pi$.

7.
$$f(x) = 2 + \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin n\pi x$$
, $1 < x < 3$.

B类题

略.

第三章 多元函数的微分学

第一节 隐函数微分法

A类题

1. (1)
$$\frac{y^2 - e^x}{\cos y}$$
; (2) **B**.

2.
$$\frac{\partial^2 z}{\partial x^2} = \frac{(2-x) + x\frac{\partial z}{\partial x}}{(2-z)^2} = \frac{(2-x) + x(\frac{x}{2-z})}{(2-z)^2} = \frac{(2-x)^2 + x^2}{(2-z)^3}$$

3.
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{z(z^4 - 2xyz^2 - x^2y^2)}{(z^2 - xy)^3}$$
.

4.
$$z_x = z_y = -1$$
, $z_{xx} = z_{xy} = z_{yy} = 0$.

B类题

1. 略. 2. 略.

