Modelamiento matemático de una curva de persecución

Carlos Armando De Castro

http://sites.google.com/site/matematicasingenieria

1. Introducción

Considere un conejo c y un lobo l en condiciones de quietud inicial a una distancia x_0 , como en la Figura 1.

Figura 1.

Al darse cuenta del peligro, el conejo corre en línea recta con una rapidez constante v_c mientras que el lobo siempre corre con una rapidez constante v_l en dirección hacia la posición instantánea del conejo (nunca lo pierde de vista). En un determinado momento t se encuentran en las posiciones indicadas en la Figura 2.

Figura 2.

El propósito del problema es modelar matemáticamente las trayectorias de la presa y del depredador con tal de determinar en qué momento es alcanzado el conejo por el lobo.

2. Ecuaciones del movimiento

La posición del conejo viene dada por la ecuación de distancia a rapidez constante:

$$y_c = v_c t$$
 (1)

La posición del lobo varía en x e y, y viene dada por las siguientes ecuaciones de la dinámica del movimiento a velocidad constante teniendo en cuenta las componentes por el ángulo θ :

$$x_l = x_0 - v_l t \cos(\theta)$$
 (2)

$$y_l = v_l t \sin(\theta) \quad (3)$$

Considerando el triángulo rectángulo formado entre las posiciones del conejo y el lobo se tiene que el ángulo θ se calcula como:

$$\tan(\theta) = \frac{y_c - y_l}{x_l} \qquad \textbf{(4)}$$

Sustituyendo las ecuaciones (2) y (3) en la ecuación (4) resulta:

$$\tan(\theta) = \frac{v_c t - v_l t \sin(\theta)}{x_0 - v_l t \cos(\theta)}$$

$$x_0 \tan(\theta) - v_1 t \tan(\theta) \cos(\theta) = v_c t - v_1 t \sin(\theta)$$

$$\tan(\theta) = \frac{v_c t}{x_0} \quad (5)$$

De la ecuación (5) se deducen las siguientes relaciones por el triángulo rectángulo:

$$\sin(\theta) = \frac{v_c t}{\sqrt{x_o^2 + (v_c t)^2}} \quad (6)$$

$$\cos(\theta) = \frac{x_0}{\sqrt{x_0^2 + (v_c t)^2}}$$
 (7)

De la ecuación (7) en la ecuación (2) se tiene:

$$x_l = x_0 - v_l t \frac{x_0}{\sqrt{x_0^2 + (v_c t)^2}}$$

$$x_{l} = x_{0} \left(1 - \frac{v_{l}t}{\sqrt{x_{o}^{2} + (v_{c}t)^{2}}} \right)$$
 (8)

De la ecuación (6) en la ecuación (3) se tiene:

$$y_l = \frac{v_l v_c t^2}{\sqrt{x_o^2 + (v_c t)^2}}$$
 (9)

3. Alcance del depredador a la presa

El conejo es alcanzado por el lobo en el momento t_f en que sus coordenadas horizontales y verticales son iguales. En este caso, cuando se cumple:

$$\begin{cases} y_c = y_l \\ x_l = 0 \end{cases} \quad (\mathbf{10}.a)$$

$$\begin{cases} v_c t_f = \frac{v_l v_c t_f^2}{\sqrt{x_o^2 + (v_c t_f)^2}} \\ x_0 - v_l t_f = \frac{x_0}{\sqrt{x_o^2 + (v_c t_f)^2}} = 0 \end{cases} \quad (\mathbf{10}.b)$$

La solución algebraica por separado de las ecuaciones que conforman la (10.b) entrega el mismo resultado en ambos casos para el tiempo de alcance del lobo al conejo:

$$t_f = \frac{x_0}{\sqrt{v_l^2 - v_c^2}}$$
 (11)

Nótese en la ecuación (11) que el tiempo es indeterminado y no tiene solución cuando la velocidad del conejo es mayor a la velocidad del lobo.

El ángulo en el que el lobo alcanza al conejo se calcula por (11) en (5):

$$\tan(\theta) = \frac{v_c t_f}{x_0} = \frac{v_c}{x_0} \frac{x_0}{\sqrt{v_l^2 - v_c^2}}$$

$$\theta_f = \arctan\left(\frac{v_c}{\sqrt{v_l^2 - v_c^2}}\right)$$
 (12)

Las coordenadas en las que se da el alcance son $x_l = 0$ y para el eje y se calculan sustituyendo (11) en (1):

$$y_f = \frac{v_c x_0}{\sqrt{v_l^2 - v_c^2}}$$
 (13)

La distancia recorrida por el conejo es la misma dada por la ecuación (13) ya que se mueve en línea recta. La distancia *L* recorrida por el lobo es la integral:

$$L = \int_{0}^{t_f} \sqrt{\left(\frac{dx_l}{dt}\right)^2 + \left(\frac{dy_l}{dt}\right)^2} dt$$

Derivando respecto al tiempo las ecuaciones (8) y (9) y luego de un trabajo de simplificación se obtiene:

$$L = \int_{0}^{t_f} \frac{v_l}{\sqrt{x_o^2 + (v_c t_f)^2}} \sqrt{\left[1 - \frac{(v_c t)^2}{x_o^2 + (v_c t_f)^2}\right]^2 + (v_c t)^2 \left[2 - \frac{(v_c t)^2}{x_o^2 + (v_c t_f)^2}\right]^2} dt \quad (14)$$

La mejor forma de resolver (14) es por métodos numéricos, tabulando las coordenadas x_l e y_l en n puntos de muestra y sumando en intervalos cortos:

$$L \approx \sum_{i=1}^{n-1} \sqrt{\left(x_{l,i+1} - x_{l,i}\right)^2 - \left(y_{l,i+1} - y_{l,i}\right)^2}$$
 (15)

4. Ejemplo

Supónganse los siguientes valores para las variables conocidas:

$$x_0 = 10.0 \text{ m}$$

 $v_c = 3.0 \text{ m/s}$
 $v_l = 4.0 \text{ m/s}$

El tiempo de alcance es de acuerdo con (11):

$$t_f = \frac{10.0}{\sqrt{4.0^2 - 3.0^2}} = 3.78 \text{ s}$$

El ángulo de alcance es de acuerdo con (12):

$$\theta_f = \arctan\left(\frac{3.0}{\sqrt{4.0^2 - 3.0^2}}\right) = 48.50^{\circ}$$

La distancia en y de alcance es de acuerdo con (13):

$$y_f = \frac{(3.0)(10.0)}{\sqrt{4.0^2 - 3.0^2}} = 11.34 \text{ m}$$

La gráfica de las ecuaciones (1), (8) y (9) en el tiempo y entre x e y muestran la concordancia con los valores calculados y la trayectoria tomada por el lobo y el conejo:

Figura 3. Movimiento en *y* del lobo y el conejo a lo largo del tiempo.

Figura 4. Trayectorias tomadas por la presa y el depredador.

La tabulación de los resultados en cada paso de tiempo de 0.0623 s permite calcular la distancia recorrida por el lobo en L=16.24 m.

Tabla 1. Tabulación de los datos del ejemplo.

		yl	ус		dl
t [s]	xl [m]	, [m]	, [m]	θ [°]	[m]
0.00	10.00	0.00	0.00	0.00	0.000
0.06	9.75	0.00	0.19	1.08	0.252
0.13	9.50	0.02	0.38	2.16	0.252
0.19	9.25	0.04	0.57	3.25	0.252
0.25	8.99	0.08	0.76	4.32	0.253
0.32	8.75	0.12	0.95	5.40	0.253
0.38	8.50	0.17	1.13	6.47	0.253
0.44	8.25	0.23	1.32	7.54	0.254
0.50	8.01	0.30	1.51	8.60	0.254
0.57	7.76	0.38	1.70	9.65	0.255
0.63	7.52	0.47	1.89	10.70	0.256
0.69	7.29	0.56	2.08	11.74	0.257
0.76	7.05	0.67	2.27	12.78	0.257
0.82	6.82	0.78	2.46	13.80	0.258
0.88	6.59	0.90	2.65	14.82	0.259
0.95	6.36	1.03	2.84	15.83	0.260
1.01	6.14	1.17	3.02	16.83	0.261
1.07	5.92	1.31	3.21	17.81	0.262
1.13	5.71	1.46	3.40	18.79	0.263
1.20	5.49	1.62	3.59	19.75	0.264
1.26	5.29	1.78	3.78	20.71	0.265
1.32	5.08	1.95	3.97	21.65	0.266
1.39	4.88	2.13	4.16	22.58	0.267
1.45	4.68	2.31	4.35	23.49	0.268
1.51	4.49	2.50	4.54	24.40	0.269
1.58	4.30	2.69	4.73	25.29	0.270
1.64	4.12	2.89	4.91	26.17	0.271
1.70	3.94	3.09	5.10	27.04	0.271
1.76	3.76	3.30	5.29	27.89	0.272
1.83	3.59	3.51	5.48	28.73	0.273
1.89	3.42	3.73	5.67	29.55	0.274
1.95	3.26	3.95	5.86	30.37	0.275
2.02	3.10	4.17	6.05	31.17	0.275
2.08	2.94	4.40	6.24	31.95	0.276
2.14	2.79	4.63	6.43	32.72	0.277
2.21	2.64	4.87	6.62	33.48	0.277
2.27	2.50	5.10	6.80	34.23	0.278
2.33	2.36	5.34	6.99	34.97	0.278
2.39	2.22	5.59	7.18	35.69	0.279
2.46	2.09	5.83	7.37	36.39	0.279
2.52	1.96	6.08	7.56	37.09	0.279

		ı		ı	
2.58	1.83	6.33	7.75	37.77	0.280
2.65	1.71	6.58	7.94	38.44	0.280
2.71	1.59	6.83	8.13	39.10	0.280
2.77	1.47	7.09	8.32	39.75	0.281
2.84	1.36	7.35	8.51	40.38	0.281
2.90	1.25	7.61	8.69	41.00	0.281
2.96	1.15	7.87	8.88	41.61	0.281
3.02	1.04	8.13	9.07	42.21	0.281
3.09	0.94	8.39	9.26	42.80	0.282
3.15	0.84	8.65	9.45	43.38	0.282
3.21	0.75	8.92	9.64	43.95	0.282
3.28	0.65	9.19	9.83	44.50	0.282
3.34	0.56	9.45	10.02	45.05	0.282
3.40	0.48	9.72	10.21	45.58	0.282
3.47	0.39	9.99	10.40	46.11	0.282
3.53	0.31	10.26	10.58	46.63	0.282
3.59	0.23	10.53	10.77	47.13	0.282
3.65	0.15	10.80	10.96	47.63	0.282
3.72	0.07	11.07	11.15	48.11	0.281
3.78	0.00	11.34	11.34	48.59	0.281