PRESUPUESTO

Diseño y montaje de una extrusora de filamento para el reciclaje de residuos plásticos de impresión 3D

Índice presupuesto

1. IN	TRODUCCIÓN	5
2. CO	OSTES DEL PROTOTIPO	6
2.1.	Coste de ingeniería	6
2.2.	Coste de fabricación	7
2.3.	Coste de elementos comerciales	11
2.4.	Coste de ensamblaje y pruebas	17
2.5.	Coste total prototipo.	18
3 V	/IARILIDAD FCONÓMICA	19

Índice de figuras

		Página
Tabla P1	Costes de ingeniería	6
Tabla P2	Precio energético piezas imprimidas en 3D	10
Tabla P3	Precio elementos constructivos	12
Tabla P4	Precio elementos de tornillería	13
Tabla P5	Precio piezas mecanizadas y elementos de dinámicos	14
Tabla P6	Precio elementos eléctricos y electrónicos	16
Tabla P7	Coste del operario	17
Tabla P8	Coste total prototipo	18

Índice de tablas

		Página
Figura P1	Impresora 3D Prusa i3 Hephestos	7
Figura P2	Ensamblaje sistema de refrigeración	17

Índice de gráficos

		Página
Gráfico P1	Precio de los elementos comerciales	11

Introducción

El estudio económico de un proyecto es un apartado imprescindible para un futuro desarrollo del mismo, ya que puede proporcionar información para mejorar el diseño. Por ello es necesario analizar con detalle todos los costes del mismo. También es necesario analizar la viabilidad económica del prototipo para saber si se tiene que ajustar el diseño o bien mejorar las características del mismo.

Por ello el presente documento constará de dos partes: La primera donde se calculan todos los costes del primer y el segundo prototipo. En la segunda parte de este estudio se estudia la viabilidad económica del segundo prototipo en un pequeño laboratorio de impresión 3D, en el cual se pretende hacer una inversión con el fin de mejorar los márgenes de beneficio y reducir gastos. Por ello se realizará un análisis de rentabilidad mediante la determinación de la Tasa Interna de Retorno (T.I.R).

Costes del prototipo

No se contempla una fabricación en serié, el coste calculado es para el primer y el segundo prototipo, teniendo en cuenta el coste de cada una de las partes del conjunto. Para calcular el coste de la máquina se tendrán en cuenta los siguientes tipos de gastos:

- 1. Costes de ingeniería.
- 2. Costes de fabricación
- 3. Costes de elementos comerciales.
- 4. Costes de ensamblaje y pruebas.

2.1. Coste de ingeniería

El coste de ingeniería contempla todo el coste del prototipo teniendo en cuenta solo los costes de diseño del mismo, sin tener en cuenta su ejecución.

Para poder estimar el importe se tendrá en cuenta el sueldo medio de ingeniero mecánico en España, se tasa en 2295 euros mensuales. Teniendo en cuenta una total de 168 horas mensuales salen 13,7 euros por hora trabajada.

Todas las horas de personal quilificado involucrados en el proyecto se muestran en la siguiente tabla:

Concepto	Horas	Tarifa (€/h)	Coste €
Estudio previo	80	13,5	1080
Laboratorio	10	13,5	135
Cálculos proyecto	150	13,5	2025
Diseño Mecánico	150	13,5	2025
Elaboración planos	40	13,5	540
Esquema eléctrico	30	13,5	405
Programación	20	13,5	270
Gestión	2	13,5	27
Memoria técnica	40	13,5	540
Anexos	30	13,5	405
TOTAL			7452

Tabla P1: Costes de ingeniería

El coste de ingeniería para el diseño de la extrusora de filamento asciende a un total de 7452 €.

2.2. Coste de fabricación

En los costes de fabricación o producción son los gastos necesarios para fabricar un producto. Para generar bienes es necesario un gasto, pero este debe ser minimizado de tal forma que el proyecto sea más rentable.

Para nuestro prototipo se lanzó las piezas a mecanizar a una empresa de mecanizados externa con lo cual no se tendrán en cuenta como costes de fabricación sino como elementos de comerciales. En nuestra partida de fabricación se tendrán en cuenta las piezas imprimidas en 3d.

Para calcular el coste de las piezas se tendrán en cuenta dos factores, el material y el coste energético necesario para producir la pieza, no se estimara un operario ya que las impresoras 3D no requieren de un técnico.

Para el coste material estimara un total de 2 kg de material PLA para todas las piezas, en este peso también se contempla las piezas defectuosas y la calibración de la impresora. La bobina de Pla suele tener un peso de 1 kg tiene un coste aproximado de 15€/kg.

El coste energético de las piezas imprimidas tendrá en cuenta que han sido manufacturadas en una impresora convencional de 200W y suponiendo un precio de 0,14 €/kWh para la energía eléctrica.

El coste total de las piezas imprimidas en 3D es de 35,44€.

Figura P1: Impresora 3D Prusa i3 Hephestos "foto: http://www.prusai3.es/"

A continuación se presentara una tabla detallada del precio energético de las piezas imprimidas en PLA:

Índice plano	Cantidad	Nº de pieza	Tiempo producción (horas)	Precio unitario €	Precio €
3.2.1	2	EXTRUSORA_02_01_PENDIENTE TOLVA	3	0,084	0,168
3.2.3	1	EXTRUSORA_02_03_SOPORTE TOLVA INFERIOR	12	0,336	0,336
3.2.4	1	EXTRUSORA_02_04_SOPORTE TOLVA SUPERIOR	12	0,336	0,336
3.2.5	1	EXTRUSORA_02_05_SOPORTE INFERIOR RODAMIENTO	5	0,14	0,14
3.2.6	1	EXTRUSORA_02_06_SOPORTE SUPERIOR RODAMIENTO	2	0,056	0,056
3.2.7	1	EXTRUSORA_02_11_TOLVA LATERAL	5	0,14	0,14
3.2.8	1	EXTRUSORA_02_12_LATERAL METRICO TOLVA	5	0,14	0,14
3.3.1	2	EXTRUSORA_03_01_SOPORTE VENTILADOR	2	0,056	0,112
3.4.1	1	EXTRUSORA_04_01_SOPORTE MOTOR	10	0,28	0,28
3.4.2	1	EXTRUSORA_04_02_ACOPLE INFERIOR	3	0,084	0,084
3.4.3	1	EXTRUSORA_04_02_ACOPLE SUPERIOR	3	0,084	0,084
4.0.1	1	SISTEMA REFRIGERACIÓN_00_01_DEPÓSITO	20	0,56	0,56
4.0.2	1	SISTEMA REFRIGERACIÓN_00_02_SOPORTE INICIAL PERFIL V	6	0,168	0,168
4.0.3	1	SISTEMA REFRIGERACIÓN_00_03_SOPORTE FINAL PERFIL V	5	0,14	0,14
4.0.6	1	SISTEMA REFRIGERACIÓN_00_06_SOPORTE TURBINA	1	0,028	0,028
4.0.7	1	SISTEMA REFRIGERACIÓN_00_07_COJINETE	2	0,056	0,056
4.0.8	2	SISTEMA REFRIGERACIÓN_00_08_SOPORTE COJINETE	0,5	0,014	0,028
4.0.9	1	SISTEMA REFRIGERACIÓN_00_09_SOPORTE TUBO	4	0,112	0,112
5.0.1	1	SISTEMA DE EMPUJE_01_01_VOLANTE	15	0,42	0,42
5.0.3	2	SISTEMA DE EMPUJE_01_03_SOPORTE RODAMIENTO	1,5	0,042	0,084
5.0.4	1	SISTEMA DE EMPUJE_01_04_SOPORTE MOTOR	2	0,056	0,056
5.0.5	1	SISTEMA DE EMPUJE_01_05_COJINETE	0,5	0,014	0,014
6.0.1	1	SISTEMA DE TENSIONADO_00_01_SOPORTE EJE	2	0,056	0,056
6.0.2	1	SISTEMA DE TENSIONADO_00_02_COJINETE RODAMIENTO	2	0,056	0,056
6.0.3	1	SISTEMA DE TENSIONADO_00_03_COJINETE	0,5	0,014	0,014
6.0.5	1	SISTEMA DE TENSIONADO_00_05_COJINETE L5	0,1	0,0028	0,0028
7.0.1	2	SISTEMA CONTROL DIÁMETRO_00_01_COJINETE	0,5	0,014	0,028

7.0.2	2	SISTEMA CONTROL DIÁMETRO_00_02_SOPORTE EJE FIJO	1	0,028	0,056
7.0.6	2	SISTEMA CONTROL DIÁMETRO_00_06_SOPORTE EJE MOVIL	1	0,028	0,056
7.0.7	1	SISTEMA CONTROL DIÁMETRO_00_07_SOPORTE PIE DE REY MOVIL	0,75	0,021	0,021
7.0.8	1	SISTEMA CONTROL DIÁMETRO_00_08_SOPORTE PIE DE REY FIJO	1	0,028	0,028
8.0.1	1	SISTEMA CONTROL BOBINADO_00_01_COJINETE	0,5	0,014	0,014
8.0.2	4	SISTEMA CONTROL BOBINADO_00_02_SOPORTE EJE	0,5	0,014	0,056
8.0.4	2	SISTEMA CONTROL BOBINADO_00_04_SOPORTE COJINETE	2	0,056	0,112
8.0.6	2	SISTEMA CONTROL BOBINADO_00_06_SOPORTE SENSOR	1	0,028	0,056
9.0.1	1	GUIA BOBINADO_00_01_GUIA CABLE	2	0,056	0,056
9.0.2	1	GUIA BOBINADO_00_02_AGUJA	0,5	0,014	0,014
9.0.3	1	GUIA BOBINADO_00_03_SOPORTE AGUJA	1,5	0,042	0,042
9.0.4	2	GUIA BOBINADO_00_04_COJINETE L5	0,1	0,0028	0,0056
9.0.5	8	GUIA BOBINADO_00_05_SOPORTE RODAMIENTO	1	0,028	0,224
9.0.6	1	GUIA BOBINADO_00_06_HUSILLO	5	0,14	0,14
9.0.8	2	GUIA BOBINADO_00_08_GUIA SOPORTE	1	0,028	0,056
9.0.9	1	GUIA BOBINADO_00_09_SOPORTE MOTOR	1,5	0,042	0,042
9.0.11	1	GUIA BOBINADO_00_11_SOPORTE	1	0,028	0,028
10.0.1	2	BOBINA_00_01_SOPORTE	1	0,028	0,056
10.0.4	2	BOBINA_00_05_ACCIONADOR	1,5	0,042	0,084
10.0.6	1	BOBINA_00_07_COJINETE L40	0,5	0,014	0,014
10.0.7	1	BOBINA_00_08_COJINETE L10	0,2	0,0056	0,0056
11.0.1	1	REDUCTOR PLANETARIO_00_01_ACOPLE	1	0,028	0,028
11.0.2	1	REDUCTOR PLANETARIO_00_02_BASE	2	0,056	0,056
11.0.3	3	REDUCTOR PLANETARIO_00_03_ENGRANAJE PLANETA Z30	1	0,028	0,084
11.0.4	1	REDUCTOR PLANETARIO_00_04_ENGRANAJE SOL Z15	0,5	0,014	0,014
11.0.5	1	REDUCTOR PLANETARIO_00_05_BRAZO 1 REDUCCIÓN	1	0,028	0,028
11.0.6	1	REDUCTOR PLANETARIO_00_06_SEPARADOR	1	0,028	0,028

11.0.7	2	REDUCTOR PLANETARIO_00_07_TAPA	3	0,084	0,168
11.0.8	3 2	REDUCTOR PLANETARIO_00_08_ENGRANAJE CORONA Z75	1	0,028	0,056
11.0.9) 1	REDUCTOR PLANETARIO_00_09_BRAZO 2 REDUCCIÓN	1	0,028	0,028
11.0.10	0 3	REDUCTOR PLANETARIO_00_10_ENGRANAJE PLANETA Z25	0,75	0,021	0,063
11.0.13	1 1	REDUCTOR PLANETARIO_00_11_ENGRANAJE SOL Z25	0,75	0,021	0,021
Total					5,439

Tabla P2: Precio energético piezas imprimidas en 3D

2.3. Coste de elementos comerciales

Los elementos comerciales de nuestro prototipo se han englobado en cuatro grupos, haciendo más fácil un análisis del diseño y poder mejorar las características económicas del proyecto. Los grupos son:

Electrónica y motores.

Piezas mecanizadas.

Tornillería.

Elementos constructivos.

Elementos dinámicos.

El coste total de los elementos comerciales de nuestro prototipo es de **844,33€.** Analizando detenidamente se propondría una reducción en cuanto a la electrónica y piezas mecanizadas, optimizando el diseño ya que estos suponen un 84% del coste total.

Gráfico P1: Precio de los elementos comerciales

A continuación se presentaran los precios de los diferentes grupos en detalle.

				PRECIO	PRECIO	
ELEMENTO	CTDAD	DESCRIPCIÓN	LONGITUD	UNITARIO (€)	(€)	PROVEEDOR
ELEMENTOS						
CONSTRUCTIVOS						
PERFIL ALUMINIO						
20X20X500	12	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	500	2,83	16,98	http://www.motedis.es/
PERFIL ALUMINIO						
20X20X1200	4	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	1200	3,09	14,832	http://www.motedis.es/
PERFIL ALUMINIO						
20X20X590	8	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	590	3,09	14,5848	http://www.motedis.es/
PERFIL ALUMINIO 20X20X70	1	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	70	3,09	0,2163	http://www.motedis.es/
PERFIL ALUMINIO						
20X20X130	2	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	130	3,09	0,8034	http://www.motedis.es/
PERFIL ALUMINIO						
20X20X100	2	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	100	3,09	0,618	http://www.motedis.es/
PERFIL ALUMINIO						
20X20X220	1	MOTEDIS PERFIL 20X20 TIPO B RAN. 6	220	3,09	0,6798	http://www.motedis.es/
MANETA	3	MOTEDIS ASA 118		1,63	4,89	http://www.motedis.es/
PIE ARTICULADO	4	MOTEDIS SERIE 10 PA		1,06	4,24	http://www.motedis.es/
CAJA ELECTRICOS	1	CHAPA METACRILATO 1M^2		6,5	6,5	LEROY MERLIN
SOPORTE L	16	MOTEDISNUT 6 B-TYP SCHWER		0,54375	8,7	http://www.motedis.es/
		BARRA CALIBRADA DIAMETRO 8 MM				
EJES	1	LONGITUD 1,5M	1000	12,6	12,6	http://www.motedis.es/
VARILLA ROSCADA M8	1	VARILLA ROSCADA M8 L1M	1000	1	1	LEROY MERLIN
CHAPAS PROTECTORAS	1	CHAPA ALUMINIO 1M^2		5	5	LEROY MERLIN
AISLANTE	1	CUERDA AISLANTE 1M D20		13,38	13,38	http://es.rs-online.com/
TOTAL					105,0243	

Tabla P3: Precio elementos constructivos

ELEMENTO	CTDAD	DESCRIPCIÓN	PRECIO UNITARIO (€)	PRECIO (€)
TORNILLERÍA				
DIN 7984 - M3 x 6	4	TONILLO DE CABEZA CILÍNDRICA	0,275	1,1
DIN 7984 - M3 x 8	2	TONILLO DE CABEZA CILÍNDRICA	0,275	0,55
DIN 912 - M3 x 25	4	TORNILLO DE CABEZA CILÍNDRICA	0,275	1,1
ISO 4762 - M4 x 8	8	TORNILLO DE CABEZA CILINDRICA	0,198	1,584
ISO 4762 - M4 x 10	2	TORNILLO DE CABEZA CILINDRICA	0,198	0,396
ISO 4762 - M4 x 12	4	TORNILLO DE CABEZA CILINDRICA	0,198	0,792
ISO 4762 - M4 x 16	16	TORNILLO DE CABEZA CILINDRICA	0,198	3,168
ISO 4762 - M4 x 25	8	TORNILLO DE CABEZA CILINDRICA	0,198	1,584
ISO 4762 - M4 x 35	4	TORNILLO DE CABEZA CILINDRICA	0,198	0,792
ISO 4762 - M4 x 40	2	TORNILLO CABEZA CILINDRICA	0,198	0,396
ISO 4762 - M5 x 10	4	TORNILLO DE CABEZA CILINDRICA	0,198	0,792
DIN 912 - M8 x 40	4	TORNILLO DE CABEZA CILÍNDRICA	0,9	3,6
DIN 7991 - M3x10	4	TORNILLOS DE CABEZA AVELLANADA	0,235	0,94
DIN 7991 - M4x10	8	TORNILLOS DE CABEZA AVELLANADA	0,35	2,8
DIN 7991 - M4x12	14	TORNILLOS DE CABEZA AVELLANADA	0,35	4,9
DIN 7991 - M4x20	4	TORNILLOS DE CABEZA AVELLANADA	0,35	1,4
DIN 7991 - M4x40	2	TORNILLOS DE CABEZA AVELLANADA	0,35	0,7
ISO 10642 - M5 x 45	4	TORNILLOS DE CABEZA AVELLANADA	0,4	1,6
ISO 4032 - M3	12	TUERCAS HEXAGONALES	0,125	1,5
ISO 4032 - M4	18	TUERCAS HEXAGONALES	0,352	6,336
ISO 4033 - M5	4	TUERCAS HEXAGONALES	0,42	1,68
ISO 4032 - M8	30	TUERCAS HEXAGONALES	0,5	15
ISO 7091 - ST 4 - 100 HV	2	ARANDELAS PLANAS	0,12	0,24
ISO 8738 - 8	11	ARANDELAS PLANAS	0,35	3,85
ISO 7089 - 6 - 140 HV	5	ARANDELAS PLANAS	0,15	0,75
TOTAL		la BA: Bussia alamantas da tamillaría		57,55

Tabla P4: Precio elementos de tornillería

ELEMENTO	CTDAD	DESCRIPCIÓN	PRECIO UNITARIO (€)	PRECIO (€)	PROVEEDOR
PIEZAS MECANIZADAS					
EXTRUSORA_01_02_CILINDRO	1	CILINDRO	103,1	103,1	https://www.protoandgo.com/
EXTRUSORA_01_03_PLACA ROMPEDORA	1	PLACA ROMPEDORA	67,3	67,3	https://www.protoandgo.com/
EXTRUSORA_01_04_ACOPLE	1	ACOPLE	67,3	67,3	https://www.protoandgo.com/
EXTRUSORA_01_09_DADO	2	DADO	84,9	169,8	https://www.protoandgo.com/
TOTAL				407,5	
ELEMENTO	CTDAD	DESCRIPCIÓN	PRECIO UNITARIO PRECIO (€)	PRECIO (€)	PROVEEDOR
ELEMENTOS DINÁMICOS					
DIN 625 SKF - SKF 608-2Z	14	RODAMIENTOS DE BOLAS	0,51	7,14	http://www.motedis.es/
DIN 628 SKF - SKF 7202 BE	1	RODAMIENTOS DE BOLAS	4,53	4,53	GMC
RODAMIENTO LINEAL D8 LM8SUU	2	RODAMIENTO LINEAL D8	1,22	2,44	http://www.motedis.es/
TOTAL				14,11	

Tabla P5: Precio piezas mecanizadas y elementos de dinámicos

			PRECIO		
ELEMENTO	CTDAD	DESCRIPCIÓN	UNITARIO	PRECIO	PROVEEDOR
ELECTRÓNICA					
ARDUINO MEGA 2560	1	ARDUINO MEGA 2560	40,97	40,97	http://www.boloberry.com/
RAMPS 1.4	1	RAMPS 1.4	12	12	http://www.boloberry.com/
NEMA 23 23HS22-2804S-PG15 CON		MOTOR PAP CON REDUCCIÓN PLANETARIA		55.65	http://www.omc-
REDUCCIÓN	1	1:5	55.65	33.03	stepperonline.com/
MOTOR NEMA 17 HD503	1	NEMA17	12,99	12,99	http://www.boloberry.com/
MOTOR NEMA 17	1	NEMA17	18,99	18,99	http://www.omc- stepperonline.com/
FINAL DE CARRERA	1	FINAL DE CARRERA	4,19	4,19	http://www.boloberry.com/
CONTROLADOR MOTOR T-6600	2	CONTROLADOR MOTOR	18,98	18,98	http://www.boloberry.com/
CONTROLADOR MOTOR DRV8825	1	CONTROLADOR MOTOR	5,75	5,75	http://www.boloberry.com/
		RESISTENCIA BOQUILLA INOX 30MM 40MM			
RESISTENCIA INOX 30MM 40MM 230W	1	230W	26,98	26,99	http://mouldshop.es/
		RESISTENCIA BOQUILLA INOX 40MM 35MM			
RESISTENCIA INOX 40MM 35MM 270W	1	270W	29,31	29,31	http://mouldshop.es/
RESISTENCIA INOX 30MM 20MM 100W	1	RESISTENCIA BOQUILLA INOX 30MM 20MM 100W	26,98	26,98	http://mouldshop.es/
					FERRETERIA
P.I.A 10 AMPERIOS	1	INTERRUPTORE AUTOMATICO PIA 10 A	12,5	12,5	FERRETERIA
FUENTE 12V 20A AC/DC	1	FUENTE 12V 20A AC/DC	27,99	27,99	http://www.boloberry.com/
CABLE ELECTRICO1,5MM 1 METRO	1	CABLE ELECTRICO1,5MM	1,5	1,5	FERRETERIA
CABLE ELECTRICO 3MM 1 METRO	1	CABLE ELECTRICO 3MM	2	2	FERRETERIA
TERMISTOR 100K NTC	1	TERMISTOR 100K NTC	2,99	2,99	http://www.boloberry.com/
BOTON	1	BOTON	1,3	1,3	http://www.diotronic.com/
LCD 2004	1	LCD 2004 PARA RAMPS	22,99	22,99	http://www.diotronic.com/
REGLETA	1	REGLETA PARA CONEXIONES	2	2	FERRETERIA
CAJA EMPALMES	2	CAJA PROTECTORA EMPALMES	1,2	1,2	FERRETERIA

VENTILADOR TURBINA DC 12V	1	VENTILADOR TURBINA DC 12V 50X50CM	4,99	4,99	http://www.boloberry.com/
VENTILADOR DC 12V	1	VENTILADOR DC 12V 50X50MM	3,76	3,76	http://www.boloberry.com/
BOMBA DE AGUA SHOTT 500	1	BOMBA DE AGUA SHOTT 500	21,3	21,3	FERRETERIA
RELE ESTADO SOLIDO	1	RELE ESTADO SOLIDO 230V AC / 3-32V DC	20,42	20,42	http://www.diotronic.com/
TOTAL				322,09	

Tabla P6: Precio elementos eléctricos y electrónicos

2.4. Coste de ensamblaje y pruebas.

El presente prototipo debe ser ensamblado manualmente, una vez ensamblado se debe calibrar, estos procesos se explican más detalladamente en el manual de usuario del prototipo, también se debe validar que el prototipo cumple las normativas de seguridad y que su funcionamiento es correcto. Para ello será necesario de un operario cualificado.

El coste del operario por hora es de 10 € por hora trabajada. El coste total asciende a **270€.** En la siguiente tabla se muestra de forma detallada una aproximación del coste total del operario.

Figura P2: Ensamblaje sistema de refrigeración

PROCESO	HORAS DEDICADAS	PRECIO (€)
ENSAMBLAJE	10	100
COMPROBACIÓN	3	30
CALIBRACIÓN	5	50
PRUEBAS	9	90
TOTAL		270

Tabla P7: Coste del operario

2.5. Coste total prototipo.

A continuación se mostrará el coste total del prototipo (extrusora de filamento).

TOTAL	8608,77 €	
COSTE DE ENSAMBLAJE Y PRUEBAS	277	
COSTE DE ELEMENTOS COMERCIALES	844,33	
COSTE DE PRODUCCIÓN	35,44	
COSTE DE INGENIERIA	7452	

Tabla P8: Coste total prototipo

El coste total del prototipo es de **8608 €**, analizando los resultados en detalle se puede apreciar que mayoritariamente el coste de ingeniería es el más elevado, cabe destacar que este coste es para el primer prototipo. El segundo prototipo ya no contemplaría los costes de ingeniería y el precio se reduciría a **1156,77€**.

Analizando todos los apartados en detalle cabe destacar que las piezas producidas en 3D son mucho más económicas que los elementos comerciales, una buena manera de mejorar el aspecto económico seria reducir el número de piezas mecanizadas, y simplificar la electrónica.

Cabe detallar que la impresión 3D ofrece versatilidad, y se podría llegar a reducir gastos vendiendo el producto sin ensamblar y los archivos de las piezas en formato electrónico, el precio en ese caso es de solo los elementos comerciales **844,33€**.

3. Viabilidad económica

En este apartado se estudiará la viabilidad económica de la extrusora de filamento, se supondrá el caso de un laboratorio de impresión 3D donde se realizan prototipos regularmente. Cabe destacar que no se contempla la comercialización de filamento propio, ni el diseño de nuevos materiales los cuales podrían suponer ganancias muy superiores al propio caso dado donde se contempla el ahorro de material. Se analizará la viabilidad económica mediante la T.I.R o tasa interna de retorno en un periodo de tres años.

El caso propuesto es de un pequeño laboratorio de impresión 3D donde se consume un total de 1 kilogramos de PLA a la semana, el coste de un kilogramo de filamento de PLA es de 15 €. Se estima que el 90% de las piezas son buenas, y que un 0,5% del material se pierde dado a procesos de calibración.

El coste de un segundo prototipo es de 1156,77€. Y el valor de un kilogramo de PLA en pellets es de 5€ esto supone y un gasto energético de 1,02€. El propietario del laboratorio quiere analizar la viabilidad económica en un periodo de tres años mediante la T.I.R.

La tasa interna de retorno o tasa interna de rentabilidad (T.I.R) de una inversión es la media geométrica de los rendimientos futuros esperados de dicha inversión, y que implica por cierto el supuesto de una oportunidad para "reinvertir". En términos simples, diversos autores la conceptualizan como la tasa de descuento con la que el valor actual neto o valor presente neto (VAN o VPN) es igual a cero. Por lo tanto a mayor T.I.R mayor rentabilidad del proyecto.

La inversión inicial es 1156,77€, y tenemos un ahorro semanal de 8.98€, que son 420.16€ anuales. Realizando el método de la T.I.R en un periodo de tres años sale:

$$0 = -1156,77 + \frac{420.16}{1 + TIR} + \frac{420.16}{(1 + TIR)^2} + \frac{420.16}{(1 + TIR)^3}$$

La tasa interna de retorno sale de 0,044 que es equivalente a un 4,4 %, se puede afirmar que la extrusora de filamento es viable en un periodo de tres años.

Si suponemos que el laboratorio adquiere una pequeña cortadora de plástico por el valor de 200€ con el fin de reciclar las piezas defectuosas el ahorro se incrementa dado al material reciclado. Si el consumo de material es de dos kilogramos filamento y tenemos una efectividad del 90%, se logrará recuperar 100 gramos de material por semana, por lo tanto el consumo de pellets se reducirá en 0,9 kilogramos. El ahorro aumentará de 8,89 € a 9,48€ que supone un total de 492,96 € al año. Si realizamos la T.I.R para el mismo periodo sale:

$$0 = -1156,77 - 200 + \frac{492,96}{1 + TIR} + \frac{492,96}{(1 + TIR)^2} + \frac{492,96}{(1 + TIR)^3}$$

La tasa interna de retorno sale de 0,044 que es equivalente a un 4,4 %, se puede afirmar que la extrusora de filamento igualmente viable en un periodo de tres años con la cortadora, además de hacer de proponer un modelo más sostenible, lo cual puede incentivar el consumo y por lo tanto los beneficios.