PROBABILITY AND STATISTICS - PROBLEM SET 10

- 1. If X_1, \ldots, X_n is an independent sample of size n from a population defined by the pmf $f(x) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, where $0 < \theta < 1$, find the maximum likelihood estimator for θ .
- 2. Find the maximum likelihood estimator for θ in each of the following cases:
 - (a) $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, where $\theta > 0$. (b) $f(x; \theta) = \theta e^{-\theta x}$, x > 0, where $\theta > 0$.

 - (c) $f(x;\theta) = e^{-(x-\theta)}, x \geqslant \theta$, where θ is any real number. (d) $f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}$, where θ is any real number.
 - (e) $f(x; \theta) = \frac{2x}{\theta^2}$, $0 \le x \le \theta$, where $\theta > 0$.
- 3. Find the mles of θ_1 and θ_2 in each of the following cases:
 - (a) $X \sim N(\theta_1, \theta_2)$
 - (b) $f(x; \theta_1, \theta_2) = \frac{1}{\theta_2} e^{-\frac{(x-\theta_1)}{\theta_2}}, x > \theta_1$

where θ_1 is any real number and $\theta_2 > 0$.

- 4. Find the mle of θ in each of the following cases:
 - (a) $X \sim B(m, \theta)$.
 - (b) $X \sim \mathcal{P}(\theta)$.
 - (c) $X \sim N(u, \theta)$.
- 5. Let $X \sim U[0, \theta]$, where $\theta > 0$. Compute the mle for θ .
- 6. Show that the sample mean is an unbiased and consistent estimator of population mean.
- 7. Show that sample variance is a biased estimator of the population variance.
- 8. Show that $Y = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ is an unbiased estimator of population variance.
- 9. If $X \sim N(0, \theta)$, show that $Y = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ is an unbiased estimator of θ and has variance $\frac{2\theta^2}{n}$. 1

- 10. Show that \overline{X} is an unbiased estimator of θ if the pdf of X is $f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0, where $\theta > 0$. Also show that \overline{X} has variance $\frac{\theta^2}{n}$ and is therefore a consistent estimator.
- 11. Let Y_n be an unbiased estimator of θ , such that $V(Y_n) \to 0$ as $n \to \infty$. Then show that Y_n is consistent.
- 12. Let Y_1 and Y_2 be two independent unbiased statistics for θ such that the variance of Y_1 is twice that of Y_2 . Find the constants k_1 and k_2 such that $Z = k_1Y_1 + k_2Y_2$ is an unbiased statistic for θ with minimum possible variance for such a linear combination.
- 13. Find the same size n such that $P[\overline{X}-1<\mu<\overline{X}+1]=0.9$, given that $X\sim N(\mu,9)$.
- 14. If the observed value of the mean of a sample of size 20 from a population having distribution $N(\mu, 80)$ is $\overline{x} = 81.2$, find a 95 percent confidence interval for the population mean.
- 15. If a random sample of size 17 from a normal distribution $N(\mu, \sigma^2)$ yields $\bar{x}=4.7$ and $s^2=5.76$, determine a 90 percent confidence interval for μ .
- 16. A random sample of size from the distribution $N(\mu, \sigma^2)$ yields $s^2 = 7.63$. Determine a 95 percent confidence interval for σ^2 .
- 17. Find an approximate 95 percent confidence interval for the mean of a population having variance 100, if the sample size is 25.
- 18. A random sample of size 15 from a normal population with unknown mean and variance yields $\bar{x}=3.2$ and $s^2=4.24$. Determine a 95 percent confidence interval for σ^2 .
- 19. If a sample of size 15 from a population with distribution $N(\mu, \sigma^2)$ yields values $\sum_{i=1}^{15} X_i = 8.7$ and $\sum_{i=1}^{15} X_i^2 = 27.3$, obtain a 95 percent confidence interval for σ^2 .
- 20. Suppose that $X \sim N(8, \sigma^2)$, and the observed values of a sample are of size 9 from this population are 8.6, 7.9, 8.3, 6.4, 8.4, 9.8, 7.2, 7.8, and 7.5. Construct a 90 percent confidence interval for σ^2 .
- 21. Suppose that $X \sim N(\mu,4)$. If $\overline{x}=78.3$ with n=25, obtain a 99 percent confidence interval for μ .