Problem 3.15. Show that the collection of decidable languages is closed under the operation of.

Part b. concatenation.

For any two decidable languages L_1 and L_2 , let M_1 and M_2 be the **TM**s that decide them. For a string $w = w_1 w_2 w_3 \cdots w_n$, define split W = (P, S), where $P, S \in \Sigma^*$, and w = PS. In other words, the strings P and S are prefix and suffix of w, such that their concatenation is equivalent to w. We construct a **TM** M' that decides the concatenation of L_1 and L_2 :

"On input w:

- 1. Calculate the list of all possible splits $W_1 = (P_1, S_1), W_2 = (P_2, S_2), \cdots W_n = (P_n, S_n)$ of w.
- 2. Repeat the following for each $i = 1, 2, 3, \cdots$.
- 3. Run M_1 on P_i , and M_2 on S_i .
- 4. If in any computation, both M_1 and M_2 accept, accept. "

Part c. star.

Part d. complementation.

For any decidable language L, let M be the **TM** that decides it. Construct a **TM** M' that decides the complement of L:

"On input w:

1. Run M on w. If it accepts, reject. Otherwise, accept."

Part e. intersection.

For any two decidable languages L_1 and L_2 , let M_1 and M_2 be the **TM**s that decide them. We construct a **TM** M' that decides the intersection of L_1 and L_2 :

"On input w:

- 1. Run M_1 on w. If it rejects, reject.
- 2. Run M_2 on w. If it accepts, accept. Otherwise, reject."