```
Project Overview
Build a predictive mode
      Analysis and Results

• Spit data into train and test (80%, 20%)
• Taget variable > 'Consumer, active, power?'
• Ran Linear Regission in Soliet Learn and Statishdon
• Nono of the factors reflected normal distribution?
• Way listic contraints for any factors
• Soliet Learn provided score of 0.86
• Statishication provided required of 0.86
• Statishication provided required of 0.86
      In [2]:
impact sy-

In [3]:

In [3]:

In [4]:

In [5]:
df.shape
Out[5]:
(2075259, 9)
   | Date | Time | Global_active_power | Sub_metering_1 | Sub_metering_2 | Sub_metering_3 |
| 16112/2006 | 17:24:20 | 4:216 | 0.000 | 1.000 | 17:0 |
| 16112/2006 | 17:25:00 | 5:360 | 0.000 | 1.000 | 16:0 |
   In [11]:
df('Date') = pd.to_datetime(df('Date'), format='%d/%m/%Y')
df('Date') = df('Date'),dt.month
   In [12]:
df('Time') = pd.to_datetime(df('Time'), format='%H:%M:%S')
df('Time') = df('Time').dt.hour
   | Mame: Clobal_active_power, dt | In [15]: | af("Kitchem").value_counta() | Out[15]: | (0.00 | 184061] | 1.000 | 83230 | (0.00 | 18537) | 33.000 | 18537 | 33.000 | 18537 | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | 18546 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.00 | 18537) | 33.000 | (0.
In [17]:

df('WaterHeat_AC'].isnull()

Out[17]:

25979
   In [19]:

df('Global_active_powe
Out[19]:
False 2049280
True 25979
Name: Global_active_po
      False 2049280
Name: Kitchen, dtype: int64
      In [26]:
```

```
False 2049280
Name: LaundryRoom, dtype: int64
    In [31]:

from sklears.preprocessing import MinMax scale - MinMaxScaler()
         In [32]:

df[['Kitchen']] = scale_fit_transform(df[['8]
/Users/krys/anaconds2/lib/python2.7/site-pacwarnings.warn(msg, _DataConversionNarning)
    In [13]:

if ("Lichem") value con cont 31:

of ("Lichem") value con cont 31:

ocupation of the cont 13:

ocupation ocupation of the cont 13:

ocupation ocu
             In [37]:
df.head(
         | Date | Time Global_active_power Kitchen | LaundryRoom WaterHeat_AC | | | | |
| 0 | 12 | 17 | 0.374796 | 0.0 | 0.0125 | 0.548387 |
| 1 | 12 | 17 | 0.478563 | 0.0 | 0.0125 | 0.516129 |
| 2 | 12 | 17 | 0.478631 | 0.0 | 0.0250 | 0.548387 |
Oost 38 ) -

Date | Time |

Ooust 2.040350=-00 2.040350=-05 |

mean 6.645433=-00 1.55091=-01 |

dd 3.4220=-00 6.625391=-01 |

as 1.000000=-00 0.000000=-00 |

20% 3.000000=-00 0.000000=-01 |

75% 3.000000=-00 1.000000=-01 |

75% 3.000000=-00 1.000000=-01 |

75% 3.000000=-00 1.000000=-01 |

75% 3.000000=-01 1.000000=-01 |

75% 3.000000=-01 1.000000=-01 |

TO (1.01)
```

In [47]: df = df[df.Kitchen != 0.0] 24533 5562 4523 4188 1823 chen, dtyp of Stokes sa.Assadalplot at 0x1179-...

1023	Supplied?	LaundryRoom	WaterHeat AC
1024	0.011364	0.4375	0.548387
1025	0.022727	0.4375	0.548387
1026	0.011364	0.4375	0.548387
1027	0.011364	0.4625	0.548387
1028	0.011364	0.4500	0.548387
1029	0.011364	0.4625	0.548387
1030	0.068182	0.4500	0.548387
1031	0.420455	0.4500	0.548387
1032	0.420455	0.4375	0.516129
1033	0.409091	0.4375	0.548387
1034	0.420455	0.4500	0.516129
1035	0.409091	0.4375	0.548387
1036	0.409091	0.4375	0.516129
1037	0.420455	0.4500	0.548387
1038	0.409091	0.4375	0.516129
1039	0.420455	0.4500	0.510125
1040	0.420455	0.4300	0.548387
1040	0.420455	0.4375	0.548387
1041	0.420400	0.2875	0.546367
	0.409091	0.3375	0.516129 0.548387
1043	0.409091		0.548387
		0.4375	
1045	0.011364	0.3625	0.548387
1046	0.022727	0.2625	0.516129
1047	0.011364	0.4500	0.548387
1048	0.011364	0.4500	0.548387
		_	
2068777	0.011364	0.0875	0.548387
2068779	0.011364	0.1000	0.548387
2068912	0.534091	0.0125	0.548387
2068926	0.227273	0.0125	0.548387
2068929	0.079545	0.0125	0.548387
2068931	0.170455	0.0125	0.548387
2068938	0.159091	0.0125	0.580645
2068939	0.147727	0.0250	0.548387
2068940	0.159091	0.0125	0.548387
2068953	0.011364	0.0125	0.548387
2069053	0.011364	0.0125	0.548387
2072999	0.011364	0.0125	0.580645
2073002	0.011364	0.0250	0.580645
2073003	0.011364	0.0125	0.580645
2073013	0.011364	0.0250	0.580645
2073022	0.420455	0.0125	0.580645
2073032	0.011364	0.0125	0.580645
2073040	0.022727	0.0250	0.580645
2073047	0.011364	0.0250	0.580645
2073053	0.011364	0.0125	0.580645
2074471	0.011364	0.0250	0.580645
2074472	0.022727	0.0125	0.548387
2074473	0.011364	0.0125	0.548387
2074479	0.011364	0.0125	0.548387
2074482	0.022727	0.0250	0.548387
2074485	0.022727	0.0125	0.548387
2074488	0.420455	0.0250	0.548387
2074494	0.431818	0.0250	0.548387
2074503	0.011364	0.0125	0.580645
	0.011364	0.0125	0.580645

16514 rows × 3 columns

In [56]:
log columns = ['Global active_power', 'Kitchen']
log df = df.copy()
log_df[log_columns] = log_df[log_columns].apply(mp.log10)

	Date	Time	Global_active_power	Kitchen	LaundryRoom	WaterHeat_AC
Date	1.000000	-0.029764	-0.059210	-0.012303	-0.030546	-0.085688
Time	-0.029764	1.000000	0.124053	-0.000787	-0.029223	-0.122444
Global_active_power	-0.059210	0.124053	1.000000	0.645848	0.586256	0.305524
Kitchen	-0.012303	-0.000787	0.645848	1.000000	0.006576	0.009362
LaundryRoom	-0.030546	-0.029223	0.586256	0.006576	1.000000	0.056804
WaterHeat_AC	-0.085688	-0.122444	0.305524	0.009362	0.056804	1.000000

In [59]:

#from skle
#x_train,
#

In [60]: df = df[['Da

In [61]: df.head() Out[61]:

	Date	Time	Kitchen	LaundryRoom	WaterHeat_AC	Global_active_power
1019	12	10	0.011364	0.0875	0.548387	0.196089
1020	12	10	0.022727	0.4375	0.548387	0.329350
1021	12	10	0.011364	0.3250	0.548387	0.283904
1022	12	10	0.011364	0.4375	0.548387	0.327539
1023	12	10	0.011364	0.3375	0.548387	0.283179

| 100 | 2 | 10 | 101145 | 0.3375 | 0.54887 | 0.28311 | 1n | (52); | from Silearn.cross_validation import train_tost_split f this module. This module will be removed in 0.10. This module will be re

In (64):
from skiearn import linear model
from skiearn.linear model linear tinearmegression
lin_model - linear_model.tinearmegression()
In (80):

y = train.Global_metive_power
In [81]:
Ilis_model.fit(f,y)
Cut[81]:
Lin_model.fit(f,y)
Cut[81]:
Lin_fit(f):
Lin_fi

In [88]:

In [89]: test_feature_cols = {'Date', 'Time', 'test_X = test_feature_cols} test_y = test_Global_active_power In [91]: lin_model.score(test_X,toot[91]: 0.86002406046229396 In [70]:
STATS MODELS
In [71]:
import statsmode In [12]:

Im = mf_ols(formula-"Gridat)_and

In [12]:

In = mf_ols(formula-"Gridat)_and

In [12]:

In = mf_ols(formula-"Gridat)_and

In [12]:

In = parama

Out[12]:

In. parama

Out[2]:

Intercept

Eichan

0.09892

Eichan

1.0999

Eichan

Eichan Adj. R-squared: 0.827
Adj. R-squared: 0.827
F-statistic: 7.764e+04
Prob (F-statistic): 0.00
Log-likelihood: 66873.
AMC: 1.337e+05 | DY Modes | December In []: In []: In []: