

50.002 COMPUTATIONAL STRUCTURES

INFORMATION SYSTEMS TECHNOLOGY AND DESIGN

Problem Set 2

1 VTC Plot

The behavior of a 1-input 1-output device is measured by hooking a voltage source to its input and measuring the voltage at the output for several different input voltages, resulting in the following VTC plot,

Figure 1

We're interested in whether this device can serve as a legal combinational device that obeys the **static discipline**. For this device, obeying the static discipline means that,

If
$$V_{IN} \le V_{IL}$$
 then $V_{OUT} \ge V_{OH}$, and if $V_{IN} \ge V_{IH}$ then $V_{OUT} \le V_{OL}$ (1)

When answering the questions below, assume that all voltages are constrained to be in the range of 0V to 5V,

1. Can one choose a V_{OL} of 0V for this device? Explain.

Solution:

No. From the plot, it can be seen that V_{OUT} can never reach below 0.5V. If V_{OL} is chosen to be 0V, then the device doesn't satisfy the static discipline anymore.

2. What's the smallest V_{OL} one can choose and still the device obey the static discipline?

Solution:

0.5V. That is the lowest amount of V_{OUT} that the device can produce.

3. Assuming that we want to have 0.5V noise margins for both "0" and "1" values, what are the appropriate voltage levels for V_{OL} , V_{IL} , V_{IH} , and V_{OH} so that the device obeys the static discipline? Hint: there are many choices. Just choose the one that obeys the static discipline and the NM constraint.

Solution:

We can choose $V_{OL} = 0.5V$ from the graph, since the device is capable of producing such low voltage. With NM of 0.5V, that means that $V_{IL} = V_{OL} + 0.5V = 1V$. From the graph, we can also choose $V_{OH} = 4V$, as the part with the highest gain in the middle of the graph can most probably be the forbidden zone. Therefore, $V_{IH} = V_{OH} - 0.5V = 3.5V$.

4. What device is this called?

Solution:

This device is an inverter, since a high input produces a low output and vice versa.

2 Inverter Madness

1. The following graph plots the VTC for a device with one input and one output. Can this device be used as a combinational device in logic family with 0.75 noise margins?

Solution:

No. This device gain is ≤ 1 , hence it cannot be used as a combinational device.

Figure 2

2. You are designing a new logic family and trying to decide on values of the four parameters: V_{OL} , V_{IL} , V_{IH} , and V_{OH} that lead to non-zero noise margins for various possible inverter designs. Four proposed inverter designs exhibit the VTC shown in the diagrams below. For each design, either specify four suitable values of V_{OL} , V_{IL} , V_{IH} , and V_{OH} or explain why no values can obey the static discipline.

Hint: you may want to start by choosing NM to be 0.5V for ease of calculation.

Solution:

(B) and (C) cannot be used as inverter (combinational device) as its gain is ≤ 1 .

For (A), choose NM = 0.5V, then $V_{OL} = 1V$, $V_{IL} = 1.5V$, $V_{IH} = 5V$, and $V_{OH} = 5.5V$.

For (D), choose NM = 0.5V, then $V_{OL} = 0.5V$, $V_{IL} = 1V$, $V_{IH} = 5$, and $V_{OH} = 5.5V$.

Figure 3

3 Static Discipline

1. Consider a combinational *buffer* with one input and one output. Suppose we set its input to some voltage V_{IN} , wait for the device to reach a steady state, then measure the voltage on its output V_{OUT} and find out $V_{OUT} < V_{OL}$. What can we say about V_{IN} ?

Solution:

We have a valid *low* output, but that doesnt mean that we have a valid *low* input. However we know for sure that input cannot be higher than V_{IH} because static discipline requires the output to be higher than V_{OH} if this is the case for a buffer. Hence, the only thing we can infer is that $V_{IN} < V_{IH}$ (means input voltage is either a valid low or an invalid value).

2. Now consider an inverter. Suppose we set its input to some voltage V_{IN} , wait for the device to reach a steady state, then measure the voltage on its output V_{OUT} , and find $V_{OUT} > V_{OH}$. What can we say about V_{IN} ?

Solution:

We have a valid *high* output, but that doesnt mean that we have a valid *low* input. **Static discipline** states that *given a valid input, the device is always able to give a valid output,* but it does not mean that the reverse is true, i.e: invalid

input does NOT have to give out invalid output.

However we know for sure that input cannot be higher than V_{IH} because static discipline requires the output to be lower than V_{OH} if this is the case for an inverter. Hence, the only thing we can infer is that $V_{IN} < V_{IH}$ (means input voltage is either a valid low or an invalid value).

4 VTC Analysis

Figure 4: VTC Plot

Which of the following specification(s) does not obey the static discipline? Select all that apply.

1.
$$V_{IL} = 0.4V$$
, $V_{IH} = 3.1V$, $V_{OL} = 0.2V$, $V_{OH} = 4.2V$

2.
$$V_{IL} = 0.5V$$
, $V_{IH} = 3V$, $V_{OL} = 0.3V$, $V_{OH} = 4V$

3.
$$V_{IL} = 0.2V$$
, $V_{IH} = 3V$, $V_{OL} = 0.4V$, $V_{OH} = 4.2V$

4.
$$V_{IL} = 0.5V$$
, $V_{IH} = 4V$, $V_{OL} = 0V$, $V_{OH} = 3.5V$

5.
$$V_{IL} = 0.5 V$$
, $V_{IH} = 3.5 V$, $V_{OL} = 0 V$, $V_{OH} = 4 V$

Solution:

All does **not** obey the static discipline. You may easily check whether the device is able to provide the prescribed V_{OH} given a corresponding V_{IH} in the options, and whether it is able to provide as well the given V_{OL} given a coresponding V_{IL} in the options from tracing the graph.