Harvard | Choose Your Own Project | Swedish Data Crime

Edy Susanto

Table of Contents

Part 1 Introduction

Crime analysis and prevention is a systematic approach for identifying and analyzing patterns and trends in crime. Our system can predict regions which have high probability for crime occurrence and can visualize crime prone areas.

Part 2 Project Goal

This project will mainly focus on creating a Classification Machine Learning System using Swedish Data Crime. This data set contains statistics on reported crimes in Sweden (by 100.000) from 1950 to 2015. It contains the following columns:

crimes.total: total number of reported crimes crimes.penal.code: total number of reported crimes against the criminal code crimes.person: total number of reported crimes against a person murder: total number of reported murder sexual.offences: total number of reported sexual offences rape: total number of reported rapes assault: total number of reported aggravated assaults stealing.general: total number of reported crimes involving stealing or robbery robbery: total number of reported armed robberies burglary: total number of reported armed burglaries vehicle.theft: total number of reported vehicle thefts house.theft: total number of reported theft inside a house shop.theft: total number of reported theft from a vehicle criminal.damage: total number of reported criminal damages other.penal.crimes: number of other penal crime offenses fraud: total number of reported frauds narcotics: total number of reported narcotics abuses drunk.driving: total number of reported drunk driving incidents Year: the year population: the total estimated population of Sweden at the time

Link for the datasets is https://www.kaggle.com/mguzmann/swedishcrime

Part 3.Load Requirement Packages

Load all packages dan all libraries into RStudio

Part 2 Load Dataset

##		Year	<pre>crimes.total</pre>	<pre>crimes.penal.code</pre>	<pre>crimes.person</pre>	murder	assault
##	1	1950	2784	2306	120	1	105
##	2	1951	3284	2754	125	1	109
##	3	1952	3160	2608	119	1	104

		1953 1954	2909 3028				589 791			119 126	1 1	105 107
##	6	1955	3357			31	L01			135	1	118
##		sexual.offens	ses ra	ре	stealing	.ger	neral	burg	glary	/ house.t	heft	vehicle.
the				•				,				
##	1		40	5			1578		295	5	NA	
	Ν	Α										
##	2		45	6			1899		342	2	NA	
	N	Α										
##			39	4			1846		372	<u>)</u>	NA	
		Α										
##			45	5			1929		361	_	NA	
		Α		_								
##			41	5			1981		393	3	NA	
		Α		_			2254		456			
##		ι Δ	44	5			2254		459)	NA	
щщ		A	مطاح ما		ahan +ha	ъ.	م ما ما م	£.			4	~~
## ##		out.of.vehicl	te.tne	NA.	snop. the	ett r NA	.opper	·у ті З	209	CLIMINAT	· uallia	72
##				NA		NA NA		3	310			72 73
##				NA		NA		3	217			82
##				NA		NA		4	209			88
##				NA		NA		4	236			.01
##				NA		NA		4	236			.11
##		other.penal.d	rimes				nk.dri			ulation	_	
##			477		0	•		49		7014000		
##			536		0			66		7073000		
##	3		553		0			78		7125000		
##	4		226)	0			9:	1	7171000		
##	5		237	,	0			103	3	7213000		
##	6		255	5	0			125	5	7262000		

Part 4.Data exploration and visualization

The dataset is a data table made of 21 (columns) and a total of observations (67 rows).

##	# /	A tibb	le: 66 x 21				
##		Year	crimes.total	<pre>crimes.penal.code</pre>	<pre>crimes.person</pre>	murder	assault
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
##	1	1950	2784	2306	120	1	105
##	2	1951	3284	2754	125	1	109
##	3	1952	3160	2608	119	1	104
##	4	1953	2909	2689	119	1	105
##	5	1954	3028	2791	126	1	107
##	6	1955	3357	3101	135	1	118
##	7	1956	3488	3215	133	1	116
##	8	1957	3774	3520	133	1	116
##	9	1958	4064	3791	127	1	113
##	10	1959	4033	3733	125	1	110

```
## # ... with 56 more rows, and 15 more variables: sexual.offenses <in
t>,
## # rape <int>, stealing.general <int>, burglary <int>, house.theft
<int>,
## # vehicle.theft <int>, out.of.vehicle.theft <int>, shop.theft <in
t>,
## # robbery <int>, fraud <int>, criminal.damage <int>,
## # other.penal.crimes <int>, narcotics <int>, drunk.driving <int>,
## # population <int>
```

Number of NA into the dataset:

##	Year	crimes.total	crimes.penal.code
##	0	0	0
##	crimes.person	murder	assault
##	0	0	0
##	sexual.offenses	rape	stealing.general
##	0	0	0
##	burglary	house.theft	vehicle.theft
##	0	15	7
##	out.of.vehicle.theft	shop.theft	robbery
##	15	15	0
##	fraud	criminal.damage	other.penal.crimes
##	0	0	0
##	narcotics	drunk.driving	population
##	4	0	0

There No Missing Value on Data Set

Show Proportion Crimes Data On Plot

We can see that there are total crimes in Swedish is increase by Year

Part 5 Pre Data Processing

Principal Component Analysis(PCA)

We can get variable importance without using a predictive model using information theory, ordered from highest to lowest:

```
variable_importance = var_rank_info(Crimes, "Year")
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
     # Simple named list:
##
     list(mean = mean, median = median)
##
##
    # Auto named with `tibble::lst()`:
##
##
    tibble::lst(mean, median)
##
##
    # Using lambdas
     list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last lifecycle warnings()` to see where this warnin
g was generated.
## Warning in KL.plugin(freqs2d, freqs.null, unit = unit): Vanishing va
lue(s) in
## argument freqs2!
## Warning in KL.plugin(freqs2d, freqs.null, unit = unit): Vanishing va
lue(s) in
## argument freqs2!
## Warning in KL.plugin(freqs2d, freqs.null, unit = unit): Vanishing va
lue(s) in
## argument freqs2!
## Warning in KL.plugin(freqs2d, freqs.null, unit = unit): Vanishing va
lue(s) in
## argument freqs2!
## Warning in KL.plugin(freqs2d, freqs.null, unit = unit): Vanishing va
lue(s) in
## argument freqs2!
variable importance
##
                         var
                                      шi
                                               ig
                                en
## en9
                 house.theft 5.672 5.383 5.755083 1.069099
## en12
                  shop.theft 5.672 5.516 5.887531 1.067440
## en11 out.of.vehicle.theft 5.672 5.672 6.044394 1.065575
               vehicle.theft 5.883 5.679 5.841004 1.028481
## en10
```

```
## en17
                   narcotics 5.954 5.438 5.528265 1.016586
               crimes.person 6.044 5.893 5.892879 1.000000
## en2
## en8
                    burglary 6.044 5.953 5.953485 1.000000
## en14
                       fraud 6.044 5.923 5.923182 1.000000
## en16
          other.penal.crimes 6.044 5.953 5.953485 1.000000
## en
                crimes.total 6.044 6.044 6.044394 1.000000
## en1
           crimes.penal.code 6.044 6.014 6.014091 1.000000
                     assault 6.044 5.832 5.832273 1.000000
## en4
            stealing.general 6.044 6.044 6.044394 1.000000
## en7
## en15
             criminal.damage 6.044 6.014 6.014091 1.000000
               drunk.driving 6.044 5.863 5.862576 1.000000
## en18
## en19
                  population 6.044 6.044 6.044394 1.000000
## en5
             sexual.offenses 6.044 5.368 5.368194 1.000000
## en6
                        rape 6.044 4.517 4.517212 1.000000
## en13
                     robbery 6.044 5.266 5.265847 1.000000
                      murder 6.044 1.502 1.502098 1.000000
## en3
ggplot(variable_importance, aes(x = reorder(var, gr), y = gr, fill = va
r)) +
  geom_bar(stat = "identity") +
  coord_flip() +
  theme_bw() +
  xlab("") +
  ylab("Variable Importance (based on Information Gain)") +
  guides(fill = FALSE)
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides
(\langle scale \rangle =
## "none")` instead.
```


As we can see in the graphic, the displacement variable is the most important for our predictive model. We can see that the most crimes happen in Swedish is House Theft

```
set.seed(1)
pca <- prcomp(Crimes %>% select(Year), scale = TRUE, center = TRUE)
str(pca)
## List of 5
## $ sdev
              : num 1
## $ rotation: num [1, 1] 1
     ... attr(*, "dimnames")=List of 2
     .. ..$ : chr "Year"
##
##
     .. ..$ : chr "PC1"
##
   $ center : Named num 1982
    ... attr(*, "names")= chr "Year"
##
             : Named num 19.2
##
    $ scale
     ... attr(*, "names")= chr "Year"
##
             : num [1:66, 1] -1.69 -1.64 -1.59 -1.54 -1.48 ...
##
   $ x
     ... attr(*, "dimnames")=List of 2
##
##
     .. ..$ : NULL
     .. ..$ : chr "PC1"
##
    - attr(*, "class")= chr "prcomp"
summary(pca)
```

```
## Importance of components:
##
                           PC1
## Standard deviation
                              1
## Proportion of Variance
                             1
## Cumulative Proportion
set.seed(1)
# set.seed(1, sample.kind="Rounding") if using R 3.5.3 or later
test_index <- createDataPartition(y = Crimes$Year,</pre>
                                    times = 1, p = 0.2, list = FALSE)
edx <- Crimes[-test index,]
validation <- Crimes[test_index,]</pre>
#We will split edx data into train_set and test_set.
set.seed(1)
test index <- createDataPartition(y = edx$Year,</pre>
                                    times = 1, p = 0.2,
                                    list = FALSE) # test_set 20%
train set <- edx[-test index,]</pre>
test_set <- edx[test_index,]</pre>
Part 6 Building Model
###
models <- c("glm", "lda", "naive_bayes", "svmLinear",</pre>
             "gamLoess", "qda", "knn", "kknn",
"gam", "rf", "ranger", "wsrf", "mlp")
control <- trainControl(method = "cv", # cross validation</pre>
                         number = 10, # 10 k-folds or number
                                   # of resampling iterations
                         repeats = 5)
## Warning: `repeats` has no meaning for this resampling method.
data train <- train set # first value for data parameter
data test <- test set # first we'll use train and test dataset
true_value <- test_set$Year # true outcome from test_set</pre>
Part 7 Prediction
#####
model <- train(Year ~ crimes.total,</pre>
               data = Crimes,
               method = "lm")
model
## Linear Regression
```

```
## 66 samples
## 1 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 66, 66, 66, 66, 66, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                          MAE
     5.389604 0.9234798 4.508358
##
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
fitControl <- trainControl(method = "repeatedcv",</pre>
                           number = 10,  # number of folds
                           repeats = 5)
                                          # repeated five times
model.cv <- train(Year ~ crimes.total,</pre>
               data = Crimes,
               method = "lm", # now we're using the Lm method
               trControl = fitControl)
model.cv
## Linear Regression
##
## 66 samples
## 1 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 59, 58, 60, 61, 60, 60, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                          MAE
##
     5.356584 0.9253796 4.548874
## Tuning parameter 'intercept' was held constant at a value of TRUE
predictions <- predict(model.cv, Crimes)</pre>
predictions
                   2
                                              5
##
         1
                            3
                                     4
                                                       6
                                                                7
## 1950.668 1952.848 1952.307 1951.213 1951.732 1953.166 1953.737 1954.
984
          9
##
                  10
                           11
                                    12
                                             13
                                                      14
                                                               15
## 1956.249 1956.114 1955.891 1956.441 1957.117 1958.002 1959.454 1963.
```

823										
## 17	18	19	20	21	22	23				
24										
## 1964.966	1966.527	1969.775	1971.977	1974.096	1977.005	1975.631	1973.			
652										
## 25	26	27	28	29	30	31				
32										
## 1974.611	1978.736	1980.912	1983.149	1980.851	1981.435	1987.234	1987.			
570										
## 33	34	35	36	37	38	39				
40										
## 1990.056	1988.739	1989.951	1991.704	1995.593	1995.301	1994.669	1997.			
303		4.0								
## 41	42	43	44	45	46	47				
48	1000 201	1000 650	1000 100	4002 775	4005 435	1006 106	1007			
## 2000.621	1999.204	1998.650	1998.109	1993.775	1995.135	1996.496	1997.			
630	F0	F.4	F2	F.3	Ε 4					
## 49	50	51	52	53	54	55				
56 ## 1996.714	1007 027	1000 240	1006 927	1000 105	1000 F61	1000 072	1000			
## 1996.714 497	1997.037	1998.240	1990.827	1996.105	1999.561	1999.073	1996.			
## 57	58	59	60	61	62	63				
## 57 64	36	39	00	01	02	63				
## 1997.351	2000 705	2002 664	2004 275	2002 212	2002 002	2002 775	2002			
204	2000.793	2003.004	2004.373	2002.212	2003.882	2002.773	2002.			
## 65	66									
## 2003.455										
mm 2005.455	2003.420									
results <-	results <- sort(predictions)									
barchart(pr	٠.	•								
· · · · · · · · · · · · · · · · · · ·										

barplot.default(predictions)

plot.default(predictions)

Part 8

Conclusion

Our Model Has succesfully made with RMSE 5.38960, which is valid for prediction in SWedish Data Crime.