

Asymmetric encryption for confidentiality

Bob encrypts a message m with Alice's public key KpA \rightarrow Nobody can decrypt m, except Alice with her private key Ks_A ✓ Confidentiality without the need to exchange a secret key

Ks_A, Kp_A

 $D_{Ksa}(E_{Kpa}(m)) = m$

Asymmetric encryption for confidentiality

Bob encrypts a message m with Alice's public key KpA

- Nobody can decrypt m, except Alice with her private key KsA
- ✓ Confidentiality without the need to exchange a secret key

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA

- Everybody can decrypt m using Alice's public key KpA
- ✓ Authentication with non-repudiation (a.k.a Digital Signature)