A máquina SECD

February 25, 2019

O que é a máquina SECD?

- Um interpretador da linguagem funcional ISWIM (Landin, 1964)
- Máquina virtual para compilação LISP/Scheme (Henderson, 1980)
- Utilizada em implementações reais (LispMe no Palm Pilot)
- Desenhada para linguagens call-by-value
- Pode ser modificada para lazy evaluation (embora existam alternativas mais eficientes)

Máquina abstracta ou virtual?

- A SECD original interpreta directamente termos de sintaxe abstracta (máquina abstracta)
- Vamos apresentar uma máquina que interpreta pseudo-instruções (máquina virtual)
- Omitimos:
 - estruturas de dados (listas, tuplos, etc.);
 - escolha de representações concretas em memória;
 - tradução das pseudo-instruções para código-máquina real;
 - ambiente necessário para execução: alocação de memória, *garbage collection*, I/O...

Bibliografia

- Capítulo 6 de Functional Programming: Application and Implementation, Henderson, 1980, Prentice-Hall International.
- Capítulo 7 de The Architecture of Symbolic Computers, Kogge, 1991, McGraw-Hill International.

SECD: Stack, Environment, Control & Dump

A configuração da máquina é um quinteto

$$\langle s, e, c, d, m \rangle$$

- s pilha de valores temporários (stack);
- e pilha de valores das variáveis livres (environment);
- c sequência de instruções (control);
- d pilha de continuações (dump);
- *m* memória (*closures*).

Resolução de nomes

Durante compilação vamos associar nomes de variáveis a *índices* no ambiente.

Interpretador

termo:
$$x + y$$
 ambiente: $[x \mapsto 23, y \mapsto 42]$

Compilador

termo:
$$x+y$$
 tabela de símbolos: $[x\mapsto 0, y\mapsto 1]$ compilação código gerado: $[LD\ 0, LD\ 1, ADD]$ ambiente: $[23,42]$ execução

Notação de De Bruijn

Identifica as variáveis pela profundidade do ligador λ :

$$\lambda x$$
. $(\lambda y$. y $x)$ x λ $(\lambda$ 1 2) 1

Os ambiente passam a ser apenas listas de valores:

$$[v_1, v_2, \ldots, v_i, \ldots, v_n]$$

Cada variável é associada a um índice i.

Closures

Valores funcionais são representados por *closures*, e.g.

$$(\underbrace{\lambda y. x + y}_{\lambda\text{-termo}}, \underbrace{[x \mapsto 2]}_{\text{ambiente}})$$

Na máquina SECD os λ -termos são traduzido para código compilado:

Closures

Representamos a memória como uma função parcial que associa endereços a *closures*:

Store = Addr \rightarrow Closure

A função next dá o próximo endereço livre:

next :: Store \rightarrow Addr

Pilha de temporários

Os operandos e resultado de instruções são passados na pilha de temporários.

A pilha é uma lista de valores:

```
Stack = [Value]

[] pilha vazia

v : vs v topo da pilha, vs resto da pilha
```

Os valores são inteiros ou endereços de *closures*:

```
v \in Value = n \in Int
| a \in Addr
```


Pilha de continuações

A pilha de continuações é uma lista de trios (s, e, c):

 $\mathsf{Dump} = [(\mathsf{Stack}, \mathsf{Env}, \mathsf{Code})]$

Guarda temporariamente os registos da máquina durante a chamada de funções.

Conjunto de pseudo-instruções

LD n load variable

LDC n load constant

LDF c load function

LDRF c load recursive
function

AP apply

RTN return

SEL c c' select
zero/non-zero

JOIN join main control
ADD add
SUB subtract
MUL multiply
HALT halt execution

Nota: a SECD descrita no livro de Henderson tem mais instruções.

Exemplos de compilação

```
1 + (2 \times 3) [LDC 1, LDC 2, LDC 3, MUL, ADD]

\lambda x. x + 1 [LDF [LD 0, LDC 1, ADD, RTN]]

\lambda x. ifzero x 1 0

[LDF [LD 0, SEL [LDC 1, JOIN] [LDC 0, JOIN], RTN]]
```

Compilação e execução de instruções

O compilador é uma função

$$compile :: Term \rightarrow Symtable \rightarrow Code$$

A tabela de símbolos é uma lista; cada identificador é associado ao seu índice na lista.

Cada instrução é definida por uma transição de estado:

$$\underbrace{\langle s, e, c, d, m \rangle}_{\text{configuração actual}} \longrightarrow \underbrace{\langle s', e', c', d', m' \rangle}_{\text{configuração seguinte}}$$

Variáveis, constantes e operações aritméticas

```
compile n \text{ sym} = [LDC n]
        compile x \text{ sym} = [LD i] onde i = \text{elemIndex } x \text{ sym}
compile (e_1 + e_2) sym = compile e_1 sym ++ compile e_2 sym
                              ++ [ADD]
compile (e_1 - e_2) sym = compile e_1 sym ++ compile e_2 sym
                              ++ [SUB]
                         etc.
```

Execução

$$\langle s, e, (\mathsf{LD} \, i) : c, \, d, \, m \rangle \longrightarrow \langle v_i : s, \, e, \, c, \, d, \, m \rangle,$$
 onde $e = [v_0, \, v_1, \, \ldots, \, v_i, \, \ldots]$
$$\langle s, \, e, \, (\mathsf{LDC} \, n) : c, \, d, \, m \rangle \longrightarrow \langle n : s, \, e, \, c, \, d, \, m \rangle$$

$$\langle v_2 : v_1 : s, \, e, \, \mathsf{ADD} : c, \, d, \, m \rangle \longrightarrow \langle (v_1 + v_2) : s, \, e, \, c, \, d, \, m \rangle$$

$$\langle v_2 : v_1 : s, \, e, \, \mathsf{SUB} : c, \, d, \, m \rangle \longrightarrow \langle (v_1 - v_2) : s, \, e, \, c, \, d, \, m \rangle$$

$$\langle v_2 : v_1 : s, \, e, \, \mathsf{MUL} : c, \, d, \, m \rangle \longrightarrow \langle (v_1 \times v_2) : s, \, e, \, c, \, d, \, m \rangle$$

Abstração e aplicação

λx. e

- Constrói uma nova closure;
- Deixa o endereço do resultado na pilha.

$(e_1 e_2)$

- Avalia e₁ (obtém uma closure);
- Avalia e₂ (obtém o valor do argumento);
- Guarda o contexto de execução na dump;
- Executa o código da closure;
- Recupera o contexto de execução.

Compilação

```
compile (\lambda x. e) sym = [LDF (compile <math>e \ sym' ++ [RTN])]
onde sym' = extend \ sym \ x
```

Execução

$$\langle s, e, (\mathsf{LDF}\ c') : c, d, m \rangle \longrightarrow \langle a : s, e, c, d, m[a \mapsto (c', e)] \rangle$$
 onde $a = \mathsf{next}\ m$

$$\langle v:a:s, e, AP:c, d, m\rangle \longrightarrow \langle [], v:e', c', (s,e,c):d, m\rangle$$

se $m(a)=(c',e')$

$$\langle v: s, e, \mathsf{RTN}: c, (s', e', c'): d, m \rangle \longrightarrow \langle v: s', e', c', d, m \rangle$$

Condicional

ifzero e_0 e_1 e_2

- Avalia e₀ (resultado deve ser um inteiro);
- Quarda o contexto de execução na dump
- Se topo da pilha é 0 avalia e₁; caso contrário, avalia e₂;
- Recupera o contexto de execução guardado.

Compilação

```
compile (if e_0 e_1 e_2) sym = compile e_0 sym ++ [SEL c_1 c_2] onde c_1 = compile e_1 sym ++ [JOIN] c_2 = compile e_2 sym ++ [JOIN]
```

Execução

Definições locais

Solução simples: traduzir como uma aplicação.

compile (**let**
$$x = e_1$$
 in e_2) $sym = compile ((\lambda x. e_2) e_1) sym$

Alternativa com optimização: ver os livros do Henderson e Kogge.

Compilação do operador ponto-fixo

```
compile (fix \lambda f. \lambda x. e) sym = [LDRF (compile <math>e \ sym' ++ [RTN])]
onde sym' = extend (extend <math>sym \ f) \ x
```

Execução

Constrói uma closure cíclica:

$$\langle s, e, (\mathsf{LDRF}\ c') : c, d, m \rangle \longrightarrow \langle a : s, e, c, d, m' \rangle$$

onde $a = next(m)$
 $m' = m[a \mapsto (c', a : e)]$

Nota: a SECD apresentado no livro de Henderson usa duas instruções (DUM/RAP) para construir *closures* cíclicas.

Mais informações

Muita informação e implementações na web...

- Wikipedia
- SECD mania: http//skelet.ludost.net/sec
- A Rational Deconstruction of Landin's SECD Machine,
 Olivier Danvy, BRICS research report

Exercícios (1)

Compilar para a máquina SECD e executar no interpretador:

let
$$x = 42$$
 in $2 * x$ (1)

$$\lambda x. \lambda y.$$
 ifzero $(x - y)$ 1 else 0 (2)

let
$$fib = \mathbf{fix} \ \lambda f. \ \lambda n.$$
 if $\mathbf{zero} \ (n-1) \ 1$ (if $\mathbf{zero} \ (n-2) \ 1$ (f $(n-1) + f \ (n-2)$)) in $fib \ 3$

Exercícios (2)

Modificar o interpretador da SECD para reportar o tamanho máximos da pilha.