Tres enfoques para un problema Partícula Cargada en un Campo Magnético

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

28 de mayo de 2025

Agenda

- El problema
- Pormalismo Hamiltoniano
- Sección
- Recapitulando

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

• El lagrangiano del sistema

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + q\mathbf{A} \cdot \dot{\mathbf{r}} \equiv \mathcal{L}(x, y, \dot{x}, \dot{y}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$$

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

• El lagrangiano del sistema

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + q\mathbf{A} \cdot \dot{\mathbf{r}} \equiv \mathcal{L}(x, y, \dot{x}, \dot{y}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$$

Ecuaciones de Euler-Lagrange

- Para x: $\frac{d}{d\dot{t}}(m\dot{x}) qB\dot{y} = 0 \Rightarrow m\ddot{x} = qB\dot{y}$
- Para y: $\frac{d}{dt}(m\dot{y} + qBx) = 0 \Rightarrow m\ddot{y} = -qB\dot{x}$
- Sistema resultante: $\ddot{x} = \omega_c \dot{y}, \quad \ddot{y} = -\omega_c \dot{x}$ Dos ecuaciones acopladas, donde $\omega_c = \frac{qB}{m}$ es frecuencia de ciclotrón
- Derivando: $\ddot{x} = \omega_c \ddot{y} = -\omega_c^2 \dot{x} \Rightarrow \ddot{x} + \omega_c^2 x = 0$, también $\ddot{y} + \omega_c^2 y = 0$
- Ecuaciones de oscilador armónico para x(t) y y(t) con solución
- $x(t) = A\cos(\omega_c t) + B\sin(\omega_c t)$ y $y(t) = C\cos(\omega_c t) + D\sin(\omega_c t)$
- La partícula describe una órbita circular con $|\mathbf{v}|=$ cte y $R=\frac{v_0}{\omega_c}$

• El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} - \mathcal{L}$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Con $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Con $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$
- Entonces $\mathcal{H}=rac{p_x^2}{2m}+rac{1}{2m}(p_y-qBx)^2$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Con $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$
- Entonces $\mathcal{H} = \frac{p_x^2}{2m} + \frac{1}{2m}(p_y qBx)^2$
- Las Ecuaciones de Hamilton $\dot{x} = \frac{\partial H}{\partial p_x} = \frac{p_x}{m} \Rightarrow \ddot{x} = \frac{\dot{p}_x}{m}$ $\dot{p}_x = -\frac{\partial H}{\partial x} = -\frac{qB}{m}(p_y - qBx); \quad \dot{y} = \frac{\partial H}{\partial p_y} = \frac{p_y - qBx}{m} \Rightarrow \ddot{y} = \frac{\dot{p}_y - qB\dot{x}}{m};$ finalmente $\dot{p}_y = -\frac{\partial H}{\partial y} = 0 \Rightarrow p_y = \text{cte}$

Título transparencia

Recapitulando

En presentación consideramos

