Filter Design Project

Jackson Spray

CSE 3313 - 001

December 2021

Table of Contents

Introduction	3
Design	3
Results	4

Introduction

In this project, I designed a Butterworth Lowpass Filter to remove unwanted noise from an audio file from the movie *Airplane!* (1980) using the MATLAB software.

Design

First I read the data of the audio file with a sampling frequency. Then, I used the graph of the Discrete Fourier Transform (DFT) visually to determine what values to use for the end of the passband (ωp) and the beginning of the stopband (ωs) .

My initial values for ωp and ωs were not accurate, but I adjusted them to get values that produced a sufficient output. I repeated this process for δp and δs . I then used the values δp and δs to get the values for k_p and k_s . I then used my previous calculations to get Ω_p and Ω_s .

Using k_p , k_s , Ω_p , and Ω_s , I calculated my filter order (N). And adding this value into my data, I calculated my cutoff frequency (Ω_c).

To start applying the filter, I plugged my cutoff frequency and the filter order into $H_a(S)$.

Results

To see the final results, I compare the DFT vs Frequency graph before filtering to itself after filtering, as well as listening to the audio before and after filtering.

Figure 1 - DFT vs Frequency (Before Filtering)

Figure 2 - DFT vs Frequency (After Filtering)

Figure 3 - Normalized DFT (Before Filtering)

Figure 4 - Logarithmic Gain of Frequency Response

