Smolarkiewicz

A Simple Positive Definite Advection Scheme with small Implicit Diffusion

Gerhard Burger Jelmer Wolterink

Scientific Computing Utrecht University

Project presentations SOAC, 2011

Outline

Outline

The scheme We start with the following upstream advection equation on staggered grid:

$$\psi_{i}^{N+1} = \psi_{i}^{N} - \left(F\left(\psi_{i}^{N}, \psi_{i+1}^{N}, u_{i+1/2}^{N}\right) - F\left(\psi_{i-1}^{N}, \psi_{i}^{N}, u_{i-1/2}^{N}\right) \right),$$

where

$$\begin{split} F\left(\psi_{i}^{N},\psi_{i+1}^{N},u_{i+1/2}^{N}\right) &= \\ &\left(\left(u_{i+1/2}^{N}+u_{i+1/2}^{N}\right)\psi_{i}^{N}+\left(u_{i+1/2}^{N}-u_{i+1/2}^{N}\right)\psi_{i+1}^{N}\right) \frac{\Delta t}{2\Delta x}. \end{split}$$

Writing it out Inserting this and collecting terms gives us

$$\psi_{i}^{N+1} = \frac{\Delta t}{2\Delta x} \left(u_{i-1/2}^{N} + u_{i-1/2}^{N} \right) \psi_{i-1}^{N}$$

$$+ \left(1 - \frac{\Delta t}{2\Delta x} \left(u_{i+1/2}^{N} + u_{i+1/2}^{N} - u_{i-1/2}^{N} + u_{i-1/2}^{N} \right) \right) \psi_{i}^{N}$$

$$- \frac{\Delta t}{2\Delta x} \left(u_{i+1/2}^{N} - u_{i+1/2}^{N} \right) \psi_{i+1}^{N}$$

Writing it out We can write this as

$$\psi_i^{N+1} = \alpha_i \psi_{i-1}^N + \beta_i \psi_i^N + \gamma_i \psi_{i+1}^N, \quad \text{for } i = 1, \dots, M-1,$$

where we have that

$$\begin{split} \alpha_i &= \frac{\Delta t}{2\Delta x} \left(u_{i-1/2}^N + u_{i-1/2}^N \right), \\ \beta_i &= \left(1 - \frac{\Delta t}{2\Delta x} \left(u_{i+1/2}^N + u_{i+1/2}^N - u_{i-1/2}^N + u_{i-1/2}^N \right) \right), \\ \gamma_i &= -\frac{\Delta t}{2\Delta x} \left(u_{i+1/2}^N - u_{i+1/2}^N \right). \end{split}$$

Matrix form We can also write this in matrix form

$$\begin{bmatrix} \psi_1^{N+1} \\ \psi_2^{N+1} \\ \vdots \\ \psi_{M-1}^{N+1} \\ \psi_{M-1}^{N+1} \end{bmatrix} = \begin{bmatrix} \beta_1 & \gamma_1 & & & & \\ \alpha_2 & \beta_2 & \gamma_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & \alpha_{M-2} & \beta_{M-2} & \gamma_{M-2} \\ & & & \alpha_{M-1} & \beta_{M-1} \end{bmatrix} \begin{bmatrix} \psi_1^N \\ \psi_2^N \\ \vdots \\ \psi_{M-2}^N \\ \psi_{M-1}^N \end{bmatrix}$$

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

Outline

Outline

Outline

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.