

[영역] 5.기하

5-6-4.삼각형의 중선과 무게중심

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2016-08-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 삼각형의 중선

- 1) 삼각형의 중선: 삼각형에서 한 꼭짓점과 그 대변의 중점을 이은 선분
- 2) 중선의 성질
- (1) 삼각형의 중선은 그 삼각형의 넓이를 이등분한다.
- \Rightarrow \overline{AD} 가 중선이면 $\triangle ABD = \triangle ACD$
- (2) 점 P가 \overline{AD} 위의 점이면 $\triangle ABP = \triangle ACP$, $\triangle PBD = \triangle PCD$

2. 삼각형의 무게중심

- 1) 삼각형의 무게중심: 삼각형의 세 중선의 교점
- 2) 무게중심의 성질
- (1) 삼각형의 세 중선은 한 점(무게중심)에서 만난다.
- (2) 삼각형의 무게중심은 세 중선의 길이를 각 꼭짓점으로부터
- 2:1로 나눈다. $\Rightarrow \overline{AG}: \overline{GD} = \overline{BG}: \overline{GE} = \overline{CG}: \overline{GF} = 2:1$

3. 삼각형의 무게중심과 넓이

삼각형 ABC의 무게중심 G에서

1)
$$\triangle GAB = \triangle GBC = \triangle GCA = \frac{1}{3} \triangle ABC$$

2)
$$\triangle GAF = \triangle GBF = \triangle GBD = \triangle GCD = \triangle GCE = \triangle GAE = \frac{1}{6} \triangle ABC$$

4. 삼각형의 무게중심의 응용

평행사변형 ABCD에서 \overline{BC} 의 중점을 M, \overline{CD} 의 중점을 N이라 할 때

- 1) 점 P는 \triangle ABC의 무게중심 \Rightarrow \overline{BP} : $\overline{PO} = 2:1$
- 2) 점 Q는 \triangle ACD의 무게중심 \Rightarrow \overline{DQ} : \overline{QO} =2:1

3)
$$\overline{BP} = \overline{PQ} = \overline{QD}$$

4)
$$\overline{MN} = \frac{1}{2}\overline{BD}$$

5)
$$\triangle ABM = \frac{1}{4} \square ABCD$$

삼각형의 중선의 성질

 \square 다음 그림에서 $\overline{\mathrm{AD}}$ 가 $\triangle \mathrm{ABC}$ 의 중선이고 $\triangle \mathrm{ABD}$ 의 넓이 가 9 cm²일 때, 다음을 구하여라.

- △ADC의 넓이
- △ABC**의 넓이**
- 3. △EFC의 넓이

☑ 다음 그림에서 AD가 △ABC의 중선이고 △ABC의 넓이 가 24 cm²일 때, 다음을 구하여라.

- △ABD**의 넓이** 4.
- △ABE**의 넓이** 5.
- \square 다음 그림에서 \overline{AD} 가 $\triangle ABC$ 의 중선이고, 점 E는 \overline{AD} 의 중점일 때, 색칠한 부분의 넓이를 구하여라.
- 6. \triangle ABC = 14cm 2 **일 때**

7. \triangle ABC = 98cm 2 **일 때**

 \triangle ABD = 15cm 2 일 때 8.

9. \triangle ADC =24cm 2 **일 때**

10. \triangle ABC = 36cm 2 **일 때**

 \triangle ABC = 52cm 2 **일 때** 11.

12. \triangle ABC = 16 cm^2 **일** 때

 \triangle ABE=8cm 2 **일 때** 13.

14. $\triangle EBD = 7 cm^2$ 일 때

삼각형의 무게중심

 \square 다음 그림에서 점 \square G가 \square \square ABC의 무게중심일 때, \square 값을 구하여라.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

□ 다음 그림에서 점 G가 $\triangle ABC$ 의 무게중심이고, 점 G'은 $\triangle GBC$ 의 무게중심일 때, x의 값을 구하여라.

26.

27.

28.

29.

30.

☐ 다음 그림에서 AD는 △ABC의 중선이고, 점 G는 △ABC의 무게중심, 점 G'은 △GBC의 무게중심이다. GG'의 길이를 구하여라.

31.

32.

33.

35.

36.

37.

38.

39.

40.

☑ 다음 그림에서 점 G는 \triangle ABC의 무게중심이고, 평행인 선 분이 주어질 때, x, y의 값을 각각 구하여라.

41. $\overline{DE} // \overline{BC}$

42. $\overline{PR}//\overline{BC}$

43. $\overline{BC} // \overline{DE}$

☑ 다음 물음에 답하여라.

 \overline{AB} 의 길이를 구하여라.

45. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고, 점 G'가 $\triangle GBC$ 의 무게중심일 때, $\overline{GG'}$ 의 길이를 구하여라.

46. 다음 그림에서 점 G가 $\triangle ABC$ 의 무게중심이고, \overline{AD} $//\overline{EF}$ 일 때, \overline{AG} 의 길이를 구하여라.

47. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고 점 M은 \overline{DC} 의 중점이다. $\overline{DG} = 4cm$ 일 때, \overline{EM} 의 길이를 구하여라.

48. 점 G와 점 G'은 각각 \triangle ABC와 \triangle ACD의 무게중심이다. $\overline{BD}=15$ cm일 때, \overline{GG}' 의 길이를 구하여라.

49. 다음 그림에서 $\overline{BD} = \overline{CD}$ 이고, 점 G, G'은 각각 $\triangle ABD$, $\triangle ADC$ 의 무게중심이다. $\overline{AE} = 27 \text{cm}$, $\overline{AF} = 24 \text{cm}$, $\overline{BC} = 36 \text{cm}$ 일 때, $\Box GEFG'$ 의 둘레의 길이를 구하여라.

50. 점 G는 △ABC의 무게중심, 점 G'은 △DBC의 무게중심 이고, 점 M은 BC의 중점이다. AD=9cm일 때, GG'의 길이를 구하여라.

51. 다음 그림에서 점 G와 점 G'은 각각 $\triangle ABD$ 와 $\triangle ADC$ 의 무게중심이다. $\overline{GG'} = 6 \text{cm}$ 이고 $\triangle ABC$ 가 정삼각형일 때 $\triangle ABC$ 의 둘레의 길이를 구하여라.

삼각형의 무게중심과 넓이

☑ 다음 그림에서 점 G가 △ABC의 무게중심이고, △ABC의 넓이가 $24 \, \mathrm{cm}^2$ 일 때, 색칠한 부분의 넓이를 구하여라.

52.

53.

54.

55.

56.

57.

58.

☑ 다음 그림에서 점 G가 △ABC의 무게중심이다. 색칠한 도 형의 넓이가 다음과 같을 때, △ABC의 넓이를 구하여라.

59.

60.

- ☑ 다음 그림에서 점 G는 △ABC의 무게중심이고, △ABC의 넓이가 주어질 때, 색칠한 부분의 넓이를 구하여라.
- 62. \triangle ABC = 54cm²**일** 때

 \triangle ABC = $36 \, \text{cm}^2$ **일 때** 63.

64. \triangle ABC = 36 cm^2 일 때

 \triangle ABC = 96cm 2 **일** 때 65.

 \triangle ABC = 20cm 2 **일** 때 66.

67. △ABC=18cm²**일** 때

 \triangle ABC=72cm 2 **일** 때 68.

69.

☑ 다음 그림에서 점 G가 △ABC의 무게중심이고, △ABC의 넓이가 $18 \, \mathrm{cm}^2$ 일 때, 색칠한 부분의 넓이를 구하여라.

71.

72.

73.

(단, 점 G'은 $\triangle GBC$ 의 무게중심)

74.

(단, 점 G'은 $\triangle GBC$ 의 무게중심)

삼각형의 무게중심의 응용

☑ 다음 그림과 같은 평행사변형 ABCD에서 x의 값을 구하여 라.(단, 점 ○은 두 대각선의 교점이다.)

75.

76.

77.

78.

80.

85.

81.

86.

82.

87.

83.

88.

84.

☑ 다음 그림의 평행사변형 ABCD의 넓이가 48 cm²일 때, 색 칠한 부분의 넓이를 구하여라.

90.

색칠한 부분의 넓이를 구하여라.

95.

☑ 다음 그림과 같은 평행사변형 ABCD의 넓이가 72cm²일 때,

91.

96.

92.

97.

93.

98.

☑ 다음 그림과 같은 평행사변형 ABCD의 넓이가 주어질 때, 색칠한 부분의 넓이를 구하여라.

99. $\square ABCD = 48 \text{ cm}^2$

 100_{\circ} $\square ABCD = 30 \text{cm}^2$

101 \square ABCD=108 cm²

102 \square ABCD=24 cm²

 $103 \cdot \Delta AGH = 8 \text{ cm}^2$

104. $\square ABCD = 96 \text{ cm}^2$

105 \square ABCD=48 cm²

- 1) $9 \, \text{cm}^2$
- $\Rightarrow \triangle ADC = \triangle ABD = 9 \text{ cm}^2$
- 2) 18 cm²
- $\Rightarrow \triangle ABC = \triangle ADC + \triangle ABD = 9 + 9 = 18 \text{ (cm}^2)$
- 3) 3 cm^2
- $\Rightarrow \Delta EFC = \frac{1}{3} \Delta ADC = \frac{1}{3} \times 9 = 3 \text{ (cm}^2)$
- $\Rightarrow \triangle ABD = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 24 = 12 \text{ (cm}^2\text{)}$
- 5) 6 cm²
- \Rightarrow $\triangle ABE = \frac{1}{2} \triangle ABD = \frac{1}{4} \triangle ABC = \frac{1}{4} \times 24 = 6 \text{ (cm}^2)$
- 6) 7cm²
- 7) 49cm²
- 8) 30cm²
- 9) 48cm²
- 10) 9cm²
- 11) 13cm²
- 12) 4 cm²
- $\Rightarrow \triangle ABE = \frac{1}{2} \triangle ABD = \frac{1}{2} \times \left(\frac{1}{2} \triangle ABC\right)$ $=\frac{1}{4}\Delta ABC = \frac{1}{4} \times 16 = 4 \text{ (cm}^2)$
- 13) 32cm²
- 14) 28cm²
- 15) 6
- 16) 12
- 17) $\frac{9}{2}$
- 18) 12
- 19) 4
- $\Rightarrow x = \frac{1}{3}\overline{AD} = \frac{1}{3} \times 12 = 4$

- ⇒ 점 D는 직각삼각형 ABC의 빗변의 중심이므로 외심이 다. 이 때, $\overline{AD} = \overline{BD} = \overline{CD}$ 이므로 $\overline{BD} = 6$ cm 이다. 따라서 $\overline{BG}:\overline{GD}=2:10$ 고, $x=\frac{2}{3}\times 6=4$ 이다.
- \Rightarrow 점 G가 \triangle ABC의 무게중심이므로 $\overline{AE} = \overline{EC}$ $\Delta {
 m ADC}$ 에서 $\overline{
 m AD}$ $//\overline{
 m EF}$ 이므로 삼각형의 중점 연결 정리

$$\overline{AD} = 2\overline{EF} = 2 \times 6 = 12$$

$$\therefore x = \overline{AG} = \frac{2}{3} \overline{AD} = \frac{2}{3} \times 12 = 8$$

- 22) $\frac{9}{2}$
- $\Rightarrow \overline{GD} = \frac{1}{2}\overline{AG} = 3$, $\overline{BG} : \overline{GE} = 2:1$ 이므로

$$2:3=3:x$$
 $\therefore x=\frac{9}{2}$

- 23) $\frac{16}{3}$
- \Rightarrow 점 G가 \triangle ABC의 무게중심이므로 $\overline{AE} = \overline{EC}$ ΔADC 에서 \overline{AD} $//\overline{EF}$ 이므로 삼각형의 중점 연결 정리 에 의해 $\overline{AD} = 2\overline{EF} = 2 \times 4 = 8$

$$\therefore x = \overline{AG} = \frac{2}{3}\overline{AD} = \frac{2}{3} \times 8 = \frac{16}{3}$$

- 24) 6
- \Rightarrow 점 G가 \triangle ABC의 무게중심이므로 $\overline{AE} = \overline{EB}$ $\triangle ABD에서 \overline{AD} // \overline{EF}$ 이므로 삼각형의 중점 연결 정리에 의해 $\overline{AD} = 2\overline{EF} = 2 \times 9 = 18$ $\therefore x = \overline{\text{GD}} = \frac{1}{3} \overline{\text{AD}} = \frac{1}{3} \times 18 = 6$
- \Rightarrow 점 G가 \triangle ABC의 무게중심이므로 $\overline{AE} = \overline{EC}$ $\overline{AD} = \frac{3}{2} \overline{AG} = \frac{3}{2} \times 4 = 6$

 $\Delta {
m ADC}$ 에서 $\overline{
m AD}$ $//\overline{
m EF}$ 이므로 삼각형의 중점 연결 정리

- $\therefore x = \overline{EF} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 6 = 3$
- 26) 4
- $\Rightarrow \overline{GD} = \frac{1}{3} \overline{AD} = \frac{1}{3} \times 18 = 6$
 - $\therefore x = \overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times 6 = 4$

27)
$$\frac{16}{3}$$

$$\Rightarrow \overline{GD} = \frac{1}{3}\overline{AD} = \frac{1}{3} \times 24 = 8$$

$$\therefore x = \overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times 8 = \frac{16}{3}$$

$$\Rightarrow \overline{GD} = \frac{3}{2}\overline{GG'} = \frac{3}{2} \times 6 = 9$$
$$\therefore x = \overline{AG} = 2\overline{GD} = 2 \times 9 = 18$$

$$\Rightarrow \overline{GD} = \frac{3}{2}\overline{GG'} = \frac{3}{2} \times 4 = 6$$
$$\therefore x = 3\overline{GD} = 3 \times 6 = 18$$

$$\Rightarrow \overline{GD} = 3\overline{G'D} = 3 \times 3 = 9$$
$$\therefore x = \overline{AD} = 3\overline{GD} = 3 \times 9 = 27$$

31)
$$\frac{28}{3}$$
 cm

$$Arr$$
 Arr Arr

또,
$$\overline{GG'}$$
: $\overline{G'D}$ =2:1이므로 $\overline{GG'}$ = $\frac{2}{3}$ ×14= $\frac{28}{3}$ (cm)이다.

$$ightharpoonup \overline{AG}: \overline{GD} = 2:1$$
이므로 $\overline{GD} = \frac{1}{3} \times 18 = 6 \text{ (cm)}$ 이다.

또,
$$\overline{GG'}$$
: $\overline{G'D}$ =2:1이므로 $\overline{GG'}$ = $\frac{2}{3}$ ×6=4(cm)이다.

33) 6cm

34)
$$\frac{16}{3}$$
 cm

$$\Rightarrow \overline{AG} \colon \overline{GD} = 2 : 1, \overline{GG'} \colon \overline{G'D} = 2 : 10 | \Gamma |.$$

AD=24cm일 때

$$\overline{\mathrm{GG'}} = \frac{2}{3}\overline{\mathrm{GD}} = \frac{2}{3} \times \frac{1}{3}\overline{\mathrm{AD}} = \frac{2}{9}\overline{\mathrm{AD}} = \frac{2}{9} \times 24 = \frac{16}{3}\left(\mathrm{cm}\right)$$

35) 12

$$\Rightarrow x = 6, y = \frac{2}{3} \times 9 = 6$$

$$\therefore x+y=12$$

36) 11.5

$$\Rightarrow x = 3 \times 2 = 6, y = \frac{11}{2} = 5.5$$

$$\therefore x+y=11.5$$

37) 8

$$\Rightarrow$$
 $\overline{AE} = \overline{CE}$ 이므로 $x = 5$ 이고, $\overline{AG} : \overline{GD} = 2 : 1$ 이므로

$$y = 3$$
이다. 이 때, $x + y = 8$ 이다.

38) 5

39) 31

$$ightharpoonup \overline{AG}$$
: \overline{GD} =2:1이므로 \overline{AG} =18cm이면 x =9이다.
또, \overline{BG} : \overline{EG} =2:1이므로 \overline{EG} =11cm이면 y =22이다.
 \therefore $x+y=31$

40) 14

$$\Rightarrow x = 4 \times 2 = 8, \ y = 9 \times \frac{2}{3} = 6$$
$$\therefore x + y = 14$$

41)
$$x = 6$$
, $y = 7$

42)
$$x = 5$$
, $y = 4$

$$ightarrow \overline{AG} : \overline{GQ} = 2:1$$
이므로 $\overline{AG} = 10$ cm 일 때, $x = 5$ 이다.
또, $\overline{BQ} = \overline{CQ}$, $\overline{AG} : \overline{AQ} = \overline{PG} : \overline{BQ} = 2:3$ 이므로 $2:3=y:6, y=4$ 이다.

43)
$$x = 5$$
, $y = \frac{10}{3}$

$$\Rightarrow x = \frac{1}{2} \times 10 = 5$$

$$y:5=2:3$$
 : $y=\frac{10}{3}$

44) 12 cm

$$\Rightarrow \overline{CD} = \frac{3}{2}\overline{CG} = \frac{3}{2} \times 4 = 6 \text{ (cm)}$$

이때, 직각삼각형의 빗변의 중점은 외심이므로

$$\overline{AD} = \overline{BD} = \overline{CD} = 6cm$$

$$\therefore \overline{AB} = \overline{AD} + \overline{BD} = 6 + 6 = 12 \text{ (cm)}$$

45)
$$\frac{8}{3}$$
 cm

$$\Rightarrow \overline{GD} = \frac{1}{3}\overline{AD} = \frac{1}{3} \times 12 = 4 \text{ (cm)}$$

$$\therefore \overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times 4 = \frac{8}{3} (cm)$$

46) 4cm

다 점 G가 △ABC의 무게중심이므로 $\overline{AE} = \overline{EC}$ △ADC에서 \overline{AD} $//\overline{EF}$ 이므로 삼각형의 중점연결 정리에 의해 $\overline{AD} = 2\overline{EF} = 2 \times 3 = 6 \text{ (cm)}$

$$\therefore \overline{AG} = \frac{2}{3}\overline{AD} = \frac{2}{3} \times 6 = 4(cm)$$

- 47) 6cm
- $ightarrow \overline{AG} \colon \overline{GD} = 2 \colon 1$ 이므로 $\overline{AG} = 8$ cm이다. 이 때, 점 E, M은 \overline{AC} , \overline{CD} 의 중점이다. 따라서 $\overline{EM} = \frac{1}{2}\overline{AD}$ 이므로 $\overline{EM} = \frac{1}{2} \times 12 = 6$ (cm)이다.
- 48) 5cm
- 49) 47cm
- \Rightarrow $\overline{BE} = \overline{ED}$, $\overline{DF} = \overline{FC}$ 이므로 $\overline{EF} = \frac{1}{2}\overline{BC} = 18$ cm이다.

이 때,
$$\overline{AG}: \overline{AD} = \overline{GG}': \overline{EF} = 2:3$$
이므로

$$2:3 = \overline{GG}':18$$
 $\therefore \overline{GG}' = 12cm$

또.
$$\overline{AG}$$
: $\overline{EG} = \overline{AG}'$: $\overline{FG}' = 2:10$ 므로

$$\overline{\rm EG} \! = \! \frac{1}{3} \times 27 = \! 9 \, ({\rm cm} \,), \ \overline{\rm FG} \, {}' \! = \! \frac{1}{3} \times 24 = \! 8 ({\rm cm} \,) \, {\rm OICH}.$$

- ∴ (□GEFG'의 둘레의 길이)=9+18+8+12=47(cm)
- 50) 3 cm
- 51) 54cm
- Arr Arr Arr Arr 이 연장선이 Arr 만나는 점을 각각 E, F라 하면 Arr Arr Arr Arr Arr Arr 이다.

또, $\overline{AG}: \overline{AE} = \overline{GG'}: \overline{EF} = 2:3$ 이므로 $\overline{GG'} = 6$ cm 일 때, \overline{EF} 의 길이를 구하면 $2:3 = 6: \overline{EF} \Rightarrow \overline{EF} = 9$ cm이다.

따라서 \overline{BC} =18cm이고, \triangle ABC는 정삼각형이므로 그 둘레의 길이는 $18\times3=54$ (cm)이다.

- 52) 8 cm²
- 53) 4 cm²
- 54) 8 cm²

$$\Box BDGF = \Delta GBD + \Delta GBF$$

$$= \frac{1}{6} \Delta ABC + \frac{1}{6} \Delta ABC = \frac{1}{3} \Delta ABC$$

- 55) 8cm²
- 56) 4 cm²
- ⇨ (색칠한 부분의 넓이)

$$= \frac{1}{2} \triangle AGC = \frac{1}{2} \times \left(\frac{1}{3} \triangle ABC\right)$$
$$= \frac{1}{6} \triangle ABC = \frac{1}{6} \times 24 = 4 \text{ (cm}^2)$$

- 57) 16 cm²

$$= \frac{1}{3} \triangle ABC + \frac{1}{3} \triangle ABC$$

$$=\frac{2}{3}\Delta ABC = \frac{2}{3} \times 24 = 16(cm^2)$$

- 58) 12cm²
- $\Rightarrow \triangle AFG + \triangle GBD + \triangle GCE$ $= \frac{1}{6} \triangle ABC + \frac{1}{6} \triangle ABC + \frac{1}{6} \triangle ABC$ $= \frac{1}{2} \triangle ABC = \frac{1}{2} \times 24 = 12 \text{ (cm}^2\text{)}$
- 59) 24 cm²
- $\Rightarrow \triangle ABC = 6\triangle GAE = 6 \times 4 = 24 \text{ (cm}^2)$
- 60) 30 cm²
- \Rightarrow $\triangle ABC = 3 \square GDCE = 3 \times 10 = 30 \text{ (cm}^2)$
- 61) 30 cm²
- $\Rightarrow \triangle ABC = 3\triangle GAB$ $= 3 \times (2\triangle ADG) = 6\triangle ADG = 6 \times 5 = 30 \text{ (cm}^2)$
- 62) 12 cm²
- \Rightarrow $\triangle ABD = \frac{1}{2} \times 54 = 27 \text{ (cm}^2)$ 이므로

$$\triangle AED = \frac{2}{3} \times 27 = 18 \text{ (cm}^2\text{)}$$

(
$$\triangle$$
EDG의 넓이)= $18 \times \frac{1}{3} = 6 \text{ (cm}^2)$

- (Δ DEF의 넓이)= $6 \times 2 = 12 \text{ (cm}^2\text{)}$
- 63) 12 cm²
- ⇒ (색칠한 부분의 넓이)

$$=\frac{1}{3}\Delta ABC = \frac{1}{3} \times 36 = 12 \text{ (cm}^2)$$

- 64) 12 cm²
- ⇒ (색칠한 부분의 넓이)

$$=\frac{1}{3}\Delta ABC = \frac{1}{3} \times 36 = 12 \text{ (cm}^2)$$

- 65) 8cm²
- \Rightarrow \triangle ABC = $12\triangle$ GDE에서 $96 = 12\triangle$ GDE

$$\therefore \triangle GDE = 8(cm^2)$$

66) $\frac{20}{3}$ cm²

$$\Rightarrow \Box GDCE = \frac{1}{3} \triangle ABC = \frac{20}{3} (cm^2)$$

- 67) 6cm²
- 68) 12cm²
- 69) 10 cm²
- \Leftrightarrow \triangle ABC의 넓이는 $\frac{1}{2} \times 6 \times 10 = 30 \, (\text{cm}^2)$ 이므로

$$\Delta AGC = \frac{1}{3} \Delta ABC = 10 \, (cm^2)$$

70) 10cm²

$$\triangle ABC = \frac{1}{2} \times 10 \times 12 = 60 \text{ (cm}^2)$$
$$\triangle GDC = \frac{1}{6} \triangle ABC = 10 \text{ (cm}^2)$$

71) $6 \, \text{cm}^2$

다 (색칠한 부분의 넓이)
$$= \frac{1}{2} \triangle ABG + \frac{1}{2} \triangle AGC \\ = \frac{1}{2} \times \left(\frac{1}{3} \triangle ABC\right) + \frac{1}{2} \times \left(\frac{1}{3} \triangle ABC\right) \\ = \frac{1}{6} \triangle ABC + \frac{1}{6} \triangle ABC \\ = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 18 = 6 \text{ (cm}^2)$$

72)
$$\frac{3}{2}$$
 cm²

73) 2 cm^2

$$ightharpoonup (색칠한 부분의 넓이)$$

$$= \frac{1}{3} \triangle GBC = \frac{1}{3} \times \left(\frac{1}{3} \triangle ABC\right)$$

$$= \frac{1}{9} \triangle ABC = \frac{1}{9} \times 18 = 2 \text{(cm}^2)$$

74) 2 cm^2

$$ightharpoonup (색칠한 부분의 넓이)$$

$$= \frac{1}{3} \triangle GBC = \frac{1}{3} \times \left(\frac{1}{3} \triangle ABC\right)$$

$$= \frac{1}{9} \triangle ABC = \frac{1}{9} \times 18 = 2(cm^2)$$

75) 6

- \triangle \triangle BCD에서 삼각형의 두 변의 중점을 연결한 선분의 성 질에 의해서 $\overline{\rm BD} = 2\overline{\rm MN} = 2 \times 9 = 18 ({\rm cm})$ $\overline{\rm BP} = \overline{\rm PQ} = \overline{\rm QD}$ 이므로 $x = \frac{1}{3}\overline{\rm BD} = \frac{1}{3} \times 18 = 6$
- 76) 4
- 77) 6
- 78) 4
- 79) 30

당
$$\overline{BP}: \overline{PO} = 2:1$$
이므로 $\overline{BP}: 5 = 2:1$ $\therefore \overline{BP} = 10 \text{ cm}$) 따라서 $\overline{BO} = \overline{BP} + \overline{PO} = 10 + 5 = 15 \text{ cm}$)이므로 $x = 2\overline{BO} = 2 \times 15 = 30$

- 80) 18
- 81) 12
- $ightarrow \overline{\mathrm{BP}} = \overline{\mathrm{PQ}} = \overline{\mathrm{QD}}$ 이므로 $\overline{\mathrm{BD}} = 3\overline{\mathrm{BP}} = 3 \times 8 = 24 (\mathrm{cm})$ $\Delta \mathrm{BCD}$ 에서 삼각형의 두 변의 중점을 연결한 선분의 성질에 의해서 $x = \frac{1}{2}\overline{\mathrm{BD}} = \frac{1}{2} \times 24 = 12$
- 82) 8
- \triangle \triangle BCD에서 삼각형의 두 변의 중점을 연결한 선분의 성 질에 의해서 $\overline{\rm BD} = 2\overline{\rm MN} = 2 \times 6 = 12 ({\rm cm})$ $\overline{\rm BP} = \overline{\rm PQ} = \overline{\rm QD}$ 이므로 $x = \frac{2}{3}\overline{\rm BD} = \frac{2}{3} \times 12 = 8$
- 83) 24
- 84) 18
- 85) 18
- $ightarrow \overline{\mathrm{BP}} = \overline{\mathrm{PQ}} = \overline{\mathrm{QD}}$ 이므로 $\overline{\mathrm{BD}} = 3\overline{\mathrm{PQ}} = 3 \times 12 = 36 \, \mathrm{(cm)}$ $\Delta \mathrm{BCD}$ 에서 삼각형의 두 변의 중점을 연결한 선분의 성질에 의해서 $x = \frac{1}{2} \overline{\mathrm{BD}} = \frac{1}{2} \times 36 = 18$
- 86) 12
- 87) 4
- 다 점 E는 \triangle ACD의 무게중심이고, $\overline{\rm DE}$: $\overline{\rm EO}$ =2:1이다. 이 때, $\overline{\rm DO}$ = $\overline{\rm BO}$ =12이므로 $x=\frac{1}{3} imes12$ =4이다.
- 88) 5
- 89) 12
- 90) 12 cm²
- ⇒ (색칠한 부분의 넓이) $= \frac{1}{2} \triangle ABC = \frac{1}{2} \times \left(\frac{1}{2} \Box ABCD\right)$ $= \frac{1}{4} \Box ABCD = \frac{1}{4} \times 48 = 12 \text{ (cm}^2)$
- 91) 8 cm²
- ightharpoonup (색칠한 부분의 넓이) $= \frac{1}{3} \triangle ABC = \frac{1}{3} \times \left(\frac{1}{2} \square ABCD\right)$ $= \frac{1}{6} \square ABCD = \frac{1}{6} \times 48 = 8 (cm^2)$

92) 4 cm²

$$= \frac{1}{6} \triangle ACD = \frac{1}{6} \times \left(\frac{1}{2} \square ABCD\right)$$
$$= \frac{1}{12} \square ABCD = \frac{1}{12} \times 48 = 4 \text{ (cm}^2)$$

93) 8 cm²

$$= \frac{1}{3} \triangle ACD = \frac{1}{3} \times \left(\frac{1}{2} \square ABCD\right)$$
$$= \frac{1}{6} \square ABCD = \frac{1}{6} \times 48 = 8(cm^2)$$

94) 8 cm²

(색칠한 부분의 넓이)

$$= \Delta APO + \Delta AOQ$$

$$=\frac{1}{6}\Delta ABC + \frac{1}{6}\Delta ACD$$

$$=\frac{1}{12}\Box ABCD + \frac{1}{12}\Box ABCD$$

$$=\frac{1}{6}\Box ABCD$$

$$=\frac{1}{6}\times48=8$$
 (cm²)

95) 18cm²

$$\Rightarrow \Delta ABM = \frac{1}{2} \Delta ABC = \frac{1}{2} \times \frac{1}{2} \square ABCD$$
$$= \frac{1}{4} \square ABCD = \frac{1}{4} \times 72 = 18 (cm^2)$$

96) 12cm²

⇒ 점 P는 △ABC의 무게중심이므로

$$\Delta ABP = \frac{1}{3} \Delta ABC = \frac{1}{3} \times \frac{1}{2} \square ABCD$$
$$= \frac{1}{6} \square ABCD = \frac{1}{6} \times 72 = 12 (cm^2)$$

97) 6cm²

⇒ 점 P는 △ABC의 무게중심이므로

$$\Delta PBM = \frac{1}{6} \Delta ABC = \frac{1}{6} \times \frac{1}{2} \square ABCD$$
$$= \frac{1}{12} \square ABCD = \frac{1}{12} \times 72 = 6 \text{ (cm}^2)$$

98) 36cm²

99) 10 cm²

□ABCD=48 cm²일 때, □PMNQ의 넓이를 구하면

$$\square PMNQ = \frac{5}{24} \times 48 = 10 (cm^2) O | \Box + .$$

100) 10cm²

점 P와 Q는 각각 $\triangle ABC$ 와 $\triangle ACD$ 의 무게중심이고,

이 때 나눠지는 도형의 넓이의 비는 위의 그림과 같다.

□ABCD=30cm²일 때, 오각형 PMCNQ의 넓이를 구하

면
$$\frac{8}{24} \times 30 = 10 \text{ (cm}^2)$$
이다.

101) 36 cm²

□ 점 P와 Q는 각각 △ABC와 △ACD의 무게중심이고, 무게중심에 의해 나눠지는 도형의 넓이의 비는 아래 그 림과 같다.

□ABCD=108cm²일 때, 오각형 ANPQM의 넓이를 구

하면
$$\frac{8}{24} \times \Box ABCD = \frac{8}{24} \times 108 = 36 \text{cm}^2$$
이다.

102) 2 cm²

□ 점 P는 △ABC의 무게중심이고, 삼각형의 세 중선에 의해 6등분으로 나눠지는 삼각형의 넓이는 모두 같다.

$$\square$$
ABCD = 24cm²일 때, \triangle ABC = $\frac{1}{2} \times 24 = 12 \text{ (cm}^2)$ 이 고,

$$\Delta \text{APO} = \frac{1}{6} \times 12 = 2 \text{ (cm}^2) \text{ OICH.}$$

103) 6 cm²

104) 16 cm²

 \Rightarrow 점 E는 $\triangle ABC$ 의 무게중심이다. 이 때, 삼각형의 세 중 선에 의해 6등분으로 나눠지는 삼각형의 넓이는 모두

따라서 □ABCD=96cm²일 때,

$$\Box EMCO = \frac{1}{3} \triangle ABC = \frac{1}{3} \times \frac{1}{2} \Box ABCD$$
$$= \frac{1}{6} \times 96 = 16 \text{ (cm}^2\text{)}$$

105) 12 cm²

 \Rightarrow 점 P와 Q는 각각 \triangle ABC, \triangle ACD의 무게중심이고, 무 게중심에 의해서 나누어지는 도형의 넓이의 비는 아래 그림과 같다.

 \square ABCD = $48 \, \text{cm}^2$ 일 때,

$$\Delta PBM = \frac{2}{24} \Box ABCD = \frac{1}{12} \times 48 = 4(cm^2) | \Box,$$

$$\Delta APQ = \frac{4}{24} \Box ABCD = \frac{1}{6} \times 48 = 8(cm^2) O|C|.$$

따라서 $\triangle PBM + \triangle APQ = 12$ 이다.