

Universidad de las Fuerzas Armadas ESPE

Departamento: Ciencias de la computacion

Carrera: Ingeniria en Tecnologias de la Informacion

Taller académico Na: 2

Parcial: 2

1. Información General

• Asignatura: Metodologia de Desarrollo de Software

• Apellidos y nombres de los estudiantes: Cano Intriago Juan Pablo, Villegas

• Solange Alexandra, Menéndez Tamara

• NRC: 20967

• Fecha de realización: 11/06/2025

2. Objetivo del Taller y Desarrollo

Objetivo del Taller:

El objetivo del taller es comprender las fases, características y disciplinas del RUP respondiendo preguntas clave, para fortalecer el conocimiento sobre metodologías estructuradas, aplicar RUP en proyectos reales y diferenciarlo de otras metodologías. RUP es esencial en ingeniería de software por su enfoque iterativo, centrado en la arquitectura y la gestión de riesgos.

Actividades de aprendizaje 9

RUP

Realizar las siguientes preguntas:

 Junte los objetivos con la correspondiente fase del Proceso Unificado de Desarrollo.

1. Lograr versiones útiles (alfa, beta	A. Inicio/Elaboración/ <mark>Construcción</mark> /
y otras versiones de prueba) tan	Transición
rápido como sea práctico	
2. Lograr que las partes interesadas	B. Inicio/Elaboración/Construcción/
estén de acuerdo en que las líneas	Transición

de base de implementación están	
completas	
3. Discriminar los casos de uso	C. Inicio/Elaboración/Construcción/
críticos del sistema, que son los	Transición
escenarios principales de	
operación que impulsarán las	
principales compensaciones de	
diseño	
4. Lograr la autosuficiencia del	D. Inicio/Elaboración/Construcción/
usuario.	Transición

Justificación: Elaboración porque definen los casos de uso clave y la arquitectura, construcción ya que desarrolla el producto en iteraciones, con versiones alfa/beta y transición debido a que valida con stakeholders y se capacita al usuario para su autosuficiencia.

Seleccione la opción correcta. El Proceso Unificado de Desarrollo es.
Seleccione una:

Metodología para el desarrollo de software que define claramente: quién, cómo, cuándo y qué debe hacerse en el proyecto

Programa para desarrollar software con poca documentación, que permite el cambio ágil dentro del proyecto

Herramienta que permite el desarrollo de software avanzado, sin necesidad de datos específicos.

Metodología ágil para el desarrollo de software

Justificación: Es una metodología estructurada que define roles, fases y artefactos en detalle.

3. Seleccione las opciones correctas. El Proceso Unificado de Desarrollo se basa en las siguientes características fundamentales: Seleccione una o más de una:

Exige poca documentación

Dirigido por casos de uso

Proceso secuencial

Iterativo e incremental

Centrado en la arquitectura

Centrado en el diseño

Justificación: Dirigido por casos de uso, iterativo y centrado en arquitectura: Prioriza requisitos del usuario, iteraciones y diseño sólido

4. Una metodología de desarrollo de software es un conjunto de técnicas y procedimientos organizados en fases para el desarrollo de productos software, de manera eficaz, y abarca el ciclo de vida del mismo. Es una colección métodos para la resolución de una clase de problemas. Las metodologías de desarrollo de software descomponen el proceso en actividades

Justificación: Combina procedimientos organizados y ciclo de vida para desarrollar productos software con métodos específicos.

- 5. En las siguientes oraciones complete con el término correspondiente:
- Metodología: es un conjunto de técnicas y procedimientos organizados en fases para el desarrollo de productos software, de manera eficaz, y abarca el ciclo de vida del mismo.
- Método: es una técnica repetible para la resolución de un problema específico.
- Notación: es un conjunto de reglas gráficas o textuales para representar un modelo

Justificación: Metodología como marco general, Método como técnica, Notación como lenguaje de modelado.

6. Seleccione los términos correctos. RUP tiene dos dimensiones:

1.	El eje_	l eje representa		A.	Horizontal/el tiempo/ ciclo de
y muestra los aspectos			ra los aspectos		vida/
del del proceso a medida					
que se desarrolla en iteraciones.			en iteraciones.		
2.	1.	El eje	representa	B.	Vertical/las disciplinas/las
		como re	equisitos, análisis		actividades/

y diseño, implementación, que	
lógicamente agrupan	
por afinidad	

Justificación: Horizontal (tiempo): Fases iterativas; Vertical (disciplinas):

Actividades como diseño o pruebas.

7. Empareje las disciplinas con su definición.

1.	Pone el sistema a	A.	Entrega/Implementación/Modelamiento/Gestión
	disposición de los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	usuarios finales		la configuración.
2.	Administrar el	B.	Entrega/Implementación/Modelamiento/Gestión
	acceso a los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	artefactos del		la configuración
	proyecto y controla		
	y gestiona los		
	cambios		
3.	Comprende el	C.	Entrega/Implementación/Modelamiento/Gestión
	negocio y el		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	dominio del		la configuración.
	problema y		
	presenta una		
	solución viable		
4.	Gestionar riesgos y	D.	Entrega/Implementación/Modelamiento/Gestión
	dirige y coordinar		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	personas		la configuración
5.	Asegura la calidad	E.	Entrega/Implementación/Modelamiento/Gestión
	verifica que los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	requisitos se		la configuración
	cumplan		
6.	Asegurar que el	F.	Entrega/Implementación/Modelamiento/Gestión
	equipo cuente con		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	lo necesario,		la configuración
	orientación y		
	herramientas		
	adecuados		
7.	Transforma los	G.	Implementación/Modelamiento/Gestión de
	modelos en código		Proyecto/Prueba/Entorno/Entrega/Gestión de la
	fuente		configuración.

Justificación: Cada disciplina tiene un rol específico en el proceso, según la documentación oficial del RUP.

8. Puedes mirar el siguiente video https://www.youtube.com/watch?v=lhciVR8b038

3. Referencias (Norma APA 7.0)

IBM Rational. (2003). Rational Unified Process: Best practices for software development teams. IBM. https://www.ibm.com/docs/es/

TechProject. (2018). Introducción al Proceso Unificado Rational (RUP) [Video]. YouTube. https://www.youtube.com/watch?v=lhciVR8b038

Massachusetts Institute of Technology. (2000). *1.124J Foundations of Software Engineering, Fall 2000*. MIT OpenCourseWare. https://ocw.mit.edu/courses/1-124j-foundations-of-software-engineering-fall-2000/

Sommerville, I. (2011). Ingeniería de Software (9a ed.). Pearson.