MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 22nd January 2018 D1 - Lecture 8

Random Attendance

1	170050021	Abhijeet Singh Yadav
2	170050031	Shashank Kumar
3	170050033	Lakshya Kumar
4	170050035	Ansh Khurana
5	170050053	Sudhir Kumar
6	170050070	Mohit Kumar Gupta
7	170070011	Parth Vinod Patil
8	170070055	Dhruv Ishan Bhardwaj
9	170070058	Rohan Bansal
10	17D070034	Ayush Raj Mehrotra
①	17D070043	Jaideep Kharadi
12	17D070057	Prashant Kurrey
13	17D070061	Vanapali Anirudh

Vector Spaces: Definition

Defn. A non-empty set V is a vector space if it is *closed under* vector addition (i.e., if x, y are in V, then x + y must be in V) and scalar multiplication, (i.e., if x is in V, a is in \mathbb{R} , then a * x must be in V). Equivalently, x, y in V, a, b in $\mathbb{R} \Rightarrow a * x + b * y$ must be in V.

- A vector space is a triple (V, +, *) with vector addition + and scalar multiplication *, with + and * satisfying some additional properties (see next slide).
- \bullet The elements of V are called vectors and the scalars are chosen to be real numbers (for now).
- ullet If the scalars are allowed to be complex numbers, then V is a complex vector space.

Vector Spaces: Definition continued

Let x, y and z be vectors, a and b be scalars. The vector addition and scalar multiplication are also required to satisfy:

- x + y = y + x Commutativity of addition
- (x + y) + z = x + (y + z) Associativity of addition
- There is a unique vector 0, such that x + 0 = xExistence of additive identity
- For each x, there is a unique -x such that x + (-x) = 0Existence of additive inverse
- 1 * x = x Unit property
- (a+b)*x = a*x + b*x, a*(x+y) = a*x + a*y(ab)*x = a*(b*x) Compatibility

Notation: For a scalar a, and a vector x, we denote a * x by ax.

Vector Spaces: Examples

- $\mathbf{0}$ V=0, the space consisting of only the zero vector.
- $V = \mathbb{R}^n$, the *n*-dimensional space.
- $V = \mathbb{R}^{\infty}$ = sequences of real numbers, e.g., $x = (0, 1, 0, 2, 0, 3, 0, 4, \ldots)$, with component-wise addition and scalar multiplication.
- $V = \mathcal{M}$, the set of $m \times n$ matrices, with entry-wise + and *.
- $V = \mathcal{P}$, the set of polynomials, e.g. $1 + 2x + 3x^2 + \cdots + 2018x^{2017}$, with term-wise + and *.
- **6** $V = \mathcal{C}[0, 1]$, the set of continuous real-valued functions on the closed interval [0, 1]. e.g., x^2 , e^x are vectors in V. Vector addition and scalar multiplication are pointwise: (f+g)(x) = f(x) + g(x) and (a*f)(x) = af(x).

Subspaces: Definition and Examples

If V is a vector space, and W is a non-empty subset, then W is a subspace of V if:

$$x, y \text{ in } W, \ a, b \text{ in } \mathbb{R} \Rightarrow a * x + b * y \text{ are in } W.$$

i.e., linear combinations stay in the subspace.

Examples:

- \bigcirc {0}: The zero subspace and \mathbb{R}^n itself.
- ② $\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$ is not a subspace of \mathbb{R}^2 . Why?
- **1** The line x y = 1 is not a subspace of \mathbb{R}^2 . Why? **Exercise:** A line not passing through the origin is not a subspace of \mathbb{R}^2 .
- The line x y = 0 is a subspace of \mathbb{R}^2 . Why? **Exercise:** Any line passing through the origin is a subspace of \mathbb{R}^2 .

Subspaces: Examples

- 5. Let A be an $m \times n$ matrix. The null space of A, N(A), is a subspace of \mathbb{R}^n . The column space of A, C(A), is a subspace of \mathbb{R}^m . Recall: They are both closed under linear combinations.
- 6. The set of 2×2 symmetric matrices is a subspace of \mathcal{M} . So is the set of 2×2 lower triangular matrices. Is the set of invertible 2×2 matrices a subspace of \mathcal{M} ?
- 7. The set of convergent sequences is a subspace of \mathbb{R}^{∞} . What about the set of sequences convergent to 1?
- 8. The set of differentiable functions is a subspace of C[0, 1]. Is the same true for the set of functions integrable on [0, 1]?
- 9. ? See the tutorial sheet for many more examples!

Exercise: A subspace must contain the 0 vector!

Examples: Subspaces of \mathbb{R}^2

What are the subspaces of \mathbb{R}^2 ?

- $V = \{ (0 \ 0)^T \}.$
- $V = \mathbb{R}^2$
- What if V is neither of the above?

Suppose V contains a non-zero vector, say

Example: $v = (-1 \ 1)^T$.

V must contain the entire line L: x + y = 0, i.e., all multiples of v.

Examples: Subspaces of \mathbb{R}^2

Let V be a subspace of \mathbb{R}^2 containing $v_1 = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$. Then V must contain the entire line L: x + y = 0.

If $V \neq L$, it contains a vector v_2 , which is not a multiple of v_1 , say $v_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$.

Observe:
$$A = \begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$$
 has two pivots,

- \Leftrightarrow *A* is invertible.
- \Leftrightarrow for any v in \mathbb{R}^2 , Ax = v is solvable,
- $\Leftrightarrow v \text{ is in } C(A),$
- $\Leftrightarrow v$ can be written as a linear combination of v_1 and v_2 .
- \Rightarrow v is in V, i.e., $V = \mathbb{R}^2$

To summarise: A subspace of \mathbb{R}^2 , which is non-zero, and not \mathbb{R}^2 , is a line passing through the origin.

9/9