Conversion Factors and Mathematical Symbols*

James O. Maloney, Ph.D., P.E., Emeritus Professor of Chemical Engineering, University of Kansas; Fellow, American Institute of Chemical Engineering; Fellow, American Association for the Advancement of Science; Member, American Chemical Society, American Society for Engineering Education

	CONVERSION FACTORS		Table 1-10	United States Customary System of Weights	
Fig. 1-1	Graphic Relationships of SI Units with Names	1-2		and Measures	1-19
Table 1-1	SI Base and Supplementary Quantities and Units	1-3		Temperature Conversion	1-19
Table 1-2 <i>a</i>	Derived Units of SI that Have Special Names	1-3	Table 1-12	Specific Gravity, Degrees Baumé, Degrees API, Degrees	
Table 1-2 b	Additional Common Derived Units of SI	1-3		Twaddell, Pounds per Gallon, Pounds per Cubic Foot	1-20
Table 1-3	SI Prefixes	1-3		Wire and Sheet-Metal Gauges	1-21
Table 1-4	Conversion Factors: U.S. Customary and Commonly		Table 1-14	Fundamental Physical Constants	1-22
	Used Units to SI Units	1-4			
Table 1-5	Metric Conversion Factors as Exact Numerical		CO	NVERSION OF VALUES FROM U.S. CUSTOMARY	
	Multiples of SI Units	1-13		UNITS TO SI UNITS	
Table 1-6	Alphabetical Listing of Common Conversions	1-15			
Table 1-7	Common Units and Conversion Factors	1-18		MATHEMATICAL SYMBOLS	
Table 1-8	Kinematic-Viscosity Conversion Formulas	1-18	Table 1-15	Mathematical Signs, Symbols, and Abbreviations	1-24
Table 1-9	Values of the Cas-Law Constant	1-18		Greek Alphabet	1-24

^{*} Much of the material was taken from Sec. 1. of the fifth edition. The contribution of Cecil H. Chilton in developing that material is acknowledged.

FIG. 1-1 Graphic relationships of SI units with names (U.S. National Bureau of Standards, LC 1078, December 1976.)

TABLE 1-1 SI Base and Supplementary Quantities and Units

Quantity or "dimension"	SI unit	SI unit symbol ("abbreviation"); Use roman (upright) type
Base quantity or "dimension"		
length	meter	m
mass	kilogram	kg
time	second	s
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole*	mol
luminous intensity	candela	cd
Supplementary quantity or "dimension"		
plane angle	radian	rad
solid angle	steradian	sr

^{**}Substitute of the strength o

TABLE 1-2a Derived Units of SI that Have Special Names

Quantity	Unit	Symbol	Formula
frequency (of a periodic phenomenon)	hertz	Hz	l/s
force	newton	N	(kg·m)/s²
pressure, stress	pascal	Pa	N/m²
energy, work, quantity of heat	joule	J	N·m
power, radiant flux	watt	W	J/s
quantity of electricity, electric charge	coulomb	C	A·s
electric potential, potential difference, electromotive force capacitance electric resistance conductance magnetic flux magnetic-flux density	farad ohm siemens weber tesla	V F Ω S Wb T	W/A C/V V/A A/V V·s Wb/m²
inductance	henry	H	Wb/A
luminous flux	lumen	lm	cd·sr
illuminance	lux	lx	lm/m²
activity (of radionuclides)	becquerel	Bq	l/s
absorbed dose	gray	Gy	J/kg

TABLE 1-2b Additional Common Derived Units of SI

Quantity	Unit	Symbol
acceleration	meter per second squared	m/s ²
angular acceleration	radian per second squared	rad/s ²
angular velocity	radian per second	rad/s
area	square meter	m^2
concentration (of amount of substance)	mole per cubic meter	mol/m³
current density	ampere per square meter	A/m ²
density, mass	kilogram per cubic meter	kg/m³
electric-charge density	coulomb per cubic meter	C/m ³
electric-field strength	volt per meter	V/m
electric-flux density	coulomb per square meter	C/m ²
energy density	joule per cubic meter	J/m^3
entropy	joule per kelvin	J/K
heat capacity	joule per kelvin	J/K
heat-flux density, irradiance	watt per square meter	W/m^2
luminance	candela per square meter	ed/m ²
magnetic-field strength	ampere per meter	A/m
molar energy	joule per mole	I/mol
molar entropy	joule per mole-kelvin	J/(mol·K)
molar-heat capacity	joule per mole-kelvin	J/(mol·K)
moment of force	newton-meter	N·m
permeability	henry per meter	H/m
permittivity	farad per meter	F/m
radiance	watt per square-meter- steradian	W/(m²·sr)
radiant intensity	watt per steradian	W/sr
specific-heat capacity	joule per kilogram-kelvin	J/(kg·K)
specific energy	joule per kilogram	J/kg
specific entropy	joule per kilogram-kelvin	J/(kg·K)
specific volume	cubic meter per kilogram	m³/kg
surface tension	newton per meter	N/m
thermal conductivity	watt per meter-kelvin	W/(m·K)
velocity	meter per second	m/s
viscosity, dynamic	pascal-second	Pa·s
viscosity, kinematic	square meter per second	m²/s
volume	cubic meter	m^3
wave number	1 per meter	1/m

TABLE 1-3 SI Prefixes

Multiplication factor	Prefix	Symbol
1 000 000 000 000 000 000 = 10^{18}	exa	E
1 000 000 000 000 000 $= 10^{15}$	peta	P
1 000 000 000 000 = 10^{12}	tera	T
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto°	h
$10 = 10^{1}$	deka°	da
$0.1 = 10^{-1}$	deci*	d
$0.01 = 10^{-2}$	centi	c
$0.001 = 10^{-3}$	milli	m
$0.000 \ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	n
$0.000 \ 000 \ 000 \ 001 = 10^{-12}$	pico	р
$0.000 \ 000 \ 000 \ 000 \ 001 = 10^{-15}$	femto	f
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a

^{*}Generally to be avoided.

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
	Space,† time			
Length	naut mi mi chain link fathom yd ft	km km m m m m		$\begin{array}{ccc} 1.852^{\circ} & E+00 \\ 1.609 & 344^{\circ} & E+00 \\ 2.011 & 68^{\circ} & E+01 \\ 2.011 & 68^{\circ} & E-01 \\ 1.828 & 8^{\circ} & E+00 \\ 9.144^{\circ} & E-01 \\ 3.048^{\circ} & E-01 \\ \end{array}$
	in in mil	em mm em µm		3.048° E + 01 2.54° E + 01 2.54 E + 00 2.54° E + 01
Length/length	ft/mi	m/km		1.893 939 E - 01
Length/volume	ft/U.S. gal ft/ft³ ft/bbl	$ m m/m^3$ $ m m/m^3$ $ m m/m^3$		8.051 964 E + 01 1.076 391 E + 01 1.917 134 E + 00
Area	mi ² section acre ha yd ² ft ² in ²	km² ha ha m² m² m² m² cm²		2.589 988 E + 00 2.589 988 E + 02 4.046 856 E - 01 1.000 000° E + 04 8.361 274 E - 01 9.290 304° E - 02 6.451 6° E + 02 6.451 6° E + 00
Area/volume	ft²/in³ ft²/ft³	m²/cm³ m²/m³		5.699 291 E - 03 3.280 840 E + 00
Volume	cubem acre-ft yd³ bbl (42 U.S. gal) ft³ U.K. gal U.S. gal U.S. qt U.S. qt U.S. pt U.K. fl oz U.S. fl oz in³	km³ m³ ha·m m³ m³ dm³ dm³ dm³ dm³ dm³ dm³ dm³ dm³	L L L L L	$\begin{array}{c} 4.168\ 182\ \ E+00 \\ 1.233\ 482\ \ E+03 \\ 1.233\ 482\ \ E-01 \\ 7.645\ 549\ \ E-01 \\ 1.589\ 873\ \ E-01 \\ 2.831\ 685\ \ E+02 \\ 2.831\ 685\ \ E+01 \\ 4.546\ 092\ \ E+00 \\ 3.785\ 412\ \ E-03 \\ 3.785\ 412\ \ E+00 \\ 1.136\ 523\ \ E+00 \\ 9.463\ 529\ \ E-01 \\ 4.731\ 765\ \ E-01 \\ 2.841\ 307\ \ E+01 \\ 2.957\ 353\ \ E+01 \\ 1.638\ 706\ \ E+01 \\ \end{array}$
Volume/length (linear displacement)	bbl/in bbl/ft ft³/ft U.S. gal/ft	m ³ m m ³ /m m ³ /m m ³ /m L/m		$\begin{array}{c} 6.259\ 342\ \ E+00 \\ 5.216\ 119\ \ E-01 \\ 9.290\ 304^{\circ}\ E-02 \\ 1.241\ 933\ \ E-02 \\ 1.241\ 933\ \ E+01 \end{array}$
Plane angle	rad deg (°) min (′) sec (″)	rad rad rad rad		1 1.745 329 E - 02 2.908 882 E - 04 4.848 137 E - 06
Solid angle	sr	sr		1
Time	year week h min mµs	a d s min s h ns		$\begin{array}{cccc} 1 & & & & \\ 7.0^{\circ} & & E+00 \\ 3.6^{\circ} & & E+03 \\ 6.0^{\circ} & & E+01 \\ 6.0^{\circ} & & E+01 \\ 1.666 \ 667 & E-02 \\ 1 & & & \\ \end{array}$
	Mass, amount of substance			
Mass	U.K. ton U.S. ton U.K. cwt U.S. cwt lbm oz (troy) oz (av) gr	Mg Mg kg kg g g mg	t t	$\begin{array}{c} 1.016\ 047 E+00 \\ 9.071\ 847 E-01 \\ 5.080\ 234 E+01 \\ 4.535\ 924 E+01 \\ 4.535\ 924 E-01 \\ 3.110\ 348 E+01 \\ 2.834\ 952 E+01 \\ 6.479\ 891 E+01 \end{array}$

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
Amount of substance	lbm·mol std m 3 (0°C, 1 atm) std ff 3 (60°F, 1 atm)	kmol kmol kmol		4.535 924 E - 01 4.461 58 E - 02 1.195 30 E - 03
	Enthalpy, calorific value, heat, entropy, hea			1.193 30 E = 03
Calorific value, enthalpy	Btu/lbm			2.326 000 E - 03
(mass basis)		MJ/kg kJ/kg kWh/kg	J/g	2.326 000 E + 00 6.461 112 E - 04
	cal/g	kJ/kg	J/g	4.184° E + 00
	cal/lbm	J/kg ¯		9.224 141 E + 00
Caloric value, enthalpy (mole basis)	keal/(g·mol) Btu/(lb·mol)	kJ/kmol kJ/kmol		4.184° E + 03 2.326 000 E + 00
Calorific value (volume basis—solids and liquids)	Btu/U.S. gal	MJ/m³ kJ/m³	kJ/dm³	$2.787\ 163\ E - 01$ $2.787\ 163\ E + 02$
1 ,	Day/UV and	kWh/m³	1.1/.13	7.742 119 E - 02
	Btu/U.K. gal	MJ/m³ kJ/m³	kJ/dm³	$2.320\ 800\ E - 01$ $2.320\ 800\ E + 02$
	Btu/ft³	kWh/m³ MJ/m³	kJ/dm³	6.446 667 E - 02 3.725 895 E - 02
		kJ/m³	ку/шп	3.725 895 E + 01
	cal/mL	kWh/m³ MJ/m³		$1.034\ 971\ E - 02$ $4.184^{\circ}\ E + 00$
	(ft·lbf)/U.S. gal	kJ/m ³		3.581 692 E - 01
Calorific value (volume	cal/mL	kJ/m ³	J/dm ³	4.184° E + 03
basis—gases)	keal/m³ Btu/ft³	kJ/m³ kJ/m³	J/dm³ J/dm³	4.184° E + 00 3.725 895 E + 01
	Deare	kWh/m³	J/ CIII	1.034 971 E – 02
Specific entropy	Btu/(lbm⋅°R)	kJ/(kg·K)	$J/(g \cdot K)$	4.186 8° E + 00
	cal/(g·K) kcal/(kg.°C)	kJ/(kg·K) kJ/(kg·K)	J/(g·K) J/(g·K)	4.184° E + 00 4.184° E + 00
Specific-heat capacity (mass	kWh/(kg·°C)	kJ/(kg·K)	J/(g·K)	3.6° E+03
basis)	Btu/(lbm·°F) kcal/(kg·°C)	kJ/(kg·K) kJ/(kg·K)	J/(g·K) J/(g·K)	$4.186 8^{\circ} \text{E} + 00$ $4.184^{\circ} \text{E} + 00$
Specific-heat capacity (mole	Btu/(lb·mol·°F)	kJ/(kmol·K)	J. (8 7	4.186 8° E + 00
basis)	cal/(g·mol·°C)	kJ/(kmol·K)		4.184° E + 00
Temperature (absolute)	Temperature, pressure, vacuum °R	K		5/9
Temperature (absolute)	K	K		1
Temperature (traditional)	°F	$^{\circ}\mathrm{C}$		$5/9(^{\circ}F - 32)$
Temperature (difference)	°F	K, °C		5/9
Pressure	atm (760 mmHg at 0°C or 14,696 psi)	MPa kPa		1.013 250° E - 01 1.013 250° E + 02
	bar	bar MD-		$1.013\ 250^{\circ}\ E + 00$ $1.0^{\circ}\ E - 01$
	par	MPa kPa		1.0° E - 01 1.0° E + 02
	$mmHg (0^{\circ}C) = torr$	MPa kPa		6.894 757 E - 03 6.894 757 E + 00
		bar		6.894757 E - 02
	μmHg (0°C) μ bar	kPa kPa		3.37685 E + 00 2.4884 E - 01
	$mmHg = torr (0^{\circ}C)$	kPa		$1.333\ 224\ \mathrm{E}-01$
	$cmH_2\bar{O}$ (4°C) lbf/ft^2 (psf)	kPa kPa		$9.806\ 38 E - 02$ $4.788\ 026 E - 02$
	mHg (Ô°C)	Pa		$1.333\ 224\ \mathrm{E}-01$
	bar dyn/cm²	Pa Pa		1.0° E + 05 1.0° E - 01
Vacuum, draft	inHg (60°F)	kPa		3.376 85 E + 00
	inH ₂ O (39.2°F)	kPa		2.49082 E - 01
	inH_2O (60°F) mmHg (0°C) = torr	kPa kPa		2.4884 E - 01 1.333224 E - 01
	cmH_2O (4°C)	kPa		9.806 38 E – 02
Liquid head	ft	m		3.048° E – 01
	in	mm cm		2.54° E + 01 2.54° E + 00
Pressure drop/length	psi/ft	kPa/m		2.262 059 E + 01
resoure drop/rength	Ронте	KI WIII		2.202 000 E T 01

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
	Density, specific volume, concentration	n, dosage		
Density	lbm/ft³ lbm/U.S. gal lbm/U.K. gal lbm/ft³ g/cm³ lbm/ft³	kg/m³ g/m³ kg/m³ kg/m³ g/cm³ kg/m³ kg/m³ kg/m³ g/cm³ kg/m³ kg/m³		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Specific volume	ft³/lbm ft³/lbm U.K. gal/lbm U.S. gal/lbm	m³/kg m³/g dm³/kg dm³/kg dm³/kg	cm³/g cm³/g	6.242 796 E - 02 6.242 796 E - 05 6.242 796 E + 01 1.002 242 E + 01 8.345 404 E + 00
Specific volume (mole basis)	L/(g·mol) ft³/(lb·mol)	m³/kmol m³/kmol		1 6.242 796 E – 02
Specific volume	bbl/U.S. ton bbl/U.K. ton	m³/t m³/t		$\begin{array}{ccc} 1.752\ 535 & E-01 \\ 1.564\ 763 & E-01 \end{array}$
Yield	bbl/U.S. ton bbl/U.K. ton U.S. gal/U.S. ton U.S. gal/U.K. ton	dm³/t dm³/t dm³/t dm³/t	L/t L/t L/t L/t	$\begin{array}{ccc} 1.752\ 535 & E+02 \\ 1.564\ 763 & E+02 \\ 4.172\ 702 & E+00 \\ 3.725\ 627 & E+00 \end{array}$
Concentration (mass/mass)	wt % wt ppm	kg/kg g/kg mg/kg		1.0° E - 02 1.0° E + 01 1
Concentration (mass/volume)	lbm/bbl g/U.S. gal g/U.K. gal lbm/1000 U.S. gal lbm/1000 U.K. gal gr/U.S. gal gr/U.S. gal gr/ft ³ lbm/1000 bbl mg/U.S. gal gr/100 ft ³	kg/m³ kg/m³ kg/m³ g/m³ g/m³ g/m³ g/m³ mg/m³ g/m³ g/m³	g/dm³ g/L mg/dm³ mg/dm³ mg/dm³ mg/dm³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Concentration (volume/volume)	ft³/ft³ bbl/(acre-ft) vol% U.K. gal/ft³ U.S. gal/ft³ mL/U.S. gal mL/U.K. gal vol ppm U.K. gal/1000 bbl U.S. gal/1000 bbl U.K. pt/1000 bbl	m³/m³ m³/m³ m³/m³ dm³/m³ dm³/m³ dm²/m³ dm³/m³ dm³/m³ dm³/m³ dm³/m³ cm³/m³ dm³/m³ dm³/m³	L/m ³ L/m ³ L/m ³ L/m ³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Concentration (mole/volume)	(lb·mol)/U.S. gal (lb·mol)/U.K. gal (lb·mol)/ft³ std ft³ (60°F, 1 atm)/bbl	kmol/m³ kmol/m³ kmol/m³ kmol/m³		1.198 264 E + 02 9.977 644 E + 01 1.601 846 E + 01 7.518 21 E - 03
Concentration (volume/mole)	U.S. gal/1000 std ft 3 (60°F/60°F) bbl/million std ft 3 (60°F/60°F)	dm³/kmol dm³/kmol	L/kmol L/kmol	3.166 91 E + 00 1.330 10 E - 01
Throughput (mass basis)	Facility throughput, capacity U.K. ton/year U.S. ton/year U.K. ton/day U.S. ton/day	t/a t/a t/d t/h t/d t/h		1.016 047 E + 00 9.071 847 E - 01 1.016 047 E + 00 4.233 529 E - 02 9.071 847 E - 01 3.779 936 E - 02
	U.K. ton/h U.S. ton/h lbm/h	t/h t/h kg/h		1.016 047 E + 00 9.071 847 E - 01 4.535 924 E - 01

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
Throughput (volume basis)	bbl/day	t/a m³/d		5.803 036 E + 01 1.589 873 E - 01
	ft³/day	m³/h		1.179 869 E – 03
	bbl/h	m³/h		1.589 873 E - 01
	ft³/h	m³/h		2.831 685 E - 02
	U.K. gal/h	m³/h		4.546 092 E - 03
	O.K. gai/11	L/s		1.262 803 E - 03
	U.S. gal/h	m³/h		3.785 412 E - 03
	0.5. gai ii	L/s		1.051 503 E - 03
	U.K. gal/min	m³/h		2.727 655 E - 01
	O.K. Salimin	L/s		7.576 819 E – 02
	U.S. gal/min	m³/h		2.271 247 E - 01
	0.0. gai	L/s		6.309 020 E - 02
Throughput (mole basis)	$(lbm \cdot mol)/h$	kmol/h kmol/s		$\begin{array}{ccc} 4.535\ 924 & E-01 \\ 1.259\ 979 & E-04 \end{array}$
	Flow rate			
Flow rate (mass basis)	U.K. ton/min	kg/s		1.693 412 E + 01
	U.S. ton/min	kg/s		1.511 974 E + 01
	U.K. ton/h	kg/s		2.822 353 E - 01
	U.S. ton/h	kg/s		2.519 958 E - 01
	U.K. ton/day	kg/s		1.175 980 E - 02
	U.S. ton/day	kg/s		1.049 982 E - 02
	million lbm/year	kg/s		5.249 912 E + 00
	U.K. ton/year	kg/s		$3.221\ 864\ E-05$
	U.S. ton/year	kg/s		2.876 664 E – 05
	lbm/s	kg/s		4.535 924 E - 01
	lbm/min	kg/s		7.559 873 E - 03
	lbm/h	kg/s		1.259 979 E - 04
Flow rate (volume basis)	bbl/day	m³/d L/s		1.589 873 E - 01 1.840 131 E - 03
	ft³/day	m³/d		2.831 685 E - 02
		L/s		3.277413 E - 04
	bbl/h	m³/s		$4.416\ 314\ \mathrm{E}-05$
	9.9	L/s		4.416314 E - 02
	ft³/h	m³/s		7.865791 E - 06
		L/s		7.865791 E - 03
	U.K. gal/h	dm ³ /s	L/s	1.262 803 E - 03
	U.S. gal/h	dm³/s	L/s	1.051 503 E - 03
	U.K. gal/min	dm³/s	L/s	7.576820 E - 02
	U.S. gal/min	dm ³ /s	L/s	$6.309\ 020\ E-02$
	ft³/min	dm³/s	L/s	4.719474 E - 01
	ft³/s	dm³/s	L/s	2.831 685 E + 01
Flow rate (mole basis)	(lb·mol)/s	kmol/s		4.535924 E - 01
	(lb·mol)/h	kmol/s		$1.259\ 979\ E-04$
	million scf/D	kmol/s		1.383 45 $E - 02$
Flow rate/length (mass basis)	$lbm/(s \cdot ft)$	kg/(s·m)		1.488 164 E+00
	lbm/(h·ft)	kg/(s·m)		4.133 789 E - 04
Flow rate/length (volume basis)	U.K. gal/(min·ft)	m_2^2/s	m ³ /(s·m)	2.485 833 E - 04
	U.S. gal/(min·ft)	m ² /s	m³/(s·m)	2.069 888 E – 04
	U.K. gal/(h·in)	m ² /s	m ³ /(s·m)	$4.971\ 667\ E-05$
	U.S. gal/(h·in)	$\frac{m^2}{s}$	m³/(s·m)	4.139776 E - 05
	U.K. gal/(h·ft)	m_2^2/s	m ³ /(s·m)	$4.143\ 055\ E - 06$
	U.S. gal/(h·ft)	m ² /s	m³/(s·m)	3.449 814 E – 06
Flow rate/area (mass basis)	$lbm/(s \cdot ft^2)$	$kg/(s \cdot m^2)$		4.882 428 E + 00
	lbm/(h·ft²)	kg/(s·m²)	2	1.356 230 E - 03
Flow rate/area (volume basis)	$ft^3/(s \cdot ft^2)$	m/s	m ³ /(s·m ²)	3.048° E – 01
	$ft^3/(min \cdot ft^2)$	m/s	m ³ /(s·m ²)	5.08° E – 03
	U.K. $gal/(h \cdot in^2)$	m/s	m ³ /(s·m ²)	1.957 349 E - 03
	U.S. gal/(h·in²)	m/s	m ³ /(s·m ²)	1.629 833 E - 03
		/	$m^3/(s \cdot m^2)$	8.155621 E - 04
	U.K. gal/(min ft²)	m/s		
	U.S. gal/(min·ft²)	m/s	$m^3/(s \cdot m^2)$	6.790 972 E − 04

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
	Energy, work, power			
Energy, work	therm U.S. tonf·mi hp·h	MJ kJ kWh MJ MJ		$\begin{array}{ccc} 1.055\ 056 & E+02 \\ 1.055\ 056 & E+05 \\ 2.930\ 711 & E+01 \\ 1.431\ 744 & E+01 \\ 2.684\ 520 & E+00 \end{array}$
	ch·h or CV·h	kJ kWh MJ kJ kWh		2.684 520 E + 03 7.456 999 E - 01 2.647 780 E + 00 2.647 780 E + 03 7.354 999 E - 01
	kWh	MJ kJ		3.6° E + 00 3.6° E + 03
	Chu Btu	kď kWh kJ		1.899 101 E + 00 5.275 280 E - 04 1.055 056 E + 00
	kcal cal ft·lbf	kWh kJ kJ kJ		2.930 711 E - 04 4.184° E + 00 4.184° E - 03 1.355 818 E - 03
	lbf-ft J (lbf-ft²)/s² erg	k j k j k j J		$\begin{array}{ccc} 1.355818 & E-03 \\ 1.0^\circ & E-03 \\ 4.214011 & E-05 \\ 1.0^\circ & E-07 \end{array}$
Impact energy	kgf⋅m lbf⋅ft	Ţ		9.806 650° E + 00 1.355 818 E + 00
Surface energy	erg/cm ²	mJ/m ²		1.0° E + 00
Specific-impact energy	(kgf·m)/cm ² (lbf·ft)/in ²	J/cm ² J/cm ²		9.806 650° E – 02 2.101 522 E – 03
Power	million Btu/h ton of refrigeration Btu/s kW hydraulic horsepower—hhp hp (electric) hp [(550 ft·lbf)/s] ch or CV Btu/min (ft·lbf)/s kcal/h Btu/h (ft·lbf)/min	MW kW		$\begin{array}{ccccc} 2.930\ 711 & E-01 \\ 3.516\ 853 & E+00 \\ 1.055\ 056 & E+00 \\ 1 \\ \hline 1,460\ 43 & E-01 \\ 7.466\ & E-01 \\ 7.456\ 999 & E-01 \\ 7.354\ 999 & E-01 \\ 1.758\ 427 & E-02 \\ 1.355\ 818 & E-03 \\ 1.162\ 222 & E+00 \\ 2.930\ 711 & E-01 \\ 2.259\ 697 & E-02 \\ \end{array}$
Power/area	Btu/(s·ft²) cal/(h·cm²) Btu/(h·ft²)	kW/m² kW/m² kW/m²		$\begin{array}{ccc} 1.135\ 653 & E+01 \\ 1.162\ 222 & E-02 \\ 3.154\ 591 & E-03 \end{array}$
Heat-release rate, mixing power	$rac{ m hp/ft^3}{ m cal/(h\cdot cm^3)} \ m Btu/(s\cdot ft^3) \ m Btu/(h\cdot ft^3)$	kW/m³ kW/m³ kW/m³ kW/m³		$\begin{array}{cccc} 2.633\ 414 & E+01 \\ 1.162\ 222 & E+00 \\ 3.725\ 895 & E+01 \\ 1.034\ 971 & E-02 \end{array}$
Cooling duty (machinery)	Btu/(bhp·h)	W/kW		3.930 148 E - 01
Specific fuel consumption (mass basis)	lbm/(hp·h)	mg/J kg/kWh	kg/MJ	$\begin{array}{ccc} 1.689\ 659 & E-01 \\ 6.082\ 774 & E-01 \end{array}$
Specific fuel consumption (volume basis)	m³/kWh U.S. gal/(hp·h) U.K. pt/(hp·h)	dm³/MJ dm³/MJ dm³/MJ	mm³/J mm³/J mm³/J	$\begin{array}{ccc} 2.777\ 778 & E+02 \\ 1.410\ 089 & E+00 \\ 2.116\ 806 & E-01 \end{array}$
Fuel consumption	U.K. gal/mi U.S. gal/mi mi/U.S. gal mi/U.K. gal	dm³/100 km dm³/100 km km/dm³ km/dm³	L/100 km L/100 km km/L km/L	$\begin{array}{cccc} 2.824807 & E+02 \\ 2.352146 & E+02 \\ 4.251437 & E-01 \\ 3.540064 & E-01 \end{array}$

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; customary unit by obtain SI ur	factor to
Velocity (linear), speed	knot mi/h ft/s ft/min ft/h ft/day in/s in/min	km/h km/h m/s cm/s m/s mm/s mm/s mm/s mm/s m/d mm/s mm/s		1.609 344° E - 3.048° E - 3.048° E - 5.08° E - 8.466 667 E - 3.527 778 E - 3.048° E -	- 01 + 01 - 03 - 02 - 03 - 01 + 01
Corrosion rate	in/year (ipy) mil/year	mm/a mm/a			+ 01 - 02
Rotational frequency	r/min	r/s rad/s		1.666 667 E - 1.047 198 E -	
Acceleration (linear)	ft/s²	m/s ² cm/s ²			- 01 + 01
Acceleration (rotational)	rpm/s	rad/s²		1.047 198 E -	- 01
Momentum	(lbm·ft)/s	(kg·m)/s		1.382 550 E -	
Force	U.K. tonf U.S. tonf kgf (kp) lbf dyn	kN kN N N		9.964 016 E - 8.896 443 E - 9.806 650° E - 4.448 222 E -	+ 00 + 00 + 00
Bending moment, torque	U.S. tonf ft kgf·m lbf·ft lbf·in	kN·m N·m N·m N·m		2.711 636 E - 9.806 650° E - 1.355 818 E - 1.129 848 E -	+ 00 + 00
Bending moment/length	(lbf-ft)/in (lbf-in)/in	$(N \cdot m)/m$ $(N \cdot m)/m$		5.337 866 E - 4.448 222 E -	
Moment of inertia	$lbm \cdot ft^2$	$kg \cdot m^2$		4.214 011 E -	- 02
Stress	U.S. tonf/in² kgf/mm² U.S. tonf/ft² lbf/in² (psi) lbf/ft² (psf) dyn/cm²	MPa MPa MPa MPa kPa Pa	N/mm ² N/mm ² N/mm ² N/mm ²	1.378 951 E - 9.806 650° E - 9.576 052 E - 6.894 757 E - 4.788 026 E - 1.0° E -	+ 00 - 02 - 03
Mass/length	lbm/ft	kg/m		1.488 164 E -	+ 00
Mass/area structural loading, bearing capacity (mass basis)	U.S. ton/ft² lbm/ft²	Mg/m ² kg/m ²		9.764 855 E - 4.882 428 E -	
	Miscellaneous transport prop	erties			
Diffusivity	$\begin{array}{c} {\rm ft^2/s} \\ {\rm m^2/s} \\ {\rm ft^2/h} \end{array}$	$ m m^2/s$ $ m mm^2/s$ $ m m^2/s$		9.290 304° E - 1.0° E - 2.580 64° E -	+ 06
Thermal resistance	(°C·m²·h)/kcal (°F·ft²·h)/Btu	$(\mathbf{K}\cdot\mathbf{m}^2)/\mathbf{k}\mathbf{W}$ $(\mathbf{K}\cdot\mathbf{m}^2)/\mathbf{k}\mathbf{W}$		8.604 208 E - 1.761 102 E -	
Heat flux	Btu/(h·ft²)	kW/m ²		3.154 591 E -	- 03
Thermal conductivity	(cal·cm)/(s·cm²-°C) (Btu·ft)/(h·ft²-°F) (kcal·m)/(h·ft²-°C) (Btu·in)/(h·ft²-°F) (cal·cm)/(h·cm²-°C)	W/(m·K) W/(m·K) (kJ·m)/(h·m²·K) W/(m·K) W/(m·K)	<u></u>)	4.184° E - 1.730 735 E - 6.230 646 E - 1.162 222 E - 1.442 279 E - 1.162 222 E -	+ 00 + 00 - 01
Heat-transfer coefficient	cal/(s·cm²-°C) Btu/(s·ft²-°F) cal/(h·cm²-°C) Btu/(h·ft²-°F) Btu/(h·ft²-°R) kcal/(h·m²-°C)	kW/(m²-K) kW/(m²-K) kW/(m²-K) kW/(m²-K) kJ/(h·m²-K) kW/(m²-K) kW/(m²-K)			+ 01 + 01 - 02 - 03 + 01 - 03

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	Conversion factor; multiply customary unit by factor to obtain SI unit
Volumetric heat-transfer coefficient	Btu/(s·ft³.°F) Btu/(h·ft³.°F)	$\begin{array}{c} kW/(m^3{\cdot}K) \\ kW/(m^3{\cdot}K) \end{array}$		6.706 611 E + 01 1.862 947 E - 02
Surface tension	dyn/em	mN/m		1
Viscosity (dynamic)	(lbf·s)/in² (lbf·s)/ft² (kgf·s)/m² lbm/(ft·s) (dyn·s)/cm² cP lbm/(ft·h)	Pa·s Pa·s Pa·s Pa·s Pa·s Pa·s Pa·s	$\begin{array}{c} (\text{N} \cdot \text{s})/\text{m}^2 \\ (\text{N} \cdot \text{s})/\text{m}^2 \end{array}$	6.894 757 E + 03 4.788 026 E + 01 9.806 650° E + 00 1.488 164 E + 00 1.0° E - 01 1.0° E - 03 4.133 789 E - 04
Viscosity (kinematic)	ft²/s in²/s m²/h ft²/h cSt	$\begin{array}{c} m^2/s\\ mm^2/s\\ mm^2/s\\ mm^2/s\\ m^2/s\\ mm^2/s\end{array}$		$\begin{array}{cccc} 9.290 \ 304^{\circ} \ E - 02 \\ 6.451 \ 6^{\circ} & E + 02 \\ 2.777 \ 778 & E + 02 \\ 2.580 \ 64^{\circ} & E - 05 \\ 1 \end{array}$
Permeability	darcy millidarcy	$\mu \mathrm{m}^2$ $\mu \mathrm{m}^2$		9.869 233 E - 01 9.869 233 E - 04
Thermal flux	Btu/(h·ft²) Btu/(s·ft²) cal/(s·cm²)	W/m ² W/m ² W/m ²		3.152 E + 00 1.135 E + 04 4.184 E + 04
Mass-transfer coefficient	$\begin{array}{c} (lb\cdot mol)/[h\cdot ft^2(lb\cdot mol/ft^3)] \\ (g\cdot mol)/[s\cdot m^2(g\cdot mol/L)] \end{array}$	m/s m/s		$ \begin{array}{rcl} 8.467 & E - 05 \\ 1.0 & E + 01 \end{array} $
	Electricity, magnetism			
Admittance	S	S		1
Capacitance	μF	μF		1
Charge density	C/mm ³	C/mm ³		1
Conductance	${\operatorname{S}} \ {\operatorname{U}} \ ({\operatorname{mho}})$	S S		1 1
Conductivity	S/m U/m m U/m	S/m S/m mS/m		1 1 1
Current density	A/mm ²	A/mm ²		1
Displacement	C/cm ²	C/cm ²		1
Electric charge	C	С		1
Electric current	A	A		1
Electric-dipole moment	C·m	C·m		1
Electric-field strength	V/m	V/m		1
Electric flux	C	C		1
Electric polarization	C/cm ²	C/cm ²		1
Electric potential	V mV	V mV		1 1
Electromagnetic moment	$\mathrm{A}{\cdot}\mathrm{m}^2$	$A \cdot m^2$		1
Electromotive force	V	V		1
Flux of displacement	С	С		1
Frequency	cycles/s	Hz		1
Impedance	Ω	Ω		1
Linear-current density	A/mm	A/mm		1
Magnetic-dipole moment	Wb·m	Wb⋅m		1
Magnetic-field strength	A/mm Oe gamma	A/mm A/m A/m		1 7.957 747 E + 01 7.957 747 E - 04
Magnetic flux	mWb	mWb		1

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Continued)

Quantity	Customary or commonl used unit	y Altern SI unit SI u	
Magnetic-flux density	mT G gamma	mT T nT	$\begin{array}{ccc} 1 & & & & \\ 1.0^{\circ} & & & E-04 \\ 1 & & & \end{array}$
Magnetic induction	mT	mT	1
Magnetic moment	$\mathbf{A} \cdot \mathbf{m}^2$	$A \cdot m^2$	1
Magnetic polarization	mT	mT	1
Magnetic potential difference	A	A	1
Magnetic-vector potential	Wb/mm	Wb/mm	1
Magnetization	A/mm	A/mm	1
Modulus of admittance	S	S	1
Modulus of impedance	Ω	Ω	1
Mutual inductance	Н	Н	1
Permeability	μH/m	μH/m	1
Permeance	Н	Н	1
Permittivity	μF/m	μF/m	1
Potential difference	V	V	1
Quantity of electricity	С	С	1
Reactance	Ω	Ω	1
Reluctance	H^{-1}	H^{-1}	1
Resistance	Ω	Ω	1
Resistivity	Ω·cm $ Ω$ ·m	Ω ·cm Ω ·m	1 1
Self-inductance	mH	mH	1
Surface density of change	mC/m^2	mC/m^2	1
Susceptance	S	S	1
Volume density of charge	C/mm ³	C/mm ³	1
	Acoustics, light, rad	ation	
Absorbed dose	rad	Gy	1.0° E - 02
Acoustical energy	J	J	1
Acoustical intensity	W/cm^2	W/m ²	1.0° E + 04
Acoustical power	W	W	1
Sound pressure	N/m^2	N/m^2	1.0*
Illuminance	fc	lx	1.076391 E + 01
Illumination	fc	lx	1.076391 E + 01
Irradiance	W/m^2	W/m^2	1
Light exposure	$fc \cdot s$	lx·s	1.076391 E + 01
Luminance	$\mathrm{cd/m}^2$	$\mathrm{cd/m^2}$	1
Luminous efficacy	lm/W	lm/W	1
Luminous exitance	lm/m²	lm/m ²	1
Luminous flux	lm	lm	1
Luminous intensity	cd	cd	1
Radiance	W/m²·sr	W/m ² ·sr	1
Radiant energy	J	J	1
Radiant flux	W	W	1
Radiant intensity	W/sr	W/sr	1
Radiant power	W	W	1
*			

TABLE 1-4 Conversion Factors: U.S. Customary and Commonly Used Units to SI Units (Concluded)

Quantity	Customary or commonly used unit	SI unit	Alternate SI unit	customary u	factor; multiply mit by factor to n SI unit
Wavelength	Å	nm		1.0*	E - 01
Capture unit	$10^{-3}~{\rm cm}^{-1}$	m^{-1}	$10^{-3}~{\rm cm}^{-1}$	1.0*	E + 01
	m^{-1}	m^{-1}	10 0111	1	
Radioactivity	Ci	Bq		3.7*	E + 10

NOTE: The following unit symbols are used in the table:

Unit symbol	Name	Unit symbol	Name
A	ampere	lm	lumen
a	annum (year)	lx	lux
Bq	becquerel	m	meter
C	coulomb	min	minute
ed	candela	'	minute
Ci	curie	N	newton
d	day	naut mi	U.S. nautical mile
$^{\circ}\mathrm{C}$	degree Celsius	Oe	oersted
0	degree	Ω	ohm
dyn	dyne	Pa	pascal
F	farad	rad	radian
fe	footcandle	r	revolution
G	gauss	S	siemens
g	gram	S	second
gr	grain	"	second
g gr Gy H	gray	sr	steradian
	henry	St	stokes
h	hour	T	tesla
ha	hectare	t	tonne
Hz	hertz	V	volt
J	joule	W	watt
K	kelvin	Wb	weber
L, ℓ, l	liter		

NOTE: Copyright SPE-AIME, The SI Metric System of Units and SPE's Tentative Metric Standard, Society of Petroleum Engineers, Dallas, 1977.

[°] An asterisk indicates that the conversion factor is exact.
†Conversion factors for length, area, and volume are based on the international foot. The international foot is longer by 2 parts in 1 million than the U.S. Survey foot (land-measurement use).

TABLE 1-5 Metric Conversion Factors as Exact Numerical Multiples of SI Units

The first two digits of each numerical entry represent a power of 10. For example, the entry " $-02\ 2.54$ " expresses the fact that $1\ \text{in} = 2.54 \times 10^{-2}\ \text{m}$.

To convert from	То	Multiply by	To convert from	То	Multiply by
abampere	ampere	+01 1.00	fluid ounce (U.S.)	meter ³	-05 2.957 352
abcoulomb	coulomb	+01 1.00	foot	meter	-01 3.048
abfarad	farad	+09 1.00	foot (U.S. survey)	meter	-01 3.048 006
abhenry	henry	-09 1.00	foot of water (39.2°F)	newton/meter ²	+03 2.988 98
abmho	mho	+09 1.00	footcandle	lumen/meter ²	+01 1.076 391
abohm	ohm	-09 1.00	footlambert	candela/meter ²	+00 3.426 259
abvolt	volt	-08 1.00	furlong	meter	+02 2.011 68
acre	meter ²	+03 4.046 856	gal (galileo)	meter/second ²	-02 1.00
ampere (international of	ampere	-01 9.998 35	gallon (U.K. liquid)	meter ³	-03 4.546 087
1948)		40400	gallon (U.S. dry)	meter ³	-03 4.404 883
angstrom	meter	-10 1.00	gallon (U.S. liquid)	meter ³	-03 3.785 411
are	meter ²	+02 1.00	gamma	tesla	-09 1.00
astronomical unit	meter	+11 1.495 978	gauss	tesla	-04 1.00
atmosphere	newton/meter ²	+05 1.013 25	gilbert	ampere turn	-01 7.957 747
bar	newton/meter ²	+05 1.00	gill (U.K.)	meter ³	-04 1.420 652
barn	meter ² meter ³	-28 1.00	gill (U.S.)	meter ³	-04 1.182 941
barrel (petroleum 42 gal)	newton/meter ²	-01 1.589 873	grad	degree (angular) radian	-01 9.00
barye British thermal unit (ISO/		-01 1.00 +03 1.055 06	grad		-02 1.570 796
TC 12)	joule	+05 1.055 00	grain gram	kilogram kilogram	-05 6.479 891 -03 1.00
British thermal unit	joule	+03 1.055 04	hand	meter	-03 1.00
(International Steam Table)	Joule	T03 1.033 04	hectare	meter ²	+04 1.00
British thermal unit (mean)	joule	+03 1.055 87	henry (international of 1948)	henry	+00 1.000 495
British thermal unit	joule	+03 1.054 350	hogshead (U.S.)	meter ³	-01 2.384 809
(thermochemical)	Joure	100 1.004 000	horsepower (550 ft lbf/s)	watt	+02 7.456 998
British thermal unit (39°F)	joule	+03 1.059 67	horsepower (boiler)	watt	+03 9.809 50
British thermal unit (60°F)	joule	+03 1.054 68	horsepower (electric)	watt	+02 7.46
bushel (U.S.)	meter ³	-02 3.523 907	horsepower (metric)	watt	+02 7.354 99
cable	meter	+02 2.194 56	horsepower (U.K.)	watt	+02 7.457
caliber	meter	-04 2.54	horsepower (water)	watt	+02 7.460 43
calorie (International Steam	joule	+00 4.1868	hour (mean solar)	second (mean solar)	+03 3.60
Table)	,		hour (sidereal)	second (mean solar)	+03 3.590 170
calorie (mean)	joule	+00 4.190 02	hundredweight (long)	kilogram	+01 5.080 234
calorie (thermochemical)	joule	+00 4.184	hundredweight (short)	kilogram	+01 4.535 923
calorie (15°C)	joule	+00 4.185 80	inch	meter	-02 2.54
calorie (20°C)	joule	+00 4.181 90	inch of mercury (32°F)	newton/meter ²	+03 3.386 389
calorie (kilogram,	joule	+03 4.186 8	inch of mercury (60°F)	newton/meter ²	+03 3.376 85
International Steam Table)			inch of water (39.2°F)	newton/meter ²	+02 2.490 82
calorie (kilogram, mean)	joule	+03 4.190 02	inch of water (60°F)	newton/meter ²	+02 2.4884
calorie (kilogram,	joule	+03 4.184	joule (international of 1948)	joule	+00 1.000 165
thermochemical)			kayser	1/meter	+02 1.00
carat (metric)	kilogram	-04 2.00	kilocalorie (International	joule	+03 4.186 74
Celsius (temperature)	kelvin	$t_K = t_c + 273.15$	Steam Table)	. 1	00 4 100 00
centimeter of mercury (0°C)	newton/meter ²	+03 1.333 22	kilocalorie (mean)	joule	+03 4.190 02
centimeter of water (4°C)	newton/meter ²	+01 9.806 38	kilocalorie (thermochemical)	joule	+03 4.184
chain (engineer's)	meter	+01 3.048	kilogram mass	kilogram	+00 1.00
chain (surveyor's or	meter	+01 2.011 68	kilogram-force (kgf)	newton	+00 9.806 65
Gunter's) circular mil	meter ²	-10 5.067 074	kilopond-force	newton newton	+00 9.806 65 +03 4.448 221
cord	meter ³	+00 3.624 556	kip knot (international)	meter/second	-01 5.144 444
coulomb (international of	coulomb	-01 9.998 35	lambert	candela/meter ²	$+04 \ 1/\pi$
1948)	Comonib	-01 9.990 55	lambert	candela/meter ²	+03 3.183 098
cubit	meter	-01 4.572	langley	joule/meter ²	+04 4.184
cup	meter ³	-04 2.365 882	lbf (pound-force,	newton	+00 4.448 221
curie	disintegration/second	+10 3.70	avoirdupois)	10111011	
day (mean solar)	second (mean solar)	+04 8.64	lbm (pound-mass,	kilogram	-01 4.535 923
day (sidereal)	second (mean solar)	+04 8.616 409	avoirdupois)	8	
degree (angle)	radian	-02 1.745 329	league (British nautical)	meter	+03 5.559 552
denier (international)	kilogram/meter	-07 1.111 111	league (international	meter	+03 5.556
dram (avoirdupois)	kilogram	-03 1.771 845	nautical)		
dram (troy or apothecary)	kilogram	-03 3.887 934	league (statute)	meter	+03 4.828 032
dram (U.S. fluid)	meter ³	-06 3.696 691	light-year	meter	+15 9.460 55
dyne	newton	-05 1.00	link (engineer's)	meter	-01 3.048
electron volt	joule	-19 1.602 10	link (surveyor's or Gunter's)	meter	-01 2.011 68
erg	joule	-07 1.00	liter	meter ³	-03 1.00
Fahrenheit (temperature)	kelvin	$t_K = (5/9)(t_F +$	lux	lumen/meter ²	+00 1.00
_		459.67)	maxwell	weber	-08 1.00
Fahrenheit (temperature)	Celsius	$t_c = (5/9)(t_F -$	meter	wavelengths Kr 86	+06 1.650 763
		32)	micrometer	meter	-06 1.00
farad (international of 1948)	farad	-01 9.995 05	mil	meter	-05 2.54
faraday (based on carbon	coulomb	+04 9.648 70	mile (U.S. statute)	meter	+03 1.609 344
12)			mile (U.K. nautical)	meter	+03 1.853 184
faraday (chemical)	coulomb	+04 9.649 57	mile (international nautical)	meter	+03 1.852
faraday (physical)	coulomb	+04 9.652 19	mile (U.S. nautical)	meter	+03 1.852
fathom fermi (femtometer)	meter meter	+00 1.828 8 -15 1.00	millibar millimeter of mercury (0°C)	newton/meter ² newton/meter ²	+02 1.00 +02 1.333 224
			u millimotor of moroury (IM(')		

TABLE 1-5 Metric Conversion Factors as Exact Numerical Multiples of SI Units (Concluded) The first two digits of each numerical entry represent a power of 10. For example, the entry " $-02\ 2.54$ " expresses the fact that $1\ \text{in} = 2.54 \times 10^{-2}$

To convert from	То	Multiply by	To convert from	То	Multiply by
minute (angle)	radian	-04 2.908 882	second (ephemeris)	second	+00 1.000 000
minute (mean solar)	second (mean solar)	+01 6.00	second (mean solar)	second (ephemeris)	Consult
minute (sidereal)	second (mean solar)	+01 5.983 617			American
month (mean calendar)	second (mean solar)	+06 2.628			Ephemeris
nautical mile (international)	meter	+03 1.852			and Nautical
nautical mile (U.S.)	meter	+03 1.852			Almanac
nautical mile (U.K.)	meter	+03 1.853 184	second (sidereal)	second (mean solar)	-01 9.972 695
oersted	ampere/meter	+01 7.957 747	section	meter ²	+06 2.589 988
ohm (international of 1948)	ohm	+00 1.000 495	scruple (apothecary)	kilogram	-03 1.295 978
ounce-force (avoirdupois)	newton	-01 2.780 138	shake	second	-08 1.00
ounce-mass (avoirdupois)	kilogram	-022.834952	skein	meter	+02 1.097 28
ounce-mass (troy or apothecary)	kilogram	$-02\ 3.110\ 347$	slug	kilogram	+01 1.459 390
ounce (U.S. fluid)	meter ³	$-05\ 2.957\ 352$	span	meter	-01 2.286
pace	meter	-017.62	statampere	ampere	-10 3.335 640
parsec	meter	+16 3.083 74	stateoulomb	coulomb	-10 3.335 640
pascal	newton/meter ²	+00 1.00	statfarad	farad	-12 1.112 650
peck (U.S.)	meter ³	-03 8.809 767	stathenry	henry	+11 8.987 554
pennyweight	kilogram	-03 1.555 173	statmho	mho	-12 1.112 650
perch	meter	+00 5.0292	statohm	ohm	+11 8.987 554
phot	lumen/meter ²	+04 1.00	statute mile (U.S.)	meter	+03 1.609 344
pica (printer's)	meter	-03 4.217 517	statvolt	volt	+02 2.997 925
pint (U.S. dry)	meter ³	-045.506104	stere	meter ³	+00 1.00
pint (U.S. liquid)	meter ³	$-04\ 4.731\ 764$	stilb	candela/meter ²	+04 1.00
point (printer's)	meter	-04 3.514 598	stoke	meter ² /second	-04 1.00
poise	(newton-second)/meter ²	-01 1.00	tablespoon	meter ³	-05 1.478 676
pole	meter	+00 5.0292	teaspoon	meter ³	-06 4.928 921
pound-force (lbf	newton	+00 4.448 221	ton (assay)	kilogram	-02 2.916 666
avoirdupois)			ton (long)	kilogram	+03 1.016 046
pound-mass (lbm	kilogram	$-01\ 4.535\ 923$	ton (metric)	kilogram	+03 1.00
avoirdupois)	_		ton (nuclear equivalent of TNT)	joule	+09 4.20
pound-mass (troy or	kilogram	$-01\ 3.732\ 417$	ton (register)	meter ³	+00 2.831 684
apothecary)	_		ton (short, 2000 lb)	kilogram	+02 9.071 847
poundal	newton	-01 1.382 549	tonne	kilogram	+03 1.00
quart (U.S. dry)	meter ³	-03 1.101 220	torr (0°C)	newton/meter ²	+02 1.333 22
quart (U.S. liquid)	meter ³	$-04\ 9.463\ 529$	township	meter ²	+07 9.323 957
rad (radiation dose	joule/kilogram	$-02\ 1.00$	unit pole	weber	-07 1.256 637
absorbed)			volt (international of 1948)	volt	+00 1.000 330
Rankine (temperature)	kelvin	$t_K = (5/9) t_R$	watt (international of 1948)	watt	+00 1.000 165
rayleigh (rate of photon	1/second-meter ²	+10 1.00	yard	meter	-01 9.144
emission)			year (calendar)	second (mean solar)	+07 3.1536
rhe	meter ² /(newton-	+01 1.00	year (sidereal)	second (mean solar)	+07 3.155 815
_	second)		year (tropical)	second (mean solar)	+07 3.155 692
rod	meter	+00 5.0292	year 1900, tropical, Jan., day	second (ephemeris)	+07 3.155 692
roentgen	coulomb/kilogram	$-04\ 2.579\ 76$	0, hour 12	_	
rutherford	disintegration/second	+06 1.00	year 1900, tropical, Jan., day	second	+07 3.155 692
second (angle)	radian	-06 4.848 136	0, hour 12		

TABLE 1-6 Alphabetical Listing of Common Conversions

To convert from	То	Multiply by	To convert from	То	Multiply by
Acres	Square feet	43,560	B.t.u. (60°F.) per degree Fahrenheit	Calories per degree centigrade	453.6
Acres	Square meters	4074	Bushels (U.S. dry)	Cubic feet	1.2444
Acres	Square miles	0.001563	Bushels (U.S. dry)	Cubic meters	0.03524
Acre-feet	Cubic meters	1233	Calories, gram	B.t.u.	3.968×10^{-3}
Ampere-hours (absolute)	Coulombs (absolute)	3600	Calories, gram	Foot-pounds	3.087
Angstrom units	Inches	3.937×10^{-9}	Calories, gram	Joules	4.1868
Angstrom units	Meters	1×10^{-10}	Calories, gram	Liter-atmospheres	4.130×10^{-2}
Angstrom units	Microns	1×10^{-4}	Calories, gram	Horsepower-hours	1.5591×10^{-6}
Atmospheres	Millimeters of mercury at 32°F	760	Calories, gram, per gram per degree C.	Joules per kilogram per degree Kelvin	4186.8
Atmospheres	Dynes per square centimeter	1.0133×10^{6}	Calories, kilogram	Kilowatt-hours	0.0011626
Atmospheres	Newtons per square meter	101,325	Calories, kilogram per second	Kilowatts	4.185
Atmospheres	Feet of water at 39.1°F	33.90	Candle power (spherical)	Lumens	12.556
Atmospheres	Grams per square centimeter	1033.3	Carats (metric)	Grams	0.2
Atmospheres	Inches of mercury at 32°F	29.921	Centigrade heat units	B.t.u.	1.8
Atmospheres	Pounds per square foot	2116.3	Centimeters	Angstrom units	1×10^{8}
Atmospheres	Pounds per square inch	14.696	Centimeters	Feet	0.03281
Bags (cement)	Pounds (cement)	94	Centimeters	Inches	0.3937
Barrels (cement)	Pounds (cement)	376	Centimeters	Meters	0.01
Barrels (oil)	Cubic meters	0.15899	Centimeters	Microns	10,000
Barrels (oil)	Gallons	42	Centimeters of mercury at 0°C.	Atmospheres	0.013158
Barrels (U.S. liquid)	Cubic meters	0.11924	Centimeters of mercury at 0°C.	Feet of water at 39.1°F.	0.4460
Barrels (U.S. liquid)	Gallons	31.5	Centimeters of mercury at 0°C	Newtons per square meter	1333.2
Barrels per day	Gallons per minute	0.02917	Centimeters of mercury at 0°C.	Pounds per square foot	27.845
Bars	Atmospheres	0.9869	Centimeters of mercury at 0°C.	Pounds per square inch	0.19337
Bars	Newtons per square meter	1×10^{5}	Centimeters per second	Feet per minute	1.9685
Bars	Pounds per square inch	14.504	Centimeters of water at 4°C.	Newtons per square meter	98.064
Board feet	Cubic feet	1/12	Centistokes	Square meters per second	1×10^{-6}
Boiler horsepower	B.t.u. per hour	33,480	Circular mils	Square centimeters	5.067×10^{-6}
Boiler horsepower	Kilowatts	9.803	Circular mils	Square inches	7.854×10^{-7}
B.t.u.	Calories (gram)	252	Circular mils	Square mils	0.7854
B.t.u.	Centigrade heat units (c.h.u. or p.c.u.)	0.55556	Cords	Cubic feet	128
B.t.u.	Foot-pounds	777.9	Cubic centimeters	Cubic feet	3.532×10^{-5}
B.t.u.	Horsepower-hours	3.929×10^{-4}	Cubic centimeters	Gallons	2.6417×10^{-4}
B.t.u.	Joules	1055.1	Cubic centimeters	Ounces (U.S. fluid)	0.03381
B.t.u.	Liter-atmospheres	10.41	Cubic centimeters	Quarts (U.S. fluid)	0.0010567
B.t.u.	Pounds carbon to CO ₂	6.88×10^{-5}	Cubic feet	Bushels (U.S.)	0.8036
B.t.u.	Pounds water evaporated from and		Cubic feet	Cubic centimeters	28,317
n .	at 212°F	0.001036	Cubic feet	Cubic meters	0.028317
B.t.u.	Cubic foot-atmospheres	0.3676	Cubic feet	Cubic yards	0.03704
B.t.u.	Kilowatt-hours	2.930×10^{-4}	Cubic feet	Gallons	7.481
B.t.u. per cubic foot	Joules per cubic meter	37,260	Cubic feet	Liters	28.316
B.t.u. per hour	Watts	0.29307	Cubic foot-atmospheres	Foot-pounds	2116.3
B.t.u. per minute	Horsepower	0.02357	Cubic foot-atmospheres	Liter-atmospheres	28.316
B.t.u. per pound	Joules per kilogram	2326	Cubic feet of water (60°F.)	Pounds	62.37
B.t.u. per pound per degree	Calories per gram per degree		Cubic feet per minute	Cubic centimeters per second	472.0
Fahrenheit	centigrade	1	Cubic feet per minute	Gallons per second	0.1247
B.t.u. per pound per degree	Joules per kilogram per degree	4186.8	Cubic feet per second	Gallons per minute	448.8
Fahrenheit	Kelvin	10744	Cubic feet per second	Million gallons per day	0.64632
B.t.u. per second	Watts	1054.4	Cubic inches	Cubic meters	1.6387×10^{-5}
B.t.u. per square foot per hour	Joules per square meter per second	3.1546	Cubic yards	Cubic meters	0.76456
B.t.u. per square foot per minute	Kilowatts per square foot	0.1758	Curies	Disintegrations per minute	2.2×10^{12}
B.t.u. per square foot per second	Calories, gram (15°C.), per square cen-	1.2405	Curies	Coulombs per minute	1.1×10^{12}
for a temperature gradient of	timeter per second for a tempera-		Degrees	Radians	0.017453
1°F. per inch	ture gradient of 1°C. per centimeter		Drams (apothecaries' or troy)	Grams	3.888

TABLE 1-6 Alphabetical Listing of Common Conversions (Concluded)

To convert from	То	Multiply by	To convert from	То	Multiply by
Drams (avoirdupois)	Grams	1.7719	Horsepower (British)	Pounds water evaporated per hour	2.64
Dynes	Newtons	1×10^{-5}		at 212°F	
Ergs	Ioules	1×10^{-7}	Horsepower (metric)	Foot-pounds per second	542.47
Faradays	Coulombs (abs.)	96,500	Horsepower (metric)	Kilogram-meters per second	75.0
Fathoms	Feet	6	Hours (mean solar)	Seconds	3600
Feet	Meters	0.3048	Inches	Meters	0.0254
Feet per minute	Centimeters per second	0.5080	Inches of mercury at 60°F	Newtons per square meter	3376.9
Feet per minute	Miles per hour	0.011364	Inches of water at 60°F	Newtons per square meter	248.84
Feet per (second) ²	Meters per (second) ²	0.3048	Joules (absolute)	B.t.u. (mean)	9.480×10^{-4}
Feet of water at 39.2°F.	Newtons per square meter	2989	Joules (absolute)	Calories, gram (mean)	0.2389
Foot-poundals	B.t.u.	3.995×10^{-5}	Joules (absolute)	Cubic foot-atmospheres	0.3485
Foot-poundals	Ioules	0.04214	Joules (absolute)	Foot-pounds	0.7376
Foot-poundals	Liter-atmospheres	4.159×10^{-4}	Joules (absolute)	Kilowatt-hours	$2.7778 \times 10^{-}$
Foot-pounds	B.t.u.	0.0012856	Joules (absolute)	Liter-atmospheres	0.009869
Foot-pounds	Calories, gram	0.3239	Kilocalories	Ioules	4186.8
Foot-pounds	Foot-poundals	32.174	Kilograms	Pounds (avoirdupois)	2.2046
Foot-pounds	Horsepower-hours	5.051×10^{-7}	Kilograms force	Newtons	9.807
Foot-pounds	Kilowatt-hours	3.766×10^{-7}	Kilograms per square centimeter	Pounds per square inch	14.223
Foot-pounds	Liter-atmospheres	0.013381	Kilometers	Miles	0.6214
Foot-pounds force	Ioules	1.3558	Kilowatt-hours	B.t.u.	3414
Foot-pounds per second	Horsepower	0.0018182	Kilowatt-hours	Foot-pounds	2.6552×10^6
Foot-pounds per second	Kilowatts	0.0013132	Kilowatts	Horsepower	1.3410
Furlongs	Miles	0.125	Knots (international)	Meters per second	0.5144
Gallons (U.S. liquid)	Barrels (U.S. liquid)	0.03175	Knots (nautical miles per hour)	Miles per hour	1.1516
Gallons	Cubic meters	0.003785	Lamberts	Candles per square inch	2.054
Gallons	Cubic feet	0.13368	Liter-atmospheres	Cubic foot-atmospheres	0.03532
Gallons	Gallons (Imperial)	0.13303	Liter-atmospheres	Foot-pounds	74.74
Gallons	Liters	3.785	Liters	Cubic feet	0.03532
Gallons	Ounces (U.S. fluid)	128	Liters	Cubic neters	0.00352
Gallons per minute	Cubic feet per hour	8.021	Liters	Gallons	0.26418
Gallons per minute	Cubic feet per nour Cubic feet per second	0.002228	Lumens	Watts	0.20418
Grains per minute Grains	Grams	0.002228	Micromicrons	Microns	1×10^{-6}
Grains	Pounds	1/7000	Microns	Angstrom units	1×10^{4} 1×10^{4}
Grains Grains per cubic foot	Grams per cubic meter	2.2884	Microns	Meters	1×10^{-6} 1×10^{-6}
	Parts per million	17.118	Miles (nautical)	Feet	6080
Grains per gallon		0.5644			
Grams Grams	Drams (avoirdupois)	0.5644	Miles (nautical) Miles	Miles (U.S. statute) Feet	1.1516 5280
	Drams (troy)		Miles Miles		5280 1609.3
Grams	Grains	15.432 0.001		Meters	
Grams	Kilograms		Miles per hour	Feet per second	1.4667
Grams	Pounds (avoirdupois)	0.0022046	Miles per hour	Meters per second	0.4470
Grams	Pounds (troy)	0.002679	Milliliters	Cubic centimeters	1
Grams per cubic centimeter	Pounds per cubic foot	62.43	Millimeters	Meters	0.001

Grams per square centimeter Grams per square centimeter Founds per square foot 2.0482 Mils Meters 2.54 × 107 Minimis (U.S.) Cubic centimeters Cubic per square foot Pounds per square meter Pounds square per square foot Pounds sper square foot Pounds per square foot Pounds per square foot Pounds sper square foot Pounds sper square foot Pounds sper square foot Pounds per square foot	Grams per cubic centimeter Grams per liter	Pounds per gallon Grains per gallon	8.345 58.42	Millimeters of mercury at 0°C. Millimicrons	Newtons per square meter Microns	133.32 0.001
Grams per square centimeter Carnes per square centimeter Hectares Pounds per square inch 2.0482 Milmins (U.S.) Cubic centimeters 2.54 × 10³ Hectares Hectares 2.471 Minutes (angle) Radians 2.909 × 10⁴ Horsepower (British) B.t.u. per minute 42.42 Minutes (angle) Radians 0.10197 Horsepower (British) B.t.u. per minute 33,000 Ounces (avoirdupois) Kilograms 0.10197 Horsepower (British) Foot-pounds per second 550 Ounces (cus (U.S. fluid) Ounces (avoirdupois) Ounces (troy) 0.9115 Horsepower (British) All (British) Valtis (U.S.) (British) Valtis (U.S.) (British) Valtis (U.S			0.0624	Mils	Inches	0.001
Grams per square centimeter Hectares Acres 2.471 Minims (U.S.) Minims (U.S.) Radians 2.909×10⁻⁴ 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.0000 10.0000 10.0000 10.0000			2.0482	Mils	Meters	2.54×10^{-5}
Hectares		Pounds per square inch	0.014223	Minims (U.S.)		0.06161
Hectares Square meters 10,000 Minutes (mean solar) Seconds 60		Acres	2.471		Radians	2.909×10^{-4}
Horsepower (British)	Hectares	Square meters	10.000		Seconds	60
Horsepower (British) Fot-pounds per minute 33,000 Onnees (avoirdupois) Onnees (avoirdupois) Onnees (troy) Onnees	Horsepower (British)				Kilograms	0.10197
Horsepower (British) Foot-pounds per minute 33,000 550 Ounces (avoirdupois) Ounces (troy) Ounce						
Horsepower (British) Horsepower (British) Watts						
Horsepower (British)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Pounds (avoirdupois)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	riotoepower (British)		0.110	1 ounding	110110110	0.10020
Pounds (avoirdupois)	Pounds (avoirdupois)		7000	Square feet	Square meters	0.0929
Pounds (avoirdupois)	Pounds (avoirdupois)	Kilograms	0.45359	Square feet per hour	Square meters per second	2.581×10^{-5}
Pounds per cubic foot Pounds per cubic centimeter Kilograms per cubic meter Kilograms per cubic meter Kilograms per cubic meter Kilograms per cubic meter Kilograms per square foot Pounds per square foot Kilograms per square meter Atmospheres Atmospheres Cilograms per square meter Atmospheres Cilograms per square meter Atmospheres Cilograms per square meter Cilograms Pounds per square meter Cilograms Per square meter Cilograms Cilog		Pounds (trov)	1.2153			6.452
Pounds per cubic foot Pounds per square foot Atmospheres 4.725×10^{-4} 4.725×10^{-4} 4.825×10^{-4} 4.882 $1000000000000000000000000000000000000$		Grams per cubic centimeter	0.016018			6.452×10^{-4}
Pounds per square foot Pounds per square foot Pounds per square inch Pounds force Pounds force per square foot Pounds force per square foot Pounds force per square foot Pounds force per square inch 			16.018	Square vards		0.8361
Pounds per square foot Kilograms per square meter Atmospheres Atmospheres 0.06805 Tons (long) Pounds Pou			4.725×10^{-4}		Square meters per second	1×10^{-4}
Pounds per square inch Newtons per square meter 6894.8 Tons (metric) Pounds force Pounds force Newtons per square meter 6894.8 Tons (metric) Pounds force per square foot Newtons per square meter 44.482 Tons (metric) Pounds (short) Tons (short) Tons (short) Pounds water evaporated from and at 212°F. Pounds centigrade units (p.c.u.) Pounds mater evaporated units (p.c.u.) Pounds mater evaporated inch Pounds mater evaporated inch Pounds mater evaporated inch Pounds mater evaporated from and at 212°F. Tons (short) Pounds mater evaporated inch Pounds mater evaporated inch Pounds mater evaporated from and at 212°F. Tons (short) Pounds mater evaporated inch Pounds Poun			4.882	Tons (long)		1016
Pounds per square inch Pounds per square inch Pounds per square inch Pounds per square inch Pounds force Newtons per square meter Revolutions per square meter Pounds force Pounds force Pounds force Pounds force Pounds force Pounds force per square foot Pounds force per square meter Pounds water evaporated from and at 212°F. Pounds water evaporated units (p.c.u.) Pounds water evaporated units (p.c.u.) Pounds water evaporated units (p.c.u.) Pounds			0.06805		Pounds	2240
Pounds per square inch			0.07031	Tons (metric)	Kilograms	1000
Pounds force Pounds force Pounds force Pounds force per square foot Newtons per square meter 47.88 Tons (short) Tons (short) Slogs Pounds force per square foot Newtons per square meter 47.88 Tons (short) Tons (short) Pounds			6894.8		Pounds	2204.6
Pounds force per square foot Pounds water evaporated from and at $212^{\circ}F$. Pound-centigrade units (p.c.u.) 	Pounds force		4.4482			1.1023
Pounds water evaporated from and at 212°F. Pound-centigrade units (p.c.u.) Pound-centigrade u	Pounds force per square foot	Newtons per square meter	47.88	Tons (short)		907.18
and at 212°F. Pound-centigrade units (p.c.u.) Pound-centigrade units (p.c.u.) B.t.u. Subscript String Stri			0.379			2000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		Tons (refrigeration)	B.t.u. per hour	12,000
Quarts (U.S. liquid)Cubic meters 9.464×10^{-4} Tons (U.S. shipping)Cubic feet 40.00 RadiansDegrees 57.30 Torr (mm. mercury, 0°C.)Newtons per square meter 133.32 Revolutions per minuteRadians per second 0.10472 WattsB.t.u. per hour 3.413 Seconds (angle)Radians 4.848×10^{-6} WattsJoules per second 1 SlugsGee pounds 1 WattsKilogram-meters per second 0.10197 SlugsKilograms 14.594 Watt-hoursJoules 3600 SlugsPounds 32.17 YardsMeters 0.9144	Pound-centigrade units (p.c.u.)	B.t.u.	1.8	Tons (British shipping)		42.00
Radians Degrees 57.30 Torr (mm. mercury, 0°C.) Newtons per square meter 133.32 Revolutions per minute Radians per second 0.10472 Watts B.t.u. per hour 3.413 Seconds (angle) Radians 4.848 × 10 ⁻⁶ Watts Joules per second 1 Slugs Gee pounds 1 Watts Kilogram-meters per second 0.10197 Slugs Kilograms 14.594 Watt-hours Joules 9.3600 Slugs Pounds 32.17 Yards Meters 0.9144		Cubic meters	9.464×10^{-4}	Tons (U.S. shipping)	Cubic feet	40.00
Revolutions per minute Radians per second 0.10472 Watts B.t.u. per hour 3.413 Seconds (angle) Radians 4.848 × 10 ⁻⁶ Watts Joules per second 1 Slugs Gee pounds 1 Watts Kilogram-meters per second 0.10197 Slugs Kilograms 14.594 Watt-hours Joules 3600 Slugs Pounds 32.17 Yards Meters 0.9144		Degrees	57.30	Torr (mm. mercury, 0°C.)	Newtons per square meter	133.32
Seconds (angle) Radians 4.848 × 10 ⁻⁶ Watts Joules per second 1 Slugs Gee pounds 1 Watts Kilogram-meters per second 0.10197 Slugs Kilograms 14.594 Watt-hours Joules 3600 Slugs Pounds 32.17 Yards Meters 0.9144	Revolutions per minute		0.10472			3.413
SlugsGee pounds1WattsKilogram-meters per second0.10197SlugsKilograms14.594Watt-hoursJoules3600SlugsPounds32.17YardsMeters0.9144			4.848×10^{-6}	Watts		1
Slugs Kilograms 14.594 Watt-hours Joules 3600 Slugs Pounds 32.17 Yards Meters 0.9144	Slugs	Gee pounds	1	Watts	Kilogram-meters per second	0.10197
Slugs Pounds 32.17 Yards Meters 0.9144	Slugs		14.594	Watt-hours		3600
Square centimeters Square feet 0.0010764			32.17	Yards	Meters	0.9144
	Square centimeters	Square feet	0.0010764			

TABLE 1-7 Common Units and Conversion Factors*

	7 Common Onits and Conversion Factors	
Mass (M)	1 1 170 704 /	1 atm = 760 millimeters of mercury at 0°C
	1 pound mass = 453.5924 grams	(density 13.5951 g/cm ³)
	= 0.45359 kilograms	= 29.921 inches of mercury at 32°F
	= 7000 grains	= 14.696 pounds force/square inch
	1 slug = 32.174 pounds mass	= 33.899 feet of water at 39.1°F
	1 ton (short) = 2000 pounds mass	= 1.01325×10^6 dynes/square centimeter
	1 ton (long) = 2240 pounds mass	= 1.01325×10^5 Newtons/square meter
	1 ton (metric) = 1000 kilograms	Density (M/L³)
	= 2204.62 pounds mass	1 pound mass/cubic foot = 0.01601846 grams/cubic centimeter
	1 pound mole = 453.59 gram moles	= 16.01846 kilogram/cubic meter
Length (L)	•	Energy (H or FL)
	1 foot $= 30.480$ centimeters	1 British thermal unit = 251.98 calories
	= 0.3048 meters	= 1054.4 joules
	1 inch $= 2.54$ centimeters	= 777.97 foot-pounds force
	=0.0254 meters	= 10.409 liter-atmospheres
	1 mile (U.S.) = 1.60935 kilometers	= 0.2930 watt-hour
	1 yard $= 0.9144$ meters	Diffusivity (L^2/θ)
Area (L2)	,	1 square foot/hour = $0.258 \text{ cm}^2/\text{s}$
,	1 square foot = 929.0304 square centimeters	$= 2.58 \times 10^{-5} \text{ m}^2/\text{s}$
	= 0.09290304 square meters	Viscosity (M/Lθ)
	1 square inch = 6.4516 square centimeters	1 pound mass/foot hour = 0.00413 g/cm s
	1 square yard = 0.836127 square meters	0.000413 kg/m s
Volume (L3	3)	1 centipoise = 0.01 poise
voranie (L	1 cubic foot = 28,316.85 cubic centimeters	= 0.01 g/cm s
	= 0.02831685 cubic meters	= 0.001 kg/m s
	= 28.31685 liters	= 0.000672 lbm/ft s
	= 7.481 gallons (U.S.)	$= 0.000012 \text{ fbm/fc}^2$ $= 0.0000209 \text{ lb/s/ft}^2$
	1 gallon = 3.7853 liters	Thermal conductivity $[H/\theta L^2(T/L)]$
	= 231 cubic inches	1 Btu/hr ft ² (°F/ft) = 0.00413 cal/s cm ² (°C/cm)
Time (0)	= 201 cubic menes	= 1.728 J/s m ² (°C/m)
Time (0)	1 hour = 60 minutes	Heat transfer coefficient
	= 3600 seconds	1 Btu/hr ft ² °F = 5.678 J/s m ² °C
Temperatu		Heat capacity (H/MT)
remperatu	1 centigrade or Celsius degree = 1.8 Fahrenheit degree	1 Btu/lbm °F = 1 cal/g °C
	Temperature, Kelvin $= T^{\circ}C + 273.15$	= 4184 J/kg °C
	Temperature, Rankine $= T + 459.7$	Gas constant
	Temperature, Fahrenheit = 9/5 T°C + 32	1.987 Btu/lbm mole °R = 1.987 cal/mol K
	Temperature, randoment $= 9/3$ $T = 5/2$ Temperature, centigrade or Celsius $= 5/9$ (T °F $= 32$)	= 82.057 atm cm ³ /mol K
	Temperature, Rankine = 1.8 T K	$= 82.057 \text{ atm cm}^2 \text{mol } \mathbf{K}$ $= 0.7302 \text{ atm } \text{ft}^3 / \text{lb mole } ^\circ \mathbf{F}$
Eama (E)	Temperature, Nankine = 1.0 T K	
Force (F)	1	= $10.73 \text{ (lbf/in.2) (ft3)/lb mole °R}$
	1 pound force = 444,822.2 dynes	= $1545 (lb_f/ft^2) (ft^3)/lb$ mole °R
	= 4.448222 Newtons	$= 8.314 (\text{N/m}^2) (\text{m}^3) / \text{mol K}$
D /T	= 32.174 poundals	Gravitational acceleration
Pressure (F		$g = 9.8066 \text{ m/s}^2$
Normal a	atmospheric pressure	$= 32.174 \text{ ft/s}^2$

TABLE 1-8 Kinematic-Viscosity Conversion Formulas

Viscosity scale	Range of t, sec	Kinematic viscosity, stokes
Saybolt Universal	32 < t < 100 t > 100	0.00226t - 1.95/t 0.00220t - 1.35/t
Saybolt Furol	25 < t < 40 t > 40	0.0224t - 1.84/t 0.0216t - 0.60/t
Redwood No. 1	34 < t < 100 t > 100	0.00260t - 1.79/t 0.00247t - 0.50/t
Redwood Admiralty Engler	12 100	$0.027t - 20/t \\ 0.00147t - 3.74/t$

TABLE 1-9 Values of the Gas-Law Constant

Temp. scale	Press. units	Vol. units	Wt. units	Energy units	R
Kelvin	atm.	cm ³	g-moles g-moles g-moles g-moles	calories joules (abs) joules (int) atm cm³	1.9872 8.3144 8.3130 82.057
Rankine	atm. mm. Hg bar kg/cm² atm mm Hg	liters liters liters liters ft ³ ft ³	g-moles g-moles g-moles g-moles lb-moles lb-moles lb-moles lb-moles	atm liters mm Hg-liters bar-liters kg/(cm²)(liters) atm-ft³ mm Hg-ft³ chu or pcu Btu hp-hr kw-hr	0.08205 62.361 0.08314 0.08478 1.314 998.9 1.9872 1.9872 0.0007805 0.0005819
	atm in Hg mm Hg lb/in²abs lb/ft²abs	ft ³ ft ³ ft ³ ft ³	lb-moles lb-moles lb-moles lb-moles lb-moles	atm-ft ³ in Hg-ft ³ mm Hg-ft ³ (lb)(ft ³)/in ² ft-lb	0.7302 21.85 555.0 10.73 1545.0

NOTE: U.S. customary units; or British units, on left and SI units on right.

*Adapted from Faust et al., *Principles of Unit Operations*, John Wiley and Sons, 1980.

TABLE 1-10 United States Customary System of Weights and Measures

```
Linear Measure
                                 12 inches (in) or (") = 1 foot (ft) or (')
3 feet = 1 yard (yd)
                                                 16.5 \text{ feet} = 1 \text{ rod (rd)}
                                                  5.5 yards
                                                 5280 feet]
                                                                     =1 mile (mi)
                                                  320 rods
                                                          1 \text{ mil} = 0.001 \text{ inch}
        Nautical:
                                               6080.2 feet = 1 nautical mile
6 feet = 1 fathom
                                              120 \text{ fathoms} = 1 \text{ cable length}
                                                         1 knot = 1 nautical mile per hour
                                     60 nautical miles = 1^{\circ} of latitude
                                                        Square Measure
144 sq. inches (sq. in) or (in²) or (\square") = 1 sq. foot (ft²) or (\square") = 9 sq. feet (ft²) (\square") = 1 sq. yard (yd²) 30.25 sq. yards = 1 sq. rod, pole, or perch
                                             160 \text{ sq. rods} = \begin{cases} 10 \text{ sq. chains} \\ 43,560 \text{ sq. ft} \end{cases}
                                                                                                     = 1 acre
                                                   640 \text{ acres} = 1 \text{ sq. mile} = 1 \text{ section}
                     1 circular inch (area of
circle of 1 inch diameter) = 0.7854 sq. inch
1 sq. inch = 1.2732 circular inch
1 circular mil = area of circle of 0.001
                                                                         inch diameter
                           1,000,000 circular mils = 1 circular inch
                                90 degrees (°) = 1 quadrant
360 degrees (°) = 1 circumference
                                                                   \int = 1 \text{ radian (rad.)}
                                 57.29578 degrees
                                                                     = 57° 17′ 44.81″
                                                        Volume Measure
        Solid:
                     \begin{array}{c} 1728 \; cubic \; in \; (cu. \; in) \; (in^3) = 1 \; cubic \; foot \; (cu. \; ft) (ft^3) \\ 27 \; cu. \; ft = 1 \; cubic \; yard \; (cu. \; yd) \end{array}
        Dry Measure:
                                                       2 \text{ pints} = 1 \text{ quart}
                                         8 quarts = 1 peck
4 pecks = 1 bushel
1 United States
                                  Winchester bushel = 2150.42 cubic inches
        Liquid:
                                         \begin{array}{c} 4 \text{ gills} = 1 \text{ pint (pt)} \\ 2 \text{ pints} = 1 \text{ quart (qt)} \\ 4 \text{ quarts} = 1 \text{ gallon (gal)} \\ 7.4805 \text{ gallons} = 1 \text{ cubic foot} \end{array}
        Apothecaries' Liquid:
                         60 minims (min. or \mathfrak{M}) = 1 fluid dram or drachm
8 drams (\mathfrak{z}) = 1 fluid ounce
16 ounces (oz. \mathfrak{Z}) = 1 pint
                                                     Avoirdupois Weight
                           16 drams = 437.5 grains = 1 ounce (oz)
16 ounces = 7000 grains = 1 pound (lb)
100 pounds = 1 hundredweight (cwt)
                         2000 \text{ pounds} = 1 \text{ short ton: } 2240 \text{ pounds} = 1 \text{ long ton}
                                                            Troy Weight
                                     24 grains = 1 pennyweight (dwt)
20 pennyweights = 1 ounce (oz)
12 ounces = 1 pound (lb)
                                                   Apothecaries' Weight
                                            20 grains (gr) = 1 scruple (3)

3 scruples = 1 dram (3)

8 drams = 1 ounce (3)

12 ounces = 1 pound (lb)
```

TABLE 1-11 Temperature Conversion Formulas

```
\label{eq:continuous} \begin{split} ^{\circ}F &= (^{\circ}C \times 5/9) + 32 \\ ^{\circ}C &= (^{\circ}F - 32) \times 5/9 \\ ^{\circ}R &= ^{\circ}F + 459.69 \\ ^{\circ}K &= ^{\circ}C + 273.15 \\ ^{\circ}K &= ^{\circ}R \times 5/9 \\ \end{split} Temperature difference, \Delta T ^{\circ}F &= ^{\circ}C \times 9/5
```

NOTE: An extensive table of temperature conversions may be found in the sixth edition of the ${\it Handbook}$ (Table 1-12).

TABLE 1-12 Specific Gravity, Degrees Baumé, Degrees API, Degrees Twaddell, Pounds per Gallon, Pounds per Cubic Foot*

 $^{\circ}\text{B\'e} = 145 - \frac{145}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{B\'e} = \frac{140}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{B\'e} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{API} = \frac{141.5}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{API} = \frac{141.5}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F} - 1}{\text{Meavier than H}_2\text{O}}; \\ ^{\circ}\text{Tw} = \frac{\text{sp gr } 60^{\circ}/60^{\circ}\text{F}$ 0.005 sp gr Lb per gal at 60°F gal at ft3 at gal at gal at 60°F 60°F 60°F 60°F Sp gr 60°/ 60°F wt in wt. in 60° °Bé °API 60° °Bé °API 60° °Bé °API 60° °Bé °API 0.600 103.33 104.33 4.9929 37.350 0.700 70.00 70.64 5.8268 43.587 0.800 45.00 45.38 6.6606 49.825 0.900 25.56 7.4944 56.062 $37.662 \\ 37.973$.705 .710 .715 $6.7023 \\ 6.7440$ 7.5361 7.5777 .605 101.40 102.38 5.0346 68.58 69.21 5.8685 43.899 .805 43.91 44.28 50.137 .905 24.70 24.85 56.374 50.448 50.760 100.47 5.9101 44.211 .810 42.84 43.19 .910 23.85 23.99 56.685 97.64 5.1180 38.285 65.80 66.40 5.9518 44.523 41.78 .915 23.01 23.14 7.6194 .61598.58 .815 42.12 6.785756.997 .620 95.81 96.73 5.159738.597 .720 64.4465.03 5.9935 44.834 .820 40.73 41.06 6.8274 51.072 .920 22.17 22.30 7.6612 57.310 .725 51.384 21.35 21.47 7.7029 57.622 .625 94.00 94.90 5.2014 39.910 63.10 63.67 6.0352 45.146 .825 39.70 40.02 6.8691 .925 93.10 91.33 5.2431 5.2848 39.222 39.534 61.78 60.48 62.34 61.02 6.0769 6.1186 38.67 37.66 38.98 37.96 6.9108 6.9525 51.696 52.008 .930 .935 7.7446 7.7863 57.934 58.246 830 .635 90.47 19.73 19.84 .835.740 .745 640 88.75 89.59 5.3265 39 845 59 19 59.72 6 1603 46 082 840 36.67 36.95 6 9941 52.320 940 18 94 19.03 7 8280 58 557 .645 87.05 57.92 58.43 7.0358 87.88 5.368240.157 6.2020 46.394 .845 35.68 35.96 52.632 18.15 18.24 7.8697 58.869 .650 85.38 86 19 5.4098 40 468 .750 56 67 57 17 6 2437 46 706 850 34.71 34 97 7.0775 52 943 950 17 37 17.45 7.9114 59 181 .655 .660 83.74 84.53 5.4515 5.4932 40.780.755 .760 55.43 54.21 55.92 6.2854 6.327147.018 47.330.85533.74 32.79 34.00 7.1192 7.1609 53.255 53.567 .95516.60 16.67 7.9531 7.9947 59.493 82.12 82.89 41.092 54.68 .860 33.03 .960 15.83 15.90 59.805 6.3688 7.2026 .670 78.96 79.69 5.5766 41.716 .770 51.82 52.27 6.4104 47.953 .870 30.92 31.14 7.2443 54.191 .970 14.33 14.38 8.0780 60.428 .675 77.41 78.13 5.6183 42.028 .775 50.65 51.08 6.4521 47.265 .875 30.00 30.21 7.2860 54.503 .975 13.59 13.63 8.1197 60.740 .780 .785 .790 .680 .685 $75.88 \\ 74.38$ 76.59 $\begin{array}{c} 5.6600 \\ 5.7017 \end{array}$ 42.340 49.49 49.91 6.4938 48.577 48.889 .880 29.09 29.30 $\begin{array}{c} 7.3277 \\ 7.3694 \end{array}$ $\begin{array}{c} 54.815 \\ 55.127 \end{array}$.980 12.86 12.89 $\begin{array}{c} 8.1615 \\ 8.2032 \end{array}$ 61.052 48.75 47.61 28.39 27.49 75.07 42.652 6.5355 .885 28.19 .985 61.364 72.90 47.22 6.5772 49.201 .890 27.30 7.4111 11.41 .69073.57 5.7434 42.963 55.438 .990 11.43 8.2449 61.676 10.70 10.00 8.2866 8.3283 .695 71.4472.105.785143.275 .795 46.10 46.49 6.618949.513.895 26.42 26.60 7.452855.750995 10.71 Lb per gal at 60°F Lb per Lb per Lb per Lb per Lb per Lb per Sp Sp gal at 60°F Sp gal at 60°F Sp gal at 60°F 60°F 60°F 60°F 60°F gr 60°/ gr 60°/ gr 60°/ gr 60°/ wt in wt. in 60° °Bé °Tw 60° °Bé °Tw 60° °Bé °Tw 60° °Bé °Tw 1.005 8.3700 62.612 1.255 29.46 10.4546 78.206 1.505 48.65 101 12.5392 93.800 62.38 151 14.6238 109.394 1.010 1 44 8 4117 62.924 1.260 29 92 10 4963 78 518 1.510 48 97 102 12.5809 94 112 1.760 62.61 152 14 6655 109 705 14.7072 14.7489 8.4534 63.236 63.547 1.265 1.270 49.29 49.61 103 104 12.6226 94.424 1.765 1.770 153 154 1.520 12.6643 1.0202.84 8.495030.83 79.14194.735 63.08 110.3291.025 3.54 5 8.5367 63.859 1.275 31.27 55 10.6214 79.453 1.525 49.92 105 12.7060 95.047 1.775 63.31 155 14.7906110.641 12.7477 8.5784 64.171 1.280 31.72 10.6630 79.765 1.530 106 95.359 1.780 63.54 14.8323 110.953 1.030 4.22 6 56 50.23 156 8.6201 1.285 10.7047 10.7464 10.7881 1.040 5.58 8.6618 64.795 1.290 32.60 80.389 1.540 50.84 108 12.8310 95.983 $1.790 \\ 1.795$ 63.99 158 14.9157 111.577 1.045 6.24 8.7035 65.107 1.295 33.03 59 80.701 1.545 51.15 109 12.8727 96.295 64.22 159 14.9574 111.889 1.050 6.91 10 8.7452 65.419 1.300 33.46 10.8298 81.013 1.550 51.45 110 12.9144 96.606 64.44 14.9990 112.200 1.055 81.325 11 8.7869 65.731 1.305 33.89 10.8715 1.555 51.75 111 12.9561 96.918 1.805 64.67 15.0407 112.512 8.21 8.8286 1.560 52.05 12.9978 15.0824 1.060 12 66.042 1.310 34.31 62 10.9132 81.636 97.230 1.810 64.89 162 112.824 34.73 35.15 81.948 82.260 1.565 1.570 52.35 52.64 113 114 97.542 97.854 1.815 1.820 65.11 65.33 15.1241 15.1658 113.136 113.448 8.85 13 14 8.8703 66 354 1.315 1.320 10 9549 13.0395 163 1.065 10.9966 10.12 15 65 1.075 8.9537 66.978 1.325 35.57 11.0383 82.572 1.575 52.94 115 13.1229 98.166 1.825 65.55 165 15.2075 113.760 1.080 10.74 8.9954 67.290 1.330 66 11.0800 82.884 1.580 53.23 116 13.1646 98.478 65.77 166 15.2492 114.072 16 17 35.98 1.830 1.085 11.36 9.0371 67 602 1.335 36.39 11 1217 83 196 1.585 53.52 117 13 2063 98.790 1.835 65.98 167 15 2909 114 384 67.914 68.226 1.590 1.595 18 19 83.508 13.2480 1.840 1.845 168 169 15.3326 11.1634 66.20 37.19 9.1204 1.095 1.345 69 11.2051 83.820 54.09 119 13.2897 99.414 66.41 15.3743 115.007 1.100 13.18 20 9.1621 68.537 1.350 37.59 70 11.2467 84.1311.600 54.38 120 13.3313 99.725 1.850 66.62 170 15.4160115.318 1.355 37.99 11.2884 84.443 1.605 121 13.3730 100.037 15.4577 115.630 1.105 13.78 21 9.2038 68.849 71 72 54.66 1.855 66.83 171 11.3301 15.4993 38.38 1.610 73 74 75 173 174 175 1.115 14.96 23 9.2872 69.473 69.785 1.365 38.77 11.3718 85.067 1.615 55.22 55.49 123 13.4564 100.661 1.865 67.25 67.46 15.5410 15.5827116.255 24 9.3289 39.16 11.4135 1.620 194 13 4981 100.973 1.870 116.567 25 85.691 55.77 125 13.5398 67.67 15.6244 1.125 16.11 9.3706 70.097 1.375 39.55 11.4552 1.625 101.285 1.875 116.879 13.5815 1.130 16.68 26 9.4123 70.409 1.380 39.93 11.4969 86.003 1.630 56.04 101.597 1.880 67.87 15.6661 1.135 17.2527 9.4540 70.721 1.385 40.31 77 78 79 11.5386 86.315 1.635 56.32 127 13.6232 101.909 1.885 68.08 15.7078 117.503 71.032 17.81 18.36 13.6649 13.7066 15.7495 15.7912 117.814 118.126 9.4957 1.390 40.68 11.5803 86.626 1.640 56.59 128 102.220 1.890 68.28 1.140 102.532 1.895 1.64568.48 71.344 71.656 1.150 18.91 30 9.5790 1.400 41.43 80 11.6637 87.250 1.650 57.12 130 13.7483 102.844 1.900 68.68 180 15.8329 118,438 11.7054 13.7900 15.8746 9.6207 71.968 41.80 81 87.562 1.655 131 103.156 1.905 118.740 1.155 19.46 31 1.405 57.39 68.88 181 11.7471 11.7888 13.8317 13.8734 103.468 103.780 1 160 20.00 9.6624 72.280 1.410 42.16 87 874 1.660 57.65 132 1 910 69.08 182 15.9163 119 062 9.7041 72.592 1.415 88.186 1.665 57.91 133 15.9580 119.374 1.165 20.54 33 42.53 1.915 69.28 183 1.170 21.07 34 9 7458 72.904 1 420 42.89 84 11.8304 88 498 1.670 58 17 134 13 9150 104 092 1 920 69.48 184 15 9996 119 686 21.60 35 9.7875 73.216 1.425 43.25 85 11.8721 88.810 1.675 58.43 135 13.9567 104.404 1.925 69.68 185 16.0413 119.998 73.528 73.840 74.151 1.180 22.12 36 37 9.8292 1.430 43 60 86 11 9138 89 121 1.680 58 69 $\frac{136}{137}$ 13 9984 104 715 1 930 69.87 186 187 16 0830 120 309 1.685 16.1247 43.95 89.745 1.190 23.15 38 9.9126 1.440 44.31 11.9972 1.690 59.20 138 14.0818 105.339 1.940 70.26 188 16.1664 120.933 90.057 90.369 139 140 14.1235 14.1652 105.651 105.963 16.2081 16.2498 1.195 1.200 39 40 9.9543 9.9960 74.463 74.775 12.0389 1.695 1.70059.45 59.71 1.945 1.950 70.45 70.64121.245 121.557 45.0012.0806 190 24.17 1.450 75.087 1.205 24.67 1.705 14.2069 16.2915 1.710 1.210 25.17 42 10.0793 75.399 1.460 45.68 92 12.1640 90.993 60.20 142 14.2486 106.587 1.960 71.02 192 16.3332 122.181 193 1.215 25.66 10.1210 75.711 46.02 12.2057 91.305 60.45 14.2903 106.899 1.965 71.21 16.3749 122.493 1.465 12.2473 91.616 60.70 14.3320 107.210 1.970 16.4166 26.15 10.1627 76.022 46.36 194 1.225 26.63 45 10.2044 76,334 1.475 46.69 95 12.2890 91.928 1.725 60.94 145 14.3737 107.522 1.975 71.58 195 16.4583 123.116 107.834 27.11 10.2461 47.03 96 12.3307 92.240 1.730 61.18 14.4153 71.77 123,428 1.230 46 76.646 1.480 146 1.980 196 16.5000 76.958 77.270 77.582 77.894 27.59 28.06 1.485 1.490 47.36 47.68 12.3724 12.4141 1.735 1.740 61.34 61.67 14.4570 14.4987 108.146 108.458 16.5417 16.5833 123.740 124.052 1 235 10.2878 97 92.552 147 1.985 71.95197 1.240 48 10.3295 98 92.864 148 1.990 72.14 72.32 198 1 245 28.53 49 10.3712 1 495 48.01 99 12.4558 93 176 1.745 61.91 149 14 5404 108 770 1 995 199 16 6250 124 364 100 12.4975 109.082 2.000

^{*}Prepared by Lewis V. Judson, Ph.D., Chief of Length Section of National Bureau of Standards with the advice and assistance of E. L. Peffer, B.S., A.M., late Chief of Capacity and Density Section, National Bureau of Standards.

TABLE 1-13 Wire and Sheet-Metal Gauges*

Values in approximate decimals of an inch
As a number of gauges are in use for various shapes and metals, it is advisable to state the thickness in thousandths when specifying gauge number.

Gauge number	American (AWG) or Brown & Sharpe (B & S) (for nonferrous wire and sheet)†	U.S. Steel Wire (Stl WG) or Washburn & Moen or Roebling or Am. Steel & Wire Co. [A. (steel) WG] (for steel wire)	Birming- ham (BWG) (for steel wire) or Stubs Iron Wire (for iron or brass wire)‡	U.S. Standard (for sheet and plate metal, wrought iron)	Standard Birmingham (BG) (for sheet and hoop metal)	Imperial Standard and Wire Gauge (SWG) (British legal standard)	Gauge number	Gauge number	American (AWG) or Brown & Sharpe (B & S) (for nonferrous wire and sheet)†	U.S. Steel Wire (Stl WG) or Washburn & Moen or Roebling or Am. Steel & Wire Co. [A. (steel) WG] (for steel wire)	Birming- ham (BWG) (for steel wire) or Stubs Iron Wire (for iron or brass wire)‡	U.S. Standard (for sheet and plate metal, wrought iron)	Standard Birmingham (BG) (for sheet and hoop metal)	Imperial Standard and Wire Gauge (SWG) (British legal standard)	Gauge number
000000 000000 00000 0000 000	 0.460 .410 .365	0.4900 .4615 .4305 .3938 .3625 .3310	0.454 .425 .380	_ _ _ _	0.6666 .6250 .5883 .5416 .5000 .4452	0.500 .464 .432 .400 .372 .348	000000 000000 00000 0000 000	26 27 28 29 30	0.0159 .0142 .0126 .0113 .0100	0.0181 .0173 .0162 .0150 .0140	0.018 .016 .014 .013 .012	0.0188 .0172 .0156 .0141 .0125	0.0196 .0175 .0156 .0139 .0123	0.018 .0164 .0148 .0136 .0124	26 27 28 29 30
1 2 3 4	.325 .289 .258 .229 .204	.3065 .2830 .2625 .2437 .2253	.340 .300 .284 .259 .238		.3964 .3532 .3147 .2804 .2500	.324 .300 .276 .252 .232	1 2 3 4	31 32 33 34 35	.0089 .0080 .0071 .0063 .0056	.0132 .0128 .0118 .0104 .0095	.010 .009 .008 .007 .005	.0109 .0102 .0094 .0086 .0078	.0110 .0098 .0087 .0077 .0069	.0116 .0108 .0100 .0092 .0084	31 32 33 34 35
5 6 7 8 9	.182 .162 .144 .128 .114	.2070 .1920 .1770 .1620 .1483	.220 .203 .180 .165 .148	.209 .194 .179 .164 .150	.2225 .1981 .1764 .1570 .1398	.212 .192 .176 .160 .144	5 6 7 8 9	36 37 38 39 40	.0050 .0045 .0040 .0035 .0031	.0090 .0085 .0080 .0075	.004	.0070 .0066 .0062 —	.0061 .0054 .0048 .0043 .0039	.0076 .0068 .0060 .0052 .0048	36 37 38 39 40
10 11 12 13 14	.102 .091 .081 .072 .064	.1350 .1205 .1055 .0915 .0800	.134 .120 .109 .095 .083	.135 .120 .105 .090 .075	.1250 .1113 .0991 .0882 .0785	.128 .116 .104 .092 .080	10 11 12 13 14	41 42 43 44 45		.0066 .0062 .0060 .0058 .0055	_ _ _ _	_ _ _ _	.0034 .0031 .0027 .0024 .0022	.0044 .0040 .0036 .0032 .0028	41 42 43 44 45
15 16 17 18 19	.057 .057 .051 .045 .040 .036	.0720 .0625 .0540 .0475	.072 .065 .058 .049	.067 .060 .054 .0478	.0699 .0625 .0556 .0495 .0440	.072 .064 .056 .048	15 16 17 18	46 47 48 49 50	_ _ _ _ _	.0052 .0050 .0048 .0046 .0044	_ _ _ _	_ _ _ _	.0019 .0017 .0015 .0014 .0012	.0024 .0020 .0016 .0012 .0010	46 47 48 49 50
20 21 22 23 24	.032 .0285 .0253 .0226 .0201	.0348 .0317 .0286 .0258 .0230	.035 .032 .028 .025 .022	.0359 .0329 .0299 .0269 .0239	.0392 .0349 .0313 .0278 .0248	.036 .032 .028 .024 .022	20 21 22 23 24								
25	.0179	.0204	.020	.0209	.0220	.020	25								

Metric wire gauge is 10 times the diameter in millimeters.

*Courtesy of Dr. Lewis V. Judson with I. H. Fullmer, National Bureau of Standards.

†Sometimes used for iron wire.

‡Sometimes used for copper plate and for steel plate 12 gauge and heavier and for steel tubes.

TABLE 1-14 Fundamental Physical Constants

```
1 \sec = 1.00273791 sidereal seconds
                                                                                                                                                                                        sec = mean solar second
     = 9.80665 \text{ m/sec}^2
                                                                                                                                                                                        Definition: g_0 = standard gravity
 g_0 = 0.001 cu. m
\begin{array}{l} 1 \text{ liter} = 0.001 \text{ cu. m} \\ 1 \text{ atm} = 101,325 \text{ newtons/sq m} \\ 1 \text{ mm Hg (pressure)} = (l/760) \text{ atm} \\ = 133.3224 \text{ newtons/sq m} \\ 1 \text{ int ohm} = 1.000495 \pm 0.000015 \text{ abs ohm} \\ 1 \text{ int amp} = 0.999835 \pm 0.000025 \text{ abs amp} \\ 1 \text{ int coul} = 0.999835 \pm 0.000025 \text{ abs coul} \\ 1 \text{ int volt} = 1.000330 \pm 0.000029 \text{ abs volt} \\ \end{array}
                                                                                                                                                                                       Definition: atm = standard atmosphere
mm Hg (pressure) = standard millimeter mercury
                                                                                                                                                                                       int = international; abs = absolute
                                                                                                                                                                                       amp = ampere
coul = coulomb
 1 int watt = 1.000165 \pm 0.000052 abs watt 1 int joule = 1.000165 \pm 0.000052 abs joule
This joint = 1.000103 \pm 0.000032 ans joint T_{0^{\circ}\text{C}} = 273.150 \pm 0.010^{\circ}\text{K} (PV)_{0^{\circ}\text{C}} = 276.150 \pm 0.010^{\circ}\text{K} = 22.414.6 \pm 0.4 cu. cm atm/mole = 22.414.6 \pm 0.0004 liter atm/mole
                                                                                                                                                                                       Absolute temperature of the ice point, 0°C
                                                                                                                                                                                       PV product for ideal gas at 0°C
 R = 8.31439 \pm 0.00034 abs joule/deg mole
                                                                                                                                                                                        R = gas constant per mole
       = 1.98719 \pm 0.00013 \text{ cal/deg mole}
     = 82.0567 \pm 0.0034 cu. cm atm/deg mole
      = 0.0820567 \pm 0.0000034 liter atm/deg mole
 \ln 10 = 2.302585
                                                                                                                                                                                       ln = natural logarithm (base e)
R \ln 10 = 19.14460 \pm 0.00078 abs joule/deg mole = 4.57567 \pm 0.00030 cal/deg mole
= 4.5/567 \pm 0.00030 cal/deg mole

N = (6.02283 \pm 0.0022) \times 10^{23}/mole

h = (6.6242 \pm 0.0044) \times 10^{-34} joule sec

c = (2.99776 \pm 0.00008) \times 10^{8} m/sec

(h^{2}/8\pi^{2}k) = (4.0258 \pm 0.0037) \times 10^{-39} g sq cm deg

(h/8\pi^{2}c) = (2.7986 \pm 0.0018) \times 10^{-39} g cm

Z = Nhc = 11.9600 \pm 0.0036 abs joule cm/mole
                                                                                                                                                                                        N = Avogadro number
                                                                                                                                                                                        h = Planck constant
                                                                                                                                                                                        c = velocity of light
                                                                                                                                                                                       Constant in rotational partition function of gases
                                                                                                                                                                                       Constant relating wave number and moment of inertia Z = constant relating wave number and energy per mole
 = 2.8585 ± 0.0009 cal cm/mole (Z/R) = (hc/k) = c_2 = 1.43847 ± 0.00045 cm deg \mathscr{F} = 96.501.2 ± 10.0 int coul/g-equiv or int joule/int volt g-equiv
                                                                                                                                                                                        c_2 = second radiation constant
                                                                                                                                                                                       \mathcal{F} = Faraday constant
$\mathcal{Y}=96,901.2\pm10.0$ int cont/g-equiv or int joule/int voir g-equiv = <math>96,485.3\pm10.0 abs coul/g-equiv or abs joule/abs volt g-equiv = 23,068.1\pm2.4 cal/int volt g-equiv = 23,060.5\pm2.4 cal/abs volt g-equiv e=(1.60199\pm0.00060)\times10^{-19} abs coul = (1.60199\pm0.00060)\times10^{-29} abs emu = (4.80239\pm0.00180)\times10^{-19} abs esu
                                                                                                                                                                                       e = electronic charge
= (4.00239 \pm 0.00180) \times 10^{4} and sets that 1 int electron-volt/molecule = 96,501.2 \pm 10 int joule/mole = 23,068.1 \pm 2.4 cal/mole 1 abs electron-volt/molecule = 96,485.3 \pm 10. abs joule/mole = 23,060.5 \pm 2.4 cal/mole
 1 int electron-volt = (1.60252 \pm 0.00060) \times 10^{-12} erg
1 mt electron-volt = (1.60252 \pm 0.00060) \times 10^{-12} erg
1 abs electron-volt = (1.60199 \pm 0.00060) \times 10^{-12} erg
hc = (1.23916 \pm 0.00032) \times 10^{-4} int electron-volt cm
= (1.23957 \pm 0.00032) \times 10^{-4} abs electron-volt/deg
= (8.61422 \pm 0.00100) \times 10^{-5} int electron-volt/deg
                                                                                                                                                                                       Constant relating wave number and energy per molecule
                                                                                                                                                                                        k = Boltzmann constant
 = (R/N) = (1.38048 \pm 0.00050) \times 10^{-23} joule/deg
1 IT cal = (\frac{1}{800}) = 0.00116279 int watt-hr
                                                                                                                                                                                        Definition of IT cal: IT = International steam tables
                  =4.18605 int joule
                  = 4.18674 abs joule
= 1.000654 cal
                                                                                                                                                                                       cal = thermochemical calorie
 1 \text{ cal} = 4.1840 \text{ abs joule}
                                                                                                                                                                                        Definition: cal = thermochemical calorie
           = 4.1833 int joule
= 41.2929 \pm 0.0020 cu. cm atm
             = 0.0412929 \pm 0.0000020 liter atm
 \begin{array}{l} 1~\text{IT cal/g} = 1.8~\text{Btu/lb} \\ 1~\text{Btu} = 251.996~\text{IT cal} \end{array}
                                                                                                                                                                                       Definition of Btu: Btu = IT British Thermal Unit
             = 0.293018 int watt-hr
             = 1054.866 int joule
             = 1055.040 abs joule
             = 252.161 cal
                                                                                                                                                                                        cal = thermochemical calorie
1 horsepower = 550 ft-lb (wt)/sec
= 745.578 int watt
= 745.70 abs watt
                                                                                                                                                                                        Definition of horsepower (mechanical): lb (wt) = weight of 1 lb
                                                                                                                                                                                       at standard gravity
Definition of in: in = U.S. inch
ft = U.S. foot (1 \text{ ft} = 12 \text{ in})
 1 \text{ in } = (1/0.3937) = 2.54 \text{ cm}
 1 \text{ ft} = 0.304800610 \text{ m}
 1 \text{ lb } = 453.5924277 \text{ g}
                                                                                                                                                                                        Definition; lb = avoirdupois pound
1 gal = 231 cu. in
= 0.133680555 cu. ft
= 3.785412 × 10<sup>-3</sup> cu. m
                                                                                                                                                                                        Definition; gal = U.S. gallon
            = 3.785412 liter
```

CONVERSION OF VALUES FROM U.S. CUSTOMARY UNITS TO SI UNITS

American engineers are probably more familiar with the magnitude of physical entities in U.S. customary units than in SI units. Consequently, errors made in the conversion from one set of units to the other may go undetected. The following six examples will show how to convert the elements in six dimensionless groups. Proper conversions will result in the same numerical value for the dimensionless number. The dimensionless numbers used as examples are the Reynolds, Prandtl, Nusselt, Grashof, Schmidt, and Archimedes numbers.

Table 1-7 provides a number of useful conversion factors. To make a conversion of an element in U.S. customary units to SI units, one multiplies the value of the U.S. customary unit, found on the left side in the table, by the equivalent value on the right side. For example, to convert 10 British thermal units to joules, one multiplies 10 by 1054.4 to obtain 10544 joules.

In each example, the initial values of the factors are expressed in U.S. customary units, and the dimensionless value is calculated. Then the factors are converted to SI units, and the dimensionless value is recalculated. The two dimensionless values will be approximately the same. (Small variations occur due to the number of significant figures carried in the solution.)

Example 1. Calculation of a Reynolds Number

$$N_{\rm Re} = \frac{DV\rho}{U}$$

U.S. customary units

 $D = 3 \text{ in.} = \frac{3}{12} \text{ ft}$

V = 6 ft/s

 $\rho = 0.08~lbm/ft^3$

 $\mu = 0.015 \text{ cp} = (0.015)(0.000672) \text{ lbm/ft·s}$

$$N_{\text{Re}} = \frac{(3/12)(6)(0.08)}{(0.015)(0.000672)} = 11,904$$

SI units D = (3)(0.0254) m

V = (6)(0.3048) m/s

 $\rho = (0.08)(16.018) \text{ kg/m}^3$

 $\mu = (0.015)(0.001) \text{ kg/m·s}$

$$N_{\mathrm{Re}} = \frac{(3 \times 0.0254) \; (6 \times 0.3048) \; (0.08 \times 16.018)}{(0.015) \; (0.001)} = 11,904$$

Example 2. Calculation of a Prandtl Number

$$N_{Pr} = \frac{C_p \mu}{k}$$

U.S. customary units

 $\gamma_p = 0.47 \text{ Btu/lbm }^{\circ}\text{F}$

 $\mu = 15 \text{ centipoise} = (15) (0.000672) (3600) \text{ lbm/ft·hr}$ $k = 0.065 \text{ Btu/hr·ft²} (^\circ\text{F/ft})$

$$N_{\text{Pr}} = \frac{(0.47)(15 \times 0.000672 \times 3600)}{0.065} = 262.4$$

SI units

 $\gamma = (0.47)(4184) \text{ J/kg }^{\circ}\text{C}$

 $\mu = (15)(0.001) \text{ kg/m} \cdot \text{s}$ k = (0.065)(1.728) J/s·m² (°C/m)

$$N_{\text{Pr}} = \frac{(0.47) (4184) (15) (0.001)}{(0.065) (1.728)} = 262.6$$

(Difference due to rounding)

Example 3. Calculation of a Nusselt Number

$$N_{\text{Nu}} = \frac{hD}{k}$$

U.S. customary units

 $h = 200 \text{ Btu/hr·ft}^2.\circ\text{F}$

D = 1.5 in. = 1.5/12 ft $k = 0.07 \text{ Btu/hr} \cdot \text{ft}^2 (\circ \text{F/ft})$

 $N_{\text{Nu}} = \frac{(200)(1.5/12)}{} = 357.1$

tints $h = (200)(5.678) \text{ J/(s·m}^2 \cdot ^{\circ}\text{C})$ D = (1.5)(0.0254) m $k = (0.07)(1.728) \text{ J/s·m}^2 (^{\circ}\text{C/m})$

$$N_{\text{Nu}} = \frac{(200) (5.678) (1.5) (0.0254)}{(0.07) (1.728)} = 357.7$$

(Difference due to rounding)

Example 4. Calculation of a Grashof Number

$$N_{Gr} = L^3 \rho^2 g \beta(\Delta T) / \mu^2$$

U.S. Customary units

L = 3 ft

 $\rho = 0.0725 \text{ lbm/ft}^3$

 $g = 32.174 \text{ ft/s}^2$ $\beta = 0.00168/^\circ\text{R}$

 $\Delta T = 99 \,^{\circ} \text{R}$

 $\mu = 0.019 \; centipoise = 0.019 \times 0.000672 \; lbm/ft \cdot s$ = 1.277×10^{-5} lbm/ft·s

$$N_{\rm Gr} = \frac{(3^3) (0.0725)^2 (32.174) (0.00168) (99)}{(1.277 \times 10^{-5})^2} = 4.66 \times 10^9$$

SI units

L = (3)(0.3048) = 0.9144 m $\rho = (0.0725)(16.018) = 1.1613 \text{ kg/m}^3$

 $g = 9.807 \text{ m/s}^2$ $\beta = (0.00168)/(1.8) = 0.000933/^{\circ}\text{K}$

 $\Delta T = (99)(1.8) = 178.2 \text{ }^{\circ}\text{K}$

 $\mu = (0.019)(0.001) = 1.9 \times 10^{-5} \text{ kg/m} \cdot \text{s}$

$$N_{\rm Gr} = \frac{(0.9144)^3 (1.1613)^2 (9.807) (0.000933) (178.2)}{(1.9 \times 10^{-5})^2} = 4.66 \times 10^9$$

Example 5. Calculation of a Schmidt Number

$$N_{\rm Sc} = \frac{\mu}{\Omega D}$$

U.S. customary units

 $\mu = 0.02$ centipoise = (0.02)(2.42) lbm/ft·hr

 $\rho = 0.08 \text{ lbm/ft}^3$

 $D = 1.0 \text{ ft}^2/\text{hr (diffusivity)}$

$$N_{\text{Sc}} = \frac{(0.02)(2.42)}{(0.08)(1.0)} = 0.605$$

SI units

 $\mu = (0.02)(0.001) \text{ kg/m·s}$ $\rho = (0.08)(16.02) \text{ kg/m}^2$

 $D = (1.0)(2.58 \times 10^{-5}) \text{ m}^2/\text{s}$

$$N_{\rm Sc} = \frac{(0.02) \; (0.001)}{(0.08) (16.02) (1.0) \; (2.58 \times 10^{-5})} = 0.605$$

Example 6. Calculation of an Archimedes Number

$$N_{\rm Ar} = \frac{d^3 \rho_f (\rho_p - \rho_f) g}{\mu^2}$$

U.S. customary units

d = 2 mm = 2/[(1000)(0.3048)] = 0.00656 ft $\rho_f = 0.0175 \text{ lbm/ft}^3$

 $\rho_p = 168.5 \text{ lbm/ft}^3$ $g = 32.174 \text{ ft/s}^2$

 $\mu = 0.04 \text{ centipoise} = 0.04 \times 0.000672 = 2.688^{-5} \text{ lbm/ft·s}$

$$N_{\rm Ar} = \frac{(0.00656)^3 \; (0.0175) \; (168.5 - 0.017) \; (32.174)}{(2.688 \times 10^{-5})^2} = 37,064$$

SI units

d = 2/1000 m

 $\rho_p = 168.5 \times 16.02 = 2699.37 \text{ kg/m}^3$

 $\rho_f = 0.0175 \times 16.02 = 0.2804 \text{ g/m}^3$

 $g = 9.807 \text{ m/s}^2$

 $\mu = 0.04 \times 0.001 = 4 \times 10^{-5} \text{ kg/m} \cdot \text{s}$

$$N_{\text{Ar}} = \frac{(2/1000)^3 (0.2804) (2699.37 - 0.28) (9.807)}{(4 \times 10^{-5})^2} = 37,118$$

(Difference due to rounding)

MATHEMATICAL SYMBOLS

TABLE 1-15 Mathematical Signs, Symbols, and Abbreviations

```
plus or minus (minus or plus) divided by, ratio sign
                     proportional sign
                     less than
                    not less than
             ∢
                     greater than
             \Rightarrow
                     not greater than
                     approximately equals, congruent
                     similar to
                     equivalent to
                     not equal to
                     approaches, is approximately equal to
                     infinity
                     therefore
                     square root
                     cube root
                     \emph{n}th root
                    angle
                    perpendicular to
                    parallel to
                    numerical value of x
 log or log<sub>10</sub>
log<sub>e</sub> or ln
                    common logarithm or Briggsian logarithm
                     natural logarithm or hyperbolic logarithm or Naperian
                     logarithm
                    base (2.178) of natural system of logarithms
                    an angle a degrees
            a^{\circ}
                    prime, an angle a minutes double prime, an angle a seconds, a second
           a' a
          a" a
           sin
                    sine
                    cosine
           cos
                    tangent
           tan
   ctn or cot
                    cotangent
           sec
                     secant
           csc
                    cosecant
                     versed sine
          vers
       covers
                    coversed sine
         exsec
                     exsecant
          \sin^{-1}
                     anti sine or angle whose sine is
                     hyperbolic sine
          \sinh
         cosh
                    hyperbolic cosine
                    hyperbolic tangent
         tanh
        \sinh^{-1}
                     anti hyperbolic sine or angle whose hyperbolic sine is
  \textit{f}(\textit{x}) \text{ or } \varphi(\textit{x})
                     function of x
                     increment of \boldsymbol{x}
                     summation of
            dx
                     differential of \boldsymbol{x}
  dy/dx or y'
                     derivative of y with respect to x
d^2y/dx^2 or y''
                     second derivative of y with respect to x
      d^n y/dx^n
\partial y/\partial x
                     nth derivative of y with respect to x
                    partial derivative of y with respect to x
       \partial^n y / \partial x^n
                    nth partial derivative of y with respect to x
         \partial^n y
                     \emph{n}th partial derivative with respect to \emph{x} and \emph{y}
         \partial x \partial y
                     integral of
                     integral between the limits \boldsymbol{a} and \boldsymbol{b}
                     first derivative of y with respect to time
                     second derivative of y with respect to time
     \Delta \text{ or } \nabla^2
                     the "Laplacian"
                     \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)
                     sign of a variation
                     sign for integration around a closed path
```

TABLE 1-16 Greek Alphabet

Alpha = A, α = A, a	Nu = N, ν = N, n
Beta = B, β = B, b	$Xi = \Xi, \xi = X, x$
Gamma = Γ , γ = G , g	Omicron = O , $o = O$, o
Delta = Δ , δ = D, d	Pi $=\Pi, \pi = P, p$
Epsilon = E , $\varepsilon = E$, e	Rho = P, ρ = R, \hat{r}
Zeta = Z , $\zeta = Z$, z	Sigma = Σ , σ = S , s
Eta = H, η = E, e	Tau = T, τ = T, t
Theta = Θ , θ = Th, th	Upsilon = Y , $v = U$, u
Iota = I, ι = I, i	Pĥi = Φ , ϕ = Ph, ph
Kappa = $K, \kappa = K, k$	Chi = X , χ = Ch, ch
Lambda = Λ , λ = L, l	Psi $= \Psi, \psi = Ps, ps$
$\mathrm{Mu} \qquad = \mathrm{M}, \mu = \mathrm{M}, \mathrm{m}$	Omega = Ω , ω = Ω , \hat{o}