Examen du 15 mai 2023

Les documents, calculatrices, téléphones portables et objets connectables sont interdits. Les exercices sont indépendants et peuvent être traités dans un ordre quelconque. Durée de l'épreuve : 2 heures.

Question de cours.

- a) Donner la définition d'un groupe (G, *).
- b) Si (G, *) est un groupe, définir ce qu'est un sous-groupe $H \subset G$.
- c) Si (G,*) est un groupe et H_1 , H_2 sont deux sous-groupes de G, vérifier que $H_1 \cap H_2$ est encore un sous-groupe de G.

Exercice 1. Dans chacun des exemples ci-dessous, préciser si F est un sous-espace vectoriel de l'espace vectoriel réel E et, le cas échéant, calculer la dimension du sous-espace F. Les réponses doivent être justifiées.

a)
$$E = \mathbb{R}^3$$
, $F = \{(x, y, z) \in E : x + 2y + 3z = 0\}$.

b)
$$E = \mathbb{R}^3$$
, $F = \{(x, y, z) \in E ; x = 3y, y = 5z\}$.

c)
$$E = \mathbb{R}^{\mathbb{R}}$$
, $F = \{ f : \mathbb{R} \to \mathbb{R} ; \text{il existe } x \in \mathbb{R} \text{ tel que } f(x) = 0 \}.$

Exercice 2. On considère les trois vecteurs $v_1, v_2, v_3 \in \mathbb{R}^3$ définis par

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}.$$

- a) Vérifier que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- b) En déduire sans calcul que le système linéaire suivant possède une solution unique:

$$\begin{cases} x + y + z = 6 \\ 2x - 4y - z = 0 \\ 3x + 5y + z = 7 \end{cases}$$
 (*)

c) Calculer la solution (x, y, z) du système (*). On recommande de simplifier le système en effectuant des opérations élémentaires sur les lignes.

Exercice 3. On considère la matrice

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}),$$

et on note $\phi_A : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par $\phi_A(X) = AX$ pour tout $X \in \mathbb{R}^3$.

- a) Déterminer les sous-espaces $Ker(\phi_A)$ et $Im(\phi_A)$, et calculer leurs dimensions.
- b) Donner l'expression de la matrice A^2 .
- c) Quelle est la signification géométrique de l'application ϕ_A ?
- **d)** Montrer que $\mathbb{R}^3 = \operatorname{Ker}(\phi_A) \oplus \operatorname{Im}(\phi_A)$.

Exercice 4. Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . On considère la matrice $A\in\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -2 \\ 2 & 1 & -2 \end{pmatrix},$$

et on note $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme canoniquement associé, tel que $A = \operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(\phi)$. On se donne également une seconde famille $\mathcal{B}' = (f_1, f_2, f_3)$ où

$$f_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- a) Vérifier que \mathcal{B}' est une base de \mathbb{R}^3 .
- **b)** Calculer les vecteurs $\phi(f_i)$ pour i = 1, 2, 3.
- c) En déduire l'expression de la matrice $A' = \operatorname{Mat}_{\mathcal{B}'}^{\mathcal{B}'}(\phi)$.
- d) À l'aide de la question précédente, calculer le rang de ϕ et la dimension du noyau de ϕ .
- e) Déterminer la matrice de passage $P = \operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}'}(\operatorname{Id}_{\mathbb{R}^3})$.
- f) Calculer la matrice inverse P^{-1} .
- g) Vérifier le résultat de la question c) en calculant le produit $P^{-1}AP$.
- h) Déterminer l'ensemble des solutions du système linéaire

$$AX = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

On recommande d'utiliser l'expression de l'endomorphisme ϕ dans la base \mathcal{B}' .

Exercice 5. (Cet exercice est plus difficile et pourra être traité en dernier.) Soit E un espace vectoriel réel, et $f: E \to E$ une application linéaire. On suppose que

$$\forall v \in E, \, \exists \lambda \in \mathbb{R} \text{ tel que } f(v) = \lambda v.$$

Montrer qu'il existe $\mu \in \mathbb{R}$ tel que $f = \mu \operatorname{Id}_E$.

Corrigé de l'examen du 15 mai 2023

Question de cours.

- a) Un groupe est un ensemble G muni d'une loi de composition interne, notée *, possédant les propriétés suivantes :
 - la loi * est associative: $\forall x, y, z \in G$ on a x * (y * z) = (x * y) * z;
 - il existe un élément neutre $e \in G$ tel que: $\forall x \in G$ on a x * e = e * x = x;
 - tout élément $x \in G$ admet un symétrique $x' \in G$ tel que x * x' = x' * x = e.
- b) Une partie $H \subset G$ est un sous-groupe si elle contient l'élément neutre e, si elle est stable par la loi $*(\forall x, y \in H \text{ on a } x * y \in H)$, et si le symétrique de tout élément $x \in H$ est un élément $x' \in H$.
- c) Notons $H = H_1 \cap H_2$. Puisque H_1, H_2 sont des sous-groupes, on a $e \in H_1$ et $e \in H_2$, donc $e \in H$. Si $x, y \in H$, alors $x, y \in H_i$ pour i = 1, 2, donc $x * y \in H_i$ pour i = 1, 2, ce qui montre que $x * y \in H$. De même, si $x \in H$, l'élément symétrique x' appartient à H_i pour i = 1, 2, donc $x' \in H$. On conclut que H est un sous-groupe de G.

Exercice 1.

- a) On a $F = \text{Ker}(\phi)$, où $\phi : \mathbb{R}^3 \to \mathbb{R}$ est la forme linéaire définie par $\phi(x, y, z) = x + 2y + 3z$. Comme $\phi(1, 0, 0) = 1$, cette forme n'est pas nulle, donc (par un résulat du cours) son noyau est un sous-espace vectoriel de \mathbb{R}^3 de dimension 3 - 1 = 2.
- b) Par définition on a $(x, y, z) \in F$ si et seulement si (x, y, z) = (15z, 5z, z), ce qui montre que F est la droite vectorielle engendrée par le vecteur (15, 5, 1). Il s'agit donc d'un sous-espace vectoriel de dimension un.
- c) La partie F n'est pas stable par addition, donc n'est pas un sous-espace vectoriel. En effet, si f(x) = x et g(x) = 1 x, alors $f, g \in F$ mais $f + g \notin F$ car la fonction f + g est identiquement égale à 1.

Exercice 2.

- a) Comme $\dim(\mathbb{R}^3) = 3$, il suffit de vérifier que la famille (v_1, v_2, v_3) est libre. Il est clair que $v_1 \neq 0$ et que v_2 n'est pas un multiple de v_1 , donc la famille (v_1, v_2) est libre. Par ailleurs, tout vecteur $(x, y, z) \in \text{Vect}(v_1, v_2)$ vérifie x + y 2z = 0, alors que $3 + 5 2 = 6 \neq 0$. Ceci montre que $v_3 \notin \text{Vect}(v_1, v_2)$, donc la famille (v_1, v_2, v_3) est libre.
- **b)** Notons $A \in \mathcal{M}_3(\mathbb{R})$ la matrice du système (*):

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -4 & -1 \\ 3 & 5 & 1 \end{pmatrix}.$$

Les colonnes de la matrice transposée ${}^{t}A$ sont exactement les vecteurs v_1, v_2, v_3 , ce qui montre que ${}^{t}A$ est inversible. Comme une matrice et sa transposée ont toujours le même

rang, on en déduit que la matrice A est également inversible. On en conclut que le système (*) possède une solution unique.

c) En effectuant les opérations élémentaires sur les lignes précisées ci-dessous, on trouve successivement

puis

$$x + y + z = 6$$
 $x + y + z = 6$ $2y + z = 4$ $2y - 2z = -11$ $L_3 \leftarrow L_3 - L_2$ $x + y + z = 6$ $2y + z = 4$ $-3z = -15$ $L_3 \leftarrow -L_3/3$

On obtient ainsi z = 5, puis 2y = 4 - 5 = -1, donc y = -1/2, puis x = 6 - 5 + 1/2 = 3/2. L'unique solution du système (*) est donc (x, y, z) = (3/2, -1/2, 5).

Exercice 3.

- a) Au vu de l'expression de la matrice A, un vecteur X=(x,y,z) appartient au noyau de ϕ_A si et seulement si x-z=0 et y-z=0. Ainsi x=y=z, ce qui montre que $\operatorname{Ker}(\phi_A)$ est la droite vectorielle engendrée par le vecteur (1,1,1); en particulier $\dim(\operatorname{Ker}(\phi_A))=1$. Par ailleurs, la matrice A étant échelonnée, on voit que $\operatorname{Im}(\phi_A)=\{(x,y,0)\,;\,x,y\in\mathbb{R}\}$, de sorte que $\dim(\operatorname{Im}(\phi_A))=2$.
- b) Un calcul direct montre que

$$A^{2} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = A.$$

- c) Par la question précédente, on a $\phi_A \circ \phi_A = \phi_A$, ce qui montre que ϕ_A est la projection sur le plan $\text{Im}(\phi_A)$ parallèlement à la droite $\text{Ker}(\phi_A)$.
- d) Il s'agit d'un résultat du cours, valable pour toute projection. On peut aussi vérifier l'égalité directement. Si $X=(x,y,z)\in\mathbb{R}^3$, on a la décomposition

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} x - z \\ y - z \\ 0 \end{pmatrix},$$

où le premier terme du membre de droite appartient à $\operatorname{Ker}(\phi_A)$ et le second à $\operatorname{Im}(\phi_A)$. Ainsi $\mathbb{R}^3 = \operatorname{Ker}(\phi_A) + \operatorname{Im}(\phi_A)$, et la somme est directe car $\operatorname{Ker}(\phi_A) \cap \operatorname{Im}(\phi_A) = \{0\}$ en vertu de a).

Exercice 4.

a) Il suffit de montrrer que la famille \mathcal{B}' est libre. Si $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0$, les réels $\lambda_1, \lambda_2, \lambda_3$ vérifient le système linéaire $\lambda_1 + \lambda_3 = 0$, $\lambda_2 + \lambda_3 = 0$, $\lambda_1 + \lambda_2 + \lambda_3 = 0$, dont l'unique solution est évidemment $\lambda_1 = \lambda_2 = \lambda_3 = 0$. La famille \mathcal{B}' est donc libre.

b) et **c)** En utilisant l'expression de la matrice A, on trouve par calcul direct : $\phi(f_1) = 0$, $\phi(f_2) = -f_2$, $\phi(f_3) = f_3$. Ceci signifie que

$$A' := \operatorname{Mat}_{\mathcal{B}'}^{\mathcal{B}'}(\phi) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- d) On a rang (ϕ) = rang(A') = 2, et il s'ensuit que dim $(\text{Ker}(\phi) = 1.$
- e) L'expression des vecteurs f_1, f_2, f_3 dans la base canonique implique que

$$P := \operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}'} (\operatorname{Id}_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

f) On peut inverser la matrice P en résolvant le système linéaire PX = b pour un second membre arbitraire $b \in \mathbb{R}^3$. On trouve

$$P^{-1} := \operatorname{Mat}_{\mathcal{B}'}^{\mathcal{B}}(\operatorname{Id}_{\mathbb{R}^3}) = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

g) Par calcul direct on obtient

$$P^{-1}AP = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -2 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A'.$$

h) Le système à résoudre s'écrit de façon équivalente $\phi(X) = f_3$, et on cherche les solutions sous la forme $X = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$. En utilisant les résultats de la question b), on réduit le système à l'égalité $-\lambda_2 f_2 + \lambda_3 f_3 = f_3$, qui signifie que $\lambda_2 = 0$ et $\lambda_3 = 1$. Ainsi toutes les solutions du système sont de la forme $X = f_3 + \lambda f_1$, où $\lambda \in \mathbb{R}$ est arbitraire.

Exercice 5. Si $E = \{0\}$, on peut prendre $\mu = 0$. Sinon, on choisit un vecteur $w \in E$ tel que $w \neq 0$. Par hypothèse, il existe $\mu \in \mathbb{R}$ (qui est d'ailleurs unique) tel que $f(w) = \mu w$. On prétend que $f(v) = \mu v$ pour tout $v \in E$. Pour montrer cela, on distingue deux cas:

- 1) Si $v \in \text{Vect}(w)$, alors $v = \alpha w$ pour un $\alpha \in \mathbb{R}$, donc $f(v) = \alpha f(w) = \alpha \mu w = \mu v$.
- 2) Si $v \notin \text{Vect}(w)$, alors par hypothèse sur f il existe $\lambda \in \mathbb{R}$ tel que $f(v) = \lambda v$, et $\nu \in \mathbb{R}$ tel que $f(v+w) = \nu(v+w)$. Comme f est linéaire, on a donc

$$\nu(v+w) = f(v+w) = f(v) + f(w) = \lambda v + \mu w$$

d'où $(\lambda - \nu)v + (\mu - \nu)w = 0$. Puisque la famille (v, w) est libre par hypothèse, il s'ensuit que $\lambda = \nu = \mu$. Ainsi, dans ce cas également, on a $f(v) = \mu v$.