RULES FOR ARRANGING OXIDATION NUMBER (ON) is always o. compound is -2.

- a) Oxidation Number of Single element
- b) Oxidation Number of monoatomic ions is equal to charge on ion
- c) Oxidation Number of oxygen in most of the
- d) Oxidation Number of hydrogen is +1. except when it is bonded to metals in binary compounds.
- e) Halogens have an oxidation number of -1. When they occur as halide ions in their compounds.
- f) Algebric Sum of oxidation number of all the atoms in a neutral compounds must be zero.

Oxidation is loss of electrons.

- They are considered as reducing agents.
- Lower oxidation number.

REDOX IN DAILY LIFE

Photosynthesis Extraction of metals Combustion process Electrochemical cells

- Reduction is gain of electrons.
- They are considered as oxidising agents.
- Increases Oxidation Number.

CALCULATION OF N - FACTOR

n - factor of oxidising agent/reducing agent

OXIDATION NUMBERS BY STRUCTURE

a) caro's acid (H2SO5) $^{+1}_{H}$ $^{-2}_{O}$ - $^{"+6}_{S}$ $^{-1}_{O}$ - $^{-1}_{O}$ $^{+1}_{H}$

b) Chromium (VI) peroxide

c) caro's acid (Br₃O₈)

 $^{-2}O = Br - Br - Br = O^{-2}$ 0² 0²

Modern Theory

OXIDATION

Addition of oxygen or

removal of hydrogen from a Substance.

 $C + O_2 \longrightarrow CO_2 + Heat$

REDUCTION

from a substance.

Modern Theor

Removal of oxygen or addition of hydrogen

 $H_2 + S \longrightarrow H_2 S$

OXIDATION NUMBER

It indicates the number of electron gained or lost by a particular atom.

- write the correct formula of the reaction
- Identify atoms undergoing change in Oxidation Number

STEPS

- Calculate increase or decrease in Oxidation number per atom for entire 3 ion or molecule. If unequal, multiply by Suitable number to make equal.
- Add H+/OH- ion to make total ionic charges of reactants and product equal
- 5 Equalize H⁺ on two Sides by adding water.

OXIDATION NUMBER METHOD

2Nd Method

BALANCING REDOX REACTION

REDOX REACTION

1st method

APPLICATION

OXIDATION AND

REDUCTION

processes and cells

COMBINATION

DECOMPOSITION REACTION

REACTION

DISPLACEMENT REACTION

DISPROPORTIONATION

TYPES OF **REDOX REACTIONS**

Two reactants combine to form Single Product.

 $H_2(g) + O_2(g) \longrightarrow H_2O(I)$

Breakdown of a compound into two or more compounds. $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$

AN ion/atom in a compound, is replaced by an ion/atom of another elements.

 $CuSO_4$ (aq) + Zn(s) — $ZnSO_4$ (aq) + Cu

An element in one oxidation Stateis Simultaneously oxidised and reduced.

 $2H_2O_2(I) \longrightarrow 2H_2O(I) + O_2(g)$

STEPS

- Seperate equation into two half reaction.
- Balance atoms other than 0 and H
- for reaction occuring in acidic medium. Add H₂O to balance O atoms and H+ to balance H atoms.
- Balance charges by adding e- to one Side of the half reaction.
- Add two half reactions and cancel the 5 e- on each side.
- Scale the equation has same type and no. of atoms and same charges on both sides of the equation.

HALF REACTION METHOD

ELECTRO-CHEMICAL SERIES

A Series of electrodes on half cells arranged in order of their increasing Standard oxidation Potentials or in the decreasing order of their Standard reduction Potential.

GALVENIC CELL

(Cathode)

(ANOde)