Programação Linear e Extensões

Ana Paula Tomás

LEIC - Desenho de Algoritmos Universidade do Porto

Março 2022

Tópicos a abordar

- Modelos Matemáticos para Problemas de Otimização e Decisão
- Programação Inteira e Mista
- 3 Programação Linear e Ideia do Método Simplex
- 4 Aspetos Formais do Método Simplex

Minimizar moedas num troco

Exemplo 1: Coin Change

Trocar uma quantia Q usando **um número mínimo** de moedas. Existem n tipos de moedas, sendo v_k , com $1 \le k \le n$ os seus valores.

- Caso 1: o número de moedas de cada tipo é ilimitado.
- Caso 2: o número de moedas disponíveis de valor v_k é d_k , com $1 \le k \le n$.

3 / 64

Minimizar moedas num troco

Exemplo 1: Coin Change

Trocar uma quantia Q usando **um número mínimo** de moedas. Existem n tipos de moedas, sendo v_k , com $1 \le k \le n$ os seus valores.

- Caso 1: o número de moedas de cada tipo é ilimitado.
- Caso 2: o número de moedas disponíveis de valor v_k é d_k , com 1 < k < n.

$$\begin{array}{l} \textbf{minimizar} \; \sum_{k=1}^n x_k \\ \textbf{sujeito} \; \textbf{a} \\ \left\{ \begin{array}{l} \sum_{k=1}^n v_k x_k = Q \\ \\ x_k \in \mathbb{Z}_0^+ \text{, para } 1 \leq k \leq n \end{array} \right. \end{array}$$

 x_k : quantas moedas de valor v_k usa

minimizar
$$\sum_{k=1}^{n} x_k$$

sujeito a
$$\begin{cases} \sum_{k=1}^{n} v_k x_k = Q \\ x_k \le d_k, \text{ para } 1 \le k \le n \\ x_k \in \mathbb{Z}_0^+, \text{ para } 1 \le k \le n \end{cases}$$

Maximizar número de intervalos sem sobreposição

Exemplo 2: Interval Scheduling

Seja \mathcal{T} um conjunto de n tarefas. A tarefa t_j tem de decorrer no intervalo $[s_j, f_j[$, ou seja, começar no instante s_j e terminar em f_j , para $1 \leq j \leq n$ (notar que $f_j \notin [s_j, f_j[$). Em cada instante, só uma tarefa pode estar a decorrer. Pretendemos maximizar o número de tarefas realizadas.

Maximizar número de intervalos sem sobreposição

Exemplo 2: Interval Scheduling

Seja \mathcal{T} um conjunto de n tarefas. A tarefa t_j tem de decorrer no intervalo $[s_j, f_j[$, ou seja, começar no instante s_j e terminar em f_j , para $1 \leq j \leq n$ (notar que $f_j \notin [s_j, f_j[$). Em cada instante, só uma tarefa pode estar a decorrer. Pretendemos maximizar o número de tarefas realizadas.

Variáveis de decisão: $x_j \in \{0,1\}$ indica se a tarefa t_j é realizada ou não, para $1 \le j \le n$, sendo 1 se for e 0 se não for.

$$\begin{array}{l} \mathbf{maximizar} \ \sum_{j=1}^n x_j \\ \mathbf{sujeito} \ \mathbf{a} \\ \left\{ \begin{array}{l} s_{j'}x_{j'} \geq f_jx_j \ \lor \ s_jx_j \geq f_{j'}x_{j'}, \ \mathsf{para} \ \mathsf{todo} \ j' \neq j \\ x_j \in \{0,1\}, \ \mathsf{para} \ 1 \leq k \leq n \end{array} \right. \end{array} \tag{$\mathsf{não}$ haver sobreposições)}$$

Escalonamento de tarefas

Exemplo 3: Scheduling

Um projeto é constituído por um conjunto de tarefas, sendo conhecida a duração de cada tarefa e as **restrições de precedência** entre tarefas. Não se pode dar início a uma tarefa sem que as que a precedem estejam concluídas. Pretendemos agendar as tarefas de modo a concluir o projeto o mais cedo possível. Cada tarefa requer um certo número de **trabalhadores**. Cada trabalhador só pode estar a realizar uma tarefa em cada instante. Assuma que:

- Caso 1: não há restrições quanto ao número de trabalhadores a contratar.
- Caso 2: há restrições quanto ao número de trabalhadores a contratar.

Admita que as habilitações necessárias são idênticas para todas as tarefas.

Escalonamento de tarefas

Exemplo 3: Scheduling

Um projeto é constituído por um conjunto de tarefas, sendo conhecida a duração de cada tarefa e as **restrições de precedência** entre tarefas. Não se pode dar início a uma tarefa sem que as que a precedem estejam concluídas. Pretendemos agendar as tarefas de modo a concluir o projeto o mais cedo possível. Cada tarefa requer um certo número de **trabalhadores**. Cada trabalhador só pode estar a realizar uma tarefa em cada instante. Assuma que:

- Caso 1: não há restrições quanto ao número de trabalhadores a contratar.
- Caso 2: há restrições quanto ao número de trabalhadores a contratar.

Admita que as habilitações necessárias são idênticas para todas as tarefas.

Caso 1: sem partilha de recursos

Caso 2: com partilha de recursos

Exemplo: Tarefas A, B, C, D e E; A precede C; B precede C e D; C precede E.

	Α	В	C	D	Ε
duração	1	3	4	5	2
# trabalhadores	2	3	1	1	2

4 D > 4 P > 4 B > 4 B > 9 Q Q

5 / 64

Escalonamento sem partilha de recursos

Exemplo 3 - Caso 1

Dada a descrição das tarefas do projeto, as suas durações d_i , com $i \in \mathsf{Tarefas}$, e a relação de precedência \mathcal{R} , determinar a data de conclusão mais próxima para o projeto e uma data para início de cada tarefa.

Variáveis de decisão:

- z: data de conclusão do projeto
- x_i : data de início da tarefa i, para $i \in \text{Tarefas}$

Modelo de otimização linear:

```
minimizar z
sujeito a
\begin{cases} x_i + d_i \leq x_j, & \text{para todo } (i,j) \in \mathcal{R} \\ x_i + d_i \leq z, & \text{para todo } i \in \text{Tarefas} \end{cases}
z \in \mathbb{R}_0^+, \ x_i \in \mathbb{R}_0^+, \ \text{para todo } i \in \text{Tarefas}
```

Exemplo 4 - Programação Inteira

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas de trabalho. Dispõe de 300 pés de madeira e 110 horas de trabalho. Como deve ser a produção para maximizar o lucro?

Exemplo 4 - Programação Inteira

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas de trabalho. Dispõe de 300 pés de madeira e 110 horas de trabalho. Como deve ser a produção para maximizar o lucro?

Variáveis de decisão

 x_M : número de mesas a produzir x_C : número de cadeiras a produzir

Restrições

- Não exceder a quantidade de madeira disponível: $30x_M + 20x_C \le 300$; nem o número de horas de trabalho disponíveis: $5x_M + 10x_C \le 110$.
- Variáveis tomam valores inteiros não negativos: $x_M, x_C \in \mathbb{Z}_0^+$
- Objetivo

Maximizar o valor do lucro $6x_M + 8x_C$

Produção de mesas e cadeiras (cont.)

Exemplo 4 - Programação Inteira

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas de trabalho. Dispõe de 300 pés de madeira e 110 horas de trabalho. Como deve ser a produção para maximizar o lucro?

Modelo matemático

```
\begin{array}{l} \textbf{maximizar} \ 6x_M + 8x_C \\ \textbf{sujeito} \ \textbf{a} \\ \begin{cases} 30x_M + 20x_C \leq 300 \\ 5x_M + 10x_C \leq 110 \\ x_M, x_C \geq 0, \ \text{inteiros} \\ \end{cases} \end{array}
```

Produção de mesas e cadeiras (cont.)

Exemplo 4 - Programação Inteira

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas de trabalho. Dispõe de 300 pés de madeira e 110 horas de trabalho. Como deve ser a produção para maximizar o lucro?

Modelo matemático

maximizar
$$6x_M + 8x_C$$

sujeito a
$$\begin{cases}
30x_M + 20x_C \le 300 \\
5x_M + 10x_C \le 110 \\
x_M, x_C \ge 0, \text{ inteiros}
\end{cases}$$

Análise de dimensões

unidades de medida consistentes?

$$\frac{u.m}{mesa} imes mesa + \frac{u.m}{cadeira} imes cadeira = u.m$$
 $\frac{pes}{mesa} imes mesa + \frac{pes}{cadeira} imes cadeira imes pes$
 $\frac{horas}{mesa} imes mesa + \frac{horas}{cadeira} imes cadeira imes horas$

A.P.Tomás (LEIC - UP) DA 2021/2022 8 / 64

Problema de Mochila

Exemplo 5: Knapsack linear (ou fracionário)

Uma empresa produz três tipos de produtos que vende a peso com lucros de 1400, 2100 e 2700 euros/tonelada, respetivamente. Para produzir um kilograma de cada um dos produtos são dispendidos 30', 55' e 1h10', respetivamente. Supondo que não vende mais do que 13, 5 e 3 Kg de cada um dos produtos por dia, que o tempo despendido é proporcional à quantidade produzida e que só dispõe de 8 horas de trabalho, que quantidade de cada produto deve produzir?

Exemplo 5: Knapsack linear (ou fracionário)

Uma empresa produz três tipos de produtos que vende a peso com lucros de 1400, 2100 e 2700 euros/tonelada, respetivamente. Para produzir um kilograma de cada um dos produtos são dispendidos 30', 55' e 1h10', respetivamente. Supondo que não vende mais do que 13, 5 e 3 Kg de cada um dos produtos por dia, que o tempo despendido é proporcional à quantidade produzida e que só dispõe de 8 horas de trabalho, que quantidade de cada produto deve produzir?

$\begin{array}{l} \text{maximizar } 1.4x_1 + 2.1x_2 + 2.7x_3 \\ \text{sujeito a} \\ \left\{ \begin{array}{l} 30x_1 + 55x_2 + 70x_3 \leq 480 \\ x_1 \leq 13 \\ x_2 \leq 5 \\ x_3 \leq 3 \\ x_1, x_2, x_3 \in \mathbb{R}_o^+ \end{array} \right. \\ \end{array}$

Knapsack linear (fracionário)

Exemplos de knapsack problems (booleano e inteiro)

Exemplo de problema de mochila com variáveis booleanas

Suponha que pretende transportar **cinco objetos** mas que, por qualquer razão, tem um limite de carga de 65Kg. Na tabela seguinte são dados o peso de cada objeto e o valor que lhe atribui. Quais os objetos a transportar?

Exemplo de problema de mochila com variáveis inteiras

Suponha que pretende transportar **objetos de cinco tipos** mas que, por qualquer razão, tem um limite de carga de 65Kg. O peso e o valor de cada tipo de objeto é dado na tabela seguinte. Quantos objetos de cada tipo deve transportar?

peso	41	32	24	17	15
valor	85	72	61	45	37

(ロ) (部) (注) (注) 注 り(0)

Problemas da Mochila (booleano/inteiro)

Knapsack binário (booleano)

$$\begin{array}{l} \text{maximizar } 85x_1 + 72x_2 + 61x_3 + 45x_4 + 37x_5 \\ \text{sujeito a} \\ \left\{ \begin{array}{l} 41x_1 + 32x_2 + 24x_3 + 17x_4 + 15x_5 \leq 65 \\ x_1, x_2, x_3, x_4, x_5 \in \{0, 1\} \end{array} \right. \end{array}$$

Knapsack inteiro

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{aligned} & \text{maximizar } 85x_1 + 72x_2 + 61x_3 + 45x_4 + 37x_5 \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} 41x_1 + 32x_2 + 24x_3 + 17x_4 + 15x_5 \leq 65 \\ x_1, x_2, x_3, x_4, x_5 \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

Problema de Afetação (Assignment Problem)

Exemplo 6: Programação Inteira com variáveis booleanas

Seis turmas práticas P_1, \ldots, P_6 , sem sobreposição de horário, devem ser atribuídas a seis professores A, \ldots, F , ficando cada um com uma turma. Os professores ordenaram as turmas por ordem de preferência. Determinar uma atribuição que maximize globalmente as preferências (assumindo aditividade).

	P_1	P_2	P_3	P_4	P_5	P_6		P_1	P_2	P_3	P_4	P_5	P_6
Α	1	2	3	4	5	6	В	3	1	5	4	6	2
C	2	1	3	5	4	6	D	6	5	4	1	2	3
Ε	3	2	1	4	6	5	F	1	2	3	6	4	5

Problema de Afetação (Assignment Problem)

Exemplo 6: Programação Inteira com variáveis booleanas

Seis turmas práticas P_1, \ldots, P_6 , sem sobreposição de horário, devem ser atribuídas a seis professores A, \ldots, F , ficando cada um com uma turma. Os professores ordenaram as turmas por ordem de preferência. Determinar uma atribuição que maximize globalmente as preferências (assumindo aditividade).

	P_1	P_2	P_3	P_4	P_5	P_6		P_1	P_2	P_3	P_4	P_5	P_6
Α	1	2	3	4	5	6	В	3	1	5	4	6	2
C	2	1	3	5	4	6	D	6	5	4	1	2	3
Е	3	2	1	4	6	5	F	1	2	3	6	4	5

Variáveis de decisão: x_{ij} indica se o professor j fica com a turma i ou não. **Dados:** c_{ij} é o custo da atribuição da turma i ao professor j, n o número de professores e m o número de turmas.

12 / 64

A.P.Tomás (LEIC - UP) DA 2021/2022

Problema de Afetação (Assignment Problem)

Exemplo 6: Programação Inteira com variáveis booleanas

Seis turmas práticas P_1, \ldots, P_6 , sem sobreposição de horário, devem ser atribuídas a seis professores A, \ldots, F , ficando cada um com uma turma. Os professores ordenaram as turmas por ordem de preferência. Determinar uma atribuição que maximize globalmente as preferências (assumindo aditividade).

	P_1	P_2	P_3	P_4	P_5	P_6			P_1	P_2	P_3	P_4	P_5	P_6
Α	1	2	3	4	5	6	_	В	3	1	5	4	6	2
C	2	1	3	5	4	6		D	6	5	4	1	2	3
Е	3	2	1	4	6	5		F	1	2	3	6	4	5

Variáveis de decisão: x_{ij} indica se o professor j fica com a turma i ou não. **Dados:** c_{ij} é o custo da atribuição da turma i ao professor j, n o número de professores e m o número de turmas.

$$\begin{array}{ll} \text{minimizar } \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \text{ sujeito a} \\ \left\{ \begin{array}{ll} \sum_{j=1}^{n} x_{ij} = 1 \text{ para } i = 1, 2, \ldots, m \\ \sum_{j=1}^{m} x_{ij} = 1, \text{ para } j = 1, 2, \ldots, n \\ x_{ij} \in \{0, 1\}, \text{ para todo } (i, j) \end{array} \right. \end{aligned} \qquad \text{(turma i \'e atribu\'ida a um professor)}$$

Modelos Matemáticos para Problemas de Otimização e Decisão

Programação Inteira e Mista

- 3 Programação Linear e Ideia do Método Simplex
- 4 Aspetos Formais do Método Simplex

Programação linear, inteira ou mista

Prog. Linear (LP)

Prog. Inteira (IP)

Prog. Mista (MIP)

```
\max/\min z = cx
sujeito a
```

$$\begin{array}{c|c} \mathbf{max/min} \ z = cx \\ \mathbf{sujeito} \ \mathbf{a} \\ \left\{ \begin{array}{c} Ax \ \# \ b \\ x \in (\mathbb{Z}_0^+)^n \end{array} \right. \end{array}$$

$$\begin{array}{l} \textbf{max/min} \ z = c_1x_1 + c_2x_2 \\ \textbf{sujeito} \ \textbf{a} \\ \left\{ \begin{array}{l} A_1x_1 + A_2x_2 \ \# \ b \\ x_1 \in (\mathbb{R}_0^+)^{n_1} \\ x_2 \in (\mathbb{Z}_0^+)^{n_2} \end{array} \right. \end{array}$$

onde $\# \in \{=, \leq, \geq\}^m$. A função objetivo é linear e as restrições são lineares:

- Linear Programming (LP): variáveis reais (contínuas)
- Integer Programming (IP): variáveis inteiras IP puro: também z e as vars. de desvio em \mathbb{Z} (se necessário, multiplicar A, b e c por escalares)
- Mixed Integer Programming (MIP): algumas variáveis inteiras e outras reais

Relaxação linear do problema: assume todas as variáveis com valores em R

Interpretação Geométrica no Plano

$$\begin{aligned} & \text{minimizar } z = x - 2y \\ & \text{sujeito a} \\ & \begin{cases} 2y + 3x \geq 6 \\ y - x \leq 2 \\ y + x \leq 5 \\ -y + 2x \leq 2 \\ x, y \in \mathbb{R}_0^+ \end{cases}$$

Forma normal do problema:

minimizar
$$z = x - 2y$$

sujeito a
$$\begin{cases}
2y + 3x - t = 6 \\
y - x + w = 2 \\
y + x + k = 5 \\
-y + 2x + r = 2 \\
x, y, t, w, k, r \in \mathbb{R}_0^+
\end{cases}$$

t, w, k, r variáveis de desvio

Interpretação Geométrica no Plano

$$\begin{aligned} & \text{minimizar } z = x - 2y \\ & \text{sujeito a} \\ & \begin{cases} & 2y + 3x - t = 6 \\ & y - x + w = 2 \\ & y + x + k = 5 \\ & -y + 2x + r = 2 \\ & x, y, t, w, k, r \in \mathbb{R}_0^+ \end{aligned}$$

A tracejado vemos algumas curvas de nível da função objetivo.

Como seria se $x, y \in \mathbb{Z}_0^+$?

Ótimo IP: x = 1, y = 3, com z = -5.

Ótimo LP: **vértice** $A \hookrightarrow (3/2, 7/2)$ com z = -11/2.

Programação linear, inteira ou mista

Ótimo de um problema IP e MIP / Ótimo da relaxação linear

O valor ótimo de um problema de IP ou MIP não pode ser melhor do que o valor do ótimo da sua relaxação linear. Sendo z^* o valor ótimo para o problema e z_{IP}^* o valor ótimo da sua relaxação linear, tem-se:

- $z^* \le z_{LP}^*$, se for um problema de maximização,
- $z_{LP}^{\star} \leq z^{\star}$, se for um problema de minimização.

Se a solução ótima da relaxação linear satisfizer as restrições de integralidade então é solução ótima do problema.

Esta propriedade suporta o método branch-and-bound que descrevemos a seguir.

マロトス部トスミトスミト () 宝。

Uma firma pode produzir mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas. Dispõe de 300 pés de madeira e 110 horas de trabalho. O que produzir para maximizar o lucro?

Uma firma pode produzir mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas. Dispõe de 300 pés de madeira e 110 horas de trabalho. O que produzir para maximizar o lucro?

Variáveis de decisão

 x_M : número de mesas a produzir x_C : número de cadeiras a produzir

maximizar
$$6x_M + 8x_C$$

sujeito a

$$\begin{cases}
30x_M + 20x_C \le 300 \\
5x_M + 10x_C \le 110 \\
x_M, x_C \ge 0, \text{ inteiros}
\end{cases}$$

Podemos aplicar o Método Simplex para determinar uma solução ótima, com $x_M, x_C \in \mathbb{R}_0^+$. Se essa solução ótima tiver componentes $x_M, x_C \in \mathbb{Z}_0^+$, então é solução ótima do problema inicial.

Uma firma pode produzir mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Cada mesa requer 30 pés de madeira e 5 horas de trabalho. Cada cadeira requer 20 pés e 10 horas. Dispõe de 300 pés de madeira e 110 horas de trabalho. O que produzir para maximizar o lucro?

Variáveis de decisão

 x_M : número de mesas a produzir x_C : número de cadeiras a produzir

maximizar
$$6x_M + 8x_C$$

sujeito a

$$\begin{cases}
30x_M + 20x_C \le 300 \\
5x_M + 10x_C \le 110 \\
x_M, x_C \ge 0, \text{ inteiros}
\end{cases}$$

Podemos aplicar o Método Simplex para determinar uma solução ótima, com $x_M, x_C \in \mathbb{R}_0^+$. Se essa solução ótima tiver componentes $x_M, x_C \in \mathbb{Z}_0^+$, então é solução ótima do problema inicial.

A solução ótima linear é $x_M = 4$ e $x_C = 9$. É inteira.

Mas, se só dispusesse de 250 pés de madeira, seria $x_M=3/2$ e $x_C=41/4$. O que fazer?

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Com cada mesa gasta 30 pés de madeira e 5 horas de trabalho e com cada cadeira 20 pés e 10 horas. Dispõe de **250 pés de madeira** e 110 horas de trabalho. O que produzir?

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Com cada mesa gasta 30 pés de madeira e 5 horas de trabalho e com cada cadeira 20 pés e 10 horas. Dispõe de **250 pés de madeira** e 110 horas de trabalho. O que produzir?

A.P.Tomás (LEIC - UP)

DA 2021/2022

19 / 64

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Com cada mesa gasta 30 pés de madeira e 5 horas de trabalho e com cada cadeira 20 pés e 10 horas. Dispõe de 250 pés de madeira e 110 horas de trabalho. O que produzir?

Ótimo da relaxação linear: $(\frac{3}{2}, \frac{41}{4})$

$$\begin{array}{ll} \max z = 6x_M + 8x_C & \text{sujeito a} \\ \text{sujeito a} & \\ \begin{cases} 3x_M + 2x_C + s_1 = 25 \\ x_M + 2x_C + s_2 = 22 \\ x_M, x_C, s_1, s_2 \in \mathbb{R}_0^+ \end{cases} & \Leftrightarrow \begin{cases} x_M = \frac{3}{2} - \frac{1}{2}s_1 + \frac{1}{2}s_2 \\ x_C = \frac{41}{4} + \frac{1}{4}s_1 - \frac{3}{4}s_2 \\ x_M, x_C, s_1, s_2 \in \mathbb{R}_0^+ \end{cases} \\ \end{array}$$

A.P.Tomás (LEIC - UP)

DA 2021/2022

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Com cada mesa gasta 30 pés de madeira e 5 horas de trabalho e com cada cadeira 20 pés e 10 horas. Dispõe de **250 pés de madeira** e 110 horas de trabalho. O que produzir?

$$\begin{array}{l} \textbf{maximizar} \ z = 6x_M + 8x_C \\ \textbf{sujeito} \ \textbf{a} \\ \left\{ \begin{array}{l} 30x_M + 20x_C \leq 250 \\ 5x_M + 10x_C \leq 110 \\ x_M, x_C \in \mathbb{Z}_0^+ \end{array} \right. \end{array}$$

Ótimo da relaxação linear: $(\frac{3}{2}, \frac{41}{4})$

$$\begin{array}{ll} \max z = 6x_M + 8x_C & \text{sujeito a} \\ \sup \text{siv} = 6x_M + 8x_C & \text{sujeito a} \\ \left\{ \begin{array}{ll} 3x_M + 2x_C + s_1 = 25 \\ x_M + 2x_C + s_2 = 22 \\ x_M, x_C, s_1, s_2 \in \mathbb{R}_0^+ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} \max z = 91 - s_1 - 3s_2 \\ \sup \text{sujeito a} \\ \left\{ \begin{array}{ll} x_M = \frac{3}{2} - \frac{1}{2}s_1 + \frac{1}{2}s_2 \\ x_C = \frac{41}{4} + \frac{1}{4}s_1 - \frac{3}{4}s_2 \\ x_M, x_C, s_1, s_2 \in \mathbb{R}_0^+ \end{array} \right. \end{array} \right.$$

Arredondamentos? Incorreto. (2,10) e (1,11) não são pertencem ao espaço de soluções e (1,10) não é solução ótima.

DA 2021/2022 19 / 64

Pesquisa por Branch and Bound

Uma firma produz mesas e cadeiras que vende com lucro de 6 u.m. e 8 u.m. Com cada mesa gasta 30 pés de madeira e 5 horas de trabalho e com cada cadeira 20 pés e 10 horas. Dispõe de 250 pés de madeira e 110 horas de trabalho. O que produzir?

Estratégia: Sendo \mathbf{x}^* a solução ótima linear, se \mathbf{x}^* não satisfaz as restrições de integralidade, toma a primeira variável $x_i \in \mathbb{Z}_0^+$ tal que o valor $x_i^* \notin \mathbb{Z}_0^+$. Explora primeiro $x_i \leq \lfloor x_i^* \rfloor$ e depois $x_i \geq \lfloor x_i^* \rfloor + 1$.

| ◆日≯ ◆御≯ ◆恵≯ ◆恵≯ | 夏|

Pesquisa por Branch and Bound

Outra estratégia: Sendo \mathbf{x}^* a solução ótima linear, se \mathbf{x}^* não satisfaz as restrições de integralidade, toma a primeira variável $x_i \in \mathbb{Z}_0^+$ tal que $x_i^* \notin \mathbb{Z}_0^+$. Explora primeiro $x_i \geq |x_i^*| + 1$ e depois $x_i \leq |x_i^*|$.

Problemas de Programação Inteira - Branch-and-Bound

Relaxação linear: problema de programação linear que se obtém relaxando a restrição $x,y\in\mathbb{Z}_0^+$, que se substitui por $x,y\in\mathbb{R}_0^+$. Método "Branch-and-Bound": calcula uma solução inteira ótima resolvendo uma sequência de problemas lineares .

Exemplo:

$$\begin{aligned} & \text{maximizar } z = x + 3y \\ & \text{subjeito a} \\ & \begin{cases} & y \geq -\frac{2}{5}x + \frac{17}{5} \\ & y \geq \frac{5}{4}x - \frac{13}{6} \\ & y \leq -\frac{3}{2}x + 7 \\ & y \leq \frac{1}{4}x + \frac{7}{3} \\ & y \leq \frac{5}{3}x + \frac{4}{9} \\ & x, y \in \mathbb{Z}_0^+ \end{cases} \end{aligned}$$

 $z = x + 3y \Leftrightarrow y = z/3 - x/3$. A ordenada na origem z/3 cresce se z

cresce. O ótimo linear é o vértice indicado, mas o ótimo inteiro é (3,2).

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅう

Ideia do Método "Branch-and-Bound"

Resolução por "branch-and-bound": A solução ótima da relaxação linear (8/3,3) tem valor de x não inteiro, sendo 2 < x < 3. Excluimos essa solução se acrescentarmos a restrição $x \le 2 \lor x \ge 3$, que retira a faixa a vermelho.

Nenhuma solução inteira é removida, mas partiu-se o espaço de soluções. Os dois subproblemas serão resolvidos separadamente. O valor de z da melhor solução inteira que for encontrando – best so far (bsf) – é usado para restringir a procura.

Ideia do Método "Branch-and-Bound"

Caso $x \le 2$: a solução ótima linear é novamente não inteira, pois 2 < y < 3. Exclui-a criando dois novos subproblemas (filhos de [No-2]): $y \le 2$ ou $y \ge 3$.

Ideia do Método "Branch-and-Bound"

Trata-se de um **método de pesquisa em árvore**.

Árvore de pesquisa criada em **profundidade e da esquerda para a direita**. Em geral, o

tamanho da árvore depende da escolha da variável que é usada no desdobramento , bem como da ordem de visita dos nós

que pode ser determinada dinamicamente ao longo do processo, de acordo com heurísticas.

Como resolver algebricamente problemas de LP?

- 1 Modelos Matemáticos para Problemas de Otimização e Decisão
- 2 Programação Inteira e Mista
- 3 Programação Linear e Ideia do Método Simplex
- 4 Aspetos Formais do Método Simplex

Problema de Mistura

Uma empresa produz três tipos de farinhas que vende com lucros de 27u.m., 21u.m. e 14u.m. por tonelada, respetivamente. As composições das farinhas são:

Farinha	Milho	Centeio	Trigo
1	90%	10%	0%
П	70%	20%	10%
Ш	50%	30%	20%

A empresa dispõe de 1800 toneladas de milho, 1000 de centeio e 600 de trigo. Toda a produção pode ser vendida e os processos de mistura para as diversas farinhas têm custo igual. Como deve ser a produção para maximizar o lucro?

Problema de Mistura

Uma empresa produz três tipos de farinhas que vende com lucros de 27u.m., 21u.m. e 14u.m. por tonelada, respetivamente. As composições das farinhas são:

Farinha	Milho	Centeio	Trigo
ı	90%	10%	0%
П	70%	20%	10%
Ш	50%	30%	20%

A empresa dispõe de 1800 toneladas de milho, 1000 de centeio e 600 de trigo. Toda a produção pode ser vendida e os processos de mistura para as diversas farinhas têm custo igual. Como deve ser a produção para maximizar o lucro?

Modelo matemático: x_i é a quantidade de farinha i a produzir (em toneladas). maximizar $27x_1 + 21x_2 + 14x_3$

Problemas de Programação Linear (LP)

Hipóteses subjacentes ao modelo de programação linear:

Proporcionalidade (contribuições proporcionais), **divisibilidade** (variáveis de decisão em \mathbb{R}^+_0 ou \mathbb{Q}^+_0), **certeza** (parâmetros são constantes conhecidas), **aditividade** e **linearidade** das restrições e da função objetivo. Restrições lineares **fechadas** (operadores =, \geq , \leq).

Diz-se que o problema está em **forma normal** se estiver definido por um sistema de equações lineares com termo independente $\mathbf{b} \in (\mathbb{R}_0^+)^m$, isto é não negativo, e variáveis de decisão não negativas:

F.N. para maximização

maximize cx subject to $\begin{cases} Ax = b \\ x \in (\mathbb{R}_0^+)^n \end{cases}$

F.N. para minimização

minimize cx
subject to

$$\begin{cases}
Ax = b \\
x \in (\mathbb{R}_0^+)^n
\end{cases}$$

Redução à forma normal

As relações binárias \leq e \geq são definidas em $\mathbb R$ por:

$$a \le b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a + s = b$$

 $a \ge b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a - s = b$

Usando tal definição, podemos transformar inequações em equações:

$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{j=1}^{n} a_{ij}x_{j} + s_{i} = b_{i}$$
$$\sum_{i=1}^{n} a_{ij}x_{j} \geq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{i=1}^{n} a_{ij}x_{j} - s_{i} = b_{i}$$

Redução à forma normal

As relações binárias \leq e \geq são definidas em $\mathbb R$ por:

$$a \le b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a + s = b$$

 $a \ge b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a - s = b$

Usando tal definição, podemos transformar inequações em equações:

$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{j=1}^{n} a_{ij}x_{j} + s_{i} = b_{i}$$
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{j=1}^{n} a_{ij}x_{j} - s_{i} = b_{i}$$

maximizar $27x_1 + 21x_2 + 14x_3$

subjeito a
$$\Leftrightarrow \begin{cases}
0.9x_1 + 0.7x_2 + 0.5x_3 + s_1 = 1800, \\
0.1x_1 + 0.2x_2 + 0.3x_3 + s_2 = 1000, \\
0.1x_2 + 0.2x_3 + s_3 = 600, \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

maximizar $27x_1 + 21x_2 + 14x_3$

(4日) (個) (量) (量) (量) (9Qで)

Redução à forma normal

As relações binárias $< e > são definidas em <math>\mathbb{R}$ por:

$$a \le b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a + s = b$$

 $a \ge b \Leftrightarrow \exists s \in \mathbb{R}_0^+ \ a - s = b$

Usando tal definição, podemos transformar inequações em equações:

$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{j=1}^{n} a_{ij}x_{j} + s_{i} = b_{i}$$
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}_{0}^{+} \sum_{j=1}^{n} a_{ij}x_{j} - s_{i} = b_{i}$$

maximizar
$$27x_1 + 21x_2 + 14x_3$$
 subjeito a

$$\begin{cases} 0.9x_1 + 0.7x_2 + 0.5x_3 \le 1800, \\ 0.1x_1 + 0.2x_2 + 0.3x_3 \le 1000, \\ 0.1x_2 + 0.2x_3 \le 600, \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

maximizar
$$27x_1 + 21x_2 + 14x_3$$

subjeito a

$$\Leftrightarrow \begin{cases}
0.9x_1 + 0.7x_2 + 0.5x_3 + \mathbf{s_1} = 1800, \\
0.1x_1 + 0.2x_2 + 0.3x_3 + \mathbf{s_2} = 1000, \\
0.1x_2 + 0.2x_3 + \mathbf{s_3} = 600, \\
x_1, x_2, x_3, \mathbf{s_1}, \mathbf{s_2}, \mathbf{s_3} \ge 0
\end{cases}$$

s₁, s₂, s₃ chamam-se variáveis de desvio

Este sistema de equações pode ser colocado trivialmente numa forma resolvida:

$$\begin{array}{l} \textbf{maximizar} \ z = 0 + 27x_1 + 21x_2 + 14x_3 \\ \textbf{sujeito a} \\ \left\{ \begin{array}{ll} s_1 &= 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\ s_2 &= 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\ s_3 &= 600 & -0.1x_2 - 0.2x_3 \\ x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array} \right. \end{array}$$

Mostra que $x_1 = x_2 = x_3 = 0$, $s_1 = 1800$, $s_2 = 1000$ e $s_3 = 600$ é solução do problema. Essa solução, que se obtém se se atribuir às variáveis livres o valor zero, chama-se solução básica do sistema de equações. Sendo não-negativa, chama-se solução básica admissível.

Os coeficientes das variáveis livres x_1 , x_2 e x_3 na expressão da função objetivo indicam que, se alguma das variáveis x_1 , x_2 ou x_3 puder tomar valores positivos no espaço de soluções, a solução básica admissível (0,0,0,1800,1000,600), com z=0, não é uma solução ótima.

maximizar
$$z = 0 + 27x_1 + 21x_2 + 14x_3$$

sujeito a
$$\begin{cases}
s_1 = 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\
s_2 = 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\
s_3 = 600 - 0.1x_2 - 0.2x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

Designamos tais coeficientes por indicadores.

Os coeficientes das variáveis livres x_1 , x_2 e x_3 na expressão da função objetivo indicam que, se alguma das variáveis x_1 , x_2 ou x_3 puder tomar valores positivos no espaço de soluções, a solução básica admissível (0,0,0,1800,1000,600), com z=0, não é uma solução ótima.

maximizar
$$z = 0 + 27x_1 + 21x_2 + 14x_3$$

sujeito a
$$\begin{cases}
s_1 = 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\
s_2 = 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\
s_3 = 600 - 0.1x_2 - 0.2x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

Designamos tais coeficientes por **indicadores**. Para aumentar z, podemos:

 aumentar o valor da variável livre com indicador mais favorável (x₁ com 27), mantendo as restantes variáveis livres com valor 0.

Os coeficientes das variáveis livres x_1 , x_2 e x_3 na expressão da função objetivo indicam que, se alguma das variáveis x_1 , x_2 ou x_3 puder tomar valores positivos no espaço de soluções, a solução básica admissível (0,0,0,1800,1000,600), com z=0, não é uma solução ótima.

$$\begin{array}{l} \text{maximizar } z = 0 + 27x_1 + 21x_2 + 14x_3 \\ \text{sujeito a} \\ \left\{ \begin{array}{l} s_1 = 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\ s_2 = 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\ s_3 = 600 - 0.1x_2 - 0.2x_3 \\ x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array} \right. \\ \end{array}$$

Designamos tais coeficientes por **indicadores**. Para aumentar z, podemos:

• aumentar o valor da variável livre com indicador mais favorável (x_1 com 27), mantendo as restantes variáveis livres com valor 0. A nova solução terá de ser admissível, sendo da forma (x_1 , 0, 0, s_1 , s_2 , s_3) e não negativa, com $s_3 = 600$, $s_1 = 1800 - 0.9x_1 \ge 0$, $s_2 = 1000 - 0.1x_1 \ge 0$. Logo, $x_1 \le 2000$.

Os coeficientes das variáveis livres x_1 , x_2 e x_3 na expressão da função objetivo indicam que, se alguma das variáveis x_1 , x_2 ou x_3 puder tomar valores positivos no espaço de soluções, a solução básica admissível (0,0,0,1800,1000,600), com z=0, não é uma solução ótima.

$$\begin{array}{l} \text{maximizar } z = 0 + 27x_1 + 21x_2 + 14x_3 \\ \text{sujeito a} \\ \left\{ \begin{array}{lll} s_1 &=& 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\ s_2 &=& 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\ s_3 &=& 600 & -0.1x_2 - 0.2x_3 \\ x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array} \right. \\ \end{array}$$

Designamos tais coeficientes por **indicadores**. Para aumentar z, podemos:

- aumentar o valor da variável livre com indicador mais favorável (x_1 com 27), mantendo as restantes variáveis livres com valor 0. A nova solução terá de ser admissível, sendo da forma (x_1 , 0, 0, s_1 , s_2 , s_3) e não negativa, com $s_3 = 600$, $s_1 = 1800 0.9 x_1 \ge 0$, $s_2 = 1000 0.1 x_1 \ge 0$. Logo, $x_1 \le 2000$.
- Se aumentarmos x_1 o mais possível, $x_1 = 2000$, então $s_1 = 0$. A nova solução também é uma solução básica: x_1 substituirá s_1 na base.

Para trocar s_1 por x_1 na base, aplica-se eliminação de Gauss sobre a coluna de x_1 , sendo o **pivot o coeficiente de** x_1 na linha de s_1 . A equação que define z também é transformada (para que possa indicar como z varia em função das novas variáveis livres).

$$\begin{array}{l} \text{maximizar } z = 0 + 27x_1 + 21x_2 + 14x_3 \\ \text{sujeito a} \\ \begin{cases} s_1 = 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\ s_2 = 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\ s_3 = 600 \\ x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{cases} \iff$$

Para trocar s_1 por x_1 na base, aplica-se *eliminação de Gauss sobre a coluna de* x_1 , sendo o **pivot o coeficiente de** x_1 **na linha de** s_1 . A equação que define z também é transformada (para que possa indicar como z varia em função das novas variáveis livres).

$$\begin{array}{l} \text{maximizar } z = 0 + 27x_1 + 21x_2 + 14x_3 \\ \text{sujeito a} \\ \left\{ \begin{array}{l} s_1 = 1800 - 0.9x_1 - 0.7x_2 - 0.5x_3 \\ s_2 = 1000 - 0.1x_1 - 0.2x_2 - 0.3x_3 \\ s_3 = 600 & -0.1x_2 - 0.2x_3 \\ x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array} \right. \end{array} \Leftrightarrow$$

maximizar
$$z = 54000 - 30s_1 + 0x_2 - x_3$$

sujeito a
$$\begin{cases}
x_1 = 2000 - \frac{10}{9}s_1 - \frac{7}{9}x_2 - \frac{5}{9}x_3 \\
s_2 = 800 + \frac{1}{9}s_1 - \frac{11}{90}x_2 - \frac{22}{90}x_3 \\
s_3 = 600 - \frac{1}{10}x_2 - \frac{2}{10}x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

Os novos **indicadores** mostram que a solução básica (2000, 0, 0, 0, 800, 600), com z=54000, obtida nesta iteração é ótima, pois, no conjunto das soluções admissíveis, $s_1, x_2, x_3 \ge 0$, pelo que $z=54000-30s_1+0x_2-x_3 \le 54000$.

O método que descrevemos chama-se Método de Simplex (foi desenvolvido por G. Dantzig).

A.P.Tomás (LEIC - UP) DA 2021/2022 32 / 64

Existem soluções alternativas ótimas?

maximizar
$$z = 54000 - 30s_1 + 0x_2 - x_3$$

sujeito a
$$\begin{cases}
x_1 = 2000 - \frac{10}{9}s_1 - \frac{7}{9}x_2 - \frac{5}{9}x_3 \\
s_2 = 800 + \frac{1}{9}s_1 - \frac{11}{90}x_2 - \frac{22}{90}x_3 \\
s_3 = 600 - \frac{1}{10}x_2 - \frac{2}{10}x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

Não existem soluções ótimas com $x_3 > 0$ nem com $s_1 > 0$, mas poderão existir soluções ótimas alternativas com $x_2 > 0$, pois o indicador de x_2 é zero.

Existem soluções alternativas ótimas?

maximizar
$$z = 54000 - 30s_1 + 0x_2 - x_3$$

sujeito a
$$\begin{cases}
x_1 = 2000 - \frac{10}{9}s_1 - \frac{7}{9}x_2 - \frac{5}{9}x_3 \\
s_2 = 800 + \frac{1}{9}s_1 - \frac{11}{90}x_2 - \frac{22}{90}x_3 \\
s_3 = 600 - \frac{1}{10}x_2 - \frac{2}{10}x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

Não existem soluções ótimas com $x_3 > 0$ nem com $s_1 > 0$, mas poderão existir soluções ótimas alternativas com $x_2 > 0$, pois o indicador de x_2 é zero.

● Tomando $s_1 = x_3 = 0$, concluimos que, para todos os valores de $x_2 \in [0, \frac{18000}{7}]$, as soluções $(x_1, x_2, 0, 0, s_2)$, com $x_1 = 2000 - \frac{7}{9}x_2$, $s_2 = 800 - \frac{11}{90}x_2$, $s_3 = 600 - \frac{1}{10}x_2$ têm valor z = 54000 (isto é, são ótimos alternativos).

Existem soluções alternativas ótimas?

maximizar
$$z = 54000 - 30s_1 + 0x_2 - x_3$$

sujeito a

$$\begin{cases}
x_1 = 2000 - \frac{10}{9}s_1 - \frac{7}{9}x_2 - \frac{5}{9}x_3 \\
s_2 = 800 + \frac{1}{9}s_1 - \frac{11}{90}x_2 - \frac{22}{90}x_3 \\
s_3 = 600 - \frac{1}{10}x_2 - \frac{2}{10}x_3 \\
x_1, x_2, x_3, s_1, s_2, s_3 \ge 0
\end{cases}$$

Não existem soluções ótimas com $x_3 > 0$ nem com $s_1 > 0$, mas poderão existir soluções ótimas alternativas com $x_2 > 0$, pois o indicador de x_2 é zero.

- Tomando $s_1 = x_3 = 0$, concluimos que, para todos os valores de $x_2 \in [0, \frac{18000}{7}]$, as soluções $(x_1, x_2, 0, 0, s_2)$, com $x_1 = 2000 \frac{7}{9}x_2$, $s_2 = 800 \frac{11}{90}x_2$, $s_3 = 600 \frac{1}{10}x_2$ têm valor z = 54000 (isto é, são ótimos alternativos).
- "Farinhas": lucro máximo de 54000 u.m. Estratégia: produzir 2000 toneladas do tipo I, ou produzir 18000/7 do tipo II, ou simultaneamente do tipo I e II desde que produza x_2 do tipo II, com $x_2 \in]0,18000/7[$, e $2000-7/9x_2$ do tipo I.

Interpretação Geométrica do Método Simplex

Propriedades dos problemas de LP

- Se o problema admitir solução ótima então algum dos vértices do espaço de soluções é solução ótima. Os vértices correspondem a soluções básicas admissíveis do sistema de equações.
- Método Simplex: restringe a pesquisa a vértices do espaço de soluções; parte de um vértice; em cada iteração, move-se (por uma aresta) para um vértice adjacente do atual que melhore a função objetivo, se existir.

O sistema tem $\binom{6}{4} = 15$ soluções básicas mas apenas quatro são soluções básicas admissíveis.

A:
$$w = 0 \land k = 0$$
 B: $r = 0 \land k = 0$

$$3: \quad r=0 \land k=0$$

C:
$$r = 0 \land t = 0$$
 D: $w = 0 \land t = 0$

$$O: w=0 \land t=0$$

Se partir de B no método Simplex, efetua apenas uma iteração, deslocando-se para A.

Aplicação do Método Simplex

Vamos ilustrar a aplicação do método Simplex, partindo do vértice C, que corresponde à solução básica com r = t = 0.

minimizar
$$z = x - 2y$$

sujeito a
$$\begin{cases}
2y + 3x - t = 6 \\
y - x + w = 2 \\
y + x + k = 5 \\
-y + 2x + r = 2 \\
x, y, t, w, k, r \in \mathbb{R}_0^+
\end{cases}$$

Aplicámos o método de Gauss-Jordan para resolver o sistema.

Aplicação do Método Simplex (cont.)

$$\begin{aligned} & \min \, z = -\frac{2}{7} - \frac{8}{7}r - \frac{3}{7}t \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} y = \frac{6}{7} + \frac{3}{7}r + \frac{2}{7}t \\ x = \frac{10}{7} - \frac{2}{7}r + \frac{1}{7}t \\ k = \frac{19}{7} - \frac{1}{7}r - \frac{3}{7}t \\ w = \frac{18}{7} - \frac{5}{7}r - \frac{1}{7}t \\ r, t, y, x, k, w \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$$

Conclusão nesta iteração:

- A solução básica, com r = t = 0, que corresponde ao vértice C, não é ótima pois os indicadores de r e t mostram que z pode diminuir.
- O indicador de r é o mais favorável.
 Aumentará r o mais possível mantendo t = 0.
- Para manter a não negatividade da solução terá $r \le 18/5$, e se tomar r = 18/5 fica com w = 0 pois

$$x = 10/7 - 2/7r \ge 0$$

$$k = 19/7 - 1/7r \ge 0$$

$$w = 18/7 - 5/7r > 0$$

 Troca w por r fazendo eliminação de Gauss na coluna de r, com pivot na linha de w.
 Com essa troca, passou para o vértice D.

Aplicação do Método Simplex (cont.)

$$\min z = -\frac{22}{5} + \frac{8}{5}w - \frac{1}{5}t$$
sujeito a
$$\begin{cases} y = \frac{12}{5} - \frac{3}{5}w + \frac{1}{5}t \\ x = \frac{2}{5} + \frac{2}{5}w + \frac{1}{5}t \end{cases}$$

$$k = \frac{11}{5} + \frac{1}{5}w - \frac{2}{5}t$$

$$r = \frac{18}{5} - \frac{7}{5}w - \frac{1}{5}t$$

$$w, t, y, x, k, r \in \mathbb{R}_0^+$$

Conclusão nesta iteração:

- A solução básica, com w = t = 0, que corresponde ao vértice D, não é ótima pois o indicador de t mostra que z pode diminuir.
- Para manter a não negatividade da solução, com w=0, terá $t \le 11/2$, e se tomar t=11/2 fica com k=0 pois

$$k = 11/5 - 2/5t \ge 0$$

$$r = 18/5 - 1/5t \ge 0$$

 Troca k por t fazendo eliminação de Gauss na coluna de t, com pivot na linha de k.
 Com essa troca, passou para o vértice A.

Aplicação do Método Simplex (cont.)

$$\begin{aligned} & \min z = -\frac{11}{2} + \frac{3}{2}w + \frac{1}{2}k \\ & \text{sujeito a} \\ & \begin{cases} y = \frac{7}{2} - \frac{1}{2}w - \frac{1}{2}k \\ x = \frac{3}{2} + \frac{1}{2}w - \frac{1}{2}k \\ t = \frac{11}{2} + \frac{1}{2}w - \frac{5}{2}k \\ r = \frac{5}{2} - \frac{3}{2}w + \frac{1}{2}k \\ w, t, y, x, k, r \in \mathbb{R}_0^+ \end{cases}$$

Conclusão:

- A solução básica, com w = k = 0, que corresponde ao vértice A, é a solução ótima, pois os indicadores das variáveis livres (i.e., das não básicas) são positivos.
- Não há outras soluções ótimas. A única solução ótima do problema inicial é y = 7/2, x = 3/2, com z = -11/2.

Como resolver algebricamente problemas de LP?

- 1 Modelos Matemáticos para Problemas de Otimização e Decisão
- Programação Inteira e Mista
- Programação Linear e Ideia do Método Simplex
- Aspetos Formais do Método Simplex

Sistema de m equações lineares em n variáveis reais

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Na forma matricial é representado por Ax = b, com

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

A é a matriz de coeficientes e b o termo independente.

(A | b) denota a matriz completa do sistema. .

A caraterística da matriz A, que denotamos por car(A), é o número máximo de linhas de A linearmente independentes.

Recordar que:

- O número de linhas de A linearmente independentes é igual ao número de colunas linearmente independentes;
- Logo, car(A) é a dimensão do subespaço vetorial de \mathbb{R}^m gerado pelas linhas de A, que é igual à dimensão subespaço de \mathbb{R}^n gerado pelas colunas de A.
- " $\exists x \in \mathbb{R}^n \ Ax = b$?" \Leftrightarrow "b é combinação linear das colunas de A?"

$$x_1 \left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{array} \right) + x_2 \left(\begin{array}{c} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{array} \right) + \cdots + x_n \left(\begin{array}{c} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{array} \right) = \left(\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right)$$

A caraterística da matriz A, que denotamos por car(A), é o número máximo de linhas de A linearmente independentes.

Recordar que:

- O número de linhas de A linearmente independentes é igual ao número de colunas linearmente independentes;
- Logo, car(A) é a dimensão do subespaço vetorial de \mathbb{R}^m gerado pelas linhas de A, que é igual à dimensão subespaço de \mathbb{R}^n gerado pelas colunas de A.
- " $\exists x \in \mathbb{R}^n \ Ax = b$?" \Leftrightarrow "b é combinação linear das colunas de A?"

$$x_1 \left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{array} \right) + x_2 \left(\begin{array}{c} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{array} \right) + \cdots + x_n \left(\begin{array}{c} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{array} \right) = \left(\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right)$$

 \therefore O sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem solução se e só se $car(\mathbf{A}) = car(\mathbf{A} \mid \mathbf{b})$

- (□) (個) (差) (差) (差) (差) のQで

Caraterização da solução de $\mathbf{A}\mathbf{x} = \mathbf{b}$, supondo car(A) = m

Sendo **A** uma matriz $m \times n$ e assumindo que $car(\mathbf{A}) = m = car(\mathbf{A} \mid \mathbf{b})$ então

- se m = n, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem solução **única** $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
- se m < n, o sistema tem uma **infinidade** de soluções, podendo ser apresentado numa **forma resolvida** como $\mathbf{x_B} = \mathbf{B^{-1}b} \mathbf{B^{-1}Nx_N}$, onde B é uma sub-matriz $m \times m$ de \mathbf{A} com $det(B) \neq 0$, N é a submatriz $m \times (n-m)$ formada pelas restantes colunas e x_B e x_N são as variáveis correspondentes.

A.P.Tomás (LEIC - UP) DA 2021/2022 42 / 64

Caraterização da solução de $\mathbf{A}\mathbf{x} = \mathbf{b}$, supondo car(A) = m

Sendo **A** uma matriz $m \times n$ e assumindo que $car(\mathbf{A}) = m = car(\mathbf{A} \mid \mathbf{b})$ então

- se m = n, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem solução **única** $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
- se m < n, o sistema tem uma **infinidade** de soluções, podendo ser apresentado numa **forma resolvida** como $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N}$, onde B é uma sub-matriz $m \times m$ de \mathbf{A} com $det(B) \neq 0$, N é a submatriz $m \times (n-m)$ formada pelas restantes colunas e x_{B} e x_{N} são as variáveis correspondentes.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b} \iff B\mathbf{x}_B = \mathbf{b} - N\mathbf{x}_N \iff B^{-1}(B\mathbf{x}_B) = B^{-1}(\mathbf{b} - N\mathbf{x}_N)$$

Como $B^{-1}B$ é a matriz identidade, concluimos que : $\mathbf{x}_B = B^{-1}\mathbf{b} - (B^{-1}N)\mathbf{x}_N$

(sistema resolvido em ordem às variáveis em $\mathbf{x}_{\mathbf{B}}$ deixando livres as restantes)

Caraterização da solução de $\mathbf{A}\mathbf{x} = \mathbf{b}$, supondo car(A) = m

Sendo **A** uma matriz $m \times n$ e assumindo que $car(\mathbf{A}) = m = car(\mathbf{A} \mid \mathbf{b})$ então

- se m = n, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem solução **única** $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
- se m < n, o sistema tem uma **infinidade** de soluções, podendo ser apresentado numa **forma resolvida** como $\mathbf{x_B} = \mathbf{B^{-1}b} \mathbf{B^{-1}Nx_N}$, onde B é uma sub-matriz $m \times m$ de \mathbf{A} com $det(B) \neq 0$, N é a submatriz $m \times (n-m)$ formada pelas restantes colunas e x_B e x_N são as variáveis correspondentes.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b} \iff B\mathbf{x}_B = \mathbf{b} - N\mathbf{x}_N \iff B^{-1}(B\mathbf{x}_B) = B^{-1}(\mathbf{b} - N\mathbf{x}_N)$$

Como $B^{-1}B$ é a matriz identidade, concluimos que : $\mathbf{x}_B = B^{-1}\mathbf{b} - (B^{-1}N)\mathbf{x}_N$ (sistema resolvido em ordem às variáveis em \mathbf{x}_B deixando livres as restantes)

A solução $\mathbf{x}_B = B^{-1}\mathbf{b}$ que se obtém se fixarmos $\mathbf{x}_N = 0$ chama-se solução básica determinada pela base B. (As colunas de B constituem uma base do subespaço gerado pelas colunas de A) Quando alguma das variáveis \mathbf{x}_B é 0, a solução diz-se degenerada.

Sistemas de equações lineares

Exemplo: O sistema de equações

$$\begin{bmatrix} 1 & 2 & -1 & 4 & 0 \\ -2 & -4 & 4 & 0 & -7 \\ 0 & 4 & -1 & 7 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

na forma $\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b} - \mathbf{N}\mathbf{x}_{\mathbf{N}}$, com $det(\mathbf{B}) \neq 0$, sendo \mathbf{B} formado pelas colunas de x_1, x_2, x_3 :

$$\underbrace{\begin{bmatrix}
1 & 2 & -1 \\
-2 & -4 & 4 \\
0 & 4 & -1
\end{bmatrix}}_{B} \underbrace{\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}}_{x_B} = \underbrace{\begin{bmatrix}
3 \\
2 \\
7
\end{bmatrix}}_{b} - \underbrace{\begin{bmatrix}
4 & 0 \\
0 & -7 \\
7 & -4
\end{bmatrix}}_{N} \underbrace{\begin{bmatrix}
x_4 \\
x_5
\end{bmatrix}}_{x_N}$$

Sistemas de equações lineares

Exemplo: O sistema de equações

$$\begin{bmatrix} 1 & 2 & -1 & 4 & 0 \\ -2 & -4 & 4 & 0 & -7 \\ 0 & 4 & -1 & 7 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

na forma $\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b} - \mathbf{N}\mathbf{x}_{\mathbf{N}}$, com $det(\mathbf{B}) \neq 0$, sendo \mathbf{B} formado pelas colunas de x_1, x_2, x_3 :

$$\underbrace{\begin{bmatrix}
1 & 2 & -1 \\
-2 & -4 & 4 \\
0 & 4 & -1
\end{bmatrix}}_{B} \underbrace{\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}}_{x_B} = \underbrace{\begin{bmatrix}
3 \\
2 \\
7
\end{bmatrix}}_{b} - \underbrace{\begin{bmatrix}
4 & 0 \\
0 & -7 \\
7 & -4
\end{bmatrix}}_{N} \underbrace{\begin{bmatrix}
x_4 \\
x_5
\end{bmatrix}}_{x_N}$$

Se fixarmos o valor de x_N , o sistema com termo independente $(b - Nx_N)$ tem solução $\text{unica: } \mathbf{B} \mathbf{x}_{B} = \mathbf{b} - \mathbf{N} \mathbf{x}_{N} \ \Leftrightarrow \ \mathbf{x}_{B} = \mathbf{B}^{-1} (\mathbf{b} - \mathbf{N} \mathbf{x}_{N}) \ \Leftrightarrow \ \mathbf{x}_{B} = \mathbf{B}^{-1} \dot{\mathbf{b}} - \mathbf{B}^{-1} \dot{\mathbf{N}} \mathbf{x}_{N}.$

$$\underbrace{\begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 4 \\ 0 & 4 & -1 \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x_B} = \underbrace{\begin{bmatrix} 3 - 4x_4 \\ 2 + 7x_5 \\ 7 - 7x_4 + 4x_5 \end{bmatrix}}_{b - Nx_N} \qquad B^{-1} = \begin{bmatrix} \frac{5}{2} & \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & -\frac{1}{8} & \frac{1}{4} \\ 1 & \frac{1}{2} & 0 \end{bmatrix}$$

$$\mathbf{B}^{-1} = \begin{bmatrix} \frac{5}{2} & \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & -\frac{1}{8} & \frac{1}{4} \\ 1 & \frac{1}{2} & 0 \end{bmatrix}$$

Sistemas de equações lineares

A matriz **B** pode ser qualquer submatriz $m \times m$ constituída por $car(\mathbf{A}) = m$ colunas de **A** linearmente independentes.

Exemplo (cont.):

A seguinte não seria adequada pois $det(\mathbf{B}) = 0$ e, portanto, não existe \mathbf{B}^{-1} .

$$\underbrace{\begin{bmatrix}
1 & 2 & -1 \\
-2 & -4 & 4 \\
0 & 0 & -1
\end{bmatrix}}_{B} \underbrace{\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}}_{x_B} = \underbrace{\begin{bmatrix}
3 \\
2 \\
7
\end{bmatrix}}_{b} - \underbrace{\begin{bmatrix}
4 & 0 \\
0 & -7 \\
7 & -4
\end{bmatrix}}_{N} \underbrace{\begin{bmatrix}
x_4 \\
x_5
\end{bmatrix}}_{x_N}$$

Mas, podia ser, por exemplo:

$$\begin{bmatrix} 1 & -1 & 4 \\ -2 & 4 & 0 \\ 0 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ -4 & -7 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x_2 \\ x_5 \end{bmatrix}$$

Tomando $x_2 = x_5 = 0$, iriamos obter a **solução básica** $\mathbf{x_B} = \mathbf{B}^{-1}\mathbf{b}$ para esta base.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 0 ○

A.P.Tomás (LEIC - UP)

Alguns Métodos para Problemas com Restrições Lineares

- Resolução de Ax = b
 - Eliminação de Gauss [1801]
 - Eliminação de Gauss-Jordan (Clasen [1888], Jordan [1904])
- Resolução de Ax ≤ b
 - Eliminação de Fourier–Motzkin ([1827, 1936]) não polinomial
- **LP:** Resolução de $\max \mathbf{cx}$ com $\mathbf{Ax} = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$ (ou min \mathbf{cx})
 - Método Simplex (ideia Fourier [1827], formulação Dantzig [1951]).
 Não é polinomial mas comporta-se normalmente bem.
 - Existência de métodos polinomiais para LP

 $(n\~{a}o s\~{a}o fortemente polinomiais pois a complexidade depende dos coeficientes da matriz além de <math>m$ e n)

- Método dos Elipsóides (Khachiyan [1980]) interesse teórico
- Métodos de Ponto Interior (Karmarkar [1984]) relevantes na prática

Existem diversas variantes do método Simplex. Nesta cadeira, é estudada apenas uma versão elementar.

A.P.Tomás (LEIC - UP)

Revisão: Método de Eliminação Gauss-Jordan

Exemplo:

$$\begin{cases} x_1 + 2x_2 - x_3 + 4x_4 & = 3 \\ -2x_1 - 4x_2 + 4x_3 & -7x_5 = 2 \\ 4x_2 - x_3 + 7x_4 - 4x_5 = 7 \\ 4x_2 - 3x_3 - x_4 + 3x_5 = -1 \end{cases}$$

Forma matricial

Matriz completa

O método de Gauss-Jordan aplica transformações elementares sobre a matriz completa para colocar o sistema em forma resolvida, garantindo a equivalência dos sistemas.

- Dividir/multiplicar uma linha por um escalar não nulo.
- Subtrair/somar a uma linha uma outra linha multiplicada por um escalar.
- Trocar duas linhas entre si.

46 / 64

A.P.Tomás (LEIC - UP) DA 2021/2022

Revisão Método de Eliminação Gauss-Jordan

Exemplo (cont):

Se pivot 1 na linha k e coluna j então, para eliminar a_{ij} , faz a substituição

$$(\mathsf{Linha}\;\mathsf{i}) \leftarrow (\mathsf{Linha}\;\mathsf{i}) - a_{ij} \times (\mathsf{Linha}\;\mathsf{k})$$

Gauss-Jordan: elimina elementos da coluna j para as linhas $i \neq k$. Gauss: elimina elementos nas linhas i > k (troca linhas se necessário).

Revisão: Método de Eliminação Gauss-Jordan

Exemplo (cont):

$$\begin{bmatrix} 1 & 2 & -1 & 4 & 0 & 3 \\ 0 & 0 & 2 & 8 & -7 & 8 \\ 0 & 4 & -1 & 7 & -4 & 7 \\ 0 & 4 & -3 & -1 & 3 & -1 \end{bmatrix} \quad \begin{array}{c} \mathsf{troca} \\ \longrightarrow \\ L_2 \mathsf{ com } L_3 \end{array} \quad \begin{bmatrix} 1 & 2 & -1 & 4 & 0 & 3 \\ 0 & \boxed{4} & -1 & 7 & -4 & 7 \\ 0 & 0 & 2 & 8 & -7 & 8 \\ 0 & 4 & -3 & -1 & 3 & -1 \end{bmatrix}$$

Trocou linhas para ter elemento não nulo (i.e., pivot) na segunda coluna e segunda linha.

novo pivot divide e elimina
$$\rightarrow$$
 col. 3
$$\begin{bmatrix} 1 & 0 & 0 & 5/2 & 1/4 & 3/2 \\ 0 & 1 & 0 & 11/4 & -15/8 & 11/4 \\ 0 & 0 & 1 & 4 & -7/2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Conclui-se que car(A) = 3 e a última equação era redundante.

Revisão: Método de Eliminação Gauss-Jordan

Outro exemplo com car(A) = 3 (termo independente b = 0 omitido)

$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Revisão: Método de Eliminação Gauss-Jordan

Outro exemplo com car(A) = 3 (termo independente b = 0 omitido)

$$\begin{bmatrix} \boxed{1} & 2 & -1 & 4 \\ 0 & 0 & \boxed{2} & 8 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 2 & -1 & 4 \\ 0 & 0 & \boxed{1} & 4 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 2 & 0 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & \boxed{5} \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sequência de transformações (traduzida por um produto de matrizes)

$$\underbrace{\begin{bmatrix} 1 & 0 & -8 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\textbf{B}-1} (\textbf{A} \mid \textbf{0}) = \begin{bmatrix} 1 & 2 & 0 & 0 \mid 0 \\ 0 & 0 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 1 \mid 0 \end{bmatrix}}_{\textbf{B}-1}$$

para
$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 4 \\ 0 & 2 & 8 \\ 0 & -1 & 1 \end{bmatrix}$$
, pois \mathbf{B}^{-1} é a única matriz tal que $\mathbf{B}^{-1}\mathbf{B}$ é a matriz identidade.

Método Simplex

• Qualquer problema de programação linear pode ser reduzido à forma normal

maximizar c x	minimizar c x
sujeito a	sujeito a
$\mathbf{A}\mathbf{x} = \mathbf{b}$	$\mathbf{A}\mathbf{x} = \mathbf{b}$
$\mathbf{x} \in \mathbb{R}_0^+$	$\mathbf{x} \in \mathbb{R}_0^+$

com $\mathbf{b} \in \mathbb{R}_0^+$. Como "maximizar f(x)" equivale a "minimizar -f(x)", podemos restringir a análise a uma das formas, sem perda de generalidade.

Método Simplex

Qualquer problema de programação linear pode ser reduzido à forma normal

$$\begin{array}{lll} \text{maximizar } \textbf{c} \, \textbf{x} & \text{minimizar } \textbf{c} \, \textbf{x} \\ \text{sujeito a} & \text{sujeito a} \\ \textbf{A} \textbf{x} = \textbf{b} & \textbf{A} \textbf{x} = \textbf{b} \\ \textbf{x} \in \mathbb{R}_0^+ & \textbf{x} \in \mathbb{R}_0^+ \end{array}$$

com $\mathbf{b} \in \mathbb{R}_0^+$. Como "maximizar f(x)" equivale a "minimizar -f(x)", podemos restringir a análise a uma das formas, sem perda de generalidade.

- Método Simplex
 - Calcula uma solução básica admissível ótima, se o problema tiver solução ótima e fornece informações adicionais sobre o espaço de soluções (por exemplo, sobre a unicidade da solução ótima);

Método Simplex

Qualquer problema de programação linear pode ser reduzido à forma normal

$$\label{eq:maximizar c x} \begin{aligned} & \text{minimizar c x} \\ & \text{sujeito a} \\ & \textbf{Ax} = \textbf{b} \\ & \textbf{x} \in \mathbb{R}_0^+ \end{aligned} \qquad \begin{aligned} & \textbf{Ax} = \textbf{b} \\ & \textbf{x} \in \mathbb{R}_0^+ \end{aligned}$$

com $\mathbf{b} \in \mathbb{R}_0^+$. Como "maximizar f(x)" equivale a "minimizar -f(x)", podemos restringir a análise a uma das formas, sem perda de generalidade.

Método Simplex

- Calcula uma solução básica admissível ótima, se o problema tiver solução ótima e fornece informações adicionais sobre o espaço de soluções (por exemplo, sobre a unicidade da solução ótima);
- Estratégia: parte de uma solução básica admissível e, iterativamente, vai calculando uma solução básica admissível melhor do que a atual, fazendo entrar na base a variável com *indicador mais favorável*, e sair da base a variável que se anula quando a nova toma o valor máximo.

Existem alternativas à regra "indicador mais favorável", mas não as iremos considerar.

ロト 4回 ト 4 恵 ト 4 恵 ト 夏 の900

Seja P o problema maximizar $\mathbf{c} \mathbf{x}$ sujeito a $\mathbf{A} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathbb{R}_0^+$ (ou de *minimizar* $\mathbf{c} \mathbf{x}$).

- Se P tem solução ótima então pelo menos uma solução básica admissível é ótima.
 Logo, se tem uma única solução ótima, essa solução é solução básica admissível.
- Se \mathbf{x}'_{opt} e \mathbf{x}''_{opt} , com $\mathbf{x}'_{opt} \neq \mathbf{x}''_{opt}$, são soluções (básicas) admissíveis ótimas, P tem uma infinidade de soluções ótimas: $(1-\lambda)\mathbf{x}'_{opt} + \lambda\mathbf{x}''_{opt}$ é solução, para $\lambda \in [0,1]$.
- As soluções básicas admissíveis são vértices do espaço de soluções.

A.P.Tomás (LEIC - UP)

Seja P o problema maximizar $\mathbf{c} \mathbf{x}$ sujeito a $\mathbf{A} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathbb{R}_0^+$ (ou de *minimizar* $\mathbf{c} \mathbf{x}$).

- Se P tem solução ótima então pelo menos uma solução básica admissível é ótima.
 Logo, se tem uma única solução ótima, essa solução é solução básica admissível.
- Se \mathbf{x}'_{opt} e \mathbf{x}''_{opt} , com $\mathbf{x}'_{opt} \neq \mathbf{x}''_{opt}$, são soluções (básicas) admissíveis ótimas, P tem uma infinidade de soluções ótimas: $(1-\lambda)\mathbf{x}'_{opt} + \lambda\mathbf{x}''_{opt}$ é solução, para $\lambda \in [0,1]$.
- As soluções básicas admissíveis são vértices do espaço de soluções.

Se $p_1, p_2 \in \mathbb{R}^n$, os pontos $(1 - \lambda)p_1 + \lambda p_2$, com $\lambda \in [0, 1]$, definem o segmento $[p_1p_2]$.

Seja P o problema maximizar $\mathbf{c} \mathbf{x}$ sujeito a $\mathbf{A} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathbb{R}_0^+$ (ou de minimizar $\mathbf{c} \mathbf{x}$).

- Se P tem solução ótima então pelo menos uma solução básica admissível é ótima.
 Logo, se tem uma única solução ótima, essa solução é solução básica admissível.
- Se \mathbf{x}'_{opt} e \mathbf{x}''_{opt} , com $\mathbf{x}'_{opt} \neq \mathbf{x}''_{opt}$, são soluções (básicas) admissíveis ótimas, P tem uma infinidade de soluções ótimas: $(1-\lambda)\mathbf{x}'_{opt} + \lambda\mathbf{x}''_{opt}$ é solução, para $\lambda \in [0,1]$.
- As soluções básicas admissíveis são vértices do espaço de soluções.

Se $p_1, p_2 \in \mathbb{R}^n$, os pontos $(1 - \lambda)p_1 + \lambda p_2$, com $\lambda \in [0, 1]$, definem o segmento $[p_1p_2]$.

- As soluções de $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathbb{R}^+_0$ constituem um conjunto **convexo poliédrico**. Se \mathbf{x} e \mathbf{x}' são soluções, então $(1-\lambda)\mathbf{x} + \lambda\mathbf{x}'$ é solução, para todo $\lambda \in [0,1]$.
- Um vértice ${\bf x}$ é um ponto extremo do espaço de soluções S (i.e., não pertence ao interior de nenhum segmento de recta nesse espaço): ${\bf x}=(1-\lambda){\bf x}'+\lambda{\bf x}''$, para ${\bf x}'\in S,\ {\bf x}''\in S,\ \lambda\in[0,1]$, sse ${\bf x}={\bf x}'$ ou ${\bf x}={\bf x}''$ (ou seja, sse $\lambda=0$ ou $\lambda=1$).

$$(1-\lambda)x+\lambda x'=x+\lambda(x'-x). \text{ Se } Ax=b \text{ e } Ax'=b \text{ ent\~ao } A(x+\lambda(x'-x))=Ax+\lambda(Ax-Ax')=b+\lambda(b-b)=b.$$

4日 > 4団 > 4 豆 > 4 豆 > 豆 のQで

Seja $\mathbf{A}: m \times n$, com $car(\mathbf{A}) = m$, e suponhamos que se **conhece uma solução básica admissível**. Seja \mathbf{B} a submatriz formada pelas colunas de \mathbf{A} na **base** correspondente e \mathbf{N} a matriz formada pelas restantes colunas.

$$\begin{array}{llll} \text{max} & z & = & c\,x\\ \text{suj.} & \textbf{A}x & = & \textbf{b}\\ & x & \geq & 0 \end{array} \Leftrightarrow \begin{bmatrix} \text{max} & z & = & c_BB^{-1}b + (c_N-c_BB^{-1}N)x_N\\ \text{suj.} & x_B & = & B^{-1}b - (B^{-1}N)x_N\\ & x_B, x_N & \geq & 0 \end{bmatrix}$$

 \bullet Notar que na forma resolvida $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - (\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{\mathbf{N}}$ pelo que

$$z = \mathbf{c}\mathbf{x} \Leftrightarrow z = \mathbf{c}_{\mathsf{B}}\mathbf{x}_{\mathsf{B}} + \mathbf{c}_{\mathsf{N}}\mathbf{x}_{\mathsf{N}} \Leftrightarrow z = \mathbf{c}_{\mathsf{B}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{c}_{\mathsf{N}} - \mathbf{c}_{\mathsf{B}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{\mathsf{N}}$$

• Sejam \mathcal{N} e \mathcal{B} os conjuntos dos índices das colunas de \mathbf{A} em \mathbf{N} e \mathbf{B} . Sem esquecer que $\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}$, é equivalente escrever:

$$\max \quad z \quad = \quad \mathbf{c}_{\mathsf{B}} \mathbf{B}^{-1} \mathbf{b} \quad + \quad \sum_{j \in \mathcal{N}} (c_j - \mathbf{c}_{\mathsf{B}} \mathbf{B}^{-1} A_j) x_j$$
$$\mathbf{x}_{\mathsf{B}} \quad = \quad \mathbf{B}^{-1} \mathbf{b} \qquad - \quad \sum_{j \in \mathcal{N}} x_j (\mathbf{B}^{-1} A_j)$$

• Sejam \mathcal{N} e \mathcal{B} os conjuntos dos índices das colunas de \mathbf{A} em \mathbf{N} e \mathbf{B} . Sem esquecer que $\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}$, é equivalente escrever:

$$\max z = \mathbf{c_B} \mathbf{B^{-1}b} + \sum_{j \in \mathcal{N}} (c_j - \mathbf{c_B} \mathbf{B^{-1}} A_j) x_j$$
$$\mathbf{x_B} = \mathbf{B^{-1}b} - \sum_{j \in \mathcal{N}} x_j (\mathbf{B^{-1}} A_j)$$

• Seja α_j o vetor coluna $(\alpha_{1j}, \cdots, \alpha_{mj})^T$ que representa $\mathbf{B}^{-1}A_j$. Denotando $\mathbf{c_B}\mathbf{B}^{-1}\mathbf{b}$ por $z_\mathbf{B}$ e o indicador $c_j - \mathbf{c_B}\mathbf{B}^{-1}A_j = c_j - \mathbf{c_B}\alpha_j$ por $c_j - z_j$, fica:

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} - \sum_{j \in \mathcal{N}} x_{j} \alpha_{j}$$

• Sejam \mathcal{N} e \mathcal{B} os conjuntos dos índices das colunas de \mathbf{A} em \mathbf{N} e \mathbf{B} . Sem esquecer que $\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}$, é equivalente escrever:

$$\max z = \mathbf{c_B} \mathbf{B}^{-1} \mathbf{b} + \sum_{j \in \mathcal{N}} (c_j - \mathbf{c_B} \mathbf{B}^{-1} A_j) x_j$$
$$\mathbf{x_B} = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in \mathcal{N}} x_j (\mathbf{B}^{-1} A_j)$$

• Seja α_j o vetor coluna $(\alpha_{1j}, \dots, \alpha_{mj})^T$ que representa $\mathbf{B}^{-1}A_j$. Denotando $\mathbf{c_B}\mathbf{B}^{-1}\mathbf{b}$ por $z_\mathbf{B}$ e o indicador $c_j - \mathbf{c_B}\mathbf{B}^{-1}A_j = c_j - \mathbf{c_B}\alpha_j$ por $c_j - z_j$, fica:

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} - \sum_{j \in \mathcal{N}} x_{j} \alpha_{j}$$

53 / 64

A solução básica admissível $\mathbf{x}_{\mathsf{B}} = \mathbf{B}^{-1}\mathbf{b}, \ \mathbf{x}_{\mathsf{N}} = \mathbf{0} \ \mathsf{com} \ z = z_{\mathsf{B}} \ \mathsf{\acute{e}} \ \mathsf{\acute{o}tima?}$

A solução básica admissível
$$\mathbf{x}_{\mathsf{B}} = \mathbf{B}^{-1}\mathbf{b}, \, \mathbf{x}_{\mathsf{N}} = \mathbf{0}$$
 com $z = z_{\mathsf{B}}$ é ótima?

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} - \sum_{j \in \mathcal{N}} x_j \alpha_j$$

A solução básica admissível $\mathbf{x}_{\mathsf{B}} = \mathbf{B}^{-1}\mathbf{b}$, $\mathbf{x}_{\mathsf{N}} = \mathbf{0}$ com $z = z_{\mathsf{B}}$ é ótima?

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in \mathcal{N}} x_j \alpha_j$$

Análise dos indicadores:

• Se $c_j - z_j \leq 0$, para todo $j \in \mathcal{N}$, então z não pode ser melhorado. Uma solução óptima é $(\mathbf{x_B}, \mathbf{x_N}) \equiv (\mathbf{B^{-1}b}, \ \mathbf{0})$ e $z_\mathbf{B}$ é o valor óptimo para z.

A solução básica admissível $\mathbf{x}_{\mathsf{B}} = \mathsf{B}^{-1}\mathbf{b}, \ \mathbf{x}_{\mathsf{N}} = \mathbf{0} \ \mathsf{com} \ z = z_{\mathsf{B}} \ \mathsf{\acute{e}} \ \mathsf{\acute{o}tima}?$

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in \mathcal{N}} x_j \alpha_j$$

Análise dos indicadores:

- Se $c_j z_j \le 0$, para todo $j \in \mathcal{N}$, então z não pode ser melhorado. Uma solução óptima é $(\mathbf{x_B}, \mathbf{x_N}) \equiv (\mathbf{B^{-1}b}, \ \mathbf{0})$ e $z_{\mathbf{B}}$ é o valor óptimo para z.
- Se $c_j z_j > 0$, para algum $j \in \mathcal{N}$, podemos tentar melhorar z, trocando A_j por uma coluna de \mathbf{B} .

A solução básica admissível $\mathbf{x}_{\mathsf{B}} = \mathsf{B}^{-1}\mathbf{b}$, $\mathbf{x}_{\mathsf{N}} = \mathbf{0}$ com $z = z_{\mathsf{B}}$ é ótima?

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in \mathcal{N}} x_j \alpha_j$$

Análise dos indicadores:

- Se $c_j z_j \le 0$, para todo $j \in \mathcal{N}$, então z não pode ser melhorado. Uma solução óptima é $(\mathbf{x_B}, \mathbf{x_N}) \equiv (\mathbf{B^{-1}b}, \ \mathbf{0})$ e $z_{\mathbf{B}}$ é o valor óptimo para z.
- Se $c_j z_j > 0$, para algum $j \in \mathcal{N}$, podemos tentar melhorar z, trocando A_j por uma coluna de **B**. Convenção: entra para a base \mathcal{B} a variável x_j com o indicador mais favorável (LP de maximização, $c_j z_j > 0$ máximo).

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

A solução básica admissível $\mathbf{x}_{\mathsf{B}} = \mathsf{B}^{-1}\mathbf{b}, \ \mathbf{x}_{\mathsf{N}} = \mathbf{0}$ com $z = z_{\mathsf{B}}$ é ótima?

$$\max z = z_{\mathbf{B}} + \sum_{j \in \mathcal{N}} (c_j - z_j) x_j$$
$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in \mathcal{N}} x_j \alpha_j$$

Análise dos indicadores:

- Se $c_j z_j \le 0$, para todo $j \in \mathcal{N}$, então z não pode ser melhorado. Uma solução óptima é $(\mathbf{x_B}, \mathbf{x_N}) \equiv (\mathbf{B^{-1}b}, \ \mathbf{0})$ e $z_{\mathbf{B}}$ é o valor óptimo para z.
- Se $c_j z_j > 0$, para algum $j \in \mathcal{N}$, podemos tentar melhorar z, trocando A_j por uma coluna de **B**. **Convenção:** entra para a base \mathcal{B} a variável x_j com o indicador mais favorável (LP de maximização, $c_j z_j > 0$ máximo). Que k sai de \mathcal{B} para entrar j?

4 D > 4 A > 4 B > 4 B > B 9 9 9

Que k sai de \mathcal{B} para entrar j?

- A_j só pode entrar na base se existir $\alpha_{ij} \neq 0$ para algum i tal que $1 \leq i \leq m$.
- Isso terá que ser verdade senão $A_j = \mathbf{0}$ e x_j não estaria restringida pelas restrições do problema.
- Todas as variáveis x_t , com $t \in \mathcal{N} \setminus \{j\}$, mantêm valor zero. Logo, para preservar a não negatividade da solução, para todas as variáveis x_i na base \mathcal{B} atual, terá de satisfazer

$$x_i = x_i^B - \alpha_{ij} x_j \ge 0,$$

para os novos valores de x_i e x_j , sendo x_i^B o valor de x_i em $\mathbf{x_B}$.

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$ (justificação à frente)

4回 > 4回 > 4 回

Como $x_i = x_i^B - \alpha_{ij} x_j \geq 0$, para os novos valores x_i e x_j , para todo $i \in \mathcal{B}$, então

$$x_j \leq \frac{x_i^B}{\alpha_{ij}}$$
, para todo $i \in \mathcal{B}$, com $\alpha_{ij} > 0$

A coluna A_k que sai da base para entrar A_j pode ser qualquer uma tal que

$$\frac{x_k^B}{\alpha_{kj}} = \min \left\{ \frac{x_i^B}{\alpha_{ij}} \mid \alpha_{ij} > 0 \right\}$$

• O valor de x_k passa a ser zero e o valor de x_j passa de zero para x_k^B/α_{kj} . A_j ocupa o lugar de A_k na base B, sendo $\mathcal{B}' = (\mathcal{B} \setminus \{k\}) \cup \{j\}$.

Como $x_i = x_i^B - \alpha_{ii} x_i \ge 0$, para os novos valores x_i e x_i , para todo $i \in \mathcal{B}$, então

$$x_j \leq \frac{x_i^{\mathcal{B}}}{\alpha_{ij}},$$
 para todo $i \in \mathcal{B}$, com $\alpha_{ij} > 0$

A coluna A_k que sai da base para entrar A_i pode ser qualquer uma tal que

$$\frac{x_k^B}{\alpha_{kj}} = \min \left\{ \frac{x_i^B}{\alpha_{ij}} \mid \alpha_{ij} > 0 \right\}$$

- O valor de x_k passa a ser zero e o valor de x_i passa de zero para x_k^B/α_{ki} . A_j ocupa o lugar de A_k na base B, sendo $B' = (B \setminus \{k\}) \cup \{j\}$.
- Para voltar a colocar o sistema na forma resolvida podemos aplicar eliminação de **Gauss-Jordan** na coluna de x_i com pivot na linha de x_k , isto é α_{ki} .

Para a nova solução básica admissível tem-se:

$$\begin{cases} x_j^{B'} = x_k^B/\alpha_{kj} \\ x_i^{B'} = x_i^B - \alpha_{ij}(x_k^B/\alpha_{kj}), \text{ com } i \in \mathcal{B}' \setminus \{j\} \\ z_{B'} = z_B - (z_j - c_j)(x_k^B/\alpha_{kj}) \end{cases}$$

56 / 64

Note que se $x_k \neq 0$ então $z_{B'} > z_B$ e terá uma solução melhor. Geometricamente, nesse caso, a troca de colunas corresponde a um deslocamento ao longo de uma aresta, para um vértice adjacente ao atual.

Mas, x_k pode ter que entrar para a base com valor zero, ficando $z_{B'}=z_B$.

- Nesse caso, a solução é básica degenerada. Tem mais componentes a zero do que devia, ou seja, mais do que $n car(\mathbf{A})$ componentes nulas.
- A entrada de x_k na base com valor zero implica **não sair do vértice em que estava**, pois o valor da solução é o mesmo. Como alterou a base, pode conseguir sair do vértice numa iteração seguinte, usando uma aresta.
- Mas iterações com $z_{B'}=z_B$ podem criar problemas de terminação (entrada em ciclo). Existem variantes do método Simplex com regras adicionais para evitar ciclos por exemplo, a *regra de Bland* (consultar bibliografia).

A.P.Tomás (LEIC - UP) DA 2021/2022 57 / 64

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$. Porquê?

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$. Porquê?

Para $j \in \mathcal{N}$ fixo, $x_i = x_i^B - \alpha_{ij}x_j$, para todo $i \in \mathcal{B}$. Assim, se $\alpha_{ij} \leq 0$, para todo i, concluimos que:

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$. Porquê?

Para $j \in \mathcal{N}$ fixo, $x_i = x_i^B - \alpha_{ij}x_j$, para todo $i \in \mathcal{B}$. Assim, se $\alpha_{ij} \leq 0$, para todo i, concluimos que:

 O espaço das soluções admissíveis não é limitado. Existem soluções admissíveis com x_i arbitrariamente grande.

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$. Porquê?

Para $j \in \mathcal{N}$ fixo, $x_i = x_i^B - \alpha_{ij}x_j$, para todo $i \in \mathcal{B}$. Assim, se $\alpha_{ij} \leq 0$, para todo i, concluimos que:

- O espaço das soluções admissíveis não é limitado. Existem soluções admissíveis com x_i arbitrariamente grande.
- E, se, para além disso, $c_j z_j > 0$, então podemos aumentar z quanto quisermos. Neste caso, não existirá solução ótima.

Para poder fazer a troca, é necessáro que $\{i \mid \alpha_{ij} > 0\} \neq \emptyset$. Porquê?

Para $j \in \mathcal{N}$ fixo, $x_i = x_i^B - \alpha_{ij}x_j$, para todo $i \in \mathcal{B}$. Assim, se $\alpha_{ij} \leq 0$, para todo i, concluimos que:

- O espaço das soluções admissíveis não é limitado. Existem soluções admissíveis com x_i arbitrariamente grande.
- E, se, para além disso, $c_j z_j > 0$, então podemos aumentar z quanto quisermos. Neste caso, não existirá solução ótima.
- No caso em que $c_j z_j \le 0$, embora x_j possa crescer arbitrariamente no espaço de soluções, pode continuar a ser possível maximizar z.

A.P.Tomás (LEIC - UP)

Espaço de soluções não limitado - o que pode acontecer?

O problema seguinte não tem solução ótima porque z não está limitado superiormente no espaço de soluções.

maximizar
$$z = \frac{89}{17} + \frac{75}{17}x_3 + \frac{11}{17}s_1$$

sujeito a
$$\begin{cases}
x_1 = \frac{37}{17} + \frac{1}{17}x_3 + \frac{4}{17}s_1 \\
x_2 = \frac{32}{17} + \frac{5}{17}x_3 + \frac{3}{17}s_1 \\
s_2 = \frac{80}{17} + \frac{21}{17}x_3 - \frac{1}{17}s_1 \\
x_1, x_2, x_3, s_1, s_2 \ge 0
\end{cases}$$

Para $s_1=0$, a variável x_3 pode tomar qualquer valor em \mathbb{R}^+_0 e, como $z=\frac{89}{17}+\frac{75}{17}x_3$, então z pode tomar qualquer valor maior ou igual a $\frac{89}{17}$.

Notar que se em vez de maximizar z se pretendesse minimizar z, já existiria solução ótima (como vimos anteriormente)

←□ → ←□ → ← = → ← = → へ

Redução à forma normal – o que pode acontecer?

maximizar
$$z = 2x - 5y$$

sujeito a
$$\begin{cases}
4y - 3x \le 8 \\
y - 2x \le -4 \\
3y + 2x \ge 20 \\
4y - x \ge 1 \\
-y + x \le 11 \\
3y + 2x \le 40 \\
x, y \ge 0
\end{cases}$$
maximizar $z = 2x - 5y$
sujeito a
$$\begin{cases}
4y - 3x + s_1 = 8 \\
-y + 2x - s_2 = 4 \\
3y + 2x - s_3 = 20 \\
4y - x - s_4 = 1 \\
-y + x + s_5 = 11 \\
3y + 2x + s_6 = 40 \\
x, y, s_1, s_2, s_3, s_4, s_5, s_6 \ge 0
\end{cases}$$

Recordar: O termo independente **b** na forma normal é não negativo. Se se tiver $b_i \le 0$, é necessário multiplicar a restrição i por -1. No exemplo, $y-2x \le -4$ é transformada em $-y+2x \ge 4$ e só depois em $-y+2x-s_2=4$.

Redução à forma normal – o que pode acontecer?

Recordar: O termo independente **b** na forma normal é não negativo. Se se tiver $b_i \le 0$, é necessário multiplicar a restrição i por -1. No exemplo, $y-2x \le -4$ é transformada em $-y+2x \ge 4$ e só depois em $-y+2x-s_2=4$.

Como calcular uma solução básica admissível para iniciar o Método Simplex?

Não bastaria resolver o sistema relativamente às variáveis de desvio, pois a solução básica correspondente tem $s_2, s_3, s_4 < 0$. O que fazer?

Método das duas fases

Como calcular uma solução básica admissível para iniciar o Método Simplex?

- Introduzir variáveis artificiais para ter uma matriz identidade.
- Fase 1: Minimizar a soma das variáveis artificiais (Método Simplex).
 - Se o valor minímo não for zero, o sistema inicial é inconsistente.
 - Se for zero, a solução básica encontrada, projetada nas variáveis iniciais, é solução admissível do problema inicial. Será usada para otimização da função objetivo inicial na Fase 2.

```
minimizar z' = v_1 + v_2 + v_3

sujeito a
\begin{cases}
4y - 3x + s_1 = 8 \\
-y + 2x - s_2 + v_1 = 4 \\
3y + 2x - s_3 + v_2 = 20 \\
4y - x - s_4 + v_3 = 1 \\
-y + x + s_5 = 11 \\
3y + 2x + s_6 = 40 \\
x, y, s_1, s_2, s_3, s_4, s_5, s_6, v_1, v_2, v_3 \ge 0
\end{cases}
```

Método das duas fases

Como calcular uma solução básica admissível para iniciar o Método Simplex?

- Introduzir variáveis artificiais para ter uma matriz identidade.
- Fase 1: Minimizar a soma das variáveis artificiais (Método Simplex).
 - Se o valor minímo não for zero, o sistema inicial é inconsistente.
 - Se for zero, a solução básica encontrada, projetada nas variáveis iniciais, é solução admissível do problema inicial. Será usada para otimização da função objetivo inicial na Fase 2.

minimizar
$$z' = v_1 + v_2 + v_3$$

sujeito a
$$\begin{cases}
4y - 3x + s_1 = 8 \\
-y + 2x - s_2 + v_1 = 4 \\
3y + 2x - s_3 + v_2 = 20 \\
4y - x - s_4 + v_3 = 1 \\
-y + x + s_5 = 11 \\
3y + 2x + s_6 = 40 \\
x, y, s_1, s_2, s_3, s_4, s_5, s_6, v_1, v_2, v_3 \ge 0
\end{cases}$$

- As variáveis v₁, v₂ e v₃ são artificiais.
 Não têm interpretação no problema inicial. Se alguma for positiva, a restrição correspondente é violada.
- Estas variáveis são inseridas para ter trivialmente uma solução básica admissível para iniciar o Método Simplex (na Fase 1).

Método das duas fases - Fase 1

Fase 1:

$$z' = v_1 + v_2 + v_3 = (4 + y - 2x + s_2) + (20 - 3y - 2x + s_3) + (1 - 4y + x + s_4)$$

minimizar
$$z' = 25 - 6y - 3x + s_2 + s_3 + s_4$$

sujeito a

$$\begin{cases}
s_1 &= 8 - 4y + 3x \\
v_1 &= 4 + y - 2x + s_2 \\
v_2 &= 20 - 3y - 2x + s_3 \\
v_3 &= 1 - 4y + x + s_4 \\
s_5 &= 11 + y - x \\
s_6 &= 40 - 3y - 2x \\
x, y, s_1, s_2, s_3, s_4, s_5, s_6, v_1, v_2, v_3 \ge 0
\end{cases}$$

Na primeira iteração, y tem o indicador mais favorável e entra para a base por troca com v_3 pois, se aumentarmos y o mais possível, v_3 fica 0. Notar que $y \leq \min(8/4, 20/3, 1/4, 40/3) = 1/4$. Se y=1/4 então $v_3=0$.

Após algumas iterações, chega-se à solução básica ótima procurada:

Método das duas fases - Fase 2

Fase 2: Partindo dessa forma resolvida, retiramos v_1 , v_2 e v_3 , substituimos a função objetivo $z = 2x - 5y = 2 \left(7 + \frac{4}{11}s_3 - \frac{3}{11}s_4\right) - 5 \left(2 + \frac{1}{11}s_3 + \frac{2}{11}s_4\right) = 4 + \frac{3}{11}s_3 - \frac{16}{11}s_4$, e prosseguimos.

 s_3 entrou para a base por troca com s_6 pois, para preservar a não negatividade da solução $s_3 \le \min(66/3, 20) = 20$, e se $s_3 = 20$ então $s_6 = 0$. A nova solução é ótima.

Método das duas fases - Fase 2

Fase 2: Partindo dessa forma resolvida, retiramos v_1 , v_2 e v_3 , substituimos a função objetivo $z = 2x - 5y = 2\left(7 + \frac{4}{11}s_3 - \frac{3}{11}s_4\right) - 5\left(2 + \frac{1}{11}s_3 + \frac{2}{11}s_4\right) = 4 + \frac{3}{11}s_4$, e prosseguimos.

$$z = 4 + \frac{3}{11}s_3 - \frac{16}{11}s_4$$

$$s_1 = 21 + \frac{8}{11}s_3 - \frac{17}{11}s_4$$

$$x = 7 + \frac{4}{11}s_3 - \frac{3}{11}s_4$$

$$s_2 = 8 + \frac{7}{11}s_3 - \frac{8}{11}s_4$$

$$y = 2 + \frac{1}{11}s_3 + \frac{2}{11}s_4$$

$$s_5 = 6 - \frac{3}{11}s_3 + \frac{5}{11}s_4$$

$$s_6 = 20 - s_3$$

$$max$$

$$z = \frac{104}{11} - \frac{3}{11}s_6 - \frac{16}{11}s_4$$

$$x = \frac{157}{11} - \frac{4}{11}s_6 - \frac{3}{11}s_4$$

$$y = \frac{42}{11} - \frac{1}{11}s_6 - \frac{2}{11}s_4$$

$$s_5 = \frac{6}{11} + \frac{3}{11}s_6 + \frac{5}{11}s_4$$

$$s_6 = 20 - s_6$$

 s_3 entrou para a base por troca com s_6 pois, para preservar a não negatividade da solução $s_3 \le \min(66/3, 20) = 20$, e se $s_3 = 20$ então $s_6 = 0$. A nova solução é ótima. Conclusão: o problema inicial tem solução ótima única, x = 157/11 e y = 42/11.

max

Variáveis de Decisão Negativas ou com Domínio $\mathbb R$

- Na prática, pode interessar ter variáveis com domínio $\mathbb R$ (que traduzam "lucros ou perdas", "crescimento ou redução", etc).
- Para reformular e reduzir à forma normal (ou padrão), se $x_j \in \mathbb{R}$ (em vez de $x_j \in \mathbb{R}_0^+$), para algum j, basta substituir cada ocorrência de x_j por $(x_j' x_j'')$, sendo $x_j', x_j'' \in \mathbb{R}_0^+$ novas variáveis. Se for $x_j \in \mathbb{R}_0^-$, basta substituir por $-x_j''$.

Exemplo

$$\begin{array}{ll} \text{maximizar } z = 2x - 5y \\ \text{sujeito a} \\ \left\{ \begin{array}{ll} 4y - 3x & \leq & 8 \\ y - 2x & \leq & -4 \\ x \in \mathbb{R} \\ y \in \mathbb{R}_0^+ \end{array} \right. \Leftrightarrow$$

maximizar
$$z = 2(x' - x'') - 5y$$

sujeito a
$$\begin{cases} 4y - 3(x' - x'') + s_1 &= 8\\ -y + 2(x' - x'') - s_2 &= 4\\ x', x'', y, s_1, s_2 &\in \mathbb{R}_0^+ \end{cases}$$
e recordar que $x = x' - x''$

Propriedade: As soluções básicas não têm simultaneamente $x'_j > 0$ e $x''_j > 0$. As colunas de x_j e x'_j na matriz são dependentes. Se uma está na base, a outra está fora.

10/10/12/12/2

64 / 64