<u> 2 בדידה 2 – תרגיל</u>

(1)א

הפרכה -

נראה קבוצה שמוכלת ממש בקבוצה שנייה אך בעלת אותה עוצמה

$$B = \{n \mid n \in \mathbb{N}\} = \mathbb{N} \mid A = \{2n \mid n \in \mathbb{N}\} = 2\mathbb{N}$$

 $|\mathbb{N}ig| = 2\mathbb{N}$ אך העוצמה שלהן שווה |Aig| = |B| - הוכחנו בתרגול

<mark>הפרכה</mark>

ניקח בתור דוגמה את הקבוצה \mathbb{N} ידוע לנו כי $\mathfrak{S}_0 = |\mathbb{N}| > 1$ אך ידוע לנו כי \mathbb{N} ידוע לנו כי

$$[N \times N] \times [N \times N] \times [N$$

(ג

<mark>הוכחה</mark>

 $|A|\!=\!|B|$ אזי $|P(A)|\!=\!|P(B)|$ ולכן רק נותר לנו להראות כי $|A|\!=\!|B|$ אזי אוכחנו בתרגול כי אם $|A|\!=\!|B|$ אזי אזי וולכן איחוד שתיהן יהיו חיבור העוצמה של כל אחת בתון כי $|A\cap B|\!=\!|A\cap B|$ בנוסף אנו יודעים כי מספר האיברים בקבוצת החזקה של קבוצה מהקבוצות $|A\cup B|\!=\!|A|+|B|$

 $|P(A \cup B)| = 2^{|A| + |B|}$ היא 2 בחזקת מספר איברי הקבוצה ולכן

$$\mid P(A) \times P(B) \mid = \lfloor P(A) \rfloor^* \lfloor P(B) \rfloor = 2^{\mid A \mid + \mid B \mid}$$
 ובנוסף

$$\mid Pig(Aig) imes Pig(Big) \mid = \mid Pig(A \cup Big) \mid = 2^{\mid A\mid + \mid B\mid}$$
 ולכן

(2

 $\mid A_x\mid=\mid \mathbb{Z}\mid=leph_0$ ניצור פונקציה $f:A_x o\mathbb{Z}, f\left(x
ight)=\mid \underline{x}\mid$ ניצור פונקציה $f:A_x o\mathbb{Z}, f\left(x
ight)$

- חח"ע

a=b יהיו $f\left(a\right)=f\left(b\right)$ כך ש $a,b\in\mathbb{R}$ ונוכיח כי

נשים לב כי הפונקציה fיכולה לכל היותר להקטין את המספר בקצת פחות מ1 עד לערך השלם הנמור.

$$f(a) \le b, a \le f(a) + 1$$
 ולכן

מהגדרת נובע כי x.b לכן ל $x-a \in \mathbb{Z}, |x-b| \in \mathbb{Z}$ יש אותו חלק עשרוני וגם ל A_x יש אותו חלק עשרוני. מהגדרת a,b יש אותו חלק עשרוני.

- מכיוון ששניהם בתוך טווח של 1+ ובנוסף בעלי אותו חלק עשרוני הם חייבים להיות אותו המספר a=b

- על

 $f\left(y
ight) = z$ נוכל לקחת מספר כך ש $z \in \mathbb{R} - A_{x}$ לכל $z \in \mathbb{Z}$ נוכל לקחת

ניקח את x ובכך מצאנו z יהיה y ער יהיה y ובכך מצאנו z ובכך מצאנו z יהיה y יהיה y = z + x

z מקור עבור כל

(3

 $|Z[i]| = |\mathbb{Z} \times \mathbb{Z}|$ ונראה כי הפונקציה היא חח"ע וגם על ולכן $f: |\mathbb{Z} \times \mathbb{Z}| \mapsto Z[i]$ ניצור פונקציה $f: |\mathbb{Z} \times \mathbb{Z}| \mapsto Z[i]$

חח"ע

 $(a_1,b_1)=(a_2,b_2)$ אזי $f(a_1,b_1)=f(a_2,b_2)$ נראה כי אם $a_1,b_1,a_2,b_2\in\mathbb{Z}$ יהיו

i נסתכל על המקדם של המספר החופשי ועל המקדם של המספר עבור נסתכל על המקדם של המספר עבור $f\left(a_1,b_1
ight)=a_1+b_1i$

 $a_1=a_2,b_1=b_2$ מכיוון ש $f\left(a_1,b_1
ight)=f\left(a_2,b_2
ight)$ אזי המקדמים שווים ולכן $f\left(a_1,b_1
ight)=f\left(a_2,b_2
ight)$

<u>על</u>

נראה כי עבור $\mathbb{Z} imes \mathbb{Z}$ - פשוט על פי הגדרה עבור $a,b \in Z[i]$ נראה כי עבור $a,b \in Z[i]$. $f\left(a,b\right)$

|Z[I]|לכן $|Z \times Z| = \aleph_0 * \aleph_0 = \aleph_0$ אנו יודעים כי $|Z[i]| = |Z \times Z|$ ולכן

(4

על וחח"ע
$$f:[0,\infty) o ig(0,\inftyig)$$
על מרכיב פונקציה מ $f:[0,\infty) |=|ig(0,\inftyig)|$ על על וחח"ע

$$f(x) = \begin{cases} x+1 : x \in \mathbb{N} \\ x : x \notin \mathbb{N} \end{cases}$$
 כך ש

חח"ע

$$f\left(x\right)=f\left(y\right)$$
 א $=y$ ניקח $x,y\in\left[1,\infty\right)$ ונראה כי אם $x,y\in\left[1,\infty\right)$

-
$$f(x)$$
∈ \mathbb{N} נפצל למקרים אם

$$x+1=y+1 \rightarrow x=y$$
 אזי

$$-f(x) \notin \mathbb{N}$$
 אם

$$x = y$$
 אזי מהגדרה

על

ניקח
$$y \in (0,\infty)$$
 שרירותי ונראה כי קיים לו מקור

-
$$y \in \mathbb{N}$$
 נפצל למקרים אם

$$y-1$$
 ולכן המקור יהיה $f(y-1)=y$ אזי לפי הגדרה

$$y$$
 אזי לפי הגדרה $f(y) = y$ ולכן המקור היה

$$|[0,\infty)| = igl(0,\inftyigr)$$
לכן אנו יודעים כי

 $|(0,1)| = \aleph_1$ בנוסף למדנו בתרגול כי כל קטע פתוח על ציר הממשיים העוצמה שלו בתרגול כי כל קטע

לכן
$$|(0,1)| = |(0,\infty)| = |(0,\infty)|$$

(א)

xקטע מכיל 2 נקודות (נקודה מכילה 2 ערכים ממשיים) מכיוון שנתון בנוסף כי הקטע מאונך לציר ה אנו יודעים כי ערך הx של 2 הנקודות זהה ולכן העוצמה שלנו תהיה -

בחירת
$$y$$
 לכל אחת מהנקודות בחירת x * y * y = $\| \mathbb{R} | \times | \mathbb{R} | \times | \mathbb{R} \|$

$$\|\mathbb{R}| \times |\mathbb{R}\| = |\mathbb{R}|$$
 הוכחנו בתרגול כי $\|\mathbb{R}| \times |\mathbb{R}| \times |\mathbb{R}| = |\mathbb{R}| \times |\mathbb{R}| = |\mathbb{R}| \times |\mathbb{R}|$

ב)

ננסה קודם להבין את הקבוצה, ניתן לראות כי כל סדרה ששייכת לקבוצה אם מופיע 0 לאחריו יופיעו רק אפסים,

S נגדיר את קבוצת הסדרות ב

$$f\left(n_1,n_2
ight)=$$
 נגדיר את הפונקציה כך - נגדיר את הפונקציה ל $f:\mathbb{N}\times\mathbb{N}\to S$

 $n_{\!\scriptscriptstyle 1}$ ניתן לראות כי הפונקציה הפיכה מכיוון שנספור את כמות ה1 וזה יהיה ה $n_{\!\scriptscriptstyle 2}$ מכיוון שהפונקציה הפיכה נספור את כמות ה0 וזה יהיה ה $n_{\!\scriptscriptstyle 2}$ מכיוון שהפונקציה הפיכה

$$|\mathbb{N} \times \mathbb{N}| = |S| = \aleph_0$$