Digital Analog Design

Mark A. Horowitz, Metha Jeeradit, Frances Lau, Sabrina Liao, ByongChan Lim, James Mao

Electrical Engineering, Stanford University

Chip Design Is Growing Up

- We have come a long way
 - From op amps and SSI components
- To today's mega SOC

And Analog Design Is Getting Harder

- Requirements are growing
 - More bits, higher speeds, lower power
- Transistors are getting less precise
 - Ft might be better
 - Matching is worse
 - Vdd range smaller

Analog a component in a larger system

Our Current Solutions ...

- Digitally assisted analog
 - ADC calibration, PA and DAC pre-distortion, mostly digital PLLs, ...

Embracing Change: System Level Analog

- What does the system really require
 - Is there a way to change the system?
- What is the minimal requirements
 - For measuring signals, might only need resolution
 - Accuracy, linearity, etc can be corrected
 - Digital logic is much easier to design
- Boris will talk more about this, and general program

Great! Are We Done?

- Is system optimized analog it?
 - Depends on how hard it is to design.
 - System optimized analog will still have some analog

Let's do a brief trip through memory lane ...

My Misspent Early Teens 70-74

- Got my first IC around 71
 - □ Uncle was an EE
 - □ Signetics 8T80? (pre 7400)
 - □ Thought it was very cool, but never used it

The MIT Years 74-78

- Built lots of stuff at home
 - □ Calculator 3 pMOS chips, incandescent 7-seg
 - □ Digital clock 1 pMOS chip, LED 7-seg

Design Tools

Chips: 7400 TTL, and pMOS LSI

Fabrication Tools

1978 – Hello Silicon Valley

Hot new technologies

- 3μ nMOS
- Depletion loads and 5V operation, TTL I/O

Worked at Signetics

- Worked on bipolar designs
 - □ 1 kbit ECL CAM, ISL gate array

- Design Flow
 - We did have circuit simulation

Backend (Layout) Flow

- Handed schematic to layout designer
 - She produced stick diagrams to check

Layout Flow Cont'd

- She drew it with color pencils on mylar
 - A central group digitized it,
 - Plotted results on large flatbed pen plotters

Manually checked DRC and ERC

Computer DRC only before tape-out

We Have Come A Long Way,

- Digital chip design today is very different
 - Verilog input, with external IP
 - Floorplan information
 - Tools generate the chip
 - But you need to be expert in using the tools
- Design moved through many phases
 - Spice, custom layout
 - Logic, Std cells manual placement/routing
 - Synthesis, automatic placement/routing
 - □ SOC design macro block reuse

Well, Maybe Not (for Analog)

- Now draw schematics on a computer
- And layout is done directly on computer too
- But the process is still manual

Analog Design

- Analog design tool scaling
 - SPICE and custom layout
 - Better SPICE and custom layout
 - Matlab, Spectre, and custom layout w/ Pcells
 - Not much change
- Basic Problem
 - Little/no encapsulation of functional blocks
 - No abstraction / ERC pairs
 - Leads to large amount of analog redesign

Management Problem

- Must port a mixed signal block to new fab
 - Old design is great
 - But former design is not working on the port
- New designer looks at block
 - And doesn't like the way it was designed
 - It is not the way that she would do it
- There is little validation documentation around
 - So you trust the new designer
 - You need to redesign the block

My Overall Goal: Digital Analog Design

- Don't just use more digital gates
- Make analog design more like digital
 - Better encapsulation of function
 - Methods for system validation
 - Automatic electrical rules checking
 - Better reuse of components
- Reduce time to port design

Making an Analog Standard Cell

- Capturing the schematic is not enough
 - Would you trust someone else's cell
- Trust digital cells
 - Since there is an electrical rule / functional checks
 - Work for every cell
- Analog designs don't have universal ERC checks
 - So need to create them for each cell
- Capture the test routines for each cell
 - Both the functional tests, and the constraints

Tests Contain Three Parts

Types of Checks

Test bench:

- Contains stimuli generation and results analysis
- Create for each major piece of the design
- ☐ Gets run when you are "checking out" that module

Assertions

- Monitor operation of that module
- Prevent the circuits from operating outside the constraints
- Run every time the cell is run

To Reuse Analog Cells

- Need to record/archive
 - □ All the test-benches, and assertions
- These will be specific to an circuit type
 - No universal ERC for analog blocks
- We are starting to create an archive for these checks
 - Called Circuitbook
- Circuitbook
 - Object oriented for both circuits and tests
 - □ Schematic, tests, assertions, functional model

Fixing the Gap: Leveraging Abstraction

- Digital tools leverage "abstraction" effectively
 - Digital abstraction: Boolean (value), synchronous (time)
 - Leverage abstractions to:
 - Check circuits, measure coverage, check equivalence, etc.
 - Designers don't just rely on fast circuit simulators
- Analog tools do not
 - No notion of analog abstraction
 - Focus mainly on fast simulation with accurate device models
 - Designer think faster SPICE is the answer
 - But it will never be fast enough
 - Causes problems with big D little A designs
 - How to do system level validation

The Key Problem:

Generating an analog circuit abstraction

Analog vs. Digital

- Continuous vs. discrete?
- A and D are different in their world views

What do you see in this picture?

Analog Abstraction: Linear System

- Design intent is to use the linear region around the OP
- The ideal circuit has linear I/O relationship $\Delta Y = \alpha \cdot \Delta A + \beta \cdot \Delta B$
 - In general, it's a linear dynamical system
- Our conjecture: all analog circuits have linear intent!
 - □ Then, the proper abstraction for analog is a linear system

Dealing with Non-Linear, Linear Circuits

- No real circuit is linear
 - But that does not mean it doesn't have a linear intent
 - Can we describe the circuit by its approximate linear function
 - And its deviation from that function (if needed)
 - Weakly non-linear function
- Two major types of non-linearity
 - □ Linear in a different domain than V,i, and t
 - Controllable systems
 - Can control gain / frequency of linear system
- Both of these are easily handled in this framework

Duty Cycle Adjuster

Variable Domain Translation

Duty-Cycle Adjuster

Design Intent is Linear in Duty-cycle domain!

 $Duty(CLKo) = \alpha \cdot Duty(CLKi) + \beta \cdot V(Vctrl)$

Result Surface

- Hyper-plane in duty-cycle domain
 - Linearity holds
 - Gain matrix comparison shows the equivalence

Controlled Linear System

- Many systems have control inputs
 - Inputs that change the system response
- We reason about these systems
 - As two coupled systems
 - So we model them that way

The Power of the Linear Abstraction

 As Boolean abstraction did for digital, the linear abstraction greatly simplifies analog verification

The key is that superposition holds

$$y = \sum_{i} \alpha_{i} \cdot x_{i} \qquad \text{(superposition)}$$

- This means generating input vectors is easy
 - Output is the sum of the change from each input
 - The output surface is smooth
 - Opposite of a digital system

Superposition in Time Works As Well

- If the intent is linear,
 - AC analysis is complete small signal = large signal
- Thus transfer function is complete description

- TF is formal spec
 - Include sensitivities

Extending AC Analysis to PLL/DLLs

- A PLL/DLL is highly nonlinear from a voltage perspective
 - □ Large-signal clock in, large-signal clock out

Extending AC Analysis to PLL/DLLs

- A PLL/DLL is highly nonlinear from a voltage perspective
 - Large-signal clock in, large-signal clock out
- But it is linear in its phase/delay variables
 - Can we do AC analysis in non-voltage/current variables?

Variable Domain Transformation

- Use translator modules
 - For SPICE write them in Verilog-A
 - Verilog-D model just inputs/outputs phase
 - If duty-cycle is important too, need 2 phases

^{*} J. Kim, et al., "Variable Domain Transformation for Linear PAC Analysis of Mixed-Signal Systems," ICCAD'07.

PLL Transfer Function Example

- AC analysis is always more efficient than transient sims
 - Option 1: explicit sinusoidal excitation at various frequencies
 - Option 2: system identification from step response

Extending AC to Stochastic Systems

- AC should be the best way to verify their linear intent
 - But they have neither DC nor periodic steady states
- They do have steady states in a <u>stochastic</u> sense!
 - Steady state is an ensemble of waveforms with probabilities
 - e.g. PDF (jitter histogram), PSD (noise spectrum), etc.
- Then, the required steps are:
 - □ First, find the stochastic steady-state (SSS) of these systems
 - Second, linearize the system at SSS to measure the AC TF

^{*} J. Kim, et al., "Stochastic Steady-State and AC Analyses of Mixed-Signal Systems," DAC'09.

Stochastic SS and AC Analysis

Model circuit/system as a Markov chain

$$\mathbf{p}[n+1] = \mathbf{T} \cdot \mathbf{p}[n]$$

where \mathbf{p} is a probability vector and \mathbf{T} is a transition probability matrix

• Once the steady-state solution π is found, the system can be linearized around its stochastic steady-state:

$$\delta \pi[n+1] = \mathbf{T} \cdot \delta \pi[n] + \left(\partial \mathbf{T} / \partial u \cdot \mathbf{\pi}\right) u$$

^{*} J. Kim, et al., "Stochastic Steady-State and AC Analyses of Mixed-Signal Systems," DAC'09.

Example: Second-Order Binary PLL

- Jitter transfer functions with various input jitter level (σ_{in})
 - Provides accurate results with 5~9x speed up vs. TRAN
 - Our algorithms keep the # of states in the Markov chain low

Linear Analysis – Summary

- It is a strong way to reason about systems
 - Provides powerful tools to use to understand operation
- And yes we know that no circuits a really linear
 - But most of the system behavior uses linear models
 - Linear models is how most designers think about design
- But digital circuits are not really digital either
 - There are checks to make sure it operations in digital mode
 - And you need to have checks for linear operation as well

The Validation Problem:

Really big D and very little a

Modern Analog Design

- Even in analog chips
 - Most of the transistors are in digital logic
- Still
 - □ Big D, little a

Single-Chip Multiband WCDMA/HSDPA/HSUPA/EGPRS Transceiver with Diversity Receiver and 3G DigRF Interface Without SAW Filters in Transmitter / 3G Receiver Paths, ISSCC 2009

The Model Problem

Which really matters

A SAW-Less Multiband WEDGE Receiver, ISSCC 2009

The Model Problem, cont'd

Which really matters here?

Implementation

Model

module gray(clk, reset,out);

input clk, reset;
output [3:0] out;

always @(posedge clk)

wire clk, reset;

reg [3:0] out;

```
begin
     if(reset == 1) out = 4'b0000;
     else begin
     case(out)
           4'b0000: out = 4'b0001;
           4'b0001: out = 4'b0011;
           4'b0010: out = 4'b0110;
           4'b0011: out = 4'b0010;
           4'b0100: out = 4'b1100;
           4'b0101: out = 4'b0100;
           4'b0110: out = 4'b0111;
           4'b0111: out = 4'b0101;
           4'b1000: out = 4'b0000;
           4'b1001: out = 4'b1000;
           4'b1010: out = 4'b1011;
           4'b1011: out = 4'b1001;
           4'b1100: out = 4'b1101;
           4'b1101: out = 4'b1111;
           4'b1110: out = 4'b1010;
           4'b1111: out = 4'b1110;
     endcase
     end
end
endmodule
```

The Problem:

- Digital designers control validation
 - They believe their "model" of the chip
- But for analog designers
 - That model is an approximation
 - No one would be so stupid to believe a model
 - They validated the circuit
- Leads to errors in mixed signal design
 - Bugs slip when digital designers trust analog models
 - Many bugs are trivial:
 - Mislabeled pins, inverted polarity, wrong bus ordering/encoding, missing connections, etc.
 - Even worse, bugs are repeated

The Solution – Model First Design

- The validation engineers will win
 - So the model really does matter
- Need to change mixed signal design
 - But they really want to have a high-level model too
 - Need to estimate overall system performance
 - Often done in matlab/simulink
 - Big change
 - The model becomes the spec
 - Circuit needs to match the model
- Only way to ensure two descriptions match:
 - Have model / circuit regressions checks

Analog Functional Specification

- For a linear system
 - Matrix of transfer functions, from each input to each output
- For a non-linear, linear system
 - Set of domain translators, and transfer matrix and/or
 - Two sets of transfer matrices
 - One from control inputs to control parameters
 - The other is a matrix which is a function of control parameters
- Use this framework for to validate functional model
 - Ultimately we might be able to generate the model directly

Validating Analog Functional Models

- Create an equivalence checker
 - Compares functional model with circuit implementation
 - Similar to Boolean equivalence checkers for digital std cells
 - □ We are going to use the linear model abstraction
- Functional / circuit comparison
 - Create a "spanning" set of test vectors
 - Oversample to ensure linear model is valid
 - Use set of domain translators
 - To convert to "linear" projection, and relate outputs
 - Run vectors through both simulators
 - Compare transfer matrices that are generated
 - Match if matrices are close enough

Example

Generating Vectors: Using Port Types

- Analog I/O port
 - I/O of the intended linear system
 - □ Similar to I/O along the data path in digital systems
- Analog control port
 - Analog control input adjusts the system's properties
 - Gain, bandwidth, offset, etc.
 - □ The controlled properties depend on the designer's intent

Analog I/O & Control Port: Example

Linear System Inputs

Quantized Analog Port

- It adjusts the analog quantity in a quantized step
 - Most digital ports in digitally-assisted analog circuits
- Linearity holds
 - Test each bit independently
 - □ It's tested independently w/ other analog inputs

< The response, current vs. digital code>

True Digital Port/ Function Port

- True Digital Port
 - It configures different linear systems
 - For M true digital ports, 2^M linear systems
 - It needs to check (quantized) analog ports of each linear system
- Function Port
 - It enables the operation of the circuit
 - It bears no information for the system
 - It is essentially part of the circuit
 - Not really an I/O to the circuit
 - Example:
 - Sequencing clocks in switched-capacitor circuits

{calib_en, /pwrdn} creates 2² linear systems

: Linear system's analog ports

Checking Procedure

- Generate circuits to check
 - True digital inputs cause the linear circuit to change, and each needs to be checked
- Generate input stimulus
 - Using domain converter if needed
- Check to ensure circuit is linear
 - If not complain to user
- Check equivalence
 - Comparing gain matrices

Size of Analog Blocks

- It will be easier to validate smaller blocks
 - Less inputs/outputs
 - Less true digital inputs
- Digital functional models are unidirectional
 - Can't easily model tightly coupled systems
- Tear circuit into the smallest unidirectional blocks
 - Need to account for output load in model
 - Easiest method is to extract transfer matrix for each instance
 - Extract when simulated in proper environment

Analog Fault Detection/Coverage

- If a circuit is defined by transfer matrix
 - One can find all faults by measuring that matrix
- Measuring that matrix is not hard
 - Since the number of required inputs is small
 - Even when the matrix is a function of control inputs
- Problem is determining what is a fault
 - Since no two matrices will ever be exactly the same
 - Need to set a tolerance
 - Is it absolute error? Relative error?
 - Unlike digital, generating the stimulus is the easy part.

Conclusions

- Analog circuits are not linear but
 - A linear model is a great abstraction for their operation
- Extensions allow most circuits to be modeled this way
 - Domain transformation
 - Controlled linear system
- This abstraction makes it possible to:
 - Formally define a functional model
 - Formally define fault coverage
- There is no excuse for not using this approach