

σ -ÁLGEBRAS AND FRIENDS

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 10) 15.FEBRERO.2023

Estructuras Fundamentales

Motivados por la medida de Lebesgue en \mathbb{R}^n , queremos desarrollar la teoría necesaria para construir otras medidas.

Para ello, antes debemos desarrollar las estructuras y la teoría necesaria que nos permita hacer esto de forma sistemática.

Definición

Sea X un conjunto no vacío. Una σ -álgebra A en X es una colección de subconjuntos de X que satisface:

- i) $X \in A$.
- ii) $A \in A \implies A^c \in A$,
- iii) $\{A_k\}_{k\geq 1}\subseteq \mathcal{A} \implies \bigcup_k A_k \in \mathcal{A}.$

A los elementos de la σ -álgebra $\mathcal A$ les llamamos **conjuntos** $\mathcal A$ -**mesurables**. La estructura $(X,\mathcal A)$ suele llamarse un **espacio mesurable**.

Estructuras Fundamentales

Proposición

Si A es una σ -álgebra en X, entonces

- i) $\varnothing \in \mathcal{A}$.
- ii) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$.
- iii) $\{A_k\}_{k\geq 1}\subseteq \mathcal{A} \implies \bigcap_k A_k\in \mathcal{A}.$
- iv) $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$.
- $\mathsf{v)} \; \mathsf{A}, \mathsf{B} \in \mathcal{A} \implies \mathsf{A} \mathsf{B} \in \mathcal{A}.$

Prueba: Las propiedades son inmediatas a partir de las condiciones (i)-(iii) de una σ -álgebra. (Verificar!). \square

Ejemplos

Ejemplo 1: El conjunto potencia $\mathcal{P}(X) = 2^X$ es una σ -álgebra en X (es la σ -álgebra máxima).

Ejemplo 2: El conjunto $\{\emptyset, X\}$ es una σ -álgebra en X (esta es la σ -álgebra mínima).

Ejemplo 3a: Sea X conjunto no vacío, y sea $A \subseteq X$, con $\varnothing \subsetneq A \subsetneq X$. Entonces

- $A = \{\emptyset, A, A^c, X\}$ es una σ -álgebra en X.
- $\mathcal{B} = \{\varnothing, A, X\}$ no es una σ -álgebra.

Ejemplo 3b: Sea X conjunto no vacío, y sea $A, B \subseteq X$, con $\varnothing \subsetneq A \subsetneq X$. ¿Cómo debería verse una σ -álgebra que contiene tanto a A y a B?

• $\mathcal{A} = \{\varnothing, A, B, A \cap B, A \cap B^c, A^c \cap B, A^c \cap B^c, X, A^c, B^c, A^c \cup B^c, A^c \cup B, A \cup B^c, A \cup B\}.$

Ejemplo 3c: ¿Y si debe contener a $A, B, C \subseteq X$, subconjuntos distintos?

Ejemplos

Ejemplo 4: En el caso general, si \mathcal{A} debe contener a k conjuntos $A_k \subseteq X$, (llamados **átomos**), se puede mostrar que \mathcal{A} es una σ -álgebra finita, y que su cardinalidad no excede a

$$|\mathcal{A}| \leq 2^{2^k}$$
.

(de hecho, A es similar a un álgebra booleana con k átomos).

Ejemplo 5: Sea X un conjunto no vacío. Entonces

$$A = \{A \subseteq X : A \text{ es enumerable o } A^c \text{ es enumerable}\}.$$

es una σ -álgebra.

Prueba: (i) $X \in \mathcal{A}$, ya que $X^c = \emptyset$ es enumerable. (ii)

$$X \in \mathcal{A} \implies A$$
 es enumerable o A^c es enumerable $\implies (A^c)^c$ es enumerable o A^c es enumerable $\implies A^c \in \mathcal{A}$

Ejemplos

- (iii) Tenemos dos casos:
- (a) Si todos los A_k son enumerables, entonces la unión $\bigcup_k A_k$ es un conjunto enumerable, ya que es una unión enumerable de conjuntos enumerables. En ese caso, $\bigcup_k A_k \in \mathcal{A}$.
- (b) Si para algún índice $j \geq 1$, A_j es no enumerable, entonces A_j^c debe ser enumerable. En particular, la intersección $\bigcap_k A_k^c \subseteq A_j^c$, y portanto debe ser un conjunto enumerable. Como $(\bigcup_k A_k)^c = \bigcap_k A_k^c$ es enumerable, entonces $\bigcup_k A_k \in \mathcal{A}$.

Esto muestra que ${\mathcal A}$ es una σ -álgebra de X. $_{\square}$

Construcción de nuevas σ -álgebras

Hay varios mecanismos que permiten construir nuevas σ -álgebras a partir de otras.

Traza: Sea $E \subseteq X$, y sea \mathcal{A} una σ -álgebra en X. La colección

$$\mathcal{A}_{\mathcal{E}} = \mathcal{A} \cap \mathcal{E} = \{ \mathcal{A} \cap \mathcal{E} : \mathcal{A} \in \mathcal{A} \},$$

es una σ -álgebra en $\it E$, llamada la **traza** de $\it A$ en $\it E$.

Prueba: Ejercicio!

Pullback: Sean X, \widetilde{X} conjuntos no vacíos, sea \mathcal{A} una σ -álgebra en \widetilde{X} , y sea $f: X \to \widetilde{X}$ una función cualquiera. La colección

$$f^{-1}(A) = \{f^{-1}(A) : A \in A\},$$

es una σ -álgebra en X. $f^{-1}(A)$ se llama el **pullback** de A por f.

Prueba: Ejercicio!

Construcción de nuevas σ -álgebras

Pushforward: Sean X,\widetilde{X} conjuntos no vacíos, sea $\mathcal A$ una σ -álgebra en X, y sea $f:X\to\widetilde{X}$ una función cualquiera. La colección

$$f^{\sharp}(\mathcal{A}) = \{B \in \widetilde{X} : f^{-1}(B) \in \mathcal{A}\},$$

es una σ -álgebra en \widetilde{X} . $f^{\sharp}(A)$ se llama el **pushforward** de A por f.

Prueba: Ejercicio!

Nota: En lo anterior, es interesante observar que si definimos la estructura

$$f(A) = \{f(A) \in \widetilde{X} : A \in A\},\$$

esta colección no siempre define una σ -álgebra en \widetilde{X} .

Construcción de nuevas σ -álgebras

Intersecciones:

Teorema

La intersección arbitraria $\bigcap_{\ell\in\Lambda}\mathcal{F}_\ell$ de σ -álgebras \mathcal{F}_ℓ en X, es una σ -álgebra en X.

Prueba:

- i) $X \in \mathcal{F}_{\ell}$, para todo $\ell \in \Lambda$. Luego, $X \in \bigcap_{\ell} \mathcal{F}_{\ell}$.
- ii) Sea $A \in \bigcap_{\ell} \mathcal{F}_{\ell}$. Entonces $A \in \mathcal{F}_{\ell}$, para todo $\ell \in \Lambda$. Luego, como cada \mathcal{F}_{ℓ} es σ -álgebra, tenemos que $A^c \in \mathcal{F}_{\ell}$, para todo $\ell \in \Lambda$. Portanto, $A^c \in \bigcap_{\ell} \mathcal{F}_{\ell}$.
- iii) Sea $\{A_i\}_{i=1}^{\infty}$, una colección enumerable de conjuntos en $\bigcap_{\ell} \mathcal{F}_{\ell}$. De nuevo, $\{A_i\}_{i=1}^{\infty} \subseteq \in \mathcal{F}_{\ell}$, para todo $\ell \in \Lambda$. Como cada \mathcal{F}_{ℓ} es σ -álgebra, tenemos que $\bigcup_i A_i \in \mathcal{F}_{\ell}$, para todo $\ell \in \Lambda$. Portanto, $\bigcup_i A_i \in \bigcap_{\ell} \mathcal{F}_{\ell}$. \square

Teorema

Sea X conjunto no vacío, y sea $\mathcal S$ cualquier colección de subconjuntos de X. Existe una σ -álgebra $\mathcal A$ en X tal que

- a) $S \subseteq A$,
- b) si \mathcal{G} es otra σ -álgebra en X tal que $\mathcal{S} \subseteq \mathcal{G}$, entonces $\mathcal{A} \subseteq \mathcal{G}$.

Prueba: Consideramos la familia de todas las σ -álgebras de X que contienen a S:

$$\Phi = \{ \mathcal{F} : \mathcal{F} \text{ es } \sigma\text{-\'algebra de } X, \text{ y } \mathcal{S} \subseteq \mathcal{F} \}.$$

Ya vimos que $\Phi \neq \emptyset$. Definimos $\mathcal{A} = \sigma(\mathcal{S}) = \bigcap \Phi = \bigcap_{\mathcal{F} \in \Phi} \mathcal{F}$. Observe que $\sigma(\mathcal{S})$ es una σ -álgebra en X, por ser intersección de σ -álgebras, y además $\mathcal{S} \subseteq \mathcal{A}$.

Si $\mathcal G$ es alguna σ -álgebra en X con $\mathcal S\subseteq\mathcal G$, entonces $\mathcal G$ es uno de los elementos en Φ , de modo que $\sigma(\mathcal S)=\bigcap\Phi\subseteq\mathcal G$. \square

Proposición

Sea X conjunto no vacío, y S, T colecciones de subconjuntos de X. La σ -álgebra generada satisface las siguientes propiedades:

- i) $S \subseteq \sigma(S)$,
- ii) si $S \subseteq T$, entonces $\sigma(S) \subseteq \sigma(T)$,
- iii) $\sigma(\sigma(S)) = \sigma(S)$,
- iv) si S es una σ -álgebra, entonces $\sigma(S) = S$.

Prueba: Ejercicio! \Box

Ejemplo: ¿Cuál es la σ -álgebra generada por $\{A\}$?, donde $\varnothing \subsetneq A \subsetneq X$.

Recordemos la σ -álgebra de Borel en \mathbb{R}^n , la cual se define como la menor σ -álgebra que contiene a los abiertos de \mathbb{R}^n (en la topología usual).

Si denotamos

$$\mathcal{O} = \mathcal{O}(\mathbb{R}^n) = \{U : U \text{ es abierto en } \mathbb{R}^n\},\$$
 $\mathcal{C} = \mathcal{C}(\mathbb{R}^n) = \{C : C \text{ es cerrado en } \mathbb{R}^n\},\$
 $\mathcal{K} = \mathcal{K}(\mathbb{R}^n) = \{K : K \text{ es compacto en } \mathbb{R}^n\};$

Entonces el álgebra de Borel corresponde a $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{O}(\mathbb{R}^n)) = \sigma(\mathcal{O})$.

Teorema

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{O}) = \sigma(\mathcal{C}) = \sigma(\mathcal{K}).$$

Prueba: Por definición, sabemos que $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{O})$.

Sabemos que $C = C^c = \{U^c : U \in C\} \subseteq \sigma(C)$. De forma similar, sabemos que $C = C^c = \{F^c : F \in C\} \subseteq \sigma(C)$.

De la primera inclusión obtenemos $\sigma(\mathcal{C}) \subseteq \sigma(\mathcal{O})$. De la segunda, $\sigma(\mathcal{O}) \subseteq \sigma(\mathcal{C})$. Portanto, tenemos la igualdad $\sigma(\mathcal{C}) = \sigma(\mathcal{O})$.

En \mathbb{R}^n , todo compacto es cerrado (Heine-Borel). Luego $\mathcal{K}\subseteq\mathcal{C}$. Por otro lado, si $C\subseteq\mathbb{R}^n$ es cerrado, entonces C puede escribirse como unión enumerable de compactos $C=\bigcup_k C_k$, donde $C_k=\overline{\mathbb{D}}_k(\mathsf{o})\cap C$. Esto muestra que $C\subseteq\sigma(\mathcal{K})\Rightarrow\mathcal{C}\subseteq\sigma(\mathcal{K})\Rightarrow\sigma(\mathcal{C})\subseteq\sigma(\mathcal{K})$. Esto prueba la igualdad $\sigma(\mathcal{C})=\sigma(\mathcal{K})$. \square

Observación: Existen otras formas de generar el álgebra de Borel de \mathbb{R}^n . Definamos

• La familia de intervalos abiertos \mathcal{J}° :

$$\mathcal{J}^{\circ} = \mathcal{J}^{\circ,n} = \mathcal{J}^{\circ}(\mathbb{R}^n) = \Big\{ \prod_{i=1}^n (a_i, b_i) : a_i < b_i \Big\}.$$

• La familia de intervalos semi-abiertos \mathcal{J} :

$$\mathcal{J} = \mathcal{J}^n = \mathcal{J}(\mathbb{R}^n) = \Big\{ \prod_{i=1}^n [a_i, b_i) : a_i < b_i \Big\}.$$

• La familia de intervalos abiertos con extremos racionales $\mathcal{J}_{\mathbb{Q}}^{\circ}$:

$$\mathcal{J}_{\mathbb{Q}}^{\circ} = \mathcal{J}_{\mathbb{Q}}^{\circ,n} = \mathcal{J}_{\mathbb{Q}}^{\circ}(\mathbb{R}^n) = \Big\{ \prod_{i=1}^n (a_i, b_i) : a_i, b_i \in \mathbb{Q}; a_i < b_i \Big\}.$$

Teorema

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{J}^\circ) = \sigma(\mathcal{J}) = \sigma(\mathcal{J}^\circ_{\mathbb{Q}}) = \sigma(\mathcal{J}_{\mathbb{Q}}).$$

Semi-álgebras y Álgebras

Definición

Sea X un conjunto no vacío. Una **semi-álgebra** \mathcal{A} en X es una colección de subconjuntos de X que satisface:

- i) $X \in \mathcal{A}$,
- ii) $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- iii) para todo $A \in A$, existen $A_1, A_2, \ldots, A_n \in A$, tales que $A^c = \bigcup_k A_k$.

Definición

Sea X un conjunto no vacío. Un **álgebra** \mathcal{A} en X es una colección de subconjuntos de X que satisface:

- i) $X \in \mathcal{A}$,
- ii) $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$,
- iii) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$.

Semi-álgebras y Álgebras

Proposición

 $\mathcal{A}\ \sigma$ -álgebra $\Rightarrow \mathcal{A}$ es álgebra $\Rightarrow \mathcal{A}$ es semi-álgebra. \square