Propositions on Differential Geometry

IKHAN CHOI

Contents

1.	Smooth manifolds	1
2.	Tangent bundle	2
3.	Geodesics	2

1. Smooth manifolds

Proposition 1.1. Independent commuting vector fields are realized as partial derivatives in a chart.

Proposition 1.2. Let $\{\partial_1, \dots, \partial_k\}$ be an independent involutive vector fields. We can find independent commuting $\{\partial_{k+1}, \dots, \partial_n\}$ such that union is independent. (Maybe)

Proposition 1.3. Let $\{\partial_1, \dots, \partial_k\}$ be an independent commuting vector fields. We can find independent commuting $\{\partial_{k+1}, \dots, \partial_n\}$ such that union is independent and commuting. (Maybe)

The following theorem says that image of immersion is equivalent to kernel of submersion.

Proposition 1.4. An immersed manifold is locally an inverse image of a regular value.

Proposition 1.5. A closed submanifold with trivial normal bundle is globally an inverse image of a regular value.

Proof. It uses tubular neighborhood. Pontryagin construction?

Proposition 1.6. An immersed manifold is locally a linear subspace in a chart.

Proposition 1.7. Distinct two points on a connected manifold are connected by embedded curve.

Proof. Let $\gamma: I \to M$ be a curve connecting the given two points, say p, q.

Step 1: Constructing a piecewise linear curve. For $t \in I$, take a convex chart U_t at $\gamma(t)$. Since I is compact, we can choose a finite $\{t_i\}_i$ such that $\bigcup_i \gamma^{-1}(U_{t_i}) = I$. This implies im $\gamma \subset \bigcup_i U_{t_i}$. Reorganize indices such that $\gamma(t_1) = p$, $\gamma(t_n) = q$, and $U_{t_i} \cap U_{t_{i+1}} \neq \emptyset$ for all $1 \leq i \leq n-1$. It is possible since the graph with $V = \{i\}_i$ and

Last Update: May 4, 2019.

 $E = \{(i,j) : U_{t_i} \cap U_{t_j} \neq \emptyset \text{ is connected. Choose } p_i \in U_{t_i} \cap U_{t_{i+1}} \text{ such that they are all dis for } 1 \leq i \leq n-1 \text{ and let } p_0 = p, \, p_n = q.$

How can we treat intersections?

Therefore, we get a piecewise linear curve which has no self intersection from p to q. Step 2: Smoothing the curve.

Proposition 1.8. Let M is an embedded manifold with boundary in N. Any kind of sections on M can be extended on N.

Proposition 1.9. Every ring homomorphism $C^{\infty}(M) \to \mathbb{R}$ is obtained by an evaluation at a point of M.

Proof. Suppose $\phi: C^{\infty}(M) \to \mathbb{R}$ is not an evaluation. Let h be a positive exhaustion function. Take a compact set $K:=h^{-1}([0,\phi(h)])$. For every $p\in K$, we can find $f_p\in C^{\infty}(M)$ such that $\phi(f_p)\neq f_p(p)$ by the assumption. Summing $(f_p-\phi(f_p))^2$ finitely on K and applying the extreme value theorem, we obtain a function $f\in C^{\infty}(M)$ such that $f\geq 0, f|_K>1$, and $\phi(f)=0$. Then, the function $h+\phi(h)f-\phi(h)$ is in kernel of ϕ although it is strictly positive and thereby a unit. It is a contradiction.

2. Tangent bundle

Proposition 2.1. The n-sphere S^n possesses a nonvanishing vector field iff n is odd.

3. Geodesics

Proposition 3.1. The set of points that is geodesically connected to a point is open.