

INTRO TO FDTD

Flexcompute Inc.

INTRODUCTION

- ► The Finite-Difference Time-Domain (FDTD) method is a method for simulating interaction of light with structures and materials.
- It is the most widely used and general-purpose method.
- Let's you simulate a wide range of phenomena in photonics.

Photonic crystal cavity

Grating coupler

Ring Resonator

Metasurface

COURSE OVERVIEW

- This course will give you a broad understanding of FDTD.
 - What it is used for.
 - How it works (at a high level).
 - How to get started using it.
- The course will use examples in increasing complexity.
- Implementation using Flexcompute's Tidy3D FDTD solver will accompany examples so you can try them out yourself.

MAXWELL'S EQUATIONS

In the absence of free charges, electromagnetic phenomena is described by:

 $\nabla \times \vec{H}(\vec{r},t) = \epsilon(\vec{r})\epsilon_0 \frac{\partial \vec{E}(\vec{r},t)}{\partial t} + \vec{J}(\vec{r},t)$

 $ec{E}(ec{r},t)$ and $ec{H}(ec{r},t)$ are the electromagnetic fields, from which we can determine our quantities of interest.

 $\epsilon(\vec{r})$ describes how the materials are arranged in space, which describe the device being simulated.

 $\vec{j}(\vec{r},t)$ describes electric currents (moving charges), which inject light into the system.

SOLVING MAXWELL'S EQUATIONS

▶ Goal of FDTD is to solve these equations for $\vec{E}(\vec{r},t)$ and $\vec{H}(\vec{r},t)$ given $\epsilon(\vec{r})$ and $\vec{J}(\vec{r},t)$.

$$\nabla \times \vec{E}(\vec{r},t) = -\mu_0 \frac{\vec{H}(\vec{r},t)}{dt} \quad \nabla \times \vec{H}(\vec{r},t) = \epsilon(\vec{r})\epsilon_0 \frac{d\vec{E}(\vec{r},t)}{dt} + \vec{J}(\vec{r},t)$$

• Given some device $\epsilon(\vec{r})$ and an incident field or current source $\vec{j}(\vec{r},t)$.

EXAMPLE: DIPOLE IN A VACUUM

- Goal: compute $\vec{E}(\vec{r},t)$ emanating from the source.
- Let's simulate the following setup:
 - Only vacuum ($\epsilon(\vec{r}) = 1$).
 - Dipole source pointing in z direction.
 - $\vec{j}(\vec{r},t) \propto \cos \omega t$.
 - Wavelength $\lambda = 2\pi c/\omega = 1\mu m$.

DISCRETIZATION

Yee Cell

Typical Choice: $\Delta x = \lambda/20 = 50nm$

Here:

 $\Delta x = \lambda/50 = 20nm$

About half a billion unknowns.

BOUNDARY CONDITIONS

Computational domain surrounded by Perfectly Matched Layers (PML), with a thickness of typically 10's Yee cells

VACUUM

COMPLEX STRUCTURES

