STATS 331

Image credit: Randall Monroe, xkcd

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Introduction to Bayesian Statistics Semester 2, 2016

Lecture 4

Bigger Bayes' Boxes and Intro to Discrete Parameter Estimation

A Medical Testing Scenario

- There is a disease *frequentitus* and your prior probability of having it is 0.01, given that you have the symptoms.
- The test is 95% accurate
- The test is also sensitive to the more common disease wrongiosus, and you have a 0.05 prior probability of having that.

Image is in public domain

• *D* = The test comes back positive.

• How plausible is it that you have *Frequentitus?* Wrongiosus? Both? Neither?

Oh look, four mutually exclusive hypotheses!

Bayes' Box

 On document camera, with the help of R (for doing the arithmetic)

Bayes' Rule for Sets of Hypotheses

 Compare this to the phone question from the 2012 exam/the lecture notes

$$P(H_i|D) = \frac{P(H_i)P(D|H_i)}{P(D)}$$

 Compare this to Q2 in Assignment 1

$$P(D) = \sum_{i=1}^{N} P(H_i)P(D|H_i).$$

Remember, doing a Bayes'
 Box == Using Bayes' Rule

Discrete Parameter Estimation

Image is in Public domain

Parameter Estimation

 Parameter estimation is a really important part of statistics. A parameter is really just an unknown quantity whose value we would like to know

- We will describe our uncertainty by a probability distribution (discrete today, continuous later)
- The probability distribution will get updated (from a prior distribution to a posterior distribution) as we get more information!

Parameter Estimation

 Bayes' rule can be applied to a set of hypotheses about the value of an unknown parameter

• A hypothesis might be "
$$\theta = 1$$
"

• Another might be "
$$\theta = 2$$
"

• Suppose we observed data x = 3

$$P(\theta = 1|x = 3) = \frac{P(\theta = 1)P(x = 3|\theta = 1)}{P(x = 3)}$$

 $P(\theta = 2|x = 3) = \frac{P(\theta = 2)P(x = 3|\theta = 2)}{P(x = 3)}$

 $P(\theta = 10|x = 3) = \frac{P(\theta = 10)P(x = 3|\theta = 10)}{P(x = 3)}$

$$P(\theta = 1|x = 3)$$

$$P(\theta = 2|x = 3) =$$

$$P(\theta = 10|x = 3)$$

$$P(\theta = 1)P(x = 3|\theta = 1)$$

$$P(x = 3)$$

$$P(\theta = 2)P(x = 3|\theta = 2)$$

$$P(x = 3)$$

$$\frac{P(\theta = 10)P(x = 3|\theta = 10)}{P(x = 3)}$$

Posterior Distribution

Prior Distribution

$$P(\theta = 1|x = 3) = \frac{P(\theta = 1)P(x = 3|\theta = 1)}{P(x = 3)}$$
 $P(\theta = 2|x = 3) = \frac{P(\theta = 2)P(x = 3|\theta = 2)}{P(x = 3)}$

$$P(\theta = 10|x = 3) = \frac{P(\theta = 10)P(x = 3|\theta = 10)}{P(x = 3)}$$

Green are likelihoods. Orange is a **common** normalisation constant – the marginal likelihood

Bayes' Rule Lots of Times == Bayes' Box Bayes' Boxes work well for parameter estimation!

Bayes' Box for Parameter Estimation

Possible Values	Prior	Likelihood	Prior x Likelihood	Posterior
θ	p (θ)	p(x 0)	$p(\theta)p(x \theta)$	p(θ x)
1.0	0.0909			
1.2	0.0909			
1.4	0.0909			
1.6	0.0909			
1.8	0.0909			
2.0	0.0909			
2.2	0.0909			
2.4	0.0909			
2.6	0.0909			
2.8	0.0909			
3.0	0.0909			
Totals	1		p(x)	1

NOT SO DIFFERENT HEY?

Bayes' Rule for Parameter Estimation

$$\begin{array}{rcl} p(\theta|x) & = & \frac{p(\theta)p(x|\theta)}{p(x)} \\ p(\theta|x) & \propto & p(\theta)p(x|\theta) \\ \\ \text{posterior} & \propto & \text{prior} \times \text{likelihood.} \end{array}$$

This works for discrete and continuous distributions

Posterior and Prior Distribution

We hope to achieve something like this

Estimating a Proportion

- We will now solve the famous problem of estimating a proportion using a Bayes' Box.
- Suppose there is an election coming up, with two major parties. 10 people are called to take a poll. This is a very small poll!
- Results (data): {1, 1, 0, 0, 1, 0, 1, 0, 1, 1}
- What fraction θ of the entire population support Party A?

Bayes Box: Possible Values

Possible Values	Prior	Likelihood	Prior x Likelihood	Posterior
θ	p(θ)	p(x θ)	$p(\theta)p(x \theta)$	p(θ x)
0	0.0909			
0.1	0.0909			
0.2	0.0909			
0.3	0.0909			
0.4	0.0909			
0.5	0.0909			
0.6	0.0909			
0.7	0.0909			
0.8	0.0909			
0.9	0.0909			
1.0	0.0909			
Totals	1		p(x)	1

Uniform Prior

Likelihood for Our Problem

 We called 10 people. Results are 0s and 1s (don't support or do support party A).

P(1 |
$$\theta$$
) = θ
P(0 | θ) = 1- θ
P({1,1,0} | θ) = $\theta\theta$ (1- θ) = θ^2 (1- θ)
P({1, 1, 0, 0, 1, 0, 1, 0, 1, 1}| θ) = θ^6 (1- θ)⁴

Likelihood in general

 The most awkward part of the Bayes' Box (for beginners) is usually the likelihood column.

 Hint: Imagine you knew the true hypothesis/parameter value, but hadn't gotten your data yet, and write down the probability of your data

Likelihood from a sampling distribution

• Later, we will usually get likelihoods by first writing down a "sampling distribution" $p(D|\theta)$ – a probability distribution for the data given the parameters

 Some people think of this as "the distribution the data was drawn from"

• Plug in the observed data --> then $p(D|\theta)$ tells us how the probability of the observed data varies as a function of θ . i.e. the likelihood

Solution in R

```
theta = seq(0, 1, by=0.1)
prior = rep(1/11, 11)
lik = theta^6*(1 - theta)^4
h = prior*lik
Z = sum(h)
posterior = h/Z
```

The Posterior!

A Note on Constants in the Likelihood

- The bus problem in the notes is very closely related to this. It uses the binomial distribution for the likelihood.
- This is appropriate if you only know about the 6 successes (out of the 10 trials), rather than the full sequence of successes and failures
- HOWEVER, the only difference in the formula for the likelihood is some constants out the front that do not depend on the parameter
- THE POSTERIOR IS EXACTLY THE SAME. THIS IS THE LIKELIHOOD PRINCIPLE. Sorry for shouting.

The Posterior is the Answer

 In Bayesian stats, the full posterior distribution is the complete answer to a parameter estimation problem

 It describes how confident we should be about each of the possible values of the parameter

Image from Hyperbole and a Half By Allie Brosh