Retrieval-Augmented Generation

Jeff Prosise

@jprosise

Retrieval-Augmented Generation (RAG)

- Enables LLMs to answer questions from custom knowledge bases consisting of documents
 - Text files, PDFs, DOCX files, etc.
- Puts up guardrails that make an LLM less likely to hallucinate
 - Say "I don't know"
- The #1 use case for LLMs in industry today

Text Embeddings

Vectors of floating-point numbers that quantify text

Cars that get great gas mileage

- Compute similarity of two text samples by measuring distance between their embedding vectors using cosine similarity, dot products, or other measures
- Useful for semantic-search systems, recommender systems, deduplication systems, and other similarity-based systems

OpenAl Text Embedding Models

- Multilingual models that generate normalized embeddings
- Permit embeddings to be shortened for compatibility with vector stores that limit embedding lengths

text-embedding-3-small

Produces vectors of up to **1,536** floating-point numbers. Max input length is **8K**.

text-embedding-3-large

Produces vectors of up to **3,072** floating-point numbers. Max input length is **8K**. Scores **slightly higher** than text-embedding-3-small on key benchmarks.

.

Generating an Embedding Vector

```
from openai import OpenAI
client = OpenAI(api_key='OPENAI_API_KEY')
response = client.embeddings.create(
   model='text-embedding-3-small',
    input='Cars that get great gas mileage'
embedding = response.data[0].embedding
```

Generating a Short Embedding Vector

```
from openai import OpenAI
client = OpenAI(api_key='OPENAI_API_KEY')
response = client.embeddings.create(
   model='text-embedding-3-small',
    input='Cars that get great gas mileage',
    dimensions=256 # Limit embedding to 256 values
embedding = response.data[0].embedding
```

Comparing Embedding Vectors

```
x = client.embeddings.create(
    model='text-embedding-3-small',
    input='Cars that get great gas mileage'
).data[0].embedding
y = client.embeddings.create(
    model='text-embedding-3-small',
    input='Cars that are fuel-efficient'
).data[0].embedding
similarity = np.dot(np.array(x), np.array(y))
# 0.8362645039208086
```

Google Embedding Models

- Models that generate high-quality normalized embeddings
- Support task_type parameter that permits embeddings to be optimized for various use cases (retrieval, semantic similarity, etc.)

English-only model that produces vectors of up to **768** floating-point numbers. Max input length is **2K** tokens.

Multilingual model that produces vectors of up to **768** floating-point numbers. Max input length is **2K** tokens. **Only available through Vertex AI**.

Generating an Embedding Vector

```
import google.generativeai as genai
genai.configure(api_key='GOOGLE_API_KEY')
response = genai.embed content(
   model='models/text-embedding-004',
   content='Cars that get great gas mileage'
embedding = response['embedding']
```

Generating a Short Embedding Vector

```
import google.generativeai as genai
genai.configure(api_key='GOOGLE_API_KEY')
response = genai.embed content(
   model='models/text-embedding-004',
    content='Cars that get great gas mileage',
   output_dimensionality=256 # Limit embedding to 256 values
embedding = response['embedding']
```

Comparing Embedding Vectors

```
x = genai.embed_content(
    model='models/text-embedding-004',
    content='Cars that get great gas mileage'
)['embedding']
y = genai.embed_content(
    model='models/text-embedding-004',
    content='Cars that are fuel-efficient'
)['embedding']
similarity = np.dot(np.array(x), np.array(y))
# 0.8746150746638693
```

Measuring Semantic Similarity

```
x = genai.embed_content(
    model='models/text-embedding-004',
    content='Cars that get great gas mileage',
    task type='SEMANTIC SIMILARITY'
)['embedding']
y = genai.embed_content(
    model='models/text-embedding-004',
    content='Cars that are fuel-efficient',
    task_type='SEMANTIC_SIMILARITY'
)['embedding']
similarity = np.dot(np.array(x), np.array(y))
# 0.9059963501637823
```

Hugging Face Text Embedding Models

 Hugging Face hosts more than 800 text embedding models that vary by context length, languages supported, and other factors

all-MiniLM-L12-v2

English-only model that supports input lengths up to **256 tokens**. Generates **384-dimensional** embedding vectors.

all-miniLM-L6-v2

English-only model that supports input lengths up to **256 tokens**. Generates **384-dimensional** embedding vectors. **5X faster** than all-MiniLM-L12-v2.

paraphrasemultilingual-MiniLM-L12-v2

Multilingual model trained on more than 50 languages that supports input lengths up to 512 tokens. Generates 384-dimensional embedding vectors.

jina-embeddings-v2small-en

English-only model based on BERT that supports input lengths up to **8K tokens**. Generates **384-dimensional** embedding vectors.

Generating an Embedding with all-MiniLM-L6-v2

```
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embedding = model.encode(['Cars that get great gas mileage'])[0]
```

Comparing all-MiniLM-L6-v2 Embeddings

```
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
x = model.encode(['Cars that get great gas mileage'])[0]
y = model.encode(['Cars that are fuel-efficient'])[0]
similarity = np.dot(np.array(x), np.array(y))
# 0.7341136
```

Demo Text Embeddings

Vector Databases

- Databases that store text and optional metadata
 - Items are keyed with embedding vectors generated from item text
 - Database is queried with embedding vectors generated from query text
 - Queries return the top n matches based on embedding similarity
- Contemporary vector databases such as Pinecone, ChromaDB, and Qdrant retrieve text samples based on similarity to input text and scale to millions of vectors
 - Many are free and open-source
- The basis for modern RAG systems

Creating and Populating a ChromaDB Collection

```
import chromadb
# Create the collection
client = chromadb.PersistentClient('chroma') # Path to where database is stored
collection = client.create_collection(name='Great_Speeches')
# Add an item
collection.add(
    documents=['Four score and seven years ago...'], # Text of item
    ids=['Paragraph-001'] # Unique ID
```

Querying a Collection

```
# Get a reference to the collection
client = chromadb.PersistentClient('chroma')
collection = client.get_collection(name='Great_Speeches')

# Query without metadata filtering
results = collection.query(
    query_texts=['How old is the nation?'], # Query text
    n_results=1
)
```

Using OpenAl Embeddings

```
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
embedding_function = OpenAIEmbeddingFunction(
         api_key='OPENAI_API_KEY',
         model_name='text-embedding-3-small'
)
```

Using OpenAl Embeddings, Cont.

```
client = chromadb.PersistentClient('chroma')
# Create collection with custom embedding function
collection = client.create collection(
    name='Great_Speeches',
    embedding_function=embedding_function
# Retrieve reference to collection with custom embedding function
collection = client.get_collection(
    name='Great_Speeches',
    embedding_function=embedding_function
```

Using Google Embeddings

Demo ChromaDB

Answering Questions with an LLM

```
content = f'''
    Answer the following question, and if you don't know the answer, say "I don't know:"
    Question: Who was the first president of the United States?
    Answer:
    \mathbf{I}
messages = [{ 'role': 'user', 'content': content }]
response = client.chat.completions.create(
    model='gpt-4o',
    messages=messages
```

Answering Contextual Questions

```
content = f'''
    Answer the following question using the provided context, and if the answer isn't
    contained in the context, say "I don't know:"
    Context: {context} # Insert text to be searched for an answer
    Question: Who was the first president of the United States?
    Answer:
    1.1.1
messages = [{ 'role': 'user', 'content': content }]
response = client.chat.completions.create(
    model='gpt-4o',
    messages=messages
```

Retrieval-Augmented Generation (RAG)

- Use LLM to answer questions using documents as context
- "Chunk" documents and use embeddings to identify relevant chunks

Chunking Strategies

- Several strategies exist for "chunking" documents, ranging from simple and free (fixed-size) to costly (LLM-based)
- Chunking can be done manually or with help from libraries such as LllamaIndex
- LlamaIndex also has parsers for extracting text from numerous file types, including PDF, DOCX, PPTX, HTML, EPUB, and MD (markdown) files

https://blog.dailydoseofds.com/p/5-chunking-strategies-for-rag

Fixed-Size Chunking with LlamaIndex

```
from llama index.readers.file.docs import DocxReader
from llama index.core.node parser import SentenceSplitter
reader = DocxReader()
document = reader.load_data('PATH_TO_DOCX_FILE')
splitter = SentenceSplitter(chunk_size=1024, chunk_overlap=20)
nodes = splitter.get_nodes_from_documents(document)
for node in nodes:
   print(node.text)
```

Semantic Chunking with LlamaIndex

```
from llama index.readers.file.docs import PDFReader
from llama index.core.node parser import SemanticSplitterNodeParser
from llama_index.embeddings.openai import OpenAIEmbedding
reader = PDFReader()
document = reader.load_data('PATH_TO_PDF_FILE')
splitter = SemanticSplitterNodeParser(
    buffer size=1,
    breakpoint percentile threshold=95,
    embed_model=OpenAIEmbedding(api_key='OPENAI_API_KEY')
nodes = splitter.get nodes from documents(document)
```

Demo Naïve RAG

Reranking

Identifying relevant chunks using embedding vectors isn't perfect

Cars that get great gas mileage

O.9070775256753464

Cars that don't get great gas mileage

Similarity score computed by text-embedding-3-small

- Rerankers rank chunks in order of relevance using semantic understanding and are used to implement two-stage retrieval
 - Query vector database for m chunks based on embedding similarity
 - Rerank chunks by descending order of relevance and take the top n chunks, where n is less than m

Reranking Methods

Method	Example(s)	Comments
Cross encoder	jina-reranker, BGE	Fast, free, and effective
Multi-vector model	ColBERT	Faster than cross encoders due to late interaction, but not quite as effective
Large language model	GPT-4o, Gemini, Llama	Highly effective, but higher cost and latency
Reranking API	Cohere, Jina	Highly effective, but higher cost and latency

Cross Encoding

- Computes similarity of two text samples using a heightened understanding of semantic meaning
- Built by fine-tuning pretrained language models such as BERT or a variation of BERT

Cars that get great gas mileage

O.49530423

Cars that don't get great gas mileage

Similarity score computed by jina-reranker-v1-turbo-en

Using jina-reranker-v1-turbo-en

```
from sentence_transformers import CrossEncoder

model = CrossEncoder('jinaai/jina-reranker-v1-turbo-en', trust_remote_code=True)

ranked_chunks = model.rank(
    'Cars that get great gas mileage',
    chunks, # Contexts retrieved from vector database
    return_documents=True,
    top_k=5
)
```

Using jina-reranker-v2-base-multilingual

```
from sentence_transformers import CrossEncoder

model = CrossEncoder('jinaai/jina-reranker-v2-base-multilingual', trust_remote_code=True)

ranked_chunks = model.rank(
    'Cars that get great gas mileage',
    chunks, # Contexts retrieved from vector database
    return_documents=True,
    top_k=5
)
```

Demo Reranking

Metadata Extraction

- In some cases, incorporating metadata into vector database queries makes RAG more accurate
 - Example: Knowledge base includes annual reports from Microsoft, Google, and Meta for the years 2020-present
 - Questions such as "What was Microsoft's revenue in 2022?" must target only chunks from Microsoft's 2022 annual report
- Solution: Use an LLM to extract metadata values from the user input and use those values to filter vector-database queries

Inserting with Metadata

```
collection.add(
    documents=[text],
    metadatas=[{ 'company': 'Microsoft', 'year': '2022' }],
    ids=['00001']
)
```

Filtering Queries with Metadata

```
# Filtering with a single value
results = collection.query(
   query_texts=["Who is Microsoft's CEO?"],
   where={ 'company': 'Microsoft' }
   n_results=5
# Filtering with multiple values
results = collection.query(
    query_texts=["What was Microsoft's revenue in 2022?"],
   where={ '$and': [{ 'company': 'Microsoft' }, { 'year': '2022' }] }
   n_results=5
```

Demo Metadata Extraction

