Corrigé du devoir maison 6.

Exercice 1

1°) Soit $n \geq 2$. La fonction f_n est polynomiale, elle est donc continue sur $[1, +\infty[$, qui est bien un intervalle.

De plus, f_n est dérivable sur $[1, +\infty[$ et $\forall x \in [1, +\infty[$, $f'_n(x) = nx^{n-1} - 1.$

Pour $x \ge 1$, on a $x^{n-1} \ge 1$ donc $f'_n(x) \ge n - 1 > 0$.

Ainsi, f_n est est strictement croissante sur $[1, +\infty[$.

D'après le théorème de la bijection, f_n réalise une bijection de $[1, +\infty[$ sur $f_n([1, +\infty[)$.

Or $f_n(1) = -1$ et $\lim_{n \to +\infty} f_n(x) = +\infty$ donc $f_n([1, +\infty[) = [-1, +\infty[$.

Comme $0 \in [-1, +\infty[$, 0 admet un unique antécédent x_n dans $[1, +\infty[$.

Autrement dit, l'équation $f_n(x) = 0$ admet une unique solution x_n dans $[1, +\infty[$.

Comme $f_n(1) \neq 0, |x_n \neq 1|$

2°) Soit $n \ge 2$. Calculons: $f_{n+1}(x_n) = x_n^{n+1} - x_n - 1 = x_n^n x_n - x_n - 1$.

Or on sait que $x_n^n - x_n - 1 = 0$, donc $x_n^n = x_n + 1$.

Ainsi $f_{n+1}(x_n) = (x_n + 1)x_n - x_n - 1 = x_n^2 - 1$.

Comme $x_n > 1$, on en tire que $|f_{n+1}(x_n) > 0|$

 3°) Soit n > 2.

 $f_{n+1}(x_{n+1}) = 0$ donc le résultat de la question précédente peut se réécrire $f_{n+1}(x_n) > f_{n+1}(x_{n+1})$. Comme f_{n+1} est croissante sur $[1, +\infty[$ et que x_n et x_{n+1} sont dans cet intervalle, on en déduit que: $x_n > x_{n+1}$ (si on avait $x_n \le x_{n+1}$, la croissance de f_{n+1} donnerait $f_{n+1}(x_n) \le f_{n+1}(x_{n+1})$).

Ainsi, la suite (x_n) est strictement décroissante

 4°) (x_n) est décroissante et minorée par 1 donc elle converge.

Notons ℓ sa limite; comme pour tout $n \geq 2$, $x_n \geq 1$, on a $\ell \geq 1$.

Par l'absurde, supposons $\ell > 1$. Montrons qu'alors $x_n^n \xrightarrow[n \to +\infty]{} +\infty$.

M'ethode 1

 $\forall n \geq 2, x_n \geq \ell$ par décroissance de (x_n) .

Comme les termes sont positifs, il vient $x_n^n \ge \ell^n$ pour tout $n \ge 2$.

Comme $\ell^n \xrightarrow[n \to +\infty]{} +\infty$ puisque $\ell > 1$, $x_n \xrightarrow[n \to +\infty]{} +\infty$ par minoration.

 $M\'{e}thode~2$

 $\forall n \ge 2, \, x_n^n = e^{n \ln(x_n)}.$

Comme $x_n \underset{n \to +\infty}{\longrightarrow} \ell > 1$, par continuité de \ln , $\ln(x_n) \underset{n \to +\infty}{\longrightarrow} \ln(\ell) > 0$.

Par produit, on en tire que $n \ln(x_n) \xrightarrow[n \to +\infty]{} +\infty$.

Finalement, $x_n^n = e^{n \ln(x_n)} \xrightarrow[n \to +\infty]{} +\infty$.

Or, pour tout $n \geq 2, x_n^n = x_n + 1$, donc on a aussi $x_n^n = x_n + 1 \xrightarrow[n \to +\infty]{} \ell + 1$: ceci contredit l'unicité de la limite.

Ainsi, la suite (x_n) converge vers 1.

 5°) Soit $n \geq 2$.

$$x_n^n = x_n + 1$$
 par définition de la suite (x_n) $n \ln(x_n) = \ln(1 + x_n)$ car les termes précédents sont strictement positifs $\ln(x_n) = \frac{\ln(1 + x_n)}{n}$
$$x_n = \exp\left(\frac{\ln(1 + x_n)}{n}\right)$$

- **6°)** Comme $1 + x_n \underset{n \to +\infty}{\longrightarrow} 2$, par continuité de ln en 2, on a $\boxed{\ln(1 + x_n) \underset{n \to +\infty}{\longrightarrow} \ln(2)}$. Cela s'écrit $\boxed{\ln(1 + x_n) \underset{n \to +\infty}{=} \ln(2) + o(1)}$ puisque $\ln(1 + x_n) \ln(2) \underset{n \to +\infty}{\longrightarrow} 0$.
- 7°) On a alors $x_n = \exp\left(\frac{\ln 2 + o(1)}{n}\right) = \exp\left(\frac{\ln 2}{n} + o\left(\frac{1}{n}\right)\right)$.

 On pose $u = \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$; on a $u \to \infty$ 0.

On sait que $\exp(u) \underset{u \to 0}{=} 1 + u + o(u)$, et ici un o(u) est un $o\left(\frac{1}{n}\right)$, donc on a :

$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right) + o\left(\frac{1}{n}\right)$$
$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

 8°) Commençons par :

$$\ln(1+x_n) \underset{n \to +\infty}{=} \ln\left(1+1+\frac{\ln 2}{n}+o\left(\frac{1}{n}\right)\right)$$

$$\underset{n \to +\infty}{=} \ln\left(2\left(1+\frac{\ln 2}{2n}+o\left(\frac{1}{n}\right)\right)\right)$$

$$\underset{n \to +\infty}{=} \ln(2)+\ln\left(1+\frac{\ln 2}{2n}+o\left(\frac{1}{n}\right)\right)$$

Posons $u = \frac{\ln 2}{2n} + o\left(\frac{1}{n}\right)$; on a $u \underset{n \to +\infty}{\longrightarrow} 0$.

On sait que $\ln(1+u) = u + o(u)$, et ici un o(u) est un $o\left(\frac{1}{n}\right)$, d'où

$$\ln(1+x_n) \underset{n \to +\infty}{=} \ln(2) + \frac{\ln 2}{2n} + o\left(\frac{1}{n}\right) + o\left(\frac{1}{n}\right)$$
$$\underset{n \to +\infty}{=} \ln(2) + \frac{\ln 2}{2n} + o\left(\frac{1}{n}\right)$$

On réinjecte dans l'égalité de la question 5 :

$$x_n \underset{n \to +\infty}{=} \exp\left(\frac{1}{n}\left(\ln(2) + \frac{\ln 2}{2n} + o\left(\frac{1}{n}\right)\right)\right)$$
$$\underset{n \to +\infty}{=} \exp\left(\frac{\ln(2)}{n} + \frac{\ln 2}{2n^2} + o\left(\frac{1}{n^2}\right)\right)$$

Posons
$$u = \frac{\ln 2}{2n} + \frac{\ln 2}{2n^2} + o\left(\frac{1}{n^2}\right)$$
, on a $u \underset{n \to +\infty}{\longrightarrow} 0$.

On sait que
$$\exp(u) \underset{u \to 0}{=} 1 + u + \frac{u^2}{2} + o(u^2)$$
, et ici un $o(u^2)$ est un $o\left(\frac{1}{n^2}\right)$, d'où :
$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln(2)}{n} + \frac{\ln 2}{2n^2} + o\left(\frac{1}{n^2}\right) + \frac{1}{2}\left(\frac{\ln(2)}{n} + \frac{\ln 2}{2n^2} + o\left(\frac{1}{n^2}\right)\right)^2 + o\left(\frac{1}{n^2}\right)$$
$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln(2)}{n} + \frac{\ln 2}{2n^2} + o\left(\frac{1}{n^2}\right) + \frac{\ln(2)^2}{2n^2} + o\left(\frac{1}{n^2}\right) + o\left(\frac{1}{n^2}\right)$$
$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln(2)}{n} + \frac{\ln(2) + \ln(2)^2}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 2

$$f(x) = \frac{2x - \frac{(2x)^3}{6} + o(x^3) - 2\left(x - \frac{x^3}{6} + o(x^3)\right)}{(x + o(x))^2} \qquad \text{car } 2x \xrightarrow[x \to 0]{} 0$$

$$= \frac{-x^3 + o(x^3)}{x^2 + o(x^2)}$$

$$= \frac{-x + o(x)}{1 + o(1)}$$

Le numérateur -x + o(x) tend vers 0 lorsque x tend vers 0, et dénominateur 1 + o(1) tend vers 1 lorsque x tend vers 0. Par quotient de limite, $f(x) \xrightarrow[x \to 0]{} 0$.