Aufgabe 1.2 Umrechnung von Zahlen

Vervollständigen Sie folgende Tabelle

Desimol	binär hexadezimal 1000 1100 1110 0001 1010 0101 1001 0110 100 0101 1001 0110 100 0001 0000 0110 1248
0 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$A = 10 = 8 + 2 = 1010$ $A = 10 = 8 + 2 = 1010$ $A = 10 = 4 + 2 = 010$ $A = 2^{3} + 2^{2} + 2^{4} = (1110)_{2}$ $A = 10 = 8 + 2 = 1010$ $A = 2^{3} + 2^{2} + 2^{4} = (1110)_{2}$
16	1.16+0.16

Ergänzen Sie die Tabelle (alle Angaben im Hexadezimalsystem und vom Typ integer)

A	-A (Vorzeichen/Betrag)		-A (Einerk	omplement)	-A (Zweierkomplement)		
0001	8001		F	ŦE.		干干干	F
FFF0		-					

3.1 Darstellung durch Vorzeichen und Betrag

Dies ist die Darstellung, an die man spontan denken würde, weil si bekannt ist. Übertragen auf das Binärsystem bedeutet dies, dass das l zeichen interpretiert wird und die restlichen drei Bit den Betrag der dann also folgende Tabelle:

Zahl	binär	Zahl	binär
0	0000	(-0)	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

	Zahl	binär	Zahl	binär		
	0	0000	-1	1111		
	1	0001	-2	1110		
	2	0010	-3	1101		
	3	0011	-4	1100		
	4 5	0100	-5	1011		
	5	0101	-6	1010		
	6 7	0110	-7	1001		
	7	0111	-8	1000		
1111= (-1). 2	3+	χ^2	+ 2			
11101=(24	+ 6	3+	22+	0.2

A -A (Vorzeiche 0001 FFF0 7		(Einerkompler	ment) -A (Zwei	ierkomplement) 0640		
(TTTO) =	1111	1111	1111	0000	7	
_ A = () 111	1111	1111	0000		
- (-2) = 5 =	. 子	Ŧ	Ŧ	Õ		
-A = 0	060	0000	0000	1111		1611
	0	0	900	No. 2000		+ 1,111
-A = 0	000	0000	0001	0000		001111
55 ST		. ~				+ 00,0001

Aufgabe 1.7 ALU-Operationen

Tragen Sie in die Tabelle ein, was die ALU für folgende Eingaben am Ausgang liefern würde. Alle Zahlen sind hexadezimal zu verstehen und die zugrunde liegende Zahlendarstellung ist das Zweierkomplement:

A=

ALU_OPC	A	B / imm4	Cin	Result	Cout
00	FFFF	0000	0	Ø60 Q	
91	FFFF	0002	0	0.00	
91	900A	0006	1	00/10	
02	969A	0006	1	0011	90/1/1
03	9991	0002	0		
04	1234	000F	1	15	
05	1234	000F	0		
96	9770	673B	0		
07	FFFF	0001	1		
08	9991	0001	1		
7	77	72	<u>t</u>	000	<u>6</u>

+ 001111 + 00000