Problemas de Matemáticas con Procedimientos

Nahin Jose Peñaranda y Nicolas Jimenez Blanco

March 17, 2024

Problema 1

Sea $L = \{a + b\sqrt{-6} \mid a, b \in Z\}$, donde Z denota el conjunto de números enteros. Determinar si n=10 es primo o compuesto en L. Si es compuesto determine si tiene una factorización unica o no.

Solución

Primero, verifiquemos si n=10 es primo o compuesto, Para determinar si n=10 es primo o compuesto en L, primero debemos entender qué implica ser primo en este conjunto. Un número n en L es primo si no se puede expresar como el producto de dos números no triviales en L, es decir, no se puede escribir como $n=a+b\sqrt{-6}*(c+d\sqrt{-6})$ donde a, b, c, d son enteros distintos de cero.

Expresabilidad en L

como queremos expresar $10 = (a + b\sqrt{-6}) * (c + d\sqrt{-6})$

tenemos que quitar el numero complejo para que el resultado sea un entero podemos hacer esto haciendo que d=-b , y a=c

$$10 = (a + b\sqrt{-6}) * (a - b\sqrt{-6})$$

$$10 = a^2 + 6b^2$$

$$deducimos: a = 2, a = -2, b = 1, a = -1$$

$$10 = (2 + 1\sqrt{-6}) * (2 - 1\sqrt{-6})$$

Observamos que 10 se puede escribir como $10 = 2 + 1\sqrt{-6} * (2 - 1\sqrt{-6})$ por tanto 10 es compuesto en L

Factorización única en L

Para verificar si 10 tiene una factorización única en L, necesitamos comprobar si existen distintas factorizaciones para 10. Analizaremos todas las posibles combinaciones de factores de 10 en L y verificaremos si son iguales o diferentes.

$$10 = (2 + 1\sqrt{-6}) \cdot (2 - 1\sqrt{-6})$$

$$10 = (2 - 1\sqrt{-6}) \cdot (2 + 1\sqrt{-6})$$

$$10 = (-2 + 1\sqrt{-6}) \cdot (-2 - 1\sqrt{-6})$$

$$10 = (-2 - 1\sqrt{-6}) \cdot (-2 + 1\sqrt{-6})$$

Observamos que las factorizaciones de 10 en L son los conjugados Cuando hablo del conjugado de un número complejo en este contexto, me refiero a cambiar el signo de la parte imaginaria. Por lo tanto, 10 si tiene una factorización única en L.

Demostrar que para todo $n \in \mathbb{N}, n^5 - n$ es divisible entre 30.

Solución

Usaremos el principio de inducción matemática para demostrar este resultado.

1. Base Inductiva: Para n = 1:

$$1^5 - 1 = 0$$

Claramente, 0 es divisible entre 30.

Hipótesis de Inducción:

Supongamos que para algún $k\in N,\,k^5-k$ es divisible entre 30.

$$k^5 - k = 30q$$

Paso Inductivo:

Demostraremos que $(k+1)^5 - (k+1)$ es divisible entre 30.

$$(k+1)^5 - (k+1) = (k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1) - (k+1)$$

$$= k^5 - k + 5k^4 + 10k^3 + 10k^2 + 5k$$

$$= (k^5 - k) + 5(k^4 + 2k^3 + 2k^2 + k)$$

$$= 30q + 5(k^4 + 2k^3 + 2k^2 + k)$$

2. Paso 2: Ahora demostraremos que $(k^4 + 2k^3 + 2k^2 + k)$ es divisible entre 6.

Base inductiva:

Para n = 1:

$$(k^4 + 2k^3 + 2k^2 + k)$$

$$(1^4 + 2 * 1^3 + 2 * 1^2 + 1) = 6$$

3

Claramente, 6 es divisible entre 6.

Hipótesis de Inducción:

Supongamos que para algún $k \in N,$ $(k^4 + 2k^3 + 2k^2 + k)$ es divisible entre 6.

$$(k^4 + 2k^3 + 2k^2 + k) = 6w$$

Paso Inductivo:

Demostraremos que $(k+1)^4 + 2(k+1)^3 + 2(k+1)^2 + (k+1)$ es divisible entre 6.

$$((k+1)^4 + 2(k+1)^3 + 2(k+1)^2 + (k+1)) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 2k^3 + 6k^2 + 6k + 2 + 2(k+1)^2 + k + 1$$

$$= (k^4 + 2k^3 + 2k^2 + k) + 4k^3 + 10k^2 + 5k + 2 + 2(k+1)^2 + k + 1$$

$$= 6w + 4k^3 + 12k^2 + 14k + 6$$

$$= 6w + 2(2k^3 + 6k^2 + 7k + 3)$$

3. Paso 3: Ahora demostraremos que $(2k^3 + 6k^2 + 7k + 3)$ es divisible entre 3.

Base inductiva:

Para n = 1:

$$(2k^3 + 6k^2 + 7k + 3)$$

$$(2*1^3 + 6*1^2 + 7*1 + 3) = 18$$

Claramente, 18 es divisible entre 3.

Hipótesis de Inducción:

Supongamos que para algún $k \in N$, $(2k^3+6k^2+7k+3)$ es divisible entre 3. $(2k^3+6k^2+7k+3)=3$ r

Paso Inductivo:

Demostraremos que $2(k+1)^3 + 6(k+1)^2 + 7(k+1) + 3$ es divisible entre 3.

$$(2(k+1)^3 + 6(k+1)^2 + 7(k+1) + 3) = 2k^3 + 12k^2 + 25k + 18$$

$$= (2k^3 + 6k^2 + 7k + 3) + 6k^2 + 18k + 15$$

$$= 3r + 6k^2 + 18k + 15$$

$$= 3r + 3(3k^2 + 6k + 5)$$

$$= 3(r + 3k^2 + 6k + 5)$$

4. Paso 4: Ahora nos regresaremos a nuestro problema principal.

Demostraciones:

$$2k^{3} + 6k^{2} + 7k + 3 = 3r$$

$$k^{4} + 2k^{3} + 2k^{2} + k = 6w + 2(2k^{3} + 6k^{2} + 7k + 3)$$

Retomando:

$$(k+1)^{5} - (k+1) = (k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1) - (k+1)$$

$$= k^{5} - k + 5k^{4} + 10k^{3} + 10k^{2} + 5k$$

$$= (k^{5} - k) + 5(k^{4} + 2k^{3} + 2k^{2} + k)$$

$$= 30q + 5(k^{4} + 2k^{3} + 2k^{2} + k)$$

$$= 30q + 5(6w + 2(2k^{3} + 6k^{2} + 7k + 3))$$

$$= 30q + 5(6w + 2(3r))$$

$$= 30q + 5(6w + 2(3r))$$

$$= 30q + 5(6w + 6r)$$

$$= 30q + 5 + 6(w + r)$$

$$= 30q + 30(w + r)$$

$$= 30 * (q + w + r)$$

Por el principio de inducción matemática, hemos demostrado que para todo $n \in \mathbb{N}, n^5 - n$ es divisible entre 30.

Dados los numeros
$$\alpha$$
 y β con $\alpha \neq \beta$ y $\alpha + \beta \neq 1$. definimos $m = \alpha + \beta$; $a = \alpha \beta$; $A_2 = m - \frac{a}{m-1}$; $A_3 = m - \frac{a}{m-(\frac{a}{m-1})}$; $A_4 = m - \frac{a}{m-(\frac{a}{m-1})}$ es dicir, $\forall k > 1$ se tiene que $A_{k+1} = m - \frac{a}{A_k}$ Probar que $A_n = \frac{\left(\alpha^{n+1} - \beta^{n+1}\right) - \left(\alpha^n - \beta^n\right)}{\left((\alpha^n - \beta^n) - \left(\alpha^{n-1} - \beta^{n-1}\right)\right)}$

Solución

Usaremos el principio de inducción matemática para demostrar este resultado.

1. :

Hipótesis de Inducción:

$$m=\alpha+\beta;\ a=\alpha\beta;\ A_2=m-\tfrac{a}{m-1};\ A_3=m-\tfrac{a}{m-(\frac{a}{m-1})};\ A_4=m-\tfrac{a}{m-(\frac{a}{m-(\frac{a}{m-1})})}$$

$$A_{k+1}=m-\tfrac{a}{A_k}$$

Paso Inductivo:

Demostraremos que $(k+1)^5 - (k+1)$ es divisible entre 30.

$$A_{K+1} = \frac{\left(\alpha^{(k+1)+1} - \beta^{(k+1)+1}\right) - \left(\alpha^{(k+1)} - \beta^{(k+1)}\right)}{\left(\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{(k+1)-1} - \beta^{(k+1)-1}\right)\right)} = \frac{\left(\alpha^{(k+2} - \beta^{(k+2)}) - \left(\alpha^{(k+1)} - \beta^{(k+1)}\right)\right)}{\left(\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{(k)} - \beta^{(k)}\right)\right)}$$

$$= (\alpha + \beta) + \frac{\alpha\beta}{\frac{\left(\alpha^{(k+2} - \beta^{(k+2)}) - \left(\alpha^{(k+1)} - \beta^{(k+1)}\right)\right)}{\left(\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{(k)} - \beta^{(k)}\right)\right)}}$$

$$= \frac{(\alpha + \beta)(\alpha^{(k+1)} - \beta^{(k+1)}) - (\alpha + \beta)(\alpha^{(k)} - \beta^{(k)}) - \left[\left(\alpha\beta\right)(\alpha^{(k)} - \beta^{(k)}) - \left(\left(\alpha\beta\right)(\alpha^{(k-1)} - \beta^{(k-1)})\right)\right]}{\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{(k)} - \alpha + \beta^{(k)}\beta\right)}$$

$$= \frac{(\alpha^{(k+1)}\alpha + \beta^{(k+1)} - \beta) + \left(\alpha^{(k)} - \alpha + \beta^{(k)}\beta\right)}{\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{k} - \beta^{k}\right)}$$

$$= \frac{(\alpha^{(k+2)} - \beta^{(k+2)}) - \left(\alpha^{(k+1)} - \beta^{(k+1)}\beta\right)}{\left(\alpha^{(k+1)} - \beta^{(k+1)}\right) - \left(\alpha^{k} - \beta^{k}\right)}$$

2. : con esto demostramos que $A_n = \frac{\left(\alpha^{n+1} - \beta^{n+1}\right) - \left(\alpha^n - \beta^n\right)}{\left(\left(\alpha^n - \beta^n\right) - \left(\alpha^{n-1} - \beta^{n-1}\right)\right)}$.

Calcular las infinitas Soluciones de la ecuación Diofantica 42823x+6409y=34

Solución

La solución al tercer problema se presenta a continuación:

1. **Paso 1:** MCD(42824,6409).

metodo de Euclides:

$$42823 = 6409 \times 6 + 4369$$

$$\downarrow$$

$$42823 \mid 6409$$

$$6409 = 4369 \times 1 + 2040$$

$$\downarrow$$

$$6409 \mid 4369$$

$$4369 = 2040 \times 2 + 289$$

$$4369 = 2040 \times 2 + 289$$

$$4369 = 2040 \times 2 + 289$$

$$2040 = 289 \times 7 + 17$$

$$\downarrow$$

$$2040 \mid 289$$

$$289 = 17 \times 17 + 0$$

$$\downarrow$$

$$289 \mid 17$$

MCD(42824,6409) = 17COMO 34/17 = 2 Si tiene solucion

2. Paso 2: Solucion Particular Bezout

$$17 = 2040 - (289 * 7)$$

$$= 2040 - ((4368 - 2040 * 2) * 7)$$

$$= 2040 - (4369 * 7) + 2040 * 14$$

$$= (15 * 2040) - (7 * 4368)$$

$$= (15 * (6409 - 4369)) - (7 * 4368)$$

$$= ((15 * 6409) - (4369 * 22))$$

$$= (15 * 6409) - ((42823 - 6409) * 22)$$

$$= (6409 * 147) - (22 * 42823)$$

$$x = -22$$

$$y = 147$$

3. Paso 3: Soluciones Infinitas.

$$\begin{array}{l} \alpha = \text{MCD}(42824,\!6409) \\ \text{c} = 34 \end{array}$$

$$X_0 = \frac{c}{\alpha}x$$

$$X_0 = \frac{34}{17} * -22$$

$$X_0 = -44$$

$$Y_0 = \frac{c}{\alpha}y$$

$$Y_0 = \frac{34}{17} * 147$$

$$Y_0 = 294$$

Solucion General

$$X = X_0 + k * \frac{b}{c} = -44 + k * \frac{6409}{17}$$
$$X = 377k - 44$$

$$Y = Y_0 + k * \frac{b}{c} = 266 + k * \frac{42823}{17}$$
$$X = 294 - 2519K$$

Aquí se describe el tercer problema.

Solución

La solución al tercer problema se presenta a continuación:

1. Base Binaria:

División	Cociente	Residuo
$10247 \div 2$	5123	(1)
$5123 \div 2$	2561	(1)
$2561 \div 2$	1280	(1)
$1280 \div 2$	640	(0)
$640 \div 2$	320	(0)
$320 \div 2$	160	(0)
$160 \div 2$	80	(0)
$80 \div 2$	40	(0)
$40 \div 2$	20	(0)
$20 \div 2$	10	(0)
$10 \div 2$	5	(0)
$5 \div 2$	2	(1)
$2 \div 2$	1	(0)
$1 \div 2$	0	(1)

Por lo tanto, 10247_{10} es igual a 10100000000111_2 .

2. Base Octal:.

División	Cociente	Residuo
$10247 \div 8$	1280	(7)
$1280 \div 8$	160	(0)
$160 \div 8$	20	(0)
$20 \div 8$	2	(4)
$2 \div 8$	0	(2)

Por lo tanto, 10247_{10} es igual a 24007_8 .

3. Base Octal:.

División	Cociente	Residuo
$10247 \div 16$	640	(7)
$640 \div 16$	40	(0)
$40 \div 16$	2	(8)
$2 \div 16$	0	(2)

Por lo tanto, 10247_{10} es igual a 2807_{16} .

4. Base Veintedicimal:.

División	Cociente	Residuo
$10247 \div 20$	512	(7)
$512 \div 20$	25	(12)
$25 \div 20$	1	(5)
$1 \div 20$	0	(1)

Por lo tanto, 10247_{10} es igual a $15C7_{20}$.