СЕМ, лекция 15

(2021-01-21)

Припомняне.

• Имаме случайна величина X, която искаме "да разберем", т.е. да извлечем някаква информация за нея, и чиято функция на разпределение зависи от някакъв параметър θ (едномерен);

• \overrightarrow{X} са някакви наблюдения дадени като n-мерен вектор;

• α (алфа) е предварително зададена грешка от I^{-BИ} род;

• Тестваме две прости хипотези:

 $H_0: \theta = \theta_0$ (базова)

 $H_1:\theta=\theta_1$ (алтернативна)

Означаваме: $L_0(x)=L(x;\theta_0)$ (функция на правдоподобие за $\theta=\theta_0$) и $L_1(x)=L(x;\theta_1)$ (функция на правдоподобие за $\theta=\theta_1$).

Търсим $W^*\subseteq\mathbb{R}^n$ (област на \mathbb{R}^n), така, че когато нашия n-мерен вектор от наблюдения попадне в него, ние да отхвърляме нулевата хипотеза и да приемаме алтернативната. $\alpha=\mathbb{P}(\stackrel{\rightarrow}{X}\in W^*|H_0)$ е грешка от първи род, т.е. да попаднем в W^* и да отхвърлим нулевата хипотеза, но тя да е била вярна. Тази грешка е презададена (предефинирана) и се контролира от изследователя. Целта на оптималната критична област W^* е да намери тази област, която минимизира грешката от първи род.

$$\beta = \min_{\alpha = \mathbb{P}(\overrightarrow{X} \in W | H_0)} \mathbb{P}(\overrightarrow{X} \notin W | H_1).$$

Лемата на Нейман-Пиърсън е "добра", защото ни характеризира даден критетии, по който да определим дали една област е оптимална критична област и по тази лема знаем, че W^* е о.к.о. (оптимална критична област), ако съществува някаква константа K (K може да зависи от R и от R0, но не може да зависи от R1), за която

$$\begin{aligned} W^* &\in \{x \in \mathbb{R}^n : L_1(x) > K \times L_0(x)\} \\ W^{*c} &\in \{x \in \mathbb{R}^n : L_1(x) \leq K \times L_0(x)\} \end{aligned}$$

и ако знаем, че е изпълнено равенството: $\alpha = \mathbb{P}(\overrightarrow{X} \in W^* \,|\, H_0)$, то W^* е о.к.о.

 $\bigoplus X \in \mathcal{N}(\mu, \sigma^2)$, където σ^2 е известно и искаме да построим оптимална критична област за тестване на хипотезата на μ (за намиране на средното, знаейки каква е дисперсията)

$$H_0: \mu = \mu_0$$

$$H_1: \mu = \mu_1$$

Допускаме за улеснение, че $\mu_1 > \mu_0$. При зададено α .

$$L_0(x) = (\sqrt{2\pi}\sigma)^{-n}e^{-\frac{\sum_{j=1}^n (x_j - \mu_0)^2}{2\sigma^2}}, L_1(x) = (\sqrt{2\pi}\sigma)^{-n}e^{-\frac{\sum_{j=1}^n (x_j - \mu_1)^2}{2\sigma^2}}.$$

От лемата на Нейман-Пиърсън знаем, че оптималните критични области се намират лесно с неравенства от вида:

$$\{X \in \mathbb{R}^n : L_1(x) \geq K \times L_0(x)\} = \left\{X \in \mathbb{R}^n : \frac{-\sum_{j=1}^n (x_j - \mu_1)^2}{2\sigma^2} \geq \ln K - \frac{\sum_{j=1}^n (x_j - \mu_0)^2}{2\sigma^2}\right\} =$$

$$= \left\{X \in \mathbb{R}^n : \frac{-\sum_{j=1}^n \mathcal{X}_j^{\mathcal{Z}}}{2\sigma^2} + \frac{1}{\sigma^2} \mu_1 \sum_{j=1}^n x_j - \frac{n\mu_1^2}{2\sigma^2} \right\} =$$

$$= \left\{X \in \mathbb{R}^n : \frac{1}{\sigma^2} \mu_0 \sum_{j=1}^n x_j - \frac{n\mu_0^2}{2\sigma^2} \right\} =$$

$$= \left\{X \in \mathbb{R}^n : \frac{1}{\sigma^2} \frac{(\mu_1 - \mu_0)}{\mu_1 > \mu_0} \sum_{j=1}^n x_j \geq K_1 \right\} = , \text{ където } K_1 = \ln K - \frac{n\mu_0^2}{2\sigma^2} + \frac{n\mu_1^2}{2\sigma^2}$$

$$= \left\{X \in \mathbb{R}^n : \sum_{j=1}^n x_j \geq K_2 \right\} = , \text{ където } K_2 = \frac{K_1 \sigma^2}{\mu_1 - \mu_0}$$

$$= \left\{X \in \mathbb{R}^n : \frac{\sum_{j=1}^m x_j}{n} \geq \frac{K_2}{n} \right\} = \left\{X \in \mathbb{R}^n : \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \geq \frac{K_2}{\sigma\sqrt{n}} = K_3 \right\}$$

$$= \left\{X \in \mathbb{R}^n : \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \geq \frac{K_2}{\sigma\sqrt{n}} = K_3 \right\}$$

$$= \left\{X \in \mathbb{R}^n : \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \geq \frac{K_2}{\sigma\sqrt{n}} = K_3 \right\}$$

$$= \mathbb{P}(\overrightarrow{X} \in W \mid H_0) = \mathbb{P}(L_1(\overrightarrow{X}) > K_2 L_0(\overrightarrow{X}) \mid H_0) = \mathbb{P}\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > K_3 \mid H_0\right)$$

$$lpha=\mathbb{P}(\overrightarrow{X}\in W\,|\,H_0)=\mathbb{P}ig(\underline{L_1(\overrightarrow{X})}\geq K_0L_0(\overrightarrow{X})\,|\,H_0ig)=\mathbb{P}igg(rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\geq K_3\,|\,H_0igg)$$
 където $\overline{X}=rac{\sum_{j=1}^n x_j}{n}$.

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \in \mathcal{N}(0, 1) = \mathbb{P}(Z \ge K_3)$$

$$\Rightarrow K_3 = q_{1-\alpha}$$

о.к.о.:
$$\left\{\overline{X} \geq \mu_0 + q_{1-\alpha} \, . \, \frac{\sigma}{\sqrt{n}} \right\}$$

Линейна регресия (Галтон)

Нека a е средния ръст на мъжете.

$$y_{\text{син}} = a + \beta (x_{\text{баша}} - a).$$

Галтон е забелязал, че по неговите данни, коефициента бета е $\beta=0.6$. Тоест, ако бащата е 10 см. над средния ръст, то сина му ще е с 6 см. над средния ръст. Тази по-слаба зависимост е влязла в теорията като регрес (завръщане) към средното. Синовете на високите бащи не са чак толкова високи в средно както бащите им, а са на около половината от отклонението на бащата над средния ръст за мъжете.

Допускаме че в множеството от точки (x_1, x_2, \ldots, x_n) и (y_1, y_2, \ldots, y_n) има някакъв линеен модел. Т.е. предполагаме, че има линеен модел $y_k = b_0 + b_1 x_k + \varepsilon_k$. Тоест имаме някаква права γ (от чертежа). Искаме да си построим линеен модел, а не някакъв друг, за да не рискуваме да интерполираме, тъй като интерполацията няма добра статистическа стойност. Т.е. не е добре да обхванем всички данни с много сложна крива и в момента, в който добавим данни – кривата ни да е твърде динамична и да няма никаква прогнозна сила. Интерполацията може да мине през n точки, но при добавянето на n+1-вата точка – точността на кривата да рухне.

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ in } \overline{Y} = \frac{1}{n} \sum_{k=1}^{n} y_k.$$

Търсим:
$$\min_{b_0, b_1} \sum_{k=1}^n (y_k - \hat{y}_k)^2 = \min_{b_0, b_1} \sum_{k=1}^n (y_k - b_0 - b_1 x_k)^2.$$

(С квадратични грешки се смята по-лесно, а освен това имат и статистическо значение. Въпреки това тук може да имаме най-разнообразни метрики, които искаме да оптимизираме (например абсолютната стойност или максималното отклонение измежду всички възможни отклонения и т.н.))

Искаме да минимизираме функцията по-горе по две променливи. За целта ще си вземем производната по b_0 и тя трябва да бъде нула и аналогично за производната по b_1 :

$$0 = \frac{\partial}{\partial b_0} \sum_{k=1}^{n} (y_k - b_0 - b_1 x_k)^2 = -2 \sum_{k=1}^{n} (y_k - b_0 - b_1 x_k) \Rightarrow$$

$$\Rightarrow \sum_{k=1}^{n} y_k - n b_0 - b_1 \sum_{k=1}^{n} x_k = 0 \Rightarrow n \overline{Y} - n b_0 - n b_1 \overline{X} = 0 \Rightarrow \overline{Y} = b_0 + b_1 \overline{X}$$

$$0 = \frac{\partial}{\partial b_1} \sum_{k=1}^{n} (y_k - b_0 - b_1 x_k)^2 = -2 \sum_{k=1}^{n} (b_0 + b_1 x_k - y_k) x_k \Rightarrow$$

$$\Rightarrow n \overline{X} (\overline{Y} - b_1 \overline{X}) + b_1 \sum_{k=1}^{n} x_k^2 - \sum_{k=1}^{n} x_k y_k$$

$$\begin{cases} b_0 = \overline{Y} - b_1 \overline{X} \\ b_1 = \frac{\sum_{k=1}^{n} x_k y_k - n \overline{Y} \overline{X}}{\sum_{k=1}^{n} (x_k - \overline{X})^2} = \frac{\sum_{k=1}^{n} (y_k - \overline{Y})(x_k - \overline{X})}{\sum_{k=1}^{n} (x_k - \overline{X})^2} \end{cases}$$

$$A = \sum_{k=1}^{n} (X_k - \overline{X})^2$$

$$A = \sum_{k=1}^{n} (X_k - \overline{X})^2$$

Допускаме, че Y_k като отговор на X_k е случайна величина, в смисъл, че съществуват неизвестни коефициенти β_0 , β_1 , които при зададено X_k дават следната линейна зависимост, където ε_k е случайна грешка.

Допускаме, че $Y_k = \beta_0 + \beta_1 X_k + \varepsilon_k$, където $k = \overline{1,n}$.

Правим и следните допускания за епсилон грешките:

 $(arepsilon_i)_{i=1}^n$ са независими еднакво разпределени случайни величини, като $arepsilon_i \in \mathcal{N}(0,\sigma^2)$ хомоскедастичност

Т.е. грешките са нормално разпределени и независими една от друга. Т.е. нямаме системна грешка. Хомоскедастичността е малко по-тежко допускане, но тя придава простота на модела.

$$\begin{split} Y_k &\in \mathcal{N}(\beta_0 + \beta_1 X_k, \, \sigma^2) \\ \begin{cases} \hat{\beta}_0 = b_0 = \overline{Y} - b_1 \overline{X} \\ \hat{\beta}_1 = b_1 = \underbrace{\frac{\sum_{k=1}^n X_k Y_k - n \overline{X} \overline{Y}}{\sum_{k=1}^n X_k^2 - n(\overline{X})^2}}_{(1)} = \underbrace{\frac{\sum_{k=1}^n (Y_k - Y)(X_k - X)}{\sum_{k=1}^n (X_k - \overline{X})^2}}_{(2)} = \underbrace{\frac{\sum_{k=1}^n (X_k - \overline{X}) Y_k}{\sum_{k=1}^n (X_k - \overline{X})^2}}_{(3)} \end{split}$$

 $A = \sum_{k=1}^{n} (X_k - \overline{X})^2$ си остава същото, тъй като е фиксирано число в знаменателя.

$$\mathbb{E}b_{1} \stackrel{(3)}{=} \frac{1}{A} \sum_{k=1}^{n} (X_{k} - \overline{X}) \mathbb{E}Y_{k} = \frac{1}{A} \sum_{k=1}^{n} (X_{k} - \overline{X}) (\beta_{0} - \beta_{1}X_{k}) =$$

$$= \frac{\beta_{0}}{A} \sum_{k=1}^{n} (X_{k} - \overline{X}) + \frac{\beta_{1}}{A} \sum_{k=1}^{n} (X_{k} - \overline{X}) X_{k} = \beta_{1}.$$

Оказва се, че очакването на b_1 е равно на β_1 , което ни казва, че b_1 е неизместена оценка на β_1 .

$$\mathbb{E}b_0 = \mathbb{E}\overline{Y} - \overline{X}\mathbb{E}b_1 = \frac{1}{n}\sum_{k=1}^n Y_k - \beta_1\overline{X} =$$

$$= \frac{1}{n}\sum_{k=1}^n (\beta_0 + \beta_1\overline{X}_k) - \beta_1\overline{X} = \beta_0.$$

И b_0 и b_1 са неизместени оценки на неизвестните парамвтри β_0 и β_1 . По този начин знаем, че нямаме систематична грешка, когато правим тези оценки.

$$\mathbb{D}b_1 \stackrel{(3)}{=} \mathbb{D} \frac{\sum_{k=1}^n (X_1 - \overline{X})Y_k}{A} = \frac{1}{A^2} \sum_{k=1}^n (X_n - \overline{X})^2 \underbrace{\mathbb{D}Y_k}_{\sigma^2} =$$
$$= \sigma^2 \frac{\sum_{k=1}^n (X_n - \overline{X})^2}{A^2} = \frac{\sigma^2}{A}.$$

$$\Rightarrow b_1 = \hat{\beta}_1 \\ \text{оценка} \in \mathcal{N}\bigg(\beta_1, \frac{\sigma^2}{A}\bigg)$$

Това означава, че вече може да тестваме хипотези за b_1 .

За дисперсията на b_0 по същата логика може да докажем, че:

$$\mathbb{D}b_0 = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{A} \right) \Rightarrow b_0 = \hat{\beta}$$
 оценка $\in \mathcal{N}\left(\beta_0, \, \sigma \left(\frac{1}{n} + \frac{\overline{X}^2}{A} \right) \right)$.

Двете дисперсии клонят към нула.

Оценка на σ^2 **(ако не го знаем априорно).** $Y_k \in \mathcal{N}(\beta_0 + \beta_1 X_k, \sigma^2)$. Проблема е, че не знаем β_0 и β_1 , тъй като, ако допуснем, че ги знаем, щяхме да имаме $\frac{Y_k - \beta_0 - \beta_1 X_k}{\sigma^2} \in \mathcal{N}(0,1)$ и тогава

$$\frac{\sum_{k=1}^{n} (Y_k - \beta_0 - \beta_1 X_k)^2}{\sigma^2} \in \mathcal{X}^2(n).$$

Но, ако са ни верни допусканията за модела, тогава:

$$\frac{\sum_{k=1}^n (Y_k - b_0 - b_1 X_k)^2}{\sigma^2} \in \mathcal{X}^2(n-2) \text{ ("изхабили" (използвали) сме две степени на свобода (две данни), за да оценим b_0 и b_1)$$

$$\mathbb{E}\frac{\sum_{k=1}^{n} (Y_k - b_0 - b_1 X_k)^2}{\sigma^2} = n - 2$$

$$\hat{\sigma}^2 = \frac{\sum_{k=1}^n \left(Y_k - b_0 - b_1 X_k\right)^2}{n-2} \text{, т.е. } \sigma^2 = \mathbb{E}\hat{\sigma}^2.$$

Оттук нататък ние може да тестваме хипотези. Може да си конструираме множество хипотези от следния вид:

$$H_0: \beta_1 = \tilde{\beta} \\ H_1: \beta_1 = \tilde{\beta}$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$\dfrac{b_1 - ilde{eta}}{\sqrt{\sigma^2/A}} \in \mathcal{N}(0,1)$$
 при H_0 .