What should you know how to do by the end of this course?

August 23, 2020

1 Lagrangian mechanics (§1-5)

- 1. Write down the Lagrangian for a simple system in terms of generalized coordinates.
- 2. Distinguish generalized coordinates from Cartesian coordinates.
- 3. Write down Lagrange's equations.
- 4. Define the action in terms of the Lagrangian, and derive Lagrange's equations starting from the action.
- 5. Show that Lagrange's equations are unchanged if one adds a total time derivative df(q,t)/dt to L.
- 6. Include holonomic and non-holonomic constraint forces in the Lagrangian formalism by introducing Lagrange multipliers.
- 7. Define and give examples of a closed system, constant external field, and uniform field.

2 Conservation laws (§6-10)

- 1. Show how conservation of energy, momentum, and angular momentum are connected to time translation, space translation, and rotational symmetry.
- 2. Derive the transformation equations for energy, momentum, and angular momentum from one inertial frame K to another K'.
- 3. Write down the general expression for the energy function E.
- 4. Explain what it means for a function to be homogeneous of degree k.
- 5. Write down the expression for the generalized momentum p_i .
- 6. Write down the expression for the center of mass (COM) of a system of particles.
- 7. Write down the virial theorem for a system whose motion takes place in a finite region of space and whose potential energy is a homogoneous function of degree k.

3 Hamiltonian mechanics (§40)

- 1. Write down the Hamiltonian H(p,q,t) for a simple system starting from a Lagrangian $L(q,\dot{q},t)$.
- 2. Write down Hamilton's equations for p_i and q_i .
- 3. Explain the fundamental difference between Hamilton's equations and Lagrange's equations.
- 4. Show the equivalence of Hamilton's equations and Lagrange's equation for simple systems.

4 Central force motion (§11, 13-15)

- 1. Write down an integral expression for t in terms of x for 1-d motion in a constant external field U(x).
- 2. Determine the allowed values of the energy and turning points for 1-d motion in a constant external field.
- 3. Transform the problem of two interacting particles into an effective one-body problem by working in the COM frame.
- 4. Show that both energy and angular momentum are conserved for a central potential.
- 5. Write down an expression for the effective potential $U_{\rm eff}(r)$ in terms of U(r) and ℓ .
- 6. Plot the effective potential for some simple central force potentials.
- 7. From the graph of the effective potential, determine the different types of allowed motion.
- 8. Write down integral expressions for t and ϕ in terms of r for a general central potential.
- 9. Evaluate these two integrals for Kepler's problem for bound orbits, using appropriate trig substitutions.
- 10. Derive the relationship between E, ℓ , a, b, e, and p for an ellipse.
- 11. State the only two central potentials that have closed bound orbits.
- 12. State and derive Kepler's three laws of planetary motion.
- 13. Explain the difference in E and e for elliptical, parabolic, and hyperbolic motion.

5 Collisions and scattering (§16-20)

- 1. Draw diagrams relating velocities in the lab and COM frames for the disintegration of a single particle.
- 2. Draw diagrams relating the momenta in the lab and COM frames for an elastic collision of two particles $(m_2 \text{ initially at rest in the lab frame}).$
- 3. Explain what information can and cannot be obtained for an elastic collison of two particles, using just conservation of momentum and kinetic energy.
- 4. Derive formulas relating the scattering angles χ , θ_1 , θ_2 in the COM and lab frames.
- 5. Draw diagrams showing how the scattering angle χ is related to the angle of closest approach ϕ_0 .
- 6. Relate the impact parameter ρ and initial velocity v_{∞} to the energy E and angular momentum ℓ .
- 7. Derive an integral expression for ϕ_0 and solve it for simple potentials—e.g., $U(r) = \alpha/r$ for Rutherford scattering.
- 8. Write down expressions for $d\sigma$ in terms of $d\rho$, $d\chi$, $d\theta_1$, $d\theta_2$, or $d\Omega$, $d\Omega_1$, $d\Omega_2$.
- 9. Explain how one can obtain an expression for small-angle scattering starting from the integral equation for ϕ_0 .

6 Small oscillations (§21-23)

- 1. Explain what stable equilibrium means in terms of the potential energy U(q).
- 2. Calculate the frequency for small oscillations about a position of stable equilibrium.
- 3. Solve the equations of motion for both free and forced oscillation in one dimension, noting the difference between the general solution of the homogeneous equation and a particular integral of the inhomogeneous equation.
- 4. Calculate the normal mode frequencies and normal mode solutions for small oscillations of systems with more than one DOF.

7 Rigid body motion (§31-36, 38)

- 1. Draw a diagram showing the body frame and fixed inertial reference frame.
- 2. Show that the angular velocity vector is unchanged under a shift of the origin of the body frame.
- 3. Write down an expression for the components I_{ik} of the inertia tensor as a sum over discrete mass points or as an integral over the volume of the body.
- 4. Indicate how the components of the inertia tensor change if you shift the origin of the body frame.
- 5. Obtain or identify the principal axes of inertia for various rigid bodies.
- 6. Calculate the principal moments of inertia for various rigid bodies.
- 7. Calculate the kinetic energy of a rigid body in terms of its COM motion and rotational kinetic energy.
- 8. Write down an expression for the angular momentum vector \mathbf{M} in terms I_{ik} and Ω_i .
- 9. Write down the equations of motion for a rigid body with respect to an inertial frame.
- 10. Derive Euler's equations for rigid body motion (equations of motion in the body frame).
- 11. Draw a diagram showing the definition of the Euler angles (ϕ, θ, ψ) .
- 12. Calculate the components of Ω wrt the body frame in terms of the Euler angles and their time derivatives.
- 13. Solve for the reaction forces for rigid bodies in static equilibrium.

8 Non-inertial reference frames (§39)

- 1. Draw a diagram relating an inertial and non-inertial reference frame.
- 2. Write down the relationship between velocity vectors in inertial and non-inertial reference frames.
- 3. Distinguish non-inertial reference frames associated with translational and rotational motion.
- 4. Derive the Coriolis, centrifugal, translational acceleration, and rotational acceleration fictitious force terms.
- 5. Explain the physical significance of Foucault's pendulum.