THERMODYNAMICS Spring 2023 - CND Core - Credit 2

Date: MARCH 2, 2023

Instructor: Subhadip Mitra

End Examination

Total Marks: 40

Instructions:

Time: 1 H 30 M

- Class notes or books are not permitted. But you may bring one A4 sheet of handwritten material (not photocopy/printed) and a calculator.
- Illegible answers will not be graded. No 'benefit of doubt' because of bad notation/illegible hand-writing etc.
- Q 1. (a) A rigid tank made with a heat insulating material is filled with an ideal gas. It is divided into two unequal parts A & B:

 P_A, T_A, V_A^t P_B, T_B, V_B^t

Find the equilibrium temperature and pressure once the partition is removed (assume C_V is constant).

- Calculate the change in μ for ice at -10° C, with density 917 kg·m⁻³, when the pressure is increased from 1.0 bar to 4.0 bar.
- (c) Why is the Helmholtz energy called the maximum work function? Why it is also called the Helmholtz free energy?
- Show that in PT diagrams, the boundaries between the solid and liquid phases are approximately linear in general. [2+2+(2+1)+3=10] CO: 1,2,3
- Q 2. (a) Consider two systems A & B that are free to exchange heat and particles (slowly):

Show/argue that one of the condition for equilibrium is

$$-T\left(\frac{\partial S_A}{\partial N_A}\right)_{U,V} = -T\left(\frac{\partial S_B}{\partial N_B}\right)_{U,V}$$

where there are N_A and N_B moles of A-types and B-type particles, respectively.

(b) We can generalize the thermodynamic identity to include N-changing processes. Show that the total change in the entropy is given as

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN \quad \Rightarrow \quad dU = TdS - PdV + \mu dN$$

where $\mu = -T \left(\frac{\partial S}{\partial N} \right)_{U,V}$. The μdN term is called chemical work.

- (c) Gibbs energy of the gaseous phase of a substance is more sensitive to a change in temperature than its liquid and solid phases. Explain.
- (a) Show that for a van der Waals gas, $\left(\frac{\partial C_V}{\partial V}\right)_T = 0$. Does this mean C_V is a constant in this case? Hint: For a state function, the order of partial differentiations does not matter.

[2+2+2+(3+1)=10 CO: 1,2,3]

Q 3. Consider a chain of rubber bands of N links (N is large), each of length ℓ . Imagine that each link has only two possible states, pointing either left or right. The total length L of the rubber band is the net displacement from the beginning of the first link to the end of the last link.

(a) Show that the entropy of the configuration with N_R links pointing to the right can be written as

$$S = N \ln \left(\frac{N}{N - N_R} \right) - N_R \ln \left(\frac{N_R}{N - N_R} \right).$$
Hint: $S = k_B \ln [\Omega(N_R)]$ and Stirling's approximation: $\ln(N!) \approx \ln(N) - N$ for large N .

- (b) Rewrite the above expression in terms of L/ℓ .
- (c) For a one-dimensional system such as this, the length L is analogous to the volume V of a three-dimensional system. Similarly, the pressure P is replaced by the tension force F. Taking F to be positive when the chain is pulling inward, write down and explain the appropriate thermodynamic identity (fundamental equation) for this system. Express the tension force F in terms of a partial derivative of the entropy. From this expression, compute the tension in terms of L, T, N, and ℓ .
- (d) Show that when $L/\ell \ll N$, the tension force is directly proportional to L (Hooke's law).

[2+2+4+2=10 CO: 1,2,3]

- (a) Derive the Maxwell relations.
 - (b) How can one measure S(T) S(0) in practice?
 - \bigcirc Prove the Clausius inequality, $dS \ge \frac{\delta Q}{T}$.
 - (d) Prove that when an ideal gas changes adiabatically, $PV^{5/3} = \text{constant}$.
 - (e) What is enthalpy?

[2+2+2+2+2=10] CO: 1.21