同学们好!

§ 9.9 静电场的能量

一. 电容器的能量

储能过程中, 谁在搬运电荷做正功? 电场力吗?

电容器(储能元件)储能多少?

储能 = 极板电荷由零增加到Q过程中电源所做的功。

计算:
$$dA = \Delta u \cdot dq = \frac{q}{C} dq$$

$$A = \int dA = \int_0^{\varrho} \frac{q}{C} dq = \frac{Q^2}{2C}$$

$$W = \frac{Q^2}{2C} = \frac{1}{2}C(\Delta U)^2 = \frac{1}{2}Q\Delta U$$

二. 电场能量

1. 电场能量密度

以平行板电容器为例
$$C = \frac{\mathcal{E}_0 \mathcal{E}_r S}{d}$$
 $\Delta U = Ed$

$$W = \frac{1}{2}C(\Delta U)^2 = \frac{1}{2} \frac{\varepsilon_0 \varepsilon_r S}{d} E^2 d^2 = \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 V$$

$$w_e = \frac{W}{V} = \frac{1}{2}\varepsilon_0 \varepsilon_r E^2 = \frac{1}{2}ED$$

2. 电场能量

$$W = \int_{V} w_{e} dV = \int_{V} \frac{1}{2} E D dV = \int_{V} \frac{1}{2} \varepsilon_{0} \varepsilon_{r} E^{2} dV$$

例:圆柱形电容器 ($a.b.L.\varepsilon_r$)

- 1. 保持与端电压 *V* 的电源连接。将介质层从电容器内拉出,求外力的功。
- 2. 断开电源,将介质层拉出。求外力的功。

要点:

保持与电源连接 V 不变,Q 可变,电源要做功; 断开电源 Q不变, 电源不做功。

解: 原电容: $C = \frac{2\pi\varepsilon_0\varepsilon_r L}{\ln\frac{b}{a}}$

拉出介质层后: $C' = \frac{2\pi\varepsilon_0 L}{\ln\frac{b}{a}} < C$

1) 不断开电源

两板电势差 = 电源端电压 = V 保持不变电容器储能变化:

$$\Delta W = \frac{1}{2}C'V^2 - \frac{1}{2}CV^2 = \frac{V^2}{2}(C' - C) < 0$$

极板电量变化

$$\Delta Q = C'V - CV = (C' - C)V < 0$$

有电荷回流电源, 电源做功:
 $A_{\varepsilon} = V \cdot \Delta Q = V^{2}(C' - C) < 0$

$$A_{\varepsilon} = V \cdot \Delta Q = V^{2} (C' - C) < 0$$

由功能原理:

$$A_{A} + A_{E} = \Delta W$$

$$A_{\beta \uparrow} = \Delta W - A_{\varepsilon} = \frac{V^{2}}{2} (C' - C) - V^{2} (C' - C) = -\frac{1}{2} (C' - C)V^{2}$$

$$= \frac{1}{2} (C - C')V^{2} = \frac{\pi \varepsilon_{0} L}{\ln \frac{b}{a}} (\varepsilon_{r} - 1)V^{2} > 0$$

能量转换过程:

2) 断开电源

极板电量 Q 不变, 电源不做功。电容器储能变化

$$\Delta W = \frac{Q^{2}}{2C'} - \frac{Q^{2}}{2C} = \frac{C^{2}V^{2}}{2} \left(\frac{1}{C'} - \frac{1}{C}\right) > 0$$

由功能原理

$$A_{\beta \uparrow} = \Delta W = \frac{CV^{2}(C - C')}{2C'}$$

$$= \frac{\pi \varepsilon_{0} L}{b} (\varepsilon_{r} - 1)V^{2} > 0$$

$$\ln \frac{b}{a}$$

能量转换过程:

外力做功 —— 电场能增加

思考题: 一平行板电容器插入一块大小与电容器相同的均匀电介质,则 ΔU , E C, Q, D, W 哪些大?哪些变小?哪些不变?

插入电介质	不变量	增大量	减小量
不断开电源	ΔU , E	C,q,D,W	
断开电源	q , D	C	$\Delta U, E, W$

§ 9.10 静电场的能量小结

一、电容器的能量

$$W = \frac{Q^2}{2C} = \frac{1}{2}C(\Delta U)^2 = \frac{1}{2}Q\Delta U$$

二、电场能量

1. 电场能量密度
$$W_e = \frac{W}{V} = \frac{1}{2}\varepsilon_0\varepsilon_r E^2 = \frac{1}{2}ED$$

2. 电场能量
$$W = \int_V w_e dV = \int_V \frac{1}{2} E D dV = \int_V \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 dV$$

§ 9.10 稳恒电场

静电场: 相对于观察者静止的电荷周围的电场

静电感应: 电荷瞬间宏观定向运动

介质极化: 电荷瞬间微观定向运动 了 平衡后电场

性质: 有源

$$\oint_{S} \vec{D} \cdot d\vec{S} = \sum_{(S \nmid 1)} q_{0}$$

电荷宏观定向运动(电流)

稳恒电流 — 稳恒电场

入 只讨论实现 平衡后电场 有势(保守)

$$\oint_{L} \vec{E} \cdot d\vec{l} = 0$$

一、电流和电流密度

1. 电流的形成

传导电流

载流子:自由电子、正负离子...

电场

电流

运流电流

位移电流

电子或宏观带电体在空间的定向机械运动。

传导电流

电流的定义:单位时间通过导线某一截面的电荷量。

$$i = \frac{\mathrm{d}\,q}{\mathrm{d}\,t}$$

单位:安培(A)

aa', bb'及cc'平面处电流相等

$$\dot{i}_0 = \dot{i}_1 + \dot{i}_2$$

稳恒电流的连续性

基尔霍夫结点定律

由金属导电的经典解释(电子的漂移运动)表示通过垂直于 I指向的截面 S 的电流强度:

$$I = \frac{Q}{\Delta t} = \frac{qn S_{\perp} u \Delta t}{\Delta t} = qnu S_{\perp}$$

$$\frac{dI}{dS_{\perp}} = qnu$$

2. 电流密度矢量

$$\vec{j} = \frac{\mathrm{d}I}{\mathrm{d}S_{\perp}} \vec{n}_0 = qn\vec{u}$$

大小:通过与该点 \vec{E} 垂直的单位截面的电流方向:与+q 的漂移运动方向(\vec{E} 方向)相同

分布: 电流线

 $\{$ 其切向即 j 方向 其疏密 $\propto j$ 大小

I 与 \vec{j} 的关系:

$$dI = jdS_{\perp} = jdS\cos\theta = \vec{j} \cdot d\vec{S}$$

$$I = \int_{S} \vec{j} \cdot d\vec{S}$$

通过某截面的电流强度即电流密度矢量 j 通过该面的通量。

3. 稳恒电流条件: 穿过封闭曲面 S的 \vec{j} 通量为零

$$\oint_{S} \vec{j} \cdot d\vec{S} = 0$$

▶ 稳恒电流一定是闭合的,或两端通 向无穷远。(在无穷远处闭合)

$$dI = \vec{j} \cdot d\vec{S} = dQ/dt \qquad \oint_{S} \vec{j} \cdot d\vec{S} = \frac{\sum dQ}{dt} = \frac{d\sum Q}{dt} = 0$$

> 稳恒电流的电场分布不随时间变化。

比较	相同	不同
静电场	<i>Q,Ē</i> 分布不随时间变化高斯定理环路定理适用	$I=0$. 导体内 $\vec{E}=0$ 一经建立,不需能量维持。
稳恒电场		I = 恒量

二. 电源电动势 ——— 稳恒电场的能量来源

电源作用:

提供非静电力 \vec{F}_k ,将 + q由负极板移向正极,保持极板间电势差, 以形成持续的电流。

作用机理:

将其他形式能转变为电能

断路:
$$\vec{F}_k = -\vec{F}_e$$
 时平衡

能量转换

$$\vec{F}_k$$
: 做功如何 ? 非静电场强: $\vec{E}_k = \frac{F_k}{q_0}$

非静电力经内电路搬运单位正电荷做功:

$$\varepsilon = \int_{-}^{+} \vec{E}_k \cdot d\vec{l} > 0$$
 非静电力为非保守力

(经内电路)

更一般形式: $\int_{L} \vec{E}_{k} \cdot d\vec{l}$ 可量度电源将其他形式能 转变为电能的能力大小

定义: 电源电动势

$$\varepsilon = \oint_L \vec{E}_k \cdot d\vec{l}$$

若 \vec{E}_k 只在内电路存在:

$$\varepsilon = \int_{-}^{+} \vec{E}_k \cdot d\vec{l}$$
(经内电路)

规定指向:

练习:

试比较电源路端电压和电源电动势这两个概念

	电源路端电压	电源电动势	
比较	$\Delta U = \int_{+}^{-} \vec{E}_{e} \cdot d\vec{l}$ (经外电路)	$arepsilon=\int\limits_{-}^{+}ec{E}_{k}\cdot ext{d}ec{l}$ (经内电路)	

练习:

单位正电荷从电源正极出发,沿闭合回路一周,又回到电源正极时,下列哪种说法正确?

1) 静电力所做总功为零;

2) 非静电力所做总功为零;

3) 静电力和非静电力做功代数和为零;

4) 在电源内只有非静电力做功,

在外电路只有静电力做功。

三. 欧姆定律与焦耳定律的微分形式(自学)

电流密度
$$\vec{j} = \gamma \vec{E}$$
 热功率密度 $w = \gamma E^2$

 $\left\{ \begin{array}{ll} {
m e}$ 电流的形成及其热效应都是场作用的结果 \vec{j} , w 与 \vec{E} 点点对应.

§ 9.10 稳恒电场小结

一、电流和电流密度

$$\vec{j} = \frac{\mathrm{d}I}{\mathrm{d}S_{\perp}} \vec{n}_0 = qn\vec{u} \qquad I = \int_S \vec{j} \cdot \mathrm{d}\vec{S} \qquad \oint_S \vec{j} \cdot \mathrm{d}\vec{S} = 0$$

二、电源电动势

$$\varepsilon = \oint_L \vec{E}_k \cdot d\vec{l}$$

三、欧姆定律与焦耳定律的微分形式(自学)

电流密度
$$\vec{j} = \gamma \vec{E}$$
 热功率密度 $w = \gamma E^2$