36.
$$f(x) = \frac{\sin(3x)}{x}$$
; $\lim_{x \to 0} \frac{\sin(3x)}{x} = 3$
 $\frac{x \to -1 \to -01 \to -001 \to -0001 \to 0.0001 \to 0.001 \to 0.01 \to 0.01}{\sin(3x)}$
 $\frac{\sin(3x)}{x}$ $\frac{2}{3}$ $\frac{2$

39.
$$\lim_{x \to 1} (1-2x) = -1$$
 $|x| = 1$
 $|x$

49. false.
$$\lim_{x\to 6^+} f(x) = 5 \neq 2 = \lim_{x\to 6^-} f(x)$$
. So $\lim_{x\to 6} f(x) = DNE$.

60. 2

61. DNE

62. -2

63. 2

64. DNE

68. 0

69. O

70. D

71. -2

72. 0

73. DNE

74. -1

75. 0

Problem A:

X	3.9	3.99	3.999	3.9999	4	4.0001	4.001	4.01	4.1
In(x)-In(4)	0.253178	0.2525188	0.25025 0	0.25002500	DNE	0.249975	0.249750	0.2473186	2
X - 4								0.226757	•

$$\lim_{X \to 4} \frac{\ln(x) - \ln(4)}{x - 4} = \frac{1}{4}$$

Problem B.

$$\begin{array}{ccc}
\hline
1 & \lim_{X \to -3^-} \frac{4x}{x+3} = +\infty \\
\end{array}$$

Justification: as $x \rightarrow -3^-$ (#'s like -3.1 or -3.01), $x+3 \rightarrow 0^-$ and $4x \rightarrow -12$ OR a table of values

(a)
$$\lim_{x \to 4^+} \ln(x^2-16) = -\infty$$
.

Problem C:
$$f(x) = \frac{x+2}{x(x-3)}$$
. $x=0$ and $x=3$ make $f(x)$ undefined.

Answer: VA: X=0 and X=3

Justification:
$$\lim_{X\to 0^+} \frac{x+2}{x(x-3)} = -\infty$$
; $\lim_{X\to 0^+} \frac{x+2}{x(x-3)} = +\infty$
So $x=0$ is a VA. So $x=3$ is a V.A.