By: Henrik Vestermark (hve@hvks.com)

Revised: 2021 July 30

Revision History

Revision	Change
Date	
2003/06/25	Initial Release
2007/08/26	Add the Floating point Epsilon function
	Add the ipow() function. Integer raise to the power of an integer
2013/Oct/2	Added new member functionality and expanding the explanation and
	usage of these classes.
2014/Jun/21	Cleaning up the documentation and add method to_int_precision() and
	toString()
2014/Jun/25	Added abs(int_precision) and abs(float_precision)
2014/Jun/28	Updated the description of the interval packages
2016/Nov/13	Added the nroot()
2017/Jan/29	Added the transcendental constant <i>e</i>
2017/Feb/3	Added gcd(), lcm() and two new methods to int_precision(), even() &
	odd()
2019/Jul/22	Added fraction Arithmetic packages.
	Added more examples if usage in Appendix C & D
2019/Jul/30	Added 3 methods to Float_precision: .toFixed(), .toPrecision() &
	.toExponential()
2019/Sep/17	Change the class interface to move the sign out into a separate variable.
	_int_precision_atoi() now also return the sign instead of embedding it into the string
2020/Aug/12	Added Appendix E with compiler information's
2021/Mar/22	Added missing information about Trigonometric functions for complex
	arguments and Hyperbolic functions for complex arguments
2021/Mar/24	Added the float precision operator %, %= (same as the function fmod)
2021/Jul/30	Added more functionality to the interval package e.g. hyperbolic,
	trigonometric functions and interval constants. Fixed some typos in
	complex precision

Table of Contents

Revision History	ii
Table of Contents	
Introduction	
Compiling the source code	
Arbitrary Integer Precision Class	
Usage	
Arithmetic Operations.	
Math Member Functions	
Input/Output (iostream)	
Exceptions	
Mixed Mode Arithmetic	
Class Internals	
Member Functions	
Internal storage handling	
Room for Improvement	
Arbitrary Floating Point Precision	
Usage	
Arithmetic Operations	
Math Member Functions	10
Built-in Constants	11
Input/Output (iostream)	12
Other Member Functions	12
Exceptions	12
Mixed Mode Arithmetic	12
Class Internals	13
Member Functions	13
Miscellaneous operators	14
Rounding modes	14
Precision	15
Internal storage handling	
Room for Improvement	17
Arbitrary Complex Precision Template Class	18
Usage	
Input/Output (iostream)	
Using float_precision With Complex_precision Class Template	
Arbitrary Interval Precision Template Class	21
Usage	
Build-in Interval Constants	
Input/Output (iostream)	
Using float_precision With interval_precision Class Template	
Arbitrary Fraction Precision Template Class	
Usage	25

Table of Contents

Input/Output (iostream)	25
Using int precision With fraction precision Class Template	
Appendix A: Obtaining Arbitrary Precision Math C++ Package	27
Appendix B: Sample Programs	28
Solving an N Degree Polynomial	28
Appendix C: Int precision Example	32
}	32
Appendix D: Fraction Example	33
Appendix E: Compiler info	

Introduction

C++'s data types for integer, single and double precision floating point numbers, and the Standard Template Library (STL) complex class are limited in the amount of numeric precision they provide. The following table shows the range of the standard built-in and complex STL data type values supported by a typical C++ compiler:

Class	Storage Allocation (bytes)	Range
short	2	$-32768 \ge N \le +32767$
unsigned short	2	$0 \le N \le 65535$
int	4	-2147483646 ≥ N ≤2147483647
long	4	-2147483646 ≥ N ≤ +2147483647
unsigned int	4	$0 \le N \le 4294967295$
int64_t	8	-9223372036854775807 ≥ N ≤9223372036854775807
uint64_t	8	$0 \le N \le 18446744073709551615$
float	4	1.175494351E-38 ≤ N ≤ 3.402823466E+38
double	8	$2.2250738585072014E-308 \le N \le 1.7976931348623158E+308$
complex	4 or 8	See float and double

The above numeric precision ranges are adequate for most uses but are inadequate for applications that require either, very large magnitude whole numbers, or very large small and precise real numbers. When an application requires greater numeric magnitude or precision other techniques need to be employed.

The C++ classes described in this manual greatly extend the limited range and precision of C++'s built-in classes:

Class	Usage
int_precision	Whole (integer) numbers
float_precision	Real (floating point) numbers
complex_precision	Complex numbers
interval_precision	Interval arithmetic
fraction_precision	Fraction arithmetic

The two first classes, int_precision and float_precision, support basic arbitrary precision math for integer and floating point (real) numbers and are written as concrete classes. The complex_precision, interval_precision and fraction_precision classes are implemented as template classes which support, int_precision, or float_precision (float_precision is not supported in fraction_precision> objects, as well as the ordinary C++ built in float or double data types.

Both the complex_precision and interval_precision classes can work with each other; therefore, it is possible to create an interval object using a complex_precision objects, or a complex object using interval precision objects. Normally, a

complex_precision and interval_precision objects are built using
float precision objects.

Compiling the source code

The source consists of four header files and one C++ source file:

iprecision.h fprecision.h complexprecision.h intervalprecision.h fractionprecision.h precisioncore.cpp

The header files are used as include statement in your source file and your source file(s) need to be compiled together with precisioncore.cpp which contains the basic C++ code for supporting arbitrary precision.

The source has been tested and compiled under Microsoft Visual C++ 2015 express compiler.

Arbitrary Integer Precision Class

Usage

In order to use the integer precision class the following include statement must be added to the top of the source code file(s) in which arbitrary integer precision is needed:

```
#include "iprecision.h"
```

An arbitrary integer precision number (object) is created (instantiated) by the declaration:

```
int precision myVaribleName;
```

An int_precision object can be initialized in the declaration in a many different ways. The following examples show the supported forms for initialization:

In the same manner, int_precision objects can be also be initialized/modified directly after instantiation. For example:

Arithmetic Operations.

The arbitrary integer precision package supports the flowing C++ integer arithmetic operators: +, -, +, -, /, *, %, <<, >>, +=, -=, *=, /=, %=, <<=, >>=

The following examples are all valid statements:

```
i1=i2;
i1=i2+i3;
i1=i2-i3;
i1=i2*i3;
i1=i2/i3;
i1=i2%i3;
i1=i2<>i3;
```

and i1*=i2; i1-=i2; i1+=i2; i1/=i2; i1%=i2;

> i1<<=i2; i2>>=i1;

Following are examples using the unary ++ (increment), -- (decrement), and - (negation) (including + positive):

The following standard C++ test operators are supported: ==, !=, <, >=

```
if( i1 > i2 )
...
else
...
```

The int_precision package also includes 12 demotion member functions for converting int_precision objects to either char, short, int,long,int64_t, float or double standard C++ data types or the corresponding unsigned integer types.

Note: Overflow or rounding errors can occur.

```
int i;
double d;
int_precision ip1(123);

i=(int)ip1;  // Demote to int. Overflow may occur
d=(double)ip1; // Demote to double. Overflow/rounding may occur
```

Math Member Functions

The following set of public member functions (methods) are accessible for int_precision objects:

```
int_precision
int_precisi
```

Input/Output (iostream)

The C++ standard ostream << operator has been overloaded to support output of int_precision objects. For example:

```
cout << "Arbitrary Precision number:" << i1 << endl;</pre>
```

The int_precision class also has a convert to string member function: int precision itoa(char*)

```
int_precision i1(123);
std::string s;

s=_int_precision_itoa( &i1 );
cout << s.c str();</pre>
```

or the reverse converting string to int_precision via _int_precision_atoi(char *, *sign) e.g.

```
int sign;
i1=_int_precision_atoi( s.c_str(), &sign );
```

The C++ standard istream >> operator has also been overloaded to support input of int precision objects. For example:

```
cin >> i1;
```

Exceptions

The following exceptions can be thrown under the int precision package:

Mixed Mode Arithmetic

Mixed mode arithmetic is supported in the int_precision class. An explicit conversion to an int_precision object can of course be done to avoid any ambiguity for the compiler. For example:

```
int_precision a=2;
a=a+2; // can produces compilation error: ambiguous + operator
a=a+int precision(2); // Compiles OK
```

Be on the watch for ambiguous compiler operator errors!

Class Internals

Most of the int_precision class member functions are implemented as inline functions. This provides the best performance at the sacrifice of increased program size.

The arbitrary precision integer package can store numbers using either RADIX 2, 8, 10, 16 or RADIX 256 (or BASE 256). This allows for a more efficient use of memory and speeds up calculations dramatically. A number stored using BASE 256 uses 2.4 less RADIX digits than compared to the equivalent stored in BASE 10. For example: a number that can be represented with 10 BASE 256 digits requires 24 BASE 10 digits of storage.

Since the arithmetic operations requires between N to N² operations, where N is the number of digits, using BASE 256 speeds up the operations by a factor of 2.4 to 5.7. Although the package is coded to use BASE 256 it can be easily be changed to use BASE 10 radix. (BASE 10 radix is used primary for debugging.) In order to switch to a different internal BASE number, change the const int RADIX statement in iprecision.h

```
From: const int RADIX=BASE_256;
   To: const int RADIX=BASE 10;
```

This arbitrary integer precision package was designed for ease-of-use and transparency rather than speed and code compactness. No doubt there are other arbitrary integer packages in existence with higher performance and requiring less memory resources.

Member Functions

Beside the _int_precision_itoa() method already discussed, the following member functions are also accessible:

Internal storage handling

Now since our arbitrary int_precision numbers can be from two bytes (sign and one digit) to mostly unlimited number of bytes we would need an effective and easy way to handle large amount of data. E.g. when you multiply two 500 digits number you get a 1000

digits number as result. We have cleverly chosen to store number using the STL library string class that automatically expands the string holding the number as needed. That way the storage handling is completely removed from the code since this is automatically handle by the STL string class library. This trick also makes the source code easy to read and comprehend.

Room for Improvement

Absolutely. A number of performances enhancing tricks is implemented and will be improved in future versions. For example, use of Fast Fourier Transform (FFT) math for multiplication, and increasing reliance on the build function for integer arithmetic. When adding numbers (particularly when the internal representation is stored in BASE_256) the numbers can be converted to built-in int's and the int + operator used to add four RADIX 256 digits at one time, and then convert them back to the BASE 256 number.

Arbitrary Floating Point Precision

Usage

In order to use the floating point float_precision class the following include statement must be added to the top of the source code file(s) in which arbitrary floating point precision is needed:

```
#include "fprecision.h"
```

The syntactical format for an arbitrary floating point precision number follows the same syntax as for regular C style single precision floating point (float) numbers:

```
    [sign][sdigit][.[fdigit]][E|e[esign][edigits]]
    sign Leading sign. Either + or – or the leading sign can be omitted
    sdigit Zero or more significant digits
    fdigit Zero or more fraction digits.
    esign Exponent sign, can be either + or – or omitted.
    Edigits One or more exponent decimal digits.
```

Following are examples of valid float precision numbers:

```
+1
1.234
-.234
1.234E+7
-E6
123e-7
```

An arbitrary floating point precision number (object) is created (instantiated) by the declaration:

```
float_precision f;
```

A float_precision object can be initialized at declaration (instantiation) either through its constructor, or by assignment. A float_precision object can be initialized with a ordinary C++ built-in int, float, double, char, string data type, or even another float precision. For example:

Initialization with the constructor also allows precision (number of significant digits) and a rounding mode to be specified. If no precision or rounding mode is specified the default precision value of 20 significant digits, and a rounding mode of *nearest* (the default behavior according to IEEE 754 floating point standard) is used.

For example, to initialize two float_precision objects, one to 8 and the other to 4 significant digits of precision, the declarations would be:

```
float_precision f1(0,8); // Initialized to 0, with 8 digits float precision f2("9.87654",4);
```

In the above example, £2 is initialized to 9.877 because only four digits of significance had been specified. Please note that the initialization value of 9.87654 is rounded to nearest 4th digit. The precision specification, or default precision has precedence over the precision of the expressed value being used to initialize a float_precision object. This behavior is consistent with standard C. For example: in the following a declaration...

```
int i=9.87654;
```

the variable i is initialized to the integer value of 9 in C.

In a declaration that uses the float_precision constructor a rounding mode can also be given. Default rounding mode is "round to nearest" (i.e. ROUND_NEAR). However, "round up" or "round down" or "round towards zero" behaviors are also possible. See *Floating Point Precision Internals* for an explanation of rounding modes.

Here are some examples of various rounding mode behaviors.

```
float_precision PI("3.141593", 4, ROUND_NEAR); //3.142 default float_precision PI("3.141593", 4, ROUND_UP); //3.142 float_precision PI("3.141593", 4, ROUND_DOWN); //3.141 float_precision PI("3.141593", 4, ROUND_ZERO); //3.141 float_precision negPI("-3.141593", 4, ROUND_NEAR); //-3.142 default float_precision negPI("-3.141593", 4, ROUND_UP); //-3.141 float_precision negPI("-3.141593", 4, ROUND_DOWN); //-3.142 float_precision negPI("-3.141593", 4, ROUND_DOWN); //-3.141
```

Arithmetic Operations

The following C/C++ arithmetic operators are supported in fprecision package: +, -, *, /, % and the unary version of + and -. Plus all the assign operators e.g. +=,-=,*=,/=,%=

For example:

Truncation will occur if £1 exceeds the value of the integer or the double.

Math Member Functions

The following set of public member functions (methods) are accessible for float precision objects:

```
float precision log( float precision );
float precision log10 (float precision);
float precision exp(float precision);
float_precision sqrt( float_precision );
float_precision pow( float_precision, float_precision );
float precision nroot( float precision, int );
float precision fmod( float precision, float precision );
float precision floor( float precision );
float precision ceil(float precision);
float precision modf( float precision, float precision );
float_precision abs( float_precision );
float precision fabs( float precision ); // Same as abs()
float precision frexp( float precision, int* );
float precision ldexp( float precision, int );
// Trigonometric functions
float_precision sin( float_precision );
float_precision cos( float_precision );
float_precision tan( float_precision );
float precision asin( float precision );
float precision acos (float precision);
float precision atan( float precision );
float precision atan2( float precision, float precision );
// Hyperbolic functions
float precision sinh( float precision );
float precision acosh (float precision);
```

```
float precision atanh( float precision );
```

Theses function returns the result in the same precision as the argument. E.g.

```
float_precision f1(0.5,10),f2(0.5,200),f3(0.5,300); \sin(f1); // return \sin(0.5) with 10 digits precision \sin(f2); // return \sin(0.5) with 200 digits precision \sin(f3); // return \sin(0.5) with 300 digits precision
```

Built-in Constants

The fprecision package also provides three 'constants':

Constant	Description
_PI	One half the ratio of a circle's circumference to its radius
_LN2	Natural logarithm base e of 2
_LN10	Natural logarithm base e of 10
_EXP1	e

These are not true C++ constants, but are variables that can be created with varying degrees of precision. In order to use one of these constants, a call must be made to the member function _float_table() to calculate (initialize) the constant to the requested precision.

The _float_table() member function remembers the most precise constant's precision calculation and if a subsequent call requests equal or less precision the constant will be truncated and rounded to the requested precision. When more precision is requested a new calculation of the constant is preformed and stored.

Example usage:

Input/Output (iostream)

The C++ standard ostream << and istream >> operators have been overloaded to support output and input of float precision objects. For example:

```
cout << fp1 << endl;
cin >> fp1 >> fp2; // Input two float precision numbers
```

Other Member Functions

The following set of public member functions (methods) are accessible for float precision objects:

```
// float_precision to String
string _float_precision_ftoa(float_precision *);

// float_precision to String integer
string _float_precision_ftoainteger(float_precision *);

// String to float_precision
float_precision _float_precision_atof(char * int int);

// Double to float_precision
float_precision _float_precision_dtof(double,int,int);
```

Exceptions

The following exceptions can be thrown under the float precision package:

Mixed Mode Arithmetic

Mixed mode arithmetic is not supported in the fprecision package. An explicit conversion to a float precision object is required. For example:

```
a=a+float precision(2); // Compiles OK
```

Note: Be on the watch for ambiguous compiler operator errors!

Class Internals

A float_precision number is stored internally using the decimal BASE 10 RADIX or BASE 256. The const FRADIX control whether you are working in BASE_10 or BASE_256. A number stored in BASE_256 require 2.4 less digits compared to a number stored in BASE 10. However the drawbacks for internally working in BASE 256 are that conversion to and from BASE 256 is pretty time consuming.

A float_precision value is stored normalized, that is, one decimal digit before the fraction sign followed by an arbitrary number of fraction digits. Also, a normalized number is stripped of non-significant zero digits. This makes working and comparing floating point precision numbers easier.

The exponent is stored using a standard C integer variable. This is a short cut and limits the range for an exponent to $10^{+2147483647}$ through $10^{-2147483646}$. This should be more than adequate under most usages.

Member Functions

Several class public member functions are available:

```
get mantissa()
                     // Return a copy of the mantissa as a class string
                     // Return a pointer to the mantissa as a class
ref mantissa()
                    //(string *) object.
                    // Return rounding mode
mode(RoundingMode)// Set and return rounding mode
exponent() // Return the exponent as a base of RADIX
exponent(exp) // Set and return the exponent as a base of RADIX sign() // Return the sign of the float_precision variable sign(sg) // Set the sign of the float_precision variable precision() // Return the current precision of the number. Num
                    // Return the sign of the float precision variable
                    // Return the current precision of the number. Number
                    // of digits
precision(prec)
                    // Set and return precision. The number is rounding
                    // to precision based on rounding mode.
change_sign()
epsilon()
toString()
                    // Change sign of the float precision variable
                    // Return the epsilon where 1.0+epsilon!=1.0
                    // Convert float precision to string
toString()
to int precision()// Convert a float precision to int precision
toFixed() // Convert float precision to string using Fixed
                    representation. Same as Javascript counterpart
toPrecision()
                    // Convert float precision to string using Precision
                     representation. Same as Javascript counterpart
toExponential()
                    // Convert float precision to string using
                     Exponential representation. Same as Javascript
                     counterpart
```

There is also a member function to convert the internal representation of a float precision number to a C++ string object.

```
string float precision ftoa(float precision);
```

The _float_precision_ftoa() member function is the only safe way to convert a float precision object without losing precision. For example:

```
float_precision f("1.345E+678");
std::string s;

s=_float_precision_ftoa(f);
cout<<s.c str()<<endl;</pre>
```

The output from the above code fragment would be:

```
+1.345E+678
```

Miscellaneous operators

Standard casting operators are also supported between float_precision and int_precision and all the base types.

```
(char)
                // Convert to char. Overflow or rounding may occur
(short)
               // Convert to short. Overflow or rounding may occur
(int)
               // Convert to int. Overflow or rounding may occur
(long)
               // Convert to long. Overflow or rounding may occur
(unsigned char) // Convert to unsigned char. Overflow may occur
(unsigned short) // Convert to unsigned short. Overflow may occur
(unsigned int) // Convert to unsigned int. Overflow may occur
(unsigned long) // Convert to unsigned long. Overflow may occur
(float)
               // Convert to float. Overflow or rounding may occur
(double)
               // Convert to double. Overflow or rounding may occur
(int precision) // Convert to int precision. Overflow may occur
```

However sometimes it creates an ambiguity among different compiles, so it is safer to use a method instead.

Rounding modes

To each declared float_precision number has a rounding mode. The fprecision package supports the four IEEE 754 rounding modes:

IEEE 754 Rounding Mode	Rounding Result
to nearest	Rounded result is the closest to the infinitely precise result.
down	Rounded result is close to but no greater than the infinitely precise
(toward -·)	result.
up	Rounded result is close to but no less than the infinitely precise result.
(toward +·)	

toward zero	Rounded result is close to but no greater in absolute value than the
(Truncate)	infinitely precise result.

The round up and round down modes are known as *directed rounding* and can be used to implement interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multi-step computation, when the intermediate results of the computation are subject to rounding.

The round *toward zero* mode (sometimes called the "chop" mode) is commonly used when performing integer arithmetic.

The member function that controls rounding of float_precision objects is named mode. The mode member function has two (overloaded) forms: one to set the round mode of a float precision object, and one to return the current rounding mode. For example:

Valid mode settings defined in fprecision.h are:

```
ROUND_NEAR
ROUND_UP
ROUND_DOWN
ROUND_ZERO
```

Precision

Each declared float_precision object has its own precision setting. float_precision objects of different precisions can be used within the same statement involving a calculation, however, it is the precision of the L-value that defines the precision for the calculation result.

For example:

Note: When using a float_precision object with any assignment statement (=, +=, -=, *=, /=, etc) the left-hand side precision and rounding mode are never changed. However, there is a circumstance when a float_precision object can inherent the precision and rounding properties: when a float_precision object is declared.

For example:

```
float_precision f1(1.0, 12, ROUND_UP);
float_precision f2(f1);
float_precision f3=f1;
```

f1 is assigned an initial value of 1.0000000000, (12-digit precision).

- £2 inherits the precision and rounding mode from £1.
- £3 does not inherent the precision and round of £1. This is a simple assignment; £3's precision and rounding mode are set to the default values of 20 digits and round nearest.

Precision and rounding mode can be changed at any time using the member function for setting precision and rounding modes. For example:

When performing arithmetic operations the interim result can be of a higher precision than the objects involved. For example:

- + Operation is performed using the highest precision of the two operands
- Operation is performed using the highest precision of the two operands
- * Operation is performed using the highest precision of the two operands
- / Operation is performed using the highest precision of the two operands+1

When the interim result is stored the result is rounded to the precision of the left hand side using the rounding mode of the stored variable.

The extra digit of precision for division insures accurate calculation. Assuming we did not add the extra digit of precision an operation like:

```
float_precision c1(1,4), c3(3,4), result(0,4);
result=(c1/c3)*c3; // Yields 0.999
```

Where the interim division yields: 0.333

By adding an extra "guard" digit of precision for division the result is more accurate.

```
result=(c1/c3)*c3; // Yields 1.000
```

The interim result of the division is 0.3333, which when multiplied by 3 gives the interim result of 0.9999 (5 digit precision). Now when rounded to 4 digits precision the result is stored as 1.000!

Internal storage handling

Now since our arbitrary float_precision numbers can be from a few bytes to mostly unlimited number of bytes we would need an effective and easy way to handle large amount of data. E.g. when you multiply two 500 digits number you get an interim result of 1000 digits number. We have cleverly chosen to store number using the STL library String class that automatically expands the String holding the number as needed. That way the storage handling is completely removed from the code since this is automatically handle by the STL String class library. This trick also makes the source code easy to read and comprehend.

Room for Improvement

Absolutely and it will continue. Example lately we added a more optimized handling of elementary functions more aggressively using argument reduction. See the Math behind Arbitrary precision.

Arbitrary Complex Precision Template Class

Usage

Due to the way the C++ Standard Library template <code>complex</code> class is written, it only supports <code>float</code>, <code>double</code> or <code>long</code> double build-in C++ types. The Arbitrary Precision Package "complexprecision.h" header file included in this package is also written as a template class, but it supports <code>int_precision</code> and <code>float_precision</code> classes, as well as the standard C++ built-in types.

Converting from the C++ Standard Library complex class to the <code>complex_precision¹</code> class is accomplished simply by replacing all occurrences of <code>complex<ObjectName></code> with <code>complex_precision<ObjectName></code>.

Besides the traditional C operators like:

the following complex precision member functions are available:

Member	Description
Function	
real()	Return real component
imag()	Return imaginary component
norm()	Returns real*real+imaginary*imaginary
abs()	Returnsqrt of norm()
arg()	Return radian angle: atan2(real, imaginary)
conj()	Conjugation: complex_precision(real,-imaginary)
exp()	e raised to a power
log()	Base E Logarithm
log10()	Base 10 Logarithm
pow()	Raise to a power
sqrt()	Square root
sin()	Sine of a complex number
cos()	Cosine of a complex number
tan()	Tangent of a complex number
asin()	Arc Sine of a complex number
acos()	Arc Cosine of a complex number
atan()	Arc Tangent of a complex number
sinh()	Hyperbolic Sine of a complex number
cosh()	Hyperbolic Cosine of a complex number
tanh()	Hyperbolic Tangent of a complex number

¹ Actually it is misleading to call it class since complex_precision is a template class and it knows nothing about arbitrary precision. The name complex_precision is used to be consistent with the naming convention used with the other Arbitrary Precision Math packages.

18

asinh()	Hyperbolic Arc Sine of a complex number
acosh()	Hyperbolic Arc Cosine of a complex number
atanh()	Hyperbolic Arc Tangent of a complex number

Input/Output (iostream)

The C++ standard ostream << and istream >> operators have been overloaded to support output and input of complex precision objects. For example:

The ostream >> operator always outputs a complex number (object) in the following format:

```
(realpart, imagpart)
```

The istream >> operator provides the ability to read a complex precision number in one of the following standard C++ formats:

```
(realpart, imagpart)
(realpart)
realpart
```

Using float_precision With Complex_precision Class Template

When a complex_precision object is created with float_precision objects the default rounding mode and precision attributes for float_precision objects are used; it is not possible to specify either the rounding or precision attributes of the float_precision components in a simple complex_precision declaration. However, it is possible to change the rounding mode and precision attributes of a complex_precision object float_precision components after its assignment by using the two public member functions:

Member Function	Description
ref_real()	Returns a pointer to the real component
ref_imag()	Returns a pointer to the imaginary component

Below is an example showing how to change the precision and rounding mode of a float_precision real component:

```
complex_precision<float_precision> cfp;
float_precision *fp;
```

Note: It's poor programming practice to use different precision and rounding modes for the real part or the imaginary parts of a complex number.

If possible, <code>complex_precision</code> objects should be instantiated using a <code>float_precision</code> object for initialization. This will cause the <code>complex_precision</code> object components to inherit precision and round mode of the initialization object. For example:

Arbitrary Interval Precision Template Class

Usage

The interval_precision² class works with all C++ built-in types and concrete classes like the complex precision.

interval_precision<float_precision>itfp;
or
interval precision<int precision> itip;

Besides the traditional C operators like:

the following interval precision public member functions are available:

Member	Description
Function	
upper()	Return the upper limit of interval
lower()	Return the lower limit of interval
center()	Return the center of interval
radius()	Return the radius of interval
width()	Return the width of interval
contain()	Return true if the interval is contained in another interval
contains_zero()	Return true if 0 is within the interval
is_empty()	Return true if the interval is empty. lower > upper
is_class()	Return classification of the interval. ZERO, POSITIVE,
	NEGATIVE, MIXED

the following math interval precision member functions are available:

Member	Description
Function	
abs()	Return the absolute value of the interval
acos()	Arc Cosine of an interval number
acosh()	Hyperbolic Arc Cosine of an interval number
asin()	Arc Sine of an interval number
asinh()	Hyperbolic Arc Sine of an interval number
atan()	Arc Tangent of an interval number
atanh()	Hyperbolic Arc Tangent of an interval number

² Actually it is misleading to call interval_precision a class since it does not known anything about arbitrary precision. The name interval_precision is used to be consistent with the naming convention used by the other Arbitrary Precision Math packages.

21

cos()	Cosine of an interval number
cosh()	Hyperbolic Cosine of an interval number
exp()	e raised to a power
interior()	Return true of interval a in an interior of interval b
<pre>intersection()</pre>	Intersection of two intervals
log()	Base E Logarithm
log10()	Base 10 Logarithm
pow()	Raise to a power
precedes()	Return true if interval a precedes interval b
sin()	Sine of an interval number
sinh()	Hyperbolic Sine of an interval number
sqrt()	Square root
tan()	Tangent of an interval number
tanh()	Hyperbolic Tangent of an interval number
unionsection()	Union of two intervals

Build-in Interval Constants

The following manifest constant are included for interval<double>:

```
static const interval<double> PI(3.1415926535897931, 3.1415926535897936);
static const interval<double> LN2(0.69314718055994529, 0.69314718055994540);
static const interval<double> LN10(2.3025850929940455, 2.3025850929940459);
static const interval<double> E(2.7182818284590451, 2.7182818284590455);
static const interval<double> SQRT2(1.4142135623730947, 1.4142135623730951);
```

since interval<float> is seldom used there is corresponding functions to convert above interval constant to interval<float> :

```
inline interval<float> int_pifloat();
inline interval<float> int_ln2float();
inline interval<float> int_ln10float();
```

and for interval<float_precision> where the actual precision of the float_precision needs to be taken into account as a parameter to these functions:

```
inline interval<float_precision> int_pi(const unsigned int);
inline interval<float_precision> int_ln2(const unsigned int);
inline interval<float_precision> int_ln10(const unsigned int);
```

Input/Output (iostream)

The C++ standard ostream << and istream >> operators have been overloaded to support output and input of interval_precision objects. For example:

```
cout << ifp1 << std::endl;
cin >> ifp1 >> ifp2; // Input two interval_precision numbers
```

```
// separated by white space
```

The >> istream operator provides the ability to read an interval_precision object in the following standard C++ format:

```
[lowerpart,upperpart]
```

The >> ostream operator writes an interval precision object in the following format:

```
[lowerpart, upperpart]
```

Using float precision With interval precision Class Template

When an interval_precision object is created with float_precision objects the default rounding mode and precision attributes for float_precision objects are used; it is not possible to specify either the rounding or precision attributes of the float_precision components in a simple interval_precision declaration. However, it is possible to change the rounding mode and precision attributes of an interval_precision object's float_precision components after its assignment by using the two public member functions:

Member Function	Description
ref_lower()	Returns a pointer to the lower limit component
ref_upper()	Returns a pointer to the upper limit component

Below is an example showing how to change the precision and rounding mode of a float_precision component:

Note. It is poor programming practice to use different precision and rounding modes for the lower and upper part of an interval number.

If possible, interval_precision objects should be instantiated using a float_precision object for initialization. This will cause the interval_precision object components to inherit precision and round mode of the initialization object. For example:

float_precision fp=ifp.upper(); // Does NOT inherit the precision & rounding mode

fp=ifp2.lower(); // Does NOT inherit the precision and round mode

Arbitrary Fraction Precision Template Class

Usage

The fraction_precision⁴ class works with all C++ built-in types and the concrete classes int precision.

```
fraction_precision<int>fint;
or
fraction precision<int precision> fip;
```

Besides the traditional C operators like:

```
+, -, /, *, ++, --, =, !=, +=, -=, *=, /=
```

the following fraction_precision public member functions are available:

Member	Description
Function	
numerator()	Set or return the numerator of the fraction
denominator()	Set or return the denominator of the fraction
whole()	Return the whole number of the fraction. E.g. 8/3 is return as
	2
reduce()	Reduce and Return the whole number of the fraction
normalize()	Normalize the fraction to standard format
abs()	Returns the absolute value of the fraction
inverse()	Swap the numerator and the denominator. Any negative sign
	is maintained in the numerator

the following math fraction_precision member functions are available:

Member Function	Description
gcd()	Greatest common divisor of 2 numbers
lcm()	Least Common multiplier of two numbers

Input/Output (iostream)

The C++ standard ostream << and istream >> operators have been overloaded to support output and input of fraction precision objects. For example:

The >> istream operator input format for a fraction is numerator '/' denominator, where the slash '/' is the delimiter between numerator and denominator.

The >> ostream operator writes an interval precision object in the following format:

Numerator/Denominator

Using int precision With fraction precision Class Template

Like all the build in data types in C++, e.g. from char, short, int, long, int64_t and the corresponding unsigned version you can also use the int_precision class extended the fraction to arbitrary precision.

Internal format of the fraction_precision template class is stored in two variable n (for the numerator) and d for the denominator. Regardless of how it is initialized the fraction is always normalized, meaning there is only one minus sign if any in the fraction and the minus sign if any is always stored in the numerator.

```
e.g. fraction_precision<int> fp1(1,1) // internal n=1, d=1 fraction_precision<int> fp2(-1,1) // internal n=-1,d=1
```

fraction_precision<int> fp3(1,-1) // internal n=-1,d=1. The sign is automatically moved to the numerator

fraction_precision<int> fp4(-1,-1) // internal n=1,d=1. The two negative sign is cancelling out

If an interim arithmetic calculation result in a negative denominator it is automatically merged with the sign of the numerator as shown above in the process of normalizing the fraction. Furthermore, the fraction is always stored as the minimal representation where the greatest common divisor is automatically divided up in both the numerator and the denominator. This limit the possible of overflow in a base type like <int>. For int_precision it is not strictly necessary but done to stored the fraction in the least possible number of digits.

```
e.g.
```

```
fraction_precision<int> fp1(10,5) // After normalization it is stored as 2/1 fraction_precision<int> fp1(-1,9) // After normalization it is stored as -1/3
```

Appendix A: Obtaining Arbitrary Precision Math C++ Package

The complete package (Precision.zip) containing the arbitrary precision classes (C++ header files and documentation) for arbitrary integer, floating point, complex and interval math can be down loaded from the following web site:

http://www.hvks.com/Numerical/arbitrary precision.html

Appendix B: Sample Programs

Solving an N Degree Polynomial

The following sample C++ code demonstrates the use of the float_precision class and complex_precision class template to find every (real and imaginary) solution of an N degree polynomial equation using Newton's (Madsen) method.

```
****************
                    Copyright (c) 2002
                    Future Team Aps
                    Denmark
                    All Rights Reserved
   This source file is subject to the terms and conditions of the
   Future Team Software License Agreement that restricts the manner
   in which it may be used.
 ******************
*****
* Module name : Newcprecision.cpp * Module ID Nbr :
* Description : Solve n degree polynomial using Newton's (Madsen) method
* Change Record :
* Version Author/Date
                          Description of changes
                          Initial release
* 01.01 HVE/030331
* End of Change Record
/* define version string */
static char VNEWR [] = "@(#)newc.cpp 01.01 -- Copyright (C) Future Team Aps";
#include "stdafx.h"
#include <malloc.h>
#include <time.h>
#include <float.h>
#include <iostream.h>
#include <math.h>
#include "fprecision.h"
#include "complexprecision.h"
#define fp float precision
#define cmplx complex precision
using namespace std;
#define MAXITER 50
static float precision feval(const register int n,const cmplx<fp> a[],const cmplx<fp> z,cmplx<fp> *fz)
```

```
cmplx<fp> fval;
  fval = a[ 0 ];
  for ( register int i = 1; i \le n; i++)
     fval = fval * z + a[ i ];
  *fz = fval;
  return fval.real() * fval.real() + fval.imag() * fval.imag();
static float precision startpoint( const register int n, const cmplx<fp> a[] )
  float precision r, min, u;
  r = log(abs(a[n]));
  min = exp((r - log(abs(a[0])))) / float precision(n));
  for (register int i = 1; i < n; i++)
     if( a[ i ] != cmplx<fp>( float precision( 0 ), float precision( 0 ) ) )
        u = exp((r - log(abs(a[i])))) / float precision(n - i));
        if(u < min)
           min = u;
  return min;
static void quadratic( const register int n, const cmplx<fp> a[], cmplx<double> res[])
  cmplx<fp> v;
  if(n == 1)
     v = -a[1]/a[0];
     res[ 1 ] = cmplx<double>( (double)v.real(), (double)v.imag() );
  else
     if( a[1] == cmplx < fp > (0))
        v = -a[2]/a[0];
        v = sqrt(v);
        res[ 1 ] = cmplx<double>( (double)v.real(), (double)v.imag() );
res[ 2 ] = -res[ 1 ];
     else
        v = sqrt( cmplx < fp > (1) - cmplx < fp > (4) * a[0] * a[2] / (a[1] * a[1]));
        if( v.real() < float precision( 0 ) )</pre>
           v = (cmplx < fp > (-1, 0) - v) * a[1] / (cmplx < fp > (2) * a[0]);
           res[ 1 ] = cmplx<double>( (double)v.real(), (double)v.imag() );
        else
           v = ( cmplx<fp>( -1, 0 ) + v ) * a[ 1 ] / ( cmplx<fp>( 2 ) * a[ 0 ] );
           res[ 1 ] = cmplx<double>( (double)v.real(), (double)v.imaq() );
        v = a[2] / (a[0] * cmplx < fp > (res[1].real(), res[1].imag()));
        res[2] = cmplx<double>( (double)v.real(), (double)v.imag() );
  }
// Find all root of a polynomial of n degree with complex coefficient using the
// modified Newton
int complex newton( register int n, cmplx<double> coeff[], cmplx<double> res[] )
```

```
int itercnt, stage1, err, i;
  cmplx<fp> *a1, *a;
  err = 0;
  a = new cmplx < fp > [n + 1];
   for( i = 0; i <= n; i++ )
          a[i] = cmplx<fp> ( coeff[i]. real(), coeff[i].imag() );
  for(; a[n] == cmplx < fp > (0, 0); n--)
     res[n] = 0;
  a1 = new cmplx < fp > [n];
  for(; n > 2; n--)
     // Calculate coefficients of f'(x)
     for( i = 0; i < n; i++)
        a1[i] = a[i] * cmplx<fp> ( float precision( n - i ), float precision( 0 ) );
     u = startpoint(n, a);
     z0 = float precision(0);
     ff = f0 = a[n].real() * a[n].real() + a[n].imag() * a[n].imag();
     f0z = a[n - 1];
     if( a[n-1] == cmplx < fp > (0))
       z = float_precision(1);
     else
        z = -a[n] / a[n-1];
     dz = z = z / cmplx < fp > (abs(z)) * cmplx < fp > (u / float precision(2));
     f = feval(n, a, z, &fz);
     r0 = float_precision( 2.5 ) * u;
     eps = float precision(4 * n * n) * f0 * float precision(pow(10, -20 * 2.0));
     // Start iteration
     for( itercnt = 0; z + dz != z && f > eps && itercnt < MAXITER; itercnt++)</pre>
        f1 = feval(n - 1, a1, z, &f1z);
        if( f1 == float_precision( 0 ) )
           dz *= cmplx < fp > (0.6, 0.8) * cmplx < fp > (5.0);
           float precision wsq;
           cmplx<fp> wz;
           dz = fz / f1z;
           wz = (f0z - f1z) / (z0 - z);
           wsq = wz.real() * wz.real() + wz.imag() * wz.imag();
           stage1 = ( wsq/f1 > f1/f/float_precision(4) ) || ( f != ff );
           r = abs(dz);
           if(r > r0)
             {
              dz *= cmplx<fp>( 0.6, 0.8 ) * cmplx<fp>( r0 / r );
              r0 = float precision(5) * r;
        z0 = z;
        f0 = f;
        f0z = f1z;
iter2:
        z = z0 - dz;
        ff = f = feval(n, a, z, &fz);
        if ( stage1 )
           { // Try multiple steps or shorten steps depending of f is an improvement or not
           int div2;
           float precision fn;
           cmplx<fp> zn, fzn;
           zn = z;
```

```
for( i = 1, div2 = f > f0; i \le n; i++)
            if( div2 != 0 )
               { // Shorten steps
               dz *= cmplx < fp > ( 0.5 );
               zn = z0 - dz;
            else
               zn -= dz; // try another step in the same direction
            fn = feval( n, a, zn, &fzn );
            if(fn >= f)
               break; // Break if no improvement
            f = fn;
            fz = fzn;
            z = zn;
            if( div2 != 0 && i == 2 )
               {// To many shortensteps try another direction
               dz *= cmplx<fp>( 0.6, 0.8 );
               z = z0 - dz;
               f = feval( n, a, z, &fz );
               break;
            }
      if( float_precision( r ) < abs( z ) * float_precision( pow( 2.0, -26.0 ) ) && f >= f0 )
         z = z0;
         dz *= cmplx < fp > ( 0.3, 0.4 );
         if (z + dz != z)
           goto iter2;
   if( itercnt >= MAXITER )
      err--;
   z0 = cmplx < fp > (z.real(), 0.0);
   if( feval( n, a, z0, &fz ) <= f )
     z = z0;
   z0 = float precision(0);
   for( register int j = 0; j < n; j++ )
z0 = a[ j ] = z0 * z + a[ j ];
   res[ n ] = cmplx<double> ( (double) z.real(), (double) z.imag() );
quadratic( n, a, res );
delete [] a1;
delete [] a;
return( err ); }
```

Appendix C: Int precision Example

This example illustrates the use and mix of int_precision with standard types like int. It calculate digits number of π and returned it as a std::string.

```
std::string unbounded_pi(const int digits)
      const int_precision c1(1), c4(4), c7(7), c10(10), c3(3), c2(2);
      int_precision q(1), r(0), t(1);
      unsigned k = 1, 1 = 3, n = 3, nn;
      int precision nr;
      bool first = true;
      int i,j;
      std::string ss = "";
      for(i=0,j=0;i<digits;++j)</pre>
              if ((c4*q + r - t) < n*t)
                     ss += (n + '0');
                     i++;
                     if (first == true)
                            ss += ".";
                            first = false;
                     nr = c10*(r - (n*t));
                     n = (int)((c3*q + r) / t) - n;
                     q *= c10;
                     r = nr;
              else {
                     nr = (c2*q + r)*int_precision(1);
                     nn = (q*(int\_precision)(7*k) + c2 + r*l) / (t*l);
                     q *= k;
                     t *= 1;
                     1 += 2;
                     k += 1;
                     n = nn;
                     r = nr;
       return ss;
```

Appendix D: Fraction Example

Lambert expression for π is dating back to 1770.

Lambert found the continued fraction below that yields 2 significant digits of π for every 3 terms.

$$\pi = \frac{4}{1 + \frac{1^2}{3 + \frac{2^2}{5 + \frac{3^3}{7 + \frac{4^4}{9 + \cdots}}}}}$$

When running it will produce the following output:

C:\Users\henrik vestermark\Documents\HVE\CI\Precision3\Debug\Precision3.exe

```
Start of Lambert PI. (First 8 iterations)

1: +3/+1 = 3 Error: -0.141593

2: +28/+9 = 3.11111 Error: -0.0304815

3: +1972/+627 = 3.14514 Error: 0.00354291

4: +1409008/+448557 = 3.1412 Error: -0.000390978

5: +642832772/+204617505 = 3.14163 Error: 3.87137e-05

6: +620973746437/+197662271090 = 3.14159 Error: -2.99658e-06

7: +21256237030334666/+6766070335136595 = 3.14159 Error: 2.53911e-08

8: +29359991221904052211456/+9345575277160084385045 = 3.14159 Error: 6.28755e-08

end of Lambert PI
```

Appendix E: Compiler info

This package has been developed and tested under the Microsoft visual studio version 2015 both in a 32 bit and 64 bit environment.

Furthermore, it has been tested with GNU compiler in a 32 bit environment with Code::Blocks 20.03. In the latest version, all of the GNU warnings messages has been fixed so it should compile clean in this environment to.

Additionaly, Thanks to Robert McInnes that successfully ported this packages to the Xcode C++ environment on a Mac.

In a 32 bit environment the max precision is 2^{32} -1 or number of arbitrary digits it can handle, however most likely you will run into Operative system depends constraint long before the theoretical limit. In a 64 bit environment the max precision would be 2^{64} -1