อนุพันธ์ระบุทิศทาง

ดร. รัฐพรหม พรหมคำ

แคลคูลัสสำหรับวิศวกร 2

เกรเดียนต์

บทนิยาม

กำหนดให้ $z=f\!\left(x,y\right)$ เราจะนิยาม **เกรเดียนต์ของ** f โดยเวกเตอร์

$$\nabla f = \langle f_x, f_y \rangle = f_x \vec{\mathbf{I}} + f_y \vec{\mathbf{J}}$$

บทนิยาม

กำหนดให้ $z=f\!(x,y,z)$ เราจะนิยาม **เกรเดียนต์ของ** f โดยเวกเตอร์

$$\nabla f = \langle f_x, f_y, f_z \rangle = f_x \vec{\mathbf{l}} + f_y \vec{\mathbf{J}} + f_z \vec{\mathbf{k}}$$

ตัวอย่าง 1 $\,$ จงหาเกรเดียนต์ของ $\mathit{f}(x,y) = x\cos(y)$

3/11

ตัวอย่าง 2 จงหาเกรเดียนต์ของ $f(x,y)=x\mathrm{e}^{xy}$

ตัวอย่าง 3 $\,$ จงหาเกรเดียนต์ของ $f(x,y,z)=x^2z+y^3z^2-xyz$

ตัวอย่าง 4 $\,$ จงหาเกรเดียนต์ของ $\mathit{f}(x,y,z) = \sin(yz) + \ln(x^2)$

อนุพันธ์ระบุทิศทาง

บทนิยาม

อัตราการเปลี่ยนแปลงของ f(x,y) ในทิศทางของเวกเตอร์หน่วย $\overrightarrow{\mathbf{u}}=\langle a,b
angle$ จะถูก เรียกว่า **อนุพันธ์ระบุทิศทาง** กำหนดโดยสัญกรณ์ $D_{\overrightarrow{\mathbf{u}}}$ f(x,y) และถูกนิยามโดย

$$D_{\overrightarrow{\mathbf{u}}} f(x, y) = \lim_{h \to 0} \frac{f(x + ah, y + bh) - f(x, y)}{h}$$

อนุพันธ์ระบุทิศทางในรูปอนุพันธ์ย่อย

$$D_{\overrightarrow{\mathbf{u}}} f(x, y) = a f_x(x, y) + b f_y(x, y)$$

อนุพันธ์ระบุทิศทางในรูปเกรเดียนต์

$$D_{\overrightarrow{\mathbf{u}}} f(x, y) = \nabla f \cdot \overrightarrow{\mathbf{u}}$$

อนุพันธ์ระบุทิศทาง

บทนิยาม

อัตราการเปลี่ยนแปลงของ f(x,y,z) ในทิศทางของเวกเตอร์หน่วย $\overrightarrow{{f u}}=\langle a,b,c
angle$ จะ ถูกเรียกว่า **อนุพันธ์ระบุทิศทาง** กำหนดโดยสัญกรณ์ $D_{\overrightarrow{{f u}}}\,f(x,y,z)$ และถูกนิยามโดย

$$D_{\widehat{\mathbf{u}}} f(x, y, z) = \lim_{h \to 0} \frac{f(x + ah, y + bh, z + ch) - f(x, y, z)}{h}$$

อนุพันธ์ระบุทิศทางในรูปอนุพันธ์ย่อย

$$D_{\overrightarrow{\mathbf{u}}} f(x, y, z) = af_x(x, y) + bf_y(x, y) + cf_z(x, y)$$

อนุพันธ์ระบุทิศทางในรูปเกรเดียนต์

$$D_{\overrightarrow{\mathbf{u}}} f(x, y) = \nabla f \cdot \overrightarrow{\mathbf{u}}$$

ตัวอย่าง 5 กำหนด $f(x,y,z)=x^2z+y^3z^2-xyz$ จงหา อนุพันธ์ระบุทิศทางของ $\vec{\mathbf{v}}=\langle -1,0,3\rangle$

ตัวอย่าง 6 กำหนด $f(x,y)=x\cos(y)$ จงหาอนุพันธ์ระบุ ทิศทางของ $\vec{\mathbf{v}}=\langle 2,1\rangle$

ตัวอย่าง 7 กำหนด $f(x,y,z)=\sin(yz)+\ln(x^2)$ จงหาอนุพันธ์ ระบุทิศทางของ $\vec{\mathbf{v}}=\langle 1,1,-1\rangle$