San Diego Accident Analysis

Yacun Wang, Huy Trinh, Jianming Geng

Problem Statement

Main Goal:

- Improve profitability of an insurance company by understanding patterns and factors contributing to accidents in the city of San Diego.

Challenges:

- Identify the relationships between time of day, location, and accident occurrences.
- Determine if driving to a specific location at a specific time of day is risky for drivers.
- Analyze large volumes of car accident data.

Problem Statement

Approaches:

- Perform data exploration, aggregation, visualization, and correlation analysis using SQL queries in PostgreSQL.
- Utilize Neo4j for graph-based analysis to explore relationships between time of day, location, and accidents.
- Integrate the findings from both SQL and Neo4j analysis to gain a holistic understanding of accidents.

Significance + Usage

- The insurance company aims to improve its profitability by understanding the patterns and factors contributing to accidents in San Diego.
- The findings will enable the insurance company to optimize operations to achieve long-term profitability and sustainability.

Data Sources

- <u>City of San Diego Traffic Collisions</u>
- City of San Diego Collisions People and Vehicle Involved
- Get It Done Projects
- San Diego Roads

Data Relationship

Data Preprocessing

- Geocoding
 - Get the location (lat, long) from address as POINTS
- Connect spatially close accidents/roads/reports
 - Use geocoded locations as POINTS
 - Use roads as LINES
 - Spatially Join: LINES intersect buffered POINTS
- Data Cleaning
 - Null Values
 - Column Selection
 - Time Formatting
 - etc.

Example

PostgreSQL

- Fast on Analytics Job (we are not adding or streaming data)
- Can contain multiple columns regarding different attributes
- Row-wise storage suits our purpose of querying across many columns as well as different tables
- Data are simple and easy to store in SQL
- Usage: We put all six tables to a new SQL database on the server

Relational Schema

Neo4J Graphs

- Easy to explore highly interconnected and relationship-driven data
- Flexible modeling and more efficient querying of complex relationships than relational joins
- We will explore the road to accident, road to vehicle, accident to accident relationships using Neo4J

Attempted Graph schema

Graph Schema

Integrated Both

Result Types

As suggested by the Relational Schema, separated into 4 parts:

- 1. Accident Information
- 2. Accident Vehicle Information
- 3. Accident Road Information
- 4. Accident Information in Relation to Get-It-Done Reports

Part 1: Accidents

Accident Locations (Community)

- {'num_accidents': 695, 'community': 'City Heights'}
- {'num_accidents': 561, 'community': "Banker's Hill"}
- {'num_accidents': 500, 'community': 'Logan Heights'}

Part 2: Vehicles & Accidents

Vehicles and Hurt

Key Takeaway: While cars contribute to the majority of accidents overall, it is important to note that incidents involving buses and scooters result in a higher number of injuries and fatalities.

Accidents Per Month Per Car Make

Key Takeaway: seasonal influences on accident occurrences and the vehicle makes most affected during specific times of the year.

Roads with Most Severe Accidents

Key Takeaway: The data reveals the roads with the highest kill-to-accident ratios, indicating a higher likelihood of fatal accidents.

Part 3: Roads & Accidents

Accidents and Speed Limit

Part 4: Get-It-Done & Accidents

Report Types on Risky Roads

Future Work

- Involve text data: Extracting insightful key words from report descriptions to help with identifying report severity (Apache Solr)
- Involve more street/road features: Consider the effects of different street features and conditions on accidents (Cassandra)
- Cache frequent queries (Redis)

Thank you!

Github Link: https://github.com/jgeng99/San-Diego-Accident-Analysis

Data Sources: See Slide on Data Sources