10 伴随函子

那么规定

伴随函子的第一种定义

• $L \dashv R$ 当且仅当 对任意 C 中对象 c 及任意 D 中对象 d 都有 $c \vdash c \vdash R$ $c \vdash C \vdash R$ $c \vdash C \vdash C$ 。

假如确实有 $L \dashv R$, 那么不难得知

这里蕴含着一个二元的自然同构 φ₂ , 见下 :

套用反变米田引理我们便可获得

由反变米田引理的证明可知:对每个左侧集合中的自然同构 $(_.c)^{\phi_2}$ 右侧集合中都有一个箭头与之对应 , 即 $\frac{1}{|\mathbf{c_R^n}|}$ id $\mathbf{(c_R^n \cdot c)}^{\phi_2} = \mathbf{c}^{\varepsilon}$ 。如此

 $\varepsilon: \mathbf{R}^{\mathsf{Cat}} \overset{\mathsf{Cat}}{\longrightarrow} \overset{\mathsf{C}}{\longrightarrow} :_{\mathsf{C}} \mathsf{Id}$ 构成自然变换。

套用协变米田引理我们便可获得

$$\underbrace{ \left(\left(\mathsf{d} \underbrace{L} \overset{\mathsf{C}}{\to} \mathsf{L} \right) \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{dd} \overset{\mathsf{D}}{\to} \mathsf{LR} \right) }_{\text{- 地自然变换}} \overset{\mathsf{Set}}{\cong} \underbrace{ \left(\mathsf{d} \overset{\mathsf{D}}{\to} \mathsf{d} \underbrace{LR} \right) }_{\text{- 地元素} }$$

由协变米田引理的证明可知:对每个左侧集合中的自然同构 $(d_{--})^{\phi_1}$ 右侧集合中都有一个箭头与之对应,即 $_{\operatorname{id}_{\boldsymbol{L}}}\operatorname{id}(\operatorname{d}_{\cdot}\operatorname{d}_{\boldsymbol{L}})^{\phi_1}=\overline{\operatorname{d}^n}$ 。如此。

• $\eta: \underline{\operatorname{DId}} \xrightarrow{\overline{\operatorname{D}} \to \overline{\operatorname{D}}} \overset{\operatorname{Cat}}{\operatorname{Cat}} R$ 构成自然变换。

对于前面的 ε 和 η 我们有下述交换图成立:

伴随函子的第二种定义

假设我们不知道 L 和 R 构成一对伴随函子,并且有自然变换 $\varepsilon: R \overset{\text{Cat}}{\circ} L \overset{\text{Cat}}{\longrightarrow} {}_{:C} \text{Id}$ 和 $\eta: {}_{:D} \text{Id} \overset{\text{D}}{\longrightarrow} L \overset{\text{Cat}}{\circ} R$ 能够同时满足本页开头的两幅交换图,那么

•