Diffusion Model

Computer Vision - Project

Clément, Grégoire, Nathan January 9, 2025

First generation: Denoising

Diffusion Probabilistic Models

Consider the set of hand-written digits D. Can you give a probability distribution q such that $x \sim q(x)$?

Figure 1: Source: ludwig.ai

Consider the set of hand-written digits D. It is hard to find q such that $x \sim q(x)$, we need a clever way to sample hand-written digits. Consider the following process:

Formally: $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1 - \beta_t} x_t, \beta_t I)$ for some schedule $(\beta_t)_t$. Can we learn to reverse this process ?

What we want to learn

Given a noisy image x_t , we train a model to predict x_{t-1} .

What we want to learn

Given a noisy image x_t , we train a model to predict x_{t-1} .

• Given a data image x_0 , we sample $(x_t)_{1:T}$ according to $q(x_{1:T} \mid x_0) := \prod_{t=1}^T q(x_t \mid x_{t-1})$,

What we want to learn

Given a noisy image x_t , we train a model to predict x_{t-1} .

- Given a data image x_0 , we sample $(x_t)_{1:T}$ according to $q(x_{1:T} \mid x_0) := \prod_{t=1}^T q(x_t \mid x_{t-1})$,
- Given a noisy image x_t and t, we sample according to $p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)).$

Remember that
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.

Remember that
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.
$$x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

Remember that
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.
$$x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1} \\ = \sqrt{\alpha_t}\sqrt{\alpha_{t-1}}x_{t-2} + \sqrt{\alpha_t}\sqrt{1-\alpha_t}\epsilon_{t-1} + \sqrt{1-\alpha_t}\epsilon_{t-1}$$

Given a data image x_0 , compute x_t takes t sampling on q. But a simple trick, allows to do only one.

Remember that $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.

$$\begin{aligned} x_t &= \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t} \sqrt{1 - \alpha_t} \epsilon_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \end{aligned}$$

Let $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$, $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$, the sum of them gives $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$.

Given a data image x_0 , compute x_t takes t sampling on q. But a simple trick, allows to do only one.

Remember that $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t}} \epsilon_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{\alpha_{t}} (1 - \alpha_{t-1}) + 1 - \alpha_{t}} \bar{\epsilon_{t}}$$
(1)

Let $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$, $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$, the sum of them gives $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$.

Given a data image x_0 , compute x_t takes t sampling on q. But a simple trick, allows to do only one.

Remember that $q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t}} \epsilon_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{\alpha_{t}} (1 - \alpha_{t-1}) + 1 - \alpha_{t}} \bar{\epsilon_{t}}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1}} \bar{\epsilon_{t}}$$

$$(1)$$

Let $G_1 \sim \mathcal{N}(0, \sigma_1^2 I)$, $G_2 \sim \mathcal{N}(0, \sigma_2^2 I)$, the sum of them gives $g_2 \sim \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$.

Remember that
$$q(x_{t+1} \mid x_t) := \mathcal{N}(x_{t+1}; \sqrt{1-\beta_t}x_t, \beta_t I)$$
. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha_t} = \prod_{i=1}^t \alpha_i$.

We have
$$x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$$
.

For now, our model is learning μ and Σ , i.e. we sample according to

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

They've found that fixing Σ_{θ} to a constant gives the same result. So,

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate x_0 is $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$.

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate x_0 is $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$. Using negative log likelihood, approximations and computations, we want to minimize:

$$E_q\left[\frac{1}{2\sigma_t^2}\|\tilde{\mu}_t(x_t,x_0)-\mu_{\theta}(x_t,t)\|^2\right]$$

where $\tilde{\mu}$ is the optimal mean that depends on x_0 which we don't know.

$$p_{\theta}(x_{t-1} \mid x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t I)$$

The probability for our model to generate x_0 is $p_{\theta}(x_0) := \int p_{\theta}(x_{0:T}) dx_{1:T}$. Using negative log likelihood, approximations and computations, we want to minimize:

$$E_q\left[\frac{1}{2\sigma_t^2}\|\tilde{\mu}_t(x_t,x_0)-\mu_{\theta}(x_t,t)\|^2\right]$$

where $\tilde{\mu}$ is the optimal mean that depends on x_0 . Using $x_t(x_0,\epsilon)=\sqrt{\bar{\alpha}_t}x_0+\sqrt{1-\bar{\alpha}_t}\epsilon$ we have a loss we can train on.

Our results

TODO.

Second generation

Improved Denoising Diffusion Probabilistic Models

Alex Nichol *1 Prafulla Dhariwal *1

Improved Denoising Diffusion Probabilistic Models

Alex Nichol *1 Prafulla Dhariwal *1

Recall that:

• Σ_{θ} was set to a constant,

Improved Denoising Diffusion Probabilistic Models

Alex Nichol *1 Prafulla Dhariwal *1

Recall that:

- Σ_{θ} was set to a constant,
- The training loss was a simplified version of reality.

Improved Denoising Diffusion Probabilistic Models

Alex Nichol *1 Prafulla Dhariwal *1

Recall that:

- Σ_{θ} was set to a constant,
- The training loss was a simplified version of reality.

This paper tackle these problems.

Ho et al. fixed $\Sigma_{\theta}(x_t, t) = \sigma_t^2 I$ with:

•
$$\sigma^2 = \beta_t$$
 optimal if $x_0 \sim \mathcal{N}(0, I)$,

Ho et al. fixed $\Sigma_{\theta}(x_t, t) = \sigma_t^2 I$ with:

- $\sigma^2 = \beta_t$ optimal if $x_0 \sim \mathcal{N}(0, I)$,
- $\sigma^2 = \bar{\beta}_t$ optimal if x_0 is a point.

Ho et al. fixed $\Sigma_{\theta}(x_t, t) = \sigma_t^2 I$ with:

- $\sigma^2 = \beta_t$ optimal if $x_0 \sim \mathcal{N}(0, I)$,
- $\sigma^2 = \bar{\beta}_t$ optimal if x_0 is a point.

Hence for each t, we know that $\Sigma^*(x,t)$ is between β_t and $\bar{\beta}_t$.

Ho et al. fixed $\Sigma_{\theta}(x_t, t) = \sigma_t^2 I$ with:

- $\sigma^2 = \beta_t$ optimal if $x_0 \sim \mathcal{N}(0, I)$,
- $\sigma^2 = \bar{\beta}_t$ optimal if x_0 is a point.

Hence for each t, we know that $\Sigma^*(x,t)$ is between β_t and $\bar{\beta}_t$.

Ho et al. have found that the impact is negligeable...

Hence for each t, we know that $\Sigma^*(x,t)$ is between β_t and $\bar{\beta}_t$.

Ho et al. have found that the impact is negligeable...

Figure 1. The ratio $\tilde{\beta}_t/\beta_t$ for every diffusion step for diffusion processes of different lengths.

How to modelize Σ_{θ}

Hence for each t, we know that $\Sigma^*(x,t)$ is between β_t and $\bar{\beta}_t$.

Ho et al. have found that the impact is negligeable. But it depends of other hyperparameters.

Hence, they interpolate between the two extreme values, and let the model learn v(t):

$$\Sigma_{ heta}(x_t,t) := \exp(v_{ heta}(t)\log(eta_t) + (1-v_{ heta}(t))\log(ar{eta}_t))$$

In the paper of Ho, they use the loss L_{simple} , a simplified version of L_{LVB} , that only affects μ_{θ} .

In the paper of Ho, they use the loss L_{simple} , a simplified version of L_{LVB} , that only affects μ_{θ} .

Optimizing L_{simple} performs well for FID, but poorly for log-likelihood metric.

In the paper of Ho, they use the loss L_{simple} , a simplified version of L_{LVB} , that only affects μ_{θ} .

Optimizing L_{simple} performs well for FID, but poorly for log-likelihood metric.

 L_{LVB} affects Σ_{θ} but increasing log-likelihood score can increase FID, hence we need a trade-of.

In the paper of Ho, they use the loss L_{simple} , a simplified version of L_{LVB} , that only affects μ_{θ} .

Optimizing L_{simple} performs well for FID, but poorly for log-likelihood metric.

 L_{LVB} affects Σ_{θ} but increasing log-likelihood score can increase FID, hence we need a trade-of.

They train on

$$L = L_{simple} + \lambda L_{LVB}$$

In the paper of Ho, they use the loss L_{simple} , a simplified version of L_{LVB} , that only affects μ_{θ} .

Optimizing L_{simple} performs well for FID, but poorly for log-likelihood metric.

 L_{LVB} affects Σ_{θ} but increasing log-likelihood score can increase FID, hence we need a trade-of.

They train on

$$L = L_{simple} + \lambda L_{LVB}$$

This loss is prone to gradient exploding and we need importance sampling to implement it.

Our results

TODO

Classifier Guidance

Importance of labels

Let's get back to hand-written digits generation:

Figure 1: Source: ludwig.ai

Importance of labels

Let's get back to hand-written digits generation:

Figure 1: Source: ludwig.ai

A DDPM can generate new images that look like digits, but the model can't distinguish a mix of two digits and a real digit.

Importance of labels

Let's get back to hand-written digits generation:

If we have a classifer that gives $p_{\phi}(y \mid x_t)$, we can sample using

$$p_{\theta,\phi}(x_t \mid x_{t+1}, y) = Zp_{\theta}(x_t \mid x_{t+1})p_{\phi}(y \mid x_t)$$

This way if we set y = 3, we can trick our model to generate somthing that looks like a 3.

Figure 1: Visualizations from Yang Song's work.

Figure 1: Visualizations from Yang Song's work.

Figure 1: Visualizations from Yang Song's work.

Figure 1: Visualizations from Yang Song's work.

Given $x_0 \sim \pi(x)$ an unknown distribution, if we iterate through $x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} z_i$ with $\epsilon \to 0$ and $z_i \sim \mathcal{N}(0, I)$, we can sample from p(x).

So we need to know $\nabla_x \log p(x)$, but don't need to know p(x).

Given $x_0 \sim \pi(x)$ an unknown distribution, if we iterate through $x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} z_i$ with $\epsilon \to 0$ and $z_i \sim \mathcal{N}(0, I)$, we can sample from p(x).

So we need to know $\nabla_x \log p(x)$, but don't need to know p(x).

From the classifier p_{ϕ} , one can get an approximation of $\nabla_x \log p(x)$.

Figure 1: Classifier-free Diffusion Guidance

Figure 1: Classifier-free Diffusion Guidance

• Low-temperature optimizes FID score

Figure 1: Classifier-free Diffusion Guidance

- Low-temperature optimizes FID score
- High-temperature optimizes Inception score

Figure 1: Classifier-free Diffusion Guidance

- Low-temperature optimizes FID score
- High-temperature optimizes Inception score

We can do a trade-of by following more p_{ϕ} or p_{θ} between exploration and distance to the original distribution.

State-of-the-art: Video generator