Disentangling the roles of cue visibility and knowledge in learning cognitive control

Jack Dolgin, Christina Bejjani, Ziwei Zhang, and Tobias Egner | Department of Psychology and Neuroscience and Center for Cognitive Neuroscience | Duke University correspondence to christina.bejjani@duke.edu, 🔰 @jbdolg, @chbejjani, @Ziwei27616669, @Egnerlab | Supported in part by NIMH R01 MH 087610

Background: Subliminal Cueing of Control

Farooqui and Manly (2015, Psych Sci) raised the possibility that control-learning is more effective when cues of control demand are presented subliminally.

Our Design (https://osf.io/7jfbp/):

- Manipulate conscious cue perception & predictive cue knowledge independently
- 2x2 design with an overall 25:75 switch:repeat context, a task-switching paradigm with two predictive cues and one nonpredictive cue

Behavioral Prediction:

• Participants will use contextual cues to modulate control such that switch costs¹ will be reduced following predictive vs. nonpredictive cues^{2,3}.

Competing Hypotheses:

- If the conclusions from Farooqui & Manly (2015) were warranted, we should observe smaller switch costs for subliminal (E1-2) vs. supraliminal (E3-4) cueing^{4,5}.
- Traditional views on control, however, would predict the smallest switch costs under the supraliminal and explicit knowledge conditions (E4).
- Current theories of action control⁶ would predict the smallest switch costs under the implicit knowledge condition (E1, E3).
- If pre-emptive control operations⁷ can be prepared and triggered by the cues ("action-triggers"), we should observe smaller switch costs in E2-4 vs. E1.

References:

¹Monsell (2003). Trends in Cognitive Sciences. ²Bugg & Crump (2012). Frontiers in Psychology. ³Abrahamse et al. (2016). Psychological Bulletin. ⁴van Gaal, De Lange, and Cohen (2012). Frontiers in Human Neuroscience. ⁵Kunde, Reuss, and Kiesel (2012). Advances in Cognitive Psychology. ⁶Hommel (2013). Frontiers in Psychology. ⁷Kunde, Kiesel, and Hoffmann (2003). Cognition.

Not Informed of Cues' Meanings

E1: Subliminal, Implicit

• Average participant identified 3% of individual cues—validating masking

Context x Trial Type: F(1,26) = 1.724, p = 0.201, $\eta_p^2 = 0.062$

Equivalence testing suggests that the index is statistically not different from, and equivalent to, zero (t(26) = 2.484, p = 0.01; null: t(26) = -1.309, p = 0.202).

E3: Supraliminal, Implicit

Context x Trial Type: F(1,23) = 4.005, p = 0.057, $\eta_p^2 = 0.148$

Equivalence testing suggests that the index is statistically different from, and not equivalent to, zero (t(23) = 1.082, p = 0.145; null: t(23) = -2.495, p = 0.020).

Informed of Cues' Meanings

E2: Subliminal, Explicit

Average participant identified 16% of individual cues—validating masking

Context x Trial Type: F(1,22) = 0.191, p = 0.666, $\eta_p^2 = 0.013$

Equivalence testing suggests that the index is statistically not different from, and equivalent to, zero (t(22) = -2.757, p = 0.006; null: t(22) = 0.744, p = 0.465).

E4: Supraliminal, Explicit

Context x Trial Type: F(1,17) = 1.853, p = 0.191, $\eta_p^2 = 0.083$

Equivalence testing suggests that the index is statistically not different from, and equivalent to, zero (t(17) = -2.332, p = 0.016; null: t(17) = 0.766, p = 0.454).

Conclusions:

- We do not find strong evidence for cue-induced changes in switch costs in any of the conditions.
- Sequential bayes factor analysis suggests that we need to collect more participants for all four experiments.