Límite de funciones

Definición. Sea A un intervalo abierto de $\mathbb R$ y sea $a \in A$. Sea $f:A-\{a\} \to \mathbb R$ una función. Se dice que

$$\lim_{x \to a} f\left(x\right) = \ell$$

(y se lee "el límite de f(x) para x que tiende a a es ℓ " si

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta \left(\varepsilon \right) > 0 \ \text{tal que} \ \left(0 < |x - a| < \delta \Rightarrow |f \left(x \right) - \ell| < \varepsilon \right)$$

En otras palabras: La distancia de f(x) a ℓ es tan pequeña como se quiera, con tal de que x esté suficientemente próximo (pero no igual) al punto a.

Geométricamente, para todo $\varepsilon > 0$ (tan pequeño como se quiera), es posible excontrar $\delta > 0$ (suficientemente chico) tal que el gráfico de la función se mantiene dentro de la franja horizontal entre $\ell - \varepsilon$ y $\ell + \varepsilon$ para los x entre $a - \delta$ y $a + \delta$ (salvo, posiblemente, x = a).

Ejemplo.

$$\lim_{x \to 0} 4x \sin\left(\frac{1}{x}\right) = 0.$$

Notar que la función no está definida en x = 0.

Dado $\varepsilon > 0$, debemos encontrar $\delta = \delta(\varepsilon) > 0$ tal que

$$0 < |x - 0| < \delta \Rightarrow \left| 4x \sin\left(\frac{1}{x}\right) - 0 \right| < \varepsilon,$$

o sea, tal que

$$0 < |x| < \delta \Rightarrow \left| 4x \sin\left(\frac{1}{x}\right) \right| < \varepsilon.$$

Como $|\text{sen}(y)| \leq 1$ para todo y, tenemos que

$$\left| 4x \sin\left(\frac{1}{x}\right) \right| = 4|x| \left| \sin\left(\frac{1}{x}\right) \right| < 4\delta = \varepsilon.$$

Luego podemos tomar $\delta = \frac{\varepsilon}{4}$.

Por ejemplo, dado $\varepsilon=0.001,$ si $|x|<\frac{0.001}{4}=0.00025,$ entonces

$$\left| 4x \sin\left(\frac{1}{x}\right) \right| < 0.001.$$

Ejemplo. Si $c \in \mathbb{R}$, entonces $\lim_{x\to a} c = c$. Expresado de otra manera, si f(x) = c para todo x, entonces $\lim_{x\to a} f(x) = c$.

Se trata de una situación trivial: Debemos mostrar que

$$\forall \varepsilon > 0 \ \exists \ \delta > 0 \ \text{tal que} \ (0 < |x - a| < \delta \Rightarrow |c - c| < \varepsilon)$$

Dado $\varepsilon > 0$, buscamos $\delta > 0$ que haga cumplir esa desigualdad. Pero $|c - c| = 0 < \varepsilon$. Luego podemos tomar cualquier $\delta > 0$.

Ejercicio. Mostrar que $\lim_{x\to a} x = a$.

Ejemplo. Tomar límite para $x \to a$ no siempre es lo mismo que evaluar en x = a: Sea

$$f(x) = \begin{cases} 2x & \text{si } x \neq 1, \\ 3 & \text{si } x = 1. \end{cases}$$

Entonces

$$\lim_{x \to 1} f\left(x\right) = 2$$

El argumento es el mismo que para $\lim_{x\to a} x = a$, tomando en cuenta que se considera 0 < |x - 1|, o sea, $x \neq 1$.

Teorema. Si

$$\lim_{x \to a} f(x) = \ell \qquad \text{y} \qquad \lim_{x \to a} g(x) = m,$$

entonces

a)
$$\lim_{x \to a} f(x) + g(x) = \ell + m$$
, b) $\lim_{x \to a} f(x) g(x) = \ell m$,

b)
$$\lim_{x \to a} f(x) g(x) = \ell m,$$

c)
$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{\ell}$$
, si $\ell \neq 0$,

c)
$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{\ell}$$
, si $\ell \neq 0$, d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{m}{\ell}$, si $\ell \neq 0$.

Las demostraciones de (a) y (b) son muy similares a las pruebas de los enunciados correspondientes para el límite de sucesiones.

La afirmación (d) se deduce de (b) y (c) como sigue:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \frac{1}{g(x)} = \lim_{x \to a} f(x) \lim_{x \to a} \frac{1}{g(x)} = m \frac{1}{\ell} = \frac{m}{\ell}.$$

La afirmación (c) la probamos más abajo.

Ejemplo. Calcular

$$\lim_{x\to 1}\frac{x^5+x^4+x^3-x^2-x-1}{x^3-1}.$$

Como el límite del denominador es

$$\lim_{x \to 1} x^3 - 1 = 1^3 - 1 = 0,$$

no se puede aplicar directamente (d).

Realizamos la división del polinomio $x^5 + x^4 + x^3 - x^2 - x - 1$ por el polinomio $x^3 - 1$ y obtenemos el cociente igual a $x^2 + x + 1$ y resto cero. Luego, el límite buscado es igual a

$$\lim_{x \to 1} x^2 + x + 1 = 1^2 + 1 + 1 = 3.$$

Ejemplo (el límite es una propiedad local). Si dos funciones f y g coinciden en un intervalo abierto A, salvo posiblemente en $a \in A$, entonces

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

Límites laterales. Sea $f:(a,b)\to\mathbb{R}$ una función. Se dice que

$$\lim_{x \to a^{+}} f\left(x\right) = \ell$$

(y se lee: el límite de f(x) para x que tiende a a por derecha es igual a ℓ) si

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta\left(\varepsilon\right) > 0 \ \text{tal que} \ \left(0 < x - a < \delta \Rightarrow |f\left(x\right) - \ell| < \varepsilon\right)$$

Ejercicio. ¿Cómo se definiría el límite por izquierda

$$\lim_{x \to a^{-}} f(x) = \ell?$$

Nota. No es difícil mostrar que el límite para $x \to a$ existe si y solo si existen ambos límites laterales, para $x \to a^-$ y $x \to a^+$.

Ejemplo. Sea $f: \mathbb{R} \to \mathbb{R}$, f(x) = [x], la función parte entera, es decir

$$f(x) = n$$
 si $n \le x < n+1$

Por ejemplo, f(5,3) = 5, f(3) = 3, f(3) = 3, f(-1,8) = -2.

Tenemos que

$$\lim_{x \to 4^{-}} [x] = 3$$
 y $\lim_{x \to 4^{+}} [x] = 4$.

Como los límites laterales por izquierda y por derecha son distintos, entonces lím $_{x\to 4}[x]$ no existe.

Proposición. Sea A un intervalo abierto y sea $a \in A$. Sea $g: A - \{a\} \to \mathbb{R}$ una función tal que

$$\lim_{x \to a} g\left(x\right) = m > 0.$$

Entonces existe $\delta_{o}>0$ tal que $g\left(x\right)>\frac{m}{2}$ para todo x con $\left|x-a\right|<\delta_{o}$ y

$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{m}.$$
 (1)

Prueba. Sabemos que

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0 \ \text{tal que} \ (0 < |x - a| < \delta \Rightarrow |g(x) - m| < \varepsilon)$$
 (2)

Como m > 0, podemos tomar $\varepsilon = \frac{m}{2}$ y $\delta_o = \delta\left(\frac{m}{2}\right)$. En efecto, si $0 < |x - a| < \delta_o$ se cumple que $|g\left(x\right) - m| < \frac{m}{2}$, lo que implica

$$-\frac{m}{2} < g\left(x\right) - m.$$

Sumando m miembro a miembro se obtiene la validez de la primera afirmación.

Para verificar (1), dado $\varepsilon_1 > 0$, debemos encontrar $\delta_1 > 0$ tal que

$$\left| \frac{1}{g\left(x \right)} - \frac{1}{m} \right| < \varepsilon_1$$

para x con $0 < |x - a| < \delta_1$. Pero por la primera afirmación y (2) tenemos que

$$\left| \frac{1}{g\left(x \right)} - \frac{1}{m} \right| = \left| \frac{m - g\left(x \right)}{g\left(x \right)m} \right| = \frac{\left| m - g\left(x \right) \right|}{\left| g\left(x \right) \right|\left| m \right|} \lesssim \frac{\varepsilon}{\frac{m}{2}m} = \frac{2\varepsilon}{m^2} = \varepsilon_1$$

si $0 < |x - a| < \delta_o$ y $0 < |x - a| < \delta(\varepsilon)$

Despejando, resulta que

$$\delta_1 = \min \left\{ \delta_o, \delta \left(\frac{m^2 \varepsilon_1}{2} \right) \right\}$$

satisface lo que necesitamos.

Ejercicio. Enunciar y demostrar el análogo para m < 0. Sugerencia: Considerar la función $\bar{g}(x) = -g(x)$.

Teorema (límite de la composición de funciones). Si

$$\lim_{x \to a} f(x) = b \qquad \text{y} \qquad \lim_{y \to b} g(y) = g(b),$$

entonces

$$\lim_{x \to a} g\left(f\left(x\right)\right) = g\left(b\right).$$

Ejemplo. Calcular

$$\lim_{x\to 2} \sqrt{x^3+1}.$$

Llamamos $f(x) = x^3 + 1$ y $g(y) = \sqrt{y}$. Tenemos que

$$\sqrt{x^3 + 1} = g\left(f\left(x\right)\right).$$

Calculamos

$$\lim_{x \to 2} x^3 + 1 = 9 \qquad \text{y} \qquad \lim_{y \to 9} \sqrt{9} = 3 = g(9).$$

Entonces se cumplen las hipótesis del teorema y en consecuencia,

$$\lim_{x \to 2} \sqrt{x^3 + 1} = 3.$$

Prueba del teorema. Sabemos que

$$\forall \varepsilon_1 > 0 \ \exists \ \delta_1 > 0 \ \text{tal que} \ (0 < |x - a| < \delta_1 \Rightarrow |f(x) - b| < \varepsilon_1)$$
 (3)

$$\forall \varepsilon_2 > 0 \ \exists \ \delta_2 > 0 \ \text{tal que} \left(|y - b| < \delta_2 \Rightarrow |g(y) - g(b)| < \varepsilon_2 \right)$$
 (4)

(por la continuidad de g en b de la hipótesis, no ponemos 0 < |y - b|).

Dado $\varepsilon > 0$, buscamos $\delta > 0$ tal que

$$|g(f(x)) - g(b)| < \varepsilon$$

si $0 < |x - a| < \delta$. Por (4), tomando $\varepsilon_2 = \varepsilon$ e y = f(x), tenemos que

$$|g(f(x)) - g(b)| < \varepsilon_2$$

si $|f(x) - b| < \delta_2$. Ahora, tomando $\varepsilon_1 = \delta_2$, por (3), eso se cumple si $0 < |x - a| < \delta_1$. En consecuencia, basta tomar $\delta = \delta_1(\delta_2(\varepsilon))$.

Ejemplo. ¿Por qué pedimos que $\lim_{y\to b} g(y)$ sea g(b) y no un ℓ cualquiera? Porque si no, el enunciado no vale. En efecto, sean f(x) = 0 para todo x y

$$g(y) = \begin{cases} 1 & \text{si } x = 0, \\ 0 & \text{si } x \neq 0. \end{cases}$$

Tenemos que $\lim_{x\to 0} f(x) = 0$ y como g(f(x)) = 1 para todo x, resulta que

$$\lim_{x\rightarrow0}g\left(f\left(x\right) \right) =\lim_{x\rightarrow0}1\neq0=\lim_{y\rightarrow0}g\left(y\right) .$$

Lema del sandwich (o de las funciones encajadas). Si $f(x) \le g(x) \le h(x)$ para todo x y

$$\lim_{x \to a} f(x) = \ell = \lim_{x \to a} h(x),$$

entonces

$$\lim_{x \to a} g\left(x\right) = \ell.$$

No damos la demostración, que es similar a la prueba del enunciado análogo para sucesiones.

Límite de funciones trigonométricas

Proposición. Se tiene que

a)
$$\lim_{x\to 0} \sin x = 0$$
,

a)
$$\lim_{x\to 0} \operatorname{sen} x = 0$$
, b) $\lim_{x\to 0} \cos x = 1$.

También, para todo $a \in \mathbb{R}$ valen

c)
$$\lim_{x \to a} \operatorname{sen} x = \operatorname{sen} a$$

c)
$$\lim_{x \to a} \sin x = \sin a$$
, d) $\lim_{x \to a} \cos x = \cos a$.

Prueba. a) Sea $0 \le x < \frac{\pi}{2}$. Tenemos que

$$0 \le \operatorname{sen} x \le \times$$

y así lím $_{x\to 0^+}$ sen x=0 por el lema del sandwinch.

Queda como ejercicio estudiar el caso en que $-\frac{\pi}{2} < \operatorname{sen} x \leq 0$ (atención a los signos) para concluir que $\lim_{x\to 0^-} \sin x = 0$, y así $\lim_{x\to 0} \sin x = 0$.

b) Para
$$0 \le x < \frac{\pi}{2}$$
 vale

$$0 < 1 - \cos x < x$$

pues un cateto es más corto que la hipotenusa, que a su vez es más corta que el arco.

Por el lema del sandwich,

$$\lim_{x \to 0} 1 - \cos x = 0,$$

con lo cual, $\lim_{x\to 0^+} \cos x = 1$. El límite por izquierda se calcula de manera similar.

c) Calculamos

$$\lim_{x \to a} \operatorname{sen} x = \lim_{h \to 0} \operatorname{sen} (a+h) = \lim_{h \to 0} \operatorname{sen} a \cos h + \cos a \operatorname{sen} h = \operatorname{sen} a + 0 = \operatorname{sen} a.$$

El otro límite se verifica análogamente.

Ejemplo. Calcular

$$\lim_{x \to 2} \operatorname{sen}\left(\frac{\pi}{2}x^2\right).$$

Se trata del límite de la composición de dos funciones. Tenemos que

$$\lim_{x\to 2}\frac{\pi}{2}x^2=\frac{\pi}{2}4=2\pi \qquad \text{ y }\qquad \lim_{y\to 2\pi}\operatorname{sen}\left(y\right)=\operatorname{sen}\left(2\pi\right)=0.$$

Así, el límite buscado es 0.

Proposición (límite notable). Se cumple que

$$\lim_{y \to 0} \frac{\operatorname{sen} y}{y} = 1.$$

No lo justificamos. De manera informal: sen y se parece cada vez más a y cuando y tiende a cero.

Ejemplo. Calcular

$$\lim_{x \to 1} \frac{\text{sen}(x^2 - 1)}{x^2 - 1}.$$

Sea $h: \mathbb{R} - \{1, -1\} \to \mathbb{R}$ definida por $h(x) = \frac{\operatorname{sen}(x^2 - 1)}{x^2 - 1}$. Escribiremos h como una composición de funciones. Sean

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = x^2 - 1$$

 $y g : \mathbb{R} \to \mathbb{R},$

$$g(y) = \begin{cases} \frac{\sin y}{y} & \text{si } y \neq 0, \\ 1 & \text{si } y = 0. \end{cases}$$

Se verifica que $h = g \circ f$.

Por el límite notable tenemos que

$$\lim_{y \to 0} g\left(y\right) = 1 = g\left(0\right).$$

Tambiém,

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} x^2 - 1 = 0.$$

Luego, por el límite de la composición, resulta que el límite buscado en igual a 1.

Ejemplo. De manera similar al ejemplo anterior tenemos que

$$\lim_{x \to 0} \frac{\sin(6x)}{x} = \lim_{x \to 0} 6 \frac{\sin(6x)}{6x} = 6 \lim_{y \to 0} \frac{\sin(y)}{y} = 6.$$

Definición. Sea $f:(a,b)\to\mathbb{R}$. Se dice que

$$\lim_{x \to a^{+}} f\left(x\right) = \infty$$

si para todo M existe $\delta > 0$ tal que $(0 < x - a < \delta \Longrightarrow f(x) > M)$. Sea $g: (-\infty, b) \to \mathbb{R}$. Se dice que

$$\lim_{x \to -\infty} f\left(x\right) = -\infty$$

si para todo M existe N tal que $(x < N \Longrightarrow f(x) < M)$.

Ejercicio. Definir

$$\lim_{A} f\left(x\right) = B,$$

remplazando A por

$$x \to -\infty$$
, $x \to a^-$, $x \to a^+$, $x \to a$, $x \to \infty$

y B por

$$-\infty$$
, ℓ , ∞

(todas las combinaciones posibles).

Teorema (relación de límite de funciones con límite de sucesiones). Sea $f: A-\{a\}$, donde A es un intervalo abierto que contiene al punto a. Entonces

$$\lim_{x \to a} f\left(x\right) = \ell$$

si y solo si

$$\lim_{n \to \infty} f\left(x_n\right) = \ell$$

para toda sucesión x_n con valores en A que cumple $x_n \neq a$ para todo n y

$$\lim_{n\to\infty} x_n = a.$$

No lo demostramos.

El teorema anterior suele ser la mejor herramienta para verificar que un límite no existe.

Ejemplo. Mostrar que el siguiente límite no existe.

$$\lim_{x \to 0} \cos\left(\frac{1}{x}\right).$$

Supongamos por el contrario que el límite existe y vale ℓ . Consideraremos dos sucesiones, x_n y z_n , tales que

$$\cos\left(\frac{1}{x_n}\right) = 1 \qquad \text{y} \qquad \cos\left(\frac{1}{z_n}\right) = -1$$
(5)

para todo n. Por ejemplo, poniendo

$$\frac{1}{x_n} = 2n\pi \quad \left(\text{o sea, } x_n = \frac{1}{2n\pi}\right) \qquad \text{y} \qquad \frac{1}{z_n} = (2n+1)\pi \quad \left(\text{o sea, } x_n = \frac{1}{(2n+1)\pi}\right).$$

Es claro que $x_n \neq 0$ y $z_n \neq 0$ para todo n y que

$$\lim_{n \to \infty} x_n = 0 \qquad \text{y} \qquad \lim_{n \to \infty} z_n = 0.$$

Por el teorema se debería cumplir que

$$\lim_{n \to \infty} \cos \left(\frac{1}{x_n} \right) = \ell = \lim_{n \to \infty} \cos \left(\frac{1}{z_n} \right).$$

Pero esto implica por (5) que $\ell=1$ y $\ell=-1$, una contradicción. Luego el limite no existe.