Ad-Soyad:

No:

Sivas Cumhuriyet Üniversitesi Mühendislik Fak. Bilgisayar Müh. Böl.

Bil2109 Ayrık İşlemsel Yapılar 2018-Güz Ara Sınavı

1.

Marka	KM	Otomatik Vites	Dizel	Renk		
Mazda	110.000	Hayır	Evet	Siyah		
Volvo	76.000	Evet	Evet	Bej		
VW	14.200	Evet	Hayır	Mavi		
Jeep	194.000	Evet	Hayır	Siyah		
Mini	74.000	Evet	Evet	Siyah		

Yukarıdaki tablo farklı markalara sahip 5 otomobilin özelliklerini göstermektedir. Otomobillerin özellikleri, yüklem fonksiyonu olarak ifade edersek örneğin siyah(x) fonksiyonu x arabası siyahsa doğru; değilse yanlışa döner. Buna göre aşağıda birleşik yüklem fonksiyonu olarak verilmiş fonksiyonlari sadeleştitip bu fonksiyonların hangi marka otomobiller getireceğini yazın. (her şık 10 puan)

a.
$$(siyah(x) \Rightarrow siyah(x)) \Rightarrow (\sim siyah(x)) \Rightarrow \sim siyah(x)) \land km(x) \ge 100.000$$

$$\mathbf{b}.(otomatik(x) \Rightarrow \sim otomatik(x)) \Rightarrow \Big(\Big(dizel(x) \Rightarrow (otomatik(x) \Rightarrow otomatik(x))\Big) \Rightarrow otomatik(x)\Big)$$

Çözüm.

a. Kolay gösterim açısından siyah(x) fonksiyonunu $p; km(x) \ge 100.000$ fonksiyonunu q; ile gosterelim. Su durumda a şıkkındaki yüklem fonksiyonu:

$$(p \Rightarrow p) \Rightarrow (\sim p \Rightarrow \sim p) \land q$$

olur. $p \Rightarrow p$ ve $\sim p \Rightarrow \sim p$ her zaman doğrudur (p'den bağımsız olarak).

$$D \Rightarrow D \land q \equiv D \Rightarrow q \equiv q$$

Sonuçta birleşik fonksiyon q'ya yani $km(x) \ge 100.000$ 'e denktir. KM'si 100.000'den büyük otomobiller bu fonksiyon tarafından getirilir: Mazda ve Jeep.

b. otomatik(x) 'i p ile; dizel(x)' q ile gösterelim.

$$(p \Rightarrow \sim p) \Rightarrow ((q \Rightarrow (p \Rightarrow p)) \Rightarrow p)$$

$$(p \Rightarrow \sim p) \Rightarrow ((q \Rightarrow D) \Rightarrow p)$$

$$(p \Rightarrow \sim p) \Rightarrow (D \Rightarrow p)$$

$$(p \Rightarrow \sim p) \Rightarrow p$$

$$(\sim p \lor \sim p) \Rightarrow p$$

$$\sim p \Rightarrow p$$

$$p \lor p$$

Sonuçta bu fonksiyonun sadeleştirilmiş hali p'dir; otomatik vitesli otomobilleri getirir: Volvo,VW, Jeep ve Mini.

	1	2	3	4
A				
В				
С				
D				

Yukarıda 4 × 4 ebatında bir grid verilmiştir. Satırlar harflerle, sütunlar rakamlarla belirtilmiştir. Örneğin C2 karesi gridde 3.satırın 2. kolonuna denk gelmektedir. Varsayalım ki *sat* değişkeni satırları; *sut* değişkeni de sütunları tarasın. Ayrıca *boyalıdır*(*sat*, *sut*) yüklem fonksiyonu ilgili satır ve sütün boyalı ise doğruya; degilse yanlışa dönsun. Aşağıdaki üç durumu içiçe geçmiş (nested) niteleyicileri kullanarak yüklem mantığı ile ifade edin. (Her bir şık 5 puan)

- a. A3, B3, C2 ve D1 boyalıdır.
- **b**. D1, D2, D3 ve D4 boyalıdır.
- c. Hiçbir kare boyalı değildir.

Çözüm.

a. A3, B3, C2 ve D1'in boyalı olmasi demek her satırda boyalı bir sütunun olması demektir:

```
\forall sat \existssut : boyalıdır(sat, sut)
```

yada her kolonda boyalı bir satırın olması demektir:

```
\forall kol \existssat : boyalıdır(sat, sut)
```

b. D1, D2, D3 ve D4'ün boyalı olmasi demek bütün satırları boyalı bir satırın var olması demektir.

```
\exists sat \forallsut : boyalıdır(sat, sut)
```

- c. Hiçbir kare boyalı değildir: ∀ sat ∀sut : ~boyalıdır(sat, sut)
- **3**. Girdi olarak bir *n* pozitif tam sayısı alan, çıktı olarak 0'dan *n*'ye kadar olan (*n* dahil) tamsayıların toplamını hesaplayan <u>rekürsif</u> bir algoritma yazın. Bu algoritmanın doğru çalıştığını tümevarım yöntemi ile kanıtlayın. (20 puan)

Çözüm.

```
topla(n):
1. if n==1
2. return 1;
3. else
4. return n+topla(n-1);
5. end
```

Bu algoritmanın doğru olarak çalıştığını tümevarımla ispatlayalım.

```
\forall n \in \mathbb{Z}^{\geq 1} P(n) özelligi topla(n)=0 + 1 + \cdots + n (yani algoritmanin n icin topplamı dogru hesaplamasi)
```

Temel durum: n = 1 için P(1) = 1 (algoritmanın 2. Satırından dolayı)

Tümevarımsal durum:

n>1 için P(n-1) doğru olsun. Şu durumda $P(n-1)=0+1+\cdots+n-1$ olur. P(n) 'nin doğru olduğunu gösterelim.

$$P(n) = n + P(n - 1) = n + 0 + 1 + \dots + n - 1 = 0 + 1 + \dots + n - 1 + n$$

olup $P(n)$ doğrudur.

4. f(n) = 4, g(n) = n ve $h(n) = n^2$ fonksiyonlarının grafikleri aşağıda verilmistir. f(n) = O(g(n)) ve f(n) = O(h(n)) olduğunu n_0 noktalarını grafikten elde ederek gösteriniz. (15 puan)

Çözüm.

$$f(n) = O(g(n))$$
 ise $\exists c > 0, \exists n_0 \ge 0 : \forall n \ge n_0 : f(n) \le c \cdot g(n)$

Yani pozitif bir n_0 noktasından sonra f(n), $c \cdot g(n)$ 'den küçük kalır.

c'yi 1 alalım.

Grafikten görüldüğü gibi g(n) = n fonksiyonu ile f(n) = 4 fonksiyonlarının kesişim noktası 4'tür.

4, aradığımız n_0 noktasıdır. Gerçekten, $f(n) = 4 \le g(n) = n$ olur, 4'ten sonraki her n için $4 \le n$ olur.

 $h(n)=n^2$ fonksiyonu ile f(n)=4 fonksiyonlarının kesişim noktası $n\geq 0$ iken 2'dir $(n^2=4)$ ise n=-2 veya n=2). Şu halde $f(n)=4\leq h(n)=n^2$ ifadesi 2'den sonraki her n için doğru olur.

5. Komşunuzdan wifi şifresini istediğinizi, onun da bir kağıda şifre olarak aB1670cT100y11Zww yazarak size veridiğini varsayalım. Fakat eve döndükten sonra 1 olarak yazılan karakterin belki 1 (bir), belki 1 (le) belki de i olabileceğini fark ettiniz. Ayrıca 0 olarak yazılan karekterin de belki 0 (sıfır) belki de O olabileceğini fark ettiniz. Bu durumda doğru şifreye ulaşmanız için denemeniz gereken maksimum şifre sayısı kaçtır? (15 puan).

Çözüm.

1 ve 0 harici tüm karakterler anlaşılırıdır, bunların tek bir karakter olma ihtimali vardır. Fakat 1 olarak yazılan karakterin 3 farklı karakter olma ihtimali; 0 olarak yazılan karakterin 2 farklı karakter olma ihtimali vardır. O halde her bir kutucuk wifi şifresinde karşılık geldiği karakterin alabileceği farklı değerler sayısını göstermek üzere:

1	1	_	1	1	2	1	-1	_	_	_	1	2	2	-1	1	1
1	1	3	l	l	2	1	1	3	2	2	1	3	3	1	1	1

sayılarının çarpımı olan $3^4 \cdot 2^3 = 648$ adet farklı şifreden biri aradığımız wifi şifresi olabilir.

- 6.7 slotluk bir hash tablosunda random (rastgele) eşleyen bir hash fonksiyonunun
- a. 3 tane anahtarın en az ikisini bir slota eşleme olasığı nedir? (10 puan)
- **b.** 9 tane anahtarın en az ikisini bir slota eşleme olasığı nedir? (5 puan)

Çözüm.

- a. 3 tane anahtarın en az ikisinin bir slota gönderilme olasılığı (yani çakışma olma olasılığı), 1'den bu olayın tamamlayıcısı olan her bir anahtarın farklı slota gitme olasılığının çıkarılması ile bulunabilir.
- 3 anahtardan her birininin 7 slotluk bir hash tablosunda farkli bir slota gitme olayının eleman sayısı:

$$7 \cdot 6 \cdot 5 = 210$$

Örnek uzayın eleman sayısı (yani olabilecek tüm durumların eleman sayısı)

$$7 \cdot 7 \cdot 7 = 343$$

3 anahtardan her birinin farkli bir slota gitme olasiligi: $\frac{210}{343} = 0.61$

Çakışma olasılığı: 1-0.61=0.39.

a. Bu durumda anahtar sayısı (9) slot sayısından (7) fazla olduğundan güvercin yuvası prensibi gereği en az bir slotta birden fazla anahtar olması kesindir, bu durumun olasılığı 1'dir.