

Pontificia Universidad Católica de Chile

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre de 2018

Tarea 1

Teoría de Números - MAT 2225

Fecha de Entrega: 2018/08/13

Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez, Javier Reyes

1. Problemas

Problema 1 (2 pts. c/u). Demuestre las siguientes identidades (demostrando también convergencia en el dominio indicado):

(I)

(II)

(III)

Problema 2 (3 pts.). Demuestre que cuando $s \to 1^+$, la diferencia

$$\left|\zeta(s) - \frac{1}{s-1}\right|$$

se mantiene acotada.

Problema 3 (2 pts.). Sea f una función aritmética que cumple

- (I) $f(n) \ge 0$ para todo n
- (II) Existen $r \in \mathbb{N}$ y cierta función continua $F:[1,\infty) \to \mathbb{R}$ de manera que para todo s>1 se cumple $D(s,f)=F(s)\zeta(s)^r$

Demuestre que

$$\sum_{n \le x} \frac{f(n)}{n} \ll (\log x)^r$$

Problema 4 (2 pts. c/u). Calcule σ_c y σ_a para las series de Dirichlet de las siguientes funciones aritméticas f:

$$(I) f(n) = (\log n)^2 \phi(n)$$

(II)
$$f(n) = 2^{-n}$$

(III)
$$f(n) = i^n$$
 donde $i = \sqrt{-1} \in \mathbb{C}$

Problema 5 (3 pts.). Demuestre que para cada real $r \in [0, 1]$ existe alguna función aritmética f que cumple la relación

$$\sigma_a(f) = \sigma_c(f) + r$$

entre las abscisas de convergencia y de convergencia absoluta de D(s, f).