

JUL 14, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.4r3l2ob2pv1y/v1

Protocol Citation: Laís Ceschini, Carla Julia da Silva Pessoa Vieira, Gustavo Lima, Luisa Maria Inácio da Silva, Raul Emídio Lima, Tiago Graf, Gabriel Wallau 2023. Reverse transcription, primer pools preparation and multiplex PCR steps for DENV2 serotype. protocols.io https://dx.doi.org/10.17504/p rotocols.io.4r3l2ob2pv1y/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: May 30, 2022

Last Modified: Jul 14, 2023

PROTOCOL integer ID:

63519

Reverse transcription, primer pools preparation and multiplex PCR steps for DENV2 serotype

Gustavo

Laís Ceschini¹, Carla Julia da Silva Pessoa Vieira¹, Lima², Raul Emídio

Luisa Maria Inácio da Silva¹, Lima², Tiago Graf³, Gabriel Wallau¹

¹Departamento de Entomologia, Instituto Aggeu Magalhães (IAM); ²Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM);

³Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador

Laís Ceschini

ABSTRACT

This step-by-step protocol describes the cDNA synthesis, primer pools preparation and multiplex PCR conditions with the main goal to sequence the complete genome of DENV2 serotype strains.

MATERIALS

SuperScript™ IV First-Strand Synthesis System. (200 reactions) Cat: 18091200 Invitrogen

Q5® High-Fidelity 2X Master Mix. Cat: M0492L NEB, H20 Ultre Pure, primers described in table 1

Reverse transcription

1 Using a 2mL tube prepare the **Mix 1** described below for 96 samples:

А	В	С
Random Hexamers (50µM)	1μL	98µL
dNTPs mix (10mM cada)	1μL	98µL
Mix 1Reverse transcription	Vol. (1x)	96 samples (+2 = 98 to keep some extra due to pipetting issues)
Total	2μL	194μL

Using 0,2mL PCR tubes or 96 wells plates add 11-16μL of extracted RNA from RT-PCR positive samples. Add 2μL of Mix 1 to the tube/well and take it to the thermocycler with the following set up:

65°C ---- 5 minutes

- Take the tubes/wells to ice for 1 minute. (you can prepare a water bath with ice cubes to have a uniform temperature distribution)
- 4 1. Using a 2mL tube prepare **Mix 2**:

Mix 2Reverse Transcription	Vol. (1x)	96 samples (+2 = 98 to keep some extra due to pipetting issues)
5x SSIV Buffer	4µL	392µL
100mM DTT	1µL	98µL

RNaseOUT ouRNase Inhibitor	1µL	98μL				
SSIV Reverse Transcriptase	1μL	98μL				
Total	7µL	686µL				

Add 7μL of Mix 2 to the tubes containing the Mix 1 plus RNA and take it to the thermocycler following the set up below:

Step1:

42°C --- 50 minutes

70°C --- 10 minutes

4°C --- Hold

6 Store the cDNA at -20°C.

Observation:. As a suggestion, to improve the final results only samples RT-PCR positive showing a Ct value of < 30 should be used for cDNA conversion and genomic amplification

Pools of primers

- 7 Select two 0,6mL tubes for each pool.
- 8 Using the original 100uM primer solution eluted individually, put them together following the table below containing each primer volume.

TABLE 1: Primers and pool order.

A		В	С	D	E
Prime	er	Sequence	Tm	Concentration inside of the pool *	POOL
DENV T	'2_1_LEF	CAGTTGACACGCGGTTTCTC TC	0,030uM	10ul	1
DENV HT	'2_1_RIG	TTAGGAAACGAAGGAACGC CAC	0,030uM	10ul	1

A	В	С	D	E
DENV2_3_LEF	TGGCGTTCCATTTAACCACA CG	0,030uM	10ul	1
DENV2_3_RIG HT	CGTTCCTATGGTGTATGCCA GG	0,030uM	10ul	1
DENV2_5_LEF T	TGTGTGACGACGATGGCAAA AA	0,015uM	5ul	1
DENV2_5_RIG HT	CCTTGCCATGYTTTCCTGTG TCA	0,015uM	5ul	1
DENV2_7_LEF T	GCACAGGCAATGGTTCCTAG AC	0,0075uM	2,5ul	1
DENV2_7_RIG HT	AGGGATCTTACATGGAGAAC CGT	0,0075uM	2,5ul	1
DENV2_9_LEF T	ACAGAAAAAGATAGCCCAG TCAACA	0,015uM	5ul	1
DENV2_9_RIG HT	GTCACGACTCCCACCAATAC TAG	0,015uM	5ul	1
DENV2_11_LE FT	CTGATGTGGAAACAAATAAC ACCAGA	0,015uM	5ul	1
DENV2_11_RI GHT	CATGGACGGCTCTGTTGTCT TT	0,015uM	5ul	1
DENV2_13_LE FT	ACAGACCAGGCTACCATACA CA	0,015uM	5ul	1
DENV2_13_RI GHT	GCATGTTTCGTTCCTACTCG GG	0,015uM	5ul	1
DENV2_15_LE FT	TGCAGCTGGACTACTCTTGA GA	0,015uM	5ul	1
DENV2_15_RI GHT	AAAATGCTCACCATCCCGAC TG	0,015uM	5ul	1
DENV2_17_LE FT	AATCCTGTCAATAACAATAT CAGAAGATGG	0,030uM	10ul	1
DENV2_17_RI GHT	GCTTCCAGCCTCCTCCATAT GA	0,030uM	10ul	1
DENV2_19_LE FT	AGGAAAAGTTGTGGGTCTTT ATGGT	0,030uM	10ul	1
DENV2_19_RI GHT	ACTGGTGATAGCAGCCTCAT AGT	0,030uM	10ul	1
DENV2_21_LE FT	TGGGTCACGGATTTTAAAGG GAA	0,015uM	5ul	1
DENV2_21_RI GHT	GCTTCTTTCCAGTGTGCACA GT	0,015uM	5ul	1
DENV2_23_LE FT	CCTTTGTGGACCTAATGAGA AGAGG	0,015uM	5ul	1
DENV2_23_RI GHT	CGGCAGTTCACTGAGAGCAT GA	0,015uM	5ul	1
DENV2_25_LE FT	CCACACTGGATAGCAGCTTC AA	0,030uM	10ul	1
DENV2_25_RI GHT	CCCAAGACCCATTAGCACTG T	0,030uM	10ul	1

A	В	С	D	Е
DENV2_27_LE FT	GGATGCTACTCACAAGTCAA CCC	0,015uM	5ul	1
DENV2_27_RI GHT	GAAAAGAGAAGTCCAGCTC CGG	0,015uM	5ul	1
DENV2_29_LE FT	ACTGAGATGGTTCGTCGAGA GA	0,015uM	5ul	1
DENV2_29_RI GHT	GTGGATTCCTCACTAAGGCT CCT	0,015uM	5ul	1
DENV2_31_LE FT	CGCAACATCGGAATTGAAAG TGA	0,015uM	5ul	1
DENV2_31_RI GHT	CCAAGGCTGCATTGCTTCTC AC	0,015uM	5ul	1
DENV2_33_LE FT	GCTTGGAGCACGCTTCTTAG AG	0,015uM	5ul	1
DENV2_33_RI GHT	TGGGCTTCCATATTGGTGAA AGT	0,015uM	5ul	1
DENV2_35_LE FT	AGAGGATGGAACGATTGGA CACA	0,015uM	5ul	1
DENV2_35_RI GHT	CCACTGGAGTTTTGTCTTCC ATCC	0,015uM	5ul	1
DENV2_37_LE FT	GAAGAGGAAGAGGCAGGWG TCC	0,015uM	5ul	1
DENV2_37_RI GHT	CTGGAATGATGCTGAGGAG ACAG	0,015uM	5ul	1
DENV2_2_LEF	ATGCTGAAACGCGAGAGAA ACC	0,030uM	10ul	2
DENV2_2_RIG HT	CATGGCCATGAGGGTACAC ATG	0,030uM	10ul	2
DENV2_4_LEF	CATGGATGTCATCAGAAGGG GC	0,015uM	5ul	2
DENV2_4_RIG HT	TCTGTTGTTGTTGGTCAG CT	0,015uM	5ul	2
DENV2_6_LEF	GGCATTGTGACCTGTGCTAT GT	0,015uM	5ul	2
DENV2_6_RIG HT	GGGGATTTTTGAAAGTGACC AATGT	0,015uM	5ul	2
DENV2_8_LEF T	ACAGCTCAAAGGAATGTCAT ACTCT	0,015uM	5ul	2
DENV2_8_RIG HT	TCCTCCCAGGGATCCAAAAT	0,015uM	5ul	2
DENV2_10_LE FT	AGTGGGGTCTCATGGACTAT GA	0,015uM	5ul	2
DENV2_10_RI GHT	GATCGTTTTCCTGCCTGCAT GA	0,015uM	5ul	2
DENV2_12_LE FT	CCCAACACAAACAGAGCTTG GA	0,0075uM	2,5ul	2
DENV2_12_RI GHT	TTTCCACAGTCCTCAGTCAC CA	0,0075uM	2,5ul	2

A	В	С	D	E
DENV2_14_LE FT	CGGACATGGGCAGATTGAC AAC	0,015uM	5ul	2
DENV2_14_RI GHT	CCAAGGCTAACGCATCAGTC AG	0,015uM	5ul	2
DENV2_16_LE FT	GCAGAAAGCGGATTGGATA CCA	0,030uM	10ul	2
DENV2_16_RI GHT	ATGCTGCTGCCGTGATTGGT AT	0,030uM	10ul	2
DENV2_18_LE FT	AGATCGGAGCCGGAGTTTAC AA	0,030uM	10ul	2
DENV2_18_RI GHT	TGTCATCTTCGATCTCTGGA TTGTC	0,030uM	10ul	2
DENV2_20_LE FT	ATACCAAACCCCAGCCATCA GA	0,015uM	5ul	2
DENV2_20_RI GHT	CCTACTGAGTTGTATCACTT TCTTTCCA	0,015uM	5ul	2
DENV2_22_LE FT	ATGCCAGTGACCCACTCTAG TG	0,015uM	5ul	2
DENV2_22_RI GHT	CCTTTCCCCTTCTTTTGTCC AGA	0,015uM	5ul	2
DENV2_24_LE FT	TCCAACTTTCATGACTCAGA AGGC	0,015uM	5ul	2
DENV2_24_RI GHT	GGAAACCCATCTCGTTTGCC AT	0,015uM	5ul	2
DENV2_26_LE FT	ACATCCTGGACATAGATCTA CGTCC	0,030uM	10ul	2
DENV2_26_RI GHT	AGGTCAATCACTGTTATTCC ATCGAC	0,030uM	10ul	2
DENV2_28_LE FT	TGTGGGAAGGAAATCCAGG GAG	0,0075uM	2,5ul	2
DENV2_28_RI GHT	CCCCACAATAGTATGACCAG CC	0,0075uM	2,5ul	2
DENV2_30_LE FT	AAGCAGGACGAACACTCAG AGT	0,015uM	5ul	2
DENV2_30_RI GHT	CCCACGTTTTGTATGGGTGG TC	0,015uM	5ul	2
DENV2_32_LE FT	GGCAGAGTGGCTTTGGAAA GAA	0,015uM	5ul	2
DENV2_32_RI GHT	CCTTCTCCTTCCACTCCACT	0,015uM	5ul	2
DENV2_34_LE FT	AAAGACCAACACCAAGAGG CAC	0,015uM	5ul	2
DENV2_34_RI GHT	CAGTTCATCTTGGTTTCTGC ATGG	0,015uM	5ul	2
DENV2_36_LE FT	GAACAACCTGGTCCATACAC GC	0,0075uM	2,5ul	2
DENV2_36_RI GHT	GGGGCTCACAGGTAGCATA GTT	0,0075uM	2,5ul	2

*approximate concentration of each primer in the 25µl PCR reaction.

Note: The primers were designed using the https://primalscheme.com based on the FJ467493, KY923048, KX274130, MG189962, KT187556, KU365903, KU517845, KY794785, KU948303, KU517847, KX372564, KX452038, KX380815, KU509277, KY627762, KY427085, KJ830750, MG779196, KY937188, EU660415, KF955402, MF459663, KU509273, FJ906969, KU094070, KM587709, HQ891023, HQ541799, HQ541798, KJ734727, KU509267, KJ189308, KY474331, KX702404, JX286526, KP188554, KP188555, JX669479, KP188551, KP188550 reference genomes.

- 9 Pool 1 will have a final volume of 230µl and pool 2 of 190µl.
- 10 In order to prepare the solution to use in the Multiplex PCR, dilute each pool 1:10. That is, 10µl of pool 1 and 90µl of ultrapure water.

Multiplex PCR

1. Prepare the **Mix 1** for a Multiplex PCR for each **Pool 1** e **Pool 2** using a Falcon tube of 15mL (~96 amostras) or a 2mL tube.

Mix 1Multiplex PCR	Vol. Pool 1(1x)	Vol. Pool 2(1x)	96 amostras (+2) (pool1 ou pool2)
Q5 Master Mix High fidelity 2X	12,5 µl	12,5 µl	1.225 µl
Conjunto de primers (Pool1 ou Pool2) /concentração de uso/	1,5 µl	1,5 µl	147 µl
Água Ultra Pura	8,5 µl	8,5 µl	833 µl
Total	22,5µl	22,5µl	2205µl

12 1. Add **2,5μl of cDNA** (totalling 5μl) in 22,5μl of the pool1 and pool2 reaction and take it to the thermocycler following the conditions bellow:

Step1:

98°C --- 30 seconds

Step2: (45 cycles)

98°C --- 15 seconds

58°C --- 30 seconds

72°C ---- 5 minutes

Step3:

72°C --- 2 minutes

Hold 4°C