

BITS Pilani

Dr. Manik Gupta Assistant Professor Department of CSIS

Data Mining (CS F415) Lecture 14 – Sequential Pattern Mining

Thursday, 13th February 2020

Today's Agenda

Sequential Pattern Mining

Why Sequential Pattern Mining?

- Sequential pattern mining: Finding time-related or event based frequent patterns (frequent subsequences)
- Most data and applications are time-related
 - Customer shopping patterns, telephone calling patterns
 - E.g., first buy computer, then CD-ROMS, software, within 3 mos.
 - Natural disasters (e.g., earthquake, hurricane)
 - Disease and treatment
 - Stock market fluctuation
 - Weblog click stream analysis
 - DNA sequence analysis

Examples of Sequence

- Sequence of different transactions by a customer at an online store:
 - < {Digital Camera,iPad} {memory card} {headphone,iPad cover} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:
 - < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases} >
- Sequence of books checked out at a library:
 - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>
- Can you think of other examples?

Sequential Pattern Discovery-Examples

- In telecommunications alarm logs
 - Inverter_Problem (Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)
- In point-of-sale transaction sequences
 - Computer Bookstore (Intro_To_Visual_C) (C++_Primer) --> (Perl_for_dummies,Tcl_Tk)
 - Athletic Apparel Store(Shoes) (Racket, Racketball) --> (Sports Jacket)

Why is sequential pattern mining important?

- Helps identify recurring features of a dynamic system
- Predict future occurrences of certain events

Sequence Data - Terminology

- A sequence is an ordered list of elements.
- Each element is a collection of one or more events.
- A sequence can be characterized by its length and number of occurring events.
- Length of sequence corresponds to number of elements present in the sequence
- k-sequence is a sequence that contains k events

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

innovate achieve lead

Sequence Data

Sequence Database

Sequence ID	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

innovate ac

 b_5

 a_3

Formal Definition of a Subsequence

- A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers
 i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1} , a₂ ⊆ b_{i2}, ..., a_n ⊆ b_{in}
- Illustrative Example:

s: b_1 b_2 b_3 b_4 t: a_1 a_2

t is a subsequence of s if $a_1 \subseteq b_2$, $a_2 \subseteq b_3$, $a_3 \subseteq b_5$.

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {8} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes
<{2,4} {2,5}, {4,5}>	< {2} {4} {5} >	No
<{2,4} {2,5}, {4,5}>	< {2} {5} {5} >	Yes
<{2,4} {2,5}, {4,5}>	< {2, 4, 5} >	No

Sequential Pattern: Definition

- Say D is a dataset that contains one or more data sequences.
 - Data sequence refers to an ordered list of events associated with a single data object
- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Discovery: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
А	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

innovate achieve lead

Why is sequence pattern discovery challenging?

- Sequence pattern discovery is a computationally challenging task.
- What is the number of distinct sequences for a data sequence with 9 events?

Extracting Sequential Patterns

- Given n events: i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:
 - $\{i_1\}>, \{i_2\}>, \{i_3\}>, \dots, \{i_n\}>$
- Candidate 2-subsequences:
 - <{i₁, i₂}>, <{i₁, i₃}>, ...,
 - $\{i_1\} \{i_1\} >$, $\{i_1\} \{i_2\} >$, ..., $\{i_n\} \{i_n\} >$
- Candidate 3-subsequences:
 - $\{i_1, i_2, i_3\}$ >, $\{i_1, i_2, i_4\}$ >, ...,
 - <{i₁, i₂} {i₁}>, <{i₁, i₂} {i₂}>, ...,
 - <{i₁} {i₁, i₂}>, <{i₁} {i₁, i₃}>, ...,
 - $\{i_1\} \{i_1\} \{i_1\} >, \{i_1\} \{i_2\} >, \dots$

What do you notice?

- An event can appear more than once in a sequence.
 - There are many candidate 2-sequences such as $\{i_1,i_2\}$ >, $\{i_1\},\{i_1\}$ >, $\{i_1\},\{i_2\}$ >, $\{i_2\},\{i_1\}$ }> that can be generated
- Order matters in sequences.
 - <{i₁}, {i₂}> and <{i₂}, {i₁}> correspond to different sequences and thus must be generated separately

Extracting Sequential Patterns: Simple example

- Given 2 events: a, b
- Candidate 1-subsequences:
 - <{a}>, <{b}>.

Item-set patterns

- Candidate 2-subsequences:
 - <{a} {a}>, <{a} {b}>, <{b} {a}>, <{b} {b}>.
- Candidate 3-subsequences:
 - <{a} {a} {a}>, <{a} {b}>, <{a} {b}>,</a} {b}
 - <{b} {b} <b}, <{b} {a}>, <{b} {a} {b}>, <{b} {a} {a}>
 - <{a, b} {a}>, <{a, b} {b}>, <{a} {a, b}>, <{b} {a, b}>

Sequence Pattern Mining - Recap

A sequence database

Sequence_ID	Sequence
1	$\langle a(abc)(ac)d(cf)\rangle$
2	$\langle (ad)c(bc)(ae) \rangle$
3	$\langle (ef)(ab)(df)cb \rangle$
4	$\langle eg(af)cbc \rangle$

How many sequences are there?

Consider the sequence <a(abc)(ac)d(c f)>. What is the length of the sequence?

Is sequence <a(bc)d f> a subsequence of sequence 1?

Consider subsequence s = <(ab)c>. What is the support of s?

Different Algorithms

- GSP adopts a candidate generate-and-test approach using horizonal data format (where the data are represented as (sequence ID : sequence of elements), as usual, where each element is an event).
- SPADE adopts a candidate generate- and-test approach using *vertical data format* (where the data are represented as *(itemset : (sequence ID, event ID))*). The vertical data format can be obtained by transforming from a horizontally formatted sequence database in just one scan.

Generalized Sequential Pattern (GSP)

• Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

• Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less thaan minsup

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce the following candidate 2-sequences: $<\{i_1\}$ $\{i_1\}>$, $<\{i_1\}$ $\{i_2\}>$, $<\{i_2\}$ $\{i_2\}>$, $<\{i_2\}$ $\{i_3\}>$ and $<\{i_1$ $i_2\}>$.
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing an event from the first element in w₁ is the same as the subsequence obtained by removing an event from the last element in w₂
 - The resulting candidate after merging is given by extending the sequence w₁ as follows-
 - If the last element of w₂ has only one event, append it to w₁
 - Otherwise add the event from the last element of w_2 (which is absent in the last element of w_1) to the last element of w_1

GSP Example

- Merging w_1 =<{1 2 3} {4 6}> and w_2 =<{2 3} {4 6} {5}> produces the candidate sequence < {1 2 3} {4 6} {5}> because the last element of w_2 has only one event
- Merging $w_1 = <\{1\} \{2\ 3\} \{4\}>$ and $w_2 = <\{2\ 3\} \{4\ 5\}>$ produces the candidate sequence $<\{1\} \{2\ 3\} \{4\ 5\}>$ because the last element in w_2 has more than one event
- Merging w₁=<{1 2 3} > and w₂ =<{2 3 4} > produces the candidate sequence < {1 2 3 4}> because the last element in w₂ has more than one event
- We do not have to merge the sequences
 w₁ =<{1} {2 6} {4}> and w₂ =<{1} {2} {4 5}>
 to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w₁ with < {2 6} {4 5}>

Frequent 3-sequences

Candidate Generation

Frequent 3-sequences

Candidate Generation

Candidate Pruning

< {1} {2 5} {3} >

Candidate Generate-and-test - Drawbacks

- A huge set of candidate sequences generated.
 - Especially 2-item candidate sequence.
- Multiple Scans of database needed.
 - The length of each candidate grows by one at each database scan.
- Inefficient for mining long sequential patterns.
 - A long pattern grow up from short patterns
 - The number of short patterns is exponential to the length of mined patterns.

SPADE Algorithm

- SPADE (<u>Sequential PAttern Discovery using Equivalent Class</u>) that uses vertical format data
- SPADE requires one scan to find the frequent 1-sequences.
 - To find candidate 2-sequences, all pairs of single items are joined if they are frequent (therein, it applies the Apriori property), share the same sequence identifier, and their event identifiers follow a sequential ordering.
 - The first item in the pair must occur as an event before the second item, where both occur in the same sequence.
- The procedure stops when no frequent sequences can be found or no such sequences can be formed by such joins

Vertical format database and fragments of ID lists for 1-, 2-, and 3-sequences

Each itemset (or event) is associated with its ID list, which is the set of SID (sequence ID) and EID (event ID) pairs that contain the itemset.

		pairs triat
SID	EID	Items
1	1	a
$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	1 2 3 🖍	abc
1		ac
1	4 5 1 2	d
1	5	cf
2	1	ad
2		c
2 2 3	3	bc
2	4	ae
3	1	ef
3	2	ab
3 3 3 4	3	df
3	4	\mathbf{c}
3	5	b
4	1	e
4	1 2 3 4 5 1 2 3 4 5	g af
4 4 4	3	
4	4	c
4		b
4	6	c

	\mathbf{a}		b		
\overline{SI}	D EI	D SI	D F	EID ·	••
1	1		L.	2	-
1	. 2	2 2	2	3	
1	3	3	}	2	
$\overline{2}$	1		}	5	
2	4	<u> </u>	1	5	
3	2	2			<u> </u>
4	3	}			

2-subsequences –		
<{a} {a}>, <{a} {b}>, <{b} {a}>,		
<{b} {b}>, <{a, b}>.		

Join the ID lists of a and b by joining on the same sequence ID wherever, according to the event IDs, a occurs before b. That is, the join must preserve the temporal order of the events involved.

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	• • •
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

	ŧ	aba		
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	.50
2	1	3	4	

Advantages of SPADE

- The use of vertical data format, with the creation of ID lists, reduces scans of the sequence database.
- The ID lists carry the information necessary to find the support of candidates. As the length of a frequent sequence increases, the size of its ID list decreases, resulting in very fast joins.

To Explore

PrefixSpan - Prefix-Projected Sequential Pattern Growth


```
Buyer A: < {TV} ... {DVD Player} > Buyer B: < {TV} ... {DVD Player} >
```

The sequential pattern of interest is

which suggests that people who buy TV will also soon buy DVD player.

•A person who bought a TV ten years earlier should not be considered as supporting the pattern because the time gap between the purchases is too long.

- In some applications, relative timing of the transactions is crucial to define the pattern
- Consider a credit card company wanting to mine unusual patterns in purchasing behavior:
 - A fraudulent user of the card could easily buy similar items as the normal users would do, so the sequence of transactions might not discriminate enough
 - But the fraudulent user would do the purchases in short time interval to make maximum use of the card before it is close
- Constraining the patterns in temporal dimension is required to mine such patterns

- Consider two kinds of constraints:
 - Max-span constraint (m_s): maximum allowed time between the first element and the last element in the sequence
 - Max-gap constraint (x_g): maximum length of a gap between two consecutive element

x_g: max-gap

n_g: min-gap

m_s: maximum span

Consider the data sequences below with element timestamps 1,2,3,... max-gap = 2, max-span= 4

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	Yes
<{1} {2} {3} {4} {5}>	< {1} {4} >	No (max-gap=3)
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No (max-span=5)

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify algorithm to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	1,2,4 2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2 2,3,4 2,4,5
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	3, 4 4, 5
Е	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint!

Support has increased when the number of events increases in a sequence - contradicts Apriori principle!

Object D does not support <{2},{5}> since time gap between events 2 and 5 is greater than maxgap.

Contiguous Subsequences

- This problem caused by the maxgap constraint can be circumvented by considering contiguous subsequences
- Examples: $s = < \{1\} \{2\} >$
 - is a contiguous subsequence of
 - < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of
 - < {1} {3} {2}> and < {2} {1} {3} {2}>
- A k-1-sequence t is a contiguous subsequence of ksequence s if t can be constructed by
 - deleting events from the elements of s
 - while not allowing middle elements to get empty

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- s is obtained from w by deleting an item from either e₁ or ek
- s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)

Data Sequence, s	Sequential Pattern, t	Is t a contiguous
		subsequence of s ?
<{1} {2,3}>	< {1} {2} >	Yes
<{1,2} {2} {3} >	< {1} {2} >	Yes
<{3,4} {1,2} {2,3} {4} >	< {1} {2} >	Yes
<{1} {3} {2} >	< {1} {2} >	No
<{1,2} {1} {3} {2} >	< {1} {2} >	No

Modified Candidate Pruning Step

- Without maxgap constraint
 - A candidate k-sequence is pruned if at least one of its (k-1)subsequences is infrequent.
- With maxgap constraint
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent.

Modified Sequential Apriori for timing constraints

- Modified Apriori principle
 - If a k-sequence is frequent, then all of its contiguous k-1-subsequences are frequent
- Modified algorithm
 - Candidate generation step remains the same
 - Merge two frequent k-1 sequences that have the same middle part (excluding first and last event)
 - During candidate pruning, verify only contiguous k-1sequences
 - e.g. Given 5-sequence: 1(23)45 we need to verify 1245,1345, and need not to verify 1(23)5 since maxgap between (23) and 5 is greater than one time unit

Support of a sequential pattern

- Support of a sequential pattern is not as clear cut as itemset support, due to the repetition of the items in the data sequence
- Many support counting methods:
 - COBJ: Atleast one occurrence of a given sequence in an object's timeline.
 - CWIN: One occurrence per sliding window.
 - A sliding time window of fixed length (maxspan) is moved across an object's timeline, one unit at a time. The support is incremented each time the sequence is encountered in the sliding window.
 - CMINWIN: Number of minimal windows of occurrence
 - Minimal window is the time interval such that sequence occurs in that time interval but it does not occur in any proper subinterval of it
 - CDIST_O: Distinct occurrences with possibility of event-timestamp overlap.
 - CDIST: <u>Distinct occurrences with no event-timestamp overlap allowed.</u>

Other time constraints

- If the minimum time difference (mingap) is zero, then events in one element must occur immediately after the events occurring in the previous element
- Window size threshold (ws) can be defined to specify the maximum allowed time difference between the latest and earliest occurrences of events in any element of a sequential pattern.
 - A window size of 0 means all events in the same element of a pattern must occur simultaneously.

Baseline for support counting

- For frequent itemset mining, the baseline is given by the total number of transactions.
- For sequential pattern mining, the baseline depends on the counting method used.
 - For the COBJ method, the total number of objects in the input data can be used as the baseline.
 - For the CWIN and CMINWIN methods, the baseline is given by the sum of the number of time windows possible in all objects.
 - For methods such as CDIST and CDIST_O, the baseline is given by the sum of the number of distinct timestamps present in the input data of each object.

Thanks!

Next Lecture:

Subgraph Mining

Readings:

Chapter 7 - Tan & Kumar