Spis treści

1	Cel ćwiczenia	2
2	Wstęp teorytyczny	2
3	Układ pomiarowy	3
4	Przebieg ćwiczenia	4
5	Wyniki pomiarów	5
6	Opracowanie wyników pomiarów dla pojedynczej szczeliny 6.1 Wykres zależności natężenia światła I od położenia detektora x 6.2 Położenia minimów i maksimów	7 7 8 8 9
7	Opracowanie wyników pomiarów dla podwójnej szczeliny 7.1 Wykres zależności natężenia światła I od położenia detektora x 7.2 Położenia maksimów	10 10 11 11 11
8	Wnioski	12

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie rozkładu natężenia światła laserowego dla obrazu dyfrakcyjnego pojedynczej szczeliny i układu dwóch szczelin oraz obliczenie szerokości szczeliny.

2 Wstęp teorytyczny

- 1. Dzięki zjawisku emisji wymuszonej wszystkie atomy w laserze emitują światło o identycznych własnościach. Jest ono emitowane w wyniku przejść atomów pomiędzy stanami o wyższej a stanami o niższej energii. Atomy te emitują światło w sposób skorelowany. Białe światło, takie jak to wysyłane przez Słońce lub żarówki jest mieszaniną fal świetlnych o różnych długościach. Każdej długości fali odpowiada inna barwa światła, jeśli do naszego oka fale takie docierają oddzielnie. Światło jest falą elektromagnetyczną, której długość zawarta jest w przedziale 380-780 nanometrów. Jest to więc niewielki wycinek z całego widma fal elektromagnetycznych. Ludzkie oko czułe jest tylko na fale elektromagnetyczne z tego właśnie zakresu.
- 2. Fala świetlna padająca na przeszkodę w postaci pojedynczej, wąskiej szczeliny ulega zjawisku dyfrakcji, w wyniku czego na ekranie pojawia się charakterystyczny obraz dyfrakcyjny, składający się z jasnego maksimum głównego oraz mniej intensywnych, ułożonych na przemian jasnych i ciemnych prążków pobocznych.
- 3. Szerokość nieznanej szczeliny w oparciu o uzyskany obraz dyfrakcyjny dla światła monochromatycznego możemy uzyskać korzystając ze wzorów dla minimum dyfrakcyjnych oraz maksimum dyfrakcyjnych podanych poniżej:

$$x_{min} = m \frac{\lambda L}{d} \implies d = m \frac{\lambda L}{x_{min}}$$

$$x_{max} = (m + \frac{1}{2}) \frac{\lambda L}{d} \implies d = (m + \frac{1}{2}) \frac{\lambda L}{x_{max}}$$

Szerokość możemy przyjąć jako średnią arytmetyczną wyników.

- 4. Przyjęcie odległości szczelina-ekran przynajmniej 70 cm pozwala na osiągnięcie takiego kąta, dla którego możemy skutecznie przyjąć przybliżenie $sin(\theta) \approx \frac{x}{L}$.
- 5. Przykładowa wartość pierwszego maksimum dyfrakcyjnego dla szczeliny o szerokości d=0.1~mm, długości fali światła laserowego $\lambda=600~mm$ oraz odległości szczelina-ekran 90 cm wynosi $x_{max}=8.1~mm$.
- 6. Schemat elektryczny układu do pomiaru natężenia światła przedstawiony został w punkcie 3.
- 7. Stosunek wartości natężenia światła w pierwszym maksimum bocznym (m=1) do natężenia maksimum głównego wynosi:

$$\frac{I(x_{max})}{I_0} \approx \frac{1}{\pi^2(m + \frac{1}{2})^2} \implies \frac{I(x_{max_1})}{I_0} \approx \frac{1}{\pi^2(1 + \frac{1}{2})^2} \approx 0.045$$

3 Układ pomiarowy

Układ pomiarowy składa się z części optycznej oraz układu elektrycznego. Układ optyczny (Rys. 1) składa się z:

- 1. Laseru emitującego światło czerwone o długości fali $\lambda = 650 \; nm$
- 2. Przesłony metalowej zawierającej szczelinę podwójną, szczelinę pojedynczą i układ 4 szczelin
- 3. Ekranu zaopatrzonego w fotodiodę oraz układu jej przesuwu w kierunku poziomym i pionowym

Rys. 1: Układ optyczny

Układ elektryczny (Rys. 2) składa się z:

- 4. Fotodiody
- 5. Woltomierza cyfrowego o pojedynczym zakresie pomiarowym $400\ mV$
- 6. Baterii zasilającej $2 \times 1.5 V$
- 7. Opornika regulowanego dekadowego $10 \times 100 \Omega$
- 8. Dodatkowych oporników 1 $k\Omega$ i 2 $k\Omega$

Rys. 2: Układ elektryczny

4 Przebieg ćwiczenia

Po zapoznaniu się z układem eksperymentalnym i podłączeniu układu zasilania detektorem światła przy asyście prowadzącego włączyliśmy zasilanie lasera i układu detekcyjnego. Wyregulowaliśmy położenie pojedynczej szczeliny stałej, tak aby uzyskać jak największą jasność obrazu dyfrakcyjnego. Po ustawieniu wartości oporu R wykonaliśmy szereg pomiarów natężeń światła I w funkcji położenia x w zakresie obejmującym maksimum główne oraz dwa prążki poboczne po obu stronach maksimum głównego (przesuwaliśmy detektor co 0,2mm.) Te same czynności powtórzyliśmy dla szczeliny podwójnej. Następnie wyłączyliśmy laser i zasilanie fotodiody w celu zmierzenia odległości L od szczeliny do ekranu oraz zapisaliśmy długość fali światła lasera. Przyjęliśmy niepewność pomiaru odległości jako długość działki elementarnej $u(L) = 0.1 \ mm$.

5 Wyniki pomiarów

Pojedyncza szczelina Odległość szczelina-fotodioda: 755 mm

x [mm]	I [j. u.]
0	2.889
0.2	2.882
0.4	2.869
0.6	2.847
8.0	2.566
1.0	1.704
1.2	0.808
1.4	0.294
1.6	0.094
1.8	0.036
2.0	0.041
2.2	0.073
2.4	0.109
2.6	0.134
2.8	0.127
3.0	0.109
3.2	0.070
3.4	0.035
3.6	0.015
3.8	0.007
4.0	0.006
4.2	0.009
4.4	0.014
4.6	0.020
4.8	0.023
5.0	0.023
5.2	0.017

x [mm]	I [j. u.]
0	2.889
-0.2	2.893
-0.4	2.895
-0.6	2.894
-0.8	2.891
-1.0	2.886
-1.2	2.879
-1.4	2.864
-1.6	2.830
-1.8	2.180
-2.0	1.164
-2.2	0.635
-2.4	0.224
-2.6	0.091
-2.8	0.074
-3.0	0.104
-3.2	0.140
-3.4	0.180
-3.6	0.184
-3.8	0.154
-4.0	0.106
-4.2	0.071
-4.4	0.030
-4.6	0.014
-4.8	0.008
-5.0	0.010
-5.2	0.016
-5.4	0.026
-5.6	0.032
-5.8	0.032
-6.0	0.026

Tab. 1: Wyniki pomiarów dla pojedynczej szczeliny

Podwójna szczelina Odległość szczelina-fotodioda: 755 mm

x [mm]	I [j. u.]
0	2.947
0.2	2.945
0.4	2.943
0.6	2.940
0.8	2.932
1.0	2.921
1.2	2.897
1.4	2.852
1.6	2.047
1.8	0.889
2.0	0.803
2.2	1.060
2.4	1.111
2.6	0.908
2.8	0.533
3.0	0.288
3.2	0.089
3.4	0.078
3.6	1.138
3.8	1.189
4.0	1.190
4.2	1.192

x [mm]	I [j. u.]
0	2.947
-0.2	2.946
-0.4	2.936
-0.6	2.925
-0.8	2.913
-1.0	2.895
-1.2	2.864
-1.4	0.921
-1.6	0.455
-1.8	1.123
-2.0	1.834
-2.2	2.064
-2.4	1.254
-2.6	0.355
-2.8	0.087
-3.0	0.073
-3.2	0.110
-3.4	0.250
-3.6	0.332
-3.8	0.227

Tab. 2: Wyniki pomiarów dla podwójnej szczeliny

6 Opracowanie wyników pomiarów dla pojedynczej szczeliny

6.1 Wykres zależności natężenia światła I od położenia detektora x

Szczelina pojedyncza, skala liniowa

Szczelina pojedyncza, skala logarytmiczna

6.2 Położenia minimów i maksimów

Element obrazu dyfrakcyjnego	Położenie z lewej _{Xl} [mm]	Położenie z prawej X _p [mm]	$x=(x_p-x_l)/2$ [mm]	Obliczona szerokość szczeliny d [mm]
1 minimum	-2.8	1.8	2.3	0.2130
1 maksimum boczne	-3.6	2.6	3.1	0.2370
2 minimum	-4.8	4.0	4.4	0.2230
2 maksimum boczne	-5.6	5.0	5.3	0.2310

Tab. 3: Położenia maksimów i minimów natężenia światła

6.3 Wartości średnie i niepewności

Przy pomocy odczytanych maksimów i minimów w Tab. 3 obliczyliśmy wartości średnie współrzędnych x korzystając ze wzoru $x = \frac{x_p - x_l}{2}$. W kolejnym kroku obliczyliśmy wartości szerokości szczeliny d dla każdego odczytanego elementu obrazu dyfrakcyjnego. W tym celu użyliśmy wzorów:

$$x_{min} = m\frac{\lambda L}{d} \implies d = m\frac{\lambda L}{x_{min}}$$

$$x_{max} = (m + \frac{1}{2})\frac{\lambda L}{d} \implies d = (m + \frac{1}{2})\frac{\lambda L}{x_{max}}$$

Dla 1 minimum wartości wyniosły:

$$x = \frac{x_p - x_l}{2} = \frac{1.8 \text{ mm} - (-2.8 \text{ mm})}{2} = 2.3 \text{ mm}$$
$$d = m \frac{\lambda L}{x_{min}} = 1 * \frac{650 \text{ nm} * 755 \text{ mm}}{2.3 \text{ mm}} = 0.2130 \text{ mm}$$

Wartości pozostałych elementów obliczyliśmy w analogiczny sposób. Następnie obliczyliśmy średnią wartość szczeliny $\bar{d} = \frac{d_1 + d_2 + d_3 + d_4}{4} = 0.2260 \ mm$. By obliczyć niepewność pomiaru szczeliny d (niepewność typu A) użyliśmy wzoru:

$$u(d) = \sqrt{\frac{\sum_{i=1}^{i=n} (d_i - \bar{d})^2}{n(n-1)}} = \sqrt{\frac{\sum_{i=1}^{i=4} (d_i - \bar{d})^2}{4 \times 3}} = 0.0052 \ mm$$

6.4 Stosunek natężeń prążków bocznych do natężenia światła w maksimum $\frac{I}{I_0}$

Natężenie światła w maksimum głównym wyniosło $I_0 = 2.888 \ j.u.$. Z wykresu odczytaliśmy wartości natężenia z lewej i prawej maksimów bocznych. Następnie obliczyliśmy względne natężenie doświadczalne oraz względne natężenie teorytyczne korzystając odpowiednio z wzorów:

$$\frac{I_{x_{max}}}{I_0} = \frac{I_l + I_p}{2I_0}$$
$$\frac{I_{x_{max}}}{I_0} \approx \frac{1}{\pi^2 (m + \frac{1}{2})^2}$$

Dla 1 maksimum bocznego wartości wyniosły:

$$I_{x_{max}}I_0 = \frac{I_l + I_p}{2I_0} = \frac{0.184 \ j.u. + 0.131 \ j.u.}{2 \times 2.888 \ j.u.} = 0.05452$$
$$\frac{I_{x_{max}}}{I_0} \approx \frac{1}{\pi^2 (1 + \frac{1}{2})^2} = 0.04503$$

Wartości dla 2 maksimum bocznego obliczyliśmy w analogiczny sposób. Wyniki wpisaliśmy do Tab. 4.

Element obrazu dyfrakcyjnego	Natężenie z lewej I _l [j. u.]	Natężenie z prawej I _p [j. u.]	Natężenie względne doświadczalne $I(x_{max})/I_0 {=} (I_l {+} I_p)/(2I_0)$	Natężenie względne teorytyczne I(x _{max})/I ₀
1 maksimum boczne	0.184	0.131	0.05452	0.04503
2 maksimum boczne	0.031	0.023	0.00935	0.01621

Tab. 4: Natężenie światła w maksimach bocznych

7 Opracowanie wyników pomiarów dla podwójnej szczeliny

7.1 Wykres zależności natężenia światła I od położenia detektora x

Szczelina podwójna, skala liniowa

Szczelina podwójna, skala logarytmiczna

7.2 Położenia maksimów

Numer maksimum	Położenie z lewej	Położenie z prawej	$x=(x_p-x_l)/2$	Obliczona odległość d
IIII	[mm]	[mm]	[mm]	[mm]
1	-2.2	2.4	2.3	0.214
2	-3.6	4.0	3.8	0.258

Tab. 5: Położenia maksimów nateżenia światła

7.3 Wartości średnie i niepewności

Przy pomocy odczytanych maksimów w Tab. 5 obliczyliśmy wartości średnie współrzędnych x korzystając ze wzoru $x = \frac{x_p - x_l}{2}$. W kolejnym kroku obliczyliśmy wartości szerokości szczeliny d dla każdego maksimum bocznego. W tym celu użyliśmy wzoru:

$$x_{max} = m \frac{\lambda L}{d} \implies d = m \frac{\lambda L}{x_{max}}$$

Dla 1 maksimum wartości wyniosły:

$$x = \frac{x_p - x_l}{2} = \frac{2.4 \text{ mm} - (-2.2 \text{ mm})}{2} = 2.3 \text{ mm}$$
$$d = m \frac{\lambda L}{x_{max}} = 1 * \frac{650 \text{ nm} * 755 \text{ mm}}{2.3 \text{ mm}} = 0.214 \text{ mm}$$

Drugą wartość obliczyliśmy w analogiczny sposób. Następnie obliczyliśmy średnią wartość szerokości szczeliny $\bar{d} = \frac{d_1 + d_2}{2} = 0.2360 \ mm$. By obliczyć niepewność pomiaru szerokości szczeliny d (niepewność typu A) użyliśmy wzoru:

$$u(d) = \sqrt{\frac{\sum_{i=1}^{i=n} (d_i - \bar{d})^2}{n(n-1)}} = \sqrt{\frac{\sum_{i=1}^{i=2} (d_i - \bar{d})^2}{2 \times 1}} = 0.022 \ mm$$

7.4 Stosunek natężenia w najbliższym minimum I_{min} do natężenia światła w maksimum I_0

Natężenie światła w maksimum głównym wyniosło $I_{max} = 2.947 \ j.u.$. Z wykresu odczytaliśmy wartość natężenia światła w pierwszym minimum $I_{min} = 0.816 \ j.u.$. Stosunek $\frac{I_{min}}{I_{max}}$ wynosi:

$$\frac{I_{min}}{I_{max}} = \frac{0.816 \ j.u.}{2.947 \ j.u.} = 0.277$$

8 Wnioski

Zmierzona wartość szerokości szczeliny dla pomiarów dla pojedynczej szczeliny wynosi $d=0.2130\ mm$ z niepewnością pomiarową $u(d)=0.0052\ mm$, zaś dla podwójnej szczeliny $d=0.214\ mm$ z niepewnością pomiarową $u(d)=0.022\ mm$. Porównanie niepewności pomiarowych oraz wykresów pozwala stwierdzić, że pomiary dla podwójnej szczeliny okazały się o wiele mniej dokładne niż dla pojedynczej. Dla pojedynczej szczeliny względne natężenie doświadczalne dla 1 i 2 maksimum bocznego wyniosło odpowiednio 0.05452,0.00935. Względne natężenie teorytyczne to odpowiednio 0.04503 oraz 0.01621. Natężenie doświadczalne różni się zatem od teorytycznego odpowiednio o 21% i 42%. Dla podwójnej szczeliny stosunek natężenia w najbliższym minimum I_{min} do natężenia światła w maksimum I_0 wynosi $\frac{I_{min}}{I_{max}}=0.277$. Wynik jest dosyć odległy od 0 więc jest on daleki od idealnego. Wyniki pomiarów pozwalają stwierdzić, że wykonane ćwiczenie jest dobrą metodą pomiaru szerokości szczeliny. Świadczy o tym bardzo mała niepewność pomiarowa u(d). Pomiary natężeń nie okazały się jednak takie dokładne. Jednym z powodów mogą być duże wahania wskazań detektora oraz niedokładność pomiaru odległości szczeliny od ekranu oraz fotodiody od maksimum głównego. Innym powodem mogła być obecność innego, zmiennego źródła światła w pomieszczeniu, w którym wykonywaliśmy doświadczenie.