Оглавление

1	Метрические пространства	
2	Топологические пространства	į

Глава 1

Метрические пространства

Лемма 1. $B(x_0,\varepsilon)$ открытый

Доказательство.

$$\forall x_1 \in B(x_0, \varepsilon)$$

$$\delta := \varepsilon - p(x_1, x_0)$$

$$B(x_1, \delta) \subset B(x_0, \varepsilon) - ?$$

$$\rho(x_1, x_2) < \delta = \varepsilon - \rho(x_0, x_1)$$

$$\rho(x_0, x_2) \le \rho(x_0, x_1) + \rho(x_1, x_2) < \varepsilon$$

$$x_2 \le B(x_0, \varepsilon)$$

Теорема 1. Равносильны определения:

1. Множество внутренних точек $\operatorname{Int} A$

$$2. \ \bigcup_{U \text{ открытое}} U \subset A$$

3. Максимальное открытое подмножество A

Доказательство.

 \bullet (2) \iff (3)

$$\bigcup_{i \in I} U_i$$
открытое, если $\forall i \quad U_i$ открытое

$$x_0 \in \bigcup_{i \in I} U_i$$

$$\exists x_0 \in U_i$$

$$\implies \exists \varepsilon : B(x_0, \varepsilon) \subset U_i \subset \bigcup_{i \in I} U_i$$

Почему это множество внутренних точек?

$$x_0 \in \bigcup_{\substack{U_i \subset A \\ U_i \text{ открытое}}} U_i \subset A$$

$$\exists \, \varepsilon : B(x_0, \varepsilon) \subset \bigcup_{\substack{U_i \subset A \\ U_i \text{ открытое}}} U_i \subset A$$

Если x_0 – внутренняя для A, то $\exists \varepsilon : B(x_0, \varepsilon) \subset A$

Теорема 2 (свойства открытых множеств).

1. $\bigcup_{i\in I}U_i$ открытое, если $\forall i\quad U_i$ открытое Доказательство. $x_0\in\bigcup_{i\in I}U_i\implies \exists\, i:x_0\in U_i\implies \exists\, \varepsilon>0: B(x_0,\varepsilon)\subset U_i\subset\bigcup_{i\in I}U_i$

2. $U_1, U_2, ..., U_n$ – открытые $\Longrightarrow \bigcap_{i=1}^n U_i$ открытое

Доказательство.

$$x_0 \in \bigcap_{i=1}^n U_i \implies \forall i \quad x_0 \in M \implies \exists \, \varepsilon_i : B(x_0, \varepsilon_i) \subset U_i$$
$$\varepsilon \coloneqq \min_{i=1:n} \{ \, \varepsilon_i \, \} \implies B(x_0, \varepsilon) \subset B(x_0, \varepsilon_i) \subset U_i$$
$$B(x_0, \varepsilon) \subset \bigcap_{i=1}^n U_i$$

П

3. \emptyset , M – открытые

Определение 1. F называется замкнутым, если $M \setminus F$ – открытое

Теорема 3 (свойства замкнутых множеств).

1. Если $\{F_{i\in I}\}$ – замкнутое $\implies \bigcap_{i\in I} F_i$ – замкнутое

Доказательство.

$$U_i \coloneqq M \setminus F_i$$
 – открытое

$$\bigcup U_i = \bigcup (M \setminus F_i) = M \setminus \bigcap F_i \implies \bigcap F_i$$
 – замкнутое

2. Если $F_1,...,F_n$ – замкнутые $\implies \bigcup_{i=1}^n$ – замкнутое

3. \emptyset, M – замкнутые

Замечание. Открытое – не обязательно не замкнутое

Примеры.

1. $M = [0,1] \cup [2,3]$; стандартная метрика [0,1] открыт в M (но не открыт в \mathbb{R}) $=B(\frac{1}{2},1)$

Аналогично, [2,3]=B(2,5;1) – открытый $\implies [0,1]=\overline{[2,3]}$ – замкнутый

2. Дискретная метрика $\rho = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

 $B(x_0,1) = \{x_0\}$ – открытое $\forall U = \bigcup_{x_0 \in U} \{x_0\}$ – открытое

Также, (так как все открытые), все замкнутые

Замечание. Существуют множества, не открытые, и не замкнутые

Пример. $[a,b) \in \mathbb{R}$; метрика стандартная

Теорема 4 (равносильные определения замыкания). M – метрическое пространство, $A \subset M$ Равносильны определения:

1. Множество внутренних и граничных точек называется замыканием

2.
$$M \setminus \operatorname{Int}(M \setminus A)$$

3.
$$\bigcap_{F \text{ замкнутое}} F$$

4. Минимальное замкнутое надмножество A

Доказательство.

- $\bullet \ (3) \iff (4)$
- $(1) \iff (2)$, так как

$$Int(M \setminus A) = Ext A$$

• $(2) \iff (3)$, так как

$$M \setminus \operatorname{Int}(M \setminus A) = M \setminus \bigcup_{\substack{U \subset M \setminus A \\ U \text{ otkphitoe}}} U = \bigcap_{\substack{U \subset M \setminus A \\ U \text{ otkphitoe}}} M \setminus U = \bigcap_{\substack{F \supset A \\ F \text{ samkhytoe}}} F$$

Глава 2

Топологические пространства

Определение 2. X – множество, $\Omega \subset 2^X$

 (X,Ω) называется топологическим пространством, если

- 1. $\forall \{U_i\} \in \Omega \quad \bigcup U_i \in \Omega$
- 2. $U_i, ..., U_n \in \Omega \implies \bigcap_{i=1}^n U_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

 Ω называется топологией над X

 $U \in \Omega$ называется открытым

Определение 3. F называется замкнутым, если $X \setminus F$ открытое

Теорема 5.

- 1. $\{F_i\}$ замкнутое $\implies \bigcap_{i\in I} F_i$ замкнутое
- 2. $F_1,...,F_n$ замкнутое $\implies \bigcup_{i=1}^n F_i$ замкнутое
- 3. \emptyset, X замкнутые

Примечание. Топологическое пространство можно задавать через замкнутые множества (вместо открытых)

Замечание. Любое метрическое пространство является топологическим пространством

Примеры.

- 1. (M, ρ) метрическое $\implies M$ топологическое
- 2. $\forall X, \quad \Omega = \{\emptyset, X\}$ антидискретная топология M топологическое, но **не** метрическое
- 3. $\forall X, \quad \Omega = 2^X$ дискретная топология Любое подмножество будет открытым (а, следовательно, и замкнутым)
- 4. "Топология Зариского" или Топология конечных дополнений Будем называть множество замкнутым, если оно конечное или X (X бесконечный) Открытые те, дополнения до которых конечны
- 5. Стрелка

$$X=\mathbb{R}$$
 (или \mathbb{R}_+ , или ...)

Открытыми будут лучи $(a, +\infty)$ или \emptyset или $\mathbb R$

Примечание. Если $(a,+\infty)$ заменить на $[a,+\infty)$, то это не будет топологией (т. к. $\bigcup [\frac{1}{n};\infty]=(0,\infty))$

6. Топология Зариского

 $X=\mathbb{C}$ (важно, что не \mathbb{R}) Замкнутым будем называть множество корней некоторого многочлена f(x)

$$F_1 \iff f_1, \qquad F_2 \iff f_2$$

 $F_1 \cup F_2 \iff f_1 \cdot f_2$

$$F_1 \cap F_2 \iff \mathrm{HOД}(f_1, f_2)$$

Определение 4. R – коммутативное кольцо, $I\subset R$ I называется идеалом F, если

1.
$$x, y \in I \implies x + y \in I$$

$$2. \ x \in I; y \in R \implies x \cdot y \in I$$