

Data Assessment

Capstone Project: Connecting Windsor-Essex: Broadband

The objective will be in regard to provide analysis and recommendations concerning broadband using the data provided by CW-E stakeholders and the services currently deployed by various school boards in Southwestern Ontario. These insights include, but are not limited to:

- Analysis of broadband quality
- Analysis of broadband speed
- Comparisons between carriers at the same location
- Comparisons between different technologies (i.e. fibre, coax, cellular, satellite)
- Comparisons between different sites with the same carrier/technology
- Analysis of external factors (i.e. weather) on internet services.

Data Assessment Steps:

Assessing the provided data by stakeholders against rules specified by them. Assess data against multiple dimensions such as accuracy of key attributes, completeness of all required attributes, consistency of attributes across multiple data sets, timeliness of data, etc. Depending on the volume and variety of data and the scope of Data Quality project in each phase, we might perform qualitative and/or quantitative assessment using some profiling tools. This is the stage to assess policies as directed by the stake holders related to school boards and CW-E (data access, data security, adherence to specific school board standards/guidelines, etc.) as well.

- **1. Data Governance**: Data governance refers to the overall management of data as a strategic asset within an organization or project.
 - In the context of our CW-E: Braodband project, data governance factors including Consent, Clarity, Consistency, control, Consequences ensures that our data is properly collected, stored, processed, and used in a manner that supports the project goals and objectives as mentioned by the stakeholders.
 - This includes establishing policies, procedures, and standards for data management, as well as ensuring compliance with relevant laws and regulations set by CW-E and St.Clair College stakeholders.
 - The goal of data governance in a project is to ensure that data is of high quality, secure, and usable, while also promoting collaboration and consistency across all project stakeholders. Effective data governance helps to minimize risks, improve data-driven decision making, and increase the overall success of the project.
- **2. Definition:** Defining the business goals for data quality improvement, data owners/stakeholders relating to CW-E, St. Clair College and respective school boards and their data rules.
- Framing questions with respect to our CW-E Broadband project is most important part of identifying business objective, for example:
 - 1. What is Connecting Windsor-essex organisation's overall objectives?
 - 2. What data is needed to meet these objectives?
 - 3. What types of insights and information are required to make progress against these initiatives?
 - 4. How does variables like Jitter, Latency, weather, Distance affect broadband speed.
- 3. Data Extraction and Attributes: Data will be provided by CW-E and appropriate school boards. CW-E has provided us with a sample dataset based on CIRA speed test until we have access to the actual dataset from the respective school boards. In order to better understand the domain knowledge and various metrics that are supposed to be involved in the data, we have acquired datasets from multiple online sources like "Ookla Open Data Initiative" and "National Broadband Data Canada" and combined them into one dataset.

View of the dataset:

C	D	E	F	G	Н	T I	J	K	L
city 🕝	isp_name	⋾ rfactor •	jitter -	packet_loss -	latency -	total_tests 🔻	download_kbps	upload_kbps	distance_miles
Toronto	Bell Canada	86.332	7 19.0047	1.74274	52.761	517	3365.82	744.312	232.303
Toronto	Bell Canada	85.787	1 18.761	1.97105	52.2475	527	3350.43	737.829	231.689
Toronto	Bell Canada	85.915	1 18.6485	1.92527	51.9407	541	3348.42	733.078	231.355
Toronto	Bell Canada	86.258	8 18.1382	1.80647	51.0977	560	3361	722.224	230.957
Toronto	Bell Canada	86.233	1 18.5027	1.80634	51.4178	566	3359.7	717.75	230.98
Toronto	Bell Canada	86.350	7 18.0439	1.78246	50.0281	594	3348.82	715.784	231.761
Toronto	Bell Canada	86.460	8 17.8983	1.74991	49.1832	619	3363.05	727.794	231.86
Toronto	Bell Canada	86.369	7 17.5066	1.79973	48.6247	618	3361.14	736.59	231.834
Toronto	Bell Canada	86.43	6 17.1855	1.77568	49.0236	628	3360.79	737.993	232.152
Toronto	Bell Canada	86.337	9 16.5379	1.8417	47.6434	643	3332.8	725.711	232.459
Toronto	Bell Canada	86.215	4 16.4172	1.89601	47.3677	646	3337.83	736.31	232.578
Toronto	Bell Canada	86.221	9 16.2412	1.8957	47.5007	647	3318.41	727.424	232.606
Toronto	Bell Canada	86.193	4 16.427	1.90596	47.2524	629	3309.66	721.429	233.227
Toronto	Bell Canada	86.182	3 16.3706	1.90986	47.4086	621	3320.05	735.683	233.283
Toronto	Bell Canada	86.112	8 16.8152	1.92624	47.6789	615	3345.53	752.805	233.257
Toronto	Bell Canada	86.104	3 16.8684	1.92889	47.6482	621	3328.12	741.186	233.328
Toronto	Bell Canada	86.227	4 16.2953	1.89422	47.3392	621	3323.07	740.909	233.602
Toronto	Bell Canada	86.304	4 16.4733	1.85843	47.4805	610	3313.06	736.297	233.621
Toronto	Bell Canada	86.326	5 16.4774	1.84934	47.5016	613	3315.41	727.73	232.893
Toronto	Bell Canada	86.437	3 15.6851	1.84747	44.8337	613	3316.57	722.339	233.124
Toronto	Bell Canada	86.172	7 15.632	1.95523	44.7475	618	3313.54	724.472	233.232
Toronto	Bell Canada	86.048	4 15.6686	2.00376	44.7937	621	3329.46	727.696	233.065
Toronto	Bell Canada	85.911	7 15.9285	2.05198	44.9159	604	3338.57	733.039	233.197
Toronto	Bell Canada	86.262	1 14.4629	1.95873	43.151	604	3357.11	736.559	233.178
Toronto	Bell Canada	86.204	6 14.9578	1.95736	44.6047	605	3363.38	737.06	232.981
Toronto	Bell Canada	86.578	2 13.906	1.84345	43.1581	564	3370.69	733.327	232.813
Toronto	Bell Canada	86.364	5 13.3166	1.94569	42.6568	534	3369.24	730.784	233.131
Toronto	Bell Canada	86.754	2 13.4598	1.78473	42.881	513	3372.31	736.143	233.38
Toronto	Bell Canada	86.768	3 13.4044	1.78126	42.7725	514	3383.87	738.199	233.565
Toronto	Bell Canada	86.923	4 13.8468	1.70574	43.2258	516	3399.27	747.022	233.874
Toronto	Bell Canada	86.724	9 15.6979	1.72431	45.6147	501	3411.79	752.191	234.235
Toronto	Bell Canada	87.740	2 20.3478	1.16052	51.9937	504	3440.99	759.636	234.016
Toronto	Bell Canada	87.703	4 20.0466	1.17471	52.6408	514	3454.46	759.423	233.901
Toronto	Bell Canada	87.61	7 20.2149	1.20944	52.2903	507	3454.59	755.559	234.044

Attributes and its types:

In [47]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2794 entries, 0 to 2793
Data columns (total 17 columns):
 #
    Column
                         Non-Null Count Dtype
    -----
                         2660 non-null
                                        object
 0
    country
 1
    region_code
                        2660 non-null
                                        object
 2
                         2660 non-null
                                        object
    city
 3
    isp_name
                         2660 non-null
                                        object
 4
    rfactor
                         2660 non-null
                                        float64
 5
    jitter
                        2660 non-null
                                       float64
   packet_loss
                         2660 non-null float64
 6
 7
    latency
                        2660 non-null
                                       float64
    total_tests
 8
                        2660 non-null
                                        float64
                        2660 non-null
 9
    download_kbps
                                       float64
                        2660 non-null float64
 10 upload_kbps
                        2794 non-null float64
2794 non-null object
 11 distance_miles
 12
    Price
13 download_mbps
                        2792 non-null
                                        float64
    upload mbps
                         2794 non-null
                                        float64
 14
    advertised_download 2794 non-null
 15
                                        int64
    advertised_upload 2794 non-null
                                        int64
dtypes: float64(10), int64(2), object(5)
memory usage: 371.2+ KB
```

Definition of Attributes:

- **Jitter**: Jitter is when there is a time delay in the sending of data packets over a network connection
- Packet Loss: Packets are small units of data transmitted over a network from a
 particular source to a destination. Packet loss occurs when a network packet fails to
 reach its expected destination, resulting in information loss.
- Latency: Latency, also called ping, measures how much time it takes for your computer, the internet, and everything in between, to respond to an action you take (like clicking on a link).
- **ISP_name:** Names of internet service providers
- **Download and Upload kbps:** Download and Upload speed of internet.
- **Distance_miles:** Distance from the server to the end user.
- Price: Monthly price of user's broadband service
- Total_test: Average number of device tests.
- **Download and upload mbps:** Broadband speed in mbps
- Advertised Download and Upload: Speed advertised by Internet Service Providers.
- City: Name of the city
- Country: Name of the country.
- Region: Code of the region.
- R-faction: ratio of speed fluctuation.

- 4. Data Evaluation, Analysis and Improvement:
- **Creating Strong Data Processes**: This is a phase to implement processes in place for collecting, preparing, storing, and distributing the data.
- **Identifying the right tools** or platforms or technology solutions is essential to building a data management strategy.

Our planned tools include:

- Data extraction with support of CW-E and appropriate people at the school board.
- Loading data securely into SQL database by integrating SSMS (SQL Server Management Studio) with Docker containers or Azure SQL Server.
- ETL operations using SSIS (SQL Server Integration Services).
- Data Cleaning and Transformation using MS Excel and T-SQL querying.
- Analysing broadband metrics such as data consumption, Latency and quality using python analysis which include EDA and regression and tests.
- Building ML Prediction Model for data consumption using scikit-learn.
- Building dashboards for real-time monitoring of broadband metrics using Tableau and Azure Synapse Analytics.

Analysis: To better understand the relationship between various variables we performed basic EDA Analysis using python and below are the results:

Correlation Plot:

The above chart shows the correlation with different variables of the dataset like Jitter, Latency, Download and upload speed, Distance in miles.

Internet Service Provider's Distribution:

According to the dataset, Rogers cable service is used by highest distribution in Toronto. In Windsor, Cogeco holds leading position.

Speed vs Latency

(Further analysis can be found in the python.pdf and PPT files attached with submission)

Data Improvement:

- Design and develop improvement plans based on prior analysis which we performed using secondary data acquired from Ookla. The plans should comprehend timeframes, resources.
- Implement solutions determined in the Improve stage. Comprehend both technical
 as well as any business process-related changes. Implement a comprehensive 'Change
 Management' plan to ensure that all stakeholders related to CW-E and school
 boards appropriately informed.
- Verify at periodic intervals that the data is consistent with the business goals and the
 data rules specified in the definition step. Communicate the Data Quality metrics
 and current status to all stakeholders on a regular basis to ensure that Data Quality
 discipline is maintained on an ongoing basis across the organisation.
- 5. Data Security: Data security is defined as, the invested parties having correct protocols to access the project. It means that all the stakeholders including CW-E, School boards and St.Clair College involved should have the access to information and data according to their role. The encryption of the data is crucial in project management security and the data should not be available to everyone. Information and physical security both are important in this regard and we will be discussing both below.
- 1. Educating our users: The most vital step is educating our group members and stakeholders relating to both CW-E and school boards and. Everyone should be aware of the importance of the project. Changing our behavior towards how we interact with technology is highly important. A careless click on a phishing link can cost you (or your clients) a data breach along with significant financial damages.
- 2. Use right security tools: Virtual Private Networks and I.P address and passwords relating SSMS databases make it easy for us to share data securely across the networks. This crucial security tool enhances project protection, encrypts the data so that no third parties can decipher it, and makes communications for the group members and stakeholders protected.
- 3. Backup is extremely important in high stake projects. Our group leader and the stakeholder should store copies of data on external hard drives, Flash drives, and or on other devices in case of laptop theft, equipment damage, or any other unforeseen consequences. The copy of the data will help us go on with your strategic planning and will not compromise your deadlines and project itself. But we must also take great care of your external devices where we have stored data. Make it weatherproof and check it from time to time to make sure that the data is up to date and secure.

References:

<u>Data Quality – Simple 6 Step Process – Digital Transformation for Professionals (digitaltransformationpro.com)</u>

<u>5 Key Steps to Creating a Data Management Strategy | Tableau</u>

What Is Data Governance and Why Does It Matter? (techtarget.com)

Ookla's Open Data Initiative | Ookla®

Connecting Windsor-Essex (cw-e.ca)