Seminarul 6

- 1. Intr-un joc, se aruncă trei monede. Un jucător câștigă 1 euro pentru fiecare apariție a unui cap și pierde 8 euro în cazul aparitiei a trei pajuri. Calculati pentru suma de bani a jucătorului: functia de repartitie, valoarea medie si deviatia standard.
- A: Fie N numărul de capete apărute în joc și X suma de bani a jucătorului. Atunci $N \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \frac{1}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} \end{pmatrix} \Longrightarrow$ $X \sim \begin{pmatrix} -8 & 1 & 2 & 3 \\ \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{pmatrix}. \text{ Funcția de repartiție } F: \mathbb{R} \rightarrow [0,1] \text{ este dată de } F(x) = P(X \leq x) = \begin{cases} 0, & x \in (-\infty, -8) \\ \frac{1}{8}, & x \in [-8, 1) \\ \frac{4}{8}, & x \in [1, 2) \\ \frac{7}{8}, & x \in [2, 3) \end{cases}.$ $E(X) = (-8) \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} - 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{4}{8} = 0.5 \cdot V(X) = E(X^2) - E(X)^2 = (-8)^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} = \frac{1}$
- $\frac{64+3+12+9-1}{8} = \frac{87}{8} \implies Std(X) = \sqrt{V(X)} = \sqrt{\frac{87}{8}} \approx 3.3.$ 2. Un jucător de darts ochește discul roșu (denumit "bullseye") cu centrul în centrul țintei și diametru 1 cm. La o aruncare, distanța dintre centrul țintei și punctul nimerit de săgeata jucătorului urmează distribuția uniformă pe intervalul [a,b], unde $0 \le a < b$, cu valoarea medie $\frac{3}{2}$ cm și deviația standard $\frac{\sqrt{3}}{2}$ cm. Aruncările jucătorului
- a) probabilitatea ca jucătorul să nimerească discul rosu:

sunt independente. Determinați:

b) probabilitatea ca jucătorul să nimerească de 2 ori discul roșu din 10 aruncări.

Funcția de densitate pentru distribuția uniformă Unif[a,b] este $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$. R: a) X=distanța de la săgeată la centru $\implies f_X=f$ este funcție de densitate pentru $X\implies E(X)=\int_a^b\frac{x}{b-a}dx=$ $\frac{a+b}{2} = \frac{3}{2}, Std(X)^2 = V(X) = E(X^2) - E(X)^2 = \int_a^b \frac{x^2}{b-a} dx - \frac{(a+b)^2}{4} = \frac{a^2+b^2-2ab}{12} = \frac{3}{4}. \text{ Avem: } \begin{cases} a+b=3 \\ ab=0 \end{cases} \Longrightarrow$

a=0,b=3. p=probabilitatea de a nimeri discul roşu $\implies p=P(X\leq \frac{1}{2})=\int_0^{\frac{1}{2}}\frac{1}{b-a}dx=\frac{1}{6}.$

- b) Z=numărul de reuşite din 10 aruncări $\Longrightarrow Z \sim Bino(10,p) \implies P(Z=2) = C_{10}^2 p^2 (1-p)^8 = 45 \cdot \frac{5^8}{610} \approx 29\%$.
- 3. Fie $X \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$ și Ω spațiul de selecție. Fie $(X_n)_n$ un șir de variabile aleatoare independente definite pe Ω , care au aceeași distribuție ca X.
- a) Fie, pentru $n \in \mathbb{N}^*$, v.a. $Y_n(\omega) = \begin{cases} 1, & \operatorname{dacă} X_n(\omega) \leq 3 \\ 0, & \operatorname{dacă} X_n(\omega) > 3 \end{cases}$, $\omega \in \Omega$.

Ce distribuție are Y_n ? Spre ce valoare converge a.s. şirul $\left(\frac{1}{n}(Y_1 + ... + Y_n)\right)_n$?

R.: $Y_n \sim Bernoulli(P(X \le 3))$. $\frac{1}{n}(Y_1 + \dots + Y_n) \xrightarrow{a.s.} E(Y_1) = P(X \le 3) = 0.6$, folosind LTNM pentru şirul $(Y_n)_n$, care este un sir de v.a. independente.

b) Pentru $n \in \mathbb{N}^*$, fie

$$Z_n: \Omega \to [0,1]$$
 $Z_n(\omega) = \frac{\#\{i \in \{1,\ldots,n\} : X_i(\omega) \le 3\}}{n}.$

Ce relație avem între $Y_1 + ... + Y_n$ și Z_n ? Folosind a), determinați limita a.s. pentru $(Z_n)_n$. R: $\frac{1}{n}(Y_1(\omega) + ... + Y_n(\omega)) = Z_n(\omega) \ \forall \omega \in \Omega.$ Deci, conform a), $Z_n \xrightarrow{a.s.} 0.6$.

- 4. Durata (în minute) a unei plăți pentru o factură la un ghișeu într-o bancă urmează distribuția continuă Unif[1,3]. Stiind că duratele oricăror plăți sunt independente, demonstrați că:
- i) media aritmetică a duratelor plăților a n facturi converge a.s. la 2 minute, când $n \to \infty$.
- ii) media geometrică a duratelor plăților a n facturi converge a.s. la $\frac{3\sqrt{3}}{e}$ minute, când $n \to \infty$. iii) media armonică a duratelor plăților a n facturi converge a.s. la $\frac{2}{\ln 3}$ minute, când $n \to \infty$.

R: Fie X_n durata plății celei de a n-a facturi. $(X_n)_n$ este un şir de variabile aleatoare independente care urmează disitribuția Unif[1,3].

i) LTNM implică
$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} E(X_1) = \int_1^3 \frac{x}{2} dx = 2.$$

ii) LTNM implică
$$\sqrt[n]{\prod_{i=1}^{n} X_i} = e^{\frac{1}{n} \sum_{i=1}^{n} \ln X_i} \xrightarrow{a.s.} e^{E(\ln X_1)} = e^{\int_1^3 \frac{\ln x}{2} dx} = \frac{3\sqrt{3}}{e} \approx 1,91.$$

iii) LTNM implică
$$\frac{n}{\sum_{i=1}^{n} \frac{1}{X_i}} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}} \xrightarrow{a.s.} \frac{1}{E(\frac{1}{X_1})} = \frac{1}{\int_1^3 \frac{1}{2x} dx} = \frac{2}{\ln 3} \approx 1,82.$$

- 5. Un computer este conectat la două imprimante: I_1 and I_2 . Computerul trimite printarea unui document lui I_1 cu probabilitatea 0,4, respectiv lui I_2 cu probabilitatea 0,6. Știind că a fost aleasă imprimanta I_1 , un poster A2 este printat în T_1 secunde, unde T_1 are distribuția $Exp(\frac{1}{5})$. Știind că a fost aleasă imprimanta I_2 , un poster A2 este printat în T_2 secunde, unde T_2 are distribuția uniformă Unif[4,6]. Un inginer solicită printarea unui poster A2 de pe computer.
- a) Calculați probabilitatea ca timpul de printare a posterului să fie mai mică decât 5 secunde.
- b) Calculați valoarea medie pentru timpul (în secunde) de printare a posterului.
- R.: T=timpul de printare a posterului; F_T =funcția de repartiție a lui T; fie evenimentele A: computerul este conectat la imprimanta I_1 ; \bar{A} : computerul este conectat la imprimanta I_2 ; fie f_{T_i} funcția de densitate pentru T_i , i=1,2.
- a) Formula probabilității totale \implies

$$P(T \le 5) = P(A)P(T \le 5|A) + P(\bar{A})P(T \le 5|\bar{A}) = 0.4 \cdot P(T_1 \le 5) + 0.6 \cdot P(T_2 \le 5)$$
$$= 0.4 \int_0^5 \frac{1}{5} e^{-\tau/5} d\tau + 0.6 \int_4^5 \frac{1}{6-4} d\tau = 0.4 \cdot (1-e^{-1}) + 0.6 \cdot 0.5 \approx 0.55.$$

b) Formula probabilității totale \implies

$$F_T(t) = P(T \le t) = P(A)P(T \le t|A) + P(\bar{A})P(T \le t|\bar{A})$$

$$= 0.4 \cdot P(T_1 \le t) + 0.6 \cdot P(T_2 \le t) = 0.4 \int_{-\infty}^t f_{T_1}(\tau)d\tau + 0.6 \int_{-\infty}^t f_{T_2}(\tau)d\tau, \ t \in \mathbb{R}.$$

Deci, $f_T(t) = F'(t) = 0.4f_{T_1}(t) + 0.6f_{T_2}(t), t \in \mathbb{R}$, este funcție de densitate pentru $T \Longrightarrow E(T) = \int_{-\infty}^{\infty} t f_T(t) dt = 0.4 \int_{0}^{\infty} \frac{1}{5} t e^{-\frac{t}{5}} dt + 0.6 \int_{0}^{6} \frac{t}{2} dt = 0.4 \cdot 5 + 0.6 \cdot 5 = 5$ (secunde).

6. Fie v.a. $U \sim Unif[1,3]$. Să se calculeze $E(U^2)$. Folosind rezultatul obținut, să se justifice de ce U^2 nu urmează distribuția Unif[1,9]!

R.: Fie $Y \sim Unif[1,9]$. Folosind calculele de la Problema 1-Seminar 6 și faptul că $U \sim Unif[1,3]$, avem $E(U) = \frac{1+3}{2} = 2, E(Y) = \frac{1+9}{2} = 5$. Dar,

$$E(U^2) = \int_1^3 t^2 \frac{1}{3-1} dt = \frac{1}{2} \cdot \frac{t^3}{3} \Big|_1^3 = \frac{13}{3} \Longrightarrow E(U^2) \neq E(Y)$$

 $\implies U^2$ și Y nu pot avea aceeași distribuție.

7. Fie v.a. independente $U_1, U_2 \sim Unif[0,3]$. Să se calculeze $V(U_1 + U_2)$. Folosind rezultatul obținut, să se justifice de ce $U_1 + U_2$ nu urmează distribuția Unif[0,6]!

R.: Fie $Z \sim Unif[0,6]$. Folosind calculele de la Problema 1-Seminar 6 și faptul că $U_1, U_2 \sim Unif[0,3]$, avem $V(U_1) = V(U_2) = \frac{9}{12} = \frac{3}{4}, V(Z) = \frac{36}{12} = 3$. Dar,

$$V(U_1 + U_2) = V(U_1) + V(U_2)$$
 $(U_1, U_2 \text{ sunt independente}) \Longrightarrow V(U_1 + U_2) \neq V(Z)$

 $\Longrightarrow U_1 + U_2$ și Znu pot avea aceeași distribuție.

8. Timpii de funcționare (în ore) a două baterii sunt două variabile aleatoare independente $X \sim Unif[0,2]$ și $Y \sim Exp(1)$. Fie $T = \min\{X,Y\}$ timpul de funcționare a bateriilor legate în serie. Calculați: P(X < 0.5), P(T > 1), $P(T < 1|X \ge 1)$.

R.:
$$P(X < 0.5) = \int_0^{0.5} \frac{1}{2} dx = \frac{0.5}{2} = 0.25$$

 $P(T > 1) = P(X > 1)P(Y > 1) = \int_1^2 \frac{1}{2} dx \cdot \int_1^\infty e^{-x} dx = \frac{e^{-1}}{2}.$
 $P(T < 1|X \ge 1) = \frac{P(\{T < 1\} \cap \{X \ge 1\})}{P(X \ge 1)} = \frac{P(Y < 1)P(\{X \ge 1\})}{\frac{1}{2}} = 1 - e^{-1}.$