PHAS0058 - Tutorial 2 - Perovskites

1.	Assess the viability of a perovskite with the compositions below. Support your analysis with
	appropriate calculations.

c. MgTiO₃

b. NaMnF₃

- d. BaTiO₃
- e. LaAlO₃
- 2. Predict how substitution of MA in MAPbI₃ perovskite with FA and Cs affects structure stability and optoelectronic properties of a perovskite.
- 3. A perovskite film has a charge carrier mobility of 20 cm² V⁻¹ s⁻¹ and a carrier lifetime of 100 ns. Calculate the carrier diffusion length. How does this value compare to typical diffusion lengths in other semiconductors?
- 4. A perovskite solar cell has a defect density of 10¹⁵ cm⁻³. Assuming that each defect acts as a recombination centre, estimate the carrier lifetime due to defect-assisted recombination. How does this compare to the radiative recombination lifetime in a high-quality perovskite?
- 5. A perovskite film has an absorption coefficient of 10⁵ cm⁻¹ at a particular wavelength. Calculate the film thickness required to absorb 90% of the incident light at that wavelength.