Vandex

Compression

Kinds of compression

Kinds of compression

- > Block-level compression
 - > used in SequenceFiles, RCFiles, Parquet
 - > applied within a block of data

Kinds of compression

- » Block-level compression
 - > used in SequenceFiles, RCFiles, Parquet
 - > applied within a block of data
- > File-level compression
 - > applied to the file as a whole
 - > hinders an ability to navigate through file

Codecs

- Gzip
 compression speed ~16-90
 MiB/s
 decompression speed ~250-320 MiB/s
 - > ratio ~2.77 .. 3.43
- > Bzip2
 - > compression speed ~12-14
 MB/s
 - > decompression speed ~38-42
 MiB/s
 - > ratio ~4.02 .. 4.80

- > LZO
 - > compression speed ~77-150
 MiB/s
 - > decompression speed ~290-314
 MiB/s
 - > ratio ~2.10 .. 2.48
- Snappy
 - > compression speed ~200 MiB/s
 - > decompression speed ~475 MiB/s
 - > ratio ~2.05

No benefit in using compression

Five times more throughput when using compression

Conclusion

- > Raise awareness about application bottlenecks
 - > CPU-bound → cannot benefit from the compression
 - >I/O-bound → can benefit from the compression
- Codec performance vary depending on data, many options available

Conclusion (lesson)

- > Many applications assume relational data model
- > File format defines encoding of your data
 - > text formats are readable, allow quick prototyping, but inefficient
 - > binary formats are efficient, but more complicated to use
- File formats vary in terms of space efficiency, encoding & decoding speed, support for data types, extensibility
- > When I/O bound, can benefit from compression
- > When CPU bound, compression may increase completion time

BigDATAteam