Apunte Único: Álgebra Lineal Computacional - Práctica 5

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 22/06/25 @ 15:49

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10.	13.	16.	19.	22.
2.	5.	8.	11.	14.	17.	20.	??.
3.	6.	9.	12 .	15.	18.	21 .	

Ejercicios de Parciales

Esta Guía 5 que tenés se actualizó por última vez: $\frac{22/06/25 @ 15:49}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

* Descomposición en valores singulares:

Tengo una matriz $A \in K^{m \times n}$

$$A = U\Sigma V^*$$

Con U y V matrices unitarias, por lo tanto <u>cuadradas</u>, <u>simétricas</u> $\left\{ \begin{array}{l} U^*U=I\\ V^*V=I \end{array} \right\}$, y $\Sigma\in K^{m\times n}$ el mismo tamaño que A.

• Para obtener Σ calulo los valores $\sigma_i = \sqrt{\lambda_i}$ donde:

$$A^*Av_i = \lambda_i v_i$$

y luego ordeno los elementos diagonales $[\Sigma]_{ii} = \sigma_i$ de mayor a menor. Completo con fila o columas de ceros, hasta llegar a la dimesión correcta.

- Para obtener la matriz V pongo a los v_i calculados previamente como columnas en orden correspondiente a su σ_i .
- Para calcular U:

$$Av_i = U\Sigma V^*v_i = U\Sigma e_i = U\sigma_i e_i = \sigma_i u_i \Leftrightarrow Av_i = \sigma_i u_i$$

De ese último resultado se desprende info de la matriz A. Como $A \in K^{m \times n}$ con (m > n) tiene rango r < n:

$$\operatorname{Nu}(A) = \langle v_{r+1}, \dots, v_n \rangle$$
 y $\operatorname{Im}(A) = \langle u_1, \dots, u_r \rangle$

* Pseudo-inversa:

Si se tiene una $A \in K^{m \times n}$

$$A = U \Sigma V^* \xrightarrow[\text{inversa}]{\text{pseudo}} A^\dagger = V \Sigma^\dagger U^*,$$

con la Σ^{\dagger} que sería como Σ^{t} invirtiendo los elementos diagonales $[\Sigma^{\dagger}]_{ii} = \frac{1}{\sigma_{ii}}$. Propiedades de esta cosa dignas de ser mencionadas:

• Si bien en general, $AA^{\dagger} \neq I_m$ y los mismo con $A^{\dagger}A \neq I_n$, tenemos este simpático resultado:

$$AA^{\dagger}A = A$$
 v $A^{\dagger}AA^{\dagger} = A^{\dagger}$

Ejercicios de la guía:

Ejercicio 1. Dada la matriz

$$A = \left(\begin{array}{rrr} 13 & 8 & 8 \\ -1 & 7 & -2 \\ -1 & -2 & 7 \end{array}\right)$$

- (a) Hallar una descomposición de Schur $A = UTU^*$, con U unitaria y T triangular superior con los autovalores de la matriz A en la diagonal.
- (b) Descomponer a la matriz T hallada en el ítem anterior como suma de una matriz diagonal D y una matriz triangular superior S con ceros en la diagonal. Probar que $S^j = 0$ para todo $j \ge 2$.
- (c) Usar los ítems anteriores para calcular A^{10}
- (a) Busco autovalores y autovectores de A:

$$|A - \lambda I| = 0 \Leftrightarrow \lambda = 9$$
 con $E_{\lambda=9} = \left\langle \frac{1}{\sqrt{5}}(-2, 1, 0), \frac{1}{\sqrt{5}}(-2, 0, 1) \right\rangle$

Solo salieron 2 autovectores del único autovalor $\lambda = 9$. Esto nos dice que la matriz no es diagonalizable. Pero nadie nos pidió que diagonalicemos, así que ahora para encontrar la descomposición de Schur expando a una base ortonormal de \mathbb{R}^3 :

BON =
$$\left\{ \frac{1}{\sqrt{5}}(-2,1,0), \frac{1}{5}(-2,-4,5), \frac{1}{3}(1,2,2) \right\}$$

Donde usé Gram Schmidt para calcular el autovector $\left(-\frac{2}{5}, -\frac{4}{5}, 1\right)$ y también para calcular un vector extra para formar todo \mathbb{R}^3 .

Entonces tengo ya la base para encontrar la matriz unitaria U_1 :

$$U_1 = \begin{pmatrix} -\frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} & \frac{2}{3} \\ 0 & \frac{5}{3\sqrt{5}} & \frac{2}{3} \end{pmatrix}$$

Ahora calculo:

$$U_{1}^{t}AU_{1} = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0\\ -\frac{2}{3\sqrt{5}} & -\frac{4}{3\sqrt{5}} & \frac{5}{3\sqrt{5}}\\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 13 & 8 & 8\\ -1 & 7 & -2\\ -1 & -2 & 7 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & \frac{1}{3}\\ \frac{1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} & \frac{2}{3}\\ 0 & \frac{5}{3\sqrt{5}} & \frac{2}{3} \end{pmatrix}$$

$$= \frac{1}{3\sqrt{5}} \begin{pmatrix} -6 & 3 & 0\\ -2 & -4 & 5\\ \sqrt{5} & 2\sqrt{5} & 2\sqrt{5} \end{pmatrix} \begin{pmatrix} 13 & 8 & 8\\ -1 & 7 & -2\\ -1 & -2 & 7 \end{pmatrix} \frac{1}{3\sqrt{5}} \begin{pmatrix} -6 & -2 & \sqrt{5}\\ 3 & -4 & 2\sqrt{5}\\ 0 & 5 & 2\sqrt{5} \end{pmatrix} = \underbrace{\begin{pmatrix} 9 & 0 & \frac{27}{5}\sqrt{5}\\ 0 & 9 & -\frac{9}{5}\sqrt{5}\\ 0 & 0 & 9 \end{pmatrix}}_{T}$$

La matriz resultante quedó triangular superior.

Las dos primeras columnas de la matriz T están regaladas, porque son autovectores, entonces $U^t A v_i = \lambda_i e_i$. La tercera columna es parte de la arquitectura que sostiene al infierno.

Por lo tanto se tiene que:

$$U_1^t A U_1 = T \Leftrightarrow A = U_1 T U_1^t$$

$$A = \frac{1}{3\sqrt{5}} \begin{pmatrix} -6 & -2 & \sqrt{5} \\ 3 & -4 & 2\sqrt{5} \\ 0 & 5 & 2\sqrt{5} \end{pmatrix} \begin{pmatrix} 9 & 0 & \frac{27}{5}\sqrt{5} \\ 0 & 9 & -\frac{9}{5}\sqrt{5} \\ 0 & 0 & 9 \end{pmatrix} \frac{1}{3\sqrt{5}} \begin{pmatrix} -6 & 3 & 0 \\ -2 & -4 & 5 \\ \sqrt{5} & 2\sqrt{5} & 2\sqrt{5} \end{pmatrix}$$

(b) Descompongo:

$$T = \begin{pmatrix} 9 & 0 & \frac{27}{5}\sqrt{5} \\ 0 & 9 & -\frac{9}{5}\sqrt{5} \\ 0 & 0 & 9 \end{pmatrix} = \underbrace{\begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & 0 & \frac{27}{5}\sqrt{5} \\ 0 & 0 & -\frac{9}{5}\sqrt{5} \\ 0 & 0 & 0 \end{pmatrix}}_{S}$$

Ahora tengo que ver que $S^j = 0 \ \forall j \geq 2$:

$$S^{2} = \begin{pmatrix} 0 & 0 & \frac{27}{5}\sqrt{5} \\ 0 & 0 & -\frac{9}{5}\sqrt{5} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{27}{5}\sqrt{5} \\ 0 & 0 & -\frac{9}{5}\sqrt{5} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(c) Hay que calcular A^{10} :

$$A = UTU^t = U(D+S)U^t \Leftrightarrow A^{10} = U(D+S)^{10}U^t$$

Y ahora esa horrible expresión:

$$(D+S)^{10} = \sum_{k=0}^{10} {10 \choose k} (D^k S^{10-k}) \stackrel{!}{=} {10 \choose 10} D^{10} + {10 \choose 9} D^9 S + \underbrace{{10 \choose 8} D^8 S^2 + \cdots {10 \choose 10} D S^9 {10 \choose 0} S^{10}}_{0} \stackrel{!}{=} 9 \cdot (D+10S)$$

Donde usé que justo en este ejercicio D es una $\underline{matriz\ escalar}$, es decir: kI entonces conmuta en el producto, porque sino $esto\ no\ funciona\ ni\ en\ pedo.$

Por lo tanto:

$$A^{10} = U(9 \cdot (D+10S))U^t = 9U(D+10S)U^t$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 2. Probar que si $A \in K^{n \times n}$ es hermitiana, entonces los elementos de la diagonal $a_{ii} \in \mathbb{R}$.

Si A es hermitiana, entonces:

$$A \cdot A^* = A^* \cdot A$$

Para probar que los elementos diagonales pertenecen a \mathbb{R} se puede usar la definición:

$$A \cdot A^* \in K^{n \times n}$$

la matriz transpuesta y conjugada va a tener la misma diagonal:

$$a_{ii} \xrightarrow{\text{trasponer y}} \overline{(a_{ii})^t} = \overline{a_{ii}} \stackrel{!}{=} a_{ii}$$

Por lo tanto si a_{ii} es igual a su conjugado debe ser un número real.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 3. Dada $A \in K^{n \times n}$ hermitiana, probar que existen matrices $B, C \in \mathbb{R}^{n \times n}$ con B simétrica y C antisimétrica ($C^t = -C$) tales que A = B + iC.

 \overline{A} apartir de una matriz hermitiana me puedo construir las matrices B y C como:

$$B = \frac{A + A^*}{2}$$
 y $C = \frac{A - A^*}{2}$,

Donde las matrices B y $C \in \mathbb{R}$ y además son simétrica y antisimétrica respectivamente.

Ahora quiero ver la cuenta:

$$B + iC = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + iA}{2} + \frac{A^* - iA^*}{2}$$

$$\stackrel{!}{=} \frac{A + iA}{2} + \frac{A - iA}{2}$$

$$\stackrel{!}{=} A$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Dada $A \in K^{n \times n}$ hermitiana y $S \subset K^n$ un subespacio invariante por A, es decir $Av \in S$ para todo $v \in S$. Probar que S^{\perp} es invariante por A.

Si tomo un $v \in S$ y un $w \in S^{\perp}$:

$$w^* \cdot \overset{\in S}{\overset{}{\overset{}{\downarrow}}} = 0$$

Ahora que sé que S es un subespacio invariante por A:

$$Av = \lambda v \stackrel{\times A^*}{\Longleftrightarrow} A^*Av \stackrel{!}{=} A^2\lambda Av = \lambda^2 v \stackrel{\stackrel{\bullet}{=}}{\rightleftharpoons} kv \in S$$

Con esos ingredientes:

$$(Aw)^* \cdot \overset{\in S}{Av} = w^*A^* \cdot Av \stackrel{\bigstar^1}{=} k(w^* \cdot v) = 0$$

Por lo tanto $Aw \in S^{\perp} \ \forall w \in S^{\perp}$.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 5. Probar que $A \in K^{n \times n}$ es hermitiana y definida positiva si y solo si A es unitariamente semejante a una matriz diagonal real con elementos de la diagonal positivos.

Hay que probar una doble implicación:

 (\Rightarrow)

$$Av = \lambda v \overset{\times v^*}{\Longrightarrow} v^* A v = \lambda v * v \Leftrightarrow v^* A v \overset{\bigstar^1}{\Longrightarrow} \lambda \|v\|_2^2$$

$$Av = \lambda v \overset{*}{\Longleftrightarrow} v^* A^* = \overline{\lambda} v^* \overset{\times v}{\Longleftrightarrow} v^* A^* v = \overline{\lambda} v^* v \Leftrightarrow v^* A^* v \overset{\bigstar^2}{\Longrightarrow} \overline{\lambda} \|v\|_2^2$$

Como $A = A^*$ el miembro izquierdo en \star^1 y \star^2 es igual. Por lo tanto $\lambda = \overline{\lambda} \implies \lambda \in \mathbb{R}$.

Ahora si A es una matriz definida positiva:

$$Av = \lambda v \underset{\rightarrow}{\overset{\times v}{\Longrightarrow}} \underbrace{v^* A v}_{>0 \text{ si } v \neq 0} = \lambda v^* v = \lambda \cdot \|v\|_2^2 > 0 \ \forall v \neq 0 \implies \lambda > 0$$

Hasta acá, con las hipótesis tengo autovalores reales y positivos, ahora voy a ver que los autovectores tienen que ser ortogonales. Dado 2 autovectores v_1 y v_2 asociados a distintos autovalores:

$$Av_{1} = \lambda_{1}v_{1} \quad \text{y} \quad Av_{2} = \lambda_{2}v_{2} \Leftrightarrow \begin{cases} v_{2}^{*}Av_{1} \stackrel{!}{=} (Av_{2})^{*}v_{1} = \lambda_{2}v_{2}^{*} \cdot v_{1} \stackrel{*}{=} \lambda_{1}v_{2}^{*} \cdot v_{1} \\ v_{1}^{*}Av_{2} = \lambda_{2}v_{1}^{*} \cdot v_{2} \stackrel{*}{=} \lambda_{2}v_{1}^{*} \cdot v_{2} \end{cases}$$

Restando ★³ y ★⁴:

$$0 \stackrel{!!}{=} \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} (v_1^* \cdot v_2) \Leftrightarrow v_1 \perp v_2$$

Medio que con eso alcanzaría, porque en el caso de tener

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores.

(⇐) CONSULTAR, probar por absurdo?

Ejercicio 6. Sea
$$A = \begin{pmatrix} 4 & \alpha + 2 & 2 \\ \alpha^2 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

- (a) Hallar los valores de $\alpha \in \mathbb{R}$ para que A sea simétrica y $\lambda = 0$ sea autovalor de A.
- (b) Para el valor de α hallado en (a), diagonalizar ortonormalmente la matriz A.
- (a) Quiero que A sea simétrica:

$$A = A^t \Leftrightarrow \alpha \in \{-1, 2\}$$

$$A_{\alpha=2} = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \qquad \mathbf{y} \qquad A_{\alpha=-1} = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Noto que si $\alpha=2$ la matriz queda con filas linealmente dependientes, por lo tanto cuando $\alpha=2$ tengo autovalor $\lambda=0$. Podría triangular la matriz con $\alpha=-1$, para ver si hay alguna fila linealmente dependiente, pero no hay ganas.

(b) Dado que A es una matriz simétrica, es ortonormalmente diagonalizable. Hay que diagonalizar asegurando que la base de autovectores sea una BON. El procedimientos puede hacerse como cualquier diagonalización, pero acá voy a explotar **a** el hecho de que la base de autovectores va a ser ortogonal.

Busco autovectores de $\lambda = 0$, que equivale a buscar elementos del núcleo de la matriz A a ojo:

$$\begin{array}{c} (A-\lambda I)v_{(\lambda=0)}=0 \Leftrightarrow v_{(\lambda=0)} \in \{(1,-1,0),(0,1,-2)\} \\ \xrightarrow{\text{normalizando}} v_{(\lambda=0)} \in E_{(\lambda=0)} = \left\{(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0),(0,\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}})\right\} \end{array}$$

Como estoy en \mathbb{R}^3 no hay muchas opciones para el vector restante, tiene que ser ortogonal a esos dos. Si no ves a ojo que por ejemplo el vector (2,2,1) funciona podés plantear:

$$\left\{ \begin{array}{lcl} (1,-1,0)\cdot(x,y,z) & = & 0 \\ (0,1,-2)\cdot(x,y,z) & = & 0 \end{array} \right.$$

Resolvelo y obtenés así un vector ortogonal.

Ahora quiero ver a que autovalor corresponde:

$$Av = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 18 \\ 18 \\ 9 \end{pmatrix} = 9 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Tengo así la siguiente base ortonormal para diagonalizar la matriz:

BON =
$$\left\{ \underbrace{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \left(0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)}_{E_{(\lambda=9)}}, \underbrace{\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)}_{E_{(\lambda=9)}} \right\}$$

Y ahora queda fácil, porque la inversa de la matriz de autovectores C es C^t , dado que es una matriz ortogonal o matriz unitaria:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{2}{3} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} & \frac{2}{3} \\ 0 & -\frac{2}{\sqrt{5}} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 7. Considerar la matriz:

$$A = \left(\begin{array}{cc} 4 & 0 \\ 3 & 5 \end{array}\right)$$

- (a) Calcular una descomposición en valores singulares de A.
- (b) Dibujar el círculo unitario en \mathbb{R}^2 y la elipse $\{Ax : x \in \mathbb{R}^2, \|x\|_2 = 1\}$, señalando los valores singulares y los vectores singulares a izquierda y a derecha.
- (c) Calcular $||A||_2$ y cond₂(A).
- (d) Calcular A^{-1} usando la descomposición hallada.
- (a) Quieron encontrar la descomposición en valores singulares:

$$A = U\Sigma V^*$$

Voy a calcular $A^* \cdot A$ para calcular sus *jugosos autovalores*. Como la matriz <u>es cuadrada</u>, no me preocupo por pensar si es mejor hacer $A \cdot A^*$ o al revés, porque van a tener el mismo tamaño:

$$H = A^* \cdot A = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 25 \end{pmatrix} \xrightarrow{\text{calculo}} \det(H - \lambda I) = 0 \Leftrightarrow \lambda \in \{10, 40\}$$

Ahora puedo decir que los valores singulares son:

$$\sigma_i = \sqrt{\lambda_i} \xrightarrow{\text{de mayor}} \{\sigma_1, \sigma_2\} = \{2\sqrt{10}, \sqrt{10}\} \xrightarrow{\text{matriz}} \Sigma = \sqrt{10} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Calculo autovectores de H y los normalizo para obtener una base ortonormal una BON:

$$Hv_{\lambda} = \lambda v_{\lambda} \Leftrightarrow \left\{ \begin{array}{ll} E_{\lambda=40} & = & \left\{ (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \right\} \\ & y & \Longrightarrow \text{ BON} = \left\{ (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \right\} \end{array} \right.$$

Siempre en una matriz unitaria como H los autovectores asociados a autovalores de distinto valor son perpendiculares.

Estoy en condiciones de armar la matriz V, matriz que tiene a los v_i autovectores de H normalizados como columnas, es decir la BON recién calculada:

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Falta menos. Ahora voy a buscar la U, que tiene como columnas a los:

$$u_i = \frac{Av_i}{\sigma i}$$
 con $\sigma_i \neq 0 \xrightarrow{\text{armo}} \{u_1, u_2\} = \left\{\frac{Av_1}{\sigma_1}, \frac{Av_2}{\sigma_2}\right\} \stackrel{!}{=} \left\{\frac{1}{\sqrt{5}}(1, 2), \frac{1}{\sqrt{5}}(2, -1)\right\}$

Entonces tengo:

$$U = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$

Finalmente:

$$A = U\Sigma V^* = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \sqrt{10} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \stackrel{\checkmark}{=} \begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix}$$

(b)

Scatter para 200 $\boldsymbol{x}/\left\|\boldsymbol{x}\right\|_{2}=1$ y para 200 $\boldsymbol{A}\boldsymbol{x}$

(c) La definición de norma subordinada:

$$\|A\|_2 = \max_{\|x\|_2 = 1} \left(\frac{\|Ax\|_2}{\|x\|_2} \right)$$

Y viendo el gráfico:

$$||A||_2 = ||\sigma_1 u_1||_2 = |\sigma_1| \cdot \underbrace{||u_1||_2}_{=1} = \sigma_1 \quad \bigstar^1$$

Por otro lado la definición de condición:

$$\operatorname{cond}_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2$$

Ya tengo $||A||_2$, ahora quiero encontrar $||A^{-1}||$:

$$A = U\Sigma V^* \xleftarrow{\text{invierto}} A^{-1} = (V^*)^{-1}\Sigma^{-1}U^{-1} \stackrel{!}{=} V\Sigma^{-1}U^* = V \begin{pmatrix} \frac{1}{\sigma_1} & 0\\ 0 & \frac{1}{\sigma_2} \end{pmatrix} U^*$$

Por lo tanto

$$||A^{-1}|| = \frac{1}{\sigma_2} \quad \star^2 \xrightarrow{\text{finalmente}} \text{cond}_2(A) = ||A||_2 \cdot ||A^{-1}||_2 = \frac{\sigma_1}{\sigma_2} = 2$$

(d) Usando el cálculo del ítem (c):

$$A^{-1} \stackrel{!}{=} V \Sigma^{-1} U^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \stackrel{\checkmark}{=} \frac{1}{20} \begin{pmatrix} 5 & 0 \\ -3 & 4 \end{pmatrix}$$

A

Si bien esto es una descomposición de A^{-1} ¡No es una descomposición en valores sigulares!

Se puede sacar info de esa expresión, pero ya que la diagonal de Σ no esté ordenada en orden decreciente es suficiente para justificar que no es una SVD.

A

Pero moviendo las columnas se encuentra la descomposición en valores singulares, mirá:

$$A^{-1} \stackrel{!}{=} V \Sigma^{-1} U^* \stackrel{!!!}{=} \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 1 & 1 \\ 1 & -1 \end{array} \right) \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} \right) \frac{1}{\sqrt{10}} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{ccc} \frac{1}{2} & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} \right) \frac{1}{\sqrt{5}} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{ccc} 1 & 2 \\ 2 & -1 \end{array} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 1 & 1 \\ -1 & 1 \end{array} \right) \frac{1}{\sqrt{10}} \left(\begin{array}{ccc} 1 & 0 \\ 0 & \frac{1}{2} \end{array} \right) \frac{1}{\sqrt{5}} \left(\begin{array}{ccc} 2 & -1 \\ 1 & 2 \end{array} \right) \stackrel{\checkmark}{=} \frac{1}{20} \left(\begin{array}{ccc} 5 & 0 \\ -3 & 4 \end{array} \right)$$

Notar que esa matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es involutiva, es su propia inversa. Es así que la descomposición en valores singulares de A^{-1} que nadie pidió pero todos queremos:

$$A^{-1} \stackrel{!}{=} \tilde{U}\tilde{\Sigma}\tilde{V}^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

Acá te hago el gráfico del ítem (b) pero para A^{-1} :

Scatter para 200 $\boldsymbol{x}/\|\boldsymbol{x}\|_2 = 1$ y para 200 $\boldsymbol{A}^{-1}\boldsymbol{x}$

Dale las gracias y un poco de amor \heartsuit a los que contribuyeron! Gracias por tu aporte:

🎖 naD GarRaz 📢

Ejercicio 8. Determinar una descomposición en valores singulares de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & -2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix}$

(a) Si

$$A \stackrel{\bigstar^1}{=} \left(\begin{array}{ccc} 1 & -2 & 2 \\ -1 & 2 & -2 \end{array} \right)$$

llamo

$$\hat{A} = \left(\begin{array}{cc} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{array}\right)$$

que no es otra cosa la tonta A^t de antes con un sombrero distinto, sigue teniendo todos los horrendos estereotipos de antes, *¡Pero el sombrero es nuevo!*

Voy a calcular la descompsición en valores singulares de $\hat{A} = \hat{U}\hat{\Sigma}\hat{V}^t$ porque así me quedo con la versión de 2×2 para hacer menos cuentas. Una vez calculada esa la convierto la descomposición a la de A.

Calculo autovectores de

$$\hat{H} = \hat{A}^t \hat{A} = \begin{pmatrix} 9 & -9 \\ -9 & 9 \end{pmatrix} \xrightarrow{\text{calculo autovalores}} |\hat{H} - \lambda I| = 0 \Leftrightarrow \lambda \in \{0, 18\} \text{ con } \begin{cases} E_{\lambda=18} & = \left\langle (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \right\rangle \\ E_{\lambda=0} & = \left\langle (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \right\rangle \end{cases}$$

Ya tengo:

$$\hat{V} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \mathbf{y} \quad \hat{\Sigma} = \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Necesito ahora encontrar \hat{U} , necesito una base ortonormal de \mathbb{R}^3 . Como solo tengo un $\sigma \neq 0$ voy a poder encontrar 1 de los 3 con la fórmula:

$$\hat{u}_1 = \frac{\hat{A}\hat{v}_1}{\hat{\sigma}_1} = \frac{1}{3} \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix},$$

el resto de los vectores puedo hacer *Gram Schmidt* o lo que sea para encontrar 2 vectores más:

$$(x,y,z) \cdot \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0 \Leftrightarrow x - 2y + 2z = 0 \Leftrightarrow (x,y,z) \in \left\langle \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{3\sqrt{5}} \begin{pmatrix} 2 \\ -4 \\ -5 \end{pmatrix} \right\rangle.$$

Listo tengo:

$$\hat{U} = \begin{pmatrix} \frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} \\ -\frac{2}{3} & \frac{1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & -\frac{5}{3\sqrt{5}} \end{pmatrix}$$

Listo:

$$\hat{A} = \hat{U}\hat{\Sigma}\hat{V}^t$$

Pero yo estoy buscando la descomposición en valores singulares de A transpongo:

Quedó entonces sin el sombrero, la SVD de A:

$$A = U\Sigma V^{t} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{2}{3\sqrt{5}} & -\frac{4}{3\sqrt{5}} & -\frac{5}{3\sqrt{5}} \end{pmatrix}$$

(b) Acá uso la matriz así como está:

$$H = A^t A = \begin{pmatrix} 74 & 32 \\ 32 & 26 \end{pmatrix} \xrightarrow{\text{calculo autovalores}} |H - \lambda I| = 0 \Leftrightarrow \lambda \in \{10, 90\} \text{ con } \begin{cases} E_{\lambda = 90} &= \left\langle \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \right\rangle \\ E_{\lambda = 10} &= \left\langle \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \right\rangle \end{cases}$$

Ya tengo:

$$V = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$
 y $\Sigma = \begin{pmatrix} 3\sqrt{10} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{pmatrix}$

Necesito ahora encontrar U, necesito una base ortonormal de \mathbb{R}^3 . Como solo tengo dos σ_i voy a poder encontrar 2 de los 3 con la fórmula:

$$u_i = \frac{Av_i}{\sigma_i} \implies u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \quad \text{y} \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} \xrightarrow{\text{completo}} u_3 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

Listo tengo:

$$U = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 1 & -1 & 0 \end{array} \right)$$

Finalmente:

$$A = U\Sigma V^t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \\ 1 & 1 & 0 \end{pmatrix} \sqrt{10} \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 naD GarRaz 🞧

Ejercicio 9. Sea

$$A = \left(\begin{array}{cc} 2 & 14 \\ 8 & -19 \\ 20 & -10 \end{array}\right)$$

Probar que para todo $v \in \mathbb{R}^2$ se tiene $\|Av\|_2 \ge 15 \|v\|_2$.

Let's calculate los singular values:

$$\mathbf{H} = A^* \cdot A = \begin{pmatrix} 2 & 8 & 20 \\ 14 & -19 & -10 \end{pmatrix} \cdot \begin{pmatrix} 2 & 14 \\ 8 & -19 \\ 20 & -10 \end{pmatrix} = \begin{pmatrix} 480 & -296 \\ -296 & 657 \end{pmatrix}$$

¿Por qué esos números feos?

Calculo autovalores de H:

$$\det(H - \lambda I) = 0 \Leftrightarrow \begin{cases} \lambda_1 \approx 259.55 \\ \lambda_2 \approx 877.45 \end{cases}$$

Los valores singulares sería:

$$\begin{cases} \sigma_1 = \sqrt{\lambda_1} \approx 29.62 \\ \sigma_2 = \sqrt{\lambda_2} \approx 16.11 \end{cases}$$

Para todo $v \in \mathbb{R}^2$ con $||v||_2 = 1$ se va a cumplir que:

$$\sigma_2 \le ||Av||_2 \le \sigma_1 \iff 16.11 \le ||Av||_2 \le 29.62 \Leftrightarrow \boxed{15 \le ||Av||_2 \le 30} \qquad \forall v \in \mathbb{R}^2, \ ||v||_2 = 1$$

Scatter para 200 $\boldsymbol{x}/\left\|\boldsymbol{x}\right\|_2 = 1$ y para 200 $\boldsymbol{A}\boldsymbol{x}$

$$\left| \cdot \left\{ x : x \in \mathbb{R}^2, \|x\|_2 = 1 \right\} \cdot \left\{ Ax : x \in \mathbb{R}^2, \|x\|_2 = 1 \right\} \right|$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😱

Ejercicio 10. Mostrar que $A \in \mathbb{C}^{n \times n}$ tiene un valor singular nulo si y solo si tiene un autovalor nulo.

 (\Leftarrow) Si A tiene un autovalor $\lambda_i=0$ tiene $\operatorname{Nu}(A)\neq 0$ y existe Av=0 para algún v. Entonces A^*A :

$$A^*Av = 0$$

Por lo tanto A^*A tiene un autovalor nulo y como $\sigma_i^2 = \lambda_i$ hay un valor singular nulo.

 (\Rightarrow) Si A es cuadrada, su descomposición en valores singulares es el producto de matrices cuadradas:

$$A = U\Sigma V^* \xrightarrow[\text{determinante}]{\text{calculo}} |A| = |U\Sigma V^*| = |U| \cdot |\Sigma| \cdot |V^*| = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Porque sigma tiene la forma:

$$[\Sigma]_{ij} = \left\{ \begin{array}{ccc} \sigma_i & si & i = j \\ 0 & si & i \neq j \end{array} \right.$$

Y si uno de los $\sigma_i = 0$, bueh, $\det(A) = 0$. Por lo tanto

$$Nu(A) \neq \{0\}$$

Entonces existe un v tal que:

$$Av = 0 \Leftrightarrow Av = 0 \cdot v$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 11. Sea $A \in \mathbb{C}^{m \times n}$, demostrar que los valores singulares de la matriz $\begin{pmatrix} I_n \\ A \end{pmatrix}$ son $\sqrt{1 + \sigma_i^2}$ donde I_n es la matriz identidad de $\mathbb{C}^{n \times n}$ y σ_i es el *i*-ésimo valor singular de A.

Apunto a obtener los valores singulares, ς_i de la matriz:

$$G = \underbrace{(I_n \ A^*)}_{\in \mathbb{C}^{n \times (n+m)}} \cdot \underbrace{\begin{pmatrix} I_n \\ A \end{pmatrix}}_{\in \mathbb{C}^{n \times n}} = I_n + \underbrace{A^*A}_{\in \mathbb{C}^{n \times n}} = I_n + \underbrace{H}$$

Donde bauticé a A^*A como H. Calculo los autovalores de $G = I_n + H$:

$$|I_n + H - \lambda \cdot I_n| = |H - \underbrace{(\lambda - 1)}_{\mu} \cdot I_n| = |H - \mu \cdot I_n| = 0 \Leftrightarrow \mu \text{ autovalores de } H$$

Ahora identificando bien cada cosa:

Si μ_i es un autovalor de H, entonces los valores singulares de A:

$$\sigma_i = \sqrt{\mu_i} = \sqrt{\lambda_i - 1} \bigstar$$

es un valor singular de A.

Y si tengo que λ_i es un autovalor de G, entonces los valores singulares de $\begin{pmatrix} I_n \\ A \end{pmatrix}$:

$$\varsigma_i = \sqrt{\lambda_i} \stackrel{\blacktriangle}{=} \sqrt{1 + \sigma_i^2}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 12. Sea $A \in \mathbb{C}^{n \times n}$ y $\sigma > 0$. Demostrar que σ es valor singular de A si y solo si la matriz $\begin{pmatrix} A^* & -\sigma I_n \\ -\sigma I_n & A \end{pmatrix}$ es singular, donde I_n es la matriz identidad de $\mathbb{C}^{n \times n}$.

 (\Rightarrow) Sé que σ es un valor singular de A. Calculo el determinante:

$$\det\begin{pmatrix} A^* & -\sigma I_n \\ -\sigma I_n & A \end{pmatrix} = \det(A^*A - \sigma^2 I_n).$$

Y si $\sigma > 0$ es un valor singular de A, entonces $\sigma^2 = \lambda$ con λ autovalor de A^*A

$$\det(A^*A - \lambda I_n) = 0$$

Entonces la matriz $\begin{pmatrix} A^* & -\sigma I_n \\ -\sigma I_n & A \end{pmatrix}$ tiene determinante nulo, es decir que es singular si σ es un valor singular de A.

(\Leftarrow) ¿Es lo mismo que el otro pero en reversa? Sé que det $\begin{pmatrix} A^* & -\sigma I_n \\ -\sigma I_n & A \end{pmatrix} = \det(\underbrace{A^*A - \sigma^2 I_n}_{\text{característica}}) = 0$ La ecuación

característica da 0 para los autovalores de A^*A , por lo tanto $\sqrt{\sigma^2} \stackrel{\sigma>0}{=} \sigma$ tiene que ser un valor singular de A. CONSULTAR, esta demo con gusto a mal

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 13. Sea $A \in \mathbb{C}^{n \times n}$, probar que los valores singulares de A^t , \bar{A} y A^* son iguales a los de A.

☑... hay que hacerlo!
⑥

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 14. Sea $A \in \mathbb{R}^{m \times n}$, de rango r, con valores singulares no nulos: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$

- (a) Probar que A puede escribirse como una suma de r matrices de rango 1.
- (b) Probar que dado s < r se pueden sumar s matrices de rango 1, matrices adecuadamente elegidas, de manera de obtener una matriz A_s que satisface:

$$||A - A_s||_2 = \sigma_{s+1}$$

Nota: A_s resulta ser la mejor aproximación a A (en norma 2), entre todas las matrices de rango s.

(a) Para el caso en que la matriz A tiene más filas que columnas, es decir que m > n

$$A = U \overset{m \times n}{\underset{m \times m}{\overset{\uparrow}{\sum}}} V^t$$

Donde la Σ tiene a los r valores sigulares no nulos ordenados de menor a mayor. Esa matriz puede escribirse como una suma:

$$\Sigma = \sum_{i=1}^{r} \hat{\Sigma}_i,$$

donde las $\hat{\Sigma}_i$ son las matrices de $m \times n$ que tienen solo al valor singular σ_i en la posición ii y ceros en los demás lugares. La suma es hasta r dado que el resto de los n-r demás valores sigulares son nulos, por lo tanto las $\hat{\Sigma}_i$ con i > r son matrices de todos elementos cero.

$$A = \sum_{i=1}^{r} U \hat{\Sigma}_i V^t,$$

donde queda que A se puede expresar como una suma de r matrices singulares de $\operatorname{rg}(\Sigma_i) = 1$, dado que solo tienen una columna no nula.

(b) Dado s < r puedo escribir así la suma del ítem anterior:

$$A = \underbrace{\sum_{i=1}^{s} U\hat{\Sigma}_{i}V^{t}}_{A_{s}} + \underbrace{\sum_{i=s+1}^{r} U\hat{\Sigma}_{i}V^{t}}_{i=s+1} \Leftrightarrow A - A_{s} = \underbrace{\sum_{i=s+1}^{r} U\hat{\Sigma}_{i}V^{t}}_{i=s+1}$$

Ahora tomo norma a $A - A_s$:

8

$$||A - A_s||_2 = \left\| \sum_{i=s+1}^r U \hat{\Sigma}_i V^t \right\|_2 = \sigma_{s+1}.$$

Dado que la norma 2 de una matriz, es el mayor de los valores singulares.

Como ya se vio en ejercicios pasados, una matriz A funciona como una transformación que escala a un vector v al hacer Av. Esa escala es proporcional a los valores sigulares. La matriz A_s , es entonces similar o cercana a A, ya que tiene las mismas s mayores componentes de mayor escalamiento.

\$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🎖 naD GarRaz 📢

Ejercicio 15. Sea

$$A = \left(\begin{array}{rrr} 1 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

- (a) Hallar la matriz de rango 2 que mejor aproxima a A en norma 2.
- (b) Hallar la matriz de rango 1 que mejor aproxima a A en norma 2.
- (a) Tengo que calcular la descomposición en valores singulares:

$$H = A^t A = \left(\begin{array}{ccc} 17 & 8 & 0 \\ 8 & 17 & 0 \\ 0 & 0 & 4 \end{array}\right)$$

Busco autovalores de H:

$$|H - \lambda I| = 0 \Leftrightarrow \lambda \in \{4, 9, 25\} \text{ y autovectores } Hv_{\lambda} = \lambda v_{\lambda} \Leftrightarrow \left\{ \begin{array}{l} E_{\lambda = 25} = \left\langle \frac{1}{\sqrt{2}}(1, 1, 0) \right\rangle \\ E_{\lambda = 9} = \left\langle \frac{1}{\sqrt{2}}(1, -1, 0) \right\rangle \\ E_{\lambda = 4} = \left\langle (0, 0, 1) \right\rangle \end{array} \right.$$

Los autovalores de una matriz simétrica resultaron todos distintos, por lo tanto los autovectores resultaron ortogonales. Por lo tanto tengo a la matriz V y Σ :

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \quad \text{y} \quad \Sigma = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Ahora necesito la U, que la consigo con una BON:

$$\{u_1, u_2, u_3\} = \left\{\frac{Av_1}{\sigma_1}, \frac{Av_2}{\sigma_2}, \frac{Av_3}{\sigma_3}\right\} = \left\{\frac{1}{\sqrt{2}}(1, -1, 0), \frac{1}{\sqrt{2}}(-1, -1, 0), (0, 0, 1)\right\} \implies U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

Por lo tanto la descomposición queda:

$$A = U\Sigma V^{t} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

La matriz de rango 2 que mejor aproxima a A:

$$B = U\Sigma V^t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(b) La de rango 1:

$$B = U\Sigma V^t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 5 & 5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ejercicio 22. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Liercicios de parciales:

- **11.** [segundo recu 5/12/2024] Sean $A, B \in \mathbb{R}^{n \times n}$.
 - (a) Probar que $A^tA = B^tB$ si y solo si existe una matriz ortogonal $U \in \mathbb{R}^{n \times n}$ tal que B = UA.
 - (b) Sea A = QR la factorización QR de A. Probar que A y R tienen los mismos valores singulares.

(c) Sea
$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 7 \end{pmatrix}$$

(a) (\Rightarrow) Multiplico por una $I_n = U^*U$ con U una matriz ortogonal. Luego acomodo y nombro a la matriz adecuada como B:

$$A^t A = A^t U^t U A = (UA)^t (UA) = B^t B$$

 (\Leftarrow) Parto de B = UA, con U una matriz ortogonal:

$$B = UA \Leftrightarrow B^t = (UA)^t \implies B^tB = (UA)^tUA = A^tU^tUA = A^tA$$

(b) Los valores singulares de una matriz A:

$$\sigma_i = \sqrt{\lambda_i}$$
 con λ_i tal que $|A^t A - \lambda_i I| = 0$

Usando el resultado del punto anterior y recordando que la Q en la descomposición QR tiene como columnas una base ortonormal, es decir que Q es una matriz ortogonal, de forma tal que:

$$Q^tQ = I_n \implies A^tA = (QR)^t(QR) \stackrel{!}{=} R^tR$$

- . Por lo tanto los valores singulares de A y R seran los mismos.
- (c) Esto de la descomposición en valores sigulares es mucho más sencillo cuando la matriz es cuadrada, porque hay menos cosas que contemplar. Ya sé los tamaños de la matrices y no tengo que pensar que conviene hacer:

$$C = U \overset{\in \mathbb{R}^{2 \times 2}}{\underset{\in \mathbb{R}^{2 \times 2} \in \mathbb{R}^{2 \times 2}}{\uparrow}} V^{t}$$

Nos dan una A que está casi en SVD. ¿Se ve?, voy a empezar a permutar para dejar bien ordenados los valores singulares:

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 7 \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \underbrace{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)}_{I_2} \left(\begin{array}{cc} 0 & 0 \\ 0 & 7 \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 0 & 7 \\ 0 & 0 \end{array} \right)$$

Ahora permuto para mover ese 7 para la izquierda:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 7 \\ 0 & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{I_2} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}}_{I_2} \underbrace{\begin{pmatrix} 7 & 0 \\ 0 & 0 \end{pmatrix}}_{Y_2} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{Y_2}$$

!Magia! ¿Y para qué me sirve eso? No sé, pero tenía ganas de hacerlo. ¡Nah, mentira! Se terminó el ejercicio. Esa última matriz es la C que cumple lo pedido.

Lo que viene a continuación es la forma menos hacker de hacerlo, básicamente como lo encaré yo antes de darme cuenta Θ que esa SVD cumplía todo lo pedido.

Entendiendo como funciona la descomposición en valores singulares (mirá acá estos resultados click click *) sé que:

$$\begin{cases} \operatorname{Nu}(A) &= \langle (0,1) \rangle \\ \operatorname{Im}(A) &= \langle (-1,1) \rangle \\ \|A\|_2 &= 7 \end{cases} \quad \text{y} \quad C^t \underbrace{\begin{pmatrix} -1 \\ 1 \end{pmatrix}}_{Cv!!} = \begin{pmatrix} 0 \\ 7\sqrt{2} \end{pmatrix}$$

Donde el !! señala que el v no está en el Nu(C) ¡Porque sino el producto daría 0! Con toda esa data se puede encontrar una matriz C sin mucha rosca:

$$C = \underbrace{\frac{1}{\sqrt{2}} \left(\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right)}_{U} \underbrace{\left(\begin{array}{cc} 7 & 0 \\ 0 & 0 \end{array} \right)}_{\Sigma} \underbrace{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)}_{V^{t}}$$