Course Title (Units)

COMP2611 Computer Organization (4 credits)

Course Description

Inner workings of modern digital computer systems and tradeoffs at the hardware-software interface. Topics include: instructions set design, memory systems, input-output systems, interrupts and exceptions, pipelining, performance and cost analysis, assembly language programming, and a survey of advanced architectures.

Exclusion(s)

ELEC 2300

Prerequisite(s)

COMP 1004 (prior to 2013-14) OR COMP 2011 OR COMP 2012H

Course Intended Learning Outcomes (CILOs)

Upon completion of the course, students are expected to be able to:

No.	Course Intended Learning Outcomes
1.	Use the basic concepts of digital logic and build the small circuits involved in computer systems
2.	Describe the interaction between software and hardware and instruction set architecture
3.	Write and execute small programs of a few hundred lines in assembly language
4.	Define the basic concepts of modern computer hardware, including datapath, control, memory and
	input/output
5.	Describe the organizational paradigms that determine the capability and performance of computer
	systems

Assessment

No.	Assessment	Weighting	CLOs to be	Remarks
	Methods		addressed	
1.	Individual	15%	1, 2, 5	Continuous assessments which are designed to
	homework			measure how well students have learned the
2.	Individual	15%	3	fundamentals and major concepts of computer
	programming			organization and architecture.
	project			
3.	Midterm	30% (15% each)	1, 2, 4, 5	
4.	Final exam	40%	1, 2, 4, 5	Final examination questions are designed to
				see how far students have achieved their
				intended learning outcomes.

Assessment Rubric

Course Learning	Exemplary (A- to	Competent (C to	Needs Work (D to	Unsatisfactory (F)
Outcome	A+)	B+)	C-)	
1. Use the basic	Demonstrates	Demonstrates	Demonstrates some	Demonstrates
concepts of digital	thorough theoretic	sufficient theoretic	theoretic knowledge	limited theoretic
logic and build the	knowledge of	knowledge of	of digital logic	knowledge of
small circuits	digital logic design	digital logic design	design principles	digital logic design
involved in	principles.	principles.		principles.

computer systems	Has a high degree of correctness in designing small circuits.	Has a considerable degree of correctness in designing small circuits.	Has some degree of correctness in designing small circuits.	Has a low degree of correctness in designing small circuits.
2. Describe the interaction between software and hardware and instruction set architecture	Demonstrates thorough knowledge and understanding of the design principles of instruction set architecture	Demonstrates sufficient knowledge and understanding of the design principles of instruction set architecture	Demonstrates some knowledge and understanding of the design principles of instruction set architecture	Demonstrates limited knowledge and understanding of the design principles of instruction set architecture
3. Write and execute small programs of a few hundred lines in assembly language	Program correctly handles all specified test cases. The code is very efficient with clear logic, easy to read and understand.	Program correctly handles majority of test cases The code is fairly efficient, easy to read and understand.	Program correctly handles around half of test cases The code works because of brute force; it's not easy to read and understand	Program fails majority of test cases The code is huge and appears to be patched together without logic.
4. Define the basic concepts of modern computer hardware, including datapath, control, memory and input/output	Demonstrates thorough theoretic knowledge of computer hardware and design principles Has a high degree of correctness in describing datapath and control of given machine instruction, and memory structure	Demonstrates sufficient theoretic knowledge of computer hardware and design principles Has a considerable degree of correctness in describing datapath and control of given machine instruction, and memory structure	Demonstrates some theoretic knowledge of computer hardware and design principles Has some degree of correctness in describing datapath and control of given machine instruction, and memory structure	Demonstrates limited theoretic knowledge of computer hardware and design principles Has a low degree of correctness in describing datapath and control of given machine instruction, and memory structure
5. Describe the organizational paradigms that determine the capability and performance of computer systems	Able to clearly analyze and compare computer performance in all given circumstance	Able to analyze and compare computer performance in most given circumstances.	Able to analyze and compare computer performance in some given circumstances.	Fails to analyze and compare computer performance in most given circumstances.