A COMPARATIVE STUDY: THE RASCH PARAMETER ESTIMATES AS A RESULT OF IMPUTING MISSING DATA IN WINSTEPS AND R

Yasmin Hatt & Eleni Pissaridou 21.03.2019

MISSING DATA: WHY?

Item Bank

Time Constraint

Losing part of a test

Skipping a question (to come back to later?)

Survey: choosing to not answer some parts

. . .

MISSING DATA: TYPES

Missing Completely At Random (MCAR)

Missing At Random (MAR)

Missing Not At Random (MNAR)

MISSING DATA: EFFECTS

Produce bias estimates

Reduce statistical power of the test

May not accurately represent some members of the cohort

• • •

MISSING DATA: WHAT CAN WE DO?

Minimize missing data

- Test construct
- Delivery method
- Cohort composition
- Sample size

•

But... often unavoidable!!

- How do we handle it?
- Imputing?
- How accurate?

INVESTIGATION: THE DATASET

Complete dataset

- 1000 candidates
- 53 items

2 types of items:

- Dichotomous
- Polytomous (4 score categories)

Initial calibration in Winsteps:

- Ability range: -2.08, 4.89
- Item difficulty range: -1.62 to 3.07

INVESTIGATION: THE METHOD

Complete dataset

Randomly deleted varying percentages:

• 1

10

• 40

• 3

20

• 50

• 5

30

• 60

Imputed missing data values

- 1. Winsteps XFILE
- 2. R Amelia Package

Calculated:

- ullet % imputed data that matched the original
- and % of agreement between Rasch estimates

Repeated 50 times for each percentage

WINSTEPS XFILE

4	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U
													PREDICTED	PREDICTED		MORE					
									PERSON	ITEM	MEASURE	LOG	PERSON	ITEM		PROBABLE	RESPONSE	RESPONSE		PERSON	
1	Person	Item	OBSERVED	ORDERED	EXPECTATION	VARIANCE	ZSCORE	RESIDUAL	MEASURE	MEASURE	DIFFERENCE	(PROBABILITY)	MEASURE	MEASURE	KURTOSIS	RESPONSE	WEIGHT	STATUS	CODE	LABEL	ITEM LABEL
2	1	1	1	1	1.37523	0.80595	-0.41797	-0.37523	-0.62844	-0.12911	-0.49933	-1.56114	-1.07557	0.31801	1,28025	2	1	1	1	0001	10001
3	1	2	2	2	1.97277	0.11774	0.07936	0.02723	-0.62844	-0.39443	-0.23401	-0.12611	-0.39443	-0.62844	0.11604	. 2	1	1	2	0001	10002
4	1	3	-1	-1	2.02299	0.02247	0	0	-0.62844	3.12081	-3.74925	0	0	0	0.02095	2	1	0		0001	10003
5	1	4	2	2	2.06535	0.22078	-0.13908	-0.06535	-0.62844	-0.92741	0.29897	-0.25496	-0.92741	-0.62844	0.21368	2	1	1	2	0001	10004
6	1	5	-1	-1	2.21164	0.2512	0	0	-0.62844	-1.52582	0.89738	0	0	0	0.19036	2	1	0		0001	10005
7	1	6	2	2	1.96741	0.15388	0.08309	0.03259	-0.62844	-0.41489	-0.21355	-0.16835	-0.41489	-0.62844	0.15168	2	1	1	2	0001	10006
8	1	7	2	2	1.97144	0.05828	0.11833	0.02856	-0.62844	-0.10106	-0.52738	-0.06091	-0.10108	-0.62842	0.05612	2	1	1	2	0001	10007
9	1	8	2	2	1.90805	0.15049	0.23704	0.09195	-0.62844	0.03182	-0.66026	-0.1731	0.03182	-0.62844	0.13297	2	1	1	2	0001	10008
10	1	9	-1	-1	1.7489	0.5194	0	0	-0.62844	-0.4824	-0.14604	0	0	0	1.14023	2	1	0		0001	10009
11	1	10	-1	-1	1.56197	0.51039	0	0	-0.62844	-0.50156	-0.12688	0	0	0	0.74951	. 2	1	0		0001	10010
12	1	11	2	2	1.98389	0.22434	0.03401	0.01611	-0.62844	-0.78478	0.15634	-0.11009	-0.55386	-0.85937	0.6898	2	1	1	2	0001	10011
13	1	12	-1	-1	2.06319	0.21625	0	0	-0.62844	-0.92363	0.29519	0	0	0	0.2095	2	1	0		0001	10012
14	1	13	2	2	2.07269	0.16431	-0.17934	-0.07269	-0.62844	-1.08667	0.45823	-0.18584	-1.08668	-0.62844	0.15375	2	1	. 1	2	0001	10013
15	1	14	3	3	2.25623	0.45218	1.10606	0.74377	-0.62844	-1.4684	0.83996	-1.02663	0.97544	-3.07228	0.96944	2	1	1	3	0001	10014
16	1	15	-1	-1	1.77329	0.73971	0	0	-0.62844	-0.65167	0.02323	0	0	0	1.71479	2	1	0		0001	10015
17	1	16	2	2	1.89743	0.65921	0.12633	0.10257	-0.62844	-0.79736	0.16892	-0.43061	-0.46203	-0.96376	1.68649	2	1	. 1	2	0001	10016
18	1	17	2	2	1.70787	0.36039	0.48663	0.29213	-0.62844	-0.83726	0.20882	-0.45489	0.28363	-1.74933	0.4442	. 2	1	1	2	0001	10017
19	1	18	-1	-1	2.05357	0.24132	0	0	-0.62844	-0.85144	0.223	0	0	0	0.23689	2	1	0		0001	10018
20	1	19	-1	-1	1.9941	0.21154	0	0	-0.62844	-0.60057	-0.02787	0	0	0	0.21148	2	1	0		0001	10019
21	1	20	2	2	1.55809	0.54782	0.59706	0.44191	-0.62844	-0.19612	-0.43232	-0.49152	0.50764	-1.33221	0.88313	2	1	1	2	0001	10020
22	1	21	2	2	1.2531	0.38674	1.20102	0.7469	-0.62844	0.67156	-1.3	-1.06111	2.20451	-2.16139	0.36714	1	1	1	2	0001	10021
23	1	22	1	1	1.23552	0.2916	-0.43616	-0.23552	-0.62844	0.37276	-1.0012	-0.41425	-1.46943	1.21375	0.2482	1	1	1	1	0001	10022
24	1	23	-1	-1	1.31446	0.33722	0	0	-0.62844	0.13026	-0.7587	0	0	0	0.29519	1	1	0		0001	10023
25	1	24	1	1	1.16092	0.22158	-0.34185	-0.16092	-0.62844	1.01804	-1.64648	-0.28309	-1.40613	1.79573	0.18284	1	1	1	1	0001	10024
26	1	25	0	0	0.43425	0.24568	-0.8761	-0.43425	-0.62844	-0.36389	-0.26455	-0.56959	-1.4625	0.47017	0.06461	. 0	1	1	0	0001	10025
27	1	26	-1	-1	0.63273	0.23238	0	0	-0.62844	-1.17239	0.54395	0	0	0	0.07038	1	1	0		0001	10026
28	1	27	-1	-1	0.25764	0.19126	0	0	-0.62844	0.42981	-1.05825	0	0	0	0.08152	0	1	0		0001	10027
29	1	28	1	1	0.2773	0.20041	1.61436	0.7227	-0.62844	0.32944	-0.95788	-1.28264	1.42805	-1.72705	0.07992	0	1	. 1	1	0001	10028
30	1	29	1	1	1.21581	0.4278	-0.32995	-0.21581	-0.62844	0.69451	-1.32295	-0.62957	-1.12249	1.18855	0.43048	1	1	1	1	0001	10029
31	1	30	-1	-1	1.00297	0.44897	0	0	-0.62844	0.61278	-1.24122	0	0	0	0.51168	1	1	0		0001	10030
32	1	31	2	2	1.79954	0.21379	0.43355	0.20046	-0.62844	0.44115	-1.06959	-0.29299	0.44115	-0.62844	0.14962	2	1	1	2	0001	10031
33	1	32			1.71557	0.48491	0.40846	0.28443	-0.62844	-0.04725	-0.58119	-0.23139	0.36964	-1.04534	1.11673	2	1	1	2	0001	10032
24	-	22	-	2	4 55570	0 43007	0 55135	0 42224	0.00044	0 12070	0 70700	0.45540	4 40045	1 00000	0 50050	-	4	4	-	0001	10022

R PACKAGE AMELIA

Honaker J., King G., and Blackwell M. (2011)

Imputation using bootstrap-based Expectation Maximization (EM)

Method overview:

- 1. Bootstrap on incomplete data (this is the full data set)
- 2. Estimation of sufficient statistics by EM
- 3. Fill in missing values using these estimated sufficient statistics

R AMELIA PACKAGE

```
amelia(x=dat, m=1, ords=1:53, ...)
```


Parameters used:

our incomplete data set - x:

number of imputed sets to create — m:

indicator of ordinal variables - ords:

- boot.type: non-parametric bootstrap

THE RESULTS:

	Mea	n	Variance			
Percentage of data deleted	Winsteps	R	Winsteps	R		
1	99.7	99.4	0.0004	0.0004		
3	99.0	98.2	0.0013	0.0009		
5	98.4	97.0	0.0020	0.0015		
10	96.8	94.1	0.0041	0.0025		
20	93.6	88.2	0.0085	0.0082		
30	90.3	82.2	0.0243	0.0127		
40	87.0	76.2	0.0377	0.0181		
50	83.6	70.1	0.0401	0.0303		
60	80.2	63.9	0.0000	0.0371		

THE RESULTS:

	Mea	n	Variance			
Percentage of						
data deleted	Winsteps	R	Winsteps	R		
1	68.7	40.8	3.7	4.2		
3	67.8	41.0	1.5	1.0		
5	67.7	40.8	0.8	0.6		
10	67.9	41.1	0.4	0.3		
20	67.8	40.8	0.2	0.2		
30	67.6	40.7	0.3	0.1		
40	67.4	40.5	0.2	0.1		
50	67.1	40.1	0.2	0.1		
60	67.0	39.9	0.0	0.1		

Mean Item Measure - Amelia imputations

Mean Item Measure - Winsteps imputations

Mean Person Measure - Amelia imputations

Mean Person Measure - Winsteps imputations

FURTHER STUDY

Sample size

Number of items

Types of items (dichotomous/polytomous)

• If polytomous: number of score categories

Percentages missing

Cohort composition

REFERENCES

Payne, Nicole (2014). Missing Puzzle Piece (Image). Available at: http://www.thesevencandles.com/2014/04/missing-puzzle-piece.html (Accessed: 19.03.2019).

Greene, Avalon (2018). *Missing Piece (Image)*. Available at: https://weheartit.com/articles/318419976-missing-piece (Accessed: 19.03.2019).

Wikipedia (2019). R (programming language) (Image). Available at: https://en.wikipedia.org/wiki/R (programming language) (Accessed: 19.03.2019).

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

James Honaker, Gary King, Matthew Blackwell (2011). Amelia II: A Program for Missing Data. Journal of Statistical Software, 45(7), 1-47. URL http://www.jstatsoft.org/v45/i07/

ggplot in R: H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

Linacre, J. M. (2019). Winsteps® Rasch measurement computer program. Beaverton, Oregon: Winsteps.com