

Instituto Superior de Engenharia de Lisboa

Licenciatura em Engenharia Informática e Multimédia

Semestre de Inverno 2019/2020

Produção de Conteúdos de Multimédia

Projeto Final

Trabalho elaborado por:

Jorge Miguel Coelho Silva, A44615

Docente: Pedro Fazenda

2020/01/12

LEIM – PCM – PROJETO FINAL

1 - Índice

2	- Indices de Figuras				
3	- Int	6			
4	- User Interface			7	
	4.1	Des	sign	7	
	4.2	Prir	meira utilização	8	
	4.3	Pro	cura de Imagens por Palavras	8	
	4.4	Pro	cura de Imagens por Cor	9	
	4.5	Pro	cura de Imagens com Imagens Semelhantes	9	
	4.6	Rep	oresentação dos Resultados	10	
5	- Im	- Implementação		11	
	5.1	API	's Manager (<i>ISearchEngine_Manager</i>)	11	
	5.1.1		Procura de Imagens por Palavras	11	
	5.1.	2	Procura de Imagens por Cor e por Imagens Semelhantes	11	
	5.2	Мо	tor (ISearchEngine)	11	
	5.3 Pro		cessamento de Imagem	11	
	5.3.1		Image Procesing	11	
	5.3.2		Histograma de Cores	12	
	5.3.3		Momentos de Cor	12	
	5.3.		Conclusões do processamento de Imagem		
			nvas		
			tra e Escrita no <i>LocalStorage (XML_Database)</i>		
6	– Av	– Avaliação			
7	– Co	– Conclusões			

LEIM – PCM – PROJETO FINAL

2 - Indices de Figuras

FIGURA 1 - LAYOUT INICIAL	7
FIGURA 2 - LAYOUT FINAL	7
FIGURA 3 - POP-UP DE INTRODUÇÃO	8
FIGURA 4 - BARRA DE PROCURA	8
FIGURA 5 - PROCURA COM AJUDA DO AUTOCOMPLETE	9
FIGURA 6 - PROCURA POR COR	9
FIGURA 7 - PROCURAR IMAGENS SEMELHANTES	10
FIGURA 8 - RESULTADOS UTILIZANDO A PALAVRA "BEACH" COM COR AMARELA	10
FIGURA 9 - AS 12 CORES QUE REPRESENTAM UM ESPETRO DE CORES USUAIS AO OLHO HUMANO	12
FIGURA 10 - TEORIA PARA DESCREVER O HISTOGRAMA DE CORES	12
FIGURA 11 - REPRESENTAÇÃO DA DIVISÃO DA IMAGEM EM 9 PARTES IGUAIS	12
FIGURA 12 - CÓDIGO PARA DIVISÃO DA IMAGEM EM 9 PARTES IGUAIS	12
FIGURA 13 - CÓDIGO PARA A CONVERSÃO DE RGB PARA HSV	13
FIGURA 14 - CÁLCULO TEÓRICO PARA MÉDIA E VARIÂNCIA	13
FIGURA 15 - REPRESENTAÇÃO DOS VALORES	
FIGURA 16 – INFORMAÇÃO DO LOCALSTORAGE	14

3 - Introdução

Este projeto tem como objetivo o desenvolvimento de uma aplicação multimédia em HTML5, incluindo API's em JavaScript, para pesquisa e visualização de fotos digitais de uma coleção de fotografias. A aplicação deverá incluir vários tipos de informação (conteúdos) multimédia e deverá também permitir a visualização (disposição no ecrã) dos resultados da pesquisa de diversas formas. O desenvolvimento da aplicação deverá ser centrado no utilizador desde o início do projeto até ao protótipo final.

Para este projeto foi tido em conta o design e funcionalidade do Google Images.

Este relatório irá ser dividido em 3 partes:

<u>User Interface</u> – Onde será explicado o processo de desenvolvimento e como utilizar este Web Site.

Implementação – Onde será explicado detalhadamente todo o processo.

<u>Avaliação</u> – Onde será apresentado alguns dos resultados das avaliações feitas.

4 - User Interface

Neste capítulo iremos abordar alguns dos conceitos e objetivos que foram delineados para a implementação do *Layout* utilizado para uma utilização mais interativa.

4.1 Design

O design é a primeira coisa que qualquer utilizador ao aceder a uma aplicação repara. Um design apelativo, com cores não evasivas e alguns "hints1" para ajudar na interação com todos os possíveis sistemas.

Inicialmente este projeto tinha um layout muito básico como representado na "Figura 1".

Figura 1 - Layout Inicial

Este tipo de design, apesar de ser de utilização extremamente simples, carece de um ponto extremamente importante, o design apelativo. Por esse motivo foram feitas alterações a nível de design, para poder tornar o site outrora básico, num web site mais apelativo.

Figura 2 - Layout Final

-

¹ Hints – Alguma coisa que diz ou descreve um objetivo, usualmente numa maneira não direta.

4.2 Primeira utilização

Apesar de não ter sido um requisito, neste projeto ao abrir pela primeira vez irá ser "confrontado" com um "pop-up" de introdução do projeto.

Figura 3 - Pop-Up de Introdução.

Com esta abordagem, têm-se a possibilidade de fazer "load / Refresh" em toda a informação que fica guardada no LocalStorage. No caso de já ter toda a informação guardada, simplesmente pode-se clicar no "Cancel" e o web site está pronto a funcionar.

Quando se clica no *Load* inicia-se o processo de Ler e guardar as informações das imagens no LocalStorage, este processo pode ser visto ao clicar no F12 do seu teclado e mudando a *Tab* para "*Console*".

4.3 Procura de Imagens por Palavras

Apesar de mais a frente ser descrito detalhadamente como é que é processado o evento de procuras de Imagens por Palavras irei explicar sucintamente como o fazer a nível de utilizador.

Ao aceder ao site irá ver uma barra de procura, nesta barra ira poder por a/as palavras para as quais deseja descobrir imagens.

Figura 4 - Barra de procura.

Como poderá ser visto mais a frente (no capítulo das <u>Avaliações</u>), um dos problemas desta implementação deve-se ao facto de não ter sido desenvolvido um sistema de *Bag of Words*², que iria facilitar a procura de imagens, isto porque, neste caso as procuras estão fixas a certas palavras. Para tentar evitar este problema ao carregar a página nesta barra

² Bag of Words – Sistema utilizado na representação de processamento de linguagem natural. Mais detalhes aqui.

irá aparecer de maneira aleatória uma das palavras que se pode utilizar, no caso da (Figura 4 - Barra de procura.) a palavra que recomenda é "nature".

Outro sistema utilizado para melhor redirecionar o utilizador a uma palavra conhecida é o sistema de *AutoComplete* implementado.

Figura 5 - Procura com ajuda do AutoComplete.

Conforme é possível ver através da (Figura 5 - Procura com ajuda do *AutoComplete*.), o utilizador ao escrever uma letra irá ser apresentado possíveis resultados. Sabe-se através das avaliações feitas, que este sistema de *AutoComplete* não está a funcionar corretamente, fazendo alguns dos utilizadores ficarem frustrados, pois querem clicar na palavra e o sistema não completa a palavra.

4.4 Procura de Imagens por Cor

Apesar de mais a frente ser descrito detalhadamente como é que é processado o evento de procuras de Imagens por Palavras irei explicar sucintamente como o fazer a nível de utilizador.

Para se proceder a procurar imagens por cor, será necessário primeiro escrever uma palavra conhecida. Depois será necessário clicar na seta da Esquerda que ira criar um *DropDown* e aí poderá escolher a cor para que os resultados obtidos sejam coerentes com essa cor.

Figura 6 - Procura por Cor.

4.5 Procura de Imagens com Imagens Semelhantes

Apesar de mais a frente ser descrito detalhadamente como é que é processado o evento de procuras de Imagens com Imagens Semelhantes irei explicar sucintamente como o fazer a nível de utilizador.

Para se proceder a procura de imagens utilizando o sistema de Imagens semelhantes só é necessário clicar no botão a direita antes do botão "Search".

Ao clicar neste botão irá aparecer uma "Modal-Box" com imagens sugeridas para procurar.

Figura 7 - Procurar Imagens semelhantes.

Num sistema como o do google, é possível fazer este tipo de procura com qualquer tipo de imagem. Para Efeitos de projeto este tipo de procura foi desenvolvido para as imagens da base de dados fornecida.

4.6 Representação dos Resultados

Pode-se visualizar na próxima imagem como é apresentado os resultados de uma procura por imagem.

Figura 8 - Resultados utilizando a Palavra "beach" com cor Amarela.

5 - Implementação

Neste Capítulo iremos explicar o funcionamento a baixo nível deste web site.

5.1 API's Manager (*ISearchEngine Manager*)

Este ficheiro é o responsável pelo arranque do sistema.

Controla alguns aspetos de animação implementados, como controla quando e como mostrar as informações.

5.1.1 Procura de Imagens por Palavras

O utilizador ao escrever uma das palavras conhecidas, essa palavra é caracterizada como uma categoria, é feito uma procura num ficheiro *XML*. Este ficheiro ira retornar todos os caminhos para as imagens que posteriormente irá ser utilizado para a representação das imagens no site.

5.1.2 Procura de Imagens por Cor e por Imagens Semelhantes

Tanto no caso de procura por Cor, como procura por Imagens Semelhantes, neste caso, o sistema irá ao *LocalStorage* buscar as informações previamente guardadas, com informações detalhadas para quando feito uma procura por esta tipo de método ser feita uma representação das imagens no site.

5.2 Motor (*ISearchEngine*)

Este ficheiro é o responsável por todo o funcionamento do web site. É aqui que todos os eventos referentes as imagens são processadas. No arranque, no caso de o utilizador clicar no *Load*, irá ser feito um *DatabaseProcessing*, isto é, irá ser dado início a um processo que irá extrair dados as imagens que serão posteriormente guardadas no *LocalStorage* para futuras procuras (este processos serão explicados <u>aqui</u>).

5.3 Processamento de Imagem

Aqui iremos explicar os processos utilizados para recolher informação das imagens.

5.3.1 Image Procesing

Ao ser chamado este método inicia-se o processo de processamento da imagem, que têm o objetivo de recolher todas as informações de uma imagem. Neste processo é recolhido a informação das cores por pixéis fazendo um histograma e os *momentos de cor*³.

³³ *Momentos de cor* – Processo que calcula a distribuição de cores de uma imagem. Normalmente utilizado para comparar o quanto iguais são duas imagens através das cores.

5.3.2 Histograma de Cores

Neste processo, utilizando o *canvas*, é recolhido por pixel a cor comparando-a com 12 cores.

Figura 9 - As 12 Cores que representam um espetro de cores usuais ao olho humano.

Para cada pixel da imagem é calculada a distância de Manhattan entre a cor do pixel e as 12 cores acima representadas. No caso de o resultado dessa distância estar dentro dos parâmetros de controlo será incrementado a imagem a cor que a representa.

$$D_1(x,p) = \sum_{i=1}^{12} |x_i - p| \qquad p = \begin{bmatrix} r \\ g \\ b \end{bmatrix} \qquad x_{color} = \begin{bmatrix} r_{color} \\ g_{color} \\ b_{color} \end{bmatrix}$$

Se $D_1(x,p) < limits 1$ &&

$$|r - r_{color}| < limiar2$$
 && $|g - g_{color}| < limiar2$ && $|b - b_{color}| < limiar2$

Figura 10 - Teoria para descrever o Histograma de Cores.

5.3.3 Momentos de Cor

Neste processo, utilizando o *canvas*, a imagem é dividida em 9 partes iguais, é feita a transformação da imagem para HSV e é recolhido a informação da Média e da variância de cada parte.

Figura 11 - Representação da divisão da imagem em 9 partes iguais.

```
for (let y = 0; y < this.h_block; ++y) {
    for (let x = 0; x < this.v_block; ++x) {
        imgByBlocksRGB.push(ctx.getImageData( sx: x*wBlock, sy: y*hBlock, sw: wBlock, sh: hBlock));
    }
}</pre>
```

Figura 12 - Código para divisão da imagem em 9 partes iguais.

Após a feita a divisão, cada parte é convertida do espaço RGB⁴ para HSV⁵

```
for (let i = 0; i < imgByBlocksRGB.length; ++i) {
    let blockHSV = [];
    for (let k = 0; k < imgByBlocksRGB[i].data.length; k+=4) {
        let red = imgByBlocksRGB[i].data[k];
        let green = imgByBlocksRGB[i].data[k + 1];
        let blue = imgByBlocksRGB[i].data[k + 2];
        let hsv = this.rgbToHsv( rc: red, gc: green, bc: blue);
        let h = hsv[0];
        let s = hsv[1];
        let v = hsv[2];
        blockHSV.push(h, s, v);
    }
    imgByBlocksHSV.push(blockHSV);
}</pre>
```

Figura 13 - Código para a conversão de RGB para HSV

Pós conversão é calculado a Média e a variância de cada componente de cor de cada bloco.

$$\mu_{t,c} = \frac{1}{NM} \sum_{i=1}^{M} \sum_{j=1}^{N} I_{t,c}(i,j) \qquad \sigma_{t,c}^{2} = \frac{1}{NM} \sum_{i=1}^{M} \sum_{j=1}^{N} \left[I_{t,c}(i,j) - \mu_{t,c} \right]^{2}$$

Figura 14 - Cálculo teórico para Média e Variância

Os resultados serão representados num vetor de características.

$$x = \begin{bmatrix} \mu_{1,1} & \sigma_{1,1}^2 & \dots & \mu_{9,3} & \sigma_{9,3}^2 \end{bmatrix}^T$$

Figura 15 - Representação dos valores.

5.3.4 Conclusões do processamento de Imagem

Após os processos acima descritos, as imagens têm como informações o histograma (para ser possível fazer-se pesquisas através de cores) e os momentos de cor (para ser possível fazer-se pesquisas através de imagens semelhantes). Estas informações serão guardadas no **LocalStorage**.

⁴ RGB – Abreviatura do sistema de cores Aditivas, Vermelho (Red), o Verde (Green) e o Azul (Blue).

⁵ HSV – Abreviatura do sistema de Cores formadas por componentes *hue*, uma Matriz com valores de Saturação e Valor.

5.4 Canvas

Canvas é um elemento para representar grafismos numa página de Web.

5.5 Leitra e Escrita no LocalStorage (XML_Database)

Este ficheiro têm como função criar "comunicações" entre uma procura e um ficheiro **XML**.

Além da possibilidade da interação com um ficheiro XML, também têm a possibilidade de tanto escrever como Ler do LocalStorage.

Figura 16 – Informação do LocalStorage

6 - Avaliação

Conforme requisitado, após a conclusão do projeto foi pedido a 8 pessoas, que avaliassem o web site. Devido a alguns problemas de logística, não foi possível fazer as avaliações utilizando o Web Forms (Trabalho Prático 3) para recolher as informações. No entanto, foi utilizado o sistema do Google Forms para obter as avaliações.

Note-se que uma das maiores queixas apresentadas pelos utilizadores, foi a impossibilidade de utilizar palavras sem ser as palavras "conhecidas". No entanto através dos <u>resultados</u> pode-se concluir que os utilizadores acharam que a interação com o Web site foi fácil.

7 – Conclusões

Apesar de ser um projeto que a nível visual, não parece ter muita complexidade, a nível programático, existiu bastantes desafios. Alguns dos objetivos que tentei implementar não ficaram 100% funcionais.

Penso que o projeto foi bastante esclarecedor ao nível de como é feita o processamento de imagens, penso que com mais um bocado de dedicação, no exemplo de procuras por imagens semelhantes, teria sido capaz de fazer a procura de imagens semelhantes através de uma imagem qualquer.

A interação com as pessoas que avaliaram o web site através do questionário foi interessante, pois existiu espaço para discussão de ideias e de melhorias que num futuro penso em fazer neste projeto.