

## Aprendizagem 2021

# Lab 2: Probability theory and Bayesian learning

### **Practical exercises**

#### **I. Evaluation** (cont.)

- **1.** Consider 7 observations with the following annotations  $y = [0\ 1\ 0\ 1\ 0\ 1]$ , and the probabilistic outcome of a classifier under a one-leave-out scheme  $p(y = 1|x) = [0.55\ 0.8\ 0.4\ 0.6\ 0.6\ 0.3\ 0.9]$ .
  - a) Draw the ROC curve using an 11-point interpolation
  - b) Compute the AUC
  - c) Would you change the default 0.5 probability threshold for this classifier?

## II. Probability theory

2. Consider the following registry where an experiment is repeated six times and four events (A, B, C and D) are detected.

Considering frequentist estimates, compute:

p(A) p(A, B) p(B|A) p(A, B, C)p(A|B, C)

p(A, B, C, D)p(D|A, B, C)

| $\chi_1$              | 1 | 1 | 0 | 0 |
|-----------------------|---|---|---|---|
| $\chi_2$              | 1 | 1 | 1 | 0 |
| $\chi_3$              | 0 | 0 | 0 | 1 |
| X4                    | 0 | 0 | 0 | 1 |
| <i>X</i> 5            | 0 | 0 | 0 | 0 |
| <i>x</i> <sub>6</sub> | 0 | 0 | 0 | 0 |
|                       |   |   |   |   |

A B C D

- **3.** Considering the following two-dimensional measurements {(-2,2),(-1,3),(0,1),(-2,1)}.
  - a) What are the maximum likelihood parameters of a multivariate Gaussian distribution for this set of points?
  - b) What is the shape of the Gaussian? Draw it approximately using a contour map.

## III. Bayesian learning

#### 4. Consider the following dataset where:

0: False and 1: True

y1: Fast processing

y2: Decent Battery

y3: Good Camera

y4: Good Look and Feel

y5: Easiness of Use

class: iPhone

|                       | У1 | У2 | Уз | У4 | У5 | class |
|-----------------------|----|----|----|----|----|-------|
| $\chi_1$              | 1  | 1  | 0  | 1  | 0  | 1     |
| $\chi_2$              | 1  | 1  | 1  | 0  | 0  | 0     |
| χ3                    | 0  | 1  | 1  | 1  | 0  | 0     |
| <b>X4</b>             | 0  | 0  | 0  | 1  | 1  | 0     |
| $\chi_{5}$            | 1  | 0  | 1  | 1  | 1  | 1     |
| $\chi_{6}$            | 0  | 0  | 1  | 0  | 0  | 1     |
| <i>x</i> <sub>7</sub> | 0  | 0  | 0  | 0  | 1  | 1     |

And the query vector  $\mathbf{x}_{\text{new}} = [1 \ 1 \ 1 \ 1]^T$ 

- a) Using Bayes' rule, without making any assumptions, compute the posterior probabilities for the query vector. How is it classified?
- b) What is the problem of working without assumptions?
- c) Compute the class for the same query vector under the naive Bayes assumption.
- d) Consider the presence of missings. Under the same naive Bayes assumption, how do you classify  $x_{\text{new}} = [1? 1? 1]^T$

#### 5. Consider the following dataset

|                       | weight (kg) | height (cm) | NBA player |
|-----------------------|-------------|-------------|------------|
| <i>x</i> <sub>1</sub> | 170         | 160         | 0          |
| $\chi_2$              | 80          | 220         | 1          |
| $\chi_3$              | 90          | 200         | 1          |
| X4                    | 60          | 160         | 0          |
| $\chi_{5}$            | 50          | 150         | 0          |
| $\chi_{6}$            | 70          | 190         | 1          |

And the query vector  $\mathbf{x}_{\text{new}} = [100 \ 225]^T$ 

- a) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians
- b) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods
- **6.** Assuming training examples with *m* Boolean features.
  - a) How many parameters do you have to estimate considering features are Boolean and:
    - i. no assumptions about how the data is distributed
    - ii. naive Bayes assumption
  - b) How many parameters do you have to estimate considering features are numeric and:
    - iii. multivariate Gaussian assumption
    - iv. naive Bayes with Gaussian assumption

## **Programming quests**

- 1. Reuse the **sklearn** code from last practical class where we applied a kNN to the iris dataset.
  - a) apply the naïve Bayes classifier with default parameters.
  - b) compare the accuracy of both classifiers using a 10-fold cross-validation.
- **2.** Consider the accuracy estimates collected under a 5-fold CV for two predictive models M1 and M2,  $acc_{M1}$ =(0.7,0.5,0.55,0.55,0.6) and  $acc_{M2}$ =(0.75,0.6,0.6,0.65,0.55).

Using **scipy**, assess whether the differences in predictive accuracy are statistically significant. *Resource*: <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest\_rel.html">https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest\_rel.html</a>