

Certification Exhibit

FCC ID: VEYCN1300W1

FCC Rule Part: 15.247

ACS Project: 14-2102

Manufacturer: xG Technology, Inc.

Model: CN1300W1

RF Exposure

Model: CN1300W1 FCC ID: VEYCN1300W1

General Information:

Applicant: xG Technology, Inc.

ACS Project: 14-2102 Device Category: Mobile/Fixed

Environment: General Population/Uncontrolled Exposure

Technical Information:

Antenna Type: 2X MIMO Sector Antenna

Antenna Gain: 15 dBi

Maximum Transmitter Conducted Power: 15.18 dBm, 32.96 mW

Maximum System EIRP: 30.18 dBm, 1042.32 mW Exposure Conditions: Greater than 20 centimeters

The WLAN CN1300W1 module (FCC ID: VEYCN1300W1) is integrated inside the xG Technology CN1300 host device which provides the 2X 15 dBi MIMO sector antenna. The directional gain of the array is calculated per FCC KDB Publication No. 662911 D01 Multiple Transmitter Output v02r01.

Directional Gain = G_{ANT} + Array Gain Array Gain = $10*log(N_{ANT}/N_{SS})$ dB

Where,

 G_{ANT} = Antenna Gain

 N_{ANT} = number of transmit antennas and

 N_{SS} = number of spatial streams. (Assume N_{SS} = 1 unless you have specific information to the contrary.)

For the panel antenna configuration, the TX antennas are cross-polarized. Therefore, the directional gain is the individual gain of the antenna:

Directional Gain = 15 dBi

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment							
Limits for General Population/Uncontrolled Exposure*							
Transmit	Radio	Power	Radio	Antenna	Antenna	Dietense	Dower Density
Frequency	Power	Density Limit	Power	Gain	Gain (mW	(cm)	Power Density (mW/cm^2)
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)	(CIII)	(IIIVV/CIII^2)
2437	15.18	1.00	32.96	15	31.623	20	0.207

Model: CN1300W1 FCC ID: VEYCN1300W1

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.