Fizyka 3.1 - Labolatorium

Pomiar zależności oporu metali i półprzewodników od temperatury

Ćwiczenie 44a

Data wykonania ćwiczenia: 4.04.2024 Data oddania sprawozdania: 11.04.2024

1 Wstęp

Metale oraz półprzewodniki mają zdolność do przewodzenia prądu elektrycznego. Ich zdolność do przewodnictwa jest ściśle związana z temperaturą oraz z właściwościami tego materiału. Nośnikami na które wpływ ma temperatura są elektrony swobodne które poruszają się po całej sieci krystalicznej.

Metale są zbudowane z jonów ułożonych w sieć krystaliczną oraz wolnych elektronów. Ruch tych elektronów jest swobodny. Atomy sieci krystalicznej metalu cały czas się ruszają w nieuporządkowany sposób. W metalach podczas wzrostu temperatury atomy szybciej drgają utrudniając przemieszczanie się elektronów, czyli wzrasata rezystancja.

Półprzewodniki możemy podzielić na dwie grupy: samoistne oraz domieszkowane. Półprzewodniki samoistne to takie, w których sieć krystaliczna nie jest zaburzona atomami innego pierwiastka. W tym typie półprzewodników koncentracja elektronów silnie zależy od temperatury. W półprzewodnikach możemy zaobserwować zjawisko przeciwne do tego w metalach, czyli im wyższa temperatura tym więcej energii zostało dostarczone do elektronów i zwiększa się przewodnictwo półprzewodnika.

2 Wyniki i analiza pomiarów

Temperatura	Próbka 1	Próbka 2	Próbka 3	Próbka 4
$^{\circ}C$	Ω	$k\Omega$	Ω	Ω
100	146.7	1.004	40.5	8.6
95	146.6	1.013	42	9
90	145.9	1.08	45	9.7
85	144.8	1.173	48.9	10.6
80	143.7	1.268	52.5	11.4
75	141.9	1.406	58.4	12.8
70	140	1.588	64.9	14.2
65	137.8	1.834	73.7	16.3
60	135.2	2.178	86	19.4
55	132.4	2.59	100.4	22.9
50	130.3	3.149	119.5	27.8
45	128.5	3.689	139.4	33.2
40	126	4.64	168.9	48
35	122.5	6.02	215.6	53.4
30	116.4	10.56	343.8	88.5

Tabela 1: Tabela dokonanych pomiarów dla 4 różnych próbek

Z zebranych danych ustaliliśmy, że próbka nr. 1 była wykonana z metalu, natomiast próbki 2, 3 oraz 4 z materiału półprzewodnikowego.

Do dalszej analizy wybraliśmy próbkę nr.1 oraz nr.2.

2.1 Próbka nr.1 - metal

Rysunek 1: Wykres zależności $R_m = f(t)$ dla próbki nr.1

Po stworzeniu wykresu zależności $R_m = f(t)$ spodziewaliśmy się funkcji liniowej. Brak spodziewanego wyniku mówi nam, że na krańcach przedziału danych doszło do błędu pomiarowego. Najprawdopodobniej był to błąd ludzki. W związku z tym dopasowaliśmy regresję liniową do danych uzyskując 98,6% dopasowania.

Funkcja liniowa y = ax + b dla metali ma postać:

$$R_m(t) = R_0 \cdot \alpha \cdot t + R_0$$

Otrzymujemy dzięki temu współczynnik oporu α :

$$\alpha = \frac{a}{R_0} = \frac{a}{b} = \frac{0,431}{108,809} \approx 0.00396 \frac{1}{^{\circ}C}$$

Niepewność złożona współczynnika α jest równa:

$$\begin{split} u_c^2(\alpha) &= \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) = \left(\frac{1}{b}\right)^2 u(a)^2 + \left(-\frac{a}{b^2}\right)^2 u(b)^2 \approx 3.5084370124 \cdot 10^{-8} \frac{1}{^{\circ}C^2} \\ u_c(\alpha) &= \sqrt{u_c^2(\alpha)} \approx 0.00019 \frac{1}{^{\circ}C} \end{split}$$

Końcowo wyszło, że współczynnik oporu jest równy:

$$\alpha = 0.00396 \pm 0.00019 \frac{1}{^{\circ}C}$$

Rysunek 2: Wykres zależności $lnR_s=f(\frac{1000}{T})$ dla próbki nr.2

Podobnie jak w przykładzie z próbką nr.1 spodziewanym wynikiem miała być funkcja liniowa. Dopasowaliśmy więc prostą do danych otrzymując również 98,6% dopasowania.

W tym przypadku wzór regresji liniowej y = ax + b ma postać:

$$lnR_s = \frac{E_g}{2k} \frac{1000}{T} \cdot 10^{-3} + lnR_{s,o}$$

Pasmo wzbronione E_g wyznaczymy z porównania współczynnika a regresji liniowej z współczynnikiem kierunkowym funkcji $lnR_s=f(\frac{1000}{T})$:

$$a = \frac{E_g}{2k} \cdot 10^{-3} \Rightarrow 2ak = E_g \cdot 10^{-3} \Rightarrow E_g = 2000ak$$

Wartość k jest stałą Bolzmana i jest równa $k=1,3806\cdot 10^{23}\frac{J}{K}$

$$E_g = 2000 \cdot 3, 5 \cdot 1,3806 \cdot 10^{-23} \approx 9.66 \cdot 10^{-20} J$$

W tym przypadku również należy obliczyć błąd złożony:

$$u_c^2(E_g) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) = (2000k)^2 u^2(a) \approx 1,21 \cdot 10^{-41} \Rightarrow u_c(E_g) \approx 0,348 \cdot 10^{-20}$$

Wartość końcowa pasma wzbronionego jest równa:

$$E_g = (9.660 \pm 0, 348) \cdot 10^{-20} J \approx 0.603 \pm 0.022 eV$$

3 Wnioski

Ćwiczenie polegało na zaobserwowaniu zmian w rezystancji badanych próbek pod względem temperatury. Ćwiczenie zostało wykonane poprawnie. Analizując zdobyte dane pomiarowe i obliczając współczynnik oporu dla metalu oraz szerokość pasma wzbronionego dochodzimy do wniosków, że wygenerowane wykresy dla rezystancji od temperatury są poprawne i zgodne z naszymi przewidywaniami. Dodatkowo z danych podanych w tabeli jesteśmy w stanie wywnioskować, że trzy z czterech badanych próbek są połprzewodnikami.

Niestety przez zbyt szybkie zmiany temperatury na początku doświadczenia nie byliśmy w stanie dokładnie odczytać wartości rezystancji z miernika przez co udało nam się uzyskać tylko 98% dopasowania prostej do danych.