hw8-report

jack mcshane

2022-04-18

Let $Y_1, Y_2, \dots, Y_n \sim_{iid} N(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$ where

$$\Omega_0 = (-\infty, \theta_0], \quad \Omega_1 = (\theta_0, \infty), \quad \Omega = (-\infty, \infty) = \Omega_0 \cup \Omega_1$$

1. Write down the joint distribution $f(y_1, \ldots, y_n)$ and likelihood function $L(\theta)$.

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \theta)^2}$$

The two equations have the same form, but the unknowns are not the same. For the joint distribution, the y values have not yet been observed and are unknown. On the other hand, the joint distribution becomes the likelihood function once these y values have been observed and the value of θ is the primary unknown of the equation.

2. Given that the MLE is

$$\hat{\theta} = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

then what is the $max_{\theta \in \Omega}L(\theta)$?

$$maxL(\theta) = L(\bar{y}) = \left[\left(\frac{1}{\sqrt{2\pi}\sigma} \right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \bar{y})^2} \right]$$

3. Under $H_0: \theta \leq \theta_0$, the restricted MLE is

$$\hat{\theta_R} = \begin{cases} \bar{y}, & \bar{y} \le \theta_0 \\ \theta_0, & \bar{y} > \theta_0 \end{cases}$$

1

then what is $max_{\theta \in \Omega_0} L(\theta)$?

$$\max_{H_0} L(\theta) = L(\theta_0) = \begin{cases} \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \bar{y})^2}, & \bar{y} \leq \theta_0 \\ \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta_0)^2}, & \bar{y} > \theta_0 \end{cases}$$

4. The likelihood ratio test statistic is

$$\lambda(y_1, \dots, y_n) = \frac{\max_{\theta \in \Omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

Obtain this likelihood ratio test statistic.

5. The likelihood ratio test procedure is that we will reject H_0 if $\lambda(y_1,\ldots,y_n) \leq k$, where k < 1. Explain that this is equivalent to $z \geq \sqrt{-2logk}$, where

$$z = \frac{\bar{y} - \theta_0}{\sigma / \sqrt{n}}$$

6. Why must k < 1?

One can tell that the value for comparison, k, must be less than 1 simply by understanding the terms in the ratio it is compared with. The denominator of $\lambda(y_1,\ldots,y_n)$ is $\max_{\theta\in\Omega}L(\theta)$. This term represents the global maximum of the likelihood with no restriction on the values that θ can take. The numerator of $\lambda(y_1,\ldots,y_n)$ is the maximum of the same likelihood function, but with a restriction on the values that θ can take. It therefore follows that the value numerator will be less than that of the denominator, leading to a value wherein k < 1.

7. (Optional) Derive both MLE $\hat{\theta}$ and restricted MLE $\hat{\theta_R}$.