Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

Partie I - Une norme utile sur $\mathcal{M}_d(\mathbb{R})$

I.A - Posons $P = \sum_{k=0}^{+\infty} a_k X_k$ où les a_k sont nuls à partir d'un certain rang.

L'application $A\mapsto I$ est continue sur $\mathcal{M}_d(\mathbb{R})$ car constante sur $\mathcal{M}_d(\mathbb{R})$. L'application $Id:A\mapsto A$ est continue sur $\mathcal{M}_{\mathbf{d}}(\mathbb{R})$.

Soit
$$k \geqslant 2$$
. Soient $g: \mathcal{M}_d(\mathbb{R}) \to (\mathcal{M}_d(\mathbb{R}))^k$ et $h: (\mathcal{M}_d(\mathbb{R}))^k \to \mathcal{M}_d(\mathbb{R})$
 $A \mapsto (A, A, \ldots, A) \qquad (A_1, A_2, \ldots, A_k) \mapsto A_1 \times A_2 \times \ldots \times A_k$
 g est linéaire et $\mathcal{M}_d(\mathbb{R})$ est de dimension finie sur \mathbb{R} . Donc g est continue sur $\mathcal{M}_d(\mathbb{R})$.

h est k-linéaire et $\mathcal{M}_d(\mathbb{R})$ est de dimension finie sur \mathbb{R} . Donc h est continue sur $(\mathcal{M}_d(\mathbb{R}))^k$.

Mais alors l'application $\varphi_k : A \mapsto A^k$ est continue sur $\mathcal{M}_d(\mathbb{R})$ car $\varphi_k = h \circ g$.

 $\mathrm{Ainsi,\,pour\,\,tout\,\,}k\in\mathbb{N},\,l\mathrm{`application\,\,}\phi_k\,:\,A\mapsto A^k\,\,\mathrm{est\,\,continue\,\,sur\,\,}\mathcal{M}_d(\mathbb{R}).\,\,\mathrm{Puisque\,\,}f_P=\sum^{+\infty}\alpha_k\phi_k\,\,\mathrm{où\,\,les\,\,}\alpha_k\,\,\mathrm{sont\,\,nuls\,\,}\grave{a}$ partir d'un certain rang, f_P est continue sur $\mathcal{M}_d(\mathbb{R})$ en tant que combinaison linéaire d'applications continues sur $\mathcal{M}_d(\mathbb{R})$.

I.B - Posons $A = (A_{i,j})_{1 \le i,j \le n}$ et $B = (B_{i,j})_{1 \le i,j \le n}$.

$$\operatorname{Tr}\left({}^{t}AB\right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} A_{i,j}B_{i,j}\right).$$

Donc l'application $(A,B) \mapsto \operatorname{Tr}({}^tAB)$ n'est autre que le produit scalaire canonique sur $\mathcal{M}_d(\mathbb{R})$ et en particulier est un produit scalaire sur $\mathcal{M}_{\mathbf{d}}(\mathbb{R})$.

I.C - Soit $A \in \mathcal{M}_d(\mathbb{R})$. Pour $(i,j) \in [1,n]^2$,

$$|A_{i,j}| = \sqrt{A_{i,j}^2} \leqslant \sqrt{\sum_{1 \leqslant k,l \leqslant n} A_{k,l}^2} = ||A||.$$

I.D - Soit $(A, B) \in (\mathcal{M}_{\mathbf{d}}(\mathbb{R}))^2$.

$$\begin{split} \|A\times B\|^2 &= \sum_{1\leqslant i,j\leqslant n} \left(\sum_{k=1}^n \alpha_{i,k} b_{k,j}\right)^2 \\ &\leqslant \sum_{1\leqslant i,j\leqslant n} \left(\sum_{k=1}^n \alpha_{i,k}^2\right) \left(\sum_{k=1}^n b_{k,j}^2\right) \text{ (d'après l'inégalité de Cauchy-Schwarz)} \\ &\sum_{1\leqslant i,j\leqslant n} \left(\sum_{1\leqslant k,l\leqslant n} \alpha_{i,k}^2 b_{l,j}^2\right) = \sum_{1\leqslant i,j,k,l\leqslant n} \alpha_{i,j}^2 b_{k,l}^2 \\ &= \left(\sum_{1\leqslant i,j\leqslant n} \alpha_{i,j}^2\right) \left(\sum_{1\leqslant k,l\leqslant n} b_{k,l}^2\right) \\ &= \|A\|^2 \|B\|^2, \end{split}$$

et donc $||AB|| \leq ||A|| \times ||B||$.

I.E - Soit $A \in \mathcal{M}_d(\mathbb{R})$.

- L'inégalité est vraie pour n = 1.
- Soit $n \ge 1$. Supposons $||A^n|| \le ||A||^n$. Alors

$$||A^{n+1}|| = ||A^n \times A|| \le ||A||^n \times ||A|| = ||A||^{n+1}.$$

On a montré par récurrence que pour tout $\mathfrak{n} \in \mathbb{N}^*, \, \|A^{\mathfrak{n}}| \leqslant \|A\|^{\mathfrak{n}}.$

Partie II - Séries entières de matrices

 $\mathbf{II.A \text{-} Pour } \ n \in \mathbb{N} \ \mathrm{et} \ A \in \mathcal{M}_d(\mathbb{R}), \ \mathrm{posons} \ \phi_n(A) = \mathfrak{a}_n A^n.$

Soit $\rho \in [0, R[$. Pour tout $n \in \mathbb{N}$ et tout $A \in \mathcal{M}_d(\mathbb{R})$ tel que $||A|| \leq \rho$,

$$\|\varphi_{n}(A)\| = |a_{n}| \|A^{n}\| \leq |a_{n}| \|A\|^{n} \leq |a_{n}| \rho^{n}.$$

Puisque $0 \le \rho < R$, la série numérique de terme général $|\mathfrak{a}_n| r^n$, $\mathfrak{n} \in \mathbb{N}$, converge. Ceci montre que la série de fonctions de terme général φ_n , $\mathfrak{n} \in \mathbb{N}$, converge normalement sur $\{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \le \rho\}$ et donc uniformément puis simplement sur $\{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \le \rho\}$.

On en déduit d'abord que $\sum_{n=0}^{+\infty} \alpha_n A^n \text{ existe pour tout } A \text{ de } \{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \leqslant \rho\}. \text{ Ensuite, puisque chaque } \phi_n \text{ est continue sur } \mathcal{M}_d(\mathbb{R}) \text{ et en particulier sur } \{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \leqslant \rho\} \text{ d'après la question I.A, la fonction } \phi \text{ est continue sur } \{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \leqslant \rho\} \text{ d'une suite de fonctions continues sur } \{A \in \mathcal{M}_d(\mathbb{R}), \ \|A\| \leqslant \rho\}.$

Ceci étant vrai pour tout r de [0,R[, on a démontré que φ est définie et continue sur \mathcal{B} .

II.B.1) Soit $E = \{k \in \mathbb{N}/\ \left(A^i\right)_{0 \leqslant i \leqslant k} \text{ libre}\}$. E est une partie non vide (car $0 \in E$) de \mathbb{N} et majorée par n^2 (car le cardinal d'une famille libre est inférieur à la dimension de l'espace). On en déduit que E admet un plus grand élément que l'on note r-1 où $r \in \mathbb{N}^*$. Par définition de r, la famille $\left(A^i\right)_{0 \leqslant i \leqslant r-1}$ est libre et la famille $\left(A^i\right)_{0 \leqslant i \leqslant r}$ est liée.

 $\textbf{II.B.2)} \text{ L'unicit\'e d'un r-uplet } (\lambda_{0,n},\ldots,\lambda_{r-1,n}) \text{ est assur\'ee par la libert\'e de la famille } \left(A^k\right)_{0 \leq k \leq r-1}.$

Soit $n \in \mathbb{N}$ tel que $n \leqslant r-1$. On a $A^n = \sum_{k=0}^{r-1} \delta_{k,n} A^k$ où $\delta_{k,n}$ désigne le symbole Kronecker. On en déduit l'existence d'un r-uplet $(\lambda_{0,n},\ldots,\lambda_{r-1,n})$ dans ce cas.

Montrons par récurrence que pour tout $n \geqslant r$, il existe un r-uplet $(\lambda_{0,n},\ldots,\lambda_{r-1,n})$ tel que $A^n = \sum_{k=0}^{r-1} \lambda_{k,n} A^k$.

- $\bullet \text{ La famille } \left(A^k\right)_{0\leqslant k\leqslant r-1} \text{ est libre et la famille } \left(A^i\right)_{0\leqslant k\leqslant r} \text{ est liée. On sait alors que } A^r\in \operatorname{Vect}\left(A^k\right)_{0\leqslant k\leqslant r-1} \text{ ou encore il existe un r-uplet } \left(\lambda_{0,r},\ldots,\lambda_{r-1,r}\right) \text{ tel que } A^r=\sum_{k=0}^{r-1}\lambda_{k,r}A^k. \text{ Le résultat est donc vrai quand } n=r.$
- $\bullet \ \mathrm{Soit} \ n \geqslant r. \ \mathrm{Supposons} \ \mathrm{que} \ A^n \in \mathrm{Vect} \left(A^k \right)_{0 \leqslant k \leqslant r-1}. \ \mathrm{Alors} \ A^{n+1} \in \mathrm{Vect} \left(A^k \right)_{1 \leqslant k \leqslant r} \subset \mathrm{Vect} \left(A^k \right)_{0 \leqslant k \leqslant r-1} \ (\mathrm{d'après} \ \mathrm{l'\acute{e}tude}$ du cas n=r) et donc il existe un r-uplet $(\lambda_{0,n+1},\ldots,\lambda_{r-1,n+1})$ tel que $A^{n+1} = \sum_{k=0}^{r-1} \lambda_{k,n+1} A^k.$

Le résultat est démontré par récurrence.

II.B.3) Soit $F = \operatorname{Vect} \left(A^k\right)_{0 \leqslant k \leqslant r-1} \cdot \left(A^k\right)_{0 \leqslant k \leqslant r-1}$ est une base de F. Puisque F est un espace de dimension finie, on sait que toutes les normes sur F sont équivalentes.

Pour $B \in F$, posons $B = \sum_{k=0}^{n-1} b_k A^k$. L'application $B \mapsto \sum_{k=0}^{r-1} |b_k|$ est la norme 1, notée N_1 , associée à la base $\left(A^k\right)_{0 \leqslant k \leqslant r-1}$. Cette norme est équivalente à la norme $\| \ \|$ et donc il existe C > 0 tel que pour tout $B \in F$, $N_1(B) \leqslant C \|B\|$.

 $\mathrm{En\ particulier,\ il\ existe}\ C>0\ \mathrm{tel\ que,\ pour\ tout}\ n\in\mathbb{N},\ \sum_{k=0}^{r-1}|\lambda_{k,n}|=N_{1}\left(A^{n}\right)\leqslant C\,\|A^{n}\|.$

II.B.4) Soit $k \in [0, r-1]$. Pour $n \in \mathbb{N}$,

$$|a_n\lambda_{k,n}| \leqslant |a_n| \sum_{i=0}^{r-1} |\lambda_{i,n}| \leqslant C |a_n| \|A^n\| \leqslant C |a_n| \|A\|^n.$$

Puisque la série numérique de terme général $C|\mathfrak{a}_n| \|A\|^n$, $n \in \mathbb{N}$, converge, la série numérique de terme général $\mathfrak{a}_n \lambda_{k,n}$, $n \in \mathbb{N}$, converge absolument.

II.B.5) Soit $A \in \mathcal{M}_d(\mathbb{R})$.

$$\begin{split} \phi(A) &= \sum_{n=0}^{+\infty} \alpha_n A^n = \sum_{n=0}^{+\infty} \alpha_n \left(\sum_{k=0}^{r-1} \lambda_{k,n} A^k \right) \\ &= \sum_{k=0}^{r-1} \left(\sum_{n=0}^{+\infty} \lambda_{k,n} \alpha_n \right) A^k \text{ (les r séries étant convergentes)} \\ &= P(A) \end{split}$$

où $P = \sum_{k=0}^{r-1} \left(\sum_{n=0}^{+\infty} \lambda_{k,n} \alpha_n\right) X^k$ est un polynôme de degré strictement plus petit que r. Ceci montre l'existence de P.

Si P_1 et P_2 sont deux polynômes tels que $\phi(A) = P_1(A) = P_2(A)$. Alors $(P_1 - P_2)(A) = 0$. Puisque $P_1 - P_2$ est un polynôme de degré inférieur ou égal à r-1 et que la famille $\left(A^k\right)_{0 \leqslant k \leqslant r-1}$ est libre, les coefficients de $P_1 - P_2$ sont nuls ou encore $P_1 - P_2 = 0$. Ceci montre l'unicité du polynôme P.

On a montré que pour tout $A \in \mathcal{M}_d(\mathbb{R})$, il existe un unique polynôme P de degré strictement plus petit que r tel que $\phi(A) = P(A)$.

II.B.6)
$$\chi_A = \begin{vmatrix} -X & -1 & -1 \\ -1 & -X & -1 \\ 1 & 1 & 2-X \end{vmatrix} = -X(X^2 - 2X + 1) + (X - 1) + (1 - X) = -X(X - 1)^2.$$

$$A^{2} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} = A \text{ et donc pour tout } n \geqslant 1, A^{n} = A. \text{ Par suite,}$$

 $r\leqslant 1$. D'autre part, la famille (I_3,A) est libre et donc r=1

On a $A^0 = 1I_3 + 0A + 0A^2 + \dots$ et pour $n \ge 1$, $A^n = 0I_3 + 1A + 0A^2 + \dots$ Donc

$$\varphi(A) = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n = I_3 + \left(\sum_{n=1}^{+\infty} \frac{1}{n!}\right) A = I_3 + (e-1)A.$$

Donc P = (e - 1)X + 1.

 $\begin{aligned} \mathbf{II.C} &- \mathrm{Si} \ \mathrm{les} \ \alpha_n \ \mathrm{sont} \ \mathrm{nuls} \ \grave{\mathrm{a}} \ \mathrm{partir} \ \mathrm{d'un} \ \mathrm{certain} \ \mathrm{rang} \ n_0, \ \mathrm{alors} \ R = +\infty \ \mathrm{et} \ \mathrm{pour} \ \mathrm{tout} \ A \in \mathcal{M}_d(\mathbb{R}), \ \phi(A) = P(A) \ o\grave{\mathrm{u}} \\ P &= \sum_{k=0}^{n_0} \alpha_k X^k \ \mathrm{est} \ \mathrm{un} \ \mathrm{polyn\^{o}me} \ \mathrm{ind\'{e}pendant} \ \mathrm{de} \ A. \end{aligned}$

Réciproquement, supposons qu'il existe un polynôme P tel que pour tout $A \in \{B \in \mathscr{M}_d(\mathbb{R}), \ \|B\| < R\}$, on ait $\phi(A) = P(A)$. Pour tout $x \in \left] -\frac{R}{\sqrt{d}}, \frac{R}{\sqrt{d}} \right[, \ \|xI_d\| = |x| \|I_d\| = |x| \sqrt{d} < R$ et donc

$$\left(\sum_{n=0}^{+\infty} \alpha_n x^n\right) I_d = \phi(A) = P(A) = P(x) I_d.$$

et donc, pour tout $x \in \left] - \frac{R}{\sqrt{d}}, \frac{R}{\sqrt{d}} \right[$, $P(x) = \sum_{n=0}^{+\infty} \alpha_n x^n$. Par unicité des coefficients d'une série entière, on en déduit que les α_n sont nuls à partir d'un certain rang. Dans ce cas, $R = +\infty$ et que l'égalité $\phi(A) = P(A)$ est vraie pour tout $A \in \mathcal{M}_d(\mathbb{R})$. Finalement, il existe $P \in \mathbb{R}[X]$ tel que, pour tout $A \in \mathcal{M}_d(\mathbb{R})$, $\phi(A) = P(A)$ si et seulement si les α_n sont nuls à partir d'un certain rang.

Partie III - Deux applications

III.A -

III.A.1) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$. Pour $n\in\mathbb{N}$, on pose $w_n=\sum_{k=0}^nu_kv_{n-k}$. Si les deux séries de termes généraux respectifs u_n et v_n sont absolument convergentes, la série de terme général w_n converge et de plus

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

III.A.2) On sait que les séries de termes généraux respectifs $\frac{\mathfrak{i}^n}{n!}A^n$ et $\frac{\mathfrak{i}^n}{n!}B^n$ sont absolument convergentes.

$$\begin{split} e^{iA} \times e^{iB} &= \left(\sum_{n=0}^{+\infty} \frac{i^n}{n!} A^n\right) \left(\sum_{n=0}^{+\infty} \frac{i^n}{n!} B^n\right) \\ &= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{i^k}{k!} A^k \frac{i^{n-k}}{(n-k)!} B^{n-k}\right) = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \binom{n}{k} (iA)^k (iB)^{n-k}\right) \\ &= \sum_{n=0}^{+\infty} \frac{1}{n!} (iA+iB)^n \ (d\text{`après la formule du binôme de Newton puisque iA et iB commutent}) \\ &= e^{iA+iB} = e^{i(A+B)}. \end{split}$$

III.A.3) Soit $A \in \mathcal{M}_d(\mathbb{R})$. On a $\cos(A) = \frac{1}{2} \left(e^{iA} + e^{-iA} \right)$ et $\sin(A) = \frac{1}{2i} \left(e^{iA} - e^{-iA} \right)$ puis

$$\begin{split} \cos^2(A) + \sin^2(A) &= \left(\frac{1}{2} \left(e^{iA} + e^{-iA}\right)\right)^2 + \left(\frac{1}{2i} \left(e^{iA} - e^{-iA}\right)\right)^2 \\ &= \frac{1}{4} \left(\left(e^{iA} + e^{-iA}\right)^2 - \left(e^{iA} + e^{-iA}\right)^2\right) = \frac{1}{4} \left(4e^{iA}e^{-iA}\right) \\ &= e^{iA - iA} \; (\text{car les matrices iA et } - iA \; \text{commutent}) \\ &= e^{0_{\,d}} = I_d. \end{split}$$

III.B -

III.B.1) Soit $R_0 = 1 + \operatorname{Max}\{|\lambda|, \ \lambda \in \operatorname{Sp}(A)\}$. Pour $R \geqslant R_0, \ Re^{\mathrm{i}\theta} \notin \operatorname{Sp}(A)$ et donc la matrice $\left(Re^{\mathrm{i}\theta}I_d - A\right)$ est inversible. Soit $N \in \mathbb{N}^*$ et R supérieur ou égal à R_0 .

$$\left(Re^{i\theta}I_d-A\right)\left(\sum_{n=0}^{N-1}\left(Re^{i\theta}\right)^{N-1-n}A^n\right)=\left(Re^{i\theta}\right)^{N}I_d-A^N$$

puis

$$\left(Re^{i\theta}\right)^{-1}\sum_{n=0}^{N-1}\left(Re^{i\theta}\right)^{-n}A^{n}=\left(Re^{i\theta}I_{d}-A\right)^{-1}\left(I_{d}-\left(Re^{i\theta}\right)^{-N}A^{N}\right)\quad(*).$$

 $\begin{aligned} & \text{Pour tout } N \in \mathbb{N}^*, \ \left\| \left(R e^{i\theta} \right)^{-N} A^N \right\| = \frac{1}{R^N} \left\| A^N \right\| \leqslant \left(\frac{\|A\|}{R} \right)^N. \ \text{Donc, si } R \geqslant R_0 \ \text{et aussi } R > \|A\| \ \text{ou encore si } R \geqslant R_1 = \\ & \text{Max}\{R_0, \|A\|\}, \ \text{la suite} \left(\left(R e^{i\theta} \right)^{-N} A^N \right)_{N \in \mathbb{N}^*} \ \text{converge vers 0 puis la suite} \left(I_d - \left(R e^{i\theta} \right)^{-N} A^N \right)_{N \in \mathbb{N}^*} \ \text{converge vers 0.} \end{aligned}$

$$\begin{split} \text{L'application } \phi : & \mapsto \left(R e^{i\theta} - A \right)^{-1} M \text{ est un endomorphisme de } \mathcal{M}_d(\mathbb{R} \text{ qui est de dimension finie et donc cette application est continue sur } \mathcal{M}_d(\mathbb{R}). \text{ Par suite, } \left(R e^{i\theta} I_d - A \right)^{-1} \left(I_d - \left(R e^{i\theta} \right)^{-N} A^N \right) = \phi \left(I_d - \left(R e^{i\theta} \right)^{-N} A^N \right) \text{ converge vers } \phi \left(I_d \right) = \left(R e^{i\theta} I_d - A \right)^{-1}. \end{split}$$

Mais alors, d'après (*), la série de terme général $\left(Re^{i\theta}\right)^{-n}A^n$, $n\in\mathbb{N}$, converge puis, quand N tend vers $+\infty$, (*) fournit

$$\left(Re^{\mathrm{i}\theta}\right)^{-1}\sum_{n=0}^{+\infty}\left(Re^{\mathrm{i}\theta}\right)^{-n}A^{n}=\left(Re^{\mathrm{i}\theta}I_{d}-A\right)^{-1}.$$

On a montré que pour R grand, la matrice $Re^{i\theta}I_d - A$ est inversible et $\left(Re^{i\theta}I_d - A\right)^{-1} = \left(Re^{i\theta}\right)^{-1}\sum_{n=0}^{+\infty}\left(Re^{i\theta}\right)^{-n}A^n$.

III.B.2) Soient $R \ge \operatorname{Max}\{R_0, \|A\| + 1\}$ et $n \in \mathbb{N}^*$. Pour $p \in \mathbb{N}$ et $\theta \in [0, 2\pi]$, posons $f_p(\theta) = \left(Re^{i\theta}\right)^{n-1} \left(Re^{i\theta}\right)^{-p} A^p$. Chaque fonction $f_p, p \in \mathbb{N}$, est continue sur le segment $[0, 2\pi]$.

$$\|f_p(\theta)\| = \left\| \left(Re^{i\theta}\right)^{n-1} \left(Re^{i\theta}\right)^{-p} A^p \right\| \leqslant R^{n-1} R^{-p} \|A\|^p = R^{n-1} \left(\frac{\|A\|}{R}\right)^p.$$

Puisque $\frac{\|A\|}{R} \in]-1,1[$, $\mathbb{R}^{n-1}\left(\frac{\|A\|}{R}\right)^p$, $p \in \mathbb{N}$, est le terme général d'une série numérique convergente. Mais alors la série de fonctions de terme général f_p , $p \in \mathbb{N}$, converge normalement et en particulier uniformément sur le segment $[0,2\pi]$. On peut donc intégrer terme à terme sur $[0,2\pi]$ et on obtient

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right)^{n} \left(Re^{i\theta} - A\right)^{-1} \ d\theta &= \frac{1}{2\pi} \sum_{p=0}^{+\infty} \int_{0}^{2\pi} \left(Re^{i\theta}\right)^{n-1} \left(Re^{i\theta}\right)^{-p} A^{p} \ d\theta \\ &= \sum_{p=0}^{+\infty} R^{n-1-p} \left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{i(n-1-p)\theta} \ d\theta\right) A^{p} \\ &= \sum_{p=0}^{+\infty} R^{n-1-p} \delta_{p,n-1} A^{p} = A^{n-1}. \end{split}$$

III.B.3) Pour R grand, la question III.B.2 fournit

$$\begin{split} \chi_{A}(A) &= \sum_{k=0}^{d} \alpha_{k} A^{k} = \sum_{k=0}^{d} \frac{\alpha_{k}}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right)^{k+1} \left(Re^{i\theta}I_{d} - A\right)^{-1} \ d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right) \left(\sum_{k=0}^{d} \alpha_{k} \left(Re^{i\theta}\right)^{k}\right) \left(Re^{i\theta}I_{d} - A\right)^{-1} \ d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right) \chi_{A} \left(Re^{i\theta}\right) \left(Re^{i\theta}I_{d} - A\right)^{-1} \ d\theta. \end{split}$$

III.B.4) Puis, pour R assez grand,

$$\begin{split} \chi_{A}(A) &= \frac{1}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right) \chi_{A} \left(Re^{i\theta}\right) \frac{1}{\det\left(Re^{i\theta}I_{d} - A\right)} {}^{t}\mathrm{com}\left(Re^{i\theta}I_{d} - A\right) \; d\theta \\ &= \frac{(-1)^{d}}{2\pi} \int_{0}^{2\pi} \left(Re^{i\theta}\right) {}^{t}\mathrm{com}\left(Re^{i\theta}I_{d} - A\right) \; d\theta. \end{split}$$

 $\begin{aligned} & \text{Maintenant, les coefficients de la matrice } \left(Re^{i\theta}\right){}^t \text{com } \left(Re^{i\theta}I_d - A\right) \text{ sont des polynômes en } e^{i\theta}. \text{ Puisque pour tout } n \in \mathbb{N}, \\ & \int_0^{2\pi} \left(e^{i\theta}\right)^n \ d\theta = 0, \text{ on en déduit que } \chi_A(A) = 0. \end{aligned}$

Partie IV - Etude d'une équation fonctionnelle

$$\begin{split} \mathbf{IV.A - Soit} \ x \in \left] - \infty, \frac{M}{2} \right[\text{. La primitive sur } \right] - \infty, \frac{M}{2} \left[\text{ de la fonction } y \mapsto 2f(x+y) \text{ qui s'annule en } \alpha \text{ est la fonction } y \mapsto 2(F(x+y) - F(x+\alpha)) \text{ et la primitive sur } \right] - \infty, \frac{M}{2} \left[\text{ de la fonction } y \mapsto f(2x) + f(2y) \text{ qui s'annule en } \alpha \text{ est la fonction } y \mapsto f(2x)(y-\alpha) + \frac{1}{2}(F(2y) - F(2\alpha)). \end{split}$$

Ces deux primitives sont égales et donc, pour $(x,y) \in \left] -\infty, \frac{M}{2} \right[^2, 2(F(x+y)-F(x+\alpha)) = f(2x)(y-\alpha) + \frac{1}{2}(F(2y)-F(2\alpha))$ puis pour $(x,y) \in \left] -\infty, \frac{M}{2} \right[\times \left[-\infty, \frac{M}{2} \right[\times \left[-\infty, \frac{M}{2} \right] \times \left[-\infty, \frac{M}{2} \right] \right]$

$$f(2x)=2\frac{F(x+y)-F(x+\alpha)-\frac{1}{4}F(2y)+\frac{1}{4}F(2\alpha)}{y-\alpha}.$$

IV.B - Montrons par récurrence que pour tout entier naturel n, f est de classe C^n sur $]-\infty, M[$.

- C'est vrai pour n = 0.
- Soit $n \ge 0$. Soit $y \in \left] -\infty, \frac{M}{2} \right[\setminus \{\alpha\}$ fixé. Supposons f de classe C^n sur $] -\infty, M[$. Alors F est de classe C^{n+1} sur

Le résultat est démontré par récurrence. On a ainsi démontré que f est de classe C^{∞} sur $]-\infty,M[$.

 $\begin{aligned} \mathbf{IV.C} &- \mathrm{Soit} \ y \in \left] - \infty, \frac{M}{2} \right[\text{. En dérivant deux fois par rapport à x les deux membres de l'égalité IV.1, pour tout x de } \right] - \infty, \frac{M}{2} \left[\text{ on obtient } 2f''(x+y) = 4f''(2x). \text{ En particulier, pour $y=x$, pour tout x de } \right] - \infty, \frac{M}{2} \left[\text{ on obtient } 2f''(2x) = 4f''(2x) \text{ puis } f''(2x) = 0. \end{aligned}$

Donc, f est une fonctions affine. Réciproquement, pour tout x de] $-\infty$, M[, posons f(x) = ax + b où a et b sont deux réels. f est continue sur] $-\infty$, M[et pour $(x,y) \in \left] -\infty$, $\frac{M}{2} \right[^2$,

$$2f(x+y) - f(2x) - f(2y) = 2(a(x+y) + b) - (2ax + b) - (2ay + b) = 0.$$

Donc f convient. Les solutions de IV.1 sont les fonctions affines sur] $-\infty$, M[. Elles constituent un \mathbb{R} -espace de dimension 2. Une base de cet espace est (f_1, f_2) où $f_1: x \mapsto 1$ et $f_2: x \mapsto x$.

Partie V - Etude d'une autre fonction matricielle

V.A - Si d=1, la condition V.1 s'écrit : $\forall \alpha \in \mathbb{R}, \ \alpha \neq 0 \Rightarrow \xi(\alpha) \neq 0$. Les fonctions ξ solutions de V.1 sont les fonctions continues sur \mathbb{R} ne s'annulant pas sur \mathbb{R}^* .

V.B - Soit A la matrice proposée par l'énoncé.

Un calcul par blocs fournit $\det(A) = (\mathfrak{ad} - \mathfrak{bc})\det(I_{d-2}) = \mathfrak{ad} - \mathfrak{bc}$. D'autre part, les deux premières colonnes de $f_{\xi}(A)$

déterminant. On obtient

$$\det\left(f_{\xi}(A)\right) = \det\left(\begin{array}{cccc} \xi(a) & \xi(b) & \times & \dots & \times \\ \xi(c) & \xi(d) & \times & \dots & \times \\ 0 & 0 & & & \\ \vdots & \vdots & & f_{\xi}\left(I_{d-2}\right) \\ 0 & 0 & & & \end{array}\right).$$

Un calcul par blocs fournit $\det(f_{\xi}(A)) = (\xi(a)\xi(d) - \xi(b)\xi(c))\det(f_{\xi}(I_{d-2}))$. Par suite,

$$\begin{split} \alpha d - b c \neq 0 &\Rightarrow \det(A) \neq 0 \Rightarrow \det\left(\xi(A)\right) \neq 0 \Rightarrow \left(\xi(\alpha)\xi(d) - \xi(b)\xi(c)\right) \det\left(f_{\xi}(I_{d-2})\right) \neq 0 \\ &\Rightarrow \xi(\alpha)\xi(d) - \xi(b)\xi(c) \neq 0, \end{split}$$

ou encore $ad \neq bc \Rightarrow \xi(a)\xi(d) \neq \xi(b)\xi(c)$.

V.C - Supposons que ξ s'annule en tout réel non nul. Par continuité, ξ s'annule en 0. Ceci est impossible car alors $f_{\xi}(I_d) = 0 \notin GL_d(\mathbb{R})$. Donc, il existe un réel $x_0 \neq 0$ tel que $\xi(x_0) \neq 0$. En prenant $c = d = x_0$, pour tous réels a et b,

$$a \neq b \Rightarrow ax_0 \neq bx_0 \text{ (car } x_0 \neq 0)$$

$$\Rightarrow \xi(a)\xi(x_0) \neq \xi(b)\xi(x_0)$$

$$\Rightarrow \xi(a) \neq \xi(b) \text{ (car } \xi(x_0) \neq 0).$$

La fonction ξ est donc nécessairement injective sur \mathbb{R} .

Puisque la fonction ξ est continue et injective sur \mathbb{R} , le théorème d'homéomorphisme permet d'affirmer que la fonction ξ est strictement monotone sur \mathbb{R} .

V.D - En particulier, la fonction ξ s'annule au plus une fois sur \mathbb{R} .

Supposons qu'il existe $c \in \mathbb{R}^*$ tel que $\xi(c) = 0$. Alors si a et b sont deux réels distincts, ac et bc sont deux réels distincts mais $\xi(a)\xi(c) = 0 = \xi(b)\xi(c)$. Ceci est exclu et donc la fonction ξ ne s'annule pas sur \mathbb{R}^* . Ainsi, la fonction ξ s'annule au plus une fois sur \mathbb{R} et si c'est le cas, $\xi(0) = 0$.

V.E -

V.E.1) Supposons que $\xi(0) \neq 0$. D'après ce qui précède, la fonction ξ ne s'annule pas sur \mathbb{R} . Puisque la fonction ξ est continue sur \mathbb{R} , elle garde un signe constant sur \mathbb{R} .

Pour $x \in \mathbb{R}$, posons $g(x) = \xi(0)\xi(2) - \xi(1)\xi(x)$. Puisque la fonction ξ ne s'annule par sur \mathbb{R} , est de signe constant sur \mathbb{R} et est strictement monotone sur \mathbb{R} ,

$$q(0) \times q(2) = \xi(0)\xi(2)(\xi(2) - \xi(1))(\xi(0) - \xi(1)) < 0.$$

Puisque g est continue sur l'intervalle [0,2], le théorème des valeurs intermédiaires permet d'affirmer que la fonction g s'annule au moins une fois dans]0,2[. Donc il existe $\alpha>0$ tel que $g(\alpha)=0$ ou encore tel que $\xi(0)\xi(2)=\xi(1)\xi(\alpha)$.

V.E.2) Ainsi,
$$0 \times 2 - 1 \times \alpha = -\alpha \neq 0$$
 mais $\xi(0)\xi(2) - \xi(1)\xi(\alpha) = 0$. Ceci est exclu et donc $\xi(0) = 0$.

V.F - Soient x et y deux réels tels que x^2 , y^2 et xy soient dans I. $\xi(\eta(x^2))\xi(\eta(y^2)) = x^2y^2 = (xy)^2 = \xi(\eta(xy))\xi(\eta(xy))$. Par contrapositon de l'implication de V.B, on obtient alors $\eta(x^2)\eta(y^2) = (\eta(xy))^2$.

V.G -

V.G.1) Puisque ξ est un homéomorphisme, on sait que I est ouvert.

Soit m la borne supérieure de I puis $M = \ln(m)$ si m est réel ou $M = +\infty$ si $m = +\infty$. Soient X et Y deux réels de $]-\infty, M[$ puis $x=e^X$ et $y=e^Y$. x et y sont strictement positifs et strictement plus petits que la borne supérieure de I. De plus

$$\begin{split} 2f(X+Y) &= 2\ln(\eta(e^{X+Y})) = 2\ln(\eta(xy)) = \ln((\eta(xy))^2) = \ln(\eta(x^2)\eta(y^2)) = \ln((\eta(x^2)) + \ln(\eta(y^2)) \\ &= \ln(\eta(e^{2X})) + \ln(\eta(e^{2Y})) = f(2X) + f(2Y). \end{split}$$

Donc f vérifie l'équation IV.1 sur $]-\infty$, M[.

V.G.2) D'après la question IV.C, f est affine Donc, il existe deux réels a et b tels que pour tout X de $]-\infty,M[$, $\ln(\eta(e^X))=aX+b$ ou encore tels que pour tout x de $I\cap]0,+\infty[$, $\ln(\eta(x))=a\ln(x)+b$. On en déduit que pour tout x de $I\cap]0,+\infty[$, $\eta(x)=e^{a\ln(x)+b}=e^bx^a$. Ainsi, en posant $K_1=e^b$ et $\alpha_1=a$, on a montré que pour tout x de $I\cap]0,+\infty[$, $\eta(x)=K_1x^{\alpha_1}$.

On note que $K_1 = e^b > 0$. D'autre part, on ne peut avoir $\alpha_1 = 0$ car η ne serait plus injective et on ne peut avoir $\alpha_1 < 0$ car η ne serait pas continue en 0. Donc $K_1 > 0$ et $\alpha_1 > 0$.

V.G.3) Puisque η prend des valeurs strictement positives sur $I \cap]0, +\infty[$, ξ prend des valeurs strictement positives sur $]0, +\infty[$. Puisque $\xi(0)=0$, que ξ est strictement monotone sur \mathbb{R} , η est strictement croissante sur \mathbb{R}).

La fonction $\eta_1: x \mapsto -\eta(-x)$ prend des valeurs strictement positives sur $I \cap]0, +\infty[$ et vérifie

$$\left(\eta_1(xy)\right)^2 = (\eta(xy))^2 = \eta(x^2)\eta(y^2) = \eta_1(x^2)\eta_1(y^2).$$

Donc, il existe C>0 et $\alpha_2>0$ tels que pour tout x de $I\cap]0,+\infty[$, $\eta_1(x)=Cx^{\alpha_2}.$ Mais alors, pour tout x de $I\cap]-\infty,0[$, $\eta(x)=-C(-x)^{\alpha_2}=K_2(-x)^{\alpha_2}$ avec $K_2=-C<0$ et $\alpha_2>0.$

V.G.4) On doit avoir $\lim_{x\to m^-} K_1 x^{\alpha_1} \lim_{x\to m^-} \eta(x) = +\infty$ ce qui impose $m = +\infty$. La borne supérieure de I est donc $+\infty$. De même, la borne supérieure de l'intervalle de définition de η_1 est $+\infty$. Donc η est définie sur \mathbb{R} .

Pour tout x réel,

$$(\eta(x))^2 = (\eta(x \times 1))^2 = \eta(x^2)\eta(1^2) = \eta(x^2)\eta((-1)^2) = (\eta(-x))^2.$$

Donc, $\eta(-x) = \pm \eta(x)$. Si x n'est pas nul, $-x \neq x$ et donc $\eta(-x) \neq \eta(x)$ par injectivité. Il ne reste donc que $\eta(-x) = -\eta(x)$ ce qui reste vrai pour x = 0 puisque $\eta(0) = 0$. Ainsi, pour tout x réel, $\eta(-x) = -\eta(x)$ et donc η est impaire.

 $\begin{array}{l} \mathbf{V.H - Si} \ \xi \ \mathrm{est} \ \mathrm{strictement} \ \mathrm{croissante} \ \mathrm{sur} \ \mathbb{R}, \ \eta \ \mathrm{est} \ \mathrm{strictement} \ \mathrm{positive} \ \mathrm{sur} \ \mathrm{I} \cap]0, +\infty[. \ \mathrm{Dans} \ \mathrm{ce} \ \mathrm{cas}, \ \mathrm{il} \ \mathrm{existe} \ \mathsf{K}_1 > 0 \ \mathrm{et} \\ \alpha_1 > 0 \ \mathrm{tel} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ x \ \mathrm{r\'eel}, \ \eta(x) = \left\{ \begin{array}{l} K_1 x^{\alpha_1} \ \mathrm{si} \ x \geqslant 0 \\ -K_1 (-x)^{\alpha_1} \ \mathrm{si} \ x < 0 \end{array} \right. . \ \mathrm{On} \ \mathrm{en} \ \mathrm{d\'eduit} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ x \ \mathrm{r\'eel}, \end{array}$

$$\xi(x) = \left\{ \begin{array}{l} \frac{1}{K_1^{1/\alpha_1}} x^{1/\alpha_1} \, \operatorname{si} \, x \geqslant 0 \\ -\frac{1}{K_1^{1/\alpha_1}} (-x)^{1/\alpha_1} \, \operatorname{si} \, x < 0 \end{array} \right. .$$

Ainsi, ξ est continue sur \mathbb{R} , impaire et sa restriction à $]0, +\infty[$ est de la forme $x \mapsto Cx^{\beta}$ avec C > 0 et $\beta > 0$.

Si ξ est strictement décroissante sur \mathbb{R} , la fonction $-\xi$ est strictement croissante sur \mathbb{R} et solution de V.1 sur \mathbb{R} car une matrice est inversible si et seulement si son opposée est inversible. Dans ce cas, $-\xi$ est continue sur \mathbb{R} , impaire et sa restriction à $]0, +\infty[$ est de la forme $x \mapsto Cx^{\beta}$ avec C > 0 et $\beta > 0$ ou encore ξ est continue sur \mathbb{R} , impaire et sa restriction à $]0, +\infty[$ est de la forme $x \mapsto Cx^{\beta}$ avec C < 0 et $\beta > 0$.

En résumé, ξ est continue sur \mathbb{R} , impaire et sa restriction à $]0,+\infty[$ est de la forme $x\mapsto Cx^{\beta}$ avec $C\neq 0$ et $\beta>0$.

 $\mathbf{V.I}$ - La matrice A_0 est symétrique réelle et donc diagonalisable. La matrice $A_0 + I_d$ est de rang 1. Donc -1 est valeur propre de A_0 d'ordre d-1 exactement. La dernière valeur propre μ est fournie par la trace de $A_0: \mu-(d-1)=0$ et donc $\mu = d - 1$. Par suite, $\det(A_0 - XI_d) = \chi_{A_0} = (-1 - X)^{d-1}((d-1) - X)$ puis

$$\det(A_{\lambda}) = \det(A_0 + \lambda I_d) = \chi_{A_0}(-\lambda) = (\lambda - 1)^{d-1}(\lambda + d - 1).$$

En particulier, A_{λ} n'est pas inversible si et seulement si $\lambda \in \{1, 1-d\}$.

V.J - Soit $\lambda < 0$.

$$f_{\xi}(A_{\lambda}) = \left(\begin{array}{cccc} \xi(\lambda) & \xi(1) & \dots & \xi(1) \\ \xi(1) & -\xi(-\lambda) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \xi(1) \\ \xi(1) & \dots & \xi(1) & -\xi(-\lambda) \end{array} \right) = \left(\begin{array}{cccc} -C(-\lambda)^{\beta} & C & \dots & C \\ C & -C(-\lambda)^{\beta} & \ddots & \vdots \\ \vdots & \ddots & \ddots & C \\ C & \dots & C & -C(-\lambda)^{\beta} \end{array} \right) = CA_{-(-\lambda)^{\beta}}$$

$$\mathrm{puis}\,\det\left(f_{\xi}(A_{\lambda})\right) = \det\left(CA_{-(-\lambda)^{\beta}}\right) = C^{d}\left(-(-\lambda)^{\beta} - 1\right)^{d-1}\left(-(-\lambda)^{\beta} + d - 1\right).$$

On choisit alors $\lambda = -(d-1)^{1/\beta}$ et on obtient $\det\left(f_{\xi}(A_{\lambda})\right) = 0$. La matrice $f_{\xi}(A_{\lambda})$ n'est pas inversible et donc la matrice A_{λ} n'est pas inversible puis $\lambda \in \{1, 1-d\}$. Puisque $\lambda < 0$, on a nécessairement $\lambda = 1-d$ puis $(d-1)^{1/\beta} = d-1$ (avec d - 1 > 0).

On en déduit que $\left(\frac{1}{\beta}-1\right)\ln(d-1)=0$ puis que $\beta=1$ si $d\geqslant 3$. Ainsi, si $d\geqslant 3$, nécessairement il existe $C\neq 0$ tel que pour $\mathrm{tout}\ x\in\mathbb{R},\ \xi(x)=\overset{\backprime}{C}x\ (\mathrm{par}\ \mathrm{parit\acute{e}}).\ \mathrm{R\acute{e}ciproquement},\ \mathrm{si}\ A\in\mathcal{M}_{d}(\mathbb{R}),\ f_{\xi}(A)=CA\ \mathrm{et}\ \mathrm{donc}\ A\in GL_{d}(\mathbb{R})\Rightarrow f_{\xi}(A)\in GL_{d}(\mathbb{R}).$ Donc,

si d \geqslant 3, les solutions de IV.1 sont les fonctions linéaires non nulles.

 $\text{Supposons maintenant } d = 2. \text{ Posons } A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right). \text{ Alors } \det(A) = ad - bc \text{ et } \det\left(f_{\xi}(A)\right) = \xi(a)\xi(d) - \xi(b)\xi(c).$

- Si l'un des deux réels x ou y est nul, on a $\xi(x)\xi(y) = 0 = C\xi(xy)$.
- Si les deux réels x et y sont strictement positifs, $\xi(x)\xi(y) = C^2(xy)^\beta = C\xi(xy)$.
- Si les deux réels x et y sont strictement négatifs, $\xi(x)\xi(y) C(-x)^{\beta} \times -C(-y)^{\beta} = C^{2}(xy)^{\beta} = C\xi(xy)$. Si les réels x ou y sont non nuls et de signes contraires, $\xi(x)\xi(y) = -C^{2}(-xy)^{\beta} = C\xi(xy)$.

Ainsi,

$$\det (f_{\xi}(A)) = C(\xi(ad) - \xi(bc)).$$

Puisque $C \neq 0$ et que ξ est injective,

A inversible
$$\Rightarrow ad - bc \neq 0 \Rightarrow C(\xi(ad) - \xi(bc)) \neq 0 \Rightarrow f_{\xi}(A)$$
 inversible.

 $\text{Dans le cas } d=2, \text{ les solutions de V.1 sont les fonctions de la forme } x \mapsto \left\{ \begin{array}{l} Cx^{\beta} \text{ si } x \geqslant 0 \\ -C(-x)^{\beta} \text{ si } x < 0 \end{array} \right. \\ = \text{sgn}(x)C|x|^{\beta}, \ C \neq 0,$ $\beta > 0$.