DAY 7 - IPv4 Identifying Trick

Purinat33

IPv4 Identifying Tips & Tricks:

Playlist on Subnetting from Practical Networking

Question:

Finding important IP Addresses given an IPv4 address:

- 1. Network Address: Make all Host portion = 0
- 2. Broadcast Address: Make all Host portion = 1
- 3. First Usable Host: The address after network address.
- 4. Last Usable Host: The address before broadcast address.
- 5. No. of Usable Host: big math?

We know how to, but would we really convert decimal to binary and back to decimal again?

• eg. 10.0.0.4/9:

Octet	1^{st}	2^{nd}	$3^{\rm rd}$	$4^{ m th}$	
IP Address	00001010	0 00000000	00000000	00000100	
Mask	11111111	1 0000000	00000000	00000000	

• Network Address:

Octet	$1^{ m st}$	2^{nd}	3^{rd}	$4^{ m th}$	
Binary	00001010	00000000	00000000	00000000	
Decimal	10	0	0	0	

• Broadcast Address

Octet	1^{st}	2^{nd}	$3^{ m rd}$	$4^{ m th}$
Binary	00001010	01111111	11111111	11111111

Octet	1^{st}	$2^{ m nd}$	3^{rd}	$4^{ m th}$
Decimal	10	127	255	255

We would ran out of time in any exam before we can do anything.

The Answer (Table):

1. Create a table of the "powers of 2" from 1 to 128, call this row the Group Size :

Group Size	128	64	32	16	8	4	2	1

2. Subtract from 256 on each column, this row is called the Mask:

Group Size	128	64	32	16	8	4	2	1
Mask	128	192	224	240	248	252	254	255

3. Now write the Netmask /x notation (CIDR) from /32 from Right to left and Top to Bottom, each row will correspond to the 4th, 3rd, 2nd, 1st Octet respectively.

Group Size	128	64	32	16	8	4	2	1
Mask	128	192	224	240	248	252	254	255
$4^{ m th}$	/25	/26	/27	/28	/29	/30	/31	/32
$3^{ m rd}$	/17	/18	/19	/20	/21	/22	/23	/24
$2^{ m nd}$	/9	/10	/11	/12	/13	/14	/15	/16
1^{st}	/1	/2	/3	/4	/5	/6	/7	/8

4. Number of **Usable Host** is pow(2, 32-netmask) - 2 (+2 when including network and broadcast address)

The Answer (How to use Table):

eg: From the same question: 10.0.0.4/9

1. Seeing the /9 we look for the specific cell in the Table.

Group Size	128	64	32	16	8	4	2	1
Mask	128	192	224	240	248	252	254	255
$4^{ m th}$	/25	/26	/27	/28	/29	/30	/31	/32
$3^{ m rd}$	/17	/18	/19	/20	/21	/22	/23	/24
2^{nd}	$\underline{/9}$	/10	/11	/12	/13	/14	/15	/16
1^{st}	/1	/2	/3	/4	/5	/6	/7	/8

- /9 is associated with the 2nd octet.
- Looking at the 2nd octet, we set that octet (and the 3rd & 4th octet) to then increment the original 2nd octet by the Group Size until the value of the 2nd octet is Greater than or equal the Original's 2nd octet.
 - (Increment must happened at least once even if the set-0 of that octet is already 0)

Octet	1 st	2^{nd}	$3^{\rm rd}$	$4^{ m th}$	Contain 0?
Original	10	0	0	4	-
2nd Octet = 0	10	0	0	0	-
+ Group Size	-	128	-	-	YES

- We see that 128 has surpassed the original 2nd octet's value of 0:
 - 10.128.0.0 is the result **but** we need to back down by 1 address to 10.127.255.255 as the broadcast address.
 - 10.0.0.0 is the result *before* the 128 increment, and thus that is the network address.
- We can also convert between /9 format and the mask's dotted decimal notation:
 - Mask value of the /9 column is 128, and so the mask is 255.128.0.0
- Usable IP = pow(2, 32-9) 2 = 8388606 IP Addresses.

Eg: 172.16.26.5/22

Group Size	128	64	32	16	8	4	2	1
Mask	128	192	224	240	248	252	254	255
$4^{ m th}$	/25	/26	/27	/28	/29	/30	/31	/32
$3^{ m rd}$	/17	/18	/19	/20	/21	/22	/23	/24
2^{nd}	/9	/10	/11	/12	/13	/14	/15	/16
1^{st}	/1	/2	/3	/4	/5	/6	/7	/8

• /22 deals with the 3rd octet.

	1st	2nd	3rd	4th	Contains 26?
Original IP	172	16	26	5	-
Set $3rd = 0$	172	16	0	0	-
+ Group Size	-	-	4	-	No
+ Group Size	-	-	8	-	No
+ Group Size	-	-	12	-	No
+ Group Size	-	-	16	-	No
+ Group Size	-	-	20	-	No
+ Group Size	-	-	24	-	No
+ Group Size	-	-	28	-	YES

- Original value of the 3rd octet is 26 and from the table, we can see that it lies between 24 and 28.
 - 28 in the 3rd octet gives: 172.16.28.0 back down by 1 gives the
 Broadcast Address of 172.16.27.255 .
 - 24 in the 3rd octet gives: 172.16.24.0 gives us the Network Address.
- Mask in dotted-decimal notation: 255.255.252.0
- Number of usable hosts: pow(2, 32-22) 2 = 1022 IP

Eg: 192.168.1.186/26

Group Size	128	64	32	16	8	4	2	1
Mask	128	192	224	240	248	252	254	255
$4^{ m th}$	/25	/26	/27	/28	/29	/30	/31	/32
$3^{ m rd}$	/17	/18	/19	/20	/21	/22	/23	/24
2^{nd}	/9	/10	/11	/12	/13	/14	/15	/16
1^{st}	/1	/2	/3	/4	/5	/6	/7	/8

/26 is 4th octet.

	1st	2nd	3rd	4th	Contains 186?
Original IP	192	168	1	186	-
Set $4th = 0$	192	168	1	0	-
+ Group Size	-	-	-	64	No
+ Group Size	-	-	-	128	No

	1st	2nd	3rd	4th	Contains 186?
+ Group Size	-	-	-	192	Yes

• Broadcast Address: 192.168.1.192 back down by 1 equals 192.168.1.191

• Network Address: 192.168.1.128

• First Host: 192.168.1.129

• Last Host: 192.168.1.190

• Mask: /26 equals 255.255.255.192

• No. of Hosts: pow(2, 32-26) - 2 = 62 IP.

5