# CS 228 : Logic in Computer Science

Krishna. S

## Recap

- Deterministic Finite Automata
- ► Closure under complementation
- ► Closure under Intersection



aaab



#### aaab



#### ► aaab



► aaab



7/45

#### ▶ aaab



#### aabba



#### aabba



#### aabba



#### ► aabba



#### ▶ aabba



#### ► aabba



```
A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
```

$$A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$$

$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

```
A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)
```

$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

▶ Show that for all  $x \in \Sigma^*$ ,  $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$ 

$$x \in L(A)$$
 iff  $\hat{\delta}((q_0, s_0), x) \in F$ 

```
\blacktriangleright A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),
         \delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a)) 
        F = F_1 \times F_2
```

▶ Show that for all  $x \in \Sigma^*$ ,  $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$ 

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$$

 $\blacktriangleright A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ 

```
▶ A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

▶ A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),

▶ \delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))

▶ F = F_1 \times F_2

▶ Show that for all x \in \Sigma^*, \hat{\delta}((p, q), x) = (\hat{\delta}_1(p, x), \hat{\delta}_2(q, x))

x \in L(A) iff \hat{\delta}((q_0, s_0), x) \in F iff (\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2 iff \hat{\delta}_1(q_0, x) \in F_1 and \hat{\delta}_2(s_0, x) \in F_2
```

- $ightharpoonup A_1 = (Q_1, Σ, δ_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$ 
  - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
  - $F = F_1 \times F_2$
- ▶ Show that for all  $x \in \Sigma^*$ ,  $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta_1}(q_0, x) \in F_1 \text{ and } \hat{\delta_2}(s_0, x) \in F_2 \text{ iff } x \in L(A_1) \text{ and } x \in L(A_2)$$

#### **Closure under Union**

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ►  $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$ 
  - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

### **Closure under Union**

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$ 
  - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
  - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all  $x \in \Sigma^*$ ,  $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff  $x \in L(A_1)$  or  $x \in L(A_2)$ 

## Moving on to Non-determinism

- We looked at DFA
- Showed closure under union, intersection and complementation
- Before we examine closure under concatenation, we look at a more relaxed model, which is as good as a DFA





- Assume we relax the condition on transitions, and allow
  - ▶  $\delta: Q \times \Sigma \rightarrow 2^Q$
  - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$



- Assume we relax the condition on transitions, and allow
  - ▶  $\delta: Q \times \Sigma \rightarrow 2^Q$
  - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
  - ► Is *aabb* accepted?



- Assume we relax the condition on transitions, and allow
  - $\delta: Q \times \Sigma \rightarrow 2^Q$
  - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
  - ▶ Is aabb accepted?



### One run of aabb





19/45

### One run of aabb





#### One run of aabb

Is aabb accepted?



► A non-accepting run for *aabb* 





22/4







Is aabb accepted?



► A non-accepting run for *aabb* 

### A run of aaab





## A run of aaab





27/45

### A run of aaab





28/4

## A run of aaab

Is aaab accepted?



► A non-accepting run for aaab











Is aaab accepted?



► An accepting run for aaab

# Nondeterministic Finite Automata(NFA)

- $\triangleright$   $N = (Q, \Sigma, \delta, Q_0, F)$ 
  - Q is a finite set of states
  - ▶  $Q_0 \subseteq Q$  is the set of initial states
  - $\delta: Q \times \Sigma \to 2^Q$  is the transition function
  - ▶  $F \subseteq Q$  is the set of final states
- Acceptance condition: A word w is accepted iff it has atleast one accepting path



















# **The Single Run**



▶ Any DFA is also an NFA

- ► Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA

- ► Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - Combine all the runs of w in the NFA into a single run in the DFA

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - ► Combine all the runs of w in the NFA into a single run in the DFA
  - Combine states occurring in various runs to obtain a set of states

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - ► Combine all the runs of w in the NFA into a single run in the DFA
  - Combine states occurring in various runs to obtain a set of states
  - A set of states evolves into another set of states

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - ► Combine all the runs of w in the NFA into a single run in the DFA
  - Combine states occurring in various runs to obtain a set of states
  - ► A set of states evolves into another set of states
  - Use  $\delta: Q \times \Sigma \to 2^Q$ , obtain  $\Delta: 2^Q \times \Sigma \to 2^Q$

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - ► Combine all the runs of w in the NFA into a single run in the DFA
  - Combine states occurring in various runs to obtain a set of states
  - ► A set of states evolves into another set of states
  - Use  $\delta: Q \times \Sigma \to 2^Q$ , obtain  $\Delta: 2^Q \times \Sigma \to 2^Q$
  - Δ is an extension of δ

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
  - Combine all the runs of w in the NFA into a single run in the DFA
  - Combine states occurring in various runs to obtain a set of states
  - A set of states evolves into another set of states
  - Use  $\delta: Q \times \Sigma \to 2^Q$ , obtain  $\Delta: 2^Q \times \Sigma \to 2^Q$
  - Δ is an extension of δ
  - Accept if the obtained set of states contains a final state

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

▶  $\Delta: 2^Q \times \Sigma \to 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$ 

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

- ▶  $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{a \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

- ▶  $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that  $\hat{\delta}(A, a) = \bigcup_{a \in A} \delta(q, a) = \Delta(A, a)$ 

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

- ▶  $\Delta: 2^Q \times \Sigma \rightarrow 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $\blacktriangleright F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that  $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

•  $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$  is same as  $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$  (recall  $\delta: Q \times \Sigma \to 2^Q$ )

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

- ▶  $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that  $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$  is same as  $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$  (recall  $\delta: Q \times \Sigma \to 2^Q$ )
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$

Given NFA  $N = (Q, \Sigma, Q_0, \delta, F)$ , obtain the DFA  $D = (2^Q, \Sigma, Q_0, \Delta, F')$ 

- ▶  $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$  is defined by  $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that  $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$  is same as  $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$  (recall  $\delta: Q \times \Sigma \to 2^Q$ )
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$
- lacklet  $\hat{\delta}(A, xa) = \bigcup_{q \in \hat{\delta}(A, x)} \delta(q, a)$

#### NFA = DFA

$$x \in L(D) \leftrightarrow \hat{\Delta}(Q_0, x) \in F'$$
 $\leftrightarrow$ 

$$\hat{\delta}(Q_0, x) \in F'$$
 $\leftrightarrow$ 

$$\hat{\delta}(Q_0, x) \cap F \neq \emptyset$$
 $\leftrightarrow$ 
 $x \in L(N)$ 

# Regularity

A language L is regular iff there exists an NFA A such that L = L(A)

## $\epsilon$ -NFA



## $\epsilon$ -NFA





# $\epsilon\text{-NFA}$





## $\epsilon$ -NFA





## $\epsilon$ -NFA



#### $\epsilon$ -NFA and DFA

- $\triangleright$   $\epsilon$ -close the initial states of the  $\epsilon$ -NFA to obtain initial state of DFA
- ▶ From a state S, compute  $\Delta(S, a)$  and  $\epsilon$ -close it
- ► All states in the DFA are e-closed
- Final states are those which contain a final state of the ε-NFA

#### **Closure under Concatenation**

▶ Given regular languages  $L_1, L_2$ , is  $L_1.L_2$  regular



#### **Closure under Concatenation**

▶ Given regular languages  $L_1, L_2$ , is  $L_1.L_2$  regular?

