Time: 20 mins

Name: Std. Number:

Quiz 6 (Sufficient Statistics + Estimation Theory)

Questions

1. (50%) Let $X_1, X_2, X_3, ..., X_n$ be iid samples from a distribution with the following probability density:

 $f(x|\theta) = \frac{\theta}{(1+x)^{\theta+1}}$

Find a sufficient statistic for θ .

Answer:

$$f(x_1, x_2, ..., x_n | \theta) = \prod_{i=1}^n \frac{\theta}{(1+x)^{\theta+1}} = \frac{\theta^n}{\left[\prod_{i=1}^n (1+x_i)\right]^{\theta+1}} = \frac{\theta^n}{u^{\theta+1}}$$

We have:

$$u = \prod_{i=1}^{n} (1 + X_i)$$
$$g(u, \theta) = \frac{\theta^n}{u^{\theta+1}}$$

$$h(x_1, x_2, ..., x_n) = 1$$

Thus, by factorization Theorem u is a sufficient statistics for θ .

2. (50%) Let $X_1, X_2, X_3, ..., X_n$ be iid with pdf:

$$f(x|\theta) = \frac{1}{\theta} \quad 0 \le x \le \theta, \theta > 0$$

Find the maximum likelihood estimator (MLE) of θ based on this random sample.

Answer: The likelihood function is:

$$L(\theta|x) = \prod_{i=1}^{n} \frac{1}{\theta^n} I_{[0,\theta]}(x_{(n)}) . I_{[0,\infty)}(x_{(1)})$$

where $x_{(1)}$ and $x_{(n)}$ are the smallest and largest order statistics. For $\theta \geq x_{(n)}$, $L = \frac{1}{\theta^n}$ is a decreasing function. So, for $\theta \geq x_{(n)}$, L is maximised at $\hat{\theta} = x_{(n)}$. L = 0 for $\theta < x_{(n)}$. So the overall maximum, the MLE is $\hat{\theta}_{MLE} = X_{(n)}$.