

520142: ALGEBRA y ALGEBRA LINEAL

Primer Semestre 2002, Universidad de Concepción

CAPITULO 7. MATRICES

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

Definición: Matriz

Sean $m, n \in \mathbb{N}$ y \mathbb{K} un cuerpo (\mathbb{R}, \mathbb{C}). Se llama función Matricial sobre \mathbb{K} a una función

$$A: \{1,2,...,m\} \times \{1,2,...,n\} \longrightarrow \mathbb{K}, \quad (i,j) \longmapsto A(i,j)$$

Se designa por a_{ij} al valor de A en el par (i, j), se escribe:

$$A = \left(egin{array}{ccccc} a_{11} & a_{12} & ... & a_{1n} \ a_{21} & a_{22} & ... & a_{2n} \ dots & dots & ... & dots \ a_{m1} & a_{m2} & ... & a_{mn} \end{array}
ight)$$

o bien $A=(a_{ij}), i=1,...,m, \quad j=1,...,n$ y se dice que A es una matriz de orden $m\times n$. También se escribe $A=(a_{ij})$, cuando está claro el número de filas y columnas de A.

- Si $\mathbb{K} = \mathbb{R}(\mathbb{C})$, entonces la matriz se dice real (compleja) o a valores reales (complejos).
- El conjunto de todas las matrices de orden $m \times n$, con elementos en \mathbb{K} , se denota por $M_{m \times n}(\mathbb{K})$.
- Se llama Matriz nula a la matriz (a_{ij}) , con $a_{ij} = 0, \forall i \in \{1, 2, ..., m\}, \forall j \in \{1, 2, ..., n\}$ y se denota por θ .
- Sean $A=(a_{ij}), B=(b_{ij})\in M_{m\times n}(\mathbb{K})$ dos matrices, entonces

$$A = B \iff a_{ij} = b_{ij}, \forall i \in \{1, 2, ..., m\}, \forall j \in \{1, 2, ..., n\}.$$

Operaciones con matrices.

Definición : suma y multiplicación de matrices.

Suma.

Sean $A=(a_{ij}), B=(b_{ij})\in M_{m\times n}(\mathbb{K})$, entonces la matriz suma A+B es

$$A + B = (c_{ij})$$
 con $c_{ij} = a_{ij} + b_{ij}, \forall i = 1, ..., m, j = 1, ..., n.$

Multiplicación

Sean $A=(a_{ij})\in M_{m\times n}(\mathbb{K}), B=(b_{ij})\in M_{n\times p}(\mathbb{K})$. La matriz producto $C=A\cdot B$ es una matriz de $M_{m\times p}(\mathbb{K})$, con

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Propiedades de la suma y del producto de matrices.

 $\forall A, B, C \in M_{m \times n}(\mathbb{K})$ se tiene:

S1).	(A + B) + C = A + (B + C).	S2).	A + B = B + A.
S3).	$\exists \theta \in M_{m \times n}(\mathbb{K}) : A + \theta = A$	S4).	$\exists -A \in M_{m \times n}(\mathbb{K}):$
			$A + (-A) = \theta$

Para A, B, C matrices tal que los productos esten definidos, se tiene:

M1).	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	M2).	$A \cdot (B + C) = A \cdot B + A \cdot C$
M3).	$\exists A \neq \theta, B \neq \theta \land A \cdot B = \theta.$		

Definición: Producto de un escalar por una matriz.

Para $A=(a_{ij})\in M_{m\times n}(\mathbb{K}), \quad \lambda\in\mathbb{K}$, se define el producto $\lambda A=B$, por

$$kA = (b_{ij})$$
 con $b_{ij} = \lambda a_{ij}$.

Propiedades

$$\forall A, B \in M_{m \times n}(\mathbb{K}), \forall \alpha, \beta \in \mathbb{K}$$

Definición : Transpuesta de una matriz.

Para $A \in M_{m \times n}(\mathbb{K})$, se define la transpuesta de A como la matriz $A^t \in M_{n \times m}(\mathbb{K})$, donde

$$A^{t} = (b_{ij})$$
 con $b_{ij} = a_{ji}, 1 \le i \le n, 1 \le j \le m.$

Propiedades
$$\forall A, B \in M_{m \times n}(\mathbb{K}), \forall \alpha \in \mathbb{K}$$

$$(A^t)^t = A.$$

$$(C \cdot D)^t = D^t \cdot C^t, \quad \forall C \in M_{m \times n}(\mathbb{K}), D \in M_{n \times p}(\mathbb{K}).$$

Definición : \blacksquare Una matriz cuadrada de n filas y n columnas es una

matriz $A \in M_{n \times n}(\mathbb{K}) = M_n(\mathbb{K})$.

Se dice que una matriz cuadrada $A = (a_{ij})$ es:

- In the second of the second o
- In the second of the second o
- **Diagonal** si $a_{ij} = 0$, para $i \neq j$.
- **Escalar** si es diagonal y $a_{ii} = \lambda$, para $1 \leq i \leq n, \lambda \in \mathbb{K}$.
- **Identidad** si es escalar y $a_{ii} = 1$, para $1 \le i \le n$.
- Simétrica si $A^t = A$.

Definición: Matrices Inversibles.

Una matriz $A \in M_n(\mathbb{K})$ se dice **inversible (o no singular)** si existe una matriz $B \in M_n(\mathbb{K})$ tal que $A \cdot B = I$ \wedge $B \cdot A = I$.

- La matriz B se llama inversa de A y se denota por A^{-1} .
- Si A es inversible, entonces su inversa A^{-1} es única.
- Si A y B son inversibles, entonces AB también lo es y $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.

Definición: Operaciones Elementales de filas

Sea $A \in M_{m \times n}(\mathbb{K})$. Se llaman operaciones elementales de filas sobre A a las siguiente operaciones.

- F_1) Intercambio de dos filas de A, la fila i con la fila j. Se escribe $f_i \longleftrightarrow f_j, \quad i, j \in \{1, 2, ..., m\}$.
- F_2) Multiplicar una fila de A por un escalar α no nulo. Para la fila i se escribe $f_i \longleftarrow \alpha f_i$, $\alpha \in \mathbb{K}$.
- F_3) Sumar un múltiplo escalar de una fila a otra. Si a la fila j se suma α veces la fila i, entonces se escribe $f_j \longleftarrow f_j + \alpha f_i, \quad \alpha \in \mathbb{K}$.

Teorema.

Sea $A \in M_{m \times n}(\mathbb{K})$ y F una operación elemental de filas, entonces

$$F(A) = F(I) \cdot A$$
.

Corolarios.

Si $A \in M_{m \times n}(\mathbb{K})$, $B \in M_{n \times p}(\mathbb{K})$ y F es una operación elemental de filas, entonces

$$F(AB) = F(A) \cdot B.$$

lacksquare Si $F_1, F_2, ..., F_n$ son operaciones elementales de filas, entonces

$$(F_n \cdots F_2 F_1)(A \cdot B) = (F_n \cdots F_2 \cdot F_1(A)) \cdot B.$$

Teorema.

Toda operación elemental de filas es inversible y su inversa es una operación elemental de filas del mismo tipo.

Definición. Matrices equivalentes por filas.

Dos matrices $A \in M_{m \times n}(\mathbb{K})$ y $B \in M_{m \times n}(\mathbb{K})$ se dicen **equivalentes por filas** si una se obtiene de la otra por aplicación de una o varias operaciones elementales de filas.

Teorema.

Si $A \in M_n(\mathbb{K})$ es equivalente por filas con I, entonces A es inversible.

Observaciones.

- Si A es inversible y $F_1,...,F_n$ son operaciones elementales de filas que permiten pasar de A a la matriz identidad I, entonces la matriz inversa A^{-1} se obtiene aplicando, en el mismo orden, las operaciones elementales $F_1,...,F_n$ a la matriz I.
- Para calcular A^{-1} se efectuan las operaciones elementales de filas en la matriz ampliada (A|I) hasta obtener la matriz (I|B). En tal caso $B=A^{-1}$.

Notación.

Si $A \in M_{m \times n}(\mathbb{K})$, entonces designamos por $A_{ij} \in M_{m-1 \times n-1}(\mathbb{K})$ a la matriz obtenida de A eliminando la fila i y la columna j.

Definición. Determinante.

Se llama Función determinante sobre K a la función

$$det: M_n(\mathbb{K}) \longrightarrow \mathbb{K}, \quad A \longmapsto det(A),$$

tal que:

- lacksquare Si n=1 y A=(a), entonces det(A)=a.
- Si $n \in \mathbb{N}, n > 1$, entonces $det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} det(A_{ij})$, para algún i=1,2,...,n.

Notación. También se escribe det(A) = |A|.

Propiedades. Para $A \in M_n(\mathbb{K})$ se tiene.

- Si A tiene una fila nula, entonces det(A) = 0.
- Si A es una matriz triangular, entonces $det(A) = \prod_{i=1}^{n} a_{ii}$.
- Si F es una operación elemental de filas que intercambia dos filas de A, es decir B = F(A), entonces det(B) = -det(A).
- Si F es una operación elemental de filas que multiplica una fila de A por un escalar α , es decir B = F(A), entonces $det(B) = \alpha det(A)$.

- Si F es una operación elemental de filas que suma un múltiplo escalar α de la fila i a la fila j, es decir B = F(A), entonces det(B) = det(A).
- lacksquare Si A tiene dos filas iguales, entonces det(A)=0.
- Si una fila de A es combinación lineal de otras filas de A, entonces det(A)=0.
- Dado que $det(A^t) = det(A)$, se tiene que todas las propiedades indicadas también valen para las columnas.

Definiciones. Sea $A \in M_n(\mathbb{K})$.

- Se llama Menor de un elemento a_{ij} al determinante de la matriz A_{ij} , es decir es el escalar $det(A_{ij})$.
- lacksquare Se llama **Cofactor** de un elemento a_{ij} al escalar $c_{ij} = (-1)^{i+j} det(A_{ij}).$
- ullet Si c_{ij} es el cofactor del elemento a_{ij} , entonces

$$\sum_{j=1}^n a_{ij} \cdot c_{ij} = det(A),$$
 para algún $i = 1, ..., n.$

$$\sum_{i=1}^n a_{ij} \cdot c_{kj} = 0, \quad k
eq i, \quad ext{para algún} \quad i = 1, 2, ..., n.$$

- Se llama Matriz de cofactores de la matriz A a la matriz que contiene los cofactores de cada elemento a_{ij} . Se escribe $cof(A) = A^c$.
- Se llama Matriz Adjunta de la matriz A a la matriz transpuesta de la matriz de cofactores. Se escribe $adj(A) = (A^c)^t$.

Teoremas.

- lacksquare A es inversible sí y sólo sí $det(A) \neq 0$.
- lacksquare Si $A \in M_n(\mathbb{K})$ y $det(A) \neq 0$, entonces

$$A^{-1} = \frac{1}{\det(A)} adj(A).$$

Definición. Rango de una matriz.

Sea $A \in M_{m \times n}(\mathbb{K})$. Se llama rango de A al orden de la mayor submatriz cuadrada de A con determinante no nulo. Se escribe r(A).

Observaciones.

- Si A y B son equivalentes por filas, entonces r(A) = r(B).
- Una matriz $A \in M_{m \times n}(\mathbb{K})$ se dice escalonada por filas si el primer elemento no nulo de cada fila de A está a la derecha del primer elemento no nulo de la fila anterior.

El número de filas no nulas de cualquier matriz escalonada equivalente por filas con A es igual a r(A).