Quadratic equations and Inequations(Inequalities)

ai24btech11025 KUSHAL

SectionC.MCQs with One Correct 34) let p and q be real numbers such Answer

- 31) If one root is square of the other root of the equation $x^2 + px + q =$ 0, then the relationship between p (2004S)and q is
 - a) $p^3 q(3p 1) + q^2 = 0$
 - b) $p^3 q(3p + 1) + q^2 = 0$
 - c) $p^3 + q(3p 1) + q^2 = 0$
 - d) $p^3 + q(3p + 1) + q^2 = 0$
- 32) Let a,b,c be the sides of the triangle where $a \neq b \neq c$ and λR . If the roots of the equation x^2 2(a+b+c)x $3\lambda(ab + bc + ca) = 0$ are real, (2006-3M,-1)
 - a) $\lambda < \frac{4}{3}$ b) $\lambda > \frac{5}{3}$ c) $\lambda\left(\frac{1}{3}, \frac{5}{3}\right)$ d) $\lambda\left(\frac{1}{3}, \frac{4}{3}\right)$

then

- 33) Let α, β be the roots of the equation $x^2 - px + r = 0$ and $\frac{\alpha}{2}$, 2β be the roots of the equation x^2 – (2007-1marks)
 - a) $\frac{2}{9}(p-q)(2q-p)$
 - b) $\frac{2}{9}(q-p)(2p-q)$
 - c) $\frac{2}{9}(q-2p)(2q-p)$
 - d) $\frac{2}{9}(2p-q)(2q-p)$

that $p \neq 0$, $p^3 \neq qandp^3 \neq -q$. If α and β are nonzero complex numbers satisfying $\alpha + \beta = -pand\alpha^3 +$ β 3 = q,then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots

(2010)is

- is (2010) a) $(p^3 + q)x^2 (p^3 + 2q)x + (p^3 + q) = 0$ b) $(p^3 + q)x^2 (p^3 2q)x + (p^3 + q)x^2 (5p^3 2q)x + (p^3 q) = 0$ c) $(p^3 + q)x^2 (5p^3 2q)x + (p^3 q) = 0$ d) $(p^3 + q)x^2 (5p^3 + 2q)x + (p^3 q) = 0$

- 35) Let (x_0, y_0) be the solution of the following equatoions $(2x)^{\ln 2} = (3y)^{\ln 3}$ $3^{lnx} = 2^{lny}$

then x_0 is (2011)

- a) $\frac{1}{6}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) 6
- 2 = 0, with $\alpha > \beta$. if $a_n = \alpha^n \beta n$ for $n \ge 1$, then the value of $\frac{a_{10}-2a_8}{2a_9}$ is (2011)

- a) 1 b) 2 c) 3
- d) 4
- 37) A value of b for which the equations

$$x^2 + bx - 1 = 0$$

x62 + x + b = 0

have one root in common is (2011)

- a) $-\sqrt{2}$
- c) $i\sqrt{5}$
- b) $-i\sqrt{3}$
- 38) The quadratic equation p(x) = 0with real coefficients has purely imaginary roots. the Then equation p(p(x)) = 0 has (JEE Adv,2014)
 - a) one purely imaginary root
 - b) all real roots
 - c) two real roots and two purely imaginary roots
 - d) neither real nor imaginary roots
- 39) let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 - 2x \sec \alpha + 1 = 0$ and α_2 and β_2 are the roots of the equa $tion x^2 - 2x tan \theta - 1 = 0. If$ $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals (JEE Adv.2016)
 - a) $2(\sec\theta \tan\theta)$
 - b) $2 \sec \theta$
 - c) $-2 \tan \theta$
 - d) 0

Section D.MCQs with One or More than One Correct

- 1) for real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values pro-(1984-3Marks) vided

 - a) a > b > c c) a > c > b
 - b) a < b < c d) a < c < b
- 2) if S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S con-(1996-2Marks)
 - a) $\left(-infinity, -\frac{3}{2}\right)$ c) $\left(-\frac{1}{4}, \frac{1}{2}\right)$ b) $\left(-\frac{3}{2}, -\frac{1}{4}\right)$ d) $\left(\frac{1}{2}, 3\right)$
- 3) if a,b and c are distinct positive numbers, then the expression (b+c-a)(c+a-b)(a+b-c)(1986-2 Marks) abc is
 - a) positive
 - b) negative
 - c) non-positive
 - d) non-negative
 - e) none of these
- 4) if a,b,c,d and disp are real numbers tinct such $(a^2 + b^2 + c^2)p^2$ $2\left(ab+bc+cd\right)p+\left(c^{2}\right)+c^{2}+d^{2}\leq$ 0 then a,b,c,d (1987-2 Marks)
 - a) are in A.P.
 - b) are in G.P.
 - c) are in H.P.
 - d) satisfy ab = cd
 - e) satisfy none of these
- 5) The equation $x^{3/4}(\log_2 x)^2 + \log_2 x - 5/4 = \sqrt{2}$

has (1989-2 Marks)

- a) at least one real solution
- b) exactly three solutions
- c) exactly one irrational solution
- d) complex roots
- 6) The product of n positive numbers is unity Then their sum is (1991-2 Marks)
 - a) a positive integer
 - b) divisible by n
 - c) equal to $n + \frac{1}{n}$
 - d) never less than n