Applied Linear Algebra Homework One

Jesse Bannon

2017-04-07

1 Matrices Excersize

Theorem 1 Let A be an adjacency matrix for a graph G. $A_{i,j}^p$ represents the number of walks of length p from vertex i to j, $i, j \in G$.

PROOF We prove that an adjecency matrix A for a graph G is nilpotent if and only if G is a directed acylic graph using a case proof that considers all possible graphs.

Case 1 A = 0

We can consider G to be a DAG since G has no cycles, and $A^p = 0$ for p > 0. Thus A is nilpotent and G is a DAG.

 $Case \ 2 \ G$ contains a cycle

Using **Theorom 1**, we know that $A^p \neq 0$ for p > 0.

Let C be the transitive closure from vertex i to i, where $i \in G$ has a cycle. There exists a walk of p steps from vertex i to some vertex $j \in C$ for p > 0.

Thus,
$$\exists A_{i,j}^p \in A^p \to A_{i,j}^p > 0$$
 for $p > 0$.
Thus A is not nilpotent and G is not a DAG.

 $Case \ 3 \ G$ contains no cycles

Using **Theorom 1**, we know that
$$A^p = 0$$
 for some $p > 0$.
Let $n = |V(G)|$

Since there are no cycles, G is considered a DAG. The largest path from any vertex $i \in G$ can only contain every other vertex $\in G$. Thus, the largest possible number of walks for any path $\in G$ can only be n-1.

Thus, $A^n = 0$, making A nilpotent. A is always nilpotent if G is a DAG.

Thus, A is nilpotent if and only if G is a DAG. We can also conclude that the smallest value of p for which $A^p = 0$ indicates that the largest path $\in G$ contains p-1 vertices.