# Efficient Learning of Label Ranking by Soft Projections onto Polyhedra

Thomas Achenbach

Technische Universität Darmstadt

18. Januar 2008



### Motivation

Szenario Notation

# Optimierung des Algorithmus duales Problem Weitere Schritte

#### **Benchmarks**

Voraussetzungen Tests

#### Gegeben:

- ▶ Menge von Instanzen (z.B. Newsfeeds) aus *instance space*  $\chi$
- ▶ Endliche Menge von *Labeln*:  $\gamma$  mit  $\gamma = \{1, 2, ..., k\} = [k]$
- ► Feeds können ein oder mehrere Label zugeordnet werden: Mapping von Feed auf Label
- Jedes Label hat für jeden Feed bestimmte Relevanz:
   Preference (Feed handelt z.B. hauptsächlich von Politik, ein wenig von Wirtschaft usw.)

#### Problem:

Wie *möglichst schnell* automatisch den Feeds die richtigen Labels mit den richtigen Präferenzen zuordnen???



#### Also Ziel:

- Exaktes Mapping von instance space (Newsfeeds) zum target space (labels).
- dabei richtige Voraussage der label preferences
- möglichst schnell

Hier: Lernen aus Trainingsbeispielen (batch learning)

Betonung auf möglichst schnell

Geht hier nur um Performance - Optimierung; dass Ziel erreichbar schon bekannt.

Also zuerst: ansehen, was genau optimiert werden soll

Dazu: Vorarbeiten mit Notation...:



# Ausgangspunkt:

- ▶ Instanz aus instance space:  $\mathbf{x} \in \chi, \chi \subseteq \mathbb{R}^n$
- Vordefinierte endliche Menge von Labeln  $\gamma$  mit  $\gamma = \{1, 2, ..., k\} = [k]$

#### Lernziel: Label Ranking Function:

- $\mathbf{f}: \chi \to \mathbb{R}^k$  mit Rückgabewert:
  - $\vec{\gamma} \in \mathbb{R}^k$  target vector / label ranking
  - $\vec{\gamma}_i \in \mathbb{R}$
  - $f_r(\mathbf{x})$  rtes Element von  $\vec{\gamma}$
  - $\vec{\gamma}_y > \vec{\gamma}_{y'} \Rightarrow \gamma$  relevanter für **x** als  $\gamma'$
  - $ightharpoonup ec{\gamma}_y = ec{\gamma}_{y'}$  möglich
  - ▶ Darstellung von  $\vec{\gamma}$  als gerichteter gewichteter Graph möglich z.B. Edge (3,1):  $\vec{\gamma}_3 \vec{\gamma}_1 = 3$  bei  $\vec{\gamma} = (-1,0,2,0,-1)$



Figure 1: The graph induced by the feedback  $\gamma = (-1, 0, 2, 0, -1)$ .

- $f_{\gamma}(\mathbf{x}) > f_{\gamma'}(\mathbf{x}) \Rightarrow \gamma$  relevanter für  $\mathbf{x}$  als  $\gamma'$
- ▶  $f_r(\mathbf{x}) = \mathbf{w}_r \cdot \mathbf{x}$ ;  $\mathbf{w}_r \in \mathbb{R}^n, \chi \subseteq \mathbb{R}^n \Rightarrow$  lineare Funktion (Das aber keine echte Einschränkung (SVM Kernel trick...)

▶ Trainingsbeispiel:  $S = \{(\mathbf{x}^i, \vec{\gamma}^i)\}_{i=1}^m; \mathbf{x} \in \chi, \vec{\gamma}^i \in \mathbb{R}^k$ 

Performance via Loss Function evaluiert

(Notation: 
$$(a)_+ = max\{0, a\}$$
):

- $label{eq:lambda} 
  label{eq:lambda} 
  label{eq:lambda} 
  label{eq:lambda} 
  label{eq:lambda} 
  label{eq:lambda} \ell: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ 
  - $\ell_{r,s}(\mathbf{f}(\mathbf{x}),\vec{\gamma}) = (((\vec{\gamma}_r \vec{\gamma}_s) (f_r(\mathbf{x}) f_s(\mathbf{x})))_+$
  - $\ell_{r,s}$  zeigt wieweit constraint  $f_r(\mathbf{x}) f_s(\mathbf{x}) \ge \vec{\gamma}_r \vec{\gamma}_s$  nicht berücksichtigt wird

Bis hierher nur paarweiser Vergleich der Label (r, s)

Jetzt: Alle paarbasierten losses in einen loss zusammenfassen!

Paare von Labeln in d unabhängige Mengen aufteilen. Jede Menge isomorph zu vollst. biparititem Graphen



- ▶ loss eines Subgraphen  $(V_j, E_j)$ : maximum über den losses der Paare im Subgraphen
- ightharpoonup zusätzl. Gewichtung der einzelnen Subgraphen mit (nichtnegativem)  $\sigma_j$

 $\Longrightarrow$  Loss:

$$\ell(\mathbf{f}(\mathbf{x}), \vec{\gamma}) = \sum_{j=1}^{d} \sigma_{j} \max_{(r,s) \in E_{j}} \ell_{r,s}(\mathbf{f}(\mathbf{x}), \vec{\gamma})$$

### Mit loss-function jetzt label-ranking-function bilden:

- constrained optimization problem definieren (mit SVM Paradigma)
- ▶ optimale Lösung davon: label-ranking-function mit 2 Termen:
  - 1. empirischer loss der label-ranking-function bezgl. Trainingsset
  - 2. penalty für Komplexität der Funktion (Regularisierungsterm), i.e. Summe der Quadrate der Normen von  $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$
  - Tradeoff zwischen beiden Termen durch Parameter C kontrolliert

$$\min_{\mathbf{w}_1,...,\mathbf{w}_k} \frac{1}{2} \sum_{i=1}^k \|\mathbf{w}_i\|^2 + C \sum_{i=1}^m \ell(\mathbf{f}(\mathbf{x}^i), \vec{\gamma}^i) \quad mit: f_{\gamma}(\mathbf{x}^i) = \mathbf{w}_{\gamma} \cdot \mathbf{x}^i$$

Und andere Notation der loss-function:

$$\ell(\mathbf{f}(\mathbf{x}), \vec{\gamma}) = min_{\xi \in \mathbb{R}^d_+} \sum_{j=1}^d \sigma_j \xi_j$$

mit: 
$$\forall j \in [d], \forall (r,s) \in E_j, \mathbf{f}_r(\mathbf{x}) - \mathbf{f}_s(\mathbf{x}) \ge \vec{\gamma}_r - \vec{\gamma}_s - \xi_j$$

Ergibt das quadratische Optimierungsproblem:

$$\min_{\mathbf{w}_1, \dots, \mathbf{w}_k, \xi} \frac{1}{2} \sum_{j=1}^k \|\mathbf{w}_j\|^2 + C \sum_{i=1}^m \sum_{j=1}^{|\mathbf{E}(\vec{\gamma}^i)|} \sigma_j \xi_j^i$$

mit: 
$$\forall i \in [m], \forall E_j \in \mathbf{E}(\vec{\gamma}^i), \forall (r,s) \in \mathbf{E}_j, \mathbf{w}_r \cdot \mathbf{x}^i - \mathbf{w}_s \cdot \mathbf{x}^i \ge \vec{\gamma}_r^i - \vec{\gamma}_s^i - \xi_j^i \quad \forall i, j, \xi_j^i \ge 0$$

### Ziele Optimierung:

- schnell
- soll mit allen Dekompositionen in Subgraphen zurechtkommen.

Herleitung des Algorithmus komplex!

#### Grober Ablauf:

- 1. Iteration über die Trainingsbeispiele
- 2. Iteration über die Subgraphen
- 3. dort die ranking-function für neues Beispiel verbessern

### Kern des Algorithmus:

- 3. Punkt: ranking-function für neues Beispiel verbessern: Dabei Ausgangsposition:
  - ▶ schon label-ranking-function vorhanden  $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$
  - ightharpoonup  $\mathbf{E}(ec{\gamma})$  besteht aus nur einem vollständigen bipartiten Graphen
  - Ziel: Funktion verbessern wenn neues Beispiel verarbeitet wird

Ergibt constrained optimization problem:

$$min_{\mathbf{w}_1,...,\mathbf{w}_k,\xi} \frac{1}{2} \sum_{v=1}^k \|\mathbf{w}_y - \mathbf{u}_y\|^2 + C\xi$$

mit: 
$$\forall (r,s) \in E, \mathbf{w}_r \cdot \mathbf{x} - \mathbf{w}_s \cdot \mathbf{x} \ge \vec{\gamma}_r - \vec{\gamma}_s - \xi, \xi \ge 0$$

- ▶ label-ranking function schon vorhanden, repräsentiert durch  $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$
- ► Erinnerung: label-ranking-function  $f_r(\mathbf{x}) = \mathbf{u}_r \cdot \mathbf{x}$ ;  $\mathbf{u}_r \in \mathbb{R}^n, \chi \subseteq \mathbb{R}^n$

Problemlösung kann aufgefasst werden als: Projektion von  $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$  auf das Polyeder, dass mit den Beschränkungen Definiert wird.

Daher Name des Algorithmus: SOft-Projection Onto POlyhedra SOPOPO

# Erläuterung zur Projektion (aus Wikipedia):



türkis, schwarz, violett sind die Beschränkungen; erlaubte punkte im blauen Polyeder; gestrichelte Rote sollen optimiert werden (soweit wie möglich nach rechts schieben)



#### Lösung des Problems in mehreren Schritten:

- Duales Problem finden
- ▶ Anzahl m der Variablen im dualen Problem von  $k^2/4 \ge m$  auf k reduzieren
- ▶ Aufteilung des Problems in zwei einfachere

Ergebnis: Komplexität von  $O(k \log(k))$ 

#### Duales Problem:

- primäre Zielfunktion ist konvex
- primäre constraints sind linear
- ▶ Es gibt Lösung für primäres Problem (setze  $\mathbf{w}_y = 0$  und  $\xi = \max_{(r,s) \in E} (\vec{\gamma}_r \vec{\gamma}_s)$

 $\Longrightarrow$  strong duality

Finden des Problems:

Lagrange des Primärproblems bilden:

$$\mathcal{L} = \frac{1}{2} \sum_{y=1}^{k} \|\mathbf{w}_{y} - \mathbf{u}_{y}\|^{2} + C \xi + \sum_{(r,s) \in E} \tau_{r,s} (\gamma_{r} - \gamma_{s} - \xi + \mathbf{w}_{s} \cdot \mathbf{x} - \mathbf{w}_{r} \cdot \mathbf{x}) - \zeta \xi$$

$$= \frac{1}{2} \sum_{y=1}^{k} \|\mathbf{w}_{y} - \mathbf{u}_{y}\|^{2} + \xi \left(C - \sum_{(r,s) \in E} \tau_{r,s} - \zeta\right) + \sum_{(r,s) \in E} \tau_{r,s} (\gamma_{r} - \mathbf{w}_{r} \cdot \mathbf{x} - \gamma_{s} + \mathbf{w}_{s} \cdot \mathbf{x}) ,$$

mit: 
$$\forall (r,s) \in E : \tau_{r,s} \geq 0, \zeta \geq 0$$

- ► teilterme fallen weg
- Primaervariablen können beseitigt werden
- Umformung führt zu Ergebnis
- ▶ Dann Anzahl der Variablen im dualen Problem auf k reduzieren.
- Problem in zwei einfache Teilprobleme aufteilen

#### Zur Ansicht:

```
INPUT:
                    instance x \in X; target ranking y; sets A, B
                     current prototypes \mathbf{u}^1, \dots, \mathbf{u}^k; regularization parameter C
MARGINS:
                    \mu = \operatorname{sort} \{ (\gamma_a - \mathbf{u}^a \cdot \mathbf{x}) / ||\mathbf{x}||^2 \mid a \in A \}
                    \mathbf{v} = \operatorname{sort} \{ (\mathbf{u}^b \cdot \mathbf{x} - \mathbf{v}_b) / ||\mathbf{x}||^2 \mid b \in B \}
KNOTS:
                    \forall i \in [p] : z_i = \sum_{r=1}^{i} \mu_r - i\mu_i \quad \forall j \in [q] : \tilde{z}_j = \sum_{s=1}^{j} v_s - jv_j
                    Q = \{z_i : z_i < C\} \cup \{\tilde{z}_i : \tilde{z}_i < C\} \cup \{C\}
INTERVALS:
                    \forall z \in Q: R(z) = |\{z_i : z_i \le z\}|; S(z) = |\{\tilde{z}_i : \tilde{z}_i \le z\}|
                    \forall z \in Q: N(z) = \min\{z' \in Q : z' > z\} \cup \{C\}
LOCAL MIN:
                    O(z) = \left(S(z)\sum_{r}^{R(z)}\mu_{r} + R(z)\sum_{r}^{S(z)}\nu_{r}\right)/(R(z) + S(z))
GLOBAL MIN:
                     If (\exists z \in Q, s.t. Q(z) \in [z, N(z)]) Then
                         z^* = O(z); i^* = R(z); j^* = S(z)
                     Else If (u_1 + v_1 < 0)
                          z^* = 0 ; i^* = 1 ; i^* = 1
                          z^* = C ; i^* = R(C) ; i^* = S(C)
DUAL'S AUXILIARIES:
                    \theta_{\alpha} = \frac{1}{i^{\star}} \left( \sum_{r}^{i^{\star}} \mu_{r} - z^{\star} \right) ; \quad \theta_{\beta} = \frac{1}{i^{\star}} \left( \sum_{r}^{i^{\star}} \nu_{r} - z^{\star} \right)
OUTPUT:
                    \forall a \in A : \alpha_a = \left(\frac{Y_a - \mathbf{u}_a \cdot \mathbf{x}}{\|\mathbf{x}\|^2} - \theta_\alpha\right) and \mathbf{w}_a = \mathbf{u}_a + \alpha_a \mathbf{x}
                    \forall b \in B : \beta_b = \left(\frac{\mathbf{u}_b \cdot \mathbf{x} - \gamma_b}{\|\mathbf{x}\|^2} - \theta_{\beta}\right) and \mathbf{w}_b = \mathbf{u}_b - \beta_b \mathbf{x}
```

## Weiter im Algorithmus:

- Jetzt nur eine Projektion für einen einzigen vollständigen bipartiten Graphen
- Algorithmus soll aber auf jeder beliebigen Aufteilung funktionieren
- Gesucht also Algorithmus der Urspruengliche Aufgabe löst, indem er immer wieder SOPOPO verwendet
  - ▶ ursprüngliches Problem vereinfachen (syntax) ⇒

$$min_{\mathbf{w'},\xi} \frac{1}{2} \|\mathbf{w'}\|^2 + \sum_{i=1}^m C_i \xi_i$$

## Mit Beschränkungen

#### Für die Vereinfachung:

- ▶ Duales Problem suchen (Lagrange...)
- Dann Algorithmus der in Runden arbeitet:
  - ► In jeder Runde wird eine Menge von dualen Variablen upgedatet
  - alle anderen variablen sind fix

# Ansicht des Algorithmus in Pseudocode:

```
training set \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^m; decomposition function \mathbf{E}(\mathbf{y});
INPUT:
                     regularization parameter C
INITIALIZE:
                     \forall i \in [m], A_i \times B_i \in \mathbf{E}(\gamma^i), (a,b) \in A_i \times B_i, \text{ set } \alpha_a^{i,j} = 0, \beta_b^{i,j} = 0
                     \forall r \in [k], \text{ set } \mathbf{w}_r = \mathbf{0}
LOOP:
                     Choose a sub-graph i \in [m], A_i \times B_i \in \mathbb{E}(\gamma^i)
                     UPDATE:
                              \forall a \in A_i : \mathbf{u}_a = \mathbf{w}_a - \alpha_a^{i,j} \mathbf{x}_i \quad \forall b \in B_i : \mathbf{u}_b = \mathbf{w}_b + \beta_b^{i,j} \mathbf{x}_i
                     SOLVE:
                              (\alpha^{i,j}, \beta^{i,j}, \{\mathbf{w}_r\}) = \text{SOPOPO}(\{\mathbf{u}_r\}, \mathbf{x}^i, \gamma^i, A_i, B_i, C\sigma^i_i)
OUTPUT: The final vectors \{\mathbf{w}_r\}_{r=1}^k
```

LOQO: Kommerzielles Paket zur linearen Optimierung, basiert auf interior point Methode
Angesteuert mit Matlab-Interface, Implementierung selbst: C++
SOPOPO: Implementiert in Matlab
Testdaten immer zufällig gewählt (Normalverteilt)

# Erster Test: Performance Soft-projection auf ein Polyeder / originäres Problem

$$\begin{aligned} \min_{\mathbf{w}_{1},\dots,\mathbf{w}_{k},\xi} & \frac{1}{2} \sum_{y=1}^{k} \|\mathbf{w}_{y} - \mathbf{u}_{y}\|^{2} + C \xi \\ \text{s.t.} & \forall (r,s) \in E, & \mathbf{w}_{r} \cdot \mathbf{x} - \mathbf{w}_{s} \cdot \mathbf{x} \ge \gamma_{r} - \gamma_{s} - \xi \\ & \xi \ge 0 & . \end{aligned}$$



Aber: Test 'unfair', da:

- ► LOQO ist general purpose, nimmt daher immer interial point Algorithmus
- ► SOPOPO optimiert immer auf:

$$\begin{split} \min_{\alpha \in \mathbb{R}_+^p, \beta \in \mathbb{R}_+^q} \quad & \frac{1}{2} \|\alpha - \mu\|^2 + \frac{1}{2} \|\beta - \nu\|^2 \\ \text{s.t.} \quad & \sum_{i=1}^p \alpha_i \ = \ \sum_{j=1}^q \beta_j \ \leq \ C \enspace . \end{split}$$

# Daher LOQO direkt auch auf das optimierte Problem angesetzt:



# Gesamttest batchlearning: Jeweils 10x mehr Beispiele als Labels (k) generiert

