UNIVERSITE IBN TOFAIL ECOLE NATIONALE DES SCIENCES APPLIQUEES Cycle Intégré Préparatoire aux Formations d'Ingénieurs

Année Universitaire 2014/2015

M9 : Electromagnétisme et Electrocinétique des courants alternatifs

T.D N° 1: Loi de Biot et Savart

(Les exercices supplémentaires ne seront pas traités pendant les séances de TD, il faut les rendre en Devoir Libre)

Exercice 1.1.

En utilisant la loi de Biot et Savart, calculez le champ magnétique B(M) créé en un point M situé à une distance *a* d'un fil infini parcouru par un courant d'intensité *I*.

Exercice 1.2.

Soit un segment AA' considéré comme un tronçon d'un circuit filiforme parcouru par un courant d'une intensité I.

- **1.2.1.** Calculer le champ magnétique $\vec{B}(M)$ créé en M, point situé à la distance h du tronçon, le tronçon étant vu depuis M sous les angles Γ_1 et Γ_2 , (figure ci-dessous de l'exercice 1.3.).
- **1.2.2.** Calculer le champ magnétique crée au centre O d'un triangle équilatéral ABC de coté L, parcouru par un courant I.

Exercice 1.3. (Exercice supplémentaire)

Pour calculer le champ magnétique B(M)crée au centre par un circuit polygonal traversé par un courant d'intensité I, on est amené à additionner les contributions de chaque tronçon rectiligne AA', que l'on calculera en utilisant la loi de Biot et Savart.

- Donner l'expression 1.3.1. du champ élémentaire $d\vec{B}(M)$ crée en un point M par l'élément de circuit $\overrightarrow{d\ell}$ traversé par le courant $\emph{\textbf{I}}.$
- 1.3.2. En déduire l'expression du champ total crée par le segment de conducteur AA' en fonction de Γ_1 et Γ_2 (figure ci-contre).
- 1.3.3. Que devient ce champ si le tronçon est de longueur infinie?
- 1.3.4. Soit un circuit de forme carrée, de côté de longueur a parcouru par un courant I; en utilisant le résultat de la question (1.3.2), donner l'expression du champ crée, en son centre **O**.

1.3.5. En déduire que le module du champ créé, en son centre, par un polygone régulier de n côtés inscriptible dans un cercle de centre O et de rayon R parcouru par un courant I est donné par la relation: $B(O) = n \frac{\sim_0 I}{2fR} tg\left(\frac{f}{n}\right)$.

Exercice 1.4. (Exercice supplémentaire)

Un fil conducteur est formé de deux arcs de cercle de rayons $R_1 \bowtie R_2$ et de même centre O réunis par deux segments. Il circule un courant I dans le fil.

Déterminer le champ magnétique $\vec{B}(C)$ crée par ce courant au point O, pour les deux configurations suivantes.

Exercice 1.5.

On considère une spire circulaire de rayon R, de centre O, d'axe (Oz), parcourue par un courant d'intensité I. Soit un point M de son axe (Oz) (figure ci-contre).

- **1.5.1.** A l'aide des symétries et antisymétries, Montrez que le champ magnétique $\overrightarrow{B}(M)$ créé par la spire est porté par l'axe (Oz).
- **1.5.2.** Calculez $\overrightarrow{B}(M)$ à l'aide de la loi de Biot Savart. Donnez, l'expression du champ en fonction de z (coordonnée de M) et du rayon R.
- **1.5.3.** Déduire le champ crée au centre O de la spire.

Exercice 1.6.

- **1.6.1.** En utilisant la loi de Biot et Savart, calculez le champ magnétique créé par un solénoïde (Figure ci-dessous) comportant n spires circulaires de rayon R par unité de longueur, d'axe (Oz), parcouru par un courant d'intensité I, en un point M de l'axe, les faces du solénoïde étant vues depuis ce point sous les angles Γ_1 et Γ_2 .
 - 1.6.2. En déduire le champ magnétique créé par un solénoïde infini.

