- $1.\ \, {\rm Does}\ {\rm a}\ {\rm ring}\ {\rm homomorphism}\ {\rm preserve}\ {\rm units}?$
- $2.\ \, {\rm Does}$ a ring homomorphism preserve zero divisors?
 - Kinda and not really.
 - Consider the natural $\varphi: \mathbb{Z}/6\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$.
 - 3 and 2 are zero divisors in $\mathbb{Z}/6\mathbb{Z}$, because $3 \cdot 2 = 6 = 0$
 - But $\varphi(3)=1$ and $\varphi(2)=0$. It is still $\varphi(3)\cdot \varphi(2)=0$, but $\varphi(2)$ is already 0.
- 3. The same two things but with injective / surjective homomorphisms.
- 4. To show two ideals are equal, I just need to check the generators.