Patent claims:

- 1. A conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{max} \ge 270$ nm.
- 2. The conjugate according to claim 1, characterized in that the hyperbranched polymer exhibits an average degree of branching ≥ 25%.
- 3. The conjugate according to any of the preceding claims, characterized in that the hyperbranched polymer has an average molecular weight $M_{\rm w}$ within the range of from 500 to 50,000 g mol⁻¹.
- 4. The conjugate according to any of the preceding claims, characterized in that the hyperbranched polymer comprises an average number of 2 to 600 dendritic building blocks.
- 5. The conjugate according to any of the preceding claims, characterized in that it comprises a structure represented by general formula (I)

$$\{[Q](Y^1)_a\}(LX)_p(Y^2)_h$$
 (I),

wherein

Y¹ and Y² independently represent UV absorbing chromophores;

- {[Q] (Y¹)_g} represents the hyperbranched polymer covalently bonded to g UV absorbing chromophores Y¹;
- (LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being
 - covalently bonded to an UV absorbing chromophore Y², or
 - covalently bonded to a capping group, or
 - in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and 45

wherein

index g is an integer, wherein $0 \le g \le 100$; index h is an integer, wherein $0 \le h \le p$; and

index p is an integer, wherein $0 \le p \le 100$; with the proviso that $g + h \ge 3$.

6. The conjugate according to claim 5, characterized in that it comprises a structure represented by general formula (II)

$$\{[(B_k)_I(AB_m)_n](Y^1)_g\}(LX)_g(Y^2)_h$$
 (II),

wherein

Y¹ and Y² are defined as in claim 5;

LX is defined as in claim 5;

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
 - covalently bonded to a functional group A of a building block AB_m, or
 - covalently bonded to the proximal end of a linker unit LX, or
 - covalently bonded to an UV absorbing chromophore Y¹, or
 - covalently bonded to a capping group, or
 - in its free reactive form;
- (AB_m)_n represents n building blocks AB_m, each bearing a functional group A and m independent functional groups B, wherein independently each functional group A is
 - covalently bonded to a functional group B
 - of a further building block AB_m or
 - of the starter unit Bk, or
 - covalently bonded to a capping group, or
 - in its free reactive form.

and wherein independently each functional group B is

- covalently bonded to a functional group A of a further building block AB_m,
 or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or

46

- covalently bonded to a capping group, or
 - in its free reactive form;

wherein

index g is defined as in claim 5; index h is defined as in claim 5; index k is an integer of from 1 to 6; index I is 0 or 1; index m is an integer of from 2 to 4; index n is an integer of from 3 to 100; and index p is an integer wherein 0 ≤ p ≤ n(m-1)+k.

- 7. The conjugate according to claim 6, characterized in that index I is 1, the starting unit B_k is trimethylolpropane and the building block AB_m is glycidol.
- 8. The conjugate according to claim 5, characterized in that it comprises a structure represented by general formula (III)

$$\{[(B_k)_l(AB_m)_n(C_q)_r](Y^1)_q\}(LX)_p(Y^2)_h \qquad (III),$$

wherein

Y¹ and Y² are defined as in claim 5;

LX is defined as in claim 5;

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
 - covalently bonded to a functional group C
 - of a monomer C₂ or
 - of a building block C_a or
 - covalently bonded to the proximal end of a linker unit LX, or
 - covalently bonded to an UV absorbing chromophore Y1, or
 - covalently bonded to a capping group, or
 - in its free reactive form;
- (AB_m)_n represents n building blocks AB_m, each bearing a functional group A and m independent functional groups B, wherein independently each functional group A is
 - covalently bonded to a functional group C

- of a monomer C2 or
- of a building block C_a, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form;

and wherein independently each functional group B is

- covalently bonded to a functional group C
 - of a monomer C₂ or
 - of a building block C_a, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form;

(C_q)_r represents

- when index q = 2: r monomers C₂ or
- when index q > 2: r building blocks C_q
 each bearing q functional groups C, wherein independently each functional group C is
 - covalently bonded to a functional group A of a building block AB_m, or
 - covalently bonded to a functional group B
 - of a building block AB_m or
 - of the starter unit Bk, or
 - covalently bonded to the proximal end of a linker unit LX, or
 - covalently bonded to an UV absorbing chromophore Y1, or
 - covalently bonded to a capping group, or
 - in its free reactive form;

wherein

index g is defined as in claim 5;

index h is defined as in claim 5;

index k is an integer of from 1 to 6;

index I is 0 or 1;

index m is an integer of from 2 to 4;

index n is an integer of from 3 to 100;

48

index p is an integer wherein $0 \le p \le n(m-1) + r(q-1) + k$; index q is an integer of from 2 to 4; and index r is an integer wherein $1 \le r \le nm/q$.

9. The conjugate according to claim 8, characterized in that index I is 0, index q is 2, building block AB_m is disopropanolamine and monomer C_2 is a compound represented by general formula (IV)

$$\begin{array}{ccc}
O & R_1 \\
O & (CH_2)_s \\
R_2
\end{array} (IV)$$

wherein

index s is 0, 1 or 2;

 R^1 and R^2 are independently H, linear or branched C_1 - C_{18} -alkyl or C_2 - C_{18} -alkenyl, or R^1 and R^2 together with the carbon atoms to which the are attached form a 4 to 7 membered aliphatic or aromatic ring.

- 10. The conjugate according to any of claims 5 to 9, characterized in that the linker unit LX comprises polyethyleneoxide or polypropyleneoxide.
- 11. The conjugate according to any of claims 5 to 10, characterized in that it comprises 1 to 20 capping groups.
- 12. The conjugate according to claim 11, characterized in that the capping group is a straight or branched chain ether or ester group with 1 to 20 carbon atoms.

13. The conjugate according to any of the preceding claims, characterized in that the UV absorbing chromophore is a compound selected from the group consisting of the compounds represented by general formulae (V-A) to (V-E)

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

 R^4 and R^5 are independently H, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, CO_2 H, CO_2 - C_1 - C_6 -alkyl, or R^4 and R^5 together with the carbon atom to which they are attached form a 6-camphenyl ring;

 R^6 is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or O_{-} ;

 R^7 is H, C_1 - C_6 -alkyl or C_2 - C_6 -alkenyl;

R⁸ is H or CO-O-1;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

 R^{15} , R^{16} and R^{17} are independently selected from H and C_1 - C_6 -alkyl.

- 14. A composition comprising a conjugate according to any of claims 1 to 13 and a cosmetically acceptable carrier.
- 15. Composition according to claim 14, additionally comprising one or more UV-screening agents.

WO 2005/092282 PCT/EP2005/003117

50

16. Use of a conjugate according to any of claims 1 to 13 as UV sunscreen.