Homework 5 for Math 2371

Zhen Yao

Problem 1. Let U and V be two real linear spaces with dim U, dim $V \geq 2$. Show that there exists $w \in U \otimes V$ such that for any $u \in U$ and $v \in V$, $w \neq u \otimes v$.

Proof. Consider $U = V = \mathbb{R}^2$ with standard basis $\{e_1, e_2\}$. Then the tensor product any two elements $u = (a_1, a_2), v = (b_1, b_2)$ of \mathbb{R}^2 is

$$(a_1e_1 + a_2e_2) \otimes (b_1e_1 + b_2e_2) = \sum_{i,j} a_ib_j(e_i \otimes e_j).$$

Then we consider $w = e_1 \otimes e_1 + e_2 \otimes e_2$, and we can have $a_1b_1 = a_2b_2 = 1$, and $a_1b_2 = 0$. Then there is a contradiction, since we cannot find u, v such that $a_1b_1 = a_2b_2 = 1$, $a_1b_2 = a_2b_1 = 0$. Then there exists $w \in U \otimes V$ such that for any $u \in U$ and $v \in V$, $w \neq u \otimes v$. \square

Problem 2. Let U and V be two real linear spaces with dim U, dim $V \ge 2$. Suppose u_1, u_2 are linearly independent in U and u_1, u_2 are linearly independent in V. Show that the four vectors $u_1 \otimes v_1, u_1 \otimes v_2, u_2 \otimes v_1$ and $u_2 \otimes v_2$ are linearly independent.

Proof.

- (1) If dim $U = \dim V = 2$, then we are done, since $\{u_1, u_2\}$ and $\{v_1, v_2\}$ are basis for U and V respectively.
- (2) Otherwise, we assume dim U = m and dim V = n. Then we can extend $\{u_1, u_2\}$ and $\{v_1, v_2\}$ into $\{u_1, \dots, u_m\}$ and $\{v_1, \dots, v_n\}$, which are basis for U and V respectively. Then it is obvious that $\{u_i \otimes v_i\}$ are linearly independent.

Problem 3. Let A be an $n \times n$ matrix. Suppose that for any $1 \le i \le n$,

$$|a_{ii}| > \sum_{1 \le i \le n, i \ne i} |a_{ij}|.$$

Show that A is invertible.

Proof. Suppose there exists $x=(x_1,\cdots,x_n)\neq 0$ such that Ax=0, then we have $\sum_{j=1}^n a_{ij}x_j=0, i=1,2,\cdots,n$. Let $x_k=\max_j|x_j|$, and we have

$$a_{kk}x_k = -\sum_{j \neq k} a_{kj}x_j$$

$$\Rightarrow a_{kk} = -\sum_{j \neq k} a_{kj}\frac{x_k}{x_j}$$

which implies

$$|a_{kk}| = \left| \sum_{j \neq k} a_{kj} \frac{x_k}{x_j} \right| \le \sum_{j \neq k} |a_{kj}| \left| \frac{x_k}{x_j} \right| < \sum_{j \neq k} |a_{kj}|,$$

where we used the fact that $\left|\frac{x_k}{x_j}\right| \leq 1$. Then this is a contradiction to the assumption. Then 0 is not an eigenvalue of A, hence A is invertible.

Problem 4. Let $A = (a_{ij})_{n \times n}$ be a matrix such that

$$|a_{ij}| \le 1$$
, for all $1 \le i, j \le n$.

Show that there exists a constant $\Lambda > 0$ such that

$$|\lambda| \leq \Lambda$$

holds for any eigenvalue λ of A. Find the smallest such Λ and justify your answer.

Proof. With the norm of A and the spectral radius r(A), we have

$$|\lambda| \le |r(A)| \le ||A|| \le ||A||_{HS} = \left(\sum_{i,j} |a_{ij}|^2\right)^{\frac{1}{2}} \le n,$$

which implies that there exists a constant $\Lambda > 0$ such that $|\lambda| \leq \Lambda$.