ЛЕКЦИЯ 16. МНОГОЧЛЕНЫ

- 1. Понятие многочлена.
- 2. Действия над многочленами. Теорема о делении с остатком.
- 3. Алгоритм деления многочлена на многочлен. Схема Горнера.
- 4. Корни многочлена и их кратность. Теорема Безу.

16.1. Понятие многочлена

Определение 1. Функция $f(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$, где $n \in \mathbb{Z}$ называется *многочленом*. Число n называется степенью многочлена, $a_n, a_{n-1}, ..., a_1, a_0$ — действительные или комплексные числа (многочлен рассматривается в комплексной области), a_n — старший коэффициент многочлена, $a_n \neq 0$. Независимая переменная z также может принимать как действительные, так и комплексные значения.

Если все $a_n = 0, a_{n-1} = 0, ..., a_1 = 0, a_0 = 0$.

Если в многочлене степени n все коэффициенты, кроме a_n обращаются в ноль, то такой многочлен называется $o\partial hoчленом$.

Степень многочлена f(z) принято обозначать $\deg f$.

16.2. Действия над многочленами

Определение 2. Два многочлена $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ и $Q(z) = b_m z^m + b_{m-1} z^{m-1} + ... + b_1 z + b_0$ равны тогда и только тогда, когда их степени одинаковы (n=m), и равны коэффициенты при одинаковых степенях переменной.

$$P(z) = Q(z) \Leftrightarrow \begin{cases} \deg P = \deg Q \\ a_i = b_i, 0 \le i \le n \end{cases}$$

Для многочленов определены операции сложения и умножения.

Пусть даны два произвольных многочлена

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
 и $Q(z) = b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0$

Определение 3. Многочлен $R(z) = c_k z^k + c_{k-1} z^{k-1} + ... + c_1 z + c_0$, где каждое $c_i = a_i + b_i$, $0 \le i \le k, k = \max(m,n)$ называется **суммой** многочленов P(z) и Q(z). При сложении многочленов необходимо складывать коэффициенты при соответствующих степенях.

Операция сложения позволяет ввести понятие противоположного многочлена.

Определение 4. Многочлен $-P(z) = -a_n z^n - a_{n-1} z^{n-1} - ... - a_1 z - a_0$ называется многочленом *противоположным* многочлену P(z) и связан с ним равенством P(z) + (-P(z)) = 0.

Определение 5. Многочлен $S(z) = d_{m+n} z^{m+n} + d_{m+n-1} z^{m+n-1} + ... + d_1 z + d_0$, где каждое $d_k = \sum_{j=1}^m \sum_{i=1}^n a_i b_j$, k = i+j называется **произведе**-

нием многочленов P(z) и Q(z). При перемножении многочленов необходимо раскрыть скобки и привести подобные слагаемые.

Очевидно, что поскольку ни один из старших коэффициентов $a_n \neq 0$, $b_m \neq 0$, то и старший коэффициент многочлена S(z) $d_{m+n} \neq 0$. deg S=m+n .

Задача 1. Найти произведение многочленов $P(z) = 2z^3 - 5z^2 + z - 7$ и $O(z) = 3z^2 - 4z - 1$.

Решение.

$$P(z) \cdot Q(z) = (2z^3 - 5z^2 + z - 7)(3z^2 - 4z - 1) =$$

$$= 6z^5 - 8z^4 - 2z^3 - 15z^4 + 20z^3 + 5z^2 + 3z^3 - 4z^2 - z - 21z^2 + 28z + 7 =$$

$$= 6z^5 - 23z^4 + 21z^3 - 20z^2 + 27z + 7$$

Ответ.
$$P(z) \cdot Q(z) = 6z^5 - 23z^4 + 21z^3 - 20z^2 + 27z + 7$$
.

Пусть два произвольных многочлена P(z) и Q(z) определены выше. Говорят, что многочлен Q(z) делит многочлен P(z) без остатка, если $P(z) = Q(z) \cdot T(z)$, где T(z) — многочлен, $\deg T = s$, причем s < n или s + m = n. Однако, далеко не всегда один многочлен делит другой без остатка. В связи с этим имеет смысл рассмотреть важную теорему, которую принято называть meopemoň о denehuu c остатком.

Теорема 1. Пусть заданы многочлены $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ и $Q(z) = b_m z^m + b_{m-1} z^{m-1} + ... + b_1 z + b_0 \quad \text{степеней} \quad n \quad \text{и} \quad m \quad \text{соответст-}$ венно, причем Q(z) — ненулевой многочлен. Тогда существуют многочлены T(z) и R(z) такие, что

$$P(z) = Q(z) \cdot T(z) + R(z),$$

 $\deg R < \deg Q$.

Многочлен T(z) называют **частным**, а многочлен R(z) - **остатком** от деления P(z) на Q(z). Заметим, что может оказаться $R(z) \equiv 0$.

Многочлены T(z) и R(z) <u>определены однозначно</u>.

Доказательство.

Сначала докажем существование многочленов T(z) и R(z), считая при этом многочлен Q(z) имеет неизменную степень m, а степень многочлена P(z) может меняться.

 $\deg P=n, \deg Q=m\,, \ a_n,b_n$ - старшие коэффициенты многочленов P(z) и Q(z) соответственно.

Пусть n < m. В этом случае $P(z) = Q(z) \cdot 0 + P(z)$. Откуда получаем $T(z) \equiv 0$, $R(z) \equiv P(z)$.

Пусть теперь $n \ge m$. Доказательство проведем методом математической индукции.

1.
$$n = m$$
. Положим $R(z) = P(z) - \frac{a_n}{b_n} Q(z)$ (1)

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
 и

$$\frac{a_n}{b_n}Q(z) = \frac{a_n}{b_n}b_nz^n + \frac{a_n}{b_n}b_{n-1}z^{n-1} + \dots + \frac{a_n}{b_n}b_1z + \frac{a_n}{b_n}b_0 = a_nz^n + \frac{a_n}{b_n}b_{n-1}z^{n-1} + \dots + \frac{a_n}{b_n}b_1z + \frac{a_n}{b_n}b_0$$

Так как $\deg P = \deg \left(\frac{a_n}{b_n} Q \right)$ и старшие коэффициенты совпадают и равны a_n , то

 $\deg R < \deg Q$.

Перепишем равенство (1) в виде
$$P(z) = \frac{a_n}{b_n}Q(z) + R(z) \Rightarrow T(z) = \frac{a_n}{b_n}$$
.

Таким образом, для случая
$$m=n$$
 $R(z)=P(z)-\frac{a_n}{b_n}Q(z)$ и $T(z)=\frac{a_n}{b_n}$.

2. Пусть n > m и для любого многочлена степени меньшей n, частное и остаток от деления на Q(z) существуют.

Рассмотрим многочлен
$$S(z) = P(z) - \frac{a_n}{b_n} z^{n-m} Q(z)$$
 (2)

Очевидно, $\deg S < \deg P$ и согласно предположению индукции для многочлена S(z) существуют частное и остаток от деления на Q(z), т.е. его можно записать в виде

$$S(z) = Q(z) \cdot T_S(z) + R_S(z)$$
, (3)

при этом $\deg R_S < \deg Q$. Подставим S(z) в (2) и выразим P(z):

$$Q(z) \cdot T_S(z) + R_S(z) = P(z) - \frac{a_n}{b_n} z^{n-m} Q(z)$$

$$P(z) = Q(z) \cdot T_S(z) + R_S(z) + \frac{a_n}{b_n} z^{n-m} Q(z)$$

$$P(z) = Q(z) \cdot \underbrace{\left(T_S(z) + \frac{a_n}{b_n} z^{n-m}\right)}_{\text{qac thoe}} + \underbrace{R_S(z)}_{\text{oc tatok}}$$

Таким образом, нами доказано существование частного и остатка от деления многочлена P(z) на Q(z).

Докажем единственность.

Предположим, что многочлен P(z) можно представить разными способами

$$P(z) = Q(z) \cdot T(z) + R(z), \operatorname{deg} R < \operatorname{deg} Q \quad (4)$$

$$P(z) = Q(z) \cdot T'(z) + R'(z), \deg R' < \deg Q$$
 (5)

Вычтем из равенства (5) равенство (4):

$$P(z) - P(z) = Q(z) \cdot T(z) + R(z) - Q(z) \cdot T'(z) - R'(z)$$

$$Q(z)(T(z)-T'(z))+R(z)-R'(z)=0$$

$$R'(z) - R(z) = Q(z)(T(z) - T'(z))$$
 (6)

Предположим, что многочлены R(z) и R'(z) различны. Тогда R'(z) - R(z) - ненулевой многочлен, следовательно, T(z)-T'(z) - ненулевой многочлен. Так как при vмножении многочлена на многочлен их степени складываются, TO $\deg Q(T-T') \ge \deg Q$ $\deg R < \deg Q$ $\deg R' < \deg Q$, но поскольку TO $\deg(R'-R) < \deg Q$.

Получается, что в формуле (6) степень многочлена в левой части не равна степени многочлена в правой части, значит, равенство (6) не имеет места по определению равенства многочленов. Это противоречие доказывает ошибочность предположения, что R(z) и R'(z) различны, тогда R'(z) - R(z) - нулевой многочлен, но тогда и T(z) - T'(z) — нулевой многочлен, т.е. T(z) = T'(z). Единственность доказана. Теорема 1 доказана полностью.

3. Алгоритм деления многочлена на многочлен. Схема Горнера

Рассмотрим на примере способ деления многочлена степени n на многочлен степени m, при $n \ge m$. Этот алгоритм называется деление «уголком» и работает аналогично алгоритму деления «уголком» обычных чисел.

Задача 2. Разделить многочлен $P(z) = 2z^3 - z^2 - 3z - 19$ на многочлен $Q(z) = z^2 + 2z + 3$.

Решение.

$$\begin{array}{c|c}
2z^{3} - z^{2} - 3z - 19 & z^{2} + 2z + 3 \\
2z^{3} + 4z^{2} + 6z & 2z - 5
\end{array}$$

$$-5z^{2} - 9z - 19$$

$$-5z^{2} - 10z - 15$$

$$z - 4$$

Частное T(z) = 2z - 5, остаток от деления R(z) = z - 4. Тогда по теореме 1

$$2z^{3} - z^{2} - 3z - 19 = \underbrace{(2z - 5)}_{Q(z)} \cdot (z^{2} + 2z + 3) + \underbrace{(z - 4)}_{R(z)}.$$

Ответ.
$$2z^3 - z^2 - 3z - 19 = (2z - 5) \cdot (z^2 + 2z + 3) + z - 4$$
.

Схема Горнера

Приведем алгоритм, который позволяет разделить многочлен P(z) произвольной степени n на многочлен z-a. Для многочлена P(z) запишем теорему о делении с остатком:

$$P(z) = (z-a) \cdot Q(z) + R(z)$$
 (7)

Очевидно, что $\deg P = \deg Q + 1$ и R(z) = R - некоторое число.

Пусть, как и ранее

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$$
, тогда частное

$$Q(z) = b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0.$$

Подставим Q(z) в правую часть равенства (7)

$$P(z) = (z-a) \cdot (b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0) + R$$

Раскроем скобки и приведем подобные слагаемые

$$P(z) = b_{n-1}z^{n} + (b_{n-2} - ab_{n-1})z^{n-1} + \dots + (b_0 - ab_1)z + (R - ab_0).$$

По определению равенства многочленов, многочлены в правой и левой частях равны, когда равны коэффициенты при соответствующих степенях, т.е.

$$b_{n-1} = a_n$$

 $b_{n-2} - ab_{n-1} = a_{n-1} \Rightarrow b_{n-2} = a_{n-1} + ab_{n-1}$
...
 $b_0 - ab_1 = a_1 \Rightarrow b_0 = a_1 + ab_1$

 $R-ab_0 = a_0 \Rightarrow R = a_0 + ab_0$

Результаты вычисления удобно записывать в специальную таблицу, которую называют схемой Горнера. В первой строке таблицы, начиная со второго столбца, выписывают коэффициенты многочлена — делимого, во второй строке таблицы сначала выписывают a, после, начиная о второго столбика — коэффициенты многочлена, который есть частное от деления.

	a_n	a_{n-1}	•••	a_1	a_0
	старший				свободный член
	коэффициент				
a	$b_{n-1} = a_n$ старший	$b_{n-2} = a_{n-1} + ab_{n-1}$	•••	$b_0 = a_1 + ab_1$	$R = a_0 + ab_0$
	коэффициент			свободный	остаток
				член	

Задача 3. Разделить многочлен $P(z) = -z^4 + 2z^3 + 3z^2 - z + 4$ на (z-3), пользуясь схемой Горнера.

Решение.

Искомый многочлен
$$Q(z) = b_3 z^3 + b_2 z^2 + b_1 z + b_0$$
, $z_0 = 3$

$$b_3 = a_4 = -1$$

$$b_2 = a_3 + ab_3 = 2 + 3 \cdot (-1) = -1$$

$$b_1 = a_2 + ab_2 = 3 + 3 \cdot (-1) = 0$$

$$b_0 = a_1 + ab_1 = -1 + 3 \cdot (0) = -1$$

$$Q(z) = -z^3 - z^2 - 1$$

$$R = 4 + 3 \cdot (-1) = 1$$

		-1	2	3	-1	4
(a = 3	$b_3 = a_4 = -1$	$2+3\cdot(-1)=-1$	$3+3\cdot(-1)=0$	$-1+3\cdot(0)=-1$	$4+3\cdot(-1)=1$

Ответ.
$$P(z) = (-z^3 - z^2 - 1)(z - 3) + 1$$
.

16.4. Корни многочлена и их кратность. Теорема Безу

Пусть задан многочлен $P(z)=a_nz^n+a_{n-1}z^{n-1}+...+a_1z+a_0$ и пусть $c\in \mathbf{R}$ - произвольное число. Выражение $P(c)=a_nc^n+a_{n-1}c^{n-1}+...+a_1c+a_0\in \mathbf{R}$ и называется значением многочлена P(z) при z=c .

Теорема 2. Значение многочлена P(z) при z = c равно остатку от деления P(z) на (z-c).

Доказательство. По теореме о делении с остатком $P(z) = (z-c) \cdot Q(z) + R(z)$, тогда $P(c) = \underbrace{(c-c)}_0 \cdot Q(c) + R(c) \Rightarrow P(c) = R(c)$. Что и требовалось доказать.

Определение 6. Уравнение $a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0, a_n \neq 0$ где $n \in \mathbf{Z}$ называется *алгебраическим уравнением* n-ой степени.

Корнем многочлена называется такое число z_0 , при котором многочлен обращается в ноль $f(z_0) = 0$.

Следствие 1.2. Число $z_0 \in \mathbf{R}$ является корнем многочлена P(z) тогда и только тогда, когда $z-z_0$ делит P(z) без остатка.

Доказательство.

Пусть z_0 — корень многочлена P(z), тогда $P(z_0) = 0$. По теореме 2 $P(z_0) = R(z_0)$, т.е. $R(z_0) = 0$ т.е. $z - z_0$ делит P(z) без остатка.

Пусть теперь $z-z_0$ делит P(z) без остатка, т.е. $R(z_0)=0$. По теореме 2 $R(z_0)=P(z_0)$, а значит $P(z_0)=0$ и z_0 - корень многочлена P(z) по определению.

Следствие доказано.

Это следствие часто называют теоремой Безу.

Если z_0 — корень многочлена P(z), то P(z) может делиться и на $(z-z_0)^k$, k>1. Пусть k — такое число, что $P(z)=(z-z_0)^kQ(z)$, где многочлен Q(z) не делится на $(z-z_0)$ без остатка. В этом случае говорят, что z_0 — корень кратности k многочлена P(z). Если k=1, то z_0 называют простым корнем.

Теорема 3 (Основная теорема алгебры).

Пусть $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$, $\deg P \ge 1$ многочлен с комплексными коэффициентами. Тогда P(z) имеет хотя бы один комплексный корень.

Пусть многочлен P(z) имеет корень z_1 кратности k_1 , тогда $P(z) = (z-z_1)^{k_1} \cdot Q_{n-k_1}(z).$ Согласно теореме 3 $Q_{n-k_1}(z)$ имеет хотя бы один комплексный корень, например z_2 кратности k_2 , т.е. $P(z) = (z-z_1)^{k_1} \cdot (z-z_2)^{k_2} \cdot Q_{n-k_1-k_2}(z).$

Таким образом, если $z_1, z_2, ..., z_m$ — корни многочлена P(z) (действительные или комплексные) кратностей $k_1, k_2, ..., k_m$, $k_1 + k_2 + ... + k_m = n$, то многочлен P(z) можно представить в виде $P(z) = (z-z_1)^{k_1} \cdot (z-z_2)^{k_2} \cdot ... \cdot (z-z_m)^{k_m}$

Теорема 4 (*Теорема Гаусса*). Всякий многочлен P(z) степени n имеет ровно n корней (действительных или комплексных) взятых с учетом их кратностей.

Теорема 5. Пусть многочлен P(z) — многочлен с действительными коэффициентами. Если комплексное число z_0 является корнем многочлена P(z), то и сопряженное к нему число z_0 также является корнем многочлена P(z).

Доказательство. Пусть $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ — многочлен с действительными коэффициентами и z_0 — комплексный корень. Тогда

$$P(z_0) = a_n z_0^n + a_{n-1} z_0^{n-1} + \ldots + a_1 z_0 + a_0 \ \text{и} \ a_n z_0^n + a_{n-1} z_0^{n-1} + \ldots + a_1 z_0 + a_0 = 0$$
 По свойству операции сопряжения

$$\overline{P(z_0)}=\overline{0}=0$$
 , но тогда $\overline{P(z_0)}=\overline{a_nz_0^n+a_{n-1}z_0^{n-1}+...+a_1z_0+a_0}=0$

Поскольку все $a_n, a_{n-1}, ..., a_1, a_0$ — действительные, то $\overline{a_n}, = a_n$, $\overline{a_{n-1}} = a_{n-1}, ..., \overline{a_1} = a_1, \overline{a_0} = a_0$.

$$\overline{a_n z_0^n + a_{n-1} z_0^{n-1} + \dots + a_1 z_0 + a_0} = a_n (\overline{z_0})^n + a_{n-1} (\overline{z_0})^{n-1} + \dots + a_1 \overline{z_0} + a_0 = 0$$

$$a_n (\overline{z_0})^n + a_{n-1} (\overline{z_0})^{n-1} + \dots + a_1 \overline{z_0} + a_0 = P(\overline{z_0}) = 0$$

Из последнего равенства следует, что $\overline{z_0}$ – корень многочлена P(z) . Теорема доказана.

Отсюда следует, что многочлен с вещественными (действительными) коэффициентами всегда имеет чётное число комплексных (невещественных) корней.

Теорему 5 можно обобщить следующим образом.

Теорема 6. Пусть P(z) — многочлен с действительными коэффициентами. Если комплексное число z_0 является корнем кратности k многочлена P(z), то и сопряженное к нему число z_0 также является корнем кратности k многочлена P(z).

Теорема 7. Если P(z) – многочлен с действительными коэффициентами имеет комплексный корень $z_0=x_0+iy_0$, то он делится без остатка на квадратный трехчлен z^2+pz+q , где $p=-2\operatorname{Re} z_0=-2x_0\in \mathbf{R}$, $q=x_0^2+y_0^2\in \mathbf{R}$.

Доказательство. Пусть $z_0 = x_0 + iy_0$ — корень многочлена P(z), тогда по теореме 5, $\overline{z_0} = x_0 - iy_0$ — также корень P(z). Т.е. P(z) делится без остатка на $(z-z_0)(z-\overline{z_0})$. Преобразуем последнее выражение

$$(z - z_0)(z - \overline{z_0}) = z^2 - z\overline{z_0} - zz_0 + z_0\overline{z_0} = z^2 - z(\overline{z_0} + z_0) + z_0\overline{z_0}$$

$$\overline{z_0} + z_0 = x_0 - iy_0 + x_0 + iy_0 = 2x_0 = 2\operatorname{Re} z_0$$

$$z_0\overline{z_0} = (x_0 + iy_0)(x_0 - iy_0) = x_0^2 + y_0^2$$

Что и требовалось доказать.

Таким образом, каждый многочлен с действительными коэффициентами может быть разложен на множители с действительными коэффициентами следующим образом:

$$P(z) = (z - z_1)^{k_1} \cdot (z - z_2)^{k_2} \cdot \dots \cdot (z - z_m)^{k_m} (z^2 + p_1 z + q_1)^{s_1} \dots (z^2 + p_t z + q_t)^{s_t}$$

Задача 4. Известно, что комплексное число $z_0 = 2 - i$ является корнем многочлена $P(z) = z^4 - 9z^3 + 31z^2 - 49z + 30$. Разложить многочлен на линейные множители и на множители с действительными коэффициентами.

Решение.

Поскольку P(z) — многочлен с действительными коэффициентами, то по теореме 5 число $\overline{z_0} = 2 + i$ также является его корнем. Тогда многочлен делится на квадратный трехчлен с действительными коэффициентами $z^2 + pz + q$, где $p = -2\operatorname{Re} z_0 = -4$, $q = x_0^2 + y_0^2 = 5$, т.е. на многочлен $z^2 - 4z + 5$.

Поделим многочлен P(z) на квадратный трехчлен z^2-4z+5 . Получим $P(z)=(z^2-4z+5)(z^2-5z+6) \ .$ Многочлен $z^2-5z+6=(z-2)(z-3)$.

Таким образом $P(z) = (z^2 - 4z + 5)(z - 2)(z - 3)$ — разложение на множители с действительными коэффициентами.

$$P(z) = (z - (2+i))(z - (2-i))(z - 2)(z - 3)$$
 – разложение на линейные множители.

Теорема 8. (*теорема о рациональном корне*). Пусть $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 - \text{многочлен с целыми коэффициентами. Если несократимая дробь } \frac{p}{q}$ является его корнем, то p – является делителем a_0 , q – является делителем a_n .

Задача 5. Указать корни многочлена $P(z) = z^3 - 4z^2 + z + 6$, пользуясь теоремой 8.

Решение.

Найдем делители $a_0 = -6$

$$d: \pm 1, \pm 2, \pm 3, \pm 6$$

Найдем делители $a_n = 1$

 $d\cdot +1$

Таким образом, корнями могут быть числа $\pm 1, \pm 2, \pm 3, \pm 6$.

$$P(1) \neq 0$$
, $P(-1) = 0 \Rightarrow -1$ - корень многочлена $P(z)$

$$P(2) = 0 \Longrightarrow 2$$
 – корень многочлена $P(z)$, $P(-2) \ne 0$

$$P(3) = 0 \Longrightarrow 3$$
 – корень многочлена $P(z)$, $P(-3) \ne 0$

$$P(6) \neq 0, P(-6) \neq 0.$$

Ответ. -1,2,3 – корни многочлена $P(z) = z^3 - 4z^2 + z + 6$.