SOFTWARE MODELING FOUNDATIONS

Course Description

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

Outline

- 1 You don't know who I am
- 2 Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Outline

- 1 You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEN programs.
- Speaker in Colombia, Brasil,
 Bolivia, at IEEE events and colleges.

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEN programs.
- Speaker in Colombia, Brasil,
 Bolivia, at IEEE events and colleges.

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil, Bolivia, at IEEE events and colleges.

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil,
 Bolivia, at IEEE events and colleges.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as MLOps Engineer for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as **MLOps Engineer** for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as **MLOps Engineer** for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as **MLOps Engineer** for a Fintech in LATAM.

Outline

- You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Overview

This course is designed to introduce undergraduate students to foundations of design patterns and good practices of software modeling. This is not a course fully focus on software architecture, but it is part of main concepts of software achitecture.

Classes will consist of lectures, **discussions**, practical examples, and workshops. Also, you must take some readings from *software architecture*. In addition, there will be a **semester-long project**, as well one course exam, four **workshops**, and ten additional **assignmens**.

Overview

This course is designed to introduce undergraduate students to foundations of **design patterns** and *good practices* of **software modeling**. This is **not** a course fully focus on **software architecture**, but it is part of main concepts of software achitecture.

Classes will consist of lectures, discussions, practical examples, and workshops. Also, you must take some readings from *software architecture*. In addition, there will be a **semester-long project**, as well one ourse exam, four workshops, and ten additional assignmens.

Goals

The main goal of this course is to provide undergraduate students with different models and tools for solving software problems using object-oriented paradigm.

At the end of this course you should be able to **create** a full-software **backend solution** with a good level of **quality**. Also, you should be able to **design** robust software systems in an **agnostic** way.

Goals

The main goal of this course is to provide undergraduate students with different **models** and **tools** for solving software problems using **object-oriented paradigm**.

At the end of this course you should be able to **create** a full-software **backend solution** with a good level of **quality**. Also, you should be able to **design** robust software systems in an **agnostic** way.

This is a basic course, so you must have some knowledge in:

- Programming in Javas Python, or C++.
- Object-Oriented Programming foundations
- UML and Class Diagnost Septs.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- **Programming** in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and the Classic shall basic concepts.
- Git basic users, Attribuste
- Data systems and relational model basic concepts
- Use of IDLS BELOVIOS PyCharm.

Software Modeling Foundations

This is a basic course, so you must have some knowledge in:

- **Programming** in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts.
- Use of IDEs like Lipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- **Programming** in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts.

Software Modeling Foundations

• Use PLDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts.
- Use of IDEs like VS Code, Eclipse, or PyCharm.

Outline

- 1 You don't know who I am
- 2 Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Syllabus I

Period	Торіс	Time
	Software Modeling Introduction	D classes
Period I	Workshop Object-Oriented Design -	→1 session
	Creational Patterns ——	- 4 classes
	Structural Patterns —	5 classes
	Workshop on Patterns I —	− 1 session
	Course Project Catch-Up —	- 1 session

Table: Schedule for Period I

Syllabus II

Period	Topic	Time
Period II	Structural Patterns	2 classes
	Behavioral Patterns —	6 classes
	Workshop on Patterns II –	-1 session
	Solid Principles —	1 classes
	Anti-Patterns and Code Smell-	–4 classes
	Workshop on Code Smells -	-1 session
	Final Test	1 session
Period III	Projects Presentation	2 session

Table: Schedule for Period II & III

Outline

- Grading & Rules

Software Modeling Foundations

Grades Percentages

Period	ltem	Percentage	
Period I	Assignments	5% —	5
	Workshops	20% -	-2"
	Project Catch-Up	10% _	report
Period II	Assignments	5% —	5
	Workshops	20% —z	<u> </u>
	Test	10%	
Period III	Paper + Poster	5%	
	Project Implementation	10%	1-
	Course Project	15%	40%

Table: Software Modeling Grades Distribution

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is not mandatory. If you miss classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is **forbidden**. Please, **develop** your own solutions.
- Class attendance is not mandatory. If you miss classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase
- Communications with me must be done by email or by slack. I will not answer any question by WhatsApp.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by email or by slack. I will not answer any question by WhatsApp.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by email or by slack. will not answer any question by WhatsApp.

- Always be **respectful** to your classmates and to me. You must be **kind** with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology
 There are only better or worse solutions.
- You must be honest with your work. If you don't know something just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, took or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be **honest** with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must not be annoying, or affect the classroom environment If you do, I will ask you to leave the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology.
 There are only better or worse solutions.
- You must be honest with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must not be annoying, or affect the classroom environment.
 If you do, I will ask you to leave the classroom.

Outline

- You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- 6 Bibliography

Bibliography

Recommend bibliography:

- Design Patterns: Elements of Reusable Object-Oriented
 Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
- Clean Code: A Handbook of Agile Software Craftsmanship, by Robert C. Martin.
- Refactoring: Improving the Design of Existing Code, by Martin
- Domain-Driven Design: Tackling Complexity in the Heart of Software, by Eric Evans.
- Patterns of Enterprise Application Architecture, by Martin Fowler.

Bibliography

Recommened bibliography:

- Construcción de Software Orientado a Objetos, by Bertrand Meyer.
- Thinking Java, by Bruce Eckel.
- Java2 How To Program, by Deitel & Deitel.

Outline

- You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Thanks!

Questions?

www.linkedin.com/in/casierrav

