Семантическая сегментация

Semantic segmentation

Задача семантичекой сегментации картинок

Задача

Пусть X — пространство картинок.

Y — набор классов, например {человек, машина, дорога, тротуар, знак ПДД}.

 \widehat{X} — пространство картинок, где каждый пиксель имеет значение из Y. Требуется построить модель $f\colon X\to \widehat{X}$, определяющую, к какому классу из Y

принадлежит каждый пиксель изображения X.

Лоссы и метрики качества

Предсказание сегментации

Задача бинарной сегментации: сегментируем картинку на два класса 0 и 1

Предсказание сети: Картинка 3x3x1

 0.5
 0
 0.4

 0.1
 0.9
 0.1

 0.6
 0.2
 0.5

Истинная разметка: Картинка 3x3x1

1	0	1
0	1	0
1	0	1

Предсказание сегментации: LogLoss

Задача бинарной сегментации: сегментируем картинку на два класса 0 и 1

Предсказание сети: Картинка 3x3x1 Истинная разметка: Картинка 3x3x1

0.5	0	0.4
0.1	0.9	0.1
0.6	0.2	0.5

1	0	1
/ 0	1	0
1	0	1

Попиксельный LogLoss

Предсказание сегментации

Задача многоклассовой сегментации: сегментируем картинку на два класса 0 и 1

Предсказание сети: Картинка 6x6x5

Истинная разметка: Картинка 6х6х5

Предсказание сегментации: CrossEntropy Loss

Задача многоклассовой сегментации: сегментируем картинку на два класса 0 и 1

Функция потерь CrossEntropy

Метрики качества: Intersection over Union

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Метрики качества: Intersection over Union

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

В отличие от Dice, IoU обычно считают для предсказания, которое уже приведено к маске со значениями {0, 1}. Маска получается путем ограничения значений по threshold.

Метрики качества: Intersection over Union

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

В отличие от Dice, IoU обычно считают для предсказания, которое уже приведено к маске со значениями {0, 1}. Маска получается путем ограничения значений по threshold.

Построение модели

Задача семантичекой сегментации картинок

Задача

Требуется построить модель $f \colon X \to \widehat{X}$, определяющую, к какому классу из Y принадлежит каждый пиксель изображения X.

Большинство моделей семант. сегментации устроено по принципу "encoder-decoder".

Encoder — это Feature Extractor-часть любой сети для классификации. Как делать decoder? Он должен разворачивать тензор признаков в картинку.

Семантичекая сегментация: Decoder

Как делать decoder?

Нужна операция, котороая из тензора размера $h \times w \times d$, получает тензор размер $H \times W \times K$, где h < H, w < W, H и W высота и ширина исходной картинки, K — количество классов.

Такая операция называется Upsampling.

Виды Upsampling

torch.nn.ConvTranspose2d

Виды Upsampling

Интерполяция
/ Interpolation

torch.nn.Upsample

Обратная свертка

/ Deconvolution / Transposed convolution

torch.nn.ConvTranspose2d

Обратный пулинг

/ inverse pooling / unpooling

torch.nn.MaxUnpool2d

Двумерный случай

• Операцию обратной свертки можно представить в виде линейной операции, по аналогии с обычной сверткой. Значит, она обучаема!

Padding и stride в обратной свертке можно интерпертировать поразному.

Рассмотрим то, как они **представлены в pytorch**.

Padding —

используется для приведения к нужному размеру. Удаляем из полученного feature map нейроны так, чтобы если бы применили свертку (не обратную) с такими же параметрами padding и stride к новому feature map, то получили бы feature map такого же размера как исходное изображение.

• **Stride** — шаг, с которым результаты сверток накладываются друг на друга.

Чем больше stride, тем больше feature map на выходе.

 вход
 ядро

 2
 4

 0
 1

 k
 1

 1
 5

stride=1

s=1, p=0, выход 3х3

6 2 s=1 2 10 - - 12 4 - 4 20 - - - - - -0 0 -0 0 -

- 3 1 - 1 5

6	14	4
2	17	21
0	1	5

s=1, p=1, выход 1х1

6 2 s=1 p=1 2 10 -

- 12 4 - 4 20

+ 0 0 -

- 3 1 - 1 5

6 14 4 2 17 21 0 1 5

вход ядро stride=2 k input s=2, p=0, выход 4х4 s=2 s=1, p=1, выход 3х3 s=2 p=1

FCN

Статья

Decoder

deconv — обратная свертка

Недостатки FCN

Сильно сжимает изображение, upsampling **плохо восстаналивает пространственную информацую** из сжатого представления.

При постоянном уменьшении размера возникает проблема Scale Variability.

Рассмотрим первую версию UNet

Текущие количество каналов в тензоре

Особенности модели

- Модель была предложена для решения задачи сегментации медицинских. картинок.
- Для того, чтобы не теряла информация на границах изображения, сделали большой зеркальный padding.
- Для того, чтобы границы клеток четко отображались нейронной сетью, **для лосса задавали доп. веса**, которые были больше там, где гарница между

Статья

Достоинства UNet

Решается проблема с потерей пространственной информации за счет объединений более глубоких feature map с менее глубокми Получается хорошее качество сегментации.

Недостатки

Может переобучиться таким образом, что будут работать только верхние слои U - модели. Тогда модель в основном будет рабатать с локальными паттернами, но не будет изучать структуру данных в целом.

Модификации U-Net

