Part 4 Anomaly Detection

Noah Kandie

9/11/2021

Part 4: Anomaly Detection

You have also been requested to check whether there are any anomalies in the given sales dataset. The objective of this task being fraud detection

```
# Install required package
library(tinytex)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                               0.3.4
## v tibble 3.1.4
                     v dplyr
                             1.0.7
## v tidyr
          1.1.3
                  v stringr 1.4.0
## v readr
          2.0.1
                    v forcats 0.5.1
## -- Conflicts -----
                                             ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(tibbletime)
##
## Attaching package: 'tibbletime'
## The following object is masked from 'package:stats':
##
##
      filter
library(anomalize)
## == Use anomalize to improve your Forecasts by 50%! =========
## Business Science offers a 1-hour course - Lab #18: Time Series Anomaly Detection!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
```

```
library(timetk)
```

Load and preview the dataset

```
df4<-read.csv('http://bit.ly/CarreFourSalesDataset')</pre>
head(df4)
##
         Date
                 Sales
## 1 1/5/2019 548.9715
## 2 3/8/2019 80.2200
## 3 3/3/2019 340.5255
## 4 1/27/2019 489.0480
## 5 2/8/2019 634.3785
## 6 3/25/2019 627.6165
# We preview
class(df4)
## [1] "data.frame"
dim(df4)
## [1] 1000
               2
str(df4)
## 'data.frame':
                  1000 obs. of 2 variables:
## $ Date : chr "1/5/2019" "3/8/2019" "3/3/2019" "1/27/2019" ...
## $ Sales: num 549 80.2 340.5 489 634.4 ...
```

The dataset has 1000 rows and 2 variables with datetime and interger datatypes

Exploratory Data Analysis

```
# check for missing values
colSums(is.na(df4))

## Date Sales
## 0 0

No missing values

# Changing table to tibble
df4$Date<-as.Date(df4$Date,format='%m/%d/%Y')
df_t<-as.tibble(df4)</pre>
```

```
## Warning: 'as.tibble()' was deprecated in tibble 2.0.0.
## Please use 'as_tibble()' instead.
## The signature and semantics have changed, see '?as_tibble'.
is_tibble(df_t)
## [1] TRUE
# totalling the sales based on their common shared dates
sales_agg <- aggregate(df_t['Sales'], by = df_t['Date'],sum)</pre>
head(sales_agg)
           Date
                   Sales
##
## 1 2019-01-01 4745.181
## 2 2019-01-02 1945.503
## 3 2019-01-03 2078.128
## 4 2019-01-04 1623.688
## 5 2019-01-05 3536.684
## 6 2019-01-06 3614.205
sales_agg<-as.tibble(sales_agg)</pre>
is.tibble(sales_agg)
## Warning: 'is.tibble()' was deprecated in tibble 2.0.0.
## Please use 'is_tibble()' instead.
## [1] TRUE
Anomaly Detection
sales_agg %>%
  time_decompose(Sales,method = 'stl',frequency = 'auto',trend = 'auto') %>%
  anomalize(remainder, method='gesd', alpha=0.05, max_anoms = 0.2) %>%
 plot_anomaly_decomposition()
## Converting from tbl_df to tbl_time.
## Auto-index message: index = Date
## frequency = 7 days
## trend = 30 days
## Registered S3 method overwritten by 'quantmod':
##
    method
                       from
##
     as.zoo.data.frame zoo
```

Warning: 'type_convert()' only converts columns of type 'character'.

- 'df' has no columns of type 'character'

Conclusion The sales data seems to contain some anomalies shown by the red points on the graph. It is imperative the marketing team should check on the m to ascertain their status