Learning video saliency from human gaze using candidate selection [Rudoy et al, CVPR 2013]

Saliency map: probability of where viewer looks

Claims:

- Video saliency tends to be tighter and concentrated on single object while image saliency covers several interesting locations.
- Video saliency is sparse and computing it at every pixel is redundant.
- Video saliency is conditional to the previous frames, while image saliency is independent for every image

Selecting Candidate locations

1. Static candidates

Graph based visual saliency, find peaks using mean shift and fit Gaussian of in neighborhood size of h/5

2. Motion candidates

Optical flow with DoG filtering and mean-shift clustering and Gaussian fitting

3. Semantic candidate

- Center
- Poselet based detector: head, 2 shoulders, torso, 2 eyes, nose and mouth

Modeling gaze dynamics

1. Features

a. Static

Local contrast in a neighborhood around candidate points

b. Motion

DoG of horizontal and vertical components of optical flow around candidate points

c. Semantic

Face and person detection scores

Labels: motion, saliency, face, body, center

2. Gaze transitions for training

Scene cuts to 15 frames after that (it takes 5-10 frames to fixate)

3. Learning transition probability

Random forest classifier

Validation

- Comparision with fixation data smoothed with Gaussian
- AUC is used for comparison

Results

- Candidate selection performs better than dense estimation
- Outperforms state-of-the-art methods