

## **Assignment 5: Chapter 5 - Hardware Root of Trust**

Total Points: 100; and Deadline: February/15/2023, 11:59 PM.

**Note – Cheating and Plagiarism**: Cheating and plagiarism are not permitted in any form and they cause certain penalties. The instructor reserves the right to fail culprits.

**Deliverable**: All of your responses to the questions of assignment should be included in a single compressed file to be uploaded to the Gannon University (GU) – Blackboard Learn environment.

**Question 1.** Provide short answers (i.e., no more than five lines on average with the font size of 12) for the following items. The grade for each item is **10 points**.

- 1. Specify the processes that require cryptographic keys to form the **Root of Trust (ROT)**. Explain each of those processes briefly.
- 2. Discuss how an executing software on a processor can be **Attested Remotely**. Provide a figure that reflects your explanations.
- 3. Explain how **Signatures** made by a trusted party can be employed to authenticate codes and data.

**Question 2.** Select and implement PUF defensive solutions and evaluate the results: A physical unclonable function (PUF) is a physical object that for a given input and conditions (i.e., computing challenge), provides a physically defined "digital fingerprint" output (i.e., computing response). The fingerprint serves as a unique identifier for security operations. Complete the following Steps. The grade for this question is **70 points**.

- A. Implement <u>the following three PUF circuits</u> using Verilog hardware description language (HDL). The implementation of <u>the third circuit</u> in <u>VHDL</u> is provided <u>for your guidance</u> (i.e., "PUFCircuit3\_VHDL.zip"). General samples are given for your kind reference and understanding of the implementation processes.
- B. Perform the procedure from the "EXPERIMENT #1: Introduction to Xilinx's FPGA Vivado HLx Software" laboratory assignment for your implementations.
- C. Include the following items in your submitting package:
  - Provision of the achieved results from your implementations in the Steps A and B.
  - All files of your implementations in the Steps A and B.
  - Provide a report that includes: (1) your overall understanding and conclusions from completing the experiments; (2) the interesting points and the challenges that you faced in this laboratory; and (3) the screenshots for all of the major steps in your experiments.

Refer to the "PUF Circuit 1" paper for more information about the following circuit.



Figure 1: PUF Circuit 1.

Refer to the "PUF Circuit 2" paper for more information about the following circuit.



Figure 2: PUF Circuit 2.

Refer to the "PUF Circuit 3" paper for more information about the following circuit.



Figure 3: An 8-stage configurable ring oscillator (CRO).



Figure 4: PUF Circuit 3.

## **Resources:**

- 1. <u>stnolting/fpga\_puf: Technology-agnostic Physical Unclonable Function (PUF) hardware module</u> for any FPGA. (github.com)
- 2. <u>Crimsonninja/senior\_design\_puf: Repository to store all design and testbench files for Senior Design (github.com)</u>
- 3. rahuls321/Hardware-Security: Related papers (github.com)
- 4. FAU-LS12-RC/CHOICE-PUF: CHOICE, is a novel class of FPGA-based PUF designs with tunable uniqueness and reliability characteristics. By the use of addressable shift registers available on an FPGA, CHOICE provides a wide configuration space to obtain a device-specific PUF response without sacrificing randomness. (github.com)
- 5. <u>xiangyun-wang/Implementation-of-Asymmetric-Delay-based-PUF-on-FPGA (github.com)</u>
- 6. <u>CarlosCraveiro/PUFTRandGen: PUF based True Random Number Generators written in Verilog</u> (github.com)
- 7. <a href="mailto:simoasnaghi/FPGA\_PUF">simoasnaghi/FPGA\_PUF</a>: This is a simple implementation of an Arbiter PUF made for an FPGA Artix-7. Project part of the course Embedded Systems, part of the Electronics Engineering Master course at Politecnico di Milano. (github.com)
- 8. andreaaspesidev/puf-fpga (github.com)
- 9. renaturation/DNN\_PUF\_FPGA (github.com)
- 10. Justin5567/Ring-Oscillator-PUF: Implement Ring Oscillator PUF on Xilinx FPGA (github.com)
- 11. <u>zona8815/Arbiter-PUF</u>: Use Verilog to design Arbiter PUF, then do Floorplan to make intervariation approach 50%. (github.com)
- 12. sebanti10/APUF: The VHDL design for Arbiter PUF (github.com)
- 13. <u>AlfonsoDiMartino/Reed-Muller-Correction Code on PUF Response: VHDL implementation of Reed-Muller Coder and Decoder for SSD exam. (github.com)</u>
- 14. <a href="mailto:eriksargent/PUF-lab: FPGA">eriksargent/PUF-lab: FPGA</a> implementation of a physical unclonable function for authentication (github.com)
- 15. <u>scluconn/LPN-based\_PUF: FPGA implementation of a cryptographically secure physical unclonable function based on learning parity with noise problem. (github.com)</u>
- 16. <u>IFM-Ulm/ro-pr-fw: Framework based on Partial Reconfiguration for chip characterization utilizing ring-oscillator PUFs (github.com)</u>
- 17. <u>canaknesil/4x4-apuf</u>: An FPGA Implementation of Arbiter PUF with 4x4 Switch Blocks (github.com)
- 18. RuochenDai78/EEE5716 Intro to hardware securityRing-Oscillator-PUF-design-and-optimization-for-FPGA: In this paper, a series of Ring Oscillators has been wired in different ways to form Ring Oscillator PUFs to find out the RO PUF which has a better quality. Thus, three different routing methods are proposed and developed, software automatic routing design, 1D and 2D hard-macro array design. And the quality factors including uniqueness, reliability and uniformity are analyzed (github.com)
- 19. mdkul22/ucsd-ece268-puf: Creating a MAC based PUF for FPGAs (github.com)
- 20. kamat900/puf-1: Hardware PUF FPGA implementation (github.com)
- 21. <u>oliver132/FPGA-PUF: FPGA VHDL implementation of a Physical Unclonable Function</u> (github.com)
- 22. RHESGroup/FPGA-based-PUF: Physical unclonable function for SEcube (github.com)
- 23. LinkZyy/fpga\_puf\_axi (github.com)
- 24. <u>pkpio/dual\_core\_PUF\_with\_PDL\_and\_ethernet: Implementation of a dual core adder based PUF on FPGA.</u> To be submitted for the Design Automation Conference' 14 (github.com)
- 25. <u>rxg161230/Physically-Unclonable-Functions-for-Hardware-Security: PUF is a digital Fingerprint</u> used to prevent semi-conductor device designs of a particular company to be stolen, copied or

- remade by the Foundry or any other company. This project was to analyze which out of Arbiter or Butterfly PUFs work the best for Hardware Security. (github.com)
- 26. eknoes/puf-lab (github.com)
- 27. chethan2807/puf\_rng\_64\_bit: This project implements a 64-bit Ring oscillator based PUF on Arty A7 FPGA (github.com)
- 28. scluconn/DA PUF Library: Defense/Attack PUF Library (DA PUF Library) (github.com)
- 29. <u>salaheddinhetalani/PUF: Design and evaluation of an arbiter-delay-based Physically Unclonable</u> Function (Secure Hardware Design Assignment) (github.com)