Степени двойки с цифрами из $\{1,2,8\}$: комбинаторное доказательство конечности

Горюшкин С.В.

25 октября 2025 г.

Аннотация

Мы даём полностью элементарное доказательство того, что единственные степени двойки, чья десятичная запись использует только цифры из $\{1,2,8\}$, это 2,8,128. Ключевые идеи: (i) фазовое условие $2^n \equiv 2 \pmod 6$ для нечётных n; (ii) инвариант состава цифр $a \equiv b \pmod 3$ (число едениц и число цифр из $\{2,8\}$ в старших разрядах равны по модулю 3); (iii) явный разбор допустимых двух- и трёхзначных хвостов; (iv) запрет длины 4 через сумму цифр и делимость на 16; (v) запрет длин ≥ 5 с помощью инварианта.

1 Постановка

Назовём число валидным, если его десятичная запись содержит только цифры из $\{1,2,8\}$. Нас интересуют валидные степени двойки $N=2^n$. Очевидно, 2 и 8 валидны, а также $128=2^7$ валидно. Покажем, что других нет.

2 Фаза по модулю 6 и структура разрядов

Отметим две элементарные наблюдения.

- Для нечётных n имеем $2^n \equiv 2 \pmod{6}$ (фаза 2); для чётных n остаток 4, а последняя цифра 4 или 6, что невалидно. Значит, всегда n нечётно, а $N \equiv 2 \pmod{6}$.
- В $\mathbb{Z}/6\mathbb{Z}$ справедливо $10 \equiv 4$ и, следовательно, $10^j \equiv 4$ для всех $j \geq 1$.

Лемма 1 (Инвариант состава по модулю 6). Пусть валидное N имеет последнюю цифру $u \in \{2,8\}$, а выше единиц стоят a штук цифры 1 и b штук цифр из $\{2,8\}$. Тогда

$$2a+b\equiv 0\pmod 3, \qquad a+2b\equiv 0\pmod 3, \qquad$$
в частности $a\equiv b\pmod 3$. (1)

Доказательство. Работаем в $\mathbb{Z}/6\mathbb{Z}$. Вклад единиц $u \equiv 2$. Каждый старший разряд 1 даёт вклад $4 \cdot 1 \equiv 4$, каждый старший разряд 2 или 8 даёт вклад $4 \cdot 2 \equiv 8 \equiv 2$. Итак,

$$N \equiv 2 + 4a + 2b \pmod{6}.$$

Так как $N \equiv 2 \pmod{6}$, получаем $4a + 2b \equiv 0 \pmod{6}$, т. е. $2a + b \equiv 0 \pmod{3}$.

С другой стороны, по модулю 3 сумма цифр равна $N\pmod 3$. При нечётном n имеем $2^n\equiv 2\pmod 3$. Остатки цифр: $1\equiv 1,\,2\equiv 2,\,8\equiv 2$. Следовательно,

$$(2) + a \cdot 1 + b \cdot 2 \equiv 2 \pmod{3} \quad \Rightarrow \quad a + 2b \equiv 0 \pmod{3}.$$

Вычитая две конгруэнции, получаем $a \equiv b \pmod{3}$.

Следствие 1. Если N валидно, то добавление слева одной цифры из $\{1,2,8\}$ нарушает $a \equiv b \pmod 3$. Следовательно, любое возможное удлинение валидной записи слева должно происходить блоками по три цифры.

Пример. Для N=128 имеем a=1, b=1 и $a\equiv b\pmod 3$. Добавление слева любой одной цифры (получая 1128, 2128 или 8128) нарушает инвариант (или другие обязательные признаки степени 2, см. ниже).

3 Разрешённые хвосты: mod10, mod100, mod1000

Здесь мы явно выводим допустимые хвосты.

Одна цифра

Последняя цифра степени 2 периодична: $2,4,8,6,\ldots$ Для нечётных n остаются 2 и 8 — обе валидны.

Две цифры

Работаем mod100. Известно, что порядок 2 по модулю 25 равен 20, а по модулю 4-2, так что период по модулю 100 равен lcm(20,2)=20. Достаточно выписать $\{2^n \bmod 100: n \equiv 1,3,\ldots,19\}$ и проверить, у каких остатков обе цифры лежат в $\{1,2,8\}$. Получается ровно три варианта:

$$12, 28, 88.$$
 (2)

Пример. Например, $2^7 = 128 \equiv 28 \pmod{100}, \, 2^{19} = 524288 \equiv 88, \, 2^9 = 512 \equiv 12.$

Три цифры

Для $n \geq 3$ имеем $2^n \equiv 0 \pmod 8$, значит последние три цифры кратны 8. Среди всех трёхзначных чисел на алфавите $\{1,2,8\}$ с последней цифрой 2 или 8 кратность 8 оставляет кандидатов

112, 128, 288, 888 (остальные, например 212, 812, 228, 828, 188, . . . , íåêðàòíû8).

Далее используем периодичность по модулю 1000: порядок 2 по модулю 125 равен 100, а по модулю 8 — тривиален, так что период по модулю 1000 равен 100. Прямая проверка по циклу длины 100 (или, что то же, решение по китайской теореме об остатках для системы mod8 и mod125) показывает, что из четырёх кратных 8 кандидатов реально встречаются ровно три:

$$112, 128, 288.$$
 (3)

Хвоста 888 в цикле $2^n \mod 1000$ нет.

Пример. • $2^7 = 128$ имеет хвост 128;

- $2^{19} = 524288$ имеет хвост 288;
- 2^{89} имеет хвост 112 (получается возведением в квадрат от 2^{89-1} с контролем по mod1000).

Замечание (Как проверить (2)–(3) вручную). Для двух цифр: вычислите $2^n \mod 25$ для $n=1,3,\ldots,19$ и склейте с правильной последней цифрой по $\mod 4$ (последняя цифра уже фиксирует $\mod 4$). Для трёх цифр: требование делимости на 8 резко сокращает список; далее решите систему по CRT для $\mod 125$ (цикл длины 100). В обоих случаях это конечная таблица размером не более 20 и 100 ячеек соответственно.

4 Запрет длины 4

Лемма 2. Никакое четырёхзначное валидное число не является степенью 2.

Доказательство. По (3) возможны трёхзначные хвосты только 112, 128, 288. Рассмотрим dXYZ, где $XYZ \in \{112, 128, 288\}$ и $d \in \{1, 2, 8\}$.

(i) Сумма цифр mod 3. Для нечётных n имеем $2^n \equiv 2 \pmod 3$, т. е. сумма цифр $\equiv 2 \pmod 3$. Дадим значения:

$$sum(d112) = d + 1 + 1 + 2 \equiv d + 1 \pmod{3},$$

$$sum(d128) = d + 1 + 2 + 8 \equiv d + 1 \pmod{3},$$

$$sum(d288) = d + 2 + 8 + 8 \equiv d + 2 \pmod{3}.$$

Отсюда сразу запрещены: $d \in \{2,8\}$ для d112 и d128 (дают 0 mod 3 вместо 2), а также все d288 (так как $d \equiv 1,2,2 \pmod 3$) и ни одно не даёт 2). Остаётся единственный кандидат по сумме цифр: d=1 в случаях 1112 и 1128.

(ii) Делимость на 16. Для $n \geq 4$ число 2^n кратно 16. Проверим последние четыре цифры кандидатов:

$$1112 \equiv 8 \pmod{16},$$

 $1128 \equiv 8 \pmod{16}.$

Оба не кратны 16. Следовательно, четырёхзначных валидных степеней 2 нет.

Пример. 1128 выглядит правдоподобно (все цифры допустимы), но не делится на 16; 2128, 8128 нарушают сумму цифр mod3.

5 Запрет всех длин ≥ 5

Лемма 3. Валидных степеней 2 длины ≥ 5 не существует.

Доказательство. Пусть N валидно. По лемме 1 инвариант $a \equiv b \pmod{3}$ должен сохраняться. По следствию 1 любое допустимое удлинение/укорочение происходит пакетами по три цифры. Отбрасывая слева по три цифры, мы неизбежно попадём либо в длину 1, 2, 3, либо в длину 4. Случаи 1, 2, 3 дают ровно 2, 8, 128 (прямой просмотр); длина 4 невозможна по лемме 2. Противоречие.

6 Главная теорема и проверяемые примеры

Теорема 1. Единственные валидные степени двойки — это

$$2^1 = 2,$$
 $2^3 = 8,$ $2^7 = 128.$

Доказательство. Нечётность показателя обязательна (фаза mod 6). По разделу о хвостах единственный реализуемый валидный трёхзначный хвост — 128 (при n=7). По леммам 2 и 3 длин ≥ 4 не бывает. Длины 1, 2, 3 даются вычислениями: $2^1=2$, $2^3=8$, $2^7=128$.

Пример. Проверка:

- $2^1 = 2$ валидно.
- $2^3 = 8$ валидно.
- $2^5 = 32$ невалидно (цифра 3).
- $2^7 = 128$ валидно.
- $2^{19} = 524288$ невалидно (хвост 288 формально допустим, но есть цифра 5 слева).
- Любая попытка d128 с $d \in \{1, 2, 8\}$ не степень 2 (см. лемму 2).

Приложение А: Как получить хвосты ещё короче

Две цифры. Выпишем для нечётных n значения $2^n \mod 100$ (период 20). Среди них остатки с последней цифрой 2 или 8 и десятком из $\{1,2,8\}$ — это ровно 12,28,88.

Три цифры. Требуем кратность 8 (для $n \ge 3$) и принадлежность алфавиту. Это сокращает список до 112, 128, 288, 888. Далее по mod125 (цикл длины 100) видно, что 888 не встречается в ряду $2^n \mod 1000$, а 112, 128, 288 встречаются (примерно при $n \equiv 89, 7, 19 \pmod{100}$ соответственно).

Приложение В: Мини-таблица переносов

Локальное правило при переходе $2^n \to 2^{n+1}$ по правым разрядам: если d цифра, $c \in \{0,1\}$ перенос справа, то новая цифра $e \equiv (2d+c) \mod 10$, новый перенос $c' = \lfloor (2d+c)/10 \rfloor$. Требование $e \in \{1,2,8\}$ резко ограничивает варианты. Устойчивый правый мотив — $11 \mapsto 22$ без переноса, совместимый с хвостом $112 \to 128$; следующий шаг уже рождает недопустимую цифру слева от правой пары, что согласуется с запретом длин ≥ 4 .