

February 2008

FGL40N120AND 1200V NPT IGBT

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.6 \text{ V}$ @ $I_C = 40\text{A}$
- High input impedance
- CO-PAK, IGBT with FRD : $t_{rr} = 75\text{ns}$ (typ.)

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AND series of IGBTs provides low conduction and switching losses. The AND series offers a solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter	FGL40N120AND	Units
V_{CES}	Collector-Emitter Voltage	1200	V
V_{GES}	Gate-Emitter Voltage	± 25	V
I_C	Collector Current @ $T_C = 25^\circ\text{C}$	64	A
	Collector Current @ $T_C = 100^\circ\text{C}$	40	A
$I_{CM(1)}$	Pulsed Collector Current	160	A
I_F	Diode Continuous Forward Current @ $T_C = 100^\circ\text{C}$	40	A
I_{FM}	Diode Maximum Forward Current	240	A
P_D	Maximum Power Dissipation @ $T_C = 25^\circ\text{C}$	500	W
	Maximum Power Dissipation @ $T_C = 100^\circ\text{C}$	200	W
$SCWT$	Short Circuit Withstand Time, $V_{CE} = 600\text{V}$, $V_{GE} = 15\text{V}$, $T_C = 125^\circ\text{C}$	10	μs
T_J	Operating Junction Temperature	-55 to +150	$^\circ\text{C}$
T_{STG}	Storage Temperature Range	-55 to +150	$^\circ\text{C}$
T_L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 seconds	300	$^\circ\text{C}$

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Units
$R_{\theta JC}(\text{IGBT})$	Thermal Resistance, Junction-to-Case	--	0.25	$^\circ\text{C/W}$
$R_{\theta JC}(\text{DIODE})$	Thermal Resistance, Junction-to-Case	--	0.7	$^\circ\text{C/W}$
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	--	25	$^\circ\text{C/W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGL40N120AND	FGL40N120AND	TO-264	-	-	25

Electrical Characteristics of the IGBT $T_C = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Off Characteristics						
BV_{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0\text{V}, I_C = 1\text{mA}$	1200	--	--	V
$BV_{CES}/\Delta T_J$	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0\text{V}, I_C = 1\text{mA}$	--	0.6	--	$\text{V}/^\circ\text{C}$
I_{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0\text{V}$	--	--	1	mA
I_{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0\text{V}$	--	--	± 250	nA
On Characteristics						
$V_{GE(\text{th})}$	G-E Threshold Voltage	$I_C = 250\mu\text{A}, V_{CE} = V_{GE}$	3.5	5.5	7.5	V
		$I_C = 40\text{A}, V_{GE} = 15\text{V}$	--	2.6	3.2	V
$V_{CE(\text{sat})}$	Collector to Emitter Saturation Voltage	$I_C = 40\text{A}, V_{GE} = 15\text{V}, T_C = 125^\circ\text{C}$	--	2.9	--	V
		$I_C = 64\text{A}, V_{GE} = 15\text{V}$	--	3.15	--	V
Dynamic Characteristics						
C_{ies}	Input Capacitance		--	3200	--	pF
C_{oes}	Output Capacitance	$V_{CE} = 30\text{V}, V_{GE} = 0\text{V}$ $f = 1\text{MHz}$	--	370	--	pF
C_{res}	Reverse Transfer Capacitance		--	125	--	pF
Switching Characteristics						
$t_{d(on)}$	Turn-On Delay Time		--	15	--	ns
t_r	Rise Time		--	20	--	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC} = 600\text{V}, I_C = 40\text{A}, R_G = 5\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_C = 25^\circ\text{C}$	--	110	--	ns
t_f	Fall Time		--	40	80	ns
E_{on}	Turn-On Switching Loss		--	2.3	3.45	mJ
E_{off}	Turn-Off Switching Loss		--	1.1	1.65	mJ
E_{ts}	Total Switching Loss		--	3.4	5.1	mJ
$t_{d(on)}$	Turn-On Delay Time		--	20	--	ns
t_r	Rise Time		--	25	--	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC} = 600\text{V}, I_C = 40\text{A}, R_G = 5\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_C = 125^\circ\text{C}$	--	120	--	ns
t_f	Fall Time		--	45	--	ns
E_{on}	Turn-On Switching Loss		--	2.5	--	mJ
E_{off}	Turn-Off Switching Loss		--	1.8	--	mJ
E_{ts}	Total Switching Loss		--	4.3	--	mJ
Q_g	Total Gate charge		--	220	330	nC
Q_{ge}	Gate-Emitter Charge	$V_{CE} = 600\text{V}, I_C = 40\text{A}, V_{GE} = 15\text{V}$	--	25	38	nC
Q_{gc}	Gate-Collector Charge		--	130	195	nC

Electrical Characteristics of DIODE $T_C = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Units	
V_{FM}	Diode Forward Voltage	$I_F = 40\text{A}$	$T_C = 25^\circ\text{C}$	--	3.2	4.0	V	
			$T_C = 125^\circ\text{C}$	--	2.7	--		
t_{rr}	Diode Reverse Recovery Time	$I_F = 40\text{A},$ $di/dt = 200\text{A}/\mu\text{s}$	$T_C = 25^\circ\text{C}$	--	75	112	nS	
			$T_C = 125^\circ\text{C}$	--	130	--		
	Diode Peak Reverse Recovery Current		$T_C = 25^\circ\text{C}$	--	8	12	A	
			$T_C = 125^\circ\text{C}$	--	13	--		
Q_{rr}	Diode Reverse Recovery Charge	$T_C = 25^\circ\text{C}$	--	300	450	--	nC	
			$T_C = 125^\circ\text{C}$	--	845	--		

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 2. Typical Saturation Voltage Characteristics

Figure 3. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 5. Saturation Voltage vs. V_{GE}

Figure 4. Load Current vs. Frequency

Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

Figure 14. Gate Charge Characteristics

Figure 15. SOA Characteristics

Figure 16. Turn-Off SOA

Figure 17. Forward Characteristics

Figure 18. Reverse Recovery Current

Typical Performance Characteristics (Continued)

Figure 19. Stored Charge

Figure 20. Reverse Recovery Time

Figure 21. Transient Thermal Impedance of IGBT

Mechanical D

FGL40N120AND

FAIRCHILD
SEMICONDUCTOR®

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®	FPS™
Build it Now™	FRFET®
CorePLUS™	Global Power Resource™
CROSSVOLT™	Green FPS™
CTL™	Green FPS™ e-Series™
Current Transfer Logic™	GTO™
EcoSPARK®	i-Lo™
EZSWITCH™ *	IntelliMAX™
	ISOPLANARTM
	MegaBuck™
	MICROCOUPLER™
Fairchild®	
Fairchild Semiconductor®	
FACT Quiet Series™	
FACT®	
FAST®	
FastvCore™	
FlashWriter® *	

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Rev. I33