Nadir

Time Limit	Memory Limit
1 second	128 MB

Statement

There are N towers of cubes in a row, numbered 1 to N from left to right. The ith tower has a_i cubes in it. A row of towers is a valley if it can be split into two (possibly empty) sections where:

- The left section forms a non-increasing sequence, and
- The right section forms a non-decreasing sequence.

Unfortunately, due to the recent collapse of the cryptocurrency exchange FTX, we have lost our source of funding and cannot provide you with a diagram.

You are tasked with considering Q scenarios: In the *i*th scenario, what is the fewest cubes you must add to turn the towers $1, \ldots, k_i$ into a valley? You cannot remove any cubes.

Input

- The first line of input contains the integers N and Q.
- The next line of input contains the space-separated integers a_1, \ldots, a_N .
- The next line of input contains the space-separated integers k_1, \ldots, k_Q .

Output

Output Q lines, the ith of which is the answer for the ith scenario.

Sample Input 1	Sample Input 2
6 3 4 2 3 1 6 6 3 4 6	5 3 1 2 3 2 1 1 3 5
C 1. O 1	0 1 0 + + 0
Sample Output 1	Sample Output 2

Constraints

- $1 \le N, Q \le 10^5$
- $1 \le a_i \le 10^9$
- $1 \le k_j \le N$
- All k_j are unique and in ascending order.

Subtasks

Number	Points	Additional constraints
1	25	$Q = 1$ and $k_j = N$
2	26	$a_i \leq 10$
4	49	No further constraints