PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:	A2	(11) International Publication Number:	WO 00/59907	
C07D 487/04, A61K 31/53, A61P 25/00, 9/00		(43) International Publication Date:	12 October 2000 (12.10.00)	

- (21) International Application Number: PCT/US00/09109 (81) Designated States: AU
- KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR,
 (22) International Filing Date:
 6 April 2000 (06.04.00)
 KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR,
 VN, ZA, Eurasian patent (AM, AZ, BY, KG, KZ, MD
 TI, TM) Furgrees patent (AT, RE, CH, CY, DE, DK
- (30) Priority Data: 60/128,008 6 April 1999 (06.04.99) US
- (71) Applicant: DU PONT PHARMACEUTICALS COMPANY [US/US]; Chestnut Run Plaza, 974 Centre Road, Wilmington, DE 19807 (US).
- (72) Inventors: GILLIGAN, Paul, J.; 2629 Pennington Drive, Wilmington, DE 19810 (US). WILDE, Richard, G.; 205 Roseman Court, Newark, DE 19711 (US).
- (74) Agent: RUBIN, Kenneth, B.; Du Pont Pharmaceuticals Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AU, BR, CA, CN, CZ, EE, HU, IL, IN, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR, UA, VN, ZA, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PYRAZOLOTRIAZINES AS CRF ANTAGONISTS

(57) Abstract

The present invention relates to pyrazolotriazines according to formula (I), and stereoisomers, isomers and salts thereof wherein R^1 - R^5 are selected from certain alkyl, aryl and heteroaryl species as defined in the specification wherein all of the compounds are useful as CRF antagonists and are thus useful in the treatment of neurological disorders as well as a multitude of other CRF associated diseases or conditions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	υz	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

PYRAZOLOTRIAZINES AS CRF ANTAGONISTS

5 <u>FIELD OF THE INVENTION</u>

The present invention relates to novel compounds, compositions, and methods for the treatment of psychiatric disorders and neurological diseases, including major depression, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and 10 feeding disorders, as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress. 15 particular, the present invention relates to novel pyrazolotriazines, pharmaceutical compositions containing such compounds and their use in treating psychiatric disorders, neurological diseases, immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with 20 psychopathological disturbance and stress.

BACKGROUND OF THE INVENTION

Corticotropin releasing factor (herein referred to 25 as CRF), a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) derived peptide secretion from the anterior pituitary gland [J. Rivier et al., Proc. Nat. Acad. Sci. (USA) 80:4851 (1983); W. Vale et al., Science 213:1394 30 (1981)]. In addition to its endocrine role at the pituitary gland, immunohistochemical localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, 35 electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al., Rec. Prog. Horm. Res. 39:245 (1983); G.F. Koob, Persp. Behav. Med. 2:39 (1985); E.B. De

Souza et al., *J. Neurosci*. 5:3189 (1985)]. There is also evidence that CRF plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, *Physiological Reviews* 69:1 (1989); J.E. Morley, *Life Sci*. 41:527 (1987)].

Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp. Practice 23:59 (1988)].

10

15

In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebral spinal fluid (CSF) of drug-free individuals [C.B. Nemeroff et al., Science 226:1342 (1984); C.M. 20 Banki et al., Am. J. Psychiatry 144:873 (1987); R.D. France et al., Biol. Psychiatry 28:86 (1988); M. Arato et al., Biol Psychiatry 25:355 (1989)]. Furthermore, the density of CRF receptors is significantly decreased in the frontal cortex of suicide victims, consistent 25 with a hypersecretion of CRF [C.B. Nemeroff et al., Arch. Gen. Psychiatry 45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. administered) observed in depressed patients [P.W. Gold et al., Am J. Psychiatry 141:619 (1984); F. Holsboer et al., Psychoneuroendocrinology 9:147 (1984); P.W. Gold et al., New Eng. J. Med. 314:1129 (1986)]. Preclinical studies in rats and nonhuman primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the symptoms seen in human depression [R.M. Sapolsky, Arch. Gen. Psychiatry 46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants

can alter CRF levels and thus modulate the numbers of CRF receptors in brain [Grigoriadis et al., Neuropsychopharmacology 2:53 (1989)].

It has also been postulated that CRF has a role in the etiology of anxiety-related disorders. CRF produces 5 anxiogenic effects in animals and interactions between benzodiazepine / non-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al., Life Sci. 31:363 (1982); C.W. Berridge and A.J. Dunn Regul. Peptides 10 16:83 (1986)]. Preliminary studies using the putative CRF receptor antagonist a-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces "anxiolytic-like" effects that are 15 qualitatively similar to the benzodiazepines [C.W. Berridge and A.J. Dunn Horm. Behav. 21:393 (1987), Brain Research Reviews 15:71 (1990)].

Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF 20 and benzodiazepine anxiolytics, providing further evidence for the involvement of CRF in these disorders. Chlordiazepoxide attenuates the "anxiogenic" effects of CRF in both the conflict test [K.T. Britton et al., Psychopharmacology 86:170 (1985); K.T. Britton et al., Psychopharmacology 94:306 (1988)] and in the acoustic 25 startle test [N.R. Swerdlow et al., Psychopharmacology 88:147 (1986)] in rats. The benzodiazepine receptor antagonist (Ro15-1788), which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dose-dependent manner while the 30 benzodiazepine inverse agonist (FG7142) enhanced the actions of CRF [K.T. Britton et al., Psychopharmacology 94:306 (1988)].

It has been further postulated that CRF has a role
in immunological, cardiovascular or heart-related
diseases such as hypertension, tachycardia and
congestive heart failure, stroke, osteoporosis,
premature birth, psychosocial dwarfism, stress-induced

fever, ulcer, diarrhea, post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress.

The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce 5 their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the suppression of the CRF hypersecretion that is observed in these disorders. Of particular interest is 10 that preliminary studies examining the effects of a CRF receptor antagonist (a-helical CRF9-41) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces "anxiolytic-like" effects qualitatively similar to the benzodiazepines [for review see G.F. Koob and K.T. Britton, In: Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds., CRC Press p221 (1990)].

DuPont Merck PCT application US94/11050 describes corticotropin releasing factor antagonist compounds of the formula:

20

and their use to treat psychiatric disorders and neurological diseases. Included in the description are fused pyridines and pyrimidines of the formula:

where: V is CR^{1a} or N; Z is CR² or N; A is CR³0 or N; and D is CR²⁸ or N.

WO 98/03510, published in January, 1998, also describes a series of CRF antagonist compounds having the formula:

wherein z is N or CR2 and A is N or CR.

WO 97/29109, published in August, 1997, similarly describes certain CRF antagonist compounds having the formula:

wherein Ar is phenyl, pyridyl and substituted versions thereof.

WO 98/08847, published March 5, 1998, discloses CRF antagonist compounds of the formula:

wherein B is selected from a variety of non-aryl groups and R^5 is selected from certain groups such as phenyl or pyridyl or substituted versions thereof.

WO 99/01454, published on January 14, 1999,

5 discloses CRF antagonist compounds of the formula:

wherein D is an aryl or heteroaryl group and R^1 is selected from certain non-aryl or non-heteroaryl groups.

10 EP 0 269 859 (Ostuka, 1988) discloses pyrazolotriazine compounds of the formula

$$\mathbb{R}^2$$
 \mathbb{R}^1
 \mathbb{R}^3

- where R¹ is OH or alkanoyl, R² is H, OH, or SH, and R³ is an unsaturated heterocyclic group, naphthyl or substituted phenyl, and states that the compounds have xanthine oxidase inhibitory activity and are useful for treatment of gout.
- 20 EP 0 594 149 (Ostuka, 1994) discloses pyrazolotriazine and pyrazolopyrimidine compounds of the formula

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

where A is CH or N, R⁰ and R³ are H or alkyl, and R¹ and R² are H, alkyl, alkoxyl, alkylthio, nitro, etc., and states that the compounds inhibit androgen and are useful in treatment of benign prostatic hypertrophy and prostatic carcinoma.

US 3,910,907 (ICN Pharma, 1975) discloses pyrazolotriazines of the formula:

10

where R1 is CH_3 , C_2H_5 or C_6H_5 , X is H, C_6H_5 , m- $CH_3C_6H_4$, CN, COOEt, Cl, I or Br, Y is H, C_6H_5 , o- $CH_3C_6H_4$, or p- $CH_3C_6H_4$, and Z is OH, H, CH_3 , C_2H_5 , C_6H_5 , n- C_3H_7 , i- C_3H_7 , SH, SCH₃, NHC₄H₉, or N(C_2H_5)₂, and states that the compounds are c-AMP phosphodiesterase inhibitors useful as bronchodilators.

US 3,995,039 discloses pyrazolotriazines of the 20 formula:

where R¹ is H or alkyl, R² is H or alkyl, R³ is H, alkyl, alkanoyl, carbamoyl, or lower alkylcarbamoyl, and R is pyridyl, pyrimidinyl, or pyrazinyl, and states that the compounds are useful as bronchodilators.

US 5,137,887 discloses pyrazolotriazines of the formula

10

where R is lower alkoxy, and teaches that the compounds are xanthine oxidase inhibitors and are useful for treatment of gout.

US 4,892,576 discloses pyrazolotriazines of the formula

20 where X is O or S, Ar is a phenyl, naphthyl, pyridyl or thienyl group, R_6-R_8 are H, alkyl, etc., and R_9 is H,

alkyl, phenyl, etc. The patent states that the compounds are useful as herbicides and plant growth regulants.

US 5,484,760 and WO 92/10098 discloses herbicidal compositions containing, among other things, a herbicidal compound of the formula

$$R_1$$
 R_2
 R_2
 R_3

where A can be N, B can be CR_3 , R_3 can be phenyl or substituted phenyl, etc., R is $-N(R_4)SO_2R_5$ or $-SO_2N(R_6)R_7$ and R_1 and R_2 can be taken together to form

Where X, Y and Z are H, alkyl, acyl, etc. and D is O or S.

US 3,910,907 and Senga et al., J. Med. Chem., 1982, 25, 243-249, disclose triazolotriazines cAMP phosphodiesterase inhibitors of the formula

20

5

$$\mathbb{R}_{1}$$

where Z is H, OH, CH₃, C₂H₅, C₆H₅, n-C₃H₇, iso-C₃H₇, SH, SCH₃, NH(n-C₄H₉), or N(C₂H₅)₂, R is H or CH₃, and R₁ is CH₃ or C₂H₅. The reference lists eight therapeutic areas where inhibitors of cAMP phosphodiesterase could have utility: asthma, diabetes mellitus, female fertility control, male infertility, psoriasis, thrombosis, anxiety, and hypertension.

W095/35298 (Otsuka, 1995) discloses pyrazolopyrimidines and states that they are useful as analgesics. The compounds are represented by the formula

5

where Q is carbonyl or sulfonyl, n is 0 or 1, A is a single bond, alkylene or alkenylene, R¹ is H, alkyl, etc., R² is naphthyl, cycloalkyl, heteroaryl, substituted phenyl or phenoxy, R³ is H, alkyl or phenyl, R⁴ is H, alkyl, alkoxycarbonyl, phenylalkyl, optionally phenylthio-substituted phenyl, or halogen, R⁵ and R⁶ are H or alkyl.

EP 0 591 528 (Otsuka,1991) discloses antiinflammatory use of pyrazolopyrimidines represented by the formula

$$R_1$$
 R_2
 R_3
 R_4

where R_1 , R_2 , R_3 and R_4 are H, carboxyl, alkoxycarbonyl, optionally substituted alkyl, cycloalkyl, or phenyl, R_5 is SR_6 or NR_7R_8 , R_6 is pyridyl or optionally substituted phenyl, and R_7 and R_8 are H or optionally substituted phenyl.

Springer et al, J. Med. Chem., 1976, vol. 19, no. 2, 291-296 and Springer U.S. patents 4021,556 and 3,920,652 disclose pyrazolopyrimidines of the formula

5

where R can be phenyl, substituted phenyl or pyridyl, and their use to treat gout, based on their ability to inhibit xanthine oxidase.

Joshi et al., J. Prakt. Chemie, 321, 2, 1979, 341-344, discloses compounds of the formula

$$\mathbb{R}^2$$
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2

15 where R^1 is CF_3 , C_2F_5 , or C_6H_4F , and R^2 is CH_3 , C_2H_5 , CF_3 , or C_6H_4F .

Maquestiau et al., Bull. Soc. Belg., vol.101, no. 2, 1992, pages 131-136 discloses a pyrazolo[1,5-a]pyrimidine of the formula

20

Ibrahim et al., Arch. Pharm. (weinheim) 320, 487-491 (1987) discloses pyrazolo[1,5-a]pyrimidines of the formula

5

where R is NH2 or OH and Ar is 4-phenyl-3-cyano-2-aminopyrid-2-yl.

J. Med. Chem (1982), 25(3), 243-9 discloses 10 compounds of the formula:

$$R^{1}$$
 N
 N
 R^{3}

wherein R^2 is H, Ph, Pr, Sme, NHEt, NHBu, Net₂, piperidino, OH, NHPr, SH, OCHMe₂, Me, Set, Ome or Opr and R^4 is H, Br, C_6H_4Me-3 , Ph, CN, CO_2Et or Cl.

Other references which disclose azolopyrimidines inclued EP 0 511 528 (Otsuka, 1992), US 4,997,940 (Dow, 1991), EP 0 374 448 (Nissan, 1990), US 4,621,556 (ICN,1997), EP 0 531 901 (Fujisawa, 1993), US 4,567,263 (BASF, 1986), EP 0 662 477 (Isagro, 1995), DE 4 243 279 (Bayer, 1994), US 5,397,774 (Upjohn, 1995), EP 0 521 622 (Upjohn, 1993), WO 94/109017 (Upjohn, 1994), J. Med. Chem., 24, 610-613 (1981), and J. Het. Chem., 22, 601 (1985) or others as additionally described herein.

25

15

20

SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides novel compounds which bind to corticotropin releasing factor receptors, thereby

5 altering the anxiogenic effects of CRF secretion. The compounds of the present invention are useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding

10 disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in mammals.

According to another aspect, the present invention provides novel compounds of formula (I) (described below) which are useful as antagonists of the corticotropin releasing factor and which include pyrazolo[1,5-a][1,3,5]triazines and pyrazolo[1,5-a][1,2,4]triazines. The compounds of the present invention exhibit activity as corticotropin releasing factor antagonists and appear to suppress CRF hypersecretion. The present invention also includes pharmaceutical compositions containing such compounds of formula (I), and methods of using such compounds for the suppression of CRF hypersecretion, and/or for the treatment of anxiogenic disorders.

invention provides novel compounds, pharmaceutical compositions and methods which may be used in the treatment of affective disorder, anxiety, depression, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression,

Alzheimer's disease, gastrointestinal disease, anorexia nervosa or other feeding disorder, drug or alcohol withdrawal symptoms, drug addiction, inflammatory disorder, fertility problems, disorders, the treatment

of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, or a disorder selected from inflammatory disorders such as rheumatoid arthritis and 5 osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic, phobias, obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode 10 depression, recurrent depression, child abuse induced depression, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress-induced headache; cancer, human immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic colon, diarrhea, and post operative ilius and 20 colonic hypersensitivity associated by psychopathological disturbances or stress; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiarrhetic hormone (ADH); obesity; infertility; 25 head traumas; spinal cord trauma; ischemic neuronal damage (e.g., cerebral ischemia such as cerebral hippocampal ischemia); excitotoxic neuronal damage; epilepsy; cardiovascular and hear related disorders including hypertension, tachycardia and congestive 30 heart failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g., stress induced fevers, porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, and 35 dysfunctions induced by confinement in chickens, sheering stress in sheep or human-animal interaction related stress in dogs); muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type;

multiinfarct dementia; amyotrophic lateral sclerosis; chemical dependencies and addictions (e.g., dependencies on alcohol, cocaine, heroin, benzodiazepines, or other drugs); drug and alcohol withdrawal symptoms; osteoporosis; psychosocial dwarfism and hypoglycemia in mammals. The preferred uses include treatment of depression and anxiety.

The invention further includes use of a compound of formula I with the variables as recited herein in therapy or the use of a compound of formula I in the manufacture of a medicament for the treatment of CRF related diseases or disorders, including anxiety and depression.

According to a still further aspect of the invention, the compounds provided by this invention (and especially labelled compounds of this invention) are also useful as standards and reagents in determining the ability of a potential pharmaceutical to bind to the CRF receptor.

DETAILED DESCRIPTION OF INVENTION

25 [1] Thus, in a first embodiment, the present invention provides a novel compound of formula I:

30

10

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein:

```
A equals N or CR5;
      B equals N or CR4;
  5
      provided that both A and B cannot be N or
      provided that A can not be CR5 and B can not be CR6 to
      form a pyrazolopyrimidine; and wherein,
 10 \quad \text{R}^{1} is independently selected from the group consisting of
      Η,
      halogen,
      CN,
 15 C_{1-6} alkyl,
      C,_10 alkenyl,
      C<sub>2-10</sub> alkynyl,
      C3-6 cycloalkyl,
      C<sub>1-6</sub> alkyloxy,
20 C_{1-6} alkyls(0),
      -NR^{^{1a}}R^{^{1B}} wherein R^{^{1a}} and R^{^{1b}} are independently selected from
               H, C_{1-4} alkyl, C_{3-8} cycloalkyl, -C(0)C_{1-4}alkyl,
      C<sub>1-6</sub> alkylNR<sup>1a</sup>R<sup>1b</sup>,
     NR10COR10,
25 -C(0)NR<sup>1a</sup>R<sup>1b</sup>,
     -0-C(0)C_{1-4}alkyl,
     -XR<sup>1c</sup> wherein R<sup>1c</sup> is selected from H or -C<sub>1-4</sub> alkylaryl;
            X is selected from 0 or S(O)_n,
30
     wherein R^{1} is substituted with 0-6 substituents selected
     from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-4}
     haloalkyl, C_{1-4}alkylamino, C_{2-8}dialkylamino, C_{1-4}alkyloxy, C_{1-4}
     alkylthio, C_{i-4} alkylsulfinyl or C_{i-4} alkylsulfonyl;
35
     {\ensuremath{\mbox{R}}^2} is selected from the group consisting of
```

H, OR^7 , SH, NR^6R^7 , $C(OH)R^6R^{6a}$, $C(OR^7)R^6R^{6a}$, $S(O)_aR^{13}$, COR^7 , CO_2R^7 , $CHR^6(OR^7)R^{6a}$, $OC(O)R^{13}$, NO, NO_2 , $NR^6C(O)R^7$, $N(COR^7)_2$, $NR^8CONR^6R^7$ or $NR^6CO_2R^7$; or R^2 is selected from:

- 5 C₁₋₁₀ alkyl,
 C₂₋₁₀ alkenyl,
 C₂₋₁₀ alkynyl,
 C₃₋₈ cycloalkyl,
 C₃₋₆ cycloalkyl C₁₋₆ alkyl,

 10 C₁₋₁₀ alkyloxy,
 C₁₋₁₀ alkyloxyC₁₋₁₀ alkyl,
 -SO₂-C₁₋₁₀alkyl
 -SO₂R^{2a} wherein R^{2a} is aryl,
 -SO₂R^{2b} wherein R^{2b} is heteroaryl,
- 15 $-NR^{2c}R^{2b}$ wherein R^{2c} and R^{2d} are independently selected from H, C_{1-8} alkyl, $S(O)_nC_{1-4}$ alkyl, $C(O)NR^{2c}R^{2d}$, CO_2C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy C_{1-6} alkyl, $-C(O)C_{1-4}$ alkyl or R^{2c} and R^{2d} may join to form a heterocyclic ring having 0-3 heteroatoms selected from O, N or S,

20

- halogen,
- -CN,
- -C(0)-L wherein L is selected from H, NR^{2c}R^{2d}, C₁₋₆ alkyl or OC₁₋₄ alkyl, O(CH₂)_nOR wherein R is C₁₋₃ alkyl, O(CH₂)_n-NR^{2c}R^{2d}, OH, C(0)OC₁₋₆alkyl, or aryl or heteroaryl wherein m is 1-4; or
- -OC(0)-M wherein M is selected from C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₂₋₈ alkoxyalkyl, C₃₋₆cycloalkyl, C₄₋₁₂ cycloalkylalkyl, aryl, C₁₋₆ alkylaryl, heteroaryl, C₁₋₆ alkylheteroaryl;
 - n is 0, 1 or 2; and wherein
- 35 R^2 is substituted with 0-3 substituents independently selected from R', R", R"' wherein R', R" and R"' are independently selected from C_{1-6} alkyl, C_{3-7} cycloalkyl,

hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkyloxy, hydroxy, or R² is substituted with 0-3 substituents independently 5 selected from: halogen, -CN, $-S(0)_n R^{2e}$ wherein R^{2e} is selected from C_{1-4} alkyl, C_{1-4} 10 haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl; -COR 2f wherein R 2f is selected from H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl C_{1-4} alkyl; 15 -CO₂R^{2f}, -NR 2g COR 2f wherein R 2g is selected from H, C $_{1-6}$ alkyl, C $_{3-7}$ cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl; -N (COR^{2f}) $-NR^{29}CONR^{2f}R^{2h}$, wherein R^{2h} is selected from H, C_{1-6} alkyl, 20 C_{1-4} haloalkyl, C_{1-4} alkoxy C_{1-4} alkyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkyl C_{1-6} alkyl; $-NR^{2g}CO_{2}R^{2g}$ -CONR^{2g}R^{2h}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, 30 and C_{3-8} cycloalkyl wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from -O-, $-S(O)_{n}-$, $-NR^{2g}-$, $-NCO_{2}R^{2e}$, $-NCOR^{2e}$, and $-NSO_2R^{2e}$; and wherein N_4 in 35 1-piperazinyl is substituted with 0-1 substituents selected from R^{2g} , CO_2R^{2e} , COR^{2e} and SO, R^{2e}; or

the group R^{2i} , R^{2i} , R^{2k} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{2g}$, $-NR^{2g}R^{2k}$, $-C_{1-6}$ alkyl- OR^{2g} , and C_{3-8} cycloalkyl which is substituted with 0-1 R^{21} and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-, wherein

R²ⁱ is selected from aryl wherein aryl includes phenyl, naphthyl, indanyl and indenyl, each R²ⁱ being substituted with 0-1 OR^{2m} and 0-5 substituents independently selected from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I,C₁₋₄ haloalkyl, -CN, nitro, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -OC(O)R²ⁿ, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR²⁰R^{2p}, -NR^{2g}CO₂R²ⁿ, -NR^{2g}CO₂R²ⁿ, -NR^{2g}CO₂R²ⁿ, -NR^{2g}CO₂R²ⁿ, -NR^{2g}COR^{2p} and -CONR^{2o}R^{2p};

15

5

R²ⁱ is selected from heteroaryl wherein heteroaryl includes pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

- benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-s-oxide, 2,3-dihydro-benzothienyl-s-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl
- and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, OR^{2m} , -SH, -S(O)_nR^{2h}, -COR^{2m}, -OC(O)R^{2h}, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, -NR^{2g}CO₂R^{2h}, -
- $NR^{2o}R^{2p}$ and $-CONR^{2o}R^{2p}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{2g} , CO_2R^{2e} , COR^{2e} and SO_2R^{2e} ;

R^{2k} is heterocyclyl which is a saturated or partially saturated heterocyclyl as defined for R²ⁱ, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{2m},

-SH, -S(0)_nR^{2b}, -COR^{2m}, -OC(0)R^{2b}, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, NR^{2g}CO₂R^{2b}, -NR^{2o}R^{2p} and -CONR^{2o}R^{2p} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{2f}, CO₂R^{2o}, COR^{2e} and SO₂R^{2o};

wherein

 R^{21} is H, C_{1-4} alkyl, C_{3-6} cycloalky- C_{1-4} alkyl and C_{3-8} 10 cycloalkyl;

 R^{2m} is H, C_{1-6} alkyl, C_{3-6} cycloalkyl C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{2q}S(0)_n-C_{1-4}$ alkyl and $R^{2r}R^{2s}N-C_{2-4}$ alkyl;

15

 R^{2n} is H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, and C_{1-4} haloalkyl;

 R^{2o} and R^{2p} are independently selected at each occurrence from H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl and C_{1-4} haloalkyl;

 R^{2q} is selected from C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-6} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl), heteroaryl and heteroaryl (C_{1-4} alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;

30

 $R^{2r}R^{2s}$ taken together with the N form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl wherein N_4 in 1-piperiazinyl is substituted with 0-1 substituents selected from the group R^{2t} , CO_2R^{2q} , COR^{2q} and SO_2R^{2q} .

35

 R^{2t} is selected from H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy $-C_{1-4}$ alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl $-C_{1-6}$ alkyl,

aryl, aryl (C_{1-4} alkyl)-, heteroaryl and heteroaryl (C_{1-4} alkyl);

R³ is selected from an aryl or heteroaryl group attached
through an unsaturated carbon atom;

aryl is selected from phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkyloxy-C₁₋₄ alkyloxy, -OR^{2m}, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -CO₂R^{2m}, -OC(O)R²ⁿ, -NR²⁰COR²ⁿ, -N(COR^{2m})₂, -NR²⁰CONR²⁰R², -NR²⁰CO₂R^{2h}, -NR²⁰R^{2p} and CONR²⁰R^{2p};

15

heteroaryl is selected from the group pyridyl, pyrimidyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-20 dihydrobenzo-furanyl, 2,3-dihydrobenzothienyl, 2,3dihydro-benzothienyl-S-oxide, 2,3-dihydrobenzothienyl-sdioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted at 0-4 carbon atoms with a substituent independently selected 25 at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, F, I, C_{1-4} haloalkyl, -CN, $NR^{2g}R^{2h}$, nitro, - OR^{2m} , -SH, $-S(O)_{n}R^{2n}$, COR^{2m} , $-CO_{2}R^{2m}$, $-OC(O)R^{2n}$, $-NR^{2g}COR^{2m}$, - $N(COR^{2m})_2$, $-NR^{2g}CONR^{2o}R^{2p}$ and each heteroaryl being substituted at any nitrogen atom with 0-1 substituents 30 selected from the group R^{2g} , CO_2R^{3a} , COR^{3a} and SO_2R^{3a} wherein,

 R^{3a} is selected from the group C_{1-6} alkyl, C_{1-4} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

 R^4 and R^5 are independently selected at each occurrence from H, Br, Cl, F, I, -CN, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, amino, C_{1-4} alkylamino,

- 5 (C₁₋₄ alkyl)₂ amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group consisting of C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, -C(0)H, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆
- alkylamino and (C₁₋₄ alkyl)₂ amino and wherein R⁴ and R⁵ non-phenyl groups may be substituted with 0-5 substituents selected from OH, halogen, -C(O)H, -OC₁₋₆-alkyl and C₁₋₆ haloalkyl, C₁₋₆ alkyl, C₃₋₇ c-alkyl, C₁₋₆ alkyl(OH)_nCO₂R wherein R is H or C₁₋₆ alkyl, C₁₋₆ alkyl(OH)_n
- , wherein n is 0-3 or R^4 and R^5 may join together to form a C_{3-6} alkylene chain;
- R⁶, R^{6a} and R⁷ are independently selected from:
 H, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ alkenyl, C₃₋₁₀ alkynyl,
 C₁₋₁₀ haloalkyl, C₂₋₈ alkoxyalkyl, C₄₋₁₂ cycloalkylalkyl, C₅₋₁₀ cycloalkenyl, C₆₋₁₄ cycloalkenylalkyl;
- R^6 , R^{6a} and R^7 are substituted with 0-6 substituents independently selected from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-4} haloalkyl;

with the proviso that the compounds of Formula I with R^1 , R^2 , R^3 , R^4 and R^5 as specifically defined below are excluded:

30

- (a) a compound of formula I wherein $A = CR^5$ with R^5 ohydroxyphenyl, B = N, $R^3 = ohydroxyphenyl$, $R^1=SMe$ and $R^2 = CN$ (Registry Reference 23/IS98062) and
- 35 (b) a compound of formula I wherein $A=CR^5$, $R^5=CH_3$, B=N, $R^1=Ph$, $R^2=Br$ and R^3 is Ph;

(c) a compound of formula I wherein $A = CR^5$, $R^5 = p-Cl-phenyl$, B = N, $R^1 = Me$, $R^2 = H$ and $R^3 = p-CF_3-phenyl$ (Registry reference 152/IS98062);

- 5 (d) a compound of formula I wherein A= CR⁵, R⁵ = phenyl, B= N, R¹ = Me, R² = H and R³ = p-CF₃-phenyl(Registry reference 153/IS98062);
- (e) a compound of formula I wherein A= CR⁵, R⁵ = ethyl,
 10 B= N, R¹ = Me, R² = H and R³ = N-methyl-piperiazin-N-yl
 (registry reference 184/IS98062);
- (f) a compound of formula I wherein A=CR⁵, R⁵ is p-Cl-Ph,
 R¹=H, R²=H and R³ = p-CF₃-Ph (Registry reference
 15 9/IS98179);
 - (g) a compound of formula I wherein $A=CR^5$, $R^5=p-Cl-Ph$, $R^1=CH_3$, $R^2=H$, $R^3=p-CF_3-Ph$ (Registry reference 10/IS98179);
- 20 (h) a compound of formula I wherein $A=CR^5$, $R^5=Ph$, $R^1=Me$, $R^2=H$, $R^3=p-CF_3-Ph$ (Registry reference 11/IS98179);
 - (i) a compound of formula I wherein A=CR⁵, R⁵=Ph, R¹=H, R²=H, R³=p-CF₃-Ph (Registry reference 12/IS98179);
 - (j) a compound of formula I wherein $A=CR^5$, $R^3=Ph$ and R^2 is H, Br, CN, CO_2Et or Cl (J. Med. Chem. (1982), 25(3), 243-9;
- 30 (k) a compound of formula I wherein $A=CR^5$, $R^5=CH_3$, C_2H_5 or Ph, $R^1=H$, $R^2=H$ and $R^3=Ph$ (US 3,910,907).
- [1'] The present invention preferrably relates to a novel compound of formula I:

25

$$R^1$$
 (I)
 R^3

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein:

5

A equals N or CR5;

B equals N or CR4;

10 provided that both A and B cannot be N or provided that A can not be CR⁵ and B can not be CR⁴ to form a pyrazolopyrimidine; and wherein,

R is independently selected from the group consisting of

15

Η,

halogen,

CN,

C1-6 alkyl,

20 C₂₋₁₀ alkenyl,

C₂₋₁₀ alkynyl,

C3-6 cycloalkyl,

C₁₋₆ alkyloxy,

C₁₋₆ alkylS(O)_n,

25 $-NR^{1a}R^{1b}$ wherein R^{1a} and R^{1b} are independently selected from H, C_{1-4} alkyl, C_{3-8} cycloalkyl, $-C(0)C_{1-4}$ alkyl, C_{1-6} alkyl $NR^{1a}R^{1b}$,

NR10COR1b,

-C (O) NR1aR1b,

 $-0-C(0)C_{1-4}alkyl$,

-XR^{1c} wherein R^{1c} is selected from H or -C₁₋₄ alkylaryl;

X is selected from 0 or S(O),

wherein R¹ is substituted with 0-6 substituents selected from halogen, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkyloxy, C₁₋₄ haloalkyl, C₁₋₄alkylamino, C₂₋₈dialkylamino, C₁₋₄alkyloxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl or C₁₋₄ alkylsulfonyl;

 R^2 is selected from the group consisting of OR', SH, NR⁶R⁷, C(OH)R⁶R^{6a}, C(OR⁷)R⁶R^{6a}, S(O)_nR¹³, COR', CO₂R⁷, CHR⁶(OR⁷)R^{6a}, OC(O)R¹³, NO, NO₂, NR⁶C(O)R⁷, N(COR⁷)₂, NR⁸CONR⁶R⁷ or NR⁶CO₂R⁷; or R² is selected from:

C₁₋₁₀ alkyl,

 C_{2-10} alkenyl,

15 C₂₋₁₀ alkynyl,

C3-8 cycloalkyl,

 C_{3-6} cycloalkyl C_{1-6} alkyl,

C₁₋₁₀ alkyloxy,

 C_{1-10} alkyloxy C_{1-10} alkyl,

- $-SO_2-C_{1-10}$ alkyl
 - -SO₂R^{2a} wherein R^{2a} is aryl,
 - -SO,R2b wherein R2b is heteroaryl,
- -NR^{2c}R^{2D} wherein R^{2c} and R^{2d} are independently selected from H, C₁₋₈ alkyl, S(O)_DC₁₋₄alkyl, C(O)NR^{2c}R^{2d}, CO₂C₁₋₄alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkyloxyC₁₋₆ alkyl, -C(O)C₁₋₄alkyl or R^{2c} and R^{2d} may join to form a heterocyclic ring having 0-3 heteroatoms selected from O, N or S,
- 30 -C(0)-L wherein L is selected from H, $NR^{2c}R^{2d}$, C_{1-6} alkyl $O(CH_2)_mOR$ wherein R is C_{1-3} alkyl, $O(CH_2)_m-NR^{2c}R^{2d}$, OH, $C(0)OC_{1-6}$ alkyl, or aryl or heteroaryl wherein m is 1-4; or
- -OC(0)-M wherein M is selected from C₁₋₄ alkyl, C₁₋₄
 35 haloalkyl, C₂₋₈ alkoxyalkyl, C₃₋₆cycloalkyl, C₄₋₁₂
 cycloalkylalkyl, aryl, C₁₋₆ alkylaryl, heteroaryl, C₁₋₆
 alkylheteroaryl;

n is 0, 1 or 2; and wherein

R² is substituted with 0-3 substituents independently selected from R', R", R"' wherein R', R" and R"' are independently selected from C₁₋₆ alkyl, C₃₋₇ cycloalkyl, hydroxyC₁₋₆ alkyl, C₁₋₆ alkyloxyC₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkyloxy, hydroxy, or

 R^2 is substituted with 0-3 substituents independently 10 selected from:

halogen,

-CN,

 $-S(0)_{1}R^{2}$ wherein R^{2} is selected from C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl;

-COR 2f wherein R 2f is selected from H, C $_{1-4}$ alkyl, C $_{1-4}$ haloalkyl, C $_{1-4}$ alkyloxy C $_{1-4}$ alkyl, C $_{3-6}$ cycloalkyl, and C $_{3-6}$ cycloalkylC $_{1-4}$ alkyl;

20

-CO₂R^{2f},

-NR²⁹COR^{2f} wherein R^{2g} is selected from H, C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl; -N(COR^{2f})₂,

25 $-NR^{29}CONR^{2f}R^{2h}$, wherein R^{2h} is selected from H, C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy C_{1-4} alkyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkyl C_{1-6} alkyl;

30 -NR^{2g}CO₂R^{2e},
 -CONR^{2g}R^{2h},
 1-morpholinyl,
 1-piperidinyl,
 1-piperazinyl,

35 and

 C_{3-8} cycloalkyl wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from -O-, -S(O)_n-, -NR^{2g}-, -NCO₂R^{2e}, -NCOR^{2e},

and $-NSO_2R^{2e}$; and wherein N_a in 1-piperazinyl is substituted with 0-1 substituents selected from R^{2g}, CO₂R^{2c}, COR^{2c} and SO₂R^{2e}; or 5 the group R^{2i} , R^{2j} , R^{2k} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{2g}$, $-NR^{2\sigma}R^{2h},\ -C_{1-\delta}$ alkyl-OR $^{2\sigma},$ and $C_{3-\delta}$ cycloalkyl which is substituted with $0-1 R^{21}$ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-, wherein 10 R^{2i} is selected from aryl wherein aryl includes phenyl, naphthyl, indanyl and indenyl, each R^{2i} being substituted with 0-1 OR^{2m} and 0-5 substituents independently selected from the group C_{1-6} 15 alkyl, C3-6 cycloalkyl, Br, Cl, F, I,C1-4 haloalkyl, -CN, nitro, -SH, -S(0) $_{n}R^{2n}$, -COR 2m , -OC(0) R^{2n} , -NR $^{2g}COR^{2m}$, -N(COR^{2m}), $-NR^{2g}CONR^{20}R^{2p}$, $-NR^{2g}CO_{2}R^{2n}$, $-NR^{2o}R^{2p}$ and $-CONR^{2o}R^{2p}$; 20 R^{2i} is selected from heteroaryl wherein heteroaryl includes pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3dihydrobenzothienyl-s-oxide, 2,3-dihydro-benzothienyl-sdioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-30 4 carbon atoms with a substituent independently selected from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, OR^{2m} , -SH, -S(O)_n R^{2h} , -COR^{2m}, -OC(0) R^{2h} , $-NR^{2g}COR^{2m}$, $-N(COR^{2m})_2$, $-NR^{2g}CONR^{2o}R^{2p}$, $-NR^{2g}CO_2R^{2h}$, $-NR^{2g}CO_2R^{2m}$ $\text{NR}^{2\text{o}}\text{R}^{2\text{p}}$ and -CONR $^{2\text{o}}\text{R}^{2\text{p}}$ and each heteroaryl being substituted 35 on any nitrogen atom with 0-1 substituents selected from the group R²⁰, CO₂R^{2e}, COR^{2c} and SO₂R^{2c};

R^{2k} is heterocyclyl which is a saturated or partially saturated heteroaryl as defined for R²ⁱ, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected from the group C₁₋₆ alkyl, C₃₋₆

5 cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{2m}, -SH, -S(0)_nR^{2h}, -COR^{2m}, -OC(0)R^{2h}, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, NR^{2g}CO₂R^{2h}, -NR^{2o}R^{2p} and -CONR^{2o}R^{2p} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{2f}, CO₂R^{2c}, COR^{2e} and SO₂R^{2c};

wherein

 R^{21} is H, C_{1-4} alkyl, C_{3-6} cycloalky- C_{1-4} alkyl and C_{3-8} cycloalkyl;

 R^{2m} is H, C_{1-6} alkyl, C_{3-6} cycloalkyl C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{2q}S(0)_n-C_{1-4}$ alkyl and $R^{2r}R^{26}N-C_{2-4}$ alkyl;

20

 R^{2n} is H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, and C_{1-4} haloalkyl;

 R^{2o} and R^{2p} are independently selected at each occurrence from H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl and C_{1-4} haloalkyl;

R^{2q} is selected from C₁₋₆ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl- C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl), heteroaryl and heteroaryl (C₁₋₆ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;

35

 $R^{2r}R^{2s}$ taken together with the N form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl wherein N_4 in

1-piperiazinyl is substituted with 0-1 substituents selected from the group R^{2t} , CO_2R^{2q} , COR^{2q} and SO_2R^{2q} .

 R^{2t} is selected from H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy $-C_{1-4}$ alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl $-C_{1-6}$ alkyl, aryl, aryl $(C_{1-4}$ alkyl) -, heteroaryl and heteroaryl $(C_{1-4}$ alkyl);

R³ is selected from an aryl or heteroaryl group attached through an unsaturated carbon atom;

aryl is selected from phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkyloxy-C₁₋₄ alkyloxy, -OR^{2m}, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -CO₂R^{2m}, -OC(O)R²ⁿ, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, -NR^{2g}CO₂R^{2h}, -NR^{2o}R^{2p} and CONR^{2o}R^{2p};

20

heteroaryl is selected from the group pyridyl, pyrimidyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl,

- isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzo-furanyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-s-dihydro-benzothienyl-s-oxide, 2,3-dihydrobenzothienyl-s-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted at 0-
- 4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, F, I, C_{1-4} haloalkyl, -CN, $NR^{2g}R^{2h}$, nitro, - OR^{2m} , -SH, -S(O)_n R^{2n} , COR^{2m} , -CO₂ R^{2m} , -OC(O) R^{2n} , -NR^{2g} COR^{2m} , -N(COR^{2m})₂, -NR^{2g} $CONR^{2g}R^{2p}$ and each heteroaryl being
- 35 substituted at any nitrogen atom with 0-1 substituents selected from the group R^{2g} , CO_2R^{3a} , COR^{3a} and SO_2R^{3a} wherein,

 R^{3a} is selected from the group C_{1-6} alkyl, C_{1-4} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, and dimethylamino;

- $\ensuremath{\mathtt{R}}^4$ and $\ensuremath{\mathtt{R}}^5$ are independently selected at each occurrence from H, Br, Cl, F, I, -CN, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, amino, C_{1-4} alkylamino, 10 $(C_{1-4} \text{ alkyl})_2$ amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group consisting of $C_{1,2}$ alkyl, C_{3-8} cycloalkyl, Br, Cl, F, I, -C(O)H, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-6} 15 alkylamino and (C1-4 alkyl)2 amino and wherein R4 and R5 non-phenyl groups may be substituted with 0-5 substituents selected from OH, halogen, -C(O)H, -OC1-6alkyl and C_{1-6} haloalkyl, C_{1-6} alkyl, C_{3-7} c-alkyl, C_{1-6} alkyl(OH) $_{n}$ CO $_{2}$ R wherein R is H or C $_{1-6}$ alkyl, C $_{1-6}$ alkyl(OH) $_{n}$,wherein n is 0-3 or $\ensuremath{\mbox{R}}^4$ and $\ensuremath{\mbox{R}}^5$ may join together to form a
- R⁶, R^{6a} and R⁷ are independently selected from:

 H, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ alkenyl, C₃₋₁₀ alkynyl,

 C₁₋₁₀ haloalkyl, C₂₋₈ alkoxyalkyl, C₄₋₁₂ cycloalkylalkyl, C₅₋₁₀

 cycloalkenyl, C₆₋₁₄ cycloalkenylalkyl;
- R^6 , R^{6a} and R^7 are substituted with 0-6 substituents 30 independently selected from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-4} haloalkyl.

C₃₋₆ alkylene chain;

[2] The present invention also relates to compounds of formula (Ia) and (Ib) below with the variables as recited above in group [1] or [1']:

$$R^{1}$$
 (Ia)
 R^{3}
 (Ib)
 R^{3}

5

10

15

[3] The present invention relates to a compound as described directly above in [1], [1'] or [2] wherein

 R^1 is selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkylthio, $-XR^{1c}$ wherein R^1 is substituted with 0-6 substituents selected from halogen, C_{1-4} alkyl or C_{1-4} haloalkyl;

 $\rm R^2$ is selected from $\rm C_{1-10}$ alkyl, $\rm C_{2-10}$ alkenyl, $\rm C_{2-10}$ alkynyl, $\rm C_{3-8}$ cycloalkyl, $\rm C_{3-6}$ cycloalkyl $\rm C_{1-6}$ alkyl, $\rm -NR^{2c}R^{2d}$ wherein $\rm R^2$ is unsubstituted or substituted with 1-3 substitutents independently selected from the group $\rm R^{2i}$, $\rm R^{2i}$, $\rm R^{2k}$, $\rm C_{1-6}$ alkyl, $\rm C_{2-8}$ alkenyl, $\rm C_{2-8}$ alkynyl, Br, Cl, F, I, $\rm C_{1-4}$ haloalkyl, $\rm -OR^{2g}$, $\rm -NR^{2g}R^{2h}$, $\rm -C_{1-6}$ alkyloR^{2g}, and $\rm C_{3-8}$ cycloalkyl which is substituted with 0-1 $\rm R^{21}$ and in which 0-1 carbons of $\rm C_{4-8}$ cycloalkyl is replaced by -0-.

20

25

- [4] The present invention also relates to a compound described directly above in group [1] or [1'], [2] or [3] wherein R' is selected from an aryl group selected from phenyl or substituted versions thereof or a heteroaryl group selected from pyridyl or substituted versions thereof.
- [5] The present invention relates to a compound described directly above in [1], [1'], [2], [3], or [4] wherein R³ is substituted with 0-4 substituents independently selected from halogen, C₁₋₄ alkyloxy, C₁₋₆

alkyl or NR'R" wherein R' and R" are independently selected from H or C_{1-6} alkyl.

- [6] The present invention preferrably relates to a compound as described directly above in groups [1], [1'], [2], [3], [4] or [5] wherein R³ is selected from 2,4dichlorophenyl, 2-chloro-4-methoxyphenyl, 2,4,6trimethylphenyl, 2,4,6-trimethoxyphenyl, 2-dimethylamino-4-methyl-pyridin-5-yl, 2,4-dichloro-5-fluorophenyl, 2chloro-4-methoxy-5-fluorophenyl, 2-methyl-4methoxyphenyl, 2-methyl-4,6-dimethoxyphenyl, 2-chloro-4,5-dimethoxyphenyl or 2-chloro-4,6-dimethoxyphenyl.
- [7] The present invention also preferrably relates to a compound as described in the group [1], [1'], [2], [3], [4], [5], or [6] wherein R² is selected from C₁ alkyl of the formula -CR'R"R"' wherein R', R" and R"' are independently selected from H, C₁-6 alkyl, C₃-7 cycloalkyl, hydroxyC₁-6 alkyl, C₁-6 alkyloxyC₁-6 alkyl, C₂-6 alkenyl, C₁-6 alkyloxy, hydroxy, with the proviso that each of R', R" and R'" cannot be H;

or R^2 is selected from $NR^{2c}R^{2d}$ wherein R^{2c} and R^{2d} are independently selected from H or C_{1-6} alkyl.

25

[8] The present invention preferrably relates to a compound according to groups [1]-[7] and [1'] wherein R³ is selected from an aryl or heteroaryl group attached through an unsaturated carbon atom wherein, aryl is phenyl, each phenyl being substituted with 0-5 substituents independently selected at each occurrence from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkyloxy-C₁₋₄ alkyloxy, -OR²^{2m}, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, -SH, -S(O)_nR²²ⁿ, -COR²^{2m}, -CO₂R²^{2m}, -OC(O)R²²ⁿ, -NR²^{2g}COR²^{2m}, -N(COR²^{2m})₂, -NR²^{2g}CONR²^{2o}R²², -NR²^{2g}CO₂R²^{2h}, -NR²^{2o}R²² and CONR²^{2o}R²² and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino,

CF₃, C₂F₅, OCF₃, SO₂Me and acetyl and wherein, heteroaryl is selected at each occurrence from pyridyl, each pyridyl being substitued at 0-4 carbon atoms with a substituent independently selected at each occurrence from the group $C_{1-6} \text{ alkyl}, \ C_{3-6} \text{ cycloalkyl}, \ Br, \ F, \ I, \ C_{1-4} \text{ haloalkyl}, \ -CN, \\ \text{nitro}, \ -OR^{2m}, \ -SH, \ -S(O)_n R^{2n}, \ COR^{2m}, \ -CO_2 R^{2m}, \ -OC(O) R^{2n}, \ -N(COR^{2m})_2, \ -NR^{2g}CONR^{2g}R^{2p} \text{ and each pyridyl being substituted at any carbon atom with 0-1 substituents selected from the group <math>R^{2g}$, $CO_2 R^{3a}$, COR^{3a} and $SO_2 R^{3a}$.

10

[9] The present invention preferrably relates to a compound of formula (Ia)

15

$$R^2$$
 N
 N
 R^5
 R^3

(Ia)

or a pharmaceutically acceptable salt thereof, wherein

20

25

R¹ is independently selected at each occurrence from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, halo, CN, C₁-C₄ haloalkyl, C₁-C₁₂ hydroxyalkyl, C₂-C₁₂ alkoxyalkyl, C₂-C₁₀ cyanoalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, NR⁹R¹⁰, C₁-C₄ alkyl-NR⁹R¹⁰, NR⁹COR¹⁰, OR¹¹, SH or S(0)_nR¹²;

 R^2 is selected from:

-H, OR^7 , SH, $S(O)_{n}R^{13}$, COR^7 , CO_2R^7 , $CHR^6(OR^7)_R^6a$, $OC(O)_{R^{13}}$, $CH(OH)_{R^6}$, $C(OH)_{R^6}R^{6a}$, $C(OR^7)_{R^6}R^{6a}$, $OC(OR^7)_{R^6}R^{6a}$

 $NR^{6}R^{7}$, $NR^{6}S(0)_{2}R^{7}$, $N(S(0)_{2}R^{7})_{2}$, $N(OR^{7})_{R}^{6}$ or $CONR^{6}R^{7}$;

or

-C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

C3-C8 cycloalkyl, C5-C8 cycloalkenyl, C4C12 cycloalkylalkyl or C6-C10

cycloalkenylalkyl, each optionally

substituted with 1 to 3 substituents

independently selected at each occurrence

from C1-C6 alkyl, C3-C6 cycloalkyl, halo,

C1-C4 haloalkyl, cyano, OR¹⁵, SH,

S(O)nR¹³, COR¹⁵, CO2R¹⁵, OC(O)R¹³, NR⁸COR¹⁵,

N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO2R¹³, NR¹⁶R¹⁵,

CONR¹⁶R¹⁵, aryl, heteroaryl and

heterocyclyl;

R is selected from phenyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, furanyl, thienyl, benzothienyl, benzofuranyl, 2,3-20 dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2benzopyranyl, tetralinyl, each R³ optionally substituted with 1 to 5 substituents, each Ar is attached via an unsaturated carbon atom, wherein 25 the substitutents are independently selected at each occurrence from: C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, NO2, halo, CN, C1- C_4 haloalkyl, NR^6R^7 , NR^8COR^7 , $NR^8CO_2R^7$, COR^7 , OR^7 , CONR^6R^7 , $\text{CO}(\text{NOR}^9)\text{R}^7$, CO_2R^7 , or $\text{S}(\text{O})_n\text{R}^7$, where each 30 such C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl are optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-35 C4 alkyl, NO2, halo, CN, NR6R7, NR6COR7, NR7CO2R7, $COR^7 OR^7$, $CONR^6R^7$, CO_2R^7 , $CO(NOR^9)R^7$, or $S(O)_{nR}^7$;

 ${\tt R}^5$ is selected from H, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-5 C6 cycloalkyl; halo, C1-C4 haloalkyl, cyano, OR15, SH, $S(0)_n R^{13}$, COR^{15} , $CO_2 R^{15}$, $OC(0)_R R^{13}$, $NR^8 COR^{15}$, $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl and heterocyclyl; 10 halo, CN, $-NR^6R^7$, NR^9COR^{10} , $-NR^6S(O)_nR^7$, $S(O)_{n}NR^{6}R^{7}$, C_{1} - C_{4} haloalkyl, $-OR^{7}$, SH or - $S(0)_n R^{12};$ 15 ${\rm R}^{\rm 6},~{\rm R}^{\rm 6a}$ and ${\rm R}^{\rm 7}$ are independently selected at each occurrence from: -H. -C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, 20 C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C₁₂ cycloalkylalkyl, C₅-C₁₀ cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally 25 substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3- C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{nR}^{13}$, COR^{15} , CO_2R^{15} , $OC(O)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, NR8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, 30 heteroaryl or heterocyclyl, -aryl, aryl(C1-C4 alkyl), heteroaryl, heteroaryl(C_1 - C_4 alkyl), heterocyclyl or heterocyclyl(C1-C4 alkyl); 35 alternatively, NR^6R^7 and NR^6aR^{7a} are independently piperidine, pyrrolidine, piperazine, N-

methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups;

- R⁸ is independently selected at each occurrence from H
 or C₁-C₄ alkyl;
 - R⁹ and R¹⁰ are independently selected at each occurrence from H, C₁-C₄ alkyl, or C₃-C₆ cycloalkyl;
- R^{11} is selected from H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, or C_3 - C_6 cycloalkyl;
 - R^{12} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

10

20

25

- R¹³ is selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₈ alkoxyalkyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, aryl, aryl(C₁-C₄ alkyl)-, heteroaryl or heteroaryl(C₁-C₄ alkyl)-;
- $m R^{15}$ and $m R^{16}$ are independently selected at each occurrence from H, C1-C6 alkyl, C3-C10 cycloalkyl, C4-C16 cycloalkylalkyl, except that for S(O) $_{n}$ R¹⁵ cannot be H;
- aryl is phenyl or naphthyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(0)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(0)_RR¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;
- heteroaryl is pyridyl, pyrimidinyl, triazinyl, furanyl,

 pyranyl, quinolinyl, isoquinolinyl, thienyl,
 imidazolyl, thiazolyl, indolyl, pyrrolyl,
 oxazolyl, benzofuranyl, benzothienyl,
 benzothiazolyl, isoxazolyl, pyrazolyl, 2,3-

dihydrobenzothienyl or 2,3-dihydrobenzofuranyl, each being optionally substituted with 1 to 5 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹⁵, -COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;

heterocyclyl is saturated or partially saturated

heteroaryl, optionally substituted with 1 to 5
substituents independently selected at each
occurrence from C1-C6 alkyl, C3-C6 cycloalkyl,
halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹⁵,
COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂,

NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁵R¹⁶, and CONR¹⁶R¹⁵;

5

n is independently at each occurrence 0, 1 or 2.

- 20 [10] The present invention also relates to a compound according to groups [1'] and [1]-[9] wherein R³ is substituted with 2-4 substituents.
- [11] The present invention also relates to a compound according to groups [1'] and [1]-[10] wherein R² is substituted with 1-4 substituents.
- [12] The present invention also relates to a compound
 according to groups [1'] and [1]-[9] wherein R² is
 30 selected from 3-pentyl, NEt2, butyl, NHCH(CH2OMe)2,
 NHCH(CH2OEt)2,NHCH(Et)CH2OMe, NH-3-heptyl, NH-3-pentyl, NH2-butyl, NH-3-hexyl, NHCH(CH2Ph)CH2OMe,
 NHCH(Et)CH2CH2OMe, NH-cyclobutyl, NH-cyclopentyl, NEtPr,
 NEtBu, NMePr, NMePh, Npr2, NPr(CH2-c-C3H5),
- 35 N(CH₂CH₂OMe)₂, morpholino, N(CH₂Ph)CH₂CH₂OMe,
 N(Me)CH₂CH₂OMe, N(Et)CH₂CH₂OMe, N(CH₂-c-C₃H₅)CH₂CH₂OMe,
 N(CH₂-c-C₃H₅)Pr, N(CH₂-c-C₃H₅)Et, OEt, OCH(Et)CH₂OMe,
 OCH(Et)CH₂CH₂OMe, OCH(Me)CH₂CH₂OMe, O-3-pentyl, O-2-

pentyl, S-3-pentyl, S-2-pentyl, SEt, S(0)Et, SO2Et, S-3-pentyl, S(0)-3-pentyl, SO2-3-pentyl, S-2-pentyl, S(0)-2-pentyl, SO2-2-pentyl, CH(CO2Et)2, C(Et)(CO2Et)2, CH(Et)CH2OH, CH(Et)CH2OMe, CH(Et)CH2OMe, CONMe2,

- 5 COCH3, COEt, COPr, CO-2-pentyl, CO-3-pentyl, CH(OH)CH3, C(OH)Me2, C(OH)Ph-3-pyridyl, CH(OMe)CH3, CH(OMe)Et, CH(OMe)Pr, CH(OEt)CH3, CH(OPr)CH3, 2-pentyl, 2-butyl, cyclobutyl, cyclopentyl, CH(Me)cyclobutyl, CH(OMe)cyclobutyl, CH(OMe)cyclobutyl, CH(OMe)cyclobutyl, CH(OMe)cyclobutyl, CH(OMe)cyclopropyl,
- 10 CH(OMe)cyclopropyl, CH(OH)cyclopropyl, CH(Et)cyclobutyl, CH(Et)cyclopropyl, CH(OMe)cyclobutyl, CH(OMe)cyclopropyl, CH(OEt)cyclobutyl, CH(OEt)cyclopropyl, CH(Me)CH2cyclobutyl, CH(OMe)CH2-cyclobutyl, CH(OH)CH2-cyclobutyl, CH(Me)CH2-cyclopropyl, CH(OMe)CH2-cyclopropyl, CH(OH)CH2-
- 15 cyclopropyl, CH(Et)CH2-cyclobutyl, CH(Et)CH2-cyclopropyl,
 CH(OMe)CH2-cyclobutyl, CH(OMe)CH2-cyclopropyl,
 CH(OEt)CH2-cyclobutyl, CH(OEt)CH2-cyclopropyl,
 CH(CH2OMe)cyclobutyl, CH(CH2OMe)cyclopropyl,
 CH(CH2OEt)cyclobutyl, CH(CH2OEt)cyclopropyl,
- 20 CH(cyclobuty1)2, CH(cyclopropy1)2, CH(Et)CH2CONMe2,
 CH(Et)CH2CH2NMe2, CH(CH2OMe)Me, CH(CH2OMe)Et,
 CH(CH2OMe)Pr, CH(CH2OEt)Me, CH(CH2OEt)Et, CH(CH2OEt)Pr,
 CH(CH2C=CMe)Et, CH(CH2C=CMe)Et.
- 25 [13] The present invention further relates to a compound of formula I or Ia according to groups [1'] and [1]-[12] above wherein R³ is selected from 2,4-Cl₂-Ph, 2,4,6-Me₃-Ph, 2,4-Me₂-Ph, 2-Me-4-MeO-Ph, 2-Cl-4-MeO-Ph, 2-Cl-4,5-(MeO)₂-Ph, 2-Cl-4-MeO-5-F-Ph, 2-Me-4-MeO-5-F-Ph, 2,5-
- 30 (Me) 2-4-MeO-Ph, 2-Me-4-NMe2-Ph, 2-CF3-4-MeO-Ph, 2-Me-4-(COMe)-Ph, 2-Me-6-Me2N-pyrid-3-yl, 4-Me-2-Me2N-pyrid-5-yl, 2-Me-6-MeO-pyrid-3-yl, 4-Me-2-MeO-pyrid-5-yl.
- [14] The present invention also relates to a compound of formula Ib

having R'-R' as defined in groups [1]-[13] above.

[15] In a preferred embodiment, the present invention relates to a compound according to group [14] wherein R¹ is selected from H, CH₃, C₂H₅, OCH₃; R4 is selected from H, OCH₃, CH₃ and C₂H₅; R² is selected from CH(C₂H₅)₂, CH(C-C₃H₅)₂, CHC₂H₅(C-C₃H₅), CH(C₂H₅)₂, CH(C-C₃H₅)₂; and R³ is selected from 2,4-Cl₂-Ph, 2-Cl-4-CH₃O-Ph, 2,4,6-(CH₃)₃-Ph, 2-Cl-4-CF₃-Ph and 2-(CH₃)₂N-4-CH₃-pyridin-5-yl.

[16] The present invention also relates to compounds of formula Ic, Id, Ie and If

and the pharmaceutically acceptable salts thereof wherein R^2 , R^3 , R^4 and R^5 are as defined in groups [1]-[15] above.

15

[17] The present invention also relates to a method of antagonizing a CRF-1 receptor in mammals including humans wherein binding to the receptor causes and ultimately

results in the treatment of affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder,

- diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity,
- infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by
- 15 CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie or If according to groups [1]-[16] and [1'] above with the proviso that, in the case of compounds of group [1], provisos (a) and (b) are not 20 present.
 - [18] The present invention also relates to use of a compound according to groups [1]-[16] and [1'] in therapy.

25

30

- [19] The present invention also provides pharmaceutical compositions comprising compounds of Formula I, Ia, Ib, Ic, Id, Ie, or If with the variables as recited above in groups [1]-[16] and [1'] and a pharmaceutically acceptable carrier.
- [20] The present invention also relates to compounds according to group [9] wherein R^2 is NR^6R^7 , OR^7 or
- -C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C8 cycloalkyl, C5-C8 cycloalkenyl, C4-C12 cycloalkylalkyl or C6-C10 cycloalkenylalkyl, each optionally

substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, C_1 - C_4 C_5 , C_6 ,

[21] The present invention also relates to a compound of formula II

10

5

or a pharmaceutically acceptable salt or isomer thereof wherein R^1-R^4 and the other variables are as defined in groups [1'] and [1]-[20].

15

- [22] The invention further relates to pharmaceutical compositions comprising the compound of group [21] and a pharmaceutically acceptable carrier.
- 20 [23] The invention also comprisies use of a compound according to group [21] in therapy and to a method of treating a patient in need of treatment thereof comprising administering to said patient a pharmaceutically effective amount of a compound or composition according to group [21] or [22].

Many compounds of this invention have one or more asymmetric centers or planes. Unless otherwise indicated, all chiral (enantiomeric and diastereomeric) and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds, and all such

stable isomers are contemplated in the present invention. The compounds may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All chiral, (enantiomeric and diastereomeric) and racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

10

20

25

30

35

The term "alkyl" includes both branched and straight-chain alkyl having the specified number of carbon atoms. "Alkenyl" includes hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Alkynyl" includes hydrocarbon chains of either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like. "Haloalkyl" is intended to include both branched and straight-chain alkyl having the specified number of carbon atoms, substituted with 1 or more halogen; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or poly-cyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and so forth. "Halo" or "halogen" includes fluoro, chloro, bromo, and iodo.

The term "substituted", as used herein, means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound" or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

The term "pharmaceutically acceptable salts" includes acid or base salts of the compounds of formulas (I). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

10

30

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug of formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group,

respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formulas (I) and the like.

The term "therapeutically effective amount" of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety, depression, immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a host.

The variables as described in group [9] above are also shown in Schemes 1-4 which describe the synthesis of compounds of the invention.

20

Syntheses

Some compounds of Formula (Ia), may be prepared from intermediate compounds of Formula (3) using the procedures outlined in Scheme 1 with the variables defined as above. Compounds of Formula (3) may be treated with a base in an inert solvent, followed by reaction with compounds of the Formula R¹COY, where R¹ is defined above and Y is a halogen, alkoxy, dialkylamino, 30 alkylthio, alkanoyloxy, alkanesulfonyloxy or cyano group. Bases may include, but are not limited to, alkyl lithiums, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), 35 alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably

N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably

10

5

Scheme 1

dimethylacetamide), cyclic amides (preferably Nmethylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -80°C to 100°C. resulting intermediates (4) are then reacted with hydrazine or its hydrate in an inert solvent in the presence or absence of an acid to provide pyrazoles (5). 10 Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), cyclic ethers 15 (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), N,Ndialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or 20 aromatic hydrocarbons (preferably benzene or toluene). Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably ptoluenesulfonic acid or benzenesulfonic acid), 25 alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used. Preferred temperatures range 30 from ambient temperature to 150°C.

Compounds of Formula (Ia) may be prepared by reaction of pyrazoles (5) with intermediates (7), or (8) or (9) in the presence or absence of an acid or base in an inert solvent. Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-

dialkylformamides (preferably dimethylformamide), N,Ndialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably p-10 toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used. Bases may include, but are not limited to, alkali metal carbonates, alkali metal bicarbonates, trialkyl amines (preferably N,N-diisopropyl-N-ethyl amine) or aromatic amines (preferably pyridine). Preferred temperatures range from ambient temperature to 150°C. Intermediates (7), (8) and (9) are derived from amides (6). Amides (6) may be reacted in an 20 inert solvent in the presence or absence of an acid with compounds of the Formula $R^a_2NCR^5(OR^b)_2$, where R^a and R^b independently are lower alkyl, to generate compounds of Formula (7). Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, 25 preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), N,Ndialkylacetamides (preferably dimethylacetamide), cyclic 30 amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), haloalkanoic 35 acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably ptoluenesulfonic acid or benzenesulfonic acid),

alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used. Preferred temperatures range from ambient temperature to 150°C. Intermediates of Formula (7) may be converted to compounds of Formula (8) by reaction with H2S in an inert solvent. Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), alkanoic acids of 2 to 10 carbons (preferably 10 acetic acid), haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid, phosphoric acid 15 or cyclic ethers (preferably tetrahydrofuran or 1,4dioxane). Compounds of Formula (8) may be converted to compounds of Formula (9) by treatment with a base and an alkylating agent in an inert solvent at reaction temperatures ranging from -80°C to 250°C. Bases may 20 include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal hydroxides, alkali 25 metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (prefereably N,N-di-isopropyl-N-ethyl amine or triethyl amine) or aromatic amines (preferably pyridine). Alkylating agents 30 may include, but are not limited to, C1-C10 alkyl halides, -tosylates, -mesylates or -triflates or C_1 - C_{10} haloalkyl(1 - 10 halogens)-halides, -tosylates, mesylates or -triflates. Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides

(preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -80°C to 100°C.

Compounds of Formula (Ia) may also be prepared by the methods shown in Scheme 2. Compounds of Formula (11) may be treated with a halogenating agent in the presence 10 or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80°C to 250°C to give products of Formula (12) (where X is halogen). Halogenating agents include, but are not 15 limited to, Br2, Cl2, I2, N-bromosuccinimide, Niodosuccinimide or N-chlorosuccinimide. Bases may include, but are not limited to, alkali metal carbonates, alkali metal bicarbonates, trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine) or aromatic amines 20 (preferably pyridine). Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably 25 dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably Nmethylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -20°C to 150°C. Compounds of Formula (12) may then

35

Scheme 2

- be reacted with a base or a metal in the presence or absence of a metal salt in an inert solvent and then treated with a compound of the Formula R²Y where Y is halogen, alkoxy, dialkylamino, alkylthio, alkanoyloxy, alkanesulfonyloxy or cyano groups. Examples of bases
- 10 include, but are not limited to, alkyl or aryl lithiums

(e.g. n-butyl lithium or t-butyl lithium) or alkyl alkaline earth metal halides (e.g. MeMgBr). Examples of metals, include but are not limited to, alkali metals (e.g. Li) or alkali earth metals (e.g. Mg). Examples of metal salts include, but are not limited to, alkali metal halides, alkaline earth halides or transition metal halides such as ZnCl₂, CeCl₃ or CuI. Inert solvents may include, but are not limited todialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), alkanes or aromatic hydrocarbons (preferably benzene or toluene. Preferred reaction temperatures range from -100°C to 100°C.

10

Some compounds of Formula (Ia), where $R^2 = NR^8COR^7$, $N(COR^7)_2$, $NR^8CONR^6R^7$, $NR^8CO_2R^{13}$ or NR^6R^7 , may be prepared from intermediate compounds of Formula (11) (Formula (Ia) 15 where $R^2 = H$), using the procedures also outlined in Scheme 2. Compounds of Formula (11) may be treated with a nitrating or nitrosating agent in the presence or absence of an acid in an inert solvent at reaction temperatures ranging from -80°C to 250°C to give products of Formula 20 (12) (where Z = NO or NO_2). Examples of nitrating agents include, but are not limited to, nitric acid, nitrous acid, alkali metal nitrates or nitrites (e.g. KNO3 or $\ensuremath{\mathtt{KNO}}_2)$ or alkyl nitrites (e.g. isoamyl nitrite). Acids include, but are not limited to, alkanoic acids of 2 to 25 10 carbons (preferably acetic acid), haloacetic acids (e.g. trifluoroacetic acid), alkyl-, haloalkyl- or arylsulfonic acids (e.g. trifluoromethanesulfonic acid, ptoluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably 30 methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), alkanes, dialkyl ethers 35 (preferably glyme or diglyme), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), aromatic hydrocarbons (preferably benzene or toluene). Compounds of Formula (12) may then be treated with a reducing agent in an

inert solvent to provide compounds of Formula (1), where ${\tt R}^2 = {\tt NH}_2$. Reducing agents include, but are not limited to, (a) hydrogen gas in combination with noble metal catalysts such as Pd-on-carbon, PtO2, Pt-on-carbon, Rhon-alumina or Raney nickel or (b) alkali metal or alkaline earth metal borohydrides (preferably lithium or sodium borohydride), borane, dialkylboranes (such as diisoamylborane), alkali metal aluminum hydrides (preferably lithium aluminum hydride), alkali metal (trialkoxy)aluminum hydrides, or dialkyl aluminum 10 hydrides (such as di-isobutylaluminum hydride). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 6 carbons), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), aromatic hydrocarbons (preferably 15 benzene or toluene). Preferred reaction temperatures range from -80°C to 100°C. Compounds of Formula (Ia), where $R^2 = NH_2$, may be converted by treatment with alkylating agents or acylating agents in the presence or absence of a base in an inert solvent to compounds of 20 Formula (Ia), where $R^2 = NR^6COR^7$, $N(COR^7)_2$, $NR^8CONR^6R^7$, $NR^6CO_2R^7$, $N(S(0)_2R^7)_2$, $NR^6S(0)_2R^7$ or NR^6R^7 . Alkylating agents may include, but are not limited to, alkylhalides, -tosylates, -mesylates or -triflates; C_3 - C_{10} alkenyl-halides, -tosylates, -mesylates or -triflates; ; C_3 - C_{10} alkynyl-halides, -tosylates, -mesylates or triflates; C3-C6 cycloalkyl-halides, -tosylates, mesylates or -triflates; C4-C12 cycloalkylalkyl-halides, -tosylates, -mesylates or -triflates; C_5-C_{10} cycloalkenyl-halides, -tosylates, -mesylates or -30 triflates; or C_6-C_{14} cycloalkenyl-halides, -tosylates, mesylates or -triflates. Each of the above alkylating agents may be optionally substituted in a way consistent with the definition of R^2 . Acylating agents may include, but are not limited to, acyl halides or anhydrides. Sulfonylating agents include, but are not limited to, sulfonyl halides or anhydrides. Each of the above acylating or sulfonylating agents may be optionally

substituted in a way consistent with the definition of R². Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (prefereably 10 di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably 15 tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably 20 benzene or toluene). Preferred reaction temperatures range from -70 °C to 100°C.

Compounds of Formula (Ia), where $R^2 = CR^6 (OR^7) R^6 a$, may be prepared by the procedures shown in Scheme 3. Compounds of Formula (13) (Formula 1 where $R^3 = COR^6$) may 25 be reacted with reagents of the Formula $R^{6a}M$ in an inert solvent, where R^{6a} is defined above and M is alkali metal, ZnCl, ZnBr, ZnI, MgBr, MgCl, MgI, CeCl2, or CeBr2. Inert solvents may include, but are not limited to, dialkyl ethers (preferably diethyl ether), cyclic ethers 30 (preferably tetrahydrofuran or 1,4-dioxane), or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from -70 °C to 100°C. resulting intermediates (15) (Formula (Ia) where $R^2 =$ CR6 (OH) R6a) may then be reacted with an alkylating agent in the absence or presence of a base in an inert solvent. Alkylating agents may include, but are not limited to. alkyl-halides, -tosylates, -mesylates or -triflates; C3-

 C_{10} alkenyl-halides, -tosylates, -mesylates or triflates; ; C₃-C₁₀ alkynyl-halides, -tosylates, mesylates or -triflates; C3-C6 cycloalkyl-halides, tosylates, -mesylates or -triflates; C4-C12 cycloalkylalkyl-halides, -tosylates, -mesylates or triflates; C5-C10 cycloalkenyl-halides, -tosylates, mesylates or -triflates; or C_6-C_{14} cycloalkenyl-halides, -tosylates, -mesylates or -triflates. Each of the above alkylating agents may be optionally substituted in a way consistent with the definition of \mathbb{R}^2 . Bases may include, 10 but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides 15 (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (prefereably di-isopropylethyl amine) or aromatic amines (preferably

Scheme 3

20

pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from -70 °C to 100°C.

10

15

Alternatively, compounds of Formula (Ia), where R^2 = $CR^6(OR^7)R^{6a}$, may be prepared by other procedures shown in Scheme 3. Compounds of Formula (13) (Formula Ia where R^2 = COR^6) may be treated with a reducing agent in an inert.

solvent to afford intermediates of Formula (15) (Formula (Ia) where $R^2 = CHR^6OH$). Reducing agents include, but are not limited to, (a) hydrogen gas in combination with noble metal catalysts such as Pd-on-carbon, PtO2, Pt-on-5 carbon, Rh-on-alumina or Raney nickel or (b) alkali metal or alkaline earth metal borohydrides (preferably lithium or sodium borohydride), borane, dialkylboranes (such as di-isoamylborane), alkali metal aluminum hydrides (preferably lithium aluminum hydride), alkali metal (trialkoxy)aluminum hydrides, or dialkyl aluminum 10 hydrides (such as di-isobutylaluminum hydride). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 6 carbons), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), aromatic hydrocarbons (preferably 15 benzene or toluene). Preferred reaction temperatures range from -80°C to 100°C. Intermediates of Formula Formula (15) (Formula (Ia) where $R^2 = CHR^6OH$)) may then be reacted with an alkylating agent in the presence or absence of a base in an inert solvent. Alkylating agents 20 may include, but are not limited to, alkyl-halides, tosylates, -mesylates or -triflates; C_3-C_{10} alkenylhalides, -tosylates, -mesylates or -triflates; ; C_3-C_{10} alkynyl-halides, -tosylates, -mesylates or -triflates; C3-C6 cycloalkyl-halides, -tosylates, -mesylates or -25 triflates; C4-C12 cycloalkylalkyl-halides, -tosylates, mesylates or -triflates; C_5-C_{10} cycloalkenyl-halides, tosylates, -mesylates or -triflates; or C_6-C_{14} cycloalkenyl-halides, -tosylates, -mesylates or triflates. Each of the above alkylating agents may be optionally substituted in a way consistent with the definition of \mathbb{R}^2 . Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal 35 hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium

30

bis(trimethylsilyl)amide), trialkyl amines (preferably di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from -70 °C to 100°C.

In addition to the specific and generic groups on compounds Ia as shown above in Schemes 1-3, the additional compounds within the generic scope having a compound of formula Ia with R¹-R⁵ as described or recited in group [1] may be made according to the general procedures described in these schemes using the appropriate starting materials and as described in the specific examples as well.

The embodiment of this invention concerning compounds of Formula (Ib) with the structure

10

15

20

30

$$\begin{array}{c|c}
R^2 \\
R \xrightarrow{7} & N & N \\
N & N & N \\
R^3 & R^4
\end{array}$$

may be prepared according to the following method:

The method of Ege and Gilbert, J. Het. Chem. 1981, 18, 675-677, is used to prepare the desired ring system (Scheme 4). Thus, aminopyrazole 4-A is converted to diazonium salt 4-B, using sodium nitrite/acid or such reagents as isoamylnitrite. The diazonium salt is condensed with a phosphorus ylide compound 4-C to give the pyrazolo[5,1-c][1,2,4]triazine product.

5 Some compounds of Formula (Ia), may be prepared from intermediate compounds of Formula (3) using the procedures outlined in Scheme 5 with the variables defined as above. Compounds of Formula (5) may be treated with compounds of the Formula $R^5(N=H)(OR')$, where R' is lower alkyl or their acid- addition salts, in the 10 presence or absence of a base in an inert solvent. Bases may include, but are not limited to, alkyl lithiums, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal 15 hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). 20 Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-25 dialkylformamides (preferably dimethylformamide), N,Ndialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one),

dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -80°C to 100°C. The resulting intermediates are then treated with compounds of the Formula R3COY, where Y is halogen or lower alkoxy, in the presence or absence of a base in an inert solvent to provide compounds of the Formula (Ia). Bases may include, but are not limited to, alkyl lithiums, alkali metal 10 hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal bis(trialkylsilyl)amides 15 (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), 20 dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), N,Ndialkylacetamides (preferably dimethylacetamide), cyclic 25 amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction 30 temperatures range from -80°C to 100°C.

SCHEME 5

$$R^{2}$$
 NH_{2}
 R^{5}
 NH_{2}
 R^{5}
 NH_{3}
 NH_{4}
 NH_{5}
 $NH_{$

Compounds of formula II as described above are also readily prepared according to the general procedure described in Scheme 6. This procedure is described generally in *J. Het. Chem* **1981**, 1319.

SCHEME 6

The following specific synthetic examples describe the procedures described generically above which, when applied to appropriately substituted substrates, were and may be employed in the synthesis of the compounds in Table 1.

10 EXAMPLES

15

20

Analytical data were recorded for the compounds described below using the following general procedures. Proton NMR spectra were recorded on an Varian FT-NMR (300 MHz); chemical shifts were recorded in ppm (δ) from an internal tetramethysilane standard in deuterochloroform or deuterodimethylsulfoxide as specified below. Mass spectra (MS) or high resolution mass spectra (HRMS) were recorded on a Finnegan MAT 8230 spectrometer (using chemi-ionization (CI) with NH₃ as the carrier gas or gas chromatography (GC) as specified below) or a Hewlett

Packard 5988A model spectrometer. Melting points were recorded on a Buchi Model 510 melting point apparatus and are uncorrected. Boiling points are uncorrected. All pH determinations during workup were made with indicator paper.

Reagents were purchased from commercial sources and, where necessary, purified prior to use according to the general procedures outlined by D. Perrin and W.L.F. Armarego, Purification of Laboratory Chemicals, 3rd ed., (New York: Pergamon Press, 1988). Chromatography (thin layer (TLC) or preparative) was performed on silica gel using the solvent systems indicated below. For mixed solvent systems, the volume ratios are given. Otherwise, parts and percentages are by weight.

15

20

10

EXAMPLE 1 4-(2,4-dichlorophenyl)-8-(3-pentyl)-7-ethyl-2-methyl-pyrazolo[1,5-a]-1,3,5-triazine (Formula Ia, R¹ is ethyl, R⁵ is methyl, R² is 3-pentyl, R³ is 2,4-dichlorophenyl).

A. N-(1-(Dimethylamino)ethylidene)-2,4-dichlorobenzamide

A mixture of 2,4-dichlorobenzamide (1.9 g, 10 mmol)

25 and N,N-dimethylformamide dimethyl acetal (3.5 g, 3.8 mL,
26 mmol) was heated at 120 °C and stirred under a nitrogen
atmosphere for 2 h. After being cooled to room
temperature, the reaction mixture was concentrated in
vacuo to afford an oil. Medium pressure chromatography

30 on silica gel (EtOAc:hexanes::1:3 to 1:1) and removal of
solvent in vacuo afforded a solid (2.03 g, 78% yield):
NMR (CDCl₃,300 MHz): δ 7.73 (d, 1H, J = 8), 7.39 (d, 1H, J
= 2), 7.24 (dd, 1H, J = 8,2), 3.16 (s, 3H), 3.13 (s, 3H),
2.39 (s, 3H).

35

B. N-(Thioacetyl)-2,4-dichlorobenzamide

Hydrogen sulfide was bubbled through glacial acetic acid (20 mL) for approximately 5 min. The above \cdot

intermediate was added portionwise over 5 min.
Additional hydrogen sulfide was bubbled through the reaction mixture for approximately 10 min. Nitrogen was then bubbled through the reaction mixture. Dilution with water (25 mL) caused a precipitate to form. The solid was collected by filtration, washed with copious amounts of water and dried in vacuo. The resulting solid (1.75 g, 90% yield) was used without further purification: NMR (CDCl₃,300 MHz): δ 9.9 (br s, 1H), 7.68 (d, 1H, J = 8), 7.51 (d, 1H, J = 2), 7.40 (dd, 1H, J = 9,2), 3.10 (s, 3H).

C. 3-Amino-5-ethyl-4-(3-pentyl)pyrazole

A mixture of NaCN (4.1 g, 82.7 mmol) and KI (154 mg, 15 0.9 mmol) in anhydrous dimethylsulfoxide (40 mL) was heated to 40 oC with stirring. 3-Ethyl-1-bromobutane (12.4 g, 75.2 mmol) was added dropwise over 10 min. reaction mix was first heated to 80 oC and stirring was continued for 1h, then to 120 oC and stirred for 5h. 20 reaction mix was cooled to ambient temperature and a precipitate formed. Dilution with water (150 mL), extraction with ether (3 X 100 mL), washing the combined organic layers with a saturated NaCl solution, drying 25 over MgSO4 and filtration afforded a solution. Removal of solvent in vacuo provided 3-ethylpentanenitrile (7.4 g, 89% yield): NMR (CDCl₃,300 MHz): δ 2.33 (d, 2H, J = 6), 1.45-1.40 (m, 5H), 0.92 (t, 6H, J = 7).

A solution of di-isopropylamine (14.8 g, 20.5 mL, 147 mmol) in anhydrous THF (40 mL) was cooled to -78 oC with stirring under a nitrogen atmosphere. A solution of n-butyl lithium in hexanes (1.6M, 87.5 mL, 140 mmol) was added dropwise over 15 min. The resulting solution was stirred for an additional 30 min. A solution of 3-ethylpentanenitrile (7.4 g, 67 mmol) in THF (30 mL) was added dropwise over 15 min and then the reaction mixture was stirred for 30 min. A solution of ethyl propionate (6.8 g, 7.6 mL, 67 mmol) in THF (20 mL) was added

dropwise; then the reaction mixture was warmed with stirring to ambient temperature over 3 h. The mix was poured onto water (200 mL) and the pH was adjusted to ~ 4 by the slow addition of a concentrated Hcl solution.

5 Three extractions with ether (100 mL), drying the combined organic layers over MgSO4, filtration and removal of solvent in vacuo provided an oil (9.53 g): NMR (CDCl₃,300 MHz): δ 3.50 (d, 1H, J = 4), 2.74 (q, 2H, J = 7), 1.85-1.75 (m, 1H), 1.45-1.35 (m, 4H), 1.12 (t, 3H, J = 7), 1.0-0.8 (m, 6H).

A mixture of the above intermediate (7.0 g), hydrazine hydrate (2.30 g, 2.23 mL, 46 mmol) and glacial acetic acid (1mL) in toluene was heated to reflux temperature in a Dean-Stark apparatus and stirred for 16

- h. The reaction mixture was cooled to ambient temperature and solvent was removed in vacuo. EtOAc (100 mL) was added to the residue and the resulting solution was washed three times with a saturated NaHCO3 solution (25 mL). The organic solution was dried over MgSo4,
- filtered and concentrated in vacuo to provide an oil (6.7 g, 88% overall yield): NMR (CDCl₃,300 MHz): δ 2.53 (q, 2H, J = 7), 1.70-1.50 (m, 5H), 1.20 (t, 3H, J = 7), 0.83 (t, 6H, J = 7).
- D. A mixture of N-(thioacetyl)-2,4-dichlorobenzamide (200 mg, 0.81 mmol) and 3-amino-5-ethyl-4-(3-pentyl)pyrazole (146 mg, 0.81 mmol) in dioxan (1 mL) was stirred at reflux temperature for 16 h. After being cooled to room temperature, the reaction mixture was concentrated in
- vacuo. Preparative TLC using EtOAc:hexanes::1:1 generated the title product (77.3 mg, 24% yield): mp = 91-93 oC; NMR (CDCl₃,300 MHz): δ 7.64 (d, 1H, J = 8), 7.57 (d, 1H, J = 2), 7.44 (dd, 1H, J = 8,2), 2.77 (q, 2H, J = 8), 2.69 (s, 3H), 2.80-2.60 (m, 1H), 2.00-1.80 (m, 4H),
- 35 1.25 (t, 3H, J = 8), 0.82 (t, 6H, J = 7); CI-HRMS m/z Calcd: 377.1294, Found: 377.1303.

EXAMPLE 1a 4-(2,4-dichlorophenyl)-8-(3-pentyl)-7-ethyl-2-methyl-pyrazolo[1,5-a]-1,3,5-triazine Alternate Preparation of (Formula Ia, R¹ is ethyl, R⁵ is methyl, R² is 3-pentyl, R³ is 2,4-dichlorophenyl)

5

A. N-(1-(Methylthio)ethylidene)-2,4-dichlorobenzamide

A mixture of N-(thioacetyl)-2,4-dichlorobenzamide (400 mg, 1.6 mmol) and K2CO3 (445 mg, 3.22 mmol) in anhydrous acetonitrile (20 mL) was stirred at ambient temperature. Iodomethane (458 mg, 0.2 mL, 3.22 mmol) was added and the reaction mixture was then stirred for 2.5 h. Solvent was removed in vacuo and the residue was partitioned between ether and water. The combined organic layers were dried over MgSO4, filtered and concentrated in vacuo to give an oil (406 mg): NMR (CDCl₃,300 MHz): δ 7.86 (d, 1H, J = 8), 7.47 (d, 1H, J = 2), 7.32 (dd, 1H, J = 8, 2), 2.40 (s, 3H), 2.29 (s, 3H).

20 B. A mixture of N-(1-(methylthio)ethylidene)-2,4-dichlorobenzamide (100 mg, 0.38 mmol) and 3-amino-5-ethyl-4-(3-pentyl)pyrazole (69 mg, 0.38 mmol) in dioxan (1 mL) was stirred at reflux temperature for 2 h. After being cooled to room temperature, the reaction mixture was concentrated in vacuo. Preparative TLC using EtOAc:hexanes::1:1 generated the title product (68 mg, 47% yield), which was identical to the product obtained by the method described in Example 1.

30

EXAMPLE 2 4-(2,4-dichlorophenyl)-8-diethylamino-7-ethyl-2-methyl-pyrazolo[1,5-a]-1,3,5-triazine (Formula 1, R¹ is ethyl, R⁵ is methyl, R² is diethylamino, R³ is 2,4-dichlorophenyl)

35

A. 4-(2,4-dichlorophenyl)-7-ethyl-2-methyl-pyrazolo[1,5-a]-1,3,5-triazine

A mixture of 3-amino-5-ethylpyrazole (10.3 g, 39.3 mmol) and N-(1-(methylthio)ethylidene)-2,4-dichlorobenzamide (4.0 g, 35.7 mmol) in anhydrous dioxan (20 mL) was stirred at reflux temperatrue under a nitrogen atmosphere for 16 h. After being cooled to ambient temperature, the reaction mix was concentrated in vacuo and the residue was treated with dichloromethane. The resulting supsension was filtered and the filtrate was concentrated in vacuo to afford an oil (1.5 g, 14 % yield): NMR (CDCl₃,300 MHz): δ 7.62 (d, 1H, J = 8), 7.59 (d, 1H, J = 2), 7.45 (dd, 1H, J = 8,2), 6.42 (s, 1H), 2.82 (q, 2H, J = 8), 2.73 (s, 3H), 1.30 (t, 3H, J = 8).

B. 4-(2,4-dichlorophenyl)-7-ethyl-2-methyl-8-nitropyrazolo[1,5-a]-1,3,5-triazine

A solution of 4-(2,4-dichlorophenyl)-7-ethyl-2methyl-pyrazolo[1,5-a]-1,3,5-triazine (653 mg, 2.2 mmol) in acetic anhydride (4 mL) was cooled with stirring to -520 to -10 oC. A solution of fuming nitric acid (160 mg, 2.55 mmol) in acetic anhydride (2 mL) was added dropwise over 15 min. The reaction mixture was stirred at the same temperature for 3 h, then it was partitioned between water and ether three times. The combined organic layers were washed with a saturated NaHCO3 solution, dried over 25 MgSO4 and filtered. Solvent was removed in vacuo to provide a solid. Column chromatography (EtOAc:hexanes::1:9 to 1:4) provided a solid (166 mg, 21% yield) after removal of solvent in vacuo: NMR (CDCl3,300 MHz): δ 7.64 (d, 1H, J = 8), 7.63 (d, 1H, J = 2), 7.50 (dd, 1H J = 8, 2), 3.19 (q, 2H, J = 7), 2.94 (s, 3H),1.32 (t, 3H, J = 7).

B. 4-(2,4-dichlorophenyl)-7-ethyl-2-methyl-8-aminopyrazolo[1,5-a]-1,3,5-triazine

35

A mixture of the above intermediate (160 mg, 0.45 mmol), Na2S2O4 (554 mg, 3.2 mmol), concentrated ammonium

hydroxide (0.1 mL) in dioxan (8 mL) was stirred at ambient temperature for 30 min. The reaction mixture was concentrated in vacuo and the residue was partitioned between ether and water three times. The organic layers were combined, dried over MgSO4, filtered and concentrated in vacuo to give a solid (92.5 mg, 64% yield): NMR (CDCl₃,300 MHz): δ 7.60 (d, 1H, J = 8), 7.57 (d, 1H, J = 2), 7.43 (dd, 1H, J = 8,2), 2.79 (q, 2H, J = 8), 2.63 (s, 3H), 1.30 (t, 3H, J = 8)

10

C.

A mixture of the above intermediate (46 mg, 0.14 mmol), ethyl triflate (64 mg, 46 μL, 0.36 mmol) and i-Pr2NEt (46 mg, 62 μL, 0.36 mmol) in dichloromethane (1 mL) was stirred at room temperature for 2h. Solvent was removed in vacuo. Column chromatography (EtOAc:hexanes::1:9) generated the title compound, a solid (30.1 mg, 57% yield): mp = 98-99 oC: NMR (CDCl₃,300 MHz): δ 7.63 (d, 1H, J = 8), 7.57 (d, 1H, J = 2), 7.44 (dd, 1H, J = 8, 2), 3.22 (q, 4H, J = 7), 2.77 (q, 2H, J = 8), 2.69 (s, 3H), 1.25 (t, 3H, J = 8), 1.00 (t, 6H, J = 8); CI-HRMS m/z Calcd: 378.1252; Found: 378.1274.

Using the above procedures and modifications known
to one skilled in the art of organic synthesis, the
following examples of Table 1 were or may be prepared.
The examples delineated in Table 1 may be prepared by the
methods outlined in Examples 1, 2 or 3 or combinations
thereof. Commonly used abbreviations are: Ph is phenyl,
Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex
is Example, amorph. is amorphous. In Table 1, unless
otherwise indicated, the examples with the physical data
shown are based upon structure Ic. Example 10, described
below, shows a detailed preparation of a 1,2,4 triazine.
Table 1 also shows the preferred examples having
structures Ie and If that can readily be made according
to the procedure delinated below for Example 10.

Example 10 4-(2,4-dichlorophenyl)-7-ethyl-8-(3-pentyl)pyrazolo[5,1-c][1,2,4]triazine

Part A. A mixture of 2-ethyl-1-bromobutane (10.0 mL, 71.4 mmol), potassium cyanide (14.0 g, 215 mmol) and aliquat 336 (10 drops) in 50 mL water was heated to reflux overnight with vigorous stirring. The mixture was cooled, and extracted with dichloromethane (2 x 50 mL). The extracts were combined, dried over magnesium sulfate, filtered and evaporated. The residual liquid was distilled bulb-to-bulb to afford pure product, 3-ethylpentanenitrile (5.50 g, 49.5 mmol, 69%). b.p. 40-45 °C (5 mm Hg). Spectral data: 'H NMR (300 MHz, CDCl₃): 82.33 (2H, d, J = 5.8 Hz), 1.62-1.36 (5H, m), 0.92 (6H, t, J = 7.3 Hz). MS (H,O-GC/MS): m/e 112 (100).

Part B. A solution of diisopropylamine (7.50 mL, 57.2 mmol) in THF (100 mL) was cooled to -78 °C, and treated with n-butyllithium (34.0 mL of a 1.6 M solution in hexane). The solution was warmed briefly to 0 °C, and 20 then recooled to -78 °C. The nitrile compound from Part A was then added by syringe, and the solution was allowed to stir for 1 hour. Then, ethyl propionate (6.50 mL, 56.7 mmol) was added by syringe, and the resulting mixture was allowed to stir and warm to ambient temperature for 12 hours. It was poured into 200 mL of satd. aq. NH₄Cl solution, and this was extracted with ethyl acetate (2 \times 200 mL). The extracts were combined, dried over magnesium sulfate, filtered and evaporated. The residual oil was separated 30 by column chromatography (silica gel, 10:90 ethyl acetate-hexane) to afford the product, 4-cyano-5-ethyl-3-

(20:80 ethyl acetate-hexane). Spectral data: ¹H NMR (300 MHz, CDCl₃): δ 3.49 (1H, d, J = 4.4 Hz), 2.74 (2H, q, J = 7.3 Hz), 2.08-1.98 (1H, m), 1.70-1.58 (1H, m), 1.50-1.20 (3H, m), 1.12 (3H, t, J = 7.3 Hz), 0.95 (3H, t, J = 7.3

heptanone, as an oil 4.06 g, 24.3 mmol, 49%). TLC R, 0.47

Hz), 0.91 (3H, t, J = 7.3 Hz). MS (H₂O-GC/MS): m/e 167 (100).

Part C. A solution of the ketonitrile from Part B (4.06 g, 24.3 mmol), hydrazine hydrate (2.70 mL, 55.7 mmol) and acetic acid (5.00 mL, 83.7 mmol) in benzene (50 mL) was heated to reflux under a Dean-Stark trap with azeotropic distillation of water. After being heated for 12 hours, the mixture was cooled and poured into 100 mL 1 N aq.

- NaHCO, solution. This was extracted with ethyl acetate (2 x 100 mL), and the extracts were washed in sequence with brine, combined, dried over sodium sulfate, filtered and evaporated to afford sufficiently-pure product, 3-amino-5-ethyl-4-(3-pentyl)pyrazole, as a viscous oil (2.48 g,
- 15 13.7 mmol, 56%). Spectral data: 'H NMR (300 MHz, CDCl,): δ 3.48 (2H, br), 2.54 (2H, q, J = 7.3 Hz), 2.25-2.14 (1H, m), 1.71-1.49 (4H, m), 1.20 (3H, t, J = 7.3 Hz), 0.83 (6H, t, J = 7.3 Hz), 1H missing. MS (NH₃-CI): m/e 183 (12), 182 (100).

20

Part D. A solution of 3-amino-5-ethyl-4-(3-pentyl)pyrazole (0.750 g, 4.14 mmol) was suspended in 4 mL water and made acidic with conc. aq. HCl (2 mL). This was cooled in an ice bath, and a conc. aq. solution of

- 25 sodium nitrite (0.286 g, 4.14 mmol) was added dropwise. After stirring for 30 min., the mixture was diluted with ice-cold dichloromethane (40 mL) and made alkaline with a saturated solution of sodium carbonate in water. The organic layer was separated, dried over sodium sulfate and filtered. The filtrate was then delivered dropwise to
- a stirring solution of 2,4-dichlorobenzoyl) methylenetriphenylphosphorane (Bauer, et al., J. Het. Chem. 1998, 35, 81-87) (1.86 g, 4.14 mmol) in dichloromethane at 10 °C. After stirring for 10 hrs.
- with warming to ambient temperature, the reaction mixture was evaporated, and the residual material was separated by column chromatography (silica gel, 15:85 ethyl acetate-hexane) to afford the title product (0.124 g,

8.2%) as orange crystals (m.p. 116.7-117.8 °C). TLC R_t 0.51 (20:80 ethyl acetate-hexane).

This procedure can be utilized to make compounds of formula Ib having the variables as defined in group [1] above by appropriately substituting or preparing any of the different variables for R¹, R², R³, R⁴ including substituted versions thereof as defined in group [1] or any of the more preferred groups.

Example 11

25

35

Ethyl acetimidate hydrochloride (656 mg, 5.31 mmol) was added to a solution of K₂CO₃ (734 mg, 5.31 mmol) in H₂O (2 mL) in a separatory funnel. The aqueous layer was extracted with CH₂Cl₂ (3 x 1 mL) to form the free base. The combined organic layers were dried with Na₂SO₄, and filtered through a plug of cotton. The CH₂Cl₂ extract was transferred directly into a 15 mL round bottom flask containing of 3-amino-5-ethyl-4-(3-pentyl)pyrazole (300 mg, 1.77 mmol). Acetonitrile (1.5 mL, anhydrous) was

mg, 1.77 mmol). Acetonitrile (1.5 mL, anhydrous) was added followed by HOAc (0.112 mL, 1.95 mmol) and the mixture was stirred overnight at room temperature. The solid was collected by filtration to give 358 mg (96% yield) of 3-acetamidino-5-ethyl-4-(3-pentyl)pyrazole,

hydrochloride salt as a white solid: mp = 168.5-171.5 °C, ¹H NMR, 300 MHz (D₂O) δ 2.51 (q, J = 7.7 Hz, 2 H), 2.24 (s, 3 H), 2.21 - 2.15 (m, 1 H), 1.72 (s, 3 H), 1.52 - 1.43 (m, 2 H), 1.33 - 1.22 (m, 2 H), 1.02 (t, J = 7.7

30 Hz, 3 H), 0.56 (t, J = 7.3 Hz, 6 H), CI-MS (NH₃) m/e 223.2 [(M + H - HOAc)⁺; calcd for $C_{12}H_{23}N_4$: 223.2].

To a solution of K_2CO_3 (48 mg, 0.35 mmol) in H_2O (3 mL) in a separatory funnel was added 3-acetamidino-5-ethyl-4-(3-pentyl)pyrazole, hydrochloride salt (60 mg, 0.212 mmol). The aqueous layer was extracted with CH_2Cl_2 (4 x 5 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered, and concentrated to give the free base of the pyrazole (39 mg, 0.175 mmol).

This intermediate (39 mg, 0.175 mmol) was dissolved in dioxane (1 mL) and a solution of benzoyl chloride (30 mg, 0.210 mmol) in dioxane (1 mL) was added via cannula followed by the addition of a catalytic amount of 4dimethylaminopyridine. The mixture was stirred at room temperature for 15 min (turned cloudy then clear) and was subsequently heated at reflux (112 °C) for 15 h. mixture was cooled to room temperature and concentrated. The residue was purified via preparative thin layer chromatography (silica gel, 1 mm thickness) using 20% 10 EtOAC in hexanes to give 29 mg (54% yield) of the title compound as a yellow oil: $R_f = 0.66$, H NMR, 300 MHz (CDCl₃) δ 8.75 - 8.71 (m, 2 H), 7.64 - 7.53 (m, 3 H), 2.85 (q, J = 7.7 Hz, 2 H), 2.72 - 2.62 (m, 1 H), 2.70 (s, 3)H), 1.97 - 1.76 (m, 4 H), 1.37 (t, J = 7.6 Hz, 3 H), 0.82(t, J = 7.3 Hz, 6 H), LRMS (CI, NH₃) m/e 309.2 [(M + H)⁺; calcd for $C_{19}H_{25}N_4$: 309.2].

Example 12

20 <u>4-phenyl-8-(3-pentyl)-7-ethyl-2-methyl-pyrazolo[1,5-a]-1,3,5-triazine</u> (Formula Ia, R^1 is ethyl, R^5 is methyl, R^2 is 3-pentyl, R^3 is 2-methyl-4-chlorophenyl).

To a solution of K_2CO_3 (48 mg, 0.35 mmol) in H_2O (3 mL) in a separatory funnel was added 3-acetamidino-5-25 ethyl-4-(3-pentyl)pyrazole, hydrochloride salt (49 mg, 0.174 mmol). The aqueous layer was extracted with CH₂Cl₂ (4 \times 5 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated to give the free base of 2 (31 mg, 0.139 mmol). This 30 intermediate was dissolved in dioxane (1 mL) and a solution of 4-chloro-2-methylbenzoyl chloride (32 mg, 0.167 mmol) in dioxane (1 mL) was added via cannula followed by the addition of a catalytic amount of 4dimethylaminopyridine. The mixture was stirred at room 35 temperature for 15 min (turned cloudy then clear) and was subsequently heated at reflux (112 °C) for 15 h.

mixture was cooled to room temperature and concentrated. The residue was purified via preparative thin layer chromatography (silica gel, 1 mm thickness) using 10% EtOAC in hexanes to give 14 mg (28% yield) of the title compound as a yellow solid: $R_f = 0.40$, mp = 84.5 - 86.5 °C, ¹H NMR, 300 MHz (CDCl₃) & 7.64 (d, J = 8.1 Hz, 1 H), 7.35 (s, 1 H), 7.34 (d,J = 7.7 Hz, 1 H), 2.77 (q, J = 7.7 Hz, 2 H), 2.68 (s, 3 H), 2.67 - 2.60 (m, 1 H), 2.28 (s, 3 H), 1.97 (m, 4 H), 1.25 (t, J = 7.7 Hz, 3 H), 0.82 (t, J = 7.3 Hz, 6 H), CI-MS (NH₃) m/e 357.1 [(M + H)⁺; calcd for $C_{20}H_{24}N_4Cl$: 357.2].

Example 13

4-(2-chloro-4-methylsulfonylphenyl)-8-(3-pentyl)-7-ethyl
2-methyl-pyrazolo[1,5-a]-1,3,5-triazine (Formula Ia, R¹ is ethyl, R⁵ is methyl, R² is 3-pentyl, R³ is 2-methyl-4methylsulfonylphenyl).

To a solution of K_2CO_3 (280 mg, 2.03 mmol) in H_2O (15 mL) in a separatory funnel was added 3-acetamidino-5ethyl-4-(3-pentyl)pyrazole, hydrochloride salt (250 mg, 20 1.12 mmol). The aqueous layer was extracted with CH2Cl2 (4 x 15 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated to give the free base of 3-acetamidino-5-ethyl-4-(3pentyl)pyrazole, hydrochloride salt (225 mg, 1.01 mmol). This intermediate was dissolved in dioxane (2 mL) and a solution of 2-chloro-4-methanesulfonylbenzoyl chloride (307 mg, 1.21 mmol) in dioxane (2 mL) was added via cannula followed by the addition of DMAP (cat.). The mixture was stirred at room temperature for 15 min 30 (turned cloudy then clear) and was subsequently heated at reflux (112 °C) for 15 h. The mixture was cooled to room temperature and concentrated. The residue was purified via prep plate using 50% EtOAc in hexanes to give 95 mg (22% yield) of the title compound as a yellow solid: Rf 35 = 0.61, mp = 172.3 - 173.8 °C, ¹H NMR, 300 MHz (CDCl₃) d 8.14 (d, J = 1.4 Hz, 1 H), 8.03 (dd, J = 6.6, 1.5 Hz, 1

WO 00/59907 PCT/US00/09109 .

H), 7.91 (d, J = 8.0 Hz, 1 H), 3.13 (s, 3 H), 2.78 (q, J = 7.6 Hz, 2 H), 2.70 (s, 3 H), 2.71 - 2.59 (m, 1 H), 2.00-1.77 (m, 4 H), 1.25 (t, J = 7.5 Hz, 3 H), 0.83 (t, J = 7.5 Hz, 6 H), ESI-MS m/e 421.0 [(M + H)⁺; calcd for 5 $C_{20}H_{26}N_4O_2SCl$: 421.1.

TABLE 1

5	Ex.	Formula	<u>R</u> 5	<u>R</u> 4	R²	<u>R</u> 3	mp(°C)
	1	Ic	Me	_	3-pentyl	2,4-Cl ₂ -Ph	91-93
	3	Ic	Me	-	NEt ₂	2,4-Cl ₂ -Ph	98-99
	4	Ic	Me	-	3-pentyl	2-Me-4-MeO-Ph	65-67
10	5	Ic	Me	-	3-pentyl	2-C1-4,5-(MeO) ₂ -Ph	104-105
	6	Ic	Me	-	3-pentyl	2-C1-4-MeO-5-F-Ph	94-97
	7	Ic	Me	-	3-pentyl	2-Me-4-MeO-5-F-Ph	105-107
	8	Ic	Me	-	3-pentyl	2,6-Me ₂ -pyrid-3-yl	oil
	9	Ic	Me	-	butyl	2,4-Cl ₂ -Ph	amorph.
15	10	Ie	-	Н	3-pentyl	2,4-Cl ₂ -Ph	
	11	Ic	Me	H	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph	
	12	Ic	Me	. н	NHCH (Et) CH2OMe	2,4-Cl ₂ -Ph	

	13	Ic	Me	F	H NH-2-butyl	2,4-Cl ₂ -Ph
	14	Ic	Me	. F	OCH(Et)CH2OMe	2,4-Cl ₂ -Ph
	15	Ic	Me	F	O-3-pentyl	2,4-Cl ₂ -Ph
	16	Ic	Me	F	O-2-pentyl	2,4-Cl ₂ -Ph
5	17	Ic	Me	F	R-2-pentyl	2,4-Cl ₂ -Ph
	18	Ic	Me	F	S-2-pentyl	2,4-Cl ₂ -Ph
	19	Ic	Me	H	R-2-butyl	2,4-Cl ₂ -Ph
	20	Ic	Me	H	S-2-butyl	2,4-Cl ₂ -Ph
	21	Ic	Me	H	CH(Et)CH2OH	2,4-Cl ₂ -Ph
10	22	Ic	Me	H	CH(Et)CH2OMe	2,4-Cl ₂ -Ph
	23	Ic	Me	H	COCH3	2,4-Cl ₂ -Ph
	24	Ic	Me	н	COEt	2,4-Cl ₂ -Ph
	25	Ic	Me	Н	CO ₂ Et	2,4-Cl ₂ -Ph
	26	Ic	Me	Н	CO-2-pentyl	2,4-Cl ₂ -Ph
15	27	Ic	Me	Н	CO-3-pentyl	2,4-Cl ₂ -Ph
	28	Ic	Me	н	CH(OH)CH3	2,4-Cl ₂ -Ph
	29	Ic	Me	Н	C(OH)Me2	2,4-Cl ₂ -Ph
	30	Ic	Me	Н	C(OH)Ph-3-pyridyl	2,4-Cl ₂ -Ph
	31	Ic	Me	H	CH(OMe)CH3	2,4-Cl ₂ -Ph
20	32	Ic	Me	Н	CH(OMe)Et	2,4-Cl ₂ -Ph
	33	Ic	Me	Н	CH(OMe)Pr	2,4-Cl ₂ -Ph
	34	Ic	Me	H	CH(OEt)CH3	2,4-Cl ₂ -Ph
	35	Ic	Me	H	CH(OPr)CH3	2,4-Cl ₂ -Ph
	36	Ic	Me	н	CH(OMe)Et	2,4-Cl ₂ -Ph
25	37	Ic	Me	Н	CH(OMe)Pr	2,4-Cl ₂ -Ph
	38	Ic	Me	Н	cyclobutyl	2,4-Cl ₂ -Ph
	39	Ic	Me	Н	cyclopentyl	2,4-Cl ₂ -Ph
	40	Ic	Me	Н	CH(Me)cyclobutyl	2,4-Cl ₂ -Ph
	41	Ic	Me	H	CH(OMe)cyclobutyl	2,4-Cl ₂ -Ph
30	42	Ic	Me	Н	CH(Me)cyclopropyl	2,4-Cl ₂ -Ph
	43	Ic	Me	Н	CH(OMe)cyclopropyl	2,4-Cl ₂ -Ph
	44	Ic	Me	H	CH(Et)cyclobutyl	2,4-Cl ₂ -Ph
	45	Ic	Me	Н	CH(OEt)cyclobutyl	2,4-Cl ₂ -Ph
	46	Ic	Me	Н	CH(Et)cyclopropyl	2,4-Cl ₂ -Ph
35	47	Ic	Me	Н	CH(OEt)cyclopropyl	2,4-Cl ₂ -Ph
	48	Ic	Me	Н	CH(cyclobutyl) ₂	2,4-Cl ₂ -Ph
	49	Ic	Me	H	CH(cyclopropyl) ₂	2,4-Cl ₂ -Ph
	50	Ic	Me	H	NHCH (CH2OMe) 2	2,4,6-Me3-Ph

	51	Ic	Me	ŀ	NHCH (Et) CH2OMe	2,4,6-Me3-Ph
	52	Ic	Me	. F	NH-2-butyl	2,4,6-Me3-Ph
	53	Ic	Me	F	OCH(Et)CH2OMe	2,4,6-Me3-Ph
	54	Ic	Me	H	0-3-pentyl	2,4,6-Me3-Ph
5	55	Ic	Me	H	0-2-pentyl	2,4,6-Me3-Ph
	56	Ic	Me	H	R-2-pentyl	2,4,6-Me3-Ph
	57	Ic	Me	H	S-2-pentyl	2,4,6-Me ₃ -Ph
	58	Ic	Me	H	R-2-butyl	2,4,6-Me ₃ -Ph
	59	Ic	Me	Н	S-2-butyl	2,4,6-Me3-Ph
10	60	Ic	Me	Н	3-pentyl	2,4,6-Me ₃ -Ph
	61	Ic	Me	Н	CH(Et)CH2OH	2,4,6-Me ₃ -Ph
	62	Ic	Me	н	CH(Et)CH2OMe	2,4,6-Me3-Ph
	63	Ic	Me	Н	сосн3	2,4,6-Me ₃ -Ph
	64	Ic	Me	Н	COEt	2,4,6-Me3-Ph
15	65	Ic	Me	H	CO ₂ Et	2,4,6-Me3-Ph
	66	Ic	Me	H	CO-2-pentyl	2,4,6-Me ₃ -Ph
	67	Ic	Me	Н	CO-3-pentyl	2,4,6-Me ₃ -Ph
	68	Ic	Me	H	СН (ОН) СН3	2,4,6-Me3-Ph
	69	Ic	Me	Н	C(OH)Me2	2,4,6-Me3-Ph
20	70	Ic	Me	Н	C(OH)Ph-3-pyridyl	2,4,6-Me ₃ -Ph
	71	Ic	Me	н	CH(OMe)CH3	2,4,6-Me ₃ -Ph
	72	Ic	Me	Н	CH(OMe)Et	2,4,6-Me ₃ -Ph
	73	Ic	Me	H	CH(OMe)Pr	2,4,6-Me3-Ph
	74	Ic	Me	Н	CH(OEt)CH3	2,4,6-Me ₃ -Ph
25	75	Ic	Me	Н	CH(OPr)CH3	2,4,6-Me3-Ph
	76	Ic	Me	Н	CH(OMe)Et	2,4,6-Me3-Ph
	77	Ic	Me	Н	CH(OMe)Pr	2,4,6-Me ₃ -Ph
	78	Ic	Me	Н	cyclobutyl	2,4,6-Me ₃ -Ph
••	79	Ic	Me	H	cyclopentyl	2,4,6-Me ₃ -Ph
30	80	Ic	Me	Н	CH(Me)cyclobutyl	2,4,6-Me ₃ -Ph
	81	Ic	Me	Н	CH(OMe)cyclobutyl	2,4,6-Me ₃ -Ph
	82	Ic	Me	Н	CH(Me)cyclopropyl	2,4,6-Me ₃ -Ph
	83	Ic	Me	Н	CH(OMe)cyclopropyl	2,4,6-Me ₃ -Ph
	84	Ic	Me	Н	CH(Et)cyclobutyl	2,4,6-Me ₃ -Ph
35	85	Ic	Me	Н	CH(OEt)cyclobutyl	2,4,6-Me ₃ -Ph
	86	Ic	Me	Н	CH(Et)cyclopropyl	2,4,6-Me ₃ -Ph
	87	Ic	Me	Н	CH(OEt)cyclopropyl	2,4,6-Me3-Ph
	88	Ic	Me	Н	CH(cyclobutyl) ₂	2,4,6-Me3-Ph

	89	Ic	Me	Н	CH(cyclopropyl) ₂	2,4,6-Me3-Ph
	90	Ic	Me	. н	NHCH (CH2OMe) 2	2-Me-4-MeO-Ph
	91	Ic	Me	Н	NHCH(Et)CH2OMe	2-Me-4-MeO-Ph
	92	Ic	Me	Н	NH-2-butyl	2-Me-4-MeO-Ph
5	93	Ic	Me	Н	OCH(Et)CH2OMe	2-Me-4-MeO-Ph
	94	Ic	Me	Н	0-3-pentyl	2-Me-4-MeO-Ph
	95	Ic	Me	H	0-2-pentyl	2-Me-4-MeO-Ph
	96	Ic	Me	Н	R-2-pentyl	2-Me-4-MeO-Ph
	97	Ic	Me	Н	S-2-pentyl	2-Me-4-MeO-Ph
10	98	Ic	Me	Н	R-2-butyl	2-Me-4-MeO-Ph
	99	Ic	Me	Н	S-2-butyl	2-Me-4-MeO-Ph
	100	Ic	Me	Н	3-pentyl	2-Me-4-MeO-Ph
	101	Ic	Me	Н	CH(Et)CH2OH	2-Me-4-MeO-Ph
	102	Ic	Me	Н	CH(Et)CH2OMe	2-Me-4-MeO-Ph
15	103	Ic	Me	Н	сосн3	2-Me-4-MeO-Ph
	104	Ic	Me	Н	COEt	2-Me-4-MeO-Ph
	105	Ic	Me	Н	CO ₂ Et	2-Me-4-MeO-Ph
	106	Ic	Me	Н	CO-2-pentyl	2-Me-4-MeO-Ph
	107	Ic	Me	н	CO-3-pentyl	2-Me-4-MeO-Ph
20	108	Ic	Me	H	СН (ОН) СН ₃	2-Me-4-MeO-Ph
	109	Ic	Me	Н	C(OH)Me2	2-Me-4-MeO-Ph
	110	Ic	Me	Н	C(OH)Ph-3-pyridyl	2-Me-4-MeO-Ph
	111	Ic	Me	H	CH (OMe) CH3	2-Me-4-MeO-Ph
	112	Ic	Me	Н	CH (OMe) Et	2-Me-4-MeO-Ph
25	113	Ic	Me	Н	CH(OMe)Pr	2-Me-4-MeO-Ph
	114	Ic	Me	Н	CH (OEt) CH3	2-Me-4-MeO-Ph
	115	Ic	Me	H	CH(OPr)CH3	2-Me-4-MeO-Ph
	116	Ic	Me	H	CH (OMe) Et	2-Me-4-MeO-Ph
	117	Ic	Me	H	CH(OMe)Pr	2-Me-4-MeO-Ph
30	118	Ic	Me	Н	cyclobutyl	2-Me-4-MeO-Ph
	119	Ic	Me	H	cyclopentyl	2-Me-4-MeO-Ph
	120	Ic	Me	H	CH(Me)cyclobutyl	2-Me-4-MeO-Ph
	121	Ic	Me	н	CH(OMe)cyclobutyl	2-Me-4-MeO-Ph
	122	Ic	Me	нс	CH(Me)cyclopropyl	2-Me-4-MeO-Ph
35	123	Ic	Me	н с	H(OMe)cyclopropyl	2-Me-4-MeO-Ph
	124	Ic	Me	Н	CH(Et)cyclobutyl	2-Me-4-MeO-Ph
	125	Ic	Me	нс	CH(OEt)cyclobutyl	2-Me-4-MeO-Ph
	126	Ic ·	Me	н с	CH(Et)cyclopropyl	2-Me-4-MeO-Ph

127	Ic	Me	Н	CH(OEt)cyclopropyl	2-Me-4-MeO-Ph	
128	Ic	Me	. Н	CH(cyclobutyl)2	2-Me-4-MeO-Ph	
129	Ic	Me	Н	CH(cyclopropyl)2	2-Me-4-MeO-Ph	
130	Ic	Me	Н	NHCH (CH2OMe) 2	2-C1-4-MeO-Ph	
131	Ic	Me	Н	NHCH(Et)CH2OMe	2-C1-4-MeO-Ph	
132	Ic	Me	Н	NH-2-butyl	2-C1-4-MeO-Ph	
133	Ic	Me	Н	OCH(Et)CH2OMe	2-C1-4-MeO-Ph	
134	Ic	Me	Н	0-3-pentyl	2-C1-4-MeO-Ph	
135	Ic	Me	Н	0-2-pentyl	2-C1-4-MeO-Ph	
136	Ic	Me	Н	R-2-pentyl	2-Cl-4-MeO-Ph	
137	Ic	Me	Н	S-2-pentyl	2-C1-4-MeO-Ph	
138	Ic	Me	Н	R-2-butyl	2-C1-4-MeO-Ph	
139	Ic	Me	Н	S-2-buty1	2-C1-4-MeO-Ph	
140	Ic	Me	Н	3-pentyl	2-C1-4-MeO-Ph	amorph
141	Ic	Me	Н	CH(Et)CH2OH	2-C1-4-MeO-Ph	
142	Ic	Me	Н	CH(Et)CH2OMe	2-Cl-4-MeO-Ph	
143	Ic	Me	Н	COCH3	2-Cl-4-MeO-Ph	
144	Ic	Me	Н	COEt	2-C1-4-MeO-Ph	
145	Ic	Me	H	CO ₂ Et	2-C1-4-MeO-Ph	
146	Ic	Me	н	CO-2-pentyl	2-C1-4-MeO-Ph	
147	Ic	Me	H	CO-3-pentyl	2-C1-4-MeO-Ph	
	Ic	Me	H	CH (OH) CH3	2-C1-4-MeO-Ph	
149	Ic	Me	Н	C(OH)Me2	2-C1-4-MeO-Ph	
150	Ic	Me	H	C(OH)Ph-3-pyridyl	2-Cl-4-MeO-Ph	
151	Ic	Me	Н	CH(OMe)CH3	2-C1-4-MeO-Ph	
152	Ic	Me	Н	CH (OMe) Et	2-C1-4-MeO-Ph	
153	Ic	Me	Н	CH(OMe)Pr	2-C1-4-MeO-Ph	
	Ic	Me	Н	CH(OEt)CH3	2-C1-4-MeO-Ph	
155	Ic	Me	Н	CH(OPr)CH3	2-C1-4-MeO-Ph	
156	Ic	Me	Н	CH (OMe) Et	2-C1-4-MeO-Ph	
157	Ic	Me	Н	CH(OMe)Pr	2-C1-4-MeO-Ph	
158	Ic	Me	H	cyclobutyl	2-C1-4-MeO-Ph	
159	Ic	Me	Н	cyclopentyl	2-C1-4-MeO-Ph	
160	Ic	Me	H	CH(Me)cyclobutyl	2-C1-4-MeO-Ph	
161	Ic	Me	Н	CH(OMe)cyclobutyl	2-C1-4-MeO-Ph	
162	Ic	Me	Н	CH(Me)cyclopropyl	2-C1-4-MeO-Ph	
163	Ic	Me	Н	CH(OMe)cyclopropyl	2-C1-4-MeO-Ph	
164	Ic	Me	H.	CH(Et)cyclobutyl	2-C1-4-MeO-Ph	
	128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	128 Ic 129 Ic 130 Ic 131 Ic 132 Ic 133 Ic 134 Ic 135 Ic 136 Ic 137 Ic 138 Ic 139 Ic 140 Ic 141 Ic 142 Ic 143 Ic 144 Ic 145 Ic 146 Ic 147 Ic 148 Ic 149 Ic 150 Ic 151 Ic 152 Ic 153 Ic 154 Ic 155 Ic 156 Ic 157 Ic 158 Ic 160 Ic 161 Ic 162 Ic 163 Ic	128 Ic Me 129 Ic Me 130 Ic Me 131 Ic Me 132 Ic Me 133 Ic Me 134 Ic Me 135 Ic Me 136 Ic Me 137 Ic Me 138 Ic Me 139 Ic Me 140 Ic Me 141 Ic Me 142 Ic Me 143 Ic Me 144 Ic Me 145 Ic Me 146 Ic Me 147 Ic Me 148 Ic Me 150 Ic Me 151 Ic Me 152 Ic Me 153 Ic Me 155 Ic	128 Ic Me H 129 Ic Me H 130 Ic Me H 131 Ic Me H 132 Ic Me H 133 Ic Me H 134 Ic Me H 135 Ic Me H 136 Ic Me H 137 Ic Me H 138 Ic Me H 139 Ic Me H 140 Ic Me H 140 Ic Me H 141 Ic Me H 142 Ic Me H 144 Ic Me H 144 Ic Me H 145 Ic Me H 146 Ic Me H 149 Ic Me	128	128

	165	Ic	Me	Н	CH(OEt)cyclobutyl	2-C1-4-MeO-Ph
	166	Ic	Me	. н	CH(Et)cyclopropyl	2-C1-4-MeO-Ph
	167	Ic	Me	H	CH(OEt)cyclopropyl	2-C1-4-MeO-Ph
_	168	Ic	Me	Н	CH(cyclobutyl) ₂	2-C1-4-MeO-Ph
5	169	Ic	Me	Н	CH(cyclopropyl) ₂	2-C1-4-MeO-Ph
	170	Ic	Me	Н	R-2-pentyl	2-Me-6-MeO-
						pyrid-3-yl
	171	Ic	Me	H	S-2-pentyl	2-Me-6-MeO-
						pyrid-3-yl
10	172	Ic	Me	Н	R-2-butyl	2-Me-6-MeO-
						pyrid-3-yl
	173	Ic	Me	H	S-2-butyl	2-Me-6-MeO-
						pyrid-3-yl
	174	Ic	Me	Н	3-pentyl	2-Me-6-MeO-
15						pyrid-3-yl
	175	Ic	Me	Н	CH(Et)CH ₂ OH	2-Me-6-MeO-
						pyrid-3-yl
	176	Ic	Me	Н	CH(Et)CH2OMe	2-Me-6-MeO-
•						pyrid-3-yl
20	177	Id	Me	Н	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph
	178	Id	Me	Н	NHCH(Et)CH2OMe	2,4-Cl ₂ -Ph
	179	Id	Me	Н	NH-2-butyl	2,4-Cl ₂ -Ph
	180	Id	Me	Н	OCH(Et)CH2OMe	2,4-Cl ₂ -Ph
25	181	Id	Me	Н	O-3-pentyl	2,4-Cl ₂ -Ph
	182	Id	Me	Н	O-2-pentyl	2,4-Cl ₂ -Ph
	183	Id	Me	Н	R-2-pentyl	2,4-Cl ₂ -Ph
	184	Id	Me	H	S-2-pentyl	2,4-Cl ₂ -Ph
	185	Id	Me	H	R-2-butyl	2,4-Cl ₂ -Ph
30	186	Id	Me	Н	S-2-butyl	2,4-Cl ₂ -Ph
	187	Id	Me	H	CH(Et)CH2OH	2,4-Cl ₂ -Ph
	189	Id	Me	H	CH(Et)CH2OMe	2,4-Cl ₂ -Ph
	190	Id	Me	H	сосн3	2,4-Cl ₂ -Ph
	191	Id	Me	Н	COEt	2,4-Cl ₂ -Ph
35	192	Id	Me	Н	CO ₂ Et	2,4-Cl ₂ -Ph
	193	Id	Me	Н	CO-2-pentyl	2,4-Cl ₂ -Ph
	194	Id	Me	н	CO-3-pentyl	2,4-Cl ₂ -Ph
	195	Id	Me	н	СН (ОН) СН3	2,4-Cl ₂ -Ph

WO 00/59907	PCT/US00/09109

	196	Id	Me	H $C(OH)Me_2$ 2,4- Cl_2 -Ph	
	197	Id	Me .	H C(OH)Ph-3-pyridyl 2,4-Cl ₂ -Ph	
	198	Id	Me	H CH(OMe)CH3 2,4-Cl2-Ph	
	199	Id	Me	H CH(OMe)Et 2,4-Cl ₂ -Ph	
5	200	Id	Me	H CH(OMe)Pr 2,4-Cl2-Ph	
	201	Id	Me	H CH(OEt)CH3 2,4-Cl2-Ph	
	202	Id	Me	H CH(OPr)CH3 2,4-Cl2-Ph	
	203	Id	Me	H CH(OMe)Et 2,4-Cl ₂ -Ph	
	204	Iđ	Me	H CH(OMe)Pr 2,4-Cl ₂ -Ph	
10	205	Id	Me	H cyclobutyl 2,4-Cl2-Ph	
	206	Id	Me	H cyclopentyl 2,4-Cl2-Ph	
	207	Iđ	Me	H CH(Me)cyclobutyl 2,4-Cl2-Ph	
	208	Id	Me	H CH(OMe)cyclobutyl 2,4-Cl2-Ph	
	209	Id	Me	H CH(Me)cyclopropyl 2,4-Cl2-Ph	
15	210	Id	Me	H CH(OMe)cyclopropyl 2,4-Cl2-Ph	
	211	Id	Me	H CH(Et)cyclobutyl 2,4-Cl2-Ph	
	212	Iđ	Me	H CH(OEt)cyclobutyl 2,4-Cl2-Ph	
	213	Id	Me	H CH(Et)cyclopropyl 2,4-Cl ₂ -Ph	
	214	Id	Me	H CH(OEt)cyclopropyl 2,4-Cl2-Ph	
20	215	Id	Me	H CH(cyclobutyl) ₂ 2,4-Cl ₂ -Ph	
	216	Id	Me	H CH(cyclopropyl) ₂ 2,4-Cl ₂ -Ph	
	217	Ic	Me	H 3-pentyl 2,4-Me ₂ -4-MeOPh	80-82
	218	Ic	Me	- 4-heptyl 2,4-Cl ₂ -Ph	75.5-76.5
	219	Ic	Me	- CH(Me)cyclobutyl 2,4-Cl ₂ -Ph	
25	220	Ic	Me	- CH(CH ₂ OMe)Pr 2,4-Cl ₂ -Ph	
	221	Ic	Me	- CH(CH ₂ CH ₂ OMe) ₂ 2,4-Cl ₂ -Ph	
	222	Ic	Me	- CH(CH ₂ CH ₂ OMe)Et 2,4-Cl ₂ -Ph	
	223	Ic	Me	- CH(CH,CH,OMe) - 2,4-Cl ₂ -Ph	
				cyclobutyl	
30	224	Ic	Me	- $CH(CH_2CH_2OMe)$ 2,4- Cl_2 -Ph	
				3-tetrahydrofuranyl	
	225	Ic	Me	- 3-pentyl 2-Cl-4-OMe-Ph	
	226	Ic	Me	- CH(Me)Pr 2-C1-4-OMe-Ph	
	227	Ic	Me	- 4-heptyl 2-C1-4-OMe-Ph	
35	228	Ic	Me	- CH(CH2OMe)Pr 2-C1-4-OMe-Ph	
	229	Ic	Me	- CH(Me)cyclobutyl 2-C1-4-OMe-Ph	
	230	Ic	Me	- CH(Me)Pr 2-C1-4,5-OMe2-Ph	
	231.	Ic	Me	- CH(Me)cyclobutyl 2-C1-4,5-OMe2-Ph	

	232	Ic	Me	-	CH(CH,CH,OMe)	2-C1-4,5-OMe2-Ph	
	233	Ic	Me		4-heptyl	2-C1-4,5-OMe2-Ph	
	234	Ic	Me	-	CH(CH2OMe)Pr	2-C1-4,5-OMe2-Ph	
	235	Ic	Me	-	CH(CH,CH,OMe)	2-C1-4,5-OMe2-Ph	
5					cyclobutyl	_	
	236	Ic	Me	-		2-C1-4,5-OMe2-Ph	
				3	3-tetrahydofura	_	
	237	Ic	Me	_	CH(Me)cyclobuty	yl 2-Cl-4-OMe-5-FPh	
	238	Ic	Me	-	CH (Me) Pr	2-C1-4-OMe-5-F-Ph	
10	239	Ic	Me	-	CH(CH,CH,OMe),	2-C1-4-OMe-5-F-Ph	
	240	Ic	Me	_		2-C1-4-OMe-5-F-Ph	
	241	Ic	Me	-	CH(CH2OMe)Pr		
	242	Ic	Me	-	CH(CH,CH,OMe)-	- 2-Cl-4-OMe-5-F-Ph	
					cyclobutyl		
15	243	Ic	Me	-		- 2-C1-4-OMe-5-F-Ph	
				3-	-tetrahydrofura		
	244	Ic	Me	-	3-pentyl	2-C1-4-OEt-Ph	
	245	Ic	Me	-	CH(Me)Pr	2-C1-4-OEt-Ph	
	246	Ic	Me	-	4-heptyl	2-C1-4-OEt-Ph	85.5-86.5
20	247	Ic	Me	-	CH(Me)cyclobuty		03.3 00.3
	248	Ic	Me	-	3-pentyl	2,4-OMe2-Ph	
	249	Ic	Me	-	4-heptyl	2,4-OMe ₂ -Ph	87-88
	250	Ic	Me	-	3-pentyl	2-Me-4-C1-Ph	
	251	Ic	Me	-	3-pentyl	4-OMe-Ph	
25	252	Ic	Me	-	3-pentyl	4-Cl-Ph	
	253	Ic	Me	-	3-pentyl	2,5-Me ₂ -4-OMe-Ph	80-82
	254	Ic	Me	-	3-pentyl	2-C1-4-SO2Me-Ph	
	255	Ic	Me	-	3-pentyl	2-Me-4-NMe ₂ -Ph	
	256	Ic	Me	-	3-pentyl	2-C1-4-NMe2-Ph	
30	257	Ic	Me	-	3-pentyl	2-CF ₃ -4-F-Ph	
	258	Ic	Me	-	3-pentyl	2-OMe-4-Me-Ph	
	259	Ic	Me	-	CH(Me)Pr	2-0H-4-0Me-Ph	
	260	Ic	Me	-	CH(Me)Pr	2-Me-4-OMe-5-F-Ph	
	261	Id	Me	-	3-pentyl	2,4-Cl ₂ -Ph	
35	262	Id	Me	-	3-pentyl	2-C1-4,5-OMe2-Ph	

TABLE 1a

$$\begin{array}{c} R_2 \\ HO \longrightarrow N-N-N \\ R_3 \end{array}$$

5 Ex. Formula R⁵ R⁴ R² R³ mp(°C)

263 Me - 3-pentyl 2-Cl-4,5-OMe₂-Ph 249-250

10

15

In addition to examples 1-10, additional examples 11-248 and additional examples having the following R^4 (or R^5), R^2 and R^3 were or may readily be prepared according to the procedures described herein.

The preferred groups for R^5 in the compounds of formula Ic and Id are methyl (Me). For R^2 , in compounds of formula Ic and Id having R^5 as Me (or C_2 - C_6 alkyl), the preferred groups include 3-pentyl, NEt₂, butyl,

- NHCH(CH₂OMe)₂, NHCH(CH₂OEt)₂, NHCH(Et)CH₂OMe, NH-3-heptyl, NH-3-pentyl, NH-2-butyl, NH-3-hexyl, NHCH(CH₂Ph)CH₂OMe, NHCH(Et)CH₂CH₂OMe, NH-cyclobutyl, NH-cyclopentyl, NEtPr, NEtBu, NMePr, NMePh, Npr₂, NPr(CH₂-c-C₃H₅), N(CH₂CH₂OMe)₂, morpholino, N(CH₂Ph)CH₂CH₂OMe,
- N(Me)CH₂CH₂OMe, N(Et)CH₂CH₂OMe, N(CH₂-c-C₃H₅)CH₂CH₂OMe, N(CH₂-c-C₃H₅)Pr, N(CH₂-c-C₃H₅)Et, OEt, OCH(Et)CH₂OMe, OCH(Et)CH₂OMe, OCH(Me)CH₂CH₂OMe, O-3-pentyl, O-2-pentyl, S-3-pentyl, S-2-pentyl, SEt, S(O)Et, SO₂Et, S-3-pentyl, S(O)-3-pentyl, SO₂-3-pentyl, S-2-pentyl, S(O)-2-
- pentyl, SO2-2-pentyl, CH(CO2Et)2, C(Et)(CO2Et)2,
 CH(Et)CH2OH, CH(Et)CH2OMe, CH(Et)CH2CH2OMe, CONMe2,
 COCH3, COEt, COPr, CO-2-pentyl, CO-3-pentyl, CH(OH)CH3,
 C(OH)Me2, C(OH)Ph-3-pyridyl, CH(OMe)CH3, CH(OMe)Et,
 CH(OMe)Pr, CH(OEt)CH3, CH(OPr)CH3, 2-pentyl, 2-butyl,
- 35 cyclobutyl, cyclopentyl, CH(Me)cyclobutyl,
 CH(OMe)cyclobutyl, CH(OH)cyclobutyl, CH(Me)cyclopropyl,

CH(OMe)cyclopropyl, CH(OH)cyclopropyl, CH(Et)cyclobutyl, CH(Et)cyclopropyl, CH(OMe)cyclobutyl, CH(OMe)cyclopropyl, CH(OEt)cyclobutyl, CH(OEt)cyclopropyl, CH(Me)CH2-cyclobutyl, CH(OMe)CH2-cyclobutyl, CH(OH)CH2-cyclobutyl,

- 5 CH(Me)CH2-cyclopropyl, CH(OMe)CH2-cyclopropyl, CH(OH)CH2-cyclopropyl, CH(Et)CH2-cyclobutyl, CH(Et)CH2-cyclopropyl, CH(OMe)CH2-cyclobutyl, CH(OMe)CH2-cyclopropyl, CH(OEt)CH2-cyclobutyl, CH(OEt)CH2-cyclopropyl, CH(CH2OMe)cyclobutyl, CH(CH2OMe)cyclopropyl,
- 10 CH(CH2OEt)cyclobutyl, CH(CH2OEt)cyclopropyl,
 CH(cyclobutyl)2, CH(cyclopropyl)2, CH(Et)CH2CONMe2,
 CH(Et)CH2CH2NMe2, CH(CH2OMe)Me, CH(CH2OMe)Et,
 CH(CH2OMe)Pr, CH(CH2OEt)Me, CH(CH2OEt)Et, CH(CH2OEt)Pr,
 CH(CH2C=CMe)Et, CH(CH2C=CMe)Et. The preferred groups for
- 15 R³ with R² and R⁵ as defined above include 2,4-Cl₂-Ph, 2,4,6-Me₃-Ph, 2,4-Me₂-Ph, 2-Me-4-MeO-Ph, 2-Cl-4-MeO-Ph, 2-Cl-4,5-(MeO)₂-Ph, 2-Cl-4-MeO-5-F-Ph, 2-Me-4-MeO-5-F-Ph, 2,5-(Me)₂-4-MeO-Ph, 2-Me-4-NMe₂-Ph, 2-CF₃-4-MeO-Ph, 2-Me-4-(COMe)-Ph, 2-Me-6-Me₂N-pyrid-3-yl, 4-Me-2-Me₂N-pyrid-5-
- yl, 2-Me-6-MeO-pyrid-3-yl, 4-Me-2-MeO-pyrid-5-yl. Each of the compounds within the independent generic variations may readily be prepared according to the procedures described in Schemes 1-3 and 5.

 For compounds of formulas Ie and If, in addition to
- example 10 in Table 1, the above variables for Ic and Id may be used in the compounds of formulas Ie and If except that R⁵ groups are used as the R⁴ variables. The following compounds may be prepared as the preferred embodiments wherein R⁴ is selected from H, OCH₃, CH₃ and
- 30 C_2H_5 ; R^2 is selected from $CH(C_2H_5)_2$, $CH(c-C_3H_5)_2$, CHC_2H_5 (c- C_3H_5), $CH(C_2H_5)_2$, $CH(c-C_3H_5)_2$; and R^3 is selected from 2,4- Cl_2 -Ph, 2-Cl-4-CH₃O-Ph, 2,4,6-(CH₃)₃-Ph, 2-Cl-4-CF₃-Ph and 2-(CH₃)₂N-4-CH₃-pyridin-5-yl. In addition, the methoxy group or the ethyl group in the R^1 position also
- preferrably includes CH, and H. Each of the compounds within the independent generic variations may readily be prepared according to the procedure described in Scheme 4. Compounds of formula IIa and IIb are readily prepared

according to the procedure described in Scheme 6. These compounds also preferrably have the variables shown in the examples and described above.

5 <u>Utility</u>

CRF-R1 Receptor Binding Assay for the Evaluation of Biological Activity

10 Radioligand binding experiments

Compounds of the invention were tested for in vitro activity as CRF receptor antagonists. The tests described below demonstrated that the examples tested had $\mathrm{K_{i}s}$ of 10,000 nM or less and are thus useful as CRF receptor antagonists. Preferred antagonists have or will 15 have a K_i of 1,000 nM or less. Radioligand binding experiments were performed with membranes from rat frontal cortex to determine binding affinities $(K_{\underline{i}}'s)$ of test compounds for the rat CRH, receptor using a modified version of methods described earlier (see E.B. DeSouza, 20 J. Neurosci, 7:88, 1987). Rat cortex was homogenized in tissue buffer (containing 50 mM HEPES, 10 mM $MgCl_2$, 2 mM EGTA, and 1 μ g/ml each of aprotonin, leupeptin, and pepstatin, pH 7.0 @ 23°C) using a Brinkman Polytron (PT-10, setting 6 for 10 sec). The homogenate was centrifuged 25 at 48,000 X g for 12 min and the resulting pellet was washed by two sequential re-suspension and centrifugation steps. The final pellet was suspended to tissue buffer to a working concentration of 0.1 mg/ml protein. Protein determinations were made using the bicinchoninic acid 30 (BCA) assay (Pierce, Rockford, IL) with bovine serum albumin as the standard.

All test compounds were prepared in assay buffer, which was identical to the tissue buffer except for the inclusion of 0.15 mM bacitracin and 0.1% w/v ovalbumin. Binding assay were conducted in disposable polypropylene 96-well plates (Costar Corp., Cambridge, MA) and initiated by the addition of 100 µl membrane

35

homogenate (containing 40-60 μg protein) to 200 μl of assay buffer containing radioligands (150 pM, final concentration, [125] tyr° ovine CRH; New England Nuclear, MA) and competing test compounds. Specific 5 binding was determined in the presence of 10 μM $\alpha\text{-}$ helical CRH. Competition experiments were conducted using 12 concentrations of ligand (ranging from 1 \times 10 11 to 1 X $10^{-5}\ \mathrm{M})\,.$ The reactions mixtures were incubated to equilibrium for 2 hr at 23°C and terminated by rapid filtration using a cell harvester (Inotech Biosystems Inc., Lansing MI) over GFF glass-fibers (pre-soaked in 0.3 % v/v polyethyleneimine). Filters were rapidly washed 3X with 0.3 ml cold wash buffer (PBS, pH 7.0, containing 0.01% Triton X-100), dried, and counted in a 15 gamma counter at 80% efficiency.

Binding affinities $(K_i's)$ of ligands for the CRH_i receptor were calculated using the iterative nonlinear regression curve-fitting programs (LIGAND) of Munson and Rodbard (Anal. Biochem. 1980, 107, 220-239) or Prism (GraphPad Prism, San Diego, CA). Data were best-fit by the one-site/state competition equation.

20

Inhibition of CRF-Stimulated Adenylate Cyclase Activity

Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G. Battaglia et al. Synapse 1:572 (1987). Briefly, assays are carried out at 37° C for 10 min in 200 ml of buffer containing 100 mM Tris-HCl (pH 7.4 at 37° C), 10 mM MgCl₂, 0.4 mM EGTA, 0.1% BSA, 1 mM

- isobutylmethylxanthine (IBMX), 250 units/ml phosphocreatine kinase, 5 mM creatine phosphate, 100 mM guanosine 5'-triphosphate, 100 nM oCRF, antagonist peptides (concentration range 10⁻⁹ to 10^{-6m}) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein). Reactions are initiated by the addition of 1
- protein). Reactions are initiated by the addition of 1 mM ATP/³²P]ATP (approximately 2-4 mCi/tube) and terminated by the addition of 100 ml of 50 mM Tris-HCL, 45 mM ATP and 2% sodium dodecyl sulfate. In order to

monitor the recovery of cAMP, 1 μ l of [³H]cAMP (approximately 40,000 dpm) is added to each tube prior to separation. The separation of [³²P]cAMP from [³²P]ATP is performed by sequential elution over Dowex and alumina columns.

In vivo Biological Assay

The *in vivo* activity of the compounds of the present invention can be assessed using any one of the biological assays available and accepted within the art. Illustrative of these tests include the Acoustic Startle Assay, the Stair Climbing Test, and the Chronic Administration Assay. These and other models useful for the testing of compounds of the present invention have been outlined in C.W. Berridge and A.J. Dunn Brain Research Reviews 15:71 (1990).

Compounds may be tested in any species of rodent or small mammal.

20

25

10

15

Compounds of this invention have utility in the treatment of inbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.

Compounds of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or in combination of therapeutic agents. They can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the particular agent, and its mode and route of

administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect. For use in the treatment of said diseases or conditions, the compounds of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.

Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions, the active ingredient will ordinarily be present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.

10

15

20

25

30

35

The active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups, and/or suspensions. The compounds of this invention can also be administered parenterally in sterile liquid dose formulations.

Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time. Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.

Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance.

In general, water, pharmaceutically acceptable 5 oils, saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol, are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, 10 and if necessary, butter substances. Antioxidizing agents, such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents. Also used are citric acid 15 and its salts, and EDTA. In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in 20 "Remington's Pharmaceutical Sciences", A. Osol, a standard reference in the field.

Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

25

30

Capsules

A large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried.

Tablets

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 mg active ingredient, 0.2 mg of colloidal silicon

5 dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg lactose. Appropriate coatings may be applied to increase palatability or delayed adsorption.

The compounds of this invention may also be used as reagents or standards in the biochemical study of neurological function, dysfunction, and disease. The preferred indication and use for the compounds and compositions of the invention is in the treatment of depression or anxiety.

WHAT IS CLAIMED IS:

1. A compound of formula I:

5

or a stereoisomer or pharmaceutically accetable salt thereof, wherein:

10

A equals N or CR5;

B equals N or CR4,

provided that both A and B can not be N or provided that 15 A can not be CR⁵ and B can not be CR⁴ to form a

pyrazolopyrimidine;

 ${\ensuremath{\mathsf{R}}}^{\ensuremath{\mathsf{1}}}$ is independently selected from the group consisting of

20 н,

halogen,

CN,

C₁₋₆ alkyl,

C₂₋₁₀ alkenyl,

25 C₂₋₁₀ alkynyl,

C₃₋₆ cycloalkyl,

 C_{1-6} alkyloxy,

C₁₋₆ alkylS(O)_n,

 $-NR^{1a}R^{1a}$ wherein R^{1a} and R^{1b} are independently selected from

30 H, C_{1-4} alkyl, C_{3-6} cycloalkyl, $-C(0)C_{1-4}$ alkyl,

C₁₋₆ alkylNR^{1a}R^{1b},

NR10COR16,

```
-C(0)NR<sup>10</sup>R<sup>16</sup>,
-O-C(0)C<sub>1-4</sub>alkyl,
```

-XR^{1c} wherein R^{1c} is selected from H or -C₁₋₄ alkylaryl;

X is selected from 0 or S(O)_n,

wherein R¹ is substituted with 0-6 substituents selected from halogen, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkyloxy, C₁₋₄ haloalkyl, C₁₋₄ alkylamino, C₂₋₈ dialkylamino, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl or C₁₋₄ alkylsulfonyl;

 R^2 is selected from the group consisting of H, OR^7 , SH, NR^6R^7 , $C(OH)R^6R^{6a}$, $C(OR^7)R^6R^{6a}$, $S(O)_nR^{13}$, COR^7 , CO_2R^7 , $CHR^6(OR^7)R^{6a}$, $OC(O)R^{13}$, NO, NO_2 , $NR^6C(O)R^7$, $N(COR^7)_2$,

15 NR°CONR°R', NR°CO,R'; or

C₁₋₁₀ alkyl,
C₂₋₁₀ alkenyl,

C₂₋₁₀ alkynyl,

20 C₃₋₈ cycloalkyl,

 C_{3-6} cycloalkyl C_{1-6} alkyl,

C₁₋₁₀ alkyloxy,

 C_{1-10} alkyloxy C_{1-10} alkyl,

 $-SO_2-C_{1-10}$ alkyl

25 -SO₂R^{2a} wherein R^{2a} is aryl,

-SO,R2b wherein R2b is heteroaryl,

-NR^{2c}R^{2D} wherein R^{2c} and R^{2d} are independently selected from H, C_{1-8} alkyl, $S(O)_n C_{1-4}$ alkyl, $C(O) NR^{2c} R^{2d}$, $CO_2 C_{1-4}$ alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy C_{1-6} alkyl, $-C(O) C_{1-4}$ alkyl or R^{2c} and R^{2d} may join to form a heterocyclic ring having 0-3 heteroatoms selected from O, N or S,

- halogen,

-CN,

30

35 -C(0)-L wherein L is selected from H, NR^{2c}R^{2d}, C₁₋₆ alkyl or OC₁₋₄ alkyl, O(CH₂)_mOR wherein R is C₁₋₃ alkyl, O(CH₂)_m-NR^{2c}R^{2d},OH, C(O)OC₁₋₆alkyl or aryl or heteroaryl wherein m is 1-4;

-OC(O)-M wherein M is selected from C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₂₋₄ alkoxyalkyl, C₃₋₆cycloalkyl, C₄₋₁₂ cycloalkylalkyl, aryl, C₁₋₆ alkylaryl, heteroaryl, C₁₋₆ alkylheteroaryl;

n is 0, 1 or 2; and wherein

R² is substituted with 0-3 substituents independently selected from R', R", R"' ' wherein R', R" and R"' are independently selected from C₁₋₆ alkyl, C₃₋₇ cycloalkyl, hydroxyC₁₋₆ alkyl, C₁₋₆ alkyloxyC₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkyloxy, hydroxy, or

 R^2 is substituted with 0-3 substituents independently selected from:

halogen,

-CN,

5

20 $-S(0)_n R^{2e}$ wherein R^{2e} is selected from C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl;

-COR^{2f} wherein R^{2f} is selected from H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkylC₁₋₄ alkyl;

-CO,R2f,

-NR^{2g}COR^{2f} wherein R^{2g} is selected from H, C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl;

 $30 - N(COR^{2t})_{,,}$

-NR^{2g}CONR^{2f}R^{2h}, wherein R^{2h} is selected from H, C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy C_{1-4} alkyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkylC₁₋₆ alkyl;

35

25

 $-NR^{2g}CO_2R^{2o}$,

-CONR^{2g}R^{2h},

1-morpholinyl,

1-piperidinyl, 1-piperazinyl, and $\mathrm{C}_{3\text{--}8}$ cycloalkyl wherein 0-1 carbon atoms in the $\mathrm{C}_{4\text{--}8}$ cycloalkyl is replaced by a group selected from -O-, $-S(O)_n-$, $-NR^{2g}-$, $-NCO_2R^{2e}$, $-NCOR^{2e}$, and -NSO₂R^{2e}; and wherein N_a in 1-piperazinyl is substituted with 0-1 substituents selected from R20, CO,R20, COR20 and SO,R2e; or 10 the group R^{2i} , R^{2j} , R^{2k} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{29}$, $-NR^{2g}R^{2h},\ -C_{_{1-6}}$ alkyl-OR $^{2g},$ and $C_{_{3-8}}$ cycloalkyl which is substituted with 0-1 R^{21} and in which 0-1 carbons of C_{4-8} 15 cycloalkyl is replaced by -O-, wherein R^{2i} is selected from aryl wherein aryl includes phenyl, naphthyl, indanyl and indenyl, each R^{2i} being substituted with 0-1 OR^{2m} and 0-5 substituents independently selected from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -SH, $-S(O)_nR^{2n}$, $-COR^{2m}$, $-OC(O)R^{2n}$, $-NR^{2g}COR^{2m}$, - $N(COR^{2m})_{1}$ $-NR^{2g}CONR^{20}R^{2p}$, $-NR^{2g}CO_{2}R^{2n}$, $-NR^{2o}R^{2p}$ and $-CONR^{2o}R^{2p}$; 25 R^{2i} is selected from heteroaryl wherein heteroaryl includes pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3dihydrobenzothienyl-s-oxide, 2,3-dihydro-benzothienyl-sdioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected from the group $C_{1-\delta}$ alkyl, $C_{3-\delta}$ cycloalkyl, Br, Cl, F, I, $C_{1-\delta}$ haloalkyl, -CN, nitro, OR^{2m} , -SH, -S(O)_n R^{2h} , -COR^{2m}, -

OC(O) R^{2h} , $-NR^{2g}COR^{2m}$, $-N(COR^{2m})_2$, $-NR^{2g}CONR^{2o}R^{2p}$, $-NR^{2g}CO_2R^{2h}$, $-NR^{2g}R^{2p}$ and $-CONR^{2g}R^{2p}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{2g} , CO_2R^{2c} , COR^{2g} and SO_2R^{2g} ;

5

 R^{2k} is heterocyclyl which is a saturated or partially saturated heteroaryl as defined for R^{2i} , each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{2m}$, -SH, $-S(O)_nR^{2h}$, $-COR^{2m}$, $-OC(O)R^{2h}$, $-NR^{2g}COR^{2m}$, $-N(COR^{2m})_2$, $-NR^{2g}CONR^{2o}R^{2p}$, $NR^{2g}CO_2R^{2h}$, $-NR^{2o}R^{2p}$ and $-CONR^{2o}R^{2p}$ and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{2f} , CO_2R^{2o} , COR^{2o} and SO_2R^{2o} ;

wherein

 R^{21} is H, $C_{1\text{--}4}$ alkyl, $C_{3\text{--}6}$ cycloalky- $C_{1\text{--}4}$ alkyl and $C_{3\text{--}8}$ 20 cycloalkyl;

 R^{2m} is H, C_{1-6} alkyl, C_{3-6} cycloalkyl C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{2q}S(0)_{n}-C_{1-4}$ alkyl and $R^{2r}R^{2o}N-C_{2-4}$ alkyl;

25

15

 R^{2n} is H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, and C_{1-4} haloalkyl;

 R^{20} and R^{2p} are independently selected at each occurrence 30 from H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl and C_{1-4} haloalkyl;

 R^{2q} is selected from C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl), heteroaryl and heteroaryl (C_{1-4} alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4}

alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;

 $R^{2r}R^{2s}$ taken together with the N form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl wherein N_4 in 1-piperiazinyl is substituted with 0-1 substituents selected from the group R^{2t} , CO_2R^{2q} , COR^{2q} and SO_2R^{2q} .

R^{2t} is selected from H, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy -C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl - C₁₋₆ alkyl, aryl, aryl (C₁₋₄ alkyl)-, heteroaryl and heteroaryl (C₁₋₄ alkyl);

R³ is selected from an aryl or heteroaryl group attached through an unsaturated carbon atom;

aryl is selected from phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkyloxy-C₁₋₄ alkyloxy, -OR^{2m}, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -CO₂R^{2m}, -OC(O)R²ⁿ, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, -NR^{2g}CO₂R^{2h}, -NR^{2o}R^{2p} and CONR^{2o}R^{2p};

heteroaryl is selected from the group pyridyl, pyrimidyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzo-furanyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-s-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted at 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, F, I, C₁₋₄ haloalkyl, -CN, NR^{2G}R^{2h}, nitro, -OR^{2m}, -SH, -S(O)_RR²ⁿ, COR^{2m}, -CO₂R^{2m}, -OC(O)R²ⁿ, -NR^{2G}COR^{2m}, -

 $N(COR^{2m})_3$, $-NR^{2g}CONR^{2g}R^{2g}$ and each heteroaryl being substituted at any nitrogen atom with 0-1 substituents selected from the group R^{2g} , CO_2R^{3a} , COR^{3a} and SO_2R^{3a} wherein,

5 R^{3a} is selected from the group C_{1-6} alkyl, C_{1-4} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

10

- R^4 and R^5 are independently selected at each occurrence from H, Br, Cl, F, I, -CN, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, amino, C_{1-4} alkylamino,
- (C₁₋₄ alkyl)₂ amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group consisting of C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, -C(0)H, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆
- alkylamino and (C₁₋₄ alkyl)₂ amino and wherein R⁴ and R⁵ non-phenyl groups may be substituted with 0-5 substituents selected from OH, halogen, -C(O)H, -OC₁₋₆-alkyl and C₁₋₆ haloalkyl, C₁₋₆ alkyl, C₃₋₇ c-alkyl, C₁₋₆ alkyl(OH)_nCO₂R wherein R is H or C₁₋₆ alkyl, C₁₋₆ alkyl(OH)_n
- 25 , wherein n is 0-3 or R^4 and R^5 may join together to form a C_{3-6} alkylene chain;
- R^6 , R^{6a} and R^7 are independently selected from: H, C_{1-10} alkyl, C_{3-10} cycloalkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, C_{1-10} haloalkyl, C_{2-8} alkoxyalkyl, C_{4-12} cycloalkylalkyl, C_{5-10} cycloalkenyl, C_{6-14} cycloalkenylalkyl;
- R^6 , R^{6a} and R^7 are substituted with 0-6 substitutents independently selected from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy or C_{1-4} haloalkyl;

with the proviso that the compounds of Formula I with R¹, R², R³, R⁴ and R⁵ as specifically defined below are excluded:

- 5 (a) a compound of formula I wherein $A = CR^5$ with R^5 ohydroxyphenyl, B = N, $R^3 = ohydroxyphenyl$, $R^1=SMe$ and $R^2 = CN$;
- (b) a compound of formula I wherein $A=CR^5$, $R^5=CH_3$, B=N, 10 $R^1=Ph$, $R^2=Br$ and R^3 is Ph;
 - (c) a compound of formula I wherein $A = CR^5$, $R^5 = p-Cl-phenyl$, B = N, $R^1 = Me$, $R^2 = H$ and $R^3 = p-CF_3-phenyl$;
- 15 (d) a compound of formula I wherein $A = CR^5$, $R^5 = phenyl$, B = N, $R^1 = Me$, $R^2 = H$ and $R^3 = p-CF_3-phenyl$;

20

35

- (e) a compound of formula I wherein $A = CR^5$, $R^5 = ethyl$, B = N, $R^1 = Me$, $R^2 = H$ and $R^3 = N-methyl-piperiazin-N-yl$;
- (f) a compound of formula I wherein $A=CR^5$, R^5 is p-Cl-Ph, $R^1=H$, $R^2=H$ and $R^3=p-CF_3-Ph$;
- (g) a compound of formula I wherein $A=CR^5$, $R^5=p-Cl-Ph$, $R^1=25$ CH_3 , $R^2=H$, $R^3=p-CF_3-Ph$;
 - (h) a compound of formula I wherein $A=CR^5$, $R^5=Ph$, $R^1=Me$, $R^2=H$, $R^3=p-CF_1-Ph$;
- 30 (i) a compound of formula I wherein $A=CR^5$, $R^5=Ph$, $R^1=H$, $R^2=H$, $R^3=p-CF_3-Ph$;
 - (j) a compound of formula I wherein $A=CR^5$, $R^3=Ph$ and R^2 is H, Br, CN, CO_2Et or Cl;
 - (k) a compound of formula I wherein $A=CR^5$, $R^5=CH_3$, C_2H_5 or Ph, $R^1=H$, $R^2=H$ and $R^3=Ph$.

2. A compound of formula I:

5

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein:

A equals N or CR5;

10

15

B equals N or CR4;

provided that both A and B cannot be N or provided that A can not be CR⁵ and B can not be CR⁴ to form a pyrazolopyrimidine; and wherein,

 $\ensuremath{\text{R}}^{\ensuremath{\text{1}}}$ is independently selected from the group consisting of

Η,

20 halogen,

CN,

 C_{1-6} alkyl,

C2-10 alkenyl,

C₂₋₁₀ alkynyl,

25 C₃₋₆ cycloalkyl,

C₁₋₆ alkyloxy,

C₁₋₆ alkylS(0)_n,

-NR^{1a}R^{1B} wherein R^{1a} and R^{1b} are independently selected from H, C_{1-4} alkyl, C_{3-8} cycloalkyl, -C(0) C_{1-4} alkyl,

30 C₁₋₆ alkylNR¹⁻⁶R^{1b},

NR1aCOR1b,

-C (O) NR1aR1b,

 $-0-C(0)C_{1-4}alkyl$, $-XR^{1c}$ wherein R^{1c} is selected from H or $-C_{1-4}$ alkylaryl; X is selected from 0 or S(O), 5 wherein R' is substituted with 0-6 substituents selected from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-4} haloalkyl, C_{1-4} alkylamino, C_{2-8} dialkylamino, C_{1-4} alkyloxy, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl or C_{1-4} alkylsulfonyl; 10 R² is selected from the group consisting of OR^7 , SH, NR^6R^7 , $C(OH)R^6R^{6a}$, $C(OR^7)R^6R^{6a}$, $S(O)_nR^{13}$, COR^7 , CO_2R^7 , $CHR^{6}\left(OR^{7}\right)R^{6\alpha},\ OC\left(O\right)R^{13},\ NO,\ NO_{2},\ NR^{6}C\left(O\right)R^{7},\ N\left(COR^{7}\right)_{2},\ NR^{8}CONR^{6}R^{7}$ or NR⁶CO,R⁷; or R² is selected from: 15 C_{1-10} alkyl, C_{2-10} alkenyl, C2-10 alkynyl, C3-8 cycloalkyl, 20 C₃₋₆ cycloalkyl C₁₋₆ alkyl, C_{1-10} alkyloxy, C₁₋₁₀ alkyloxyC₁₋₁₀ alkyl, -SO,-C,_10alkyl -SO₂R^{2a} wherein R^{2a} is aryl, 25 -SO,R^{2b} wherein R^{2b} is heteroaryl. $-NR^{2c}R^{2\textrm{\tiny D}}$ wherein $R^{2\textrm{\tiny C}}$ and $R^{2\textrm{\tiny d}}$ are independently selected from H, C_{1-8} alkyl, $S(0)_n C_{1-4}$ alkyl, $C(0) NR^{2c} R^{2d}$, $CO_2 C_{1-4}$ alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy C_{1-6} alkyl, $-C(0)C_{1-4}$ alkyl or R^{2c} and R^{2d} may join to form a heterocyclic ring 30 having 0-3 heteroatoms selected from O, N or S, -C(0)-L wherein L is selected from H, NR^{2c}R^{2d}, C₁₋₆ alkyl

-C(O)-L wherein L is selected from H, NR^{2c}R^{2d}, C₁₋₆ alkyl O(CH₂)_nOR wherein R is C₁₋₃ alkyl, O(CH₂)_n-NR^{2c}R^{2d},OH,

C(O)OC₁₋₆alkyl, or aryl or heteroaryl wherein m is 1-4; or

-OC(0)-M wherein M is selected from C_{1-4} alkyl, C_{1-4} haloalkyl, C_{2-8} alkoxyalkyl, C_{3-6} cycloalkyl, C_{4-12}

cycloalkylalkyl, aryl, C_{1-6} alkylaryl, heteroaryl, C_{1-6} alkylheteroaryl; n is 0, 1 or 2; and wherein 5 R² is substituted with 0-3 substituents independently selected from R', R", R"' wherein R', R" and R"' are independently selected from C_{1-6} alkyl, C_{3-7} cycloalkyl, $\label{eq:complex} \text{hydroxyC}_{\text{1-6}} \text{ alkyl}, \text{ C}_{\text{1-6}} \text{ alkyloxyC}_{\text{1-6}} \text{ alkyl}, \text{ C}_{\text{2-6}} \text{ alkenyl}, \text{ C}_{\text{2-6}}$ 10 alkynyl, C_{1-6} alkyloxy, hydroxy, or R^2 is substituted with 0-3 substituents independently selected from: 15 halogen, -CN, $-S(0)_nR^{2e}$ wherein R^{2e} is selected from C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl; -COR 2t wherein R 2t is selected from H, C $_{1-4}$ alkyl, C $_{1-4}$ 20 haloalkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl C_{1-4} alkyl; -CO₂R^{2f}, 25 $-NR^{2g}COR^{2f}$ wherein R^{2g} is selected from H, C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl; -N(COR^{2f}), $-NR^{2g}CONR^{2f}R^{2h}$, wherein R^{2h} is selected from H, C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy C_{1-4} alkyl, 30 C_{3-6} cycloalkyl and C_{3-6} cycloalkyl C_{3-6} alkyl; -NR^{2g}CO₂R^{2e}, -CONR^{2g}R^{2h},

-CONR²⁰R^{2h},

35 1-morpholinyl,
1-piperidinyl,
1-piperazinyl,

and

 C_{3-8} cycloalkyl wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from -0-, $-S(O)_n-$, $-NR^{2g}-$, $-NCO_2R^{2o}$, $-NCOR^{2o}$, and $-NSO_2R^{2o}$; and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from R^{2g} , CO_2R^{2o} , COR^{2o} and

 SO_2R^{2e} ; or the group R^{2i} , R^{2j} , R^{2k} , C_{1-6} alkyl, C_{2-8}

alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{2g},
-NR^{2g}R^{2h}, -C₁₋₆ alkyl-OR^{2g}, and C₃₋₈ cycloalkyl which is
substituted with 0-1 R²¹ and in which 0-1 carbons of C₄₋₈
cycloalkyl is replaced by -O-, wherein

15 R^{21} is selected from aryl wherein aryl includes phenyl, naphthyl, indanyl and indenyl, each R^{21} being substituted with 0-1 OR^{2m} and 0-5 substituents independently selected from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN,

20 nitro, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -OC(O)R²ⁿ, -NR^{2g}COR^{2m}, -N(COR^{2m})₂,

-NR^{2g}CONR²⁰R^{2p}, -NR^{2g}CO₂R²ⁿ, -NR^{2o}R^{2p} and -CONR^{2o}R^{2p};

R²⁵ is selected from heteroaryl wherein heteroaryl
25 includes pyridyl, pyrimidinyl, triazinyl, furanyl,
quinolinyl, isoquinolinyl, thienyl, imidazolyl,
thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl,
pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-

- dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-s-oxide, 2,3-dihydro-benzothienyl-s-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected
- from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, OR^{2m} , -SH, -S(O)_nR^{2h}, -COR^{2m}, OC(O)R^{2h}, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2e}R^{2p}, -NR^{2g}CO₂R^{2h}, NR^{2e}COR^{2e} and -CONR^{2e}R^{2p} and each heteroaryl being substituted

on any nitrogen atom with 0-1 substituents selected from the group R^{2g} , CO_2R^{2e} , COR^{2e} and SO_2R^{2e} ;

R^{2k} is heterocyclyl which is a saturated or partially saturated heterocyclyl as defined for R²ⁱ, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{2m}, -SH, -S(O)_nR^{2h}, -COR^{2m}, -OC(O)R^{2h}, -NR^{2g}COR^{2m}, -N(COR^{2m})₂, 10 -NR^{2g}CONR^{2g}R^{2p}, NR^{2g}CO₂R^{2h}, -NR^{2g}R^{2p} and -CONR^{2g}R^{2p} and each

-NR*CONR*R*, NR*CO₂R**, -NR*CR** and -CONR**R** and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R**, CO₂R**, COR** and SO₂R**;

15 wherein

30

 R^{21} is H, C_{1-4} alkyl, C_{3-6} cycloalky- C_{1-4} alkyl and C_{3-8} cycloalkyl;

20 R^{2m} is H, C_{1-6} alkyl, C_{3-6} cycloalkyl C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{2q}S(0)_n-C_{1-4}$ alkyl and $R^{2r}R^{2r}N-C_{2-4}$ alkyl;

 R^{2n} is H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkyloxy C_{1-2} alkyl, and C_{1-4} haloalkyl;

 R^{20} and R^{2p} are independently selected at each occurrence from H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl and C_{1-4} haloalkyl;

 R^{2q} is selected from C_{1-6} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl), heteroaryl and heteroaryl (C_{1-4} alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;

 $R^{2r}R^{2r}$ taken together with the N form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl wherein N_4 in 1-piperiazinyl is substituted with 0-1 substituents selected from the group R^{2t} , CO_2R^{2q} , COR^{2q} and SO_2R^{2q} .

5

 R^{2t} is selected from H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy $-C_{1-4}$ alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl $-C_{1-6}$ alkyl, aryl, aryl $(C_{1-4}$ alkyl) -, heteroaryl and heteroaryl $(C_{1-4}$ alkyl);

10

R³ is selected from an aryl or heteroaryl group attached through an unsaturated carbon atom;

aryl is selected from phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkyloxy-C₁₋₄ alkyloxy, -OR^{2m}, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, -SH, -S(O)_nR²ⁿ, -COR^{2m}, -CO₂R^{2m}, -OC(O)R²ⁿ, - NR^{2g}COR^{2m}, -N(COR^{2m})₂, -NR^{2g}CONR^{2o}R^{2p}, -NR^{2g}CO₂R^{2h}, -NR^{2o}R^{2p} and CONR^{2o}R^{2p};

heteroaryl is selected from the group pyridyl, pyrimidyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, 25 benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3dihydrobenzo-furanyl, 2,3-dihydrobenzothienyl, 2,3dihydro-benzothienyl-S-oxide, 2,3-dihydrobenzothienyl-s-30 dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted at 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, F, I, C_{1-4} haloalkyl, -CN, $NR^{2g}R^{2h}$, nitro, -35 OR^{2n} , -SH, -S(O)_n R^{2n} , COR^{2m} , -CO₂ R^{2m} , -OC(O) R^{2n} , -NR²⁹ COR^{2n} , -N(COR^{2m})₂, -NR^{2q}CONR^{2o}R^{2p} and each heteroaryl being substituted at any nitrogen atom with 0-1 substituents selected from the group R^{2g}, CO₂R^{3a}, COR^{3a} and SO₂R^{3a} wherein,

R^{3a} is selected from the group C₁₋₆ alkyl, C₁₋₄ cycloalkyl-C₁₋₆ alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

 R^4 and R^5 are independently selected at each occurrence from H, Br, Cl, F, I, -CN, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxyl final C_{1-6}

- alkylsulfinyl, C_{1-6} alkylsulfonyl, amino, C_{1-4} alkylamino, $(C_{1-4}$ alkyl), amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group consisting of C_{1-7} alkyl, C_{3-8} cycloalkyl, Br, Cl, F, I, -C(O)H, C_{1-4}
- haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl), amino and wherein R⁴ and R⁵ non-phenyl groups may be substituted with 0-5 substituents selected from OH, halogen, -C(O)H, -OC₁₋₆-
- 20 alkyl and C_{1-6} haloalkyl, C_{1-6} alkyl, C_{3-7} c-alkyl, C_{1-6} alkyl(OH) $_nCO_2R$ wherein R is H or C_{1-6} alkyl, C_{1-6} alkyl(OH) $_n$, wherein n is 0-3 or R^4 and R^5 may join together to form a C_{3-6} alkylene chain;
- 25 R^6 , R^{6a} and R^7 are independently selected from: H, C_{1-10} alkyl, C_{3-10} cycloalkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, C_{1-10} haloalkyl, C_{2-8} alkoxyalkyl, C_{4-12} cycloalkylalkyl, C_{5-10} cycloalkenyl, C_{6-14} cycloalkenylalkyl;
- 30 R^6 , R^{6a} and R^7 are substituted with 0-6 substituents independently selected from halogen, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyloxy, C_{1-4} haloalkyl.
- 35 3. A compound of formula (Ia) or (Ib)

$$R^{1} \xrightarrow{R^{2}} CR^{4}$$

$$R^{1} \xrightarrow{N} CR^{5}$$

$$(Ia) R^{3}$$

wherein R¹-R⁵ are as defined in Claims 1 or 2.

5

20

25

The compound according to Claim 1, 2 or 3 wherein 4.

 R^1 is selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkylthio, $-XR^{1c}$ wherein R^1 is substituted with 0-6 substituents selected from halogen, C_{1-4} alkyl or C_{1-4} 10 haloalkyl;

 \mbox{R}^{2} is selected from $\mbox{C}_{\mbox{\tiny 1-10}}$ alkyl, $\mbox{C}_{\mbox{\tiny 2-10}}$ alkenyl, $\mbox{C}_{\mbox{\tiny 2-10}}$ alkynyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl C_{1-6} alkyl, and - $NR^{2c}R^{2d}$ wherein R^2 is unsubstituted or substituted with 1-3 15 substitutents independently selected from the group R^{2i} , R^{2j} , R^{2k} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{2g}$, $-NR^{2g}R^{2h}$, $-C_{1-6}$ alkyl $-OR^{2g}$, and C_{3-8} cycloalkyl which is substituted with $0-1\ R^{21}$ and in wich 0-1 carbons of C_{4-8} cycloalkyl is replaced by -0-.

- The compound according to Claims 1, 2, 3 or 4 wherein R3 is selected from an aryl group selected from phenyl or substituted versions thereof or a heteroaryl group selected from pyridyl or substituted versions thereof.
- The compounds according to Claims 1,2,3,4 or 5 wherein R3 is substituted with 0-4 substituents independently selected from halogen, C_{1-4} alkyloxy, C_{1-6} 30 alkyl or NR'R" wherein R' and R" are independently selected from H or C_{1-6} alkyl.

7. A compound of formula (Ia)

5

15

$$R^2$$
 N
 N
 R^5
 R^3

(Ia)
or a pharmaceutically acceptable salt thereof, wherein

R¹ is independently selected at each occurrence from H, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, halo, CN, C1-C4 haloalkyl, C1-C12 hydroxyalkyl, C2-C12 alkoxyalkyl, C2-C10 cyanoalkyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, NR 9 R 10 , C1-C4 alkyl-NR 9 R 10 , NR 9 COR 10 , OR 11 , SH or S(0)nR 12 ;

R² is selected from:

20 -H, OR^7 , SH, $S(O)_n R^{13}$, COR^7 , $CO_2 R^7$, $CHR^6 (OR^7)_R 6a$ OC OR^7 , OR^7 , OR^6

or

-C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,
C3-C8 cycloalkyl, C5-C8 cycloalkenyl, C4C12 cycloalkylalkyl or C6-C10
cycloalkenylalkyl, each optionally
substituted with 1 to 3 substituents

independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo,

5

C1-C4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{n}R^{13}$, COR^{15} , $CO_{2}R^{15}$, $OC(O)_{R}R^{13}$, $OR^{8}COR^{15}$, $OC(O)_{R}R^{13}$, $OR^{8}COR^{15}$, OR^{15} , $OR^{$

R is selected from phenyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, furanyl, thienyl, benzothienyl, benzofuranyl, 2,3dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2-10 benzopyranyl, tetralinyl, each R3 optionally substituted with 1 to 5 substituents and each Ar is attached via an unsaturated carbon atom wherein the substituents are independently selected at 15 each occurrence from: C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C₁₂ cycloalkylalkyl, NO₂, halo, CN, C₁- C_4 haloalkyl, NR^6R^7 , NR^8COR^7 , $NR^8CO_2R^7$, COR^7 , OR^7 , ${\tt CONR}^6{\tt R}^7$, ${\tt CO(NOR}^9){\tt R}^7$, ${\tt CO_2R}^7$, or ${\tt S(O)_nR}^7$, where each such C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, 20 C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl are optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 -C4 alkyl, NO₂, halo, CN, NR^6R^7 , NR^6COR^7 , $NR^7CO_2R^7$, $cor^7 or^7$, $conr^6 r^7$, $co_2 r^7$, $co(nor^9) r^7$, or $s(0)_n r^7$; 25

R⁵ is selected from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₀

cycloalkylalkyl, each optionally substituted with

1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃
C₆ cycloalkyl; halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)_RR¹³, COR¹⁵, CO₂R¹⁵, OC(O)_RR¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵,

CONR¹⁶R¹⁵, aryl, heteroaryl and heterocyclyl; or

halo, CN, $-NR^6R^7$, NR^9COR^{10} , $-NR^6S(O)_nR^7$, $S(O)_nNR^6R^7$, C_1-C_4 haloalkyl, $-OR^7$, SH or $-S(O)_nR^{12}$;

5

 ${\tt R}^6,\ {\tt R}^{6a}$ and ${\tt R}^7$ are independently selected at each occurrence from:

-H,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each optionally

substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3- C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹³, COR¹⁵, CO2R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,

20 NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl, -aryl, aryl(C₁-C₄ alkyl), heteroaryl, heteroaryl(C₁-C₄ alkyl), heterocyclyl or heterocyclyl(C₁-C₄ alkyl);

25

alternatively, NR^6R^7 and NR^6aR^7a are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups;

30

- R⁸ is independently selected at each occurrence from H
 or C1-C4 alkyl;
- R⁹ and R¹⁰ are independently selected at each occurrence from H, C₁-C₄ alkyl, or C₃-C₆ cycloalkyl;

 R^{11} is selected from H, C_1-C_4 alkyl, C_1-C_4 haloalkyl, or C_3-C_6 cycloalkyl;

 R^{12} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

5

 R^{13} is selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_8 alkoxyalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{12} cycloalkylalkyl, aryl, aryl(C_1 - C_4 alkyl)-, heteroaryl or heteroaryl(C_1 - C_4 alkyl)-;

10

 R15 and R16 are independently selected at each occurrence from H, C1-C6 alkyl, C3-C10 cycloalkyl, C4-C16 cycloalkylalkyl, except that for S(0) $_{n}^{R15}$, R15 cannot be H:

15

20

aryl is phenyl or naphthyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_nR^{15}$, COR^{15} , CO_2R^{15} , $OC(O)_R^{15}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{15}$, $NR^{16}R^{15}$, and $CONR^{16}R^{15}$:

heteroaryl is pyridyl, pyrimidinyl, triazinyl, furanyl,
pyranyl, quinolinyl, isoquinolinyl, thienyl,
imidazolyl, thiazolyl, indolyl, pyrrolyl,
oxazolyl, benzofuranyl, benzothienyl,
benzothiazolyl, isoxazolyl, pyrazolyl, 2,3dihydrobenzothienyl or 2,3-dihydrobenzofuranyl,
each being optionally substituted with 1 to 5
substituents independently selected at each
occurrence from C1-C6 alkyl, C3-C6 cycloalkyl,
halo, C1-C4 haloalkyl, cyano, OR15, SH, S(0)nR15,

-COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂,
NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;

heterocyclyl is saturated or partially saturated heteroaryl, optionally substituted with 1 to 5

substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR^{15} , SH, S(O)_nR¹⁵, COR^{15} , CO_2R^{15} , $OC(O)R^{15}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8COR^{16}R^{15}$, $NR^8CO_2R^{15}$, $NR^{15}R^{16}$, and $CONR^{16}R^{15}$;

n is independently at each occurrence 0, 1 or 2.

5

- 10 8. The compound according to Claims 1-7 wherein R² is selected from 3-pentyl, NEt₂, butyl, NHCH(CH₂OMe)₂, NHCH(CH₂OEt)₂,NHCH(Et)CH₂OMe, NH-3-heptyl, NH-3-pentyl, NH-2-butyl, NH-3-hexyl, NHCH(CH₂Ph)CH₂OMe, NHCH(Et)CH₂CH₂OMe, NH-cyclobutyl, NH-cyclopentyl, NEtPr,
- NEtBu, NMePr, NMePh, Npr2, NPr(CH2-c-C3H5), N(CH2CH2OMe)2, morpholino, N(CH2Ph)CH2CH2OMe, N(Me)CH2CH2OMe, N(Et)CH2CH2OMe, N(CH2-c-C3H5)CH2CH2OMe, N(CH2-c-C3H5)Pr, N(CH2-c-C3H5)Et, OEt, OCH(Et)CH2OMe, OCH(Et)CH2CH2OMe, OCH(Me)CH2CH2OMe, O-3-pentyl, O-2-
- pentyl, S-3-pentyl, S-2-pentyl, SEt, S(0)Et, SO2Et, S-3pentyl, S(0)-3-pentyl, SO2-3-pentyl, S-2-pentyl, S(0)-2pentyl, SO2-2-pentyl, CH(CO2Et)2, C(Et)(CO2Et)2,
 CH(Et)CH2OH, CH(Et)CH2OMe, CH(Et)CH2CH2OMe, CONMe2,
 COCH3, COEt, COPr, CO-2-pentyl, CO-3-pentyl, CH(OH)CH3,
- 25 C(OH)Me2, C(OH)Ph-3-pyridyl, CH(OMe)CH3, CH(OMe)Et,
 CH(OMe)Pr, CH(OEt)CH3, CH(OPr)CH3, 2-pentyl, 2-butyl,
 cyclobutyl, cyclopentyl, CH(Me)cyclobutyl,
 CH(OMe)cyclobutyl, CH(OH)cyclobutyl, CH(Me)cyclopropyl,
 CH(OMe)cyclopropyl, CH(OH)cyclopropyl, CH(Et)cyclobutyl,
- 30 CH(Et)cyclopropyl, CH(OMe)cyclobutyl, CH(OMe)cyclopropyl, CH(OEt)cyclobutyl, CH(OEt)cyclopropyl, CH(Me)CH2cyclobutyl, CH(OMe)CH2-cyclobutyl, CH(OH)CH2-cyclobutyl, CH(Me)CH2-cyclopropyl, CH(OMe)CH2-cyclopropyl, CH(OH)CH2cyclopropyl, CH(Et)CH2-cyclobutyl, CH(Et)CH2-cyclopropyl,
- 35 CH(OMe)CH2-cyclobutyl, CH(OMe)CH2-cyclopropyl, CH(OEt)CH2-cyclobutyl, CH(OEt)CH2-cyclopropyl,

CH(CH₂OMe) cyclobutyl, CH(CH₂OMe) cyclopropyl,
CH(CH₂OEt) cyclobutyl, CH(CH₂OEt) cyclopropyl,
CH(cyclobutyl)₂, CH(cyclopropyl)₂, CH(Et)CH₂CONMe₂,
CH(Et)CH₂CH₂NMe₂, CH(CH₂OMe)Me, CH(CH₂OMe)Et,

5 CH(CH₂OMe) Pr, CH(CH₂OEt)Me, CH(CH₂OEt)Et, CH(CH₂OEt)Pr,
CH(CH₂C=CMe)Et, CH(CH₂C=CMe)Et.

9. A compound of formula Ib

$$\begin{array}{c|c}
R^2 \\
R \xrightarrow{7} & N & N \\
N & N & N \\
R^3 & R^4
\end{array}$$

10

having R'-R' as defined in Claims 1-8.

10. A compound of formula II

or a pharmaceutically acceptable salt or isomer thereof wherein R^1-R^4 are as defined in any of claims 1-8.

11. Use of a compound according to Claims 1-10 in therapy.

20

25

12. Use of a compound according to Claims 1-10 to antagonize a CRF-1 receptor in mammals including humans wherein binding to the receptor causes and ultimately results in the treatment of affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal

diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency

- virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including
- 10 but not limited to disorders induced or facilitated by CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound according to Claims 1-10 with the proviso that, in the case of compounds of Claim 1, the provisos are not present.

15

13. A pharmaceutical composition comprising a compound according to Claims 1-10 and a pharmaceutically acceptable carrier.

20

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 October 2000 (12.10.2000)

PCT

(10) International Publication Number WO 00/59907 A3

- (51) International Patent Classification7: C07D 487/04, A61K 31/53, A61P 25/00, 9/00 // (C07D 487/04, 251:00, 231:00) (C07D 487/04, 253:00, 231:00)
- (21) International Application Number: PCT/US00/09109
- (22) International Filing Date: 6 April 2000 (06.04.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/128,008

6 April 1999 (06.04.1999)

- (71) Applicant: DU PONT PHARMACEUTICALS COM-PANY [US/US]; Chestnut Run Plaza, 974 Centre Road, Wilmington, DE 19807 (US).
- (72) Inventors: GILLIGAN, Paul, J.; 2629 Pennington Drive, Wilmington, DE 19810 (US). WILDE, Richard, G.; 205 Roseman Court, Newark, DE 19711 (US).

- (74) Agent: RUBIN, Kenneth, B.; Du Pont Pharmaceuticals Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).
- (81) Designated States (national): AU, BR, CA, CN, CZ, EE, HU, IL, IN, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR, UA, VN, ZA.
- (84) Designated States (regional): Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

With international search report.

(88) Date of publication of the international search report: 4 January 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRAZOLOTRIAZINES AS CRF ANTAGONISTS

WO 00/59907 A3

(57) Abstract: The present invention relates to pyrazolotriazines according to formula (I), and stereoisomers, isomers and salts thereof wherein R1-R5 are selected from certain alkyl, aryl and heteroaryl species as defined in the specification wherein all of the compounds are useful as CRF antagonists and are thus useful in the treatment of neurological disorders as well as a multitude of other CRF associated diseases or conditions.

. rnational Application No PCT/US 00/09109

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C07D487/04 A61K31/53 A61P25/00 A61P9/00 //(C07D487/04,251:00,231:00),(C07D487/04,253:00,231:00) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DEEB, ALI ET AL: "Preparation of naphtho'2,1-e!pyrazolo'5,1-c!'1,2,4!triazi ne, dipyrazolo'5,1-c: 3',4'-e!'1,2,4!triazines, and pyrazolo'1,5- c!'1,2,4!triazine derivatives" retrieved from STN Database accession no. 114:122289 XP002148012 RN 132584-89-5 & COLLECT. CZECH. CHEM. COMMUN. (1990), 55(11), 2790-4, -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 September 2000 13/10/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Alfaro Faus, I

national Application No.
PCT/US 00/09109

		PC1/02 00/09109
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; RAMIZ, MAHMOUD M. M. ET AL: "Studies on amino-azoles: synthesis of 3-methylaminopyrazole derivatives" retrieved from STN Database accession no. 112:35748 XP002148013 RN 124612-21-1 & ARCH. PHARM. (WEINHEIM, GER.) (1989), 322(9), 557-60,	1
X	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KANDEEL, EZZAT M. ET AL: "Reactions with heterocyclic amidines, XI. Syntheses of new 2-aminopyrazolo'1,5-a!pyrimidines and 2-amino'1,5-c!-as-triazines" retrieved from STN Database accession no. 99:122411 XP002148014 RN 87031-23-0 & ARCH. PHARM. (WEINHEIM, GER.) (1983), 316(8), 713-18,	
X	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EGE, GUENTER ET AL: "Reactions with diazoazoles. Part IV. '7 + 2!- and '11 + 2!-Cyclocondensation reactions of diazoazoles with acyltriphenylphosphonium methylides to azolo'5,1-c!'1,2,4!triazines" retrieved from STN Database accession no. 95:169140 XP002148015 RN 79441-90-0 & J. HETEROCYCL. CHEM. (1981), 18(4), 675-7,	
	-/	

Inational Application No

Citizens of Documents Considered to be Relevant X DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GRAY, ELIZABETH JANE ET AL: "Triazines and related products. Part 21. Cyclization of 3-amino-5-hydrazinopy-razole and 3-amino-5-hydrazinop			PCT/US 00/09109
DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GRAY, ELIZABETH JANE ET AL: "Triazines and related products. Part 21. Cyclization of 3-amino-5-hydrazinopyrazole and 3-amino-5-hydrazino-1,2,4-triazole to azolo'5,1-c!'1,2,4!triazines" retrieved from STN Database accession no. 89:215364 XP002148016 abstract & J. CHEM. SOC., PERKIN TRANS. 1 (1978), (8), 885-8, X STROHMEYER, TIMOTHY W. ET AL: "New synthesis of 2,4-dialkyl(or diaryl)pyrazolo'1,5-a!-1,3,5-triazines" JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 22, no. 7, 1985, pages 7-10, XP002148011 HETEROCORPORATION. PROVO., US ISSN: 0022-152X table II, compounds 5f-5i A WO 98 03510 A (DU PONT MERCK PHARMA) 12 29 January 1998 (1998-01-29) cited in the application claim 1 P,A WO 99 38868 A (DU PONT PHARM CO) 12	_		18.
CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GRAY, ELIZABETH JANE ET AL: "Triazines and related products. Part 21. Cyclization of 3-amino-5-hydrazinopyrazole and 3-amino-5-hydrazino-1,2,4-triazole to azolo'5,1-c!'1,2,4!triazines" retrieved from STN Database accession no. 89:215364 XP002148016 abstract å J. CHEM. SOC., PERKIN TRANS. 1 (1978), (8), 885-8, X STROHMEYER, TIMOTHY W. ET AL: "New synthesis of 2,4-dialkyl(or diaryl)pyrazolo'1,5-a!-1,3,5- triazines" JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 22, no. 7, 1985, pages 7-10, XP002148011 HETEROCORPORATION. PROVO., US ISSN: 0022-152X table II, compounds 5f-51 A WO 98 03510 A (DU PONT MERCK PHARMA) 12 29 January 1998 (1998-01-29) cited in the application claim 1 P,A WO 99 38868 A (DU PONT PHARM CO) 5 August 1999 (1999-08-05)	-alegory	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to dam No.
synthesis of 2,4-dialkyl(or diaryl)pyrazolo'1,5-a!-1,3,5- triazines" JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 22, no. 7, 1985, pages 7-10, XP002148011 HETEROCORPORATION. PROVO., US ISSN: 0022-152X table II, compounds 5f-5i A WO 98 03510 A (DU PONT MERCK PHARMA) 29 January 1998 (1998-01-29) cited in the application claim 1 P,A WO 99 38868 A (DU PONT PHARM CO) 5 August 1999 (1999-08-05)	X	CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GRAY, ELIZABETH JANE ET AL: "Triazines and related products. Part 21. Cyclization of 3-amino-5-hydrazinopyrazole and 3-amino-5-hydrazino-1,2,4-triazole to azolo'5,1-c!'1,2,4!triazines" retrieved from STN Database accession no. 89:215364 XP002148016 abstract & J. CHEM. SOC., PERKIN TRANS. 1 (1978),	1
29 January 1998 (1998-01-29) cited in the application claim 1 P,A WO 99 38868 A (DU PONT PHARM CO) 5 August 1999 (1999-08-05)	X	synthesis of 2,4-dialkyl(or diaryl)pyrazolo'1,5-a!-1,3,5- triazines" JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 22, no. 7, 1985, pages 7-10, XP002148011 HETEROCORPORATION. PROVO., US ISSN: 0022-152X	1
5 August 1999 (1999-08-05)	A	29 January 1998 (1998-01-29) cited in the application	12
	P,A	5 August 1999 (1999-08-05)	12

information on patent family members

PCT/US 00/09109

Patent document cited in search report		Publication date		atent family member(s)	Publication date
WO 9803510	Α	29-01-1998	AU	3894297 A	10-02-1998
			BR	9710544 A	17-08-1999
			CA	2259583 A	29-01-1998
			CN	1225637 A	11-08-1999
			CZ	9900184 A	17-11-1999
			EP	0915880 A	19-05-1999
			HR	970413 A	31-10-1998
			LT	99008 A,B	27-03-2000
			LV	12292 A	20-06-1999
			LV	12292 B	20-11-1999
			NO	990264 A	10-03-1999
			PL	331523 A	19-07-1999
			SI	9720045 A	31-10-1999
			ZA	9706603 A	25-01-1999
WO 9938868	Α	05-08-1999	US	6060478 A	09-05-2000
			AU	2478799 A	16-08-1999