Работа 5.2.1 Опыт Франка-Герца

Работу выполнил Матренин Василий Б01-008

Цель работы: Провести опыт Франка-Герца; Оценить энергию возбуждения первого уровня атома гелия статическим и динамическим методом.

1 Теория

1.1 Принципиальная схема опыта Франка-Герца

Принципиальная схема представлена на рисунке 1.

Рис 1. Принципиальная схема опыта Франка-Герца

1.2 Теоретические выкладки

Одним из простых опытов, подтверждающих существование дискретных уровней энергии атомов, является эксперимент, известный под названием опыта Франка-Герца.

Разреженный одноатомный газ (в нашем случае — гелий) заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданным между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия.

При столкновении электрона с атомом газа возможны следующие варианты:

- 1. У электрона достаточно энергии происходит возбуждение атомного электрона.
- 2. У электрона не достаточно энергии электрон не меняет свою энергию.

Таким образом, на ВАХ трехэлектродной лампы (см рис. 1) будет наблюдаться ряд последовательных максимумов и минимумов. При этом, максимумы и минимумы будут отстоять друг от друга на равные расстояния ΔV . А ΔV будет соответствовать энергии первого возбужденного состояния.

2 Ход работы

2.1 Схема установки

Схема установки представлена на рисунке 2.

Рис 2. Схема установки

2.2 Динамический метод

Сняли осциллограммы при максимальном ускоряющем напряжении для трех различных значений задерживающего напряжения: 4, 6 и 8 В. Измерили на экране расстояние между максимумами и между минимумами осциллограммы. Результаты измерений занес в таблицу 1. Фотографии полученных осциллограмм приведены на рисунках 3-5.

 $Puc\ 3.\ BAX\ \partial$ ля $4\ B$

Puc 4. BAX для 6 B

 $Puc\ 5.\ BAX\ \partial$ ля $8\ B$

Таблица 1: Данные динамического метода

V_2 , B	V_{max_1} , B	V_{max_2} , B	V_{min_1} , B	V_{min_2} , B
4	-2	13	2	17
6	-2	13	2	20
8	-2	13	2	22

Погрешность измерения осциллографа $\Delta V = 1$ В.

Тогда получил среднее значение энергии первого возбужденного состояния для атома гелия:

$$\langle E_{excit_d} \rangle = (16, 3 \pm 3, 3) \text{ 3B} \tag{1}$$

Значение погрешности вычислял по формуле:

$$\sigma_{E_{excit}} = 2\sigma_V + \sigma_{stat}, \ \sigma_{stat} = \sqrt{\frac{1}{6} \sum |V_i - \langle \Delta E_{excit} \rangle|}$$
 (2)

2.3 Статический метод

Сняли ВАХ для трехэлектродной лампы при трех различных значениях задерживающего напряжения. Графики представлены на рис. 6. Результаты измерений занес в таблицу 2.

Рис 6. ВАХ в статическом методе

Таблица 2: Данные статического метода

V_2 , B	V_{max_1} , B	V_{max_2} , B	V_{min_1} , B	V_{min_2} , B
4	24	40	25	46
6	24	37	26	47
8	24	38	26	49

Погрешность измерения с графика $\Delta V = 1$ В.

Тогда получил среднее значение энергии первого возбужденного состояния для атома гелия:

$$\langle E_{excit_s} \rangle = (18, 0 \pm 3, 9) \text{ 9B} \tag{3}$$

Значение погрешности вычислял по формуле (2)

3 Вывод

В ходе работы были получены наглядные доказательства квантовой теории атомов. Так же расчетные значения энергии первого возбужденного состояния для атома гелия:

1.
$$\langle E_{excit_s} \rangle = (18, 0 \pm 3, 9)$$
 эВ

2.
$$\langle E_{excit_d} \rangle = (16, 3 \pm 3, 3)$$
 эВ

Совпадают в пределах погрешности с табличным значением:

$$E_{ref} = (19, 7 \pm 0, 1)$$
 эВ