# 1 Moving to $\mathbb{R}^3$

# 1.1 Rigid & Orientation-Preserving Transformations

# 1.1.1 Rigid, Orientation-Preserving Transformations in $\mathbb{R}^2$

## Theorem 1.1

Let A be a rigid, orientation-preserving map on  $\mathbb{R}^2$ .

- 1. If  $A(\mathbf{0}) = \mathbf{0}$ , then A is a rotation  $R_{\theta}$  for some  $\theta$ .
- 2. If  $A(\mathbf{u}) = \mathbf{u}$ , then A is a generalized rotation  $R_{\theta}^{\mathbf{u}}$ .
- 3. In general, A is either a translation  $T_{\mathbf{u}}$  or a generalized rotation  $R_{\theta}^{\mathbf{u}}$  for some  $\mathbf{u}$  (and some  $\theta$ ).

The proof for this theorem depends on this lemma:

#### Lemma 1.1

Suppose  $\mathbf{x} \neq \mathbf{y}$ . Then, A is uniquely determined by  $\mathbf{u} = A(\mathbf{x})$  and  $\mathbf{v} = A(\mathbf{y})$ .

## 1.1.2 Euler's Theorem on Rotations in 3-Space

# Theorem 1.2

Let  $A : \mathbb{R}^3 \to \mathbb{R}^3$  be a linear, orientation-preserving and rigid map. Then, A is a rotation  $R_{\theta, \mathbf{u}}$  for some  $\theta$ ,  $\mathbf{u}$  where  $\mathbf{u} \neq 0$ .

#### Lemma 1.2

Suppose  $A(\mathbf{u}) = \mathbf{u}$  for some  $\mathbf{u}$  such that  $||\mathbf{u}|| = 1$ . Then, A is a rotation  $R_{\theta,\mathbf{u}}$  for some  $\theta$ .

What if A is rigid, orientation-preserving, but  $A(\mathbf{0}) \neq \mathbf{0}$ ? This is sometimes known as a glide rotation (or a screw motion).

# 1.1.3 Finding the Center of Generalized Rotation

Consider the following transformation:



Here, we have that  $A(\mathbf{x}) = R_{90^{\circ}}(\mathbf{x}) + \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ . In other words,  $A = T_{\langle 3,0 \rangle} \circ R_{90^{\circ}}$ . Our goal is to express A as a generalized rotation; that is,  $A = R_{\theta}^{\mathbf{u}}$ . It should be obvious that  $\theta = 90^{\circ}$ . Then, we need to find a  $\mathbf{u}$  such that  $A(\mathbf{u}) = \mathbf{u}$ .

First, we want to choose a point  $\mathbf{v}$  where  $A(\mathbf{v}) \neq \mathbf{v}$ . Let  $\mathbf{w} = A(\mathbf{v})$ .