Class 07: Machine Learning 1

Nathaniel Lightle (A16669288)

Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

```
x <- rnorm(1000, mean=3)
hist(x)</pre>
```


60 points

We can pass this to the base R plot() function for a quick graph.

```
plot(x)
```


With the kmeans() function you need to specify the data and how many centers you want. (nstart runs it multiple times and gives you the best answer)

```
k <- kmeans(x,2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30 Cluster means: 1 3.062756 -3.303248 2 -3.303248 3.062756 Clustering vector: Within cluster sum of squares by cluster: [1] 58.76248 58.76248 (between_SS / total_SS = 91.2 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" "size" [6] "betweenss" "iter" "ifault" Vectors (1 dimensional) Data Frames (collection of data) Lists (vectors + data frames) Q1. How many points are in each cluster? k\$size [1] 30 30 Q2. Cluster membership? k\$cluster Q3. Cluster centers?

k\$centers

x y 1 3.062756 -3.303248 2 -3.303248 3.062756

Q4. Plotting my results

```
plot(x, col=k$cluster, pch=16)
```


#pch makes points solid

Q5. Cluster the data agin with kmeans() into 4 groups and plot the results

```
k4 <- kmeans(x, centers=4, nstart=20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitiation in that you need to tell it how many groups (k, or centers) you want.

#Hierarchical Clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matri with the dist() function.

```
hc <- hclust ( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

Let's plot it

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the clusters (cluster membership vector)

```
plot(hc)
abline (h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30

Q6. Plot our helust results</pre>
```

plot(x, col=grps, pch=16)

Part 2

PCA of UK Food Data

TEXT

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187

Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

```
#View(x)
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(x)
```

[1] 17 4

```
ncol(x)
```

[1] 4

nrow(x)

[1] 17

Fixing the rows so they line up

```
# rownames(x) <- x[,1]
# x <- x[,-1]
# head(x)
```

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer the second approach because there's less room for error. If you run the code twice it won't change anything, but for the first method running the code twice would mess up the whole data set.

Q3: Changing what optional argument in the above barplot() function results in the following plot?

Changing besides = F changes the plot completely.

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```


The previous code results in graphs comparing each country side by side. If a point lands on the diagonal that means the countries are very similar in their consumption of that category of food.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

The main difference is the blue dot food category.

Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose t() of our input x so the columns are the food types and the countries are the rows.

	Cheese	Carcass_meat	Uther_meat	Fish	Fats_and_oils	Sugars
England	105	245	685	147	193	156
Wales	103	227	803	160	235	175

Scotland	103	242		750	122		184	147
N.Ireland	66	267		586	93		209	139
	Fresh_potatoes	Fresh_	Veg	Other_	_Veg	Processed	d_potate	oes
England	72	0	253		488			198
Wales	87	4	265		570			203
Scotland	56	6	171		418			220
N.Ireland	103	3	143		355			187
	Processed_Veg	Fresh_f	ruit	Cerea	als	Beverages	Soft_d	rinks
England	360		1102	! 1	1472	57		1374
Wales	365		1137	. 1	1582	73		1256
Scotland	337		957	· 1	1462	53		1572
N.Ireland	334	:	674	: 1	1494	47		1506
	Alcoholic_drin	ks Conf	ectio	nery				
England		375		54				
Wales		475		64				
Scotland		458		62				
N.Ireland		135		41				

```
pca <- prcomp (t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

pca\$x

```
        PC1
        PC2
        PC3
        PC4

        England
        -144.99315
        -2.532999
        105.768945
        -4.894696e-14

        Wales
        -240.52915
        -224.646925
        -56.475555
        5.700024e-13

        Scotland
        -91.86934
        286.081786
        -44.415495
        -7.460785e-13

        N.Ireland
        477.39164
        -58.901862
        -4.877895
        2.321303e-13
```

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.316290619
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001847469

```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
barplot(v, xlab="Principal Component", ylab="Percent Variation")</pre>
```


Principal Component

Lets focus on PC1 as it accounts for > 90% of variance

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2, main="PC1 Loading Values")
```


Q9. Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2, main="PC2 Loading Values")
```


The two food groups featured prominently are "fresh potatoes" and "soft drinks". PC2 mainly tells us about the food groups that differ the most.