Hidden Markov Model (Lecture-3)

Anil Sharma

Hidden Markov Model (changed notations)

 Parameters – stationary/homogeneous markov model (independent of time t)

Initial probabilities

$$p(S_1 = i) = \pi_i$$

Transition probabilities

$$p(S_t = j | S_{t-1} = i) = p_{ij}$$

Emission probabilities $p(O_t = y | S_t = i) = q_i^y$

$$p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = p(S_1) \prod_{t=2}^T p(S_t | S_{t-1}) \prod_{t=1}^T p(O_t | S_t)$$

Three Basic Problems in HMM

- Evaluation What is the probability of the observed sequence? - Forward Algorithm
- Decoding What is the probability that the third roll was loaded given the observed sequence? - Forward-Backward Algorithm
- What is the most likely die sequence given the observed sequence? Viterbi Algorithm
- Learning Under what parameterization is the observed sequence most probable? Baum-Welch Algorithm (EM)

Three Basic Problems in HMM

- Evaluation Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$ find $p(\{O_t\}_{t=1}^T | \theta)$ prob of observed sequence
- Decoding Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$ find $\underset{s_1,...,s_T}{\operatorname{arg}} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T, \theta)$ most probable sequence of hidden states
- Learning Given HMM with unknown parameters and $\{O_t\}_{t=1}^T$ observation sequence

find $\arg \max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$ parameters that maximize likelihood of observed data

Queries

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the EVALUATION problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

1. Evaluation Problem

Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability of observed sequence
$$p(\{O_t\}_{t=1}^T) = \sum_{S_1,...,S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T) = \sum_{S_1,...,S_T} p(S_1) \prod_{t=2}^T p(S_t|S_{t-1}) \prod_{t=1}^T p(O_t|S_t)$$

requires summing over all possible hidden state values at all times - K^T exponential # terms!

Instead:
$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k)$$

$$\alpha_T^k \quad \text{Compute recursively}$$

Forward Probability

$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k) = \sum_k \alpha_T^k$$

Compute forward probability α_t^k recursively over t

$$\alpha_t^k := p(O_1, \dots, O_t, S_t = k)$$

Introduce S_{t-1}

Chain rule

Markov assumption

$$= p(O_t|S_t = k) \sum_{i} \alpha_{t-1}^i p(S_t = k|S_{t-1} = i)$$

Forward variables (Graphically)

Forward Algorithm

Can compute α_t^k for all k, t using dynamic programming:

• Initialize: $\alpha_1^k = p(O_1|S_1 = k) p(S_1 = k)$ for all k

Iterate: for t = 2, ..., T

$$\alpha_t^k = p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_{t-1} = i)$$
 for all k

• Termination: $p(\{O_t\}_{t=1}^T) = \sum_{k} \alpha_T^k$

2. Decoding Problem -1

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability that hidden state at time t was k $p(S_t = k | \{O_t\}_{t=1}^T)$

$$p(S_t=k,\{O_t\}_{t=1}^T) = p(O_1,\ldots,O_t,S_t=k,O_{t+1},\ldots,O_T)$$

$$= p(O_1,\ldots,O_t,S_t=k)p(O_{t+1},\ldots,O_T|S_t=k)$$
 Compute recursively
$$\alpha_t^k$$

$$\beta_t^k$$

Backward Probability

$$p(S_t = k, \{O_t\}_{t=1}^T) = p(O_1, \dots, O_t, S_t = k)p(O_{t+1}, \dots, O_T|S_t = k) = \alpha_t^k \beta_t^k$$

Compute forward probability β_t^k recursively over t

 $\beta_{t}(i)$

Introduce S_{t+1}

Chain rule

Markov assumption

$$= \sum_{i} p(S_{t+1} = i|S_t = k)p(O_{t+1}|S_{t+1} = i)\beta_{t+1}^i$$

Forward-Backward Algorithm

Can compute β_t^k for all k, t using dynamic programming:

- Initialize: $\beta_T^k = 1$ for all k
- Iterate: for t = T-1, ..., 1

$$\beta_t^k = \sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$$
 for all k

• Termination: $p(S_t = k, \{O_t\}_{t=1}^T) = \alpha_t^k \beta_t^k$

$$p(S_t = k | \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)} = \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i}$$

Most likely state & most likely sequence

☐ Most likely state assignment at time t

$$\arg\max_{k} p(S_t = k | \{O_t\}_{t=1}^T) = \arg\max_{k} \alpha_t^k \beta_t^k$$

E.g. Which die was most likely used by the casino in the third roll given the observed sequence?

☐ Most likely assignment of state sequence

$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$$

E.g. What was the most likely sequence of die rolls used by the casino given the observed sequence?

Not the same solution!

MLA of x? MLA of (x,y)? P(x,y)

Contd.. Decoding Problem -2

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find most likely assignment of state sequence

$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T) = \arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T)$$

$$= \arg\max_{k} \max_{\{S_t\}_{t=1}^{T-1}} p(S_T = k, \{S_t\}_{t=1}^{T-1}, \{O_t\}_{t=1}^T)$$

$$\bigvee_{\mathsf{T}}^{\mathsf{K}}$$

$$\mathsf{Compute recursively}$$

V_T - probability of most likely sequence of states ending at state S_T = k

Graphically

Viterbi Algorithm

$$\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$$

Compute probability V_t^k recursively over t

$$V_t^k := \max_{S_1, \dots, S_{t-1}} p(S_t = k, S_1, \dots, S_{t-1}, O_1, \dots, O_t)$$

$$= p(O_t|S_t = k) \max_i p(S_t = k|S_{t-1} = i)V_{t-1}^i$$

Contd.. (Viterbi Algorithm)

for all k

Can compute V_t^k for all k, t using dynamic programming:

• Initialize:
$$V_1^k = p(O_1|S_1=k)p(S_1=k)$$

Iterate: for t = 2, ..., T

$$V_t^k = p(O_t|S_t = k) \max_i p(S_t = k|S_{t-1} = i)V_{t-1}^i$$
 for all k

• Termination: $\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$

Traceback:
$$S_T^* = \arg\max_k V_T^k$$

$$S_{t-1}^* = \arg\max_i p(S_t^*|S_{t-1} = i)V_{t-1}^i$$

What you should know

- Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption
- Representation initial prob, transition prob, emission prob, State space representation
- Algorithms for inference and learning in HMMs
- -Computing marginal likelihood of the observed sequence: forward algorithm
- -Predicting a single hidden state: forward-backward
- -Predicting an entire sequence of hidden states: Viterbi

Example- Dishonest Casino

Question

- Given your HMM model and observation sequence for three time steps, O = {6,2,6}. Find
 - The probability of the observation sequence {6,2,6}
 - The most likely state sequence.
- Hint: Use Forward algorithm and Viterbi algorithm

$$V_t^k = p(O_t|S_t = k) \max_i p(S_t = k|S_{t-1} = i)V_{t-1}^i$$
 for all k

$$S_T^* = \arg\max_k V_T^k$$

$$S_{t-1}^* = \arg\max_i p(S_t^* | S_{t-1} = i) V_{t-1}^i$$

Solution for S*

	6	2	6
F	(1/6)×(1/2) = 1/12	(1/6)×max{(1/12)×0.99, (1/4)×0.2} = 0.01375	(1/6)×ma×{0.01375×0.99, 0.02×0.2} = 0.00226875
L	(1/2)×(1/2) = 1/4	(1/10)×max{(1/12)×0.01, (1/4)×0.8}	(1/2)×ma×{0.01375×0.01, 0.02×0.8}

• Most likely sequence after backtrack is S* = {L,L,L}.

Reference

- Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech recognition." *Proceedings of the IEEE* 77.2 (1989): 257-286.
- Machine Learning: An algorithm perspective by Stephen Marsland
- Slides reference: <u>http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/HMM.</u>
 <u>pdf</u>
- Class notes are uploaded on backpack.