

ANSYS Composite PrepPost 19.0

Workshop 10.2 – Lap Joint

- In this workshop we will model a test on a single lap joint, where the top and bottom parts of the lap are composite materials
- A cohesive zone simulates the presence of a cured adhesive joining the lap

1. Start ANSYS Workbench and restore from archive lap_joint_test_from_start_19.0.wbpz

- 1. Drag and drop ACP (Pre) in the project schematic onto *Mechanical Model lap bottom*, rename it *ACP (Pre) lap bottom*
- 2. Update the project and double click on ACP (Pre) Setup

ACP (Pre) lap bottom

OK

Apply

Cancel

(1) Add a new fabric, (2) add two oriented selection sets for all the elements and for the element set which will not be bonded at a later stage of the workshop

ACP (Pre) lap bottom

Material Data

1. Add two *Modeling Groups* with 5 plies each, all oriented in the global x direction

ACP (Pre) lap bottom

- 1. Extrude a solid model, Analysis Ply Wise and Resin_Epoxy as global drop-off material
- 2. Update the project and leave ACP (Pre)

Delete Bad Elements: 🗸 Warping Limit: 0.4

 Drag and Drop another ACP (Pre) model onto the mechanical model for the top part creating the lap, rename it ACP (Pre) lap top and double click on Setup

(1) Add a new fabric, (2) add two oriented selection sets for all the elements and for the element set which will not be bonded at a later stage of the workshop

ACP (Pre) lap top

1. Add two *Modeling Groups* with 5 plies each, all oriented in the global x direction

ACP (Pre) lap top

- Extrude a solid model, Analysis Ply Wise and Resin_Epoxy as global drop-off material
- 2. Update the project and leave ACP (Pre)

1. Check the properties of the cohesive law in the Engineering Data

- 1. Add a *Static Structural* block in the project schematic and connect its cell *Model* to the *Setup* cell of the *ACP (Pre)* blocks modeling the two parts of the lap joint (transfer composite solid data)
- 2. Update the project and open *Mechanical* by double clicking the cell *Solution*

 Insert Contact-Debonding in Fracture, select CZM method, the cohesive material defined in Engineering Data, and the Contact Region defined before by Workbench

1. Impose boundary conditions (fixed support and applied displacement)

•	•			
Details of "Analysis Settings"				
Step Controls				
Number Of Steps	1.			
Current Step Number	1.			
Step End Time	1. s			
Auto Time Stepping	On			
Define By	Substeps			
Initial Substeps	30.			
Minimum Substeps	30.			
Maximum Substeps	100.			
Solver Controls				
Solver Type	Program Controlled			
Weak Springs	Program Controlled			
Solver Pivot Checking	Program Controlled			
Large Deflection	Off			
Inertia Relief	Off			
Fracture	On			

-	Scope		
	Scoping Method	Geometry Selection	
	Geometry	All Bodies	
=	Definition		
	Туре	Directional Deformation	
	Orientation	X Axis	
	Ву	Time	
	Display Time	0.25 s	
	Coordinate System	Global Coordinate System	
	Calculate Time History	Yes	
	Identifier		
	Suppressed	No	
-	Results		
	Minimum	-0.20257 mm	
	Maximum	2.6013e-003 mm	
	Minimum Occurs On	SolidModel.1(ACP (Pre) lap bottom	
	Maximum Occurs On	SolidModel.1(ACP (Pre) lap top)	
Ξ	Minimum Value Over 1	Time	
	Minimum	-0.8 mm	

etails of "Force R	eaction"		
Definition			
Туре	Force Reaction		
Location Method	Boundary Condition		
Boundary Condition	Displacement lap top		
Orientation	Global Coordinate System		
Suppressed	No		
Options			
Result Selection	All		
Display Time	0.35 s		
Results			
Maximum Value Over Time			
X Axis	1.7306e-010 N		
Y Axis	0.61232 N		
Z Axis	1.5603e-011 N		
Total	18995 N		
Minimum Value Over Time			
X Axis	-18963 N		
Y Axis	-0.63948 N		
Z Axis	-1114.7 N		

- 1. Define the substeps for the non-linear analysis
- 2. Add in the solution plots for directional deformation and force reaction in the loading direction, and contact tool to plot the status of the contact elements, the pressure and frictional (shear) stress levels
- 3. Solve the model

Frictional (Shear) Stress at Peak

Pressure (Normal Stress) at Peak

Deformed Shape (57X) at Peak

 Investigate solution, contour plots using the contact tool, reaction force vs applied displacement diagram (compare to engineering data of CZM for mode II), deformed shape

