Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

October 18, 2021

Dot product (= produs scalaz")

The angle between two nonzero vectors \overline{a} and \overline{b} from V_2 or V_3 is defined as the angle $\theta = \widehat{(\overline{a}, \overline{b})} \in [0, \pi]$ determined by their directions, taking into account their orientations.

Given the vectors \overline{a} and \overline{b} in V_2 (or V_3), their **dot product** is the real number defined through

$$\overline{a}\cdot\overline{b}=\left\{\begin{array}{cc} |\overline{a}||\overline{b}|\cos\theta, & \text{if } \overline{a}\neq0 \text{ and } \overline{b}\neq0\\ 0, & \text{otherwise} \end{array}\right..$$

Does \mathbb{R}^3 (or \mathbb{R}^n) "know" any geometry?

$$(\alpha_1,\alpha_1,\alpha_2)$$
 $(\alpha_1,\ldots,\alpha_m)$

Theorem

• If $\overline{a}(a_1, a_2)$ and $\overline{b}(b_1, b_2)$ are two vectors in V_2 , then

$$\overline{a} \cdot \overline{b} = a_1 b_1 + a_2 b_2; \tag{1}$$

2 If $\overline{a}(a_1, a_2, a_3)$ and $\overline{b}(b_1, b_2, b_3)$ are two vectors in V_3 , then

$$\overline{a} \cdot \overline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3. \tag{2}$$

Proof. Let $\overrightarrow{OR} \in \overline{a}$ and $\overrightarrow{OB} \in \overline{b}$.

Hence
$$\overline{0} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \theta = \frac{1}{2} (|\overline{a}|^2 + |\overline{b}|^2 + |AB|^2)$$

Suppose me one in V3 (case 2) and O is the origin of the system of coordinates A(a1,a2,a3), B(b1,b2,b3) $\overline{a} \cdot b = \frac{1}{2} \left((a_1^2 + a_2 + a_3^2) + (b_1^2 + b_2^2 + b_3^2) \right)$ $-(b_1-a_1)^2-(b_2-a_2)^2-(b_3-a_3)^2$ = a1 b1 + a2 b2 + a3 b3

Since $\cos\theta=rac{\overline{a}\cdot\overline{b}}{|\overline{a}||\overline{b}|}$, then, for two nonzero vectors \overline{a} and \overline{b} , one has

$$\cos\left(\widehat{\overline{a}},\overline{b}\right) = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}, \text{ for } \overline{a}, \overline{b} \in V_2;$$
(3)

$$\cos(\widehat{\overline{a},\overline{b}}) = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}, \text{ for } \overline{a}, \overline{b} \in V_3.$$
 (4)

Remark: If
$$\overline{a}(a_1,...,a_m)$$
, $\overline{b}(b_1,...,b_m)$
Then we can define \underline{a} , the \underline{x} between \underline{a} and \underline{b} :

George Turcas (UBB, Cluj-Napoca)

Lecture 4 $|\overline{a}|$ October 18, 2021 5/2

Theorem

If \overline{u} and \overline{v} are nonzero vectors in V_2 (or V_3) and θ is the angle between them, then

a) θ is acute if and only if $\overline{u} \cdot \overline{v} > 0$;

1. Te = | [| [] () con 0

- **b)** θ is obtuse if and only if $\overline{u} \cdot \overline{v} < 0$;
- c) $\theta = \frac{\pi}{2}$ if and only if $\overline{u} \cdot \overline{v} = 0$.

Proof. The sign of the cosine of θ coincides with the sign of the dot product $\overline{\mathbf{A}} \cdot \overline{\mathbf{A}}$. The assertions follow trivially. \square

The notions of "acute", "obtuse" or orthogonal (perpendicular) can be generalized to vectors with more than 3 components using the algebraic form of the dot product, even if there's no obvious "geometrical" interpretation.

The 3 axes determine 3 angles

Given an arbitrary vector $\overline{u} \in V_3$ and an associated Cartesian system of coordinates, one defines the *director angles* of \overline{u} to be the three angles determined by \overline{u} with the versors of the system of coordinates $\alpha = \widehat{(\overline{u}, \overline{i})}$, $\beta = \widehat{(\overline{u}, \overline{j})}$ and $\gamma = \widehat{(\overline{u}, \overline{k})}$, respectively.

The values $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are sometimes called *director cosines* of the vector \overline{u} .

Theorem

The director cosines of a vector $\overline{u}(u_1, u_2, u_3) \in V_3$, $\overline{u} \neq \overline{0}$, are

$$\cos \alpha = \frac{u_1}{|\overline{u}|}, \ \cos \beta = \frac{u_2}{|\overline{u}|}, \ \cos \gamma = \frac{u_3}{|\overline{u}|}.$$
 (5)

Proof.

$$(1,0,0)$$
 (M_L, M_A, M_B)

Exercise

• Dot product is larger when the direction of the blue vectors is similar to the direction of the red one.

Exercise

- Dot product is larger when the direction of the blue vectors is similar to the direction of the red one.
- Dot product is larger when the magnitude of the blue vector is larger.

Let \overline{u} and \overline{b} be two nonzero vectors and project (orthogonally) a representative of the vector \overline{u} on a line passing through the original point of this representative and parallel to the direction of \overline{b} . One gets the vector \overline{w}_1 , having the direction of \overline{b} and, by making the difference $\overline{u} - \overline{w}_1$, another vector \overline{w}_2 , orthogonal on the direction of \overline{b} ; $\overline{u} = \overline{w}_1 + \overline{w}_2$.

Projections

- The vector \overline{w}_1 is called the orthogonal projection of \overline{u} on \overline{b} and it is denoted by $\operatorname{pr}_{\overline{b}}\overline{u}$.
- The vector \overline{w}_2 is called the vector component of \overline{u} orthogonal to \overline{b} and $\overline{w}_2 = \overline{u} \operatorname{pr}_{\overline{b}} \overline{u}$.

Theorem

If \overline{u} and \overline{b} are vectors in V_2 or V_3 and $\overline{b} \neq 0$, then

- the orthogonal projection of \overline{u} on \overline{b} is $pr_{\overline{b}}\overline{u} = \frac{\overline{u} \cdot \overline{b}}{|\overline{b}|^2} \cdot \overline{b}$;
- the vector component of \overline{u} orthogonal to \overline{b} is \overline{u} -pr $_{\overline{b}}\overline{u}=\overline{u}-\frac{\overline{u}\cdot\overline{b}}{|\overline{b}|^2}\cdot\overline{b}$.

Proof of the previous theorem

$$\overline{W}_1$$
 is parallel to \overline{b} \overline{J} $K \in \mathbb{R}$ such that $\overline{W}_1 = K \cdot \overline{b} + \overline{W}_2$ dot product $\overline{U} = K \cdot \overline{b} + \overline{W}_2$ \overline{b} $\overline{U} = K \cdot \overline{b} + \overline{W}_2$ \overline{b} \overline{b} $\overline{U} = \overline{U} \cdot \overline{b}$ $\overline{U} = \overline{U} \cdot \overline{b}$

The length of the orthogonal projection of the vector \overline{u} on \overline{b} can be obtained as following:

$$|\mathrm{pr}_{\overline{b}}\overline{u}| = \left|\frac{\overline{u}\cdot\overline{b}}{|\overline{b}|^2}\cdot\overline{b}\right| = \left|\frac{\overline{u}\cdot\overline{b}}{|\overline{b}|^2}\right||\overline{b}|,$$

which yields

$$|\operatorname{pr}_{\overline{b}}\overline{u}| = \frac{|\overline{u} \cdot \overline{b}|}{|\overline{b}|}, = \frac{|\overline{u}| \cdot |\overline{b}| \cdot \cos \Theta}{|\overline{b}|}$$

and if θ is the angle between \overline{u} and \overline{b} , then

$$|\operatorname{pr}_{\overline{b}}\overline{u}| = |\overline{u}||\cos\theta|.$$

The cross product

Definition

The cross product of two vectors \overline{u} and \overline{v} is another vector $\overline{u} \times \overline{v}$, which can be determined by the following conditions:

- If \overline{u} and \overline{v} are colinear, then $\overline{u} \times \overline{v} := \overline{0}$;
- Else, let $0 < \theta < \pi$ be the angle between them. The vector $\overline{u} \times \overline{v}$ is such that:

 - $||u \times v|| = ||u|| \cdot ||v|| \cdot \sin(\theta);$ (we need to be in V_3)

 - 3 the orientation of $\overline{u} \times \overline{v}$ is given by the right-hand rule.

- If the vectors $\overline{u}, \overline{v}$ are not collinear, then if $\overrightarrow{OU} \in \overline{u}$ and $\overrightarrow{OV} \in \overline{v}$, then $||\overline{u} \times \overline{v}||$ is the area of the parallelogram formed by \overrightarrow{OU} and \overrightarrow{OV} .
- The area of the triangle $\triangle OAB$ can be computed as

$$\operatorname{Area}_{\triangle OAB} = \frac{||\overline{u} \times \overline{v}||}{2}.$$

The algebraic form of the cross product

If $\overline{u} = u_1\overline{i} + u_2\overline{i} + u_3\overline{k}$ and $\overline{v} = v_1\overline{i} + v_2\overline{i} + v_3\overline{k}$ are vectors in V_3 , then their *cross product* $\overline{u} \times \overline{v}$ is the vector

$$\overline{u} \times \overline{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \overline{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \overline{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \overline{k}, \tag{6}$$

or, shortly,

$$\overline{u} \times \overline{v} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}. \tag{7}$$

Ux to = - Te x Te , since permutes lines 2 & 3 in the det.

Did we defined the same thing?

Let $\overline{u}(u_1, u_2, u_3)$ and $\overline{v}(v_1, v_2, v_3)$. Using the algebraic definition, we get $\overline{u} \times \overline{v}(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$.

• $\overline{u} \cdot (\overline{u} \times \overline{v}) = 0$, so $\overline{u} \times \overline{v}$ is orthogonal on \overline{u} ;

Did we defined the same thing?

Let $\overline{u}(u_1, u_2, u_3)$ and $\overline{v}(v_1, v_2, v_3)$. Using the algebraic definition, we get $\overline{u} \times \overline{v}(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$.

• $\overline{u} \cdot (\overline{u} \times \overline{v}) = 0$, so $\overline{u} \times \overline{v}$ is orthogonal on \overline{u} ; Indeed, notice that

$$\overline{u} \cdot (\overline{u} \times \overline{v}) = u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1) = 0.$$

• Similarly, $\overline{v} \cdot (\overline{u} \times \overline{v}) = 0$.

Did we defined the same thing?

Let $\overline{u}(u_1, u_2, u_3)$ and $\overline{v}(v_1, v_2, v_3)$. Using the algebraic definition, we get $\overline{u} \times \overline{v}(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$.

• $\overline{u} \cdot (\overline{u} \times \overline{v}) = 0$, so $\overline{u} \times \overline{v}$ is orthogonal on \overline{u} ; Indeed, notice that

$$\overline{u} \cdot (\overline{u} \times \overline{v}) = u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1) = 0.$$

- Similarly, $\overline{v} \cdot (\overline{u} \times \overline{v}) = 0$.
- We have that

$$|\overline{u} \times \overline{v}|^2 = |\overline{u}|^2 |\overline{v}|^2 - (\overline{u} \cdot \overline{v})^2$$

(Lagrange's identity).

To prove Lagrange's identity, one just has to open the brackets and check that

$$|\overline{u} \times \overline{v}|^2 = (u_2v_3 - u_3v_2)^2 + (u_3v_1 - u_1v_3)^2 + (u_1v_2 - u_2v_1)^2$$

equals to

$$|\overline{u}|^2|\overline{v}|^2-(\overline{u}\cdot\overline{v})^2=(u_1^2+u_2^2+u_3^2)(v_1^2+v_2^2+v_3^2)-(u_1v_1+u_2v_2+u_3v_3)^2.$$

Using Lagrange's identity,

$$|\overline{u}\times\overline{v}|^2 = |\overline{u}|^2|\overline{v}|^2 - (\overline{u}\cdot\overline{v})^2 = |\overline{u}|^2|\overline{v}|^2 - |\overline{u}|^2|\overline{v}|^2\cos^2\theta = |\overline{u}|^2|\overline{v}|^2\sin^2\theta.$$

Are you convinced that the cross product defined geometrically and the cross product defined algebraically are one and the same?

 $(N_1N_1+N_2O_2+N_3O_3)^2$ $(N_1N_1+N_2+N_3)(O_1+O_2+O_3)$ (Agrange's identity is that

An immediate consequence of the Lagrange's identity is that $|\overline{u}|^2|\overline{v}|^2-(\overline{u}\cdot\overline{v})^2\geq 0, \text{ or } |\overline{u}\cdot\overline{v}|\leq |\overline{u}||\overline{v}|, \text{ which leads, after replacing the components of the vectors, to the Cauchy-Schwartz inequality. The equality }|\overline{u}\cdot\overline{v}|=|\overline{u}||\overline{v}| \text{ holds if and only if the vector }\overline{u}\times\overline{v} \text{ is the zero vector, i.e. its components are all zero, which happens if and only if$

$$\frac{v_1}{u_1}=\frac{v_2}{u_2}=\frac{v_3}{u_3}=\lambda$$
, or $\overline{v}=\lambda\overline{u},\ \lambda\in\mathbb{R}^*.$ In summary, one has:

Theorem

If \overline{u} and \overline{v} are nonzero vectors in V_3 , then $\overline{u} \times \overline{v} = \overline{0}$ if and only if \overline{u} and \overline{v} are parallel.

More properties of the cross product

For any vectors \overline{u} , \overline{v} and \overline{w} from V_3 and any scalar $\lambda \in \mathbb{R}$, the following equalities hold:

- a) $\overline{u} \times \overline{v} = -\overline{v} \times \overline{u}$; (not commutative)
- **b)** $\overline{u} \times (\overline{v} + \overline{w}) = \overline{u} \times \overline{v} + \overline{u} \times \overline{w};$
- c) $(\overline{u} + \overline{v}) \times \overline{w} = \overline{u} \times \overline{w} + \overline{v} \times \overline{w};$
- **d)** $\lambda(\overline{u} \times \overline{v}) = (\lambda \overline{u}) \times \overline{v} = \overline{u} \times (\lambda \overline{v});$
- e) $\overline{u} \times \overline{0} = \overline{0} \times \overline{u} = \overline{0}$;
- **f)** $\overline{u} \times \overline{u} = \overline{0}$.

Some easy examples

It is very easy to compute the cross products of the versors of the axes:

$$\begin{aligned} & \overline{j} \times \overline{k} = \overline{i} \\ & \overline{k} \times \overline{j} = -\overline{i} \\ & \overline{j} \times \overline{j} = \overline{0} \end{aligned}$$

$$\begin{aligned} \overline{k} \times \overline{i} &= \overline{j} \\ \overline{i} \times \overline{k} &= -\overline{j} \\ \overline{k} \times \overline{k} &= \overline{0} \end{aligned}.$$

Some observations

The cross product shares a few similarities with the dot product. However, there are some differences which you have to remember:

- 1 The cross product is not commutative. In fact, it is anti-commutative.
- ② The cross product of two vectors is a vector, not a scalar (as it is the case for the result of a dot product). Therefore, it makes sense to consider products with multiple factors. One should be very careful with those, since the cross product is not associative either:)

A closer look at a high-school formula

In high-school, you probably learned how to compute the area of a triangle determined by $A(x_A, y_A)$, $B(x_B, y_B)$ and $C(x_C, y_C)$.

- Let see these in 3D and assume WLOG they line in the plane xOy.
- We therefore have $A(x_A, y_A, 0)$, $B(x_B, y_B, 0)$ and $C(x_C, y_C, 0)$. These points determine the vectors $\overline{AB}(x_B x_A, y_B y_A, 0)$ and $\overline{AC}(x_C x_A, y_C y_A, 0)$.
- Computing, we have

$$\overline{AB} \times \overline{AC} = \left| \begin{array}{ccc} \overline{i} & \overline{j} & \overline{k} \\ x_B - x_A & y_B - y_A & 0 \\ x_C - x_A & y_C - y_A & 0 \end{array} \right| = \overline{k} \left| \begin{array}{ccc} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{array} \right|,$$

$$\overline{AB} \times \overline{AC} = \overline{k} \left| \begin{array}{ccc} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{array} \right|.$$

It follows that

$$||\overline{AB} \times \overline{AC}|| = \pm \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix},$$

hence

$$Area_{\triangle ABC} = \pm \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}.$$

The problem set for this week will be posted soon. Ideally you would think about it before the seminar on Friday.

Thank you very much for your attention!