12 AF Intellin

BUSH Element Geometry

(in local element coordinates)

The stiffness equSaHteiloenmsefnotrctahnebBesUexpressed a

$$Ku$$
 F

wher Keis a 12x 12 mat u ian xd. E nade ethe 12 degree off efarce hed forth (6 ea 2 g e im e is) disampd and the formation of the u ian u ia

$$egin{array}{ccccc} K_{aa} & K_{ab} & u_a & F_a \ K_{ab}^T & K_{bb} & u_b & F_b \end{array}$$

If we den(io \(\frac{1}{2} \)...6) as the 6stliuf \(\frac{d}{2} \) fs on tahe PBUSHyBuhkenDtahe above partitions are:

	1	0	0	0	d_{z-1}	d_{y-1}	
K_{aa}	0	2	0	d_{z-2}	0	d_{xa-2}	
	0	0	3	d_{y-3}	d_{xa-3}	0	
	0	$d_{z=2}$	d_{y-3}	$d_{y-3}^2 d_{z-2}^2$	$d_{xa}d_{y-3}$	$d_{xa}d_{z=2}$	
	d_{z-1}	0	d_{xa-3}	$d_{xa}d_{y-3}$	$_{5}$ d_{xa-3}^{2} d_{z-1}^{2}	$d_{y}d_{z-1}$	
	d_{y-1}	d_{xa-2}	0	$d_{xa}d_{z=2}$	$d_y d_{z-1}$	d_{xa-2}^2 d_{y-1}^2	

$$K_{ab} = \begin{pmatrix} 1 & 0 & 0 & 0 & d_{z \ 1} & d_{y \ 1} \\ 0 & _{2} & 0 & d_{z \ 2} & 0 & d_{xb \ 2} \\ 0 & 0 & _{3} & d_{y \ 3} & d_{xb \ 3} & 0 \\ 0 & d_{z \ 2} & d_{y \ 3} & (_{4} & d_{y \ 3}^{2} & d_{z \ 2}^{2}) & d_{xb}d_{y \ 3} & d_{z \ 1}^{2} \\ d_{z \ 1} & 0 & d_{xa \ 3} & d_{xa}d_{y \ 3} & _{5} & d_{xa}d_{xb \ 3} & d_{z \ 1}^{2} \\ d_{y \ 1} & d_{xa \ 2} & 0 & d_{xa}d_{z \ 2} & d_{y \ 1} \end{pmatrix}$$

$$K_{bb} = \begin{pmatrix} 1 & 0 & 0 & 0 & d_{z-1} & d_{y-1} \\ 0 & 2 & 0 & d_{z-2} & 0 & d_{xb-2} \\ 0 & 0 & 3 & d_{y-3} & d_{xb-3} & 0 \\ 0 & d_{z-2} & d_{y-3} & 4 & d_{y-3}^2 & d_{z-2}^2 & d_{xa}d_{y-3} & d_{xb}d_{z-2} \\ d_{z-1} & 0 & d_{xb-3} & d_{xb}d_{y-3} & 5 & d_{xb-3}^2 & d_{z-1}^2 & d_{y}d_{z-1} \\ d_{y-1} & d_{xb-2} & 0 & d_{xb}d_{z-2} & d_{y}d_{z-1} & 6 & d_{xb-2}^2 & d_{y-1}^2 \end{pmatrix}$$

An i mage of the fuwlilt 1/2/xt1/2/meaatbroivxes phaorwtnibteiloonws: is

	K_1	0	0	0	$d_z K_1$	$-d_{y}K_{1}$	$-K_1$	0	0	0	$-d_zK_1$	$d_y K_1$
<i>K</i> =	0	K_2	0	$-d_zK_2$	0	$d_{xa}K_2$	0	$-K_2$	0	$d_z K_2$	0	$d_{xb}K_2$
	0	0	K_3	$d_y K_3$	$-d_{xa}K_3$	0	0	0	$-K_3$	$-d_{y}K_{3}$	$-d_{xb}K_3$	0
	0	$-d_zK_2$	$d_y K_3$	$K_4 + d_y^2 K_3 + d_z^2 K_2$	$-d_{xa}d_{y}K_{3}$	$-d_{xa}d_zK_2$	0	$d_z K_2$	$-d_y K_3$	$-(K_4 + d_y^2 K_3 + d_z^2 K_2)$	$-d_{xb}d_yK_3$	$-d_{xb}d_zK_2$
	$d_z K_1$	0	$-d_{xa}K_3$	$-d_{xa}d_{y}K_{3}$	$K_5 + d_{xa}^2 K_3 + d_z^2 K_1$	$-d_y d_z K_1$	$-d_zK_1$	0	$d_{xa}K_3$	$d_{xa}d_{y}K_{3}$	$-K_5 + d_{xa}d_{xb}K_3 - d_z^2K_1$	$d_y d_z K_1$
	$-d_y K_1$	$d_{xa}K_2$	0	$-d_{xa}d_zK_2$	$-d_y d_z K_1$	$K_6 + d_{xa}^2 K_{2} + d_y^2 K_1$	$d_y K_1$	$-d_{xa}K_2$	0	$d_{xa}d_zK_2$	$d_y d_z K_1$	$-K_6 + d_{xa}d_{xb}K_2 - d_y^2K_1$
	-K ₁	0	0	0	$-d_zK_1$	$d_{y}K_{1}$	K_1	0	0	0	$d_z K_1$	$-d_y K_1$
	0	$-K_2$	0	$d_z K_2$	0	$-d_{xa}K_2$	0	K_2	0	$-d_zK_2$	0	$-d_{xb}K_2$
	0	0	$-K_3$	$-d_y K_3$	$d_{xa}K_3$	0	0	0	K_3	$d_{y}K_{3}$	$d_{xb}K_3$	0
	0	$d_z K_2$	$-d_y K_3$	$-(K_4 + d_y^2 K_3 + d_z^2 K_2)$	$d_{xa}d_{y}K_{3}$	$d_{xa}d_zK_2$	0	$-d_zK_2$	$d_y K_3$	$K_4 + d_y^2 K_3 + d_z^2 K_2$	$d_{xb}d_yK_3$	$d_{xb}d_zK_2$
	$-d_zK_1$	0	$-d_{xb}K_3$	$-d_{xb}d_yK_3$	$-K_5 + d_{xa}d_{xb}K_3 - d_z^2K_1$	$d_y d_z K_1$	$d_z K_1$	0	$d_{xb}K_3$	$d_{xb}d_yK_3$	$K_5 + d_{xb}^2 K_3 + d_z^2 K_1$	$-d_y d_z K_1$
	$d_y K_1$	$d_{xb}K_2$	0	$-d_{xb}d_zK_2$	$d_y d_z K_1$	$-K_6 + d_{xa}d_{xb}K_2 - d_y^2K_1$	$-d_y K_1$	$-d_{xb}K_2$	0	$d_{xb}d_zK_2$	$-d_y d_z K_1$	$K_6 + d_{xb}^2 K_2 + d_y^2 K_1$

Note that the K_{ab} pand K_{bb} at rise is symmetric

The element engineering forces doæn dowe:derived using the figure

BUSH Element Loads

(in local element coordinates)

The engineering forces in the BUSH element are:

$$egin{array}{lll} F_{xe} & F_{xb} \ F_{ye} & F_{yb} \ F_{ze} & F_{zb} \ M_{xe} & F_{yb} d_z & F_{zb} d_y & M_{xb} \ M_{ye} & F_{xb} d_z & F_{zb} d_{xb} & M_{yb} \ M_{ze} & F_{yb} d_y & F_{yb} d_{yb} & M_{zb} \end{array}$$

This can be put into a form which includes all nodal forces as:

The 6x 12transformmatthieoanbmoavtereiqxuiattihoenMiYsS TiRANIcode thoe terlæmmsefnotrmmotdalefnotrecnegs itnoe **e**lr**e**nn gforces

The engineering forces in the BUSH element are:

This can be put into a form which includes all nodal forces as:

The 6xtransform table camb on vale reiq xu aith he nM YSS TuRs As Nolidion dte to transform the elte em ne on it nneo edrail nfgor forces