1 Graph Algorithms

1.1 Graphen

• (Endlicher) gerichteter Graph

- (endlicher) gerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge $E \subseteq VxV$
- $(u,v) \in E$: Kanten von Knoten u zu v
- Kanten haben eine Richtung

• Ungerichtete Graphen

- (endlicher) ungerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge $E \subseteq VxV$, sodass $(u,v) \in E \Leftrightarrow (v,u) \in E$
- Kanten haben keine Richtung

Pfadfinder

- Knoten v ist von Knoten u erreichbar, wenn es wenn es von u aus einen Pfad über n Knoten nach v
- -u ist immer von u per leerem Pfad (k=1) erreichbar
- Länge des Pfades = k-1 = Anzahl Kanten

• Zusammenhängende Graphen

- Ungerichtet: Zusammenhängend wenn jeder Knoten von jedem anderen Knoten aus erreichbar ist
- Gerichtet: Stark zusammenhängend, wenn obiges auch gemäSS Kantenrichtung gilt

• Bäume und Subgraphen

Graph G ist ein Baum, wenn V leer ist oder wenn es einen Knoten in V gibt, von dem aus jeder andere Knoten eindeutig erreichbar ist (Wurzel). Graph G' = (V', E') ist Subgraph von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E$.

Darstellung von Graphen

- Als Adjazentmatrix (1, wenn Kante von i zu j bzw. 0, wenn keine Kante)
- Bei ungerichteten Graphen ist Matrix spiegelsymmetrisch zur Hauptdiagonalen
- Speicherbedarf: $\Theta(|V^2|)$

- Auch darstellbar als Array mit verketteten Listen
- Speicherbedarf: $\Theta(|V| + |E|)$

• Gewichtete Graphen

- gewichteter gerichteter oder ungerichteter Graph G = (V, E)
- besitzt zusätzlich Funktion $w: E \to R$
- Angabe des Gewichts einer Kante u nach v durch w((u,v))

1.2 Breadth-First Search (BFS)

Idee

- Besuche zuerst alle unmittelbaren Nachbarn, dann deren Nachbarn, usw.
- Anwendung: Webcrawling, Garbage Collection,...

Algorithmus

```
BFS(G,s) //G=(V,E) s = source node in V
   BFS(G,s) //G=(V,E) s = source node in V
   FOREACH u in V-{s} DO
       u.color = WHITE;
                                // Weiß = noch nicht besucht
       u.dist = +\infty
                                // Setzen der Distanzen auf Unendlich
                                // Setzen der Vorgänger auf nil
       u.pred = nil;
                                // Anfang bei Startnode
   s.color = GRAY;
   s.dist = 0;
   s.pred = nil;
   newQueue(Q);
10
   enqueue(Q,s);
   WHILE !isEmpty(Q) DO
       u = dequeue(Q);
       FOREACH v in adj(G,u) DO
           IF v.color == WHITE THEN
                v.color == GRAY;
                v.dist = u.dist+1;
                v.pred = u;
                enqueue(Q, v);
                                     // Knoten abgearbeitet
       u.color = BLACK;
```

Farben:

- * WHITE: Knoten noch nicht besucht
- * GRAY: Knoten in Queue für nächsten Schritt
- * BLACK: Knoten ist fertig
- Laufzeit: O(|V| + |E|)
- Nach Algorithmus steht in v die kürzeste Distanz von s nach v

• Kürzeste Pfade ausgeben

```
print-path(G,s,v) // Assumes that BFS(G,s) has already been executed

IF v == s THEN
    print s;

ELSE

IF v.pred == nil THEN
    print "no path from s to v"

ELSE

print-path(G,s,v.pred);
    print v;
```

Abgeleiteter BFS-Baum

- Subgraph $G^s_{pred} = (V^s_{pred}, E^s_{pred})$ von G:
 - $*\ V^s_{pred} = \{v \in V | v.pred \neq nil\} \cup \{s\}$
 - $*~E^s_{pred} = \{(v.pred,v)|v \in V^s_{pred} \{s\}\}$
- G^s_{pred} enthält alle von s aus erreichbaren Knoten in G
- AuSSerdem handelt es sich hier nur um kürzeste Pfade

1.3 Depth-First Search(DFS)

Idee

- Besuche zuerst alle noch nicht besuchten Nachfolgeknoten
- "Laufe so weit wie möglich weg vom aktuellen Knoten"

• Algorithmus

```
FOREACH u in V DO

u.color = WHITE;
u.pred = nil;
time = 0;  // time hier als globale Variable
FOREACH u in v DO

IF u.color == WHITE THEN

DFS-VISIT(G,u) // Start eines rekursiven Aufrufs
```

```
time = time + 1;
u.disc = time;  // discovery time
u.color = GRAY;
FOREACH v in adj(G,u) D0

IF v.color == WHITE THEN
v.pred = u;
DFS-VISIT(G,v);
u.color = BLACK;
time = time + 1;
u.finish = time;  // finish time
```

• DFS-Wald = Menge von DFS-Bäumen

- Subgraph $G_{pred} = (V, E_{pred})$ von G
- besteht aus $E_{pred} = (v.pred, v) | v \in V, v.pred \neq nil$
- DFS-Baum gibt nicht unbedingt den kürzesten Weg wieder

Kantenarten

- Baumkanten: alle Kanten in G_{pred}

– Vorwärtskanten: – alle Kanten in G zu Nachkommen in G_{pred} , die keine Baumkante sind

– Rückwärtskanten: alle Kanten in G zu Vorfahren in G_{pred} , die keine Baumkante sind (inkl. Schleifen)

- Kreuzkanten: alle anderen Kanten in G

Anwendungen DFS

- Job Scheduling (Job X muss vor Job Y beendet sein)
- Topologisches Sortieren
 - * nur für dag (directed acyclic graph)
 - * Kanten immer nur nach rechts
 - * Sortierung aber nicht eindeutig

TOPOLOGICAL-SORT(G) new LinkedList(L); run DFS(G) but, each time a node is finished, insert in front of L return L.head;

• Starke Zusammenhangskomponenten

– Knotenmenge $C\subseteq V$, so dass es zwischen zwei Knoten $u,v\in C$ einen Pfad von u nach v gibt und es keine Menge $D\subseteq V$ mit $C\subsetneq D$ gibt, für die obiges auch gilt.

Eigenschaften:

- * Verschiedene SCC's sind disjunkt
- * Zwei SCC's sind nur in eine Richtung verbunden

- Algorithmus:

* DFS zweimal laufen lassen Einmal auf Graph G Einmal auf Graph $G^T=(V,E^T)$ (transponiert)

- * Dadurch bleiben die SCC's gleich, die Kanten drehen sich aber jeweils um
- * Code:

1.4 Minimale Spannbäume

Definition

- Verbindung aller Knoten miteinander
- Minimaler Spannbaum \Rightarrow Minimales Gewicht

Allgemeiner Algorithmus

```
genericMST(G,w)

1 A = ∅

2 WHILE A does not form a spanning tree for G DO

3 find safe edge {u,v} for A

4 A = A ∪{{u,v}}

5 return A
```


Terminologie:

- * Schnitt (S, V-S) partioniert Knoten in zwei Mengen
- * $\{u,v\}$ überbrückt Schnitt, wenn $u \in S$ und $v \in V S$
- * Schnitt respektiert $A\subseteq E$, wenn keine Kante {u,v} aus A den Schnitt überbrückt
- * $\{u,v\}$ leichte Kante für (S, V-S), wenn $w(\{u,v\})$ minimal für alle den Schnitt überbrückenden Kanten
- * $\{u,v\}$ sicher für A, wenn $A \cup \{\{u,v\}\}$ Teilmenge eines MST

• Algorithmus von Kruskal

- Lässt parallel mehrere Unterbäume eines MST wachsen
- In Worten: Suchen der "kleinsten" Kante und Zusammenfügen von Mengen, falls Mengen ungleich sind
- Laufzeit: $O(|E| \cdot log|E|)$

```
MST-Kruskal(G,w)

A = 0
FOREACH v in V DO
set(v) = {v}; // Menge mit sich selbst

Sort edges according to weight in nondecreasing order
FOREACH {u,v} in E according to order DO

IF set(u) != set(v) THEN // Mengen noch nicht verbunden
A = A U {{u,v}};
UNION(G,u,v); // Zusammenführen der Mengen aller Knoten aus den Sets
return A;
```

• Algorithmus von Prim

- Konstruiert einen MST Knoten für Knoten
- Fügt immer leichte Kante zu zusammenhängender Menge hinzu
- Laufzeit: $O(|E| + |V| \cdot log|V|)$

```
MST-Prim(G,w,r) // r is given root

1  FOREACH v in V DO
          v.key = +∞;
          v.pred = nil;
4  r.key = -∞
5  Q = V;
6  WHILE !isEmpty(Q) DO
          u = EXTRACT-MIN(Q); // smallest key value
FOREACH v in adj(u) DO
          IF v∈Q and w({u,v})<v.key THEN
          v.key = w({u,v});
          v.pred = u;</pre>
```

1.5 Kürzeste Wege in (gerichteten) Graphen

Definition

- SSSP Single-Source Shortest Path
- Von Quelle s ausgehend die kürzesten Pfad zu allen anderen Knoten
- Kürzester Pfad: Pfad mit minimalem Gesamtgewicht von einem zum anderen Knoten
- BFS findet nur minimale Kantenwege (nicht Gewichtswege)
- MST minimiert das Gesamtgewicht des Baumes (nicht zu einzelnen Kanten)
- Negative Kantengewichte sind erlaubt, aber keine Zyklen mit negativem Gesamtgewicht

• Gemeinsame Idee für Algorithmen - Relax

– Verringere aktuelle Distanz von Knoten v, wenn durch Kante (u, v) kürzer erreichbar


```
relax(G,u,v,w)

IF v.dist > u.dist + w((u,v)) THEN

v.dist = u.dist + w((u,v));

v.pred = u;
```

• Bellman-Ford-Algorithmus

- Laufzeit: $\Theta(|E| \cdot |V|)$

```
Bellman-Ford-SSSP(G,s,w)

initSSSP(G,s,w);

FOR i = 1 TO |V|-1 DO

FOREACH (u,v) in E DO

relax(G,u,v,w);

FOREACH (u,v) in E DO // Prüfung ob negativer Zyklus

IF v.dist > u.dist+w((u,v)) THEN

return false;

return true;
```

```
initSSSP(G,s,w)

fOREACH v in V D0
v.dist = ∞;
v.pred = nil;
s.dist = 0;
```

• TopoSort für dag

- Erhalten des kürzesten Pfades durch das topologische Sortieren
- Laufzeit: $\Theta(|E| + |V|)$

```
TopoSort-SSSP(G,s,w) // G muss dag sein

initSSSP(G,s,w);
execute topological sorting
FOREACH u in V in topological order D0
FOREACH v in adj(u) D0
relax(G,u,v,w);
```

• Dijkstra-Algorithmus

- Voraussetzung: Keine negativen Kantengewichte
- Laufzeit: $\Theta(|V| \cdot log|V| + |E|)$

* Beispiel für Problem mit negativen Kantengewisten bei Dijkstra: Dijkstra würde Pfad 1-2-3 liefern, da das Kantengewicht 4 gröSSer als der andere Pfad ist.

1.6 Maximaler Fluss in Graphen

• Idee

- Flussnetzwerk:

Ein Flussnetzwerk ist ein gewichteter, gerichteter Graph G=(V,E) mit Kapazität c, so dass $c(u,v)\geq 0$ für $(u,v)\in E$ und c(u,v)=0 für $(u,v)\notin E$, mit zwei Knoten $s,t\in V$, so dass jeder Knoten von s aus erreichbar ist und t von jedem Knoten aus erreichbar ist. Damit gilt $|E|\geq |V|-1$.

- Fluss:

Ein Fluss $f: VxV \to \mathbb{R}$ für ein Flussnetzwerk G = (V, E) mit Kapazität c und Quelle s und Senke t erfüllt $0 \le f(u, v) \le c(u, v)$ für alle $u, v \in V$, sowie für alle $u \in V - \{s, t\}$: $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$ (ausgehend = eingehend)

Wert eines Flusses

Der Wert |f| eines Flusses $f:VxV\to\mathbb{R}$ für ein Flussnetzwerk G ist: $|f|=\sum_{v\in V}f(s,v)=\sum_{v\in V}f(v,s)$

Transformationen

Restkapazitätsgraph

- Wird für Ford-Fulkerson benötigt
- Restkapazität $c_f(u, v)$:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{falls } (u,v) \in E \\ f(v,u) & \text{falls } (v,u) \in E \\ 0 & \text{sonst} \end{cases}$$

- $G_f = (V, E_f)$ mit $E_f = \{(u, v) \in VxV | c_f(u, v) > 0\}$

– Suche eines Pfades von s nach t und Erhöhung aller Flüsse um niedrigsten möglichen Wert auf Pfad

• Ford-Fulkerson-Algorithmus

- Idee: Suche Pfad von s nach t, der noch **erweiterbar** ist
- Suche dieses Pfades im Restkapazitätsgraphen G_f (mögliche Zu- und Abflüsse)
- Code:

```
Ford-Fulkerson(G,s,t,c)

FOREACH e in E do e.flow = 0;

WHILE there is path p from s to t in G_{flow} D0

c_{flow}(p) = \min \{c_{flow}(u,v) : (u,v) \text{ in p}\}

FOREACH e in p D0

IF e in E THEN

e.flow = e.flow + c_{flow}(p);

ELSE

e.flow = e.flow - c_{flow}(p);
```

- Die Pfadsuche erfolgt z.B. per BFS oder DFS
- Laufzeit: $O(|E| \cdot u \cdot |f^*|)$ $(O(|V| \cdot |E|^2)$ Mit Verbesserung nach Edmonds-Karp) (wobei f^* maximaler Fluss und Fluss um bis zu $\frac{1}{u}$ pro Iteration wächst)

- Beispiel:

