Higher Category Theory

Solutions to Sheet 3

Solution to Exercise 3. Proof. (i) It suffices to show that the functor $\operatorname{Hom}_{\operatorname{Cat}}(-,\mathcal{C})$ is represented by \mathcal{C}^{\simeq} for each $\mathcal{C} \in \operatorname{Ob}(\operatorname{Cat})$. To this end, we note that for every $\mathcal{G} \in \operatorname{Gpd}$, any functor $F \colon \mathcal{G} \to \mathcal{C}$ factorizes uniquely through \mathcal{C}^{\simeq} , because F(f) is an isomorphism for any (iso-)morphism f in \mathcal{G} , and if F factorizes as

$$\mathcal{G} \xrightarrow{F'} \mathcal{C} \hookrightarrow \mathcal{C}^{\simeq} \text{ and } \mathcal{G} \xrightarrow{F''} \mathcal{C} \hookrightarrow \mathcal{C}^{\simeq}$$

then F' = F'' on objects while for any morphism f in \mathcal{G} , F'(f) = F(f) = F''(f) (so F' = F''). This gives a bijection

$$\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{G},\mathcal{C}) \cong \operatorname{Hom}_{\operatorname{Gpd}}(\mathcal{G},\mathcal{C}^{\simeq}).$$

To see the functoriality, take any $G \colon \mathcal{G} \to \mathcal{G}'$ in Gpd. Then we have a commutative diagram

where $F, F \circ G$ factorize through $F', (F \circ G)'$ respectively. Note that $F' \circ G = (F \circ G)'$ since the composite $\mathcal{G} \xrightarrow{\mathcal{G}} \mathcal{G}' \xrightarrow{F'} \mathcal{C}^{\simeq} \hookrightarrow \mathcal{C}$ is $F \circ G$.

(ii) We claim that subgroupoids of EX are of the form

$$\coprod_{i \in I} EX_i$$

where $(X_i)_{i\in I}$ is a family of disjoint subsets of X. Indeed, such subcateories $\coprod_{i\in I} EX_i$ is a groupoid, and thus a subgroupoid of X. On the other hand, for any subgroupoid Y of X, we define I to be the set of isomorphism classes of objects in Y. Therefore $Y = \coprod_{i\in I} Ei$, which can be seen from the fact that $Ob(Y) = Ob(\coprod_{i\in I} Ei)$ and for any $x, y \in Ob(Y)$,

$$\operatorname{Hom}_Y(x,y) = \operatorname{Hom}_{\coprod_I Ei}(x,y) = \left\{ \begin{array}{ll} \varnothing & \text{if } x,y \text{ are not isomorphic} \\ \{(x,y)\} & \text{if } x,y \text{ are isomorphic} \end{array} \right.$$

- (iii) It is enough to show that for all small set X, the functor $\operatorname{Hom}_{\operatorname{Set}}(\operatorname{Ob}(-), X)$ is represented by EX. To this end, for any map $F : \operatorname{Ob}(\mathcal{C}) \to X$, we define a functor \widetilde{F} by letting
 - $\widetilde{F}(x) = F(x)$ for any $x \in Ob(\mathcal{C})$;
 - $\operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{EX}(Fx,Fy)$ is the constant map, sending each morphism $f: x \to y$ to (Fx,Fy).

and we get a bijection

$$\operatorname{Hom}_{\operatorname{Set}}(\operatorname{Ob}(\mathcal{C}), X) \to \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, EX)$$

$$F \mapsto \widetilde{F}$$

$$\operatorname{Ob}(F) \longleftrightarrow F$$

(the verification of them being mutually inverse is straightforward).

As for the functoriality, take any functor $G: \mathcal{C} \to \mathcal{C}'$. Then the diagram

$$\operatorname{Hom}_{\operatorname{Set}}(\operatorname{Ob}(\mathcal{C}'),X) \stackrel{\sim}{=\!\!\!=\!\!\!=} \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}',EX) \qquad F \longmapsto \widetilde{F}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{\operatorname{Set}}(\operatorname{Ob}(\mathcal{C}),X) \stackrel{\sim}{=\!\!\!=\!\!\!=} \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C},EX) \qquad F \circ \operatorname{Ob}(G) \mapsto \widetilde{F} \circ G = F \circ \operatorname{Ob}(G)$$

is commutative. Here $\widetilde{F} \circ G = F \circ \widetilde{\mathrm{Ob}}(G)$ because they both equal to $F \circ \mathrm{Ob}(G)$ on objects and hence they are the same on morphisms (since the map between hom sets $\operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{EX}(F(G(x)), F(G(y)))$ is the constant map).

(iv) Let us denote the functor sending X to its associated discrete category by disc. We write $C: \mathcal{C} \to \text{Set}$ for the constant functor sending each $X \mapsto *$. We will show that the functor $\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C},\operatorname{disc}(-))$ is represented by $\pi_0(\mathcal{C})$ for all $\mathcal{C} \in \operatorname{Ob}(\operatorname{Cat})$. First of all, we define a map

$$\Phi \colon \operatorname{Hom}_{\operatorname{Set}}(\pi_0(\mathcal{C}), S) \to \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, \operatorname{disc}(S))$$

by letting for every $F : \pi_0(\mathcal{C}) \to S$

- $\operatorname{Ob}(\Phi(F)) \colon \operatorname{Ob}(\mathcal{C}) \to S, \ X \mapsto F \circ \iota_X(*), \text{ and}$ $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\operatorname{disc}(S)}(\Phi X, \Phi Y) \text{ be } \left\{ \begin{array}{ll} \varnothing, & \text{if } \Phi X \neq \Phi Y \\ \{ \operatorname{id} \}, & \text{if } \Phi X = \Phi Y, \end{array} \right.$

where $\iota: C \to \pi_0(\mathcal{C})_{\mathcal{C}}$ is the coprojection.

Next we intend to define an inverse Ψ to Φ . For any functor $G: \mathcal{C} \to \operatorname{disc}(S)$, note that G(X) = G(Y) if there is a morphism $X \to Y$ in \mathcal{C} . From this we get a cocone $C \to S_{\mathcal{C}}$ with $C(X) \to S$ sending $* \mapsto G(X)$, which defines a unique map $\lim_{C} C \to S$ via the universal property of colimits and we denote it by $\Psi(G)$.

To see that Ψ and Φ are mutually inverse, we have

$$\Phi \circ \Psi(G)(X) = \Psi(G) \circ \iota_X(*) = G(X)$$

for all $X \in \mathrm{Ob}(\mathcal{C})$ and $G \colon \mathcal{C} \to \mathrm{disc}(S)$, and

$$(\Psi \circ \Phi(F)) \circ \iota_X(*) = (\Psi(X \mapsto F \circ \iota_X(*))) \circ \iota_X(*) = F \circ \iota_X(*)$$

for all $X \in \mathrm{Ob}(\mathcal{C})$ and $F \colon \pi_0(\mathcal{C}) \to S$. Therefore $\Psi \circ \Phi = \mathrm{id}$. Also, since the target of $\Phi \circ \Psi(G)$ is $\operatorname{disc}(S)$, in which the hom sets are either \emptyset or id, we have $\Phi \circ \Psi = \operatorname{id}$.

As for the functoriality, one has the following commutative diagram

$$\operatorname{Hom}_{\operatorname{Set}}(\pi_0(\mathcal{C}), S) \stackrel{\sim}{=\!\!\!=\!\!\!=} \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, \operatorname{disc}(S)) \qquad F \longmapsto \Phi(F)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{\operatorname{Set}}(\pi_0(\mathcal{C}), S') \stackrel{\sim}{=\!\!\!=\!\!\!=} \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, \operatorname{disc}(S')) \qquad s \circ F \mapsto \Phi(s \circ F) = \operatorname{disc}(s) \circ \Phi(F)$$

for any map $s: S \to S'$ of sets. Here the equality is because

$$\Phi(s \circ F)(X) = (s \circ F) \circ \iota_X(*)$$

and

$$\operatorname{disc}(s) \circ \Phi(F)(X) = s \circ \operatorname{Ob}(\Phi(F))(X) = s \circ (F \circ \iota_X(*))$$

for all $X \in \text{Ob}(\mathcal{C})$.

(v) For a groupoid \mathcal{G} , $\pi_0(\mathcal{G})$ is the set of isomorphism classes of \mathcal{G} . This can be seen by verifying the universal property of colimits. For the moment we denote by $\pi'_0(\mathcal{G})$ the set of isomorphism classes. Define the coprojections $\iota_X \colon C(X) \to \pi'_0(\mathcal{G})$ by sending $* \mapsto [X]$ (the isomorphism class of $X \in \mathrm{Ob}(\mathcal{G})$). Suppose that we have a cocone $F \colon C \to S_{\mathcal{G}}$ for some small set S. Then we can define a map

$$f \colon \pi'_0(\mathcal{G}) \to S$$

by $[X] \mapsto F_X(*)$. This is well-defined, since $F_X = F_Y \circ \mathrm{id}_*$ whenever $X \cong Y$. Such f is unique, since if there is another $f' \colon \pi_0'(\mathcal{G}) \to S$, then

$$f'([X]) = f' \circ \iota_X(*) = F_X(*) = f \circ \iota_X(*) = f([X])$$

for all $X \in \text{Ob}(\mathcal{G})$. This shows $\pi'_0(\mathcal{G}) \cong \pi_0(\mathcal{G})$.