ELEN 20005 FOUNDATIONS OF ELECTRICAL NETWORKS

Semester 2 Exam 2017

Numerical Answers

Question 1

- (a) The clockwise mesh currents are $i_1 = 2$ A, $i_2 = -1$ A, $i_3 = -0.8$ A, $i_4 = -1$ A.
- (b) $v_1 = -19 V$, $v_2 = 4 V$.
- (c) Absorbing 0.8 W of power. (d) $L=3.3~mH\pm2\%$ (e) C=4.7~nF

Question 2

- (a) $V_C(0^+) = 10 \ V$, $V_C(t) = 10e^{-200t} \ V$. (b) 8 ms.
- (c) $w_C(0) = 125 \ \mu J, \ w_C(t) = 125 e^{-400t} \ \mu J.$

Question 3

- (b) $V_{ab} = 762/30^{\circ} V$, $I_{aA} = 88/-36.9^{\circ} A$ (c) $V_{AB} = 762/30^{\circ}$, $I_{AB} = 50.8/-6.9^{\circ} A$
- (d) $\theta = 36.9^{\circ}$, $P = 15.5 \ kW$, $Q = 11.6 \ kVAR$.

Question 4

(a)
$$V_T = 80/0^{\circ} V$$
, $Z_T = 41.2/14.1^{\circ} \Omega$ (b) $\mathbf{V} = 20/-90^{\circ} V$, $v(t) = 20\cos(1000t - 90^{\circ}) V$.

Question 5

(a)
$$A_m = 10 \ V$$
, $\omega = 500\pi \ rad/s$, $\theta = -90^{\circ}$. (b) V_2 lags V_1 by 54°.

Question 6

(b)
$$i(t) = 3.5\cos(1000\pi t + 14.5^{\circ})\ mA,\ v_C(t) = 0.5\cos(1000\pi t - 75.5^{\circ})\ V,$$
 phase difference is 75.5°

Question 7

- $i(0) = 1 \, mA$, $i(2) = 2 \, mA$ with quadratic curve inbetween;
- i(2) = 2 mA, i(4) = 2 mA with constant curve inbetween;
- i(4) = 2 mA, i(5) = 1 mA with straight line inbetween.
- $p(0) = 0 \ mW, \ p(2^{-}) = 30 \ mW$ with cubic curve inbetween;
- $p(2^+) = 0 \ mW, \ p(4^-) = 0 \ mW$ with constant curve inbetween;
- $p(4^+) = -30 \text{ mW}, p(5) = -15 \text{ mW}$ with straight line inbetween.
- $w(0) = 7.5 \ nJ, \ w(2) = 30 \ nJ$ with quartic curve inbetween;
- $w(2) = 30 \ nJ, w(4) = 30 \ nJ$ with constant curve inbetween;
- $w(4) = 30 \ nJ, \ w(5) = 7.5 \ nJ$ with quadratic curve inbetween.

Question 8

(a)
$$Y = \overline{A} \overline{B} + \overline{A} \overline{C}$$
 (c) False

Question 9

- (a) $Z = \overline{BC + \overline{B(A+C)}}$ (b) $Z(AB\overline{C}) = 1$, otherwise Z = 0.
- (c) The worst-case propagation delay goes through the OR gate, the NAND gate and the NOR gate with total $t_{pd}=58\ ns.$

Question 10

$$v_{out} = \begin{cases} \frac{1}{3}(v_{IN} + 7 \ V), & \text{if } v_{IN} \ge 14 \ V \\ \frac{1}{2}v_{IN}, & \text{if } v_{IN} < 14 \ V \end{cases}.$$