Лабораторная работа №4 Обработка прерываний

Прерывания

Прерывания прекращают работу основной программы для того чтобы выполнить более приоритетную задачу, определяемую внутренними или внешними событиями.

При возникновении прерывания микроконтроллер сохраняет в стеке содержимое счётчика команд РС и загружает в него адрес соответствующего вектора прерывания. По этому адресу, как правило, находится команда безусловного перехода к подпрограмме обработки прерывания.

После выполнения подпрограммы обработки прерывания, в счётчик команд загружается сохраненное значение из стека и выполнение основной программы продолжается с того места, где оно остановилось.

Количество прерываний зависит от конкретной модели микроконтроллера.

Микроконтроллер АТМеда328 поддерживает 26 типов прерываний.

Таблица векторов прерывания располагается в памяти программ, начиная с адреса 0x0002, либо в области загрузчика.

Приоритет прерывания зависит от его расположения в таблице векторов прерывания: чем меньше адрес, тем выше приоритет прерывания.

Таблица векторов прерывания микроконтроллера ATmega328 выглядит следующим образом:

Номе р векто ра	Адрес обработ чика	Источник	Обработчик	Тип прерывания
1	0x0000	RESET	RESET_vect	сброс
2	0x002	INT0	INT0_vect	внешнее прерывание 0
3	0x0004	INT1	INT1_vect	внешнее прерывание 0
4	0x0006	PCINT0	PCINT0_vect	прерывание по изменению состояния нулевой группы выводов
5	0x0008	PCINT1	PCINT1_vect	прерывание по изменению состояния первой группы выводов
6	0x000A	PCINT2	PCINT2_vect	прерывание по изменению состояния второй группы выводов
7	0x000C	WDT	WDT_vect	прерывание от сторожевого таймера
8	0x000E	TIMER2 COMPA	TIMER2_COMPA_vect	прерывание от таймера/счетчика Т2 при совпадении с А
9	0x0010	TIMER2 COMPB	TIMER2_COMPB_vect	прерывание от таймера/счетчика Т2 при совпадении с В
10	0x0012	TIMER2 OVF	TIMER2_OVF_vect	прерывание по переполнению таймера/счетчика T2
11	0x0014	TIMER1 CAPT	TIMER1_CAPT_vect	прерывание от таймера/счетчика T1 по записи
12	0x0016	TIMER1 COMPA	TIMER1_COMPA_vect	прерывание от таймера/счетчика T1 при совпадении с A

13	0x0018	TIMER1 COMPB	TIMER1_COMPB_vect	прерывание от таймера/счетчика T1 при совпадении с В
14	0x001A	TIMER1 OVF	TIMER1_OVF_vect	прерывание по переполнению таймера/счетчика Т1
15	0x001C	TIMER0 COMPA	TIMER0_COMPA_vect	прерывание от таймера/счетчика Т0 при совпадении с А
16	0x001E	TIMER0 COMPB	TIMER0_COMPB_vect	прерывание от таймера/счетчика Т0 при совпадении с В
17	0x0020	TIMER0 OVF	TIMER0_OVF_vect	прерывание по переполнению таймера/счетчика T0
18	0x0022	SPI, STC	SPI_STC_vect	прерывание по окончанию передачи модуля SPI
19	0x0024	USART, RX	USART_RX_vect	прерыванию по окончанию приема модуля USART
20	0x0026	USART, UDRE	USART_UDRE_vect	прерывание по опустошению регистра данных модуля USART
21	0x0028	USART, TX	USART_TX_vect	прерывание по окончанию передачи модуля USART
22	0x002A	ADC	ADC_vect	прерывание по завершению преобразования АЦП
23	0x002C	EE READY	EE_READY_vect	прерывание по готовности памяти EEPROM
24	0x002E	ANALOG COMP	ANALOG_COMP_vect	прерывание от аналогового компаратора
25	0x0030	TWI	TWI_vect	прерывание от модуля I2C (TWI)
26	0x0032	SPM READY	SPM_READY_vect	прерывание по готовности flash памяти

Глобальные прерывания

Для разрешения и запрещения глобальных прерываний используется бит I в регистре SREG. SREG – the AVR status register.

The AVR status register

Bit	7	6	5	4	3	2	1	0	_
0x3F (0x5F)	-	T	Н	S	V	N	Z	С	SREG
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

Бит 7-I — бит разрешения глобальных прерываний — для того чтобы прерывания были разрешены, должен быть установлен. Если бит разрешения прерывания очищен, ни одно из прерываний не будет разрешено независимо от индивидуальных настроек разрешения прерываний.

Прерывания таймера 1

Таймер/счётчик 1 имеет следующие типы прерываний:

- прерывание от таймера/счетчика Т1 по записи
- прерывание от таймера/счетчика Т1 при совпадении с А
- прерывание от таймера/счетчика Т1 при совпадении с В
- прерывание по переполнению таймера/счетчика Т1

Для разрешения прерываний таймер 1 имеет регистр TIMSK1 (Timer/Counter1 Interrupt Mask Register).

Bit	7	6	5	4	3	2	1	0	_
(0x6F)	-	_	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	TIMSK1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Биты 7, 6, 4, 3 – зарезервированы, они не используются и всегда читаются как ноль.

Бит ICIE1 – бит разрешения прерывания по записи. Когда бит установлен (записана логическая «1») и разрешены глобальные прерывания (установлен бит I в регистре SREG), то включается прерывание по записи (захвату входного значения). Соответствующий вектор прерывания выполняется, когда установлен флаг ICF1, расположенный в TIFR1.

Бит ОСІЕ1В – бит разрешения прерывания от таймера/счетчика Т1 при совпадении с В

Бит OCIE1A – бит разрешения прерывания от таймера/счетчика T1 при совпадении с A

Когда данные биты установлены и глобальные прерывания разрешены, то включаются прерывания при совпадении с В и А соответственно (регистры OCR1B и OCR1A). Соответствующие вектора прерываний выполняются, когда установлены флаги OCF1B и OCF1A, расположенные в TIFR1.

Бит TOIE1 – бит разрешения прерывания по переполнению таймера/счетчика T1

Когда бит установлен (записана логическая «1») и разрешены глобальные прерывания (установлен бит I в регистре SREG), то включается прерывание по переполнению. Соответствующий вектор прерывания выполняется, когда установлен флаг TOV1, расположенный в TIFR1.

Регистр TIFR1 содержит флаги прерываний.

Bit	7	6	5	4	3	2	1	0	_
0x16 (0x36)	-	-	ICF1	_	-	OCF1B	OCF1A	TOV1	TIFR1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Биты 7,6, 4, 3 зарезервированы, они не используются и всегда читаются как ноль.

Бит ICF1 устанавливается при записи на выводе ICP1 (захват входного значения).

Биты OCF1B и OCF1A устанавливаются, когда значение счётчика (TCNT1) совпадает с выходным регистром сравнения (OCR1B и OCR1A соответственно). Данные биты сбрасываются после обработки прерывания, либо могут быть очищены записью в них логической единицы.

Бит TOV1 устанавливается при переполнении таймера. Данный бит также сбрасывается после обработки прерывания, либо может быть очищен записью в него логической единицы.

Внешние прерывания

Для настройки внешних прерываний нужно использовать два регистра: EIMSK и EICRA. Флаги данных прерываний находятся в регистре EIFR.

Входы внешних прерываний можно определить по схеме с распиновкой микроконтроллера (рисунок 8 в лабораторной работе №1).

Регистр EIMSK – регистр разрешения глобальных прерываний

Bit	7	6	5	4	3	2	1	0	
0x1D (0x3D)	_	-	-	-	-	-	INT1	INT0	EIMSK
Read/Write	R	R	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Бит INT1 – разрешение внешнего прерывания INT1. Если в этом разряде записана логическая 1 и глобальные прерывания разрешены, то включается внешнее прерывание с вывода INT1. Условие генерации прерывания определяется содержимым битов ISC11 и ISC10.

Бит INT0 – разрешение внешнего прерывания INT0. Если в этом разряде записана логическая 1 и глобальные прерывания разрешены, то включается внешнее прерывание с вывода INT0. Условие генерации прерывания определяется содержимым битов ISC01 и ISC00.

Регистр EICRA – регистр управления внешними прерываниями

Bit	7	6	5	4	3	2	1	0	
(0x69)	-	-	-	-	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Биты 3,2 ISC11, ISC10

Биты 1,0 ISC01, ISC00

Внешнее прерывание 1 активируется внешним выводом INT1, если установлен флаг SREG I и соответствующая маска прерывания. Уровень и фронты на внешнем выводе INT1, которые активируют прерывание, определены в Таблице 1. Значение на выводе INT1 выбирается до обнаружения фронтов. Если выбрано прерывание по фронту или переключение, импульсы, длящиеся дольше одного тактового периода, будут генерировать прерывание. Более короткие импульсы не гарантируют создания прерывания. Если выбрано прерывание низкого уровня, низкий уровень должен удерживаться до завершения выполняемой в данный момент инструкции, чтобы сгенерировать прерывание.

Таблица 1 Биты ISC11 и ISC11

ISC01/I	ICS00/I	
SC11	SC10	Описание
0	0	Низкий уровень на входе INT0/INT1 генерирует запрос прерывания
0	1	Любое изменение уровня генерирует запрос прерывания
1	0	Задний фронт импульса на входе INT0/INT1 генерирует запрос прерывания
1	1	Передний фронт импульса на входе INT0/INT1 генерирует запрос прерывания

Регистр EIFR – регистр флагов внешних прерываний

Bit	7	6	5	4	3	2	1	0	_
0x1C (0x3C)	-	-	-	-	-	-	INTF1	INTF0	EIFR
Read/Write	R	R	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Биты INTF1, INTF0 – флаги внешних прерываний.

Когда изменение фронта или логики на выводе INT1 (INT0) вызывает запрос прерывания, INTF1 (INTF0) устанавливается (становится равным логической единице). Если бит I в SREG и бит INT1 (INTF0) в EIMSK установлены (равны "1"), процессор перейдет к обработке соответствующего вектора прерывания. Флаг сбрасывается при выполнении подпрограммы прерывания, либо он может быть очищен записью в него логической единицы.

Обработка прерываний в программе

В программе после настройки необходимых регистров необходимо написать функцию-обработчик прерываний. Например, для обработки прерывания по окончанию приёма с последовательного порта обработчик задаётся следующим образом:

Задание на лабораторную работу

- 1. Написать программу, реализующую работу таймера с использованием прерываний. Режим работы таймера выбрать следующим образом: если порядковый номер в журнале чётный, то выбирается режим Normal, в противном случае режим СТС. Выводить результат работы программы можно либо в терминал, либо зажигать/гасить светодиод.
- 2. Написать программу обработки внешнего прерывания (от кнопки).