

Densely Constrained Depth Estimator for Monocular 3D Object Detection

Yingyan Li, Yuntao Chen, Jiawei He, and Zhaoxiang Zhang *[Instruction of the content of the cont*

Introduction

- We propose a Dense Geometric-constrained Depth Estimator (DGDE). Different from the previous methods, DGDE estimates depth candidates utilizing projection constraints of edges of any direction. Therefore, considerable 2D-3D projection constraints are used, producing considerable depth candidates. We produce high-quality final depth based on these candidates.
- We propose an effective and interpretable Graph Matching Weighting module (GMW). We construct the 2D/3D graph from 2D/3D keypoints respectively. Then we regard the graph matching score of the 2D-3D edge as the weight of the corresponding depth candidate. This strategy utilizes all the keypoints' information and produces explicitly supervised weights.
- We localize each object more accurately by weighting the estimated depth candidates with corresponding matching scores. Our Densely Constrained Detector (DCD) achieves state-of-the-art performance on the KITTI and Waymo Open Dataset (WOD) benchmarks.

More Geometric Constraints

DGDE

DGDE can calculate the depth from 2D-3D edge of any direction.

$$z_{c}^{ij} = \begin{cases} \frac{l_{i} - l_{j}}{\tilde{u}_{i} - \tilde{u}_{j}}, & l_{i} = x_{o}^{i} \cos(r_{y}) + z_{o}^{i} \sin(r_{y}) + u^{i}(x_{o}^{i} \sin(r_{y}) - z_{o}^{i} \cos(r_{y})) \\ \frac{h_{i} - h_{j}}{\tilde{v}_{i} - \tilde{v}_{j}}, & h_{i} = y_{o}^{i} + v^{i}(x_{o}^{i} \sin(r_{y}) - z_{o}^{i} \cos(r_{y})) \end{cases}$$

WGM

GMW matches the 2D edges and 3D edges and produce the matching scores. The 2D-3D edge matching score is used as the weight of the corresponding depth candidate.

$$z_c = \sum_{i < j} w_{i,j} z_c^{ij}.$$

Experimental Results

Ablation Study

	Weighting Method	DGDE	#Keypoints	#Depth Candidates	$AP_{3D R40 IoU@0.7}$			
	Weighting Wethod				Easy	Mod	Hard	
(a)	Uncertainty (Baseline) [51]		10	5	21.63	15.87	13.38	
(b)	Uncertainty	✓	10	45	21.72	16.09	13.35	
(c)	Uncertainty	✓	73	1500	22.84	16.53	13.77	
(d)	GMW		10	5	22.58	16.14	13.63	
(e)	GMW	✓	10	45	23.30	16.91	14.93	
(f)	GMW	✓	73	1500	23.94	17.38	15.32	

Comparison with state-of-the-art methods on KITTI test server

Methods	Reference	Category	$AP_{3D R40 IoU@0.7}$			$AP_{BEV R40 IoU@0.7}$		
Methods	Reference	Category	Easy	Mod.	Hard	Easy	Mod.	Hard
PatchNet [26]	ECCV20	Pretrained Depth	15.68	11.12	10.17	22.97	16.86	14.97
D4LCN [8]	CVPR20		16.65	11.72	9.51	22.51	16.02	12.55
DDMP-3D [40]	CVPR21		19.71	12.78	9.80	28.08	17.89	13.44
CaDDN [31]	CVPR21	LiDAR Auxiliary	19.17	13.41	11.46	27.94	18.91	17.19
RTM3D [18]	ECCV20		14.41	10.34	8.77	19.17	14.20	11.99
Movi3D [36]	ECCV20		15.19	10.90	9.26	22.76	17.03	14.85
Ground-Aware [21]	RAL21		21.65	13.25	9.91	29.81	17.98	13.08
MonoDLE [28]	CVPR21		17.23	12.26	10.29	24.79	18.89	16.00
MonoRCNN [35]	ICCV21		18.36	12.65	10.03	25.48	18.11	14.10
MonoEF [56]	CVPR21		21.29	13.87	11.71	29.03	19.70	17.26
MonoRUn [6]	CVPR21		19.65	12.30	10.58	27.94	17.34	15.24
AutoShape [23]	ICCV21	Geometric-based	22.47	14.17	11.36	30.66	20.08	15.59
GUPNet [25]	ICCV21		22.20	15.02	13.12	30.29	21.19	18.20
MonoFlex(Baseline) [51]	CVPR21		19.94	13.89	12.07	28.23	19.75	16.89
DCD(Ours)	ECCV22		23.81	15.90	13.21	32.55	21.50	18.25

Visualization

