Apel	llidos	Nomb	bre	Grupo
	Arquitectura e Ingeniería de Computado	res. Exan	nen Parcial (Teoría). 1	19/02/2008
puest rarse No se Punt i	ucciones Cada pregunta consta de cinco respuestas, y cada una cas que considere ciertas y deje en blanco las que considere falsas. Si cierta o falsa en función de la interpretación, ponga una llamada y exe permite la utilización de calculadora. uación Pregunta con todas las respuestas acertadas: 1 punto. Prenás de dos fallos 0 puntos. La teoría supone la mitad de la nota del ex	i considera d olique sus al gunta con u	que alguna respuesta es aml rgumentos al dorso de la hoj	bigua y, por tanto, podría conside- ja.
ma F	upongamos un DLX que ejecuta un determinado progra- en un tiempo de 10 segundos. La penalización media nstrucción es de 1 ciclo y la frecuencia de reloj es de 3		c) Un predictor de dos niv registro de historia global	veles de historia (p,q) utiliza un l de q bits
GHz. rrecta	. Marque cuáles de las siguientes afirmaciones son co-	(s niveles de historia (2,2) de 2K a tabla de historia de saltos es
	b) El número de instrucciones ejecutadas es 3*10 ¹⁰		e) El "tournament predi ejemplo de predictor híbri	ictor" del Alpha 21064 es un ido
X	c) El rendimiento es 1500 MIPS d) Supongamos que existen instrucciones en PF que consumen el 50% del tiempo de ejecución y que cada instrucción de PF requiere un promedio de 5 ciclos de reloj. Entonces el rendimiento obtenido en la ejecución del programa es 300 MFLOPS	tithread ☑ a I	ding son correctas: a) La conmutación entre rápida que la conmutació	ultáneo se realiza una conmuta-
X	e) Supongamos que introducimos una cierta mejora en la arquitectura de tal manera que la penalización media por instrucción es 0.5. Entonces el speedup obtenido es 1.33	X (c) En multithreading de g	rano fino todas las instruccio- o en un ciclo de reloj deben
2. Supongamos un DLX con planificación dinámica de instrucciones mediante Tomasulo (sin especulación) que posee 32 registros de punto flotante. Marque las afirmaciones co-		(d) En multithreading de ciones lanzadas a ejecuc pertenecer al mismo threa	grano grueso todas las instruc- ción en un ciclo de reloj deben ad
rrecta	as: a) La anchura del campo de TAG debe ser al menos 5 bits		e) La arquitectura Niaga plo de multithreading sim	ra (UltraSparc T1) es un ejem- ultáneo
X	b) En el momento en que una instrucción aritmética de la forma Fi ← UF₀p (Fj, Fk) realiza la fase ISSUE, los campos TAG y VALOR de los registros fuente se copian en los campos TAG y VALOR de la estación de reserva seleccionada para alojar la instrucción	quía de □ a	arque cuáles de las siguientes afirmaciones sobre jerar- de memoria son correctas: a) La cache de víctimas usa una política de emplaza- miento directo	
	c) Los elementos de la arquitectura que pueden deposi- tar información sobre el CDB son: registros, load buffers	(de dos niveles (L1, L2) la tasa s habitualmente menor que la 2
	y estaciones de reserva		c) En una cache totalme	ente asociativa nunca se produ-

cen fallos iniciales

de 512 bloques.

X

la penalización por fallo

d) La cache no bloqueante es una técnica para reducir

e) Supongamos un sistema con memoria virtual pagina-

da con páginas de 16K bytes en el que existe una cache

asociativa por conjuntos con 4 vías, virtualmente acce-

dida, físicamente marcada, cuyo tamaño de bloque es 128 bytes. Entonces la cache puede tener un máximo

- d) No es necesario ningún mecanismo para chequear la existencia de dependencias EDE
- \Box e) Los store buffers carecen de campo de TAG

Notación: Fi \leftarrow UF_{op} (Fj, Fk), significa una instrucción que realiza la operación op en la Unidad Funcional UF, cuyos registros fuente son Fj y Fk, y cuyo registro destino es Fi

- 3. Marque cuáles de las siguientes afirmaciones sobre predicción dinámica de saltos son correctas:
- a) En un sistema el número de entradas de la BTAC puede ser menor que el de la BHT
- b) En un predictor de 2 bits (bimodal) la predicción de una cierta instrucción de salto pasará del valor "fuertemente no tomado" a "débilmente no tomado" si al ejecutar tres veces consecutivas la instrucción el comportamiento del predictor es: fallo, acierto, fallo