Note del corso di Geometria 1

Gabriel Antonio Videtta

17 e 19 aprile 2023

Prodotti hermitiani, spazi euclidei e teorema spettrale

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto, hermitiano o scalare dipendentemente dal contesto.

Definizione. (prodotto hermitiano) Sia $\mathbb{K} = \mathbb{C}$. Una mappa $\varphi : V \times V \to \mathbb{C}$ si dice **prodotto hermitiano** se:

- (i) φ è \mathbb{C} -lineare nel secondo argomento, ossia se $\varphi(\underline{v}, \underline{u} + \underline{w}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{v}, \underline{w})$ e $\varphi(\underline{v}, \underline{a}\underline{w}) = a \varphi(\underline{v}, \underline{w})$,
- (ii) $\varphi(\underline{u},\underline{w}) = \overline{\varphi(\underline{w},\underline{u})}$.

Definizione. (prodotto hermitiano canonico in \mathbb{C}^n) Si definisce **prodotto** hermitiano canonico di \mathbb{C}^n il prodotto $\varphi : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ tale per cui, detti $\underline{v} = (z_1 \cdots z_n)^\top$ e $\underline{w} = (w_1 \cdots w_n)^\top$, $\varphi(\underline{v}, \underline{w}) = \sum_{i=1}^n \overline{z_i} w_i$.

Osservazione.

- $\varphi(\underline{u} + \underline{w}, \underline{v}) = \overline{\varphi(\underline{v}, \underline{u} + \underline{w})} = \overline{\varphi(\underline{v}, \underline{u}) + \varphi(\underline{v}, \underline{w})} = \overline{\varphi(\underline{v}, \underline{u})} + \overline{\varphi(\underline{v}, \underline{u})} = \varphi(\underline{w}, \underline{v}) + \varphi(\underline{u}, \underline{v}), \text{ ossia } \varphi \text{ è additiva anche nel primo argomento.}$
- $\blacktriangleright \ \varphi(\underline{v},\underline{v}) = \varphi(\underline{v},\underline{v}), \text{ e quindi } \varphi(\underline{v},\underline{v}) \in \mathbb{R}.$

Proposizione. Data la forma quadratica $q:V\to\mathbb{R}$ del prodotto hermitiano φ tale che $q(\underline{v})=\varphi(\underline{v},\underline{v})\in\mathbb{R}$, tale forma quadratica individua univocamente il prodotto hermitiano φ .

Dimostrazione. Innanzitutto si osserva che:

$$\varphi(\underline{v},\underline{w}) = \frac{\varphi(\underline{v},\underline{w}) + \overline{\varphi(\underline{v},\underline{w})}}{2} + \frac{\varphi(\underline{v},\underline{w}).\overline{\varphi(\underline{v},\underline{w})}}{2}.$$

Si considerano allora le due identità:

$$q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = \varphi(\underline{v}, \underline{w}) + \overline{\varphi(\underline{w}, \underline{v})} = 2 \Re(\varphi(\underline{v}, \underline{w})),$$

$$q(i\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = -i(\varphi(\underline{v}, \underline{w}) - \overline{\varphi(\underline{v}, \underline{w})}) = 2\Im(\varphi(\underline{v}, \underline{w})),$$

da cui si conclude che il prodotto φ è univocamente determinato dalla sua forma quadratica.

Definizione. Si definisce **matrice aggiunta** di $A \in M(n, \mathbb{K})$ la matrice coniugata della trasposta di A, ossia:

$$A^* = \overline{A^{\top}} = \overline{A}^{\top}.$$

Osservazione. Per quanto riguarda la matrice aggiunta valgono le principali proprietà della matrice trasposta:

- $(A+B)^* = A^* + B^*$,
- $(AB)^* = B^*A^*$,
- $(A^{-1})^* = (A^*)^{-1}$, se A è invertibile.

Definizione. (matrice associata del prodotto hermitiano) Analogamente al caso del prodotto scalare, data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ si definisce come **matrice associata del prodotto hermitiano** φ la matrice $M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, \underline{v_j}))_{i,j=1\cdots n}$.

Osservazione. Si osserva che, analogamente al caso del prodotto scalare, vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}}.$$

Proposizione. (formula del cambiamento di base per i prodotto hermitiani) Siano \mathcal{B} , \mathcal{B}' due basi di V. Allora vale la seguente identità:

$$M_{\mathcal{B}'} = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V).$$

Dimostrazione. Siano $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e $\mathcal{B}' = \{\underline{w_1}, \dots, \underline{w_n}\}$. Allora $\varphi(\underline{w_i}, \underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w_j}]_{\mathcal{B}} = \left(M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^i\right)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^j = \left(M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)\right)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^j$, da cui si ricava l'identità desiderata. \square

Definizione. (radicale di un prodotto hermitiano) Analogamente al caso del prodotto scalare, si definisce il **radicale** del prodotto φ come il seguente sottospazio:

$$V^{\perp} = \{ v \in V \mid \varphi(v, w) = 0 \ \forall w \in V \}.$$

Proposizione. Sia \mathcal{B} una base di V e φ un prodotto hermitiano. Allora $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))^{1}$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e sia $\underline{v} \in V^{\perp}$. Siano $a_1, \dots, a_n \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$. Allora, poiché $\underline{v} \in V$, $0 = \varphi(\underline{v_i}, \underline{v}) == a_1\varphi(\underline{v_i}, \underline{v_1}) + \dots + a_n\varphi(\underline{v_i}, \underline{v_n}) = M_i[\underline{v}]_{\mathcal{B}}$, da cui si ricava che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$, e quindi che $V^{\perp} \subseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$.

Sia ora $\underline{v} \in V$ tale che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$. Allora, per ogni $\underline{w} \in V$, $\varphi(\underline{w},\underline{v}) = [\underline{w}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{v}]_{\mathcal{B}} = [\underline{w}]_{\mathcal{B}}^* 0 = 0$, da cui si conclude che $\underline{v} \in V^{\perp}$, e quindi che $V^{\perp} \supseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, da cui $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, ossia la tesi. \square

Osservazione. Come conseguenza della proposizione appena dimostrata, valgono le principali proprietà già viste per il prodotto scalare.

- $ightharpoonup \det(M_{\mathcal{B}}(\varphi)) = 0 \iff V^{\perp} \neq \{\underline{0}\} \iff \varphi \text{ è degenere},$
- \blacktriangleright Vale il teorema di Lagrange, e quindi quello di Sylvester, benché con alcune accortezze: si introduce, come nel caso di \mathbb{R} , il concetto di segnatura, che diventa l'invariante completo della nuova congruenza hermitiana, che ancora una volta si dimostra essere una relazione di equivalenza.

Definizione. (restrizione ai reali di uno spazio) Sia V uno spazio vettoriale su \mathbb{C} con base \mathcal{B} . Si definisce allora lo spazio $V_{\mathbb{R}}$, detto **spazio di restrizione** su \mathbb{R} di V, come uno spazio su \mathbb{R} generato da $\mathcal{B}_{\mathbb{R}} = \mathcal{B} \cup i\mathcal{B}$.

Esempio. Si consideri $V = \mathbb{C}^3$. Una base di \mathbb{C}^3 è chiaramente $\{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$. Allora $V_{\mathbb{R}}$ sarà uno spazio vettoriale su \mathbb{R} generato dai vettori $\{e_1, e_2, e_3, ie_1, ie_2, ie_3\}$.

Stavolta non è sufficiente considerare la mappa $f: V \to V^*$ tale che $f(\underline{v}) = [\underline{w} \mapsto \varphi(\underline{v}, \underline{w})]$, dal momento che f non è lineare, bensì antilineare, ossia $f(a\underline{v}) = \overline{a}f(\underline{v})$.

Osservazione. Si osserva che lo spazio di restrizione su \mathbb{R} e lo spazio di partenza condividono lo stesso insieme di vettori. Infatti, $\operatorname{Span}_{\mathbb{C}}(\mathcal{B}) = \operatorname{Span}_{\mathbb{R}}(\mathcal{B} \cup i\mathcal{B})$. Ciononostante, dim $V_{\mathbb{R}} = 2 \dim V^2$, se dim $V \in \mathbb{N}$.

Definizione. (complessificazione di uno spazio) Sia V uno spazio vettoriale su \mathbb{R} . Si definisce allora lo **spazio complessificato** $V_{\mathbb{C}} = V \times V$ su \mathbb{C} con le seguenti operazioni:

- $(\underline{v}, \underline{w}) + (\underline{v}', \underline{w}') = (\underline{v} + \underline{v}', \underline{w} + \underline{w}'),$
- $(a+bi)(\underline{v},\underline{w}) = (a\underline{v} b\underline{w}, a\underline{w} + b\underline{v}).$

Osservazione. La costruzione dello spazio complessificato emula in realtà la costruzione di $\mathbb C$ come spazio $\mathbb R \times \mathbb R$. Infatti se z=(c,d), vale che (a+bi)(c,d)=(ac-bd,ad+bc), mentre si mantiene l'usuale operazione di addizione. In particolare si può identificare l'insieme $V \times \{\underline{0}\}$ come V, mentre $\{\underline{0}\} \times V$ viene identificato come l'insieme degli immaginari iV di $V_{\mathbb C}$. Infine, moltiplicare per uno scalare reale un elemento di $V \times \{\underline{0}\}$ equivale a moltiplicare la sola prima componente con l'usuale operazione di moltiplicazione di V. Allora, come accade per $\mathbb C$, si può sostituire la notazione $(\underline{v},\underline{w})$ con la più comoda notazione $\underline{v}+i\underline{w}$.

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Innanzitutto si osserva che $(a+bi)(\underline{v},\underline{0}) = (a\underline{v},b\underline{v})$. Pertanto si può concludere che $\mathcal{B} \times \{\underline{0}\}$ è una base dello spazio complessificato $V_{\mathbb{C}}$ su \mathbb{C} .

Infatti, se $(a_1+b_1i)(\underline{v_1},\underline{0})+\ldots+(a_n+b_ni)(\underline{v_n},\underline{0})=(\underline{0},\underline{0})$, allora $(a_1\underline{v_1}+\ldots+a_n\underline{v_n},b_1\underline{v_1}+\ldots+b_n\underline{v_n})=(\underline{0},\underline{0})$. Poiché però \mathcal{B} è linearmente indipendente per ipotesi, l'ultima identità implica che $a_1=\cdots=a_n=b_1=\cdots=b_n=0$, e quindi che $\mathcal{B}\times\{0\}$ è linearmente indipendente.

Inoltre $\mathcal{B} \times \{\underline{0}\}$ genera $V_{\mathbb{C}}$. Se infatti $\underline{v} = (\underline{u}, \underline{w})$, e vale che:

$$\underline{u} = a_1v_1 + \ldots + a_nv_n, \quad \underline{w} = b_1v_1 + \ldots + b_nv_n,$$

allora $\underline{v} = (a_1 + b_1 i)(v_1, \underline{0}) + \ldots + (a_n + b_n i)(v_n, \underline{0})$. Quindi dim $V_{\mathbb{C}} = \dim V$.

Definizione. Sia f un'applicazione \mathbb{C} -lineare di V spazio vettoriale su \mathbb{C} . Allora si definisce la **restrizione su** \mathbb{R} di f, detta $f_{\mathbb{R}}: V_{\mathbb{R}} \to V_{\mathbb{R}}$, in modo tale che $f_{\mathbb{R}}(\underline{v}) = f(\underline{v})$.

²Si sarebbe potuto ottenere lo stesso risultato utilizzando il teorema delle torri algebriche: $[V_{\mathbb{R}} : \mathbb{R}] = [V : \mathbb{C}][\mathbb{C} : \mathbb{R}] = 2[V : \mathbb{C}].$

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V su \mathbb{C} . Sia $A = M_{\mathcal{B}}(f)$. Si osserva allora che, se $\mathcal{B}' = \mathcal{B} \cup i\mathcal{B}$ e A = A' + iA'' con A', $A'' \in M(n, \mathbb{R})$, vale la seguente identità:

$$M_{\mathcal{B}'}(f_{\mathbb{R}}) = \left(\begin{array}{c|c} A' & -A'' \\ \hline A'' & A' \end{array}\right).$$

Infatti, se $f(\underline{v_i}) = (a_1 + b_1 i)\underline{v_1} + \ldots + (a_n + b_n i)\underline{v_n}$, vale che $f_{\mathbb{R}}(\underline{v_i}) = a_1\underline{v_1} + \ldots + a_n\underline{v_n} + b_1(i\underline{v_1}) + \ldots + b_n(i\underline{v_n})$, mentre $f_{\mathbb{R}}(i\underline{v_i}) = if(\underline{v_i}) = -b_1\underline{v_1} + \ldots - b_nv_n + a_1(iv_1) + \ldots + a_n(iv_n)$.

Definizione. Sia f un'applicazione \mathbb{R} -lineare di V spazio vettoriale su \mathbb{R} . Allora si definisce la **complessificazione** di f, detta $f_{\mathbb{C}}: V_{\mathbb{C}} \to V_{\mathbb{C}}$, in modo tale che $f_{\mathbb{C}}(\underline{v} + i\underline{w}) = f(\underline{v}) + if(\underline{w})$.

Osservazione. Si verifica infatti che $f_{\mathbb{C}}$ è \mathbb{C} -lineare.

- $\begin{array}{l} \bullet \ \ f_{\mathbb{C}}((\underline{v_1}+i\underline{w_1})+(\underline{v_2}+i\underline{w_2})) = f_{\mathbb{C}}((\underline{v_1}+\underline{v_2})+i(\underline{w_1}+\underline{w_2})) = f(\underline{v_1}+\underline{v_2}) + \\ if(\underline{w_1}+\underline{w_2}) = (f(\underline{v_1})+if(\underline{w_1})) + (f(\underline{v_2})+if(\underline{w_2})) = f_{\mathbb{C}}(\underline{v_1}+i\underline{w_1}) + \\ f_{\mathbb{C}}(\underline{v_2}+i\underline{w_2}). \end{array}$
- $f_{\mathbb{C}}((a+bi)(\underline{v}+i\underline{w})) = f_{\mathbb{C}}(a\underline{v}-b\underline{w}+i(a\underline{w}+b\underline{v})) = f(a\underline{v}-b\underline{w})+if(a\underline{w}+b\underline{v})$ • $b\underline{v}) = af(\underline{v}) - bf(\underline{w}) + i(af(\underline{w})+bf(\underline{v})) = (a+bi)(f(\underline{v})+if(\underline{w})) = (a+bi)f_{\mathbb{C}}(\underline{v}+i\underline{w}).$

Proposizione. Sia $f_{\mathbb{C}}$ la complessificazione di $f \in \text{End}(V)$, dove V è uno spazio vettoriale su \mathbb{R} . Sia inoltre $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Valgono allora i seguenti risultati:

- (i) $(f_{\mathbb{C}})_{\mathbb{R}}|_{V}$ assume gli stessi valori di f,
- (ii) $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f) \in M(n, \mathbb{R}),$

(iii)
$$M_{\mathcal{B} \cup i\mathcal{B}}((f_{\mathbb{C}})_{\mathbb{R}}) = \frac{M_{\mathcal{B}}(f) \mid 0}{0 \mid M_{\mathcal{B}}(f)}.$$

Dimostrazione. Si dimostrano i risultati separatamente.

- (i) Si osserva che $(f_{\mathbb{C}})_{\mathbb{R}}(\underline{v_i}) = f_{\mathbb{C}}(\underline{v_i}) = f(\underline{v_i})$. Dal momento che $(f_{\mathbb{C}})_{\mathbb{R}}$ è \mathbb{R} -lineare, si conclude che $(f_{\mathbb{C}})_{\mathbb{R}}$ assume gli stessi valori di f.
- (ii) Dal momento che \mathcal{B} , nell'identificazione di $(\underline{v},\underline{0})$ come \underline{v} , è sempre una base di $V_{\mathbb{C}}$, e $f_{\mathbb{C}}(\underline{v_i}) = f(\underline{v_i})$, chiaramente $[f_{\mathbb{C}}(\underline{v_i})]_{\mathcal{B}} = [f(\underline{v_i})]_{\mathcal{B}}$, e quindi $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f)$, dove si osserva anche che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R})$, essendo V uno spazio vettoriale su \mathbb{R} .

(iii) Sia $f(\underline{v_i}) = a_1\underline{v_1} + \ldots + a_n\underline{v_n}$ con $a_1, \ldots, a_n \in \mathbb{R}$. Come osservato in (i), $(f_{\mathbb{C}})_{\mathbb{R}}|_{\mathcal{B}} = (f_{\mathbb{C}})_{\mathbb{R}}|_{\mathcal{B}}$, e quindi la prima metà di $M_{\mathcal{B} \cup i\mathcal{B}}((f_{\mathbb{C}})_{\mathbb{R}})$ è formata da due blocchi: uno verticale coincidente con $M_{\mathcal{B}}(f)$ e un altro completamente nullo, dal momento che non compare alcun termine di $i\mathcal{B}$ nella scrittura di $(f_{\mathbb{C}})_{\mathbb{R}}(\underline{v_i})$. Al contrario, per $i\mathcal{B}$, $(f_{\mathbb{C}})_{\mathbb{R}}(i\underline{v_i}) = f_{\mathbb{C}}(i\underline{v_i}) = if(\underline{v_i}) = a_1(i\underline{v_1}) + \ldots + a_n(i\underline{v_n})$; pertanto la seconda metà della matrice avrà i due blocchi della prima metà, benché scambiati.

Osservazione. Dal momento che $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f)$, $f_{\mathbb{C}}$ e f condividono lo stesso polinomio caratteristico e vale che $\mathrm{sp}(f) \subseteq \mathrm{sp}(f_{\mathbb{C}})$, dove vale l'uguaglianza se e solo se tale polinomio caratteristico è completamente riducibile in \mathbb{R} . Inoltre, se V_{λ} è l'autospazio su V dell'autovalore λ , l'autospazio su $V_{\mathbb{C}}$, rispetto a $f_{\mathbb{C}}$, è invece $V_{\mathbb{C}\lambda} = V_{\lambda} + iV_{\lambda}$, la cui dimensione rimane invariata rispetto a V_{λ} , ossia dim $V_{\lambda} = \dim V_{\mathbb{C}\lambda}$ (infatti, analogamente a prima, una base di V_{λ} può essere identificata come base anche per $V_{\mathbb{C}\lambda}$).

Proposizione. Sia $f_{\mathbb{C}}$ la complessificazione di $f \in \text{End}(V)$, dove V è uno spazio vettoriale su \mathbb{R} . Sia inoltre $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Allora un endomorfismo $\tilde{g}: V_{\mathbb{C}} \to V_{\mathbb{C}}$ complessifica un endomorfismo $g \in \text{End}(V)$ $\iff M_{\mathcal{B}}(\tilde{g}) \in M(n, \mathbb{R}).$

Dimostrazione. Se \tilde{g} complessifica $g \in \text{End}(V)$, allora, per la proposizione precedente, $M_{\mathcal{B}}(\tilde{g}) = M_{\mathcal{B}}(g) \in M(n, \mathbb{R})$. Se invece $A = M_{\mathcal{B}}(\tilde{g}) \in M(n, \mathbb{R})$, si considera $g = M_{\mathcal{B}}^{-1}(A) \in \text{End}(V)$. Si verifica facilemente che \tilde{g} non è altro che il complessificato di tale g:

- $\tilde{g}(\underline{v_i}) = g(\underline{v_i})$, dove l'uguaglianza è data dal confronto delle matrici associate, e quindi $\tilde{g}|_V = g$;
- $\tilde{g}(\underline{v}+i\underline{w})=\tilde{g}(\underline{v})+i\tilde{g}(\underline{w})=g(\underline{v})+ig(\underline{w}),$ da cui la tesi.

Proposizione. Sia φ un prodotto scalare di V spazio vettoriale su \mathbb{R} . Allora esiste un unico prodotto hermitiano $\varphi_{\mathbb{C}}: V_{\mathbb{C}} \times V_{\mathbb{C}} \to \mathbb{C}$ che estende φ (ossia tale che $\varphi_{\mathbb{C}}|_{V \times V} = \varphi$), il quale assume la stessa segnatura di φ .

Dimostrazione. Sia \mathcal{B} una base di Sylvester per φ . Si consideri allora il prodotto $\varphi_{\mathbb{C}}$ tale che:

$$\varphi_{\mathbb{C}}(\underline{v_1}+i\underline{w_1},\underline{v_2}+i\underline{w_2})=\varphi(\underline{v_1},\underline{v_2})+\varphi(\underline{w_1},\underline{w_2})+i(\varphi(\underline{v_1},\underline{w_1})-\varphi(\underline{w_1},\underline{v_2})).$$

Chiaramente $\varphi_{\mathbb{C}}|_{V\times V}=\varphi$. Si verifica allora che $\varphi_{\mathbb{C}}$ è hermitiano:

- $\varphi_{\mathbb{C}}(\underline{v}+i\underline{w},(\underline{v_1}+i\underline{w_1})+(\underline{v_2}+i\underline{w_2}))=\varphi(\underline{v},\underline{v_1}+\underline{v_2})+\varphi(\underline{w},\underline{w_1}+\underline{w_2})+i(\varphi(\underline{v},\underline{w_1}+\underline{w_2})-\varphi(\underline{w},\underline{v_1}+\underline{v_2}))=[\varphi(\underline{v},\underline{v_1})+\varphi(\underline{w},\underline{w_1})+i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1}))]+[\varphi(\underline{v},\underline{v_2})+\varphi(\underline{w},\underline{w_2})+i(\varphi(\underline{v},\underline{w_2})-\varphi(\underline{w},\underline{v_2}))]=\varphi_{\mathbb{C}}(\underline{v}+i\underline{w},v_1+iw_1)+\varphi_{\mathbb{C}}(\underline{v}+i\underline{w},v_2+iw_2) \text{ (additività nel secondo argomento)},$
- $\begin{array}{l} \bullet \ \, \varphi_{\mathbb{C}}(\underline{v}+i\underline{w},(a+bi)(\underline{v_1}+i\underline{w_1})) = \varphi_{\mathbb{C}}(\underline{v}+i\underline{w},a\underline{v_1}-b\underline{w_1}+i(b\underline{v_1}+a\underline{w_1})) = \\ \varphi(\underline{v},a\underline{v_1}-b\underline{w_1}) + \varphi(\underline{w},b\underline{v_1}+a\underline{w_1}) + i(\varphi(\underline{v},b\underline{v_1}+a\underline{w_1})-\varphi(\underline{w},a\underline{v_1}-b\underline{w_1})) = \\ a\varphi(\underline{v},\underline{v_1}) b\varphi(\underline{v},\underline{w_1}) + b\varphi(\underline{w},\underline{v_1}) + a\varphi(\underline{w},\underline{w_1}) + i(b\varphi(\underline{v},\underline{v_1})+a\varphi(\underline{v},\underline{w_1}) a\varphi(\underline{w},\underline{v_1}) + b\varphi(\underline{w},\underline{w_1})) = a(\varphi(\underline{v},\underline{v_1}) + \varphi(\underline{w},\underline{w_1})) b(\varphi(\underline{v},\underline{w_1}) \varphi(\underline{w},\underline{v_1})) + i(a(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + b(\varphi(\underline{v},\underline{v_1}) + \varphi(\underline{w},\underline{w_1}))) = (a+bi)(\varphi(\underline{v},\underline{v_1}) + \varphi(\underline{w},\underline{w_1}) + i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1}))) = (a+bi)\varphi_{\mathbb{C}}(\underline{v}+\underline{w},\underline{v_1}+i\underline{w_1}) \ \, \end{array}$
- $\varphi_{\mathbb{C}}(\underline{v_1} + i\underline{w_1}, \underline{v_2} + i\underline{w_2}) = \varphi(\underline{v_1}, \underline{v_2}) + \varphi(\underline{w_1}, \underline{w_2}) + i(\varphi(\underline{v_1}, \underline{w_2}) \varphi(\underline{w_1}, \underline{v_2})) = \varphi(\underline{v_1}, \underline{v_2}) + \varphi(\underline{w_1}, \underline{w_2}) + i(\varphi(\underline{w_1}, \underline{v_2}) \varphi(\underline{v_1}, \underline{w_2})) = \varphi(\underline{v_2}, \underline{v_1}) + \varphi(\underline{w_2}, \underline{w_1}) + i(\varphi(\underline{v_2}, \underline{w_1}) \varphi(\underline{w_2}, \underline{v_1})) = \varphi(\underline{v_2}, \underline{v_1}) + \varphi(\underline{v_2}, \underline{w_1}) + i(\varphi(\underline{v_2}, \underline{w_1}) \varphi(\underline{w_2}, \underline{v_1})) = \varphi(\underline{v_2}, \underline{v_1}) + \varphi(\underline{v_2}, \underline{v_2}) + \varphi(\underline{v_1}, \underline{v_2}) + \varphi(\underline$

Ogni prodotto hermitiano τ che estende il prodotto scalare φ ha la stessa matrice associata nella base \mathcal{B} , essendo $\tau(\underline{v_i},\underline{v_i}) = \varphi(\underline{v_i},\underline{v_i})$ vero per ipotesi. Pertanto τ è unico, e vale che $\tau = \varphi_{\mathbb{C}}$. Dal momento che $M_{\mathcal{B}}(\varphi_{\mathbb{C}}) = M_{\mathcal{B}}(\varphi)$ è una matrice di Sylvester, $\varphi_{\mathbb{C}}$ mantiene anche la stessa segnatura di φ . \square

Teorema. (di rappresentazione di Riesz per il prodotto scalare) Sia V uno spazio vettoriale e sia φ un suo prodotto scalare non degenere. Allora per ogni $f \in V^*$ esiste un unico $v \in V$ tale che $f(w) = \varphi(v, w) \ \forall w \in V$.

Dimostrazione. Si consideri l'applicazione a_{φ} . Poiché φ non è degenere, Ker $a_{\varphi} = V^{\perp} = \{\underline{0}\}$, da cui si deduce che a_{φ} è un isomorfismo. Quindi $\forall f \in V^*$ esiste un unico $\underline{v} \in V$ tale per cui $a_{\varphi}(\underline{v}) = f$, e dunque tale per cui $\varphi(\underline{v},\underline{w}) = a_{\varphi}(\underline{v})(\underline{w}) = f(\underline{w}) \ \forall \underline{w} \in V$.

Dimostrazione costruttiva. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{f(\underline{v_1})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1} + \dots + \frac{f(\underline{v_n})}{\varphi(\underline{v_n},\underline{v_n})}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v}' \in V$ con la stessa proprietà di \underline{v} , $\varphi(\underline{v},\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v} - \underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si

deduce dunque che $\underline{v} - \underline{v}' \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi si conclude che $\underline{v} = \underline{v}'$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Teorema. (di rappresentazione di Riesz per il prodotto hermitiano) Sia V uno spazio vettoriale su $\mathbb C$ e sia φ un suo prodotto hermitiano non degenere. Allora per ogni $f\in V^*$ esiste un unico $\underline{v}\in V$ tale che $f(\underline{w})=\varphi(\underline{v},\underline{w})$ $\forall\, w\in V$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{\overline{f(v_1)}}{\varphi(\underline{v_1},v_1)}\underline{v_1} + \dots + \frac{\overline{f(v_n)}}{\varphi(\underline{v_n},v_n)}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v}' \in V$ con la stessa proprietà di \underline{v} , $\varphi(\underline{v},\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v} - \underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si deduce dunque che $\underline{v} - \underline{v}' \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi si conclude che $\underline{v} = \underline{v}'$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Proposizione. Sia V uno spazio vettoriale con prodotto scalare φ non degenere. Sia $f \in \operatorname{End}(V)$. Allora esiste un unico endomorfismo $f_{\varphi}^{\top}: V \to V$, detto il **trasposto di** f e indicato con f^{\top} in assenza di ambiguità³, tale che:

$$a_{\varphi} \circ g = f^{\top} \circ a_{\varphi},$$

ossia che:

$$\varphi(\underline{v},f(\underline{w}))=\varphi(g(\underline{v}),\underline{w})\;\forall\,\underline{v},\underline{w}\in V.$$

Dimostrazione. Si consideri $(f^{\top} \circ a_{\varphi})(\underline{v}) \in V^*$. Per il teorema di rappresentazione di Riesz per il prodotto scalare, esiste un unico \underline{v}' tale che $(f^{\top} \circ a_{\varphi})(\underline{v})(\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v},f(\underline{w})) = \varphi(\underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si costruisce allora una mappa $f_{\varphi}^{\top}: V \to V$ che associa a \underline{v} tale \underline{v}' . Si dimostra che f_{φ}^{\top} è un'applicazione lineare, e che dunque è un endomorfismo:

(i) Siano $\underline{v_1}, \underline{v_2} \in V$. Si deve dimostrare innanzitutto che $f_{\varphi}^{\top}(\underline{v_1} + \underline{v_2}) = f_{\varphi}^{\top}(\underline{v_1}) + f_{\varphi}^{\top}(\underline{v_2})$, ossia che $\varphi(f_{\varphi}^{\top}(\underline{v_1}) + f_{\varphi}^{\top}(\underline{v_2}), \underline{w}) = \varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) \forall \underline{w} \in V$.

 $[\]overline{^3{\rm Si}}$ tenga infatti in conto della differenza tra $f_\varphi^\top:V\to V,$ di cui si discute nell'enunciato, e $f^\top:V^*\to V^*$ che invece è tale che $f^top(g)=g\circ f.$

Si osservano le seguenti identità:

$$\varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) = \varphi(\underline{v_1}, f(\underline{w})) + \varphi(\underline{v_2}, f(\underline{w})) = (*),$$

$$\varphi(f_{\varphi}^{\top}(v_1) + f_{\varphi}^{\top}(v_2), \underline{w}) = \varphi(f_{\varphi}^{\top}(v_1), \underline{w}) + \varphi(f_{\varphi}^{\top}(v_2), \underline{w}) = (*),$$

da cui si deduce l'uguaglianza desiderata, essendo $f_{\varphi}^{\top}(\underline{v_1} + \underline{v_2})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

(ii) Sia $\underline{v} \in V$. Si deve dimostrare che $f_{\varphi}^{\top}(a\underline{v}) = af_{\varphi}^{\top}(\underline{v})$, ossia che $\varphi(af_{\varphi}^{\top}(\underline{v}),\underline{w}) = \varphi(a\underline{v},f(\underline{w})) \ \forall \ a \in \mathbb{K}, \ \underline{w} \in V$. È sufficiente moltiplicare per a l'identità $\varphi(f_{\varphi}^{\top}(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w}))$. Analogamente a prima, si deduce che $f_{\varphi}^{\top}(a\underline{v}) = af_{\varphi}^{\top}(\underline{v})$, essendo $f_{\varphi}^{\top}(a\underline{v})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

Infine si dimostra che f_{φ}^{\top} è unico. Sia infatti g un endomorfismo di V che condivide la stessa proprietà di f_{φ}^{\top} . Allora $\varphi(f_{\varphi}^{\top}(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w})) = \varphi(g(\underline{v}),\underline{w}) \ \forall \underline{v},\ \underline{w} \in V$, da cui si deduce che $\varphi(f_{\varphi}^{\top}(\underline{v})-'(\underline{v}),\underline{w}) = 0 \ \forall \underline{v}, \underline{w} \in V$, ossia che $f_{\varphi}^{\top}(\underline{v})-g(\underline{v}) \in V^{\perp} \ \forall \underline{v} \in V$. Tuttavia φ è non degenere, e quindi $V^{\perp}=\{\underline{0}\}$, da cui si deduce che deve valere l'identità $f_{\varphi}^{\top}(\underline{v})=g(\underline{v}) \ \forall \underline{v} \in V$, ossia $g=f_{\varphi}^{\top}$.

Proposizione. Sia V uno spazio vettoriale su \mathbb{C} e sia φ un suo prodotto hermitiano. Allora esiste un'unica mappa⁴ $f^*: V \to V$, detta **aggiunto di** f, tale che $\varphi(\underline{v}, f(\underline{w})) = \varphi(f^*(\underline{v}), \underline{w}) \ \forall \underline{v}, \underline{w} \in V$.

Dimostrazione. Sia $\underline{v} \in V$. Si consideri il funzionale σ tale che $\sigma(\underline{w}) = \varphi(\underline{v}, f(\underline{w}))$. Per il teorema di rappresentazione di Riesz per il prodotto scalare esiste un unico $\underline{v}' \in V$ tale per cui $\varphi(\underline{v}, f(\underline{w})) = \sigma(\underline{w}) = \varphi(\underline{v}', \underline{w})$. Si costruisce allora una mappa f^* che associa \underline{v} a tale \underline{v}' .

Si dimostra infine che la mappa f^* è unica. Sia infatti $\mu: V \to V$ che condivide la stessa proprietà di f^* . Allora $\varphi(f^*(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(\underline{u}, \underline{v})$ $\forall \underline{v}, \underline{w} \in V$, da cui si deduce che $\varphi(f^*(\underline{v}) - \mu(\underline{v}), \underline{w}) = 0 \ \forall \underline{v}, \underline{w} \in V$, ossia che $f^*(\underline{v}) - \mu(\underline{v}) \in V^{\perp} \ \forall \underline{v} \in V$. Tuttavia φ è non degenere, e quindi $V^{\perp} = \{\underline{0}\}$, da cui si deduce che deve valere l'identità $f^*(\underline{v}) = \mu(\underline{v}) \ \forall \underline{v} \in V$, ossia $\mu = f^*$.

 $^{^4}$ Si osservi che f^* non è un'applicazione lineare, benché sia invece antilineare.

Osservazione. L'operazione di trasposizione di un endomorfismo sul prodotto scalare non degenere φ è un'involuzione. Infatti valgono le seguenti identità $\forall \, \underline{v}, \, \underline{w} \in V$:

$$\begin{cases} \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi(f^{\top}(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})), \\ \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi((f^{\top})^{\top}(\underline{w}), \underline{v}) = \varphi(\underline{v}, (f^{\top})^{\top}(\underline{w})). \end{cases}$$

Si conclude allora, poiché φ è non degenere, che $f(\underline{w}) = (f^{\top})^{\top}(\underline{w}) \ \forall \underline{w} \in V$, ossia che $f = (f^{\top})^{\top}$.

Osservazione. Analogamente si può dire per l'operazione di aggiunta per un prodotto hermitiano φ non degenere. Valgono infatti le seguenti identità $\forall \, \underline{v}, \, \underline{w} \in V$:

$$\begin{cases} \overline{\varphi(\underline{w},f^*(\underline{v}))} = \underline{\varphi(f^*(\underline{v}),\underline{w})} = \underline{\varphi(\underline{v},f(\underline{w}))}, \\ \overline{\varphi(\underline{w},f^*(\underline{v}))} = \overline{\varphi((f^*)^*(\underline{w}),\underline{v})} = \underline{\varphi(\underline{v},(f^*)^*(\underline{w}))}, \end{cases}$$

da cui si deduce, come prima, che $f = (f^*)^*$.

Definizione. (base ortonormale) Si definisce **base ortonormale** di uno spazio vettoriale V su un suo prodotto φ una base ortogonale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ tale che $\varphi(\underline{v_i}, v_j) = \delta_{ij}$.

Proposizione. Sia φ un prodotto scalare non degenere di V. Sia $f \in \operatorname{End}(V)$. Allora vale la seguente identità:

$$M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(\varphi),$$

dove \mathcal{B} è una base di V.

Dimostrazione. Sia \mathcal{B}^* la base relativa a \mathcal{B} in V^* . Per la proposizione precedente vale la seguente identità:

$$a_{\varphi} \circ f_{\varphi}^{\top} = f^{\top} \circ a_{\varphi}.$$

Pertanto, passando alle matrici associate, si ricava che:

$$M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi})M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}^*}(f^{\top})M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi}).$$

Dal momento che valgono le seguenti due identità:

$$M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi}) = M_{\mathcal{B}}(\varphi), \qquad M_{\mathcal{B}^*}(f^{\top}) = M_{\mathcal{B}}(f)^{\top},$$

e a_{φ} è invertibile (per cui anche $M_{\mathcal{B}}(\varphi)$ lo è), si conclude che:

$$M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(\varphi) \implies M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(\varphi),$$
da cui la tesi.

Corollario. Sia φ un prodotto scalare di V. Se \mathcal{B} è una base ortonormale, φ è non degenere e $M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(f)^{\top}$.

Dimostrazione. Se \mathcal{B} è una base ortonormale, $M_{\mathcal{B}}(\varphi) = I_n$. Pertanto φ è non degenere. Allora, per la proposizione precedente:

$$M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(f)^{\top}.$$

Proposizione. Sia φ un prodotto hermitiano non degenere di V. Sia $f \in \operatorname{End}(V)$. Allora vale la seguente identità:

$$M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi),$$

dove \mathcal{B} è una base di V.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Dal momento che φ è non degenere, Ker $M_{\mathcal{B}}(\varphi) = V^{\perp} = \{\underline{0}\}$, e quindi $M_{\mathcal{B}}(\varphi)$ è invertibile.

Dacché allora $\varphi(f^*(\underline{v}),\underline{w})=\varphi(\underline{v},f(\underline{w})) \; \forall \, \underline{v},\underline{w} \in V,$ vale la seguente identità:

$$[f^*(v)]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[w]_{\mathcal{B}} = [v]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[f(w)]_{\mathcal{B}},$$

ossia si deduce che:

$$[v]_{\mathcal{B}}^* M_{\mathcal{B}}(f^*)^* M_{\mathcal{B}}(\varphi)[w]_{\mathcal{B}} = [v]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}(f)[w]_{\mathcal{B}}.$$

Sostituendo allora a \underline{v} e \underline{w} i vettori della base \mathcal{B} , si ottiene che:

$$(M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi))_{ij} = [\underline{v_i}]_{\mathcal{B}}^*M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi)[\underline{v_j}]_{\mathcal{B}} =$$

$$= [\underline{v_i}]_{\mathcal{B}}^*M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)[\underline{v_j}]_{\mathcal{B}} = (M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f))_{ij},$$

e quindi che $M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)$. Moltiplicando a destra per l'inversa di $M_{\mathcal{B}}(\varphi)$ e prendendo l'aggiunta di ambo i membri (ricordando che $M_{\mathcal{B}}(\varphi)^* = M_{\mathcal{B}}(\varphi)$, essendo φ un prodotto hermitiano), si ricava l'identità desiderata.

Corollario. Sia φ un prodotto hermitiano di V spazio vettoriale su \mathbb{C} . Se \mathcal{B} è una base ortonormale, φ è non degenere e $M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(f)^*$.

Dimostrazione. Se \mathcal{B} è una base ortonormale, $M_{\mathcal{B}}(\varphi) = I_n$. Pertanto φ è non degenere. Allora, per la proposizione precedente:

$$M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(f)^*.$$

Nota. D'ora in poi, nel corso del documento, s'intenderà per φ un prodotto scalare (o eventualmente hermitiano) non degenere di V.

Definizione. (operatori simmetrici) Sia $f \in \text{End}(V)$. Si dice allora che f è simmetrico (o autoaggiunto) se $f = f^{\top}$.

Definizione. (applicazioni e matrici ortogonali) Sia $f \in \text{End}(V)$. Si dice allora che f è **ortogonale** se $\varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}),f(\underline{w}))$. Sia $A \in M(n,\mathbb{K})$. Si dice dunque che A è **ortogonale** se $A^{\top}A = AA^{\top} = I_n$.

Definizione. Le matrici ortogonali di $M(n, \mathbb{K})$ formano un sottogruppo moltiplicativo di $GL(n, \mathbb{K})$, detto **gruppo ortogonale**, e indicato con O_n . Il sottogruppo di O_n contenente solo le matrici con determinante pari a 1 è detto **gruppo ortogonale speciale**, e si denota con SO_n .

Osservazione. Si possono classificare in modo semplice alcuni di questi gruppi ortogonali per $\mathbb{K}=\mathbb{R}.$

- ▶ $A \in O_n \implies 1 = \det(I_n) = \det(AA^\top) = \det(A)^2 \implies \det(A) = \pm 1.$ ▶ $A = (a) \in O_1 \iff A^\top A = I_1 \iff a^2 = 1 \iff a = \pm 1$, da cui si ricava che l'unica matrice di SO_1 è (1). Si osserva inoltre che O_1 è abeliano
- di ordine 2, e quindi che $O_1 \cong \mathbb{Z}/2\mathbb{Z}$. $\blacktriangleright A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2 \iff \begin{pmatrix} a^2 + b^2 & ab + cd \\ ab + cd & c^2 + d^2 \end{pmatrix} = A^{\top}A = I_2.$

Pertanto deve essere soddisfatto il seguente sistema di equazioni:

$$\begin{cases} a^2 + b^2 = c^2 + d^2 = 1, \\ ac + bd = 0. \end{cases}$$

Si ricava dunque che si può identificare A con le funzioni trigonometriche $\cos(\theta) = \sin(\theta) \cos \theta \in [0, 2\pi)$ nelle due forme:

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \qquad (\det(A) = 1, A \in SO_2),$$

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \qquad (\det(A) = -1).$$

Definizione. (applicazioni e matrici hermitiane) Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è hermitiano se $f = f^*$. Sia $A \in M(n, \mathbb{C})$. Si dice dunque che A è **hermitiana** se $A = A^*$.

Definizione. (applicazioni e matrici unitarie) Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è unitario se $\varphi(\underline{v},\underline{w}) =$ $\varphi(f(v), f(w))$. Sia $A \in M(n, \mathbb{C})$. Si dice dunque che A è unitaria se $A^*A = AA^* = I_n.$

Definizione. Le matrici unitarie di $M(n,\mathbb{C})$ formano un sottogruppo moltiplicativo di $GL(n,\mathbb{C})$, detto **gruppo unitario**, e indicato con U_n . Il sottogruppo di U_n contenente solo le matrici con determinante pari a 1 è detto gruppo unitario speciale, e si denota con SU_n .

Osservazione.

Si possono classificare in modo semplice alcuni di questi gruppi unitari.

- $A \in U_n \implies 1 = \det(I_n) = \det(AA^*) = \det(A)\det(A) = |\det(A)|^2 = 1.$ $A = (a) \in U_1 \iff A^*A = I_1 \iff |a|^2 = 1 \iff a = e^{i\theta}, \ \theta \in [0, 2\pi),$

ossia il numero complesso
$$a$$
 appartiene alla circonferenza di raggio unitario.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU_2 \iff AA^* = \begin{pmatrix} |a|^2 + |b|^2 & a\overline{c} + b\overline{d} \\ \overline{a}c + \overline{b}d & |c|^2 + |d|^2 \end{pmatrix} = I_2,$$

$$\det(A) = 1, \text{ ossia se il seguente sistema di equazioni è soddisfatto:}$$

$$\begin{cases} |a|^2 + |b|^2 = |c|^2 + |d|^2 = 1, \\ a\overline{c} + b\overline{d} = 0, \\ ad - bc = 1. \end{cases}$$

le cui soluzioni riassumono il gruppo SU_2 nel seguente modo:

$$SU_2 = \left\{ \begin{pmatrix} x & -y \\ \overline{y} & \overline{x} \end{pmatrix} \in M(2, \mathbb{C}) \mid |x|^2 + |y|^2 = 1 \right\}.$$

Definizione. (spazio euclideo reale) Si definisce spazio euclideo reale uno spazio vettoriale V su \mathbb{R} dotato del prodotto scalare standard $\varphi = \langle \cdot, \cdot \rangle$.

Definizione. (spazio euclideo complesso) Si definisce **spazio euclideo complesso** uno spazio vettoriale V su \mathbb{C} dotato del prodotto hermitiano standard $\varphi = \langle \cdot, \cdot \rangle$.

Proposizione. Sia (V, φ) uno spazio euclideo reale e sia \mathcal{B} una base ortonormale di V. Allora $f \in \operatorname{End}(V)$ è simmetrico $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^{\top}$ $\iff M_{\mathcal{B}}(f)$ è simmetrica.

Dimostrazione. Per il corollario precedente,
$$f$$
 è simmetrico $\iff f = f^{\top} \iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}$.

Proposizione. Sia (V, φ) uno spazio euclideo reale e sia \mathcal{B} una base ortonormale di V. Allora $f \in \operatorname{End}(V)$ è ortogonale $\iff M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = I_n \stackrel{\text{def}}{\iff} M_{\mathcal{B}}(f)$ è ortogonale.

Dimostrazione. Si osserva che $M_{\mathcal{B}}(\varphi) = I_n$. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Se f è ortogonale, allora $[\underline{v}]_{\mathcal{B}}^{\top} [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}} = \varphi(\underline{v}, \underline{w}) = \varphi(f(\underline{v}), f(\underline{w})) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top} M_{\mathcal{B}}(\varphi) (M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}(f) [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(f) [\underline{w}]_{\mathcal{B}}$. Allora, come visto nel corollario precedente, si ricava che $M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f) M_{\mathcal{B}}(f)^{\top} = I_n$.

Se invece $M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = I_n, \quad \varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^{\top}[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top}(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top}M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = \varphi(f(\underline{v}), f(\underline{w})), \text{ e quindi } f \text{ è ortogonale.}$

Proposizione. Sia (V, φ) uno spazio euclideo complesso e sia \mathcal{B} una base ortonormale di V. Allora $f \in \text{End}(V)$ è hermitiano $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^*$ $\stackrel{\text{def}}{\iff} M_{\mathcal{B}}(f)$ è hermitiana.

Dimostrazione. Per il corollario precedente, f è hermitiana $\iff f = f^*$ $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f^*) = M_{\mathcal{B}}(f)^*$.

Proposizione. Sia (V, φ) uno spazio euclideo complesso e sia \mathcal{B} una base ortonormale di V. Allora $f \in \operatorname{End}(V)$ è unitario $\iff M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^* = M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = I_n \stackrel{\text{def}}{\iff} M_{\mathcal{B}}(f)$ è unitaria.

Dimostrazione. Si osserva che $M_{\mathcal{B}}(\varphi) = I_n$. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Se f è unitario, allora $[\underline{v}]_{\mathcal{B}}^* [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}} = \varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}),f(\underline{w})) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^* M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = (\underline{v})_{\mathcal{B}}^* M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}$

 $[\underline{v}]_{\mathcal{B}}^*M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}$. Allora, come visto nel corollario precedente, si ricava che $M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^* = I_n$.

Se invece
$$M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^* = I_n, \quad \varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^*[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^*M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^*(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^*M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = \varphi(f(\underline{v}), f(\underline{w})), \text{ e quindi } f \text{ è unitario.} \quad \Box$$

Osservazione. Se \mathcal{B} è una base ortonormale di (V, φ) , ricordando che $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}$ e che $M_{\mathcal{B}}(f^*) = M_{\mathcal{B}}(f)^*$, sono equivalenti allora i seguenti fatti:

▶ $f \circ f^{\top} = f^{\top} \circ f = \operatorname{Id}_{V} \iff M_{\mathcal{B}}(f)$ è ortogonale $\iff f$ è ortogonale, ▶ $f \circ f^{*} = f^{*} \circ f = \operatorname{Id}_{V} \iff M_{\mathcal{B}}(f)$ è unitaria $\iff f$ è unitario (se V è uno spazio vettoriale su \mathbb{C}).

Proposizione. Sia $V = \mathbb{R}^n$ uno spazio vettoriale col prodotto scalare standard φ . Allora sono equivalenti i seguenti fatti:

- (i) $A \in O_n$,
- (ii) f_A è un operatore ortogonale,
- (iii) le colonne e le righe di A formano una base ortonormale di V.

Dimostrazione. Sia \mathcal{B} la base canonica di V. Allora $M_{\mathcal{B}}(f_A) = A$, e quindi, per una proposizione precedente, f_A è un operatore ortogonale. Viceversa si deduce che se f_A è un operatore ortogonale, $A \in O_n$. Dunque è sufficiente dimostrare che $A \in O_n \iff$ le colonne e le righe di A formano una base ortonormale di V.

 (\Longrightarrow) Se $A\in O_n$, in particolare $A\in \mathrm{GL}(n,\mathbb{R})$, e quindi A è invertibile. Allora le sue colonne e le sue righe formano già una base di V, essendo n vettori di V linearmente indipendenti. Inoltre, poiché $A\in O_n$, $\varphi(\underline{e_i},\underline{e_j})=\varphi(A\underline{e_i},A\underline{e_j})$, e quindi le colonne di A si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A\underline{e_i},A\underline{e_i})=\varphi(\underline{e_i},\underline{e_i})=1$. Pertanto le colonne di A formano una base ortonormale di V.

Si osserva che anche $A^{\top} \in O_n$. Allora le righe di A, che non sono altro che le colonne di A^{\top} , formano anch'esse una base ortonormale di V.

(\Leftarrow) Nel moltiplicare A^{\top} con A altro non si sta facendo che calcolare il prodotto scalare φ tra ogni riga di A^{\top} e ogni colonna di A, ossia $(A^*A)_{ij} = \varphi((A^{\top})_i, A^j) = \varphi(A^i, A^j) = \delta_{ij}$. Quindi $A^{\top}A = AA^{\top} = I_n$, da cui si deduce che $A \in O_n$.

Proposizione. Sia $V = \mathbb{C}^n$ uno spazio vettoriale col prodotto hermitiano standard φ . Allora sono equivalenti i seguenti fatti:

- (i) $A \in U_n$,
- (ii) f_A è un operatore unitario,
- (iii) le colonne e le righe di A formano una base ortonormale di V.

Dimostrazione. Sia \mathcal{B} la base canonica di V. Allora $M_{\mathcal{B}}(f_A) = A$, e quindi, per una proposizione precedente, f_A è un operatore unitario. Viceversa si deduce che se f_A è un operatore unitario, $A \in U_n$. Dunque è sufficiente dimostrare che $A \in U_n \iff$ le colonne e le righe di A formano una base ortonormale di V.

 (\Longrightarrow) Se $A\in U_n$, in particolare $A\in \mathrm{GL}(n,\mathbb{R})$, e quindi A è invertibile. Allora le sue colonne e le sue righe formano già una base di V, essendo n vettori di V linearmente indipendenti. Inoltre, poiché $A\in U_n$, $\varphi(\underline{e_i},\underline{e_j})=\varphi(A\underline{e_i},A\underline{e_j})$, e quindi le colonne di A si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A\underline{e_i},A\underline{e_i})=\varphi(\underline{e_i},\underline{e_i})=1$. Pertanto le colonne di A formano una base ortonormale di V.

Si osserva che anche $A^{\top} \in U_n$. Allora le righe di A, che non sono altro che le colonne di A^{\top} , formano anch'esse una base ortonormale di V.

(\Leftarrow) Nel moltiplicare A^* con A altro non si sta facendo che calcolare il prodotto hermitiano φ tra ogni riga coniugata di A^* e ogni colonna di A, ossia $(A^*A)_{ij} = \varphi((A^\top)_i, A^j) = \varphi(A^i, A^j) = \delta_{ij}$. Quindi $A^*A = AA^* = I_n$, da cui si deduce che $A \in U_n$.

Proposizione. Sia (V, φ) uno spazio euclideo reale. Allora valgono i seguenti tre risultati:

- (i) $(V_{\mathbb{C}}, \varphi_{\mathbb{C}})$ è uno spazio euclideo complesso.
- (ii) Se $f \in \text{End}(V)$ è simmetrico, allora $f_{\mathbb{C}} \in \text{End}(V)$ è hermitiano.

(iii) Se $f \in \text{End}(V)$ è ortogonale, allora $f_{\mathbb{C}} \in \text{End}(V)$ è unitario.

Dimostrazione. Dacché φ è il prodotto scalare standard dello spazio euclideo reale V, esiste una base ortnormale di V. Sia allora $\mathcal B$ una base ortnormale di V. Si dimostrano i tre risultati separatamente.

- È sufficiente dimostrare che $\varphi_{\mathbb{C}}$ altro non è che il prodotto hermitiano standard. Come si è già osservato precedentemente, $M_{\mathcal{B}}(\varphi_{\mathbb{C}}) = M_{\mathcal{B}}(\varphi)$, e quindi, dacché $M_{\mathcal{B}}(\varphi) = I_n$, essendo \mathcal{B} ortonormale, vale anche che $M_{\mathcal{B}}(\varphi_{\mathbb{C}}) = I_n$, ossia $\varphi_{\mathbb{C}}$ è proprio il prodotto hermitiano standard.
- Poiché f è simmetrico, $M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^{\top}$, e quindi anche $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f_{\mathbb{C}})^{\top}$. Dal momento che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R})$, $M_{\mathcal{B}}(f) = \overline{M_{\mathcal{B}}(f)} \Longrightarrow M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = M_{\mathcal{B}}(f_{\mathbb{C}})^{*}$. Quindi $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f_{\mathbb{C}})^{*}$, ossia $M_{\mathcal{B}}(f_{\mathbb{C}})$ è hermitiana, e pertanto anche $f_{\mathbb{C}}$ è hermitiano.
- Poiché f è ortogonale, $M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = I_n$, e quindi anche $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = I_n$. Allora, come prima, si deduce che $M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = M_{\mathcal{B}}(f_{\mathbb{C}})^*$, essendo $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f) \in M(n, \mathbb{R})$, da cui si ricava che $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^* = M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = I_n$, ossia che $f_{\mathbb{C}}$ è unitario.

Esercizio 1. Sia (V, φ) uno spazio euclideo reale. Allora valgono i seguenti risultati:

- Se $f, g \in \text{End}(V)$ commutano, allora anche $f_{\mathbb{C}}, g_{\mathbb{C}} \in \text{End}(V_{\mathbb{C}})$ commutano.
- Se $f \in \text{End}(V)$, $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$.
- Se $f \in \text{End}(V)$, f diagonalizzabile $\iff f^{\top}$ diagonalizzabile.

Soluzione. Dacché φ è il prodotto scalare standard dello spazio euclideo reale V, esiste una base ortonormale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V. Si dimostrano allora separatamente i tre risultati.

- Si osserva che $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(g_{\mathbb{C}}) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(g) = M_{\mathcal{B}}(g)M_{\mathcal{B}}(f) = M_{\mathcal{B}}(g_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})$, e quindi che $f_{\mathbb{C}} \circ g_{\mathbb{C}} = g_{\mathbb{C}} \circ f_{\mathbb{C}}$.
- Si osserva che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R}) \Longrightarrow M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^*$, e quindi che $M_{\mathcal{B}}((f^{\top})_{\mathbb{C}}) = M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^* = M_{\mathcal{B}}(f_{\mathbb{C}})^* = M_{\mathcal{B}}(f_{\mathbb{C}})^*$. Allora $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$.

• Poiché \mathcal{B} è ortonormale, $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}$. Allora, se f è diagonalizzabile, anche $M_{\mathcal{B}}(f)$ lo è, e quindi $\exists P \in GL(n, \mathbb{K}), D \in M(n, \mathbb{K})$ diagonale tale che $M_{\mathcal{B}}(f) = PDP^{-1}$. Allora $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top} = (P^{\top})^{-1}D^{\top}P^{\top}$ è simile ad una matrice diagonale, e pertanto $M_{\mathcal{B}}(f^{\top})$ è diagonalizzabile. Allora anche f^{\top} è diagonalizzabile. Vale anche il viceversa considerando l'identità $f = (f^{\top})^{\top}$ e l'implicazione appena dimostrata.

Nota. D'ora in poi, qualora non specificato diversamente, si assumerà che V sia uno spazio euclideo, reale o complesso.

Definizione. (norma euclidea) Sia (V, φ) un qualunque spazio euclideo. Si definisce **norma** la mappa $\|\cdot\|: V \to \mathbb{R}^+$ tale che $\|\underline{v}\| = \sqrt{\varphi(\underline{v}, \underline{v})}$.

Definizione. (distanza euclidea tra due vettori) Sia (V, φ) un qualunque spazio euclideo. Si definisce **distanza** la mappa $d: V \times V \to \mathbb{R}^+$ tale che $d(\underline{v}, \underline{w}) = ||\underline{v} - \underline{w}||$.

Osservazione.

- ▶ Si osserva che in effetti $\varphi(\underline{v},\underline{v}) \in \mathbb{R}^+ \ \forall \underline{v} \in V$. Infatti, sia per il caso reale che per il caso complesso, φ è definito positivo.
- ▶ Vale che $\|\underline{v}\| = 0 \iff \underline{v} = \underline{0}$. Infatti, se $\underline{v} = \underline{0}$, chiaramente $\varphi(\underline{v},\underline{v}) = 0 \implies \|\underline{v}\| = 0$; se invece $\|\underline{v}\| = 0$, $\varphi(\underline{v},\underline{v}) = 0$, e quindi $\underline{v} = \underline{0}$, dacché $V^{\perp} = \{\underline{0}\}$, essendo φ definito positivo.
- ▶ Inoltre, vale chiaramente che $\|\alpha \underline{v}\| = |\alpha| \|\underline{v}\|$.

Proposizione. (disuguaglianza di Cauchy-Schwarz) Vale che $\|\underline{v}\| \|\underline{w}\| \ge |\varphi(\underline{v},\underline{w})|, \ \forall \underline{v}, \underline{w} \in V$, dove l'uguaglianza è raggiunta soltanto se \underline{v} e \underline{w} sono linearmente dipendenti.

Dimostrazione. Si consideri innanzitutto il caso $\mathbb{K}=\mathbb{R}$, e quindi il caso in cui φ è il prodotto scalare standard. Siano $\underline{v}, \underline{w} \in V$. Si consideri la disuguaglianza $\|\underline{v}+t\underline{w}\|^2 \geq 0$, valida per ogni elemento di V. Allora $\|\underline{v}+t\underline{w}\|^2 = \|\underline{v}\|^2 + 2\varphi(\underline{v},\underline{w})t + \|\underline{w}\|^2t^2 \geq 0$. L'ultima disuguaglianza è possibile se e solo se $\frac{\Delta}{4} \leq 0$, e quindi se e solo se $\varphi(\underline{v},\underline{w})^2 - \|\underline{v}\|^2 \|\underline{w}\|^2 \leq 0 \iff \|\underline{v}\| \|\underline{w}\| \geq \varphi(\underline{v},\underline{w})$. Vale in particolare l'equivalenza se e solo se $\|\underline{v}+t\underline{w}\| = 0$, ossia se $\underline{v}+t\underline{w}=\underline{0}$, da cui la tesi.

Si consideri ora il caso $\mathbb{K}=\mathbb{C}$, e dunque il caso in cui φ è il prodotto hermitiano standard. Siano $\underline{v}, \underline{w} \in V$, e siano $\alpha, \beta \in \mathbb{C}$. Si consideri

allora la disuguaglianza $\|\alpha\underline{v}+\beta\underline{w}\|^2\geq 0$, valida per ogni elemento di V. Allora $\|\alpha\underline{v}+\beta\underline{w}\|^2=\|\alpha\underline{v}\|^2+\varphi(\alpha\underline{v},\beta\underline{w})+\varphi(\beta\underline{w},\alpha\underline{v})+\|\beta\underline{w}\|^2=|\alpha|^2\|\underline{v}\|^2+\overline{\alpha}\beta\,\varphi(\underline{v},\underline{w})+\underline{\alpha}\overline{\beta}\,\varphi(\underline{w},\underline{v})+|\beta|^2\|\underline{w}\|^2\geq 0$. Ponendo allora $\alpha=\|\underline{w}\|^2$ e $\beta=-\varphi(\underline{w},\underline{v})=-\varphi(\underline{v},\underline{w})$, si deduce che:

$$\|\underline{v}\|^2 \|\underline{w}\|^4 - \|\underline{w}\|^2 |\varphi(\underline{v},\underline{w})| \ge 0.$$

Se $\underline{w} = \underline{0}$, la disuguaglianza di Cauchy-Schwarz è già dimostrata. Altrimenti, è sufficiente dividere per $\|\underline{w}\|^2$ (dal momento che $\underline{w} \neq \underline{0} \iff \|\underline{w}\| \neq 0$) per ottenere la tesi. Come prima, is osserva che l'uguaglianza si ottiene se e solo se v e w sono linearmente dipendenti.

Proposizione. (disuguaglianza triangolare) $\|\underline{v} + \underline{w}\| \le \|\underline{v}\| + \|\underline{w}\|$.

Dimostrazione. Si osserva che $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + \varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}) + \|\underline{w}\|^2$. Se φ è il prodotto scalare standard, si ricava che:

$$\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + 2\varphi(\underline{v}, \underline{w}) + \|\underline{w}\|^2 \le \|\underline{v}\|^2 + 2\|\underline{v}\| \|\underline{w}\| + \|\underline{w}\|^2 = (\|\underline{v}\| + \|\underline{w}\|)^2,$$

dove si è utilizzata la disuguaglianza di Cauchy-Schwarz. Da quest'ultima disuguaglianza si ricava, prendendo la radice quadrata, la disuguaglianza desiderata.

Se invece φ è il prodotto hermitiano standard, $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + 2\Re(\varphi(\underline{v},\underline{w})) + \|\underline{w}\|^2 \leq \|\underline{v}\|^2 + 2|\varphi(\underline{v},\underline{w})| + \|\underline{w}\|^2$. Allora, riapplicando la disuguaglianza di Cauchy-Schwarz, si ottiene che:

$$\|\underline{v} + \underline{w}\|^2 \le (\|\underline{v}\| + \|\underline{w}\|)^2,$$

da cui, come prima, si ottiene la disuguaglianza desiderata.

Osservazione. Utilizzando il concetto di norma euclidea, si possono ricavare due teoremi fondamentali della geometria, e già noti dalla geometria euclidea.

- Se $\underline{v} \perp \underline{w}$, allora $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + \overbrace{(\varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}))}^{=0} + \|\underline{w}\|^2$ (teorema di Pitagora),

 Se $\|\underline{v}\| = \|\underline{w}\|^2$ (ecorema di Pitagora)
- Se $\|\underline{v}\| = \|\underline{w}\|$ e φ è un prodotto scalare, allora $\varphi(\underline{v} + \underline{w}, \underline{v} \underline{w}) = \|\underline{v}\|^2 \varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}) \|\underline{w}\|^2 = \|\underline{v}\|^2 \|\underline{w}\|^2 = 0$, e quindi $\underline{v} + \underline{w} \perp \underline{v} \underline{w}$ (le diagonali di un rombo sono ortogonali tra loro).

Osservazione. Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base ortogonale di V per φ .

- ▶ Se $\underline{v} = a_1\underline{v_1} + \ldots + a_n\underline{v_n}$, con $a_1, \ldots, a_n \in \mathbb{K}$, si osserva che $\varphi(\underline{v}, \underline{v_i}) = a_i\varphi(\underline{v_i}, \underline{v_i})$. Quindi $\underline{v} = \sum_{i=1}^n \frac{\varphi(\underline{v}, v_i)}{\varphi(\underline{v_i}, v_i)} \underline{v_i}$. In particolare, $\frac{\varphi(\underline{v}, \underline{v_i})}{\varphi(\underline{v_i}, v_i)}$ è detto **coefficiente di Fourier** di \underline{v} rispetto a $\underline{v_i}$, e si indica con $C(\underline{v}, \underline{v_i})$. Se \mathcal{B} è ortonormale, $\underline{v} = \sum_{i=1}^n \varphi(\underline{v}, \underline{v_i}) \underline{v_i}$.
- ▶ Quindi $\|\underline{v}\|^2 = \varphi(\underline{v}, \underline{v}) = \sum_{i=1}^n \frac{\varphi(\underline{v}, v_i)^2}{\varphi(\underline{v}_i, \underline{v}_i)}$. In particolare, se \mathcal{B} è ortonormale, $\|\underline{v}\|^2 = \sum_{i=1}^n \varphi(\underline{v}, \underline{v}_i)^2$. In tal caso, si può esprimere la disuguaglianza di Bessel: $\|\underline{v}\|^2 \geq \sum_{i=1}^k \varphi(\underline{v}, \underline{v}_i)^2$ per $k \leq n$.

Osservazione. (algoritmo di ortogonalizzazione di Gram-Schmidt) Se φ è non degenere (o in generale, se $\mathrm{CI}(\varphi) = \{\underline{0}\}$) ed è data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ per V (dove si ricorda che deve valere char $\mathbb{K} \neq 2$), è possibile applicare l'algoritmo di ortogonalizzazione di Gram-Schmidt per ottenere da \mathcal{B} una nuova base $\mathcal{B}' = \{v_1', \dots, v_n'\}$ con le seguenti proprietà:

- (i) \mathcal{B}' è una base ortogonale,
- (ii) \mathcal{B}' mantiene la stessa bandiera di \mathcal{B} (ossia $\mathrm{Span}(\underline{v_1},\ldots,\underline{v_i}) = \mathrm{Span}(v_1',\ldots,v_i')$ per ogni $1 \leq i \leq n$).

L'algoritmo si applica nel seguente modo: si prenda in considerazione $\underline{v_1}$ e sottragga ad ogni altro vettore della base il vettore $C(\underline{v_1},\underline{v_i})\underline{v_1} = \frac{\varphi(v_1,v_i)}{\varphi(v_1,v_1)}\underline{v_1}$, rendendo ortogonale ogni altro vettore della base con $\underline{v_1}$. Pertanto si applica la mappa $\underline{v_i} \mapsto \underline{v_i} - \frac{\varphi(v_1,v_i)}{\varphi(v_1,v_1)}\underline{v_i} = \underline{v_i}^{(1)}$. Si verifica infatti che $\underline{v_1}$ e $\underline{v_i}^{(1)}$ sono ortogonali per $2 \le i \le n$:

$$\varphi(\underline{v_1}, \underline{v_i}^{(1)}) = \varphi(\underline{v_1}, \underline{v_i}) - \varphi\left(\underline{v_1}, \frac{\varphi(\underline{v_1}, \underline{v_i})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_i}\right) = \varphi(\underline{v_1}, \underline{v_i}) - \varphi(\underline{v_1}, \underline{v_i}) = 0.$$

Poiché $\underline{v_1}$ non è isotropo, si deduce la decomposizione $V = \operatorname{Span}(\underline{v_1}) \oplus \operatorname{Span}(\underline{v_1})^{\perp}$. In particolare dim $\operatorname{Span}(\underline{v_1})^{\perp} = n-1$: essendo allora i vettori $\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}$ linearmente indipendenti e appartenenti a $\operatorname{Span}(\underline{v_1})^{\perp}$, ne sono una base. Si conclude quindi che vale la seguente decomposizione:

$$V = \operatorname{Span}(v_1) \oplus^{\perp} \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)}).$$

Si riapplica dunque l'algoritmo di Gram-Schmidt prendendo come spazio vettoriale lo spazio generato dai vettori a cui si è applicato precedentemente l'algoritmo, ossia $V' = \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)})$, fino a che non si ottiene

$$V' = \{\underline{0}\}.$$

Si può addirittura ottenere una base ortonormale a partire da \mathcal{B}' normalizzando ogni vettore (ossia dividendo per la propria norma), se si sta considerando uno spazio euclideo.

Osservazione. Poiché la base ottenuta tramite Gram-Schmidt mantiene la stessa bandiera della base di partenza, ogni matrice triangolabile è anche triangolabile mediante una base ortogonale.

Esempio. Si consideri $V=(\mathbb{R}^3,\langle\cdot\rangle)$, ossia \mathbb{R}^3 dotato del prodotto scalare standard, e si applichi l'algoritmo di ortogonalizzazione di Gram-Schmidt sulla seguente base:

$$\mathcal{B} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{\underline{v_1} = \underline{e_1}}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}_{\underline{v_2}}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{\underline{v_3}} \right\}$$

Alla prima iterazione dell'algoritmo si ottengono i seguenti vettori:

•
$$\underline{v_2}^{(1)} = \underline{v_2} - \frac{\varphi(\underline{v_1}, \underline{v_2})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_2} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \underline{e_2},$$

•
$$\underline{v_3}^{(1)} = \underline{v_3} - \frac{\varphi(\underline{v_1}, \underline{v_3})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_3} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Si considera ora $V' = \operatorname{Span}(\underline{v_2}^{(1)}, \underline{v_3}^{(1)})$. Alla seconda iterazione dell'algoritmo si ottiene allora il seguente vettore:

•
$$\underline{v_3}^{(2)} = \underline{v_3}^{(1)} - \frac{\varphi(\underline{v_2}^{(1)}, \underline{v_3}^{(1)})}{\varphi(\underline{v_2}^{(1)}, \underline{v_2}^{(1)})} \underline{v_2}^{(1)} = \underline{v_3}^{(1)} - \underline{v_2}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \underline{e_3}.$$

Quindi la base ottenuta è $\mathcal{B}' = \{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$, ossia la base canonica di \mathbb{R}^3 , già ortonormale.

Osservazione. Si osserva adesso che se (V, φ) è uno spazio euclideo (e quindi $\varphi > 0$), e W è un sottospazio di V, vale la seguente decomposizione:

$$V = W \oplus^{\perp} W^{\perp}$$
.

Pertanto ogni vettore $\underline{v} \in V$ può scriversi come $\underline{w} + \underline{w}'$ dove $\underline{w} \in W$ e $w' \in W^{\perp}$, dove $\varphi(w, w') = 0$.

Definizione. (proiezione ortogonale) Si definisce l'applicazione $\operatorname{pr}_W: V \to V$, detta **proiezione ortogonale** su W, in modo tale che $\operatorname{pr}_W(\underline{v}) = \underline{w}$, dove $\underline{v} = \underline{w} + \underline{w}'$, con $\underline{w} \in W$ e $\underline{w}' \in W^{\perp}$.

Osservazione.

- \blacktriangleright Dacché la proiezione ortogonale è un caso particolare della classica applicazione lineare di proiezione su un sottospazio di una somma diretta, pr $_W$ è un'applicazione lineare.
- Vale chiaramente che $\operatorname{pr}_W^2 = \operatorname{pr}_W$, da cui si ricava, se $W^{\perp} \neq \{\underline{0}\}$, che $\varphi_{\operatorname{pr}_W}(\lambda) = \lambda(\lambda 1)$, ossia che $\operatorname{sp}(\operatorname{pr}_W) = \{0, 1\}$. Infatti $\operatorname{pr}_W(\underline{v})$ appartiene già a W, ed essendo la scrittura in somma di due elementi, uno di W e uno di W', unica, $\operatorname{pr}_W(\operatorname{pr}_W(\underline{v})) = \operatorname{pr}_W(\underline{v})$, da cui l'identità $\operatorname{pr}_W^2 = \operatorname{pr}_W$.
- ▶ Seguendo il ragionamento di prima, vale anche che $\operatorname{pr}_W|_W = \operatorname{Id}_W$ e che $\operatorname{pr}_W|_{W^{\perp}} = 0$.
- ▶ Inoltre, vale la seguente riscrittura di $\underline{v} \in V$: $\underline{v} = \operatorname{pr}_W(\underline{v}) + \operatorname{pr}_{W^{\perp}}(\underline{v})$.
- ▶ Se $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ è una base ortogonale di W, allora $\operatorname{pr}_W(\underline{v}) = \sum_{i=1}^n \frac{\varphi(\underline{v},\underline{v_i})}{\varphi(v_i,v_i)}\underline{v_i} = \sum_{i=1}^n C(\underline{v},\underline{v_i})\underline{v_i}$. Infatti $\underline{v} \sum_{i=1}^n C(\underline{v},\underline{v_i})\underline{v_i} \in W^{\perp}$.
- $\begin{array}{lll} \blacktriangleright & \operatorname{pr}_W \text{ è un operatore simmetrico (o hermitiano se lo spazio è complesso).} & \operatorname{Infatti} \; \varphi(\operatorname{pr}_W(\underline{v}),\underline{w}) \; = \; \varphi(\operatorname{pr}_W(\underline{v}),\operatorname{pr}_W(\underline{w}) + \operatorname{pr}_{W^{\perp}}(\underline{w})) \; = \\ \varphi(\operatorname{pr}_W(\underline{v}),\operatorname{pr}_W(\underline{w})) = \varphi(\operatorname{pr}_W(\underline{v}) + \operatorname{pr}_{W^{\perp}}(\underline{v}),\operatorname{pr}_W(\underline{w})) = \varphi(\underline{v},\operatorname{pr}_W(\underline{w})). \end{array}$

Proposizione. Sia (V, φ) uno spazio euclideo. Allora valgono i seguenti risultati:

- (i) Siano $U, W \subseteq V$ sono sottospazi di V, allora $U \perp W$, ossia⁵ $U \subseteq W^{\perp}$, $\iff \operatorname{pr}_{U} \circ \operatorname{pr}_{W} = \operatorname{pr}_{W} \circ \operatorname{pr}_{U} = 0$.
- (ii) Sia $V = W_1 \oplus \cdots \oplus W_n$. Allora $\underline{v} = \sum_{i=1}^n \operatorname{pr}_{W_i}(\underline{v}) \iff W_i \perp W_j \forall i \neq j, 1 \leq i, j \leq n$.

Dimostrazione. Si dimostrano i due risultati separatamente.

(i) Sia $\underline{v} \in V$. Allora $\operatorname{pr}_W(\underline{v}) \in W = W^{\perp \perp} \subseteq U^{\perp}$. Pertanto $\operatorname{pr}_U(\operatorname{pr}_W(\underline{v})) = \underline{0}$. Analogamente $\operatorname{pr}_W(\operatorname{pr}_U(\underline{v})) = \underline{0}$, da cui la tesi.

 $^{^5}$ È sufficiente che valga $U\subseteq W^\perp$ affinché valga anche $W\subseteq U^\perp.$ Infatti $U\subseteq W^\perp\Longrightarrow W=W^{\perp\perp}\subseteq U^\perp.$ Si osserva che in generale vale che $W\subseteq W^{\perp\perp},$ dove vale l'uguaglianza nel caso di un prodotto φ non degenere, com'è nel caso di uno spazio euclideo, essendo $\varphi>0$ per ipotesi.

(ii) Sia vero che $\underline{v} = \sum_{i=1}^n \operatorname{pr}_{W_i}(\underline{v}) \ \forall \underline{v} \in V$. Sia $\underline{w} \in W_j$. Allora $\underline{w} = \sum_{i=1}^n \operatorname{pr}_{W_i}(\underline{w}) = \underline{w} + \sum_{\substack{i=1 \ i \neq j}} \operatorname{pr}_{W_i}(\underline{w}) \implies \operatorname{pr}_{W_i}(\underline{w}) = \underline{0} \ \forall i \neq j$. Quindi $\underline{w} \in W_i^{\perp} \ \forall i \neq j$, e si conclude che $W_i \subseteq W_j^{\perp} \implies W_i \perp W_j$. Se invece $W_i \perp W_j \ \forall i \neq j$, sia $\mathcal{B}_i = \left\{\underline{w}_i^{(1)}, \dots, \underline{w}_i^{(k_i)}\right\}$ una base ortogonale di W_i . Allora $\mathcal{B} = \bigcup_{i=1}^n \mathcal{B}_i$ è anch'essa una base ortogonale di V, essendo $\varphi\left(\underline{w}_i^{(t_i)}, \underline{w}_j^{(t_j)}\right) = 0$ per ipotesi. Pertanto $\underline{v} = \sum_{i=1}^n \sum_{j=1}^{k_i} C\left(\underline{v}, \underline{w}_i^{(j)}\right) \underline{w}_i^{(j)} = \sum_{i=1}^n \operatorname{pr}_{W_i}(\underline{v})$, da cui la tesi. \square

Definizione. (inversione ortogonale) Si definisce l'applicazione $\rho_W: V \to V$, detta **inversione ortogonale**, in modo tale che, detto $\underline{v} = \underline{w} + \underline{w}' \in V$ con $\underline{w} \in W$, $\underline{w} \in W^{\perp}$, $\rho_W(\underline{v}) = \underline{w} - \underline{w}'$. Se dim $W = \dim V - 1$, si dice che ρ_W è una **riflessione**.

Osservazione.

- \blacktriangleright Si osserva che ρ_W è un'applicazione lineare.
- ▶ Vale l'identità $\rho_W^2 = \operatorname{Id}_V$, da cui si ricava che $\varphi_{\rho_W}(\lambda) \mid (\lambda 1)(\lambda + 1)$. In particolare, se $W^{\perp} \neq \{\underline{0}\}$, vale proprio che sp $(\rho_W) = \{\pm 1\}$, dove $V_1 = W$ e $V_{-1} = W^{\perp}$.
- $\begin{array}{c} \blacktriangleright \quad \rho_W \text{ \`e ortogonale (o unitaria, se V \`e uno spazio euclideo complesso).} \\ \text{Infatti se } \underbrace{v_1} = \underbrace{w_1 + \underline{w_1}'}_{} \text{ e } \underbrace{v_2}_{} = \underbrace{w_2 + \underline{w_2}'}_{}, \text{ con } \underbrace{w_1}_{}, \underbrace{w_2}_{} \in W, \quad \varphi(\rho_W(\underline{v_1}), \rho_W(\underline{v_2})) = \varphi(\underline{w_1} \underline{w_1}', \underline{w_2} \underline{w_2}') = \varphi(\underline{w_1}, \underline{w_2}) \varphi(\underline{w_1}', \underline{w_2}) \varphi(\underline{w_1}, \underline{w_2}') + \varphi(\underline{w_1}', \underline{w_2}') = \varphi(\underline{w_1} \underline{w_1}', \underline{w_2} \underline{w_2}'). \end{array}$

Quindi $\varphi(\rho_W(\underline{v_1}), \rho_W(\underline{v_2})) = \varphi(\underline{w_1}, \underline{w_2}) + \varphi(\underline{w_1}', \underline{w_2}) + \varphi(\underline{w_1}, \underline{w_2}') + \varphi(w_1', w_2') = \varphi(v_1, v_2).$

Lemma 1. Siano $\underline{u}, \underline{w} \in V$. Se $||\underline{u}|| = ||\underline{w}||$, allora esiste un sottospazio W di dimensione n-1 per cui la riflessione ρ_W è tale che $\rho_W(\underline{u}) = \underline{w}$.

Teorema. Ogni isometria è prodotto di al più n+1 riflessioni.

Lemma 1. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Allora f ha solo autovalori reali⁶.

Dimostrazione. Si assuma che V è uno spazio euclideo complesso, e quindi che φ è un prodotto hermitiano. Allora, se f è hermitiano, sia $\lambda \in \mathbb{C}$ un suo

 $^{^6 {\}rm Nel}$ caso di f simmetrico, si intende in particolare che tutte le radici del suo polinomio caratteristico sono reali.

autovalore⁷ e sia $\underline{v} \in \lambda$. Allora $\varphi(\underline{v}, f(\underline{v})) = \varphi(f(\underline{v}), \underline{v}) = \overline{\varphi(\underline{v}, f(\underline{v}))} \implies \varphi(\underline{v}, f(\underline{v})) \in \mathbb{R}$. Inoltre vale la seguente identità:

$$\varphi(\underline{v}, f(\underline{v})) = \varphi(\underline{v}, \lambda \underline{v}) = \lambda \varphi(\underline{v}, \underline{v}),$$

da cui, ricordando che φ è non degenere e che $\varphi(\underline{v},\underline{v}) \in \mathbb{R}$, si ricava che:

$$\lambda = \frac{\varphi(\underline{v}, f(\underline{v}))}{\varphi(\underline{v}, \underline{v})} \in \mathbb{R}.$$

Sia ora invece V è uno spazio euclideo reale e φ è un prodotto scalare. Allora, $(V_{\mathbb{C}}, \varphi_{\mathbb{C}})$ è uno spazio euclideo complesso, e $f_{\mathbb{C}}$ è hermitiano. Sia \mathcal{B} una base di V. Allora, come visto all'inizio di questa dimostrazione, $f_{\mathbb{C}}$ ha solo autovalori reali, da cui si ricava che il polinomio caratteristico di $f_{\mathbb{C}}$ è completamente riducibile in \mathbb{R} . Si osserva inoltre che $p_f(\lambda) = \det(M_{\mathcal{B}}(f) - \lambda I_n) = \det(M_{\mathcal{B}}(f_{\mathbb{C}}) - \lambda I_n) = p_{f_{\mathbb{C}}}(\lambda)$. Si conclude dunque che anche p_f è completamente riducibile in \mathbb{R} .

Osservazione. Dal lemma precedente consegue immediatamente che se $A \in M(n, \mathbb{R})$ è simmetrica (o se appartiene a $M(n, \mathbb{C})$ ed è hermitiana), considerando l'operatore simmetrico f_A indotto da A in \mathbb{R}^n (o \mathbb{C}^n), f_A ha tutti autovalori reali, e dunque così anche A.

Lemma 2. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Allora se λ , μ sono due autovalori distinti di f, $V_{\lambda} \perp V_{\mu}$.

Dimostrazione. Siano $\underline{v} \in V_{\lambda}$ e $\underline{w} \in V_{\mu}$. Allora⁸ $\lambda \varphi(\underline{v}, \underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \varphi(f(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(\underline{v}, \mu \underline{w}) = \mu \varphi(\underline{v}, \underline{w})$. Pertanto vale la seguente identità:

$$(\lambda - \mu)\varphi(\underline{v}, \underline{w}) = 0.$$

In particolare, valendo $\lambda - \mu \neq 0$ per ipotesi, $\varphi(\underline{v}, \underline{w}) = 0 \implies V_{\lambda} \perp V_{\mu}$, da cui la tesi.

Lemma 3. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Se $W \subseteq V$ è f-invariante, allora anche W^{\perp} lo è.

 $^{^7}$ Tale autovalore esiste sicuramente dal momento che $\mathbb{K}=\mathbb{C}$ è un campo algebricamente chiuso.

 $^{^8}$ Si osserva che non è stato coniugato λ nei passaggi algebrici, valendo $\lambda \in \mathbb{R}$ dallo scorso lemma.

Dimostrazione. Siano $\underline{w} \in W$ e $\underline{v} \in W^{\perp}$. Allora $\varphi(\underline{w}, f(\underline{v})) = \varphi(\underbrace{f(\underline{w})}, \underline{v}) = 0$, da cui si ricava che $f(\underline{v}) \in W^{\perp}$, ossia la tesi.

Teorema (spettrale reale). Sia (V, φ) uno spazio euclideo reale (o complesso) e sia $f \in \operatorname{End}(V)$ simmetrico (o hermitiano). Allora esiste una base ortogonale \mathcal{B} di V composta di autovettori per f.

Dimostrazione. Siano $\lambda_1, ..., \lambda_k$ tutti gli autovalori reali di f. Sia inoltre $W = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$. Per i lemmi precedenti, vale che:

$$W = V_{\lambda_1} \oplus^{\perp} \cdots \oplus^{\perp} V_{\lambda_k}.$$

Sicuramente $W \subset V$. Si assuma però che $W \subsetneq V$. Allora $V = W \oplus^{\perp} W^{\perp}$. In particolare, per il lemma precedente, W^{\perp} è f-invariante. Quindi $f|_{W^{\perp}}$ è un endomorfismo di uno spazio di dimensione non nulla. Si osserva che $f|_{W^{\perp}}$ è chiaramente simmetrico (o hermitiano), essendo solo una restrizione di f. Allora $f|_{W^{\perp}}$ ammette autovalori reali per i lemmi precedenti; tuttavia questo è un assurdo, dal momento che ogni autovalore di $f|_{W^{\perp}}$ è anche autovalore di f e si era supposto che⁹ $\lambda_1, ..., \lambda_k$ fossero tutti gli autovalori di f, f. Quindi W = V. Pertanto, detta \mathcal{B}_i una base ortonormale di V_{λ_i} , $\mathcal{B} = \cup_{i=1}^k \mathcal{B}_i$ è una base ortonormale di V, da cui la tesi.

Corollario (teorema spettrale per le matrici). Sia $A \in M(n, \mathbb{R})$ simmetrica (o appartenente a $M(n, \mathbb{C})$ ed hermitiana). Allora $\exists P \in O_n$ (o $P \in U_n$) tale che $P^{-1}AP = P^{\top}AP$ (o $P^{-1}AP = P^*AP$ nel caso hermitiano) sia una matrice diagonale reale.

Dimostrazione. Si consideri f_A , l'operatore indotto dalla matrice A in \mathbb{R}^n (o \mathbb{C}^n). Allora f_A è un operatore simmetrico (o hermitiano) sul prodotto scalare (o hermitiano) standard. Pertanto, per il teorema spettrale reale, esiste una base ortonormale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ composta di autovettori di f_A . In particolare, detta \mathcal{B}' la base canonica di \mathbb{R}^n (o \mathbb{C}^n), vale la seguente identità:

$$M_{\mathcal{B}}(f) = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{Id})^{-1}M_{\mathcal{B}'}(f)M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{Id}),$$

dove $M_{\mathcal{B}'}(f) = A$, $M_{\mathcal{B}}(f)$ è diagonale, essendo \mathcal{B} composta di autovettori, e $P = M_{\mathcal{B}'}^{\mathcal{B}}$ si configura nel seguente modo:

⁹Infatti tale autovalore λ non può già comparire tra questi autovalori, altrimenti, detto $i \in \mathbb{N}$ tale che $\lambda = \lambda_i$, $V_{\lambda_i} \cap W^{\perp} \neq \{0\}$, violando la somma diretta supposta.

$$M_{\mathcal{B}'}^{\mathcal{B}}(f) = (\underline{v_1} \mid \cdots \mid \underline{v_n}).$$

Dacché \mathcal{B} è ortogonale, P è anch'essa ortogonale, da cui la tesi.

Osservazione.

▶ Un importante risultato che consegue direttamente dal teorema spettrale per le matrici riguarda la segnatura di un prodotto scalare (o hermitiano). Infatti, detta $A = M_{\mathcal{B}}(\varphi)$, $D = P^{\top}AP$, e dunque $D \cong A$. Allora, essendo D diagonale, l'indice di positività è esattamente il numero di valori positivi sulla diagonale, ossia il numero di autovalori positivi di A. Analogamente l'indice di negatività è il numero di autovalori negativi, e quello di nullità è la molteplicità algebrica di 0 come autovalore (ossia esattamente la dimensione di $V_{\varphi}^{\perp} = \operatorname{Ker} a_{\varphi}$).

Teorema (di triangolazione con base ortonormale). Sia $f \in \text{End}(V)$, dove (V, φ) è uno spazio euclideo su \mathbb{K} . Allora, se p_f è completamente riducibile in \mathbb{K} , esiste una base ortonormale \mathcal{B} tale per cui $M_{\mathcal{B}}(f)$ è triangolare superiore (ossia esiste una base ortonormale a bandiera per f).

Dimostrazione. Per il teorema di triangolazione, esiste una base \mathcal{B} a bandiera per f. Allora, applicando l'algoritmo di ortogonalizzazione di Gram-Schmidt, si può ottenere da \mathcal{B} una nuova base \mathcal{B}' ortonormale e che mantenga le stesse bandiere. Allora, se $\mathcal{B}' = \{\underline{v_1}, \dots, \underline{v_n}\}$ è ordinata, dacché $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i})$ è f-invariante, $f(\underline{v_i}) \in \operatorname{Span}(\underline{v_1}, \dots, \underline{v_i})$, e quindi $M_{\mathcal{B}'}(f)$ è triangolare superiore, da cui la tesi.

Corollario. Sia $A \in M(n, \mathbb{R})$ (o $M(n, \mathbb{C})$) tale per cui p_A è completamente riducibile. Allora $\exists P \in O_n$ (o U_n) tale per cui $P^{-1}AP = P^{\top}AP$ (o $P^{-1}AP = P^*AP$) è triangolare superiore.

Dimostrazione. Si consideri l'operatore f_A indotto da A in \mathbb{R}^n (o \mathbb{C}^n). Sia \mathcal{B} la base canonica di \mathbb{R}^n (o di \mathbb{C}^n). Allora, per il teorema di triangolazione con base ortonormale, esiste una base ortonormale $\mathcal{B}' = \{\underline{v_1}, \dots, \underline{v_n}\}$ di \mathbb{R}^n (o di \mathbb{C}^n) tale per cui $T = M_{\mathcal{B}'}(f_A)$ è triangolare superiore. Si osserva inoltre che $M_{\mathcal{B}}(f_A) = A$ e che $P = M_{\mathcal{B}'}^{\mathcal{B}'}(f_A) = (\underline{v_1} \mid \dots \mid \underline{v_n})$ è ortogonale (o unitaria), dacché le sue colonne formano una base ortonormale. Allora, dalla formula del cambiamento di base per la applicazioni lineari, si ricava che:

$$A = PTP^{-1} \implies T = P^{-1}TP,$$

da cui, osservando che $P^{-1} = P^{\top}$ (o $P^{-1} = P^*$), si ricava la tesi. \square

Definizione (operatore normale). Sia (V, φ) uno spazio euclideo reale. Allora $f \in \text{End}(V)$ si dice **normale** se commuta con il suo trasposto (i.e. se $ff^{\top} = f^{\top}f$). Analogamente, se (V, φ) è uno spazio euclideo complesso, allora f si dice normale se commuta con il suo aggiunto (i.e. se $ff^* = f^*f$).

Definizione (matrice normale). Una matrice $A \in M(n, \mathbb{R})$ (o $M(n, \mathbb{C})$) si dice **normale** se $AA^{\top} = A^{\top}A$ (o $AA^* = A^*A$).

Osservazione.

- ▶ Se $A \in M(n, \mathbb{R})$ e A è simmetrica $(A = A^{\top})$, antisimmetrica $(A = -A^{\top})$ o ortogonale $(AA^{\top} = A^{\top}A = I_n)$, sicuramente A è normale.
- ▶ Se $A \in M(n, \mathbb{C})$ e A è hermitiana $(A = A^*)$, antihermitiana $(A = -A^*)$ o unitaria $(AA^* = A^*A = I_n)$, sicuramente A è normale.
- \blacktriangleright f è normale $\iff M_{\mathcal{B}}(f)$ è normale, con \mathcal{B} ortonormale di V.
- ▶ A è normale $\iff f_A$ è normale, considerando che la base canonica di \mathbb{C}^n è già ortonormale rispetto al prodotto hermitiano standard.
- ▶ Se V è euclideo reale, f è normale $\iff f_{\mathbb{C}}$ è normale. Infatti, se f è normale, f e f^{\top} commutano. Allora anche $f_{\mathbb{C}}$ e $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$ commutano, e quindi $f_{\mathbb{C}}$ è normale. Ripercorrendo i passaggi al contrario, si osserva infine che vale anche il viceversa.

Lemma 1. Sia $A \in M(n,\mathbb{C})$ triangolare superiore e normale (i.e. $AA^* = A^*A$). Allora A è diagonale.

Dimostrazione. Se A è normale, allora $(A^*)_i A^i = \overline{A}^i A^i$ deve essere uguale a $A_i(A^*)^i = A_i \overline{A}_i \ \forall 1 \leq i \leq n$. Si dimostra per induzione su i da 1 a n che tutti gli elementi, eccetto per quelli diagonali, delle righe $A_1, ..., A_i$ sono nulli.

(passo base) Si osserva che valgono le seguenti identità:

$$\overline{A}^1 A^1 = |a_{11}|^2,$$

$$A_1 \overline{A}_1 = |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{1n}|^2.$$

Dovendo vale l'uguaglianza, si ricava che $|a_{12}|^2 \dots + |a_{1n}|^2$, e quindi che $|a_{1i}|^2 = 0 \implies a_{1i} = 0 \quad \forall \, 2 \leq i \leq n$, dimostrando il passo base¹⁰.

(passo induttivo) Analogamente a prima, si considerano le seguenti identità:

 $^{^{10}\}mathrm{Gli}$ altri elementi sono infatti già nulli per ipotesi, essendo Atriangolare superiore

$$\overline{A}^i A^i = |a_{1i}|^2 + \ldots + |a_{ii}|^2 = |a_{ii}|^2,$$

 $A_i \overline{A}_i = |a_{ii}|^2 + |a_{i(i+1)}|^2 + \ldots + |a_{in}|^2,$

dove si è usato che, per il passo induttivo, tutti gli elementi, eccetto per quelli diagonali, delle righe $A_1, ..., A_{i-1}$ sono nulli. Allora, analogamente a prima, si ricava che $a_{ij} = 0 \quad \forall i < j \leq n$, dimostrando il passo induttivo, e quindi la tesi.

Osservazione. Chiaramente vale anche il viceversa del precedente lemma: se infatti $A \in M(n, \mathbb{C})$ è diagonale, A è anche normale, dal momento che commuta con A^* .

Teorema. Sia (V, φ) uno spazio euclideo complesso. Allora f è un operatore normale \iff esiste una base ortonormale \mathcal{B} di autovettori per f.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Poiché \mathbb{C} è algebricamente chiuso, p_f è sicuramente riducibile. Pertanto, per il teorema di triangolazione con base ortonormale, esiste una base ortonormale \mathcal{B} a bandiera per f. In particolare, $M_{\mathcal{B}}(f)$ è sia normale che triangolare superiore. Allora, per il Lemma 1, $M_{\mathcal{B}}(f)$ è diagonale, e dunque \mathcal{B} è anche una base di autovettori per f.

(\Leftarrow) Se esiste una base ortonormale \mathcal{B} di autovettori per f, $M_{\mathcal{B}}(f)$ è diagonale, e dunque anche normale. Allora, poiché \mathcal{B} è ortonormale, anche f è normale.

Corollario. Sia $A \in M(n, \mathbb{C})$. Allora A è normale $\iff \exists U \in U_n$ tale che $U^{-1}AU = U^*AU$ è diagonale.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia \mathcal{B} la base canonica di \mathbb{C}^n . Si consideri l'applicazione lineare f_A indotta da A su \mathbb{C}^n . Se A è normale, allora anche f_A lo è. Pertanto, per il precedente teorema, esiste una base ortonormale $\mathcal{B}' = \{\underline{v_1}, \ldots, \underline{v_n}\}$ di autovettori per f_A . In particolare, $U = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}) = (\underline{v_1} \mid \cdots \mid \underline{v_n})$ è unitaria $(U \in U_n)$, dacché le colonne di U sono ortonormali. Si osserva inoltre che $M_{\mathcal{B}}(f_A) = A$ e che $D = M_{\mathcal{B}'}(f_A)$ è diagonale. Allora, per la formula del cambiamento di base per le applicazioni lineari, si conclude che:

$$A = UDU^{-1} \implies D = U^{-1}AU = U^*AU,$$

ossia che U^*AU è diagonale.

(\iff) Sia $D=U^*AU$. Dacché D è diagonale, D è anche normale. Pertanto $DD^*=D^*D$. Sostituendo, si ottiene che $U^*AUU^*A^*U=U^*A^*UU^*AU$. Ricordando che $U^*U=I_n$ e che $U\in U_n$ è sempre invertibile, si conclude che $AA^*=A^*A$, ossia che A è normale a sua volta, da cui la tesi. \square