兰州大学信息科学与工程学院实验报告

实验成绩:

学生姓名:	杨添宝
学 号:	320170941671,6 组 17 号
年级专业:	2017级计算机基地班
指导老师:	
实验课程:	数字逻辑实验
实验题目:	加法器

一、实验目的

- (1) 掌握加法器的原理、设计和应用。
- (2) 了解加法器中对控制信号时序的要求。

二、实验原理

1. 算术逻辑运算单元

算术逻辑运算单元(ALU)74LS181是一种功能较强的组合逻辑电路,它能进行多种算术运算和逻辑运算。它的基本逻辑结构是超前进位加法器。其全部功能可查阅有关手册(如果对补码不熟悉,就看不懂功能表的算术运算部分)。这里仅对要用到的加以介绍,采用正逻辑介绍。

 $S_3 \sim S_0$: 工作方式选择。

M: 当 M = H 时,进行逻辑运算; M = L 时,进行算术运算。取 M = L。

 $A = A_3 \sim A_0$, $B = B_3 \sim B_0$: 参加运算的两个数(注脚3表示最高位)。

 $F_3 \sim F_0$: 运算结果。

CN: 最低位进位输入,CN=H时,表示无进位输入;CN=L时,有进位输入。取CN=H。

CN+4: 最高位进位输出,低电平有效。

A = B: 当 $F_3 \sim F_0$ 全为高电平时为 1, 否则为 0.

G 称为进位发生输出,P 称为进位传送输出。它们是为了便于实现多芯片 ALU 之间的超前进位用的,在实验中不用。

74LS181 的引脚如图 1 所示。正逻辑操作数方式时,输入、输出信号的极性和图 1 中所标的正好相反,和上面所说的一致。当 $S_3 \sim S_0 = \text{HLLH}$ (即= 1001),M = 0,CN = 1 时,其功能是 F = A 加 B(算术加,包括进位位)。

2. 加法器

加法器是计算机中的重要部件,这里给出它的基本逻辑框图(见图 3)。根据 此图,作一次加法运算的步骤(也叫程序)是:

- (1) 在做加法运算之前, 先让累加器 AC 清零。
- (2) 把数据总线(例如,在计算机中其上的数据来源于存储器)上的被加数寄存到数据寄存器 B上,再通过 ALU,把被加数放到累加器 AC中。

- (3) 把数据总线上的加数放到寄存器 B 中。这时 ALU 的输出即为和数。
- (4) 把和数存放到累加器 AC 上。这样,就完成了一次加运算。

三、实验器件

ALU 74LS181、4D 上升沿触发器 74LS175、3 输入三与非门 74LS10 等。

图 174LS181 和 74LS175 逻辑引脚图

图 2 3 输入三与非门 74LS10 引脚图

四、实验内容

(1) 按图 3 设计一个 4 位加法器,要求累加器 AC 和数据寄存器 B 用 74LS175。ALU 的输出(包括进位输出)和 AC 输出由 LED 指示,输入的数据 用置数开关模拟,寄存器的打入脉冲用手动单脉冲发生器(也叫逻辑开关,而 手动置数开关有抖动毛刺,不能用。为什么?)加入,"清零"用按键开关。安装并调试。注意各控制信号的时序要求。

(2) 选做:设计一个1位十进制(8421BCD码)加法器,包括进位输出。

提示:用上述(1)中的实验电路作加法,当 Σ 的输出(CN+4, F_3 , F_2 , F_1 , F_0)为和时,将此结果进行二进制对十进制的转换,两个一位十

进制数相加, 其范围是 $0 \sim 18$, 当和 ≤ 9 时, 直传; 当和 ≥ 10 时, 加 6。

注意: 这时 CN + 4 应参与判断, 当和≥10 时, 判断电路输出 1, 该输出同时也是变换结果的进位输出。

在计算机中,转换电路不是像实验中用 ALU 芯片做的,而是用门电路做成专用电路。

五、实验报告和思考题

(1) 画出实验电路图,说明测试方法,列出测试结果,并作必要讨论。

①4 位加法器:

在本次实验中,由于寄存器的数量不足,数据寄存器 B 对应的引脚 $B_0 \sim B_3$ 以固定值 0001 代替。此外,累加器 AC 采用 4D 上升沿触发器 74LS175,它的 4 个数据输入是上一次 ALU 运算的输出结果。

时钟脉冲 CLK 上升沿触发,这里将 CLK 与单脉冲发生器 SP1 连接,如此能保证每次按下开关只产生一个单脉冲,从而控制 ALU 进行一次加法运算,若使用手动置数开关会有较多抖动毛刺,得到的不是单脉冲。CLR 用于手动清零,在加法运算前需要将其将其置 0 一次。为了使 ALU 74LS181 进行算术加运算,需要设置 $S_3 \sim S_0 = 1001$ 、M = 0、CN = 1。CN + 4 端为最高位进位输出,用于观察是否有进位。

因此,我们设计4位加法器的电路图如下:

图 4 4 位加法器电路图

测试电路的逻辑功能时,首先将 CLR 清零,使得累加寄存器 AC 输出全为 0,然后进行累加操作:每当发出一个时钟脉冲,计算结果就相应加 1,直到四位数据都为 1111,产生高位进位 CN+4 变为 1,此后再发出时钟脉冲,数据全部回到 0000,CN+4 重新变为 0,恢复清零后的状态。

这个过程使用表格记录如下:

	输	出	信	号	CN I A
操 作 步 骤	$\mathbf{D_4}$	\mathbf{D}_3	$\mathbf{D_2}$	\mathbf{D}_1	CN + 4
CLR 清零	0	0	0	0	0
CLK	0	0	0	1	0
CLK	0	0	1	0	0
CLK	0	0	1	1	0
CLK	0	1	0	0	0
CLK	0	1	0	1	0
CLK	0	1	1	0	0
CLK	0	1	1	1	0
CLK	1	0	0	0	0
CLK	1	0	0	1	0
CLK	1	0	1	0	0
CLK	1	0	1	1	0
CLK	1	1	0	0	0
CLK	1	1	0	1	0
CLK	1	1	1	0	0
CLK	1	1	1	1	1

②1位十进制加法器:

我们用二进制加法器对两个数相加,并看其和是否大于 10。若和大于 10,则必须在结果处加 6 (0110)。十进制加法器共使用了两个二进制加法器。进位检测电路检测的是第一个加法器(包括进位)的输出。

列出进位检测电路的真值表如下:

7 - 2111 37 7 12 7									
CN + 4		修正前的输出							
CN + 4	F ₃	F_2	F_1	F_0	С				
0	0	×	×	×	0				
0	1	0	0	×	0				
0	1	0	1	×	1				
0	1	1	×	×	1				
1	×	×	×	×	1				

表 1 进位检测电路真值表

画出卡诺图并化简上述真值表得到如下表达式:

$$C = CN + 4 + F_1F_3 + F_2F_3$$

因此画出电路图如下:

图 5 1 位十进制加法器电路图

若加法器的输出大于 9,则检测电路输出 1。这就是十进制加法器的进位输出,同时也是校正指示位。当进位输出为 1 时,第一个加法器得到的结果加 6;当进位输出为 0 时,第一个加法器得到的结果不变(加 0)。经过测试,在 两数之和大于 9 的情况下,进位被置为 1,满足要求。

- (2) 画出输入数据,各控制信号的时序图。
- 4位加法器的各控制信号的时序图如下:

(3) 思考题: 锁存器和寄存器有何不同? 在实验中,如果把寄存器 B 换成锁存器行不行? 把累加寄存器 AC 用锁存器代替行吗? 为什么?

锁存器:

电平有效时,输出随输入的变化而变化。时钟有效先于数据有效。由若干个钟控 D 触发器构成的一次能存储多位二进制代码的时序逻辑电路,当电平有效时相当于组合逻辑。

缺点:容易产生毛刺,电平有效时可能会发生空翻,容易引起时序上的混乱。

寄存器:

边沿触发的存储单元,只有在边沿数据才发生变化,一个周期里只能变化一次。时钟有效后于数据有效。由若干个正沿 D 触发器构成的一次能存储多为二进制代码的时序逻辑电路。

在理想情况下,寄存器可以用锁存器代替,但锁存器的时钟信号中可能存 在毛刺,从而导致空翻影响电路的稳定性。

六、实验收获体会和改进建议

通过本次实验,我了解了 ALU 和寄存器的工作原理,学会了设计十进制加 法器的方法,复习了时序图的绘制方法,了解了锁存器与寄存器的区别。