#### Problem 3

Manually design MLP network to perform the XOR Gate with the truth table and its plot on 2D as follows:

| X1 | . X2 | Y | 1.0 -               |
|----|------|---|---------------------|
| 0  | 0    | 0 | 0.8 -               |
| 0  | 1    | 1 | 0.6 -<br>Q<br>0.4 - |
| 1  | 0    | 1 | 0.2 -               |
| 1  | 1    | 0 | 0.0 -               |



Start with uniform random initialization for parameters  $w_{ij}$ . Perform forward and backward pass in the following case:

- 1. Activation function is (a) Sigmod (b) ReLu, (c)Tanh
- 2. Divergence is defined as (a) L2\_norm, (b) cross entropy
- 3. Train the network for 2 iterations (3 forward pass and 2 backward pass)

Please report the parameters and actual output from the MLP in each iteration

#### **Solution:**

#### **Results:**

- 1. Activation function = "Sigmoid":
  - (a) Loss function = "L2\_norm":

| Iteration #                        | Hidden_Layer                                 | Hidden_Layer    | Output_Layer                   | Output_Layer   | <u>Output</u>                                                      |
|------------------------------------|----------------------------------------------|-----------------|--------------------------------|----------------|--------------------------------------------------------------------|
|                                    | _Weights                                     | <u>_bias</u>    | _Weights                       | <u>_bias</u>   |                                                                    |
| 1                                  | [[4.17e-01 7.20e-01]<br>[2.88e-04 3.02e-01]] | [[0.186 0.186]] | [[0.1533]<br>[0.0994]]         | [[0.35657451]] | [[0.61685237]<br>[0.61845272]<br>[0.62391468]<br>[0.62516723]]     |
| 2                                  | [[4.17e-01 7.20e-01]<br>[2.95e-04 3.02e-01]] | [[0.186 0.186]] | [[0.1535]<br>[0.0997]]         | [[0.35699465]] | [[0.621227]<br>[0.62294524]<br>[0.62868852]<br>[0.63003223]]       |
| 3 <sup>rd</sup><br>Forward<br>Pass | [[4.17e-01 7.20e-01]<br>[2.95e-04 3.02e-01]] | [[0.186 0.186]] | [[0.15359096]<br>[0.09975817]] | [[0.35699465]] | [[0.62139453]<br>[0.62311739]<br>[<br>0.62887147]<br>[0.63021874]] |

(b) Loss function = "cross entropy":

| Iteration # | Hidden_Layer                                 | Hidden_Layer    | Output_Layer           | Output_Layer   | <u>Output</u>                                                  |
|-------------|----------------------------------------------|-----------------|------------------------|----------------|----------------------------------------------------------------|
|             | _Weights                                     | <u>_bias</u>    | _Weights               | <u>_bias</u>   |                                                                |
| 1           | [[4.17e-01 7.20e-01]<br>[2.94e-04 3.02e-01]] | [[0.186 0.186]] | [[0.1535]<br>[0.0997]] | [[0.35692588]] | [[0.62139453]<br>[0.62311739]<br>[0.62887147]<br>[0.63021874]] |

| 2                                  | [[4.17e-01 7.20e-01]<br>[2.94e-04 3.02e-01]] | [[0.186 | 0.186]] | [[0.1535]<br>[0.0997]]         | [[0.35693714]] | [[0.6213671]<br>[0.62308921]<br>[0.62884152]<br>[0.63018821]] |
|------------------------------------|----------------------------------------------|---------|---------|--------------------------------|----------------|---------------------------------------------------------------|
| 3 <sup>rd</sup><br>Forward<br>Pass | [[4.17e-01 7.20e-01]<br>[2.94e-04 3.02e-01]] | [[0.186 | 0.186]] | [[0.15355652]<br>[0.09971985]] | [[0.35693714]] | [[0.62137159]<br>[0.62309382]<br>[0.62884642]<br>[0.6301932]] |

## 2. Activation function = "ReLu":

(a) Loss function = "L2\_norm":

| Iteration #                        | Hidden_Layer                                 | Hidden_Layer        | Output_Layer                  | Output_Layer   | <u>Output</u>                                                  |
|------------------------------------|----------------------------------------------|---------------------|-------------------------------|----------------|----------------------------------------------------------------|
|                                    | _Weights                                     | <u>_bias</u>        | _Weights                      | <u>_bias</u>   |                                                                |
| 1                                  | [[ 0.41493                                   | [[0.17284 0.17284]] | [[0.13699]<br>[0.07115]]      | [[0.3015187]]  | [[0.40426918]<br>[0.43447352]<br>[0.54017733]<br>[0.57038167]] |
| 2                                  | [[ 0.41221                                   | [[0.16573 0.16573]] | [[0.12291]<br>[0.045]]        | [[0.26735965]] | [[0.34208635]<br>[0.43274728]<br>[0.35289814]<br>[0.64103395]] |
| 3 <sup>rd</sup><br>Forward<br>Pass | [[0.41221 0.71754]<br>[-0.00598<br>0.29867]] | [[0.16573 0.16573]] | [[0.12291263]<br>[0.0455603]] | [[0.26735965]] | [[0.36520978]<br>[0.46835011]<br>[0.39459023]<br>[0.66166997]] |

# (b) Loss function = "cross entropy":

| Iteration #     | Hidden_Layer        | Hidden_Layer | Output_Layer   | Output_Layer   | Output        |
|-----------------|---------------------|--------------|----------------|----------------|---------------|
|                 | _Weights            | <u>_bias</u> | _Weights       | <u>_bias</u>   |               |
| 1               | [[0.41956 0.72026]  | [[0.18319851 | [[0.16443078]  | [[0.37103171]] | [[0.36520978] |
| 1               | [0.00076 0.30118]]  | 0.18319851]] | [0.12209497]]  |                | [0.46835011]  |
|                 |                     |              |                |                | [0.39459023]  |
|                 |                     |              |                |                | [0.66166997]] |
| 2.              | [[ 0.39022          | [[0.09944918 | [[ 0.03588006] | [[0.07873921]] | [[0.35136858] |
| -               | [-0.02502 0.2820]]  | 0.09944918]] | [-0.10725715]] |                | [0.44136289]  |
|                 |                     |              |                |                | [0.35136858]  |
|                 |                     |              |                |                | [0.71886144]] |
| 3 <sup>rd</sup> | [[0.3902 0.69847]   | [[0.09944918 | [[ 0.03588006] | [[0.07873921]] | [[0.35006347] |
| г 1             | [-0.02502 0.28202]] | 0.09944918]] | [-0.10725715]] |                | [0.65385821]  |
| Forward         |                     |              |                |                | [0.64978023]  |
| Pass            |                     |              |                |                | [1.23263521]] |

# 3. Activation function = "Tanh":

(a) Loss function = "L2\_norm":

| Iteration # | Hidden_Layer | Hidden_Layer                 | Output_Layer                     | Output_Layer    | <u>Output</u>                                                  |
|-------------|--------------|------------------------------|----------------------------------|-----------------|----------------------------------------------------------------|
|             | _Weights     | <u>_bias</u>                 | _Weights                         | <u>_bias</u>    |                                                                |
| 1           | [[ 0.38676   | [[0.10855063<br>0.10855063]] | [[-0.02232229]<br>[-0.21101983]] | [[-0.11444101]] | [[0.84237693]<br>[0.90311116]<br>[0.95375232]<br>[0.96533756]] |
| 2           | [[ 0.38775   | [[0.12585137<br>0.12585137]] | [[-0.05040367]<br>[-0.26152037]] | [[-0.2115684]]  | [[0.8100415]<br>[0.88303578]                                   |

|                                    |            |                              |                                  |                | [0.94516725]<br>[0.95935902]]                                  |
|------------------------------------|------------|------------------------------|----------------------------------|----------------|----------------------------------------------------------------|
| 3 <sup>rd</sup><br>Forward<br>Pass | [[ 0.38775 | [[0.12585137<br>0.12585137]] | [[-0.05040367]<br>[-0.26152037]] | [[-0.2115684]] | [[0.76673228]<br>[0.85577097]<br>[0.93355129]<br>[0.95138511]] |

### (b) Loss function = "cross entropy":

| Iteration #                        | Hidden_Layer | Hidden_Layer                 | Output_Layer                     | Output_Layer    | <u>Output</u>                                                  |
|------------------------------------|--------------|------------------------------|----------------------------------|-----------------|----------------------------------------------------------------|
|                                    | _Weights     | <u>_bias</u>                 | _Weights                         | <u>_bias</u>    |                                                                |
| 1                                  | [[ 0.38938   | [[0.15097123<br>0.15097123]] | [[-0.07548259]<br>[-0.30574885]] | [[-0.31034454]] | [[0.76673228]<br>[0.85577097]<br>[0.93355129]<br>[0.95138511]] |
| 2                                  | [[ 0.3907    | [[0.1689692<br>0.1689692]]   | [[-0.09136964]<br>[-0.33263613]] | [[-0.36845206]] | [[0.96937507]<br>[0.98251721]<br>[0.98994769]<br>[0.99208102]] |
| 3 <sup>rd</sup><br>Forward<br>Pass | [[ 0.3907    | [[0.1689692<br>0.1689692]]   | [[-0.09136964]<br>[-0.33263613]] | [[-0.36845206]] | [[0.99731293]<br>[0.99835904]<br>[0.99886269]<br>[0.99903997]] |

#### **Problem 4**

Building a MLP with one hidden layer to perform classification task with the following description:

## + Training data (X, Y):

Training data contains  $N_1 = 10,000$  points in 2-dimentional space and are followed by the uniform radius between 0 and 2 and its label is 1 is it is inside the yellow circle, otherwise it is 0 + Validation data (X, Y):

Validation data contains  $N_2 = 2,000$  points in 2-dimentional space and are followed by the uniform radius between 0 and 2 and its label is 1 is it is inside the yellow circle, otherwise it is 0

### + Testing data (X, Y):

Testing data contains  $N_2 = 2,000$  points in 2-dimentional space and are followed by the uniform radius between 0 and 2 and its label is 1 is it is inside the yellow circle, otherwise it is 0



Assume that we use CrossEntropyLoss (nn. CrossEntropyLoss) and GradientDescent(torch.optim.SGD) with lr=0.01

Report the training loss, validation loss, testing accuracy (in number and visualized by figure) in the following case

- + Train the MLP with 10 iterations
- + Train the MLP with 100 iterations
- + Train the MLP with 1000 iterations

Note: use import matplotlib.pyplot to plot figures

### **Solution:**

### After training with 10 iterations:

| Parameters       | Value      | Plot                                                     |
|------------------|------------|----------------------------------------------------------|
| Training loss    | 0.69662243 | 2.0                                                      |
| Validation loss  | 0.6973139  | 15 -                                                     |
| Testing accuracy | 0.4485     | 1.0 - 0.50.51.01.52.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 |

# After training with 100 iterations:

| Parameters       | Value     | Plot                                          |
|------------------|-----------|-----------------------------------------------|
| Training loss    | 0.702289  | 2.0                                           |
| Validation loss  | 0.7016716 | 15                                            |
| Testing accuracy | 0.4525    | 1.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 1.0 1.5 2.0 |

# After training with 1000 iterations:

| Parameters       | Value     | Plot                                                    |
|------------------|-----------|---------------------------------------------------------|
| Training loss    | 0.6067765 | 2.0                                                     |
| Validation loss  | .60660905 | 15                                                      |
| Testing accuracy | 0.8995    | 1.0 - 0.5 -                                             |
|                  |           | 0.0  <br>-0.5                                           |
|                  |           | -1.0                                                    |
|                  |           | -1.5<br>-2.0<br>-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 |