BASIC SCIENCES DEPARTMENT

Math 101 Final Exam 1441 H.

First Semester

السنة الأولى المشتركة

	- mic Michel - 2 HO	ML2	-	٠	
St. Name:	St. ID:	Section:			

ملاحظات:

1- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإحاية على ورقة الأسئلة غبر معتمدة).

علمًا بأن عدد الأسئلة (5)، وعدد الصفحات (2).

2- لا يسمع بالكتابة إلا بالقلم الأزرق فقط.

(13 Marks)

- 3- الايسمع بتنوال الآلة الحاسبة بين الطلاب.
- لايسمح باستخدام آلة حاسبة قابلة للبرمجة أو آلة حاسبة ترسم دوال.

Question 1:

A) Find the domain of

$$f(x) = \frac{1}{x-2}.$$

- B) Use the definition of the limit to prove that $\lim_{x\to 1} (2x+4) = 6$.
- C) Evaluate each of the following limits (if exist):

1)
$$\lim_{x\to 3} (x^2 - x + 1)$$

2)
$$\lim_{x \to 4} \frac{\sqrt{x+5} - 3}{x-4}$$

3)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$$

4)
$$\lim_{x \to \infty} \frac{2x^3 + 4x^2 + 5}{5x^3 + 7}$$

$$5) \quad \lim_{x \to 0} x^4 \cos\left(\frac{2}{x^4}\right)$$

D) Let
$$f(x) = \begin{cases} \frac{\sin(3x)}{kx} &, & x < 0 \\ k(1-x) + 2 &, & x \ge 0 \end{cases}$$
.

Find the value(s) of k such that $\lim_{x\to 0} f(x)$ exists.

(6 Marks

Question 2:

A) Discuss the continuity of
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ 4, & x = 3 \end{cases}$$
 at $x = 3$.

- B) The position of a particle is given by the equation $s(t) = 2t^5 3t + 10$, where s seconds.
 - 1- What is the velocity of the particle after 2 seconds?
 - 2- What is the acceleration of the particle after 2 seconds?
- C) Find the equation of tangent line of $y = \frac{1}{x}$ at x = 4.

Question 3:

(9 Marks)

Find the derivative $\frac{dy}{dx}$ for each of the following. Write your answer in the simplest form:

A)
$$y = 2x^8 + 5x^4 + 3x^2 + 10$$

C)
$$y = \frac{x^3}{x^2 + 1}$$

E)
$$y = \tan^{-1}(2x)$$

B)
$$y = (2x+7)^{40}$$

$$D) y = \sin^4 x + \pi^2$$

$$F) x \tan y = x + y$$

Question 4:

(7 Marks)

- A) Show that the function $f(x) = x^2 3x + 1$ satisfies the conditions of the Mean Value Theorem [1, 3]. Find a number c that satisfies the conclusion of the theorem.
- B) Let $f(x) = \frac{1}{x^2 25}$. Find the vertical asymptote(s) of f.
- C) Find the value of k so that $f(x) = x^2 + \frac{x}{k}$ has a critical number at x = 3.

uestion 5:

(5 N

For the function $f(x) = x^3 - 6x^2$, find the following (if any):

- A) The critical numbers of f.
- B) The interval(s) on which f is increasing and decreasing.
- C) The local extrema of f.
- D) The interval(s) on which f is concave upward or downward.
- E) Sketch the graph of f.

Good Luck