QUALITATIVE AMALYSIS OF NONLINEAR SYSTEMS

FORMULATING GENERAL nth-ORDER SYSTEMS OF DIFFERENTIAL EQUATIONS INTO BYSTEMS OF FIRST-OPDER DIFFERENTIAL EQS ALLOWS INSIGUT INTO SYSTEM BEHAVIOUR WITHOUT ACTUALLY SOLVING THE EQUATIONS! THIS IS PARTICULARLY TRUE FOR 1- AND 2-DIMEN-SCONAL SYSPEMS, WHERE IT IS POSSIBLE TO SKETCH THE SOLJTIONS IN THEIR ENTIRETY ON A 2D-PIECE OF PAPER.

EK. LOGISTIC GROWTH:

dN = 1 N (1-N) MODELS A GROWING POPULATION N(t).

TUIS 15 A SEPARABLE EQUATION, BUT WE CAN (r,k>0)

E XPONENTIAL GROWTH

-rN2 is A TERM TO ACCOUNT FOR COMPETITION I'M WHEN NZK, REBOURCES
BECOME SCARCE.

GET AS MUCH (OR MORE) INSIGNT FROM LOOKING AT OVALITATIVE SOLJTIONS.

THE IDEA (DUE TO ELLER) IS TO REWGNIZE THAT digit IS THE SLOPE OF THE TANGENT LINE TO THE SOLUTION N(t) AT ANY POINT (tiNH). A PLOT OF THESESTANGENT LINES IS CALLED A "PHASE PORTRAIT". FOR NH)>0, THE EQUILIBRIA ARE N*=0,K

N(t) 1 b 1 1 1

SWPE OF LIN/LET

FOR INITIAL CONDITIONS N(0) =0, ALL SOLUTIONS TEND TO K:

lim N(t) = K

APPLY THIS SAME INTLITTON TO A SYSTEM: TWO POPULATIONS GROWING LOGISTICALLY & COMPETING WITH ONE ANOTHER:

$$\frac{dx}{dt} = e_1 \times \left[1 - \frac{\sigma_1}{e_1} \times \right] - \alpha_1 \times y$$

$$\frac{dy}{dt} = e_2 y \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_2 y \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

$$\frac{dy}{dt} = e_1 \times \left[1 - \frac{\sigma_2}{e_2} y \right] - \alpha_2 \times y$$

FIXED POINTS OR EQUILIBRIA POINTS ARE

$$\begin{array}{cccc} (\mathcal{O}, \mathcal{E}_{2}/\mathcal{O}_{2}) & (\mathcal{E}_{1}\mathcal{O}_{2} - \mathcal{E}_{2}\alpha_{1}, \mathcal{O}_{1}\mathcal{E}_{2} - \mathcal{E}_{1}\alpha_{2}) \\ \text{POPUL ATION} & \mathcal{O}_{1}\mathcal{O}_{2} - \alpha_{1}\alpha_{2}, \mathcal{O}_{1}\mathcal{O}_{2} - \alpha_{1}\alpha_{2} \\ \text{Y WINS} & \text{POPULATIONS CO-EXIST.} \end{array}$$

ARE MY OF THESE STABLE?

LOOK AT A COUPLE OF EXAMPLES -

CASE 1.
$$\frac{dx}{dt} = x \left(1 - x - y\right) \quad \frac{dy}{dt} = y \left(\frac{3}{4} - y - \frac{1}{2}x\right)$$

EQUIL BRIA:

THE JACOBIAN 15:
$$\frac{\partial \vec{f}}{\partial \dot{x}} = \begin{bmatrix} 1 - 2x - y & -x \\ -\frac{1}{2}y & \frac{3}{4} - 2y - \frac{1}{2}x \end{bmatrix} = J(x,y)$$

$$J(0,3/4) = \begin{bmatrix} 1/4 & 0 \\ -3/8 & -3/4 \end{bmatrix} \qquad J(1/2,1/2) = \begin{bmatrix} -1/2 & -1/2 \\ -1/4 & -1/2 \end{bmatrix}$$

$$J(1,0) = \begin{bmatrix} -1 & -1 \\ 0 & 1/4 \end{bmatrix}$$

$$E[GENVALJET, \frac{1}{4}, \frac{3}{4}]$$

$$E[GENVALJET, \frac{1}{4}, \frac{3}{4}]$$

$$EVALUES - \frac{1}{2} \pm \frac{1}{2\sqrt{2}}$$

$$SADDLE POINT STABLE!$$

$$E[GENVECTORS (0), (4)]$$

$$E[GENVECTORS (3), (1)]$$

$$E[VECTORS (\sqrt{2}), (\sqrt{2})]$$

AT (1/2,1/2)

PUT IT ALL TOGETHER TO SKETCH A PHASE PORTRAIT (GLOBAL BEHAVIOUR)

O: UNSTABLE NODES

@: SADDLE POINTS

• STABLE NODES

WE FIRST SOLVED THE ALGEBRAIL SYSTEM \$ = 0 df =0 TO FIND THE EQUILIBRIA, THEN CHARACTERIZED THE LOCAL STABILITY.

LETS SHIFT OUR THINKING FROM ALGEBRA TO GEOMETRY-WHAT WE'VE KBOUT TO TALK ABOUT IS A TECHNIQUE THAT ENDOWS YOU WITH XMAZING POWERS; USING CURVE SKETCHING IDEAS FROM FRESUMAN CALCIUS, YOU CAN GENERATE A PLASE PORTRAIT WITHOUT EVEN CALCULATING A SINGLE ETGENVALUE!

MAIN IDEA: FOR A SYSTEM dx = f(x,y) dy = g(x,y), THE ECCUILIBRIA CORRESPOND TO POINTS THAT SIMULTANEOUSLY SATISFY fixiy)=0 & g(xiy)=0
IF YOU PLOT THE CURVES f(xiy)=0 & g(xiy)=0 , THEN THE EQUILIBRIA ARE SIMPLY THEIR POINTS OF INTERSECTION THE CURVES & (XIY)=0 & 9(XIY)=0 ARE CALLED 'NULL CLIMES'

 $\frac{dx}{dt} = x(1-x-y) + \frac{dy}{dt} = y(\frac{3}{4}-y-\frac{1}{2}x)$ FOR OUR EXAMPLE SYSTEM: THE X-NULLCLINES ARE! THE Y-NULL CLINES ARE: x=0 & y=1-x

y=0 & y=34-±x

WHAT ABOUT PLASE PORTRAIT?

THE REGION WITHIN WHICH INTITAL CONDITIONS LEAD TO A STEADY-STATE IS CALLED ITS 'BASIN OF ATTRACTION'. THE LIME SEPARATING THE BASINS OF ATTRACTION ("" TRAJECTORIES LEADING TO THE SAPPLE POINT) IS CALLED A SEPARATRIX.

IN ONE-DIMENSION:

IN TWO-DIMENSIONS:

SO FAR. WE HAVE LOOKED AT FAIRLY TAME SYSTEMS - BUT UNSTABLE POINTS CAN GIVE RISE TO VERY INTERESTING BEHAVIOUR.

STABLE ORBITS-CENTRES, LIMIT CYCLES & STRANGE ATTRACTORS ONE VARIETY OF PERIODIC BELIAVIOUR AVAILABLE IN LIMEAR & MOMINER SYSTEMS. (4) THE HARMONIC OSCILLATOR).

A NOMINEAR EXAMPLE IS THE LOTKA-VOLTERRA SYSTEM OF EQUATIONS X(t) = PREY POPULATION Y(t) = PREDATOR POPULATION

EQUILIBRIA: (0,0) \$ (1/3, 9/2)