

STRATEGIC HANDLING AND KNOWLEDGE FOR TACTICAL INTELLIGENCE

OUR TEAM

Ryan (Leader & Core Al Development)

Ronit (Core Al Development)

Udit (Backend & Web Developer)

Anukrati (Frontend & Design)

Murtuza (Data Collection)

Kushal (Data Testing & Validation)

THE CHALLENGE OF MODERN TACTICAL INTELLIGENCE

- Difficulties in integrating multimodal data for real-time decision-making.
- Lack of Al systems optimized for military applications (e.g., threat detection, situational awareness).
- Problems like false positives, inefficient data handling, and lack of resource-efficient solutions.
- Statistics or real-world examples (e.g., challenges faced in dynamic battlefield environments).

"PIXELS TO PERFECTION"

AI FOR DEFENSE & TACTICAL APPLICATIONS

OBJECTIVES

- 01 To deve
- To develop a modular, resource-efficient AI capable of processing and integrating multimodal data.
- 02
- Enhance decision-making, threat detection, and situational awareness in military contexts.
- 03
- Minimize computational costs while maximizing tactical intelligence accuracy.

"PIXELS TO PERFECTION'

OVERVIEW

Modular AI system combining Drishti Vision Module (visual data),
Chakravyuha Text Module (language processing), and Airavata
Framework (pipeline management).

02

- Cross-hyper attention for vision-language fusion.
- Iterative and parallel reasoning for complex decision-making.
- Lightweight design optimized for hardware with limited resources.

03

- Cross-modal integration.
- Flash attention and hyper-attention for efficient processing.

CORE FEATURES

- 01 Iterative & Parallel Reasoning: Step-by-step and multi-stream processing.
- Rotary Positional Encoding (RoPE): Improved spatial and temporal reasoning.
- Camouflage Detection: Distinguishing hidden threats.
- Friend/Foe Classification: Military-specific feature for battlefield clarity.
- Supported RAG as well as long sequence queries along with OCR detection.
- Low-Rank Adaptation (LoRA): Efficient model training and deployment.

Benchmark	Shakti (2B)	Top Model 1	Top Model 2	Top Model 3
Visual Question Answering				
VQAv2	80.1	GPT-4V (1.8T): 87.6	LLaVA-1.5 (7B): 85.4	Qwen-VL-Plus (4.4B): 79.8
OK-VQA	54.2	BLIP-2 (4.4B): 62.8	InstructBLIP (7B): 58.6	Kosmos-2 (2.7B): 56.7
TextVQA	62.9	GPT-4V (1.8T): 76.5	LLaVA-1.5 (7B): 73.2	MPLUG-Owl2 (7B): 68.4
Zero-Shot Multimodal				
MMB-EM	66.3	GPT-4V (1.8T): 76.8	Gemini Pro (175B): 72.5	LLaVA-1.5 (7B): 69.1
POPE	87.4	Qwen-VL-Plus (4.4B): 90.1	BLIP-2 (4.4B): 88.7	InstructBLIP (7B): 87.6
AI2D	63.2	GPT-4V (1.8T): 72.5	Gemini Pro (175B): 69.8	LLaVA-1.5 (7B): 67.3
Video Understanding				
NextQA	73.6	VideoChat2 (7B): 81.3	BLIP-2 (4.4B): 78.5	MPLUG-Owl2 (7B): 76.9
MLBU	60.1	VideoChat2 (7B): 68.4	BLIP-2 (4.4B): 65.7	LLaVA-1.5 (7B): 63.2
Multi-Image Benchmarks				
NLVR2	85.6	GPT-4V (1.8T): 92.3	LLaVA-1.5 (7B): 89.7	Qwen-VL-Plus (4.4B): 87.2
BLINK	42.7	BLIP-2 (4.4B): 51.6	InstructBLIP (7B): 48.9	Qwen-VL (4.4B): 45.3
Table 5: Multimodal Model Performance Comparison				

METRICS

- Image processing speed: 15-20 FPS for single images, 5-7 FPS for multi-image grids.
- Accuracy: 80%+ on vision-language benchmarks.
- Resource requirements: Runs on GPUs with as little as 5GB VRAM.
- Resource-efficient yet achieves good results in multiimage and video scenarios.

TRAINED DATASETS

OWN MADE (KAGGLE BRONZE MEDAL)

DATASET

- 17,000 Military Assets Images: Tanks, aircraft, ships, and other vehicles.
- 9,000 Camouflage Detection Images: Hidden objects for threat identification.
- 2,000 OCR Documents: Military text for document analysis.
- 1,500 Tactical Scenarios: Multi-modal cases combining images, videos, and text.

CURRENT SOLUTIONS:

- Lack integration of multimodal data streams for holistic analysis.
- Focus on single-task analysis (e.g., object detection or text reasoning).
- High resource demands, making them impractical for on-field deployment.

SHAKTI AI SOLUTION:

- Fully multimodal (images, videos, and text).
- Tailored for military applications with domain-specific optimizations.
- Lightweight and deployable in resource-constrained settings.
- Innovative attention mechanisms to ensure minimal latency and high accuracy.

TECH STACK

Frameworks: PyTorch,
TensorFlow, Hugging Face
Transformers.

Models: Vision Transformers (Drishti), Text Reasoning Models (Chakravyuha).

Attention Mechanisms: Cross-Hyper Attention, Flash Attention, Iterative & Parallel Reasoning.

Optimization: Low-Rank Adaptation (LoRA), Rotary Positional Encoding (RoPE).

Backend & Infrastructure: Airavata Framework, Python APIs, NVIDIA GPUs (5GB+).

CHAKRAVYUHA MODEL

DRISHTI MODEL

DRISHTI ARCHITECTURE Vision Model Channel Normalization Standard Deviation Value Range **Processing Details** Multi-head attention Residual Connection Feed Forward Network Patches: 784 Vision Transformer Size Check, Image Processo Normalization, Features: 1152d Format conversion Patch Embedding Layer Layer 1 Projected: 1536d Position Embedding Layer Normalization Layer 2 Attention Heads: 12 Layer 27 Processing FPS: 15-20 Patch Flattening Dimension Projection Linear Projection **Model Configuration** Dimension Expansion Linear Transform Feature Activation Image Size:384x384 DocShakti LLAVA Media Processing Pipeline Anchor Processing Patch Size: 14x14 Random Feature Projection Highest Hidden Size: 1152 Projection Size: 1536 Attention Heads: 12 Feature Refinement Output Formatting Integration Layer Transformer Layers: 27 Cross Attention Response Generation Hyper Attention Feature Fusion KV Heads: 2 Final Output Feature Integration Output Processing User Cross-Modal Integration

WORKFLOW

- Input data: Images, videos, pdf, and textual commands.
- Data processing: Vision and language fusion via hyper cross-modal layers.
- Output: Tactical insights like threat levels, camouflage detection, and decision support.

SPECIALITY

First-of-its-kind military-specific multimodal intelligence.

Modular and scalable architecture.

Lightweight design capable of running on 5GB VRAM GPUs.

Use cases in dynamic and resourceconstrained environments

THANK YOU