(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 November 2002 (14.11.2002)

PCT

English

EP

(10) International Publication Number WO 02/090551 A2

(51) International Patent Classification⁷: C12N 15/52

(21) International Application Number: PCT/EP02/04942

(22) International Filing Date: 3 May 2002 (03.05.2002)

(25) Filing Language:

(26) Publication Language: English

(30) Priority Data: 01201631.7 3 May 2001 (03.05.2001) EP

7 December 2001 (07.12.2001)

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventor; and

01204785.8

(75) Inventor/Applicant (for US only): STEIDLER, Lothar [BE/BE]; Bokslaarstraat 41, B-9160 Lokeren (BE).

(74) Common Representative: VLAAMS INTERUNIVER-SITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SELF-CONTAINING LACTOCOCCUS STRAIN

(57) Abstract: The invention relates to a recombinant *Lactococcus* strain, with environmentally limited growth and viability. More particularly, it relates to a recombinant *Lactococcus* that can only survive in a medium, where well-defined medium compounds are present. A preferred embodiment is a *Lactococcus* that may only survive in a host organism, where said medium compounds are present, but cannot survive outside the host organism in absence of said medium compounds.

SELF-CONTAINING Lactococcus STRAIN

Field of the invention

The invention relates to a recombinant *Lactococcus* strain, with environmentally limited growth and viability. More particularly, it relates to a recombinant *Lactococcus* that can only survive in a medium, where well-defined medium compounds are present. A preferred embodiment is a *Lactococcus* that may only survive in a host organism, where said medium compounds are present, but cannot survive outside the host organism in absence of said medium compounds. Moreover, said *Lactococcus* can be transformed with prophylactic and/or therapeutic molecules and can, as such, be used to treat diseases such as inflammatory bowel diseases.

5

10

15

20

25

30

Background of the invention Lactic acid bacteria have long time been used in a wide variety of industrial

fermentation processes. They have generally-regarded-as-safe status, making them potentially useful organisms for the production of commercially important proteins. Indeed, several heterologous proteins, such as Interleukin-2, have been successfully produced in Lactococcus spp (Steidler et al., 1995). It is, however, unwanted that such genetically modified micro organisms are surviving and spreading in the environment. To avoid unintentional release of genetically modified microorganisms, special guidelines for safe handling and technical requirements for physical containment are used. Although this may be useful in industrial fermentations, the physical containment is generally not considered as sufficient, and additional biological containment measures are taken to reduce the possibility of survival of the genetically modified microorganism in the environment. Biological containment is extremely important in cases where physical containment is difficult or even not applicable. This is, amongst others, the case in applications where genetically modified microorganisms are used as live vaccines or as vehicle for delivery of therapeutic compounds. Such applications have been described e.g. in WO 97/14806, which discloses the delivery of biologically active peptides, such as cytokines, to a subject, by recombinant non-invasive or nonpathogenic bacteria. WO 96/11277 describes the delivery of therapeutic compounds to an animal - including humans - by administration of a recombinant bacterium, encoding the therapeutic protein. Steidler et al. (2000) describe the treatment of colitis by administration of a recombinant Lactococcus lactis, secreting interleukin-10. Such a

usage of a self-containing and transform d *Lactococcus* to deliver prophylactic and/or therapeutic molecules in order to prevent and/or treat diseases.

Brief d scription of the figures

5 Figure 1: Map of the MG1363 thyA locus

gCAATCATAATTggTTTTATTg

(2)

30

or

cTTTTTATTATTAGggAAAgCA.

thyA

(3),

- **Figure 2:** Schematic representation of the different expression modules as present on pOThy plasmids ands genomic integrants of hIL-10. Black parts represent original *L. lactis* MG1363 genetic information, white parts represent recombinant genetic information.
- Figure 3: PCR identification of Thy11 (Thy11 1.1 and Thy11 7.1 represent individually obtained, identical clones). Standard PCR reactions were performed by using aliquots of saturated cultures of the indicated strains as a source of DNA template. Panel A shows an agarose gel of the products of the indicated PCR reactions. Panel B shows the positions at which primers attach in the thyA (1), upstream (2) or downstream (3) PCR's. Oligonucleotide primers used: (1): ATgACTTACgCAgATCAAgTTTTT and TTAAATTgCTAAATCAAATTTCAATTg (2): TCTgATTgAgTACCTTgACC and
- Figure 4: PCR identification of Thy11, Thy12, Thy15 and Thy16. Standard PCR reactions were performed by using three days old colonies of the indicated strains as a source of DNA template.

(3):

Panel A shows the positions at which primers attach in the upstream (1), downstream

Oligonucleotide

CTTACATgACTATgAAAATCCg

primers

used:

and

(1):

- ATGACTTACGCAGATCAAGTTTTT and TTAAATTGCTAAATCAAATTTCAATTG (2):
- 25 TCTgATTgAgTACCTTgACC and gCAATCATAATTggTTTTATTg (3): CTTACATgACTATgAAAATCCg and cTTTTTTATTATTATTAgggAAAgCA
 - Panel B shows an agarose gel of the products of the indicated PCR reactions.

PCR's.

Figure 5: Southern blot analysis of the indicated strains. Chromosomal DNA was extracted and digested with the indicated restriction enzymes. Following agarose gel electrophoresis the DNA was transferred to a membrane and the chromosome structure around the thyA locus was revealed by use of DIG labelled thyA or hIL-10 DNA fragments (panel A). Panel B shows a schematic overview of the predicted structure of the thyA locus in both MG1363 and Thy11.

diluted in TFM or TFM supplemented with 50µg/ml of thymidine (T50). CFU counts were determined at different time points: t=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 20 hours. This shows that Thy12 viability is severely impaired in the absence of thymidine.

Figure 12: Intestinal passage and viability: *L. lactis* MG1363 was transformed with the plasmid pLET2N which carries a chloramphenicol (Cm) resistance marker. L. lactis Thy12 was transformed with the plasmid pT1NX which carries an erythromycin (Em) resistance marker. Of both strains 10⁹ bacteria were resuspended in BM9 (6 g/l Na₂HPO₄, 3 g/l KH₂PO₄, 1 g/l NH₄Cl, 0,5 g/l NaCl in 25 mM NaHCO₃ + 25 mM Na₂CO₃), mixed and inoculated in three mice at t=0h. Faeces were collected of the time intervals -1 to 0, 0 to 1, 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10 and 10 to overnight. All samples were resuspended in isotonic buffer and appropriate dilutions were plated on GM17 (M17 medium, Difco, St.Louis supplemented with 0,5% glucose) plates containing either Cm, Em or Em+ 50μg/ml thymidine. Colony forming units for the different plates are represented in the graph.

15

20

25

30

10

5

Description of the invention

It is the objective of the present invention to provide a suitable biological containment system for *Lactococcus*.

A first aspect of the invention is an isolated strain of *Lactococcus* sp. comprising a defective thymidylate synthase gene. Preferably, said defective thymidylate synthase gene is inactivated by gene disruption. Even more preferably, said *Lactococcus* sp. is *Lactococcus lactis*. A special embodiment is a *Lactococcus* sp. strain, preferably *Lactococcus lactis*, more preferably a *Lactococcus lactis* MG1363 derivative, whereby the thymidylate synthase gene has been disrupted and replaced by an interleukin-10 expression unit. Said interleukin-10 expression unit is preferably, but not limited to, a human interleukin-10 expression unit or gene encoding for human interleukin-10.

Another aspect of the invention is the use of a strain according to the invention as host strain for transformation, whereby the transforming plasmid does not comprise an intact thymidylate synthase gene. Still another aspect of the invention is a transformed strain of *Lactococcus* sp. according to the invention, comprising a plasmid that does not comprise an intact thymidylate synthase gene. Another aspect of the invention relates to a transformed strain of *Lactococcus* sp. comprising a gene or expression unit encoding a prophylactic and/or therapeutic molecule such as interleukin-10. Consequently, the present invention also relates to the usage of a transformed strain

invention further demonstrates that the transformed strains surprisingly pass the gut at the same speed as the control strains and shows that their loss of viability is indeed not different from that of the control strains. However, once said strain is secreted in the environment, e.g. in the faeces, it is not able to survive any longer.

5

10

15

20

25

30

The transforming plasmid can be any plasmid, as long as it cannot complement the thyA mutation. It may be a selfreplicating plasmid that preferably carries one or more genes of interest and one or more resistance markers, or it may be an integrative plasmid. In the latter case, the integrative plasmid itself may be used to create the mutation, by causing integration at the thyA site, whereby the thyA gene is inactivated. Preferably, the active thyA gene is replaced by double homologous recombination by a cassette comprising the gene or genes of interest, flanked by targeting sequences that target the insertion to the thyA target site. It is of extreme importance that these sequences are sufficiently long and sufficiently homologous to obtain to integrate the sequence into the target site. Preferably, said targeting sequences consist of at least 100 contiguous nucleotides of SEQ ID N°1 at one side of the gene of interest, and at least 100 contiguous nucleotides of SEQ ID N°2 at the other side; more preferably, said targeting sequences consists of at least 500 contiguous nucleotides of SEQ ID N°1 at one side of the gene of interest, and at least 500 contiguous nucleotides of the SEQ ID N° 2 at the other side; most preferably, said targeting sequences consists of SEQ ID N°1 at one side of the gene of interest and SEQ ID N°2 at the other side, or said targeting sequences consist of at least 100 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 100 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest, preferably said targeting sequences consist of at least 500 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 500 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest, most preferably said targeting sequences consist of at least 1000 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 1000 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest. The percentage identity is measured with BLAST, according to Altschul et al. (1997). A preferred example of a s quence, homologous to SEQ ID N°1 is given in

7

locus as determined in the present invention are given by SEQ ID N° 19, 20, 21, 22 respectively.

The *thyA* replacement is performed by making suitable replacements in a plasmid borne version of the *thyA* target, as described below. The carrier plasmid is a derivative of pORI19 (Law *et al.*, 1995) a replication defective plasmid, which only transfers the erythromycin resistance to a given strain when a first homologous recombination, at either the 5' 1000bp or at the 3'1000bp of the *thyA* target. A second homologous recombination at the 3' 1000bp or at the 5' 1000bp of the *thyA* target yields the desired strain.

5

20

The *thyA* gene is replaced by a synthetic gene encoding a protein which has the *L. lactis* Usp45 secretion leader (van Asseldonk *et al.*, 1990) fused to a protein of identical amino acid sequence than: (a) the mature part of human-interleukin 10 (hlL-10) or (b) the mature part of hlL-10 in which proline at position 2 had been replaced with alanine or (c) the mature part of hlL-10 in which the first two amino acids had been deleted; (a), (b) and (c) are called hlL-10 analogs, the fusion products are called Usp45-hlL-10.

The *thyA* gene is replaced by an expression unit comprising the lactococcal P1 promotor (Waterfield *et al.*, 1995), the *E. coli* bacteriophageT7 expression signals: putative RNA stabilising sequence and modified gene10 ribosomal binding site (Wells and Schofield, 1996).

At the 5' end the insertion is performed in such way that the ATG of thyA is fused to the P1-T7Usp45-hIL-10 expression unit.

```
5'agataggaaaatttc<u>atg</u>acttacgcagatcaagttttt...thyA wild type
gattaagtcatcttacctctt...P1-T7-usp45-hIL10
```

25 5'agataggaaaatttc<u>atg</u>gattaagtcatcttacctctt...thyA-,P1-T7-usp45hIL10

Alternatively, at the 5' end the insertion is performed in such way that the thyA ATG is not included:

5

10

15

20

integrative plasmid pT1HlL10apxa. Figure 8 (panel A and B) furth r demonstrates that all mutants produce a significant amount of h-IL 10.

Figure 9 shows the production of hIL-10 by the *L. lactis* strains LL108 carrying either pOThy11, pOThy12, or pOThy16. Quantification (by ELISA) of hIL-10 present in the culture supernatant of the indicated strains. The N-terminal protein sequence of the recombinant hIL-10 was determined by Edman degradation and was shown identical to the structure as predicted for the mature, recombinant hIL-10. The protein showed full biological activity. LL108 is a *L. lactis* strain carrying a genomic integration of the repA gene, required for replication of pORI19 derived plasmids such as pOThy11, pOThy12, pOThy15 or pOThy16. This strain was kindly donated by dr. Jan Kok, University of Groningen. The plasmids pOThy11, pOThy12, pOThy15 and pOThy16 carry the synthetic human IL-10 gene in different promotor configurations (see Fig. 2), flanked by approximately 1kB of genomic DNA derived from the thyA locus, upstream and downstream from thyA. These plasmids were used for the construction of the genomic integration as described.

The effect of the thymidilate synthase deletion on the growth in thymidine less and thymidine supplemented media was tested; the results are summarized in figures 10 and 11. Absence of thymidine in the medium strongly limits the growth of the mutant, and even results in a decrease of colony forming units after four hours of cultivation. Addition of thymidine to the medium results in an identical growth curve and amount of colony forming units, compared to the wild type strain, indicating that the mutant doesn't affect the growth or viability in thymidine supplemented medium. Fig. 11 clearly demonstrates that Thy12 viability is severely impaired in the absence of thymidine.

Fig. 12 finally shows that *L. lactis* Thy12 passes the intestine of the mice at the same speed as MG1363. Loss of viability does not appear different between Thy12 and MG1363. Thy12 appear fully dependent on thymidine for growth, indicating that no Thy12 bacteria had taken up a foreign thyA gene.

Claims

5

10

15

1. An isolated strain of *Lactococcus* sp. comprising a defective thymidylate synthase gene.

- 2. An isolated strain of *Lactococcus* sp. according to claim 1, whereby said gene is inactivated by gene disruption.
- 3. An isolated strain of *Lactococcus* sp. according to claim 1 or 2, whereby said *Lactococcus* sp. is *Lactococcus lactis*.
- 4. The use of a strain of *Lactococcus* sp. according to any of the claims 1-3 as host strain for transformation, whereby the transforming plasmid does not comprise an intact thymidylate synthase gene.
- 5. A transformed strain of *Lactococcus* sp. according to any of the claims 1-3, comprising a transforming plasmid that does not comprise an intact thymidylate synthase gene.
- 6. A transformed strain of *Lactococcus* sp. according to any of the claims 1-4 comprising a gene encoding a prophylactic and/or therapeutic molecule.
 - 7. A transformed strain of *Lactococcus* sp. according to claim 6 wherein said prophylactic and/or therapeutic molecule is interleukin-10.
 - 8. The use of a transformed strain of *Lactococcus* sp. according to any of the claims 5-7 for the delivery of prophylactic and/or therapeutic molecules.
- 9. A pharmaceutical composition comprising a transformed strain of *Lactococcus* sp. according to any of the claims 5-7.
 - 10. The use of a transformed strain of *Lactococcus* sp. according to any of the claims 6-7 for the preparation of a medicament to treat inflammatory bowel diseases.

30

25

thy locus map

Thy A locus (7157 bps)

2/9

Figure 2:

Figure 3:

4/9

Figure 5:

Α	МС	Thy11	1.1 Ti	ny11 7.1	
	ırker	Pstl		Pst	₽s∉
	DIG markel Hindill	Pstl Hindill-Pstl	Hindill Psti	Hindill-Pstl Hindill	Pstl Hindill-Pstl
	OI	O I	ΙA	I I	A X
			学派	AL THE	
				ration.	
			1		Thua

	MG1363			Thy11 1.1			Th	Thy11 7.1		
DIG marker	Hindill	Pstl	Hindiil-Psti	Hindill	Pstl	HindIII-Pstl	Hindili	Psti	Hindiil-Psti	

		bll 10	hlL10PxA		pTREX1		1 1.1	Thy11 7.1	
K									sample 8
					Salliple 4				
	concentration (ng/ml)	131,34				2,55			
	std (ng/ml)	0	15,27	0	0	1,05	1 0	0,95	
	average (ng/ml)	erage (ng/ml)		127,18		2,18		2	
	std (na/ml)		5.89			[0.53	1	0.06

8/9

Figure 10:

9/9

..... 44.

Figure 11:

Figure 12:

V085.ST25.txt SEQUENCE LISTING

<120> SELF-CONTAINING LACTOCOCCUS STRAIN <130> LS/ThyA/V085 <150> EP01201631.7 <151> 2001-05-03 <150> EP01204785.8	
<150> EP01201631.7 <151> 2001-05-03	
<151> 2001-05-03	
<150> RP01204785.8	
<151> 2001-12-07	
<160> 26	
<170> PatentIn version 3.1	
<210> 1 <211> 1000 <212> DNA <213> Lactococcus lactis	
<400> 1 tatatacaat tgagcaaaag aaatttagtt attaaattac cagctggagt tcctccaatg	60
gttgtagatt cactaagtcc agcaattatt tcaatggtga ttttctgttt gatgttcggg	120
attegtgtgg gattetetta tacgecatte catgatattt teaatttete aacacaacta	180
attcaagcac cgttgactgg tgctgtggca aatccatggg ttcttatggg catctttacc	240
tttggtaatt tottatggtt otttggtato caccotaatt taattggggg aattttaaat	300
ccattgttat taacaatgtc atatgctaat attgatgcct atgctgccgg aaaacctgta	360
ccatacttac aaatgatgat tgtgtttgct gtgggtgcga acgcatgggg cggaagtgga	420
	480
aatacttatg ggttagttat ttcaatgttt acggcaaaat ctgaacgcta taaacaatta	540
ttaaaattag gtgcaattcc tagtattttc aatatcagtg aaccattact ttttggtctt	
ccaatgatgt taaatcctct tttctttatt cctttggttt tccaaccagc aattttagga	600
actgtagcat tgggcttggc aaagatatta tatattacaa atctgaatcc aatgacggca	660
cttetteett ggacgacace ageacetgtg agaatggeea ttteaggtgg acttecattt	720
ttgattattt ttgcaatctg tttagtcttg aatgttctta tttactaccc attctttaag	780
gtggcgtata ataaagcttt agaagaagaa aaagcagctg ttgaattaga gggttcagaa	840
actgcctgat ggatattttt tataaatctg gtttgaacaa attatattga catctctttt	900
tctatcctga taattctgag aggttatttt gggaaatact attgaaccat atcgaggtgt	960
gtggtataat gaagggaatt aaaaaagata ggaaaatttc	1000
<210> 2 <211> 1000 <212> DNA <213> Lactococcus lactis	
<400> 2 taaattaatc tataagttac tgacaaaact gtcagtaact ttttttgtgg gaaaaatgta	60
tttttatgac cgtaaagaat ctgtcagtag aagtctgaaa ttcgtttaaa aatcgactag Page 1	120

V085.ST25.txt

		1005.0125	· Carc		
	eature .(7110) be any base				
<220> <221> misc fe <222> (7117). <223> 'n' may					
<220> <221> misc fe. <222> (7143). <223> 'n' may					
<220> <221> misc_fe <222> (7149). <223> 'n' may					
<400> 3	cagtccg acgttgtaa	a accaccicca	gtgaattcat	taacagcctt	60
-	tcattat tttgaaata				120
	tatttgt tgtataatc				180
	taaaata catctatat				240
	tttcgtg tagaaccac				300
	cctaaag tcatgcaaa				360
	agacctg cacaattgg				420
	totgtoc coaatggate				480
	tttttgt cagaagttc				540
_	aactgat gaatatttg				600
	acttgta aatgttgta				660
	ccaccga tatcaattc				720
_	ttagtat agcaaaatc			•	780
	tcacaaa aacggagaa				840
	taatgtc agattttat				900
	tttatag gagtgatga				960
	gtgtttt atgttcaga				1020
	cgacagc gacttccgt				1080
	aattege tgegtatate				1140
	cagegge cagecatec				1200
	acgecce agegtegee				1260
	actgtca tacgcgtaa				1320

gaa	atco	gcg	gtag	ttga	ca g	gtgtg	tcaa			ST25 lagca		caaa	.cgg	tata	cacggg	3420
tag	caca	gga	ttaa	ttgt	ag c	aatc	ataa	t tg	gttt	tatt	gtt	tcat	tag	tcta	tataca	3480
att	gage	aaa	agaa	attt	ag t	tatt	aaat	t ac	cago	tgga	gtt	cctc	caa	tggt	tgtaga	3540
ttc	acta	agt	ccag	caat	ta t	ttca	atgg	t ga	tttt	ctgt	ttg	atgt	tcg	ggat	tcgtgt	3600
3 99	attc	tct	tata	cgcc	at t	ccat	gata	t tt	tcaa	tttc	tca	acac	aac	taat	tcaagc	3660
acc	gttg	act	ggtg	ctgt	gg c	aaat	ccat	g gg	ttct	tatg	ggc	atct	tta	cctt	tggtaa	3720
ttt	ctta	tgg	ttct	ttgg	ta t	ccac	ccta	a tt	taat	tggg	gga	attt	taa	atcc	attgtt	3780
att	aaca	atg	tcat	atgc	ta a	tatt	gatg	c ct	atgo	tgcc	gga	aaac	ctg	tacc	atactt	3840
aca	aatg	atg	attg	tgtt	tg c	tgtg	ggtg	c ga	acgc	atgg	ggc	ggaa	gtg	gaaa	tactta	3900
tgg	gtta	gtt	attt	caat	gt t	tacg	gcaa	a at	ctga	acgc	tat	aaac	aat	tatt	aaaatt	3960
agg	tgca	att	ccta	gtat	tt t	caat	atca	g tg	aacc	atta	ctt	tttg	gtc	ttcc	aatgat	4020
gtt	aaat	cct	cttt	tctt	ta t	tcct	ttgg	t tt	tcca	acca	gca	attt	tag	gaac	tgtagc	4080
att	gggc	ttg	gcaa	agat	at t	atat	atta	c aa	atct	gaat	cca	atga	cgg	cact	tcttcc	4140
ttg	gacg	aca	ccag	cacc	tg t	gaga	atgg	c ca	tttc	aggt	gga	cttc	cat	tttt	gattat	4200
ttt	tgca	atc	tgtti	tagt	et t	gaat	gttc	t ta	ttta	ctac	cca	ttcti	tta	aggt	ggcgta	4260
taa	taaa	gct	ttaga	aagaa	ag a	aaaa	gcag	e tg	ttga	atta	gag	ggtt	cag	aaac	tgcctg	4320
atg	gata	ttt	tttai	caaat	c t	ggtti	tgaad	c aa	atta	tatt	gac	atct	ctt	tttc	tatcct	4380
gat	aatto	ctg a	agagg	gttat	t t	tggga	aaata	a cta	attg	aacc	atai	cgag	ggt g	gtgt	ggtata	4440
atg	aagg	gaa 1	ttaaa	aaaa	ga ta	aggaa	aaatt	tc		act Thr						4493
ttt Phe	aaa Lys	caa Gln 10	aat Asn	atc Ile	caa Gln	aat Asn	atc Ile 15	cta Leu	gat Asp	aat Asn	ggt Gly	gtt Val 20	ttt Phe	tca Ser	gaa Glu	4541
			cca Pro													4589 _.
			tca Ser													4637
			ttg Leu													4685
			tac Tyr 75													4733
aag Lys	tat Tyr	gga Gly 90	gtc Val	aaa Lys	tac Tyr	tgg Trp	gga Gly 95	gaa Glu	tgg Trp	gga Gly	att Ile	ggt Gly 100	gat Asp	ggt Gly	acg Thr	4781
			cgt Arg													4829

V085.ST25.txt cttgaaatta atgcaatggg aaatcttact ttaatatgga aaggggcaaa gaatcaaacc 6202 tttgaacttg gcgcaggtca acaatttaat ggaactgcag atattgcctt aaaaaatgga 6262 gagatttccc ctggtagtcc acttaacatt tttgttgtac caacagaagt tgctttccct 6322 aataataaaa aagtagacga ttcaactggg caacaacgaa tttttgtgaa ttattctggt 6382 acaagccctc aaatggcgaa tagtatggca gcggtggctt tttttagagt tattccatga 6442 ttatattaaa gttagaattg aataaaatgt attattaaaa agataatatt atatcacgac 6502 aaggcgacat ctatcaactt taccactggt atggaagtga ccattattac atcaggaaac 6562 gctaaaacgg ttgtttttac acccgtaaaa taaataataa aataatgtgn aattactgac 6622 agcattttgt cagtaatttt ttttatcaaa atcacacaaa aatgttcgtt gacgaacaaa 6682 aaaaactatg ttataataat tcgtatgcga actaaaaaag aagcgattgg ccgactttta 6742 aaagtagcca gcaaccaaat gtctcgagaa tttgataatt ttgcagctca acttgatttg 6802 acaggtcagc aaatgtcaat tttagatttt cttggaaatc aaagcgaaga aggttcagga 6862 aaagaaatta gtcagacgat gattgaatta gaatttaata tccgacgttc aacaacgacg 6922 gaaattttac agcgcatgga aaagcggctt ttaattaatc gaagaacaag cctgaccgat 6982 gcccgccaaa aatcagttga attaactgaa gaagggaaaa gatatttacc tgaaatcagg 7042 gcttatatcc aagcacataa taaaaaagct tggcgtaatc atggtcatag ctgtttncct 7102 ggttaggngg gccannnnn nnnnnnnnn nnncnnnnc nnnncnnnn cnnnc 7157

```
<210> 4
       279
<211>
<212>
       PRT
<213> Lactococcus lactis
<220>
<221> misc_feature
<222>
       (2)...(2)
<223> 'n' may be any base
<220>
       misc_feature
<221>
<222>
       (5)..(5)
<223>
       'n' may be any base
<220>
<221> misc feature
       (661\overline{2})..(6612)
<222>
<223>
       'n' may be any base
<220>
<221> misc feature
       (7099) .. (7099)
'n' may be any base
<222>
<223>
<220>
<221> misc_feature
<222>
        (711\overline{0})..(7110)
<223> 'n' may be any base
<220>
<221> misc_feature <222> (7117)..(714)
       (711\overline{7})..(7141)
```

V085.ST25.txt

Phe Glu Gln Ala Asn Glu Leu Met Lys Arg Thr Ala Ser Glu Lys Glu 225 230 235 240

Pro Arg Leu Val Leu Asn Val Pro Asp Gly Thr Asn Phe Phe Asp Ile
245 250 255

Lys Pro Glu Asp Phe Glu Leu Val Asp Tyr Glu Pro Val Lys Pro Gln
260 265 270

Leu Lys Phe Asp Leu Ala Ile 275

<210> 5

<211> 7094

<212> DNA

<213> Lactococcus lactis

<220>

<221> CDS

<222> (4469)..(5305)

<223>

<400> 60 ggttttccca gtccgacgtt gtaaaacgac ggccagtgaa ttcattaaca gccttttgag 120 cagctagete attattttga aataaateat aaatttettt eecactatet gatttatgat tgctagcata tttgttgtat aatcgaacga gtccattttg aacagatcca tatagattga 180 gtgaactata aaatacatct atatcatagt tgagtttgtt cacaatcatg agaccaaatt 240 300 ctccagcatt tcgtgtagaa ccacgataaa gctgtttatt tagcaaaatg gcacctccga 360 cacctgtacc taaagtcatg caaataaaat tttggctttc ttgtccattc cctagccaaa gttcagctag acctgcacaa ttggcatcat tttcaacata aaccggaaga tttaaatgtt 420 tttgtagttc tgtccccaat ggatagccat aaagatcagt tagagctcct gccagtaata 480 540 atgttccctt tttgtcagaa gttccgggaa cacttacacc aattgcagat actgaatgat gagettttaa etgatgaata tttgtgagea agetateeat aatttttet tttttaatg 600 660 gggttggaac ttgtaaatgt tgtatgatcg ttccatcact agttacaaga ccaaatttta taaatgtacc accgatatca attcctattg aataatgcat cttttattac ctctttctct 720 aatttgtttt agtatagcaa aatcaaaaaa ttaattatgg tatgcattat agatatgttg 780 tataattttc acaaaaacgg agaaaactat gaaaacaata gaacagctca tgatagattc 840 agcagattta atgtcagatt ttattcaatt gacaattttt atattccgca aggaggattt 900 960 tcaacttttt tataggagtg atgaagaaga gcaagctttt tcaaggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt tgtcatgcag ctccaccgat 1020 tttgagaacg acagcgactt ccgtcccagc cgtgccaggt gctgcctcag attcaggtta 1080 tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt gcagctttcc cttcaggcgg 1140

V085.ST25.txt	
gtgcagttac cagtgcgcta gcaatttatg taacttataa ttttgcttat tcttatgtaa	3240
atcgtcatga atataatggc catacggccg gtttattatc aatcgcaagt ttgttaatgc	3300
taatgccaca aattattact gtccctgtag taaaaaacat tccaaccgaa tttccgaaat	3360
ccgcggtagt tgacagtgtg tcaaatgttg aagcatttca aacggtatac acgggtagca	3420
caggattaat tgtagcaatc ataattggtt ttattgtttc attagtctat atacaattga	3480
gcaaaagaaa tttagttatt aaattaccag ctggagttcc tccaatggtt gtagattcac	3540
taagtccagc aattatttca atggtgattt tctgtttgat gttcgggatt cgtgtgggat	3600
tctcttatac gccattccat gatattttca atttctcaac acaactaatt caagcaccgt	3660
tgactggtgc tgtggcaaat ccatgggttc ttatgggcat ctttaccttt ggtaatttct	3720
tatggttctt tggtatccac cctaatttaa ttgggggaat tttaaatcca ttgttattaa	3780
caatgtcata tgctaatatt gatgcctatg ctgccggaaa acctgtacca tacttacaaa	3840
tgatgattgt gtttgctgtg ggtgcgaacg catggggcgg aagtggaaat acttatgggt	3900
tagttatttc aatgtttacg gcaaaatctg aacgctataa acaattatta aaattaggtg	3960
caatteetag tatttteaat ateagtgaae cattaetttt tggtetteea atgatgttaa	4020
atcctctttt ctttattcct ttggttttcc aaccagcaat tttaggaact gtagcattgg	4080
gcttggcaaa gatattatat attacaaatc tgaatccaat gacggcactt cttccttgga	4140
cgacaccagc acctgtgaga atggccattt caggtggact tccatttttg attatttttg	4200
caatctgttt agtcttgaat gttcttattt actacccatt ctttaaggtg gcgtataata	4260
aagetttaga agaagaaaaa geagetgttg aattagaggg tteagaaaet geetgatgga	4320
tatttttat aaatctggtt tgaacaaatt atattgacat ctctttttct atcctgataa	4380
ttctgagagg ttattttggg aaatactatt gaaccatatc gaggtggtgt ggtataatga	4440
agggaattaa aaaagatagg aaaatttc atg act tac gca gat caa gtt ttt Met Thr Tyr Ala Asp Gln Val Phe 1	4492
aaa caa aat atc caa aat atc cta gat aat ggt gtt ttt tca gaa aat Lys Gln Asn Ile Gln Asn Ile Leu Asp Asn Gly Val Phe Ser Glu Asn 10 15 20	4540
gca aga cca aag tat aag gat ggt caa atg gcg aat agc aaa tat gtc Ala Arg Pro Lys Tyr Lys Asp Gly Gln Met Ala Asn Ser Lys Tyr Val 25 30 35 40	4588
act ggt tca ttc gtt act tat gat ttg caa aag ggg gag ttt cca att Thr Gly Ser Phe Val Thr Tyr Asp Leu Gln Lys Gly Glu Phe Pro Ile 45 50 55	4636
acc act ttg cgt cca att cca atc aaa tct gct att aaa gaa ttg atg Thr Thr Leu Arg Pro Ile Pro Ile Lys Ser Ala Ile Lys Glu Leu Met 60 65 70	4684
tgg ata tac caa gac caa aca agt gaa ctt tct gtt ctc gaa gag aag Trp Ile Tyr Gln Asp Gln Thr Ser Glu Leu Ser Val Leu Glu Glu Lys 75 80 85	4732
tat gga gtc aaa tac tgg gga gaa tgg gga att ggt gat ggt acg att Tyr Gly Val Lys Tyr Trp Gly Glu Trp Gly Ile Gly Asp Gly Thr Ile Page 11	4780

V085.ST25.txt attacacgga aagtagcttt gagcaaaata gcttattgaa tactggttgg aaatatgggg 6025 cagtagcttg gtacgggatt ggagtaaaaa acgaaatgtt aaacattgct caaattgtta 6085 gtggtaattt ttctagtatt gttggaactt ggaaagatac ttctggaaat atgcttgaaa 6145 ttaatgcaat gggaaatctt actttaatat ggaaaggggc aaagaatcaa acctttgaac 6205 ttggcgcagg tcaacaattt aatggaactg cagatattgc cttaaaaaaat ggagagattt 6265 cccctggtag tccacttaac atttttgttg taccaacaga agttgctttc cctaataata 6325 aaaaagtaga cgattcaact gggcaacaac gaatttttgt gaattattct ggtacaagcc 6385 ctcaaatggc gaatagtatg gcagcggtgg ctttttttag agttattcca tgattatatt 6445 aaagttagaa ttgaataaaa tgtattatta aaaagataat attatatcac gacaaggcga 6505 catctatcaa ctttaccact ggtatggaag tgaccattat tacatcagga aacgctaaaa 6565 cggttgtttt tacacccgta aaataaataa taaaataatg tgaaattact gacagcattt 6625 tgtcagtaat tttttttatc aaaatcacac aaaaatgttc gttgacgaac aaaaaaaact 6685 atgttataat aattcgtatg cgaactaaaa aagaagcgat tggccgactt ttaaaagtag 6745 ccagcaacca aatgtctcga gaatttgata attttgcagc tcaacttgat ttgacaggtc 6805 agcaaatgtc aattttagat tttcttggaa atcaaagcga agaaggttca ggaaaagaaa 6865 ttagtcagac gatgattgaa ttagaattta atatccgacg ttcaacaacg acggaaattt 6925 tacagegeat ggaaaagegg ettttaatta ategaagaac aageetgace gatgeeegee 6985 aaaaatcagt tgaattaact gaagaaggga aaagatattt acctgaaatc agggcttata 7045 tccaagcaca taataaaaaa gcttggcgta atcatggtca tagctgttt 7094

<210> 6

<211> 279 <212> PRT

<213> Lactococcus lactis

<400> 6

Met Thr Tyr Ala Asp Gln Val Phe Lys Gln Asn Ile Gln Asn Ile Leu 1 5 10 15

Asp Asn Gly Val Phe Ser Glu Asn Ala Arg Pro Lys Tyr Lys Asp Gly
20 25 30

Gln Met Ala Asn Ser Lys Tyr Val Thr Gly Ser Phe Val Thr Tyr Asp 35 40 45

Leu Gln Lys Gly Glu Phe Pro Ile Thr Thr Leu Arg Pro Ile Pro Ile 50 55 60

Lys Ser Ala Ile Lys Glu Leu Met Trp Ile Tyr Gln Asp Gln Thr Ser 65 70 75 80

Glu Leu Ser Val Leu Glu Glu Lys Tyr Gly Val Lys Tyr Trp Gly Glu 85 90 95

				V085.ST25.				
catact	taca	aatgatgatt	gtgtttgctg	tgggtgcgaa	cgcatggggc	ggaagtggaa	420	
atactta	atgg	gttagttatt	tcaatgttta	cggcaaaatc	tgaacgctat	aaacaattat	480	
taaaati	tagg	tgcaattcct	agtattttca	atatcagtga	accattactt	tttggtcttc	540	
caatgat	tgtt	aaatcctctt	ttctttattc	ctttggtttt	ccaaccagca	attttaggaa	600	
ctgtag	catt	gggcttggca	aagatattat	atattacaaa	tctgaatcca	atgacggcac	660	
ttcttc	cttg	gacgacacca	gcacctgtga	gaatggccat	ttcaggtgga	cttccatttt	720	
tgattat	tttt	tgcaatctgt	ttagtcttga	atgttcttat	ttactaccca	ttctttaagg	780	
tggcgta	ataa	taaagcttta	gaagaagaaa	aagcagctgt	tgaattagag	ggttcagaaa	840	
ctgcctg	gatg	gatattttt	ataaatctgg	tttgaacaaa	ttatattgac	atctctttt	900	
ctatcct	tgat	aattctgaga	ggttattttg	ggaaatacta	ttgaaccata	tcgaggtggt	960	
gtggtat	taat	gaagggaatt	aaaaaagata	ggaaaatttc		•	1000	
<210> <211> <212> <213>	8 24 DNA Arti	ificial Sequ	ience					
<220> <223>	olig	gonucleotide	e primer					
<400> atgactt	8 tacg	cagatcaagt	tttt				24	
<210><211><211><212><213>	> 27 > DNA							
<220> <223>	olig	gonucleotide	e primer				•	
<400> ttaaatt	9 tgct	aaatcaaatt	tcaattg				27	
<210><211><211><212><213>	10 20 DNA Art	ificial Sequ	ience					
<220> <223>	olig	gonucleotide	e primer					
<400> tctgati	10 tgag	taccttgacc					20	
<210><211><211><212><213>	11 22 DNA Art	ificial Sequ	ience					
<220> <223>	olig	gonucleotide	e primer					
<400>	11							

V085.ST25.txt

<213>	Artificial	Sequence				
<220> <223>	thyA promot	er not include	ed, theA-, P	1-T7-usp45-	hIL10	
<400> tctgaga	17 aggt tattttg	gga aatactagat	: taagtcatct	tacctctt		48
<210><211><211><212><213>	18 40 DNA Artificial	Sequence				
<220> <223>	thyA-, usp4	5-hIL10			•	
<400> aaaatco	18 egta actaact	aga attaatctat	aagttactga			40
<210> <211> <212> <213>	19 6967 DNA Lactococcus	lactis				
<220> <221> <223>	misc_feature Thy11	e				
<400> attaaca	19 gcc ttttgag	cag ctagctcatt	attttgaaat	aaatcataaa	tttctttccc	60
actatct	gat ttatgat	tgc tagcatattt	gttgtataat	cgaacgagtc	cattttgaac	120
agatcca	tat agattgag	gtg aactataaaa	tacatctata	tcatagttga	gtttgttcac	180
aatcato	gaga ccaaatt	ctc cagcatttc	tgtagaacca	cgataaagct	gtttatttag	240
caaaatg	gca cctccga	cac ctgtacctaa	agtcatgcaa	ataaaatttt	ggctttcttg	300
tccattc	cct agccaaa	gtt cagctagacc	tgcacaattg	gcatcatttt	caacataaac	360
cggaaga	ttt aaatgtt	ttt gtagttctgt	ccccaatgga	tagccataaa	gatcagttag	420
agctcct	gcc agtaata	atg ttccctttt	gtcagaagtt	ccgggaacac	ttacaccaat	480
tgcagat	act gaatgat	gag cttttaactg	atgaatattt	gtgagcaagc	tatccataat	540
tttttct	ttt tttaatg	ggg ttggaacttg	taaatgttgt	atgatcgttc	catcactagt	600
tacaaga	cca aatttta	taa atgtaccacc	gatatcaatt	cctattgaat	aatgcatctt	660
ttattac	ctc tttctcta	aat ttgttttagt	atagcaaaat	caaaaaatta	attatggtat	720
gcattat	aga tatgttg!	tat aattttcaca	aaaacggaga	aaactatgaa	aacaatagaa	780
cagctca	tga tagattca	agc agatttaatg	tcagatttta	ttcaattgac	aatttttata	840
ttccgca	agg aggattt!	tca actttttat	aggagtgatg	aagaagagca	agctttttca	900
aggtaat	gac tccaactt	tat tgatagtgtt	ttatgttcag	ataatgcccg	atgactttgt	960
catgcag	ctc caccgatt	ttt gagaacgaca	gcgacttccg	tcccagccgt	gccaggtgct	1020
gcctcag	att caggttat	tgc cgctcaattc	gctgcgtata	tcgcttgctg	attacgtgca	1080

V085.ST25.txt tttttcagca gttattggtg cagttaccag tgcgctagca atttatgtaa cttataattt 3180 tgcttattct tatgtaaatc gtcatgaata taatggccat acggccggtt tattatcaat 3240 cgcaagtttg ttaatgctaa tgccacaaat tattactgtc cctgtagtaa aaaacattcc 3300 aaccgaattt ccgaaatccg cggtagttga cagtgtgtca aatgttgaag catttcaaac 3360 ggtatacacg ggtagcacag gattaattgt agcaatcata attggtttta ttgtttcatt 3420 agtctatata caattgagca aaagaaattt agttattaaa ttaccagctg gagttcctcc 3480 aatggttgta gattcactaa gtccagcaat tatttcaatg gtgattttct gtttgatgtt 3540 cgggattcgt gtgggattct cttatacgcc attccatgat attttcaatt tctcaacaca 3600 actaattcaa gcaccgttga ctggtgctgt ggcaaatcca tgggttctta tgggcatctt 3660 tacctttggt aatttcttat ggttctttgg tatccaccct aatttaattg ggggaatttt 3720 aaatccattg ttattaacaa tgtcatatgc taatattgat gcctatgctg ccggaaaacc 3780 tgtaccatac ttacaaatga tgattgtgtt tgctgtgggt gcgaacgcat ggggcggaag 3840 tggaaatact tatgggttag ttatttcaat gtttacggca aaatctgaac gctataaaca 3900 attattaaaa ttaggtgcaa ttcctagtat tttcaatatc agtgaaccat tactttttgg 3960 tottocaatg atgttaaatc ctottttott tattootttg gttttocaac cagcaatttt 4020 aggaactgta gcattgggct tggcaaagat attatatatt acaaatctga atccaatgac 4080 ggcacttctt ccttggacga caccagcacc tgtgagaatg gccatttcag gtggacttcc 4140 atttttgatt atttttgcaa tctgtttagt cttgaatgtt cttatttact acccattctt 4200 taaggtggcg tataataaag ctttagaaga agaaaaagca gctgttgaat tagagggttc 4260 agaaactgcc tgatggatat tttttataaa tctggtttga acaaattata ttgacatctc 4320 tttttctatc ctgataattc tgagaggtta ttttgggaaa tactattgaa ccatatcgag 4380 gtggtgtggt ataatgaagg qaattaaaaa agataggaaa atttcatgga ttaagtcatc 4440 ttacctcttt tattagtttt ttcttataat ctaatgataa catttttata attaatctat 4500 aaaccatatc cctctttgga atcaaaattt attatctact cctttgtaga tatgttataa 4560 tacaagtatc agatctggga gaccacaacg gtttcccact agaaataatt ttgtttaact 4620 ttagaaagga gatatacgca tgaaaaaaaa gattatctca gctattttaa tgtctacagt 4680 catactttct gctgcagccc cgttgtcagg tgtttacgcc tcagctggtc aaggtactca 4740 atcagaaaac tcatgtactc actttccagg taacttgcca aacatgcttc gtgatttgcg 4800 tgatgctttt tcacgtgtta aaactttttt tcaaatgaaa gatcaacttg ataacttgct 4860 tttgaaagaa tcacttttgg aagattttaa aggttacctt ggttgtcaag ctttgtcaga 4920 aatgatccaa ttttaccttg aagaagttat gccacaagct gaaaaccaag atccagatat 4980 caaagctcac gttaactcat tgggtgaaaa ccttaaaact ttgcgtcttc gtttgcgtcg 5040 ttgtcaccgt tttcttccat gtgaaaacaa atcaaaagct gttgaacaag ttaaaaacgc 5100 ttttaacaaa ttgcaagaaa aaggtatcta caaagctatg tcagaatttg atatctttat 5160

V085.ST25.txt

<220> <221> misc_feature <223> Thy12

<400> 20 attaacagcc	ttttgagcag	ctagctcatt	attttgaaat	aaatcataaa	tttctttccc	60
actatctgat	ttatgattgc	tagcatattt	gttgtataat	cgaacgagtc	cattttgaac	120
agatccatat	agattgagtg	aactataaaa	tacatctata	tcatagttga	gtttgttcac	180
aatcatgaga	ccaaattctc	cagcatttcg	tgtagaacca	cgataaagct	gtttatttag	240
caaaatggca	cctccgacac	ctgtacctaa	agtcatgcaa	ataaaatttt	ggctttcttg	300
tccattccct	agccaaagtt	cagctagacc	tgcacaattg	gcatcatttt	caacataaac	360
cggaagattt	aaatgttttt	gtagttctgt	ccccaatgga	tagccataaa	gatcagttag	420
agctcctgcc	agtaataatg	ttcccttttt	gtcagaagtt	ccgggaacac	ttacaccaat	480
tgcagatact	gaatgatgag	cttttaactg	atgaatattt	gtgagcaagc	tatccataat	540
tttttcttt	tttaatgggg	ttggaacttg	taaatgttgt	atgatcgttc	catcactagt	600
tacaagacca	aattttataa	atgtaccacc	gatatcaatt	cctattgaat	aatgcatctt	660
ttattacctc	tttctctaat	ttgttttagt	atagcaaaat	caaaaaatta	attatggtat	720
gcattataga	tatgttgtat	aattttcaca	aaaacggaga	aaactatgaa	aacaatagaa	780
cagctcatga	tagattcagc	agatttaatg	tcagatttta	ttcaattgac	aatttttata	. 840
ttccgcaagg	aggattttca	actttttat	aggagtgatg	aagaagagca	agctttttca	900
aggtaatgac	tccaacttat	tgatagtgtt	ttatgttcag	ataatgcccg	atgactttgt	960
catgcagctc	caccgatttt	gagaacgaca	gcgacttccg	tcccagccgt	gccaggtgct	1020
gcctcagatt	caggttatgc	cgctcaattc	gctgcgtata	tegettgetg	attacgtgca	1080
gctttccctt	caggcgggat	tcatacagcg	gccagccatc	cgtcatccat	atcaccacgt	1140
caaagggtga	cagcaggctc	ataagacgcc	ccagcgtcgc	catagtgcgt	tcaccgaata	1200
cgtgcgcaac	aaccgtcttc	cggagactgt	catacgcgta	aaacagccag	cgctggcgcg	1260
atttagcccc	gacatagccc	cactgttcgt	ccatttccgc	gcagacgatg	acgtcactgc	1320
ccggctgtat	gcgcgaggtt	accgactgcg	gcctgagttt	tttaagtgac	gtaaaatcgt	1380
gttgaggcca	acgcccataa	tgcgggctgt	tgcccggcat	ccaacgccat	tcatggccat	1440
atcaatgatt	ttctggtgcg	taccgggttg	agaagcggtg	taagtgaact	gcagttgcca	1500
tgttttacgg	cagtgagagc	agagatagcg	ctgatgtccg	gcggtgcttt	tgccgttacg	1560
caccaccccg	tcagtagctg	aacaggaggg	acagctgata	gaaacagaag	ccactggagc	1620
acctcaaaaa	caccatcata	cactaaatca	gtaagttggc	agcatcaccc	tttttcaaaa	1680
gaaatcatcg	ctcatttatc	tcagttgccc	ttgaaggaag	aggtgaattt	attttatatg	1740
cctaagataa	aaggatatat	tacttatttt	tctgtatttg	gtaaagagga	gtatcttcta	1800
cttatttta	aaggacaaga	aaaacttgca	aataatcctt	tccccgttga	agtaaaacaa	1860

V085.ST25.txt attattaaaa ttaggtgcaa ttcctagtat tttcaatatc agtgaaccat tactttttgg 3960 tettecaatg atgttaaate etetttett tatteettig gttttecaac cageaatttt 4020 aggaactgta gcattgggct tggcaaagat attatatatt acaaatctga atccaatgac 4080 ggcacttett cettggacga caccagcace tgtgagaatg gccattteag gtggacttee 4140 atttttgatt atttttgcaa tctgtttagt cttgaatgtt cttatttact acccattctt 4200 taaggtggcg tataataaag ctttagaaga agaaaaagca gctgttgaat tagagggttc 4260 agaaactgcc tgatggatat tttttataaa tctggtttga acaaattata ttgacatctc 4320 tttttctatc ctgataattc tgagaggtta ttttgggaaa tactattgaa ccatatcgag 4380 gtggtgtggt ataatgaagg gaattaaaaa agataggaaa atttcatgaa aaaaaagatt 4440 atctcagcta ttttaatgtc tacagtcata ctttctgctg cagccccgtt gtcaggtgtt 4500 tacgcctcag ctggtcaagg tactcaatca gaaaactcat gtactcactt tccaggtaac 4560 ttgccaaaca tgcttcgtga tttgcgtgat gctttttcac gtgttaaaac tttttttcaa 4620 atgaaagatc aacttgataa cttgcttttg aaagaatcac ttttggaaga ttttaaaggt 4680 taccttggtt gtcaagcttt gtcagaaatg atccaatttt accttgaaga agttatgcca 4740 caagctgaaa'accaagatcc agatatcaaa gctcacgtta actcattggg tgaaaacctt 4800 aaaactttgc gtcttcgttt gegtcgttgt caccgttttc ttccatgtga aaacaaatca 4860 aaagctgttg aacaagttaa aaacgctttt aacaaattgc aagaaaaagg tatctacaaa 4920 gctatgtcag aatttgatat ctttatcaac tacatcgaag cttacatgac tatgaaaatc 4980 cgtaactaac tagaattaat ctataagtta ctgacaaaac tgtcagtaac tttttttgtg 5040 ggaaaaatgt atttttatga ccgtaaagaa tctgtcagta gaagtctgaa attcgtttaa 5100 aaatcgacta gaataggctt taacgacaag atgttttaaa gagtacgctc taaatgtatt 5160 tttgtatttt tgtttgatta cgaagtttaa atttaattga caaatgtttt aaaatgagta 5220 taataggact tgtaaccgat tttattttta taaaggagaa agaaagatga acaaactttt 5280 acttggaaca gcctttatag gggctagctt actgattggt gggggtgctc atgcagatca 5340 aatgtttatc gtttgtataa tcataatact ggtgagcact ctatacaact agtgggacac 5400 5460 caaaagaatg ctaatgtaag tgcgggttgg acttatgaag gtgtcggttg gatcgcacca acaacaagtt caageccagt ttacegtgtg tacaatecaa atgeattatt acacaaaaag 5520 caagtatgaa gcccaaagtt tagtaaataa gggttggaaa tgggataata acggaaaggc 5580 ggtcttctat tctggaggtt ctcaagccgt atatgtcgct tataatccca atgcacaatc 5640 tggcgctcac aattacacgg aaagtagctt tgagcaaaat agcttattga atactggttg 5700 gaaatatggg gcagtagctt ggtacgggat tggagtaaaa aacgaaatgt taaacattgc 5760 tcaaattgtt agtggtaatt tttctagtat tgttggaact tggaaagata cttctggaaa 5820 tatgcttgaa attaatgcaa tgggaaatct tactttaata tggaaagggg caaagaatca 5880 aacctttgaa cttggcgcag gtcaacaatt taatggaact gcagatattg ccttaaaaaa 5940

ttccqcaaqq	aggattttca	acttttttat	V085.ST25. aggagtgatg	txt aagaagagca	agctttttca	900
				ataatgcccg		960
		•		tcccagccgt		1020
				tegettgetg		1080
•				cgtcatccat		1140
				catagtgcgt		1200
				aaacagccag		1260
				gcagacgatg		1320
				tttaagtgac		1380
				ccaacgccat		1440
				taagtgaact		1500
				gcggtgcttt		1560
				gaaacagaag		1620
				agcatcaccc		1680
				aggtgaattt		1740
				gtaaagagga		1800
				tccccgttga		1860
				aagaaaaatt		1920
				ttgctgctaa		1980
				aacatatctt		2040
				aaaaaaagct		2100
			•	aatgcgacat		2160
				acagggagga		2220
				tgaagaatta		2280
				tgcagataaa		2340
atcgatattg	tcaggtttct	tataaaatat	tatcttgtca	aaagtatatt	gttaatcatt	2400
tatacgaaaa	actaagtgtg	agtgaaattg	cagaagagct	acacatgaat	atttcttatt	2460
tatcttcaca	attcaaaaaa	gagacagggc	aaacaattac	aaactttatt	caggagaagc	2520
gaatagaaga	agctagagaa	ttaatccttt	tctcagacta	tcctttttca	agaatttata	2580
ccttgttggt	tttactgcca	aagtcatttt	ataaaaatat	ttaaaaaata	tactggaata	2640
actcccaaaa	. agtttcaaga	tcagtatatt	tatcatgcct	ctacatcaat	atatgattga	2700
aattaaaaaa	agacctagaa	tttcaaaatt	gataaaatac	atacctaaaa	tattaattct	2760
gtactattac	gggtggagta	tctactgtat	aatgagggta	taaattatgg	aagaagggag	2820
taaaactaaa	tttattgatg	gttttacgaa	ttaattagga	tattttttt	aaaaaccaaa	2880

V085.ST25.txt ageteacgtt aacteattgg gtgaaaacet taaaactttg cgtettegtt tgcgtegttg 4980 tcaccgtttt cttccatgtg aaaacaaatc aaaagctgtt gaacaagtta aaaacgcttt 5040 5100 taacaaattq caaqaaaaaq qtatctacaa agctatgtca gaatttgata tctttatcaa ctacatcgaa gcttacatga ctatgaaaat ccgtaactaa ctagaattaa tctataagtt 5160 5220 actgacaaaa ctgtcagtaa ctttttttgt gggaaaaatg tatttttatg accgtaaaga atctgtcagt agaagtctga aattcgttta aaaatcgact agaataggct ttaacgacaa 5280 5340 qatqttttaa agagtacgct ctaaatgtat ttttgtattt ttgtttgatt acgaagttta 5400 aatttaattg acaaatgttt taaaatgagt ataataggac ttgtaaccga ttttattttt 5460 ataaaggaga aagaaagatg aacaaacttt tacttggaac agcctttata ggggctagct tactgattgg tgggggtgct catgcagatc aaatgtttat cgtttgtata atcataatac 5520 tggtgagcac tctatacaac tagtgggaca ccaaaagaat gctaatgtaa gtgcgggttg 5580 5640 gacttatgaa ggtgtcggtt ggatcgcacc aacaacaagt tcaagcccag tttaccgtgt gtacaatcca aatgcattat tacacaaaaa gcaagtatga agcccaaagt ttagtaaata 5700 agggttggaa atgggataat aacggaaagg cggtcttcta ttctggaggt tctcaagccg 5760 tatatgtcgc ttataatccc aatgcacaat ctggcgctca caattacacg gaaagtagct 5820 5880 ttgagcaaaa tagcttattg aatactggtt ggaaatatgg ggcagtagct tggtacggga 5940 ttqqaqtaaa aaacqaaatg ttaaacattg ctcaaattgt tagtggtaat ttttctagta ttgttggaac ttggaaagat acttctggaa atatgcttga aattaatgca atgggaaatc 6000 6060 ttactttaat atggaaaggg gcaaagaatc aaacctttga acttggcgca ggtcaacaat 6120 ttaatqqaac tqcagatatt gccttaaaaa atggagagat ttcccctggt agtccactta acatttttgt tgtaccaaca gaagttgctt tccctaataa taaaaaagta gacgattcaa 6180 ctgggcaaca acgaattttt gtgaattatt ctggtacaag ccctcaaatg gcgaatagta 6240 tggcagcggt ggcttttttt agagttattc catgattata ttaaagttag aattgaataa 6300 6360 aatgtattat taaaaagata atattatatc acgacaaggc gacatctatc aactttacca ctggtatgga agtgaccatt attacatcag gaaacgctaa aacggttgtt tttacacccg 6420 taaaataaat aataaaataa tgtgaaatta ctgacagcat tttgtcagta attttttta 6480 6540 tcaaaatcac acaaaaatgt tcgttgacga acaaaaaaaa ctatgttata ataattcgta tgcgaactaa aaaagaagcg attggccgac ttttaaaagt agccagcaac caaatgtctc 6600 6660 gagaatttga taattttgca geteaacttg atttgacagg teageaaatg teaattttag attttcttgg aaatcaaagc gaagaaggtt caggaaaaga aattagtcag acgatgattg 6720 aattagaatt taatatccga cgttcaacaa cgacggaaat tttacagcgc atggaaaagc 6780 6840 ggcttttaat taatcgaaga acaagcctga ccgatgcccg ccaaaaatca gttgaattaa ctgaagaagg gaaaagatat ttacctgaaa tcagggctta tatccaagca cataataaaa 6900 6904 aagc

V085.ST25.txt gaaatcatcg ctcatttatc tcagttgccc ttgaaggaag aggtgaattt attttatatg 1740 cctaagataa aaggatatat tacttatttt tctgtatttg gtaaagagga gtatcttcta 1800 cttattttta aaggacaaga aaaacttgca aataatcctt tccccgttga agtaaaacaa 1860 ttattaaaaa gtggtatttt actctatcaa atgatttttc aagaaaaatt agattatgaa 1920 gaattatttg agaaaaatca gcatattatt tctccattgc ttgctgctaa accaattgaa 1980 tggaatgatt ccaatacgtg aggaaagtaa attcccataa aacatatctt tttgaaaaaat 2040 atttggggga atgtgttatt cgtggagatg ttgcagagtt aaaaaaagct ttttcaaatt 2100 atatgaataa aggaactgct ggaaaattat ctaataattc aatgcgacat aagaaaaaca 2160 ttttgatttc agtcatcact atgactactc gttcggctat acagggagga ttacctgaag 2220 2280 aagaagettt tttgatgagt gatttatata ttcaagaget tgaagaatta aeggaattag aagaaattag aacgcttgcc tataatgtga tgatcgattt tgcagataaa gtgaaacagc 2340 atcgatattg tcaggtttct tataaaatat tatcttgtca aaagtatatt gttaatcatt 2400 tatacgaaaa actaagtgtg agtgaaattg cagaagagct acacatgaat atttcttatt 2460 2520 tatetteaca atteaaaaaa gagacaggge aaacaattae aaactttatt caggagaage gaatagaaga agctagagaa ttaatccttt tctcagacta tcctttttca agaatttata 2580 ccttgttggt tttactgcca aagtcatttt ataaaaaatat ttaaaaaata tactggaata 2640 acteceaaaa agttteaaga teagtatatt tateatgeet etacateaat atatgattga 2700 aattaaaaaa agacctagaa tttcaaaatt gataaaatac atacctaaaa tattaattct 2760 2820 gtactattac gggtggagta tctactgtat aatgagggta taaattatgg aagaagggag 2880 taaaactaaa tttattgatg gttttacgaa ttaattagga tattttttt aaaaaccaaa gaaaacgctt acaaacgtta aaggagtgaa tctaaagatg gacaaatttg aaaaatggct 2940 3000 aaataagacc ttgatgccac ttgcctcaaa aatgaataaa aatcatttca tttcggcatt aagtgaagca tttatgagat gtatgccctt aacattaggg attgcattat tgacaattat 3060 3120 aggatacttt ccagttcctg cctgggtaga tttcttaaac tctattggac tggctcagca tttttcagca gttattggtg cagttaccag tgcgctagca atttatgtaa cttataattt 3180 tgcttattct tatgtaaatc gtcatgaata taatggccat acggccggtt tattatcaat 3240 cgcaagtttg ttaatgctaa tgccacaaat tattactgtc cctgtagtaa aaaacattcc 3300 aaccgaattt ccgaaatccg cggtagttga cagtgtgtca aatgttgaag catttcaaac 3360 ggtatacacg ggtagcacag gattaattgt agcaatcata attggtttta ttgtttcatt 3420 agtetatata caattgagea aaagaaattt agttattaaa ttaccagetg gagtteetee 3480 aatggttgta gattcactaa gtccagcaat tatttcaatg gtgattttct gtttgatgtt 3540 cgggattcgt gtgggattct cttatacgcc attccatgat attttcaatt tctcaacaca 3600 actaattcaa gcaccgttga ctggtgctgt ggcaaatcca tgggttctta tgggcatctt 3660 tacctttggt aatttcttat ggttctttgg tatccaccct aatttaattg ggggaatttt 3720

V085.ST25.txt agggttggaa atgggataat aacggaaagg cggtcttcta ttctggaggt tctcaagccg	5820
tatatgtcgc ttataatccc aatgcacaat ctggcgctca caattacacg gaaagtagct	5880
	5940
ttgagcaaaa tagcttattg aatactggtt ggaaatatgg ggcagtagct tggtacggga	
ttggagtaaa aaacgaaatg ttaaacattg ctcaaattgt tagtggtaat ttttctagta	6000
ttgttggaac ttggaaagat acttctggaa atatgcttga aattaatgca atgggaaatc	6060
ttactttaat atggaaaggg gcaaagaatc aaacctttga acttggcgca ggtcaacaat	6120
ttaatggaac tgcagatatt gccttaaaaa atggagagat ttcccctggt agtccactta	6180
acatttttgt tgtaccaaca gaagttgott tooctaataa taaaaaagta gacgattcaa	6240
ctgggcaaca acgaattttt gtgaattatt ctggtacaag ccctcaaatg gcgaatagta	6300
tggcagcggt ggcttttttt agagttattc catgattata ttaaagttag aattgaataa	6360
aatgtattat taaaaagata atattatate acgacaagge gacatetate aactttacca	6420
ctggtatgga agtgaccatt attacatcag gaaacgctaa aacggttgtt tttacacccg	6480
taaaataaat aataaaataa tgtgaaatta ctgacagcat tttgtcagta atttttttta	6540
tcaaaatcac acaaaaatgt tcgttgacga acaaaaaaaa ctatgttata ataattcgta	6600
tgcgaactaa aaaagaagcg attggccgac ttttaaaagt agccagcaac caaatgtctc	6660
gagaatttga taattttgca gctcaacttg atttgacagg tcagcaaatg tcaattttag	6720
attttcttgg aaatcaaagc gaagaaggtt caggaaaaga aattagtcag acgatgattg	6780
aattagaatt taatateega egtteaacaa egaeggaaat tttaeagege atggaaaage	6840
ggcttttaat taatcgaaga acaagcctga ccgatgcccg ccaaaaatca gttgaattaa	6900
ctgaagaagg gaaaagatat ttacctgaaa tcagggctta tatccaagca cataataaaa	6960
aagc	6964
<210> 23 <211> 4998	
<212> DNA <213> Artificial Sequence	
<220>	
<223> pOThy11	
<400> 23 aatttcatgg attaagtcat cttacctctt ttattagttt tttcttataa tctaatgata	60
acatttttat aattaatcta taaaccatat ccctctttgg aatcaaaatt tattatctac	120
teetttgtag atatgttata atacaagtat cagatetggg agaccacaac ggttteecac	180
tagaaataat tttgtttaac tttagaaagg agatatacgc atgaaaaaaa agattatctc	240
agetatttta atgtetacag teataettte tgetgeagee eegttgteag gtgtttaege	300
ctcagctggt caaggtactc aatcagaaaa ctcatgtact cactttccag gtaacttgcc	360
aaacatgctt cgtgatttgc gtgatgcttt ttcacgtgtt aaaacttttt ttcaaatgaa	420
agatcaactt gataacttgc ttttgaaaga atcacttttg gaagatttta aaggttacct	480

V085.ST25.txt 2580 ttttacgeta cgataacgcc tgttttaacg attatgccga taactaaacg aaataaacgc taaaacgtct cagaaacgat tttgagacgt tttaataaaa aatcgctagt ccgaggcctc 2640 gacccgattc acaaaaaata ggcacacgaa aaacaagtta agggatgcag tttatgcatc 2700 ccttaactta cttattaaat aatttatagc tattgaaaag agataagaat tgttcaaagc 2760 taatattgtt taaatcgtca attcctgcat gttttaagga attgttaaat tgattttttg 2820 taaatatttt cttgtattct ttgttaaccc atttcataac gaaataatta tacttttgtt 2880 tatctttgtg tgatattctt gatttttttc tacttaatct gataagtgag ctattcactt 2940 3000 taggtttagg atgaaaatat tetettggaa ceataettaa tatagaaata teaaettetg ccattaaaag taatgccaat gagcgttttg tatttaataa tcttttagca aacccgtatt 3060 ccacgattaa ataaatctca ttagctatac tatcaaaaac aattttgcgt attatatccg 3120 tacttatgtt ataaggtata ttaccatata ttttatagga ttggttttta ggaaatttaa 3180 actgcaatat atccttgttt aaaacttgga aattatcgtg atcaacaagt ttattttctg 3240 taqttttqca taatttatqq tctatttcaa tqqcaqttac gaaattacac ctctttacta 3300 attcaagggt aaaatggcct tttcctgagc cgatttcaaa gatattatca tgttcattta 3360 atcttatatt tgtcattatt ttatctatat tatgttttga agtaataaag ttttgactgt 3420 gttttatatt tttctcgttc attataaccc tctttaattt ggttatatga attttgctta 3480 ttaacgattc attataacca cttatttttt gtttggttga taatgaactg tgctgattac 3540 aaaaatacta aaaatqccca tattttttcc tccttataaa attaqtataa ttataqcacq 3600 ggtcgagatc catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 3660 cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga 3720 gcgaggaage ggaagagege ccaatacgea aaccgeetet eccegegegt tggeegatte 3780 3840 ttaatgtgag ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc 3900 gtatgttgtg tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg 3960 attacgccaa gcttgcatgc ctgcaggtcg actctagagg atcctatata caattgagca 4020 aaaqaaattt agttattaaa ttaccagctg gagttcctcc aatggttgta gattcactaa 4080 gtccagcaat tatttcaatg gtgattttct gtttgatgtt cgggattcgt gtgggattct 4140 cttatacgcc attccatgat attttcaatt tctcaacaca actaattcaa gcaccgttga 4200 ctggtgctgt ggcaaatcca tgggttctta tgggcatctt tacctttggt aatttcttat 4260 ggttctttgg tatccaccct aatttaattg ggggaatttt aaatccattg ttattaacaa 4320 tgtcatatgc taatattgat gcctatgctg ccggaaaacc tgtaccatac ttacaaatga 4380 tgattgtgtt tgctgtgggt gcgaacgcat ggggcggaag tggaaatact tatgggttag 4440 ttatttcaat gtttacggca aaatctgaac gctataaaca attattaaaa ttaggtgcaa 4500 ttcctaqtat tttcaatatc agtgaaccat tactttttgg tcttccaatg atgttaaatc 4560

V085.ST25.txt aaaagcaagt atgaagccca aagtttagta aataagggtt ggaaatggga taataacgga 1320 aaggeggtet tetattetgg aggtteteaa geegtatatg tegettataa teecaatgea 1380 caatctggcg ctcacaatta cacggaaagt agctttgagc aaaatagctt attgaatact 1440 ggttggaaat atggggcagt agcttggtac gggattggag taaaaaacga aatgttaaac 1500 attgctcaaa ttgttagtgg taatttttct agtattgttg gaacttggaa agatacttct 1560 ggaaatatgc ttgaaattaa tgcaatggga aatcttactt taatatggaa aggggcaaag 1620 aatcaaacct ttgaacttgg cgcaggtcaa caatttaatg gaactgcaga tattgcctta 1680 aaaaatggag agatttcccc tggtagtcca cttaacattt ttgttgtacc aacagaagtg 1740 aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt tacccaactt 1800 aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga ggcccgcacc 1860 gatcgccctt cccaacagtt gcgcagcctg aatggcgaat ggcgcctgat gcggtatttt 1920 ctccttacgc atctgtgcgg tatttcacac cgcatatggt gcactagaac tagcgattct 1980 gaaatcacca tttaaaaaac tccaatcaaa taattttata aagttagtgt atcactttgt 2040 aatcataaaa acaacaataa agctacttaa atatagattt ataaaaaacg ttggcgaaaa 2100 cgttggcgat tcgttggcga ttgaaaaacc ccttaaaccc ttgagccagt tgggatagag 2160 cgtttttggc acaaaaattg gcactcggca cttaatgggg ggtcgtagta cggaagcaaa 2220 attcgcttcc tttcccccca ttttttcca aattccaaat ttttttcaaa aattttccag 2280 cgctaccgct cggcaaaatt gcaagcaatt tttaaaatca aacccatgag ggaatttcat 2340 teceteatae tecettgage etectecaae egaaatagaa gggegetgeg ettattattt 2400 cattcagtca tcggctttca taatctaaca gacaacatct tcgctgcaaa gccacgctac 2460 gctcaagggc ttttacgcta cgataacgcc tgttttaacg attatgccga taactaaacg 2520 aaataaacgc taaaacgtct cagaaacgat tttgagacgt tttaataaaa aatcgctagt 2580 ccgaggcctc gacccgattc acaaaaaata ggcacacgaa aaacaagtta agggatgcag 2640 tttatgcatc ccttaactta cttattaaat aatttatagc tattgaaaag agataagaat 2700 tgttcaaagc taatattgtt taaatcgtca attcctgcat gttttaagga attgttaaat 2760 tgattttttg taaatatttt cttgtattct ttgttaaccc atttcataac gaaataatta 2820 tacttttgtt tatctttgtg tgatattctt gatttttttc tacttaatct gataagtgag 2880 ctattcactt taggtttagg atgaaaatat tctcttggaa ccatacttaa tatagaaata 2940 tcaacttctg ccattaaaag taatgccaat gagcgttttg tatttaataa tcttttagca 3000 aacccgtatt ccacgattaa ataaatctca ttagctatac tatcaaaaac aattttgcgt 3060 attatatccg tacttatgtt ataaggtata ttaccatata ttttatagga ttggttttta 3120 ggaaatttaa actgcaatat atccttgttt aaaacttgga aattatcgtg atcaacaagt 3180 ttattttctg tagttttgca taatttatgg tctatttcaa tggcagttac gaaattacac 3240 ctctttacta attcaagggt aaaatggcct tttcctgagc cgatttcaaa gatattatca 3300

V085.ST25.txt aatgtctaca gtcatacttt ctgctgcagc cccgttgtca ggtgtttacg cctcagctgg 300 tcaaggtact caatcagaaa actcatgtac tcactttcca ggtaacttgc caaacatgct 360 tcgtgatttg cgtgatgctt tttcacgtgt taaaactttt tttcaaatga aagatcaact 420 480 tgataacttg cttttgaaag aatcactttt ggaagatttt aaaggttacc ttggttgtca 540 agctttgtca gaaatgatcc aattttacct tgaagaagtt atgccacaag ctgaaaacca agatccagat atcaaagctc acgttaactc attgggtgaa aaccttaaaa ctttgcgtct 600 660 tcgtttgcgt cgttgtcacc gttttcttcc atgtgaaaac aaatcaaaag ctgttgaaca 720 aqttaaaaac gcttttaaca aattgcaaga aaaaggtatc tacaaagcta tgtcagaatt tgatatcttt atcaactaca tcgaagctta catgactatg aaaatccgta actaactaga 780 840 attaatctat aagttactga caaaactgtc agtaactttt tttgtgggaa aaatgtattt ttatgaccgt aaagaatctg tcagtagaag tctgaaattc gtttaaaaat cgactagaat 900 aggetttaac gacaagatgt tttaaagagt acgetetaaa tgtatttttg tatttttgtt 960 tgattacgaa gtttaaattt aattgacaaa tgttttaaaa tgagtataat aggacttgta 1020 accgatttta tttttataaa ggagaaagaa agatgaacaa acttttactt ggaacagcct 1080 1140 ttataggggc tagcttactg attggtgggg gtgctcatgc agatcaaatg tttatcgttt gtataatcat aatactggtg agcactctat acaactagtg ggacaccaaa agaatgctaa 1200 1260 tgtaagtgcg ggttggactt atgaaggtgt cggttggatc gcaccaacaa caagttcaag cccagtttac cgtgtgtaca atccaaatgc attattacac aaaaagcaag tatgaagccc 1320 1380 aaagtttagt aaataagggt tggaaatggg ataataacgg aaaggcggtc ttctattctg gaggttctca agccgtatat gtcgcttata atcccaatgc acaatctggc gctcacaatt 1440 1500 acacggaaag tagctttgag caaaatagct tattgaatac tggttggaaa tatggggcag tagcttggta cgggattgga gtaaaaaacg aaatgttaaa cattgctcaa attgttagtg 1560 gtaatttttc tagtattgtt ggaacttgga aagatacttc tggaaatatg cttgaaatta 1620 atgcaatggg aaatcttact ttaatatgga aaggggcaaa gaatcaaacc tttgaacttg 1680 gcgcaggtca acaatttaat ggaactgcag atattgcctt aaaaaatgga gagatttccc 1740 ctggtagtcc acttaacatt tttgttgtac caacagaagt gaattcactg gccgtcgttt 1800 tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt gcagcacatc 1860 cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct tcccaacagt 1920 tgcgcagcct gaatggcgaa tggcgcctga tgcggtattt tctccttacg catctgtgcg 1980 gtatttcaca ccgcatatgg tgcactagaa ctagcgattc tgaaatcacc atttaaaaaa 2040 2100 ctccaatcaa ataattttat aaagttagtg tatcactttg taatcataaa aacaacaata aagctactta aatatagatt tataaaaaac gttggcgaaa acgttggcga ttcgttggcg 2160 attgaaaaac cccttaaacc cttgagccag ttgggataga gcgtttttgg cacaaaaatt 2220 ggcactcggc acttaatggg gggtcgtagt acggaagcaa aattcgcttc ctttcccccc 2280

V085.ST25.txt ctaatattga tgcctatgct gccggaaaac ctgtaccata cttacaaatg atgattgtgt	4380
ttgctgtggg tgcgaacgca tggggcggaa gtggaaatac ttatgggtta gttatttcaa	4440
tgtttacggc aaaatctgaa cgctataaac aattattaaa attaggtgca attcctagta	4500
ttttcaatat cagtgaacca ttactttttg gtcttccaat gatgttaaat cctctttct	4560
ttattccttt ggttttccaa ccagcaattt taggaactgt agcattgggc ttggcaaaga	4620
tattatatat tacaaatctg aatccaatga cggcacttct tccttggacg acaccagcac	4680
ctgtgagaat ggccatttca ggtggacttc catttttgat tatttttgca atctgtttag	4740
tettgaatgt tettatttae tacceattet ttaaggtgge gtataataaa getttagaag	4800
	4860
aagaaaaagc agctgttgaa ttagagggtt cagaaactgc ctgatggata ttttttataa	4920
atctggtttg aacaaattat attgacatct ctttttctat cctgataatt ctgagaggtt	4936
attttgggaa atacta	4930
<210> 26 <211> 4995	
<212> DNA	
<220> / <223> pOThy16	
<400> 26 aatttcgatt aagtcatctt acctctttta ttagtttttt cttataatct aatgataaca	60
tttttataat taatctataa accatatccc tctttggaat caaaatttat tatctactcc	120
tttgtagata tgttataata caagtatcag atctgggaga ccacaacggt ttcccactag	180
aaataatttt gtttaacttt agaaaggaga tatacgcatg aaaaaaaaga ttatctcagc	240
tattttaatg tctacagtca tactttctgc tgcagccccg ttgtcaggtg tttacgcctc	300
agctggtcaa ggtactcaat cagaaaactc atgtactcac tttccaggta acttgccaaa	360
catgettegt gatttgegtg atgettttte aegtgttaaa aetttttte aaatgaaaga	420
tcaacttgat aacttgcttt tgaaagaatc acttttggaa gattttaaag gttaccttgg	480
ttgtcaaget ttgtcagaaa tgatecaatt ttaeettgaa gaagttatge cacaagetga	540
aaaccaagat ccagatatca aagctcacgt taactcattg ggtgaaaacc ttaaaacttt	600
gcgtcttcgt ttgcgtcgtt gtcaccgttt tcttccatgt gaaaacaaat caaaagctgt	660
tgaacaagtt aaaaacgctt ttaacaaatt gcaagaaaaa ggtatctaca aagctatgtc	720
agaattigat atctttatca actacatcga agcttacatg actatgaaaa tccgtaacta	780
actagaatta atctataagt tactgacaaa actgtcagta actttttttg tgggaaaaat	840
gtatttttat gaccgtaaag aatctgtcag tagaagtctg aaattcgttt aaaaatcgac	900
tagaataggc tttaacgaca agatgtttta aagagtacgc tctaaatgta tttttgtatt	960
tttgtttgat tacgaagttt aaatttaatt gacaaatgtt ttaaaatgag tataatagga	1020
cttgtaaccg attttatttt tataaaggag aaagaaagat gaacaaactt ttacttggaa	1080

V085.ST25.txt ttatgttata aggtatatta ccatatattt tataggattg gtttttagga aatttaaact 3180 gcaatatatc cttgtttaaa acttggaaat tatcgtgatc aacaagttta ttttctgtag 3240 3300 ttttgcataa tttatggtct atttcaatgg cagttacgaa attacacctc tttactaatt caagggtaaa atggcctttt cctgagccga tttcaaagat attatcatgt tcatttaatc 3360 ttatatttgt cattatttta tctatattat gttttgaagt aataaagttt tgactgtgtt 3420 ttatattttt ctcgttcatt ataaccctct ttaattttggt tatatgaatt ttgcttatta 3480 acgattcatt ataaccactt attttttgtt tggttgataa tgaactgtgc tgattacaaa 3540 3600 aatactaaaa atgcccatat tttttcctcc ttataaaatt agtataatta tagcacgggt cgagatecat gttctttcct gcgttatece ctgattctgt ggataaccgt attaccgcct 3660 ttgagtgage tgataceget egeegeagee gaacgacega gegeagegag teagtgageg 3720 aggaagegga agagegeeca ataegeaaac egeeteteec egegegttgg eegatteatt 3780 aatgcagctg gcacgacagg tttcccgact ggaaagcggg cagtgagcgc aacgcaatta 3840 atgtgagtta gctcactcat taggcacccc aggctttaca ctttatgctt ccggctcgta 3900 tgttgtgtgg aattgtgagc ggataacaat ttcacacagg aaacagctat gaccatgatt 3960 acgccaagct tgcatgcctg caggtcgact ctagaggatc ctatatacaa ttgagcaaaa 4020 gaaatttagt tattaaatta ccagctggag ttcctccaat ggttgtagat tcactaagtc 4080 cagcaattat ttcaatggtg attttctgtt tgatgttcgg gattcgtgtg ggattctctt 4140 atacqccatt ccatgatatt ttcaatttct caacacaact aattcaagca ccgttgactg 4200 gtgctgtggc aaatccatgg gttcttatgg gcatctttac ctttggtaat ttcttatggt 4260 tctttggtat ccaccctaat ttaattgggg gaattttaaa tccattgtta ttaacaatgt 4320 catatgctaa tattgatgcc tatgctgccg gaaaacctgt accatactta caaatgatga 4380 ttgtgtttgc tgtgggtgcg aacgcatggg gcggaagtgg aaatacttat gggttagtta 4440 tttcaatgtt tacggcaaaa tctgaacgct ataaacaatt attaaaatta ggtgcaattc 4500 ctaqtatttt caatatcaqt qaaccattac tttttggtct tccaatgatg ttaaatcctc 4560 ttttctttat tcctttggtt ttccaaccag caattttagg aactgtagca ttgggcttgg 4620 caaagatatt atatattaca aatctgaatc caatgacggc acttcttcct tggacgacac 4680 cagcacctgt gagaatggcc atttcaggtg gacttccatt tttgattatt tttgcaatct 4740 gtttagtctt gaatgttctt atttactacc cattctttaa ggtggcgtat aataaagctt 4800 tagaagaaga aaaagcagct gttgaattag agggttcaga aactgcctga tggatatttt 4860 ttataaatct ggtttgaaca aattatattg acatctcttt ttctatcctg ataattctga 4920 gaggttattt tgggaaatac tattgaacca tatcgaggtg tgtggtataa tgaagggaat 4980 4995 taaaaaagat aggaa