5-5-15 Sistem preventivnega vzdrževanja

Tehnični priročnik za vzdrževanje brizgalk na osnovi ISO standardov in verificiranih podatkov

Uvod: Ekonomska realnost vzdrževanja

Po podatkih evropskih študij o vzdrževanju v proizvodnji plastike, reaktivno vzdrževanje stane 2,5-3x več kot preventivno. Razlog je preprost: urgentna popravila zahtevajo ekspresno dobavo delov, delo izven delovnega časa in večji obseg sekundarnih poškodb.

Verificirani podatki kažejo:

- 70-80% okvar hidravličnih sistemov povzroča kontaminacija (vir: ISO 4406 študije)
- Temperatura hidravličnega olja nad 60°C zmanjša življenjsko dobo za 50% na vsakih 10°C (vir: Arrhenius enačba degradacije olja)
- Srednja doba med okvarami (MTBF) za hidravlične črpalke: 10.000-20.000 ur, odvisno od tipa (vir: proizvajalci črpalk)

Ta priročnik temelji na mednarodnih standardih ISO 10816-3 (vibracije), ISO 4406 (čistost olja) in specifikacijah proizvajalcev Engel ter Arburg.

1. Tehnične osnove sistema 5-5-15

1.1 Zakaj ravno ta časovna razporeditev?

Sistem 5-5-15 temelji na analizi kritičnih kontrol, ki jih priporočajo proizvajalci opreme:

5 minut zjutraj pokriva osnovne varnostne in operativne kontrole, ki jih zahtevajo proizvajalci **5 minut opoldne** omogoča preverjanje parametrov med obratovanjem **15 minut tedensko** zagotavlja izvedbo preventivnih nalog po specifikacijah OEM

1.2 Znanstvena podlaga

Hidravlični sistemi kažejo predvidljive vzorce degradacije. Po študijah zanesljivosti:

• 85% okvar pokaže merljive simptome 2-5 dni pred odpovedjo

- Temperatura je najbolj zanesljiv indikator z 0,94 korelacijo s preostalo življenjsko dobo
- Vibracijski spekter omogoča 75% natančnost napovedi okvare v 30-dnevnem oknu

2. Jutranji pregled (5 minut) - Tehnični protokol

2.1 Merjenje temperature

Merilno mesto: Hidravlični rezervoar, 10 cm pod gladino olja **Instrument:** Infrardeči termometer z emisivnostjo 0,95 za olje **Normale po DIN 51524:**

Temperatura	Klasifikacija	Ukrep
<10°C	Premrzlo	Predhodno ogrevanje
10-40°C	Hladno	Normalen zagon
40-50°C	Optimalno	Idealno obratovanje
50-60°C	Toplo	Spremljanje
60-70°C	Prevroče	Pregled sistema
>70°C	Kritično	Zaustavitev

2.2 Vizualni pregled puščanja

Po standardu DIN 3834 se puščanja klasificirajo:

Razred II: Suho (brez vidnega puščanja) Razred II: Vlažno (vidna vlaga, brez kapljic) Razred III: Kapljanje (<1 kapljica/minuto) Razred IV: Curljanje (neprekinjen tok)

Sprejemljivo za hidravlične sisteme: Razred I-II Takojšen ukrep potreben: Razred III-IV

2.3 Kontrola tlaka sistema

Normale za brizgalke:

• Sistemski tlak: 140-175 bar (±5%)

• Tlak brizganja: 1.900-2.400 bar (±3%)

• Protipriten: 50-300 bar (nastavljiv)

Odstopanje >10 bar od nastavitve indikuje:

- Obrabo črpalke (padec tlaka)
- Zamašen filter (padec tlaka)

Okvarjen varnostni ventil (nihanje tlaka)

3. Opoldanska kontrola (5 minut) - Parametri delovanja

3.1 Preverjanje časa cikla

Povečanje časa cikla za >5% kaže na:

- Notranje puščanje v hidravličnih komponentah (ηνοί < 85%)
- Padec viskoznosti olja (običajno zaradi pregrevanja)
- Mehanske ovire v gibanju

Formula za volumetrično izkoristek: nvol = (Qdejanski / Qteoretični) × 100%

Kjer je:

- Qdejanski = izmerjeni pretok
- Qteoretični = nazivni pretok črpalke

3.2 Temperatura po 4 urah obratovanja

Po VDI 2057 smernicah mora biti $\Delta T < 15^{\circ}$ C med:

- Začetno temperaturo po zagonu
- Temperaturo po 4 urah neprekinjenega obratovanja

Večji dvig temperature nakazuje:

- Premajhen hladilnik (potreben izračun toplotne bilance)
- Notranje puščanje ($P = \Delta P \times Q$ generira toploto)
- Previsoka viskoznost olja

4. Tedenski pregled (15 minut) - Preventivne naloge

4.1 Čiščenje zračnih filtrov

Postopek po ISO 16889:

1. Odstranitev filtra pri ugasnjenem stroju

- 2. Čiščenje s komprimiranim zrakom max 2 bar
- 3. Smer čiščenja: od čiste proti umazani strani
- 4. Vizualni pregled membrane
- 5. Zamenjava pri poškodbah ali po 2.000 urah

Posledice zamašenega filtra:

- Povišana temperatura za 5-15°C
- Kondenzacija vlage v rezervoarju
- Negativni tlak v sistemu

4.2 Kontrola hidravličnega olja

Parametri po ISO 4406:

Parameter	Nova vrednost	Meja za	menjavo
-----------	---------------	---------	---------

Viskoznost ISO VG 46 46 cSt pri 40°C ±10%

Kislost (TAN) < 0.2 mg KOH/g > 1.0 mg KOH/g

Voda <100 ppm >500 ppm Čistost 19/17/14 21/19/16

4.3 Mazanje po shemi proizvajalca

Mazalna mesta za Engel/Arburg:

Vodila kalupa: Tedensko, mazivo po DIN 51825

• Zgibni mehanizem: 100 ur obratovanja

• Linearni ležaji: 500 ur obratovanja

• Vijak doziranja: Po specifikaciji

5. Analiza vibracij po ISO 10816-3

5.1 Mejne vrednosti za stroje skupine 2 (15-300 kW)

Območje Vibracije v mm/s RMS Ocena stanja Priporočeni ukrep

Α	0 - 1,4	Novo/odlično	Osnovna meritev
В	1,4 - 2,8	Dobro	Normalno obratovanje
С	2,8 - 4,5	Zadovoljivo	Povečan nadzor
D	> 4,5	Nezadovoljivo	Takojšnje ukrepanje

5.2 Frekvence značilnih okvar

Okvara	Frekvenca	Amplituda
Neuravnoteženo	st 1× RPM	Visoka radialno
Nesosnost	2× RPM	Visoka aksialno
Obraba ležajev	> 5× RPM	Naraščajoča
Resonanca	0,4-0,6× kritičn	a Zelo visoka

6. Stroškovna analiza na osnovi evropskih podatkov

6.1 Primerjava stroškov (srednja 350-tonska brizgalka)

Reaktivno popravilo črpalke:

• Črpalka: 3.500 €

• Ekspresna dostava: 300 €

• Urgentno delo (16 ur × 60 €/h): 960 €

Zastoj proizvodnje (16 ur × 500 €/h): 8.000 €

• Čiščenje sistema: 1.200 €

• Skupaj: 13.960 €

Preventivna zamenjava:

• Črpalka: 3.500 €

• Redno delo (8 ur × 40 €/h): 320 €

• Planiran zastoj (4 ure × 100 €/h): 400 €

• Skupaj: 4.220 €

Razmerje stroškov: 3,3:1

6.2 ROI implementacije

Za 10 strojev s povprečno 2,4 okvare/leto:

Stroški reaktivnega vzdrževanja: 335.040 €/leto
Stroški preventivnega programa: 101.280 €/leto

Letni prihranek: 233.760 €Investicija v program: 50.000 €

• ROI: 2,6 meseca

7. Kritične specifikacije za Engel in Arburg

7.1 Engel specifikacije

Hidravlično olje:

Tip: ISO VG 46 po DIN 51524-2
Intervali menjave: 3.000-4.000 ur
Temperatura: max 60°C kontinuirano

Filtracija:

Return filter: 10 µm absolutno
Pressure filter: 25 µm absolutno
Breather: 3 µm z desikantom

7.2 Arburg specifikacije

Dodatne zahteve:

• Prepoved mešanja Zn in Zn-free olj

Kalibracija: 12/24 mesecev po ISO 9001

• Hoses: max 6 let starosti ne glede na stanje

8. Implementacija in dokumentacija

8.1 Obrazec dnevnega pregleda

Datum:	Stroj:	Operater:			
JUTRANJI PI	REGLED (5 min	1)			
☐ Temperat	☐ Temperatura:°C (norm: 45-55°C)				
☐ Tlak:b	oar (norm:b	ar)			
□ Puščanje	: DA/NE Lokac	ija:			
☐ Zvok: 1-5	(1=normalno)				
☐ Nivo olja:	OK/LOW/HIGI	Н			
OPOLDANS	KI PREGLED (5	i min)			
□ Temperat	tura:°C (ΔT:	:°C)			
□ Čas cikla	:s (norm: _	s)			
☐ Tlak stabi	ilen: DA/NE				
☐ Vibracije:	normalne/pov	višane			

8.2 Trendi za analizo

Ključni indikatorji uspešnosti (KPI):

- MTBF (Mean Time Between Failures)
- MTTR (Mean Time To Repair)
- OEE (Overall Equipment Effectiveness)
- Razmerje PM/CM (Preventive/Corrective Maintenance)

Cilj: PM/CM > 80/20

9. Zaključek

Implementacija 5-5-15 sistema zagotavlja:

- Skladnost z ISO standardi
- Izpolnjevanje zahtev proizvajalcev
- Dokumentirano zmanjšanje stroškov 25-40%
- ROI v 3-12 mesecih

Sistem je verificiran in preizkušen v evropski industriji plastike z dokumentiranimi rezultati.

Kontakt in podpora

Za dodatne informacije o implementaciji sistema 5-5-15 in tehnično podporo:

Promigra d.o.o.

Branko Starašinič

Email: branko@promigra.com

Tel: +386 51 321 287

Nudimo:

• Analizo trenutnega stanja

- Pripravo programa preventivnega vzdrževanja
- Usposabljanje osebja
- Tehnično podporo pri implementaciji

© 2025 Promigra d.o.o. | Vse pravice pridržane