Department of Mathematics

Indian Institute of Technology Guwahati MA 101: Mathematics I

Tutorial Sheet-5July-November 2023

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ [x] & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Determine all the points of \mathbb{R} where f is continuous.
- 2. Let $f:[0,1]\to\mathbb{R}$ be continuous such that f(0)=f(1). Show that
 - (a) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{2}$.
 - (b) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{3}$.
- 3. Let p be an odd degree polynomial with real coefficients in one real variable. If $g: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$.

In particular, this shows that

- (a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
- (b) the equation $x^9 4x^6 + x^5 + \frac{1}{1+x^2} = \sin 3x + 17$ has at least one real root.
- (c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R} .
- 4. Does there exist a continuous function from (0,1] onto \mathbb{R} ? Justify.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable on $(-\delta, \delta)$ for some $\delta > 0$ and let f''(0) exist. If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, then find f'(0) and f''(0).
- 6. For $n \in \mathbb{N}$, show that the equation $1 x + \frac{x^2}{2} \frac{x^3}{3} + \cdots + (-1)^n \frac{x^n}{n} = 0$ has exactly one real root if n is odd and has no real root if n is even.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there exist $c_1, c_2 \in (0, 1)$ with $c_1 \neq c_2$ such that $f'(c_1) = f'(c_2) = 0$.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists, where $c \in \mathbb{R}$. Show that $\lim_{h\to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c)$. Give an example of an $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which f''(c) does not exist but the above limit exists.
- 9. Prove that, for x > 0,

$$|\log(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}\right)| < \frac{x^{n+1}}{n+1}.$$

- 10. Test the convergence of the power series: $\sum_{n=1}^{\infty} a_n x^n$, where $a_n = \begin{cases} 2^{-n} & \text{if } n \text{ is even,} \\ 3^{-n} & \text{if } n \text{ is odd.} \end{cases}$
- 11. Prove that the Maclaurin series for $\cos x$ converges to $\cos x$ for all $x \in \mathbb{R}$.