Elementary Algorithms in Number Theory

Lillian Zeng, Dr. Ghaith A. Hiary

The Ohio State University – Department of Mathematics

Abstract

This research project summarized and implemented four representative integer factorization algorithms, including Fermat Method, Trial Division, Pollard Rho Method and Pollard-Strassen Method. Their basic ideas and characteristics were introduced, respectively. To test the different features of these algorithms, we implemented them using C++ programming and GNU MP Library. The comparison of these algorithms shows that, if n =p1 * p2, then the worst cases in Fermat Method are the best ones in Trial Division, and vice versa, depending on the distance between the two prime factors p1 and p2; Pollard Rho Method provides an efficient algorithm, which takes only about one second to factor a number with 25 digits, where Fermat Method and Trial Division would take several hours. However, the running time of the Pollard Rho Method has not been proven, so we tested another algorithm, the Pollard-Strassen Method, which is a deterministic and proven method that has the same theoretical running time as the Pollard Rho Method, but is less efficient in practice and requires large memory space. This project hopes to provide a reference for future works to find a more efficient deterministic technique for integer factorization

Objectives

As several previous works have considered finding a more efficient deterministic technique for integer factorization, it is of interest to provide a comparison among the already known algorithms. This project hopes to provide such a comparison for future works.

Trial Division & Fermat Method

Trial Division

Trial Division is a basic algorithm for integer factorization. For an integer n, it sequentially tests each integer in $[2, \sqrt{n}]$ to see if it is divisible by n. It takes $O(\sqrt{n})$ steps to factor an integer n.

Fermat Method

Fermat Method for integer factorization is another basic algorithm. It rewrites the odd integer n = p1 * p2 as $n = a^2 - b^2 = (a + b)(a - b)$, where a and b are both integers and $a = \frac{p2 + p1}{2}$, $b = \frac{|p2 - p1|}{2}$ for factors p1 and p2. Fermat Method takes O(p1 - p2) steps to complete. So if p1 and p2 are close to each other, then Fermat method finishes quickly.

Different choices of distance between the two factors

The greater the distance between the two factors, the longer it will take to find them using Fermat Method. Also, the easiest cases in the Fermat Method are the worst cases in Trial Division, and vice versa.

Tests on different choices of distances between two factors p_1 (digits) p_2 (digits) n (digits) p_2-p_1 Time 951903871 (9) 27449 (5) 34679 (5) 573224 16487873177 (11) 27449 (5) 600673 (6) 0.008s1968751 (7) 1941302 54040246199 (11) 2068889678717 (13) 666808669 (9) 4712020471 (10) 129340249908479 (15) 27449 (5) 4711993022 1min19.400s 308610717679871 (15) | 27449 (5) | 11243058679 (11) | 11243031230 | 3min14.160s 15249383415859739 (17) | 27449 (5) | 555553332211 (12) | 555553304762 | 2hr46min47.504s

Table 1. Speed test for Fermat Method

Below is a graph for the speed tests of Fermat Method. $\log \left(\frac{p2-p1}{(p2-p1)_0}\right)$ were calculated for x-axis, and $\frac{\log \left(\frac{time}{time_0}\right)}{(p2-p1)}$ were calculated for y-axis. The graph

looks like a horizontal line around 1, meaning that the running time increases linearly with p1 - p2.

Pollard Rho Method

Pollard Rho Method is an algorithm for integer factorization using the idea of birthday paradox. It terminates in $O(\sqrt{p})$ steps, where p is the least prime factor of n.

The Birthday Paradox

In a room with 23 people, there is about 50 percent chance that two of them have the same birthday.

probability (two of them have the same birthday)
= 1 - probability (none of them have the same birthday)
= 1 -
$$\frac{365}{365} * \frac{364}{365} * \frac{363}{365} * \cdots * \frac{365 - 23 + 1}{365}$$
= 1 - $\frac{365^{23} * (365 - 23)!}{365^{23} * (365 - 23)!}$
≈ 0.5073

Applying Birthday paradox in Pollard Rho Method (example) Let p = 29

Let x be in interval [1,1000]

We want to know the probability of x = p using different methods to get x

Method 1: let x = a random number in [1,1000] probability of x = p: $\frac{1}{1000}$

Method 2: choosing two random numbers in [1,1000] let x = the difference of the two numbers

probability of x = p: $\frac{2*(1000-29)}{1000*1000} \approx 0.0019 \approx \frac{1}{500}$

Method 3: Birthday paradox:

choosing a set of random numbers (more than 2 numbers) in [1,1000]

let x = the difference of any two number in the set of numbers the probability of x = p will increase very quickly

• Different Choices of F(x)

In implementations, the choice of function F(x) matters, where F(x) is a random map. Below is a table that shows some tests made on different choices of F(x). Some of the bad choices include ax + b, because it is not random enough that a linear function is very predictable.

Tests on different choices of F(x) (record the number of iterations)

n	p	$x^2 + a$	$x^2 + ax + b$	$x^3 + a$	$x^4 + a$	x^2	ax + b	x^2-2
304,583	541	11	15	14	16	12	180	36
56,675,701	541	27	18	10	14	18	135	4
8,377,886,507	541	23	18	12	24	12	180	12
1,102,598,450,029	541	20	18	4	8	36	108	135
10,971,514,769	104,729	112	149	230	182	48	52,380	144
239,812,943,950,001	15,485,863	3,334	5,528	6,716	2,330	30,900	7,742,963	8,838
4,153,748,711,044,459,367	2,038,074,743	9,158	19,583	8,428	7,040	90,090	679,358,256	771,210
63,553,301,090,046,162,415,541	252,097,800,667	510,260	278,203	126,255	198,210			

Speed Test of Pollard Rho Method

Tests on Pollard Rho Method p_1 (digits) p_2 (digits) # of iterations Time 963 (25) 1398023584459 (13) 1732565537257 (13) 850612 0.3688 5789 (27) 11108452651921 (14) 43308631298509 (14) 2859233 1.3728 17347 (29) 2777777888888989 (15) 324578696875423 (15) 22689861 11.376 932681 (31) 2222226095589337 (16) 2744337540964913 (16) 44755082 24.340 7621601 (33) 13107181911273173 (17) 37124508045065437 (17) 67631786 37.844

27777788888989 (15)	324578696875423 (15)	22689861	11.376s
2222226095589337 (16)	2744337540964913 (16)	44755082	24.340s
13107181911273173 (17)	37124508045065437 (17)	67631786	37.844s
212345678987654321 (18)	300000224101777931 (18)	374537991	3min37.568s
1111918171614121013 (19)	6082394749206781697 (19)	786228959	8min9.032s
17131175322357111317 (20)	36484957213536676883 (20)	7639357254	1hr53min55.448s
223331355555777767777 (21)	357111317192931414359 (21)	4109561190	1hr19m52.108s
2030507011013017019023 (22)	20244446666888888688681 (22)	56854345256	19hr22m41.812s
16081123194129907217449 (23)	25852016738884976645039 (23)	153343425024	2d5hr55m51.816s
	2222226095589337 (16) 13107181911273173 (17) 212345678987654321 (18) 1111918171614121013 (19) 17131175322357111317 (20) 223331355555777767777 (21) 2030507011013017019023 (22)	2222226095589337 (16) 2744337540964913 (16) 13107181911273173 (17) 37124508045065437 (17) 212345678987654321 (18) 300000224101777931 (18) 1111918171614121013 (19) 6082394749206781697 (19) 17131175322357111317 (20) 36484957213536676883 (20) 223331355555777767777 (21) 357111317192931414359 (21) 2030507011013017019023 (22) 2024444666688888688681 (22)	2222226095589337 (16) 2744337540964913 (16) 44755082 13107181911273173 (17) 37124508045065437 (17) 67631786 212345678987654321 (18) 300000224101777931 (18) 374537991 1111918171614121013 (19) 6082394749206781697 (19) 786228959 17131175322357111317 (20) 36484957213536676883 (20) 7639357254 223331355555777767777 (21) 357111317192931414359 (21) 4109561190 2030507011013017019023 (22) 20244446666888888688681 (22) 56854345256

Below is a graph illustration of the speed tests of Pollard Rho Method.

Table 3. Speed tests for the Pollard Rho Method

We use $\log\left(\frac{p}{p_0}\right)$ as the measurement for x-axis, and $\frac{\log\left(\frac{time}{time_0}\right)}{\log\left(\frac{p}{p_0}\right)}$ as the

measurement for y-axis. As we can see, the graph is a constant line slightly lower than 0.25.

Application of Pollard Rho Method

An application of Pollard Rho Method is to factor Fermat numbers. For the number $F5 = 2^{2^5} + 1$ (i.e. 4,294,967,297), it only iterates once to get factor; and for the number $F6 = 2^{2^6} + 1$ (i.e. 8,446,744,073,709,551,617), it iterates 3 times to get factor.

Features of Pollard Rho Method

Pollard Rho Method requires very little space (i.e. O(1)) and a small amount of operations (i.e. $O(n^{\frac{1}{4}})$). However, the running time of the Pollard Rho Method has not been fully proven, because the algorithm involves probabilistic choices that are hard to predict completely.

Pollard Strassen Method

The Pollard-Strassen Method is the fastest deterministic algorithm for integer factorization. It terminates in $O(n^{\frac{1}{4}} \ln^2 n)$ steps, However, it requires a memory space of $O(n^{\frac{1}{4}})$. It also looks like a constant line around 0.25 in the graph below.

Result: Speed Comparison between Algorithms

Below is a speed competition for integer factorization algorithms (except Pollard Strassen Method). Numbers from 15 digits to 27 digits were tested. The Pollard Rho Method is much more efficient than Trial Division and Fermat Method.

Table 4. Speed competition for different integ

References

[1] Crandall, Richard E, and Carl Pomerance. Prime Numbers: A Computational Perspective. New York, NY: Springer, 2005. Internet resource.

[2] Hiary, Ghaith A. A Deterministic Algorithm for Integer Factorization. *Mathematics of Computation*. 85.300 (2016). Print.

[3] Gathen, Joachim. *Modern Computer Algebra*. Cambridge University Press, 2013. Web. 24 Mar. 2017.