Propriedades Coligativas

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Efeito Criscópico e Ebulioscópico

- 1. Soluções ideais.
- 2. Efeito do soluto na temperatura de fusão e ebulição.
- 3. Crioscopia:

$$\Delta T_{fus} = -k_c w i$$

4. Ebulioscopia:

$$\Delta T_{eb} = k_b wi$$

1.0.1 Habilidades

- a. Calcular a concentração de soluto com base na temperatura de congelamento ou ebulição.
- b. **Calcular** o grau de ionização do soluto com base na temperatura de congelamento ou ebulição.
- c. Calcular massa molar do soluto por crioscopia e ebulioscopia.

2 Osmose

1. Pressão osmótica:

$$\Pi = iRTc$$

- 2. Solução hipotônicas, isotônicas e hipertônicas.
- 3. Osmometria.
- 4. Osmose reversa.

2.0.1 Habilidades

a. Calcular massa molar do soluto por osmometria.

Nível I

PROBLEMA 2.1

2F01

Em uma amostra de água do mar dissolve-se um pouco de sacarose. Considere as proposições.

- 1. A pressão de vapor da água diminui.
- 2. A pressão osmótica da solução aumenta.
- A condutividade elétrica da solução permanece praticamente inalterada.
- **4.** A temperatura de congelamento diminui.

Assinale a alternativa que relaciona as proposições corretas.

Considere as seguintes afirmações sobre equilíbrio de fases e propriedades coligativas.

- A adição de um soluto não volátil a um solvente puro, em uma dada temperatura constante, sempre provoca uma diminuição na pressão de vapor.
- 2. O valor absoluto do abaixamento no ponto de congelamento de uma solução é menor se o soluto dimeriza parcialmente no solvente, comparado ao sistema nas mesmas condições em que não há a dimerização do soluto.
- **3.** A pressão osmótica é a pressão exercida pelas moléculas de soluto sob uma membrana semipermeável.
- Uma mistura formada por duas substâncias nunca solidifica inteiramente em uma única temperatura.

Assinale a alternativa que relaciona as proposições corretas.

PROBLEMA 2.3

2F03

Assinale a alternativa que mais se aproxima da temperatura de ebulição de uma solução 2 mol kg^{-1} de sacarose, $C_{11}H_{22}O_{11}$.

Dados

•
$$k_b(H_2O) = 0.51 \, \text{K kg mol}^{-1}$$

PROBLEMA 2.4

2F04

Assinale a alternativa que mais se aproxima da temperatura de congelamento de uma solução $0.2 \, \text{mol kg}^{-1}$ do analgésico codeína, $C_{18}H_{21}NO_3$, em benzeno.

Dados

- $k_b(C_6H_6) = 5.12 \,\mathrm{K \, kg \, mol^{-1}}$
- $T_{fus}(C_6H_6) = 5,5 \,{}^{\circ}C$

PROBLEMA 2.5

2F05

A adição de 0,24 g de enxofre a 100 g de tetracloreto de carbono abaixa o ponto de congelamento do solvente em 0,28 $^{\circ}$ C.

Assinale a alternativa com a fórmula molecular das moléculas de enxofre.

PROBLEMA 2.2 2F02

Dados

• $k_b(CCl_4) = 29.8 \, \text{K kg mol}^{-1}$

PROBLEMA 2.6

2F06

A adição de 250 mg de eugenol, o composto responsável pelo odor do óleo de cravo-da-índia, a 100 g de cânfora, abaixa o ponto de congelamento do solvente em 0,62 °C.

Assinale a alternativa que mais se aproxima da massa molar do eugenol.

Dados

• $k_b(C_{10}H_{16}O) = 39.7 \,\mathrm{K \, kg \, mol}^{-1}$

PROBLEMA 2.7

2F07

Assinale a alternativa que mais se aproxima da temperatura de ebulição de uma solução 2 mol kg^{-1} de cloreto de cálcio.

Dados

• $k_h(H_2O) = 0.51 \, \text{K kg mol}^{-1}$

PROBLEMA 2.8

2F08

Uma solução de sacarose foi dividida em duas amostras. A primeira amostra foi imediatamente resfriada, sendo $-1\,^\circ$ C a temperatura de início de solidificação. Algumas gotas de ácido clorídrico foram adicionadas à segunda amostra e essa foi aquecida a 90 °C por um período de 24 horas, hidrolisando integralmente a sacarose em glicose e frutose. A segunda solução possui temperatura de congelamento $-2\,^\circ$ C.

Assinale a alternativa que mais se aproxima da temperatura de fusão do solvente.

PROBLEMA 2.9

2F09

Considere as soluções aquosas.

- 1. $0.1 \text{ mol } L^{-1} \text{ de KCl}$
- **2.** $0,3 \text{ mol } L^{-1} \text{ de } K_2SO_4$
- **3.** $0.3 \text{ mol } L^{-1} \text{ de } C_{11}H_{12}O_{11}$
- **4.** $0.6 \, \text{mol} \, L^{-1} \, \text{de} \, \text{CO}(\text{NH}_2)_2$

Assinale a alternativa com a ordem de pressão osmótica a 20 °C.

A pressão osmótica devido a 2,2 g de polietileno (PE) dissolvido no benzeno necessário para produzir $100\,\mathrm{mL}$ de solução foi 1,1 kPa a $25\,^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima da massa molar média de polietileno.

PROBLEMA 2.11

2F11

A catalase, uma enzima do fígado, é solúvel em água. A pressão osmótica de $10\,\text{mL}$ de uma solução que contém $166\,\text{mg}$ de catalase é $1,2\,\text{Torr}$ em $20\,^{\circ}\text{C}$.

Assinale a alternativa que mais se aproxima da massa molar da catalase.

Nível II

PROBLEMA 2.12

2F13

Considere as soluções aquosas.

- 1. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ de HF
- 2. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ de HCl
- 3. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ de HBr
- 4. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}\,\mathrm{de}\,\mathrm{HI}$

Assinale a alternativa com a ordem de pressão osmótica a 20 °C.

PROBLEMA 2.13

2F14

Em um experimento de determinação da massa molar usando o abaixamento do ponto de congelamento, é possível cometer os seguintes erros.

- Havia poeira na balança, o que fez a massa do soluto parecer maior do que é de fato.
- 2. A água foi medida em volume, pressupondo que sua densidade fosse 1 g cm⁻³, mas a água estava mais quente e menos densa do que o considerado.
- O termômetro não foi calibrado com precisão e, por essa razão, o ponto de congelamento real é 0,5 °C superior ao registrado.
- A solução não foi agitada o suficiente, e o soluto não dissolveu totalmente.

Assinale a alternativa que relaciona os erros que resultariam em uma massa molar calculada *superior* ao valor real.

PROBLEMA 2.14 2F15

PROBLEMA 2.10 2F10

Uma amostra de $10\,\mathrm{g}$ de um composto orgânico é dissolvida em $80\,\mathrm{g}$ de benzeno. O ponto de congelamento da solução é $1,2\,^\circ\mathrm{C}$. Em outro experimento, a queima do mesmo composto orgânio com excesso de oxigênio formou $528\,\mathrm{mg}$ de dióxido de carbono, $36\,\mathrm{mg}$ de água e $146\,\mathrm{mg}$ de ácido clorídrico.

- a. **Determine** a massa molar do composto.
- b. **Determine** a fórmula molecular do composto.

Dados

- $k_b(C_6H_6) = 5,12 \,\mathrm{K\,kg\,mol}^{-1}$
- $T_{fus}(C_6H_6) = 5,5 \,^{\circ}C$

PROBLEMA 2.15

2F16

Uma amostra de 20 g de uma mistura de sacarose, $C_{12}H_{22}O_{11}$, e cloreto de sódio é dissolvida em água até formar 1 L de solução. O ponto de congelamento da solução é -0.0426 °C.

Assinale a alternativa que mais se aproxima da fração mássica de sacarose na amostra.

Dados

• $k_b(H_2O) = 1.86 \, \text{K kg mol}^{-1}$

PROBLEMA 2.16

2F17

Uma amostra de 500 mg de uma mistura de cloreto de sódio e cloreto de magnésio é dissolvida água até formar 1 L de solução. A pressão osmótica da solução a 25 °C é 0,395 atm.

Assinale a alternativa que mais se aproxima da fração mássica de cloreto de magnésio na amostra.

PROBLEMA 2.17

2F18

A quitosana tem sido utilizada em cicatrização de ferimentos, remoção de proteínas alergênicas de alimentos e liberação controlada de fármacos. Um experimento de laboratório envolveu a síntese da quitosana através tratamento da quitina com excesso de hidróxido de sódio:

$$(C_8H_{13}O_5N)_{\mathfrak{n}} \xrightarrow{NaOH} (C_6H_{11}O_4N)_{\mathfrak{n}}$$

O produto da reação foi isolado e uma amostra de 10,2 g foi adicionada em 100 mL de água destilada. O ponto de congelamento desta solução é $-0,000\,38\,^{\circ}\text{C}$. A solução foi aquecida, mantendo o sistema sob agitação e em refluxo, por um longo tempo, garantindo a quebra completa das unidades poliméricas formando os monômeros. O ponto de congelamento da solução resultante é $-1,14\,^{\circ}\text{C}$.

- a. **Determine** o número médio de unidades monoméricas na estrutura da quitosana.
- b. Determine a eficiência da síntese da quitosana utilizando hidróxido de sódio.

Dados

• $k_b(H_2O) = 1,86 \,\mathrm{K \, kg \, mol^{-1}}$

PROBLEMA 2.18

2F19

Uma solução 1% de sulfato de magnésio em massa tem ponto de congelamento igual a $-0.192~{\rm ^{\circ}C}$.

Assinale a alternativa que mais se aproxima do grau de dissociação do sal nessa solução.

Dados

• $k_b(H_2O) = 1.86 \,\mathrm{K \, kg \, mol^{-1}}$

PROBLEMA 2.19

2F20

Uma solução 0,124 mol $\rm L^{-1}$ em ácido tricloroacético tem ponto de congelamento igual a $-0,423\,^{\circ}\rm C$.

Assinale a alternativa que mais se aproxima do grau de ionização do ácido nessa solução.

Dados

• $k_b(H_2O) = 1.86 \,\mathrm{K \, kg \, mol^{-1}}$

PROBLEMA 2.20

2F21

Em solução de tetracloreto de carbono, o tetracloreto de vanádio sofre dimerização formando V_2Cl_8 . Em um experimento, 6,76 g de VCl_4 foram dissolvidos em 100 g de tetracloreto de carbono a 0 °C. Após certo tempo a mistura alcançou o equilíbrio, sendo a densidade 1,78 g cm $^{-3}$. A mistura foi resfriada com nitrogênio líquido, sendo registrada a variação da temperatura com o tempo.

- a. Determine o grau de dimerização do tetracloreto de vanádio.
- b. **Determine** a concentração de VCl₄ e V₂Cl₈ no equilíbrio.

Dados

- Pf(CCl4)
- $k_b(CCl_4) = 29.8 \, \text{K kg mol}^{-1}$

PROBLEMA 2.21

2F22

O ácido acético comporta-se diferentemente em dois solventes distintos. O ponto de congelamento de uma solução 5%, em massa, de ácido acético em água é $21,72\,^{\circ}$ C. Em benzeno, o abaixamento do ponto de congelamento associado a uma solução 5%, em massa, de ácido acético é $2,47\,^{\circ}$ C.

- a. Explique a diferença no comportamento do ácido acético em solução.
- b. Determine o grau de reação do ácido acético em água.
- c. **Determine** o grau de reação do ácido acético em benzeno.

Dados

- $k_b(H_2O) = 1,86 \, \text{K kg mol}^{-1}$
- $k_b(C_6H_6) = 5.12 \,\mathrm{K \, kg \, mol^{-1}}$

PROBLEMA 2.22

2F23

Uma amostra de água do mar possui densidade $1,05~{\rm g\,mL^{-1}}$, a concentração média de espécies dissolvidas é $0,8~{\rm mol\,L^{-1}}$ e a temperatura média $290~{\rm K}$. Com o objetivo de purificar a amostra de água, uma das extremidades abertas de um longo tubo contendo a solução é envolvido com uma membrana semipermeável, a qual será imersa na água do mar.

Assinale a alternativq que mais se aproxima profundidade mínima que o tubo deveria ser imerso.

PROBLEMA 2.23

2F24

A pressão osmótica de uma solução de poliisobutileno sintético em benzeno foi determinada a $25\,^{\circ}$ C. Uma amostra contendo 0,2 g de soluto por $100\,\mathrm{cm^3}$ de solução subiu até uma altura de 2,4 mm quando foi atingido o equilíbrio osmótico. A massa específica da solução no equilíbrio é 0,88 g mL $^{-1}$.

Determine a massa molecular do poliisobuteno.

PROBLEMA 2.24

2F26

Em uma região onde a água é muito dura, unidades de osmose reversa são utilizadas para purificação. Nessa região, a água apresenta $560\,\mu\mathrm{g\,mL}^{-1}$ de carbonato de magnésio. Uma unidade pode exercer uma pressão máxima de 8 atm operando a $27\,^{\circ}\mathrm{C}$.

- a. **Determine** o volume de água que deve entrar na unidade por minuto para produzir 45 L de água purificada por dia.
- b. **Verifique** se a unidade de osmose reversa pode ser utilizada para purificar água do mar, $0.6 \, \text{mol} \, \text{L}^{-1}$ em cloreto de sódio.

A entalpia de fusão de certa substância é 10,14 kJ mol⁻¹. Uma amostra desta substância está contaminada com uma quantidade desconhecida de impurezas. Quando esta amostra é aquecida a 181,85 K, 28% da amostra passa para a fase líquida; a 182,25 K, esta fração aumenta para 53%.

- a. **Determine** a temperatura de fusão para a substância.
- b. **Determine** a temperatura de fusão para a amostra.

Gabarito

Nível I

- 1. E
- 2. C
- 3. D
- 4. B
- 5. D

- 6. D
- 7. C
- 8.
- 9. A
- 0. (

- Nível II
 - 1. C
 - 2. D
 - **3.** a. $148 \,\mathrm{g}\,\mathrm{mol}^{-1}$
 - b. C₆H₄Cl₂
 - 4. D
 - 5. D
 - **6.** a. 3000
 - b. 79%
 - 7. B
 - 8. D
 - **9.** a. 85%
 - b. $84 \, \text{mmol} \, \text{L}^{-1} \, \text{e} \, 234 \, \text{mmol} \, \text{L}^{-1}$
 - a. O ácido acético sofre ionização em água e dimerização em ácido acético.
 - b. 5%
 - c. 96,5%
 - 11. D
 - **12.** $240 \,\mathrm{kg} \,\mathrm{mol}^{-1}$
 - **13.** a. 46 L
 - b. Não pode ser utilizada.
 - **14.** a. 182,7 K
 - b. 182,2 K