

Ayudantía 5

24 de abril de 2020

Profesores C. Riveros - J. Salas Tamara Cucumides y Bernardo Barías

Pregunta 1

Sea $A\subseteq \mathbb{N}$ y sea R una relación sobre A tal que xRy si y sólo si $x^2=y^2$. Demuestre que R es refleja, simétrica y transitiva.

Pregunta 2

Se definen las siguientes operaciones entre relaciones:

- Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.
- Composición: $R_1 \circ R_2$ son todos los pares (x, y) tales que existe un $z \in A$ que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

Demuestre o refute cada una de las siguientes afirmaciones. En cada caso $R_1, R_2 \subseteq A \times A$ son relaciones (A distinto de vacío).

- a) Si R_1 y R_2 son simétricas, entonces $R_1 \cap R_2$ es simétrica.
- b) Si R_1 y R_2 son transitivas, entonces $R_1 \cap R_2$ es transitiva.
- c) Si R_1 y R_2 son transitivas, entonces $R_1 \circ R_2$ es transitiva.
- d) Si R_1 es transitiva, entonces $R_1 \cap R_1^{-1}$ es transitiva.

Pregunta 3

Sea $R \subseteq X \times Y$ una relación binaria, y $A, B \subseteq X$ conjuntos. Se define

$$S_R(A) := \{ y \in Y \mid \exists x \in A \text{ tal que } R(x, y) \}.$$

Demuestre que:

- a) Si $A \subseteq B$, entonces $S_R(A) \subseteq S_R(B)$.
- b) $S_R(A \cup B) = S_R(A) \cup S_R(B)$
- c) $S_R(A \cap B) \subseteq S_R(A) \cap S_R(B)$

Pregunta 4

Para cada una de las siguientes relaciones determine si es refleja, simétrica, antisimétrica o transitiva, demostrando o dando un contraejemplo en cada caso.

- 1. $R_{//}$ sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es paralela a l_2 ($l_1R_{//}l_2 \Leftrightarrow l_1//l_2$).
- 2. R_{\perp} sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es perpendicular a l_2 ($l_1R_{\perp}l_2 \Leftrightarrow l_1{\perp}l_2$).
- 3. R sobre $\mathbb{N} \times \mathbb{N}$ tal que (a,b)R(c,d) si y sólo si $a \leq c$. (Note que en este último caso la relación R es subconjunto de $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$.)