SHACL by example

RDF Validation tutorial

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

Eric Prud'hommeaux

World Wide Web Consortium MIT, Cambridge, MA, USA

Harold Solbrig Mayo Clinic, USA Iovka Boneva
LINKS, INRIA & CNRS
University of Lille, France

More info

Chapter 5 of Validating RDF Data book

Online HTML version

SHACL

W3C recommendation: https://www.w3.org/TR/shacl/ (July 2017)

Inspired by SPIN, OSLC & bits of ShEx

2 parts: SHACL-Core, SHACL-SPARQL

RDF vocabulary

SHACL implementations

Name	Parts	Language - Library	Comments
Topbraid SHACL API	SHACL Core, SPARQL	Java (Jena)	Used by <u>TopBraid composer</u>
SHACL playground	SHACL Core	Javascript (rdflib.js)	http://shacl.org/playground/
SHACLEX	SHACL Core	Scala (Jena, RDF4j)	http://rdfshape.weso.es
pySHACL	SHACL Core, SPARQL	Python (rdflib)	https://github.com/RDFLib/pySHACL
Corese SHACL	SHACL Core, SPARQL	Java (STTL)	http://wimmics.inria.fr/corese
RDFUnit	SHACL Core, SPARQL	Java (Jena)	https://github.com/AKSW/RDFUnit

Basic example

```
prefix : <http://example.org/>
prefix sh: <<u>http://www.w3.org/ns/shacl#</u>>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix schema: <http://schema.org/>
:UserShape a sh:NodeShape ;
   sh:targetNode :alice, :bob, :carol ;
   sh:nodeKind sh:IRI ;
   sh:property:hasName,
               :hasEmail .
:hasName sh:path schema:name ;
   sh:minCount 1;
   sh:maxCount 1;
    sh:datatype xsd:string .
:hasEmail sh:path schema:email ;
   sh:minCount 1;
   sh:maxCount 1;
```

sh:nodeKind sh:IRI .

```
S:UserShape

schema:name: xsd:string
schema:email: IRI
IRI
```

Data graph

Shapes graph

Same example with blank nodes

```
prefix : <http://example.org/>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix schema: <http://schema.org/>
:UserShape a sh:NodeShape ;
   sh:targetNode :alice, :bob, :carol;
   sh:nodeKind sh:IRI ;
   sh:property [
   sh:path schema:name ;
   sh:minCount 1; sh:maxCount 1;
   sh:datatype xsd:string ;
  sh:property [
   sh:path schema:email;
   sh:minCount 1; sh:maxCount 1;
   sh:nodeKind sh:IRI ;
```

```
:alice schema:name "Alice Cooper";
    schema:email <mailto:alice@mail.org> .

:bob    schema:firstName "Bob";
    schema:email <mailto:bob@mail.org> .

:carol schema:name "Carol";
    schema:email "carol@mail.org" .
```

Data graph

Some definitions about SHACL

Shape: collection of targets and constraints components

Targets: specify which nodes in the data graph must conform to a shape

Constraint components: Determine how to validate a node

Shapes graph and data graph

Conceptually: 2 graphs

Shapes graph: an RDF graph that contains shapes

Data graph: an RDF graph that contains data to be validated

Note: They could be the same

```
:UserShape a sh:NodeShape ;
  sh:targetNode :alice, :bob, :carol ;
  sh:nodeKind sh:IRI ;
  sh:property :hasName,
               :hasEmail .
:hasName sh:path schema:name ;
   sh:minCount 1;
   sh:maxCount 1;
   sh:datatype xsd:string .
```

```
:alice schema:name "Alice Cooper" ;
       schema:email <mailto:alice@mail.org> .
      schema:firstName "Bob";
: bob
       schema:email <mailto:bob@mail.org> .
:carol schema:name "Carol" ;
       schema:email "carol@mail.org" .
```

Data graph

Validation Report

The output of the validation process is a list of violation errors No errors \Rightarrow RDF conforms to shapes graph

```
sh:ValidationReport ;
a
sh:conforms
             false ;
sh:result
               sh:ValidationResult ;
 a
 sh:focusNode
               :bob ;
 sh:message
   "MinCount violation. Expected 1, obtained: 0"
 sh:resultPath schema:name ;
 sh:resultSeverity sh:Violation ;
 sh:sourceConstraintComponent
   sh:MinCountConstraintComponent ;
 sh:sourceShape :hasName
```

SHACL processor

```
Shapes graph
```

Data Graph

```
:alice schema:name "Alice Cooper";
    schema:email <mailto:alice@mail.org>.

:bob schema:name "Bob";
    schema:email <mailto:bob@mail.org> .

:carol schema:name "Carol";
    schema:email <mailto:carol@mail.org> .
```


Importing shapes graphs

SHACL processors follow owl:imports declarations

It extends the current shapes graph with the imported shapes

```
:UserShape a sh:NodeShape;
    sh:targetNode :alice, :bob, :carol;
    sh:nodeKind sh:IRI;
    sh:property :hasName .
:hasName sh:path schema:name;
    sh:minCount 1;
    sh:maxCount 1;
    sh:datatype xsd:string .
```

```
<> owl:imports <http://example.org/UserShapes> .

:TeacherShape a sh:NodeShape;
   sh:targetClass :Teacher ;
   sh:node :UserShape ;
   sh:property [
     sh:path :teaches ;
     sh:minCount 1;
     sh:datatype xsd:string;
] .
```

Node and property shapes

2 types of shapes:

NodeShape: constraints about shapes of nodes

PropertyShapes: constraints on property path values of a node

```
Shape
                                                        :UserShape a sh:NodeShape ;
                                                           sh:targetNode :alice, :bob, :carol;
       target declarations
                                              NodeShape
                                                           sh:nodeKind sh:IRI ;
       constraint components
                                                           sh:property :hasName,
                                                                        :hasEmail .
                                                        :hasName sh:path schema:name ;
                                                            sh:minCount 1;
                                              PropertyShape
                                                            sh:maxCount 1;
NodeShape
                       PropertyShape
                                                            sh:datatype xsd:string .
                   sh:path: propertyPath
```

Node Shapes

Constraints about a focus node

```
:UserShape a sh:NodeShape;
    sh:nodeKind sh:IRI;
    sh:targetClass :User .
```

```
:alice a :User .
<http://example.org/bob> a :User .
_:1 a :User .
```

Property shapes

Constraints about a given property and its values for the focus node

```
sh:property associates a shape with a property shape
```

sh: path identifies the path

Paths in property shapes

Subset of SPARQL property paths using the following names:

```
inversePath
alternativePath
zeroOrMorePath
oneOrMorePath
zeroOrOnePath
```

```
:User a sh:NodeShape, rdfs:Class;
    sh:property [
        sh:path [sh:inversePath schema:follows];
        sh:nodeKind sh:IRI;
] .
```

```
:alice a :User;
    schema:follows :bob .

:bob a :User .

:carol a :User;
    schema:follows :alice .

_:1 schema:follows :bob .
```

Constraint components

Nodes that declare constraints associated with shapes

They have parameters whose values specify the constraints

SHACL-core provides a list of predefined constraint components

Most of them have one parameter which identifies them

Repeated parameter

Each value of the parameter declares a different constraint

```
:UserShape a sh:NodeShape; sh:class foaf:Person; sh:class schema:Person.
```

```
:alice a schema:Person, foaf:Person .
:bob a schema:Person .
```

SHACL Core constraint components

Туре	Constraints
Cardinality	minCount, maxCount
Types of values	class, datatype, nodeKind
Values	node, in, hasValue, property
Range of values	minInclusive, maxInclusive minExclusive, maxExclusive
String based	minLength, maxLength, pattern
Language based	languageIn, uniqueLang
Logical constraints	not, and, or, xone
Closed shapes	closed, ignoredProperties
Property pair constraints	equals, disjoint, lessThan, lessThanOrEquals
Non-validating constraints	name, description, order, group
Qualified shapes	qualifiedValueShape, qualifiedValueShapesDisjoint qualifiedMinCount, qualifiedMaxCount

See later

Human friendly messages

Message declares the message that will appear in the validation report in case of violation

```
:bob a :User ; schema:alias "Bob" .
```

Severities

Declare the level of the violation

3 predefined levels: Violation (default), Warning, Info

```
: bob
         a:User;
         schema:alias "Bob" .
:report a :ValidationReport ;
sh:conforms false ;
sh:result [ a sh:ValidationResult ;
  sh:resultSeverity
                             sh:Warning;
 sh:sourceConstraintComponent sh:MinCountConstraintComponent;
 sh:sourceShape
                              . . . ;
 sh:focusNode
                              :bob ;
 sh:resultPath
                              schema:name ;
 sh:resultMessage
                              "MinCount Error" ;
```

Deactivating shapes

Deactivate a shape

Useful when importing shapes

UserShapes

```
:UserShape a sh:NodeShape;
sh:targetClass :User;
sh:property :HasName;
sh:property :HasEmail .

:HasName sh:path schema:name;
sh:datatype xsd:string .

:HasEmail sh:path schema:email;
sh:minCount 1;
sh:nodeKind sh:IRI .
```

Target declarations

Targets specify nodes that must be validated against the shape Several types

Value	Description
targetNode	Directly point to a node
targetClass	All nodes that have a given type
targetSubjectsOf	All nodes that are subjects of some predicate
targetObjectsOf	All nodes that are objects of some predicate

Target node

Directly declare which nodes must validate the against the shape

```
:UserShape a sh:NodeShape ;
  sh:targetNode :alice, :bob, :carol;
  sh:property [
   sh:path schema:name ;
   sh:minCount 1;
   sh:maxCount 1;
   sh:datatype xsd:string ;
 sh:property [
  sh:path schema:email;
  sh:minCount 1;
  sh:maxCount 1;
  sh:nodeKind sh:IRI ;
```

```
:alice schema:name "Alice Cooper";
    schema:email <mailto:alice@mail.org> .

:bob schema:givenName "Bob";
    schema:email <mailto:bob@mail.org> .

:carol schema:name "Carol";
    schema:email "carol@mail.org" .
```

Target class

Selects all nodes that have a given class

Looks for rdf:type declarations*

```
:UserShape a sh:NodeShape ;
sh:targetClas$ :User);
sh:property [
   sh:path schema:name
   sh:minCount 1;
   sh:maxCount 1;
   sh:datatype xsd:string ;
sh:property [
  sh:path schema:email ;
  sh:minCount 1;
  sh:maxCount 1;
  sh:nodeKind sh:IRI ;
```

```
:alice a :User;
    schema:name "Alice Cooper";
    schema:email <mailto:alice@mail.org> .

:bob a :User;
    schema:givenName "Bob";
    schema:email <mailto:bob@mail.org> .

:carol a :User;
    schema:name "Carol";
    schema:email "carol@mail.org" .
```

* Also looks for rdfs:subClassOf*/rdf:type declarations

Implicit class target

A shape with type sh:Shape and rdfs:Class is a scope class of itself

The targetClass declaration is implicit

```
:User a sh:NodeShape, rdfs:Class;
sh:property [
   sh:path schema:name ;
   sh:minCount 1
   sh:maxCount 1;
   sh:datatype xsd:string ;
sh:property [
  sh:path schema:email ;
  sh:minCount 1;
  sh:maxCount 1;
  sh:nodeKind sh:IRI ;
```

```
:alice a :User;
    schema:name "Alice Cooper";
    schema:email <mailto:alice@mail.org> .

:bob a :User;
    schema:givenName "Bob";
    schema:email <mailto:bob@mail.org> .

:carol a :User;
    schema:name "Carol";
    schema:email "carol@mail.org" .
```

targetSubjectsOf, targetObjectsOf

Core constraint components

Туре	Constraints
Cardinality	minCount, maxCount
Types of values	datatype, class, nodeKind
Values	node, in, hasValue
Range of values	<pre>minInclusive, maxInclusive minExclusive, maxExclusive</pre>
String based	minLength, maxLength, pattern, stem, uniqueLang
Logical constraints	not, and, or, xone
Closed shapes	closed, ignoredProperties
Property pair constraints	equals, disjoint, lessThan, lessThanOrEquals
Non-validating constraints	name, value, defaultValue
Qualified shapes	qualifiedValueShape, qualifiedMinCount, qualifiedMaxCount

Cardinality constraints

Constraint	Description
minCount	Restricts minimum number of triples involving the focus node and a given predicate. Default value: 0
maxCount	Restricts maximum number of triples involving the focus node and a given predicate. If not defined = unbounded

Datatypes of values

Constraint	Description
datatype	Restrict the datatype of all value nodes to a given value

```
:alice schema:birthDate "1985-08-20"^^xsd:date .
:bob schema:birthDate "Unknown"^^xsd:date .
:carol schema:birthDate 1990 .
```

Class of values

Constraint	Description
class	Verify that each node in an instance of some class It also allows instances of subclasses*

(*) The notion of SHACL instance is different from RDFS It is defined as rdfs:subClassOf*/rdf:type

```
:User a sh:NodeShape, rdfs:Class;
sh:property [
  sh:path schema:follows;
  sh:class:User
] .
```

Kind of values

Constraint	Description
nodeKind	Possible values: BlankNode, IRI, Literal, BlankNodeOrIRI, BlankNodeOrLiteral, IRIOrLiteral

```
:alice a :User;
      schema:name _:1;
      schema:follows :bob .
:bob
      a :User;
      schema:name "Robert";
      schema:follows [ schema:name "Dave" ] .
:carol a :User;
      schema:name "Carol";
      schema:follows "Dave" .
:1 a :User .
```

Constraints on values

Constraint	Description
hasValue	Verifies that the focus node has a given value
in	Enumerates the value nodes that a property may have

```
:alice a :User;
    schema:affiliation :OurCompany;
    schema:gender schema:Female .

:bob a :User;
    schema:affiliation :AnotherCompany;
    schema:gender schema:Male .

:carol a :User;
    schema:affiliation :OurCompany;
    schema:affiliation :OurCompany;
    schema:gender schema:Unknown .
```

Constraints on values with another shape

Constraint	Description
node	All values of a given property must have a given shape Recursion is not allowed in current SHACL

```
:User a sh:NodeShape, rdfs:Class;
   sh:property [
     sh:path schema:worksFor;
     sh:node :Company;
   ].

:Company a sh:Shape;
   sh:property [
     sh:path schema:name;
     sh:datatype xsd:string;
   ].
```

```
:alice a :User;
     schema:worksFor :OurCompany .

:bob a :User;
     schema:worksFor :Another .

:OurCompany
     schema:name "OurCompany" .

:Another
     schema:name 23 .
```

Value shapes and recursion

Can we define cyclic data models as the following?

```
:User a sh:NodeShape ;
 sh:property [
  sh:path schema:worksFor;
  sh:node :Company ;
:Company a sh:Shape ;
 sh:property [
  sh:path schema:name;
  sh:datatype xsd:string ;
sh:property [
  sh:path schema:employee ;
  sh:node :User ;
```

```
schema:worksFor
:User
                          :Company
                          schema:name xsd:string
          schema:employee
:alice schema:worksFor :OneCompany .
       schema:worksFor :OneCompany .
:carol schema:worksFor :OneCompany .
:OneCompany schema:name "One";
  schema:employee :alice, :bob, :carol .
```

No, current SHACL specification doesn't allow this

SHACL approach to avoid recursion

Add rdf:type arcs for every resource and use sh:class

```
:User a sh:NodeShape ;
 sh:property [
  sh:path schema:worksFor;
  sh:class :Company ;
:Company a sh:Shape ;
 sh:property [
  sh:path schema:name;
  sh:datatype xsd:string ;
sh:property [
  sh:path schema:employee;
  sh:class :User ;
```

```
schema:worksFor
   :User
                             :Company
                             schema:name xsd:string
             schema:employee
:alice a :User ;
       schema:worksFor :OneCompany .
: bob
       a:User;
       schema:worksFor :OneCompany .
:carol a :User ;
       schema:worksFor :Something .
:OneCompany a :Company ;
       schema:name "One" ;
       schema:employee :alice, :bob, :carol .
```

Try it: http://goo.gl/wIVZJR

Exercise:

Represent the previous shapes without recursion using property paths

Logical Operators

Constraint	Description
and	Conjunction of a list of shapes
or	Disjunction of a list of shapes
not	Negation of a shape
xone	Exactly one (similar XOR for 2 arguments)

and

Default behavior

```
:User a sh:NodeShape ;
 sh:and (
  [ sh:property [
     sh:path schema:name;
     sh:minCount 1;
   sh:property [
     sh:path schema:affiliation;
     sh:minCount 1;
```

```
:User a sh:Shape ;
  [ sh:property [
     sh:path schema:name;
     sh:minCount 1;
    sh:property [
     sh:path schema:affiliation;
     sh:minCount 1;
```

or

```
:User a sh:NodeShape ;
 sh:or (
  [ sh:property [
     sh:predicate foaf:name;
     sh:minCount 1;
   sh:property [
      sh:predicate schema:name;
      sh:minCount 1;
```

```
:alice schema:name "Alice" .
:bob foaf:name "Robert" .
:carol rdfs:label "Carol" .
```

not

```
:NotFoaf a sh:NodeShape ;
  sh:not [ a sh:Shape ;
    sh:property [
      sh:predicate foaf:name ;
      sh:minCount 1 ;
] ;
] .
```

```
:alice schema:name "Alice" .
:bob foaf:name "Robert" . 
:carol rdfs:label "Carol" .
```

Exactly one

```
:UserShape a sh:NodeShape ;
 sh:targetClass :User ;
 sh:xone (
  [ sh:property [
     sh:path foaf:name;
     sh:minCount 1;
    sh:property [
     sh:path schema:name;
     sh:minCount 1;
```

```
:alice a :User ;  #Passes as :User
     schema:name "Alice" .
:bob a :User ; #Passes as :User
     foaf:name "Robert" .
:carol a :User ; #Fails as :User
     foaf:name "Carol";
     schema:name "Carol" .
:dave a :User; #Fails as :User
     rdfs:label "Dave" .
```


Exercise

IF-THEN pattern

All products must have :productID and, if a product has rdf:type schema:Vehicle then it must have the properties schema:vehicleEngine and schema:fuelType

```
:p1 a :Book;  # Conforms
schema:productID "P1" .

:p2 a schema:Vehicle;  # Conforms
schema:productID "P2";
schema:fuelType "Gasoline";
schema:vehicleEngine "X2" .

:p3 a schema:Vehicle;  # Fails
schema:productID "P3" .
```


Exercise

IF-THEN-ELSE pattern

All products must have :productID and, if a product has rdf:type schema:Vehicle then it must have the properties schema:vehicleEngine and schema:fuelType else it must have schema:category with a string value.

Value ranges

Constraint	Description
minInclusive	<=
maxInclusive	>=
minExclusive	<
maxExclusive	>

String based constraints

Constraint	Description
minLength	Restricts the minimum string length on value nodes
maxLength	Restricts the maximum string length on value nodes
pattern	Checks if the string value matches a regular expression

minLength/maxLength

Checks the string representation of the value

This cannot be applied to blank nodes

If minLength = 0, no restriction on string length

```
:alice schema:name "Alice" .

:bob schema:name "Bob" .

:carol schema:name :Carol .

:strange schema:name _:strange .
```

pattern

Checks if the values matches a regular expression It can be combined with sh:flags

```
:car schema:productID "P2345" .
:bus schema:productID "p567" .
:truck schema:productID "P12" . ②
:bike schema:productID "B123" . ②
```

Language based constraints

Constraint	Description
languageIn	Declares the allowed languages of a literal
uniqueLang	Specifies that no pair of nodes can have the same language tag

languageIn

Specifies the allowed language that a literal can have

uniqueLang

Checks that no pair of nodes use the same language tag

```
:spain a :Country;
 skos:prefLabel "Spain"@en,
                "España"@es .
:france a :Country;
 skos:prefLabel "France",
                 "France"@en,
                 "Francia"@es .
:italy
       a : Country .
       a :Country;
usa
        skos:prefLabel "USA"@en,
                       "United States"@en.
```


Exercise

Nodes must have exactly one literal per language in English and Spanish for property skos:prefLabel

Property pair constraints

Constraint	Description
equals	The sets of values of both properties at a given focus node must be equal
disjoint	The sets of values of both properties at a given focus node must be different
lessThan	The values must be smaller than the values of another property
lessThanOrEquals	The values must be smaller or equal than the values of another property

```
:alice schema:givenName "Alice";
    schema:lastName "Cooper";
    foaf:firstName "Alice" .

:bob schema:givenName "Bob";
    schema:lastName "Smith";
    foaf:firstName "Robert" .

:carol schema:givenName "Carol";
    schema:lastName "Carol";
    foaf:firstName "Carol" ;
```

Try it: http://goo.gl/BFzMoz

Closed shapes

Constraint	Description
closed	Valid resources must only have values for properties that appear in sh:property
ignoredProperties	Optional list of properties that are also permitted

```
:User a sh:NodeShape ;
    sh:closed true ;
    sh:ignoredProperties ( rdf:type ) ;
    sh:property [
        sh:path schema:givenName ;
    ];
    sh:property [
        sh:path schema:lastName ;
    ] .
```

```
:alice schema:givenName "Alice";
    schema:lastName "Cooper" .

:bob a :Employee ;
    schema:givenName "Bob";
    schema:lastName "Smith" .

:carol schema:givenName "Carol";
    schema:lastName "King";
    rdfs:label "Carol" .
```

Qualified value shapes

Problem with repeated properties

Example: Books have two IDs (an isbn and an internal code)

```
:Book a sh:NodeShape ;
  sh:property [
   sh:path
            schema:productID ;
   sh:minCount 1:
   sh:datatype xsd:string ;
   sh:pattern "^isbn"
 sh:property [
   sh:path
               schema:productID ;
   sh:minCount 1;
   sh:datatype xsd:string ;
               "^code"
   sh:pattern
```

```
:b1 schema:productID "isbn:123-456-789";
    schema:productID "code234".
It fails!!
```

Qualified value shapes

Qualified value shapes verify that certain number of values of a given

property have a given shape

```
:Book a sh:NodeShape;
sh:property [
 sh:path schema:productID ;
 sh:minCount 2; sh:maxCount 2; ];
sh:property [
 sh:path schema:productID ;
 sh:qualifiedMinCount 1;
 sh:qualifiedValueShape [
  sh:pattern "^isbn"
11;
sh:property [
 sh:path schema:productID ;
 sh:qualifiedMinCount 1;
 sh:qualifiedValueShape [
  sh:pattern "^code" ;
```

```
:b1 schema:productID "isbn:123-456-789";
    schema:productID "code234".
```

Non-validating constraints

Can be useful to annotate shapes or design UI forms

Group several constraints together

group

Constraint	Description	
name	Provide human-readable labels for a property	
description	Provide a description of a property	
order	Relative order of the property	:User a sh:NodeShape ; sh:nronerty [

```
sh:path schema:url ;
 sh:name "URL";
 sh:description "User URL";
 sh:order 1
sh:property [
 sh:path schema:name ;
 sh:name "Name";
 sh:description "User name";
 sh:order 2
```

Non-validating constraints

```
:User a sh:NodeShape ;
sh:property [ sh:path schema:url ;
  sh:name "URL";
 sh:group :userDetails
sh:property [ sh:path schema:name ;
 sh:name "Name"; sh:group :userDetails
sh:property [ sh:path schema:address ;
 sh:name "Address"; sh:group :location
sh:property [ sh:path schema:country ;
  sh:name "Country"; sh:group :location
```

```
:userDetails a sh:PropertyGroup;
  sh:order 0;
  rdfs:label "User details" .

:location a sh:PropertyGroup;
  sh:order 1;
  rdfs:label "Location" .
```

An agent could generate a form like:

User details	
URL:	
Name:	
Location	
Address: _	
Country: _	

SHACL-SPARQL

Constraints based on SPARQL code.

When the SPARQL query return validation errors a violation is reported SPARQL constraints have type sh:SPARQLConstraint

Constraint	Description
message	Message in case of error
sparql	SPARQL code that is run
prefixes	Points to namespace prefix declarations defined by sh:declare: Each one has: sh:prefix: Prefix alias sh:namespace: namespace IRI

Special variables are pre-binded by the SHACL-SPARQL processor

Constraint	Description
\$this	Focus Node
\$shapesGraph	Can be used to query the shapes graph in named graphs Similar to: GRAPH \$shapesGraph { }
\$currentShape	Current shape

Mappings between result rows and error validation information

Constraint	Description
sh:focusNode	Value of \$this variable
sh:subject	Value of ?subject variable
sh:predicate	Value of ?predicate variable
sh:object	Value of ?object variable
sh:message	Value of ?message variable
sh:sourceConstraint	The constraint that was validated against
sh:sourceShape	The shape that was validated against
sh:severity	sh:ViolationError by default or the value of sh:severity

Example: Name must be the concatenation of singleName and familyName

```
:UserShape a sh:NodeShape ;
sh:targetClass :User ;
sh:sparql [ a sh:SPARQLConstraint ;
 sh:message "schema:name must equal schema:givenName+schema:familyName";
 sh:prefixes [ sh:declare [
   sh:prefix "schema";
                                                                    :alice a :User ;
   sh:namespace "http://schema.org/"^^xsd:anyURI ;
                                                                      schema:givenName "Alice";
                                                                      schema:familyName "Cooper";
   ]];
sh:select
                                                                      schema:name "Alice Cooper" .
 """SELECT $this (schema:name AS ?path) (?name as ?value)
    WHERE {
                                                                    :bob a :User ;
     $this schema:name ?name .
                                                                      schema:givenName "Bob" ;
     $this schema:givenName ?givenName .
                                                                      schema:familyName "Smith";
     $this schema:familyName ?familyName .
                                                                      schema:name "Robert Smith"
     FILTER (!isLiteral(?value) ||
              !isLiteral(?givenName) | !isLiteral(?familyName) |
             concat(str(?givenName), ' ', str(?familyName))!=?name )
    }""";
```


SPARQL constraint components

SHACL-SPARQL allows to declare custom constraint components Once defined, they can be used like bult-in constraint components

```
:c1 :color (255 0 255) .
:c2 :color (255 0 210 345) . ::
:c3 :color (255 0) . ::
```

SPARQL constraint components

Two types of validators:
SPARQLSelectValidator
SPARQLASKValidator

```
:fixedLengthValidator a sh:SPARQLSelectValidator;
 sh:message
  "{$PATH} must have length {?size}, not {?count}";
 sh:prefixes [ sh:declare [
   sh:prefix "rdf";
   sh:namespace
    "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 sh:select """SELECT $this ?value $count WHERE {
    $this $PATH ?value .
    { SELECT $this ?value
             (COUNT(?member) AS ?count)
             $size WHERE {
         ?value rdf:rest*/rdf:first ?member
     } GROUP BY $this ?value $size
    FILTER (!isBlank(?value) || ?count != $size)
```

SPARQL constraint components

Property	Description
sh:parameter	Declares the parameters of the constraint component The values are subclasses of property shapes sh:path declares the parameter name sh:optional declares if the parameter is optional
sh:labelTemplate	Suggests how constraints are rendered. Can refer to parameter names using: \$varName
sh:nodeValidator	Associates a node shape validator
sh:propertyValidator	Associates a property shape validator

SPARQL based validators can be SELECT or ASK-based validators

SHACL and inference systems

SHACL uses a subset of RDFS for target declarations rdfs:subClassOf, rdf:type, owl:imports

A shapes graph containing sh:entailment with value E indicates the SHACL processor the kind of entailment to apply to the data

Possible values:

Other features

SHACL accepted as Recommendation on July 2017

SHACL community group created:

https://www.w3.org/community/shacl/

Several features were postponed

Advanced features: https://w3c.github.io/data-shapes/shacl-af/
SHACL functions and rules

Compact syntax: https://w3c.github.io/shacl/shacl-compact-syntax/