R Notebook

```
library(GGally)
library(rjson)
library(tidyverse)
library(lubridate)
library(cowplot)
library(ggpubr)
USA_individual_phenometrics <- read.csv(file = 'data/raw/USA-NPN_individual_phenometrics_data.csv')
USA_status_intensity <- read.csv(file = 'data/raw/USA-NPN_status_intensity_observations_data.csv')</pre>
washingtondc <- read.csv(file = 'data/raw/washingtondc.csv')</pre>
south_korea <- read.csv(file = 'data/raw/south_korea.csv')</pre>
kyoto <- read.csv(file = 'data/raw/kyoto.csv')</pre>
japan <- read.csv(file = 'data/raw/japan.csv')</pre>
liestal <- read.csv(file = 'data/raw/liestal.csv')</pre>
meteoswiss <- read.csv(file = 'data/raw/meteoswiss.csv')</pre>
south_korea <- read.csv(file = 'data/raw/south_korea.csv')</pre>
washingtondc_plot <- washingtondc %>%
ggplot(aes(year, bloom_doy)) +
  geom_line() +
  labs(title="Washington DC Bloom Day Time Series",
        x = "Year", y = "Day of the bloom") +
  scale_y_discrete(limit = seq(85, 105, 10), labels = c('March 26', 'April 5', 'April 15')) +
  theme(plot.title = element_text(hjust = 0.5))
kyoto_plot <- kyoto %>%
  filter(year>1900) %>%
  ggplot(aes(year, bloom_doy)) +
  geom line() +
  labs(title="Kyoto Bloom Day Time Series",
        x = "Year", y = "Day of the bloom") +
  scale_y_discrete(limit = seq(85, 105, 10), labels = c('March 26', 'April 5', 'April 15')) +
  theme(plot.title = element_text(hjust = 0.5))
ggarrange(washingtondc_plot, kyoto_plot,
          ncol = 1, nrow = 2)
```

Washington DC Bloom Day Time Series

Kyoto Bloom Day Time Series


```
# heatmap?
world <- map_data("world")
cities <- rbind(kyoto[1,],washingtondc[1,],liestal[1,]) %>%
  select(lat, long) %>%
  add_row(lat=49.246292, long=-123.116226) %>%
  add_column(location=c('Kyoto','Washington DC', 'Liestal', 'Vancouver'))

ggplot() +
  geom_map(
    data = world, map = world,
    aes(long, lat, map_id = region),
    color = "gray", fill = "white") +
  geom_point(
    data = cities,
    aes(long, lat, color=location),
    size=3
)
```



```
jp <- map_data('world', 'Japan')

ggplot() +
   geom_map(
   data = jp, map = jp,
   aes(long, lat, map_id = region),
   color = "white", fill = "white"
) +
   geom_point(
   data = japan,
   aes(long, lat))</pre>
```



```
swiss <- map_data('world', 'Switzerland')

ggplot() +
  geom_map(
    data = swiss, map = swiss,
    aes(long, lat, map_id = region),
    color = "gray", fill = "white"
) +
  geom_point(
    data = meteoswiss,
    aes(long, lat))</pre>
```



```
sk <- map_data('world', 'South Korea')

ggplot() +
  geom_map(
    data = sk, map = sk,
    aes(long, lat, map_id = region),
    color = "white", fill = "white"
) +
  geom_point(
    data = south_korea,
    aes(long, lat))</pre>
```



```
#unique(japan$location)
japan_plot <- japan %>% mutate(location=gsub("Japan/","",location)) %>%
  filter(location==c('Nagoya', 'Tokyo', 'Kyoto', 'Osaka'))%>%
  ggplot(aes(year, bloom_doy)) +
  aes(x = year, color=location) +
  geom_line() +
  labs(title="Japan Bloom Day Time Series (4 Cities)",
      x = " ", y = " ") +
  scale_y_discrete(limit = seq(85, 105, 10), labels = c('March 26', 'April 5', 'April 15')) +
  theme(plot.title = element_text(hjust = 0.5))
#unique(meteoswiss$location)
meteoswiss_plot <- meteoswiss %>% mutate(location=gsub("Switzerland/","",location)) %>% arrange(location)
  filter(location==c('Adelboden', 'Basel-Binningen', 'Cartigny', 'Chaumont')) %>%
  ggplot(aes(year, bloom_doy)) +
  aes(x = year, color=location) +
  geom_line() +
  labs(title="Switzerland Bloom Day Time Series (4 Cities)",
      x = " ", y = "Day of the bloom") +
  scale_y_discrete(limit = seq(85, 105, 10), labels = c('March 26', 'April 5', 'April 15')) +
  theme(plot.title = element_text(hjust = 0.5))
#unique(south_korea$location)
```



```
usa <- map_data("state")
ggplot() +</pre>
```

```
geom_map(
  data = usa, map = usa,
  aes(long, lat, map_id = region),
  color = "gray", fill = "white", size = 0.1
) +
geom_point(
  data = USA_individual_phenometrics,
  aes(Longitude, Latitude))
```


unique(USA_individual_phenometrics%>%select(Common_Name))

USA_individual_phenometrics %>%
 filter(State == 'DC') %>%
 select(First_Yes_Date)

```
##
                     Common_Name
## 1
                  Yoshino cherry
## 2
                   bitter cherry
## 10 Japanese flowering cherry
## 22
                      pin cherry
## 154
                     sour cherry
unique(USA_individual_phenometrics%%filter(State=='DC')%>%select(Common_Name))
##
                   Common_Name
               Yoshino cherry
## 4 Japanese flowering cherry
```

```
2011-04-05
## 1
## 2
          2011-04-05
## 3
          2011-04-05
## 4
          2018-04-16
## 5
          2018-04-16
## 6
          2018-04-11
## 7
          2018-04-11
## 8
          2019-04-11
## 9
          2019-04-11
## 10
          2019-03-30
## 11
          2019-04-06
## 12
          2019-03-30
## 13
          2019-04-06
## 14
          2019-04-23
## 15
          2020-04-09
## 16
          2020-04-09
## 17
          2020-03-25
## 18
          2020-03-25
## 19
          2020-04-04
USA_individual_phenometrics %>%
  filter(AGDD > 0) %>%
  ggplot() +
  geom_point(aes(x = First_Yes_MonthDay, y = AGDD)) +
  facet_wrap(~First_Yes_Year) +
  labs(title="US AGDD v.s. First Observed Bloom",
        x = "Year", y = "AGDD (celcius)") +
  scale_x_discrete(breaks = c('03-20','04-10','05-01','05-20')) +
  theme(plot.title = element_text(hjust = 0.5), axis.text.x = element_text(angle = 90, vjust = 0.5, hju
```

 ${\tt First_Yes_Date}$

##

DC AGDD v.s. First Observed Bloom

US Spring Temperature v.s. First Observed Bloom

US Winter Temperature v.s. First Observed Bloom

DC Temperature v.s. First Observed Bloom

US Precipitation v.s. First Observed Bloom

DC Precipitation v.s. First Observed Bloom


```
US prcp spring <- USA individual phenometrics %>%
 filter(Prcp_Spring > 0, Prcp_Winter > 0) %>%
 labs(title="US Spring Precipitation",
      x ="Year", y = "Precipitation") +
 theme(plot.title = element text(hjust = 0.5)) +
 ylim(100, 450)
US_prcp_winter <- USA_individual_phenometrics %>%
 filter(Prcp_Spring > 0, Prcp_Winter > 0) %>%
 ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Winter)) + geom_point(size=5, alpha=0.1) +
 labs(title="US Winter Precipitation",
       x ="Year", y = "Precipitation") +
 theme(plot.title = element_text(hjust = 0.5)) +
 ylim(100, 450)
ggarrange(US_prcp_spring, US_prcp_winter,
        align = "v",
        ncol = 1, nrow = 2)
```

US Spring Precipitation

US Winter Precipitation


```
US prcp spring2 <- USA individual phenometrics %>%
  filter(Prcp_Spring > 0, Prcp_Winter > 0) %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Spring)) + geom_bin2d() +
  labs(title="US Spring Precipitation",
       x ="Year", y = "Precipitation") +
  theme(plot.title = element text(hjust = 0.5)) +
  ylim(100, 450) +
  scale_fill_continuous(low="lightblue", high = "darkblue")
US_prcp_winter2 <- USA_individual_phenometrics %>%
  filter(Prcp_Spring > 0, Prcp_Winter > 0) %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Winter)) + geom_bin2d() +
  labs(title="US Winter Precipitation",
        x ="Year", y = "Precipitation") +
  theme(plot.title = element_text(hjust = 0.5)) +
  ylim(100, 450) +
  scale_fill_continuous(low="lightblue", high = "darkblue")
ggarrange(US_prcp_spring2, US_prcp_winter2,
          align = "v",
          ncol = 1, nrow = 2)
```

US Spring Precipitation

US Winter Precipitation


```
DC_prcp_spring <- USA_individual_phenometrics %>%
  filter(State == 'DC') %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Spring, color=as.character(Site_ID))) + geom_po
  labs(title="DC Spring Precipitation",
        x ="Year", y = "Precipitation", color='Site ID') +
  theme(plot.title = element_text(hjust = 0.5)) +
  ylim(100, 450)
DC_prcp_winter <- USA_individual_phenometrics %>%
  filter(State == 'DC') %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Winter, color=as.character(Site_ID))) + geom_po
  labs(title="DC Winter Precipitation",
        x ="Year", y = "Precipitation", color='Site ID') +
  theme(plot.title = element_text(hjust = 0.5)) +
  ylim(100, 450)
ggarrange(DC_prcp_spring, DC_prcp_winter,
          align = "v",
          ncol = 1, nrow = 2)
```

DC Spring Precipitation

DC Winter Precipitation


```
DC_prcp_spring2 <- USA_individual_phenometrics %>%
  filter(State == 'DC') %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Spring)) + geom_bin2d() +
  labs(title="DC Spring Precipitation",
        x ="Year", y = "Precipitation") +
  theme(plot.title = element text(hjust = 0.5)) +
  ylim(100, 450) +
  scale_fill_continuous(low="lightblue", high = "darkblue")
DC_prcp_winter2 <- USA_individual_phenometrics %>%
  filter(State == 'DC') %>%
  ggplot(aes(x = as.character(First_Yes_Year), y = Prcp_Winter)) + geom_bin2d() +
  labs(title="DC Winter Precipitation",
        x ="Year", y = "Precipitation") +
  theme(plot.title = element_text(hjust = 0.5)) +
  ylim(100, 450) +
  scale_fill_continuous(low="lightblue", high = "darkblue")
ggarrange(DC_prcp_spring2, DC_prcp_winter2,
          align = "v",
          ncol = 1, nrow = 2)
```


