TRƯỜNG ĐẠI HỌC SỬ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH KHOA ĐIỆN – ĐIỆN TỬ

CÁO BÁO THI CUỐI KÌ THỰC TẬP THIẾT KẾ VI MẠCH TÍCH HỢP VLSI

GVHD: Ths: Lê Minh Thành

SVHT: Huỳnh Tấn Đạt

MSSV: 22161232

1. Cho r	nột h	àm logic sau:	4
1.1	Lập	p bảng trạng thái	4
2.1	Rút	t gọn bằng bìa K	5
2. Mô p	hỏng	JK_FF từ FF_D và đánh giá các thông số mô phỏng	5
2.1	Lý	thuyết	5
2.2	Ký	hiệu và bảng trạng thái	6
3.2	Mô	o phỏng	7
3.2	1	Mạch vẽ trên Cadence	7
2.3	.1.	Cấp nguồn	7
2.3	.2.	Dạng sóng	8
2.3	.3.	Đo thời gian trễ lan truyền cạnh lên cạnh xuống	9
2.3	.4.	Thời gian cạnh lên cạnh xuống	10
2.3	.5.	Thời gian Ts và Th	11
2.3	.6 Cô	ồng suất	12
3. Thiết	kế m	ạch đếm 3 bit bất đồng bộ	13
1.3	Vẽ	sơ đồ nguyên lí mạch	13
2.3	Mô	ò phỏng và đánh giá dạng sóng và thông số	15
3.3	The	ời gian trễ lan truyền cạnh lên và cạnh xuống	16
4.3	The	ời gian cạnh lên và cạnh xuống	18
5.3	Côi	ng Suất của mạch	19

1. Cho một hàm logic sau:	4
Bảng 1.1 Bảng trạng thái	4
Bảng 1.2 Bảng rút gọn	5
2. Mô phỏng JK_FF từ FF_D và đánh giá các thông số mô phỏng	5
Hình 2.1 Ký hiệu FF_JK	6
Bảng 2.1 Bảng trạng thái FF_JK	6
Hình 2.2 Mạch vẽ FF_JK trên cadence	7
Hình 2.3 Dạng sóng FF_JK	8
Hình 2.4 Thời gian trễ lan truyền cạnh lên	9
Hình 2.5 Thời gian trễ lan truyền cạnh xuống	10
Hình 2.6 Thời gian cạnh lên	10
Hình 2.7 Thời gian cạnh xuống.	11
Hình 2.8 Thời gian Ts của mạch FF_JK	11
Hình 2.9 Thời gian Th của mạch FF_JK	12
Hình 2.10 Công suất tĩnh của FF_JK	12
Hình 2.11 Công suất trung bình của FF_JK	13
3. Thiết kế mạch đếm 3 bit bất đồng bộ	
Hình 3.1 Mạch nguyên lý mạch đếm 3 bit bất đồng bộ	14
Hình 3.2 Dạng sóng ngõ ra mạch đếm	15
Bảng 3.1 Bảng trạng thái của hình 3.2	15
Hình 3.3 tpdr Q0	16
Hình 3.4 tpdr Q0	17
Hình 3.5 Thời gian cạnh lên Q0	18
Hình 3.6 Thời gian cạnh xuống Q0	18
Hình 3.7 Công suất trung bình của mạch	19

1. Cho một hàm logic sau:

 $YY = FF(DD,CC,BB,AA) = \prod (0,1,4,5,7,10,14,15) + dd(2,8,11,13)$

1.1 Lập bảng trạng thái

- Từ 1 ta có bảng trạng thái.

Bảng 1.1 Bảng trạng thái

DD	CC	BB	AA	Hex	YY
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	X
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	X
1	0	0	1	9	1
1	0	1	0	10	0
1	0	1	1	11	X
1	1	0	0	12	1
1	1	0	1	13	X
1	1	1	0	14	0

1	1	1	1	15	0
1					

2.1 Rút gọn bằng bìa K

Bảng 1.2 Bảng rút gọn

- Biểu thức rút gọn là: YY = (BB+DD)*(B'B'+D'D')*(A'A'+C'C')

2. Mô phỏng JK_FF từ FF_D và đánh giá các thông số mô phỏng

2.1 Lý thuyết

Flip-flop JK (FF_JK) là một loại flip-flop được dùng phổ biến trong mạch điện tử số để lưu trữ một bit dữ liệu. Nó được đặt tên theo hai đầu vào của nó: J và K. Đây là một cải tiến từ flip-flop SR nhằm loại bỏ tình trạng "trạng thái cấm" (invalid state).

2.2 Ký hiệu và bảng trạng thái

Hình 2.1 Ký hiệu FF_JK

Bảng 2.1 Bảng trạng thái FF_JK

Inputs		Outputs				
ınp	uts	Present State	Next State			
J	K	Qn	Q _{n+1}			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

3.2 Mô phỏng

3.2.1 Mạch vẽ trên Cadence

Hình 2.2 Mạch vẽ FF JK trên cadence

2.3.1. Cấp nguồn

Vpulse nối với đầu vào J có các giá trị sau:

- + V1 = 0 V
- + V2 = 1 V
- + period= 50ns
- + delay_time = 10ns
- + rise time= 100ps
- + fall time= 100ps
- + Pulse width= 15ps

Vpulse nối với đầu vào K có các giá trị sau:

- + V1 = 0 V
- + V2 = 1 V
- + period= 70ns
- + delay_time = 10ns
- + rise time= 100ps
- + fall time= 100ps
- + Pulse width= 15ps

Vpulse nối với đầu vào clk có các giá trị sau:

- + V1 = 0 V
- + V2 = 1 V
- + period= 10ns
- + rise time= 100ps
- + fall time= 100ps
- + Pulse width= 5ns

Vpulse nối với đầu vào clk~ có các giá trị sau:

- + V1=1 V
- + V2 = 0 V
- + period= 10ns
- + rise time= 100ps
- + fall time= 100ps
- + Pulse width= 5ns
- +VCC = 1V

2.3.2. Dạng sóng

Hình 2.3 Dạng sóng FF JK

Mô tả hình 2.3

Thời gian (ns)	J	K	CLK↑	Hoạt động	Q
0 - 25	0	0	\uparrow	Giữ nguyên	0
25 – 50	1	0	\uparrow	Set $(Q = 1)$	1
50 – 75	1	1	↑	Toggle $(Q = 0)$	0
75 – 100	0	1	↑	Reset $(Q = 0)$	0

Thời gian (ns)	J	K	CLK↑	Hoạt động	Q
100 – 125	1	0	\uparrow	Set $(Q = 1)$	1
125 – 150	1	1	\uparrow	Toggle $(Q = 0)$	0
150 – 175	0	1	\uparrow	Reset $(Q = 0)$	0
175 - 200	1	0	↑	Set $(Q = 1)$	1

Nhận xét:

+ Khi J = 1, K =
$$0 \rightarrow Q = 1$$
 (Set)

+ Khi J = 0, K =
$$1 \rightarrow Q = 0$$
 (Reset)

- + Khi $J = K = 1 \rightarrow Q$ toggle (đảo trạng thái)
- + Khi $J = K = 0 \rightarrow Q$ giữ nguyên
- + Tất cả thay đổi đều xảy ra tại cạnh lên của CLK.

2.3.3. Đo thời gian trễ lan truyền cạnh lên cạnh xuống

- Đo thời gian trễ lan truyền cạnh cạnh lên

Hình 2.4 Thời gian trễ lan truyền cạnh lên

- Từ hình 2.4 đo được tpdr = dx = 88.34ps
- Đo thời gian trễ lan truyền cạnh xuống.

Hình 2.5 Thời gian trễ lan truyền cạnh xuống

Từ hình 2.5 đo được thời gian trễ lan truyền cạnh xuống tpdf = 88.19ps

2.3.4. Thời gian cạnh lên cạnh xuống

Đo thời gian cạnh lên của mạch FF_JK

Hình 2.6 Thời gian cạnh lên

- Từ hình 2.6 đo được thời gian cạnh lên tr = 10.88ps
- Đo thời gian cạnh xuống.

Hình 2.7 Thời gian cạnh xuống.

Từ hình 2.7 đo được thời gian cạnh xuống tf = 93.86ps

2.3.5. Thời gian Ts và Th

Hình 2.8 Thời gian Ts của mạch FF_JK

Từ hình 2.8 đo được giá trị Ts = dx = 100ps

Hình 2.9 Thời gian Th của mạch FF JK

Từ hình 2.9 đo được giá trị Th = dx = 5ns

2.3.6 Công suất

Hình 2.10 Công suất tĩnh của FF JK

Hình 2.11 Công suất trung bình của FF_JK

$$P_{avg} = 230pW$$

3. Thiết kế mạch đếm 3 bit bất đồng bộ

1.3 Vẽ sơ đồ nguyên lí mạch

Hình 3.1 Mạch nguyên lý mạch đếm 3 bit bất đồng bộ

2.3 Mô phỏng và đánh giá dạng sóng và thông số.

Hình 3.2 Dạng sóng ngõ ra mạch đếm

- Mô tả hình 3.2

Tín hiệu gồm:

CLK (đỏ): xung đồng hồ điều khiển (tín hiệu vào).

Q0 (xanh lá): bit thấp nhất (LSB).

Q1 (hồng): bit giữa.

Q2 (xanh nhạt): bit cao nhất (MSB).

Bảng 3.1 Bảng trạng thái của hình 3.2

Thời gian	Q2	Q1	Q0	Birnary	Hex
0-20us	1	1	1	111	7
20-40us	1	1	0	110	6
50-70us	1	0	1	101	5
70-90us	1	0	0	100	4

90-110us	0	1	1	011	3

3.3 Thời gian trễ lan truyền cạnh lên và cạnh xuống

Hình 3.3 tpdr Q0

- Từ hình 3.3 đo được tpdr = dx = 2.98ns

Hình 3.4 tpdr Q0

- Từ hình 3.4 đo được tpdr = dx = 3.71ns

4.3 Thời gian cạnh lên và cạnh xuống

Hình 3.5 Thời gian cạnh lên Q0

- Từ hình 3.5 ta đo được thời gian cạnh lên Q0 = 678.1ps

Hình 3.6 Thời gian cạnh xuống Q0

- Từ hình 3.6 ta đo được thời gian cạnh xuống Q0 = 420.7ps

5.3 Công Suất của mạch

Hình 3.7 Công suất trung bình của mạch

$$P_{avg} = 758pW$$

Nhận xét:

- Mạch hoạt động chính xác, đếm ngược từ 111 về 000, sau đó lặp lại.
- Thời gian trễ và biên tín hiệu nằm trong ngưỡng tốt, tuy nhiên cạnh lên chậm hơn cạnh xuống cần lưu ý nếu chạy ở tần số cao.
- Công suất tiêu thụ rất thấp, mạch phù hợp với các ứng dụng yêu cầu tiết kiệm năng lượng.