# Homework 4 (Due on Oct. 16)

## 1. (Different Analog Modulation Schemes) (20pts)

Using the message signal  $m(t) = 10\cos 10\pi t$  and modulation carrier  $C(t) = 2\cos 200\pi t$ , determine the modulated signals (time domain expression) for the following methods of modulation, and draw the spectrum of the modulated signals.

- a) Double-sideband-suppressed carrier (DSB-SC) modulation.
- b) Double-sideband, Large carrier (DSB-LC) modulation with modulation index a=0.1.
- c) Single-sideband (SSB) modulation with upper sideband retained.
- d) Vestigial-sideband (VSB) modulation with the following VSB filter H(f) in Figure 1.



# 2. (DSB-LC or AM) (20pts)

An AM (i.e., DSB-LC) modulator has output  $x_c(t) = 40\cos[400\pi t] + 10\cos[360\pi t] + 10\cos[440\pi t]$ . Determine the modulation index, the carrier power, the sideband power and the transmission efficiency.

#### 3. (Demodulation of SSB) (20pts)

- a) Consider a message signal m(t) containing frequency components at 100, 200 and 400 Hz. This signal is applied to an SSB modulator together with a carrier at 100 kHz, with only the upper sideband retained. In the coherent detector used to recover m(t), the local oscillator supplies a cosine wave of frequency 100.02 kHz. Determine the frequency components of the detector output.
- b) Repeat your analysis, assuming that only the lower sideband is transmitted.

Note that the following two problems are two extension problems based on what you have learned on the class.

#### 4. (Square-Law Modulator) (30pts)

Consider a square-law modulator, as shown in Figure 2. Assume that the average value of m(t) is zero ( $\langle m(t) \rangle = 0$ ), and that the maximum value of |m(t)| is M. Also assume that the square-law device in Figure 2 is defined by  $y(t) = a_1 x(t) + a_2 x^2(t)$ , where  $a_1$  and  $a_2$  are constants.

- a) Write the equation for y(t).
- b) Assume the bandwidth of the message signal m(t) is W. Describe the filter in Figure 2, that yields an AM signal for g(t) with  $f_c$  as the carrier frequency. Give the necessary

filter type and the carrier frequencies of interest. (Hint: What is the center frequency of the filter, what's the bandwidth of the filter, what's the requirement for the carrier frequency  $f_c$  in order to generate an AM signal using square-law modulator. Note that AM signal means DSB-LC modulated signal)

- c) What's the modulation index of the output AM signal g(t)? (Hint: express the modulation index using  $a_1$ ,  $a_2$  and M)
- d) What is the advantage of this method of modulation?



Figure 2

## 5. (Square-Law Detector) (10pts)

Consider a square-law detector as shown in Figure 3, using a nonlinear device whose transfer characteristic is defined by  $y(t) = a_1 x(t) + a_2 x^2(t)$ , where  $a_1$  and  $a_2$  are constants, x(t) is the input, and y(t) is the output. The input consists of the AM wave  $x(t) = A_c [1 + a m_n(t)] \cos \omega_c t$ .

- a) Write the equation for y(t).
- b) Find the condition for which the message signal m(t) may be recovered from the y(t). (Hint: What's the ratio of the wanted signal to the distortion, and how to keep the ratio large?)



Figure 3