INTC GARCH comparison

- Data: 1973 to 2009 monthly returns
- Build low order GARCH model
- Demonstrate empirical analysis of GARCH processes
- Compare different GARCH models
- Show predictions

GARCH(1,1) with normal innovations

The fitted model is

$$r_t = 0.0113 + a_t, a_t = \sigma_t \epsilon_t$$
$$\sigma_t^2 = 0.00092 + 0.086a_{t-1}^2 + 0.853\sigma_{t-1}^2.$$

- All the estimates are significant, AIC=-1.3889.
- The unconditional variance is 0.000919/(1-0.0864-0.853) = 0.0152. Sample variance is 0.0161.

Time plot of volatility series and standardized residuals

ACF and PACF of the residuals and residuals squares

Predictive interval plot

This is the time plot of the 95% predictive intervals.

The QQ plots

GARCH(1,1) with t innovations

- From the qq plot it seems that innovations do not follow normal distribution.
- The fitted model with a t innovation is

$$r_t = 0.0165 + a_t, a_t = \sigma_t \epsilon_t, \epsilon_t \sim t_{6.77}.$$

$$\sigma_t^2 = 0.00116 + 0.1059a_{t-1}^2 + 0.817\sigma_{t-1}^2.$$

- All the estimates are significant, AIC=-1.447.
- The unconditional variance is 0.00116/(1-0.1059-0.817) = 0.015.
- The fitted model with a skewed t innovation is

$$r_t = 0.0133 + a_t, a_t = \sigma_t \epsilon_t, \epsilon_t \sim t_{0.87,7.23}.$$

$$\sigma_t^2 = 0.00116 + 0.1049 a_{t-1}^2 + 0.8178 \sigma_{t-1}^2.$$

All the estimates are significant, AIC=-1.4509.

The QQ plots

The QQ plots

The time plots of volatilities

Forecast comparisons

model	1	2	3	4	5
normal	0.0975	0.0993	0.1009	0.1023	0.1037
t	0.0951	0.0975	0.0997	0.1016	0.1034
skewed t	0.0954	0.0979	0.1000	0.1019	0.1037

Table: Volatility forecasts for monthly log returns of intel stock

code

```
library(fGarch)
da=read.table("m-intcsp7309.txt", header=T)
intc=log(da$intc+1)
m1=garchFit(~1+garch(1,1), data=intc,trace=F)
 summary(m1)
 garchFit(formula = ~1 + garch(1, 1), data = intc, trace = F)
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
mıı
      0.0112657 0.0053931
                           2.089 0.03672 *
omega 0.0009190 0.0003888 2.364 0.01808 *
beta1 0.8525855 0.0394322 21.622 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Log Likelihood:
312.3307
           normalized: 0.7034475
Standardised Residuals Tests:
                             Statistic p-Value
                    Chi^2 174.904
 Jarque-Bera Test
 Shapiro-Wilk Test
                            0.9709618 1.030402e-07
 Liung-Box Test
                      Q(10) 8.016844 0.6271916
Ljung-Box Test
                      Q(15) 15.5006 0.4159946
Ljung-Box Test
                      Q(20) 16.41549 0.6905368
Ljung-Box Test
              R^2 Q(10) 0.8746345 0.9999072
Ljung-Box Test R^2 Q(15) 11.35935 0.7267295
Ljung-Box Test
                  R^2 Q(20) 12.55994 0.8954573
I.M Arch Test
                      TR^2
                            10.51401 0.5709617
Information Criterion Statistics:
     ATC
              BTC
                       SIC
                                HQIC
-1.388877 -1.351978 -1.389037 -1.374326
```

```
v1=volatilitv(m1)
residual=residuals(m1, standardize=T)
vol=ts(v1, frequency=12, start=c(1973,1))
res=ts(residual, frequency=12, start=c(1973,1))
par(mfcol=c(2.1))
plot(vol,xlab='year',ylab='volatility',type='l')
plot(res,xlab='year',ylab='residuals',type='l')
par(mfcol=c(2,2))
acf(residual, lag=24)
pacf(residual, lag=24)
acf(residual^2, lag=24)
pacf(residual^2, lag=24)
#obtain plots of predictive intervals
par(mfcol=c(1,1))
upp=0.01126568+2*v1
low=0.01126568-2*v1
tdx=c(1:444)/12+1973
plot(tdx, intc, xlab='year', ylab='series', type='l', ylim=c(-0.6, 0.6))
lines(tdx, upp, lty=2, col='red')
lines(tdx, low, lty=2, col='red')
abline(h=c(0.01126568))
m2=garchFit(~1+garch(1,1), data=intc,trace=F,cond,dist='std')
summary(m2)
Title:
GARCH Modelling
Call:
 garchFit(formula = ~1 + garch(1, 1), data = intc, cond.dist = "std",
    trace = F)
```

```
Estimate Std. Error t value Pr(>|t|)
      0.0165075
                 0.0051031
                             3.235 0.001217 **
mıı
omega 0.0011576 0.0005782 2.002 0.045286 *
beta1 0.8171313 0.0580141 14.085 < 2e-16 ***
shape 6.7723503
                1.8572367
                           3.646 0.000266 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Standardised Residuals Tests:
                             Statistic p-Value
 Jarque-Bera Test
                      Chi^2 203.4933 0
 Shapiro-Wilk Test
                             0.9687606 3.970356e-08
Liung-Box Test
                      Q(10) 7.877778 0.6407741
Ljung-Box Test
                  R
                      Q(15) 15.5522 0.4124197
Ljung-Box Test
                  R.
                       Q(20) 16.50475 0.6848581
                  R^2 Q(10) 1.066054 0.9997694
Ljung-Box Test
Ljung-Box Test
                  R^2 Q(15) 11.49875 0.7165045
Ljung-Box Test
                  R^2 Q(20) 12.61496 0.8932865
LM Arch Test
                  R.
                      TR^2
                           10.80739 0.5454935
Information Criterion Statistics:
     ATC
              BTC
                       STC
                                HQIC
-1.446966 -1.400841 -1.447215 -1.428776
v2=volatility(m2)
m3=garchFit(~1+garch(1,1), data=intc,trace=F,cond.dist='sstd')
summary(m3)
 garchFit(formula = ~1 + garch(1, 1), data = intc, cond.dist = "sstd",
   trace = F)
```

```
Estimate Std. Error t value Pr(>|t|)
      0.0133343
                  0.0053430
                               2.496 0.012572 *
mıı
omega 0.0011621
                 0.0005587
                             2.080 0.037519 *
alpha1 0.1049289
                 0.0358860
                             2.924 0.003456 **
beta1 0.8177875
                 0.0559863
                             14.607 < 2e-16 ***
skew 0.8717220
                              13.856 < 2e-16 ***
                  0.0629129
shape 7.2344224
                  2.1018054
                               3 442 0 000577 ***
Standardised Residuals Tests:
                               Statistic p-Value
 Jarque-Bera Test
                        Chi^2 195,2178 0
 Shapiro-Wilk Test
                               0.969251 4.893319e-08
 Ljung-Box Test
                        Q(10) 7.882126 0.6403496
 Liung-Box Test
                        Q(15) 15.62496 0.4074054
 Ljung-Box Test
                   R.
                        Q(20) 16.5774 0.6802193
Ljung-Box Test
                   R^2
                        Q(10) 1.078429 0.9997569
Liung-Box Test
                   R^2
                        Q(15) 11.95155 0.6826924
Ljung-Box Test
                   R^2 Q(20) 13.03792 0.8757513
LM Arch Test
                        TR^2
                              11.18826 0.5128574
Information Criterion Statistics:
     ATC
               BTC
                         STC
                                  HQIC
-1.450899 -1.395550 -1.451257 -1.429071
v3=volatility(m3)
par(mfcol=c(3,1))
plot(tdx,v1,xlab='year',ylab='volatility',type='1', ylim=c(0.06, 0.3))
plot(tdx,v2,xlab='year',ylab='volatility',type='1', ylim=c(0.06, 0.3))
plot(tdx,v3,xlab='year',ylab='volatility',type='1', ylim=c(0.06, 0.3))
cor(cbind(v1,v2,v3))
```

```
x=intc[length(intc)]
at=(x-0.01126568)
f=0.0009190+0.0864383*at^2+0.8525855*(v1[length(v1)])^2
sqrt(f)
[1] 0.09754446
predict(m1,5)
 meanForecast meanError standardDeviation
   0.01126568 0.09754454
                                0.09754454
   0.01126568 0.09926616
                                0.09926616
   0.01126568 0.10085604
                                0.10085604
   0.01126568 0.10232650
                                0.10232650
   0.01126568 0.10368830
                                0.10368830
```