Statistical Learning for Data Science 1

229351

Dates

Sec 01 : Tu 14:30-16:30 at SCB4202
Lab : F 14:30-16:30 at STB107

Sec 02: M 11:00-13:00 at SCB4202
Lab: Th 11:00-13:00 at STB207

2

Instructors

Donlapark Ponnoprat
Email: donlapark.p--a--cmu.ac.th
Office: STB304

Phimphaka Taninpong
Email: phimphaka.t--a--cmu.ac.th
Office: STB201

3

Lectures

- Mainly focuses on predictions/forecasts
- Covers four main topics:
 - Principal component analysis
 - Linear regression
 - Time series analysis
 - Logistic regression

Prerequisites: comfort with basic algebra and probability

Main principle

- Predictors $X = (X_1, X_2, \dots, X_p)$
- Response Y

Assumption: There's some function f and error ϵ such that

$$Y = f(X) + \epsilon$$

Here, ϵ is a **random noise**.

Without noises

With noises

Our goals

- Prediction/forecast
 - Learn f from noisy data
 - Make predictions.

Our goals

- Prediction/forecast
 - Learn f from noisy data
 - Make predictions.
- Make decisions
 - Is there any relationship between *X* and *Y*?
 - Can we remove some variables?

We will use technique from statistics: the **hypothesis testing**.

Labs

• 10-12 labs

- Mainly in google Colab (python)
- Recommended to work in groups, but write your own solutions!

• Turn in your Colab file on Microsoft teams

Homework

• 4 homework, due once a month

- conceptual problems & coding problems
- turn in solutions via Microsoft Teams

Kaggle competition

- Try to build a model that is as accurate as possible!
- We give you training data → build a model → evaluate on test data

- The competition will take place on kaggle (www.kaggle.com); a kaggle account is required
- Compete as a group of 1-3 people

kaggle report

- After the competition, you will have to write a kaggle report
- 4-10 pages, one- or two-column format
- Examples of kaggle reports are given on the course website

Due on Mar 28

Grading scheme

-01
5%
5%
ე%
ე%

Textbooks

James et al. An Introduction to Statistical Learning

Hyndman et al. Forecasting: Principles and Practice

Course website

Syllabus, homework, slides can be found at

donlapark.github.io/ds351

We appreciate your comments on these materials!