

LOG1810 STRUCTURES DISCRÈTES

TD 12 : MODÉLISATION COMPUTATIONNELLE E2023

SOLUTIONNAIRE

Exercice 1

Pour chacun des langages suivants, construisez un automate fini déterministe le reconnaissant. Vous devez considérer l'ensemble des symboles terminaux $I = \{0, 1\}$.

a) Le langage des mots composées d'au moins deux symboles quelconques suivis de trois « 0 » ou plus.

Solution:

b) Le langage des mots finissant par au moins deux « **0** » consécutifs et qui comportent un nombre pair de « **1** ».

Solution:

c) Le langage des mots qui comportent une séquence de « 1 », où le nombre total de « 1 » est congru à 2 modulo 3, suivie d'un nombre pair de « 0 ».

Solution:

Exercice 2

Soit le langage $L = \{[a^2 + ab + b^2]^*[(a^+)c + (b^+)a + (c^+)b]\}$ construit sur l'alphabet $X = \{a, b, c\}$. Proposez une grammaire G = (V, T, S, P) qui engendre le langage L. Vous devez préciser V, T et P. Notez que l'exposant « + » indique une répétition d'une ou plusieurs occurrences du symbole auquel il est associé dans le langage L.

Solution:

Note: Plusieurs solutions sont possibles. Celle qui est proposée ici n'est qu'une solution parmi tant d'autres.

- $\bullet \quad G = (V, T, S, P)$
- $\bullet \quad V = \{a, b, c, S, A, B, C, D, E, F\}$
- $T = \{a, b, c\}$
- **P** est constitué des productions suivantes :

$$S \rightarrow aA \mid bB \mid aC \mid aD \mid bE \mid cF$$

- $A \rightarrow aS$
- $B \rightarrow bS$
- $C \rightarrow bS$
- $D \rightarrow aD \mid c$
- $E \rightarrow bE \mid a$
- $F \rightarrow cF \mid b$

Exercice 3

Soit la grammaire G = (V, T, S, P) avec $V = \{\mu, \sigma, -, S, M, E\}$, $T = \{\mu, \sigma, -\}$. S est l'axiome et P l'ensemble des règles de production suivant :

$$S \rightarrow M E M E$$

 $M \rightarrow M \mu \mid M \sigma \mid \varepsilon$
 $E \rightarrow -M$

Le mot « $\mu \mu - \mu \sigma \mu - \sigma \sigma$ » est-il reconnu par cette grammaire ? Dans l'affirmative, donnez l'arbre de dérivation (dérivation à gauche) correspondant.

Solution:

Oui, le mot « $\mu \mu - \mu \sigma \mu - \sigma \sigma$ » est reconnu par cette grammaire.

Il est plus facile de construire l'arbre de dérivation à partir de la chaîne de dérivation car la chaîne fournit une séquence d'étapes claire et directe pour construire l'arbre étape par étape.

• La chaîne de dérivation

$S \rightarrow M E M E$	
$S \rightarrow M \mu E M E$	$(car\ M \rightarrow M\ \mu)$
$S \rightarrow M \mu \mu E M E$	$(car\ M \rightarrow M\ \mu)$
$S \rightarrow \mu \mu E M E$	$(car\ M \to \varepsilon)$
$S \rightarrow \mu \mu - M M E$	$(car E \rightarrow -M)$
$S \rightarrow \mu \mu - M \mu M E$	$(car M \rightarrow M \mu)$
$S \rightarrow \mu \mu - M \sigma \mu M E$	$(car\ M \rightarrow M\ \sigma)$
$S \rightarrow \mu \mu - M \mu \sigma \mu M E$	$(car\ M \rightarrow M\ \mu)$
$S \rightarrow \mu \mu - \mu \sigma \mu M E$	$(car M \rightarrow \varepsilon)$
$S \rightarrow \mu \mu - \mu \sigma \mu E$	$(car\ M \to \varepsilon)$
$S \rightarrow \mu \mu - \mu \sigma \mu - M$	$(car E \rightarrow -M)$
$S \rightarrow \mu \mu - \mu \sigma \mu - M \sigma$	$(car M \rightarrow M \sigma)$
$S \rightarrow \mu \mu - \mu \sigma \mu - M \sigma \sigma$	$(car\ M \to M\ \sigma)$
$S \rightarrow \mu \mu - \mu \sigma \mu - \sigma \sigma$	$(car M \rightarrow \varepsilon)$

L'arbre de dérivation

Exercice 4

Transformez en automate déterministe l'automate suivant. Donnez la table d'états-transition et précisez les états finaux ou acceptants.

Solution:

Dans les tableaux d'états-transition, les états initiaux sont précédés par des flèches entrantes (\longrightarrow) et les états finaux sont précédés par des flèches sortantes (\longleftarrow) .

Table d'états-transition de l'automate non déterministe

États	Entrée		
	a	b	
$\rightarrow 0$	{1,2}	{5}	
$\longrightarrow 1$	{3}	{11}	
$\rightarrow 2$	{3,7}	{12}	
\rightarrow 3	{4}	{7,8,9}	
→ 4	Ø	{7,8,9}	
\rightarrow 5	{9}	{6}	
\rightarrow 6	Ø	{12}	
\longrightarrow 7	{10}	{8}	
→ 8	{9}	Ø	
← 9	{13}	Ø	
← 10	{13}	Ø	
→ 11	{12}	{7,8,9}	
← 12	{13}	Ø	
← 13	{13}	{13}	

• Table d'états-transition de l'automate déterministe

États	Entrée		
Liais	a	b	
$\rightarrow \{0\}$	{1,2}	{5}	
\rightarrow {1,2}	{3,7}	{11,12}	
\rightarrow {5}	{9}	{6}	
\longrightarrow {3,7}	{4,10}	{7,8,9}	
← {11,12}	{12,13}	{7,8,9}	
← {9}	{13}	Ø	
\rightarrow {6}	Ø	{12}	
← {4,10}	{13}	{7,8,9}	
← {7,8,9}	{9,10,13}	{8}	
← {12,13}	{13}	{13}	
← {13}	{13}	{13}	
← {12}	{13}	Ø	
← {9,10,13}	{13}	{13}	
\longrightarrow {8}	{9}	Ø	

Exercice 5

Donnez la grammaire G qui génère le langage reconnu par l'automate suivant. Vous devez préciser l'alphabet V, l'ensemble des symboles terminaux T, l'axiome S et l'ensemble des règles de production P.

Solution:

Soit les symboles non terminaux associés aux états comme suit :

- État 0 : Symbole non terminal *S*, axiome de la grammaire
- État 1 : Symbole non terminal A
 État 2 : Symbole non terminal B

- État 3 : Symbole non terminal *C*
- État 4 : Symbole non terminal **D**

Nous avons les ensembles suivants :

```
V = \{a, b, S, A, B, C, D\}
T = \{a, b\}
```

Les productions de **P** sont :

$$S \rightarrow aA \mid bB \mid a \mid b$$

 $A \rightarrow aB \mid bS \mid a$
 $B \rightarrow aS \mid bA \mid bC \mid b$
 $C \rightarrow bC \mid bD \mid b$
 $D \rightarrow aD \mid bD \mid bC \mid a \mid b$

Exercice 6

On considère l'alphabet $V = \{0, 1, 2\}$ et les langages L_A et L_B .

$$L_A = \{01, 101\} \text{ et } L_B = \{20000, 21110, 22220\}$$

a) Donnez tous les mots de V^* de longueur inférieure à 3.

Solution:

```
Mot de longueur 0 : \varepsilon
Mots de longueur 1 : 0, 1, 2
Mots de longueur 2 : 00, 01, 02, 10, 11, 12, 20, 21, 22
```

L'ensemble de mots recherchés est donc : { ε , 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22}.

b) Déterminez L_A^3

Solution:

```
L_A^3 = \{(01+101)^3\}
= \{010101, 0110101, 1010101, 10110101, 0101101, 01101101, 10101101, 101101101\}
```

c) Déterminez et simplifiez ${m L_B}^*$

Solution:

```
L_B^* = \{\varepsilon, 20000, 21110, 22220, 2000020000, ...\}
= \{(20000 + 21110 + 22220)^*\} = \{[2(000 + 111 + 222)0]^*\} = \{[2(0^3 + 1^3 + 2^3)0]^*\}
```

Exercice 7

Soit la grammaire G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D, E\}$, $T = \{a, b\}$. S est l'axiome et P l'ensemble des règles de production suivant :

$$S \rightarrow ACaB$$
 $Ca \rightarrow aaC$
 $CB \rightarrow DB \mid E$
 $aD \rightarrow Da$
 $AD \rightarrow AC$
 $aE \rightarrow Ea$
 $AE \rightarrow \varepsilon$

Quel est le type de la grammaire G? Justifiez votre réponse.

Solution:

- Elle n'est pas de **type 3**, car aucune production de P n'est de la forme $w_1 \to a | aH$ ou de la forme $S \to \varepsilon$, a étant un symbole terminal et H un symbole non terminal.
- Elle n'est pas de **type 2** du fait de la présence de la production $Ca \rightarrow aaC$ dont la partie gauche n'est pas symbole unique non terminal, mais un mot. Il en est de même pour :

$$CB \rightarrow DB|E$$
 $aD \rightarrow Da$
 $AD \rightarrow AC$
 $aE \rightarrow Ea$
 $AE \rightarrow \varepsilon$

- Elle n'est pas de **type 1**, car la production $CB \to E$ est tel que l(CB) > l(E).
- La grammaire *G* est donc de **type 0**.

Exercice 8

Soit la grammaire G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D, E\}$, $T = \{a, b\}$. S est l'axiome et P l'ensemble des règles de production suivant :

$$S \rightarrow aA \mid bS$$

 $A \rightarrow aA \mid bB$
 $B \rightarrow aC \mid bS \mid a$
 $C \rightarrow aC \mid bD \mid a \mid b$
 $D \rightarrow aC \mid bE \mid a \mid b$
 $E \rightarrow aC \mid bE \mid a \mid b$

Construisez l'automate M tel que L(G) = L(M).

Solution: