Predicting Click-Through-Rates For YouTube Videos Based on Video Title

George Paskalev

THE CLIENT.

TACTIQ

TACTIQ is an app that makes the increasingly complex world of social influence more manageable. Through machine-learning and personal guidance, **TACTIQ** takes away the stress of optimization, organization, and monetization across all platforms so creators can simply create.

DATASET

Provided by TACTIQ's parent agency, the dataset includes information on 15,000 videos by 50 creators.

FOCUS

TACTIQ works primarily with YouTube creators.

MACHINE LEARNING

Al-generated 'blueprint' to map out the path to success.

THE GOAL

Train models that guide
YouTubers to optimize their
videos based on predictions and
recommendations.

THE TACTIQ MVP NEEDS A FEATURE TO PREDICT A VIDEO'S CTR BASED ON ITS TITLE*

* A video's title and thumbnail both play a crucial role in achieving a successful Click-Through-Rate. The title alone is not enough to predict CTR with 100% accuracy.

LET'S GET STARTED.

POPULAR WORDS IN PRANK TITLES.

PRE-PROCESSING. The title of over 15k videos were transformed using standard NLP techniques (removing stop words, tokenization, etc.)

CLASSIFICATION. Each video was initially assigned to have either a Low, Average, or High CTR based on its CTR.

```
funny edition kissing
   fake
       bad dav
                                               laugh challenge
prank invasion
best kissing
                                       pranks gone
                                    social experiment ⋈
   epic
          prank part
                                        library €
                       part
                                   public
funniest prank
        challenge
                                         will make
                       nrank onne
                                                          man
```


TOPIC DISTRIBUTION

TECHNIQUES for topic extraction that I used include: LDA and nonnegative matrix factorization (NMF).

TOPIC DISTRIBUTION

was pretty identical across all three classes.

LET'S GET TO MODELING.

MY APPROACH.

CLASSIFICATION.

TRAIN 9 VANILLA CLASSIFIERS

2 PICK THE BEST-PERFORMING BASED ON ACCURACY.

TWEAK.

REGRESSION.

USE A RANDOM FORREST REGRESSOR WITH TF-IDF

7 TRY IT WITH WORD2VEC

TRY XGBOOST WITH WORD2VEC

VANILLA MODELS

CLASSIFICATION

From all vanilla classifiers, I chose to move forward with SVM, SGDC, and Multinomial Bayes; always using TF-IDF as my vectorizer.

	Model	Accuracy (Train)	Accuracy (Test)
0	SVM w/ CV	0.733726	0.62642
1	SVM w/ TF	0.782391	0.622869
2	Linear SVC w/ CV	0.797441	0.578835
3	Linear SVC w/ TF	0.781136	0.591619
4	SGDC w/ CV	0.771855	0.590909
5	SGDC w/ TF	0.738743	0.612926
6	Multinomial Bayes w/ CV	0.72156	0.585227
7	Multinomial Bayes w/ TF	0.683306	0.619318
8	Random Forrest w/ CV	0.955976	0.566761
9	Random Forrest w/ TF	0.955976	0.585938

TWEAKING THE MODELS.

- Utilized Grid Search to obtain best parameters for all models.
- Removed words that appear frequently among all classes.
- Rearranged the classes based on different threshold to achieve optimal test accuracy.
- Best results: 72% accuracy with cut-off being 2% CTR, and 70.1% with 6% CTR

A linear classifier using the SGD method, trained for binary classification where 6% CTR is the cut-off for Low and High CTR.

ON TO REGRESSION MODELS

WORD2VEC WITH GENSIM.

RANDOM FORREST REGRESSOR WITH TF-IDF

RMSE: 3.50%

THE RESULTS

REGRESSION PERFORMANCE

RANDOM FORREST
REGRESSOR WITH WORD2VEC

RMSE: 3.48%

XGB REGRESSOR:

RMSE: 11.80%

MY LINEAR CLASSIFIER USING SGD.

FUTURE WORK:

- Create a classifier that predicts CTR based on thumbnails.
- Train current model on CTR for different time frames: first 48 hours, first 7 days, etc.
- Train current model with titles in different languages.
- Train current model on titles from different video genres such as Beauty, Lifestyle, Gaming, etc.

\$

RECOMMENDATION

The average CPM for a pranks channel is \$1.69.

Over 80% of channels manage to achieve a CTR lower than 6%.

50% only get as high as 3.8% CTR. For a 100k views, that generates \$6.42.

If these 50% use TACTIQ's tool, they can get above 6%, which would generate \$10.42.

Over 60% revenue increase.

THE END THE END

