## **Curse of Dimensionality**

- The **curse of dimensionality** refers to various phenomena that arise when analyzing data in high-dimensional spaces, typically with many features or variables.
- As the number of dimensions grows, several issues emerge, making it harder to effectively analyze, visualize, and draw conclusions from the data.
- The difficulties related to training machine learning models due to high dimensional data is referred to as 'Curse of Dimensionality'.

## Some problem sets may have

- Large number of features
- Making the model extremely slow
- Even making it difficult to find a solution
- This is referred to as 'Curse of Dimensionality'
- Fortunately, it is often possible to reduce the number of features considerably, turning an intractable problem into a tractable one.
  Description

# The Curse of Dimensionality

## Example: MNIST Dataset

- (28\*28) number of features for each image.
- Border features had no importance and could be ignored.
- Neighbouring pixels are highly correlated
  - They can be merged into one (taking mean intensity) without losing much of information, further reducing the dimensions or features.

#### Approaches to Mitigating the Curse of Dimensionality

#### 1. Dimensionality Reduction Techniques:

- Principal Component Analysis (PCA): Transforms data to a lower-dimensional space by finding the directions (principal components) of maximum variance. Often used to reduce noise and redundancy.
- t-Distributed Stochastic Neighbor Embedding (t-SNE): A non-linear technique useful for visualizing high-dimensional data in 2 or 3 dimensions, often for exploratory data analysis.
- Linear Discriminant Analysis (LDA): Similar to PCA but supervised, aiming to find feature space that maximizes class separability.
- Autoencoders: Neural networks that learn an efficient, compressed representation of data, useful for non-linear dimensionality reduction.

#### 2. Feature Selection:

Filter Methods: Select features based on statistical measures (e.g., correlation, chi-square test)
 without involving a predictive model.

 Embedded Methods: Integrate feature selection directly into model training (e.g., Lasso regression).

#### 3. Regularization:

 Techniques like L1 (Lasso) and L2 (Ridge) regularization in machine learning penalize large coefficients, effectively reducing the impact of less important features and mitigating overfitting in high-dimensional settings.

#### 4. Random Projections:

Projects high-dimensional data onto a lower-dimensional subspace using random matrices
while approximately preserving distances. This approach is computationally efficient and often
surprisingly effective.

#### 5. Data Sampling or Aggregation:

- Reducing the dimensionality by aggregating or summarizing data can sometimes simplify high-dimensional data without significant information loss.
- Clustering or binning can also help reduce the dimensionality, especially in cases of categorical features with many levels.

## 1. Conceptual Steps of PCA

- 1. Standardize the Dataset
- 2. Compute the Covariance Matrix
- 3. Compute Eigenvalues and Eigenvectors
- 4. Sort Eigenvalues and Select Principal Components
- 5. Transform the Dataset

### **Step 1: Standardize the Dataset**

Standardization ensures that all features contribute equally to the analysis by scaling them to have zero mean and unit variance.

For a dataset  ${\bf X}$  with n samples and m features:

$$z_{ij} = rac{x_{ij} - \mu_j}{\sigma_j}$$

Where:

- $x_{ij}$ : The *i*-th observation of the *j*-th feature.
- $\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$ : Mean of the j-th feature.
- $\sigma_j = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_{ij} \mu_j)^2}$ : Standard deviation of the j-th feature.

### **Step 2: Compute the Covariance Matrix**

The covariance between two features X and Y is:

$$\mathrm{Cov}(X,Y) = rac{1}{n-1} \sum_{i=1}^n (x_i - \mu_X) (y_i - \mu_Y)$$

For m-dimensional standardized data, the covariance matrix  ${f C}$  is:

$$\mathbf{C} = rac{1}{n-1} \mathbf{Z}^ op \mathbf{Z}$$

Where:

- **Z**: Standardized data matrix  $(n \times m)$ .
- **C**: Covariance matrix  $(m \times m)$ .

#### **Step 3: Compute Eigenvalues and Eigenvectors**

The eigenvalue problem is:

$$(\mathbf{C} - \lambda \mathbf{I})\mathbf{v} = 0$$

Where:

- $\lambda$ : Eigenvalue.
- **v**: Eigenvector.
- **I**: Identity matrix.

Solve the characteristic equation:

$$\det(\mathbf{C} - \lambda \mathbf{I}) = 0$$

- 1. Solve for  $\lambda$  (eigenvalues).
- 2. Substitute each  $\lambda$  to find  $\mathbf{v}$  (eigenvectors).

#### Step 4: Sort Eigenvalues and Select Principal Components

- 1. Arrange eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_m$  in descending order.
- 2. Select the top k eigenvalues to determine the number of principal components.
- 3. Form the projection matrix  $\mathbf{V}_k$  using the corresponding eigenvectors.

#### **Step 5: Transform the Dataset**

The principal components are obtained by projecting the standardized data onto the eigenvectors:

$$\mathbf{Z}' = \mathbf{Z}\mathbf{V}_k$$

#### Where:

- $\mathbf{Z}'$ : Transformed data matrix  $(n \times k)$ .
- $\mathbf{V}_k$ : Matrix of top k eigenvectors  $(m \times k)$ .

#### 3. Numerical Example

### Dataset

$$\mathbf{X} = egin{bmatrix} 2 & 0 \ 4 & 2 \ 6 & 4 \ 8 & 6 \end{bmatrix}$$

#### Step 1: Standardize the Dataset

- 1. Calculate  $\mu_1 = 5, \mu_2 = 3$ .
- 2. Calculate  $\sigma_1 = 2.236, \sigma_2 = 2.236$ .
- 3. Standardize:

$$\mathbf{Z} = \begin{bmatrix} -1.34 & -1.34 \\ -0.45 & -0.45 \\ 0.45 & 0.45 \\ 1.34 & 1.34 \end{bmatrix}$$

#### **Step 3: Eigenvalues and Eigenvectors**

1. Solve  $\det(\mathbf{C} - \lambda \mathbf{I}) = 0$ :

$$\begin{vmatrix} 1-\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix} = 0$$
 
$$(1-\lambda)^2 - 1 = 0 \implies \lambda^2 - 2\lambda = 0 \implies \lambda = 2, 0$$

- 2. Eigenvectors:
  - For  $\lambda=2$ :  $\mathbf{v}_1=[1,1]^T$ .
  - For  $\lambda = 0$ :  $\mathbf{v}_2 = [-1, 1]^T$ .

#### Step 4: Transform the Data

1. Projection matrix  $\mathbf{V}_k = [\mathbf{v}_1]$ :

$$\mathbf{V}_k = egin{bmatrix} 1 \ 1 \end{bmatrix}$$

2. Transform data:

$$\mathbf{Z}' = \mathbf{Z}\mathbf{V}_k = egin{bmatrix} -1.34 \ -0.45 \ 0.45 \ 1.34 \end{bmatrix}$$

#### **Step 2: Covariance Matrix**

$$\mathbf{C} = rac{1}{n-1}\mathbf{Z}^ op \mathbf{Z} = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$$

#### 4. Interpretation

- 1. The first principal component explains the maximum variance (2).
- 2. The second principal component has negligible variance (0).
- 3. The data can be affectively reduced to 1 dimension without significant loss of information.

# Principal Component Analysis

## So, PCA involves two steps

- SVD and
- Projection of the training dataset onto the orthogonal principal components

# PCA using SVD in Sklearn PCA using PCA in Sklearn

```
# Centering the data and doing SVD
X_centered = X - X.mean(axis=0)
U,s,V = np.linalg.svd(X_centered)
```

# Extracting the components and projecting the original dataset W2 = V.T[:, :2] X2D = X\_centered.dot(W2) from sklearn.decomposition import PCA # Directly using PCA and transforming the original dataset # Takes care of centering

pca = PCA(n\_components = 2)
X2D = pca.fit\_transform(X)

Dr K Purushotam Naidu

# PCA - Explained Variance Ratio

Variances explained by each of the components is important

- Available via the explained\_variance\_ratio\_ variable
- The ratio indicates the proportion of the dataset's variance that lies along each principal component.

>>> pca.explained\_variance\_ratio\_ array([0.84248607, 0.14631839])

# PCA - Number of PCs

How to select the number of principal components

A much better option is to set n\_components to be a float between 0.0 and 1.0, indicating the ratio of variance you wish to preserve

```
pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)
```

## PCA - Number of PCs

### How to select the number of principal components

- Yet another option is to plot the explained variance as function of the number of dimensions.
- There will usually be an elbow in the curve, where the explained variance stops growing fast.



Figure 8-8. Explained variance as a function of the number of dimensions

# PCA for Compression

- After dimensionality reduction, the training set takes up much less space.
- As an example, if we try applying PCA to the MNIST dataset while preserving 95% of its variance, each instance will have just over 150 features, instead of the original 784 features.
  - 80% reduction!
  - Training time improves tremendously.

# PCA for Compression

```
pca = PCA(n_components = 154)
```

X\_reduced = pca.fit\_transform(X\_train)

X\_recovered = pca.inverse\_transform(X\_reduced)



Equation 8-3. PCA inverse transformation, back to the original number of dimensions

$$\mathbf{X}_{\text{recovered}} = \mathbf{X}_{d\text{-proj}} \mathbf{W}_d^{\mathsf{T}}$$