Pontifícia Universidade Católica de Minas Gerais

Instituto de Ciências Exatas e Informática

Curso: Ciência da Computação Disciplina: Otimização de Sistemas Professor: Dorirley Rodrigo Alves

Aluno: Luigi Domenico (553229) 17 de Fevereiro de 2019

Problema 1 - Fábrica de Mármores

Uma empresa que trabalha com mármores e granitos fabrica soleiras e peitoris. Ela repassa para os revendedores tendo um lucro de R\$ 7,00 por soleira e R\$ 8,50 por peitoril. Cada soleira tem 0,6 m² de área e cada peitoril tem área de 0,8 m². A empresa dispõe de 16 m² de granito diariamente para fazer as peças e tem 5 funcionários que trabalham 6 horas por dia. Na confecção de uma soleira gastam-se 24 minutos e na confecção do peitoril, 20. Sabendo que toda a produção é absorvida pelo mercado, construa o modelo matemático de produção diária que maximiza o lucro da empresa.

	Soleira Peitoril	Disponibilidade
Lucro	R\$ 7,00 R\$ 8,50	-
Área	$0.6 \text{ m}^2 0.8 \text{ m}^2$	16 m ²

Tempo gasto 24 min 20 min 1800 min (6 horas p/ funcionário)

Requisitos

- · Objetivo: maximizar o lucro da empresa;
- Variáveis de decisão: soleira (x) e peitoril (y);
- Restrições: granito disponível (m²) e horas de trabalho.

Modelo Matemático

- $F.O \rightarrow max Z = 7x + 8, 5y$;
- Sujeito a:
 - Área de granito (R1): $0, 6x + 0, 8y \le 16$;
 - ∘ Horas de trabalho p/ dia (R2): $24x + 20y \le 1800$.

Problema 2 - Fábrica de Bicicletas

A empresa Ciclo S.A. faz montagem de dois tipos de bicicletas: a do tipo Padrão e a do tipo Clássico. Ela recebe as peças de outras empresas e a montagem passa por duas oficinas. A montagem de uma bicicleta tipo Padrão requer uma hora na oficina I e duas horas e meia na oficina II. A montagem de uma bicicleta modelo Clássico requer uma hora e meia na oficina I e duas horas e meia na oficina II. A oficina I tem disponibilidade de 20 funcionários que trabalham 8 horas por dia, e a oficina II tem disponibilidade de 32 funcionários que trabalham, também, as mesmas 8 horas diariamente cada um. A demanda diária de bicicleta tipo Clássico é de 40 peças. Sabendo que a bicicleta modelo padrão Padrão dá uma contribuição para o lucro de R\$ 38,00 e a modelo Clássico dá R\$ 49,00, determine o modelo de programação linear que maximiza o lucro da empresa.

	Oficina I Oficina II		Lucro Demanda	
			R\$	
Padrão	60 min	150 min	38,00	-

Clássica	90 min	150 min	R\$ 49,00	40 un.
Horas de trabalho	$20 \times 60 \times 8 = 9600 \text{ min}$	$32 \times 60 \times 8 = 15360 \text{ min}$	-	-

Requisitos

- Objetivo: maximizar o lucro da empresa;
- Variáveis de decisão: bicicletas de modelo padrão (x) e de modelo clássico (y);
- Restrições: horas de trabalho por oficina e demanda de bicicletas do tipo clássico.

Modelo Matemático

- $F.O \rightarrow max Z = 38x + 49y$;
- · Sujeito a:
 - ∘ Horas de trabalho oficina I (R1): $60x + 90y \le 9600$;
 - ∘ Horas de trabalho oficina II (R2): $150x + 150y \le 15360$;
 - ∘ Demanda diária modelo clássico (R3): $y \le 40$.

Problema 3 - Fábrica de Móveis

Uma fábrica de móveis para escritórios produz estantes e mesas para computadores. Cada estante gasta 2,5 m² de madeira, 14 parafusos, 0,40 kg de cola, 8 puxadores e 6 dobradiças e cada mesa para computador gasta 2,0 m² de madeira, 18 parafusos, 0,22 kg de cola, 2 puxadores e 4 dobradiças. A empresa tem 18 empregados que trabalham oito horas por dia e sabe-se que uma estante gasta entre corte de madeira e o seu término quatro horas e meia e a mesa para computador, três horas. A loja dispõe, diariamente, de 90 m² de madeira, 7 caixas de parafusos contendo, cada uma, 100 parafusos, 12 quilos de cola, 15 caixas de puxadores, cada uma contendo 12 peças e 17 caixas de dobradiças, cada uma contendo 12 peças. No mercado a empresa obtém um lucro de R\$ 45,00 por cada estante vendida e R\$ 36,00 por cada mesa para computador. O mercado impõe uma demanda máxima de 16 estantes e 25 mesas. Determine o modelo matemático para esse problema que maximiza o lucro da empresa.

	Estante N	Mesa p/ computadores	Disponibilidade
Madeira	$2,5 \text{ m}^2$	$2,0 \text{ m}^2$	90 m^2
Parafusos	14 un.	18 un.	700 un
Cola	0,40 kg	0,22 kg	12 kg
Puxadores	8 un.	2 un.	180 un.
Dobradiças	6 un.	4 un.	204 un.
Tempo gasto	270 min	180 min	8640 min (8 horas p/ empregado)
Lucro	R\$ 45,00	R\$ 36,00	-
Demanda máx	. 16 un.	25 un.	-

Requisitos

- Obietivo: maximizar o lucro da empresa:
- Variáveis de decisão: estante (x) e mesa p/ computadores (y);
- Restrições: disponibilidade dos itens, demanda máxima e horas de trabalho.

Modelo Matemático

- $F.O \rightarrow max Z = 45x + 36y$;
- Sujeito a:

- Madeira (R1): $2.5x + 2y \le 90$;
- Parafusos (R2): $14x + 18y \le 700$;
- \circ Cola (R3): 0, 40x + 0, $22y \le 12$;
- Puxadores (R4): $8x + 2y \le 180$;
- Dobradicas (R5): $6x + 4y \le 204$;
- ∘ Demanda máxima estante (R6): $x \le 16$;
- ∘ Demanda máxima mesa p/ computadores (R7): $y \le 25$;
- ∘ Horas de trabalho p/ dia (R8): $270x + 180y \le 8640$.

Problema 4 - Cestas de Alimentos

O Supermercado Coma Bem oferece aos seus clientes dois tipos de cestas de alimentos: a cesta Simples e a cesta Padrão, contendo, cada uma delas, os seguintes alimentos:

- Simples: 2 kg de feijão, 2 kg de açúcar, 1 litro de óleo, 1 kg de café, 3 kgs de farinha e 5 kgs de arroz;
- Padrão: 4 kg de feijão, 4 kg de açúcar, 2 litros de óleo, 2 kg de café, 4 kgs de farinha e 8 kgs de arroz.

Por problemas de transporte, em determinado dia, o supermercado só dispõe de 250 kg de feijão e 460 kg de arroz. Sabe-se que a cesta do tipo Simples não vende mais do que 44 unidades, diariamente. Sabe-se, ainda, que uma cesta do tipo Simples é vendida por R\$ 14,00 e uma do tipo Padrão, por R\$ 22,00. Quais as quantidades de cestas de ambos os tipos devem ser vendidas, naquele dia, para que a receita do supermercado seja máxima? Modele este problema.

Cesta Simples Cesta Padrão Disponibilidade

Feijão	2 kg	4 kg	250 kg
Açúcar	2 kg	4 kg	-
Oléo	1 L	2 L	-
Café	1 kg	2 kg	-
Farinha	3 kg	4 kg	-
Arroz	5 kg	8 kg	460 kg
Lucro	R\$ 14,00	R\$ 22,00	-
Demanda máx.	44 un.	-	-

Requisitos

- Objetivo: maximizar a receita do supermercado;
- Variáveis de decisão: cesta simples (x) e cesta padrão (y);
- Restrições: disponibilidade dos itens (feijão e arroz) e demanda máxima (cesta simples).

Modelo Matemático

- $F.O \rightarrow max Z = 14x + 22y$;
- Sujeito a:
 - ∘ Feijão (R1): $2x + 4y \le 250$;
 - ∘ Arroz (R2): $5x + 8y \le 460$;
 - ∘ Demanda máxima cesta simples (R3): $x \le 44$.