0.1 最大模原理和 Schwarz 引理

定理 0.1 (最大模原理)

设 f 是域 D 中非常数的全纯函数, 那么 |f(z)| 不可能在 D 中取到最大值.

证明 因为 $f \in D$ 上非常数的全纯函数,由定理??,G = f(D) 是一个域.如果 |f(z)| 在 D 中某点 z_0 处取到最大值,记 $w_0 = f(z_0)$,则 $w_0 \in G$ 的一个内点,即有 $\varepsilon > 0$,使得 $B(w_0, \varepsilon) \subset G$.故必有 $w_1 \in G$,使得 $|w_1| > |w_0|$.于是存在 $z_1 \in D$,使得 $|f(z_1)| = |w_1| > |w_0| = |f(z_0)|$.这与 $|f(z_0)| \notin |f(z_0)|$ 在 D 中的最大值相矛盾.

定理 0.2

设 $D \in \mathbb{C}$ 中的有界域, 如果非常数的函数 f 在 \overline{D} 上连续, 在 D 内全纯, 那么 f 的最大模在 D 的边界上而且只在 D 的边界上达到.

注 定理 0.2中 D 的有界性条件不能去掉, 否则定理可能不成立. 例如, 设

$$D = \left\{ z : |\text{Im}z| < \frac{\pi}{2} \right\}, \quad f(z) = e^{e^z}.$$

当然 f 在 D 中全纯, 在 \overline{D} 上连续, 但它的最大模并不能在 ∂D 上达到. 事实上, 当 $z \in \partial D$ 时, $z = x \pm \frac{\pi}{2}i$, 这 时, $e^z = e^x e^{\pm \frac{\pi}{2}i} = \pm i e^x$, 所以 $|e^{e^z}| = |e^{\pm i e^x}| = 1$. 而当 $z \in D$ 时, 取 z = x, 即有 $e^{e^x} \to \infty(x \to \infty)$. 故定理 0.2不成立. 证明 因为 \overline{D} 是紧集, 其上的连续函数 |f| 一定有最大值, 即存在 $z_0 \in \overline{D}$, 使得 $|f(z_0)|$ 是 |f(z)| 在 \overline{D} 上的最大值. 由定理 0.1 知道, z_0 不能属于 D, 因此只能有 $z_0 \in \partial D$.

定理 0.3 (Schwarz 引理)

设 f 是单位圆盘 B(0,1) 中的全纯函数, 且满足条件

- (i) $\exists z \in B(0,1)$ 时, $|f(z)| \le 1$;
- (ii) f(0) = 0,

那么下列结论成立:

- (i) 对于任意 $z \in B(0,1)$, 均有 $|f(z)| \le |z|$;
- (ii) $|f'(0)| \le 1$;
- (iii) 如果存在某点 $z_0 \in B(0,1), z_0 \neq 0$, 使得 $|f(z_0)| = |z_0|$, 或者 |f'(0)| = 1 成立, 那么存在实数 θ , 使得对 B(0,1) 中所有的 z, 都有 $f(z) = e^{i\theta}z$.

证明 因为 $f \in H(B(0,1))$, 且 f(0) = 0, 故 $f \in B(0,1)$ 中可展开为

$$f(z) = a_1 z + a_2 z^2 + \dots = z(a_1 + a_2 z + \dots) = zg(z),$$

这里, $g(0) = a_1 = f'(0)$. 取 0 < r < 1, 当 |z| = r 时, 有

$$|g(z)| = \frac{|f(z)|}{|z|} \le \frac{1}{r},$$

故由最大模原理,在圆盘 B(0,r) 中也有

$$|g(z)| \leq \frac{1}{r} \, (\, \text{\iffigure{1.5ex} \end{1.5ex}} |z| < r \, \, \text{\iffigure{1.5ex} \end{1.5ex}}).$$

让 $r \to 1$, 即得 $|g(z)| \le 1(z \in B(0,1))$, 即 $|f(z)| \le |z|$, 结论 (i) 成立.

从 $|g(0)| \le 1$ 即得 $|f'(0)| \le 1$, 结论 (ii) 成立.

现若有 $z_0 \in B(0,1), z_0 \neq 0$, 使得 $|f(z_0)| = |z_0|$, 即 $|g(z_0)| = 1$. 这说明全纯函数 g 在内点 z_0 处取到了最大模 1, 根据最大模原理,g 必须是常数. 设 $g(z) \equiv c$, 由 $|g(z_0)| = 1$, 得 |c| = 1, 所以 $c = e^{i\theta}$, 因而 $f(z) = e^{i\theta}z$. 如果 |f'(0)| = 1, 即 |g(0)| = 1, 与上面一样讨论, 即得 $f(z) = e^{i\theta}z$. 结论 (iii) 成立.

定义 0.1

设 $D \in \mathbb{C}$ 中的域, 如果 $f \in D$ 上的单叶全纯函数, 且 f(D) = D, 就称 $f \in D$ 上的一个**全纯自同构**.D 上全纯自同构的全体记为 Aut(D).

命题 0.1

Aut(D) 在复合运算下构成一个群, 称为 D 的全纯自同构群.

证明 设 $f,g \in \text{Aut}(D)$, 那么 $f \circ g \in \text{Aut}(D)$, 且复合运算满足结合律. 对于每个 $f \in \text{Aut}(D)$, 由定理**??**, $f^{-1} \in \text{Aut}(D)$. f(z) = z 在复合运算下起着单位元素的作用. 因而 Aut(D) 在复合运算下构成一个群.

对于一般的域 D, 要确定 Aut(D) 是很困难的. 但对于单位圆盘 B(0,1), 应用 Schwarz 引理不难定出其上的全纯自同构群.

对于 |a| < 1, 记

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z},$$

由例题**??** 知道, 它把 B(0,1) 一一地映为 B(0,1), 因而 $\varphi_a \in \operatorname{Aut}(B(0,1))$. 如果记 $\rho_{\theta}(z) = e^{i\theta}z$, 它是一个旋转变换, 当然有 $\rho_{\theta} \in \operatorname{Aut}(B(0,1))$. 下面我们将证明, $\operatorname{Aut}(B(0,1))$ 中除了 φ_a , ρ_{θ} 以及它们的复合外, 不再有其他的变换.

定理 0.4

设 $f \in Aut(B(0,1))$, 且 $f^{-1}(0) = a$, 则必存在 $\theta \in \mathbb{R}$, 使得

$$f(z) = e^{i\theta} \frac{a - z}{1 - \overline{a}z}.$$

证明 记 $w = \varphi_a(z) = \frac{a-z}{1-\overline{a}z}$, 直接计算可得

$$z = \varphi_a^{-1}(w) = \frac{a - w}{1 - \overline{a}w} = \varphi_a(w). \tag{1}$$

令 $g(w) = f \circ \varphi_a(w)$, 则由例题?? 知道 $g \in \text{Aut}(B(0,1))$, 而且

$$g(0) = f(\varphi_a(0)) = f(a) = 0,$$

故由 Schwarz 引理得

$$|g'(0)| \le 1. \tag{2}$$

由于 $g^{-1} \in \text{Aut}(B(0,1))$, 且 $g^{-1}(0) = 0$, 故对 g^{-1} 用 Schwarz 引理, 得 $|(g^{-1})'(0)| \le 1$. 但由定理??, 有

$$|(g^{-1})'(0)| = \frac{1}{|g'(0)|},$$

由此即得

$$|g'(0)| \ge 1$$
.

与 (2) 式比较, 即得 |g'(0)| = 1. 根据 Schwarz 引理的结论 (iii), 存在实数 θ , 使得 $g(w) = e^{i\theta}w$, 即 $f \circ \varphi_a(w) = e^{i\theta}w$. 令 $w = \varphi_a(z)$, 再结合(1)式即得

$$f(z) = e^{i\theta} \frac{a - z}{1 - \overline{a}z}.$$

定理 0.5 (Schwarz-Pick 定理)

设 $f: B(0,1) \rightarrow B(0,1)$ 是全纯函数, 对于 $a \in B(0,1), f(a) = b$. 那么

(i) 对任意
$$z \in B(0,1)$$
, 有 $|\varphi_b(f(z))| \le |\varphi_a(z)|$ 其中 $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$, $\varphi_b(z) = \frac{b-z}{1-\overline{b}z}$;

(ii)
$$|f'(a)| \le \frac{1 - |b|^2}{1 - |a|^2}$$
;

(iii) 如果存在某点 $z_0 \in B(0,1), z_0 \neq a$,使得 $|\varphi_b(f(z_0))| = |\varphi_a(z_0)|$,或者 $|f'(a)| = \frac{1-|b|^2}{1-|a|^2}$ 成立,那么 $f \in \text{Aut}(B(0,1))$. 其中 $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}, \varphi_b(z) = \frac{b-z}{1-\overline{b}z}$.

证明 $\Diamond g = \varphi_b \circ f \circ \varphi_a$, 则 $g \in H(B(0,1))$, 且 $g(B(0,1)) \subset B(0,1)$, $g(0) = \varphi_b \circ f \circ \varphi_a(0) = 0$. 对 g 用Schwarz 引理, 有

$$|\varphi_b \circ f \circ \varphi_a(\zeta)| \le |\zeta|, \ \zeta \in B(0,1) \tag{3}$$

和

$$|(\varphi_b \circ f \circ \varphi_a)'(0)| \le 1. \tag{4}$$

$$|\varphi_b(f(z))| \le |\varphi_a(z)|. \tag{5}$$

这就是 (i).

由于

$$\varphi_a'(0) = -(1 - |a|^2), \quad \varphi_b'(b) = -\frac{1}{1 - |b|^2},$$

由 (4) 式即得

$$|f'(a)| \le \frac{1 - |b|^2}{1 - |a|^2}.$$
(6)

这就是 (ii).

如果存在 $z_0 \in B(0,1), z_0 \neq a$, 使得 (5) 式中的等号成立, 令 $\zeta_0 = \varphi_a(z_0)$, 则 $\zeta_0 \neq 0$, 且 ζ_0 使 (3) 式中的等号成立. 于是由 Schwarz 引理, $g(z) = \mathrm{e}^{\mathrm{i}\theta}z$, 即 $g \in \mathrm{Aut}(B(0,1))$, 于是 $f = \varphi_b \circ g \circ \varphi_a \in \mathrm{Aut}(B(0,1))$.

注意到当(6)式中的等号成立时,有

$$\begin{split} g'(0) &= \varphi_b' \left[f\left(\varphi_a\left(0\right)\right) \right] \cdot f\prime\left(\varphi_a\left(0\right)\right) \cdot \varphi_a'\left(0\right) = \varphi_b' \left[f\left(a\right) \right] \cdot f\prime\left(a\right) \cdot \varphi_a'\left(0\right) \\ &= \varphi_b' \left[b \right] \cdot f\prime\left(a\right) \cdot \varphi_a'\left(0\right) = -\frac{1}{1-|b|^2} \cdot \frac{1-|b|^2}{1-|a|^2} \cdot \left[-\left(1-|a|^2\right) \right] = 1, \end{split}$$

由 Schwarz 引理, $g(z) = e^{i\theta}z$, 即 $g \in Aut(B(0,1))$, 于是 $f = \varphi_b \circ g \circ \varphi_a \in Aut(B(0,1))$.