TRABAJO PRÁCTICO - 86.10 2ºC 2016

1. Diseño de la etapa de potencia de un amplificador de audio

Con la información suministrada se deberá proponer una especificación técnica y calcular y seleccionar todos los componentes para el circuito dado.

- a) Investigar y Definir las especificaciones del amplificador (Luego estas especificaciones deseadas se compararán con las obtenidas inicialmente en las simulaciones y de la caracterización del circuito) Especificar:
 - 1. Tensión de alimentación (Valor nominal y tolerancia)
 - 2. Potencia de salida (sobre una carga de 8 ohm)
 - 3. Respuesta en frecuencia (+/-0.1 dB)
 - 4. Ancho de banda de potencia
 - 5. Rango dinámico (dB)
 - 6. Distorsión armónica total
 - 1. a 1 kHz: 1W RMS @ 8 ohm
 - 2. a 10 kHz: 1W RMS @ 8 ohm
 - 3. a 1 kHz y -1 dB de máxima potencia Nom. RMS @ 8 ohm
 - 7. Slew Rate
 - 8. Offset DC
 - 9. Distorsión de intermodulación
 - 10. Distorsión de intermodulación transitoria
 - 11. Relación señal a ruido (entre 20 Hz y 20 kHz)
 - 12. Sensibilidad
 - 13. Impedancia de entrada
 - 14. Impedancia de salida
 - 15. Factor de amortiguamiento
 - 16. Margen de ganancia
 - 17. Margen de fase
- b) Identificar y marcar las distintas etapas. Explicar la función y el funcionamiento de cada. Propone una o más toplogías alternativas para cada etapa.
- c) Interpretar que función o funciones desempeña cada componente del circuito.
- d) Completar un cuadro como el que se muestra a continuación para cada componente:

Componente	Función	Al aumentar su valor	Al disminuir su valor

- e) Mostrar en detalle el cálculo del valor de cada componte y/o los criterios y métodos utilizados.
- f) Seleccionar la tecnología de cada componente, explicando los criterios utilizados.
- g) Confeccionar un listado de partes como se muestra a continuación:

Completar el listado de componentes indicando, referencia del componente en el circuito, valor (valor nominal, tensión, tolerancia, potencia, clase, etc.), tecnología del componente, descripción (montaje, encapsulado, etc.), fabricante, proveedor.

Item	Cantidad	Referencia	Valor	Descripción	Fabricante	Proveedor
1	2	R1,R2	10K	Metal film 5%, 1/2W		
2	1	R8	10K	Trimpot cermet 25 vueltas; tolerancia +/- 10% Coef. Térmico +/-100 ppm		
3	4	C1-C4	.1uFx50V	Multicapa X7R,K		
4	1	ZD1	ZD-1	Disipador 58x29x100 3.5 °C/W		
5	4	CN2	PWS X4	Conect. P/PCB .156" 4 vías		

- h) Determinar la polarización, o sea tensiones y corrientes principales en continua (sin señal), confirmar si es adecuada la polarización de la etapa de salida (punto Q de trabajo en la recta de carga estática y dinámica).
- i) Estabilidad de las corrientes de polarización en función de la temperatura ambiente y de la temperatura de los transistores de salida.
- j) Ganancia de tensión en frecuencias medias.
- k) Respuesta en frecuencia para pequeña señal.
- Impedancia de entrada (que ve el generador): hallar el valor a frecuencias medias (1KHz) y graficar en función de la frecuencia.
- m) Impedancia de salida (que ve la carga): hallar el valor a frecuencias medias (1KHz) y graficar en función de la frecuencia.
- n) Respuesta al escalón u onda cuadrada, para pequeña señal (tiempo de crecimiento) y para gran señal al límite del recorte (velocidad de crecimiento). ¿Cuál es el valor de Slew Rate del amplificador?
- o) Máxima excursión de señal.
- p) Ancho de banda de potencia.
- q) Determinación de la resistencia térmica de los disipadores de calor requeridos por los transistores de salida en funcionamiento continuo a máxima disipación de potencia (de los transistores).
- r) Determinar la distorsión armónica para 100Hz, 1KHz y 10KHz y 20 kHz a 1W de potencia sobre la carga, media potencia y potencia nominal.
- s) Análisis de la compensación.
- t) Calcular el corrimiento de continua a la salida del amplificador. Indicar como se compensa dicho corrimiento.
- u) Analizar los requisitos que deberá cumplir la fuente de alimentación.

2. Construcción del prototipo

Se pide:

- a) Análisis de los condicionantes de integración
- b) Cálculo y seleccionar los disipadores u otros mecanismos de disipación térmica
- c) Diseño del PCB (layout)
- d) Diagramas de distribución de componentes sobre el PCB y referencias (sin el layout)
- e) Montaje del prototipo (describir el procedimiento del armado o la secuencia de montaje del prototipo) y diagramas de montaje mecánico
- f) Ajustes y verificaciones (Instrumentos, inspección visual y de armado, procedimiento de verificación y ajuste)

3. Simulación y medición del amplificador de audio

En las simulaciones: Indicar el circuito utilizado, los puntos de prueba, los parámetros de simulación y los resultados obtenidos.

En las mediciones: Indicar los instrumentos utilizados, el conexionado del banco de medición, el procedimiento de medición y los resultados obtenidos.

Luego se deberá realizar un análisis comparativo de los valores calculados, simulados y medidos.

Se pide caracterizar:

- a) Tensiones y corrientes de polarización
- b) Ganancia de tensión
- c) Sensibilidad
- d) Potencia máxima de salida
- e) Ancho de banda
- f) Slew Rate
- g) Impedancia de entrada
- h) Impedancia de salida
- i) Factor de amortiguamiento
- j) Distorsión armónica
- k) Distorsión por intermodulación
- I) Rechazo de ripple
- m) Temperaturas de operación
- n) Protección contra cortocircuito

4. Psicoacústica

Analizar los efectos de los distintos tipos de distorsión basándose en las sensaciones producidas.