Math 152 – Python Lab 4

February 27, 2023

0.1 MATH 152 Lab 4

MATH 152 Lab 3 Section Number: 571

Members:

- Brighton Sikarskie
- Alex Krakora
- Joseph Pham
- Diego Mendez

```
[1]: from numpy import * import sympy as sp
```

0.1.1 Question 1

```
1a
[2]: x = sp.symbols("x")
f = (5 + sp.sin(x)) ** (1 / 4)

lower = 0
upper = pi / 2

# Plot the function
sp.plot(f, (x, lower, upper))
print(f"The graph of f(x) = {f} is shown above.")
```


The graph of $f(x) = (\sin(x) + 5)**0.25$ is shown above.

1b Left Endpoint Approximation

```
[3]: n = 200
delta_x = (upper - lower) / n
# make a list from inclusive lower to exclusive upper
# with step size delta_x
x_values = arange(lower, upper, delta_x)
y_values = [f.subs(x, x_value) for x_value in x_values]
# sum the list y_values and multiply by delta_x
# to get the area under the curve
area_left = sum(y_values) * delta_x
print(f"The area under the curve is {area_left}.")
```

The area under the curve is 2.41936685199696.

0.1.2 Question 2 Right Endpoint Approximation

```
[4]: n = 200
    delta_x = (upper - lower) / n
    # make a list from exclusive lower to inclusive upper
    # with step size delta_x
    x_values = arange(lower + delta_x, upper + delta_x, delta_x)
    y_values = [f.subs(x, x_value) for x_value in x_values]
    # sum the list y_values and multiply by delta_x
    # to get the area under the curve
    area_right = sum(y_values) * delta_x
    print(f"The area under the curve is {area_right}.")
```

The area under the curve is 2.41991455568038.

0.1.3 Question 3 Midpoint Approximation

3a

The area under the curve is 2.41964128034331.

3b

```
[6]: left_right_average = (area_left + area_right) / 2
print(f"The average of the left and right areas is {left_right_average}.")

print(f"Is the average of the left and right areas equal to the area under the curve using midpoint? {left_right_average == area_mid}.")
```

The average of the left and right areas is 2.41964070383867. Is the average of the left and right areas equal to the area under the curve using midpoint? False.

0.1.4 Question 4 Trapezoid Approximation

4a

```
[7]: from scipy.integrate import trapz

x_values = linspace(lower, upper, n + 1)
y_values = [f.subs(x, x_value) for x_value in x_values]
```

```
result = trapz(y_values, x_values).evalf()
print(f"The area under the curve is {result}.")
```

The area under the curve is 2.41964070383867.

4b

[8]: print(f"Is the trapezoidal rule result equal to the area under the curve using__
the average of left and right Riemann sums? {result == left_right_average}.")

Is the trapezoidal rule result equal to the area under the curve using the average of left and right Riemann sums? False.

```
4c
[9]: x = sp.symbols("x")
f = (5 + sp.sin(x)) ** sp.Rational(1, 4)
sp.plot(f, (x, 0, pi / 2))
xp = [0, pi / 8, pi / 4, 3 * pi / 8, pi / 2]
yp = [f.subs(x, i) for i in xp]
import matplotlib.pyplot as plt

plt.plot(xp, yp)
```


[9]: [<matplotlib.lines.Line2D at 0x7fd690add540>]

0.1.5 Question 5 Simpson's Rule

```
[10]: import numpy as np
from scipy.integrate import simps

a = 0
b = np.pi / 2
n = 200

x = np.linspace(a, b, n)
y = (5 + np.sin(x)) ** 1 / 4
sim = simps(y, x)
print(sim)
```

2.213495403355763

0.1.6 Question 6 Errors

```
[11]: # The value of the integral to 10 decimal places is 2.4196410881.
# Use this value to estimate the error |actual - estimate| in
# each of the five approximations.
actual = 2.4196410881
# 5 estimate
five = abs(actual - sim)
print("for 5 the error is", five)
```

for 5 the error is 0.2061456847442371