Ejercicio 1 (5 puntos)

(TIEMPO DISPONIBLE PARA LOS DOS EJERCICIOS: 60 MINUTOS)

Apellidos y Nombre	
Grupo D.N.I	Firma

Sea F un cuerpo conmutativo y denotemos por $GL_2(F)$ el grupo de las matrices 2×2 con coeficientes en F que son invertibles respecto de la multiplicación usual de matrices. Se pide:

a) (0,5 puntos). Demostrar que $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ y $B=\begin{pmatrix}1&0\\1&1\end{pmatrix}$ no conmutan cualquiera que sea el cuerpo F.

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$BA = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$AB \ddagger BA \text{ (pues 2 \pm 1)}$$

$$Cualquier \text{ cuerpo} \text{)}$$

b) (0,5 puntos). Para $F = \mathbb{Z}/2\mathbb{Z}$, escribir todos los elementos de $G := GL_2(\mathbb{Z}/2\mathbb{Z})$ y decidir a cuáles de los siguientes grupos es isomorfo: i) $\mathbb{Z}/6\mathbb{Z}$, ii) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, iii) S_3 , iv) D_6 .

$$G = \{T = \begin{pmatrix} 10 \\ 01 \end{pmatrix}, B = \begin{pmatrix} 10 \\ 11 \end{pmatrix}, G = \begin{pmatrix} 01 \\ 10 \end{pmatrix}, D = \begin{pmatrix} 01 \\ 11 \end{pmatrix}, E = \begin{pmatrix} 11 \\ 10 \end{pmatrix}, A = \begin{pmatrix} 11 \\ 01 \end{pmatrix}\}$$

Br el apartado a) AB \pm BA \Rightarrow G no es abeliano \Rightarrow
 \Rightarrow G es isomorfo al límico grupo no abeliano de orden 6, que es $S_3 \cong D6$.

DESCRIPTION DISPOSSIBLE PARA LIGHT DOS EDERCHOTOS: 60 MINUTOS

c) (2 puntos). Escribir todos los subgrupos del grupo G del apartado anterior, indicando cuáles de ellos son normales.

G₁= {
$$I=(32)$$
 }
G₂= { B > = { $B=(12)$ } $B^2=(101)=I$ } subgrupo de orden 2.
G₃= A = { C = { C = { C

Asique, aparte de los subgrupos triviales & y G, que son siempre normales, tenemos 3 de orden 2 y 1 de orden 3 que seran cíclicos, por ser de orden primo.

- · El subgrupo Gyde orden 3 es normal porque sólo hay 1 de orden 3 (4g & G, |9 Gyg-1|= |Gy|=3 => 9 Gyg-1= Gy).
- · G2={I,B} mo es normal pues AG2A={I,ABA-1} + G2
 Ya que ABA-1+B, pues según vimos en a) AB+BA.
 - · Go = {I,A} no es normal por la misma razon que Gz
 - · G3={I,C3 tampoco es normal porque

Einalmente, no puede haber subgrupos de órderes 4 ó 5 porque Estos números no dividen a IGI=6.

- d) (2 puntos). Describir todos los homomorfismos de $\mathbb{Z}/2\mathbb{Z}$ al grupo G de los apartados b) y c) y todos los de G a $\mathbb{Z}/2\mathbb{Z}$.
- Hom (\mathbb{Z}_{2Z} G) Si $f: \mathbb{Z}_{2Z}$ G es un homomofilmo, debemos tener $f(\bar{o}) = I$, luego f va a estar determinado por la sinagen de $\bar{1}$. Así que tenemos las siguientes posibilidades; 1) $f(1) = I \in G$, que da el homom. Viivial , 2) f(1) = B, 3) f(1) = G, 4) f(1) = A. Y no hay más, porque $f(1) \in G$ deble ser un elemento cuyo orden divide al orden de $1 \in \mathbb{Z}_{2Z}$, que es 2.

 Hom (G, \mathbb{Z}_{2Z}) Si $f: G \mapsto \mathbb{Z}_{2Z}$ no es el hom. trivial $f(9) = \bar{o}$, fgtG, entonces f es suprayectivo \Rightarrow $G(G) = \mathbb{Z}_{2Z}$ Kerf es un subgrupo normal, de orden $3 \Rightarrow Kerf = \{I,D,D^2 = E\}_{D}$, ℓ , además del hom. Viival existe otro $f: G \mapsto \mathbb{Z}_{2Z}$ definido por $f(I) = f(D) = f(E) = \bar{o}$ y $f(A) = f(B) = f(C) = \bar{1}$.