Unknown node type: matrix

Unknown node type: apply

Unknown node type: apply

Unknown node type: apply

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \vdots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}$$

$$x^{2} - 9 = x^{2} - 3^{2}$$
$$= (x - 3)(x + 3)$$

$$x^2 - 9 = x^2 - \square^2$$

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$x^{2} + \frac{b}{a}x = \frac{-c}{a}$$
 Divide out leading coefficient.
$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \frac{-c(4a)}{a(4a)} + \frac{b^{2}}{4a^{2}}$$
 Complete the square.
$$\left(x + \frac{b}{2a}\right)\left(x + \frac{b}{2a}\right) = \frac{b^{2} - 4ac}{4a^{2}}$$
 Discriminant revealed.
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = \frac{-b}{2a} \pm \{C\} \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$
 There's the vertex formula.

 $x = \frac{-b \pm \{C\} \sqrt{b^2 - 4ac}}{2a}$