Les ions calcium et magnésium présent dans de l'eau dure sont peu solubles et réagissent avec les carbonates de l'eau pour former du calcaire. L'adoucissement de l'eau consiste à échanger ces ions calcium et magnésium contre des ions sodium qui sont parfaitement solubles dans l'eau. On parle d'échange ionique.

Vidéo 1

Voir la vidéo ci-contre qui présente le principe de fonctionnement d'une résine échangeuse d'ions.

https://youtu.be/fBKpZpe1rf8

Afin d'étudier la performance d'une résine échangeuse d'ions l'expérience a consisté à faire passer de l'eau dure (chargée en ions calcium Ca^{++}) dans un tube qui contient une telle résine (billes poreuses de 1 mm environ). On précise que la concentration en ions calcium de l'eau dure utilisée ici est de 5,1 $mmol.L^{-1}$.

On a relevé la concentration en ions calcium Ca^{++} en sortie de résine toutes les 5 minutes pendant 1h30. Les données sont présentées dans le tableur ci-dessous.

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S
1	Temps (en minutes)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
2	Concentration en Ca++ (en mmol.L ₁)	0,16	0,16	0,16	0,32	0,48	0,68	1,2	2,6	4,2	4,4	4,52	4,6	4,68	4,8	4,9	5	5	5

1 Étude des données à l'aide d'un tableur.

Taux d'évolution en %

1. On a ajouté ci-dessous une ligne Taux d'évolution en pourcentage à la feuille de calcul précédente. Quelle formule faut-il entrer dans la cellule C3 afin de compléter cette ligne par une recopie vers la droite ?

Temps (en minutes) 5 10 15 20 25 30 35 40 45 50 55 60 65 75 80 85 70 4,2 2 Concentration en Ca++ (en mmol.L-1) 0,16 0,16 0,16 0,32 0,48 0,68 1,2 2,6

- 2. Compléter la ligne Taux d'évolution en pourcentage, on arrondira les pourcentage à l'unité.
- 3. Compte tenu de vos observations, peut-on envisager un modèle d'ajustement linéaire ou exponentiel ?

2 Recherche d'un modèle adapté.

Nous avons vu précédemment que les modèles linéaires ou exponentiels ne sont pas adaptés à cette situation. L'objectif de cette partie est de déterminer un modèle pertinent ; nous allons pour cela utiliser le logiciel *Geogebra*.

1. Reproduire la feuille de calcul ci-dessous avec Geogebra.

2. La feuille de calcul *Geogebra* va nous permettre d'analyser les données précédentes. Pour cela sélectionner les données (cellules B1 à S2 du tableur) puis utiliser le menu *Statistiques à deux variables* comme l'indique la capture d'écran ci-dessous.

3. Le nuage de point s'est affiché dans une fenêtre à droite. Utiliser le menu déroulant *Modèle d'ajustement* comme l'indique la capture d'écran ci-dessous afin de choisir le modèle d'ajustement qui semble le plus adapté à notre situation.

4.	Préciser le nom du modèle et donner l'expression de la fonction qui semble modéliser au mieux notre situation.
5.	En observant la courbe, émettre une conjecture concernant le sens de variation de cette fonction. On pourra présenter cette conjecture dans un tableau.
6.	En observant la courbe, émettre une conjecture concernant la convexité de cette fonction. On pourra présenter cette conjecture dans un tableau.

3 Étude théorique du modèle

Nous allons dans cette partie étudier la fonction logistique f proposée par le logiciel et en particulier démontrer les deux conjectures précédentes.

Culture mathématique

Le modèle logistique est un modèle à restriction de croissance, il a été proposé en 1895 par Pierre François VERHULST comme une alternative au modèle exponentielle à croissance infini et sans contrainte.

Une fonction logistique est solution d'une équation différentielle de la forme $A' = r\left(1 - \frac{A}{K}\right)A$ où r et K sont deux constantes.

Les solutions de cette équation différentielle sont de la forme $A(t) = \frac{K}{1 + \left(\frac{K}{A(0)} - 1\right) e^{-r t}}$.

Nous allons par la suite démontrer certains résultats ci-dessous :

- Si A est petit alors $A' \simeq r A$;
- la limite en $+\infty$ de A est K;
- \bullet si A augmente alors le taux d'accroissement diminue.

Dans toute cette partie f est définie sur $[0; +\infty[$ par :

$$f(x) = \frac{4,8569}{1 + 5186,624 e^{-0,2195 x}}$$

On admet que f est solution de l'équation différentielle (E) suivante où r=0,2195 et K=4,8569:

$$A' = r \left(1 - \frac{A}{K} \right) A \tag{E}$$

1.	Dete	rminer la limite de f en $+\infty$. Interpréter votre reponse dans le cadre du problème.
2.	Étud	le des variations de f .
	(a)	Démontrer que pour tout x appartenant à $[0; +\infty[$ on a : $0 < f(x) < 4,8569$
	(b)	Utiliser l'équation différentielle (E) et la question précédente pour déterminer les variations de f sur $[0; +\infty[$.

0	T24 1	1	1	convexité	1	r
≺ .	HITIICO	α	10	CONVOVITO	α	T
υ.	Doude	uc	1Ct	COHVEARGE	uc	

(a)	Utiliser l'équation différentielle (E) pour démontrer que f est solution de l'équation différentielle (E') suivante
	$A'' = r A' \left(1 - \frac{2A}{K} \right) \tag{E}$
o)	En déduire le signe de f'' et la convexité de f sur $[0; +\infty[$.
n (considère l'algorithme ci-dessous programmé sous Python.
f	rom math import*
_	ef f2(x):
	return 1213.704539*exp(-0.2195*x)*(5186.624*exp(-0.2195*x)-1)/(5186.624*exp(-0.2195*x)+1)**3
x	return 1213.704539*exp(-0.2195*x)*(5186.624*exp(-0.2195*x)-1)/(5186.624*exp(-0.2195*x)+1)**3 = hile:
x	return 1213.704539*exp(-0.2195*x)*(5186.624*exp(-0.2195*x)-1)/(5186.624*exp(-0.2195*x)+1)**3 =
x w	return 1213.704539*exp(-0.2195*x)*(5186.624*exp(-0.2195*x)-1)/(5186.624*exp(-0.2195*x)+1)**3 = hile: x=