

دانشکده مهندسی کامپیوتر

خلاصهای از

اطلاعات

میکروکنترلر ATmega16

سال ۱۳۹۷

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

دستورالعملها

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ADD	Rd, Rr	Add without Carry	$\mathbf{Rd} \leftarrow \mathbf{Rd} + \mathbf{Rr}$	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	$\mathbf{Rd} \leftarrow \mathbf{Rd} + \mathbf{Rr} + \mathbf{C}$	Z,C,N,V,S,H	1
ADIW ⁽¹⁾	Rd, K	Add Immediate to Word	$\mathbf{Rd} \leftarrow \mathbf{Rd} + 1 \mathbf{:} \mathbf{Rd} + \mathbf{K}$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract without Carry	$\mathbf{Rd} \leftarrow \mathbf{Rd}$ - \mathbf{Rr}	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	$\mathbf{Rd} \leftarrow \mathbf{Rd} - \mathbf{K}$	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	$\mathbf{Rd} \leftarrow \mathbf{Rd} - \mathbf{Rr} - \mathbf{C}$	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	$\mathbf{Rd} \leftarrow \mathbf{Rd} - \mathbf{K} - \mathbf{C}$	Z,C,N,V,S,H	1
SBIW ⁽¹⁾	Rd, K	Subtract Immediate from Word	$Rd + 1:Rd \leftarrow Rd + 1:Rd - K$	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND	$\mathbf{Rd} \leftarrow \mathbf{Rd} \bullet \mathbf{Rr}$	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	$\mathbf{Rd} \leftarrow \mathbf{Rd} \bullet \mathbf{K}$	Z,N,V,S	1
OR	Rd, Rr	Logical OR	$\mathbf{Rd} \leftarrow \mathbf{Rd} \ \mathbf{v} \ \mathbf{Rr}$	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	$\mathbf{Rd} \leftarrow \mathbf{Rd} \ \mathbf{v} \ \mathbf{K}$	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	$Rd \leftarrow Rd \oplus Rr$	Z,N,V,S	1

مجموعه دستورالعمل های عملیات حسابی و منطقی در میکروکنترلرهای ۸ بیتی AVR

СОМ	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	Rd ← \$00 - R d	Z,C,N,V,S,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V,S	1
CBR	Rd,K	Clear Bit(s) in Register	$\mathbf{Rd} \leftarrow \mathbf{Rd} \bullet (\$\mathbf{FFh} - \mathbf{K})$	Z,N,V,S	1
INC	Rd	Increment	$\mathbf{Rd} \leftarrow \mathbf{Rd} + 1$	Z,N,V,S	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \cdot Rd$	Z,N,V,S	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V,S	1
SER	Rd	Set Register	Rd ← \$FF	None	1
MUL ⁽¹⁾	Rd,Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr (UU)$	Z,C	2
MULS ⁽¹⁾	Rd,Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr (SS)$	Z,C	2
MULSU ⁽¹⁾	Rd,Rr	Multiply Signed with Unsigned	$\mathbf{R1:}\mathbf{R0} \leftarrow \mathbf{Rd} \times \mathbf{Rr} \ (\mathbf{SU})$	Z,C	2
FMUL ⁽¹⁾	Rd,Rr	Fractional Multiply Unsigned	$\mathbf{R1:R0} \leftarrow \mathbf{Rd} \times \mathbf{Rr} <<1 \ (\mathbf{UU})$	Z,C	2
FMULS ⁽¹⁾	Rd,Rr	Fractional Multiply Signed	$R1:R0 \leftarrow Rd \times Rr << 1 (SS)$	Z,C	2
FMULSU ⁽¹⁾	Rd,Rr	Fractional Multiply Signed with Unsigned	$\mathbf{R1:R0} \leftarrow \mathbf{Rd} \times \mathbf{Rr} << 1 \text{ (SU)}$	Z,C	2
DES	K	Data Encryption	if $(H = 0)$ then R15:R0 \leftarrow Encrypt(R15:R0, K) else if $(H = 1)$ then R15:R0 \leftarrow Decrypt(R15:R0, K)		

Mnemonics	Operands	Description	Operation	Flags	#Clocks	#Clocks- XMEGA
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2	
IJMP ⁽¹⁾		Indirect Jump to (Z)	PC(15:0) ←Z PC(21:16) ← 0	None	2	
EIJMP ⁽¹⁾		Extended Indirect Jump to (Z)	$\begin{array}{c} PC(15:0) \leftarrow Z \\ PC(21:16) \leftarrow EIND \end{array}$	None	2	
JMP ⁽¹⁾	k	Jump	PC ← k	None	3	
RCALL	k	Relative Call Subroutine	$PC \leftarrow PC + k + 1$	None	3/4 ^{(3) (5)}	2/3(3)
ICALL ⁽¹⁾		Indirect Call to (Z)	$PC(15:0) \leftarrow Z,$ $PC(21:16) \leftarrow 0$	None	3/4 ⁽³⁾	2/3 ⁽³⁾
EICALL ⁽¹⁾		Extended Indirect Call to (Z)	PC(15:0)← Z, PC(21:16) ← EIND	None	4(3)	3(3)
CALL ⁽¹⁾	k	call Subroutine	PC ← k	None	4 / 5 (3)	3/4 ⁽³⁾
RET		Subroutine Return	PC ← STACK	None	4 / 5 (3)	
RETI		Interrupt Return	PC ← STACK	I	4 / 5 (3)	
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
СР	Rd,Rr	Compare	Rd - Rr	Z,C,N,V,S,H	1	
CPC	Rd,Rr	Compare with Carry	Rd - Rr -C	Z,C,N,V,S,H	1	
CPI	Rd,K	Compare with Immediate	Rd - K	Z,C,N,V,S,H	1	
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
SBRS	Rr, b	Skip if Bit in Register Set	if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
SBIC	A, b	Skip if Bit in I/O Register Cleared	if $(I/O(A,b) = 0)$ PC \leftarrow PC + 2 or 3	None	1/2/3	2/3/4
SBIS	A, b	Skip if Bit in I/O Register Set	If $(I/O(A,b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	2/3/4
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	

BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCC	k	Branch if Carry Cleared	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRSH	k	Branch if Same or Higher	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Branch if Lower	if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \bigoplus V=0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than, Signed	if $(N \bigoplus V=1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(H = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if $(H = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(I = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks	#Clocks XMEGA
MOV	Rd, Rr	Copy Register	Rd ← Rr	None	1	
MOVW ⁽¹⁾	Rd, Rr	Copy Register Pair	Rd+1:Rd ← Rr+1:Rr	None	1	
LDI	Rd, K	Load Immediate	Rd ← K	None	1	
LDS ⁽¹⁾	Rd, k	Load Direct from data space	Rd ← (k)	None	1 ⁽⁵⁾ /2 ⁽³⁾	2(3)(4)
LD ⁽²⁾	Rd, X	Load Indirect	Rd ← (X)	None	1 ⁽⁵⁾ /2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, X+	Load Indirect and Post-Increment	$\begin{aligned} Rd &\leftarrow (x) \\ X &\leftarrow X + 1 \end{aligned}$	None	2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, -X	Load Indirect and Pre-Decrement	X ← X − 1, Rd ← (X)	None	2 ⁽³⁾ /3 ⁽⁵⁾	2(3)(4)
LD ⁽²⁾	Rd, Y	Load Indirect	Rd ← (Y)	None	1 ⁽⁵⁾ /2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y)$ $Y \leftarrow Y+1$	None	2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, -Y	Load Indirect and Pre-Decrement Y	$Y \leftarrow Y-1$ $Rd \leftarrow (Y)$	None	2 ⁽³⁾ /3 ⁽⁵⁾	2(3)(4)
LDD ⁽¹⁾	Rd, Y+q	Load Indirect with Displacement	Rd ← (Y + q)	None	2 ⁽³⁾	2(3)(4)

LD ⁽²⁾	Rd, Z	Load Indirect	Rd ← (Z)	None	1 ⁽⁵⁾ /2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, Z+	Load Indirect and Post-Increment	Rd ← (Z) Z← Z+1	None	2 ⁽³⁾	1(3)(4)
LD ⁽²⁾	Rd, -Z	Load Indirect and Pre-Decrement	Z← Z-1 Rd ← (Z)	None	2 ⁽³⁾ /3 ⁽⁵⁾	2(3)(4)
LDD ⁽¹⁾	Rd, Z+q	Load Indirect with Displacement	Rd ← (Z + q)	None	2 ⁽³⁾	2(3)(4)
STS ⁽¹⁾	k, Rr	Store Direct to Data Space	(k) ← Rd	None	1 ⁽⁵⁾ /2 ⁽³⁾	2 ⁽³⁾
ST ⁽²⁾	X, Rr	Store Indirect	(X) ← Rr	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾
ST ⁽²⁾	X+, Rr	Store Indirect and Post-Increment	(X) ← Rr X ← X+1	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾
ST ⁽²⁾	-X, Rr	Store Indirect and Pre-Decrement	X ← X-1 (X) ← Rr	None	2 ⁽³⁾	2 ⁽³⁾
ST ⁽²⁾	Y, Rr	Store Indirect	(Y) ← Rr	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾
ST ⁽²⁾	Y+, Rr	Store Indirect and Post-Increment	(Y) ← Rr Y ← Y+1	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾
ST ⁽²⁾	-Y, Rr	Store Indirect and Pre-Decrement	Y ← Y-1 (Y) ← Rr	None	2 ⁽³⁾	2 ⁽³⁾
STD ⁽¹⁾	Y+q, Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2 ⁽³⁾	2 ⁽³⁾
ST ⁽²⁾	Z, Rr	Store Indirec	(Z) ← Rr	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾

ST ⁽²⁾	Z+, Rr	Store Indirect and Post-Increment	(Z) ← Rr Z ← Z+1	None	1 ⁽⁵⁾ /2 ⁽³⁾	1 ⁽³⁾
ST ⁽²⁾	-Z, Rr	Store Indirect and Pre-Decrement	Z ← Z-1	None	2 ⁽³⁾	2 ⁽³⁾
STD ⁽¹⁾	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2 ⁽³⁾	2 ⁽³⁾
LP ⁽¹⁾ (2)		Load Program Memory	R0 ← (Z)	None	3	3
LPM ^{(1) (2)}	Rd, Z	Load Program Memory	Rd ← (Z)	None	3	3
LPM ^{(1) (2)}	Rd, Z+	Load Program Memory and Post-Increment	Rr ← (Z) Z ← Z+1	None	3	3
ELPM ⁽¹⁾		Extended Load Program Memory	R0 ← (RAMPZ:Z)	None	3	
ELPM ⁽¹⁾	Rd, Z	Extended Load Program Memory	Rd ← (RAMPZ:Z)	None	3	
ELPM ⁽¹⁾	Rd, Z+	Extended Load Program Memory and Post-Increment	Rd ← (RAMPZ:Z) Z ← Z+1	None	3	

ادامه مجموعه دستورالعمل های انتقال داده در میکروکنترلرهای AVR (ادامه)

SPM ⁽¹⁾		Store Program Memory	(RAMPZ:Z) ← R1:R0	None	-	-
SPM ⁽¹⁾	Z+	Store Program Memory and Post-Increment by 2	$\begin{array}{c} (RAMPZ:Z) \leftarrow R1:R0 \\ Z \leftarrow Z+2 \end{array}$	None	-	-
IN	Rd, A	In From I/O Location	Rd ← I/O(A)	None	1	
OUT	A, Rr	Out To I/O Location	I/O(A) ← Rr	None	1	
PUSH ⁽¹⁾	Rr	Push Register on Stack	STACK ← Rr	None	2	1 ⁽³⁾
POP ⁽¹⁾	Rd	Pop Register from Stack	Rd ← STACK	None	2	2 ⁽³⁾

Mnemonic s	Operands	Description	Operation	Flags	#Clocks
LSL	Rd	Logical Shift Left	Rd(n+1) ← Rd(n) Rd(0) ← 0 C ← Rd(7)	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	Rd(n) ← Rd(n+1) Rd(7) ← 0 C ← Rd(0)	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0) ← C Rd(n+1) ←Rd(n) C ← Rd(7)	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	Rd(7) ← C Rd(n) ←Rd(n+1) C ← Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	S	Swap Nibbles	Rd(30) ↔ Rd(74)	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	A, b	Flag Clear	SREG(s) ← 0	SREG(s)	1 ⁽⁵⁾ /2
SBI	A, b	Set Bit in I/O Register	I/O(A, b) ← 1	None	1 ⁽⁵⁾ /2
СВІ	Rr, b	Clear Bit in I/O Register	I/O(A, b) ← 0	None	1
BST	Rd, b	Bit Store from Register to T	T ← Rr(b)	T	1

AVR مجموعه دستورالعمل های بیتی و تست بیت در میکروکنترلرهای Λ بیتی

BLD	Bit load from T to Register	Rd(b) ← T	None	1
SEC	Set Carry	C ← 1	C	1
CLC	Clear Carry	C ← 0	С	1
SEN	Set Negative Flag	N ← 1	N	1
CLN	Clear Negative Flag	N ← 0	N	1
SEZ	Set Zero Flag	Z ← 1	Z	1
CLZ	Clear Zero Flag	Z ← 0	Z	1
SEI	Global Interrupt Disable	I ← 1	I	1
CLI	Global Interrupt Disable	I ← 0	I	1
SES	Set Signed Test Flag	S ← 1	S	1
CLS	Clear Signed Test Flag	S ← 0	S	1
SEV	Set Two's Complement Overflow	V ← 1	V	1
CLV	Clear Two's Complement Overflow	V ← 0	V	1
SET	Set T in SREG	T ← 1	Т	1
CLT	Clear T in SREG	T ← 0	T	1
SEH	Set Half Carry Flag in SREG	H ← 1	Н	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BREAK(1)		Break	(See specific descr. for BREAK)	None	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Sleep	(see specific descr. for WDR)	None	1

مجموعه دستورالعمل های کنترل میکروکنترلر در میکروکنترلرهای ۸ بیتی AVR توجه ۱: دستورالعمل BREAK توسط سیستم debug سوار بر تراشه استفاده شده و توسط برنامه های کاربردی قابل استفاده نیست.

دانشکده مهندسی کامپیوتر

سیستم ساعت و گزینه های آن

در میکروکنترلرهای خانواده AVR

سیستم ساعت و گزینههای آن در میکروکنترلرهای AVR

انتخاب منابع ساعت

توجه: برای همه فیوزها 1 به معنی برنامهریزی نشده و 0 به معنی برنامهریزی شده میباشد.

Device Clocking Option	CKEL30
External Crystal/Ceramic Resonator	1111 - 1010
External Low-frequency Crystal	1001
External RC Oscillator	1000 - 0101
Calibarated Inernal RC Oscillator	0100 - 0001
External Clock	0000

نوسانساز کریستالی

СКОРТ	CKSEL31	Frequency Range (MHz)	Recommended Range for Capacitors C1 and C2 for Use with Crystals (pF)
1	101(1)	0.4 - 0.9	
1	110	0.9 - 3.0	12 - 22
1	111	3.0 - 8.0	12 - 22
0	101,110,111	1.0 <=	12 - 22

توجه ۱: این گزینه تنها باید برای تشدیدسازهای سرامیکی استفاده شوند و نه برای کریستالها

نوسانساز کریستالی

زمانهای start-up بعد از حالات صرفهجویی در توان (مثل حالات power down و power save) در حالت انتخاب ساعت نوسانساز کریستالی

CKSEL0	SUT10	Strart-up Time from Power-down and Power- save	Additional Delay from Reset (Vcc = 5.0 V)	Recommended Usage
0	00	258 CK ⁽¹⁾	4.1 ms	Ceramic resonator, fast rising power
0	01	258 CK ⁽¹⁾	65 ms	Ceramic resonator, slowly rising power
0	10	1K CK ⁽²⁾	-	Ceramic resonator, BOD enabled
0	11	1K CK ⁽²⁾	4.1 ms	Ceramic resonator, fast rising power
1	00	1K CK ⁽²⁾	65 ms	Ceramic resonator, slowly rising power
1	01	16K CK	•	Crystal Oscillator, BOD enabled
1	10	16K CK	4.1 ms	Crystal Oscillator, fast rising power
1	11	16K CK	65 ms	Crystal Oscillator, slowly rising power

نوسانسازهای کریستالی فرکانس پایین

زمانهای راهاندازی مربوط به انتخاب ساعت نوسانساز کریستالی فرکانس پایین

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (Vcc = 5.0 V)	Recommended Usage			
00	1K CK ⁽¹⁾	4.1 ms	Fast rising power or BOD enabled			
01	1K CK ⁽¹⁾	65 ms	Slowly rising power			
10	32K CK	65 ms	Stable frequency at start-up			
11	Reserved					

نوسان ساز خارجی با مدار RC

CKSEL30	Frequency Range (MHz)
0101	$0.1 \le 0.9$
0110	0.9 - 3.0
0111	3.0 - 8.0
1000	8.0 - 12.0

حالتهای عملیاتی نوسانساز RC خارجی

نوسان ساز خارجی با مدار RC

زمانهای راهاندازی برای انتخاب ساعت نوسانساز RC خارجی

• اگر این نوسانساز انتخاب شود، زمان راهاندازی توسط فیوز SUT تعیین می شود.

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (Vcc = 5.0 V)	Recommended Usage
00	18 CK	_	BOD enabled
01	18 CK	4.1 ms	Fast rising power
10	18 CK	65 ms	Slowly rising power
11	6 CK ⁽¹⁾	4.1 ms	Fast rising power or BOD enabled

نوسانساز RC كاليبره شده داخلي

حالتهای عملیاتی نوسانساز RC کالیبره شده داخلی

CKSEL30	Frequency Range (MHz)
0001(1)	0.1
0010	2.0
0011	4.0
0100	8.0

توجه ۱: این گزینه پیشفرض میکروکنترلر در زمان ساخت میباشد.

نوسانساز RC كاليبره شده داخلي

زمانهای راهاندازی مربوط به انتخاب ساعت نوسانساز RC کالیبره شده داخلی

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (Vcc = 5.0 V)	Recommended Usage
00	6 CK	_	BOD enabled
01	6 CK	4.1 ms	Fast rising power
10 ⁽¹⁾	6 CK	65 ms	Slowly rising power
11		Reserved	-

ثبات كاليبراسيون نوسانساز - OSCCAL

Bit	7	6	5	4	3	2	1	0	
	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	OSCCAL
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial value			Service	Specific C	Calibration	n Values			

OSCCAL Value	Min Frequency in Percentage of Nominal Frequency (%)	Max Frequency in Percentage of Nominal Frequency (%)
\$00	50	100
\$7F	75	150
\$FF	100	200

نوسانساز RC کالیبره شده داخلی ثبات کالیبراسیون نوسانساز - OSCCAL

فركانس اسيلاتور RC با فركانس 8MHz كاليبره شده، بر حسب مقدار RC

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

ساعت خارجی

زمانهای راهاندازی برای انتخاب ساعت خارجی

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (Vcc = 5.0 V)	Recommended Usage
00	6 CK	-	BOD enabled
01	6 CK	4.1 ms	Fast rising power
10	6 CK	65 ms	Slowly rising power
11		Reserved	

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیر کبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

سیستم بازنشانی (ریست) و زمانسنج نگهبان

سيستم بازنشاني

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Power-on Reset Threshold Voltage (rising)			1.4	2.3	V
V _{POT}	Power-on Reset Threshold Voltage (falling) ⁽¹⁾			1.3	2.3	V
V _{RST}	RESET Pin Threshold Voltage		0.1 V _{CC}		0.9V _{CC}	V
t _{RST}	Minimum pulse width on RESET Pin				1.5	μs
W	Brown-out Reset	BODLEVEL = 1	2.5	2.7	3.2	V
V _{BOT}	Threshold Voltage ⁽²⁾	BODLEVEL = 0	3.6	4.0	4.5	V
	Minimum low voltage	BODLEVEL = 1		2		μs
t _{BOD}	period for Brown-out Detection	BODLEVEL = 0		2		μs
V _{HYST}	Brown-out Detector hysteresis			50		mV

سيستم بازنشاني

Bit	7	6	5	4	3	2	1	0	
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	See Bit Description					

مشخصات منبع ولتاز مرجع دروني

Symbol	Parameter	Min	Тур	Max	Units
VBG	Bandgap reference voltage	1.15	1.23	1.4	V
tBG	Bandgap reference Start-up time		40	70	μs
IBG	Bandgap reference current consumption		10		μΑ

زمانسنج نگهبان

نحوه انتخاب پیش تقسیم ساعت زمان سنج نگهبان

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at VCC = 3.0V	Typical Time-out at VCC = 5.0V
0	0	0	16K (16,384)	17.1 ms	16.3 ms
0	0	1	32K (32,768)	34.3 ms	32.5 ms
0	1	0	64K (65,536)	68.5 ms	65 ms
0	1	1	128K (131,072)	0.14 s	0.13 s
1	0	0	256K (262,144)	0.27 s	0.26 s
1	0	1	512K (524,288)	0.55 s	0.52 s
1	1	0	1,024K (1,048,576)	1.1 s	1.0 s
1	1	1	2,048K (2,097,152)	2.2 s	2.1 s

دانشکده مهندسی کامپیوتر <u>دانشگاه صنعتی امی</u>رکبیر

حافظهها

در میکروکنترلرهای AVR

حافظه برنامه (فلش)

\$0000 Application Flash Section **Boot Flash Section** \$1FFF

حافظه برنامه (فلش)

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application section	Boot Reset Address (start Boot Loader Section)
1	1	128 words	2	\$0000 - \$1F7F	\$1F80 - \$1FFF	\$1F7F	\$1F80
1	0	256 words	4	\$0000 - \$1EFF	\$1F00 - \$1FFF	\$1EFF	\$1F00
0	1	512 words	8	\$0000 - \$1DFF	\$1E00 - \$1FFF	\$1DFF	\$1E00
0	0	1024 words	16	\$0000 - \$1BFF	\$1C00 - \$1FFF	\$1BFF	\$1C00

فضای حافظه داده SRAM فایل رجیسترها و فضای I/O

Register File	Data Address Space
R0	\$0000
R1	\$0001
R2	\$0002
R29	\$001D
R30	\$001E
R31	\$001F
I/O Registers	
\$00	\$0020
\$01	\$0021
\$02	\$0022
\$3D	\$005D
\$3E	\$005E
\$3F	\$005F
	Internal SRAM
	\$0060
	\$0061
	\$045E
	\$045F

رکیزآپردازنده ۱

محمد مهدی همایون یور

ثبات های EEPROM

۱) ثبات آدرس EEPROM شامل دو بخش EEARL و EEARL

Bit	15	14	13	12	11	10	9	8	_
	-	-	_	_	-	_	_	EEAR8	EEARH
	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	EEARL
	7	6	5	4	3	2	1	0	1
Read/Write	R	R	R	R	R	R	R	R/W	
	R/W								
Initial Value	0	0	0	0	0	0	0	Χ	
	Χ	X	Χ	Χ	X	X	X	X	

ثبات های EEPROM

۲) ثبات داده EEDR :EEPROM)

Bit	7	6	5	4	3	2	1	0	_
	MSB							LSB	EEDR
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

۳) ثبات کنترل EECR :EEPROM)

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	_	EERIE	EEMWE	EEWE	EERE	EECR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	X	0	

دانشکده مهندسی کامپیوتر دانشگاه صنعته میرکبیر

درگاههای ورودی اخروجی

در میکروکنترلر های AVR

تنظیمات پایه درگاهها و ثبات SFIOR

DD	DODT	PUD (in SELOR)	1/0	Dr.11	
DDxn	PORTxn	(in SFIOR)	I/O	Pull-up	Comment
0	0	X	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	X	Output	No	Output Low (Sink)
1	1	X	Output	No	Output High (Source)

Bit	7	6	5	4	3	2	1	0	_
	ADTS2	ADTS1	ADTS0	_	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

بیت ۲-بیت PUD

توصیف ثباتها برای درگاههای ورودی اخروجی

Bit	7	6	5	4	3	2	1	0				
	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•			
Initial Value	0	0	0	0	0	0	0	0				
ثبات داده درگاه PORTA :A												
Bit	7	6	5	4	3	2	1	0				
	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Initial Value	0	0	0	0	0	0	0	0				
		I	ات DDRA	درگاه A: ثب	جهت داده د	ثبات						
Bit	7	6	5	4	3	2	1	0	_			
	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA			
Read/Write	R	R	R	R	R	R	R	R				
Initial Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				

ثبات آدرس پایههای ورودی درگاه PINA :A

دانشکده مهندسی کامپیوتر

وقفهها

در میکروکنترلرهای خانواده AVR

وقفه ها

	Vector	Program		Interment Definistion							
=	No.	Address ⁽²⁾	Source	Interrupt Definiation							
	1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog							
				Reset, and JTAG AVR Reset							
	2	\$002	INT0	External Interrupt Request 0							
	3	\$004	INT1	External Interrupt Request 1							
	4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match							
	5	\$008	TIMER2 OVF	Timer/Counter2 Overflow							
	6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event							
	7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A							
	8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B							
	9	\$010	TIMER1 OVF	Timer/Counter1 Overflow							
	10	\$012	TIMER0 OVF	Timer/Counter0 Overflow							
	11	\$014	SPI, STC	Serial Transfer Complete							
	12	\$016	USART, RXC	USART, Rx Complete							
	13	\$018	USART, UDRE	USART Data Register Empty							
	14	\$01A	USART, TXC	USART, Tx Complete							
	15	\$01C	ADC	ADC Conversion Complete							
	16	\$01E	EE_RDY	EEPROM Ready							
	17	\$020	ANA_COMP	Analog Comparator							
	18	\$022	TWI	Two-wire Serial Interface							
	19	\$024	INT2	External Interrupt Request 2							
	20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match							
	21	\$028	SPM_RDY	Store Program Memory Ready							

وقفهها

BOOTRST	IVSEL	Reset address	Interrupt Vectors Start Address
1	0	\$0000	\$0002
1	1	\$0000	Boot Reset Address + \$0002
0	0	Boot Reset Address	\$0002
0	1	Boot Reset Address	Boot Reset Address + \$0002

فیوز BOOTRST برابر "1" به معنی برنامهریزی نشده و "0" به معنی برنامهریزی شده است.

وقفه ها

پیکر بندی تخصیص فضای حافظه به بخش boot و بخش کاربرد

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application section	Boot Reset Address (start Boot Loader Section)
1	1	128 words	2	\$0000 - \$1F7F	\$1F80 - \$1FFF	\$1F7F	\$1F80
1	0	256 words	4	\$0000 - \$1EFF	\$1F00 - \$1FFF	\$1EFF	\$1F00
0	1	512 words	8	\$0000 - \$1DFF	\$1E00 - \$1FFF	\$1DFF	\$1E00
0	0	1024 words	16	\$0000 - \$1BFF	\$1C00 - \$1FFF	\$1BFF	\$1C00

ثبات كنترل وقفه سراسرى (GICR) و ثبات كانترل

						اسرى:	ل وقفه سر	نبات كنترا	; •
Bit	7	6	5	4	3	2	1	0	
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• GICR: General Interrupt Control Register

بیت های کنترل نحوه حس وقفه

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Any logical change on INT0 generates an interrupt request.
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

ثبات کنترلی و وضعیت میکروکنترلر: MCUCSR

Bit	7	6	5	4	3	2	1	0	_	
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR	
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•	
Initial Value	0	0	0	See Bit Description						

MCUCSR: MCU Control and Status Register

اگر بردارهای وقفه در بخش Boot Loader قرار داشته باشند و بیت BLB02 برنامهریزی شده باشد، هنگامی که برنامه در قسمت کاربرد (application section) در حال اجرا باشد وقفهها غیرفعال میشوند.

اگر بردارهای وقفه در بخش کاربرد قرار داشته و بیت BLB12 برنامهریزی شده باشد، هنگامیکه برناهه در قسمت Boot Loader در حال اجرا باشد وقفهها غیرفعال میشوند.

ثبات عمومی پرچمهای وقفه GIFR و ثبات عمومی

Bit	7	6	5	4	3	2	1	0	
	INTF1	INTF0	INTF2	1	_	ı	-	-	GIFR
Read/Write	R/W	R/W	R/W	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	_
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

GIFR: General Interrupt Flag Register

GICR: General Interrupt Control Register

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

زمانسنج/شمارنده ٠

شمای زمانبندی مد CTC

مقدار شمارنده TCNT0 تا زمانی که یک برابری مقایسه بین TCNT0 و OCR0 روی دهد، افزایش می یابد و بعد از آن شمارنده TCNT0 صفر می شود.

نمودار زمانبندی حالت PWM سریع

نمودار زمانبندی PWM با فاز صحیح

محاسبه فرکانس موج تولید شده در مودهای مختلف کارکردی زمانسنج شمارنده ۰

$$f_{OCnCTC} = \frac{f_{Clk_{I/O}}}{2N(1 + OCR_n)}$$

$$f_{OCnFAST-PWM} = \frac{f_{clk_{I/O}}}{N.256}$$

$$f_{OCnPCPWM} = \frac{f_{Clk_{I/O}}}{N.510}$$

ثبات کنترل زمانسنج/شمارنده (TCCR0)

Bit	t	7	6	5	4	3	2	1	0	_
		FO	CO WGN	M00 COM01	COM00	WGM01	CS02	CS01	CS00	TCCR0
Re	ead/Write	W	R/\	W R/W	R/W	R/W	R/W	R/W	R/W	ı
Ini	tial Value	0	0	0	0	0	0	0	0	
	Mode	WGM01 (CTC0)	WGM00 (PWM0)	Timer/Counter	· Mode of Ope	ration	TOP	Update of OCR0		Flag Set- on
	0	0	0	Normal			0xFF	Immediate	MAX	
	1	0	1	PWM, Phase 0	Correct		0xFF	ТОР	BOTT	OM
	2	1	0	CTC			OCR0	Immediate	MAX	
	3	1	1	Fast PWM			0xFF	BOTTOM	MAX	

ثبات کنترل زمانسنج/شمارنده (TCCR0)

حالت compare output، حالت غير

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Toggle OC0 on compare match
1	0	Clear OC0 on compare match
1	1	Set OC0 on compare match

حالت Compare Output، حالت PWM سريع

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Reserved
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)

ثبات کنترل زمانسنج/شمارنده (TCCR0)

حالت Compare Output، حالت PWM با فاز صحیح

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Reserved
1	0	Clear OC0 on compare match when up-counting. Set OC0 on compare match when down-counting.
1	1	Set OC0 on compare when up-conting. Clear OC0 on compare match when down-counting.

ثباتهای زمانسنج اشمارنده 0

	7	6	5	4	3	2	1	0	
				TCNT	0[7:0]				TCNT0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	
	7	6	5	4	3	2	1	0	
				OCF	R0[7:0]				OCR0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	
	7	6	5	4	3	2	1	0	_
C	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
	0	0	0	0	0	0	0	0	

انتخاب خروجی پیش تقسیم کننده به عنوان ساعت زمان سنج اشمارنده ۰ و ۱

• ثبات کنترل زمانسنج /شمارنده (TCCR0):

	7	6	5	4	3	2	1	0	_
	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	TCCR0
•	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	

• بیتهای ۱۰ الی ۲ – CS02:0 : انتخاب ساعت

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clkI/O (No prescaling)
0	1	0	clkI/O/8 (From prescaler)
0	1	1	clkI/O/64 (From prescaler)
1	0	0	clkI/O/256 (From prescaler)
1	0	1	clkI/O/1024 (From prescaler)
1	1	0	External clock source on To pin. Clock on falling edge.

بازنشانی پیش تقسیم کننده

	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	TIFR
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	
								OCF0	بيت

7	6	5	4	3	2	1	0	_
ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

بيت PSR10

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

زمانسنج/شمارنده ۱

نمودار بلوكي واحد شمارنده

97

شمای زمانبندی حالت CTC

شمای زمانبندی حالت PWM با فاز و فرکانس صحیح

محاسبه فرکانس موج تولید شده در مودهای مختلف کارکردی زمانسنج-شمارنده ۱

$$f_{OCnACTC} = \frac{f_{clk_{I/O}}}{2N(1 + OCR_nA)}$$

$$f_{OCnFASTPWM} = \frac{f_{clk_{I/O}}}{(1 + TOP)N}$$

$$f_{OCnPCPWM} = \frac{f_{clk_{I/O}}}{2N.TOP}$$

$$f_{OCnPFCPWM} = \frac{f_{clk_I/O}}{2N \times TOP}$$

ثبات كنترل زمانسنج/شمارنده (TCCR1A)

Bit	7	6	5	4	3	2	1	0	
	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	=
Initial value	0	0	0	0	0	0	0	0	

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Updated of OCR1x	TOV1 Flag set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	BOTTOM
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	BOTTOM
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	BOTTOM
4	0	1	0	0	CTC	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	BOTTOM	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	BOTTOM	BOTTOM
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	BOTTOM	BOTTOM
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	BOTTOM
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	BOTTOM
12	1	1	0	0	CTC	ICR1	Immediate	MAX
13	1	1	0	1	Reserved	-	-	-
14	1	1	1	0	Fast PWM	ICR1	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCR1A	BOTTOM	TOP

ثبات کنترل زمانسنج/شمارنده (TCCR1A)

حالت غير compare output، حالت غير

COM1A1/COM1B1	COM1A0/COM1B0	Description
0	0	Normal port operation, OC1A/OC1B disconnected.
0	1	Toggle OC1A/OC1B on compare match
1	0	Clear OC1A/OC1B on compare match (Set output to low level)
1	1	Set OC1A/OC1B on compare match (Set output to high level)

حالت Compare Output، حالت PWM سريع

COM1A1/COM1B1	COM1A0/COM1B0	Description
0	0	Normal port operation, OC1A/OC1B disconnected.
0		WGM13:0=15: Toggle OC1A on Compare Match, OC1B disconnected (normal port operation). For all other WGM13:0 settings, normal port operation, OCnA/OCnB disconnected.
1		Clear OC1A/OC1B on compare match, set OC1A/OC1B at BOTTOM, (non-inverting mode)
1	1	Set OC1A/OC1B on compare match, clear OC1A/OC1B at BOTTOM, (Inverting mode)

ثبات کنترل زمانسنج/شمارنده (TCCR1A)

حالت Compare Output، حالت PWM با فاز صحیح و فرکانس صحیح

COM1A1/COM1B1	COM1A0/COM1B0	Description
0	0	Normal port operation, OC1A/OC1B disconnected.
0	1	WGM13:0=9 or 14: Toggle OCnA on Compare Match, OCnB disconnected (normal port operation). For all other WGM13:0 settings, normal port operation, OC1A/OC1B disconnected.
1	0	Clear OC1A/OC1B on compare match when up-counting. Set OC1A/OC1B on compare match when downcounting.
1	1	Set OC1A/OC1B on compare match when up-counting. Clear OC1A/OC1B on compare match when downcounting.

ثبات کنترل زمانسنج /شمارنده (TCCR1B)

Bit	7	6	5	4	3	2	1	0	
	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	_
Initial value	0	0	0	0	0	0	0	0	

بيتهاي WGM13:2 مشابه جدول

CS12	CS11	CS10	Description
0	0	0	No click source (Timer/counter stopped)
0	0	1	ClkI/O/1 (No prescalling)
0	1	0	ClkI/O/8 (From prescaler)
0	1	1	ClkI/O/64 (From prescaler)
1	0	0	ClkI/O/256 (From prescaler)
1	0	1	ClkI/O/1024 (From prescaler)
1	1	0	External clock source on T1 pin. Clock on falling edge.
1	1	1	External clock source on T1 pin. Clock on rising edge.

ثبات زمانسنج/شمارنده ۱

ثبات زمانسنج/شمارنده ۱

Bit	7	6	5	4	3	2	1	0	
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	
Bit	7 OCF2	6 TOV2	5 ICF1	4 OCF1A	3 OCF1B	2 TOV1	1 OCF0	0 TOV0] TIFR
Dood/Write				<u> </u>					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

زمانسنج/شمارنده ۲

زمانسنج/شمارنده۲

نمودار زمانبندی مد CTC

مقدار شمارنده TCNT2 تا زمانی که یک برابری مقایسه بین TCNT2 و OCR2 روی دهد، افزایش می یابد و بعد از آن شمارنده TCNT2 صفر می شود.

نمودار زمانبندی حالت PWM سریع

نمودار زمانبندی PWM با فاز صحیح

محاسبه فرکانس موج تولید شده در مودهای مختلف کارکردی زمانسنج شمارنده ۲

$$f_{OCnCTC} = \frac{f_{clk_{I/O}}}{2N(1 + OCR_n)}$$

$$f_{OCnFASTPWM} = \frac{f_{clk_{I/O}}}{N.256}$$

$$f_{OCnPCPWM} = \frac{f_{clk_{I/O}}}{N.510}$$

ثبات كنترل زمانسنج/شمارنده (TCCR2)

Bit	7	6	5	4	3	2	1	0	
	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	TCCR2
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	

Mode	WGM21 (CTC2)	WGM20 (PWM2)	Timer/Counter Mode of Operation	ТОР	Update of OCR2	TOV2 Flag Set on
0	0	0	Normal	0xFF	Immediate	MAX
1	0	1	PWM, Phase Correct	0xFF	TOP	BOTTOM
2	1	0	CTC	OCR2	Immediate	MAX
3	1	1	Fast PWM	0xFF	BOTTOM	MAX

ثبات کنترل زمانسنج/شمارنده (TCCR2)

حالت غير compare output، حالت غير

COM21	COM20	Description
0	0	Normal port operation, OC2 disconnected.
0	1	Toggle OC2 on compare match
1	0	Clear OC2 on compare match
1	1	Set OC2 on compare match

حالت Compare Output، حالت PWM سريع

COM21	COM20	Description
0	0	Normal port operation, OC2 disconnected.
0	1	Reserved
1	0	Clear OC2 on compare match, set OC2 at BOTTOM, (non-inverting mode)
1	1	Set OC2 on compare match, clear OC2 at BOTTOM, (inverting mode)

ثبات کنترل زمانسنج/شمارنده (TCCR2)

حالت Compare Output، حالت PWM با فاز صحیح

COM21	COM20	Description
0	0	Normal port operation, OC2 disconnected.
0	1	Reserved
1	0	Clear OC2 on compare match when up-counting. Set OC2 on compare match when downcounting.
1	1	Set OC2 on compare match when up-counting. Clear OC2 on compare match when downcounting.

ثباتهای زمانسنج/شمارنده ۲

Bit	7	6		5	4	ı	3		2	1	0	_
					TCN	T2(7:0)						TCNT2
Read/Write	R/W	R/W		R/W	R/V	W	R/W	R	/W	R/W	R/W	_
Initial value	0	0		0	0		0		0	0	0	
Bit		7		6	5	4	3	2	1	0		
					OCI	R2(7:0)]	OCR2
Read/Write		R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	1	
Initial value		0		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2		1		0		
	-	-	-	-	AS2	TCN2	UB	OCF	R2UB	TCR2	UB	ASSR
Read/Write	R	R	R	R	R/W	R		R		R		
Initial value	0	0	0	0	0	0		0		0		

ثباتهای زمانسنج/شمارنده ۲

ثباتهای زمانسنج/شمارنده ۲

بیت PSR2

7	6	5	4	3	2	1	0	_
ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

انتخاب خروجی پیش تقسیم کننده به عنوان ساعت زمان سنج اشمارنده ۲

• ثبات کنترل زمانسنج /شمارنده (TCCR2):

Bit	7	6	5	4	3	2	1	0	
	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	TCCR2
Read/Write	\mathbf{W}	\mathbf{R}/\mathbf{W}	R/W	\mathbf{R}/\mathbf{W}	\mathbf{R}/\mathbf{W}	R/W	\mathbf{R}/\mathbf{W}	\mathbf{R}/\mathbf{W}	
Initial value	0	0	0	0	0	0	0	0	

• بیتهای ۱۰ الی ۲ – CS22:0 : انتخاب ساعت

CS22	CS21	CS20	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clkT2S/(No prescaling)
0	1	0	clkT2S/8 (From prescaler)
0	1	1	clkT2S/32 (From prescaler)
1	0	0	clkT2S/64 (From prescaler)
1	0	1	clkT2S/128 (From prescaler)
1	1	0	clkT2S/256 (From prescaler)
1	1	1	clkT2S/1024 (From prescaler)

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

مقایسه کننده آنالوگ

مقايسه كننده آنالوك

ثبات I/O خاص منظوره SFIOR و ثبات كنترلى مقايسه كننده آنالوگ

Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	ADHSM	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	وگ:	كننده آنال	، مقایسه	ئننده براى	تسهيمك	فعالساز	:ACM	م بنام E	• بیت سو
Rit	7	6	5	4	3	2	1	0	

Ыι **ACIC ACBG** ACIE ACIS₁ ACD ACO ACI ACIS₀ **ACSR** R/W R/W R/W R/W R/W R/W R/W Read/Write R Initial Value N/A 0 0 0 0 0 0

بیت هفتم یا ACD: غیرفعال کننده مقایسه کننده آنالوگ بیت ششم یا بیت ACBG: انتخاب کننده bandgap مقایسه کننده آنالوگ بیت پنجم یا بیت ACO: خروجی مقایسه کننده آنالوگ بیت چهارم (ACI): پرچم وقفه مقایسه کننده آنالوگ بیت سوم (ACIE): فعال ساز وقفه مقایسه کننده آنالوگ بیت سوم (ACIE): فعال ساز وقفه مقایسه کننده آنالوگ

بیت دوم یا ACIC: فعال ساز input capture مقایسه کننده آنالوگ بیت های صفر و یک یا ACIS0 و ACIS1: انتخاب حالت وقفه مقایسه کننده آنالوگ

تنظيم حالت وقفه

ACIS1	ACIS0	حالت وقفه
•	•	وقفه مقایسه کننده روی Output Toggle
•	1	رزرو شده
1	•	وقفه مقایسه کننده در لبه پایین رونده خروجی
1	1	وقفه مقایسه کننده در لبه بالا رونده خروجی

انتخاب ورودي منفى مقايسهكننده آنالوگ

ACME	ADEN	MUX20	ورودي منفي مقايسهكننده آنالوگ
0	×	×××	AIN1
1	1	×××	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

مبدل آنالوگ به دیجیتال

ثبات انتخاب تسهیم کننده ADMUX :ADC

Bit	7	6	5	4	3	2	1	0	
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	,
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

REFS1	REFS0	انتخاب ولتاژ مرجع
0	0	AREF، ولتاژ مرجع داخلی خاموش
0	1	AVCC با خازن خارجی بر روی پایه
1	0	رزرو شده
1	1	ولتاژ مرجع ۲.۵۶ ولت داخلی با خازن خارجی بر روی پایه
		AREF

ADMUX

MUX 40	ورودي غيرتفاضلي	ورودي تفاضلي مثبت	ورودي تفاضلي منفي	بهره
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7		T	1
01000		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010		ADC0	ADC0	200x
01011		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101]	ADC3	ADC2	10x
01110	1	ADC2	ADC2	200x
01111	N/A	ADC3	ADC2	200x
10000	-	ADC0	ADC1	1x
10001	1	ADC1	ADC1	1x
10010	1	ADC2	ADC1	1x
10011	1	ADC3	ADC1	1x
10100	-	ADC4	ADC1	1x
10101		ADC5	ADC1	1x
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	1x
11000	1	ADC0	ADC2	1x
11001		ADC1	ADC2	1x
11010		ADC2	ADC2	1x
11011		ADC3	ADC2	1x
11100		ADC4	ADC2	1x
11101		ADC5	ADC2	1x
11110	1.22 V (V)	NI/A	•	•

انتخاب كانال

ثبات کنترل و وضعیت ADCSRA :ADC

Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

بیت ۷ یا بیت ADEN: فعالسازی ADC

بیت ۶ یا بیت ADSC: بیت شروع تبدیل

بیت ۵ یا بیت ADATE: فعالساز تحریک خودکار ADC

بیت ۴ یا بیت ADIF: پرچم وقفه

بيت ٣ يا بيت ADIE: بيت فعال ساز وقفه

بیتهای ۲:۰ یا بیتهای ADPS2:0: بیتهای انتخاب پیش مقیاس گذار ADC

مبدل آنالوگ به دیجیتال

فاکتور تقسیم بین فرکانس خروجی انتخابگر پیش تقسیم کننده و ساعت ورودی ADC

ADPS2	ADPS1	ADPS0	فاكتور تقسيم
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

ثبات داده ADCL شامل ADCH و ADCL

Bit 15 14 13 10 9 8 12 11 ADC9 ADC8 **ADCH** ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 **ADCL**

4

3

2

1

0

Bit 15 14 13 12 11 10 ADC9 ADC8 ADC6 ADC5 ADC4 ADC7

5

6

7

9 8 ADC3 ADC2 ADC1 ADC0 6 5 3 2 7 4 1 0

ADCH

ADCL

انتخاب منبع تحریک خودکار ADC

Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• بیتهای ۵ الی ۷ یا بیتهای ADTS2:0: منبع تحریک خودکار ADC

ADTS2	ADTS1	ADTS0	Trigger Source		
0	0	0 Free Running mode			
0	0	1	Analog Comparator		
0	1	0	External Interrupt Request 0		
0	1	1	Timer/Counter0 Compare Match		
1	0	0	Timer/Counter0 Overflow		
1	0	1	Timer/Counter1 Compare Match B		
1	1	0	Timer/Counter1 Overflow		
1	1	1	Timer/Counter1 Capture Event		

زمان تبدیل ADC

Condition	Sample & Hold (Cycles from Start of Conversion)	Conversion Time (Cycles)
First conversion	13.5	25
Normal conversions, single ended	1.5	13
Auto Triggered conversions	2	13.5
Normal conversions, differential	1.5/2.5	13/14

اتصالات تغذیه ADC

نتیجه تبدیل ADC

$$ADC_{SingleEnded} = \frac{V_{IN}.1024}{V_{REF}}$$

$$ADC_{Differntial} = \frac{(V_{POS} - V_{NEG}).GAIN.512}{V_{REF}}$$

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

حالات خواب

مشخصات حالات خواب بطور خلاصه

	Active Clock domains				Oscillators Wake-up Sources								
Sleep Mode	clkCPU	clkFLASH	clkIO	clkADC	clkASY	Main clock Source Enabled	Timer Osc. Enabled	INT2 INT1 INT0	TWI Address Match	Timer 2	SPM/ EEPROM Ready	ADC	Other I/O
Idle			X	X	X	X	$X^{(2)}$	$X^{(3)}$	X	X	X	X	X
ADC Noise Reduction				X	X	X	$X^{(2)}$	X ⁽³⁾	X	X	X	X	
Power Down								X ⁽³⁾	X				
Power Save					X ⁽²⁾		$X^{(2)}$	X ⁽³⁾	X	X ⁽²⁾			
Standby ⁽¹⁾						X		X ⁽³⁾	X				
Extended Standby ⁽¹⁾					X ⁽²⁾	X	X ⁽²⁾	X ⁽³⁾	X	X ⁽²⁾			

حالات خواب

• شش وضعیت مختلف خواب به منظور صرفهجویی در مصرف توان در میکروکنترلر ATmega16 عبارتند از:

- •وضعیت بیکار ¹
- •حالت كاهش نويز مبدل ADC
 - •وضعیت خاموش 3
 - •وضعیت صرفهجویی توان 4
 - •وضعیت آمادهباش
- •وضعیت آمادهباش توسعهیافته

- 1- idle
- 2- ADC Noise Reduction
- 3- power down
- 4- power save
- 5- standbay
- 6- extended standby

تنظیم نوع حالت صرفه جویی در مصرف توان

Bit	7	6	5	4	3	2	1	0	_
	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Sleep Mode SM₂ SM₁ SM₀ ldle 0 0 0 **ADC Noise Reduction** 0 0 1 Power-down 0 0 0 Power-save Reserved 0 0 Reserved 0 Standby⁽¹⁾ 0 Extended Standby⁽¹⁾

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

ارتباط سريال USART

ارتباط سريال USART

روابط مربوط به محاسبهی تنظیمات ثبات نرخ باد

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value
Asynchronous Normal Mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$

Bit	7	6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	•
Initial Value	0	0	1	0	0	0	0	0	

بیت ۷-RXC تکمیل دریافت RXC، تکمیل دریافت USART بیت ۶-TXC، تکمیل ارسال

بیت ۵-UDRE، خالی بودن ثبات داده

بیت FE-۴، بیت خطای فریم

بیت ۳-DOR، خطای سرروی

بیت PE-۲، خطای توازن

USART بیت USART، دو برابر کردن سرعت ارسال USART

بیت --MPCM، حالت ارتباط چند پردازشگری

Bit	7	6	5	4	3	2	1	0	_
	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

RX بیت $^{\prime}$ -RXCIE فعال سازی وقفه تکمیل دریافت $^{\prime}$ RXCIE بیت $^{\prime}$ - $^{\prime}$ تعال ساز وقفه تکمیل ارسال $^{\prime}$

بیت ۵-UDRIE، بیت فعال ساز وقفه خالی بودن ثبات داده

بیت ۴-RXEN، فعال ساز گیرنده

بیت ۳–TXEN، فعالساز فرستنده

بیت UCSZ2-۲، طول کاراکتر

بیت ۱-RXB8، بیت داده دریافتی شماره ۸

بیت ۰-TXB8، بیت داده ارسالی شماره ۸

<i>7</i>									
Bit	7	6	5	4	3	2	1	0	
	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC

	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	U
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	1	0	0	0	0	1	1	0	

بيت 6-UMSEL، انتخاب حالت UMSEL:

UMSEL	Mode
0	Asynchronous Operation
1	Synchronous Operation

UPM1:0-Δ:۴ بیت

UPM1	UPM0	حالت توازن
0	0	Disabled
0	1	Reserved
1	0	Enabled, Even Parity
1	1	Enabled, Odd Parity

USBS	تعداد بیتهای توقف
0	1-bit
1	2-bit

بیت ۱:۲-UCSZ1:0-۲:۱ طول کاراکتر :

UCSZ2	UCSZ1	UCSZ0	اندازه کار اکتر
0	0	0	5-bits
0	0	1	6-bits
0	1	0	7-bits
0	1	1	8-bits
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bits

بیت ۰-UCPOL؛ قطبیت ساعت:

UCPOL	Transmitted Data Changed (Output of TxD Pin)	Received Data Sampled (Input on RxD Pin)				
0	Rising XCK Edge	Falling XCK Edge				
1	Falling XCK Edge	Rising XCK Edge				

ثبات نرخ باد USART شامل UBRRL و UBRRH

<u>دانشگاه صنعت ام ک</u>بیر

	15	14	13	12	11	10	9	8	_				
	URSEL	-	1	-		UBRR	[11:8]		UBRRH				
	UBRR[7:0]												
•	7	6	5	4	3	2	1	0					

مثالهایی از تنظیمات نرخ باد

انشگاه صنعت امدکبیر

		fosc = 1.0000 MHz				fosc = 1.8	432 MHz		f	cosc = 2.00	000 MHz	
Baud	U2X = 0		U2X = 1		U2X = 0		U2X = 1		U2X	X = 0	U2X	= 1
Rate (bps)	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error
2400	25	0.2%	51	0.2%	47	0.0%	95	0.0%	51	0.2%	103	0.2%
4800	12	0.2%	25	0.2%	23	0.0%	47	0.0%	25	0.2%	51	0.2%
9600	6	7.0%-	12	0.2%	11	0.0%	23	0.0%	12	0.2%	25	0.2%
14.4k	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	8	-3.5%	16	2.1%
19.2k	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	6	-7.0%	12	0.2%
28.8k	1	8.5%	3	8.5%	3	0.0%	7	0.0%	3	8.5%	8	-3.5%
38.4k	1	-18.6%	2	8.5%	2	0.0%	5	0.0%	2	8.5%	6	-7.0%
57.6k	0	8.5%	1	8.5%	1	0.0%	3	0.0%	1	8.5%	3	8.5%
76.8k	_	_	1	-18.6%	1	-25.0%	2	0.0%	1	-18.6%	2	8.5%
115.2k	_	_	0	8.5%	0	0.0%	1	0.0%	0	8.5%	1	8.5%
230.4k	_	_	_	_	_	_	0	0.0%	_	_	_	_
250k	_	_	_	_	_	_	_	_	_	_	0	0.0%
Max (1)	62.5	kbps	125	kbps	115.2	2 kbps	230.4	kbps	125	kbps	250 k	bps

مثالهایی از تنظیمات نرخ باد

ا: شگاه مند تا کست

	-				-			-				
David .		$f_{\rm osc} = 3.6$	864 MHz			$f_{\rm osc} = 4.0$	000 MHz			$f_{\rm osc} = 7.3$	728 MHz	
Baud Rate	U2X	(= 0	U2X = 1		U2X = 0		U2X = 1		U2X = 0		U2X	= 1
(bps)	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error
2400	95	0.0%	191	0.0%	103	0.2%	207	0.2%	191	0.0%	383	0.0%
4800	47	0.0%	95	0.0%	51	0.2%	103	0.2%	95	0.0%	191	0.0%
9600	23	0.0%	47	0.0%	25	0.2%	51	0.2%	47	0.0%	95	0.0%
14.4k	15	0.0%	31	0.0%	16	2.1%	34	-0.8%	31	0.0%	63	0.0%
19.2k	11	0.0%	23	0.0%	12	0.2%	25	0.2%	23	0.0%	47	0.0%
28.8k	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	15	0.0%	31	0.0%
38.4k	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	11	0.0%	23	0.0%
57.6k	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	7	0.0%	15	0.0%
76.8k	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	5	0.0%	11	0.0%
115.2k	1	0.0%	3	0.0%	1	8.5%	3	8.5%	3	0.0%	7	0.0%
230.4k	0	0.0%	1	0.0%	0	8.5%	1	8.5%	1	0.0%	3	0.0%
250k	0	-7.8%	1	-7.8%	0	0.0%	1	0.0%	1	-7.8%	3	-7.8%
0.5M	_	_	0	-7.8%	_	_	0	0.0%	0	-7.8%	1	-7.8%
1M	_	_	_	_	_	_	_	_	_	_	0	-7.8%
Max (1)	230.4 kbps		460.8	kbps	250	kbps	0.5 Mbps		460.8 kbps		921.6 kbps	

^{1.} UBRR = 0, Error = 0.0%

مثالهایی از تنظیمات نرخ باد

	f _{osc} = 8.0000 MHz				f _{osc} = 11.0592 MHz				f _{osc} = 14.7456 MHz			
Baud Rate (bps)	U2X = 0		U2X = 1		U2X = 0		U2X = 1		U2X = 0		U2X = 1	
	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error
2400	207	0.2%	416	-0.1%	287	0.0%	575	0.0%	383	0.0%	767	0.0%
4800	103	0.2%	207	0.2%	143	0.0%	287	0.0%	191	0.0%	383	0.0%
9600	51	0.2%	103	0.2%	71	0.0%	143	0.0%	95	0.0%	191	0.0%
14.4k	34	-0.8%	68	0.6%	47	0.0%	95	0.0%	63	0.0%	127	0.0%
19.2k	25	0.2%	51	0.2%	35	0.0%	71	0.0%	47	0.0%	95	0.0%
28.8k	16	2.1%	34	-0.8%	23	0.0%	47	0.0%	31	0.0%	63	0.0%
38.4k	12	0.2%	25	0.2%	17	0.0%	35	0.0%	23	0.0%	47	0.0%
57.6k	8	-3.5%	16	2.1%	11	0.0%	23	0.0%	15	0.0%	31	0.0%
76.8k	6	-7.0%	12	0.2%	8	0.0%	17	0.0%	11	0.0%	23	0.0%
115.2k	3	8.5%	8	-3.5%	5	0.0%	11	0.0%	7	0.0%	15	0.0%
230.4k	1	8.5%	3	8.5%	2	0.0%	5	0.0%	3	0.0%	7	0.0%
250k	1	0.0%	3	0.0%	2	-7.8%	5	-7.8%	3	-7.8%	6	5.3%
0.5M	0	0.0%	1	0.0%	_	_	2	-7.8%	1	-7.8%	3	-7.8%
1M	_	_	0	0.0%	_	_	_	_	0	-7.8%	1	-7.8%
Max (1)	0.5 Mbps		1 Mbps		691.2 kbps		1.3824 Mbps		921.6 kbps		1.8432 Mbps	

^{1.} UBRR = 0, Error = 0.0%