Einführung in die Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

9. Übungsblatt

Aufgabe 33 (Unkorreliertheit und Unabhängigkeit, 4 = 1 + 2 + 1 Punkte).

Seien (X,Y) die Koordinaten eines Punktes, der zufällig aus $E = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ ausgewählt wird, d.h. der Zufallsvektor (X,Y) habe die Dichte

$$f^{X,Y}(x,y) = \frac{1}{\pi} \cdot \mathbb{1}_{\{(x,y) \in E\}}, \quad (x,y) \in \mathbb{R}^2.$$

- (a) Berechnen Sie die Marginalverteilungen f^X und f^Y von X und Y.
- (b) Berechnen Sie \mathbb{V} ar(X), \mathbb{V} ar(Y) sowie \mathbb{C} ov(X,Y) und die Korrelation $\rho(X,Y)$. **Hinweis:** Verwenden Sie für die Berechnungen die Transformationsformel und Polar-koordinaten $(x,y)=(\cos(\phi),\sin(\phi))$ bzw. $x=\sin(\phi)$ für die 2- bzw. 1-dimensionalen Integrale.
- (c) Zeigen Sie, dass X und Y nicht unabhängig sind, obwohl sie unkorreliert sind.

Aufgabe 34 (Unkorreliertheit und Unabhängigkeit, 4 = 2 + 1 + 1 Punkte).

In dieser Aufgabe wollen wir zeigen, dass es zwingend notwendig ist, dass zwei Zufallsvariablen X_1, X_2 gemeinsam normalverteilt sind, damit aus $Cov(X_1, X_2) = 0$ auf die Unabhängigkeit von X_1, X_2 geschlossen werden kann (vgl. Beispiel 24.14 aus dem Skript).

Sei dazu $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Es sei $Y \sim N_{(0,1)}$ standardnormalverteilt und $V_p \sim \text{Bin}_{(1,p)}$ eine von Y unabhängige, bernoulliverteilte Zufallsvariable mit $p \in (0,1)$. Definiere $Z_p := (-1)^{V_p} \cdot Y$.

- (a) Zeigen Sie: $Z_p \sim N_{(0,1)}$ für alle $p \in (0,1)$. **Hinweis:** Berechnen Sie die Verteilungsfunktion von Z_p , indem Sie den "Trick" $\mathbb{P}(A) = \mathbb{P}(A \cap \{V_p = 0\}) + \mathbb{P}(A \cap \{V_p = 1\})$ benutzen.
- (b) Zeigen Sie: Für alle $p \in (0,1)$ sind Y, Z_p nicht unabhängig. **Hinweis:** Betrachten Sie die Ereignisse $\{Y < -1, Z_p < -1\}$ und $\{Y < -1, Z_p > 1\}$.
- (c) Finden Sie $p \in (0,1)$, so dass Y, Z_p unkorreliert sind, d.h. $Cov(Y, Z_p) = 0$.

Aufgabe 35 (Erwartungstreue Schätzer, 4 = 1 + 0.5 + 1 + 1.5 Punkte).

In dieser Aufgabe rekapitulieren wir Beispiel 26.16 (a) und Beispiel 26.18 (a) aus der Vorlesung.

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $n \in \mathbb{N}$ und $X_1, ..., X_n : \Omega \longrightarrow \mathbb{R}$ unabhängig und identisch, stetig verteilte Zufallsvariablen mit Verteilungsfunktion \mathbb{F}^X . Seien $M_1 := \min(X_1, ..., X_n)$ und $M_2 := \max(X_1, ..., X_n)$. (a) Zeigen Sie, dass die Verteilungsfunktionen von M_1 und M_2 gegeben sind durch

$$\mathbb{F}^{M_1}(z) = 1 - (1 - \mathbb{F}^X(z))^n$$
 und $\mathbb{F}^{M_2}(z) = \mathbb{F}^X(z)^n$.

Hinweis: Finden Sie eine zu $\max(x_1,...,x_n) \leq z$ äquivalente Aussage, die Bedingungen an die einzelnen x_i stellt.

- (b) Sei $X_1 \sim \operatorname{Exp}_{\lambda}$ exponentialverteilt mit Parameter $\lambda > 0$. Welche bekannte Verteilung besitzt M_1 ?
- (c) Sei nun $X_1 \sim U_{[0,\theta]}$ gleichverteilt auf $[0,\theta]$ mit Parameter $\theta > 0$.
 - ▶ Bestimmen Sie $\mathbb{E}_{\theta}(X_1)$ und $\mathbb{V}ar_{\theta}(X_1)$.
 - \blacktriangleright Berechnen Sie die Wahrscheinlichkeitsdichte f_{M_2} von M_2 und berechnen Sie $\mathbb{E}_{\theta}(M_2)$.
- (d) Wir betrachten nun zwei Schätzer für den Parameter θ : den Momentschätzer $\hat{\theta}_1 = 2\overline{X_n}$ und den Maximum-Likelihood-Schätzer $\hat{\theta}_2 = \max(X_1, \dots, X_n)$. Zeigen Sie, dass
 - \triangleright $\hat{\theta}_1$ ein erwartungstreuer Schätzer für θ ist, und dass
 - \triangleright $\hat{\theta}_2$ nicht erwartungstreu ist.

Wir können den Maximum-Likelihood-Schätzer korrigieren, indem wir stattdessen $\hat{\theta}_3 = \frac{n+1}{n}\hat{\theta}_2$ betrachten. Zeigen Sie, dass für n>1

▶ der korrigierte Maximum-Likelihood-Schätzer $\hat{\theta}_3$ effizienter ist als der Momentschätzer $\hat{\theta}_1$.

Bestimmen Sie nun für alle drei Schätzer den mittleren quadratischen Fehler. Welcher der drei Schätzer ist der beste bzgl. des MSE?

Aufgabe 36 (t-Test für den Erwartungswert, 4 = 1.5 + 1.5 + 1 Punkte).

Auf der Packung eines Feuerwerks der Marke "Superböller" steht geschrieben, dass die durchschnittliche Lautstärke höchstens $\mu_0 = 100$ Dezibel beträgt. Wie sind skeptisch und vermuten, dass die durchschnittliche Lautstärke höher ist. Dies wollen wir der Hersteller*in nachweisen. Dazu nehmen wir an, dass die Lautstärke beim Abbrennen eines Böllers normalverteilt ist mit Erwartungswert $\mu \in \mathbb{R}$ (entspricht der durchschnittlichen Lautstärke) und unbekannter Standardabweichung $\sigma > 0$. Unter strenger Aufsicht zünden wir nun n = 10 der "Superböller"-Feuerwerke unabhängig voneinander an und messen folgende Lautstärken (in Dezibel):

- (a) Formulieren Sie zunächst die Hypothesen für das Testproblem, so dass der Fehler 1. Art dem peinlichen Irrtum entspricht, dass wir den Hersteller zu Unrecht beschuldigen. Führen Sie dann einen Student'schen t-Test (Satz 26.38) zum Niveau $\alpha=0.05$ durch und formulieren Sie das Ergebnis der Testentscheidung.
- (b) Sei $\alpha \in (0,1)$. Seien $X_1, ..., X_n \stackrel{\text{iid}}{\sim} N_{(\mu,\sigma^2)}$. Sei $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$ der Mittelwert und $S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X_n})^2$ die empirische Stichprobenvarianz. Zeigen Sie, dass das Intervall

$$B(X_1, ..., X_n) := \left[\overline{X_n} - \frac{S}{\sqrt{n}} t_{n-1, 1-\frac{\alpha}{2}}, \overline{X_n} + \frac{S}{\sqrt{n}} t_{n-1, 1-\frac{\alpha}{2}} \right]$$

ein $(1 - \alpha)$ -Konfidenzintervall für μ ist.

(c) Geben Sie ein 95%-Konfidenzintervall für die durchschnittliche Lautstärke μ des Feuerwerks "Superböller" basierend auf unseren Beobachtungen an.

Hinweis: Hier sind einige Quantile der t-Verteilung: $t_{9,0.95} = 1.833$, $t_{10,0.95} = 1.812$, $t_{9,0.975} = 2.262$, $t_{10,0.975} = 2.228$.

Abgabe:

In Zweiergruppen, bis spätestens Donnerstag, den 01. Februar 2021, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/