Total No. of Ouestions: 6

Total No. of Printed Pages:3

Enrollment No.....

E DI-CAS	
UNIVERSITY	
Knowledge is Power	

Faculty of Engineering End Sem Examination May-2023 EE3CO29 / EE3CO05 / EX3CO05

Electromagnetic Theory

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60 Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning. Q.1 i. Divergence theorem is applicable for _____. 1 (b) Time varying field only (a) Static field only (c) Both (a) & (b) (d) Electric field only Which of the following is related with Stoke's Theorem? (a) A surface integral and a volume integral (b) A line integral, a surface integral and a volume integral (c) A line integral and a volume integral (d) A line integral and a surface integral Potential gradient is a-(a) Vector quantity (b) Scalar quantity (c) Constant (d) None of these iv. The Poisson's equation is derived from-(a) Laplace equation (b) Point form of Gauss law (c) Thevenin's law (d) Kirchhoff's law The magnetic field due to a copper rod carrying direct current is-(a) The magnetic field is inside the rod (b) The magnetic field is outside the rod (c) Both inside and outside the rod (d) Neither inside nor outside The unit of self-inductance is-(a) Wb/A^2

(c) Wb/m^2

(d) Wb/A

P.T.O.

(b) H/m

	vii.	What is relative permittivity?	1
		(a) Equal to the absolute permittivity	
		(b) Ratio of actual permittivity to absolute permittivity	
		(c) Ratio of absolute permittivity to actual permittivity	
		(d) Equal to the actual permittivity	
	viii.	Which of the following is the expression for Lorentz force?	1
		(a) qE (b) $q(vXB)$ (c) $ma + qE$ (d) $qE + q(vXB)$	
	ix.	When the phase angle between the E_x and E_y component is 0^0 or 180^0 ,	1
		the polarisation is-	
		(a) Elliptical (b) Circular	
		(c) Linear (d) Perpendicular	
	х.	An electromagnetic wave incident on a perfect conductor is-	1
		(a) Fully transmitted (b) Partially transmitted	
		(c) Entirely reflected (d) None of these	
Q .2	i.	State divergence's theorem and its application.	2
	ii.	Explain the scalar form of electrical potential.	3
	iii.	Express vector \overline{B} in Cartesian coordinate systems.	5
		Given $\overline{B} = \frac{10}{r} \frac{1}{a_r} + r \cos \theta \frac{1}{a_\theta} + \frac{1}{a_\phi}$, then find vector \overline{B} at (-3,4,0).	
		$\frac{1}{r} = \frac{u_r + r \cos u_\theta + u_\varphi}{r}, \text{ then find vector } D \text{ at } (0,1,0).$	
OR	iv.	Write down the expressions of divergence and curl in three coordinate	5
		system.	
Q.3	i.	State gauss's law.	3
	ii.	Consider an infinite line charge with density ρ_L C/m, along z-axis.	7
		Obtain the work done if a point charge Q is moved from r=a to b along	
		radial path.	
OR	iii.	State and derive electric boundary condition for the following:	7
		(a) A dielectric to dielectric medium	
		(b) Free space to conductor	
Q .4	i.	Write magnetic boundary condition.	4
	ii.	Derive Biot-savart's law and Ampere's circuit law.	6
OR	iii.	Derive an expression to find energy stored in magnetic field.	6
3.5	:	What is complex permittivity and skip death?	4
Q.5	i.	What is complex permittivity and skin depth?	4

	11.	Derive Maxwell's equation in integral form.	6
OR	iii.	Write EMF equation of a moving conduction loop in time varying	6
		field.	
Q.6		Attempt any two:	
	i.	Write short note about linear, circular and elliptic polarization.	5
	ii.	State brewster angle.	5
	iii.	Write short note about standing wave ratio.	5
		•	

Marking Scheme

EE3CO29-EE3CO05-EX3CO05 Electromagnetic Theory

Q.1	i)	Divergence theorem is applicable for	1
	ii)	C. Both Static Field and Time Varying Field Which of the following is related with Stoke's Theorem? D. A line integral and a surface integral	1
ii	iii)	Potential gradient is a A. Vector Quantity	1
	iv)	The Poisson's equation is derived from - B. Point form of Gauss law	1
	v)	The magnetic field due to a copper rod carrying direct current is C. Both inside and outside the rod	1
	vi)	The unit of self-inductance is: D. Wb/A	1
	vii)	What is relative permittivity? B. Ratio of actual permittivity to absolute permittivity	1
ix	viii)	D. $qE + q (v X B)$	1
	ix)	When the phase angle between the E_x and E_y component is 0^0 or 180^0 , the polarisation is C. Linear	1
	x)	An electromagnetic wave incident on a perfect conductor is C. Entirely Reflected	1
Q.2	i.	State divergence's theorem and its application. Statement 1 mark Application 1 mark	2
	ii.	Explain the scalar form of Electrical potential Explanation 3 marks	3
	iii.	Express vector \overline{B} in Cartesian coordinate systems. Given $\overline{B} = \frac{10}{r} \overline{a_r} + r \cos \theta \overline{a_\theta} + \overline{a_\phi}$, then find vector \overline{B} at (-3,4,0)	5

Expression 5 marks

OR	iv.	Write down the expressions of divergence and curl in three coordinate system.	5
		Divergence 2.5 marks Curl 2.5 marks	
Q.3	i.	State gauss's law. Statement 2 marks	3
	ii.	Consider an infinite line charge with density ρ_L C/m, along z-axis. Obtain the work done if a point charge Q is moved from r=a to b along radial path.	7
		Expression of electrostatic force 3 marks Work done 5 marks	
OR	iii.	State and derive electric boundary condition for (1) a dielectric to dielectric medium (2) free space to conductor	7
		Statement 2 marks (1) a dielectric to dielectric medium 3 marks (2) free space to conductor 3 marks	
Q.4	i.	Write magnetic boundary condition. Statement 2 marks	4
	ii.	Expression 2 marks Derive Biot-savart's law and Ampere's circuit law. Biot-savart's law 3 marks	6
OR	iii.	Ampere's circuit law 3 marks Derive an expression to find energy stored in magnetic field.	6
		Per step 2 marks	
Q.5	i.	What is complex permittivity and skin depth.	4

[2]

$\Gamma \gamma$	-
I٦	
1~	

		complex permittivity 2 marks	
		skin depth 2 marks	
	ii.	Derive Maxwell's equation in integral form.	6
		Per step 2 marks	
OR	iii.	Write emf equation of a moving conduction loop in time varying	6
		Field	
		Per step 2 marks	
2.6		Attempt any two:	
	i.	Write short note about, circular and elliptic polarization.	5
		Each 2.5 marks	
	ii.	State brewster angle.	5
		5 Marks	
	iii.	Write short note about standing wave ratio.	5
		5 Marks	
