Lineare Algebra II

N. Perrin

Düsseldorf Sommersemester 2013

Inhaltsverzeichnis

1	Wie	derholung 5							
	1.1	Äquivalenzrelationen							
	1.2	Lineare Abbildungen, Matrizen, Basiswechsel							
	1.3	Äquivalenz von Matrizen							
	1.4	Basiswechsel für Endomorphismen, Ähnlichkeit							
	1.5	Erste Invarianten für die Ähnlichkeitsrelation							
	1.6	Eigenwerte und Eigenvektoren							
	1.7	Diagonalisierbare Matrizen							
	1.8	Eigenwerte und das charakteristische Polynom							
	1.9	Trigonalisierbarkeit							
	1.10	Minimal Polynom							
2	Jord	Jordansche Normalform 19							
	2.1	Invariante Unterräume							
	2.2	Verallgemeinerte Eigenräume							
	2.3	Haupträume							
	2.4	Jordan-Kette							
	2.5	Endomorphismus mit einem Eigenwert							
	2.6	Jordansche Normalform							
3	Sym	metrische Gruppe 27							
	3.1	Definition							
	3.2	Transpositionen							
	3.3	Support							
	3.4	Permutationsmatrix							
	3.5	Elementare Transpositionen							
	3.6	Determinante							
4	Ten	Tensorprodukt 35							
	4.1	Bilineare Abbildungen und Tensorprodukt							
	4.2	Basen							
	4.3	Erste Eigenschaften							
	4.4	Bilineare Abbildungen							
	4.5	Tensorprodukt von Homomorphismen							
	4.6	Körper Erweiterung							
	47	Multilineare Abbildungen 4:							

4 Inhaltsverzeichnis

	4.8	Symmetrische und antisymmetrische Tensoren	44				
5	Alge	ebren					
	5.1	Algebren	47				
	5.2	Verknüpfungstafel	48				
	5.3	Unteralgebren, Ideale und Quotienten	49				
	5.4	Produkte	51				
	5.5	Einschränkung und Erweiterung der Skalare	51				
	5.6	Erzeuger	52				
	5.7	Polynome	54				
	5.8	Graduierte Algebren	55				
	5.9	Tensor Algebra	57				
	5.10	Symmetrische Algebra	60				

1 Wiederholung

In diesem Semester werden wir weiter mit linearen Abbildungen arbeiten. Wir nehmen an, dass alles, was im Skript LA1 steht, bekannt ist. Wir werden aber mit einigen Wiederholungen anfangen.

1.1 Äquivalenzrelationen

Definition 1.1.1 1. Sei M eine Menge. Eine **Relation** auf M ist eine Teilmenge R von $M \times M$. Seien x, y zwei Elemente in M, für $(x, y) \in R$ schreibt man $x \sim_R y$.

- 2. R heißt **reflexiv**, wenn $x \sim_R x$ für alle $x \in M$.
- 3. R heißt **symmetrisch**, wenn $x \sim_R y \Rightarrow y \sim_R x$.
- 4. R heißt **transitiv**, wenn $(x \sim_R y \text{ und } y \sim_R z) \Rightarrow x \sim_R z$.

Definition 1.1.2 Eine Relation R heißt Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.

Definition 1.1.3 Sei R eine Äquivalenzrelation auf M.

1. Die **Äquivalenzklasse** [x] ist

$$[x] = \{ y \in M \mid x \sim_R y \} \subset M.$$

2. Die **Quotientenmenge** M/R ist die Gesamtheit der Äquivalenzklassen:

$$M/R = \{[x] \in \mathfrak{P}(M) \mid x \in M\}.$$

Satz 1.1.4 Sei R eine Äquivalenzrelation auf M. Dann sind alle Elemente aus M in genau einer Äquivalenzklasse.

Für eine Äquivalenzrelation sind die folgenden Fragen wichtig:

Frage 1.1.5

- 1. Wann sind zwei Elemente $x, y \in M$ äquivalent?
- 2. Suche ein Element in jede Äquivalenzklasse.

6 1 Wiederholung

1.2 Lineare Abbildungen, Matrizen, Basiswechsel

Für die Definitionen von Abbildungen, Körpern, Vektorräumen und Basen verweisen wir auf das Skript LA1 (Definition 2.2.1, Definition 3.1.1 und Definition 5.1.1). Sei K ein Körper und seien V und W zwei K-Vektorräume.

Definition 1.2.1 Eine Abbildung $f: V \to W$ heißt **linear**, wenn für alle $x, y \in K$ und alle $v, v' \in V$ gilt

$$f(xv + yv') = xf(v) + yf(v').$$

Sei $\mathcal{B}=(v_1,\cdots,v_n)$ eine Basis von V und $\mathcal{B}'=(w_1,\cdots,w_m)$ eine Basis von W. Da \mathcal{B}' eine Basis ist, gibt es, für alle $j\in[1,n]$, Skalare $(a_{i,j})_{i\in[1,m]}$ aus K mit

$$f(v_j) = \sum_{i=1}^m a_{i,j} w_i.$$

Für Definition und Eigenschaften von Matrizen verweisen wir auf das Skript LA1.

Definition 1.2.2 Die Matrix $Mat_{\mathcal{B},\mathcal{B}'}(f)$ von f mit den Basen \mathcal{B} , \mathcal{B}' ist

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = (a_{i,j})_{i \in [1,m], \ j \in [1,n]} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}.$$

Sei $f: V \to W$ eine lineare Abbildung. Wenn wir die Basen $\mathcal{B}, \mathcal{B}'$ wechseln, wird sich die Matrix $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ verändern. Der Basiswelchelsatz erklärt, wie sich die Matrix verändert.

Satz 1.2.3 Sei $f: V \to W$ eine lineare Abbildung. Seien \mathcal{B}, \mathcal{C} Basen von V und seien $\mathcal{B}', \mathcal{C}'$ Basen von W. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}'}(f)$. Dann gilt

$$B = QAP$$

wobei $P = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(\operatorname{Id}_V)$ und $Q = \operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(\operatorname{Id}_W)$.

Wir werden zwei Beispiele von Äquivalenzrelationen für Matrizen einführen.

1.3 Äquivalenz von Matrizen

Definition 1.3.1 1. Seien $A, B \in M_{m,n}(K)$. A und B sind **äquivalent**, falls es $P \in GL_n(K)$ und $Q \in GL_m(K)$ gibt mit

$$B = QAP$$
.

In diesem Fall schreiben wir $A \sim B$.

2. Sei R die Relation $R = \{(A, B) \in M_{m,n}(K) \mid A \sim B\}.$

Lemma 1.3.2 Die Relation R ist eine Äquivalenzrelation.

Satz 1.3.3 Seien $A, B \in M_{m,n}(K)$.

$$A \sim B \Leftrightarrow \operatorname{Rg}(A) = \operatorname{Rg}(B).$$

Wir können also die Frage: wann sind zwei Elemente $A, B \in M$ äquivalent? antworten: Zwei Matrizen A, B sind äquivalent genau dann, wenn Rg(A) = Rg(B).

Um die zweite Frage: suche ein Element aus jeder Äquivalenzklasse zu beantworten brauchen wir die folgende Definition.

Definition 1.3.4 Sei $A \in M_{m,n}(K)$ mit Rg(A) = r Dann heißt

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in M_{m,n}(K)$$

die **Normalform** von A bzg. Äquivalenz von Matrizen.

Wir haben gesehen, dass die Äquivalenzklasse einer Matrix A mir Rg(A) = r die folgende Menge ist:

$$[A]_{\sim} = \{ B \in M_{n,m}(K) \mid \text{Rg}(B) = \text{Rg}(A) = r \}.$$

Wir haben in [A] ein sehr einfaches Element: die **Normalform** von A.

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in [A]_{\sim}.$$

8 1 Wiederholung

1.4 Basiswechsel für Endomorphismen, Ähnlichkeit

Satz 1.4.1 Sei V ein n-dimensionaler Vektorraum. Seien \mathcal{B} und \mathcal{C} Basen von V und sei $f: V \to V$ linear. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}}(f)$. Dann gilt

$$B = P^{-1}AP,$$

wobei $P = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(\operatorname{Id}_V)$.

Definition 1.4.2 1. Seien $A, B \in M_n(K)$. Dann sind A und B **ähnlich**, falls es ein $P \in GL_n(K)$ gibt mit

$$B = P^{-1}AP.$$

In diesem Fall schreiben wir $A \approx B$.

2. Sei R' die Relation $R' = \{(A, B) \in M_n(K) \mid A \approx B\}.$

Lemma 1.4.3 Die Relation R' ist eine Äquivalenzrelation.

Die zwei wichtigen Fragen für die Ähnlichkeitrelation sind:

Frage 1.4.4

- 1. Wann sind zwei Matrizen $A, B \in M_n(K)$ ähnlich?
- 2. Suche eine Normalform bzg. Ähnlichkeit von Matrizen.

Wir werden dieses Semester diese Fragen beantworten.

1.5 Erste Invarianten für die Ähnlichkeitsrelation

Lemma 1.5.1 Seien $A, B \in M_n(K)$. Es gilt

$$A \approx B \Rightarrow A \sim B$$
.

Beweis. Seien $A, B \in M_n(K)$ mit $A \approx B$. Nach der Definition gibt es ein $P \in GL_n(K)$ mit $B = P^{-1}AP$. Sei $Q = P^{-1} \in GL_n(K)$, dann gilt B = QAP und $A \sim B$.

Korollar 1.5.2 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt Rg(A) = Rg(B).

Beweis. Folgt aus Satz 1.3.3.

Beispiel 1.5.3 In Korollar 1.5.2 haben wir nicht $Rg(A) = Rg(B) \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Für $C \approx A$ gilt: es gibt $P \in GL_2(K)$ mit

$$C = P^{-1}AP = P^{-1}I_2P = P^{-1}P = I_2 = A.$$

Es gilt also

$$[A]_{\approx} = \{A\}.$$

Die einzige Matrix die ähnlich zu A ist, ist die Matrix A. Also gilt Rg(A) = 2 = Rg(B) (z.B. beide Determinanten sind ungleich 0) aber $A \not\approx B$.

Nächstes Semester haben wir den folgende Satz bewiesen.

Satz 1.5.4 Seien
$$A, B \in M_n(K)$$
 mit $A \approx B$. Dann gilt $\chi_A = \chi_B$.

Korollar 1.5.5 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann sind die Eigenwerte von A und B gleich.

Beispiel 1.5.6 In Satz 1.5.4 haben wir nicht $\chi_A = \chi_A \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Es gilt

$$\chi_A = (X - 1)^2 = \chi_B.$$

Die Eigenwerte von A und B sind gleich (der einzige Eigenwert ist 1). Aber, wie in Beispiel 1.5.3, gilt $A \not\approx B$.

Wir geben hier eine hinreichende Bedingung für die Ähnlichkeit von Matrizen.

Satz 1.5.7 Seien $A \in M_n(K)$ mit n paarweise verschiedenen Eigenwerten $\lambda_1, \dots, \lambda_n$ und sei $B \in M_n(K)$ mit $\lambda_1, \dots, \lambda_n$ als Eigenwerten. Dann gilt $A \approx B$.

Beweis. Wir wissen (siehe Satz 1.7.5), dass die Matrix A und auch die Matrix B diagonalisierbar mit den Eigenwerten $\lambda_1, \dots, \lambda_n$ sind. Es gibt also Matrizen $P, Q \in \mathrm{GL}_n(K)$ mit

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} = Q^{-1}BQ.$$

Es gilt also $A \approx D \approx B$.

1 Wiederholung

Beispiel 1.5.8 Im Satz 1.5.7 haben wir nicht

 $(A \approx B) \Rightarrow (A \text{ und } B \text{ haben die gleichen } n \text{ paarweise verschiedenen Eigenwerte}).$

Seien

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = B.$$

Dann gilt $A \approx B$ und A und B haben die gleichen Eigenwerte, aber A und B haben nur einen Eigenwert und nicht 2 paarweise verschiedene Eigenwerte.

Diese Beispiele und erste Invarianten zeigen, dass Diagonalisierbarkeit einen starken Zusammenhang mit Ähnlichkeit hat. Wir werden aber mehr brauchen. Wir wiederholen jetzt die Eigenschaften von diagonalisierbaren Matrizen.

1.6 Eigenwerte und Eigenvektoren

Definition 1.6.1 1. Sei $f: V \to V$ ein Endomorphismus von V. Ein Vektor $v \in V \setminus \{0\}$ heißt **Eigenvektor mit Eigenwert** $\lambda \in K$ falls gilt

$$f(v) = \lambda v.$$

2. Sei $A \in M_n(K)$ eine Matrix. Ein Vektor $v \in K^n \setminus \{0\}$ heißt **Eigenvektor mit Eigenwert** $\lambda \in K$ falls gilt

$$Av = \lambda v$$
.

Definition 1.6.2 Sei $\lambda \in K$ und $f: V \to V$ ein Endomorphismus. Der **Eigenraum** $E(f, \lambda)$ **zu** f und λ ist der Unterraum

$$E(f,\lambda) = \operatorname{Ker}(\lambda \operatorname{Id}_V - f) = \{ v \in V \mid f(v) = \lambda v \}.$$

Satz 1.6.3 Die Eigenwerte von f sind die Nullstelen von χ_f .

Satz 1.6.4 Sei $f \in \text{End}(V)$.

- 1. Für $\lambda \neq \mu$ gilt $E(f, \lambda) \cap E(f, \mu) = 0$.
- 2. Systeme von Eigenvektoren mit paarweise verschiedenen Eigenwerten von f sind linear unabhängig.

Sei $n = \dim V$

Korollar 1.6.5 Sei $f \in \text{End}(V)$. Dann hat f höchstens n Eigenwerte.

Korollar 1.6.6 Sei $f \in \text{End}(V)$. Dann gilt

$$\sum_{\lambda \in K} E(f, \lambda) = \bigoplus_{\lambda \in K} E(f, \lambda).$$

1.7 Diagonalisierbare Matrizen

Definition 1.7.1 Eine Matrix $A = (a_{i,j}) \in M_n(K)$ heißt diagonal wenn gilt: $a_{i,j} = 0$ für alle $i \neq j$.

Definition 1.7.2 Eine Matrix $A \in M_n(K)$ ist **diagonalisierbar** falls sie ähnlich zu einer Diagonalmatrix ist, *i.e.* falls es $P \in GL_n(K)$ gibt so dass PAP^{-1} eine Diagonalmatrix ist.

Bemerkung 1.7.3 Eine Matrix A ist diagonalisierbar genau dann, wenn es in der Ähnlichkeitsklasse von A eine Diagonalmatrix D gibt. Für diagonalisierbare Matrizen gibt es ein sehr einfaches Element: die Diagonalmatrix D. Diese Diagonalmatrix D wird die (jordansche) Normalform von A sein.

Satz 1.7.4 Sei $A \in M_n(K)$. Dann sind folgende Aussagen äquivalent:

- 1. A ist diagonalisierbar.
- 2. Es gibt eine Basis \mathcal{B} von K^n , welche aus Eigenvektoren von A besteht.
- 3. $\sum_{\lambda \in K} \dim E(A, \lambda) = n$.

4.
$$\bigoplus_{\lambda \in K} E(A, \lambda) = K^n$$
.

Satz 1.7.5 Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Hat f genau n verschiedene Eigenwerte, dann ist f diagonalisierbar.

1.8 Eigenwerte und das charakteristische Polynom

Satz 1.8.1 Sei $A \in M_n(K)$ und sei $f \in \text{End}(V)$. Es gilt

{Eigenwerte von
$$A$$
} = {Nullstellen von χ_A } {Eigenwerte von f } = {Nullstellen von χ_f }.

Satz 1.8.2 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Für jedes $\lambda \in K$ gilt dann

$$\dim E(f,\lambda) \leq m(\chi_f,\lambda),$$

wobei $m(\chi_f, \lambda)$ die Vielfachkeit von λ in χ_f ist.

Korollar 1.8.3 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Der Endomorphismus f ist diagonalisierbar genau dann, wenn χ_f vollständig in Linearfaktoren zerfällt und für jedes $\lambda \in K$, gilt dim $E(f, \lambda) = m(\chi_f, \lambda)$.

1 Wiederholung

1.9 Trigonalisierbarkeit

Definition 1.9.1 1. Eine Matrix $A = (a_{i,j}) \in M_n(K)$ ist eine obere Dreieckmatrix wenn $a_{i,j} = 0$ für i > j.

2. Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Der Endomorphismus f heißt **trigonalisierbar** falls es eine Basis \mathcal{B} gibt mit $\operatorname{Mat}_{\mathcal{B}}(f)$ eine obere Dreieckmatrix.

Bemerkung 1.9.2 Eine Matrix A is diagonalisierbar genau dann, wenn es in der Ähnlichkeitsklasse von A eine obere Dreieckmatrix D gibt.

Satz 1.9.3 Sei $f \in \text{End}(V)$. Die folgende Aussagen sind äquivalent:

- 1. f ist trigonalisierbar.
- 2. χ_f zerfällt über K vollstandig in Linearfaktoren.

Korollar 1.9.4 Falls K algebraisch abgeschlossen ist, falls also jedes Polynom in $K[X] \setminus \{0\}$ über K in Linearfaktoren zerfällt, dann ist jedes $f \in \text{End}(V)$ mit dim $V < \infty$ trigonalisierbar.

П

Bemerkung 1.9.5 Für K algebraisch abgeschlossen, gibt es immer in der Ähnlichkeitsklasse $[A]_{\approx}$ von A eine obere Dreieckmatrix. Wir können also als einfaches Element in der Ähnlichkeitsklasse eine obere Dreieckmatrix wählen. Wir werden sehen, dass man eine noch einfachere Matrix wählen kann: die (jordansche) Normalform von A.

1.10 Minimal Polynom

Sei V mit dim V = n und sei $f \in \text{End}(V)$.

Satz 1.10.1 ann existiert genau ein normiertes Polynom $\mu_f \in K[X]$, das Minimalpolynom von f mit

- 1. $\mu_f(f) = 0$
- 2. Ist $P \in K[X]$ mit P(f) = 0, so ist μ_f ein Teiler von P.

Satz 1.10.2 Dann sind folgende Aussagen äquivalent:

- 1. f ist diagonalisierbar.
- 2. μ_f zerfällt vollständig in Linearfaktoren und besitzt nur einfache Nullstellen.

Satz 1.10.3 (Satz von Cayley-Hamilton) Es gilt $\chi_f(f) = 0$.

Korollar 1.10.4 Es gilt: μ_f ist ein Teiler von χ_f .

Korollar 1.10.5 μ_f und χ_f haben die gleichen Nullstellen (die Eigenwerte). Sei λ eine solche Nullstelle, es gilt

$$m(\mu_f, \lambda) \leq m(\chi_f, \lambda).$$

Satz 1.10.6 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt $\mu_A = \mu_B$.

Beweis. Sei $P \in GL_n(K)$ mit $B = P^{-1}AP$. Es gilt also auch $A = PBP^{-1}$. Eine einfache Induktion gibt für alle $i \in \mathbb{N}$:

$$B^i = P^{-1}A^iP$$

Sei $\mu_A = \sum_{i=0}^k a_i X_i \in K[X]$. Es gilt $\mu_A(A) = 0$. Wir zeigen, dass $\mu_A(B) = 0$. Es gilt

$$\mu_A(B) = \sum_{i=0}^k a_i B^k = \sum_{i=0}^k a_i P^{-1} A^k P = P^{-1} \left(\sum_{i=0}^k a_i A^k \right) P = P^{-1} \mu_A(A) P = 0.$$

Es gilt also: $\mu_A(B) = 0$ und μ_B ist ein Teiler von μ_A .

Wir können A und B vertauchen und so gilt auch $\mu_B(A) = 0$. Daraus folgt, dass μ_A ein Teiler von μ_B ist. Es folgt, dass $\mu_A = \lambda \mu_B$ mit $\lambda \in K$, und weil μ_A und μ_B beide normiert sind, folgt $\mu_A = \mu_B$.

Beispiel 1.10.7 Im Satz 1.10.6 haben wir nicht $\mu_A = \mu_B \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Nach Korollar 1.10.5 hat μ_A (bzg. μ_B) die Eigenwerte von A (bzg. B) als Nullstellen. Also haben μ_A und μ_B die Zahlen 1 und 2 als Nullstellen. Die beiden Matrizen A und B sind Diagonalmatrizen, also diagonalisierbar. Nach Satz 1.10.2 folgt, dass μ_A und μ_B einfache Nullstellen haben. Es folgt

$$\mu_A = (X-1)(X-2) = \mu_B.$$

Wir zeigen, dass $A \not\approx B$. Hätten wir $A \approx B$, dann folgt nach Satz 1.5.4 $\chi_A = \chi_B$. Aber es gilt

$$\chi_A = (X-1)^2(X-2) \neq (X-1)(X-2)^2 = \chi_B.$$

Also $A \not\approx B$.

14 Wiederholung

Beispiel 1.10.8 Es gibt Matrizen A und B mit

$$Rg(A) = Rg(B), \ \chi_A = \chi_B \text{ und } \mu_A = \mu_B$$

, aber mit $A \not\approx B$.

Seien

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Es gilt

$$Rg(A) = 4 = Rg(B), \ \chi_A = (X - 1)^4 = \chi_B \text{ und } \mu_A = (X - 1)^2 = \mu_B.$$

Aber es gilt $A \not\approx B$.

 $\ddot{\mathbf{U}}\mathbf{bung} \ \mathbf{1.10.9} \ \text{Seien} \ A \ \text{und} \ B \ \text{wie im Beispiel} \ 1.10.8.$

- 1. Zeigen Sie, dass Rg(A) = 4 = Rg(B), $\chi_A = (X-1)^4 = \chi_B$ und $\mu_A = (X-1)^2 = \mu_B$.
- 2. Zeigen Sie, dass $A \not\approx B$.

2 Jordansche Normalform

Sei V ein K-Vektorraum der Dimension n und sei $f \in \text{End}(V)$ ein Endomorphismus.

2.1 Invariante Unterräume

Definition 2.1.1 Ein Unterraum U von V heißt **invariant** für f (oder f-invariant) falls $f(U) \subset U$.

Lemma 2.1.2 Sei U ein Unterraum von V.

- (1) Wenn U f-invariant ist, dann ist U auch P(f)-invariant für alle $P \in K[X]$.
- (11) Sei $\lambda \in K$. Dann ist U genau dann f-invariant, wenn $U(f \lambda \operatorname{Id}_V)$ -invariant ist.

Beweis. (1) Sei $P \in K[X]$ und $u \in U$. Dann ist $f(u) \in U$ und per Induktion gilt $f^k(u) \in U$ für alle $k \in \mathbb{N}$. Daraus folgt $P(f)(u) \in U$.

(n) Angenommen U sei f-invariant. Dann gilt $f(u) \in U$ für alle $u \in U$. Es folgt $(f - \lambda \operatorname{Id}_V)(u) = f(u) - \lambda u \in U$ und U ist $(f - \lambda \operatorname{Id}_V)$ -invariant. Umgekehrt, sei $u \in U$, dann gilt $(f - \lambda \operatorname{Id}_V)(u) \in U$ also $f(u) - \lambda u \in U$. daraus folgt $f(u) \in U$ und U ist f-invariant.

Lemma 2.1.3 Seien U_1, \dots, U_r f-invariante Unterräume so dass, $V = U_1 \oplus \dots \oplus U_r$.

- (1) Seien $\mathcal{B}_1, \dots, \mathcal{B}_r$ Basen von U_1, \dots, U_r . Dann ist $\mathcal{B} = \mathcal{B}_1 \cup \dots \cup \mathcal{B}_r$ eine Basis von V.
- (11) Sei $A_i = \operatorname{Mat}_{\mathcal{B}_i}(f|_{U_i})$ für $i \in [1, r]$, dann gilt

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}.$$

Beweis. Übung.

Lemma 2.1.4 Umgekehrt, sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis mit

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}$$

wobei $A_i \in M_{n_i}(K)$. Dann sind die Unterräume

$$U_i = \langle v_{n_1 + \dots + n_{i-1} + 1}, \dots, v_{n_1 + \dots + n_{i-1} + n_i} \rangle$$

f-invariant und es gilt $V = U_1 \oplus \cdots \oplus U_r$.

Beweis. Übung.

2.2 Verallgemeinerte Eigenräume

Definition 2.2.1 Seien $k \in \mathbb{N}$ und $\lambda \in K$. Der k-te verallgemeinerte Eigenraum zum Eigenwert λ ist $E_k(f, \lambda) = \text{Ker}(f - \lambda \text{Id}_V)^k$.

Bemerkung 2.2.2 Es gilt $E_1(f,\lambda) = E(f,\lambda)$ also ist der erste verallgemeinerte Eigenraum zum Eigenwert λ der Eigenraum zum Eigenwert λ .

Lemma 2.2.3 Sei $\lambda \in K$.

- (1) Für jedes $k \in \mathbb{N}$ ist $E_k(f, \lambda)$ f-invariant.
- (11) Es gilt $E_k(f,\lambda) \subset E_l(f,\lambda)$ für $k \leq l$.
- (III) Es gibt ein $k \in \mathbb{N}$ mit $E_k(f, \lambda) = E_{k+1}(f, \lambda)$.
- (iv) Sei k mit $E_k(f,\lambda) = E_{k+1}(f,\lambda)$, dann gilt $E_k(f,\lambda) = E_l(f,\lambda)$ für alle $l \geq k$.

Beweis. (1) Sei $v \in E_k(f, \lambda)$. Dann gilt $(f - \lambda \operatorname{Id}_V)^k(v) = 0$. Wir zeigen, dass $f(v) \in E_k(f, \lambda)$ also $(f - \lambda \operatorname{Id}_V)^k(f(v)) = 0$. Es gilt

$$(f-\lambda \mathrm{Id}_V)^k(f(v)) = ((f-\lambda \mathrm{Id}_V)^k \circ f)(v) = f \circ (f-\lambda \mathrm{Id}_V)^k(v) = f((f-\lambda \mathrm{Id}_V)^k(v)) = 0.$$

- (n) Sei $v \in E_k(f, \lambda)$ und $l \ge k$. Dann gilt $(f \lambda \operatorname{Id}_V)^k(v) = 0$, Also gilt $(f \lambda \operatorname{Id}_V)^l(v) = (f \lambda \operatorname{Id}_V)^{l-k}((f \lambda \operatorname{Id}_V)^k(v)) = (f \lambda \operatorname{Id}_V)^{l-k}(0) = 0$. Es gilt also $v \in E_l(f, \lambda)$.
- (III) Wir betrachten $d_k = \dim E_k(f, \lambda)$. Die Folge $(d_k)_{k \in \mathbb{N}}$ ist steigend und $d_k \leq n$. Es gibt also ein k mit $d_k = d_{k+1}$ also $\dim E_k(f, \lambda) = \dim E_{k+1}(f, \lambda)$. Daraus folgt $E_k(f, \lambda) = E_{k+1}(f, \lambda)$.

(iv) Sei k mit $E_k(f,\lambda) = E_{k+1}(f,\lambda)$ und sei $l \geq k$. Es gilt $E_k(f,\lambda) \subset E_l(f,\lambda)$. Umgekehrt zeigen wir per Induktion über $l \geq k$, dass $E_l(f,\lambda) \subset E_k(f,\lambda)$. Für l = k ist dies wahr.

Angenommen $E_l(f,\lambda) \subset E_k(f,\lambda)$. Wir zeigen $E_{l+1}(f,\lambda) \subset E_k(f,\lambda)$. Sei $v \in E_{l+1}(f,\lambda)$. Es gilt $(f - \lambda \operatorname{Id}_V)^{l+1}(v) = 0$, also $(f - \lambda \operatorname{Id}_V)^{k+1}((f - \lambda \operatorname{Id}_V)^{l-k}(v)) = 0$. Es folgt $(f - \lambda \operatorname{Id}_V)^{l-k}(v) \in E_{k+1}(f,\lambda) = E_k(f,\lambda)$. Es gilt also $0 = (f - \lambda \operatorname{Id}_V)^k((f - \lambda \operatorname{Id}_V)^{l-k}(v)) = (f - \lambda \operatorname{Id}_V)^l(v) = 0$ und $v \in E_l(f,\lambda) \subset E_k(f,\lambda)$.

Korollar 2.2.4 Sei $\lambda \in K$. Dann gibt es ein $M_{\lambda} \in \mathbb{N}$ mit $E_k(f, \lambda) \subsetneq E_{k+1}(f, \lambda)$ für $k < M_{\lambda}$ und $E_k(f, \lambda) = E_{k+1}(f, \lambda)$ für $k \ge M_{\lambda}$.

2.3 Haupträume

Definition 2.3.1 Der Hauptraum zum Eigenwert λ ist $H(f,\lambda) = E_{M_{\lambda}}(f,\lambda)$.

Lemma 2.3.2 (1) Ist λ ein Eigenwert von f, so gilt $H(f, \lambda) \neq 0$.

(11) Sonst gilt
$$H(f,\lambda) = 0$$
.

Beweis. (1) Sei v ein Eigenvektor zu λ . Es gilt $v \neq 0$ und $(f - \lambda \operatorname{Id}_V)(v) = 0$. Es gilt also $0 \neq E(f, \lambda) \subset H(f, \lambda)$.

(n) Angenommen $H(f,\lambda) \neq 0$. Dann gibt es ein $v \in H(f,\lambda)$ mit $v \neq 0$. Es gilt $(f-\lambda)^{M_{\lambda}}(v) = 0$ und daraus folgt $(f-\lambda)^{l}(v) = 0$ für alle $l \geq M_{\lambda}$. Sei k maximal mit der Eigenschaft $(f-\lambda)^{k}(v) \neq 0$ (z.B. hat k=0 diese Eigenschaft, aber alle $k \geq M_{\lambda}$ haben diese Eigenschaft nicht mehr). Es gilt also $(f-\lambda)^{k}(v) \neq 0$ und $(f-\lambda)^{k+1}(v) = 0$. Daraus folgt

$$0 = (f - \lambda)^{k+1}(v) = (f - \lambda \operatorname{Id}_V)((f - \lambda)^k(v)).$$

Also ist $(f - \lambda)^k(v)$ ein Eigenvektor von f mit dem Eigenwert λ . Widerspruch.

Wir werden die Haupträume dank dem Minimalpolynom studieren. Zuerst brauchen wir ein Lemma.

Definition 2.3.3 Seien $P_1, \dots, P_r \in K[X]$. Die Polynome P_1, \dots, P_r sind **teiler-fremd**, falls es kein $Q \in K[X]$ mit $\deg(Q) > 0$ und $Q|P_i$ für alle $i \in [1, r]$ gibt.

Beispiel 2.3.4 (1) X und X-1 sind teilerfremd.

(11) Für $\lambda_1, \dots, \lambda_r$ paarweise verschieden sind $P_1 = (X - \lambda_1)^{m_1}, \dots, P_r = (X - \lambda_r)^{m_r}$ teilerfremd.

(111) Für $\lambda_1, \dots, \lambda_r$ paarweise verschieden sei

$$P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}.$$

Dann sind P_1, \dots, P_r teilerfremd.

(iv) Für $P_1 = \cdots = P_r = 0$ sind P_1, \cdots, P_r nicht teilerfremd. Jedes Polynom P teilt P_1, \cdots, P_r : $P_i = 0 = 0 \cdot P$.

Lemma 2.3.5 Seien $P_1, \dots, P_r \in K[X]$ teilerfremd. Dann gibt es Polynome $Q_1, \dots, Q_r \in K[X]$ mit

$$Q_1P_1 + \dots + Q_rP_r = 1.$$

Beweis. Nach Induktion über $N = \deg(P_1) + \cdots + \deg(P_r)$.

Für N=0 gilt $\deg(P_1)=\deg(P_r)=0$. Es gibt also Skalare $\lambda_1\cdots,\lambda_r\in K$ mit $P_i=\lambda_i$ für alle $i\in[1,r]$. Es gibt ein i mit $\lambda_i\neq 0$. (Wenn nicht gilt $\lambda_1=\cdots=\lambda_r=0$, also $P_1=\cdots=P_r=0$ und P_1,\cdots,P_r sind nicht teilerfremd.) Sei $Q_i=\frac{1}{\lambda_i}$ und $Q_i=0$ für $j\neq i$, also gilt $Q_1P_1+\cdots+Q_rP_r=1$.

Wir nehmen an, dass es für alle teilerfremden Polynome R_1, \dots, R_r mit $N \ge \deg(R_1) + \dots + \deg(R_r)$ Polynome S_1, \dots, S_r gibt mit $S_1R_1 + \dots + S_rR_r = 1$. Seien P_1, \dots, P_r teilerfremde Polynome mit $\deg(P_1) + \dots + \deg(P_r) = N+1$. Ohne Beschränkung können wir annehmen, dass $\deg(P_1) \ge \dots \deg(P_r)$. Wir wissen, dass es für alle $i \in [1, r-1]$ Polynome U_i, R_i mit $P_i = T_i P_r + R_i$ und $\deg(R_i) < \deg(P_r) \le \deg(P_i)$ gibt. Es gilt also $\deg(R_1) + \dots + \deg(R_{r-1}) + \deg(P_r)$.

Wir zeigen, dass $R_1, \dots, R_{r-1}, R_r = P_r$ teilerfremd sind. Sei $P \in K[X]$ mit $P|R_i$ für alle $i \in [1, r]$. Es gilt $P|R_i$ und $P|R_r = P_r$. Also teilt P alle Polynome $T_iP_r + R_i = P_i$. Da P_1, \dots, P_r teilerfremd sind gilt $\deg(P) = 0$ und R_1, \dots, R_r sind teilerfremd. Nach Induktion gibt es Polynome S_1, \dots, S_r mit $S_1R_1 + \dots + S_rR_r = 1$. Wir setzen $R_i = P_i - T_iP_r$ für $i \in [1, r-1]$ und $R_r = P_r$. Es gilt

$$1 = S_1 R_1 + \dots + S_r R_r = S_1 (P_1 - T_1 P_r) + \dots + S_{r-1} (P_{r-1} - T_{r-1} P_r) + S_r P_r.$$

Wir setzen $Q_i = S_i$ für $i \in [1, r-1]$ und $Q_r = S_r - (S_1T_1 + \cdots + S_{r-1}T_{r-1})$. Die Gleichung $Q_1P_1 + \cdots + Q_rP_r = 1$ folgt.

Beispiel 2.3.6 Sei $P_1 = X$ und $P_2 = X - 1$. Dann sind P_1 und P_2 teilerfremd und für $Q_1 = 1$, $Q_2 = -1$ gilt $Q_1 P_1 + Q_2 P_2 = 1$.

Sei μ_f das Minimalpolynom von f. Wir nehmen an, dass μ_f in Linearfaktoren zerfällt:

$$\mu_f = (X - \lambda_1)^{m_1} \cdots (X - \lambda^r)^{m_r},$$

wobei $\lambda_1, \dots, \lambda_r$ paarweise verschieden sind.

Satz 2.3.7 Sei $H_i = \text{Ker}(f - \lambda_i)^{m_i}$ für $i \in [1, r]$. Es gilt

$$V = H_1 \oplus \cdots \oplus H_r$$
.

Beweis. Wir zeigen $V = H_1 + \cdots + H_r$. Sei $v \in V$. Wir zeigen, dass es Vektoren $v_i \in H_i$ für $i \in [1, r]$ gibt mit $v = v_1 + \cdots + v_r$. Sei $P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}$ für $i \in [1, r]$. Dann sind P_1, \dots, P_r teilerfremd. Nach dem obigen Lemma gibt es Polynome Q_1, \dots, Q_r mit $P_1Q_1 + \dots + P_rQ_r = 1$. Es gilt also

$$v = \mathrm{Id}_V(v) = (P_1(f)Q_1(f) + \dots + P_r(f)Q_r(f))(v).$$

Sei $v_i = P_i(f)Q_i(f)(v)$. Es gilt $v = v_1 + \cdots + v_r$. Wir zeigen $v_i \in H_i$. Es gilt

$$(f - \lambda_i)_i^m(v_i) = (f - \lambda_i)_i^m P_i(f)Q_i(f)(v) = \mu_f(f)Q_i(f)(v) = 0.$$

Daraus folgt $v_i \in H_i$.

Wir zeigen jetzt, dass die Summe $H_1 + \cdots + H_r$ eine direkte Summe ist. Seien also $v_i \in H_i$ mit $v_1 + \cdots + v_r = 0$. Wir zeigen $v_i = 0$ für alle $i \in [1, r]$. Es gilt

$$0 = P_i(f)(v_1) + \dots + P_i(f)(v_r) = P_i(f)(v_i)$$

da $(X - \lambda_j)^{m_j}$ P_i für alle $j \neq i$ teilt. Sei $R = (X - \lambda_i)^{m_i}$. Es gilt $R(f)(v_i)$. Die Polynome P_i und $R = (X - \lambda_i)^{m_i}$ sind teilerfremd. Es gibt also Polynome Q und S mit $QP_i + SR = 1$. Daraus folgt

$$v_i = Q(f)P_i(f)(v_i) + S(f)R(f)(v_i) = 0.$$

Da der obige Beweis für alle $i \in [1, r]$ gilt, gilt also $v_i = 0$ für alle $i \in [1, r]$.

Korollar 2.3.8 Für alle $i \in [1, r]$ gilt $H(f, \lambda_i) = H_i$ und $M_{\lambda_i} = m_i$.

Beweis. Für alle $i \in [1, r]$ und $k \leq M_{\lambda_i} \leq l$ gilt

$$\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^k \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{M_{\lambda_i}} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^l$$
.

Es gilt also $H_i \subset H(f, \lambda_i)$.

Umgekehrt, sei $v \in H(f, \lambda_i)$. Wir zeigen, dass $v \in H_i$. Nach dem obigen Satz gilt $v = v_1 + \cdots + v_r$ mit $v_j \in H_j$ für alle $j \in [1, r]$. Sei $P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}$ und $R = (X - \lambda_i)^{M_{\lambda_i}}$. Es gilt $P_i(f)(v_j) = 0$ für alle $j \in [1, r]$ und R(f)(v) = 0. Die Polynome P_i und R sind teilerfremd. Es gibt also $Q, S \in K[X]$ mit $1 = QP_i + SR$. Daraus folgt

$$v = Q(f)P_i(f)(v_1 + \dots + v_r) + S(f)R(f)(v) = Q(f)P_i(f)(v_i).$$

Da $v_i \in H_i$ und H_i f-invariant, gilt $v = Q(f)P_i(f)(v_i) \in H_i$.

Wir zeigen $m_i = M_{\lambda_i}$. Es gilt

$$\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i + 1} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{M_{\lambda_i}} = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i + 1}.$$

Alle Enthaltungen sind Gleichungen und es folgt $\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i+1}$. Nach der Definition von M_{λ_i} gilt $M_{\lambda_i} \leq m_i$. Sei

$$P = (X - \lambda_i)^{M_{\lambda_i}} \cdots (X - \lambda_r)^{M_{\lambda_r}}.$$

Wir zeigen, dass P(f) = 0. Sei also $v \in V$. Wir zeigen P(f)(v) = 0. Nach dem obigen Satz gilt $v = v_1 + \cdots + v_r$ mit $v_i \in H_i$. Es gilt also $P(f)(v_i) = 0$ für alle $i \in [1, r]$. Daraus folgt P(f)(v) = 0. Aus der Definition von μ_f folgt, dass μ_f ein Teiler von P ist. Daraus folgt $m_i \leq M_{\lambda_i}$. Es folgt $M_{\lambda_i} = m_i$.

Korollar 2.3.9 Sei U ein f-invarianter Unterraum. Dann gilt

$$U = (U \cap H_1) \oplus \cdots \oplus (U \cap H_r).$$

Beweis. Da wir eine direkte Summe $H_1 \oplus \cdots \oplus H_r$ haben ist die Summe $(U \cap H_1) + \cdots + (U \cap H_r)$ auch eine direkte Summe. Wir haben eine Enthaltung $(U \cap H_1) \oplus \cdots (U \cap H_r) \subset U$. Umgekehrt, sei $v \in U$, und wie oben sei $P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}$ für $i \in [1, r]$. Dann sind P_1, \cdots, P_r teilerfremd und es gibt Polynome Q_1, \cdots, Q_r mit $P_1Q_1 + \cdots + P_rQ_r = 1$. Es gilt also

$$v = v_1 + \dots + v_r$$

wobei $v_i = P_i(f)Q_i(f)(v) \in H_i$. Da U ein f-invarianter Unterraum ist und $v \in U$ ist, gilt $v_i = P_i(f)Q_i(f)(v) \in U$. Es folgt $v_i \in U \cap H_i$ und $U = (U \cap H_1) \oplus \cdots \oplus (U \cap H_r)$.

Korollar 2.3.10 Sei $i \in [1, r]$. Dann gibt es ein $v \in V$ mit

$$(f - \lambda_i \operatorname{Id}_V)^{m_i - 1}(v) \neq 0 \text{ und } (f - \lambda_i \operatorname{Id}_V)^{m_i}(v) \neq 0.$$

Beweis. Es gilt $m_i = M_{\lambda_i}$. Also gilt $\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i - 1} = E_{m_i - 1}(f, \lambda_i) \subsetneq E_{m_i}(f, \lambda_i) = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i}$. Sei $v \in \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} \setminus \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i - 1}$. Dann erfüllt v die obige Eigenschaft.

2.4 Jordan-Kette

Definition 2.4.1 Ein System (v_1, \dots, v_t) von Vektoren heißt **Jordan-Kette (für** f **zum Eigenwert** λ), falls für alle $k \in [1, t-1]$ gilt

- $v_1 \neq 0$,
- $(f \lambda \operatorname{Id}_V)(v_1) = 0$

• $(f - \lambda \operatorname{Id}_V)(v_{k+1}) = v_k$.

Lemma 2.4.2 (1) Es gibt einen Vektor $v \in V$ mit $(f - \lambda_i \operatorname{Id}_V)^{m_i-1}(v) \neq 0$ und $(f - \lambda_i \operatorname{Id}_V)^{m_i}(v) = 0$.

(II) Sei $v_k = (f - \lambda_i \operatorname{Id}_V)^{m_i - k}(v)$. Das System (v_1, \dots, v_{m_i}) ist eine Jordan-Kette für f zum Eigenwert λ_i .

Beweis. (1) Siehe Korollar 2.3.10

(n) Folgt aus den Definitionen von v und der Jordan-Kette.

Lemma 2.4.3 Sei (v_1, \dots, v_t) eine Jordan-Kette für f zum Eigenwert λ .

- (1) Dann ist $((f \lambda_i \operatorname{Id}_V)(v_2), \dots, (f \lambda_i \operatorname{Id}_V)(v_t)) = (v_1, \dots, v_{t-1})$ eine Jordan-Kette für f zum Eigenwert λ .
- (II) Dann ist $\langle v_1, \dots, v_t \rangle$ f-invariant und (v_1, \dots, v_t) linear unabhängig.

Beweis. (1) Folgt aus der Definition.

(11) Nach (1) folgt, dass $f - \lambda \operatorname{Id}_V$ die Jordan-Kette auf $(0, v_1, \dots, v_{t-1})$ schickt. Daraus folgt, dass $\langle v_1, \dots, v_t \rangle$ $(f - \lambda \operatorname{Id}_V)$ -invariant, also f-invariant ist.

Nach Induktion über t. Seien x_1, \dots, x_t Skalare mit $\sum_i x_i v_i = 0$. Es folgt $0 = \sum_i x_i (f - \lambda \operatorname{Id}_V)(v_i) = \sum_{i \leq r-1} x_{i+1} v_i$. Da (v_1, \dots, v_{t-1}) eine Jordan-Kette ist, ist das System linear unabhängig. Es folgt $x_2 = \dots = x_r = 0$. Es gilt dann auch $x_1 v_1 = 0$. Da $v_1 \neq 0$ folgt $x_1 = 0$. Das System (v_1, \dots, v_t) ist linear unabhängig.

Korollar 2.4.4 Sei (v_1, \dots, v_t) eine Jordan-Kette für f zum Eigenwert λ . Sei $U = \langle v_1, \dots, v_t \rangle$ und sei $\mathcal{B} = (v_1, \dots, v_t)$.

- (1) Das System \mathcal{B} ist eine Basis von U.
- (11) Es gilt

$$\operatorname{Mat}_{\mathcal{B}}(f|_{U}) = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} := J(\lambda, t).$$

Beweis. (1) Folgt aus dem obigen Lemma.

(n) Es gilt $(f - \lambda \operatorname{Id}_V)(v_{k+1}) = v_k$ für $k \in [1, t-1]$. Daraus folgt $f(v_{k+1}) = \lambda v_{k+1} + v_k$. Es gilt auch $(f - \lambda \operatorname{Id}_V)(v_1) = 0$, also $f(v_1) = \lambda v_1$. Das Lemma ist bewiesen.

Definition 2.4.5 Die Matrix $J(\lambda, t)$ heißt Jordan-Block der Größe t zum Eigenwert λ .

2.5 Endomorphismus mit einem Eigenwert

Sei $f \in \text{End}(V)$. In diesem Kapitel nehmen wir an, dass $\chi_f = (X - \lambda)^n$ und $\mu_f = (X - \lambda)^m$. Wie schreiben $E_i = E_i(f, \lambda)$. Es gilt

$$0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_m = V.$$

Wir schreiben $g = f - \lambda \operatorname{Id}_V$.

Lemma 2.5.1 Sei U ein Unterraum mit $E_1 \cap U = 0$. Dann ist $g|_U : U \to V$ injektiv. Insbesondere gilt: Sei \mathcal{B} eine Basis von U, dann ist $g(\mathcal{B})$ eine Basis von g(U).

Beweis. Es gilt
$$Ker(g|_U) = U \cap Kerg = U \cap E_1 = 0$$
.

Wir bauen jetzt eine Zerlegung von $V = E_m$ in eine direkte Summe.

Satz 2.5.2 Für alle $i \in [1, m]$, gibt es Unterräume $U_i \subset E_i$ so dass

$$E_i = E_{i-1} \oplus \bigoplus_{j=0}^{m-i} g^j(U_{i+j}).$$

Beweis. Nach absteigender Induktion über $i \in [1, m]$.

Für i=m, wählen wir U_m ein Komplement von E_{m-1} in E_m . Es gilt $E_m=E_{m-1}\oplus U_m$. Induktionsannahme: für $k\in[i+1,m]$ gibt es Unterräume $U_k\subset E_k$ mit:

$$E_{i+1} = E_i \oplus \bigoplus_{j=0}^{m-i-1} g^j(U_{i+j+1}).$$

Lemma 2.5.3 Es gilt
$$E_{i-1} + \sum_{j=1}^{m-i} g^j(U_{i+j}) = E_{i-1} \oplus \bigoplus_{i=1}^{m_i} g^j(U_{i+j}).$$

Beweis. Sei $v \in E_{i-1}$ und $u_{i,j} \in U_{i+j}$ mit

$$v + \sum_{i=1}^{m-i} g^j(u_{i,j}) = 0.$$

Wir zeigen, dass $v = g^{j}(u_{i,j}) = 0$ für alle $j \in [1, m-i]$. Es gilt

$$\sum_{j=0}^{m-i-1} g^{i+j}(u_{i,j+1}) = \sum_{j=1}^{m-i} g^{i+j-1}(u_{i,j}) = -g^{i-1}(v) = 0.$$

Daraus folgt

$$\sum_{j=0}^{m-i-1} g^j(u_{i,j+1}) \in E_i.$$

Nach Induktionsannahme gilt $g^j(u_{i,j+1}) = 0$ für alle $j \in [0, m-i-1]$. Es folgt $g^{j+1}(u_{i,j+1}) = 0$ für alle $j \in [0, m-i-1]$ und $g^j(u_{i,j}) = 0$ für alle $j \in [1, m-i]$. Es folgt auch v = 0.

Sei U_i ein Komplement von $E_{i-1} \oplus \bigoplus_{i=1}^{m_i} g^j(U_{i+j})$ in E_i . Es gilt

$$E_i = E_{i-1} \oplus \bigoplus_{j=0}^{m-i} g^j(U_{i+j}).$$

Korollar 2.5.4 Seien U_i für $i \in [1, m]$ wie im Satz 2.5.2. Sei \mathcal{B}_i eine Basis von U_i , dann ist $g^j(\mathcal{B}_i)$ eine Basis von $g^j(U_i)$ für alle $j \in [0, i-1]$.

Beweis. Nach Lemma 2.5.1, genügt es zu zeigen, dass $g^{j-1}(U_i) \cap E_1 = 0$ für alle $j \in [0, i-1]$. Sei $v \in g^{j-1}(U_i) \cap E_1$ und sei $u \in U_i$ mit $g^{j-1}(u) = v$. Es gilt $g^j(u) = g(v) = 0$. Daraus folgt $u \in U_i \cap E_j \subset U_i \cap E_{i-1} = 0$. Es folgt u = 0 und v = 0.

Korollar 2.5.5 Für alle $i \in [1, m]$ gilt

$$\dim E_i = \dim E_{i-1} + \sum_{k=i}^m \dim U_k \text{ und } \dim U_i = 2 \dim E_i - \dim E_{i+1} - \dim E - i - 1,$$

wobei $E_{m+1} = E_m = V$.

Beweis. Die erste Dimensionsformel folgt aus dem Satz 2.5.2 und dem Korollar 2.5.4. Die zweite Dimensionsformel folgt aus der ersten nach absteigender Induktion über i.

Für i=m gilt dim $E_m=\dim E_{m-1}+\dim U_m$. Daraus folgt die Dimensionformel. Induktionsannahme: Für $k\in [i+1,m]$ gilt $\dim U_k=\dim E_k-\dim E_{k+1}-\dim E_{k-1}$.

Es gilt dim $E_i = \dim E_{i-1} + \sum_{k=i}^m \dim U_k$. Daraus folgt

$$\dim U_{i} = \dim E_{i} - \dim E_{i-1} - \sum_{k=i+1}^{m} \dim U_{k}$$

$$= \dim E_{i} - \dim E_{i-1} - 2 \sum_{k=i+1}^{m} \dim E_{k} + \sum_{k=i+1}^{m} \dim E_{k+1} + \sum_{k=i+1}^{m} \dim E_{k-1}$$

$$= \dim E_{i} - \dim E_{i-1} - 2 \sum_{k=i+1}^{m} \dim E_{k} + \sum_{k=i+2}^{m+1} \dim E_{k} + \sum_{k=i}^{m-1} \dim E_{k}$$

$$= \dim E_{i} - \dim E_{i-1} - \dim E_{i+1} - \dim E_{m} + \dim E_{m+1} + \dim E_{i}$$

$$= 2 \dim E_{i} - \dim E_{i-1} - \dim E_{i+1}.$$

Korollar 2.5.6 Es gilt

$$V = \bigoplus_{i=1}^{m} \left(\bigoplus_{j=0}^{i-1} g^{j}(U_{i}) \right).$$

Korollar 2.5.7 Seien U_i für $i \in [1, m]$ wie im Satz 2.5.2 und seien \mathcal{B}_i Basen von U_i . Dann ist

$$\mathcal{B} = \bigcup_{i=1}^{m} \left(\bigcup_{j=1}^{i-1} g^{j}(\mathcal{B}_{i}) \right)$$

eine Basis von V.

Definition 2.5.8 Sei $m \in \mathbb{N}$. Für $i \in [1, m]$, sei $n_i, d_i \in \mathbb{N}$ und $A_i \in M_{n_i}(K)$. Wir schreiben diag (d_1A_1, \dots, d_mA_m) für die blockdiagonale Matrix mit d_1 -Mal A_1, \dots, d_m -Mal A_m auf der Diagonale.

Korollar 2.5.9 Es gilt $\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(d_1 J(\lambda, 1), \cdots, d_m J(\lambda, m))$ wobei $d_i = \dim U_i$.

Beweis. Für $v \in U_i$, ist $(g^{i-1}(v), \dots, g(v), v)$ eine Jordan-Kette für f zum Eigenwert λ . Die Basis \mathcal{B} ist also eine Vereinigung von Jordan-Ketten und die obere Diagonalform der Matrix folgt daraus.

2.6 Jordansche Normalform

Satz 2.6.1 (Jordansche Normalform) Sei $f \in \text{End}(V)$, so dass χ_f (oder μ_f) in Linearfaktoren zerfällt. Dann gibt es eine Basis \mathcal{B} von V so, dass

$$\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(J(\zeta_1, n_1), \cdots, J(\zeta_s, n_s))$$

, wobei die Matrizen $J(\lambda_i, n_i)$ sind, bis auf Vertauschen, eindeutig bestimmt sind. Diese Matrix heißt **Jordan-Normalform** von f. Die ζ_1, \dots, ζ_s sind nicht notwendig paarweise verschieden.

Beweis. Ist \mathcal{B} eine Basis mit $\operatorname{Mat}_{\mathcal{B}}(f)$ wie oben, so sagen wir, dass $\operatorname{Mat}_{\mathcal{B}}(f)$ in Jordan-Normalform ist. Wir zeigen zuerst, dass es eine solche Basis gibt.

Für die Einschränkung f_i von f auf $H(f, \lambda_i)$ gilt $(f_i - \lambda_i \operatorname{Id})^{m_i} = 0$. Nach Korollar 2.5.9 gibt es eine Basis \mathcal{B}_i von $H(f, \lambda_i)$ so, dass $\operatorname{Mat}_{\mathcal{B}_i}(f_i)$ in Jordan-Normalform ist. Sei $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$. Nach dem Satz 2.3.7, ist \mathcal{B} eine Basis von V und es gilt

$$\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(\operatorname{Mat}_{\mathcal{B}_1}(f_1), \cdots, \operatorname{Mat}_{\mathcal{B}_r}(f_r)).$$

Es folgt, dass $Mat_{\mathcal{B}}(f)$ in Jordan-Normalform ist.

Wir zeigen jetzt, dass die Jordan-Blöcke, bis auf Vertauschen, eindeutig bestimmt sind. Sei $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_s$ eine Basis mit $\mathcal{B}_i = (v_{i,1}, \cdots, v_{i,n_i})$ so, dass $\mathrm{Mat}_{\mathcal{B}}(f)$ in Jordan-Normalform ist.

Sei $J(\zeta_i, n_i)$ ein Jordan-Block von $\operatorname{Mat}_{\mathcal{B}}(f)$. Dann ist $v_{i,1}$ ein Eigenvektor für den Eigenwert ζ_i . Es folgt, dass die Skalare ζ_1, \dots, ζ_s die Eigenwerte von f sind und also eindeutig bestimmt. Außerdem, gilt $v_{i,j} \in E_j(f,\zeta_i) \setminus E_{j-1}(f,\zeta_i)$ für $j \in [1,n_i]$. Sei $e_j(\lambda) = \dim E_j(f,\lambda)$. Es folgt

$$d_j(\lambda) = e_j(\lambda) - e_{j-1}(\lambda) = \text{Anzahl der Elemente von } \{i \mid \zeta_i = \lambda \text{ und } n_i \leq j\}.$$

Sei $j_t(\lambda)$ die Anzahl von Jordan-Blöcken der Gestalt $J(\lambda,t)$ in alle Jordan-Blöcken $J(\zeta_1,n_1),\cdots,J(\zeta_s,n_s)$. Es folgt

$$d_j(\lambda) = \sum_{t \ge j} j_t(\lambda).$$

Daraus folgt

$$j_t(\lambda) = d_t(\lambda) - d_{t-1}(\lambda) = e_t(\lambda) + e_{t-2}(\lambda) - 2e_{t-1}(\lambda).$$

Es folgt, dass $j_t(\lambda)$ nur von f abhängt und dass die Jordan-Blöcke, bis auf Vertauschen, eindeutig bestimmt sind.

Sei $e_t(f,\lambda) = \dim E_t(f,\lambda)$ und sei $j_t(f,\lambda)$ die Anzahl von Jordan-Blöcke der Größe t zum Eingenwert λ .

Korollar 2.6.2 Sei $f \in \text{End}(V)$ und J eine jordansche Normalform für f.

- (1) J hat dim $E(f, \lambda) = e_1(f, \lambda)$ Jordan-Blöcke zum Eigenwert λ .
- (II) J hat $j_t(f,\lambda) = 2e_t(f,\lambda) e_{t+1}(f,\lambda) e_{t-1}(f,\lambda)$ Jordan-Blöcke $J(\lambda,t)$.
- (III) Es gilt

$$e_i(\lambda) = \sum_{t \ge 1} \min(i, t) j_t(f, \lambda).$$

Beweis. (1) folgt aus (111) für i = 1.

Wir haben im Beweis des obigen Satzes gezeigt, dass

$$e_i(\lambda) - e_{i-1}(\lambda) = d_i(\lambda) = \sum_{t \ge i} j_t(\lambda).$$

Es folgt

$$j_t(f,\lambda) = d_t(\lambda) - d_{t+1}(\lambda) = e_t(f,\lambda) - e_{t-1}(f,\lambda) - (e_{t+1}(f,\lambda) - e_t(f,\lambda))$$

und (11) folgt.

Es gilt auch

$$e_i(f,\lambda) = \sum_{k=1}^i d_k(\lambda) = \sum_{k=1}^i \sum_{t \ge k} j_t(\lambda) = \sum_{t \ge 1} j_t(\lambda) \sum_{k < i, t} 1 = \sum_{t \ge 1} \min(i, t) j_t(f, \lambda).$$

Definition 2.6.3 Das Spektrum $\Sigma(f)$ eines Endomorphismus f (bzw. $\Sigma(A)$ einer Matrix A) ist die Menge aller Eigenwerte von f (bzw. von A).

Korollar 2.6.4 Zwei Matrizen $A, B \in M_n(K)$, so dass χ_A und χ_B in Linearfaktoren zerfallen, sind genau dann ähnlich, wenn dim $E_i(A, \lambda) = \dim E_i(B, \lambda)$ für alle $\lambda \in K$.

Beweis. Nach dem Satz sind A und B genau dann ähnlich, wenn A und B die selben Jordan-Blöcke haben. Nach dem obigen Korollar ist dies äquivalent zu $j_t(A,\lambda) = j_t(B,\lambda)$ für alle $\lambda \in K$ und alle $t \in \mathbb{N}$. Nach dem obigen Korollar gilt

$$j_t(f,\lambda) = 2\dim E_t(f,\lambda) - (\dim E_{t-1}(f,\lambda) + \dim E_{t+1}(f,\lambda))$$

und (nach Induktion) gilt auch

$$\dim E_i(f,\lambda) = \sum_{t\geq 1} \min(i,t) j_t(f,\lambda).$$

Es folgt, dass A und B genau dann ähnlich sind, wenn dim $E_i(A, \lambda) = \dim E_i(B, \lambda)$ für alle $\lambda \in K$.

Beispiel 2.6.5 Seien

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Diese Matrizen sind in Jordan-Normalform. Die Jordan-Blöcke für A sind

Die Jordan-Blöcke für B sind

Es folgt, dass $A \not\approx B$ (dies ist eine Lösung für die Übung nach dem Beispiel 1.10.8). Wir können die Dimension aller erweiterten Eigenräume Bestimmen. Für $\lambda \neq 1$ gilt dim $E_i(A, \lambda) = \dim E_i(B, \lambda) = 0$ für alle i. Es gilt

$$\dim E_0(A,1) = 0$$
, $\dim E_1(A,1) = 3$ und $\dim E_i(A,\lambda) = 4$ für alle $i \geq 2$.

$$\dim E_0(B,1)=0, \dim E_1(B,1)=2$$
 und $\dim E_i(B,\lambda)=4$ für alle $i\geq 2$.

3 Symmetrische Gruppe

3.1 Definition

Sei $n \in \mathbb{N}$, mit $n \geq 1$ und sei $I_n = [1, n]$.

Definition 3.1.1 Die symmetrische Gruppe S_n ist die Gruppe (Bij (I_n) , \circ), wobei Bij (I_n) die Menge aller bijektiven Abbildungen $I_n \to I_n$ ist und die Verknüpfung \circ die Komposition von Abbildungen ist. Ein Element von S_n heißt **Permutation**.

Notation 3.1.2 Ist $\sigma: I_n \to I_n$ ein Element in S_n , so schreiben wir

$$\sigma = (\sigma(1), \cdots, \sigma(n)).$$

Beispiel 3.1.3 (1) Die Gruppe S_1 . Die Menge I_1 hat nur ein Element: 1. Es gibt also nur eine Abbildung $I_1 \to I_1$: die Identität. Diese ist eine Bijektive Abbildung. Es gilt

$$S_1 = \{ \mathrm{Id}_{I_1} \}.$$

(n) Die Gruppe S_2 . Die Menge I_2 hat zwei Elemente: 1 und 2. Es gibt zwei Bijektionen $I_2 \to I_2$: die Identität und die Abbildung $\tau_{1,2}$ definiert durch $\tau_{1,2}(1) = 2$ und $\tau_{1,2}(2) = 1$. Es gilt

$$S_2 = \{ \mathrm{Id}_{I_2}, \tau_{1,2} \} = \{ (1,2), (2,1) \}.$$

(III) Die Gruppe S_3 hat 6 Elemente:

$$S_3 = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}.$$

Lemma 3.1.4 Die Gruppe S_3 is nicht abelsch.

Beweis. Es gilt $(2,1,3) \circ (2,3,1) = (1,3,2)$ und $(2,3,1) \circ (2,1,3) = (3,2,1)$. Es folgt $(2,1,3) \circ (2,3,1) \neq (2,3,1) \circ (2,1,3)$ und S_3 ist nicht abelsch.

Lemma 3.1.5 Die Abbildung $\iota_{n+1}: S_n \to S_{n+1}$ definiert durch

$$\iota_{n+1}(\sigma)(i) = \begin{cases} \sigma(i) & \text{für } i \in [1, n] \\ n+1 & \text{für } i = n+1, \end{cases}$$

ist ein injektiver Gruppenhomomorphismus. Das Bild ist die Untergruppe

$$\iota_{n+1}(S_n) = \{ \sigma \in S_{n+1} \mid \sigma(n+1) = n+1 \} = S_{n+1}(n+1).$$

Beweis. Die Abbildung ist injektiv: Seien $\sigma, \tau \in S_n$ mit $\iota_{n+1}(\sigma) = \iota_{n+1}(\tau)$. Dann gilt für alle $i \in [1, n]$, dass $\sigma(i) = \iota_{n+1}(\sigma)(i) = \iota_{n+1}(\tau)(i) = \tau(i)$. Es folgt $\sigma = \tau$.

Seien $\sigma, \tau \in S_n$. Es gilt

$$\iota_{n+1}(\sigma \circ \tau)(i) = \begin{cases} \sigma \circ \tau(i) & \text{für } i \in [1, n] \\ n+1 & \text{für } i = n+1, \end{cases}$$

Es gilt auch

$$\iota_{n+1}(\sigma) \circ \iota_{n+1}(\tau)(i) = \left\{ \begin{array}{ll} \iota_{n+1}(\sigma)(\tau(i)) & \text{für } i \in [1,n] \\ \iota_{n+1}(\sigma)(n+1) & \text{für } i = n+1, \end{array} \right. = \left\{ \begin{array}{ll} \sigma(\tau(i)) & \text{für } i \in [1,n] \\ n+1 & \text{für } i = n+1, \end{array} \right.$$

Daraus folgt $\iota_{n+1}(\sigma \circ \tau) = \iota_{n+1}(\sigma) \circ \iota_{n+1}(\tau)$ und ι_{n+1} ist ein Gruppenhomomorphismus.

Das Bild ist enthalten in $S_{n+1}(n)$. Sei $\sigma \in S_{n+1}(n+1)$. Dann gilt $\sigma(I_n) \subset I_n$ und $\sigma|_{I_n} \in S_n$. Es gilt $\iota_{n+1}(\sigma|_{I_n}) = \sigma$.

Korollar 3.1.6 Die Gruppe S_n mit $n \geq 3$ ist nicht abelsch.

Beweis. Nach Induktion über n. Für n=3, gilt dies nach Lemma 3.1.4. Nach Induktionsannahme ist S_n nicht abelsch, es gibt also Elemente $\sigma, \tau \in S_n$ mit $\sigma \circ \tau \neq \tau \circ \sigma$. Wir betrachten $\iota_{n+1}(\sigma), \iota_{n+1}(\tau) \in S_{n+1}$. Da ι_{n+1} injektiv und ein Gruppenhomomorphismus ist, gilt $\iota_{n+1}(\sigma) \circ \iota_{n+1}(\tau) \neq \iota_{n+1}(\tau) \circ \iota_{n+1}(\sigma)$. Es folgt S_{n+1} ist nicht abelsch.

3.2 Transpositionen

Definition 3.2.1 Seien $i, j \in [1, n]$ mit $i \neq j$. **Die Transposition** $\tau_{i,j}$ ist die Permutation definiert durch

$$\tau_{i,j}(k) = \begin{cases} j & \text{für } k = i \\ i & \text{für } k = j, \\ k & \text{sonst.} \end{cases}$$

Bemerkung 3.2.2 Es gilt $\tau_{i,j}^2 = \operatorname{Id}_{i_n}$ oder $\tau_{k,n}^{-1} = \tau_{k,n}$.

Lemma 3.2.3 Jedes $\sigma \in S_n$ ist ein Produkt von $r \leq n-1$ Transpositionen.

Beweis. Nach Induktion über n. Klar für n=1 und n=2. Sei $\sigma \in S_{n+1}$ und sei $i=\sigma(n+1)$. Sei $\tau=\tau_{i,n+1}\circ\sigma$. Es gilt $\tau(n+1)=\tau_{i,n+1}(i)=n+1$. Es gilt $\tau\in S_n(n+1)$ und nach Induktionsvorraussetzung ist τ ein Produkt von $r\leq n-1$ Transpositionen. Es gilt $\sigma=\tau_{i,n+1}\circ\tau$. Daraus folgt, dass σ ein Produkt von $r+1\leq n$ Transpositionen ist.

Lemma 3.2.4 Sei G eine Gruppe und sei $g \in G$. Sei $\operatorname{Int}_g : G \to G$ definiert durch $\operatorname{Int}_g(h) = ghg^{-1}$ für alle $h \in G$. Dann ist Int_g ein Gruppenautomorphismus von G und es gilt $\operatorname{Int}_g^{-1} = \operatorname{Int}_{g^{-1}}$.

Beweis. Es gilt $\operatorname{Int}_g(h)\operatorname{Int}_g(k)=ghg^{-1}gkg^{-1}=ghkg^{-1}=\operatorname{Int}_g(hk)$. Daraus folgt, dass Int_g ein Gruppenhomomorphismus ist. Es gilt $\operatorname{Int}_g(\operatorname{Int}_{g^{-1}}(h)=g(g^{-1}hg)g^{-1}=h$ und $\operatorname{Int}_{g^{-1}}(\operatorname{Int}_g(h)=g^{-1}(ghg^{-1})g=h$. Daraus folgt, dass $\operatorname{Int}_g^{-1}=\operatorname{Int}_{g^{-1}}$ und Int_g ein Gruppenautomorphismus ist.

Korollar 3.2.5 Sei $k \in [1, n+1]$ und sei $\iota_k : S_n \to S_{n+1}$ definiert durch

$$\iota_k(\sigma) = \tau_{k,n+1} \circ \iota_{n+1}(\sigma) \circ \tau_{k,n+1}^{-1}$$

Dann ist ι_k injektiv und ein Gruppenhomomorphismus. Das Bild von ι_k ist die Untergruppe

$$\iota_k(S_n) = \{ \sigma \in S_{n+1} \mid \sigma(k) = k \} = S_{n+1}(k).$$

Beweis. Es gilt $\iota_k = \operatorname{Int}_{\tau_{k,n+1}} \circ \iota_{n+1}$. Es folgt, dass ι_k injektiv und ein Gruppenhomomorphismus ist. Das Bild von ι_k ist

$$\iota_k(S_n) = \operatorname{Int}_{\tau_{k,n+1}}(\iota_{n+1}(S_n)) = \operatorname{Int}_{\tau_{k,n+1}}(\{\sigma \in S_{n+1} \mid \sigma(n+1) = n+1\}).$$

Wir zeigen $\operatorname{Int}_{\tau_{k,n+1}}(\{\sigma \in S_{n+1} \mid \sigma(n+1) = n+1\}) = \{\sigma \in S_{n+1} \mid \sigma(k) = k\}.$ Sei $\sigma \in S_{n+1}$ mit $\sigma(n+1) = n+1$. Es gilt $\operatorname{Int}_{\tau_{k,n+1}}(\sigma)(k) = \tau_{k,n+1}\sigma\tau_{k,n+1}(k) = \tau_{k,n+1}\sigma(n+1) = \tau_{k,n+1}(n+1) = k$. Es folgt $\operatorname{Int}_{\tau_{k,n+1}}(\sigma) \in S_{n+1}(k)$. Sei $\sigma \in S_{n+1}$ mit $\sigma(k) = k$. Es gilt $\sigma = \operatorname{Int}_{\tau_{k,n+1}}\operatorname{Int}_{\tau_{k,n+1}^{-1}}(\sigma)$. Sei $\tau = \operatorname{Int}_{\tau_{k,n+1}^{-1}}(\sigma) = \operatorname{Int}_{\tau_{k,n+1}}(\sigma)$. Es gilt $\tau(n+1) = \tau_{k,n+1}\sigma\tau_{k,n+1}(n+1) = \tau_{k,n+1}\sigma(k) = \tau_{k,n+1}(k) = n+1$. Es folgt $\tau = \operatorname{Int}_{\tau_{k,n+1}}(\sigma) \in S_{n+1}(n+1)$ und $\sigma = \operatorname{Int}_{\tau_{k,n+1}}(\tau)$.

Lemma 3.2.6 Sei $S_{n+1}^i = \{ \sigma \in S_{n+1} \mid \sigma(n+1) = i \}$. Dann ist die Abbildung $S_{n+1}^i \to S_{n+1}(n+1)$ definiert durch $\sigma \mapsto \tau_{i,n+1} \circ \sigma$ eine Bijektion.

Beweis. Wir zeigen, dass diese Abbildung wohl definiert ist, i.e. dass für $\sigma \in S_{n+1}^i$ gilt $\tau_{i,n+1} \circ \sigma \in S_{n+1}(n+1)$. Es gilt

$$\tau_{i,n+1}\sigma(n+1) = \tau_{i,n+1}(i) = n+1.$$

Umgekehrt betrachten wir die Abbildung $S_{n+1}(n+1) \to S_{n+1}^i$ definiert durch $\sigma \mapsto \tau_{i,n+1} \circ \sigma$. Diese Abbildung ist wohl definiert: für $\sigma \in S_{n+1}(n+1)$ gilt

$$\tau_{i,n+1} \circ \sigma(n+1) = \tau_{i,n+1}(n+1) = i.$$

Diese Abbildungen sind invers. Es folgt das Lemma.

Korollar 3.2.7 Die Gruppe S_n hat n! Elemente.

Beweis. Nach Induktion über n. Für n=1 ist die Behauptung wahr. Angenommen S_n hat n! Elemente. Die Gruppe S_{n+1} ist die disjunkte Vereinigung

$$S_{n+1} = \prod_{i=1}^{n+1} S_{n+1}^i.$$

Nach dem Lemma, folgt, dass S_{n+1}^i genau so viele Elemente wie S_n hat. Nach Induktionsvorraussetzung hat S_{n+1} , für alle $i \in [1, n+1]$, genau n! Elemente. Es folgt, dass S_{n+1} genau $n \cdot n! = (n+1)!$ Elemente hat.

3.3 Support

Definition 3.3.1 Der Support einer Permutation $\sigma \in S_n$ ist die Teilmenge Supp $(\sigma) \subset I_n$ definiert durch

$$\operatorname{Supp}(\sigma) = \{ i \in I_n \mid \sigma(i) \neq i \}.$$

Lemma 3.3.2 Seien $\sigma, \tau \in S_n$ mit $\operatorname{Supp}(\sigma) \cap \operatorname{Supp}(\tau) = \emptyset$. Dann gilt $\sigma \circ \tau = \tau \circ \sigma_{\square}$

Beweis. Übung.

3.4 Permutationsmatrix

Definition 3.4.1 Sei $\sigma \in S_n$. Der zugehörige **Permutationsendomoprhismus** $f_{\sigma} \in \operatorname{End}(k^n)$ und die zugehörige **Permutationsmatrix** P_{σ} sind definiert durch

$$f_{\sigma}(e_i) = e_{\sigma(i)} \text{ und } P_{\sigma} = \operatorname{Mat}_{\mathcal{B}}(f_{\sigma}),$$

wobei $\mathcal{B} = (e_1, \dots, e_n)$ die kanonische basis des k^n ist.

Beispiel 3.4.2 Sei $\sigma = (2,3,1) \in S_3$. Dann ist

$$P_{\sigma} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Lemma 3.4.3 Seien $\sigma, \tau \in S_n$. Dann gilt $f_{\sigma} \circ f_{\tau} = f_{\sigma \circ \tau}$ und $P_{\sigma} \circ P_{\tau} = P_{\sigma \circ \tau}$.

Beweis. Die Gleichung $P_{\sigma} \circ P_{\tau} = P_{\sigma \circ \tau}$ folgt aus $f_{\sigma} \circ f_{\tau} = f_{\sigma \circ \tau}$. Da \mathcal{B} eine Basis ist, genügt es zu zeigen, dass $f_{\sigma} \circ f_{\tau}(e_i) = f_{\sigma \circ \tau}(e_i)$. Es gilt

$$f_{\sigma} \circ f_{\tau}(e_i) = f_{\sigma}(e_{\tau(i)}) = e_{\sigma(\tau(i))} = f_{\sigma \circ \tau}(e_i).$$

Korollar 3.4.4 Sei $\sigma \in S_n$.

- (1) Die Matrix P_{σ} ist invertierbar.
- (11) Die Abbildung $S_n \to \mathrm{GL}_n(K)$ ist ein Gruppenhomomorphismus.

Beweis. (1) Es gilt $P_{\sigma} \circ P_{\sigma^{-1}} = P_{\mathrm{Id}} = I_n = P_{\sigma^{-1}} \circ P_{\sigma}$. Daraus folgt, dass P_{σ} invertierbar ist mit $P_{\sigma^{-1}}$ als Inversem.

(11) Folgt aus dem Lemma.

Korollar 3.4.5 Die Abbildung $\varepsilon: S_n \to K \setminus \{0\}$ definiert durch $\sigma \mapsto \det(P_{\sigma})$ ist ein Gruppenhomomorphismus.

Beweis. Wir wissen, dass det : $GL_n(K) \to K \setminus \{0\}$ ein Gruppenhomomorphismus ist. Daraus folgt, dass die obige Komposition auch ein Gruppenhomomorphismus ist.

Lemma 3.4.6 Sei $\tau_{i,j}$ eine Transposition. Dann gilt $\varepsilon(\tau_{i,j}) = -1$.

Beweis. Man sieht, dass $P_{\tau_{i,j}} = E_{i,j}^{(n)}$ wobei $E_{i,j}^{(n)}$ die zugehörige Elementarmatrix ist. Daraus folgt das Lemma.

Korollar 3.4.7 Die Abbilgung $\varepsilon: S_n \to \{1, -1\}$ definiert durch $\varepsilon(\sigma) = \det(P_{\sigma})$ ist ein Gruppenhomomorphismus.

Beweis. Es bleibt nur zu zeigen, dass $det(P_{\sigma}) \in \{-1, -1\}$. Nach Lemma 3.2.3, gilt, dass σ ein Produkt $\tau_1 \cdots \tau_k$ von Transpositionen ist. Es folgt $det(P_{\sigma}) = (-1)^k \in \{-1, -1\}$.

Definition 3.4.8 Eine Permutation $\sigma \in S_n$ heißt gerade falls $\varepsilon(\sigma) = 1$ und ungerade falls $\varepsilon(\sigma) = -1$.

3.5 Elementare Transpositionen

Definition 3.5.1 Sei $i \in [1, n-1]$. **Die elementare Transposition** s_i ist die Transposition $\tau_{i,i+1}$.

Lemma 3.5.2 Seien $i, j \in [1, n]$ mit i < j. Es gilt

$$\tau_{i,j} = s_i \cdots s_{j-2} s_{j-1} s_{j-2} \cdots s_i.$$

Insbesondere ist $\tau_{i,j}$ ein Produkt von 2(j-i)-1 elementare Transpositionen.

Beweis. Nach Induktion über j-i. Für j-i=1 gilt j=i+1 und $\tau_{i,j}=s_i$. Angenommen $\tau_{i,j}=s_i\cdots s_{j-2}s_{j-1}s_{j-2}\cdots s_i$, wir zeigen $\tau_{i-1,j}=s_{i-1}\cdots s_{j-2}s_{j-1}s_{j-2}\cdots s_{i-1}$. Es gilt

$$s_{i-1}\tau_{i,j}s_{i-1}=\tau_{i-1,j}.$$

Das Lemma folgt nach Induktionsannahme.

Satz 3.5.3 Jedes $\sigma \in S_n$ ist ein Produkt von $R \leq \frac{n(n-1)}{2}$ elementare Transpositionen.

Beweis. Nach Induktion über n. Für n=1 oder n=2 ist die Behauptung wahr. Wir nehmen an, dass das Lemma für S_n wahr ist. Sei $\sigma \in S_{n+1}$ und sei $i=\sigma(n+1)$. Sei $\tau=s_n\cdots s_i\sigma$. Es gilt $\tau(n+1)=n+1$. Es folgt, dass $\tau \in S_n$ und nach Induktionsannahme gibt es $R \leq \frac{n(n-1)}{2}$ elementare Tranpositionen s_{i_1}, \cdots, s_{i_R} mit $\tau=s_{i_1}\cdots s_{i_R}$. Es folgt, dass σ ein Produkt von weniger als

$$\frac{n(n-1)}{2} + n - i + 1 \le \frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$$

elementaren Transpositionen ist.

Lemma 3.5.4 Es gilt

- (1) $s_i^2 = \text{Id}$, für alle $i \in [1, n-1]$.
- (11) $(s_i s_{i+1})^3 = \text{Id}$, für alle $i \in [1, n-2]$.

(111)
$$(s_i s_j)^2 = \text{Id}$$
, für alle $i, j \in [1, n-1]$ mit $|i-j| > 1$.

Beweis. Übung. ■

Satz 3.5.5 Sei $\sigma \in S_n$ und sei

$$I(\sigma) = \{(i, j) \in [1, n] \times [1, n] \mid i < j \text{ und } \sigma(i) > \sigma(j)\}$$

und $\ell(\sigma) = |I(\sigma)|$. Dann gilt $\varepsilon(\sigma) = (-1)^{\ell(\sigma)}$.

Beweis. Sei $\sigma \in S_n$ mit $\sigma(i) < \sigma(i+1)$ für alle $i \in [1, n-1]$. Dann gilt $\sigma = \operatorname{Id}$ (Übung).

Sei $\sigma \neq \text{Id.}$ Es gibt also ein $i \in [1, n-1]$ mit $\sigma(i) > \sigma(i+1)$. Wir zeigen, dass

$$s_i(I(\sigma)) = I(\sigma s_i) \cup \{(i+1,i)\} \text{ und } \ell(\sigma) = \ell(\sigma s_i) + 1.$$

Sei $(k,l) \in I(\sigma)$. Wir zeigen $s_i(k,l) = (s_i(k), s_i(l)) \in I(\sigma s_i) \cup \{(i+1,i)\}$. Es gilt k < l und $\sigma(k) > \sigma(l)$. Es gilt auch $s_i(k,l) = (s_i(k), s_i(l))$ und $\sigma s_i(s_i(k)) = \sigma(k) > \sigma(l) = \sigma s_i(s_i(l))$.

Für (k,l) = (i,i+1) gilt $s_i(k,l) = s_i(i,i+1) = (i+1,i)$. Sei $(k,l) \neq (i,i+1)$. Für $\{k,l\} \cap \{i,i+1\} = \emptyset$ gilt $s_i(k,l) = (k,l)$, also $s_i(k) < s_i(l)$. Daraus folgt $(s_i(k),s_i(l)) \in I(\sigma s_i)$.

Sei k = i und $l \neq i+1$. Da l > k = i, gilt l > i+1. Es gilt also $s_i(k) = i+1 < l = s_i(l)$. Daraus folgt $(s_i(k), s_i(l)) \in I(\sigma s_i)$.

Sei l = i + 1 und $k \neq i$. Da k < l = i + 1, gilt k < i. Es gilt also $s_i(k) = k < i = s_i(l)$. Daraus folgt $(s_i(k), s_i(l)) \in I(\sigma s_i)$.

Daraus folg $s_i(I(\sigma)) \subset I(\sigma s_i) \cup \{(i+1,i)\}$. Umgekehrt gilt $(i+1,i) = s_i(i,i+1) \in s_i I(\sigma)$. Sei $(a,b) = s_i(k,l) \in I(\sigma s_i)$ wobei $k = s_i(a)$ und $b = s_i(b)$. Wir zeigen, dass $(k,l) \in I(\sigma)$. Es gilt $\sigma(k) = \sigma s_i(a) > \sigma s_i(b) = \sigma(l)$.

Falls (a,b) = (i,i+1), gilt $\sigma(i+1) = \sigma s_i(a) > \sigma s_i(b) = \sigma(i)$. Widerspruch. Für $\{a,b\} \cap \{i,i+1\} = \emptyset$, gilt $(k,l) = s_i(a,b) = (a,b)$, also k=a < l=b und $(k,l) \in I(\sigma)$.

Sei a = i und $b \neq i + 1$. Da b > a = i, gilt b > i + 1. Es gilt also $k = s_i(a) = i + 1 < b = s_i(b) = l$ und $(k, l) \in I(\sigma)$.

Sei b = i+1 und $a \neq i$. Da a < b = i+1, gilt $k = s_i(a) = a < i = s_i(b) = l$ und $(k, l) \in I(\sigma)$. Daraus folgt $s_i(I(\sigma)) \supset I(\sigma s_i) \cup \{(i+1, i)\}$ und $s_i(I(\sigma)) = I(\sigma s_i) \cup \{(i+1, i)\}$. Es folgt, dass $\ell(\sigma) = |I(\sigma)| = |s_i(I(\sigma))| = |I(\sigma s_i)| + 1 = \ell(\sigma s_i) + 1$.

Wir zeigen durch Induktion über $\ell(\sigma)$, dass $\varepsilon(\sigma) = (-1)^{\ell(\sigma)}$. Für $\ell(\sigma) = 0$, gilt $\sigma(i) < \sigma(i+1)$ für alle i und $\sigma = \mathrm{Id}$. Es folgt $\varepsilon(\sigma) = 1 = (-1)^{\ell(\sigma)}$.

Induktionsannahme: für $\ell(\sigma) = r \ge 0$ gilt $\varepsilon(\sigma) = (-1)^{\ell(\sigma)}$. Sei σ mit $\ell(\sigma) = r + 1 > 0$. Es gibt ein $i \in [1, n]$ mit $\sigma(i) > \sigma(i + 1)$. Es folgt, dass $\ell(\sigma s_i) = \ell(\sigma) - 1 = r$. Nach Induktionsannahme gilt $\varepsilon(\sigma s_i) = (-1)^{\ell(\sigma s_i)} = (-1)^{\ell(\sigma)-1}$. Es folgt $\varepsilon(\sigma)(-1) = (-1)^{\ell(\sigma)-1}$ und $\varepsilon(\sigma) = (-1)^{\ell(\sigma)}$.

3.6 Determinante

Satz 3.6.1 Sei $A \in M_n(K)$ eine Matrix. Dann gilt

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}.$$

Beweis. Die zweite Formel folgt aus der Ersten und $det(A^T) = det(A)$.

Für die erste Formel zeigen wir, dass die Abbildung

$$A \mapsto D(A) = \sum_{\sigma \in S_n} \varepsilon \prod_{i=1}^n a_{i,\sigma(i)}$$

linear in den Zeilen ist, dass D(A) = 0 für Rg(A) < n und, dass $D(I_n) = 1$.

Wir schreiben $I_n = (\delta_{i,j})$. Es gilt

$$D(I_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n \delta_{i,\sigma(i)}.$$

Es gilt $\delta_{i,\sigma(i)} \neq 0$ genau dann, wenn $i = \sigma(i)$. Daraus folgt, dass gilt $\prod_{i=1}^n \delta_{i,\sigma(i)} \neq 0$ genau dann, wenn $i = \sigma(i)$ für alle $i \in [1,n]$ i.e. $\prod_{i=1}^n \delta_{i,\sigma(i)} \neq 0$ genau dann, wenn $\sigma = \mathrm{Id}$. Daraus folgt

$$D(I_n) = 1.$$

Sei $A \in M_n(K)$ und seien $Z_1, \dots, Z_k, \dots, Z_n$ die Zeilen von A. Sei B mit Zeilen $Z_1, \dots, Z_k + Z'_k, \dots, Z_n$ und C mit Zeilen $Z_1, \dots, Z'_k, \dots, Z_n$. Wir schreiben $Z_i = (a_{i,1}, \dots, a_{i,n})$ und $Z'_k = (a'_{k,1}, \dots, a'_{i,n})$. Es gilt also $A = (a_{i,j}), B = (b_{i,j})$ und $c_{i,j}$) wobei

$$b_{i,j} = \left\{ \begin{array}{ll} a_{i,j} & \text{für } i \neq k \\ a_{k,j} + a'_{k,j} & \text{für } i = k. \end{array} \right. \quad \text{und } c_{i,j} = \left\{ \begin{array}{ll} a_{i,j} & \text{für } i \neq k \\ a'_{k,j} & \text{für } i = k. \end{array} \right.$$

Es gilt

$$\prod_{i=1}^{n} b_{i,\sigma(i)} = \prod_{i=1}^{n} a_{i,\sigma(i)} + a'_{k,\sigma(k)} \prod_{i=1, i \neq k}^{n} a_{i,\sigma(i)} = \prod_{i=1}^{n} a_{i,\sigma(i)} + \prod_{i=1}^{n} c_{i,\sigma(i)}.$$

Daraus folgt D(B) = D(A) + D(C) und D ist linear in den Zeilen.

Sei A mit $\operatorname{Rg}(A) < n$. Es gibt eine Zeile Z_k mit $Z_k = \sum_{t=1, \ t \neq k}^n x_t Z_t$. Sei A_t die Matrix mit Zeilen $(Z_1, \cdots, Z_{k-1}, Z_t, Z_{k+1}, \cdots, Z_n)$. Nach Linearität gilt

$$D(A) = \sum_{t=1, t \neq k} x_t D(A_t).$$

Es genügt zu zeigen, dass $D(A_t) = 0$. Wir schreiben $A_t = (b_{i,j})$. Es gilt

$$D(A_t) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n b_{i,\sigma(i)}.$$

Da die t-te und die k-te Zeilen von A_t gleich sind, gilt $b_{t,j} = b_{k,j}$ für alle j. Sei $\tau = \tau_{j,k}$, es gilt

$$\prod_{i=1}^{n} b_{i,\sigma\tau(i)} = b_{t,\sigma(k)} b_{k,\sigma(t)} \prod_{i \neq t,k}^{n} b_{i,\sigma(i)} = b_{k,\sigma(k)} b_{t,\sigma(t)} \prod_{i \neq t,k}^{n} b_{i,\sigma(i)} = \prod_{i=1}^{n} b_{i,\sigma(i)}.$$

Es folgt

$$D(A_t) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n b_{i,\sigma(i)} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n b_{i,\sigma\tau(i)}.$$

Wir setzen $\theta = \sigma \tau$ i.e. $\sigma = \theta \tau^{-1} = \theta \tau$. Es gilt

$$D(A_t) = \sum_{\theta \in S_n} \varepsilon(\theta \tau) \prod_{i=1}^n b_{i,\theta(i)} = -\sum_{\theta \in S_n} \varepsilon(\theta) \prod_{i=1}^n b_{i,\theta(i)} = -D(A_t).$$

Es folgt $D(A_t) = 0$.

4 Tensorprodukt

4.1 Bilineare Abbildungen und Tensorprodukt

Seien U, V und W drei K-Vektorräume.

Definition 4.1.1 Eine Abbildung $f: U \times V \to W$ heißt **bilinear** falls für alle $x, y \in K$ für alle $u, u' \in U$ und alle $v, v' \in V$ gilt:

- f(xu + yu', w) = xf(u, v) + yf(u', v)
- f(u, xv + yv') = xf(u, v) + yf(u, v').

Lemma 4.1.2 Sei $f: U \times V \to W$ eine bilineare Abbildung und sei $g: W \to E$ eine lineare Abbildung. Dann ist $g \circ f$ eine bilineare Abbildung.

Beweis. Übung.

Wir versuchen bilineare Abbildung durch lineare Abbildungen zu ersetzen.

Definition 4.1.3 Ein K-Vektorraum E heißt **Tensorprodukt** von U und V falls gilt:

- 1. Es gibt eine bilineare Abbildung $\pi_E: U \times V \to E$ und
- 2. für jede bilineare Abbildung $f: U \times V \to W$, es gibt genau eine lineare Abbildung $L_f^E: E \to W$ mit $L_f^E \circ \pi_E = f$.

Bemerkung 4.1.4 Es ist noch nicht klar, dass es ein Tensorprodukt gibt. Wir zeigen zuerst, dass es höchstens ein Tensorprodukt gibt.

Satz 4.1.5 Seien E und F zwei Tensorprodukte für U und V. Dann sind E und F isomorph.

Beweis. Nach dem ersten Punkt der Definition gibt es bilineare Abbildungen π_E : $U \times V \to E$ und $\pi_F : U \times V \to F$. Nach dem zweiten Punkt gibt es eindeutig bestimmte lineare Abbildungen $L_{\pi_F}^E : E \to F$ und $L_{\pi_E}^F : F \to E$ mit $\pi_F = L_{\pi_F}^E \circ \pi_E$ und $\pi_E = L_{\pi_E}^F \circ \pi_F$. Wir zeigen, dass $L_{\pi_E}^F$ und $L_{\pi_F}^E$ isomorph sind.

Wir haben eine bilineare Abbildung $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E : U \times V \to E$ und es gilt $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E = L_{\pi_E}^F \circ \pi_F = \pi_E$. Nach dem zweiten Punkt gibt es genau

36 4 Tensorprodukt

eine Abbildung L_f^E mit $L_f^E \circ \pi_E = f = \pi_E$. Aber wir haben $\mathrm{Id}_E \circ \pi_E = \pi_E$ also $L_f^E = \mathrm{Id}_E$. Wir haben auch $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E$ also gilt $L_f^E = L_{\pi_E}^F \circ L_{\pi_F}^E$ und es folgt $L_{\pi_E}^F \circ L_{\pi_F}^E = \mathrm{Id}_E$.

Der selbe Beweis, mit E und F vertauscht, zeigt $L_{\pi_F}^E \circ L_{\pi_E}^F = \mathrm{Id}_F$. Es folgt, dass $L_{\pi_E}^F$ und $L_{\pi_F}^E$ Inverse sind.

Wir zeigen jetzt, dass es ein Tensorprodukt gibt. Wir betrachten

$$K^{(U\times W)}=\{\varphi:U\times V\to K\ |\ \varphi(u,v)\neq 0 \text{ nur für endlich viele } (u,v)\in U\times V\}.$$

Für $(u, v) \in U \times V$ gibt es eine Abbildung $\varphi_{(u,v)}$ so, dass

$$\varphi_{(u,v)}(a,b) = \begin{cases}
1 & \text{für } (a,b) = (u,v) \\
0 & \text{sonst.}
\end{cases}$$

Lemma 4.1.6 Das System $(\varphi_{(u,v)})_{(u,v)\in U\times V}$ ist eine Basis von $K^{(U\times V)}$. In anderen Worten ist das System $(\varphi_{(u,v)})_{(u,v)\in U\times V}$ linear unabhängig und für $\varphi\in K^{(U\times V)}$ gilt

$$\varphi = \sum_{(u,v) \in U \times V} \varphi(u,v) \varphi_{(u,v)}.$$

In dieser Summe tauchen nur endlich viele $\varphi(u,v)\varphi_{(u,v)}$ auf, die nicht null sind.

Die Abbildungen

$$\varphi_{(\lambda u + \mu u', v)} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u',v)} \text{ und } \varphi_{(u,\lambda v + \mu v')} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u,v')}$$

sind in $K^{(U\times V)}$ enthalten. Sei

$$L = \langle \varphi_{(\lambda u + \mu u', v)} - \lambda \varphi_{(u, v)} - \mu \varphi_{(u', v)}, \varphi_{(u, \lambda v + \mu v')} - \lambda \varphi_{(u, v)} - \mu \varphi_{(u, v')} \rangle.$$

Definition 4.1.7 Sei $U \otimes_K V = K^{(U \times V)}/L$ und $p: U \times V \to U \otimes_K V$ die kanonische Projektion. Für $(u,v) \in U \times V$, schreiben wir $u \otimes v = p(\varphi_{(u,v)})$ für das Bild von $\varphi_{(u,v)}$ in $U \otimes_K V$.

Lemma 4.1.8 Es gilt

1.
$$(\lambda u + \mu u') \otimes v = \lambda(u \otimes v) + \mu(u' \otimes v)$$
.

2.
$$u \otimes (\lambda v + \mu v') = \lambda(u \otimes v) + \mu(u \otimes v')$$
.

Beweis. Übung.

Lemma 4.1.9 Das System $(u \otimes v)_{(u,v) \in U \times V}$ ist ein EZS von $U \otimes_K V$.

Beweis. Es ist das Bild der Basis $(\varphi_{(u,v)})_{(u,v)\in U\times V}$.

Satz 4.1.10 $(U \otimes_K V, \pi)$ ist ein Tensorprodukt von U und V.

Beweis. Sei $\pi: U \times V \to U \otimes_K V$ die Abbildung, die durch $\pi(u, v) = u \otimes v$ definiert wird. Nach dem Lemma, ist π bilinear.

Sei jetzt $f: U \times V \to W$ eine bilineare Abbildung. wir zeigen, dass es eine lineare Abbildung $L_f: U \otimes_K V \to W$ gibt mit $f = L_f \circ \pi$.

Wir definieren zuerst eine lineare Abbildung $g: K^{(U\times V)} \to W$. Da $(\varphi_{(u,v)})_{(u,v)\in U\times V}$ eine Basis ist, genügt es $g(\varphi_{(u,v)})$ zu definieren. Wir setzen $g(\varphi_{(u,v)}) = f(u,v)$. Wir zeigen, dass $g|_L = 0$. Da $(\varphi_{(\lambda u + \mu u',v)} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u',v)}, \varphi_{(u,\lambda v + \mu v')} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u,v')})$ ein EZS von L ist, genügt es zu zeigen, dass

$$g(\varphi_{(\lambda u + \mu u', v)} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u',v)}) = g(\varphi_{(u,\lambda v + \mu v')} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u,v')}) = 0.$$

Da g linear und f bilinear ist, gilt

$$g(\varphi_{(\lambda u + \mu u', v)} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u',v)}) = g(\varphi_{(\lambda u + \mu u', v)}) - \lambda g(\varphi_{(u,v)}) - \mu g(\varphi_{(u',v)}))$$

$$= f(\lambda u + \mu u', v) - \lambda f(u, v) - \mu f(u', v)$$

$$= 0.$$

Analog zeigen wir, dass $g(\varphi_{(u,\lambda v+\mu v')} - \lambda \varphi_{(u,v)} - \mu \varphi_{(u,v')}) = 0.$

Nach dem Homomorphiesatz (Satz 7.4.8 Skript LAI), gibt es eine lineare Abbildung $L_f: U \otimes_K V \to W$, so dass das Diagramm

$$K^{(U\times V)} \xrightarrow{g} W$$

$$\downarrow p \qquad \qquad \downarrow L_f$$

$$K^{(U\times V)}/L = U \otimes_K V$$

kommutiert. Wir zeigen, dass $L_f \circ \pi = f$. Es gilt

$$L_f \circ \pi(u,v) = L_f(u \otimes v) = L_f(p(\varphi_{(u,v)})) = g(\varphi_{(u,v)}) = f(u,v).$$

Es folgt, dass $U \otimes_K V$ ein Tensorprodukt von U und V ist.

4.2 Basen

Lemma 4.2.1 Sei (u_1, \dots, u_r) ein System in U und sei (v_1, \dots, v_r) ein linear unabhängiges System in V. Falls

$$\sum_{i=1}^{r} u_i \otimes v_i = 0,$$

so gilt $u_1 = \cdots = u_r = 0$.

38 4 Tensorprodukt

Beweis. Sei $\varphi \in U^{\vee}$ und sei $f_{\varphi}: U \times V \to V$ definiert durch $f_{\varphi}(u,v) = \varphi(u)v$. Dann ist f_{φ} bilinear und es gibt ein lineares $L_{f_{\varphi}}$ mit $L_{f_{\varphi}}(u \otimes v) = \varphi(u)v$. Es gilt

$$0 = L_{f_{\varphi}} \left(\sum_{i=1}^{r} u_i \otimes v_i \right) = \sum_{i=1}^{r} \varphi(u_i) v_i.$$

Da (v_1, \dots, v_r) linear unabhängig ist, gilt $\varphi(u_i) = 0$ für alle $i \in [1, r]$. Da dies für alle $\varphi \in U^{\vee}$ wahr ist, gilt $u_i = 0$ für alle $i \in [1, r]$.

Lemma 4.2.2 Seien (u_1, \dots, u_n) und (v_1, \dots, v_m) EZS von U und V. Dann ist $(u_i \otimes v_j)_{i \in [1,n], j \in [1,m]}$ ein EZS von $U \otimes_K V$.

Beweis. Da $(u \otimes v)_{u \in U, v \in V}$ ein EZS von $U \otimes_K V$ ist, genügt es zu zeigen, dass $u \otimes v \in \langle u_i \otimes v_j \mid i \in [1, n], j \in [1, m] \rangle$ für alle $u \in U$ und $v \in V$. Es gibt Skalare $\lambda_1, \dots, \lambda_n$ und μ_1, \dots, μ_m mit

$$u = \sum_{i=1}^{n} \lambda_i u_i$$
 und $v = \sum_{j=1}^{m} \mu_j v_j$.

Es gilt

$$u \otimes v = \left(\sum_{i=1}^{n} \lambda_{i} u_{i}\right) \otimes v$$

$$= \sum_{i=1}^{n} \lambda_{i} (u_{i} \otimes v)$$

$$= \sum_{i=1}^{n} \lambda_{i} \left(u_{i} \otimes \sum_{j=1}^{m} \mu_{j} v_{j}\right)$$

$$= \sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{m} \mu_{j} u_{i} \otimes v_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \mu_{j} u_{i} \otimes v_{j}.$$

Daraus folgt, dass $(u_i \otimes v_j)_{i \in [1,n], j \in [1,m]}$ ein EZS von $U \otimes_K V$ ist.

Satz 4.2.3 Seien (u_1, \dots, u_n) und (v_1, \dots, v_m) Basen von U und V. Dann ist $(u_i \otimes v_j)_{i \in [1,n], j \in [1,m]}$ eine Basis von $U \otimes_K V$.

Beweis. Aus Lemma 4.2.2 folgt, dass $(u_i \otimes v_j)_{i \in [1,n], j \in [1,m]}$ ein EZS ist. Seien $\lambda_{i,j}$ Skalare mit

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i,j} u_i \otimes v_j = 0.$$

Es gilt

$$\sum_{j=1}^{m} \left(\sum_{i=1}^{n} \lambda_{i,j} u_i \right) \otimes v_j = 0.$$

Aus Lemma 4.2.1 folgt

$$\sum_{i=1}^{n} \lambda_{i,j} u_i 0$$

für alle $j \in [1, m]$. Es folgt $\lambda_{i,j} = 0$ für alle $i \in [1, n]$ und $j \in [1, m]$.

Bemerkung 4.2.4 Mit dem selben Beweis gilt der obige Satz für unendlich-dimensionale Vektorräume.

Korollar 4.2.5 Seien U und V endlich-dimensionale Vektorräume. Dann gilt

$$\dim_K(U \otimes_K V) = \dim_K U \dim_K V.$$

4.3 Erste Eigenschaften

Satz 4.3.1 Es gibt genau einen Isomorphismus $\Phi: U \otimes_K V \to V \otimes_K U$ mit $\Phi(u \otimes v) = v \otimes u$.

Beweis. Seien (u_1, \dots, u_n) und (v_1, \dots, v_m) Basen von U und V. Dann ist $(u_i \otimes v_j)_{i \in [1,n], j \in [1,m]}$ eine Basis von $U \otimes_K V$ und $(v_j \otimes u_i)_{i \in [1,n], j \in [1,m]}$ eine Basis von $V \otimes_K U$. Wir setzen

$$\Phi(u_i \otimes v_j) = v_j \otimes u_i \text{ und } \Phi'(v_j \otimes u_i) = u_i \otimes v_j.$$

Dann sind Φ und Φ' Isomorphismen mit $\Phi^{-1} = \Phi'$. Man zeigt (Übung), dass $\Phi(u \otimes v) = v \otimes u$ für alle $u \in U$ und $v \in V$.

 Φ ist eindeutig bestimmt weil $u \otimes v$ ein EZS von $U \otimes_K V$ ist.

Satz 4.3.2 Es gibt genau einen Isomorphismus $\Psi: U \otimes_K (V \otimes_K W) \to (U \otimes_K V) \otimes_K W$ mit $\Psi(u \otimes (v \otimes w)) = (u \otimes v) \otimes w$.

Beweis. Seien (u_1, \dots, u_n) , (v_1, \dots, v_m) und (w_1, \dots, w_r) Basen von U, V und W. Dann ist $((u_i \otimes v_j) \otimes w_k)_{i \in [1,n], j \in [1,m], k \in [1,r]}$ eine Basis von $(U \otimes_K V) \otimes_K W$ und $(u_i \otimes (v_j \otimes w_k))_{i \in [1,n], j \in [1,m], k \in [1,r]}$ eine Basis von $U \otimes_K (V \otimes_K W)$.

Sei $\Psi: (U \otimes_K V) \otimes_K W \to U \otimes_K (V \otimes_K W)$ und $\Psi': U \otimes_K (V \otimes_K W) \to (U \otimes_K V) \otimes_K W$ die lineare Abbildungen definiert durch $\Psi((u_i \otimes v_j) \otimes w_k) = u_i \otimes (v_j \otimes w_k)$ und sei $\Psi'((u_i \otimes (v_j \otimes w_k)) = (u_i \otimes v_j) \otimes w_k$. Dann sind Φ und Φ' Isomorphismen mit $\Psi^{-1} = \Psi'$. Man zeigt (Übung), dass $\Psi((u \otimes v) \otimes w) = u \otimes (v \otimes w)$ für alle $u \in U$, $v \in V$ und $w \in W$.

 Ψ ist eindeutig bestimmt weil $(u \otimes v) \otimes w$ ein EZS von $(U \otimes_K V) \otimes_K W$ ist.

Bemerkung 4.3.3 Wir werden die Klammern in Multitensorprodukten nicht mehr schreiben. Wir schreiben z.b. $U_1 \otimes_K \cdots \otimes_K U_n$.

Definition 4.3.4 Sei $n \in \mathbb{N}$. Wir schreiben $V^{\otimes n}$ für $\underbrace{V \otimes \cdots \otimes V}_{n \text{ Mal}}$.

Satz 4.3.5 Es gilt $V \otimes_K K \simeq V$.

Beweis. Sei $f: V \times K \to V$ definiert durch $f(v, \lambda) = \lambda v$. Dann ist f bilinear und es gibt $L_f: V \otimes_K K \to V$ linear mit $L_f(v \otimes \lambda) = \lambda v$. Sei $\varphi: V \to V \otimes_K V$ die Abbildung definiert durch $\varphi(v) = v \otimes 1$. Diese Abbildung ist linear und es gilt $L_f \circ \varphi(v) = L_f(v \otimes 1) = v$, also $L_f \circ \varphi = \mathrm{Id}_V$. Es gilt auch $\varphi \circ L_f(v \otimes \lambda) = \varphi(\lambda v) = \lambda v \otimes 1 = v \otimes \lambda$, also $\varphi \circ L_f = \mathrm{Id}_{V \otimes_K K}$.

4 Tensorprodukt

4.4 Bilineare Abbildungen

Definition 4.4.1 Sei $\mathrm{Bil}(U \times V, W)$ der Untervektorraum von $W^{U \times V}$ aller bilinearen Abbildungen.

Satz 4.4.2 Es gibt einen Isomorphismus $Bil(U \times V, W) \simeq Hom_K(U \otimes_K V, W)$.

Beweis. Sel Φ : Bil $(U \times V, W) \to \operatorname{Hom}_K(U \otimes_K V, W)$ definiert durch $\Phi(f) = L_f$. Die Abbildung Φ ist linear (Übung). Sei $\Phi' \operatorname{Hom}_K(U \otimes_K V, W) \to \operatorname{Bil}(U \times V, W)$ definiert durch $\Phi'(L) = L \circ \pi$, wobei $\pi : U \times V \to U \otimes_K V$ die kanonische bilineare Abbildung ist. Es gilt $\Phi \circ \Phi'(L) = \Phi(L \circ \pi) = L$ und $\Phi' \circ \Phi(f) = L_f \circ \pi = f$.

4.5 Tensorprodukt von Homomorphismen

Seien U, V, W und E vier K-Vektorräume und seien $f: U \to W$ und $g: V \to E$ zwei Homomorphismen.

Lemma 4.5.1 Die Abbildung $\Phi: U \times V \to W \otimes_K E$ definiert durch $\Phi(u, v) = f(u) \otimes g(v)$ ist bilinear. Es gibt also genau eine lineare Abbildung $f \otimes g: U \otimes_K V \to W \otimes_K E$ mit $(f \otimes g)(u \otimes v) = f(u) \otimes g(v)$.

Beweis. Übung.

Definition 4.5.2 Die Abbildung $f \otimes g$ heißt die Tensorproduktabbildung.

Satz 4.5.3 Sei $f \in \operatorname{Hom}_K(U, W)$ und $g \in \operatorname{Hom}_K(V, E)$.

- (1) Wenn f und q injektiv sind, dann ist $f \otimes q$ injektiv.
- (11) Wenn f und g surjektiv sind, dann ist $f \otimes g$ surjektiv.
- (111) Wenn f und g bijektiv sind, dann ist $f \otimes g$ bijektiv.

Beweis. (111) folgt aus (1) und (11).

(1) Seien $\mathcal{B} = (u_i)$ und $\mathcal{B}' = (v_j)$ Basen von U und V. Dann sind $f(\mathcal{B}) = (f(u_i))$ und $g(\mathcal{B}') = (g(v_j))$ lineare unabhängige Systeme. Da $\mathcal{B} \otimes \mathcal{B}' = (u_i \otimes v_j)$ eine Basis von $U \otimes_K V$ ist, genügt es zu zeigen, dass $(f \otimes g)(\mathcal{B} \otimes \mathcal{B}')$ ein linear unabhängiges System ist. Seien $\lambda_{i,j}$ Skalare mit

$$\sum_{i,j} f(u_i) \otimes g(v_j) = 0.$$

Da $(g(v_i))$ ein lineares unabhängige System ist gilt (nach Lemma 4.2.1)

$$\sum_{i} \lambda_{i,j} f(u_i) = 0 \text{ für alle } j.$$

Da $(f(u_i))$ ein linear unabhängiges System ist gilt $\lambda_{i,j}$ für alle i und j. Es folgt, dass $(f \otimes g)(\mathcal{B} \otimes \mathcal{B}')$ ein linear unabhängiges System ist.

(11) Seien $\mathcal{B} = (u_i)$ und $\mathcal{B}' = (v_j)$ Basen von U und V. Da $\mathcal{B} \otimes \mathcal{B}' = (u_i \otimes v_j)$ eine Basis von $U \otimes_K V$ ist, genügt es zu zeigen, dass $(f \otimes g)(\mathcal{B} \otimes \mathcal{B}')$ ein EZS ist. Da f und g surjektiv sind, sind $f(\mathcal{B}) = (f(u_i))$ und $g(\mathcal{B}') = (g(v_j))$ EZS. Nach Lemma 4.2.2 gilt, dass $(f \otimes g)(\mathcal{B} \otimes \mathcal{B}')$ ein EZS ist.

Satz 4.5.4 Seien U, V, W, E vier K-Vektorräume. Es gibt eine injektive lineare Abbildung $\operatorname{Hom}_K(U, W) \otimes_K \operatorname{Hom}_K(V, E) \to \operatorname{Hom}_K(U \otimes_K V, W \otimes_K E)$. Für U, V, W, E endlich-dimensional ist diese Abbildung ein Isomorphismus.

Beweis. Sei $\Phi : \operatorname{Hom}_K(U, W) \times \operatorname{Hom}_K(V, E) \to \operatorname{Hom}_K(U \otimes_K V, W \otimes_K E)$ definiert durch $\Phi(f, g) = f \otimes g$. Dann ist Φ bilinear und es gibt eine lineare Abbildung

$$L_{\Phi}: \operatorname{Hom}_K(U, W) \otimes_K \operatorname{Hom}_K(V, E) \to \operatorname{Hom}_K(U \otimes_K V, W \otimes_K E)$$

mit $L_{\Phi}(f \otimes g) = f \otimes g$. Wir zeigen, dass L_{Φ} injektiv ist. Seien (u_i) , (v_j) , (w_k) und (e_l) Basen von U, V, W, E und sei $(f_{i,k})$ und $(g_{j,l})$ die angehörige Basen von $\operatorname{Hom}_K(U, W)$ und $\operatorname{Hom}_K(V, E)$ (mit $f_{i,k}(u_a) = \delta_{a,i}w_k$ und $g_{j,l}(v_b) = \delta_{b,j}e_l$). Dann ist $(f_{i,k} \otimes g_{j,l})$ eine Basis von $\operatorname{Hom}_K(U, W) \otimes_K \operatorname{Hom}_K(V, E)$. Sei $\sum_{i,j,k,l} \lambda_{i,j,k,l} f_{i,k} \otimes g_{j,l} \in \operatorname{Ker}(L_{\Phi})$. Es gilt

$$0 = \sum_{i,j,k,l} \lambda_{i,j,k,l} f_{i,k} \otimes g_{j,l}(u_a \otimes v_b) = \sum_{i,j,k,l} \lambda_{i,j,k,l} \delta_{a,i} w_k \otimes \delta_{b,j} e_l.$$

Da $(w_k \otimes e_l)$ eine Basis ist gilt $\lambda_{a,b,k,l} = 0$ für alle a,b,k,l. Daraus folgt, dass L_{Φ} injektiv ist.

Für endlich-dimensionale Vektorräume gilt

```
\dim(\operatorname{Hom}_K(U,W) \otimes_K \operatorname{Hom}_K(V,E)) = \dim(\operatorname{Hom}_K(U,W)) \dim(\operatorname{Hom}_K(V,E))
= \dim U \dim V \dim W \dim E
= \dim(\operatorname{Hom}_K(U \otimes_K V) \dim(W \otimes_K E)
= \dim \operatorname{Hom}_K(U \otimes_K V, W \otimes_K E).
```

Es folgt, dass L_{Φ} ein Isomorphismus ist.

Korollar 4.5.5 Es gilt $(U \otimes_K V)^{\vee} \simeq U^{\vee} \otimes V^{\vee}$.

Beweis. Folgt aus dem obigen Satz für W = K = E.

4.6 Körper Erweiterung

Definition 4.6.1 Sei L ein Körper mit $K \subset L$. Dann heißt L eine **Körpererweiterung von** K. Der Körper L ist ein K-Vektorraum.

Satz 4.6.2 Sei V ein K-Vektorraum, dann ist $V \otimes_K L$ ein L-Vektorraum. Für dim $_K V = n$ gilt dim $_L V \otimes_K L = n$.

Beweis. Wir wissen, dass $(V \otimes_K L, +, \cdot)$ ein K-Vektorraum ist. Es folgt, dass $(V \otimes_K L, +)$ eine kommutative Gruppe ist. Für $z \in L$ definieren wir $f_z : V \times L \to V \otimes_K L$ durch $f_z(v, z') = v \otimes zz'$. Die Abbildung f_z ist K-bilinear. Daraus folgt, dass es eine K-lineare Abbidung $z \cdot_L : V \otimes_K L \to V \otimes_K L$ mit $z \cdot_L (v \otimes z') = v \otimes zz'$.

Man zeigt, dass $(V \otimes_K L, +, \cdot_L)$ ein L-Vektorraum ist (Übung).

Satz 4.6.3 Sei (v_1, \dots, v_n) eine Basis von V als K-Vektorraum. Dann ist $(v_1 \otimes 1, \dots, v_n \otimes 1)$ eine Basis von $V \otimes_K L$ als L-Vektorraum.

Insbesondere gilt $\dim_L V \otimes_K L = \dim_K V$.

Beweis. Sei (l_0, l_1, \dots, l_r) eine Basis von L als K-Vektorraum mit $l_0 = 1$. Dann ist $(v_i \otimes l_i)$ eine Basis von $V \otimes_K L$ als K-Vektorraum.

Wir zeigen, dass $(v_1 \otimes 1, \dots, v_n \otimes 1)$ ein EZS und linear unabhängig ist (als System von *L*-Vektorräume). Es gilt $v_i \otimes l_j = l_j(v_j \otimes 1)$ also gilt

$$v_i \otimes l_i \in \langle v_1 \otimes 1, \cdots, v_n \otimes 1 \rangle_L$$
.

Daraus folgt, dass $(v_1 \otimes 1, \dots, v_n \otimes 1)$ ein EZS ist.

Seien $\lambda_i \in L$ Skalare mit $\sum_i \lambda_i v_{\otimes} 1 = 0$. Es gibt Skalare $\mu_{i,j} \in K$ mit

$$\lambda_i = \sum_{j=0}^r \mu_{i,j} l_j.$$

Daraus folgt

$$\sum_{i} \sum_{j} \mu_{i,j} v_i \otimes l_j = 0.$$

Da $(v_i \otimes l_j)$ eine Basis als K-Vektorraum ist gilt $\mu_{i,j} = 0$ für alle i, j. Daraus folgt $\lambda_i = 0$ für alle i und $(v_1 \otimes 1, \dots, v_n \otimes 1)$ ist linear unabhängig.

Beispiel 4.6.4 (1) Es gilt $\mathbb{R}^n \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}^n$.

(11) Sei V ein \mathbb{R} -Vektorraum und sei $f \in \text{End}(V)$. Dann ist $f \otimes \text{Id} : V \otimes_{\mathbb{R}} \mathbb{C} \to V \otimes_{\mathbb{R}} \mathbb{C}$ eine lineare Abbildung.

Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V. Dann ist $\mathcal{B} \otimes 1 = (v_1 \otimes 1, \dots, v_n \otimes 1)$ eine Basis von $V \otimes_R \mathbb{C}$ als \mathbb{C} -Vektorraum. Sei $(a_{i,j}) = A = \operatorname{Mat}_{\mathcal{B}}(f)$ die Matrix von f in \mathcal{B} .

Dann gilt

$$(f \otimes \operatorname{Id})(v_j \otimes 1) = f(v_j) \otimes 1 = \sum_{i=1}^n a_{i,j} v_i \otimes 1.$$

Daraus folgt $B = \operatorname{Mat}_{\mathcal{B} \otimes 1}(f \otimes 1) = A$. Insbesondere gilt

$$\chi_{f \otimes \mathrm{Id}} = \chi_f \text{ und } \mathrm{Rg}(f \otimes 1) = \mathrm{Rg}(f).$$

4.7 Multilineare Abbildungen

Seien U_1, \dots, U_n und W Vektorräume.

Definition 4.7.1 Eine Abbildung $f: U_1 \times \cdots \times U_n \to W$ heißt n-linear oder multilinear falls für alle $u_1 \in U_1, \cdots, u_n \in U_n$ und für alle $i \in [1, n]$ gilt: die Abbildung

$$f(u_1, \cdots, u_{i-1}, \bullet, u_{i+1}, \cdots, u_n) : U_i \to W$$

definiert durch $f(u_1, \dots, u_{i-1}, \bullet, u_{i+1}, \dots, u_n)(u_i) = f(u_1, \dots, u_{i-1}, u_i, u_{i+1}, \dots, u_n)$ ist linear.

Definition 4.7.2 Ein Vektorraum E heißt **Tensorprodukt** von U_1, \dots, U_n falls gilt:

- 1. Es gibt eine *n*-lineare Abbildung $\pi_E: U_1 \times \cdots \times U_n \to E$ und
- 2. für jede *n*-lineare Abbildung $f: U_1 \times \cdots \times U_n \to W$, es gibt genau eine lineare Abbildung $L_f^E: E \to W$ mit $L_f^E \circ \pi_E = f$.

Satz 4.7.3 Seien E und F zwei Tensorprodukte für U und V. Dann sind E und F isomorph.

Beweis. Nach dem ersten Punkt der Definition, gibt es n-lineare Abbildungen π_E : $U_1 \times \cdots \times U_n \to E$ und $\pi_F : U_1 \times \cdots \times U_n \to F$. Nach dem zweiten Punkt gibt es eindeutig bestimmte lineare Abbildungen $L_{\pi_F}^E : E \to F$ und $L_{\pi_E}^F : F \to E$ mit $\pi_F = L_{\pi_F}^E \circ \pi_E$ und $\pi_E = L_{\pi_E}^F \circ \pi_F$. Wir zeigen, dass $L_{\pi_E}^F$ und $L_{\pi_F}^E$ isomorph sind.

Wir haben eine n-lineare Abbildung $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E : U \times V \to E$ und es gilt $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E = L_{\pi_E}^F \circ \pi_F = \pi_E$. Nach dem zweiten Punkt gibt es genau eine Abbildung L_f^E mit $L_f^E \circ \pi_E = f = \pi_E$. Aber wir haben $\mathrm{Id}_E \circ \pi_E = \pi_E$ also $L_f^E = \mathrm{Id}_E$. Wir haben auch $f = L_{\pi_E}^F \circ L_{\pi_F}^E \circ \pi_E$ also gilt $L_f^E = L_{\pi_E}^F \circ L_{\pi_F}^E$ und es folgt $L_{\pi_E}^F \circ L_{\pi_F}^E = \mathrm{Id}_E$.

Der selbe Beweis, mit E und F vertauscht, zeigt $L_{\pi_F}^E \circ L_{\pi_E}^F = \mathrm{Id}_F$. Es folgt, dass $L_{\pi_E}^F$ und $L_{\pi_F}^E$ Inverse sind.

Satz 4.7.4
$$U_1 \otimes_K \cdots \otimes_K U_n$$
 ist ein Tensoprodukt von U_1, \cdots, U_n .

Beweis. Per Induktion über n. Für n=2 folgt die Behauptung aus dem Satz 4.1.10. Angenommen $U_1 \otimes_K \cdots \otimes_K U_{n-1}$ ist ein Tensoprodukt von U_1, \cdots, U_{n-1} . Wir zeigen, dass $U_1 \otimes_K \cdots \otimes_K U_n$ ein Tensoprodukt von U_1, \cdots, U_n ist.

Die Abbildung $\pi: U_1 \times \cdots \times U_n \to U_1 \otimes_K \cdots \otimes_K U_n$ definiert durch $\pi(u_1, \cdots, u_n) = u_1 \otimes \cdots \otimes u_n$ ist n-linear (Übung). Sei $f: U_1 \times \cdots \times U_n \to W$ eine n-lineare Abbildung. Dann ist $f_{u_n}: U_1 \times \cdots \times U_{n-1} \to W$ definiert durch $f_{u_n}(u_1, \cdot, u_{n-1}) = f(u_1, \cdots, u_{n-1}, u_n)$ eine n-1-lineare Abbildung. Nach Induktionsannahme gibt es eine lineare Abbildung $L_{u_n}: U_1 \otimes_K \cdots \otimes_K U_{n-1} \to W$ mit $L_{u_n}(u_1 \otimes \cdots \otimes u_{n-1}) = u_n \otimes_K U_{n-1} \otimes_K U_{n-1$

 $f(u_1, \cdot, u_n)$. Sei $g: (U_1 \otimes_K \cdots \otimes_K U_{n-1}) \times U_n \to W$ definiert durch $g(T, u_n) = L_{u_n}(T)$. Diese Abbildung ist bilinear (Übung). Daraus folgt, dass es eine lineare Abbildung $L_f: U_1 \otimes_K \cdots \otimes_K U_n \to W$ gibt mit $L_f(u_1 \otimes u_{n-1} \otimes u_n) = L_{u_n}(u_1 \otimes \cdots \otimes u_{n-1}) = f(u_1, \cdots, u_n)$. Da $(u_1 \otimes u_n)$ ein EZS ist, ist L_f eindeutig bestimmt.

Definition 4.7.5 Sei n-Hom $(U_1 \times \cdots \times U_n, W)$ der Untervektorraum von $W^{U_1 \times \cdots \times U_n}$ aller n-linearen Abbildungen.

Satz 4.7.6 Es gilt
$$n\text{-Hom}(U_1 \times \cdots \times U_n, W) \simeq \text{Hom}_K(U_1 \otimes_K \cdots \otimes_K U_n, W)$$
.

Beweis. Sei $\Phi: n\text{-Hom}(U_1 \times \cdots \times U_n, W) \to \text{Hom}_K(U_1 \otimes_K \cdots \otimes_K U_n, W)$ definiert durch $\Phi(f) = L_f$. Die Abbildung Φ ist linear (Übung). Sei $\Phi' \text{Hom}_K(U_1 \otimes_K \cdots \otimes_K U_n, W) \to n\text{-Hom}(U_1 \times \cdots \times U_n, W)$ definiert durch $\Phi'(L) = L \circ \pi$ wobei $\pi: U_1 \times \cdots \times U_n \to U_1 \otimes_K \cdots \otimes_K U_n$ die kanonische bilineare Abbildung ist. Es gilt $\Phi \circ \Phi'(L) = \Phi(L \circ \pi) = L$ und $\Phi' \circ \Phi(f) = L_f \circ \pi = f$.

4.8 Symmetrische und antisymmetrische Tensoren

Definition 4.8.1 Sei V ein K-Vektorraum. Wir setzen $V^{\otimes 0} = K$.

Lemma 4.8.2 Sei $\sigma \in S_n$. Die Abbildung $V^n \to V^{\otimes n}$ definiert durch $(v_1, \dots, v_n) \mapsto v_{\sigma(1)} \otimes \dots \otimes v_{\sigma(n)}$ ist n-linear. Es gibt also eine lineare Abbildung $\sigma_{V^{\otimes n}} \in \operatorname{End}(V^{\otimes n})$ mit

$$\sigma_{V^{\otimes n}}(v_1 \otimes \cdots \otimes v_n) = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}.$$

Beweis. Übung.

Lemma 4.8.3 Es gilt $\tau_{V^{\otimes n}}\sigma_{V^{\otimes n}}=(\tau\sigma)_{V^{\otimes n}}$.

Beweis. Da $(v_1 \otimes \cdots \otimes v_n)$ ein EZS ist, genügt es zu zeigen, dass

$$\tau_{V^{\otimes n}}\sigma_{V^{\otimes n}}(v_1\otimes\cdots\otimes v_n)=(\tau\sigma)_{V^{\otimes n}}(v_1\otimes\cdots\otimes v_n).$$

Es gilt

44

$$\tau_{V^{\otimes n}}\sigma_{V^{\otimes n}}(v_1 \otimes \cdots \otimes v_n) = \tau_{V^{\otimes n}}(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)})$$

$$= v_{\tau\sigma(1)} \otimes \cdots \otimes v_{\tau\sigma(n)}$$

$$= (\tau\sigma)_{V^{\otimes n}}(v_1 \otimes \cdots \otimes v_n).$$

Definition 4.8.4 Sei $n \in \mathbb{N}$.

(1) Ein Vektor $T \in V^{\otimes n}$ heißt **symmetrischer Tensor**, falls für alle $\sigma \in S_n$ gilt $\sigma_{V^{\otimes n}}(T) = T$. Man schreibt $\operatorname{Sym}^n(V)$ für den Unterraum aller symmetrischen Tensoren. Es gilt

$$\operatorname{Sym}^n(V) = \bigcap_{\sigma \in S_n} \operatorname{Ker}(\sigma_{V^{\otimes n}} - \operatorname{Id}_{V^{\otimes n}}).$$

(11) Ein Vektor $T \in V^{\otimes n}$ heißt **antisymmetrischer Tensor** falls für alle $\sigma \in S_n$ gilt $\sigma_{V^{\otimes n}}(T) = \varepsilon(\sigma)T$. Man schreibt $\operatorname{Alt}^n(V)$ für der Untgerraum aller symmetrischen Tensoren. Es gilt

$$\operatorname{Alt}^{n}(V) = \bigcap_{\sigma \in S_{n}} \operatorname{Ker}(\sigma_{V^{\otimes n}} - \varepsilon(\sigma) \operatorname{Id}_{V^{\otimes n}}).$$

Beispiel 4.8.5 Sei $V = \mathbb{R}^2$ und sei $\mathcal{B} = (e_1, e_2)$ die kanonische Basis. Dann sind $e_1 \otimes e_1, e_2 \otimes e_2$ und $e_1 \otimes e_2 + e_2 \otimes e_1$ symmetrische Tensoren. Der Tensor $e_1 \otimes e_2 - e_2 \otimes e_1$ ist antisymmetrisch.

Bemerkung 4.8.6 Sei K mit char(K) = 2. Dann gilt $\operatorname{Sym}^n(V) = \operatorname{Alt}^n(V)$.

Satz 4.8.7 Sei K mit char(K) = 0

(1) Sei $p_{\text{Sym}}: V^{\otimes n} \to V^{\otimes n}$ die lineare Abbildung

$$p_{\mathrm{Sym}} = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma_{V \otimes n}.$$

Es gilt $\operatorname{Im}(p_{\operatorname{Sym}} = \operatorname{Sym}^n(V) \text{ und für } T \in \operatorname{Sym}^n(T) \text{ gilt } p_{\operatorname{Sym}}(T) = T.$

(n) Sei $p_{\mathrm{Alt}}: V^{\otimes n} \to V^{\otimes n}$ die lineare Abbildung

$$p_{\mathrm{Alt}} = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma_{V \otimes n}.$$

Es gilt $\operatorname{Im}(p_{\operatorname{Alt}}) = \operatorname{Alt}^n(V)$ und für $T \in \operatorname{Alt}^n(T)$ gilt $p_{\operatorname{Alt}}(T) = T$.

(III) Es gilt
$$p_{\text{Sym}}^2 = p_{\text{Sym}}, p_{\text{Alt}}^2 = p_{\text{Alt}} \text{ und } p_{\text{Sym}} \circ p_{\text{Alt}} = 0 = p_{\text{Alt}} \circ p_{\text{Sym}}.$$

Beweis. (1) Sei $T \in V^{\otimes n}$. Wir zeigen, dass $p_{\text{Sym}}(T) \in \text{Sym}^n(V)$. Sei $\tau \in S_n$ es gilt (mit $\theta = \tau \sigma$)

$$\tau_{V^{\otimes n}}(p_{\operatorname{Sym}}(T)) = \frac{1}{n!} \sum_{\sigma \in S_n} \tau_{V^{\otimes n}} \sigma_{V^{\otimes n}}(T)
= \frac{1}{n!} \sum_{\theta \in S_n} \theta_{V^{\otimes n}}(T)
= p_{\operatorname{Sym}}(T).$$

Daraus folgt, dass $p_{\text{Sym}}(T) \in \text{Sym}^n(V)$. Sei $T \in \text{Sym}^n(T)$. Es gilt

$$p_{\operatorname{Sym}}(T) = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma_{V^{\otimes n}}(T) = T \frac{1}{n!} \sum_{\sigma \in S_n} 1 = T.$$

(11) Sei $T \in V^{\otimes n}$. Wir zeigen, dass $p_{\mathrm{Alt}}(T) \in \mathrm{Alt}^n(V)$. Sei $\tau \in S_n$. Es gilt (mit $\theta = \tau \sigma$)

$$\tau_{V^{\otimes n}}(p_{\mathrm{Alt}}(T)) = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \tau_{V^{\otimes n}} \sigma_{V^{\otimes n}}(T)$$

$$= \frac{1}{n!} \sum_{\theta \in S_n} \varepsilon(\tau) \theta_{V^{\otimes n}}(T)$$

$$= \varepsilon(\tau) p_{\mathrm{Alt}}(T).$$

Daraus folgt, dass $p_{\mathrm{Alt}}(T) \in \mathrm{Alt}^n(V)$. Sei $T \in \mathrm{Alt}^n(T)$. Es gilt

$$p_{\mathrm{Alt}}(T) = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma_{V^{\otimes n}}(T) = T \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma)^2 = T.$$

(III) Sei $T \in V^{\otimes n}$. Dann ist $p_{\text{Sym}}(T) \in \text{Sym}^n(V)$ und es folgt $p_{\text{Sym}}(p_{\text{Sym}}(T)) = p_{\text{Sym}}(T)$. Analog gilt $p_{\text{Alt}}^2 = p_{\text{Alt}}$. Sei $T \in V^{\otimes n}$. Es gilt

$$\begin{array}{ll} p_{\mathrm{Alt}}(p_{\mathrm{Sym}}(T)) &= \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma V^{\otimes n}(p_{\mathrm{Sym}}(T)) \\ &= \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) p_{\mathrm{Sym}}(T). \\ &= p_{\mathrm{Sym}}(T) \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \end{array}$$

Wir zeigen, dass

$$\sum_{\sigma \in S} \varepsilon(\sigma) = 0.$$

Die Abbilbdung $\{\sigma \in S_n \mid \sigma \text{ gerade}\} \rightarrow \{\sigma \in S_n \mid \sigma \text{ ungerade}\}\$ definiert durch $\sigma \mapsto \sigma s_1$ ist bijektiv (Inverse $\sigma \mapsto \sigma s_1$). Es folgt, dass

$$|\{\sigma \in S_n \mid \sigma \text{ gerade}\}| = |\{\sigma \in S_n \mid \sigma \text{ ungerade}\}| = \frac{n!}{2}.$$

Es gilt also

$$\sum_{\sigma \in S_n} \varepsilon(\sigma) = \sum_{\sigma \in S_n, \ \sigma \text{ gerade}} 1 + \sum_{\sigma \in S_n, \ \sigma \text{ ungerade}} -1 = \frac{n!}{2} - \frac{n!}{2} = 0.$$

Daraus folgt, dass $p_{\text{Alt}} \circ p_{\text{Sym}} = 0$. Analog gilt $p_{\text{Sym}} \circ p_{\text{Alt}} = 0$.

Korollar 4.8.8 Es gilt $\operatorname{Sym}^n(V) + \operatorname{Alt}^n(V) = \operatorname{Sym}^n(V) \oplus \operatorname{Alt}^n(V)$.

Beweis. Sei $T \in \operatorname{Sym}^n(V) \cap \operatorname{Alt}^n(V)$. Es gilt $T = p_{\operatorname{Sym}}(T)$ und $T = p_{\operatorname{Alt}}(T)$. Daraus folgt $T = p_{\operatorname{Sym}}(T) = p_{\operatorname{Sym}}(p_{\operatorname{Alt}}(T)) = 0$.

5 Algebren

5.1 Algebren

Definition 5.1.1 Ein K-Vektorraum $(A, +, \cdot)$ mit eine bilineare Abbildung $\times : A \times A \to A$ so, dass $(A, +, \times)$ ein Ring ist heißt K-Algebra. Für $a, b \in A$, wir schreiben $a \times b = ab$.

Die Algebra A heißt **kommutativ** falls ab = ba gilt für alle $a, b \in A$.

Beispiel 5.1.2 Sei $A = \mathbb{R}^2$ und (x, y)(x', y') = (xx' - yy', xy' + yx'). Dann ist A eine kommutative \mathbb{R} -Algebra.

Lemma 5.1.3 $(M_n(K), +, \cdot, \times)$, wobei · die Skalarmultiplikation von Matrizen ist und × die Matrixmultiplikation ist, ist eine K-algebra.

Beweis. Übung.

Definition 5.1.4 (1) Seien A und B zwei K-Algebran. Eine Abbildung $f: A \to B$ heißt Algebrahomomorphismus falls f eine lineare Abbildung ist, $f(1_A) = 1_B$ und f(aa') = f(a)f(a') für alle $a, a' \in A$.

(11) Ein Bijektiver Algebrahomomorphismus heißt **Algebraisomorphismus**.

Beispiel 5.1.5 Sei \mathbb{R}^2 mit Produkt (x,y)(x',y')=(xx'-yy',xy'+yx') und sei $f:\mathbb{R}^2\to\mathbb{C}$ mit f(x,y)=x+iy. Dann ist f ein Algebraisomoprhismus.

Beispiel 5.1.6 Sei K ein Körper und A = K[X]. Dann ist A eine K-Algebra.

Definition 5.1.7 Sei A eine K-Algebra. Ein Element $a \in A$ heißt **invertierbar**, falls es ein Element $b \in A$ gibt mit $ba = ab = 1_A$. Wir schreiben

$$A^{\times} = \{ a \in A \mid a \text{ invertierbar ist} \}.$$

Lemma 5.1.8 Sei $a \in A$ invertierbar. Dann ist $b \in A$ mit $ab = ba = 1_A$ eindeutig bestimmt.

Beweis. Seien $b, b' \in A$ mit $ab = ba = 1_A$ und $ab' = b'a = 1_A$. Dann gilt b = bab' = b'.

48 5 Algebren

Definition 5.1.9 Sei ainA invertierbar. Das Element $b \in A$ mit $ab = ba = 1_A$ heßt **Inverse** von a und wird a^{-1} bezeichnet.

Beispiel 5.1.10 1. In $A = \mathbb{C}$ als \mathbb{R} -Algebra, sind alle Elemente aus $A \setminus \{0\}$ invertierbar.

- 2. In $A = M_n(K)$ sind die Invertiebare Elemente die invertiebare Matrizen.
- 3. In K[X] sind die invertiebare Elemente die Polynome $P \neq 0$ mit $\deg(P) = 0$.

Lemma 5.1.11 Sei A eine K-Algebra. Dann ist (A^{\times}, \times) eine Gruppe.

Beweis. Übung.

Korollar 5.1.12 Eine K-Algebra A ist ein Körper genau dann, wenn A kommutativ ist und $A^* = A \setminus \{0\}$.

Beweis. Sei A ein Körper, dann ist A kommutativ und $A^{\times} = A \setminus \{0\}$.

Sei A eine kommutative K-Algebra mit $A^* = A \setminus \{0\}$. Dann ist (A^*, \times) eine Gruppe. Daraus folgt, dass A ein Körper ist.

5.2 Verknüpfungstafel

Definition 5.2.1 Sei A eine K-Algebra und sei $\mathcal{B}=(e_i)_{i\in I}$ eine Basis von A als K-Vektorraum. Für alle $i,j\in I$ gilt $e_i\cdot e_j\in A$. Es gibt also Skalare $c_{i,j}^k\in K$ mit

$$e_i \cdot e_j = \sum_{k \in K} c_{i,j}^k e_k.$$

Die Skalare $c_{i,j}^k$ heißen **Strukturkoeffizienten**.

Lemma 5.2.2 Sind alle Strukturkoeffizienten $c_{i,j}^k$ bekannt, dann sind alle Produkte $a \cdot b$ für $a, b \in A$ auch bekannt.

Beweis. Seien $a, b \in A$. Dann gibt es Skalare $a_i, b_i \in K$ mit

$$a = \sum_{i \in I} a_i e_i$$
 und $b = \sum_{i \in I} b_i e_i$.

Für das Produkt $a \cdot b \in A$ gilt

$$a \cdot b = \left(\sum_{i \in I} a_i e_i\right) \cdot \left(\sum_{j \in I} b_j e_j\right) = \sum_{i \in I} \sum_{j \in I} a_i b_j e_i \cdot e_j = \sum_{i \in I} \sum_{j \in I} \sum_{k \in I} a_i b_i c_{i,j}^k e_k.$$

Definition 5.2.3 Die Tabelle

$$\begin{array}{c|c} e_j \\ \hline e_i & e_i \cdot e_j \end{array}$$

heißt Verknüpfungstafel.

Beispiel 5.2.4 Sei $A = \mathbb{C}$. Dann ist A eine \mathbb{R} -Algebra und (1, i) ist eine \mathbb{R} -Basis von A. Es gilt

$$1 \cdot 1 = 1, \ 1 \cdot i = i, \ i \cdot 1 = i \text{ und } i \cdot i = -1.$$

Es gilt $I = \{1, 2\}$. Die Structurkoeffizienten $c_{i,j}^k$ sind

$$c_{1,1}^1=1,\ c_{1,1}^2=0,\ c_{1,2}^1=0,\ c_{1,2}^2=1,\ c_{2,1}^1=0,\ c_{2,1}^2=1,\ c_{2,2}^1=-1,\ c_{2,2}^2=0.$$

Der Verknüpfungstafel ist

$$\begin{array}{c|cc} & 1 & i \\ \hline 1 & 1 & i \\ i & i & -1. \end{array}$$

5.3 Unteralgebren, Ideale und Quotienten

Definition 5.3.1 Sei A eine K-Algebra. Eine Teilmenge $B \subset A$ heißt **Unteralgebra** falls $1_A \in B$, B ein Unterraum von A ist und für alle $b, b' \in B$ gilt $bb' \in B$.

Definition 5.3.2 Sei A eine K-Algebra. Eine Teilmenge $I \subset A$ heißt **Linksideal** (bzw. **Rechtsideal**, bzw. **Ideal**) falls B ein Unterraum von A ist und für alle $a \in A$ und alle $b \in B$ gilt $ab \in B$ (bzw. $ba \in B$, bzw. $ba \in B$ und $ab \in B$).

Lemma 5.3.3 Sei $f: A \to B$ ein Algebrahomomorphismus. Dann ist $f(A) = \operatorname{Im} f$ eine Unteralgebra von B.

Lemma 5.3.4 Sei A eine Algebra und sei I ein Ideal von A. Seien $a, a' \in A$ und seien [a], [a'] die Äquivalenzklassen von a, a' in A/I. Seien $b \in [a]$ und $b' \in [a']$. Dann gilt [aa'] = [bb'].

Beweis. Es gilt $a-b=c\in I$ und $a'-b'=c'\in I$. Daraus folgt

$$bb' = (a - c)(a' - c') = aa' - ac' - ca' + cc'.$$

Da $ac', ca', cc' \in I$ gilt [aa'] = [bb'].

Lemma 5.3.5 Sei A eine Algebra und sei I ein Ideal von A. Sei $\times : A/I \times A/I \to A/I$ definiert durch $[a] \times [a'] = [aa']$. Dann ist $(A/I, +, \times)$ eine K-Algebra.

5 Algebren

Beweis. Übung.

Definition 5.3.6 Sei A eine Algebra und sei I ein Ideal von A. Die Algebra A/I heißt **Quotientalgebra**.

Lemma 5.3.7 (1) Sei $f: A \to B$ ein K-Algebrahomomorphismus. Dann ist Ker(f) ein Ideal von A.

(11) Sei I ein Ideal von A und sei $p:A\to A/I$ die kanonische Projektion. Dann ist p ein Algebrahomomorphismus und es gilt $I=\mathrm{Ker}p$.

Beweis. Übung.

Satz 5.3.8 Sei $f: A \to B$ ein K-Algebrahomomorphismus und sei I ein Ideal von A.

1. Es gibt eine K-Algebrahomomorphismus $\bar{f}:A/I\to B$ mit

genau dann, wenn $I \subset \text{Ker}(f)$.

2. f surjektiv $\Leftrightarrow \bar{f}$ surjektiv.

3.
$$f$$
 injektiv $\Leftrightarrow I = \text{Ker } f$.

Beweis. Nach Satz 7.4.8 im Skript LAI gilt alles außer, dass \bar{f} ein Algebrahomomorphismus ist. Es gilt aber

$$\bar{f}(1_{A/I}) = f \circ p(1_A) = f(1_A) = 1_B \text{ und}$$

$$\bar{f}([a][b]) = \bar{f}([ab]) = \bar{f} \circ p(ab) = f(ab) = \bar{f}([a])\bar{f}([b]).$$

Daraus folgt, dass \bar{f} eine K-Algebrahomomorphismus ist.

Beispiel 5.3.9 1. Sei $(P) = \{Q \in K[X] \mid P \text{ teilt } Q\}$. Dann ist (P) ein Ideal von K[X].

- 2. Sei $\lambda \in K$. Es gilt $K[X]/(X-\lambda) \simeq K$: wir haben ein surjektiver K-Algebrahomomorphismus $f: K[X] \to K$ definiert durch $f(P) = P(\lambda)$ und es gilt $Ker(f) = (X \lambda)$. Daraus folgt, dass $\bar{f}: K[X]/(X-\lambda) \to K$ ein Isomorphismus ist.
- 3. Es gilt $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$: wir haben ein surjektiver \mathbb{R} -Algebrahomomorphismus $f: \mathbb{R}[X] \to \mathbb{C}$ definiert durch f(P) = P(i) und es gilt $\operatorname{Ker}(f) = (X^2+1)$. Daraus folgt, dass $\bar{f}: K[X]/(X-\lambda) \to K$ ein Isomorphismus ist.

4. Es gilt $K[X]/(X^2-1) \simeq \mathbb{R} \times \mathbb{R}$: wir haben ein surjektiver \mathbb{R} -Algebrahomomorphismus $f: \mathbb{R}[X] \to \mathbb{R} \times \mathbb{R}$ definiert durch f(P) = (P(1), P(-1)) und es gilt $Ker(f) = (X^2-1)$. Daraus folgt, dass $\bar{f}: \mathbb{R}[X]/(X^-1) \to \mathbb{R} \times \mathbb{R}$ ein Isomorphismus ist.

2. Es gilt $\mathbb{Q}[X]/(X^2-2) \simeq \mathbb{Q}(\sqrt{2})$: wir haben ein surjektiver \mathbb{Q} -Algebrahomomorphismus $f: \mathbb{Q}[X] \to \mathbb{Q}(\sqrt{2})$ definiert durch $f(P) = P(\sqrt{2})$ und es gilt $\operatorname{Ker}(f) = (X^2 - 2)$. Daraus folgt, dass $\bar{f}: \mathbb{Q}[X]/(X^2 - \sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ ein Isomorphismus ist.

5.4 Produkte

Lemma 5.4.1 Seien A und B zwei K-Algebran. Dann ist $A \times B$ mit (a,b)(a',b') = (aa',bb') eine K-Algebra.

Beweis. Übung.

Definition 5.4.2 Seien A und B zwei K-Algebra. Die K-Algebra $A \times B$ mit Produkt (a,b)(a',b')=(aa',bb') heißt **Produktalgebra von** A und B.

5.5 Einschränkung und Erweiterung der Skalare

Lemma 5.5.1 Sei A eine K-Algebra und sei L ein Teilkörper von K. Dann ist A eine L-Algebra.

Beweis. Die Addition und Multiplikation sind für beide Algebrastrukture gleich. Die Skalarmultiplikation als L-Algebra ist die Einschränkung des Skalarmultiplikations als K-Algebra. Es folgt, dass A eine L-Algebra ist.

Definition 5.5.2 Sei A eine K-Algebra und sei L ein Teilkörper von K, dann schreiben wir $A_{(L)}$ für die L-Algebra A.

Satz 5.5.3 Sei A eine K-algebra und sei L eine Körpererweiterung von K. Dann ist $A \otimes_K L$ eine L-Algebra.

Beweis. Nach Satz 4.6.2 ist $A \otimes_K L$ ein L-Vektorraum. Wir definieren ein Produkt über $A \otimes_K L$ wie folgt. Die Abbildung

$$f: A \times L \times A \times L \to A \otimes_K L$$

definiert durch $f(a, \lambda, b, \mu) = ab \otimes \lambda \mu$ ist K-multilinear (4-linear). Daraus folgt, dass es eine Lineare Abbildung

$$L_f: (A \otimes_K L) \otimes_K (A \otimes_K L) \to A \otimes_K L$$

52 5 Algebren

mit $L_f(a \otimes \lambda \otimes b \otimes \mu) = ab \otimes \lambda \mu$. Sei $\pi : (A \otimes_K L) \times (A \otimes_K L) \to (A \otimes_K L) \otimes_K (A \otimes_K L)$ die kanonische bilineare Abbildung und sei

$$m = L_f \circ \pi : (A \otimes_K L) \times (A \otimes_K L) \to (A \otimes_K L).$$

Diese Abbildung ist bilinear mit $m(a \otimes \lambda, b \otimes \mu) = ab \otimes \lambda \mu$. Mit dieser Multiplikation ist $A \otimes_K L$ eine L-algebra (Übung).

Beispiel 5.5.4 (1) Der Körper \mathbb{C} ist eine \mathbb{C} -Algebra. Es ist auch eine \mathbb{R} -Algebra.

(11) Wir Betrachten \mathbb{C} als \mathbb{R} -Algebra. Dann ist $A = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ eine \mathbb{C} -algebra. Es gilt $\dim_{\mathbb{C}}(A) = \dim_{\mathbb{R}}(\mathbb{C}) = 2$. Sei $(e_1, e_2) = (1, i)$ eine Basis von \mathbb{C} als \mathbb{R} -Vektorraum. Dann ist $(f_1, f_2) = (e_1 \otimes 1, e_2 \otimes 1)$ eine Basis von $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ als \mathbb{C} -Vektorraum und für $xf_1 + yf_2$ und $x'f_1 + y'f_2$ in $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ gilt

$$(xf_1 + yf_2)(x'f_1 + y'f_2) = (xx' - yy')f_1 + (xy' + yx')f_2.$$

5.6 Erzeuger

Lemma 5.6.1 Sei A eine K-Algebra und sei $(B_i)_{i\in I}$ eine Familie von Unteralgebren von A. Dann ist

$$B = \bigcap_{i \in I} B_i$$

eine Unteralgebra von A.

Beweis. Übung.

Lemma 5.6.2 Sei A eine K-Algebra und sei E eine Teilmenge von A. Dann gibt es eine minimale K-Unteralgebra von A welche E enthält.

Beweis. Sei $(B_i)_{i\in I}$ die Familie von alle Unteralgebren mit $E\subset B_i$. Dann ist

$$B = \bigcap_{i \in I} B_i$$

die minimale K-Unteralgebra von A welche E enthält.

Definition 5.6.3 Sei A eine K-Algebra und sei E eine Teilmenge von A. Die minimale K-Unteralgebra von A welche E enthält heißt die von E erzeugte Unteralgebra von A.

Definition 5.6.4 Eine Teilmenge E von A heißt **erzeugend** falls A die von E erzeugte Unteralgebra von A ist.

Beispiel 5.6.5 Sei A = K[X] und $E = \{X\}$. Dann ist E erzeugend.

Lemma 5.6.6 Sei E erzeugend in A.

1. Sei $f: B \to A$ ein Algebrahomomorphismus. Dann ist f genau dann surjektiv, wenn $E \subset \mathrm{Im} f$.

2. Seien $f:A\to B$ und $g:A\to B$ zwei Algebrahomomorphismen. Dann gilt f=g genau dann, wenn f(e)=g(e) für alle $e\in E$.

Beweis. 1. Falls es surjektiv ist gilt $E \subset \operatorname{Im} f$. Umgekehrt ist das Bild $\operatorname{Im} f$ eine Unteralgebra die E enthält. Es folgt, dass $A \subset \operatorname{Im} f$.

2. Wenn f = g gilt f(e) = g(e) für alle $e \in E$. Umgekehrt, sei h = f - g. Dann ist h linear. Sei $I = \operatorname{Ker} h$. Wir zeigen, dass A' eine Unteralgebra von A ist. Es gilt h(1) = f(1) - g(1) = 1 - 1 = 0. Es folgt $1 \in A'$. Seien $a, a' \in A'$. Es gilt f(a) = g(a) und f(a') = g(a'). Es folgt h(aa') = f(aa') - g(aa') = f(a)f(a') - g(a)g(a') = 0. Die Unteralgebra A' enthält E. Es folgt $A \subset A'$ und A = 0, also A = 0.

Lemma 5.6.7 Sei A eine K-Algebra und sei $(I_j)_{j\in J}$ eine Familie von Ideale von A. Dann ist

$$I = \bigcap_{j \in J} I_j$$

ein Ideal von A.

Beweis. Übung.

Lemma 5.6.8 Sei A eine K-Algebra und sei E eine Teilmenge von A. Dann gibt es ein minimales Ideal von A welches E enthält.

Beweis. Übung. ■

Definition 5.6.9 Sei A eine K-Algebra und sei E eine Teilmenge von A. Das minimale Ideal von A welches E enthält heißt das von E erzeugte Ideal von A und wird (E) bezeichnet.

Lemma 5.6.10 Sei A eine kommutative K-Algebra und seien $a_1, \cdot, a_n \in A$. Es gilt

$$(a_1, \dots, a_n) = \{b_1 a_1 + \dots b_n a_n \in A \mid b_1, \dots, b_n \in A\}.$$

Beweis. Übung.

Lemma 5.6.11 Sei A eine K-Algebra und sei $(a_j)_{j\in J}$ eine Familie von Elemente aus A. Es gilt

$$(a_j \mid j \in J) = \{ \sum_{j \in J} b_j a_j \in A \mid b_j \in A \text{ für } j \in J \} \cup \{ \sum_{j \in J} b_j a_j \in A \mid b_j \in A \text{ für } j \in J \}.$$

Beweis. Übung.

54 5 Algebren

5.7 Polynome

Sei A eine K-Algebra und sei

$$A^{(\mathbb{N})} = \{ f : \mathbb{N} \to A \mid f(n) \neq 0 \text{ nur für endlich viele } n \in \mathbb{N} \}.$$

Dann ist $A^{(\mathbb{N})}$ ein K-Vektorraum.

Definition 5.7.1 Sei $e_n : \mathbb{N} \to K$ definiert durch $e_n(i) = \delta_{i,n}$. Dann gilt $e_n \in A^{(\mathbb{N})}$.

Lemma 5.7.2 Sei $f \in A^{(\mathbb{N})}$. Dann gilt

$$f = \sum_{n \in \mathbb{N}} f(n)e_n.$$

Beweis. Übung.

Definition 5.7.3 Wir definieren auf $A^{(\mathbb{N})}$ eine multiplikation. Für $f, g \in A^{(\mathbb{N})}$, sei $f \cdot g$ definiert durch

$$f \cdot g : i \mapsto \sum_{k=0}^{i} f(k)g(i-k).$$

Lemma 5.7.4 $(A^{(\mathbb{N})}, +, \cdot)$ ist ein kommutativer Ring mit $1_{A^{(\mathbb{N})}} = e_0$.

Beweis. Übung.

Notation 5.7.5 Als e_0 ein Eins für die Multiplication ist schreiben wir $e_0 = 1$. Wir schreiben auch X für e_1 .

Lemma 5.7.6 Es gilt $X^n = e_n$.

Beweis. Übung.

Notation 5.7.7 Für $f \in A^{(\mathbb{N})}$ gilt

$$f = \sum_{n} f(n)e_n = \sum_{n} f(n)X^n.$$

Wir schreiben

$$f = \sum_{n} a_n X^n,$$

wobei $a_n \in A$ ist nicht null nur für endlich viele $n \in \mathbb{N}$.

2. Wir schreiben A[X] für $A^{(\mathbb{N})}$ und nennen A[X] Polynomring in X mit Koeffizienten in A. Elemente in A[X] heißen Polynome.

Lemma 5.7.8 Es gilt $X^n \cdot X^m = X^{n+m}$.

Beweis. Übung.

Definition 5.7.9 Sei $f = \sum_n a_n X^n \in A[X]$.

1. Der **Grad** von f ist definiert als

$$\deg(f) = \begin{cases} -\infty & \text{fall } f = 0, \\ \max\{n \mid a_n \neq 0\} & \text{sonst.} \end{cases}$$

2. Das Polynom f heißt **normiert** falls $deg(f) = n \ge 0$ und $a_n = 1$.

Lemma 5.7.10 Es gilt

- 1. $\deg(f \cdot g) = \deg(f) + \deg(g)$.
- 2. $\deg(f+g) \le \max(\deg(f), \deg(g))$.

Beweis. Übung.

Definition 5.7.11 1. Sei $b \in A$. Man definiert $\operatorname{ev}_b : A[X] \to A$ die **Einsetzung** von $f = \sum_{n} a_n X^n$ in b als

$$\operatorname{ev}_b(f) = \sum_n a_n b^n \in A.$$

Man schreibt oft f(b) für $ev_b(f)$.

2. $b \in A$ heißt Nullstelle von f wenn f(b) = 0.

Beispiel 5.7.12 Sei A = K[X]. Dann ist A[Y] = K[X][Y] = K[X,Y] de Menge alle Polynome in die zwei Variablen X und Y. z.b. ist $f = X^2Y^2 + XY + X + X$ $1 \in K[X,Y]$. Per Induksion nach n kann man Polynome in n Variablen definieren: $K[X_1, \cdots, X_n] = K[X_1][X_2][\cdots][X_n].$

Bemerkung 5.7.13 Analog kann man A[X] für A ein Ring definieren. Dann ist A[X] ein Ring.

5.8 Graduierte Algebren

Definition 5.8.1 Sei A eine K-algebra und seien U und V zwei Teilmenge von A. Dann schreiben wir

$$UV = \{uv \in A \mid u \in U, \ v \in V\}.$$

5 Algebren

Definition 5.8.2 Sei A eine K-Algebra. Eine **Graduierung** von A ist eine Familie $(A_n)_{n\geq 0}$ von Unterräume von A so, dass

$$A = \bigoplus_{n \ge 0} A_n \text{ und } A_i A_j \subset A_{i+j}$$

für alle $i, j \in \mathbb{N}$.

Eine K-Algebra mit einer Graduierung heißt **graduierte** K-Algebra.

Beispiel 5.8.3 1. Sei A eine K-Algebra und sei $A_0 = A$ und $A_n = 0$ für alle n > 0. Dann ist A eine graduierte K-Algebra. Diese Graduierung heißt die **triviale Graduierung**.

2. Sei A = K[X] und $A_n = \{P \in A \mid \deg(P) = n\} \cup \{0\}$. Dann ist $(A_n)_{n \in \mathbb{N}}$ eine Graduierung von A.

Definition 5.8.4 Seien A und B zwei graduierte Algebrane. Ein Algebrahomomorphismus $f: A \to B$ heißt graduiert falls $f(A_n) \subset B_n$ für alle $n \ge 0$.

Definition 5.8.5 Sei A eine Graduierte K-Algebra.

(1) Eine Unteralgebra B von A heißt graduierte Unteralgebra falls

$$B = \bigoplus_{n \ge 0} (B \cap A_n).$$

(11) Ein Linksideal (bzw. Rechtsideal, bzw. Ideal) I von A heißt graduiertes Linksideal (bzw. graduiertes Rechtsideal, bzw. graduiertes Ideal) falls

$$I = \bigoplus_{n \ge 0} (I \cap A_n).$$

Lemma 5.8.6 Sei A eine graduierte K-Algebra und I ein graduiertes Ideal. Dann ist A/I eine graduierte Algebra und $p:A\to A/I$ ein graduierter Algebrahomomorphismus.

Beweis. Sei $(A_n)_{n\geq 0}$ die Graduierung und sei $p:A\to A/I$ die kanonische Projecktion. Wir zeigen, dass $(p(A_n))_{n\geq 0}$ eine Graduierung von A/I ist. Sei $a_n\in A_n$ für alle n so, dass $a_n\neq 0$ nur für endlich viele n und

$$\sum_{n} p(a_n) = 0.$$

Es gilt $\sum_n a_n \in I$. Da $I = \bigoplus_n (I \cap A_n)$ gilt $a_n \in I \cap A_n$ und $p(a_n) = 0$ für alle n. Daraus folgt $\sum_n p(A_n) = \bigoplus_n p(A_n)$. Da p surjektiv ist gilt

$$A/I = \bigoplus_{n \ge 0} p(A_n).$$

Seien $a_i \in A_i$ und $a_j \in A_j$ dann gilt $p(a_i)p(a_j) = p(a_ia_j) \in p(A_iA_j) \subset p(A_{i+j})$.

Lemma 5.8.7 Sei $f: A \to B$ ein graduierter Algebrahomomorphismus. Dann ist $I = \operatorname{Ker} f$ ein graduiertes Ideal.

Beweis. Übung.

Definition 5.8.8 1. Sei A eine graduierte K-Algebra. Ein Element $a \in A_n$ heißt homogen von Grad n.

2. Sei $a \in A$. Es gilt

$$a = \sum_{n \neq 0} a_n$$

wobei $a_n \in A_n$ und a_n eindeutig bestimmt ist. Das Element a_n heißt **Komponente** von Grad n von a.

Lemma 5.8.9 Sei A eine graduierte K-Algebra und sei I ein Ideal. Dann ist I genau dann graduiert, wenn für alle $a \in I$ gilt $a_n \in I$ (wobei a_n die Komponente von Grad n von a ist).

Beweis. Übung.

Lemma 5.8.10 Sei A eine graduierte K-Algebra.

- 1. Sei E eine Teilmenge von A welche aus homogene Elemente besteht. Dann ist (E) ein graduiertes Ideal.
- 2. Sei I ein graduiertes Ideal. Dann gibt es eine Teilmenge E welche aus homogene Elemente besteht mit I=(E).

Beweis. Übung.

5.9 Tensor Algebra

Definition

Lemma 5.9.1 Sei V ein K-Vektorraum. Die Abbildung $V^{\otimes n} \times V^{\otimes m} \to V^{\otimes (n+m)}$ definiert durch $(T,T')\mapsto T\otimes T'$ ist bilinear.

Beweis. Übung.

Definition 5.9.2 1. Wir Setzen $T_n(V) = V^{\otimes n}$.

2. Sei V ein K-Vektorraum. Die **Tensoralgebra** T(V) **von** V ist

$$T(V) = \bigoplus_{n>0} T_n(V).$$

58 5 Algebren

Bemerkung 5.9.3 1. Die Tensoralgebra T(V) ist ein K-Vektorraum.

2. Ein Vektor $T \in T(V)$ ist der Form

$$T = \sum_{n>0} T_n$$

wobei $T_n \in T_n(V)$ und $T_n \neq 0$ nur für endlich viele n.

Definition 5.9.4 Seien $T, T' \in T(V)$ mit

$$T = \sum_{n>0} T_n \text{ und } T' = \sum_{m>0} T'_m,$$

wobei $T, T' \in T_n(V)$. Wir setzen

$$T \cdot T' = \sum_{n,m \ge 0} T_n \otimes T_m.$$

Notation 5.9.5 Wir schreiben $T \otimes T'$ für $T \cdot T'$.

Lemma 5.9.6 $(T(V), +, \cdot, \otimes)$ ist eine K-Algebra.

Beweis. Nach Lemma 5.9.1 ist das Produkt bilinear. Da das Tensorprodukt assoziativ ist, ist das Produkt assoziativ. Es gilt $t_0(V) = K$ und für $1 \in K = T_0(V) \subset T(A)$ gilt $1 \otimes T = T \otimes 1 = T$. Es folgt, dass 1 ein Eins für T(A) ist.

Lemma 5.9.7 Die Familie $(T_n(V))_{n>0}$ ist eine Graduierung von T(V).

Beweis. Es gilt
$$T_n(V) \cdot T_m(V) \subset T_{n+m}(V)$$
.

Bemerkung 5.9.8 Es gibt eine injektive lineare Abbildung $\varrho: V \simeq T_1(V) \subset T(V)$.

Lemma 5.9.9 Die Teilmenge $\varrho(V) \subset T(V)$ ist erzeugend.

Universelle Eigenschaft

Satz 5.9.10 Sei A eine K-Algebra und $f: V \to A$ eine lineare Abbildung. Dann gibt es genau ein Algebrahomomorphismus $T_f: T(V) \to A$ mit $f = T_f \circ \varrho$.

$$V \xrightarrow{f} A$$

$$Q \downarrow \qquad T_f$$

$$T(V).$$

Beweis. Seien T_f und T_f' zwei solche Algebrahomomorphismen. Dann gilt $T_f(\varrho(v)) = T_f'(\varrho(v))$ für alle $v \in V$. Da $\varrho(V)$ erzeugend ist gilt $T_f = T_f'$.

Die Abbildung $V^n \to A$ definiert durch $(v_1, \dots, v_n) \mapsto f(v_1) \dots f(v_n)$ ist n-linear. Es folgt, dass es eine lineare Abbildung $L_n : T_n(V) \to A$ gibt mit $L_n(v_1 \otimes \dots \otimes v_n) = f(v_1) \dots f(v_n)$. Sei $L_0 = \operatorname{Id}_K$ und sei $T_f : T(V) \to A$ definiert durch

$$T_f(T) = \sum_{n>0} L_n(T_n)$$

wobei $T = \sum_{n \geq 0} T_n$ mit $T_n \in T_n(V)$. Es gilt $T_f(\varrho(v)) = L_1(v) = f(v)$.

Wir zeigen, dass T_f ein Algebrahomomorphismus ist. Die Abbildung T_f ist linear. Es gilt $T_f(1) = L_0(1) = 1$ und für $T = v_1 \otimes \cdots \otimes v_n$ und $T' = w_1 \otimes \cdots \otimes w_m$ gilt

$$T_f(T \otimes T') = T_f(v_1 \otimes \cdots \otimes v_n \otimes w_1 \otimes \cdots \otimes w_m)$$

$$= L_{n+m}(v_1 \otimes \cdots \otimes v_n \otimes w_1 \otimes \cdots \otimes w_m)$$

$$= f(v_1) \cdots f(v_n) f(w_1) \otimes f(w_m)$$

$$= L_n(v_1 \otimes \cdots \otimes v_n) L_m(w_1 \otimes \cdots \otimes w_m)$$

$$= T_f(T) \otimes T_f(T').$$

Da die reine Tensoren ein EZS von T(A) sind folgt von dem folgenden Lemma, dass T_f ein Algebrahomomorphismus ist.

Lemma 5.9.11 Seien A und B zwei K-Algebren und sei $H: A \to B$ eine lineare Abbildung so, dass $H(1_A) = 1_B$ und für ein EZS $(a_i)_{i \in I}$ von A gilt $H(a_i a_j) = H(a_i)H(a_j)$. Dann ist H ein Algebrahomomorphismus.

Beweis. Übung.

Korollar 5.9.12 Seien V und W zwei K-Vektorräume und sei $f:V\to W$ eine lineare Abbildung. Dann gibt es genau ein Algebrahomomorphismus T(f) so, dass das folgende Diagram kommutiert

$$V \xrightarrow{f} W \qquad \downarrow^{\varrho_W} \\ T(V) \xrightarrow{T(f)} T(W).$$

Die Abbildung T(f) ist graduiert.

Beweis. Existenz folgt aus dem obigen Satz für die lineare Abbildung $f \circ \varrho_W : V \to T(W)$. Wir zeigen, dass T(f) graduiert ist. Es genügt zu zeigen, dass für $v_1, \dots, v_n \in V$ gilt $T(f)(v_1 \dots v_n) \in T_n(W)$. Aber es gilt $T(f)(v_1 \dots v_n) = T(f)(v_1) \dots T(f)(v_n) = f(v_1) \cdot f(v_n) \in T_n(W)$.

5 Algebren

5.10 Symmetrische Algebra

Definition

Definition 5.10.1 Sei V ein K-Vektorraum. **Die Symmetrischealgebra** Sym(V) ist die Quotientalgebra

$$\operatorname{Sym}(V) = T(V)/I \text{ wobei } I = (v \otimes v' - v' \otimes v \mid v, v' \in V).$$

Für $a, b \in \text{Sym}(V)$ schreiben wir ab für das Produkt.

Lemma 5.10.2 Das Ideal $I = (v \otimes v' - v' \otimes v \mid v, v' \in V)$ ist ein graduiertes Ideal von T(V). Sei $p: T(V) \to \operatorname{Sym}(V)$ die kanonische Projektion. Die Familie $(p(T_n(V)))_{n\geq 0}$ ist eine Graduierung von $\operatorname{Sym}(V)$.

Beweis. Alle Elemente $v \otimes v' - v' \otimes v$ sind homogen von Grad 2. Es folgt von Lemma 5.8.10.1, dass I graduiert ist. Es folgt, dass die Familie $(p(T_n(V)))_{n\geq 0}$ eine Graduierung von $\operatorname{Sym}(V)$ ist.

Definition 5.10.3 Wir schreiben $\operatorname{Sym}_n(V) = p(T_n(V))$.

Bemerkung 5.10.4 Es gilt $\operatorname{Sym}^n(V) \neq \operatorname{Sym}_n(V)$. Zum Beispiel haben wir $\operatorname{Sym}^n(V)$ nur für $\operatorname{char}(K) = 0$ definiert und $\operatorname{Sym}_n(K)$ ist für alle K definiert.

Lemma 5.10.5 Sie lineare Abbildung $\theta = p \circ \varrho : V \to T(V) \to \operatorname{Sym}(V)$ ist injektiv.

Beweis. Die Abbildung ϱ ist injektiv. Es genugt zu zeigen, dass $\varrho(V) \cap I = 0$. Es gilt $\varrho(V) \subset T_1(V)$ und es gilt $I \cap T_1(V) = 0$.

Satz 5.10.6 Die Algebra Sym(V) ist eine kommutative Algebra.

Beweis. Seien $v, v' \in V$. Wir schreiben [v] für die Äquivalenzklasse von $v \in T(V)$ in $\operatorname{Sym}(V)$. Es gilt $[v][v'] = [v \otimes v']$ (das Produkt in T(V) von v und v' ist $v \otimes v'$. Es folgt

$$[v][v'] = [v \otimes v'] = [v' \otimes v] = [v'][v].$$

Der Beweis folgt aus den zwei folgenden Lemma

Lemma 5.10.7 Die Familie $([v])_{v \in V} = \theta(V)$ ist erzeugend.

Beweis. Sie Familie $\varrho(V)$ ist erzeugend in T(V) und $p:T(V)\to \operatorname{Sym}(V)$ ist surjektiv. Es folgt, dass $\theta(V)=p(\varrho(V))$ erzeugen ist.

Lemma 5.10.8 Sei A eine K-Algebra und E eine erzeugende Teilmenge mit ee' = e'e für alle $e, e' \in E$. Dann ist A kommutativ.

Beweis. Sei $A' = \{a \in A \mid ae = ea \text{ für alle } e \in E\}$. Es gilt $E \subset A'$. Wir zeigen, dass A' eine Unteralgebra ist. Es gilt $1_A e = e = e1_A$ für alle $e \in E$. Es folgt $1_A \in A'$. Seien $a, b \in A'$. Es gilt

$$(ab)e = a(be) = a(eb) = (ae)b = (ea)b = e(ab).$$

Es folgt $ab \in A'$. Daraus folgt, dass A' = A. Insbesondere gilt ae = ea für alle $a \in A$.

Sei $B = \{b \in A \mid ab = ba \text{ für alle } a \in A\}$. Es gilt $E \subset A$. Wir zeigen, dass B eine Unteralgebra ist. Es gilt $1_A a = a = a 1_A$ für alle $a \in A$. Es folgt $1_A \in B$. Seien $b, b' \in B$. Es gilt

$$(bb')a = b(b'a) = b(ab') = (ba)b' = (ab)b' = a(bb').$$

Es folgt $bb' \in B$. Daraus folgt, dass B = A und dass A kommutativ ist.

Universelle Eigenschaft

Satz 5.10.9 Sei $f: V \to A$ eine lineare Abbildung mit f(v)f(v') = f(v')f(v) für alle $v, v' \in V$. Dann gibt es genau ein Algebrahomomorphismus $S_f: \operatorname{Sym}(V) \to A$ mit $f = S_f \circ \theta$.

$$V \xrightarrow{f} A$$

$$Sym(V).$$

Beweis. Seien S_f und S'_f zwei solche Algebrahomomorphismen. Dann gilt $S_f(\theta(v)) = S'_f(\theta(v))$ für alle $v \in V$. Da $\theta(V)$ erzeugend ist gilt $S_f = S'_f$.

Nach dem Satz 5.9.10 gibt es ein Algebrahomomorphismus $T_f: T(V) \to A$ mit $T_f \circ \rho = f$. Wir zeigen, dass $I \subset \text{Ker}(T_f)$. Seien $v, v' \in V$, es gilt

$$T_f(v \otimes v') = T_f(v)T_f(v') = f(v)f(v') = f(v')f(v) = T_f(v')T_f(v) = T_f(v' \otimes v).$$

Nach dem Satz 5.3.8.1, gibt es ein Algebrahomomorphismus $S_f: \mathrm{Sym}(V) \to A$ mit $S_f \circ p = T_f$

$$T(V) \xrightarrow{T_f} A$$

$$\downarrow^p \qquad \qquad \downarrow^{S_f}$$

$$Sym(V).$$

Es gilt $S_f \circ \theta = S_f \circ p \circ \varrho = T_f \circ \varrho = f$.

62 5 Algebren

Korollar 5.10.10 Seien V und W zwei K-Vektorräume und sei $f:V\to W$ eine lineare Abbildung. Dann gibt es genau ein Algebrahomomorphismus S(f) so, dass das folgende Diagram kommutiert

$$V \xrightarrow{f} W$$

$$\theta_V \downarrow \qquad \qquad \downarrow \theta_W$$

$$S(V) \xrightarrow{S(f)} S(W).$$

Die Abbildung S(f) ist graduiert.

Beweis. Existenz folgt aus dem obigen Satz für die lineare Abbildung $f \circ \theta_W : V \to S(W)$. Wir zeigen, dass S(f) graduiert ist. Es genügt zu zeigen, dass für $v_1, \dots, v_n \in V$ gilt $S(f)(v_1 \dots v_n) \in \operatorname{Sym}_n(W)$. Aber es gilt $S(f)(v_1 \dots v_n) = S(f)(v_1) \dots S(f)(v_n) \in \operatorname{Sym}_n(W)$.

Symmetrische Tensoren und symmetrische Algebra

Satz 5.10.11 Sei K ein Körper mit char(K) = 0. Die Komposition

$$\Phi_n: \operatorname{Sym}^n(V) \subset T_n(V) \xrightarrow{p} \operatorname{Sym}_n(V)$$

ist ein Isomorphismus von K-Vektorräume.

Beweis. Sei I das Ideal $I = (v \otimes v' - v' \otimes v \mid v, v' \in V)$ und sei $I_n = I \cap T_n(V)$. Die Einschränkung den Quotientabbildung $p: T(V) \to \operatorname{Sym}_n(V)$ auf $T_n(V)$ ist

$$p_n: T_n(V) \to \operatorname{Sym}_n(V) = T_n(V)/(I \cap T_n(V)) = T_n(V)/I_n.$$

Lemma 5.10.12 Es gilt $I_n = \langle (v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_3 \cdots \otimes v_n, v_1 \cdots \otimes v_{n-2} \otimes (v_{n-1} \otimes v_n - v_n \otimes v_{n-1}) \mid v_i \in V$ für $i \in [1, n] \rangle$.

Beweis. Folgt aus Lemma 5.6.11.

Lemma 5.10.13 Sei $\sigma \in S_n$, es gilt $p \circ \sigma = p$.

Beweis. Da $(v_1 \otimes \cdots \otimes v_n)$ ein EZS ist, genügt es zu zeigen , dass

$$p(\sigma(v_1 \otimes \cdots \otimes v_n)) = p(v_1 \otimes \cdots v_n).$$

Da σ ein Produkte von Elementaretranspositionen ist, genügt es zu zeigen, dass

$$p(s_i(v_1 \otimes \cdots \otimes v_n)) = p(v_1 \otimes \cdots v_n)$$

für alle $i \in [1, n-1]$. Es gilt

$$p(s_i(v_1 \otimes \cdots \otimes v_n)) = p(v_1 \otimes (v_{i+1} \otimes v_i) \otimes \cdots v_n) = p(v_1 \otimes (v_i \otimes v_{i+1}) \otimes \cdots v_n) = p(v_1 \otimes \cdots \otimes v_n).$$

Für $n \geq 0$ haben wir die lineare Abbildung $T_n(V) \to \operatorname{Sym}^n(V)$ definiert. Wir schreiben $p_{\operatorname{Sym},n}$ für diese Abbilgung.

Korollar 5.10.14 Es gilt $p \circ p_{\text{Sym},n} = p$.

Lemma 5.10.15 Es gilt $I_n \subset \text{Ker} p_{sym,n}$

Beweis. Es gilt

$$p_{\text{Sym},n}((v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_3 \cdots \otimes v_n) = p_{\text{Sym},n}(v_1 \otimes \cdots \otimes v_n) - p_{\text{Sym},n}s_1((v_1 \otimes \cdots \otimes v_n)) = 0 \text{ und}$$

$$p_{\operatorname{Sym},n}(v_1 \cdots \otimes v_{n-2} \otimes (v_{n-1} \otimes v_n - v_n \otimes v_{n-1})) = p_{\operatorname{Sym},n}(v_1 \otimes \cdots \otimes v_n) - p_{\operatorname{Sym},n} s_{n-1}((v_1 \otimes \cdots \otimes v_n) = 0.$$

Es folgt
$$I_n \subset \text{Ker} p_{sym,n}$$

Daraus folgt, dass es eine lineare Abbildung $\bar{p}_{\mathrm{Sym},n}: \mathrm{Sym}_n(V) \to \mathrm{Sym}^n(V)$ gibt mit $\bar{p}_{\mathrm{Sym},n} \circ p_n = p_{\mathrm{Sym},n}$. Wir zeigen , dass $\Phi_n \circ \bar{p}_{\mathrm{Sym},n} = \mathrm{Id}_{\mathrm{Sym}_n(V)}$ und dass $\bar{p}_{\mathrm{Sym},n} \circ \Phi_n = \mathrm{Id}_{\mathrm{Sym}^n(V)}$.

Sei $T \in \operatorname{Sym}^n(T)$. Es gilt $T = p_{\operatorname{Sym},n}(T)$ und

$$\bar{p}_{\mathrm{Sym},n} \circ \Phi_n(T) = \bar{p}_{\mathrm{Sym},n}(p_n(T)) = p_{\mathrm{Sym},n}(T) = T.$$

Sei $[T] = p_n(T) \in \operatorname{Sym}_n(V)$ wobei $T \in T_n(V)$. Es gilt

$$\Phi_n \circ \bar{p}_{\mathrm{Sym},n}([T]) = \Phi_n(\bar{p}_{\mathrm{Sym},n}(p_n(T))) = \Phi_n(p_{\mathrm{Sym},n}(T)) = p(p_{\mathrm{Sym},n}(T)) = p(T) = [T].$$

Bemerkung 5.10.16 1. Für char(K) = 0 gibt es ein Isomorphismus von K-Vektorräume

$$\bigoplus_{n>0}\operatorname{Sym}^n(V)\simeq\operatorname{Sym}(V).$$

Aber der Unterraum $\bigoplus_{n\geq 0} \operatorname{Sym}^n(V)$ ist keine Unteralgebra von T(V). Sei $V=\mathbb{R}^4$ und (e_1,e_2,e_3,e_4) die kanonische Basis. Dann gilt $a=e_1\otimes e_2+e_2\otimes e_1\in\operatorname{Sym}^2(V)$ und $b=e_3\otimes e_4+e_4\otimes e_3\in\operatorname{Sym}^2(V)$. Aber

$$ab = e_1 \otimes e_2 \otimes e_3 \otimes e_4 + e_1 \otimes e_2 \otimes e_4 \otimes e_3 + e_2 \otimes e_1 \otimes e_3 \otimes e_4 + e_2 \otimes e_1 \otimes e_4 \otimes e_3 \notin \operatorname{Sym}^4(V).$$

Es gilt $s_2(ab) \neq ab$.

2. Für $K = \mathbb{F}_2$ ist die Abbildung $\Phi_2 : \operatorname{Sym}^2(V) \to \operatorname{Sym}_2(V)$ nicht injektiv (und auch nicht surjektiv). Da 1 = -1 in \mathbb{F}_2 gilt

$$\Phi_2(v \otimes v' + v' \otimes v) = p(v \otimes v' - v' \otimes v) = 0.$$

5 Algebren

Symmetrische Algebra und Polynome

Bemerkung 5.10.17 Nach der Konstruktion von $K[X_1, \dots, X_n]$ ist das System $(X_1^{i_1} \dots X_n^{i_n})_{i_1, \dots, i_n \in \mathbb{N}}$ eine Basis von $K[X_1, \dots, X_n]$ (Übung).

Satz 5.10.18 Sei V ein K-Vektorraum mit $\dim(V) = n$. Dann gibt es ein Algebraisomorphismus

$$S(V) \simeq K[X_1, \cdots, X_n].$$

Beweis. Sei (v_1, \dots, v_n) eine Basis von V. Sei $f: V \to K[X_1, \dots, X_n]$ die lineare Abbildung definiert durch $f(v_i) = X_i$ für alle $i \in [1, n]$. Nach dem Satz 5.10.9 gibt es ein Algebrahomomorphismus $S_f: S(V) \to K[X_1, \dots, X_n]$ mit $S_f \circ \theta = f$. Wir zeigen, dass S_f ein Isomorphismus ist.

Da (v_1, \dots, v_n) erzeugend ist, ist dass System $(v_1^{i_1} \dots v_n^{i_n})_{i_1, \dots, i_n \in \mathbb{N}}$ ein EZS von S(V). Wir zeigen, dass es eine Basis ist. Seien $\lambda_{i_1, \dots, i_n} \in K$ mit

$$\sum_{i_1,\dots,i_n} \lambda_{i_1,\dots,i_n} v_1^{i_1} \cdots v_n^{i_n} = 0.$$

Es gilt

$$0 = S_f \left(\sum_{i_1, \dots, i_n} \lambda_{i_1, \dots, i_n} v_1^{i_1} \cdots v_n^{i_n} \right) = \sum_{i_1, \dots, i_n} \lambda_{i_1, \dots, i_n} S_f(v_1^{i_1} \cdots v_n^{i_n}) = \sum_{i_1, \dots, i_n} \lambda_{i_1, \dots, i_n} X_1^{i_1} \cdots X_n^{i_n}.$$

Es folgt, dass $\lambda_{i_1,\dots,i_n}=0$ und $(v_1^{i_1}\cdots v_n^{i_n})_{i_1,\dots,i_n\in\mathbb{N}}$ ist eine Basis. Die Abbildung S_f ist also bijektiv.

Korollar 5.10.19 Sei V ein K-Vektorraum und sei $\mathcal{B}=(e_1,\cdots,e_n)$ eine Basis. Dann ist $(e_1^{i_1}\cdots e_n^{i_n})_{i_1,\cdots,i_n\in\mathbb{N}}$ eine Basis von S(V).