

Visão geral

Aula 05

Hugo Silva

Circ. memóri

NAND/NOI

Circ. sín assínc.

Clocked S-C

flip-flops

D flip-flops/

Ent. assíno

Aplicações

Aula 05 - Circuitos lógicos sequenciais

Hugo Vinícius Leão e Silva

hugovlsilva@gmail.com, hugo.vinicius.16@gmail.com, hugovinicius@ifg.edu.br

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Curso de Bacharelado em Ciência da Computação

10 de setembro de 2021

Visão geral

Aula 05

Hugo Silva

Circ. memóri

flip-flops

assínc. Clocked S-C

Clocked S-C flip-flops

Clocked J-K flip-flops

D flip-flops/ latches

Ent. assíno

Aplicaçõ

- 1 Circuito com e sem memória
- 2 Latches NAND e NOR
- 3 Circuito síncrono e assíncrono
- 4 Flip-flops S-C com clock
- 5 Flip-flops J-K com clock
- 6 Flip-flops e latches D com e sem clock
- 7 Ent. assínc.
- 8 Aplicações para latches e flip-flops

Circuito sem memória

Aula 05

Hugo Silva

Circ. memória

NAND/NO flip-flops

Circ. sin assínc.

Clocked S-C flip-flops

Clocked J-K flip-flops

D flip-flops_/ latches

Ent. assíno

- Da Aula 4: "Circuitos combinacionais → a saída do circuito está em função da combinação das entradas";
- Atualização: Em circuitos combinacionais, as saídas do circuito estão exclusivamente em função da combinação das entradas em determinado instante de tempo;
- Entradas anteriores $n\tilde{a}o$ afetam o resultado atual \rightarrow Circuito sem memória.

Circuito com memória

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc.

Clocked S-C

flip-flops Clocked J-k

D flip-flops

Ent. assín

Aplicações

As saídas do sistema dependem das entradas \underline{e} do conteúdo em memória.

Flip-flops

Aula 05

Hugo Silva

Circ. memória NAND/NOR

flip-flops
Circ. síne

Circ. sínc assínc.

Clocked S-C flip-flops

flip-flops

latches

Ent. assino

Aplicaçõe:

- Flip-flops ou latches ou multivibrador biestável são os elementos de memória mais importantes.
- Projetado a partir de duas funções lógicas completamente eletrônico;
- Existem flip-flops NAND e NOR:

Flip-flops NAND

Aula 05

Hugo Silva

Circ. memória
NAND/NOR

flip-flops

Circ. sínc. assínc.

Clocked S-C flip-flops

D flin-flons

latches

Ent. assino

Aplicações

Figura: Representação de um flip-flop NAND

 $Q \rightarrow \mathsf{Saida} \ normal \ \mathsf{do} \ flip-flop;$

 $\overline{Q} \rightarrow \mathsf{Saida} \ invertida \ \mathsf{do} \ \mathit{flip-flop};$

 $\mathsf{SET} \to \mathsf{Entrada}$ para setar o flip-flop; (Q=1);

 $\mathsf{CLEAR} \to \mathsf{Entrada}\ \mathsf{para}\ \mathit{ressetar}/\mathsf{limpar}\ \mathsf{o}\ \mathit{flip-flop};\ (\mathit{Q}=\mathsf{0}).$

Flip-flops NAND

Aula 05

Hugo Silva

Circ. memória

NAND/NOR flip-flops

Circ. síno assínc.

Clocked S-C flip-flops

flip-flops D. flip. flops/

Ent. assíno

Aplicações

SET	CLEAR	Q	\overline{Q}
0*	0*	Inválido	Inválido
0	1 1	1	0
1	0	0	1
1	1	Q_0 Não altera	(\overline{Q}_0) Não altera

 $\mathsf{SET} = \mathsf{CLEAR} = 1 \to \mathsf{Estado}$ de repouso; Q/\overline{Q} não são alterados.

Flip-flops NAND

Aula 05

Hugo Silva

Circ. memória

NAND/NOR flip-flops

Circ. sínc.

Clocked S-C flip-flops

tlip-tlops Clocked I-K

D flip-flops

Ent. assíno

Aplicaçõe:

Figura: Outra representação para FFs NAND usando funções NOR

Lembre-se de que flip-flops NAND são circuitos ativa-BAIXO!

Flip-flops NOR

Aula 05

Hugo Silva

Circ. memória

NAND/NOR flip-flops

Circ. síno assínc.

Clocked S-C flip-flops

flip-flops

D flip-flops/

Ent. assíno

Aplicações

SET	CLEAR	Q	\overline{Q}
0	0	(Q_0) Não altera	(\overline{Q}_0) Não altera
0	1	0	1
1	0	1	0
1*	1*	Inválido	Inválido

 $\mathsf{SET} = \mathsf{CLEAR} = \mathsf{0} \to \mathsf{Estado}$ de repouso; Q/\overline{Q} não são alterados.

Exercício prático

Aula 05

Hugo Silva

Circ. memória

NAND/NOR

flip-flops
Circ. síno

Clocked S

flip-flops

D flip-flops

latches

Ent. assíno

Aplicaçõe:

Circuito síncrono e assíncrono

Aula 05

Hugo Silva

Circ. memóri

NAND/NO

Circ. sínc. assínc.

Clocked S-C flip-flops

Clocked J-K

D flip-flops/ latches

Ent. assíno

- Circuitos assíncronos → As saídas de um circuito podem mudar de estado a qualquer tempo quando as entradas mudam de estado → projeto e bug hunting mais difíceis;
- Circuitos síncronos utilizam um sinal de relógio (ou sinal de clock);
- As saídas de circuitos síncronos só mudam de estado quando as entradas <u>e</u> o sinal de *clock* mudam de estado.

Circuito síncrono e assíncrono

Aula 05

Hugo Silva

Circ. memória

NAND/NOR

Circ. sínc.

assinc.

Clocked S-0 flip-flops

tlip-tlops Clocked I-k

D flip-flops/

Ent. assíno

Figura: Sinal de saída para circuitos assíncrono e síncronos

Flip-flops S-C com clock

Aula 05

Hugo Silva

Circ. memória

NAND/NOF flip-flops

assínc.

Clocked S-C flip-flops

D flip-flops

Ent. assíno

Aplicações

- Funcionamento idêntico ao dos flip-flops NOR, porém com sinal de clock;
- ullet Q/Q só mudam de estado na transição de CLK;
- Subida ou descida de CLK é o trigger (disparo);

Flip-flop S-C com CLK disparado com transição positiva

Flip-flop S-C com CLK disparado com transição negativa

Flip-flops S-C com clock

Aula 05

Hugo Silva

Circ memóri

NAND/N flip-flops

Circ. sínc.

Clocked S-C flip-flops

D flip-flops

Ent. assínc

Aplicações

Tabela: Tabela-verdade para flip-flop S-C com trigger na transição positiva

SET	CLEAR	CLK	Q	\overline{Q}
0	0	1	$\left(Q_0 ight)$ Não altera	$\overline{(\overline{Q}_0)}$ Não altera
0	1	↑	0	1
1	0	1	1	0
1*	1*	1	Inválido	Inválido

Tabela: Tabela-verdade para flip-flop S-C com trigger na transição negativa

SET	CLEAR	CLK	Q	\overline{Q}
0	0	+	$\left(Q_0 ight)$ Não altera	(\overline{Q}_0) Não altera
0	1	↓	0	1
1	0	↓	1	0
1*	1*	↓	Inválido	Inválido

Flip-flops S-C com clock

Aula 05

Hugo Silva

Circ. memór

NAND/NOF

Circ. síno

Clocked S-C flip-flops

Clocked J-M

D flip-flops latches

Ent. assín

Aplicações

Detector de transição:

- Positiva $\rightarrow T = CLK \cdot \overline{CLK}$;
- Negativa $\rightarrow T = \overline{CLK} \cdot \overline{CLK}$;
- Parece estranho, mas o circuito funciona devido a um pequeníssimo atraso na propagação de \overline{CLK} em relação a CLK.

Exercício prático

Aula 05

Clocked S-C flip-flops

Flip-flops J-K com clock

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc. assínc.

Clocked S-C flip-flops

Clocked J-K flip-flops

πip-πops D. flin-flons/

Ent. assíno

- As entradas J e K funcionam do mesmo jeito que S-C;
- Entretanto, J=K=1 não retorna resultado inválido. Retorna o inverso do resultado anterior – $toggle\ mode$ ou modo de chaveamento/comutação;

Flip-flops J-K com clock

Aula 05

Hugo Silva

Circ memóri

NAND/NOF

Circ. sínc.

Clocked S-0 flip-flops

Clocked J-K flip-flops

latches

Ent. assíno

Tabela: Tabela-verdade para flip-flop J-K com trigger na transição positiva

SET	CLEAR	CLK	Q	$\overline{\mathbf{Q}}$
0	0	1	$\left(Q_0 ight)$ Não altera	(\overline{Q}_0) Não altera
0	1	1	0	1
1	0	1	1	0
1*	1*	↑	\overline{Q}_0	$\overline{\overline{Q}}_0$

Tabela: Tabela-verdade para flip-flop J-K com trigger na transição negativa

SET	CLEAR	CLK	Q	\overline{Q}
0	0	1	(Q_0) Não altera	(\overline{Q}_0) Não altera
0	1	↓	0	1
1	0	↓	1	0
1*	1*	↓	\overline{Q}_0	$\overline{\overline{Q}}_0$

Exercício prático

Aula 05

Clocked J-K flip-flops

Flip-flops e latches D com e sem clock

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc. assínc.

Clocked S-C flip-flops

Clocked J-K flip-flops

D flip-flops/ latches

Ent. assíno

Aplicações

- No flip-flop D tem apenas a entrada D (Data) além de CLK;
- Fazendo J = D e $K = \overline{D} \rightarrow \text{transforma J-K em D}$;
- $lackbox{ } Q=D$ na transição de CLK;

■ No latch D, CLK é substituído por EN (Enable);

Flip-flops e latches D com e sem clock

Aula 05

Hugo Silva

Circ. memóri

NAND/NOF

Circ. sín assínc.

Clocked S-C flip-flops

Clocked J-K flip-flops

D flip-flops/ latches

Ent. assíno

Aplicações

Tabela: Tabela-verdade flip-flop D com trigger na transição positiva

D	CLK	Q	Q
0	1	0	1
1	1	1	0

Tabela: Tabela-verdade flip-flop D com trigger na transição negativa

$$\begin{array}{c|c|c|c} D & CLK & \mathbf{Q} & \overline{\mathbf{Q}} \\ \hline 0 & \downarrow & 0 & 1 \\ 1 & \downarrow & 1 & 0 \\ \end{array}$$

Tabela: Tabela-verdade latch D

	EN	Q	\overline{Q}
X	0	(Q_0) Não altera	$\overline{(\overline{Q}_0)}$ Não altera
0	1	0	1
1	1	1	0

Exercício prático

Aula 05

D flip-flops/ latches

Entradas assíncronas

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc.

Clocked S-0 flip-flops

Clocked J-K

D flip-flops/ latches

Ent. assínc.

- As entradas S, C, J, K e D são entradas síncronas → atuam sobre a saída somente na transição de CLK;
- Existem as entradas assíncronas PRESET e CLEAR em ativa-BAIXO e ativa-ALTO, respectivamente:

Exercício prático

Aula 05

Ent. assínc.

Entradas assíncronas

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc assínc.

Clocked S-C flip-flops

Clocked J-K

D flip-flops/ latches

Ent. assínc.

Aplicações

A resposta do *flip-flop* com PRESET e CLEAR obedece a uma das tabelas-verdade abaixo:

Tabela: Tabela-verdade para ativa-BAIXO

PRESET	CLEAR	Resposta do FF
0	0	Inválido
0	1	1
1	0	0
1*	1*	Operação normal

Tabela: Tabela-verdade para ativa-ALTO

PRESET	CLEAR	Resposta do FF
0	0	Operação normal
0	1	0
1	0	1
1*	1*	Inválido

Aula 05

Hugo Silv

Circ. memór

flip-flops

circ. sinc. assínc.

Clocked S-C flip-flops

flip-flops

D flip-flops/ latches

Ent. assino

Aplicações

Alguns poucos exemplos de aplicações para latches e flip-flops

- Latches NAND → eliminar a trepidação de chave;
- Latches NOR → registro de evento/conversão de sinal momentâneo em saída constante;
- Detectar especificamente uma sequência de entrada;
- Armazenamento e transferência de dados:
 - Grupo de flip- $flops \rightarrow Registrador$

Aula 05

Hugo Silva

Circ. memóri

flip-flops

Circ. sínc. assínc.

Clocked S-C flip-flops

Clocked J-F flip-flops

latches

Ent. assin

Aplicações

Transferência serial síncrona:

- Utilizam-se registradores de deslocamento os flip-flops são cascateados/ligados em série;
- Os bits são transferidos de um flip-flop para outro a cada ciclo de clock;
- Exemplos de aplicação: transferência serial de palavras multibit e deslocamento de caracteres na tela da calculadora.

Aula 05

Hugo Silva

Circ. memóri

NAND/NO

Circ. sínc.

Clocked S-C

Clocked J-K

D flip-flops/ latches

Ent. assíno

Aplicações

Quais são os sinais de saída em D_2 , D_1 e D_0 ?

Aula 05

Hugo Silva

Circ. memória

NAND/NOF

Circ. sín

Clocked S-C

Clocked J-K

D flip-flops/ latches

Ent. assínc

Aula 05

Hugo Silva

Circ. memória

NAND/NO

Circ. síno

Clocked S-0 flip-flops

flip-flops

D flip-flops/

Ent. assínc

Aula 05

Hugo Silva

Circ. memóri

NAND/NO flip-flops

Circ. sínc.

Clocked S-C flip-flops

Clocked J-K

D flip-flops

Ent. assín

Aplicações

Transferência paralela síncrona:

- Utilizam-se registradores os flip-flops são ligados em paralelo;
- Toda a palavra é transferida em um ciclo de *clock*;
- Exemplos de aplicação: transferência paralela e unidade lógico-aritmética.

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. síno assínc.

Clocked S-0 flip-flops

Clocked J-K flip-flops

D flip-flops, latches

Ent. assíno

Aplicações

Cada linha do barramento está associada um *flip-flop* no registrador.

Aula 05

Hugo Silva

Circ. memória

NAND/NOF

Circ. síno

Clocked S-0

Clocked J-M

D flip-flops/ latches

Ent. assíno

Figura: Somador paralelo de 3 bits com registrador

Aula 05

Hugo Silva

Circ. memóri

NAND/NOF

Circ. síno assínc.

Clocked S-C flip-flops

Clocked J-K

D flip-flops/ latches

Ent. assíno

Aplicações

Figura: Divisor de frequência de três bits (módulo $2^3=8$, pois possui 8 estados – 000 a 111)

Aula 05

Hugo Silva

Circ. memória

flip-flops

Circ. sínc.

Clocked S-C

Clocked J-K

D flip-flops/

Ent. assíno

Aplicações

Quais os valores de CLK, J- K_2 , J- K_1 e J- K_0 nos tempos t_0 , t_2 , t_4 , t_6 e t_8 ? Isso se parece com o quê?

Aula 05

Hugo Silva

Circ. memóri

NAND/NOF

Circ. sí assínc.

Clocked S-C flip-flops

D flip-flops/

Ent. assíno

Aplicações

Além da divisão de frequência, o que pode ser observado é:

Tabela: Tabela-verdade para o divisor de frequência para cada dois ciclos de *clock*

$\textbf{J}-\textbf{K}_{2}$	$J-K_1$	$J - K_0$	Ciclo de clock
0	0	0	t_0
0	0	1	t_2
0	1	0	t_4
0	1	1	t_6
1	0	0	t ₈
1	0	1	t_{10}
1	1	0	t_{10} t_{12}
1	1	1	t_{14}
0	0	0	t_{16} (recicla)

O divisor de frequência também é um contador binário.

Material

Aula 05

Hugo Silva

Circ. memóri

NAND/NOF

Circ. sín assínc.

Clocked S-C flip-flops

flip-flops Clocked J-K

D flip-flops/

Ent. assíno

Aplicações

Seções utilizadas do livro (11ª edição!):

■ 5-1; 5-2; 5-5; 5-6; 5-7; 5-8; 5-9; 5-10; 5-13; 5-14; 5-16; 5-17; 5-18.