

On Selecting Heuristic function Subsets for Domain-Independent Planning

Marvin Abisrror - 84075

Advisor:

Levi Henrique Santana de Lelis

Index

- Heuristic Search
- Greedy Heuristic Selection
- Stratified Sampling (SS)
- Culprit Sampling (CS)
- Experiments
- Conclusions
- References

Heuristic Search

Heuristic Search

$$f(s) = g(s) + h(s)$$

Heuristic Search

$$f(s) = g(s) + h(s)$$

OPEN

f(b)=4+4 f(c)=5+4 f(d)=3+9

OPEN

f(c)=5+4 f(d)=3+9 f(e)=8+2

OPEN

f(d)=3+9 f(e)=8+2 **f(f)=7+2**

OPEN

f(d)=3+9 f(e)=8+2 f(G)=9+0

OPEN

OPEN

f(b)=4+6 f(c)=5+3 f(d)=3+3

OPEN

f(b)=4+6 f(c)=5+3 **f(g)=6+1**

OPEN

f(b)=4+6 f(c)=5+3 f(h)=8+2

OPEN

f(b)=4+6 f(h)=8+2 **f(f)=7+2**

OPEN

f(b)=4+6 f(h)=8+2 f(G)=9+0

OPEN

f(b)=4+6 f(h)=8+2

h1, h2, h3, h4, h5

h1, h2, h3, h4, h5

h1, h2, h3, h4, h5

n1, n2, n3, n4, n5

The problem formulation

 We present a greedy algorithm for approximately solving the following optimization problem,

$$\textbf{Minimize}_{\zeta' \in \zeta} \quad \Psi(\zeta', \, \nabla)$$

- Ψ can be any objective function (J, T)
 - J is the approximation of the A* search tree size
 - T is the approximation of the A* running time
- Run up to no more utility gain.

Ψ models the A* search tree size (J)

$$J(\zeta', \nabla) = |\{\text{children}(s) \in V \mid f_{\text{max}}(s, \zeta') \leq C^*\}|$$

Ψ models the A* running time (T)

$$T (\zeta', \nabla) = J(\zeta', \nabla) \cdot (t_{h_{\max(\zeta')}} + t_{gen})$$

Type System

Prediction: 16 nodes

Culprit Sampling

(Barley et al., 2014)

- $f_c(n) = \{f_1(n), f_2(n), ..., f_M(n)\}$, where $f_i(n) = g(n) + h_i(n)$ and set of heuristics $h_1, h_2, ...$ h_M
- ⇒ bc(n) = { $y_1(n)$, $y_2(n)$, ... $y_M(n)$ }, where $y_i(n) = 1$ if $g(n) + h_i(n) \le b$ and $y_i(n) = 0$, otherwise.

Relative error

$$\frac{\sum_{s \in PI} \frac{Pred(s,d) - R(s,d)}{R(s,d)}}{\left|PI\right|}$$

SS for Predicting the IDA* Search Tree Size

Domain	hmax									
	IDA* time Relative-error									
			1	10	100	1000	5000			
Barman	8835990.00	6016.38	0.60	0.45	0.20	0.07	0.04	20		
Elevators	1012570.00	4987.57	0.84	0.42	0.23	0.13	0.10	2		
Floortile	30522300.00	3919.72	2.02	0.62	0.40	0.14	0.11	20		
Nomystery	6565740.00	3256.86	0.53	0.26	0.07	0.03	0.01	20		
Openstacks	80108.50	4017.19	0.03	0.03	0.03	0.03	0.03	20		
Parcprinter	1.00	0.00	0.00	0.00	0.00	0.00	0.00	20		
Parking	374925.00	5607.50	0.17	0.04	0.01	0.00	0.00	20		
Pegsol	68763.70	5.00	0.17	0.04	0.02	0.01	0.00	20		
Scanalyzer	8449890.00	4920.58	0.43	0.25	18.63	0.02	0.01	20		
Sokoban	3118530.00	3932.69	0.41	0.26	0.11	0.05	0.04	20		
Tidybot	444473.00	5632.08	300.86	1072.40	5.88	0.01	0.01	20		
Transport	2622880.00	2253.51	0.63	0.54	0.24	0.15	0.11	20		
Visitall	71032400.00	3704.78	0.12	0.04	0.04	0.00	0.00	20		
Woodworking	5139070.00	4944.76	1.28	0.69	0.69	0.17	0.07	20		

SS for Predicting the IDA* Search Tree Size

Domain	hmax										
	IDA*	time		n							
			1	10	100	1000	5000				
Barman	8835990.00	6016.38	0.06	0.32	3.21	32.57	214.59	20			
Elevators	1012570.00	4987.57	1.40	9.85	96.37	994.33	4425.93	2			
Floortile	30522300.00	3919.72	0.01	0.07	0.69	6.93	36.60	20			
Nomystery	6565740.00	3256.86	0.07	0.38	3.63	36.35	181.03	20			
Openstacks	80108.50	4017.19	94.79	774.86	1067.84	10929.00	11174.30	20			
Parcprinter	1.00	0.00	0.01	0.04	0.35	3.48	17.29	20			
Parking	374925.00	5607.50	1.79	11.36	114.28	1196.83	5835.03	20			
Pegsol	68763.70	5.00	0.01	0.04	0.37	3.69	17.88	20			
Scanalyzer	8449890.00	4920.58	3.13	28.79	273.74	3033.06	10254.00	20			
Sokoban	3118530.00	3932.69	0.31	2.00	21.42	222.47	1056.61	20			
Tidybot	444473.00	5632.08	4.40	26.48	238.76	2747.10	11925.40	20			
Transport	2622880.00	2253.51	0.09	0.61	5.89	59.37	290.31	20			
Visitall	71032400.00	3704.78	0.00	0.05	0.56	5.77	28.07	20			
Woodworking	5139070.00	4944.76	0.15	1.33	13.21	130.82	664.08	20			

SS for Predicting the A* Search Tree size

	ip	db	LM-	Cut	M		n
Domain	A*	Relative- error	A*	Relative-error	A*	Relative-error	
Barman	1.72x10 ⁷	8.68x10 ³¹	7.45x10 ⁶	2.21x10 ³⁰	6.67x10 ⁶	1.26x10 ³⁶	4
Floortile	1.40x10 ⁷	1.74x10 ¹⁸	702435	4.68x10 ¹⁴	4.46x10 ⁶	1.90x10 ¹²	4
Nomystery	40169.7	6.71x10 ³²	267100	6.14x10 ¹⁹	8236	1.20x10 ²⁰	9
Openstacks	570099	0.61884	570099	0.677425	569984	0.672143	4
Parcprinter	1157	2.56x10 ²²	1363.67	2.33x10 ²¹	766.333	6.36x10 ²⁰	3
Pegsol	841693	2901.39	398221	6859.86	933430	779.017	16
Scanalyzer	337894	3.94x10 ³³	334747	7.58x10 ³¹	337833	2.42x10 ³¹	3
Sokoban	376755	1.04×10 ⁷	45374	2.74x10 ⁶	739775	5.60x10 ⁸	9
Transport	1.89x10 ⁶	2.91x10 ³⁸	1.49x10 ⁶	1.15x10 ²⁵	1.73×10 ⁶	1.50x10 ²⁹	2
Visitall	253710	1.69x10 ⁴⁶	253195	1.69x10 ⁴⁶	253521	1.71×10 ⁴⁶	8
Woodworking	3.21x10 ⁶	2.53x10 ¹⁸	3.20x10 ⁶	2.76x10 ¹⁸	3.21x10 ⁶	2.48x10 ¹⁸	3

Approximation analysis for SS and A*

Approximation analysis for SS and A*

Domain	II and III (%)
Elevators	78.57
Floortile	96.08
Parking	71.82
Parcprinter	70.50
Pegsol	96.83
Scanalyzer	100.00
Sokoban	89.31
Tidybot	100.00
Transport	51.78
Visitall	98.05
Woodworking	100.00

Ratios of the number of nodes expanded using $h_{max}(\zeta')$ to the number of nodes expanded using $h_{max}(\zeta)$

		SS	C	S	ζ			
Domain	Ratio	ζ'	Ratio	ζ'	141			
Barman	1.11	17.70	1.50	30.25	5168.50			
Elevators	11.50	2.00	1.03	21.00	168.00			
Floortile	1.02	43.07	1.01	42.35	151.28			
Openstacks	1.00	1.00	1.00	1.00	390.69			
Parking	1.00	5.53	1.01	7.26	21.73			
Parcprinter	3.62	1.00	2.21	13.00	1189.00			
Pegsol	1.00	31.00	1.00	57.00	90.00			
Scanalyzer	1.23	30.57	1.57	19.43	72.86			
Sokoban	1.32	7.00	1.01	24.00	341.00			
Tidybot	1.00	2.35	1.00	8.59	3400.18			
Transport	1.00	14.70	1.03	14.30	171.17			
. Visitall	1.03	99.33	1.19	48.67	256.33			
Woodworking	32.42	3.00	199.65	5.00	1289.00			
100000	Departamento de imornatica							

Coverage of different planning systems on the 2011 IPC benchmarks.

Domains	HYBRID	CS	6	S	S	Sum	Max	RIDA*	SY1	SY2	StSp1	StSp2
		Time	Size	Time	Size							
Barman	7	5	4	4	4	4	4	4	10	11	4	4
Elevators	19	19	19	19	19	19	19	19	20	20	18	18
Floortile	15	14	14	14	14	14	14	14	14	14	14	14
Nomystery	20	20	20	19	19	20	20	20	16	16	20	20
Openstacks	17	17	15	17	15	15	11	15	20	20	17	17
Parcprinter	18	18	18	16	15	19	18	18	17	17	18	18
Parking	7	7	2	7	2	2	2	7	2	1	5	5
Pegsol	18	18	19	19	19	19	19	19	19	20	19	19
Scanalyzer	13	14	12	11	14	14	14	14	9	9	14	14
Sokoban	20	20	20	20	20	20	20	20	20	20	20	20
Tidybot	17	16	16	16	16	16	15	17	15	17	16	16
Transport	14	13	10	11	13	11	9	10	10	11	7	8
Visitall	18	18	18	15	18	18	18	18	12	12	16	16
Woodworking	16	15	15	12	16	16	16	15	20	20	15	15
Total	219	214	202	200	204	207	199	210	204	208	203	204

Conclusions

- GHS selects good subset of heuristics from ζ with respect to the A* search tree size and A* running time.
- We also experimented with an objective function that accounts for the sum of heuristic values in the state-space (Rayner et al., 2013)
- We tested two prediction algorithms, CS and SS
- SS is helpful for our utility function in the greedy heuristic selection for some domain/instances.
- GHS substantially outperforms other systems designed for using multiple heuristic functions.

References

Michael W. Barley, Santiago Franco, and Patricia J. Riddle. Overcoming the utility problem in heuristic generation: Why time matters. Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014, 2014.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S. 2007. Domain-independent construction of pattern database heuristics for cost-optimal planning. In AAAI.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible heuristics for domain-independent planning. In AAAI

Edelkamp, S. 2007. Automated creation of pattern database search heuristics. In Model Checking and Artificial Intelligence, volume 4428 of LNCS. 35–50

L. H. S. Lelis, S. Zilles, and R. C. Holte. Predicting the Size of IDA*'s Search Tree. Artificial Intelligence, pages 53–76, 2013.

Christer B ackstr om and Bernhard Nebel. Complexity results for sas+ planning. Computational Intelligence, 11(4):625-655, 1995.

References

Haifeng Xu, Fei Fang, Albert Xin Jiang, Vincent Conitzer, Shaddin Dughmi, and Milind Tambe. Solving zero-sum security games in discretized spatio-temporal domains. Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014), Qubec, Canada, 2014.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability: Practical

Approaches to Hard Problems, 3:19, 2012.

Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular functions. AAAI, 7:1650–1654, 2007.

Knuth, D. E. 1975. Estimating the efficiency of backtrack programs. Math. Comp. 29:121–136.

Chen, P.-C. 1992. Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM Journal on Computing 21:295–315.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

Thanks

Questions

