Name: Class	: :	Date:
-------------	------------	-------

Reference and copyright:

Author	Title	Publisher	Date	ISBN
Kenneth Lambert	Fundamentals of Python: Data Structures	Cengage Learning; 2nd Edition	111 701X	ISBN-10: 0357122755 ISBN-13: 978- 0357122754

1. Much like a l	list, a set contair	is items that are	in a particular order	•
0 True				

- a. True
- b. False

2. With a set, the difference and subset operations are not symmetric	2.	With a set,	the	difference	and	subset	operations	are not	symmetric
---	----	-------------	-----	------------	-----	--------	------------	---------	-----------

- a. True
- b. False

- a. True
- b. False

- a. True
- b. False

- a. True
- b. False
- 6. Python supports multiple inheritance, so a class can have more than one parent class.
 - a. True
 - b. False
- 7. The AbstractSet class is a subclass of AbstractCollection because AbstractSet introduces new instance variables for data.
 - a. True
 - b. False

Name:	Class:	Date:_
Chapter 11: Sets and Dictionaries		
8. The <i>AbstractSet</i> class is a subclass of <i>AbstractSet</i> a. True b. False	ractBag.	
9. In Python's <i>dict</i> type, values are inserted or operator {}.a. Trueb. False	replaced at a given location us	ing the index
10. The dictionary constructor has two option collection of corresponding values.a. Trueb. False	al collection arguments: a colle	ection of keys and a
11. The entries in a dictionary consist of a keya. Trueb. False	y, a value, and an index.	
12. In the <i>Entry</i> class for a dictionary, compara. Trueb. False	risons are done using the value	item in each entry.
13. Array-based implementations of sets and a. Trueb. False	dictionaries do not perform wel	11.
14. A hashing function acts on a given key bya. Trueb. False	returning its absolute position	in an array.
15. If a hashing function runs in constant time associated keys are O(1).a. Trueb. False	e, insertions, accesses, and remo	ovals of the

16. Two keys that hash to the same index is called a collision.

Name:	Class:	Date:
Chapter 11: Sets and Dictionar	ies	
a. True		
b. False		
17. To reduce the probability of collision	ons with hashes, you can decrease the	array length.
a. True		
b. False		
18. As the density, or number of keys reprobability of hashing collisions.	relative to the length of an array decrea	ases, so does the
a. True		
b. False		
19. A small load factor and an array let hashing collision. a. True	ngth that is a prime number increases	the chances for a
b. False		
20. Two strings that are anagrams will values is calculated.	return a unique integer value when the	e sum of the ASCII
a. True		
b. False		
21. The standard Python hash function a. True	always returns a unique positive integ	ger.
b. False		
22. In the hashing implementation of a node was just located, or is -1 otherwis	· ·	ne chain in which the
a. True		
b. False		
23. In the hashing implementation of a pointer to the next item in a chain.	set, the Bag class is used to represent	an item and a
a. True		
b. False		
24. In the hashing implementation of a	dictionary, the data field of each node	e in a chain contains

Name:	Class:	Date:

an Entry object.

- a. True
- b. False
- 25. The data in sets and dictionaries are ordered by position by default.
 - a. True
 - b. False
- 26. Which of the following is true about sets?
 - a. the items in a set are arranged in order
 - b. the difference and subset operations on a set are symmetric
 - c. there are no duplicate items in a set
 - d. there is no standard set class in Python
- 27. Which of the following is a subset of Set A if Set A is {19 4 26 8}?
 - a. None of the choices are subsets of Set A
 - b. {19 4 26 8 0}
 - c. {4 8 19 26 44}
 - d. {}
- 28. For a given set s, which method returns *True* if *item* is in s, or *False* otherwise.
 - a. s.__contains__(item)
 - b. s.__iter__(item)
 - c. s = set()
 - d. S1.__sub__(s2)
- 29. What is the value of set *S* after the following operations?
- S = set([3, 9, 6])
- S.add(6)
- S.add(4)
- S.remove(6)
 - a. {3 9 6 4}
 - b. {3 9 4}
 - c. {3 9 6}
 - d. {3 4 6 9}

Name:	Class:	Date:

- 30. What strategy for implementing sets attempts to approximate random access into an array for insertions, removals, and searches?
 - a. indexing
 - b. linking
 - c. hashing
 - d. keying
- 31. The simplest implementations of sets are subclasses of which other class?
 - a. bags
 - b. queues
 - c. stacks
 - d. lists
- 32. Which method is specific to a set compared to a bag?
 - a. remove
 - b. str
 - c. add
 - d. sub
- 33. In the code for the __sub__ method for the AbstractSet class, what is the missing code?

- a. difference.remove(item)
- b. intersection.add(item)
- c. difference.add(item)
- d. return(item)
- 34. Which method in the interface for a dictionary collection returns an iterator on the key/value pairs in the dictionary?
 - a. keys()
 - b. entries()
 - c. pairs()
 - d. values()

35. In the code for the __init__ method in the *Entry* class or a dictionary, what is the missing code?

36. In the implementation of the AbstractDict class, which four methods have the same implementation for all dictionaries?

- a. keys, values, __add__, __eq__
- b. entries, values, __init__, __str__
- c. keys, values, entries, get

d. self.key = value

d. get, __add__, keys, __init__

37. In the code for the __iter__ method for the ArrayDict class, what is the missing code?

```
def __iter__(self):
    cursor = 0
    while cursor < len(self):
        yield self.items[cursor].key
        <missing code>
```

- a. return(self.items[cursor])
- b. cursor -= 1
- c. return(self.items[key])
- d. cursor += 1

38. What is the performance value of the array-based implementations of sets and dictionaries?

- a. $O(n^2)$
- b. O(*n*)
- c. On
- d. O(1)

39. For a key value of 93 and a hashing function of key % 46, what is the index into the array?

Name:	Class:	Date	e:
-------	--------	------	----

- a. 1
- b. 2
- c. 46
- d. 47
- 40. For key values of 84 and 108 and a hashing function of key % 12, what is the result?
 - a. indexes of 7 and 9
 - b. indexes of 0 and 1
 - c. a collision
 - d. indexes of 12 and 14
- 41. What happens when two keys map to the same index after a hashing function has been applied?
 - a. the array is lengthened
 - b. a collision occurs
 - c. the second item is mapped to the next cell
 - d. the hash is reapplied with a random value
- 42. In the code for the *keysToIndexes* function, what is the missing code?

```
def keysToIndexes(keys, n):
    return <missing code>
```

- a. list(map(lambda key: key % n, keys))
- b. list(map(lambda key: keys, key % n))
- c. map(list(lambda key: key % n, keys))
- d. map(list(lambda key % n: keys, key))
- 43. Referring to the *keysToIndexes* function, what is the result of the following statement? keysToIndexes ([39, 18, 4, 51, 6, 28], 9)
 - a. [4, 1, 5, 7, 6, 2]
 - b. [3, 0, 4, 6, 6, 1]
 - c. [2, 0, 3, 5, 5, 0]
 - d. [8, 3, 6, 0, 1, 4]
- 44. Referring to the *keysToIndexes* function, what is the result of the following statement? keysToIndexes ([39, 18, 4, 51, 6, 28], 17)
 - a. [6, 2, 5, 1, 7, 12]

Name:	Class:	Date:
	-	-

- b. [7, 3, 6, 2, 8, 13]
- c. [4, 2, 3, 1, 5, 10]
- d. [5, 1, 4, 0, 6, 11]
- 45. Which statement is true when considering a hashing strategy and the density of the keys/array length relationship?
 - a. as the density decreases, the probability of collisions decreases
 - b. as the density increases, the probability of collisions decreases
 - c. as the density decreases, the probability of collisions increases
 - d. as the density increases, the probability of collisions stays the same
- 46. Which of the following is the best array length to reduce the probability of collisions given the set [8, 6, 18, 9, 14, 23]?
 - a. 9
 - b. 8
 - c. 11
 - d. 12
- 47. When considering an insertion into a set using a hash function and linear probing, which of the following is defined as the position where the item should go if the has function works perfectly?
 - a. absolute index
 - b. probe index
 - c. zero index
 - d. home index
- 48. In which collision-avoidance hashing strategy are the items stored in an array of linked lists in which each item's key locates the bucket where the item is to be inserted?
 - a. clustering
 - b. chaining
 - c. quadratic probing
 - d. linear probing
- 49. In the algorithm for the __contains method of the hashing implementation of sets, what is the first step in the algorithm?
 - a. set foundNode to table[index]
 - b. set priorNode to foundNode
 - c. set index to the home index of the item

Name:	Class:	Date:
-------	--------	-------

- d. set foundNode to foundNode.next
- 50. What strategy does the hashing implementation of a dictionary use?
 - a. a binary search tree
 - b. quadratic probing
 - c. linear probing/bucket
 - d. bucket/chaining