基础入门篇之单凸透镜

---Snowolf

万事开头难,贵在坚持,成就高手之路,在于你,不在于我。 关键是要学"活",达到任意光学效果,任意曲面计算的境界;只要 是非成像光学,不管车灯、照明、电视机背光等光学设计都随心所 欲。琢磨算法、分享算法,不要给我谈经验。

废话不多说了,记住一点:逻辑很重要,大家一定注意。咋们用一种比较简单的方法入门学习,做高中数学题,没有微积分。从实际案例出发:

案例1平凸透镜

光源: 点光源

第一个面:球面,为减少计算量

目的:发光角度 120°(半角),光斑等照度分布

能量映射关系:

光源划分

n 份:对应的角度划分为: θ 1、 θ 2、 θ 3、 θ 4、 θ 5..... θ n

Φ与θ对应的关系如下:

光源划分	第1份	第2份	第3份	第4份	第5份	第 ····· 份	第n份
光通量	Ф1	Ф2	Ф3	Ф4	Ф5		Фп
角度	θ 1	θ 2	θ 3	θ 4	θ 5	•••••	θη

假设总光通量为中岛,每一份满足关系为:

Ф1=Фа/n;	Ф4=Ф &/n*4;				
Ф2=Фё/n*2;	Ф 5= Ф ⊜/n*5				
Ф3=Фа/n*3;`	00000				
Φ n= Φ 总/n*n= Φ 总					

思考一: 如何建立每一个 θ 与 Φ 对应的关系?

$$\Phi = 2\pi \int_{0}^{\theta} I_{0} \cos \theta \sin \theta d\theta$$

推导结果:

$$\Phi = \pi I_0 \left(1 - \cos^2 \theta \right) \tag{1}$$

朗伯体光源满足关系

(2)

(a)

目标面划分

为 n 份:对应的半径划分为: r1、r2、r3、r4、r5.....rn

目标面划分	第1份	第2份	第3份	第4份	第5份	第••••·份	第n份
光通量	Ф1	Ф2	Ф3	Φ4	Ф5	•••••	Фп
面积	S1	S2	S3	S4	S5	•••••	Sn
半径	r1	r2	r3	r4	r5	•••••	Rn

发光角度为 120°, 高度为 h,

则目标面半径为: R=h*tan(60)

Ev=Φ总/ (π*R^2)

S=r^2* π

 Φ = S* Ev= r^2* π * Φ 总/ (π *R^2) = Φ 总* r^2/ R^2

即: Φ=Φ总* r^2/ R^2

(b)

结合光源划分与目标面划分方程(a)、(b)

 $\Phi = \Phi$ 总* r^2/ R^2= Φ 总*sin(θ)^2

推导: r=sin(θ)*R

(能量方程)

划分	第1份	第2份	第3份	第4份	第5份	第 ····· 份	第n份
目标面	r1	r2	r3	r4	r5		rn
光源	θ 1	θ 2	θ 3	θ 4	θ 5	•••••	θη

根据能量方程,其中 θ 可以 $\mathbf{1}^\circ$ 分或者 $\mathbf{0.5}^\circ$ 分,则对应了 \mathbf{r} 的值。可以理解为 θ 和 \mathbf{r} 为已知值。

学习到以上:我们基本能明白能量方程了,即 θ 与r的关系。

问题:如何求曲面(x,z)坐标啊?

我们在这里都是单位向量,不明白的百度查询。

In 表示入射向量(In_x, In_z)

Out 表示出射向量(Out_x, Out_z)

N 表示法向量(N_x,N_z)

T 表示切向量(T_x, T_z)

折反射定律单位向量表达式:

$$\overrightarrow{N} = n \cdot \overrightarrow{in} - \overrightarrow{out}$$
 (*其中 n 表示折射率,后面用 "1.4935" 表示)

注:不要问如何推导过来的?"拿来主义"直接用就可以了,如果非要琢磨,可以去参考浙江大学丁毅的博士论文。

目标面 B 点坐标为(r,h)

假设透镜高度为15

第一个点坐标为(x1,z1)=(0,15)

第二个点坐标为(x2,z2)

第三个点坐标为(x3,z3)

第四个点坐标为(x4,z4)

第五个点坐标为(x5,z5)

第 n 个点坐标为(xn,zn)

终于到了大展身手比划拳脚的地方,咋们好好比一下中学数 学:

In 表示入射向量(In_x, In_z)

In_x= (x1-0) /sqrt((x1-0) ^2+ (z1-0) ^2)

In_z= (z1-0) /sqrt((x1-0) ^2+ (z1-0) ^2)

Out 表示出射向量(Out_x, Out_z)

Out_x= (r1-x1) /sqrt((r1-x1) ^2+ (h-z1) ^2)

Out_z= (h-z1) /sqrt((r1-x1) ^2+ (h-z1) ^2)

N 表示法向量(N_x,N_z)

N_x= In_x* 1.4935- Out_x

N_z= In_z* 1.4935- Out_z

T 表示切向量 (T x, T z)

 $T_x=(x^2-x^1)/ sqrt((x^2-x^1)^2+(z^2-z^1)^2)$

 $T_z=(z^2-z^1)/ sqrt((x^2-x^1)^2+(z^2-z^1)^2)$

关键方程: T*N=0

即: T_x* N_x+ T_z* N_z=0..... (方程 1)

Tan(θ)=x/z.....(方程 2)

根据方程(1)、(2)可以迭代计算出所有的坐标点。

注:两个方程,两个未知数,这不是初中数学吗?这是我很久以前发现,别看多么复杂的曲面,到了最后就这么点计算量了。

即:云点

