

FIG.1

2 / 42

FIG.2

3 / 42

FIG.3

FIG.4
COMPOSITE-COMPLIANCE CONTROL UNIT

5 / 42

FIG.5

6 / 42

FIG.6

DESIRED FLOOR REACTION FORCE VERTICAL COMPONENT

FIG.7
 X COMPONENT OF DESIRED ZMP

Y COMPONENT OF DESIRED ZMP

7 / 42

FIG.8

8 / 42

FIG.9

9 / 42

FIG.10

10 / 42

FIG.11(a)

FIG.11(b)

11 / 42

FIG.12

12 / 42

FIG.13

13 / 42

FIG.14

14 / 42

FIG.15

FIG.16

16 / 42

FIG.17

17 / 42

FIG.18

FIG.19

DESIRED FLOOR REACTION FORCE VERTICAL COMPONENT

FIG.20

FLOOR REACTION FORCE HORIZONTAL COMPONENT PERMISSIBLE LOWER LIMIT VALUE F_{xmin} AND FLOOR REACTION FORCE HORIZONTAL COMPONENT PERMISSIBLE UPPER LIMIT VALUE F_{xmax}

19 / 42

FIG.21

FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT PERMISSIBLE LOWER LIMIT VALUE M_{zmin}
AND FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT PERMISSIBLE UPPER LIMIT VALUE M_{zmax}

20 / 42

FIG.22

21 / 42

ENTRY

FIG.23

S200

DETERMINE INITIAL STATES (STATES AT START TIME T_s) OF FOOT POSITION/POSTURE, ARM POSTURE AND BODY POSTURE ANGLE ON THE BASIS OF NORMAL TURNING GAIT PARAMETERS.

PROVISIONALLY DETERMINE INITIAL (AT T_s) HORIZONTAL BODY POSITION/VELOCITY CANDIDATES (X_s, V_{xs}). S202

DETERMINE INITIAL VERTICAL BODY POSITION/VELOCITY (Z_s, V_{zs}). S206

S208

USING DYNAMIC MODEL, GENERATE ONE STEP OF GAIT ON THE BASIS OF NORMAL TURNING GAIT PARAMETERS, TAKING (X_s, V_{xs}), (Z_s, V_{zs}) AS INITIAL STATES OF BODY.

CONVERT TERMINAL BODY POSITION/VELOCITY OF GENERATED GAIT INTO VALUES OBSERVED FROM SUPPORTING LEG COORDINATE SYSTEM OF NEXT ONE STEP, AND DEFINE THE VALUES AS (X_e, V_{xe}). S210

BOUNDARY CONDITION ERROR ($\text{err}_x, \text{err}_v$) = $(X_s, V_{xs}) - (X_e, V_{xe})$ S212

S204

S214 yes

LEAVE REPETITION LOOP

∞

ARE err_x AND err_v WITHIN PERMISSIBLE RANGE?

S216

DETERMINE A PLURALITY OF INITIAL VALUE CANDIDATES ($X_s + \Delta X_s, V_{xs}$), ($X_s, V_{xs} + \Delta V_{xs}$) NEAR (X_s, V_{xs}), AND TAKE EACH OF THE DETERMINED VALUES AS INITIAL STATE OF BODY TO DETERMINE BOUNDARY CONDITION ERROR ASSOCIATED WITH EACH AS SHOWN ABOVE.

DETERMINE NEXT INITIAL VALUE CANDIDATES (X_s, V_{xs}) ON THE BASIS OF BOUNDARY CONDITION ERRORS ASSOCIATED WITH (X_s, V_{xs}) AND INITIAL VALUE CANDIDATES IN THE VICINITY THEREOF. S218

DETERMINE INITIAL HORIZONTAL BODY POSITION/VELOCITY (X_0, V_0), INITIAL VERTICAL BODY POSITION/VELOCITY (Z_0, V_{z0}), AND INITIAL BODY POSTURE ANGLE/ANGULAR VELOCITY AT ORIGINAL START TIME 0. S220

DETERMINE NORMAL TURNING INITIAL DIVERGENT COMPONENT $q[0]$ ACCORDING TO THE FOLLOWING EQUATION:

$$q[0] = X_0 + V_0 / \omega_0$$

S224

DETERMINE q'' , WHICH IS THE VALUE OF NORMAL TURNING INITIAL DIVERGENT COMPONENT $q[0]$ OBSERVED FROM CURRENT TIME'S GAIT SUPPORTING LEG COORDINATE SYSTEM, AND (Z_0'', V_{z0}''), WHICH IS THE VALUES OF INITIAL VERTICAL BODY POSITION/VELOCITY OBSERVED FROM CURRENT TIME'S GAIT SUPPORTING LEG COORDINATE SYSTEM.

DETERMINE INITIAL ANTIPHASE ARM SWING ANGLE AND ANGULAR VELOCITY ($\theta_{az0}, \omega_{az0}$) AT ORIGINAL START TIME 0, AND DETERMINE ($\theta_{az0}'', \omega_{az0}''$), WHICH IS THE VALUES OF THE ABOVE OBSERVED FROM CURRENT TIME'S GAIT SUPPORTING LEG COORDINATE SYSTEM. S226

RETURN

FIG.24

23 / 42

FIG.25

ENTRY

DETERMINE DESIRED FLOOR REACTION FORCE VERTICAL
COMPONENT AT TIME k ON THE BASIS OF GAIT PARAMETERS.

S400

DETERMINE DESIRED ZMP AT TIME k
ON THE BASIS OF GAIT PARAMETERS.

S402

DETERMINE DESIRED POSITIONS/POSTURES OF BOTH FEET, REFERENCE BODY
POSTURE AND REFERENCE ARM POSTURE AT TIME k ON THE BASIS OF GAIT PARAMETERS.

CALCULATE TOTAL CENTER-OF-GRAVITY VERTICAL POSITION/VELOCITY
THAT SATISFY DESIRED FLOOR REACTION FORCE VERTICAL COMPONENT.

S406

CALCULATE VERTICAL BODY POSITION THAT SATISFIES
TOTAL CENTER-OF-GRAVITY VERTICAL POSITION.

S408

DETERMINE FLOOR REACTION FORCE HORIZONTAL COMPONENT PERMISSIBLE
RANGE [Fxmin,Fxmax] AT TIME k ON THE BASIS OF GAIT PARAMETERS.

S410

DETERMINE FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT PERMISSIBLE
RANGE [Mzmin,Mzmax] AT TIME k ON THE BASIS OF GAIT PARAMETERS.

S411

S412

DETERMINE HORIZONTAL BODY ACCELERATION AND BODY POSTURE ANGULAR
ACCELERATION SUCH THAT DESIRED ZMP IS SATISFIED AND THAT FLOOR REACTION FORCE
HORIZONTAL COMPONENT Fx DOES NOT EXCEED [Fxmin,Fxmax], AND DETERMINE
ANTIPHASE ARM SWING ANGULAR ACCELERATION SUCH THAT FLOOR REACTION FORCE
MOMENT VERTICAL COMPONENT Mz DOES NOT EXCEED [Mzmin,Mzmax].

S414

INTEGRATE HORIZONTAL BODY ACCELERATION AND BODY POSTURE ANGULAR ACCELERATION
TO CALCULATE HORIZONTAL BODY VELOCITY AND BODY POSTURE ANGULAR VELOCITY.
FURTHER INTEGRATE THE RESULT TO DETERMINE HORIZONTAL BODY POSITION
AND BODY POSTURE.

INTEGRATE ANTI-PHASE ARM SWING ACCELERATION
TO CALCULATE ANTI-PHASE ARM SWING ANGULAR VELOCITY.
FURTHER INTEGRATE THE RESULT TO DETERMINE ANTI-PHASE ARM SWING ANGLE.

S416

RETURN

24 / 42

FIG.26

ENTRY

SUBSTITUTE THE VALUE OF REFERENCE BODY YAW ANGLE AT TIME k INTO DESIRED BODY YAW ANGLE.
 EXCLUDING ANTIPHASE ARM SWING ANGLE AND ANGULAR VELOCITY,
 SUBSTITUTE THE VALUE OF REFERENCE ARM POSTURE AT TIME k INTO DESIRED ARM POSTURE.

S500

S502

no

IS TIME k IN BODY
 POSTURE
 ANGLE/ANTIPHASE
 ARM SWING
 ANGLE
 RESTORING
 PERIOD?

DETERMINE HORIZONTAL BODY ACCELERATION α_{tmp} REQUIRED TO
 SATISFY DESIRED ZMP FOR CURRENT TIME (AT TIME k) IF IT IS ASSUMED
 THAT MOTION OF BODY TRANSLATIONAL MODE IS PERFORMED.

S504

DETERMINE FLOOR REACTION FORCE HORIZONTAL COMPONENT
 Fx_{tmp} WHEN HORIZONTAL BODY ACCELERATION IS α_{tmp} .

S506

S508 $Fx_{tmp} > Fx_{max}$

DETERMINE HORIZONTAL COMPONENT Fx OF FLOOR
 REACTION FORCE ACCORDING TO THE FOLLOWING EQUATION:
 $Fx = Fx_{max}$

S510

$Fx_{tmp} < Fx_{min}$

$Fx = Fx_{min}$

S512

else

$Fx = Fx_{tmp}$

S514

S516

DETERMINE HORIZONTAL BODY ACCELERATION α OF BODY TRANSLATIONAL MODE
 AND BODY ANGULAR ACCELERATION β OF BODY ROTATION MODE ACCORDING
 TO THE FOLLOWING EQUATIONS:

$$\alpha = \alpha_{tmp} + (Fx - Fx_{tmp}) / \Delta F_p$$

$$\beta = (\alpha_{tmp} - \alpha) * \Delta M_p / \Delta M_r$$

DETERMINE FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT Mz_{tmp} WHEN
 IT IS ASSUMED THAT MOTION OF HORIZONTAL BODY ACCELERATION OF BODY
 TRANSLATIONAL MODE DENOTED AS α , BODY ANGULAR ACCELERATION OF BODY
 ROTATION MODE DENOTED β , BODY YAW ANGULAR ACCELERATION OF BODY YAW
 ROTATION MODE DENOTED AS β_{bref} , AND ANTIPHASE ARM SWING ANGULAR
 ACCELERATION DENOTED AS β_{aref} IS PERFORMED.

S518

S520 $Mz_{tmp} > Mz_{max}$

DETERMINE FLOOR REACTION FORCE MOMENT VERTICAL
 COMPONENT Mz ACCORDING TO THE FOLLOWING EQUATION:
 $Mz = Mz_{max}$

S522

$Mz_{tmp} < Mz_{min}$

$Mz = Mz_{min}$

S524

else

$Mz = Mz_{tmp}$

S526

DETERMINE ANTIPHASE ARM SWING ANGULAR ACCELERATION β_a S528
 ACCORDING TO THE FOLLOWING EQUATION:

$$\beta_a = \beta_{aref} + (Mz - Mz_{tmp}) / \Delta M_a$$

S530

DETERMINE HORIZONTAL BODY ACCELERATION α REQUIRED TO SATISFY DESIRED ZMP FOR
 CURRENT TIME (AT TIME k) IF MOTION OF BODY TRANSLATIONAL MODE IS PERFORMED.

DETERMINE FLOOR REACTION FORCE HORIZONTAL COMPONENT Fx S532
 WHEN HORIZONTAL BODY ACCELERATION IS α .

S534

$\beta = 0$

S536

yes

RETURN

25 / 42

FIG.27

**FLOOR REACTION FORCE HORIZONTAL COMPONENT $F_{x\text{tmp}}$
 CREATED WITHOUT TAKING PERMISSIBLE RANGE INTO ACCOUNT**

FIG.28

**FLOOR REACTION FORCE HORIZONTAL COMPONENT F_x
 TAKING FLOOR REACTION FORCE HORIZONTAL COMPONENT
 PERMISSIBLE RANGE INTO ACCOUNT**

FIG.29

BODY INCLINATION ANGULAR ACCELERATION β

26 / 42

FIG.30

BODY INCLINATION RESTORING MOMENT ZMP-CONVERTED VALUE (ZMPrec)

FIG.31

BODY INCLINATION ANGULAR ACCELERATION β
(FOR RETURNING BODY INCLINATION VELOCITY TO INITIAL VALUE)

27 / 42

FIG.32

FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT M_{ztmp}
 CREATED WITHOUT TAKING PERMISSIBLE RANGE INTO ACCOUNT

FIG.33

FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT M_z
 TAKING FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT
 PERMISSIBLE RANGE INTO ACCOUNT

FIG.34

ANTIPHASE ARM SWING MOMENT (M_{az})

28 / 42

FIG.35

ANTIPHASE ARM SWING ANGULAR ACCELERATION β_a

FIG.36

ANTIPHASE ARM SWING RESTORING ANGULAR ACCELERATION (β_{arec})

FIG.37

ANTIPHASE ARM SWING RESTORING MOMENT (Mazrec)

29 / 42

FIG.38

FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT M_z
TAKING FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT
PERMISSIBLE RANGE INTO ACCOUNT

30 / 42

FIG.39

FIG.40

FLOOR REACTION FORCE HORIZONTAL COMPONENT PERMISSIBLE LOWER LIMIT VALUE $F_{x\min}$
AND FLOOR REACTION FORCE HORIZONTAL COMPONENT PERMISSIBLE UPPER LIMIT VALUE $F_{x\max}$

FIG.41

FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT PERMISSIBLE LOWER LIMIT VALUE Mzmin
AND FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT PERMISSIBLE UPPER LIMIT VALUE Mzmax

33 / 42

FIG.42

ENTRY

S700

∞

CALCULATE PROVISIONAL CURRENT TIME GAIT UNTIL END TIME ON THE BASIS OF PROVISIONAL DESIRED ZMP AND OTHER CURRENT TIME GAIT PARAMETERS.

S702

DETERMINE TERMINAL DIVERGENT COMPONENT $q_0[k]$ ACCORDING TO THE FOLLOWING EQUATION FROM BODY POSITION/VELOCITY (X_e, V_e) AT END OF CURRENT TIME GAIT.

S704

$q_0[k] = X_e + V_e / \omega_0$

DETERMINE TERMINAL DIVERGENT COMPONENT ERROR err_q ACCORDING TO THE FOLLOWING EQUATION:

$$err_q = q_0[k] - q''$$

S706

S708 yes

LEAVE REPETITION LOOP

IS err_q WITHIN PERMISSIBLE RANGE?

S710

CALCULATE PROVISIONAL CURRENT TIME GAIT UNTIL END TIME ON THE BASIS OF DESIRED ZMP OBTAINED BY ADDING CORRECTION TO PROVISIONAL DESIRED ZMP ACCORDING TO RELATIONSHIP OF FIG. 44, ASSUMING THAT $a = \Delta a$.

S712

DETERMINE TERMINAL DIVERGENT COMPONENT $q_1[k]$ ACCORDING TO THE FOLLOWING EQUATION ON THE BASIS OF BODY POSITION/VELOCITY (X_{e1}, V_{e1}) AT END OF CURRENT TIME GAIT RECALCULATED ON THE BASIS OF DESIRED ZMP TO WHICH CORRECTION HAS BEEN ADDED:

$$q_1[k] = X_{e1} + V_{e1} / \omega_0$$

DETERMINE PARAMETER SENSITIVITY r ACCORDING TO THE FOLLOWING EQUATION:

$$r = (q_1[k] - q_0[k]) / \Delta a$$

S714

ADD CORRECTION AMOUNT BASED ON $a = -err_q/r$ TO PROVISIONAL DESIRED ZMP TO PROVIDE UPDATED PROVISIONAL DESIRED ZMP.

S716

S718

DETERMINE BODY INCLINATION RESTORING MOMENT ZMP-CONVERTED VALUE PATTERN ON THE BASIS OF DIFFERENCE BETWEEN TERMINAL BODY POSTURE ANGLE OF PROVISIONAL CURRENT TIME GAIT AND INITIAL BODY POSTURE ANGLE OF NORMAL GAIT AND DIFFERENCE BETWEEN TERMINAL BODY POSTURE ANGULAR VELOCITY OF PROVISIONAL CURRENT TIME GAIT AND INITIAL BODY POSTURE ANGULAR VELOCITY OF NORMAL GAIT.

DETERMINE, AS DESIRED ZMP PATTERN, THE PATTERN OBTAINED BY ADDING BODY INCLINATION RESTORING MOMENT ZMP-CONVERTED VALUE PATTERN TO PROVISIONAL DESIRED ZMP PATTERN.

S720

S722

DETERMINE ANTIPHASE ARM SWING RESTORING ANGULAR ACCELERATION PATTERN ON THE BASIS OF DIFFERENCE BETWEEN TERMINAL ANTIPHASE ARM SWING ANGLE OF PROVISIONAL CURRENT TIME GAIT AND INITIAL ANTIPHASE ARM SWING ANGLE OF NORMAL GAIT AND DIFFERENCE BETWEEN TERMINAL ANTIPHASE ARM SWING ANGULAR VELOCITY OF PROVISIONAL CURRENT TIME GAIT AND INITIAL ANTIPHASE ARM SWING ANGULAR VELOCITY OF NORMAL GAIT.

RETURN

34 / 42

FIG.43

FIG.44

36 / 42

FIG.45

ENTRY

RETURN

FIG.46

38 / 42

FIG.47

Y COMPONENT OF HORIZONTAL BODY POSITION

39 / 42

FIG.48

40 / 42

FIG.49

FIG.50

42 / 42

FIG.51

