

In The Claims

The text of all claims under examination is submitted, and the status of each is identified. This listing of claims replaces all prior versions, and listings, of claims in the application.

1. (currently amended): A storage-stable fluorescent whitener formulation comprising

- (a) 5 – 60% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1)**

wherein

R₁ and R₂ are, independently from each other, hydrogen; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl,

X₁ and X₃ are -NH₂,

X₄, X₂, X₃ and X₄ are, independently from each other, -N(R₃)R₄ or -OR₅, wherein

R₃ and R₄ are, independently of each other, hydrogen; cyano; unsubstituted C₁-C₈alkyl; substituted C₁-C₈alkyl; unsubstituted C₅-C₇cycloalkyl or unsubstituted C₅-C₇cycloalkyl; or R₃ and R₄, together with the nitrogen atom linking them, form a heterocyclic ring, and R₅ is unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl, and

M is hydrogen or a cation selected from the group consisting of Li, Na, K, Ca, Mg, ammonium, mono-, di, tri or tetra C₁-C₄ alkylammonium, or and mono-, di- or tri-C₂-C₄-hydroxyalkylammonium,

- (b) 0.01 – 1% by weight, based on the total weight of the whitener formulation, of at least one anionic polysaccharide,**
- (c) 0 – 25% by weight, based on the total weight of the whitener formulation, of at least one electrolyte,**
- (d) 0 – 20% by weight, based on the total weight of the whitener formulation, of at least one dispersant,**

- (e) 0 – 30% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener,
- (f) 0 – 20% by weight, based on the total weight of the whitener formulation, of at least one further optional component, and
- (g) water to make up 100% by weight.

2. (currently amended): A storage-stable fluorescent whitener formulation according to claim 1 comprising

5 – 60% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1), wherein

R₁ and R₂, independently from each other, hydrogen or C₁-C₄alkyl,

X₁, X₂, X₃ and X₄ are independently from each other a radical of formula -N(R₃)R₄, wherein

R₃ and R₄ are, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted by hydroxy, carboxy, cyano, -COOH, -H₂NC(NH)NH₂⁻, -CONH₂ or phenyl, and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted C₅-C₇cycloalkyl or C₁-C₄alkyl-substituted C₅-C₇cycloalkyl; or

R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

3. (cancelled).

4. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising

5 to 50% by weight, based on the total weight of the formulation, of at least one compound of formula (1).

5. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 wherein the anionic polysaccharide is selected from the group consisting of sodium alginate, carboxymethylated guar, carboxymethylcellulose, carboxymethyl-starch, carboxymethylated locust bean flour and xanthan gum.

6. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising

0.05 to 0.5% by weight based on the total weight of the formulation, of at least one anionic polysaccharide.

7. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 wherein the electrolyte or the mixture of electrolytes are selected from the group consisting of alkali metal salts and salts of lower carboxylic acids.

8. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising

0.5 to 20% by weight, based on the total weight of the formulation, of at least one electrolyte.

9. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 wherein the dispersant or the mixture of dispersants are selected from the group consisting of alkylbenzenesulfonates, alkyl or alkenyl ether-sulfonate salts, saturated or unsaturated fatty acids, alkyl or alkylene ether-carboxylic salts, sulfo-fatty acid salts or esters, phosphate esters, polyoxyethylene alkyl or alkenyl ethers, polyoxyethylene alkylvinyl ethers, polyoxypropylene alkyl or alkenyl ethers, polyoxybutylene alkyl or alkenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts, sucrose/fatty acid esters, fatty acid/glycol monoesters, alkylamine oxides and condensation products of aromatic sulfonic acids with formaldehyde and lignin-sulfonates.

10. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising 0.1 to 20% by weight, based on the total weight of the formulation, of at least one dispersant.

11. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising of at least one further fluorescent whitener of formula (2)

wherein

R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl,

R_7 and R_9 , independently from each other, are hydrogen; unsubstituted phenyl; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl, or

NR_6R_7 and/or NR_8R_9 form a morpholino ring,
and M is hydrogen or a cation.

12. (original): A storage-stable fluorescent whitener formulation according to claim 11 wherein
 R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy,
 R_7 and R_9 , independently from each other, are unsubstituted phenyl; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy, or
 NR_6R_7 and/or NR_8R_9 form a morpholino ring,
and M is an alkali metal atom.

13. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising of at least one further fluorescent whitener of formula (3)

wherein

R_{10} and R_{11} , independently from each other, are hydrogen; C₁-C₈alkyl; C₁-C₈alkoxy or halogen, and M is hydrogen or a cation.

14. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising 0 to 25 % by weight of at least one further fluorescent whitener of formula (2)

wherein

R₆ and R₈, independently from each other, are hydrogen; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl,

R₇ and R₉, independently from each other, are hydrogen; unsubstituted phenyl; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl, or

NR₆R₇ and/or NR₈R₉ form a morpholino ring,

and M is hydrogen or a cation

and/or formula (3)

wherein

R₁₀ and R₁₁, independently from each other, are hydrogen; C₁-C₈alkyl; C₁-C₈alkoxy or halogen, and M is hydrogen or a cation.

15. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 wherein optional components are selected from the group consisting of preservatives; Mg/Al silicates; odour improvers; perfuming agents; antifoam agents; builders; protective colloids; stabilizers; sequestering agents and antifreeze agents.

16. (previously presented): A storage-stable fluorescent whitener formulation according to claim 1 comprising 0.1 to 20% by weight based on the total weight of the formulation, of at least one optional component.

17. (previously presented): A process for the preparation of a storage-stable fluorescent whitener formulation according to claim 1 , which comprises mixing the moist filter cake or the dry powder of the fluorescent whitening of formula (1) with least one anionic polysaccharide and water, and homogenizing the formulation.

18. (previously presented): A method for the preparation of a detergent composition, which comprises incorporating into said composition an effective whitening amount of a storage-stable fluorescent whitener formulation according to claim 1.