EE671: VLSI DESIGN SPRING 2024/25

LAXMEESHA SOMAPPA

DEPARTMENT OF ELECTRICAL ENGINEERING

IIT BOMBAY

laxmeesha@ee.iitb.ac.in

LECTURE – 17 ARITHMETIC IP: MULTIPLIERS

laxmeesha@ee.iitb.ac.in

BINARY MULTIPLIER: BASICS

- ☐ Rules: a) bit-wise multiplication (AND gate)
 - b) Repeat bit-wise multiplication → generates partial product
 - c) Shift & add all partial products → final product

BINARY MULTIPLIER: BASICS

□ Say we want to perform A X B (A and B are binary numbers)

$$A = \sum_{i=0}^{n-1} 2^i a_i$$
 $B = \sum_{j=0}^{n-1} 2^j b_j$

- \square We can generate any bit of a partial product using AND of (a_i,b_j)
- ☐ All bits of partial products can be computed using AND gates
- ☐ Use adders to add the partial products
- ☐ This architecture is called an Array Multiplier

ARRAY MULTIPLIER

☐ A 4-bit array multiplier structure

ARRAY MULTIPLIER

 \square A 4-bit array multiplier: critical path \rightarrow adders in the path!

- ☐ Can we speed-up the multiplier further?
 - □ Can we reduce number of partial products using a 2-bit multiplication instead?

BOOTH ENCODING

- □ Consider A X B, and we want to multiply two bits (of multiplier B) at a time
- ☐ If $B = oo \rightarrow partial product will be o$
- ☐ If $B = 01 \rightarrow \text{partial product will be A}$
- ☐ If $B = 10 \rightarrow \text{partial product will be 2A}$
 - □ Simple left shift operation
- ☐ If $B = 11 \rightarrow \text{partial product will be } 3A$
- ☐ How to perform 3A with a simple operation?
 - \square 3A = 4A A
 - ☐ What if 4A operation is shifted to next pair of bits?
 - ☐ The next pair already has higher binary weight (higher by factor 4)
 - 4A is as simple as adding 1 to the next pair of bits in B
 - □-A can be generated from a subtractor (2's complement adder)

- ☐ To simplify the logic of "when to" generate 4A
 - ☐Generating 2A is done similar to 3A
 - \square 3A = 4A A (subtract A and tell next group to add 4)
 - \square 2A = 4A -2A (subtract 2A and tell next group to add 4)
- ☐ In summary (look at group of 2 bits in B):
 - \bigcirc oo \rightarrow No operation
 - □ 01 -> add A
 - □ 10 → subtract 2A and ask next group to add 4A
 - □ 11 → subtract A and ask next group to add 4A
 - Next group will see the MSB of previous group → if "1", add 1 to the multiplier bit group (current two bits in B)

- ☐ Modified Algorithm:
 - □Look at 3 bits (with one bit overlap) in B (multiplier)
 - □Current 2 bits and MSB of the previous group of 2 bits (in B)
 - ☐ For the first group of 2 bits, assume a o to the right
 - Move from right to left
 - □ After handling the previous group, A is shifted left by two positions → inherent multiplication by 4
 - □ This means adding 4A on behalf of previous group is same as adding +1 to the multiplier (bits of B) to the current group

☐ Algorithm: to generate partial products

Current	Multiplier	Previous	Pending	Total
2-bits	for these	MSBit	Increment	Multiplier
00	0	0	0	0
01	+1	0	0	+1
10	-2	0	0	-2
11	-1	0	0	-1
00	0	1	+1	+1
01	+1	1	+1	+2
10	-2	1	+1	-1
11	-1	1	+1	0

- ☐ Algorithm: say multiplying Y and X
 - ☐ Generate partial products with group of 2 bits

Y_{i+1}	Y_{i}	Y_{i-1}	Partial product
0	0	0	0
0	0	1	+ <i>x</i>
0	1	0	
0	1	1	+2 <i>x</i>
1	0	0	+x +2x -2x
1	0	1	-x
1	1	0	-x
1	1	1	0

□Add partial products using any of the adders you have learnt before to get the final product – how many adders?

- ☐ Adding partial products:
 - □Adders in critical path (array multiplier)
 - □Speed up the partial production addition?
 - ■We have already looked at tree adders for faster additions! Similar idea

- We looked at 1-bit adders to implement 'N' bit adders
- ☐ Can we also have a 2-bit adder to add partial products?

- cy1 is the carry from the previous 2-bit group partial product addition
- □ No rippling of carry from right to left!!!

□ 2-bit adders to implement 'N' bit adders: for PP addition

- ☐ Save output in two registers
- ☐ Add these two registers using any adder that we have seen

□ PP addition: critical path (no carry ripple except for the last 2-register addition)

WALLACE MULTIPLIERS

□ Consider 4x4 multiplication

					a3 a	2 a1 a0
				x b3 b2 b1 b0		
			a3.b0	a2.b0	a1.b0	a0.b0
		a3.b1	a2.b1	a1.b1	a0.b1	
	a3.b2	a2.b2	a1.b2	a0.b2		
a3.b3	a2.b3	a1.b3	a0.b3			

Bit	Terms	Wires
0	a0b0	1
1	a0b1, a1b0	2
2	a0b2, a1b1, a2b0	3
3	a0b3, a1b2, a2b1, a3b0	4
4	a1b3, a2b2, a3b1	3
5	a2b3, a3b2	2
6	a3b3	1

A 4X4 WALLACE MULTIPLIER: FIRST REDUCTION

For wires within the top 3 rows:

- Bit 0 has a single wire: passed through.
- Bit 1 has 2 wires: fed to a half adder.
- Bits 2 and 3 have 3 wires: fed to full adders.
- Bit 4 has 2 wires (in the group of 3): fed to a half adder.
- Bit 5 has 1 wire: passed through.

A 4X4 WALLACE MULTIPLIER: AFTER FIRST REDUCTION

After first reduction

- Bits 0, 1 and 6 have a single wire.
- Bit 2 has 2 wires: carry of the half adder at bit 1 and the sum of full adder at bit 2.
- Bits 3 and 4 have 3 wires: carry of the full adder at lower weight, the sum wire from their full/half adder and a passed through wire.
- Bit 5 has 3 wires: carry of bit 4 plus 2 fed through wires.

A 4X4 WALLACE MULTIPLIER: SECOND REDUCTION

Since Bits 3, 4 and 5 have 3 wires each, we need another reduction layer. This will be the last reduction layer.

- Bits 0 and 1 have single wires. These are fed through.
- Bit 2 has 2 wires: these are fed to a half adder.
- Bits 3, 4 and 5 have 3 wires: These are fed to full adders.

A 4X4 WALLACE MULTIPLIER: AFTER SECOND REDUCTION

Bits 0, 1, and 2 have single wires which carry the final result.

- Bit 3 has 2 wires: carry of the half adder at bit 2 and sum of the full adder at bit 3.
- Bit 4 has 2 wires: carry of the full adder at bit 3, and sum of the full adder at bit 4.
- Bit 5 has 2 wires, carry of bit 4 and sum of bit 5.
- Bit 6 has 2 wires, carry of bit 5 and 1 fed through wire.

A 4X4 WALLACE MULTIPLIER: FINAL ADDITION

After the second layer, no bit has more than 2 wires. Single wires at bits 0, 1 and 2 are fed through to the output.

- A fast conventional adder is used to add the 2 bits each at Bits 3, 4, 5 and 6.
- Notice that we do not need a full width fast adder.
- This is because the half adders at low weights have already rippled the carry while the rest of weights were being reduced.
- This makes the final adder smaller and faster.

8x8 Wallace Multiplier

