The Definition of λ_Q

April 9, 2021

Contents

1	Syntax	1				
2	vpe Checking Rules					
	2.1 Typing rules for gates	3				
	2.2 Well-formed patterns	3				
	2.3 Typing rules for circuits	4				
	2.4 Typing rules for terms	4				
3	Operational Semantics	5				

1 Syntax

t	::=		terms:
		X	variable
		unit	constant unit
		true	constant true
		false	constant false
		$\lambda x:T.t$	function abstraction
		t t	function application
		(t,t)	pair
		<i>t</i> .1	first projection
		<i>t</i> .2	second projection
		if t then t else t	conditional
		$\operatorname{run} C$	static lifting
		$\kappa p:W.C$	circuit abstraction
ν	::=		values:
		$\lambda x : T.t$	abstraction value
		(v,v)	pair value
		unit	unit value
		true	true value
		false	false value

		$\kappa p:W.C$	circuit value
T	::=	Unit Bool $T \times T$ $T \to T$ $T \hookrightarrow T$	types: unit type boolean type product type function type circuit type
Γ	::=	\varnothing $\Gamma, x:T$	contexts: empty context term variable binding
W	::=	1 Bit Qubit $W\otimes W$	wire types: wire unit type bit type qubit type wire product type
p	::=	() w (p,p)	wire patterns: empty wire variable wire pair
C	::=	output p $p_2 \leftarrow \text{gate } g \ p_1; C$ $p \leftarrow C; C$ $x \leftarrow \text{lift } p; C$ capp $t \ p$	circuits: output a pattern gate application circuit composition dynamic lifting circuit application
g	::=	$\begin{array}{c} \mathtt{new}_0 \\ \mathtt{new}_1 \\ \mathtt{init}_0 \\ \mathtt{init}_1 \\ \mathtt{meas} \\ \mathtt{discard} \end{array}$	gates: generate a bit 0 generate a bit 1 generate a qubit 0 generate a qubit 1 measurement gate disgard gate
G	::=	$\mathcal{G}(W,W)$	gate types: simple gate type
Ω	::=	\varnothing $\Omega, w:W$	wire contexts: empty context wire variable binding

2 Type Checking Rules

First, we need to define what is a well-formed wire context.

Definition 1 (Well-formed Wire Contexts). A wire context Ω is well-formed, if there are no duplicate wire variables in it. For simplicity, we always assume the wire contexts are well-formed in the following contexts. And when we write Ω_1, Ω_2 , we require Ω_1 and Ω_2 to be disjoint to preserve the well-formedness.

Since there are some different kinds of terms: (λ -)terms, wire patterns, gates and circuits, we have different relations for each of them to check the correctness.

- $\Omega \Rightarrow p: W$ is used to check the well-formedness of patterns.
- Γ ; $\Omega \vdash C : W$ is the typing relation for circuits;
- $\Gamma \vdash t : T$ is the typing relation for $(\lambda$ -)terms;
- g:G is the typing relation for gates;

2.1 Typing rules for gates

Note that because we only support built-in gates, the typing rules for gates are extremely simple, just assigning a type to each built-in gate.

Typing rules for gates: g:G

 $\overline{\mathtt{new}_0:\mathcal{G}(\mathtt{1},\mathtt{Bit})}$

 $\overline{\mathtt{new}_1:\mathcal{G}(\mathtt{1},\mathtt{Bit})}$

 $\overline{\mathtt{init}_0:\mathcal{G}(\mathtt{1},\mathtt{Qubit})}$

 $\overline{\mathtt{init}_1:\mathcal{G}(\mathtt{1},\mathtt{Qubit})}$

 $\overline{\mathtt{meas}:\mathcal{G}(\mathtt{Qubit},\mathtt{Bit})}$

 $\overline{\mathtt{discard}:\mathcal{G}(\mathtt{Bit},1)}$

2.2 Well-formed patterns

Well-formed patterns: $\Omega \Rightarrow p:W$

 $\overline{\varnothing \Rightarrow (): One}$

 $\overline{w:W\Rightarrow w:W}$

$$\frac{\Omega_1 \Rightarrow p_1 : W_1 \quad \Omega_2 \Rightarrow p_2 : W_2}{\Omega_1, \Omega_2 \Rightarrow (p_1, p_2) : W_1 \otimes W_2}$$

2.3 Typing rules for circuits

Typing rules for circuits: $\Gamma; \Omega \vdash C : W$

$$\frac{\Omega \Rightarrow p: W}{\Gamma; \Omega \vdash \text{output } p: W} \tag{C-OUTPUT}$$

$$\frac{g: \mathcal{G}(W_1, W_2) \quad \Omega_1 \Rightarrow p_1: W_1 \quad \Omega_2 \Rightarrow p_2: W_2 \quad \Gamma; \Omega_2, \Omega \vdash C: W}{\Gamma; \Omega_1, \Omega \vdash p_2 \leftarrow \text{gate } g \ p_1; C: W}$$
 (C-GATE)

$$\frac{\Gamma; \Omega_1 \vdash C : W \quad \Omega \Rightarrow p : W \quad \Gamma; \Omega, \Omega_2 \vdash C' : W'}{\Gamma; \Omega_1, \Omega_2 \vdash p \leftarrow C; C' : W'} \tag{C-COMPOSE}$$

$$\frac{\Omega \Rightarrow p : W \quad \Gamma, x : |W|; \Omega' \vdash C : W'}{\Gamma; \Omega, \Omega' \vdash x \Leftarrow \text{lift } p; C : W'}$$
(C-LIFT)

$$\frac{\Gamma \vdash t : W_1 \leadsto W_2 \quad \Omega \Longrightarrow p : W_1}{\Gamma; \Omega \vdash \mathsf{capp} \ t \ p : W_2} \tag{C-CAPP}$$

2.4 Typing rules for terms

Typing rules for $(\lambda$ -)terms: $\Gamma \vdash t : T$

$$\frac{\Gamma; \varnothing \vdash C : W}{\Gamma \vdash \operatorname{run} C : |W|} \tag{T-RUN}$$

$$\frac{\Omega \Rightarrow p: W_1 \quad \Gamma; \Omega \vdash C: W_2}{\Gamma \vdash \kappa \ p: W_1.C: W_1 \leadsto W_2} \tag{T-CABS}$$

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T}\tag{T-VAR}$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda \ x: T_1.t_2: T_1 \to T_2} \tag{T-ABS}$$

$$\frac{\Gamma \vdash t_1 : T_{11} \to T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \tag{T-APP}$$

$$\overline{\Gamma \vdash \text{true} : Bool}$$
 (T-TRUE)

$$\overline{\Gamma \vdash \text{false} : Bool}$$
 (T-FALSE)

$$\frac{\Gamma \vdash t_1 : \texttt{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\texttt{if} \ t_1 \ \texttt{then} \ t_2 \ \texttt{else} \ t_3 : T} \tag{T-IF})$$

$$\overline{\Gamma \vdash \text{unit} : Unit}$$
 (T-UNIT)

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash (t_1, t_2) : T_1 \times T_2} \tag{T-PAIR}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash t.1 : T_1} \tag{T-FST}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash t.2 : T_2} \tag{T-SEC}$$

3 Operational Semantics

TODO: add semantics.