Individual Events

I1	P	1	I2	P	12	I3	P	4	I4	P	35
	Q	4		Q	14		Q	7		Q	10
	R	2		R	1		R	14		R	10
	S	32		S	2		S	34		S	222

Group Events

(G1	a	4	G2	a	2	G3	a	3	G4	а	3840
		b	1001		b	3		b	20		b	1
		c	8		c	333333		c	14		c	3
		d	3		d	46		d	15		d	1853

Individual Event 1

I1.1 a, b and c are the lengths of the opposite sides $\angle A$, $\angle B$ and $\angle C$ of the $\triangle ABC$ respectively.

If
$$\angle C = 60^{\circ}$$
 and $\frac{a}{b+c} + \frac{b}{a+c} = P$, find the value of P .

$$c^{2} = a^{2} + b^{2} - 2ab\cos 60^{\circ} = a^{2} + b^{2} - ab \Rightarrow a^{2} + b^{2} = c^{2} + ab$$

$$P = \frac{a}{b+c} + \frac{b}{a+c} = \frac{a(a+c)+b(b+c)}{(b+c)(a+c)}$$

$$P = \frac{a^{2} + ac + b^{2} + bc}{ab + ac + bc + c^{2}} = \frac{ab + ac + bc + c^{2}}{ab + ac + bc + c^{2}} = 1$$

I1.2 Given that $f(x) = x^2 + ax + b$ is the common factor of $x^3 + 4x^2 + 5x + 6$ and $2x^3 + 7x^2 + 9x + 10$ If f(P) = Q, find the value of Q. **Reference 1992 H15, 1993 F15.2, 2011 F13.2**

Let
$$g(x) = x^3 + 4x^2 + 5x + 6$$
; $h(x) = 2x^3 + 7x^2 + 9x + 10$

g(-3) = -27 + 36 - 15 + 6 = 0, (x + 3) is a factor of g(x); by division, $g(x) = (x + 3)(x^2 + x + 2)$ h(-2.5)=-31.25+43.75-22.5+10 = 0, (2x+5) is a factor of h(x); by division, $h(x) = (2x+5)(x^2+x+2)$ f(x) = common factor = $(x^2 + x + 2)$

$$Q = f(P) = f(1) = 1 + 1 + 2 = 4$$

I1.3 Given that $\frac{1}{a} + \frac{1}{b} = \frac{Q}{a+b}$ and $\frac{a}{b} + \frac{b}{a} = R$, find the value of R.

$$\frac{1}{a} + \frac{1}{b} = \frac{4}{a+b}$$

$$\Rightarrow (a+b)^2 = 4ab$$

$$\Rightarrow a^2 + 2ab + b^2 = 4ab$$

$$\Rightarrow a^2 - 2ab + b^2 = 0$$

$$\Rightarrow (a-b)^2 = 0$$

$$a = b$$

$$\Rightarrow R = \frac{a}{b} + \frac{b}{a} = 2$$

I1.4 Given that $\begin{cases} a+b=R \\ a^2+b^2=12 \end{cases}$ and $a^3+b^3=S$, find the value of S.

$$\begin{cases} a+b=2 \cdots (1) \\ a^2+b^2=12 \cdots (2) \end{cases}$$

$$(1)^2-(2): 2ab=-8$$

$$\Rightarrow \begin{cases} ab=-4 \\ a+b=2 \end{cases}$$

$$S = a^3 + b^3 = (a + b)(a^2 - ab + b^2) = 2(12 + 4) = 32$$

Individual Event 2

I2.1 Suppose *P* is an integer and $5 \le P \le 20$. If the roots of the equation

$$x^{2} - 2(2P - 3)x + 4P^{2} - 14P + 8 = 0$$
 are integers, find the value of P.

Reference: 2000 FI5.2, 2010 FI2.2, 2011 FI3.1, 2013 HG1

$$\Delta = 4(2P - 3)^2 - 4(4P^2 - 14P + 8) = m^2$$

$$\left(\frac{m}{2}\right)^2 = 4P^2 - 12P + 9 - 4P^2 + 14P - 8 = 2P + 1$$

$$\therefore 5 < P < 20 \therefore 11 < 2P + 1 < 41$$

The only odd square lying in this interval is 25

$$\Rightarrow$$
 2P + 1 = 25 = 5²

$$\therefore P = 12$$

12.2 *ABCD* is a rectangle. AB = 3P + 4, AD = 2P + 6.

AE and CF are perpendiculars to the diagonal BD.

If EF = Q, find the value of Q.

$$AB = 40, AD = 30, BD = 50, \text{ let } \angle ADB = \theta, \cos \theta = \frac{3}{5}$$

$$DE = AD \cos \theta = 30 \times \frac{3}{5} = 18 = BF$$

$$EF = 50 - 18 - 18 = 14$$

12.3 There are less than 4Q students in a class. In a mathematics test, $\frac{1}{3}$ of the students got grade

A, $\frac{1}{7}$ of the students got grade B, half of the students got grade C, and the rest failed. Given

that R students failed in the mathematics test, find the value of R.

4Q = 56, let the number of students be x, then x is divisible by 2, 3 and 7.

i.e. x is divisible by 42, as $x \le 56$, so x = 42

 $R = \text{number of students failed in mathematics} = 42 \times \left(1 - \frac{1}{3} - \frac{1}{7} - \frac{1}{2}\right) = 1; R = 1$

I2.4 [a] represents the largest integer not greater than a. For example, $\left[2\frac{1}{3}\right] = 2$.

Given that the sum of the roots of the equation $[3x+R]=2x+\frac{3}{2}$ is S, find the value of S.

Reference: 1994 HG9

$$[3x + 1] = 2x + \frac{3}{2} \Rightarrow 3x + 1 = 2x + \frac{3}{2} + a$$
, where $0 \le a < 1$

$$a = x - \frac{1}{2} \Rightarrow 0 \le x - \frac{1}{2} \le 1 \Rightarrow 2.5 \le 2x + \frac{3}{2} \le 4.5$$

$$2x + \frac{3}{2}$$
 is an integer $2x + \frac{3}{2} = 4$ or 3

$$x = 0.75$$
 or 1.25

$$S = 0.75 + 1.25 = 2$$

Individual Event 3

I3.1 ABCD is a trapezium such that $\angle ADC = \angle BCD = 60^{\circ}$ and $AB = BC = AD = \frac{1}{2}$ CD. If this trapezium is divided into P equal portions (P > 1) and each portion is similar to trapezium ABCD itself, find the minimum value of P. From the graph, P = 4

- **I3.2** The sum of tens and units digits of $(P + 1)^{2001}$ is Q. Find the value of Q. $5^{2001} = 100a + 25$, where a is a positive integer. Q = 2 + 5 = 7.
- **13.3** If $\sin 30^{\circ} + \sin^{2} 30^{\circ} + \dots + \sin^{Q} 30^{\circ} = 1 \cos^{R} 45^{\circ}$, find the value of R. $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{7}} = 1 \frac{1}{\sqrt{2}^{R}}$ $1 \frac{1}{2^{7}} = 1 \frac{1}{2^{\frac{R}{2}}}$ R = 14
- **I3.4** Let α and β be the roots of the equation $x^2 8x + (R + 1) = 0$. If $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ are the roots of the equation $225x^2 Sx + 1 = 0$, find the value of S.

Reference: 1996 FI2.2

$$x^{2} - 8x + 15 = 0, \alpha = 3, \beta = 5$$

 $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{1}{9} + \frac{1}{25} = \frac{34}{225} = \frac{S}{225}$
 $S = 34$

Individual Event 4

14.1 Let $a^{\frac{2}{3}} + b^{\frac{2}{3}} = 17\frac{1}{2}$, $x = a + 3a^{\frac{1}{3}}b^{\frac{2}{3}}$ and $y = b + 3a^{\frac{2}{3}}b^{\frac{1}{3}}$. If $P = (x + y)^{\frac{2}{3}} + (x - y)^{\frac{2}{3}}$, find the value of P.

$$P = \left(a + 3a^{\frac{2}{3}}b^{\frac{1}{3}} + 3a^{\frac{1}{3}}b^{\frac{2}{3}} + b\right)^{\frac{2}{3}} + \left(a - 3a^{\frac{2}{3}}b^{\frac{1}{3}} + 3a^{\frac{1}{3}}b^{\frac{2}{3}} - b\right)^{\frac{2}{3}}$$

$$= \left(a^{\frac{1}{3}} + b^{\frac{1}{3}}\right)^{3\times\frac{2}{3}} + \left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right)^{3\times\frac{2}{3}}$$

$$P = \left(a^{\frac{1}{3}} + b^{\frac{1}{3}}\right)^{2} + \left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right)^{2}$$

$$= a^{\frac{2}{3}} + 2a^{\frac{1}{3}}b^{\frac{1}{3}} + a^{\frac{2}{3}} + a^{\frac{2}{3}} - 2a^{\frac{1}{3}}b^{\frac{1}{3}} + a^{\frac{2}{3}}$$

$$= 2\left(a^{\frac{2}{3}} + a^{\frac{2}{3}}\right)$$

$$= 2\times17.5 = 35$$

I4.2 If a regular Q-sided polygon has P diagonals, find the value of Q.

Reference: 1984 FG10.3, 1985 FG8.3, 1988 FG6.2, 1989 FG6.1, 1991 FI2.3, 2005 FI1.4

The number of diagonals = $C_2^Q - Q = 35$

$$\frac{Q(Q-1)}{2} - Q = 35$$

$$Q^2 - 3Q - 70 = 0$$

$$Q = 10$$

14.3 Let $x = \sqrt{\frac{Q}{2} + \sqrt{\frac{Q}{2}}}$ and $y = \sqrt{\frac{Q}{2} - \sqrt{\frac{Q}{2}}}$. If $R = \frac{x^6 + y^6}{40}$, find the value of R.

$$R = \frac{\left(x^2 + y^2\right)\left(x^4 + y^4 - x^2y^2\right)}{40}$$

$$=\frac{\left(\frac{Q}{2}+\sqrt{\frac{Q}{2}}+\frac{Q}{2}-\sqrt{\frac{Q}{2}}\right)\left(\frac{Q}{2}+\sqrt{\frac{Q}{2}}\right)^{2}+\left(\frac{Q}{2}-\sqrt{\frac{Q}{2}}\right)^{2}-\left(\frac{Q}{2}+\sqrt{\frac{Q}{2}}\right)\left(\frac{Q}{2}-\sqrt{\frac{Q}{2}}\right)\right]}{2}$$

$$= \frac{Q\left[2\left(\frac{Q}{2}\right)^{2} + 2\left(\sqrt{\frac{Q}{2}}\right)^{2} - \left(\frac{Q}{2}\right)^{2} + \left(\sqrt{\frac{Q}{2}}\right)^{2}\right]}{40}$$

$$=\frac{10(5^2+3\times5)}{40}=10$$

I4.4 [a] represents the largest integer not greater than a. For example, [2.5] = 2.

If
$$S = \left\lceil \frac{2001}{R} \right\rceil + \left\lceil \frac{2001}{R^2} \right\rceil + \left\lceil \frac{2001}{R^3} \right\rceil + \cdots$$
, find the value of S .

$$S = \left[\frac{2001}{10}\right] + \left[\frac{2001}{100}\right] + \left[\frac{2001}{1000}\right] + \cdots$$

$$= 200 + 20 + 2 + 0 + \dots = 222$$

G1.1 Given that $(a + b + c)^2 = 3(a^2 + b^2 + c^2)$ and a + b + c = 12, find the value of a. Sub. (2) into (1), $12^2 = 3(a^2 + b^2 + c^2)$

$$\Rightarrow a^2 + b^2 + c^2 = 48 \tag{3}$$

$$\Rightarrow a^2 + b^2 + c^2 = 48 \dots (3)$$

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

$$\Rightarrow$$
 12² = 48 + 2($ab + bc + ca$)

$$\Rightarrow ab + bc + ca = 48$$

$$2[a^2 + b^2 + c^2 - (ab + bc + ca)] = (a - b)^2 + (b - c)^2 + (c - a)^2$$

$$2[48-48] = 0 = (a-b)^2 + (b-c)^2 + (c-a)^2$$

$$\Rightarrow a = b = c$$

$$a + b + c = 3a = 12$$

$$\Rightarrow a = 4$$

G1.2 Given that $b \left[\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{1999 \times 2001} \right] = 2 \times \left[\frac{1^2}{1 \times 3} + \frac{2^2}{3 \times 5} + \dots + \frac{1000^2}{1999 \times 2001} \right]$, find the value of b.

Note that
$$\frac{1}{(2r-1)\times(2r+1)} = \frac{1}{2}\left(\frac{1}{2r-1} - \frac{1}{2r+1}\right)$$
 and $\frac{r^2}{(2r-1)\times(2r+1)} = \frac{1}{4} + \frac{1}{8}\left(\frac{1}{2r-1} - \frac{1}{2r+1}\right)$

$$\frac{1}{1\times3} + \frac{1}{3\times5} + \dots + \frac{1}{1999\times2001} = \frac{1}{2} \left[1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{1999} - \frac{1}{2001} \right] = \frac{1}{2} \left(1 - \frac{1}{2001} \right) = \frac{1000}{2001}$$

$$\frac{1^2}{1\times 3} + \frac{2^2}{3\times 5} + \dots + \frac{1000^2}{1999\times 2001} = \frac{1}{4} + \frac{1}{8}\left(1 - \frac{1}{3}\right) + \frac{1}{4} + \frac{1}{8}\left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \frac{1}{4} + \frac{1}{8}\left(\frac{1}{1999} - \frac{1}{2001}\right)$$
 (1000 terms)

$$= \frac{1000}{4} + \frac{1}{8} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{1999} - \frac{1}{2001} \right) = \frac{1000}{4} + \frac{1}{8} \left(1 - \frac{1}{2001} \right)$$

$$1000 \quad 1 \quad 2000 \quad 250 \quad 250 \quad \dots \quad (1) \quad 250 \cdot 2002$$

$$= \frac{1000}{4} + \frac{1}{8} \cdot \frac{2000}{2001} = 250 + \frac{250}{2001} = 250 \left(1 + \frac{1}{2001}\right) = \frac{250 \cdot 2002}{2001}$$

The given equation becomes: $b \cdot \frac{1000}{2001} = 2 \cdot \frac{250 \cdot 2002}{2001} \Rightarrow b = 1001$

G1.3 A six-digit number 1234xy is divisible by both 8 and 9. Given that x + y = c, find the value of c.

Reference: 2003 FI4.1, 2017 HI1

The number formed by last 3 digits must be divisible by 8 and the sum of digits must be divisible by 9. i.e. 400 + 10x + y is divisible by 8 and 1 + 2 + 3 + 4 + x + y = 9m

$$10x + y = 8n \dots (1); x + y = 9m - 10 \dots (2)$$

$$(1) - (2)$$
: $9x = 8n - 9m + 9 + 1$

$$\Rightarrow n = 1 \text{ or } 10$$

When n = 1, (1) has no solution; when n = 10, x = 8, y = 0; c = x + y = 8

G1.4 Suppose $\log_x t = 6$, $\log_y t = 10$ and $\log_z t = 15$. If $\log_{xyz} t = d$, find the value of d.

Reference: 1999 FG1.4, 2015 HI7

$$\frac{\log t}{\log x} = 6, \quad \frac{\log t}{\log y} = 10, \quad \frac{\log t}{\log z} = 15$$

$$\Rightarrow \frac{\log x}{\log t} = \frac{1}{6}, \quad \frac{\log y}{\log t} = \frac{1}{10}, \quad \frac{\log z}{\log t} = \frac{1}{15}$$

$$\frac{\log x}{\log t} + \frac{\log y}{\log t} + \frac{\log z}{\log t} = \frac{1}{6} + \frac{1}{10} + \frac{1}{15} = \frac{10}{30} = \frac{1}{3}$$

$$\frac{\log x + \log y + \log z}{\log t} = \frac{1}{3}$$

$$\frac{\log xyz}{\log t} = \frac{1}{3}$$

$$d = \frac{\log t}{\log xyz} = 3$$

G2.1 Given that $x = \sqrt{7 - 4\sqrt{3}}$ and $\frac{x^2 - 4x + 5}{x^2 - 4x + 3} = a$, find the value of a.

Reference: 1993 FI1.4, 1999 HG3, 2011 HI7, 2015 FI4.2, 2015 FG3.1

Reference: 1993 HI9, 2000HG1, 2007 HG3, 2009HG2

$$x = \sqrt{7 - 4\sqrt{3}} = \sqrt{4 - 2\sqrt{12} + 3}$$

$$= \sqrt{4 - 2\sqrt{4}\sqrt{3} + \sqrt{3}^{2}}$$

$$= \sqrt{(\sqrt{4} - \sqrt{3})^{2}} = \sqrt{4 - \sqrt{3}} = 2 - \sqrt{3}$$

$$\sqrt{3} = 2 - x$$

$$\Rightarrow 3 = (2 - x)^{2}$$

$$\Rightarrow x^{2} - 4x + 1 = 0$$

$$a = \frac{x^{2} - 4x + 5}{x^{2} - 4x + 3} = \frac{x^{2} - 4x + 1 + 4}{x^{2} - 4x + 1 + 2} = 2$$

G2.2 *E* is an interior point of the rectangle *ABCD*. Given that the lengths of *EA*, *EB*, *EC* and *ED* are 2, $\sqrt{11}$, 4 and *b* respectively, find the value of *b*.

Reference: 1994 FG10.1-2, 2003 FI3.4, 2018 HI7

Let P, Q R and S be the foot of perpendiculars drawn from E onto AB, BC, CD and DA respectively. PE = p, QE = q, RE = r, SE = s.

Using Pythagoras' Theorem, it can be proved that

$$p^{2} + s^{2} = 4 \dots (1)$$

$$p^{2} + q^{2} = 11 \dots (2)$$

$$q^{2} + r^{2} = 16 \dots (3)$$

$$r^{2} + s^{2} = b^{2} \dots (4)$$

$$(1) + (3) - (2) - (4): 0 = 4 + 16 - 11 - b^{2}$$

G2.3 Given that $111111222222 = c \times (c + 1)$, find the value of *c*.

Reference 1996 FG7.2 $111aaa = b \times (b + 1) \dots$

$$111111222222 = 111111000000 + 222222$$

$$= 111111 \times 1000000 + 2 \times 111111$$

$$= 111111 \times 1000002$$

$$111111222222 = 111111 \times 3 \times 333334 = 333333 \times 333334$$

$$c = 333333$$

G2.4 Given that $\cos 16^\circ = \sin 14^\circ + \sin d^\circ$ and 0 < d < 90, find the value of d.

$$\sin d^{\circ} = \cos 16^{\circ} - \sin 14^{\circ}$$

$$\sin d^{\circ} = \sin 74^{\circ} - \sin 14^{\circ}$$

$$\sin d^{\circ} = 2 \cos \frac{74^{\circ} + 14^{\circ}}{2} \sin \frac{74^{\circ} - 14^{\circ}}{2}$$

$$\sin d^{\circ} = \cos 44^{\circ} = \sin 46^{\circ}$$

$$d = 46$$

b = 3

 \boldsymbol{C}

G3.1 Given that the solution of the equation $\sqrt{3x+1} + \sqrt{3x+6} = \sqrt{4x-2} + \sqrt{4x+3}$ is a, find the value of a.

$$\sqrt{3x+6} - \sqrt{4x-2} = \sqrt{4x+3} - \sqrt{3x+1}$$

$$(\sqrt{3x+6} - \sqrt{4x-2})^2 = (\sqrt{4x+3} - \sqrt{3x+1})^2$$

$$3x+6+4x-2-2\sqrt{12x^2+18x-12} = 4x+3+3x+1-2\sqrt{12x^2+13x+3}$$

$$\sqrt{12x^2+18x-12} = \sqrt{12x^2+13x+3}$$

$$12x^2+18x-12 = 12x^2+13x+3$$

$$x=3$$

G3.2 Suppose the equation $x^2y - x^2 - 3y - 14 = 0$ has only one positive integral solution (x_0, y_0) . If $x_0 + y_0 = b$, find the value of b.

$$(y-1)x^{2} = 3y + 14$$

$$x^{2} = \frac{3y+14}{y-1} = \frac{3y-3+17}{y-1} = 3 + \frac{17}{y-1} = 3+1$$

$$y = 18, x = 2$$

$$b = 20$$

G3.3 *ABCD* is a cyclic quadrilateral. *AC* and *BD* intersect at *G*. Suppose AC = 16 cm, BC = CD = 8 cm, BG = x cm and GD = y cm. If x and y are integers and x + y = c, find the value of c.

As shown in the figure, let CG = t, AG = 16 - t.

Let
$$\angle CBG = \theta$$
, $\angle ACB = \alpha$.

Then $\angle CAB = \theta$ (eq. chords eq. \angle s)

Then $\triangle BCG \sim \triangle ACB$ (equiangular)

$$t: 8 = 8: 16$$
 (ratio of sides, $\sim \Delta s$)

$$t = 4$$

It is easy to see that $\triangle ADG \sim \triangle BCG$ (equiangular)

$$(16-t): y = x: t \text{ (ratio of sides, } \sim \Delta s)$$

$$(16-4)\times 4 = xy$$

$$xy = 48$$

Assume that x and y are integers, then possible pairs of (x, y) are (1,48), (2, 24), ..., (6, 8), ..., (48, 1).

Using triangle inequality x + t > 8 and 8 + t > x in

 ΔBCG , the only possible combinations are:

$$(x, y) = (6, 8) \text{ or } (8, 6)$$

$$c = x + y = 14$$

G3.4 Given that $5^{\log 30} \times \left(\frac{1}{3}\right)^{\log 0.5} = d$, find the value of d.

$$\log 30 \log 5 + \log 0.5 \log \frac{1}{3} = \log d$$

$$\log (3 \times 10) \log \frac{10}{2} + (-\log 2)(-\log 3) = \log d$$

$$(\log 3 + 1)(1 - \log 2) + \log 2 \log 3 = \log d$$

$$\log 3 + 1 - \log 3 \log 2 - \log 2 + \log 2 \log 3 = \log d$$

$$\log d = \log 3 + 1 - \log 2 = \log \frac{3 \times 10}{2}$$

$$d = 15$$

G4.1
$$x_1 = 2001$$
. When $n > 1$, $x_n = \frac{n}{x_{n-1}}$. Given that $x_1 x_2 x_3 ... x_{10} = a$, find the value of a .

$$x_2 = \frac{2}{x_1} \Rightarrow x_1 x_2 = 2$$

$$x_4 = \frac{4}{x_3} \Rightarrow x_3 x_4 = 4$$

$$x_6 = \frac{6}{x_5} \Rightarrow x_5 x_6 = 6$$

$$x_8 = \frac{8}{x_7} \Rightarrow x_7 x_8 = 8$$

$$x_{10} = \frac{10}{x} \Rightarrow x_9 x_{10} = 10$$

Multiply these equations gives $a = x_1x_2x_3...x_{10} = 2 \times 4 \times 6 \times 8 \times 10 = 32 \times 120 = 3840$

G4.2 Given that the units digit of $1^3 + 2^3 + 3^3 + \dots + 2001^3$ is b, find the value of b.

Arrange the numbers in groups of 10 in ascending order, the units digit of sum each group is the same (except the last number, 2001^3).

$$1^{3} + 2^{3} + \dots + 10^{3} \equiv \frac{1}{4} + \frac{1}{8} + \frac{1}{4} + \frac{1}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{$$

G4.3 A and B ran around a circular path with constant speeds. They started from the same place and at the same time in opposite directions. After their first meeting, B took 1 minute to go back to the starting place. If A and B need 6 minutes and c minutes respectively to complete one round of the path, find the value of c.

In one minute, A and B ran $\frac{1}{6} + \frac{1}{c} = \frac{c+6}{6c}$ of the total distance.

They will meet at the first time after $\frac{6c}{c+6}$ minutes.

After 1 more minute, (i.e. total time elapsed = $\frac{6c}{c+6}$ + 1 minutes), B retuned to the starting

point. So
$$\left(\frac{6c}{c+6}+1\right) \times \frac{1}{c} = 1$$

 $6c+c+6=c^2+6c$
 $c^2-c-6=0$
 $(c-3)(c+2)=0$

G4.4 The roots of the equation $x^2 - 45x + m = 0$ are prime numbers. Given that the sum of the squares of the roots is d, find the value of d.

Reference: 1996 HG8, 1996FG7.1, 2005 FG1.2, 2012 HI6

Let the roots be α , β . $\alpha + \beta = 45$, $\alpha \beta = m$

The sum of two prime numbers $\alpha + \beta = 45$

 $\alpha = 2$, $\beta = 43$ (2 is the only even prime number)

$$d = \alpha^2 + \beta^2 = 4 + 43^2 = 1853$$