

Department of Information Technology

Scientific Computing for Data Analysis

Davoud Mirzaei

Lecture 9: Some applications of SVD

Agenda

- Least squares solution via SVD
- Low-rank approximation via SVD
- Principal component analysis (PCA)
- ▶ Mini-project 2

Given
$$A \in \mathbb{R}^{m \times n}$$
, $m \geqslant n$: $\min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||_2$

Case 1: If A is full rank (rank(A) = n) then

$$A = U\Sigma V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} V^T, \quad \Sigma_1^{-1} \text{ exists}$$

By change of variables $y = V^T x$ we have

$$||A\mathbf{x} - \mathbf{b}||_{2}^{2} = ||U\Sigma V^{T}\mathbf{x} - \mathbf{b}||_{2}^{2} = ||\Sigma V^{T}\mathbf{x} - U^{T}\mathbf{b}||_{2}^{2} = \left\| \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \mathbf{y} - \begin{bmatrix} U_{1}^{T}\mathbf{b} \\ U_{2}^{T}\mathbf{b} \end{bmatrix} \right\|_{2}^{2}$$
$$= ||\Sigma_{1}\mathbf{y} - U_{1}^{T}\mathbf{b}||_{2}^{2} + ||U_{2}^{T}\mathbf{b}||_{2}^{2}.$$

The right hand side is minimized if $\Sigma_1 y = U_1^T b$ or $y = \Sigma_1^{-1} U_1^T b$. (since the term $\|U_2^T b\|_2^2$ is independent of y and thus x). Since $y = V^T x$ we can write

$$x = V\Sigma_1^{-1}U_1^T \boldsymbol{b} = A^+ \boldsymbol{b}$$
 (pseudoinverse)

The residual is

$$residual = \|U_2^T \boldsymbol{b}\|_2$$

Case 2: *A* is rank-deficient, rank(A) = r < n

$$A = U \Sigma V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T, \quad \Sigma_1^{-1} \text{ exists}$$

By change of variables $V^T x =: y = egin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, where $y_1 \in \mathbb{R}^r$, we have

$$||A\mathbf{x} - \mathbf{b}||_2^2 = ||U\Sigma V^T \mathbf{x} - \mathbf{b}||_2^2 = ||\Sigma V^T \mathbf{x} - U^T \mathbf{b}||_2^2$$

$$= \left\| \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} - \begin{bmatrix} U_1^T \mathbf{b} \\ U_2^T \mathbf{b} \end{bmatrix} \right\|_2^2$$

$$= ||\Sigma_1 \mathbf{y}_1 - U_1^T \mathbf{b}||_2^2 + ||U_2^T \mathbf{b}||_2^2.$$

Regardless of y_2 , the value of $||Ax - b||_2$ is minimized when $\Sigma_1 y_1 = U_1^T b$, i.e.

$$\mathbf{y}_1 = \Sigma_1^{-1} U_1^T \mathbf{b}$$

Then we choose an arbitrary vector y_2 and set $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ and

$$x = Vy$$

.

Some notes:

- When A is rank deficient the problem has infinite number of solutions, as the vector y₂ can be chosen arbitrarily
- ▶ The norm-minimal solution is the solution with minimum norm 2 among all solutions. The norm-minimal solution is obtained for particular case $y_2 = 0$
- ▶ The residual of the least square problem is

$$residual = ||U_2^T \boldsymbol{b}||_2$$

lt can be shown that the **norm-minimal solution** is

$$\boldsymbol{x} = V_1 \Sigma_1^{-1} U_1^T \boldsymbol{b} = A^+ \boldsymbol{b}$$
 (pseudoinverse)

(Since
$$y_1 = V_1^T x$$
 and $y_2 = V_2^T x$)

Steps of the algorithm for computing least square solution of Ax = b:

- 1. Compute the SVD of *A* such that $A = U\Sigma V^T$
- 2. Determine r, the rank of A (number of nonzero singular values).
- 3. set U_1 the first r columns of U, V_1 the first r columns of V, and Σ_1 the leading $r \times r$ submatrix of Σ . Then

$$\boldsymbol{x} = V_1 \Sigma_1^{-1} U_1^T \boldsymbol{b}$$

- **4.** $residual = ||U_2^T b||_2$.
- Note: When A is rank-deficient (rank(A) = r < n) the above procedure gives the norm-minimal solution.
- ▶ If the residual is not needed, the reduced SVD of *A* is enough.
- ▶ To compute the **numerical rank**, the values of σ_k less than $\epsilon_M \|A\|_{\infty}$, where ϵ_M is the machine epsilon, are accepted to be zero.

Example

Example: The SVD factors of a matrix A are given by:

Solve the least square problem $\min ||Ax - b||_2$ for $b = [1, 1, 1, 1, 1]^T$.

Solution: A is 5×4 and the rank of A is 2 (rank-deficient). We have infinite number of least squares solutions. The norm-minimal solution is $\mathbf{x} = V_1 \Sigma_1^{-1} U_1^T \mathbf{b} = A^+ \mathbf{b}$. In the last lecture we computed A^+ , so we have

$$\mathbf{x} = A^{+}\mathbf{b} = \begin{bmatrix} \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0\\ 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\\0\\1\\1 \end{bmatrix}$$

Example (continue)

Example In the last example compute the residual.

Solution: The formula for residual is $residual = ||U_2^T \mathbf{b}||_2$. Since r = 2 (rank), U_1 is the first 2 columns and U_2 the last 3 columns of U. So we have

$$U_2^T \boldsymbol{b} = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

and

$$residual = ||U_2^T \mathbf{b}||_2 = \sqrt{1+1+1} = \sqrt{3}.$$

An exercise: Write a python code to obtain the least squares solution of the following system, and compute the residual.

$$A\mathbf{x} = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \\ 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cong \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \mathbf{b}$$

```
import numpy as np
A = np.array([[1,-1,2],[1,2,-1],[1,1,0],[1,3,-2]])
b = np.array([1,2,3,4])
U,S,Vt = np.linalg.svd(A)  # full SVD
eps = 2.2*10**-16;  # machine epsilon
normA = np.linalg.norm(A,np.inf)  # norm infinity of A
r = np.size(np.where(S > eps*normA)) # numerical rank
U1 = U[:,:r]; V1 = Vt[:r,:].T; S1_inv = np.diag(1/S[:r])
Ap = V1@S1_inv@U1.T  # pseudo-inverse of A
x = Ap@b  # norm minimal solution
print('norm minimal sol. x = ', x)
U2 = U[:,r+1:] # U2 for residual
print('residual = ', np.linalg.norm(U2.T@b))
norm minimal sol. x = [1.35238095 \ 0.99047619 \ 0.36190476]
residual = 0.9573111694631169
```

Low rank approximation via SVD

Matrices $u_j v_j^T$ are **rank 1 matrices** (outer product). So SVD writes A as a sum of rank 1 matrices. Since $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n$ matrix A is expressed as a list of its "ingredients", ordered by "importance"

Low rank approximation via SVD

▶ Truncate the series at term k, for $k \leq n$, and define

$$A_k := \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

$$+ \mathbf{v} + \mathbf{v}$$

Keep the first *k* (most important) pieces, and throw away rest

▶ $A_k = U_k \Sigma_k V_k^T$, where Σ_k is derived from Σ by keeping the same diagonal entries, but setting the values of σ_{k+1} through σ_n to zero.

This idea is used for dimension reduction from *n* to *k*

Low rank approximation via SVD

The rank of A_k is k (rank(A_k) = rank(Σ_k) = k) and we can show that A_k is the closet k rank matrix to k (in norm 2), i.e.

$$||A - A_k||_2 = \min_{rank(B)=k} ||A - B||_2.$$

 $\|A - A_k\|_2 = \sigma_{k+1}$ because

$$||A - A_k||_2 = ||U\Sigma V^T - U\Sigma_k V^T||_2 = ||\Sigma - \Sigma_k||_2 = \sigma_{k+1}$$

Example: A matrix *A* has SVD with

$$\Sigma = \begin{bmatrix} 14.6 & 0 & 0 & 0 \\ 0 & 8.4 & 0 & 0 \\ 0 & 0 & 1.3 & 0 \\ 0 & 0 & 0 & 0.03 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

If we define $A_2 = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T$, what is $||A - A_2||_2$? Solution: It is $\sigma_3 = 1.3$

An application: image compression via SVD

- A gray image can be represented by an $m \times n$ matrix A whose (i,j)-th entry corresponds to the brightness of the pixel (i,j)
- ► The storage of this matrix requires *mn* locations

1.0	1.0	1.0	0.9	0.6	0.6	0.6	1.0	1.0	1.0	1.0	1.0
1.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.0	1.0	1.0
1.0	0.2	0.2	0.5	0.6	0.6	0.5	0.0	0.0	0.5	1.0	1.0
1.0	0.9	1.0	1.0	1.0	1.0	1.0	0.9	0.0	0.0	0.9	1.0
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0	0.5	1.0
1.0	1.0	1.0	0.5	0.5	0.5	0.5	0.5	0.4	0.0	0.5	1.0
1.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.0
0.9	0.0	0.0	0.6	1.0	1.0	1.0	1.0	0.5	0.0	0.5	1.0
							1.0				
0.5	0.0	0.7	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.5	1.0
0.6	0.0	0.6	1.0	1.0	1.0	1.0	0.5	0.0	0.0	0.5	1.0
0.9	0.1	0.0	0.6	0.7	0.7	0.5	0.0	0.5	0.0	0.5	1.0
1.0	0.7	0.1	0.0	0.0	0.0	0.1	0.9	0.8	0.0	0.5	1.0
1.0	1.0	1.0	0.8	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0

An application: image compression via SVD

- ► The storage of this matrix requires *mn* locations
- ► The idea of image compression is to compress the image represented by a very large matrix to the one which corresponds to a lower-order approximation of *A*.
- SVD provides a simple way if one stores

$$\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \cdots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T =: A_k$$

instead

- The storage via SVD is (m + n + 1)k locations (the first k columns of U and V together with the first k singular values).
- ▶ This results a considerable savings when *k* is small.
- ▶ *k* should be also large enough to keep the quality of the image still acceptable

An application: image compression via SVD

An Example:

Another example in Lab 3.

An application: Principal Component Analysis (PCA) via SVD

Assume that we are given a dataset with observations on d variables (dimensions), for each of n entities or individuals. For example the weight, hight and age (d = 3 dimension) of n = 1000 individuals.

- ► What is the direction of the maximum variance in this data? (in which direction the data is widely spread?)
- ► What is the second most important direction in the data (and perpendicular to the first direction)?
- and so on ...

An application: PCA via SVD

SVD answers the above questions:

► The data defines n vectors a_1, a_2, \ldots, a_n each in \mathbb{R}^d or, equivalently, a $d \times n$ data matrix

$$A = [\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n]$$

- ▶ Using SVD $A = U\Sigma V^T$, the columns u_1, u_2, \ldots, u_d are the directions of maximum variances in order of significance. These vectors are called principal components. $\sigma_1^2, \sigma_2^2, \ldots, \sigma_d^2$ are the corresponding variances.
- ▶ (dimension reduction) The rank k data matrix

$$A_k = U_k \Sigma_k V_k^T = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \dots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T$$

is a new k dimensional data that approximates the original data A (best k dimensional approximation)

An application: PCA via SVD

Example from Lab 3: Consider the above 3D data. The rank 1 (1D, located on a line) and rank 2 (2D, located on a plane) approximations of the data are plotted:

 $A_1 = \sigma_1 \pmb{u}_1 \pmb{v}_1^T$ projects data to line $span\{\pmb{u}_1\}$

$$A_2 = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T$$
 projects data to plane $span\{\mathbf{u}_1, \mathbf{u}_2\}$

SVD: conclusion

- SVD is one the most important matrix decompositions with several applications
- Every matrix (either square or rectangular, either full rank or rank deficient) has SVD
- Can be used to solve the least squares problem with full rank or rank deficient coefficient matrix
- Can be used for computing pseudoinverse of a general matrix
- Applications to image processing
- Application to low rank approximation and dimension reduction (PCA)

Miniproject 2

Classification of handwritten digits

Download the training and test sets from Studium. Each digit (image) is a 28×28 matrix that is expressed by a vector of size 784.

- 1. For each digit, stack *training* images in front of each other and form a matrix *A* (so 10 big matrices)
- Compute SVD of A and then use a few columns of U as an approximation space (10 SVD)
- For each test digit, solve 10 least squares problems and compute the residuals
- Classify the test digit in that class with the smallest residual