Project Euler #28: Number spiral diagonals

Problem Statement

This problem is a programming version of Problem 28 from projecteuler.net

Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:

21	22	23	24	25
20	7	8	9	10
19	6	1	2	11
18	5	4	3	12
17	16	15	14	13

It can be verified that the sum of the numbers on the diagonals is 101.

What is the sum of the numbers on the diagonals in a $N \times N$, (N is odd) spiral formed in the same way? As the sum will be huge you have to print the result mod (10^9+7)

Input Format

The first line contains an integer T , i.e., number of test cases. Next T lines will contain an integer N.

Output Format

Print the values corresponding to each test case.

Constraints

$$\begin{split} &1 \leq T \leq 10^5 \\ &1 \leq N < 10^{18}, \text{N is odd} \end{split}$$

Sample Input

2 3 5

Sample Output

25 101