Lecture 17

Discrete choice models (or qualitative response models)

Suppose y_t is the probability that a household will purchase a car in a given year and x_t is the household's income.

Model:

$$y_t = \alpha + \beta x_t + u_t$$

For this regression, all we observe is whether the household purchased the car or not, that is, $y_t \in \{0,1\}$.

Consequences:

- 1. The discreteness makes the errors non-normal;
- 2. This introduces heteroskedasticity.

Demonstration:

Let $P_t = \Pr(y_t = 1)$. Then:

$$P_t = \Pr(u_t = 1 - \alpha - \beta x_t)$$

$$\therefore 1 - P_t = \Pr(y_t = 0) = \Pr(u_t = -\alpha - \beta x_t)$$

- For a given x_t , u_t can only take one of two values. For that reason, u_t cannot be normal; it rather follows a binomial distribution.
- We know that $E(u_t) = 0$.
 - $E(u_t) = P_t(1 \alpha \beta x_t) + (1 P_t)(-\alpha \beta x_t) := 0.$
 - \circ From that, $P_t = \alpha + \beta x_t$.
- We know that $\sigma_u^2 = \mathrm{E}(u_t^2 \bar{u}) = \mathrm{E}(u_t^2)$.
 - $E(u_t^2) = P_t(1 \alpha \beta x_t)^2 + (1 P_t)(\alpha \beta x_t)^2$.
 - From that, $\sigma_u^2 = P_t (1 P_t)^2 + (1 P_t)(-P_t)^2$.
 - Then, $\sigma_u^2 = P_t(1 P_t) = (\alpha + \beta x_t)(1 \alpha \beta x_t)$, and it means that the variance of the errors varies with x_t (heteroskedasticity).

For those reason, OLS of α and β would be *unbiased* and *consistent*, but *inefficient*.

• Due to the non-normality, the test statistics would be invalid.

Solution:

Step 1: Estimate using OLS. Save \hat{y}_t .

Step 2: Estimate the variance by $\hat{\sigma}_t^2 = \hat{y}_t (1 - \hat{y}_t)$.

Step 3: Divide dependent and independent variables by $\hat{\sigma}_t$.

• That will produce y_t^* and x_t^* .

Step 4: Regress y^* on $\frac{1}{\sigma_t}$, x^* . The estimate will be BLUE.

Possible problems:

• In step 2, there is no guarantee that $\hat{\sigma}_t^2>0$.

• In other terms, there is no guarantee $0 \le \hat{y} \le 1$.

The Probit model

Consider the model:

$$y_t^* = \alpha + \beta x_t + u_t$$

where x_t is observable, but y_t^* is not.

• An example: y_t^* is the difference between the wage and the <u>reservation wage</u>.

What one would actually observe would be:

$$y_t = egin{cases} 1, & ext{if } lpha + eta x_t + u_t > 0 & (y_t^* > 0) \ 0, & ext{if } lpha + eta x_t + u_t < 0 & (y_t^* < 0) \end{cases}$$

Let F(z) be the <u>cumulative normal distribution</u>.

• Then, $F(z) = \Pr(Z \leq z)$.

Thus:

$$\Pr(y_t = 1) = \Pr(u_t > -\alpha - \beta x_t)$$

$$= 1 - F\left(\frac{\alpha - \beta x_t}{\sigma_t}\right)$$

$$\Pr(y_t = 0) = \Pr(u_t \le -\alpha - \beta x_t)$$

$$= F\left(\frac{\alpha - \beta x_t}{\sigma_t}\right)$$

Likelihood function:

$$L = \prod_{y_t=0} Figg(rac{-lpha-eta x_t}{\sigma_t}igg) \prod_{y_t=1} igg[1 - Figg(rac{-lpha-eta x_t}{\sigma_t}igg)igg]$$

Maximum Likelihood estimation: pick α and β that maximize L.

- It is always consistent and always efficient.
- It reaches the Cramér-Rao bound.

The Logit model

$$\ln\!\left(\frac{p}{1-p}\right) = \alpha + \beta x + u$$

It works best when 0 < y < 1.

For this model,
$$p_t = rac{1}{1 + e^{-(lpha + eta x_t)}}.$$

Thus:

$$egin{aligned} eta x & o \infty, & p & o 1 \ eta x & o -\infty, & p & o 0 \end{aligned}$$

<u>Probit model</u>: errors are assumed normal (F(z)).

Estimation

- $\bullet \ \ \text{If} \ 0 < y < 1 \text{, use OLS on} \ y^* = \ln \frac{y}{1-y}.$
- If $y \in \{0,1\}$, use MLE.