Database Revision

Dr Na Yao

Topics covered

- Week 1
 - Introduction
 - Relational model
 - Relational Algebra
 - Entity-relationship(ER) modelling

- Week 2
 - EER model
 - ER to RelationalModel mapping
 - Database design
 - SQL

Topics covered

- Week 3
 - Normalization
 - Advanced Normalization
 - Transaction management
 - Distributed DBMS

- Week 4
 - -XML
 - Data warehouse
 - Data mining
 - NoSQL

Database Introduction

Concepts

- Data
- Database
- Database management system (DBMS)
- Data model
- Schema vs data
- Database languages:
 - Data Definition Language (DDL)
 - Data Manipulation Language (DML)

Components of DBMS Environment

Roles in the Database Environment

- Data Administrator (DA)
- Database Administrator (DBA)
- Database Designers (Logical and Physical)
- Application Developers
- End Users (naive and sophisticated)

Data abstraction

The three-level ANSI-SPARC architecture

Relational Model

Concepts

- Relational model:
 - Relation (table)
 - Attribute (column)
 - Tuple (row)
 - Domain
- Keys:
 - Candidate key
 - Primary key
 - Foreign key

Integrity constraints

- Entity Integrity
 - In a base relation, no attribute of a primary key can be null.
- Referential Integrity
 - If foreign key exists in a relation, either foreign key value must match a candidate key value of some tuple in its home relation or foreign key value must be null.
- General Constraints

Relational Algebra

Relational Algebra Operations

Relational Algebra Operations

ER & EER

Entity Relationship (ER) Model

• Entity, Relationship, Attributes

- Multiplicity of relationship types:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)
- Cardinality (maximum number) and participation (minimum number) of a relationship.
- Ternary relationship
- Making Assumptions

Enhanced Entity Relationship (EER) Model

- Specialization/Generalization
 - participation constraints (mandatory or optional)
 - disjoint constraints (disjoint (or) or nondisjoint (and))

Logical Database Design (ER to Relational Model mapping)

Mapping ER model concepts to relations

- Entity to relations
- Binary 1-1, 1-N, N-M relationships
- Complex relationships
- Multi-valued attributes

SQL

SELECT statement

```
SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...]}

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList]

[HAVING group condition]

[ORDER BY columnList]
```

- Aggregates
 COUNT, SUM, AVG, MIN, MAX
- Subqueries

- Purpose of normalization
- Data redundancy
- Update Anomalies
 - Insertion
 - Deletion
 - Modification
- Normalization is done via decomposition
 - Lossless-join
 - Dependency preservation

Functional dependencies:

A and B are attributes of relation R, B is functionally dependent on A (denoted A \rightarrow B), if each value of A in R is associated with exactly one value of B in R.

- Full functional dependencies
- Transitive functional dependencies

• UNF, 1NF, 2NF, 3NF, BCNF, 4NF

- BCNF: every determinant is a candidate key.
- 4NF: in Boyce-Codd Normal Form and contains no nontrivial multivalued dependencies.
- Multi-valued Dependency (MVD):
 - for each value of A there is a set of values for B and a set of values for C. However, the set of values for B and C are independent of each other.
 - Trivial MVD: A MVD A \rightarrow B in relation R is defined as being trivial if (a) B is a subset of A or (b) A \cup B = R.
 - Nontrivial MVD: if neither (a) nor (b) are satisfied

Algorithm for decomposing relations into BCNF

- Relation R with FDs
- Compute keys for R
- Repeat until all relations are in BCNF:
 - Pick any R' with A->B that violates BCNF
 - Decompose R' into R1(A, B) and R2(A, rest)
 - Compute FDs for R1 and R2
 - Compute keys for R1 and R2

Transaction Management

Transactions

- Transaction: Action, or series of actions, carried out by user or application, which reads or updates contents of database.
- ACID properties of a transaction:
 - Atomicity, Consistency, Isolation, Durability
- Concurrency control purpose
- Concurrency control problems:
 - Lost update problem.
 - Uncommitted dependency problem.
 - Inconsistent analysis problem.

Transaction management

- Serializability
 - Schedule
 - Serial schedule/nonserial schedule
 - Aim of serializability
- Two-Phase Locking (2PL)
- Deadlock
- Database recovery
 - log file
 - checkpointing

Distributed DBMSs

- Client/Server Architecture
- Distributed database
- Distributed DBMS
- Distributed processing
- Advantages/disadvantages of distributed DBMS

XML

- XML definition and basic concepts
- Relational model vs XML
- Well-formed XML, Valid XML
- DTD, XSD

Data warehouse & Data mining

- Data Warehouse
- Definition: subject-oriented, integrated, time-variant, and non-volatile
- OLTP
- OLAP
- Data mining
- Data warehouse & data mining

NoSQL

- NoSQL concept
- NoSQL application areas

Revision

- Read all lecture notes
- Make your own notes!
- Understand is the key!
- Check have you met the learning outcomes at the beginning of each lecture notes?
- Practice on writing

Exam techniques

- Read the questions!
 - Explain, illustrate, describe, list, use examples...
- Clear handwriting
- Write something even if you don't know the answer...
- Time management
- Sleep, eat and drink before the exam