Guidance for tutors

Outcome	SPT10	Student can consistently:	Solve trigonometric equations and use radian measure for angles.
How the topic is examined	 This topic is not currently examined on GCSE but certain aspects are on Level 2 Further Maths, AS/A2 mathematics and additional maths qualifications. It is likely that students would have a calculator to solve trig equations and work with angles in radians. Questions may ask students to: Solve a trig equation involving sin, cos or tan and find all the solutions within a given interval. Convert an angle between radians and degrees and vice-versa. 		
Prior knowledge	 Students should be confident: Solving basic equations (AEq1) Rearranging simple formulae (AEx8) Trigonometry (SLT2 and SPT3) Graphs of trig functions (SPT8) In addition questions on this topic can have links to: Circles (SLAV2) Area of sectors (SLAV6) 		
Suggested tuition approaches	 The content of this outcome follows on from all the previous work with trigonometry. It is essentially that students understand how to find a side and angle in right angled triangle. Students have already seen basic trigonometric equations and solved them. Remind students how they found the missing angle in a triangle. They have already solved equations such as sin x = ²/₅ or cos x = 0.75 etc Explain to students that they used the inverse sine, cosine and tangent functions (sin⁻¹(x), cos⁻¹(x) and tan⁻¹(x)). However we only found one solution. Explain this is solving trig equations. Ask students are there any more in the range 0 to 360 degrees. Show students using the graph of sin x that there are more than one solution to sin x = 0.4. You could draw a line and show that there is more than one solution. Explain to students that they can find this other solution by using the symmetry of the sine graph. Indeed the second solution for sin x = 0.4 can be found by subtracting the first solution that the calculator gives from 180°. 		

©2017 The Access Project Company number: 07473072 | Charity number: 1143011 Registered address: Bastion House, 140 London Wall, London EC2Y 5DN

Guidance for tutors

	The steps involved in solving a basic trig equation are:			
	Rearrange the equation so that $\sin x = \dots$ or $\cos x = \dots$ or $\tan x = \dots$			
	Now use $sin^{-1}(x)$, $cos^{-1}(x)$ and $tan^{-1}(x)$ to find the first (principal) solution.			
	 Draw the graph of the relevant function. Show this first solution on the graph. 			
	o Identify where the other solutions lie and show them on the graph.			
	 Use the symmetry of the graph to calculate all the other solutions in the given range. 			
	The above method is a graphical method for solving trig equations. There are others. The CAST method is a common			
	method. Details about this are here http://mathonweb.com/help_ebook/html/cast.htm			
	Radian measure			
	 Students should understand that angles can be measured in radians as well as degrees. 			
	Radians are a preferred unit for angles.			
	• The key to converting between the two units is that 2π radians = 360°			
	From this you can convert any angle from degrees to radians and vice-versa.			
	Students at A-level are expected to solve equations with answers to be given in radians.			
Common errors				
and	Students find the principal solution and then don't find any more.			
	They incorrectly sketch the correct trigonometric graph.			
misconceptions				
	Questions and notes			
	 http://www.brentwood.k12.ny.us/HTMLpages/Curriculum/Math/AlgebraTrig/14411C13.pgs.pdf (trig equations) 			
	 https://www.tes.com/teaching-resource/a-level-maths-c2-trig-equations-worksheets-6146809 (trig equations) 			
	http://www.cimt.org.uk/projects/mepres/alevel/pure_ch10.pdf (radians and trig equations)			
Suggested	Past Questions			
resources	 https://www.examsolutions.net/tutorials/exam-questions-mixed- 			
resources	trigonometry/?board=IB&module=Higher%20Level&topic=11043			
	Video and online tutorials			
	 https://www.khanacademy.org/math/trigonometry 			
	 https://www.examsolutions.net/tutorials/trig-equations-multiple-angles/ 			