Exchange Rate Forecasting

```
In [43]: import statsmodels
          import pandas as pd
In [44]: from statsmodels.tsa.arima.model import ARIMA
In [45]: data = pd.read_csv("/Users/snehilshandilya/Desktop/A1_JPYUSD.csv",
In [46]: train_data = data.iloc[:int(0.8*len(data))]
          test_data = data.iloc[int(0.8*len(data)):]
In [47]:
         test_data
Out [47]:
                     Japan
              Date
           01/05/15 0.008081
           01/06/15 0.008167
           01/07/15 0.008066
           01/08/15 0.008251
           01/09/15 0.008337
           01/07/22 0.007519
           01/08/22 0.007214
           01/09/22 0.006909
           01/10/22 0.006746
           01/11/22 0.007205
          91 rows × 1 columns
```

In [48]: pip install pmdarima

Requirement already satisfied: pmdarima in ./opt/anaconda3/lib/pyt hon3.9/site-packages (2.0.2)

Requirement already satisfied: urllib3 in ./opt/anaconda3/lib/pyth on3.9/site-packages (from pmdarima) (1.26.9)

Requirement already satisfied: numpy>=1.21.2 in ./opt/anaconda3/lib/python3.9/site-packages (from pmdarima) (1.21.5)

Requirement already satisfied: joblib>=0.11 in ./opt/anaconda3/lib/python3.9/site-packages (from pmdarima) (1.1.0)

Requirement already satisfied: statsmodels>=0.13.2 in ./opt/anacon da3/lib/python3.9/site-packages (from pmdarima) (0.13.2)

Requirement already satisfied: scikit-learn>=0.22 in ./opt/anacond a3/lib/python3.9/site-packages (from pmdarima) (1.0.2)

Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in ./opt/anaconda3/lib/python3.9/site-packages (from pmdarima) (0.29.28)

Requirement already satisfied: pandas>=0.19 in ./opt/anaconda3/lib/python3.9/site-packages (from pmdarima) (1.4.2)

Requirement already satisfied: scipy>=1.3.2 in ./opt/anaconda3/lib/python3.9/site-packages (from pmdarima) (1.7.3)

Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in ./op t/anaconda3/lib/python3.9/site-packages (from pmdarima) (61.2.0)

Requirement already satisfied: python-dateutil>=2.8.1 in ./opt/ana conda3/lib/python3.9/site-packages (from pandas>=0.19->pmdarima) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in ./opt/anaconda3/lib/python3.9/site-packages (from pandas>=0.19->pmdarima) (2022.7.1) Requirement already satisfied: six>=1.5 in ./opt/anaconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas>=0.19->pmdarima) (1.16.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/lib/python3.9/site-packages (from scikit-learn>=0.22->pmdarim a) (2.2.0)

Requirement already satisfied: packaging>=21.3 in ./opt/anaconda3/lib/python3.9/site-packages (from statsmodels>=0.13.2->pmdarima) (21.3)

Requirement already satisfied: patsy>=0.5.2 in ./opt/anaconda3/lib/python3.9/site-packages (from statsmodels>=0.13.2->pmdarima) (0.5.2)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in ./opt/a naconda3/lib/python3.9/site-packages (from packaging>=21.3->statsm odels>=0.13.2->pmdarima) (3.0.4)

Note: you may need to restart the kernel to use updated packages.

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid value encountered in reciprocal

```
return np.roots(self.polynomial reduced ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial reduced ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ma)**-1
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/tsa/statespace/sarimax.py:1899: RuntimeWarning: invalid
value encountered in reciprocal
  return np.roots(self.polynomial_reduced_ar)**-1
```

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/statespace/sarimax.py:1906: RuntimeWarning: invalid value encountered in reciprocal

return np.roots(self.polynomial_reduced_ma)**-1

Out [49]:

SARIMAX Results

 Dep. Variable:
 y
 No. Observations:
 454

 Model:
 SARIMAX(2, 0, 0)
 Log Likelihood
 3100.045

 Date:
 Fri, 27 Jan 2023
 AIC
 -6194.090

 Time:
 19:08:07
 BIC
 -6181.736

 Sample:
 0
 HQIC
 -6189.223

- 454

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.0858	0.039	2.174	0.030	0.008	0.163
ar.L2	0.0916	0.044	2.091	0.037	0.006	0.177
sigma2	6.857e-08	3.37e-09	20.331	0.000	6.2e-08	7.52e-08

Ljung-Box (L1) (Q): 0.00 **Jarque-Bera (JB):** 59.70

Prob(Q): 0.98 **Prob(JB):** 0.00

Heteroskedasticity (H): 0.79 Skew: -0.07

Prob(H) (two-sided): 0.14 Kurtosis: 4.77

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

В

```
In [50]: model = ARIMA(test_data["Japan"].dropna(), order=(2,0,0)).fit()
model.forecast(12)
```

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/base/tsa_model.py:471: ValueWarning: A date index h as been provided, but it has no associated frequency information a nd so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/base/tsa_model.py:471: ValueWarning: A date index h as been provided, but it has no associated frequency information a nd so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/base/tsa_model.py:471: ValueWarning: A date index h as been provided, but it has no associated frequency information a nd so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/base/model.py:604: ConvergenceWarning: Maximum Likeliho od optimization failed to converge. Check mle retvals

warnings.warn("Maximum Likelihood optimization failed to "/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/base/tsa_model.py:834: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

```
Out[50]: 91 0.007323
```

- 92 0.007396
- 93 0.007461
- 94 0.007522
- 95 0.007580
- 95 0.00/560
- 96 0.007636 97 0.007690
- 98 0.007741
- 99 0.007790
- 0.007790
- 100 0.007837
- 101 0.007882
- 102 0.007925

Name: predicted mean, dtype: float64

```
In [51]: forecast = model.get_forecast(12)
    yhat_conf_int = forecast.conf_int(alpha=0.1)
    yhat_conf_int["mean"] = forecast.predicted_mean
    yhat_conf_int
```

/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s tatsmodels/tsa/base/tsa_model.py:834: ValueWarning: No supported i ndex is available. Prediction results will be given with an intege r index beginning at `start`.

return get_prediction_index(

Out [51]:

	lower Japan	upper Japan	mean
91	0.006987	0.007660	0.007323
92	0.006900	0.007892	0.007396
93	0.006852	0.008070	0.007461
94	0.006825	0.008219	0.007522
95	0.006811	0.008350	0.007580
96	0.006807	0.008466	0.007636
97	0.006809	0.008571	0.007690
98	0.006815	0.008667	0.007741
99	0.006825	0.008755	0.007790
100	0.006838	0.008836	0.007837
101	0.006852	0.008911	0.007882
102	0.006868	0.008981	0.007925

```
In [52]: def evaluate_arima_model(X, arima_order):
             history = [x for x in train_data['Japan']]
             # make predictions
             predictions = []
             conf int = []
             for t in range(len(test_data['Japan'])):
                 model = ARIMA(history, order=arima order)
                 model fit = model.fit()
                 yhat = model_fit.forecast()[0]
                 conf_ints = model_fit.get_forecast(1).conf_int(alpha = 0.1)
                 conf_int.append(conf_ints)
                 predictions.append(yhat)
                 history.append(test data['Japan'][t])
             # calculate out of sample error
             test = pd.DataFrame(test_data['Japan'])
             test["predictions"] = predictions
             test['Confidence Intervals'] = conf int
             return test
```

In [53]: y = evaluate_arima_model(data['Japan'], (2,1,0))

od optimization failed to converge. Check mle_retvals warnings.warn("Maximum Likelihood optimization failed to "
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/base/model.py:604: ConvergenceWarning: Maximum Likeliho
od optimization failed to converge. Check mle_retvals
warnings.warn("Maximum Likelihood optimization failed to "
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/base/model.py:604: ConvergenceWarning: Maximum Likeliho
od optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/statsmodels/base/model.py:604: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/statsmodels/base/model.py:604: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "
/Users/snehilshandilya/opt/anaconda3/lib/python3.9/site-packages/s
tatsmodels/base/model_pyt604. ConvergenceWarning. Maximum Likeliho

In [54]:

Out [54]:

Japan predictions Confidence Intervals

Date			
01/05/15	0.008081	0.008443	[[0.007992341461312715, 0.008892869691392429]]
01/06/15	0.008167	0.008060	[[0.0076094961882690005, 0.008510404333867207]]
01/07/15	0.008066	0.008140	[[0.007689501980427222, 0.008589894780856986]]
01/08/15	0.008251	0.008066	[[0.00761649872566448, 0.008515742104754552]]
01/09/15	0.008337	0.008257	[[0.007807860119050416, 0.00870591064582663]]
01/07/22	0.007519	0.007285	[[0.006855720102475713, 0.007714676518059566]]
01/08/22	0.007214	0.007491	[[0.007061843064463195, 0.007920614833733887]]
01/09/22	0.006909	0.007208	[[0.006779001472044709, 0.007637859064129535]]
01/10/22	0.006746	0.006853	[[0.006423527494985584, 0.007283192578697927]]
01/11/22	0.007205	0.006702	[[0.006272879527716987, 0.007131251338487316]]

91 rows × 3 columns

```
In [55]: import numpy as np
# compute whether we are going long or short
y["Signals"] = np.where(y['predictions']>y['Japan'].shift(), 1,-1)

# get the series of log returns
y["returns"] = np.log(y["Japan"]/y["Japan"].shift())

y["strategy returns"] = y["Signals"]*y["returns"]

# convert to simple returns
y["Cumulative Returns"] = (np.exp(y["strategy returns"].cumsum())-1
```

In [56]: import matplotlib
from matplotlib import pyplot as plt

```
In [57]: plt.figure(figsize = (15, 4))
    plt.plot(y["Cumulative Returns"])
    plt.plot((np.exp(y["returns"].cumsum())-1)*100)
    plt.ylabel("Cumulative Returns (%)")
    plt.title("ARIMA Strategy Performance vs Buy and Hold (JPYUSD)")
    plt.legend(["Equity Line", "Buy and Hold JPYUSD"])
    plt.grid()
```


D

```
In [58]: P = 1000000
A = (((y["Cumulative Returns"]/100)+1)*P)[-1]
t = (len(y)/12)
CCROR = np.log(A/P)/t
print(CCROR*100)
```

4.433704686010043

```
In [59]: ((A/P)**(1/t)-1)*100
```

Out [59]: 4.533462227199214

etratomy Cu

In [60]: CCROR*100

Out[60]: 4.433704686010043

Performing DMW and CW Test

```
In [61]: y['s_current'] = y['Japan']
y['s_future'] = y['s_current'].shift(+1)
y['s_change'] = y['s_future'] - y['s_current']
y['s_change_fitted'] = y['predictions'] - y['predictions'].shift()
y['error'] = ((y['Japan'].shift(-1) - y['Japan']) - (y['predictions'])
```

In [62]: y

Out [62]:

	Japan	predictions	Confidence Intervals	Signals	returns	returns	Cu
Date							
01/05/15	0.008081	0.008443	[[0.007992341461312715, 0.008892869691392429]]	-1	NaN	NaN	
01/06/15	0.008167	0.008060	[[0.0076094961882690005, 0.008510404333867207]]	-1	0.010561	-0.010561	_'
01/07/15	0.008066	0.008140	[[0.007689501980427222, 0.008589894780856986]]	-1	-0.012337	0.012337	
01/08/15	0.008251	0.008066	[[0.00761649872566448, 0.008515742104754552]]	-1	0.022597	-0.022597	-;
01/09/15	0.008337	0.008257	[[0.007807860119050416, 0.00870591064582663]]	1	0.010367	0.010367	_'
01/07/22	0.007519	0.007285	[[0.006855720102475713, 0.007714676518059566]]	-1	0.026927	-0.026927	3.
01/08/22	0.007214	0.007491	[[0.007061843064463195, 0.007920614833733887]]	-1	-0.041315	0.041315	3:
01/09/22	0.006909	0.007208	[[0.006779001472044709, 0.007637859064129535]]	-1	-0.043275	0.043275	4
01/10/22	0.006746	0.006853	[[0.006423527494985584, 0.007283192578697927]]	-1	-0.023893	0.023893	4
01/11/22	0.007205	0.006702	[[0.006272879527716987, 0.007131251338487316]]	-1	0.065798	-0.065798	3!

91 rows × 12 columns

```
In [63]: P = len(y['error'])
MSE_T = np.sum(np.square(y['error']))/P
MSE_T
```

Out [63]: 4.215419660252756e-08

```
In [64]: MSE_R = np.sum(np.square(y['s_change']))/P
MSE_R
```

Out[64]: 4.2298706938516495e-08

DMW Test

```
In [65]: import scipy.stats as st
```

```
In [66]: error_R = y['s_change'].reset_index(drop=True)
    error_T = y['error'].reset_index(drop=True)
    tmp = np.square(error_R) - np.square(error_T) - (MSE_R - MSE_T)
    V_hat = np.sum(np.square(tmp))/P

## Statistic
    DMW = (MSE_R - MSE_T)/np.sqrt(V_hat/P)

print('Since the DMW statitsic is equal to ' + str(DMW) + ',' + ' w
    print('we fail to reject the null hypothesis that the MP model does
```

Since the DMW statitsic is equal to 0.012124352779876712, which is less than the critical value (1.64), we fail to reject the null hypothesis that the MP model does not o utperform the random walk model, hence our model does outperform the random walk model.

CW Test

```
In [67]: y['s_change_pred'] = y['predictions']-y['Japan'].shift()
```

```
In [69]: tmp2 = np.sum(np.square(y['s_change_pred']))/P
CW = (MSE_R - MSE_T + tmp2)/np.sqrt(V_hat/P)

print('Since the CW statitsic is equal to ' + str(CW) + ',' + ' whi
print('we fail to reject the null hypothesis that the MP model does
```

Since the CW statitsic is equal to 0.07494334582115675, which is lesser than the critical value (1.64), we fail to reject the null hypothesis that the MP model does not o utperforms the random walk model. Hence, the Random Walk outperforms the MP model

T. [] .	
In I I	