

八年级 第一学期 (试用本) 上海教育出版社

SHUXUE

数学

练习部分

BUFEN

学校 ______ 班级 ____ 姓名

第十六章 二次根式

习题 16.1(1)

1.	判断下列令	各等式是否正确,	正确的在括号内打"、	✓",不正确的打"×".
----	-------	----------	------------	--------------

- (1) 对于二次根式 \sqrt{a} , $(\sqrt{a})^2 = a$.
- (2) $\sqrt{(-a)^2} = \pm a$.
- (3) $\sqrt{a^4} = a^2$.
- $(4) \ \sqrt{a^2} + \sqrt{b^2} = a + b.$
- 2. x 是怎样的实数时,下列各式在实数范围内有意义?
- (1) $\sqrt{-3x}$. (2) $\sqrt{2x+9}$.

(3)
$$\sqrt{\frac{2}{x-1}}$$
. (4) $\sqrt{-x^2}$.

3. 当
$$x = \frac{5}{2}$$
时,二次根式 $\sqrt{\frac{1}{x-2}}$ 、 $\sqrt{1-x}$ 、 $\sqrt{2x-5}$ 、 $\sqrt{x^2+3}$ 中没有意义的是______

- 4. 求下列二次根式的值:
- (1) $\sqrt{(\pi-4)^2}$.

(2) $\sqrt{1+2x+x^2}$, 其中 $x=-\sqrt{2}$.

5. 先看甲乙两人对以下问题的解答,再进行判断.

化简求值:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2}$$
, 其中 $a = \frac{1}{5}$.

甲的解答是:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2}$$

= $\frac{1}{a} + \sqrt{\left(\frac{1}{a} - a\right)^2}$
= $\frac{1}{a} + \frac{1}{a} - a = \frac{2}{a} - a = \frac{49}{5}$.

乙的解答是:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2}$$

= $\frac{1}{a} + \sqrt{\left(a - \frac{1}{a}\right)^2}$
= $\frac{1}{a} + a - \frac{1}{a} = a = \frac{1}{5}$.

谁的答案是错误的? 为什么?

习题 16.1(2)

1. 写出下列等式成立的条件:

(1)
$$\sqrt{x(x-1)} = \sqrt{x} \cdot \sqrt{x-1}$$
.

(2)
$$\sqrt{\frac{y-3}{y-6}} = \frac{\sqrt{y-3}}{\sqrt{y-6}}$$
.

2. 化简下列二次根式:

(1)
$$\sqrt{98}$$
.

(2)
$$\sqrt{54a}$$
.

(3)
$$\sqrt{12m^3}$$
.

$$(4) \ \sqrt{xy^5} \ .$$

3. 化简下列二次根式:

(1)
$$\sqrt{4\frac{4}{9}}$$
.

(2)
$$\sqrt{\frac{s}{\pi}}$$
 (π 是圆周率).

(3)
$$\sqrt{\frac{p^2}{45}}$$
 ($p > 0$).

(4)
$$\sqrt{\frac{8}{25n^3}}$$
.

4. 化简下列二次根式:

(1)
$$\sqrt{\frac{20m}{n^2}}$$
 (n>0).

(2)
$$\sqrt{\frac{125y}{4x}}$$
 (x>0).

(3)
$$\sqrt{\frac{ab^3}{24c}}$$
 ($b \ge 0, c > 0$).

(4)
$$\sqrt{\frac{48}{m^2n^3}}$$
 (m>0).

习题 16.2(1)

1. 下列二次根式中,哪些是最简二次根式?

$$\sqrt{\frac{1}{2}}$$
, $2\sqrt{xy}$, $\sqrt{3c^3}$, $\sqrt{\frac{ab}{2}}$, $\sqrt{x+y}$, $\sqrt{18y}$, $\sqrt{26ab}$, $\sqrt{\frac{1}{p-1}}$, $\sqrt{x^2-2x+1}$.

答:最简二次根式是

2. 将下列二次根式化为最简二次根式或整式:

(1)
$$\sqrt{18a^2b^5}$$
 (a>0).

(2)
$$\sqrt{54(x-y)^4}$$
.

(3)
$$\sqrt{3p^2+6pq+3q^2} \ (p \geqslant 0, q \geqslant 0)$$

(3)
$$\sqrt{3p^2+6pq+3q^2}$$
 $(p \ge 0, q \ge 0)$. (4) $\sqrt{25x^2-10x+1}$ $\left(x < \frac{1}{5}\right)$.

3. 将下列二次根式化为最简二次根式:

(1)
$$\sqrt{\frac{5x}{12y^3}}$$
 (y>0).

(2)
$$\frac{1}{n} \sqrt{\frac{5n}{24m}} (n > 0)$$
.

(3)
$$\sqrt{\frac{2}{5(x+y)}}$$
 (x>0,y>0). (4) $\sqrt{\frac{63}{(s-t)^3}}$.

(4)
$$\sqrt{\frac{63}{(s-t)^3}}$$
.

(5)
$$\sqrt{\frac{3}{m^2n^2-2mn+1}}$$
 (mn>1).

习题 16.2(2)

- 1. n 取 4,6,8,12,16,18 中的数 时, \sqrt{n} 和 $\sqrt{2}$ 是同类二次根式.
- 2. 下列各组二次根式中,不是同类二次根式的组是
- (A) $\sqrt{x^3} = \sqrt{xy^2}$;

(B) $\sqrt{\frac{5}{x}} = \sqrt{45x^3y^2}$;

(C) $\sqrt{\frac{4z}{x^3y}} = \sqrt{\frac{9x}{yz}}$;

- (D) $\sqrt{xy} = \sqrt{\frac{1}{x} + \frac{1}{y}}$.
- 3. 将下列各组根式先化成最简二次根式,再判断它们是否是同类二次根式.
- (1) $\sqrt{\frac{8}{x}} \sqrt{4x}$.
- (2) $\sqrt{\frac{ab^2}{c}} = \sqrt{\frac{c}{a}} (a > 0, b > 0).$

- (3) $\sqrt{\frac{2s}{t}} \sqrt{\frac{t}{3s}}$ (s>0). (4) $\frac{1}{3} \sqrt{\frac{m+n}{m-n}} \sqrt{2s} \sqrt{\frac{m-n}{m+n}}$ (m>n>0).

4. 合并下列各式中的同类二次根式:

(1)
$$-\frac{3}{4}\sqrt{5} + \frac{3}{5}\sqrt{5} + \frac{1}{2}\sqrt{5} - \frac{3}{10}\sqrt{5}$$
.

(2) $\left(3\sqrt{m} - \frac{2}{3}\sqrt{n}\right) - \left(\frac{5}{6}\sqrt{m} - \frac{1}{6}\sqrt{n}\right)$.

)

- 5. 二次根式 $\sqrt{8}$ 化简后为 $2\sqrt{2}$,即 $\sqrt{8} = 2\sqrt{2}$;二次根式 $\sqrt{\frac{8}{9}}$ 化简后为
- $\frac{2}{3}\sqrt{2}$, $\mathbb{R}\sqrt{\frac{8}{9}} = \frac{2}{3}\sqrt{2}$.
- (1) 请举出一些二次根式,经过化简后可表示成 $a\sqrt{2}$ (其中 a 是有理数)的形式.

(2) 设计两个二次根式,经过化简后可表示成 $a\sqrt{2}$ (其中 a 是有理数)的形式,且它们合并后的结果为 $\frac{3}{5}\sqrt{2}$.

习题 16.3(1)

(1)
$$\sqrt{12} + 3\sqrt{1\frac{1}{3}} - \sqrt{5\frac{1}{3}} - \frac{2}{3}\sqrt{48}$$
. (2) $\sqrt{\frac{3}{8}} - \left(-\frac{3}{4}\sqrt{\frac{27}{2}} + 3\sqrt{\frac{1}{6}}\right)$.

(3)
$$\frac{2}{3}\sqrt{9x} + 6\sqrt{\frac{x}{4}} - 2x\sqrt{\frac{1}{x}}$$
.

2. 计算:

(1)
$$\frac{2}{a}\sqrt{4a}+\sqrt{\frac{1}{a}}-2a\sqrt{\frac{1}{a^3}}$$
.

(2)
$$\sqrt{0.2m} + \frac{1}{m} \sqrt{5m^3} - m \sqrt{\frac{125}{m}}$$
.

(3)
$$\sqrt{\frac{a+b}{a-b}} - \sqrt{\frac{a-b}{a+b}} - \sqrt{\frac{1}{a^2-b^2}} (a > b > 0).$$

3. 解下列不等式:

(1)
$$2x + \sqrt{32} < x + \sqrt{2}$$
.

(2)
$$x+\sqrt{6}>3x+\sqrt{1.5}$$
.

4. 已知
$$m = \frac{1}{3}$$
, $n = \frac{1}{27}$, 求 $\frac{m-n}{\sqrt{m} - \sqrt{n}} + \frac{m+4n-4\sqrt{mn}}{\sqrt{m} - 2\sqrt{n}}$ 的值.

习题 16.3(2)

1. 计算:

(1)
$$(2\sqrt{3}+3\sqrt{2})(2\sqrt{3}-3\sqrt{2})$$

(1)
$$(2\sqrt{3}+3\sqrt{2})(2\sqrt{3}-3\sqrt{2})$$
. (2) $\frac{1}{6}\sqrt{1\frac{3}{5}}\times\left(-5\sqrt{3\frac{3}{5}}\right)$.

(3)
$$\sqrt{\frac{8}{a}} \cdot \sqrt{\frac{2a}{b}}$$
.

$$(4) \ \sqrt{2x} \cdot \sqrt{2y} \cdot \sqrt{x} .$$

2. 计算:

(1)
$$2\sqrt{a} \div 4\sqrt{b}$$
.

$$(2) 5 \sqrt{xy} \div \sqrt{5x^3}.$$

$$(3) \ \sqrt{x-y} \div \sqrt{x+y} \ .$$

(4)
$$\sqrt{x(x+y)} \div \sqrt{\frac{xy^2}{x+y}} \ (x>0,y>0).$$

(1)
$$\sqrt{xy} \cdot \sqrt{6x} \div \sqrt{3y}$$
.

(2)
$$\left(\sqrt{mn} - \sqrt{\frac{m}{n}}\right) \div \sqrt{\frac{m}{n}} \ (n > 0).$$

习题 16.3(3)

1. 把下列各式分母有理化:

(1)
$$\frac{\sqrt{2}}{\sqrt{5}}$$
.

(2)
$$\frac{\sqrt{15}}{2\sqrt{6}}$$
.

2. 把下列各式分母有理化:

$$(1) \ \frac{3}{2\sqrt{6x}}.$$

$$(2) \ \frac{\sqrt{4mn}}{2\sqrt{n^3}} \ .$$

(3)
$$\frac{a^2-b^2}{\sqrt{a-b}}$$
.

(4)
$$(x+2\sqrt{xy}+y)\div(\sqrt{x}+\sqrt{y})$$
.

3. 解下列不等式和方程:

(1)
$$\sqrt{5}x > 3\sqrt{5}x - 4\sqrt{3}$$
.

(2)
$$\frac{1}{3}(2-\sqrt{3}x)=1-\sqrt{12}x$$
.

4. 已知 x=3-2y,求 $3\sqrt{x-2y} \div \sqrt{4x^2-16y^2}$ 的值.

5. 下面有六个二次根式:

$$\sqrt{\frac{2}{3}}$$
, $\sqrt{8}$, $\sqrt{12}$, $\sqrt{18}$, $\sqrt{24}$, $\sqrt{27}$.

可从这六个二次根式中选出几个(不能重复),施行加、减、乘、除中的几 种运算,使所得结果为 $a\sqrt{3}$ (其中 a 为有理数)的形式. 例如:

$$\sqrt{27} - \sqrt{12} = \sqrt{3}; \sqrt{24} \div \sqrt{18} = \frac{2}{3}\sqrt{3}; (\sqrt{18} - \sqrt{8}) \div \sqrt{\frac{2}{3}} = \sqrt{3}.$$

请你另举出两个这样的例子.

习题 16.3(4)

1. $\sqrt{a-b}$ 的有理化因式是

(A)
$$\sqrt{a-b}$$
; (B) $\sqrt{a+b}$; (C) $\sqrt{a}-\sqrt{b}$; (D) $\sqrt{a}+\sqrt{b}$.

$$(C)$$
 \sqrt{a} \sqrt{b}

(D)
$$\sqrt{a} + \sqrt{b}$$

2. 某同学在计算 $\sqrt{18}$ ÷ $(\sqrt{3}+\sqrt{2})$ 时,他是这样做的:

$$\sqrt{18} \div (\sqrt{3} + \sqrt{2}) = \sqrt{18} \div \sqrt{3} + \sqrt{18} \div \sqrt{2} = \sqrt{6} + 3$$
.

你认为他做得对吗?如果做得不对,请予以改正.

3. 计算:

(1)
$$\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{3}-1}$$
.

(2)
$$(\sqrt{a}-\sqrt{b}) \div (\sqrt{a}+\sqrt{b})(a\neq b)$$
.

(3)
$$(3\sqrt{m}+2\sqrt{n})\div(2\sqrt{m}-\sqrt{n}).$$

(3)
$$(3\sqrt{m}+2\sqrt{n})\div(2\sqrt{m}-\sqrt{n}).$$
 (4) $\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)\div\left(\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{x}}\right).$

4. 填空:

- (1) $\sqrt{m} + \sqrt{n}$ 的倒数是______; $\sqrt{m} \sqrt{n}$ 的倒数是______.
- (2) $a\sqrt{m}+b\sqrt{n}$ 的倒数是_____; $a\sqrt{m}-b\sqrt{n}$ 的倒数是_____.

5. 解下列方程:

(1)
$$\sqrt{3}(x-\sqrt{3}) = \sqrt{2}(x+\sqrt{2})$$
.

(2)
$$\frac{2}{x} = 3 - 2\sqrt{2}$$
.

复习题

A 组

1. 写出下列等式成立的条件:

(1)
$$\sqrt{(x-2)(x-3)} = \sqrt{x-2} \cdot \sqrt{x-3}$$
. (2) $\sqrt{\frac{3-x}{2-x}} = \frac{\sqrt{3-x}}{\sqrt{2-x}}$.

(2)
$$\sqrt{\frac{3-x}{2-x}} = \frac{\sqrt{3-x}}{\sqrt{2-x}}$$
.

2. 计算:
$$\sqrt{\left(a-\frac{1}{a}\right)^2} - \sqrt{\left(a+\frac{1}{a}\right)^2}$$
 (0

3. 计算:

(1)
$$\sqrt{28} \times \sqrt{21}$$
.

(2)
$$\frac{1}{3} \sqrt{0.75} \times \frac{3}{5} \sqrt{\frac{5}{12}}$$
.

(1)
$$\frac{\sqrt{12}}{4} - \frac{\sqrt{18}}{3} + 3\sqrt{32} - \sqrt{\frac{1}{12}}$$

(1)
$$\frac{\sqrt{12}}{4} - \frac{\sqrt{18}}{3} + 3\sqrt{32} - \sqrt{\frac{1}{12}}$$
. (2) $\sqrt{125} + 3\sqrt{\frac{2}{27}} - \frac{1}{4}\sqrt{24} + 3\sqrt{\frac{1}{5}}$.

5. 计算:
$$\sqrt{\frac{27}{c}} + \frac{1}{c^2} \sqrt{12c^3} - \frac{2c}{5} \sqrt{\frac{75}{c^3}}$$
.

(1)
$$\frac{1}{(3+\sqrt{5})^2}$$
.

(2)
$$\frac{\sqrt{3}}{\sqrt{3}+3} \times \frac{2-2\sqrt{2}}{2-\sqrt{2}}$$
.

7. 解不等式:
$$\frac{1}{2}(3-\sqrt{8}x)<1+\sqrt{18}x$$
.

8. 求
$$x$$
 的值: $-\frac{2}{x} = 7 + 4\sqrt{3}$.

9. 已知
$$x=\frac{2}{\sqrt{3}-1}$$
,求 x^2-2x+2 的值.

B 组

1. 计算:

(1)
$$\sqrt{\frac{1}{10}} \div \sqrt{300}$$
.

(2)
$$-\frac{1}{3}\sqrt{60} \div \frac{3}{4}\sqrt{\frac{125}{2}}$$
.

2. 设
$$-1 \le x \le 7$$
,化简: $\sqrt{x^2 - 14x + 49} - \sqrt{x^2 + 2x + 1}$.

(1)
$$\frac{1}{2}\sqrt{abc} \cdot \sqrt{\frac{18bc^3}{a}}$$
 (b>0). (2) $\frac{14}{st}\sqrt{\frac{6}{st^2}} \cdot \sqrt{\frac{5s^3}{12t}}$.

(2)
$$\frac{14}{st} \sqrt{\frac{6}{st^2}} \cdot \sqrt{\frac{5s^3}{12t}}$$

4. 计算:
$$\frac{ab^3}{3}\sqrt{\frac{27a}{b^3}}-2a\sqrt{\frac{ab^3}{3}}+2ab^2\sqrt{\frac{3a}{4b}}$$
 (b>0).

- 5. 若 $m = \sqrt{5} + 2$, $n = \sqrt{5} 2$, 则 m = 5 的关系是
- 6. 计算:

(1)
$$\sqrt{9ab^2c^3} \div \sqrt{ab^2c} \ (c>0)$$

(1)
$$\sqrt{9ab^2c^3} \div \sqrt{ab^2c}$$
 (c>0). (2) $\frac{\sqrt{a+b}-\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}$ (a>b>0).

7. 解方程:
$$\sqrt{5}(x+\frac{1}{5})=\sqrt{3}(x+\sqrt{\frac{5}{3}})$$
.

8. 如果最简根式 $^{m+n}\sqrt{2n}$ 与 $\sqrt{3m+n}$ 是同类二次根式,那么m、n 的值为 ()

(A)
$$m = \frac{1}{2}, n = \frac{3}{2};$$

(B)
$$m=0, n=2;$$

(C)
$$m = \frac{1}{2}, n = \frac{3}{2}, \text{ if } m = 0, n = 2;$$
 (D) $m = 2, n = 0.$

9. 已知 a>0,那么 $\sqrt{\frac{-4a}{h}}$ 可化简为 ()

(A)
$$2b\sqrt{-ab}$$
;

(B)
$$-\frac{2}{h}\sqrt{ab}$$
;

(A)
$$2b\sqrt{-ab}$$
; (B) $-\frac{2}{h}\sqrt{ab}$; (C) $-\frac{2}{h}\sqrt{-ab}$; (D) $\frac{2}{h}\sqrt{-ab}$.

(D)
$$\frac{2}{h}\sqrt{-ab}$$

10. 已知
$$x = \frac{1}{\sqrt{3}+2}$$
, $y = \frac{1}{\sqrt{3}-2}$, 求 $x^2 + 2xy + y^2$ 的值.

第十七章 一元二次方程

习题 17.1

1	判断下列方程是不是-	デール方理	具的大抵具由切	" / " 不自始证"、	/"
١.	<i>判哟1797</i> 在定小定一	1.14.100万倍:	定的供拍写的引	- 〈 ,小龙的红 /	х.

(1)	$1-2x^2=x.$	()
(2)	$3x^2 - \sqrt{2}x = 7$.	()
(3)	$x^2 + \frac{1}{2x^2} = 0.$	()
(4)	$(3x-2)(x+6)=3x^2-7.$	()

2. 填表:把下列一元二次方程化成一般式,并填上各项的系数和常数项.

方 程	一般式	二次项系数	一次项 系数	常数项
$5 - 3x + 2x^2 = 0$				
x(x-2)=1				
$(x-2)^2 = (3x+2)(x-5)$				
$(1-\sqrt{2})x^2 = (1+\sqrt{2})x$				

3. 填空:

- (1) 已知方程 $(m^2-4)x^2-(m+2)x+3=0$ 是关于x的一元二次方程,那么m的取值范围为
 - (2) 已知关于 x 的方程 $2x^2 + mx 3 = 0$ 的一个根是 3,那么 $m = _____.$
 - **4.** $x=-\frac{3}{2}$ 是不是一元二次方程 $2x^2-(2a-3)x-3a=0$ 的根? 为什么?

5. 写出一个一元二次方程,这个方程有一个根是 1,且它的一次项系数为一1;并写出你编造方程的方法.

习题 17.2(1)

1. 判断下列说法是否正确,正确的在括号内打"√",不正确的打	. X	Х			
---------------------------------	-----	---	--	--	--

- (1) 方程 $y^2 = 3$ 的根是 $y = \sqrt{3}$.
- (2) 方程 $16x^2 9 = 0$ 的根是 $x = \pm \frac{3}{4}$.
- (3) 方程 $4x^2+1=0$ 的根是 $x=\pm\frac{1}{2}$. ()
- (4) 方程 $x^2 = -a$ 无实数根(a 为任意实数). ()
- 2. 用开平方法解下列方程:
- (1) $x^2 = 121$.

(2) $4x^2 - 64 = 0$.

(3) $3t^2-24=0$.

(4) $2y^2 - 3 = 0$.

(5) $\frac{1}{9}y^2 - \frac{1}{4} = 0$.

(6) $0.36t^2-0.25=0.$

()

(7)
$$(x-5)^2=18$$
. (8) $(\sqrt{2}-x)^2=4$.

(8)
$$(\sqrt{2}-x)^2=4$$

(9)
$$3(50+y)^2-12=0$$
.

(9)
$$3(50+y)^2-12=0$$
. (10) $x^2=(b-2)^2(b$ 是已知数).

习题 17.2(2)

1. 填空:

- (1) 方程 $x^2 = x$ 的根是_____.
- (2) 方程 $(x-\sqrt{5})(x-3\sqrt{5})=0$ 的根是______.
- (3) 方程(6x+1)(x+4)=0 的根是_____.
- (4) 方程 $y(5y-\sqrt{2})=0$ 的根是______.
- (5) 方程(1-13y)(4+3y)=0 的根是_____.
- (6) 关于 y 的方程(5y+3a)(3y-5a)=0 的根是 .
- 2. 用因式分解法解下列方程:

(1)
$$4x^2-2x=0$$
.

(2)
$$x^2 + 2x - 3 = 0$$
.

(3)
$$-x^2+3x+18=0$$
. (4) $0.1x^2-1.2=0.4x$.

$$(4) 0.1x^2-1.2=0.4x$$

(5)
$$\frac{1}{2}x^2 + \frac{7}{2}x + 5 = 0$$
.

(6) (x+3)(x-1)=5.

(7)
$$(x+5)^2-2(x+5)=8$$
.

(8) $x^2 + ax = bx$ (a, b 是已知数).

3. 写出一个一元二次方程,使它的两根为一5和一4.

的值.

4. 已知 x、y 为实数,且 $(x^2 + y^2)(x^2 + y^2 + 1) = 20$,求 $x^2 + y^2$

习题 17.2(3)

1. 填空:

(1) 用配方法解方程 $x^2 - 3x - 1 = 0$.

③ 方程左边配成完全平方式,得方程_____;

④ 开平方,得方程_____;

⑥ 解得 $x_1 = _____, x_2 = _____.$

(2) $x^2+4x+\underline{\hspace{1cm}}=(x+\underline{\hspace{1cm}})^2.$

(3) $x^2 - 5x + \underline{\hspace{1cm}} = (x - \underline{\hspace{1cm}})^2$.

(4) $x^2 - \frac{1}{4}x + \underline{\hspace{1cm}} = (x - \underline{\hspace{1cm}})^2$.

(5) $x^2 + mx + \underline{\hspace{1cm}} = (x + \underline{\hspace{1cm}})^2$.

(6) $x^2 + \frac{b}{a}x + \underline{\hspace{1cm}} = (x + \underline{\hspace{1cm}})^2$.

2. 用配方法解下列方程:

(1)
$$x^2-4x-21=0$$
.

(2)
$$x^2 + 3x + 1 = 0$$
.

(3)
$$3x^2 + 6x - 1 = 0$$
.

(4)
$$\frac{1}{2}x^2 - 3x - 5 = 0$$
.

(5)
$$0.4x^2-0.8x=1$$
.

(6)
$$x^2 + 8x = 9984$$
.

习题 17.2(4)

1. 下面的框图表示用公式法解一元二次方程 $ax^2 + bx + c = 0$ ($a \neq 0$)的步骤,完成填空.

2. 用公式法解下列方程:

(1)
$$x^2 + 7x + 3 = 0$$
.

(2)
$$2x^2 - 5x + 1 = 0$$
.

(3)
$$-3x^2-5x+7=0$$
.

(4)
$$6x^2-3=x$$
.

(5)
$$4x^2 - 6x = 8$$
.

(6)
$$\frac{1}{2}x^2 + \frac{1}{2}x - \frac{1}{8} = 0$$
.

(7)
$$\frac{1}{3}x^2 - x - 0.5 = 0.$$

(8)
$$y^2 - 2\sqrt{3}y - 6 = 0$$
.

3. 解关于 x 的方程: $x^2-4x-k^2=0$ (k 是已知数).

习题 17.2(5)

- 1. 写出下列一元二次方程的根:
- (1) $3x^2 \sqrt{2}x = 0$ 的根是_____.
- (2) $\frac{2}{3}x^2 0.5 = 0$ 的根是_____.
- (3) $(2x+3)^2=25$ 的根是_____.
- (4) $x^2+2x-48=0$ 的根是______.
- 2. 用配方法解方程: $3x^2-2=6x$.

3. 用计算器解下列方程(精确到 0.01):

(1)
$$x^2 + x - 1 = 0$$

(1)
$$x^2+x-1=0$$
. (2) x^2-1 . $3x+0$. $16=0$.

4. 用适当的方法解下列方程:

(1)
$$2(x+1)^2=3$$
.

(2)
$$\frac{(2x-1)^2}{3} = \frac{1-2x}{4}$$
.

(3)
$$4x(x+1)=15$$
.

(4)
$$2\sqrt{3}x = \sqrt{2}(x^2+1)$$
.

(5)
$$(x+2)^2 = -2x$$
.

(6)
$$\frac{3}{2}y\left(y-\frac{8}{3}\right)=3y-4$$
.

- 5. 已知二次三项式 $x^2 6x + 5$.
- (1) 当 x 为何值时,这个二次三项式的值为零?

(2) 当 x 为何值时,这个二次三项式的值等于 x+4?

6. 三个连续整数中,第一个与第三个整数的平方和正好是 100,求这三个连续整数.

习题 17.3(1)

1.	判断下列语句是否正确	,正确的在括号内打"、	/",不正确的打"×"

- (1) 方程 $x^2 8 = 0$ 有两个相等的实数根. ()
- (2) 方程 $5x^2 = -2x$ 没有实数根. (2)
- (3) 如果一元二次方程 $ax^2+bx+c=0$ 有两个实数根,那么 $\Delta>0$.
- (4) 如果 $a \ c$ 异号,那么方程 $ax^2 + bx + c = 0$ 有两个不相等的实数根. ()
- 2. 不解方程,判别下列方程的根的情况:
- (1) $3x^2 25x + 10 = 0$. (2) $\frac{1}{2}x^2 + 7x + 28 = 0$.

- (3) $16x^2 + 9 = 24x$.
- (4) $x^2 + 2(\sqrt{3} + 1)x + 2\sqrt{3} = 0$.

3. 已知关于 x 的方程 $x^2 + 2x - a + 1 = 0$ 没有实数根,试判断关于 x 的方程 $x^2 + ax + a = 1$ 是否一定有两个不相等的实数根,并说明理由.

习题 17.3(2)

	1. 填空:
	(1) 一元二次方程 $x^2 + px + q = 0$ 的根的判别式是
	(2) 如果关于 x 的方程 $4x^2 - mx + 1 = 0$ 有两个相等的实数根,那么 m 的值
是	•
_	
	(4) 如果关于 x 的方程 $2x^2-3x+2m=0$ 有两个实数根,那么 m 的取值范围
是	•
	(1) 如果方程有两个不相等的实数根,求 m 的取值范围.
	(2) 如果方程有两个相等的实数根,求 m 的值.
	(4) 知水为压有的中间可谓为效体的。
	(3) 如果方程没有实数根,求 m 的取值范围.
	(3) 如米万任仅有头数依,水 m 的以但犯固.

3. 当 k 为何值时,关于 x 的方程 $(2-k)x^2-2kx+1=0$ 有两个相等的实数根? 求出这时方程的根.

4. 设等腰三角形的三条边长分别为 a、b、c,已知a=3,b、c是关于 x 的 方程 $x^2-4x+m=0$ 的两个根,求 m 的值.

য	题 17.4(1)
1. 填空:	
(1) 方程 $x^2 - 3x + 1 = 0$ 的根是 $x_1 =$	$x_2 = \underline{\hspace{1cm}};$
把二次三项式 x^2-3x+1 分解因	因式,得
(2) 方程 $3x^2 - 7x - 1 = 0$ 的根是 $x_1 = $	$,x_2=$;
	因式,得
(3) 把二次三项式 $4x^2 - 12x + 1$ 分角	释因式,得·
(4) 把多项式 $x^2-4xy+2y^2$ 分解因	式,得
2. 在实数范围内分解因式:	
(1) $x^2 + 2x - 4$.	(2) $x^2 - 4x - 1$.
(3) $2x^2 + 3x - 1$.	(4) $-a^2+5a+2$.
(5) $x^2 + xy - 3y^2$.	(6) $3x^2y^2 + 10xy + 5$.

习题 17.4(2)

1	埴	4	
1.	묫	二.	:

- (1) 已知一个长方形的长是一个正方形边长的 2 倍,宽比正方形的边长多 2 厘米,且长方形的面积比正方形的面积大 32 平方厘米. 设这个正方形的边长是 x 厘米,那么由已知数量关系可列出方程:
- (2) 已知某厂四月份生产机床 a 台,五、六月份生产机床数量的月增长率都为 x,那么这三个月共生产机床 台. (用代数式表示)
- **2.** 已知一个长方形的长是一个正方形边长的 2 倍,宽比正方形的边长少 2 厘米,面积比正方形的面积大 96 平方厘米,求这个正方形的边长及长方形的长和宽.

3. 如图,要建一个面积为 140 平方米的仓库,仓库的一边靠墙,这堵墙长 16 米;在与墙平行的一边,要开一扇 2 米宽的门.已知围建仓库的现有木板材料可使新建板墙的总长为 32 米,那么这个仓库设计的长和宽应分别为多少米?

4. 有一件商品,由原售价连续两次降价,每次下降的百分率相同.已知原售价是 875元,降价两次后的售价是 560元,每次下降的百分率是多少?

复习题

A 组

1. 卜列万程中,一元二次万档	起
$(A) 4x^2 = 3y;$	

(B) $x(x+1)=5x^2-1$;

(C)
$$\sqrt{x} - 3 = 5x^2 - \sqrt{6}$$
;

(D) $\frac{1}{r^2} + 3x - 1 = 0$.

2. 已知当 x=2 时,二次三项式 $2x^2-x+a$ 的值是 5,那么当 x=-1 时,这个二次三项 (式的值是

(A) -2;

(B) 0;

(C) 2:

3. 已知关于 y 的方程(2y+m)(y-3)=0 有一个根是 $-\frac{5}{2}$,那么 m 的值等于)

(A) -5;

(B) 5;

(C) $\frac{2}{5}$; (D) $\frac{5}{2}$.

4. 如果二次三项式 ax^2+3x+4 在实数范围内不能分解因式,那么 a 的取值范围是

()

(

)

(A)
$$0 < a < \frac{9}{16}, \text{ } \# a < 0;$$

(B) $a\neq 0$;

(C)
$$a > \frac{9}{16}$$
;

(D) $a < \frac{3}{4}$,且 $a \neq 0$.

5. 解下列方程:

(1)
$$\frac{1}{6}x^2 - 6 = 0$$
.

 $(2) - (2x-6)^2 = 0.$

(3)
$$(3x+1)^2-2=0$$
.

(4) $x^2 = -4x$.

(5)
$$(3x-2)^2 = 9x$$
.

(6)
$$(x-2)^2=2-x$$
.

6.(1) 把下列各式配成完全平方式:

$$x^{2}+8x+\underline{\hspace{1cm}}=(x+\underline{\hspace{1cm}})^{2};$$

$$x^{2}-x+\underline{\hspace{1cm}}=(x-\underline{\hspace{1cm}})^{2}.$$

(2) 把下列各式配成 $(x+m)^2+n$ 的形式:

7. 解下列方程:

(1)
$$x^2 + 4x + 1 = 0$$
.

(1)
$$x^2+4x+1=0$$
. (2) $x^2-5x-14=0$.

(3)
$$\frac{1}{8}x^2 + 6x - 16 = 0$$
.

(4)
$$x^2-4\sqrt{2}x-1=0$$
.

(5)
$$(2x+7)^2 = 4(2x+7)$$

(5)
$$(2x+7)^2 = 4(2x+7)$$
. (6) $(2x-9)^2 - (x-6)^2 = 0$.

(7)
$$3x^2-(x-2)^2=12$$
.

(7)
$$3x^2 - (x-2)^2 = 12$$
. (8) $(4x-1)^2 - 10(4x-1) - 24 = 0$.

8. 不解方程,判别下列方程根的情况:

(1)
$$2x^2-5x+1=0$$
.

(2)
$$5x(5x-2)=-1$$
.

(3)
$$(x-4)^2+2(x+1)=0$$
.

(3)
$$(x-4)^2+2(x+1)=0$$
. (4) $x^2+2x-m^2=0$ (*m* 为已知数).

9. 当 k 为何值时,关于 x 的方程 $x^2 - (2k-1)x + k^2 = 0$ 有两个不相等的实数根?

10. 无论 m 取何值,关于 x 的方程 $2x^2 - (4m-1)x - m^2 - m = 0$ 一定有两个不相等的 实数根吗? 为什么?

11. 在实数范围内分解因式:

(1)
$$x^2 + x - 1$$
.

(2)
$$x^2-2x-6$$
.

(3)
$$2x^2+8x-7$$
.

(4)
$$x^2 - 5xy + 3y^2$$
.

(5)
$$-2x^2-3x+6$$
.

(6) $4x^2y^2 + xy - 1$.

12. 一块长方形空地的长是 $24 \, \%$,宽是 $12 \, \%$,现要在它的中央划一个小长方形区域种植花卉,其余四周植草. 如果四周的宽度相同,小长方形面积是原长方形面积的 $\frac{5}{9}$,那么小长方形的长和宽分别是多少米?

B 组

1. 用适当的方法解下列方程:

(1)
$$\frac{(y+3)^2}{8} - y = \frac{y+3}{4} - \frac{y-1}{2}$$
.

(2) $x^2 - (a+b)x + ab = 0(a,b)$ 为已知数).

(3) $(x-a)^2 = 4(x^2-a^2)(a$ 为已知数).

2.	已知关于 x 的方程 $2x^2 - \sqrt{3}x + m = 0$ 没有实数根,那么 m 可取的最小整数是多少?

3. 如图,在宽为 20 米、长为 32 米的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块实验田,要使实验田总面积为 570 平方米,道路的宽应为 多少?

4. 某木器厂今年一月份生产了课桌 500 张;后因管理不善,二月份的产量减少了 10%;从三月份起加强了管理,产量逐月上升,四月份产量达到 648 张. 如果三、四月份的月增长率相同,求这个增长率.

5. 某工厂在第一季度的生产中,一月份的产值是 250 万元,二、三月份产值的月增长率相同.已知第一季度的总产值是 843.6 万元,求二、三月份的月增长率.

6. 对于一元二次方程 $ax^2+bx+c=0$ ($a\neq 0$),设 $\Delta=b^2-4ac$, x_1 , x_2 是 方程的两个实数根,且 $x_1 \leqslant x_2$.

(1) 填空:

一元二次方程	Δ	x_1	x_2
① $x^2 - 3x + 2 = 0$			23.17
$ 2x^2 - 10x + 24 = 0 $			
$3x^2-21x+108=0$	J - LLE SALET	e dhe sa ele ste co	

	(2)	观察上述三个方程的	$\Delta x_1, x_2$,它们有化	十么特殊的数	(量关系?请	写出一个类	似的
方和	星:						
	(3)	上述方程中每一个方	7程的 △ 与这个方程	的序号之间不	有什么关系?	如果方程的	序号
用:	n(n 失	1自然数)表示,那么△	7=	(用 n 的作	代数式表示)		
	同样	地,上述方程中每一个	个方程的两根 x_1 、 x_2	与这个方程的	的序号之间有	了什么关系?	如果
方利	星的序	号用 n(n 为自然数)表	長示,那么 $x_1 = $	$_{}, x_2 = _{}$	(用 n	的代数式表示	示)
	因此	,上述方程的一般形式	式为:				

第十八章 正比例函数和反比例函数

习 题 18.1(1)

- 1. 判断下列各题中两个变量是否存在依赖关系?如果存在,指出哪个变量是另一个变量的函数.
 - (1) 一个正常婴儿的体重(千克)与该婴儿成长经过的月数(个).
 - (2) 一次数学考试中某学生的成绩(分)与该学生的体重(千克).
 - (3) 汽车行驶的速度(千米/时)与驾驶员的身高(厘米).
 - (4) 某班支援灾区的捐款数(元)与该班学生个人捐款平均数(元).
- 2. 下列变化过程中,两个变量之间是否存在确定的依赖关系? 其中一个变量是另一个变量的函数吗? 如果是,请写出函数解析式.
 - (1) 圆的周长 C(cm) 随着半径 r(cm)的变化而变化.
 - (2) 等腰三角形中,顶角的度数 y 随底角的度数 x 的变化而变化.
 - (3) 周长为 15 厘米的等腰三角形,腰长 a(厘米)随着底边长 b(厘米)的变化而变化.
- (4) 一支笔的单价为 2π ,购买 n 支笔的总价 $S(\pi)$ 随着购买的笔的数量 $n(\bar{z})$ 的变化而变化.

- (5) 把25千克的米分两袋装,乙袋装的千克数 y 随甲袋装的千克数 x 的变化而变化.
- 3. 我国发射的第一颗人造地球卫星,绕地球运行的平均速度为每秒 7.12 千米,试写出卫星绕地球运行的路程 s(千米) 关于时间 t(秒)的函数解析式.
- **4.** 有一水池的容量为 300 立方米,设注入水的流量为 Q(立方米/分),注满水池所需的时间为 t(分),试问在这一变化过程中,哪些是变量,哪些是常量? Q 是不是 t 的函数?如果是,请写出 Q 关于 t 的函数解析式.

5. 德国著名心理学家艾宾浩斯(1850年~1909年)对人的记忆进行了研究,他采用无意义的音节作为记忆的材料进行实验,获得了如下相关数据:

时间	刚记忆完	20 分钟后	1 小时后	9 小时后	1天后	2 天后	6 天后	30 天后	
记忆量	100%	58.2%	44.2%	35.8%	33.7%	27.8%	25.4%	21.1%	

他又根据上表绘制了一条曲线,这就是著名的艾宾浩斯遗忘曲线.

观察这条曲线,回答:

(1) 在这一变化过程中,有哪两个变量?它们之间是否存在确定的依赖关系?其中一个变量是另一个变量的函数吗?为什么?

(2) 你从图中发现怎样的规律? 对你的学习有什么启示?

习 题 18.1(2)

1. 求下列函数的定义域:

(1)
$$y=x^2+x$$
.

(2)
$$y = \frac{2+x}{2-x}$$
.

(3)
$$y = \sqrt{3-2x}$$
.

(4)
$$y = \frac{1}{\sqrt{2+3x}}$$
.

2. 按照下列程序,y 的值随 x 的值变化而变化. 写出 y 关于 x 的函数解析式及函数的定义域;在定义域内任意选取 x 的两个值,再求出所对应的函数值.

(1) 输入
$$x$$
 \longrightarrow $\times 2$ \longrightarrow 输出 y

3. 已知 $f(x) = x^2 + 1$,求 $f\left(-\frac{1}{2}\right)$, f(0), f(a), f(a+1).

4. (1) 周长为 15 厘米的等腰三角形中,腰长为 x(厘米),底边长为 y(厘米),写出 y 关于 x 的函数解析式及函数的定义域.

(2) 周长为 15 厘米的等腰三角形中,底边长为 x(厘米),腰长为 y(厘米),写出 y关于 x 的函数解析式及函数的定义域.

习 题 18.2(1)

1. 下列函数中,如果是正比例函数,就在括号里打" \checkmark ",并写出比例系数 k 的值;否则打" \times ".

(1) $y = 2x$.			()
(2) $y = \frac{1}{2}x$.			()
(3) $y = -x$.			()
(4) $y = -\frac{2}{x}$.			()
(5) $y = -2x + 2$.			()
(6) $y = x^2$.	190		()
			3	7

- 2. 下列问题中的两个变量是否成正比例? 为什么?
- (1) 正方形的周长 C 与它的边长 a.
- (2) 某学生把每个月节约的 10 元零用钱存起来,存款月数 t 与存款总数 m(元).
- (3) 有一种笔记本,每本的厚度为 0.75 厘米,将若干本叠在一起,笔记本的本数 n 与总厚度 h (厘米).
 - (4) 分针在钟面旋转,在一周内,旋转的角度 $\alpha(\mathbb{B})$ 与旋转的时间 $t(\mathcal{G})$.
- 3. 已知正比例函数 $y=-\frac{x}{5}$,写出 y 与 x 之间的比例系数,并求当变量 x 分别取一5、0、 $\frac{1}{2}$ 、 $\sqrt{3}$ 时的函数值.
 - **4.** 已知 y 与 x 成正比例,且当 x = -1 时, $y = \frac{\sqrt{3}}{2}$.
 - (1) 求 y 关于 x 的函数解析式.
 - (2) 求当 y = -4 时 x 的值.

5. 某银行的两年期定期存款年利率是 2. 25 %. 王先生存入银行 a 元,到期得到利息 m元. 利息 m(元)与本金 a(元)成正比例吗? 如果成正比例,那么求出这个比例系数.

1. 如果 y=(a-3)x+(b+2)是 y 关于 x 的正比例函数,那么 a b 应满足什么条件?

2. 在同一直角坐标平面内画出下列函数的图像:

(1)
$$y = -4x$$
. (2) $y = -x$.

$$(2) y = -x.$$

(3)
$$y = \frac{1}{2}x$$
. (4) $y = \frac{4}{3}x$.

(4)
$$y = \frac{4}{3}x$$
.

- 3. 已知函数 $y=kx (k \neq 0)$,且当 x=-2 时,y=4.
- (1) 求函数解析式.

(2) 如果点 $A(\sqrt{2},b)$ 在这个函数的图像上,求 b 的值.

4. 一个正比例函数的图像如图所示,写出这个函数的解析式.

试一试

5. 根据甲乙两人在一次赛跑中跑完全程的平均速度,得到路程s(X)与时间t(N)的依赖关系如图所示,那么可以知道:

- (1) 这次赛跑全程是_____米.
- (2) 先到达终点的是 .(填"甲"或"乙")

习 题 18.2(3)

1	17: 17	
١.	埴空	:
-		

- (1) 正比例函数 $y = \frac{\sqrt{3}}{3}x$ 的图像经过第______象限,y 的值随x 的值增大而_____.
- (3) 直线 y=(3-π)x 经过第______象限;以此直线为图像的函数,y 的值随 x 的值增大而 .

(4) 直线 $y=(k^2+1)x$ 经过第象限;以此直线为图像的函数, y 的值随 x 的值均大而 2. 已知正比例函数 $y=(1-2k)x$ 的图像经过第一、三象限, x k 的取值范围.
3. 已知正比例函数 $y=f(x)$ 的图像经过点 $(-3\sqrt{5},5)$,求这个函数的解析式,并说出当 x 的值增大时, y 的值如何变化.
4. 已知 $A \ B$ 两地相距 $20 \ f \ R$,某人由 A 地步行到 B 地,平均速度为每小时 $5 \ f \ R$. 设他行走 x 小时后与 A 地相距 y $f \ R$. (1) 写出 y 关于 x 的函数解析式以及这个函数的定义域.
(2) 画出这个函数的图像.

5. 某户居民的月天然气消费量为 25 立方米(在第一阶梯内),需缴费 75 元. 对于该地区一户居民,设在第一阶梯内的月天然气消费量为 x(立方米),相应需缴天然气费为 y(元),求 y(元)关于x(立方米)的函数解析式.

6. 如图,长方形 ABCD 的对角线 AC 与 BD 相交于点 O,以 O 为原点建立直角坐标系,使 x 轴和 y 轴分别与长方形两邻边平行.已知 AD=9, AB=4,求:

- (1) 以直线 AC 为图像的函数的解析式.
- (2) 以直线 BD 为图像的函数的解析式.

习 题 18.3(1)

1. 下列函数中,如果是反比例函数,就在括号里打" \checkmark ",并写出比例系数 k 的值;否则打" \times ".

(1)
$$y = \frac{1}{x}$$
.

(2)
$$y = -\frac{2}{x}$$
.

(3)
$$y = \frac{1}{x} + 1$$
.

(4)
$$y = \frac{3}{2}x$$
.

$$(5) \ y = \frac{2}{x - 1}.$$

(6)
$$y = \frac{3}{5x}$$
.

- 2. 下列变化过程中的两个变量是否成反比例? 为什么?
- (1) 路程 s 不变时,匀速通过全程所需要的时间 t 与运动的速度 v.

(2) 三角形的面积 S 一定时,三角形一边的长 a 与这条边上的高 h.

(3) 完成的工作量 Q 一定时,完成工作量所需的时间 t 与工人人数 n (假设每个工人的工作效率相同).

3. 已知反比例函数 $y = \frac{k}{x} (k \neq 0)$, 当 $x = -\frac{\sqrt{2}}{2}$ 时, $y = 2\sqrt{2}$, 求 k 的值, 并求当 $x = \sqrt{6}$ 时的函数值.

4. 已知 $y = \frac{k+1}{x} + k^2 - 1$ 是反比例函数,求 k 的值,并写出函数的解析式.

5. 某种型号自行车的"牙盘"有 46 牙,每分钟转 100 周,"飞轮"有 20 干,每分钟转多少周?

习 题 18.3(2)

1. 已知点 $(-2,-\sqrt{3})$ 在函数 $y=\frac{k}{x}$ 的图像上,求 k 的值.

2. 在同一直角坐标平面内,画出函数 $y = \frac{1}{x}$ 、 $y = -\frac{3}{x}$ 的图像,说出这两个函数图像各自所在的象限,并指出 y 的值随 x 的值变化而变化的情况.

3. (1) 已知函数 $y = \frac{k}{x}$ 的图像经过点 $\left(\frac{4}{5}, -\frac{3}{4}\right)$,那么 k =______,在每一个象限内,y的值随x的值增大而_____.

(2) 已知点 $A(x_1,y_1)$ 和 $B(x_2,y_2)$ 在反比例函数 $y=\frac{k}{x}$ (k<0)的图像上,且 $0< x_1 < x_2$,那么 y_1-y_2 的值______0.(填">""<"或"=")

4. 如图,已知点 B 在函数 $y=\frac{6}{x}$ 的图像上,且位于第一象限,过点 B 分别向 x 轴、y 轴作 垂线,垂足分别为点 A、C. 求矩形 OABC 的面积.

5. 如图所示是一位学生所画的一个反比例函数的图像,你认为这个图像正确吗?

习 题 18.3(3)

- 1. 已知反比例函数 $y = \frac{k}{x}$ 的图像经过点 A(-2,3).
- (1) 求这个反比例函数的解析式.

(2)如果正比例函数 $y=k_1x$ 的图像与上述函数 $y=\frac{k}{x}$ 的图像有公共点,那么 k_1 的取值范围是什么?

2. 已知正比例函数 $y=k_1x$ 中,y 的值随 x 的值的增大而减小;反比例函数 $y=\frac{k_2}{x}$ 中,在每一个象限内,y 的值随 x 的值增大而增大. 那么这两个函数在同一坐标系内的大致图像可能是

3. 已知 $y=y_1+y_2$, y_1 与(x-1)成正比例, y_2 与 x 成反比例,且当 x=2 时, y=1; 当 x=-2 时, y=-2. 求 y 关于 x 的函数解析式.

4. 已知 y 与 x 成正比例,z 与 x 成反比例, \bar{x} y 与 z 之间的比例关系.

5. 已知 $\triangle ABC$ 的面积等于 2,设这个三角形的一边长为 x ,这边上的高为 y,那么 y 关于 x 的函数的图像是

习 题 18.4(1)

- 1. 表示函数的主要方法有____、__、__、、___、
- 2. 在单位"克"与"千克"的换算中,500 克是 0.5 千克. 如果把 x 克表示为 y 千克,那么
- (1) v与x之间是否成正比例?
- (2) 写出 y 关于 x 的函数解析式,并指出这个函数的定义域.
- (3) 当 x=25(克)时,y 的值是多少(千克)?
- (4) 在直角坐标平面内画出这个函数的图像.

- 3. 一辆汽车在行驶过程中,油箱内的油 $Q(\mathfrak{H})$ 与耗油时间 $t(\mathfrak{h})$ 的函数关系如图所示. 请根据图像回答下列问题:
 - (1)油箱内原有油量是_____升.
- (2) 汽车行驶 3 小时后,耗油_____升,油箱 刺油 升.

- (4) **Q**与t的函数解析式是_____
- 4. 小明骑自行车上学,开始以正常的速度匀速行驶,但在途中自行车出了故障,只好停下来修车;车修好后,因怕耽误上课,他加快了骑车速度,继续匀速行驶.下面是行驶路程 s(米)关于时间 t(分)的函数图像,那么符合小明行驶情况的大致图像是

习 题 18.4(2)

- 1. 如图,函数 y=kx ($k\neq 0$)的图像与 $y=-\frac{5}{x}$ 的图像有公共点 M 和 P,其中点 P 的纵 坐标为 1. 过点 P 作 y 轴的垂线,再过点 M 作 x 轴的垂线,两垂线相交于点 A.
 - (1) 求点 A 的坐标.
 - (2) 求△APM 的面积.

2. 用一根长 50 厘米的铁丝制成一个长方形框架,设长方形的一边长为 x 厘米,面积为 y 平方厘米,求 y 关于 x 的函数解析式.

- 3. 甲乙两个旅行社都有到某地旅游的团队项目,向每位游客的收费标准均为 100 元,服务内容相同,但有不同的优惠措施. 甲旅行社的优惠措施是:团队中每个人的费用均打 7 折;乙旅行社的优惠措施是可以免去一位带队人员的费用,团队中其他人的费用均打 8 折.
- (1) 在一次团队旅游中,设甲乙旅行社所收的总费用分别为 $y_{\mathbb{P}}(\overline{x})$ 和 $y_{\mathbb{Z}}(\overline{x})$,团队中人数为 $x(\uparrow)$,分别写出 $y_{\mathbb{P}}$ 和 $y_{\mathbb{Z}}$ 关于 x 的函数解析式.

	当人数为5人时,甲乙	两个旅行社的总	费用各是多少?」	此时,团队负责人应选	哪个
旅行社?					
				Andrew Fig.	
(3)	当人数为 10 人时,团队	人负责人应选哪个	、 旅行社? 为什么	.?	
i yu sa g					
	求 y 关于 x 的函数解析				
(2)]	青估计本年度计划用电				
		复习	题		
		A 组			
	知变量 x、y 满足等式; x 的函数.(均		目 x 的代数式表示	、 、 y , 得	;
2. 如	果点 P(4,b)在函数 y=	$=\sqrt{x-1}$ 的图像_	上,那么 b=	·	49

3. 设x,y表示两个变量,根据下列关系式判断,哪些是y关于x的正比例函数?哪些 是 y 关于 x 的反比例函数?

①
$$y = \frac{x}{3}$$
;

②
$$y = \frac{3}{x}$$
; ③ $y = -\frac{1}{4x}$; ④ $y = -\frac{1}{5}x$.

其中正比例函数有_____;反比例函数有_____

4. 设 k < 0,那么函数 $y = -\frac{x}{k}$ 与 $y = \frac{k}{x}$ 在同一坐标系中的大致图像可能是

5. 已知函数 $y=(m-3)x+m^2-2m-3$ 的图像是经过坐标原点以及第二、四象限的直 线,求m的值.

6. 问题:已知反比例函数 $y = \frac{k}{r} (k > 0)$ 图像上三点的坐标分别是 (x_1, y_1) 、 (x_2, y_2) 、 (x_3, y_3) ,且 $x_1 = -2$, $x_2 = -1$, $x_3 = 1$, 试判断 y_1, y_2, y_3 的大小关系.

解:因为这个反比例函数的比例系数 k > 0,

所以在每一象限内y的值随着x的值增大而减小.

由-2 < -1 < 1,即 $x_1 < x_2 < x_3$,可知 $y_1 > y_2 > y_3$.

试判断以上解法是否正确,如果不正确,请加以改正.

7. 求下列函数的定义域:

(1)
$$y=2x^2+3x-1$$
.

(2)
$$y = \frac{3}{2x+1}$$
.

(3)
$$y = \sqrt{2x+1}$$
.

$$(4) y = \frac{x}{\sqrt{2x+1}}.$$

8. 已知一个梯形的面积为 60,上底长是下底长的 $\frac{1}{3}$. 设下底长为 x,高为 y,求 y 关于 x 的函数解析式.

9. 已知 $y=y_1+y_2$, y_1 与 x 成正比例, y_2 与 x 成反比例. 当 x=1 时, y=4; 当 x=2 时, y=5. 求当 x=4 时 y 的值.

10. 已知正比例函数 y=ax ($a\neq 0$),反比例函数 $y=\frac{b}{x}$ ($b\neq 0$),在同一坐标系中,这两个函数图像没有公共点. 试探求 a 与 b 在符号上有什么关系.

1. 已知 y 与 x 成反比例, z 与 y 成正比例. 又当 x=8 时, $y=\frac{1}{2}$; 当 $y=\frac{1}{3}$ 时, z=-2. 试问 z 是 x 的函数吗? 当 x=16 时, z 的值是多少?

- 2. 如图,长方形 ABCD 中,点 P 在边 AD 上从点 A 向点 D 移动.
- (1) 图中哪些线段的长度始终保持不变,哪些线段发生了变化?

(2) 图中哪些三角形的面积始终保持不变,哪些发生了变化?

(3) 已知 AD=10cm, AB=4cm,设线段 AP 的长度为 x(cm),试分别写出线段 PD 的长度 y(cm)及 $\triangle PCD$ 的面积 S(cm²)关于 x 的函数解析式,并分别指出这两个函数的定义域.

3. 已知 A(-2,-1)和 B(m,3)是一个正比例函数图像上的两个点,求 m 的值.

4. 某人驾车从某地出发,前进了a 千米,休息了一段时间后又原路返回b 千米(b < a),再前进c 千米.那么此人离开某地的距离s(千米)与时间t(时)之间关系的示意图是()

探究与活动

5. 甲乙两同学约定游泳比赛的规则是:甲先游自由泳,到泳道中点后改蛙泳;乙先游蛙泳,到泳道中点后改自由泳.两人同时从泳道起点出发,最后两人同时游到泳道终点.又知甲游自由泳比乙游自由泳速度快,并且两人自由泳的速度都比蛙泳快.如果某人离开泳道的起点的距离 s 与所用时间 t

的依赖关系可用图像法表示,试利用你所学的知识,判断以下哪一幅图可以反映甲的游泳状况,哪一幅图可反映乙的游泳状况.

可以反映甲的游泳状况的图是:______;可以反映乙的游泳状况的图

是:

6. 某广场地面图案的一部分如图所示. 图案的中央是一块正六边形的地砖,周围用正三角形和正方形的地砖密铺,环绕正六边形的那些正三角形和正方形为第一层,环绕第一层的那些正三角形和正方形为第二层,这样从里到外共铺了 10 层,每一层的外边界构成一个多边形. (注:多边形是由一

些线段首尾顺次连接组成的封闭平面图形,各条线段是多边形的边;正六边形的各边长相等.)

已知中央的正六边形地砖的边长为 0.6×1 ,试写出每一层外边界所成多边形的周长 y 与层数 n 之间的函数解析式;并求第十层外边界所成多边形的周长.

第十九章 几何证明

习 题 19.1(1)

1.	阅读下面的证明过程,在括号内填写适当的理由,并在横线上说明其中的因果
关系.	
	the contract of the contract o

(1) 已	.知:如图,∠1 与∠2、∠1 与∠3	互为补角	i.	_
求	E证: <u>∠</u> 2= <u>∠</u> 3.			
证	[明:因为∠1 与∠2 互为补角(),	
	所以∠1+∠2=180°(),	1
	即 $\angle 2 = 180^{\circ} - \angle 1$.			<u> </u>
	(上面为第一段)			1
	同理∠3=180°-∠1.			
	(上面为第二段)		,	2
	所以∠2=∠3().		2)
	(上面为第三段)			
第一段	t中,因:			
	果:			
第二段	大中,因:			
	果:			
第三段	大中,因:			<u></u>
	果:			
(2) 已	L知:如图,AE平分∠BAC,DE	// AC.		
求	E证:DA=DE.			
ùI	E明:因为 AE 平分∠BAC(),	R
	所以∠1=∠ 2().		"
	因为 DE // AC().		D / E
	所以∠3=∠2(),	
	得 ∠1=∠3().		$A \stackrel{2}{\smile} C$
	所以 DA=DE().	· ·
其中,	因:			· ······
;	果:			
i	因:			
2	果:			
l	因:			
3	果:			
I	因:			
;	果:			

2. 请你举出一例,并仿照上题分析其中的因果关系.		
习 题 19.1(2)		
• , •		
1. 选择:		
(1) 下列语句,称为命题的是	()
(A) 把两个图形叠合.		
(B) 两条直线相交,有且只有一个交点.		
(C) 画直线 AB 的垂线 CD , 垂足为点 E .		
(D) 直线 MN 平行于直线 PQ 吗?		
(2) 下列命题中,真命题是	()
(A) 三角形的一个外角等于三角形的两个内角的和.		
(B) 三角形的一个外角大于三角形的每一个内角.		
(C) 两个全等三角形的周长相等.		
(D) 周长相等的两个三角形全等.		
2. 按题意作出图形,并写出已知、求证(不必证明).		

(2) 两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直.

(1) 等腰三角形两腰上的高相等.

- 3. 证明下列命题是假命题:
- (1) 三个内角对应相等的两个三角形全等.

(2) 如果两个角互为补角,那么这两个角中一个是锐角,另一个是钝角.

(3) 底边及一个内角相等的两个等腰三角形全等.

习 题 19.2(1)

1. 已知:如图, ∠1+ ∠2=180°. 求证: ∠3 与 ∠4 互补.

2. 已知:如图,AB//CD, $\angle A = \angle C$.求证:AD//BC.

3. 已知:如图,AB与CD相交于点O,且OA=OD,OB=OC. 求证: $AD/\!\!/CB$.

习 题 19.2(2)

1. 已知:如图,点 D、E 在 $\triangle ABC$ 的边 BC 上,AD=AE, $\angle BAD=\angle CAE$. 求证:AB=AC.

2. 已知:如图,AD与BC相交于点O,OC=OD,OA=OB. 求证: $\angle CAB=\angle DBA$.

3. 已知:如图, $\triangle ABC$ 中,AB=AC,BD,CE 分别是 AC,AB 边上的中线,BD,CE 相交于点 O.

求证:OB=OC.

习 题 19.2(3)

1. 已知:如图,点 O 在线段 AD 上,AO=AB,DO=DC,且 $OB\bot OC$. 求证: $AB/\!\!\!/ DC$.

2. 已知:如图,点 $E \setminus F$ 在线段 $BD \perp AD = BC \setminus DF = BE \wedge AF = CE$. 求证:AF / EC.

3. 已知:如图,AB//DC,AB=DC,O 是 DB 上一点,过点 O 的直线分别交 DA 和 BC 的延长线于点 E 、F.

求证: $\angle E = \angle F$.

习 题 19.2(4)

1. 已知:如图, $AB \perp BD$, $ED \perp BD$,C 是 BD 上的一点,BC = DE,AB = CD. 求证: $AC \perp CE$.

2. 已知:如图,D 是BC 上一点,P 是AD 上一点, $\angle ABP = \angle ACP$, $\angle BPD = \angle CPD$. 求证:(1) BD = CD. (2) $AD \perp BC$.

- 3. 已知:如图,分别以 Rt $\triangle ABC$ 的两条直角边 AB、BC 为边作等边 $\triangle ABE$ 和等边 $\triangle BCF$,分别联结 EF、EC.
 - (1) 找出图中的全等三角形(不添辅助线),并证明你的结论.

(2) BE 和 CF 有怎样的位置关系?

1. 已知:如图, $\triangle ABC$ 和 $\triangle ADE$ 都是等边三角形. 求证:EB=DC.

2. 已知:如图,AC 与 BD 相交于点O,OB=OC, $\angle ABC=\angle DCB$. 求证:AO=DO.

3. 已知: 如图, 在 $\triangle ABC$ 中, 边 BC 的垂直平分线分别与 AC、BC 交于点 D、E, AB=CD.

求证: $\angle A = 2 \angle C$.

习 题 19.2(6)

1. 已知:如图,在 $\triangle ABC$ 中,CD是 $\triangle ABC$ 的角平分线, $\angle A=2\angle B$. 求证:BC=AC+AD.

2. 已知:如图,在 $\triangle ABC$ 中,AB=AC,CD 是边 AB 上的高. 求证: $\angle BCD=\frac{1}{2}\angle A$.

3. 已知:如图,AD//BC,E 是线段CD 的中点,AE 平分 $\angle BAD$. 求证:BE 平分 $\angle ABC$.

1. 求证:等腰三角形两底角的平分线相等.

2. 求证:在两个锐角三角形中,如果有两角及其中一角的对边上的高对应相等,那么这两个三角形全等.

3. 求证:等腰三角形顶角的顶点到两底角平分线所在直线的距离相等.

习 题 19.3

- 1. 写出下列命题的逆命题:
- (1) 等腰三角形的底角相等.
- (2) 等边三角形是轴对称图形.
- (3) 正方形的四条边相等.
- (4) 如果两个角不相等,那么这两个角不是对顶角.
- 2. 试证明下列真命题的逆命题是假命题:
- (1) 如果两个角都是直角,那么这两个角相等.
- (2) 如果三角形中有一个角是钝角,那么另外两个角都是锐角.

习 题 19.4

1. 已知:如图,AC=AD,BC=BD,点 E 在 AB 上. 求证:EC=ED.

2. 已知:如图,M、N 是线段 AB 的垂直平分线 CD 上的两点. 求证: $\angle MAN = \angle MBN$.

3. 如图,已知等腰 $\triangle ABC$ 中,腰 AB=8cm,DE 是腰 AC 的垂直平分线,垂足为点 D, DE 与 AB 相交于点 E, $\triangle BCE$ 的周长为 14cm. 求 BC 的长.

- 4. 如图,已知在 $\triangle ABC$ 中, $\angle C=90^{\circ}$,AB的垂直平分线MN 交BC 于点D.
- (1) 如果 $\angle CAD = 20^{\circ}$,求 $\angle B$ 的度数.
- (2) 如果∠*CAB*=50°,求∠*CAD* 的度数.

(3) 如果 $\angle CAD: \angle DAB=1:2$,求 $\angle CAB$ 的度数.

习 题 19.5(1)

1. 已知:如图,在 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, AD 平分 $\angle BAC$, 点 D 在 BC 上, $DE \perp AB$, 垂足为点 E, $EF /\!\!/ BC$.

求证:EC平分∠FED.

2. 已知:如图,点 $B \ C$ 分别在射线 $OA \ OD \ L$, AB = CD, $\triangle PAB$ 的面积等于 $\triangle PCD$ 的面积.

求证:OP 平分 ZAOD.

3. 已知:如图, $BE \perp AC$, $CF \perp AB$,垂足分别是点 $E \setminus F$, $BE \setminus CF$ 交于点 D,且 BD = CD. 求证:AD 平分 $\angle BAC$.

习 题 19.5(2)

1. 如图,已知 AP、CP 分别平分 $\angle BAC$ 、 $\angle DCA$. 如果 $\triangle PAC$ 的高 PE=8cm,那么点 P 到 AB、CD 的距离分别等于多少?

2. 已知:如图,在 $\triangle ABC$ 中, $\angle B=90^{\circ}$,D是边 AB 的中点,点 $E \setminus F$ 分别在边 $BC \setminus AC$ 上,且 EF=EC,DF=DA.

求证:点 D 在 $\angle BEF$ 的平分线上.

3. 已知:如图,点 D 是 $\triangle ABC$ 的边 BC 延长线上的一点,BD=BC+AC. 求证:点 C 在 AD 的垂直平分线上.

习 题 19.6(1)

1. "以线段 AB 为底边的等腰三角形,它的两底角平分线交点的轨迹是线段 AB 的垂直平分线"这一说法正确吗?为什么?

2. 半径长为1厘米的圆在直线 l上滚动,动圆圆心的轨迹是什么?

(2) 设 $A \setminus B$ 是两个定点,动点 P 满足条件 PA - PB = AB,求点 P 的轨迹.

习 题 19.6(2)

1. 已知: $\angle \alpha$,线段 $a \ b$ (如图). 求作: $\triangle ABC$,使 $\angle C = \angle \alpha$,BC = a,AC = b.

2. 已知: $\angle O$ 及线段 a (如图). 求作: $\angle O$ 内部一点 P ,使点 P 到 $\angle O$ 两边的距离相等,且 OP=a.

____a

3. 已知: $A \setminus B \setminus C$ 三点及线段 a (如图). 求作: $A \cap P \in PA = PB \cap PC = a$.

4. 已知:线段 a,b,c(如图). 求作: $\triangle ABC$,使 BC=a,AC=b,AB=c.

习 题 19.7

1. 已知:如图, $CD \perp AB$, $BE \perp AC$,垂足分别为点 $D \setminus E$;又 $BE \setminus CD$ 相交于点 F,且 AF 平分 $\angle DFE$.

求证:AB=AC.

2. 已知:如图,点 $A \setminus B \setminus C \setminus D$ 在同一直线上, $BE \perp AD$, $CF \perp AD$, 垂足分别是 $B \setminus C$, AB = DC, AE = DF.

求证:AF = DE.

3. 已知:如图,AD、A'D'分别是 $\triangle ABC$ 和 $\triangle A'B'C'$ 的高,AB = A'B',AD = A'D', BC = B'C'.

求证:AC=A'C'.

4. 已知:如图,CD、C'D'分别是 $Rt \triangle ABC$ 、 $Rt \triangle A'B'C'$ 斜边上的高,且 CB = C'B', CD = C'D'.

求证: $\triangle ABC \cong \triangle A'B'C'$.

习 题 19.8(1)

1. 如图,已知 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp AB$,垂足为点 D,点 E 是边 AC 的中点,DE = 2cm, $\angle BCD = 20^{\circ}$,那么 $AC = _____$ cm, $\angle A = _____$ °.

2. 已知:如图,AD、BE 相交于点C,AB=AC,EC=ED,M、F、G 分别是AE 、BC、CD 的中点.

求证:(1) AE=2MF;(2) MF=MG.

3. 已知:如图,在 $\triangle ABC$ 中, $\angle B=\frac{1}{2}\angle A$, $CD\bot BC$,CE 是边 BD 上的中线. 求证: $AC=\frac{1}{2}BD$.

4. 已知:如图,在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 是边 AB 的中点, $DE /\!\!/ AC$,且 DE = AC,联结 AE.

求证: $AE = \frac{1}{2}AB$.

习 题 19.8(2)

1. 如图,已知△ABC中,∠ACB=90°, CH ⊥ AB,垂足为点 H,∠ACH=30°,且 AH=3cm,那么AC=_____cm,HB=____cm.

2. 已知:如图, $\angle BAC$ =30°,G为 $\angle BAC$ 平分线上一点, $EG/\!\!/AC$,EG交AB 于点E; $GD\bot\!\!/AC$,垂足为点D.

求证: $GD = \frac{1}{2}EG$.

3. 如图,已知 $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle A=30^{\circ}$,BD平分 $\angle CBA$,且交AC于点D, AC=1. 求AD的长.

4. 已知:如图,在 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$, BD 平分 $\angle ABC$, BD 交 AC 于点 D, $DE \bot AB$, 且 AD = 2CD.

求证:∠A=30°.

习 题 19.8(3)

- 1. 已知:如图,在等边 $\triangle ABC$ 中,点 D、E 分别在 AB、AC 上,且 BD=AE,CD 交 BE 于点 O, $DF \bot BE$,点 F 为垂足.
 - (1) 求证: $\angle ABE = \angle BCD$.

(2) 求证:OD=2OF.

2. 已知:如图,在四边形 ABCD中, $BD\perp DC$, $AC\perp AB$,E 为 BC 的中点, $\angle EDA$ =60°. 求证:AD=ED.

3. 已知:如图,在 $\triangle ABC$ 中, $\angle B=60^{\circ}$,AB=2BC. 求证: $\angle C=90^{\circ}$.

4. 已知:如图,在 $\triangle ABC$ 中, $\angle C=90^{\circ}$,点 D、P 分别在边 AC、AB 上,且 BD=AD, $PE\bot BD$, $PF\bot AD$,垂足分别为点 E、F.

(1) 当 $\angle A$ =30°时,求证:PE+PF=BC.

(2) 当 $\angle A \neq 30^{\circ}(\angle A < \angle ABC)$ 时,试问以上结论是否依然正确?如果正确,请加以证明;如果不正确,请说明理由.

习 题 19.9(1)

- 1. 填空:
- (1) 如果一个直角三角形两条较短边的长分别为 3、4,那么它的最长边的长为 _____.
 - (2) 在 Rt $\triangle ABC$ 中,已知 $\angle B=90^{\circ}$,a=6,b=10,那么 c=_____.
 - 2. 在 Rt $\triangle ABC$ 中, $\angle C$ =90°.
 - (1) 已知 a=8,c=17, 求 b.
 - (2) 已知 b=40, c=41, 求 a.

3. 下列各图中的三角形均为直角三角形,分别求出用字母 $A \setminus B$ 表示的正方形的面积 以及用字母 y 表示的线段的长度.

4. 已知等腰直角三角形的底边长为 4,求腰上的中线长.

习 题 19.9(2)

1. 如图,小方格都是边长为1的正方形,求四边形 ABCD 的面积与周长.

2. 如图,一根直立的电线杆在离地面 9 米处断裂(像装有铰链那样)倒向地面,电线杆顶落在距杆底部 12 米处. 电线杆在断裂之前高多少?

3. 假期中,王强和同学到某海岛上去旅游. 他们按照如图所示路线,在点 A 登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B. 登陆点A 到景点B 的直线距离是多少千米?

4. 如图, AB, CD表示两棵树, 树高分别为8米和2米, 两树相距8米. 一只小鸟从一棵 树的树梢飞到另一棵树的树梢,小鸟至少飞了多少米?

习 题 19.9(3)

1		埴	空	
ж,	•	~~	т.	÷

	(1)	已知三角形的三边长分别	川为	5	厘米、12	厘米、	13	厘米,	那么	、这~	产三	角	形
是		•											
_													

(2) 已知 $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle B=30^{\circ}$,AC=1,那么以 BC 为一边的正方形的面积为

(3)	已知三条线段长分别为 m,n,p	且满足 $m^2-n^2=p^2$,那么以这三条线段	为边组成的
三角形是				

2.	(1)	在①	6,8,10;②	5,12,13;3	8,15,17; 4 4	、5、6 这四组数中,	勾股数组有
----	-----	----	----------	-----------	--------------	-------------	-------

()

(2) 如果三角形的三边长分别为 a^2+b^2 、2ab、 a^2-b^2 (a、b 都是正整数,且 a>b),那么这 个三角形是 ()

(A) 直角三角形;

(B) 钝角三角形;

(C) 锐角三角形;

- (D) 不能确定类型的三角形.
- 3. 已知 $\triangle ABC$ 中,BC=41,AC=40,AB=9,试确定这个三角形的形状,并求出它的最 大内角的度数.

⁽A) 4组;

⁽B) 3组;

⁽C) 2组; (D) 1组.

习 题 19.9(4)

- 1. 在 $\triangle ABC$ 中, $\angle C=90^{\circ}$.
- (1) 已知 a=10,b=24,那么 c=_____.
- (2) 已知 $b: c=4:5, a=9, m \le b=$, c= .
- 2. 已知:AD 是锐角三角形 ABC 的高,AC=20,BC=24,AD=16. 求证: $\triangle ABC$ 是等腰三角形.

3. 如图,已知 $\triangle ABC$ 中, $\angle C=90^\circ$,D是边AC上任意一点,试判断 AB^2+CD^2 与 AC^2+BD^2 大小的关系,并证明你的结论.

4. 小明家准备在阳台上方修建一个雨篷(如图),篷宽 a=2 米,高 b=0.5米,长 d=8 米. 雨篷面需要用多少平方米的塑板材料?

习 题 19.10

- 1. 求直角坐标平面内两点的距离:
- (1) A(0,12)和 B(9,0).
- (2) D(-5,3) $\pi E(-3,-4)$.

- (3) $F(\sqrt{2}, -5)$ π $G(-3\sqrt{2}, 1)$. (4) $M(3\sqrt{3}, \sqrt{2})$ π $N(-\sqrt{3}, -2\sqrt{2})$.

- 2. 已知直角坐标平面内的三角形三个顶点的坐标,试判断这个三角形的形状.
- (1) A(-2,1), B(2,3), C(0,-1).
- (2) D(2,4), E(-1,-3), F(-3,2).
- (3) M(1,3), N(-2,2), P(0,-4).

3. 已知直角坐标平面内的点 A(-3,2)、B(1,4),在 x 轴上求一点 C,使得 $\triangle ABC$ 是等 腰三角形.

4. 在直角 高相等,对	7 ,已知点 <i>P</i>	的坐材	示为(<i>n</i>	n,m),	且点 <i>P</i>	到点 <i>A</i> ((-2,3)),B(-	1,-2)
	÷	复	习	题					

A 组

- 1. (1) 写出两个与全等三角形有关的真命题.
- (2) 写出两个与等腰三角形有关的真命题.

- 2. 判断下列命题是真命题还是假命题;如果是假命题,举一个反例加以证明.
- (1) 三角形的外角大于它的任何一个内角.
- (2) 有两角及一边对应相等的两个三角形全等.
- (3) 等腰三角形一边上的中线也是这边上的高.

3. 已知:如图, $\triangle ABC$ 中,AB=AC,AD 是 $\angle EAC$ 的平分线. 求证: $AD/\!\!/BC$.

4. 已知:如图,点 E 是线段 AB 的中点,AD 平分 $\angle BAC$,且 $DE/\!\!/AC$. 求证: $AD \bot BD$.

5. 已知:如图,AB=DC,AC=BD. 求证: $\angle B=\angle C$.

6. 已知:如图,AB//CD.求证: $\angle BED = \angle ABE + \angle EDC$. (提供三种添辅助线的方法,选择其中一种方法予以证明.)

7. 求证:全等三角形对应边上的中线相等.

	_		fals more						"	TT 14							alla Herri						**
	8.	如果	等腰	三角	形度	上	的高	等	十月	要长	: 的	-	卢 ,夫	那 么	这	个争	針腰	三月	有形	的	顺 :	角	寺
于_			度.																				
	9.	如果	等腰	三角	形態	是上	的高	等	于	底边	1的	<u></u>	半,	那么	、这	个	等 腰	三月	角形	的	底	角	等
于_			_度.																				
	10.	如果	と 等 腰	三角	形底	边_	上的	高氧	等于	F腰	长日	的 —	·半,	那。	么这	个	等胆	更三	角別	乡的	底	角:	等
于_			_度.																				
	11.	如果	! 等腰	三角	形原	:边_	上的	高年	等于	F底	边口	的 —	·半,	那?	么这	个	等凡	更三	角刑	多的	顶	角	等
于_			_度.																				
	12.	在同]一平	面内	,到三	角	形三 [·]	个顶	点	的跳	离	相等	幹的,	点							()
	(A)有-	一个;		(B)	有	两个	;		(C) 7	有三	个;		(D)	不存	字在.					
	13.	到点	$\tilde{\chi} A(2$	2,0)自	的距离	为	4 的	点的	勺轨	迹是	롿												

求作: $\angle AOB$ 内部一点 P,使点 P 到 $\angle AOB$ 的两边 OA 、OB 以及到直线 a 的距离均

A

14. 已知:∠AOB 和直线 a(如图).

相等.

15. 已知:如图,在 $\triangle ABC$ 中,D是边 AB上一点,且 AD = AC, DE // BC, CD 平分 $\angle EDF$.

求证:AF垂直平分CD.

16. 五根小木棒,其长度分别为 7、15、20、24、25,现将它们摆成两个直角三角形,其中正确的是

25 24 20 7 15

(B)

17. 如右图,把直角三角形 ABC 的斜边 AB 放在定直线 l 上,将点 A 按顺时针方向在 l 上转动两次,转到 $\triangle A''B''C''$ 的位置.

设 BC=1, $AC=\sqrt{3}$,则顶点 A 运动到点 A''的位置时,点 A 经过的路线长是 . (计算结果不取近似值)

18. 已知: $\triangle ABC$ 中, $\angle ACB$ =90°, $CD \bot AB$,垂足为点 D. 求证: $AB^2 = AD^2 + BD^2 + 2CD^2$.

19. 如图,已知 $\triangle ABC$ 中, $\angle C=90^{\circ}$,D是边 BC上一点,AB=17,AD=10,BD=9,求 AC的长.

20. 如图,在 Rt $\triangle ABC$ 中,已知 AB=AC, $\angle A=90^\circ$,D为 BC 上任一点, $DF\bot AB$ 于点 F, $DE\bot AC$ 于点 E,M为 BC 的中点. 试判断 $\triangle MEF$ 是什么形状的三角形,并证明你的结论.

B 组

1. 已知:如图,AB=AC,AD=CE,BD=AE, $\angle DBA=\angle ABC$. 求证: $AE/\!\!/BC$.

2. 已知:如图,在 $\triangle ABC$ 中,AB=AC, $\angle ABC$ 、 $\angle ACB$ 的平分线相交于点 O,联结 AO, 并延长与 BC 交于点 D.

求证:AD_BC.

3. 已知:如图,AD 是 $\triangle ABC$ 的角平分线,AB=AC+DC. 求证: $\angle C=2\angle B$.

4. 如图,已知直线 AB 与点 M、N,求作一点 P,使点 P 在直线 AB 上,且 $\angle MPA = \angle NPB$.

- 5. 已知:如图,点 D 在边 BC 上, $\angle 1 = \angle 2$,DA = DB, $AC = \frac{1}{2}AB$.
- (1) 求证:DC⊥AC.

6. 在 $\triangle ABC$ 中, $AD \bot BC$ 于点 D, $BE \bot AC$ 于点 E,F 是 AB 的中点, $FG \bot DE$ 于点 G. 求证: $\angle DFG = \angle EFG$.

7. 小明的叔叔家承包了一个长方形鱼池,这个长方形鱼池的面积为 48 平方米,其对角线长为 10 米. 为建栅栏,要计算这个长方形鱼池的周长,你能帮助小明算一算吗?

8. 已知直角坐标平面内两点 A(-5,2)、B(-1,7),在坐标轴上求点 P,使 PA=PB.

9. 已知 $\triangle ABC$ 中, $\angle A=90^{\circ}$,AD是BC上的高,AB=4, $AD=\frac{12}{5}$,求AC、BC的长.

- 10. 在 $\triangle ABC$ 中,AB=AC,边 BC的中点为 D.
- (1) 画图: 作一个等边三角形 DEF, 使顶点 $E \setminus F$ 分别在边 AB 和 AC 上.
- (2) 你所作的等边三角形 DEF 的边 EF 与 BC 平行吗? 理由是什么?
- (3) 是否有可能作一个等边三角形 DEF,使它的边 EF 与 BC 不平行? 如有可能,指出这时 $\angle A$ 的度数;如不可能,请说明理由.

说明

本册教材根据上海市中小学(幼儿园)课程改革委员会制定的课程方案和《上海市中小学数学课程标准(试行稿)》编写,供九年义务教育八年级第一学期试用.

本教材由上海师范大学主持编写,经上海市中小学教材审查委员会审查准 予试用.

本册教材的编写人员有:

主编: 邱万作 分册主编: 史荣铨

特约撰稿人:(按姓氏笔画为序)叶锦义 沈 洁 陆海兵

章健蔡则彪瞿军

2019 年教材修订组成员:叶锦义 邵世开 沈 洁 陆海兵 徐晓燕 顾跃平

欢迎广大师生来电来函指出教材的差错和不足,提出宝贵意见. 出版社电话:021-64319241.

本册教材图片提供信息:

图虫网(封面一幅图); 查图网(P44 一幅图) 插图绘制: 王捷、黄国荣、顾云明、刘铁彬等

声明 按照《中华人民共和国著作权法》第二十五条有关规定,我们已尽量寻找著作权人支付报酬. 著作权人如有关于支付报酬事宜可及时与出版社联系.

责任编辑 周明旭 张莹莹

> 九年义务教育课本 **数学练习部分**

八年级第一学期 (试用本)

上海市中小学(幼儿园)课程改革委员会

上海世纪出版股份有限公司出版 上海教育出版社出版 (上海永福路123号 邮政编码:200031)

上海 私 考 多 を 发行 启东市人民印刷有限公司印刷

开本 890×1240 1/16 印张 5.5 2019年7月第1版 2021年6月第3次印刷 ISBN 978-7-5444-9329-1/G·7690

定价:4.40元

全国物价举报电话:12315

此书如有印、装质量问题,请向本社调换 上海教育出版社电话:021-64377165

