Extending Pascal's Triangle

Aresh Pourkavoos

June 13, 2022

Pascal's triangle contains binomial coefficients:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}, n \in \mathbb{N}, k \in \mathbb{N}, k \le n$$

Satisfies Pascal's identity for all arguments in range:

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

How to extend to all integers, i.e. fill the grid with numbers?

Entries where $n \geq 0$ are unambiguous: all numbers outside of triangle are 0

Factorials of negative integers are undefined, so the usual binomial formula cannot be used

n=-1: can choose a single number freely, after which the rest of the row is forced

Same goes for all remaining negative rows

Negative rows are thus uniquely determined by $\binom{n}{0}$ for all n < 0

Setting $\binom{n}{0} = 1$ creates "rotated" Pascal's triangle with sign changes: Taylor polynomials of $(1+x)^n$ Rows n = 0 through n = -9, inclusive:

Setting $\binom{n}{0} = \frac{1}{n+1}$ gives the beta function for $k \in [n,0]$: symmetric along same axis as Pascal's triangle However, values outside the range of the beta function are also given

<u>0</u>		0		0		0		0		0		1		0		0		0		0		0	
<u>0</u>	-1		1		-1		1		-1		1		1		-1		1		-1		1		-1
$\frac{\frac{2}{6}}{3!}$		14		-11		8		-5		2		1		2		-5		8		-11		14	
<u>0</u>	158		-102		58		-26		6		2		2		6		-26		58		-102		158
51		-954		444		-154		24		6		4		6		24		-154	Ŀ	444		-954	
6!	-9432		3708	-	-1044	1	120		24		12		12		24		120		-1044	1	3708		-9432
% 7!		33984		-8028	;	720		120		48		36	4	18		120		720		-8028	8	33984	
81	341136		-69264	:	5040		720		240	1	44	1	44		240		720		5040)	-69264		341136
91		-663690	6 4	40320) ,	5040		1440) ′	720	5	76	7	20) [1440) .	5040) .	4032	0 -	663690	3
$\frac{\circ}{10!}$	6999840)	362880) 4	40320) 1	.0080) 4	4320)]	144	1	.44	4	1320)]	10080) 4	40320)	362880) .	-6999840