2 0 6 0 2 8 9 3 ALDEN LUTHE

MD-F

10 a K+

(b) W5

(d) Q4

② G = (V,E) benventeks n M*→ matching maksimum benuturan p M→ matching maksimal benukuran 2 < p</p>

→ Ukuran maksimum M* adalah ½ karena setiap pasang
 Venteks honya bisa beninsiden dengan paling banyak l edge ∈ M*
 → akan ada venteks yang tidak beninsiden dengan edge ∈ M
 → venteks yang tidak beninsiden dengan edge ∈ M tidak boleh
 bentetanggaan, contoh:

M* = { (a,b), (c,d), (e,f) }

-> tidak ada verteks yang tidak beninsiden

M = {(f,b), (e,c)}

reteks yang tidak bemnsiden = a dan d M' = {(f,c)} tidak maksimal kanens verteks yang tidak beninsiden ada yang bentetangaan

$$M^* = \{(a,b), (c,d), (e,f), (g,h)\}$$

 $M = \{(a,c), (g,e)\}$

- -> Perhatikan bahwa M adalah matthing maksimum dani semua verteks yang bahin siden
- \rightarrow karena jumlah pating sedikit ventekr yang berinsiden adalah $\frac{n}{2}$, maka ukuran M yang Paling sedikit dari graf berventeks n adalah $\frac{n}{4}$
- :. Until M* benuturan matsimum 2t + graf benuentets 4t uturan tentecil IMI 9M*1 adalah []

Juli

20602893

ALDEN LUTHER

(5)		ь			e	+	
۹	10	0	i	0	0	١	-
Ь	0	0	0	1	١	0	-
c	. 0	0	١	0	0	0	
d	1		í		0	í	-
0	0	0	١)	O	3	-
f	0	١	0	0	0	1	-

					a	6		
(b)	EDGE	DEG-	DEG+		k	(
_	a	1	2		c	1		
	ь	2	3		d			
	e	ч	. (9	1		
	d	2	3		t			
			2					

	ч			64		т	
а	00 0	0	1	1	0	١	and the same
h	0	2	0	ì	١	1	-
c	1	0	2	١)	0	,
d	1	1	9	0	ı	ŧ	-
6	0	i	ì	1	0	i	-
t	1	1	O	ì	1	2	-

a Adjacency Matrix

(d) incidence Matrix

	el	e 2	es	و٤	es	eG	€7	28	69	elD	eli	elz	e13	ely
a	[i	}	0	0	0	0	0	í	0	0	0	0	0	o
Ь	0 - 0	0	2	1	1	0	0	0	0	0	0	0	1	0
c	1	0	0	0	0	2	1	0	0	Ì	0	0	0	6
d	0	0	0	ì	0	0	ì	ì	١	0	١	0	0	0
e	0	0	0	0	1	0	0	0	0	1	1	í	0	0
t	0	ì	Ó	0	0	O	0	0	ŧ	0	O	í	i	2

2200028932 FILDEN LUTHEI

MD-F

(iii) graf super menarik tensebut adalah Cycle graph (iii)

(5) @ Jalun 1:

FKG > FISIP > Vokasi > FPSi + FK + FISIP + FIK + FPSi + FK + FIK > Vokasi -> FKG > FK -> FPSi -> FKG

Jalun 2:

FPsi → FISIP → FKG→ Vokasi → FH → FISIP → FMIPA → Vokasi → FH → FMIPA
→ FKG → FPsi → FH → Vokasi → FPsi

- (b) ya, Jalun 1 ↔ Jalun 2:
 - FKG & FPSi
 - FISIP & FISIP
 - Vokasi & FKG
 - FPsi +> Vokasi
 - FK CF FH
 - FIK + FMIPA
- © Jawaban @ merupakan sinkuit sekaligus lintasan Evlen sinkuit sekaligus lintasan Hamilton Jalun 1:

FRQ -> FISIP -> Vokasi -> FIK -> FK -> FPSi -> FKG

2 2 0 6 6 2 8 9 3 2 ALDEN LUTHFI

- (a) Tian Penlu membawa seturang-turangiya 3 wanna bendera berbeda
- @@() G=kn → K(G)=n-1
 - → G=Kn dengon venteks n, setiap venteks bentetangoan dengan n=1 venteks lainya
 - → menghapus I verteks dani G=kn atan menghasiltan
 - → Satu-Satury a complete graph yang tidak tenhubung adalah E,
 - i kita penlu menghapus n-1 venteks agan ka menjadi tidak tenhubung
 - (ii) $K(\alpha) = n-1 \rightarrow \alpha = k_n$ (Phoof by Contradiction) asums and $\alpha \neq k_n$ dan $K(\alpha^*) = n-1$
 - -> setrap venteks pada to bentetanggaan dengan n-1 venteks lainnya
 - → agan G* ≠kn, penlu ada setidaknya 1 venteksvyang bentetanggaan dongan m < n-1 venteks lainnya
 - → agar a* menjadi tidak terhubung, kita nanya perlu menghapus m < n-1 verteks yang bertetanggan dengan verteks V, maka KCa*) = m ≠ n-1
 - :. tidak mungkin $G^* \neq k_n$ dan K(G) = n-1mata $G^* \neq k_n$ Λ $K(G^*) = n-1$ $\equiv F$ $G^* = k_n$ V $K(G^*) \neq n-1$ $\equiv T$ $K(G^*) = n-1 \rightarrow G^* = k_n \equiv T$

2 2 0 6 0 2 8 9 3 2 ALDEN LUTHFI MD-F 190

- (b) → Untuk undirected graph, K(G) ≤ X(C) ≤ min (deg(v))

 → pada no. (a) sudah tenbukti bahwa G=kh ↔ K(C)=n-1

 → min deg(v) dari kh = n-1

 → untuk G=kh
 - $K(a) \leq \chi(a) \leq \min_{v \in V} \deg(v)$ $n-1 \leq \chi(a) \leq n-1$ $\chi(a) \text{ hamoslah } n-1$

7 a den 6

- (i) () <1,2,3,5,4,3,1>: Lintasan sekaligus sinkuit eulen (i) <1,3,5,4,3,2,1>: Lintasan sekaligus sinkuit eulen (ii) <1,2,3,4,5,3,1>: tintasan sekaligus sinkuit eulen
- (ii) tidak punya lintasan evlen apalagi sintuit evlen karena ada 2 verteks lebih yang bendengat ganjil
- (iii) tidak punya senkuit eulen kanena ada venteks bendengiat ganyal, tintasan eulennya:
 - (1,2,3,4,5,3,6)
 - 2 <1,2,3,5,4,3,6>
 - 3 <6,3,4,5,3,2,1>

(c) dan (d)

- 1) tidak mempunyai tintasan apalagi sirkuit tlamilton karena semua sinkuit aan lintasan yang melewati semua verteks harus melewati verteks (3) setiaaknya 2 kuli
- (ii) Lintasan sekoligus sinkuit Hamilton
 - 0< A, B, C, D, E, F, A>
 - @< A, D, E, F, C, B, A>
 - 3 < A, B, E, F, C, D, A>
- (ii) tidak punya lintasan apalagi sinkuit hamilton karena semua sinkuit dan lintasan yang melewati semua verteks hans melewati verteks 3 lebih dani 1 kali

2 2 0 6 0 2 8 9 3 2 ALDEN LUPHTI MD-F

Sebuah graf benanah disebut terhubung kuat jika setiap
pasangan venteks (u,v) ada lintasan U→V dan V→U

- anat a tidak strongly connected karena verteks 6 dan d tidak meniliki lintesan d→6

Gintasan temperally (696 km): BEKASI > BOYOR > CIKINI > DEPOK -> DURI

Pevisi no 7.

- 1) memiliki untasan tlamitton

- ① <1,2,3,5,4> ② <1,2,3,4,5> ② <4,5,3,1,2>