Resolución Ejercicios Practicas 6 y 7

Práctica 6

Ejercicio 12:

Sea T un árbol.

- a) Pruebe que toda arista $e \in E(T)$ es una arista de corte.
- b) Pruebe que todo vértice $v \in V(T)$ con $gr(v) \le 2$ es un vértice de corte.
- c) ¿Es cierto el ítem anterior si gr(v) = 1?

Resolución:

- a) Sea e una arista del árbol T. Supongamos que e no es una arista de corte, entonces e forma parte de un ciclo C en T (ejercicio 7 ítem a de la práctica 4). Absurdo pues T es acíclico.
 - Luego, como la arista $e \in E(T)$ es arbitraria, concluimos que toda arista $e \in E(T)$ es de corte.
- b) Sea $v \in V(G)$ con $gr(v) \le 2$. Supongamos que G v es conexo. Como $gr(v) \le 2$, sean $u, w \in V(G)$, $u \ne w$ vecinos de v. Como G v es conexo, existe un u, w-camino simple en G v que llamaremos P.
 - Luego, el camino P junto con las aristas uv,vw de T forman un ciclo en T. Llegamos a una contradicción pues T es acíclico, por ser T un árbol.
 - La contradicción surge de suponer que G-v es conexo. Por lo que G-v es no conexo y en consecuencia v es vértice de corte.
- c) No.
 - Sea $v \in V(T)$ con gr(v) = 1. Entonces v es una hoja del árbol T. Luego, como ya hemos visto en clase (teoría), T v es un árbol, por lo que T v es conexo, y así v no es un vértice de corte.

Ejercicio 14:

iEn qué condiciones una arista en un grafo conexo G está contenida en todo árbol recubridor de G?

Resolución:

Vamos a ver que una condición suficiente y necesaria para que una arista en un grafo conexo G esté contenida en todo árbol recubridor de G, es que la arista no pertenezca a ningún ciclo, o equivalentemente, que la arista sea una arista de corte. Es decir, si G es conexo, una arista e está contenida en todo árbol recubridor de G si y sólo si e es de corte de G.

- \Leftarrow) Sea e una arista de corte del grafo conexo G. Luego, tenemos que $G \setminus e$ es disconexo.
 - Supongamos que existe un árbol recubridor T de G que no contiene a la arista e. Observemos que $V(T) = V(G) = V(G \setminus e$. Luego, todas las aristas de T están en $G \setminus e$, y T es un árbol recubridor de $G \setminus e$. En consecuencia, $G \setminus e$ es conexo, pues entre cada par de vértices de $G \setminus e$, existe un camino simple en T que los une, y este es también un camino simple en $G \setminus e$ que los une. Llegamos a una contradicción $(G \setminus e)$ es conexo), que surge de suponer que existe un árbol recubridor que no contiene a la arista e.
 - Luego, concluimos que la arista e está contenida en todo árbol recubridor de G.
- \Rightarrow) Sea e una arista en un grafo conexo G que está contenida en todo árbol recubridor de G.
 - Supongamos que $G \setminus e$ es conexo. Entonces $G \setminus e$ tiene un árbol recubridor T, por ejercicio 13 de la practica 6. Como $V(T) = V(G \setminus e) = V(G)$, resulta T un árbol recubridor de G, que no contiene a la arista e. Llegamos a una contradicción, que surge de suponer que $G \setminus e$ es conexo.
 - Por lo tanto, G-e no es conexo, y así e es una arista de corte de G, que es lo que queríamos probar.

Práctica 7

Ejercicio 7:

Determine si cada una de las siguiente afirmaciones es verdadera o falsa, justificando adecuadamente.

- a) Si todos los pesos en un grafo conexo G son diferentes, entonces G admite un único árbol de expansión mínimo.
- b) Si todos los pesos en un grafo conexo G son diferentes, entonces los árboles de expansión de G distintos tienen pesos distintos.

Resolución:

a) Verdadero.

Sea G un grafo conexo ponderado tal que todos los pesos de sus aristas son diferentes. Para cada arista $e \in E(G)$, denotemos por w(e) al peso de la arista e, y sea w(G) la suma de los pesos de las aristas de G.

Como G es conexo, admite un árbol T de expansión mínimo (por ejemplo, el que se obtiene por el algoritmo de Kruskal). Supongamos que G admite dos árboles de expansión mínimos distintos T_1 y T_2 . Por el ejercicio 15 ítem b de la práctica 6, existe una arista e_1 que está en T_1 pero no en T_2 y existe una arista e_2 en T_2 que no está en T_1 tales que $(T_1 - \{e_1\}) \cup \{e_2\}$ y $(T_2 - \{e_2\}) \cup \{e_1\}$ son árboles recubridores de G.

Como e_1 y e_2 son aristas distintas, y todos los pesos en G son diferentes, $w(e_1) \neq w(e_2)$. Supongamos sin pérdida de generalidad que $w(e_1) < w(e_2)$. Tenemos lo siguiente,

$$w((T_2 - \{e_2\}) \cup \{e_1\}) = \sum_{e \in E((T_2 - \{e_2\}) \cup \{e_1\})} w(e) = \left(\sum_{e \in E(T_2)} w(e)\right) + \underbrace{w(e_1) - w(e_2)}_{<0} < \sum_{e \in E(T_2)} w(e) = w(T_2)$$

Así obtenemos que $w((T_2 - \{e_2\}) \cup \{e_1\}) < w(T_2)$. Es decir, $(T_2 - \{e_2\}) \cup \{e_1\}$ es un árbol recubridor de menor costo que T_2 . Absurdo pues T_2 es un árbol de expansión mínimo, lo que implica $w(T_2) \le w((T_2 - \{e_2\}) \cup \{e_1\})$. Luego, el grafo G tiene un único árbol de expansión mínimo.

b) Falso.

Para esto veamos un contraejemplo. Sea G el siguiente grafo ponderado, donde todos los pesos son diferentes.

Consideremos los siguientes árboles de expansión distintos T_1 y T_2 .

El peso del árbol T_1 es 1+3+4=8, y el peso del árbol T_2 es 1+2+5=8. Así, T_1 y T_2 son dos árboles de expansión de G distintos que tienen el mismo peso.