Guaranteed Non-Convex Optimization in Machine Learning

Anima Anandkumar

U.C. Irvine

Learning with Big Data

SEE, THEY ASKED HOW MUCH MONEY I SPEND ON GWM EACH WEEK, SO I I PUT '43', AND WHEN THEY ASKED WHAT MY ENVORITE FLAVOR IS, I NROTE 'FLAVOR IS, I WROTE 'FLAVOR UNRY!'

• Missing observations, gross corruptions, outliers.

- Missing observations, gross corruptions, outliers.
- High dimensional regime: as data grows, more variables !

- Missing observations, gross corruptions, outliers.
- High dimensional regime: as data grows, more variables!

Data deluge also a data desert!

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

• Learning with big data: computationally challenging!

Principled approaches for finding low dimensional structures?

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

Basic Approach: mixtures/clusters

• Hidden variable is categorical.

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

Basic Approach: mixtures/clusters

• Hidden variable is categorical.

Advanced: Probabilistic models

- Hidden variables have more general distributions.
- Can model mixed membership/hierarchical groups.

Latent Variable Models (LVMs)

Document modeling

Observed: words.

Hidden: topics.

Social Network Modeling

Observed: social interactions.

Hidden: communities, relationships.

Recommendation Systems

• Observed: recommendations (e.g., reviews).

Hidden: User and business attributes

Unsupervised Learning: Learn LVM without labeled examples.

LVM for Feature Engineering

 Learn good features/representations for classification tasks, e.g., computer vision and NLP.

Sparse Coding/Dictionary Learning

- Sparse representations, low dimensional hidden structures.
- A few dictionary elements make complicated shapes.

Challenges in Learning LVMs

Computational Challenges

- Maximum likelihood is NP-hard in most scenarios: non-convex optimization.
- Practice: Local search approaches such as gradient descent, EM,
 Variational Bayes have no consistency guarantees.

Sample Complexity

 Sample complexity is exponential (w.r.t hidden variable dimension) for many learning methods.

Guaranteed and efficient learning through non-convex methods?

Outline

- Introduction
- 2 Spectral Methods
- Robust PCA
- 4 Dictionary Learning
- Conclusion

Classical Spectral Methods: Matrix PCA and CCA

Single-view Setting: PCA

For centered samples $\{x_i\}$, find projection P with $\operatorname{Rank}(P) = \mathbf{k}$ s.t.

$$\min_{P} \frac{1}{n} \sum_{i \in [n]} ||x_i - Px_i||^2.$$

Result: Eigen-decomposition of S = Cov(X).

Multiview Setting: CCA

For centered samples $\{x_i, y_i\}$, find

$\max_{a,b}$	$a^{\top}\hat{\mathbb{E}}[xy^{\top}]b$
	$\frac{1}{\sqrt{a^{\top}\hat{\mathbb{E}}[xx^{\top}]a\ b^{\top}\hat{\mathbb{E}}[yy^{\top}]b}}.$

Result: Generalized eigen decomposition.

Beyond SVD: Spectral Methods on Tensors

- How to learn the mixture models without separation constraints?
 - ▶ PCA uses covariance matrix of data. Are higher order moments helpful?
- Unified framework?
 - Moment-based estimation of probabilistic latent variable models?
- SVD gives spectral decomposition of matrices.
 - ▶ What are the analogues for tensors?

Moment Matrices and Tensors

Multivariate Moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1}x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$

Spectral Decomposition of Tensors

Spectral Decomposition of Tensors

• $u \otimes v \otimes w$ is a rank-1 tensor since its $(i_1, i_2, i_3)^{\text{th}}$ entry is $u_{i_1}v_{i_2}w_{i_3}$.

How to solve this non-convex problem?

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

ullet Suppose A has orthogonal columns.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- ullet Suppose A has orthogonal columns.
- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1$.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- ullet Suppose A has orthogonal columns.
- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- ullet Suppose A has orthogonal columns.
- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

Two Problems

- How to find eigenvectors of a tensor?
- A is not orthogonal in general.

Orthogonal Tensor Power Method Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I,v)}{\|M(I,v)\|}$.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|}$.

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|}$.

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

How do we avoid spurious solutions (not part of decomposition)?

• {v_i}'s are the only robust fixed points.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|}$.

$$\mbox{Algorithm:} \quad \mbox{tensor power method:} \boxed{v \mapsto \frac{T(I,v,v)}{\|T(I,v,v)\|}}.$$

How do we avoid spurious solutions (not part of decomposition)?

- $\{v_i\}$'s are the only robust fixed points.
- All other eigenvectors are saddle points.

Orthogonal Tensor Power Method Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|}$.

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

How do we avoid spurious solutions (not part of decomposition)?

- $\{v_i\}$'s are the only robust fixed points.
- All other eigenvectors are saddle points.

Whitening: Conversion to Orthogonal Tensor

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

- Find whitening matrix W s.t. $W^{\top}A = V$ is an orthogonal matrix.
- When $A \in \mathbb{R}^{d \times k}$ has full column rank, it is an invertible transformation.

- Use pairwise moments M_2 to find W.
- SVD of M_2 is needed.

Putting it together

Non-orthogonal tensor $M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i$, $M_2 = \sum_i w_i a_i \otimes a_i$.

• Whitening matrix *W*:

• Multilinear transform: $T = M_3(W, W, W)$

Putting it together

Non-orthogonal tensor $M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i$, $M_2 = \sum_i w_i a_i \otimes a_i$.

• Whitening matrix *W*:

• Multilinear transform: $T = M_3(W, W, W)$

Tensor Decomposition: Guaranteed Non-Convex Optimization!

Putting it together

Non-orthogonal tensor $M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i$, $M_2 = \sum_i w_i a_i \otimes a_i$.

Whitening matrix W:

• Multilinear transform: $T = M_3(W, W, W)$

For what latent variable models can we obtain M_2 and M_3 forms?

Tensor Decomposition: Guaranteed Non-Convex Optimization!

Tractable Learning for LVMs

Multiview and Topic Models

k = # components, $\ell = \#$ views (e.g., audio, video, text).

Outline

- Introduction
- 2 Spectral Methods
- Robust PCA
- 4 Dictionary Learning
- Conclusion

PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.

PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.

PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.

Not robust to even a few outliers

Robust PCA Problem

- Find low rank structure after removing sparse corruptions.
- Decompose input matrix as low rank + sparse matrices.

- $M \in \mathbb{R}^{n \times n}$, L^* is low rank and S^* is sparse.
- Applications in computer vision, topic and community modeling.

Convex Relaxation Techniques

(Hard) Optimization Problem, given $M \in \mathbb{R}^{n \times n}$

$$\min_{L,S} \operatorname{Rank}(L) + \gamma ||S||_0, \quad M = L + S.$$

• Rank $(L) = \{ \#\sigma_i(L) : \sigma_i(L) \neq 0 \}$, $\|S\|_0 = \{ \#S(i,j) : S(i,j) \neq 0 \}$ are not tractable.

Convex Relaxation Techniques

(Hard) Optimization Problem, given $M \in \mathbb{R}^{n \times n}$

$$\min_{L,S} \operatorname{Rank}(L) + \gamma ||S||_0, \quad M = L + S.$$

• Rank $(L) = \{ \#\sigma_i(L) : \sigma_i(L) \neq 0 \}$, $\|S\|_0 = \{ \#S(i,j) : S(i,j) \neq 0 \}$ are not tractable.

Convex Relaxation

$$\min_{L,S} \| \underline{L} \|_* + \gamma \| \underline{S} \|_1, \quad M = L + S.$$

- $||L||_* = \sum_i \sigma_i(L)$, $||S||_1 = \sum_{i,j} |S(i,j)|$ are convex sets.
- Chandrasekharan et. al, Candes et. al '11: seminal works.

Other Alternatives for Robust PCA?

$$\min_{L,S} \|L\|_* + \gamma \|S\|_1, \quad M = L + S.$$

Shortcomings of convex methods

Other Alternatives for Robust PCA?

$$\min_{L,S} \| L \|_* + \gamma \| S \|_1, \quad M = L + S.$$

Shortcomings of convex methods

- Computational cost: $O(n^3/\epsilon)$ to achieve error of ϵ
 - ▶ Requires SVD of $n \times n$ matrix.
- Analysis: requires dual witness style arguments.
- Conditions for success usually opaque.

Other Alternatives for Robust PCA?

$$\min_{L,S} \|L\|_* + \gamma \|S\|_1, \quad M = L + S.$$

Shortcomings of convex methods

- Computational cost: $O(n^3/\epsilon)$ to achieve error of ϵ
 - ▶ Requires SVD of $n \times n$ matrix.
- Analysis: requires dual witness style arguments.
- Conditions for success usually opaque.

Non-convex alternatives?

Proposal for Non-convex Robust PCA

$$\min_{L,S} ||S||_0, \quad s.t. \ M = L + S, \quad \text{Rank}(L) = r$$

Proposal for Non-convex Robust PCA

$$\min_{L,S} ||S||_0, \quad s.t. \ M = L + S, \quad \text{Rank}(L) = r$$

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_r(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_r(\cdot)$: rank-r projection. $H_{\zeta}(\cdot)$: thresholding with ζ .
- Computationally efficient: each operation is just a rank-r SVD or thresholding.

Proposal for Non-convex Robust PCA

$$\min_{L,S} ||S||_0, \quad s.t. \ M = L + S, \quad \text{Rank}(L) = r$$

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_r(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_r(\cdot)$: rank-r projection. $H_{\zeta}(\cdot)$: thresholding with ζ .
- Computationally efficient: each operation is just a rank-r SVD or thresholding.

Any hope for proving guarantees?

Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- \bullet $L \leftarrow P_r(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze

Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- \bullet $L \leftarrow P_r(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze

Our results for (a variant of) AltProj

- Guaranteed recovery of low rank L^* and sparse part S^* .
- Match the bounds for convex methods (deterministic sparsity).
- Reduced computation: only require low rank SVDs!

Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize L,S=0 and iterate:
- \bullet $L \leftarrow P_r(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze

Our results for (a variant of) AltProj

- ullet Guaranteed recovery of low rank L^* and sparse part S^* .
- Match the bounds for convex methods (deterministic sparsity).
- Reduced computation: only require low rank SVDs!

Best of both worlds: reduced computation with guarantees!

Outline

- Introduction
- 2 Spectral Methods
- Robust PCA
- 4 Dictionary Learning
- Conclusion

Dictionary Learning or Sparse Coding

• Each sample is a sparse combination of dictionary atoms.

Learning Overcomplete Dictionaries

- No. of dictionary elements k > observed dimensionality n.
- $A = [a_1, \ldots, a_k]$: dictionary elements
- $y \in \mathbb{R}^n$: Observation. $Y = [y_1, \dots, y_m] \in \mathbb{R}^{n \times m}$: Observation matrix.
- Linear model: Y = AX.
- Learning problem: Given Y, find A and X.

Ill-posed without further constraints

Learning Overcomplete Dictionaries

- No. of dictionary elements k > observed dimensionality n.
- $A = [a_1, \ldots, a_k]$: dictionary elements
- $y \in \mathbb{R}^n$: Observation. $Y = [y_1, \dots, y_m] \in \mathbb{R}^{n \times m}$: Observation matrix.
- Linear model: Y = AX.
- Learning problem: Given Y, find A and X.

Ill-posed without further constraints

Main Assumptions

X is sparse: each column is randomly s-sparse
 Each sample is a combination of s dictionary atoms.

Learning Overcomplete Dictionaries

- No. of dictionary elements k > observed dimensionality n.
- $A = [a_1, \ldots, a_k]$: dictionary elements
- $y \in \mathbb{R}^n$: Observation. $Y = [y_1, \dots, y_m] \in \mathbb{R}^{n \times m}$: Observation matrix.
- Linear model: Y = AX.
- Learning problem: Given Y, find A and X.

Ill-posed without further constraints

Main Assumptions

- X is sparse: each column is randomly s-sparse
 Each sample is a combination of s dictionary atoms.
- A is incoherent: $\max_{i \neq j} |\langle a_i, a_j \rangle| \approx 0$.

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $y_i = \sum_j x_{i,j} a_j$.
- Consider y_i and y_j s.t. they have no common dictionary atoms.
- What about $|\langle y_i, y_i \rangle|$?

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $y_i = \sum_j x_{i,j} a_j$.
- Consider y_i and y_j s.t. they have no common dictionary atoms.
- What about $|\langle y_i, y_i \rangle|$?
- Under incoherence: $|\langle y_i, y_i \rangle| \approx 0$.

Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms: $y_i = \sum_j x_{i,j} a_j$.
- Consider y_i and y_j s.t. they have no common dictionary atoms.
- What about $|\langle y_i, y_i \rangle|$?
- Under incoherence: $|\langle y_i, y_j \rangle| \approx 0$.

Construction of Correlation Graph

- Nodes: Samples y_1, \ldots, y_n .
- Edges: $|\langle y_i, y_i \rangle| > \tau$ for some threshold τ .

How does the correlation graph help in dictionary learning?

Main Insight

• (y_i, y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.

Main Insight

• (y_i,y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.

- (y_i, y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.

- (y_i, y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently?

- (y_i, y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.

- (y_i, y_j) : edge in correlation graph $\Rightarrow y_i$ and y_j have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.

Result on Approximate Dictionary Estimation

Procedure

- Start with a random edge (y_{i^*}, y_{j^*}) .
- ullet $\hat{S}=$ common nbd. of y_{i^*} and y_{j^*} . If \hat{S} is close to a clique, accept.
- Estimate a dictionary element via top singular vector of $\sum_{i \in \hat{S}} y_i y_i^{\top}$.

Theorem

The dictionary A can be estimated with bounded error w.h.p. when $s=o(k^{1/3})$ and number of samples $m=\omega(k)$.

 \bullet Exact estimation when X is discrete, e.g. Bernoulli.

A. Agarwal, A., P. Netrapalli. "Exact Recovery of Sparsely Used Overcomplete Dictionaries," Preprint, Sept. 2013.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *X*?

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *X*?

Alternating Minimization

- Given Y = AX, initialize an estimate for A.
- Update X via ℓ_1 optimization.
- Re-estimate *A* via Least Squares.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *X*?

Alternating Minimization

- Given Y = AX, initialize an estimate for A.
- Update X via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *X*?

Alternating Minimization

- Given Y = AX, initialize an estimate for A.
- Update X via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

Specific Initialization: Through our previous method.

• So far.. approximate dictionary estimation. What about exact estimation for arbitrary *X*?

Alternating Minimization

- Given Y = AX, initialize an estimate for A.
- Update X via ℓ_1 optimization.
- Re-estimate A via Least Squares.
- In general, alternating minimization converges to a local optimum.

Specific Initialization: Through our previous method.

Theorem

The above method converges to the true solution (A,X) at a linear rate w.h.p. when $s < \min(k^{1/8}, n^{1/9})$ and number of samples $m = \Omega(k^2)$.

Outline

- Introduction
- 2 Spectral Methods
- Robust PCA
- 4 Dictionary Learning
- Conclusion

Observations regarding non-convex analysis

Challenges

- Multiple stable points: bad local optima, solution depends on initialization.
- Method may have very slow convergence or may not converge at all!

Observations regarding non-convex analysis

Challenges

- Multiple stable points: bad local optima, solution depends on initialization.
- Method may have very slow convergence or may not converge at all!

Non-convex Projections vs. Convex Projections

- Projections on to non-convex sets: NP-hard in general.
 - ▶ Projections on to rank and sparse sets: tractable.
- Less information than convex projections: zero-order conditions.

$$\begin{split} \|P(M)-M\| &\leq \|Y-M\|, \quad \forall \, Y \in C(\text{Non-convex}), \\ \|P(M)-M\|^2 &\leq \langle Y-M, P(M)-M\rangle, \quad \forall \, Y \in C(\text{Convex}). \end{split}$$

Non-convex success stories

- Spectral Methods: PCA, Tensor methods.
- Robust PCA: Alternating projections.
- Dictionary learning: Initialize using a "clustering style" method.

Advantages

- Iterative methods, global convergence guarantees.
- Efficient sample and computational complexities
- Competitive performance, easily parallelizable and scalable.

(Somewhat) common theme

- Characterize basin of attraction for global optimum.
- Obtain a good initialization to "land in the ball": usually also a non-convex method!

My Research Group and Resources

Furong Huang

Majid Janzamin

Hanie Sedghi

Niranjan UN

 ML summer school lectures available at http://newport.eecs.uci.edu/anandkumar/MLSS.html