嵌入式作業系統分析與實作

成功大學 資訊工程系 張大緯

Outline

- Participants
- Course Introduction
- Class and Office Hours
- Grading

Participants

- Target Audience
 - 研究生,大四
- 先修課程
 - 作業系統, C程式語言, 資料結構, 微處理機
- Instructor (at 新大樓12F)
 - 張大緯
 - davidchang@csie.ncku.edu.tw
- Teaching Assistants (at 新大樓4F 65409)
 - Check on the course moodle

Course Introduction

- This course provides knowledge about implementations of embedded real-time operating systems (RTOS)
- 2 real-time operating systems are discussed
 - o FreeRTOS
 - uCOS-II
- Class types
 - Lecture
 - Lab
 - Project Implementation (for your term project)

This Course

- is a Software-based Course
 - We discuss about the design of embedded real-time operating systems (RTOS)
- still requires some knowledge about Hardware
- requires code tracing and programming
 - o 5 Labs + 1 Project
 - Languages
 - Assembly (ARM)

Course Introduction

- You should prepare
 - The development board
 - STM32F407G-DISC1
 - ARM Cortex M4 32-bit processor
 - Laptop computer

Tentative Course Outline

- Course Introduction
- Introduction to Embedded RTOS
- FreeRTOS Introduction (1)
- FreeRTOS Labs (1)
- FreeRTOS Introduction (2)
- FreeRTOS Labs (2)
- FreeRTOS Labs (3)
- Project Proposals
- FreeRTOS Introduction (3)
- FreeRTOS Labs (4)
- FreeRTOS Labs (5)
- uC/OS-II Introduction
- Project Implementation
- Project Presentation & Demo

Please prepare your development board ASAP!

The schedule is subject to change!

about 3-4 weeks

What's an Embedded System?

- Embedding computing power into specific objects
- Including hardware and software
- Usually, multiple chips on a board
 - o To run software, at least one processor chip must be included

Embedded Devices

Development Environment

- Host Computer

Your Laptop Computer

- For development (coding, testing....)
- Toolchains
 - Compiler, Assembler, Linker, Loader
 - Debugging tools
 - Binary Utilities
- STM32CubeIDE
 - Please install the environment before Lab1!
- Target Board

Your development board

- For code execution
- o STM32F407G-DISC1, see next slide...

The Target/Development Board

STM32F407G-DISC1

STM32F407VGT6 microcontroller 32-bit ARM® Cortex®-M4 with FPU core 1-Mbyte Flash memory, 192-Kbyte RAM

On-board ST-Link Debugger

3-axis accelerometer audio sensor omnidirectional digital microphone

LEDs push-buttons

Lab Items

Lab#	Topics
1	FreeRTOS Basics
2	UART & Multitasking
3	Sensors & Interrupt Handlers
4	Memory Manager
5	FreeRTOS+ File System

Possible Projects

- RTOS Porting
- Implementing new system components
 - File systems
 - Program loaders
 - Network protocol stacks
- Enhancing RTOS functionality
 - Scheduling
 - Memory management
 - o TCP/IP

. . .

-Course Slides and Reference Information

- Course Slides
 - Download from the course moodle
- Reference Information
 - MicroC/OS-II documentation
 - https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
 - FreeRTOS website
 - https://www.freertos.org/RTOS.html

Grading

- No Exams
- 5-week Labs + 1 Project
- Grading
 - o (per-student) Labs: 40%
 - lab implementations + lab reports
 - The form of the lab report can be downloaded from the course moodle
 - Project Presentation/Demo: 15%
 - Project Report: 15%
 - Project Implementation: 30%
- For the project, please form your teams
 - o 2-4 students/team
 - We will announce deadline for team registration.