CISC's CPU控制器设计

中科大11系李曦

内容

- · CISC's CPU控制器设计: A模型
 - 多周期技术
 - 组合逻辑实现
 - 微程序控制

微程序控制Microprogrammed Control的概念和原理最早由英国剑桥大学的Maurice. V. Wilkes教授于**1951**年提出。1964,IBM System/360采用了此技术。

Wilkes教授:第二届图灵奖(1967) 根据冯·诺伊曼的EDVAC机设计方案,1949年在 剑桥实现第一台存储程序式计算机EDSAC

functional requirements for a processor

- Operations (opcodes)
- Addressing modes
- Registers
- Memory module interface
- I/O module interface
- Interrupts

控制器设计

控制器设计思路

- 目标
 - 生成各个节拍所需的控制信号
- 步骤
 - 确定ISA
 - 确定处理器的微结构
 - 一个ISA可以有多种实现
 - 确定时序体系
 - 采用多级时序系统
 - 分析每条指令在各个机器周期的微操作
 - 将每条指令的各个微操作分配到各个节拍
 - 逻辑综合
 - 将所有指令在各个节拍的微操作进行综合,生成各个节拍所需的控制信号,据此产生控制逻辑

控制部件设计

- 任务:根据各个指令执行时在不同节 拍的微操作要求,生成各个控制信号
- 指令译码
- 节拍发生器:在时钟控制下,使CU 按规定的节拍发出控制信号
 - 节拍宽度:按照微操作的要求,满足信息沿数据通路从源寄存器传送到目的寄存器所需的时间
- 控制部件实现方式
 - 组合逻辑电路
 - 微程序设计

 C_0

节

拍

发

生

器

 T_0

IR

译码器

CU

-FE

 $-\mathsf{IND}$

EX

INT

器

周

期

llxx@ustc.edu.cn

微操作的节拍安排原则

- 顺序性: 遵守微操作的先后次序
 - 如先送地址,再发读写令
- 并行性: 为了性能考虑,可以并行的微操作尽量 安排在一个节拍内
 - 条件: no race
 - 针对不同对象的微操作
 - 无总线冲突
- 如果有些微操作占用的时间不长,尽量安排在一个节拍内完成
- A模型采用不定长指令周期、多机器周期、定长机器周期模式的实现模式

取指周期、间址周期

- 取指周期
 - T₀: PC->MAR, 1->R
 - T₁: M(MAR)->MDR, PC+1->PC
 - $-T_2$: MDR->IR, OP(IR)->ID
- 间址周期
 - $-T_0$: Ad(IR)->MAR, 1->R
 - $-T_1$: M(MAR)->MDR
 - $-T_2$: MDR->Ad(IR)

执行周期-非访存指令

- CLA: 清ACC
 - $-\mathsf{T_0}$:
 - T₁:
 - T₂: 0->ACC
 - 可以在任一节拍
- COM: ACC取反
 - T₂: /ACC->ACC
- · SHR: ACC算术右移一位, 符号位不变
 - T₂: L(ACC)->R(ACC), ACC₀->ACC₀
- · CSL: ACC循环左移一位
 - T₂: R(ACC)->L(ACC), ACC₀->ACC_n
- STP: 停机,标志触发器G置"0"
 - $-T_2: 0->G$

执行周期——访存指令

- · ADD X: ACC与地址X的内容相加,结果送ACC
 - $-T_0$: Ad(IR)->MAR, 1->R
 - $-T_1: M(MAR)->MDR$
 - T₂: ACC+MDR->ACC
 - 含ACC->ALU, MDR->ALU, ALU->ACC等
- STA X: 将ACC存入X中
 - $-T_0$: Ad(IR)->MAR, 1->W
 - T₁: ACC->MDR
 - $-T_2: MDR->M(MAR)$
- LDA X: 将X中的内容读入ACC
 - $-T_0$: Ad(IR)->MAR, 1->R
 - $-T_1: M(MAR) \rightarrow MDR$
 - T₂: MDR ->ACC

执行周期——转移指令

- · JMP X: 无条件转移至X
 - $-\mathsf{T}_0$:
 - T₁:
 - $-T_2$: Ad(IR)->PC

• BAN X:

- 如果前一条指令的执行结果为负(即ACC最高位为"1")则转移至X
- $-\mathsf{T}_0$:
- T₁:
- $-T_2$: $ACC_0*Ad(IR)+ACC_0*(PC)-PC$

组合逻辑实现Hardwired implementation

- 列出"微操作一节拍"总表
 - 因为每个微操作对应一个执行路径,也即表示了所需的控制信号(称为"命令"),因此该表表示的是各个节拍所需的控制信号。
- 写出生成每个微操作的逻辑表达式
 - 带时间约束关系
- 根据每个逻辑表达式生成对应的组合逻辑 控制电路

示例

- ・表10.1
 - I: 指示间址否,由译码得到
 - 注意: 支持直接寻址和间址寻址模式
 - IND: 指示是否多级间址
 - INT周期的考虑
 - 注意: 针对的是微操作而不是控制信号
- M(MAR)->MDR的逻辑表达式
 - M(MAR)->MDR = FE*T1 +
 IND*T1(ADD+STA+LDA+JMP+BAN) +
 EX*T1(ADD+LDA)
- 图10.3

10条指令的微操作命令时间表p402

工作周期标记	节拍	状态条件	微操作命令信号	CAL	сом	SHR	CSL	STP	ADD.	SAT	LDA	JMP	BAN
FE (取指)			PC→MAR	1	1	1	1	1	1	1	1	1	1
	T_0		1 → R	1	1	1	1	1	1	1	1	1	1
	-		M(MAR)→MDR	1	1	1	1	1	1	1	1	1	1
	T_1		(PC)+1→PC	1	1	-1-	1	1	1	1	1	1	1
			MDR→IR	1	1	1	1	1	1	1	1	1	1
	ar.		OP(IR)→ID	1	1	1	1	1	1	1	1	- 1	1
	T_2	I	1-IND						1	1	1	1	1
		Î	1→EX	1	1	1	1	1	1	. 1	1	1	1
IND (何址)	T		Ad(IR) →MAR						1	1	1	1	1
	T_0	1	1-+R					2	1	1	1	1	1
	T ₁		M(MAR) →MDR				. 100		1	1	1	1	1
	. T ₂		MDR→Ad(IR)						1	1	1_	1	1
	12	IND	1→EX						1	1	1	1	1
	97	1	Ad(IR) →MAR				1		1	1	1		
	To		1→R	0750577807	C 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		r=1700_2		1		1		
FE (取指)			1W		A				972292	1			-0
	<i>T</i> ₁		M(MAR) →MDR						1		1		
	71	14. 15	AC→MDR							1			5353
			(AC) + (MDR) → AC		1				1				6), 16
EV		1 .	MDR→M(MAR)							1			0202365
			MDR-AC								1		
. (941)			0→AC	1		. #							
*20	T		$\overline{AC} \rightarrow AC$		1				25 SEC.				
e:	T ₂		R(AC) →L(AC), ACo不变		1000	1	0.000	1000100000			persyst a	- W. C.	2 0
			ρ ⁻¹ (AC)				1						
			Ad(IR)→PC							**************************************		1	
		A ₀	Ad(IR)→PC	10 10000									1
			0→G					1	10-10-10-10		1		-

llxx@ustc.edu.cn

M(MAR)->MDR的逻辑表达式和逻辑图

 $M (MAR) \rightarrow MDR$

- =FE-T1+IND-T1(ADD+STA+LDA+JMP+BAN)+EX-T1(ADD+LDA)
- =T1{FE+IND(ADD+STA+LDA+JMP+BAN)+EX (ADD+LDA) }

	Micro-operations	Active Control Signals
	$t_1: MAR \leftarrow (PC)$	C_2
Fetch:	t_2 : MBR \leftarrow Memory	C_5, C_R
	$PC \leftarrow (PC) + 1$	
	t_3 : IR \leftarrow (MBR)	C ₄
	$t_1: MAR \leftarrow (IR(Address))$	C ₈
Indirect:	t_2 : MBR \leftarrow Memory	C_5, C_R
	t_3 : IR(Address) \leftarrow (MBR(Address))	C ₄
	$t_1: MBR \leftarrow (PC)$	C_1
Interrupt:	t_2 : MAR \leftarrow Save-address	
	$PC \leftarrow Routine-address$	
	t_3 : Memory \leftarrow (MBR)	C_{12}, C_W

instruction cycle code (ICC)

Flowchart for Instruction Cycle

正确的时间,正确的控制

组合逻辑实现说明

- 思路清晰, 电路规模大
- 书中给出的只是设计思路,并不是真正的实现。
 - 因为实现的是微操作,而不是微操作完成所需的控制(称"微操作命令"或"微指令"——见微程序设计),而CU输出的应该是控制。
 - 如M(MAR)->MDR所需的控制为C₁、C₂、

Motivation: 微指令、微命令

- 取指周期
 - T₀: PC->MAR, 1->R
 - T₁: M(MAR)->MDR, PC+1->PC
 - T₂: MDR->IR, OP(IR)->ID
- 间址周期
 - T₀: Ad(IR)->MAR, 1->R
 - T_1 : M(MAR)->MDR
 - T₂: MDR->Ad(IR)

llxx@ustc.edu.cn

微程序

- 用一个微程序实现一条机器指令
 - 微程序由多条微指令组成
 - 与节拍对应
 - 一条微指令对应一个或多个微操作命令,称"微命令",即实现 微操作的控制信号。
 - 微指令的编码方式
 - 微程序存储在"控存"中
- 微指令的格式

微程序控制部件的结构

- 微地址形成部件
 - 形成微程序 的首址
- 顺序逻辑
 - 形成下一条 微指令的地 址(计数器)
- 微程序存储器(控存)
 - 存储微程序

转间址或执行周期微程序

微程序的存储形式

- "取指"、"间址"、
 - "中断"微程序等
 - 三个微程序所有指
 - 令共用,"执行"
 - 各个指令不同
 - 微程序个数为3+X

微指令的格式

- 水平微指令
 - 直接编码方式、字段直接编码方式、字段间接 译码方式都是水平微指令
 - 并行性好
- 垂直微指令
 - 一类似于"指令",含操作码和操作数、操作方式等。
 - 优点:缩短指令字长

水平微指令的编码方式

- 指微命令的表示方式
 - 直接编码方式
 - 每个微命令一位
 - 直观,但微指令字长太长(几百位),控存容量太大
 - 字段直接编码方式
 - 将命令域划分成多个可以并发的字段,通过译码生成微命令
 - 采用较少的位表示较多的微 命令
 - 字段间接编码方式
 - 命令域中的某些字段专用于其他字段的控制

垂直型微指令示例

微操作码	地	址码	其他	Ł	微指令类别及功能			
012	3~7	8~12	13	15	1001日 李天加汉为他			
000	源寄存器	目的寄存器	其他招	2制	传送型微指令			
001	ALU 左输入	ALU 右输入	ALI	J	运算控制型微指令。按 ALU 字段所规定的功能执行,其结果送暂存器			
010	寄存器	移位次数	移位プ	方式	移位控制型微指令。按移位方式对 寄存器中的数据移位			
011	存储器	读写	其他	访存徽指令。完成存储器和寄存器 之间的传送				
100		D	7/2	s	无条件转移微指令。D 为微指令的 目的地址			
101		D &			D测试条件			条件转移微指令。最低 4 位为测试 条件
110					可定义 I/O 或其他操作。第 3~15 位可根据需要定义各种微命令。			

27

llxx@ustc.edu.cn

微指令序列地址的形成

- 直接由下址字段给出后续微指令的地址
- 根据机器指令的操作码形成
 - 微地址形成部件根据操作码形成微程序入口首址
- 增量计数
 - 对一个微程序中的连续微指令CMAR+1->CMAR
- 分支转移
 - 根据条件转向不同地址
- 硬件逻辑形成微程序的入口地址
 - 中断、间址

微程序设计方法

- 静态微程序设计
 - 每条机器指令的微程序是预先设计好的。
- 动态微程序设计
 - 可以通过改变微指令和微程序而改变机器的指令系统——"可重构(reconfigurable)体系"
- 毫微程序设计
 - 进一步细化,提高并行性
 - -2级:第一级为垂直微指令,第二级为水平微指令

微程序控制方法

- 微指令的执行分两个阶段: 取指, 执行
- 串行微程序控制
 - 取指,执行
- 并行微程序控制
 - 2级流水
 - "结果相关"问题: 延迟一个周期

(a) 串行操作

取第 i 条微指令	执行第 i 条微指令		- 1
	取第 i+1 条微指令	执行第 i+1 条微指令	D
8		取第 i+2 条微指令	执行第 i+2 条微指令

微程序设计示例

- 微程序设计步骤
 - 微操作节拍分配
 - 确定微指令格式与编码
 - -编写每条微指令
- 示例:
 - 10条指令
 - 本例只考虑取指周期和执行周期,不考虑间址和中断

微程序节拍分配一取指阶段

- 取指周期
 - T₀: PC->MAR, 1->R
 - T₁: Ad(CMDR)->CMAR; /*下址*/
 - T₂: M(MAR)->MDR, PC+1->PC
 - T₃: Ad(CMDR)->CMAR; /*下址*/
 - T₄: MDR->IR, OP(IR)->ID
 - T₅: OP(IR)->CMAR; /*"执行" 微程序首址*/
- 执行一条微指令需要两个时钟周期
- 下址形成方式: 直接由下址字段给出

微程序节拍分配一执行阶段

- · 访存指令ADD
 - $-T_0$: Ad(IR)->MAR, 1->R
 - T₁: Ad(CMDR)->CMAR; /*下址*/
 - $-T_2$: M(MAR)->MDR
 - T₃: Ad(CMDR)->CMAR; /*下址*/
 - T₄: ACC+MDR->ACC
 - T₅: Ad(CMDR)->CMAR; /*"取指"微程序首址*/

微指令格式确定

- 本例共20个微操作
 - 见表
- "取指" + "执行" 微程序长度为38条微指令
- 任务: 确定编码方式,下址形成方式,微指令字长
 - 编码方式: 采用直接编码方式
 - 20位控制字段,6位下址字段(可以64条微指令)
 - 下址形成方式: 指令操作码+下址字段
 - 指令字长20+6=26位

编写微指令码点

• 下表列出了对应10条机器指令的微指令码点。表中空格中"0"缺省为空。

微程序 微指令 地址 (八进制)	2.500.000.000.000													微打	旨令	(=	进	制化	代配	ł)					94 95 y						
	(八进制)	操作控制字段 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27																													
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	0.0	1	1	T		Г		Т			Г					T	t	T	T	†	Т	1		t	+	Н		-	+	t	1
取指	01			1	1									Г	Г			\vdash						T		Г			T	1	t
	02			Г	Γ	1					Г						Τ	Г	Т							x	x	x	x	x	x
CLA	03		Г	Г	Г		1												T	1			Г		-				-	-	Ħ
COM	0.4							1					Г	Т	Г		Τ				Т			-				-	\vdash	\vdash	H
SMR	0.5	- 8							1									Г	Г			_	Г	Г	Т						H
CSL	06									1				Г					Г	Г					Г	_					H
STP	07		- 8								1						Г								Г	_	Т			Н	\vdash
	10		1									1						Г							П			1			1
ADD	11			1																					П			1		1	
	12												1												Г				-		
	13						\neg					1		1			Г					П						1	1		
STA	14	٦													1				П						-			1	1		1
	15	П				\neg	٦		\neg							1															Ė
	16		1			٦		7	╛			1									7					\exists	1	1	1	1	1
LDA	17			1		7	\exists		T			\neg													1		1	÷			Ė
	20	T	\neg	\neg		7	\exists		\exists			\exists					1				7	\exists	\exists		-			1	7	+	
JMP	21	7	7		7	7	7	\forall	7	1	\exists	7		1	7			1		+	7	7	\dashv	-	7	1	+	+	+	\dashv	_
BAN	22	1	┪	7	7	7	7	7	7	7	7	7	\dashv		7	7			1	-	+	+	+	-	+	+	\dashv	+	\dashv	\dashv	-

llxx@ustc.edu.cn

本例的优化

- 本例共20个微操作,其中含一个"下址生成微操作"和一个"执行微程序首址生成微操作"
- "取指" + "执行"微程序长度为38条微指令 (或周期),其中有19条微指令(或周期)是为 了得到下址
- · 如果直接将Ad(CMDR)送到控存地址线,并使用MUX控制下址的来源,则可省略2条微操作"Ad(CMDR)->CMAR"和"OP(IR)->CMAR"
 - 也即节省了19个时钟周期

小结

- · CU设计步骤: 正确时间产生正确控制
 - 组合逻辑实现
 - 微程序控制(简化硬件设计复杂度)
 - 基本概念: 微指令、微程序,下址,控存,水平微指令、垂直微指令

• 作业: 10.2、10.3、10.9

