Cahier de calcul

— réponses —

Margarita philosophica (La perle philosophique), Gregor REISCH (1508)

Cette gravure, extraite d'un manuel d'université de l'époque, représente Arithmetica, allégorie des mathématiques, arbitrant une compétition entre Boèce, qui utilise les chiffres indo-arabes, et Pythagore, qui utilise un boulier.

Page web du *Cahier de calcul*, dernières versions

Ce cahier de calcul a été écrit collectivement.

Coordination

Colas Bardavid

Équipe des participants

Vincent Bayle, Romain Basson, Olivier Bertrand, Ménard Bourgade, Julien Bureaux, Alain Camanes, Mathieu Charlot, Mathilde Colin de Verdière, Keven Commault, Miguel Concy, Rémy Eupherte, Hélène Gros, Audrey Hechner, Florian Hechner, Marie Hézard, Nicolas Laillet, Valérie Le Blanc, Thierry Limoges, Quang-Thai Ngo, Xavier Pellegrin, Fabien Pellegrini, Jean-Louis Pourtier, Valérie Robert, Jean-Pierre Técourt, Guillaume Tomasini, Marc Tenti

Le pictogramme • de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). L'illustration de la couverture vient de Wikimedia.

Version 1.2.2 — 25 août 2024

Sommaire

1.	Fractions	. 1
2.	Puissances	. 2
3.	Calcul littéral	. 3
4.	Racines carrées	. 4
5.	Expressions algébriques	. 5
6.	Équations du second degré	. 6
7.	Exponentielle et logarithme	. 7
8.	Trigonométrie	.8
9.	Dérivation	10
10.	Primitives	11
11.	Calcul d'intégrales	13
12.	Intégration par parties	14
13.	Changements de variable.	15
14.	Intégration des fractions rationnelles	16
15.	Systèmes linéaires	17
16.	Nombres complexes	18
17.	Trigonométrie et nombres complexes	19
18.	Sommes et produits	20
19.	Coefficients binomiaux	21
20.	Manipulation des fonctions usuelles	22
21.	Suites numériques.	23
22.	Développements limités	24
23.	Arithmétique	25
24.	Polynômes	26
25.	Décomposition en éléments simples.	27
26.	Calcul matriciel	28
27.	Algèbre linéaire	30
28.	Équations différentielles	31
29.	Séries numériques	32
30.	Structures euclidiennes	33
31.	Groupes symétriques.	34
32.	Déterminants	35
33.	Fonctions de deux variables	36

Fiche nº 1. Fractions

_		
1.1 a) $\frac{4}{5}$	1.3 c) $ \frac{-10}{3} $	$1.7 \dots \left[\frac{n^3 + n}{n+1} \right]$
1.1 b)	1.3 d)	1.8 a) $4 + \frac{5}{6}$
1.1 c)	$1.4 \dots \qquad \left \frac{16}{35} \right $	
1.1 d) $-2 \times 3^{3k-2}$	1.5 a)	1.8 b) $1 + \frac{1}{k-1}$
1.2 a)	1.5 b)	1.8 c) $3 + \frac{5}{x-2}$
1.2 b) $\left \frac{7}{15} \right $	1.5 c)	1.9 2t
1.2 c)	1.5 d)	1.10 a) $\left[\frac{3}{5} > \frac{5}{9}\right]$
1.2 d)	1.6 a) $\frac{-1}{n(n+1)^2}$	1.10 b) $\frac{12}{11} > \frac{10}{12}$
1.3 a)	1.6 b) $ -\frac{ab}{a-b} $	
1.3 b) $ \frac{203}{24} $	2	1.10 c) $\frac{125}{25} = \frac{105}{21}$
	1.6 c)	1.11
		$1.12 \dots A > B$

Fiche nº 2. Puissances

•			
2.1 a)	2.2 b) 5^{-6}	2.3 b) $2^{21} \cdot 3$	2.5 a)
2.1 b)	2.2 c)	2.3 c) 2	
2.1 c)	2.2 d) $(-7)^{-2}$	2.3 d) $2^{38} \cdot 3^{26}$	2.5 b) $\left[\frac{1}{x-2}\right]$
2.1 d)	2.2 e)	2.4 a)	2.5 c)
2.1 e)	2.2 f)	2.4 b)	
2.1 f)	2.3 a) $2^{-4} \cdot 3^{-1}$	2.4 c)	2.5 d) $\left \frac{2}{x-2} \right $
2.2 a)		2.4 d) $2^6 \cdot 5$	

Fiche nº 3. Calcul littéral

Réponses

•	
3.1 a) $8x^3 - 6x^2 + \frac{3}{2}x - \frac{1}{8}$	3.4 c) $(x+1)(x+2)$
3.1 b) $x^5 - 2x^4 + x^3 - x^2 + 2x - 1$	3.4 d)
3.1 c)	
3.1 d) $x^5 + 2x^4 + x^3 - x^2 - 2x - 1$	3.4 e) $2\left(x + \frac{3 - \sqrt{233}}{4}\right)\left(x + \frac{3 + \sqrt{233}}{4}\right)$
3.1 e) $x^5 - x^3 - x^2 + 1$	3.4 f) $-5(x-1)\left(x-\frac{1}{5}\right)$
3.1 f) $x^4 + x^2 + 1$	
3.2 a) $ [-2 + 12x - 17x^2 + 8x^3 - 3x^4] $	3.5 a) $(x+y-z)(x+y+z)$
3.2 b)	3.5 b) $3(14x+3y)(-4x+y)$
3.2 c) $2 + x^3 - x^4 - x^5$	3.5 c) $(x+1)(y+1)$
3.2 d)	3.5 d)
3.2 e)	3.5 e) $(x+y)(x+1)^2$
3.2 f) $1 + 2x + 3x^2 + 2x^3 + x^4$	3.5 f) $(a^2 + b^2)(y - 4x^2)(y + 4x^2)$
3.3 a)	3.6 a)
3.3 b)	3.6 b) $-8(x^2+1)(x-4)(x+4)$
3.3 c)	3.6 c)
3.3 d)	
3.4 a)	3.6 d)
	3.6 e) $(a^2 + b^2 + c^2 + d^2)(p^2 + q^2 + r^2 + s^2)$
3.4 b)	

Fiche nº 3. Calcul littéral

Fiche nº 4. Racines carrées

- **4.1** b)..... $\sqrt{3}-1$
- **4.1** c) $-\sqrt{3}+2$
- **4.1** d)..... $\sqrt{7}$ 2
- **4.1** e)..... $\pi 3$
- **4.1** f) |3-a|
- **4.2** b) $9+4\sqrt{5}$
- **4.2** c) $1+\sqrt{3}$
- **4.2** d)..... $3 + \sqrt{2}$

- **4.2** g) $9 \frac{10}{3}\sqrt{3}$

- **4.3** a) $2 \sqrt{2} \sqrt{3} + \frac{1}{2}\sqrt{6}$
- **4.3** b) $3 2\sqrt{2}$
- **4.3** c) $1 \sqrt{10} + \sqrt{15}$
- **4.3** d) $\sqrt{15} + \sqrt{10} \sqrt{6} 2$
- **4.3** e) $-(\sqrt{2} + \sqrt{3})$
- **4.3** f) $-\frac{3+\sqrt{2}+\sqrt{3}+\sqrt{6}}{2}$
- **4.3** h) $50 25\sqrt{3}$
- **4.4** $\frac{\sqrt{2}+2-\sqrt{6}}{4}$
- **4.5** a) $\frac{x}{\sqrt{x-1}}$
- **4.5** b) $x \sqrt{x^2 1}$

- **4.5** c) $1 + \sqrt{x-1}$
- **4.5** d) $\frac{1}{2} \frac{1}{x-1}$
- **4.5** e) $x(x-2) \over (x-1)\sqrt{x-1}$
- **4.5** f) $-4(x-1)^2$
- **4.6** a)..... $\sqrt{2}$
- **4.7** a) $-11 + 5\sqrt{5}$
- **4.7** c) $1 + \sqrt{2}$
- **4.7** d)..... $\sqrt{3}$
- **4.7** e) $1 + \sqrt{5}$
- **4.7** f) $\ln(1+\sqrt{2})$

Fiche nº 5. Expressions algébriques

5.1 a) $\boxed{7a^2 + 12a + 7}$	5.3 c) $-4 + 43i\sqrt{5}$	5.6 a)
5.1 b) $a^2 - 1$	5.3 d)	5.6 b)
5.1 c)	5.4 a)	5.6 c)
5.1 d) $-a^2 + 1$	5.4 b)	5.6 d) $ab - c$
5.2 a)	5.4 c)	5.6 e)
	5.4 d)	5.6 f)
5.2 b)	5.4 e)	5.7 a) $a^2b - ac - 2b^2$
5.2 c)	5.4 f)	
5.2 d)	5.5 a)	5.7 b) $a^4 - 4a^2b + 4ac + 2b^2$
5.3 a)	5.5 b) $a^3 + 3a$	5.7 c)
5.3 b)		5.7 d)
	5.5 c) $a^4 + 4a^2 + 2$	5.7 e) a

Fiche nº 6. Équations du second degré

Réponses	R	lép	on	ses
----------	---	-----	----	-----

6.1 a)	6.4 c)
6.1 b)	6.4 d) $m \operatorname{donc} m(a-b)/(b-c)$
6.1 c)	6.4 e) $m \operatorname{donc} ab/m$
6.1 d)	6.4 f) $a + b$ puis $2ab/(a + b)$.
6.1 e)	6.5 a) $x^2 - 22x + 117 = 0$
6.1 f)	6.5 b) $x^2 - 6x - 187 = 0$
6.1 g)	6.5 c) $x^2 - 4x + 1 = 0$
6.1 h)	6.5 d) $x^2 - 2mx + 3 = 0$
6.1 i)	6.5 e) $2x^2 - (4m+1)x + (2m^2 + m - 15) = 0$
6.1 j)	6.5 f) $m^2x^2 + (m-2m^2)x + (m^2-m-2) = 0$
6.2 a)	
6.2 b)	6.6 a) $m = -3/4$ et $x = 3/4$
6.2 c)	6.6 b) $m = -1$ et $x = -2$, ou $m = 7$ et $x = 2/3$
6.2 d)	6.6 c) $m = 1$ et $x = -1$ ou $m = -1$ et $x = 1$
6.2 e)	6.7 a)
6.2 f)	6.7 b) $a = -2$ et $b = 1$
6.3 a)	6.7 c)
6.3 b)	6.7 d) $a = 1/2$ et $b = 8$
6.3 c)	6.7 e)
6.3 d) $2m/(m+3)$	6.8 a)
6.4 a) 1 donc $(a-b)/(b-c)$	6.8 b)
	6.8 c) $]-\infty,-1] \cup [2/3,+\infty[]$
6.4 b) $1 \operatorname{donc} c(a-b)/(a(b-c))$	6.8 d)

Fiche nº 7. Exponentielle et logarithme

Réponses		
7.1 a)	7.5 b)	7.8 a)
7.1 b)		7.8 b) ok
7.1 c)	7.5 c) $\left \frac{1}{3} \right $	7.8 c)
7.1 d) $ \frac{1}{2} \ln 2 $		7.8 d)
	7.5 d) $ \frac{1}{9} $	7.9 a) $x + \ln 2$
7.1 e)	7 5 6)	a
7.1 f)	7.5 e) $\left[-\frac{1}{2}\right]$	7.9 b) $\left \frac{e}{\sqrt{1+x}} \right $
7.2 a) $-\ln 3 - 2 \ln 2$	7.5 f)	7.9 c)
7.2 b) $2 \ln 3 - 2 \ln 2$		1
7.2 c) $\boxed{\ln 3 + 11 \ln 2}$	7.6 a)	7.9 d) $\left[-\frac{1}{1+x} \right]$
7.2 d) $3 \ln 5 + 2 \ln 2$	7.6 b)	7.9 e)
7.2 e) $\boxed{-2\ln 5 + 4\ln 2}$	7.6 c)	7.10 a) $x \ge \frac{\ln 12 + 5}{3}$
7.2 f) $2 \ln 5 - 2 \ln 2$	7.6 d)	
7.3	7.6 e)	7.10 b)
7.4 a)	7.6 f)	7.10 c) $x \ge \frac{2}{e}$
8 11(2 1)	7.7 a) [impaire]	
7.4 b)	7.7 b) impaire	7.10 d) $x \ge -\frac{1}{12}$
7.4 c)	7.7 c) [impaire]	7.10 e)

7.7 d) impaire

Fiche nº 8. Trigonométrie

Réponses	
8.1 a)	8.7 b) $\left[\left\{ \frac{-2\pi}{3}, \frac{-\pi}{3} \right\} \right]$
8.1 c) $-1 - \sqrt{3}$	8.7 b) $\left\{\frac{4\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\}$
8.1 d) $-\frac{1}{2}$	8.7 c)
8.2 a)	8.7 c)
8.2 c) $2 \cos x$ 8.2 d) $-2 \cos x$	8.7 c) $\left\{ \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{11\pi}{6} + 2k\pi, k \in \mathbb{Z} \right\}$
8.3 a) $\frac{\sqrt{6} - \sqrt{2}}{4}$	8.7 d) $\left\{\frac{3\pi}{4}, \frac{7\pi}{4}\right\}$
8.3 b)	8.7 d) $\left\{-\frac{\pi}{4}, \frac{3\pi}{4}\right\}$
8.3 c)	8.7 d) $\left\{\frac{3\pi}{4} + k\pi, k \in \mathbb{Z}\right\}$
8.3 d) $ \frac{\sqrt{3}-1}{\sqrt{3}+1} $	8.7 e) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\right\}$
8.4 a) $\boxed{-\sin x}$	8.7 e) $\left\{-\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}\right\}$
8.4 b)	8.7 e) $\left\{\frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z}\right\}$
8.4 d) $\boxed{4\cos^3 x - 3\cos x}$	8.7 f) $ \overline{\left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\} } $
8.5 a) $\frac{\sqrt{2+\sqrt{2}}}{2}$	8.7 f) $\left\{-\frac{5\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}\right\}$
8.5 b) $ \frac{\sqrt{2-\sqrt{2}}}{2} $	8.7 f) $\left\{\frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$
8.6 a) $\tan x$ 8.6 b) 2	8.7 g) $\left\{\frac{\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{23\pi}{12}\right\}$
8.6 c) $8\cos^4 x - 8\cos^2 x + 1$	
8.7 a)	8.7 g) $\left\{-\frac{11\pi}{12}, -\frac{\pi}{12}, \frac{\pi}{12}, \frac{11\pi}{12}\right\}$
8.7 a)	8.7 g) $\left\{ \frac{\pi}{12} + k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{11\pi}{12} + k\pi, k \in \mathbb{Z} \right\}$
8.7 a) $\left\{ \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\}$	8.7 h) $\left[\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}\right]$
57 h	8.7 h) $\left\{-\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}\right\}$

8.7 h).....
$$\left\{ \frac{\pi}{6} + k \frac{2\pi}{3}, k \in \mathbb{Z} \right\}$$

8.7 i)
$$\left\{ \frac{\pi}{7}, \frac{13\pi}{7} \right\}$$

8.7 i).....
$$\left\{ \frac{\pi}{7} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{7} + 2k\pi, k \in \mathbb{Z} \right\}$$

8.7 j).....
$$\left\{ \frac{5\pi}{14}, \frac{9\pi}{14} \right\}$$

8.7 j).....
$$\left\{ \frac{5\pi}{14} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{9\pi}{14} + 2k\pi, k \in \mathbb{Z} \right\}$$

8.8 b)
$$\left[\left[-\pi, -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}, \pi \right] \right]$$

8.8 c)
$$\left[0, \frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6}, 2\pi\right]$$

8.8 d)
$$\left[\left[0, \frac{\pi}{6} \right] \cup \left[\frac{5\pi}{6}, \frac{7\pi}{6} \right] \cup \left[\frac{11\pi}{6}, 2\pi \right] \right]$$

8.8 d).....
$$\left[\left[-\pi, -\frac{5\pi}{6} \right] \cup \left[-\frac{\pi}{6}, \frac{\pi}{6} \right] \cup \left[\frac{5\pi}{6}, \pi \right] \right]$$

8.8 f)
$$\boxed{ \left[\frac{\pi}{4}, \frac{\pi}{2} \left[\cup \right] \frac{\pi}{2}, \frac{3\pi}{4} \right] \cup \left[\frac{5\pi}{4}, \frac{3\pi}{2} \left[\cup \right] \frac{3\pi}{2}, \frac{7\pi}{4} \right] }$$

8.8 f)
$$\left[-\frac{3\pi}{4}, -\frac{\pi}{2} \left[\cup \right] - \frac{\pi}{2}, -\frac{\pi}{4} \right] \cup \left[\frac{\pi}{4}, \frac{\pi}{2} \left[\cup \right] \frac{\pi}{2}, \frac{3\pi}{4} \right]$$

8.8 h)
$$\left[0, \frac{3\pi}{8}\right] \cup \left[\frac{7\pi}{8}, \frac{11\pi}{8}\right] \cup \left[\frac{15\pi}{8}, 2\pi\right]$$

Fiche nº 9. Dérivation

Réponses

9.1 b)
$$5x^4 - 6x^2 + 4x - 15$$

9.1 c)
$$(2x^2 - 2x + 10) \exp(2x)$$

9.2 a)
$$5(x^2 - 5x)^4 (2x - 5)$$

9.2 b)
$$4(2x^3 + 4x - 1)(3x^2 + 2)$$

9.2 c)
$$8\cos^2(x) - 6\cos(x)\sin(x) - 4$$

9.2 d)......
$$-3(3\cos(x) - \sin(x))^2(3\sin(x) + \cos(x))$$

9.3 a)
$$\frac{2x}{x^2+1}$$

9.3 b)
$$\frac{1}{x \ln(x)}$$

9.3 c)
$$(-2x^2 + 3x + 1) \exp(x^2 + x)$$

9.3 d)
$$6\cos(2x)\exp(3\sin(2x))$$

9.4 a)
$$\frac{6x}{(x^2+1)^2}\cos\left(\frac{2x^2-1}{x^2+1}\right)$$

9.4 b)
$$\frac{2x^2 + 2x - 8}{(x^2 + 4)^2} \sin\left(\frac{2x + 1}{x^2 + 4}\right)$$

9.4 d)
$$\frac{\cos(\sqrt{x})}{2\sqrt{x}}$$

9.5 a)
$$\frac{(2x+3)(2\sin(x)+3)-(x^2+3x)\times 2\cos(x)}{(2\sin(x)+3)^2}$$

9.5 b)
$$\frac{2-3x}{2\sqrt{x}(3x+2)^2}$$

9.5 c).....
$$-2\frac{(x^2+1)\sin(2x+1)+x\cos(2x+1)}{(x^2+1)^2}$$

9.5 d).....
$$\frac{(4x+3)\ln(x) - 2x - 3}{(\ln(x))^2}$$

9.6 b)
$$9 \over (9-x^2)\sqrt{9-x^2}$$

9.6 c)
$$\frac{1}{1-x^2}$$

9.6 d)
$$\frac{x \cos(x) - \sin(x)}{x \sin(x)}$$

9.7 a)
$$\frac{10x-5}{(3-x)^2(2+x)^2}$$

9.7 c)
$$\frac{2x^2 + 2x + 5}{(x+2)(x-1)^2}$$

9.7 d)
$$\frac{x^2}{(x+1)^2}$$

9.7 e)
$$\frac{2}{x(1-\ln(x))^2}$$

10

Fiche nº 10. Primitives

Réponses	
10.1 a)	10.5 c) $-\ln \cos t $
10.1 b) $ -\frac{3}{t+2} $	10.5 d) $-\ln 1-\sin t $
	10.5 e) $-2\cos\sqrt{t}$
10.1 c)	10.5 f) $ \frac{1}{\pi} \sin(\pi \ln t) $
10.1 d) $\left[-\frac{\cos(4t)}{4} \right]$	10.5 g $\tan t - t$
10.2 a)	10.5 h) $\left[\frac{1}{2} \tan^2 t + \ln \cos t \right]$
10.2 b)	10.5 i)
10.2 c) $ \frac{1}{2} Arcsin(2t) $	10.5 j) $2\sqrt{\tan t}$
	10.5 k) $-\frac{1}{\tan t}$
10.2 d)	10.5 l) $ \frac{1}{2} \frac{1}{(1-\sin t)^2} $
10.3 b)	10.5 m) $ \frac{1}{2} \operatorname{Arctan}(2t) $
	$egin{aligned} 10.5 \ \mathrm{n}) \dots & \\ & &$
10.3 d)	10.5 o) $ \frac{1}{2} (Arcsin(t))^2 $
	10.5 p) $\ln \operatorname{Arcsin}(t) $
10.3 e) $\left[\frac{1}{6}\ln(1+3t^2)\right]$	10.6 a) $ \frac{t}{2} + \frac{\sin(2t)}{4} $
10.3 f) $\left[-\frac{1}{(1+3t^2)^2} \right]$	10.6 b) $\left[-\frac{\cos(4t)}{8} - \frac{\cos(2t)}{4} \right]$
10.4 a)	10.6 c) $-\cos t + \frac{1}{3}\cos^3 t$
10.4 b) $2\sqrt{\ln t}$	10.6 d) $\ln(1 + \sin^2 t)$
10.4 c)	10.6 e) $\ln \tan t $
10.4 d)	10.6 f) $-\cot nt + \tan t$
10.4 d)	10.6 g) $ \frac{1}{4} \ln \tan 2t $
10.4 f)	10.7 a)
10.5 a) $-\frac{1}{3}\cos^3 t$	$10.7 \text{ b}) \dots $ $\left[\ln t - \frac{1}{2t^2} \right]$
10.5 b)	

Fiche no 10. Primitives

12 Fiche n° 10. Primitives

Fiche nº 11. Calcul d'intégrales

•			
11.1 a)	11.3 e) $-\frac{1}{30}$	11.5 e)	$11.7 \ c) \dots \dots \boxed{e^2}$
11.1 b)		11.5 f) $\frac{1}{2} - \frac{\sqrt{3}}{2}$	11.7 d) $3e-4$
11.1 c)	11.3 f) $\left -\frac{2}{101} \right $		11.7 e)
11.2 a)	11.4 a)	11.6 a)	
11.2 b)	11.4 b)	11.6 b)	11.7 f) $\boxed{\frac{5}{8}}$
11.2 c)	11.4 c)	11.6 c) $\left[\ln\left(\frac{2}{\sqrt{3}}\right)\right]$	11.8 a)
11.2 d)	11.4 d)	11.6 d) $ -\frac{1}{384} $	11.8 b) $\left[\frac{\pi}{4}\right]$
11.2 e)	11.4 e) $e^2 - e^{-3}$	11.6 e) $\left[\frac{1}{2}\left(1-\frac{1}{e}\right)\right]$	11.8 c) $ \frac{99}{\ln 10} $
11.2 f) $\left[\frac{5}{2}\right]$	11.4 f) $-\ln 3$	$\frac{11.0 \text{ e)} \dots \left[\frac{2}{2} \left(1 - \frac{1}{e}\right)\right]$	
11.3 a)	11.5 a)	11.6 f) $\frac{7}{48}$	11.8 d) $\left[\frac{e - \frac{1}{e}}{2}\right]$
11.3 b)	11.5 b) $2(e^3 - 1)$		
11.3 c)	11.5 c). $\left[\frac{1}{\pi}\ln\left(1+\frac{\pi}{2}\right)\right]$	11.7 a) $\left \frac{1}{2} - \frac{1}{e+1} \right $	
			11.8 f) $\left \frac{2\pi}{9} \right $
11.3 d)	11.5 d) $\left[\frac{\sqrt{2}}{6}\right]$	11.7 b) $\left\lfloor \frac{17}{2} \right\rfloor$	9

Fiche nº 12. Intégration par parties

12.1 d)
$$\frac{(\ln(2))^2 2^{\ln(2)} - 2\ln(2) - 2^{\ln(2)} + 2}{(\ln(2))^2}$$

12.1 g)
$$\ln(2) - 2 + \frac{\pi}{2}$$

12.1 h)
$$\left| \frac{\pi}{4} - \frac{1}{2} \right|$$

12.1 i)
$$\left| \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1 \right|$$

12.1 j)
$$\left| -\frac{2\sqrt{2}}{3} + \frac{4}{3} \right|$$

12.1 l)
$$\left[\frac{\pi}{4} - \frac{1}{2} \ln 2 - \frac{\pi^2}{32}\right]$$

12.2 a)
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (-x+2)e^x \end{cases}$$

12.2 b)
$$\begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto -\frac{1+\ln x}{x} \end{cases}$$

12.2 c)
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \arctan(x) - \frac{1}{2} \ln(1 + x^2) \end{cases}$$

12.2 d)
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \operatorname{sh}(x) - \operatorname{ch}(x) \end{cases}$$

12.3 a)
$$\frac{5}{2} - e^2$$

12.3 b)
$$\frac{e^{\frac{\pi}{2}} + 1}{2}$$

12.4 a)...
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1}{2}(-\cos(x)\operatorname{sh}(x) + \sin(x)\operatorname{ch}(x)) \end{cases}$$

12.4 b)......
$$\begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto x \ln^2 x - 2x \ln x + 2x \end{cases}$$

12.4 c).....
$$\begin{cases} \mathbb{R}_{+}^{*} \to \mathbb{R} \\ x \mapsto x^{3} \left(\frac{1}{3} \ln^{2} x - \frac{2}{9} \ln x + \frac{2}{27} \right) \end{cases}$$

12.4 d) ..
$$\begin{cases}]-1,1[\to \mathbb{R} \\ x \mapsto \frac{1}{2} e^{\arccos(x)} \left(x - \sqrt{1 - x^2}\right) \end{cases}$$

Fiche nº 13. Changements de variable

Reponses	
13.1 a)	13.2 e)
13.1 b)	13.2 f) $ \frac{1}{2} \ln \frac{5}{2} $
13.1 c)	13.3 a)
13.1 d)	13.3 b) $ -2((\sqrt{3}-1)\ln(\sqrt{3}-1)-4+2\sqrt{3}) $
13.1 e)	13.4 a) $ \left\{ \begin{array}{c} \left[0, \frac{\pi}{2} \right[\rightarrow \mathbb{R} \\ x \mapsto \tan x + \ln \tan(x) \end{array} \right] \right. $
13.1 f)	13.4 b)
13.2 a)	13.4 c) $ \begin{bmatrix} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & 2\arctan(\sqrt{e^x - 1}) \end{bmatrix} $
13.2 b) $\left[\frac{1}{2}\ln\left(\frac{2e+1}{3}\right)\right]$	13.4 d) $ \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{3}{2} \ln(x^{\frac{2}{3}} + 1) \end{cases} $
13.2 c)	
13.2 d) $ \frac{1}{4} + \frac{\pi}{8} $	13.4 e) $ \begin{cases}]1, +\infty[\rightarrow \mathbb{R} \\ x \mapsto \arctan \sqrt{x^2 - 1} \end{cases} $

Fiche nº 14. Intégration des fractions rationnelles

14.1 a)
$$\ln\left(\frac{3}{2}\right)$$

14.2 a)
$$2 \ln \frac{9}{10}$$

14.2 b)
$$\ln(a+1)$$

14.3 a)......
$$\frac{3}{2} + \ln(3) - \ln(2)$$

14.3 b).....
$$-\frac{1}{48} + \frac{51}{64} \ln \frac{21}{19}$$

14.4 a)
$$\ln\left(\frac{7}{3}\right)$$

14.4 b)
$$\ln \frac{33}{28}$$

14.5 a)
$$\ln\left(2\sqrt{\sqrt{2}-1}\right)$$

14.5 b)
$$\frac{1}{2a} \ln \left(\frac{a+1}{2} \right)$$

14.6 b)
$$A = -1$$
 et $B = 1$

14.6 c)
$$2 \ln \frac{4}{3}$$

14.7 a)
$$\ln \frac{1}{3}$$

14.7 c)
$$\frac{1}{2} \ln \frac{3}{2}$$

14.7 d)
$$\frac{1}{4} \ln \frac{1}{5}$$

14.8
$$\frac{1}{2\sqrt{a}}\ln\left(\frac{\sqrt{a}-a}{a+\sqrt{a}}\right)$$

14.9 a).....
$$\frac{1}{a^2 + x^2}$$

14.9 b)
$$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$$

14.10 b)
$$\frac{\pi}{6\sqrt{3}}$$

$$14.11 \quad \dots \qquad \boxed{\frac{\pi}{2\sqrt{2}}}$$

14.12 b)
$$2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}$$

14.12 c)..
$$\sqrt{2}(x+\frac{1}{4})^2 + \sqrt{2}\frac{15}{16}$$

14.12 d)....
$$a(x+\frac{a}{2})^2 + \frac{3a^3}{4}$$

14.13 a)
$$\boxed{\frac{1}{2}}$$

14.13 c).....
$$\frac{2\pi}{3\sqrt{3}}$$

14.14 a)
$$\frac{\pi}{12}$$

14.14 b)
$$\ln\left(\frac{a^2}{a^2-1}\right)$$

14.15
$$\frac{1}{3} \left(\ln(2) + \frac{\pi}{\sqrt{3}} \right)$$

Fiche nº 15. Systèmes linéaires

Fiche no 16. Nombres complexes

16.1 a)
$$4 + 32i$$

16.1 e) . .
$$\boxed{-119 + 120i}$$

16.1 f)
$$\frac{3}{10} + \frac{1}{10}i$$

16.1 g)
$$\frac{4}{29} - \frac{19}{29}i$$

16.1 h)
$$\left| \frac{1}{2} - \frac{\sqrt{3}}{2} i \right|$$

16.2 c)......
$$\sqrt{3}e^{i\frac{\pi}{2}}$$

16.2 d)
$$2e^{-i\frac{\pi}{2}}$$

16.2 e)
$$2e^{i\frac{8\pi}{5}}$$

16.2 f)
$$5\sqrt{2}e^{-i\frac{\pi}{4}}$$

16.2 g).........
$$10e^{i\frac{2\pi}{3}}$$

16.2 h)
$$2\cos(\frac{\pi}{12})e^{i\frac{\pi}{4}}$$

16.3 b) ...
$$\sqrt{\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}}$$

16.3 c)..
$$-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$$

Fiche nº 17. Trigonométrie et nombres complexes

Fiche no 18. Sommes et produits

Réponses

18.2 e) ...
$$\boxed{\frac{7}{6}(7^n - 1) + n(n + 4)}$$

18.2 f) $\boxed{\frac{n+1}{2n}}$
18.3 a) $\boxed{2^{q-p+1}}$

18.2 d)..... $\frac{5^{n+1} - 2^{n+1}}{3}$

18.3 b) $3^{\frac{n(n+1)}{2}}$	18.6 d)
18.3 c) $5^n (n!)^{\frac{3}{2}}$	107)
18.3 d)	18.7 a) $\left[1 - \frac{1}{n+1}\right]$
18.4 a) $n(n+1)$	18.7 b) $\left[\frac{1}{2} - \frac{1}{n+3}\right]$
18.4 b)	18.8 a)
18.4 c) $n2^{n+1} + 2(1-2^n)$	18.8 b)
18.4 d) $\frac{n^2(n+1)^2}{4}$	18.9 a) $ \frac{n^2(n+1)}{2} $
18.5 a)	$ \begin{array}{c c} \hline n(n+3) \end{array} $
18.5 b) $\ln(n+1)$	18.9 b) $\frac{n(n+3)}{4}$
18.5 c)	18.9 c) $\boxed{\frac{n(n^2-1)}{2}}$
18.5 d)	18.9 d) $ \frac{n(n+1)(7n^2+13n+4)}{12} $
18.6 a) $n+1$	
18.6 b) $1 - 4n^2$	18.9 e)

Fiche nº 19. Coefficients binomiaux

recponses		
19.1 a)	19.3 b) $n(n-1)(n-2)$	19.5 d) 12×15^n
19.1 b)	6	$\lfloor \frac{n}{2} \rfloor$ (m)
19.1 c)	19.3 c)	19.6 a) $2 \times \sum_{p=0}^{\lfloor 2 \rfloor} \binom{n}{2p}$
19.1 d)	19.3 d) $(n+2)(n+1)$	19.6 b)
19.1 e)	19 3 9)	19.7 a) 2^n
19.1 f)	19.3 e) $\left[\frac{1}{(n+1)!}\right]$	19.7 b) $n2^{n-1}$
19.2 a)	19.3 f) $n! \times (n-3)$ 2^{2n+2}	19.7 c)
19.2 b) $\binom{9}{4}$	19.4 a) $\left[\frac{(n+1)^3}{n \times (n+2)!} \right]$	19.7 d) $\left\lfloor \frac{2^{n+1}-1}{n+1} \right\rfloor$
19.2 c)	19.4 b) $\boxed{\frac{3(3n+2)(3n+1)}{a^3(n+1)^2}}$	19.8 a)
19.2 d) $\left \frac{(2n+1)!}{2^n \times n!} \right $	19.5 a) 3^n	19.8 b) $\left[\sum_{k=0}^{n} \binom{n}{k}^{2} \right]$
19.3 a) $ \frac{n(n-1)}{2} $	19.5 b)	k=0 (n)
2	19.5 c)	19.8 c) $\binom{2n}{n}$

Fiche nº 20. Manipulation des fonctions usuelles

Réponses

100P 012000
20.1 a)
20.1 b)
20.1 c)
20.1 d) $ \frac{\pi}{6} $
20.1 e)
20.1 f) $ \frac{\pi}{3} $
20.2 a)
20.2 b)
20.2 c)
20.2 d)
20.2 e) $ \frac{13}{12} $
20.2 f) $ \frac{3}{5} $
20.3 a) $sh(x+y)$
20.3 b)
20.4 a)
20.4 b)

20.4 c) $-\frac{\ln(3)}{\ln(2)}$	20.7 d). $ [-\ln(4+\sqrt{15}), \ln(4+\sqrt{15})] $	
$\ln(4)$	20.7 e) $\left[\ln(3+\sqrt{10}), +\infty\right[$	
$20.4 \text{ d}) \dots \qquad \boxed{\frac{\ln(1)}{\ln(20/3)}}$	20.7 f)	
20.5 a) $\left \frac{\ln\left(\frac{\sqrt{17}-1}{2}\right)}{\ln(2)} \right $	20.8 a) $x \mapsto \ln(2) \times 2^{x} + 2x$	
20.5 b) $\left\{0; \frac{1}{2}\right\}$	20.8 b). $x \mapsto \frac{15^x \ln(3/5) + 3^x \ln(3)}{(5^x + 1)^2}$	
	20.8 c) $x \mapsto (\ln(x) + 1)x^x$	
20.5 c) $1 - \frac{\ln(2)}{\ln(3)}$	20.8 d). $x \mapsto \frac{\pi}{2\sqrt{1-x^2}\arccos(x)^2}.$	
20.5 d) $\frac{\ln\left(\frac{\sqrt{5}-1}{2}\right)}{\ln(3)}$	20.9 a) $x \mapsto 2x \frac{1}{\sqrt{1-x^4}}$	
20.6 a)	20.9 b) $x \mapsto \mathrm{ch}^2(x) + \mathrm{sh}^2(x)$	
20.6 b)	20.9 c) $x \mapsto \frac{1 - \text{th}^2(x)}{1 + \text{th}^2(x)}$	
20.6 d). $ \begin{cases} \frac{\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \\ 0 \end{cases} $ $ \cup \begin{cases} \frac{2\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \end{cases} $	20.9 d) $x \mapsto \operatorname{sh}(x)\operatorname{ch}(\operatorname{ch}(x))$	
	20.10 a) $x \mapsto 0$	
20.6 e) $\begin{cases} \left\{ \frac{1}{3} + 2k\pi, \ k \in \mathbb{Z} \right\} \\ \cup \left\{ \pi - \frac{1}{3} + 2k\pi, \ k \in \mathbb{Z} \right\} \end{cases}$	20.10 b) $x \mapsto 0$	
	20.11 a) $x \mapsto (\ln(x) + 1)x^x e^{-x^{2x}}$	
20.6 f)	20.11 b). $x \mapsto \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)^2} \frac{1}{2\sqrt{\ln(\operatorname{ch}(x))}}$	

20.11 d)...... $x \mapsto \arctan(x)$

Fiche nº 21. Suites numériques

Repolises		
21.1 a)	21.6 a)	21.9 a)
21.1 b)	21.6 c)	$11\sqrt{5}$
21.1 c) $\boxed{\frac{(2n+5)\cdot 2^{n+3}}{5}}$	21.6 d)	21.9 6)
	21.7 a)	21.10 a) $3^n + (-2)^n$
21.1 d) $\boxed{\frac{3(2n+1) \cdot 2^{3n+2}}{5}}$		21.10 b)
21.2 a)	21.7 b) $\left\lfloor \frac{1}{24} \right\rfloor$	21.11 a) $ \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2} $
21.2 b)	21.8 a) $\left \frac{3}{512} \right $	21.11 b)
21.3 a) $2^{\frac{1}{8}}$	21.8 b)	21.12 a)
21.3 b)	012	21.12 b)
21.4 b)	21.8 c) $\left \frac{3}{1\ 024} \right $	21.12 c)
21.5 a) $2n \ln(n)$	61.41	21.12 d) $F_{n+1} - 2$
21.5 b)	21.8 d) $\frac{6141}{1024}$	21.12 e) $F_{n+1} + 2^{2^n+1}$
21.0 0)		21.12 f) F_{n+2}

Fiche nº 22. Développements limités

22.1 a)
22.1 b)
22.1 c)
22.1 d)
22.2 a) $ e - \frac{ex}{2} + \frac{11ex^2}{24} - \frac{7ex^3}{16} + \frac{2447ex^4}{5760} + \mathop{O}_{x \to 0}(x^5) $
22.2 b) $\left[1 - \frac{1}{4}x^2 - \frac{1}{96}x^4 - \frac{19}{5760}x^6 + \underset{x \to 0}{\text{O}}(x^7)\right]$
22.2 c)
22.2 d) $ 1 - x + \frac{3}{2}(x-1)^2 + \underset{x \to 1}{\text{o}}((x-1)^2) $
22.3 a) $1 - \frac{3\pi^2}{8} \left(x - \frac{\pi}{3} \right)^2 + \underset{x \to \frac{\pi}{3}}{\text{o}} \left(\left(x - \frac{\pi}{3} \right)^2 \right)$
22.3 b)
22.3 c)
22.4 a)
22.4 b) $ \frac{1}{x^2} - \frac{1}{x^3} + \frac{5}{6x^4} - \frac{5}{6x^5} + O(\frac{1}{x^6}) $
22.4 c)
22.4 d) $e^{-\frac{1}{2}\left(e^{x} + \frac{e^{x}}{3x} - \frac{7e^{x}}{36x^{2}}\right) + o_{x \to +\infty}\left(\frac{e^{x}}{x^{2}}\right)}$

Fiche nº 23. Arithmétique

Réponses

rteponses			
23.1 a)	23.4 1	23.7 a) (-5, 2)	$23.9 \ \mathbf{d}$). il est premier
23.1 b) (-7,2)	23.5 a)	23.7 b) 8 (mod 13)	23.10 a)
23.1 c) (-6,7)	23.5 b) $\left \frac{65}{18} \right $	23.7 c) 11 (mod 13)	23.10 b)
23.1 d)	23.5 c)	23.8 a)	23.11 a)
23.2 a)		23.8 b) (2023, 6406)	23.11 b)
23.2 b)	23.5 d) $\left[\frac{1}{29 \ 160} \right]$	23.9 a) $2 \times 3 \times 337$	23.11 d) 5
23.3 a)	23.6 a) (216, 192)	23.9 b) 7×17^2	23.11 d)
23.3 b)	23.6 b) (12, 30)	23.9 c) 43×47	23.11 f)
		,	20.11 1)

Fiche n° 23. Arithmétique 25

Fiche nº 24. Polynômes

Réponses

24.1 a) ...
$$Q = X^{2} + 2X + 1$$

$$R = 2$$
24.1 b) ...
$$Q = X^{2} - 4X + 7$$

$$R = -3X - 8$$
24.1 c) ...
$$Q = X^{2} - 1$$

$$R = -X^{2} + X + 1$$
24.1 d) ...
$$Q = 13X + \frac{25}{2}$$

$$R = \frac{1}{2}(29X^{2} - 5X - 23)$$
24.2 a) ...
$$R = 1$$
24.2 b) ...
$$R = 0$$
24.2 c) ...
$$R = -2nX + 4n - 1$$
24.2 d) ...
$$R = X^{2} + X - 1$$

24.3 a)..... R = 2X - 3

26 Fiche n° 24. Polynômes

Fiche nº 25. Décomposition en éléments simples

25.1 a).....
$$X-3-\frac{1}{X}+\frac{1}{X+1}+\frac{7}{X+2}$$

25.1 b)
$$1 - \frac{2}{X} + \frac{1}{2(X+1)} + \frac{3}{2(X-1)}$$

25.2 a)
$$\frac{\mathrm{e} - 1}{(\mathrm{e} - 2)(X + \mathrm{e})} + \frac{1}{(2 - \mathrm{e})(X + 2)}$$

25.2 c).
$$1 - \frac{5}{(\sqrt{2} + \sqrt{3})(X + \sqrt{3})} - \frac{4}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - X)}$$

25.3 a)
$$\frac{-3}{X-2} + \frac{1}{X-3} + \frac{2}{X-1} + \frac{1}{(X-1)^2}$$

25.3 b)..
$$\frac{2}{X} + \frac{2}{X^2} - \frac{11}{4(X-1)} + \frac{3}{2(X-1)^2} + \frac{3}{4(X+1)}$$

25.3 c)
$$\frac{1}{\pi^2 X} - \frac{1}{\pi^2 (X+\pi)} - \frac{1+\pi}{\pi (X+\pi)^2}$$

25.3 d)
$$\frac{2}{X-i} + \frac{1}{(X-i)^2} - \frac{2}{X-(1+i)} + \frac{1}{(X-(1+i))^2}$$

25.4 a) ...
$$\frac{1}{X+1} - \frac{1}{2(X-1)} - \frac{1+3i}{4(X-i)} - \frac{1-3i}{4(X+i)}$$

25.4 b) .
$$\left| \frac{1}{2X} + \frac{5}{6(X+2)} + \frac{2}{3(X-1)} + \frac{1}{(X-1)^2} \right|$$

25.5 a)
$$\frac{1}{2(n+1)} - \frac{1}{2n} + \frac{1}{4}$$

25.5 b).....
$$-\frac{2}{n+2} + \frac{1}{n} - \frac{1}{3}$$

25.6 a)
$$\frac{2}{X+1} + \frac{1}{(X+1)^2} + \frac{1-2X}{X^2+1}$$

25.6 b).....
$$\frac{1}{2(X-1)} - \frac{3}{2(X+1)} + \frac{X-1}{X^2 + X + 1}$$

25.7 b)
$$\left[-\frac{1}{2} \ln(3) + \frac{2}{3} \ln(2) \right]$$

25.7 c).....
$$\frac{2}{3} - 4\ln(2) + 2\ln(3)$$

25.7 d)
$$\frac{1}{18} - \frac{1}{9}\ln(5) + \frac{2}{9}\ln(2)$$

25.7 f)
$$\frac{1}{2}\ln(2) - \frac{1}{4}\ln(3)$$

25.8 a)
$$\frac{1}{2} \ln \left| \frac{x-1}{1+x} \right|$$

25.8 b)
$$x \mapsto \frac{1}{4(1-2x)^2}$$

25.8 c)
$$\frac{1}{\sqrt{2}}\arctan\left(\frac{x}{\sqrt{2}}\right)$$

25.8 d)
$$\frac{2}{\sqrt{3}}\arctan\left(\frac{2}{\sqrt{3}}X+\frac{1}{\sqrt{3}}\right)$$

25.8 f).
$$\frac{x^2}{2} + 2x + \frac{1}{6} \ln|x+1| - \frac{1}{2} \ln|x-1| + \frac{16}{3} \ln|x-2|$$

25.8 g)
$$x \mapsto \frac{1}{6} \ln(x^2 + 2) - \frac{1}{3} \ln|x + 1| + \frac{\sqrt{2}}{3} \arctan\left(\frac{x}{\sqrt{2}}\right)$$

25.8 h)
$$x \mapsto \frac{1}{2} \frac{2x-1}{x^2-1} + \frac{1}{2} \ln \left| \frac{1-x}{1+x} \right|$$

Fiche nº 26. Calcul matriciel

Réponses	
26.1 a) $ \begin{bmatrix} 1 & -3 & -1 \\ 3 & 3 & 4 \\ 9 & -7 & 3 \end{bmatrix} $	26.2 i)
26.1 b)	$26.2 \; \mathbf{j}) \dots \qquad \qquad \left[\begin{array}{ccc} n & \cdots & n \\ \vdots & (n) & \vdots \\ n & \cdots & n \end{array} \right]$
26.1 c)	$26.2 \; \mathbf{k}) \dots \dots \dots \left[\begin{pmatrix} n^2 & \cdots & n^2 \\ \vdots & (n^2) & \vdots \\ n^2 & \cdots & n^2 \end{pmatrix} \right]$
26.1 d) $ \begin{bmatrix} 1 & 7 & -2 \\ 2 & 14 & -4 \\ -1 & -7 & 2 \end{bmatrix} $	$ \begin{array}{cccc} & \left(n^{-} \right) & \vdots \\ & \left(n^{2} & \cdots & n^{2} \right) \\ & & & \\ & & $
$-\frac{1}{2}$	26.3 a) $2 \times 3^{j-i} \times 5^{i-1}$
26.1 e)	26.3 b)
26.1 f)	26.3 c)
26.1 g)	26.3 d)
26.1 h)	26.4 a) $2^{i-j} \binom{i-1}{j-1}$
26.1 i)	26.4 b)
26.2 a)	26.5 a) $ \boxed{ \frac{1}{2(\pi - e)} \begin{pmatrix} 2 & -e \\ -2 & \pi \end{pmatrix} } $
26.2 b)	26.5 b) $ \frac{1}{3} \begin{pmatrix} 1 & -1 - 2i \\ 1 & -1 + i \end{pmatrix} $
26.2 c)	26.5 c)
$26.2 \text{ d}) \dots \qquad \left[\begin{pmatrix} 4 & 5 \\ 0 & 9 \end{pmatrix} \right]$	26.5 d) $ \frac{1}{4\pi} \begin{pmatrix} 0 & 4 & 0 \\ 0 & -2 & -2 \\ 2 & -1 & 1 \end{pmatrix} $
26.2 e)	/
26.2 f)	26.5 e) $ \frac{1}{8} \begin{pmatrix} 8 & 4 & -2 \\ -16 & -6 & 7 \\ 0 & -2 & 1 \end{pmatrix} $
26.2 g)	26.5 f) $ \boxed{ \frac{1}{6} \begin{pmatrix} -2 & 2 & 2 \\ 1 & -1 & 2 \\ 4 & 2 & -4 \end{pmatrix} } $
26.2 h) $ \left[\begin{pmatrix} \cos(3\theta) & -\sin(3\theta) \\ \sin(3\theta) & \cos(3\theta) \end{pmatrix} \right] $	

26.5 i)
$$\frac{1}{2} \begin{pmatrix} 0 & -1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

26.6 a)
$$\lambda \neq 1$$

26.6 b).....
$$\frac{1}{1-\lambda} \begin{pmatrix} -4 & -1 & 3\\ 2\lambda + 2 & \lambda & -2\lambda - 1\\ \lambda - 1 & 0 & 1 - \lambda \end{pmatrix}$$

26.6 c)
$$\lambda \neq 1$$

26.6 d)
$$\frac{1}{1-\lambda} \begin{pmatrix} -1 - \lambda + \lambda^2 & 1 - \lambda & 2 - \lambda \\ 1 & 0 & -1 \\ 1 - \lambda^2 & \lambda - 1 & \lambda - 1 \end{pmatrix}$$

Fiche nº 27. Algèbre linéaire

Réponses		
27.1 a)	27.2 d)	27.4 c) $\boxed{\frac{1}{2} \begin{pmatrix} -19 & -43 \\ 9 & 21 \end{pmatrix}}$
27.1 b)	27.2 e)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
27.1 c)	27.2 f)	$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}$
	27.3 a)	27.4 d) $\begin{vmatrix} 1 & 0 & 1 \\ 3 & -1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$
27.1 d)	27.3 b)	
27.1 e)	27.3 c)	27.4 e) $ \begin{vmatrix} 1 & 2 & 4 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{vmatrix} $
27.1 f)	27.3 d)	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
27.1 g) $(1/2, -\sqrt{3}/2)$	27.4 a) $\begin{pmatrix} 1 & 1 \\ 3 & -5 \end{pmatrix}$	27.5 a) $\begin{bmatrix} -1 & -1 & 1 \\ 4 & 15 & 0 \end{bmatrix}$
27.2 a)		
27.2 b)	27.4 b) $\begin{bmatrix} -5 & 3 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \end{bmatrix}$
27.2 c)		$ 27.5 \text{ b)} \dots \qquad \begin{vmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} $
		$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

Fiche nº 28. Équations différentielles

28.1 a) $x \mapsto 56e^{12x}$	28.3 d)
28.1 b) $x \mapsto 6e^x - 1$	28.4 a) $x \mapsto e^x$
28.1 c) $x \mapsto \frac{8e^{3x} - 5}{3}$	28.4 b)
28.1 d) $x \mapsto 9e^{2x} - 6$	28.4 c) $x \mapsto \frac{4}{3}e^x - \frac{1}{3}e^{-2x}$
28.2 a) $x \mapsto e^{(6-x)/5}$	28.4 d) $x \mapsto (2-x)e^x$
28.2 b) $x \mapsto 1 - 2e^{-2x/7+2}$	28.4 e) $x \mapsto (2-x)e^{2-2x}$
28.2 c) $x \mapsto \left(\frac{6}{\sqrt{5}} + \pi\right) e^{\sqrt{5}x} - \frac{6}{\sqrt{5}}$	28.5 a) $x \mapsto \cos x + 2\sin x$
28.2 d) $x \mapsto \left(12 + \frac{2e}{\pi}\right) e^{\pi x - \pi^2} - \frac{2e}{\pi}$	28.5 b) $x \mapsto e^{-x/2} \left(\cos \frac{\sqrt{3}x}{2} - \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}x}{2} \right)$
	$28.5 \text{ c}) \dots \qquad \qquad x \mapsto e^{-x} \sin(x)$
$egin{aligned} 28.3 & \mathrm{a}) & & & & & & & & & & & & & & \\ 28.3 & \mathrm{b}) & & & & & & & & & & & & & & & \\ \hline 28.3 & \mathrm{b}) & & & & & & & & & & & & & & \\ \hline \mathbf{x} & \mapsto & \mathrm{e}^{2x} & & & & & & & & & \\ \hline \mathbf{x} & \mapsto & \mathrm{e}^{x} & & & & & & & & \\ \hline \end{array}$	28.5 d)
28.3 c)	

Fiche nº 29. Séries numériques

100 p 0115 05			
29.1 a) divergente	29.3 a)	29.4 c) $\left\lceil \frac{1-7i}{350} \right\rceil$	29.6 a) divergente
29.1 b)			29.6 b)
29.1 c) $2 + \sqrt{2}$	29.3 b) divergente	29.4 d) $\left \frac{-2 - 5\sqrt{2}i}{54} \right $	29.7 a)
29.1 d) $\left[\frac{1}{2 \times 3^9}\right]$	29.3 c) divergente	29.5 a)	29.7 b)
29.2 a) e	29.4 a) $\left\lfloor \frac{1}{12} \right\rfloor$	29.5 b) $\frac{1}{4}$	29.7 c)
29.2 b) $e^2 - 3$	29.4 b) $\frac{e}{e-1}$	29.5 c)	29.7 d) $ \frac{2e^3}{(e-1)^3} $
29.2 c)		29.5 d)	

Fiche nº 30. Structures euclidiennes

30.3 c)
30.4 a)
30.4 b) $\left[(\sqrt{3}X, \sqrt{\frac{15}{43}} (4X^2 - 9X + 4)) \right]$
$1 \begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$
30.5 a) $ \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} $
(1 0 2)
30.5 b)
30.5 c)

Fiche nº 31. Groupes symétriques

31.1 a) $ \boxed{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} } $	31.2 b)	31.4 b) id
	31.2 c)	31.4 c)
31.1 b) $ \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 1 & 3 & 4 \end{vmatrix} $	31.2 d)	31.4 d) (1 6 7 4)(2 5 3)
	31.2 e)	31.5 a)
31.1 c) $ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 2 & 5 & 1 \end{pmatrix} $	31.2 f)	31.5 b)
		31.5 c)
31.1 d) $ \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 6 & 5 & 3 & 4 \end{vmatrix} $	31.3 a) (1 7 4)(2 6 8 10)(3 9 5)	31.5 d)
	31.3 b) (1 3 10 6 4)(5 7)(8 9)	31.5 e)
31.1 e) $ \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 4 & 2 & 3 \end{vmatrix} $	31.3 c)	31.5 f)
$(1 \ 2 \ 3 \ 4 \ 5 \ 6)$	31.3 d)	31.6 a)
31.1 f) $ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 1 & 5 & 4 \end{pmatrix} $	31.3 e)	31.6 b)
31.2 a)		31.6 c)
	31.4 a)	31.6 d)

Fiche nº 32. Déterminants

Réponses

Repolises		
32.1 a)	32.2 c)	32.4 b)
32.1 b)	32.2 d)	32.4 c)
32.1 c) $-5 + 6i$	32.2 e) $7\sqrt{2} + 13$	32.5 a) $x^3 + y^3 + z^3 - 3xyz$
32.1 d)	32.3 a)	32.5 b)
32.2 a)2	32.3 b)	32.5 c) $(y-x)(z-y)(z-x)$
32.2 b) $9 \ln(2)$	32.3 c)	
	32.4 a)	32.5 d)

Fiche n° 32. Déterminants

Fiche nº 33. Fonctions de deux variables

33.1 a)
33.1 b) $\boxed{]0,+\infty[\times[0,+\infty[]]}$
33.1 c)
33.1 d)
33.2 a) $ \frac{\partial f}{\partial x}(x,y) = 2x + y \text{ et } \frac{\partial f}{\partial y}(x,y) = 5y^4 + x $
33.2 b) $ \frac{\partial f}{\partial x}(x,y) = 2y\cos(2xy - y) \text{ et } \frac{\partial f}{\partial y}(x,y) = (2x - 1)\cos(2xy - y) $
33.2 c) $ \frac{\partial f}{\partial x}(x,y) = (2xy,2x) \text{ et } \frac{\partial f}{\partial y}(x,y) = (x^2,-2y) $
33.2 d) $ \frac{\partial f}{\partial x}(x,y) = \frac{2}{1 + (2x+y)^2} \text{ et } \frac{\partial f}{\partial y}(x,y) = \frac{1}{1 + (2x+y)^2} $
33.3 a) $ \frac{\partial f}{\partial x}(x,y) = -\sin(x-y) \text{ et } \frac{\partial f}{\partial y}(x,y) = \sin(x-y) $
33.3 b)
33.3 c)
33.3 d) $ \frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{y^2(y^2 - x^2)}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases} $ et $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{2x^3y}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases} $
33.4 a) $\boxed{\sin(2t)}$
33.4 b)
33.4 c)
33.5 a)
33.5 a)
33.5 b) $ \frac{\partial (f \circ \varphi)}{\partial r}(r, \theta) = \cos \theta \frac{\partial f}{\partial x}(r \cos \theta, r \sin \theta) + \sin \theta \frac{\partial f}{\partial y}(r \cos \theta, r \sin \theta) $
33.5 b) $ \frac{\partial (f \circ \varphi)}{\partial \theta}(r, \theta) = -r \sin \theta \frac{\partial f}{\partial x}(r \cos \theta, r \sin \theta) + r \cos \theta \frac{\partial f}{\partial y}(r \cos \theta, r \sin \theta) $