# Fourier Theorem or Fourier Analysis

Baron Jean Baptise Joseph Fourier (1768-1830) introduced the idea that any periodic function can be represented by a series of sines and cosines which are harmonically related.

#### **Basic Definitions**

A function f(x) is said to have period P if f(x+P)=f(x) for all x. Let the function f(x) has period  $2\pi$ . In this case, it is enough to consider behavior of the function on the interval  $[-\pi,\pi]$ . The Fourier series of the function f(x) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos nx + b_n \sin nx\}$$
 (1)

where the Fourier series  $a_0$ ,  $a_n$ , and  $b_n$  are defined by the integrals

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$
  $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx,$   $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$  (2)

## Fourier Series of Even and Odd Functions

The Fourier series expansion of an even function f(x) with the period of  $2\pi$  does not involve the terms with sines and has the form:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \tag{3}$$

where the Fourier coefficients are given by the formulas

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx \tag{4}$$

$$a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos nx \, dx \tag{5}$$

Accordingly, the Fourier series expansion of an odd  $2\pi$ -period function f(x) consists of sine terms only and has the form:

$$f(x) = \sum_{n=1}^{\infty} \{b_n \sin nx\}$$
 (6)

where the coefficient  $b_n$  are

$$b_n = \frac{2}{\pi} \int_0^\pi f(x) \sin nx \, dx \tag{7}$$

Below we are consider expansions of  $2\pi$ -periodic functions into their Fourier series.

# Example 1:

Let the function f(x) be  $2\pi$ -periodic and suppose that it is by the Fourier series:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos nx + b_n \sin nx\}$$

Calculate the coefficients  $a_0$ ,  $a_n$ , and  $b_n$ 

#### Solution:

To define  $a_0$ , we integrate the Fourier series on the interval  $[-\pi, \pi]$ 

$$\int_{-\pi}^{\pi} f(x) dx = \frac{a_0}{2} \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-\pi}^{\pi} \cos nx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, dx \right]$$
 (8)

$$\frac{a_0}{2} \int_{-\pi}^{\pi} dx = \pi a_0 \tag{9}$$

For all n > 0,

$$\int_{-\pi}^{\pi} \cos nx \, dx = \left. \left( \frac{\sin nx}{n} \right) \right|_{-\pi}^{\pi} = 0 \tag{10}$$

and

$$\int_{-\pi}^{\pi} \sin nx \, dx = \left( -\frac{\cos nx}{n} \right) \Big|_{-\pi}^{\pi} = 0 \tag{11}$$

Therefore, all the terms on the right of the summation sign are zero, so we obtain

$$\int_{-\pi}^{\pi} f(x) dx = \pi a_0 \qquad or \qquad a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \tag{12}$$

In order to find the coefficients  $a_n$ , we multiply both sides of the Fourier series by  $\cos mx$  and integrate term by term:

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \frac{a_0}{2} \int_{-\pi}^{\pi} \cos mx \, dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-\pi}^{\pi} \cos nx \cos mx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \cos mx \, dx \right]$$
 (13)

The first term on the right side is zero. Then using the well-known trigonometric identities, we have

right side is zero. Then using the well-known trigonometric identities, we have
$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \left[ \sin(n+m)x + \sin(n-m)x \right] dx = 0, \tag{14}$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \left[ \cos(n+m)x + \cos(n-m)x \right] dx = 0, \tag{15}$$

if  $m \neq n$ .

In case when m = n, we can write:

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} [\sin 2mx + \sin 0] \, dx$$

$$\Rightarrow \int_{-\pi}^{\pi} \sin 2mx \, dx = \frac{1}{2} \left[ \left( -\frac{\cos 2mx}{2m} \right) \Big|_{-\pi}^{\pi} \right]$$

$$= \frac{1}{4m} \left[ -\cos(2m\pi) + \cos(2m(-\pi)) \right] = 0$$

Now

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} 2 \cos^2 mx \, dx \tag{16}$$

$$\Rightarrow \frac{1}{2} \int_{-\pi}^{\pi} (\cos 2mx + 1) \, dx = \frac{1}{2} \left[ \left( \frac{\sin 2mx}{2m} \right) \Big|_{-\pi}^{\pi} + 2\pi \right] = \frac{1}{4m} \left[ \sin(2m\pi) - \cos(2m(-\pi)) \right] + \pi = \pi. \tag{17}$$

Thus,

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = a_m \pi, \qquad \Rightarrow a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \, dx, \qquad m = 1, 2, 3, \dots$$
 (18)

Similarly, multiplying the Fourier series by  $\sin mx$  and integrating term by term, we obtain the expression for

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \, dx, \qquad m = 1, 2, 3, \dots$$
 (19)

Rewriting the formulas for  $a_n$ ,  $b_n$ , we can write the final expressions for the Fourier coefficients:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx.$$

Example 2:

Find the Fourier series for the square  $2\pi$ -periodic wave function defined on the interval  $[-\pi, \pi]$ :

$$f(x) = 0, \quad if \quad -\pi \le x \le 0,$$

$$f(x) = 1, \quad if \quad 0 < x \le \pi,$$



Figure 1: Square wave

#### Solution:

First we calculate the constant  $a_0$ :

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} 1 \, dx = \frac{1}{\pi} . \pi = 1$$
 (20)

Find now the Fourier coefficients for  $n \neq 0$ :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \cos nx \, dx = \frac{1}{\pi} \left[ \left( \frac{\sin nx}{n} \right) \Big|_{0}^{\pi} \right] = \frac{1}{\pi n} \cdot 0 = 0$$
 (21)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \sin nx \, dx = \frac{1}{\pi} \left[ \left( -\frac{\cos nx}{n} \right) \Big|_{0}^{\pi} \right] = -\frac{1}{\pi n} (\cos n\pi - \cos 0) = \frac{1 - \cos n\pi}{n\pi}$$
 (22)

As  $\cos n\pi = (-1)^n$ , we can write

$$b_n = \frac{1 - (-1)^n}{n\pi} \tag{23}$$

Thus, the Fourier series for the square wave is

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin nx$$
 (24)

We can easily find the first few terms of the series  $S_n$ . By setting, for example, n+5, we get

$$f(x) = \frac{1}{2} + \frac{1 - (-1)^{2}}{\pi} \sin x + \frac{1 - (-1)^{2}}{2\pi} \sin 2x + \frac{1 - (-1)^{3}}{3\pi} \sin 3x + \frac{1 - (-1)^{4}}{4\pi} \sin 4x + \frac{1 - (-1)^{5}}{5\pi} \sin 5x + \dots$$
 (25)

$$f(x) = S_n = \frac{1}{2} + \frac{2}{\pi} \sin x + \frac{2}{3\pi} \sin 3x + \frac{2}{5\pi} \sin 5x + \dots$$
 (26)

The graph of the function and the Fourier series expansion for n = 15 is shown below in Figure 2.



Figure 2: Fourier analysis of square wave for different n

## Example 3:

Find the Fourier series for the saw-tooth wave defined on the interval  $[-\pi, \pi]$  and having period  $2\pi$ .

#### Solution:

Calculate the Fourier coefficients for the saw-tooth wave. Since this function is odd (Figure 3), then  $a_0 = a_n = 0$ . Find the coefficients  $b_n$ :

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx \tag{27}$$

To calculate the latter integral we use integration by parts:

$$\int_{-\pi}^{\pi} u dv = (uv)|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} v du$$

Let  $u=x, dv=\sin nx \, dx$ . Then  $du=dx, v=\int \sin x \, dx=-\frac{\cos nx}{n}$ , so the integral becomes

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left[ \left( -\frac{x \cos nx}{n} \right) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left( -\frac{\cos nx}{n} \right) \, dx \right] = \frac{1}{n\pi} \left[ -2\pi \cos n\pi + \left( \frac{\sin nx}{n} \right) \Big|_{-\pi}^{\pi} \right]$$
(28)

$$b_n = \frac{1}{n\pi} \left[ -2\pi \cos n\pi + \frac{1}{n} (\sin n\pi - \sin(-n\pi)) \right] = \frac{1}{n\pi} \left[ -2\pi \cos n\pi + \frac{2\sin n\pi}{n} \right] = \frac{2}{n\pi} \left[ \frac{\sin n\pi}{n} - \pi \cos n\pi \right]$$
 (29)

Substituting  $\sin n\pi = 0$  and  $\cos n\pi = (-1)^n$  for all integer values of n, we obtain

$$b_n = \frac{2}{n\pi} \left( -\pi (-1)^n \right) = -\frac{2}{n} (-1)^n = \frac{2}{n} \left( -1 \right)^{n+1}$$
(30)



Figure 3: Sawtooth wave



Figure 4: Fourier analysis of sawtooth wave

Thus, the Fourier series expansion of the sawtooth wave (Figure 3) is

$$f(x) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin nx$$

You may check the following link:

https://www.youtube.com/watch?v=dsOcmAV-Yek

http://bilimneguzellan.net/en/follow-up-to-fourier-series-2/