Université Paul Sabatier UPSSITECH 1A Examen d'Electronique Numérique Durée 1h00 - Sans Documents

NOM: Prénom: Spécialité:

Exercice I : combinatoire (Durée conseillée 30 min) – 9,5 pts

On souhaite réaliser un système assurant la gestion de l'allumage des différents feux d'une voiture.

Deux modes de fonctionnement sont possibles : mode manuel ou mode automatique. Un capteur présent sur le tableau de bord indique par un signal électrique le niveau de luminosité extérieure :

- si la luminosité L est faible (niveau logique « 0 »), alors on est en mode automatique.
- si la luminosité **L** est suffisante (niveau logique « 1 »), alors on est en mode manuel.

Lorsque le système est en mode manuel, un sélecteur à 3 positions (S_V, S_C, S_P) permet de choisir le type d'éclairage désiré :

- la position **S**_V allume les feux de position **V** (veilleuses),
- la position S_C allume les feux de croisement C (codes),
- la position **S**_P allume les feux de route **P** (phares).

L'activation du mode automatique déclenche l'allumage des feux de croisement **C**. En outre, si le mode automatique est activé, on ne peut pas allumer les feux de position **V** ; par contre, on peut activer les feux de route **P** mais, dans ce cas, les feux de croisement **C** s'éteignent car deux types de feux ne peuvent pas être activés simultanément.

Enfin, que le système soit en mode manuel ou automatique, il est évidemment **impossible** pour le sélecteur d'être simultanément sur deux ou trois des positions S_V , S_C et S_P .

[1] Identifier les variables d'entrée et de sortie du système. (1 pt)

Entrées : L, $S_{V_s}S_{C_s}S_P$ (0,5 pt) Sorties : V, C, P (0,5 pt)

[2] Décrire le fonctionnement du système par une table de vérité. .(4 pts : 0,125 pt par ligne)

L	SV	SC	SP	V	С	Р
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	*	*	*
0	1	0	0	0	1	0
0	1	0	1	*	*	*
0	1	1	0	*	*	*
0	1	1	1	*	*	*
1	0	0	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	*	*	*
1	1	0	0	1	0	0
1	1	0	1	*	*	*
1	1	1	0	*	*	*
1	1	1	1	*	*	*

Question 3, mettre la moitié des points si la réponse est correcte à partir d'un résultat faux issu d'une question précédente

[3] Déterminer par la méthode de votre choix les équations simplifiées de chaque sortie et les présenter chacune sous la forme de produits de somme. (4,5 pts)

Table de Karnaugh de V : (0,75 pt)

Tuble de Ramaagn de (. (0,75 pt)					
T. C.	$S_C S_P$	00	01	11	10
LS _V					
00		0	0	X	0
01		0	X	X	X
11		1	X	X	X
10		0	0	X	0

Table de Karnaugh de C : (0,75 pt)

LS _v	$S_C S_P$	00	01	11	10	
00		1	0	X	1	
01		1	X	X	X	
11		0	X	X	X	
1	.0	0	0	X	1	

Table de Karnaugh de P : (0,75 pt)

LS_{V}	$S_C S_P$	00	01	11	10
00		0	1	X	0
01		0	X	X	X
11		0	X	X	X
10		0		X	0

Équations simplifiées : (0,75 pt par équation)

$$V = S_V.L$$
, $C = S_C + \overline{L.S_P}$, $P = S_P$

Exercice II: séquentiel (durée conseillée 30 min) - 10,5 Pts

Le schéma de la figure ci-dessous décrit le circuit de la fonction à étudier. À t=0, $Q_3Q_2Q_1=000$ et les entrées $PRESET_1=PRESET_2=PRESET_3=CLR_1=CLR_2=CLR_3=1$ (non actives).

[1] Donner le type de bascule utilisée dans ce système et rappeler la table de vérité de cette bascule (0,5 pt)

Bascule D à front montant

[2] Donner les équations de D_1 , D_2 et D_3 en fonction de Q_1 , Q_2 et Q_3 (1,5 pt : 0,5 pt par équation)

$$D1 = \overline{Q1}$$

$$D2 = Q1 \oplus Q2$$

$$D3 = \left(\overline{\overline{Q1} + \overline{Q2}}\right) \oplus Q3 = \left(Q1 \cdot Q2\right) \oplus Q3$$

- [3] Déterminer l'état des entrées D1, D2 et D3 pour les 2 premières impulsions d'horloge (1,5 pt : 0,25 pt par valeur))
 - 1^{ère} impulsion d'horloge

•
$$D_1 = 1$$

$$D_2 = 0$$

$$D_3 = 0$$

• 2^{ème} impulsion d'horloge

•
$$D_1 = 0$$

$$D_2 = 1$$

$$D_3=0$$

[4] Dessiner le chronogramme du circuit (D₃, D₂, D₁, Q₃, Q₂, Q₁) pour les 9 premières impulsions d'horloge (4,5 pt)

[5] Donner la fonction de ce système et préciser si le système est synchrone ou asynchrone (justifier votre réponse). (1 pt)

Compteur synchrone modulo 8

Dans la structure synchrone, l'horloge est la même pour tous les étages. Le basculement de toutes les sorties se fait en même temps

[6] Donner l'état de D_1 , D_2 , D_3 , Q_1 , Q_2 et Q_3 si on active (mise à 0) les entrées CLR_1 , CLR_2 et CLR_3 sur le front descendant de la $5^{\text{ème}}$ impulsion d'horloge ? (1,5 pt)

• $D_1=0$

 $D_2 = 0$

 $D_3 = 0$

 \bullet $Q_1=0$

 $Q_2 = 0$

 $Q_3 = 0$