Introdução Programação Paralela - Hardware

Aula 3

Arquitetura Convencional

A máquina de Van Neuman

Unidade Lógica Aritmética

Barramento de dados e instruções

Arquitetura Van Neuman

- Embora bastante eficiente em sua origem, é um problema
 - Acesso sequencial
- Uma alternativa para acelerar os acessos aos dados e instruções e execução deles
 - Memória Cache
 - Pipeline

Cache

- Uma memória de acesso muito rápido
- Normalmente localizada no mesmo chip do processador
- Realiza o armazenamento intermediário de dados e instruções
- Princípio de Localidade

Princípio de Localidade

- Lembranças mais recentes são armazenadas em memórias menores de curta duração
- Enquanto as mais antigas em memórias de longa duração e maior capacidade
- Pode ser
 - Temporal
 - Espacial

Temporal

 Um dado acessado recentemente tem mais chance de ser usado novamente do que um dado usado a mais tempo

 Sendo assim, o sistema de memória tende a manter os dados e instruções recentemente acessados no topo da hierarquia da memória

Espacial

 Há uma probabilidade de acesso maior para dados e instruções em endereços próximos àqueles acessados recentemente

 Sendo assim, quando uma instrução é acessada, a instrução com maior probabilidade de ser executada em seguida é a instrução logo a seguir dela

Pipelines

• É uma técnica de Hardware

Unidades especializadas

 Próxima instrução geralmente está armazenada nos registradores da CPU

Ganho substancial de velocidade

Pipeline - Problemas

- Dependência de instruções
- Desvios
 - Ex: um retorno do programa

Pipeline

Pipeline

Superescalar

- Consiste em aumentar o número de pipeline
- Vantagens
- Paralelismo real
 - 2 ou mais instruções executando simultaneamente
- Desvantagens
 - Aumento de complexidade
 - Problemas de dependência e desvios

Outra alternativa

Uso de arquiteturas paralelas

 A forma da estruturação de hardware paralelo pode variar bastante

Classificação de Flyn

- SISD
 - Sistemas convencionais
- SIMD
 - Computadores vetoriais
- MISD
 - Arrays sistólicos
- MIMD
 - Paralelismo massivo

Array Sistólicos

Sistema composto por elementos dispostos matricialmente

 Cada elemento computa uma função simples e única

 Cada elemento está conectado apenas aos seus vizinhos mais próximos através de um caminho unidirecional

Array Sistólicos

- Um único sinal de controle enviado através do arranjo é um pulso de relógio, utilizado para sincronizar as operações
- Os dados de entradas são inseridos nos dois lados da matriz e passam através do arranjo em duas direções ortogonais
- Os dados são extraídos como uma série de elementos de um dos dois lados restantes da matriz
- EX: Multiplicação de matriz

Array Sistólicos

SIMD

 Paralelismo alcançado dividindo os dados entre os processadores

Aplica-se a mesmo instrução para múltiplos dados

Chamado de paralelismo de dados

SIMD

SIMD

- E se tivéssemos mais dados do que ALU?
- Dividia-se o trabalho de forma iterativa

Round3	ALU ₁	ALU ₂	ALU ₃	ALU ₄
1	X[0]	X[1]	X[2]	X[3]
2	X[4]	X[5]	X[6]	X[7]
3	X[8]	X[9]	X[10]	X[11]
4	X[12]	X[13]	X[14]	

Inconvenientes

- Todas as ALUs são necessárias para executar a mesmo instrução ou permanecem inativas
- Normalmente, devem operar de forma síncrona
- As ALUs não possuem instruções de armazenamento
- Não eficiente para paralelismo mais complexo

Processadores vetoriais

 Implementa conjunto de instruções que operam em matrizes ou vetores de dados

Cada instrução é um loop

Registradores vetoriais

Processadores vetoriais

 Possui unidades funcionais vetorizadas e de pipeline SIMD

- Memória intercalada
 - Múltiplos banco de memória, que podem ser acessados independentemente
 - Distribuí elementos de um vetor em vários bancos

Processadores vetoriais

Contras

- Escalabilidade
- Incapacidade de lidar com estrutura de dados irregulares

Prós

- Rápido
- Fácil de usar
- Largura de banda (taxa de transferência) da memória é alto
- Excelente para aceleradores gráficos

Processadores Vetoriais - Exemplo

- Imagine mudar o brilho da tela
- Perca de tempo utilizando um processador tradicional (escalar)
- Já utilizando processadores vetoriais
- Ex: Playstation 3 usada o processador CELL
 - Composto por um escalar e 8 vetoriais

Perspectivas

 São ainda equipamentos preferidos no setor automobilísticos, aeroespaciais e jogos

- Na arquitetura das GPU
 - núcleos vetoriais(SIMD) e
 - Superescalares (MIMD)

MIMD

 Suporta múltiplos fluxos de instrução simultânea que operam em múltiplos fluxos de dados

 Consistem de um conjunto de unidades ou núcleos de processamento totalmente independentes

Como obter Paralelismo?

- Basicamente 2 sistemas
 - Os multiprocessadores
 - Os multicomputadores
- A diferença é a forma do acoplamento entre os elementos de processamento
- O que muda nos processadores?
 - Nada, exceto a quantidade de elementos de processamento
- Na memória?
 - Quase tudo

Memória compartilhada – Diferenças em termo de Hardware

 Arquitetura UMA (Uniform Memory Acess) ou conhecido como SMP(Multiprocessadores Simétricos)

 Arquitetura NUMA (Non- Uniform Memory Acess)

UMA

UMA

Problemas de contenção

• Escalabilidade reduzida

NUMA

MultiComputadores - Distribuído

 O padrão de acesso é feito através de troca de mensagem

• MPI, RMI, RPC, etc...

Sistema de memória distribuída

Metodologia de Foster

 A maior parte dos problemas têm várias soluções paralelas

PCAM ou Metodologia de Foster

Metodologia de Foster

- Consiste em 4 etapas
 - Particionamento
 - Comunicação
 - Agrupamento
 - Mapeamento

Metodologia de Foster

- Particionamento
 - Divide os cálculos a ser realizados juntamente com os dados a serem operados em pequenas tarefas
- Comunicação
 - Determina qual comunicação deve ser realizada entre as tarefas identificadas da etapa anterior

Metodologia de Foster

- Aglomeração ou agregação
 - Combina tarefas e comunicações identificadas na primeira etapa em tarefas maiores

Metodologia de Foster

Mapeamento

- Atribuir as tarefas compostas identificadas no passo anterior para as threads/processos.
- Isso deve ser feito para minimizar a comunicação
- E para cada processo/thread tenham aproximadamente a mesma quantidade de trabalho

Métricas - Objetivos

Desempenho

Escalabilidade

Métricas

- Fatores que condicionam tais métricas
- Limites Arquiteturais
 - Latência e largura de banda
 - Coerência dos dados
 - Capacidade de memória
- Limites Algorítmicos
 - Falta de paralelismo (código sequencial/concorrência)
 - Frequência de comunicação e Sincronização
 - Escalonamento Deficiente (granularidade das tarefas/ balanceamento de carga)

Métricas de Desempenho

- Há métricas para 2 classes distintos
 - Métricas de desempenho para processadores
 - Métricas de desempenho para aplicações paralelas

Métricas de Desempenho para Aplicações Paralelas

- Há várias medidas que permitem medir/ avaliar o desempenho em uma aplicação paralela
 - Speedup
 - Eficiência
 - Redundância
 - Utilização
 - Qualidade

Métricas de Desempenho para Aplicações Paralelas

- Existe várias leis/métricas que permitem direcionar o comportamento de uma aplicação paralela para o seu potencial desempenho
 - Lei de Amdahl
 - Lei de Gustafson-Baris
 - Métrica de Karp-Flatt
 - Métricas de Isoeficiencia

Speedup

• É uma medida do grau do desempenho

$$S(p) = \frac{T(1)}{T(p)}$$

T(1) é o tempo de execução com um processador

T(p) é o tempo de execução com p processadores

	1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs
T(p)	1000	520	280	160	100
S(p)	1	1,92	3,57	6,25	10,00

Eficiência

• É uma medida do grau de aproveitamento dos recursos computacionais

$$E(p) = \frac{S(p)}{p} = \frac{T(1)}{p \times T(p)}$$

S(p) é o speedup para p processadores

	1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs
S(p)	1	1,92	3,57	6,25	10,00
E(p)	4	0,96	0,89	0,78	0,63

Redundância

• É uma medida do grau do aumento da computação

$$R(p) = \frac{O(p)}{O(1)}$$

O(1) é o número total de operações realizadas com 1 processador O(p) é o número total de operações realizadas com p processadores

	1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs
O(p)	10000	10250	11000	12250	15000
R(p)	1	1,03	1,10	1,23	1,50

Utilização

• É uma medida do grau de aproveitamento da capacidade computacional

$$U(p) = R(p) \times E(p)$$

	1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs
R(p)	1	1,03	1,10	1,23	1,50
E(p)	1	0,96	0,89	0,78	0,63
U(p)	1	0,99	0,98	0,96	0,95

Qualidade

• É uma medida do grau de importância de utilizar programação paralela

$$Q(p) = \frac{S(p) \times E(p)}{R(p)}$$

	I CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs
S(p)	1	1,92	3,57	6,25	10,00
E(p)	1	0,96	0,89	0,78	0,63
R(p)	1	1,03	1,10	1,23	1,50
Q(p)	1	1,79	2,89	3,96	4,20

Lei Amdahl

- A computação realizada por uma aplicação paralela pode ser dividida em 3 classes
 - -C(seq)
 - C(par)
 - -C(com)

Lei Amdahl

- Se f for a fração da computação que só pode ser realizada sequencialmente, e
- 0<=f<=1, então o speedup máximo de uma aplicação paralela com p processadores é:

$$S(p) \le \frac{1}{f + \frac{1 - f}{p}}$$

Lei de Amdahl

 No entanto, pode ser utilizada também para determinar o limite máximo de speedup que uma determinada aplicação poderá alcançar independentemente do número de processadores a utilizar

$$\lim_{p \to \infty} \frac{1}{0,1 + \frac{1 - 0,1}{p}} = 10$$

Lei de Amdahl

$$S(p) \le \frac{1}{0,1 + \frac{1 - 0,1}{8}} \approx 4,71$$

 Suponha que pretende determinar se é vantajoso desenvolver uma versão paralela de uma determinada aplicação sequencial. Por experimentação, verificou-se que 90% do tempo de execução é passado em procedimentos que se julga ser possível paralelizar. Qual é o speedup máximo que se pode alcançar com uma versão paralela do problema executando em 8 processadores?

Lei de Amdahl

Escalabilidade

 Capacidade de manter a mesma eficiência à medida que o número de processadores e a complexidade do problema aumentam proporcionalmente

 Capacidade de utilizar mais recursos computacionais de forma efetiva

Conclusões

- Sistema serial
 - O padrão de hardware tem sido a arquitetura proposta por Von Neuman
- Hardware Paralelo
 - Taxonomia de Flynn
- Software Paralelo
 - Preocupar-se em desenvolver software para sistemas MIMD
- Design para Programas Paralelos
 - Metodologia de Foster

Conclusões

- Desempenho
 - Métricas
 - Lei de Amdahl

Rede

- Afeta o desempenho da memória compartilhada e distribuída
- Possui 2 categorias
- Rede de memória compartilhada
- Rede de memória distribuída

Rede de Memória Compartilhada

- Rede de Barramento
- Uma coleção de fio para comunicação paralela que junto com algum hardware controla o acesso ao barramento
- A comunicação pelos fios são compartilhadas pelos dispositivos que são conectados a ele
- Como o número de dispositivos conectado ao barramento aumenta
- A disputa pelo seu uso também
- Diminuindo o desempenho

Rede de Memória Compartilhada

- Interconexão Switched (comutada)
 - Utiliza chaves para controlar a rota dos dados entre os dispositivos conectados
 - Comutação CrossBar
 - Permite comunicação simultânea entre diferentes dispositivos
 - Mais rápido do que barramentos
 - Porém o custo dos aparelhos são relativamente maiores
 - Utiliza relês para controlar o fluxo das informações

- Uma rede crossbar com 4 Processadores e 4 módulos de memória
- A configuração interna de um crossbar
- Acesso simultâneo à memória pelos processadores

Rede de Conexão de Memória Distribuída

- 2 Grupos
- Interconexão direta
 - Cada switch é diretamente conectado a um par de processador e memória
 - E os switchs são ligados uns aos outros
- Interconexão indireta
 - Switchs n\u00e3o podem ser conectados diretamente a um processador