FISEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Low-cost method for sodium borohydride regeneration and the energy efficiency of its hydrolysis and regeneration process

L.Z. Ouyang ^{a, b, c}, H. Zhong ^{a, b}, Z.M. Li ^{a, b}, Z.J. Cao ^{a, b}, H. Wang ^{a, b}, J.W. Liu ^{a, b}, X.K. Zhu ^{a, b}, M. Zhu ^{a, b, *}

- ^a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- b Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, People's Republic of China
- ^c Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641, People's Republic of China

HIGHLIGHTS

- The regeneration process for NaBH₄ is designed using MgH₂ with NaBO₂.
- The energy efficiency of the hydrolysis and regeneration of NaBH₄ is 49.91%.
- A cheap method for NaBH₄ regeneration was developed by reacting H-Mg₃La with NaBO₂.
- The mechanism of NaBH₄ regeneration by reacting Mg₃La hydride with NaBO₂ is revealed.

ARTICLE INFO

Article history: Received 8 March 2014 Received in revised form 8 July 2014 Accepted 12 July 2014 Available online 18 July 2014

Keywords:
Sodium borohydride
Energy efficiency
Magnesium—lanthanum hydrides
Ball milling

ABSTRACT

Hydrolysis of sodium borohydride (NaBH₄) is one of the most attractive methods for energy generation of mobile systems used as hydrogen source because of the high gravimetric density and controllable hydrogen generation of NaBH₄. However, regeneration of NaBH₄ is a key issue that remains to be solved, and the energy efficiency of NaBH₄ is unknown. In the present study, the energy efficiency of NaBH₄ hydrolysis and the entire process of sodium metaborate (NaBO₂) regeneration via reaction with magnesium hydride (MgH₂) is determined through thermodynamics calculations. The maximum energy efficiency is 49.91%, indicating that NaBH₄ generation by reaction between MgH₂ and NaBO₂ during ball milling is feasible. An inexpensive high-energy ball milling method is employed to regenerate NaBH₄ by reaction of NaBO₂ with magnesium—lanthanum hydrides (H—Mg₃La). Products after ball milling are characterized through Fourier transform infrared spectroscopy and X-ray diffraction measurements. In the reaction of NaBO₂ with H—Mg₃La, MgH₂ reacts with NaBO₂ and then lanthanum hydride (LaH₃) reacts with NaBO₂ to produce NaBH₄.

 $\ensuremath{\text{@}}$ 2014 Elsevier B.V. All rights reserved.

1. Introduction

Because of the world energy crisis, replacement of fossil fuel has become a key issue. In this regard, hydrogen energy is an important alternative source of energy [1]. Unlike oil or natural gas, however, hydrogen is an energy carrier rather than a source of energy [2]. Appropriate methods for hydrogen generation and storage must therefore be developed to utilize it [3]. Hydrolysis is one of the most attractive methods of hydrogen generation because it obviates

storage and produces a large amount of hydrogen. Among the hydrogen complexes that produce hydrogen by hydrolysis and function as storage material for hydrogen, sodium borohydride (NaBH₄) has been extensively studied. It has been utilized in hydrogen supply systems of fuel cells [4,5]. The nonhazardous characteristic and high gravimetric density (10.8wt%) [3] of NaBH₄ favor the use of this complex in hydrogen production. NaBH₄ hydrolyzes according to the following process:

$$NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2$$
 $\Delta H = -75 \text{ kJ mol}^{-1} H_2$ (1)

This highly controllable reaction generates pure hydrogen. Thus, it can be directly used in fuel cells [3,6]. The byproduct of this reaction, sodium metaborate (NaBO₂), is environmentally friendly

^{*} Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. E-mail address: memzhu@scut.edu.cn (M. Zhu).

and nontoxic. As NaBH₄ hydrolysis is irreversible, a key issue is discovering a means to convert NaBO₂ back to NaBH₄ [7]. For example, the less-expensive reducing metal, magnesium (or its hydride), has been used to produce NaBH₄ from dehydrated NaBO₂. Work on this approach was largely conducted by Kojima et al. [8]. They synthesized NaBH₄ by heating a mixture of dehydrated NaBO₂ and MgH₂ or a mixture of NaBO₂ and Mg under high H₂ pressure and elevated temperature. This synthesis proceeds through reactions described in Equations (2) and (3).

$$NaBO_2 + 2MgH_2 \rightarrow NaBH_4 + 2MgO$$
 (2)

$$NaBO_2 + 2Mg + 2H_2 \rightarrow NaBH_4 + 2MgO$$
 (3)

Other researchers further studied processes for converting NaBO₂ back to NaBH₄ through the above reaction [10,11]. Kojima et al. [8] synthesized NaBH₄ by heating dehydrated NaBO₂ and magnesium silicide (Mg₂Si) under high H₂ pressure at elevated temperature. However, energy consumption of such processes is very high. To achieve a new, economical route of NaBH₄ synthesis, Hsueh et al. [7], Çetin et al. [9], and Kong et al. [6] ball-milled dehydrated NaBO₂ and MgH₂ at room temperature. The yield of this process is 76%.

The U.S. Department of Energy advises against the use of NaBH₄ in on-board automotive hydrogen storage. One of the main reasons behind this advisory is the cost of NaBH4 and the irreversible process of its hydrolysis [12]. We thus examined the energy efficiency and heat effect of the entire process of NaBH₄ recycling to determine the feasibility of hydrogen generation by NaBH₄ hydrolysis. NaBO₂ and MgH₂ were used to synthesize NaBH₄ by ball milling, and the energy efficiency of the entire recycling process was determined through thermodynamic calculations. The energy consumption of the regeneration procedure was discussed in accordance with the calculations. To reduce the cost and temperature of NaBH₄ synthesis, we reacted MgH₂ and lanthanum hydride (LaH₃) mixtures produced by hydrogenating magnesium-lanthanum alloy (Mg₃La) [13-15] with NaBO₂ by ball milling at room temperature. Our process avoids the use of MgH₂, which is synthesized by hydrogenation at a high temperature; it is thus an alternative route for the regeneration of NaBH₄ for industrial use.

2. Experimental

2.1. Sample preparation

MgH $_2$ powder (98% purity) was purchased from Alfa Aesar (USA). Mg $_3$ La was prepared by induction melting of Mg (99.9%) and lanthanum (99.9%) in an alumina crucible under an argon atmosphere. The alloys were milled for 0.5 h in a QM-2SP planetary ball mill at a ball-to-powder mass ratio of 20:1. The NaBO $_2$ powder was dried at 280 °C to obtain anhydrous NaBO $_2$. To prevent samples and raw materials from oxidation and/or hydroxide formation, they were stored and handled in an Ar-filled glove box equipped with a recirculation system.

2.2. Synthesis of NaBH₄

Hydrogenation of Mg₃La was performed for 0.5 h at room temperature. MgH₂–NaBO₂ mixtures (2:1 mole ratio) and magnesium hydride—lanthanum hydride (3MgH₂–LaH₃)–NaBO₂ mixtures (4.4:9 mole ratio) were prepared. The mixtures were processed in a high-speed vibrating mill (QM-3C) using two sizes of balls.

2.3. Purification of NaBH₄

Purification of NaBH₄ was accomplished by extracting NaBH₄ with anhydrous ethylenediamine (99% purity) from the products after milling and then separating the extracted solution from the byproducts and remaining reactants through a polytetrafluoroethylene filter. The filtrate was dried in a vacuum oven at 50 °C to obtain NaBH₄.

2.4. Sample characterization

H–Mg₃La, as well as products after reaction and after purification were characterized by using a Philips X'Pert MPD X-ray diffractometer with Cu Kα radiation. Patterns in the 2θ range of $10^{\circ}-90^{\circ}$ were recorded at a scanning rate of 0.02° s $^{-1}$. The reaction products were analyzed by Fourier transformed infrared (FT-IR) spectroscopy (Bruker Vector 33).

3. Results and discussion

3.1. Regeneration of NaBH₄ using NaBO₂ and MgH₂

To obtain a cyclical process with NaBH₄ hydrolysis and regeneration for hydrogen generation, NaBH4 was regenerated by using NaBO₂ and MgH₂. Fig. 1 presents X-ray diffraction (XRD) patterns of the products after ball milling for different durations. Peaks of the XRD pattern of the product after 0.5 h of ball milling (Fig. 1(a)) could be indexed to MgH₂, NaBH₄ [16], and MgO. According to the phase analysis mentioned above, NaBH₄ and the by-product MgO were produced after 0.5 h of ball milling. Peaks of the XRD pattern of the product after 2 h of ball milling (Fig. 1(c)) could be indexed to NaBH₄ and MgO. In contrast to the XRD patterns in Fig. 1(a) and (b), the pattern in Fig. 1(c) does not have diffraction peaks of MgH₂. Stronger diffraction peaks of NaBH₄ in Fig. 1(c) compared with peaks in Fig. 1(d) suggest that part of the MgH₂ phase reacted with NaBO₂ and part of it became refined. Peaks of the XRD pattern of the product after 4 h of ball milling (Fig. 1(e)) could be indexed to NaBH₄ and MgO. The energy input for the vibrating mill used in this process of NaBH₄ regeneration was omitted in the subsequent calculation.

Fig. 1. XRD patterns of the powders produced after shaker milling the MgH₂-NaBO₂ mixture (in 2:1 mol ratio) for different durations (a) 30 min (b) 1 h (c) 2 h (d)3 h (e) 4 h.

3.2. Energy efficiency of NaBH₄ hydrolysis and regeneration

Calculation of the energy efficiency of NaBH₄ hydrolysis and regeneration was based on the synthesis of NaBH₄ from MgH₂ and anhydrous NaBO₂. The feasibility of this regeneration process was discussed according to the calculation results. Fig. 2 shows the cycle of NaBH₄ hydrolysis and regeneration of NaBH₄ and MgH₂. The energy efficiency is confirmed by the ratio of energy output (E_0) of the cycle to the energy (E_i) input for the reaction of the cycle.

To calculate the energy efficiency, the cycle was divided into three parts. First, NaBH₄ in contact with ruthenium catalyst hydrolyzes at room temperature [17], as described in Equation (1). Through a reaction described in Equation (4), the hydrogen generated from this process can be used in a fuel cell.

$$H_2 + 1/2O_2 \rightarrow H_2O$$
 (4)

Second, the byproduct $NaBO_2$ reacts with MgH_2 during ball milling, producing $NaBH_4$ and the byproduct MgO (Equation (2)), and $NaBH_4$ could then be purified with ethylenediamine and the products could be separated. In order to recycle the byproduct MgO, a method to produce MgH_2 from MgO should be found. This requirement is met by Mg, which is produced industrially by electrolysis of fused magnesium chloride (Equations (5) and (6)) in the third step:

$$MgO + Cl_2 \rightarrow 1/2O_2 + MgCl_2(900 °C)$$
 (5)

$$MgCl_2 \rightarrow Cl_2 + Mg(710 °C)$$
 (6)

Here, chlorine is used to react with MgO at 900 °C to produce MgCl₂, and Mg is obtained by electrolysis of fused MgCl₂. Mg obtained from Equation (6) may be hydrogenated to produce MgH₂ according to Equation (7) [18]:

$$Mg + H_2 \rightarrow MgH_2 \tag{7}$$

The energy from the exothermic hydrogenation could be stored and utilized for other purposes. MgH₂ produced in this process can react with NaBO₂ again to produce NaBH₄.

For convenience, all of the aforementioned reactions are assumed to proceed at constant pressure, and the fuel cell reaction is assumed to occur at constant temperature and pressure. We based the calculation on the assumption that the entire cycle is an ideal path, which means that the extent of reactions is 100% and that all products are completely separated.

Fig. 2. The path of NaBH₄ hydrolysis cycling.

 Table 1

 Enthalpy change of each reaction in the cycling.

Nı (i)	umber	Reaction	Enthalpy change (kJ mol ⁻¹)
1 2 3 4 5		$H_2 + 1/2O_2 \rightarrow H_2O$ $1/4NaBH_4 + 1/2H_2O \rightarrow 1/4NaBO_2 + H_2$ $1/4NaBO_2 + 1/2MgH_2 \rightarrow 1/4NaBH_4 + 1/2MgO$ $1/2MgO + 1/2Cl_2 \rightarrow 1/4O_2 + 1/2MgCl_2 (900 °C)$ $1/2MgCl_2 \rightarrow 1/2Cl_2 + 1/2 Mg (710 °C)$ $1/2 Mg + 1/2H_2 \rightarrow 1/2MgH_2$	$\Delta H_1 = -285.83$ $\Delta H_2 = -75.00$ $\Delta H_3 = -65.87$ $\Delta H_4 = -35.26$ $\Delta H_5 = 298.79$ $\Delta H_6 = -76.15$

According to the standards database [19], the standard enthalpy change of these reactions can be computed as follows:

$$\Delta_{\rm r} H_{\rm m} = \sum n \Delta_{\rm f} H_{\rm m} \tag{8}$$

where, $\Delta_r H_m$ is the standard enthalpy of reaction, n is the stoichiometric number of each reaction component, and $\Delta_f H_m$ is the standard enthalpy of formation. Therefore, the enthalpy change of the reaction may be computed through Kirchhoff's formula:

$$\Delta H_{\rm m} = \Delta_{\rm r} H_{\rm m} + \int C p \, dT \tag{9}$$

where, $\Delta H_{\rm m}$ is the enthalpy of reaction, Cp is the heat capacity at constant pressure, and T is the absolute temperature. Because all of the reactions proceed at constant pressure, the thermal effect of the reaction is equivalent to enthalpy change.

In the cycle, the energy released by the exothermic reaction may be collected for recycling. This part of the energy is thus ignored in the calculation and is regarded as heat released from the reaction. However, energy that the endothermic reaction absorbs is the energy input from the environment, which may be computed from the enthalpy change.

The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from the reaction at constant temperature and pressure [20]. Hydrogen reacts with oxygen in fuel cells at constant temperature and pressure, resulting in energy release; thus, the Gibbs free energy of this reaction is the maximum amount of energy that can be extracted. The standard Gibbs free energy of water is the maximum amount of E_0 of the cycle. The energy efficiency (η) of NaBH₄ hydrolysis and regeneration is thus given by the formula:

$$\eta = E_0/E_i \tag{10}$$

To standardize the unit of measure, the stoichiometric amount of reactants is determined by the number required to generate of 1 mole of hydrogen. For example, 1/4 mole of NaBH₄ as reactant can produce 1 mole of H₂, according to Equation (1); thus, the stoichiometric number of NaBH₄ is 1/4.

Table 1 shows the enthalpy change of each reaction in the cycle. Equation (7) describes the endothermic reaction of this cycle.

However, purification of NaBH₄ entails the evaporation of ethylenediamine, which is endothermic. The enthalpy of vaporization that generates 1 mole of hydrogen is 33.34 kJ, here referred to as ΔH_7 .

According to Fig. 2, hydrogen used to produce MgH_2 could not be regenerated in this cycle. Therefore, additional energy input into the cycle is due to hydrogen, and E_i is described by Equation (11):

$$E_{i} = |1/2\Delta H_{1}| + \Delta H_{5} + \Delta H_{7} = 475.05 \text{ kJ}$$
(11)

where, ΔH_1 is the enthalpy of Equation (4), and ΔH_5 is the enthalpy of Equation (6).

The Gibbs free energy of the reaction between H_2 and O_2 is -237.1 kJ mol⁻¹, according to Equation (12):

$$H_2 + 1/2O_2 \rightarrow H_2O, \ \Delta G = -237.1 \text{ kJ mol}^{-1}$$
 (12)

 E_0 of the cycle is also the Gibbs free energy (ΔG) from Equation (12). E_0 is expressed as follows:

$$E_0 = |\Delta G| = 237.1 \text{ kJ}$$
 (13)

According to Equation (10), the maximum energy efficiency is 49.91%, indicating that about half of the E_i in the cycle is the output in each cycle. If the heat released by the exothermic reaction can be collected for recycling, then the maximum energy efficiency is further improved. It was reported that MgO could be reduced to Mg in a solar furnace [21], which is environmentally friendly and is able to improve the maximum energy efficiency. Therefore, according to the maximum energy efficiency that was computed, the cycle is feasible.

3.3. Synthesis of NaBH₄ using H-Mg₃La

Hydrogenation using Mg is relatively difficult, but Mg₃La easily undergoes hydrogenation at room temperature. In contrast to the method that uses MgH₂ to produce NaBH₄, regeneration by H–Mg₃La may reduce the energy consumption. Therefore, we used H–Mg₃La and NaBO₂ to regenerate NaBH₄ by ball milling. Fig. 3 shows the XRD pattern of hydrogenated Mg₃La. The peaks could be indexed to MgH₂, LaH₃ and MgO, the last of which was found in small amounts. These results indicate that the Mg₃La phase reacted with hydrogen and transformed into MgH₂ and LaH₃, and that production of MgO was due to the oxidization of Mg₃La. The reaction may be described as follows:

$$LaMg_3 + 9/2H_2 \rightarrow 3MgH_2 + LaH_3$$
 (14)

Fig. 4(a) shows the XRD patterns of the reactant mixture before ball milling. Its peaks could be indexed to LaH₃, NaBO₂, MgO, and MgH₂. Fig. 4(b)—(f) shows the XRD patterns of the product after 0.5, 3, 5, 10, and 20 h of ball milling, respectively. Peaks of the XRD pattern in Fig. 4(c) are in a good agreement with the characteristic spectrum of LaH₃ crystal, MgO crystal, and MgH₂ crystal in the JCPDS database. The decrease in intensity of the MgH₂ peaks suggests that NaBO₂ began to react with MgH₂ and formed NaBH₄. The absence of NaBO₂ peaks in Fig. 4(c) was due to pulverization of

Fig. 3. XRD patterns of hydrogenated Mg₃La.

Fig. 4. XRD patterns of (a) the $NaBO_2-Mg_3La$ hydride mixture and the product after ball milling the $NaBO_2-Mg_3La$ hydride mixture for (b) 0.5 h (c) 3 h (d) 5 h (e) 10 h (f) 20 h.

NaBO₂ particles after ball milling and their participation of the particles in the mechanochemical reaction producing NaBH₄.

Peaks of the XRD pattern in Fig. 4(d) could be indexed to LaH₃ and MgO. Peaks corresponding to MgH₂ became indistinguishable and those of LaH₃ broadened. Peaks of the XRD pattern in Fig. 4(e) could be indexed to La₂O₃, LaH₂, and MgO. After 10 h of milling, peaks corresponding to MgH₂ were absent and those corresponding to La₂O₃ and LaH₂ appeared in the XRD patterns. These changes indicate that initially, MgH₂ reacted completely with NaBO₂. Part of the LaH₃ reacted with the remaining NaBO₂ to form NaBH₄, and another part transformed to LaH₂. The reaction between NaBO₂ and LaH₃ may be expressed as follows:

$$9NaBO_2 + 12MgH_2 + 4LaH_3 \rightarrow 9NaBH_4 + 2La_2O_3 + 12MgO$$
 (15)

Products of the above reaction were analyzed by FT-IR spectroscopy. Fig. 5 presents the FT-IR spectrum of the product. As shown in Fig. 5, peaks between 2200 to 2400 cm⁻¹ and at 1125 cm⁻¹ are due to the B–H stretching and B–H deformation vibrations of pure NaBH₄, respectively [22]. These peaks confirm

Fig. 5. FT-IR spectrum of the product after ball milling the $NaBO_2$ - Mg_3La hydride mixture for (a) 5 h (b) 10 h.

Fig. 6. XRD patterns of the white solid product obtained after purifying.

the reaction of H–Mg₃La with NaBO₂ to form NaBH₄. Peaks of NaBH₄ are relatively weak and even unidentified. Fig. 4(e) also indicates the amorphization of NaBH₄ during regeneration. Fig. 4(f) depicts the XRD pattern of the reaction products milled for 20 h. Peaks in this pattern could be indexed to LaH₂, La₂O₃, MgO, and NaBH₄. Relatively strong peaks of NaBH₄ in Fig. 4(f) are due to crystallization of NaBH₄ after 20 h of milling. XRD patterns of the white solid product obtained after 20 h of milling and purification are shown in Fig. 6. Peaks in this pattern could be indexed to the NaBH₄ crystal. Thus, these results also prove that H–Mg₃La could react with NaBO₂ to produce NaBH₄.

4. Conclusion

Recycling of NaBH₄ by NaBH₄ hydrolysis and NaBO₂ regeneration using a reaction with MgH₂, was examined in the present study. The energy efficiency of the entire recycling process was determined according to thermodynamics calculations. The maximum energy efficiency (49.91%) indicates that reaction of MgH₂ with NaBO₂ to form NaBH₄ during ball milling is feasible. An

inexpensive method of NaBH₄ regeneration by ball milling was demonstrated by reacting H–Mg₃La with NaBO₂. Mg₃La, which could be hydrogenated at room temperature, further improved the energy efficiency. In the reaction of H–Mg₃La with NaBO₂, MgH₂ reacts with NaBO₂ completely in the first step and then LaH₃ reacts with NaBO₂ to form NaBH₄.

Acknowledgments

This work was supported by the NBRPC (973 Program No. 2010CB631302), by the National Natural Science Foundation of China Projects (Nos. U1201241 and 51271078), by GDUPS (2014) and by KLGHEI (KLB11003).

References

- [1] J. Lu, Z.Z. Fang, H.Y. Sohn, J. Power Sources 172 (2007) 853-858.
- [2] A. Pozio, M.D. Francesco, G. Monteleone, R. Oronzio, S. Galli, C.D. Angelo, et al., Int. J. Hydrogen Energy 33 (2008) 51–56.
- [3] B.H. Liu, Z.P. Li, J. Power Sources 187 (2009) 527–534.
- [4] J. Lee, T. Kim, Sens. Actuators A 177 (2012) 54–59.
- [5] T. Kim, Int. J. Hydrogen Energy 37 (2012) 2440–2446.
- [6] L.Y. Kong, X.Y. Cui, H.Z. Jin, J. Wu, H. Du, T.Y. Xiong, Energy Fuels 23 (2009) 5049–5054.
- [7] C.L. Hsueh, C.H. Liu, B.H. Chen, C. Chen, Y.C. Kuo, K.J. Hwang, J.R. Ku, Int. J. Hydrogen Energy 34 (2009) 1717–1725.
- [8] Y. Kojima, T. Haga, Int. J. Hydrogen Energy 28 (2003) 989–993.
- [9] Ç. Çakanyildirim, M. GüRü, Renew. Energy 35 (2010) 1895–1899.
- [10] B.H. Liu, Z.P. Li, N. Morigasaki, S. Suda, Int. J. Hydrogen Energy 33 (2008) 1323–1328.
- [11] K.S. Eom, E.A. Cho, M.J. Kim, S.K. Oh, S.W. Nam, H.S. Kwon, Int. J. Hydrogen Energy 38 (2013) 2804–2809.
- [12] U.B. Demirci, O. Akdim, P. Miele, Int. J. Hydrogen Energy 34 (2009) 2638–2645.
- [13] L.Z. Ouyang, C.H. Peng, M. Zhu, Int. J. Hydrogen Energy 32 (2007) 3929–3935.
- [14] L.Z. Ouyang, F.X. Qin, M. Zhu, Scr. Mater. 55 (2006) 1075-1078.
- [15] L.Z. Ouyang, H.W. Dong, M. Zhu, J. Alloys Compd. 446–447 (2007) 124–128.
- [16] Ç. Çakanyildirim, M. GüRü, Energy Source Part A 33 (2011) 1912–1920.
- [17] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder, J. Power Sources 85 (2000) 186–189.
- [18] P. Wang, A.M. Wang, Y.L. Wang, H.F. Zhang, Z.Q. Hu, Scr. Mater. 43 (2000) 83–87.
- [19] N.A. Lange, J.A. Dean, Lange's Handbook of Chemistry, McGraw-Hill, 1979.
- [20] W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics, Springer-Verlag, 1995.
- [21] M.E. Gálvez, A. Frei, G. Albisetti, G. Lunardi, A. Steinfeld, Int. J. Hydrogen Energy 33 (2008) 2880–2890.
- [22] H.P. Zhang, S.Y. Zheng, F. Fang, G.R. Chen, G. Sang, D.L. Sun, J. Alloys Compd. 484 (2009) 352–355.