Notations

MATH-412 - Statistical Machine Learning

Notations

x, y	plain lower case letter denote scalars or elements from general spaces
\mathbf{x}	bold lower case denote vectors (fixed or random depending on context)
X	capitals denote a scalar or vectorial random variable
$\{X = \mathbf{x}\}$	denotes the event that the random variable X takes the value ${f x}$
\boldsymbol{X}	bold capitals denote matrices (possibly random)

Let X be a real valued random variable, and P_X the probability measure associated with X, so that for any set A.

Let X be a real valued random variable, and P_X the probability measure associated with X, so that for any set A. Then

$$P_X(A) = \mathbb{P}(X \in A).$$

Let X be a real valued random variable, and P_X the probability measure associated with X. so that for any set A. Then

$$P_X(A) = \mathbb{P}(X \in A).$$

The expectation is then

$$\mathbb{E}[f(X)] = \int f(x) \, dP_X(x).$$

Let X be a real valued random variable, and P_X the probability measure associated with X, so that for any set A. Then

$$P_X(A) = \mathbb{P}(X \in A).$$

The expectation is then

$$\mathbb{E}[f(X)] = \int f(x) \, dP_X(x).$$

If X has a density p_X then

$$\mathbb{E}[f(X)] = \int f(x) \, p_X(x) \, dx.$$

Math-412 Notations 4/1

Let X be a real valued random variable, and P_X the probability measure associated with X, so that for any set A. Then

$$P_X(A) = \mathbb{P}(X \in A).$$

The expectation is then

$$\mathbb{E}[f(X)] = \int f(x) \, dP_X(x).$$

If X has a density p_X then

$$\mathbb{E}[f(X)] = \int f(x) \, p_X(x) \, dx.$$

Note that

$$\mathbb{P}(X \in A) = \mathbb{E}[1_{\{X \in A\}}] = \int 1_{\{x \in A\}} dP_X(x).$$

where $1_{\{z \in A\}}$ is the *indicator function* equal to 1 if " $z \in A$ " is true and 0 else.

Math-412 Notations

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

If (X,Z) admits a joint probability density $p_{X,Z}(x,z)$, it is possible to define

• the marginal probability density of Z $p_Z(z) = \int p_{X,Z}(x,z)dx$

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

If (X,Z) admits a joint probability density $p_{X,Z}(x,z)$, it is possible to define

- the marginal probability density of Z $p_Z(z) = \int p_{X,Z}(x,z)dx$
- ullet the conditional probability density of X given Z as

$$p_{X|Z}(x|z) = \frac{p_{X,Z}(x,z)}{p_{Z}(z)},$$

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

If (X,Z) admits a joint probability density $p_{X,Z}(x,z)$, it is possible to define

- ullet the marginal probability density of Z $p_Z(z) = \int p_{X,Z}(x,z) dx$
- ullet the conditional probability density of X given Z as

$$p_{X|Z}(x|z) = \frac{p_{X,Z}(x,z)}{p_{Z}(z)},$$

which is only defined for z such that $p_Z(z) > 0$.

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

If (X,Z) admits a joint probability density $p_{X,Z}(x,z)$, it is possible to define

- the marginal probability density of Z $p_Z(z) = \int p_{X|Z}(x,z)dx$
- ullet the **conditional probability density** of X given Z as

$$p_{X|Z}(x|z) = \frac{p_{X,Z}(x,z)}{p_Z(z)},$$

which is only defined for z such that $p_Z(z) > 0$.

In that case we can define the conditional expectation of f(X) given Z as the function $z \mapsto h(z)$ defined by

$$h(z) = \mathbb{E}[f(X)|Z = z] = \int f(x) p_{X|Z}(x|z) dx.$$

Math-412 Notations

Let (X,Z) a pair of random variables with joint probability distribution $P_{X,Z}$.

If (X,Z) admits a joint probability density $p_{X,Z}(x,z)$, it is possible to define

- the marginal probability density of Z $p_Z(z) = \int p_{X,Z}(x,z)dx$
- ullet the conditional probability density of X given Z as

$$p_{X|Z}(x|z) = \frac{p_{X,Z}(x,z)}{p_{Z}(z)},$$

which is only defined for z such that $p_Z(z) > 0$.

In that case we can define the conditional expectation of f(X) given Z as the function $z\mapsto h(z)$ defined by

$$h(z) = \mathbb{E}[f(X)|Z = z] = \int f(x) p_{X|Z}(x|z) dx.$$

It is often useful to consider the random variable h(Z) which is also written

$$h(Z) = \mathbb{E}[f(X)|Z].$$

More general conditional distributions

In fact even when (X,Z) does not admit a joint density, under some technical assumption (e.g. if X and Z belong a finite dimensional vector space) it is possible to define a conditional probability distribution of X given Z which is denoted $P_{X|Z}$.

More general conditional distributions

In fact even when (X,Z) does not admit a joint density, under some technical assumption (e.g. if X and Z belong a finite dimensional vector space) it is possible to define a conditional probability distribution of X given Z which is denoted $P_{X|Z}$. We then have

$$\mathbb{P}(X \in A|Z=z) = P_{X|Z}(A|z)$$

and

$$\mathbb{E}[f(X)|Z=z] = \int f(x) dP_{X|Z}(x|z).$$

Notations

Variance:

$$\mathsf{Var}(X) = \mathbb{E}\big[(X - \mathbb{E}[X])^2\big]$$

Variance:

$$\mathsf{Var}(X) = \mathbb{E}\big[(X - \mathbb{E}[X])^2\big]$$

Conditional variance:

$$\mathsf{Var}(X|Z=z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z=z])^2 \mid Z=z\big]$$

10/13

Variance:

$$\mathsf{Var}(X) = \mathbb{E}\big[(X - \mathbb{E}[X])^2\big]$$

Conditional variance:

$$\mathsf{Var}(X|Z=z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z=z])^2 \mid Z=z\big]$$

$$\mathsf{Var}(X|Z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z])^2 \mid Z\big]$$

Variance:

$$\mathsf{Var}(X) = \mathbb{E}\big[(X - \mathbb{E}[X])^2\big]$$

Conditional variance:

$$\mathsf{Var}(X|Z=z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z=z])^2 \mid Z=z\big]$$

$$\mathsf{Var}(X|Z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z])^2 \mid Z\big]$$

Covariance of real valued r.v.s X and Y:

$$\mathrm{cov}(X,Y) = \mathbb{E}\big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\big]$$

Variance:

$$\mathsf{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Conditional variance:

$$\mathsf{Var}(X|Z=z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z=z])^2 \mid Z=z\big]$$

$$\mathsf{Var}(X|Z) = \mathbb{E}\big[(X - \mathbb{E}[X|Z])^2 \mid Z\big]$$

Covariance of real valued r.v.s X and Y:

$$\mathsf{cov}(X,Y) = \mathbb{E}\big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\big]$$

Covariance matrix \mathbf{C} : If $X=(X_1,\ldots,X_p)^{\top}$ takes values in \mathbb{R}^p , we define

$$\mathbf{C} = \mathsf{Cov}(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}],$$

with $C_{ij} = cov(X_i, X_j)$.

10/13

A property of conditional expectations

We have

$$\mathbb{E}[\,g(Z)\,f(X)\mid Z] = g(Z)\,\mathbb{E}[\,f(X)\mid Z]$$

Math-412

A property of conditional expectations

We have

$$\mathbb{E}[g(Z) f(X) \mid Z] = g(Z) \mathbb{E}[f(X) \mid Z]$$

In words, in a conditional expectation given Z,

- all functions of Z "behave like constants",
- and so functions of Z can be "factored out".

A property of conditional expectations

We have

$$\mathbb{E}[g(Z) f(X) \mid Z] = g(Z) \mathbb{E}[f(X) \mid Z]$$

In words, in a conditional expectation given Z,

- all functions of Z "behave like constants".
- and so functions of Z can be "factored out".

Proof. $\mathbb{E}[q(Z) f(X) \mid Z] = h(Z)$ with

$$h(z) = \mathbb{E}[\,g(Z)\,f(X)\mid Z=z] = \mathbb{E}[\,g(z)\,f(X)\mid Z=z] = g(z)\,\mathbb{E}[\,f(X)\mid Z=z].$$

Math-412 Notations