Tareas

a. Hacer el programa de simulación y usarlo con 25 procesos, luego con 50 procesos, con 100, 150 y 200 procesos. Su programa debe mostrar el promedio de tiempo que está el proceso en la computadora en cada caso y la desviación standard. Haga gráfica con número de procesos y tiempo promedio.

t Promedio	No. Procesos	Intervalos Ilegada
49.074272	25	10
113.363744	50	10
213.167754	100	10
346.237067	150	10
491.88343	200	10

b. Vuelva a correr su simulación, pero ahora los procesos llegar más rápido, es decir en intervalos de 5. Calcule los tiempo promedio para las mismas cantidades de procesos: 25,50,100,150 y 200. Repita lo mismo para intervalos de 1 (mucha carga de trabajo). Haga gráfica con número de procesos y tiempo promedio.

t Promedio	No. Procesos	Intervalos Ilegada
53.217136	25	5
116.998539	50	5
217.958877	100	5
351.198534	150	5
496.922549	200	5

t Promedio	No. Procesos	Intervalos Ilegada
56.014094	25	1
119.906374	50	1
221.791775	100	1
355.167707	150	1
500.953843	200	1

c. Revise las gráficas y trate de reducir el tiempo promedio. Pruebe con:

i. incrementar la memoria a 200

R//. Al incrementar la memoria a 200, se encuentra que los tiempos promedio por proceso son iguales que con memoria 100. Por lo tanto, las gráficas serían las mismas.

ii. luego con poner la memoria nuevamente a 100, pero tener un procesador más rápido (es decir que ejecuta 6 instrucciones por unidad de tiempo)

t Promedio	No. Procesos	Intervalos Ilegada
10.647605	25	10
50.347078	50	10
82.021087	100	10
139.695956	150	10
185.099264	200	10

t Promedio	No. Procesos	Intervalos Ilegada
14.937136	25	5
53.981872	50	5
86.81221	100	5
144.657423	150	5
190.138382	200	5

t Promedio	No. Procesos	Intervalos Ilegada
17.800761	25	1
56.889708	50	1
90.645109	100	1
148.626596	150	1
194.169676	200	1

iii. luego regrese a la velocidad normal procesador pero emplee 2 procesadores.

t Promedio	No. Procesos	Intervalos Ilegada
26.821426	25	10
74.017519	50	10
133.778834	100	10
229.731551	150	10
334.67795	200	10

t Promedio	No. Procesos	Intervalos Ilegada
32.82501	25	5
77.948759	50	5
138.559417	100	5
234.682442	150	5
339.706475	200	5

t Promedio	No.	Intervalos
	Procesos	llegada
34.498335	25	1
80.848419	50	1
142.383883	100	1
238.643155	150	1
343.729295	200	1

Decida cuál es la mejor estrategia para reducir el tiempo promedio de ejecución de los procesos, justifique su respuesta.

En este caso, la mejor estrategia para reducir el tiempo promedio será la de tener un procesador más rápido.

Esto se debe a dos aspectos:

- Memoria RAM: primero, considero que no afectó el aumento de 100 a 200 de memoria RAM ya que la cantidad de Memoria está entre 1 – 10 y no saturarán mucho esta RAM. Además solo se tiene una cola para memoria RAM, aunque se tengan dos procesadores, regresarán a la misma cola "Ready" y deberá esperar a que se desocupe un CPU. Ya estando en el cpu se toma en cuenta el siguente aspecto.
- 2. Al tener un solo procesador más rápido y todos los demás parámetros iguales, se tiene que la probabilidad de pasar por la cola "Waiting" es menor ya que se ejecutan más instrucciones por corrida y como el Random para instrucciones está entre 1-10, se pueden dar algunos ejemplos: en el valor máximo (10 instrucciones), con un procesador de tres instrucciones deberá pasar cuatro veces y con procesador más rápido sólo dos veces. Si se compara con dos cpu; en un caso sean cuatro instrucciones, deberá pasar por lo menos una vez por la cola "Waiting" con dos cpu, en cambio con un cpu más veloz de una vez realiza todas las Instrucciones.