School of Computer Science Engineering and Technology

Course-BTech

Course Code- CSET301

Year- 2022 Date- 26-09-2022 Type- Core Course Name-AIML Semester- Odd Batch- V Sem

Lab Assignment No. 6.1.1

Exp. No.	Name	CO-1	CO-2	CO-3
6.1.1	Decision Tree Classifier	✓	✓	

Objective: To implement Decision Tree Classifier (DT) (using Scikit-learn) and perform binary classification after suitable pre-processing steps.

Download the dataset from:

https://archive.ics.uci.edu/ml/datasets/Raisin+Dataset (10)

About Dataset:

Data Set Characteristics:	Multivariate	Number of Instances:	900	Area:	Life
Attribute Characteristics:	Integer, Real	Number of Attributes:	8	Date Donated	2021-04-01
Associated Tasks: Classification		Missing Values?	N/A	Number of Web Hits:	1532071

Images of Kecimen and Besni raisin varieties grown in Turkey were obtained with CVS. A total of 900 raisin grains were used, including 450 pieces from both varieties. These images were subjected to various stages of pre-processing and 7 morphological features were extracted. These features have been classified using three different artificial intelligence techniques.

Attribute Information:

- 1. Area: Gives the number of pixels within the boundaries of the raisin.
- 2. Perimeter: It measures the environment by calculating the distance between the boundaries of the raisin and the pixels around it.
- 3. MajorAxisLength: Gives the length of the main axis, which is the longest line that can be drawn on the raisin.
- 4. MinorAxisLength: Gives the length of the small axis, which is the shortest line that can be drawn on the raisin.
- 5. Eccentricity: It gives a measure of the eccentricity of the ellipse, which has the same moments as raisins.
- 6. ConvexArea: Gives the number of pixels of the smallest convex shell of the region formed by the raisin.
- 7. Extent: Gives the ratio of the region formed by the raisin to the total pixels in the bounding box
- 8. Class: Kecimen and Besni raisin.

1. Data Pre-processing step: (40)

- a) Read Raisin_Dataset using Pandas and display First 5 rows.
- b) Check the presence of Null Values/Missing Values. If present handle them with suitable approach.
- c) Covert the Class value into discrete: Kecimen as '0' and Besni raisin as '1' class.
- d) Check Feature importance using Chi-Square (Hint: sklearn.feature selection.chi2)
- e) Discard the least important features using chi-square value.
- 2. Split the dataset into 80% for training and rest 20% for testing (sklearn.model_selection.train_test_split function) (5)
- 3. Train DT classifier **using** built-in function on the training set with default parameters (sklearn.tree.DecisionTreeClassifier)(10)
- 4. Evaluate the train model using testset with the help of confusion matrix, Accuracy, Precision and Recall.
- 5. Set the criteria as entropy and log_loss and train the model and evaluate it on testset.
- 6. Parameter Tuning:
 - a. Try with max_depth as [10, 100]
 - b. Min_samples_split as [4, 6,8]
 - c. max_features {"auto", "sqrt", "log2"}
- 7. Compare the results and find the best suitable model

Suggested Platform: Python: Jupyter Notebook/Azure Notebook/Google Colab.