Math 312 Section 951 Test #5 Solutions

August 10, 2023

1 We proceed to prove this statement by taking the contrapositive. Assume n is composite and let n=pm where p is a prime factor. Then

$$M_n = 2^n - 1$$
$$= 2^{pm} - 1$$
$$= (2^p - 1) \sum_{k=0}^{m-1} 2^{pk}$$

Since $2^p - 1 \ge 3, \sum_{k=0}^{m-1} 2^{pk} \ge 5, M_n$ is composite.

2 Assume $n = \prod_{k=1}^{m} p_k^{n_k}$, then

$$\phi(n) = n \prod_{k=1}^{m} \left(1 - \frac{1}{p_k} \right)$$

Since n is a composite number, each prime factor $p_k \leq \sqrt{n}$. We have

$$\phi(n) \le n \prod_{k=1}^{m} \left(1 - \frac{1}{\sqrt{n}} \right) \le n \left(1 - \frac{1}{\sqrt{n}} \right) = n - \sqrt{n}$$

Alternative proof: Since n is composite, there exists a prime number p such that $p \leq \sqrt{n}$ and n = pq. Notice that $q \geq \sqrt{n}$. It is obvious that $p, 2p, \dots, qp$ are not coprime to n. So $\phi(n) \leq n - q \leq n - \sqrt{n}$.

3a Use the following decipher method

$$P = C - 3 \mod 26$$

we reach ICAME ISAWI CONQUERED.

	plaintext	$\operatorname{encryption}$	ciphertext
3b	В	$2 \times 1 + 4 = 6 \mod 26$	G
	I	$2 \times 8 + 4 = 20 \mod 26$	U
	T	$2 \times 19 + 4 = 16 \mod 26$	Q
	С	$2 \times 2 + 4 = 8 \mod 26$	I
	О	$2 \times 14 + 4 = 6 \mod 26$	G
	I	$2 \times 8 + 4 = 20 \mod 26$	U
	N	$2 \times 13 + 4 = 4 \mod 26$	E

4	plaintext	encryption	ciphertext
	DR	$0317^7 = 1579 \mod 2627$	1579
	AM	$0012 = 2155 \mod 2627$	2155
	AS	$0018^7 = 0309 \mod 2627$	0309

5a Assume $n = \prod_{k=1}^{m} p_k^{n_k}$, then

$$\sigma(n) = \prod_{k=1}^{m} \left(\frac{p_k^{n_k+1} - 1}{p_k - 1} \right) = \prod_{k=1}^{m} \left(\sum_{l=0}^{n_k} p_k^l \right)$$

Consider m = 1. Since

$$\sigma(n) = \sum_{l=0}^{n_1} p_1^l = 1 + p_1 + \dots + p_1^{n_1} = 24$$

 $p_1 \neq 2$ and n_1 must be odd. If $n_1 = 1$, n = 23. If $n_1 \geq 3$, since $1 + p_1 + p_1^2 + p_1^3 \geq 1 + 3 + 3^2 + 3^3 > 24$, there is no such n. Consider m = 2, then

$$\sigma(n) = \left(\sum_{l=0}^{n_1} p_1^l\right) \left(\sum_{l=0}^{n_2} p_2^l\right) = \left(1 + p_1 + \dots + p_1^{n_1}\right) \left(1 + p_2 + \dots + p_2^{n_2}\right) = 24$$

Since for $i \in \{1, 2\}$, $1+p_i+\cdots+p_i^{n_i} \ge 3$, the possible scenarios are $3\times 8=24$ and $4\times 6=24$. For the first case, we have $p_1=2, n_1=1, p_2=7, n_2=1$ and n=14 while for the latter case we have $p_1=3, n_1=1, p_2=5, n_2=1$ and n=15.

Consider $m \geq 3$, then

$$\sigma(n) = \prod_{k=1}^{m} \left(\sum_{l=0}^{n_k} p_k^l \right) \ge 3^3 > 24$$

There is no such n. In conclusion, n = 14, 15, 23.

5b Assume $n = \prod_{k=1}^{m} p_k^{n_k}$, then

$$\tau(n) = \prod_{k=1}^{m} (n_k + 1) = 14$$

The possible scenarios are $1 \times 14 = 14$ and $2 \times 7 = 14$. In the first case, we have $n_1 = 13$ and $n = p_1^{13}$ while in the latter case we have $n_1 = 1, n_2 = 6$ and $n = p_1 p_2^6$. The smallest positive integer $n = 3 \times 2^6 = 192$.