

Spy

MELTDOWN & SPECTRE FOR NORMAL PEOPLE

MELTDOWN: THE ATTACK

1. Spy will read the secret

2. Depending on the value, Spy will cache a grey block¹

3. CPU detects Spys access validation and terminates Spy

4. Collector now reads all grey blocks and stops the time

1.Block "It's a 3" will be the block read the fastest

read: 103ns (uncached read)

read: 103ns (uncached read)

read: 3ns (cached)

¹ Actually Spy will cache the address of block #3 and Collector will read the blocks addresses

MELTDOWN: THE ATTACK

Collector

² 1. Spy will read the secret

- ² Depending on the **value**, **Spy** will cache a grey block¹
- ¹ 3. CPU detects **Spys** access validation and terminates **Spy**
 - 4. Collector now reads all grey blocks and stops the time
- 1.Block "It's a 3" will be the block read the fastest

¹ Actually Spy will cache the *address* of block #3 and Collector will read the blocks *addresses*

MELTDOWN

Meltdown exploits two properties of modern CPUs

- Out of order execution of OPs and µOPs
- Timing side channels for the cache

This allows an attacker to

- Read all memory mapped¹ in a process
- This often includes all other processes memory
- ▶ This does NOT allow reading "outside of a VM²"

¹ Virtual vs. physical memory is a subject for another time ² For fully virtualised VMs