Robotik VL2a Kinematik

Inhalt

Mechanische Komponenten

Gelenktypen

- Arbeitsraum

Gelenktypen (1)

Rotationsgelenk (R)

- Die Drehachse bildet einen rechten Winkel mit den Achsen der beiden angeschlossenen Glieder.
- Beispiel
 - Ellbogengelenk

Gelenktypen (2)

- Die Drehachse des Torsionsgelenks verläuft parallel zu den Achsen der beiden Glieder.
- Beispiel
 - Unterarmdrehung

Gelenktypen (3)

Revolvergelenk (V)

- Das Eingangsglied verläuft parallel zur Drehachse, das Ausgangsglied steht im rechten Winkel zur Drehachse.
- Beispiel
 - 5 Schultergelenk (Arm nach vorne)

Gelenktypen (4)

Lineargelenk (L)

- Lineare Gelenke bewirken eine gleitende oder fortschreitende Bewegung entlang der Achse.
- auch
 - Translationsgelenk, Schubgelenk oder prismatisches Gelenk

Arbeitsraum(1)

Arbeitsraum

 Der Arbeitsraum besteht aus denjenigen Punkten im 3D Raum, die von der Roboterhand angefahren werden können. Hierzu sind drei Freiheitsgrade in der Bewegung, also mindestens drei Gelenke erforderlich.

Grundform des Arbeitsraums

 Die Grundform des Arbeitsraums ist der Arbeitsraum, der sich ergeben würde, wenn man die gegenseitige Behinderung der Arme des Roboters und die Begrenzung der Gelenkwinkel nicht berücksichtigt.

Arbeitsraum (2)

Räumliche Koordinatensysteme

Arbeitsraum (3)

Arbeitsraum im kartesischen Koordinatensystem

• Beispiel 1: Hand

L = Lineargelenk

Arbeitsraum: Quader Typ: LLL

Arbeitsraum (4)

Arbeitsraum im kartesischen Koordinatensystem

• Beispiel 2:

Arbeitsraum: Quader Typ: LLL

Arbeitsraum (5)

Arbeitsraum im Zylinderkoordinatensystem

•Beispiel 3:

R = Rotationsgelenk

T = Torsionsgelenk

V = Revolvergelenk

L = Lineargelenk

Arbeitsraum: Hohlzylinder

Typ: LVL

Andere Typen: TLL, LTL

Arbeitsraum (6)

Arbeitsraum im Zylinderkoordinatensystem

Roboter vom Typ "SCARA"

Typ: RRLT

SCARA Roboter bei der Prüfung von Leuchtmittel

Arbeitsraum (7)

Arbeitsraum im Kugelkoordinatensystem

Beispiel 4:

R = Rotationsgelenk

T = Torsionsgelenk

V = Revolvergelenk

L = Lineargelenk

Arbeitsraum: Hohlkugel

Typ: TRL

Arbeitsraum (8)

Arbeitsraum im Kugelkoordinatensystem

Beispiel 5: Gelenkarm-Roboter

Arbeitsraum: Hohlkugel

Typ: TRR

Andere Typen: VVR

Arbeitsraum (9)

Arbeitsraum im Kugelkoordinatensystem

Roboter vom Typ "PUMA"

Beispiele für Arbeitsräume (1)

Robot	Axes		Examples
Principle	Kinematic Structure	Workspace	Photo
Cartesian Robot			
Cylindrical Robot			
Spherical Robot		R	

Beispiele für Arbeitsräume (2)

Paralleler Roboter

Stewart-Plattform

- 6 Freiheitsgrade
 - 3 rotatorisch
 - 3 translatorisch
- Anwendungsfelder:
 - Fahr- und Flugsimulatoren
 - Krantechnologie
 - Medizin
 - Teleskope

Übung

• Beschreiben Sie die Roboterkinematik des Kuka youbots:

 Wie viele / welche Achsen (Bezeichnung, Abkürzung)

 Zeichnen Sie ein Schaubild mit der Anordnung und den korrekten Symbolen

Wie sieht der Arbeitsraum aus?