Package 'Rmach'

August 13, 2024
Title Provides machine learning algorythm
Version 2.0.0.0
Description Provides these algorythms: coefficient finder for regression functions
License GPL (==3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports stringr

Contents

Index

best_model	2
calcall	3
calcall_var	4
datf_folder	5
individual_cloning	8
$individual_equalizer_max \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	1
$individual_equalizer_min~\dots~\dots~1$	2
$individual_route \dots \dots$	9
knn_Rmach	C
$knn_Rmach_cross_validation_k \ \dots \ \dots \ \dots \ \ 2$	1
knn_Rmach_cross_validation_train	2
$lm_label_generation $	3
$lm_label_generation2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	9
poly_model	5
Rmach_det	7
sample_Rmach-class	8
	_

best_model

best_model best_model

Description

Returns the best input models. The coefficient of the best model can be found with the poly_model function

Usage

```
best_model(
  inpt_datf,
  Degree,
  Coeff_v = NA,
  Powers = NA,
  Mth_symb,
  Numrtr_v = NA
```

Arguments

inpt_datf	is the input dataframe, first column for the x values and second column for the y values
Degree	is a vector containing all the degrees. Each degree represents how many coefficients the model has.
Coeff_v	is a list containing the vector containing the coefficients for each model. The first value of each coefficient vector is always the constant, so it is not linked to any math symbol
Powers	is a list containing all the values associated with the math symbols of mth_symb list for each model. Because you can have multiple models in the function, so Powers is separated with the "-" separator between the different powers values for each model like in the examples
Mth_symb	is a list containing the vector of the different math symbols linked to the coefficients from the second value
Numrtr_v	is a list containing the different numerator values for each math symbol for each model, see examples

```
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 2
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 1
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 1
```

calcall 3

```
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c('
#' [1] 1
```

calcall

calcall

Description

Takes a formula as a character as an input and makes the calculation. Accepts also variables, in this case the part of the formula that contains the variable wont be calculated, but the others part will be as usual.

Usage

```
calcall(inpt)
```

Arguments

inpt

is the input formula as a character

print (calcall(inpt="(log_5_Z-2-6+5)+-6+2"))

```
print(calcall(inpt="ze+(yu*((fgf)-(-12+8-Y+4-T+4+97+a)+tt))"))
[1] "ze+(yu*(fgf-(-4-Y+4-T+101+a)+tt))"
print(calcall(inpt="ze+(yu*((fgf)-(-12+8-7+3-67+4+97+1)+tt))"))
[1] "ze+(yu*(fgf-27+tt))"
print(calcall(inpt="ze+(yu*((fgf)+(12*3/2+4)+tt))"))
[1] "ze+(yu*(fgf+22+tt))"
print(calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+5-3*5"))
[1] "7+(-2*(fgf-4))+20"
print(calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log_e_1_e_2+t+2^3)+m-log_e_1_e_1]"
print(calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log_e_1_e_2+t+2^3)+m-log_e_1_e_1]"
print(calcall("(6+4*-(4-5))+3/3"))
[1] "11"
print(calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log_e_1_e_2+t+2^3)+m-log_e_1_e_1]"
print(calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log_e_1_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_1_e_1+1+3*((fgf)-(--12-6)+2))+(-log_e_
```

4 calcall_var

```
[1] "(log_5_Z-3)-4"
print(calcall(inpt="m--2+-5"))
[1] "m-3"
print(calcall(inpt="(-2-6)+-6+2"))
[1] "-12"
print(calcall(inpt="m-6"))
[1] "m-6"
print(calcall(inpt="--6"))
```

calcall_var

calcall_var

Description

Does the same thing as calcall function but calculates the formula that have variables. The values of the variables have to be given in a list of vectors, see examples.

Usage

```
calcall_var(inpt, var_name_v, var_val_l)
```

Arguments

is the input formula, with the variables

var_name_v is the vector that contains the variables name in the order of apparition in the formula. If the variable appears multiple times in the formula, it has to be specified in this vector, see examples.

var_val_l is the list containing the vectors containing the values of each variable, for each point you want to calculate. The vectors has to be given in the same order has the variable in var_name_v.

datf_folder 5

datf_folder

 $datf_folder$

Description

Folds a dataframe, see examples.

Usage

```
datf_folder(inpt_datf)
```

Arguments

inpt_datf is the input dataframe

Examples

print(datf_folder(inpt_datf = iris))

	Sepal Length	Sepal Width	Petal.Length	Petal Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	6.9	3.1	4.9		versicolor
3	4.7	3.2	1.3	0.2	setosa
4	5.1	3.5	1.4	0.3	
					setosa
5	7.2	3.0	5.8	1.6	virginica
6	5.8	2.7	5.1	1.9	virginica
7	5.4	3.0	4.5	1.5	versicolor
8	6.7	3.1	5.6	2.4	virginica
9	6.0	3.0	4.8	1.8	virginica
10	5.4	3.4	1.5	0.4	setosa
11	6.9	3.1	5.4	2.1	virginica
12	5.8	2.7	5.1	1.9	virginica
13	6.4	3.1	5.5	1.8	virginica
14	5.7	2.6	3.5	1.0	versicolor
15	5.4	3.9	1.7	0.4	setosa
16	5.7	2.8	4.1	1.3	versicolor
17	5.1	3.7	1.5	0.4	setosa
18	4.4	3.0	1.3	0.2	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa

6 datf_folder

2.2	6 7	2 1	4 7	1 -	
22	6.7	3.1	4.7		versicolor
23	6.0	3.4	4.5		versicolor
24	6.9	3.1	4.9	1.5	versicolor
25	4.8	3.4	1.9	0.2	setosa
26	5.8	2.7	5.1	1.9	virginica
27	5.0	3.4	1.6	0.4	setosa
28	5.8	2.8	5.1	2.4	virginica
					_
29	6.3	2.3	4.4		versicolor
30	4.7	3.2	1.6	0.2	setosa
31	4.8	3.0	1.4	0.3	setosa
32	5.4	3.4	1.5	0.4	setosa
33	6.1	2.6	5.6	1.4	virginica
34	6.1	3.0	4.6	1.4	versicolor
35	6.0	2.2	4.0		versicolor
36	5.0	3.2	1.2	0.2	
					setosa
37	5.5	3.5	1.3	0.2	setosa
38	5.8	2.8	5.1	2.4	virginica
39	6.2	3.4	5.4	2.3	virginica
40	5.1	3.4	1.5	0.2	setosa
41	5.0	3.5	1.3	0.3	setosa
42	4.5	2.3	1.3	0.3	setosa
43	4.9	3.6	1.4	0.1	setosa
44	5.0	3.5	1.6	0.6	setosa
45	5.7	3.0	4.2		versicolor
46	6.4	2.8	5.6	2.1	virginica
47	6.2	3.4	5.4	2.3	virginica
48	4.6	3.2	1.4	0.2	setosa
49	6.4	3.2	5.3	2.3	virginica
50	5.5	4.2	1.4	0.2	setosa
51	7.7	3.0	6.1	2.3	virginica
52	5.9	3.0	4.2		versicolor
53	6.5	3.0	5.5	1.8	virginica
54	5.4	3.9	1.7	0.4	setosa
55	6.5	2.8	4.6	1.5	versicolor
56	5.8	2.6	4.0	1.2	versicolor
57	5.7	2.8	4.5	1.3	versicolor
58	4.9	2.4	3.3		versicolor
59	6.7	3.1	5.6	2.4	virginica
60	6.1	3.0	4.9	1.8	virginica
61	5.8	2.8	5.1	2.4	-
62	5.9	3.0	4.2	1.5	versicolor
63	5.2	4.1	1.5	0.1	setosa
64	6.9	3.1	4.9	1.5	versicolor
65	5.6	2.9	3.6		versicolor
66	5.4	3.4	1.7	0.2	setosa
67	5.6	3.0	4.5		versicolor
68	5.8	2.7	4.1		versicolor
69	6.2	2.2	4.5		versicolor
70	6.2	2.2	4.5	1.5	versicolor
71	5.9	3.2	4.8	1.8	versicolor
72	6.1	2.8	4.0	1.3	versicolor
73	6.3	2.5	4.9		versicolor
74	5.0	3.0	1.6	0.2	setosa
75	4.6	3.4	1.4	0.3	setosa
76	6.4	3.2	5.3	2.3	-
77	6.7	3.1	4.7		versicolor
78	5.5	4.2	1.4	0.2	setosa

datf_folder 7

79	6.0	2.9	4 E	1 5	
			4.5		versicolor
80	5.4	3.9	1.7	0.4	setosa
81	5.5	3.5	1.3	0.2	setosa
82	6.3	3.3	6.0	2.5	virginica
83	5.8	2.7	3.9	1.2	versicolor
84	6.0	2.7	5.1	1.6	versicolor
85	6.8	2.8	4.8	1.4	versicolor
86	6.1	3.0	4.6		versicolor
87	6.7	3.1	4.7		versicolor
	5.1	3.8		0.2	
88			1.6		setosa
89	6.8	2.8	4.8		versicolor
90	6.9	3.2	5.7	2.3	virginica
91	6.0	3.4	4.5	1.6	versicolor
92	6.1	3.0	4.6	1.4	versicolor
93	5.8	2.6	4.0	1.2	versicolor
94	5.0	2.3	3.3	1.0	versicolor
95	5.7	3.0	4.2		versicolor
96	5.7	3.0	4.2		versicolor
97	5.7	2.9	4.2		versicolor
98	6.4	2.8	5.6	2.2	virginica
99	5.1	3.4	1.5	0.2	setosa
100	5.7	2.8	4.1		versicolor
101	6.5	2.8	4.6	1.5	versicolor
102	4.8	3.4	1.9	0.2	setosa
103	4.4	2.9	1.4	0.2	setosa
104	5.1	2.5	3.0		versicolor
105	7.4	2.8	6.1	1.9	virginica
106	7.6	3.0	6.6	2.1	virginica
107	4.9	2.5	4.5	1.7	virginica
108	7.3	2.9	6.3	1.8	
					virginica
109	4.8	3.4	1.9	0.2	setosa
110	5.7	4.4	1.5	0.4	setosa
111	6.5	3.2	5.1	2.0	virginica
112	6.9	3.2	5.7	2.3	virginica
113	5.9	3.2	4.8	1.8	versicolor
114	7.1	3.0	5.9	2.1	virginica
115	5.8	2.8	5.1	2.4	virginica
116	4.8	3.4	1.9	0.2	setosa
117	4.3	3.0	1.1	0.1	setosa
118					
	6.6	2.9	4.6		versicolor
119	5.1	2.5	3.0		versicolor
120	6.0	2.2	5.0	1.5	virginica
121	5.1	3.4	1.5	0.2	setosa
122	6.3	2.7	4.9	1.8	virginica
123	6.7	3.3	5.7	2.1	virginica
124	6.1	2.6	5.6	1.4	virginica
125	5.0	3.3	1.4	0.2	setosa
126	7.2	3.2	6.0	1.8	virginica
127	6.2	2.8	4.8	1.8	virginica
128	6.1	3.0	4.9	1.8	virginica
					_
129	5.0	3.4	1.6	0.4	setosa
130	6.2	2.2	4.5		versicolor
131	7.4	2.8	6.1	1.9	virginica
132	6.6	2.9	4.6		versicolor
133	6.7	3.3	5.7	2.1	virginica
134	6.3	3.3	4.7	1.6	versicolor
135	5.7	2.9	4.2	1.3	versicolor

8 individual_cloning

136	7.2	3.6	6.1	2.5	virginica
137	6.5	3.0	5.5	1.8	virginica
138	6.4	3.1	5.5	1.8	virginica
139	5.5	4.2	1.4	0.2	setosa
140	5.8	2.7	5.1	1.9	virginica
141	5.0	2.0	3.5	1.0	versicolor
142	6.9	3.1	5.1	2.3	virginica
143	5.8	2.7	5.1	1.9	virginica
144	6.8	3.2	5.9	2.3	virginica
145	6.7	3.3	5.7	2.5	virginica
146	5.1	3.3	1.7	0.5	setosa
147	5.1	3.8	1.9	0.4	setosa
148	6.5	3.0	5.2	2.0	virginica
149	4.6	3.6	1.0	0.2	setosa
150	5.9	3.0	5.1	1.8	virginica

individual_cloning individual_cloning

Description

Allow to generate individuals with the same label as those existig and having as values at variables, a value generated with a normal distribution having as parameters the mean for the variable A for the individual I and the same goes for the standard deviation, see examples.

Usage

```
individual_cloning(inpt_datf, col_vars = c(), label_var, hmn)
```

Arguments

inpt_datf	is the input dataset as a dataframe
col_vars	is a vector containing the colnames or the column numbers of the variables
label_var	is a either the colnames or the column number of the label variable
hmn	is how many of new individual from the same label will be generated

```
datf <- iris
datf[, 5] <- as.character(datf[, 5])</pre>
datf <- individual_cloning(inpt_datf = datf, col_vars = c(1:4), label_var = 5, hmn = 3)</pre>
print(datf)
nrow(datf)
nrow(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                            Species
1
        5.100000 3.500000 1.400000 0.2000000
                                                            setosa
2
         4.900000
                     3.000000
                                  1.400000 0.2000000
                                                            setosa
3
         4.700000 3.200000 1.300000 0.2000000
                                                            setosa
                               1.500000 0.2000000
1.400000 0.2000000
1.700000 0.4000000
4
        4.600000 3.100000
                                                            setosa
5
         5.000000 3.600000
                                                            setosa
         5.400000 3.900000
                                                             setosa
```

individual_cloning 9

7	4.600000	3.400000	1.400000	0.3000000	setosa
8	5.000000	3.400000	1.500000	0.2000000	setosa
9	4.400000	2.900000	1.400000	0.2000000	setosa
10	4.900000	3.100000	1.500000	0.1000000	setosa
11	5.400000	3.700000	1.500000	0.2000000	setosa
12	4.800000	3.400000	1.600000	0.2000000	setosa
13	4.800000	3.000000	1.400000	0.1000000	setosa
14	4.300000	3.000000	1.100000	0.1000000	setosa
15	5.800000	4.000000	1.200000	0.2000000	setosa
16	5.700000	4.400000	1.500000	0.400000	setosa
17	5.400000	3.900000	1.300000	0.4000000	setosa
18	5.100000	3.500000	1.400000	0.3000000	setosa
19	5.700000	3.800000	1.700000	0.3000000	setosa
20	5.100000	3.800000	1.500000	0.3000000	setosa
21	5.400000	3.400000	1.700000	0.2000000	setosa
22	5.100000	3.700000	1.500000	0.4000000	setosa
23	4.600000	3.600000	1.000000	0.2000000	setosa
24	5.100000	3.300000	1.700000	0.5000000	setosa
25	4.800000	3.400000	1.900000	0.2000000	setosa
26	5.000000	3.000000	1.600000	0.2000000	setosa
27	5.000000	3.400000	1.600000	0.4000000	setosa
28	5.200000	3.500000	1.500000	0.2000000	setosa
29	5.200000	3.400000	1.400000	0.2000000	setosa
30	4.700000	3.200000	1.600000	0.2000000	setosa
31	4.800000	3.100000	1.600000	0.2000000	setosa
32	5.400000	3.400000	1.500000	0.4000000	setosa
33	5.200000	4.100000	1.500000	0.1000000	setosa
34	5.500000	4.200000	1.400000	0.2000000	setosa
35	4.900000	3.100000	1.500000	0.2000000	setosa
36	5.000000	3.200000	1.200000	0.2000000	setosa
37	5.500000	3.500000	1.300000	0.2000000	setosa
38	4.900000	3.600000	1.400000	0.1000000	setosa
39	4.400000	3.000000	1.300000	0.2000000	setosa
40	5.100000	3.400000	1.500000	0.2000000	setosa
41	5.000000	3.500000	1.300000	0.3000000	setosa
42	4.500000	2.300000	1.300000	0.3000000	setosa
43	4.400000	3.200000	1.300000	0.2000000	setosa
44	5.000000	3.500000	1.600000	0.6000000	setosa
45	5.100000	3.800000	1.900000	0.400000	setosa
46	4.800000	3.000000	1.400000	0.300000	setosa
47	5.100000	3.800000	1.600000	0.2000000	setosa
48	4.600000	3.200000	1.400000	0.2000000	setosa
49	5.300000	3.700000	1.500000	0.200000	setosa
50	5.000000	3.300000	1.400000	0.200000	setosa
51	7.00000	3.200000	4.70000	1.4000000	versicolor
52	6.40000	3.200000	4.500000		versicolor
53	6.900000	3.100000	4.900000		versicolor
54	5.500000	2.300000	4.000000	1.3000000	versicolor
55	6.500000	2.800000	4.600000		versicolor
56	5.700000	2.800000	4.500000		versicolor
57	6.300000	3.300000	4.700000		versicolor
58	4.900000	2.400000	3.300000		versicolor
59 60	6.600000	2.900000	4.600000		versicolor
60	5.200000	2.700000	3.900000	1.4000000	versicolor
61	5.00000	2.000000	3.500000		versicolor
62	5.900000	3.000000	4.200000		versicolor
63	6.000000	2.200000	4.000000	1.0000000	versicolor

10 individual_cloning

64	6.100000	2.900000	4.700000	1.4000000	versicolor
65	5.600000	2.900000	3.600000	1.3000000	versicolor
66	6.700000	3.100000	4.400000	1.4000000	versicolor
67	5.600000	3.000000	4.500000	1.5000000	versicolor
68	5.800000	2.700000	4.100000	1.0000000	versicolor
69	6.200000	2.200000	4.500000	1.5000000	versicolor
70	5.600000	2.500000	3.900000	1.1000000	versicolor
71	5.900000	3.200000	4.800000	1.8000000	versicolor
72	6.100000	2.800000	4.000000	1.3000000	versicolor
73	6.300000	2.500000	4.900000		versicolor
74	6.100000	2.800000	4.700000	1.2000000	versicolor
75	6.400000	2.900000	4.300000	1.3000000	versicolor
76	6.600000	3.000000	4.400000	1.4000000	versicolor
77	6.800000	2.800000	4.800000	1.4000000	versicolor
78	6.700000	3.000000	5.000000	1.7000000	versicolor
79	6.000000	2.900000	4.500000		versicolor
80	5.700000	2.600000	3.500000	1.0000000	versicolor
81	5.500000	2.400000	3.800000	1.1000000	versicolor
82	5.500000	2.400000	3.700000		versicolor
83	5.800000	2.700000	3.900000		versicolor
84	6.000000	2.700000	5.100000	1.6000000	versicolor
85	5.400000	3.000000	4.500000		versicolor
86	6.000000	3.400000	4.500000	1.6000000	versicolor
87	6.700000	3.100000	4.700000	1.5000000	versicolor
88	6.300000	2.300000	4.400000		versicolor
89	5.600000	3.000000	4.100000		versicolor
90	5.500000	2.500000	4.000000	1.3000000	versicolor
91	5.500000	2.600000	4.400000		versicolor
92	6.100000	3.000000	4.600000	1.4000000	versicolor
93	5.800000	2.600000	4.000000	1.2000000	versicolor
94	5.000000	2.300000	3.300000	1.0000000	
95	5.600000	2.700000	4.200000	1.3000000	versicolor
96	5.700000	3.000000	4.200000	1.2000000	versicolor
97	5.700000	2.900000	4.200000	1.3000000	versicolor
98	6.200000	2.900000	4.300000	1.3000000	versicolor
99	5.100000	2.500000	3.000000	1.1000000	versicolor
100	5.700000	2.800000	4.100000		versicolor
101	6.300000	3.300000	6.000000	2.5000000	virginica
102	5.800000	2.700000	5.100000	1.9000000	virginica
103	7.100000	3.000000	5.900000	2.1000000	virginica
104	6.300000	2.900000	5.600000	1.8000000	virginica
105	6.500000	3.000000	5.800000	2.2000000	virginica
106	7.600000	3.000000	6.600000	2.1000000	virginica
107	4.900000	2.500000	4.500000	1.7000000	virginica
108	7.300000	2.900000	6.300000	1.8000000	virginica
109	6.700000	2.500000	5.800000	1.8000000	virginica
110	7.200000	3.600000	6.100000	2.5000000	virginica
111	6.500000	3.200000	5.100000	2.0000000	virginica
112	6.400000	2.700000	5.300000	1.9000000	virginica
113	6.800000	3.000000	5.500000	2.1000000	virginica
114	5.700000	2.500000	5.000000	2.0000000	virginica
115	5.800000	2.800000	5.100000	2.4000000	virginica
116	6.400000	3.200000	5.300000	2.3000000	virginica
117	6.500000	3.000000	5.500000	1.8000000	virginica
118	7.700000	3.800000	6.700000	2.2000000	virginica
119	7.700000	2.600000	6.900000	2.3000000	virginica
120	6.00000	2.200000	5.000000	1.5000000	virginica
120	0.00000	2.200000	3.000000	1.3000000	virginica

121	6.900000	3.200000	5.700000	2.3000000	virginica
122	5.600000	2.800000	4.900000	2.0000000	virginica
123	7.700000	2.800000	6.700000	2.0000000	virginica
124	6.300000	2.700000	4.900000	1.8000000	virginica
125	6.700000	3.300000	5.700000	2.1000000	virginica
126	7.200000	3.200000	6.000000	1.8000000	virginica
127	6.200000	2.800000	4.800000	1.8000000	virginica
128	6.100000	3.000000	4.900000	1.8000000	virginica
129	6.400000	2.800000	5.600000	2.1000000	virginica
130	7.200000	3.000000	5.800000	1.6000000	virginica
131	7.400000	2.800000	6.100000	1.9000000	virginica
132	7.900000	3.800000	6.400000	2.0000000	virginica
133	6.400000	2.800000	5.600000	2.2000000	virginica
134	6.300000	2.800000	5.100000	1.5000000	virginica
135	6.100000	2.600000	5.600000	1.4000000	virginica
136	7.700000	3.000000	6.100000	2.3000000	virginica
137	6.300000	3.400000	5.600000	2.4000000	virginica
138	6.400000	3.100000	5.500000	1.8000000	virginica
139	6.000000	3.000000	4.800000	1.8000000	virginica
140	6.900000	3.100000	5.400000	2.1000000	virginica
141	6.700000	3.100000	5.600000	2.4000000	virginica
142	6.900000	3.100000	5.100000	2.3000000	virginica
143	5.800000	2.700000	5.100000	1.9000000	virginica
144	6.800000	3.200000	5.900000	2.3000000	virginica
145	6.700000	3.300000	5.700000	2.5000000	virginica
146	6.700000	3.000000	5.200000	2.3000000	virginica
147	6.300000	2.500000	5.000000	1.9000000	virginica
148	6.500000	3.000000	5.200000	2.0000000	virginica
149	6.200000	3.400000	5.400000	2.3000000	virginica
150	5.900000	3.000000	5.100000	1.8000000	virginica
151	4.601009	3.727368	1.268078	0.3122136	setosa
210	4.613076	3.989209	1.555392	0.2953775	setosa
310	4.722235	3.602591	1.479940	0.2471369	setosa
513	5.660667	2.449398	4.241485	1.5317590	versicolor
511	5.987887	3.016099	3.690411	1.5357972	versicolor
512	5.803584	2.828602	4.024589	1.2767213	versicolor
1013	6.851160	3.287923	5.157840	1.5365199	virginica
1011	7.119751	3.460045	4.990113	1.2895762	virginica
1012	7.370573	3.140464	5.680828	1.8674812	virginica
[1] 159					
[1] 150					

```
individual\_equalizer\_max\\ individual\_equalizer\_max
```

Description

Remove the individual that are in exess according to a given value, see examples

```
individual_equalizer_max(inpt_datf, label_var, hmn)
```

Examples

print(individual_equalizer_max(inpt_datf = datf, label_var = 5, hmn = 15))

_		-	-			
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
1	5.0	3.2	1.2	0.2	setosa	
2	5.5	3.5	1.3	0.2	setosa	
3	4.9	3.6	1.4	0.1	setosa	
4	4.4	3.0	1.3	0.2	setosa	
5	5.1	3.4	1.5	0.2	setosa	
6	5.0	3.5	1.3	0.3	setosa	
7	4.5	2.3	1.3	0.3	setosa	
8	4.4	3.2	1.3	0.2	setosa	
9	5.0	3.5	1.6	0.6	setosa	
10	5.1	3.8	1.9	0.4	setosa	
11	4.8	3.0	1.4	0.3	setosa	
12	5.1	3.8	1.6	0.2	setosa	
13	4.6	3.2	1.4	0.2	setosa	
14	5.3	3.7	1.5	0.2	setosa	
15	5.0	3.3	1.4	0.2	setosa	
16	6.0	3.4	4.5	1.6	versicolor	
17	6.7	3.1	4.7	1.5	versicolor	
18	6.3	2.3	4.4	1.3	versicolor	
19	5.6	3.0	4.1	1.3	versicolor	
20	5.5	2.5	4.0	1.3	versicolor	
21	5.5	2.6	4.4	1.2	versicolor	
22	6.1	3.0	4.6	1.4	versicolor	
23	5.8	2.6	4.0	1.2	versicolor	
24	5.0	2.3	3.3	1.0	versicolor	
25	5.6	2.7	4.2	1.3	versicolor	
26	5.7	3.0	4.2	1.2	versicolor	
27	5.7	2.9	4.2	1.3	versicolor	
28	6.2	2.9	4.3	1.3	versicolor	
29	5.1	2.5	3.0		versicolor	
30	5.7	2.8	4.1		versicolor	
31	7.7	3.0	6.1	2.3	virginica	
32	6.3	3.4	5.6	2.4	virginica	
33	6.4	3.1	5.5	1.8	virginica	
34	6.0	3.0	4.8	1.8	virginica	
35	6.9	3.1	5.4	2.1	virginica	
36	6.7	3.1	5.6	2.4	virginica	
37	6.9	3.1	5.1	2.3	virginica	
38	5.8	2.7	5.1	1.9	virginica	
39	6.8	3.2	5.9	2.3	virginica	
40	6.7	3.3	5.7	2.5	virginica	
41	6.7	3.0	5.2	2.3	virginica	
42	6.3	2.5	5.0	1.9	virginica	
43	6.5	3.0	5.2	2.0	virginica	
44	6.2	3.4	5.4	2.3	virginica	
45	5.9	3.0	5.1	1.8	virginica	

Description

Allow to increase the number of inividual from any label to a certain point based on the individual_cloning function from the same package (Rmach)

Usage

```
individual_equalizer_min(inpt_datf, col_vars = c(), label_var, untl)
```

Arguments

is the input dataset as a dataframe

col_vars

is a vector containing the column numbers of the variables

label_var

is a either the column number of the label variable

unt1

is how many individual from the same label the dataset has to have, at minimum

Examples

30

4.700000

3.200000

datf <- iris

```
datf[, 5] <- as.character(datf[, 5])</pre>
datf <- individual_equalizer_min(inpt_datf = datf, col_vars = c(1:4), label_var = 5, untl</pre>
print (datf)
nrow(datf)
nrow(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                          Species
1
        5.100000
                  3.500000 1.400000 0.20000000
                                                          setosa
2
                                 1.400000 0.20000000
        4.900000
                    3.000000
                                                          setosa
3
        4.700000
                                1.300000 0.20000000
                   3.200000
                                                         setosa
4
        4.600000
                   3.100000
                                1.500000 0.20000000
                                                         setosa
5
        5.000000
                               1.400000 0.20000000
                   3.600000
                                                         setosa
6
        5.400000
                   3.900000
                                1.700000 0.40000000
                                                         setosa
7
        4.600000
                   3.400000
                                1.400000 0.30000000
                                                         setosa
8
        5.000000
                                1.500000 0.20000000
                   3.400000
                                                         setosa
9
        4.400000
                   2.900000
                                1.400000 0.20000000
                                                         setosa
10
        4.900000
                   3.100000
                                1.500000 0.10000000
                                                         setosa
11
        5.400000
                   3.700000
                                1.500000 0.20000000
                                                         setosa
12
                                1.600000 0.20000000
        4.800000
                   3.400000
                                                         setosa
13
                                1.400000 0.10000000
        4.800000
                   3.000000
                                                         setosa
14
        4.300000
                   3.000000
                                1.100000 0.10000000
                                                         setosa
15
        5.800000
                   4.000000
                                1.200000 0.20000000
                                                         setosa
16
        5.700000
                    4.400000
                                 1.500000
                                          0.40000000
                                                          setosa
17
        5.400000
                    3.900000
                                 1.300000
                                          0.40000000
                                                          setosa
18
        5.100000
                    3.500000
                                 1.400000
                                          0.30000000
                                                          setosa
19
                                 1.700000
        5.700000
                    3.800000
                                          0.30000000
                                                          setosa
20
        5.100000
                    3.800000
                                 1.500000
                                           0.30000000
                                                          setosa
21
        5.400000
                    3.400000
                                 1.700000
                                           0.20000000
                                                          setosa
22
        5.100000
                    3.700000
                                 1.500000
                                          0.40000000
                                                          setosa
23
        4.600000
                    3.600000
                                 1.000000
                                          0.20000000
                                                          setosa
24
        5.100000
                    3.300000
                                 1.700000
                                          0.50000000
                                                          setosa
2.5
       4.800000
                    3.400000
                                 1.900000
                                          0.20000000
                                                          setosa
26
        5.000000
                   3.000000
                                 1.600000 0.20000000
                                                          setosa
27
        5.000000
                   3.400000
                                1.600000 0.40000000
                                                          setosa
28
        5.200000
                   3.500000
                                1.500000 0.20000000
                                                          setosa
29
        5.200000
                    3.400000
                                 1.400000 0.20000000
                                                         setosa
```

1.600000 0.20000000

setosa

31	4.800000	3.100000	1.600000	0.20000000	setosa
32	5.400000	3.400000	1.500000	0.40000000	setosa
33	5.200000	4.100000	1.500000	0.10000000	setosa
34	5.500000	4.200000	1.400000	0.20000000	setosa
35	4.900000	3.100000	1.500000	0.20000000	setosa
36	5.000000	3.200000	1.200000	0.20000000	setosa
37	5.500000	3.500000	1.300000	0.20000000	setosa
38	4.900000	3.600000	1.400000	0.10000000	setosa
39	4.400000	3.000000	1.300000	0.20000000	setosa
40	5.100000	3.400000	1.500000	0.20000000	setosa
41	5.000000	3.500000	1.300000	0.30000000	
42	4.500000	2.300000	1.300000	0.30000000	setosa
					setosa
43	4.400000	3.200000	1.300000	0.2000000	setosa
44	5.000000	3.500000	1.600000	0.60000000	setosa
45	5.100000	3.800000	1.900000	0.40000000	setosa
46	4.800000	3.000000	1.400000	0.30000000	setosa
47	5.100000	3.800000	1.600000	0.20000000	setosa
48	4.600000	3.200000	1.400000	0.20000000	setosa
49	5.300000	3.700000	1.500000	0.20000000	setosa
50	5.000000	3.300000	1.400000	0.20000000	setosa
51	7.000000	3.200000	4.700000	1.40000000	versicolor
52	6.400000	3.200000	4.500000	1.50000000	versicolor
53	6.900000	3.100000	4.900000	1.50000000	versicolor
54	5.500000	2.300000	4.000000	1.30000000	versicolor
55	6.500000	2.800000	4.600000	1.50000000	versicolor
56	5.700000	2.800000	4.500000	1.30000000	versicolor
57	6.300000	3.300000	4.700000	1.60000000	versicolor
58	4.900000	2.400000	3.300000	1.00000000	versicolor
59	6.600000	2.900000	4.600000	1.30000000	
					versicolor
60	5.200000	2.700000	3.900000	1.40000000	versicolor
61	5.000000	2.000000	3.500000	1.00000000	versicolor
62	5.900000	3.000000	4.200000	1.50000000	versicolor
63	6.000000	2.200000	4.000000	1.00000000	versicolor
64	6.100000	2.900000	4.700000	1.40000000	versicolor
65	5.600000	2.900000	3.600000	1.30000000	versicolor
66	6.700000	3.100000	4.400000	1.40000000	versicolor
67	5.600000	3.000000	4.500000	1.50000000	versicolor
68	5.800000	2.700000	4.100000	1.00000000	versicolor
69	6.200000	2.200000	4.500000	1.50000000	versicolor
70	5.600000	2.500000	3.900000	1.10000000	versicolor
71	5.900000	3.200000	4.800000	1.80000000	versicolor
72	6.100000	2.800000	4.000000		versicolor
73	6.300000	2.500000	4.900000		versicolor
74	6.100000	2.800000	4.700000		versicolor
75	6.400000	2.900000	4.300000		versicolor
76	6.600000	3.000000	4.400000		versicolor
77	6.800000	2.800000	4.800000		versicolor
	6.700000		5.000000	1.70000000	
78 70		3.000000			versicolor
79	6.000000	2.900000	4.500000	1.50000000	
80	5.700000	2.600000	3.500000		versicolor
81	5.500000	2.400000	3.800000	1.10000000	
82	5.500000	2.400000	3.700000		versicolor
83	5.800000	2.700000	3.900000	1.20000000	versicolor
84	6.000000	2.700000	5.100000	1.60000000	versicolor
85	5.400000	3.000000	4.500000	1.50000000	versicolor
86	6.000000	3.400000	4.500000	1.60000000	versicolor
87	6.700000	3.100000	4.700000	1.50000000	versicolor

88	6.300000	2.300000	4.400000		versicolor
89	5.600000	3.000000	4.100000	1.30000000	versicolor
90	5.500000	2.500000	4.000000	1.30000000	versicolor
91	5.500000	2.600000	4.400000	1.20000000	versicolor
92	6.100000	3.000000	4.600000	1.40000000	versicolor
93	5.800000	2.600000	4.000000	1.20000000	versicolor
94	5.000000	2.300000	3.300000	1.00000000	versicolor
95	5.600000	2.700000	4.200000	1.30000000	versicolor
96	5.700000	3.000000	4.200000	1.20000000	versicolor
97	5.700000	2.900000	4.200000	1.30000000	versicolor
98	6.200000	2.900000	4.300000	1.30000000	versicolor
99	5.100000	2.500000	3.000000	1.10000000	versicolor
100	5.700000	2.800000	4.100000	1.30000000	versicolor
101	6.300000	3.300000	6.000000	2.50000000	virginica
102	5.800000	2.700000	5.100000	1.90000000	virginica
102	7.100000	3.000000	5.900000	2.10000000	virginica
103	6.300000	2.900000	5.600000	1.80000000	virginica
	6.500000				
105		3.000000	5.800000	2.20000000	virginica
106	7.600000	3.000000	6.600000	2.10000000	virginica
107	4.900000	2.500000	4.500000	1.7000000	virginica
108	7.300000	2.900000	6.300000	1.80000000	virginica
109	6.700000	2.500000	5.800000	1.80000000	virginica
110	7.200000	3.600000	6.100000	2.50000000	virginica
111	6.500000	3.200000	5.100000	2.00000000	virginica
112	6.400000	2.700000	5.300000	1.90000000	virginica
113	6.800000	3.000000	5.500000	2.10000000	virginica
114	5.700000	2.500000	5.000000	2.00000000	virginica
115	5.800000	2.800000	5.100000	2.40000000	virginica
116	6.400000	3.200000	5.300000	2.30000000	virginica
117	6.500000	3.000000	5.500000	1.80000000	virginica
118	7.700000	3.800000	6.700000	2.20000000	virginica
119	7.700000	2.600000	6.900000	2.30000000	virginica
120	6.000000	2.200000	5.000000	1.50000000	virginica
121	6.900000	3.200000	5.700000	2.30000000	virginica
122	5.600000	2.800000	4.900000	2.00000000	virginica
123	7.700000	2.800000	6.700000	2.00000000	virginica
124	6.300000	2.700000	4.900000	1.80000000	virginica
125	6.700000	3.300000	5.700000	2.10000000	virginica
126	7.200000	3.200000	6.000000	1.80000000	virginica
127	6.200000	2.800000	4.800000	1.80000000	virginica
128	6.100000	3.000000	4.900000	1.80000000	virginica
129	6.400000	2.800000	5.600000	2.10000000	virginica
130	7.200000	3.000000	5.800000	1.60000000	virginica
131	7.400000	2.800000	6.100000	1.90000000	virginica
132	7.900000	3.800000	6.400000	2.00000000	virginica
133	6.400000	2.800000	5.600000	2.20000000	virginica
134	6.300000	2.800000	5.100000	1.50000000	virginica
135	6.100000	2.600000	5.600000	1.40000000	virginica
136	7.700000	3.000000	6.100000	2.30000000	virginica
137	6.300000	3.400000	5.600000	2.40000000	virginica
138	6.400000	3.100000	5.500000	1.80000000	virginica
139	6.000000	3.000000	4.800000	1.80000000	virginica
140	6.900000	3.100000	5.400000	2.100000000	virginica
141	6.700000	3.100000	5.600000	2.40000000	virginica
142	6.900000	3.100000	5.100000	2.30000000	virginica
143	5.800000	2.700000	5.100000	1.90000000	virginica
143	6.800000	3.200000	5.900000	2.30000000	virginica
T 4 4	0.00000	3.200000	5.90000	2.50000000	virgillica

145	6.700000	3.300000	5.700000	2.50000000	virginica
146	6.700000	3.000000	5.200000	2.30000000	virginica
147	6.300000	2.500000	5.000000	1.90000000	virginica
148	6.500000	3.000000	5.200000	2.00000000	virginica
149	6.200000	3.400000	5.400000	2.30000000	virginica
150	5.900000	3.000000	5.100000	1.80000000	virginica
151	5.119546	3.240896	1.659373	0.25516050	setosa
152		4.003746	1.228617		
	4.902088			0.35778383	setosa
153	4.834331	3.698540	1.547812	0.33339113	setosa
154	5.134884	3.180819	1.588032	0.18761885	setosa
155	5.488401	3.298369	1.683031	0.18180736	setosa
156	4.758992	3.086108	1.434159	0.25348240	setosa
157	4.817610	3.052438	1.470246	0.18414810	setosa
158	5.372952	3.815612	1.344489	0.12705451	setosa
159	5.203751	3.331928	1.384586	0.26145797	setosa
160	5.154693	4.326639	1.585445	0.10767788	setosa
161	4.651867	2.915629	1.333128	0.24085761	setosa
162	4.703818	3.295307	1.524695	0.53200346	setosa
163	5.299254	3.127387	1.436154	0.32571756	setosa
164	4.576459	3.690579	1.500380	0.24860844	setosa
165	4.821700	3.891746	1.277726	0.34434218	setosa
166	5.195495	2.693142	1.518095	0.11628275	setosa
167	4.751171	4.076332	1.437831	0.29611751	setosa
168	4.895746	3.340168	1.505157	0.32204518	setosa
169	5.084452	2.649230	1.253577	0.34230634	setosa
170	4.994526	3.283612	1.466568	0.10785695	setosa
171	4.914249	3.713116	1.456736	0.13825711	setosa
172	5.168494	3.384539	1.391309	0.36352904	setosa
173	4.868237	3.608825	1.580430	0.16346689	setosa
174	4.922010	3.812630	1.385674	0.17966376	setosa
175	4.782539	3.520596	1.166369	0.19443475	setosa
176	4.999012	2.953373	1.276890	0.04813659	setosa
177	4.237476	3.501651	1.603897	-0.02137016	setosa
178	4.161835	2.900175	1.340508	0.31471652	setosa
179	5.326641	2.690628	1.367918	0.30229792	setosa
180	5.144879	2.889594	1.627228	0.29699450	setosa
181	5.032020	3.092995	1.262743	0.13014888	setosa
182	4.912576	4.102884	1.592814	0.46510333	setosa
183	4.886276	3.643501	1.362697	0.45850332	setosa
				0.11802271	
184	5.067843	3.644076	1.284018		setosa
185	4.870130	3.261045	1.387769	0.24945158	setosa
186	4.203276	3.532647	1.759381	0.22793382	setosa
187	5.147728	2.949748	1.344759	0.14613345	setosa
188	5.044451	3.821792	1.690910	0.27432788	setosa
189	5.144534	3.260319	1.486522	0.15193060	setosa
190	4.749463	3.242690	1.558031	0.29964703	setosa
191	5.012355	4.056773	1.568806	0.28175520	setosa
192	5.286178	3.657418	1.556329	0.25865612	setosa
193	4.739473	3.599081	1.361732	0.11096506	setosa
194	4.763743	3.719912	1.532282	0.23680057	setosa
195	4.352927	3.606171	1.443575	0.22201153	setosa
196	5.420318	3.234039	1.257110	0.29332868	setosa
197	5.032471	4.002458	1.149330	0.14118440	setosa
198	4.679526	3.634655	1.503754	0.19732104	setosa
199	4.655581	2.890624	1.538909	0.10855489	setosa
200	5.432263	3.587195	1.448039	0.15201721	setosa
201	5.030955	3.620666	1.379309	0.22296525	setosa

202	E 1170E2	3.640415	1 600011	0 22426164	aa+ aaa
202	5.117052		1.680914 1.579905	0.22426164 0.34627623	setosa
203	4.206403	3.577511			setosa
204	5.345245	3.207691	1.351151	0.10816533	setosa
205	5.287934	3.630390	1.494184	0.31610331	setosa
206	4.371540	3.674677	1.483436	0.12756906	setosa
207	4.458787	3.512193	1.499114	0.35598241	setosa
208	4.694526	4.189214	1.065203	0.32728599	setosa
209	5.199256	3.164026	1.523074	-0.00277085	setosa
210	4.857067	3.279462	1.431379	0.28051926	setosa
211	5.120333	3.079011	1.256199	0.26650341	setosa
212	5.526492	3.715932	1.385397	0.10935802	setosa
213	4.255062	3.442076	1.032584	0.22553491	setosa
214	5.547997	3.899931	1.805604	0.14245435	setosa
215	5.056086	3.556886	1.485842	0.25052054	setosa
216	4.602273	3.582194	1.637627	0.10750785	setosa
217	5.707143	3.272366	1.495331	0.24957136	setosa
218	4.529437	3.295707	1.370119	0.22733484	setosa
219	4.815724	3.274761	1.264803	0.19839835	setosa
220	5.219331	3.678528	1.534777	0.31111961	setosa
221	7.469393	3.164987	4.045576		versicolor
222	6.435686	2.759148	4.152976		versicolor
223	6.004909	2.617229	3.374965		versicolor
224	5.998960	2.889328	4.787927	0.99816956	versicolor
225	6.066878	2.738260	4.317450		versicolor
226	6.558577	3.004756	3.518091		versicolor
227	5.226591	2.937582	4.211646		versicolor
228	6.519901	3.085536	4.666132		versicolor
229	6.212108	2.297953	3.256134		versicolor
230	6.234065	2.904038	3.899946		versicolor
231	5.891353	2.871663	3.585063		versicolor
232	5.495659	2.332178	4.373762		versicolor
232	5.484945	3.186158	5.022759	1.03428734	versicolor
234	5.002003	2.716631	4.221475		versicolor
235	6.289043	3.017459	3.910062	1.38286708	versicolor
236	5.700736	3.131150	4.960207	1.14958223	
			4.253273		versicolor
237	5.500216	3.190272			versicolor
238	6.445503	2.960724	4.621510		versicolor
239	5.889688	2.752965	4.360846		versicolor
240	5.217994	2.727503	4.018054		versicolor
241	5.628761	2.782079	4.503714		versicolor
242	5.922639	2.647391	3.774616		versicolor
243	6.021925	2.565549	3.937052		versicolor
244	6.330301	2.687627	4.026615		versicolor
245	6.304311	2.635169	3.998727		versicolor
246	6.663896	3.297885	3.907486		versicolor
247	5.376404	2.885587	3.866554		versicolor
248	4.695327	2.578715	3.943357		versicolor
249	6.278448	3.381682	3.893139		versicolor
250	5.808922	2.342279	4.329488		versicolor
251	6.257850	3.299147	4.763327		versicolor
252	5.397398	2.181731	5.237967		versicolor
253	6.318406	3.370869	4.403785		versicolor
254	6.030213	2.934996	5.690094		versicolor
255	6.322254	2.643724	4.712019		versicolor
256	5.483814	3.540120	3.935919		versicolor
257	4.923149	2.834738	3.978205		versicolor
258	5.102353	3.275399	4.167623	1.69802624	versicolor

0.5.0	6 500555	0 550005	4 500404	1 10061101	
259	6.503755	2.772905	4.500401		versicolor
260	6.024940	2.379938	3.663719		versicolor
261	6.155505	2.960939	4.628437		versicolor
262	6.547596	2.753326	3.814345		versicolor
263	7.340028	3.049036	4.128880	1.43704378	versicolor
264	6.771703	2.744679	3.755760	1.35657812	versicolor
265	6.526113	3.315310	4.723554	1.13676188	versicolor
266	5.737681	2.732723	4.619607	1.20118401	versicolor
267	5.118896	3.053538	5.153921	1.24286955	versicolor
268	6.557536	2.506483	3.775426	1.25665234	versicolor
269	6.773637	3.056770	3.907444	1.48359009	versicolor
270	5.231083	2.716242	3.701491	1.43445828	versicolor
271	6.373044	2.810367	3.823155	1.48776176	versicolor
272	6.689764	2.329003	4.315204	1.20003129	versicolor
273	5.909787	2.877026	3.921463		versicolor
274	5.985060	3.408963	4.312826		versicolor
275	5.720711	3.047025	4.502301		versicolor
276	6.075586	2.625810	3.462166		versicolor
277	5.979742	3.037604	4.337108		versicolor
278	5.944742	3.187138	4.131605		versicolor
279	5.377366	2.850410			
			4.848731		versicolor
280	5.911520	2.601061	3.978657		versicolor
281	6.299276	3.083130	3.767828		versicolor
282	6.508117	2.717810	4.400327		versicolor
283	5.564065	2.991926	3.244794		versicolor
284	5.636803	3.041730	3.675623		versicolor
285	6.249670	2.545928	4.021866		versicolor
286	5.779178	3.126088	4.456842	1.35907598	versicolor
287	5.056560	3.158496	4.029340		versicolor
288	6.256082	2.754099	3.546839	1.10515518	versicolor
289	6.727157	3.127967	4.478930	1.36983039	versicolor
290	6.644075	2.156546	4.073352	1.24130902	
291	6.086009	2.661626	6.272420	1.43328200	virginica
292	6.415624	3.507285	4.970803	2.29244152	virginica
293	7.783730	3.194127	6.263952	2.12710505	virginica
294	6.714708	2.207256	4.695838	1.57280728	virginica
295	6.892027	3.146945	5.963832	2.03720894	virginica
296	6.384602	2.842640	5.424208	1.34455702	virginica
297	7.151880	2.761441	5.193842	2.65759524	virginica
298	7.000909	3.538284	5.949645	2.37981867	virginica
299	6.267784	3.471146	5.832588	1.97858577	virginica
300	6.684294	3.095409	5.918461	1.79584906	virginica
301	6.653542	3.193293	5.478747	2.02974253	virginica
302	6.932936	2.532998	5.398907	2.58686242	virginica
303	6.171339	3.401070	5.778270	2.14575174	virginica
304	6.321461	3.238482	5.728325	1.77370288	virginica
305	6.939597	3.105226	5.153168	2.30218152	virginica
306	4.983468	2.869016	5.249331	2.33602954	virginica
307	7.057275	3.000195	5.368063	2.29811745	virginica
308	5.648449	3.022504	4.670324	2.44199827	virginica
309	7.023223	3.038748	6.549980	1.74164740	virginica
310	6.621430	2.928325	4.114293	1.65060008	virginica
311	5.947210	2.572431	6.035025	1.67473550	virginica
312	6.720834	2.791217	4.373968	1.80139289	virginica
313	7.277691	3.013233	6.057093	2.41664038	virginica
314	6.036578	3.034487	5.680667	2.14347484	virginica
315	7.523033	2.906421	5.746571	2.19174990	virginica
					5

individual_route 19

316	6.148008	3.219150	5.385260	2.29487465	virginica
317	6.653134	3.286357	5.439343	2.01415643	virginica
318	7.665406	2.418833	4.912548	2.04701493	virginica
319	6.962181	3.122207	5.926113	2.14427668	virginica
320	6.968055	3.394053	5.176526	2.28774948	virginica
321	8.433217	3.190685	6.154875	1.86645175	virginica
322	5.865485	3.206422	6.182362	2.06380350	virginica
323	6.357587	3.105502	6.086674	2.22194560	virginica
324	7.000027	3.093890	5.694556	1.95490517	virginica
325	5.329756	3.313431	7.114499	1.82374316	virginica
326	7.063835	2.978432	6.702789	1.97846514	virginica
327	6.643032	3.331938	5.319034	1.98032475	virginica
328	5.812732	2.605752	4.698275	2.04751518	virginica
329	5.922603	2.951062	4.789723	1.86828922	virginica
330	6.534338	3.077621	4.735738	1.96590508	virginica
331	6.566409	2.869386	5.256565	2.30887779	virginica
332	5.873025	2.576689	5.399706	1.51365277	virginica
333	6.436762	2.807203	5.237271	1.70436243	virginica
334	6.700115	2.741499	6.361120	2.57743789	virginica
335	6.800498	2.964161	6.726096	2.01077453	virginica
336	6.817689	3.044292	5.651350	1.64623491	virginica
337	6.589657	2.978472	6.011304	2.51979646	virginica
338	8.263734	3.121411	5.285361	1.93618630	virginica
339	7.027356	2.891612	5.821978	1.92039311	virginica
340	4.943241	2.503378	5.732430	1.80385345	virginica
341	7.071175	2.628713	6.012994	2.06170238	virginica
342	6.074115	3.436504	5.791817	1.23968953	virginica
343	6.853310	2.681229	5.643604	1.21275207	virginica
344	6.254123	3.365158	5.832863	2.67274454	_
345		2.738037	5.355683	1.85846301	virginica
	6.511558			2.12329402	virginica
346 347	5.842295	3.300082	4.540820		virginica
	6.423004	3.294433	6.394560	1.76478497	virginica
348	5.833874	3.222916	5.861218	1.69319220	virginica
349	6.478021	3.028388	6.606609	2.06623919	virginica
350	7.784342	2.902471	5.142493	1.91602616	virginica
351	6.775815	3.445127	5.519265	2.13719655	virginica
352	7.014933	2.715428	6.798085	2.04147119	virginica
353	7.689606	2.506295	5.531764	1.88075834	virginica
354	7.506985	2.788839	5.837837	2.47057469	virginica
355	7.242421	2.782457	6.390016	1.66938074	virginica
356	6.400116	2.353697	4.388649	2.24717026	virginica
357	7.384851	3.077118	5.716925	2.36297064	virginica
358	6.892294	3.466955	4.959172	2.13813060	virginica
359	5.904443	3.286340	4.911794	1.90991134	virginica
360	6.292600	2.938076	5.710938	2.61396630	virginica
[1] 36					
[1] 15	0				

individual_route individual_route

Description

From a time serie, allow to get the most common route for each individual at a given depth (time - 1). Access the frequency value as an element from the output vector and the value itself (the path)

20 knn_Rmach

as a name of its element, see examples.

Usage

```
individual_route(inpt_datf, col_target, id_col, untl_last = 2)
```

Arguments

inpt_datf is the input time serie as a dataframe

col_target is the column name or number that refers to the value of each individual

id_col is the column name or number that refers to the individual (ids)

untl_last is the depth value

Examples

```
datf_{test} \leftarrow data.frame("id" = c(1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5),
                         "city" = c("A", "C", "B", "B", "A", "C", "A", "C", "A", "C", "B"
print(individual_route(inpt_datf = datf_test,
                       col_target = "city",
                       id_col = "id",
                       untl_last = 2))
AC CA BA
 2 1 2
print(individual_route(inpt_datf = datf_test,
                       col_target = "city",
                       id_col = "id",
                       untl_last = 3))
ACB AC CAC BA BAA
  1
        1
             2
```

knn_Rmach

knn_Rmach

Description

KNN algorythm, see example

Usage

```
knn_Rmach(train, test, k, col_vars_train = c(), col_vars_test = c(), class_col)
```

Arguments

train is a dataframe with the known individual and their variables and classification

columns

test is a dataframe with the new individuals with ich e do not know the class, only

the variables

```
k is the number of neighbours
```

```
col_vars_train
```

is a vector containing the column names or column numbers of the variables in train, if empty all column are considered as a variable apart from the last one that is considered as the classification column

```
col_vars_test
```

is a vector containing the column names or column numbers of the variables in test, if empty all column are considered as a variable

class_col is the column name or column number of the classification column in train

Examples

Description

Allow to perform knn with cross validation for the optimal value of k neighbours used, see examples and parameters. The result outputed is a vector containing the ratio of correct label found divided by the total number of unique individuals in the current dataset where the training occurred. So, higher is better.

```
knn_Rmach_cross_validation_k(
  inpt_datf,
  train_prop,
  knn_v = c(),
  n_fold = 5,
  col_vars = c(),
  class_col
)
```

Arguments

inpt_datf	is the input dataset as a ddataframe
train_prop	is the training proportion
knn_v	is a vector containing the values of k neighbours to test
n_fold	is the number of fold used for each value of k , the higher this value is, he more accurate the result will be but the higher the amount of time it will takes
col_vars	is a vector containing the column names or numbers of the variables in the input dataframe
class_col	is the column names or number of the variable to predict in the input dataframe

Examples

```
knn_Rmach_cross_validation_train knn_Rmach_cross_validation_train
```

Description

Allow to perform knn with cross validation for the optimal value of k neighbours used, see examples and parameters. The result outputed is a vector containing the ratio of correct label found divided by the total number of individuals in the current dataset where the training occurred. So, higher is better.

```
knn_Rmach_cross_validation_train(
  inpt_datf,
  train_prop_v = c(),
  k,
  n_fold = 5,
  col_vars = c(),
  class_col
)
```

Im_label_generation 23

Arguments

inpt_datf	is the input dataset as a ddataframe
n_fold	is the number of fold used for each value of k, the higher this value is, he more accurate the result will be but the higher the amount of time it will takes
col_vars	is a vector containing the column names or numbers of the variables in the input dataframe
class_col	is the column names or number of the variable to predict in the input dataframe
train_prop	is the training proportion
knn_v	is a vector containing the values of k neighbours to test

Examples

```
lm\_label\_generation \\ lm\_label\_generation
```

Description

Allow to generate new individuals whose label are not present enough. It supposes that the variables and the label al have a linear relationship. This methods generates values of variables for new individuals based on a normal distribution whose mean is the value of the function found after a linear regression between a variable and the label, at the x value (label value). The standard deviation associated with the normal distribution is the local standard deviation with a given amount of neighbours. A neighbour is the set of individuals that share the same label. If the amount of neighbours exceeds the number of labels, so all labels will be considerd as a neighboor to calculate the local standard deviation.

```
lm_label_generation(inpt_datf, col_vars = c(), label_var, min_hmn, neighbrs)
```

Arguments

inpt_datf is the input dataframe col vars is a vector containing the column names or number of the variables label_var is the column name or number of the label variable min hmn is the value from which a label is considered to appear enough times, so all individuals that have a label whose occurence is inferior will be cloned base on the method elaborated in the description of the function neighbrs is how many neighbours will be taken in count to calculate the local standard

deviation

```
datf <- iris
datf <- datf[-c(101:137),]</pre>
datf[, 5] <- as.character(datf[, 5])</pre>
datf[datf[, 5] == "setosa", 5] <- 1
datf[datf[, 5] == "versicolor", 5] <- 2
datf[datf[, 5] == "virginica", 5] <- 3
datf[, 5] <- as.numeric(datf[, 5])</pre>
rownames(datf) <- c(1:nrow(datf))</pre>
nrint (datf)
```

pri	nt(datf)				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	1
2	4.9	3.0	1.4	0.2	1
3	4.7	3.2	1.3	0.2	1
4	4.6	3.1	1.5	0.2	1
5	5.0	3.6	1.4	0.2	1
6	5.4	3.9	1.7	0.4	1
7	4.6	3.4	1.4	0.3	1
8	5.0	3.4	1.5	0.2	1
9	4.4	2.9	1.4	0.2	1
10	4.9	3.1	1.5	0.1	1
11	5.4	3.7	1.5	0.2	1
12	4.8	3.4	1.6	0.2	1
13	4.8	3.0	1.4	0.1	1
14	4.3	3.0	1.1	0.1	1
15	5.8	4.0	1.2	0.2	1
16	5.7	4.4	1.5	0.4	1
17	5.4	3.9	1.3	0.4	1
18	5.1	3.5	1.4	0.3	1
19	5.7	3.8	1.7	0.3	1
20	5.1	3.8	1.5	0.3	1
21	5.4	3.4	1.7	0.2	1
22	5.1	3.7	1.5	0.4	1
23	4.6	3.6	1.0	0.2	1
24	5.1	3.3	1.7	0.5	1
25	4.8	3.4	1.9	0.2	1
26	5.0	3.0	1.6	0.2	1
27	5.0	3.4	1.6	0.4	1
28	5.2	3.5	1.5	0.2	1
29	5.2	3.4	1.4	0.2	1
30	4.7	3.2	1.6	0.2	1
31	4.8	3.1	1.6	0.2	1
32	5.4	3.4	1.5	0.4	1

lm_label_generation 25

33	5.2	4.1	1.5	0.1	1
34	5.5	4.2	1.4	0.2	1
35	4.9	3.1	1.5	0.2	1
36	5.0	3.2	1.2	0.2	1
37	5.5	3.5	1.3	0.2	1
38	4.9	3.6	1.4	0.1	1
39	4.4	3.0	1.3	0.2	1
40	5.1	3.4	1.5	0.2	1
41	5.0	3.5	1.3	0.3	1
42	4.5	2.3	1.3	0.3	1
43	4.4	3.2	1.3	0.2	1
44	5.0	3.5	1.6	0.6	1
45	5.1	3.8	1.9	0.4	1
46	4.8	3.0	1.4	0.3	1
47	5.1	3.8	1.6	0.2	1
48	4.6	3.2	1.4	0.2	1
49	5.3	3.7	1.5	0.2	1
50	5.0	3.3	1.4	0.2	1
51	7.0	3.2	4.7	1.4	2
52	6.4	3.2	4.5	1.5	2
		3.1			2
53	6.9		4.9	1.5	
54	5.5	2.3	4.0	1.3	2
55	6.5	2.8	4.6	1.5	2
56	5.7	2.8	4.5	1.3	2
57	6.3	3.3	4.7	1.6	2
58	4.9	2.4	3.3	1.0	2
59	6.6	2.9	4.6	1.3	2
60	5.2	2.7	3.9	1.4	2
61	5.0	2.0	3.5	1.0	2
62	5.9	3.0	4.2	1.5	2
63	6.0	2.2	4.0	1.0	2
64	6.1	2.9	4.7	1.4	2
65	5.6	2.9	3.6	1.3	2
66	6.7	3.1	4.4	1.4	2
67	5.6	3.0	4.5	1.5	2
68	5.8	2.7	4.1	1.0	2
69	6.2	2.2	4.5	1.5	2
70	5.6	2.5	3.9	1.1	2
71	5.9	3.2	4.8	1.8	2
72	6.1	2.8	4.0	1.3	2
73	6.3	2.5	4.9	1.5	2
74	6.1	2.8	4.7	1.2	2
75	6.4	2.9	4.3	1.3	2
76	6.6	3.0	4.4	1.4	2
77	6.8	2.8	4.8	1.4	2
78	6.7	3.0	5.0	1.7	2
79		2.9			
	6.0		4.5	1.5	2
80	5.7	2.6	3.5	1.0	2
81	5.5	2.4	3.8	1.1	2
82	5.5	2.4	3.7	1.0	2
83	5.8	2.7	3.9	1.2	2
84	6.0	2.7	5.1	1.6	2
85	5.4	3.0	4.5	1.5	2
86	6.0	3.4	4.5	1.6	2
87	6.7	3.1	4.7	1.5	2
88	6.3	2.3	4.4	1.3	2
89	5.6	3.0	4.1	1.3	2

)

```
90
         5.5
                    2.5
                               4.0
                                          1.3
91
          5.5
                     2.6
                               4.4
                                          1.2
                                         1.4
92
                    3.0
          6.1
                               4.6
93
                               4.0
                                         1.2
                                                   2
          5.8
                     2.6
94
          5.0
                               3.3
                                         1.0
                                                   2
                    2.3
95
          5.6
                    2.7
                               4.2
                                         1.3
                                                   2
96
         5.7
                    3.0
                               4.2
                                         1.2
                                                   2
97
         5.7
                    2.9
                               4.2
                                         1.3
                                                   2
                                                   2
98
         6.2
                    2.9
                              4.3
                                         1.3
                               3.0
                                                   2
99
         5.1
                    2.5
                                         1.1
100
         5.7
                    2.8
                               4.1
                                         1.3
                                                   3
101
         6.4
                    3.1
                              5.5
                                         1.8
                                                   3
102
         6.0
                    3.0
                               4.8
                                         1.8
                               5.4
                                                   3
103
                                         2.1
         6.9
                    3.1
                    3.1
                               5.6
                                                   3
104
         6.7
                                         2.4
                               5.1
                                                   3
105
          6.9
                    3.1
                                          2.3
                               5.1
                                         1.9
                                                   3
106
          5.8
                   2.7
                               5.9
107
                    3.2
                                         2.3
                                                   3
          6.8
                               5.7
108
          6.7
                    3.3
                                         2.5
                                                   3
                               5.2
109
          6.7
                     3.0
                                          2.3
                                                   3
110
          6.3
                     2.5
                               5.0
                                          1.9
                                                   3
111
           6.5
                     3.0
                               5.2
                                          2.0
                                                   3
112
           6.2
                     3.4
                                5.4
                                          2.3
                                                   3
113
           5.9
                     3.0
                                5.1
                                          1.8
                                                   3
```

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.100000 3.500000 1.4000000 0.200000 1 2 4.900000 3.000000 1.4000000 0.200000 1 1.3000000 3 0.200000 1 4.700000 3.200000 0.200000 1.5000000 4.600000 3.100000 1 4 5 5.000000 3.600000 1.4000000 0.200000 1 6 5.400000 3.900000 1.7000000 0.400000 1 7 3.400000 1.4000000 0.300000 4.600000 8 5.000000 3.400000 1.5000000 0.200000 9 4.400000 2.900000 1.4000000 0.200000 1 10 4.900000 3.100000 1.5000000 0.100000 1 11 5.400000 3.700000 1.5000000 0.200000 1 12 4.800000 0.200000 3.400000 1.6000000 1 13 4.800000 3.000000 1.4000000 0.100000 1 14 4.300000 3.000000 1.1000000 0.100000 1 15 5.800000 4.000000 1.2000000 0.200000 1 16 5.700000 4.400000 1.5000000 0.400000 1 17 5.400000 3.900000 1.3000000 0.400000 1 5.100000 3.500000 1.4000000 0.300000 18 19 5.700000 3.800000 1.7000000 0.300000 20 5.100000 3.800000 1.5000000 0.300000 1 1 21 5.400000 3.400000 1.7000000 0.200000 22 5.100000 3.700000 1.5000000 0.400000 1 Im_label_generation 27

23	4.600000	3.600000	1.0000000	0.200000	1
24	5.100000	3.300000	1.7000000	0.500000	1
25	4.800000	3.400000	1.9000000	0.200000	1
26	5.000000	3.000000	1.6000000	0.200000	1
27	5.000000	3.400000	1.6000000	0.400000	1
28	5.200000	3.500000	1.5000000	0.200000	1
29	5.200000	3.400000	1.4000000	0.200000	1
30	4.700000	3.200000	1.6000000	0.200000	1
31	4.800000	3.100000	1.6000000	0.200000	1
32	5.400000	3.400000	1.5000000	0.400000	1
33	5.200000	4.100000	1.5000000	0.100000	1
34	5.500000	4.200000	1.4000000	0.200000	1
35	4.900000	3.100000	1.5000000	0.200000	1
36	5.000000	3.200000	1.2000000	0.200000	1
37	5.500000	3.500000	1.3000000	0.200000	1
38	4.900000	3.600000	1.4000000	0.100000	1
39	4.400000	3.000000	1.3000000	0.200000	1
40	5.100000	3.400000	1.5000000	0.200000	1
41	5.000000	3.500000	1.3000000	0.300000	1
42	4.500000	2.300000	1.300000	0.300000	1
43	4.400000	3.200000	1.3000000	0.200000	1
44	5.000000	3.500000	1.6000000	0.600000	1
45	5.100000	3.800000	1.9000000	0.400000	1
46	4.800000	3.000000	1.4000000	0.300000	1
47	5.100000	3.800000	1.6000000	0.200000	1
48	4.600000	3.200000	1.4000000	0.200000	1
49	5.300000	3.700000	1.5000000	0.200000	1
50	5.000000	3.300000	1.4000000	0.200000	1
51	7.00000	3.200000	4.700000	1.400000	2
52	6.400000	3.200000	4.5000000	1.500000	2
53	6.900000	3.100000	4.9000000	1.500000	2
54	5.500000	2.300000	4.0000000	1.300000	2
55	6.500000	2.800000	4.6000000	1.500000	2
56	5.700000	2.800000	4.5000000	1.300000	2
57	6.300000	3.300000	4.7000000	1.600000	2
58	4.900000	2.400000	3.3000000	1.000000	2
	6.600000				2
59		2.900000	4.6000000	1.300000	
60	5.200000	2.700000	3.9000000	1.400000	2
61	5.000000	2.000000	3.5000000	1.000000	2
62	5.900000	3.000000	4.2000000	1.500000	2
63	6.000000	2.200000	4.0000000	1.000000	2
64	6.100000	2.900000	4.7000000	1.400000	2
65	5.600000	2.900000	3.6000000	1.300000	2
66	6.700000	3.100000	4.4000000	1.400000	2
67	5.600000	3.000000	4.5000000	1.500000	2
			4.1000000	1.000000	2
68	5.800000	2.700000			
69	6.200000	2.200000	4.5000000	1.500000	2
70	5.600000	2.500000	3.9000000	1.100000	2
71	5.900000	3.200000	4.8000000	1.800000	2
72	6.100000	2.800000	4.0000000	1.300000	2
73	6.300000	2.500000	4.9000000	1.500000	2
74	6.100000	2.800000	4.7000000	1.200000	2
75	6.400000	2.900000	4.3000000	1.300000	2
76	6.600000	3.000000	4.4000000	1.400000	2
77	6.800000	2.800000	4.8000000	1.400000	2
78	6.700000	3.000000	5.0000000	1.700000	2
79	6.000000	2.900000	4.5000000	1.500000	2

80	5.700000	2.600000	3.5000000	1.000000	2
81	5.500000	2.400000	3.8000000	1.100000	2
82	5.500000	2.400000	3.700000	1.00000	2
83	5.800000	2.700000	3.9000000	1.200000	2
84	6.000000	2.700000	5.1000000	1.600000	2
85	5.400000	3.000000	4.5000000	1.500000	2
86	6.000000	3.400000	4.5000000	1.600000	2
87	6.700000	3.100000	4.7000000	1.500000	2
88	6.300000	2.300000	4.4000000	1.300000	2
89	5.600000	3.000000	4.1000000	1.300000	2
90	5.500000	2.500000	4.0000000	1.300000	2
91 92	5.500000	2.600000	4.4000000	1.200000	2 2
	6.100000	3.000000	4.0000000	1.400000 1.200000	2
93 94	5.800000 5.000000	2.600000 2.300000	3.3000000	1.000000	2
95	5.600000	2.700000	4.2000000	1.300000	2
96	5.700000	3.000000	4.2000000	1.200000	2
97	5.700000	2.900000	4.2000000	1.300000	2
98	6.200000	2.900000	4.3000000	1.300000	2
99	5.100000	2.500000	3.0000000	1.100000	2
100	5.700000	2.800000	4.1000000	1.300000	2
101	6.400000	3.100000	5.5000000	1.800000	3
102	6.000000	3.000000	4.8000000	1.800000	3
103	6.900000	3.100000	5.4000000	2.100000	3
104	6.700000	3.100000	5.6000000	2.400000	3
105	6.900000	3.100000	5.1000000	2.300000	3
106	5.800000	2.700000	5.1000000	1.900000	3
107	6.800000	3.200000	5.9000000	2.300000	3
108	6.700000	3.300000	5.7000000	2.500000	3
109	6.700000	3.000000	5.2000000	2.300000	3
110	6.300000	2.500000	5.0000000	1.900000	3
111	6.500000	3.000000	5.2000000	2.000000	3
112	6.200000	3.400000	5.4000000	2.300000	3
113	5.900000	3.000000	5.1000000	1.800000	3
114	3.337086	-3.010967	1.6118130	3.624331	3
115	2.411537	-2.886464	1.4126476	3.660604	3
116	3.210020	-2.775710	1.5750895	4.172761	3
117	2.929791	-3.155015	1.4007481	3.564110	3
118	3.308786	-3.254998	1.9936545	3.504558	3
119	3.289197	-2.825299	1.4533275	3.560123	3
120	3.182515	-3.192980	1.5196816	3.555298	3
121	3.559725	-3.018141	1.8414595	3.752408	3
122	2.611399	-2.798353	1.7837746	4.255737	3
123	3.031710	-2.905473	1.3845924	3.425221	3
124	2.905517	-2.759015	1.4464214	3.748606	3
125	2.356676	-2.929148	1.8148241	3.675484	3
126	3.186993	-2.748881	1.8868197	3.527604	3
127	3.332580	-2.814485	1.3231994	3.465241	3
128	3.029835	-3.217453	1.7912804	3.517651	3
129	3.073081	-3.306620	1.7800284	3.718459	3
130	3.283990	-3.215174	1.7407919	3.897852	3
131	3.087140	-2.990210	1.7520826	3.644679	3
132	3.272970	-3.056268	1.3994579	3.540260	3
133	2.450407	-2.841814	2.3437436	3.755238	3
134	3.545044	-3.040000	1.7329403	3.676300	3
135	2.839665	-3.111823	1.7736373	4.393735	3
136	2.875360	-3.351643	1.8670479	3.340322	3

lm_label_generation2 29

137	2.850900	-3.282528	1.7458047	3.631666	3
138	2.492785	-3.131132	1.9228884	3.933619	3
139	2.479979	-3.049675	1.6795634	3.994376	3
140	2.382085	-2.973920	1.1220551	4.179145	3
141	2.924159	-2.872431	1.5889779	3.133596	3
142	3.431704	-3.225922	1.0053766	3.789316	3
143	2.878903	-2.750559	1.6468587	3.586866	3
144	3.053275	-3.085656	1.9171936	3.904307	3
145	2.604087	-2.627083	1.8233054	3.420803	3
146	2.601047	-2.965508	1.2239290	3.741698	3
147	3.348790	-3.394497	1.2943973	3.773516	3
148	4.017690	-3.020744	1.8265688	4.236493	3
149	2.351940	-3.299626	1.9135616	3.834306	3
150	2.927660	-2.947511	1.8911915	4.142867	3
151	2.948031	-2.898694	1.4692856	3.829044	3
152	3.244506	-3.159445	1.6976699	3.413799	3
153	2.863441	-3.034045	2.0560847	3.728603	3
154	3.348731	-3.217367	1.4792292	3.894735	3
155	3.383924	-3.285755	1.4741631	4.192404	3
156	3.110906	-3.351680	0.8286602	4.029459	3
157	3.238545	-2.820779	1.6919874	3.985022	3
158	3.468800	-2.888302	1.9049297	3.845491	3
159	3.277903	-3.219843	1.4328682	3.715557	3
160	3.178165	-3.178437	0.9839534	3.661058	3
161	3.272029	-3.334494	1.5386834	3.903441	3
162	2.950301	-2.956331	1.5906415	3.596755	3
163	3.413660	-3.506169	1.4874070	3.870051	3

```
lm_label_generation2
```

 $lm_label_generation2$

Description

Same as lm_label_generation but limits the new individuals to min_hmn.

Usage

```
lm_label_generation2(inpt_datf, col_vars = c(), label_var, min_hmn, neighbrs)
```

Arguments

inpt_datf	is the input dataframe
col_vars	is a vector containing the column names or number of the variables
label_var	is the column name or number of the label variable
min_hmn	is the value from which a label is considered to appear enough times, so all individuals that have a label whose occurence is inferior will be cloned base on the method elaborated in the description of the function
neighbrs	is how many neighbours will be taken in count to calculate the local standard deviation

```
datf <- iris
datf <- datf[-c(101:137),]</pre>
datf[, 5] <- as.character(datf[, 5])</pre>
datf[datf[, 5] == "setosa", 5] <- 1</pre>
datf[datf[, 5] == "versicolor", 5] <- 2</pre>
datf[datf[, 5] == "virginica", 5] <- 3</pre>
datf[, 5] <- as.numeric(datf[, 5])</pre>
rownames(datf) <- c(1:nrow(datf))</pre>
print(datf)
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
         5.1
               3.5 1.4 0.2 1
                    3.0
2
          4.9
                                1.4
                                           0.2
3
          4.7
                    3.2
                               1.3
                                          0.2
                                                   1
                               1.5
4
          4.6
                    3.1
                                          0.2
                                                   1
5
                               1.4
                                          0.2
          5.0
                    3.6
                                                    1
         5.4
                               1.7
                     3.9
6
                                           0.4
                                                    1
                               1.4
7
          4.6
                     3.4
                                           0.3
                                                    1
                               1.5
                     3.4
          5.0
8
                                           0.2
                                                    1
                               1.4
1.5
1.5
9
          4.4
                     2.9
                                           0.2
10
          4.9
                     3.1
                                           0.1
                                                    1
                    3.7
11
          5.4
                                           0.2
                                                    1
                                1.6
                    3.4
12
          4.8
                                           0.2
                                                    1
                                1.4
                    3.0
          4.8
13
                                           0.1
                                                    1
                               1.1
          4.3
                    3.0
14
                                           0.1
                                                    1
                               1.2
         5.8
15
                    4.0
                                          0.2
                                                    1
         5.7
                    4.4
                                1.5
16
                                          0.4
                                                    1
         5.4
                    3.9
                               1.3
                                          0.4
17
                                                    1
                               1.4
18
         5.1
                    3.5
                                           0.3
                                                    1
19
         5.7
                    3.8
                               1.7
                                           0.3
                                                    1
20
         5.1
                    3.8
                               1.5
                                           0.3
                                                    1
21
         5.4
                    3.4
                               1.7
                                           0.2
22
         5.1
                    3.7
                               1.5
                                           0.4
23
         4.6
                    3.6
                               1.0
                                           0.2
                                                   1
         5.1
                               1.7
                                           0.5
                                                    1
24
                    3.3
                               1.9
25
          4.8
                    3.4
                                           0.2
                                                    1
                               1.6
26
         5.0
                    3.0
                                           0.2
                                                    1
27
          5.0
                     3.4
                               1.6
                                           0.4
                                                    1
                               1.5
          5.2
28
                     3.5
                                           0.2
                                                    1
         5.2
                               1.4
                     3.4
29
                                           0.2
                                                    1
                                1.6
30
          4.7
                     3.2
                                           0.2
                                                    1
31
                                1.6
                                           0.2
          4.8
                     3.1
32
          5.4
                     3.4
                                1.5
                                           0.4
                                                    1
33
          5.2
                     4.1
                                1.5
                                           0.1
                                                    1
                                1.4
          5.5
34
                     4.2
                                           0.2
                                                    1
                                1.5
          4.9
                     3.1
35
                                           0.2
                                                    1
         5.0
                                1.2
                    3.2
36
                                           0.2
                                                    1
         5.5
                    3.5
                                1.3
37
                                          0.2
                                                    1
                                1.4
38
          4.9
                    3.6
                                           0.1
                                                    1
39
         4.4
                    3.0
                               1.3
                                           0.2
                                                    1
40
         5.1
                    3.4
                               1.5
                                           0.2
41
         5.0
                    3.5
                               1.3
                                          0.3
                                                   1
42
         4.5
                    2.3
                                1.3
                                          0.3
                                                   1
43
          4.4
                    3.2
                                1.3
                                           0.2
                                                   1
44
         5.0
                     3.5
                                1.6
                                           0.6
```

45	5.1	3.8	1.9	0.4	1
46	4.8	3.0	1.4	0.3	1
47	5.1	3.8	1.6	0.2	1
48	4.6	3.2	1.4	0.2	1
49	5.3	3.7	1.5	0.2	1
50	5.0	3.3	1.4	0.2	1
51	7.0	3.2	4.7	1.4	2
52	6.4	3.2	4.5	1.5	2
53	6.9	3.1	4.9	1.5	2
54	5.5	2.3	4.0	1.3	2
55	6.5	2.8	4.6	1.5	2
56	5.7	2.8	4.5	1.3	2
57	6.3	3.3	4.7	1.6	2
58	4.9	2.4	3.3	1.0	2
59	6.6	2.9	4.6	1.3	2
60	5.2	2.7	3.9	1.4	2
61	5.0	2.0	3.5	1.0	2
62	5.9	3.0	4.2	1.5	2
63	6.0	2.2	4.0	1.0	2
64	6.1	2.9	4.7	1.4	2
65	5.6	2.9	3.6	1.3	2
66	6.7	3.1	4.4	1.4	2
67	5.6	3.0	4.5	1.5	2
68	5.8	2.7	4.1	1.0	2
69	6.2	2.2	4.5	1.5	2
70	5.6	2.5	3.9	1.1	2
71	5.9	3.2	4.8	1.8	2
72	6.1	2.8	4.0	1.3	2
73	6.3	2.5	4.9	1.5	2
74	6.1	2.8	4.7	1.2	2
75	6.4	2.9	4.3	1.3	2
76	6.6	3.0	4.4	1.4	2
77	6.8	2.8	4.8	1.4	2
78	6.7	3.0	5.0	1.7	2
79	6.0	2.9	4.5	1.5	2
80	5.7	2.6	3.5	1.0	2
81	5.5	2.4	3.8	1.1	2
82	5.5	2.4	3.7	1.0	2
83	5.8	2.7	3.9	1.2	2
84	6.0	2.7	5.1	1.6	2
85	5.4	3.0	4.5	1.5	2
86	6.0	3.4	4.5	1.6	2
87	6.7	3.1	4.7	1.5	2
88	6.3	2.3	4.4	1.3	2
89	5.6	3.0	4.1	1.3	2
90	5.5	2.5	4.0	1.3	2
91	5.5	2.6	4.4	1.2	2
92	6.1	3.0	4.6	1.4	2
93	5.8	2.6	4.0	1.2	2
94	5.0	2.3	3.3	1.0	2
95	5.6	2.7	4.2	1.3	2
96	5.7	3.0	4.2	1.2	2
97	5.7	2.9	4.2	1.3	2
98	6.2	2.9	4.3	1.3	2
99	5.1	2.5	3.0	1.1	2
100	5.7	2.8	4.1	1.3	2
101	6.4	3.1	5.5	1.8	3

```
6.0
                        3.0
                                     4.8
                                                 1.8
                                                            3
103
             6.9
                        3.1
                                     5.4
                                                  2.1
                                                            3
104
            6.7
                        3.1
                                     5.6
                                                 2.4
                                                            3
                                     5.1
105
                        3.1
                                                 2.3
                                                            3
            6.9
                                     5.1
106
            5.8
                        2.7
                                                 1.9
                                                            3
                       3.2
                                    5.9
                                                 2.3
                                                            3
107
            6.8
                       3.3
                                    5.7
                                                 2.5
108
            6.7
                                                            3
109
            6.7
                        3.0
                                    5.2
                                                 2.3
                                                            3
110
            6.3
                        2.5
                                    5.0
                                                 1.9
                                                            3
                                                            3
111
            6.5
                        3.0
                                    5.2
                                                 2.0
112
                        3.4
                                     5.4
                                                 2.3
                                                            3
             6.2
113
             5.9
                        3.0
                                     5.1
                                                 1.8
                                                            3
print(lm_label_generation2(
                          inpt_datf = datf,
                          col\_vars = c(1:4),
                          label_var = 5,
                          min_hmn = 50,
                          neighbrs = 3
)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
        5.100000
                   3.500000
                                1.400000
                                          0.200000
2
        4.900000
                    3.000000
                                 1.400000
                                            0.200000
                                                            1
3
        4.700000
                                1.300000
                                            0.200000
                    3.200000
                                                            1
4
        4.600000
                   3.100000
                                1.500000
                                            0.200000
                                                            1
5
        5.000000
                   3.600000
                                1.400000
                                            0.200000
                                                            1
        5.400000
                   3.900000
                                1.700000
                                          0.400000
6
                                                           1
7
        4.600000
                   3.400000
                                1.400000
                                          0.300000
                                                           1
8
        5.000000
                   3.400000
                                1.500000
                                          0.200000
                                                           1
                  2.900000
                                            0.200000
        4.400000
                                1.400000
10
        4.900000
                 3.100000
                                1.500000
                                            0.100000
11
        5.400000
                 3.700000
                                1.500000
                                          0.200000
                                                           1
12
       4.800000
                 3.400000
                                1.600000
                                          0.200000
                                                           1
13
       4.800000
                 3.000000
                                1.400000
                                          0.100000
                                                           1
                                                            1
14
        4.300000
                   3.000000
                                1.100000
                                          0.100000
15
                                                            1
       5.800000
                                            0.200000
                   4.000000
                                1.200000
                                                            1
16
        5.700000
                   4.400000
                                1.500000
                                            0.400000
                                            0.400000
17
        5.400000
                   3.900000
                                                            1
                                1.300000
18
        5.100000
                   3.500000
                                1.400000
                                            0.300000
                                                            1
19
                                                            1
        5.700000
                    3.800000
                                1.700000
                                            0.300000
20
        5.100000
                   3.800000
                                1.500000
                                            0.300000
21
        5.400000
                    3.400000
                                 1.700000
                                            0.200000
                                                            1
22
        5.100000
                    3.700000
                                 1.500000
                                            0.400000
                                                            1
23
        4.600000
                    3.600000
                                 1.000000
                                            0.200000
                                                            1
24
        5.100000
                    3.300000
                                 1.700000
                                            0.500000
                                                            1
25
                   3.400000
                                 1.900000
                                            0.200000
                                                            1
        4.800000
26
       5.000000
                   3.000000
                                1.600000
                                            0.200000
                                                            1
27
        5.000000
                   3.400000
                                1.600000
                                            0.400000
                                                            1
28
        5.200000
                   3.500000
                                1.500000
                                            0.200000
                                                            1
29
        5.200000
                   3.400000
                                1.400000
                                          0.200000
                                                            1
30
        4.700000
                   3.200000
                                1.600000
                                            0.200000
31
        4.800000
                   3.100000
                                1.600000
                                            0.200000
                                                            1
32
       5.400000
                  3.400000
                                1.500000
                                          0.400000
                                                           1
33
        5.200000
                   4.100000
                                1.500000
                                            0.100000
                                                           1
        5.500000
                   4.200000
                                                           1
34
                                1.400000
                                            0.200000
```

35	4.900000	3.100000	1.500000	0.200000	1
36	5.000000	3.200000	1.200000	0.200000	1
37	5.500000	3.500000	1.300000	0.200000	1
38	4.900000	3.600000	1.400000	0.100000	1
39	4.400000	3.000000	1.300000	0.200000	1
40	5.100000	3.400000	1.500000	0.200000	1
41	5.000000	3.500000	1.300000	0.300000	1
42	4.500000	2.300000	1.300000	0.300000	1
43	4.400000	3.200000	1.300000	0.200000	1
44	5.000000	3.500000	1.600000	0.600000	1
45	5.100000	3.800000	1.900000	0.400000	1
46	4.800000	3.000000	1.400000	0.300000	1
47	5.100000	3.800000	1.600000	0.200000	1
48	4.600000	3.200000	1.400000	0.200000	1
49	5.300000	3.700000	1.500000	0.200000	1
50	5.000000	3.300000	1.400000	0.200000	1
51	7.000000	3.200000	4.700000	1.400000	2
52	6.400000	3.200000	4.500000	1.500000	2
53	6.900000	3.100000	4.900000	1.500000	2
54	5.500000	2.300000	4.000000	1.300000	2
55	6.500000	2.800000	4.600000	1.500000	2
56	5.700000	2.800000	4.500000	1.300000	2
57	6.300000	3.300000	4.700000	1.600000	2
58	4.900000	2.400000	3.300000	1.000000	2
59	6.600000	2.900000	4.600000	1.300000	2
60	5.200000	2.700000	3.900000	1.400000	2
61	5.000000	2.000000	3.500000	1.000000	2
62	5.900000	3.000000	4.200000	1.500000	2
63	6.000000	2.200000	4.000000	1.000000	2
64	6.100000	2.900000	4.700000	1.400000	2
65	5.600000	2.900000	3.600000	1.300000	2
66	6.700000	3.100000	4.400000	1.400000	2
67	5.600000	3.000000	4.500000	1.500000	2
68	5.800000	2.700000	4.100000	1.000000	2
69	6.200000	2.200000	4.500000	1.500000	2
70	5.600000	2.500000	3.900000	1.100000	2
71	5.900000	3.200000	4.800000	1.800000	2
72	6.100000	2.800000	4.000000	1.300000	2
73	6.300000	2.500000	4.900000	1.500000	2
74	6.100000	2.800000	4.700000	1.200000	2
75	6.400000	2.900000	4.300000	1.300000	2
76	6.600000	3.000000	4.400000	1.400000	2
77	6.800000	2.800000	4.800000	1.400000	2
78	6.700000	3.000000	5.000000	1.700000	2
79	6.000000	2.900000	4.500000	1.500000	2
80	5.700000	2.600000	3.500000	1.000000	2
81	5.500000	2.400000	3.800000	1.100000	2
82	5.500000	2.400000	3.700000	1.000000	2
83	5.800000	2.700000	3.900000	1.200000	2
84	6.000000	2.700000	5.100000	1.600000	2
85	5.400000	3.000000	4.500000	1.500000	2
86	6.000000	3.400000	4.500000	1.600000	2
87	6.700000	3.100000	4.700000	1.500000	2
88	6.300000	2.300000	4.400000	1.300000	2
89	5.600000	3.000000	4.100000	1.300000	2
90	5.500000	2.500000	4.000000	1.300000	2
91	5.500000	2.600000	4.400000	1.200000	2

92	6.100000	3.000000	4.600000	1.400000	2
93	5.800000	2.600000	4.000000	1.200000	2
94	5.000000	2.300000	3.300000	1.000000	2
95					2
	5.600000	2.700000	4.200000	1.300000	
96	5.700000	3.000000	4.200000	1.200000	2
97	5.700000	2.900000	4.200000	1.300000	2
98	6.200000	2.900000	4.300000	1.300000	2
99	5.100000	2.500000	3.000000	1.100000	2
100	5.700000	2.800000	4.100000	1.300000	2
101	6.400000	3.100000	5.500000	1.800000	3
102	6.000000	3.000000	4.800000	1.800000	3
		3.100000			3
103	6.900000		5.400000	2.100000	
104	6.700000	3.100000	5.600000	2.400000	3
105	6.900000	3.100000	5.100000	2.300000	3
106	5.800000	2.700000	5.100000	1.900000	3
107	6.800000	3.200000	5.900000	2.300000	3
108	6.700000	3.300000	5.700000	2.500000	3
109	6.700000	3.000000	5.200000	2.300000	3
110	6.300000	2.500000	5.000000	1.900000	3
111	6.500000	3.000000	5.200000	2.000000	3
					3
112	6.200000	3.400000	5.400000	2.300000	
113	5.900000	3.000000	5.100000	1.800000	3
114	3.262233	-2.836161	1.209831	3.756150	3
115	2.792928	-2.598126	1.903514	4.021822	3
116	2.660366	-3.253078	1.773561	3.552828	3
117	3.212474	-2.968186	1.299036	4.002004	3
118	3.304691	-3.120160	1.776056	3.421424	3
119	3.129013	-2.764565	1.084363	3.961070	3
120	3.278919	-2.962809	1.872274	3.862973	3
121	2.555308	-2.875592	1.808080		3
				3.195783	
122	3.466773	-3.325957	1.601554	3.675986	3
123	2.574830	-2.761658	1.151314	3.923658	3
124	3.324925	-3.055837	1.639577	3.913790	3
125	2.984227	-2.962149	1.721951	3.726171	3
126	3.149486	-2.664939	1.988111	4.036337	3
127	3.239279	-2.812136	1.961199	3.589471	3
128	3.124868	-2.825058	1.185327	3.550925	3
129	2.818810	-2.812702	1.497583	3.940851	3
130	2.947275	-3.162957	1.582021	3.577329	3
					3
131	3.484623	-3.069765	1.952411	4.085512	
	2.461561	-2.772750	1.406235	3.823907	3
133	2.845755	-3.061859	2.278193	3.937838	3
134	3.382535	-3.103582	1.736065	4.025574	3
135	3.233128	-3.386703	1.333698	4.273769	3
136	3.189359	-2.823622	1.296134	4.140628	3
137	3.091862	-2.863102	1.080645	3.964312	3
138	2.741842	-2.929970	1.889022	3.713229	3
139	2.578026	-2.971548	1.597677	3.932410	3
140	2.925473	-3.323804	1.177113	3.551214	3
141	3.029594	-3.006599	1.350195	3.984042	3
142	2.755172	-2.698046	1.949463	3.811956	3
143	2.894695	-3.184067	1.605452	3.474205	3
144	3.260417	-2.908241	1.578760	3.691196	3
145	3.006636	-3.034710	1.628828	3.369206	3
146	3.352774	-2.915606	1.327263	3.699141	3
147	2.760372	-3.282009	1.762860	3.890322	3
148	3.545501	-3.080867	2.008176	3.930908	3
T-10	J.J.J.U.T	J.000001	2.0001/0	3.730700	J

poly_model 35

```
    149
    2.916121
    -2.846311
    1.822271
    3.971336
    3

    150
    2.827684
    -3.028701
    2.221580
    3.957002
    3
```

poly_model

Rmach poly_model

Description

Take a datasets of x and y values and a function tha could fit all the data with the missing coefficients, and returns a list containing the coefficients that fit the best the data for a given function, as a vector for the first index, and at the second index, the actual sum of difference between each data point and the function at the same x values.

Usage

```
poly_model(
   inpt_datf,
   degree,
   twk_val = NA,
   sensi_val = twk_val,
   coeff_v = NA,
   powers = NA,
   mth_symb = c("x"),
   numrtr_v = NA
)
```

Arguments

inpt_datf	is the input data as a dataframe, first column is the x values and the second is the y values
degree	is how many coefficients will be involved (each coefficient multiplies either an x to the power of something, an exponential of something or a base something logarithm for a something value)
twk_val	is the value used for finding the best coefficients, it is directly linked to the accuracy of the coefficients, see the description for more information. Defaults to $(\max(yval) - \min(yval)) / n$
sensi_val	is the value from which two variations of a coefficient brings a so small accuracy contribution that the algorythm does not continue to find better coefficients. For example, if i set sensi_val = 0.001, so if coefficients alpha1 and beta1 brings a total difference between the function and the actual data of 10.8073 and then the algorythm find alpha2 and beta1 that brings a total difference equal to 10.8066, so the algorythm will stop running. But the coefficients returned will still be the best, that is alpha2 and beta1
coeff_v	is a vector containing the original coefficients for the function, so the closest

coefficients. The first value of coeff is always the constant.

those are from the best one, the fastest the algorythm will compute the best

36 poly_model

powers

is a vector containing the exponent, or related value to mth_symb. powers can be a vector if those values are constants or it could be a list of vectors the length of observed individuals, if those values varies like in the examples. Notthat if you use variables in powers (list), each values of a vector from this list has to be at the exact same x coordinates of each observed individuals in the input dataframe. Ex: datf <- data.frame("x"=c(4, 4, 3, 2, 1, 1), "y"=c(1:6)), so vector(s) from powers that contain varying value must be of length 4. Also, the values are not ascendly sorted, don't worry values are ascendly sorted under the hood, so fill your powers vectors in the intuitive ascendly way

mth_symb

is a vector containing the elemnts linked to the coefficients from the second element. It can be x, $e(\exp(x))$ or $\log - X(\log(x)$ -base), and their reverse like 1/x. If the numerator varies the element should be entered like tis list/x, list/e or list/log-base. See numrtr_v for the values related to list

numrtr_v

is a vector containing the values for the numerator related to mth_symb if on element is like this: list/x or list/e

Examples

[[2]]

```
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 33.234375 -4.265625
[[2]]
[1] 74.78275
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 31.765625 -3.734375
[[2]]
[1] 80.36228
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 32.5 -3.0
[[2]]
[1] 1.067436e+24
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=list(c(length(mtcars$wt):1))))
[1] 19.28125 -0.06250
```

Rmach_det 37

```
[1] 35839.44
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 27.359375 -8.140625
[[2]]
[1] 160.2263
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=1, coeff_v=c(32.5),
                 numrtr_v=NA))
[[1]]
[1] 19.28125
[[2]]
[1] 148.7625
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                  numrtr_v=NA))
[[1]]
[1] 0.921875 -5.203125 2.000000
[[2]]
[1] 455.6017
```

Rmach_det

Rmach_det

Description

Calculates the determinant of any square matrix, see examples

Usage

```
Rmach_det(inpt_matr)
```

Arguments

```
inpt_matr
```

```
mtr_test2 <- matrix(nrow = 2, ncol = 2, data = c(4:6, 37))
mtr_test3 <- matrix(nrow = 3, ncol = 3, data = c(4:6, 37, 12, 33, 1, 2, 3))
mtr_test4 <- matrix(nrow = 4, ncol = 4, data = c(4:6, 37, 12, 33, 1, 2, 3, 8, 7, 8, 7, 11)
mtr_test5 <- matrix(nrow = 5, ncol = 5, data = c(1:25))</pre>
```

```
mtr_test6 <- matrix(nrow = 6, ncol = 6, data = c(1:36))
mtr_test9 \leftarrow matrix(nrow = 9, ncol = 9, data = c(1:81))
det(mtr_test2)
[1] 118
print(Rmach_det(inpt_matr = mtr_test2))
[1] 118
det (mtr_test3)
[1] -138
print (Rmach_det(inpt_matr = mtr_test3))
[1] -138
det (mtr_test4)
[1] -20001
print(Rmach_det(inpt_matr = mtr_test4))
[1] -20001
det (mtr_test5)
[1] 0
print(Rmach_det(inpt_matr = mtr_test5))
[1] 0
det (mtr_test6)
[1] 0
print(Rmach_det(inpt_matr = mtr_test6))
[1] 0
det (mtr_test7)
[1] 0
print(Rmach_det(inpt_matr = mtr_test7))
[1] 0
det (mtr_test8)
[1] 0
print(Rmach_det(inpt_matr = mtr_test8))
[1] 0
det (mtr_test9)
[1] 0
print (Rmach_det(inpt_matr = mtr_test2))
[1] 0
```

sample_Rmach-class v_Rmach_fold

Description

Allow to create uniform sampling dataset for cross validation, train and test, see examples and variables

Arguments

inpt_datfis the input dataframetrain_propis the training proportionn_foldis the number of distinc pair of training and test dataset that will be outputed

```
lst_test <- v_Rmach_fold(inpt_datf = iris[1:25,],</pre>
                train\_prop = 0.7,
                n_fold = 4)
print(lst_test)
$sample1
An object of class "sample_Rmach"
Slot "train":
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
2.4
                 5.1 3.3 1.7 0.5 setosa 0

    5.1
    3.5
    1.4

    4.8
    3.4
    1.6

    5.7
    3.8
    1.7

    5.1
    3.8
    1.5

    5.0
    3.6
    1.4

    4.6
    3.1
    1.5

    4.6
    3.6
    1.0

    5.1
    3.5
    1.4

    5.1
    3.5
    1.4

    4.6
    3.4
    1.4

    4.3
    3.0
    1.1

    4.6
    3.4
    1.4

    4.6
    3.1
    1.5

    5.7
    3.8
    1.7

    4.4
    2.9
    1.4

    5.0
    3.4
    1.5

    5.7
    4.4
    1.5

                                3.5
                 5.1
                                                 1.4
                                                                 0.3 setosa
                                                                                             0
18
                                                                                             0
                                                                0.2 setosa
12
19
                                                                 0.3 setosa
                                                                 0.3 setosa
2.0
5
                                                                 0.2 setosa
                                                                                              0
                                                                 0.2 setosa
                                                                                              0
23
                                                                 0.2
                                                                        setosa
                                                                                              0
18.1
                                                                 0.3 setosa
                                                                                              0
                                                                 0.2 setosa
                                                                                              0
1
                                                                 0.3 setosa
7
                                                                                              0
                                                                0.1 setosa
14
                                                                                             0
7.1
                                                                0.3 setosa
4.1
                                                                0.2 setosa
19.1
                                                                0.3 setosa
                                                                0.2 setosa
8
                                                                0.2 setosa
                                                                                             0
16
                                                                0.4 setosa
Slot "test":
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
7
       4.6 3.4 1.4 0.3 setosa 1
                       3.4 1.6
3.4 1.5
3.0 1.1
3.7 1.5
3.4 1.9
3.6 1.0
12
              4.8
                                                             0.2 setosa
                                                                                          1
8
             5.0
                                                             0.2 setosa
14
              4.3
                                                              0.1 setosa
              5.4
11
                                                              0.2 setosa
25
              4.8
                                                              0.2
                                                                     setosa
23
               4.6
                                                               0.2
                                                                     setosa
Slot "train_ids":
 [1] 24 18 12 19 20 5 4 23 18 1 7 14 7 4 19 9 8 16
Slot "test_ids":
[1] 7 12 8 14 11 25 23
$sample2
An object of class "sample_Rmach"
Slot "train":
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
                       3.8 1.5 0.3 setosa 0
3.4 1.5 0.2 setosa 0
20
                5.1
                                                              0.2 setosa
                 5.0
8
                                              1.4
                                                             0.2 setosa
2
                4.9
                              3.0
                              3.7
                                              1.5
                                                                                         0
                5.4
                                                             0.2 setosa
11
                                                             0.4 setosa
                              3.7
                                              1.5
22

      5.1
      3.7

      4.8
      3.0

      5.1
      3.3

      4.9
      3.0

      4.6
      3.4

      4.9
      3.0

      5.1
      3.7

      5.1
      3.7

      5.1
      3.3

      5.1
      3.7

      4.7
      3.2

      4.7
      3.2

      5.4
      3.7

      5.4
      3.9

               5.1
                                              1.4
                                                             0.1 setosa
13
                                              1.7
                                                             0.5 setosa
24
                                              1.4
                                                             0.2 setosa
2.1
                                              1.4
                                                             0.3 setosa
7
2.2
                                              1.4
                                                             0.2 setosa
                                                                                         0
22.1
                                              1.5
                                                             0.4 setosa
                                                                                         0
22.2
                                                                                         0
                                              1.5
                                                             0.4 setosa
                                              1.7
                                                                                         0
24.1
                                                             0.5 setosa
22.3
                                              1.5
                                                                                         0
                                                             0.4 setosa
                                              1.3
                                                                                         0
                                                             0.2 setosa
3
3.1
                                              1.3
                                                             0.2 setosa
                                                                                         0
                                            1.5
11.1
                                                             0.2 setosa
                                                                                         0
                                               1.7
                                                              0.4 setosa
                                                                                         Ω
Slot "test":
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
        5.0 3.4 1.5 0.2 setosa 1
4.8 3.4 1.6 0.2 setosa 1
12
                                     1.6
                            3.5
                                                          0.2 setosa
             5.1
1
                            3.7
                                           1.5
                                                           0.2 setosa
                                                                                      1
             5.4
11
                            3.0
                                           1.4
                                                           0.2 setosa
             4.9
2
                                          1.4
1.5
                           3.5
                                                          0.3 setosa
            5.1
                                                                                      1
1.8
                           3.8
                                                          0.3 setosa
20
             5.1
Slot "train_ids":
[1] 20 8 2 11 22 13 24 2 7 2 22 22 24 22 3 3 11 6
Slot "test_ids":
[1] 8 12 1 11 2 18 20
$sample3
An object of class "sample_Rmach"
Slot "train":
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status

    1961 Separ. Witch Fetar. Beingth Fetar. Witch Species
    1.4
    0.2
    setosa
    0

    4.3
    3.0
    1.1
    0.1
    setosa
    0

    5.7
    4.4
    1.5
    0.4
    setosa
    0

    4.6
    3.1
    1.5
    0.2
    setosa
    0

    5.7
    4.4
    1.5
    0.4
    setosa
    0

    5.7
    4.4
    1.5
    0.4
    setosa
    0

14
                5.7
16
                4.6
4
             5.7
5.8
                         4.4
4.0
3.2
3.5
3.4
3.6
3.1
3.3
3.8
3.4
3.8
16.1
                                                             0.2 setosa
0.2 setosa
                                              1.2
15
                                                                                         0
                                              1.3
                4.7
3
                                                                                         0
             5.1
4.8
                                                             0.3 setosa
                                              1.4
1.8
                                                                                         Ω
                                              1.9
                                                             0.2 setosa
25
               4.6
                                              1.0
                                                             0.2 setosa
23
             4.6
                                              1.5
                                                             0.2 setosa
4.1
24
                                              1.7
                                                             0.5 setosa
                                                                                         0
            5.1
4.6
20
                                              1.5
                                                             0.3 setosa
                                                                                         0
                                                                                         0
7
                                              1.4
                                                             0.3 setosa
                                                                                         0
               5.7
                                              1.7
19
                                                             0.3 setosa
                                              1.7 0.2 setosa
                                                                                         0
21
               5.4
```

```
4.6 3.6 1.0 0.2 setosa 5.4 3.7 1.5 0.2 setosa
11
                                                                                                                               0
Slot "test":
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status

      part. Length Petal. Width Species test_status

      5.1
      3.5
      1.4
      0.3
      setosa
      1

      5.4
      3.4
      1.7
      0.2
      setosa
      1

      5.0
      3.6
      1.4
      0.2
      setosa
      1

      4.8
      3.4
      1.6
      0.2
      setosa
      1

      4.3
      3.0
      1.1
      0.1
      setosa
      1

      4.9
      3.0
      1.4
      0.2
      setosa
      1

      5.0
      3.4
      1.5
      0.2
      setosa
      1

1.8
2.1
5
12
14
Slot "train_ids":
[1] 5 14 16 4 16 15 3 18 25 23 4 24 20 7 19 21 23 11
Slot "test_ids":
[1] 18 21 5 12 14 2 8
$sample4
An object of class "sample_Rmach"
Slot "train":
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
            5.1 3.5 1.4 0.3 setosa 0
5.1 3.5 1.4 0.3 setosa 0
18

      5.1
      3.5
      1.4

      4.8
      3.0
      1.4

      4.6
      3.4
      1.4

      5.1
      3.5
      1.4

      4.9
      3.0
      1.4

      5.7
      3.8
      1.7

      4.4
      2.9
      1.4

      4.6
      3.6
      1.0

      5.8
      4.0
      1.2

      5.7
      4.4
      1.5

      5.8
      4.0
      1.2

      5.0
      3.4
      1.5

      4.4
      2.9
      1.4

      4.9
      3.1
      1.5

      4.3
      3.0
      1.1

      5.4
      3.7
      1.5

      4.8
      3.4
      1.6

                                                                  1.4
18.1
                                                                                       0.1 setosa
13
                                                                                                                             0
                                                                                       0.3 setosa
                                                                                      0.3 setosa
18.2
                                                                                      0.2 setosa
                                                                                      0.3 setosa
19
                                                                                      0.2 setosa
23
                                                                                      0.2 setosa
                                                                                                                              0
15
16
                                                                                                                              0
                                                                                      0.2 setosa
                                                                                                                              0
                                                                                       0.4 setosa
                                                                                                                              0
15.1
                                                                                       0.2 setosa
                                                                                                                             0
                                                                                       0.2 setosa
8
                                                                                                                             0
9.1
                                                                                       0.2 setosa
10
                                                                                                                             0
                                                                                       0.1 setosa
14
                                                                                                                              0
                                                                                        0.1 setosa
                                                                                       0.2 setosa
0.2 setosa
11
12
Slot "test":
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
            4.4 2.9 1.4 0.2 setosa 1
4.8 3.0 1.4 0.1 setosa 1
13
                                       3.1 1.5
3.8 1.7
3.7 1.5
3.7 1.5
3.6 1.4
                                                                                   0.2 setosa
                   4.6
4
                                       3.8
                   5.7
                                                                                   0.3 setosa
19
                   5.1
                                                                                   0.4 setosa
22
                                       3.7
                                                                                   0.2 setosa
11
                  5.4
                                                                                   0.2 setosa
                   5.0
Slot "train_ids":
 [1] 18 18 13 7 18 2 19 9 23 15 16 15 8 9 10 14 11 12
```

Slot "test_ids":

[1] 9 13 4 19 22 11 5

Index

```
best_model, 2
calcall, 3
calcall_var, 4
datf_folder, 5
individual_cloning, 8
individual_equalizer_max, 11
individual_equalizer_min, 12
individual_route, 19
knn_Rmach, 20
knn_Rmach_cross_validation_k, 21
knn_Rmach_cross_validation_train, 22
lm_label_generation, 23
lm_label_generation2, 29
poly_model, 35
Rmach_det, 37
sample_Rmach-class, 38
```