75.12 ANÁLISIS NUMÉRICO I

FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES

ECUACIONES DIFERENCIALES

Métodos de Discretización

Discretización de la ecuación diferencial dy/dt = f(u,t)

1. Método de Euler

$$u_{n+1} = u_n + k f (u_n, t_n)$$

2. Implícito Ponderado

$$u_{n+1} = u_n + k [\beta f (u_{n+1}, t_{n+1}) + (1-\beta) f (u_n, t_n)]$$

(Aunque teóricamente $0 < \beta \le 1$, su utilidad es en el rango $0.5 \le \beta \le 1$)

3. Fuertemente Implícito o Euler Inverso

$$u_{n+1} = u_n + k f (u_{n+1}, t_{n+1})$$

4. Crank-Nicolson o Implícito Ponderado de Orden 2

$$u_{n+1} = u_n + k/2 [f(u_{n+1}, t_{n+1}) + f(u_n, t_n)]$$

5. Punto Medio o Predictor-Corrector Explícito (Runge-Kutta de Orden 2)

$$u_{n+1/2} = u_n + k/2 f (u_n, t_n)$$

 $u_{n+1} = u_n + k f (u_{n+1/2}, t_{n+1/2})$

6. Heun (Runge-Kutta de Orden 2)

$$u_{n+2/3} = u_n + 2/3 \text{ k f } (u_n, t_n)$$

 $u_{n+1} = u_n + k/4 \text{ [f (} u_n, t_n \text{) + 3 f (} u_{n+2/3}, t_{n+2/3} \text{)]}$

7. Euler Modificado (Runge Kutta de Orden 2)

$$u_{n+1}^* = u_n + k f (u_n, t_n)$$
 $u_{n+1} = u_n + k/2 [f (u_n, t_n) + f (u_{n+1}^*, t_{n+1})]$
Otra forma:
 $q_1 = k f (u_n, t_n)$
 $q_2 = k f (u_n + q_1, t_{n+1})$
 $u_{n+1} = u_n + 1/2 (q_1 + q_2)$

8. Predictor-Corrector Implícito

$$\begin{aligned} &u_{n+1}^{^{}}=u_n+k\,f\left(\,u_n,\,t_n\,\right)\\ &u_{n+1}=u_n+k\,[\,\,\beta\,f\left(\,u_{n+1}^{^{}},\,t_{n+1}\,\right)+(\,\,1\,-\,\beta\,\,)\,f\left(\,u_n,\,t_n\,\right)\,]\\ &(\text{Aunque te\'oricamente }0<\beta\leq 1,\,\,\text{su utilidad es en el rango }0.5\leq\beta\leq 1) \end{aligned}$$

9. Runge Kutta de Orden 4

$$\begin{split} u_{n+1/2} &= u_n + k/2 \ f \left(\ u_n, \ t_n \ \right) \\ u_{n+1/2} &= u_n + k/2 \ f \left(u_{n+1/2}, \ t_{n+1/2} \right) \\ u_{n+1} &= u_n + k \ f \left(u_{n+1/2}, \ t_{n+1/2} \right) \\ u_{n+1} &= u_n + k/6 \ [f \left(\ u_n, \ t_n \ \right) + 2 \ f \left(\ u_{n+1/2}, \ t_{n+1/2} \right) + 2 \ f \left(\ u_{n+1/2}, \ t_{n+1/2} \right) + f \left(u_{n+1/2}, \ t_{n+1/2} \right) \\ u_{n+1} &= k \ f \left(\ u_n + 1/2 \ q_1, \ t_{n+1/2} \right) \\ u_{n+1} &= u_n + 1/6 \ (\ q_1 + 2 \ q_2 + 2 \ q_3 + q_4 \right) \end{split}$$

10. Rayuela ("Leap-frog")

$$u_{n+1} = u_{n-1} + 2 k f (u_n, t_n)$$

11. Adams-Bashforth

- O(1) $u_{n+1} = u_n + k f_n$
- O(2) $u_{n+1} = u_n + k/2 (3 f_n f_{n-1})$
- O(3) $u_{n+1} = u_n + k/12 (23 f_n 16 f_{n-1} + 5 f_{n-2})$
- O(4) $u_{n+1} = u_n + k/24 (55 f_n 59 f_{n-1} + 37 f_{n-2} 9 f_{n-3})$

12. Adams-Moulton

- O(1) $u_{n+1} = u_n + k f_{n+1}$
- O(2) $u_{n+1} = u_n + k/2 (f_{n+1} + f_n)$
- O(3) $u_{n+1} = u_n + k/12 (5 f_{n+1} + 8 f_n f_{n-1})$
- O(4) $u_{n+1} = u_n + k/24 (9 f_{n+1} + 19 f_n 5 f_{n-1} + f_{n-2})$

13. Predictor-Corrector de Milne

$$u_{n+1} = u_{n-3} + 4/3 \text{ k} (2 f_n - f_{n-1} + 2 f_{n-2})$$

$$u_{n+1} = u_{n-1} + 1/3 k (f_{n+1} + 4 f_n + f_{n-1})$$