EECS 340: Assignment 2

Shaochen (Henry) ZHONG, sxz517 Zhitao (Robert) CHEN, zxc325

Due and submitted on 02/03/2020 EECS 340, Dr. Koyutrk

Problem 1

(a)
$$max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

Since it is known that $f(n) \ge 0$, $g(n) \ge 0$, and c > 0; we must have:

$$f(n) \leq f(n) + g(n)$$

$$g(n) \leq f(n) + g(n)$$

$$\Rightarrow \max(f(n), g(n)) \in O(f(n) + g(n)) \quad \text{for } \begin{cases} c = 1 \\ \forall n_0 \in \mathbb{R} \end{cases}$$

$$(1)$$

Since it is also known that $f(n) + g(n) \le 2 \cdot \max(f(n), g(n))$, we may therefore infer:

$$\max(f(n), g(n)) \in \Omega(f(n) + g(n)) \quad \text{for } \begin{cases} c = \frac{1}{2} \\ \forall n_0 \in \mathbb{R} \end{cases}$$
 (2)

Since both the O- and Ω -notation are established, we may therefore conclude:

$$\max(f(n), g(n)) \in \Theta(f(n) + g(n)) \tag{3}$$

(b1)
$$f(n) + d = O(f(n))$$
.

For the seek of disambiguation, we rewrite the questioned equation as f(n) + d = O(f(n)) by d replacing c for d > 0.

According to the defination of *O*-notation, we have:

$$f(n) = O(f(n))$$

$$\exists c, n_0 > 0 \text{ s.t. } 0 \le f(n) \le cf(n) \quad \text{for } n \ge n_0$$
(4)

$$\exists n' > 0 \text{ s.t. } f(n) \ge f(n') \text{ for } n, n' \ge n_0$$
 (5)

$$\Rightarrow 0 \le f(n) + d \le cf(n) + d \quad \text{for } n \ge n_0 \tag{6}$$

Due to Equation 5, we may rewrite Euquation 6 as:

$$0 \le f(n) + d \le \left(c + \frac{d}{f(n)}\right)f(n) \tag{7}$$

$$\Rightarrow 0 \le f(n) + d \le c' f(n) \quad \text{for } \begin{cases} c' = c + \frac{d}{f(n')} \\ n, n' \ge n_0 \end{cases}$$
 (8)

Based Euquation 8, we may conclude f(n) + d = O(f(n)) via direct proof.

(b2) If
$$f(n) \ge 1$$
, then $f(n) + c = O(f(n))$.

Please refer to proof at **b1** as it provides a broader proof base on f(n) regardless $f(n) \ge 1$ or not.

(c1) If
$$f(n) = O(g(n)), \log(f(n)) \ge 0$$
 and $\log(g(n)) \ge 0$, then $\log(f(n)) = O(\log(g(n))$.

According to the defination of O-notation, we must have:

$$\exists c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \text{ for } n \ge n_0$$
 (9)

Since it is given that $\log(f(n)), \log(g(n)) \geq 0$, thus we must have:

$$\log(f(n)) \le \log(c(g(n))) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$
(10)

As c, n_0 are constants, there must be a constant c' s.t.

Case 1 Assume $\log(g(n_0)) \neq 0$:

$$c' \ge \frac{\log c}{\log(g(n_0))} + 1 \tag{11}$$

$$\Rightarrow (c'-1)\log(g(n)) \ge (c'-1)\log(g(n_0)) \ge \log c \quad \text{for } n \ge n_0$$

$$\exists c, n_0 > 0 \quad \text{s.t.}$$
(12)

$$\log(f(n)) \le \log c + \log(g(n)) \le (c'-1)\log(g(n)) + \log(g(n))$$
 for $n \ge n_0$ (13)

$$\Rightarrow \log(f(n)) \le c' \log(g(n)) \tag{14}$$

Thus we may conclude log(f(n)) = O(log(g(n))) for this case.

Case 2 Assume $\log(g(n_0)) = 0$:

Since $\log(g(n_0)) = 0$, we shall infer that $g(n_0) = 1$. We may arbitrarily pick some constants c, c' where:

$$\log c \le 0$$

$$\log c \le (c' - 1) \cdot 0$$

$$\log c \le (c' - 1) \cdot \log(g(n_0))$$
(15)

Since $n \ge n_0$ by defination, and known that $g(n) \ge 1$ due to $\log(g(n)) \ge 0$; therefore there must be $g(n) \ge g(n_0)$. Putting this into the context of Equation 10, we may have:

$$\log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le (c' - 1) \cdot \log(g(n_0)) + \log(g(n))$$

$$\Rightarrow \log(f(n)) \le (c' - 1) \cdot \log(g(n)) + \log(g(n))$$

$$\Rightarrow \log(f(n)) \le c' \log(g(n))$$
(16)

Thus we may conclude log(f(n)) = O(log(g(n))) for this case.

Since both cases reach to the conclusion of log(f(n)) = O(log(g(n))), we have proven the statement to be valid.

(c2) If
$$f(n) = O(g(n)), \log(f(n)) \ge 0$$
 and $\log(g(n)) \ge 1$, then $\log(f(n)) = O(\log(g(n))$.

According to the defination of O-notation, we must have:

$$\exists c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \text{ for } n \ge n_0$$
 (17)

Since it is given that $\log(f(n)) \ge 0$, $\log(g(n)) \ge 1$, thus we must have:

$$\log(f(n)) \le \log(c(g(n))) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$
(18)

As c, n_0 are constants, there must be a constant c' s.t.

$$c' \ge \frac{\log c}{\log(g(n_0))} + 1 \tag{19}$$

$$\Rightarrow (c'-1)\log(g(n)) \ge (c'-1)\log(g(n_0)) \ge \log c \quad \text{for } n \ge n_0$$

$$\exists c, n_0 > 0 \quad \text{s.t.}$$

$$(20)$$

$$\log(f(n)) \le \log c + \log(g(n)) \le (c'-1)\log(g(n)) + \log(g(n))$$
 for $n \ge n_0$ (21)

$$\Rightarrow \log(f(n)) \le c' \log(g(n)) \tag{22}$$

Thus we may conclude $log(f(n)) = O(\log(g(n))$, the statement is therefore proven to be valid.

Problem 2