## 14.2 A Compute SRAM with Bit-Serial Integer/Floating-Point Operations for Programmable In-Memory Vector Acceleration

Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David Blaauw, Dennis Sylvester

University of Michigan, Ann Arbor, MI

Data movement and memory bandwidth are dominant factors in the energy and performance of both general purpose CPUs and GPUs. This has led to extensive research focused on in-memory computing, which moves computation to where the data is located. With this approach, computation is often performed on the memory bit-lines in the analog domain using current summing [1-3], which requires expensive analog-to-digital and digital-to-analog conversions at the array boundary. In addition, such analog computation is very sensitive to PVT variations, limiting precision. More recently, full-rail (digital) binary in-memory computing was proposed to avoid this conversion overhead and improve robustness [4, 5]. However, both prior in-memory approaches suffer from the same major limitations: they accelerate only one type of algorithm and are inherently restricted to a very specific application domain due to their limited and fixed bit-width precision and non-programmable architecture. Software algorithms, on the other hand, continue to evolve rapidly, especially in novel application domains, such as neural networks, vision and graph processing, making rigid accelerators of limited use. Furthermore, most available SRAM in today's chips is located in the caches of CPUs or GPUs. These large CPU and GPU SRAM stores present an opportunity for extensive inmemory computing and have, to date, remained largely untapped.

In this paper, we present a general purpose hybrid in-/near-memory compute SRAM (CRAM) that combines the efficiency of in-memory computation with the flexibility and programmability necessary for evolving software algorithms. CRAM augments conventional SRAM in a CPU with vector-based, bit-serial [6, 7] in-memory arithmetic. It can accommodate a wide range of bit-widths, from single to 32b or 64b, and operation types, including integer and floating point addition, multiplication and division. To maintain compatibility with CPU/GPU operation, CRAM writes/reads operands conventionally with horizontal word-lines and vertical bit-lines. Then, using a transposable bitcell [8], CRAM operates directly on the stored operands in memory with additional horizontal compute bit-lines. This enables the same bit position from two vectors elements to be simultaneously accessed on a single bit-line. Logic operations are performed on the bit-line (in-memory), while small additional incolumn logic (near-memory with 4.5% SRAM bank area overhead) enables carry-propagation between successive bit-serial calculations, enabling multi-bit arithmetic operations in SIMD fashion across all vectors of elements. To maintain versatility, the memories can function either as traditional or compute memories. The approach was implemented in a small IoT processor in 28nm CMOS, consisting of a Cortex-M0 CPU and 8 CRAM banks of 16KB each (128KB total). The system achieves 475MHz operation and, with all CRAMs active, produces 30GOPS or 1.4GFLOPS on 32b operands for graph, neural, and DSP applications.

Figure 14.2.1 shows the overall organization of the IoT processor. The ARM core can access all 8 memory banks and load/store data using the horizontal word-lines and vertical bit-lines. Then, in-memory instructions can be streamed from one bank to one or more compute-configured banks, while the M0 simultaneously performs other processing with the remaining memory banks. Banks performing in-memory computing use the horizontal compute bit-lines (CBLs) and vertical compute word-lines (CWLs).

Figure 14.2.2 shows the architecture of the 128×256 CRAM sub-array, which is one quarter of a 16KB CRAM macro. An 8T transposable bitcell is used to provide bidirectional access. Fig. 14.2.2 shows an example operation of the data flow for a 1b addition performed in 1 cycle of the bit-serial computation. Here, we add the second bit positions of vector A (A<sub>1</sub>=0) and vector B (B<sub>1</sub>=1) with carry-in C (=1) from the previous cycle, and store the result back to vector D. First, the CRAM instruction decoder receives the ADD instruction and the 3 column addresses of bits A<sub>1</sub>, B<sub>1</sub> and D<sub>1</sub>. It activates the CWLs of A<sub>1</sub> and B<sub>1</sub> simultaneously to compute 'A AND B' on CBL and 'Ā AND B' on CBLB. Since A=0 and  $\overline{B}$ =1, both CBL and CBLB discharge. Then, after the dual sense amps, the results propagate to the near-memory logic located at the end of each CBL. The NOR gate generates 'A XOR B', which combined with C<sub>in</sub> from the carry latch produces Sum=0 and C<sub>out</sub> =1. Sum is then written back to D, and C<sub>out</sub> is stored in the carry latch, which provides C<sub>in</sub> for the next cycle, thus completing one full bit-serial addition in one clock cycle.

Figure 14.2.3, left, shows how two vectors of 2b numbers (A and B) are added bitby-bit starting from the least significant bit (LSB). Note that while only one bit of a multi-bit operand is processed in each cycle, all compute bit-lines operate simultaneously, resulting in massive parallelism (2048 CBLs in our design). Subtraction is performed by first inverting B and then adding to A with  $C_{\text{in}}$  pre-set to 1. As shown in Fig. 14.2.3, multiplication is more complicated as it requires predication. For this, the tag latch (Fig. 14.2.2) is used to enable the write-back driver, resulting in a conditional copy/addition. First, 4 empty columns in the array are reserved for the product and initialized to zero. In the first cycle, the LSB of the multiplier is loaded to the tag latch. In cycles 2 and 3, the multiplicands are copied to product columns only if their tag is 1. In cycle 4, the second bit of the multiplier is loaded to the tag latch. In the next 2 cycles, for rows with tag = 1, the multiplicands are added to the second and third bits of the product, shifting the multiplicands by 1 to account for the multiplier bit position. Finally, we store Cout in the most significant bit (MSB) of the product to complete the multiplication. Note that partial products are implicitly shifted as they are added using appropriate bit addressing in the bit-serial operation and no explicit shift is performed. Division is conducted similarly by implicit shifting and subtraction from a partial result. Floating point arithmetic is implemented using repeated integer add/sub/mult/div with predication. Fig. 14.2.3 provides a list of supported computations and their performance, demonstrating both the versatility of CRAM and its high performance due to bit-line parallelism.

Figure 14.2.4 shows measurement results from the prototype chip fabricated in 28nm CMOS that contains 8 CRAM banks (128KB memory with 2048 computing rows) and a Cortex-M0 processor. The figure shows measured frequency and energy efficiency of 8b addition and multiplication across supply voltage. At 1.1V the maximum frequency of 475MHz results in 122GOPS for 8b addition and 9.4GOPS for 8b multiplication. The best energy efficiency is achieved at 0.6V and 114MHz, resulting in 0.56TOPS/W for 8b multiplication and 5.27TOPS/W for 8b addition. Fig. 14.2.4 shows measured frequency and leakage power distributions for 21 measured dies.

Figure 14.2.5 shows the performance of the test chip for diverse computationally intensive tasks ranging from neural networks to graph and signal processing. The total latency in cycles is compared with a baseline operation, where CRAMs are only used as data memories and the computation is entirely performed on the ARM CPU. The first benchmark is the 1st convolutional layer from Cuda-convnet and the second is the last fully connected layer from AlexNet. Due to their size, these layers must be executed in multiple smaller sub-sections. The third application consists of 512 simultaneous 32-tap FIR filters and the fourth application performs traversal of a directed graph represented by a 192×192 adjacency matrix. The workload breakdown shows the percentage of time spent on input loading and output loading vs. in-memory computation. Speedup, compared to executing the same workload with the ARM Cortex-M0, varies from 7.2-to-114×, with the greatest gains obtained when the operation is compute-heavy and low on input/output movement.

Figure 14.2.6 compares the proposed approach with other state-of-the-art inmemory accelerators. The proposed work is the only solution to provide a wide range of instructions and flexible bitwidth. It repurposes the memory storage already available in processors, thereby accelerating computation while maintaining programmability.

## Acknowledgements:

We gratefully acknowledge TSMC University Shuttle Program for chip fabrication. This work was supported in part by ADA, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

## References

- [1] J. Zhang, et al., "In-Memory Computation of a Machine Learning Classifier in a Standard 6T SRAM Array," *IEEE JSSC*, vol. 52, no. 4, pp. 915-924, 2017.
- [2] A. Biswas, et al., "Conv-RAM: An Energy-Efficient SRAM with Embedded Convolution Computation for Low-Power CNN-based Machine Learning Applications," *ISSCC*, pp. 488-489, 2018.
- [3] S. Gonugondla, et al., "A 42pJ/Decision 3.12TOPS/W Robust In-Memory Machine Learning Classifier with On-Chip Training," ISSCC, pp. 490-491, 2018
- [4] W. Khwa, et al., "A 65nm 4Kb Algorithm-Dependent Computing-in-Memory SRAM Unit-Macro with 2.3ns and 55.8TOPS/W Fully Parallel Product-Sum Operation for Binary DNN Edge Processors," ISSCC, pp 496-497, 2018.
- [5] Y. Zhang, et al., "Recryptor: A Reconfigurable In-Memory Cryptographic Cortex-M0 Processor for IoT," *IEEE Symp. VLSI Circuits*, 2017.
- [6] K. Batcher, "Bit-Serial Parallel Processing Systems," *IEEE Trans. on Computers*, vol. 31, no. 5, pp. 377-384, 1982.
- [7] C. Eckert, et al., "Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks," *ACM/IEEE ISCA*, pp. 383-396, 2018.
- [8] J. Seo, et al., "A 45nm CMOS Neuromorphic Chip with a Scalable Architecture for Learning in Networks of Spiking Neurons," *IEEE CICC*, 2011.



Figure 14.2.1: Chip architecture and storage and computation of data in transposable memory array.





Figure 14.2.3: 2-bit addition cycle-by-cycle demonstration (top-left), 2-bit multiplication cycle-by-cycle demonstration (top-mid & right), and list of CRAM instructions and its performance (bottom).



Figure 14.2.4: Frequency and energy efficiency of 8-bit multiplication and addition at different VDD (top), maximum frequency and leakage power distribution of 21 dies at 1.1V (bottom).

|                            | CONV                   |            | FC                 |            | FIR               |            | GRAPH                      |            |
|----------------------------|------------------------|------------|--------------------|------------|-------------------|------------|----------------------------|------------|
| Testbench                  | Cuda-Convnet 1st layer |            | AlexNet last layer |            | 512 32-Tap Filter |            | Nearest Neighbor Traversal |            |
| Input Size                 | 24x24x3                |            | 24x1               |            | 32x10             |            | 192x192                    |            |
| Parameter Size             | 5x5x3x64               |            | 1000x24            |            | 512x32            |            | 0                          |            |
| Output Size                | 1x1x64                 |            | 1000x1             |            | 512x10            |            | 192x192                    |            |
| Bit Precision              | 8                      |            | 8                  |            | 4                 |            | 1                          |            |
| # Array used for compute   | 3                      |            | 6                  |            | 2                 |            | 2                          |            |
| # Wordline for computation | 375                    |            | 1000               |            | 512               |            | 192                        |            |
|                            | cycle#                 | percentage | cycle#             | percentage | cycle#            | percentage | cycle#                     | percentage |
| Total Latency              | 39,628                 | 100        | 33,434             | 100        | 251,290           | 100        | 1,572,628                  | 100        |
| Input loading              | 18,323                 | 46.2       | 24                 | 0.07       | 320               | 0.13       | 1,152                      | 0.07       |
| CRAM Compute               | 3,459                  | 8.7        | 21,267             | 63.6       | 184,020           | 73.2       | 1,556,458                  | 99.0       |
| output readout             | 17,846                 | 45.0       | 12,143             | 36.3       | 66,950            | 26.6       | 15,018                     | 0.95       |
|                            | cycle#                 | speedup    | cycle#             | speedup    | cycle#            | speedup    | cycle#                     | speedup    |
| Baseline                   | 287,073                | 7.24x      | 1,174,032          | 35.1x      | 8.120.415         | 32.3x      | 164,456,448                | 114x       |



Figure 14.2.5: Performance comparison between CRAM and baseline scenario (top), workload breakdown (bottom).

|                                         | This Work                | JSSC2017<br>[1]           | ISSCC2018<br>[2]          | ISSCC2018<br>[3]          | ISSCC2018<br>[4]          | VLSI2017<br>[5] |
|-----------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------|
| Technology                              | 28nm                     | 130nm                     | 65nm                      | 65nm                      | 65nm                      | 40nm            |
| Supply Voltage                          | 0.6~1.1V                 | 1.2V                      | 0.9~1.2V                  | 0.65~1V                   | 0.6~1V                    | 0.65~0.9\       |
| SRAM Macro size                         | 16KB                     | 2KB                       | 2KB                       | 16KB                      | 0.5KB                     | 8KB             |
| SRAM bitcell                            | 8T                       | 6T                        | 10T                       | 6T                        | 6T                        | 10T             |
| Method of Computing                     | Digital                  | Analog                    | Analog                    | Analog                    | Digital                   | Digital         |
| Type of Supported Functions             | Logic/Add/Sub/Mult/Div/F | Add/Mult                  | Add/Mult                  | Add/Mult                  | Add/Mult                  | Logic           |
| Bit precision                           | Arbitrary                | 5b (input)<br>1b (weight) | 7b (input)<br>1b (weight) | 16b (train)<br>8b (infer) | 1b (input)<br>1b (weight) | Arbitrary       |
| Die Area (mm2)                          | 2.7                      | 0.36                      | 0.067                     | 1.44                      |                           | 1.28            |
| Max Fregency (MHz)                      | 475                      | 50                        | 6.7                       | 1000                      | 435                       | 90              |
| Normalized Performance (GOPS)*          | 32.7                     | 40.5                      | 1.17                      |                           | 27                        |                 |
| Performance per unit Area (GOPS/mm2)**  | 27.3                     | 114                       | 17.5                      |                           |                           | +               |
| N                                       | 0.55 (mult)              | 0.16 (mult)               | 2.07                      | 2.45                      | 0.87                      |                 |
| Normalized Energy Efficiency (TOPS/W) * | 5.27 (add)               | 4.58 (add)                | 3.07                      | 3.12                      |                           |                 |

Figure 14.2.6: Comparison table.

## **ISSCC 2019 PAPER CONTINUATIONS**

| Technology Jiene CMOS Processor AMB Cortex MD Bitted Size Cooper of the Co |                         |                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--|
| Processor ARM Cortex M0  O.405um x 1.93um (Logic-rule)  Chip Size  CRAM CORAM CTRL BUS  ARM Cortex M0  CRAM CTRL BUS  CRAMS  CRA |                         |                           |  |
| Processor ARM Cortex M0  0.405um x 1.93um (Logic-rule)  Chip Size 1.5 x 1.7 mm²  Supply Voltage 0.6 ~ 1.1V  Memory Capacity 128KB (8 x 16KB)  SRAM Macro Size 16KB  SRAM Sub Array 128 rows x 256 colums  Clock Frequency 475MHz @1.1V  Average power 105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOUSCIEDING CE          | Technology 28nm CMOS      |  |
| Bitcell Size  CRAM2  CRAM3  CRAM4  Bitcell Size  Chip Size  1.5 x 1.7 mm²  Supply Voltage  0.6 ~ 1.1V  Memory Capacity  128KB (8 x 16KB)  SRAM Macro Size  SRAM Sub Array  128 rows x 256 colums  Clock Frequency  Average power  105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                           |  |
| Memory Capacity  SRAM Macro Size  SRAM Sub Array  128 rows x 256 colums  Clock Frequency  475MHz @1.1V  Average power  105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRAM1 CRAM2 CRAM3 CRAM4 | 0.405um x 1.93um          |  |
| Memory Capacity  SRAM Macro Size  16KB  SRAM Sub Array  128 rows x 256 colums  Clock Frequency  475MHz @1.1V  Average power  105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                     | Chin Size (Logic-rule)    |  |
| Memory Capacity  SRAM Macro Size  SRAM Sub Array  128 rows x 256 colums  Clock Frequency  Average power  105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Supply Voltage 0.6 ~ 1.1V |  |
| CRAM5 CRAM7 CRAM8 CRAM7 CRAM8 SRAM Macro Size 16KB  SRAM Sub Array 128 rows x 256 colums  Clock Frequency 475MHz @1.1V  Average power 105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                           |  |
| Clock Frequency 475MHz @1.1V  Average power 105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                           |  |
| Clock Frequency 475MHz @1.1V  Average power 105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRAMS CRAM6 CRAM7 CRAM8 |                           |  |
| Average power 105mW @1.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000 00000 00          |                           |  |
| re 14.2.7: Die photo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                           |  |
| rre 14.2.7: Die photo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re 14.2.7: Die photo.   |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |  |