FÍSICA SIGLO XX (ENUNCIADOS)

CONSTANTES FÍSICAS			
Velocidad de la luz en el vacío	$c = 3.0 \ 10^8 \mathrm{m \ s^{-1}}$	Masa del protón	$m_{p+} = 1.7 \ 10^{-27} \mathrm{kg}$
Constante de gravitación universal	$G = 6.7 \ 10^{-11} \ \text{N m}^2 \ \text{kg}^{-2}$	Masa del electrón	$m_{e^-} = 9.1 \ 10^{-31} \mathrm{kg}$
Constante de Coulomb	$k = 9.0 \ 10^9 \ \text{N} \ \text{m}^2 \ \text{C}^{-2}$	Carga del protón	q_{p+} = 1.6 10 ⁻¹⁹ C
Constante de Planck	$h = 6.6 \ 10^{-34} \ \text{J s}$	Carga del electrón	q_{e-} = -1.6 10 ⁻¹⁹ C
Radio de la Tierra	$R_T = 6370 \text{ km}$	Masa de la Tierra	$M_T = 5.97 \cdot 10^{24} \mathrm{kg}$

Nota: estas constantes se facilitan a título informativo.

JULIO 2021

El trabajo de extracción del cobre es de 4,7 eV. Si se ilumina una superficie de este material con radiación de $2.5\cdot10^{-7}$ m, calcular:

DATO: 1 eV = $1.6 \cdot 10^{-19}$ J

- a) (0,75 p) La longitud de onda umbral para el cobre.
- b) (1 p) Velocidad máxima de los electrones emitidos.
- c) (1 p) El potencial de frenado.

JULIO 2021

En un instante determinado, una muestra de una sustancia radiactiva presenta una actividad inicial de 10^8 Bq. Al cabo de 100 días, la actividad de la muestra es de $2\cdot10^7$ Bq.

DATO: 1 Bq = 1 desintegración por segundo.

- a) (1,25 p) Calcular la constante de desintegración y el periodo de semidesintegración de dicha sustancia.
- b) (1,25 p) La actividad de una segunda muestra de la misma sustancia es de 4·10⁹ Bq cuando han transcurrido 10 días. Hallar cuántos núcleos radiactivos había inicialmente en esta segunda muestra.

JUNIO 2021

Al iluminar un metal en un experimento con luz monocromática, se obtiene que el potencial de frenado es de -1,39 V. La frecuencia umbral de este metal es de 4,52.10¹⁴ Hz. Calcular:

- a) (0,5 p) El trabajo de extracción.
- b) (1 p) La velocidad máxima de los electrones extraídos.
- c) (1 p) La longitud de onda de la luz incidente.

JUNIO 2021

El período de semidesintegración de un elemento radiactivo es de 12,32 años. Calcular:

- a) (1 p) La constante de desintegración radiactiva y la vida media.
- b) (1,5 p) El tiempo transcurrido si una muestra del elemento radiactivo ha reducido su actividad al 10% de su valor inicial.

SEPTIEMBRE 2020

Se ilumina un metal con una luz incidente de frecuencia $8,00.10^{14}$ Hz, si el potencial de frenado es -2 V. Obtener:

- a) (1,5 p) La energía de la luz incidente y la frecuencia umbral.
- b) (1 p) La energía cinética máxima con la que salen los electrones.

Inicialmente se tienen $6,4.10^{24}$ núcleos de un cierto isótopo radiactivo. Transcurridos 8 años, el número de núcleos radiactivos se ha reducido a $4,2.10^{24}$. Determinar:

- a) (1,5 p) La vida media del isótopo y la constante de desintegración.
- b) (1 p) El período de semidesintegración.

JULIO 2020

Se ilumina un metal con una luz incidente de frecuencia $6,50.10^{14}$ Hz, si la energía cinética máxima de salida es 14.10^{-20} J. Obtener:

- a) (1 p) El trabajo de extracción y la frecuencia umbral.
- b) (1 p) La velocidad máxima de salida de los electrones.
- c) (0,5 p) Potencial de frenado.

JULIO 2020

De los 200 g iniciales de una muestra radiactiva al cabo de 30 días, se han desintegrado el 40 % de los núcleos. Determinar:

- c) (1,5 p) La constante de desintegración radiactiva y el período de semidesintegración de la muestra
- d) (1 p) La masa que quedará de la sustancia radiactiva transcurridos 90 días.

JULIO 2019

El trabajo de extracción fotoeléctrico del sodio metálico es de 2.0 eV. Determinar:

- a) (0,75 p) La velocidad máxima con la que son emitidos los electrones, cuando se ilumina con luz de longitud de onda de 400 nm.
- b) (0,75 p) La frecuencia umbral para que sean emitidos los electrones de la superficie metálica.
- c) (0,5 p) Explica brevemente las dificultades de la física clásica para explicar el efecto fotoeléctrico.

DATO: $1eV = 1.6.10^{-19} J$

JULIO 2019

El Mo⁹⁸ es un isótopo radiactivo que se desintegra por fisión en dos Sc^{49} . Sabiendo que la masa de Mo⁹⁸ es de 97,90541 u.a.m. y la de cada Sc^{49} es de 48,95002 u.a.m. Sabiendo que 1 u.a.m. se corresponde con 935 MeV/ c^2 :

- a) (0,75 p) Calcula el defecto de masa.
- b) (0,75 p) La energía de la desintegración.
- c) (0,5 p) Explica en que consiste la desintegración β .

JUNIO 2019

El trabajo de extracción fotoeléctrico de un determinado metal es 2,07 eV. Determinar:

- a) (1 p) La velocidad máxima con la que son emitidos los electrones, cuando se ilumina con luz de longitud de onda de 400 nm.
- b) (1 p) Sabiendo que las longitudes de onda de la luz visible están comprendidas entre 380 nm y 775 nm. ¿En qué rango de longitudes de onda de la luz visible se producirá el efecto fotoeléctrico?

DATO: $1 \text{ eV} = 1.6.10^{-19} \text{ J}$

El tritio es un isótopo radiactivo del hidrógeno que emite partículas β con una vida media de 12,5 años.

- a) (0,75 p) Calcular la constante de desintegración radiactiva.
- b) (0,75 p) ¿Qué fracción de la muestra original quedará al cabo de 17,32 años?
- c) (0,5 p) Explica en qué consiste una desintegración a.

SEPTIEMBRE 2018

El trabajo de extracción de electrones para un determinado metal es de 4,34 eV (6,944.10⁻¹⁹ J).

- a) (1 p) Calcula cuál es la longitud de onda máxima para producir el efecto fotoeléctrico en dicho metal.
- b) (1 p) Si se ilumina el metal con una luz de longitud de onda $\lambda_{max}/2$, ¿qué energía cinética máxima adquieren los electrones? (si no has obtenido el resultado anterior toma un valor razonable para realizar el cálculo).

SEPTIEMBRE 2018

El ^{60}Co es un isótopo radiactivo cuyo periodo de semidesintegración es de 5,25 años.

- a) (0,5 p) Calcula su constante de desintegración.
- b) (1 p) ¿Qué masa de 60Co tendremos al cabo de dos años si se tiene una masa inicial de 50 g?
- c) (0,5 p) Describe brevemente el proceso de desintegración en el que se emite una partícula a.

JUNIO 2018

En una muestra radiactiva, transcurridos 30 días su actividad es una cuarta parte de la que se tenía al principio.

- a) (1 p) Determina el valor de la constante de desintegración y calcula el período de semidesintegración.
- b) (0,5 p) Si la actividad de la muestra en ese momento vale 6,4.10¹⁴ Bq, calcula cuántos átomos radiactivos había inicialmente.
- c) (0,5 p) Describe brevemente el proceso de desintegración en el que se emite una partícula β (beta).

JUNIO 2018

El trabajo de extracción del aluminio es de 4,2 eV $(6,72.10^{-19} \text{ J})$. Si se ilumina una superficie de este material con radiación de 15.10^{-9} m. Determina:

- a) (0,5 p) La longitud de onda umbral para el aluminio.
- b) (1 p) La energía cinética máxima de los electrones emitidos.
- c) (0,5 p) Enuncia la explicación cuántica postulada por Einstein.

SEPTIEMBRE 2017

El periodo de semidesintegración de un elemento radiactivo es de 5,3 años y se desintegra emitiendo una partícula β . Calcula:

- a) (1 p) El tiempo que tarda la muestra en convertirse en el 80 % de la original.
- b) (0,5 p) La actividad radiactiva de una muestra de 10^{15} átomos transcurridos 2 años.
- c) (0,5 p) Describir brevemente el proceso de desintegración en el que se emite una partícula β .

El trabajo de extracción de un metal es 3,2 eV (1 eV = 1,6.10⁻¹⁹ J). Sobre el incide radiación de longitud de onda λ = 340 nm (1 nm = 10⁻⁹ m). Calcula:

- a) (1 p) La frecuencia umbral y la velocidad máxima con la que son emitidos los electrones.
- b) (0,5 p) Si la longitud de onda se reduce a la tercera parte, ¿cuál es, en su caso, la nueva velocidad máxima que adquieren los electrones?
- c) (0,5 p) Describir el concepto de frecuencia umbral y su relación con la hipótesis cuántica de Planck.

JUNIO 2017

La función trabajo de un cierto metal es 6,0.10⁻¹⁹ J, calcula:

- a) (0,5 p) La frecuencia umbral.
- b) (0,75 p) Si se ilumina el metal con una luz incidente de 320 nm (1 nm = 10^{-9} m) calcular la velocidad máxima de los electrones emitidos.
- c) (0,75 p) Si la longitud de onda de luz incidente se reduce a la mitad, écuál será la velocidad máxima de los electrones emitidos?

JUNIO 2017

Una muestra de una sustancia radiactiva presenta una actividad inicial de $6,2.10^7$ Bq y de $1,6.10^7$ Bq cuando han transcurrido 12 días.

- a) (1 p) Calcular la constante de desintegración y el periodo de semidesintegración de dicha sustancia.
- b) (1 p) La actividad de una segunda muestra de la misma sustancia es de 2,8.10⁸ Bq cuando han transcurrido 20 días. Hallar cuántos núcleos radiactivos había inicialmente en esta segunda muestra.

DATO: 1 Bq = 1 desintegración por segundo.

SEPTIEMBRE 2016

Luz ultravioleta de longitud de onda 170 nm incide sobre una superficie pulida de zinc cuya función de trabajo es de 4,31 eV.

- a) (1 p) Hallar, en su caso, la velocidad máxima de los electrones emitidos.
- b) (1 p) Hallar la frecuencia umbral del zinc.

DATO: $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}. \quad 1 \text{ nm} = 10^{-9} \text{ m}.$

SEPTIEMBRE 2016

La actividad de una muestra de una sustancia queda dividida por 16 cuando han transcurrido 10 días.

- a) (1 p) Hallar la constante de desintegración y el período de semidesintegración de dicha sustancia.
- a) (0,5 p) Si cuando han transcurrido 2 días, la actividad de la sustancia es de 10¹⁶ Bq, ¿cuántos átomos radiactivos había inicialmente?
- b) (0,5 p) Describir brevemente un proceso de desintegración en el que se emite una partícula α (alfa).

DATO: 1 Bq = 1 desintegración por segundo.

La energía mínima para arrancar un electrón de una lámina de un cierto metal es de $1,0.10^{-18}$ J.

- a) (1 p) Hallar la frecuencia umbral para este metal y la longitud de onda correspondiente a la misma.
- b) (0,5 p) Si se incide con una luz de longitud de onda 85 nm, en su caso, ¿qué energía cinética máxima tendrán los electrones extraídos?
- c) (0,5 p) Explicar brevemente el significado físico de la "función trabajo" de un metal.

JUNIO 2016

La actividad de una muestra de una sustancia radiactiva queda dividida por 8 cuando han transcurrido 4000 días.

- a) (1 p) Hallar la constante de desintegración y el período de semidesintegración de dicha sustancia.
- b) (1 p) Si el número inicial de átomos radiactivos en la muestra era de 1,0.10²² átomos, ¿cuál será la actividad de la muestra al cabo de 16000 días?

SEPTIEMBRE 2015

Una onda electromagnética de longitud de onda 70 nm incide sobre la superficie de un metal cuya función de trabajo es de 7.31 eV.

- b) (1 p) Calcular si se van a emitir electrones del metal y, en su caso, hallar la velocidad máxima de los electrones emitidos.
- c) (1 p) Si la longitud de onda de la onda que incide sobre el metal se multiplica por 2, ¿cuál es, en su caso, la velocidad máxima de los electrones emitidos?

DATOS: $1 \text{ eV} = 1,6.10^{-19} \text{ J.}$ $1 \text{ nm} = 10^{-9} \text{ m.}$

SEPTIEMBRE 2015

Una roca contiene dos tipos de átomos radiactivos, A y B, de período de semidesintegración $T_{1/2}$ (A) = 1 500 días y $T_{1/2}$ (B) = 4 500 días, respectivamente. Cuando la roca se formó, su contenido en A y en B era el mismo, con N_0 =10 16 núcleos de cada tipo de átomo.

- a) (1 p) Calcular la actividad de cada tipo de átomo en el momento de formación de la roca.
- b) (1 p) ¿Cuál será el número de átomos de A y el número de átomos de B todavía existentes en la roca 9 000 días después de su formación?

JUNIO 2015

Sobre una superficie de un cierto metal M inciden simultáneamente dos radiaciones monocromáticas de longitudes de onda 200 nm y 100 nm, respectivamente. La función trabajo para este metal M es de 8.3 eV.

- a) (1 p) Determinar la frecuencia umbral de efecto fotoeléctrico para dicho metal y razonar si habría emisión fotoeléctrica para las dos longitudes de onda indicada.
- b) (1 p) En su caso, calcular la velocidad máxima de los electrones emitidos.

DATOS: 1 eV = $1.6 \cdot 10^{-19} \text{ J}$; 1 nm = 10^{-9} m .

JUNIO 2015

La actividad de una muestra que contiene un cierto elemento radiactivo R es de $8,0.10^{11}$ Bq. El período de semidesintegración del elemento R es de 1600 días.

- a) (1 p) Hallar el número de núcleos de R en la muestra
- b) (0,5 p) Hallar el número de núcleos radiactivos que quedarán en la muestra al cabo de 6400 días.
- c) (0,5 p) Explica brevemente la relación entre el "período de semidesintegración de un elemento" y su "constante de desintegración".

DATO: 1 Bq = 1 desintegración por segundo

La actividad de una muestra de una sustancia radiactiva queda dividida por 3 cuando han transcurrido 987 días.

- a) (1 p) Halla la constante de desintegración y el período de semidesintegración de dicha sustancia.
- b) (1 p) Si cuando han transcurrido 500 días, la actividad de la sustancia es de 10⁵ Bq, ¿cuántos átomos radiactivos había inicialmente?

DATO: 1 Bq = 1 desintegración por segundo

SEPTIEMBRE 2014

La energía mínima necesaria para arrancar un electrón de una lámina de un cierto metal es de $9.59.10^{-19} \, \mathrm{J}.$

- a) (1 p) Hallar la frecuencia umbral para este metal y la longitud de onda correspondiente a la misma.
- b) (0,5 p) Si se incide con luz de una longitud de onda de 100 nm, ¿qué energía cinética máxima tendrán los electrones extraídos?
- c) (0,5 p) Explicar brevemente el significado de la "función trabajo" de un metal

DATO: $1 \text{ nm} = 10^{-9} \text{ m}$

JUNIO 2014

Una onda electromagnética de longitud de onda 70 nm incide sobre la superficie de un metal cuya función de trabajo es de 7.31 eV.

- a) (1 p) Estimar si se van a emitir electrones del metal y, en su caso, hallar la velocidad máxima de los electrones emitidos.
- b) (1 p) Si la longitud de onda de la onda que incide sobre el metal se divide por 3, ¿cuál es, en su caso, la nueva velocidad máxima de los electrones emitidos?

DATOS: $1 \text{ eV} = 1.6 \cdot 10^{\circ 19} \text{ J}$ $1 \text{ nm} = 10^{-9} \text{ m}.$

JUNIO 2014

Una roca contiene dos tipos de átomos radioactivos, A y B, de período de semidesintegración $\left(T_{1/2}\right)_A = 3010 \ a \|os\| y \left(T_{1/2}\right)_B = 6100 \ a \|os\| s$ respectivamente. Cuando la roca se formó, su contenido en A y en B era el mismo, con $N_0 = 10^{16}$ núcleos de cada tipo de átomo.

- a) (1 p) Calcular la actividad de cada tipo de átomo en el momento de formación de la roca.
- b) (1 p) ¿Cuál será el número de átomos de A y el número de átomos de B todavía existentes en la roca 12 000 años después de su formación?

SEPTIEMBRE 2013

Un fotón incide sobre un metal cuyo trabajo de extracción es 2.0 eV. La energía cinética máxima de los electrones emitidos por ese metal es 0.47 eV.

- a) (1 p) Calcular la energía del fotón incidente y la frecuencia umbral de efecto fotoeléctrico del metal.
- b) (1 p) Calcular cuál sería la velocidad máxima de los electrones emitidos si la longitud de onda del fotón incidente fuera 16 veces menor que la longitud de onda del fotón anterior.

DATO: 1 eV= 1,602 10⁻¹⁹ J

La actividad de una muestra de una sustancia radiactiva es inicialmente de $2,718.10^{14}$ Bq y de $1,000.10^{14}$ Bg cuando han transcurrido 2000 días.

- a) (1 p) Hallar la constante de desintegración y el período de semidesintegración de dicha sustancia.
- b) (1 p) Si cuando han transcurrido 1000 días, la actividad de una segunda muestra de la misma sustancia radiactiva es de 2,0.10¹⁴ Bq, hallar cuántos átomos radiactivos había inicialmente en esta segunda muestra.

DATOS: 1 Bq = 1 desintegración por segundo

JUNIO 2013

La actividad de una muestra de una sustancia radiactiva queda dividida por 15 cuando han transcurrido 50 días

- a) (1 p) Hallar la constante de desintegración y el período de semidesintegración.
- b) (0,5 p) Si cuando han transcurrido 2 días, la actividad de la sustancia es de 10¹² Bq, ¿cuántos átomos radiactivos había inicialmente?
- c) (0,5 p) Describir brevemente un proceso de desintegración en el que se emite una partícula β

DATOS: 1 Bq = 1 desintegración por segundo.

JUNIO 2013

Se emite un electrón cuando luz ultravioleta de longitud de onda 170 nm incide sobre una superficie pulida de zinc cuya función de trabajo es 4.31 eV.

- a) (1 p) Hallar la velocidad del electrón emitido.
- b) (1 p) Si la longitud de onda de la luz que incide sobre el zinc se divide por 4, ¿por cuánto se multiplica la velocidad del electrón emitido?

DATOS: $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$: $1 \text{ nm} = 10^{-9} \text{ m}$.

SEPTIEMBRE 2012

La energía mínima necesaria para arrancar un electrón de una lámina de plata (función trabajo) es de $7.52.10^{-19}$ J.

- a) (1 p) Hallar la frecuencia umbral para la plata y la longitud de onda correspondiente a la misma.
- b) (0,5 p) Si se incide con una luz de longitud de onda 100 nm, ¿qué energía cinética tendrán los electrones extraídos?
- c) (0,5 p) Explique brevemente las energías que intervienen en la explicación del efecto fotoeléctrico.

DATOS: $1 \text{ nm} = 10^{-9} \text{ m}.$

SEPTIEMBRE 2012

La actividad de una muestra que contiene radio 226, 226 Ra, es de 9.10^{14} Bq. El período de semidesintegración del 226 Ra es de 1602 años.

- a) (1 p) Hallar el número de núcleos de ²²⁶Ra en la muestra.
- b) (1 p) Hallar el número de núcleos radiactivos que quedarán en la muestra al cabo de 3500 años.

DATOS: 1 Bq = 1 desintegración por segundo.

Se emite un electrón cuando luz ultravioleta de longitud de onda 170 nm incide sobre una superficie pulida de zinc cuya función de trabajo es 4,31 eV.

- a) (1 p) Hallar la velocidad del electrón emitido.
- b) (0,5 p) Hallar la distancia recorrida por el electrón si es sometido a un campo eléctrico de 10^4 N. C^{-1} que lo va frenando.
- c) (0,5 p) Describir el concepto de frecuencia umbral y su relación con la hipótesis de Planck.

DATOS: 1 eV = $1,6.10^{-19}$ J; 1nm = 10^{-9} m.

JUNIO 2012

Una roca contiene dos tipos de átomos radiactivos A (Radio 226) y B (Carbono 14) de período de semidesintegración $t_{1/2}$ (A) = 1602 años y $t_{1/2}$ (B) = 5760 años, respectivamente. Cuando la roca se formó, su contenido en A y en B era prácticamente el mismo, $N_0 = 10^{15}$ núcleos de cada tipo de átomo

- a) (1 p) ¿Qué tipo de átomo tenía una actividad mayor en el momento de su formación?
- b) (1 p) ¿Cuál será la razón entre el número de átomos A y B todavía existentes en la roca 3000 años después de su formación?

SEPTIEMBRE 2011

Una muestra contiene 10^{20} átomos de una sustancia cuyo periodo de semidesintegración es de 10 años.

- a) (1 p) Hallar su actividad al cabo de 20 años.
- b) (1 p) Hallar el número de átomos que se han desintegrado a lo largo de esos 20 años.

JUNIO 2011

La siguiente gráfica recoge las medidas de la actividad de una muestra en función del número de átomos de un isótopo radiactivo presente en la misma.

- a) (1 p) Hallar el periodo de semidesintegración del isótopo radiactivo.
- b) (1 p) Representar en una gráfica cómo varía con el tiempo el número de átomos de isótopo radiactivo en la muestra.

NOTA: explicar el procedimiento seguido para realizar la gráfica.

SEPTIEMBRE 2010

- a) (1 p) Explicar por qué tipo de emisión radiactiva el radio $^{266}_{88}Ra$ se transforma en radón $^{222}_{86}Rn$
- b) (1 p) Calcular la energía desprendida en el proceso.

DATOS: $m_{Ra} = 226,0960 \text{ u}$; $m_{Rn} = 222,0869 \text{ u}$; $m_{He} = 4,00387 \text{ u}$; $1 \text{ u} = 1,66.10^{-27} \text{ kg}$; $c = 3.10^8 \text{ m/s}$

SEPTIEMBRE 2010

Un material cuya frecuencia umbral para el efecto fotoeléctrico es $1.5\ 10^{15}\ Hz$, se ilumina con luz de longitud de onda de $150\ nm$.

- a) (1 p) Hallar el número de fotones que inciden por segundo sobre el material si se ilumina con un haz de 1 mW de potencia.
- b) (1 p) Hallar la energía cinética máxima de los electrones emitidos.

DATOS: Constante de Planck: $h = 6.6 \cdot 10^{-34} \, \text{J}$ s; Velocidad de la luz: $c = 3 \cdot 10^8 \, \text{m s}^{-1}$; $1 \, \text{nm} = 10^{-9} \, \text{m}$

Un material, cuya frecuencia umbral para el efecto fotoeléctrico es 10^{15} Hz, se analiza con un instrumento que dispone de una lámpara que emite luz de longitud de onda 100 nm.

- a) (0,5 p) Halla la energía de los correspondientes fotones
- b) (0,5 p) ¿Cuántos electrones puede arrancar del material un fotón de la lámpara?
- c) (1 p) Halla la energía cinética máxima de los electrones emitidos.

DATOS: Constante de Planck, $h = 6.6.10^{-34}$ J. s; Velocidad de la luz, $c = 3.10^8$ m/s; 1 nm = 10^{-9} m

JUNIO 2010

Un residuo de una unidad de medicina nuclear contiene 8.10¹⁸ átomos de una sustancia radiactiva cuyo período de semidesintegración es de 20 años.

- a) (1 p) Halla la actividad inicial de la misma
- b) (0,5 p) Halla la actividad al cabo de 60 años
- c) (0,5 p) Halla el número de átomos que se han desintegrado al cabo de 60 años.

SEPTIEMBRE 2009

Se ilumina una lámina de platino con luz cuya frecuencia es el doble de la frecuencia umbral para producir efecto fotoeléctrico.

- a) (1 p) Hallar la energía cinética máxima y la velocidad máxima de los electrones emitidos.
- b) (0,5 p) Si se envía sobre la lámina un único fotón de esa frecuencia, ¿cuántos electrones se liberan como máximo?
- c) (0,5 p) Repetir el apartado anterior si se multiplica por 10 la longitud de onda del fotón incidente.

DATOS: La energía mínima necesaria para arrancar un electrón del platino es 6.35 eV; Constante de Planck h = $6.6 \cdot 10^{-34} \, \text{J.s}$ 1 eV = $1.6 \cdot 10^{-19} \, \text{J}$ $m_e = 9.1 \cdot 10^{-31} \, \text{kg}$

SEPTIEMBRE 2009

Definir las siguientes magnitudes características de la desintegración radiactiva:

- a) (1 p) Velocidad de desintegración (actividad).
- b) (1 p) Periodo de semidesintegración.

JUNIO 2009

En una pieza extraída de una central nuclear existen 10^{20} núcleos de un material radiactivo cuyo período de semidesintegración es de 29 años.

- a) (1 p) Halla el número de núcleos que se desintegran a lo largo del primer año.
- b) (1 p) Si la pieza se considera segura cuando su actividad es menor de 600 desintegraciones por segundo, halla cuántos años han de transcurrir para que se alcance dicha actividad.

JUNIO 2009

- a) (1 p) Halla la longitud de onda asociada a un electrón cuya velocidad es $v = 10^6$ m/s.
- b) (1 p) Halla la longitud de onda asociada a una partícula de 2 g de masa cuya energía cinética es 10¹⁶ veces la del electrón.

DATOS: masa del electrón: $m_e = 9,1.10^{-31}$ kg; constante de Planck: $h = 6,6.10^{-34}$ J.s