PadhAl: Backpropagation - the light math version

One Fourth Labs

Partial Derivatives with respect to a

Part 2

How do we compute partial derivatives

- 1. Let us continue calculating the partial derivative of L w.r.t w₂₁₂
- 2. Solving the equation sequentially
 - a. Let's look at the second partial derivative $\frac{\partial \hat{y_1}}{\partial a_{21}}$
 - i. Here, $\hat{y}_1 = (\frac{e^{a_{21}}}{e^{a_{21}} + e^{a_{22}}})$, this is the softmax applied on a_{21}
 - ii. To make it easier to compute, multiply both numerator and denominator by e^{-a21}

iii.
$$\hat{y}_1 = (\frac{e^{-a_{21}}}{e^{-a_{21}}})(\frac{e^{a_{21}}}{e^{a_{21}} + e^{a_{22}}}) = \frac{1}{1 + e^{-(a_{21} - a_{22})}}$$

iv.
$$\frac{\partial \hat{y}_1}{\partial a_{21}} = \frac{\partial}{\partial a_{21}} \left(\frac{1}{1 + e^{-(a_{21} - a_{22})}} \right)$$

v.
$$\frac{\partial \hat{y_1}}{\partial a_{21}} = \left(\frac{-1}{(1 + e^{-(a_{21} - a_{22})})^2}\right).(1).(e^{-(a_{21} - a_{22})}).(-1) = \left(\frac{1}{1 + e^{-(a_{21} - a_{22})}}\right).(\frac{e^{-(a_{21} - a_{22})}}{1 + e^{-(a_{21} - a_{22})}})$$

vi. Rewriting the terms $\frac{\partial \hat{y}_1}{\partial a_{21}} = \hat{y}_1 (1 - \hat{y}_1)$