1 Quantities

- $J \in \mathbb{Z}^+$ = number of scale decomposition
- $T = 2^J = \text{number of time periods}$
- $N \in \mathbb{Z}^+$ = number of cross-section elements

2 Multivariate Locally Stationary Wavelet process (Park et al. (2014))

The vector $(N \times 1)$ of stochastic processes $X_{t;T}$ follows the given decomposition : $X_{t;T} = \sum_{j=-J}^{-1} \sum_{k=0}^{T} W_j(k/T) \xi_{j,k} \psi_{j,k}(t)$ where

- $W_j(z)$ is a $(N \times N)$ matrix. For each (m, n)-element,
 - $-W_j^{(m,n)}(z)$ is a Lipschitz continuous function on $z \in (0,1)$.
 - $-\sum_{j=-\infty}^{-1} \left| W_j^{(m,n)}(z) \right|^2 < \infty \text{ (finite energy)}.$
 - $-\sum_{j=-\infty}^{-1} 2^{-j} L_j < \infty$ (uniformly bounded Lipschitz constants L_j).
- $\xi_{j,k}$ is the vector $(N \times 1)$ of random orthonormal increments.
 - $-\ Cov(\xi_{j,k}^{(u)},\xi_{j',k'}^{(u')}) = \delta_{j,j'}\delta_{k,k'}\delta_{u,u'}\ (\delta_{j,j'}\ \text{is the Kronecker delta}).$
- $\psi_{j,k}(t)$ is a scalar representing a non-decimated wavelet.

We can define the cross-Evolutionary Wavelet Spectrum $(N \times N)$ matrix : $S_j(z) = W_j(z)W_j(z)'$. This gives us the ability to express the local autocovariance : $c^{(u,u')}(z,\tau) = \sum_{j=-\infty}^{-1} S_j^{(u,u')}(z)\Psi_j(\tau)$ where $\Psi_j(\tau) =$, the autocorrelation wavelet.

3 Notes

- $W_j(z)$ is assumed to have a lower-triangular form in Park et al. (2014) to ease interpretation. However proofs don't depend on this form. Here full matrix.
- The dependence structure is entirely in $W_j(z)$, not in $\xi_{j,k}$.