Sigma notation may seem scary at first, but it really isn't that bad.

Definition 1. Let f be a function, and $m \leq n$ integers. Then we can write the sum

$$f(m) + f(m+1) + f(m+2) + \dots + f(n-1) + f(n) = \sum_{k=m}^{n} f(k)$$

We read this as "The sum of f of k from k equals m to k equals n."

This is pretty abstract. Let's see if we can sort this out.

Question 1 What are the terms of this sum?

$$\sum_{k=2}^{5} \sin(k)$$

$$\sin(2) + \sin(3) + \sin(4) + \sin(5)$$

Example 1.
$$\sum_{k=3}^{k=4} \frac{1}{1+k} = \frac{1}{4} + \frac{1}{5}$$

Question 2
$$\sum_{k=1}^{4} k = \boxed{10}$$

Hint:
$$\sum_{k=1}^{4} k = 1 + 2 + 3 + 4 = 10$$

The variable k in $\sum_{k=m}^{k=n}$ is called the "index of summation", or just "the index". It can be any variable we like, but the letters i,j,k are used traditionally.

Question 3
$$\sum_{i=2}^{i=3} i^2 = \boxed{13}$$

Hint:
$$\sum_{i=2}^{i=3} i^2 = 2^2 + 3^2 = 4 + 9 = 13$$

Question 4
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \sum_{j=1}^{j=4} \boxed{1/j}$$

Hint: There are 4 terms, so since we start counting at j = 1, we must go up to j = 4.

Hint:
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \sum_{j=1}^{j=4} \frac{1}{j}$$

Question 5
$$\sum_{i=5}^{i=5} i^3 = \boxed{125}$$

Hint: This is kind of funny, but in this case we just have one term, namely $5^3 = 125$

Question 6
$$\sum_{i=2}^{i=6} k = \boxed{20}$$

Hint:
$$\sum_{i=2}^{i=6} k = 2 + 3 + 4 + 5 + 6 = 20$$

$$\sum_{j=0}^{j=4} (j+2) = \boxed{20}$$

Hint:
$$\sum_{i=2}^{i=6} k = 2+3+4+5+6 = 20$$
 again!

Feedback (attempt): Did you notice how these two expressions had all the same terms? Both are just shorthands for the sum 2+3+4+5+6. This is called "reindexing" a sum.

Question 7 Reindexing the sum $\sum_{j=4}^{j=7} \sin(j-2)$ to start at k=1, we have

$$\sum_{j=4}^{j=7} \sin(j-2) = \sum_{k=1}^{k=4} \boxed{\sin(k+1)}$$

Hint:
$$\sum_{j=4}^{j=7} \sin(j-2) = \sin(2) + \sin(3) + \sin(4) + \sin(5) = \sum_{k=1}^{k=4} \sin(k+1)$$

Question 8 The sum $\sin(4+\frac{3}{n}) + \sin(4+\frac{6}{n}) + \sin(4+\frac{9}{n}) + \dots$ has n terms. In sigma notation, this sum can be expressed as $\sum_{k=1}^{k=n} \left[\sin(4+\frac{3k}{n}) \right]$

Hint: The
$$k^{th}$$
 term is of the form $4 + \frac{3k}{n}$, so the sum is $\sum_{k=1}^{k=n} \sin(4 + \frac{3k}{n})$

Question 9 Fix a number n. Then $\sum_{k=1}^{k=n} 1 = \boxed{n}$

Hint: By definition, $\sum_{k=1}^{k=n} 1$ is the sum of n ones, which is just n

Question 10 If
$$\sum_{k=1}^{k=n} f(k) = n^2$$
, then $f(j) = 2j-1$

Hint: To find f(j), we could think of this as $\sum_{k=1}^{k=j} f(j) - \sum_{k=1}^{k=j-1} f(j)$

Hint: So
$$f(j) = j^2 - (j-1)^2 = j^2 - (j^2 - 2j + 1) = 2j - 1$$

Feedback (attempt): This is kind of cool. It says that the sum of the first n odd number is n^2 . Test it and see! Can you find a geometric interpretation of this? If you are interested by this, talk to your TA!

Question 11 Which of the following equations could possibly make any sense at all? Mark all that apply.

Multiple Choice:

(a)
$$\sum_{j=1}^{j=n} f(j) = j^3$$

(b)
$$\sum_{j=1}^{j=n} f(n) = nf(n) \checkmark$$

(c)
$$\sum_{j=1}^{j=n} f(j) = n^3 \checkmark$$

- **Hint:** $\sum_{j=1}^{j=n} f(j) = j^3$ cannot make any sense, since one one side j is telling us the index of a term we are summing, and on the other side it is a fixed number. These two meanings of j cannot coexist.
 - $\sum_{j=1}^{j=n} f(n) = nf(n)$ not only makes sense, it is universally true! It is okay that n appears in all three parts of the expression, since it is just a fixed number
 - $\sum_{j=1}^{j=n} f(j) = n^3$ is also fine. As a bonus challenge, can you find the function f which makes this true?