Pag	gel.	Solutions -	- Linear	. Algebra	Spring	2023	June 11, 2023 Grading:
5'	Question 1		(3)) B	June 12, 2023 2:00 pm - 10:00
15	Question	2: (1) (-4,4)	(2) 10	(3) -2,6	(4)	2000 (5) 0.
20'	Question	3:					
	(a) '	eigenvalues $\lambda_1 = 1$	e	igen vectors $\begin{bmatrix} \frac{3}{1} \\ \frac{2}{3} \end{bmatrix}$		5===	5 4
		$\lambda_2 = -1$ $\lambda_3 = 2$		$\begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$		<u>_</u>	3 2 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
	(b)	5-1 A S =	\ =				
		et $D = N$	= [-13/2			2 - 2
	ĺ	B = 5 DS		16 - 8 3/2 5 - 43/2 4 - 3/2 43 - 3/2	$-\frac{11}{3} + \frac{16}{3}\sqrt{2}$ $\frac{5}{3} + \frac{8}{3}\sqrt{2}$ $\frac{7}{6} + \frac{4}{3}\sqrt{2}$	-14+4 -4+	2 1/2

20 Question 4:

(a)
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

10' Question 5:

Let $\chi_1, \chi_2, \dots, \chi_n$ be a maximal set of Linearly independent eigenvectors of A and y_1, y_2, \dots, y_n be a maximal set of Linearly independent eigenvectors of B.

Set $\chi_1 = \begin{bmatrix} \chi_1 \\ 0 \end{bmatrix}, \quad \chi_2 = \begin{bmatrix} \chi_2 \\ 0 \end{bmatrix}, \dots, \quad \chi_n = \begin{bmatrix} \chi_n \\ 0 \end{bmatrix},$

 $\hat{y}_1 = \begin{bmatrix} 0 \\ y_1 \end{bmatrix}, \hat{y}_2 = \begin{bmatrix} 0 \\ y_2 \end{bmatrix}, \dots, \hat{y}_n = \begin{bmatrix} 0 \\ y_n \end{bmatrix}.$

Then $\hat{x}_1, \dots, \hat{x}_n, \hat{y}_1, \dots, \hat{y}_n$ is a maximal set of linearly independent eigenvectors of C.

(=) similar argument as "=>".

20 Question 6:

(a)
$$\sigma_1 = 2$$
, $\sigma_2 = 1$.

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{16} & -\frac{1}{15} & -\frac{1}{15} & \frac{1}{15} & \frac{1}{1$$

$$= \| \sum V^{T} \times - U^{T} b \|$$

$$= \| \sum y - b' \|$$

$$= \| \sum y - b' \|$$

minimum length solution to
$$\Sigma y = b'$$
 is $y = \Sigma^{+}b'$

minimum length solution to $AA\hat{x} = A^{T}b$ is

 $\chi^{+} = V \Sigma^{+} U^{T}b = A^{+}b$. Space of A.

$$\chi^{\dagger} = V \Sigma^{\dagger} U^{\mathsf{T}} b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$