Math 415 - Lecture 20

Fundamental Theorem of Linear algebra, orthogonal complement of fundamental subspaces of a matrix

Monday October 12th 2015

Textbook reading: Chapter 3.1

Suggested practice exercises: Chapter 2.6, 5,6,7,36,37

Khan Academy video: Orthogonal complements

Strang lecture: Lecture 14: Orthogonal vectors and subspaces

1 Review

1.1 Orthogonality and FTLA

- $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal iff $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 \cdots + v_n w_n = 0$.
 - Non-zero orthogonal vectors are independent.
- If V is a subspace of \mathbb{R}^n then the orthogonal complement of V is

$$V^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{v} \cdot \mathbf{x} = 0, \text{ for all } \mathbf{v} \in V \}$$

- If $W = V^{\perp}$ then $W^{\perp} = V$.
- In other words $(V^{\perp})^{\perp} = V$.
- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$

Example 1. Let V be the horizontal x-y-plane in \mathbb{R}^3 and W the vertical y-z-plane.

- Is W the orthogonal complement of V?
- Is it true that W is orthogonal to V?
- What is the orthogonal complement of V?

Example 2. Given

$$\operatorname{Nul}\left(\begin{bmatrix} 1 & 2\\ 2 & 4\\ 3 & 6 \end{bmatrix}\right) = \operatorname{Span}\left(\begin{bmatrix} 2\\ -1 \end{bmatrix}\right),$$

get

$$\operatorname{Col}\left(\begin{bmatrix}1 & 2\\ 2 & 4\\ 3 & 6\end{bmatrix}^T\right) = \operatorname{span}\left(\begin{bmatrix}1\\ 2\end{bmatrix}\right)$$

Why?

Theorem 1 (Fundamental Theorem of Linear Algebra). Let A be a $m \times n$ -matrix. Then

- Nul(A) is the orthogonal complement of $Col(A^T)$ (in \mathbb{R}^n). Also, dim Nul(A)+ dim $Col(A^T) = (n-r) + r = n$.
- Col(A) is the orthogonal complement of $Nul(A^T)$ (in \mathbb{R}^m).

Why? Suppose $\mathbf{x} \in Nul(A)$. That is,

$$A\mathbf{x} = \mathbf{0}$$

What does this mean? (Think row-column rule).

• It means that the inner product of every row of A(transposed!) with \mathbf{x} is zero. But that implies that \mathbf{x} is **orthogonal to the row space.**

1.2 FLTA in action

Example 3. Find all vectors orthogonal to $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

Solution. This means: Find the orthogonal complement of $Col \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$.

Use the Fundamental Theorem: This is $Nul \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}^T \end{pmatrix} = Nul \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \end{pmatrix}$

 $\textbf{Compute Nul space: } Nul \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right) = Nul \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \right)$

Basis for Nul: $\left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$

Final answer: the set of vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is $span \left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$

Alternative solution. The FLTA is not magic! You can do this the old-fashioned way!

Looking for all x so that

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbf{x} = 0 \text{ and } \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbf{x} = 0$$

Matrix form:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Get Null space:

$$\mathbf{x} \in Nul \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right)$$

This is the same null space we obtained from the FTLA.

Example 4. Let $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b = 2c \right\}$. Find a basis for the orthogonal complement of V.

Solution. Write as Null space: $V = Nul(\begin{bmatrix} 1 & 1 & -2 \end{bmatrix})$.

By FTLA: the orthogonal complement is $Col\left(\begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T\right)$.

Basis for the orthogonal complement: $\begin{bmatrix} 1\\1\\-2 \end{bmatrix}$

Geometrically this makes sense: V is a plane with normal vector $\begin{bmatrix} 1\\1\\-2 \end{bmatrix}$

Alternative solution.

Notice that $a+b=2c \iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = 0.$

Interpret the above: V is actually defined as the orthogonal complement of

$$span \left\{ \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \right\}.$$

Example 5. Let
$$V = \left\{ \begin{bmatrix} 2a+b\\-b\\a+b \end{bmatrix} : a,b \in \mathbb{R} \right\}$$
. Find the orthogonal complement of V .

Solution. Write as Column space:
$$V = span\left(\begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\right)$$
, so $V = Col\left(\begin{bmatrix} 2&1\\0&-1\\1&1 \end{bmatrix}\right)$

By FTLA the orthogonal complement is
$$Nul\left(\begin{bmatrix}2&0&1\\1&-1&1\end{bmatrix}\right)$$

Get RREF to compute Null space:
$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & -1 & \frac{1}{2} \end{bmatrix}$$

Basis for the Null space:
$$\left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} \right\}$$

So the orthogonal complement to
$$V$$
 is: $span \left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} \right\}$

Directions and Equations. Let V be a subspace of \mathbb{R}^n . Then there are two ways of describing V.

By directions: If V = Col(A) then you know that any vector \mathbf{v} in V is a linear combination of the columns of A, so you know in which directions \mathbf{v} can point.

By equations: If V = Nul(B) then you know that any \mathbf{v} in V satisfies the equations $\mathbf{R_i^T} \cdot \mathbf{v} = 0$, for all rows $\mathbf{R_i}$ of B.

Both descriptions are useful, and we will often switch between them, to answer any particular question we want to answer.

2 A new perspective on Ax = b

To see if $A\mathbf{x} = \mathbf{b}$ has a solution, check that

Direct approach: $b \in Col(A)$

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

The indirect approach means:

if
$$\mathbf{y}^T A = \mathbf{0}$$
, then $\mathbf{y}^T \mathbf{b} = 0$.
 $\mathbf{y} \in Nul(A^T)$

Example 6. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which **b** does A**x** = **b** have a solution?

Solution (old). Write augmented matrix, get Echelon form:

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

When is this consistent? Whenever $-3b_1 + b_2 + b_3 = 0$.

Solution (new). Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$.

Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so
$$Nul(A^T)$$
 has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Need
$$\mathbf{b} \perp Nul(A^T)$$
: $A\mathbf{x} = \mathbf{b}$ is solvable $\iff \mathbf{b} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$

This is the same condition as before!

3 Motivation

3.1 How to find almost-solutions

Why do we care about orthogonality? Not all linear systems have solutions. In fact, for many applications, data needs to be fitted and there is **no hope** for a perfect match. For example, $A\mathbf{x} = \mathbf{b}$ with

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

has no solution:
$$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 is not in $Col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$

Idea. Instead of giving up, we want the \mathbf{x} which makes $A\mathbf{x}$ and \mathbf{b} as close as possible.

Such **x** is characterized by A**x** being **orthogonal** to the error **b** -A**x**.

4 Application: Directed graphs

4.1 Set up

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow
- No edges from a node to itself

Definition 7. Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j \\ +1, & \text{if edge } i \text{ enters node } j \\ 0, & \text{otherwise} \end{cases}$$

 $\it Example~8.$ Give the edge-node incidence matrix of our graph.

Solution.

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

- $\bullet\,$ Each column represents a node
- Each row represents an edge

We are going to use linear algebra to study networks!