

GUILHERME FABIANO TERRA DA SILVA

ROBÓTICA

Lixeira Automática

ORIENTADOR: Prof. Leandro

2°Ano C

GUARATINGUETÁ – SP

06 / 11 / 20

GUILHERME FABIANO TERRA DA SILVA

TRABALHO DE ROBÓTICA

Lixeira Automática

Trabalho de Robótica realizado no curso de automação industrial, como forma de ampliação de conhecimento e obtenção parcial de nota.

Orientador: Prof. Pimenta

GUARATINGUETÁ

06 / 11 / 20

Sumário

1. SITUAÇÃO PROBLEMA	4
1.1. Introdução	4
1.2. Nosso projeto	4
2. OBJETIVO DO TRABALHO	6
3. ETAPAS DO PROJETO	6
4. COMO REALIZAR O PROJETO	7
4.1. Como testar se a lixeira está com uma sacola	
4.2. Como fechar a sacola	7
4.3. Como tirar a sacola da lixeira	7
4.4. Como testar se ela já chegou aos 90% do espaço total da lixeira	7
5. FLUXOGRAMA	8
6. COMO FUNCIONA O SENSOR ULTRASSÔNICO	8
7. COMO FUNCIONA O CI L293D	9
8. SIMULAÇÃO DO FDC ATRAVÉS DE BOTÃO	10
9. DIAGRAMA DO PROJETO	10
10. PROGRAMAÇÃO DO PROJETO	11
10.1. Início da Programação	11
10.1.1. Definições Iniciais	11
1.1.2. Configuração dos pinos/bits do Arduino	12
10.1.3. Programa Principal	14
10.1.4. Função que captura o tempo do envio até o retorno do sinal ultrassôn	ico20

1. SITUAÇÃO PROBLEMA

1.1. Introdução

Durante toda a sua existência, o homem presenciou e agiu para que diversas evoluções acontecessem, desde a mais simples criação até a mais desenvolvida tecnologia atual. E nesses processos de desenvolvimento, a automatização é uma importante evolução, que facilita e auxilia as ações humanas de diversas maneiras. Sendo assim, é muito importante que estejamos em constante progresso e desenvolvimento, para que as mais diversas áreas possam ser ajudadas com a utilização de sistemas robóticos que dão total apoio para que sejam realizadas as mais diversas tarefas.

1.2. Nosso projeto

Algo que está presente na vida de provavelmente todos nós, são os resíduos produzidos por nós nas mais diversas áreas, seja o de casa, o hospitalar, o industrial, dentre outros.

Todo esse resíduo passa por manipulação para que possa ser descartado, assim dando lugar para o resíduo mais recente, que também será descartado. Porém, algo que todos sabemos é que esse lixo produzido é sujo, contendo diversas bactérias que fazem mal para nós seres humanos e mesmo aqueles que fazem a limpeza com preparo e equipamentos adequados, estão sujeitos a acidentalmente ter contato com esses dejetos, podendo se infectar ou contrair doenças, pois muitas vezes o lixo de hospitais ou industrias é nocivo e deve ser descartado imediatamente para que não ofereça riscos à saúde.

Pensando nisso, nosso projeto visa a criação de uma lixeira automatizada, que realizara todos os processos de forma automática, facilitando o trabalho de quem faz a manutenção e limpeza dos locais que possuem lixeiras.

A ideia desse projeto é uma lixeira que evite ao máximo o contato com a própria lixeira e com a sacola onde se situam os dejetos, de forma que com alguns sensor de proximidade seja possível verificar o nível do lixo na lixeira e testar se a lixeira tem uma sacola, quando o sensor que verifica o nível da lixeira atingir 90% do tamanho da lixeira ou alguém pressionar o botão de retirar sacola realiza-se o selamento da sacola e em seguida a remoção da sacola da lixeira.

Abaixo, veja a esquematização desta lixeira:

Imagem 1 – Exterior da lixeira com as identificações

Imagem 2 – Interior das laterais da lixeira com as identificações

Imagem 3 – Interior das partes frontal e traseira da lixeira com as identificações

2. OBJETIVO DO TRABALHO

O objetivo do nosso trabalho é criar uma lixeira que automatize o processo de captação do lixo domiciliar, tornando-o mais rápido e evitando o contato da pessoa com o lixo.

3. ETAPAS DO PROJETO

- **Etapa 1:** Inserir a sacola no lixo, grudando-a nos lados e abrindo a sacola, em seguida alimentar o Arduino UNO.
 - **Etapa 2:** Verificar quanto do nível da lixeira está ocupado.
- **Etapa 2.1:** Se estiver com mais de 90% ocupada ela solta a sacola dos lados e fecha, empurrando a sacola para fora da lixeira por meio de uma aba flexível, otimizando o trabalho de quem irá retirar o lixo, pois já entrega a sacola totalmente fechada e do lado de fora da lixeira.
 - Etapa 2.2: Se não chegou aos 90% não acontece nada.
 - Etapa 3: Retorna ao início do projeto.

4. COMO REALIZAR O PROJETO

4.1. Como testar se a lixeira está com uma sacola

Para testar se temos uma sacola na lixeira podemos usar um sensor ultrassônico em uma posição que a sacola esteja no seu "campo de visão".

4.2. Como fechar a sacola

Para selar a sacola usaremos uma resistência elétrica que será esquentada e levada até a sacola, e para fazer isso usaremos mais uma placa que será menor que a placa que empurra a sacola. Esta nova placa irá ir até a sacola e pressiona-la contra um apoio lateral da lixeira, fazendo com que os 2 lados da sacola se toquem e a resistência encoste na sacola, selando-a.

4.3. Como tirar a sacola da lixeira

Para tirar a sacola da lixeira usaremos um motor CC que ao ser ativado fará com que uma placa empurre a sacola para fora da lixeira, além disso utilizaremos um botão simulando uma chave fim de curso para parar o motor após ele empurrar a sacola pra fora do lixo, e em seguida retornar ao ponto inicial invertendo a rotação através do CI L293D e usando outro botão como chave fim de curso para indicar quando ele voltou a posição inicial.

4.4. Como testar se ela já chegou aos 90% do espaço total da lixeira

Para verificar se a ocupação da lixeira já passou ou não do limite (90% do tamanho da lixeira) usaremos um sensor ultrassônico.

5. FLUXOGRAMA

6. COMO FUNCIONA O SENSOR ULTRASSÔNICO

O sensor ultrassônico é um sensor que envia uma onda sonora que apresenta frequência acima da frequência que o ser humano pode ouvir (por isso ULTRAssônico), e, de acordo com o princípio de reflexão sonora essa onda incide em um obstáculo e retorna ao meio de origem, desta maneira é possível captar o tempo em que a onda saiu e voltou ao sensor, e, para calcular a distância basta considerar a velocidade do som no ar como 343 m/s. Porém, devemos lembrar que a onda vai até o objeto e retorna, ou seja, a onda faz o percurso 2 vezes, logo para obter a distância correta basta calcular a distância através da fórmula: d = v * t; e em seguida dividir por 2, já que a onda vai e volta.

O Tinkercad apresenta dois sensores ultrassônicos, um com 4 pinos e outro com 3 pinos, sendo que:

O de 4 pinos recebe – VCC, GND, ENTRADA DE ONDA e SAÍDA DE ONDA O de 3 pinos recebe – VCC, GND e ENTRADA / SAÍDA DE ONDA No nosso projeto utilizamos o sensor de 3 pinos para economizar as portas do Arduino, lembrando que seu pino faz tanto a função de enviar quanto de captar a onda, e, para isso, o pino varia entre INPUT e OUTPUT.

Imagem 4 – Sensor Ultrassônico

7. COMO FUNCIONA O CI L293D

Este CI possui 2 pontes H completas e isso permite que ele controle até 2 motores, sendo que ele é alimentado com 5V e pode suportar tensões de 4,5V até 36V.

Nos pinos 1 e 9 do CI L293D podemos colocar valores de 0 a 255 e eles representam a velocidade do motor, sendo que 0 é a velocidade mínima do motor e 255 a velocidade máxima do motor.

Pinagem do CI L293D:

Imagem 5 – CI L293D

8. SIMULAÇÃO DO FDC ATRAVÉS DE BOTÃO

Para simular as chaves fim de curso utilizamos botões que durante a rotação do motor serão testados e quando forem pressionados o motor para.

9. DIAGRAMA DO PROJETO

Imagem 6 – Circuito do Projeto

10. PROGRAMAÇÃO DO PROJETO

10.1. Início da Programação

10.1.1. Definições Iniciais

```
int sensor_1 = 3;
                   // Sensor que verifica se a lixeira tem sacola
float distancia_1; // Variável de verificação de distância
float segunda_etapa; // Variável que controla segunda parte do Projeto
int sensor_2 = 5;
                    // Sensor que verifica se a lixeira tem sacola
float distancia_2;
                    // Variável de verificação de distância
int controle = 6;
                   // Controle de Velocidade do Motor1 para Selar sacola
int M1 = 2;
                          // Contorle de Sentido de Rotação
int M2 = 4;
                          // Controle de Sentido de Rotação
int controle_2 = 9; // Controle de Velocidade do Motor1 para Selar sacola
int M1_2 = 7;
                   // Contorle de Sentido de Rotação
int M2_2 = 8;
                   // Controle de Sentido de Rotação
                          // FDC simulada do Motor 1
int botao_FDC1 = 10;
int botao_FDC2 = 12;
                          // FDC2 simulada do Motor 1
int botao_2FDC1 = 0;
                          // FDC simulada do Motor 2
int botao 2 \text{ FDC2} = 14;
                         // FDC simulada do Motor 2
int bot remove = 15;
                          // Botão que retira sacola
                          // Controle da Tensão da Porta 11
int V_Resistencia = 11;
                                 // Controle de Temperatura da R
int temp;
```

```
float rem = 0.0;
void teste_1();
                         // Pegando valor da distância
void teste_2();
                         // Pegando valor da distância 2
      1.1.2. Configuração dos pinos/bits do Arduino
void setup()
 Serial.begin(9600);
 pinMode(sensor_1, OUTPUT);
 digitalWrite(sensor_1, LOW);
 pinMode(sensor_2, OUTPUT);
 digitalWrite(sensor_2, LOW);
 pinMode(controle, OUTPUT);
 digitalWrite(controle,LOW);
 analogWrite(controle, 0);
 pinMode(M1, OUTPUT);
 digitalWrite(M1,LOW);
 pinMode(M2, OUTPUT);
 digitalWrite(M2,LOW);
 digitalWrite(controle_2,LOW);
 analogWrite(controle_2, 0);
 pinMode(M1_2, OUTPUT);
 digitalWrite(M1_2,LOW);
 pinMode(M2_2, OUTPUT);
 digitalWrite(M2_2,LOW);
```

```
pinMode(botao_FDC1, INPUT_PULLUP);
pinMode(botao_FDC2, INPUT_PULLUP);
pinMode(botao_2_FDC1, INPUT_PULLUP);
pinMode(botao_2_FDC2, INPUT_PULLUP);
pinMode(bot_remove, INPUT_PULLUP);

pinMode(V_Resistencia, OUTPUT);
digitalWrite(V_Resistencia, LOW);
}
```

```
void loop()
 // Primeira etapa do Projeto
 teste_1();
 distancia_1 = distancia_1 / 2;
                                            // Calculando dist
 distancia_1 = distancia_1 * 0.034029;
                                        // Calculando dist
 if (distancia_1 < 30)
  Serial.println("Tem sacola na Lixeira");
  segunda_etapa = 1.0;
 }else{
  Serial.println("NAO Tem sacola na lixeira");
  segunda_etapa = 0.0;
 }
 delay(300);
 while (segunda_etapa == 1.0){
  // Segunda Etapa do Projeto
  teste_2();
  distancia_2 = distancia_2 / 2;
                                               // Calculando dist
      distancia_2 = distancia_2 * 0.034029; // Calculando dist
  if (distancia_2 <= 11 \parallel rem == 1.0){ // 110 (Tamanho máximo da lixeira) - 90%
da capacidade = 11cm
   Serial.println("Hora de tirar o Lixo!!");
```

```
// Esquentar resistência
```

```
for(temp=0; temp <= 255; temp++){
 analogWrite(V_Resistencia, temp);
 delay(100);
}
// Selar a Sacola (Motor)
analogWrite(controle, 100);
digitalWrite(M1, HIGH);
digitalWrite(M2, LOW);
// Levar a resistência até a sacola
float F_{ctrl} = 0.0;
while (F_ctrl == 0.0)
 if(digitalRead(botao_FDC1) == 0){
  Serial.println("Resistencia chegou");
  F_{ctrl} = 1.0;
 }else{
  Serial.println("Resistencia indo ate a sacola ...");
 }
}
// Fim da ida
Serial.println("Selando a sacola . . . ");
analogWrite(controle, 0);
digitalWrite(M1, LOW);
digitalWrite(M2, LOW);
```

```
delay(3000);
                                     // Tempo de selamento
temp = 0;
analogWrite(V_Resistencia, temp);
analogWrite(controle, 100);
digitalWrite(M1, LOW);
digitalWrite(M2, HIGH);
// Retorna a Resistência ao ponto inicial
float F_{ctrl2} = 0.0;
while (F_ctrl2 == 0.0)
 if(digitalRead(botao\_FDC2) == 0){
  Serial.println("Resistencia voltou ao ponto inicial");
  F_{ctrl2} = 1.0;
 }else{
  Serial.println("Resistencia voltando ...");
 }
}
// Fim da volta
analogWrite(controle, 0);
digitalWrite(M1, LOW);
digitalWrite(M2, LOW);
delay(3000);
```

```
// Empurrar para Fora
analogWrite(controle_2, 100);
digitalWrite(M1_2, HIGH);
digitalWrite(M2_2, LOW);
// Inicio da ida
float F2_ctrl1 = 0.0;
while (F2_ctrl1 == 0.0)
 if(digitalRead(botao_2_FDC1) == 0){
  Serial.println("Sacola fora");
  F2_{ctrl1} = 1.0;
 }else{
  Serial.println("Empurrando para fora ...");
 }
}
// Fim da ida
analogWrite(controle_2, 0);
digitalWrite(M1_2, LOW);
digitalWrite(M2_2, LOW);
delay(3000);
analogWrite(controle_2, 100);
digitalWrite(M1_2, LOW);
digitalWrite(M2_2, HIGH);
```

```
// Inicio da volta
float F2_ctrl2 = 0.0;
 while (F2\_ctrl2 == 0.0){
  if(digitalRead(botao_2_FDC2) == 0){
   Serial.println("Retornou a posicao inicial");
   F2_{ctrl2} = 1.0;
  }else{
   Serial.println("Voltando ao ponto inicial ...");
  }
 }
// Fim da volta
 analogWrite(controle_2, 0);
 digitalWrite(M1_2, LOW);
 digitalWrite(M2_2, LOW);
 delay(3000);
// Reiniciar o Projeto
segunda_etapa = 0.0;
rem = 0.0;
}else{
Serial.println("Ainda tem espaco suficiente!!");
```

// Retirar lixo na hora

```
if(digitalRead(bot_remove) == 0){
    Serial.println("Remover lixo agora");
    rem = 1.0;
    }else{
        Serial.println("Nao remover Lixo");
    }
    delay(300);
}
```

```
void teste_1()
                   // Pegando valor da distância
{
 pinMode(sensor_1,OUTPUT);
 digitalWrite(sensor_1, HIGH);
 delayMicroseconds(5);
 digitalWrite(sensor_1,LOW);
 pinMode(sensor_1, INPUT);
 distancia_1 = pulseIn(sensor_1,HIGH);
}
void teste_2()
                  // Pegando valor da distância
{
 pinMode(sensor_2,OUTPUT);
 digitalWrite(sensor_2, HIGH);
 delayMicroseconds(5);
 digitalWrite(sensor_2,LOW);
 pinMode(sensor_2, INPUT);
 distancia_2 = pulseIn(sensor_2,HIGH);
}
```

REFERÊNCIAS

Link1: https://balluffbrasil.com.br/sensor-ultrassonico-como-ele-funciona-e-de-que-modo-pode-ajudar-a-sua-industria/

Link2: https://www.youtube.com/watch?v=QdjhJhORJMI&t=6s

Link3: https://create.arduino.cc/projecthub/sandromesquitamecatronica/lixeira-automatizada-4dad81

Link4: https://www.youtube.com/watch?v=m_znuYr8-zo

Link5: http://www.bosontreinamentos.com.br/eletronica/controlador-l293d-ponte-h-dupla/

Link6: https://www.youtube.com/watch?v=q04QsOcxg94&list=PLx4x_zx8csUgWBTvA-fluHV970SzDJRBw&index=23

Link7: https://www.youtube.com/watch?v=vBEloNGfFpg&list=PLx4x_zx8csUgWBTvA-fluHV970SzDJRBw&index=21

Link8: https://www.youtube.com/watch?v=9LMe9MPzneg&list=PLx4x_zx8csUgWBTvA-fluHV970SzDJRBw&index=20