مانند قسمت قبل تابلو را تا حد قابل قبولي جلو ميبريم:

(1)
$$\exists x \ p(x) \qquad and p \\ \exists x \ q(x) \qquad and p \\ \exists x$$

به نظر میرسد که تابلو تا همین مرحله اطلاعات خوبی را در اختیار ما قرار داده باشد. حال به تشکیل مدل نقض برای تنها شاخهی باز تابلو میپردازیم.

$$\mathscr{I} = (D, \{p^{\mathscr{I}}, q^{\mathscr{I}}\})$$

$$D = \{\alpha_1, \alpha_2\}$$

$$p^{\mathscr{I}} = \{\alpha_1\}$$

$$q^{\mathscr{I}} = \{\alpha_2\}$$

اکنون ثابت میکنیم اگر مقدم صادق باشد ($\mathcal{J} = \exists x \, p(x) \land \exists x \, q(x)$) تالی کاذب خواهد بود ($\mathcal{J} = \exists x \, p(x) \land \exists x \, q(x)$). ابتدا با استفاده از صدق تارسکی نتیجه میگیریم ($\mathcal{J} = \exists x \, p(x) \land \exists x \, q(x)$. صدق تارسکی بیان میدارد که برای اثبات درستی این عبارت، باید حداقل یک عضو از دامنه وجود داشته باشد که عبارت مذکور در آن صدق کند.

میدانیم
$$\mathcal{I} = p(x)$$
 پس $\alpha_1 \in p^{\mathscr{I}}$ میدانیم $\alpha_2 \in q^{\mathscr{I}}$ میدانیم $\alpha_2 \in q^{\mathscr{I}}$ میدانیم $\alpha_2 \in q^{\mathscr{I}}$ میدانیم $\alpha_2 \in q^{\mathscr{I}}$ بس $\alpha_2 \in q^{\mathscr{I}}$ در نتیجه داریم $\alpha_2 \in q^{\mathscr{I}}$ بنتیجه داریم $\alpha_2 \notin q(x)$ در نتیجه داریم $\alpha_2 \notin q(x)$ کنیم $\alpha_2 \notin q(x)$ میدانیم $\alpha_1 \notin p^{\mathscr{I}}$ بس $\alpha_2 \notin q(x)$ میدانیم $\alpha_2 \notin q^{\mathscr{I}}$ بس $\alpha_2 \notin q^{\mathscr{I}}$ میدانیم $\alpha_2 \notin q^{\mathscr{I}}$ بنتیم در نتیم $\alpha_2 \notin q^{\mathscr{I}}$ بنتیم در نتیم در نتی

در نتیجه هیچ عضوی از دامنه وجود ندارد که برای آن تالی صادق باشد. پس به یک مدل نقض رسیدیم و داریم:

$$\exists x \ p(x) \land \exists x \ q(x) \not\models \exists x \ (p(x) \land q(x))$$