# Supervised Learning

- Regression
- Classification

#### Classification

- Learning a predictor that has **discrete** outputs (labels)
  - Binary classification
  - Multi-class classification

#### **Example: Binary Classification**

Two classes: earthquake/nuclear explosion



#### **Decision Boundary**

- A decision boundary is a line (or a surface, in higher dimensions) that separates the two classes
- A linear decision boundary is called a linear separator and data that admit such a separator are
   7.5 1 earthquake/nuclea

called linearly separable



### **Decision Boundary**

• Linear separator:  $x_2 = w_1 x_1 + w_0$ 

$$\Rightarrow w_0 + w_1 x_1 - x_2 = 0$$

$$\Rightarrow w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot \mathbf{x} = 0$$

Weight vector:  $\mathbf{w} = \langle w_0, w_1, w_2 \rangle$ 

Input vector:  $\mathbf{x} = \langle 1, x1, x2 \rangle$ 



#### **Linear Classifiers**

ullet Given data points of two classes: earthquake/nuclear explosion learn a classification hypothesis h



#### Linear Classifiers with a Hard Threshold

 Given data points of two classes: earthquake/nuclear explosion learn a classification hypothesis h



### **Perceptron Learning Rule**

• Given data point  $(\mathbf{x}, y)$ , update each weight according to

$$w_i \leftarrow w_i + \alpha(y - h_{\mathbf{w}}(\mathbf{x})) \times x_i$$

| У | $h_{\mathbf{w}}(\mathbf{x})$ | $\mathcal{X}_i$ | $w_i$ |
|---|------------------------------|-----------------|-------|
|---|------------------------------|-----------------|-------|

### Perceptron Learning Rule

• Given data point  $(\mathbf{x}, y)$ , update each weight according to

$$w_i \leftarrow w_i + \alpha(y - h_{\mathbf{w}}(\mathbf{x})) \times x_i$$

|                                          | У | $h_{\mathbf{w}}(\mathbf{x})$ | $\mathcal{X}_{i}$ | $w_i$        | $\begin{bmatrix} 7.5 \\ 7 \\ 6.5 \end{bmatrix}  \mathbf{w} \cdot \mathbf{x} < 0$   |
|------------------------------------------|---|------------------------------|-------------------|--------------|------------------------------------------------------------------------------------|
| w.v^                                     | 1 | 0                            | +                 | <b>↑</b>     | _ 6 - 0 9 9                                                                        |
| $\mathbf{w} \cdot \mathbf{x} \uparrow$   | 1 | 0                            | -                 | $\downarrow$ | 5.5                                                                                |
| *** **                                   | 0 | 1                            | +                 | $\downarrow$ | 4.5                                                                                |
| $\mathbf{w} \cdot \mathbf{x} \downarrow$ | 0 | 1                            | -                 | <b>↑</b>     | 3.5                                                                                |
| <b>K</b>                                 |   |                              |                   |              | $ \begin{array}{c} 3 \\ 2.5 \end{array} \qquad \mathbf{w} \cdot \mathbf{x} \ge 0 $ |
|                                          |   | ,                            |                   |              | 4.5 5 5.5 6 6.5                                                                    |
|                                          |   |                              |                   |              | $x_1$                                                                              |

Al / Spring 2024 / Wei



### Issues



#### Linear Classifies with a Soft Threshold

Logistic function (sigmoid function):

$$Logistic(z) = rac{1}{1+e^{-z}}$$



#### Linear Classifies with a Soft Threshold

Logistic function (sigmoid function):

$$Logistic(z) = rac{1}{1 + e^{-z}}$$

Let a hypothesis be

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

- ullet w (weights or coefficients):
  - A vector of learned parameters or weights that are optimized during training. Each element of this vector represents the importance of a particular feature in the dataset.
- The weight values are adjusted during the training process to best fit the training data, minimizing the prediction error (typically via cross-entropy loss).
- x (features):
  - A vector representing the features of a data point. Each element of this vector corresponds to a specific feature or characteristic used to predict the target variable.
- For example, if you're predicting whether an email is spam or not based on words used, each feature could represent the frequency of a specific word in the email.



### **Logistic Regression**

The process to fit the weights of the model

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

to minimize loss on a data set

•  $L_2$  loss



### Logistic Regression

- Find the optimal value of w with this model
  - Gradient descent computation

 $\mathbf{w} \leftarrow \text{any point in the parameter space}$   $\mathbf{while\ not\ converged\ do}$   $\mathbf{for\ each\ } w_i \mathbf{\ in\ w\ do}$ 

$$w_i \leftarrow w_i - lpha rac{\partial}{\partial w_i} Loss\left(\mathbf{w}
ight)$$

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$egin{aligned} rac{\partial}{\partial w_i} Loss(\mathbf{w}) &= rac{\partial}{\partial w_i} (y - h_\mathbf{w}(\mathbf{x}))^2 & \text{(L2 Loss)} \ &= 2(y - h_\mathbf{w}(\mathbf{x})) imes rac{\partial}{\partial w_i} (y - h_\mathbf{w}(\mathbf{x})) & \text{(Churn Pule)} \end{aligned}$$

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))^2$$

$$= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_i} (y - g(\mathbf{w} \cdot \mathbf{x})) \qquad (h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}))$$

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$egin{aligned} rac{\partial}{\partial w_i} Loss(\mathbf{w}) &= rac{\partial}{\partial w_i} (y - h_\mathbf{w}(\mathbf{x}))^2 \ &= 2(y - h_\mathbf{w}(\mathbf{x})) imes rac{\partial}{\partial w_i} (y - g(\mathbf{w} \cdot \mathbf{x})) \ &= -2(y - h_\mathbf{w}(\mathbf{x})) imes g'(\mathbf{w} \cdot \mathbf{x}) imes rac{\partial}{\partial w_i} \mathbf{w} \cdot \mathbf{x} \end{aligned}$$
 (Chain Pule)

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

Statient Descent Computation 
$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^{z}}{1 + e^{z}}$$

$$\frac{\partial}{\partial w_{i}} Loss(\mathbf{w}) = \frac{\partial}{\partial w_{i}} (y - h_{\mathbf{w}}(\mathbf{x}))^{2}$$

$$= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_{i}} (y - g(\mathbf{w} \cdot \mathbf{x}))$$

$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times \frac{\partial}{\partial w_{i}} \mathbf{w} \cdot \mathbf{x}$$

$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times x_{i}.$$

$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^{z}}{1 + e^{z}}$$

$$= \frac{e^{z}}{(1 + e^{z})^{2}}$$

$$= g(z)(1 - g(z))$$

$$g'(\mathbf{w} \cdot \mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x})(1 - g(\mathbf{w} \cdot \mathbf{x}))$$

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))^2$$

$$= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_i} (y - \mathbf{g}(\mathbf{w} \cdot \mathbf{x}))$$

$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times \frac{\partial}{\partial w_i} \mathbf{w} \cdot \mathbf{x}$$

$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times x_i.$$

$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z}$$

$$g'(z) = \frac{e^z \cdot (1 + e^z) - e^z \cdot e^z}{(1 + e^z)^2}$$

$$= \frac{e^z}{(1 + e^z)^2}$$

$$= g(z)(1 - g(z))$$

$$g'(\mathbf{w} \cdot \mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x})(1 - g(\mathbf{w} \cdot \mathbf{x})) = h_{\mathbf{w}}(\mathbf{x})(1 - h_{\mathbf{w}}(\mathbf{x}))$$

### Logistic Regression

- Find the optimal value of w with this model
  - Gradient descent computation

 $\mathbf{w} \leftarrow \text{any point in the parameter space}$ 

while not converged do

for each  $w_i$  in w do

$$w_i \leftarrow w_i - lpha rac{\partial}{\partial w_i} Loss\left(\mathbf{w}
ight)$$

$$lpha\left(y-h_{\mathbf{w}}(\mathbf{x})
ight)\, imes\,h_{\mathbf{w}}(\mathbf{x})(1-h_{\mathbf{w}}(\mathbf{x}))\, imes\,x_i$$

#### Nearest-Neighbor Models for Binary Classification

Nearest-neighbor algorithm

• Given a query  $x_q$ , the algorithm chooses the class of the nearest

example to  $x_q$ 



AI / Spring 2024 / Wei

#### Nearest-Neighbor Models for Binary Classification

#### • k-nearest-neighbors algorithm

• Given a query  $x_q$ , the algorithm chooses the most common class

out of the k nearest examples to  $x_q$ 

• To avoid ties on binary classification, k is usually chosen to be an odd number



#### Distance Measurement

• Minkowski distance ( $L^p$  norm)

$$L^p(\mathbf{x}_j,\mathbf{x}_q) = \left(\sum_i \left|x_{j,i} - x_{q,i}
ight|^p
ight)^{1/p}$$

- Examples
  - p = 2: Euclidean distance
  - p = 1: Manhattan distance

#### Issues for Distance Measurement

- The total distance will be affected by a change in units in any dimension
- Different scales
- Scaling approach
  - Normalization

#### Normalization

Z-score normalization (Standardization)

$$x'_{j,i} = \frac{x_{j,i} - \mu_i}{\sigma_i}$$

- $\mu_i$  is the mean of the values in each dimension
- $\sigma_i$  is the standard deviation of the values in each dimension

#### **Normalization**

#### Min-max normalization

$$x'_{j,i} = \frac{x_{j,i} - min_i}{max_i - min_i}$$

- $max_i$  is the maximum of the values in each dimension
- $min_i$  is the minimum of the values in each dimension
- The new value  $x'_{j,i}$  is in [0,1]

# Example: Weather Data

Input Output

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

### **Example: Weather Data**

• The new data E:

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

Q: Play is Yes or No?

### Recap: Probabilities

- Bayes' Rule
  - For any two propositions a and b,

$$P(b \,|\, a) = rac{P(a \,|\, b)P(b)}{P(a)}$$

 Conditional independence of two variables X and Y, given a third variable Z, is

$$P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

#### **Probabilistic Model**

#### • The new data E:

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

#### Q: Play is Yes or No?

$$P(Play = yes | E) = ?$$

$$P(Play = no \mid E) = ?$$

#### Naïve Bayes Models

- Naïve Assumptions
  - Features/Attributes are equally important
  - Features/Attributes are conditionally independent

### Naïve Bayes Models

- Naïve Assumptions
  - Features/Attributes are equally important
  - Features/Attributes are conditionally independent

$$\Rightarrow P(E | Play = yes) = P(E_1 | Play = yes)P(E_2 | Play = yes) \cdots P(E_n | Play = yes)$$

$$= \prod_i (E_i | Play = yes)$$

$$P(Play = yes | E) = \frac{P(E | Play = yes)P(Play = yes)}{P(E)}$$

 $= \frac{\prod_{i} P(E_{i} | Play = yes) P(Play = yes)}{P(E)}$ 

#### Example: Naïve Bayes Models

#### The new data E:

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

$$P(O = sunny | Play = yes)P(T = cool | Play = yes)P(H = high | Play = yes)P(W = true | Play = yes)$$

$$P(Play = yes | E) = \frac{\prod_{i} P(E_{i} | Play = yes) P(Play = yes)}{P(E)}$$

| Outlook  |     | Temperature |      | Humidity |    | Windy  |     |    | Play  |     |    |     |    |
|----------|-----|-------------|------|----------|----|--------|-----|----|-------|-----|----|-----|----|
|          | Yes | No          |      | Yes      | No |        | Yes | No |       | Yes | No | Yes | No |
| Sunny    | 2   | 3           | Hot  | 2        | 2  | High   | 3   | 4  | False | 6   | 2  | 9   | 5  |
| Overcast | 4   | 0           | Mild | 4        | 2  | Normal | 6   | 1  | True  | 3   | 3  |     |    |
| Rainy    | 3   | 2           | Cool | 3        | 1  |        |     |    |       |     |    |     |    |

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

| Outlook  |     | Temperature |      | Humidity |     | Windy  |     |     | Play  |     |     |      |      |
|----------|-----|-------------|------|----------|-----|--------|-----|-----|-------|-----|-----|------|------|
|          | Yes | No          |      | Yes      | No  |        | Yes | No  |       | Yes | No  | Yes  | No   |
| Sunny    | 2   | 3           | Hot  | 2        | 2   | High   | 3   | 4   | False | 6   | 2   | 9    | 5    |
| Overcast | 4   | 0           | Mild | 4        | 2   | Normal | 6   | 1   | True  | 3   | 3   |      |      |
| Rainy    | 3   | 2           | Cool | 3        | 1   |        |     |     |       |     |     |      |      |
| Sunny    | 2/9 | 3/5         | Hot  | 2/9      | 2/5 | High   | 3/9 | 4/5 | False | 6/9 | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9 | 0/5         | Mild | 4/9      | 2/5 | Normal | 6/9 | 1/5 | True  | 3/9 | 3/5 |      |      |
| Rainy    | 3/9 | 2/5         | Cool | 3/9      | 1/5 |        |     |     |       |     |     |      |      |

| Outlook  |     | Tem | perature | •   | Hu  | midity |     | Windy |       | Play |     |      |      |
|----------|-----|-----|----------|-----|-----|--------|-----|-------|-------|------|-----|------|------|
|          | Yes | No  |          | Yes | No  |        | Yes | No    |       | Yes  | No  | Yes  | No   |
| Sunny    | 2/9 | 3/5 | Hot      | 2/9 | 2/5 | High   | 3/9 | 4/5   | False | 6/9  | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9 | 0/5 | Mild     | 4/9 | 2/5 | Normal | 6/9 | 1/5   | True  | 3/9  | 3/5 |      |      |
| Rainy    | 3/9 | 2/5 | Cool     | 3/9 | 1/5 |        |     |       |       |      |     |      |      |

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

P(O = sunny | Play = yes)P(T = cool | Play = yes)P(H = high | Play = yes)P(W = true | Play = yes)P(W

$$P(Play = yes | E) = \frac{\prod_{i} P(E_{i} | Play = yes)}{P(E)} P(Play = yes)$$
$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{P(E)} = \frac{0.0053}{P(E)}$$

| Outlook  |     | Tem | perature |     | Hu  | midity |     | Windy |       | Play |     |      |      |
|----------|-----|-----|----------|-----|-----|--------|-----|-------|-------|------|-----|------|------|
|          | Yes | No  |          | Yes | No  |        | Yes | No    |       | Yes  | No  | Yes  | No   |
| Sunny    | 2/9 | 3/5 | Hot      | 2/9 | 2/5 | High   | 3/9 | 4/5   | False | 6/9  | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9 | 0/5 | Mild     | 4/9 | 2/5 | Normal | 6/9 | 1/5   | True  | 3/9  | 3/5 |      |      |
| Rainy    | 3/9 | 2/5 | Cool     | 3/9 | 1/5 |        |     |       |       |      |     |      |      |

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

P(O = sunny | Play = no)P(T = cool | Play = no)P(H = high | Play = no)P(W = true | Play = no)P(M = true | Play =

$$P(Play = no | E) = \frac{\prod_{i} P(E_{i} | Play = no) P(Play = no)}{P(E)}$$
$$= \frac{\frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14}}{P(E)} = \frac{0.0206}{P(E)}$$

## Example: Naïve Bayes Models

#### • The new data E:

| Outlook | Temperature | Humidity | Windy | Play |
|---------|-------------|----------|-------|------|
| Sunny   | Cool        | High     | True  | ?    |

$$P(Play = yes | E) = \frac{0.0053}{0.0053 + 0.0206} = 20.5\%,$$

$$P(Play = no | E) = \frac{0.0206}{0.0053 + 0.0206} = 79.5\%.$$

#### **Decision Trees**

- A decision tree is a representation of a function that maps a vector of attribute values to a single output value, a "decision"
  - Each **internal node** in the tree corresponds to a test of the value of one of the input attributes
  - The branches from the node are labeled with the possible values of the attribute
  - The leaf nodes specify what value is to be returned by the function



### **Example: Decision Trees**



## **Example: Decision Trees**



## Learning Decision Trees from Examples

- Idea
  - Get to the correct classification with a small number of tests
  - Find a tree that is consistent with the examples and the tree is as small as possible
- A greedy divide-and-conquer strategy
  - Always test the most important attribute first
    - Makes the most difference to the classification of an example
  - Recursively solve the smaller subproblems that are defined by the possible results of the test

## Example: Attribute Importance



## Learning Decision Trees from Examples

- Four cases to consider for these recursive subproblems
  - The remaining examples are all positive (or all negative):
     Done! We can answer Yes or No
  - Some positive and some negative examples: Choose the best attribute to split them
  - No examples left:
    - (i.e., no example has been observed for this combination of attribute values), Return the most common output value from the set of examples that were used in constructing the node's parent
  - No attributes left, but both positive and negative examples: (This can happen because there is an error or noise in the data.) Return the *most common output value of the remaining examples*

## Decision Tree Learning Algorithm

**function** LEARN-DECISION-TREE(examples, attributes, parent\_examples) **returns** a tree

**if** examples is empty **then return** PLURALITY-VALUE(parent\_examples) else if all examples have the same classification then return the classification **else if** attributes is empty **then return** PLURALITY-VALUE(examples) else

```
A \leftarrow \operatorname{argmax}_{a \in attributes} \operatorname{IMPORTANCE}(a, examples)
tree \leftarrow a new decision tree with root test A
for each value v of A do
    exs \leftarrow \{e : e \in examples \text{ and } e.A = v\} \text{ # examples for the subset}
    subtree \leftarrow LEARN-DECISION-TREE(exs, attributes - A, examples)
    add a branch to tree with label (A = v) and subtree
return tree
```

Plurality-Value Select the most common output value among a set of examples, breaking ties randomly Spring 2024 / Wei

- Entropy (Information Theory)
  - The average amount of information contained in each message received (that is measured in bits)
  - A measure of the uncertainty of a random variable
    - e.g., a coin that always comes up heads has no uncertainty and its entropy is defined as zero
- The entropy of a random variable V with values  $v_k$  having probability  $P(v_k)$  is defined as

$$ext{Entropy:} \quad H(V) = \sum_k P(v_k) \log_2 rac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$

### Fair Coin Flip

#### Four-sided Die





1 2 3 4

$$H(V) = \sum_k P(v_k) \log_2 rac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$
Examples: Entropy

The entropy of a fair coin flip is 1 bit:

$$H(Fair) = -(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1$$

• The entropy of a four-sided die is 2bit:

$$H(Die4) = -(0.25\log_2 0.25 + 0.25\log_2 0.25 + 0.25\log_2 0.25 + 0.25\log_2 0.25) = 2$$

The entropy of a Boolean random variable that is true with probability q:

$$B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$$

If a training set contains p positive examples and n negative examples,
 then the entropy of the output variable on the whole set is

$$H(Output) = Bigg(rac{p}{p+n}igg)$$

# **Examples: Entropy**

$$egin{aligned} H(Output) &= Bigg(rac{p}{p+n}igg) \ B(q) &= -(q\log_2q + (1-q)\log_2(1-q)) \end{aligned}$$

| Outlook  |     | Tem | nperature |     | Hu | midity |     | ١  | Windy |     | Play |     |    |
|----------|-----|-----|-----------|-----|----|--------|-----|----|-------|-----|------|-----|----|
|          | Yes | No  |           | Yes | No |        | Yes | No |       | Yes | No   | Yes | No |
| Sunny    | 2   | 3   | Hot       | 2   | 2  | High   | 3   | 4  | False | 6   | 2    | 9   | 5  |
| Overcast | 4   | 0   | Mild      | 4   | 2  | Normal | 6   | 1  | True  | 3   | 3    |     |    |
| Rainy    | 3   | 2   | Cool      | 3   | 1  |        |     |    |       |     |      |     |    |

• H(Play) = 
$$B(\frac{9}{9+5}) = -(\frac{9}{14}log_2\frac{9}{14} + \frac{5}{14}log_2\frac{5}{14}) = 0.940$$
 bits

- An attribute A with d distinct values divides the training set E into subsets  $E_1, \dots, E_d$
- ullet Each subset  $E_k$  has  $p_k$  positive examples and  $n_k$  negative examples
- A randomly chosen example from the training set has the kth value for the attribute (i.e., is in  $E_k$  with probability  $\frac{p_k + n_k}{p + n}$ ), so **the expected**

#### entropy remaining after testing attribute A is

$$Remainder(A) = \sum_{k=1}^d rac{p_k + n_k}{p+n} Bigg(rac{p_k}{p_k + n_k}igg)$$

# **Examples: Entropy**

$$Remainder(A) = \sum_{k=1}^d rac{p_k + n_k}{p+n} Bigg(rac{p_k}{p_k + n_k}igg)$$

$$B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$$

Remainder(outlook)

$$= \frac{5}{14}\mathbf{B}(\frac{2}{5}) + \frac{4}{14}\mathbf{B}(\frac{4}{4}) + \frac{5}{14}\mathbf{B}(\frac{3}{5})$$

$$= (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$$

= 0.693 bits



- Importance function
  - The information gain from the attribute test on A is the expected reduction in entropy:

$$Gain(A) = Bigg(rac{p}{p+n}igg) - Remainder(A).$$

$$Gain(A) = Bigg(rac{p}{p+n}igg) - Remainder(A).$$

## **Example: Information Gain**

Gain(outlook) = B( $\frac{9}{9+5}$ ) - Remainder(outlook)

= 0.940 - 0.693 = 0.247 bits

- Gain(temperature) = 0.029 bits
- Gain(humidity) = 0.152 bits
- Gain(windy) = 0.048 bits





gain(temperature) = 0.571 bits gain(humidity) = 0.971 bits gain(windy) = 0.020 bits

### Performance Metrics for Classification Models

#### Confusion matrix

Example: two-class prediction

|              |     | Predict             | ed Class           |
|--------------|-----|---------------------|--------------------|
|              |     | yes                 | no                 |
| Actual Class | yes | true positive (TP)  | false negative(FN) |
|              | no  | false positive (FP) | true negative (TN) |

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \qquad F1 - score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Al / Spring 2024 / Wei