Congratulations! You passed!

TO PASS 70% or higher

Keep Learning

 $\frac{\text{grade}}{90\%}$

Week 2 Practice Quiz

TOTAL POINTS 10

1.	Let w ₁ , w ₂ , and w ₃ represent three words in the dictionary of an inverted index. Suppose we	1 / 1 point
	have the following document frequency distribution:	

Word	Document Frequency
\mathbf{w}_1	1
W ₂	5
W ₃	10

Assume that each posting entry of document ID and term frequency takes exactly the same disk space. Which word's postings list will occupy the largest disk space?

- w₁
- \bigcirc W_2
 - ✓ Correct

Explanation: The postings list of w_3 has the largest number of entries and thus occupies the largest space.

- 2. Assume we have the same scenario as in Question 1. If we enter a query Q= " $w_1 w_2 w_3$ " then the **maximum** possible number of accumulators needed to score all the matching documents is:
 - 10

	10	
	<u> </u>	
	Correct Explanation: If the three postings lists are mutually exclusive (have no common elements), then we will have 16 unique documents each matching exactly 1 of the query terms.	
3.	Assume that the d-gap between two documents is equal to 9. If you want to compress this d-gap with a gamma code, what will be the binary representation of the code?	1 / 1 point
	1110001	
	1110000	
	1110011	
	1110010	
	 ✓ Correct Explanation: 1+floor(log(9)) = 4, which can be represented as 1110 in unary code. 9 − 2^(floor(log(9))) = 1, which can be represented as 001 in a uniform code with 3 bits. The gamma code is the concatenation of the unary and uniform codes. 	
4.	Why is TF transformation needed?	1 / 1 point
	So that computation is more efficient	
	To capture the intuition of "diminishing return" from higher TF	
	Correct	

What is the upperbound for BM25 transformation?

1 / 1 point

	(b) k+1	
	○ k	
	○ k-1	
	✓ Correct	
6.	Do we always want to penalize a long document?	1 / 1 point
	NoYes	
	Correct If it uses more words, then we want to penalize more, but if it has more content, then we want to penalize less.	
7.	Which is true about pivoted length normalization?	0 / 1 point
	It always penalizes.	
	It has both a penalization and reward effect.	
	It always rewards.	
	Incorrect	
8.	Is word segmentation on Chinese easier than English?	1 / 1 point
	No	
	Yes	

9.	What is NOT the advantage for using inverted index?	1 / 1 point
	Inverted index can map words of the same meaning into one slot.	
	It is more efficient than sequentially scanning docs.	
	It can search for documents that contains both "A" and "B" efficiently.	
	✓ Correct	
10.	What does Zipf's law tell you?	1 / 1 point
	There are many words that have a small probability.	
	There are only a few words that have a small probability.	
	Words are evenly distributed.	

✓ Correct