Multiple Linear Regression:

r score <mark>1.0</mark>

Support Vector Machine Regression:

kernel	С	r_score
rbf	1000	0.517
rbf	50	0.7314
linear	1000	0.7505
linear	300	0.7504
poly	500	0.7499
poly	800	0.7500
sigmoid	6000	-0.2190
sigmoid	200	-0.2409

Decision Tree Regression:

criterion	splitter	r_score
friedman_mse	random	0.741
friedman_mse	best	0.691
squared_error	random	0.699
squared_error	best	0.714
absolute_error	random	0.683
absolute_error	best	0.684
poisson	random	0.6925
poisson	best	0.746

Random Forest Regression:

n_estimators	random_state	r_score
50	0	0.82
100	0	0.8267
7	0	0.821
1	0	0.745
50	1	0.826
1000	3	0.829
100	7	0.828
8000	50	0.83

Thus, <u>MULTIPLE LINEAR REGRESSSION MODEL</u> is giving the best model.