Exercises from Topology by James Munkres

Exercise 13.1 Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Proof. Since, from the given hypothesis given any $x \in A$ there exists an open set containing x say, U_x such that $U_x \subset A$. Thus, we claim that

$$A = \bigcup_{x \in A} U_x$$

Observe that if we prove the above claim, then A will be open, being a union of arbitrary open sets. Since, for each $x \in A, U_x \subset A \Longrightarrow \cup U_x \subset A$. For the converse, observe that given any $x \in A, x \in U_x$ and hence in the union. Thus we proved our claim, and hence A is an open set.

Exercise 13.3b Show that the collection

$$\mathcal{T}_{\infty} = \{U|X - U \text{ is infinite or empty or all of X}\}$$

does not need to be a topology on the set X.

Proof. Let $X = \mathbb{R}, U_1 = (-\infty, 0)$ and $U_2 = (0, \infty)$. Then U_1 and U_2 are in \mathcal{T}_{∞} but $U_1 \cup U_2 = \mathbb{R} \setminus \{0\}$ is not.

Exercise 13.4a1 If \mathcal{T}_{α} is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X.

Proof. Since \emptyset and X belong to \mathcal{T}_{α} for each α , they belong to $\bigcap_{\alpha} \mathcal{T}_{\alpha}$. Let $\{V_{\beta}\}_{\beta}$ be a collection of open sets in $\bigcap_{\alpha} \mathcal{T}_{\alpha}$. For any fixed α we have $\cup_{\beta} V_{\beta} \in \mathcal{T}_{\alpha}$ since \mathcal{T}_{α} is a topology on X, so $\bigcup_{\beta} V_{\beta} \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$. Similarly, if U_1, \ldots, U_n are elements of $\bigcap_{\alpha} \mathcal{T}_{\alpha}$, then for each α we have $\bigcup_{i=1}^{n} U_i \in \mathcal{T}_{\alpha}$ and therefore $\bigcup_{i=1}^{n} U_i \in \bigcap_{\alpha} \mathcal{T}_{\alpha}$. It follows that $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology on X.

Exercise 13.4a2 If \mathcal{T}_{α} is a family of topologies on X, show that $\bigcup \mathcal{T}_{\alpha}$ does not need to be a topology on X.

Proof. On the other hand, the union $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ is in general not a topology on X. For instance, let $X = \{a, b, c\}$. Then $\mathcal{T}_1 = \{\emptyset, X, \{a\}\}$ and $\mathcal{T}_2 = \{\emptyset, X, \{b\}\}$ are topologies on X but $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b\}\}$ is not.

Exercise 13.4b1 Let \mathcal{T}_{α} be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} .

Proof. (b) First we prove that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} . Uniqueness of such topology is clear. For each α let \mathcal{B}_{α} be a basis for \mathcal{T}_{α} . Let \mathcal{T} be the topology generated by the subbasis $\mathcal{S} = \bigcup_{\alpha} \mathcal{B}_{\alpha}$. Then the collection \mathcal{B} of all finite intersections of elements of \mathcal{S} is a basis for \mathcal{T} . Clearly $\mathcal{T}_{\alpha} \subset \mathcal{T}$ for all α . We now prove that if \mathcal{O} is a topology on X such that $\mathcal{T}_{\alpha} \subset \mathcal{O}$ for all α , then $\mathcal{T} \subset \mathcal{O}$. Given such \mathcal{O} , we have $\mathcal{B}_{\alpha} \subset \mathcal{O}$ for all α , so $\mathcal{S} \subset \mathcal{O}$. Since \mathcal{O} is a topology, it must contain all finite intersections of elements of \mathcal{S} , so $\mathcal{B} \subset \mathcal{O}$ and hence $\mathcal{T} \subset \mathcal{O}$. We conclude that the topology \mathcal{T} generated by the subbasis $\mathcal{S} = \cup_{\alpha} \mathcal{B}_{\alpha}$ is the unique smallest topology on X containing all the collections \mathcal{T}_{α} .

Exercise 13.4b2 Let \mathcal{T}_{α} be a family of topologies on X. Show that there is a unique largest topology on X contained in all the collections \mathcal{T}_{α} .

Proof. Now we prove that there exists a unique largest topology contained in all \mathcal{T}_{α} . Uniqueness of such topology is clear. Consider $\mathcal{T} = \bigcap_{\alpha} \mathcal{T}_{\alpha}$. We already know that \mathcal{T} is a topology by, and clearly $\mathcal{T} \subset \mathcal{T}_{\alpha}$ for all α . If \mathcal{O} is another topology contained in all \mathcal{T}_{α} , it must be contained in their intersection, so $\mathcal{O} \subset \mathcal{T}$. I follows that \mathcal{T} is the unique largest topology contained in all \mathcal{T}_{α} .

Exercise 13.5a Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

Proof. Let \mathcal{T} be the topology generated by \mathcal{A} and let \mathcal{O} be the intersection of all topologies on X that contains \mathcal{A} . Clearly $\mathcal{O} \subset \mathcal{T}$ since \mathcal{T} is a topology on X that contain \mathcal{A} . Conversely, let $U \in \mathcal{T}$, so that U is a union of elements of \mathcal{A} . Since each of this elements is also an element of \mathcal{O} , their union U belongs to \mathcal{O} . Thus $\mathcal{T} \subset \mathcal{O}$ and the equality holds.

Exercise 13.5b Show that if \mathcal{A} is a subbasis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

Proof. If we now considered \mathcal{A} as a subbasis, then the elements of \mathcal{T} are union of finite intersections of elements of \mathcal{A} . The inclusion $\mathcal{O} \subset \mathcal{T}$ is again clear and $\mathcal{T} \subset \mathcal{O}$ holds since every union of finite intersections of elements of \mathcal{A} belongs to \mathcal{O} .

Exercise 13.6 Show that the lower limit topology \mathbb{R}_l and K-topology \mathbb{R}_K are not comparable.

Proof. Let \mathcal{T}_{ℓ} and \mathcal{T}_{K} denote the topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} respectively. Given the basis element [0,1) for \mathcal{T}_{ℓ} , there is no basis element for \mathcal{T}_{K} containing 0 and contained in [0,1), so $\mathcal{T}_{\ell} \not\subset \mathcal{T}_{K}$. Similarly, given the basis element $(-1,1)\backslash K$ for \mathcal{T}_{K} , there is no basis element for \mathcal{T}_{ℓ} containing 0 contained in $(-1,1)\backslash K$, so $\mathcal{T}_{K} \not\subset \mathcal{T}_{\ell}$.

Exercise 13.8a Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates the standard topology on \mathbb{R} .

Proof. Exercise 13.8. (a) First note that \mathcal{B} is a basis for a topology on \mathbb{R} . This follows from the fact that the union of its elements is all of \mathbb{R} and the intersection of two elements of \mathcal{B} is either empty or another element of \mathcal{B} . Let \mathcal{T} be the standard topology on \mathbb{R} . Clearly the topology generated by \mathcal{B} is coarser than \mathcal{T} . Let $U \in \mathcal{T}$ and $x \in U$. Then U contains an open interval with centre x. Since the rationals are dense in \mathbb{R} with the standard topology, there exists $q \in \mathbb{Q}$ such that $x \in (x - q, x + q) \subset U$. This proves that \mathcal{T} is coarser than the topology generated by \mathcal{B} . We conclude that \mathcal{B} generates the standard topology on \mathbb{R} .

Exercise 13.8b Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

Proof. (b) \mathcal{C} is a basis for a topology on \mathbb{R} since the union of its elements is \mathbb{R} and the intersection of two elements of \mathcal{C} is either empty or another element of \mathcal{C} . Now consider [r,s) where r is any irrational number and s is any real number greater than r. Then [r,s) is a basis element for the topology of \mathbb{R}_{ℓ} , but [r,s) is not a union of elements of \mathcal{C} . Indeed, suppose that $[r,s) = \bigcup_{\alpha} [a_{\alpha},b_{\alpha})$ for rationals a_{α},b_{α} . Then $r \in [a_{\alpha},b_{\alpha})$ for some α . Since r is irrational we must have $a_{\alpha} < r$, but then $a_{\alpha} \notin [r,s)$, a contradiction. It follows that the topology generated by \mathcal{C} is strictly coarser than the lower limit topology on \mathbb{R} .

Exercise 16.1 Show that if Y is a subspace of X, and A is a subset of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

Proof. Exercise 16.1. Let \mathcal{T} be the topology A inherits as a subspace of Y, and \mathcal{O} be the topology it inherits as a subspace of X. A (standard) basis element for \mathcal{T} has the form $U \cap A$ where U is open in Y, so is of the form

 $(Y \cap V) \cap A = V \cap A$ where V is open in X. Therefore every basis element for \mathcal{T} is also a basis element for \mathcal{O} . Conversely, a (standard) basis element for \mathcal{O} have the form $W \cap A = W \cap Y \cap A$ where W is open in X. Since $W \cap Y$ is open in Y, this is a basis element for \mathcal{T} , so every basis element for \mathcal{O} is a basis element for \mathcal{T} . It follows that $\mathcal{T} = \mathcal{O}$.

Exercise 16.4 A map $f: X \to Y$ is said to be an open map if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

Proof. Exercise 16.4. Let $U \times V$ be a (standard) basis element for $X \times Y$, so that U is open in X and V is open in Y. Then $\pi_1(U \times V) = U$ is open in X and $\pi_2(U \times V) = V$ is open in Y. Since arbitrary maps and unions satisfy $f(\bigcup_{\alpha} W_{\alpha}) = \bigcup_{\alpha} f(W_{\alpha})$, it follows that π_1 and π_2 are open maps.

Exercise 16.6 Show that the countable collection

$$\{(a,b) \times (c,d) \mid a < b \text{ and } c < d, \text{ and } a,b,c,d \text{ are rational}\}$$

is a basis for \mathbb{R}^2 .

Proof. We know that $\mathcal{B} = \{(a,b)|a < b, a \text{ and } brational\}$ is a basis for \mathcal{R} , therefore the set we are concerned with in the above question is a basis for \mathcal{R}^2 . \square

Exercise 17.4 Show that if U is open in X and A is closed in X, then U - A is open in X, and A - U is closed in X.

Proof. Since

$$X \setminus (U \setminus A) = (X \setminus U) \cup A \text{ and } X \setminus (A \setminus U) = (X \setminus A) \cup U,$$

it follows that $X \setminus (U \setminus A)$ is closed in X and $X \setminus (A \setminus U)$ is open in X.

Exercise 18.8a Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Show that the set $\{x \mid f(x) \leq g(x)\}$ is closed in X.

Proof. We prove that $U = \{x \mid g(x) < f(x)\}$ is open in X. Let $a \in U$, so that g(a) < f(a). If there is an element c between g(a) and f(a), then $a \in g^{-1}((-\infty,c)) \cap f^{-1}((c,+\infty))$. If there are no elements between g(a) and f(a), then $a \in g^{-1}((-\infty,f(a)) \cap f^{-1}((g(a),+\infty)))$. Note that all these preimages are open since f and g are continuous. Thus $U = V \cup W$, where

$$V = \bigcup_{c \in X} g^{-1}((-\infty, c)) \cap f^{-1}((c, +\infty)) \quad \text{and} \quad W = \bigcup_{\substack{g(a) < f(a) \\ (g(a), f(a)) = \emptyset}} g^{-1}\left((-\infty, f(a)) \cap f^{-1}((g(a), +\infty))\right)$$

are open in X. So U is open in X and therefore $X \setminus U = \{x \mid f(x) \leq g(x)\}$ is closed in X.

Exercise 18.8b Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Let $h: X \to Y$ be the function $h(x) = \min\{f(x), g(x)\}$. Show that h is continuous.

Proof. Let $A = \{x \mid f(x) \leq g(x)\}$ and $B = \{x \mid g(x) \leq f(x)\}$. Then A and B are closed in X by (a), $A \cap B = \{x \mid f(x) = g(x)\}$, and $X = A \cup B$. Since f and g are continuous, their restrictions $f' : A \to Y$ and $g' : B \to Y$ are continuous. It follows from the pasting lemma that

$$h: X \to Y, \quad h(x) = \min\{f(x), g(x)\} = \begin{cases} f'(x) & \text{if } x \in A \\ g'(x) & \text{if } x \in B \end{cases}$$

is continuous \square

Exercise 18.13 Let $A \subset X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \bar{A} \to Y$, then g is uniquely determined by f.

Proof. Let $h,g: \bar{A} \to Y$ be continuous extensions of f. Suppose that there is a point $x \in \bar{A}$ such that $h(x) \neq g(x)$. Since h = g on A, we must have $x \in A'$. Since Y is Hausdorff, there is a neighbourhood U of h(x) and a neighbourhood V of g(x) such that $U \cap V = \emptyset$. Since h and g are continuous, $h^{-1}(U) \cap g^{-1}(V)$ is a neighbourhood of x. Since $x \in A'$, there is a point $y \in h^{-1}(U) \cap g^{-1}(V) \cap A$ different from x. But h = g on A, so $g^{-1}(V) \cap A = h^{-1}(V) \cap A$ and hence $g \in h^{-1}(U) \cap h^{-1}(V) = h^{-1}(U \cap V) = \emptyset$, a contradiction. It follows that h = g on \bar{A} .

Exercise 19.6a Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space $\prod X_{\alpha}$. Show that this sequence converges to the point \mathbf{x} if and only if the sequence $\pi_{\alpha}(\mathbf{x}_i)$ converges to $\pi_{\alpha}(\mathbf{x})$ for each α .

Proof. For each $n \in \mathbb{Z}_+$, we write $\mathbf{x}_n = (x_n^{\alpha})_{\alpha}$, so that $\pi_{\alpha}(\mathbf{x}_n) = x_n^{\alpha}$ for each α . First assume that the sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to $\mathbf{x} = (x_{\alpha})_{\alpha}$ in the product space $\prod_{\alpha} X_{\alpha}$. Fix an index β and let U be a neighbourhood of $\pi_{\beta}(\mathbf{x}) = x_{\beta}$. Let $V = \prod_{\alpha} U_{\alpha}$, where $U_{\alpha} = X_{\alpha}$ for each $\alpha \neq \beta$ and $U_{\beta} = U$. Then V is a neighbourhood of \mathbf{x} , so there exists $N \in \mathbb{Z}_+$ such that $\mathbf{x}_n \in V$ for all $n \geq N$. Therefore $\pi_{\beta}(\mathbf{x}_n) = x_n^{\beta} \in U$ for all $n \geq N$. Since U was arbitrary, it follows that $\pi_{\beta}(\mathbf{x}_1), \pi_{\beta}(\mathbf{x}_2), \ldots$ converges to $\pi_{\beta}(\mathbf{x})$. Since β was arbitrary, this holds for all indices α .

Exercise 20.2 Show that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is metrizable.

Proof. The dictionary order topology on $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes \mathbb{R} with the discrete topology. We know that \mathbb{R}_d and \mathbb{R} are metrisable. Thus, it suffices to show that the product of

two metrisable spaces is metrisable. So let X and Y be metrisable spaces, with metrics d and d' respectively. On $X \times Y$, define

$$\rho(x \times y, w \times z) = \max \left\{ d(x, w), d'(y, z) \right\}.$$

Then ρ is a metric on $X \times Y$; it remains to prove that it induces the product topology on $X \times Y$. If $B_d(x,r_1) \times B_d(y,r_2)$ is a basis element for the product space $X \times Y$, and $r = \min\{r_1,r_2\}$, then $x \times y \in B_\rho(x \times y,r) \subset B_d(x,r_1) \times B_d(y,r_2)$, so the product topology is coarser than the ρ -topology. Conversely, if $B_\rho(x \times y,\delta)$ is a basis element for the ρ -topology, then $x \times y \in B_d(x,\delta) \times B_{d'}(y,\delta) \subset B_\rho(x \times y,\delta)$, so the product topology is finer than the ρ -topology. It follows that both topologies are equal, so the product space $X \times Y$ is metrisable.

Exercise 21.6a Define $f_n:[0,1]\to\mathbb{R}$ by the equation $f_n(x)=x^n$. Show that the sequence $(f_n(x))$ converges for each $x\in[0,1]$.

Proof. If $0 \le x < 1$ is fixed, then $f_n(x) \to 0$ as $n \to \infty$. As $f_n(1) = 1$ for all $n, f_n(1) \to 1$. Thus $(f_n)_n$ converges to $f: [0,1] \to \mathbb{R}$ given by f(x) = 0 if x = 0 and f(1) = 1. The sequence

Exercise 21.6b Define $f_n:[0,1]\to\mathbb{R}$ by the equation $f_n(x)=x^n$. Show that the sequence (f_n) does not converge uniformly.

Proof. The sequence $(f_n)_n$ does not converge uniformly, since given $0 < \varepsilon < 1$ and $N \in \mathbb{Z}_+$, for $x = \varepsilon^{1/N}$ we have $d(f_N(x), f(x)) = \varepsilon$. We can also apply Theorem 21.6: the convergence is not uniform since f is not continuous.

Exercise 21.8 Let X be a topological space and let Y be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions. Let x_n be a sequence of points of X converging to x. Show that if the sequence (f_n) converges uniformly to f, then $(f_n(x_n))$ converges to f(x).

Proof. Let d be the metric on Y. Let V be a neighbourhood of f(x), and let $\varepsilon > 0$ be such that $f(x) \in B_d(f(x), \varepsilon) \subset V$. Since $(f_n)_n$ converges uniformly to f, there exists $N_1 \in \mathbb{Z}_+$ such that $d(f_n(x), f(x)) < \varepsilon/2$ for all $x \in X$ and all $n \geq N_1$, so that $d(f_n(x_n), f(x_n)) < \varepsilon/2$ for all $n \geq N_1$. Moreover, f is continuous, so there exists $N_2 \in \mathbb{Z}_+$ such that $d(f(x_n), f(x)) < \varepsilon/2$ for all $n \geq N_2$. Thus, if $N > \max\{N_1, N_2\}$, then

$$d\left(f_{n}\left(x_{n}\right),f(x)\right)\leq d\left(f_{n}\left(x_{n}\right),f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right),f(x)\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

for all $n \geq N$, so $f_n(x_n) \in V$ for all $n \geq N$. It follows that $(f_n(x_n))_n$ converges to f(x).

Exercise 22.2a Let $p: X \to Y$ be a continuous map. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.

Proof. Let $1_Y: Y \to Y$ be the identity map in Y. If U is a subset of Y and $p^{-1}(U)$ is open in X, then $f^{-1}\left(p^{-1}(U)\right) = 1_Y^{-1}(U) = U$ is open in Y by continuity of f. Thus p is a quotient map.

Exercise 22.2b If $A \subset X$, a retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for each $a \in A$. Show that a retraction is a quotient map.

Proof. The inclusion map $i: A \to X$ is continuous and $r \circ i = 1_A$ is the identity. Thus r is a quotient map by (a).

Exercise 22.5 Let $p: X \to Y$ be an open map. Show that if A is open in X, then the map $q: A \to p(A)$ obtained by restricting p is an open map.

Proof. Let U be open in A. Since A is open in X, U is open in X as well, so p(U) is open in Y. Since $q(U) = p(U) = p(U) \cap p(A)$, the set q(U) is open in p(A). Thus q is an open map.

Exercise 23.2 Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Proof. Suppose that $\bigcup_n A_n = B \cup C$, where B and C are disjoint open subsets of $\bigcup_n A_n$. Since A_1 is connected and a subset of $B \cup C$, by Lemma 23.2 it lies entirely within either B or C. Without any loss of generality, we may assume $A_1 \subset B$. Note that given n, if $A_n \subset B$ then $A_{n+1} \subset B$, for if $A_{n+1} \subset C$ then $A_n \cap A_{n+1} \subset B \cap C = \emptyset$, in contradiction with the assumption. By induction, $A_n \subset B$ for all $n \in \mathbb{Z}_+$, so that $\bigcup_n A_n \subset B$. It follows that $\bigcup_n A_n$ is connected.

Exercise 23.3 Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subset of X. Show that if $A \cap A_{\alpha} \neq \emptyset$ for all α , then $A \cup (\bigcup A_{\alpha})$ is connected.

Proof. For each α we have $A \cap A_{\alpha} \neq \emptyset$, so each $A \cup A_{\alpha}$ is connected by Theorem 23.3. In turn $\{A \cup A_{\alpha}\}_{\alpha}$ is a collection of connected spaces that have a point in common (namely any point in A), so $\bigcup_{\alpha} (A \cup A_{\alpha}) = A \cup (\bigcup_{\alpha} A_{\alpha})$ is connected.

Exercise 23.4 Show that if X is an infinite set, it is connected in the finite complement topology.

Proof. Suppose that A is a non-empty subset of X that is both open and closed, i.e., A and $X \setminus A$ are finite or all of X. Since A is non-empty, $X \setminus A$ is finite. Thus A cannot be finite as $X \setminus A$ is infinite, so A is all of X. Therefore X is connected.

Exercise 23.6 Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and X - A, then C intersects $\operatorname{Bd} A$.

Proof. Suppose that $C \cap BdA = C \cap \overline{A} \cap \overline{X - A} = \emptyset$. Then $C \cap A$ and $C \cap (X \setminus A)$ are a pair of disjoint non-empty sets whose union is all of C, neither of which contains a limit point of the other. Indeed, if $C \cap (X - A)$ contains a limit point x of $C \cap A$, then $x \in C \cap (X - A) \cap A' \subset C \cap \overline{A} \cap \overline{X - A} = \emptyset$, a contradiction, and similarly $C \cap A$ does not contain a limit point of $C \cap (X - A)$. Then $C \cap A$ and $C \cap (X - A)$ constitute a separation of C, contradicting the fact that C is connected (Lemma 23.1).

Exercise 23.9 Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that $(X \times Y) - (A \times B)$ is connected.

Proof. This is similar to the proof of Theorem 23.6. Take $c \times d \in (X \setminus A) \times (Y \setminus B)$. For each $x \in X \setminus A$, the set

$$U_x = (X \times \{d\}) \cup (\{x\} \times Y)$$

is connected since $X \times \{d\}$ and $\{x\} \times Y$ are connected and have the common point $x \times d$. Then $U = \bigcup_{x \in X \setminus A} U_x$ is connected because it is the union of the connected spaces U_x which have the point $c \times d$ in common. Similarly, for each $y \in Y \setminus B$ the set

$$V_y = (X \times \{y\}) \cup (\{c\} \times Y)$$

is connected, so $V = \bigcup_{y \in Y \setminus B} V_y$ is connected. Thus $(X \times Y) \setminus (A \times B) = U \cup V$ is connected since $c \times d$ is a common point of U and V.

Exercise 23.11 Let $p: X \to Y$ be a quotient map. Show that if each set $p^{-1}(\{y\})$ is connected, and if Y is connected, then X is connected.

Proof. Suppose that U and V constitute a separation of X. If $y \in p(U)$, then y = p(x) for some $x \in U$, so that $x \in p^{-1}(\{y\})$. Since $p^{-1}(\{y\})$ is connected and $x \in U \cap p^{-1}(\{y\})$, we have $p^{-1}(\{y\}) \subset U$. Thus $p^{-1}(\{y\}) \subset U$ for all $y \in p(U)$, so that $p^{-1}(p(U)) \subset U$. The inclusion $U \subset p^{-1}(p(U))$ if true for any subset and function, so we have the equality $U = p^{-1}(p(U))$ and therefore U is saturated. Similarly, V is saturated. Since p is a quotient map, p(U) and p(V) are disjoint non-empty open sets in Y. But $p(U) \cup p(V) = Y$ as p is surjective, so p(U) and p(V) constitute a separation of Y, contradicting the fact that Y is connected. We conclude that X is connected.

Exercise 24.2 Let $f: S^1 \to \mathbb{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Proof. Let $f: S^1 \to \mathbb{R}$ be continuous. Let $x \in S^1$. If f(x) = f(-x) we are done, so assume $f(x) \neq f(-x)$. Define $g: S^1 \to \mathbb{R}$ by setting g(x) = f(x) - f(-x). Then g is continuous. Suppose f(x) > f(-x), so that g(x) > 0. Then $-x \in S^1$ and g(-x) < 0. By the intermediate value theorem, since S^1 is connected and g(-x) < 0 < g(x), there exists $y \in S^1$ such that g(y) = 0. i.e, f(y) = f(-y). Similarly, if f(x) < f(-x), then g(x) < 0 < g(-x) and again the intermediate value theorem gives the result.

Exercise 24.3a Let $f: X \to X$ be continuous. Show that if X = [0, 1], there is a point x such that f(x) = x. (The point x is called a fixed point of f.)

Proof. If f(0) = 0 or f(1) = 1 we are done, so suppose f(0) > 0 and f(1) < 1. Let $g: [0,1] \to [0,1]$ be given by g(x) = f(x) - x. Then g is continuous, g(0) > 0 and g(1) < 0. Since [0,1] is connected and g(1) < 0 < g(0), by the intermediate value theorem there exists $x \in (0,1)$ such that g(x) = 0, that is, such that f(x) = x.

Exercise 25.4 Let X be locally path connected. Show that every connected open set in X is path connected.

Proof. Let U be a open connected set in X. By Theorem 25.4, each path component of U is open in X, hence open in U. Thus, each path component in U is both open and closed in U, so must be empty or all of U. It follows that U is path-connected.

Exercise 25.9 Let G be a topological group; let C be the component of G containing the identity element e. Show that C is a normal subgroup of G.

Proof. Given $x \in G$, the maps $y \mapsto xy$ and $y \mapsto yx$ are homeomorphisms of G onto itself. Since C is a component, xC and Cx are both components that contain x, so they are equal. Hence xC = Cx for all $x \in G$, so C is a normal subgroup of G.

Exercise 26.11 Let X be a compact Hausdorff space. Let \mathcal{A} be a collection of closed connected subsets of X that is simply ordered by proper inclusion. Then $Y = \bigcap_{A \in \mathcal{A}} A$ is connected.

Proof. Since each $A \in \mathcal{A}$ is closed, Y is closed. Suppose that C and D form a separation of Y. Then C and D are closed in Y, hence closed in X. Since X is compact, C and D are compact by Theorem 26.2. Since X is Hausdorff, by Exercise 26.5, there exist U and V open in X and disjoint containing C and D, respectively. We show that

$$\bigcap_{A\in\mathcal{A}}(A\backslash(U\cup V))$$

is not empty. Let $\{A_1, \ldots, A_n\}$ be a finite subcollection of elements of \mathcal{A} . We may assume that $A_i \subsetneq A_{i+1}$ for all $i = 1, \ldots, n-1$. Then

$$\bigcap_{i=1}^{n} (A_i \setminus (U \cup V)) = A_1 \setminus (U \cup V).$$

Suppose that $A_1 \setminus (U \cup V) = \emptyset$. Then $A_1 \subset U \cup V$. Since A_1 is connected and $U \cap V = \emptyset$, A_1 lies within either U or V, say $A_1 \subset U$. Then $Y \subset A_1 \subset U$, so that $C = Y \cap C \subset Y \cap V = \emptyset$, contradicting the fact that C and D form a separation of Y. Hence, $\bigcap_{i=1}^n (A_i \setminus (U \cup V))$ is non-empty. Therefore, the collection $\{A \setminus (U \cup V) \mid A \in A\}$ has the finite intersection property, so

$$\bigcap_{A \in \mathcal{A}} (A \setminus (U \cup V)) = \left(\bigcap_{A \in \mathcal{A}} A\right) \setminus (U \cup V) = Y \setminus (U \cup V)$$

is non-empty. So there exists $y \in Y$ such that $y \notin U \cup V \supset C \cup D$, contradicting the fact that C and D form a separation of Y. We conclude that there is no such separation, so that Y is connected.

Exercise 26.12 Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact, for each $y \in Y$. (Such a map is called a perfect map.) Show that if Y is compact, then X is compact.

Proof. We first show that if U is an open set containing $p^{-1}(\{y\})$, then there is a neighbourhood W of y such that $p^{-1}(W)$ is contained in U. Since X - U is closed in X, p(X - U) is closed in Y and does not contain y, so $W = Y \setminus p(X \setminus U)$ is a neighbourhood of y. Moreover, since $X \setminus U \subset p^{-1}(p(X \setminus U))$ (by elementary set theory), we have

$$p^{-1}(W) = p^{-1}(Y \backslash p(X \backslash U)) = p^{-1}(Y) \backslash p^{-1}(p(X \backslash U)) \subset X \backslash (X \backslash U) = U.$$

Now let \mathcal{A} be an open covering of X. For each $y \in Y$, let \mathcal{A}_y be a subcollection of \mathcal{A} such that

$$p^{-1}(\{y\}) \subset \bigcup_{A \in \mathcal{A}_y} A.$$

Since $p^{-1}(\{y\})$ is compact, there exists a finite subcollection of \mathcal{A}_y that also covers $p^{-1}(\{y\})$, say $\{A_y^1,\ldots,A_y^{n_y}\}$. Thus $\bigcup_{i=1}^{n_y}A_y^i$ is open and contains $p^{-1}(\{y\})$, so there exists a neighbourhood W_y of y such that $p^{-1}(W_y)$ is contained in $\bigcup_{i=1}^{n_y}A_y^i$. Then $\{W_y\}_{y\in Y}$ is an open covering of Y, so there exist $y_1,\ldots,y_k\in Y$ such that $\{W_{y_j}\}_{j=1}^k$ also covers Y. Then

$$X = p^{-1}(Y) \subset p^{-1} \left(\bigcup_{j=1}^{k} W_{y_j} \right) = \bigcup_{j=1}^{k} p^{-1} \left(W_{y_j} \right) \subset \bigcup_{j=1}^{k} \left(\bigcup_{i=1}^{n_{y_j}} A_{y_j}^i \right)$$

so

$$\left\{A_{y_j}^i\right\}_{\substack{j=1,\ldots,k\\i=1,\ldots,n_{y_j}}}$$

is a finite subcollection of \mathcal{A} that also covers X. Therefore, X is compact. \square

Exercise 27.4 Show that a connected metric space having more than one point is uncountable.

Proof. The distance function $d: X \times X \to \mathbb{R}$ is continuous by Exercise 20.3(a), so given $x \in X$, the function $d_x: X \to \mathbb{R}$ given by $d_x(y) = d(x,y)$ is continuous by Exercise 19.11. Since X is connected, the image $d_x(X)$ is a connected subspace of \mathbb{R} , and contains 0 since $d_x(x) = 0$. Thus, if $y \in X$ and $y \neq x$, then $d_x(X)$ contains the set $[0, \delta]$, where $\delta = d_x(y) > 0$. Therefore X must be uncountable.

Exercise 28.4 A space X is said to be countably compact if every countable open covering of X contains a finite subcollection that covers X. Show that for a T_1 space X, countable compactness is equivalent to limit point compactness.

Proof. First let X be a countable compact space. Note that if Y is a closed subset of X, then Y is countable compact as well, for if $\{U_n\}_{n\in\mathbb{Z}_+}$ is a countable open covering of Y, then $\{U_n\}_{n\in\mathbb{Z}_+}\cup (X\backslash Y)$ is a countable open covering of X; there is a finite subcovering of X, hence a finite subcovering of Y. Now let A be an infinite subset. We show that A has a limit point. Let B be a countable infinite subset of A. Suppose that B has no limit point, so that B is closed in X. Then B is countable compact. Since B has no limit point, for each $b \in B$ there is a neighbourhood U_b of B that intersects B in the point B alone. Then B is countable compact. Hence B has a limit point, so that A has a limit point as well. Since A was arbitrary, we deduce that A is limit point compact. (Note that the B property is not necessary in this direction.)

Now assume that X is a limit point compact T_1 space. We show that X is countable compact. Suppose, on the contrary, that $\{U_n\}_{n\in\mathbb{Z}_+}$ is a countable open covering of X with no finite subcovering. For each n, take a point x_n in X not in $U_1\cup\cdots\cup U_n$. By assumption, the infinite set $A=\{x_n\mid n\in\mathbb{Z}_+\}$ has a limit point $y\in X$. Since $\{U_n\}_{n\in\mathbb{Z}_+}$ covers X, there exists $N\in\mathbb{Z}_+$ such that $y\in U_1\cup\cdots\cup U_N$. Now X is T_1 , so for each $i=1,\ldots,N$ there exists a neighbourhood V_i of Y that does not contain X_i . Then

$$V = (V_1 \cap \cdots \cap V_N) \cap (U_1 \cup \cdots \cup U_N)$$

is a neighbourhood of y that does not contain any of the points x_i , contradicting the fact that y is a limit point of A. It follows that every countable open covering of X must have a finite subcovering, so X is countable compact.

Exercise 28.5 Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.

Proof. We could imitate the proof of Theorem 26.9, but we prove directly each direction. First let X be countable compact and let $C_1 \supset C_2 \supset \cdots$ be a nested sequence of closed nonempty sets of X. For each $n \in \mathbb{Z}_+, U_n = X \setminus C_n$ is

open in X. Then $\{U_n\}_{n\in\mathbb{Z}_+}$ is a countable collection of open sets with no finite subcollection covering X, for if $U_{i_1}\cup\cdots\cup U_{1_n}$ covers X, then $C_{i_1}\cap\cdots\cap C_{i_n}$ is empty, contrary to the assumption. Hence $\{U_n\}_{n\in\mathbb{Z}_+}$ does not cover X, so there exist $x\in X\setminus\bigcup_{n\in\mathbb{Z}_+}U_n=\bigcap_{n\in\mathbb{Z}_+}(X\setminus U_n)=\bigcap_{n\in\mathbb{Z}_+}C_n$.

Conversely, assume that every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed non-empty sets of X has a non-empty intersection and let $\{U_n\}_{n \in \mathbb{Z}_+}$ be a countable open covering of X. For each n, let $V_n = U_1 \cup \cdots \cup U_n$ and $C_n = X \setminus V_n$. Suppose that no finite subcollection of $\{U_n\}_{n \in \mathbb{Z}_+}$ covers X. Then each C_n is non-empty, so $C_1 \supset C_2 \supset \cdots$ is a nested sequence of non-empty closed sets and $\bigcap_{n \in \mathbb{Z}_+} C_n$ is non-empty by assumption. Then there exists $x \in \bigcap_{n \in \mathbb{Z}_+} C_n$, so that $x \notin V_n$ for all n, contradicting the fact that $\{U_n\}_{n \in \mathbb{Z}_+}$ covers X. It follows that there exists $N \in \mathbb{Z}_+$ such that $C_N = \emptyset$, so that $X = V_N$ and hence some finite subcollection of $\{U_n\}_{n \in \mathbb{Z}_+}$ covers X. We deduce that X is countable compact.

Exercise 28.6 Let (X,d) be a metric space. If $f: X \to X$ satisfies the condition d(f(x), f(y)) = d(x, y) for all $x, y \in X$, then f is called an isometry of X. Show that if f is an isometry and X is compact, then f is bijective and hence a homeomorphism.

Proof. Note that f is an imbedding. It remains to prove that f is surjective. Suppose it is not, and let $a \in f(X)$. Since X is compact, f(X) is compact and hence closed (every metric space is Hausdorff). Thus, there exists $\varepsilon > 0$ such that the ε^- neighbourhood of a is contained in $X \setminus f(X)$. Set $x_1 = a$, and inductively $x_{n+1} = f(x_n)$ for $n \in \mathbb{Z}_+$. We show that $d(x_n, x_m) \ge \varepsilon$ for $n \ne m$. Indeed, we may assume n < m. If $n \ge 1$, then $d(x_n, x_m) = d(f^{-1}(x_n), f^{-1}(x_m)) = d(x_{n-1}, x_{m-1})$. By induction it follows that $d(x_n, x_m) = d(x_{n-1}, x_{m-i})$ for all $i \ge 1$, and hence $d(x_n, x_m) = d(a, x_{m-n}) = d(a, f(x_{m-n-1}))$. Since $f(x_{m-n-1}) \in f(X)$ and $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n, x_m) \ge \varepsilon$, as claimed. Thus $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n) \cap f(X) = \emptyset$. Therefore $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n) \cap f(X) = \emptyset$, we have $g(x_n) \cap f(X) = \emptyset$.

Exercise 29.1 Show that the rationals \mathbb{Q} are not locally compact.

Proof. First, we prove that each set $\mathbb{Q} \cap [a,b]$, where a,b are irrational numbers, is not compact. Indeed, since $\mathbb{Q} \cap [a,b]$ is countable, we can write $\mathbb{Q} \cap [a,b] = \{q_1,q_2,\ldots\}$. Then $\{U_i\}_{i\in\mathbb{Z}_+}$, where $U_i=\mathbb{Q} \cap [a,q_i)$ for each i, is an open covering of $\mathbb{Q} \cap [a,b]$ with no finite subcovering. Now let $x\in\mathbb{Q}$ and suppose that \mathbb{Q} is locally compact at x. Then there exists a compact set C containing a neighbourhood U of x. Then U contains a set $\mathbb{Q} \cap [a,b]$ where a,b are irrational numbers. Since this set is closed and contained in the compact C, it follows $\mathbb{Q} \cap [a,b]$ is compact, a contradiction. Therefore, \mathbb{Q} is not locally compact. \square

Exercise 29.4 Show that $[0,1]^{\omega}$ is not locally compact in the uniform topology.

Proof. Consider $\mathbf{0} \in [0,1]^{\omega}$ and suppose that $[0,1]^{\omega}$ is locally compact at $\mathbf{0}$. Then there exists a compact C containing an open ball $B = B_{\rho}(\mathbf{0}, \varepsilon) \subset [0,1]^{\omega}$. Note that $\bar{B} = [0, \varepsilon]^{\omega}$. Then $[0, \varepsilon]^{\omega}$ is closed and contained in the compact C, so it is compact. But $[0, \varepsilon]^{\omega}$ is homeomorphic to $[0, 1]^{\omega}$, which is not compact by Exercise 28.1. This contradiction proves that $[0, 1]^{\omega}$ is not locally compact in the uniform topology.

Exercise 29.10 Show that if X is a Hausdorff space that is locally compact at the point x, then for each neighborhood U of x, there is a neighborhood V of x such that \bar{V} is compact and $\bar{V} \subset U$.

Proof. Let U be a neighbourhood of x. Since X is locally compact at x, there exists a compact subspace C of X containing a neighbourhood W of x. Then $U \cap W$ is open in X, hence in C. Thus, $C \setminus (U \cap W)$ is closed in C, hence compact. Since X is Hausdorff, there exist disjoint open sets V_1 and V_2 of X containing x and $C \setminus (U \cap W)$ respectively. Let $V = V_1 \cap U \cap W$. Since \bar{V} is closed in C, it is compact. Furthermore, \bar{V} is disjoint from $C \setminus (U \cap W) \supset C \setminus U$, so $\bar{V} \subset U$. \square

Exercise 30.10 Show that if X is a countable product of spaces having countable dense subsets, then X has a countable dense subset.

Proof. Let (X_n) be spaces having countable dense subsets (A_n) . For each n, fix an arbitrary $x_n \in X_n$. Consider the subset A of X defined by

$$A = \bigcup \left\{ \prod U_n : U_n = A_n \text{ for finitely many } n \text{ and is } \{x_n\} \text{ otherwise } \right\}.$$

This set is countable because the set of finite subsets of \mathbb{N} is countable and each of the inner sets is countable. Now, let $x \in X$ and $V = \prod V_n$ be a basis element containing x such that each V_n is open in X_n and $V_n = X_n$ for all but finitely many n. For each n, if $V_n \neq X_n$, choose a $y_n \in (A_n \cap V_n)$ (such a y_n exists since A_n is dense in X_n). Otherwise, let $y_n = x_n$. Then $(y_n) \in (A \cap V)$, proving that A is dense in X.

Exercise 30.13 Show that if X has a countable dense subset, every collection of disjoint open sets in X is countable.

Proof. Let \mathcal{U} be a collection of disjoint open sets in X and let A be a countable dense subset of X. Since A is dense in X, every $U \in \mathcal{U}$ intesects S. Therefore, there exists a point $x_U \in U \cap S$. Let $U_1, U_2 \in \mathcal{U}, U_1 \neq U_2$. Then $x_{U_1} \neq x_{U_2}$ since $U_1 \cap U_2 = \emptyset$. Thus, the function $\mathcal{U} \to S$ given by $U \mapsto x_U$ is injective and therefore, since S is countable, it follows that \mathcal{U} is countable.

Exercise 31.1 Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.

Proof. Let $x,y\in X$ be two points such that $x\neq y$. Since X is regular (and thus Hausdorff), there exist disjoint open sets $U,V\subseteq X$ such that $x\in U$ and $y\in V$. Note that $y\notin \bar{U}$. Otherwise V must intersect U in a point different from y since V is an open neighborhood of y, which is a contradiction since U and V are disjoint. Since X is regular and \bar{U} is closed, there exist disjoint open sets $U',V'\subseteq X$ such that $\bar{U}\subseteq U'$ and $y\in V'$.

And now U and V' are neighborhoods of x and y whose closures are disjoint. If $\overline{U} \cap \overline{V'} \neq \emptyset$, then it follows that $U' \supseteq U$ intersects $\overline{V'}$. Since U' is open, it follows that U' intersects V', which is a contradiction.

Exercise 31.2 Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

Proof. Let A and B be disjoint closed sets. Then there exist disjoint open sets U and V containing A and B respectively.

Since $X \setminus V$ is closed and contains U, the closure of U is contained in $X \setminus V$ hence B and closure of U are disjoint.

Repeat steps 1 and 2 for B and \bar{U} instead of A and B respectively and you will have open set V' which contains B and its closure doesn't intersect with \bar{U} .

Exercise 31.3 Show that every order topology is regular.

Proof. Let X be an ordered set. First we show that X is a T_1 -space. For $x \in X$ we have that

$$X \backslash \{x\} = \langle -\infty, x \rangle \cup \langle x, +\infty \rangle$$

which is an open set as an union of two open intervals. Therefore, the set $\{x\}$ is closed. Step 2 2 of 3 Now to prove that X is regular we use Lemma 31.1. Let $x \in X$ be any point and $U \subseteq X$ any open neighborhood of x. Then there exist $a, b \in X$ such that $x \in \langle a, b \rangle \subseteq U$. Now we have four possibilities. 1. If there exist $x_1, x_2 \in U$ such that $a < x_1 < x < x_2 < b$, then

$$x \in \langle x_1, x_2 \rangle \subseteq \overline{\langle x_1, x_2 \rangle} \subseteq [x_1, x_2] \subseteq \langle a, b \rangle \subseteq U$$

2. If there exists $x_1 \in U$ such that $a < x_1 < x$, but there's no $x_2 \in U$ such that $x < x_2 < b$, then

$$x \in \langle x_1, b \rangle = (x_1, x] \subseteq \overline{(x_1, x]} \subseteq [x_1, x] \subseteq \langle a, b \rangle \subseteq U$$

3. If there exists $x_2 \in U$ such that $x < x_2 < b$, but there's no $x_1 \in U$ such that $a < x_1 < x$, then

$$x \in \langle a, x_2 \rangle = [x, x_2) \subseteq \overline{[x, x_2]} \subseteq [x, x_2] \subseteq \langle a, b \rangle \subseteq U$$

4. If there's no $x_1 \in U$ such that $a < x_1 < x$ and no $x_2 \in U$ such that $x < x_2 < b$, then

$$x \in \langle a, b \rangle = \{x\} = \overline{\{x\}} = \{x\} \subseteq U$$

We have that $\overline{\{x\}} = \{x\}$ because X is a T_1 -space. In all four cases we proved that there exists an open interval V such that $x \in V \subseteq \overline{V} \subseteq U$, so X is regular.

Exercise 32.1 Show that a closed subspace of a normal space is normal.

Proof. Let X be a normal space and Y a closed subspace of X. First we shows that Y is a T_1 -space. Let $y \in Y$ be any point. Since X is normal, X is also a T_1 space and therefore $\{y\}$ is closed in X. Then it follows that $\{y\} = \{y\} \cap Y$ is closed in Y (in relative topology). Now let's prove that X is a T_4 -space. Let $F, G \subseteq Y$ be disjoint closed sets. Since F and G are closed in Y and Y is closed in X, it follows that F and G are closed in X.

Since X is normal, X is also a T_4 -space and therefore there exist disjoint open sets $U, V \subseteq X$ such that $F \subseteq U$ and $G \subseteq V$. However, then $U \cap Y$ and $V \cap Y$ are open disjoint sets in Y (in relative topology) which separate F and G.

Exercise 32.2a Show that if $\prod X_{\alpha}$ is Hausdorff, then so is X_{α} . Assume that each X_{α} is nonempty.

Proof. Suppose that $X = \prod_{\beta} X_{\beta}$ is Hausdorff and let α be any index. Let $x, y \in X_{\alpha}$ be any points such that $x \neq y$. Since all X_{β} are nonempty, there exist points $\mathbf{x}, \mathbf{y} \in X$ such that $x_{\beta} = y_{\beta}$ for every $\beta \neq \alpha$ and $x_{\alpha} = x, y_{\alpha} = y$. Since $x \neq y$, it follows that $\mathbf{x} \neq \mathbf{y}$. Since X is Hausdorff, there exist open disjoint sets $U, V \subseteq X$ such that $\mathbf{x} \in U$ and $\mathbf{y} \in V$. For $\beta \neq \alpha$ we have that $x_{\beta} = y_{\beta} \in \pi_{\beta}(U) \cap \pi_{\beta}(V)$, hence $\pi_{\beta}(U)$ and $\pi_{\beta}(V)$ are not disjoint. Since U and V are disjoint, it follows that $\pi_{\alpha}(U) \cap \pi_{\alpha}(V) = \emptyset$. We also have that $x \in \pi_{\alpha}(U)$ and $y \in \pi_{\alpha}(V)$ and since the projections are open maps, it follows that the sets $\pi_{\alpha}(U)$ and $\pi_{\alpha}(V)$ are open. This proves that x and y can be separated by open sets, so X_{α} is Hausdorff.

Exercise 32.2b Show that if $\prod X_{\alpha}$ is regular, then so is X_{α} . Assume that each X_{α} is nonempty.

Proof. Suppose that $X = \prod_{\beta} X_{\beta}$ is regular and let α be any index. We have to prove that X_{α} satisfies the T_1 and the T_3 axiom. Since X is regular, it follows that X is Hausdorff, which then implies that X_{α} is Hausdorff. However, this implies that X_{α} satisfies the T_1 axiom.

Let now $F \subseteq X_{\alpha}$ be a closed set and $x \in X_{\alpha} \backslash F$ a point. Then $\prod_{\beta} F_{\beta}$, where $F_{\alpha} = F$ and $F_{\beta} = X_{\beta}$ for $\beta \neq \alpha$, is a closed set in X since $\left(\prod_{\beta} F_{\beta}\right)^{c} = \prod_{\beta} U_{\beta}$, where $U_{\alpha} = F^{c}$ and $U_{\beta} = X_{\beta}$ for $\beta \neq \alpha$, which is an open set because it is a base element for the product topology. Since all X_{β} are nonempty, there exists a point $\mathbf{x} \in X$ such that $x_{\alpha} = x$. Then $\mathbf{x} \notin \prod_{\beta} F_{\beta}$. Now since X is regular (and therefore satisfies the T_{3} axiom), there exist disjoint open sets $U, V \subseteq X$ such that $\mathbf{x} \in U$ and $\prod_{\beta} F_{\beta} \subseteq V$.

Now for every $\beta \neq \alpha$ we have that $x_{\beta} \in X_{\beta} = \pi_{\beta}(V)$. However, since $x_{\beta} \in \pi_{\beta}(U)$, it follows that $\pi_{\beta}(U) \cap \pi_{\beta}(V) \neq \emptyset$. Then $U \cap V = \emptyset$ implies that $\pi_{\alpha}(U) \cap \pi_{\alpha}(V) = \emptyset$.. Also, $x \in \pi_{\alpha}(U)$ and $F \subseteq \pi_{\alpha}(V)$ and $\pi_{\alpha}(U), \pi_{\alpha}(V)$ are open sets since π_{α} is an open map. Therefore, X_{α} satisfies the T_3 axiom. \square

Exercise 32.2c Show that if $\prod X_{\alpha}$ is normal, then so is X_{α} . Assume that each X_{α} is nonempty.

Proof. Suppose that $X = \prod_{\beta} X_{\beta}$ is normal and let α be any index. Since X is normal, it follows that X is Hausdorff (or regular), which then implies that X_{α} is Hausdorff (or regular). This imples that X_{α} satisfies the T_1 axiom. Now the proof that X_{α} satisfies the T_4 axiom is the same as for regular spaces. If $F, G \subseteq X_{\alpha}$ are disjoint closed sets, then $\prod_{\beta} F_{\beta}$ and $\prod_{\beta} G_{\beta}$, where $F_{\alpha} = F, G_{\alpha} = G$ and $F_{\beta} = G_{\beta} = X_{\beta}$ for $\beta \neq \alpha$, are disjoint closed sets in X. Since X is normal (and therefore satisfies the T_4 axiom), there exist disjoint open sets $U, V \subseteq X$ such that $\prod_{\beta} F_{\beta} \subseteq U$ and $\prod_{\beta} G_{\beta} \subseteq V$ Then $\pi_{\alpha}(U)$ and $\pi_{\alpha}(V)$ are disjoint open sets in X_{α} such that $F \subseteq \pi_{\alpha}(U)$ and $G \subseteq \pi_{\alpha}(V)$.

Exercise 32.3 Show that every locally compact Hausdorff space is regular.

Proof. Let X be a LCH space. Then it follows that for every $x \in X$ and for every open neighborhood $U \subseteq X$ of x there exists an open neighborhood $V \subseteq X$ of x such that $\bar{V} \subseteq U$ (and \bar{V} is compact, but this is not important here). Since X is a Hausdorff space, it satisfies the T_1 axiom. Then it follows that X is regular.

Exercise 33.7 Show that every locally compact Hausdorff space is completely regular.

Proof. X is a subspace of a compact Hausdorff space Y, its one-point compactification. Y is normal, and so by the Urysohn lemma Y is completely regular. Therefore by corollary X is completely regular.

Exercise 33.8 Let X be completely regular, let A and B be disjoint closed subsets of X. Show that if A is compact, there is a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Proof. Since X is completely regular $\forall a \in A, \exists f_a : X \to [0,1] : f_a(a) = 0$ and $f_a(B) = \{1\}$. For some $\epsilon_a \in (0,1)$ we have that $U_a := f_a^{-1}([0,\epsilon))$ is an open neighborhood of a that does not intersect B. We therefore have an open covering $\{U_a \mid a \in A\}$ of A, so since A is compact we have a finite subcover $\{U_{a_i} \mid 1 \leq i \leq m\}$. For each $1 \leq i \leq m$ define

$$\begin{split} \tilde{f}_{a_i}: X \rightarrow [0,1] \\ x \mapsto \frac{\max\left(f_{a_i}(x), \epsilon_{a_i}\right) - \epsilon_{a_i}}{1 - \epsilon_{a_i}} \end{split}$$

so that $\forall x \in U_{a_i} : \tilde{f}_{a_i}(x) = 0$ and $\forall x \in B, \forall 1 \leq i \leq m : \tilde{f}_{a_i}(x) = 1$, and define $f := \prod_{i=1}^m \tilde{f}_{a_i}$. Then since $A \subset \bigcup_{i=1}^m U_{a_i}$ we have that $f(A) = \{0\}$ and also we have $f(B) = \{1\}$.

Exercise 34.9 Let X be a compact Hausdorff space that is the union of the closed subspaces X_1 and X_2 . If X_1 and X_2 are metrizable, show that X is metrizable.

Proof. Both X_1 and X_2 are compact, Hausdorff and metrizable, so by exercise 3 they are second countable, i.e. there are countable bases $\{U_{i,n} \subset X_i \mid n \in \mathbb{N}\}$ for $i \in \{1,2\}$. By the same exercise it is enough to show that X is second countable. If $X_1 \cap X_2 = \emptyset$ both X_1 and X_2 are open and the union $\{U_{i,n} \mid i \in \{1,2\}; n \in \mathbb{N}\}$ of their countable bases form a countable base for X.

Suppose now $X_1 \cap X_2 \neq \emptyset$. Let $x \in X$ and $U \subset X$ be an open neighborhood of x. If $x \in X_i - X_j = X - X_j$ then $U \cap X_i$ is open in X_i and there is a basis neighborhood $U_{i,n}$ of x such that $x \in U_{i,n} \cap X - X_j$ is an open neighborhood of x in the open subset $X - X_j$, so $U_{i,n} \cap X - X_j$ is also open in X. Suppose now that $x \in X_1 \cap X_2$. We have that $U \cap X_i$ is open in X_i so there is a basis neighborhood U_{i,n_i} contained in $U \cap X_i$. By definition of sub-space topology there is some open subset $V_{i,n_i} \subset X$ such that $U_{i,n_i} = X_i \cap V_{i,n_i}$. Then

$$x \in V_{1,n_1} \cap V_{2,n_2} = (V_{1,n_1} \cap V_{2,n_2} \cap X_1) \cup (V_{1,n_1} \cap V_{2,n_2} \cap X_2) = (U_{1,n_1} \cap V_{2,n_2}) \cup (V_{1,n_1} \cap U_{2,n_2}) \subset U_{1,n_2} \cap V_{2,n_2} \cap V_{2$$

Therefore the open subsets $U_{i,n} \cap X - X_j$ and $V_{1,n_1} \cap V_{2,n_2}$ form a countable base for X.

Exercise 38.6 Let X be completely regular. Show that X is connected if and only if the Stone-Čech compactification of X is connected.

Proof. The closure of a connected set is connected, so if X is connected so is $\beta(X)$ Suppose X is the union of disjoint open subsets $U, V \subset X$. Define the continuous map

$$f: X \to \{0, 1\}$$
$$x \mapsto \begin{cases} 0, & x \in U \\ 1, & x \in V \end{cases}$$

By the fact that $\{0,1\}$ is compact and Hausdorff we can extend f to a surjective map $\bar{f}: \beta(X) \to \{0,1\}$ such that $\bar{f}^{-1}(\{0\})$ and $\bar{f}^{-1}(\{1\})$ are disjoint open sets that cover $\beta(X)$, which makes this space not-connected.

Exercise 43.2 Let (X, d_X) and (Y, d_Y) be metric spaces; let Y be complete. Let $A \subset X$. Show that if $f: A \to Y$ is uniformly continuous, then f can be uniquely extended to a continuous function $g: \bar{A} \to Y$, and g is uniformly continuous.