Sistemi

Giovanni Tosini

Indice

1	Numeri complessi			1
	1.1	Formula di Eulero		
	1.2	Operazioni con i numero complessi		3
	1.3	Teorema fondamentale dell'algebra		6
2	Seg	Segnali		
	2.1	Segna	li elementari a tempo continuo	9
		2.1.1	Segnale sinusoidale	9
		2.1.2	Fasore	10
		2.1.3	Segnale sinusoidale modulato esponenzialmente	10
		2.1.4	Segnale esponenziale complesso	11
		2.1.5	Funzioni generalizzate	11
	2.2	Segna	li a tempo discreto	16
		2.2.1	Impulso unitario discreto o delta di Kroneker	16
		2.2.2	Gradino unitario discreto	16
		2.2.3	Rampa discreta unitaria	17
		2.2.4	Successione esponenziale discreta	17
		2.2.5	Successione sinusoidale discreta	18
3	Sistema a tempo continuo			
	3.1 Sistemi descritti da equazioni differenziali			20
		3.1.1	Soluzione di un sistema a tempo continuo descritto	
			da un'equazione differenziale	22
		3.1.2	Modi elementari	23
		3.1.3	Convergenza dei modi elementari	24
		3.1.4	Risposta impulsiva ed evoluzione forzata	26
		3.1.5	Stabilità di un sistema continuo definito dalla risposta	
			impulsiva	29
		3.1.6	Risposta in frequenza	30
		3.1.7	La trasformata di Laplace	33
		3.1.8	RdC della trasformata di Laplace unilatera di una	
			combinazione lineare di funzioni esponenziali	34
		3 1 0	Proprietà della trasformata di Laplace	3/1

Capitolo 1

Numeri complessi

Un numero complesso $s = \sigma + j\omega$ con $j = \sqrt{-1}$ e $\sigma, \omega \in R$ in cui

- $\sigma = Re(s)$ parte reale
- $\omega = Im(s)$ parte immaginaria
- $C = st.c.s = \sigma + j\omega, \sigma, \omega \in R$ insieme dei numeri complessi

Forma polare dei numeri complessi, $s = \rho(\cos\theta + j\sin\theta)$

- $\rho = \sqrt{\sigma^2 + \omega^2}$ il modulo di s con $\rho \in R^+$
- $\theta = \text{argomento di } s$

Osservazione 1 $Re(s) = \rho cos\theta \in Im(s) = \rho sin\theta$

Osservazione 2 L'argomento θ è determinato a meno di multipli interi di 2π . Imponendo $\theta \in [0, 2\pi)$ oppure $(-\pi, \pi]$ (deve essere un intervallo lungo 2π) si ottiene l'argomento principale θ che notiamo con arg(s)

1.1 Formula di Eulero

$$\theta \in R, j = \sqrt{-1}$$
abbiamo $e^{j\theta} = cos\theta + jsin\theta$

Forma esponenziale $s = \rho e^{j\theta}$

$$|e^{j\theta} = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$

Esempio: $e^{j\frac{\pi}{2}} = j$

$$s = 0 + 1j = j$$

Def: i numeri immaginari puri hanno la parte reale nulla

Def: dato $s:\sigma+j\omega\in C$ $\bar{s}:\sigma-j\omega$ coniugato complesso

La forma polare di \bar{s} sarà uguale a $\rho(\cos\theta - j\sin\theta)$

Osservazione $|s| = |\bar{s}| arg(\bar{s}) = -arg(s)$

Esempio: $e^{j\pi} = -1 = e^{j\pi} + 1 = 0$

1.2 Operazioni con i numero complessi

- $s_1 = \sigma_1 + j\omega_1, s_2 = \sigma_2 + j\omega_2 \in C$
- $s_1 + s_2 = \sigma_1 + \sigma_2 + j(\omega_1 + \omega_2)$
- $s_1 s_2 = \sigma_1 \sigma_2 + j(\omega_1 \omega_2)$

Osservazione: $Re(s) = \frac{s+\bar{s}}{2}$ e $Im(s) = \frac{s+\bar{s}}{2j}$

Per la formula di Eulero $e^{j\theta} = \cos\theta + j\sin\theta \Rightarrow \cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$ e $\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$

Osservazione: $2Re(s) = s + \bar{s} \ e \ 2jIm(s) = s - \bar{s}$

$$s = \bar{s} \Rightarrow Im(s) = 0 \text{ e } s = -\bar{s} \Rightarrow Re(s) = 0$$

- $s_1 = \rho_1(\cos\theta_1 + j\sin\theta_1)$
- $s_2 = \rho_1(\cos\theta_2 + j\sin\theta_2)$
- $s_1 s_2 = \rho_1 \rho_2 (\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2))$
- $s_1 s_2 = \rho_1 \rho_2 (\cos \theta_1 \cos \theta_2 + j \cos \theta_1 \sin \theta_2 + j \sin \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2)$
- $s_1s_2 = \rho_1\rho_2(cos\theta_1cos\theta_2 sin\theta_1sin\theta_2 + j(cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2))$

N.B.: $cos\theta_1cos\theta_2 - sin\theta_1sin\theta_2 = cos(\theta_1 + \theta_2) e cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2 = sin(\theta_1 + \theta_2)$

Def: Dato $s \in C$ il numero s^{-1} t.c. $ss^{-1} = 1$, $s^{-1} = \frac{\bar{s}}{|s|^2}$ reciproco (inverso) di s.

$$ss^{-1} = s\frac{\bar{s}}{|s|^2} = \frac{s\bar{s}}{|s|^2}$$

$$s\bar{s} = \rho^2(\cos(\theta - \theta) + j\sin(\theta - \theta)) = \rho^2 = |s|^2$$

Osservazione: l'argomento di un numero complesso si può chiamare anche

$$\frac{s_1}{s_2} = s_1 s_2^{-1} = s_1 \frac{\bar{s_2}}{|s_2|^2} = \frac{\rho_1}{\rho_2} (\cos(\theta_1 - \theta_2) j \sin(\theta_1 - \theta_2))$$

Osservazione: $s\bar{s} = \rho^2(\cos(\theta - \theta) + j\sin(\theta - \theta)) = \rho^2 \Rightarrow |s|^2 = s\bar{s}$

Def: $u \in C$ si dice complesso unitario se |u|=1. In forma polare $u=cos\theta+jsin\theta$. In forma esponenziale $u=e^{j\theta}$ e $|e^{j\theta}|=1$

Sia $u = cos\alpha + jsin\alpha$ con $s = \rho(cos\theta + jsin\theta)$ avremo che $su = \rho(cos(\theta + \alpha) + jsin(\theta + \alpha))$ (rotazione intorno all'origine)

$$s^n = \rho^n(\cos(n\theta) + j\sin(n\theta))$$

Esempio:

$$(e^{j\theta})^n = e^{jn\theta}$$

Radici complesse Ogni $s \in C$ ammette n distinte radici n-esime $\omega_1, \ldots, \omega_{n-1} \in C$. Dobbiamo trovare $\omega \in C$ t.c. $\omega^n = s$.

$$]\forall k \in [0, n-1], \omega_k \sqrt[n]{\rho}(\cos(\frac{\theta}{n} + \frac{2\pi}{n}k) + j\sin(\frac{\theta}{n} + \frac{2\pi}{n}k))$$

Prova:

$$\omega_k^n = (\sqrt[n]{\rho}^n)(\cos(n(\frac{\theta}{n} + \frac{2\pi}{n}k)) + j\sin(n(\frac{\theta}{n} + \frac{2\pi}{n}k))) =$$
$$= \rho(\cos(\theta + 2\pi k) + j\sin(\theta + 2\pi k)) =$$

Notare che $cos(\theta + 2\pi k)$ è equivalente a $cos\theta$ e $sin(\theta + 2\pi k)$ equivale a $sin\theta$ questo $\forall k = 0, ..., n - 1$.

L'equazione: $s^4 = 1 + 2j$ ha 4 radici distinte nel campo C. Esempio: le radici complesse dell'unità

$$s^{n} = 1\omega_{k} = \cos(\frac{2\pi}{n}k) + j\sin(\frac{2\pi}{n}k)k = 0, ..., n-1$$

Funzioni di variabile complessa Gli insieme su cui definiamo una funzione di variabile complessa f si scrivono D(f), $D(f) \subseteq C$

Def: un punto $s_0 \in D(f) \subseteq C$ è interno a D(f) se esiste un disco $B_{\rho}(s_0)$ di raggio ρ con $\rho \in R^+$ centrato in s_0 , t.c. $B_{\rho}(s_0) \subseteq D(f)$ dove $B_{\rho}(s_0) = s \in Ct.c.|s - s_0| < \rho$

Def: Un insieme $D(f) \subseteq C$ si dice aperto se tutti i suoi punti sono interni

Def: Una funzione $f:D(f)\to C$ con $D(f)\subseteq C$ aperto è una funzione complessa

Esempi di funzioni complesse con annesso dominio:

- f(s) = s, D(f) = C
- $f(s) = s^2, D(f) = C$
- $f(s) = Re(s) + jIm(s)^2, D(f) = C$
- $f(s) = \sum_{k=0}^{n} a_k s^k, D(f) = C$
- funzione polinomiale, $f(s) = \frac{P(s)}{Q(s)}$ dove $P(s) = \sum_{k=0}^{n} a_k s^k$ e funzione razionale $Q(s) = \sum_{k=0}^{n} b_k s^k$, $D = C \lambda_1, ..., \lambda_m$ dove λ_α è radice di Q(s) = 0 per k = 1, ..., m

1.3 Teorema fondamentale dell'algebra

Ogni polinomio P(s) a coefficienti complessi di grado n>0 ha n radici complesse e si può comporre come

 $P(s) = a_n(s - \lambda_1)_1^{\mu}(s - \lambda_2)_2^{\mu}...(s - \lambda_r)_r^{\mu}$ dove $\lambda_1, ...\lambda_r$ sono radici e $\mu_1, ..., \mu_r$ sono le **molteplicità** relative di ciascuna radice per cui $\mu_1 + ... + \mu_r = n$

Osservazione Un numero λ è una radice di molteplicità μ per un polinomio P(s) se e solo se $P(\lambda)=P'(\lambda)=P''(\lambda)=\dots=P^{\mu-1}(\lambda)=0$ e $P^{\mu}(\lambda)\neq 0$

Capitolo 2

Segnali

Sono funzioni matematiche definite su un dominio, esistono nel dominio:

- continuo $\rightarrow R, C, \dots;$
- discreto $\rightarrow Z$.

2.1 Segnali elementari a tempo continuo

2.1.1 Segnale sinusoidale

Consiste di una funzione:

$$v:R\to R, v(t)=A\overbrace{\cos}^{[-1,1]}(\omega t+\phi)\ \mathrm{con}\ A,\omega,\phi\in R$$

- A > 0 è l'ampiezza;
- ω la pulsazione;
- ϕ la fase;
- v è periodico di periodo $T = \frac{2\pi}{\omega}$;
- la frequenza $f = \frac{1}{T} \to f = \frac{\omega}{2\pi}$.

Figura 2.1: Funzione sinusoidale

2.1.2 Fasore

Una funzione:

$$v: R \to C, v(t) = Ae^{j(\omega t + \phi)} \text{1} \text{con } A, \omega, \phi \in R$$

Di conseguenza sarà uguale sempre ad A.

Osservazione: dalla formulla di Eulero, possiamo esprimere un segnale sinusoidale

$$A\cos(\omega t + \phi) = A \frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2} =$$
$$= \frac{A}{2}e^{j(\omega t + \phi)} + \frac{A}{2}e^{-j(\omega t + \phi)}$$

Figura 2.2: Fasore

2.1.3 Segnale sinusoidale modulato esponenzialmente

$$v: R \to R \tag{2.1}$$

$$v(t) = Ae^{\sigma t}\cos(\omega t + \phi) \tag{2.2}$$

$$con \sigma, A, \omega, \phi \in R, A > 0 \tag{2.3}$$

(2.4)

non è periodico.

- per $\sigma > 0$ e $t \to \infty \Rightarrow v(t) = \infty$
- per $\sigma < 0$ e $t \to \infty \Rightarrow v(t) = 0$

 $[\]frac{1}{1}e^{j\theta} = \cos\theta + j\sin\theta \to |e^{j\theta}| = 1$

Figura 2.3: Segnale sinusoidale modulato esponenzialmente

Osservazione: segnali sinusoidali, modulati esponenzialmente, si possono scrivere come combinazione lineare di fasori con una componente esponenziale:

$$\begin{split} Ae^{\sigma t}\cos(\omega t + \phi) &= Ae^{\sigma t}\frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2} = \\ &= \frac{Ae^{\sigma t}e^{j(\omega t + \phi)}}{2} + \frac{Ae^{\sigma t}e^{-j(\omega t - \phi)}}{2} = \\ &= \underbrace{\frac{A}{2}e^{\sigma t}e^{j\omega t + j\phi} + \frac{A}{2}e^{\sigma t}e^{-j\omega t - j\phi}}_{\text{sono complessi coniugati}} \end{split}$$

2.1.4 Segnale esponenziale complesso

$$v: R \to C, v(t) = Ae^{\sigma t}e^{j(\omega t + \phi)}$$

2.1.5 Funzioni generalizzate

2.1.5.1 Segnali polinomiali

$$\delta_{-n}: R \to R\delta_{-n} = \begin{cases} \frac{t^{n-1}}{(n-1)!}, t \ge 0; \\ 0, \text{ altrimenti} \end{cases}$$

Da un certo istante ha un valore e quello sarà l'istante 0.

Osservazione:

$$\delta_{-n}(t) = \int_{-\infty}^{t} \delta_{-(n-1)}(\Psi) d\Psi$$

Il segnale polinomiale n-esimo può essere ottenuto come integrale del segnale (n - 1)-esimo

$$\delta_{-n}(t) = \frac{d\delta_{-(n+1)}^t}{dt}$$

Esempio per n = 1

$$\delta_{-1}(t) = \begin{cases} 1, t \ge 0 \\ 0, \text{altrimenti} \end{cases}$$

Per n = 2

$$\delta_{-2}(t) = \begin{cases} t, t \ge 0 \\ 0, \text{altrimenti} \end{cases}$$

Osservazione: l'integrale del gradino è la rampa e viceversa la derivata della rampa è il gradino.

$$\int_{-\infty}^{t} \delta_{-1} d\alpha = \delta_{-2}(t) \frac{d\delta_{-2}(t)}{dt} = \delta_{-1}(t)$$

2.1.5.2 Finestra rettangolare unitaria

$$\Pi: R \to R\Pi(t) = \begin{cases} 1, -\frac{1}{2} \le t \le \frac{1}{2}^2 \\ 0, \text{altrimenti} \end{cases}$$

Figura 2.4: Finestra rettangolare unitaria, ampiezza = 1

Osservazione: La finestra rettangolare unitaria è una combinazione lineare di due gradini:

$$\Pi(t) = \delta_{-1}(t + \frac{1}{2}) - \delta_{-1}(t - \frac{1}{2})$$

2.1.5.3 Finestra rettangolare ad ampiezza A con diverso supporto

 $\textbf{N.B.:}\,$ il supporto è il sotto
insieme del dominio per cui la funzione è $\neq 0$

L'ampiezza A, centrata in t_0 , con supporto $(t_0 - \frac{\pi}{2}, t_0 + \frac{\pi}{2})$.

$$A\Pi(\frac{t-t_0}{T}) = \begin{cases} A, t_0 - \frac{\pi}{2} \le t \le t_0 + \frac{\pi}{2} \\ 0, \text{altrimenti} \end{cases}$$

2.1.5.4 Finestre (o impulso) triangolare unitaria

$$\Lambda:R\to R, \Lambda(t)=\begin{cases} 1-|t|, -1\leq t\leq 1\\ 0, \text{altrimenti} \end{cases}$$

Figura 2.5: Impulso, supporto [-1,1], area = 1

2.1.5.5 Finestra triangolare ad ampiezza A con supporto 2T centrata in t_0

$$A\Lambda(\frac{t-t_0}{T}) = \begin{cases} A - \frac{A}{T}|t-t_0|, t_0 - T \le t \le t_0 + T \\ 0, \text{altrimenti} \end{cases}$$

supporto $(t_0 - T, t_0 + T)$, area = AT

2.1.5.6 Impulso di Dirac o funzione $\delta(t)$

Osservazione: l'impulso è una funzione generalizzata che è definita come un limite di una succesione di funzioni.

$$\delta(t) = \lim_{n \to \infty} \delta_n(t) =$$

$$= \lim_{n \to \infty} \frac{n}{2} \Pi(\frac{t}{\frac{2}{n}}) \text{ dove}$$

$$f_n(t) = \frac{n}{2} \Pi(\frac{t}{\frac{2}{n}}) =$$

$$= \begin{cases} \frac{n}{2}, -\frac{1}{n} \le t \le \frac{1}{n} \\ 0, \text{ altrimenti} \end{cases}$$

Figura 2.6: Impulso di Dirac, prosegue fino a ∞

$$\delta_t" = " \begin{cases} \infty, t = 0 \\ 0, \text{altrimenti} \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t)dt = \int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(t)dt =$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} \underbrace{f_n(t)dt}_{n} =$$

$$= \lim_{n \to \infty} 1 = 1$$

2.1.5.7 Impulso di ampiezza A e centrato in t_0

$$A\delta(t - t_0) = \begin{cases} \infty, t = t_0 & \int_{-\infty}^{\infty 0} A\delta(t - t_0) dt = A \\ 0, \text{altrimenti} & \int_{-\infty}^{\infty 0} A\delta(t - t_0) dt = A \end{cases}$$

Proprietà dell'impulso:

Figura 2.7: Rappresentazione grafica

• L'impulso ideale centrato in origine è pari a:

$$\delta(-t) = \delta(t), t \in R$$

• Area unitaria

$$\begin{cases} \int_a^b \delta(t)dt = 1, \text{ se } 0 \in (a,b) \\ \int_a^b \delta(t)dt = 0, \text{ altrimenti} \end{cases}$$

• Proprietà di campionamento

$$v(t_0) = \int_{-\infty}^{\infty} v(t)\delta(t - t_0)dt$$

Inolte se v è continua sul dominio

$$V(t) = \int_{-\infty}^{\infty} v(t)\delta(t-t)dt$$
 moltiplico per $\delta(t-t_0)$

Dimostrazione:

$$v(t_0) = v(t) + v(t_0) - v(t)$$

$$v(t_0)\delta(t - t_0) = v(t)\delta(t - t_0) + [v(t_0) - v(t)]\delta(t - t_0)$$

$$\int_{-\infty}^{\infty} v(t_0)\delta(t - t_0)dt =$$

$$\int_{-\infty}^{\infty} v(t)\delta(t - t_0)dt +$$

$$+ \int_{-\infty}^{\infty} \underbrace{\delta(t - t_0)}_{0} \underbrace{[v(t_0) - v(t)]}_{0} dt$$

$$\Rightarrow v(t_0) \underbrace{\int_{-\infty}^{\infty} \delta(t - t_0)dt}_{1 \text{ perché l'impulso è unitario}} =$$

$$= \int_{-\infty}^{\infty} v(t)\delta(t - t_0)dt$$

$$v(t_0) = \int_{-\infty}^{\infty} v(t)\delta(t - t_0)dt$$

Osservazione: si può scrivere anche come

$$v(t_0) = v(t)\delta(t - t_0)$$

2.2 Segnali a tempo discreto

2.2.1 Impulso unitario discreto o delta di Kroneker

 $\delta:Z\to R$ è una successione

$$\delta(k) = \begin{cases} 1, & \text{per } k = 0 \\ 0, & \text{altrimenti} \end{cases}$$

Figura 2.8: Delta di Kroneker

2.2.2 Gradino unitario discreto

$$\delta_{-1}: Z \to R$$
 $\delta_{-1} = \begin{cases} 1, k \ge 0 \\ 0, \text{ altrimenti} \end{cases}$

Figura 2.9: Gradino

2.2.3 Rampa discreta unitaria

$$\delta_{-2}: Z \to R: \qquad \delta_{-2} = \begin{cases} k, k \ge 0 \\ 0, \text{ altrimenti} \end{cases}$$

Figura 2.10: Rampa

Osservazione: abbiamo che l'integrale dell'impulso del gradino, come serie corrisponde a $\delta_{-1}(k) = \sum_{i=-\infty}^k \delta(i)$ praticamente se io sommo tutti tutti i valori dell'impulso avrò come risultato un qualsiasi valore $k \geq 0$, sommando tutti i valori dell'impulso ottengo il gradino e in modo analogo sommando tutti i valori del gradino fino a k ottendo la rampa $\delta_{-2} = \sum_{i=-\infty}^{k-1} \delta_{-1}(i)$.

N.B.: la somma nel campo discreto corrisponde all'integrazione nel campo continuo.

$$\delta_{-2}(k) = \sum_{i=-\infty}^{k-1} \sum_{j=-\infty}^{i} \delta(ij)$$

2.2.4 Successione esponenziale discreta

$$v: Z \to R$$
, $v(k) = Ae^{j\phi}\lambda^k$, dove $k \in Z, \phi \in R, \lambda \in C$.

Osservazione: se scriviamo

$$\lambda = \rho(\cos\theta + j\sin\theta)$$

$$v(k) = Ar^{j\phi}\rho^k(\cos k\theta + j\sin k\theta) =$$

$$= Ae^{j\phi}e^{k\log\phi}e^{jk\theta} =$$

$$= Ae^{j\phi}e^{k(\log\phi+j\theta)}$$

2.2.5 Successione sinusoidale discreta

$$\begin{split} v: Z &\to R, v(k) = A\cos(\omega k + \phi),\\ &\cos k \in Z, \omega \in R, \phi \in R\\ &\text{dove A ampiezza, ω pulsazione e ϕ fase.} \end{split}$$

Osservazione: v(k) è periodico di periodo $T=\frac{2\pi}{\omega}$ se e solo se $\omega=2\pi r,$ dove $r\in Q(\omega$ è un multiplo razionale di $2\pi)$

Capitolo 3

Sistema a tempo continuo

I sistemi possono essere a

- tempo continuo
- tempo discreto

Un sistema è un modello matematico che formalizza un fenomeno fisico o un processo che in modo deterministico trasforma certi input in determinati output. Esempio:

- Il pendolo, data una spinta inizierà a muoversi da una parte all'altra, l'input può essere l'impulso della forza applicata l'output può essere il movimento nel tempo lungo un asse designato;
- Una palla che scivola lungo una collina, l'input può essere simile a quello di prima, l'output sarà il movimento lungo il versante che formerà una specie di mezza parabola;

Proprietà:

1. Linearità, a una combinazione lineare degli input corrisponde una combinazione lineare degli output

$$au_1(t) + bu_2(t) \mapsto av_1(t) + bv_2(t)$$

2. Tempo invarianza, un sistema a tempo continuo è tempo invariante se e solo

$$u(t) \mapsto v(t) \Rightarrow u(t-\tau) \mapsto v(t-\tau) \forall \tau \in R$$

3. Causalità, un sistema è causale se e solo se l'uscita al momento τ dipende soltanto dall'ingresso per $t < \tau$ ($v(\tau)$ dipende soltano da u(t) per $t \leq \tau$) e non da valori successivi.

Osservazione: in un sistema causale, l'effetto (output) non può precedere la causa (input)

Osservazione: considereremo sistemi inizialmente a riposo

$$(u(t) = 0, t \le \tau \underset{\text{sistemi causali}}{\Longrightarrow} v(t) = 0, t \le \tau)$$

Per convenzione $\tau = 0$ (origine del tempo, t_0)

Definizione: un sistema a tempo continuo per cui valgono le proprietà di linearità e tempo invarianza si chiama sistema LTI (**Linear time invariant**)

Proprietà di stabilità asintotica Un sistema è asintoticamente stabile se:

$$\exists \tau \in R, \text{ t.c. } u(t) = 0, \forall t \ge \tau \Rightarrow \lim_{t \to \infty} v(t) = 0$$

Significa che se l'ingresso non agisce più sul sistema, all'infinito l'uscita converge verso 0.

Bounded Input Bounded Output (BIBO) stabilità Ingresso limitato e output limitato, come una funzione sinusoidale. Un sistema è BIBO stabile se:

$$\exists \tau \in R \text{ e } M_u > 0, M_u \in R \text{ t.c. se}$$

 $|u(t)| < M_u, \forall t \ge \tau \Rightarrow \exists M_v > 0 : |v(t)| < M_v, \forall t \ge \tau$

3.1 Sistemi descritti da equazioni differenziali

Esempio 1: Sistema massa-molla-smorzatore

Essendo che F=ma e che $a(t)=\frac{d^2x(t)}{dt^2}$ avremo che:

$$Ma(t) = u(t) - \underbrace{F_K}_{kx(t)} - \underbrace{F_D}^{\frac{dx(t)}{dt}} \Rightarrow$$

$$\underbrace{M\frac{d^2x(t)}{dt^2} + D\frac{dx(t)}{dt} + kx(t)}_{instita} = \underbrace{u(t)}_{uscita}$$

Esempio 2: Circuito elettrico

L'ingresso in questo caso è dato dalla tensione formata dalla somma delle tensioni sull'induttore e la resistenza, come output avremo la tensione ai capi dei resistori:

$$u(t) = L\frac{di(t)}{dt} + \underbrace{Ri(t)}_{v(t)}$$
se $v(t) = Ri(t) \Rightarrow i(t) = \frac{1}{R}v(t)$

$$\frac{L}{R}\frac{dv(t)}{dt} + v(t) = u(t)$$

In generale sono una sommatoria delle derivate dell'input che saranno uguali alla sommatoria delle derivate dell'output, in generale ha la seguente forma:

$$a_n \frac{d^n v(t)}{dt^n} + a_{n-1} \frac{d^{n-1} v(t)}{dt^{n-1}} + \dots + a_1 \frac{dv(t)}{dt} + a_0 v(t) = b_m \frac{d^m u(t)}{dt^m} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \dots + b_0 u(t)$$

dove u(t) è l'ingresso, v(t) è l'uscita e $a_n, b_n \neq 0$ è fondamentale che la derivata di ordine maggiore abbia coefficiente non nullo. L'equazione può essere riscritta in forma compatta con la sommatoria:

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = \sum_{i=0}^{m} b_i \frac{d^i u(t)}{dt}$$

n si chiama l'ordine dell'equazione differenziale, in generale $n \geq m$, su tutti i sistemi considerati il grado di derivazione dell'output sarà maggiore o uguale dell'input. Se $n \geq m$ il sistema è detto **strettamente proprio**, altrimenti il sistema è **proprio**.

Riprendendo gli esempi fatti sopra:

$$\underbrace{Mx''(t)}_{a_2} + \underbrace{Dx'(t)}_{a_1} + \underbrace{kx(t)}_{a_0} = \underbrace{u(t)}_{b_0}$$

Possiamo notare che il sistema è strettamente proprio siccome n=2 e m=0

Osservazione: il sistema descritto con l'equazione differenziale non ha soluzione unica, a patto che non vengano imposte n condizioni iniziali

3.1.1 Soluzione di un sistema a tempo continuo descritto da un'equazione differenziale

La soluzione equivale all'uscita v (reale o complessa) che si può scomporre in

$$v = \underbrace{v_l}_{\text{risposta libera}} + \underbrace{v_f}_{\text{risposta forzata}}$$

La risposta libera è la parte che non dipende dall'ingresso, ma dalle condizioni iniziali, perché il sistema può anche non essere a riposo, mentre la risposta forzata dipende dall'ingresso u.

Evoluzione libera (oppure risposta libera) Per calcolare l'evoluzione libera associamo all'equazione differenziale iniziale l'equazione differenziale omogenea:

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = 0$$

quando una parte dell'equazione viene posta a 0 l'equazione si definisce omogenea, all'equazione qui sopra associamo il polinomio caratteristico

$$P(s) = \sum_{i=0}^{n} a_i s^i$$

Devo risolvere l'equazione caratteristica P(s)=0 applicando il teorema fondamentale dell'algebra $\to \lambda_1, \ldots, \lambda_r$ sono radici di P(s)=0 con le molteplicità μ_1, \ldots, μ_r con $\mu_1 + \cdots + \mu_r = n$. La soluzione dell'equazione per il calcolo della risposta libera è:

$$v(t) = \sum_{i=1}^{r} \sum_{l=0}^{\mu_{i-1}} c_{i|l} e^{\lambda i t} \frac{t^{l}}{l!}$$

I coefficienti $c_{i|l}$ vengono determinati dalle condizioni iniziali. Esempio 1:

$$Mx'' + Dx' + kx = 0 M = 1 D = 2 k = 1$$

$$P(s) = s^{2} + 2s + 1 \underbrace{\lambda_{1} = -1}_{\text{valore che lo annulla}} \underbrace{\mu_{1} = 2}_{\text{il grado}}$$

$$x(t) = \sum_{i=1}^{1} \sum_{l=0}^{1} c_{i,l} e^{-t} \frac{t^{l}}{l!} =$$

$$\sum_{l=0}^{1} c_{i,l} e^{-t} \frac{t^{l}}{l!} =$$

$$c_{1,0} e^{-t} + c_{1,1} e^{-t} t$$

Notare che la prima sommatoria non c'è perché abbiamo una sola radice distinta.

Esempio 2:

$$v'''(t) + 3v''(t) + 3v'(t) + 1 = 0$$

$$P(s) = s^{3} + 3s^{2} + 3s + 1 = (s+1)^{3}$$

$$\lambda_{1} = 1 \quad \mu_{1} = 3$$

$$v(t) = c_{1,0}e^{-t} + c_{1,1}e^{-t}t + c_{1}, 2e^{-t}\frac{t^{2}}{2}$$

La prima sommatoria scompare pure in questo caso.

3.1.2 Modi elementari

$$m_i(t) = e^{\lambda i t} \frac{t^l}{l!}$$

è detto modo elementare (i = 1, ..., r)

Osservazione: $c_{i,l}$ verranno calcolati dalle condizioni iniziali.

Esempio: Trovare la risposta libera del sistema

$$v''(t) + 3v'(t) - 4v(t) = 5u'(t) - u(t)$$

con le condizioni iniziali

$$v(0) = 0, \quad v'(0) = 1$$

Come si risolve? Si scrive l'equazione omogenea:

$$v''(t) + 3v'(t) - 4v(t) = 0$$

Ora si scrive il polinomio caratteristico:

$$P(s) = s^{2} + 3s - 4 = (s - 1)(s + 4)$$

$$\lambda_{1} = 1 \quad \mu_{1} = 1$$

$$\lambda_{2} = -4 \quad \mu_{2} = 1$$

$$v_{l}(t) = c_{1,0}e^{t} + c_{2,0}e^{-4t}$$

$$v'_{l}(t) = c_{1,0}e^{t} - 4c^{2}, 0^{-4t}$$

$$v_l(0) = \begin{cases} c_{1,0} + c_{2,0} = 0 \text{ condizione iniziale} \\ c_{1,0} - 4c_{2,0} = 1 \text{ condizione iniziale} \end{cases}$$
$$c_{1,0} = \frac{1}{5} \quad c_{2,0} = -\frac{1}{5}$$
$$v_l(t) = \frac{1}{5}e^t - \frac{1}{5}e^{-4t}$$

Per un sistema descritto dall'equazione differenziale di base, la risposta libera è la funzione v_l che si ottiene come soluzione dell'equazione omogenea

$$\sum_{i=1}^{n} a_i \frac{d^i v(t)}{dt^i} = 0$$

i cui coefficienti sono determinati dalle condizioni iniziali.

Osservazione: la risposta libera di un sistema è la risposta del sistema in assenza di ingresso (u(t) = 0) e dipende soltanto dalla condizioni iniziali.

3.1.3 Convergenza dei modi elementari

Dato il modo elementare vale che:

1.

$$\lim_{t \to \infty} m(t) = 0 \Leftrightarrow Re(\lambda) < 0$$

2.

$$m(t)$$
 limitato su $[0, \infty) \Leftrightarrow Re(\lambda) \leq 0$

Se $Re(\lambda) = 0$ allora deve valere che l = 0

3.

$$\lim_{t \to \infty} = \infty$$

in tutti gli altri casi $(Re(\lambda) > 0)$ oppure $Re(\lambda) = 0$ e $l \neq 0$)

Dimostrazione:

1. $Re(\lambda) < 0$. Scriviamo

$$\lambda = \sigma + j\omega \Rightarrow$$

$$m(t) = \frac{t^l}{l!} e^{\sigma t} e^{j\omega t}$$

$$\underbrace{\frac{t^l}{e^{-\sigma t}}}_{0} \underbrace{e^{j\omega t}}_{0} \Rightarrow$$

$$\lim_{t \to \infty} m(t) = 0$$

2. $Re(\lambda) \leq 0$ per $Re(\lambda) < 0$ abbiamo visto che il modo converge per

$$t \to \infty$$
 $\stackrel{m(t) \text{ continuo}}{\Longrightarrow} m(t) \text{ limitato}$

Per

$$Re(\lambda) = 0 \text{ e } l = 0 \Rightarrow m(t) = e^{j\omega t}$$

una funzione limitata in modulo;

3.

$$Re(\lambda) > 0 \Rightarrow e^{\sigma t} \to \infty \text{ per } t \to \infty \Rightarrow \lim_{t \to \infty} m(t) = \infty$$

Per

$$Re(\lambda) = 0 \text{ e } l \neq 0 \Rightarrow m(t) = \underbrace{\frac{t^l}{l!}}_{\text{per }t \to \infty = \infty} \underbrace{e^{j\omega t}}_{\text{limitata}} \Rightarrow \lim_{t \to \infty} m(t) = \infty$$

Teorema: un sistema LTI descritto dall'equazione differenziale è asintoticamente stabile se e solo se ogni suo modo elementare converge a zero, cioè

$$\lim_{t \to \infty} m_i(t) = 0, \text{ dove } m_i(t) = e^{\lambda i t} \frac{t^l}{l!} \text{ per } i = 1, \dots, r$$

Osservazione: un sistema LTI descritto dall'equazione differenziale è asintoticamente stabile se e solo se tutte le radici del polinomi caratteristico hanno la parte reale negativa

Figura 3.1: Con le radici a sinistra dell'asse dell'immaginario il sistema sarà asintoticamente stabile.

Figura 3.2: Questo sistema non è asintoticamente stabile perché ho una parte reale maggiore di zero.

Esempio 1 dal circuito eletrico RL:

$$\frac{dv(t)}{d(t)} + \frac{R}{L}v(t) = \frac{R}{L}u(t)$$

L'equazione caratteristica sarà:

$$s + \frac{R}{L} = 0 \Rightarrow \lambda = -\frac{R}{L} \in R \quad \lambda < 0 \text{ per } R, L > 0$$

quindi il sistema è stabile.

Esempio 2 della molla:

$$M\frac{d^2v(t)}{dt^2} + D\frac{dv(t)}{dt} - kv(t) = 0 \text{ con } M, D, k > 0$$

L'equazione caratteristica sarà:

$$Ms^{2} + Ds - k = 0 \rightarrow \lambda_{1,2} = \frac{-D \pm \sqrt{D^{2} + 4kM}}{2M}$$

In base ai valori di M, D, k si ricaveranno i valori di λ_1,λ_2

3.1.4 Risposta impulsiva ed evoluzione forzata

Definizione: il prodotto di convoluzione tra due funzione u,v se esiste è definito da

$$(u*v)(t) = \int_{-\infty}^{\infty} u(\xi)v(t-\xi)d\xi =$$

$$\underbrace{=}_{\text{cambio variabile } t-\xi=x} \int_{-\infty}^{\infty} u(t-\xi)v(\xi)d\xi$$

Proprietà:

1. Commutatività:

$$(u * v)(t) = (v * u)(t)$$

2. Associatività:

$$(u * v)(t) * w(t) = u(t) * (v * w)(t)$$

3. Distribuibilità rispetto alla somma:

$$u(t) * (v(t) + w(t)) = (u * v)(t) + (u * w)(t)$$

questre tre prime proprietà derivano dalle proprietà dell'integrazione

4. L'impulso è elemento neutro per la convoluzione:

$$(v * \delta)(t) = (\delta * v)(t) = v(t)$$

per la proprietà di campionamento dell'impulso:

$$v(t) = \int_{-\infty}^{\infty} v(\xi)\delta(t - \xi)d\xi = (v * \delta)(t)$$

Definizione: dato un sistema a tempo continuo inizialmente a riposo definiamo la risposta impulsiva del sistema, la risposta in corrispondenza dell'impulso ideale

Figura 3.3: La risposta impulsiva h(t)

Teorema: la risposta in uscita v(t) di una sistema LTI, inizialmente a riposo , in corrispondenza a un ingresso u(t) è data dal seguente prodotto di convoluzione (se esiste)

$$v(t) = (u * h)(t) = \int_{-\infty}^{\infty} h(\xi)u(t - \xi)d\xi = \int_{-\infty}^{\infty} h(t - \xi)u(\xi)d\xi$$

con h(t) la risposta impulsiva del sistema.

Osservazione: un sistema LTI inizialmente a riposo è causale

$$u(t) = 0, v(t) = 0 \text{ per } t < 0$$

siamo a riposo. Siccome h(t)=0 per t<0 (perché $\delta(t)=0, t<0)\Rightarrow$

$$(u*h)(t) = \int_{0^{-}}^{\infty} h(\xi)u(t-\xi)d\xi =$$
$$= \int_{-\infty}^{t^{+}} h(t-\xi)u(\xi)d\xi$$

In particolare, la risposta forzata di un sistema LTI, iniziailmente a riposo (quindi causale) in corrispondenza a un ingresso u(t)(u(t) = 0, t < 0) è:

$$v_f(t) = (u * h)(t) = \int_{0^-}^{t^+} h(\xi)u(t - \xi)d\xi =$$
$$= \int_{0^-}^{t^+} h(t - \xi)u(\xi)d\xi$$

Figura 3.4: La secondo valida per tempo invarianza, mentre la terza per la linearità

Dimostrazione: Integriamo \Rightarrow

$$\underbrace{\int_{-\infty}^{\infty} u(\xi)\delta(t-\xi)d\xi}_{u(t)} \mapsto \int_{-\infty}^{\infty} u(\xi)h(t-\xi)d\xi$$
$$u(t) \mapsto \int_{-\infty}^{\infty} u(\xi)h(t-\xi)d\xi = (u*h)(t)$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Figura 3.5: Dimostrazione completata.

Osservazione: si può dimostrare che per il sistema definito dalla prima equazione differenziale

$$h(t) = d_0 \delta(t) + \sum_{i=1}^r \sum_{l=0}^{\mu_i-1} d_{i,l} \frac{t^l}{l!} e^{\lambda_i t} \underbrace{\delta_{-1}(t)}_{\text{dobbiamo assicurarci la causalità}}$$

con $d_0 \neq 0$ se e solo se n = m

Esempio: determinare la risposta impulsiva del sistema

$$\frac{dv(t)}{dt} + 2v(t) = \frac{du(t)}{dt} + u(t)$$

Equazione caratteristica:

$$s+2=0 \Rightarrow \lambda=-2 \Rightarrow \text{ il modo elementare } m(t)=e^{-2t}$$

$$h(t) = d_0 \delta(t) + d_1 e^{-2t} \delta_{-1}(t)$$

Come si ricavano $d_0, d_1 = ?$

$$\frac{dh(t)}{dt} = d_0 \frac{d\delta(t)}{dt} - 2d_1 e^{-2t} \delta_{-1}(t) + d_1 e^{-2t} \delta(t)$$

Sostituisco nell'equazione (*)

$$\Rightarrow d_0 \frac{d\delta(t)}{dt} - 2d_1 e^{-2t} \delta_{-1}(t) + d_1 e^{-2t} \delta(t) + 2d_0 \delta(t) + 2d_1 e^{-2t} \delta_{-1}(t) = \frac{d\delta(t)}{dt} + \delta(t)$$
$$d_0 \frac{d\delta(t)}{dt} + d_1 \delta(t) + 2d_0 \delta(t) = \frac{d\delta(t)}{dt} + \delta(t)$$
$$d_{0-1} \frac{d\delta(t)}{dt} + (d_1 + 2d_{0-1})\delta(t) = 0$$

$$\Rightarrow \begin{cases} d_{0-1} = 0 \Rightarrow d_0 = 1\\ d_1 + 2d_{0-1} = 0 \Rightarrow d_1 = -1 \end{cases}$$

Per $t \to 0$. Perciò abbiamo trovato la nostra risposta impulsiva:

$$h(t) = \delta(t) - e^{-2t}\delta_{-1}(t)$$

Riassumento, se noi abbiamo una sistema LTI rappresentato dall'equazione differenziale, avremo che la risposta totale sarà data dalla somma della risposta libera con la risposta forzata:

$$v(t) = v_l(t) + v_f(t)$$

- $v_l(t)$ si ottiene trovando le radici dell'equazione omogenea associata e utilizzando le condizioni iniziali \rightarrow stabilità asintotica
- $v_f(t)$ si ottiene tramite

$$\int_0^{t^+} u(\xi)h(t-\xi)d\xi$$

 \rightarrow stabilità BIBO

3.1.5 Stabilità di un sistema continuo definito dalla risposta impulsiva

Teorema: un sistema a tempo continuo LTI è BIBO stabile se e solo se

$$\int_{-\infty}^{\infty} |h(\xi)| d\xi < \infty$$

Dimostrazione: da destra a sinistra, se

$$\int_{-\infty}^{\infty} |h(\xi)| d\xi < \infty \Rightarrow \text{ il sistema è BIBO stabile}$$

Se l'ingresso u(t) tale che $|u(t)| < M_u, \forall t$ dobbiamo dimostrare che l'uscita v(t) corrispondente è limitata $(\exists M_v \text{ t.c. } |v(t)| < M_v, \forall t)$

$$v(t) = (u * h)(t) = \int_{-\infty}^{\infty} h(\xi)u(t - \xi)d\xi$$

$$|v(t)| = \int_{-\infty}^{\infty} |h(\xi)u(t - \xi)|d\xi =$$

$$= \int_{-\infty}^{\infty} |h(\xi)| \underbrace{|u(t - \xi)|}_{

$$\Rightarrow |v(t)| < M_v$$$$

3.1.6 Risposta in frequenza

Ci interessa la risposta di un sistema definito dall'equzione differenziale in corrispondenza di un ingresso del tipo:

$$u(t) = Ae^{j(\omega_0 t + \phi)} = Ae^{j\phi}e^{j\omega_0 t}$$
 (fasore)

Il sistema è BIBO stabile \leftrightarrow

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < +\infty$$

$$v(t) = (u * h)(t) = \int_{-\infty}^{\infty} h(\tau) u(t - \tau) d\tau =$$

$$= \int_{-\infty}^{\infty} h(\tau) A e^{j(\omega_0(t - \tau) +)} d\tau =$$

$$= \underbrace{A e^{j(\omega_0 t + \phi)}}_{\in C} \underbrace{\int_{-\infty}^{\infty} h(\tau) e^{-j\omega_0 \tau} d\tau}_{\text{converge?}}$$

$$|\int_{-\infty}^{\infty} h(\tau) e^{-j\omega_0 \tau} d\tau| = \int_{-\infty}^{\infty} |h(\tau)| |\underbrace{e^{-j\omega_0 \tau}}_{=1}| d\tau =$$

$$= \int_{-\infty}^{\infty} |h(\tau)| d\tau < +\infty$$

Possiamo scrivere:

$$\begin{split} H(j\omega_0) &= \int_{-\infty}^{\infty} h(\tau) e^{-j\omega_0\tau} d\tau \\ \Rightarrow v(t) &= \underbrace{H(j\omega_0)}_{\text{dipende soltanto dal sistema considerato}} \underbrace{Ae^{j(\omega_0t+\phi)}}_{\text{l'ingresso}}, t \in R \end{split}$$

Definizione: dato un sistema LTI BIBO stabile, di risposta impulsiva h(t) definiamo la **rispsta in frequenza** la funzione

$$H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau, H(j\omega) \in C, \omega \in R$$

Definiamo inoltre

$$A(\omega) = |H(j\omega)|$$

$$\Phi(\omega) = arg(H(j\omega))$$

il modulo A e l'argomento (la fase) Φ della rispota in frequenza H

$$\begin{split} A(\omega) &:= |H(j\omega)| = |\int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau| \\ \Phi(\omega) &:= arg(H(j\omega)) = arg(\int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau) \end{split}$$

$$s = \rho(\cos \theta + j \sin \theta)$$
$$\rho = |s|$$
$$\theta = arg(s)$$

Proprietà:

1.
$$A(\omega)$$
 è pari $(A(-\omega) = A(\omega))$

2.
$$\Phi(\omega)$$
è dispari $(\Phi(-\omega) = -\Phi(\omega))$

3.
$$H(-j\omega) = \overline{H(j\omega)}$$

Dimostrazione del punto 3

$$H(-j\omega) = \int_{-\infty}^{\infty} \underbrace{h(\tau)}_{\in R} e^{j\omega\tau} d\tau =$$

$$= \int_{-\infty}^{\infty} \overline{h(\tau)} e^{-j\omega\tau} d\tau =$$

$$= \overline{\int_{-\infty}^{\infty} h(\tau)} e^{-j\omega\tau} d\tau = \overline{H(j\omega)}$$

Esempio di risposta a un segnale sinusoidale:

$$u(t) = A\cos(\omega t + \underbrace{\phi}_{fase})$$

Formula di Eulero

$$\Rightarrow u(t) = \frac{A}{2}e^{j(\omega t + \phi)} + \frac{A}{2}e^{-j(\omega t + \phi)} =$$

$$= \underbrace{\frac{A}{2}e^{j\phi}e^{j\omega t}}_{u_1(t)} + \underbrace{\frac{A}{2}e^{-j\phi}e^{-j\omega t}}_{u_2(t)}$$

Per la linearità

$$u_1(t) \mapsto v_1(t)$$

 $u_2(t) \mapsto v_2(t)$

Quindi

$$A\cos(\omega t + \phi) = u_1(t) + u_2(t) \mapsto v_1(t) + v_2(t) = v(t)$$

Scriviamo

 $H(j\omega) = A(\omega)e^{j\phi(\omega)} \text{ rappresentazione esponenziale}$ $v(t) = \underbrace{\frac{A}{2}A(\omega)e^{j(\phi+\Phi(\omega))}e^{j\omega t}}_{v_1(t)} + \underbrace{\frac{A}{2}A(-\omega)e^{-j(\phi-\Phi(-\omega))}e^{-j\omega t}}_{v_2(t)} = \text{ per proprietà 1 e 2}$ $= A(\omega)\frac{A}{2}e^{j(\phi+\Phi(\omega))}e^{j\omega t} + \frac{A}{2}A(\omega)e^{-j(\phi+\Phi(\omega))}e^{-j\omega t}$ $= AA(\omega)\left[\frac{e^{j(\omega t+\phi+\Phi(\omega))}}{2} + \frac{e^{-j(\omega t+\phi+\Phi(\omega))}}{2}\right] =$ $= AA(\omega)\cos(\omega t + \phi + \Phi(\omega))$ $\underbrace{A\cos(\omega t + \phi)}_{increase} \mapsto \underbrace{AA(\omega)\cos(\omega t + \phi + \Phi(\omega))}_{uoits}$

- 1. Per l'ampiezza della risposta in frequenza $H(j\omega)$
- 2. Più l'argomento (fase) della risposta in frequenza $H(j\omega)$

Osservazione: La risposta di un sistema LTI e BIBO staile a un segnale sinusoidale di frequenza ω e un segnale sinusoidale della stessa frequenza ω è:

- ampiezza data dal prodotto dell'ampiezza dell'ingresso per l'ampiezza della risposta in frequenza;
- fase data dalla somma della fase iniziale e della fase della risposta in frequenza

Esempio $u(t) = e^{j\omega t}$

$$v(t) = (u * h)(t) = \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)}d\tau =$$

$$= e^{j\omega t} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau}_{H(j\omega) \text{ risposta in frequenza}} = H(j\omega)e^{j\omega t}$$

Per i sistemi definiti dall'equazione differenziale e ingresso u(t)

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = \sum_{i=0}^{m} b_i \frac{d^i u(t)}{dt^i}$$

$$\Rightarrow \sum_{i=0}^{n} a_i \frac{d^i (H(j\omega)e^{j\omega t})}{dt^i} = \sum_{i=0}^{m} b_i \frac{d^i (e^{j\omega t})}{dt^i}$$

$$\Leftrightarrow H(j\omega)e^{j\omega t} \sum_{i=0}^{n} a_i (j\omega)^i = e^{j\omega t} \sum_{i=0}^{m} b_i (j\omega)^i$$

$$\frac{d^i (e^{j\omega t})}{dt^i} = (j\omega)^i e^{j\omega t}$$

Osservazione: Per il sistema dell'equazione differenziale, in corrispondenza di ingressi fasori la risposta in frequenza è una funzione razionale (rapporto di due polinomi) in $j\omega$.

3.1.7 La trasformata di Laplace

Sia $v(t), t \in R$ una funzione sommabile su $[0^-, \infty)(\int_{-\infty}^{\infty} |v(t)| dt < \infty)$ la trasformata di Laplace unilatera è:

$$V(s) = \int_{-\infty}^{\infty} v(t)e^{-st}dt, s \in C$$

Notazione $V(s) = \mathcal{L}[v(t)](s)$

Osservazione: Affinchè V(s) esista

$$\left| \int_{0^{-}}^{\infty} v(t)e^{-st} \right| < \infty$$
 l'integrale converge

Il dominio di V saranno tutti gli s per cui l'integrale converge e viene chiamato **regione di convergenza**(RdC). Si può dimostrare che RdC è sempre un semipiano aperto del tipo

$$RdC = s \in C | Re(s) > \alpha, \alpha \in R$$

 α si chiama ascissa di convergenza.

3.1.8 RdC della trasformata di Laplace unilatera di una combinazione lineare di funzioni esponenziali

Teorema $v(t) = \sum_{i=0}^{n} c_i e^{\lambda_i t}$, dove $\lambda_i = \sigma_i + j\omega_i \in C$, c_i costanti. La RdC di $\mathcal{L}[v(t)](s)$ è un semipiano destro

$$RdC = s \in C | Re(s) > \alpha \text{ dove } \alpha = maxRe(\lambda_0), \dots, Re(\lambda_n)$$

Dimostrazione:

$$\mathcal{L}[v(t)](s) = \int_{0^{-}}^{\infty} (\sum_{i=0}^{n} c_i e^{\lambda_i t}) e^{-st} dt =$$

$$\sum_{i=0}^{n} c_i \int_{0^{-}}^{\infty} e^{\lambda_i t} e^{-st} dt$$

$$\int_{0^{-}}^{\infty} e$$

INCOMPLETA VEDI LEZIONE 31-03 Per $i \in 0, ..., n$ sia $\lambda_i = \sigma_i + j\omega_i$ e $s = \sigma + j\omega$, valutiamo il modulo dell'integrale

$$\begin{split} &|\int_{0^{-}}^{\infty}e^{\lambda_{i}t}e^{-st}dt| = \\ &|\int_{0^{-}}^{\infty}e^{\sigma_{i}t}e^{j\omega_{i}t}e^{-\sigma t}e^{-j\omega t}dt| = \\ &|\int_{0^{-}}^{\infty}e^{[\sigma_{i}-\sigma+j(\omega_{i}-\omega)]t}dt| = \\ &|\frac{e^{[\sigma_{i}-\sigma+j(\omega_{i}-\omega)]t}}{\sigma_{i}-\sigma+j\omega_{i}-j\omega}|_{0^{-}}^{\infty}| = \\ &|\lim_{t\to\infty}\frac{\overbrace{e^{(\sigma_{i}-\sigma)t}}^{2}\underbrace{e^{j(\omega_{i}-\omega)t}}_{\sigma_{i}-\sigma+j\omega_{i}-j\omega} - \frac{1}{\sigma_{i}-\sigma+j\omega_{i}-j\omega}| < \infty \\ &|\operatorname{per} \sigma > sigma_{i} \leftrightarrow Re(s) > Re(\lambda_{i}) \end{split}$$

- 1. converge per $\sigma_i \sigma < 0$
- 2. ha il modulo 1

3.1.9 Proprietà della trasformata di Laplace

1. **Linearità**, se v_1, v_2 ammettono la trasformata di Laplace (TdL) allora anche $a_1v_1 + a_2v_2$ ammette la TdL e:

$$\mathcal{L}[a_1v_1(t) + a_2v_2(t)](s) = a_1\mathcal{L}[v_1(t)](s) + a_2\mathcal{L}[v_2(t)](s)$$

e l'ascissa di convergenza è $\alpha \geq \max_1, \alpha_2$ dove α_1 w α_2 sono rispettivamente le ascisse di convergenza di v_1 e v_2

2. Traslazione nel dominio del tempo (**time shifting**) se v(t) ammette TdL allora anche $v(t-\tau), \tau > 0$ ammette TdL e:

$$\mathcal{L}[v(t-\tau)](s) = e^{-s\tau} \mathcal{L}[v(t)](s)$$

L'ascisse di convergenza non cambia

dimostrazione:

$$\mathcal{L}[v(t-\tau)](s) = \int_{0^{-}}^{\infty} v(t-\tau)e^{-st}dt \stackrel{*}{=}$$

$$= \int_{0^{-}}^{\infty} v(x)e^{-s(x+\tau)}dx =$$

$$= e^{s\tau} \int_{0^{-}}^{\infty} v(x)e^{-sx}dx \stackrel{**}{=}$$

$$= e^{s\tau} \mathcal{L}[v(t)](s)$$

(*) cambio di variabile

$$x = t - \tau \Rightarrow dx = dt$$

(**) ritorno alla variabile di prima

3. Traslazione nel dominio dei complesi o moltiplicazione per una funzione esponenziale(frequency shifting) Se v(t) ammette TdL V(s), allora anche $e^{\lambda t}v(t)$ ammette TdL e

$$\mathcal{L}[e^{\lambda t}v(t)](s) = V(s-\lambda)(=\mathcal{L}[v(t)](s-\lambda))$$

L'ascissa di convergenza è $\alpha = \alpha_0 + Re(\lambda)$ dove α_0 è l'ascissa di convergenza di V(s) dimostrazione:

$$\mathcal{L}[e^{\lambda t}v(t)](s) = \int_{0^{-}}^{\infty} e^{\lambda t}v(t)e^{-st}dt =$$

$$= \int_{0^{-}}^{\infty} v(t)e^{-(s-\lambda)t}dt = \mathcal{L}[v(t)](s-\lambda) = V(s-\lambda)$$

4. Cambiamento di scale (**scaling**) se v(t) ammette TdL allora v(rt) ammette TdL e

$$\mathcal{L}[v(rt)](s) = \frac{1}{r}V(\frac{s}{r})$$

con ascissa di convergenza $\alpha = r\alpha_0$

dimostrazione:

$$\mathcal{L}[v(rt)](s) = \int_{0^{-}}^{\infty} v(rt)e^{-st}dt = \frac{1}{r} \int_{0^{-}}^{\infty} v(\tau)e^{\frac{s}{r}\tau}d\tau = \frac{1}{r}V(\frac{s}{r})$$

(*) cambio variabile

$$rt = \tau$$
 $dt = \frac{d\tau}{r}$