

CS450: Numerical Analysis

Howard Hao Yang

Assistant Professor, ZJU-UIUC Institute

08/10/2023

Linear Systems

- We will concentrate on the following problems in the next few weeks
 - Linear system problem: Ax = b, find x
 - Eigen vector problem: $Ax = \lambda x$, find x and λ
 - Singular value decomposition: $Av = \sigma u$, find v, u and σ
 - Factor the matrix as A = CR
- These are central problems in linear algebra as well as data science
- Let's begin with a quick review of <u>linear algebra</u>
 - Main focus: column space and ranks

Matrix-Vector Multiplication

Example: Multiply A times x

By rows
$$\begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 3x_2 \\ 2x_1 + 4x_2 \\ 3x_1 + 7x_2 \end{bmatrix} = \text{of the rows with } \mathbf{x} = (x_1, x_2)$$
By columns
$$\begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = \text{of the columns } \mathbf{a}_1 \text{ and } \mathbf{a}_2$$

- Perspective #1: produce three inner/dot products by each row, useful for computing,
 but not for understanding
- Perspective #2: linear combination of a_1 and a_2
- In essence, Ax is a linear combination of columns of A

Column Space

- Definition (column space): The combination of the columns fill out the column space of A. In other words, the possible outcome of Ax when x goes through all possible values: $\{Ax|x \in R^d\}$.
 - Example: The possible subspaces of \mathbb{R}^3

The zero vector (0,0,0) by itself A line of all vectors $x_1 a_1$ A plane of all vectors $x_1 a_1 + x_2 a_2$ The whole \mathbf{R}^3 with all vectors $x_1 a_1 + x_2 a_2 + x_3 a_3$

■ Exercise: What are the column spaces of
$$A_2 = \begin{bmatrix} 2 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 7 & 10 \end{bmatrix}$$
 and $A_3 = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 1 \end{bmatrix}$?

Independent Columns and Rank

- Goal: Given matrix *A*, construct a matrix *C* where the columns come directly from *A*, but not to include any column that is a combination of the previous ones, following is the approach:
 - If column 1 of A is not all zero, put it into the matrix C;
 - If column 2 of *A* is not a multiple of column 1, put it into *C*;
 - If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.
 - At the end, C will have r columns, where $r \leq n$.
 - They will form a basis for the column space of A.
 - All vectors in the space are combinations of the basis vectors.

Independent Columns and Rank (cont'd)

• Examples:

■ If
$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix}$$
 then $C = \begin{bmatrix} 1 & 3 \\ 1 & 2 \\ 0 & 1 \end{bmatrix}$ $n = 3$ columns in A $r = 2$ columns in C

• If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
 then $C = A$. $n = 3$ columns in A $r = 3$ columns in C

• If
$$A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{bmatrix}$$
 then $C = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $n = 3$ columns in A $r = 1$ column in C

Independent Columns and Rank (cont'd)

- The number of columns r in matrix C is the "rank" of matrix A.
- The rank counts independent columns, i.e., the rank of a matrix is the dimension of its column space.
- We can construct different basis, but always the same number of vectors.
- The matrix C connects matrix A with another matrix, as A = CR; a factorization operation:

$$egin{aligned} m{A} = egin{bmatrix} 1 & 3 & 8 \ 1 & 2 & 6 \ 0 & 1 & 2 \end{bmatrix} = egin{bmatrix} 1 & 3 \ 1 & 2 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 2 \ 0 & 1 & 2 \end{bmatrix} = m{CR} \end{aligned}$$

Matrix-Matrix Multiplication

- Example: Multiply A times B, as AB = C
 - Perspective #1: inner product approach, use row of A multiply column of B, facilitates computations

• Perspective #2: use column of A multiply with row of B, facilitates understanding

Matrix-Matrix Multiplication (cont'd)

- Outer product: one column matrix u times B, as AB = C
 - lacktriangle A column matrix $oldsymbol{u}$ times a row matrix $oldsymbol{v}^T$ produces a matrix

"Outer product"

$$uv^T = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} 3 & 4 & 6 \end{bmatrix}$
 $= \begin{bmatrix} 6 & 8 & 12 \\ 6 & 8 & 12 \\ 3 & 4 & 6 \end{bmatrix}$
 $= \begin{bmatrix} \text{"rank one matrix"} \end{bmatrix}$

- lacktriangle The column space of uv^T is one-dimensional: the line in the same direction of u
- ullet All nonzero matrices uv^T have rank one they are the perfect building blocks for every matrix

Matrix-Matrix Multiplication (cont'd)

- Write the product **AB** as a sum of rank-one matrices
 - Column-row multiplication of matrices

$$AB = \left[egin{array}{cccc} & & & & & & \\ a_1 & \dots & a_n & & & \\ & & & & & \end{array}
ight] \left[egin{array}{cccc} & & & & & \\ & \vdots & & & \\ & & & & \end{array}
ight] = oldsymbol{a}_1 oldsymbol{b}_1^* + oldsymbol{a}_2 oldsymbol{b}_2^* + \dots + oldsymbol{a}_n oldsymbol{b}_n^*. \\ & & & & & & \text{sum of rank 1 matrices} \end{array}
ight]$$

Example

$$\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{3} \end{bmatrix} \begin{bmatrix} \mathbf{2} & \mathbf{4} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{5} \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 17 \end{bmatrix}$$

Why writing it as this form is important?

Ranks of AB and A + B

- Let's think about the following relationships
 - When we multiply matrices, can we increase the rank?
 - In other words, would it hold?: rank(AB) > rank(A)

- When we sum up matrices, can we increase the rank?
- In other words, would it hold?: rank(A + B) > rank(A)

Ranks of AB and A + B (cont'd)

- Important inequalities for ranks
 - When we multiply matrices, we cannot increase the rank:
 - $\circ \operatorname{rank}(AB) \leq \operatorname{rank}(A)$
 - \circ rank $(AB) \leq \operatorname{rank}(B)$
 - Rank of summations
 - $\circ \operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$
 - Given matrix A, the rank of A^TA satisfies
 - $\circ \operatorname{rank}(A^T A) = \operatorname{rank}(AA^T) = \operatorname{rank}(A)$

Four Fundamental Subspaces

- The following subspaces are essential in characterizing A
 - The column space C(A) contains all combinations of the columns of A
 - The row space $C(A^T)$ contains all combinations of the columns of A^T
 - The nullspace N(A) contains all solutions x to Ax = 0
 - The left nullspace $N(A^T)$ contains all solutions y to $A^Ty = 0$

Example: The null space

$$Boldsymbol{x} = \left[egin{array}{ccc} 1 & -2 & -2 \ 3 & -6 & -6 \end{array}
ight] \left[egin{array}{c} a \ b \ c \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight] ext{ has solutions } oldsymbol{x}_1 = \left[egin{array}{c} 2 \ 1 \ 0 \end{array}
ight] ext{ and } oldsymbol{x}_2 = \left[egin{array}{c} 2 \ 0 \ 1 \end{array}
ight]$$

Four Fundamental Subspaces (cont'd)

Exercise

- Suppose matrix A is a 3-by-3 matrix of all ones, find two independent vectors x and y that solves Ax = 0 and Ay = 0 (note: x and y shall be non-trivial, i.e., $x \neq y \neq 0$).
- Why don't I ask for a third independent vector that solves Az = 0? What does this imply?

Vector Norms

- What is a (vector) norm?
- A metric to measure the "length" of a vector, or "distance" between two vectors
 - An operator that $\|\cdot\|: R^d \to R_+$, and satisfies
 - $|x| \ge 0$ and |x| = 0 if and only if x = 0
 - $\circ \|a \cdot x\| = |a| \cdot \|x\|$ for any $a \in R$
 - $||x + y|| \le ||x|| + ||y||$

Vector Norms (cont'd)

- Typical norms for vectors
 - The L-p norms

o L-*p* norm:
$$\|\beta\|_{p} = \left(\sum_{j=1}^{d} \beta_{j}^{p}\right)^{1/p}, p \geq 1$$

$$\circ p = 1, \|\boldsymbol{\beta}\|_1 = \sum_j |\beta_j|$$

$$o p = 2, \|\boldsymbol{\beta}\|_2 = \sqrt{\sum_j |\beta_j|^2}$$

$$o p = \infty, \|\boldsymbol{\beta}\|_{\infty} = \max_{i} |\beta_{j}|$$

o The L-0 norm: Counts the number of non-zero entries, e.g., if $\beta = (10, 0, 2, 0.01, 0, 1)^T$, then $\|\beta\|_0 = 4$

Vector Norms (cont'd)

- Exercise
 - For vector $\mathbf{x} = [-1.6, 1.2]^T$, calculate the L-1 norm, L-2 norm, and L- ∞

■ In general, for any vector x, does it hold that $||x||_1 \ge ||x||_2 \ge ||x||_\infty$?

Side-Track: Unit Ball

Unit ball under different norms

• L-
$$p$$
 norm: $\|\boldsymbol{\beta}\|_p = \left(\sum_{j=1}^d \beta_j^p\right)^{1/p}$

■ Unit ball under L-p norm: $\{\beta \in R^d: ||\beta||_p = 1\}$

Matrix Norms

- Given matrix A
 - We want an operator that satisfies

$$0 \|A\| \ge 0$$
 and $\|A\| = 0$ if and only if $A = 0$

$$\circ \|a \cdot A\| = |a| \cdot \|A\| \text{ for any } a \in R$$

$$||A + B|| \le ||A|| + ||B||$$

- How to achieve this?
 - The Frobenius norm

Matrix Norms (cont'd)

- Given a vector norm ||·||
 - The matrix norm induced by this vector norm is given as

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

- Different vector norms can induce different matrix norms for the same matrix
- Examples
 - \circ When the norm is L-1 norm, $\|A\|_1 = \max_j \sum_{i=1}^m |a_{ij}|$: the maximum absolute column sum of the matrix
 - \circ When the norm is L- ∞ norm, $\|A\|_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$: the maximum absolute row sum of the matrix

Matrix Norms (cont'd)

- Exercise
 - What are the matrix norms induced by L-1 norm and L-∞ norm for the following matrix?

$$m{A} = egin{bmatrix} 2 & -1 & 1 \ 1 & 0 & 1 \ 3 & -1 & 4 \end{bmatrix}$$

Matrix Norms (cont'd)

- When the norm is the Euclidean norm $\|\cdot\|_2$
 - The matrix norm induced by this vector norm is given as

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max_{||x||_2 = 1} ||Ax||_2$$

o This is called the spectral norm of matrix A

Matrix Norm

- What does matrix multiplication do to a linear (sub)space?
 - Rotation & stretching
- What does matrix norm mean?
 - How much a particular linear operator A stretch a space

