Alexandria University **Faculty of Engineering Computer and Communications Program**

Due: Sunday 21/4/2019

Assigned:

CCE: Pattern Recognition

Sheet#7 Ensemble+NeuralNets+ Linear Regression

A. Given the data below

x1	1	2	2	2	3	3	4	4	4	5
x2	5	6	10	12	17	12	6	5	7	10
у	10	40	50	60	70	50	30	20	40	70

- 1. How many parameter to find to solve a linear regression problem on the data? [No python]
- 2. Use Normal equations to find the equation of the line produced using linear regression algorithm. Specify the dimensionality of each matrix carefully. Assume no regularization[No python]

Use Scikit-learn package for

- a. Finding the linear regression solution. Then compare to the normal solution in 2 [No python]
- b. We want to add L-2 regularization to the obtained solution. We use Ridge regression from Scikit-learn to do so. Set alpha to [0.1,1,10,100].

[python]

- 3. Use the 5 regressor coefficients and intercepts you learned in 3.a,3.b to predict y for the following samples [No python]
 - \blacksquare p1=(3,16)
 - p2=(2,4)
 - p3=(5,4)
- B. Design a neural net to produce the majority function of three binary inputs. [No python]