Genome Skimming of Symbiotic Communities

Bi K F Biodiversity and Climate Research Centre

— an in silico Evaluation of Assembly Approaches

Bastian Greshake[†], Simonida Zehr[†], Francesco Dal Grande *

Anjuli Meiser*, Imke Schmitt*, Ingo Ebersberger†

Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany

Motivation

Lichens, an association of a filamentous fungus and one to several algal or cyanobacterial photobionts, are a hallmark for the success of mutualistic symbioses involving eukaryotes. They can colonize extreme ecological niches, frequently act as pioneering organisms, and are a promising resource for novel bioactive substances of medical and economical relevance. Still, the full potential of lichens for evolutionary and biotechnological studies has not been tapped, mainly since comprehensive genomic data are lacking. Extending the collection

1. in silico Generation of Simulated Twin Sets

Our analysis takes its start from a real world metagenome skimming using DNA extracted from a thallus of the lichen Lasallia pustulata. We generated 15 million Whole Genome Shotgun read pairs of length 250 bp using the Illumina MiSeq technology. To estimate the insert size distribution we merged overlapping read pairs using FLASH and fitted the parameters of a censored Weibull distribution to the observed insert sizes (Figure 1).

The draft genomes of the lichenized fungus Cladonia grayi and its photobiont Asterochloris sp. served as basis for the simulations. For each organism we created a pseudogenome, consisting of a single chromosome, by concatenating all scaffolds and removing ambiguous positions. A RepeatMasker analysis (Box I), together with a dot plot analysis to display self similarities (Figure 2), revealed a markedly higher genomic repeat content for Cladonia grayi compared to Asterochloris sp.

We simulated Whole Genome Shotgun reads with ART, using the two pseudogenomes as template. Read number, length and insert size distribution resembled that of the Lasallia pustulata genome skimming. From the simulated reads we compiled II twin sets (Table I).

Figure 1: Insert Size distribution of the L. pustulata whole genome shotgun library (black: observed, blue: fitted Weibull distribution)

0							As	stei	ro	C	า/	Ol	rj.	S	S) ,	, 75587
\	* ***				1 4	Y		Astpho	: :								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
								5.14 (T	I	14 (4) (4)	0.1		1 65		2.5		
		1	iii. M						: / *	114					: :		:: :
i i ii I ni					1.4			e di ili ili ili Bodana produce Bodana produce		iga Marija	And the state of the later of						i i ii
	A COL								and the same of the same	gr. Čr			r, 41 ti				i
				\					141			-					
1.41	I gara I tuta		•	`	ν.	,	i inii	is the Ch.	of steat !	enge in Çêj	•			5.705 (1)104	- 1		:
i d.	~		• • • • • • •	(*) } (*) }		1	: - ш і і - 525 т	#	i i k a	in ei	11 %		(111) : 	1 1114	W		∯ : H } ::
Ċ.		1.5	1911	1 14 :		```			1. J. d.	della.	1	in give		. i . i i i i i			
l ii.			1 211				X		. Iti	u (i		1.7	di.			II .i	i'i:
	j terr	i in pe	3 (1,5)		5 3		ma i	A things	etj.	i): [1	ra-a	1,711	quit	() (1 5)	3 . 3	ier i	(
											11.8			1.01			
41-11-1 11-11-1		1:42	ng sersio MSBJF		1 1 1	eria da Caria da Caria da		(11 a)	and the same of		10000	3 20 ,00					
i v	14.78		DESCRIPTION OF THE PROPERTY OF						- 21 8	Xali	i i						
1. 710.				1111			d - (200 p. lip)	erizine erizine			10.00	in the state of		11.	•		11.4
	e fact. It disse	: 1245	10.10				1	1 13.6				1. 7		3 344			1
1. 7	w 1414.	1000	- 15 7		· ;; • ;	127	a akto	a likiri.	#:::		: 2	×			1 2	:: :	• • •
i. (. 1 'n							. J	i de la maria Filipada de la maria	4 1 1 2 1		F : 3 :	<u>)) (</u>			22		1.
100	0 4		ers in a	11.18			.,				11.00	i initia	`	X di	7,3		
								# (11/12) 	-10. -10.			(iali i	4-1
1 17			11						MA COMPANY	101, 1000 4 100	100000000000000000000000000000000000000	C . C - Man		1.72		101: '1	
	***							2 1474	X 11 x /4		i gae		: ::::::	à . ::: à	ż	-)	X :
1.4:		is in					lyn:	n endag	1 1 5 1	925 ° 24 ° 7): 3 :	1, 21, 77		i.:::	Post of Participation (CO)		. /

Figure 2: Self-similarity of the pseudo-genomes of C. grayi and Asterochloris sp. visualized in a dot plot.

To investigate the influence of different extents of data mixture on the genome reconstructions, we varied the coverage ratios for the fungus and the alga, respectively from 0:10 to 10:0 in steps of one.

Table 1: Relative and Absolute coverages for each organism per									
data set									
Coverage Ratio	Coverage	Coverage							
C. grayi : Asterochloris sp.	C. grayi	Asterochloris sp.							
10:0	182x	0x							
9:1	157x	17x							
8:2	134x	33x							
7:3	112x	48x							
6:4	92x	61x							
5:5	74x	74x							
4:6	56x	86x							
3:7	40x	97x							
2:8	26x	107x							
1:9	13x	116x							
0:10	0x	125x							

2. Assembler Selection & Optimisation

For Omega, sga, Velvet & MetaVelvet we explored the parameter space (overlap size and k-mer size respectively), using the maximization of the N50 size as the acceptance criterion.

of lichen genomes is not trivial as a separate sequencing of the closely interacting symbionts is often not possible. Genome skimming of the lichen metagenome is an obvious and cost-effective solution to rapidly broaden the data basis for genomic research on lichens. Here we address the questions how to best assemble genome skimming data from a eukaryotic species mixture, what pitfalls can occur, and at what quality one can expect to reconstruct the individual genome sequences from a given experiment.

3. Assembly Results

size. The asterisk marks assemblies covering less than 50% of the reference length. A default height was used in these instances.

For the single species data sets almost all assemblers reconstruct the two genomes over their full length (Figure 3, column 0:10 & 10:0), although the NG50 sizes vary substantially. In general the repeat-poor alga yielded much larger NG50 sizes compared to the repeat-rich fungus. For the alga many assemblers were able to exceed the NG50 size of the original draft genome. In case of the fungus, repeats hindered such an extension with the present WGS library layout (Figure 4).

For the the mixed species data, completeness of the genome reconstructions depends heavily on assembler choice and coverage ratios. MIRA and SPAdes perform best across all data sets, without suffering from assembly errors (Fig. 5). In contrast, Omega, Velvet and in particular MetaVelvet fail to assemble large parts of the low coverage genome once coverage ratios become extreme Figure 5: NG50 vs NGA50 for the assemblies from the simulated twin sets. (Fig. 3, 1:9 - 3:7, 9:1).

The k-mer coverage plots provide an explanation for the sensitivity of some assemblers to biased coverage ratios. By optimizing for the N50 size, we ended up choosing a k-mer size which reduces the frequency of the fungal kmers to an extent that they are no longer considered during assembly (Fig. 5). This exclusion of k-mers prevents the formation of short contigs, increasing up Figure 6: kmer-coverage frequencies for the 1:9 data set. the N50 size.

At the same time, this exclusion hinders the prediction of genes, as large parts of the fungal genome are not reconstructed. While nearly all genes predicted for the reference can be found in the SPAdes and MIRA assemblies, only a very limited number are found in case of MetaVelvet, Velvet and Omega (Table 2).

Figure 4: NGx distributions for Asterochloris sp. & C. grayi

k = 51k = 151

Table 2: Number of fungal gene predictions mapping to the fungal reference genes.

Assembler	1:9	2:8	3:7
Reference	10740	10740	10740
MIRA	10348	10715	10718
Omega	72	5825	10302
SPAdes	10656	10666	10683
sga	10100	10674	10675
Velvet	2845	8817	10530
MetaVelvet	4	66	1657

Summary

- Twin sets are a valuable tool for generating expectations prior to performing sequencing & de novo assembly.
- Assembler performance in our data is not driven by misassemblies.
- Already in single species data we see large differences in assembler performance
- Optimizing the N50 can lead to the preclusion of sequences representing the low-coverage genome
- In mixed species data sets the coverage distribution further inflates differences between the assemblers.

[1] Huang W, Li L, Myers JR, and Marth GT. Bioinformatics (2012) 28 (4): 593-594

[9] Trapnell C, Pachter L, Salzberg SL. Bioinformatics (2009) 25 (9): 1105-1111.

[10] http://sourceforge.net/projects/hamstr/

Assembler choice has a large impact on the quality of gene predictions

Bastian Greshake Contact bgreshake@gmail.com Goethe University, Frankfurt am Main, Germany Max-von-Laue-Straße 13, 60438 Frankfurt am Main

References

[2] http://sourceforge.net/projects/mira-assembler/ [3] Zerbino DR and Birney E. Genome Research (2008) 18:821-829. [4] Simpson JT and Durbin R. Bioinformatics (2010) 26 (12): i367-i373 [5] Namiki T, Hachiya T, Tanaka H, Sakakibara Y. Nucleic Acids Res, (2012) 40(20), e155 [6] Huson DH, Auch AF, Qi J, et al. Genome Research (2007) 17:000 [7] Stanke M, Steinkamp R, Waack S and Morgenstern B (2004) Nucleic Acids Research, Vol. 32, [8] Genis Parra, Keith Bradnam and Ian Korf (2007) Bioinformatics, 23: 1061-1067

[14] Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M and Robles M. Bioinformatics, (2005) 21: 3674-3676.

