SIMPLE LINEAR REGRESSION

ABOUT THE DATASET 'Salary Dataset'

Variable Notes

- 1. Columns
- 2. YearsExperience
- 3. Salary

DATA COLLECTION AND EXPLORATION

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

In [3]: # LOAD THE DATASET
data = pd.read_csv('Salary_dataset.csv')
data
```

7.00 T W				Odderlipi
Out[3]:		Unnamed: 0	YearsExperience	Salary
	0	0	1.2	39344.0
	1	1	1.4	46206.0
	2	2	1.6	37732.0
	3	3	2.1	43526.0
	4	4	2.3	39892.0
	5	5	3.0	56643.0
	6	6	3.1	60151.0
	7	7	3.3	54446.0
	8	8	3.3	64446.0
	9	9	3.8	57190.0
	10	10	4.0	63219.0
	11	11	4.1	55795.0
	12	12	4.1	56958.0
	13	13	4.2	57082.0
	14	14	4.6	61112.0
	15	15	5.0	67939.0
	16	16	5.2	66030.0
	17	17	5.4	83089.0
	18	18	6.0	81364.0
	19	19	6.1	93941.0
	20	20	6.9	91739.0
	21	21	7.2	98274.0
	22	22	8.0	101303.0
	23	23	8.3	113813.0
	24	24	8.8	109432.0
	25	25	9.1	105583.0
	26	26	9.6	116970.0
	27	27	9.7	112636.0
	28	28	10.4	122392.0
	29	29	10.6	121873.0

In [4]: # INSPECT THE DATA
 data.head()

```
Out[4]:
            Unnamed: 0 YearsExperience Salary
         0
                      0
                                     1.2 39344.0
         1
                                     1.4 46206.0
                      1
         2
                      2
                                     1.6 37732.0
         3
                                     2.1 43526.0
         4
                      4
                                     2.3 39892.0
```

In [5]: data.tail()

Out[5]: Unnamed: 0 YearsExperience Salary 25 25 9.1 105583.0 26 9.6 116970.0 26 27 27 9.7 112636.0 28 28 10.4 122392.0 29 29 10.6 121873.0

```
In [6]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29

Data columns (total 3 columns):

Column Non-Null Count Dtype
--- 0 Unnamed: 0 30 non-null int64
1 YearsExperience 30 non-null float64
2 Salary 30 non-null float64

dtypes: float64(2), int64(1)
memory usage: 852.0 bytes

In [7]: data.describe()

Out[7]:		Unnamed: 0	YearsExperience	Salary
	count	30.000000	30.000000	30.000000
	mean	14.500000	5.413333	76004.000000
	std	8.803408	2.837888	27414.429785
	min	0.000000	1.200000	37732.000000
	25%	7.250000	3.300000	56721.750000
	50%	14.500000	4.800000	65238.000000
	75%	21.750000	7.800000	100545.750000
	max	29.000000	10.600000	122392.000000

```
In [58]: plt.hist(data['YearsExperience'],bins=5)
```

```
Out[58]: (array([6., 9., 5., 4., 6.]),
array([ 1.2 , 3.08, 4.96, 6.84, 8.72, 10.6 ]),
<BarContainer object of 5 artists>)
```



```
In [59]: data['Salary'].value_counts().plot(kind='pie', autopct='%.2f')
```



```
In [10]: plt.scatter(data['YearsExperience'],data['Salary'])
   plt.xlabel("Years of Experience")
   plt.ylabel("Salary")
```

Out[10]: Text(0, 0.5, 'Salary')

CORRELATION

The code snippet removes the column 'Unnamed: 0' from the DataFrame 'data' and then computes the correlation matrix for the remaining columns using the data.corr() method.

0.978242 1.000000

SEABORN FOR VISUALIZATION

Salary

INDEPENDENT AND DEPENDENT FEATURES

- 1. Independent feature should be a datafarme or 2-D array
- 2. Dependent variable can be in series form or 1-D array

```
In [19]: X = data[['YearsExperience']]
X
```

Out[19]:	YearsExperience	
	0	1.2
	1	1.4
	2	1.6
	3	2.1
	4	2.3
	5	3.0
	6	3.1
	7	3.3
	8	3.3
	9	3.8
	10	4.0
	11	4.1
	12	4.1
	13	4.2
	14	4.6
	15	5.0
	16	5.2
	17	5.4
	18	6.0
	19	6.1
	20	6.9
	21	7.2
	22	8.0
	23	8.3
	24	8.8
	25	9.1
	26	9.6
	27	9.7
	28	10.4
	29	10.6

```
39344.0
Out[21]:
          1
                 46206.0
          2
                 37732.0
          3
                 43526.0
          4
                 39892.0
          5
                 56643.0
          6
                 60151.0
          7
                 54446.0
          8
                 64446.0
          9
                 57190.0
          10
                 63219.0
          11
                 55795.0
          12
                 56958.0
          13
                 57082.0
          14
                 61112.0
                 67939.0
          15
          16
                 66030.0
          17
                 83089.0
          18
                 81364.0
          19
                93941.0
          20
                91739.0
                98274.0
          21
          22
                101303.0
          23
                113813.0
          24
                109432.0
          25
               105583.0
          26
               116970.0
          27
               112636.0
          28
                122392.0
          29
                121873.0
          Name: Salary, dtype: float64
In [23]:
         np.array(Y).shape
         (30,)
Out[23]:
```

TRAIN TEST SPLIT

The code uses train_test_split from scikit-learn to split dataset X and Y into training and testing sets. It assigns 25% to testing (test_size=0.25) and ensures reproducibility with random_state=42

```
In [24]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.25, random_stat
In [25]:
         X_train.shape
         (22, 1)
Out[25]:
In [26]:
         X_test.shape
         (8, 1)
Out[26]:
In [27]:
         Y_train.shape
Out[27]:
In [28]:
         Y_test.shape
```

Out[28]: (8,)

STANDARDIZATION

The code initializes a StandardScaler to normalize data. It fits and transforms X_train, scaling its features to zero mean and unit variance, and applies the same transformation to X_test.

```
from sklearn.preprocessing import StandardScaler
In [30]:
         scaler = StandardScaler()
In [32]:
         X_train = scaler.fit_transform(X_train)
In [34]: X_test = scaler.transform(X_test)
         X_test
         C:\Users\Nishita Bala\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarnin
         g: X does not have valid feature names, but StandardScaler was fitted with feature
         names
           warnings.warn(
         array([[-1.15872417],
Out[34]:
                [-1.81577634],
                [-1.35444184],
                [-1.759857],
                 [-2.0534335],
                [-1.98353433],
                [-1.06086534],
                [-1.28454267]])
```

APPLY LINEAR REGRESSION

The code imports the LinearRegression model from sklearn.linear_model, initializes it with n_jobs=-1 for parallel processing, and fits the model to training data X_train and Y_train.

```
from sklearn.linear_model import LinearRegression
In [35]:
         regression = LinearRegression(n_jobs = -1)
In [38]:
In [39]:
         regression.fit(X train, Y train)
Out[39]:
                LinearRegression
         LinearRegression(n_jobs=-1)
         print("Coefficient or slope (Beta1):",regression.coef )
In [42]:
         print("Intercept (Beta0):", regression.intercept )
         Coefficient or slope (Beta1): [25063.1519945]
         Intercept (Beta0): 70417.40909090909
         PLOT TRAINING DATA PLOT BEST FIT LINE
In [44]:
         plt.scatter(X_train,Y_train)
         plt.plot(X_train, regression.predict(X_train))
         [<matplotlib.lines.Line2D at 0x2485d2d3590>]
Out[44]:
```


PREDICTION FOR TEST DATA

PERFORMANCE MATRICS

Root Mean Square Error 62027.40349267223

```
In [69]: from sklearn.metrics import mean_absolute_error, mean_squared_error
In [70]: mse = mean_squared_error(Y_test,Y_pred)
    mae = mean_absolute_error(Y_test,Y_pred)
    rmse = np.sqrt(mse)

    print("Mean Square Error",mse)
    print("Mean Absolute",mae)
    print("Root Mean Square Error",rmse)

Mean Square Error 3847398784.0427675
    Mean Absolute 60020.58584715701
```