EECS 114: Engineering Data Structures and Algorithms Lecture 1

Instructor: Ryan Rusich

E-mail: rusichr@uci.edu

Office: EH 2204

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Course Administration

Course web page

https://piazza.com/uci/fall2015/eecs114/home

- o Syllabus
- Class Forum
- Assignments & Hws (password protected)
- o Labs
- Submission Links
- Lecture Slides
- o General info

Course communication

- Piazza (announcements and class forum)
- Dropbox (confirmation e-mail sent)
- EEE Mailing list (announcements sparingly)

Course Textbook

Introduction to Algorithms, 3rd Edition

by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Code Graded on EECS Servers

- Log into the server
 - Terminal with SSH protocol (secure shell)
 - o EECS Linux servers
 - zuma.eecs.uci.edu
 - crystalcove.eecs.uci.edu
 - o User name, password

NOTE: Programs that do not compile will NOT be graded.

Java Compilation

- Programming assignments should be completed in Java
- To compile a file into a class file

```
javac file.java
```

• To execute a class file

```
java file.class
```

• Java documentation available at http://java.sun.com/

What is an Algorithm?

• An algorithm

- Takes an input (a value or set of values)
- Produces an output (a value or set of values)
- Terminates
- Output satisfies some correctness property
 (e.g., the output of a sorting algorithm is sorted)
- An **algorithm** is a step-by-step procedure of unambiguous instructions for solving a problem in a finite amount of time.

Why take this class?

- Fundamental cross cutting across all areas of computer science
- Analysis aspect need to know how long an algorithm takes to execute (will your code work with 1 million entries, 1 billion?), how to classify the difficult of problems
- Provides many solutions for a given problems
- Many applications of a given solutions

Other Reasons

- When unemployment is UP, you need to be competitive.
- Interviewers for CS, CE, SE jobs typically ask algorithms questions.
- Why?
 - Easy to ask
 - Consider knowledge important in the work force
 - Common language to communicate in computer science

Example Algorithm: Sorting n integers

- Problem statement:
 - o Input: An array $A = \{a_1, a_2, ..., a_n\}$
 - Output: An array A'= $\{a'_1, a'_2, ..., a'_n\}$ such that $a_i \le a_{i+1}$ for $1 \le i < n$.
- Many different possible algorithms to solve this problem
 - Different algorithms can have very different runtimes
 - Important to understand behavior of algorithm (can it handle large inputs)?

Analysis of Execution Time

- Use algorithm analysis to characterize behavior of algorithms
- Assumptions:
 - RAM (random access memory) model all memory accesses are constant time
 - Sequential instruction execution (single processor)
 - Basic instructions are constant time (add, multiple, divide, subtract, compares, ...)

Algorithm Runtime

- Could measure it, but want a formula
 T(n) where n is the problem size so we
 can predict it
- Want to factor out machine details as scaling factors
- Worst case, best case, average case

Algorithm Runtime

search(A, key)

- 1. for $i \leftarrow 1$ to length[A]
- 2. if A[i]=key
- 3. then return i

Searches for key in array A and returns the index of key

Best Case Algorithm Runtime

search(A, key)		cost	times
1.	for $i \leftarrow 1$ to length[A]	c_{1}	1
2.	if A[i]=key	C_2	1
3.	then return i	C_3	1

$$T(n)=c_1+c_2+c_3$$

Worst Case Algorithm Runtime

search(A, key)		cost	times
1. 1	for $i \leftarrow 1$ to $length[A]$	c_{1}	n
2.	if A[i]=key	C_2	n
3.	then return i	C_3	1

$$T(n) = n(c_1+c_2)+c_3$$

Average Case Algorithm Runtime

search(A, key)		cost	times
1.	for $i \leftarrow 1$ to $length[A]$	$c_{\scriptscriptstyle 1}$	n/2
2.	if A[i]=key	C_2	n/2
3.	then return i	C_3	1

$$T(n) = n/2(c_1+c_2)+c_3$$

Asymptotic Notation

- The coefficients $c_1, c_2,...$ depend on details of the machine
- Typically we just care about how fast the runtime grows with increasing input size
 - o Coefficients aren't important
 - Lower order terms aren't important

Big-O Notation

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for $n \ge n_0$.
- Informally, if f(n) is O(g(n)), f(n) grows no faster than g(n)

Big-O Illustrated

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that:

$$f(n) \le cg(n)$$
 for $n \ge n_0$

Big-O Notation for Polynomials

- If f(n) is a polynomial, then f(n) is O(n^d) where d is the polynomial degree of f(n)
 - Drop lower-order terms
 - Drop constant factors
- Example
 - $\circ 3n^2 + 2n \text{ is } O(n^2)$

Other Notations

- big-Omega (lower bound)
 - o f(n) is $\Omega(g(n))$ if there are constants c>0 and $n_0 \ge 1$ such that $f(n) \ge cg(n)$ for $n \ge n_0$
- big-Theta (tight bound)
 - o f(n) is $\Theta(g(n))$ if there are constants c>0, c'>0, and $n_0 \ge 1$ such that $cg(n) \le f(n) \le c' g(n)$ for $n \ge n_0$
- little-oh (strict upper bound)
 - o f(n) is o(g(n)) if for any constant c>0 there is a constant $n_0 \ge 0$ such that $f(n) \le cg(n)$ for $n \ge n_0$
- little-omega (strict lower bound)
 - o f(n) is $\omega(g(n))$ if for any constant c>0 there is a constant $n_0 \ge 0$ such that $f(n) \ge cg(n)$ for $n \ge n_0$