

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

La función $F(x) = x^5$ es una primitiva de $f(x) = 5x^4$ ya que $F'(x) = 5x^4 = f(x)$

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

La función
$$F(x) = x^5$$
 es una primitiva de $f(x) = 5x^4$ ya que $F'(x) = 5x^4 = f(x)$

La función
$$G(x) = x^5 + 4$$
 también es una primitiva de $f(x) = 5x^4$ ya que $G'(x) = 5x^4 = f(x)$

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

La función
$$F(x) = x^5$$
 es una primitiva de $f(x) = 5x^4$ ya que $F'(x) = 5x^4 = f(x)$

La función
$$G(x) = x^5 + 4$$
 también es una primitiva de $f(x) = 5x^4$ ya que $G'(x) = 5x^4 = f(x)$

Lo mismo ocurrirá para cualquier función del tipo $H(x) = x^5 + C$, siendo C una constante, ya que la derivada de una constante es cero.

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

La función $F(x) = x^5$ es una primitiva de $f(x) = 5x^4$ ya que $F'(x) = 5x^4 = f(x)$

La función $G(x) = x^5 + 4$ también es una primitiva de $f(x) = 5x^4$ ya que $G'(x) = 5x^4 = f(x)$

Lo mismo ocurrirá para cualquier función del tipo $H(x) = x^5 + C$, siendo C una constante, ya que la derivada de una constante es cero.

Primitivas de una función

Si la función F(x) es una primitiva de otra función f(x), cualquier otra función de la forma F(x) + C, donde $C \in \mathbb{R}$, es primitiva de f(x).

Primitiva de una función

Una función F(x) es primitiva de otra función f(x) si y sólo si F'(x) = f(x)

La función $F(x) = x^5$ es una primitiva de $f(x) = 5x^4$ ya que $F'(x) = 5x^4 = f(x)$

La función $G(x) = x^5 + 4$ también es una primitiva de $f(x) = 5x^4$ ya que $G'(x) = 5x^4 = f(x)$

Lo mismo ocurrirá para cualquier función del tipo $H(x) = x^5 + C$, siendo C una constante, ya que la derivada de una constante es cero.

Primitivas de una función

Si la función F(x) es una primitiva de otra función f(x), cualquier otra función de la forma F(x) + C, donde $C \in \mathbb{R}$, es primitiva de f(x).

Si la función F(x) es una primitiva de otra función f(x), cualquier otra función primitiva de f(x) es de la forma F(x) + C, donde $C \in \mathbb{R}$

Integral de una función

La integral de una función f(x) es el conjunto de todas sus primitivas y se representa como $\int f(x) dx$.

Esta expresión se lee de la siguiente forma: «Integral de f(x) diferencial de x»

Integral de una función

La integral de una función f(x) es el conjunto de todas sus primitivas y se representa como $\int f(x) dx$.

Esta expresión se lee de la siguiente forma: «Integral de f(x) diferencial de x»

Por lo tanto, si F(x) es una primitiva de f(x) entonces:

$$\int f(x)\,dx=F(x)+C$$

donde C es la constante de integración.

Propiedades de la integral

Integral de una función

La integral de una función f(x) es el conjunto de todas sus primitivas y se representa como $\int f(x) dx$.

Esta expresión se lee de la siguiente forma: «Integral de f(x) diferencial de x»

Por lo tanto, si F(x) es una primitiva de f(x) entonces:

$$\int f(x)\,dx=F(x)+C$$

donde C es la constante de integración.

Propiedades de la integral

1.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

Integral de una función

La integral de una función f(x) es el conjunto de todas sus primitivas y se representa como $\int f(x) dx$.

Esta expresión se lee de la siguiente forma: «Integral de f(x) diferencial de x»

Por lo tanto, si F(x) es una primitiva de f(x) entonces:

$$\int f(x)\,dx = F(x) + C$$

donde C es la constante de integración.

Propiedades de la integral

1.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$2. \int [k \cdot f(x)] dx = k \cdot \int f(x) dx$$

INTEGRALES

Ejemplo

Resuelve las siguientes integrales

a)
$$\int (5x^4 + 2x) dx$$

b)
$$\int 3e^x dx$$

b)
$$\int 3e^x dx$$

Integral de la función constante

$$\int k\,dx = kx + C$$

Integral de la función constante

$$\int k\,dx=kx+C$$

Integral funciones potenciales

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int f'(x) \cdot [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C \qquad n \neq -1$$

Integral de la función constante

$$\int k\,dx = kx + C$$

Integral funciones potenciales

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int f'(x) \cdot [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C \qquad n \neq -1$$

Integral del tipo logarítmico

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

Integral de la función constante

$$\int k\,dx = kx + C$$

Integral funciones potenciales

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int f'(x) \cdot [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C \qquad n \neq -1$$

Integral del tipo logarítmico

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

Integral de las funciones exponenciales

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \qquad \int f'(x) \cdot a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + C$$
$$\int e^{x} dx = e^{x} + C \qquad \int f'(x) \cdot e^{f(x)} dx = e^{f(x)} + C$$

Integral de las funciones trigonométricas

$$\int \operatorname{sen} x \, dx = -\cos x + C \qquad \int f'(x) \cdot \operatorname{sen} f(x) \, dx = -\cos f(x) + C$$

Integral de las funciones trigonométricas

$$\int \operatorname{sen} x \, dx = -\cos x + C \qquad \int f'(x) \cdot \operatorname{sen} f(x) \, dx = -\cos f(x) + C$$

$$\int \cos x \, dx = \operatorname{sen} x + C \qquad \int f'(x) \cdot \cos f(x) \, dx = \operatorname{sen} f(x) + C$$

Integral de las funciones trigonométricas

$$\int \operatorname{sen} x \, dx = -\cos x + C \qquad \int f'(x) \cdot \operatorname{sen} f(x) \, dx = -\cos f(x) + C$$

$$\int \cos x \, dx = \operatorname{sen} x + C \qquad \int f'(x) \cdot \cos f(x) \, dx = \operatorname{sen} f(x) + C$$

$$\int (1 + \operatorname{tg}^2) x \, dx = \operatorname{tg} x + C \qquad \int f'(x) \cdot (1 + \operatorname{tg}^2 f(x)) \, dx = \operatorname{tg} f(x) + C$$

Integral de las funciones trigonométricas

$$\int \operatorname{sen} x \, dx = -\cos x + C \qquad \int f'(x) \cdot \operatorname{sen} f(x) \, dx = -\cos f(x) + C$$

$$\int \cos x \, dx = \operatorname{sen} x + C \qquad \int f'(x) \cdot \cos f(x) \, dx = \operatorname{sen} f(x) + C$$

$$\int (1 + \operatorname{tg}^2) x \, dx = \operatorname{tg} x + C \qquad \int f'(x) \cdot (1 + \operatorname{tg}^2 f(x)) \, dx = \operatorname{tg} f(x) + C$$

$$\int \frac{1}{\cos^2 x} \, dx = \operatorname{tg} x + C \qquad \int \frac{f'(x)}{\cos^2 f(x)} \, dx = \operatorname{tg} f(x) + C$$

INTEGRALES

Ejemplo

Calcular las siguientes integrales:

a)
$$\int x^5 dx$$

c)
$$\int \frac{1}{x^3} dx$$

e)
$$\int 6x \cdot (3x^2 - 5)^4 dx$$

g)
$$\int \frac{5x}{1-2x^2} dx$$

i)
$$\int 2^x dx$$

k)
$$\int x^2 \cdot e^{x^3+2} dx$$

m)
$$\int \cos(5x+1) dx$$

$$\tilde{n}) \int x \cdot (1 + tg^2(1 - x^2)) dx$$

b)
$$\int \sqrt[4]{x} \, dx$$

d)
$$\int \left(x^2 - \frac{1}{2x^2}\right) dx$$

f)
$$\int x^3 \cdot (3x^4 - 2)^3 dx$$

$$h) \int \frac{5x}{(1-2x^2)^3} dx$$

$$j) \int e^{2x} dx$$

$$1) \int 2^{\frac{x}{3}} dx$$

n)
$$\int x^2 \cdot \operatorname{sen}(2x^3 + 1) \, dx$$

o)
$$\int \sin^2 x \cdot \cos x \, dx$$

Regla de Barrow

Si f(x) es continua en el intervalo [a,b], y F(x) es una primitiva de f(x), entonces:

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

Regla de Barrow

Si f(x) es continua en el intervalo [a,b], y F(x) es una primitiva de f(x), entonces:

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

Para calcular $\int_a^b f(x) dx$, siendo f(x) continua en el intervalo [a,b] procederemos de la siguiente forma:

1. Resolveremos la integral como una integral definida para calcular F(x) que es una primitiva de f(x).

Regla de Barrow

Si f(x) es continua en el intervalo [a,b], y F(x) es una primitiva de f(x), entonces:

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

Para calcular $\int_a^b f(x) dx$, siendo f(x) continua en el intervalo [a,b] procederemos de la siguiente forma:

- 1. Resolveremos la integral como una integral definida para calcular F(x) que es una primitiva de f(x).
- 2. Calcularemos los valores de esta función en a y b: F(a) y F(b).

Regla de Barrow

Si f(x) es continua en el intervalo [a,b], y F(x) es una primitiva de f(x), entonces:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Para calcular $\int_a^b f(x) dx$, siendo f(x) continua en el intervalo [a,b] procederemos de la siguiente forma:

- 1. Resolveremos la integral como una integral definida para calcular F(x) que es una primitiva de f(x).
- 2. Calcularemos los valores de esta función en a y b: F(a) y F(b).
- 3. Hallaremos la diferencia entre estos dos valores que será el valor de la integral definida.

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Ejemplo

Calcular las siguiente integrales definidas:

a)
$$\int_{1}^{5} (-2x^2 + x - 1) dx$$
.

b)
$$\int_{-2}^{2} (2x^3 - 4x + 3) dx$$
.

$$c) \quad \int_0^e \frac{3x}{x^2 + 1} \, dx.$$