- (5) Um número inteiro n é simpático quando existem inteiros positivos a, b e c tais que a < b < c e $n = a^2 + b^2 c^2$. Por exemplo, os números 1 e 2 são simpáticos, pois $1 = 4^2 + 7^2 8^2$ e $2 = 5^2 + 11^2 12^2$.
- (a) Verifique que $(3x+1)^2+(4x+2)^2-(5x+2)^2$ é igual a 2x+1, qualquer que seja x.

$$(3x+1)^{2} = 9x^{2} + 6x + 1$$

$$(4x+2)^{2} = 36x^{2} + 36x + 4 + 6x^{2}(9+36-25) + x(6+16-20) + (1+4-4)$$

$$(5x+2)^{2} = 25x^{2} + 20x + 4 = x^{2} \cdot 0 + x \cdot z + 1 = 2x + 1.$$

(b) Encontre números inteiros m e n tais que $(3x-m)^2+(4x-n)^2-(5x-5)^2=2x$, qualquer que seja x.

$$(3x-m)^{2} = 9x^{2} - 6mx + m^{2}$$

$$(4x-h)^{2} = 36x^{2} - 8nx + n^{2}$$

$$(5x-5)^{2} = 35x^{2} - 50x + 25$$

=
$$\chi(-6m-8n+50) + (m^2+n^2-25) = 2x + 0$$

 $logo -6m-8n+50 = z = 73m + 4n = 24$
e $m^2+n^2 = 25$
 $solmo5: m= 4 e n=3, for$
 $textotiva e erro. OBS: Da fra Faur por substituição.$

(c) Mostre que o número 4 é simpático.

Seguindo a timba de (B) pora
$$2x=4=7x=2$$
, encontramos $3x-4=3\cdot2-4=2$, $4x-3=4\cdot2-3=5$ e $5x-5=5\cdot2-5=5$.
Logo: $2^2+5^2-5^2=2\cdot2=4$ e fortanto 4 é 5 impátio.

(d) Mostre que todos os números inteiros positivos são simpáticos.

Os mineros inteiros positivos con sus impores on ous pores. Se forem impores, igude a 2x+1 c enastre a, b e c pela substituiças de x na tórmula de A. Andogamente aos pores, igudando a 2x e fagundo como em C.