Heat Engine Analysis

Wing-Ho Ko wko1@swarthmore.edu

Outline

- 1. Heat engine analysis
- 2. (?) Refrigerators and heat pump

December 6, 2019

1. Heat engine analysis

December 6, 2019 3

Energy-transfer diagram and relevant quantities

- T_H = temperature of hot reservoir
- T_C = temperature of cold reservoir
- Q_H = heat absorbed from hot reservoir
- Q_C = heat released to cold reservoir
- $W_{\rm out}$ = useful work output

 *Q_H , Q_C , and $W_{\rm out}$ are values **per cycle**, and are all taken to be **positive**

First law of thermodynamics and thermal efficiency

• 1st law of thermodynamics:

$$W_{\rm out} = Q_H - Q_C$$

• Thermal efficiency:

$$\eta = \frac{W_{
m out}}{Q_H}$$

Strategy for solving ideal-gas heat engine problems

- 1. Visualize the situation using a p-V diagram
- 2. Obtain p, V, n, T of the ideal gas at one point in the cycle
- 3. Use the ideal gas law and knowledge of specific processes to obtain p, V, T at the beginning and the end of each process
- 4. Compute W, Q, and ΔE_{th} for each process. Check for consistency
- 5. Combine the results to obtain Q_H , Q_C , and $W_{\rm out}$
- 6. Compute the thermal efficiency η if asked

Summary: monoatomic ideal gas processes

Process	Definition	W	Q	$\Delta E_{ m th}$
Isochoric	V = const.	0	$\frac{3}{2} nR\Delta T$	$\frac{3}{2} nR\Delta T$
Isobaric	p = const.	$-p\Delta V (= -nR\Delta T)$	$\frac{5}{2} nR\Delta T$	$\frac{3}{2} nR\Delta T$
Isothermal	T = const.	$-nRT \ln(V_f/V_i)$	$nRT \ln(V_f/V_i)$	0
Adiabatic	Q = 0 [*]	$\frac{3}{2}(p_f V_f - p_i V_i)$	0	$\frac{3}{2}(p_f V_f - p_i V_i)$

^{*} Consequences: $pV^{\gamma} = \text{const.}$ and $TV^{\gamma-1} = \text{const.}$ $(\gamma = 5/3)$

Setup of our heat engine

1 mole of monoatomic gas is placed in a sealed container. The container is initially at $p_1=1$ atm (=101 kPa) and $T_1=300$ K. The gas works at a heat engine with the following cycle:

- i. The gas undergoes adiabatic compression until it reaches $p_2=3$ atm
- ii. The gas undergoes isobaric heating until it reaches $T_3=600~\mathrm{K}$
- iii. The gas expands isothermally until its volume returns to the initial
- iv. The gas undergoes isochoric cooling until pressure returns to 1 atm

Step 1: draw the p-V diagram that depict the cycle

Step 1: visualize with p-V diagram

Step 2: find p, V, n, T of initial state

• Given:

$$n=1$$
 mole $p_1=1$ atm $=101$ kPa

$$T_1 = 300 \text{ K}$$

• Want:

$$V_1 = ???$$

Step 3: find p, V, T at endpoints of processes

- $p_4 = ???$
- $V_3 = ???$
- $V_2 = ???$
- $T_2 = ???$

Step 4: compute W, Q, and ΔE_{th}

Stage	W	Q	$\Delta E_{ m th}$
(i)			
(ii)			
(iii)			
(iv)			

Step 4': check for consistency

Step 5: compute W_{out} , Q_H , and Q_C

Stage	W	Q	$\Delta E_{ m th}$
(i)			
(ii)			
(iii)			
(iv)			

$$W_{\text{out}} = ???, Q_H = ???, Q_C = ???$$

Step 6: compute η

2. Refrigerators and heat pumps

December 6, 2019 16

Heat engine in reverse: refrigerators and heat pumps

- Refrigerators remove heat from the cold reservoir
- Heat pumps deposit heat into the hot reservoir
- Both refrigerators and heat pumps operate in cycles, and their energytransfer diagrams look the same

A first glimpse of the second law of thermodynamics

- One classic formulation of the second law of thermodynamics is that heat cannot spontaneously flow from a cold object to a warm object
- Hence, both refrigerators and heat pumps require external work input to operate

Coefficient of performance *K*

 The performance of refrigerators can be assessed by the coefficient of performance K:

$$K = \frac{Q_{\rm C}}{W_{\rm in}}$$

• As with heat engine efficiency η , we want to know if there are limits to K

Your turn: Coefficient of performance K

Rank the following heat engines by coefficients of performance, from largest to smallest

A.
$$(II) = (III) > (I) = (IV)$$

B.
$$(III) > (II) = (IV) > (I)$$

C.
$$(IV) > (III) > (II) = (I)$$

D.
$$(I) = (II) > (III) > (IV)$$

Refrigerators from ideal gas processes

- A refrigerator has to **remove** heat from cold reservoir and **deposit** heat into hot reservoir. Thus...
 - The refrigerator may need to reach $T > T_{\rm H}$ and $T < T_{\rm C}$ for heat transfer to happen
 - To do so the refrigerator has to rely on adiabatic processes

Your turn: refrigerator analysis—reverse Brayton cycle

A refrigerator extracts heat from a cold reservoir at 200 K and exhaust it to a hot reservoir at 300 K. It does so by running the reverse Brayton cycle (adiabatic compression \rightarrow isobaric cooling \rightarrow adiabatic expansion \rightarrow isobaric heating) between 1 atm and 4 atm, using 1 mole of helium as working substance.

- (a) Sketch the p-V diagram that depicts the cycle. Indicate on the diagram instants when $T_{\rm C}$, $T_{\rm H}$, $T_{\rm min}$, and $T_{\rm max}$ are attained.
- (b) Determine the highest temperature $T_{\rm max}$ and the lowest temperature $T_{\rm min}$ that the substance would reach during a cycle