数学分析笔记

rogeryoungh

2023年12月13日

目录

第一章	实数集与函数	1
1.1	前言	1
1.2	集合和映射	1
1.3	序关系	2
1.4	代数初步	4
1.5	拓扑初步	5
1.6	数系的构造	7
	1.6.1 自然数	8
	1.6.2 整数	8
	1.6.3 有理数	9
	1.6.4 实数·Dedekind 分割	10
	1.6.5 实数·Cauchy 序列	12
	1.6.6 复数	13
1.7	实数的完备性	13
第二章	数列极限	14
2.1	数列极限的概念	14
2.2	收敛数列的性质	15
	2.2.1 Stolz 定理	17
2.3	数列收敛的判别法则	17
	2.3.1 单调数列	18
	2.3.2 子列	18
	2.3.3 Cauchy 准则	18
2.4	常见数列	20
第三章	函数极限	22
3.1	函数极限的概念	22
3.2	函数极限的性质	23
3.3	函数极限存在的条件	24
3.4	两个重要的极限	24
3.5	无穷小量与无穷大量	25
3.6	常见等价无穷小	26
3.7	函数的连续性	28
	3.7.1 连续函数的性质	28

	3.7.2 初等函数的连续性	. 30
第四章	导数理论	31
4.1	导数的定义	. 31
	4.1.1 高阶导数	. 33
4.2	求导法则	. 33
	4.2.1 基本求导法则	. 34
	4.2.2 基本初等函数导数公式	. 34
4.3	极值定理	. 34
4.4	曲率	. 35
4.5	中值定理	. 35
	4.5.1 Rolle 定理	
	4.5.2 Lagrange 定理	
	4.5.3 Cauchy 中值定理	
	4.5.4 凹凸性	
4.6	L'Hospital 法则	
4.7	Taylor 公式	
4.1	4.7.1 Peano 型余项	
	4.7.2 Lagrange 型余项	
	4.7.2 Lagrange 至示项	
	4.7.5 Cauchy 至示项	. 59
第五章	积分理论	41
5.1	不定积分	. 41
	5.1.1 基本不定积分表	. 41
5.2	定积分	. 42
	5.2.1 可积条件	. 43
5.3	不定积分	. 45
	5.3.1 分项积分法	. 45
	5.3.2 分部积分法	. 46
	5.3.3 三角换元积分法	. 46
	5.3.4 欧拉替换法	. 48
5.4	定积分的基本性质	. 48
	5.4.1 中值定理	. 48
	5.4.2 变量替换法	. 50
5.5	反常积分	. 51
	5.5.1 收敛判别法	
5.6	常见的积分	
0.0		. 02
第六章	级数理论	54
6.1	数项级数的敛散性	. 54
6.2	正项级数的敛散性	. 54
	6.2.1 常见级数的收敛性	. 56
6.3	一般项级数收敛判别法	. 57
	6.3.1 交错级数	. 57

6.4	函数项级数的一致收敛
6.5	幂级数初步 5.
6.6	求和函数的一些方法 55
	6.6.1 多项式系数
	6.6.2 存在分母
6.7	Fourier 级数
第七章	常微分方程 6
7.1	基本概念
7.2	变量分离微分方程
7.3	一阶线性微分方程
,,,,	7.3.1 各种变形
	7.3.2 可降阶的二阶微分方程
7.4	恰当微分方程
7.5	齐次线性微分方程
	7.5.1 常系数
	7.5.2 常见二阶微分方程
7.6	Gronwall 定理
,,,	
第八章	多变量理论 68
8.1	多变量极限
8.2	多变量导数 70
	8.2.1 隐函数
8.3	偏导数的应用
	8.3.1 链式法则
	8.3.2 微分中值定理
	8.3.3 空间几何基础
	8.3.4 切线与法平面
8.4	极值问题 7.
	8.4.1 无条件极值
	8.4.2 条件极值问题
8.5	二重积分 7-
	8.5.1 曲面面积
8.6	曲线和曲面积分
	8.6.1 第一型曲线积分 7
	8.6.2 第一型曲面积分 7
	8.6.3 第二型曲线积分 7
	8.6.4 第二型曲面积分 7
	8.6.5 Green 公式
	8.6.6 Gauss 公式
	8.6.7 Stokes 公式
	8.6.8 旋转体
8 7	场 论

	8.7.1 向量场	82
	8.7.2 向量场的散度	82
	8.7.3 旋度	83
第九章	概率论	84
9.1	随机事件与概率	84
	9.1.1 摸球不放回模型	85
	9.1.2 摸球放回模型	86
9.2	一维随机变量及其分布	86
	9.2.1 常见随机分布	87
9.3	多维随机变量	88
	9.3.1 常见的二维分布	89
	9.3.2 二维随机变量的独立性	89
9.4	随机变量的数字特征	91
9.5	大数定律与中心极限定理	91
9.6	数理统计	92
	9.6.1 三大分布	93
	9.6.2 参数的点估计	94
第十章	习题	95
10.1	函数、极限、连续	95
10.2	一元微分学	.00
10.3	一元积分学	.08
	常微分方程 1	.15
10.5	无穷级数 1	.16
	The North All the man North	17

第一章 实数集与函数

我初次用的书是华师的数分,现在发觉基础部分有相当多的细节。后参考自李逸的《基本分析讲义》。 若无额外说明,皆在 ℝ 下。仍有很多术语不曾了解。

1.1 前言

实数理论确实很难以理解。

我初次接触华师数分时,实数看的云里雾里,不知道为什么要罗列一大堆定理,索性直接跳过,读的倒也算通顺。初入门径后,又读了几本其他的书,才感觉到实数理论的意义;但是感觉公理又多又乱,在脑子里缠起来了。继续读下去,观点再高了一点,终于敢说懂了一点。

我尝试讲一讲。按照 Bourbaki 的观点,序结构连同拓扑和代数结构一道组成了数学结构的三大母体。 具体的说,如果只有一个光秃秃的集合,我们做不了太多事情。为了在这个集合上展开进一步的讨论,我 们需要对它装备一些结构: ¹

- 1. 序结构: 元素和元素的排序, 比如实数上的大小关系、集合的包含关系。
- 2. 代数结构:元素和元素的运算,比如加法和乘法。
- 3. 拓扑结构: 子集和子集之间的关系, 比如点集的邻近性、敛散性、连续性。

学习实数,主要是抓住这三个方面的性质。接触了更多具体的例子,会对抽象的定义有更多的感悟。

1.2 集合和映射

集合的交并补是熟知的。

定义有序对为 $(a,b) := \{\{a\}, \{a,b\}\}$, 其中 a 称为有序对的第一坐标, 而 b 称为第二坐标。特殊的, $(a,a) = \{a\}$ 。

定义集合的笛卡尔 Cartesian 乘积为

$$A \times B := \{(a, b) \mid a \in A \coprod b \in B\}$$

一般 $A \times B \neq B \times A$ 。同样可以推广到多个集合

$$\prod X_i := X_1 \times X_2 \times \cdots \times X_n = (X_1 \times \cdots \times X_{n-1}) \times X_n$$

其元素 x 是多层嵌套, 我们可以简记为

$$x = (\cdots (x_1, x_2), x_3), \cdots, x_n) = (x_1, \cdots, x_n)$$

称 $x_i := \operatorname{pr}_i(x)$ 为 x 的第 i 个分量,pr 是投影映射。当所有 X_i 都等于 X 时,上述乘积记为 X^n 。 设 C 和 D 为两个给定的集合。

¹知乎: 如何理解数学中的序结构, 代数结构和拓扑结构?

定义 1.2.1 ◊ 赋值法则

设 $R \in C \times D$ 的一个子集, 若满足当 $(c, d_1) \in R$ 且 $(c, d_2) \in R \Rightarrow d_1 = d_2$, 称 R 是一个赋值法则。

赋值法则的定义域 Domain 和像域 Image Set 约定如下

$$dom(R) := \{c \in C \mid \exists d \in D, (c, d) \in R\}$$

$$\operatorname{Im}(R) := \{ d \in D \mid \exists c \in C, (c, d) \in R \}$$

定义 1.2.2

设 R 为一个赋值法则,B 为满足 $\mathrm{Im}(R)\subseteq B$ 的一个集合,记二元对 (R,B) 为一个映射,B 称为值域。定义 f 的定义域 A 和像域为 R 的定义域和像域。记作

$$f: A \to B, a \mapsto f(a)$$

称 f 的图为

$$graph(f) := \{(a, f(a)) \in A \times B \mid a \in A\}$$

对任意给定的 A 的子集 A_0 ,定义 f 在 A_0 上的限制为映射

$$f|_{A_0} = f: A_0 \to B$$

称映射 f 和 g 的复合为

$$g \circ f : A \to C, a \mapsto g(f(a))$$

显然 $g \circ f$ 仅当 $Im(f) \subseteq dom(g)$ 时有定义。 $f \circ g$ 一般与 $g \circ f$ 不相等。

- 若映射 f 满足 $f(a_1) = f(a_2) \Rightarrow a_1, a_2, \, \,$ 称 f 为单射。
- 若映射 f 满足对任意的 $b \in B$ 存在 $a \in A$ 满足 f(a) = b,称 f 为满射。
- 若映射 f 满足 f 既是单射又是满射,称 f 为双射。

若 f 为双射, 我们定义它的逆映射 f^{-1} 为

$$f^{-1}(b) = a \Leftrightarrow f(a) = b$$

映射 * : $X \times X \to X$ 通常也称为集合 X 上的运算,此时我们把 *(x,y) 记做 x*y。对 X 中的非空子集定义

$$A * B := *(a \times B) = \{A * b \mid a \in A, b \in B\}$$

如果映射定义中的 B 是一个数域,则把映射称为函数。

1.3 序关系

称集合 $S \times S$ 的子集 \odot 为关系。把 $(x,y) \in \odot$ 记作 $x \odot y$ 。

定义 1.3.1 ◊ 等价关系

若集合 S 上的关系 \simeq 满足

• 自反性: 对任意的 $x \in S$ 有 $x \simeq x$ 。

• 对称性: 若 $x \simeq y$ 则 $y \simeq x$ 。

• 传递性: 若 $x \simeq y$ 且 $y \simeq z$ 则 $x \simeq z$ 。

则称 ~ 为等价关系, 一般记作 ~ 或 =。

记 $x \in A$ 的等价类:

 $[x] \coloneqq \{ y \in A \mid y \sim x \}$

定义 1.3.2 ◊ 全序关系

若集合 S 上的关系 \preceq 满足

• 反对称性: 若 $x \leq y$ 且 $y \leq x$ 则 x = y。

• 传递性: 若 $x \leq y$ 且 $y \leq z$ 则 $x \leq z$ 。

• 完全性: 对任意的 $x,y \in S$ 要么 $x \leq y$ 要么 $y \leq x$ 。(注意蕴含了自反性 $x \leq x$)。

则称 \leq 为全序关系, (S, \leq) 为全序集。一般用 \leq 来表示全序关系.

对于每一非严格的全序关系 \leq ,定义其对应的严格全序关系 < 为: a < b 等价于 $a \leq b$ 且 $a \neq b$ 。我们对四个关系 <, \leq , >, > 都可以定义全序集。

定义 1.3.3

设全序集 $S' \subseteq S$, 若 $x \in S$ 是:

- S 的最大元: 若不存在 $y \in S$ 使得 x < y, 则称 x 是最大元。
- S' 的上界: 若对于任取的 $x' \in S'$ 满足 $x' \leq x$, 则称 $x \in S'$ 的上界。
- S' 的上确界: 对于任取的 S' 的上界 y 都有 $x \leq y$, 且 x 是 S' 的上界,则称 x 是 S' 的上确界。

类似的可定义全序集的最小元、下界、下确界。上、下确界分别记作 $\sup S'$ 和 $\inf S'$ 。比如取 A = A' = (0,1),其上下确界都不存在。若取 $A = \mathbb{R}$,上下确界存在也不一定在 A' 里面。

定义 1.3.4 ◊ 最小上界性

如果集合 S 的任何非空有上界子集 S' 有最小上界,则称 S 有最小上界性。 换句话说,若任取非空子集 $S' \subseteq S$,若 S' 在 S 内存在上界,那么 S' 在 S 内存在上确界。

例如 $\mathbb{Q} \cap (0, \sqrt{2})$ 是 \mathbb{Q} 的非空子集,其上界 $\sqrt{2}$ 并不在 \mathbb{Q} 内。同样的有最小下界性。可以证明,有最小上界性的一定有最大下界性。展开描述即

定理 1.3.5

设 B 是具有最小上界性的集合 S 的子集,则对任意的有下界的 B 都有 $\inf B \in S$ 。

证明 对于每个 B,构造 L 为 B 的下界组成的集合,显然每个 B 中的元素都是 L 的上界。由最小上界性知,存在 $\sup L \in S$ 。

尝试证明 $\inf B = \sup L$ 。

对于任意的 $x \in B$,若 $x < \sup L$,则存在比 $\sup L$ 小的 L 的上界 x,矛盾。故 $x \geqslant \sup L$,即 $\sup L$ 是 B 的下界。

设 B 的下界 x 有 $x > \sup L$, 那么 $x \in L$, 则存在比 $\sup L$ 大的 L 元素,矛盾。故不存在比 $\sup L$ 大的 B 的下界。

综上, B 的下界存在且 $\inf B = \sup L \in S$ 。

1.4 代数初步

首先给出一些性质。

定义 1.4.1

给定集合 A, 设元素 $x,y,z \in A$, 定义如下性质

- 封闭性: 若 A * A ⊆ A, 则称 A 在运算 * 下封闭。
- 结合性: 若 x*(y*z) = (x*y)*z, 则称运算*是结合的。
- 交换性: 若 *x* * *y* = *y* * *x*,则称运算 * 是交换的。
- 单位元 (幺元): 若存在 $e \in A$ 使得 e * x = x * e = x, 则称 e 为 A 上的单位元。
- 逆元 (么元): 若存在 $x^{-1} \in A$ 使得 $x * x^{-1} = x^{-1} * x = e$, 则称 x^{-1} 为 x 在 A 上的逆元。

注意 -x 和 x^{-1} 只是记号,不代表我们定义出了减法和除法运算。

定义 1.4.2 ◊ 群, 半群

给定集合 G 和其上的二元运算 * : $G \times G \rightarrow G$,若:

- 满足结合律, 称为半群。
- 满足单位元、交换性的半群, 称为幺半群、交换半群。
- 每个元素都可逆的幺半群, 称为群。
- 满足交换律的群, 称为交换群 (Abelian 群)。

例 1.4.3

群中单位元和逆元唯一。

证明 设x存在两个逆元 y_1,y_2 ,有

$$y_1 = y_1 * e = y_1 * x * y_2 = e * y_2 = y_2$$

类似的,设存在两个单位元 e_1,e_2 ,有

$$e_1 = e_1 * e_2 = e_2$$

定义 1.4.4 ◊ 环, 域

给定集合 R 和其上的二元运算 (R, +, *), 若:

- 满足 (R,+) 是交换群, (R,*) 是幺半群, 且乘法关于加法满足分配率, 称为环。
- 环 R 中 (R,*) 可交换, 称为交换环。

4

- 除零元外皆可逆的环, 称为除环。
- 交换除环称为域。

1.5 拓扑初步

可以想象开集的基为开区间, 闭集的基为闭区间。

定义 1.5.1 ◊ 拓扑空间

设T是集合X子集的集族:

- (O1) 若 $\emptyset \in \mathcal{T}$ 且 $X \in \mathcal{T}$ 。
- (O2) 若有限个 $U_i \in \mathcal{T}$, 则 $\cap U_i \in \mathcal{T}$ 。
- (O3) 若任意个 $U_{\alpha} \in \mathcal{T}$,则 $\bigcup U_{\alpha} \in \mathcal{T}$ 。

则称 (X,T) 为拓扑空间,其中 T 是此空间的拓扑,T 的元素称为开集。在无歧义的情况下,也称 X 是拓扑空间。

定义 1.5.2 ◊ 邻域

对于空间 X 和空间内一点 $x \in X$

- 1. 若子集 U 包含着某一开集且开集包含着 x, 则称 U 为 x 的邻域。
- 2. 若子集 U 是开集且 $x \in U$, 则称 U 为 x 的开邻域。

定义 1.5.3 ◊ 闭集

对于空间 X, 若其子集 F 满足 X - F 是开集, 则称 F 是闭集。

例 1.5.4

换句话说:

- 1. 任意多开集的交集还是开集,有限个开集的并集还是开集。
- 2. 任意多闭集的交集还是闭集,有限个闭集的并集还是闭集。

定义 1.5.5 ◊ 闭包, 内核

设空间 X 和其子集 A,记

- 1. 所有包含 A 的闭集的交为 A 的闭包 \overline{A} , 即包含 A 的最小闭集, 其中的元素称为 A 的接触点。
- 2. 所有包含 A 的开集的并为 A 的内核 A° , 即包含 A 的最大开集。

定义 1.5.6

对于空间 X 和其子集 A,若

- 1. $\overline{A} = X$ 则称集合 A 稠密于空间 X。
- $2. (\overline{A})^{\circ} = \emptyset$ 则称集合 A 疏(无处稠密)于空间 X。

显然 \mathbb{N} 和 \mathbb{Z} 疏于 \mathbb{R} , \mathbb{Q} 和 $\mathbb{R} - \mathbb{Q}$ 稠密于 \mathbb{R} 。

虽然我们在小学二年级学过无理数的存在性,但我们仍对 ℚ 和 ℝ 性状上的具体区别知之甚少。

定义 1.5.7 ◊ 连通

若拓扑空间 X 不能表示为两个不相交闭集的并,则称 X 是连通空间。其子集 X' 若是连通空间,则称 X' 是连通的。

可以得到 ℝ 是连通的, ℚ 是不连通的。

依定义, 闭区间是 ℝ 内的开集, 其任意数量的交都是闭集。假想一个不断变小的区间列, 一层套一层。

定义 1.5.8 ◊ 闭区间套

给定有限的一列闭区间 $\{I_i = [a_i, b_i]\}$, 若

(1) 其是下降的

$$I_1 \supseteq I_2 \supseteq I_3 \supset \cdots$$

;

(2) 区间长度 $\lim_{n\to\infty} (b_i - a_i) = 0$;

那么称这一列区间是闭缩区间套, 简称区间套。

定义 1.5.9 ◊ 有序域

若域 F 是满足如下条件的有序集

- (1) 当 $x, y, z \in F$ 且 y < z 时, x + y < x + z。
- (2) 如果 $x, y \in F$, 且 x > 0, y > 0, 则 xy > 0。 那么称 F 是一个有序域。

例如 ℚ 是有序域。

定理 1.5.10 ◊ 存在定理

具有最小上界性的有序域 ℝ 存在, 且包容着 ℚ 作为子域。

这个命题的证明较为复杂,是从 $\mathbb Q$ 出发构造 $\mathbb R$,而且其中有很多重要的信息,决定单独一章,这里略过。

定理 1.5.11 ♦ Achimedes 原理

对于 $x, y \in \mathbb{R}$ 且 x > 0,那么必定存在正整数 n,使得 nx > y。

证明 设 $A=\{nx\mid n\in\mathbb{N}^+\}$,若不存在 n 则 y 将是 A 的一个上界,由最小上界性可知 A 的上确界存在。 又因为小于上确界的数 $\sup A-x$ 不是上确界,即存在 $m\in\mathbb{N}^+$ 使得 $\sup A-x< mx$,即 $\sup A<(m+1)x$,矛盾。

故必定存在 n 使得 nx > y。

定义 1.5.12 ◊ 度量空间

称集合 X 的元素为点,若存在 X 上双变量的函数 $d: X \times X \to \mathbb{R}$,满足 $(x, y, z \in R)$

- 对于任意的 x, y 都有 d(x, y) = d(y, x)。
- 对于任意的 z, 都有 $d(x,y) \leq d(x,z) + d(z,y)$ 。

就称 (X,d) 是一个度量空间 (度量空间), 函数 d 称作其上的距离函数。

这里的空间的含义是线性空间。

对于 X 的子集 Y, 定义其距离函数

$$d_Y: Y \times Y \to \mathbb{R}, (y_1, y_2) \mapsto d_Y(y_1, y_2) = d(y_1, y_2)$$

则 (Y, d_Y) 仍是度量空间,称 d_Y 是 d 在 Y 上的诱导度量。 (Y, d_Y) 称作是 (X, d) 的子(度量)空间。

定义 1.5.13 ◊ 稠密性

给定度量空间 (X,d), Y 是 X 的子集。如果对任意的 $x \in X$ 和任意小的 $\varepsilon > 0$, 都存在 $y \in Y$, 使 得 $d(y,x) < \varepsilon$, 我们就称 Y 在 X 中是稠密的。

例 1.5.14

 \mathbb{Q} 在 \mathbb{R} 中稠密: 对于 $x, y \in \mathbb{R}$ 且 x < y, 那么必定存在 $p \in \mathbb{Q}$, 使得 x 。

证明 由 Achimedes 原理,可设存在 $n \in \mathbb{N}^+$ 使得 n(y-x) > 1。 再设存在 $m_1, m_2 \in \mathbb{N}^+$,使得 $m_1 > nx, m_2 > -nx$ 。于是

$$-m_2 < nx < m_1$$

因此存在 $m \in \mathbb{N}^+$ 有 $-m_2 \leqslant m \leqslant m_1$ 使得

$$m-1 \leqslant nx < m \leqslant 1 + nx < ny$$

从而存在 p = m/n 使得 x 。

1.6 数系的构造

直到我读了陶哲轩的《实分析》时,才感到接受了实数理论。实数的定义是公理化的,不是构造性的。 更具体的说,我们不需要知道实数是什么,只需知道这些对象有什么性质,我们就可以抽象的处理它 们。从其他的数学对象出发来构造实数是可能的,有多种多样的模型,只要它们服从所有的公理并正确的 运作,都是满足的。

实数究竟有多少性质? 从自然数开始。

公理 1.6.1 ♦ Peano 公理

若集合 N 和其上的映射 v(n) 满足

(1) $0 \in N_{\circ}$

- (2) 若 $n \in N$, 则 $v(n) \in N$ 。
- (3) 对于任意的 $n \in N$, $v(n) \neq 0$ 。
- (4) 若 $v(m) \neq v(n)$, 则 $m \neq n$ 。
- (5)【归纳原理】设 P(n) 是关于自然数的性质,假设只要 P(n) 为真,则 P(v(n)) 也为真;且 P(0) 为真。那么对 N 中所有的元素 P 都为真。

那么称 N 为自然数,记作 \mathbb{N} , v(n) 称为后继函数。

1.6.1 自然数

设 $m, n \in \mathbb{N}$,定义 \mathbb{N} 上的加法+和乘法·为

$$0+m \coloneqq m, \quad v(n)+m \coloneqq v(n+m)$$

$$0 \cdot m \coloneqq m, \quad v(n) \cdot m \coloneqq n \cdot m + m$$

我们可以利用归纳原理推出我们熟悉的一些性质。

定理 1.6.2 ◊ N 的代数算律

对于 $a,b,c \in \mathbb{N}$ 有

- (1) 加法是结合的和交换的, 且有单位元 0。
- (2) 乘法是结合的和交换的, 且有单位元 1。
- (3) 分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$ 。

定义 1.6.3 ◊ № 的序

设 $m, n \in \mathbb{N}$ 。

- (1) 若存在 $a \in \mathbb{N}$, 使得 n = m + a, 称 m 小于等于 n, 记作 $m \leq n$ 。
- (2) 若 $n \ge m$ 且 $n \ne m$, 则称 m 严格小于 n, 记作 m < n。

可以验证, < 和 ≤ 是 № 上的序关系。

定理 1.6.4 ◊ 加法保序

对于 $a, b \in \mathbb{N}$, 若 a > b, 则 a + c > b + c。

1.6.2 整数

接下来几节,都是记 a,b,c 为当前集合的元素,x,y,z 都是被构造的集合的元素。 为了表达整数,定义二元组 (a,b),其中 $a,b\in\mathbb{N}$ 。记全体二元组的集合为 Z。我们约定

$$(a,b) = (c,d) \Leftrightarrow a+d = b+c$$

因为自然数的序是已定义的,于是定义 Z 上的序关系

$$(a,b) \leqslant (c,d) \Leftrightarrow a+d \leqslant b+c$$

然后是定义 N 上的加法和乘法

$$(a,b) + (c,d) := (a+c,b+d)$$

$$(a,b)\cdot(c,d) := (ac,bd)$$

可以验证, (n,0) 与 n 有相同的性状, 我们可以令其相等, 从而把自然数嵌入到整数内。至此, 我们可以着手验证整数是否满足我们预想的性质。

定理 1.6.5 ◊ ℤ 的代数算律

对于 $x, y, z \in \mathbb{Z}$ 有

- (1) 加法是结合的和交换的, 且有单位元 0, 逆元存在。
- (2) 乘法是结合的和交换的, 且有单位元 1。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 Z 是一个交换环。于是

定理 1.6.6 ◊ ℤ 是有序域

(1) 加法保序: 当 $x, y, z \in \mathbb{Z}$ 且 y < z 时, x + y < x + z。

(2) 乘法保序: 如果 $x, y \in \mathbb{Z}$, 且 x > 0, y > 0, 则 xy > 0。

我们有理由相信,(a,b) 符合我们对整数的一切想象。因此 $Z = \mathbb{Z}$ 。 另外的,定义整数的负运算为 -(a,b) = (b,a),以此定义减法

$$x - y \coloneqq x + (-y)$$

可以验证

$$(a,0) - (b,0) = (a,b) = a - b$$

1.6.3 有理数

类似的,记整数的二元组 (a,b),其中 $a,b \in \mathbb{Z}, b \neq 0$,记全体二元组的集合为 Q。我们约定

$$(a,b) = (c,d) \Leftrightarrow ad = bc$$

因为整数的序是已定义的,于是定义 Q 上的序关系

$$(a,b) \leqslant (c,d) \Leftrightarrow ad \leqslant bc$$

于是定义 Q 上的加法和乘法

$$(a,b) + (c,d) := (ad + bc, b + d)$$

$$(a,b)\cdot(c,d):=(a\cdot c,b\cdot d)$$

定义加法逆元为 -(a,b) := (-a,b)。可以验证,(a,1) 与 a 有相同的性状,我们可以令其相等,从而把整数嵌入到有理数内。

至此,我们可以着手验证有理数是否满足我们预想的性质。

定理 1.6.7 ◊ ℚ 的代数算律

对于 $x, y, z \in \mathbb{Q}$ 有

- (1) 加法是结合的和交换的, 且有单位元 0, 逆元存在。
- (2) 乘法是结合的和交换的,且有单位元 1,非零元逆元存在。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 ◎ 是一个域。

定理 1.6.8 ◊ □ 是有序域

(1) 加法保序: 当 $x, y, z \in \mathbb{Q}$ 且 y < z 时, x + y < x + z。

(2) 乘法保序: 如果 $x, y \in \mathbb{Q}$, 且 x > 0, y > 0, 则 xy > 0。

我们有理由相信,(a,b) 符合我们对有理数的一切想象。因此 $Q = \mathbb{Q}$ 。 另外,定义倒数 $(a,b)^{-1} = (b,a)$,显然 $a,b \neq 0$ 。从而定义除法

$$x/y \coloneqq x \cdot y^{-1}$$

可以验证,

$$(a,1)/(b,1) = (a,b) = a/b$$

1.6.4 实数・Dedekind 分割

定义 1.6.9 ◊ Dedekind 分割

对于给定的空间 S, $A \subset S$, $A' = \mathbb{C}_S A$, 若满足以下三个条件

- (D1) $A \neq \emptyset, A \neq S(A' \neq \emptyset)$;
- (D2) 当 $p \in A, q \in A'$ 时, p < q;
- (D3) 不存在最大数: 任给 $p \in A$, 存在 $q \in A$, 使得 p < q;

则称 A 为 S 的一个分割。

直观的来说, 我们把整个 S 划分成了下组 A 和上组 A'。

记 \mathbb{Q} 上 Dedekind 分割的全体为 R,集合的相等即是 R 上的等价关系,R 上的序关系定义是

$$A \subseteq B \Leftrightarrow A \leqslant B$$

定义加法

$$A + B := \{a + b \mid a \in A, b \in B\}$$

于是可以定义负运算

$$\begin{split} -A &\coloneqq \{s \in \mathbb{Q} \mid \exists r > 0, -s - r \in \mathbb{C}_{\mathbb{Q}} A \} \\ -A &\coloneqq \{s \in \mathbb{Q} \mid \exists r \in \mathbb{C}_{\mathbb{Q}} A, s < -r \} \end{split}$$

然而乘法因为负数的问题,我们需要分类讨论。R 中存在加法单位元 $0^* = \{x \in \mathbb{Q} \mid x \geq 0\}$,对于正实数 $A,B \geq 0^*$,定义乘法

$$A \cdot B := \{ p \in \mathbb{Q} \mid$$
存在 $0 < a \in A,$ 存在 $0 < b \in B, p < ab \}$

同时

$$A \cdot B := \begin{cases} -((-A) \cdot B), & A < 0^*, B \geqslant 0^* \\ -(A \cdot (-B)), & A \geqslant 0^*, B < 0^* \\ -((-A) \cdot (-B)), & A < 0^*, B < 0^* \end{cases}$$

当 $A > 0^*$ 时,定义乘法逆元

$$A^{-1} := \{ s \in \mathbb{Q} \mid \exists r \in \mathbb{C}_{\mathbb{Q}} A, s < r^{-1} \}$$

当 $A < 0^*$ 时,定义乘法逆元为 $A^{-1} := -(-A^{-1})$ 。

至此、我们可以着手验证实数是否满足我们预想的性质。

定理 1.6.10 ◊ ℝ 的代数算律

对于 $x, y, z \in \mathbb{R}$ 有

- (1) 加法是结合的和交换的,且有单位元 0,逆元存在。
- (2) 乘法是结合的和交换的,且有单位元1,非零元逆元存在。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 ℝ 是一个域。

定理 1.6.11 ◊ ℝ 是有序域

(1) 加法保序: 当 $x, y, z \in \mathbb{R}$ 且 y < z 时, x + y < x + z。

(2) 乘法保序: 如果 $x, y \in \mathbb{R}$, 且 x > 0, y > 0, 则 xy > 0。

我们有理由相信,R 符合我们对实数性质的一切想象,从而 $R = \mathbb{R}$ 。

定理 1.6.12 ♦ Dedekind 原理

设 A 为 \mathbb{R} 上的 Dedekind 分割, $A' = \mathbb{C}_{\mathbb{R}} A$, 对于任给的 $a \in A, a' \in A'$, 存在 $r \in \mathbb{R}$ 使得 $a < r \leq a'$ 。

证明 由于 a, a' 也是 \mathbb{Q} 上的分割,下面使用集合的语言。显然 $a' \in A'$ 是 A 的一个上界。构造

$$b = \bigcup_{a \in A} a$$

下证 $a \subset b \subseteq a'$ 。

首先证明 b 是 ℚ 上分割。

- D1: 显然 b 非空,又因为对于任意的 $a\in A, a'\in A'$ 都有 $a\subset a'$,故 $b\subseteq a'$ (注意可取等),即 $b\neq \mathbb{Q}$ 。
- D2:接下来取 $\beta \in b, \beta' \in \mathbb{C}_{\mathbb{O}}b$,于是存在 $a_0 \in A$ 使得 $\beta \in a_0$,此时 $\beta' \notin a_0$ 即 $\beta' \in a_0'$,故 $\beta < \beta'$ 。

• D3: 对于任意的 $\beta_1 \in b$,存在 $a_0 \in b$ 使得 $\beta_1 \in a_0$,此时存在 $\alpha_1 \in a_0$ 使得 $\beta_1 < \alpha_1$ 且 $\alpha_1 \in b$ 。

接下来证明 $b \notin A$ 。假设 $b \in A$ 即存在 a_0 使得 $b = a_0$,但由 D3 总是存在 $b = a_0 \subset a_1$,与 b 是全体并集矛盾。

因此 $b \in A'$, 故 $a \subset b \subseteq a'$ 。

实数和有理数的最基本的一个区别就是有最小上界性。

定理 1.6.13 ◊ 确界原理

 \mathbb{R} 具有最小上界性。即对于 \mathbb{R} 的任何子集 S,若 S 在 \mathbb{R} 内存在上界,那么 S 在 \mathbb{R} 内存在上确界。

证明 设 B' 是 S 全体上界组成的集合,即 $B' = \{x \mid \forall s \in S, x \geq s\}$,令

$$B = \mathbb{C}_{\mathbb{R}}B' = \{x \mid \exists s \in S, x < s\}$$

试证 $B \in \mathbb{R}$ 的一个分割。D1 和 D2 比较显然。显然对于任意的 $b \in B$ 存在 $s \in S$ 使得 x < s,那么总是可以取 $b_2 = \frac{b+s}{2} \in B$ 使 $x < b_2$ 。

由上文所证的 Dedekind 原理知,总存在 $u \in \mathbb{R}(B')$ 使得任取上确界 $b' \in B'$ 使得 $u \leq b'$,故 u 是上确界。

1.6.5 实数·Cauchy 序列

我们试图得到实数,是因为有理数还不足以表示所有的数,比如 $x^2 = 2$ 的解。得到实数和前面的方法有所不同,要复杂的多。

一个有理数上的序列 $\{a_n\}$,是一个从集合 \mathbb{N} 到 \mathbb{Q} 的一个映射,即我们以前说的数列。 对于 \mathbb{Q} 上的无限序列 $\{a_n\}$,若对于任意的 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $j,k \ge N$ 时有

$$d(a_i, a_k) < \varepsilon$$

则称序列 $\{a_n\}$ 为 Cauchy 序列,记作 $LIM(a_n)$ 。记 Cauchy 序列的全体为集合 R。 对于 Cauchy 序列 $LIM(a_n)$, $LIM(b_n)$,若对于任意的 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $n \ge N$ 时有

$$d(a_n, b_n) < \varepsilon$$

则记作 $LIM(a_n) = LIM(b_n)$ 。

定义 R 的序关系,对于实数 x,y,若存在 Cauchy 序列满足 $x=\mathrm{LIM}(a_n),y=\mathrm{LIM}(b_n)$,对于 $n\geqslant 1$ 有 $a_n\leqslant b_n$,则 $\mathrm{LIM}(a_n)\leqslant \mathrm{LIM}(b_n)$ 。

于是定义 R 上的加法和乘法

$$LIM(a_n) + LIM(b_n) := LIM(a_n + b_n)$$

 $LIM(a_n) \cdot LIM(b_n) := LIM(a_nb_n)$

定义负运算 $-LIM(a_n) := LIM(-a_n)$ 。

定义倒数时会因为恼人的 0 出现了一些困难,解决的方法即是把 0 排出。若存在 $c\in\mathbb{Q}$ 满足 c>0 使得 $d(a_n,0)\geqslant c$,则称 $\{a_n\}$ 为限制离开零的序列。若 x 为不为零的实数,则必存在一个限制离开零的 Cauchy 序列 $LIM(a_n)=x$ 。

于是我们可以定义,设x为一个不为零的实数,则存在限制离开零的 Cauchy 序列 $x = LIM(a_n)$,定义倒数为

$$x^{-1} := LIM(a_n^{-1})$$

可以验证,常数 Cauchy 序列 $\{a_n\}$ 与 a 具有相同的性状,因此可以令它们相等,从而使有理数嵌入到实数中。

至此,我们可以着手验证实数是否满足我们预想的性质,在 Dedekind 分割中提过了,这里不再重复。 另外,定义 R 上的 Cauchy 序列,若对于任意的实数 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $j,k \ge N$ 时有

$$d(a_i, a_k) \leqslant \varepsilon$$

可以证明, R 上的 Cauchy 序列与 \mathbb{Q} 上的 Cauchy 序列等价。

若存在实数 L 满足, 存在 N > 0 使得当 $n \ge N$ 时, 都有 $d(a_n, L) \le \varepsilon$, 则 a_n 收敛于 L, 记作

$$\lim_{n \to \infty} a_n = L$$

可以验证

$$LIM(a_n) = \lim_{n \to \infty} a_n$$

1.6.6 复数

记实数的二元组 (a,b), 其中 $a,b \in R$, 记全体二元组的集合为 C。我们约定

$$(a,b) = (c,d) \Leftrightarrow a = b \land c = d$$

复数没有序关系。定义 C 上的加法和乘法

$$(a,b) + (c,d) := (a+c,b+d)$$
$$(a,b) \cdot (c,d) := (ac-bd,ad+bc)$$

定义加法逆元为 $-(a,b) \coloneqq (-a,-b)$ 。可以验证,(a,0) 与 a 具相同的性状,我们可以令其相等,从而把实数嵌入到复数域内。

定义非零数的乘法逆元 $(a,b)^{-1} \coloneqq \left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right)$ 。

1.7 实数的完备性

如上所见,实数可以有多种完全不同的定义。换句话说我们可以承认一些公理,使得些都是等价的公理,以下举出几个例子。

- R0 Dedekind 原理;
- R1 确界原理;
- R2 单调有界原理;
- R3 区间套原理;
- R4 有限覆盖原理;
- R5 聚点原理;
- R6 致密性原理;
- R7 柯西收敛原理;
- R8 介值定理;
- R9 连通性原理;
- R10 Achimedes 原理;

这些定理是彼此等价的, 其逻辑关系是

 $R0 \Leftrightarrow R1 \Leftrightarrow R2 \Leftrightarrow R3 + R10 \Leftrightarrow R4 \Leftrightarrow R5 \Leftrightarrow R6 \Leftrightarrow R7 + R10 \Leftrightarrow R8 \Leftrightarrow R9$

因此都可以选作实数的完备性(连续性)公理。互相推导很适合作为课后练习,可以查看 知乎: 实数的完备性定理。

确界原理由于其简明的性质,我们将在其上构建极限与收敛的体系。

第二章 数列极限

2.1 数列极限的概念

定义 2.1.1 \diamond 数列极限的 $\varepsilon - N$ 定义

设 $\{a_n\}$ 为数列, A 为定数。若对任给的正数 ε , 总存在正整数 $N=N(\varepsilon)$, 使得当 n>N 时有

$$|a_n - A| < \varepsilon$$

则称数列 $\{a_n\}$ 收敛于 A, 或称 A 为数列 $\{a_n\}$ 的极限, 记作

$$\lim_{n\to\infty} a_n = A, \ \ \vec{\boxtimes} \ a_n \to a(n\to\infty)$$

若数列 $\{a_i\}$ 存在 $A \in \mathbb{R}$ 使得 $a_n \to A$ 成立,则称为收敛的。反之称为发散的,逻辑展开即:对任意 A 都有 a_n 不收敛至 A。

在使用 $\varepsilon - N$ 语言时, $N(\varepsilon)$ 的选取是非常有技巧的, 需要多加练习才能感悟到。

特殊地,若 $\lim_{n\to\infty}a_n=0$,则称 $\{a_n\}$ 为无穷小数列。

定义 2.1.2 ◊ 无穷大数列

若数列 $\{a_n\}$ 满足: 对任意正数 M>0, 存在正整数 N, 使得当 n>N 时,

- (1) $a_n > M$, 则称数列 $\{a_n\}$ 发散于正无穷大,记作 $\lim_{n \to \infty} a_n = +\infty$, 或 $a_n \to +\infty$ 。
- (2) 有 $a_n < M$, 则称数列 $\{a_n\}$ 发散于负无穷大,记作 $\lim_{n \to \infty} a_n = -\infty$,或 $a_n \to -\infty$ 。 两者合称无穷大数列。

例 2.1.3

证明数列 $a_n = \sin n$ 发散。

证明 不妨假设其极限为 A,任取 ε 存在 N 使得当 n > N 时有 $|\sin n - A| < \varepsilon$ 。注意到

$$|2\sin 1\cos n| = |\sin(n+1) - \sin(n-1)| < 2\varepsilon$$

可以得到 $\cos n \to 0$, 又

$$|\sin 2n| = 2|\sin n\cos n| < 2|\cos n| < \frac{2\varepsilon}{\sin 1}$$

从而 $\sin n \to 0$ 。显然有矛盾

$$|\sin^2 2n + \cos^2 2n| < \frac{5\varepsilon^2}{\sin^2 1} < 1$$

故不存在极限, 即发散。

2.2 收敛数列的性质

定理 2.2.1 ◊ 唯一性

若数列 $\{a_n\}$ 收敛,则它只有一个极限。

证明 如果数列 $\{a_n\}$ 同时以 A, B 为极限, 即任给 $\varepsilon > 0$, 总存在 N_1, N_2 , 使得

$$|a_n - A| < \varepsilon, n > N_1; \quad |a_n - B| < \varepsilon, n > N_2$$

那么当 $n > \max\{N_1, N_2\}$ 时需要恒成立

$$2\varepsilon > |a_n - A| + |a_n - B| \geqslant |A - B|$$

当 $A \neq B$ 时,对于 $2\varepsilon < |A - B|$ 不恒成立,因此只能 A = B。

定理 2.2.2 ◊ 有界性

若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 有界。

证明 不妨设 $\lim_{n\to\infty} a_n = A$ 。令 $\varepsilon = 1$,那么存在 n > N 使得

$$|a_n - A| \leqslant 1$$

令

$$M = \{|a_1|, \cdots, |a_N|, |A-1|, |A+1|\}$$

那么对任意正整数 n, 总有 $|a_n| \leq M$ 。

定理 2.2.3 ◊ 保序性

设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则有

- (1) 如果存在 N 使得当 n>N 时有 $a_n\geqslant b_n$ 恒成立,则 $A\geqslant B$ 。
- (2) 反之,如果 A>B,则存在 N 使得当 $n>N_1$ 时 $a_n>b_n$ 恒成立。

证明 (1) 如果设 $B-A=2\delta>0$,那么存在 $N_2,N_3>N$

$$|a_n - A| < \delta, n > N_2;$$
 $|b_n - B| < \delta, n > N_3$

于是当 $n > \max\{N_2, N_3\}$ 时有

$$a_n < A + \delta = B - \delta < b_n$$

因此矛盾,故 $A \ge B$ 。

(2) 设 $A - B = 2\delta > 0$, 那么存在 N_2, N_3

$$|a_n - A| < \delta, n > N_2;$$
 $|b_n - B| < \delta, n > N_3$

于是存在 $N_1 = \max\{N_2, N_3\}$, 当 $n > N_1$ 时有

$$a_n > A - \delta = B + \delta > b_n$$

若 b_n 是常数列, $A \neq 0$, 我们还可得到推论: 存在 N, 使得当 n > N 时, 有

$$\frac{1}{2}|A| < |a_n| < \frac{3}{2}|A|$$

定理 2.2.4 ◊ 迫敛性, 夹逼定理

设数列 $\{a_n\}, \{b_n\}, \{c_n\}$ 满足当 $n > N_0$ 有 $a_n \le c_n \le b_n$ 。若

$$\lim_{n \to \infty} a_n = A = \lim_{n \to \infty} c_n$$

 $\mathbb{N}\lim_{n\to\infty}b_n=A_{\bullet}$

证明 即对于任给的 $\varepsilon > 0$,存在 N_1, N_2 ,使得当 $n > N_1$ 有

$$A - \varepsilon < a_n < A + \varepsilon$$

当 $n > N_2$ 有

$$A - \varepsilon < c_n < A + \varepsilon$$

因此当 $n > \max\{N_0, N_1, N_2\}$ 时,有

$$A - \varepsilon < a_n \leqslant b_n \leqslant c_n < A + \varepsilon$$

例 2.2.5

如果 $a_1, \dots, a_k > 0$, 那么有

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + \dots + a_k^n} = \max\{a_1, \dots, a_k\}$$

证明 不妨设 $a_1 = \max\{a_1, \dots, a_k\}$, 那么有

$$a_1 < \sqrt[n]{a_1^n + \dots + a_k^n} < \sqrt[n]{ka_1^n} \to a_1$$

由夹逼原理知原式成立。

定理 2.2.6 ◊ 四则运算

设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则有

- (1) $\{\alpha a_n + \beta b_n\}$ 收敛到 $\alpha A + \beta B$,其中 α, β 为常数。
- (2) $\{a_nb_n\}$ 收敛到 AB。
- (3) 当 $B \neq 0$ 时, $\{a_n/b_n\}$ 收敛到 A/B。

证明 (1) 任给 $\varepsilon > 0$, 存在 N_1, N_2 使得

$$|a_n - A| < \frac{\varepsilon}{2|\alpha| + 1}, n > N_1; \qquad |b_n - B| < \frac{\varepsilon}{2|\beta| + 1}, n > N_2$$

则当 $n > \max\{N_1, N_2\}$ 时有

$$|(\alpha a_n + \beta b_n) - (\alpha A + \beta B)| \leq |\alpha| |a_n - A| + |\beta| |b_n - B|$$

$$< \frac{\varepsilon |\alpha|}{2|\alpha| + 1} + \frac{\varepsilon |\beta|}{2|\beta| + 1}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(2) 由收敛数列的有界性,存在 M 使得 $|a_n| \leq M$,那么

$$0 \le |a_n b_n - AB| = |(a_n - A)b_n + A(b_n - B)| \le M|a_n - A| + |A||b_n - B|$$

由迫敛性知 $\lim_{n\to\infty} |a_n b_n - AB| = 0$ 。

(3) 由保号性的推论,存在 N 使得当 n>N 时有 $|b_n|>\frac{|B|}{2}$,那么

$$0 \le \left| \frac{1}{b_n} - \frac{1}{B} \right| = \frac{|b_n - B|}{|b_n||B|} \le \frac{2}{|B|^2} |b_n - B|$$

由迫敛性知 $\lim_{n \to \infty} \left| \frac{1}{b_n} - \frac{1}{B} \right| = 0$ 。

2.2.1 Stolz 定理

Stolz 定理主要是用来处理 ∞/∞ 型和 0/0 型极限,可以认为是洛必达的替代。

定理 2.2.7

对于任意的 $1 \leqslant k \leqslant n$,设 $b_k > 0$ 且 $m \leqslant \frac{a_k}{b_k} \leqslant M$,则有

$$m \leqslant \frac{\sum a_n}{\sum b_n} \leqslant M$$

定理 2.2.8 ◊ Stolz 定理一

设数列 $\{x_n\},\{y_n\}$,且 $\{y_n\}$ 严格单调地趋于 $+\infty$,如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$$

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = A$$

证明 分类讨论 Todo ······

定理 2.2.9 ♦ Stolz 定理二

设数列 $\{y_n\}$ 严格单调地趋于 0,且数列 $\{x_n\}$ 也收敛到 0,那么如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$$

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = A$$

证明 分类讨论 Todo……

2.3 数列收敛的判别法则

我们需要一些更方便的判别法则。

2.3.1 单调数列

若数列 $\{a_n\}$ 各项满足关系式 $a_n \leq a_{n+1} (a_n \geq a_{n+1})$,则称 $\{a_n\}$ 为递增(递减)数列,统称为单调数列。

定理 2.3.1 ◊ 单调有界定理

单调有界数列必有极限。

证明 不妨设 $\{a_i\}$ 为有上界的单调递增序列,由确界原理知存在上确界 β 。按其定义,任给 $\varepsilon > 0$ 都存在 N 使得 $\beta - \varepsilon < a_N < \beta$ (否则 $\beta - \varepsilon$ 就是新的上确界)。故 $|a_n - \beta| < \varepsilon$,即收敛至 β 。

2.3.2 子列

设 $\{a_n\}$ 为数列,如果 $\{n_k\}$ 是一列严格递增的正整数,则数列 $\{a_{n_k}\}$ 称为数列 $\{a_n\}$ 的一个子列。子列显然有性质 $n_k \ge k$,归纳易证。

特殊的子列 $\{a_{2k}\}$ 和 $\{a_{2k-1}\}$ 分别称为偶子列与奇子列。数列本身也是其自己的子列。

定理 2.3.2 ♦ Weierstrass 致密性定理

任何有界数列必定有收敛的子列。

证明 不妨设数列包含无数个不同的 a_n ,否则显然成立。假设数列有界,设其值域为 $[A_0, B_0]$ 。注意到我们可以对分区间为 $[A_0, \frac{A_0+B_0}{2}]$ 和 $[\frac{A_0+B_0}{2}, B_0]$,至少其中之一包含无穷多个 a_n ,记为 $[A_1, B_1]$ 。我们可以不断划分,得到一闭缩区间套

$$[A_0, B_0] \supset [A_1, B_1] \subset \cdots$$

总是可以在区间中找到下标递增的项,即我们要求的子列。

定理 2.3.3

数列 $\{a_n\}$ 收敛的充要条件: $\{a_n\}$ 的任何子列都收敛。

2.3.3 Cauchy 准则

定义 2.3.4

设 $\{a_n\}$ 为数列, 如果任给 $\varepsilon > 0$, 均存在 $N(\varepsilon)$ 使任取 $m, n > N(\varepsilon)$ 有

$$|a_m - a_n| < \varepsilon$$

则称 $\{a_n\}$ 为 Cauchy 数列或基本列。

反之, 若存在 $\varepsilon > 0$ 使得任给 N 都存在 n, m > N 使得

$$|a_n - a_m| \geqslant \varepsilon$$

则称该数列为非 Cauchy 的。

定理 2.3.5

Cauchy 数列必定是有界数列。

证明 取 $\varepsilon = 1$, 则存在 N 使得当 m, n > N 时有

$$|a_m - a_n| < 1$$

令 $M=\max\{|a_k|+1\ |\ 1\leqslant k\leqslant N+1\}$,则当 $n\leqslant N$ 时显然有 $|a_n|\leqslant M$,而当 n>N 时有

$$|a_n| \le |a_n - a_{N+1}| + |a_{N+1}| < 1 + |a_{N+1}| \le M$$

这说明 $\{a_n\}$ 是有界数列。

定理 2.3.6 ◊ Cauchy 收敛准则

 $\{a_n\}$ 为 Cauchy 数列当且仅当它是收敛的。

证明 (1) 充分性: 设 $\{a_n\}$ 收敛到 A, 则任给 $\varepsilon > 0$ 存在 N, 当 n > N 时有

$$|a_n - A| \leqslant \frac{\varepsilon}{2}$$

因此当 m, n > N 时有

$$|a_m - a_n| \le |a_m - A| + |A - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这说明 a_n 为 Cauchy 数列。

(2) 必要性: 已证 Cauchy 列有界, 则必存在收敛子列 $\{a_{u_k}\}$, 因此任给 $\varepsilon>0$ 存在 N_1 使得当 $u_i>N_1$ 时有

$$|a_{u_i} - A| < \frac{\varepsilon}{2}$$

又由定义知存在 N_2 使得任取 $n, m > N_2$ 有

$$|a_n - a_m| < \frac{\varepsilon}{2}$$

因此取 $N = \max\{N_1, N_2\}$, 取 $u_k > N$, 则当 n > N 时有

$$|a_n - A| \leqslant |a_n - a_{u_k}| + |a_{u_k} - A| \leqslant \varepsilon$$

定理 2.3.7 ◊ 不动点原理

设递推数列 $a_{n+1}=f(a_n)$,假设 $a_n\subset(\alpha,\beta)$,若存在常数 $L\in(0,1)$ 使得对任意 $x,y\in(\alpha,\beta)$ 有

$$|f(x) - f(y)| \le L|x - y|$$

则数列收敛。

证明 首先类似于等比

$$|a_{n+1} - a_n| \leqslant \dots \leqslant L^{n-1} |a_2 - a_1|$$

从而

$$|a_{n+k} - a_n| \le \sum_{i=1}^k |a_{n+i} - a_{n+i-1}| \le \sum_{i=1}^k L^{n+i} |a_2 - a_1| \le \frac{L^{n-1}}{1 - L} |a_2 - a_1|$$

由 Cauchy 收敛准则知数列收敛。

2.4 常见数列

首先我们定义三个数列

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
, $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$, $e_n = \sum_{i=0}^n \frac{1}{k!}$

我们通常定义 a_n 的极限为 e。下证三者极限存在且相同。

其中 e_n 的单调性是显然的。我们先证:

$$a_n < a_{n+1}, \quad b_n > b_{n+1}$$

首先

$$a_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= 1 + \sum_{k=1}^n \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right)$$

$$< 1 + \sum_{k=1}^n \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n+1}\right)$$

$$< 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n+1}\right) = a_{n+1}$$

再借助 Bernoulli 不等式

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}}$$

$$= \left(1 + \frac{1}{n^2 - 1}\right)^n \frac{1}{1 + \frac{1}{n}}$$

$$> \left(1 + \frac{n}{n^2 - 1}\right) \frac{1}{1 + \frac{1}{n}}$$

$$= 1 + \frac{1}{(n+1)^2(n-1)} > 1$$

注意到当 n>2 时

$$a_n \le 1 + \sum_{k=1}^n \frac{1}{k!} = e_n \le 2 + \sum_{k=2}^n \frac{1}{k(k-1)} = 3 - \frac{1}{n} < 3$$

故 a_n 和 b_n 单调有界,故必有极限。再注意到

$$b_n = \left(1 + \frac{1}{n}\right) a_n$$

由极限的四则运算,故 b_n 的极限也存在,且 a_n 和 b_n 收敛于同一个值。 我们定义 a_n 的极限为 e,下证 $e_n \to e$ 。注意到固定 u 有

$$a_n = 1 + \sum_{k=1}^n \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n} \right)$$
$$> 1 + \sum_{k=1}^u \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n} \right)$$

那么令 $n \to \infty$,有

$$e_k = \sum_{k=0}^u \frac{1}{k!} \leqslant a_n \to e$$

故由夹逼定理知 $e_n \to e_o$

第三章 函数极限

3.1 函数极限的概念

定义 3.1.1

设 f 为定义在 $[a, +\infty)$ 上的函数,A 为定数。若对任给的 $\varepsilon > 0$,存在正数 $M = M(\varepsilon) \geqslant a$,使得 当 x > M 时,有

$$|f(x) - A| < \varepsilon$$

则称函数 f 当 x 趋于 $+\infty$ 时以 A 为极限,记作

类似的有 $\lim_{x\to -\infty} f(x)$ 和 $\lim_{x\to \infty} f(x)$ 。 不难证明

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A$$

为了描述在某点处的极限, 我们需要邻域的概念

$$U(a; \delta) = (a - \delta, a + \delta)$$

和空心邻域的概念

$$U^{\circ}(a;\delta) = (a-\delta,a) \cup (a,a+\delta)$$

定义 3.1.2

设函数 f 在 $U^{\circ}(x_0; \delta')$ 内有定义,A 为定数。若对任给的 $\varepsilon > 0$,存在正数 $\delta < \delta'$,使得当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称函数 f 当 x 趋于 x_0 时以 A 为极限,记作

$$\lim_{x \to x_0} f(x) = A \not \exists f(x) \to A(x \to x_0)$$

定义 3.1.3

设函数 f 在 $U_+^\circ(x_0;\delta')$ 内有定义,A 为定数。若对任给的 $\varepsilon>0$,存在正数 $\delta<\delta'$,使得当 $x_0< x< x_0+\delta$ 时,有 $|f(x)-A|<\varepsilon$,则称函数 f 当 x 趋于 x_0^+ 时以 A 为极限,记作

$$\lim_{x \to x_0^+} f(x) = A \ \vec{\boxtimes} \ f(x) \to A(x \to x_0^+)$$

类似的还有左极限 $\lim_{x\to x_0^-} f(x)$,统称为单侧极限。又可记为

$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x) = f(x_0 - 0) = \lim_{x \to x_0^-} f(x)$$

同理还有

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$

3.2 函数极限的性质

定理 3.2.1 ◊ 唯一性

若极限 $\lim_{x \to x_0} f(x)$ 存在,则此极限是唯一的。

定理 3.2.2 ◊ 局部有界性

若极限 $\lim_{x \to x_0} f(x)$ 存在,则 f 在 x_0 的某空心邻域 $U^{\circ}(x_0)$ 上有界。

定理 3.2.3 ◊ 局部保序性

设 $\lim_{x\to x_0}f(x)$ 与 $\lim_{x\to x_0}g(x)$ 均存在。若存在正数 N_0 ,使得当 $n>N_0$ 时,有 $a_n\leqslant b_n$,则 $\lim_{n\to\infty}a_n\leqslant\lim_{n\to\infty}b_n$ 。

定理 3.2.4 ◊ 夹逼定理

设
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A$$
,且在某 $U^{\circ}(x_0; \delta')$ 上有

$$f(x) \leqslant h(x) \leqslant g(x)$$

则 $\lim_{x \to x_0} h(x) = A_{\circ}$

定理 3.2.5 ◊ 四则运算法则

若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$ 均存在,则

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [f(x)g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

若 $\lim_{x \to x_0} g(x) \neq 0$,则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

3.3 函数极限存在的条件

定理 3.3.1 ◊ 海涅 Heine 定理

若 f(x) 在 $U^\circ(x_0;\delta')$ 上有定义。 $\lim_{x\to x_0}f(x)$ 存在的充要条件是:任何含于 $U^\circ(x_0;\delta')$ 且以 x_0 为极限的数列 $\{x_n\}$,极限 $\lim_{x\to x_0}f(x_n)$ 都存在且相等。

即若对任何 $x_n \to x_0 (n \to \infty)$ 有 $\lim_{n \to \infty} f(x_n) = A$,则 $\lim_{x \to x_0} f(x) = A$ 。

定理 3.3.2

设 f(x) 在点 x_0 的某空心右邻域 $U_+^\circ(x_0)$ 有定义,则 $\lim_{x\to x_0^+}f(x)=A$ 的充要条件是:对任何以 x_0 为极限的递减数列 $\{x_n\}\subset U_+^\circ(x_0)$,有 $\lim_{n\to\infty}f(x_n)=A$ 。

定理 3.3.3

设 f(x) 为定义在 $U_+^\circ(x_0)$ 上的单调有界函数,则右极限 $\lim_{x\to x_0^+}f(x)=A$ 存在。

定理 3.3.4 ◊ Cauchy 准则

设 f(x) 在 $U^{\circ}(x_0; \delta')$ 上有定义,则 $\lim_{x \to x_0} f(x)$ 存在的充要条件是:任给 $\varepsilon > 0$,存在正数 $\delta(< \delta')$,使得对任何 $x', x'' \in U^{\circ}(x_0, \delta)$,有 $|f(x') - f(x'')| < \varepsilon$ 。

3.4 两个重要的极限

命题 3.4.1

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

证明 首先注意到它是奇函数,只需讨论 $0 < x < \frac{\pi}{2}$ 。考虑圆上的角度为 x 的弧的弧长和弦长,容易从几何角度得到

$$0 < \sin x < x$$

再考虑圆上的角度为 x 的弧与三角形的面积, 我们可以得到

$$\frac{1}{2}\cos x < \frac{1}{2}x < \frac{1}{2}\tan x$$

即我们得到了

$$\cos x < \frac{\sin x}{x} < 1$$

利用夹逼定理, 我们只需证明 $\cos x \to 1$, 这点可以用后面的连续性证明。也可以直接

$$|\cos x - 1| = \left| 2\sin^2 \frac{x}{2} \right| < \left| \frac{x^2}{2} \right|$$

第二个是把数列极限推广到函数

命题 3.4.2

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

无穷小量与无穷大量 3.5

定义 3.5.1 ◊ 无穷小量

设函数 f 在某 $U^{\circ}(x_0)$ 上有定义,若 $\lim_{x\to x_0}f(x)=0$,则称 f 为当 $x\to x_0$ 时的无穷小量。

定义 3.5.2 ◊ 有界量

设函数 f 在某 $U^{\circ}(x_0)$ 上有界,则称 f 为当 $x \to x_0$ 时的有界量。

若 $\lim_{x\to x_0}\frac{f(x)}{g(x)}=0$,则称当 $x\to x_0$ 时 f 为 g 的高阶无穷小量,或称 g 为 f 的低阶无穷小量。记作

$$f(x) = o(q(x))(x \to x_0)$$

特别地, f 为当 $x \to x_0$ 时的无穷小量记作

$$f(x) = o(1)(x \to x_0)$$

若存在正数 K 和 L,使得在某 $U^{\circ}(x_0)$ 上有

$$K \leqslant \left| \frac{f(x)}{g(x)} \right| \leqslant L$$

则称 f = g 为当 $x \to x_0$ 时的同阶无穷小量。特别当

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = c \neq 0$$

时, f 与 g 必为同阶无穷小量。

若 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$ 则称 f 与 g 是当 $x\to x_0$ 时的等价无穷小量。记作

$$f(x) \sim g(x)(x \to x_0)$$

注意并不是任何两个无穷小量都可以进行这种阶的比较。例如 $x \to 0$ 时, $x \sin \frac{1}{x}$ 和 x^2 都是无穷小 量,但它们的比都不是有界量。

定理 3.5.3

设函数 f,g,h 在 $U^{\circ}(x_0)$ 上有定义,且有 $f(x) \sim g(x)(x \to x_0)$,则

- 1. 若 $\lim_{x \to x_0} f(x)h(x) = A$,则 $\lim_{x \to x_0} g(x)h(x) = A$ 。
 2. 若 $\lim_{x \to x_0} \frac{h(x)}{f(x)} = B$,则 $\lim_{x \to x_0} \frac{h(x)}{g(x)} = B$

定义 3.5.4 ◊ 无穷大量

设函数 f 在某 $U^\circ(x_0)$ 上有定义,若对任给的 G>0,存在 $\delta>0$,使得当 $x\in U^\circ(x_0;\delta)\subset U^\circ(x_0)$ 时,有 |f(x)|>G,则称函数 f 当 $x\to x_0$ 时有非正常极限 ∞ ,记作 $\lim_{x\to x_0}f(x)=\infty$ 。

3.6 常见等价无穷小

实际上这些等价无穷小就是 Talor 展开。

$$\begin{split} \frac{1}{1-x} &= \sum_{k=0}^{\infty} x^n, (-1,1) \\ &= 1+x+x^2+x^3+x^4+x^5+x^6+O(x^7) \\ \ln(1+x) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1}, (-1,1] \\ &= x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5}-\frac{x^6}{6}+\frac{x^7}{7}+O(x^8) \\ &\sin x &= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}, \mathbb{R} \\ &= x-\frac{x^3}{6}+\frac{x^5}{120}-\frac{x^7}{5040}+\frac{x^9}{362880}+O(x^{11}) \\ &\cos x &= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}, \mathbb{R} \\ &= 1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+\frac{x^8}{40320}+\frac{x^{10}}{3628800}+O(x^{12}) \\ &e^x &= \sum_{k=0}^{\infty} \frac{1}{k!} x^k, \mathbb{R} \\ &= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}+\frac{x^6}{720}+\frac{x^8}{5040}+O(x^{10}) \\ &\tan x &= \sum_{k=1}^{\infty} \frac{(-4)^k(1-4^k)B_{2k}}{(2k)!} x^{2k-1}, (-\frac{\pi}{2},\frac{\pi}{2}) \\ &= x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\frac{67x^9}{2835}+O(x^{11}) \\ &\sqrt{x+1} &= 1+\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^k (2k-1)!!x^k, (-1,+\infty) \\ &= 1+\frac{x}{2}-\frac{x^8}{8}+\frac{x^3}{16}-\frac{5x^4}{128}+\frac{7x^5}{256}-\frac{21x^6}{1024}+O(x^7) \\ &\ln(x+\sqrt{1+x^2}) &= x-\frac{x^3}{6}+\frac{3x^5}{40}-\frac{5x^7}{112}+\frac{35x^9}{1152}+O(x^{11}) \\ &= \arcsin x &= x+\frac{x^3}{6}+\frac{3x^5}{40}+\frac{5x^7}{112}+\frac{35x^9}{1152}+O(x^{11}) \\ &= \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) &= x+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7}+\frac{x^9}{9}+O(x^{11}) \\ &= \arctan x &= x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\frac{x^9}{9}+O(x^{11}) \\ &= \arctan x &= x-\frac{x^3}{2}+\frac{x^5}{112}-\frac{7x^3}{16}+O(x^4) \end{split}$$

3.7 函数的连续性

定义 3.7.1 ◊ 连续性

设函数 f 在某 $U(x_0)$ 上有定义。若

$$\lim_{x \to x_0} f(x) = f(x_0)$$

则称 f 在点 x_0 连续。

记 $\Delta x = x - x_0$,称为自变量 x 在点 x_0 的增量或改变量。设 $y_0 = f(x_0)$,相应的函数 y 在点 x_0 的增量记为

$$\Delta y = f(x) - f(x) = f(x + \Delta) - f(x_0) = y - y_0$$

连续性的 $\varepsilon - \delta$ 形式定义: 若对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $|x - x_0| < \delta$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$, 则称函数 f 在点 x_0 连续。

或者进一步表示为

$$\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$$

定义 3.7.2

设函数 f 在某 $U_+(x_0)$ 上有定义。若

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

则称 f 在点 x_0 右连续。同理左连续。

因此函数 f 在点 x_0 连续的充要条件是: f 在点 x_0 既是左连续,又是右连续。

定义 3.7.3 ◊ 间断点

设函数 f 在某 $U^{\circ}(x_0)$ 上有定义。若 f 在点 x_0 无定义,或 f 在点 x_0 有定义而不连续,则称点 x_0 为函数 f 的间断点或不连续点。

若 $\lim_{x\to x_0} f(x) = A$,而 f 在点 x_0 无定义,或有定义但 $f(x_0) \neq A$,则称点 x_0 为 f 的可去间断点。 若函数 f 在点 x_0 的左、右极限都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则称点 x_0 为函数 f 的跳跃间断点。

可去间断点与跳跃间断点统称为第一类间断点,所有其他形式的间断点统称为第二类间断点。

若函数 f 在区间 I 上的每一点都连续,则称 f 为 I 上的连续函数。对于闭区间或半开区间的端点,函数在这些点上连续是指左连续或右连续。

3.7.1 连续函数的性质

定理 3.7.4 ◊ 局部有界性

若函数 f 在点 x_0 连续,则 f 在某 $U(x_0)$ 上有界。

定理 3.7.5 ◊ 局部保号性

若函数 f 在点 x_0 连续,且 $f(x_0) > 0$,则对任何正数 $r < f(x_0)$,存在某 $U(x_0)$,使得对一切 $x \in U(x_0)$,有 f(x) > r。

定理 3.7.6 ◊ 四则运算

若函数 f,g 在点 x_0 连续,则 $f \pm g, f \cdot g, f/g$ 也都在点 x_0 连续。

定理 3.7.7

若函数 f 在点 x_0 连续,g 在点 u_0 连续, $u_0 = f(x_0)$,则复合函数 $g \circ f$ 在 x_0 连续。

定义 3.7.8

设 f 为定义在数集 D 上的函数。若存在 $x_0 \in D$,使得对一切 $x \in D$,有 $f(x_0) \ge f(x)$,则称 f 在 D 上有最大值,并称 $f(x_0)$ 为 f 在 D 上的最大值。

定理 3.7.9 ◊ 最大、最小值定理

若函数 f 在闭区间 [a,b] 上连续,则 f 在闭区间 [a,b] 上有最大值与最小值。

定理 3.7.10 ◊ 介值定理

若函数 f 在闭区间 [a,b] 上连续,且 $f(a) \neq f(b)$ 。若 μ 为介于 f(a) 和 f(b) 之间的任何实数。则至少存在一点 $x_0 \in (a,b)$ 使得 $f(x_0) = \mu$ 。

定理 3.7.11

若函数 f 在 [a,b] 上严格单调并连续,则反函数 f^{-1} 在其定义域 $[\min\{f(a),f(b)\},\max\{f(a),f(b)\}]$ 上连续。

定义 3.7.12

设 f 是定义在区间 I 上的函数。若对任给的 $\varepsilon>0$ 存在 $\delta=\delta(\varepsilon)>0$ 使得对任何 $x',x''\in I$,只要 $|x'-x''|<\delta$ 就有

$$|f(x') - f(x'')| < \varepsilon$$

就称函数 f 在区间 I 上一致连续。

定理 3.7.13 ◊ 一致连续性

若函数 f 在闭区间 [a,b] 上连续,则 f 在 [a,b] 上一致连续。

3.7.2 初等函数的连续性

定理 3.7.14

设 p > 0, a, b 为任意两个实数,则有

$$p^a \cdot p^b = p^{a+b}, (p^a)^b = p^{ab}$$

定理 3.7.15

指数函数 $a^x(a>0)$ 在 \mathbb{R} 上是连续的。

第四章 导数理论

4.1 导数的定义

定义 4.1.1 ◊ 微分

设函数 f 定义在某个邻域内 $U(x_0,r)$ 内,如果存在常数 A 使得

$$f(x) = f(x_0) + A(x - x_0) + o(x - x_0)$$

当 $x \to x_0$ 成立,则称 f 在 x_0 处可微。线性函数 $A(x-x_0)$ 称为 f 在 x_0 处的微分。

我们记作 dy = df = A dx。

定义 4.1.2 ◊ 导数

设函数 y = f(x) 在邻域 $U(x_0, r)$ 内有定义, 若极限

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

存在,则称函数 f 在点 x_0 可导,并称该极限为函数 f 在点 x_0 的导数,记作 $f'(x_0)$ 。

定理 4.1.3

若函数 f 在点 x_0 可导,则 f 在点 x_0 连续,反之不然。

显然一元函数的可微概念等价于可导。

例 4.1.4

考察

$$f_n(x) = x^n \sin \frac{1}{x}, \quad f_n(0) = 0$$

当 $n \ge 1$ 时,有

$$\lim_{x \to 0} f_n(x) = \lim_{x \to 0} \left(x \sin \frac{1}{x} \right) x^{n-1} = 0$$

当 $n \ge 2$ 时,有

$$f'_n(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} f_{n-1}(\Delta x) = 0$$

当 $n \ge 3$ 时,有

$$f'(x) = x^{n-2} \left(nx \sin \frac{1}{x} - \cos \frac{1}{x} \right)$$

从而 $\lim_{x\to 0} f'(x) = 0$ 。

因此, $f_1(x)$ 在 \mathbb{R} 上连续,但在 x=0 处不可导。 $f_2(x)$ 连续且 $f_2'(0)$ 存在,但 x=0 处导函数不连续。 $f_3(x)$ 连续且导函数连续。

定义 4.1.5 ◊ 单侧导数

设函数 y = f(x) 在点 x_0 的某右邻域 $[x_0, x_0 + \delta]$ 上有定义,若右极限

$$\lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, (0 < \Delta x < \delta)$$

存在,则称该极限值为 f 在点 x_0 的右导数,记作 $f'_+(x)$ 。同理有左导数。左导数和右导数统称为单侧导数。

定理 4.1.6

若函数 y = f(x) 在点 x_0 的某邻域上有定义,则 $f'(x_0)$ 存在的充要条件是 $f'_-(x)$ 与 $f'_+(x)$ 都存在且相等。

若函数 f 在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f 为 I 上的可导函数。此时对每一个 $x \in I$,都有 f 的一个导数 f'(x) (或单侧导数)与之对应。这样就定义了一个在 I 上的函数,称为导函数,简称为导数。记作 $f',y',\frac{\mathrm{d}y}{\mathrm{d}x}$ 。

曲线 y = f(x) 在点 (x_0, y_0) 的切线方程是

$$y - y_0 = f'(x_0)(x - x_0)$$

这个极限还可以进行一定的变化,比如当 f 在 x_0 处可导时有

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x} = f'(x_0)$$

反之不成立,比如 y = |x|。

有一些可能不太好想的反例:

$$\lim_{x \to a^{+}} f(x) = \infty \not\Rightarrow \lim_{x \to a^{+}} f'(x) = \infty$$

取

$$f(x) = \frac{1}{x} + \cos \frac{1}{x}, \quad 0 < x < \frac{\pi}{2}$$

如

$$\lim_{x \to a+} f'(x) = \infty \not\Rightarrow \lim_{x \to a+} f(x) = \infty$$

取

$$f(x) = \sqrt[3]{x}, \quad 0 < x < 1$$

如

$$\lim_{x \to +\infty} f(x) = A \not\Rightarrow \lim_{x \to +\infty} f'(x) = B$$

取

$$f(x) = \frac{\sin(x^2)}{x}$$

如

$$\lim_{x \to +\infty} f'(x) = A \not\Rightarrow \lim_{x \to +\infty} f(x) = B$$

取

$$f(x) = \cos(\ln x)$$

这说明端点处取无穷大和函数导数在端点处取无穷大没有本质联系。

4.1.1 高阶导数

进一步的、我们可以定义导数的导数。

$$f^{(n_1)}(x_0) = (f^{(n)})'(x_0) = \frac{\mathrm{d}^k f}{\mathrm{d}x^k}(x_0)$$

任意阶导数都存在的函数称为光滑的。

二阶微分不具有微分不变性, 比如 y = f(u), u = g(x), 有

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \left(\frac{\mathrm{d}u}{dx}\right)^2 + \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}^2 u}{\mathrm{d}x^2}$$

定理 4.1.7

假如 f(x) 在 a 处二阶可导,则

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}$$

证明 注意,这里转化为一阶导数定义再导出二阶的方法是错误的。只能使用 L'Hospital 法则。

4.2 求导法则

定理 4.2.1

若函数 u(x) 和 v(x) 在点 x_0 可导,则函数 $f(x) = u(x) \pm v(x)$ 在点 x_0 也可导,且

$$f'(x_0) = u'(x_0) \pm v'(x_0)$$

函数 f(x) = u(x)v(x) 在点 x_0 也可导,且

$$f'(x_0) = u'(x_0)v'(x_0)$$

若 $v(x) \neq 0$,则函数 $f(x) = \frac{u(x)}{v(x)}$ 在点 x_0 也可导,且

$$f'(x_0) = \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{v(x_0)^2}$$

特别的, 当 $f(x) = \frac{1}{v(x)}$ 时, 有

$$f'(x_0) = -\frac{v'(x_0)}{v(x_0)^2}$$

定理 4.2.2

设 y = f(x) 严格单调且 $f'(x_0) \neq 0$,则其反函数 $x = f^{-1}(x) = g(y)$ 在对应区间内可导且且

$$g'(y_0) = \frac{1}{f'(x_0)}$$

定理 4.2.3

设 $u = \phi(x)$ 在点 x_0 可导,y = f(u) 在点 $u_0 = \phi(x_0)$ 可导,则复合函数 $f \circ \phi$ 在点 x_0 可导,且

$$(f \circ \phi)'(x_0) = f'(u_0)\phi'(x_0) = f'(\phi(x_0))\phi'(x_0)$$

4.2.1基本求导法则

- 1. $(u \pm v)' = u' \pm v'$
- 2. (uv)' = u'v + uv'

4.2.2 基本初等函数导数公式

- 1. (c)' = 0 (c 为常数)
- 2. $(x^a)' = ax^{a-1}$ (a 为任意实数)
- 3. $(\sin x)' = \cos x, (\cos x)' = -\sin x, (\tan x)' = \sec^2 x$

4.
$$(\cot x)' = -\csc^2 x$$
, $(\sec x)' = \sec x \tan x$, $(\csc x)' = -\csc x \cot x$
5. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, $(\arctan x)' = \frac{1}{1+x^2}$

- 6. $(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$
- 7. $(\log_a |x|)' = \frac{1}{r \ln a} (a > 0 \text{ i. } a \neq 1)$

极值定理 4.3

若函数 f 在点 x_0 的某邻域 $U(x_0)$ 上对一切 $x \in U(x_0)$ 有

$$f(x_0) \geqslant f(x)$$

则称 f 在点 x_0 取得极大值,称点 x_0 为极大值点。同理有极小值点。极大值、极小值统称为极值,极大 值点、极小值点统称为极值点。

显然极值点不一定是最值点,但假如最值点在定义域内部,则必是极值点。

定理 4.3.1 <> Fermat 定理

设函数 f 在点 x_0 的某邻域上有定义,且在点 x_0 可导。若点 x_0 为极值点,则必有 $f'(x_0) = 0$ 。

证明 不妨设 x_0 为 f 的极小值点,则存在邻域 $U(x_0,\delta)$ 且满足不等式 $f(x) \leq f(x_0)$,那么

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0, \quad x \in (x_0 - \delta, x_0) \qquad \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0, \quad x \in (x_0, x_0 + \delta)$$

从而

$$0 \leqslant f'_{+}(x_0) = f'(x_0) = f'_{-}(x_0) \leqslant 0$$

故 $f'(x_0) = 0$ 。

如果 $f'(x_0) = 0$,我们称为驻点。极值点不一定是驻点,比如 y = |x|,需要导数存在,反之驻点不一定是极值点,如 $y = x^3$ 。

定理 4.3.2 ◊ Darboux 定理

函数 f 在 [a,b] 上存在导数,且 $f'_{+}(a) \neq f'_{-}(b)$,对于任给的介于 $f'_{+}(a), f'_{-}(b)$ 之间的实数 k,总是存在 $\xi \in (a,b)$ 使得 $f'(\xi) = k$

证明 注意该定理并未要求导数连续,无法使用介值定理。令 g(x) = f(x) - kx。不妨设 $g'_{+}(a) < 0 < g'_{-}(b)$,取 $g(\xi) = \min_{[a,b]} g$ 。 取两个邻域

$$\frac{g(x)-g(a)}{x-a}<0,\quad x\in U(a,\delta)\qquad \frac{g(x)-g(b)}{x-b}>0,\quad x\in U(b,\delta)$$

因此存在 $a < x_1 < x_2 < b$ 使得 $g(x_1) < g(a)$ 和 $g(x_2) < g(b)$ 。故 ξ 在开区间 (a,b) 内,因此 ξ 为 g 的极值点,由 Fermat 定理知 $g'(\xi) = f'(\xi) - k = 0$ 。

4.4 曲率

给定光滑曲线 C,取固定点 M 和动点 N 得到弧长 Δs 。 N 处与 M 处的切线和 x 正轴夹角差记为 $\Delta \alpha$ 。以此定义 M 处的曲率为

$$k = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right|$$

假设光滑曲线由参数方程 x(t), y(t) 给出,那么可以得到

$$\alpha = \arctan \frac{y'(t)}{x'(t)}, \quad \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{y''(t)x'(t) - y'(t)x''(t)}{x'(t)^2 + y'(t)^2}$$

利用 $ds/dt = \sqrt{x'(t)^2 + y'(t)^2}$ 得到

$$k = \left| \frac{\mathrm{d}a/\,\mathrm{d}t}{\mathrm{d}s\,\mathrm{d}t} \right| = \frac{|y''(t)x'(t) - y'(t)x''(t)|}{(x'(t)^2 + y'(t)^2)^{3/2}}$$

特别的曲线如果由 y(x) 给出,那么

$$k = \frac{|y''|}{(1 + y'^2)^{3/2}}$$

其中令 R = 1/k 为曲线的曲率半径。

4.5 中值定理

微分中值定理主要有三个: Rolle 定理、Lagrange 中值定理和 Cauchy 中值定理。

4.5.1 Rolle 定理

定理 4.5.1 ◊ 罗尔 Rolle 中值定理

若函数 f 在 [a,b] 上连续可导,且 f(a) = f(b)。则存在 $\xi \in (a,b)$,使得 $f'(\xi) = 0$ 。

证明 因为 f(x) 在 [a,b] 上连续,所以有最大值 M 和最小值 m。

- 1. 若 m=M, 显然成立。
- 2. 若 m < M,又 f(a) = f(b),故最值必然在 $\xi \in (a,b)$ 中取到,从而 $x = \xi$ 是其极值点,由 Fermat 定理知 $f'(\xi) = 0$ 。

我们可以做更多点的推广。假如 $f(x_1) = f(x_2) = f(x_3)$ 都相等,据此存在 $\xi_1 \in (x_1, x_2)$ 和 $\xi_2 \in (x_2, x_3)$ 使得 $f'(\xi_1) = f'(\xi_2) = 0$,再用一遍定理知存在 $\xi_3 \in (\xi_1, \xi_2)$ 使得 $f''(\xi_3) = 0$ 。

例 4.5.2

设 f 在 [a,b] 上连续并二阶可导,且 f(a)=f(b)=0,那么对任意的 $x\in(a,b)$ 存在 $\xi_x\in(a,b)$ 满足

$$f(x) = \frac{f''(\xi_x)}{2}(x - a)(x - b)$$

证明 对于任意的 x, 我们定义常数

$$\lambda_x = \frac{2f(x)}{(x-a)(x-b)}$$

构造函数

$$F(u) = f(u) - \frac{\lambda_x}{2}(u - a)(u - b)$$

注意到 F(a)=F(x)=F(b),且 $F''(u)=f''(u)-\lambda_x$,由上文所证性质,故存在 $\xi_x\in(a,b)$ 使得 $f''(\xi_x)=\lambda_x$ 。

例 4.5.3

设函数 f 在 [a,b] 上连续并三阶可导, 如果 f(a)=f'(a)=f(b)=0, 那么对任意的 x 存在 $\xi_x\in(a,b)$ 使得

$$f(x) = \frac{f'''(\xi_x)}{3!}(x-a)^2(x-b)$$

证明 构造

$$F(u) = f(u) - \frac{\lambda_x}{3!}(u-a)^2(u-b), \quad \lambda_x = \frac{3!f(x)}{(x-a)^2(x-b)}$$

4.5.2 Lagrange 定理

Rolle 定理需要两个函数等高、假如不等高我们可以旋转一下。

定理 4.5.4 ♦ Lagrange 定理

若函数 f 在 [a,b] 上连续,在 (a,b) 中可微,则存在 $\xi \in (a,b)$,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

证明 做辅助函数

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

显然 F(a) = F(b) = 0, 且满足 Rolle 定理的其他两个条件, 故存在 $\xi \in (a,b)$ 使得

$$F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$$

移项即证。

一般可以直接说, 存在 $\xi \in (a,b)$ 使得 $f(b) - f(a) = f'(\xi)(b-a)$ 。考虑设

$$\xi = (1 - \theta)a + \theta b = a + \theta(b - a), \quad \theta \in (0, 1)$$

因此可以说存在 $\theta \in (0,1)$ 使得

$$f(b) - f(a) = f'(a + \theta(b - a))(b - a)$$

4.5.3 Cauchy 中值定理

定理 4.5.5

设 f,g 在 [a,b] 上连续, 在 (a,b) 中可微, 且 $g'(x) \neq 0$, 则存在 $\xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

证明 首先注意到 $g(b) \neq g(a)$, 否则由 Rolle 定理知存在 g'(x) = 0。构造

$$F(x) = f(x) - f(a) - \lambda(g(x) - g(a)), \quad \lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

注意到 F(a) = F(b) = 0,由 Rolle 定理知存在 $\xi \in (a, b)$

$$F'(\xi) = f'(\xi) - \lambda g'(\xi) = 0$$

Cauchy 中值定理就更加的变化多端了。

4.5.4 凹凸性

定义 4.5.6

设 f 为定义在区间 I 上的函数,若对 I 上当任意两点 x_1, x_2 和任意实数 $\lambda \in (0,1)$ 总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为 I 上的凸函数。反之,如果总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \geqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为 I 上的凹函数。

4.6 L'Hospital 法则

定理 4.6.1 ♦ L'Hospital 法则, 0/0 型

设 f,g 是 (a,b) 上的连续可导函数, $g' \neq 0$, 且

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$

如果极限

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = A$$

其中 A 为实数或 ∞ 。则

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

证明 考虑补上 x=a 处的零值,延展函数 f,g 为 F,G,从而存在 $\xi_x\in(a,x)$ 使得

$$\frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi_x)}{G'(\xi_x)}$$

因此当 $x \to a^+$ 时, $\xi_x \to a^+$ 。故

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{\xi_x \to a^+} \frac{f'(\xi_x)}{g'(\xi_x)}$$

定理 4.6.2 ♦ L'Hospital 法则, 0/0 型

设 f,g 是 (a,b) 上的连续可导函数, $g' \neq 0$, 且

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty$$

如果极限

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = A$$

其中 A 为实数或 ∞ 。则

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

对于 $0 \cdot \infty$, 一般考虑

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}}$$

对于 $\infty - \infty$, 一般考虑

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} \frac{\frac{1}{f(x)} - \frac{1}{g(x)}}{\frac{1}{f(x)g(x)}}$$

倘若 0° 、 ∞° 、 1^{∞} ,则

$$\lim_{x \to a} f(x)^{g(x)} = \exp\left(\lim_{x \to a} g(x) \ln f(x)\right)$$

4.7 Taylor 公式

假设函数 f 在 x_0 处 n 阶可导,定义其在 x_0 处的 n 阶 Taylor 多项式定义为

$$P_n(x; x_0, f) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

当 $x_0 = 0$ 时,即为 Maclaurin 公式。

4.7.1 Peano 型余项

存在 $\delta > 0$ 使得对 $x \in (x_0 - \delta, x_0 + \delta)$ 有

$$f(x) = P_n(x) + r_n(x)$$

这里

$$r_n(x) = o((x - x_n)^n), \quad x \to x_0$$

我们可以通过洛n次证明。

4.7.2 Lagrange 型余项

由 Lagrange 中值定理,考虑在 $(x_0, x_0 + \delta)$,对任意的 x 都存在 ξ_1 使得

$$f(x) = f(x_0) + f'(\xi_1)(x - x_0)$$

大胆的推广一下, 我们可以证明

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi_2)}{2}(x - x_0)^2$$

一般的,我们就得到了 Lagrange 型余项。

定理 4.7.1

存在 $\delta > 0$, 设 f 在 $(x_0, x_0 + \delta)$ 上连续并 n+1 阶可导,则对任意的 x 都存在 ξ 有

$$f(x) = P_n(x) + r_n(x)$$

其中

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

证明 固定 x, 构造辅助函数

$$G(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x - t)^{k}$$

并任意的取在 $(x_0, x_0 + \delta)$ 上连续可导的函数 H(t), 且 H(x) = 0。存在 $\xi \in (x_0, x_0 + \delta)$ 满足

$$\frac{G(x_0)}{H(x_0)} = \frac{G(x) - G(x_0)}{H(x) - H(x_0)} = \frac{G'(\xi)}{H'(\xi)} = -\frac{f^{(n+1)}(\xi)}{n!H'(\xi)}(x - \xi)^n$$

即

$$G(x_0) = -\frac{f^{(n+1)}(\xi)}{n!H'(\xi)}(x-\xi)^n H(x_0)$$

取 $H(t) = (x-t)^{n+1}$ 即证。

4.7.3 Cauchy 型余项

定理 4.7.2

存在 $\delta>0$,设 f 在 $(x_0,x_0+\delta)$ 上连续并 n+1 阶可导,则对任意的 x 都存在 ξ 有

$$f(x) = P_n(x) + r_n(x)$$

其中

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{n!} (x - \xi)^n (x - x_0)$$

证明 在上一个证明中取 H(t) = x - t 即可。

第五章 积分理论

5.1 不定积分

先放这,稍后做整理。

定义 5.1.1

设函数 f 与 F 在区间 I 上都有定义。若

$$F'(x) = f(x), x \in I$$

则称 F 为 f 在区间 I 上的一个原函数。

定理 5.1.2

设 F_1 和 F_2 是 f 在区间 I 上的两个个原函数,则 $F_1(x) - F_2(x)$ 是与 x 无关的常数。

证明 显然

$$G'(x) = [F_1(x) - F_2(x)]' = f(x) - f(x) = 0, x \in I$$

根据 Lagrange 中值定理,有

$$F(x) - G(x) \equiv C, x \in I$$

定义 5.1.3

函数 f 在区间 I 上的全体原函数称为 f 在 I 上的不定积分,记作

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

其中 \int 称为积分号, f(x) 为被积函数, f(x) dx 为被积表达式, x 称为积分变量。

5.1.1 基本不定积分表

以下是一些常见函数的原函数

$$\int x^m \, \mathrm{d}x = \frac{1}{m+1} x^{m+1} + C, \quad m \neq 1$$

$$\int x^{-1} \, \mathrm{d}x = \ln|x| + C$$

$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \arctan x + C$$

$$\int \frac{1}{1-x^2} \, \mathrm{d}x = \frac{1}{2} \ln\left|\frac{1+x}{1-x}\right| + C$$

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x = \ln(x+\sqrt{1+x^2}) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin x + C$$

5.2 定积分

设闭区间 [a,b] 上有 n-1 个点, 依次为

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

它们把 [a,b] 分为 n 个小区间 $\Delta_i = [x_{i-1},x_i], i=1,\cdots,n$ 。这些分点或这些闭子区间构成对 [a,b] 的一个分割,记为

$$T = \{x_0, \cdots, x_n\} \ \vec{\boxtimes} \ \{\Delta_1, \cdots, \Delta_n\}$$

小区间 Δ_i 的长度为 $\Delta x_i = x_i - x_{i-1}$, 并记

$$||T|| = \max_{1 \le i \le n} \{\Delta x_i\}$$

称为分割的模。

定义 5.2.1

设 f 是定义在 [a,b] 上的一个函数。对于 [a,b] 的一个分割 $T=\{\Delta_1,\cdots,\Delta_n\}$,任取点 $\xi\in\Delta_i, i=1,\cdots,n$,并作和式

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

称此和式为函数 f 在 [a,b] 上的一个积分和,也称黎曼和。

显然, 积分既与分割 T 与有关, 又与所选取的点集 $\{\xi_i\}$ 有关。

定义 5.2.2

设 f 是定义在 [a,b] 上的一个函数,J 是一个确定的实数。若对任给的正数 ϵ ,总存在某一正数 δ ,使得对 [a,b] 的任何分割 T,以及在其上任意选取的点集 $\{\xi_i\}$,只要 $\|T\|<\delta$,就有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - J \right| < \varepsilon$$

则称函数 f 在区间 [a,b] 上可积或黎曼可积;数 J 称为 f 在 [a,b] 上的定积分或黎曼积分,记作

$$J = \int_a^b f(x) dx = \lim_{\|T\| \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

其中 f 称为被积函数, x 称为积分变量, [a,b] 称为积分区间, a,b 分别称为这个定积分的下限和上限。

定理 5.2.3 ◊ Newton - Leibniz 公式

若函数 f 在 [a,b] 上连续,且存在原函数 F,即 $F'(x) = f(x), x \in [a,b]$,则 f 在 [a,b] 上可积,且

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

证明 即证对于任给的 $\varepsilon>0$,存在 $\delta>0$ 使得当 $\|T\|<\delta$ 时有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - [F(b) - F(a)] \right| < \varepsilon$$

对于任意分割 T,在每个小区间 $[x_{i-1},x_i]$ 上对 F(x) 使用 Lagrange 中值定理,则分别存在 $\eta_i \in (x_{i-1},x_i), i=1,\cdots,n$,使得

$$F(b) - F(a) = \sum_{i=1}^{n} F'(\eta_i) \Delta x_i = \sum_{i=1}^{n} f(\eta_i) \Delta x_i$$

又因为 f 在 [a,b] 上一致连续,因此存在 $\delta>0$ 当 $x_1,x_2\in[a,b]$ 且 $|x_1-x_2|<\delta$ 时,有

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}$$

由 $\Delta x_i \leqslant ||T|| < \delta$ 时,任取 $\xi_i \in [x_{i-1}, x_i]$,便有 $|\xi_i - \eta_i| < \delta$,于是

$$LHS = \left| \sum_{i=1}^{n} [f(\xi_i) - f(\eta_i)] \Delta x_i \right| \leqslant \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon$$

于是 f 在 [a,b] 上可积。

5.2.1 可积条件

定理 5.2.4

若函数 f 在 [a,b] 上可积,则 f 在 [a,b] 上必定有界。

证明 反证, 若 f 在 [a,b] 上无界,则对于即对于 [a,b] 的任意分割 T,必存在属于 T 的某区间 Δ_k ,使 f 在其上无界。在 $i \neq k$ 的各个区间 Δ_i 上取定 ξ_i ,记

$$G = \left| \sum_{i \neq k} f(\xi) \Delta x_i \right|$$

任意大的正数 M, 存在 $\xi_k \in \Delta_k$, 使得

$$|f(\xi_k)| > \frac{M+G}{\Delta x_k}$$

于是有

$$\left| \sum_{i=1}^{n} f(\xi) \Delta x_i \right| \geqslant |f(\xi_k) \Delta x_k| - \left| \sum_{i \neq k} f(\xi) \Delta x_i \right| > \frac{M+G}{\Delta x_k} \cdot \Delta x_k - G = M$$

有界函数不一定黎曼可积, 比如 Dirichlet 函数。

43

设 T 为对 [a,b] 的任意分割。由 f 在 [a,b] 上有界,它在每个 Δ_i 上存在上、下确界:

$$M_i = \sup_{x \in \Delta_i} f(x), m_i = \inf_{x = \Delta_i} f(x), i = 1, \cdots, n$$

作和

$$S(T) = \sum_{i=1}^{n} M_i \Delta x_i, s(T) = \sum_{i=1}^{n} m_i \Delta x_i$$

分别称为 f 关于分割 T 的上和与下和 (或称达布上和与达布下和, 统称达布和)。任给 $\xi_i = \Delta_i, i = 1, \dots, n$,显然有

$$m(b-a) \leqslant s(T) \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant S(T) \leqslant M(b-a)$$

与积分和相比较, 达布和只与分割 T 有关, 而与点集 $\{\xi_i\}$ 无关。

命题 5.2.5

给定分割 T,对于任何点集 $\{\xi_i\}$ 而言,上和时所有积分和的上确界,下和是所有积分和的下确界。

证明 设 Δ_i 中 M_i 是 f(x) 的上确界,故可选取点 $\xi = \Delta_i$,使 $f(\xi_i) > M_i - \frac{\varepsilon}{b-a}$,于是有

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i > \sum_{i=1}^{n} M_i \Delta x_i - \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = S(T) - \varepsilon$$

即 S(T) 是全体积分和的上确界。类似可证 S(T) 是全体积分和的下确界。

命题 5.2.6

设 T' 为分割 T 添加 p 个新分点后所得到的分割,则有

定理 5.2.7

函数 f 在 [a,b] 上可积的充要条件是: 人格 $\varepsilon > 0$,总存在相应的一个分割 T 使得

$$S(T) - s(T) < \sum_{i=1}^{n} \omega_i \Delta x_i = \varepsilon$$

其中 ω 称为 f 在 Δ_i 上的振幅。

由充要条件, 我们可以得到一系列的可积函数类。

定理 5.2.8

若 f 为 [a,b] 上的连续函数,则 f 在 [a,b] 上可积。

证明 由于 f 在闭区间 [a,b] 上一致连续,即任给 $\varepsilon>0$,存在 $\delta>0$,对 [a,b] 中任意两点 x_1,x_2 ,只要 $|x_1-x_2|<\delta$,便有

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{h - a}$$

所以对于在 [a,b] 的分割 T 满足 $||T|| < \delta$,在 T 所属的任一小区间 Δ_i 上,都有

$$\omega_i = M_i - m_i = \sup_{x_1, x_2 \in \Delta_i} |f(x_1) - f(x_2)| \leqslant \frac{\varepsilon}{b - a}$$

从而

$$\sum_{T} \omega_i \Delta x_i \leqslant \frac{\varepsilon}{b-a} \sum_{T} \Delta x_i = \varepsilon$$

5.3 不定积分

这部分我的参考书是《积分的方法与技巧》(金玉明等)。

5.3.1 分项积分法

若干微分式的和或差的不定积分,等于每个微分式的各自积分的和或差。

$$\int (f(x) + g(x) - h(x)) dx = \int f(x) dx + \int g(x) dx - \int h(x) dx$$

因此多项式的积分可以简单的通过积分各个单项式得到。

当分母可以被拆成低次式时, 可以考虑使用分项积分法。

如果一个分式的分母为多项式,则可把它化成最简单的分式再积分。如

$$\frac{1}{x^2 - a^2} = \frac{1}{2a} \left(\frac{1}{x - a} - \frac{1}{x + a} \right)$$

这里可以通过通分后待定系数得到。于是其积分为

$$\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

对于更复杂的真分式的情况, 若要计算的是

$$\int \frac{mx+n}{x^2+px+q} \, \mathrm{d}x$$

分母不一定能直接分解, 但总能进行配方

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + q - \frac{p^{2}}{4} = t^{2} \pm a^{2}$$

再令 $A = m, B = n - \frac{1}{2}mp$,可得

$$\int \frac{mx+n}{x^2 + px + q} \, dx = \int \frac{At + B}{t^2 \pm a^2} \, d = A \int \frac{t \, dt}{t^2 \pm a^2} + B \int \frac{dt}{t^2 \pm a^2}$$

其中

$$A \int \frac{t \, dt}{t^2 \pm a^2} = \frac{A}{2} \int \frac{d(t^2 \pm a^2)}{t^2 \pm a^2} = \frac{A}{2} \ln|t^2 \pm a^2| + C$$

$$B \int \frac{dt}{t^2 + a^2} = \frac{B}{a} \arctan \frac{t}{a} + C$$

$$B \int \frac{t \, dt}{t^2 - a^2} = \frac{B}{2a} \ln\left|\frac{t - a}{t + a}\right| + C$$

因此当 $p^2 < 4a$ 时,可以得到

$$\int \frac{mx+n}{x^2 + px + q} = \frac{A}{2} \ln|t^2 + a^2| + \frac{B}{a} \arctan \frac{t}{a} + C$$

$$= \frac{m}{2} \ln|x^2 + px + q| + \frac{2n - mp}{\sqrt{4q - p^2}} \arctan \frac{2x + p}{\sqrt{4q - p^2}} + C$$

当 $p^2 > 4q$ 时,可以得到

$$\int \frac{mx+n}{x^2+px+q} = \frac{A}{2} \ln|t^2 - a^2| + \frac{B}{2a} \ln\left|\frac{t-a}{t+a}\right|$$

$$= \frac{m}{2} \ln|x^2+px+q| + \frac{2n-mp}{2\sqrt{4q-p^2}} \ln\left|\frac{2x+p-\sqrt{p^2-4q}}{2x+p+\sqrt{p^2-4q}}\right| + C$$

5.3.2 分部积分法

根据乘积的微分法则

$$d(uv) = u \, dv + v \, du$$

显然有

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

更进一步的, 假设

$$\int uv^{(n+1)} dx = \int u dv^{(n)} = uv^{(n)} - \int u'v(n) dx$$
$$= uv^{(n)} - u^{(1)}v^{(n-1)} + u^{(2)}v^{(n-2)} + \dots + (-1)^n u^{(n)}v + (-1)^{n+1} \int u^{(n+1)} dvx$$

例如当 P(x) 是关于 x 的多项式时, 假设计算

$$\int P(x)e^{ax} dx = e^{ax} \left(\frac{P}{a} - \frac{P'}{a^2} + \frac{P''}{a^3} + cdots \right)$$

另一个形式是

$$\int P(x)\sin ax \, \mathrm{d}x = \sin ax \left(\frac{P'}{a^2} - \frac{P^{(3)}}{a^4} + \cdots\right) - \cos ax \left(\frac{P}{a} - \frac{P''}{a^3} + \cdots\right)$$

对于 $\cos ax$, 类似的有

$$\int P(x)\cos ax \, dx = \sin ax \left(\frac{P'}{a^2} - \frac{P^{(3)}}{a^4} + \cdots\right) + \cos ax \left(\frac{P}{a} - \frac{P''}{a^3} + \cdots\right)$$

这种一般答案比被积函数高一阶,试一试系数就行。有时候会两种形式交错,比如

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

5.3.3 三角换元积分法

这种题需要灵感并积累一些套路。

三角换元一般隐藏这一些直角三角形,建议草稿纸上画出来,分析的清楚一点。

三角函数及双曲三角函数 回顾一下高中知识。除了常见的 $\sin x$, $\cos x$, $\tan x$, 其倒数也有名字

$$\sin x \csc x = 1$$
, $\cos x \sec x = 1$, $\tan x \cot x = 1$

常见公式 $\sin^2 x + \cos^2 x = 1$ 有变形

$$1 + \tan^2 x = \sec^2 x$$
, $1 + \cot^2 x = \csc^2 x$

三角函数的和差关系

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

令 $t = \tan \frac{x}{2}$,有万能公式

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $\tan x = \frac{2t}{1-t^2}$

双曲三角函数的定义是

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}, \quad \tanh = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

有公式 $\sinh^2 x - \cosh^2 x = 1$, 变形即

$$1 - \tanh^2 x = \frac{1}{\cosh^2 x}, \quad 1 - \coth^2 x = \frac{1}{\sinh^2 x}$$

类似的有反双曲三角函数,即

$$\operatorname{arcsinh} x = \ln(x + \sqrt{x^2 + 1}), \quad \operatorname{arccosh} x = \ln(x + \sqrt{x^2 - 1}), \quad \operatorname{arctanh} x = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|$$

形式一 如果没有特殊形式,可以尝试齐次化(或者硬代万能公式),强行化有理式。

例如

$$\int \frac{\mathrm{d}x}{a^2 \sin^2 x + b^2 \cos^2 x}$$

尝试 $\tan x = t$, 有

$$dt = \frac{dx}{\cos^2 x} = (1 + t^2) dx$$

因此

$$LHS = \int \frac{\mathrm{d}t}{a^2t^2 + b^2} = \frac{1}{ab}\arctan\left(\frac{a}{b}\tan x\right) + C$$

假如计算

$$\int \frac{\mathrm{d}x}{\sin 2x} = \int \frac{t^2 + 1}{2t} \, \mathrm{d}x = \frac{1}{2} \ln|\tan x| + C$$

形式二 形如 $\sqrt{a^2-x^2}$ 的积分,设 $x=a\sin\theta$,则

$$dx = a\cos\theta \,d\theta, \quad \sqrt{a^2 - x^2} = a\cos\theta$$

例如

$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = a^2 \int \cos^2 \theta \, \mathrm{d}\theta = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

形式三 形如 $\sqrt{a^2+x^2}$ 的积分,设 $x=a \tan \theta$,则

$$dx = a \sec^2 \theta d\theta$$
, $\sqrt{a^2 + x^2} = a \sec \theta$

双元法是一类特殊的三角换元,来自虚调子¹。其本质就是 $x \, \mathrm{d} x \pm y \, \mathrm{d} y = 0$ 更直观,在部分题中能够避免被根号绕进去。

¹一小时学会双元教程!

5.3.4 欧拉替换法

对于二次根式 $\sqrt{ax^2 + bx + c}$ 。

形式一 令

$$\sqrt{a^2x^2 + bx + c} = t - ax$$

两边平方可得

$$x = \frac{t^2 - c}{2at + b}, \quad 2\frac{at^2 + bt + ca}{(2at + b)^2} dt$$

5.4 定积分的基本性质

5.4.1 中值定理

定理 5.4.1 ◊ 积分第一中值定理

设 f 在 [a,b] 上可积且连续,则存在 $\xi \in [a,b]$ 使得

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

证明 设 m, M 分别是 f 在 [a, b] 上的最小值和最大值,显然存在 $\mu \in [m, M]$ 使得

$$m \leqslant \mu = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x \leqslant M$$

由连续性显然存在 $f(\xi) = \mu$ 。

定理 5.4.2 ◊ 广义积分第一中值定理

假设 f,g 在 [a,b] 上可积且连续,在 [a,b] 上恒有 $g\geqslant 0$ 或 $g\leqslant 0$,则存在 $\xi\in [a,b]$ 使得

$$\int_a^b f(x)g(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x$$

证明 不妨令 $g \ge 0$ 。设 m, M 为 f 在 [a, b] 上的最小值和最大值, 如果

$$\int_{a}^{b} g(x) \, \mathrm{d}x \neq 0$$

则存在 $\mu \in [m, M]$ 使得

$$m \leqslant \mu = \frac{\int_a^b f(x)g(x) \, \mathrm{d}x}{\int_a^b g(x) \, \mathrm{d}x} \leqslant M$$

显然此时存在 $\xi = \mu$ 。假如积分为 0,则显然有 g = 0,任意 ξ 都成立。

定理 5.4.3 ◊ 积分第二中值定理

假设 f,g 在 [a,b] 上可积,且 $g \ge 0$ 。如果 g 单调递减,则存在 $\xi \in [a,b]$ 满足

$$\int_{a}^{b} f(x)g(x) dx = g(a) \int_{a}^{\xi} f(x) dx$$

如果 g 单调递增,则存在 $\eta \in [a,b]$ 满足

$$\int_{a}^{b} f(x)g(x) dx = g(b) \int_{a}^{b} f(x) dx$$

证明 只证第一个命题。我们给出两种证法。

(1) 设 F(x) 为 f 的原函数, 首先分部积分法

$$\int_{a}^{b} f(x)g(x) dx = F(b)g(b) - F(a)g(a) - \int_{a}^{b} F(x)g'(x) dx$$

由 Lagrange 中值定理,知存在

$$\int_{a}^{b} F(x)g'(x) \, dx = F(\xi)(g(b) - g(a))$$

带入整理得

$$\int_{a}^{b} f(x)g(x) dx = g(a)(F(\xi) - F(a)) + g(b)(F(b) - F(\xi))$$

即广义积分第二中值定理。注意到取 $g_1=g$ 且在 x=b 处设置间断点 g(b)=0,以上证明仍成立。

(2) 用到了 Abel 变换, 有点复杂。TODO

定理 5.4.4 ◊ 广义积分第二中值定理

假设 f,g 在 [a,b] 上可积, 且 g 单调,则存在 $\xi \in [a,b]$ 满足

$$\int_a^b f(x)g(x) dx = g(a) \int_a^{\xi} f(x) dx + g(b) \int_{\xi}^b f(x) dx$$

证明 不妨设递增,令 $g_1=g(b)-g(x)$,应用积分第二中值定理即可。

定理 5.4.5 ♦ Cauchy 积分不等式

如果 f, g 在 [a, b] 上可积, 那么我们有

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \leqslant \left(\int_{a}^{b} f^{2}(x) dx\right) \left(\int_{a}^{b} g^{2}(x) dx\right)$$

证明 对任意划分 T有

$$\left(\sum f(x_i)g(x_i)\Delta x_i\right)^2 \leqslant \left(\sum f^2(x_i)\Delta x_i\right)\left(\sum g^2(x_i)\Delta x_i\right)$$

故当 $||T|| \rightarrow 0$ 时也成立。

定理 5.4.6 ◊ Jensen 积分不等式

如果 f 在 [a,b] 上是凸且连续的,且 $\varphi(x)$ 在 \mathbb{R} 上连续,那么我们有

$$f\left(\frac{1}{c}\int_0^c \varphi(t) dt\right) \leqslant \frac{1}{c}\int_0^c f(\varphi(t)) dt$$

证明 对任意划分 T 有

$$f\left(\frac{1}{c}\sum \varphi(t)\Delta x_i\right) \leqslant \frac{1}{c}\sum f(\varphi(t))\Delta x_i$$

故当 $||T|| \rightarrow 0$ 时也成立。

定理 5.4.7 ♦ Hadamard 积分不等式

如果 f 在 [a,b] 上是凸且连续的,那么有

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_a^b f(t) dt \leqslant \frac{f(a)+f(b)}{2}$$

证明 (1) 假如 f 可导,设

$$F_1(x) = \int_a^x f(t) dt - (x - a) f\left(\frac{a + x}{2}\right)$$

求导,由 Taylor 公式得

$$F_1'(x) = f(x) - f\left(\frac{a+x}{2}\right) - \frac{x-a}{2}f'\left(\frac{a+x}{2}\right) = \frac{f''(\xi_1)}{2}\left(\frac{x-a}{2}\right)^2 \geqslant 0$$

因此 $F_1(x) \ge 0$ 。 再构造

$$F_2(x) = (x - a)(f(x) + f(a)) - 2\int_a^x f(t) dt$$

求导得

$$F_2'(x) = (x-a)f'(x) + f(a) - f(x), \quad F_2''(x) = (x-a)f''(x) \ge 0$$

故 $F_2'(x) \geqslant F_2'(a) = 0$, 因此 $F_2(x) \geqslant 0$ 。

(2) 前面的证明是不严谨的,因为 f 不一定可导。构造 $F(\lambda) = f(a + \lambda(b-a))$,注意到

$$F(\lambda_1 + \mu(\lambda_2 - \lambda_1)) = f(\mu(a + \lambda_1(b - a)) + (1 - \mu)(a + \lambda_2(b - a)))$$

 $\leq \mu F(\lambda_1) + (1 - \mu)F(\lambda_2)$

故 F 是凸的。因此根据 Jensen 不等式得

$$f\left(\frac{a+b}{2}\right) = F\left(\int_0^1 \lambda \, d\lambda\right) \leqslant \int_0^1 F(\lambda) \, d\lambda = \frac{1}{b-a} \int_a^b f(t) \, dt$$

另一方面

$$\int_0^1 F(\lambda) \, \mathrm{d}\lambda = \frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t \leqslant \int_0^1 \left((1-\lambda)f(a) + \lambda f(b) \right) \mathrm{d}\lambda = \frac{f(a) + f(b)}{2}$$

5.4.2 变量替换法

定理 5.4.8

假设函数 $\varphi: [\alpha, \beta] \to [a, b]$ 连续可导,且 $\varphi(\alpha) = a, \varphi(\beta) = b$,则对任意的 [a, b] 上的可积函数 f 有 $f(\varphi(t))\varphi'(t)$ 可积,且

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t))\varphi'(t) dt$$

假如 ⊊ 严格单调,则有

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

5.5 反常积分

定义 5.5.1

假设函数 $f:[a,\infty)\to\mathbb{R}$ 可积。如果极限存在,则记

$$\int_{a}^{+\infty} f(x) dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx$$

称为 f 在 $[a, +\infty)$ 上的无穷积分或第一类反常积分。

类似的我们可以定义 $(-\infty,a]$ 上的无穷积分。考虑函数 $f:(-\infty,+\infty)\to\mathbb{R}$,若对任意的 c 下面的积分都收敛,则记

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

当然, 只要存在 c 使得收敛, 将对全体 \mathbb{R} 收敛。

一个常见的误区是认为

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) \, \mathrm{d}x$$

收敛,则 $(-\infty, +\infty)$ 上的反常积分存在。反例是 $f = \sin x$ 。

5.5.1 收敛判别法

接下来我们考察

$$I(f) = \int_{a}^{+\infty} f(x) \, \mathrm{d}x$$

的收敛性。

定理 5.5.2 ◊ 有界判别法

积分

$$I_A(f) = \int_{-\infty}^{A} f(x) \, \mathrm{d}x$$

有界, 是 I(f) 收敛的充分必要条件。

定理 5.5.3 ◊ 比较判别法

如果 $0 \le f(x) \le g(x)$ 。若 I(f) 发散则 I(g) 发散。若 I(g) 收敛则 I(f) 收敛。对于极限形式

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = K \geqslant 0$$

若 K=0 且 I(g) 收敛则 I(f) 收敛。若 $K=+\infty$ 且 I(g) 发散则 I(f) 发散。若 K 为正实数,则 I(f) 收敛是 I(g) 收敛的充要条件。

证明 非极限形式易证。对于极限形式,若 K 是正实数,则存在 a_1 使得对 $x>a_1$ 有

$$\frac{K}{2}g(x)\leqslant f(x)\leqslant \frac{3K}{2}g(x)$$

成立, 套用非极限形式即证。

定理 5.5.4 ♦ Cauchy 判别法

假定 a > 0, 若

$$f(x) \leqslant \frac{K}{x^p}, \quad K > 0, p > 1$$

则 I(f) 收敛。若

$$f(x) \geqslant \frac{K}{x^p}, \quad K > 0, p \leqslant 1$$

则 I(f) 发散。

极限形式: 若

$$\lim_{x \to +\infty} x^p f(x) = K \geqslant 0$$

当 K 是非负实数且 p>1 时收敛。当 K 是正实数或 $+\infty$ 且 $p\leqslant 1$ 时 I(f) 发散。

证明 在比较判别法中取 $g = x^{-p}$ 即可。

定理 5.5.5 ♦ Abel 判别法

假设反常积分

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x$$

收敛且 g(x) 单调有界,则反常积分

$$\int_{a}^{+\infty} f(x)g(x) \, \mathrm{d}x$$

收敛。

定理 5.5.6 ♦ Dirichlet 判别法

假如函数

$$F(A) = \int_{a}^{A} f(x) \, \mathrm{d}x$$

有界且 g(x) 单调同时 $g \to 0$ 则反常积分

$$\int_{a}^{+\infty} f(x)g(x) \, \mathrm{d}x$$

5.6 常见的积分

基本积分表之前已经列出, 我们这里列一些组合的。

例 5.6.1 ◊ 有理式

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \left| \frac{x+b}{x+a} \right| + C$$

$$\int \frac{1}{x^2(x+a)} dx = \frac{1}{a^2} \ln \left| 1 + \frac{a}{x} \right| - \frac{1}{ax} + C$$

$$\int \frac{1}{x(x^2+a)} dx = \frac{1}{2a} \ln \left| \frac{x^2}{x^2+a} \right| + C$$

例 5.6.2 \diamond 带 $a^2 \pm x^2$

$$\int \frac{1}{a^2 + x^2} \, \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{1}{a^2 - x^2} \, \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + C = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, \mathrm{d}x = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} \, \mathrm{d}x = \arcsin \frac{x}{a} + C = \ln \left| \sqrt{a^2 + x^2} + x^2 \right| + C$$

$$\int \frac{x}{\sqrt{a^2 \pm x^2}} \, \mathrm{d}x = \pm \sqrt{a^2 \pm x^2} + C$$

$$\int \frac{1}{(a^2 \pm x^2)^{\frac{3}{2}}} \, \mathrm{d}x = \frac{x}{a^2 \sqrt{x^2 \pm a^2}} + C$$

$$\int \frac{x}{(a^2 \pm x^2)^{\frac{3}{2}}} \, \mathrm{d}x = \mp \frac{x}{a^2 \sqrt{x^2 \pm a^2}} + C$$

$$\int \sqrt{a^2 + x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}}$$

$$\int \frac{1}{(a^2 + x^2)^n} \, \mathrm{d}x = \frac{x}{2(n - 1)a^2(x^2 + a^2)^{n - 1}} + \frac{2n - 3}{2(n - 1)a^2} \int \frac{\mathrm{d}x}{(x^2 + a^2)^n}$$

例 5.6.3 ◊ 根式

$$\int x\sqrt{x+a} \, \mathrm{d}x = \frac{2}{15}(3x-2a)(x+a)^{\frac{3}{2}} + C$$

$$\int \frac{x}{\sqrt{x+a}} \, \mathrm{d}x = \frac{2}{3}(x-2a)\sqrt{x+a} + C$$

$$\int \frac{1}{x\sqrt{x+a}} \, \mathrm{d}x = -\frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+x}+\sqrt{a}}{\sqrt{a+x}-\sqrt{a}} \right| + C, \quad a > 0$$

$$\int \frac{1}{x\sqrt{x-a}} \, \mathrm{d}x = \frac{2}{\sqrt{a}} \arctan \sqrt{\frac{x}{a}-1}, \quad a > 0$$

$$\int \sqrt{\frac{a+x}{a-x}} \, \mathrm{d}x = \arcsin \frac{x}{a} - \sqrt{a^2-x^2} + C, \quad a > 0$$

$$\int \sqrt{\frac{a-x}{a+x}} \, \mathrm{d}x = \arcsin \frac{x}{a} + \sqrt{a^2+x^2} + C, \quad a > 0$$

$$\int \frac{\sqrt{x+a}}{x} \, \mathrm{d}x = 2\sqrt{x+a} + a \int \frac{\mathrm{d}x}{x\sqrt{x+a}}$$

第六章 级数理论

6.1 数项级数的敛散性

给定一个无穷数列 $\{a_n\}$, 称形式和

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$$

为无穷级数, 其中 a_i 记作通项或一般项。对于前 n 项和, 我们称 S_n 为第 n 个部分和。

若 $\lim_{n\to\infty}S_n=S$ 存在且有限,则称级数级数 $\sum a_i$ 收敛,否则就称级数发散。显然若级数 $\sum a_i$ 收敛,则通项

$$a_n = S_n - S_{n-1} \to S - S = 0 \quad (n \to \infty)$$

定理 6.1.1 < Cauchy 准则

给定级数 $\sum a_i$, 存在 $N = N(\varepsilon)$ 使得当 n > N 时有

$$|S_{n+p} - S_n| = |a_{n+p} + \dots + a_{n+1}| < \varepsilon$$

显然级数的有限项不影响级数的敛散性,以下讨论均舍弃。

6.2 正项级数的敛散性

若级数各项的符号都相同,则称为同号级数;进一步的,若皆为正号,则称为正项级数。由于 0 并不影响收敛性,故以下讨论的正项级数可含 0。

定理 6.2.1 ◊ 基本判别法

正项级数 $\sum a_i$ 收敛的充要条件是: 部分和数列 $\{S_n\}$ 有界。

定理 6.2.2 ◊ 比较原则

设正项级数 $\sum a_i, \sum b_i$, 若存在正数 N, 使得

$$a_i \leqslant b_i, \quad \forall n \geqslant N$$

那么

- (1) 若级数 $\sum b_i$ 收敛,则级数 $\sum a_i$ 收敛。
- (2) 若级数 $\sum a_i$ 发散,则级数 $\sum b_i$ 发散。

证明 设其部分和分别为 A_i, B_i 。不妨假设 N=1,即对数列的每项都成立。

(1) 显然有

$$A_i \leqslant B_i \leqslant B$$

即 A_i 为单调有界数列, 故必有极限 A, 因此级数 $\sum a_i$ 收敛。

(2) 其为(1)的逆否命题,也成立。

因此我们可以通过比较、放缩等手段、将待判级数和已知敛散性的级数进行比较。

一个重要的已知级数是等比级数,我们有三种判断手段。

定理 6.2.3 ◊ 比式判别法

设 $\sum a_i$ 是正项级数, 却存在某正数 N 和 q(0 < q < 1) 使得

$$a_{n+1}/a_n \leqslant q, \quad \forall n \geqslant N$$

则级数 $\sum a_i$ 收敛;若

$$a_{n+1}/a_n \geqslant 1, \quad \forall n \geqslant N$$

则级数 $\sum a_i$ 发散。

(极限形式) 且

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$$

则当 q < 1 时,级数收敛;q > 1 时,级数发散。

证明 (1) 不妨设 N=1, 则有 $a_n \leq q^{n-1}a_1$ 。而等比级数显然是收敛的,故收敛。

(2) 显然当 $n > N_0$ 时 $a_n \ge n_0 > 0$,其每项的极限不趋于 0,故发散。

(极限形式)由极限知,我们取 $\varepsilon = \frac{|1-q|}{2}$,存在正数 N 使得当 n > N 时有

$$q - \varepsilon < \frac{a_{n+1}}{a_n} < q + \varepsilon$$

当 q<1 时,显然 $q+\varepsilon=\frac{1+q}{2}<1$,由比式判别法知收敛。

当 q>1 时, $q-\varepsilon=\frac{1+q}{2}>1$, 由比式判别法知发散。

定理 6.2.4 ♦ Cauchy 判别法 (根式判别法)

设 $\sum a_i$ 是正项级数,且存在正数 N 和正常数 q 使得

$$\sqrt[n]{a_n} \leqslant q < 1, \forall n > N$$

则级数收敛; 若

$$\sqrt[n]{a_n} \geqslant 1, \forall n > N$$

则级数发散。

证明 (1) 不妨设 N=1, 显然 $a_n \leq q^n$, 由等比级数收敛知原级数也收敛。

(2) 显然 $a_n \geqslant 1^n = 1$, 故发散。

定理 6.2.5 ◊ 积分判别法

设 $f \in [1,\infty)$ 上的减函数,则级数 $\sum f(i)$ 收敛的充分必要条件是反常积分 $\int_1^{+\infty} f(x) dx$ 收敛。

证明 假设级数收敛于 S, 由收敛的性质知, $\lim_{n\to\infty} f(n) = 0$, 故 f 非负。进而对任意正整数 N 有

$$\int_{1}^{N} f(x) \, \mathrm{d}x = \sum_{n=2}^{N} \int_{n-1}^{n} f(x) \, \mathrm{d}x \leqslant \sum_{n=1}^{N-1} f(n) \leqslant \sum_{n=1}^{\infty} f(n) = S$$

考虑对 $M \in (N, N+1]$, 都有

$$0 \leqslant \int_{1}^{M} f(x) \, \mathrm{d}x \leqslant \int_{1}^{N+1} f(x) \, \mathrm{d}x \leqslant S$$

因此该反常积分收敛。

反之, 设反常积分。。。不想证了 TODO

定理 6.2.6 ♦ Kummer

设 $\sum a_i, \sum b_i$ 为正项级数, 若 n 充分大时有

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \geqslant \lambda > 0$$

则 $\sum a_n$ 收敛; 若

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \leqslant 0$$

且 $\sum b_n$ 发散,则 $\sum a_n$ 发散。

证明 (1) 条件即

$$a_{n+1} \leqslant \frac{1}{\lambda} \left(\frac{a_n}{b_n} - \frac{a_{n+1}}{b_{n+1}} \right)$$

设 S_n 是 a_n 的和函数,有

$$S_{n+1} \leqslant S_N + \frac{1}{\lambda} \left(\frac{a_N}{b_N} - \frac{a_{n+1}}{b_{n+1}} \right) \leqslant S_N + \frac{1}{\lambda} \frac{a_N}{b_N}$$

从而 S_N 有上界, 故收敛。

(2) 可知

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \leqslant 0 \Longrightarrow \frac{a_1}{b_1} \leqslant \dots \leqslant \frac{a_n}{b_n} \leqslant \frac{a_{n+1}}{b_{n+1}}$$

故 $a_n \geqslant \frac{a_1}{b_1} b_n$, 由 $\sum b_n$ 知 $\sum a_n$ 也发散。

当 $b_n=1$ 时即得比值判别法; 取 $b_n=\frac{1}{n}$ 就是 Raabe 判别法; 取 $b_n=\frac{1}{n\ln n}$, 则得 Gauss 判别法。

定理 6.2.7 ♦ Cauchy 凝聚判别法

设 a_n 单调递减趋于 0。则 $\sum a_n$ 收敛当且仅当 $\sum 2^k a_{2^k}$ 收敛。

6.2.1 常见级数的收敛性

定理 6.2.8

级数 $\sum \frac{1}{n^p}$ 在 p > 1 时收敛, $p \leqslant 1$ 时发散。

证明 定义函数 $f(x)=\frac{1}{n^p}$,由于 f 当 p>0 时在 $[1,\infty)$ 上单调递减,则由积分判别法知

$$\int_{1}^{+\infty} f(x) \, \mathrm{d}x = \int_{1}^{+\infty} \frac{1}{x^{p}} \, \mathrm{d}x$$

6.3 一般项级数收敛判别法

若级数 $\sum a_n$ 各项绝对值组成的级数 $\sum |a_n|$ 收敛,那么称原级数绝对收敛;若原级数收敛,绝对值级数不收敛,则称为条件收敛。

更神秘的判别法,比如 Abel 判别法、Dirichlet 判别法感觉不太用得到,跳过。

6.3.1 交错级数

在 Taylor 公式中, 我们经常得到正负项交替出现的级数, 我们称为交错级数。

定理 6.3.1 ♦ Leibniz 判别法

若 a_n 单调递减趋于 0,则级数 $\sum (-1)^{n-1}a_n$ 收敛。

证明 懒得证了,TODO。大致思想是注意到 S_{2m-1} 和 S_{2m} 分别是单减和单增的,从而 $[S_{2m-1},S_{2m}]$ 是 退缩区间套。

6.4 函数项级数的一致收敛

设 f_1, f_2, \cdots 是 E 上的函数列,记为 $\{f_i\}$ 。若带入 $x = x_0$ 使得函数列的值收敛,则称函数列在点 x_0 收敛, x_0 称为函数列的收敛点;反之若发散,则称发散点。

若函数列在 $D \subset E$ 上每一点都收敛,则称其在数集 D 上收敛。此时对函数上每一点 x,都有一个极限值与之对应,称为函数列的极限函数。记为

$$\lim_{n \to \infty} f_n(x) = f(x)$$

函数列的全体收敛点集, 称为收敛域。

用 $\varepsilon - N$ 语言表示即: 对任意固定的 $x \in D$,任给 ε 恒存在 $N(\varepsilon, x)$ 使得当 n > N 时有

$$|f_n(x) - f(x)| < \varepsilon$$

则称 $\lim_{n\to\infty} f_n(x) = f(x)$ 。

对于函数列,我们不仅要讨论其收敛域,还需要更多的性质,比如连续性、导数、积分是否在极限下不变。

定义 6.4.1

若对于函数列 $\{f_n\}$ 对任给的正数 ε 总存在某一正整数 $N(\varepsilon)$ 使得当 n > N 时对一切 $x \in D$ 都有

$$|f_n(x) - f(x)| < \varepsilon$$

则称函数列一致收敛于 f, 记作

$$f_n(x) \rightrightarrows f(x)(n \to \infty)$$

一致收敛是比收敛更强的性质。反之,存在 ε 使得对任何 N 都有 x(N) 和 n(N) > N 使得

$$|f_n(x) - f(x)| \ge \varepsilon$$

则称其不一致收敛。

定理 6.4.2 ◊ 函数列一致收敛 Cauthy 准则

给定函数列 $\{f_n\}$ 在 D 上一致收敛的充要条件是: 对任给 $\varepsilon>0$ 都存在正数 N 使得 n,m>N 时, 对一切 $x\in D$ 都有

$$|f_n(x) - f_m(x)| < \varepsilon$$

证明 先证必要性, 已知 $f_n(x) \Rightarrow f(x)$, 显然我们可以取 ξ 使得

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

再证必要性, 考察每个点由 Cauthy 定理知其收敛, 故一致收敛。

定义 6.4.3

若函数列 $\{f_n\}$ 定义在区间 I 上,若对任意闭区间 $[a,b]\subset I$,函数列在 [a,b] 上一致收敛于 f,则称 $\{f_n\}$ 在函数列上一致收敛。

对于函数列, 我们也可以定义函数项级数, 和其部分和数列。

6.5 幂级数初步

接下来主要讨论幂函数序列 $\{a_n(x-x_0)^n\}$ 所产生的函数项级数

$$\sum_{n=0}^{\infty} = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots$$

记作幂级数,接下来主要讨论 $x_0 = 0$ 。

定理 6.5.1

若幂级数 $\sum f_i x^i$ 在 $x = x_1 \neq 0$ 处收敛, 则对任何 $|x| < |x_1|$ 幂级数都绝对收敛; 若幂级数在 $x = x_1$ 处发散,则对任何 $|x| > |x_1|$ 幂级数都发散。

证明 设 $\sum f_i x_1^i$ 收敛,则 $\{f_i x_1^i\}$ 收敛于 0 且有界,那么对任意 $|x| < |x_1|$ 其仍收敛于 0 且有界,且每一项都严格小于 $\{f_i x_1^i\}$,因此绝对收敛。

那么若 x_1 处发散,假如存在 $|x_2|>|x_1|$ 使得收敛,则由前证矛盾,故收敛。

因此幂级数的收敛域是关于原点对称的区间, 我们记区间长度为 2R, 那么收敛半径为 R。对于 $x = \pm R$ 处, 级数可能收敛, 也可能不收敛。

定理 6.5.2

对于幂级数 $\sum f_i x^i$ 若

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho$$

- 若 $\rho = 0$ 时,幂级数的收敛半径是 $R = +\infty$ 。
- 若 $\rho > 0$ 时,幂级数的收敛半径是 $R = \frac{1}{\rho}$
- 若 $\rho = \infty$ 时,幂级数的收敛半径是 R = 0。

6.6 求和函数的一些方法

求和函数主要以配凑为主, 需要一定的积累。

6.6.1 多项式系数

首先观察公式

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$$

$$\frac{2}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)(n+2)x^n$$

推广有

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n$$

因此把系数配凑为类似下降阶乘的形式即可。

6.6.2 存在分母

主要从以下函数寻找灵感。

$$-\ln(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$\frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

6.7 Fourier 级数

函数列

1,
$$\cos x$$
, $\sin x$, $\cos 2x$, $\sin 2x$, \cdots

称为三角函数系,若这一列的函数记为 $\{\varphi_i(x)\}$ 则

$$\int_{-\pi}^{\pi} \varphi_i(x)\varphi_j(x) \, \mathrm{d}x = 0, \quad \forall i \neq j$$

这个性质称为三角函数系的正交性。有限和

$$a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

称为三角多项式, 而形式和

$$a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

称为三角级数,其中 a_0, a_k, b_k 称为三角函数的系数。

定义 6.7.1

假设 f 是一个周期为 2π 的 Riemann 可积函数, 令

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, \mathrm{d}x, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, \mathrm{d}x$$

其中 a_0, a_k, b_k 称为 f 的 Fourier 级数, 形式和

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

称为 f 的 Fourier 级数或者 Fourier 展开。

比如

$$x = \sum_{k=1}^{\infty} \frac{2}{k} (-1)^{k+1} \sin kx, \qquad -\pi \leqslant x \leqslant \pi$$
$$x^2 = \frac{\pi^2}{3} + \sum_{k=1}^{\infty} \frac{4}{k^2} (-1)^k \cos kx, \qquad -\pi \leqslant x \leqslant \pi$$

一般的,对于周期为 [-l,l] 的函数 f(x),则其 Fourier 级数展开式为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \quad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$$

第七章 常微分方程

如果知道函数及其导数、微分组成的关系式、得到的便是微分方程。

7.1 基本概念

自变量只有一个的方程是**常微分方程**,两个以上则称**偏微分方程**,其中未知函数最高阶导数的阶数称为微分方程的阶数。一般的 n 阶常微分方程具有形式

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \cdots, \frac{\mathrm{d}^n y}{\mathrm{d}x^n}\right) = 0$$

如方程的左端为 y 及各阶导数的一次有理整式,则称为 n 阶线性微分方程,否则称为非线性微分方程。一般的 n 阶线性微分方程有形式

$$\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = f(x)$$

这里 $a_i(x)$, f(x) 是关于 x 的已知函数。

如果函数 $y=\varphi(x)$ 带入方程后,能使其变为恒等式,则称函数 $y=\varphi(x)$ 为方程的解。如果隐函数 $\Phi(x,y)=0$ 是其解,则称隐式解,也可以不加区分的称为解。

含有 n 个独立的任意常数 C_1, \dots, C_n 的解

$$y = \varphi(x, C_1, \cdots, C_n)$$

称为 n 阶方程的通解,其中独立性指 φ 及各阶偏导数关于 n 个常数 C_1, \dots, C_n 的 Jacobi 行列式不为 0。为了确定微分方程的一个特解,需要给出定解条件。常见的定解条件是初值条件和边值条件,其中初值条件指: 当 $x=x_0$ 时,有

$$y = y_0, y' = y_0^{(1)}, \dots, y^{(n-1)} = y_0^{(n-1)}$$

满足初值条件的解称为微分方程的特解。

7.2 变量分离微分方程

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y)$$

的方程, 称为变量分离方程, 假如 $g(y) \neq 0$ 我们可以很容易的分离它

$$\frac{\mathrm{d}y}{g(y)} = f(x)\,\mathrm{d}x$$

两边同时积分即可。另外,不要忘记当 g(y) = 0 时也有解 $y = y_0$ 。

有两种常见的变式:

(1) 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g\left(\frac{y}{x}\right)$$

的方程,记作齐次微分方程。做变量代换 $u=\frac{y}{x}$,有

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} \right) = \frac{g(u) - u}{x}$$

就变成变量分离的了。

(2) 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

分为三种情况讨论:

1. 如果

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k$$

则比较显然。

2. 如果

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = k \neq \frac{c_1}{c_2}$$

令 $u = a_2x + b_2y$, 此时有

$$\frac{\mathrm{d}u}{\mathrm{d}x} = g\left(a_2 + b_2 \frac{ku + c_1}{u + c_2}\right)$$

是变量分离方程。

3. 对于剩余的情况, 把分子分母看成两条不相交的直线, 尝试平移到原点。设交点为 $(x,y) = (x_0,y_0)$, 有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}(y - y_0)}{\mathrm{d}(x - x_0)} = g\left(\frac{a_1(x - x_0) + b_1(y - y_0)}{a_2(x - x_0) + b_2(y - y_0)}\right)$$

也变成了齐次形式。

7.3 一阶线性微分方程

一阶线性常微分方程的一般形式是

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y + q(x)$$

其中 p(x), q(x) 在给定区间上连续的函数。当 q(x) = 0 时,称为一阶线性齐次常微分方程;否则称一阶线性齐次常微分方程。

以下用大写字母简记为积分,方便记忆。

一阶线性其次常微分方程 即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y$$

那么我们可以分离变量

$$\frac{\mathrm{d}y}{y} = p(x)\,\mathrm{d}x$$

两边积分得到

$$\ln|y| = \int_{x_0}^x p(t) \, \mathrm{d}t + C_1$$

其中 C_1 是任意常数; 若引入任意非零常数 $C_2 = \pm e^{C_1}$, 就得到

$$y(x) = C_2 e^{\int_{x_0}^x p(t)dt} = C_2 e^{P(x)}$$

显然 y=0 也是一解,故 C_2 是可以取任意常数的。

这样对于给定初值的问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y, \quad y(x_0) = y_0$$

的通解为

$$y(x) = y_0 e^{\int_{x_0}^x p(t)dt} = y_0 e^{P(x)}$$

除此之外, 我们有以下性质:

- 方程的解要么恒为零, 要么恒不为零。
- 方程任何有限个解的线性组合仍是解, 所有解构成一个一维线性空间。

一阶线性非齐次常微分方程 一阶线性非齐次常微分方程为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y + q(x)$$

考虑套用之前的公式,设

$$u(x) = ye^{-\int_{x_0}^x p(t)dt} = ye^{-P(x)}$$

注意到

$$\frac{\mathrm{d}u}{\mathrm{d}x} \cdot \mathrm{e}^{\int_{x_0}^x p(t)\mathrm{d}t} = y' - p(x)y = q(x)$$

可以得到 y(x) 的解

$$y(x) = e^{\int_{x_0}^x p(t)dt} \left(\int e^{-\int p(s)ds} q(s) ds + C \right) = e^{P(x)} \left(\int e^{-P(x)} q(x) + C \right)$$

可以发现一个有趣的性质,非齐次方程的解可以由齐次形式下的解的"常数变易"得到。因此先考虑解齐次形式,再变易常数为函数 c(x),这种解法记作常数变易法。

7.3.1 各种变形

Bernoulli 微分方程 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y + q(x)y^n, \quad n \neq 0, 1$$

的方程称为 Bernoulli 微分方程。设 $y \neq 0$, 得到

$$y^{-n} \frac{dy}{dx} = \frac{d(y^{1-n})}{(1-n) dx} = y^{1-n} p(x) + q(x)$$

换元 $u = y^{1-n}$ 即可。

Riccati 方程 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y + q(x)y^2 = r(x)$$

的方程称为 Riccati 微分方程。设 $\phi(x)$ 是其一个特解,令 $u = y - \phi$,得到

$$\frac{\mathrm{d}u}{\mathrm{d}x} + (p + 2\phi q)u + qu^2 = 0$$

即是一个 Bernoulli 方程。

Euler 方程 形如

$$x^{2}\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + px\frac{\mathrm{d}y}{\mathrm{d}x} + q = r(x)$$

当 x > 0 时,令 $x = e^u$,则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{x\,\mathrm{d}u}, \quad \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{1}{x^2} \left(\frac{\mathrm{d}^2y}{\mathrm{d}u^2} - \frac{\mathrm{d}y}{\mathrm{d}u} \right)$$

因此方程化为

$$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} + (p-1)\frac{\mathrm{d}y}{\mathrm{d}u} + qy = r(\mathrm{e}^u)$$

7.3.2 可降阶的二阶微分方程

不含 y 若微分方程不含 y, 即方程可表示为

$$y'' = f(x, y')$$

则可以构造 y' = p,从而变成一阶的微分方程。

不含 x 即方程可以表示为

$$y'' = f(y, y')$$

则可以令 p=y',得到 $y''=\frac{p\mathrm{d}p}{\mathrm{d}y}$,则原方程变为一阶方程。

7.4 恰当微分方程

有时可以考虑答案是全微分的形式。设

$$f(x,y) dx + g(x,y) dy = 0$$

并假设 f,g 连续。设其左端恰好是某个二元函数 u(x,y) 的全微分

$$f(x,y) dx + g(x,y) dy = du(x,y) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

则称其为恰当微分方程。容易验证其通解为 u(x,y) = C。

注意到

$$\frac{\partial f}{\partial y} = \frac{\partial^2 u}{\partial y \, \partial x} = \frac{\partial^2 u}{\partial x \, \partial y} = \frac{\partial g}{\partial x}$$

故其是该方程为恰当微分方程的充要条件。

再考虑如何求出 u, 先以 y 为参数

$$u = \int f(x, y) \, \mathrm{d}x + \varphi(y)$$

回带得到

$$\frac{\partial u}{\partial y} = g(x, y) = \frac{\mathrm{d}\varphi(y)}{\mathrm{d}y} + \frac{\partial}{\partial y} \int f(x, y) \, \mathrm{d}x$$

总之有解

$$u = \int f(x, y) dx + \int \left(g(x, y) - \frac{\partial}{\partial y} \int f(x, y) dx \right) dy$$

这个形式过于复杂, 一般情况下多瞪眼可能更快。下面是一些常见的表

$$y \, dx + x \, dy = dxy$$

$$\frac{y \, dx - x \, dy}{y^2} = d\frac{x}{y}$$

$$\frac{y \, dx - x \, dy}{xy} = d \ln \left| \frac{x}{y} \right|$$

$$\frac{y \, dx - x \, dy}{x^2 + y^2} = d \arctan \frac{x}{y}$$

$$\frac{y \, dx - x \, dy}{x^2 - y^2} = d \ln \left| \frac{x - y}{x + y} \right|$$

假如一个方程乘以 $\mu(x,y)$ 就成为了恰当微分方程,则称 μ 是原方程的积分因子。假若方程有解存在,则必有积分因子存在,而且不是唯一的。因此之前的很多方法都可以改写成积分因子法,但从零瞪出一个因子非常有技巧性,实战中不实用。

7.5 齐次线性微分方程

一般的 n 阶线性微分方程有形式

$$\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = f(x)$$

倘若 $f(x) \equiv 0$ 则是齐次线性微分方程,否则为非齐次。对其分析过程比较复杂,这里直接给出结论: 方程的线性无关解最大个数为 n,所有解构成一个 n 维线性空间。其非齐次的通解可以将各个系数用常数变易法待定,计算即可。

注意到

$$e^{ix} = \cos x + i \sin x$$

反推得到

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \quad \cos x = \frac{e^{ix} + e^{-ix}}{2}$$

因此我们在计算时完全可以将指数和三角统一起来、叙述过程时再改成三角。

7.5.1 常系数

设所有系数都是常数、即方程为

$$L[y] \equiv \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0$$

考虑代入

$$L[e^{\lambda x}] = (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0)e^{\lambda x} = F(\lambda)e^{\lambda x}$$

其中方程 $F(\lambda)$ 是关于 λ 的 n 次多项式,我们求解 $F(\lambda) = 0$ 即可,因此又称为特征方程,其根称为特征根。假如所有的根都不是重根,那么可以直接得到 n 个线性无关的解 $u_i = e^{\lambda_i x}$ 。

假若方程存在 k 重根 μ ,即特征方程存在因子 $(\lambda-\mu)^k$,考虑平移代换 $z=y\mathrm{e}^{\mu x}$,继续代入 $y=\mathrm{e}^{\lambda x}$ 有

$$L[ye^{\mu x}] = L[e^{(\lambda+\mu)x}] = F(\lambda+\mu)e^{(\lambda+\mu)x}$$

显然 $F(\lambda + \mu)$ 含有 k 重零根,对比系数可以得到方程 L[y] = 0 的 $0 \sim k - 1$ 项系数为 0,即方程形如

$$L[z] = \frac{\mathrm{d}^n y}{\mathrm{d}x^n} + b_{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d}x^{n-1}} + \dots + b_k \frac{\mathrm{d}^k y}{\mathrm{d}x^k} = 0$$

可以观察出其 k 个线性无关的解 $y = 1, x, x^2, \dots, x^{k-1}$, 故原方程的 k 个解为

$$z = e^{\mu x}, x e^{\mu x}, \cdots, x^{k-1} e^{\mu x}$$

7.5.2 常见二阶微分方程

常见的二阶常系数微分方程的一般形式是

$$y'' + py' + qy = f(x)$$

首先求其对应的齐次微分方程的通解。

令 $\Delta = p^2 - 4q > 0$, 设其两个实根为 r_1, r_2 , 可得通解

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

若 $\Delta = 0$,存在重根 r_1 ,则通解为

$$y = (C_1 + C_2 x)e^{rx}$$

若 $\Delta < 0$, 存在一对共轭虚根 $\alpha \pm \beta i$, 则通解为

$$y = e^{ax}(C_1 \cos \beta x + C_2 \sin \beta x)$$

当自由项

$$f(x) = P_n(x)e^{ax}$$

时,特解要设为

$$y^* = x^k e^{ax} Q_n(x)$$

其中 k 为特征方程的根和 a 的重合次数(这个规则很神秘,可以从微分算子法的角度记忆), $P_n(x),Q_n(x)$ 为关于 x 的度 n 多项式。

当自由项为

$$f(x) = e^{ax} \left(P_n(x) \sin bx \right)$$

时,特解要设为

$$y^* = x^k e^{ax} (Q_n(x)\cos bx + R_n(x)\sin bx)$$

其中 k 为特征方程的根和 $a \pm bi$ 是否重合 (重合一定重俩), $P_n(x), Q_n(x), R_n(x)$ 为关于 x 的度 n 多项式。

7.6 Gronwall 定理

考虑区间 [a,b] 上的微分不等式

$$y'(x) + p(x)y(x) \leqslant f(x)$$

令 P(x) 为 p(x) 的原函数, 类似于普通微分方程的解法, 有

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(y(x) \mathrm{e}^{P(x)} \right) = \left(y'(x) + p(x)y \right) \mathrm{e}^{P(x)} \leqslant f(x) \mathrm{e}^{P(x)}$$

选取 $u \in [a,b]$, 在 [a,u] 上积分得到

$$y(u)e^{P(u)} - y(a) \le \int_a^u f(s)e^{P(s)} ds = e^{P(u)} \int_a^u f(s)e^{P(s)-P(u)} ds$$

从而得到

$$y(x) \leqslant y(a)e^{-P(u)} + \int_a^u f(s)e^{P(s)-P(u)} ds$$

特殊的, 令 $f \equiv 0$, 有

$$y(x) \leqslant y(a) e^{-P(x)}$$

如果 y_1, y_2 满足如下微分不等式

$$y_1' + p(x)y_1 \leqslant y_2' + p(x)y_2, \quad y_1(a) = y_2(a)$$

则一定 $y_1 \equiv y_2$ 。

第八章 多变量理论

8.1 多变量极限

我们回忆一下 n 维 Euclidean 空间

$$\mathbb{R}^n = \{ \boldsymbol{x} = (x_1, \cdots, x_n) \mid x_i \in \mathbb{R} \}$$

其中的元素我们记为 n 维向量(vector)。在其上我们定义向量内积的概念

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

向量内积具有线性性。并满足 Schwarz 不等式:

$$(\boldsymbol{x} \cdot \boldsymbol{y})^2 \leqslant (\boldsymbol{x} \cdot \boldsymbol{x})(\boldsymbol{y} \cdot \boldsymbol{y})$$

我们定义一个向量的范数(norm)为

$$|oldsymbol{x}| = \sqrt{oldsymbol{x} \cdot oldsymbol{x}} = \sqrt{\sum_{i=1}^n |x_i|^2}$$

从而有三角不等式

$$|x+y|+\leqslant |x|+|y|$$

事实上还存在一些其他范数, 比如 p - 范数

$$|\boldsymbol{x}|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

和 ∞ - 范数

$$|\boldsymbol{x}|_{\infty} = \max_{i=1}^{n} |x_i|$$

可以进一步的定义向量的夹角

$$\theta_{\boldsymbol{x},\boldsymbol{y}} = \arccos\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{|\boldsymbol{x}||\boldsymbol{y}|}$$

和距离

$$d(\boldsymbol{x}, \boldsymbol{y}) = |\boldsymbol{x} - \boldsymbol{y}|$$

从而构建出度量空间。

我们可以定义球邻域

$$\mathbb{B}^{n}(x,r) = \{ y \mid |y - x| < r \}$$

和方邻域

$$\mathbb{O}^n(\boldsymbol{a},r) = \{\boldsymbol{x} \mid |x_i - a_i| < r, 1 \leqslant i \leqslant n\}$$

由于

$$\mathbb{B}^n(\boldsymbol{a},r) \subset \mathbb{O}^n(\boldsymbol{a},r) \subset \mathbb{B}^n(\boldsymbol{a},r\sqrt{n})$$

我们可以不加区分的统称为邻域,记作 U(a,r)。

定义 8.1.1

设 $\{x_i\}$ 是 \mathbb{R}^n 中的点列。如果存在 M>0 使得 $x_i\in\mathbb{B}^n(\mathbf{0},M)$,则称其为有界的。如果对任意 $\varepsilon>0$ 都存在正整数 I 使得当 i>I 时满足

$$|m{i} - m{x}| < arepsilon$$

成立, 即 $x \in \mathbb{B}^n(x,\varepsilon)$, 则记

$$\lim_{i o \infty} oldsymbol{x}_i = oldsymbol{x}$$

假如不收敛到任何点,则称其为发散的。

考虑到考研对多元部分的考察并不深入,将实数上的连续性搬到多元空间上是自然的,可以信赖直觉。

定义 8.1.2

设 $D \subset \mathbb{R}^n$, 且 $a \in D'$ 是 D 的聚点, 如果对任意 $\varepsilon > 0$ 存在 $\delta > 0$ 使得当 $x \in U^{\circ}(a, \delta) \cap D$ 有

$$|f(\boldsymbol{x}) - A| < \varepsilon$$

成立,则称 f(x) 在 D 上当 $x \to a$ 时以 A 为极限,或者称为 n 重极限,记作

$$\lim_{\boldsymbol{x} \to \boldsymbol{a}} f(\boldsymbol{x}) = A$$

实数上极限的唯一性、有界性等性质也可以搬过来。但是有一些复杂的情况、比如

$$\lim_{(x,y)\to \mathbf{0}}\frac{y}{x}$$

我们沿着 y = kx 趋于 0, 得到是 k 不是定值, 说明极限不存在。

定义 8.1.3

设 $D=D_1\times D_2\subset\mathbb{R}$, x_0,y_0 分别是 D_1,D_2 的聚点。如果对每个固定的 $y\in D_2$ 且 $y\neq y_0$ 作为 x 的一元函数,极限

$$\lim_{x \to x_0} f(x, y)$$

存在且极限

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

也存在,则称后者为 f 在 (x_0, y_0) 点先对 x 后对 y 的累次极限。

8.2 多变量导数

回顾一下一元函数 f(x) 在 a 处的微分

$$f(a + \Delta x) - f(a) = f'(a)\Delta x + o(|\Delta x|)$$

根据无穷小的定义得到

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a) - f'(a)\Delta x}{|\Delta x|} = 0$$

定义 8.2.1

设 n 元函数 f(x) 在 a 的邻域内有定义, 若存在 n 维向量 b 使得

$$\lim_{\Delta \boldsymbol{x} \to 0} \frac{f(\boldsymbol{a} + \Delta \boldsymbol{x}) - f(\boldsymbol{a}) - \boldsymbol{b} \cdot \Delta \boldsymbol{x}}{|\Delta \boldsymbol{x}|} = 0$$

成立, 即

$$f(\boldsymbol{a} + \Delta \boldsymbol{x}) - f(\boldsymbol{a}) = \boldsymbol{b} \cdot \Delta \boldsymbol{x} + o(|\Delta x|)$$

则称 f 在 a 处可微或可导,向量 b 为函数 f 在 a 处的导数,记为

$$\boldsymbol{b} = f'(\boldsymbol{a}) = \nabla f(\boldsymbol{a})$$

并记微分(全微分)为 $\mathrm{d}f = \mathbf{b} \cdot \mathrm{d}\mathbf{x}$ 。

假如考虑对于固定点 a, 考虑在 x_i 方向上的极限

$$\lim_{\Delta x_i \to 0} \frac{f(a_1, \cdots, a_i + \Delta x_i, \cdots, a_n) - f(\boldsymbol{a})}{\Delta x_i}$$

若极限存在,则称 f 在 a 关于 x_i 可偏导,记极限为 f 在 a 处关于 x_i 的偏导数并记为

$$\frac{\partial f}{\partial x_i}(\boldsymbol{a}) = f_{x_i}(\boldsymbol{a})$$

注意, 偏导数存在不意味着可微。比如

$$f(x,y) = \frac{xy}{x^2 + y^2}, \quad f(\mathbf{0}) = 0$$

此时 $f_x(\mathbf{0}) = f_y(\mathbf{0}) = 0$,但并不连续。

定理 8.2.2

如果函数 f 在 a 处可微,则在 a 处必存在偏导数且满足

$$f'(\boldsymbol{a}) = (f_{x_1}(\boldsymbol{a}), \cdots, f_{x_n}(\boldsymbol{a}))$$

和

$$df(\boldsymbol{a}) = f'(\boldsymbol{a}) d\boldsymbol{x} = \sum_{i=1}^{n} f_{x_i} dx_i$$

证明 由可微知存在 b 使得

$$f(\boldsymbol{a} + \Delta \boldsymbol{x}) - f(\boldsymbol{a}) = \boldsymbol{b} \cdot \Delta \boldsymbol{x} + o(|\Delta \boldsymbol{x}|)$$

此时我们可以取仅 x_i 方向有值的无穷小,便可导出偏导。

定理 8.2.3

如果 f 在 a 的某个邻域存在偏导数,且偏导数在 a 点连续,则 f 在 a 处可微。

考虑一单位向量 μ , 如果极限

$$\frac{\partial f}{\partial \mu}(\boldsymbol{x}_0) = \lim_{t \to 0+} \frac{f(\boldsymbol{x}_0 + t\boldsymbol{\mu}) - f(\boldsymbol{x}_0)}{t}$$

存在,则称函数 f 在 x_0 处沿着方向 μ 是方向可导的,并称该极限为函数 f 在 x_0 处沿着 μ 的方向导数。 假如 f 在 x_0 处的偏导数存在,函数 f 在 x_0 处的梯度为

$$\operatorname{grad}_{\boldsymbol{x}_0} f = \nabla_{\boldsymbol{x}_0} f = (f_{x_1}(\boldsymbol{x}_0), \cdots, f_{x_n}(\boldsymbol{x}_n))$$

显然当函数 f 可微时, $\nabla_{\boldsymbol{x}_0} f = f'(\boldsymbol{x}_0)$,且

$$\frac{\partial f}{\partial \boldsymbol{\mu}}(\boldsymbol{x}_0) = \nabla_{\boldsymbol{x}_0} f \cdot \boldsymbol{\mu}$$

我们记其为 Nabla 算子,即

$$\nabla = \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}\right)$$

和 Laplace 算子

$$\Delta = \nabla \cdot \nabla = \sum_{i=1}^{n} \frac{\partial^2}{(\partial x_i)^2}$$

如果函数 f 的所有二阶偏导存在且 $\Delta f = 0$,则称其为调和的。

推广偏导数概念到二阶直至更高阶是自然的,但是微分算子是不可交换的。

定理 8.2.4 ♦ Clairaut - Euler

假设函数 f 的混合二阶偏导数 $f_{x_ix_i}$ 和 $f_{x_jx_i}$ 在 x_0 连续,则必有 $f_{x_ix_j}(x_0) = f_{x_jx_i}(x_0)$ 。

8.2.1 隐函数

一个基本想法是如何从n+1元函数方程

$$F(\boldsymbol{x}, y) = 0$$

中提取出 y = f(x), 其中 $x \in \mathbb{R}^n$, 假设这样的 f 存在且可任意偏导。则两边对 x_i 求偏导得

$$F_{x_s}(\boldsymbol{x}, y) + F_y(\boldsymbol{x}, y) f_{x_s}(\boldsymbol{x}) = 0$$

即得

$$f_{x_i}(\boldsymbol{x}) = -\frac{F_{x_i}(\boldsymbol{x}, y)}{F_{y}(\boldsymbol{x}, y)}, \quad 1 \leqslant i \leqslant n$$

顺此可推得全微分。

8.3 偏导数的应用

8.3.1 链式法则

我们以二元为例子,考虑二元二维向量值函数 g(x,y) = (u(x,y),v(x,y)),得到复合函数

$$z = (f \circ \mathbf{g})(x, y) = f(u(x, y), v(x, y))$$

我们有链式法则

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial u}(u_0, v_0) \frac{\partial u}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial v}(u_0, v_0) \frac{\partial v}{\partial x}(x_0, y_0)$$
$$\frac{\partial z}{\partial y}(x_0, y_0) = \frac{\partial f}{\partial u}(u_0, v_0) \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial f}{\partial v}(u_0, v_0) \frac{\partial v}{\partial y}(x_0, y_0)$$

8.3.2 微分中值定理

如果对任意 $x_0, x_1 \in D$ 都有

$$\overline{x_0x_1} = \{(1-t)x_0 + tx_1 \mid t \in (0,1)\} \subset D$$

则称区域 $D \subset \mathbb{R}^n$ 是凸的。如果对 x_0 有任意的 x_1 都有 $\overline{x_0x_1} \subset D$,称 $D \subset \mathbb{R}^n$ 是关于 x_0 星形的。

定理 8.3.1

若多元函数 f 在凸区域 $D \subset \mathbb{R}^n$ 内可微,则对 D 内的任意两点 x_0 和 x,存在 $\theta \in (0,1)$ 使得

$$f(\boldsymbol{x}) - f(\boldsymbol{x}_0) = \nabla_{\boldsymbol{x}_0 + \theta(\boldsymbol{x} - \boldsymbol{x}_0)}(f) \cdot (\boldsymbol{x} - \boldsymbol{x}_0)$$

类似的,我们可以把一元的 Taylor 各种公式扩展到多元。

8.3.3 空间几何基础

平面方程的一般式是

$$\pi_1(x, y, z) = Ax + By + Cz + D = 0$$

其法向量为 n = (A, B, C)。或者说是点法式

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

有三点式

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x - x_2 & y - y_2 & z - z_2 \\ x - x_3 & y - y_3 & z - z_3 \end{vmatrix} = 0$$

空间直线的一般式是

$$\pi_1(x, y, z) = \pi_2(x, y, z) = 0$$

即两个平面的交点。该直线的方向向量为 $\tau = n_1 \times n_2$ 。或者有点向式

$$\frac{x - x_0}{D} = \frac{y - y_0}{E} = \frac{z - z_0}{F}$$

其方向向量为 $\tau = (D, E, F)$ 。或者两点式

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

过直线 L 的全体平面束,若直线表现为两平面交线(即一般式) $\pi_1 \cap \pi_2$,则平面束方程为

$$\pi_1(x, y, z) + \lambda \pi_2(x, y, z) = 0, \quad \lambda \in \mathbb{R}^*$$

其他形式则很容易构造两个平面转化为一般式。

如果直线 L_1 与直线 L_2, L_3 都平行,则方向向量可以取 $\boldsymbol{n}_1 = \boldsymbol{n}_2 \times \boldsymbol{n}_3$ 。

8.3.4 切线与法平面

考虑空间中曲线的参数方程

$$r(t) = (x(t), y(t), z(t)), t \in [a, b]$$

如果 $\mathbf{r}'(t)$ 连续且 $\mathbf{r}'(t) \neq \mathbf{0}$ 则称曲线是光滑的。

固定点 $P_0 = (x_0, y_0, z_0)$,我们可以得到切向量

$$\mathbf{r}'(t_0) = (x'(t_0), y'(t_0), z'(t_0))$$

和曲线在 P_0 处的切线方程

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

和曲线在 P_0 处的法平面

$$x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = \mathbf{r}'(t_0) \cdot (\mathbf{p} - \mathbf{P}_0) = 0$$

考虑曲面的方程

$$F(x, y, z) = 0$$

固定点 $P_0 = (x_0, y_0, z_0)$,得到切平面的法向量

$$n = (F_x(P_0), F_y(P_0), F_z(P_0))$$

从而得到切平面方程为

$$F_x(\mathbf{P}_0)(x-x_0) + F_y(\mathbf{P}_0)(y-y_0) + F_z(\mathbf{P}_0)(z-z_0) = \nabla_{\mathbf{P}_0} f \cdot (\mathbf{p} - \mathbf{P}_0) = 0$$

和法线方程

$$\frac{x - x_0}{F_x(t_0)} = \frac{y - y_0}{F_y(t_0)} = \frac{z - z_0}{F_z(t_0)}$$

8.4 极值问题

极值问题主要有两种: 无条件极值和有条件极值。

对于多元函数 f, 若存在 x_0 的邻域 $\mathbb{B}^n(x_0,\rho)$ 使得

$$f(\boldsymbol{x}_0) \geqslant f(\boldsymbol{x})$$

则称 x_0 为 f 的极大值点。类似的,有极小值点,统称为极值点。如果存在去心邻域 $\mathbb{B}^n(x_0,\rho)-\{x_0\}$ 使得

$$f(\boldsymbol{x}_0) > f(\boldsymbol{x})$$

则称为严格极大值点。类似的有严格极小值和严格极值点。

8.4.1 无条件极值

定理 8.4.1 ◊ 多元函数 Fermat 引理

假设 n 元函数 f 在 x_0 处可偏导且 x_0 为其极值点,则 $f'(x_0) = 0$ 。

定理 8.4.2

假设 x_0 为多元函数 f 的驻点,并假设 f 在 x_0 处有二阶连续偏导数,引入 Hessian 矩阵

$$\operatorname{Hess}_{\boldsymbol{x}}(f) = [f_{x_i x_j}(\boldsymbol{x})]_{n \times n}$$

则有如下结论:

- $\operatorname{Hess}_{\boldsymbol{x}}(f)$ 正定, $f(\boldsymbol{x}_0)$ 为严格极小值。
- $\operatorname{Hess}_{\boldsymbol{x}}(f)$ 负定, $f(\boldsymbol{x}_0)$ 为严格极大值。
- $\operatorname{Hess}_{\boldsymbol{x}}(f)$ 不定, $f(\boldsymbol{x}_0)$ 不是极值。

那么对于二元函数 f, 设 (x_0, y_0) 为其驻点, 引入记号

$$\Delta(x_0, y_0) = (f_{xx}f_{yy} - f_{xy}^2)(x_0, y_0)$$

则有如下结论:

- 如果 $\Delta > 0$,则当 $f_{xx} > 0$ 时为严格极小值; $f_{xx} < 0$ 为严格极大值。
- 如果 $\Delta < 0$, 不是极值。
- 如果 $\Delta = 0$ 无法判断,可能有可能没有。

无法判断的例子有 $f_1 = x^2y^2, g = -f, h = x^2y^3$,在 0 处极值情况各不相同。

因此我们求取最值可以通过以下几个步骤:

- 求出驻点和不可导点和相应的函数值。
- 求出边界上的函数值。
- 比较 1 和 2 的情况。

8.4.2 条件极值问题

Todo Lagrange 橙子法。

8.5 二重积分

定义 8.5.1

设 $D \subset \mathbb{R}^2$ 是渴求面积的有界点集,z = f(x,y) 在 D 上有界。任取分割 T 把 D 分成 n 个不重不漏的可求面积的子区域 D_i ,并记

$$\|\boldsymbol{T}\| = \max_{i=1}^n \operatorname{diam}(D_i)$$

在每个子区域 D_i 上任取点 (ξ_i, η_i) 并求和

$$\sigma(f, \boldsymbol{T}, (\boldsymbol{\xi}, \boldsymbol{\eta})) = \sum_{i=1}^{n} f(\xi_i, \eta_i) |D_i|$$

若当 $\|T\| \to 0$ 时, $\sigma(f, T, (\xi, \eta))$ 的极限存在且和分割 T 及点 (ξ_i, η_i) 的选取无关, 则称函数 f(x, y) 在 D 上可积, 并称该极限为函数 f 在 D 上的二重积分, 记作

$$\iint_D f \, d\sigma = \iint_D f(x, y) \, dx \, dy = \lim_{\|T\|} \sum_{i=1}^n \sigma(f, T, (\boldsymbol{\xi}, \boldsymbol{\eta}))$$

我们称 f 是可积函数,D 是积分区域,x,y 是积分变量, $d\sigma = dx dy$ 是面积元。

一般的,设 $\Omega \subset \mathbb{R}^n$ 是可测的闭区域,f 是其上的有界函数,任取分割任取分割 T 把 Ω 分成 n 个不重不漏的可求面积的子区域 Ω_i ,并记

$$\|T\| = \max_{i=1}^n \operatorname{diam}(\Omega_i)$$

在每个子区域 Ω_i 上任取点 ξ_i 并求和

$$V(f, \boldsymbol{T}, \boldsymbol{\xi}) = \sum_{i=1}^{n} f(\boldsymbol{\xi}_i) |\Omega_i|$$

若当 $\|T\| \to 0$ 时, $V(f, T, \xi)$ 的极限存在且和分割 T 及点 ξ_i 的选取无关,则称函数 f 在 Ω 上可积,并称该极限为函数 f 在 Ω 上的 n 重积分,记作

$$\iint_{\Omega} f \, dV = \iint_{\Omega} f(\boldsymbol{x}) \, d\boldsymbol{x} \, dy = \int \cdots \int_{\Omega} f(x_1, \cdots, x_n) \, dx_1 \cdots dx_n$$

我们称 f 是可积函数, Ω 是积分区域, x, y 是积分变量, dV = dx dy 是面积元。

定义 8.5.2 **>** Fubini 定理

假设二元函数 f 在闭矩形 $D = [a, b] \times [c, d]$,且对固定的 x,一元函数 $f(x, \cdot)$ 在 [c, d] 上可积。若记

$$F(x) = \int_{c}^{d} f(x, y) \, \mathrm{d}y$$

则 F(x) 在 [a,b] 上可积且

$$\iint_D f \, \mathrm{d}x \, \mathrm{d}y = \int_a^b F(x) \, \mathrm{d}x = \int_a^b \mathrm{d}x \int_c^d f \, \mathrm{d}x \, \mathrm{d}y$$

一般的,我们对高维长方体和任意形状的 D,都可以转化 n 重积分为逐次积分求解。

8.5.1 曲面面积

假设曲面为

$$\Sigma : \boldsymbol{r}(u,v) = (x(u,v),y(u,v),z(u,v))$$

这里 D 是具有光滑或分段光滑边界 ∂D 的有界闭区域, $r:D\to \Sigma$ 是单的,且 Jacobi 矩阵是满秩的。 仿照几何直观性,对任意 $(u_0,v_0)\in D$ 且取充分小的 $\Delta u,\Delta v$,考虑四个点

$$P_1 = \boldsymbol{r}(u_0, v_0) = \boldsymbol{r}_0$$

$$P_2 = \boldsymbol{r}(u_0 + \Delta u, v_0) \approx \boldsymbol{r}_0 + \boldsymbol{r}_u(u_0, v_0) \Delta u$$

$$P_3 = \boldsymbol{r}(u_0, v_0 + \Delta v) \approx \boldsymbol{r}_0 + \boldsymbol{r}_v(u_0, v_0) \Delta v$$

$$P_4 = \boldsymbol{r}(u_0 + \Delta u, v_0 + \Delta v)$$

则这四个点围城的面积

$$\Delta S \approx \left| \overrightarrow{P_1 P_2} \times \overrightarrow{P_2 P_4} \right| = |\boldsymbol{r}_u \times \boldsymbol{r}_v|(u_0, v_0) \Delta u \Delta v$$

故

$$dS = |\boldsymbol{r}_u \times \boldsymbol{r}_v| \, du \, dv$$

因此光滑曲线的面积为

$$\iint_D \mathrm{d}S = \iint_D |\boldsymbol{r}_u \times \boldsymbol{r}_v| \, \mathrm{d}u \, \mathrm{d}v$$

在以上条件下

$$S = \iint_{\mathcal{D}} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v$$

其中

$$E = \mathbf{r}_u \cdot \mathbf{r}_u = x_u^2 + y_u^2 + z_u^2$$

$$F = \mathbf{r}_u \cdot \mathbf{r}_v = x_u x_v + y_u y_v + z_u z_v$$

$$G = \mathbf{r}_v \cdot \mathbf{r}_v = x_v^2 + y_v^2 + z_v^2$$

称为曲面的 Gauss 系数。

如果曲面的方程为 z = f(x, y), 不难带入得到

$$E = 1 + f_x^2$$
, $F = f_x f_y$, $G = 1 + f_y^2$

故

$$S = \iint_D \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy = \iint_D \sqrt{1 + |\nabla(f)|^2} \, dx \, dy$$

8.6 曲线和曲面积分

8.6.1 第一型曲线积分

设 $L \subset R^3$ 是一条可求长的连续曲线,起点终点分别为 A 和 B。L 的分割 $\|T\|$ 是指 L 上的有序有限点列

$$A = P_0 \to P_1 \to \cdots P_n = B$$

令

$$\Delta_s = \left| \widehat{P_{i-1}P_i} \right|, \quad \|T\| = \max_{i=1}^n \Delta s_i$$

定义 8.6.1

给定的 f 是定义在 L 上的有界函数。任取 $(\xi_i,\eta_i,\zeta_i)\in\widehat{P_{i-1}P_i}$ 并考虑有限和

$$S(f, T, (\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta})) = \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta s_i$$

如果 $||T|| \to 0$ 时, $S(f, T, (\xi, \eta, \zeta))$ 存在极限且和分割 T 及点 (ξ_i, η_i, ζ_i) 无关,称该极限

$$\int_{L} f \, \mathrm{d}s = \int_{L} f(x, y, z) \, \mathrm{d}s = \lim_{\|T\| \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}$$

为函数 f 在曲线 L 上的第一型曲线积分。此时称 f 为被积函数而 L 称为积分路径。

假如 L 以参数的形式给出

$$\mathbf{r}(t) = (x(t), y(t))$$

且函数 f 在 L 上连续, 则 f 在 L 上的第一型曲线积分存在且

$$\int_{L} f \, ds = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt = \int_{\alpha}^{\beta} f(r(t)) |r'(t)| \, dt$$

如果 L 以 $\mathbf{r}(x) = (x, y(x))$ 的形式给出则

$$\int_{L} f \, \mathrm{d}s = \int_{a}^{b} f(x, y(x)) \sqrt{1 + y'^2} \, \mathrm{d}x$$

如果曲线 L 以极坐标 $r = r(\theta)$ 给出,则

$$\int_{L} f \, \mathrm{d}s = \int_{a}^{b} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{(r(\theta))^{2} + (r'(\theta))^{2}} \, \mathrm{d}\theta$$

8.6.2 第一型曲面积分

假设 Σ 是可求面积的连续曲面, 分割 T 是用坐标曲线网将 Σ 分成的 n 个小曲面。令

$$\Delta S_i = |\Sigma_i|, \quad ||T|| = \max_{i=1}^n \Delta S_i$$

定义 8.6.2

给定的 f 是定义在 Σ 上的有界函数。任取 $(\xi_i, \eta_i, \zeta_i) \in \Sigma_i$ 并考虑有限和

$$S(f, \mathbf{T}, (\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta})) = \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

如果 $||T|| \to 0$ 时, $S(f, T, (\xi, \eta, \zeta))$ 存在极限且和分割 T 及点 (ξ_i, η_i, ζ_i) 无关,称该极限

$$\iint_{\Sigma} f \, \mathrm{d}S = \iint_{\Sigma} f(x, y, z) \, \mathrm{d}S = \lim_{\|T\| \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

为函数 f 在曲线 Σ 上的第一型曲面积分。此时称 f 为被积函数而 Σ 称为积分曲面。

8.6.3 第二型曲线积分

假设 $L \subset \mathbb{R}^3$ 上定向的可求长的连续曲线,给定起点 A 和终点 B。在每点上取单位切向量 $\tau = (\cos \alpha, \cos \beta, \cos \gamma)$,使得其与 L 的定向一致。

定义 8.6.3

设 F = (P, Q, R) 是一向量值函数, 定义其沿着曲线 L 的第二型曲线积分为

$$\int_{I} \mathbf{F} \cdot \boldsymbol{\tau} \, \mathrm{d}s = \int_{I} \left(P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma \right) \, \mathrm{d}s$$

其中 ds 是 L 的弧微元。定义弧微元向量

$$d\mathbf{s} = \boldsymbol{\tau} \, ds = (dx, dy, dz)$$

从而可以记成

$$\int_{L} \mathbf{F} \cdot d\mathbf{s} = \int_{L} P \, dx + Q \, dy + R \, dz$$

其物理意义是力 F 沿着曲线 L 所做的功。

考虑向量形式

$$\mathbf{r}(t) = (x(t), y(t), z(t))$$

其切向量为

$$oldsymbol{ au} = rac{oldsymbol{r}'(t)}{|oldsymbol{r}'(t)|}$$

则

$$\int_{L} P dx + Q dy + R dz = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

8.6.4 第二型曲面积分

对于光滑曲面上任意一点 P,可以做两条方向相反的法线,假如对其上经过 P 的闭合曲线,法线是连续变化且回到原位的,是定向曲面。比如 Mobius 带就不行。

设定向曲面由参数方程给出

$$\mathbf{r}(u,v) = (x(u,v), y(u,v), z(u,v))$$

那么曲面的法向量可以表示为

$$\pm \boldsymbol{r}_u \times \boldsymbol{r}_v = \pm \left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)} \right)$$

那么可以得到法向量

$$oldsymbol{n} = \pm rac{oldsymbol{r}_u imes oldsymbol{r}_v}{|oldsymbol{r}_u imes oldsymbol{r}_v|}$$

特别的, 若 z = z(x, y), 则

$$m{n} = \pm rac{1}{\sqrt{1 + z_x^2 + z_y^2}} (-z_x, z_y, 1)$$

定义 8.6.4

对于曲面 Σ 和 $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$, $\mathbf{F} = (P, Q, R)$ 是其上的向量值函数

$$\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, \mathrm{d}S$$

定义面积微元向量

$$d\mathbf{S} = \mathbf{n} \, dS = (dy \, dz, dz \, dx, dx \, dy)$$

从而可以记成

$$\iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S} = \iint_{\Sigma} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$$

8.6.5 Green 公式

考虑定向闭区间 [a,b] 的边界 $\partial[a,b] = \{a,b\}$,我们可以定义其上的积分

$$\int_{\partial[a,b]} f(x) = f(b) - f(a)$$

从而可以把一元函数 Newton - Leibniz 公式写为

$$\int_{[a,b]} df(x) = \int_{[a,b]} f'(x) dx = \int_{\partial [a,b]} f(x)$$

Green 公式就是考虑 Newton - Leibniz 公式的高维推广,由边界得出积分值。

曲线 $L \subset \mathbb{R}^2$,其曲线方程为 $\mathbf{r}(t) = (x(t), y(t))$ 其中 $t \in [\alpha, \beta]$ 。如果 $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$ 且 $\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$ 对任何 $t_1 \neq t_2$ 都成立,则称曲线为 Jordan 曲线。

给定区域 $D \subset \mathbb{R}^2$,它的边界 $\partial \Omega$ 是平面曲线从而有两个方向。定义 ∂D 的正向(诱导定向)如下:沿着 ∂D 走一圈 D 总是在左边。即右手定则。

定理 8.6.5 ◊ Green 公式

假设 $D \subset \mathbb{R}^2$ 是由有限条光滑或分段光滑的 Jordan 曲线所围成的区域,并取 ∂D 的正向。对任何有一阶连续偏导数的 P,Q 有

$$\int_{\partial D} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = \iint_{D} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} \, \mathrm{d}x \, \mathrm{d}y$$

证明 假设区域是简单的可以按 x,y 轴切片的,考虑区域

$$D_1 = \{(x, y) \mid \varphi_1(y) \leqslant x \leqslant \psi_1(y), c \leqslant y \leqslant d\}$$

计算得到

$$\int_{\partial D} Q \, dy = \int_{c}^{d} Q(\psi_{1}(y), y) \, dy - \int_{c}^{d} Q(\varphi_{1}(y), y) \, dy$$
$$= \int_{c}^{d} dy \int_{\varphi_{1}(y)}^{\psi_{1}(y)} \frac{\partial Q}{\partial x} \, dx$$
$$= \iint_{D} \frac{\partial Q}{\partial x} \, dx \, dy$$

同理, 我们对另一侧划分

$$D_2 = \{(x,y) \mid \varphi_2(x) \leqslant y \leqslant \psi_2(x), a \leqslant x \leqslant b\}$$

可以得到

$$\int_{\partial D} P \, \mathrm{d}x = -\iint_{D} \frac{\partial P}{\partial y} \, \mathrm{d}x \, \mathrm{d}y$$

对于一般的区域,我们可以分割成多个可以切片的区域,综合即证。 假如重积分区域存在奇点呢?我们可以绕一圈。

定理 8.6.6 ♦ Green 定理

假设 $D \subset \mathbb{R}^2$ 是区域且 P,Q 在 D 上连续,则下列命题等价:

图 8.1

• 对 D 内任意分段光滑曲线 L, 曲线积分

$$\int_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

与路径 L 无关,只与 L 的起点和终点有关。

- 如果存在 U 使得 dU = P dx + Q dy,即称 P dx + Q dy 在 D 上是正合的,称 U 是其原函 数。
- 沿着 D 内任意分段光滑闭曲线 L, 有

$$\oint_L P \, \mathrm{d}x + Q \, \mathrm{d}y = 0$$

如果进一步假设 P,Q 在 D 上一阶导数连续,则在 D 内处处成立

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

且和上面三条等价。

8.6.6 Gauss 公式

定理 8.6.7 ◊ Gauss 公式

设 $\Omega \subset \mathbb{R}^3$ 是区域且边界 $\partial \Omega$ 是由分段光滑的定向曲面构成。设 P,Q,R 是一阶导数连续的,则

$$\iint_{\partial\Omega} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

证明 同理,假设对应区域是可以按照 x,y,z 轴切片的。定义定向曲面

$$S_1 = \{(x, y, z) \mid x = \psi(y, z)\}$$

$$S_2 = \{(x, y, z) \mid x = \varphi(y, z)\}$$

考虑其中的一部分

$$\iiint_{\Sigma} \frac{\partial P}{\partial x} dx dy dz = \iint_{D} dy dz \int_{\varphi(y,z)}^{\psi(y,z)} \frac{\partial P}{\partial x} dx$$

$$= \iint_{D} (P(\psi, y, z) - P(\varphi, y, z)) dy dz$$

$$= \iint_{S_{1}} P dy dz + \iint_{S_{2}} P dy dz$$

$$= \iint_{\partial D} P dy dz$$

同理, 对另外三个方向也可以累加。

8.6.7 Stokes 公式

定理 8.6.8 ♦ Stokes 公式

设 Σ 是光滑定向曲面且边界 $\partial\Sigma$ 为分段光滑闭曲线,取诱导定向。对其上具有一阶连续偏导数的函数 P,Q,R 有

$$\int_{\partial \Sigma} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \iint_{\Sigma} \begin{vmatrix} \mathrm{d}y \, \mathrm{d}z & \mathrm{d}z \, \mathrm{d}x & \mathrm{d}x \, \mathrm{d}y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

8.6.8 旋转体

假设平面曲线 y = f(x) 绕 x 轴进行旋转,则旋转体体积为

$$V = \pi \int^b f^2(x) \, \mathrm{d}x$$

假如曲线绕直线 $y = \tan \theta x$ 进行旋转,则高度应当是

$$d = |x\cos\theta - y\sin\theta|$$

小矩形的宽度为增量在直线上的投影

$$(dx, dy) \cdot (\cos \theta, \sin \theta) = \cos \theta dx + \sin \theta dy$$

故

$$V = \pi \int_{a}^{b} |x \cos \theta - y \sin \theta|^{2} (\cos \theta \, dx + \sin \theta \, dy) = \pi \int_{a}^{b} \frac{|yk - x|^{2}}{(k^{2} + 1)^{\frac{3}{2}}} (y'k + 1) \, dx$$

8.7 场论

如果对于区域 D 每点 x 都指定一个对象 T(x), 称为张量, 我们就把映射

$$T: x \mapsto T(x)$$

称为 D 上的张量场。考研仅考虑 T 是向量的情形。

8.7.1 向量场

向量场 T 是对每个时间 t 都指定了一个向量值映射 T_t 。假设 $\Omega \subseteq \mathbb{R}^3$ 。

- 数量场: 函数 *f*(*x*, *y*, *z*, *t*)。
- 向量场: 向量映射 f(x, y, z, t)。
- 若场不随时间变化则称稳定场, 否则称为不稳定场。一般来说稳定场都可以表示为

$$F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

• 给定 Ω 上的稳定向量场 F, Ω 中的光滑曲线 Γ 称为 F 的向量线或流线, 如果 Γ 上每点出的切线 方向都和 F 一致。显然流线方程为

$$\frac{x'(t)}{P(\mathbf{r}(t))} = \frac{y'(t)}{Q(\mathbf{r}(t))} = \frac{z'(t)}{R(\mathbf{r}(t))}$$

这里 $\mathbf{r}(t) = (x(t), y(t), z(t))$ 是 Γ 的向量表达式。如果进一步要求 $\mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t))$,则称 Γ 是 \mathbf{F} 的积分曲线。

我们可以定义数量场的等值面

$$f^{-1}(c) = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\}$$

若 f 在 Ω 上连续, 可以定义其梯度

$$\operatorname{grad}(f) = (f_x, f_y, f_z)$$

这个向量场称为 f 的梯度场。函数沿着方向

$$\boldsymbol{v} = (\cos(\boldsymbol{v}, x), \cos(\boldsymbol{v}, y), \cos(\boldsymbol{v}, z))$$

的方向导数可以表示为

$$\frac{\partial f}{\partial v} = \mathbf{grad}(f) \cdot v = |\mathbf{grad}(f)| \cos \theta$$

因此等值面上的法向量为

$$oldsymbol{n} = rac{1}{|\mathbf{grad}(f)|}(f_x, f_y, f_z)$$

此时

$$\frac{\partial f}{\partial n} = |\mathbf{grad}(f)| \geqslant 0, \quad \mathbf{grad}(f) = \frac{\partial f}{\partial n}n$$

即函数 f 在一点的梯度和其等值面在该点的单位法向量是平行的,且这个方向是导数取得最大值的方向。

8.7.2 向量场的散度

假设 F = (P, Q, R) 在 Ω 上连续, 且 Σ 是 Ω 中的光滑定向曲面,则曲面积分

$$\Phi(\boldsymbol{F}, \Sigma) = \iint_{\Sigma} \boldsymbol{F} \cdot \boldsymbol{n} \, \mathrm{d}S$$

称为向量场 F 沿着曲线 Σ 的通量。当 F 导数连续时,称

$$\mathbf{div}(F) = P_x + Q_y + R_z$$

为 F 的散度。如果散度为 0 则称 F 是无源场.

用 Gauss 公式可以写成

$$\iint_{\partial\Omega} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S} = \iiint_{\Omega} \mathrm{div}(\boldsymbol{F}) \, \mathrm{d}V$$

散度有性质

$$\mathbf{div}(\lambda \mathbf{F} + \mu \mathbf{G}) = \lambda \mathbf{div}(\mathbf{F}) + \mu \mathbf{div}(\mathbf{G})$$

和

$$\mathbf{div}(f\mathbf{\textit{F}}) = f\mathbf{div}(\mathbf{\textit{F}}) + \mathbf{grad}(f) \cdot \mathbf{\textit{F}}$$

8.7.3 旋度

假设 F = (P, Q, R) 在 Ω 上连续,且 Γ 是 Ω 中的光滑定向曲线,则曲线积分

$$\int_{\Gamma} \boldsymbol{F} \cdot \boldsymbol{\tau} \, \mathrm{d}s = \int_{\Gamma} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s}$$

为向量场 F 沿着曲线 Γ 的环量。当 F 在 Ω 上可导时,称

$$\mathbf{rot}(m{F}) = egin{array}{c|ccc} m{i} & m{j} & m{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ P & Q & R \ \end{array} = (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

为 F 的旋度。如果旋度为 0 则称 F 为无旋场。此时 Stokes 公式可以写为

$$\iint_{\Sigma} \mathbf{rot}(\boldsymbol{F}) \cdot \mathrm{d}\boldsymbol{S} = \int_{\partial \Sigma} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s}$$

旋度有性质

$$\mathbf{rot}(\lambda \boldsymbol{F} + \mu \boldsymbol{G}) = \lambda \mathbf{rot}(\boldsymbol{F}) + \mu \mathbf{rot}(\boldsymbol{G})$$

和

$$\mathbf{rot}(f\mathbf{\textit{F}}) = f\mathbf{rot}(\mathbf{\textit{F}}) + \mathbf{grad}(f) \times \mathbf{\textit{F}}$$

且

$$\mathbf{rot}(\mathbf{grad}(f)) = \mathbf{0}$$

第九章 概率论

考研中遇到的概率论很少, 暂放于此。

9.1 随机事件与概率

假定某个试验有有限个可能的结果 e_1, \dots, e_N ,其出现机会是等可能的。假定事件 E 包含了其中的 M 个结果,则称事件 E 的概率为

$$\mathbb{P}(E) = M/N$$

这是古典概型。另一些时候,我们把结果扩展到无限的情况。我们把度量(可以通俗的理解为面积)相同的事件称为等可能的,这是几何概型。

称集合 Ω 随机事件的样本空间,其元素 ω 称为基本事件。事件 A 是 Ω 的一个子集,赋给每个事件一个实数值 $\mathbb{P}(A)$,称为概率。其满足要求:

- 非负性: P(A) ≥ 0。
- 规范性: $\mathbb{P}(\Omega) = 1, \mathbb{P}(\emptyset) = 0$ 。
- 加法公理。

若两个事件不能在同一次试验中同时发生,则称为互斥的。若一些事件中任意两个都互斥,则称为两两互斥。可以进一步导出对立事件的概念。可以把集合的交并补也引入。

定理 9.1.1 ◊ 加法公理

若干个互斥事件之和的概率,等于各事件的概率之和:

$$\mathbb{P}\left(\bigcup A_i\right) = \sum \mathbb{P}(A_i)$$

笔记 这条公理其实是在古典定义、统计定义下是可证明的,但是为什么是公理呢? 因为我们的确可以建立一种新的概率理论,在其中加法公理不成立。类似于平行公设。

定义 9.1.2

设 A,B 是两个事件且 $\mathbb{P}(A)>0$,我们称在已知 A 发生的条件下事件 B 发生的概率为条件概率,记作

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(AB)}{\mathbb{P}(A)}$$

假如 $\mathbb{P}(B\mid A)>\mathbb{P}(B)$,我们可以说事件 A 促进了事件 B 的发生。反之 $\mathbb{P}(B\mid A)=\mathbb{P}(A)$,则 B 的发生对 A 无影响。

形式的说:

定义 9.1.3 ◊ 条件概率

若两事件 A, B 满足

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

则称 A, B 独立。

变换形式是为了避免 0 的讨论。

设一列事件 A_1, A_2, \cdots ,假如从中取出任意有限个都成立

$$\mathbb{P}(A_{i1}\cdots A_{im}) = \mathbb{P}(A_{i1})\cdots \mathbb{P}(A_{im})$$

那么称事件 A_1, A_2, \cdots 相互独立。注意与两两独立的区别。

定理 9.1.4 ◊ 全概率公式

设 B_1, \cdots 为一列事件,他们两两互斥且每次试验至少发生一个。有时称这种性质为"完备事件群"。 那么对任意事件 A 有

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i)$$

证明 显然

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(B_i A) = \sum_{i=1}^{n} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i)$$

定理 9.1.5 ◊ 贝叶斯公式

对 n 个两两不相容事件 A_1, \dots, A_N , 则对事件 B 有

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(A_j)\mathbb{P}(B|A_j)}{\sum_{i=1}^{n} \mathbb{P}(A_i)\mathbb{P}(B|A_i)}$$

证明 显然

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(A_jB)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A_j)\mathbb{P}(B|A_j)}{\sum_{i=1}^{n} \mathbb{P}(A_i)\mathbb{P}(B|A_i)}$$

笔记 若 $\mathbb{P}(AB) = 0$,不意味着 $AB = \emptyset$ 。比如 $[0,1] \cap [1,2] = \{1\}$,但概率是 0。

9.1.1 摸球不放回模型

袋中有 a 个黑球, b 个白球, 若不放回的取 n 个球, 其中恰好 k 个白球的概率为

$$\mathbb{P}(A_k) = \frac{\binom{b}{k} \binom{a}{n-k}}{\binom{a+b}{n}}$$

定理 9.1.6 ◊ 抽签原理

袋中有 a 个黑球, b 个白球, 若不放回的依次取球, 每次抽中白球的概率都为 $\frac{b}{a+b}$ 。

证明 对于第 i 次抽检,可以看成从 a+b 个球中抽出 i 个球排成一排,其可能数是 A^i_{a+b} 。而第 i 个位置 是白球的概率为 bA_{a+b-1}^{i-1} , 故

$$\mathbb{P}(A_i) = \frac{bA_{a+b-1}^{i-1}}{A_{a+b}^{i}} = \frac{b}{a+b}$$

9.1.2 摸球放回模型

袋中有 a 个黑球, b 个白球, 若有放回的取出 n 个球, 其中恰好 k 个白球的概率为

$$\mathbb{P}(B_k) = \binom{n}{k} \frac{a^{n-k}b^k}{(a+b)^n} = [x^k] \left(\frac{a+bx}{a+b}\right)^n$$

一维随机变量及其分布 9.2

随机变量就是"其值会随机而定"的变量,是一个实值单值函数。设随机实验的样本空间为 Ω ,若对 于任意 $\omega \in \Omega$ 都有唯一实数 $X(\omega)$ 与其对应,且对任意实数 x, $\{\omega \mid X(\omega) \leqslant x, \omega \in \Omega\}$ 是随机时间,则称 定义在 Ω 上的实值单值函数为随机变量。

离散型随机变量 研究一个随机变量,不只是查看其能取哪些值,更要看其取各种值的概率如何。

定义 9.2.1

设 X 是离散型随机变量,其全部可能值为 $\{a_1, \dots\}$,则称

$$p_i = \mathbb{P}\{X = a_i\}$$

为其概率函数。称

$$F(x) = \mathbb{P}\{X \leqslant x\} = \sum_{a_i \leqslant x} p_i$$

是其分布函数。记为 $X \sim F(x)$,称 X 服从 F(x) 分布。

其具有以下的性质:

- F(x) 对 x 单调不减。
- *F*(*x*) 是 *x* 的右连续函数。
- $F(-\infty) = \lim_{i \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1_{\circ}$ $\mathbb{P}\{X \leqslant a\} = F(a)$, $\mathbb{P}\{X < a\} = F(a 0)$, $\mathbb{P}\{X = a\} = F(a) F(a 0)_{\circ}$

如果随机变量只取有限的可列值、则称为离散型随机变量、可以写分布列。

连续型随机变量 如果随机变量的分布函数是 F(x), 则 f(x) = F'(x) 是其的概率密度函数。 其具有以下的性质:

• $f(x) \geqslant 1_{\circ}$

• 对任何常数 a,b 有

$$\mathbb{P}\{a \leqslant X \leqslant b\} = F(b) - F(a) = \int_a^b f(x) \, \mathrm{d}x, \qquad \int_{-\infty}^\infty f(x) \, \mathrm{d}x = 1$$

9.2.1 常见随机分布

二**项分布** 如果 X 的概率分布为

$$\mathbb{P}{X = k} = \binom{n}{k} p^k (1-p)^{n-k}. \quad k = 0, 1, \dots, n$$

则称 X 服从参数为 (n,p) 的二项分布,记为 $X \sim B(n,p)$ 。特别的,当 n=1 时称为二项分布。二项分布 也是 n 重伯努利实验中事件 A 发生的次数,其中 $\mathbb{P}(A) = p$ 。

泊松分布 如果 X 的概率分布为

$$\mathbb{P}{X = k} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \dots$$

则记为 $X \sim \mathbb{P}(\lambda)$ 。

几何分布 如果 X 的概率分布为

$$\mathbb{P}{X = k} = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

则记为 $X \sim G(p)$ 。

超几何分布 如果 X 的概率分布为

$$\mathbb{P}\{X=k\} = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}, \quad \max(0, n-N+M) \leqslant k \leqslant \min(M, n)$$

则记为 $X \sim H(n,N,M)$ 。设有 N 个产品组成的整体,其中有 M 个不合格产品,从中取出 n 个,次品数 为 k,这就是组合意义。

均匀分布 如果 X 的概率密度函数为

$$f(x) = \frac{1}{b-a}, \quad a < x < b$$

则记为 $X \sim U(a,b)$ 。

指数分布 如果 X 的概率密度函数为

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

则记为 $X \sim E(\lambda)$ 。

正态分布 如果 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

则记为 $X \sim N(\mu, \sigma^2)$ 。

9.3 多维随机变量

设 $X = (X_1, \dots, X_N)$, 其中每个分量都是一维随机变量, 则 X 是一个 n 维随机变量。

离散型 假如每个分量是离散型的, 那么称 $X \in \mathbb{R}$ 维离散型随机变量。

定义 9.3.1

以 $\{a_{i1}, \dots\}$ 记 X_i 的全部可能值,则事件的概率

$$p(j_1, \dots, j_n) = \mathbb{P}\{X_1 = a_{1j_1}, \dots, X_n = a_{nj_n}\}$$

为随机变量的概率函数。显然应该满足条件

$$p(j_1,\cdots)\geqslant 0, \quad \sum_{j_n}\cdots\sum_{j_1}p(j_1,\cdots)=1$$

连续型 连续型随机变量不能简单的定义为各分量都是"一维连续型随机变量的那种"。考虑 $X_1 = X_2$,则 (X_1, X_2) 仅在对角线处有值,故不可能存在概率密度函数。

定义 9.3.2

设 $f(x_1, \dots, x_n)$ 是定义在 \mathbb{R}^n 上的非负函数, 使得对 \mathbb{R}^n 中的任何集合 A, 有

$$\mathbb{P}\{X \in A\} = \int_A \cdots \int f(x_1, \cdots, x_n) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

则称 $f \in X$ 的概率密度函数。显然当 $\mathbb{P}\{X \in \mathbb{R}^n\} = 1$ 。

也可以定义分布函数

$$F(x_1, \cdots, x_n) = \mathbb{P}\{X_1 \leqslant x_1, \cdots, X_n \leqslant x_n\}$$

对于二维 (X,Y), 若 f 在点 (x,y) 处连续, 则

$$\frac{\partial^2 F(x,y)}{\partial x \, \partial y} = f(x,y)$$

反之若 F(x,y) 连续可导,则此式是其概率密度。

边缘分布 对任意的 n 个实数, x_1, x_2, \dots, x_n , 称 n 元函数

$$F(x_1, \cdots, x_n) = \mathbb{P}\{X_1 \leqslant x_1, X_2 \leqslant x_2, \cdots, X_n \leqslant x_n\}$$

为多维随机变量 (x_1, \dots, x_n) 的联合分布函数,记为 $(x_1, \dots, x_n) \sim F(x_1, \dots, x_n)$ 。

- F(x,y) 是 x,y 的单调不减函数。
- F(x,y) 是 x,y 的右连续函数。
- $F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$, $F(+\infty, +\infty) = 1$
- 对任意 $x_1 < x_2, y_1 < y_2$,有

$$\mathbb{P}\{x_1 < X \leqslant x_2, y_1 Y \leqslant y_2\} = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \geqslant 0$$

设其联合分布函数为 F(x,y), 定义边缘分布函数

$$F_X(x) = \mathbb{P}\{X \leqslant x\} = F(x, +\infty)$$

同理,有 $F_Y(y) = F(+\infty, y)$ 。

9.3.1 常见的二维分布

二维均匀分布 称 (X,Y) 在平面有界区域 D 上服从均匀分布, 如果 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{S_D}, \quad (x,y) \in D$$

二维正态分布 TODO。

9.3.2 二维随机变量的独立性

条件概率分布 对于二维离散型随机向量 (X,Y), 其联合概率分布为

$$p_{i,j} = \mathbb{P}\{X = x_i, Y = y_j\}$$

记为 $(X,Y) \sim p_{i,j}$ 。依条件概率的定义,有

$$\mathbb{P}\{X = x_i \mid Y = y_i\} = \frac{\mathbb{P}\{X = x_i, Y = y_j\}}{\mathbb{P}\{Y = y_i\}} = \frac{p_{i,j}}{p_{i,j}}$$

设二维连续型随机向量 (X,Y), 其概率密度是 f(x,y)。假设 $y \in [a,b]$,依条件概率的定义,有

$$\mathbb{P}\{X \leqslant c \mid a \leqslant Y \leqslant b\} = \frac{\mathbb{P}\{X \leqslant c, a \leqslant Y \leqslant b\}}{\mathbb{P}\{a \leqslant y \leqslant b\}} = \frac{\int_{-\infty}^{c} \int_{a}^{b} f(x, y) \, \mathrm{d}y \, \mathrm{d}x}{\int_{a}^{b} f_{Y}(y) \, \mathrm{d}y}$$

对 c 求导, 即得条件密度函数

$$f_{X|Y}(x \mid a \leqslant y \leqslant b) = \frac{\int_a^b f(x, y) \, \mathrm{d}y}{\int_a^b f_Y(y) \, \mathrm{d}t}$$

考虑极限, a,b 收敛于 y 处, 有

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$$

独立性 与一维情况类似,我们可以推广为 n 维。

定义 9.3.3

设 n 维随机向量 (x_1,\dots,x_n) 的联合密度函数为 $f(x_1,\dots,x_n)$, 而 f_i 是 X_i 的边缘密度函数, 若

$$f(x_1, \cdots, x_n) = f_1(x_1) \cdots f_n(x_n)$$

则称随机变量 x_1, \dots, x_n 相互独立。

随机变量函数的概率分布 离散的情况是容易的,实在不行手算。

设连续型随机变量 X 有密度函数 f(x),对于函数 g,考虑 Y=g(X) 下的情况。假设 g 严格上升,设 $h=g^{-1}$,有

$$\mathbb{P}{Y \leqslant y} = \mathbb{P}{X \leqslant h(y)} = \int_{-\infty}^{h(y)} f(t) dt$$

则 y 的密度函数为

$$l(y) = f(h(y))h'(y)$$

同理, 对严格递减也可以进行讨论, 得到结论

$$l(y) = f(h(y))|h'(y)|$$

例如 Y = aX + b, 则 Y 的密度函数为

$$l(y) = \frac{1}{|a|} f\left(\frac{y-b}{a}\right)$$

现考虑二元情况 (X_1, X_2) 的密度函数为 $f(x_1, x_2)$, 并有变量

$$Y_1 = g_1(X_1, X_2), \quad Y_2 = g_2(X_1, X_2)$$

假定存在逆变换

$$X_1 = h_1(Y_1, Y_2), \quad X_2 = h_2(Y_1, Y_2)$$

此时 Jacobi 行列式

$$J(y_1, y_2) = \begin{vmatrix} \partial h_1 / \partial y_1 & \partial h_1 / \partial y_2 \\ \partial h_2 / \partial y_1 & \partial h_2 / \partial y_2 \end{vmatrix}$$

不为 0。在 (Y_1,Y_2) 的平面上任取一个区域 A,对应于 (X_1,X_2) 上的区域是 B。即

$$\begin{split} \mathbb{P}\{(Y_1,Y_2) \in A\} &= \mathbb{P}\{(X_1,X_2) \in B\} \\ &= \iint_B f(x_1,x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ &= \iint_A f(h_1(y_1,y_2),h_2(y_1,y_2)) \cdot |J(y_1,y_2) \, \mathrm{d}y_1 \, \mathrm{d}y_2 \end{split}$$

因此 (Y_1, Y_2) 的概率密度为

$$l(y_1, y_2) = f(h_1(y_1, y_2), h_2(y_1, y_2))|J(y_1, y_2)|$$

比较常见的例子是线性变换

$$Y_1 = a_{11}X_1 + a_{12}X_2, \quad Y_2 = a_{21}X_1 + a_{22}X_2$$

当其行列式不为 0 时,设其存在逆变换

$$X_1 = b_{11}Y_1 + b_{12}Y_2, \quad X_2 = b_{21}Y_1 + b_{22}Y_2$$

可得

$$l(y_1, y_2) = f(b_{11}y_1 + b_{12}y_2, b_{21}y_1 + b_{22}y_2)|b_{11}b_{22} - b_{12}b_{21}|$$

9.4 随机变量的数字特征

设 X 是随机变量, 其分布列为 $p_i = \mathbb{P}\{X = x_i\}$, 记

$$E(X) = \sum_{i=1}^{\infty} x_i p_i$$

为随机变量 X 的数学期望。若 X 是连续型随机变量,则记

$$E(X) = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

为其期望。

其拥有线性性。比如设 X,Y 相互独立,有

$$E(XY) = E(X)E(Y), \quad E(X \pm Y) = E(X) \pm E(Y)$$

我们记 $E[(X - E(X))^2]$ 为 X 的方差, 有

$$D(X) = E[(X - E(X))^{2}] = E(X^{2}) - (E(X))^{2}$$

称 $\sqrt{D(X)}$ 为 X 的标准差, 或者均方差, 记为 $\sigma(X)$ 。

若 X 是离散型随机变量,则

$$D(X) = \sum_{i=1}^{\infty} (x_i - E)^2 p_i$$

连续性随机变量,则

$$D(X) = \int_{-\infty}^{\infty} (x - E)^2 f(x) \, \mathrm{d}x$$

定理 9.4.1 ◊ 切比雪夫不等式

如果随机变量 X 的期望 E(X) 和方差 D(X) 存在,则对任意 $\varepsilon > 0$ 有

$$\mathbb{P}\{|X - E(X)| < \varepsilon\} \geqslant 1 - \frac{D(X)}{\varepsilon^2}$$

我们定义 (X,Y) 的协方差为

$$Cov(X, Y) = E[(X - E(X)(Y - E(Y)))] = E(XY) - E(X)E(Y)$$

称 $\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)D(Y)}}$ 为 X,Y 的相关系数。

9.5 大数定律与中心极限定理

设随机变量 X 与随机变量序列 $\{X_n\}$,如果对任意的 $\varepsilon > 0$ 有

$$\lim_{n \to \infty} \mathbb{P}\{|X_n - X| < \varepsilon\} = 1$$

则称随机变量序列 $\{X_n\}$ 依概率收敛于随机变量 X,记为

$$\lim_{n \to \infty} X_n = X(\mathbb{P}), \quad \vec{\mathfrak{P}} X_n \stackrel{\mathbb{P}}{\longrightarrow} X(n \to \infty)$$

定理 9.5.1 ◊ 切比雪夫大数定律

设 $\{X_n\}$ 是相互独立的随机变量序列,如果方差 D(X) 存在且有一致有上界,则 $\{X_n\}$ 服从大数定律

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^{n} E(X_i)$$

定理 9.5.2 ◊ 伯努利大数定律

假设 μ_n 是 n 重伯努利实验中时间 A 发生的次数, 在每次实验中 A 发生的概率为 p(0 , 则

$$\frac{\mu_n}{n} \stackrel{P}{\longrightarrow} p$$

定理 9.5.3 ◊ 辛钦大数定律

设 $\{X_n\}$ 是独立同分布的随机变量序列, 如果 $E(X_i) = \mu$ 存在, 则

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{P}{\longrightarrow} \mu$$

定理 9.5.4 ◊ 列维 - 林德伯格定理

假设 $\{X_n\}$ 是独立同分布的随机变量序列,如果

$$E(X_i) = \mu, D(X_i) = \sigma^2 > 0$$

存在,则对任意的实数 x 有

$$\lim_{n\to\infty} \mathbb{P}\left\{\frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \leqslant x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t = \Phi(x)$$

定理 9.5.5 ◊ 棣莫弗 - 拉普拉斯定理

设随机变量 $Y_n \sim B(n,p)$, 其中 0 且 <math>n > 1, 则对任意的实数 x, 有

$$\lim_{n\to\infty} \mathbb{P}\left\{\frac{Y_n-np}{\sqrt{np(1-p)}}\leqslant x\right\} = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x \exp\left(-\frac{t^2}{2}\right)\mathrm{d}t = \Phi(x)$$

9.6 数理统计

研究对象的全体称为总体,组成总体的每一个元素称为个体。我们把总体和 X 等同起来,所谓总体的分布就是指 X 的分布。

n 个相互独立且与总体 X 具有相同概率分布的随机变量 x_1, \cdots, x_n 所组成的总体为 (x_1, \cdots, x_n) 称为来自总体 X 容量为 n 的一个简单随机样本,简称样本。一次抽样结果的 n 个具体数值称为 x_1, \cdots, x_n 的一个观测值(样本值)。

假设总体 X 的分布函数为 F, 则 (x_1, \dots, x_n) 的分布函数为

$$F(x_1, \cdots, x_n) = \prod_{i=1}^n F(x_i)$$

设 x_1, \dots, x_n 为来自总体 X 的一个样本,g 为仅与 x 有关的 n 元函数,则称 g 为样本的一个统计量。若 (x_1, \dots, x_n) 为样本值,则 $g(x_1, \dots, x_n)$ 为观测值。

样本均值

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

样本 k 阶 (原点) 矩

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

样本 k 阶中心矩

$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$$

将 n 个观测量从小到大的顺序排列,记随机变量 $X_{(k)}$ 为第 k 顺序统计量。 常用统计量:

$$E(X_i) = E(X)$$

$$D(X_i) = D(X)$$

$$E(\overline{X}) = E(X)$$

$$D(\overline{X}) = \frac{1}{n}D(X)$$

$$E(S^2) = D(X)$$

9.6.1 三大分布

 χ^2 **分布** 若随机变量 x_1, \dots, x_n 相互独立且都服从标准正态分布,则随机变量 $X = \sum X_i^2$ 服从自由度为n 的 χ^2 分布,记为 $X \sim \chi^2(n)$ 。

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足

$$\mathbb{P}\left\{\chi^2 > \chi_\alpha^2(n)\right\} = \int_{\chi^2(n)}^n f(x) \, \mathrm{d}x = \alpha$$

的 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点。

t **分布** 设随机变量 $X\sim N(0,1), Y\sim \chi^2(n),~X$ 与 Y 互相独立,则随机变量 $t=\frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记为 $t\sim t(n)$.

F 分布 设随机变量 $X \sim \chi^2(n_1), y \sim \chi^2(n_2)$,且 X 与 Y 相互独立,则 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,记为 $F \sim F(n_1, n_2)$ 。

9.6.2 参数的点估计

设总体 X 的分布函数为 $F(x;\theta)$, 其中 θ 是一个未知参数, x_1, \dots, x_n 是取自总体 X 的一个样本。由 样本构造一个适当的统计量 $\hat{\theta}(x_1, \dots, x_n)$ 作为参数 θ 的估计,则称 $\hat{\theta}$ 为其估计量。

如果 x_1, \dots, x_n 是样本的一个观察值,将其带入估计量得值 $\hat{\theta}(x_1, \dots, x_n)$ 并以此值作为未知参数的近似值,则称为 θ 的估计值。

矩估计法 设总体 X 分布有 n 个样本, 有 k 个未知参数。若 X 的原点矩存在, 我们令样本矩等于总体矩

$$\frac{1}{n}\sum_{i=1}^{N}X_{i}^{l}=E(X^{l}), \quad l=1,\cdots,k$$

这是包含 k 个参数的 k 个方程, 由此解得矩估计量和矩估计值。

一般约定: 用矩法方程求总体未知参数的估计量时, 从低阶开始。

最大似然估计法 最大似然原理:对未知参数 θ 进行估计时,在该参数可能的取值范围 I 内选取,用使"样本获得观测值 x_1, \dots, x_n 的概率最大的参数值 $\hat{\theta}$ 作为 θ 的估计。

假设 X 是离散型随机变量, 其概率分布为 $\mathbb{P}{X = x} = p(x; \theta)$, 那么求其取值概率

$$L(x_1, \dots, x_n; \theta) = \mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\} = \prod_{i=1}^n \mathbb{P}\{X_i = x_i\} = \prod_{i=1}^n p(x_i; \theta)$$

称为样本的似然函数。若存在 $th\hat{e}ta$ 使得 L 取到最大值,则称 $th\hat{e}ta$ 为最大似然估计值,对应的统计量是 θ 的最大似然估计量。

同理,连续型随机变量也有

$$L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

第十章 习题

10.1 函数、极限、连续

问题 ◊ 000001

设 $a_1 = 1, a_k = k(a_{k-1} + 1)$, 试计算

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{a_k} \right)$$

解 先变形

$$\left(1 + \frac{1}{a_k}\right) = \frac{a_{n+1}}{ka_n}$$

累乘可以化简

$$\prod_{k=1}^{n} \left(1 + \frac{1}{a_k} \right) = \frac{a_{n+1}}{(n+1)!}$$

注意到

$$\frac{a_{n+1}}{(n+1)!} - \frac{a_n}{n!} = \frac{a_{n+1} - (n+1)a_n}{(n+1)!} = \frac{1}{n!}$$

故

$$\lim_{n\to\infty} \prod_{k=1}^n \left(1 + \frac{1}{a_k}\right) = \lim_{n\to\infty} \left(1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = e$$

问题 ◊ 000002

设
$$x_1 = 2, x_n + (x_n - 4)x_{n-1} = 3(n = 2, 3, \cdots)$$
, 求 $\lim_{n \to \infty} x_n$ 。

解 显然是考不动点。

考虑方程

$$x + (x - 4)x - 3 = x^2 - 3x - 3 = 0$$

的解,取其中一解 $x_0=\frac{3+\sqrt{21}}{2}$ 。接下来考察单调性,设 $x_{n-1}\in[2,x_0)$,有

$$x_n - x_{n-1} = 4 - x_{n-1} - \frac{1}{x_n - 1} = -\frac{x_{n-1}^2 - 3x_{n-1} - 3}{x_{n-1} - 1} > 0$$

故序列 $\{x_n\}$ 单调递增且 $x_n \in [2, x_0)$ 。设极限为 A,解方程

$$A^2 - 3A - 3 = 0$$
, $A = x_0 = \frac{3 + \sqrt{21}}{2}$

问题 ◊ 000003

是否存在这样的函数,它在区间 [0,1] 上每点取有限值,在此区间的任何点的任一邻域内无界。

解 构造

$$f(x) = \begin{cases} n, & x = \frac{m}{n}, m, n \text{ 为互质整数} \\ 0, & x \text{ 为无理数} \end{cases}$$

问题 ◊ 000004

设 f,g 是 \mathbb{R} 上的实函数,且

$$f(x+y) + f(x-y) = 2f(x)g(y)$$

在 \mathbb{R} 上 f(x) 不恒等于零但有界,试证: $|g(y)| \leq 1$

解 令 $M = \sup |f(x)|$,则有

$$2M \geqslant |f(x+y)| + |f(x-y)| \geqslant |f(x+y) + f(x-y)| = 2|f(x)||g(y)|$$

设存在 y_0 使得 $|g(y_0)| = 1 + 2\delta > 1$ 。由上确界的定义知存在 x_0 有

$$M \geqslant |f(x_0)| > \frac{M}{\delta + 1}$$

故

$$2|f(x_0)||g(y_0)| > \frac{2(1+2\delta)M}{1+\delta} > 2M$$

因此矛盾,故恒有 $|g(y)| \leq 1$ 。

问题 ◊ 000005

设 f 是闭区间 [a,b] 上的增函数(但不一定连续),如果 $f(a) \ge a, f(b) \le b$,试证: $\exists x_0 \in [a,b]$,使 得 $f(x_0) = x_0$ 。

解 设 $A = \{x \mid f(x) \ge x\}$, 由题知 $a \in A$ 故 A 非空。又 f 定义在 [a,b] 上,故 A 有界。因此设 $x_0 = \sup A \in [a,b]$ 是有意义的。又 $f(x) \in [a,b]$ 在定义域内,分类讨论如下

1. 若 $y_0 = f(x_0) > x_0$,由单调性知

$$f(y_0) = f(f(x_0)) \ge f(x_0) = y_0$$

故 $y_0 \in A$ 。这意味着 $\sup A \geqslant y_0 > x_0$,矛盾。

2. 若 $y_0 = f(x_0) < x_0$, 由确界定义知 $\exists x_1 \in A$ 使 $y_0 < x_1 \leqslant x_0$, 由单调性知

$$f(x_1) \leqslant f(x_0) = y_0 < x_1$$

这意味着 $x_1 \notin A$, 矛盾。

故 $y_0 = f(x_0) = x_0$,此时 $x_0 = \sup\{x \mid f(x) \ge x\}$ 。

注意 x_0 不一定在 A 中,即 $f(x_0) \geqslant x_0$ 不一定成立。

问题 ◊ 000006

设 f(x) 是定义在 \mathbb{R} 上的函数且对任意 x,y 有

$$|xf(y) - yf(x)| \le M|x| + M|y|$$

其中 M > 0。求证:存在常数 a 使得对任意 x 有 $|f(x) - ax| \leq M$

解 当 x=0 时,有 $|f(0)| \leqslant M$ 。而当 $xy \neq 0$ 时,恒有

$$\left| f(x) - \frac{f(y)}{|y|} x \right| \leqslant M \left(1 + \frac{|x|}{|y|} \right)$$

若 a 不存在,即对任意的 a 存在 x_0 使

$$|f(x_0) - ax_0| = M(1+2\delta) > M$$

那么取 $a = \frac{f(y_0)}{|y_0|}$, 当 $y_0 = \frac{|x_0|}{\delta}$ 时,有

$$\left| f(x) - \frac{f(y_0)}{|y_0|} x \right| \le M \left(1 + \frac{|x_0|}{|y_0|} \right) = M(1 + \delta)$$

因此矛盾,故存在a。

问题 ◊ 000007

设
$$\lim_{n\to\infty}a_n=A$$
,求证: $\lim_{n\to\infty}rac{\sum a_n}{n}=A_{ullet}$

解 即对于任给的 $\varepsilon > 0$,存在 $n > N_1$ 使得

$$|a_n - A| < \frac{\varepsilon}{2}$$

那么变形有

$$\left| \frac{\sum a_n}{n} - A \right| \leqslant \frac{\sum |a_n - A|}{n} = \frac{\sum_{k=1}^{N_1} |a_k - A|}{n} + \frac{\sum_{k=N_1+1}^n |a_k - A|}{n}$$

注意到 $\sum_{k=1}^{N_1} |a_k - A|$ 已经为定值,从而存在 $n > N_2$ 使得

$$\frac{\sum_{k=1}^{N_1} |x_k - A|}{n} < \frac{\varepsilon}{2}$$

因此当 $n > \max\{N_1, N_2\}$ 时有

$$LHS < \frac{\varepsilon}{2} + \frac{n - N_1}{n} \times \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

问题 ◊ 000017

已知 $\lim_{x\to +\infty} f(x)$ 存在,且

$$f(x) = \frac{x^{1+x}}{(1+x)^x} - \frac{x}{e} + 2\lim_{x \to \infty} f(x)$$

求 f(x)。

解 显然先取 $t = \frac{1}{x}$, 设极限为 A, 则

$$A = 2A + \lim_{t \to 0^+} \left(\frac{1}{t(t+1)^{\frac{1}{t}}} - \frac{1}{te} \right)$$

故取等价无穷小得

$$-A = \lim_{t \to 0^+} \frac{1 - \exp\left(\frac{\ln(t+1)}{t} - 1\right)}{t \exp\frac{\ln(t+1)}{t}} = \lim_{t \to 0^+} \frac{1 - \frac{\ln(t+1)}{t}}{te} = \frac{1}{2e}$$

因此

$$f(x) = \frac{x^{1+x}}{(1+x)^x} - \frac{x+1}{e}$$

问题 ◊ 000019

设数列 $\{x_n\}$ 满足 $0 < x_n < \frac{\pi}{2}$,且

$$\cos x_{n+1} - x_{n+1} = \cos x_n$$

- (1) 计算 $\lim_{n\to\infty} x_n$ 。 (2) 计算 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n^2}$ 。

解 (1) 因为

$$\cos x_{n+1} - \cos x_n = x_{n+1} > 0$$

且 $0 < x_n < \frac{\pi}{2}$,因此 $0 < x_{n+1} < x_n$ 。故极限存在。

设极限为 a, 由 $\cos a - a = \cos a$, 易得 a = 0。

(2) 由于 $\cos x \sim 1 - \frac{x^2}{2}$, 故

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n^2} = \lim_{n \to \infty} \frac{x_{n+1}}{2 - 2\cos x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{2 - 2\cos x_{n+1} + 2x_{n+1}} = \frac{1}{2}$$

问题 ◊ 000030

设

$$x_{n+1} = 2 + \frac{1}{x_n}, \quad x_1 = 2$$

 $\vec{x} \lim_{n \to \infty} x_n$

解 设 $A=2+\frac{1}{A}$,取正解 $A=1+\sqrt{2}$ 。容易由数学归纳法证得 $x_n\in[2,\frac{5}{2}]$,注意到

$$|x_{n+1} - A| = \left| 2 + \frac{1}{x_n} - A \right| = \frac{1}{Ax_n} |x_n - A| \le \frac{1}{2A} |x_n - A|$$

因此 $\lim_{n \to \infty} x_n = A = 1 + \sqrt{2}$ 。 也可以奇偶分开讨论单调性。

问题 ◊ 000031

设 f(x) 在 [0,1] 上连续,且 f(0)=f(1)。证明:对于任意的 $n\in\mathbb{N}$,在 [0,1] 上至少存在一个 ξ 使

得

$$f\left(\xi + \frac{1}{n}\right) = f(\xi)$$

解 设 $F(x)=f(x+\frac{1}{n})-f(x)$,即证其在 $[0,1-\frac{1}{n}]$ 上有零点。注意到取一些点

$$\sum_{i=0}^{n-1} F\left(\frac{i}{n}\right) = f(1) - f(0) = 0$$

则要么 F 在这些点上值都为零,否则至少存在两个值异号,由介值定理知也存在零点。

问题 ◊ 000059

求极限

$$\lim_{x \to +\infty} \left(\sqrt[x]{x} - 1\right)^{\frac{1}{\ln x}}$$

解

$$\lim_{x \to +\infty} \left(\sqrt[x]{x} - 1\right)^{\frac{1}{\ln x}} = \frac{1}{e}$$

问题 ◊ 000060

求极限

$$\lim_{x \to 0} \frac{\ln(\sin^x + e^x) - 2x}{\ln(x^2 + e^{2x}) - 2x}$$

解

$$\lim_{x \to 0} \frac{\ln(\sin^x + e^x) - 2x}{\ln(x^2 + e^{2x}) - 2x} = 1$$

问题 ◊ 000066

求极限

$$\lim_{x \to 0} \frac{\left(1 + \frac{1}{n}\right)^{n^2}}{e^n}$$

解

$$\lim_{x \to 0} \frac{\left(1 + \frac{1}{n}\right)^{n^2}}{e^n} = \frac{1}{\sqrt{e}}$$

问题 ◊ 000067

设 $x_1=\sqrt{a}, x_{n+1}=\sqrt{a+x_n}$,证明: $\lim_{n \to \infty} x_n$ 存在,并求其值。

解 设 $A = \sqrt{a+A}$, 取正解

$$A = \frac{1 + \sqrt{1 + 4a}}{2}$$

假设 $\sqrt{a} \leqslant x_n \leqslant A$, 不难推得

$$|x_{n+1} - A| = \frac{|x_n - A|}{\sqrt{a + x_n} + A} \le \frac{1}{A}|x_n - A|$$

因此 $\lim_{n\to\infty} x_n \to A_{\bullet}$

10.2 一元微分学

问题 ◊ 000009

设 f(z) 在 [0,1] 上具有一阶连续导数, f(0) = 0, 证明: 存在 $\xi \in [0,1]$, 使得

$$f'(\xi) = 2 \int_0^1 f(x) \, \mathrm{d}x$$

解 TODO。设上下界 m, M, 中值定理。

问题 ◊ 000010

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=0, f(1)=1,证明存在不同的 $\xi_1,\xi_2\in(0,1)$,使得

$$\frac{1}{f'(\xi_1)} + \frac{1}{f'(\xi_2)} = 2$$

解 由于连续,即存在 $x_0\in(0,1)$ 使得 $f(x_0)=rac{1}{2}$ 。由中值定理,存在 $\xi_1\in(0,x_0)$ 使得

$$f'(\xi_1) = \frac{f(x_0) - f(0)}{x_0 - 0} = \frac{1}{2x_0}$$

同理, 存在 $\xi_2 \in (x_0, 1)$ 使得

$$f'(\xi_2) = \frac{f(1) - f(x_0)}{1 - x_0} = \frac{1}{2(1 - x_0)}$$

故

$$\frac{1}{f'(\xi_1)} + \frac{1}{f'(\xi_2)} = 2x_0 + 2(1 - x_0) = 2$$

问题 ◊ 000011

设 f(x) 在 [0,3] 上连续,在 (0,3) 内可导,且 f(0)+f(1)+f(2)=3, f(3)=1,证明存在 $\xi\in(0,3)$,使得 $f'(\xi)=0$ 。

解 TODO。设 $f(c) = f(3) = 1, c \in (0,2)$ 。套中值定理。

问题 ◊ 000012

设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且

$$f(1) = k \int_{0}^{\frac{1}{k}} x e^{1-x} f(x) dx (k > 1)$$

证明至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi) = (1 - \xi^{-1})f(\xi)$ 。

解 TODO。构造 $F(x) = xe^{1-x}f(x)$ 。套中值定理。

问题 ◊ 000013

设 f(x) 在 [0,1] 上连续, 在 (0,1) 内二阶可导, 过点 A(0,f(0)) 与 B(1,f(1)) 的直线与曲线 y=f(x) 相交于点 C(c,f(c)), 其中 0 < c < 1, 证明存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 0$ 。

解 TODO。构造 F(x) = (1-x)f(0) + xf(1) - f(x),有 F(0) = F(1) = F(c) = 0。套中值定理。

问题 ◊ 000016

设 f(x) 在 [a,b] 上连续,在 (a,b) 上导函数连续,且存在 $c\in(a,b)$ 使得 f'(c)=0。证明:存在 $\xi\in(a,b)$,使得

$$f'(\xi) - f(\xi) + f(a) = 0$$

解 几何角度很直观,即 $\frac{f'(x)-f(a)}{f'(x)}$ 存在值为 1 的时候。但是零点很恼人,严谨的说明是要费一番功夫的。 积分构造

$$F(x) = \frac{f(x) - f(a)}{e^x}, \quad F'(x) = \frac{f'(x) - f(x) + f(a)}{e^x} = \frac{f'(x)}{e^x} - F(x)$$

问题转化为存在 ξ 使得 $F'(\xi) = 0$ 。

易知 F(a) = 0, F'(c) = -F(c)。 因此由 Lagrange 中值定理得,存在 $x_0 \in (a,c)$ 使得

$$F'(x_0) = \frac{F(c) - F(a)}{c - a}$$

由于

$$F'(x_0)F'(c) = \frac{-F(c)^2}{c-a} < 0$$

因此由介值定理可知,必存在 $\xi \in (x_0,c)$ 使得 F'(d)=0。

问题 ◊ 000018

(1) 证明: 当 $x \ge 1$ 时, 有

$$\frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$$

(2) 证明:设 f(x) 在 $[1,\infty)$ 连续可导,且

$$f'(x) = \frac{1}{1 + f^2(x)} \left(\sqrt{\frac{1}{x}} - \sqrt{\ln\left(1 + \frac{1}{x}\right)} \right)$$

有 $\lim_{x\to+\infty}f(x)$ 存在。

- 解 (1) 显然求导即证。
 - (2) 显然 f'(x) > 0。由于 $1 + f^2(x) \ge 1$,因此

$$0 < f'(x) < \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}} < \frac{1}{2x\sqrt{x}}$$

故 f(x) 在 $[1,\infty)$ 上单调递增,积分有

$$f(t) - f(1) = \int_{1}^{t} f'(x) dx < \int_{1}^{t} \frac{1}{2x\sqrt{x}} dx = 1 - \frac{1}{\sqrt{t}} < 1$$

由于 f 单调递增且有界, 故极限存在。

问题 ◊ 000020

设

$$f_n(x) = \cos x + \cos^2 x + \dots + \cos^n x$$

(1) 证明: 对于每个 n, 方程 $f_n(x) = 1$ 在 $[0, \frac{\pi}{3})$ 内有且仅有一个实根。

(2) 证明: $\lim_{n\to\infty} x_n$ 存在, 并求其值。

解 (1) 设

$$g_n(x) = -1 + \sum_{i=1}^n x^i = \frac{2x - 1 - x^{n+1}}{1 - x}, \quad x \neq 1$$

因此 $f_n(x) = g_n(\cos x)$, 由于 $\cos x$ 单调,即证 $g_n(x) = 0$ 在 $(\frac{1}{2}, 1]$ 内有且仅有一个实根。 令 $h_n(x) = 2x - 1 - x^{n+1}$,求导

$$h'_n(x) = 2 - (n+1)x^n$$
, $h''_n(x) = -n(n+1)x^{n-1} \le 0$

可知 $h_n'(x)$ 单调递减,解得零点 $x_0 = \sqrt[n]{\frac{2}{n+1}}$ 。

当 $x \in (x_0,1]$ 时, $h_n(x)$ 单调递减,知 $h_n(x) \geqslant h_n(1) = 0$ 。当 $x \in (x_0,1)$ 时, $h_n(x)$ 单调递增。又 $h_n(\frac{1}{2}) < h_n(1) = 1 < h_n(x_0)$,故存在唯一解。

(2) 设 $y_n = \cos x_n$ 。注意到

$$h_{n+1}(y_n) = 2y_n - 1 - y_n^{n+1} > 2y_n - 1 - y_n^n = h_n(y_n) = 0$$

故 $y_{n+1} < y_n$ 。因此 y_n 单调递减且有界,故收敛。设极限为 A,显然 $A \in (\frac{1}{2},1)$,得到

$$0 = 2A - 1 - \lim_{n \to \infty} x_n^{n+1} = 2A - 1$$

故 $A = \frac{1}{2}$,反推 $x_n \to \frac{\pi}{3}$ 。

(2) 其实可以更直接的定出答案。注意到

$$h_n\left(\frac{n+1}{2n}\right) = \frac{1}{n} - \left(\frac{n+1}{2n}\right)^{n+1} > \frac{1}{n} - \frac{1}{2^{n+1}} > 0$$

因此 $\frac{1}{2} < \cos x_n < \frac{n+1}{2n}$ 。由夹逼准则知 $x_n \to \frac{\pi}{3}$ 。

问题 ◊ 000021

(1987 卷 I) 设函数 f(x) 在闭区间 [0,1] 上可微,对于 [0,1] 上的每一个 x,函数 f(x) 的值都在开区间 (0,1) 内,且 $f'(x) \neq 1$ 。证明:在 (0,1) 内有且仅有一个 x,使 f(x) = x。

解 设 F(x) = f(x) - x, 注意到

$$F(0) = f(0) > 0$$
, $F(1) = f(1) - 1 < 0$

因此 F(x) 至少存在一个实根。设存在两个不同的实根 x_1, x_2 ,由 Lagrange 中值定理知存在 $\xi \in (0,1)$

$$f'(\xi) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 1$$

故矛盾, 因此实根唯一。

问题 ◊ 000023

设函数 f 在 [0,1] 上二阶可导,且 $\int_0^1 f(x) dx = 0$,则 A. 当 f'(x) < 0 时, $f(\frac{1}{2}) < 0$ 。B. 当 f''(x) < 0 时, $f(\frac{1}{2}) < 0$ 。

C. 当 f'(x) > 0 时, $f(\frac{1}{2}) < 0$ 。 D. 当 f''(x) > 0 时, $f(\frac{1}{2}) < 0$ 。

解 答案 D。考虑原函数 F(x) 的 Lagrange 余项 Taylor 公式,令 $x_0 = \frac{1}{2}$,即存在 $\xi \in (0,1)$ 使得

$$F(x) = F(x_0) + F'(x_0)(x - x_0) + \frac{F''(x_0)}{2}(x - x_0)^2 + \frac{F'''(\xi)}{6}(x - x_0)^3$$

注意到 F(0) = F(1), 带入即

$$4F'(x_0) + F'''(x_0) = 0$$

故 $f''(x)f(\frac{1}{2}) < 0$ 。

问题 ◊ 000024

设函数 f 在 [-2,2] 上二阶可导,且 $|f| \leq 1$ 。又

$$\frac{1}{2}[f'(0)]^2 + [f(0)]^3 > \frac{3}{2}$$

证明: 存在 $\xi \in (-2,2)$, 使得 $f''(\xi) + 3[f(\xi)]^2 = 0$ 。

解 构造

$$F(x) = \frac{1}{2}[f'(x)]^2 + [f(x)]^3, \quad F'(x) = f'(x)(f''(x) + 3f(x))$$

下面只需证存在 ξ 使得 $F'(\xi)=0$ 且 $f'(\xi)\neq 0$ 即可。注意到存在 $\eta_1\in(0,2)$ 使得

$$|f'(\eta_1)| = \frac{|f(2) - f(0)|}{2 - 0} \le 1$$

故

$$F(\eta_1) \leqslant \frac{1}{2} + 1 = \frac{3}{2}$$

同理存在 $\eta_2 \in (-2,0)$ 使得 $F(\eta_2) \leqslant \frac{3}{2}$ 。又 $F(0) \geqslant \frac{3}{2}$,故存在最大值 $\xi \in (\eta_1,\eta_2)$,且由 Fermat 定理知 $F'(\xi) = 0$ 。此时 $F(\xi) > \frac{3}{2}$,故 $f'(\xi) \neq 0$ 。

问题 ◊ 000025

设

$$f(x) = \int_0^x e^{t^2} dx, \quad x > 0$$

- (1) 证明: 对于任意的 x 存在唯一的 $\theta_x \in (0,1)$ 使得 $f(x) = xf'(x \cdot \theta_x)$ 。
- (2) $\vec{x} \lim_{x \to 0^+} \theta_x$

解 (1) 不妨将定义域延伸至 f(0) = 0。由中值定理知存在 $\xi \in (0,x)$ 使得

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = f'(\xi)$$

又 $f'(x) = e^{x^2} > 0$, 故 ξ 唯一, 即 $\theta_x = \frac{\xi}{x} \in (0,1)$ 。

(2) 容易解得

$$\theta_x = \frac{1}{x} \sqrt{\ln \frac{f(x)}{x}}$$

故极限为

$$\lim_{x\rightarrow 0^+}\theta_x=\lim_{x\rightarrow 0^+}\sqrt{\frac{f(x)-x}{x^3}}=\frac{\sqrt{3}}{3}$$

已知 f(x) 是二阶可导的正值函数,且 f(0) = f'(0) = 1 并

$$f(x)f''(x) \geqslant [f'(x)]^2$$

那么

A. $f(2) \le e^2 \le \sqrt{f(1)f(3)}$. B. $e^2 \le f(2) \le \sqrt{f(1)f(3)}$. C. $\sqrt{f(1)f(3)} \le e^2 \le f(2)$. D. $\sqrt{f(1)f(3)} \le f(2) \le e^2$.

解 答案是 B。注意到我们应该对 $\frac{f'}{f}$ 进行改造,构造

$$g(x) = \ln f(x) - x$$

即

$$g'(x) = \frac{f'(x)}{f(x)} - 1, \quad g''(x) = \frac{f(x)f''(x) - [f'(x)]^2}{f^2(x)} \geqslant 0$$

故 $g'(x)\geqslant g'(0)=0$,故 $g(x)\geqslant 0$,即 $f(x)\geqslant \mathrm{e}^x$ 。注意到凹凸性,由 Jensen 不等式即可比大小。

问题 ◊ 000032

(1988 卷 I) 设函数 f 在区间 [a,b] 上连续,且在 (a,b) 内有 f'(x) > 0。证明:在 (a,b) 内存在唯一的 ξ ,使得曲线 y = f(x) 与两直线 $y = f(\xi), x = a$ 所围平面图形面积 S_1 是曲线 y = f(x) 与两直线 $y = f(\xi), x = b$ 所围平面图形 S_2 的三倍。

解 考虑面积的函数

$$S_1(t) = \int_a^t (f(t) - f(x)) dx$$
$$S_2(t) = \int_a^b (f(x) - f(t)) dx$$

设 $F(t) = S_1(t) - 3S_2(t)$ 。 注意到

$$F(a) = -3S_2(a) < 0, \quad F(b) = S_1(b) > 0$$

故至少存在一个 $\xi \in (a,b)$ 使得 $F(\xi) = 0$ 。再注意到

$$F'(t) = \frac{d}{dt} \left(f(t)(3b - a - 2t) - \int_a^t f(x) dx - 3 \int_t^b f(x) dx \right)$$

= $f'(t)(3b - a - 2t) > 0$

故单调, 即零点唯一。

问题 ◊ 000033

如果 f 在 [a,b] 上导数连续,那么存在 $\xi \in (a,b)$ 满足

$$\frac{af(b) - bf(a)}{a - b} = f(\xi) - \xi f'(\xi)$$

解 注意到

$$LHS = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}}$$

取 $F(x) = \frac{f(x)}{x}$, $G(x) = \frac{1}{x}$, 套 Cauchy 定理即可。

问题 ◊ 000034

如果 f 在 [a,b] 上导数连续且不是线型函数,那么存在 $\xi \in (a,b)$ 满足

$$|f'(\xi)| \geqslant \left| \frac{f(b) - f(a)}{b - a} \right|$$

解设

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a), \quad F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

由非线性性知存在 $F(c) \neq 0$,不妨设 F(c) > 0,存在两点 $\xi_1 \in (a,c), \xi_2 \in (c,b)$ 有

$$F'(\xi_1) = \frac{F(c) - F(a)}{c - a} > 0, \quad F'(\xi_2)$$

故有

$$f'(\xi_2) < \frac{f(b) - f(a)}{b - a} < f'(\xi_1)$$

不难推出 ξ_1,ξ_2 总有一个满足题意的。

问题 ◊ 000035

如果 f 在 [a,b] 上二阶可导且 f(a)=f(b)=0,则对任意的 $x\in(a,b)$ 存在 $\xi_x\in(a,b)$ 满足

$$f(x) = \frac{f''(\xi_x)}{2}(x - a)(x - b)$$

 \mathbf{M} 固定x并定义

$$\lambda = \frac{2f(x)}{(x-a)(x-b)}$$

构造

$$F(u) = f(u) - \frac{\lambda}{2}(u - a)(u - b)$$

注意到 F(a) = F(x) = F(b) = 0,套两次中值定理即得存在 ξ_x 使得 $F''(\xi_x) = 0$ 。

问题 ◊ 000036

如果 f 在 [a,b] 上三阶可导且 f(a)=f'(a)=f(b)=0,则对任意的 $x\in(a,b)$ 存在 $\xi_x\in(a,b)$ 满足

$$f(x) = \frac{f'''(\xi_x)}{6}(x-a)^2(x-b)$$

解 TODO 仿照 000035 的计算方法, 构造

$$F(u) = f(u) - \frac{\lambda}{6}(u - a)^{2}(u - b), \quad \frac{6f(x)}{(x - a)^{2}(x - b)}$$

求导即证。

如果 f 在 [a,b] 上二阶可导,则对任意的 $c \in (a,b)$ 存在 $\xi_c \in (a,b)$ 满足

$$f''(\xi_c) = \frac{2f(a)}{(a-b)(a-c)} + \frac{2f(b)}{(b-c)(b-a)} + \frac{2f(c)}{(c-a)(c-b)}$$

解 TODO 仿照 000035 的计算方法,构造三个 λ 和 F(x),求导即证。

问题 ◊ 000038

设 f 在区间 [a,b] 上连续可导,且 0 < a < b,那么存在 $\xi, \eta \in (a,b)$ 满足

$$f'(\eta) = (b^2 + ab + a^2 + 2) \frac{f'(\xi)}{3\xi^2 + 2}$$

解 首先选取 η

$$\frac{f(b) - f(a)}{b - a} = f'(\eta)$$

接下来即证

$$\frac{f(b) - f(a)}{b^3 - a^3 + 2(b - a)} = \frac{f'(\xi)}{3\xi^2 + 2}$$

容易套用 Cauchy 中值定理。

问题 ◊ 000039

设 f 在区间 [0,1] 上二阶可导且 $|f(0)| \le 1, |f(1)| \le 1$,同时 $|f''(x)| \le 2$ 。求证 $|f'(x)| \le 3$ 。

解 首先用两次 Taylor 公式, 得到

$$f(1) - f(0) = f'(x) + \frac{f''(\xi)}{2}(1 - x)^2 - \frac{f''(\eta)}{2}x^2$$

因此

$$|f'(x)| \le \left| f(1) - f(0) - \frac{f''(\xi)}{2} (1 - x)^2 + \frac{f''(\eta)}{2} x^2 \right|$$

$$\le 2 + |1 - x|^2 + |x|^2 \le 3$$

问题 ◊ 000040

设 $f \in [a,b]$ 上的连续可导函数, 且 0 < a < b, 那么存在 $\xi, \eta \in (a,b)$ 使得

$$f'(\xi) = \frac{a+b}{2n}f'(\eta)$$

证明 首先存在 $\xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

构造

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b^2 - a^2} (x^2 - a^2)$$

注意到 F(a) = F(b) = 0,因此存在 $\eta \in (a,b)$ 使得

$$F'(\eta) = f'(\eta) - 2\eta \frac{f(b) - f(a)}{b^2 - a^2} = f'(\eta) - \frac{2\eta f'(\xi)}{b + a} = 0$$

问题 ◊ 000041

设 $f \in [a,b]$ 上的连续可导函数,且 f'(a) = f'(b) = 0,那么存在 $\xi \in (a,b)$ 使得

$$f(\xi) - f(a) = f'(\xi)(\xi - a)$$

证明 首先构造

$$F(x) = \frac{f(x) - f(a)}{x - a}, \quad F'(x) = \frac{1}{x - a} \left(f'(x) - \frac{f(x) - f(a)}{x - a} \right), \quad x \in (a, b]$$

可以令 F(a) = f'(a) = 0 使其在 x = a 处连续。注意到

$$F(b) = \frac{f(b) - f(a)}{b - a}, \quad F'(b) = -\frac{f(b) - f(a)}{(b - a)^2}$$

故存在 $x_0 \in (a,b)$

$$F'(x_0)F'(b) = \frac{F(b) - F(a)}{b - a}F'(b) \le 0$$

因此存在 $\xi \in (x_0, b)$ 使得 $F'(\xi) = 0$ 。

问题 ◊ 000042

设函数 f 是 [a,b] 上连续且二阶可导,且 f'(a)=f'(b)=0,那么存在 $c\in(a,b)$ 使得

$$|f''(c)| \geqslant \frac{4}{(b-a)^2} |f(b) - f(a)|$$

证明 我们选取 x_0 构造

$$F(x) = f(x) - f(x_0) - f'(x_0)(x - x_0), \quad G(x) = (x - x_0)^2$$

连续使用两次微分中值定理得到

$$\frac{F(x)}{G(x)} = \frac{F(x) - F(x_0)}{G(x) - G(x_0)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{f'(\xi_1) - f'(x_0)}{2(\xi_1 - x_0)} = \frac{f''(\xi_2)}{2}$$

其中 $x_0 < \xi_2 < \xi_1 < x$ 。定 $x = \frac{a+b}{2}$,取 $x_0 = a$ 得到

$$f\left(\frac{a+b}{2}\right) = f(a) + \frac{f''(\eta_1)}{8}(b-a)^2, \quad \eta_1 \in \left(a, \frac{a+b}{2}\right)$$

同理可取 $x_0 = b$ 得到

$$f\left(\frac{a+b}{2}\right) = f(b) + \frac{f''(\eta_2)}{8}(b-a)^2, \quad \eta_2 \in \left(\frac{a+b}{2}, b\right)$$

从而有

$$\frac{4(f(b) - f(a))}{(b - a)^2} = \frac{f''(\eta_1) - f''(\eta_2)}{2}$$

故

$$\frac{4}{(b-a)^2}|f(b)-f(a)| = \frac{|f''(\eta_1)-f''(\eta_2)|}{2} \leqslant \max\{f''(\eta_1), f''(\eta_2)\}$$

107

设 f 在区间 [a,b] 上二阶可导且 f(a)=f(b)=0,且二阶导数 $|f''(x)| \leq A$ 有界。则

$$\left| f\left(\frac{a+b}{2}\right) \right| \leqslant \frac{A}{8}(b-a)^2$$

解 用两次 Taylor 展开,得到

$$\frac{f(a) + f(b)}{2} = f\left(\frac{a+b}{2}\right) + \frac{f''(\xi) + f''(\eta)}{4} \frac{(b-a)^2}{4}$$

故

$$\left| f\left(\frac{a+b}{2}\right) \right| \leqslant \frac{A}{8}(b-a)^2$$

问题 ◊ 000064

(1995 卷 I) 函数 f(x) 和 g(x) 在 [a,b] 上存在二阶导数,并且 $g''(x) \neq 0$, f(a) = f(b) = g(a) = g(b) = 0, 试证:

- (1) 在开区间 (a,b) 内 $g(x) \neq 0$ 。
- (2) 在开区间 (a,b) 内至少存在一点 ξ , 使

$$\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$$

解 (1) Rolle 定理显然。

(2) 构造

$$F(x) = f(x)q'(x) - f'(x)q(x)$$

注意到 F(a) = F(b) = 0, 而且

$$F'(x) = f(x)g''(x) - f''(x)g(x)$$

因此存在 ξ 使得

$$F'(\xi) = \frac{F(b) - F(a)}{b - a} = 0$$

原式成立。

10.3 一元积分学

问题 ◊ 000008

求

$$\int_{-\infty}^{+\infty} e^{-x^2} dx$$

解

$$\int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}$$

求

$$\int \frac{1}{(x^2 + a^2)^2} \, \mathrm{d}x$$

 \mathbf{M} 令 $x = a \tan t$, 则

$$x^2 + a^2 = a^2 \sec^2 t$$
, $dx = a \sec^2 t dt$

有

$$LHS = \frac{1}{a^3} \int \cos^2 t \, dt = \frac{1}{2a^3} \left(\arctan \frac{x}{a} + \frac{ax}{x^2 + a^2} \right)$$

问题 ◊ 000015

求

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a}} \,\mathrm{d}x$$

解

$$LHS = \ln|x + \sqrt{x^2 + a}| + C$$

问题 ◊ 000022

设函数

$$f(x) = x \int_{1}^{0} e^{-x^{2}t^{2}} dt$$

则当 0 < a < x < b 时有:

A. xf(x) > af(a), B. bf(b) > xf(x), C. xf(a) > af(x), D. xf(b) > bf(x).

解 答案 D。首先积分换元

$$f(x) = \int_{1}^{0} e^{-(xt)^{2}} d(xt) = -\int_{0}^{1} e^{-x^{2}} dx$$

剩下的比较直观,就不写了。

问题 ◊ 000027

已知 a > 0,则对于反常积分

$$I = \int_0^1 \frac{\ln x}{x^a} \, \mathrm{d}x$$

的敛散性的判别, 下列正确的是

- A. 当 a > 1 时 I 收敛。B. 当 a < 1 时 I 收敛。
- C. 敛散性和 a 的取值无关,必收敛。D. 敛散性与 a 的取值无关,必发散。

\mathbf{M} 当 a < 1 时,注意到

$$f'(x) = \frac{1 - a \ln x}{x^{a+1}}$$

故 $|f(x)| \leqslant |f(\mathrm{e}^{1/a})|$,有界故收敛。当 $a\geqslant 1$ 时,考虑与 x^{-a} 进行比较,注意到当 $0< x<\frac{1}{\mathrm{e}}$ 时有 $f(x)<-\frac{1}{x^a}$,故 I 发散。

设 p 为常数, 若反常积分

$$I = \int_0^1 \frac{\ln x}{x^p (1 - x)^{1 - p}} \, \mathrm{d}x$$

收敛, 求 p 的取值范围。

 \mathbf{M} 答案是 (-1,1)。考虑划分成两部分

$$I = \int_0^{\frac{1}{2}} \frac{\ln x}{x^p (1-x)^{1-p}} \, \mathrm{d}x + \int_{\frac{1}{2}}^1 \frac{\ln x}{x^p (1-x)^{1-p}} \, \mathrm{d}x = I_1 + I_2$$

分别对 $x \to 0$ 和 $x \to 1$ 讨论即可,有点麻烦。

问题 ◊ 000029

已知

$$b = \int_{1}^{+\infty} \left(\frac{2x^3 + ax + 1}{x(x+2)} - (2x - 4) \right) dx$$

其中 a, b 为常数, 求 ab。

解 答案是 -4 ln 3。注意到

$$b = \int_{1}^{+\infty} \frac{(a+8)x+1}{x(x+2)} dx = \int_{1}^{+\infty} \left(\frac{1}{2x} - \frac{2a+15}{2(x+2)}\right) dx$$

讨论一下,就知道 $a=-8, b=\frac{\ln 3}{2}$ 。

问题 ◊ 000044

任给 $\beta \geqslant 0$ 和 b > a > 0 证明

$$\left| \int_{a}^{b} e^{-\beta x} \frac{\sin x}{x} \, dx \right| \leqslant \frac{2}{a}$$

解 用积分第二中值定理,得到

$$\int_{a}^{b} \frac{e^{-\beta x}}{x} \sin x \, dx \leqslant \frac{e^{-a\beta}}{a} \int_{a}^{\xi} \frac{e^{-\beta x}}{x} \sin x \, dx$$

因此

$$\left| \int_{a}^{b} e^{-\beta x} \frac{\sin x}{x} \, dx \right| \leqslant \frac{2}{a e^{a\beta}} \leqslant \frac{2}{a}$$

问题 ◊ 000045

设 f 在 [a,b] 上连续, 且

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b x f(x) = 0$$

证明: 存在 $x_1 \neq x_2$ 使得 $f(x_1) = f(x_2) = 0$ 。

解 显然 f 至少存在一个零点,否则积分不可能为 0。假设 x_0 是其唯一零点,不妨设左边小于 0 右边大于 0。那么

$$\int_{a}^{b} (x - x_0) f(x) dx = \int_{a}^{b} x f(x) dx - x_0 \int_{a}^{b} f(x) dx = 0$$

注意到 $(x-x_0)f(x)>0$ 在 $x\neq x_0$ 成立, 故左边积分不等于 0, 矛盾。

问题 ◊ 000046

设 f 在 [a,b] 上可积且 a>0, 证明

$$|f(0)| \le \frac{1}{a} \int_0^a |f(x)| \, \mathrm{d}x + \int_0^a |f'(x)| \, \mathrm{d}x$$

解 有积分中值定理得到

$$\int_0^a f(x) \, \mathrm{d}x = a f(\xi)$$

因此

$$f(0) = f(\xi) - \int_0^{\xi} f'(x) dx = \frac{1}{a} \int_0^a f(x) dx - \int_0^{\xi} f'(x) dx$$

从而

$$|f(0)| \le \frac{1}{a} \int_0^a |f(x)| dx + \int_0^a |f'(x)| dx$$

问题 ◊ 000047

假设在 f 在 [0,1] 上可导,且

$$f(1) = 2 \int_0^{\frac{1}{2}} x f(x) \, \mathrm{d}x$$

证明存在 $\xi \in (0,1)$ 使得

$$f'(\xi) = -\frac{f(\xi)}{\xi}$$

解 构造 F(x) = xf(x),由积分中值定理知存在 $\eta \in (0, \frac{1}{2})$ 使得

$$f(1) = 2 \int_0^{\frac{1}{2}} F(x) dx = F(\eta)$$

又 $F(0) = 0, F(1) = f(1) = F(\eta)$, 故存在 $\xi \in (\eta, 1)$ 使得

$$F'(\xi) = \frac{F(1) - F(\eta)}{1 - \eta} = 0 = f(\xi) + \xi f'(\xi)$$

问题 ◊ 000048

假设在 f 在 [0,1] 上可导,那么存在 $c_x \in (a,x)$ 使得

$$\int_{a}^{x} f(t) dt = f(c_x)(x - a)$$

若 f 在 a 处可导且 $f'(a) \neq 0$ 则

$$\lim_{x \to a+} \frac{c_x - a}{x - a} = \frac{1}{2}$$

 $oldsymbol{F}$ 由积分中值定理, c_x 的存在是显然的。定义

$$I = \lim_{x \to a+} \frac{1}{(x-a)^2} \left(\int_a^x f(t) \, dt - (x-a)f(a) \right)$$

首先由 L'Hopital 法则得到

$$I = \lim_{x \to a+} \frac{f(x) - f(a)}{2(x - a)} = \frac{1}{2}f'(a)$$

又

$$I = \lim_{x \to a+} \frac{f(c_x) - f(a)}{x - a} = f'(a) \frac{\partial c_x}{\partial x}$$

当 $f'(a) \neq 0$ 时比较即知。

问题 ◊ 000049

假设 f 在 [a,b] 上存在二阶导数,那么存在 $\xi \in (a,b)$ 满足

$$f''(\xi) = \frac{24}{(b-a)^3} \int_a^b \left(f(x) - f\left(\frac{a+b}{2}\right) \right) dx$$

解 令 $x_0 = \frac{a+b}{2}$, 由 Taylor 公式知存在 $\eta \in (a,x)$ 使得

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \frac{f''(\eta_x)}{2}(x - x_0)^2$$

积分得

$$\int_{a}^{b} (f(x) - f(x_0)) dx = \frac{1}{2} \int_{a}^{b} f''(\eta_x) (x - x_0)^2 dx$$

由积分中值定理,存在 ξ 使

$$\frac{1}{2} \int_{a}^{b} f''(\eta_{x})(x-x_{0})^{2} dx = \frac{1}{2} f''(\xi) \int_{a}^{b} (x-x_{0})^{2} dx = \frac{(b-a)^{3}}{24} f''(\xi)$$

问题 ◊ 000050

假设 f 在 [0,1] 上连续且 f>0,则对任意正整数 n 存在 ξ_n 满足

$$\frac{1}{n} \int_0^1 f(x) \, \mathrm{d}x = \int_0^{\xi_n} f(x) \, \mathrm{d}x + \int_{1-\xi_n}^1 f(x) \, \mathrm{d}x$$

且

$$\lim_{n \to +\infty} n\xi_n = \frac{1}{f(0) + f(1)} \int_0^1 f(x) \, \mathrm{d}x$$

 \mathbf{M} 设 F 为 f 的原函数,构造

$$G(x) = F(x) - F(0) + F(1) - F(1 - x)$$

注意到

$$G'(x) = f(x) + f(1-x) > 0, \quad G(0) = 0, G(1) = 2F(1)$$

由于 G 连续且单调递增,因此存在 ξ_n 使得 $\frac{1}{n}F(1)=G(\xi_n)$,且 ξ_n 单调递减趋于 0。又由积分中值定理 知存在 $\alpha_n\in(0,\xi_n),\beta_n\in(1-\xi_n,1)$ 使得

$$G(\xi_n) = f(\alpha_n)\xi_n + f(\beta_n)\xi_n$$

因此

$$\lim_{n \to +\infty} n\xi_n = \lim_{n \to +\infty} \frac{nG(\xi_n)}{f(\alpha_n) + f(\beta_n)} = \frac{F(1)}{f(0) + f(1)}$$

问题 ◊ 000051

如果 f,g 在 [a,b] 上连续且 f,g>0,那么存在 $\xi\in(a,b)$ 满足

$$\frac{f(\xi)}{\int_a^{\xi} f(x) \, \mathrm{d}x} - \frac{g(\xi)}{\int_{\xi}^b g(x) \, \mathrm{d}x} = 1$$

 \mathbf{M} 设 F,G 分别为 f,g 的原函数, 即证

$$\frac{F'(\xi)}{F(\xi)} - \frac{G'(\xi)}{G(b) - G(\xi)} = 1$$

构造

$$H(x) = e^{-x}F(x)(G(b) - G(x))$$

注意到 H(a) = H(b) = 0,因此存在 ξ 使得

$$H'(\xi) = \frac{F(\xi)(G(b) - G(\xi))}{e^{\xi}} \left(\frac{F'(\xi)}{F(\xi)} - \frac{G'(\xi)}{G(b) - G(\xi)} - 1 \right) = 0$$

问题 ◊ 000052

如果 f,g 在 [a,b] 上连续且 $\varphi(x) \neq 0$,那么存在 $\xi \in (a,b)$ 满足

$$g(\xi) \int_a^b f(x)\varphi(x) dx = f(\xi) \int_a^b g(x)\varphi(x) dx$$

解 构造

$$F(x) = \left(\int_a^b f(t)\varphi(t) \, \mathrm{d}t \right) \int_a^x g(t)\varphi(t) \, \mathrm{d}t - \left(\int_a^b g(t)\varphi(t) \, \mathrm{d}t \right) \int_a^x f(t)\varphi(t) \, \mathrm{d}t$$

注意到

$$F'(x) = \varphi(x) \left(g(x) \int_a^b f(t)\varphi(t) dt - f(x) \int_a^b g(t)\varphi(t) dt \right), \quad F(a) = F(b) = 0$$

故存在 $F'(\xi) = 0$ 。

问题 ◊ 000053

假设 f 在 [-1,1] 且在 x=0 处可导, $f(0)=0,f'(0)\neq 0$ 。求极限

$$I = \lim_{x \to 0+} \frac{\int_0^x (x^2 - t^2) f(t) dt}{\int_0^x t f(x^2 - t^2) dt}$$

解 容易发现

$$I = \lim_{x \to 0+} \frac{\int_0^x (x^2 - t^2) f(t) dt}{\frac{1}{2} \int_0^{x^2} f(u) du} = \lim_{x \to 0+} \frac{2}{f(x^2)} \int_0^x f(t) dt$$

注意条件里没有导数连续,因此不能用 L'Hospital 法则,考虑用导数定义

$$I = \lim_{x \to 0+} \frac{2 \int_0^x f(t) dt}{x^2} \frac{x^2}{f(x^2) - f(0)} = \lim_{x \to 0+} \frac{f(x)}{f'(0)x} = 1$$

假设 f 在 [0,1] 上连续且 $f \ge 0$ 。若满足

$$f^2(x) \leqslant 1 + 2 \int_0^x f(t) \, \mathrm{d}t$$

求证: $f(x) \leq 1 + x$ 。

解 令 F 为 f 的原函数,原方程即为 $F'(x)^2 \leq 1 + 2F(x)$ 。注意到

$$0 \leqslant \frac{F'(x)}{\sqrt{1 + 2F(x)}} = \left(\sqrt{2F + 1}\right)' \leqslant 1$$

两侧积分得到

$$1 \leqslant \sqrt{2F(x) + 1} \leqslant 1 + x$$

因此 $f = F' \leqslant \sqrt{2F(x) + 1} \leqslant x + 1$ 。

问题 ◊ 000055

假设 f 在 [0,1] 上连续在 (0,1) 上可导,且 $f(0) = f(\frac{1}{4}) = 0$,且

$$\int_{\frac{1}{4}}^{\frac{3}{4}} f(x) \, \mathrm{d}x = \frac{f(1)}{2}$$

证明: 存在 $\xi \in (0,1)$ 满足 $f''(\xi)0$ 。

解 根据积分中值定理,知存在

$$\int_{\frac{1}{4}}^{\frac{3}{4}} f(x) \, \mathrm{d}x = \frac{f(\eta_1)}{2} = \frac{f(1)}{2}$$

即 $f(\eta_1)=f(1)$, 故存在 $f'(\eta_2)=0$ 。又 $f(0)=f(\frac{1}{4})$ 知存在 $f'(\eta_3)=0$, 因此存在 $\xi\in(0,1)$ 使得 $f''(\xi)=0$ 。

问题 ◊ 000056

设 f 在 [a,b] 上导数存在且连续,又 f(a)=0,求证:

$$\int_{a}^{b} f^{2}(x) dx \leqslant \frac{(b-a)^{2}}{2} \int_{a}^{b} (f'(x))^{2} dx$$

解 由 Cauchy 积分不等式得

$$f^{2}(x) = \left(\int_{a}^{x} f'(t) dt\right)^{2} \leq (x - a) \int_{a}^{x} (f'(t))^{2} dt$$

因此

$$\int_{a}^{b} f^{2}(x) dx \leq \left(\int_{a}^{b} (x - a) dx \right) \int_{a}^{b} (f'(x))^{2} dx = \frac{(b - a)^{2}}{2} \int_{a}^{b} (f'(x))^{2} dx$$

设 f 在 $[0\ 1]$ 上导数存在且连续,又 f(0) = 0 且 $0 \le f' \le 1$,求证:

$$\int_0^1 f^3(x) \, \mathrm{d}x \leqslant \left(\int_0^1 f(x) \, \mathrm{d}x\right)^2$$

解设

$$G(x) = \left(\int_0^x f(t) dt\right)^2 - \int_0^x f^3(t) dt$$

求导得

$$G'(x) = f(x) \left(2 \int_0^x f(t) dt - f^2(x) \right)$$

令

$$H(x) = 2 \int_0^x f(t) dt - f^2(x), \quad H'(x) = 2f(x)(1 - f'(x)) \ge 0$$

因此 $H(x) \geqslant H(0) = 0$, 故 $G(x) \geqslant G(0) = 0$ 。

问题 ◊ 000058

设 f 在 [0,1] 上二阶导数连续, f(0) = f(1) = 0, 且在 (0,1) 上 f > 0, 求证:

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \geqslant 4$$

 $oldsymbol{k}$ 不妨设 f>0。设 x=a 时取到最大值,对两侧端点取微分中值定理

$$\frac{f(a) - f(0)}{a - 0} = f'(\eta_1), \quad \frac{f(1) - f(a)}{1 - a} = f'(\eta_2)$$

因此

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \ge \frac{1}{f(a)} \int_{\eta_1}^{\eta_2} |f''(x)| \, \mathrm{d}x$$

$$\ge \frac{|f'(\eta_1) - f'(\eta_2)|}{f(a)}$$

$$= \frac{1}{a(1-a)} \ge 4$$

10.4 常微分方程

问题 ◊ 000061

(1991 卷 I) 在上半平面求一条向上凹的曲线,其上任何一点 P(x,y) 处的曲率等于此曲线在该点法 线段 PQ 长度的倒数 (Q 是法线与 x 轴的交点),且曲线在 (1,1) 处的切线与 x 轴平行。的值最小。

解 由题意得

$$\frac{y''}{(1+(y')^2)^{\frac{3}{2}}} = \frac{1}{y\sqrt{1+(y')^2}}$$

整理得

$$y''y - (y')^2 = 1$$

构造 p=y', 得 $y''=rac{p\mathrm{d}p}{\mathrm{d}y}$, 故

$$1 + p^2 = yp\frac{\mathrm{d}p}{\mathrm{d}y}$$

分离变量解得

$$y^2 - p^2 = 1$$

容易解得

$$y = \frac{e^{x-1} - e^{-(x-1)}}{2}$$

问题 ◊ 000063

(1993 卷 I) 设物体 A 从点 (0,1) 出发,以速度大小为常数 v 沿 y 轴正向运动。物体 B 从点 (1,0) 与 A 同时出发,其速度大小为 2v,方向始终指向 A,试建立物体 B 的运动轨迹所满足的微分方程,并写出初始条件。

 \mathbf{M} 首先物体 A 的速度指向物体 B, 即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + vt - y}{0 - x}$$

同时速度是 2v, 得到

$$\sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2} = 2v\,\mathrm{d}t$$

这里需要把变量 t 消去, 联立得

$$2xy'' + \sqrt{1 + (y')^2} = 0$$

10.5 无穷级数

问题 ◊ 000065

判断级数

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{(n+(-1)^n)^p}$$

的收敛性 (绝对、条件), 其中 p > 1。

 $m{K}$ 当 p>1 时,显然绝对收敛,又 $0< p\leqslant 1$ 显然绝对发散,接下来只需考察是否条件收敛。设原来级数为 $\sum a_n$,构造

$$b_n = \frac{(-1)^n}{n^p}$$

令其和函数分别为 S_n, T_n , 不难发现

$$T_{2n} + S_{2n} = 0$$
, $T_{2n+1} + S_{2n+1} = \frac{1}{(2n+1)^p} - \frac{1}{(2n)^p} \to 0$

又显然 $T_n \to 0$,故 $S_n \to 0$ 。

10.6 概率论与数理统计

问题 ◊ 000062

(1989 卷 I) 设随机变量 X 与 Y 相互独立,且 X 服从均值为 1、标准差为 $\sqrt{2}$ 的正态分布,而 Y 服从标准正态分布,求随机变量 Z=2X-Y+3 的概率密度函数。

解 由于 $Z \in X, Y$ 的线性组合,故也服从正态分布。分别计算 E(Z), D(Z)。

$$E(Z) = 2E(X) - E(Y) + 3 = 5, \quad D(Z) = 4D(X) + D(Y) + 0 = 9$$

故 $Z \sim N(5,9)$, 得到

$$f_Z(z) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{(z-5)^2}{18}\right)$$