PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

- > Modeling Dataset
 - Rectangular Dataset (aka table)
 - Schema
 - > Input columns
 - > Output column (target, outcome)
 - Classification: Category Column
 - Regression: Numeric Column
 - Horizontal partition of modeling data into training and test data
- > Incremental data has same schema as modeling data, except:
 - Incremental data does not have the output column (target, outcome)
 - Incremental data is not partitioned into training and test data

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Here is a rectangular dataset. The table has columns with headers and the data in each column have the same datatype. The data have been prepared and are ready for modeling.

	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
			Good	0.123	red	Т	Yes
Elsewhere	, I have new	data that d	O No	0.987	green	Т	No
		t outcome.	103	0.245	blue	F	Yes
		orical values	162	0.254	blue	Т	Yes
· · · · · · · · · · · · · · · · · · ·		ew data. Fo	Bad	0.244	blue	F	No
	n the new d	ata, I want t	0	0.415	green	F	Maybe
0.000		ow to predic	Yes	0.925	red	Т	Yes
		ing column.	\/	0.376	green	F	Yes
		is called the		0.615	green	Т	No
" 1	Target Outco	me".		0.321	blue	F	Maybe
			No	0.098	green	F	No
	598-2454	Seaborg	Bad	0.765	red	Т	No

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

				J
Column 1	Column 2	Column 3	Column 4	
330-3141	Seaborg	Good	0.123	
330-3150	Seaborg	No	0.987	
330-3202	Seaborg	Yes	0.245	
415-2008	Seaborg	Yes	0.254	
415-2081	Seaborg	Bad	0.244	
415-2796	Seaborg		0.415	
415-2799	Seaborg	Yes	0.925	
415-2913	913 Seaborg Yes		0.376	
415-3659	Seaborg	Bad	0.615	
595-8413	Seaborg		0.321	
598-1243	Seaborg	No	0.098	
598-2454	Seaborg	Bad	0.765	

Keys and random data should not be used as inputs for predictive analytics. Random data may appear to have patterns, but those patterns are fortuitous and will not be available when needed for predictions. Keys may contain patterns, but these patterns are deceptive and may also not be available when needed.

-		
biue	г	ıvıayne
green	F	No
red	Т	No

Random or Keys

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Random or Keys

Column 1	Column 2	Column 3	Column 4	C	
330-3141	Seaborg	Good	0.123		Col
330-3150	Seaborg	No	0.987		unne no
330-3202	Seaborg	Yes	0.245		the
415-2008	Seaborg	Yes	0.254		samo
415-2081	Seaborg	Bad	0.244		tas
415-2796	Seaborg		0.415		
415-2799	Seaborg	Yes	0.925		
415-2913	Seaborg	Yes	0.376		
415-3659	Seaborg	Bad	0.615		
595-8413	Seaborg		0.321		blue
598-1243	Seaborg	No	0.098		green

Bad

0.765

Columns with constant data are unnecessary. In general, they will not affect the algorithm and therefore the model will be the same. But, they distract from the task. Also, they may increase memory and processing requirements.

Constant Random or Keys

Seaborg

598-2454

red

Maybe

No

No

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Random or Keys

Constant

Column 1	Column 2	Column 3	Column 4	
330-3141	Seaborg	Good	0.123	Ī
330-3150	Seaborg	No	0.987	
330-3202	Seaborg	Yes	0.245	
415-2008	Seaborg	Yes	0.254	
415-2081	Seaborg	Bad	0.244	
415-2796	Seaborg		0.415	
415-2799	Seaborg	Yes	0.925	
415-2913	Seaborg	Yes	0.376	
415-3659	Seaborg	Bad	0.615	
595-8413	Seaborg		0.321	
598-1243	Seaborg	No	0.098	
				Г

Constant

A proxy column is a column that was created after the "target" was observed. The proxy contains information that would not be available for predictions. The proxy column correlates well with the target.

595-8413	Seaborg		0.321	biue	F	iviaybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Random or Keys

Proxy

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
330-3141	Seaborg	Good	0.123	red	Т	Yes
330-3150	Seaborg	No	0.987	green	Т	No
330-3202	Seaborg	Yes	0.245	blue	F	Yes
415-2008	Seaborg	Yes	0.254	blue	Т	Yes
415-2081	Seaborg	Bad	0.244	blue	F	No
415-2796	Seaborg		0.415	green	F	Maybe
415-2799	Seaborg	Yes	0.925	red	Т	Yes
415-2913	Seaborg	Yes	0.376	green	F	Yes
415-3659	Seaborg	Bad	0.615	green	Т	No
595-8413	Seaborg		0.321	blue	F	Maybe
598-1243	Seaborg	No	0.098	green	F	No
598-2454	Seaborg	Bad	0.765	red	Т	No

Random or Keys

Constant

Continuous Input

Input

Categorical Input

Outcome

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No
	A	A	

Continuous Input

Categorical Input

Binary Input

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Continuous Input

Categorical Input

Binary Input

Outcome from Input 1, Input 2, Input 3

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Outcome from Input 1, Input 2, Input 3

Modeling Data (300-100000 rows)

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Outcome from Input 1, Input 2, Input 3

Training Data (200-50000 rows)

Modeling Data (300-100000 rows)

Input 1	Input 2	Input 3	Outcome
mpati	mpat 2	input 5	Outcome
0.123	red	Т	Yes
0.987	green	T	No
0.245	blue	F	Yes
0.254	blue	T	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	T	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Outcome from Input 1, Input 2, Input 3

Training Data (200-50000 rows)

Test Data (100-50000

rows)

Modeling Data (300-100000 rows)

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	T	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Input 1	Input 2	Input 3	Outcome
0.123	red	T	Yes
0.987	green	T	No
0.245	blue	F	Yes
0.254	blue	T	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	T	Yes
0.376	green	F	Yes
0.615	green	T	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	No
0.321	blue	F	Maybe
0.098	green	F	No
0.765	red	Т	No

Outcome from Input 1, Input 2, Input 3

do not contain the target outcome. I want to predict categorical values, like these, from this new data. For each row in the new data, I want to use the values from the other columns in the same row to predict the value in the missing column. This predicted value is called the "Target Outcome".

Operation al Data (1- ∞ rows)

Input 1	Input 2	Input 3	Outcome
0.123	red	Т	Yes
0.987	green	Т	No
0.245	blue	F	Yes
0.254	blue	Т	Yes
0.244	blue	F	No
0.415	green	F	Maybe
0.925	red	Т	Yes
0.376	green	F	Yes
0.615	green	Т	Target
0.321	blue	F	Outcome
0.098	green	F	No
0.765	red	Т	No
0.234	green	Т	
0.567	blue	F	
0.890	green	Т	
0.314	red	Т	

Outcome from Input 1, Input 2, Input 3

Operation al Data (1- ∞ rows)

Input 1	Input 2	Input 3	Outcome
0.234	green	Т	
0.567	blue	F	
0.890	green	Т	
0.314	red	Т	

Outcome from Input 1, Input 2, Input 3

Operation al Data (1- ∞ rows)

Input 1	Input 2	Input 3	Outcome
0.234	green	Т	
0.567	blue	F	
0.890	green	Т	
0.314	red	Т	

Outcome from Input 1, Input 2, Input 3

Outcome from Input 1, Input 2, Input 3

> Attributes

All the columns are attributes

> Input Column

 Input columns are columns that can help predict the outcome. Input columns can be of type binary, ordinal, or category.

> Target Outcome

The term "Target Outcome" is redundant. The outcome is the target and vice versa.
 The target or outcome is the output of a predict function. Providing target or outcome values during modeling makes the process supervised. Creating a model using a outcome is called supervised learning.

> Proxy Column

A proxy column is a column that predicts too well. It is too good to be true. Something
from the target leaked. This is also called target leakage. The leaked information is "not
fair" to use in modeling. Values for that attribute will not be available when you want
to predict the target outcome from operational data.

> Key Column

In principle, a key column should not affect the model's prediction. The relationship between a key and any other attribute should be random. In practice, the algorithm will find a pattern in the key column and train on this pattern. This pattern is likely to be fortuitous, that means: random. The pattern will not hold for test data or when the model is applied. As a consequence, the key column will affect the model in a bad way.

> Constant Column

 A constant column should have no affect on the model's predictions. The constant column may increase computation time and cause other problems. It is standard practice to remove all constant columns prior to modeling.

