29/11/2020 OneNote

Linear Independence

02 February 2020 14:38

A set of vectors is linearly dependent if there exists a set of number x1 - xn such that the sum of the product of x1 u1 all the way to xn un is 0.

A set of vectors is called linearly independent if it is not linearly dependent, meaning all of the coefficients must be 0 for the sum to be 0 (there exists no set such that the sum of 0 holds)

If vector u = 0, then the set $\{u\}$ is linearly independent. For if $\alpha u = 0$ then since vector u = 0 we must have $\alpha = 0$

Any set containing the zero vector is linearly dependent (sum can equate to 0 without having all coefficients 0)

A set containing only two vectors is linearly dependent if and only if one is a multiple of the other

If there exists an alpha and beta such that $\alpha u + \beta v = 0$ then the vector set must be linearly dependent

Theorem

A set $\{u1, u2, \ldots, um\}$ of nonzero vectors is linearly dependent if and only if some ur is a linear combination of its predecessors $u1, \ldots, ur-1$.

The proof is here: https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs131/part2/note6.pdf