Examples?

Oraph
$$z = f(x,y)$$
 with $f(0) = 0$, $\nabla f(0) = 0$

$$T_0 S = \{x,y \text{ plane } 3, N = \{0,0,1\}\}$$

$$\nabla (u',u') = (u',u', f(u',u'))$$

$$\nabla (ij) = \{0,0,f_{ij}\}$$

$$\Rightarrow T(0,0) = f_{ij} \text{ dui dai}$$
Picture T as the quadratic approx to S at p , relative to N

At a general p . $N = \frac{(-f_1 - f_2, 1)}{\sqrt{1 + f_1^2 + f_2^2}}$

$$T = \frac{f_{ij}}{\sqrt{1 + f_1^2 + f_2^2}} \text{ dui dui}$$

2) torus
$$\sigma(t,\theta) = (\mathbb{R} + \cos \theta) \cos t$$
, $(\mathbb{R} + \cos \theta) \sin t$, $\sin \theta$)

$$= \mathbb{R} + (\cos \theta) \cos t$$

$$= \mathbb{$$

Carris on Surfaces
Suppose S is a regular surface, and VII->S is a unit-speed curve
.4
$\Rightarrow \ \hat{y}\ = 1$, $\ \hat{y}\ = K$
C_1 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Given a unit normal vector IV, we can define an orthonormal frame along the curve Nx 8 > x x x x, Nx x, N
N & Ax 8 x
T, Net, N
Now consider & Luhich is + to & since fif=1)
define: normal curvature Kn = F. N (cot unit speed)
geodesic curvature K, = F-(Nex)
35
This gives $\hat{\chi} = K_n N + K_s N \times \hat{g}$
$= \sqrt{K_n^2 + K_0^2}$
Llamples
1) S = plane, N = C3 +5 C
I lies in the plane = Rn=0, K= ±K
· · · · · · · · · · · · · · · · · · ·
2) S= unit sphere, N= outward
Along the come T, N=T
=> Kn = V. V for a wit speed curve
Consider $\gamma \cdot \delta = 0$
ı
It sins tot + vorê = 0
$i K_n = -1$ always
The dead

 $\Rightarrow K_g^2 = \frac{1}{\sin^2 \alpha} - 1 = \cot^2 \alpha$ From the nectors, K > 0 for Cl < T/2, K, 0 for Cl = T/2 E K3 = cot d (= 0 at the equator) Interpretation: Kn messure curvature consed by the surface Ky is infrincic curvature Relation to II: Suppose of (u', u') is a courd, patch $Y(t) = \sigma(Y'(t), Y^2(t))$ $\lambda = \omega^2 \lambda^2$ unit speed => gis &i &i = 1 γ = σ, δ, γ, + σ, χς -> Kn = 8.N ~ I to N = (0(1) x 1) $= \prod (\hat{x},\hat{x}) \prod$

Fact: For a general curve, $K_n = \frac{\prod(\hat{x}, \hat{x})}{\Im(\hat{x}, \hat{x})}$