

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS 2020

Modul Pembelajaran SMA

PENYETARAAN PERSAMAAN REAKSI REDOKS KIMIA KELAS XII

PENYUSUN Rananda Vinsiah, S.Pd SMA Negeri Sumatera Selatan

DAFTAR ISI

PENYUSUN		2
DAFTAR ISI		3
GLOSARIUM		4
PETA KONSEP		5
PENDAHULUA	N	6
A. Identitas M	odul	6
B. Kompetens	Dasar	6
C. Deskripsi S	ingkat Materi	6
D. Petunjuk Pe	nggunaan Modul	6
E. Materi Pem	belajaran	6
KEGIATAN PE	MBELAJARAN 1	7
PENYETARAA	N REAKSI REDOKS METODE PERUBAHAN BILOKS	7
A. Tujuan Pen	ıbelajaran	7
B. Uraian Mat	eri	7
C. Rangkumar	1	11
D. Penugasan	Mandiri	13
E. Latihan Soa	1	13
F. Penilaian D	iri	16
KEGIATAN PE	MBELAJARAN 2	17
PENYETARAA	N REAKSI REDOKS METODE SETENGAH REAKSI	17
A. Tujuan Pen	ıbelajaran	17
B. Uraian Mat	eri	17
C. Rangkuman	1	19
D. Penugasan	Mandiri	20
E. Latihan Soa	1	20
F. Penilaian D	iri	23
EVALUASI		24
DAFTAR PUST	AKA	2.7

GLOSARIUM

Anion : ion yang bermuatan negatif

Biloks : bilangan oksidasi

Kation : ion yang bermuatan positif Oksidator : spesi yang mengalami reduksi Reduktor : spesi yang mengalami oksidasi

Reaksi Oksidasi : reaksi penerimaan elektron sehingga terjadi penurunan bilangan

oksidasi

Reaksi Reduksi : reaksi pelepasan elektron sehingga terjadi kenaikan bilangan

oksidasi

Reaksi Redoks : reaksi kimia yang melibatkan perubahan bilangan oksidasi yang

terdiri dari reaksi reduksi dan oksidasi secara bersamaan.

PBO : metode penyetaraan persamaan reaksi redoks berdasarkan

perubahan bilangan kosidasi

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : KIMIA Kelas : XII IPA

Alokasi Waktu : 8 x 45 Menit (dua kali pertemuan)
Iudul Modul : Penyetaraan Persamaan Reaksi Redoks

B. Kompetensi Dasar

- 3.3 Menyetarakan persamaan reaksi redoks
- 4.3 Menentukan urutan kekuatan pengoksidasi atau pereduksi berdasarkan data hasil percobaan

C. Deskripsi Singkat Materi

Modul penyetaraan persamaan reaksi redoks ini membahas tentang metode penyetaraan reaksi redoks yang tidak bisa diselesaikan dengan penyetaraan biasa. Berdasarkan metodenya, penyetaraan persamaan reaksi redoks terbagi atas dua metode, yakni metode perubahan bilangan oksidasi dan metode setengah reaksi (ion elektron). Metode perubahan biloks dapat dilakukan dalam dua jenis reaksi yakni reaksi ion dan reaksi molekul. Pada penyetaraan biloks reaksi ion dan setengah reaksi, penyetaraan dapat dilakukan dalam suasana asam atau suasana basa.

D. Petunjuk Penggunaan Modul

Untuk memperlajari modul ini diperlukan materi prasyarat pada KD 3.9 di kelas X pada materi reaksi redoks karena dalam materi ini kalian diharapkan dapat menyetarakan persamaan reaksi redoks belum setara yang tidak dapat disetarakan dengan penyetaraan biasa menggunaakan beberapa metode dalam suasana asam atau basa. Untuk menggunakan modul ikutilah langkah langkah di bawah ini:

- 1. Bacalah peta konsep dan pahami metode penyetaraan persamaan reaksi redoks
- 2. Beberapa istilah silahkan baca pada glosarium.
- 3. Perdalam pemahamanmu tentang metode yang dapat digunakan dalam penyetaaraan reaksi redoks dalam berbagai suasana, baru kemudian mengerjakan penugasan mandiri
- 4. Akhiri kegiatan dengan mengisi penilaian diri dengan jujur dan ulangi lagi pada bagian yang masih belum sepenuhnya di mengerti
- 5. Ulangi Langkah 2 sd 4 untuk kegiatan pembelajaran 2
- 6. Kerjakan soal evaluasi di akhir materi

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran yang memuat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama : Penyetaraan Persamaan Reaksi Redoks Metode Perubahan Biloks Kedua : Penyetaraan Persamaan Reaksi Redoks Metode Setengah Reaksi

KEGIATAN PEMBELAJARAN 1 PENYETARAAN REAKSI REDOKS METODE PERUBAHAN BILOKS

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini diharapkan peserta didik dapat :

- 1. Menyetarakan persamaan reaksi redoks menggunakan metode perubahan biloks pada reaksi molekul
- 2. Menyetarakan persamaan reaksi redoks menggunakan metode perubahan biloks pada reaksi ion

B. Uraian Materi

Perhatikan gambar di bawah ini!

Gambar 1. Penggunaan pemutih pada kegiatan mencuci pakaian (Sumber : https://www.suara.com)

Hal apa yang terpikirkan oleh kalian? Bahan apakah yang biasa digunakan pada kegiatan tersebut? Mengapa bahan tersebut digunakan dan proses apakah yang dapat terjadi?

Kegiatan mencuci pakaian pada gambar di atas merupakan suatu kegiatan yang tidak asing lagi dalam kehidupan sehari-hari. Ketika mencuci pakaian, khususnya pakaian putih, sebagian besar orang menambahkan zat aktif pemutih untuk mendapatkan warna putih bersih. Zat pemutih tersebut merupakan senyawa kimia aktif bersifat oksidator yang digunakan untuk menghilangkan warna benda. Umumnya warna pada pakaian dapat hilang melalui reaksi redoks dengan menggunakan senyawa natrium hipoklorit (NaClO) dan hidrogen peroksida (H_2O_2) . Bagaimana reaksi tersebut dapat terjadi? Untuk mendapatkan penjelasan ilmiahnya, mari kita diskusikan materi tersebut

Aturan Biloks

Pada mapel kimia kelas X telah dibahas materi bilangan oksidasi yang berfungsi untuk menentukan dengan cepat keadaan oksidasi atau reduksi suatu atom dalam senyawa. Adapun aturan penentuan bilangan oksidasi sebagai berikut:

1. Spesi yang berbiloks nol

2. Biloks $\mathbf{H} = +\mathbf{1}$, kecuali pada senyawa Hidrida (H = -1) atau senyawa dengan atom H yang berikatan langsung dengan logam.

```
Contoh: HCl dan NaH
Biloks +1 -1 +1 -1
```

- 3. Biloks **0 = -2**, kecuali pada:
 - Peroksida (0 = -1) yakni H₂O₂, Na₂O₂

- Superoksida (O = $-\frac{1}{2}$) yakni KO₂, RbO₂, CsO₂

$$+1-\frac{1}{2}$$

- Oksiflorida (0 = +2) yakni OF_2

4. Biloks Ion logam utama = golongan (IA - IIIA), contoh:

```
Na^+ \rightarrow Gol. IA, maka biloks ion = +1 Mg^{2+} \rightarrow Gol. IIA, maka biloks ion = +2 Al^{3+} \rightarrow Gol. IIIA, maka biloks ion = +3
```

5. Biloks **Ion = muatan**, misalnya:

```
Fe<sup>2+</sup>, maka biloks Fe = +2
Cl<sup>-</sup>, maka biloks Cl = -1
SO_4^{2-}, maka biloks SO_4 = -2
```

- 6. Perhitungan Biloks (untuk unsur yang memiliki biloks bervariasi). Misalnya:
 - a. MnO₄-, maka pada ion ini biloks yang harus dihitung adalah biloks Mn karena tidak termasuk dalam 4 syarat pertama.

```
Metode 1:
```

```
(1 x biloks Mn) + (4 x biloks 0) = muatan ion

(1 x biloks Mn) + (4 x biloks 0) = -1

Biloks Mn + (4 x (-2)) = -1

Biloks Mn + (-8) = -1

Biloks Mn = -1 + 8

Biloks Mn = +7

+7 - 8

MnO<sub>4</sub>-
Metode 2:
```

Reaksi redoks adalah reaksi kimia yang melibatkan perubahan bilangan oksidasi. Reaksi ini merupakan reaksi gabungan dari setengah reaksi reduksi dan setengah reaksi oksidasi. Reaksi reduksi adalah reaksi penerimaan elektron sehingga terjadi penurunan bilangan oksidasi, sedangkan reaksi oksidasi adalah reaksi pelepasan elektron sehingga terjadi kenaikan bilangan oksidasi. Spesi yang mengalami oksidasi disebut reduktor dan spesi yang mengalami reduksi disebut oksidator. Pada suatu reaksi kimia yang lengkap, reaksi oksidasi selalu diikuti oleh reaksi reduksi sehingga reaksi yang terjadi disebut reaksi redoks.

Persamaan reaksi redoks dikatakan setara jika jumlah atom dan jumlah muatan di ruas kiri sama dengan jumlah atom dan jumlah muatan di ruas kanan. Pada dasarnya reaksi redoks berlangsung di dalam pelarut air sehingga penyetaraan persamaan reaksi redoks selalu melibatkan ion H+ dan OH-. Terdapat dua metode untuk menyetarakan reaksi redoks, yaitu dengan cara bilangan oksidasi dan cara setengah reaksi.

Penyetaraan Persamaan Reaksi Redoks Metode Perubahan Bilangan Oksidasi (PBO)

Bagaimana Langkah-langkah penyetaraan persamaan reaksi redok dengan metode perubahan bilangan oksidasi? Mari kita sama-sama pelajari penjelasan berikut ini. Metode bilangan oksidasi berdasarkan prinsip bahwa jumlah pertambahan bilangan oksidasi dari reduktor sama dengan jumlah penurunan bilangan oksidasi dari oksidator. Penyetaraan ini memiliki dua tipe reaksi yakni reaksi molekul dan reaksi ion.

1) Penyetaraan Persamaan Reaksi Redoks Metode Perubahan Biloks (Molekul) Contoh : Setarakan persamaan reaksi redoks berikut dengan menggunkan metode perubahan bilangan oksidasi!

$$KMnO_{4\;(aq)} + Na_2SO_{3\;(aq)} + H_2SO_{4\;(aq)} \rightarrow K_2SO_{4\;(aq)} + MnSO_{4\;(aq)} + Na_2SO_{4\;(aq)} + H_2O_{(l)}$$

Langkah-langkah penyetaraannya sebagai berikut:

a. Tentukan untuk yang mengalami perubahan biloks terlebih dahulu dengan menghitung biloks masing-masing unsur.

b. Setarakan jumlah unsur yang mengalami perubahan biloks jika ada vang belum setara.

Jumlah unsur Mn dan S di kiri dan kanan reaksi sudah sama.

c. Hitung kenaikan dan penurunan biloks yang terjadi pada unsur yang mengalami perubahan biloks tersebut, lalu samakan jumlah perubahan biloks dengan cara mengalikannya dengan koefisien yang sesuai. Aturan:

Jumlah e- oks = Jumlah e- red

d. Setarakan unsur yang mengalami perubahan bilangan oksidasi dengan meletakkan koefisien yang sesuai.

2KMnO_{4 (aq)} + **5**Na₂SO_{3 (aq)} + H₂SO_{4 (aq)}
$$\rightarrow$$
 K₂SO_{4 (aq)} + **2**MnSO_{4 (aq)} + **5**Na₂SO_{4 (aq)} + H₂O_(l)

- e. Setarakan unsur lain yang belum setara dengan urutan **KAHO** (**Kation Anion Hidrogen Oksigen**)
 - ✓ Kation yang tidak berubah bilangan oksidasinya, yaitu K dan Na sudah setara.

$$2KMnO_{4~(aq)} + 5Na_{2}SO_{3~(aq)} + H_{2}SO_{4~(aq)} \rightarrow K_{2}SO_{4~(aq)} + 2MnSO_{4~(aq)} + 5Na_{2}SO_{4~(aq)} + H_{2}O_{(l)}$$

✓ Setarakan jumlah unsur S di kiri reaksi dengan menambahkan koefisien tertentu.

$$2KMnO_{4 (aq)} + 5Na_2SO_{3 (aq)} + {}^{3}H_2SO_{4 (aq)} \rightarrow K_2SO_{4 (aq)} + 2MnSO_{4 (aq)} + 5Na_2SO_{4 (aq)} + H_2O_{(l)}$$

✓ Untuk menyetarakan jumlah atom H, tulis koefisien 3 pada H₂O.

$$2KMnO_{4~(aq)} + 5Na_{2}SO_{3~(aq)} + 3H_{2}SO_{4~(aq)} \rightarrow K_{2}SO_{4~(aq)} + 2MnSO_{4~(aq)} + 5Na_{2}SO_{4~(aq)} + \frac{3}{3}H_{2}O_{(l)}$$

- ✓ Atom 0 ternyata sudah setara, dengan demikian reaksi tersebut sudah setara.
- 2) Penyetaraan Persamaan Reaksi Redoks Metode Perubahan Biloks (ion)

Contoh : Setarakan persamaan reaksi redoks berikut dengan menggunkan metode perubahan bilangan oksidasi (suasana asam)

$$MnO_{4^{-}(aq)} + C_{2}O_{4^{2^{-}}(aq)} \rightarrow Mn^{2^{+}}(aq) + CO_{2}(g)$$

Reaksi di atas dapat diselesaikan dalam suasana asam atau basa tergantung apa yang diminta soal.

Langkah-langkah penyetaraannya sebagai berikut:

a. Tentukan untuk yang mengalami perubahan biloks terlebih dahulu dengan menghitung biloks masing-masing unsur.

$$^{+7}$$
 -8 $^{+6}$ -8 $^{+4}$ -4 $^{-4}$ MnO₄- $^{-}$ (aq) + $^{-4}$ C₂O₄2- $^{-}$ (aq) $^{-4}$ (aq) + $^{-4}$ -2 $^{-4}$ -2 $^{-4}$ -2 $^{-4}$ -2 $^{-4}$ -2 $^{-4}$ -2

b. Setarakan jumlah unsur yang mengalami perubahan biloks.

$$^{+7}$$
 -8 $^{+6}$ -8 $^{+4}$ -4 $^{-4}$ $^{-8}$ $^{-8}$ $^{-4}$ -4 $^{-4}$

c. Hitung kenaikan dan penurunan biloks yang terjadi pada unsur yang mengalami perubahan biloks tersebut, lalu samakan jumlah perubahan biloks dengan cara mengalikannya dengan koefisien yang sesuai. Aturan:

2(+3) Oks: 2e- x5 2(+4)

+7 -8 +6 -8 +4-4

MnO₄-(aq) + C₂O₄2-(aq)
$$\rightarrow$$
 Mn²⁺(aq) + 2CO₂(g) (asam)

+7 -2 +3 -2 +2

+7 Red: 5e- x2 +2

d. Reaksi kemudian ditulis ulang dengan koefisien baru, kemudian hitung muatan ion kiri dan kanan.

Dari perhitungan di atas, muatan kanan = - 12 dan muatan kiri = +4

- e. Samakan muatan kiri dan kanan dengan menambahakan ion H+ atau OH-dengan aturan:
 - Suasana asam : ion H+ ditambahkan pada muatan kecil
 - Suasana basa: ion OH- ditambahkan pada muatan besar

$$2MnO_{4^{-}(aq)} + 5C_{2}O_{4^{2^{-}}(aq)} + 16H^{+}_{(aq)} \rightarrow 2Mn^{2^{+}}_{(aq)} + 10CO_{2(g)}$$
 (asam)
 $2(-1) + 5(-2) + 10(0)$

f. Setelah muatan kiri = kanan, setarakan jumlah H dengan menambahkan H_2O di tempat yang kekurangan.

$$2MnO_{4^{-}(aq)} + 5C_{2}O_{4^{2^{-}}(aq)} + 16H_{(aq)}^{+} \rightarrow 2Mn^{2^{+}(aq)} + 10CO_{2(g)} + 8H_{2}O_{(1)}$$

g. Jumlah O ternyata sudah setara, dengan demikian reaksi tersebut sudah setara.

C. Rangkuman

- 1. Reaksi redoks adalah reaksi kimia yang melibatkan perubahan bilangan oksidasi yang terdiri dari reaksi reduksi dan oksidasi secara bersamaan.
- 2. Penyetaraan reaksi redoks dapat diselesaikan menggunakan metode perubahan biloks (PBO) baik pada reaksi molekul dan reaksi ion
- 3. Metode perubahan biloks berdasarkan pada prinsip bahwa:

Jumlah e- teroksidasi = Jumlah e- tereduksi

- 4. Metode PBO reaksi molekul mengikuti aturan penyetaraan KAHO (Kation Anion Hidrogen Oksigen)
- 5. Metode PBO reaksi ion dapat diselesaikan dalam dua suasana, yakni suasana asam dan basa.

D. Penugasan Mandiri

Setarakan persamaan reaksi redoks berikut menggunakan metode perubahan biloks (PBO)!

- 1. $Cr_2O_7^{2-}$ (aq) + Fe^{2+} (aq) \Rightarrow Cr^{3+} (aq) + Fe^{3+} (aq) (suasana basa)
- 2. $MnO_{2 (s)} + Cl_{(aq)} \rightarrow Mn^{2+}_{(aq)} + Cl_{2 (g)}$ (suasana asam)
- 3. $K_2CrO_{4 (aq)} + H_2SO_{4 (aq)} + FeSO_{4 (aq)} \rightarrow K_2SO_{4 (aq)} + Cr_2(SO_4)_{3 (aq)} + Fe_2(SO_4)_{3 (aq)} + H_2O_{(1)}$

E. Latihan Soal

Kerjakan soal di bawah ini dengan benar dan jujur!

- 1. Bilangan oksidasi kromium yang sama pada pasangan senyawa berikut adalah
 - A. K₂Cr₂O₇ dan Cr₂O₃
 - B. $K_2Cr_2O_7$ dan $Cr(OH)_4$
 - C. K₂CrO₄ dan K₂Cr₂O₇
 - D. K₂CrO₄ dan Cr(OH)₄
 - E. Cr(OH)₄ dan Cr₂O₃
- 2. Diantara reaksi-reaksi di bawah ini, yang bukan merupakan reaksi redoks adalah....
 - A. $SnCl_2 + I_2 + 2HCl \rightarrow SnCl_4 + 2HI$
 - B. $H_2 + Cl_2 \rightarrow 2HCl$
 - C. $Cu_2O + C \rightarrow 2Cu + CO$
 - D. $Cu_2O + 2HCl \rightarrow CuCl_2 + H_2O$
 - E. $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$
- 3. Oksidasi 1 mol Cr^{3+} menjadi CrO_4^{2-} melepaskan elektron sebanyak
 - A. 1 mol

D. 4 mol

B. 2 mol

E. 5 mol

- C. 3 mol
- 4. Diberikan persamaan reaksi (belum setara):

$$IO_{3}^{-}$$
 (aq) + I^{-} (aq) + H^{+} (aq) $\rightarrow I_{2}$ (aq) + $H_{2}O$ (l)

Perbandingan mol I- terhadap I₂ pada reaksi setara adalah

A. 2:1

D. 3:3

B. 1:5

E. 5:3

- C. 6:5
- C. 0:5
- 5. $aMnO_{4^-} + bSO_{3^{2^-}} \rightarrow cMn^{2^+} + dSO_{4^{2^-}}$, setelah disetarakan harga a, b, c, dan d berturutturut
 - A. 2, 5, 6, 2

D. 3, 5, 3, 5

B. 2, 5, 2, 3

E. 5, 3, 3, 5

- C. 2, 5, 2, 5
- 6. Pada reaksi $Fe^{2+} + MnO_{4-} \rightarrow Fe^{3+} + Mn^{2+}$, pernyataan yang benar adalah
 - A. Fe²⁺ merupakan oksidator
 - B. Mn merupakan reduktor
 - C. bilangan oksidasi Mn dari +7 menjadi +2
 - D. bilangan oksidasi Mn dari +2 menjadi +7
 - E. setengah reaksi oksidasinya MnO_4 $\rightarrow Mn^{2+}$

Kunci Jawaban Dan Pembahasan Soal Latihan

	Kunci	
No	Jawaban	Pembahasan
1	С	(Skor 15) Penyelesaian soal ini dapat dikerjakan dengan menghirung biloks
		Cr pada masing-masing senyawa. Biloks Cr yang sama merupakan jawabannya.
		+2+12-14 +6 -6 +2 +6-8 +4 -4
		$K_2Cr_2O_7$ dan Cr_2O_3 K_2CrO_4 dan $Cr(OH)_4$ +1 +6 -2 +4 -1
		Berdasarkan perhitungan tersebut maka jawaban yang paling tepat adalah C. K ₂ CrO ₄ dan K ₂ Cr ₂ O ₇
2	D	(Skor 20)
		Penyelesaian soal ini dapat dilakukan dengan menghitung dan
		membandingkan biloks unsur yang sama di sebelah kiri dan kanan
		reaksi satu persatu.
		A. $SnCl_2 + I_2 + 2HCl \rightarrow SnCl_4 + 2HI$
		+2 -1 0 +1-1 +4 -1 +1-1
		Terjadi perubahan biloks pada unsur Sn dan Cl
		B. $H_2 + Cl_2 \rightarrow 2HCl$ 0 0 +1 -1
		Terjadi perubahan biloks pada unsur H dan Cl
		C. $Cu_2O + C \rightarrow 2Cu + CO$
		Terjadi perubahan biloks pada unsur C dan Cu
		$^{+2}$ -2 $^{+2}$ -2 $^{+2}$ -2 D. Cu ₂ O + 2HCl → CuCl ₂ + H ₂ O
		+1 -2 +1 -1 +2 -1 +1-2
		Tidak ada unsur yang mengalami perubahan biloks (jawaban)
		E. $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Terjadi perubahan biloks pada unsur Mn dan Cl
		Cara lain :
		Jika terdapat unsur atau molekul unsur berbiloks nol (unsur yang
		sendirian) pada suatu reaksi maka reaksi cenderung merupakan
		reaksi redoks.
3	С	(Skpr 15) Penyelesaian:
		+6 -8
		$Cr^{3+} \rightarrow CrO_4^{2-}$
		+3 +6 -2
		Oks : 3e- Artinya : 1 mol Cr³+ akan melepas 3 mol
		elektron.

No	Kunci Jawaban	Pembahasan
4	E	(Skor 20) Penyelesian soal ini dapat dilakukan dengan menyetarakan reaksi redoks terlebih dahulu sehingga didapatkan koefisien reaksi yang tepat sebelum menghitung perbandingan mol untuk molekul I_2 .
		selanjutnya koefisien baru ditulis ulang dan disetarakan agar jumlah unsur yang mengalami perubahan biloks setara. $IO_{3^-}(aq) + 5I^-(aq) + H^+(aq) \rightarrow 3I_2(aq) + H_2O(l)$ Perbandingan koefisien = Perbandingan Mol sehingga: mol I-: mol I_2 = 5:3
5	C	(Skor 20) Setarakan reaksi terlebih dahulu $ +4 0 \text{ks} : 2e\text{- }x5 +6 $ $ +7 -8 +4 -6 +2 -2 +6 -8 $ $ \text{MnO}_4\text{-} + \text{SO}_3\text{-}^2 \rightarrow \text{Mn}^2\text{+} + \text{SO}_4\text{-}^2 $ $ +7 \text{Red} : 5e\text{- }x2 +2 $ selanjutnya koefisien baru ditulis ulang dan disetarakan agar jumlah unsur yang mengalami perubahan biloks setara. $ 2\text{MnO}_4\text{-} + 5\text{SO}_3\text{-}^2 \rightarrow 2\text{Mn}^2\text{+} + 5\text{SO}_4\text{-}^2 $
6	С	(Skor 15) Identifikasi reaksi terlebih dahulu +2 Oks: 1e- +3 Fe²+ + MnO₄- → Fe³+ + Mn²+ +7²-2 +7 Red: 5e- +2 Berdasarkan uraian di atas, maka pernyataaan yang mungkin: 1. Fe²+ mengalami oksidasi sehingga disebut reduktor 2. Mn mengalami reduksi sehingga disebut oksidator 3. Bilangan oksidasi Mn dari +7 menjadi +2 4. Bilangan oksidasi Fe dari +2 menjadi +3

Pedoman Penskoran

Cocokkanlah jawaban Anda dengan Kunci Jawaban yang terdapat di bagian akhir modul ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar 1.

Nilai =
$$\frac{Jumlah\ Skor\ Perolehan}{Jumlah\ Skor\ Maksimum} \times 100\ \%$$

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar 2. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar 1, terutama bagian yang belum dikuasai.

F. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

NO	PERTANYAAN		JAWABAN	
NO	FERTANTAAN	YA	TIDAK	
1	Saya dapat menetukan besarnya perubahan biloks			
	unsur dalam suatu reaksi redoks			
2	Saya dapat mengidentifikasi unsur yang mengalami			
	reaksi reduksi atau oksidasi			
3	Saya dapat menyetarakan persamaan reaksi redoks			
	dengan metode PBO pada reaksi molekul			
4	Saya dapat menyetarakan persamaan reaksi redoks			
	dengan metode PBO pada reaksi ion			

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak". Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

KEGIATAN PEMBELAJARAN 2 PENYETARAAN PERSAMAAN REAKSI REDOKS METODE SETENGAH REAKSI

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 2 ini diharapkan peserta didik dapat : Menyetarakan persamaan reaksi redoks menggunakan metode setengah reaksi

B. Uraian Materi

Coba pelajari contoh-contoh reaksi redoks berikut dan setarakan reaksinya.

- 1. $Mg^{(s)} + O_2^{(g)} \rightarrow MgO^{(s)}$
- 2. CH_4 (g) + O_2 (g) $\rightarrow CO_2$ (g) + H_2O (g)
- 3. $ZnS_{(s)} + HNO_{3 (aq)} \rightarrow ZnSO_{4 (aq)} + NO_{(g)} + H_2O_{(l)}$
- 4. $KMnO_{4 (aq)} + Na_2SO_{3 (aq)} + H_2SO_{4 (aq)} \rightarrow K_2SO_{4 (aq)} + MnSO_{4 (aq)} + Na_2SO_{4 (aq)} + H_2O_{(1)}$
- 5. $Cr_2O_7^{2-}(aq) + Fe^{2+}(aq) + H^{+}(aq) \rightarrow Cr^{3+}(aq) + Fe^{3+}(aq) + H_2O_{(1)}$

Apakah sama jumlah atom di ruas kiri dan di ruas kanan untuk kelima reaksi? Apakah sama jumlah muatan di ruas kiri dan ruas kanan untuk reaksi yang kelima? Manakah langkah penyetaraan reaksi yang lebih mudah untuk reaksi a, b, c, d, atau e? Adakah reaksi yang sulit untuk disetarakan?

Setelah sebelumnya kita telah mempelajari tentang penyetaraan redoks metode perubahan biloks, pembahasan kegiatan 2 ini akan membahas tentang penyetaraan metode setengah reaksi. Metode ini umumnya banyak digunakan pada aplikasi reaksi redoks pada kehidupan sehari-hari, misalnya pada aplikasi sel volta atau aplikasi sel elektrolisis. Untuk lebih jelasnya, mari kita bahas bersama!

1. Penyetaraan Persamaan Reaksi Redoks Metode Setengah Reaksi

Penyetaraan persamaan reaksi redoks pada cara ini dilakukan dengan membagi reaksi menjadi 2 bagian, yaitu:

- a. Setengah reaksi oksidasi
- b. Setengah reaksi reduksi

Penyelesaian dilakukan untuk setiap bagian, dilanjutkan dengan penyetaraan jumlah elektron yang terlibat pada bagian a dan b, yang diakhiri dengan menjumlahkan kedua reaksi.

Langkah-langkah menyetarakan reaksi dengan metode bilangan oksidasi adalah sebagai berikut :

$$MnO_{4^{-}(aq)} + I_{-(aq)} \rightarrow Mn^{2+}(aq) + I_{2(aq)}$$

Reaksi di atas dapat diselesaikan dalam suasana asam atau basa tergantung apa yang diminta soal.

Langkah Penyelesaian:

a. Tentukan untuk yang mengalami perubahan biloks terlebih dahulu dengan menghitung biloks masing-masing unsur.

$$^{+7}$$
 -8 $^{-1}$ 0 $^{-1}$

b. Pisahkan setengah reaksi reduksi dan setengah reaksi oksidasi, lalu setarakan jumlah unsur yang mengalami perubahan biloks.

Red:
$$\underset{+7}{\text{MnO}_{4^{-} \text{ (aq)}}} \longrightarrow \underset{+2}{\text{Mn}^{2^{+} \text{ (aq)}}}$$
Oks: $2I^{-}_{\text{ (aq)}} \longrightarrow I_{2}_{\text{ (aq)}}$

- c. Setarakan jumlah atom 0 dengan menambahkan molekul H₂O sebanyak selisih jumlah atom 0 di kiri dan kanan reaksi, menurut aturan berikut :
 - Suasana asam: H₂O ditambahkan di tempat yang kekurangan atom O
 - Suasana basa: H₂O ditambahkan di tempat yang kelebihan atom O

Red:
$$MnO_{4^-(aq)} \rightarrow Mn^{2+}_{(aq)} + 4H_2O_{(I)}$$

Oks: $2I_{(aq)} \rightarrow I_{2^-(aq)}$ (tidak memiliki atom 0)

d. Setarakan atom H dengan menambahkan H⁺ pada suasana asam dan OH⁻ pada suasana basa

Red:
$$MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$$

Oks: $2I^{-}_{(aq)} \rightarrow I_{2}_{(aq)}$

e. Hitung muatan ion di kiri dan kanan reaksi, lalu setarakan muatan dengan menambahkan elektron di tempat bermuatan besar.

f. Setarakan jumlah elektron pada setengah reaksi reduksi dan oksidasi dengan mengalikannya dengan koefisien tertentu dengan menyesuaikan aturan berikut:

Red:
$$MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5e^{-} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$$
 | x2
Oks: $2I^{-}_{(aq)}$ $\rightarrow I_{2}_{(aq)} + 2e^{-}$ | x5

g. Gabungkan kedua reaksi dengan menjumlahkannya dan mengeliminasi elektron reduksi dan oksidasi.

Red:
$$2MnO_{4^{-}(aq)} + 16H^{+}_{(aq)} + 10e^{-} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(1)}$$

Oks: $10I^{-}_{(aq)} \rightarrow 5I_{2}_{(aq)} + 10e^{-}$ (+)

$$2MnO_{4^{-}(aq)} + 16H_{(aq)}^{+} + 10I_{(aq)}^{-} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(l)} 5I_{2}_{(aq)}$$

h. Jumlah O ternyata sudah setara, dengan demikian reaksi tersebut sudah setara.

C. Rangkuman

- 1. Penyetaraan reaksi redoks dapat diselesaikan menggunakan metode setengah reaksi
- 2. Metrode setengah reaksi dilakukan dengan membagi reaksi menjadi setengah reaksi reduksi dan setengah reaksi oksidasi.
- 3. Metode setengah reaksi dapat dilakukan pada suasana asam dan basa.
- 4. Prinsip penyetaraan ini juga mengacu pada prinsip:

Jumlah e- teroksidasi = Jumlah e- tereduksi

D. Penugasan Mandiri

Setarakan reaksi berikut ini menggunakan Metode Setengah Reaksi!

- 1. $Cr_2O_7^{2-}(aq) + Fe^{2+}(aq) \rightarrow Cr^{3+}(aq) + Fe^{3+}(aq)$ (suasana basa)
- 2. $MnO_{2 (s)} + Cl_{(aq)} \rightarrow Mn^{2+}_{(aq)} + Cl_{2 (g)}$ (suasana asam)

E. Latihan Soal

Kerjakan soal berikut ini dengan jujur dan tepat!

- 1. Diketahui beberapa reaksi berikut:
 - (1) MnO_4 $\rightarrow MnO_2$
 - (2) $Zn \rightarrow ZnO_2$
 - (3) $2CO_2 \rightarrow C_2O_4^{2-}$
 - (4) $Cr_2O_3 \rightarrow Cr_2O_7^{2-}$

Peristiwa oksidasi pada pasangan reaksi dengan nomor

A. 1 dan 2

D. 2 dan 3

B. 1 dan 3

E. 2 dan 4

- C. 1 dan 4
- 2. Jumlah H^+ dan elektron terlibat yang tepat untuk setengah reaksi oksidasi Cr^{3+} menjadi CrO_4^{2-} pada suasana asam adalah
 - A. 4H+ dan 3e-

D. 8H+ dan 6e-

B. 8H+ dan 3e-

E. 8H+ dan 7e-

- C. 4H+ dan 6e-
- 3. Koefisien a, b, dan c yang tepat untuk setengah reaksi a $Cr_2O_7^{2-}$ + bH^+ + $e^- \rightarrow Cr^{3+}$ + cH_2O adalah
 - A. 1, 14, 7

D. 2, 7, 14

B. 2, 14, 7

E. 2, 7, 16

- C. 1, 7, 14
- 4. Dalam suasana basa, Cl₂ mengalami reaksi disproporsionasi menghasilkan ion Cldan ClO₃. Perbandingan koefisien ClO₃ terhadap Cl₂ yang dihasilkan setelah reaksi setara adalah
 - A. 1/5

D. 1/1

B. 1/3

E. $\frac{1}{2}$

- C. 1/2
- 5. Logam Al dapat mereduksi ion Os (Ar = 190) dalam larutan menurut reaksi belum setara berikut :

Al (s) +
$$Os^{n+}$$
 (aq) $\rightarrow Al^{3+}$ (aq) + Os (s)

Bila 18 g logam Al tepat mengendapkan 190 g padatan Os, maka nilai n adalah

A. 1

D. 4

B. 2

E. 5

C. 3

Kunci Jawaban dan Pembahasan Soal Latihan

No	Kunci	Pembahasan
1	Е	(1) MnO ₄ - → MnO ₂ (Terjadi pelepasan oksigen → reduksi)
		(2) $Zn \rightarrow ZnO_2$ (Terjadi pengikatan oksigen \rightarrow oksidasi)
		+4-4 +6-8
		(3) $2CO_2 \rightarrow C_2O_4^{2-}$ (Terjadi penurunan biloks \rightarrow reduksi) $+4-2$ $+3-2$
		(4) $Cr_2O_3 \rightarrow Cr_2O_7^{2-}$ (Terjadi pengikatann oksigen \rightarrow oksidasi)
2	В	Setarakan setengah reaksi berikut :
		$Cr^{3+} \rightarrow CrO_4^{2-}$
		Tambahkan H_2O di tempat yang kekurangan atom O $Cr^{3+} + 4H_2O \rightarrow CrO_4^{2-}$
		Setarakan atom H dengan menambahkan H ⁺
		$Cr^{3+} + 4H_2O \rightarrow CrO_4^{2-} + 8H^+$
		Setarakan muatan kiri dan kanan dengan menambahkan e- di
		tempat bermuatan besar.
2	Δ	$Cr^{3+} + 4H_2O \rightarrow CrO_4^{2-} + 8H^+ + 3e^-$
3	A	Setarakan setengah reaksi berikut : $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$
		Tambahkan H_2O di tempat yang kekurangan atom O
		$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$
		Setarakan atom H dengan menambahkan H+
		$Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$
		Setarakan muatan kiri dan kanan dengan menambahkan e- di
		tempat bermuatan besar. $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$
4	В	Penyelesaian soal ini juga dilakukan dengan menyetarakan reaksi
		redoks terlebih dahulu sehingga didapatkan koefisien reaksi yang
		tepat sebelum menghitung perbandingan mol zat yang ditanyakan.
		-6
		$Cl_2 + OH^- \rightarrow Cl^- + ClO_3^-$
		0 -2+1 -1 +5 -2
		_Red: 1ex_5
		Oks : 5e- x 1
		selanjutnya koefisien baru ditulis ulang dan disetarakan agar
		jumlah unsur yang mengalami perubahan biloks setara
		$3Cl2 + OH \rightarrow 5Cl + ClO3$
		Tanpa harus menyelesaikan penyetaraan, soal tersebut sudah dapat
		dijawab karena koefisien yang dibutuhkan sudah didapatkan.
		Perbandingan koefisien :
		$koef ClO_{3}$: $koef Cl_2 = 1:3$
5	В	Soal ini mengabungkan konsep stoikiometri dan konsep redoks
		untuk menyelesaikannya. Hal yang harus dilakukan terlebih dahulu
		adalah menghitung mol zat yang dapat diketahui.
		Mol Al = $\frac{massa Al}{Ar Al} = \frac{18 g}{27 g/mol} = \frac{2}{3} = 0,666 \text{ mol}$
	<u> </u>	AI AL 21 Y/IILUL 3

No	Kunci	Pembahasan
		$Mol Os = \frac{massa Os}{Ar Os} = \frac{190 g}{190 g/mol} = 1 mol$
		Perbandingan mol = perbandingan koefisien, sehingga :
		Mol Al: Mol Os = 2/3:1
		= 2 : 3
		Pada reaksi
		$ {2Al (s) + 0s^{n+} (aq) \rightarrow Al^{3+} (aq) + 30s (s) \atop 0 \qquad +n \qquad +3 \qquad 0 } $
		Selanjutnya setarakan jumlah unsur yang belum setara dengan menambahkan koefisien :
		$2Al(s) + {}_{3}Os^{n+}(aq) \rightarrow {}_{2}Al^{3+}(aq) + 3Os(s)$
		0 +n +3 0 Oks: 3e- x 2
		Red : ne- x 3
		Dari jumlah e- tersebut didapat :
		e- reduksi = e- oksidasi
		3e-x 2 = ne-x 3
		6e- = 3ne-
		n = 2

Pedoman Penskoran

Cocokkanlah jawaban Anda dengan Kunci Jawaban yang terdapat di bagian akhir modul ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar 1.

$$Nilai = \frac{\textit{Jumlah Skor Perolehan}}{\textit{Jumlah Skor Maksimum}} \times 100 \%$$

Konversi tingkat penguasaan:

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar 2. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar 1, terutama bagian yang belum dikuasai.

F. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

NO	PERTANYAAN	JAWABAN	
NO	PERTANTAAN		TIDAK
1	Saya dapat memisahkan setengah reaksi reduksi dan		
	setengah reaksi oksidasi		
2	Saya dapat menyetarakan persamaan reaksi redoks		
	menggunakan metode setengah reaksi dalam suasana		
	asam		
3	Saya dapat menyetarakan persamaan reaksi redoks		
	menggunakan metode setengah reaksi dalam suasana		
	basa		

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak". Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

EVALUASI

Silahkan kerjakan soal berikut ini dengan jujur dan bertanggung jawab!

- 1. Unsur logam yang mempunyai bilangan oksidasi +5 terdapat pada ion
 - A. SbO₄ 3-

D. CrO₄ ²⁻

B. MnO_4

E. Cr₂O₇ ²⁻

- C. Fe(CN)₆ 3-
- 2. Diantara senyawa-senyawa berikut, senyawa mangan yang mempunyai bilangan oksidasi tertinggi adalah
 - A. MnO

D. KMnO₄

B. MnO_2

E. K₂MnO₄

- C. MnSO₄
- 3. Pada reaksi redoks $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 2H_2O$. Bilangan oksidasi atom Cl berubah dari
 - A. +1 menjadi -1

D. 0 menjadi -1 dan +5

B. -1 menjadi +1

E. 0 menjadi -1 dan +7

- C. 0 menjadi -1
- 4. Diantara reaksi redoks berikut ini yang sudah setara adalah...
 - A. $4H_2O + MnO_4^- + 6I^- \rightarrow 2MnO_2 + 8OH^- + 3I_2$
 - B. $3P + 5NO_3^- + 4OH^- \rightarrow 3PO_4^{3-} + 2H_2O + 5NO$
 - C. $Cl_2 + 2OH + IO_3^- \rightarrow 2Cl^- + IO_4^- + 2H_2O$
 - D. $110H^- + 6Cl_2 \rightarrow 10Cl^- + 2ClO_3^- + 6H_2O$
 - E. $8MnO_4 + 3NH_3 \rightarrow 8MnO_2 + 2H_2O + 5OH^- + 3NO_3^-$
- 5. Pada reaksi redoks berikut. $Sn_{(s)} + 4H_2O_{(s)} \rightarrow SnO_{2 (s)} + 4NO_{2 (aq)} + 2H_2O_{(l)}$ yang berperan sebagai reduktor adalah
 - A. HNO₃

 $D. SnO_2$

B. NO₃

E. Sn

- C. H₂O
- 6. Diketahui persamaan redoks berikut. Al + $NO_{3}^{-} \rightarrow AlO_{2}^{-} + NH_{3}$ (dalam suasana basa) Agar persamaan setara, molekul air yang harus ditambahkan adalah ... molekul.
 - A. 5

D. 2

B. 4

E. 1

- C. 3
- 7. Pada reaksi redoks berikut: $aMnO_{4^-} + 16H^+ + bC_2O_{4^{2-}} \rightarrow cMn^{2+} + 8H_2 + 10CO_2$ koefisien reaksi a, b, dan c beruruturut adalah
 - A. 2, 2, dan 2
 - B. 2, 3, dan 2
 - C. 2, 5, dan 2
 - D. 3, 5, dan 2
 - E. 2, 4, dan 2
- 8. Perhatikan reaksi berikut!

$$2 \text{ HI}_{(aq)} + 2 \text{ HNO}_{2(aq)} \rightarrow 2 \text{ H}_2O_{(l)} + 2 \text{ NO}_{(g)} + l_{2(g)}$$

Pernyataan berikut yang benar adalah

- A. H₂O adalah zat pereduksi
- B. H₂O adalah zat pengoksidasi

- C. HNO₂ adalah zat pereduksi
- D. HI adalah zat pereduksi
- E. I₂ adalah zat pereduksi NaCl < C₆H₁₂O₆ < CH₃COOH
- 9. Asam oksalat dapat dioksidasi oleh KMnO4 menurut persamaan:

$$C_2O_4{}^{2-}\text{ (aq)} + MnO_4{}^-\text{ (aq)} + H^+\text{ (aq)} \rightarrow Mn^{2+}\text{ (aq)} + H_2O\text{ (l)} + CO_2\text{ (g)}$$

Untuk mengoksidasi 2 mol ion C₂O₄²- diperlukan ion MnO₄- sebanyak

A. 0,3 mol D. 0,8 mol B. 0,5 mol E. 2,0 mol

C. 0,7 mol

10. Sebanyak 5,6 gram logam besi (Ar Fe = 56) dilarutkan dalam H_2SO_4 menghasilkan Fe SO_4 untuk mengoksidasi Fe SO_4 menjadi Fe $_2(SO_4)_3$ menurut reaksi: Fe $^{2+}$ + Mn O_4 $^ \rightarrow$ Fe $^{3+}$ + Mn $^{2+}$ diperlukan larutan KMn O_4 0,1 M sebanyak

A. 200 ml D. 20 ml B. 100 ml E. 10 ml

C. 50 ml

KUNCI JAWABAN

No	Kunci
	Jawaban
1	A
2	D
3	D
4	В
5	E
6	D
7	С
8	С
9	D
10	A

Pedoman Penskoran

Hitunglah jawaban yang benar. kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar ini.

$$Nilai = \frac{\textit{Jumlah Skor Perolehan}}{\textit{Jumlah Skor Maksimum}} \times 100 \%$$

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar selanjutnya. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar ini, terutama bagian yang belum dikuasai.

DAFTAR PUSTAKA

- Harnanto, Ari dan Ruminten. 2009. *Kimia 3 Untuk Untuk SMA/MA Kelas XII*. Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- Pangajuanto, Teguh dan Rahmidi, Tri. 2009. *Kimia 3 Untuk SMA/MA Kelas XII*. Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- Partana, Crys Fajar dan Wiyarsi, Antuni. 2009. *Mari Belajar Kimia 3 Untuk SMA/MA Kelas XII*. Bandung : Pusat Perbukuan Departemen Pendidikan Nasional.
- Rahayu, Iman. 2009. *Praktis Belajar Kimia Untuk Kelas XII Sekolah Menengah Atas/Madrasah Aliyah Program Ilmu Pengetahuan Alam*. Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- Sofyatiningrum, Etty dan Ningsih, Sri Rahayu. 2018. Buku teks Kimia SMA kelas XII Program Peminatan kelompok IPA. Jakarta : Bailmu (Bumi Aksara).
- Sudarmo, Unggul. 2013. KIMIA untuk SMA/MA Kelas XII Kurikulum 2013. Jakarta: Erlangga.
- https://www.suara.com/health/2019/01/01/115436/jadi-gas-beracun-ini-4-bahancairan-pembersih-yang-dilarang-dicampur?page=all diakses tanggal 15 September 2020