Magnetic anisotropy in twisted bilayer graphene and

ABC-trilayer graphene aligned with hexagonal boron nitride

Aaron Sharpe

March Meeting 2022

UC Berkeley

Shaoxin Wang Lili Jiang Shuang Wu Feng Wang

Stanford University

Eli Fox

Joe Finney

Marc Kastner

David Goldhaber-Gordon

National Institute for Materials Science

Kenji Watanabe Takashi Taniguchi

Shanghai Jiao Tong University

Guorui Chen

Bosai Lyu

Hongyuan Li

Zhiwen Shi

University of Washington

Arthur Barnard

Fudan University

Yuanbo Zhang

MIT

Ya-Hui Zhang Senthil Todadri

Slides available @ aaronsharpe.science

Magic Angle Twisted Bilayer Graphene

Twisted bilayer graphene aligned with hBN

Emergent Ferromagnetism at 3/4 Filling

Quantum Anomalous Hall in TBG

Probing Nature of Magnetism

Magnetic field

Hysteresis Loops in Tilted Field

Behavior Near In-Plane Field

Applying In-Plane Field to a Magnetized State

ABC-Trilayer Graphene Aligned with hBN

Magnetic Correlated States

$$n/n_s = -1$$

$$n/n_s = \sim -2.5$$

Angular Dependence at $n/n_s = \sim -2.5$

Mostly sensitive to perpendicular component Similar to MATBG

Angular Dependence at $n/n_s = -1$

No clear dependence as a function of angle! In-plane field is coupling to sample

Conclusions

Orbital ferromagnets

 $n/n_s = 3$ in MATBG $n/n_s = \sim -2.5$ in ABC-trilayer/hBN

 $n/n_s = -1$ in ABC-trilayer/hBN displays less clear behavior

Coercive field not a fixed out-of-plane value In-plane field is coupling to the magnetic state

Slides @ aaronsharpe.science

