- a) La={M\$w\$t: MeM2, weZ*, te{0,13*en que M zente w en tompassos}}
 é decidide pela segente máq. de Tomog de terminista
 com doas fits:
 - D: mput xe

 Se x nso é de forme M&wAt -> GRES

 Seuzo inicipliza combdor bonsiño na

 Segunda pita a 200 e

 executa U (még. universal) sobre N&W

 decrementado t a coda passo

 se U

 aceitan

 quando t=0

 Gres

 Gres

 Pro

 Gres

 Gres
 - Dé chossificadora pois termina sempre, a ceitudo ou rejeitundo, ao firm de no máximo ton passos de computação de U.
 - Daceitz à sse x=H\$w\$t e Vaceita M\$w eur ton possos sse x=H\$w\$t e Maceita w eur ton possos sse x & LA

Para mostar que LAEEXPTIME basta verificar que

$$\leq O(n) + 2^{O(|t|)} \times O(n) \leq 2^{O(n)}$$

b) Seza LE SPACE(f(n)), e D una mág. chassi ficadora determinista talque Lac(D) = L e sprace_D(n) = O(f(n)).

Como qualquer computarso de D termina, não é posservel que a mesma configuração ocorra duas vezes na mesma computarso. logo, o comprimento máximo de qualquer computação de D é limitodo pelo número de possíveis configurações (em espaso spacepín), ou seja,

$$\leq 2^{O(sp_2 ce_D(n))} \times O(sp_2 ce_D(n)) = 2^{O(sp_2 ce_D(n))}$$

Conclui-se entro que LE TIME (
$$2^{O(f(n))}$$
) e portanto que SPACE ($f(n)$) \leq TIME ($2^{O(f(n))}$).

	Abril 2022	MAP30-4A.1	Dura	ção: 30m
	Nome:		Número:	
a)	(3.0 valores) Seja Σ um alfab constituída pelas palavras da		sidere a linguagem L	$_{A}\subseteq(\Sigma\cup\{0,1,\$\})^{*}$
		M\$w\$	t	
	em que $M \in \mathcal{M}^{\Sigma}$, $w \in \Sigma^*$ e as quais M aceita w em exa EXPTIME .			
b)	(1.0 valor) Seja $f: \mathbb{N} \to \mathbb{N}$ uma	função. Demonst	tre que $\mathbf{SPACE}(f(n))$	$)\subseteq \mathbf{TIME}(2^{\mathcal{O}(f(n))}).$

	Abril 2022	MAP30-4A.	.2 Duração:	30m
	Nome:		Número:	
a)	(3.0 valores) Seja Σ u r constituída pelas palav		onsidere a linguagem $L_A \subseteq ($	$\Sigma \cup \{0,1,\#\})^*$
		D # t	# x	
	=	* . ,	n número representado em b computação. Mostre que L_A e	· -
b)	$(1.0 \text{ valor}) \text{ Seja } g : \mathbb{N} -$	→ N uma função. Demo	$\text{nstre que } \mathbf{SPACE}(g(n)) \subseteq \mathbf{T}$	$\mathbf{TME}(2^{\mathcal{O}(g(n))}).$

	Abril 2022	MAP30-4B.1	Duração: 30m
	Nome:	N	úmero:
a) (3.0 valores) Considere a linguagem $L_B \subseteq \{0, 1, \$\}^*$ constituída pelas palavr		nstituída pelas palavras da forma	
	M\$n		
	_	_	ntado em binário, para as quais M o. Mostre que $L_B \in \mathbf{EXPTIME}$.
b)	(1.0 valor) Demonstre	que $PSPACE \subseteq EXPTIME$.	

	Abril 2022	MAP30-4B.2	Duração: 30m
	Nome:	N	Júmero:
a)	a) (3.0 valores) Considere a linguagem $L_B \subseteq \{0, 1, \#\}^*$ constituída pelas palavras da form		
	T # u		
			ntado em binário, para as quais T ão. Mostre que $L_B \in \mathbf{EXPTIME}$.
b)	(1.0 valor) Demonstre	que $PSPACE \subseteq EXPTIME$.	

Teoria da Computação

Abril 2022	MAP30–4C.1	Duração: 30m
Nome:	N	úmero:
) (3.0 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$. Considere a linguagem $L_C \subseteq (\Sigma \cup \{0, 1, \$\})^n$ constituída pelas palavras da forma		
	n\$M\$w	
	de M sobre o $input w$ termina	inário, $M \in \mathcal{M}^{\Sigma}$ e $w \in \Sigma^*$, para a em até n passos de computação.

b) (1.0 valor) Demonstre que **SPACE** $(n^k) \subseteq \mathbf{EXPTIME}$ para qualquer $k \in \mathbb{N}$.

Teoria da Computação

Abri	il 2022	MAP30–4C.2	Duração: 30m	
Nom	ne:		Número:	
, ,	a) (3.0 valores) Seja Σ um alfabeto, $\# \notin \Sigma$. Considere a linguagem $L_C \subseteq (\Sigma \cup \{0, 1, \#\})$ constituída pelas palavras da forma			<i>‡</i> })*
		k # R # x		
as quais	. ,	R sobre o input x termi	n binário, $R \in \mathcal{M}^{\Sigma}$ e $x \in \Sigma^*$, prina em até k passos de computado	

b) (1.0 valor) Demonstre que **SPACE** $(n^c) \subseteq \mathbf{EXPTIME}$ para qualquer $c \in \mathbb{N}$.

	Abril 2022	MAP30-4D.1	Duração: 30m
	Nome:	N	úmero:
a) (3.0 valores) Considere a linguagem $L_D \subseteq \{0,1,\$\}^*$ constituída pelas palavras		nstituída pelas palavras da forma	
	R\$v		
			ntado em binário, para as quais R o. Mostre que $L_D \in \mathbf{EXPTIME}$.
b)	(1.0 valor) Demonstre	que $\mathbf{PSPACE} \subseteq \mathbf{EXPTIME}$.	

	Abril 2022	MAP30–4D.2	Duração: 30m
	Nome:	N	úmero:
a)	a) (3.0 valores) Considere a linguagem $L_D \subseteq \{0, 1, \#\}^*$ constituída pelas palavras da form		
	T#b		
	-	_	ntado em binário, para as quais T o. Mostre que $L_D \in \mathbf{EXPTIME}$.
b)	(1.0 valor) Demonstre	que $PSPACE \subseteq EXPTIME$.	