Интерполирование по значениям функции

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Математико-механический факультет

2021

Содержание

- 1 Постановка задачи интерполирования
- Теорема о погрешности
- Интерполяционный многочлен в форме Ньютона
- Минимизация погрешности в точке интерполирования
- Интерполяционный многочлен в форме Лагранжа.
 Обратное интерполирование
 - Интерполяционный многочлен в форме Лагранжа
 - Постановка задачи обратного интерполирования
 - Задание 1
 - Задание 2
 - Варианты заданий на прямое и обратное интерполирование

Постановка задачи интерполирования

Пусть на промежутке [a,b] задана таблица значений вещественной функции y=f(x):

\boldsymbol{x}	f(x)
x_0	$f(x_0)$
x_1	$f(x_1)$
x_2	$f(x_2)$
x_n	$f(x_n)$

Узлы предполагаются попарно различными:

$$x_i \neq x_j, i \neq j.$$

Требуется найти значение функции в точке $x=\overline{x}$, не совпадающей с узлами.

Приближенное значение функции $f(\overline{x})$ может быть найдено как значение интерполяционного многочлена:

$$f(\overline{x}) \approx P_n(\overline{x}),$$

где $P_n(x)$ строится единственным образом из условий

$$P_n(x_i) = f(x_i), i = 0, 1, \dots, n.$$

Погрешность интерполирования находится из теоремы

Теорема о погрешности

Теорема 1

Пусть функция f(x) имеет конечную непрерывную производную $f^{(n+1)}(x)$ на наименьшем отрезке [c,d], содержащем узлы интерполирования $x_0,\,x_1,\ldots,x_n$ и точку интерполирования \overline{x} , так что

 $c = \min\{x_0, x_1, \dots, x_n, \overline{x}\}, \quad d = \max\{x_0, x_1, \dots, x_n, \overline{x}\}.$ Тогда существует такая точка $\xi = \xi(\overline{x}), \quad c < \xi < d,$ что

$$R_n(f,\overline{x}) = f(\overline{x}) - P_n(\overline{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(\overline{x}),$$
 (1)

где
$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$
 (2)

Оценка погрешности

Оценка погрешности вычисляется следующим образом:

$$|R_n(\overline{x})| \leqslant M_{n+1} \cdot \frac{|(\overline{x} - x_0)(\overline{x} - x_1) \cdots (\overline{x} - x_n)|}{(n+1)!}, \quad (3)$$

где

$$M_{n+1} = \max |f^{(n+1)}(x)|, \ x \in [c, d].$$

Минимизация погрешности в точке интерполирования

Часто практически строится многочлен $P_m(x),$ где m < n, по m+1 узлу.

Очевидно, что из n+1 узла следует выбрать такие m+1, которые обеспечивают наименьшую погрешность, т. е. узлы, ближайшие к точке интерполирования \overline{x} .

Построение интерполяционного многочлена

При построении интерполяционного многочлена в виде

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

коэффициенты a_i являются решением системы

$$P_n(x_i) = f(x_i), i = 0, 1, \dots, n.$$

Определитель этой системы — определитель Вандермонда. Он отличен от нуля, так как узлы попарно различны. Удобнее строить многочлен в форме Ньютона или в форме Лагранжа.

Интерполяционный многочлен в форме Ньютона

Интерполяционный многочлен в форме Ньютона имеет вид

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n(x - x_0) \cdots (x - x_{n-1}).$$
(4)

Преимуществом этой формы является простота нахождения коэффициентов:

$$A_0=f(x_0),\; A_1=rac{f(x_1)\,-f(x_0)}{x_1-x_0}$$
 и т. д., а также тот факт, что

$$P_k(x) = P_{k-1}(x) + A_k(x - x_0) \cdots (x - x_{k-1}).$$

Минимизация погрешности в точке интерполирования

Если узлы интерполирования x_0, x_1, \ldots, x_n выбраны в порядке близости к точке интерполирования \overline{x} , то можно утверждать, что многочлен любой степени

$$P_0(x), P_1(x), \dots, P_n(x)$$

обеспечивает минимум погрешности

$$|f(\overline{x}) - P_i(\overline{x})|$$

среди всех многочленов данной степени, построенных по данной таблице узлов.

Интерполяционный многочлен в форме Лагранжа |

Интерполяционный многочлен в форме Лагранжа имеет вид

$$P_n(x) = \sum_{k=0}^n \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)} f(x_k) = \sum_{k=0}^n \frac{\prod\limits_{i \neq k} (x - x_i)}{\prod\limits_{i \neq k} (x_k - x_i)} f(x_k),$$
(5)

где

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$
 (6)

Постановка задачи обратного интерполирования

Пусть на промежутке [a,b] задана таблица значений вещественной функции y=f(x):

x	f(x)
x_0	$f(x_0)$
x_1	$f(x_1)$
x_2	$f(x_2)$
x_n	$f(x_n)$

Узлы предполагаются попарно различными

$$x_i \neq x_j, i \neq j.$$

Требуется приближенно найти такое \overline{x} , что $f(\overline{x}) \approx \overline{y}$.

Задание 1 |

- Дана функция y=f(x), узлы, значение функции \overline{y} . Получить таблицу значений функции в узлах. Требуется приближенно найти такое \overline{x} , что $f(\overline{x}) \approx \overline{y}$ тремя способами:
- а) "точно", используя аналитическое выражение обратной функции. Обозначим x^* .
- б) аппроксимацией функции f(x) интерполяционным многочленом $P_n(x)$ в форме Лагранжа и приближенным решением уравнения $P_n(x)=\overline{y}$ методом итераций или методом секущих. Обозначим решение уравнения $P_n(x)=\overline{y}$ через x_n . Результаты привести в таблице вида

n	0	1	2	3	4	5
x_n						
$x_n - x^*$						

Задание 1 П

в) если существует однозначная обратная функция $f^{-1}(y)$, то поменять ролями узлы и значения функции и приближенно заменить обратную функцию интерполяционным многочленом $Q_m(y)\ (m=0,\,1,\,2,\ldots)$ в форме Лагранжа и вычислить $x_m=Q_m(\overline{y})$.

Результаты привести в таблице вида

m	0	1	2	3	4	5
x_m						
$x_m - x^*$						

Следует также привести таблицу используемых узлов для построения интерполяционных многочленов. Напомним, что в целях минимизации погрешности узлы следует выбирать ближайшими к точке интерполирования.

Задание 2 1

 2^* Дана функция y=f(x), [a,b]=[-1,1]. Требуется построить при различных n интерполяционные многочлены $P_n(x)$ в форме Лагранжа по равноотстоящим узлам и по узлам многочлена Чебышева. Сравнить на графике с функцией в одних осях координат.

Указание

Составить подпрограмму с параметрами:

- интерполируемая функция;
- степень многочлена;
- массив узлов.

Задание 2 П

Подпрограмма должна возвращать аналитическое выражение интерполяционного многочлена в форме Лагранжа заданной степени по заданной таблице узлов для заданной функции.

Рассмотреть функции: a) $\sin(x)$; б) |x|; в) $\frac{1}{1+25x^2}$.

Варианты заданий на прямое и обратное интерполирование

Номер	Функция	Узлы	Точка интер-	Значение
варианта			полирования	функции
1	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.2	-0.4	-0.56
2	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35	0.75
3	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3	1.6
4	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4	-0.6
5	$\cos(x)$	-0.6, -0.5, -0.3, -0.2, -0.1, 0	-0.4	0.8
6	$\sqrt[4]{x+2}$	0, 3, 5, 7, 8, 9	4	1.3
7	$\arcsin(x)$	-0.6, -0.5, -0.4, -0.2, 0, 0.1	-0.3	-0.8
8	e^x	-0.30.2, -0.1, 0, 0.1, 0.3	0.2	0.8
9	ln(x)	1, 3, 5, 6, 8, 10	4	2
10	ln(x)	1, 3, 5, 6, 8, 10	7	2.5
11	$\arcsin(x)$	-0.6, -0.5, -0.30.2, 0, 0.2	0.6	0.8
12	$\sin(x)$	0, 0.1, 0.2, 0.4, 0.5, 0.8	0.4	0.56
13	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35	0.75
14	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3	1.6
15	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4	-0.6