SEMAINE DU 07/09

1 Cours

Espaces vectoriels normés

Normes Définition. Rappel sur les normes euclidiennes. Normes usuelles sur \mathbb{K}^n :

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ $||x||_\infty = \max_{1 \le i \le n} |x_i|$

Norme de la convergence uniforme sur l'espace des applications bornées sur un ensemble X à valeurs dans \mathbb{K} . Normes usuelles sur $\mathcal{C}^0([a,b],\mathbb{K})$:

$$||f||_1 = \int_a^b |f(t)| dt \qquad ||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt} \qquad ||f||_\infty = \max_{[a,b]} |f|$$

Distance associée à une norme. Boules et sphères. Définition de la convexité d'une partie d'un \mathbb{R} -espace vectoriel. Convexité des boules. Equivalence de normes. Toutes les normes d'un espace vectoriel de dimension finie sont équivalentes. Partie bornée, application bornée. Produit d'espaces vectoriels normés : norme produit.

Suites à valeurs dans un espace vectoriel normé Convergence/divergence. Unicité de la limite. Toute suite convergente est bornée. Opérations algébriques. Suites extraites et valeurs d'adhérence.

Séries à valeurs dans un espace vectoriel normé Convergence/divergence. Divergence grossière. Somme d'une série. Série télescopique. Convergence absolue. La convergence absolue implique la convergence en **dimension finie**. Exponentielle d'une matrice carrée et d'un endomorphisme d'un espace vectoriel de dimension finie.

Groupes

Révisions de première année Groupes, sous-groupes, morphismes de groupes. Groupes classiques : $(\mathbb{Z}, +)$, $(\mathbb{K}, +)$ et (\mathbb{K}^*, \times) où \mathbb{K} est un corps, $(S(E), \circ)$ (groupe des permutations d'un ensemble E), (S_n, \circ) (groupe des permutations de $[\![1, n]\!]$), groupes linéaires $GL_n(\mathbb{K})$ et GL(E), \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) , \mathbb{U}_n est un sous-groupe de (\mathbb{U}, \times) . Morphismes classiques : déterminant, signature.

2 Méthodes à maîtriser

- Pour montrer qu'une application est une norme, on peut essayer de l'exprimer à l'aide d'une norme connue.
- Calculer une norme uniforme d'une suite ou d'une fonction par une étude de cette suite ou de cette fonction.
- Pour montrer que deux normes N_1 et N_2 ne sont pas équivalentes, on exhibe une suite u tel que $\frac{N_2(u_n)}{N_1(u_n)}$ tende vers 0 ou $+\infty$.
- Pour montrer qu'une suite diverge, on peut extraire deux suites convergeant vers des limites différentes.

3 Questions de cours

BCCP Exercices 37 (hormis la question 1c), 40, 61

Retour sur le DS n°01: transformation d'Abel

Soient $(a_n)_{n\geq n_0}$ et $(B_n)_{n\geq n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geq n_0}$ et $(b_n)_{n\geq n_0}$ de la manière suivante :

$$\forall n \ge n_0, \ \mathbf{A}_n = \sum_{k=n_0}^n a_k$$

$$\forall n \ge n_0, \ b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k B_k = A_n B_n \sum_{k=n_0}^{n-1} A_k b_k$ pour tout entier $n \ge n_0$.
- 2. On suppose dans cette question que la suite (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle. Montrer que la série $\sum_{n>n_0} a_n B_n$ converge.
- 3. On suppose dans cette question que la suite (B_n) converge vers 0, que la suite (A_n) est bornée et que la série $\sum_{n\geq n_0} b_n$ est absolument convergente. Montrer que la série $\sum_{n\geq n_0} a_n B_n$ est convergente.