Е.В.Майков

MATEMATNUECKNЙ AHANN3

Введение

Издательство
Московского университета
1998

Рецензент канд.физ.-матем.наук **В.Г.Чирский**

Издание осуществлено в авторской редакции

Майков Е.В.

М 14 Математический анализ. Введение. - М.: Изд-во МГУ, 1988. - 48 с.: ил.

ISBN 5-211-03986-6

Элементарное введение, знакомящее с исходными понятиями и простейшими фактами, на которые опирается изучение математического анализа.

Для студентов естественных факультетов университетов.

УДК 517 ББК 22.161 © Е.В.Майков, 1998

ISBN 5-211-03986-6

Оглавление

Предисловие	5
Глава 0. Введение	8
§ 00. Что такое математический анализ	8
§ 01. Логическая символика	9
§ 02. Множества	13
§ 03. Отображения	18
§ 04. Множество R	25
§ 05. Верхняя и нижняя грани	29
§ 06. Три важных леммы для R	32
§ 07. Множество С	37
§ 08. Понятие о мощности множества	40
§ 09. Счетные множества. Континуум	42
Алфавитный указатель	46

Предисловие

За долгие годы существования математического анализа как учебной дисциплины создано немало прекрасных учебников по этому предмету. Здесь и краткие эссе, и многотомные энциклопедические труды. Автор одного из современных учебников В.А.Зорич пишет: «Классический анализ, подобно классическому музыкальному произведению, имеет и будет иметь много исполнителей, каждому из которых в большей степени дорога та или иная его сторона или дорого определенное восприятие его в целом».

Предлагаемая читателю брошюра написана на основе лекций, читавшихся автором на различных факультетах МГУ. Конкретным поводом для ее создания стало желание точнее учесть потребности нового факультета университета – ВКНМ – и подготовить такое пособие, которое было бы подспорьем в непосредственной работе со студентами этого факультета. Брошюра представляет собой попытку элементарного введения, которое должно познакомить студента с исходными понятиями и простейшими фактами, на которые опирается изучение математического анализа. Ее можно считать вводной главой курса математического анализа. Вместе с тем она может быть полезной и как самостоятельное справочное пособие — достаточно сказать, что алфавитный указатель, приведенный в ее конце, содержит около ста терминов.

Отмечу некоторые принципы, которыми я руководствовался в этой работе.

- 1. Брошюра рассчитана не на чистых математиков, а на студентов, ориентированных на **приложения математики в других областях науки**, конкретнее в области механики, физики, химии. При этом мне бы хотелось, чтобы изложение было доступно школьнику со средней математической подготовкой, который, обучаясь в школе, может быть, и не считал математику главным для себя предметом.
- 2. Изучение математического анализа, как и вообще математики, имеет целью не только узнать некоторое количество понятий, фактов и приемов, но и воспитать в себе высокий стандарт научного логического мышления. Логическая структура предмета должна быть абсолютно ясной читателю. Математический анализ не сборник отдельных фактов и рецептов, сваленных, подобно груде кирпичей на

стройке, а созданное из этих кирпичей прекрасное стройное здание с прочным фундаментом и невидимой системой коммуникаций, с анфиладами понятий и теорем и яркими логическими вершинами, венчающими это здание. (К числу таких вершин можно отнести формулу Тейлора, формулу Ньютона-Лейбница, теорему о неявном отображении, теорему Фубини, общую формулу Стокса.)

- 3. Автор считает необходимым **современный уровень строгости изложения**. Подробные доказательства приводятся не везде, но отсутствие таковых всегда четко отмечается, и нигде расплывчатый «квази-вывод» не выдается за полноценное доказательство.
- 4. Вместе с тем кропотливые доказательства не являются самоцелью. Чем дальше от начала курса, тем чаще факты могут сообщаться без их вывода. Мне кажется разумным следовать рекомендации французского математика Лорана Шварца: «Изучать подробно нужно лишь те доказательства, которые являются наиболее типичными и поучительными». Впрочем, в первом семестре университетского обучения, по-моему, основной материал следует всё же давать с полными доказательствами.
- 5. Автор всюду стремился к максимальной простоте изложения, используя удачные приемы различных авторов, некоторые собственные находки. Не везде это удавалось известно, что «усложнять просто, а упрощать сложно». Может быть, кое-что удастся сделать при дальнейшей работе над курсом. А может быть, удачная мысль такого рода придет в голову читающего брошюру студента. Попробуйте!
- 6. Хотя математика строгая формализованная наука, автор старался **оживлять изложение**, там, где возможно, просто беседовать с читателем, излагать личные, может быть, спорные оценки тех или иных подходов, естественно, не претендуя на то, что его точка зрения единственно допустимая.
- 7. Математический анализ по своему происхождению и основному содержанию весьма прикладная дисциплина. (Маленький вопрос к читателю: Физик сказал: «Производная? Это очень просто, это скорость!" Математик сказал: "Скорость? Это очень просто, это производная!» Как по-вашему, кто прав?) По вводной части судить о прикладной стороне дела трудно, однако при дальнейшем развитии курса мне хотелось бы это продемонстрировать.
- 8. Изложение снабжено большим количеством **примеров**. Они часто преследуют двойную цель это иллюстрация только что рассказанного материала и одновременно подготовка какого-то из следующих шагов; поэтому нередки ссылки на эти примеры. То же

относится к **замечаниям**, приводимым после важных результатов. Для удобства ссылок все примеры, замечания, как и вообще все смысловые единицы текста, пронумерованы.

9. Органической частью текста являются **упражнения**. Обычно они нетрудны, к тому же в ряде случаев снабжены указаниями. Прочное усвоение материала предполагает выполнение если не всех, то хотя бы большинства этих упражнений. Иногда упражнение — это небольшой фрагмент одного из последующих доказательств, призванный облегчить дальнейший текст. Ссылки на упражнения так же обычны, как и ссылки на предыдущие теоремы.

В конце предисловия коротко расскажу о **структуре** брошюры и системе нумерации и ссылок. Весь материал разделен на параграфы, пронумерованные двумя цифрами. Первая из них — нуль — означает, что параграф относится к Введению. Нумерация определений, формул, теорем и других предложений — самостоятельная в каждом параграфе. Система ссылок ясна из примера: первая лемма из шестого параграфа Введения называется **леммой 1** в этом параграфе и **леммой 06.1** в остальных параграфах работы. Чтобы выделить доказательства теорем, лемм и других предложений, мы будем заключать их в тройные кавычки: «««...»»». Это значит, что символ ««« будет обозначать начало доказательства, а символ »»» заменит слова доказательство закончено.

Упомяну некоторые из книг по математическому анализу, оказывавших влияние на автора во время работы над этой брошюрой. Это – трехтомник классика математического анализа Г.М. Фихтенгольца «Курс дифференциального и интегрального исчисления», двухтомник В.А.Ильина, В.А.Садовничего и Бл. Х. Сендова «Математический анализ», двухтомный труд В.А.Зорича под тем же названием.

Мне приятно поблагодарить декана ВКНМ академика Ю.Д.Третьякова, сотрудников факультета И.В.Архангельского, И.В.Казимирчик и Н.О.Капустину за поддержку этой работы ; студента ВКНМ Н.Мирина, обучившего меня работать в компьютерной операционной системе Windows 95, — именно в ней и набрана брошюра ; мою дочь Ольгу, недавнюю студентку — первого читателя и критика этой работы.

Глава 0. Введение

§ 00. Что такое математический анализ

Точный объем понятия *«математический анализ»* (для краткости в этом параграфе будем писать MA) зависит от того, в какой ситуации оно употребляется. В школьном учебнике математики говорится, что MA — это «часть математики, которая изучает дифференциальное и интегральное исчисление». Авторитетный общероссийский (а еще недавно общесоюзный) реферативный журнал «РЖ математика» относит к MA, кроме того, теорию функций комплексного переменного, дифференциальные уравнения, вариационное исчисление, функциональный анализ и ряд других разделов.

Само словосочетание «математический анализ» несет в себе очень мало информации — сюда при желании можно было бы отнести, например, и аналитическую геометрию, и математическую логику. С другой стороны, интегральное исчисление можно было бы назвать не анализом, а синтезом. Впрочем, подобным образом нетрудно раскритиковать громадное число терминов, и не только математических. Попробуем все же установить, что в современной математике выделяется термином MA.

Думаю, главной особенностью МА в сравнении с другими областями математики является метод предельного перехода и связанный с этим аппроксимативный подход (т.е. использование приближенных выражений, допускающих любую степень точности). Недаром греческая буква ε (эпсилон) – точность аппроксимации – занимает такое почетное место в МА. Имея это в виду, попробуем дать короткое и, разумеется, не исчерпывающее, определение: математический анализ — это раздел математики, изучающий и применяющий (очень разнообразно применяющий) понятие предела. Не случайно старинное название МА (более информативное, но тоже далекое от идеала) - «анализ бесконечно малых». Это – МА в его широком понимании.

С другой стороны, студенту 2 курса университета, только что сдавшему последний экзамен по этому предмету, мы можем сказать

гораздо более конкретно: «MA – это и есть та часть математики, изучение которой Вы только что благополучно завершили».

Теперь же, со следующего параграфа, мы начинаем систематическое изучение материала. При этом ближайшие три параграфа, не относясь в сформулированном смысле к МА, имеют общематематическое значение, а с § 04 начинается собственно математический анализ.

§ 01. Логическая символика

Фундаментом математики является математическая логика — наука, изучающая законы математических рассуждений, устанавливающая исходные математические понятия и правила, с помощью которых из одних математических фактов выводятся другие. Изучение математической логики не входит здесь в нашу задачу, но мы возьмем из этой науки ее отдельные элементы, в частности, будем использовать некоторые из ее символов. Мы будем рассматривать их просто как способ сокращения записи — своеобразную математическую стенографию. Это дает возможность коротко записывать довольно громоздкие утверждения и, что особенно важно, с одного взгляда схватывать их содержание. Для сравнения вспомним, как еще в XVI веке французский математик Франсуа Виет ввел буквенные обозначения для коэффициентов уравнений, сделав возможными наглядные общие формулы для корней этих уравнений. (Попробуйте, например, описать корни

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

квадратного уравнения $ax^2 + bx + c = 0$, не используя букв a, b, c.)

п.1. Пожалуй, главным символом математики является знак \Longrightarrow (называемый символом импликации), поскольку с его помощью записывается важнейший тип математических предложений. Если обозначить A, B два каких-либо утверждения, то A \Longrightarrow B читается так : «если верно A , то верно B », короче — «если A , то B ». Так обычно выглядят формулировки математических теорем. Формула $A \Longrightarrow B$ может читаться многими другими равносильными способами :

 $A \Rightarrow B$ Если A, то B,

Из A следует B (из A вытекает B),

A достаточно для B,

B необходимо для A,

B является следствием A .

При этом A будем называть посылкой или *условием* утверждения $A \Rightarrow B$, а B – *заключением* этого утверждения.

п.2. Второй важнейший символ: \iff — «равносильность». Формула $A \iff B$ — короткая запись одновременной справедливости двух утверждений: $A \implies B$ и $B \implies A$. Ее можно читать так:

A верно тогда и только тогда, когда верно B,

A верно точно тогда, когда верно B ,

A необходимо и достаточно для B ,

B необходимо и достаточно для A,

A является критерием для B ,

B является критерием для A .

п.3. Часто мы будем использовать два символа, называемые κ ванторами — κ вантор существования \exists (перевернутая первая буква английского слова exist) и κ вантор общности \forall (от английского all). Они читаются так:

 $(\forall x)$ A для любого x верно A (Предполагается, что в выражении A каким-то образом участвует x). Часто скобки вокруг квантора мы будем опускать и писать короче: $\forall x \ A$.

 $\forall x \in X$ А для любого x из множества X верно A,

 $\forall \ \epsilon > 0$ для любого положительного числа ϵ верно A,

 $\exists x \ A$ существует такое x, для которого верно A,

 $\exists \ N \in \mathbf{N} \quad B$ существует такое N из множества \mathbf{N} , для которого верно B .

(Кстати, заметьте, что одна и та же буква, напечатанная различными шрифтами, имеет разное значение; скажем, в этом примере N и **N** – разные символы.)

Для обозначения выражения «существует и единственно» применяется одно из следующих сочетаний символов: $\exists !$ или \exists_1 .

Естественно, с помощью этих символов могут составляться более длинные формулы. Например, формула

$$\forall \ \epsilon > 0 \quad \exists \ N \in \mathbf{N} \quad \forall \ n > N \quad |x_n| < \epsilon$$

читается так: «Для любого положительного числа ε существует такое N из множества N, что для всех n, больших, чем N, абсолютная величина числа x_n меньше, чем ε ».

п.4. Отметим еще несколько символов (которые будут здесь употребляться значительно реже).

1 A — так обозначается утверждение, верное тогда и только тогда, когда утверждение A ложно. Например, для действительных чисел x выражение 1 (x > 0) равносильно выражению ($x \le 0$). Символ 1 называют символом отрицания. Вместо 1 1 можно использовать более наглядную запись: «ne 1 ».

A **или** B, $A \lor B$ - два варианта обозначения утверждения, верного тогда и только тогда, когда верно хотя бы одно из двух утверждений A, B (случай, когда верны оба эти утверждения, также допускается). Такое утверждение называют в математической логике *дизъюнкцией* утверждений A, B. Впрочем, запоминать этот термин не обязательно – я пользоваться им не буду.

A u B, $A \land B$ - два варианта обозначения утверждения, верного тогда и только тогда, когда верны оба эти утверждения A, B. (Такое утверждение называют *конъюнкцией* утверждений A, B.) Нередко вместо $A \land B$ я буду просто соединять эти утверждения запятой: «A, B». Аналогично, выражение

$$(A, B, C) \Rightarrow D$$

означает: если справедливы все три утверждения A, B, C, то справедливо и утверждение D .

Приведем несколько примеров **верных** утверждений, записанных с помощью логической символики.

Пример 1. $x = 2 \implies x^2 = 4$.

Пример 2. $x = 2 \implies (x^2 = 4 \text{ или } x = 3).$

Пример 3. $x^2 = 4 \iff (x = 2 \text{ или } x = -2).$

Пример 4. $x > 2 \implies x > 1$.

Пример 5. $x > 2 \implies x \ge 2$.

Пример 6. $x > 2 \iff x > 3$ (Догадайтесь, что в этой формуле означает не встречавшийся у нас символ \iff).

Пример 7. $\exists x \in \mathbf{R}$ $x^2 = 9$ (\mathbf{R} – множество действительных чисел, подробнее см. §§ 02, 04).

Пример 8. $\exists_1 x > 0 \ x^2 = 9.$

Пример 9. $\forall x \in \mathbf{R} \ x^2 + 2x + 2 > 0.$

Пример 10. $\int (x^2 = 4 \implies x = 2)$.

В следующих четырех упражнениях определите, какие из написанных утверждений верны, а какие нет.

Упражнение 1. $x \le 5 \implies x < 5$?

Упражнение 2. $\forall x > 2$ $x^2 - 3x + 2 > 0$?

Упражнение 3. $\exists_1 x \in \mathbf{R}$ $x^2 = 16$?

Упражнение 4. $(\forall x \in \mathbb{R} \quad x^2 > 0)$? Ответы: Нет, да, нет, да.

п.5. Приведем еще два обозначения, которые мы будем применять для введения новых понятий. Если вводится некоторый *новый объект* (число, множество, функция и т.п.), будем использовать символ :=, например,

$$1 \cdot 2 \cdot 3 \cdot ... n = : n!$$
 (читается «эн-факториал»)

$$0! := 1$$

Если вводится *новое соотношение* между объектами (равенство, неравенство, включение одного множества в другое и т.д.— см. следующий параграф), будем применять символ $: \Leftrightarrow$, например

$$(x \ge 2)$$
 : \Leftrightarrow $(x > 2 \text{ или } x = 2),$

$$((\forall x \in A) \ x \in X) \Leftrightarrow A \subset X.$$

Заметим, что двоеточие (:) ставится с той стороны от знаков = , \Leftrightarrow , где находится вновь вводимое понятие. Один из вариантов чтения этих символов таков :

: = , = **:** по определению равно,

: ⇔, ⇔: по определению равносильно.

Упражнение 5. Прочтите определение: «Функция f(x) *ограничена* на отрезке [a;b] : ⇔ $(∃ M ∈ R \forall x ∈ [a;b] | f(x)| ≤ M)$ ».

Упражнение 6. Запишите с помощью символов математической логики следующий текст: «Для любого положительного числа ε существует такое число N, что для всех чисел n, больших чем N, абсолютная величина разности x_n-a меньше, чем ε ».

п.6. В заключение параграфа сформулируем несколько правил обращения с символом отрицания, которые мы будем нередко использовать, когда потребуется указать на ложность некоторого утверждения.

1.
$$\rceil(\rceil A)$$
 равносильно
 A

 2. $\rceil(A \ u\pi u \ B)$
 равносильно
 $\rceil A \ u \ B$

 3. $\rceil(A \ u \ B)$
 равносильно
 $\rceil A \ u\pi u \ B$

 4. $\rceil(A \Rightarrow B)$
 равносильно
 $A \ u \ B$

 5. $\rceil(\forall x \ A)$
 равносильно
 $\exists x \ A$

 6. $\rceil(\exists x \ A)$
 равносильно
 $\forall x \ A$

Обратите внимание на две последние строчки. Они обеспечивают простой алгоритм построения отрицания логических формул, содержащих цепочку кванторов Например, отрицание условия ограниченности функции на отрезке может быть последовательно преобразовано так:

Подобными преобразованиями кванторных формул мы будем пользоваться неоднократно.

§ 02. Множества

п.1. Исходным, начальным понятием математики вообще и математического анализа в частности будем считать понятие «множество». Как естественно для исходного понятия, мы не можем дать ему формального определения, поэтому лишь поясним его на наглядном уровне. Синонимами «множества» в различных контекстах могут быть слова «совокупность», «группа», «набор», «коллекция», «комплекс» и т. п.. Так, можно говорить о группе студентов, наборе открыток с видами Москвы, коллекции марок какого-то филателиста,

точно так же можно говорить о множестве всех действительных чисел, совокупности всех корней данного алгебраического уравнения, множестве всех атомов земного шара и т. д. .

п.2. Некоторые важнейшие множества имеют принятые во всем мире стандартные обозначения:

N – множество всех натуральных чисел (1, 2, 3, ...),

Z – множество всех целых чисел $(0, \pm 1, \pm 2, \pm 3, ...)$,

Q – множество всех рациональных чисел,

R – множество всех действительных чисел,

С – множество всех комплексных чисел.

Запомните эти обозначения – они будут встречаться у нас на каждом шагу!

Отметим еще одно стандартное обозначение: \emptyset – пустое множество, т.е. множество, не содержащее никаких элементов (например, множество всех действительных корней уравнения $x^2+1=0$).

Иногда множество обозначают просто перечислением его элементов. Например, множество, состоящее из трех элементов 3, 4 и 5, обозначается с помощью фигурных скобок: $\{3, 4, 5\}$; множество, единственным элементом которого является число π , обозначается $\{\pi\}$.

п.3. Одним из основных понятий теории множеств является отношение *принадлежности* элемента x множеству X. Это обозначается так: $x \in X$. Читается эта формула одним из следующих способов: « x является элементом множества X», « x принадлежит множеству X». Отрицание этого утверждения обычно записывается так: $x \notin X$. Например,

$$3 \in \mathbb{N}, \quad \pi \notin \mathbb{Q}.$$

Элементы любого множества X нередко называют *точками*, даже если X не является прямой, плоскостью или геометрическим трехмерным пространством.

п.4. Понятие *подмножества* . Множество A называется *подмножеством множества* X, если каждый элемент множества A является элементом множества X. Это обозначается так: $A \subset X$. Варианты чтения этой формулы: «A включено в X», «A содержится в X». Тот же

смысл имеет формула $X\supset A\quad (\ll X\ codeржит\ A\ »).$ Заметим, что всегда верны формулы $\mathcal{O}\subset X$, $X\subset X$.

Символы \in и \subset не взаимозаменяемы! Например, $N \subset N$, но неверно, что $N \in N$ (т.е. множество натуральных чисел не является натуральным числом).

Если множества X и Y состоят из одних и тех же элементов, их называют *равными* и пишут X = Y. Иными словами,

$$X = Y$$
 : \Leftrightarrow $(X \subset Y, Y \supset X)$. (1)

п.5. Отвор подмножества по заданному условию. Пусть дано множество X и некоторое условие S(x), которому могут удовлетворять, а могут и не удовлетворять различные элементы x множества X. Тогда подмножество множества X, составленное из всех таких элементов множества X, для котороых это условие выполняется, будем обозначать

$$\{x \in X ; S(x)\}.$$

Если множество X ясно из контекста, будем писать короче:

$$\{x \; ; \; S(x)\}.$$

Пример 1. Множество $\{x \in \mathbf{R} ; x^2 - 3x + 2 \le 0\}$ равняется интервалу (1; 2).

п.6. Важнейшие операции с множествами – объединение, пересечение, разность, дополнение.

Объединение двух множеств X и Y обозначается $X \cup Y$ и состоит точно из тех элементов, каждый из которых принадлежит хотя бы одному из этих множеств:

$$X \cup Y := \{x : x \in X \text{ или } x \in Y\}. \tag{2}$$

Пересечение двух множеств X и Y - это

$$X \cap Y := \{ x \in X \mid \mathbf{u} \mid x \in Y \}. \tag{3}$$

(Обратите внимание, что в последнем случае определение нового понятия дано только формулой, без предварительного словесного пояснения. Привыкайте к такому способу разговора.)

Разность множеств X и Y – это множество

$$X \setminus Y := \{x; x \in X, x \notin Y\}. \tag{4}$$

Если, в частности, $Y \subset X$, то множество $X \setminus Y$ называют *дополнением* к множеству Y в множестве X и обозначают $\mathbf{c}_X Y$, а если X ясно из контекста, то короче: $\mathbf{c} Y$. Понятия этого пункта проиллюстрированы на рисунке 02.1.

Puc. 02.1

Пример 2. $R \setminus Q = c_R Q = cQ$ — это множество всех *иррациональных* чисел (из множества действительных чисел нужно выбросить все рациональные).

Если требуется взять объединение или пересечение не двух, а большего числа множеств X_{α} где индекс α пробегает множество A, то прибегают к обозначениям

$$\bigcup_{\alpha \in \mathcal{A}} X_{\alpha} := \{x; \exists \alpha \in \mathcal{A} \ x \in X_{\alpha}\},$$

$$\bigcap_{\alpha \in \mathcal{A}} X_{\alpha} := \{x; \forall \alpha \in \mathcal{A} \ x \in X_{\alpha}\}.$$

В частности, если A = N, применяются такие варианты обозначений:

$$\bigcup_{j=1}^{\infty} X_j \quad , \qquad \bigcap_{j=1}^{\infty} X_j \quad .$$

Упражнение 1. Возможно ли, что

$$X \cup Y = X \cap Y ? \tag{5}$$

Решение. Да, возможно. Например, так будет всегда, когда X = Y. Докажем (хотя упражнение 1 этого не требует), что условие X = Y не только достаточно, но и необходимо для справедливости (5). Доказательство проведем от противного. Если $X \neq Y$, то найдется элемент, принадлежащий одному из этих множеств и не принадлежащий другому. Тогда он входит в объединеие этих множеств, но не входит в их пересечение, т.е. левая и правая части в формуле (5) не равны.

Упражнение 2. (Правила Моргана.) Пусть A и B - два подмножества множества X. Докажите равенства:

$$\mathbf{c}(A \cup B) = \mathbf{c}A \cap \mathbf{c}B$$
, $\mathbf{c}(A \cap B) = \mathbf{c}A \cup \mathbf{c}B$. (6)

п.7. Прямое произведение $X \times Y$ множеств X и Y. Так называется множество, элементами которого являются «пары» (x, y), т.е. записанные в определенном порядке такие элементы: на первом месте элемент $x \in X$, а на втором $y \in Y$. Иными словами,

$$X \times Y := \{(x,y) ; x \in X, y \in Y\}.$$

Пример 3. Множество $\mathbf{R} \times \mathbf{R}$ можно геометрически представить как плоскость, считая числа x, y декартовыми координатами точки на плоскости.

Упражнение 3. Представьте геометрически следующие четыре множества:

$$[1; 2] \times [3; 4], \quad (1; 2) \times [3; 4], \quad [0; 1] \times [0; \infty), \quad \{5\} \times [3; 4].$$

п.8. Множество, элементами которого являются все подмножества данного множества X, будем обозначать P(X), т.е.

$$P(X) := \{ A ; A \subset X \}.$$

Пример 4. Если $X = \{a, b, c\}$, (т.е. X состоит из трех элементов a, b, c), то множество P(X) состоит из $2^3 = 8$ элементов:

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{bc\}$, $\{a,b,c\}$.

Вообще, если в множестве X конечное число элементов, равное n, то количество элементов в множестве P(X) равняется 2^n . Поэтому часто для любых множеств, в том числе и бесконечных, вместо P(X) применяется обозначение 2^X .

п.9. При доказательстве некоторых теорем полезна еще одна процедура построения множества, которая регламентируется так называемой *аксиомой выбора*: для любого семейства множеств $\{X_{\alpha}\}$, где $\alpha \in A$, можно составить новое множество Y, содержащее точно по одному элементу из каждого множества X_{α} .

В заключение параграфа – **немного истории**. Когда в конце XIX века немецкий математик Георг Кантор показал, что в единых терминах теории множеств можно излагать самые различные разделы математики, это было воспринято многими учеными с энтузиазмом, так как подчеркивало единство математики и создавало ряд удобств для ее развития и ее изложения.

Этот энтузиазм несколько поостыл, когда в начале XX века английский философ и математик Бертран Рассел с помощью очень простых рассуждений в терминах теории множеств сумел получить два

противоречащих друг другу результата (что, конечно, недопустимо в любой разумной теории). Они, правда. были получены с использованием очень уж необъятных (и не нужных для практики) множеств, как, например, «множество всех (!) множеств».

Начались поиски выхода из этой пикантной ситуации. Они велись по двум направлениям — вообще отказаться от теории множеств как базиса для всей математики или откорректировать эту теорию. Последнее оказалось возможным, если с помощью некоторой аксиоматики запретить использование «слишком больших» множеств. Благодаря этому теория множеств сумела сохранить в математике солидные позиции. «Никто не может изгнать нас из рая, созданного для нас Кантором» - сказал в 1930 году великий математик Давид Гильберт».

Не будем покидать этого рая и мы. Что же касается запаса используемых множеств, то нам будет достаточно тех, которые перечислены в п.2 и тех, которые могут быть из них получены с помощью операций, описанных в пп. 5-9.

§ 03. Отображения

Следующим после множества важнейшим понятием математики является понятие *отображения* — обобщение привычного еще из школы понятия функции. Не рискуя впасть в сильное преувеличение, можно сказать, что вся математика и ее приложения занимаются изучением и применением этого понятия.

Определение 1 (Отображение). Пусть даны два любые множества X и Y (одинаковые или различные). Пусть, далее, некоторым способом (обозначим этот способ буквой f) каждому элементу $x \in X$ поставлен в соответствие определенный элемент $y \in Y$. Тогда будем говорить, что на множестве X задано отображение f со значениями в множестве Y. При этом X называют исходным множеством отображения f (другие термины для X: область определения, множество определения, множество отправления отображения f); Y - конечное множество отображения f (или область значений, множество прибытия отображения f).

Отмечу, что здесь и в дальнейшем я нередко буду приводить различные варианты терминов, так как в разных книгах вы можете встретиться с каждым из этих вариантов.

Далее, $x \in X$ называется независимой переменной (или аргументом) отображения f, каждый фиксированный элемент (точка) x называется значением независимой переменной, соответствующий ему элемент $y \in Y$ называется значением отображения f в точке x, или образом точки x при отображении f, он обозначается f(x).

При этом x называют *прообразом* точки y . Значение x независимой переменной совместно с его образом y при отображении f может быть записано так:

$$f: x \mapsto y$$
.

Для обозначения отображения f и его значений мы будем применять такие варианты записи:

$$f: X \to Y,$$

$$X \xrightarrow{f} Y,$$

$$y = f(x) \quad (X \to Y),$$

$$x \mapsto f(x) \quad (X \to Y).$$

Замечание 1. В различных областях математики частные случаи отображений называются разнообразными синонимами: nocnedosamens-hocms, функция, onepamop, функционал, форма и т.п. Некоторые авторы используют слово функция как точный синоним нашего «omofpaxeenus». Мы условимся в дальнейшем использовать термин функция только в том случае, когда область значений Y является одним из числовых множеств – независимо от того, что представляет собой X.

Пример 1. Пусть $X = \mathbf{R}$, $Y = \mathbf{R}$, $y = f(x) = \sin x$. Тогда можно использовать такие обозначения:

$$sin : \mathbf{R} \to \mathbf{R}$$
, $\mathbf{R} \xrightarrow{sin} \mathbf{R}$, $sin : \frac{\pi}{6} \mapsto \frac{1}{2}$, $\frac{\pi}{6} \mapsto \frac{\sin \pi}{6} = \frac{1}{2}$.

Определение 2 (Общее понятие *графика*). *Графиком* $\Gamma(f)$ отображения $f: X \to Y$ называется подмножество множества $X \times Y$, состоящее из пар вида (x, f(x)), т.е.

$$\Gamma(f) := \{(x,y) \in X \times Y; y = f(x)\}.$$

Замечание 2. Очевидно, частным случаем общего понятия графика является школьное понятие с тем же названием. Например, график синуса $\Gamma(sin) \in \mathbf{R} \times \mathbf{R}$ из примера 1 имеет хорошо известный вид, изображенный на рис 03.1.:

 $Puc. \theta 3.1$

Определение 3 (*Образ* множества). Пусть задано отображение $f: X \to Y$ и подмножество $A \subset X$. *Образом* множества A при отображении f называется множество f(A) := { $y \in Y$; $\exists x \in A \ y = f(x)$ }.

Пример 2. Если
$$f(x) = x^2 (\mathbf{R} \to \mathbf{R})$$
, $A = [-1; 2]$, то $f(A) = [0; 4]$.

Пример 3.
$$sin([-\frac{\pi}{6}; \frac{\pi}{6}]) = [-\frac{1}{2}; \frac{1}{2}].$$

Замечание 3. Возьмем в определении 3 в качестве множества A всё X. Множество f(X) (именно его, а не всё Y) естественно называть множеством значений отображения f. Например, sin(R) = [-1; 1].

Определение 4. (Полный прообраз) . Пусть $B \subset Y$. Полным прообразом множества B при отображении $f: X \to Y$ называется следующее

подмножество множества X: $f(B) := \{ x \in X ; f(x) \in B \}.$

Пример 4.
$$\sin^{-1} \left(\left[-\frac{1}{2}; \frac{1}{2} \right] \right) = \bigcup_{n \in \mathbb{Z}} \left[-\frac{\pi}{6} + \pi n; \frac{\pi}{6} + \pi n \right].$$

Упражнение 1. $\sin^{-1}([0;1]) = ?$

Упражнение 2. Пусть $f: X \to Y$, $A \subset X$, B := f(A).

- a) Докажите, что всегда $f(B) \supset A$.
- б) Приведите пример, когда $f(B) \neq A$. Существование таких примеров объясняет, почему в определении 4 используется слово *«полный»* бывают и *«неполные»* прообразы!

Определение 5 (*Сужение*). *Сужением* отображения $f: X \to Y$ на подмножество $A \subset X$ называется отображение $f|_A: A \to Y$, действующее по прежнему закону:

$$\forall x \in A \ f|_A : x \mapsto f(x)$$

Иными словами, производится уменьшение исходного множества X до более узкого множества A. При этом можно также уменьшить множество Y до меньшего множества $B \subset Y$, такого что $f(A) \subset B$. Такое сужение будем обозначать $f|_{A \cap B}$.

Пример 5. Если взять сужение отображения $sin : \mathbf{R} \to \mathbf{R}$ на множество

$$A = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

и множество

$$B = [-1; 1],$$

т.е. отображение

$$sin|_{A,B}: \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \rightarrow [-1;1],$$

то его график будет такой, как показано на рисунке 03.2.:

Puc. 03.2

Определение 6 (*Композиция*). Пусть $f: X \to Y$, $g: Y \to Z$. Построим отображение $h: X \to Z$ по формуле

$$h(x) = g(f(x))$$
.

Отображение h называется композицией отображений f, g и обозначается $g \circ f$ (именно в таком порядке: справа налево - такой порядок сложился исторически; впрочем, некоторые авторы меняют этот порядок и пишут $f \circ g$). Иными словами, композиция $g \circ f$ отображений f и g - это последовательное выполнение двух отображений — сначала f, а затем g.

Пример 6. Пусть
$$f:[0;1] \to [0;2],$$
 $f(x) = 2 - x^2,$ $g:[0;2] \to \mathbf{R},$ $g(y) = \sqrt{y}.$ Тогда $h = g \circ f:[0;1] \to \mathbf{R},$ $h(x) = \sqrt{2 - x^2}.$

Определение 7 (*Тождественное отображение*). Отображение $f: X \to X$, оставляющее каждый элемент $x \in X$ на месте, т.е. такое,

при котором $\forall x \in X \ f(x) = x$, обозначается id_X и называется moxcdecmbehnen отображением множества X на себя:

$$id_X : X \rightarrow X$$
, $id_X : x \mapsto x$, $id_X(x) = x$.

Пример 7. Если $X = \mathbf{R}$, то id_X имеет хорошо известный график – рисунок 03.3 :

Замечание 4. Пусть $b \in Y$ — фиксированный элемент из Y . Отображение $f: x \mapsto b$, принимающее одно и то же значение при всех $x \in X$, мы не будем называть тождественным отобра-

жением, название для него – постоянное отображение, или константа.

Определение 8 (сюръекция, инъекция, биекция).

а) Отображение $f: X \to Y$ называется *сюръективным* (или *сюръекцией*), если f(X) = Y, иными словами, если каждый элемент $y \in Y$ имеет хотя бы один прообраз в множестве X, т.е. если

$$\forall y \in Y \quad \exists x \in X \quad f(x) = y$$

б) Отображение $f: X \to Y$ называется *инъективным* (*инъекцией*), если оно «не склеивает точек», т.е. если

$$\forall x_1, x_2 \in X \qquad (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$$

в) Отображение $f: X \to Y$ называется биективным (биекцией), если оно одновременно сюръективно и инъективно, т.е. если

$$\forall y \in Y \ \exists_1 x \in X \ f(x) = y. \tag{1}$$

Замечание 5. Возможны другие, равносильные определения этих трех свойств отображений:

- а) f сюръективно, если каждый $y \in Y$ имеет при этом отображении не менее одного прообраза (по крайней мере один прообраз),
- б) f инъективно, если каждый $y \in Y$ имеет при этом отображении не более одного прообраза,
 - в) f биективно, если каждый $y \in Y$ имеет точно один прообраз.

Пример 7. Отображение $y = arctg \ x \ (R \to R)$ инъективно – при $y \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ имеется единственный прообраз $x = tg \ y$, при остальных

график изображен на рисунке 03.2.

 $y \in \mathbf{R}$ прообразов нет (вспомните определение арктангенса); тем самым это отображение не сюръективно (а значит, не биективно).

Пример 8. Отображение по формуле $y = x^3$ ($\mathbf{R} \to \mathbf{R}$) сюръективно и инъективно (т.е. биективно) , так как каждый $y \in \mathbf{R}$ имеет ровно один прообраз $\mathbf{x} = \sqrt[3]{y}$.

Пример 9. Отображение по формуле $f(x) = x^2$ ($R \rightarrow R$) не является ни сюръективным, ни инъективным (проверьте !). Если взять $Y = [0; +\infty) = : R^+$, то отображение $f(x) = x^2$ ($R \rightarrow R^+$) становится сюръективным (мы убрали из множества прибытия отображения «ненужные» элементы). Но оно, как и раньше, не инъективно. Если же сузить это отображение до $R^+ \rightarrow R^+$, то оно становится биективным.

Пример 10. Отображение $sin: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \left[-1; 1\right]$ биективно (именно при таких множествах отправления и прибытия). Именно этот

Замечание 6. В литературе встречаются иные термины для обозначения описываемых свойств:

- а) f сюръективно \Leftrightarrow : f является *отображением* X на Y (обратите внимание на предлог «на»).
- б) f инъективно \Leftrightarrow : f является взаимнооднозначным отображением X в Y (здесь предлог «в»),
- в) f биективно \Leftrightarrow : f является взаимнооднозначным отображением X на Y.

Упражнение 3. Установите, какими из свойств а), б), в) обладает каждое из следующих отображений:

$$y = x^4$$
 $(\mathbf{R} \to \mathbf{R})$, $y = x^4$ $(\mathbf{R} \to \mathbf{R}^+)$, $y = tg x$ $((-\frac{\pi}{2}; \frac{\pi}{2}) \to \mathbf{R})$, $y = \sin x$ $([-\frac{\pi}{2}; \frac{\pi}{2}] \to \mathbf{R})$, $y = \sqrt{x}$ $(\mathbf{R}^+ \to \mathbf{R}^+)$, $y = x^2 - x$ $(\mathbf{R} \to \mathbf{R})$.

Упражнение 4. В тех случаях из упражнения 3, когда отображение не является биективным, постройте его биективное сужение.

Определение 9, последнее в этом параграфе (*Обратное отображение*). Пусть $f: X \to Y$ - биективное отображение. Как видно из формулы (1), по каждому $y \in Y$ однозначно восстанавливается его прообраз x. Эта операция — восстановление прообраза по его образу - и называется отображением, *обратным* к f, она обозначается f. Таким образом, f является отображением из Y в X, при этом

$$\begin{array}{cccc}
 & & & & f \\
 & & & & f \\
 & & & y \mapsto x & \Leftrightarrow & x \mapsto y .
\end{array}$$

Замечание 7. Вы заметили, что верхний индекс в обозначении обратного отображения (как и в обозначении полного прообраза в определении 4) написан точно над символом отображения, без смещения его направо, чтобы не смешивать его с символом обратной величины числа (см. § 04). Я понимаю, что зрительно эта разница трудно различима, но надеюсь, что из контекста всегда и так будет ясно, что имеется в виду.

Пример 11. Отображение $arcsin: [-1;1] \rightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ является обратным к биективному отображению

$$sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right],$$

его график изображен на рис. 03.4.

Упражнение 5. Знакомо ли Вам отображение, обратное к такому:

$$x \mapsto x^2 (\mathbf{R}^+ \to \mathbf{R}^+)$$
?

Как его обычно обозначают?

Упражнение 6. Докажите, что для любого биективного отображения $f: X \rightarrow Y$ справедливы равенства

$$\int_{0}^{-1} f \circ f = id_{X} \qquad f \circ f = id_{Y}.$$

Puc. 03.4

§ 04. Множество *R*

Как уже было сказано в § 02, множество всех действительных чисел обозначается буквой **R**. Наравне с термином действительные числа употребляется также термин вещественные числа.

Понятие действительного числа мы, конечно, считаем известным. Напомним всё же некоторый комплекс основных свойств действительных чисел. В конце параграфа станет ясно, почему мы говорим здесь именно об этих свойствах.

Свойства, относящиеся к операции сложения. Их обозначение будет начинаться с буквы A (английское *addition* - *сложение*). Для краткости записи мы не будем каждый раз указывать, что приводимое свойство верно для всех вещественных чисел, обозначаемых x, y, z.

A1. x+y=y+x (коммутативность сложения),

A2. (x+y) + z = x + (y+z) (ассоциативность сложения),

A3. $\exists 0 \in \mathbb{R} \ \forall x \in \mathbb{R} \ x+0=x$ (существование нулевого элемента),

A4. $\forall x \in \mathbf{R} \quad \exists y \in \mathbf{R} \quad x + y = 0$ (существование противоположного элемента, его обозначают (-x)).

Замечание 1. Напомню одно полезное обозначение. Если требуется записать сумму большого числа слагаемых, пользуются специальным символом Σ , происходящим от греческой буквы «сигма». Например,

$$x_0 + x_1 + x_2 + x_3 + \ldots + x_{20} = \sum_{j=0}^{20} x_j$$
.

Свойства, относящиеся к операции умножения. Обозначения - с буквой \mathbf{M} (multiplication - умножение)

M1. xy = yx (коммутативность умножения),

M2. (xy)z = x(yz) (ассоциативность умножения),

M3. $\exists 1 \neq 0 \ \forall x \in \mathbb{R}$ $x \cdot 1 = x$ (существование единицы),

М4. $\forall x \neq 0 \ \exists y \in \mathbf{R} \ xy = 1$ (существование числа, обратного к x, обозначается $\frac{1}{x}$ или x^{-1}).

Свойство, связывающее сложение и умножение.

AM1. $(x+y)\cdot z = xz + yz$ (дистрибутивность сложения относительно умножения).

Упражнение 1. Используя только сформулированные к этому моменту 9 свойств (так, как будто ничего, кроме них, о действительных числах вы не знаете), докажите, что

$$(x+y)^2 = x^2 + 2xy + y^2$$
.

Естественно, здесь использованы обозначения $x^2 := x \cdot x$, 2 := 1 + 1. Зафиксируйте, какие именно свойства вы использовали.

Замечание 2. Только что полученная формула, конечно, известна вам из школы. Упражнением 1 я только хотел показать, как мало, в сущности, нужно знать о числах, чтобы выводить подобные формулы. К сожалению, в школах не изучается обобщение этой формулы, известное как *бином Ньютона*. Приведу ее: при любом натуральном показателе степени n и любых числах x, y справедливо равенство

$$(x+y)^{n} = \sum_{j=0}^{n} {n \choose j} x^{n-j} y^{j},$$
 (1)

где $\binom{n}{j}$ — так называемые *биномиальные коэффициенты*, которые можно вычислить по формуле

$$\binom{n}{j} = \frac{n!}{j!(n-j)!}.$$

Вопрос для отдыха. Один персонаж советской классической литературы произносит слова: «Подумаешь, бином Ньютона!». Кто это? Как вы думаете, какое отношение к этой формуле хотел он выразить? Пренебрежение? Уважение?

Свойства, относящиеся к сравнению чисел. Обозначения — с буквой С (comparison - cpaвнение).

C1. $x \le x$,

C2. $x \le y$ *или* $y \le x$ (т.е. любые два действительных числа можно сравнить по величине),

C3.
$$(x \le y \ u \ y \le x) \Rightarrow x = y$$
,

C4.
$$(x \le y \ u \ y \le z) \Rightarrow x \le z$$
.

Свойства, связывающие сложение и умножение с операцией сравнения.

AC1.
$$x \le y$$
 \Rightarrow $\forall z \in \mathbf{R}$ $x + z \le y + z$,

MC1.
$$(x \le y, z \ge 0) \Rightarrow xz \le yz$$
.

Замечание 3. Если принять символ ≤ за основной знак сравнения, остальные знаки сравнения могут быть определены через него по таким формулам:

$$x \ge y :\Leftrightarrow y \le x, \quad x < y :\Leftrightarrow (x \le y, x \ne y), \quad x > y :\Leftrightarrow y < x.$$

Упражнение 2. Не используя никакой информации о действительных числах, кроме появившейся с начала этого параграфа, докажите:

a)
$$x > 0 \Leftrightarrow (-x) < 0$$
,
6) $x \le y \Leftrightarrow (-x) \ge (-y)$,
6) $1 > 0$.

Замечание 4. Перечисленные к этому моменту свойства не определяют однозначно множество \boldsymbol{R} . Например, все эти свойства справедливы, если ограничиться множеством \boldsymbol{Q} (не напоминаю смысла обозначения \boldsymbol{Q} , поищите в § 02). Однако можно добавить еще одно свойство множества \boldsymbol{R} , в результате чего итоговая система свойств станет xарактеристической, т.е. никакое множество, кроме \boldsymbol{R} , этой системе не удовлетворит (подробнее об этом см. дальше, в замечании 6). Прежде, чем сформулировать это последнее свойство, введем для удобства одно (необщепринятое) обозначение.

Определение 1. Пусть $A \subset \mathbf{R}$, $B \subset \mathbf{R}$, $c \in \mathbf{R}$ (не забыли о различии символов \subset и \in ?). Введем следующие обозначения:

$$\begin{array}{cccc} A \leq c & :\Leftrightarrow & \forall x \in A & x \leq c \\ c \leq B & :\Leftrightarrow & \forall y \in B & c \leq y \\ A \leq B & :\Leftrightarrow & \forall x \in A & \forall y \in B & x \leq y. \end{array}$$

Аналогичный смысл будет придаваться формулам со знаками \geq , <, > . (Необычность этих обозначений в том, что по своему расположению на действительной оси сравниваются не только отдельные числа, но и подмножества из \boldsymbol{R} .)

Свойство С5 (*Полнота* множества **R**). Пусть $A,B\subset \mathbf{R},\ A\neq\emptyset$, $B\neq\emptyset$. Тогда

$$\forall A \ \forall B \quad (A \leq B \Rightarrow \exists c \in \mathbf{R} \ A \leq c \leq B).$$

Образно говоря, это означает следующее: Если A, B — два непустых подмножества на действительной прямой, и множество B находится правее множества A, то обязательно существует действительное число c, разделяющее эти множества (на действительной прямой нет «дырок», отсюда и слово «полнота»). Пример

взаимного расположения множеств A, B и точки c, описанный в свойстве C5, вы можете увидеть на рисунке 04.1.

Puc. 04. 1

Замечание 5. Можно доказать, что множество Q не обладает свойством C5. Например, пусть

$$A = \{ x \in \mathbf{Q}; x^2 < 2 \},$$

 $B = \{ x \in \mathbf{Q}; x^2 > 2, x > 0 \}.$

Здесь A < B, но не существует **рационального** числа, разделяющего эти множества (вспомните, что $\sqrt{2}$ - иррациональное число).

Замечание 6. Можно доказать, что полный набор из 16 свойств А1-А4, М1-М4, АМ1, С1-С4, АС1. МС1, С5 однозначно определяет множество \boldsymbol{R} . Точнее говоря, если найдется другое множество \boldsymbol{R}_1 с теми же свойствами, то оно обязательно изоморфно множеству \boldsymbol{R} , т.е. существует такая биекция $f: \boldsymbol{R} \to \boldsymbol{R}_1$, что если $x \mapsto x_1, y \mapsto y_1$, то

$$x + y \mapsto x_1 + y_1$$
, $xy \mapsto x_1y_1$, $x \le y \Leftrightarrow x_1 \le y_1$.

Поэтому, даже если бы мы до этого момента не знали, что такое «множество действительных чисел», мы могли бы сейчас сказать — это, по определению, такое множество, в котором введены операции сложения, умножения и сравнения, удовлетворяющие всем перечисленным свойствам. При таком подходе набор этих свойств называется системой аксиом (аксиоматикой) множества действительных чисел.

Вопрос для размышления. Известно, что современные компьютеры решают сложнейшие математические и прикладные задачи, пользуясь при этом только рациональными числами (да и то не всеми). В таком случае, быть может, более сложное понятие иррационального числа (в переводе с латинского слово *«иррациональный»* означает «находящийся за пределами разумного») вообще не заслуживает вни-

мания прикладников – пусть его изучают где-нибудь в абстрактной математике? Однако подумайте, удобно ли с практической точки зрения, чтобы диагональ квадрата со стороной 1 не имела длины (вернитесь к Замечанию 5).

§ 05. Верхняя и нижняя грани

В этом и следующем параграфах выводятся первые следствия из аксиоматики действительных чисел. Важную роль при этом играет свойство ${\bf C5}$ из ${\bf \$04}$ – полнота множества ${\bf R.}$

Определение 1. Будем говорить, что непустое множество $A \subset R$ *ограничено сверху*, если

$$\exists c \in \mathbf{R} \quad A \leq c.$$

При этом c называется мажорантой для множества A, оценкой сверху для множества A, иногда называют верхней границей множества A. (Естественно, у ограниченного сверху множества имеется много мажорант.) Аналогично, но со знаком \geq вместо \leq , определяется понятие множества, ограниченного снизу. Соответствующие термины - миноранта, оценка снизу, нижняя граница.

Пример 1. Для отрезка $A=[0;\ 1]$ мажорантами являются числа 2, 3, $\frac{\pi}{3}$, $\sqrt{1,1}$ и много других, а именно – любое действительное число, большее или равное 1. Миноранты этого отрезка – любые действительные числа, меньшие или равные 0.

Упражнение 1. Найдите все мажоранты и миноранты для интервала (0; 1) и для множества $(3; +\infty)$.

Определение 2. Пусть множество A ограничено сверху. Наименьшая из мажорант (если она существует — этого мы пока не знаем) называется верхней гранью множества A, она обозначается $\sup A$ (сокращение от латинского \sup граниченного снизу множества A называется \sup наибольшая из минорант ограниченного снизу множества \sup 4 называется \sup 8 называется \sup 9 на \sup 9 на

Пример 2.
$$sup [0; 1] = 1$$
, $inf [0; 1] = 0$; $sup (0; 1) = 1$, $inf (0; 1) = 0$.

Пример 3. Возьмем множества A и B из замечания 04.5 (надеюсь, вы не забыли, что эта нумерация означает «Замечание 5 из § 04»). Рассмотрим их как подмножества в R. Тогда

$$sup A = inf B = \sqrt{2}$$
.

Свойство 1. Из определения верхней грани легко вытекает следующее xарактеристическое свойство верхней грани — она обозначена здесь буквой M:

$$\sup A = M \iff \begin{cases} 1. & \forall x \in A & x \leq M, \\ 2. & \forall \varepsilon > 0 & \exists x \in A & x > M - \varepsilon \end{cases}.$$

(Здесь, как обычно, фигурные скобки, объединяющие два условия, означают логическое «и», т.е. одновременное выполнение этих условий).

Теорема 1 (Существование верхней грани). Всякое непустое ограниченное сверху множество A имеет верхнюю грань $sup\ A$ и притом единственную.

««« Обозначим B совокупность всех мажорант множества A. Очевидно, B — непустое множество и $A \leq B$. По свойству C5 существует разделяющее их действительное число c. Ясно, что c - мажоранта и что это наименьшая из мажорант, т.е. это и есть верхняя грань множества A. Любая другая из мажорант будет больше чем c, а это означает единственность верхней грани. **»»»**

Замечание 1. Аналогичное утверждение можно сформулировать для множеств, ограниченных снизу и их нижней грани. Предоставим читателю сделать это самостоятельно.

Определение 3. В ряде случаев удобно рассматривать *расширенное множество действительных чисел.* Так называют множество \overline{R} , которое получается, если к R присоединить два символа: $-\infty$ и $+\infty$, т.е.

$$\overline{R} := R \bigcup \{-\infty, +\infty\}.$$

Арифметических операций с участием новых символов пока вводить не будем, а отношение сравнения введем. Сделаем это с помощью формулы

$$\forall x \in \mathbf{R} \qquad -\infty < x < +\infty,$$

т.е. будем считать , что любое действительное число строго больше, чем $-\infty$, но строго меньше, чем $+\infty$.

Определение 4. Если множество $A \subset \mathbf{R}$ не ограничено сверху, будем считать, что $\sup A = +\infty$, а если оно не ограничено снизу, то $\inf A = -\infty$. Заметим, что нижнюю и верхнюю грани пустого множества мы не определяем.

Упражнение 2. Докажите, что для любого непустого множества $A \subset \mathbf{R}$ выполняется неравенство $\inf A \leq \sup A$.

Может ли в этом соотношении быть равенство?

Упражнение 3. Докажите, что что *sup* $N = + \infty$. Если Вы забыли, что такое N, загляните еще раз в § 02. (Чтобы не повторять в упражнениях каждый раз слово «докажите», условимся, что оно имеется в виду каждый раз, когда там просто написана какая-либо формула).

Упражнение 4.
$$\forall \ \epsilon > 0 \quad \exists \ N \in \mathbb{N} \quad \forall \ n > N \quad \frac{1}{n} < \epsilon \ .$$

Упражнение 5. $\forall a > 0 \ \forall b > 0 \ \exists n \in \mathbb{N} \ na > b$. Это утверждение называют *принципом Архимеда* :

Сколь бы малым ни был Ваш шаг a и как бы длинен ни был Ваш путь b , Вы преодолеете его, если сделаете в верном направлении достаточно большое число шагов n .

Оптимистичный принцип, не правда ли?

Упражнение 6.
$$\forall a > 0 \quad \forall b > 0 \quad \exists_1 \ n \in \mathbb{N} \quad (n-1) \ a \leq b < na$$
.

Замечание 2. Из упражнения 6 легко вытекает, что

$$\forall x \in \mathbf{R} \qquad \exists_1 \ n \in \mathbf{Z} \qquad n \le x < n+1.$$

Число n, определяемое из этой формулы, можно охарактеризовать словами « наибольшее целое число, не превосходящее x ». Его называют *целой частью числа* x и обычно обозначают

$$n = : E(x)$$
 или $n = : [x]$.

График функции E(x) вы можете увидеть на рисунке 05.1. Стрелки на правых концах нарисованных отрезков означают, что эти концы к графику не относятся (в школе этот факт иногда изображают пустым кружком).

Puc. 05. 1

Пример 4. E(3,14) = 3, E(-3,14) = -4.

Упражнение 7. Верно ли, что $\forall x, y \in \mathbf{R} \ E(x + y) = E(x) + E(y)$?

Упражнение 8. $\forall a \in \mathbf{R}$ $\forall b > a$ $\exists q \in \mathbf{Q}$ a < q < b. (Между любыми двумя действительными числами можно вставить рациональное число.)

§ 06. Три важных леммы для R

Свойство **C5** – полнота множества действительных чисел , как уже говорилось, играет в математическом анализе весьма существенную роль. Однако непосредственно оно появляется не часто, незримо работая с помощью уже доказанной нами Теоремы 5.1 о верхней грани и с помощью тех трех лемм, которые будут доказаны в этом параграфе. Надо сказать, что скромное их название - « *леммы* » - это дань исторической традиции, по их значению они должны были бы носить более высокие звания : «теоремы», «принципы» или что-нибудь подобное.

Сначала – два определения.

Определение 1 (*Вложенные отрезки*). Пусть для каждого натурального числа n задан отрезок

$$D_n = [a_n; b_n], \quad \text{где } a_n \leq b_n.$$

Мы будем говорить, что эти отрезки образуют *вложенную* систему, если

$$\forall n \in \mathbf{N} \qquad D_n \supset D_{n+1}, \tag{1}$$

что равносильно системе неравенств

$$\forall n \in \mathbf{N} \qquad a_n \leq a_{n+1} < b_{n+1} \leq b_n.$$

Определение 2 (Стягивающаяся система отрезков). Вложенная система отрезков называется стягивающейся, если в дополнение к условию (1) выполнено условие

$$\forall \varepsilon > 0 \quad \exists n \in \mathbf{N} \quad b_n - a_n < \varepsilon \,, \tag{2}$$

т.е. во вложенной системе имеются отрезки сколь угодно малой длины.

Упражнение 1. Если для вложенной системы отрезков выполнено условие

$$\forall n \in \mathbf{N} \qquad b_{n+1} - a_{n+1} = \frac{b_n - a_n}{2},$$

то она является стягивающейся.

Лемма 1 (Лемма о стягивающихся отрезках).

- а) Всякая система вложенных отрезков имеет непустое пересечение (т.е. существует точка, общая для всех отрезков).
- б) Если сверх того, эта система является стягивающейся, то общая для всех отрезков точка единственна.

««« а) Воспользуемся обозначениями из определения 1. Далее, обозначим $A = \{a_n; n \in \mathbf{N}\}$ — множество всех левых концов отрезков из вложенной системы, и B - то же для правых концов, $B = \{b_n; n \in \mathbf{N}\}$. Очевидно, $A \leq B$ (Если забыли смысл символа неравенства в применении к множествам, посмотрите определение 04.1). Следовательно, по свойству **О5** существует точка c, разделяющая эти множества, т.е.

$$\forall n \in \mathbf{N} \ a_n \leq b_n$$

откуда получается первая часть леммы, поскольку, как легко увидеть,

$$c \in \bigcap_{n \in \mathbf{N}} D_n$$
.

б) Докажем единственность общей точки для стягивающейся системы (от противного). Пусть c_1 и c_2 — две общие точки всех отрезков, причем $c_1 < c_2$. Тогда при любом натуральном n длина отрезка D_n будет удовлетворять неравенству

$$\partial \Lambda.D_n = b_n - a_n \ge c_2 - c_1$$

Если теперь положить $\varepsilon := c_2 - c_1$, то получится противоречие с условием (2) . >>>>>

Упражнение 2. Пусть $[a_n;b_n]$ – стягивающаяся система отрезков, c - единственная общая точка этой системы . Если числа β , γ удовлетворяют неравенствам $\beta < c < \gamma$, то

$$\exists n \quad [a_n; b_n] \subset [\beta, \gamma] \tag{3}$$

Упражнение 3. Останется ли верной лемма 1 (или хотя бы одна из двух ее частей), если в ее формулировке заменить отрезки [a_n ; b_n] на интервалы (a_n ; b_n) ?

Ответ: Нет, в качестве *контримера* (т.е. опровергающего примера) можно рассмотреть систему интервалов (0; $\frac{1}{n}$).

Определение 3. Пусть дана система множеств $S = \{Y_{\alpha}\}$, где индекс α сам пробегает некоторое множество A – короче будем это записывать так:

$$S = \left\{ Y_{\alpha} \right\}_{\alpha \in \Lambda}. \tag{4}$$

Эта система называется покрытием множества X (покрывает X), если $X \subset \bigcup_{\alpha \in A} Y_\alpha$, т.е. если

$$\forall x \in X \quad \exists \alpha \in A \quad x \in Y_{\alpha}.$$

Пусть, далее, $B \subset A$. Система множеств $\{Y_{\alpha}\}_{\alpha \in B}$ называется *подпокрытием* покрытия (4), если она сама покрывает X. Покрытие называется *конечным*, если в него входит конечное число множеств Y_{α} .

Пример 1. Система S_1 всех интервалов конечной длины покрывает всё \mathbf{R} . Это же относится к системе S_2 , состоящей из всех интервалов длины 1, и к системе S_3 всех интервалов с рациональными концами. Очевидно, системы S_2 и S_3 являются подпокрытиями системы S_1 . Ответьте сами на вопрос, является ли S_2 подпокрытием для S_3 ? А наоборот?

Лемма 2 (о конечном подпокрытии). Пусть $[a; b] \subset \mathbf{R}$ — некоторый отрезок на действительной прямой. Тогда всякое покрытие $S = \{U_{\alpha}\}_{\alpha \in A}$, этого отрезка, составленное из интервалов, имеет конечное подпокрытие,т.е.

$$\exists \alpha_1, \alpha_2, \ldots \alpha_n \in A \qquad \bigcup_{j=1}^n U_{\alpha_j} \supset \cdot [a; b].$$

КККК Будем доказывать эту лемму от противного. Разделим отрезок [a;b] пополам точкой $\frac{a+b}{2}$. Если весь отрезок [a;b] не имеет конечного подпокрытия покрытия S, то по крайней мере одна из двух

половин этого отрезка $- [a; \frac{a+b}{2}]$ или $[\frac{a+b}{2}; b]$ — не имеет такого

подпокрытия. Выберем такую половину, обозначим ее D_1 . Повторим с ней такое же построение, получим ее половину D_2 , для которой также отсутствует требуемое конечное подпокрытие. Продолжая таким образом, получим вложенную систему отрезков

$$D_1 \supset D_2 \supset \ldots \supset D_n \supset \ldots$$
,

которая по лемме 1 имеет общую точку c . Эта точка единственна, так как по упр.1 наша система отрезков – стягивающаяся. Но эта точка (как и любая точка отрезка [a;b]) покрыта некоторым интервалом U_{α_0} из первоначального покрытия S . Тогда по упр.2 хотя бы один из отрезков D_n имеет покрытие, состоящее из единственного интервала, т.е. имеет конечное покрытие. Полученное противоречие доказывает лемму. >>>>>

Упражнение 4. Останется ли верной лемма 2, если в её формулировке заменить:

- а) Отрезок [a; b] на интервал (a; b)?
- б) Интервалы U_{α} на отрезки $\overline{U_{\alpha}}$?

(Ответы в обоих случаях отрицательные. соответствующие контрпримеры.)

Определение 4. Окрестность точки $a \in \mathbf{R}$ — это, по определению, любой интервал (c; d), которому принадлежит точка a. Такую окрестность мы будем обозначать U(a). Окрестность точки a вида $(a - \delta, a + \delta)$ при любом $\delta > 0$ будет называться симметричной δ -окрестностью точки a и обозначаться $U_{\delta}(a)$. Проколотая окрестность точки a - это окрестность, из которой выброшена сама точка a:

$$\overset{\bullet}{U}(a) := U(a) \setminus \{a\}$$
 $\overset{\bullet}{U_{\delta}}(a) := U_{\delta}(a) \setminus \{a\}.$

Определение 5. Точка $c \in R$ называется *предельной* точкой множества $A \subset \mathbf{R}$, если

$$\forall \dot{U}(c) \qquad \dot{U}(c) \cap A \neq \emptyset, \qquad (5)$$

$$\forall \dot{U}(c) \qquad \exists d \in \dot{U}(c) \cap A,$$

равносильно:

 $\forall U_{\delta} (a)$ $U_{\delta} (a) \cap A \neq \emptyset$. также равносильно:

Совокупность всех предельных точек множества A будем обозначать A'. Множество A с присоединенными к нему предельными точками называется замыканием множества A и обозначается \overline{A} :

$$\overline{A} := A \cup A'$$

Пример 2. Пусть
$$A = (0; 1)$$
. Тогда $A' = [0; 1]$, $\overline{A} = [0; 1]$. Если $A = \{0, 1, 2\}$, то $A' = \emptyset$, $\overline{A} = A$.
$$A = \mathbf{Q} \qquad \Rightarrow \qquad A' = \mathbf{R}, \qquad \overline{A} = \mathbf{R}.$$

Упражнение 5. Точка $c \in R$ является предельной точкой для множества $A \Leftrightarrow$ любая её окрестность содержит бесконечно много точек множества A .

Лемма 3 (о предельной точке). Всякое ограниченное бесконечное множество $A \subset \mathbf{R}$ имеет хотя бы одну предельную точку.

««« От противного. Множество A ограничено, следовательно, существует отрезок [a; b], содержащий это множество. С помощью отрицания формулы (5) запишем, что ни одна точка $c \in \mathbf{R}$ не является предельной для множества A:

$$\forall c \in \mathbf{R} \quad \exists \dot{U}(c) \quad \dot{U}(c) \cap A = \emptyset.$$

Если в каждую из выбранных таким образом проколотых окрестностей вернуть ее точку c, то каждая из U(c) может содержать не более одной точки множества A (именно: c), а в совокупности они покрывают всю действительную прямую, а значит, покрывают отрезок [a;b]. По лемме 2 из этого покрытия можно выбрать конечное подпокрытие отрезка [a;b], и тем самым конечное покрытие множества A.

$$\bigcup_{j=1}^n U(c_j) \supset A.$$

Как уже было сказано, каждый из интервалов $U(c_j)$ содержит не более одной точки множества A. Следовательно, в множестве A не может быть бесконечного числа точек. Это противоречит условию леммы. »>>>>

Упражнение 6. Привести пример бесконечного множества $A \subset R$, не имеющего ни одной предельной точки.

§ 07. Множество С

В курсе математического анализа мы будем, в основном, иметь дело с действительными числами. Однако во многих дисциплинах — дифференциальные уравнения, ряд разделов физики — требуется владение более широким понятием — комплексное число. Первоначальное знакомство с этим понятием происходит в алгебре, позже оно будет изучаться в специальном предмете: ТФКП — «теория функций комплексного переменного». Однако есть вещи, которые формулируются и доказываются практически одинаково как для действительного, так и для комплексного случая, и мне кажется целесообразным говорить о них сразу в более широком смысле. Имея это в виду, коротко перечислим некоторые свойства комплексных чисел.

Определение 1. Формально *комплексное число* - это пара действительных чисел z = (x, y), записываемая как

$$x + y \mathbf{i}. \tag{1}$$

Здесь i - мнимая единица, главное свойство которой : $i^2 = -1$.

Множество всех комплексных чисел обозначается С.

Число x называется действительной частью комплексного числа z, а число y - его мнимой частью. Их обозначают с помощью сокращений

от французских слов reel (действительный) и imaginare (мнимый):

$$x =: Re z, y =: Im z$$
.

Замечание 1. Комплексные числа удобно изображать точками на плоскости, ставя в соответствие каждому числу z = x + yi точку плоскости, имеющую координаты (x; y) в некоторой фиксированной декартовой системе координат (см. рис.07.1). Иногда считают, что комплексное число z — это вектор, соединяющий начало

Puc. 07.1

координат с точкой (x; y) . Плоскость, на которой изображены комплексные числа, называют комплексной плоскостью. Этим же именем часто называют и само множество комплексных чисел.

Комплексное число x+0 i отождествляется с действительным числом x, таким образом, действительные числа - частный случай комплексных. На комплексной плоскости действительные числа расположены на оси 0x. Числа, расположенные на оси y, называют чисто мнимыми или просто мнимыми. (Легкий вопрос: может ли комплексное число одновременно быть действительным и мнимым?)

Определение 2. Сложение комплексных чисел. Если

$$z_1 = x_1 + y_1 i, \quad z_2 = x_2 + y_2 i,$$

то

$$z_1 + z_2 := (x_1 + x_2) + (y_1 + y_2) i$$
.

Умножение комплексных чисел: при тех же обозначениях:

$$z_1 z_2 := (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i.$$

Замечание 2. Сложение и умножение в C, как и в R, удовлетворяет свойствам A1-A4, M1-M4, AM1 из § 4. Вычитание и деление комплексных чисел, как обычно, определяются как операции, обратные соответственно к сложению и умножению.

Замечание 3. Как видно из определения 2, сложению двух комплексных чисел соответствует сложение векторов, изображающих их на комплексной плоскости.

Упражнение 1. Представить в виде x + yi результаты следующих арифметических действий:

$$(3-i)(2-6i)=?$$
 $(1+i)^4=?$ $\frac{1}{3+4i}=?$ $(1+i)^{-4}=?$

Замечание 4. Операцию сравнения \leq в C не вводят. Дело в том, что ввести сравнение в C так, чтобы сохранились свойства AC1 и MC1, невозможно, а без этого от операции сравнения мало проку. Если где-то в следующем тексте будет сказано, что , например, одно число больше другого, это всегда будет означать (без прямого пояснения), что речь идет о действительных числах

Определение 3 (Модуль и аргумент комплексного числа). Модулем (или абсолютной величиной) комплексного числа z=x+yi называется неотрицательное число $|z|:=\sqrt{x^2+y^2}$. Геометрически это число

означает расстояние r от точки z до начала координат или, по-другому, длину вектора z . *Аргумент* числа z – это измеренный в радианах угол ϕ между осью x и вектором z. Обозначение: $Arg\ z$. Если известны модуль и аргумент числа z, то справедливо равенство

$$z = |z| (\cos \varphi + i \sin \varphi).$$

Правая часть этого равенства называется *тригонометрической* формой комплексного числа z.

Замечание 5. Аргумент числа z определен неоднозначнонапример, аргументом числа 1+i является число $\pi/4+2\pi n$ при любом $n \in \mathbb{Z}$. Для однозначности вводят какое-либо ограничение, например, считают, что аргумент находится в полуинтервале $(-\pi; \pi]$. Такую величину аргумента называют его *главным значением*и обозначают arg z.

Свойство 1 (Умножение чисел в тригонометрической форме). Если

$$z_1 = r_1 (\cos \varphi_1 + \mathbf{i} \sin \varphi_1), \quad z_2 = r_2 (\cos \varphi_2 + \mathbf{i} \sin \varphi_2),$$

TO

$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)),$$

т.е. при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Упражнение 2.
$$\left| \frac{1}{z} \right| = \frac{1}{|z|}$$
, $Arg \frac{1}{z} = -Arg z$

Свойство 2. Из геометрических свойств треугольников на плоскости вытекает несколько важных неравенств для комплексных чисел:

$$|Re\ z| \le |z|$$
, $|Im\ z| \le |z|$, $|z| \le |Re\ z| + |Im\ z|$ (1)

$$|z_1 \pm z_2| \le |z_1| + |z_2|, \qquad z_1 \pm z_2| \ge ||z_1| - |z_2||$$
 (2)

Определение 4 (Сопряженное число). Пусть дано число z = x + yi. Комплексно сопряженным к этому числу называется число $\bar{z} = x - yi$. На комплексной плоскости число \bar{z} расположено симметрично числу z относительно оси x.

Упражнение 3. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. Докажите это равенство и аналогичные равенства для вычитания, умножения и деления.

Вопрос для размышления. Известный русский религиозный философ Павел Флоренский, имевший довольно солидные математические познания, в работе «Мнимости в геометрии» предложил способ изобра-

жения комплексных чисел не на плоскости, а на прямой. Вот краткое изложение этого способа. Выделим на прямой ее «верхнюю» и «ниженою» стороны (как бы склеим вместе две прямых). Образ числа z = x + yi будем строить так. Отложим от начала координат по верхней стороне прямой действительную часть числа z, то есть x (см. рис. 07.2). Затем из полученной точки спустимся на нижнюю сторону прямой и, продолжив движение по ней, отложим здесь величину y. Получившуюся точку и предлагается считать изображением комплексного числа z. Подумайте, в чем заключается серьезное неудобство такого способа.

Puc.07.2

§ 08. Понятие о мощности множества

Когда мы имеем дело с множествами, содержащими конечное число элементов, мы понимаем, что означают словосочетания «в множестве X столько же элементов, сколько в Y», «в множестве X больше элементов, чем в Y». Имеют ли смысл эти выражения, когда мы говорим о бесконечных множествах? Об этом — очередной параграф.

Определение 1 (равномощность). Пусть даны два множества X, Y (конечные или бесконечные). Будем говорить, что эти множества равномощны (или имеют одинаковую мощность), если существует биективное отображение $h: X \to Y$. В этом случае будем применять обозначение $X \sim Y$.

```
Пример 1. { 10 морковок } ~ { 10 яблок } .  N \sim \{ 11, 12, 13, \dots \}, \qquad \text{биекция : } n \mapsto n+10 \text{ .}   N \sim \{ \text{ все четные числа } \}, \qquad \text{биекция : } n \mapsto 2n \text{ .}
```

Упражнение 1. Доказать:

$$a$$
) [0; 1] \sim [a ; b] при любых действительных a , b , где a $< b$, b 0 [0; 1] \sim [0; 1) \sim (0; 1) .

Свойство 1. В следующих формулировках X, Y, Z - любые множества.

- а) $X \sim X$ (всякое множество равномощно себе самому),
- δ) $X \sim Y$ \Rightarrow $Y \sim X$,
- $e) \quad (X \sim Y, Y \sim Z) \quad \Rightarrow \quad X \sim Z .$

Упражнение 2. Докажите все пункты свойства 1, построив соответствующие биекции.

Замечание 1. В математике нередко встречаются отношения между теми или иными объектами, удовлетворяющие условиям а), б), в). Таковы , например, отношение равенства чисел, равенства множеств, подобия фигур (например, треугольников). Эти условия имеют специальные названия : а) рефлексивность, б) симметричность, в) транзитивность. Любое отношение, удовлетворяющее этим трем условиям, принято называть отношением эквивалентности (таким образом, существуют много разных отношений эквивалентности).

Определение 2. Будем говорить, что мощность множества X не больше, чем мощность Y, если существует инъективное отображение $g:X\to Y$ (тем самым существует биекция между X и $Y_1=f(X)$). Если при этом не существует инъекции из Y в X, то будем говорить, что мощность X строго меньше (или просто меньше), чем мощность Y.

Замечание 2. Формально говоря, имеются четыре возможности:

- 1. \exists инъекция $X \to Y$ **и** \exists инъекция $Y \to X$,
- 2. \exists инъекция $X \to Y$ и не \exists инъекция $Y \to X$,
- 3. $He \exists$ инъекция $X \to Y$ и \exists инъекция $Y \to X$,
- 4. **He** \exists инъекция $X \rightarrow Y$ **u не** \exists инъекция $Y \rightarrow X$.

Все ли из этих вариантов на самом деле реализуются? Это исследуется в следующей теореме Бернштейна, которую мы приведем без доказательства.

Теорема 1. Если выполняется вариант 1, то $X \sim Y$. Варианты 2 и 3 возможны. Вариант 4 невозможен.

Другими словами, для любых двух множеств X, Y выполняется одно из трех:

X и Y равномощны,

мощность X строго меньше, чем мощность Y,

мощность Y строго меньше, чем мощность X.

Замечание 3. Обратите внимание, что употребляя выражения с участием слова *мощность*, мы не давали определения отдельно этому слову. Это не трудно было бы сделать, но потребовало бы излишней, на мой взгляд, формализации. Ограничусь неформальным описанием: *мощность* множества X (ее называют еще *кардинальным числом* множества X и обозначают Card X) — это то общее, что есть у множества X и у всех равномощных ему множеств. Этот термин является обобщением понятия «количество элементов», привычного, когда речь идет о конечных множествах.

§ 09. Счетные множества. Континуум

Мы знаем, что среди конечных множеств существуют неравномощные, т.е. состоящие из разного числа элементов. А как обстоит дело у бесконечных множеств? Может быть, все они равномощные? Оказывается, нет, в конце параграфа это станет ясно (Теорема 1). Но сначала поговорим о наименьшей среди бесконечных мощностей.

$$\operatorname{Card} X = \operatorname{Card} \mathbf{N} = \mathbf{v}$$
.

Пример 1. Конечно, **N** — счетное множество. Счетными являются множество $\{11, 12, 13, \dots\}$, множество всех четных чисел. Соответствующие биекции были приведены в примере 08.1.

Упражнение 1. Докажите, что множество Z всех целых чисел счетно. (Придумайте для Z подходящую нумерацию.)

Свойство 1. Всякое бесконечное множество содержит счетное подмножество.

КККК Выберем в X произвольным образом один элемент и обозначим его x_1 (т.е. дадим ему номер 1). Затем выберем еще один элемент из X, не совпадающий с первым, и обозначим его x_2 . Далее так же выберем x_3 , x_4 и т.д. Этот процесс не может закончиться через конечное число шагов, т.к. X — бесконечно. Получается множество

$$\{x_1, x_2, x_3, \dots\},\$$

которое в силу произведенной нумерации - счетно . >>>>>>

Замечание 1. Свойство 1 может быть записано короче : «Если множество X бесконечно, то Card $X \ge \mathbf{v}$ ». Это и значит, что среди бесконечных мощностей счетная является наименьшей.

Свойство 2. Объединение конечной или счетной совокупности счетных множеств счетно.

««« Обозначим X_m множество с номером m из этой совокупности и пусть x_{mn} — элемент множества X_m , имеющий номер n при введенной в X_m нумерации. Расположим эти элементы в виде таблицы — см. рис.09.1. Проведем нумерацию всех этих элементов, начиная с x_{11} , следуя нарисованным в таблице стрелкам. Такой

Puc 09.1

способ пригоден и при конечном, и при бесконечном числе строк в таблице. Ясно, что при этом все элементы всех множеств X_m получат номера. (Придумайте, как уточнить нумерацию, когда различные множества X_m имеют общие элементы.) . >>>>>

Упражнение 2. Докажите, что прямое произведение двух счетных множеств счетно. (Представьте его как счетное объединение счетных множеств)

Свойство 3. Card Q = v. Вот и вся формулировка. Если Вас смущает ее краткость, прочтите более длинный вариант : множество всех рациональных чисел счетно.

««« Для каждого рационального числа существует единственное представление в виде несократимой дроби p/q, где p, q — целые числа, причем q>0. Очевидно, отображение $p/q\mapsto (p,q)\in \mathbf{Z}\times\mathbf{N}$ является инъективным отображением множества \mathbf{Q} в счетное множество $\mathbf{Z}\times\mathbf{N}$, поэтому \mathbf{Q} - не более, чем счетно, а так как оно бесконечно, то оно и не менее, чем счетно (см. Замечание 1). **»»»**

Упражнение 3. Придумайте конкретную нумерацию всех чисел множества ${m Q}$.

Замечание 2. Можно доказать, что множество всех алгебраических чисел, более обширное, чем \mathbf{Q} , тоже счетно. Напомню, что число xназывается алгебраическим, если

$$\exists a_0, a_1, a_2, \dots a_n \in \mathbf{Z}$$
 $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$.

Определение 2. Будем говорить, что множество X имеет мощность континуума, если X равномощно отрезку [0;1]. Это записывают так:

$$\operatorname{Card} X = \operatorname{Card} [0; 1] = \mathbf{c},$$

вводя тем самым обозначение с для мощности континуума.

Теорема 1. с > v . Опять короткая формулировка. С учетом того, что мощность континуума не меньше, чем \mathbf{v} (свойство 1), это неравенство означает, что не существует биективного отображения $\mathbf{N} \to [0;1]$.

««« Предположим, что такое отображение существует, т.е. можно перенумеровать все (!) числа отрезка [0; 1], обозначив их

$$x_1, x_2, x_3, \ldots, x_n \ldots$$
 (1)

Упражнение 4. Один студент, выслушав только что приведенное доказательство, возразил так : «С помощью этого построения мы нашли **одно** незанумерованное число c . Но, очевидно, добавив к счетному множеству (1) еще один элемент c , мы получим снова счетное множество . Почему же мы считаем, что доказали несчетность отрезка? » Ответьте этому студенту.

Упражнение 5. При любых a < b отрезок [a; b] имеет мощность континуума.

Упражнение 6. Конечное или счетное объединение множеств мощности ${\bf c}$ также имеет мощность ${\bf c}$. (Расположите все эти множества внутри некоторого отрезка [a; b].)

Упражнение 7. Card $\mathbf{R} = \mathbf{c}$.

Вопрос для размышления. Можно ли принять за определение иррационального числа то объяснение, которое привел Владимир Даль в своем «Толковом словаре»: это «величина, которую нельзя выразить ни целым, ни дробным числом, а лишь корнем степени»? Подсказка: соедините результаты упражнения 7 и замечания 2.

Замечание 3. Можно доказать, что $Card(\mathbf{R} \times \mathbf{R}) = \mathbf{c}$. Это означает, что «на всей плоскости точек столько же, сколько на отрезке». Столько же точек и в трехмерном пространстве. А существуют ли мощности, большие, чем \mathbf{c} ? Оказывается, да. Более того, для любого множества X существует множество Y, такое что $Card\ Y > Card\ X$ (именно, можно взять $Y = \mathbf{P}(X)$ — см. обозначение в $\pi.02.8$).

Упражнение 8. Вспомним, что формального определения кардинального числа у нас не было. Поэтому переформулируйте все (или хотя бы некоторые) утверждения параграфов 08 и 09 без использования слов мощность и кардинальное число (призовите на помощь термины инъекция и биекция).

Вот вы и закончили изучение Введения в математический анализ. Понятия, с которыми вы здесь познакомились или возобновили знакомство, используются в математическом анализе, да и в математике вообще, очень широко. Поэтому мне хотелось бы предложить вам следующее итоговое задание:

Заключительное упражнение. В конце этой брошюры находится Алфавитный указатель, содержащий основные термины, рассмотренные в ней. Выберите в этом указателе случайным образом 10-12 строк и проверьте, можете ли вы объяснить названные в них понятия (а лучше — дайте этим понятиям точные определения). Установите правильность ваших ответов с помощью ссылок Указателя. На основе этого теста оцените, насколько хорошо вы усвоили прочитанное и, как следствие, насколько вы готовы к дальнейшему изучению математического анализа.

Алфавитный указатель

Α	И	
абсолютная величина	импликация	9
алгебраическое число44	инъекция	22
аргумент19	иррациональные числа	16
аргумент комплексного числа 38	исходное множество	18
ассоциативность сложения 25		
ассоциативность умножения 25	К	
Б	кардинальное число	42
_	квантор общности	10
биекция22	квантор существования	10
бином Ньютона26	кванторы	10
биномиальные коэффициенты 26	коммутативность сложения	25
	коммутативность умножения.	25
В	комплексная плоскость	
D	комплексно сопряженное число	
верхняя граница29	комплексное число	
верхняя грань29	композиция	
вещественные числа	конечное множество	
вложенная система32	конечное покрытие	
	константа	
Γ	конъюнкция	11
главное значение	M	
график отооражения 19	мажоранта	29
_	миноранта	29
Д	мнимая единица	37
25	мнимые числа	
действительные числа	множество	
дизъюнкция11	множество значений	20
дистрибутивность	множество определения	18
дополнение16	множество отправления	18
	множество прибытия	18
3	модуль комплексного числа	
	мощность	
замыкание множества	мощность континуума	44

Н	равносильность	10
••	разность множеств	
натуральные числа14	расширенное множество	
независимое переменное19	действительных чисел	30
нижняя граница29	рациональные числа	14
нижняя грань29	рефлексивность	41
0	С	
область значений 18	2	25
область определения 18	симметричная б-окрестность	
образ множества20	симметричность	
образ точки 19	сравнение	26
обратное отображение	стягивающаяся система	22
объединение множеств15	отрезков	
ограниченность множества	сужение отображения	
сверху29	счетное множество	
окрестность точки	сюръекция	22
onepamop		
отображение 18	T	
отрицание11	I.	
оценка сверху, снизу29	тождественное отображение	21
	точка множества	
П	транзитивность	
11	тригонометрическая форма	
napa 17	комплексного числа	39
пересечение множеств	TOTAL COLOR OF THE STATE OF THE	
подмножество		
подпокрытие	Ф	
покрытие множества	•	
полнота множества R 27	форма	19
полный прообраз множества 20	функционал	19
предельная точка	функция	19
принадлежность14		
принцип Архимеда31	- 11	
проколотая окрестность	4	
прообраз точки19	целая часть числа	31
прямое произведение17	целые числа	
пустое множество	,	
Р	Э	
Γ	эквивалентность	41
равномощность40	элемент	

Учебное издание

Майков Евгений Витальевич Математический анализ Введение

Изд. лиц. № 040414 от 18.04.97. Ордена «Знак почета» издательство Московского университета. 103009, Москва, ул. Б.Никитская, 5/7.

Подписано в печать 15.06.98.
Заказ № 61. Формат 60 х 90 /16.
Усл. печ. л. 3,0. Уч.-изд. л. 3,2. Тираж 150 экз.
Отпечатано на ризографе
в отделе оперативной печати и информации химического факультета МГУ.
119899, Москва, Ленинские горы, химический факультет МГУ