

CoWeave.ai

Weave automation.

Orchestrate intelligence in your SDLC.

Traditional SDLC Process

The Current Engineering Reality

The Coordination Tax

- Distributed teams, endless meetings, and approval chains bottleneck the entire pipeline
- Ticket triaging, architecture reviews, code reviews, deployments—all require synchronous coordination

Knowledge Silos

- Critical context trapped in engineers' heads, Slack threads, and outdated wikis
- Constant context switching and steep learning curves for new team members

The LLM Context Tax

- Teams use Al assistants but manually gather context for every prompt
- Copy-pasting code, re-explaining architecture, no memory across tasks
- Engineers spend more time as "context gatherers" than problem solvers

What is Al-Assisted S/W Development?

A Fundamental Paradigm Shift

The New Model:

- LLMs perform the first line of thinking and work across the SDLC
- Human engineers focus on review, refinement, and strategic decisions
- Human supervision at every step ensures quality and accountability

LLMs Take the First Pass:

- Architecture and design
- Root cause analysis
- Implementation and testing
- Deployment automation

The Result:

- Eliminate the coordination tax—Al works 24/7, no meetings required
- Turbo charge operational efficiency and software reliability
- Elevate engineers from executors to expert reviewers

Traditional SDLC Process

Al-Assisted SDLC Process

CoWeave in a nutshell

Integrate with Your Systems

Code Repo

Github, Gitlab, Bitbucket, etc.

Ticket Repo

Jira, Github, etc.

Documentation

Confluence, Notion, etc.

LLM(s)

Claude (cloud hosted)

Collaboration

Slack, PagerDuty, etc.

Infrastructure

Cloud Providers, Kubernetes, Terraform, etc.

Monitoring

Prometheus, Grafana, ELK Stack, etc.

Why can't luse LLM-powered IDEs directly?

You can and You Will with this platform

however...

Generic LLMs have Key Limitations

No Institutional Knowledge

Generic LLMs are *novices* to your company. They don't understand your unique codebase, internal APIs, or the system-wide impact of a local change.

Process Blindness

They lack an understanding of your team's specific workflows, like your Git process or testing methodologies. You must give them stepby-step instructions for every action.

Context Awareness

Most LLMs cannot remember sufficient conversational history or project context across sessions, forcing engineers to manually copy and paste details for every task.

Constant Manual Work

Engineers must act as "prompt engineers," manually providing rules and context, which makes the process inefficient and prone to error.

Risk of Unreliable Output

Because they lack your domain knowledge, they can produce technically sound but impractical solutions that waste time and introduce new problems.

That's We When Come In

Al as an Enabler

- Generic LLMs become a powerful and customized workhorse
- Human Engineers get a significant head start

Adaptive Intelligence

- Automate tasks, reduce errors, and develop with quality
- Accelerate Software
 Development Lifecycle

Augmentation, Not Overhaul

- Adapt to your specific engineering practices
- No re-engineering required

Value CoWeave Provides

- Create agentic workflows with domain-specific knowledge finetuned for your specific processes, tech stack, and systems
- Capture and apply team best practices automatically: ensure consistency without every engineer manually guiding the Al
- Purpose-built integrations with engineering tools and platforms
- Optimized for technical decision-making and troubleshooting

Team-Level SDLC Automation

- 2. Agent performs RCA
- 3. **Agent** updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews Git PR
- 4. Human merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. **Human** approves tests
- 3. **Testing Agent** runs test cases and compares results

- 1. **Agent** polls ticket repository for bugs and defects
- 2. Agent performs RCA
- 3. **Agent** updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews Git PR
- 4. **Human** merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. **Human** approves tests
- 3. **Testing Agent** runs test cases and compares results

- 2. Agent performs RCA
- 3. Agent updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews
 Git PR
- 4. Human merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. **Human** approves tests
- 3. **Testing Agent** runs test cases and compares results

- 1. **Agent** polls ticket repository for bugs and defects
- 2. Agent performs RCA
- 3. **Agent** updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews Git PR
- 4. Human merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. Human approves tests
- 3. **Testing Agent** runs test cases and compares results

- 2. Agent performs RCA
- 3. **Agent** updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews Git PR
- 4. Human merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. Human approves tests
- 3. **Testing Agent** runs test cases and compares results

- 1. **Agent** polls ticket repository for bugs and defects
- 2. **Agent** performs RCA
- 3. Agent updates tickets for human approval

- 1. **Deployment** Agent updates deployment framework
- 2. **Human** approves deployment framework
- 3. Human deploys changes

- 1. Product manager submits PRD
- 2. Architect Agent creates design
- 3. Human interactively reviews design

- 1. Development Agent implements code
- 2. **Development Agent** creates Git Pull Request (PR)
- 3. **Human** interactively reviews Git PR
- 4. Human merges PR

- 1. **Testing Agent** updates feature regression test suites
- 2. **Human** approves tests
- 3. **Testing Agent** runs test cases and compares results

Demo

Prompt Optimization Studio built with CoWeave

CoWeave's Impact (Our Team's Experience)

- Operational Excellence: 40–60% reduction in MTTR, 30–50% fewer deployment failures
- Engineering Velocity: 50–60% less time on routine tasks, 40–60% faster onboarding
- Business Outcomes: 99.9%+ availability,
 60-80% fewer customer incidents

The Future of Engineering Operations

- Context-aware LLM(s) handle the heavy lifting lifting using your team's practices and knowledge with human supervision
- Engineers elevated to high-value creative and strategic work
- 75–85% reduction in MTTR: faster resolution, less firefighting
- Enhanced system reliability with reduced human effort
- Accelerated innovation and improved job satisfaction for your Dev, DevOps and SRE teams

The Future of Software Development

Humans + Al, CoWeave Together

CoWeave.ai

