

Data Science

IntelliPaat

Data
Cleansing

. _/ntelliPaat

Data Cleansing

When dealing with real world data, you have to keep in mind that it is extremely untidy. It will not have a proper structure and hence this is where data cleansing comes in to bring proper structure to this data.

Data Cleansing

These are some of the actions which you'd have to take during data cleansing process:

Giving proper names to columns

Checking for whitespaces in data

Checking for whitespaces in data

/ntelliPaat

Handling missing values (Imputation)

Grouping of similar data into same levels

./ _/ntelliPaat

Copyright IntelliPaat. All rights reserved

Census Data

tellikaat /ntellika

This census data has 32561 rows and 15 columns

								Sala The
age 🕏	workclass ‡	fnlwgt ‡	education ‡	education.num ‡	marital.status \$	occupation ‡	relationship ‡	race
39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White
38	Private	215646	HS-grad		Divorced	Handlers-cleaners	Not-in-family	White
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White

<u>//intelliPaat</u>

Renaming rest of the columns:

setnames(census, "education.num", "Education-Number")
setnames(census, "marital.status", "Marital-Status")
setnames(census, "occupation", "Occupation")
setnames(census, "relationship", "Relationship")
setnames(census, "race", "Race")
setnames(census, "sex", "Sex")
setnames(census, "capital.gain", "Capital-Gain")
setnames(census, "capital.loss", "Capital-Loss")
setnames(census, "hours.per.week", "Hours-Per-Week")
setnames(census, "native.country", "Native-Country")
setnames(census, "X", "Income")

Copyright IntelliPaat. All rights reserved

Many times a categorical column has levels which represent the same thing. So, in this case, the repetitive levels could be collapsed into a common level. There are also chances where multiple levels which come under the same category can be grouped under an umbrella level

- In 'Employment-Type' column, collapsing "State-gov", "Federal-gov" & "Local-gov" into "Government".
- Also, collapsing 'Self-emp-inc' & 'Self-emp-not-inc' into "Self Employed"

table(census\$`Employment-Type`)
as.character(census\$`Employment-Type`) -> census\$`Employment-Type`

census\$`Employment-Type`[census\$`Employment-Type`==" State-gov"] <- "Government" census\$`Employment-Type`[census\$`Employment-Type`==" Federal-gov"] <- "Government" census\$`Employment-Type`[census\$`Employment-Type`==" Local-gov"] <- "Government"

census\$`Employment-Type`[census\$`Employment-Type`=="Self-emp-inc"] <- "Self Employed" census\$`Employment-Type`[census\$`Employment-Type`=="Self-emp-not-inc"] <- "Self Employed"

In 'Marital-Status' column, collapsing 'Married-AF-spouse', 'Married-spouse-absent', & 'Married-civ-spouse' into "Married"

table(census\$`Marital-Status`)
as.character(census\$`Marital-Status`) -> census\$`Marital-Status`

census\$`Marital-Status`[census\$`Marital-Status`== "Married-AF-spouse"] <- "Married" census\$`Marital-Status`[census\$`Marital-Status`== "Married-spouse-absent"] <- "Married" census\$`Marital-Status`[census\$`Marital-Status`== "Married-civ-spouse"] <- "Married"

In 'Native-Country' column, collapsing different levels into "Europe":

table(census\$`Native-Country`)
as.character(census\$`Native-Country`) -> census\$`Native-Country`

census\$`Native-Country`[census\$`Native-Country`== "England"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Germany"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Greece"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Ireland"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Scotland"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Portugal"] <- "Europe" census\$`Native-Country`[census\$`Native-Country`== "Italy"] <- "Europe"

In 'Native-Country' column, collapsing different levels into "Asia":

IntelliPaat

census\$`Native-Country`[census\$`Native-Country`=="India"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "Vietnam"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "Taiwan"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "Thailand"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "Iran"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "China"] <- "Asia" census\$`Native-Country`[census\$`Native-Country`== "China"] <- "Asia"

Data Cleansing Steps - Imputation

Wherever we have "?", we'll replace it with NA:

census[census == "?"] <- NA

Creating function to count number of NA values:

na_count <-function(x) sapply(x, function(y) sum(is.na(y)))</pre>

na_count(census)

Data Cleansing Steps - Imputation

