Gauvin-Dubeau's formula and value function

References:

J. Gauvin, F. Dubeau (1982) "Differential properties pf the marginal function in mathematical programming". Math. Prog. Study pp 101-119

K. Shimizu, Y. Ishizuka, J. F. Bard. "Nondifferentiable and Two-level Mathematical Programming". Kluwer Academic Publishers 1997. (Cap 6)

Consider the following parametrized problem:

$$\begin{array}{lll} V(y) = & \operatorname{Min}_{\,v} & f(v,y) \\ & (P) & h(v,y) = 0 & |\; \lambda \;\; \Rightarrow \; S^*(y) \\ & g(v,y) \geq 0 & |\; \mu \end{array}$$

where $S^*(y)$ is the set of solutions of the problem for the parameters of the problem fixed to y. V(y) is known as the value function of problem (P).

$$L(v, y, \lambda, \mu) = f - \lambda^{\top} h - \mu^{\top} g$$

The Kuhn-Tucker set is then defined as:

$$K(v,y) \stackrel{\triangle}{=} \{(\lambda,\mu) \in \mathbb{R}^p \times \mathbb{R}^q \mid \text{verifying the K-T conditions}\}$$

K(v,y) is a polyhedron. Now, for fixed v consider the set: $KT(y) \stackrel{\triangle}{=} \bigcup_{v \in S^*(y)} K(v,y)$

Assume f continuous and differentiable on $\mathbb{R}^n \times \{y\}$

Let $v^* \in S(\bar{y})$ be a local optimum of problem (P) for $y = \bar{y}$ and assume that

(H)
$$K(v^*, y) \neq \emptyset$$
 compact and convex $\forall y \in E(\bar{y})$ (a neighborhood of \bar{y})

<u>Result 1</u> (Gauvin-Dubeau's formula) If problem (P) is convex on $E(\bar{y})$ and either 1 and 2 or 3 hold, then $\partial V(y)$ can be evaluated by formula (1):

- 1. the solution set of problem (P) at \bar{y} is a singleton: $S(\bar{y}) = \{\bar{v}\}\$
- 2. At (\bar{v}, \bar{y}) condition (H) holds (i.e., $K(\bar{v}, \bar{y}) \neq \emptyset$ is compact and convex)
- 3. f(.,.), g(.,.) are convex functions and h is affin.

$$\partial \ V(y) = \operatorname{Hull}(\bigcup_{(\lambda, \, \mu) \ \in \ KT(\bar{y})} \quad \nabla_y \ L(\bar{v}, \bar{y}, \lambda, \mu) \quad) \tag{1}$$

<u>Result 2</u>: Let Y be a convex set and consider the following problem with value function $p_A(y)$ defined on Y. Let also X be a convex set.

$$p_A(y) = Min_{x \in X} \quad f(x) \\ Ax = y \quad \mapsto P_A$$

assume also that f is a convex function on $\mathcal{F} + \varepsilon B$,

where
$$\mathcal{F} = \{ x \mid \exists y \in Y, Ax = y \} = \mathsf{Imf} A(y)$$

$$(A(y) = \{ x \in \mathbb{R}^n \mid Ax = y \} : Y \mapsto \mathbb{R}^n)$$

Then, if Lips $f = \hat{k} < +\infty$, on $\mathcal{F} + \varepsilon B$, the value function $p_A(y)$ is convex and the solution set $P_A(y)$ is convex.