Rental Car Problem

Problem Description

- 2 Car Renting Locations (Maximum car capacity 6)
- Poisson Distribution for arrivals (mean 2 and 3)
- Poisson Distribution for returns (mean 2 and 1)
- 2\$ for moving car from one location to another
- Maximum 3 cars can be moved in a day
- 10\$ Reward for every rented car

Poisson Distributions for Arrivals and Returns

Approach

- State: (#Cars at Location0, #Cars at Location1)
- Action: #Cars moved at night
- Algorithm: Policy Iteration

Optimal Policy & State Values

Modified Version

- Additional Cost of \$3 for parking if #Cars exceeds 3
- 1 car can be moved for free from Location 0 to 1

What do you expect?

6 #Cars at location 0 6 0 #Cars at location 1

Original Problem

Modified Version

Observations

- Free transportation of 1 car causes action of moving car from location 0 - 1 to be selected more.
- But additional parking cost didn't have any impact.

Problem with current approach?

Infeasible for large State Space

Can you identify the bottleneck?

Policy iteration (using iterative policy evaluation)

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$V(s) \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement policy-stable $\leftarrow true$

For each $s \in S$:

$$\frac{old\text{-}action \leftarrow \pi(s)}{\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]}$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Ideas ??

- State Values seem to be learnable by simple model
- Approximate expected poisson reward by stochastic sampling
- Can we use something else?

Policies for Poisson and Uniform distributions

Learnt State Values

Which expectation approximation technique do you expect to be better?

Actual vs Estimate (Poisson sampling)

Optimal vs Estimate (Uniform Distribution)

Why was poisson approximation worse?

1000 Samples

20

Optimal Policy & State Values (Discount 0)

Why did discount have negligible effect on policy?

- State values reduce almost in same proportion.
- For larger state space discount might have significant effect

What else could we have done?

Predicting policy values directly !!

Key Takeaways

If environment model is know we can exploit structure in state - action space and apply supervised learning techniques to learn state values/policies to:

- Get good initial guesses for State Values and Policy
- Approximate solution for larger state action space