	Lecture 2: Axiomatic Probability
Defn	1 Sample Space: S
	The set of possible outcomer.
Ex.	Flip a Coin i
	S = \$ H, T }
Ex.	Roll a six sided die
	S = { 1, 2, 3,, 6 }
Ex.	Roll two dice,
<u> </u>	$S = \{(1,1),(1,2),(2,1),(2,3),\dots\}$
Ex.	Waiting time fer bus
	$S = [0, \infty)$
Q x	Number of customers arriving of restaurant
	S = { 0 , 1 , 2 , 3 , }

ex, S= \$1, ..., 6} E = \$1,23 C S C event that I roll a lor 2 Ex. S= {(i,j): 1=i=6,1=j=6} $E = \{(1,2),(3,2)\} \subset S$ $F = \{(1,2),(2,3)\}$ We say an event E "happens" if the observed attame of our experiment is in E So S is an event Cevent that something happens Ex. ØCS so p is an event Axiomatic Probability Given' a sample space S Went! For any event E

$$P(S) = 1$$

then

$$P(E) = \sum_{i=1}^{\infty} P(E_i)$$

2) This also holds for finite unions
$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$$

in particular two sets - AB = Ø P(A,B)=P(A)+P(B) Ex, Flip a coin S= {H,T} What's a valid P on S?

P(3H3) = 1/2 P(5H,T3) = 1 $\mathbb{P}(\ST\S) = \frac{1}{2} \mathbb{P}(\emptyset) = \emptyset$ Does this surisfy K-axioms? (i) P(E)>>> / (2) P(S) = 13) P(UEi) = ZP(Fi), for all dijoint One example' E=S, E= {H}, E2= {T}

$$|-P(s)| = P(E) = P(E_1) + P(E_2) = \frac{1}{2} + \frac{1}{2}$$

$$E_{X}$$
, $S = S H, T }$

$$P(s) = 1$$

$$P(S) = 1$$
 $P(SHS) = 3/4$

$$P(\phi) = 0$$

$$P(\phi) = 0 \qquad P(sts) = 4$$

This also is a valid P.

$$P_1 = \frac{1}{4}$$

$$P_2 = \frac{1}{4}$$

$$P_3 = \frac{1}{2}$$

$$S = \{1, 2, 3\}$$

$$P_{1} = \frac{1}{4}$$

$$P_{2} = \frac{1}{4}$$

$$P_{3} = \frac{1}{2}$$

$$P_{3} = \frac{1}{2}$$

$$P_{4} = \frac{1}{4}$$

$$P_{5} = \frac{1}{4}$$

$$P_{6} = \frac{1}{4}$$

$$P(\S1,2\S) = P_1 + P_2 = 4 + 4 = 1/2$$

 $P(\S1,3\S) = P_1 + P_3 = 3/4$

Theorem: Finite Sample Spaces

and we choose some pi, i=1,..., n so that

(i)
$$P_i > 0$$
 and (2) $\frac{h}{2}P_i = 1$
then a valid prob. In is

$$2) \mathbb{P}(S) = 1$$

$$\mathbb{P}(S) = \sum_{i=1}^{n} P_i = 1$$

3) If Ei partition E then
$$P(E) = \sum_{i=1}^{\infty} P(E_i)$$

sketch:

Shaw:
$$P(E) = ---- = P(E)+P(E_s)$$
 $P_1 + P_5 + P_3 + P_4 + P_{11} = P_1 + P_5 + P_4 + P_{11} + P_3$

Basic Theorems

Theorem: $P(\phi) = 0$
 $P(S) = P(S) + P(\phi) + P(\phi) + \cdots$
 $= P(S) + \sum_{i=1}^{\infty} P(\phi)$

So $\sum_{i=1}^{\infty} P(\phi) = 0$

Theorem: Finite Additivity

Third Axiom:
$$P(\tilde{y}_{Ei}) = \tilde{z}_{i} P(Ei)$$
, $Ei disj$.

Finite Add! $P(\tilde{y}_{Ei}) = \tilde{z}_{i} P(Ei)$, $Ei disj$.

P($E = A \cup B$) $AB = \emptyset$

Notice: $E = A \cup B \cup \emptyset \cup \emptyset \cup \emptyset \cup \emptyset \cup \emptyset$

And then by third Axiom,

$$P(E) = P(A) + P(B) + P(\emptyset) + P(\emptyset) + P(\emptyset)$$

So $P(E) = P(A) + P(B)$

For $n > 2$, we induction.

Ex. $E = \text{"its raining"}$

$$P(E) = \frac{1}{3}$$

$$P(E^{c}) = 1 - P(E) = 1 - \frac{2}{3}$$

Theorem:
$$P(E')=1-P(E)$$
 $P(E')=1-P(E)$
 $P(S)=P(E\cup E')=P(E)+P(E')$
 $P(E')=1-P(E)$
 $P(E')=1-P(E)$

Theorem: $O \leq P(E) \leq 1$
 $P(E') > O$ by Axiom

 $P(E') > O$

and by prev theorem, $P(E')=1-P(E)$
 $P(E') > O$ and so

rearranging, $P(E) \leq 1$

Theorem: If E,FCS, then

P(E>F) = P(EFC) = P(E) - P(EF)

