空間分析方法與應用 (Geog 5069) | 台大地理系 Spatial Analysis: Methods and Applications

4. 事件點的空間群聚

Spatial Point Clustering

https://ceiba.ntu.edu.tw/1062_Geog5016

授課教師:溫在弘

E-mail: wenthung@ntu.edu.tw

Bivariate K function: Spatial dependency of two data set of point events

Is the distribution of one set of events related to the distribution of the other?

Black (red dots) and white (blue dots) crimes in Oklahoma

Data Types (binary)

- Case data
- Control data

Bivariate K function (or Cross K function)

- The function assesses the spatial relationship between two event points under the null hypothesis of spatial independence and uses the same method as a univariate analysis to test statistical significance.
- The bivariate K function is defined as the expected number of points for event A within a given distance to arbitrary points of event B divided by the overall density of event A points.

Bivariate K function: a Case-Control design

$$K_{ij}(d) = \frac{1}{\lambda_j} \mathrm{E}(\# \, \mathrm{pointsof} \, \, \mathrm{type} \, \mathrm{j} \leq \mathrm{distance} \, \mathrm{r} \, \mathrm{of} \, \, \mathrm{point} \, \, \mathrm{type} \, \mathrm{i}$$

 $\lambda_j = \mathrm{intensity} \, \mathrm{of} \, \, \mathrm{type} \, \mathrm{j} \, \, \mathrm{events}$

If type j and i events are independent of each other: The distribution of j events should be random with respect to type i events

Calculate the cross-K function and examine significance using simulated "envelopes"

Pattern i represents cases of a disease and Pattern j represents the population

Bivariate K function: Mathematical Equation

$$\hat{K}^{(12)}(h) = (\hat{\lambda}_1 \hat{\lambda}_2)^{-1} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \sum_{i=1}^{n_2} \sum_{j=1}^{n_2} \left| \frac{w(s_i^{(1)}, s_j^{(2)})^{-1}}{I(||s_i^{(1)} - s_j^{(2)}|| \le h)} \right|, \quad h > 0$$

Application: human-wildlife interactions

Kretser, et. al. (2008)

Kretser, et. al. (2008) Housing density as an indicator of spatial patterns of reported human – wildlife interactions in Northern New York, *Landscape and Urban Planning* 8 : 282 – 292

dependent

作業 2: 速食店位置是否群聚於鄰近的小學附近?!

利用 bivariate k-function 檢定速食店是否群聚於私立小學? 或公立小學?

- 作業/加分題 繳交規定
 - □ 截止日期: 2018. 5. 03 (Thu.) 12:00pm
 - □ 繳交格式:用R Markdown編寫的html格式;

將作業1與2彙整在同一個html檔

k12hat

Bivariate K-function

Description

Calculates an estimate of the bivariate K-function

Usage

k12hat(pts1,pts2,poly,s)

Arguments

pts1, pts2 Two points data sets

poly A polygon containing the points

s A vector of distances at which to estimate the K12 function

Sample Data

R code

```
s < -seg(0, 5000, 50)
tpe.kl2 <-kl2hat(Ptsl, Pts2, Pts_bnd, s)
plot(s, tpe.kl2, type="l",xlab="distance", ylab="K(d)",
main="Bivariate K function")
env12<-Kenv.tor(Pts1, Pts2, Pts_bnd, nsim=49, s)
lines(s, envl2$upper, col="red", lty=3)
lines(s, env12$lower, col="blue",1ty=3)
plot(s, sqrt(tpe.kl2/pi)-s, type="l", ylim=c(-
4000,4000),xlab="distance", ylab="D(d)", main="D
function")
lines(s, sqrt(envl2$upper/pi)-s, col="red", lty=3)
lines(s, sqrt(env12$lower/pi)-s, col="blue",lty=3)
```

R code: Kenv.tor()

Envelope of K12hat from random toroidal shifts of two point patterns

Description

Compute envelope of K12hat from random toroidal shifts of two point patterns.

Usage

```
Kenv.tor(pts1,pts2,poly,nsim,s,quiet=FALSE)
```

Arguments

```
pts1 First point data set.
```

pts2 Second point data set.

poly Polygon containing the points.

nsim Number of random toroidal shifts to do.

Vector of distances at which to calculate the envelope.

quiet If FALSE, print a message after every simulation for progress monitoring. If true, print no messages.

R code: Results

