Recitation #2 (Section 03)

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Linear transformations: recall & practice

Linear transformation *L*

A function $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if

- for all $v \in \mathbb{R}^n$ and for all $\lambda \in \mathbb{R}$ it is true that $L(\lambda \cdot v) = \lambda \cdot L(v)$
- for all $v, w \in \mathbb{R}^n$ it is true that L(w + v) = L(v) + L(w)

Note that if L is a linear transformation then $L(\vec{0}_n) = \vec{0}_m$ (useful to quickly see if a function is NOT linear)

Exercise 1

Is the function f_1 linear? $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $f_1(a,b) = (2a,a+b)$

Exercise 2

Is the function f_2 linear? $f_2: \mathbb{R}^2 \to \mathbb{R}^3$, $f_2(a,b) = (a+b,2a+2b,0)$

Exercise 3

Is the function f_3 linear? $f_3: \mathbb{R}^2 \to \mathbb{R}^3$, $f_3(a,b) = (a+b,2a+2b,1)$

Exercise 4

Is the function f_4 linear? $f_4:\mathbb{R}^2 \to \mathbb{R}$, $f_4(a,b)=\sqrt{a^2+b^2}$

Exercise 5

Is the function f_5 linear? $f_5: \mathbb{R}^2 \to \mathbb{R}$, $f_5(a,b) = 5x + 3$

Exercise 6

If $v, w \in \mathbb{R}^n$ are linearly independent vectors, are $v, v + w \in \mathbb{R}^n$ also *linearly* independent?

Exercise 7

If $v,w\in\mathbb{R}^n$ are linearly independent vectors, are $v,\alpha w\in\mathbb{R}^n$ also linearly independent? ($\alpha\neq 0$)

Exercise 8

Let $v_1,...v_m \in V \subseteq \mathbb{R}^n$ be linearly independent vectors. Show that if they do not span V (that is $V \neq span(v_1,...,v_m)$) then there is a vector $w \in V$ such that $v_1,...,v_m,w$ are linearly independent.