Detailed Notes on Decision Trees

1. Introduction to Decision Tree

• **Definition**: A Decision Tree is a supervised machine learning algorithm used for both classification and regression tasks. It splits the dataset into subsets based on feature values, creating a tree-like structure of decisions.

• Key Concepts:

- Nodes: Represent decisions or tests on features.
- o **Branches**: Represent the outcome of a decision (e.g., Yes/No).
- o Leaf Nodes: Final output (class label or continuous value).

• Types of Decision Trees:

- ID3: Allows multi-way splits (more than two branches).
- CART (Classification and Regression Trees): Only allows binary splits (two branches per node).
- Usage: Decision Trees are foundational for ensemble techniques like Random Forest and Boosting.

2. Entropy and Gini Impurity

• Entropy:

- Definition: A measure of impurity or disorder in a dataset. It quantifies the uncertainty in the data.
- o Formula:

$$H(S) = -p + \log^{\frac{p}{p}} 2(p+) - p - \log^{\frac{p}{p}} 2(p-)H(S) = -p + \log 2(p+) - p - \log 2(p-)$$

where p+p+ and p-p- are the probabilities of positive and negative classes.

- o Range: 0 (pure) to 1 (impure).
- Interpretation: Higher entropy indicates more disorder.

• Gini Impurity:

 Definition: Another measure of impurity, often used in CART. It calculates the probability of misclassifying a randomly chosen element.

o Formula:

Gini(S)= $1-\sum i=1$ npi2Gini(S)= $1-i=1\sum npi2$

where pipi is the probability of class ii.

- Range: 0 (pure) to 0.5 (impure).
- o Interpretation: Lower Gini Impurity indicates a better split.

3. Information Gain

- **Definition**: Information Gain measures the reduction in entropy or Gini Impurity after a dataset is split on a feature. It helps in selecting the best feature for splitting.
- Formula:

 $Gain(S,A)=H(S)-\sum v \in values(A)|Sv||S|H(Sv)Gain(S,A)=H(S)-v \in values(A)\sum |S||Sv|H(Sv)$

where:

- H(S)H(S): Entropy of the parent node.
- SvSv: Subset of data after splitting on feature AA.
- |Sv||S||S||Sv|: Weight of the subset.
- Usage: The feature with the highest Information Gain is chosen for splitting.

4. Entropy vs Gini Impurity

- Entropy:
 - Pros: More sensitive to changes in class probabilities.
 - o **Cons**: Computationally expensive due to logarithmic calculations.
 - Best for: Smaller datasets.
- Gini Impurity:
 - o **Pros**: Faster to compute as it doesn't involve logarithms.
 - Cons: Less sensitive to class probability changes.
 - Best for: Larger datasets.

• **Default Choice**: Most libraries (e.g., scikit-learn) use Gini Impurity by default.

5. Decision Tree Split for Numerical Features

Process:

- 1. **Sort the Feature Values**: Arrange numerical values in ascending order.
- 2. Create Thresholds: Consider each value as a potential threshold for splitting.
- 3. **Calculate Information Gain**: For each threshold, calculate the Information Gain or Gini Impurity.
- 4. **Select Best Threshold**: Choose the threshold that maximizes Information Gain or minimizes Gini Impurity.
- **Disadvantage**: High time complexity for large datasets due to the need to evaluate multiple thresholds.

6. Post Pruning & Pre Pruning

- Post Pruning:
 - Definition: After constructing the full decision tree, remove branches that do not contribute significantly to the model's performance.
 - o Process:
 - 1. Build the complete tree.
 - 2. Prune branches that lead to overfitting.
 - Best for: Smaller datasets.

Pre Pruning:

- Definition: Stop the tree construction process early by setting constraints (hyperparameters) to prevent overfitting.
- Hyperparameters:
 - Max Depth: Limits the depth of the tree.
 - Min Samples Split: Minimum number of samples required to split a node.

- Min Samples Leaf: Minimum number of samples required in a leaf node.
- Best for: Larger datasets.

7. Decision Tree Regression

- Definition: A Decision Tree used for regression tasks where the output is a continuous value.
- Key Differences from Classification:
 - Splitting Criterion: Uses Variance Reduction instead of Entropy or Gini Impurity.
 - o **Output**: The average value of the target variable in the leaf node.
- Variance Reduction:
 - Formula:

Variance Reduction=Var(S) $-\Sigma i=1$ n|Si||S|Var(Si)Variance Reduction=Var(S)-i=1 $\Sigma n|S||Si|$ Var(Si) where:

- Var(S)Var(S): Variance of the parent node.
- Var(Si)Var(Si): Variance of the child node.
- o Process:
 - 1. Calculate the variance of the parent node.
 - 2. Calculate the variance of child nodes after splitting.
 - 3. Select the split that maximizes variance reduction.
- **Example**: Predict salary based on experience and career gap. The tree splits based on thresholds and calculates the average salary in each leaf node.

Summary

- **Decision Trees** are versatile algorithms for both classification and regression.
- Entropy and Gini Impurity are used to measure impurity in classification tasks.

- Information Gain helps in selecting the best feature for splitting.
- Post Pruning and Pre Pruning are techniques to prevent overfitting.
- Decision Tree Regression uses Variance Reduction to split continuous data and predict average values in leaf nodes.

Possible interview questions related to Decision Trees

1. What is a Decision Tree?

• **Answer**: A Decision Tree is a supervised machine learning algorithm used for classification and regression. It splits data into subsets based on feature values, creating a tree-like structure of decisions, where nodes represent features, branches represent decisions, and leaves represent outcomes.

2. What are the types of Decision Trees?

- Answer:
 - o **ID3**: Allows multi-way splits (more than two branches per node).
 - CART (Classification and Regression Trees): Uses binary splits (only two branches per node) and is commonly used in libraries like scikit-learn.

3. What is Entropy in Decision Trees?

Answer: Entropy measures the impurity or disorder in a dataset. It ranges from 0
(pure) to 1 (impure). The formula is:

 $H(S)=-p+\log^{\frac{p}{p}}2(p+)-p-\log^{\frac{p}{p}}2(p-)H(S)=-p+\log^{\frac{p}{p}}2(p+)-p-\log^{\frac{p}{p}}2(p-)H(S)=-p+\log^{\frac{p}{p}}2(p+)-p-\log^{\frac{p}{p}}2(p-)H(S)=-p+\log^{\frac{p}{p}}2(p+)-p-\log^{\frac{p}{p}}2(p-)H(S)=-p+\log^{\frac{p}{p}}2(p+)-p-\log^{\frac{p}{p}}2(p-)H(S)=-p+\log^{\frac{p}{p}}2(p-)H(S)=$

where p+p+ and p-p- are probabilities of positive and negative classes.

4. What is Gini Impurity?

• **Answer**: Gini Impurity measures the probability of misclassifying a randomly chosen element. It ranges from 0 (pure) to 0.5 (impure). The formula is:

Gini(S)= $1-\sum i=1$ npi2Gini(S)= $1-i=1\sum npi2$

where pipi is the probability of class ii.

5. What is Information Gain?

 Answer: Information Gain measures the reduction in entropy or Gini Impurity after splitting a dataset on a feature. It helps select the best feature for splitting. The formula is:

 $Gain(S,A)=H(S)-\sum v \in values(A)|Sv||S|H(Sv)Gain(S,A)=H(S)-v \in values(A)\sum |S||Sv|H(Sv)$

where H(S)H(S) is the entropy of the parent node, and SvSv is the subset after splitting.

6. What is the difference between Entropy and Gini Impurity?

Answer:

- Entropy: More sensitive to changes in class probabilities, but computationally expensive due to logarithms. Best for smaller datasets.
- Gini Impurity: Faster to compute, less sensitive to class probabilities. Best for larger datasets. Most libraries use Gini by default.

7. How does a Decision Tree handle numerical features?

Answer:

- 1. Sort the numerical feature values.
- 2. Consider each value as a threshold for splitting.
- 3. Calculate Information Gain or Gini Impurity for each threshold.

4. Select the threshold that maximizes Information Gain or minimizes Gini Impurity.

8. What is Post Pruning and Pre Pruning?

Answer:

- Post Pruning: Build the full tree first, then remove branches that do not contribute to model performance to prevent overfitting.
- Pre Pruning: Stop tree growth early by setting constraints like max depth, min samples split, or min samples leaf to prevent overfitting.

9. What is Variance Reduction in Decision Tree Regression?

• **Answer**: Variance Reduction is used in Decision Tree Regression to split continuous data. It measures the reduction in variance after splitting. The formula is:

Variance Reduction=Var(S) $-\Sigma i=1$ n|Si||S|Var(Si)Variance Reduction=Var(S)-i=1 $\Sigma n|S||Si|$ Var(Si) where Var(S)Var(S) is the variance of the parent node, and Var(Si)Var(Si) is the variance of child nodes.

10. What are the advantages of Decision Trees?

Answer:

- Easy to understand and interpret (visualizable).
- Can handle both numerical and categorical data.
- o Requires little data preprocessing (e.g., no need for scaling).

11. What are the disadvantages of Decision Trees?

Answer:

- Prone to overfitting, especially with deep trees.
- Sensitive to small changes in data.
- Can create biased trees if some classes dominate.

12. How do you prevent overfitting in Decision Trees?

Answer:

- Use Post Pruning to remove unnecessary branches.
- Use Pre Pruning by setting constraints like max depth, min samples split, or min samples leaf.
- o Use ensemble methods like Random Forest or Gradient Boosting.

13. What is the time complexity of building a Decision Tree?

- **Answer**: The time complexity is $O(n \cdot m \cdot \log(m))O(n \cdot m \cdot \log(m))$, where:
 - o nn: Number of samples.
 - o mm: Number of features.
 - o $\log_{10}(m)\log(m)$: Depth of the tree.

14. Can Decision Trees handle missing values?

- Answer: Yes, Decision Trees can handle missing values by:
 - Using surrogate splits (alternative splits when data is missing).
 - o Assigning the most common value or using imputation techniques.

15. What is the difference between Decision Tree Classifier and Regressor?

Answer:

- Classifier: Predicts discrete class labels (e.g., Yes/No). Uses Entropy or Gini Impurity for splitting.
- Regressor: Predicts continuous values (e.g., salary). Uses Variance Reduction for splitting.

16. What is the role of the root node in a Decision Tree?

• **Answer**: The root node is the topmost node in the tree, representing the feature that provides the best split (highest Information Gain or lowest Gini Impurity) to start the tree.

17. What is a leaf node in a Decision Tree?

• **Answer**: A leaf node is the final node in a Decision Tree, representing the predicted class (in classification) or the average value (in regression).

18. What is the difference between Random Forest and Decision Tree?

- Answer:
 - Decision Tree: A single tree prone to overfitting.
 - Random Forest: An ensemble of multiple Decision Trees, reducing overfitting
 and improving accuracy by averaging predictions.

19. How do you choose the best feature for splitting in a Decision Tree?

• **Answer**: Use **Information Gain** (for Entropy) or **Gini Impurity** to evaluate features. The feature with the highest Information Gain or lowest Gini Impurity is chosen for splitting.

20. What is the output of a Decision Tree Regressor?

• **Answer**: The output is the **average value** of the target variable in the leaf node. For example, if the leaf node contains salaries [40k, 42k], the predicted output is 41k.