Final project

Statistical Methods for Data Science

Mariani, Marturini, Tinto Università degli Studi di Trieste

Introduction

Goal

Statistical modeling of the intensive care units (ICU) due to COVID-19 in the region Liguria, from September 2020 to February 2021

- · description of the dataset
- investigation of explanatory variables
- evaluation and comparison of alternative models
- predictions and possible improvements

The dataset overview

The dataset quality

variables	type
data	Date
stato	factor
codice_regione	factor
denominazione_regione	factor
lat	numeric
long	numeric
ricoverati_con_sintomi	integer
terapia_intensiva	integer
totale_ospedalizzati	integer
isolamento_domiciliare	integer
totale_positivi	integer
variazione_totale_positivi	integer
nuovi_positivi	integer
dimessi_guariti	integer
deceduti	integer
casi_da_sospetto_diagnostico	integer
casi_da_screening	integer
totale_casi	integer
tamponi	integer
casi_testati	integer
note	character
ingressi_terapia_intensiva	integer
note_test	character
note_casi	character
totale_positivi_test_molecolare	integer
$totale_positivi_test_antigenico_rapido$	integer
tamponi_test_molecolare	integer
tamponi_test_antigenico_rapido	integer
codice_nuts_1	character
codice_nuts_2	character

source: Protezione civile (https://github.com/pcm-dpc/COVID-19)

Discarding variables:

- not applicable
- not significant
- multicollinearity

The dataset missing values

Missing values

We discarded the following independent variables due to an high number of missing values

Variables	missing (n)	missing (%)
totale positivi test molecolare	136	84
totale positivi test antigenico rapido	136	84
tamponi test molecolare	136	84
tampni test antigenico rapido	136	84
ingressi terapia intensiva	93	57.4
casi da sospetto diagnostico	68	42
casi da screening	68	42

The dataset multicollinearity

An example of multicollinearity between predictors

The dataset predictors

Considered predictors

- totale_positivi
- variazione_totale_positivi
- ricoverati_con_sintomi
- deceduti_giornaliero
- dimessi_guariti_giornaliero

Added predictors

- colori
- vaccinazioni

Vaccinations

source: https://www.governo.it/it/cscovid19/report-vaccini/

© Mariani, Marturini, Tinto

Terapia intensiva vs predictors

Linear model

Linear model

$$E(Y_i) = \beta_0 + \beta_1 X_{i1} + ... + \beta_{p-1} X_{ip-1}$$

Assumptions

- Normality
- Homoscedasticity
- Independence

Linear model


```
| Im. model1 <- | Im(covid.liguria, formula = terapia_intensiva - totale_positivi + colori)
| Im. model2 <- | Im(covid.liguria, formula = terapia_intensiva - totale_positivi + colori + variazione_totale_positivi)
| Im. model3 <- | Im(covid.liguria, formula = terapia_intensiva - totale_positivi + colori + variazione_totale_positivi + dimessi_guariti_giornaliero;
| Im. model4 <- | Im(covid.liguria, formula = terapia_intensiva - totale_positivi + colori + variazione_totale_positivi + deceduti_giornaliero)
| Im. model5 <- | Im(covid.liguria, formula = terapia_intensiva - totale_positivi + colori + variazione_totale_positivi + totale_vaccini)
```

- dimessi_guariti_giornaliero and deceduti_giornaliero not significant
- anova(lm.model1, lm.model2, lm.model5)

```
Analysis of Variance Table

Model 1: terapia_intensiva ~ totale_positivi + colori

Model 2: terapia_intensiva ~ totale_positivi + colori + variazione_totale_positivi

Model 3: terapia_intensiva ~ totale_positivi + colori + variazione_totale_positivi +

totale_vaccini

Res.Df RSS Df Sum of Sq F Pr(>F)

1 157 5190.7

2 156 4622.4 1 568.21 27.879 4.299e-07 ***

3 155 3159.2 1 1463.28 71.794 1.735e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

© Mariani, Marturini, Tinto

Linear model summary


```
call:
lm(formula = terapia_intensiva ~ totale_positivi + colori + variazione_totale_positivi +
    totale vaccini, data = raw.data)
Residuals:
    Min
            10 Median
                               30
                                      Max
-14.0838 -2.8790 -0.1842 2.7266 13.2252
coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         8.835e+00 7.224e-01 12.230 < 2e-16 ***
                         6.222e-03 1.559e-04 39.918 < 2e-16 ***
totale positivi
colori2
                         1.394e+01 1.677e+00 8.311 4.47e-14 ***
colori3
                         1.205e+01 1.861e+00 6.473 1.20e-09 ***
                          1.772e+01 1.809e+00 9.797 < 2e-16 ***
colori4
variazione_totale_positivi -1.298e-02 1.596e-03 -8.136 1.23e-13 ***
totale vaccini .
                         1.931e-04 2.279e-05 8.473 1.74e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.515 on 155 degrees of freedom
Multiple R-squared: 0.9815, Adjusted R-squared: 0.9808
F-statistic: 1372 on 6 and 155 DF, p-value: < 2.2e-16
```

© Mariani, Marturini, Tinto 1

Linear regression diagnostic plots

Linear model model fit

14

Linear model predictions

Linear model problems

Problems

- Correlation between observations: time dependency
- Predictions of negative values
- Not enough vaccines data

Poisson regression

One approach can be using a Poisson regression:

$$Y \sim Poi(\lambda)$$
.

The default link function for Poisson regression is the logarithm:

$$\log(E[Y]) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4.$$

Note: in this model, we will not consider the variables DIMESSI_GUARITI_GIORNALIERO and DECEDUTI_GIORNALIERO (not significant), nor the variable TOTALE_POSITIVI.

```
±±
## Call:
## glm(formula = terapia intensiva ~ ricoverati con sintomi + variazione totale positivi +
     vaccini + colori, family = poisson, data = train.lig)
11
## Deviance Residuals:
## Min 10 Median 30 Max
## -3.5093 -0.7591 0.2569 0.7042 3.3772
± ±
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
                          2.812e+00 3.304e-02 85.106 < 2e-16 ***
## (Intercept)
## ricoverati con sintomi 1.263e-03 4.989e-05 25.309 < 2e-16 ***
## variazione totale positivi -2.872e-04 3.742e-05 -7.675 1.65e-14 ***
## vaccini
                            3.700e-06 8.354e-07 4.430 9.44e-06 ***
## colori2
                           4.531e-01 4.318e-02 10.494 < 2e-16 ***
## colori3
                            3.163e-01 4.849e-02 6.523 6.87e-11 ***
                          4.893e-01 4.908e-02 9.969 < 2e-16 ***
## colori4
±± ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
± ±
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3234.85 on 156 degrees of freedom
## Residual deviance: 238.05 on 150 degrees of freedom
## AIC: 1142.6
##
## Number of Fisher Scoring iterations: 4
```

Poisson regression Residuals

Poisson regression model fit

Poisson regression predictions

Poisson regression Identity link function

We tried and changed the link function from the logarithm to the identity¹, which allows the difference between covariate patterns to be quantified using the difference instead of the ratio:

$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4.$$

In terms of performances we see an improvement:

Link function	df	AIC
Logarithm	7	1142.600
Identity	7	1052.751

¹Usually done in epidemiology; less stable than the logarithm.

```
##
## Call:
## glm(formula = terapia intensiva ~ ricoverati con sintomi + variazione totale positivi +
   vaccini + colori, family = poisson(link = "identity"), data = train.lig)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.42279 -0.70342 -0.03817 0.65250 2.46038
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.460e+00 7.190e-01 11.767 < 2e-16 ***
## ricoverati con sintomi 6.497e-02 2.928e-03 22.189 < 2e-16 ***
## variazione totale positivi -2.312e-02 3.646e-03 -6.342 2.27e-10 ***
## waccini
                          -4.040e-05 5.463e-05 -0.739 0.459635
## colori2
                         1.412e+01 3.160e+00 4.468 7.89e-06 ***
## colori3
                         1.661e+01 3.284e+00 5.057 4.26e-07 ***
## colori4
                         1.222e+01 3.227e+00 3.786 0.000153 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
±±
## (Dispersion parameter for poisson family taken to be 1)
±±
## Null deviance: 3234.8 on 156 degrees of freedom
## Residual deviance: 148.2 on 150 degrees of freedom
## AIC: 1052.8
## Number of Fisher Scoring iterations: 5
```

Poisson regression Residuals

Poisson regression model fit

© Mariani, Marturini, Tinto

Poisson regression predictions

Negative binomial

Another problem of the Poisson regression is that we did not consider the overdispersion of the data.

To overcome the issue, we tried a Negative Binomial with the logarithm link function, but in terms of performances there is no sign of improvement.

Model	df	AIC
Poisson	7	1142.600
Neg. Binomial	8	1137.361

© Mariani, Marturini, Tinto

```
±±
## Call:
## glm.nb(formula = terapia intensiva ~ ricoverati con sintomi +
   variazione totale positivi + vaccini + colori, data = train.lig,
   init.theta = 187.4830039, link = log)
##
## Deviance Residuals:
## Min 10 Median 30 Max
## -3.3269 -0.6774 0.2244 0.6607 2.7218
±±
## Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
                          2.789e+00 3.581e-02 77.892 < 2e-16 ***
## (Intercept)
## ricoverati con sintomi 1.300e-03 5.755e-05 22.596 < 2e-16 ***
## variazione totale positivi -2.942e-04 4.727e-05 -6.224 4.85e-10 ***
                           4.028e-06 9.714e-07 4.147 3.37e-05 ***
## vaccini
                          4.397e-01 5.095e-02 8.631 < 2e-16 ***
## colori2
                           3.047e-01 5.641e-02 5.402 6.60e-08 ***
## colori3
## colori4
                         4.856e-01 5.689e-02 8.535 < 2e-16 ***
±± ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial(187.483) family taken to be 1)
±±
    Null deviance: 2540.75 on 156 degrees of freedom
## Residual deviance: 189.76 on 150 degrees of freedom
## AIC: 1137.4
##
## Number of Fisher Scoring iterations: 1
±±
±±
             Theta: 187.5
**
±±
        Std. Err.: 86.1
±±
## 2 x log-likelihood: -1121.361
```

Negative Binomial model fit

Negative Binomial predictions

NBin and Poisson comparison

31

NBin and Poisson conclusions

The Negative Binomial does not prove to be a better alternative to the Poisson regression model.

Changing the link function reduces the deviance residuals and the overdispersion of the data.

Generalized Additive Model

Due to the non-linearity between the response variable and the covariates we may try to use the Generalized Additive Model (Gam).

We can start with a gam with Family Poisson and link function "identity". In this model we will not consider the variables:

- deceduti_giornaliero
- dimessi_guariti_giornaliero

They are not significant.

Generalized Additive Model


```
Family: poisson
Link function: identity
Formula:
terapia_intensiva ~ s(ricoverati_con_sintomi) + s(totale_positivi) +
   colori
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 44.357 1.472 30.131 < 2e-16 ***
colori2 23.961 2.863 8.369 < 2e-16 ***
colori3 23.874 3.079 7.754 8.88e-15 ***
colori4 26.144 3.494 7.484 7.23e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Approximate significance of smooth terms:
                         edf Ref.df Chi.sq p-value
s(ricoverati_con_sintomi) 3.829 4.781 12.57 0.0142 *
s(totale_positivi) 5.451 6.518 87.30 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.988 Deviance explained = 99%
UBRE = -0.59997 Scale est. = 1 n = 147
```

Generalized Additive Model Residuals

Generalized Additive Model Model fit

Generalized Additive Model Predictions

Now we can try with the Gaussian Family with the same covariates.

```
Family: gaussian
Link function: identity
Formula:
terapia_intensiva ~ s(ricoverati_con_sintomi) + s(totale_positivi) +
   colori
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.641 1.088 41.95 <2e-16 ***
colori2 21.440 2.096 10.23 <2e-16 ***
colori3 21.666 2.020 10.72 <2e-16 ***
colori4 24.642 2.013 12.24 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                         edf Ref.df
                                       F p-value
s(ricoverati_con_sintomi) 7.975 8.675 22.79 <2e-16 ***
s(totale_positivi) 8.902 8.969 57.62 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adi) = 0.991 Deviance explained = 99.2%
GCV = 12.254 Scale est. = 10.514 n = 147
```

Generalized Additive Model Residuals

Generalized Additive Model Model fit

Generalized Additive Model Predictions

In terms of AIC we can see a significant improvement.

Family	df	AIC
Poisson Gaussian	13.2 21.8	889.2437 784.2528
Gaussian	21.0	704.2328

The last model is a Generalize Additive Model with Family Gaussian and link function identity but in this case we added the two covariates that we dropped for the previous two models.


```
Family: gaussian
Link function: identity
Formula:
terapia_intensiva ~ s(ricoverati_con_sintomi) + s(totale_positivi) +
    colori + s(deceduti_giornaliero) + s(dimessi_guariti_giornaliero)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            46.407 1.089 42.613 <2e-16 ***
20.218 2.078 9.731 <2e-16 ***
colori2
colori3 20.079 2.076 9.674 <2e-16 ***
colori4 23.365 1.960 11.918 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                               edf Ref.df
                                               F p-value
s(ricoverati_con_sintomi) 8.077 8.718 18.423 <2e-16 ***
s(totale positivi)
                           8.971 8.991 55.040 <2e-16 ***
s(deceduti_giornaliero) 4.396 5.456 1.627 0.1496
s(dimessi quariti giornaliero) 7.229 8.219 2.193 0.0268 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adi) = 0.992 Deviance explained = 99.4%
GCV = 11.42 Scale est. = 8.882 n = 147
```

Generalized Additive Model Residuals

Generalized Additive Model Model fit

Generalized Additive Model Predictions

The AIC in this case is 768.6147 so we have a little improvement.

Conclusions

Model	AIC
Linear model Poisson regression (id)	495 1052.751
GAM (Gaussian)	768

· Predictions on new data

• Alternative: time series regression

• Other factors: COVID-19 variants