WEEK 6

第3组

陈泳佐 2019012239 (p3-p5, p17-p20) 谢芸歆 2019012264 (p6-p16)

Content

- I. Homework
- II. Mapping
 - I. DNA mapping
 - II. RNA mapping
- III. Genome browser resources
- IV. NGS methods overview

1. Homework

```
#!/bin/bash
bowtie -v 2 -m 10 --best --strata BowtieIndex/YeastGenome -f THA2.fa -S THA2.sam
bowtie -v 1 -m 10 --best --strata bowtie-src/indexes/e_coli -q e_coli_500.fq -S e_coli_500.sam
perl sam2bed.pl THA2.sam > THA2.bed
perl sam2bed.pl e_coli_500.sam > e_coli_500.bed
grep -v $'chrV\t' THA2.bed > noV.bed
grep $'chrXII\t' THA2.bed > XII.bed
touch HW4-ChenYongzuo-2019012239.txt
cat 1.sh >> HW4-ChenYongzuo-2019012239.txt
wc -l noV.bed >> HW4-ChenYongzuo-2019012239.txt
exit 0
```

- 1.-v or -n?
- 2. What is -m and what is -m --best --strata?

1. Homework

```
101nfo docker: /mapping$ wc -I
1125 noV. bed
test@bioinfo docker:~/mapping$ wc -1 THA2 V.bed
915 THA2 V.bed
test@bioinfo docker:~/mapping$ grep chrV THA2_V.bed | wc -1
test@bioinfo_docker:~/mapping$ grep chrVI THA2_V.bed | wc -1
test@bioinfo docker:~/mapping$ grep chrVII THA2 V.bed | wc -1
```

1. Homework

```
test@bioinfo docker: /mapping$ grep chrV noV.bed
210
test@bioinfo_docker:~/mapping$ grep_chrVI noV.bed | wc -1
210
test@bioinfo_docker:~/mapping$ grep chrVII noV.bed | wc -1
193
test@bioinfo docker:~/mapping$ grep $'chrVII\t' noV.bed | wc -1
125
test@bioinfo docker:~/mapping$ grep $'chrVI\t' noV.bed | wc -1
test@bioinfo_docker:~/mapping$ grep chrVI\t noV.bed
test@bioinfo_docker:~/mapping$ grep 'chrVI' noV.bed | wc -1
210
test@bioinfo_docker:~/mapping$ grep 'chrVI\t' noV.bed | wc -l
test@bioinfo docker:~/mapping$ grep $'chrVI' noV.bed | wc -1
210
test@bioinfo_docker:~/mapping$ grep $'chrVI\t' noV.bed | wc -1
```

2. Mapping

2.1 DNA Mapping

Common tools

- SOAP (2008): target single-end reads, suitable for small memory (4G)
- MAQ/BWA (2008): invented by Heng Li (BGI, 华大); BWA suitable for SNP analysis
- Bowtie (2009): strong in speed, not consider indels
- Bowtie2 (2012): different tool c.f. Bowtie, allow longer reads
- Bowtie, Bowtie2 and BWA are all based on BWT, while MAQ is based on hash

2.1 DNA Mapping-BWT recall

Components of FM index

• BWT(T)

acaacg\$

acaacg\$

acaacg\$

acaacg\$

acaacg\$

acaacg\$

caacg\$aca

cg\$acaa

g\$acaac

 Checkpoints: for every 448 characters, keep track of the positions

Suffix array: SA[]

LF mapping: get unpermuted matrix

2.1 DNA Mapping-Bowtie2

- Step1: extract seed substrings from the reads and the complements
- Step2: Align the substrings to ref genome ungapped using FM index, yielding Burrows-Wheeler (BW) ranges
- Step3: Prioritize BW ranges by their sizes, and randomly select the rows to **get the offset** to the ref genome by FM index "walk-left" procedure
- P Step4: **Extension**, performing SIMD (Single Instruction Multiple Data)-accelerated **dynamic programming** in the vicinity of each alignments, until (1) all seeds examined (2) sufficient alignments examined (3) limit reached (gap allowed here)

2.1 DNA Mapping

Bowtie--Phased maq-like search

Seed: first 28 bases on the high-quality end of the read (14+14, hi/lo-half)

Example: 2 allowed mismatches

Case1: no mismatch in seed

Case2: no mismatch in hi-half, 1/2 mismatches in lo-half

Case3: no mismatch in lo-half, 1/2 mismatches in hi-half

Case4: 1 mismatch each in lo/hi-half

A three-phase approach minimizing backtracking

- **Phase 1**: use the mirror index to find alignments for cases 1 and 2.
- Phases 2 and 3: cooperate to find alignments for case 3, **phase 2** finds partial alignments with mismatches only in the hi-half, and **phase 3** extends those partial alignments into full alignments
- Finally, phase 3 invokes the aligner to find alignments for case 4

2.2 RNA Mapping-map to genome

Common tools

- HISAT2
- STAR
- TopHat2, ···
- RNA mapping (to genome) requires additional consideration of splicing while also caring about indels, mismatches and multiple copies.

2.2 RNA Mapping-STAR aligner

2 main process:

- Seed searching
- Clustering, stitching and scoring

Utilize SA[], split before iteration -> high efficiency

Process 1:

Maximal Mappable Prefixes (MMPs)

Search unmapped portion

2.2 RNA Mapping-STAR aligner

Mismatches and soft-clipping

2.2 RNA Mapping-STAR aligner

Process 2: clustering, stitching and scoring

Anchor seeds: least multi-mapping

- Clustering is based on anchors (alignment windows)
- **Stitching** is based on **scoring** (mismatches, indels, gaps etc.)

Scoring scheme

Deletions that are longer than a user defined minimum intron size are considered splice junction (gaps)

⇒ Gap opening + log(gap length) GT/AG>GC/AG..

$$S = +\sum_{match}^{+1} P_m - \sum_{mismatch}^{-1} P_{mm} - \sum_{inserion} P_{ins} - \sum_{deletion} P_{del} - \sum_{gap} P_{gap}$$

$$P_{ins/del} = P_{ins/del}^{open} + P_{ins/del}^{extend} \cdot L_{ins/del}$$

Junction point selection

$$\max_{r_1 < r_j < r_2} \left\{ \sum_{r=1}^{r_j - r_1} \begin{bmatrix} 1 & if \ R(r_1 + r) = G(g_1 + r) \ \& \ R(r_1 + r) \neq G(g_1 + r + \Delta) \\ -1 & if \ R(r_1 + r) \neq G(g_1 + r) \ \& \ R(r_1 + r) = G(g_1 + r + \Delta) \end{bmatrix} - P_{gap}(r_j) \right\}$$

$$otherwise$$

Select best alignment based on scores

https://academic.oup.com/bioinformatics/article/29/1/15/272537?login=true https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignment.html

2.2 RNA Mapping-HISAT2

2. Graphical representation (original graph)

Prefix doubling and pruning

4. Tabular representation of the prefix-sorted graph

Outgoing edge(s)			Inco edg	
Node rank	First		Last	Node rank
1	Α		G	1
2	Α		Т	2
3	С		G	3
	С		Z	4
	С	/:	Α	5
4	G		Т	
5	G /		Z	6
6	G	- 1	Α	
7	G	1	С	7
8	Т	1	Т	
9	Т	-	С	8
10	Т	1	G	9
11	Z	Î	С	10
	Z	,	G	11

HISAT2 (hierarchical indexing for spliced alignment of transcripts 2)

- align both DNA and RNA sequences using a graph Ferragina Manzini index
- A conservative method, more precision but less recall
- TopHat2 announced preceded

https://www.nature.com/articles/s41587-019-0201-4 https://www.jianshu.com/p/681e02e7f9af

2.2 RNA Mapping-de novo assembly

Trinity

- Consist of 3 components,
 Inchworm, Chrysalis and Butterfly.
- Rely on partitioning the sequence data into individual disconnected graphs
- Process independently to extract full-length isoforms and gain paralogous gene transcripts

Mapping总结

存在的问题:

- 1.序列比对 or 全局比对?
- 2.对全基因组遍历?
- 3.如何界定容忍度?

实现流程:

- 1.建立索引:Hashing/
- BWT-FM
- 2.确定mapping的位置 (单一seed/hybrid seed)
- 3.序列比对(动态规划/ 非动态规划)

3. Genome Browser

IGV:

官网下载:

https://software.broadinstitute.org/software/igv/download

视频: https://www.bilibili.com/video/av3044
8472/

https://cloud.tsinghua.edu.cn/d/ad22 768345664924b202/files/?p=%2FVide o%2FNGS%20Data%20Analysis%2FGeno me%20Browser%20-%20IGV%20-%20Zhiyu%20Xu.mp4 UCSC:

网站:https://genome.ucsc.edu/

视频:

https://cloud.tsinghua.edu.cn/d/ad22 768345664924b202/files/?p=%2FVide o%2FNGS%20Data%20Analysis%2FGeno me%20Browser%20-%20UCSC%20-%20Zhiyu%20Xu.mp4

4. Next Generation Sequencing (NGS)

- 1. 454焦磷酸测序法
- 2. Illumina 的 Solexa DNA簇 测序法
- 3. ABI的SOLiD平台测序法

Probe Anatomy

Two actual bases, each dinucleotide permutation corresponds to a dye color (red, green, blue, or yellow/orange) 16 possible dinucleotide permutations

Universal bases, bind to any of the 4 nucleotides Universal bases with fluorescent dye, measure for fluorescence and cleaved in each cycle, so attached probe is only 5 nucleotides long

知平用户

SOLiD测序法

Complete more cycles!

But we only have fluorescence measurements for every 5th base.... 知乎用户

Offset by one base (and do the whole thing over again four times!)

