Planche 1.

Question de cours. Soient f et g deux fonctions définies sur I et dérivables en a. Montrer que fg est dérivable en a. De même, montrer le résultat concernant la composition.

Exercice 1. Calculer la dérivée *n*-ième de la fonction réelle $t \longmapsto \cos(t)e^t$.

Exercice 2. Soit $f:[a,b] \to \mathbb{R}$. Une application 2 fois dérivable vérifiant f(a) = f(b) = 0. Soit $c \in]a,b[$. Montrer qu'il existe $\gamma \in]a,b[$ tel que $f(c) = \frac{(c-a)(c-b)}{2}f''(\gamma)$.

Planche 2.

Question de cours. Démontrer le théorème de Rolle.

Exercice 1. Soit $f:[-1,1]\to\mathbb{R}$ C^1 qui s'annule en -1,0,1. On pose $g:[-1,1]\to\mathbb{R}$: $g(x)=2x^4+x+f(x)$.

Montrer qu'il existe $c \in]-1,1[$ tel que g'(c)=0.

Exercice 2. Soit $P \in \mathbb{R}[X]$ tel que $deg(P) \geq 2$.

- a) Montrer que si les zéros de P sont tous réels et simples, alors P' aussi.
- b) Montrer que si P est scindé dans \mathbb{R} alors P' aussi.

Planche 3.

Question de cours. Soit f dérivable sur un intervalle I. Alors f est croissante sur I ssi $f' \ge 0$.

Exercice 1. Soit $f:[-1,1] \to \mathbb{R}$ de classe C^1 sur [-1,1], deux fois dérivable sur]-1,1[telle que : f(-1) = -1, f(0) = 0 et f(1) = 1. Montrer qu'il existe $c \in]-1,1[$ tel que f''(c) = 0

Exercice 2. Montrer que pour tout $x, y \in \mathbb{R}$, tel que $0 < x < y \le \pi/2$, on a :

$$x/y < \sin(x)/\sin(y) < \frac{\pi}{2}x/y$$

Solutions - Planche 1.

Exercice 1. Du cos de l'exponentielle. Hummmm. Faut passer en complexe clairement. $\cos(t)e^t = Re(e^{(1+i)t})$. Et là la dérivée *n*-ième c'est trop easy :

$$(\cos(t)e^t)^{(n)} = Re((1+i)^n e^{(1+i)t})$$

Or $(1+i)^n = 2^{n/2}e^{in\pi/4}$. D'où

$$(\cos(t)e^t)^{(n)} = 2^{n/2}e^t\cos(t + n\pi/4)$$

Exercice 2. On pose $g(x)=f(x)-\frac{A}{2}(x-a)(x-b)$ avec A tel que g(c)=0. Du cop : g(a)=g(b)=g(c)=0. Donc il existe $a'\in]a,c[$ tel que g'(a')=0 et g'(b')=0 avec $b'\in]c,b[$. Du coup il existe $\gamma\in]a,b[$ tel que $g''(\gamma)=0$.

Or g''(x) = f''(x) - A. Donc $f''(\gamma) = A$. D'où ce qu'on veut.

Solutions - Planche 2.

Exercice 1. Comme g est C^1 , on peut utiliser les théorèmes importants du cours (TAF, TVI, Rolle). Faisons un dessin : on calcule donc les valeurs de g aux points connus. g(-1) = 1, g(0) = 0 et g(1) = 3. On voit alors qui doit y avoir un point tel que g'(a) = 0 car g "descend" puis "remonte".

Par le théorème des valeurs intermédiaires, il existe $c \in]0,1[$ tel que g(c)=1. Par Rolle, il existe $a \in]-1,c[$ tel que g'(a)=0 car g(-1)=g(c).

On a donc montré qu'il existe $c \in]-1,1[$ tel que g'(c)=0.

Exercice 2.

a) D'après le théorème du cours, P est scindé sur \mathbb{C} . C'est à dire qu'il admet exactement n racines dans \mathbb{C} (comptées avec multiplicité). L'hypothèse implique que ces racines sont réelles et simples. D'où P s'écrit de la manière suivante :

$$P(X) = \lambda \prod_{k=1}^{n} (X - a_k)$$

où les a_k sont des réels distincts et λ est un réel non nul. On suppose, quitte à les renuméroter, que $a_1 < \ldots < a_n$.

P étant continu sur $[a_k, a_{k+1}]$ pour tout $k \in [|1, n-1|]$, étant dérivable sur $]a_k, a_{k+1}[$ (en fait P est même C^1 sur \mathbb{R}) et $P(a_k) = P(a_{k+1}) = 0$. Alors par le théorème de Rolle, il existe $y_k \in]a_k, a_{k+1}[$ tel que $P'(y_k) = 0$.

On obtient donc n-1 réels y_k tels que : $a_1 < y_1 < a_2 < \ldots < y_{n-1} < a_n$. Donc les y_k sont deux à deux distincts. Comme P' est de degré n-1, il en résulte que les zéros de P' sont exactement les y_k qui sont tous réels et simples.

b) Comme P est supposé scindé dans \mathbb{R} , alors il existe λ un réel non nul, a_1, \ldots, a_N des réels distincts deux à deux tels que $a_1 < \ldots < a_N$ et tels que :

$$P = \lambda \prod_{k=1}^{N} (X - a_k)^{\alpha_k}$$

Avec les α_k des entiers non nuls.

Comme on l'a montré dans la première partie de l'exercice, il existe $y_1, \ldots y_{N-1}$ des réels distincts deux à deux tels que : $y_k \in]a_k, a_{k+1}[$ et $P'(y_k) = 0$. De plus a_k est racine de P' d'ordre $\alpha_k - 1$.

Ainsi on a trouvé un certain nombre de racine de P' qui sont les y_k (cela en fait N-1) et les x_k (chacun d'ordre α_k-1). D'où on a trouvé $N-1+\sum_{k=1}^N\alpha_k-1=N-1-N+\sum_{k=1}^N\alpha_k=n-1$ racines comptées avec multiplicité. Or P' est de degré n-1. Donc ce sont exactement les racines de P'. D'où P' est scindé sur \mathbb{R} .

Solutions - Planche 3.

Exercice 1. Ça sent le théorème des accroissements finis car on va montrer que des dérivées s'annulent. Comme f est C^1 , le TAF nous dit qu'il existe a dans]-1,0[tel que f'(a)=f(0)-f(-1)/(0-(-1))=1 et qu'il existe b dans]0,1[tel que f'(b)=f(1)-f(0)/(1-0)=1.

Comme f' est dérivable, alors d'après le théorème de Rolle il existe $c \in]a,b[$ tel que f''(c)=0 car f'(a)=f'(b).

Autre solution : on peut utiliser qu'il y a un minimum et un maximum (car non constante) du coup la dérivée vaut la même chose en ces deux points (0).

Exercice 2. Premier réflexe, on pose $f(t) = \sin(t)/t$ définie sur $]0, \pi/2[$. Soient $x, y \in \mathbb{R}$ tels que : $0 < x < y < \pi/2$. Cela revient donc à montrer que :

$$\frac{2}{\pi}f(x) < f(y) < f(x)$$

Et là on a plus de fonctions à deux variables et il suffit d'étudier les variations de f. f est dérivable sur son intervalle de définition :

$$f'(t) = \frac{t\cos(t) - \sin(t)}{t^2}$$

Comme le dénominateur est positif, il suffit d'étudier le signe de $A(t) = t\cos(t) - \sin(t)$. Or cette fonciton définie sur $[0,\pi/2[$ est dérivable sur ce même intervalle, et sa dérivée vaut : $A'(t) = -t\sin(t) \le 0$ et même A(t) < 0 si $t \ne 0$. Donc A est strictement décroissante. De plus A(0) = 0, donc on en déduit que A(t) < 0. Donc f'(t) < 0 et f est strictement décroissante. De plus on sait que $f(t) \to 1$ quand $t \to 0$. Donc $f(t) \to 2/\pi$ quand $t \to \pi/2$.

Ainsi, si $0 < x < y < \pi/2$ alors

$$2/\pi < f(y) < f(x) < 1$$

On a donc d'une part que f(y) < f(x). Et d'autre part $\frac{f(y)}{f(x)} > f(y)$ car 0 < f(x) < 1. Donc $\frac{f(y)}{f(x)} > \frac{2}{\pi}$. On a donc démontré : $x/y < \sin(x)/\sin(y) < \frac{\pi}{2}x/y$