

Transverse Lines to Surfaces over Finite Fields

Lian Duan¹[duan@math.umass.edu], Shamil Asgarli², Kuan-Wen Lai¹

¹Department of Mathematics and Statistics, UMass Amherst ²Department of Mathematics, Brown University

Abstract

In this work, we prove that when X is a smooth reflexive surface of degree d in a projective space $\mathbb{P}^3_{\mathbb{F}_q}$ satisfying $q \geq \frac{3+\sqrt{17}}{4}d$, there exists an \mathbb{F}_q -line transverse to X. This work is a 2-dimensional generalization of a previous result of S. Asgarli [Asg19].

Motivation

Given a smooth hypersurface $X \subseteq \mathbb{P}^n_k$ defined over an infinite field k, we have

Theorem. [Bertini's Theorem] For a general choice of a hyperplane $H \subseteq \mathbb{P}^n_k$, $X \cap H$ is smooth.

Corollary. If X is a smooth hypersurface of degree d, then for a general choice of line $L \subset \mathbb{P}^n_k$, $X \cap L$ consists of d distinct points.

 $\label{eq:Figure:Figure:Figure:Figure} Figure: For a general hyperplane $H, X \cap H$ is smooth (Picture is from: http://www.staff.uni-mainz.de/dfesti/AlgebraicGeometryIII.html).$

Definition. Given a degree d smooth hypersurface $X \subseteq \mathbb{P}_k^n$, a k-line is called a k-transverse line to X if intersects X at d distinct (geometric) points.

Question 1

If k is a finite field \mathbb{F}_q , can we still find a \mathbb{F}_{q^-} transverse line to X?

Definition. A hypersurface X is called reflexive if the Gauss map

$$\varphi:X\dashrightarrow X^*\subset (\mathbb{P}^n)^*$$

is separable, where X^* is the dual variety of X.

An Example

The answer to the Question 1 is **negative**.

Example 1. Let C be a smooth curve with deg(C) = q + 2 such that

$$\#C(\mathbb{F}_q) = \#\mathbb{P}^2(\mathbb{F}_q).$$

- Such curves exist by Homma and Kim [HK13].
- For such a curve C, every \$\mathbb{F}_q\$-line L intersects C at \$q+2\$ points in the algebraic closure of \$\mathbb{F}_q\$ (counted with multiplicity).
- q+1 of these points are already in \mathbb{F}_q since $\#L(\mathbb{F}_q) = \#\mathbb{P}^1(\mathbb{F}_q)$.
- Hence all the q + 2 intersection points are in F_q.
 And the double intersection point is the tangent point of L at C.
- Thus all the F_q-lines are tangent lines of C.

Our Goal

To remedy the original Bertini theorem in the case of finite fields, there are at least two approaches.

- We can consider the intersection of X with smooth curves of genus > 0. According to Poonen [Poo04], there exits plenty of smooth curves defined over F_q which intersect X transversely.
- Or we can ask the following question:

Question 2

Given a projective variety $X \subseteq \mathbb{P}^n$ defined over a finite field $k = \mathbb{F}_q$. Can we find a positive integer n such that for a field extension k'/k of degree $[k':k] \geq n$, there exists a line over k' transverse to X? How would the minimal value of n depend on the invariants of X (e.g. the degree of X)?

Main Methods

The main idea in the proof of our theorems is counting the number of \mathbb{F}_q -tangent lines of a smooth degree d surface X.

- 1. Suppose all the \mathbb{F}_q -lines L_i are tangent to X; then they are classified into two types:
- a. At least one of the tangency points of L_i is defined over \mathbb{F}_q . We call tangent lines **rational tangents**.
- b. All the tangency points of L_i are not defined over the ground field \mathbb{F}_q . These tangent lines are called **special** tangents.
- 2. Under our assumption, we obtain

$$\#\{\text{rational tangents}\} + \#\{\text{special tangents}\}\$$

= $\#\{\mathbb{F}_{\sigma}\text{-lines in }\mathbb{P}^3\}$

3. Every \mathbb{F}_q -point of X contributes q+1 rational tangents. So

$$\#\{\text{rational tangents}\} \le \#X(\mathbb{F}_q) \cdot (q+1)$$

4. The tangency points of special tangent lines are all contained in the intersection

$$X \cap X_{0,1} \cap X_{1,0}$$
.

- **5**. On the other hand, the number of \mathbb{F}_q -lines in $\mathbb{P}^3_{\mathbb{F}_q}$ is $(q^2+1)(q^2+q+1)$.
- 6. Thus if $X \cap X_{0,1} \cap X_{1,0}$ is a finite set, we should have

$$#X(\mathbb{F}_q) \cdot (q+1) + #(X \cap X_{0,1} \cap X_{1,0}) \ge (q^2+1)(q^2+q+1)$$

which will lead to a contradiction if q is large enough. After some algebra, one can see that there exists a transverse line when $q \geq 1.537d$.

7. When $X \cap X_{0,1} \cap X_{1,0}$ contains curves, a similar but more complicated analysis produces the bound $q \ge \frac{3+\sqrt{17}}{4}d \approx 1.7808d$.

Main Result

Suppose that X is a smooth reflexive surface of degree d in \mathbb{P}^3 over finite field \mathbb{F}_q satisfying

$$q \ge \frac{3 + \sqrt{17}}{4}d \approx 1.7808d$$

Then there is an \mathbb{F}_q -line in \mathbb{P}^3 which is transverse to X

Remarks

• For reflexive smooth surfaces of degree d, we answer Question 2 by finding

$$n = \log_a(1.8 \cdot d).$$

A similar result [Asg19] for reflexive curves is: $n = \log_a(d-1).$

• How sharp is our bound? According to computer experiments, there are smooth surfaces X of degree q+2 in $\mathbb{P}^3_{\mathbb{F}_q}$ such that $\#X(\mathbb{F}_q)=\#\mathbb{P}^3(\mathbb{F}_q)$. For these surfaces, every \mathbb{F}_q -line is a tangent line. So $n\geq \log_p(d-1)$ is necessary.

Mathematical Setups

• $X \subseteq \mathbb{P}^3$ is a smooth surface defined by a degree d homogeneous polynomial

$$F = F(X_0, X_1, X_2, X_3) \in \mathbb{F}_q[X_0, X_1, X_2, X_3].$$

- Take $F_i:=\frac{\partial F}{\partial X_i}$ and $F_i^{(q)}(X_0,X_1,X_3,X_4):=F_i(X_0^q,X_1^q,X_2^q,X_3^q).$
- Define the two surfaces

$$X_{1,0} := \{F_{1,0} = 0\}$$
 and $X_{0,1} := \{F_{0,1} = 0\}$
where

$$F_{1,0} := X_0^q F_0 + X_1^q F_1 + X_2^q F_2 + X_3^q F_3$$

$$F_{0,1} := X_0 F_0^{(q)} + X_1 F_1^{(q)} + X_2 F_2^{(q)} + X_3 F_3^{(q)},$$

Main References

[Asg19] Shamil Asgarli, Sharp Bertini theorem for plane curves over finite fields, Canadian Mathematical Bulletin (2019), 1-8. DOI: https://doi.org/10.4153/CMB-2018-018-0

[HK13] Masaaki Homma and Seon Jeong Kim, Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: supplements to a work of Tallini, Linear Algebra Appl. 438 (2013), no. 3, 99–985. MR 299778.

[Hom15] Masaaki Homma, Numbers of points of hypersurfaces without lines over finite fields, Topics in finite fields, Contemp. Math., vol. 632, Amer. Math. Soc., Providence, RI, 2015, pp. 151–156. MR 3290979

[Poo04] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099–1127. MR 2144974