Computer Science 271 Project 0010 Due Wednesday, February 8

Type your answers in LATEX.

1. Prove Theorem 3.1 on page 48:

For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

2. Prove the following using the definitions of O, Ω , and Θ .

(a)
$$n^2 + 3n - 20 = O(n^2)$$

(b)
$$n - 2 = \Omega(n)$$

(c)
$$\log_{10} n + 4 = \Theta(\log_2 n)$$

(d)
$$2^{n+1} = O(2^n)$$

(e)
$$\ln n = \Theta(\log_2 n)$$

(f)
$$n^{\epsilon} = \Omega(\lg n)$$
 for any $\epsilon > 0$

3. For each of the following recurrences, find a tight upper bound for T(n). It will be useful to remember that

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}, \text{ if } |a| < 1.$$

Prove that each is correct using induction. In each case, assume that T(n) is constant for $n \leq 2$.

(a)
$$T(n) = 2T(n/2) + n^3$$

(b)
$$T(n) = T(9n/10) + n$$

(c)
$$T(n) = 7T(n/3) + n^2$$

(d)
$$T(n) = T(\sqrt{n}) + 1$$

(e)
$$T(n) = T(n-1) + \lg n$$

4. Carefully prove by induction that the i^{th} Fibonacci number satisfies the equality

$$F_i = \frac{\phi^i - \widehat{\phi}^i}{\sqrt{5}},$$

where $\phi = (1 + \sqrt{5})/2$ is the golden ratio and $\hat{\phi} = (1 - \sqrt{5})/2$ is its conjugate.