TP Classification non supervisée - Correction

Analyse des données

Master ISEFAR - M1

1 Criminalités aux USA

1.1 Données

```
data(USArrests)
```

1.2 Normalisation des données et calcul des distances entre individus avec la distance euclidienne

```
USArrests.cr <- USArrests %>% scale(.,scale=TRUE, center=TRUE)
USArrests.dist <- USArrests.cr %>% dist(., method = "euclidean")
```

1.3 CAH

```
# Lien simple
USArrests.single<-USArrests.dist %>% hclust(., method = "single")
fviz_dend(USArrests.single, cex = 0.5)
```

Cluster Dendrogram


```
# Lien complet
USArrests.average<-USArrests.dist %>% hclust(., method = "average")
fviz_dend(USArrests.average, cex = 0.5)
```

Cluster Dendrogram

distance de ward

USArrests.ward<-USArrests.dist^2 %>% hclust(., method = "ward.D")
fviz_dend(USArrests.ward, cex = 0.5)

Cluster Dendrogram

Courbe de l'augmentation de l'inertie intra-groupe en fonction du nombre d'itérations plot(USArrests.ward\$height,type="s",xlab="nb itérations",ylab="heigth")

On choisit 4 groupes

Cluster Dendrogram

1.4 Représentation des groupes sur le plan principal de l'ACP

```
# On récupère les k groupes cluster.CAH <- USArrests.ward %>% cutree(., k =4)
```

```
# ACP
res.pca=PCA(USArrests,scale.unit = TRUE,ncp = 4,graph=FALSE)
# visualiser les classes sur le premier plan factoriel de l'ACP
fviz_pca_ind(res.pca,axes=c(1,2),habillage=as.factor(cluster.CAH))
```


fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster.CAH))

moyennes des variables par groupe
knitr::kable(aggregate(USArrests, by=list(as.factor(cluster.CAH)),mean),digits=1)

Group.1	Murder	Assault	UrbanPop	Rape
1	14.7	251.3	54.3	21.7
2	11.0	264.0	76.5	33.6
3	6.2	142.1	71.3	19.2
4	3.1	76.0	52.1	11.8

1.5 K-means

```
# 1 fois
res.kmeans <- USArrests %>% kmeans(.,centers =4,nstart = 1)
cluster.kmeans <- res.kmeans$cluster
fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster.kmeans))</pre>
```



```
# 1 fois
res.kmeans <- USArrests %>% kmeans(.,centers =4,nstart = 1)
cluster.kmeans <- res.kmeans$cluster
fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster.kmeans))</pre>
```



```
# 10 fois
res.kmeans <- USArrests %>% kmeans(.,centers =4,nstart = 10)
cluster.kmeans <- res.kmeans$cluster
fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster.kmeans))</pre>
```


1.6 Comparaisons CAH et k-means

knitr::kable(cbind(cluster.kmeans,cluster.CAH))

	cluster.kmeans	cluster.CAH
Alabama	2	1
Alaska	2	2
Arizona	2	2
Arkansas	1	3
California	2	2
Colorado	1	2
Connecticut	3	3
Delaware	2	3
Florida	2	2
Georgia	1	1
Hawaii	4	3
Idaho	3	4
Illinois	$\overline{2}$	2
Indiana	3	3
Iowa	4	4
Kansas	3	3
Kentucky	3	3
Louisiana	2	1
Maine	4	4
Maryland	$\stackrel{1}{2}$	$\stackrel{\cdot}{2}$
Massachusetts	1	3
Michigan	2	$\frac{3}{2}$
Minnesota	4	4
Mississippi	2	1
Missouri	1	3
Montana	3	4
Nebraska	3	4
Nevada	2	2
New Hampshire	4	4
New Jersey	1	3
New Mexico	$\frac{1}{2}$	2
New York	$\frac{2}{2}$	$\frac{2}{2}$
North Carolina	$\frac{2}{2}$	1
	$\frac{2}{4}$	4
North Dakota	3	3
Ohio		
Oklahoma	1	3
Oregon	1	3
Pennsylvania	3	3
Rhode Island	1	3
South Carolina	2	1
South Dakota	4	4
Tennessee	1	1
Texas	1	2
Utah	3	3
Vermont	4	4
Virginia	1	3
Washington	1	3
West Virginia	4	4
Wisconsin	4	4
Wyoming	1	3

2 Fertilité et indicateurs socio-économiques en Suisse

2.1 Données

```
data(swiss)
```

2.2 CAH avec la distance de Ward

```
# CAH
swiss.var <- swiss %>% dplyr::select(-Fertility)

swiss.cr <- swiss.var %>% scale(.,scale=TRUE, center=TRUE)
swiss.dist <- swiss.cr %>% dist(., method = "euclidean")
swiss.ward<- swiss.dist^2 %>%hclust(., method = "ward.D")

# Nombre de groupes?
fviz_dend(swiss.ward, cex = 0.5)
```

Cluster Dendrogram

2.3 Représentation des groupes à l'aide de l'ACP

-50 -

```
cluster <- swiss.ward %>% cutree(., k =3)
# ACP
res.pca=PCA(swiss,scale.unit = TRUE,ncp = 5,graph=FALSE,quanti.sup = 1)
# visualiser les classes sur le premier plan factoriel de l'ACP
fviz_pca_ind(res.pca,axes=c(1,2),habillage=as.factor(cluster))
```



```
fviz_pca_var(res.pca,axes=c(1,2),col.var="cos2")
```


fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster))

moyennes des variables par groupe
knitr::kable(aggregate(swiss[,-1], by=list(as.factor(cluster)),mean),digits=1)

Group.1	Agriculture	Examination	Education	Catholic	Infant.Mortality	
1	54.8	16.5	7.8	7.8	19.8	
2	65.5	9.4	6.6	96.2	20.8	
3	21.5	26.7	23.0	21.8	19.1	

3 Décathlon

3.1 Données et statistiques simples

```
# Données
data(decathlon)
decathlon <- decathlon %>% filter(Competition=="OlympicG") %>% dplyr::select(-Competition)
knitr::kable(head(decathlon))
```

	100m	Long.jur	nShot.put	High.jui	n ≱ 00m	110m.hu	:dDeiscus	Pole.vault	Javeline	1500m	Rank	Points
Sebrle	10.85	7.84	16.36	2.12	48.36	14.05	48.72	5.0	70.52	280.01	1	8893
Clay	10.44	7.96	15.23	2.06	49.19	14.13	50.11	4.9	69.71	282.00	2	8820
Karpov	10.50	7.81	15.93	2.09	46.81	13.97	51.65	4.6	55.54	278.11	3	8725
Macey	10.89	7.47	15.73	2.15	48.97	14.56	48.34	4.4	58.46	265.42	4	8414
Warners	10.62	7.74	14.48	1.97	47.97	14.01	43.73	4.9	55.39	278.05	5	8343
Zsivoczk	xy10.91	7.14	15.31	2.12	49.40	14.95	45.62	4.7	63.45	269.54	6	8287

```
dim(decathlon)
```

[1] 28 12

```
#Statistiques simples
summary(decathlon)
```

```
100m
##
                      Long.jump
                                       Shot.put
                                                       High.jump
           :10.44
                    Min. :6.610
                                          :13.07
   Min.
                                    Min.
                                                     Min.
                                                          :1.850
   1st Qu.:10.84
                    1st Qu.:7.020
                                     1st Qu.:13.98
                                                     1st Qu.:1.933
  Median :10.90
                    Median :7.280
                                    Median :14.79
                                                     Median :1.940
##
  Mean
          :10.92
                    Mean
                           :7.266
                                    Mean
                                           :14.62
                                                     Mean
                                                           :1.976
   3rd Qu.:11.08
                    3rd Qu.:7.482
                                     3rd Qu.:15.17
                                                     3rd Qu.:2.038
   Max.
          :11.36
                    Max.
                           :7.960
                                            :16.36
##
                                    Max.
                                                     Max.
                                                            :2.150
         400m
##
                     110m.hurdle
                                        Discus
                                                       Pole.vault
                           :13.97
##
   Min.
           :46.81
                    Min.
                                           :39.83
                                                     Min.
                                                            :4.200
   1st Qu.:48.93
                    1st Qu.:14.20
                                     1st Qu.:42.01
                                                     1st Qu.:4.500
##
   Median :49.37
                    Median :14.40
                                    Median :44.51
                                                     Median :4.700
           :49.61
##
   Mean
                    Mean
                           :14.55
                                    Mean
                                           :44.38
                                                     Mean
                                                            :4.732
   3rd Qu.:50.36
                    3rd Qu.:14.95
                                     3rd Qu.:45.73
                                                     3rd Qu.:4.925
   Max.
           :53.20
                           :15.39
                                                            :5.400
##
                    Max.
                                    Max.
                                           :51.65
                                                     Max.
##
       Javeline
                        1500m
                                         Rank
                                                         Points
                                    Min. : 1.00
##
  Min.
           :50.62
                    Min.
                           :263.1
                                                     Min.
                                                            :7404
   1st Qu.:55.36
                    1st Qu.:270.7
                                    1st Qu.: 7.75
                                                     1st Qu.:7886
  Median :58.94
                    Median :276.3
                                    Median :14.50
                                                     Median:8022
```

```
## Mean
          :58.95
                  Mean
                         :277.6
                                  Mean
                                        :14.50
                                                 Mean
                                                        :8052
## 3rd Qu.:61.00
                  3rd Qu.:280.4
                                  3rd Qu.:21.25
                                                 3rd Qu.:8236
                  Max.
                                  Max.
                                        :28.00
## Max.
          :70.52
                         :317.0
                                                 Max.
                                                        :8893
decathlon.active <- decathlon %>% dplyr::select(-Rank,-Points)
decathlon.active %>% summarise_all(mean)
        100m Long.jump Shot.put High.jump 400m 110m.hurdle
                                                           Discus Pole.vault
## 1 10.91571 7.265714
                       14.625 1.976429 49.61
                                                 14.55357 44.37571
    Javeline
                1500m
## 1 58.94893 277.5507
decathlon.active %>% summarise all(var)
          100m Long.jump Shot.put
                                    High.jump
                                                 400m 110m.hurdle
                                                                   Discus
## 1 0.05337354 0.1163735 0.7331148 0.008090476 1.608978
                                                       0.1959794 10.88727
    Pole.vault Javeline
                          1500m
## 1 0.08374339 24.75908 128.1838
#Corrélation
correlation <- decathlon.active %>% cor(.)
print(correlation,digits=3)
##
                 100m Long.jump Shot.put High.jump
                                                    400m 110m.hurdle Discus
## 100m
               1.0000 -0.7050 -0.3697 -0.3093 0.6348
                                                             0.5426 -0.233
## Long.jump
              -0.7050
                        1.0000 0.1955
                                          0.3457 -0.6711
                                                            -0.5382 0.250
## Shot.put
                                                            -0.2451 0.666
              -0.3697
                        0.1955 1.0000
                                        0.6126 -0.1993
              -0.3093
## High.jump
                        0.3457
                                0.6126
                                          1.0000 -0.1692
                                                            -0.3260 0.517
## 400m
               0.6348 -0.6711 -0.1993 -0.1692 1.0000
                                                            0.5199 -0.144
## 110m.hurdle 0.5426 -0.5382 -0.2451 -0.3260 0.5199
                                                            1.0000 -0.217
                                                            -0.2169 1.000
## Discus
             -0.2333
                      0.2499 0.6658 0.5170 -0.1442
## Pole.vault -0.2605
                        0.2851 0.0237
                                         -0.0424 -0.1154
                                                            -0.1510 -0.184
## Javeline -0.0117
                        0.0938 0.3833
                                        0.2045 -0.0547
                                                            -0.0798 0.255
## 1500m
              0.0584
                      -0.1474 0.1295
                                         -0.0035 0.5512
                                                            0.1790 0.220
##
              Pole.vault Javeline
                                  1500m
                -0.2605 -0.0117 0.0584
## 100m
## Long.jump
                 0.2851 0.0938 -0.1474
## Shot.put
                0.0237
                         0.3833 0.1295
## High.jump
                         0.2045 -0.0035
                -0.0424
## 400m
                -0.1154 -0.0547 0.5512
## 110m.hurdle
                -0.1510 -0.0798 0.1790
## Discus
                -0.1842
                         0.2549 0.2202
## Pole.vault
                 1.0000 -0.0661 0.1795
## Javeline
                         1.0000 -0.2515
                -0.0661
## 1500m
                 0.1795 -0.2515 1.0000
correlation %>% corrplot
```


3.2 ACP

```
res.pca=PCA(decathlon,scale.unit = TRUE,ncp = 10,quanti.sup = 11:12,graph=FALSE)
# les variables supplémentaires sont intégrées au graphe mais ne sont pas
# prises en compte pour l'ACP
```

3.2.1 Valeurs propres

res.pca\$eig

```
##
           eigenvalue percentage of variance cumulative percentage of variance
## comp 1
            3.5446573
                                    35.446573
                                                                         35.44657
## comp 2
            1.9699560
                                    19.699560
                                                                         55.14613
## comp 3
            1.4217248
                                    14.217248
                                                                         69.36338
            0.9034912
                                                                         78.39829
                                     9.034912
## comp 4
## comp 5
            0.5636320
                                     5.636320
                                                                         84.03461
            0.5282270
                                     5.282270
                                                                         89.31688
## comp 6
## comp 7
            0.4328613
                                     4.328613
                                                                         93.64550
## comp 8
            0.3658102
                                     3.658102
                                                                         97.30360
## comp 9
            0.1634956
                                     1.634956
                                                                         98.93855
## comp 10 0.1061447
                                     1.061447
                                                                       100.00000
```

fviz_eig(res.pca, addlabels = TRUE)

3.2.2 Variables

fviz_pca_var(res.pca, geom = c("text", "arrow"), col.var = "cos2",axes=1:2) + theme_classic()

3.2.3 Individus

3.2.4 Biplot

3.3 Classification par CAH

```
decathlon.cr <- decathlon.active %>% scale(., scale=T, center=T)
decathlon.dist <- decathlon.cr %>% dist(., method = "euclidean")
decathlon.ward<-decathlon.dist^2 %>% hclust(., method = "ward.D")
```

3.3.1 Représentation graphique et choix du nombre de groupes

```
# Dendrogramme et choix du nombre de groupes
fviz_dend(decathlon.ward, cex = 0.5)
```

Cluster Dendrogram

Cluster Dendrogram

cluster <- cutree(decathlon.ward, k =5)</pre>

3.3.2 Interprétation des groupes

```
# visualiser les classes sur le premier plan factoriel de l'ACP
fviz_pca_biplot(res.pca,axes=c(1,2),habillage=as.factor(cluster))
```


fviz_pca_biplot(res.pca,axes=c(3,4),habillage=as.factor(cluster))

moyennes des variables par groupe
knitr::kable(aggregate(decathlon.active, by=list(as.factor(cluster)),mean),digits=1)

Group.1	100m	Long.jump	Shot.put	High.jump	400m	110m.hurdle	eDiscus	Pole.vault	Javeline	1500m
1	10.6	7.9	15.8	2.1	48.1	14.1	50.2	4.8	65.3	280.0
2	11.0	7.2	14.7	2.0	49.1	14.5	45.1	4.5	61.0	268.1
3	10.8	7.5	14.3	1.9	49.2	14.4	42.2	4.9	56.8	275.5
4	11.1	6.9	14.9	2.0	51.2	14.8	44.4	4.8	56.8	293.2
5	11.2	7.1	13.3	1.9	50.3	15.2	42.2	4.5	57.1	274.5