Experimentalphysik II (H.-C. Schulz-Coulon)

Robin Heinemann

26. April 2017

Inhaltsverzeichnis

11	1 Elektrostatik		1
	11.1	Elektrische Ladung	1
	11.2	Mikroskopische Deutung	2
	11.3	Coulombsches Gesetz	2
	11.4	elektrisches Feld	2
	11.5	Elektrischer Fluss	3

11 Elektrostatik

11.1 Elektrische Ladung

- Neue Kraft
- anziehend oder abstoßend
- · Konzept der elektrischen Ladung

Experimetelle Erkenntnisse:

- Erzeugung von Ladungen durch Reibung
- Ladungen gleicher Vorzeichen: Abstoßung
- Ladungen ungleicher Vorzeichen: Anziehung
- Ladung kann transportiert werden
- Elektrische Kräfte sind Fernkräfte
- Ladungen sind erhalten

Definition 11.1 Influenz Ladungstrennung durch die (Fern) Wirkung elektrischer Kräfte nennt man Influenz oder elektrostatische Induktion.

11.2 Mikroskopische Deutung

Elektron: negativ Proton: positiv

Atome elektrische neutral

• Z: Anzahl Protonen / Elektronen

• N: Anzahl Neutronen

• A: Anzahl Neutronen + Protonen

Leiter und Nichtleiter: Unterschiedliche Verfügbarkeit von Ladungsträgern

11.3 Coulombsches Gesetz

Experimentelles Resultat:

$$\vec{F}_C = K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Definition 11.2

$$\vec{F}_{C} = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r_{12}^{2}} \hat{r}_{12}$$

mit
$$\varepsilon_0 = 8.854\,16 \times 10^{-12}\,\mathrm{C\,N^{-1}\,m^{-2}}$$

Vergleich: Coulomb vs. Gravitation

$$\begin{split} \vec{F}_G &= -G \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12} \\ \vec{F}_C &= K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} \\ \frac{F_C}{F_G} &= 227 \times 10^{39} \end{split}$$

11.4 elektrisches Feld

Definition 11.3 (Elektrisches Feld)

$$\begin{split} \vec{E}(\vec{r}) &= \frac{\vec{F}_C(\vec{r})}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \\ \vec{F}(\vec{r}) &= q \vec{E}(\vec{r}) \end{split}$$

Das elektrische Feld hängt nur von der Ladung Q ab, aber nicht von der Testladung q. Es gilt damit:

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r})$$

Bedeutung das elektrischen Feldes:

Coulomb-Gesetz bescheibt Fernwirkung.

Aber: Wodurch wird diese Wirkung übertragen?

Geschieht die Übertragung instantan? (nein!)

Feldwirkungstheorie: Elektrische Kraftübertragung über Ausbreitung des elektrischen Feldes, das mit der Probeladung q. Elektrostatik: Fernwirkung- und Feldwirkungstheorie sind äquiyalent.

Elektrodynamik: Feldbegriff essentiell. Feld einer allgemeinen Ladungsverteilung:

Wichtig: Es gilt das Superpositionsprinzips. Es gilt

$$\mathrm{d}Q = \rho(\vec{r})\mathrm{d}V$$

$$\vec{E}\!\left(\vec{R}\right) = \frac{1}{4\pi\varepsilon_0} \int \frac{\vec{R} - \vec{r}}{\left|\vec{R} - \vec{r}\right|^3} \rho(\vec{r}) \mathrm{d}V$$

Für diskrete Ladungen:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i^2} \hat{r}$$

Die Anwesenheit von Ladungen verändern den Raum. Es entsteht ein Vektorfeld, dessen Stärke und Richtung in jedem Raumpunkt die normierte Kraft $\frac{\vec{F}}{a}$ auf eine Probeladung angibt. Eigenschaften der Feldlinien

- 1. Das \vec{E} -Feld zeigt tangential zu den Feldlinien
- 2. Feldlinien zeigen weg von positiven Ladungen
- 3. Feldliniendichte entspricht Stärke des Feldes.

11.5 Elektrischer Fluss

Definition 11.4 (Elektrischer Fluss ϕ_E) Maß für die Anzahl der Feldlinien, die Fläche A durchstoßen.

Für geschlossene Oberflächen:

$$\begin{split} Q_{innen} &= 0 \Rightarrow \phi_E = 0 \\ Q_{innen} &> 0 \Rightarrow \phi_E > 0 \\ Q_{innen} &< 0 \Rightarrow \phi_E < 0 \end{split}$$

Mathematisch:

- Homogenes Feld, \perp zur Oberfläche $\Rightarrow \phi E = EA$
- Homogenes elektrisches Feld $EA' = EA\cos\theta = \vec{E}\vec{A} = \vec{E}\vec{n}A$

Verallgemeinerung:

$$\begin{split} \Delta\phi_i &= \vec{E}_i \vec{n}_i \Delta A_i \\ \phi_E &= \lim_{\Delta A_i \to 0} \sum \vec{E}_i \vec{n}_i \Delta A \\ \phi_A &= \int \vec{E} \mathrm{d}\vec{A} \end{split} \tag{Definition von Elektrischem Fluss)}$$

Ladung einer Kugel:

$$\begin{split} \phi_A &= \int \vec{E} \mathrm{d}\vec{A} \\ &= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} \int \mathrm{d}\vec{D} \\ &= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} 4\pi R^2 \\ &= \frac{Q}{\varepsilon_0} \end{split}$$

Definition 11.5 (Gauß'sches Gesetz)

$$\oint \vec{E} d\vec{A} = \frac{Q_{\rm innen}}{\varepsilon_0}$$

Das Gauß'sche Gesetz ist allgemeingültig, da:

$$\oint_{A_2} \vec{E} \mathrm{d}\vec{A} - \oint_{A_1} \vec{E} \mathrm{d}\vec{A} = 0 \oint_{A_2} \vec{E} \mathrm{d}\vec{A} \\ = \oint_{A_1} \vec{E} \mathrm{d}\vec{A} = \frac{Q_{\mathrm{innen}}}{\varepsilon_0}$$

Zusammen mit dem Superpositionsprinzip und homogener Fläche erhält man die Allgemeingültigkeit des Gauß'schen Gesetz.

Herleitung des Coulombschen Gesetz mit Gauß'schen Gesetz:

$$\oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E \oint d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E4\pi R^2 = \frac{Q}{\varepsilon_0}$$

$$E(R) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{R^2}$$