Comprehensive Report on Machine Learning Applications in Fraud Detection

SeyyedMasoud RezvaniNejad

November 29, 2024

Abstract

Modern machine learning methods for fraud detection are examined in this paper, with an emphasis on the difficulties presented by unbalanced datasets and overlapping class distributions. We suggest a hybrid fraud detection model based on knowledge from a wide range of literature, including frameworks like DAEGAN [1] and CS-OCAN [2]. This paper presents a thorough review of sophisticated techniques, including ensemble learning, autoencoders, and Generative Adversarial Networks (GANs), and shows how they can be used in tandem to increase detection rates while preserving efficiency.

Contents

1	Introduction	2
2	Background	2
3	Literature Review 3.1 Addressing Data Imbalance	2 2 2 2
4	Proposed Framework	3
5	Discussion	3
6	Conclusion	3

1 Introduction

In several businesses, including finance, where fraudulent acts cost billions of dollars every year, fraud detection is essential. Machine learning (ML)-based solutions are becoming more popular as a result of the inadequacy of traditional rule-based systems. Adversarial attacks and unbalanced datasets are still problems, though [3].

2 Background

Traditionally, statistical and rule-based methods were used to detect fraud. The adoption of machine learning has introduced:

- Supervised Learning: Algorithms like XGBoost and CatBoost effectively handle structured transaction data [4].
- Unsupervised Learning: One-class approaches like OCAN use benign data to detect anomalies [5].
- GANs: Models like DAEGAN address data imbalance and feature learning [1].

3 Literature Review

3.1 Addressing Data Imbalance

Imbalanced datasets skew predictions toward the majority class. Techniques such as SMOTE, B-SMOTE, and GANs have been explored:

- **DAEGAN**: Combines dual autoencoders with GANs to balance datasets and improve feature representation [1].
- **TAnoGAN**: Adapts GANs for time-series anomaly detection, demonstrating effectiveness in limited datasets [6].

3.2 One-Class Classification

One-class classifiers are robust for datasets with minimal fraud samples:

- **CS-OCAN**: Integrates GANs with autoencoders to learn robust class-specific representations [2].
- **Improved Bi-GAN**: Proposes a simplified loss function for network intrusion detection [7].

3.3 Advanced Anomaly Detection

Reconstruction-based methods and contrastive learning offer new perspectives:

- **Contrastive GANs**: Combine data augmentation and contrastive loss to enhance generalization [8].
- **Autoencoders**: Reconstruction errors identify deviations from normal behavior [9].

4 Proposed Framework

The proposed hybrid framework incorporates:

- 1. Data Preprocessing: Noise removal and feature scaling.
- 2. **Synthetic Data Generation:** GANs balance datasets by synthesizing fraud samples.
- 3. Feature Extraction: Autoencoders capture latent features.
- 4. Classification: Ensemble classifiers like CatBoost ensure robust predictions [4].

5 Discussion

This framework addresses:

- Imbalanced Datasets: GANs efficiently produce minority class samples.
- Feature Representation: Autoencoders enhance the generalization of features in feature representation.
- Scalability: Model performance is improved by ensemble approaches.

6 Conclusion

The promise of hybrid frameworks is highlighted in this research, which summarizes developments in machine learning for fraud detection. Adversarial robustness and real-time deployment should be the main topics of future studies.

References

- [1] E. Wu, H. Cui, and R. E. Welsch, "Dual Autoencoders Generative Adversarial Network for Imbalanced Classification Problem," *IEEE Access*, vol. 8, pp. 91265–91275, 2020.
- [2] H. Peng, J. Zhao, L. Li, Y. Ren, and S. Zhao, "One-Class Adversarial Fraud Detection Nets with Class Specific Representations," *IEEE Transactions on Network Science* and Engineering, pp. 1–12, 2023.
- [3] S. N. Kalid, K.-C. Khor, K.-H. Ng, and G.-K. Tong, "Detecting Frauds and Payment Defaults on Credit Card Data Inherited With Imbalanced Class Distribution and Overlapping Class Problems: A Systematic Review," *IEEE Access*, vol. 12, pp. 23636–23652, 2024.
- [4] P. Hajek, M. Z. Abedin, and U. Sivarajah, "Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework," *Information Systems Frontiers*, vol. 25, pp. 1985–2003, Oct. 2023.
- [5] P. Zheng, S. Yuan, X. Wu, J. Li, and A. Lu, "One-Class Adversarial Nets for Fraud Detection," June 2018. arXiv:1803.01798 [cs].
- [6] M. A. Bashar and R. Nayak, "TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks," in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), (Canberra, ACT, Australia), pp. 1778–1785, IEEE, Dec. 2020.
- [7] W. Xu, J. Jang-Jaccard, T. Liu, F. Sabrina, and J. Kwak, "Improved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier," 2022.
- [8] J. Miao, H. Tao, H. Xie, J. Sun, and J. Cao, "Reconstruction-based anomaly detection for multivariate time series using contrastive generative adversarial networks," *Information Processing & Management*, vol. 61, p. 103569, Jan. 2024.
- [9] H. Fanai and H. Abbasimehr, "A novel combined approach based on deep Autoencoder and deep classifiers for credit card fraud detection," Expert Systems with Applications, vol. 217, p. 119562, May 2023.