I appello: ore 9:00 Page 1 of 4

Dashboard ► AA 2015-2016 ► Mariconda_Fondamenti ► II compitino e I appello ► I appello: ore 9:00 ► Preview

Started on Sunday, 31 January 2016, 6:23 PM

State Finished

Completed on Sunday, 31 January 2016, 6:24 PM

Time taken 47 secs

Question 1

Not answered

Marked out of 4.00

Sia y la soluzione di

yy' = 2x - 1, y(0) = -1. Determinare y(1)

Answer:

Question 2

Not answered

Marked out of 3.00

Si consideri la funzione $\(f(x,y)=\drac12x^2y^3-xy^2+\drac12y^2\)$

Studiare la natura del punto critico \((2,\frac12)\)

oose... 🗸

ose... 🔻

Studiare la natura del punto critico \((\\frac12,0)\)

Question 3

Not answered

Marked out of 2.00

Sia \(R\) una variabile esponenziale con densità \(f_R(x)=3e^{-3x}\) se \(x\ge 0\), 0 altrimenti.

Sia \T) la variabile \T :=1/R\). Mostrare sul foglio che \T) è una variabile continua, e determinare

la densità continua $(f_T(t))$ di (T) sui reali positivi.

Select one or more:

- □ a. \(\dfrac3{t^2}e^{-3/t}\)
- □ b. \(e^{-3/t}\)
- \Box c. \(1-3e^{-3/t}\)
- ☐ d. \(-\dfrac1{t^3}e^{-3/t}\)
- e. altro

I appello: ore 9:00 Page 2 of 4

Question 4 Not answered Marked out of 4.00	Determinare l'area della superficie cartesiana \(z=12-4x-3y\) con \(\dfrac\{x^2\}4+y^2\le 1\). Select one or more: a. \(2\pi\\sqrt\{26\}\) b. \(2\pi\) c. \(\\pi\\sqrt\{13\}\) d. \(2\pi^2\) e. \(\\dfrac\{13\pi\\sqrt\{2\}\{7\}\)
Question 5 Not answered Marked out of 3.50	Siano \(X,Y\) variabili con densità congiunta continua \(f_{X,Y}(x,y)=c e^{-y}\) se \(x,y\) [0,1], y <x\), (attenzione="" 0="" 0);="" \(\left\{y="" \(c\)="" \(f_x\)="" \(x\)="" a="" a)="" ad="" altrimenti.="" aver="" b)="" bene="" calcolato="" dell'evento="" densità="" determinare="" di="" dopo="" dove="" essa="" foglio="" indicare="" la="" marginale="" probabilità="" sul="" uguale="" è="">\dfrac X2\right\}\).</x\),>
	Answer:
Question 6 Not answered Marked out of 2.50	La funzione \(f(x,y)= x y \) è differenziabile in \((0,0)\)? giustificare bene la risposta sul foglio! Select one: True False
Question 7 Not answered Marked out of 1.50	Determinare \(a\in\mathbb R\) affinché il vettore \((a,6)\) sia ortogonale all'insieme di livello della funzione \(f(x,y)=2x^3-y^2\) nel punto \$\(1,2)\). Answer:

I appello: ore 9:00 Page 3 of 4

Question 8

Not answered

Marked out of 4.00

Siano $(X_1,...,X_{100})$ delle variabili i.i.d. ciascuna con valore atteso (μ_8) e varianza $(\sigma_2=0)$. usando il teorema centrale del limite approssimare $(P(X_1+\cdot x_{100}>780))$. Non usare la correzione di continuità, tolleranza di (0.01).

Standard Normal Distribution

$$p(z \le z_1) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_1} e^{-\frac{1}{2}z^2} dz$$

Z 1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Question S)
------------	---

Not answered

Marked out of 3.00

Sia \(X\) una variabile binomiale di parametri \(\left(90\,000,\dfrac1 {3000}\right)\). Usando una opportuna variabile di Poisson approssimare il valore di \(P(X=20)\).

Answer:	
---------	--

I appello: ore 9:00 Page 4 of 4

Question 10

Not answered

Marked out of 1.50

Sia \(\vec F(x,y)=\nabla (x^2-e^{xy})\) e \(\alpha(t)=(t^2, \cos (\pi t/2)),\, t\in [0,1]\).

Determinare l'integrale di \(\vec F\) sul cammino \(\alpha\):

\[\int_{\alpha}\vec F\cdot d\alpha\]

Answer:	
---------	--

Question 11

Not answered

Marked out of 4.00

Un'urna contiene 10 palline, delle quali 4 sono Rosse e 6 sono Blu.

Si effettua una estrazione di 2 palline successivamente, con questa regola:

- se alla prima estrazione viene estratta la pallina è Blu, essa viene rimessa nell'urna,
- se invece alla prima estrazione viene estratta la pallina Rossa essa viene tenuta fuori dall'urna.

Qual è la probabilità che la seconda pallina estratta sia Blu?

La seconda estratta è Blu. Qual è la probabilità che la prima estratta sia Rossa?

Choose	\