MAT 67 Homework 5

Hardy Jones 999397426 Professor Bandyopadhyay Fall 2013

1. Let V be a vector space over \mathbb{F} , and suppose that the list $(v_1, v_2, ..., v_n)$ of vectors spans V, where each $v_i \in V$. Prove that the list

$$(v_1 - v_2, v_2 - v_3, v_3 - v_4, ..., v_{n-2} - v_{n-1}, v_{n-1} - v_n, v_n)$$

also spans V.

Proof. Each $v_j \in (v_1, v_2, ..., v_n)$ can be constructed from our new list.

$$v_{1} = (v_{1} - v_{2}) + (v_{2} - v_{3}) + (v_{3} - v_{4}) + \dots + (v_{n-2} - v_{n-1}) + (v_{n-1} - v_{n}) + v_{n}$$

$$= (v_{1} - y_{2}) + (y_{2} - y_{3}) + (y_{3} - y_{4}) + \dots + (y_{n-2} - y_{n-1}) + (y_{n-1} - y_{n}) + y_{n}$$

$$= v_{!}$$

$$v_{2} = 0(v_{1} - v_{2}) + (v_{2} - v_{3}) + (v_{3} - v_{4}) + \dots + (v_{n-2} - v_{n-1}) + (v_{n-1} - v_{n}) + v_{n}$$

$$= (v_{2} - y_{3}) + (y_{3} - y_{4}) + \dots + (y_{n-2} - y_{n-1}) + (y_{n-1} - y_{n}) + y_{n}$$

$$= v_{2}$$

$$\vdots$$

$$v_{n} = 0(v_{1} - v_{2}) + 0(v_{2} - v_{3}) + 0(v_{3} - v_{4}) + \dots + 0(v_{n-2} - v_{n-1}) + 0(v_{n-1} - v_{n}) + v_{n}$$

$$= v_{n}$$

Since we see that we can generate each one of these, we can generate the entire list $(v_1, v_2, ..., v_n)$, which spans V. So, $span(v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n) = V$

2. Let V be a finite-dimensional vector space over \mathbb{F} with dim(V) = n for some $n \in \mathbb{Z}^+$. Prove that there are n one-dimensional subspaces $U_1, U_2, ..., U_n$ of V such that

$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_n$$

Proof. Since V is a finite-dimensional vector space of dimension n, it has some basis $(v_1, v_2, ..., v_n)$.

Let each U_i be a one-dimensional subspace of V, where $i \in \mathbb{N}, 1 \leq i \leq n$, such that

$$U_1 = \{v_1\}$$

$$U_2 = \{v_2\}$$

$$\vdots$$

$$U_n = \{v_n\}$$

Now, we can create any $v \in V$ by taking unique linear combinations of $v_1 + v_2 + ... + v_n$ with $v_1 \in U_1, v_2 \in U_2, ..., v_n \in U_n$.

First, we show that v_i exists.

$$v_1 = v_1 + 0v_2 + 0v_3 + \dots + 0v_n = v_1$$

$$v_2 = 0v_1 + v_2 + 0v_3 + \dots + 0v_n = v_2$$

$$v_3 = 0v_1 + 0v_2 + v_3 + \dots + 0v_n = v_3$$

$$\vdots$$

$$v_n = 0v_1 + 0v_2 + 0v_3 + \dots + v_n = v_n$$

Now, we show that v_i is unique.

Without loss of generality we examine v_1

$$v_1 = a_1 v_1 + a_2 v_2 + \dots + a_n v_n = b_1 v_1 + b_2 v_2 + \dots + b_n v_n$$

 $\forall a_j, b_j \in \mathbb{F}, j \in \mathbb{N}, i \le j \le n$

Since v_1 comes from the basis of V, it is part of a linearly independent set of vectors. This means that v_1 does not have any components of the other vectors.

Symbolically,

$$a_1v_1 + 0v_2 + 0v_3 + \dots + 0v_n = b_1v_1 + 0v_2 + 0v_3 + \dots + 0v_n$$

$$a_1v_1 = b_1v_1$$

$$a_1v_1 - b_1v_1 = 0$$

$$(a_1 - b_1)v_1 = 0$$

Now, since we know that v_1 is a basis for U_1 and part of the basis for V, we know that $v_1 \neq 0$, so we must have:

$$(a_1 - b_1)v_1 = 0$$
$$a_1 - b_1 = 0$$
$$a_1 = b_1$$

And so, there is only one unique way to create v_1 .

Through similar reasoning, we can show that each v_i is unique.

Thus, since each $v_i \in V$ can be uniquely represented as $v_1 + v_2 + ... + v_n$, where $v_1 \in U_i, v_2 \in U_2, ..., v_n \in U_n$,

$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_n$$

3. Let $\mathbb{F}_m[z]$ denote the vector space of all polynomials with degree $\leq m \in \mathbb{Z}^+$ and having coefficient over \mathbb{F} , and suppose that $p_0, p_1, ..., p_m \in \mathbb{F}_m[z]$ satisfy $p_j(2) = 0$.

Prove that $(p_0, p_1, ..., p_m)$ is a linearly dependent list of vectors in $\mathbb{F}_m[z]$.

We need a bit more information first.

By theorem 5.4.4.3,

Given a vector space V of dimension n,

if $(v_1, v_2, ..., v_n)$ is linearly independent, then $(v_1, v_2, ..., v_n)$ is a basis for V.

this implies that $span(v_1, v_2, ..., v_n) = V$.

So we just need to show that $(v_1, v_2, ..., v_n)$ does not span V.

Proof. We know that $dim(\mathbb{F}_m[z]) = m + 1$

and that there are m+1 vectors in $(p_0, p_1, ..., p_m)$

So we need to show that $(p_0, p_1, ..., p_m)$ does not span $\mathbb{F}_m[z]$

Since we're assuming that $(p_0, p_1, ..., p_m)$ does not span $\mathbb{F}_m[z]$, there must be at least one vector in $\mathbb{F}_m[z]$ that cannot be represented as a linear combination of $(p_0, p_1, ..., p_m)$.

Let's choose a constant polynomial $f(z) = c, c \in \mathbb{F}, c \neq 0$.

What we see is that this polynomial cannot exist in $span(p_0, p_1, ..., p_m)$ because if we choose z = 2 and try to represent f(2) as a linear combination of $(p_0, p_1, ..., p_m)$, we end up with the equation:

$$f(2) = a_0 p_0(2) + a_1 p_1(2) + \dots + a_m p_m(2)$$

$$c = a_0(0) + a_1(0) + \dots + a_m(0)$$

$$c = 0$$

However, from our choice of this constant polynomial, we said that $c \neq 0$. This contradiction shows that there is at least one vector in $\mathbb{F}_m[z]$ which cannot be written as a linear combination of $(p_0, p_1, ..., p_m)$.

So, $(p_0, p_1, ..., p_m)$ does not span $\mathbb{F}_m[z]$.

So, $(p_0, p_1, ..., p_m)$ is not a basis for $\mathbb{F}_m[z]$.

Thus, $(p_0, p_1, ..., p_m)$ is linearly dependent.