UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

Práctica 25: Aplicaciones lineales

Problema 1. Sea V un espacio vectorial sobre \mathbb{K} y sea $T:V\to V$ una aplicación lineal tal que $T(T(v))=T(v), \ \forall v\in V$. Demuestre que $V=Ker(T)\oplus Im(T)$.

Problema 2. Sea $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R}), f \mapsto T(f) = f'$, sean B_2 y B_1 las bases canónicas de $\mathcal{P}_2(\mathbb{R})$ y $\mathcal{P}_1(\mathbb{R})$ respectivamente. Calcular

$$[T]_{B_2}^{B_1}$$
.

Problema 3. Sea V el espacio generado por $u_1 = sen(x)$ y $u_2 = cos(x)$ y sea $h = 2u_1 - 5u_2$. [En práctica]

- 3.1) Demuestre $v_1 = 2u_1 + u_2$ y $v_2 = 3u_2$ forman una base para V.
- 3.2) Encuentre la matriz P de transición desde la base $B = \{u_1, u_2\}$ a la base $B' = \{v_1, v_2\}$.
- 3.3) Calcule el vector de coordenadas de h en la base B y calcule $[h]_{B'}$ como $P[h]_B$.
- 3.4) Compruebe su respuesta calculando directamente $[h]_{B'}$.
- 3.5) Encuentre la matriz Q de transición de B' a B
- 3.6) Evalúe la matriz PQ.

Problema 4. Si $T: \mathbb{R}^2 \to \mathcal{P}_2(\mathbb{R})$ es una aplicación lineal tal que la matriz asociada a las bases $B_1 = \{(-1,0), (1,2)\}$ y $B_2 = \{1, 2x, x^2 + x\}$ es $\begin{pmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 1 \end{pmatrix}$. Hallar $[T]_{B'_1}^{B'_2}$, para $B'_1 = \{(2,1), (2,0)\}$ y $B'_2 = \{2, 1-x, 1+x^2+x\}$.

Problema 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal cuya matriz asociada respecto de las bases $B_1 = \{(2,0,0), (0,1,1), (1,1,0)\}$ y $B_2 = \{(1,1,0), (0,1,1), (0,0,1)\}$ es [En práctica]

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 0 & 1 & 3 \end{array}\right)$$

5.1) Determine la ecuación de definición de T.

- 5.2) Caracterice el núcleo y la imagen de T e indique su nulidad y rango.
- 5.3) Analice si T es inyectiva.

Problema 6. Sean V y W espacios vectoriales de dimesión finita sobre el mismo cuerpo \mathbb{K} . Demuestre que V es isomorfo a W si y sólo si dim(V) = dim(W).

Problema 7. Sean V y W espacios vectoriales de dimensión finita con dim(V) = n y dim(W) = m, B_1 y B_2 bases de V y W respectivamente. Muestre que la función

$$\phi: L(V, W) \to M_{m \times n}(K), \quad T \mapsto \phi(T) = [T]_{B_1}^{B_2}$$

es un isomorfismo.

[En práctica]

Problema 8. Determine si las siguientes afirmaciones son verdaderas o falsas. Fundamente su respuesta.

8.1) Existe una aplicación no lineal $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que: [En práctica]

$$(\forall \alpha \in \mathbb{R})(\forall v \in \mathbb{R}^2): L(\alpha v) = \alpha L(v).$$

- 8.2) Sea $T:V\longrightarrow \mathbb{K}$ una aplicación lineal, tal que dim(Ker(T))=dim(V)-1. Si $u\in V-Ker(T)$, entonces $V=Ker(T)\oplus <\{u\}>$.
- 8.3) Sea $S: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ una aplicación lineal, tal que: [En práctica]

$$Ker(S) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = 3x_2, x_3 = 6x_4\}$$

entonces S es sobreyectiva.

8.4) Sea $R: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ una aplicación lineal, tal que:

[En práctica]

$$Im(R) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2 + x_3\}$$

entonces R es invectiva;

8.5) Existe una aplicación lineal $T_5: \mathbb{R}^5 \longrightarrow \mathbb{R}^2$ tal que:

$$Ker(T_5) = \{(x_1, ..., x_5) \in \mathbb{R}^5 : x_1 = 3x_2, \ x_3 = x_4 = x_5\}.$$

8.6) Existe una aplicación lineal $T_6: \mathbb{R}^5 \longrightarrow \mathbb{R}^2$ tal que: [En práctica]

$$Ker(T_6) = \{(x_1, ..., x_5) \in \mathbb{R}^5 : x_1 = 3x_2, x_3 = x_4\}.$$

8.7) Existe una aplicación no lineal $T: \mathbb{C} \longrightarrow \mathbb{C}$ tal que:

$$T(u) + T(v) = T(u+v), \forall u, v \in \mathbb{C}$$