GLMS: Regression for Binary and Count Data

Dichotomous Predicted Variable

	is section focus on dichotomous predicted variables: such as whether a basketball player will get a or if a bird will be located in a spatial grid.
• Tra	aditionally, these types of methods are generally implemented with logistic regression.
	the model can be written as: the logistic function is $logistic(x) = 1/(1 + exp(-x))$.
-	What are the three components of a GLM and what are they in this specific setting? Sampling Model:
?. Line:	ar Combination of Predictors:
3. (inv	erse) Link function:
	To fit this in a Bayesian framework, we need to specify priors. What parameters require priors and at distributions would be reasonable?

We will explore the Swiss birds dataset for this lab to construct a logistic regression model for presence of the Willow Tit.

swiss.birds <- read.csv('http://www.math.montana.edu/ahoegh/teaching/stat491/data/willowtit2013.csv')
kable(head(swiss.birds))</pre>

siteID	elev	rlength	forest	birds	searchDuration
Q001	450	6.4	3	0	160
Q002	450	5.5	21	0	190
Q003	1050	4.3	32	1	150
Q004	950	4.5	9	0	180
Q005	1150	5.4	35	0	200
Q006	550	3.6	2	0	115

This dataset contains 242 sites and 6 variables:

- siteID, a unique identifier for the site, some were not sampled during this period
- elev, mean elevation of the quadrant in meters
- rlength, the length of the route walked by the birdwatcher, in kilometers
- forest, percent forest cover
- birds, binary variable for whether a bird is observed, 1 = yes
- searchDuration, time birdwatcher spent searching the site, in minutes

JAGS Code

```
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 242
## Unobserved stochastic nodes: 5
## Total graph size: 2434
##
## Initializing model
```

```
update(jags.logistic, 5000)
samples <- coda.samples(jags.logistic, variable.names = c('beta','beta0'), n.iter = 20000)</pre>
summary(samples)
##
## Iterations = 10001:30000
## Thinning interval = 1
## Number of chains = 2
## Sample size per chain = 20000
##
## 1. Empirical mean and standard deviation for each variable,
##
     plus standard error of the mean:
##
##
                           SD Naive SE Time-series SE
               Mean
## beta[1] 0.002251 0.0004114 2.057e-06
                                         1.419e-05
## beta[2] -0.061192 0.1555577 7.778e-04
                                             5.477e-03
## beta[3] 0.057721 0.0086547 4.327e-05
                                             2.548e-04
## beta[4] 0.007198 0.0033027 1.651e-05
                                             1.280e-04
## beta0
         -7.412010 1.2459131 6.230e-03
                                             6.733e-02
##
## 2. Quantiles for each variable:
##
                2.5%
                           25%
                                     50%
                                               75%
                                                      97.5%
## beta[1] 0.0014851 0.001968 0.002238 0.002519 0.00310
## beta[2] -0.3708866 -0.165840 -0.060349 0.044501 0.24148
## beta[3] 0.0414779 0.051784 0.057420 0.063499 0.07533
## beta[4] 0.0007751 0.005005 0.007206 0.009372 0.01366
## beta0 -9.9151984 -8.223392 -7.385460 -6.580070 -4.98843
```

Interpretation of Logistic Regression Coefficients

Recall this model can be written as: $logit(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$.

- When x_i increases or decreases by 1 unit, then $logit(\mu)$ increases or decreases by β_i .
- The logit function for μ can be expressed as $logit(\mu) = log(\frac{\mu}{1-\mu})$.
- In this setting, μ is the probability of y = 1, so

$$logit(\mu) = \log(\frac{Pr[y=1]}{1 - Pr[y=1]}) = \log(\frac{Pr[y=1]}{Pr[y=0]})$$

- This ratio: $\frac{Pr[y=1]}{Pr[y=0]}$ is known as the odds, so $logit(\mu)$ is the log-odds of an outcome in favor of 1 rather than 0.
- Suppose the logistic regression for the Swiss birds had the following coefficients: $\beta_0 = -7$, $\beta_{elev} = .002$, and $\beta_{forest} = .06$.
 - Compute the probability for observing a bird in a quadrant with: elevation = 1500 meters and forest cover of 60 %. 1/(1 + exp(-(-7 + .002 * 1500 + .06 * 60))) = 0.4013123
 - How do we interpret the meaning for the coefficient β_{forest} ? Each unit increases the log-odds by .06. So for instance, if the forest cover was 70% rather than the 60% above the log-odds of observing a bird would increase by 0.6.
 - The log-odds are different than a probability as in this case (conditional on the elevation) the probability increases to: 1/(1 + exp(-(-6 + .002 * 1500 + .06 * 70))) = 0.7685248
- Note that an unit increase in the log-odds does not have a unit increase in the probability.

Count Predicted Variable

• Now reconsider the willow tit dataset and consider modeling not just the presence / absence of birds, but directly modeling the number of birds observed in each spatial region.

##		siteID	elev	rlength	forest	bird.count	${\tt searchDuration}$
##	1	Q001	450	6.4	3	0	160
##	2	Q002	450	5.5	21	0	190
##	3	Q003	1050	4.3	32	3	150
##	4	Q004	950	4.5	9	0	180
##	5	Q005	1150	5.4	35	0	200
##	6	Q006	550	3.6	2	0	115

Bird Counts of Willow Tit

- 1. Sampling Model: In general the Poisson model will be used as a sampling model for count data: $-y|\mu \sim$
- 2. Linear Combination of Predictors: The same principles apply here as the other GLM settings.
- 3. Link Function: