Recommender System

Matrix Factorization
Latent Semantic Indexing

Recommender Systems

- Recommender systems are information filtering systems that aim to predict users'
 preferences and recommend items (such as products, movies, music, etc.) that they might
 like.
- Most e-commerce sites have such systems
- Mainly serve two important functions
 - Help users deal with the information overload by giving them recommendations of products, etc.
 - Help business make more profits, i.e., selling more products

Everyday Applications

- **E-commerce**: Recommending products to users based on their purchase history or browsing behavior.
- **Streaming services**: Recommending movies, TV shows, or music based on users' viewing or listening history.
- Social media: Recommending friends, groups, or posts based on users' interests and social connections.
- News websites: Personalizing article recommendations based on users' reading habits and preferences.

Recommendation System – Basic Approaches

- Content-based filtering: Recommends items similar to those the user liked in the past, based on the attributes of the items.
- Collaborative filtering: Recommends items based on the preferences of other users with similar tastes.
- Hybrid approaches: Combines content-based and collaborative filtering techniques to provide more accurate recommendations.

Content Based Recommendation

- Content-based recommendation systems suggest items to users based on the features or characteristics of the items themselves, rather than relying on user-item interactions or similarities between users.
- In a content-based movie recommendation system, each movie is described by its attributes such as genre, director, actors, plot keywords, and ratings.
- ➤ If a user has previously liked action movies starring a particular actor, the system can recommend other action movies with the same actor.
- Recommendations are made by computing the similarity of the user profile with the candidate items expressed in the same set of features and selecting the top matched ones.

Collaborative Filtering

 Collaborative Filtering is the most-widely used recommendation approach in practice, where it predicts the utility of items for a user based on the items previously rated by other like minded users.

1. Neighbourhood Methods

Figures from Koren et al. (2009)

What is a latent variable?

- It is a variable that is not directly observed or measured but is instead inferred from other observed variables.
- Latent variables are a transformation of the data points into a continuous lowerdimensional space

Person	Age	Liked	Movie	Genre	
X	16	Υ	Spiderman	Action	
Υ	9	N	Hangover	Comedy	
Υ	9	Υ	Clueless	Comedy	
Х	16	Y	Black Panther	Action	
Υ	9	Υ	Terminal	Comedy	
Z	27	Υ	Annabelle	Horror	
Х	16	Υ	Star wars	Action	
Z	27	N	The Nun	n Horror	
Z	27	Υ	Conjuring	Horror	
Υ	9	Υ	Ted	Comedy	

Latent Factor Methods

- Assumes that both the users and movies live in some low-dimensional space describing their properties.
- Recommends a movie based on its proximity to the user in the latent space.
- Latent Features Evaluated with:
 - Matrix Factorization
 - Singular Value Decomposition [SVD]
 - Low Rank Matrix Approximation
 - LU Decomposition
 - Solving system of equations

Figure from Koren et al. (2009)

Matrix Factorization

• Matrix Factorization is the process of decomposing a matrix M into a product of several factor matrices, i.e., $M = F_1 \times F_2 \times \cdots \times F_N$, where N can be any number.

$$\begin{pmatrix} 12 & 17 & 7 & 5 & 10 \\ 11 & 16 & 6 & 5 & 10 \\ 11 & 15 & 7 & 4 & 8 \\ 8 & 11 & 5 & 3 & 6 \end{pmatrix}_{4 \times 5 \text{ matrix}} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 3 & 1 & 1 & 2 \\ 3 & 4 & 2 & 1 & 2 \end{pmatrix}_{2 \times 5}$$

- Similarly a matrix $M_{1000\times50}=A_{1000\times5}\times B_{5\times50}$.
- Matrix Factorization is a way to generate latent features.

Movie Recommendation System

- Consider a $n \times m$ rating matrix R with some entries unknown:
 - *n* rows represent *n* users
 - m columns represent m movies
 - Entry R_{ij} represents the i^{th} user's ratings on the j^{th} movie
- We are interested in predicting user's ratings which are the possible values of the unknown entries

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
User 1	3	5	4	4	2
User 2	5	3		3	1
User 3		2	5	3	1
User 4	5	3	2	3	1

Matrix Factorization

If we can learn U and V from existing ratings, then we can compute unknown entries by multiplying these two matrices

- We can model the problem as $R_{n\times m}=|U_{n\times k}|\times |V_{m\times k}|^T$ with $k\ll m,n$
- The matrix $U_{n \times k}$ is the latent feature matrix for users, with each row of U representing the strength of association between the user and the features.
 - How much the user likes comedy movies?
 - How much the user like thriller movies?
- The matrix $V_{m \times k}$ is the latent feature matrix for movies, with each row of V representing the strength of association between the movies and the features.
 - To what extent is the movie a comedy movie?
 - To what extent is the movie a thriller movie?

Mathematics of Matrix Factorization

Rating Matrix can be decomposed as $R_{n imes m}=|U_{n imes k}| imes |V_{m imes k}|^T=R_{n imes m}^{pred}$, $k\ll m,n$ $r_{ij}^{pred}=\sum_{l=1}^k u_{il}v_{lj}$

• The matrices U,V can be obtained using the **Gradient Descent Method**, considering squared error as the loss function

$$J = e_{ij}^2 = \left(r_{ij} - r_{ij}^{pred}\right)^2 = \left(r_{ij} - \sum_{l=1}^k u_{il} v_{lj}\right)^2$$

Gradient Descent

- Initialize the matrices U, V with random values
- Compute $R_{n \times m}^{pred}$ and calculate the squared error e_{ij}^2
- Compute the gradient of the error function J at u_{il} , v_{lj} ,

$$\nabla J = \frac{\partial J}{\partial u_{il}}, \frac{\partial J}{\partial v_{lj}}$$

4.
$$u_{il}^{t+1} = u_{il}^t + \alpha \frac{\partial J}{\partial u_{il}}, \quad v_{lj}^{t+1} = v_{lj}^t + \alpha \frac{\partial J}{\partial v_{lj}}$$

5. Repeat steps 2,3 and 4 until convergence

Convergence: When $\alpha \frac{\partial J}{\partial u_{ij}}$, $\alpha \frac{\partial J}{\partial v_{li}}$ becomes small.

$$egin{aligned} rac{\partial J}{\partial u_{il}} &= -2 \left(r_{ij} - r_{ij}^{pred}
ight) v_{lj} \ &= -2 e_{ij} v_{lj} \ rac{\partial J}{\partial v_{lj}} &= -2 \left(r_{ij} - r_{ij}^{pred}
ight) u_{il} \ &= -2 e_{ij} u_{il} \end{aligned}$$

Regularization can also be introduced to avoid overfitting:

$$J = e_{ij}^2 = \left(r_{ij} - \sum_{l=1}^k u_{il} p_{lj}\right)^2 + \frac{\beta}{2} \sum_{l=1}^k (\|U\|^2 + \|V\|^2)$$

Non-Negative Matrix Factorization (NMF)

- NMF approximates a non-negative matrix R with a low-rank matrix approximation such that $R_{m\times n} \approx W_{m\times k}H_{k\times n}$, where W, H are non-negative matrices.
 - Each column of W is a basis element, i.e. captures the underlying features or patterns present in the data.
 - Each column of H gives the 'coordinates of a data point' in the basis of W, i.e. represents how the features contribute to each sample in the dataset.
 - Often results in sparse factor matrices many entries in W, H are close to zero. Sparsity helps in identifying the most relevant features and reducing noise in the data.
- NMF ensures that both the basis and coefficient matrices contain non-negative elements, which makes the resulting factors more interpretable, especially in applications such as topic modeling or image processing.

NMF – Image Processing

Figure 1: Decomposition of the CBCL face database, MIT Center For Biological and Computation Learning (2429 gray-level 19-by-19 pixels images) using r = 49 as in [79].

https://blog.acolyer.org/2019/02/18/the-why-and-how-of-nonnegative-matrix-factorization/

Singular Value Decomposition (SVD)

• SVD gives the decomposition for any arbitrary matrix, $R = U \Lambda V^T$

$$R_{m\times n} = U_{m\times k} \Lambda_{k\times k} V_{k\times n}^{T}$$

- \checkmark R is a $m \times n$ ranking matrix
- ✓ U is a $m \times k$ orthogonal left singular matrix ($U^TU = 1$), representing the relationship between users and the latent factors
 - Consists of orthonormal eigenvectors of RR^T
- \checkmark Λ is the $k \times k$ diagonal matrix describing the strength of each latent factor
 - Equal to the root of the positive eigenvalues of RR^T or R^TR
- \checkmark V is the $k \times n$ orthogonal right singular matrix, indicating the similarity between movies and the latent factors
 - Consists of orthonormal eigenvectors of R^TR

Vector Space Method

- Given a collection of documents, retrieve documents that are relevant to a given query
 - Match terms in documents to terms in query
- The vector space method was used, with the terms(rows) by document (columns) matrix, based on occurrence.
 - One vector is assigned for each document
 - Cosine Similarity to measure the distance between vectors

Cons:

- Synonyms: Same object referred by many words, e.g., car, automobile [Poor Recall]
- Polysemy: Most words have more than one distinct meaning, e.g., python, chips [Poor Precision]

- It is a technique used in NLP and information retrieval to analyze relationships between a set of documents and the terms they contain.
- It aims to capture the underlying semantic structure of the text corpus by identifying patterns of word co-occurrence and reducing the dimensionality of the documentterm matrix through SVD

Problem Statement: Use Latent Semantic Indexing to rank these documents for the query

"gold silver truck".

D1: Shipment of gold damaged in a fire.

D2: Delivery of silver arrived in a silver truck.

D3: Shipment of gold arrived in a truck.

Note: LSI vs. LSA

- ✓ LSI refers to indexing or information retrieval
- ✓ LSA refers to everything else

(taken from Grossman and Frieder's Information Retrieval, Algorithms and Heuristics)

1) Set term weights and construct the term-document matrix A and query matrix q

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

2. The matrix A is decomposed using SVD, and the matrices U, Λ , V are calculated

$$U = \begin{bmatrix} -0.42 & 0.07 & -0.05 \\ -0.29 & -0.20 & 0.41 \\ -0.12 & 0.27 & -0.45 \\ -0.15 & -0.30 & -0.20 \\ -0.12 & 0.27 & -0.45 \\ -0.26 & 0.38 & 0.15 \\ -0.42 & 0.07 & -0.05 \\ -0.42 & 0.07 & -0.05 \\ -0.26 & 0.38 & 0.15 \\ -0.31 & -0.60 & -0.40 \\ -0.29 & -0.20 & 0.41 \end{bmatrix}, \Lambda = \begin{bmatrix} 4.09 & 0.00 & 0.00 \\ 0.00 & 2.36 & 0.00 \\ 0.00 & 0.00 & 1.27 \end{bmatrix}, V = \begin{bmatrix} -0.49 & 0.65 & -0.58 \\ -0.65 & -0.72 & -0.26 \\ -0.58 & 0.25 & 0.78 \end{bmatrix}$$

3. Implement a Rank 2 Approximation by keeping the first two columns of U, V and the first two rows and columns of Λ

$$U = \begin{bmatrix} -0.42 & 0.07 \\ -0.29 & -0.20 \\ -0.12 & 0.27 \\ -0.15 & -0.30 \\ -0.12 & 0.27 \\ -0.26 & 0.38 \\ -0.42 & 0.07 \\ -0.42 & 0.07 \\ -0.26 & 0.38 \\ -0.31 & -0.60 \\ -0.29 & -0.20 \end{bmatrix}, V = \begin{bmatrix} 4.09 & 0.00 \\ 0.00 & 2.36 \end{bmatrix}$$
 in this reduced 2-dimensional sp
$$d1 = (-0.49, \ 0.65)$$

$$d2 = (-0.65, -0.72)$$

$$d3 = (-0.58, 0.25)$$

4. Find the new document vector coordinates in this reduced 2-dimensional space.

$$d1 = (-0.49, 0.65)$$

$$d2 = (-0.65, -0.72)$$

$$d3 = (-0.58, 0.25)$$

5. Find the new query vector coordinates in the reduced 2-D space, $q=q^T U_k \Lambda_k^{-1}$

Find the new query vector coordinates in the reduced 2-D space,
$$q=q^TU_k\Lambda_k^{-1}$$

$$q=\begin{bmatrix} -0.42 & 0.07 \\ -0.29 & -0.20 \\ -0.12 & 0.27 \\ -0.15 & -0.30 \\ -0.12 & 0.27 \\ -0.26 & 0.38 \\ -0.42 & 0.07 \\ -0.42 & 0.07 \\ -0.26 & 0.38 \\ -0.31 & -0.60 \\ -0.29 & -0.20 \end{bmatrix} \begin{bmatrix} \frac{1}{4.09} & 0.00 \\ 0.00 & \frac{1}{2.36} \end{bmatrix} = \begin{bmatrix} -0.21 & -0.18 \end{bmatrix}$$

6. Rank documents in decreasing order of query-related cosine similarities, $CS(q, d) = \frac{q \cdot d}{|q||d|}$

$$CS(q, d_1) = \frac{q \cdot d_1}{|q||d_1|} = -0.05$$

$$CS(q, d_2) = \frac{q \cdot d_2}{|q||d_2|} = 0.99$$

$$CS(q, d_3) = \frac{q \cdot d_3}{|q||d_3|} = 0.45$$

 Document d2 scores higher than d3 and d1. Its vector is closer to the query vector than the other vectors.

- LSI captures the underlying semantic structure of the text corpus by identifying latent topics.
- LSI reduces the dimensionality of the document-term matrix, making it more manageable and computationally efficient.
- LSI can improve information retrieval tasks by considering semantic similarity rather than just keyword matching.
- Finding optimal dimension for semantic space sometimes is an issue
 - precision-recall improve as dimension is increased until hits optimal, then slowly decreases until it hits standard vector model
 - run SVD once with big dimension, say k = 1000, then can test dimensions <= k
 - in many tasks 150-350 works well, still room for research