

FD-A133 924

UNDERSTANDING LOCALIZED BEHAVIOR IN THE AUGER SPECTRA
OF COVALENT SYSTEMS. (U) GEORGE WASHINGTON UNIV
WASHINGTON D C DEPT OF CHEMISTRY D E RAMAKER ET AL.

1/1

UNCLASSIFIED

SEP 83 TR-13 N00014-80-K-0852

F/G 7/4

NL

END

1

2

3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

12

AD-A133 924

OFFICE OF NAVAL RESEARCH

N00014-80-K-0852

Task No. 056-681

Technical Report No. 13

UNDERSTANDING LOCALIZED BEHAVIOR IN THE AUGER
SPECTRA OF COVALENT SYSTEMS SUCH AS GRAPHITE

By

D. E. Ramaker, F. L. Hutson, R. R. Rye, J. E. Houston, and J. W. Rogers

Prepared for Publication

in

Journal of Vacuum Science and Technology

George Washington University
Department of Chemistry
Washington, D.C. 20052

September 1983

Reproduction in whole or in part is permitted for any purpose
of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited

DTIC
ELECTED
OCT 24 1983
S D
B

FILE COPY

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER No. 13	2. GOVT ACCESSION NO. 11-A133 924	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) UNDERSTANDING LOCALIZED BEHAVIOR IN THE AUGER SPECTRA OF COVALENT SYSTEMS SUCH AS GRAPHITE.	5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s) D. E. Ramaker, F. L. Hutson, R. R. Rye, J. E. Houston, and J. W. Rogers	6. PERFORMING ORG. REPORT NUMBER N00014-80-K-0852	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Chemistry Department George Washington University Washington, D.C. 20052	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Prog. Elem. No. 61153N Task Area No. PP 013-08-01 Work Unit # NR 056-681	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research, Dept. of Navy 800 N. Quincy Street Washington, D.C. 22217	12. REPORT DATE Sept. 1983	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 11	
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited.	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Submitted for publication in the Journal of Vacuum Science and Technology.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Auger electron spectroscopy, graphite, localization, electron screening.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Localized behavior in the CVV Auger lineshapes of atomic and metallic systems are easily understood within the Cini-Sawatsky theory, which assumes the final state holes are either localized in a single atomic orbital or not at all. In covalently bonded systems, intermediate levels of localization may occur such as onto bond or group orbitals. A set criteria to determine the level of localization has been published, however, a general procedure for determining the distortion effects due to intermediate localization has not been reported. This work describes and justifies the use of the Cini expression on various sub-bands		

of the self fold of the DOS. Application is made to the Auger lineshape of graphite. Although complete delocalization has been indicated for graphite, a reinvestigation of the experimental lineshape, and comparison with a more complete theoretical lineshape, indicates partial localization of the holes in the σ group orbitals and none in the π orbitals. This interpretation is consistent with results for ethylene and benzene.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

Unclassified

Understanding Localized Behavior in The Auger Spectra
of Covalent Systems Such as Graphite

D. E. Ramaker*, F. L. Hutson*, R. R. Rye⁺,
J. E. Houston⁺, and J. W. Rogers, Jr.⁺

*Chemistry Department
George Washington University
Washington, D.C. 20052

and

+Sandia National Laboratories
Albuquerque, NM 87185

Auger core-valence-valence (CVV) lineshapes are often interpreted by comparison to the self-convolution of the valence band DOS, $N(E)*N(E)$. Differences between $N(E)*N(E)$ and the actual lineshape have previously been attributed to localization of the final state holes onto specific orbitals. For instance, the theory of Cini-Sawatzky¹ has been successfully applied to atomic-like systems such as the M_1VV lineshape of Cu^2 where only single bands are important in determining the lineshape. In this paper we extend the use of this theory to individual sub-bands of covalently bonded molecular solids in order to interpret the C(KVV) lineshape of graphite.

In previous work, Dunlap et al.³ provided criteria for assessing the nature of localization in covalent systems onto atomic, bond, group, or extended band orbitals (AO, BO, GO, EBO). These criteria for localization can be summarized as follows:

$$\text{AO: } V < U_{xx} - U_{xx'} = \Delta U_{xx}$$

$$\text{BO: } V > \Delta U_{xx}, \gamma < U_{bb} - U_{bb'} = \Delta U_{bb} \quad 1)$$

$$\text{GO: } \gamma > \Delta U_{bb}, \tau < U_{gg} - U_{gg'} = \Delta U_{gg}$$

$$\text{EBO: } \tau > \Delta U_{gg}.$$

Here V is the covalent interaction between nearest neighbor carbon AO's and can be estimated from the bonding-antibonding orbital energy separation. γ is the covalent interaction between nearest neighbor BO's and can be estimated from the s and p atomic orbital energy separation. τ is the covalent interaction between neighboring GO's; in graphite for example the GO's are the planar arrangement of 3 σ or π BO's about a single C atom. U_{xx} , U_{bb} , and U_{gg} are the effective Coulomb interactions between holes localized on a single AO, BO, or GO respectively.

The distortion of the $N(E)*N(E)$ lineshape can be obtained by application of the Cini-Sawatsky¹ theory,

$$A(E) = \frac{[N(E)*N(E)]^2}{[1 - U I(E)]^2 + \pi^2 U^2 [N(E)*N(E)]^2} \quad 2)$$

to individual sub-bands of the DOS. Here U is the effective hole-hole

Coulomb repulsion and $I(E)$ is the Hilbert transform defined as

$$I(E) = \int [N(E)*N(E)]/(E - \epsilon) d\epsilon . \quad 3)$$

Fig. 1, utilizing a schematic one-electron DOS, illustrates the validity of this approach. $N(E)*N(E)$ in Fig 1b is representative of the Auger lineshape provided the s, s^* , p, and p^* bands are all filled and all localization effects are negligible, i.e. $U \equiv \Delta U_{xx} = 0$. Figs. 1c-f show clearly that the distortion effects on each sub-band are reasonably independent of the other regions of the spectrum until U is sufficiently large to encompass these other regions. For $U = 0.0 - 1.5$, no significant distortion effects occur indicating the EBO's best describe the final state holes. For $U = 1.5 - 2.5$, the various $\pi\pi'$ (i.e. $\pi\pi = ss, sp, etc,$) sub-bands are distorted into relatively narrower resonance-like features indicating localization onto single GO's. $U = 2.5 - 4$ causes the first mixing of bands with different local symmetry (s or p) and indicates localization onto the individual B.O.'s. $U = 4 - 15$ causes mixing of bands with bonding-antibonding character and indicates localization onto hybrid sp^n atomic orbitals (HO's).

The C(KVV) lineshape for graphite was first reported by Smith and Levinson⁴. An attempt to quantitatively interpret this lineshape has recently been reported by Murday et al⁵. They deduced the one-electron DOS (s, p_σ, π) for graphite from x-ray emission and photoemission spectra and an assumed electron configuration of $sp_\sigma^2 \pi$. The Auger lineshape was then produced from a fold of these one-electron DOS assuming complete delocalization, i.e. $U = 0$. Although Murday et al.

found good agreement between theory and experiment, correction of an error in the post-data acquisition deconvolution procedures of Smith and Levinson⁴, as well as an error in the theoretical interpretation by Murday et al.⁵, now reveals large discrepancies between the two lineshapes. In particular, a shoulder on the low kinetic energy edge of the experimental lineshape is not reproduced in $N(E)*N(E)$. This discrepancy can be partially eliminated by introducing distortion effects via eq. (2) into the ss, sp_{σ} , and $p_{\sigma} p_{\sigma}$ contributions to $N(E)*N(E)$, indicating that partial localization occurs when both holes are in GO's of the σ band, but not when one or both are in the π band.. This interpretation would suggest that electron screening reduces ΔU_{gg} for the π band to a much greater degree than for the σ band. Angular effects, initial core hole screening effects, the accurate removal of "intrinsic" losses from the experimental lineshape, and assumptions made in determining the partial DOS may also be important in fully understanding graphite's C(KVV) lineshape, but an evaluation of these effects will require further detailed study.

This work was supported by the *Office of Naval Research and by the ^{+U.S.} Department of Energy under contract # DE-AC04-76DP00789.

REFERENCES

1. M. Cini, Solid State Commun. 20, 605 (1976); Phys. Rev. B17, 2788 (1978); G. A. Sawatzky, Phys. Rev. Lett. 39, 504 (1977).
2. H. H. Madden, D. M. Zehner, and J. R. Noonan, Phys. Rev. B17, 3074 (1978).
3. B. I. Dunlap, F. L. Hutson, and D. E. Ramaker, J. Vac. Sci. Technol. 18, 556 (1981).
4. M. A. Smith and L. L. Levinson, Phys. Rev. B16, 2973 (1977).
5. J. S. Murday, B. I. Dunlap, F. L. Hutson, and P. Oelhafen, Phys. Rev. 24, 4764 (1981).

FIGURE CAPTION

- a) Schematic one-electron DOS, $N(E)$, illustrating Γ , γ , and V as defined in the text.
- b) Self-fold of the one-electron DOS, $N(E)*N(E)$ (dashed line), and the Hilbert transform, $I(E)$ (solid line).
- c) Comparison of $N(E)*N(E)$ (dashed line) with $A(E)$ (solid line) obtained from eq. (2) with $U = 1$ eV.
- d-f) $A(E)$ with $U = 2$, 3, and 10 eV respectively.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Office of Naval Research Attn: Code 413 800 North Quincy Street Arlington, Virginia 22217	2	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Dean William Tolles Naval Postgraduate School Monterey, California 93940	1
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle Park, N.C. 27709	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Mr. Vincent Schaper DTNSRDC Code 2803 Annapolis, Maryland 21402	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1	Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. G. A. Somorjai Department of Chemistry University of California Berkeley, California 94720	1	Dr. W. Kohn Department of Physics University of California (San Diego) La Jolla, California 92037	1
Dr. J. Murday Naval Research Laboratory Surface Chemistry Division (6170) 455 Overlook Avenue, S.W. Washington, D.C. 20375	1	Dr. R. L. Park Director, Center of Materials Research University of Maryland College Park, Maryland 20742	1
Dr. J. B. Hudson Materials Division Rensselaer Polytechnic Institute Troy, New York 12181	1	Dr. W. T. Peria Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455	1
Dr. Theodore E. Madey Surface Chemistry Section Department of Commerce National Bureau of Standards Washington, D.C. 20234	1	Dr. Chia-wei Woo Department of Physics Northwestern University Evanston, Illinois 60201	1
Dr. J. M. White Department of Chemistry University of Texas Austin, Texas 78712	1	Dr. Robert M. Hexter Department of Chemistry University of Minnesota Minneapolis, Minnesota 55455	1
Dr. Keith H. Johnson Department of Metallurgy and Materials Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1	Dr. R. P. Van Duyne Chemistry Department Northwestern University Evanston, Illinois 60201	1
Dr. J. E. Demuth IBM Corporation Thomas J. Watson Research Center P. O. Box 218 Yorktown Heights, New York 10598	1	Dr. S. Sibener Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637	1
Dr. C. P. Flynn Department of Physics University of Illinois Urbana, Illinois 61801	1	Dr. M. G. Lagally Department of Metallurgical and Mining Engineering University of Wisconsin Madison, Wisconsin 53706	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u>No.</u>	<u>No.</u>
<u>Copies</u>	<u>Copies</u>
Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260	1
Professor G. H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853	1
Captain Lee Myers AFOSR/NC Bolling AFB Washington, D.C. 20332	1
Dr. David Squire Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709	1
Professor Ronald Hoffman Department of Chemistry Cornell University Ithaca, New York 14853	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>
Dr. Robert Gomer Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637 1	Dr. K. G. Spears Chemistry Department Northwestern University Evanston, Illinois 60201 1
'Dr. R. G. Wallis Department of Physics University of California, Irvine Irvine, California 92664 1	Dr. R. W. Plummer University of Pennsylvania Department of Physics Philadelphia, Pennsylvania 19104 1
Dr. D. Ramaker Chemistry Department George Washington University Washington, D.C. 20052 1	Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106 1
Dr. P. Hansma Physics Department University of California, Santa Barbara Santa Barbara, California 93106 1	Professor D. Hercules University of Pittsburgh Chemistry Department Pittsburgh, Pennsylvania 15260 1
Dr. J. C. Hemminger Chemistry Department University of California, Irvine Irvine, California 92717 1	Professor N. Winograd The Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802 1
Dr. Martin Fleischmann Department of Chemistry Southampton University Southampton 509 5NH Hampshire, England 1	Professor T. F. George The University of Rochester Chemistry Department Rochester, New York 14627 1
Dr. G. Rubloff IBM Thomas J. Watson Research Center P. O. Box 218 Yorktown Heights, New York 10598 1	Professor Dudley R. Herschbach Harvard College Office for Research Contracts 1350 Massachusetts Avenue Cambridge, Massachusetts 02138 1
Dr. J. A. Gardner Department of Physics Oregon State University Corvallis, Oregon 97331 1	Professor Horia Metiu University of California, Santa Barbara Chemistry Department Santa Barbara, California 93106 1
Dr. G. D. Stein Mechanical Engineering Department Northwestern University Evanston, Illinois 60201 1	Professor A. Steckl Rensselaer Polytechnic Institute Department of Electrical and Systems Engineering Integrated Circuits Laboratories Troy, New York 12181 1

END

FILMED

11-83

DTIC