Quiz-2 Tomorow (Set theory)

tottes U3n & gragery as d (n)9 tel -: notbubrit prest2
U3m & mez ref evet ai (m)9, i.

ii, It P(n) is true for $m \in n \in n_0$, then $P(n_0 + 1)$ is also true.

Then P(n) is true + n>m.

Example: Let f(0) = 1, f(1) = 2 and f(n+1) = f(n-1) + 2f(n)for $n \ge 1$. Then show that $f(n) \le 3^n$.

 $f(0) = 3^{\circ} = 1$; f(1) = 2 < 2' = 3 Result holds for n = 0, 1

Assume result holds for integers 0,1,2,---,nThen f(n+1) = f(n-1) + 2f(n)

 $= 7 \quad \frac{1}{4(n+1)} \leq \frac{3_{n+1}}{5} \leq \frac{3_{n+$

Generalisation:- Prove statement about all integers which leave remainder 2 when divided by 5.

Here, first prove for n=2 and then if the result holds for n, prove for n+5.

____x___

2001 teturnes

Defin: The assurgement of atmost countably many objects in a linear order such that each object occurs exactly once is called permutation.

Property:- The no., of permutations of n objects is n! $= n(n-1)(n-2) - \dots \cdot 3 \cdot 2 \cdot 1 \quad \text{read "n factorial"}$ By convention 0! = 1Example: -n = 3, $\{1, 2, 3\}$

123, 132, 213, 231, 312, 321, 31= 3x2x1:6

Several ways of thinking of permutations:-
" Bijection functions from [n] to [n]
Several ways of thinking of permutations:- 1. Bijection functions from [n] to [n] 2. Two-line notation $6:-(123456789)$ Reg order 2. Two-line notation $6:-(123456789)$ Reg order 2. Two-line notation $6:-(1234569)$
3, One-line notation. Some Eq: - 7 14 3 5 8692
,4, Cycle Notation: $-(176892)(24)(5)$ Chase one element and use 2 line values to traverse
Thm (Stirling's formula): $ n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, where
an by means lim on = 1
Property: The # of posmutations of length of n abjects is $\frac{n!}{(n-k)!} = n(n-i)(n-2) - \cdots - (n-k+1)$
Nation: The pechhammex symbol as sizing fectorial $Q^{n} = (Q)_{n} = \alpha(\alpha+1) \dots (\alpha+n-1)$. Similarly, folling fectorial is $\alpha^{n} = \alpha(\alpha-1) - \dots (\alpha-n+1)$. Thus $\frac{n!}{(n-k)!} = N^{k} = (N-k+1)^{k}$ $\frac{(n-k)!}{(n-k)!}$
In general, suppose we have a elements of type $1,$
Then a linear exclesing of these elements is called a multi-set permutation.
Property: The # of multiset permutations of 1^{α_1} , 2^{α_2} ,, 3^{α_2} is the multinomial co-efficient, 1^{α_1} recover a, times 1^{α_1} and 1^{α_2} and 1^{α_2} and 1^{α_2} are 1^{α_2} are 1^{α_2} and 1^{α_2} are 1^{α_2} and 1^{α_2} are 1^{α_2} are 1^{α_2} and 1^{α_2} are
When $j=2$, we write $\binom{n}{a} \equiv \binom{n}{a_1 a_2}$ and this is
colled the binomial co-efficient.

What if we have objects 1,, j and we Question:want to court multi-set with arbitrary repeats each of size n objects?

Example: j=3, n=2=211,12,13,22,23,33 The # of multisets of size n among jobjects is $\binom{n+j-1}{n} = \binom{n}{n}$ called "j multichede n".

Respectly: The # of j element subsets from an n-set is $\binom{n}{i} = \frac{n^{\frac{1}{2}}}{\lambda l}$

Conventions about binomial co-efficients:

o>
$$j$$
 so $if $j > n$ as $j < 0$$

1. If NOO, then
$$\binom{-n}{i} = \left(-1\right)^{i} \binom{n+i-1}{i}$$

.3. The binomial theorem states $\underset{k>0}{\leq} \binom{8}{k} x^{k} = (1+x)^{8}$

If $\kappa \in \mathbb{N}$, this is outomotically a finite sum. If not, this is an infinite sum and we need |x| < 1

for the result to held.

In that case ,
$$\binom{\kappa}{k} := \frac{\kappa l}{\kappa l} = \frac{\kappa(\kappa-1)-\cdots-(\kappa-k+1)}{\kappa l}$$

Not obvious from the formula that (") EN

. over a moltoubri see , o2

Respectly:
$$-\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Binomial coefficients satisfy many identities

$$(1, \frac{2}{k}, \frac{2}{k})$$

$$2, \quad \sum_{k=0}^{\infty} k \binom{n}{k} = N \cdot 2^{N-1}$$

3,
$$\frac{n}{k!o}\binom{n}{k}^2 = \binom{2n}{n}$$

Thm (Chu-Vondermonde identity):- For m, n, k EN

