Fréchet Spaces

xuascaler

May 26, 2025

1 Topology defined by semi-norms

Let's start with the example we mentioned at the begining of Lecture 4.

$$X = C_0^0((R)) = \{\text{compactly supported continuous functions on } (R)\}$$

Then as we have seen, $X = \bigcup_{n=1}^{\infty} X_n$, where

$$X_n = C_0^0([-n, n]) = \{\text{compactly supported continuous functions on } (-n, n), f(n) = f(-n) = 0\}$$

The topology of X_n , as a closed subspace of $C^0([-n, n])$, is determined by open sets

$$B(f,r) = \{g \in C_0^0([-n,n]) \mid \sup_{x \in [-n,n]} |f(x) - g(x)| < r \}$$

In particular, if we let $p_n(f) = \sup_{x \in [-n,n]} |f(x)|$, then a local base for this topology is $\{f \mid p_n(f) < \frac{1}{k}\}$. We would like to assign a topology to X, so that as a subspace of X, the space X_n has the same topology mentioned above. The easiest way is to let

$$U_n^k = \{ f \in C_0^0(\mathbb{R}) \mid p_n(f) = \sup_{x \in [-n,n]} |f(x)| < \frac{1}{k} \}$$

and take \mathcal{F} be the topology generated by $U_{n,k}$.

- **Remark.** As a function on $C_0^0((R))$, p_n is not a norm, although it is a norm on $C_0^0[-n,n]$. Since one can easily find a function $f \in C_0^0(\mathbb{R})$, $f \neq 0$, $p_n(f) = 0$.
 - under this topology, (X, \mathcal{F}) is a locally convex TVS.
 - There are many other spaces of this type.

Definition. A semi-norm on a vector space X is a function $p: X \to [0, +\infty)$ s.t.

- 1. $p(x+y) \le p(x) + p(y)$ (subadditivity)
- 2. $p(\alpha x) = |\alpha| p(x)$ (positive homogenerity)

Definition. A family of semi-norms, $\{p_{\lambda}\}$ on X is called separating if $\forall x \neq 0, \exists \lambda, p_{\lambda}(x) \neq 0$.

Example. $p_n(f) = \sup_{x \in [-n,n]} |f(x)|$ defines a countable family of separating semi-norms on $C_0^0(\mathbb{R})$.

Theorem. Let $\mathcal{P} = \{p_{\lambda}\}$ be a seperating family of semi-norms on a vector space X. For each $p_{\lambda} \in \mathcal{P}$ and each $k \in \mathbb{N}$ we let $U_{\lambda,k} = \{x \in X \mid p_{\lambda}x < \frac{1}{k}\}$ Let $\mathcal{B} = \{$ the collection of all finite intersection of sets of the form $U_{\lambda,k}\}$. Let $\mathcal{F} = \{$ the translation invariant topology on X that has \mathcal{B} as a local base at $0\}$. Then

- 1. (X, \mathcal{F}) is a topological vector space.
- 2. \mathcal{B} is a convex balanced local base.
- 3. Each $p_{\lambda} \in \mathcal{P}$ is continuous.
- 4. A set $E \subset X$ is bounded iff each $p_{lambda} \in \mathcal{P}$ is bounded on E.

Proof.

- 1. \mathcal{F} is Hausedoff. It is enough to seperate 0 and $x \neq 0$. One just choose $p_{\lambda} \in \mathcal{P}$ s.t. $p_{\lambda}(x) \neq 0$. We denote $p_{\lambda}(x) = \epsilon$. Take k large s.t. $\frac{1}{k} < \frac{\epsilon}{2}$. Then $U_{\lambda,k}$ is a neigborhood of 0. $x + U_{\lambda,k}$ is a neigborhood of x, and $U_{\lambda,k} \cap (x + U_{\lambda,k}) = \emptyset$. So \mathcal{F} is Hausedoff. If $y \in U_{\lambda,k} \cap (x + U_{\lambda,k})$, then $\exists z \in U_{\lambda,k}$ s.t. $y = x + z \Rightarrow x = y z$. So $p_{\lambda}(x) = p_{\lambda}(y z) \leq p_{\lambda}(y) + p_{\lambda}(z) < \frac{1}{k} + \frac{1}{k} = \frac{2}{k} < \epsilon$ Contrdiction! we know $p_{\lambda}(x) = \epsilon$!
 - Vector addition is continuous. Let U be any open neighborhood of x+y. By definition of \mathcal{F} , one can choose $p_{\lambda_1}, ..., p_{\lambda_l}$ and $k_1, ..., k_l$ s.t. $x+y+(U_{\lambda_1,k_1}\cap ...\cap U_{\lambda_l,k_l})\subset U$. Now let

$$U_1 = x + U_{\lambda_1, 2k_1} \cap ... \cap U_{\lambda_l, 2k_l}$$
 (open neigborhood of x)

$$U_2 = y + U_{\lambda_1, 2k_1} \cap ... \cap U_{\lambda_l, 2k_l}$$
 (open neigborhood of y)

Then $U_1+U_2\subset U$. If $z_1,z_2\in U_{\lambda_1,2k_1}\cap\ldots\cap U_{\lambda_l,2k_l}$, i.e. $\forall 1\leq i\leq l, p_{\lambda_i}(z_1)<\frac{1}{2k_i}, p_{\lambda_i}(z_2)<\frac{1}{2k_i}$, then $\forall 1\leq i\leq l, p_{\lambda_i}(z_1+z_2)<\frac{1}{k_i}$.

• Scalar multiplication is continuous. Let U be a neighborhood of αx , so as above,

$$\alpha x + U_{\lambda_1, k_1} \cap \dots \cap U_{\lambda_l, k_l} \subset U$$

for some $p_{\lambda_1}, ..., p_{\lambda_l} \in \mathcal{P}$ and $k_1, ..., k_l \in \mathbb{N}$.

- case 1. $\alpha = 0$. We choose $A > max(p_{\lambda_1}(x), ..., p_{\lambda_l}(x))$, then for $\delta < \min\{\frac{1}{2Ak_1}, ..., \frac{1}{2Ak_l}, 1\}, (-\delta, \delta) \cdot (x + U_{\lambda_1, 2k_1} \cap ... \cap U_{\lambda_l, 2k_l}) \subset U$

$$\forall e \in (-\delta, \delta) \cdot x, \forall 1 \le i \le l, p_{\lambda_i}(e) < \frac{1}{2k_i}$$

$$(-\delta, \delta) \cdot x \subset U_{\lambda_1, 2k_1} \cap \dots \cap U_{\lambda_l, 2k_l}$$
$$|\delta| \leq 1 \Rightarrow (-\delta, \delta) \cdot U_{\lambda_1, 2k_1} \cap \dots \cap U_{\lambda_l, 2k_l} \subset U_{\lambda_1, 2k_1} \cap \dots \cap U_{\lambda_l, 2k_l}$$
$$(-\delta, \delta) \cdot (x + U_{\lambda_1, 2k_1} \cap \dots \cap U_{\lambda_l, 2k_l}) \subset U_{\lambda_1, k_1} \cap \dots \cap U_{\lambda_l, k_l} \subset U$$

– case 2. $\alpha \neq 0$. We choose

$$A>\max\{p_{\lambda_1}(x),...,p_{\lambda_l}(x),\frac{1}{3k_1|\alpha|},...,\frac{1}{3k_l|\alpha|}\}$$

$$\delta<\min\{\frac{1}{3k_1A},...,\frac{1}{3k_nA},1\}$$

Then

$$(\alpha - \delta, \alpha + \delta) \cdot (x + U_{\lambda_1, 3k_1|\alpha|} \cap \dots \cap U_{\lambda_l, 2k_l|\alpha|}) \subset U$$

2. By definition \mathcal{B} is a local base for \mathcal{F} . To prove $U_{\lambda_1,k_1} \cap \ldots \cap U_{\lambda_l,k_l}$ is convex and balanced, it is enough to prove $U_{\lambda,k}$ is convex and balanced. It is balanced by positive homogenerity. It is convex since $\forall x,y \in U_{\lambda,k}$. $\forall 0 \leq \alpha \leq 1$,

$$p_{\lambda}(\alpha x + (1-\alpha)y) \le \alpha p_{\lambda}(x) + (1-\alpha)p_{\lambda}(y) < \alpha \frac{1}{k} + (1-\alpha)\frac{1}{k} = \frac{1}{k}$$

3. By definition each p_{λ} is continuous at 0. The continuity of p_{λ} at x follows from $p_{\lambda}(x + U_{\lambda, \frac{1}{k}}) \subset (p_{\lambda}(x) - \frac{1}{k}, p_{\lambda}(x) + \frac{1}{k})$. If $y \in U_{\lambda, \frac{1}{k}}$, then

$$p_{\lambda}(x+y) - p_{\lambda}(x) \le p_{\lambda}(y) < \frac{1}{k}$$

$$p_{\lambda}(x) - p_{\lambda}(x+y) \le p_{\lambda}(-y) < \frac{1}{k}$$

4. Suppose E is bounded, and $p_{\lambda} \in \mathcal{P}$. Then $\exists t > 0$ s.t. $E \subset tU_{\lambda,1}$ i.e. $\frac{1}{t}E \subset U_{\lambda,1}$ So $\forall x \in E, p_{\lambda}(x) < t$. Suppose each p_{λ} is bounded on E. Then for any neigborhood $U_{\lambda_1,k_1} \cap ... \cap U_{\lambda_l,k_l} \subset U$ of 0, one pick $t_1,...,t_l$ s.t. $\forall x \in E, p_{\lambda_i}(x) < t_i$. Then for $t > max(t_1k_1,...,t_lk_l)$, we have $E \subset t(U_{\lambda_1,k_1} \cap ... \cap U_{\lambda_l,k_l})$. since $p_{\lambda_i} \frac{x}{t} = \frac{1}{t} p_{\lambda_i}(x) < \frac{1}{t} t_i < \frac{1}{k_i}$.