Data Analysis for Mechanical Engineering General Principles/Philosophy

William 'Ike' Eisenhauer

Department of Mechanical and Materials Engineering Portland State University Portland, Oregon 97223

wde@pdx.edu

Winter 2016

Bad Graphs

Sometimes...

- Graphs are used to get emotion
- Graphs are used to confuse
- Graphs are used for snazzy presentations
- Graphs are used wrong...

Figure 3: Stock Prices: Two Hypothetical Companies

Current Bike Production Rate

I. Eisenhauer (PSU) STAT 353 February 2016 9 / 43

What You Do When You Spill Something on the Floor

...| GraphJam.com

Bad Graphs

However, sometimes it's not so funny...

The next three graphs are from actual scientific articles and presentations at prestigious conferences and publications

Cleveland's Guidance

Clear Vision

- Make the data stand out. Avoid superfluity
- Do not clutter the data region
- Do not overdo the number of tick marks
- Use a reference line when there is an important value
- Do not allow data labels to interfere or clutter the graph
- Avoid putting notes, keys, and markers in the data region
- Superposed data sets must be readily visually discriminated
- Overlapping plotting symbols must be visually distinguishable
- Visual clarity must be preserved under reduction and reproduction

I. Eisenhauer (PSU) **STAT 353** February 2016 20 / 43

Cleveland's Guidance

Clear Understanding

- Error bars should be clearly explained
- When logarithms of a variable are graphed, the scale label should correspond to the tick mark labels
- Choose the range of the tick marks to include or nearly include the range of the data
- Subject to the constraints that scales have, choose the scales so that the data fill up as much of the data region as possible
- Do not insist that zero always be included on a scale showing magnitude [except for bar charts]
- Logarithmic scales can be your friend!

Gelman's Guidance

Graph issues

- Graphs are gimmicks
- Trade-off: the snazzier your display, the more you can get away with a crappy underlying analysis.
- Trust your peers enough to present their estimates and standard errors directly, with no tricks.
- Leave the dot plots, pie charts, moving zip charts, and all the rest to the marketing department and the art directors of Newsweek and USA Today.

Graph vs Table

Decision Questions [ncsu.edu/labwrite]

- Are the variables qualitative or quantitative?
- What is the total number of data points to be shown?
- Is there more than one independent variable?
- Are you trying to represent the statistical distribution of the data?
- How important is it to be able to see individual values?
- How important is it to understand the overall trend?

I. Eisenhauer (PSU) **STAT 353** February 2016

Which Graph?

Basic R Graphical Parameters

Big Idea

R graphical items, like **plot** and **hist** has the ability to add options. You can either change them globally with a **par** command, or you can do it individually on each graphical item

Let's look at some of the more common ones

Basic R Graphical Parameters

Plotting symbols, pch=

I. Eisenhauer (PSU) STAT 353 February 2016 27 / 43

28 / 43

Basic R Graphical Parameters

Colors, col=, bg=, and fg=

Axes, Titles, and Legends

5

```
# Specify axis options within plot()
plot(x, y, main="title", sub="subtitle",
  xlab="X-axis label", ylab="y-axix label",
  xlim=c(xmin, xmax), ylim=c(ymin, ymax))

title(main="main title", sub="sub-title",
  xlab="x-axis label", ylab="y-axis label")

legend(location, title, legend, ...)
```

I. Eisenhauer (PSU) STAT 353 February 2016 30 / 43


```
maxFplot <-4 # The maximum you want the F curve ploted alpha <- 0.05 #The significance level you want df1 <- 3 #degrees of freedom for the numerator df2 <- 16 #degrees of freedom for the denominator Fsample <- 0.0859
```

Some preliminaries for the context

I. Eisenhauer (PSU) STAT 353 February 2016 32 / 43

F Score Example - Setup and F Curve Plot

```
par(bg = "lightyellow4")
    x=seq(0,maxFplot,length=200)
    y=df(x,df1,df2)
    plot.new()
    plot(yaxs="i",xaxs="i", x,y,type="l",lwd=3,col="black",ylab=paste("
        Probability Denisty for df(",df1,",",df2,")"),xlab="F Value")
```

I. Eisenhauer (PSU) STAT 353 February 2016 34 / 43


```
x=seq(Fsample, maxFplot,length=200)
y=df(x,df1,df2)
polygon(c(Fsample, x, maxFplot),c(0,y,0),col="lightblue")
```

I. Eisenhauer (PSU) STAT 353 February 2016 36 / 43

F Score Example - Red and green reference lines

```
abline(v=qf(1-alpha,df1,df2), lwd=3, col="red")
abline(v=Fsample, lwd=3, col="darkgreen")
```

I. Eisenhauer (PSU) STAT 353 February 2016 38 / 43


```
x=seq(qf(1-alpha,df1,df2),maxFplot,length=200)
y=df(x,df1,df2)
polygon(c(qf(1-alpha,df1,df2),x,maxFplot),c(0,y,0),col="purple")
```

I. Eisenhauer (PSU) STAT 353 February 2016 40 / 43


```
1 text(Fsample+0.2, 0.2, srt=90, labels=paste("This green line is\n F
      score from the data [",Fsample,"]"),col="darkgreen", cex=0.6)
2 text(maxFplot-0.1,0.15,srt=90,labels=paste("The purple area is alpha ["
      ,alpha,"|"),col="purple", cex=0.6)
3 text(qf(1-alpha,df1,df2)+0.2, srt=90, 0.2,labels=paste("This red line
      is\n F-critical [",round(qf(1-alpha,df1,df2),2),"].\n If your F
      score is to the left\n of this line your F isn't big enough"),col="
      red", cex=0.6)
4 text(maxFplot/2, 0.6, labels="R Coding Functions", col="black", cex=0.8)
5 text(maxFplot/2, 0.56, labels=paste("1-pf(Fsample, df1, df2)=", round(1-pf(
      Fsample, df1, df2), 3), " [includes purple]"), col="lightblue", cex=0.8)
6 text(maxFplot/2, 0.52, labels=paste("pf(alpha, df1, df2)=", round(pf(alpha,
      df1,df2),3)),col="purple", cex=0.8)
 text(maxFplot/2, 0.48, labels=paste("gf(1-alpha, df1, df2)=", round(gf(1-
      alpha, df1, df2), 3)), col="red", cex=0.8)
```

