The okicmd and okithm Packages

Taihei Oki

February 3, 2020

1 The okicmd Package

1.1 Alphabets

Input	Output
1	ℓ
\ell	l
\epsilon	ε
\varepsilon	ϵ
\phi	arphi
\varphi	ϕ

1.2 Parentheses

Input	Output
\prn{\cdot}	(·)
\prn[\big]{\cdot}	(\cdot)
\prn[\Big]{\cdot}	(\cdot)
\prn[\bigg]{\cdot}	$\left(\cdot\right)$
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$
\curl{\cdot}	$\{\cdot\}$
\sqbr{\cdot}	$[\cdot]$
\agbr{\cdot}	$\langle \cdot \rangle$
\dbbr{\cdot}	$\llbracket \cdot rbracket$
\abs{\cdot}	$ \cdot $
\norm{\cdot}	$\ \cdot\ $
\floor{\cdot}	$\lfloor \cdot \rfloor$
\ceil{\cdot}	$\lceil \cdot \rceil$

1.3 Logic

Input	Output
\bigland	\wedge
\biglor	V
a \defeq b	$a \coloneqq b$
a \eqdef b	b =: a
P \defiff Q	$P \stackrel{\mathrm{def}}{\iff} Q$

1.4 Sets

Input	Output
\set{a \in S}	$\{a \in S\}$
$\ensuremath{\texttt{set}}\{a \in S\}[a^2 = 1]$	$\{a \in S \mid a^2 = 1\}$
\intset{n}	[n]
\card{X}	X
\setN	\mathbb{N}
\setZ	${\mathbb Z}$
\setQ	$\mathbb Q$
\setR	\mathbb{R}
\setC	$\mathbb C$
\setH	\mathbb{H}
\setF	\mathbb{F}
\setK	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$
\setQp	$\mathbb{Q}_{\geq 0}$
\setRp	$\mathbb{R}_{\geq 0}$

1.5 Maps

Input	Output
\doms{X}{Y}	$X \to Y$
\funcdoms{f}{X}{Y}	$f \colon X \to Y$
\restr{f}{S}	$f _{S}$
\id_K	id_K
\dom f	$\operatorname{dom} f$
\cod f	$\operatorname{cod} f$
\supp f	$\operatorname{supp} f$

1.6 Lattices

Input	Output
x \meet y	$x \wedge y$
x \join y	$x \vee y$
\bigmeet	\wedge
\bigjoin	V

1.7 Algebra

Input	Output
\Hom(G)	$\operatorname{Hom}(G)$
\End R	$\operatorname{End} R$
\Aut_k K	$\operatorname{Aut}_k K$
$\gcd\{a, b\}$	$\langle a,b \rangle$
$\gcd\{a, b\}[ab = e]$	$\langle a, b \mid ab = e \rangle$
\abel{G}	$G_{ m ab}$
$\operatorname{Comm}\{G\}$	[G,G]
\sym_n	\mathfrak{S}_n
$\sim (\sigma)$	$\operatorname{sgn}(\sigma)$
\mult{R}	$R^{ imes}$
$M_{m,n}(R)$	$M_{m,n}(R)$
$\GL_n(R)$	$\mathrm{GL}_n(R)$
$\S_L_n(R)$	$\mathrm{SL}_n(R)$
$\backslash 0(n)$	$\mathrm{O}(n)$
$\S0(n)$	SO(n)
$\setminus U(n)$	$\mathrm{U}(n)$
\SU(n)	SU(n)

1.8 Number Theory

Input	Output
a \coprime b	$a \perp b$
a \divides b	$a \mid b$
a \ndivides b	$a \nmid b$

1.9 Linear Algebra

Input	Output
\tr A	$\operatorname{tr} A$
\rank A	$\operatorname{rank} A$
\trank A	$\operatorname{t-rank} A$
$\widetilde{a_1}, \operatorname{ldots}, a_n$	$\operatorname{diag}(a_1,\ldots,a_n)$
\blockdiag(A_1, \ldots, A_n)	block-diag (A_1,\ldots,A_n)
\vec(A)	$\operatorname{vec}(A)$
\Row(A)	Row(A)
\Col(A)	$\mathrm{Col}(A)$
\onevec	1
\trsp{A}	$A^{ op}$
\adjo{A}	A^*
\inpr{x}{y}	$\langle x, y \rangle$

1.10 Analysis

Input	Output
\e	e
\d	d
$\displaystyle \inf\{f\}\{x\}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\displaystyle \begin{array}{l} \mathbf{f}_{x} \end{array}$	$\frac{\frac{\partial}{\partial x}}{\frac{\partial f}{\partial x_a}}$
$\dif{f}{x}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
\dpdif{f}{x}	$\frac{\partial f}{\partial x}$

1.11 Complex Analysis

Input	Output
\i	i
\Re z	$\operatorname{Re} z$
\Im z	$\operatorname{Im} z$
\Arg z	$\operatorname{Arg} z$
\Loc z	$\operatorname{Log} z$
\Sin z	$\operatorname{Sin} z$
\Cos z	$\cos z$
\Tan z	$\operatorname{Tan} z$
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$

1.12 Optimization

Input	Output
\argmin_{x \in S} f(x) \argmax_{x \in S} f(x)	$\arg\min_{x \in S} f(x)$ $\arg\max_{x \in S} f(x)$
\Order(n) \order(n)	$\mathrm{O}(n) \ \mathrm{o}(n)$

2 The okithm Package

2.1 Theorems

If the language is set to Japanese like by \usepackage[main = japanese] {babel}, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by giving the option notheorem to okicmd.

```
1 \begin{theorem}[Awesome theorem]
2   The square root $\sqrt{2}$ of two is irrational.
3 \end{theorem}
4
5 \begin{definition}[Coprime]
6   Integers $a$ and $b$ are said to be \emph{coprime} if their greatest common divisor is one.
7 \end{definition}
8
```

```
9 \begin{lemma}
    If a and b are coprime, so are a^2 and b^2.
11 \end{lemma}
13 \begin{proposition}
    If \sqrt{2} = a/b, then a^2 = 2b^2.
14
15 \end{proposition}
16
17 \begin{corollary}
    If \sqrt{2} = a/b with $a$ and $b$ being coprime, then $a$ is even.
19 \end{corollary}
20
21 \begin{example}
    If a = 2 and b = 1, then a is even but \sqrt{2} \le a/b.
23 \end{example}
24
25 \begin{remark}
    Note that $a$ and $b$ must be integers.
27 \end{remark}
29 \begin{proof}[of Awesome theorem]
    Suppose to the contrary that \sqrt{2} = a/b with coprime $a$ and $b$.
    Then both $a$ and $b$ are even, which contradicts the assumption.
32 \end{proof}
Theorem 2.1 (Awesome theorem). The square root \sqrt{2} of two is irrational.
Definition 2.2 (Coprime). Integers a and b are said to be coprime if their greatest common
divisor is one.
Lemma 2.3. If a and b are coprime, so are a^2 and b^2.
Proposition 2.4. If \sqrt{2} = a/b, then a^2 = 2b^2.
Corollary 2.5. If \sqrt{2} = a/b with a and b being coprime, then a is even.
Example 2.6. If a = 2 and b = 1, then a is even but \sqrt{2} \neq a/b.
                                                                                     Remark 2.7. Note that a and b must be integers.
Proof (of Awesome theorem). Suppose to the contrary that \sqrt{2} = a/b with coprime a and
b. Then both a and b are even, which contradicts the assumption.
```

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
1 \begin{algorithmic}[1]
2  \Input{\n \in \setN\}}
3  \Output{\n(n+1)/2\}
4  \State{\s \gets 0\}
5  \ForTo{\si = 1\}{\sn\}}
6  \State{\s \gets s + i\}
7  \EndFor
8  \State{\Return \ss\}
9 \end{algorithmic}
```

```
Input: n \in \mathbb{N}

Output: n(n+1)/2

1: s \leftarrow 0

2: for i = 1 to n do

3: s \leftarrow s + i

4: return s
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle = short.