

Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Computer Programming

Grade 11

Ministry of Education

BIG IDEAS

The **design cycle** is an ongoing reflective process.

Personal design choices require self-exploration, collaboration, and evaluation and refinement of skills. Tools and technologies can be adapted for specific purposes.

Learning Standards

Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — **Computer Programming**

Grade 11

Ministry of Education

Learning Standards (continued)

Curricular Competencies	Content
Prototyping	
 Identify and apply sources of inspiration and information 	
 Choose an appropriate form, scale, and level of detail for prototyping, and plan procedures for prototyping multiple ideas 	
 Analyze the design for the life cycle and evaluate its impacts 	
 Construct prototypes, making changes to tools, materials, and procedures as needed 	
 Record iterations of prototyping 	
Testing	
 Identify feedback most needed and possible sources of feedback 	
 Develop an appropriate test of the prototype 	
 Collect feedback to critically evaluate design and make changes to product design or processes 	
 Iterate the prototype or abandon the design idea 	
Making	
 Identify appropriate tools, technologies, materials, processes, and time needed for production 	
 Use project management processes when working individually or collaboratively to coordinate production 	
Sharing	
Share progress while creating to increase opportunities for feedback	
 Decide on how and with whom to share or promote their product, creativity, and, if applicable, intellectual property 	
 Consider how others might build upon the design concept 	
 Critically reflect on their design thinking and processes, and identify new design goals 	
 Assess ability to work effectively both as individuals and collaboratively while implementing project management processes 	

Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — **Computer Programming**

Grade 11

Ministry of Education

Learning Standards (continued)

Curricular Competencies	Content
Applied Skills	
 Apply safety procedures for themselves, co-workers, and users in both physical and digital environments 	
 Identify and assess skills needed for design interests, and develop specific plans to learn or refine them over time 	
Applied Technologies	
 Explore existing, new, and emerging tools, technologies, and systems to evaluate their suitability for their design interests 	
 Evaluate impacts, including unintended negative consequences, of choices made about technology use 	
Analyze the role technologies play in societal change	
 Examine how cultural beliefs, values, and ethical positions affect the development and use of technologies 	

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Computer Programming Grade 11

Big Ideas - Elaborations

• design cycle: includes updating content, tools, and delivery. The design process can be non-linear.

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Computer Programming

Curricular Competencies – Elaborations

Grade 11

- · user-centred research: research done directly with potential users to understand needs and requirements
- constraints: limiting factors, such as available technology, expense, environmental impact, copyright
- sources of inspiration: may include experiences, users, experts, and thought leaders
- information: may include professionals as experts, secondary sources, collective pools of knowledge in communities and collaborative atmospheres both online and offline
- **impacts:** including the social and environmental impacts of extraction and transportation of raw materials, manufacturing, packaging, transportation to markets, servicing or providing replacement parts, expected usable lifetime, and reuse or recycling of component materials
- iterations: repetitions of a process with the aim of approaching a desired result
- sources of feedback: may include peers; users; First Nations, Métis, or Inuit community experts; other experts and professionals both online and offline
- appropriate test: includes evaluating the degree of authenticity required for the setting of the test, deciding on an appropriate type and number of trials, and collecting and compiling data
- project management processes: setting goals, planning, organizing, constructing, monitoring, and leading during execution
- Share: may include showing to others, use by others, giving away, or marketing and selling
- intellectual property: creations of the intellect such as works of art, invention, discoveries, design ideas to which one has the legal rights of ownership
- technologies: things that extend human capabilities

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Computer Programming Grade 11

Content – Elaborations

- problem decomposition: subdivide a problem into manageable, self-contained tasks
- structures: for example, key elements such as variables, functions, use of Whitespace
- modify: for example, altering values of variables, parameters of a function or loop
- strategies: hand tracing code, guess and test (experimentation)
- pair programming: two programmers work together at one workstation. One, the driver, writes code while the other, the observer or navigator, reviews each line of code as it is typed in. The two programmers switch roles frequently.
- requirements: a complete set of requirements that will support the rest of the software development cycle without the need to revisit the problem statement in the future
- ways: for example, pseudocode, iterative refinement, flowcharts, UML, other design entities
- design specifications: for example, pseudocode, algorithms, flow charts, unified modeling language (UML)
- tools: for example, integrated development environment (IDE), computer language appropriate for problem/project
- pre-built libraries: for example, external libraries for graphical user interfaces or gaming, sensor libraries for hardware such as coding devices
- documentation: interpretation of library documentation/application programming interface (API)
- use of test cases: for example, running test cases to compare expected versus actual output and printing the value of variables to aid in the debugging process
- **computational thinking:** formulating problems and their solutions so they are represented in a form that can be solved through an algorithmic process. Key components are decomposition, patterns and generalizations, abstraction, and algorithmic thinking.