Import Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

from sklearn.preprocessing import LabelEncoder
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import classification_report

from scipy.stats import skew

import warnings
    warnings.filterwarnings('ignore')
```

Load Data

```
In [2]: df = pd.read_csv("Bank_Personal_Loan_Modelling.csv")
    df.head()
```

Out[2]:

	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	1	25	1	49	91107	4	1.6	1	0	0	1	0	0	0
1	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0
2	3	39	15	11	94720	1	1.0	1	0	0	0	0	0	0
3	4	35	9	100	94112	1	2.7	2	0	0	0	0	0	0
4	5	35	8	45	91330	4	1.0	2	0	0	0	0	0	1

```
In [3]: | df.shape
Out[3]: (5000, 14)
In [4]: df.isnull().sum()
Out[4]: ID
                               0
        Age
                               0
        Experience
                               0
        Income
                               0
        ZIP Code
                               0
        Family
                               0
        CCAvg
                               0
        Education
                               0
        Mortgage
                               0
        Personal Loan
                               0
        Securities Account
                               0
        CD Account
                               0
        Online
                               0
        CreditCard
                               0
        dtype: int64
```

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5000 entries, 0 to 4999
        Data columns (total 14 columns):
                                 Non-Null Count Dtype
             Column
             -----
                                 -----
         0
             ID
                                 5000 non-null
                                                 int64
                                 5000 non-null
         1
             Age
                                                 int64
         2
             Experience
                                 5000 non-null
                                                 int64
                                 5000 non-null
                                                 int64
             Income
         4
             ZIP Code
                                 5000 non-null
                                                 int64
         5
             Family
                                 5000 non-null
                                                 int64
             CCAvg
                                 5000 non-null
                                                 float64
         7
             Education
                                 5000 non-null
                                                 int64
                                 5000 non-null
         8
                                                 int64
             Mortgage
         9
             Personal Loan
                                 5000 non-null
                                                 int64
         10 Securities Account 5000 non-null
                                                 int64
         11 CD Account
                                 5000 non-null
                                                 int64
         12 Online
                                 5000 non-null
                                                 int64
         13 CreditCard
                                 5000 non-null
                                                 int64
        dtypes: float64(1), int64(13)
        memory usage: 547.0 KB
```

WE will drop two columns ID and Zip Code as it is not important for prediction

```
In [6]: df.drop(['ID','ZIP Code'],axis=1,inplace=True)
```

```
In [7]: df.describe()
```

Out[7]:

	Age	Experience	Income	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.00000
mean	45.338400	20.104600	73.774200	2.396400	1.937938	1.881000	56.498800	0.096000	0.104400	0.06040
std	11.463166	11.467954	46.033729	1.147663	1.747659	0.839869	101.713802	0.294621	0.305809	0.23825
min	23.000000	-3.000000	8.000000	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.00000
25%	35.000000	10.000000	39.000000	1.000000	0.700000	1.000000	0.000000	0.000000	0.000000	0.00000
50%	45.000000	20.000000	64.000000	2.000000	1.500000	2.000000	0.000000	0.000000	0.000000	0.00000
75%	55.000000	30.000000	98.000000	3.000000	2.500000	3.000000	101.000000	0.000000	0.000000	0.00000
max	67.000000	43.000000	224.000000	4.000000	10.000000	3.000000	635.000000	1.000000	1.000000	1.00000

Imbalance Data

```
In [8]: print("Accepted")
    print(df[df["Personal Loan"] == 1]["Personal Loan"].count())
    print("Not Accepted")
    print(df[df["Personal Loan"] == 0]["Personal Loan"].count())
```

Accepted 480 Not Accepted 4520

Imbalanced dataset not appears here cy llokin at sshape of dataset, so we perform data visualization is executed first to know potential relationship.

Data Visualization

```
In [9]: plt.figure(figsize=(20,6))
    sns.countplot(data=df,x='Age',hue='Personal Loan')
    plt.title('Personal Loan count for Age')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.legend([ "Not Accepted","Accepted"])
    plt.show()
```


It is quite weird about experience can be negative. we will deal while doing data processing


```
In [13]: plt.figure(figsize=(10,5))
    sns.countplot(data=df,x='Education',hue='Personal Loan')
    plt.title('Personal Loan count for Education')
    plt.xlabel('Education')
    plt.ylabel('Count')
    plt.legend([ "Not Accepted","Accepted"])
    plt.show()
```


Dividing the columns in the dataset in to numeric and categorical attributes.

```
In [20]: for col in cols categorical:
             df[col] = df[col].astype('object')
In [21]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5000 entries, 0 to 4999
         Data columns (total 12 columns):
                                  Non-Null Count Dtype
              Column
              ----
                                  -----
          0
              Age
                                  5000 non-null
                                                  int64
              Experience
                                  5000 non-null
                                                  int64
          1
          2
                                  5000 non-null
                                                  int64
              Income
          3
              Family
                                  5000 non-null
                                                  object
          4
              CCAvg
                                  5000 non-null
                                                  float64
                                                 object
              Education
                                  5000 non-null
                                  5000 non-null
                                                  int64
              Mortgage
              Personal Loan
                                  5000 non-null
                                                  int64
              Securities Account 5000 non-null
                                                  object
          9
              CD Account
                                  5000 non-null
                                                  object
             Online
          10
                                  5000 non-null
                                                  object
          11 CreditCard
                                  5000 non-null
                                                  object
```

Separate Data

memory usage: 468.9+ KB

```
In [22]: df_num = df.select_dtypes(include=['int64','float64']).drop("Personal Loan",axis=1)
    df_cat = df.select_dtypes(include='object')
```

dtypes: float64(1), int64(5), object(6)

In [23]: df_num.head(3)

Out[23]:

	Age	Experience	Income	CCAvg	Mortgage
0	25	1	49	1.6	0
1	45	19	34	1.5	0
2	39	15	11	1.0	0

In [24]: df_cat.head(3)

Out[24]:

	Family	Education	Securities Account	CD Account	Online	CreditCard
0	4	1	1	0	0	0
1	3	1	1	0	0	0
2	1	1	0	0	0	0

Skewness

```
In [25]: for col in df_num:
    print(col, skew(df_num[col]))
    plt.figure()
    sns.distplot(df_num[col])
    plt.show()
```

Age -0.029331878574766698

Experience -0.026316790337654442

Income 0.8410861846424931

CCAvg 1.5979637637001873

Mortgage 2.103371065804789

Reducing Skewness

Columns Income, CCAvg and Morgage having positive skewness or right skewness. so try to reduce the skewness by applying square root.

```
In [26]: skew_col = ['Income','CCAvg','Morgage']

for col in df_num:
    if col in skew_col:
        df_num[col] = np.sqrt(df_num[col])
        print(col, skew(df_num[col]))
    else:
        print(col, skew(df_num[col]))
    plt.figure()
    sns.distplot(df_num[col])
    plt.show()
```

Age -0.029331878574766698

Experience -0.026316790337654442

Income 0.26035759523724794

CCAvg 0.4238991859957578

Outliers

```
In [27]: for col in df_num:
    plt.figure()
    sns.boxplot(df["Personal Loan"],df_num[col])
    plt.show()
```


Data Cleaning

```
In [28]: df_num.describe()
```

Out	Γ2	8]	:
	-	_	

	Age	Experience	Income	CCAvg	Mortgage
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000
mean	45.338400	20.104600	8.166221	1.253347	56.498800
std	11.463166	11.467954	2.662416	0.605915	101.713802
min	23.000000	-3.000000	2.828427	0.000000	0.000000
25%	35.000000	10.000000	6.244998	0.836660	0.000000
50%	45.000000	20.000000	8.000000	1.224745	0.000000
75%	55.000000	30.000000	9.899495	1.581139	101.000000
max	67.000000	43.000000	14.966630	3.162278	635.000000

```
In [29]: df_num[df_num['Mortgage'] == 0]['Mortgage'].count()
```

Out[29]: 3462

Mortgage: Value of house mortgage if any. it could be possible that a person have no house in his morgage. so i live as it is

Training Dataset and Testing Dataset

Baseline Model - Logistic Regression

```
In [43]: | lr = LogisticRegression()
         create model(lr)
                        precision
                                      recall f1-score
                                                         support
                     0
                             0.95
                                        0.99
                                                  0.97
                                                            1351
                                       0.57
                             0.81
                                                  0.67
                                                             149
                                                  0.94
                                                            1500
              accuracy
                                                  0.82
             macro avg
                             0.88
                                        0.78
                                                            1500
                             0.94
                                        0.94
                                                  0.94
                                                            1500
         weighted avg
Out[43]: LogisticRegression()
```

Decision Tree Classifier

```
In [44]: dt = DecisionTreeClassifier()
    create_model(dt)
```

	precision	recall	f1-score	support
0	0.99	0.99	0.99	1351
1	0.90	0.88	0.89	149
accuracy			0.98	1500
macro avg	0.94	0.93	0.94	1500
weighted avg	0.98	0.98	0.98	1500

Out[44]: DecisionTreeClassifier()

Random Forest Classifier

In [52]: rt =RandomForestClassifier(n_estimators=200,max_depth=10)
 create_model(rt)

	precision	recall	f1-score	support
0	0.98	1.00	0.99	1351
1	0.97	0.84	0.90	149
accuracy			0.98	1500
macro avg	0.98	0.92	0.94	1500
weighted avg	0.98	0.98	0.98	1500

Out[52]: RandomForestClassifier(max_depth=10, n_estimators=200)

Gradient Boosting

In [56]: from sklearn.ensemble import GradientBoostingClassifier

```
In [64]: gb = GradientBoostingClassifier(n_estimators=100,max_depth=25)
    create_model(gb)
```

	precision	recall	f1-score	support
0	0.99	0.99	0.99	1351
1	0.91	0.88	0.89	149
accuracy			0.98	1500
macro avg	0.95	0.93	0.94	1500
weighted avg	0.98	0.98	0.98	1500

Out[64]: GradientBoostingClassifier(max_depth=25)

SVM

```
In [66]: from sklearn.svm import SVC
```

1. Polynomial

```
In [70]: poly_svc = SVC(random_state=1,kernel="poly",C=0.5)
create_model(poly_svc)
```

	precision	recall	f1-score	support
0 1	0.90 0.88	1.00 0.05	0.95 0.09	1351 149
accuracy macro avg	0.89	0.52	0.90 0.52	1500 1500
weighted avg	0.90	0.90	0.86	1500

Out[70]: SVC(C=0.5, kernel='poly', random_state=1)

2. Radial Bias

	precision	recall	f1-score	support
0 1	0.90 0.62	1.00 0.03	0.95 0.06	1351 149
accuracy			0.90	1500
macro avg	0.76	0.52	0.51	1500
weighted avg	0.88	0.90	0.86	1500

Out[71]: SVC(random_state=1)