

Atividade:

Para o professor

Objetivos específicos

OE1 Encontrar uma subdivisão comum entre as quantidades que permita efetuar as operações;

OE2 Perceber a não unicidade da subdivisão comum.

Discussões sobre o desenvolvimento da atividade

Como nas atividades anteriores e nas próximas desta lição, o uso obrigatório do MMC não é recomendado. Ao contrário, objetiva-se justamente provocar explicitamente a percepção de que essa subdivisão não é única. Assim, devem ser apresentadas diversas frações equivalentes às frações dadas na atividade, como por exemplo, as seguintes:

$$\frac{6}{10} \in \frac{7}{10}$$

$$\frac{12}{20} \in \frac{14}{20}$$

$$\frac{24}{40} \in \frac{28}{40}$$

A partir dessas diferentes frações equivalentes, o professor deve procurar articular com os estudantes a relação entre diferentes subdivisões com a sistematização de frações equivalentes. Deve-se retomar a reflexão iniciada na sessão Organizando as Ideias de que escrever quantidades em relação a uma subdivisão comum corresponde a determinar frações equivalentes com um denominador comum.

Atividade

Tendo como unidade um mesmo retângulo, as representações das frações $\frac{3}{5}$ e $\frac{7}{10}$ estão ilustradas nas figuras a seguir.

- a) Determine uma subdivisão da unidade que permita expressar essas quantidades por frações com um mesmo denominador. Represente tal subdivisão nas figuras acima.
- b) Escreva frações iguais a $\frac{3}{5}$ e a $\frac{7}{10}$ a partir dessa subdivisão.
- c) Existe alguma outra subdivisão, diferente da que você usou para responder os itens a) e b), com a qual também seja possível responder ao item b)? Se sim, qual?
- d) Juntas, as regiões destacadas em vermelho e em bege determinam um região maior, menor ou igual a um retângulo? Explique.

Realização:

Patrocínio:

Solução:

a) Uma possível subdivisão comum é em 10 partes, portanto, igual a fração $\frac{1}{10}$. Com essa subdivisão ambas as quantidades podem ser expressas por frações de denominador 10. Uma forma de observar tal fato é determinar, na primeira imagem, um segmento horizontal, de modo a dividir cada parte da partição já existente em duas partes iguais.

- b) $\frac{3}{5} = \frac{6}{10}$. A fração $\frac{7}{10}$ já está escrita a partir de décimos.
- c) Sim, existem várias. Por exemplo, $\frac{1}{10}$, $\frac{1}{20}$ ou $\frac{1}{70}$.
- d) Como $\frac{3}{5}+\frac{7}{10}=\frac{6}{10}+\frac{7}{10}=\frac{13}{10}>1$, juntas, as regiões destacadas em vermelho e em bege determinam um região maior do que a do retângulo dado.

OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Itaú Social

Patrocínio: