# Études de fonctions





- Études de fonctions  $f(x) = (x^2 1) \ln \left(\frac{1+x}{1-x}\right)$   $f(x) = \exp(\tan x) \cdot \cos x$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-x} > 0$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

1. Domaine de définition et domaine d'étude :

 $\frac{1+x}{1-x} > 0 \iff (1+x)(1-x) > 0$ 

1.1 la fonction logarithme est définie pour x > 0. Il faut que :



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-y} > 0 \iff (1+x)(1-x) > 0 \iff x \in ]-1,1[$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :

$$\frac{1+x}{1-x} > 0 \quad \Leftrightarrow \quad (1+x)(1-x) > 0 \quad \Leftrightarrow \quad x \in ]-1,1[$$

1.2 
$$f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1+x} \right) = -f(x)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-y} > 0 \iff (1+x)(1-x) > 0 \iff x \in ]-1,1[$

1.2 
$$f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1+x} \right) = -f(x)$$

La fonction est impaire, l'étude sur [0,1[ suffit.



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-x} > 0 \iff (1+x)(1-x) > 0 \iff x \in ]-1,1[$

1.2 
$$f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1+x} \right) = -f(x)$$

La fonction est impaire, l'étude sur [0, 1[ suffit.

1.3 limites aux bornes, calcul de :  $\lim_{x\to 1} f(x)$ 



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :

$$\frac{1+x}{1-x} > 0 \quad \Leftrightarrow \quad (1+x)(1-x) > 0 \quad \Leftrightarrow \quad x \in ]-1,1[$$

1.2  $f(-x) = (x^2 - 1) \ln \left(\frac{1-x}{1+x}\right) = -f(x)$ 

La fonction est impaire, l'étude sur [0,1[ suffit.

1.3 limites aux bornes, calcul de :  $\lim_{x\to 1} f(x)$ 

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :

$$\frac{1+x}{1-x} > 0 \quad \Longleftrightarrow \quad (1+x)(1-x) > 0 \quad \Longleftrightarrow \quad x \in ]-1,1[$$

1.2  $f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1+x} \right) = -f(x)$ 

La fonction est impaire, l'étude sur [0, 1[ suffit.

- 1.3 limites aux bornes, calcul de :  $\lim_{x \to 1} f(x)$ 
  - $f(x) = (x+1)(x-1)\ln(1+x) (x+1)(x-1)\ln(1-x)$
  - $\lim_{u\to 0} u \ln(u) = 0 \quad \Rightarrow \quad \lim_{x\to 1} \left( (x-1) \ln(1-x) \right) = 0$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-x} > 0 \iff (1+x)(1-x) > 0 \iff x \in ]-1,1[$

1.2 
$$f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1-x} \right) = -f(x)$$

La fonction est impaire, l'étude sur [0, 1[ suffit.

- 1.3 limites aux bornes, calcul de :  $\lim_{x \to 1} f(x)$ 
  - $f(x) = (x+1)(x-1)\ln(1+x) (x+1)(x-1)\ln(1-x)$
  - $\lim_{u\to 0} u \ln(u) = 0 \quad \Rightarrow \quad \lim_{x\to 1} \left( (x-1) \ln(1-x) \right) = 0$
  - $\lim_{x\to 1} f(x) = 0$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

- Domaine de définition et domaine d'étude :
  - 1.1 la fonction logarithme est définie pour x > 0. Il faut que :  $\frac{1+x}{1-x} > 0 \iff (1+x)(1-x) > 0 \iff x \in ]-1,1[$

1.2 
$$f(-x) = (x^2 - 1) \ln \left( \frac{1-x}{1+x} \right) = -f(x)$$

La fonction est impaire, l'étude sur [0, 1[ suffit.

- 1.3 limites aux bornes, calcul de :  $\lim_{x\to 1} f(x)$ 
  - $f(x) = (x+1)(x-1)\ln(1+x) (x+1)(x-1)\ln(1-x)$
  - $\lim_{u\to 0} u \ln(u) = 0 \quad \Rightarrow \quad \lim_{x\to 1} \left( (x-1) \ln(1-x) \right) = 0$
  - $\lim_{x\to 1} f(x) = 0$

On étudiera f sur [0,1] en posant f(1) = 0 et on complètera par symétrie par rapport à (0,0) (fonction impaire).



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$





$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

$$f'(x) = 2x \ln(1+x) + \frac{x^2 - 1}{1+x} - \left(2x \ln(1-x) + \frac{x^2 - 1}{1-x}(-1)\right)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

$$f'(x) = 2x \ln(1+x) + \frac{x^2 - 1}{1+x} - \left(2x \ln(1-x) + \frac{x^2 - 1}{1-x}(-1)\right)$$
$$= 2x \ln\left(\frac{1+x}{1-x}\right) - 2$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

$$f'(x) = 2x \ln(1+x) + \frac{x^2 - 1}{1+x} - \left(2x \ln(1-x) + \frac{x^2 - 1}{1-x}(-1)\right)$$
$$= 2x \ln\left(\frac{1+x}{1-x}\right) - 2$$
$$= 2x \left(\ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x}\right)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

$$f'(x) = 2x \ln(1+x) + \frac{x^2 - 1}{1+x} - \left(2x \ln(1-x) + \frac{x^2 - 1}{1-x}(-1)\right)$$
$$= 2x \ln\left(\frac{1+x}{1-x}\right) - 2$$
$$= 2x \left(\ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x}\right)$$

Sur ]0, 1[, f'(x) est donc du signe de  $g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x}$ 



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

Étude du signe de : 1 + x

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x}$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x} = \ln(1+x) - \ln(1-x) - \frac{1}{x}$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x} = \ln(1+x) - \ln(1-x) - \frac{1}{x}$$

$$g'(x) = \frac{1}{1+x} + \frac{1}{1-x} + \frac{1}{x^2}$$
$$= \frac{1+x^2}{x^2(1-x^2)}$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x} = \ln(1+x) - \ln(1-x) - \frac{1}{x}$$

$$g'(x) = \frac{1}{1+x} + \frac{1}{1-x} + \frac{1}{x^2}$$
$$= \frac{1+x^2}{x^2(1-x^2)}$$

g est donc strictement croissante sur ]0,1[.



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x} = \ln(1+x) - \ln(1-x) - \frac{1}{x}$$

$$g'(x) = \frac{1}{1+x} + \frac{1}{1-x} + \frac{1}{x^2}$$
$$= \frac{1+x^2}{x^2(1-x^2)}$$

g est donc strictement croissante sur ]0,1[.

$$\lim_{x\to 0^+}g(x)=-\infty \text{ et } \lim_{x\to 1^-}g(x)=+\infty$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$g(x) = \ln\left(\frac{1+x}{1-x}\right) - \frac{1}{x} = \ln(1+x) - \ln(1-x) - \frac{1}{x}$$

$$g'(x) = \frac{1}{1+x} + \frac{1}{1-x} + \frac{1}{x^2}$$
$$= \frac{1+x^2}{x^2(1-x^2)}$$

g est donc strictement croissante sur ]0, 1[.

$$\lim_{x \to 0^{+}} g(x) = -\infty \text{ et } \lim_{x \to 1^{-}} g(x) = +\infty \implies \exists x_0 \in ]0, 1[: g(x_0) = 0]$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

2. La dérivée 
$$f'(x) = 2x \left( \ln \left( \frac{1+x}{1-x} \right) - \frac{1}{x} \right) = 2x g(x)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

- 2. La dérivée  $f'(x) = 2x \left( \ln \left( \frac{1+x}{1-x} \right) \frac{1}{x} \right) = 2x g(x)$ 
  - ▶ s'annule donc une seule fois en  $x_0 \in ]0,1[$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

- 2. La dérivée  $f'(x) = 2x \left( \ln \left( \frac{1+x}{1-x} \right) \frac{1}{x} \right) = 2x g(x)$ 
  - ▶ s'annule donc une seule fois en  $x_0 \in ]0,1[$
  - si  $0 < x < x_0$ , f'(x) < 0 et si  $x_0 < x < 1$ , f'(x) > 0



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

- 2. La dérivée  $f'(x) = 2x \left( \ln \left( \frac{1+x}{1-x} \right) \frac{1}{x} \right) = 2x g(x)$ 
  - ▶ s'annule donc une seule fois en  $x_0 \in ]0,1[$
  - si  $0 < x < x_0$ , f'(x) < 0 et si  $x_0 < x < 1$ , f'(x) > 0
  - ► On a prolongé par continuité f en 1 : il faut étudier la dérivabilité au point de prolongement :



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x+1)(x-1)\ln(1+x) - (x+1)(x-1)\ln(1-x)$$

- 2. La dérivée  $f'(x) = 2x \left( \ln \left( \frac{1+x}{1-x} \right) \frac{1}{x} \right) = 2x g(x)$ 
  - ▶ s'annule donc une seule fois en  $x_0 \in ]0,1[$
  - si  $0 < x < x_0$ , f'(x) < 0 et si  $x_0 < x < 1$ , f'(x) > 0
  - On a prolongé par continuité f en 1 : il faut étudier la dérivabilité au point de prolongement :

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} (x + 1) \Big( \ln(1 + x) - \ln(1 - x) \Big) = +\infty$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

#### 3. Tableau des variations.

| x     | 0                    |   | <i>x</i> <sub>0</sub> |   | 1   |
|-------|----------------------|---|-----------------------|---|-----|
| f'(x) | -2                   | _ | 0                     | + | +∞  |
| f(x)  | 0                    |   |                       |   | , 0 |
|       | $\rightarrow f(x_0)$ |   |                       |   |     |



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$



$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$

$$f(x) = (x^2 - 1) \ln \left( \frac{1+x}{1-x} \right)$$



# $f(x) = \exp(\tan x) \cdot \cos x$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi$ ,  $k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi$ ,  $k \in \mathbb{R}$ .



# $f(x) = \exp(\tan x).\cos x$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.



# $f(x) = \exp(\tan x).\cos x$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [



# $f(x) = \exp(\tan x).\cos x$

- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [

De plus :  $f(x + \pi) = -f(x)$  : on fera l'étude sur  $] - \frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [ et on complètera par une symétrie par rapport au point :  $(\frac{\pi}{2}, 0)$ 



- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [

De plus :  $f(x + \pi) = -f(x)$  : on fera l'étude sur ]  $-\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [ et on complètera par une symétrie par rapport au point :  $(\frac{\pi}{2}, 0)$ 

1.3 limites aux bornes:



- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [

De plus :  $f(x + \pi) = -f(x)$  : on fera l'étude sur ]  $-\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [ et on complètera par une symétrie par rapport au point :  $(\frac{\pi}{2}, 0)$ 

1.3 limites aux bornes:

$$\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty \implies \lim_{x \to -\frac{\pi}{2}^+} f(x) = 0$$



- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [

De plus :  $f(x + \pi) = -f(x)$  : on fera l'étude sur ]  $-\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [ et on complètera par une symétrie par rapport au point :  $(\frac{\pi}{2}, 0)$ 

- 1.3 limites aux bornes :
  - $\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty \implies \lim_{x \to -\frac{\pi}{2}^+} f(x) = 0$
  - $\lim_{x \to \frac{\pi}{2}^{-}}^{2} \tan x = +\infty \implies \lim_{x \to \frac{\pi}{2}^{-}}^{2} f(x) = +\infty$



- 1. Domaine de définition et domaine d'étude :
  - 1.1 la fonction tangente n'est définie que pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ ; donc f est définie pour  $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{R}$ .
  - 1.2  $f(x+2\pi) = \exp(\tan(x+2\pi)) \cdot \cos(x+2\pi) = f(x)$  puisque la tangente est  $\pi$ -périodique et le cosinus  $2\pi$ -périodique.

On fera l'étude sur : ]  $-\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ [

De plus :  $f(x + \pi) = -f(x)$  : on fera l'étude sur ]  $-\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [ et on complètera par une symétrie par rapport au point :  $(\frac{\pi}{2}, 0)$ 

- 1.3 limites aux bornes :
  - $\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty \implies \lim_{x \to -\frac{\pi}{2}^+} f(x) = 0$
  - $\lim_{x \to \frac{\pi}{2}^{-}} \tan x = +\infty \implies \lim_{x \to \frac{\pi}{2}^{-}} f(x) = +\infty$

On prolongera f par continuité en  $-\frac{\pi}{2}$  en posant :  $f(-\frac{\pi}{2})=0$ .





$$f(x) = \exp(\tan x).\cos x$$

$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x).(-\sin x)$$



$$f(x) = \exp(\tan x) \cdot \cos x$$

$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x) \cdot (-\sin x)$$
$$= \exp(\tan x) \left(\frac{1 - \cos x \cdot \sin x}{\cos x}\right)$$



$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x) \cdot (-\sin x)$$
$$= \exp(\tan x) \left(\frac{1 - \cos x \cdot \sin x}{\cos x}\right)$$
$$= \exp(\tan x) \left(\frac{2 - \sin 2x}{2\cos x}\right)$$



#### 2. La dérivée :

$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x) \cdot (-\sin x)$$
$$= \exp(\tan x) \left(\frac{1 - \cos x \cdot \sin x}{\cos x}\right)$$
$$= \exp(\tan x) \left(\frac{2 - \sin 2x}{2\cos x}\right)$$

f'(x) est donc du signe de  $\cos x$ 



$$f(x) = \exp(\tan x) \cdot \cos x$$

### 2. La dérivée :

$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x) \cdot (-\sin x)$$
$$= \exp(\tan x) \left(\frac{1 - \cos x \cdot \sin x}{\cos x}\right)$$
$$= \exp(\tan x) \left(\frac{2 - \sin 2x}{2\cos x}\right)$$

f'(x) est donc du signe de  $\cos x$ : sur ]  $-\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ [, f'(x) > 0;



#### 2. La dérivée :

$$f'(x) = \frac{\exp(\tan x)}{\cos^2 x} \cos x + \exp(\tan x) \cdot (-\sin x)$$
$$= \exp(\tan x) \left(\frac{1 - \cos x \cdot \sin x}{\cos x}\right)$$
$$= \exp(\tan x) \left(\frac{2 - \sin 2x}{2\cos x}\right)$$

f'(x) est donc du signe de  $\cos x$  : sur  $]-\frac{\pi}{2},\frac{\pi}{2}[, f'(x) > 0;$ f est donc strictement croissante.





### 2. La dérivée

• On a prolongé par continuité f en  $-\frac{\pi}{2}$ ; étude de la dérivabilité en  $-\frac{\pi}{2}$ :



### 2. La dérivée

► On a prolongé par continuité f en  $-\frac{\pi}{2}$ ; étude de la dérivabilité en  $-\frac{\pi}{2}$ :

$$f'(-\frac{\pi}{2}) = \lim_{x \to -\frac{\pi}{2}^+} \frac{f(x) - f(-\frac{\pi}{2})}{x - (-\frac{\pi}{2})} = \lim_{x \to -\frac{\pi}{2}^+} \exp(\tan x) \frac{\cos x}{x + \frac{\pi}{2}}$$



### 2. La dérivée

► On a prolongé par continuité f en  $-\frac{\pi}{2}$ ; étude de la dérivabilité en  $-\frac{\pi}{2}$ :

$$f'(-\frac{\pi}{2}) = \lim_{x \to -\frac{\pi}{2}^+} \frac{f(x) - f(-\frac{\pi}{2})}{x - (-\frac{\pi}{2})} = \lim_{x \to -\frac{\pi}{2}^+} \exp(\tan x) \frac{\cos x}{x + \frac{\pi}{2}}$$

$$\lim_{x \to -\frac{\pi}{2}^+} \exp(\tan x) = 0 \qquad \lim_{x \to -\frac{\pi}{2}^+} \frac{\cos x}{x + \frac{\pi}{2}} = -\sin\left(-\frac{\pi}{2}\right) = 1$$



### 2. La dérivée

► On a prolongé par continuité f en  $-\frac{\pi}{2}$ ; étude de la dérivabilité en  $-\frac{\pi}{2}$ :

$$f'(-\frac{\pi}{2}) = \lim_{x \to -\frac{\pi}{2}^+} \frac{f(x) - f(-\frac{\pi}{2})}{x - (-\frac{\pi}{2})} = \lim_{x \to -\frac{\pi}{2}^+} \exp(\tan x) \frac{\cos x}{x + \frac{\pi}{2}}$$

$$\lim_{x \to -\frac{\pi}{2}^+} \exp(\tan x) = 0 \qquad \lim_{x \to -\frac{\pi}{2}^+} \frac{\cos x}{x + \frac{\pi}{2}} = -\sin\left(-\frac{\pi}{2}\right) = 1$$

La tangente en  $\left(-\frac{\pi}{2},0\right)$  est donc horizontale.



#### 3. Tableau des variations.

| X     | $-\frac{\pi}{2}$ |            | $\frac{\pi}{2}$ |
|-------|------------------|------------|-----------------|
| f'(x) | 0                | +          |                 |
| f(x)  | 0                | <i>y</i> + | -∞              |









