

Задачи разрешимости логических формул и приложения Лекция 2. SAT задача. Сведение задачи к SAT задаче

Роман Холин

Московский государственный университет

Москва, 2021

Дополнительные материалы

- Decision Procedures An Algorithmic Point of View, Daniel Kroening, Ofer Strichman
- Handbook of satisfiability, Edmund Clarke
- The art of Computer Programming, volume 4, part 6, Donald Knuth

Дополнительные материалы

- cse290q
- cse507
- 15816-f19

Преобразование булевой формулы в КНФ

• Какова сложность преобразование формулы в КНФ?

Преобразование булевой формулы в КНФ

- Какова сложность преобразование формулы в КНФ?
- В худшем случае экспонента

Преобразование булевой формулы в КНФ

- Какова сложность преобразование формулы в КНФ?
- В худшем случае экспонента
- Например $(x_1 \wedge y_1) \vee \cdots \vee (x_n \wedge y_n)$, преобразовывая с помощью законов Де Моргана и закона дистрибутивности к формуле $(x_1 \vee \cdots \vee x_n) \wedge (y_1 \vee x_2 \vee \cdots \vee x_n) \wedge (y_1 \vee \cdots \vee y_n)$
 - получаем 2^n дизъюнктов.

AtLeastOne

• Рассмотрим функцию $AtLeastOne(x_1, \dots, x_n)$ - истина ли хотя бы одна из переменных

AtLeastOne

- Рассмотрим функцию $AtLeastOne(x_1, \ldots, x_n)$ истина ли хотя бы одна из переменных
- Как её выразить в КНФ?

AtLeastOne

- Рассмотрим функцию $AtLeastOne(x_1, \ldots, x_n)$ истина ли хотя бы одна из переменных
- Как её выразить в КНФ?
- $(x_1 \vee \cdots \vee x_n)$

XOR

• Аналогичный вопрос про $XOR(x_1,\ldots,x_n)$

XOR

- Аналогичный вопрос про $XOR(x_1, \ldots, x_n)$
- Пусть $x^{\alpha} = (x \leftrightarrow \alpha)$
- $XOR = \bigwedge (x_1^{\alpha_1} \vee \cdots \vee x_n^{\alpha_n})$, т.е. \wedge по всем наборам α , таким, $\Sigma_i(\alpha_i)$ четное число.

XOR

- Аналогичный вопрос про $XOR(x_1, \ldots, x_n)$
- Пусть $x^{\alpha} = (x \leftrightarrow \alpha)$
- $XOR = \bigwedge (x_1^{\alpha_1} \vee \cdots \vee x_n^{\alpha_n})$, т.е. \wedge по всем наборам α , таким, $\Sigma_i(\alpha_i)$ четное число.
- Сколько дизъюнктов в такой формуле? Можно ли сделать меньше?

- Аналогичный вопрос про $XOR(x_1, \ldots, x_n)$
- Пусть $x^{\alpha} = (x \leftrightarrow \alpha)$
- $XOR = \bigwedge (x_1^{\alpha_1} \vee \cdots \vee x_n^{\alpha_n})$, т.е. \wedge по всем наборам α , таким, $\Sigma_i(\alpha_i)$ четное число.
- Сколько дизъюнктов в такой формуле? Можно ли сделать меньше?
- $XOR(x_1, x_2, y) \wedge XOR(\neg y, x_3, \dots, x_n)$

• $AtMostOne(x_1, ..., x_n)$ - истина, если среди $x_1, ..., x_n$ не более одной истиной переменной.

• $AtMostOne(x_1,...,x_n)$ - истина, если среди $x_1,...,x_n$ не более одной истиной переменной.

•

$$\bigwedge_{1 \le i < j \le n} (\neg x_i \lor \neg x_j)$$

• $AtMostOne(x_1,...,x_n)$ - истина, если среди $x_1,...,x_n$ не более одной истиной переменной.

•

$$\bigwedge_{1 \le i < j \le n} (\neg x_i \lor \neg x_j)$$

• Сколько дизъюнктов в такой формуле? Можно ли сделать меньше?

• $AtMostOne(x_1,...,x_n)$ - истина, если среди $x_1,...,x_n$ не более одной истиной переменной.

•

$$\bigwedge_{1 \le i < j \le n} (\neg x_i \lor \neg x_j)$$

- Сколько дизъюнктов в такой формуле? Можно ли сделать меньше?
- $AtMostOne(x_1, x_2, x_3, y) \lor AtMostOne(\neg y, x_4, \dots, x_n)$

• AtMostOne(x_1, x_2): $\phi_1 = \neg x_1 \lor \neg x_2$ $\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$

• AtMostOne(x_1, x_2): $\phi_1 = \neg x_1 \lor \neg x_2$ $\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$

• Они эквивалентны?

$$\phi_1 = \neg x_1 \lor \neg x_2$$

$$\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$$

- Они эквивалентны?
- $\phi_1 \leftrightarrow \phi_2$ тавтология, если и $\neg \phi_1 \land \phi_2$ и $\phi_1 \land \neg \phi_2$ невыполнима.

$$\phi_1 = \neg x_1 \lor \neg x_2$$

$$\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$$

- Они эквивалентны?
- $\phi_1 \leftrightarrow \phi_2$ тавтология, если и $\neg \phi_1 \land \phi_2$ и $\phi_1 \land \neg \phi_2$ невыполнима.
- Выполнима ли $\neg \phi_1 \land \phi_2$?

$$\phi_1 = \neg x_1 \lor \neg x_2$$

$$\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$$

- Они эквивалентны?
- $\phi_1 \leftrightarrow \phi_2$ тавтология, если и $\neg \phi_1 \land \phi_2$ и $\phi_1 \land \neg \phi_2$ невыполнима.
- Выполнима ли $\neg \phi_1 \land \phi_2$?
- Выполнима ли $\phi_1 \land \neg \phi_2$?

$$\phi_1 = \neg x_1 \lor \neg x_2$$

$$\phi_2 = (\neg x_1 \lor y) \land (y \neg x_2)$$

- Они эквивалентны?
- ullet $\phi_1 \leftrightarrow \phi_2$ тавтология, если и $\neg \phi_1 \land \phi_2$ и $\phi_1 \land \neg \phi_2$ невыполнима.
- Выполнима ли $\neg \phi_1 \land \phi_2$?
- Выполнима ли $\phi_1 \wedge \neg \phi_2$?
- Формулы не эквивалентны, но равносильны, т.е. ϕ_1 выполнима, тогда и только тогда, когда ϕ_2 выполнима.

•
$$P \rightarrow (Q \land R)$$

- $P \rightarrow (Q \wedge R)$
- Введем переменные для всех неатомарных подформул:

$$T_1 \leftrightarrow P \rightarrow T_2$$

 $T_2 \leftrightarrow (Q \land R)$

- $P \rightarrow (Q \wedge R)$
- Введем переменные для всех неатомарных подформул:

$$T_1 \leftrightarrow P \rightarrow T_2 T_2 \leftrightarrow (Q \land R)$$

• Каждую преобразуем в КНФ:

$$F_1 = (T_1 \lor P) \land (T_1 \lor \neg T_2) \land (\neg T_1 \lor \neg P \lor T_2)$$

$$F_2 = (\neg T_2 \lor Q) \land (\neg T_2 \lor R) \land (T_2 \lor \neg Q \lor \neg R)$$

- $P \rightarrow (Q \wedge R)$
- Введем переменные для всех неатомарных подформул:

$$T_1 \leftrightarrow P \rightarrow T_2$$

 $T_2 \leftrightarrow (Q \land R)$

• Каждую преобразуем в КНФ:

$$F_1 = (T_1 \lor P) \land (T_1 \lor \neg T_2) \land (\neg T_1 \lor \neg P \lor T_2)$$

$$F_2 = (\neg T_2 \lor Q) \land (\neg T_2 \lor R) \land (T_2 \lor \neg Q \lor \neg R)$$

• $T_1 \wedge F_1 \wedge F_2$

ullet $\Sigma_j x_{ij} = 1$ - для каждого i (т.е. для всех исходящих ребер)

- ullet $\Sigma_j x_{ij} = 1$ для каждого i (т.е. для всех исходящих ребер)
- $\Sigma_i x_{ij} = 1$ для каждого j (т.е. для всех входящих ребер)

- $\Sigma_i x_{ii} = 1$ для каждого i (т.е. для всех исходящих ребер)
- ullet $\Sigma_i x_{ij} = 1$ для каждого j (т.е. для всех входящих ребер)
- $\Sigma_{ij \in S} x_{ij} \leq |S|-1$, где S подмножество V и $2 \leq |S| \leq n-2$ связность графа

- Проблема очень много ограничений.
- Только добавление всех троек дает $O(n^3)$ уравнений.

- Проблема очень много ограничений.
- Только добавление всех троек дает $O(n^3)$ уравнений.
- Давайте поступать лениво!
- Пусть сначало в нашей системе урванений нет ограничений на связанность
- Попросим солвер решить нашу систему. Если в ответе получился путь, в котором не все ребра есть в графе, то добавим в систему уравнений ограничение на текущий путь.

- Проблема очень много ограничений.
- Только добавление всех троек дает $O(n^3)$ уравнений.
- Давайте поступать лениво!
- Пусть сначало в нашей системе урванений нет ограничений на связанность
- Попросим солвер решить нашу систему. Если в ответе получился путь, в котором не все ребра есть в графе, то добавим в систему уравнений ограничение на текущий путь.
- Практика показывает, что хватит $O(n^3)$ дополнительных уравнений.

DIMACS формат

- Комментарий с comment
- Заголовок p cnf n m: n количество переменных в дизюнкте, m - количество дизюнктов
- Дизъюнкт описание дизъюнкта: номера переменных, который в него входят, «-» если переменная ложная, в конце всегда 0

DIMACS формат

- Комментарий с comment
- Заголовок p cnf n m: n количество переменных в дизюнкте, m - количество дизюнктов
- Дизъюнкт описание дизъюнкта: номера переменных, который в него входят, «-» - если переменная ложная, в конце всегда 0
- $(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c) \land (b \lor c \lor \neg d)$
- c example
 p cnf 4 7
 1 2 -3 0
 -1 -2 3 0
 2 3 -4 0

