Data Augmentation using GPT-2 Statistics 98

Masaoud Haidar

Harvard University

May 2022

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Outline

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Conclusions

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Imbalanced Data

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Conclusions

▶ Imbalanced data can result in biased models. One solution to this is to over-sample from minority data points. Simple Bootstrapping can lead to over-fitting, so we want to create new synthetic data.

Presented by Wei and Zou [2019]. Combines 4 methods:

- 1. Synonym Replacement
- 2. Random Insertion
- 3. Random Swap
- 4. Random Deletion

Improves CNNs and RNNs. Works best on small datasets. On specific tasks, training with 50% of data with EDA performs as well as training with all the data.

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Conclusions

► EDA: Easy Data Augmentation:

Presented by Wei and Zou [2019]. Combines 4 methods:

- 1. Synonym Replacement
- 2. Random Insertion
- 3. Random Swap
- 4. Random Deletion

Improves CNNs and RNNs. Works best on small datasets. On specific tasks, training with 50% of data with EDA performs as well as training with all the data.

► GPT-2

Presented by Radford et al. [2018] and [2019]. Can be used to generate new text data. Shown to improve F1 score on some tasks. Might not preserve the label When conditioned to generate data from multiple classes.

GPT-2 Structure

Generative Pre-trained Transformer 2. Pre-trained on a large amount of data, and can be tuned for specific tasks.

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Research Question

Experimental Setup

Results

Conclusions

Generative Pre-trained Transformer 2. Pre-trained on a large amount of data, and can be tuned for specific tasks.

Uses multiple layers of decoder-only transformers that use the self attention mechanism to transform the data. The output of the last layer is passed to a FFNN to predict the next word.

Research Question

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental

Setup Results

resuits

Conclusions

► How does Data Augmentation using GPT-2 affect the distribution of the data? And how does it compare with EDA when used with word-based models or context-based models?

Experimental Setup

► Create 5 main Training Datasets:

(A) Main training set of Amazon Reviews. 80:20 rate.

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Experimental Setup

► Create 5 main Training Datasets:

- (A) Main training set of Amazon Reviews. 80:20 rate.
- (B) Artificially Imbalanced training set. 95:5 rate

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Research Question

Setup

- Create 5 main Training Datasets:
 - (A) Main training set of Amazon Reviews. 80:20 rate.
 - (B) Artificially Imbalanced training set. 95:5 rate
 - (C) Augment (B) using GPT-2 to 80:20 rate

Experimental Setup

Create 5 main Training Datasets:

- (A) Main training set of Amazon Reviews. 80:20 rate.
- (B) Artificially Imbalanced training set. 95:5 rate
- (C) Augment (B) using GPT-2 to 80:20 rate
- (D) Augment (B) using GPT-2 to 90:10 rate

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Setup

Results

- Create 5 main Training Datasets:
 - (A) Main training set of Amazon Reviews. 80:20 rate.
 - (B) Artificially Imbalanced training set. 95:5 rate
 - (C) Augment (B) using GPT-2 to 80:20 rate
 - (D) Augment (B) using GPT-2 to 90:10 rate
 - (E) Augment (B) using EDA to 80:20 rate.

Results

Conclusions

Create 5 main Training Datasets:

- (A) Main training set of Amazon Reviews. 80:20 rate.
- (B) Artificially Imbalanced training set. 95:5 rate
- (C) Augment (B) using GPT-2 to 80:20 rate
- (D) Augment (B) using GPT-2 to 90:10 rate
- (E) Augment (B) using EDA to 80:20 rate.
- We use Distilled GPT-2 for (C) and (D). We use EDA with $\alpha = 0.1$ for (E)

Research Question

Experimental

Setup Results

- Record the following:
 - (1) Word-based Model Performance: Train TF-IDF plus Logistical Regression classifier. Record the accuracy and F1 scores.

Setup

- ► Record the following:
 - (1) **Word-based Model Performance:** Train TF-IDF plus Logistical Regression classifier. Record the accuracy and F1 scores.
 - (2) Context-based Model Performance: Train a BERT Classifier. Record the accuracy and F1 scores. We use tiny-bert with only two layers of encoder transformers.

- Record the following:
 - (1) Word-based Model Performance: Train TF-IDF plus Logistical Regression classifier. Record the accuracy and F1 scores.
 - (2) Context-based Model Performance: Train a BERT Classifier. Record the accuracy and F1 scores. We use tiny-bert with only two layers of encoder transformers.
 - (3) **Distribution of the Data:** We compare the distribution of the data in (A), (D), and (E).

- ► Record the following:
 - (1) Word-based Model Performance: Train TF-IDF plus Logistical Regression classifier. Record the accuracy and F1 scores.
 - (2) Context-based Model Performance: Train a BERT Classifier. Record the accuracy and F1 scores. We use tiny-bert with only two layers of encoder transformers.
 - (3) **Distribution of the Data:** We compare the distribution of the data in (A), (D), and (E).
 - (4) **Preserving Labels:** Which is better at preserving labels, (D) or (E)?

Word-Based Model Performance

Model	Accuracy	F1 Score
A. Original	0.8799	0.662
B. Imbalanced	0.821	0.246
C. GPT2	0.8366	0.4209
E. EDA	0.8189	0.2715

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Context-Based Model Performance

Model	Accuracy	F1 Score
A. Original	0.8886	0.7002
B. Imbalanced	0.8443	0.4198
C. GPT2	0.8403	0.4289
E. EDA	0.7931	0.0038

Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Inside GPT-2

Research Question

Experimental Setup

Results

Conclusions

► Train a Base BERT (the original large model) on (A). Record the outputs of the last layer of the model (before classification). Make TSNE plot of 500 samples from each group.

Preserving Labels

Editing too much in a data point can change its meaning, and thus change its label. We want to measure that. Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Experimental Setup

Results

Conclusions

Editing too much in a data point can change its meaning, and thus change its label. We want to measure that.

► Train a Base BERT (the original large model) on (A). Record the accuracy on the generated samples.

Experimental Setup

Results

- Editing too much in a data point can change its meaning, and thus change its label. We want to measure that.
- ► Train a Base BERT (the original large model) on (A). Record the accuracy on the generated samples.
- ► The model achieves 90.9% accuracy on the positive data from its training set.

 Achieves 76.32% accuracy on the GPT-2 data.

 Achieves 64.16% accuracy on the EDA data.

Conclusions

Models trained on GPT2-Augmented Datasets do better than EDA-Augmented datasets in all tested settings. GPT2 is also better at preserving the minority labels. Data Augmentation using GPT-2

Masaoud Haidar

Background

Inside GPT-2

Research Question

Experimental Setup

Results

Inside GPT-2

Research Question

Experimental

Setup Results

. . .

Conclusions

 Models trained on GPT2-Augmented Datasets do better than EDA-Augmented datasets in all tested settings.
 GPT2 is also better at preserving the minority labels.

➤ On TF-IDF with logistical regression, GPT-2 improves the F1 score by 18 points.

Research Question

Experimental

Setup Results

Conclusions

Models trained on GPT2-Augmented Datasets do better than EDA-Augmented datasets in all tested settings. GPT2 is also better at preserving the minority labels.

- On TF-IDF with logistical regression, GPT-2 improves the F1 score by 18 points.
- With tiny-bert, it only improves F1 score by 0.9%. Might be because BERT was already not very prone to Imbalanced Data.

Research Question

Experimental

Setup Results

Conclusions

On TF-IDF with logistical regression, GPT-2 improves the F1 score by 18 points.

Models trained on GPT2-Augmented Datasets do better

than EDA-Augmented datasets in all tested settings.

GPT2 is also better at preserving the minority labels.

- With tiny-bert, it only improves F1 score by 0.9%. Might be because BERT was already not very prone to Imbalanced Data.
- Models trained on (C) and (E) don't come close to the models trained on original data. There is a lot of work to be done on imbalanced data.