Robótica Espacial

Planeamento Local de Caminhos em Robôs Móveis

Vítor Santos, Maio 2025 Universidade de Aveiro

Planeamento global vs. Local (lembrete)

- Global
 - É preciso ter um destino final para calcular soluções
 - As soluções podem ser de alguma forma otimizadas porque há um conhecimento a priori das diversas possibilidades, por exemplo para evitar mínimos locais
 - As soluções são caminhos que podem ser planeados a priori
- Local
 - O destino final não é, em geral, necessário nem usado no cálculo, apenas destinos próximos ou provisórios sempre em atualização
 - Algumas soluções incorrem no risco de ter mínimos locais
 - Requer sensores para condicionar movimento e evitar obstáculos
 - Requer uma lei de controlo para as correções contínuas de trajetória
- Algumas técnicas reúnem características mistas

Campos de potencial

- Definição original Khatib, 1985
 - Campo de "potenciais" repulsores e atratores
 - Potencial indica a estabilidade/proximidade de obstáculos e destino
 - "Forças" dadas pelo gradiente do potencial
 - A "força" indica a "melhor" direção para o destino
 - Lei de controlo usual (ver adiante)
 - Seguir uma postura (dada pela direção da "força")
 - A intensidade da força pode ser usada como a velocidade linear a impor o movimento.

Campos de potencial

- Definição
 - Função definida sobre a região de espaço livre
 - Os obstáculos repelem e o destino atrai
- Metodologia
 - Pre-processamento
 - Definir a função (o campo de potencial) sobre o espaço de configuração do robô.
 - Definir e colocar uma grelha sobre o espaço de configuração do robot para efeitos práticos da busca.
 - Processamento da busca
 - Procura um caminho sobre a grelha usando o campo de potencial como heurística.

Campos de potencial – II

- Exemplo do conceito
 - Dois obstáculos pontuais
 - Em cuja vizinhança aumenta uma dada função de custo ("potencial")
 - Um destino
 - Em cuja vizinhança diminui essa função de custo ("potencial")
- O problema maior é:
 - Risco de mínimos locais do campo de potencial

Mínimo local de quê...?

- Mínimo local da função de potencial
- Isto é, há um ponto em que o potencial é mínimo (qualquer que seja a direção) mas não é o mínimo global (que seria o destino final).

Dois obstáculos repelem e contrabalançam a "força" de atração do destino. O ponto é de mínimo local...

Cálculo dos campos de potencial

- Potencial atrator num ponto
 P para o destino T
- Potencial repulsor de um obstáculo O_i no ponto P (D_{max} é a distância de influência do obstáculo)
- Potencial total no ponto P
- "Força" para ir do ponto P para o ponto T – obtém-se pelo gradiente descendente do potencial U.

$$U_{att}\left(P\right) = \frac{1}{2} k_{att} \left\| P - T \right\|^2$$

$$U_{rep_{i}}(P) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\|P - O_{i}\|} - \frac{1}{D_{max}} \right)^{2} & \Leftarrow \|P - O_{i}\| < D_{max} \\ 0 & \Leftarrow \|P - O_{i}\| \ge D_{max} \end{cases}$$

$$U(P) = U_{att}(P) + \sum_{i=1}^{N} U_{rep_i}(P)$$

$$\vec{F} = \begin{bmatrix} -G_x \\ -G_y \end{bmatrix} = -\nabla U$$

Funções MatLab para Campos de Potencial

```
%Defina-se U numa grelha de
%coordenadas [xy yv]
%Cálculo da força de atração
[Fx,Fy]=gradient(U); Fx=-Fx; Fy=-Fy;
%Representação da direção da força
%de atracção em cada ponto
quiver(xv,yv,Fx,Fy);
%Apresentação do caminho a
%sequir com os obstáculos em [sx sy]
streamline(stream2(xv,yv,Fx,Fy,sx,sy));
%Apresentação dos contornos
%equipotenciais
contour(xv,yv,U);
```


Exemplo numérico com dois obstáculos pontuais

- Dois obstáculos
- Um destino
- Um mínimo local
- Caminho
 iniciado no
 canto superior
 esquerdo
- Segue potencial descendente
- Termina no mínimo local!
- Como sair do mínimo local?

5.707	5.354	5.027	4.724	4.447	4.194	3.967	3.764	3.587	3.434	3.307	3.204	3.127	3.074	3.047	3.044	3.067	3.114	3.187	3.284	3.407
5.329	4.277	4.649	4.347	4.069	3.817	3.589	3.387	3.209	3.057	2.929	2.827	2.749	2.697	2.669	2.667	2.689	2.737	2.809	2.907	3.029
4.977	4.624	4.297	3.994	3.717	3.464	3.237	3.034	2.857	2.704	2.577	2.474	2.397	2.344	2.317	2.314	2.337	2.384	2.457	2.554	2.677
4.649	4.297	3.969	3.567	3.389	3.137	2.909	2.707	2.529	2.377	2.249	2.147	2.069	2.017	1.989	1.987	2.009	2.057	2.129	2.227	2.349
4.347	3.994	3.667	3.364	3.067	2.834	2.607	2.404	2.227	2.074	1.947	1.845	1.767	1.714	1.687	1.684	1.707	1.754	1.827	1.924	2.047
4.069	3.717	3.389	3.087	2.809	2.557	2.329	2.127	1.949	1.826	1.795	1.746	1.594	1.454	1.409	1.407	1.429	1.477	1.549	1.647	1.769
3.817	3.464	3.137	2.834	2.557	2.304	2.077	1.874	1.726	1.842	2.435	2.833	2.081	1.397	1.169	1.154	1.177	1.224	1.297	1.394	1.517
3.589	3.237	2.909	2.607	2.329	2.077	1 349	1.647	1.595	2.335	6.928	15.68	5.124	1.661	1.000	0.927	0.949	0.997	1.069	1.167	1.289
3.387	3.034	2.707	2.404	2.127	1.874	1.647	1.445	1.446	2.633	15.58	931.4	9.396	1.772	0.831	0.724	0.747	0.794	0.867	0.964	1.087
3.209	2.857	2.529	2.227	1.949	1.697	1.469	1.267	1.174	1.781	4.924	9.296	3.715	1.167	0.607	0.547	0.569	0.617	0.689	0.787	0.909
3.057	2.704	2.377	2.074	1.797	1.544	1.317	1.120	1.012	1.102	1.433	1.585	1.067	0.574	0.402	0.394	0.417	0.464	0.537	0.634	0.757
2.929	2.577	2.249	1.947	1.669	1.417	1.195	1.137	1.399	1.687	1.305	0.744	0.424	0.302	0.269	0.267	0.289	0.337	0.409	0.507	0.629
2.827	2.474	2.147	1.844	1.567	1.314	1.145	1.474	3.793	9.144	4.542	1.169	0.351	0.194	0.167	0.164	0.187	0.234	0.307	0.404	0.527
2.749	2.397	2.069	1.767	1.489	1.237	1.114	1.825	9.219	931.0	14.95	1.765	0.348	0.117	0.089	0.087	0.109	0.157	0.229	0.327	0.449
2.697	2.344	2.017	1.714	1.437	1.184	1.028	1.459	4.692	15.02	6.035	1.212	0.242	0.064	0.037	0.034	0.057	0.104	0.177	0.274	0.397
2.669	2.317	1.989	1.687	1.409	1.157	0.942	0.939	1.394	1.915	1.287	0.465	0.119	0.037	0.009	0.007	0.029	0.077	0.149	0.247	0.369
2.667	2.314	1.987	1.684	1.407	1.154	0.927	0.741	0.651	0.573	0.392	0.194	0.087	0.034	0.007	0.004	0.027	0.074	0.147	0.244	0.367
2.689	2.337	2.009	1.707	1.429	1.177	0.949	0.747	0.569	0.417	0.289	0.187	0.109	0.057	0.029	0.027	0.049	0.097	0.169	0.267	0.389
2.737	2.384	2.057	1.754	1.477	1.224	0.997	0.794	0.617	0.464	0.337	0.234	0.157	0.104	0.077	0.074	0.097	0.144	0.217	0.314	0.437
2.809	2.457	2.129	1.827	1.549	1.297	1.069	0.867	0.689	0.537	0.409	0.307	0.229	0.177	0.149	0.147	0.169	0.217	0.289	0.387	0.509
2.907	2.554	2.227	1.924	1.647	1.394	1.167	0.964	0.787	0.634	0.507	0.404	0.327	0.274	0.247	0.244	0.267	0.314	0.387	0.484	0.607

Utilização dos Campos de Potencial

- Planeamento global
 - Os mínimos locais podem ser previstos e resolvidos a priori (planeamento do caminho)
- Planeamento local
 - Para definição do movimento instantâneo
 - Destino como ponto atrator
 - Medidas sensoriais como repulsores de obstáculos
 - Problema dos mínimos locais mais complexo de contornar

Paradigma do planeamento local

- Simultaneamente:
 - Detetar e evitar obstáculos desconhecidos em tempo real
 - Dirigir-se na melhor direção que leva a um certo alvo, k_{targ}
 - Fazer isso o mais rápido possível
- Uma solução popular é o Vector Field Histogram (VFH)

Vector Field Histogram (VFH)

- A primeira etapa gera uma coordenada cartesiana 2D de cada sensor de distância e incrementa essa posição na grelha de histograma C
- A etapa seguinte filtra esta grelha bidimensional numa estrutura unidimensional
- A etapa final calcula o ângulo de direção e a velocidade a partir desta estrutura
 - Nota: este método não depende de um modelo de sensor específico

Terminologia

- VCP
 - O ponto do centro do robô

- Vetor obstáculo
 - Um vetor que aponta de uma célula de C* para o VCP

Passo 2 – mapear 2D em 1D

- Para simplificar os cálculos, a grelha 2D usada nesta etapa é uma janela de C, com dimensões constantes, e centrada no VCP, chamada de grelha ativa (active grid), ou C*.
- Isto quer dizer que C
 expande-se para além de C*
 mas não é considerada

Passo 2: continuação

• É então feito um mapeamento da grelha ativa C* numa estrutura 1D conhecida como histograma polar, ou H. Um histograma polar é uma grelha unidimensional composta por n secções angulares com largura α

Passo 2: continuação

 Para gerar H, devemos primeiro mapear cada célula em C* num ponto 1D no sistema de coordenadas de H

$$\beta_{ij} = \arctan\left(\frac{y_j - y_0}{x_i - x_0}\right)$$

$$m_{ij} = \left(c_{ij}^*\right)^2 \left(a - bd_{ij}\right)$$

 $x_0, y_0 = posição do robô$ $x_i, y_j = posição da i,j-ésima célula ativa$ $\beta_{i,i} = a direção de (x_i, y_j) para o VCP$

a,b = constantes positivas $c^*_{i,j}$ = valor da certeza (*certainty*) de (x_i, y_j) $d_{i,j}$ = distância entre (x_i, y_j) e o VCP $m_{i,j}$ = magnitude do vetor obstáculo em (x_i, y_i)

Passo 2: continuação

$$k = (\text{int}) \frac{\beta_{ij}}{\alpha}$$
$$h_k = \sum_{i,j} m_{ij}$$

 α = resolução angular de **H** k = setor de (x_i, y_j) h_k = densidade polar de obstáculo

 A esta altura, H contém pontos discretos, logo uma função de suavização pode ser aplicada para aproximar melhor o ambiente

Passo 3: Cálculo da direção

 Um histograma polar típico contém "picos", ou setores com alta densidade de obstáculo polar (POD), e "vales", setores que contêm PODs baixos

 Um vale abaixo de um certo limiar é chamado de vale candidato

Passo 3: continuação

 De todos os vales candidatos, o vale mais próximo do k_{targ} é o selecionado

- O tipo de vale depende de um certo número consecutivo de setores, \$\mathbf{S}_{max}\$, abaixo do limiar
 - Largo é maior que S_{max}
 - Estreito é menor que **S**_{max}

Passo 3: continuação

- Nesse vale, k_n é selecionado do primeiro ou último setor, consoante o que estiver mais próximo de k_{targ}
- Vales largos: $\mathbf{k}_f = \mathbf{k}_n \pm \mathbf{S}_{max}$, o que resulta em \mathbf{k}_f no vale
- Vales estreitos: k_f é o último setor do vale
- Então $\theta = (\mathbf{k}_n + \mathbf{k}_f) / 2$

Passo 3: Definir o limiar

 Se definido muito alto, o robô pode estar muito perto de um obstáculo e movendo-se muito rapidamente para evitar uma colisão

 No entanto, se definido muito baixo, o VFH pode perder alguns vales candidatos válidos

 Geralmente, o limite não precisa de muito ajuste, a menos que a aplicação do robô exija uma navegação muito rápida com muitos obstáculos próximos

Passo 3: Definição da velocidade

$$h_{c}^{"} = \min(h_{c}^{'}, h_{m})$$

$$V' = V_{\text{max}} \left(1 - \frac{h_c''}{h_m} \right)$$

$$V = V' \left(1 - \frac{\Omega}{\Omega_{\text{max}}} \right) + V_{\text{min}}$$

- h'_c = densidade de obstáculo polar na direção atual de deslocamento
- h_m = uma constante empírica que gera redução suficiente de velocidade
- V_{max} = a máxima velocidade permitida
- V_{min} = a velocidade mínima permitida para evitar que V vá a 0
- Ω taxa de rotação (velocidade angular)
- Ω_{max} a máxima taxa de rotação permitidida
- V = Velocidade

Comparação com os campos de potencial

 Influências de uma má leitura do sensor são minimizadas porque é calculada a média com dados anteriores.

- A instabilidade ao viajar por um corredor estreito é eliminada porque o histograma polar varia apenas ligeiramente entre as leituras do sensor
- As "forças repulsivas" dos obstáculos não podem contrabalançar a "força atrativa" do alvo e prender o robô num mínimo local, já que o VFH só tenta dirigir através do melhor vale possível, independentemente de se afastar do alvo

Comparação com campos de potencial - II

- No entanto, o VFH não pode resolver todas as limitações inerentes ao método dos campos de potencial:
 - Nada impede que o robô seja apanhado num mínimo local real, ou um ciclo
 - Quando isso ocorre, um planeador de caminho global deve ser usado para gerar alvos intermédios para o VFH até que esteja fora da armadilha

