INTRODUCTION

OBJECTIVES

- Optimize Power Production Estimation:
 - Biggest contributing factors for overall performance
 - Wind turbine time series performance

DATA

WIND: SEASONAL COMPARISON

TIME SERIES: TURBINE COMPARISON

Date: Year-Month

Wind Turbine Generator Comparison: Wind Speed

Date: Year-Month

700

600

500

400

300

200

TIME SERIES: MONTHLY POWER SEPARATED

Date: Year-Month

Date: Year-Month

TIME SERIES: MONTHLY POWER COMBINED

Date: Year-Month

RF: PERFORMANCE PREDICTIVE MODEL

- Feature Selection & Categorical Data:
 - Wind Speed
 - Wind Direction
 - OutdoorTemperature

DAILY: ACTUAL VS. PREDICTED Prated

Date: YYYY-MM-DD

Wind Turbine Wind Speed

Date: YYYY-MM-DD

CONCLUSIONS

Machine learning can increase the value of wind energy

Economic Value (\$/megawatt-hour)

Typical wind farm

Better prediction of wind power production Better prediction of electricity supply and demand Operational cost savings from ML

Wind farm using ML

Illustrative results from 2018 Google/DeepMind field study

REFERENCES

- ENGIE's first open data windfarm: https://opendata-renewables.engie.com/
- Holt Winters: https://www.statsmodels.org/stable/examples/notebooks/generated/exponential_smoothing.html
- How to Build Exponential Smoothing Models Using Python: Simple Exponential Smoothing, Holt, and Holt-Winters: https://medium.com/datadriveninvestor/how-to-build-exponential-smoothing-models-using-python-simple-exponential-smoothing-holt-and-da371189e1a1
- Anomaly Detection with Time Series Forecasting: https://towardsdatascience.com/anomaly-detection-with-time-series-forecasting-c34c6d04b24a
- Anomaly detection for dummies: https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1
- Guidelines for a preliminary windfarm data-driven analysis: https://medium.com/@mbonanomi/guidelines-for-a-preliminary-windfarm-data-driven-analysis-f4793f840ef2
- Charu C. Aggarwal's 'Outlier Analysis book' Chapter 1:

http://www.charuaggarwal.net/outlierbook.pdf