在本次实验中,我们在 L= 50.0cm,n=1, [2#]=0.00098kg/m 条件下,探究弦振动频率与 T 的关系。

T(N)	f(Hz)
1.96	43.35
3.92	61.43
5.88	75.71
7.84	88.08
9.80	98.13
11.76	107.26

表 1: 弦振动频率与 T 的关系实验的测量数据

n=1 时, Δ_A 无法计算,而 $\Delta_B=0.01$,因此取 $\Delta=0.01$ 。 由1这样的数据,我们利用 Python 程序,可以得到1。

图 1: 弦振动频率与 T 的关系的原始数据

很容易发现此时并非线性关系,我们选取合适的回归方式进行拟合。 取 ln 后,我们可以得到拟合结果如下图所示。

由图可知,拟合结果为2:y = 0.507776x + 3.427150。相关系数为:

$\ln[T(N)]$	$\ln[f(Hz)]$
0.67	3.77
1.37	4.12
1.77	4.33
2.06	4.48
2.28	4.59
2.46	4.68

表 2: 弦振动频率与 T 的关系实验的拟合数据

0.999956。根据斜率不确定度的计算公式:

$$\Delta_{slope} = t(N-2) \cdot S_{slope} \tag{1}$$

$$= t(N-2) \cdot slope \cdot \sqrt{\frac{\frac{1}{r^2} - 1}{N-2}}$$
 (2)

$$= t(4) \cdot 0.5077755628990771 \cdot \sqrt{\frac{\frac{1}{0.9999555698343207^2 - 1}}{6 - 2}}$$
 (3)

$$= 0.006654 \tag{4}$$

图 2: 弦振动频率与 T 的关系的拟合结果