Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

Exercício 2

Capítulo 5, Página 239

Introduction to the Theory of Computation

ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 1 1 de 2

We want to prove that $\overline{EQ_{CFG}}$ is Turing-recognizable.

Let's construct a TM for $\overline{EQ_{CFG}}$.

The first step will definitely be:

If the input is something not representing two CFGs, accept

and it will finish(either accept or just continue to the next step).

Now the harder part is constructing a TM for $L=\{\langle G_1,G_2\rangle|G_1,G_2 \ are \ CFGs, L(G_1)\neq L(G_2)\}.$

We can enumerate strings in Σ^* , let's say lexicographly(or in any way...): $\{s_1,s_2,...\}$ and our TM will go throught the strings one by one, and when on s_i it will check if it is in $L(G_1)$ and $L(G_2)$. If it is in both or neither language, it continues to s_{i+1} . Otherwise it accepts(since it means that $L(G_1) \neq L(G_2)$.

Therefore, the next steps of our machine are:

• Go through strings s_i one by one. For each string s check if $s \in G_1$ and $s \in G_2$. If it's in both or neither language, continue to the next string, otherwise accept.

This way, we've shown that there's a TM for $\overline{EQ_{CFG}}$ so it's Turing-recognizable.

Resultado 2 de 2

Prove that $\overline{EQ_{CFG}}$ is Turing-recognizable by costructing a TM for it, which will first accept all inputs which are not of the form $\langle G_1,G_2\rangle$ and then you construct a TM for $L=\{\langle G_1,G_2\rangle|G_1,G_2 \ are \ CFGs,L(G_1)\neq L(G_2)\}$ and use it.

Avaliar esta solução

< Exercício 1

Exercício 3 >

Privacidade Termos de serviço

Português (BR) Y