deinicklar Chilomatomic

$$\begin{split} \vec{\Omega}(1/0) &= \dot{\psi} \; \vec{Z}_o \;, \quad \vec{\Omega}(2/0) = \dot{\theta} \; \vec{Z}_o \;, \\ \vec{\Omega}(4/0) &= \dot{\alpha} \; \vec{Z}_o \;, \quad \vec{\Omega}(5/0) = \dot{\beta} \; \vec{Z}_o \;. \\ \vec{V}(I \in I/R_o) &= \vec{V}(A \in I/R_o) + \vec{\Omega}_{1/o} \land \overrightarrow{AI} \\ &= \vec{0} + \dot{\psi} \; \vec{Z}_o \land (-r\vec{Y}_o) \\ &= r \; \dot{\psi} \; \vec{X}_o \end{split}$$

$$\vec{V}(I \in 2/R_o) &= \vec{V}(O \in 2/R_o) + \vec{\Omega}_{2/o} \land \overrightarrow{OI} \\ &= \vec{0} + \dot{\theta} \; \vec{Z}_o \land (R\vec{Y}_o) \\ &= -R \; \dot{\theta} \; \vec{X}_o \end{split}$$

$$\vec{V}(I \in 1/R_o) &= \vec{V}(I \in 2/R_o) \Rightarrow \\ r \; \dot{\psi} &= -R \; \dot{\theta} \; \Rightarrow \\ \vec{\theta} &= -\frac{r}{R} \; \dot{\psi} \end{split}$$

$$\begin{split} \vec{V}(C \in 2/R_0) &= \vec{V}(O \in 2/R_0) + \vec{\Omega}_{2/0} \wedge \overrightarrow{OC} \\ &= \vec{O} + \dot{\theta} \ \vec{Z}_0 \wedge (a\vec{X}_2) \\ &= a \ \dot{\theta} \ \vec{Y}_2 \end{split}$$

$$\begin{split} \vec{V}(C \in 4/R_0) &= \vec{V}(B \in 4/R_0) + \vec{\Omega}_{4/0} \wedge \overrightarrow{BC} \\ &= \vec{0} + \dot{\alpha} \ \vec{Z}_0 \wedge (e \ \vec{Y}_0 + a \vec{X}_2) \\ &= \dot{\alpha} \left(-e \ \vec{X}_0 + a \vec{Y}_2 \right) \end{split}$$

$$\vec{V}/4) = \vec{V}(C \in 2/R_0) - \vec{V}(C \in 4/R_0)$$
$$= e\dot{\alpha} \vec{X}_0 + a(\dot{\theta} - \dot{\alpha})\vec{Y}_2$$

tion dans la base
$$(\bar{X}_4, \bar{Y}_4, \bar{Z}_0)$$

 $= e\dot{\alpha} (\cos\alpha \bar{X}_4 - \sin\alpha \bar{Y}_4)$
 $+ a (\dot{\theta} - \dot{\alpha}) [\sin(\alpha - \theta) \bar{X}_4 + \cos(\alpha - \theta) \bar{Y}_4]$
 $= [e\dot{\alpha} \cos\alpha + a(\dot{\theta} - \dot{\alpha}) \sin(\alpha - \theta)] \bar{X}_4$
 $+ [a(\dot{\theta} - \dot{\alpha}) \cos(\alpha - \theta) - e\dot{\alpha} \sin\alpha] \bar{Y}_4$

$$\cos \alpha = a \sin(\alpha - \theta)$$
 \Rightarrow

$$= \frac{a\dot{\theta}\cos(\alpha-\theta)}{e\sin\alpha + a\cos(\alpha-\theta)}$$

B-I-9. En remplaçant l'expression de $\dot{\alpha}$ dans $\vec{V}(C \in 2/4)$, celui ci se réduit à : $\vec{V}(C \in 2/R_4) = a \dot{\theta} \sin(\alpha - \theta) \overrightarrow{X_4}$

B-I-10.
$$b \cos \alpha = \ell \sin \beta \Rightarrow \cos \beta = \sqrt{1 - \frac{b^2}{\ell^2} \cos^2 \alpha}$$

 $-b \dot{\alpha} \sin \alpha = \ell \dot{\beta} \cos \beta \Rightarrow$
 $\dot{\beta} = \frac{-b \sin \alpha}{\sqrt{\ell^2 - b^2 \cos^2 \alpha}} \dot{\alpha}$

$$\sqrt{\ell^2 - b^2 \cos^2 \alpha}$$
B-I-11. $\vec{V}(E \in 6/R_0) = \frac{d\vec{BE}}{dt}/R_0$
avec $\vec{BE} = -(b \sin \alpha + \ell \cos \beta) \vec{Y}_0$

$$\vec{V}(E \in 6/R_0) = -(b \dot{\alpha} \cos \alpha - \ell \dot{\beta} \sin \beta) \vec{Y}_0$$

$$= -(b \dot{\alpha} \cos \alpha + b \cos \alpha \frac{b \sin \alpha}{\sqrt{\ell^2 - b^2 \cos^2 \alpha}} \dot{\alpha}) \vec{Y}_0$$

$$= -b \dot{\alpha} \cos \alpha (1 + \frac{b \sin \alpha}{\sqrt{\ell^2 - b^2 \cos^2 \alpha}}) \vec{Y}_0$$

Prince and the contract of the

B-II-1.
$$E_c(4)/R_0 = \frac{1}{2} (I_{4Z} + M_4 c^2) \dot{\alpha}^2$$

B-II-2.

$$\star \left\{ \tau_{g \to 4} \right\}_{G_4} = \begin{cases} -M_4 g \sin \alpha & 0 \\ -M_4 g \cos \alpha & 0 \\ 0 & 0 \end{cases}_{(\bar{X}_4, \bar{Y}_4, \bar{Z}_0)}$$

*
$$\{\tau_{o \to i}\}_{o} = \begin{cases} X_{o \neq i} & 0 \\ Y_{o \neq i} & 0 \\ 0 & 0 \end{cases}_{(\bar{X}_{i}, \bar{Y}_{i}, \bar{Z}_{o})}$$

*
$$\{\tau_{s \to t}\}_{D} = \begin{cases} X_{s,t} & 0 \\ Y_{s,t} & 0 \\ 0 & 0 \end{cases}_{(\bar{X}_{t}, \bar{Y}_{t}, \bar{Z}_{0})}$$

*
$$\{\tau_{3\to 4}\}_{C} = \begin{cases} 0 & 0 \\ Y_{3,4} & 0 \\ 0 & 0 \end{cases}_{(\bar{X}_{4}, \bar{Y}_{4}, \bar{Z}_{0})}$$

B-II-3.

$$P_{g \to 4/R_0} = \{ \tau_{g \to 4} \}_{G_i} \cdot \{ \Im(4/0) \}_{G_i} \cdot$$

$$\begin{cases} -M_4 g \sin \alpha & 0 \\ -M_4 g \cos \alpha & 0 \\ 0 & 0 \end{cases}_{(\bar{X}_4, \bar{Y}_4, \bar{Z}_0)} \begin{cases} 0 & 0 \\ 0 & c\dot{\alpha} \\ \dot{\alpha} & 0 \end{cases}_{(\bar{X}_4, \bar{Y}_4, \bar{Z}_0)}$$

$$P_{g \to 4/R} = -M_4 g c\dot{\alpha} \cos \alpha$$

Correction du concours STI (Partie B Mécanique) MP-PC session : Juin 2004

*
$$P_{0 \to 4/R_0} = 0$$
*
$$P_{5 \to 4/R_0} = \{ \tau_{5 \to 4} \}_D \cdot \{ 9(4/0) \}_D .$$

$$\vec{V}(D \in 4/R_0) = \vec{V}(B \in 4/R_0) + \vec{\Omega}_{4/0} \wedge \overrightarrow{BD}$$

$$= \vec{O} + \dot{\alpha} \vec{Z}_0 \wedge (-b\vec{X}_4)$$

$$= -b\dot{\alpha} \vec{Y}_4$$

$$P_{5\to 4/R_0} = -b\dot{\alpha} Y_{54}$$

*
$$P_{3\to 4/R_0} = \{\tau_{3\to 4}\}_C \{9(4/0)\}_C$$

$$\begin{split} \vec{V}(C \in 4/R_0) &= \dot{\alpha} \left(-e \, \vec{X}_0 + a \, \vec{Y}_2 \right) \\ &= -e \dot{\alpha} \left(\cos \alpha \, \vec{X}_4 - \sin \alpha \, \vec{Y}_4 \right) \\ &+ a \dot{\alpha} \left[\sin (\alpha - \theta) \, \vec{X}_4 + \cos (\alpha - \theta) \, \vec{Y}_4 \right] \end{split}$$

$$\vec{V}(C \in 4/R_0) = \dot{\alpha} \left[e \sin\alpha + a \cos(\alpha - \theta) \right] \vec{Y}_4$$

$$P_{3 \to 4/R_0} = \dot{\alpha} \left[e \sin\alpha + a \cos(\alpha - \theta) \right] \vec{Y}_4$$

$$P_{3\to 4/R_0} = \dot{\alpha} \left[e \sin\alpha + a \cos(\alpha - \theta) \right] Y_{34}$$

B-II-4. Théorème de l'énergie cinétique (4)

$$\frac{dE_c(4)}{dt} = P_{\text{ext}\to(4)} \iff$$

$$\frac{(I_{4Z} + M_4 c^2) \ddot{\alpha} =$$

$$-M_4 g c \cos \alpha - b Y_{54} + [e \sin \alpha + a \cos(\alpha - \theta)] Y_{34}$$

Correction Concours PC-MP année universitaire 03/04

Partie C: AUTOMATIQUE

C.I Automatisation du dispositif de découpage des flancs

The last the total the the

C.I.1. Grafcet du point de vue système du poste de découpage des flancs.

C.I.2. Grafcet de commande du poste de découpage des flancs

C.II. Asservissement en vitesse du moteur d'entraînement du tapis

C.II.1. Modélisation

C.II.1.1. A partir des transformées de Laplace des équations précédentes, compléter le schéma fonctionnel du moteur (figure C.1), en précisant les blocs Bi (i=1,...,4).

$$U(p) - E(p) = (R + L p) I(p) \longrightarrow \frac{I(p)}{U(p) - E(p)} = \frac{1}{R + L p} = B1(p)$$

$$C_m(p) = K_c I(p) \longrightarrow \frac{C_m(p)}{I(p)} = K_e = B2(p)$$

$$(J_e p + f) \Omega(p) = C_m(p) - C_r(p) \longrightarrow \frac{\Omega(p)}{C_m(p) - C_r(p)} = \frac{1}{J_m p + f} = B3(p)$$

$$E(p) = K_e \Omega(p) \longrightarrow \frac{E(p)}{\Omega(p)} = K_e = B4(p)$$

C.II.1.2. Etablir la fonction de transfert :
$$\frac{\Omega(p)}{U(p)} = \frac{\text{vitesse de rotation}}{\text{tension de commande}}$$

$$G(p) = \left[\frac{\Omega(p)}{U(p)}\right]_{C_{r}(p)=0} = \frac{K_{c}}{(J_{m}p + f)(Lp + R) + K_{e}K_{c}}$$

C.II.2.1. Donner le schéma bloc complet du moteur-génératrice avec sa commande en précisant les blocs K_1 , K_2 et F(p).

$$\frac{V_{GT}(p)}{\Omega(p)} = b = K2$$

$$U(p) = E_G - R_G I \implies K_1 = R_G$$

$$\begin{cases} E_G = a I_1 \\ V = (r + l p) I_1 \end{cases} \longrightarrow \frac{E_G(p)}{V(p)} = \frac{a}{r + lp} = F(p)$$

C.II.2.2. Calculer la fonction de transfert T(p) reliant la vitesse angulaire $\Omega(p)$ à la tension de commande V(p).

$$T(p) = \frac{\Omega(p)}{V(p)} = \frac{G(p)}{1 + G(p)K_1(B_2(p)B_3(p))^{-1}}$$

$$T(p) = \frac{K_c F(p)}{(J_m p + f)(Lp + R) + K_e K_c + R_G (J_m p + f)}$$

Dans le cas L et f sont négligeable on a :

$$T(p) = \frac{a K_c}{[(R_G + R) J_m p + K_e K_c](1p + r)}$$

A.N

$$T(p) = \frac{5}{(0.25p+1)(1.6p+1)}$$

C.II.2.3 Calculer et représenter la réponse du système non asservi moteur-génératrice (V, Ω) à un échelon de tension de 10 Volt.

$$\Omega(p) = \frac{50}{(0.25p+1)(1.6p+1)p}$$

Décomposition en élément simple :

$$\Omega(t) = 50 + 9.5 \exp(-t/0.25) - 59.2 \exp(-t/1.6)$$

C.II.2.4. Calculer la fonction de transfert $H(p) = \frac{\Omega(p)}{\Omega_{cons}(p)}$

$$H(p) = \frac{\Omega(p)}{\Omega_{cons}(p)} = \frac{C(p) T(p) b}{1 + C(p) T(p) K_2}$$