### 암호인재 인력양성 1차 교육

정보컴퓨터공학과 권혁동





#### Contents

암호기술의 역사

정보보호 서비스

비밀키 암호와 공개키 암호

비밀키 암호

블록 암호



#### 암호기술의 역사

- Cryptography의 어원은 그리스어로 hidden writing을 의미
- American Heritage 정의
  - The art or process of writing in or deciphering secret code
- Webster 정의
  - The science or study the techniques of secret writing
- 일반적인 의미
  - 기밀성과 인증을 제공하는 통신 채널을 제공하는 방법을 연구하는 과학



#### 암호기술의 역사

- Encryption(암호화)
  - Symmetric key encryption(비밀키 암호)
  - Asymmetric key encryption(공개키 암호)
- Authentication(인증)
  - Hash function(해시함수), Digital signature(디지털 서명), MAC(메시지 인증 코드)
- Key management(키 관리)
- Security protocols(보안 프로토콜)



#### 암호기술의 역사



- 고전 암호: 암호방식 자체가 정보/키 역할
- 근대 암호: 기계장치에 의한 자동화
- 현대 암호: 컴퓨터를 이용한 정보처리, '키' 요소의 도입
  - Shannon의 정보이론 이후의 암호를 현대 암호로 분류



#### 암호기술의 역사: 코드북







# 암호기술의 역사: Skytale





## 암호기술의 역사: General transposition

| W | r | i | t | е |
|---|---|---|---|---|
| t | h | Φ | р | 1 |
| a | i | n | t | е |
| Х | t | 0 | n | е |
| 1 | Ф | t | t | е |



| t | 0 | 0 | h | W |
|---|---|---|---|---|
| a | r | k | Ъ | е |
| a | t | n | a | r |
| ន | р | i | ಬ | 0 |
| n | i | С | t | 0 |



| h | 0 | V | ť | 0 |
|---|---|---|---|---|
| р | r | Φ | a | k |
| a | t | r | a | n |
| ಜ | р | 0 | ಭ | i |
| t | i | 0 | n | С |



## 암호기술의 역사: Caesar Cipher





### 암호기술의 역사: Vigenere

makeastreamofkeylettersandusethemoneafteranother keymakeastreamofkeylettersandusethemoneafteranot weiqacxrwtdsfwsdvireikleevufhnzifvrqosxewtrftusk



## 암호기술의 역사: Vigenere





### 암호기술의 역사: Enigma

- Vigenere 암호와 비슷한 원리
- 폴란드 수학자 Marian Rejewski가 최초로 해석
  - 1932
- Alan Turing이 독일군의 암호를 해석
  - 2차 대전 중





## 암호기술의 역사: Navajo code talkers

- 아메리카 대륙 원주민 나바호족으로 구성
- 암호통신병
- 2차 대전, 한국 전쟁에 참전
- 나바호족 언어가 복잡하고 유명하지 않음
- 1968년 미국 정부가 존재를 인정
- 2000년 클린턴 행정부가 훈장 수여





- 정보이론의 아버지, 암호학의 아버지
- Communication Theory of Secrecy System(1949)
  - 현대 암호와 증명 가능한 안전성의 개념을 정립
  - 정보이론을 확립
- 혼돈(Confusion)과 확산(Diffusion) 정의
- 블록암호의 설계 근간



#### • 완전 보안성 이론

- $Pr_p(x|y) = Pr_p(x)$ ,  $\forall x \in P$ ,  $y \in C$ 
  - 암호문 y가 주어질 때, 그에 대한 평문 x를 골라낼 확률 = 무작위로 x를 선택할 확률
- $Pr_K(k) = \frac{1}{|k|}$ ,  $\forall k \in K$ , and  $\forall x \in P$ ,  $y \in C$ ,  $\not\exists k \in K$  such that  $e_k(x) = y$ 
  - '키 공간 = 평문 공간 = 암호문 공간' 시스템이 완전 보안성을 가질 필요충분조건
  - 키는 무작위로 선택하고 서로 다른 키가 같은 평문을 같은 암호문으로 변환하지 않음



- 완전보안성을 가지지 않은 암호 시스템의 경우,
  이를 깨뜨리는 방법이 일정 수준 이상의 노력이 필요하다 가정하면,
  이것을 어떻게 보장할 수 있는 것인가?
- 방법1: 모든 알려진 공격 방법에 대해 많은 자원 소모가 필요함을 입증
  - 소비되는 자원, 계산에 드는 노력 등
- 방법2: 알려진 매우 어려운 문제로 환원(reduction)이 가능함을 입증
- 1은 주로 비밀키, 2는 주로 공개키 암호에서 사용



- 혼돈과 확산을 반복하면 암호를 안전하게 구성할 수 있음
- 혼돈: 암호문의 통계량은 평문에 영향을 받지만,

공격자가 활용할 수 없을 정도로 복잡해야 함 -> 대치(substitution)

• 확산: 평문의 각 비트와 키의 각 비트는

암호문의 많은 비트에 영향을 주어야 함 -> 변환(permutation)



#### 암호기술의 역사: 현대 암호

- 고대 암호는 암호화 방식(알고리즘)만 알면 복호화 가능
- 근대 암호는 초기 설정값을 알면 획득 가능
  - 에니그마의 경우, 최대 200만개, 컴퓨터로 전수조사 가능
- 현대 암호는 암호화 방식(알고리즘)과 초기 설정값(키)를 활용
  - 에니그마와 유사



#### 암호기술의 역사: 현대 암호

- 현대암호의 특징
  - 컴퓨터로 전수조사가 불가능할 정도로 큰 키 크기
  - 체계적인 키 관리 방식이 필요하여 공개키 암호의 등장
- 컴퓨터의 발전에 따라 키의 크기가 점점 커짐
  - DES(1977) -> 56비트
  - AES(2000) -> 128, 192, 256<sup></sup>山트



#### 암호기술의 역사: 현대 암호

- DES(Data Encryption Standard)
  - IBM의 설계를 NSA가 완성, 1977년 미국 표준
- AES(Advanced Encryption Standard)
  - DES 한계를 타파하기 위해 1998년부터 국제 암호공모사업 추진
  - 2000년 벨기에 연구팀의 Rigndael이 선정
- SEED
  - 국내 민간암호기술 활성화를 위해 국보연 주도로 개발, 2005년 ISO 표준
- ARIA(Academy, Research Institute, Agency)
  - 전자정부 안전성 강화를 위해 국보연 주도로 개발
  - 2004년 KS 표준, 2008년 행정기관 VoIP 규격으로 선정









#### 정보보호 서비스

- 기밀성(Confidentiality)
  - 정보가 의도하지 않게 노출되지 않음을 보장
- ・무결성(Integrity)
  - 공격자의 의도적인 공격에 **데이터가 위조 혹은 변조되지 않음**을 보장
- 인증(Authentication)
  - 상대방의 신원을 보증할 수 있도록 함
- 부인방지(Non-repudiation)
  - 송/수신자가 데이터를 보내거나 받은 사실을 부인할 수 없도록 함



#### 정보보호 서비스

- 기밀성(Confidentiality)
  - 비밀키, 공개키 암호
- 무결성(Integrity)
  - 해시함수, MAC, 인증 암호화
- 인증(Authentication)
  - 패스워드, OTP, 토큰
- 부인방지(Non-repudiation)
  - 전자서명



### 비밀키 암호와 공개키 암호

• 비밀키 암호







### 비밀키 암호와 공개키 암호

• 공개키 암호







### 비밀키 암호와 공개키 암호

|                                                        | 장점                 | 단점           |
|--------------------------------------------------------|--------------------|--------------|
| 비밀키 암호                                                 | 빠른 암호화             | 안전하지 않은 키 교환 |
| 공개키 암호                                                 | 안전한 키 교환           | 느린 암호화       |
| <b>하이브리드 암호화</b><br>공개키 암호로 비밀키 암호화<br>비밀키 암호로 데이터 암호화 | 안전한 키 교환<br>빠른 암호화 | ?            |



#### 비밀키 암호

- Kerckhoffs' 원칙
  - 암호의 안전성은 알고리즘의 비밀성에 기반하지 않으며
    암호키의 비밀성에만 의존해야 함
  - 즉, 공격자는 키를 제외하고 모두 알 수 있다고 가정
- 공격자 시나리오
  - 암호문 단독 공격(Ciphertext only attack)
  - 알려진 평문 공격(Known plaintext attack)
  - 선택 평문/암호문 공격(Chosen plaintext/ciphertext attack)
  - 능동 선택 평문/암호문 공격(Adaptive chosen plaintext/ciphertext attack)
    - 블랙박스 공격으로도 칭함



#### 비밀키 암호

- 블록암호
  - 일정 크기의 데이터에 적용하는 알고리즘
  - 긴 길이의 암호화에는 블록암호를 여러 번 적용
    - 운용모드를 사용
  - 내부 상태변수가 없거나 매우 적음
  - 많이 사용
- 스트림암호
  - 긴 난수열을 생성하여 평문과 비트단위로 XOR
  - 난수열 생성을 위해 큰 내부 상태변수 유지가 필요
  - 적게 사용



#### 블록 암호

- $\forall k \in K, m \in P \text{ then } d_k(e_k(m)) = m$
- $E: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$ ,  $(m,k) \mapsto c$
- $D: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n, (c,k) \mapsto m$
- 블록암호 기본 조건



- 주어진 m과 c에 대해서,  $E_k(m) = c$ 를 만족하는 k는 계산하기 어려워야 함
- 고정된  $m_0$ 에 대해서 함수  $f(k) = e_k(m_0)$ 은 일방향 함수여야 함





#### 블록 암호 분석

#### • 가정

- 공격자는 대상 블록 암호의 키를 제외한 모든 동작과정을 알고 있음
- 공격자는 대상 블록 암호에 비밀키 k를 사용한 **블랙박스 구현이 가능함**

#### • 목표

- 키 *k*를 찾기
- 키 k에  $E_k(m) = c$ 를 만족하는 새로운 (m,c) 찾기
- 대상 블록 암호가 랜덤 함수와 구별되는 특징을 찾아냄



#### 블록 암호 분석

• Generic 공격

• 모든 블록암호에 대해서 성공 가능

• 전수조사 공격: 모든 가능한 키를 하나씩 대입

• 테이블 공격: 모든 키 k에 대해서  $E_k(m_0)$ 저장

• 코드북 공격: 키 k로 암호화 한 모든 평문/암호문 쌍을 수집



#### 블록 암호 분석

- Short-cut 공격
- 암호 알고리즘의 설계에 따라 성공 여부가 다름
- Generic 공격보다 효율적이여야 성공으로 판단
  - Differential cryptanalysis, Linear cryptanalysis
  - Higher-order, Truncated, Impossible differential attack
  - Boomerang/Rectangle attack
  - Integral attack, Interpolation attack
  - ...

