Package 'fpopw'

October 13, 2022

Version 1.1
Date 2022-05-30
Title Weighted Segmentation using Functional Pruning and Optimal Partioning
Depends R (>= 3.1.0)
Suggests
Description Weighted-L2 FPOP Maidstone et al. (2017) <doi:10.1007 s11222-016-9636-3=""> and pDPA/FPSN Rigaill (2010) <arxiv:1004.0887> algorithm for detecting multiple change points in the mean of a vector. Also includes a few model selection functions using Lebarbier (2005) <doi:10.1016 j.sigpro.2004.11.012=""> and the 'capsushe' package.</doi:10.1016></arxiv:1004.0887></doi:10.1007>
License GPL (>= 3)
RoxygenNote 7.2.0
NeedsCompilation yes
Author Guillem Rigaill [aut, cre]
Maintainer Guillem Rigaill <guillem.rigaill@inrae.fr></guillem.rigaill@inrae.fr>
Repository CRAN
Date/Publication 2022-06-05 14:10:03 UTC
R topics documented:
compress.data
Fpop
fpopw
Fpop_w
Fpsn
Fpsn_w_nomemory
get.change
getSegSums
getSMT
getSMT

 getTau_nomemory
 8

 retour_op
 9

 retour_sn
 9

 saut
 10

 sdDiff
 10

 select_Fpsn
 11

 uncompress.smt
 11

 uncompress.vec
 12

Fpop

Index 13

compress.data

compress.data

Description

compress data and return a weighted profile

Usage

2

```
compress.data(x)
```

Arguments

Χ

a numerical vector

Value

a list with the compressed profile x and associated repeat vector vrep

Fpop

Fpop

Description

Function to run the Fpop algorithm (Maidstone et al. 2016). It uses functional pruning and optimal partionning. It optimizes the L2-loss for a penalty lambda per change.

Usage

```
Fpop(x, lambda, mini = min(x), maxi = max(x))
```

Arguments

x a numerical vector to segment

the penalty per changepoint (see Maidstone et al. 2016)
 mini minimum mean segment value to consider in the optimisation.
 maxi maximum mean segment value to consider in the optimisation.

fpopw 3

Value

return a list with a vector t.est containing the position of the change-points, the number of changes K and, the cost J.est.

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
est.sd <- sdDiff(x) ## rough estimate of std-deviation
res <- Fpop(x=x,lambda=2*est.sd^2*log(length(x)))
smt <- getSMT(res)</pre>
```

fpopw

fpopw: A package to solve the optimal partionning and segment neighborhood problems using a weighted L2-loss.

Description

The fpopw package provides wrapper to four functionnal pruning functions to to solve the optimal partionning and segment neighborhood problems with the L2-loss: Fpop, Fpop_w, Fpsn, Fpsn_w

fpopw functions

fpopw functions are Fpop, Fpop_w, Fpsn, Fpsn_w, Fpsn_w_nomemory

Fpop_w

 $Fpop_w$

Description

Function to run the Fpop algorithm (Maidstone et al. 2016) with weights. It uses functional pruning and optimal partionning. It optimizes the weighted L2-loss $(w_i(x_i - \mu)2)$ for a penalty lambda per change.

Usage

```
Fpop_w(x, w, lambda, mini = min(x), maxi = max(x))
```

Arguments

X	a numerical vector to segment.
W	a numerical vector of weights (values should be larger than 0).
lambda	the penalty per changepoint (see Maidstone et al. 2016).
mini	minimum mean segment value to consider in the optimisation.
maxi	maximum mean segment value to consider in the optimisation.

Fpsn Fpsn

Value

return a list with a vector t.est containing the position of the change-points, the number of changes K and, the cost J.est.

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
est.sd <- sdDiff(x) ## rough estimate of std-deviation
res <- Fpop_w(x=x, w=rep(1, length(x)), lambda=2*est.sd^2*log(length(x)))
smt <- getSMT(res)</pre>
```

Fpsn

Fpsn

Description

Function to run the pDPA algorithm (Rigaill 2010 and 2015). It uses functional pruning and segment neighborhood. It optimizes the L2-loss for 1 to Kmax changes.

Usage

```
Fpsn(x, Kmax, mini = min(x), maxi = max(x))
```

Arguments

X	a numerical vector to segment
Kmax	max number of segments (segmentations in 1 to Kmax segments are recovered).
mini	minimum mean segment value to consider in the optimisation
maxi	maximum mean segment value to consider in the optimisation

Value

return a list with a matrix t.est containing the change-points of the segmentations in 1 to Kmax changes and, the cost J.est in 1 to Kmax changes.

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
res <- Fpsn(x=x, K=100)
select.res <- select_Fpsn(res, method="givenVariance")
smt <- getSMT(res, select.res)</pre>
```

Fpsn_w 5

Description

Function to run the weighted pDPA algorithm (Rigaill 2010 and 2015). It uses functional pruning and segment neighborhood. It optimizes the weighted L2-loss $(w_i(x_i - \mu)2)$ for 1 to Kmax changes.

Usage

```
Fpsn_w(x, w, Kmax, mini = min(x), maxi = max(x))
```

Arguments

x	a numerical vector to segment
W	a numerical vector of weights (values should be larger than 0).
Kmax	max number of segments (segmentations in 1 to Kmax segments are recovered).
mini	minimum mean segment value to consider in the optimisation
maxi	maximum mean segment value to consider in the optimisation

Value

return a list with a matrix t.est containing the change-points of the segmentations in 1 to Kmax changes and, the costs J.est in 1 to Kmax changes.

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
res <- Fpsn_w(x=x, w=rep(1, length(x)), K=100)
select.res <- select_Fpsn(res, method="givenVariance")
smt <- getSMT(res, select.res)</pre>
```

```
Fpsn_w_nomemory Fpsn_w_nomemory
```

Description

Function to run the weighted pDPA algorithm (Rigaill 2010 and 2015) without storing the set of last changes. It only return the cost in 1 to Kmax changes. It uses functional pruning and segment neighborhood. It optimizes the weighted L2-loss ($w_i(x_i - \mu)2$) for 1 to Kmax changes.

Usage

```
Fpsn_w_nomemory(x, w, Kmax, mini = min(x), maxi = max(x))
```

6 get.change

Arguments

X	a numerical vector to segment

w a numerical vector of weights (values should be larger than 0).

Kmax max number of segments (segmentations in 1 to Kmax segments are recovered).

mini minimum mean segment value to consider in the optimisation

maxi maximum mean segment value to consider in the optimisation

Value

return a list with the costs J.est in 1 to Kmax changes.

Examples

```
res <- Fpsn_w_nomemory(x=rnorm(10^4), w=rep(1, 10^4), K=100)
```

get.change get.change

Description

Function returning changes in a smoothed profile

Usage

```
get.change(smt)
```

Arguments

smt smoothed profile

Value

a vector of changes including n

getSegSums_ 7

getSegSums_

getSegSums_

Description

A function to get the segment sums of a vector given some changes including n

Usage

```
getSegSums_(x, tau)
```

Arguments

x data

tau changes (including n)

Value

a vector of the sums

getSMT

getSMT

Description

A function to get the smoothed profile from the output of Fpop, Fpop_w, Fpsn and Fpsn_w

Usage

```
getSMT(res, K = NULL)
```

Arguments

res output of Fpop, Fpop_w, Fpsn or Fpsn_w

K the number of changes (only if Fpsn or Fpsn_w)

Value

a vector of the smoothed profile

8 getTau_nomemory

```
getSMT_ getSMT_
```

Description

A function to get the smoothed profile from the data, weights and changepoints

Usage

```
getSMT_(x, weights = NULL, tauHat)
```

Arguments

x data weights weights

tauHat changes (including n)

Value

a vector of the smoothed profile

getTau_nomemory getTau_nomemory

Description

function to recover changes for a given selected K after fpsn_nomemory

Usage

```
getTau_nomemory(res_fpsn, K_selected)
```

Arguments

res_fpsn output of the function res_fpsn_nomemory

K_selected K obtained using select_Fpsn

Value

return a set of changes

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
res <- Fpsn_w_nomemory(x=x, w=rep(1, length(x)), K=100)
select.res <- select_Fpsn(res, method="givenVariance")
tau <- getTau_nomemory(res, select.res)
smt <- getSMT_(res$signal, res$weights, tau)</pre>
```

retour_op 9

retour_op retour	r op
------------------	------

Description

Function used internally by Fpop and Fpop_w to do the backtracking and recover the best set of changes from 1 to i

Usage

```
retour_op(path, i)
```

Arguments

path vector of length n containing the best last changes for any j in [1, n]. This

vector is computed in the Fpop and Fpop_w using the colibri_op_c or col-

ibri_op_weight_c function.

i the last position to consider to start the backtracking.

Value

set of optimal changes up to i.

Description

Function used internally by Fpsn and Fpsn_w to do the backtracking and recover the best set of segmentations in 1 to K changes from 1 to n.

Usage

```
retour_sn(path)
```

Arguments

path

matrix of size $(K \times n)$ containing the last optimal changes up to j in k segments with i in [1, n] and k in [1, K]. This matrix is computed in the Fpsn or Fpsn_w function using the colibri_sn_c or colibri_sn_weight_c functions.

Value

a matrix of size (K x K) containing the best segmentations in 1 to K segments.

10 sdDiff

saut saut

Description

model selection function taken from S3IB,

Usage

```
saut(Lv, pen, Kseq, n, seuil = sqrt(n)/log(n), biggest = TRUE)
```

Arguments

Lv likelihood pen penalty

Kseq number of changesn number of datapoints

seuil threshold

biggest heuristic (biggest jump or slope)

Value

a selected number of chagnes

sdDiff sdDiff

Description

Function to estimate the standard deviation

Usage

```
sdDiff(x, method = "MAD")
```

Arguments

x signal

method used to estimate the variance : MAD or HALL

Value

return a numeric value

select_Fpsn 11

|--|--|--|

Description

function to select the number of changepoints after Fpsn or Fpsn_w using the penalty of Lebarbier 2005 given a estimator of the variance

Usage

```
select_Fpsn(
  res_fpsn,
  method = "givenVariance",
  sigma = sdDiff(res_fpsn$signal)
)
```

Arguments

res_fpsn output of Fpsn or Fpsn_w containg the costs in J.est and the segmented signal method one of (1) "givenVariance" = using the penalty of Lebarbier 2005 given a estimator of the variance, (2) "biggest.S3IB" = biggest=TRUE in saut taken from S3IB, (3) "notbiggest.S3IB" biggest=FALSE in saut taken from S3IB.

sigma variance used of the selection. If NULL use MAD on unweighted data.

Value

return an integer: selected number of changes

Examples

```
x <- c(rnorm(100), rnorm(10^3)+2, rnorm(1000)+1)
res <- Fpsn_w(x=x, w=rep(1, length(x)), K=100)
select.res <- select_Fpsn(res, method="givenVariance")
smt <- getSMT(res, select.res)</pre>
```

uncompress.smt

decompress.smt

Description

vector to decompress a compressed smoothed profile (a call to rep)

Usage

```
uncompress.smt(smt.CP, vec.rep)
```

12 uncompress.vec

Arguments

smt.CP smoothed and compressed profile vec.rep weights to use for decompression

Value

a vector to replicate duplicated datapoints

uncompress.vec

uncompress.vec

Description

return a vector to uncompress a profile, segmentation or smt

Usage

```
uncompress.vec(vec.rep)
```

Arguments

vec.rep

integer vector with the number of time each point should be repeated

Value

return a vector to uncompress a profile, segmentation or smt

Index

```
compress.data, 2
Fpop, 2
Fpop_w, 3
fpopw, 3
Fpsn, 4
Fpsn_w, 5
Fpsn_w_nomemory, 5
get.change, 6
{\tt getSegSums\_, 7}
getSMT, 7
getSMT_, 8
getTau_nomemory, 8
retour_op, 9
retour\_sn, 9
saut, 10
sdDiff, 10
select\_Fpsn, 11
\verb"uncompress.smt", \verb"11"
uncompress.vec, 12
```