ADVANCED BAYESIAN MODELING

Posterior Predictive Checking: An Example

Goal: Find any discrepancies between the fitted Bayesian model and the data.

One approach: posterior predictive checking

Basically, comparing the data with its posterior predictive distribution

Procedure

Basic version:

- Step 1 Choose a statistic relevant to the type of discrepancy under investigation.
- Step 2 Evaluate the statistic on the data.
- Step 3 Find or approximate the distribution of the statistic under the posterior predictive distribution for the full data set.
- Step 4 Compare the statistic value to its posterior predictive distribution. If the value is not representative (too extreme), claim evidence for a discrepancy between the Bayesian model and data.

7

Flint Data Example

Recall Flint water data:

 $y_i = logarithm of first-draw lead level (ppb), for observation <math>i$

Our model assumed a normal sampling distribution:

$$y_1, \ldots, y_n \mid \mu, \sigma^2 \sim \text{iid } N(\mu, \sigma^2)$$

But histogram suggested asymmetry:

- > Flintdata <- read.csv("Flintdata.csv", header=TRUE, row.names=1)
- > hist(log(Flintdata\$FirstDraw))

Histogram of log(Flintdata\$FirstDraw)

Step 1: Choose Statistic

Many ways to measure asymmetry: skewness (third moment), mean versus median, quantile-based measures, etc.

We try (compare Groeneveld & Meeden, 1984)

$$\frac{\hat{q}_{0.9} + \hat{q}_{0.1} - 2\hat{q}_{0.5}}{\hat{q}_{0.9} - \hat{q}_{0.1}}$$

where \hat{q}_{α} is empirical α (lower) quantile.

It's roughly zero when distribution is symmetric, and tends to be away from zero (in either direction) otherwise.

10

Step 2: Evaluate Statistic

Step 3: Find Posterior Predictive Distribution

First need a posterior distribution ...

The standard noninformative prior

$$p(\mu, \sigma^2) \propto (\sigma^2)^{-1} \qquad \sigma^2 > 0$$

led to posterior

$$\mu \mid \sigma^2, y \sim \mathrm{N}(\bar{y}, \sigma^2/n)$$

 $\sigma^2 \mid y \sim \mathrm{Inv-}\chi^2(n-1, s^2)$

based on sample statistics n, \bar{y} , s^2 .

We characterize posterior predictive distribution using direct simulation ...

Simulate X from χ^2_{n-1} , let

$$\sigma_{\mathsf{sim}}^2 = (n-1)s^2/X$$

then simulate

$$\mu_{\sf sim}$$
 from $N(\bar{y}, \, \sigma_{\sf sim}^2/n)$

For a replicate data set, simulate

$$y_1^{\mathsf{rep}}, \dots, y_n^{\mathsf{rep}}$$
 iid from $N(\mu_{\mathsf{sim}}, \sigma_{\mathsf{sim}}^2)$

Repeat the whole process independently for each replicate data set.

For 1000 replicate data sets:

```
> n <- nrow(Flintdata)
> ybar <- mean(log(Flintdata$FirstDraw))</pre>
> s.2 <- var(log(Flintdata$FirstDraw))</pre>
> post.sigma.2.sim <- (n-1) * s.2 / rchisq(1000, n-1)
> post.mu.sim <- rnorm(1000, ybar, sqrt(post.sigma.2.sim / n))</pre>
> yreps <- matrix(NA, 1000, n)
> for(s in 1:1000)
+ yreps[s,] <- rnorm(n, post.mu.sim[s], sqrt(post.sigma.2.sim[s]))
For histograms of the first 20 ...
> par(mfrow=c(4,5))
> for(s in 1:20) hist(yreps[s,])
```


These histograms don't look as asymmetric as the data, but difficult to tell ...

Now compute simulated posterior predictive test statistics:

Step 4: Compare

How extreme is the data-computed statistic relative to its (simulated) posterior predictive distribution?

- > hist(Tsim, freq=FALSE)
- > abline(v=T, col="red")

To get something like a (two-sided) p-value:

```
> mean(abs(Tsim) >= abs(T))
[1] 0.01
```

Only 10 out of 1000 posterior predictive replicates had an asymmetry measure at least as extreme as the actual data.

Conventionally, indicates evidence of asymmetry (p < 0.05)