

DLL

Il Data Link Level si occupa di fornire al livello di Rete un servizio di trasmissione di flussi di bit.

I compiti principali del DDL sono:

- raggruppa i bit dal livello fisico in modo da formare pacchetti (framing)
- gestisce l'accesso al mezzo fisico, nel caso di link broadcast (MAC sublayer);
- fornisce un recapito affidabile (se richiesto);
- gestisce gli errori dovuti al canale di trasmissione
- regola il flusso dei dati tra sorgente e destinazione.

Università di Catania	Framing dei dati - Codifica 4B5B				
Nome	4B	5B	Descrizione		
0	0000	11110	hex data 0		
1	0001	01001	hex data 1		
2	0010	10100	hex data 2		
3	0011	10101	hex data 3		
4	0100	01010	hex data 4		
5	0101	01011	hex data 5		
6	0110	01110	hex data 6		
7	0111	01111	hex data 7		
8	1000	10010	hex data 8		
9	1001	10011	hex data 9		
Α	1010	10110	hex data A		
В	1011	10111	hex data B		
С	1100	11010	hex data C		
D	1101	11011	hex data D		
E F	1110	11100	hex data E		
F	1111	11101	hex data F		
I	-NONE-	11111	Idle		
J	-NONE-	11000	SSD #1		
K	-NONE-	10001	SSD #2		
Т	-NONE-	01101	ESD #1		
R	-NONE-	00111	ESD #2		
Н	-NONE-	00100	Halt		
			Reti	di Calcolatori - l	

Codifica 8B10B

Viene usata per trasmettere 8 bit dati con 10 bit di segnale.

È elettricamente neutra (il numero di bit 1 viene mantenuto uguale al numero di bit 0 trasmessi)

È usata in vari standard:

- PCI Express (< 3.0)
- IEEE 1394b (Firewire)
- Serial ATA
- Fibre Channel
- Gigabit Ethernet (alcune versioni)
- DisplayPort Main Link
- DVI e HDMI (Transition Minimized Differential Signaling)
- USB 3.0

	Universit di Catan	tà ia	Codifica 8B10B			
3b 3b 4b Decimal Binary (HGF) Binary (fghi) 0 000 0100 or 1011 1 001 1001 2 010 0101 3 011 0011 or 1100 4 100 0010 or 1101 5 101 1010 6 110 0110 7 111 0001 or 1110 or 1000 or 0111	De 0 1 2 3 4 5 6	ecimal Binary (HGF) 000 001 010 011 100 101	Binary (fghi) 0100 or 1011 1001 0101 0011 or 1100 0010 or 1101 1010 0110	Reti di Calcolatori - 12		

Università di Catania	Codifica 8B10B			
	5b Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	5b Binary (EDCBA) 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01011 01110 01111 01100 01101 01111 10000	6b Binary (abcdei) 100111 or 011000 011101 or 100010 101101 or 010010 110001 110001 011000 or 000111 111001 or 000110 1100101 010101 111000 or 000111 1110100 001101 101100 001101 001111 or 101000	
	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110	011011 or 100100 100011 010011 110010 001011 101010 011010 111010 or 000101 110011 or 001100 100110 010110 110110 or 001001 001110 101110 or 010001 001110 101110 or 100001 011110 or 010001	
				Reti di Calcolatori - 13

Ogni simbolo trasporta una certa quantità di informazioni, misurata in bit

1 simbolo ha x bit :
$$x = log_2 3$$
 (2×=3)

$$x = log_2 3$$
 $x = 1,5849...$ $(x = ln(3)/ln(2))$

Rilevazione e/o correzione degli errori

La <u>rilevazione</u> degli errori consente di individuare la presenza di un errore di trasmissione in una frame, ma NON di correggerlo.

La correzione consente di rilevare e correggere (con alcune forti limitazioni) errori dovuti alla trasmissione.

Entrambi i metodi sono basati sulla presenza di ridondanza nella comunicazione.

Ridondanza

Esempio:

Mario Rossi nato a Catania il 15 maggio 2000

CF: RSS MRA 00E15 C351 S

Il CF è una informazione ridondante.

La lettera finale del CF è calcolata in funzione dei caratteri precedenti -> ridondanza


```
Università
di Catania
                                    CRC
                 11010110111110
                 10011
                 01001110111110
                  10011
                 0000010111110
                    00000
                 00000010111110
                     00000
                 00000010111110
                      00000
                 000000111110
                       00000
                 00000010111110
                        10011
                                                           Reti di Calcolatori - 31
```


CRC

Polinomi standardizzati :

CRC-12 $x^{12} + x^{11} + x^3 + x^2 + x + 1$

CRC-16 $x^{16} + x^{15} + x^2 + 1$

CRC-CCITT $x^{16}+ x^{12}+ x^5+ 1$

CRC-32 10000010011000001110110110111

Distanza di Hamming

Date due codeword, è possibile definire una distanza tra esse contando il numero di bit diversi tra loro.

10001100

11000100

01001000 d = 2

Correzione degli errori

In un vocabolario con distanza <u>d=3</u> è possibile correggere gli errori singoli.

Per correggere e errori, è necessario un vocabolario con distanza d=2e+1

Per rilevare e errori è necessario un vocabolario con distanza d=e+1

La correzione si effettua esclusivamente su base probabilistica.

Correzione degli errori

Esempio: codewords da 10 bit

000000000

0000011111

1111100000

1111111111

Parole valide: 4.

Distanza di hamming: 5

Correzione di errori: 2 bit

Rilevazione di errori: 4 bit.

Esiste un altro vocabolario con la stessa distanza, ma con più parole?

Correzione degli errori

Quanta ridondanza serve?

• Dati m bit di dati, quanti bit di ridondanza r servono?

Come costruire un codice per correggere errori singoli?

 Partendo da m bit di dati, sapendo come calcolare r, come costruire operativamente il vocabolario?

Ridondanza

Consideriamo un vocabolario con m bit dati e r bit di controllo

Poniamo m+r = n

Le combinazioni possibili (con n bit) sono 2^n , di cui solo 2^m sono valide Consideriamo una codeword valida: 10001

Cambiando un solo bit per volta, possiamo scrivere altre n codeword, tutte non valide:

Università di Catania

Ridondanza

```
Se d=3, allora (n+1) 2^m \le 2^n
```

Semplificando:

```
(m+r+1) 2^{m} \le 2^{m+r}
(m+r+1) \le 2^{r}
m+1 \le 2^{r} - r
```

Nota: L'espressione $m+1 \le 2^r - r$ è valida solo per d=3.

Esempi:

```
m=8 \Rightarrow r=4 (8+4+1) \le 2^4 13 < 16

m=11 \Rightarrow r=4 (11+4+1) \le 2^4 16 = 16
```



```
Università
di Catania
                           Codici di Hamming
                                       3 = 1+2
      101100100101100
                                      5 = 1 + 4
            8 10
                                       6 = 2+4
                                       7 = 1+2+4
                                       9 = 1 +8
           b_1 = 1
                                      10 = 2 + 8
           b_2 = 1
                                      11 = 1+2 +8
           b_4 = 1
                                      12 = 4+8
           b_8 = 1
                                      13 = 1 + 4 + 8
                                      14 = 2+4+8
           2 + 8 = 10 !
                                      15 = 1+2+4+8
                                                        Reti di Calcolatori - 50
```


Università di Catania Codici di Hamming 010100000101111101010010101011 **xx1x10**0 xx0x001**x**x0x100 xx1x010 xx0x001**xx1x11**0 **xx**0**x**0**1**1 **xx**0**x**110 xx1x011 xx1x110 **xx1x**001 xx0x011 Reti di Calcolatori - 53

Protocolli CSMA

Il protocollo CSMA 1-persistent prevede la trasmissione non appena scompare la portante.

Invece nel protocollo CSMA p-persistent la stazione, dopo aver rilevato il termine della precedente trasmissione, trasmette con probabilità p.

Nel CSMA non-persistent la stazione aspetta un tempo random prima di ricontrollare il canale.

IEEE 802

```
802.1 High Level Interface (HILI)
```

802.2 Logical Link Control (LLC) [in 'hibernation']

802.3 CSMA/CD

802.4 Token Bus [in 'hibernation']

802.5 Token Ring [in 'hibernation']

802.6 Metropolitan Area Network (MAN) [in 'hibernation']

802.7 BroadBand Technical Adv. Group (BBTAG) [in 'hibernation']

802.8 Fiber Optics Technical Adv. Group (FOTAG) [disbanded]

802.9 Integrated Services LAN (ISLAN) [in 'hibernation']

IEEE 802

- 802.10 Standard for Interoperable LAN Security (SILS) [in 'hibernation]
- 802.11 Wireless LAN (WLAN)
- 802.12 Demand Priority [in 'hibernation']
- 802.14 Cable-TV Based Broadband Comm. Network [disbanded]
- 802.15 Wireless Personal Area Network (WPAN)
- 802.16 Broadband Wireless Access (BBWA)
- 802.17 Resilient Packet Ring (RPR)
- 802.18 Radio Regulatory Technical Advisory Group
- 802.19 Coexistence Technical Advisory Group

Frame ethernet

Il campo E-type/size indica la lunghezza del campo dati per valori inferiori a 1500, mentre indica il tipo di frame per valori superiori.

Il campo tipo viene utilizzato per il mux/demux sul livello network .

Fast Ethernet

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

100Base-T4 usa la codifica 8B6T e sfrutta tutte le coppie presenti.

100Base-TX usa la codifica 4B5B

Catania	Fast Ethernet	
TABLE 3.1 Fast Etherne	t and FDDI 4B/5B Codes	
Four-Bit Data	Five-Bit Encoding	
0000 (0)	11110	
0001 (1)	0 1 0 0 1	
0002 (2)	10100	
0003 (3)	10101	
0004 (4)	01010	
0005 (5)	01011	
0006 (6)	01110	
0007 (7)	0 1 1 1 1	
0008 (8)	10010	
0009 (9)	10011	
1010 (A)	10110	
1011 (B)	10111	
1100 (C)	11010	
1101 (D)	11011	
1110 (E)	11100	
1111 (F)	11101	
S (Set)	11001	
R (Reset)	0 0 1 1 1	
Q (Quiet)	00000	
I (Idle)	11111	
H (Halt)	00100	
T (Terminate)	01101	
J (Start 1)	11000	
K (Start 2)	10001	

Gigabit Ethernet

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Gigabit Ethernet

Cinque passi verso 1000BASE-T (cat5)

- rimuovere la codifica 4B5B (100 ->125 Mbps).
- usare le 4 coppie simultaneamente (125 -> 500Mbps).
- trasmissione full duplex (500Mbps full-duplex).
- usare 5 livelli per baud invece che 3 (MLT-3) (5x5x5x5 => 2Gbps full-duplex).
- usare un forward error correction (FEC) per recuperare 6dB.

Riepilogo 10 – 100 - 1000

Tecnologia	Massima lunghezza del link	Codifica	Topolo	Topologia del mezzo	
10Base5	500 m	Manchester	bus	50-ohm coax	10 M
10Base2	185 m	Manchester	bus	50-ohm coax	10 M
10BaseT	100 m	Manchester	star	2 pair UTP cat. 3,4,5	10
100BaseFL 100BaseT2	2000 m 100 m	Manchester PAM 5x5	star star	Multi-mode fiber* 2 pairs UTP cat. 3,4,5	10 M 100 M
100BaseT4	100 m	8B/6T	star	4 pairs UTP cat. 3,4,5	100 M
100BaseTX	100 m	4B/5B with MLT-3	star	2 pairs UTP cat. 5	100 M
100BaseFX 1000BaseT	412/2000 m 100 m	4B/5B with NRZI PAM 5x5	star star	Multi-mode fiber* 4 pairs UTP Cat 5	100 M 1000 M
1000BaseSX	275 m	8B/10B	star	Multi-mode fiber†	1000 M
1000BaseLX	316/550 m	8B/10B	star	Multi-modeFiber‡	1000 M
1000BaseCX	25 m	8B/10B	star	Twinax	1000 M

Bridge		
Indirizzo	Interfaccia	Tempo
01-12-23-34-45-56	2	9:39
62-FE-F7-11-89-A3	1	9:32
7C-BA-B2-B4-91-10	3	9:36

VLAN

Le VLAN sono LAN logiche separate realizzate in una stessa struttura fisica. I pacchetti broadcast (livello 2) sono confinati all'interno della VLAN

La connessione tra VLAN differenti deve essere realizzata attraverso routing di livello 3.

Lo standard IEEE 802.1Q definisce le specifiche per le VLAN.

VLAN

Scopo delle VLAN:

- risparmio: riutilizzo delle linee e degli apparati preesistenti;
- flessibilità: facile spostamento fisico degli utenti;
- aumento di prestazioni: il traffico broadcast viene confinato;
- sicurezza: gli utenti di VLAN differenti non vedono i reciproci frame dati.

Port based VLAN (untagged)

Lo switch viene logicamente partizionato in più parti, assegnando le singole porte alle varie VLAN.

Per realizzare una VLAN untagged è sufficiente uno switch che supporti il protocollo 802.1Q.

