TEXTE DE L'EPREUVE DE PROBABILITES ET STATISTIQUES

Conventions et notations.

- a. Dans ce problème, on aura lieu de considérer, sur l'ensemble \mathbb{R}^n ,
 le produit scalaire usuel (noté.) et la norme qui lui est associée
 (norme euclidienne, notée | |);
- la topologie usuelle, définie par la norme | | (pour toute partie A de \mathbb{R}^n , on note Å son intérieur et \overline{A} sa fermeture) et la tribu borélienne (notée \mathfrak{B}^n) qui lui est associée;
- l'ensemble des parties convexes: étant donné une partie A de \mathbb{R}^n , on appelle enveloppe convexe (resp enveloppe convexe fermée) de A la plus petite (au sens de l'inclusion) partie convexe (resp convexe fermée) contenant A.
- b. Tous les espaces mesurables envisagés dans ce problème sont euclidiens : (Ω, \mathcal{H}) est dit euclidien si, et seulement si, il existe n, entier strictement positif, tel que $\Omega \in \mathcal{G}^n$, et que \mathcal{H} soit la tribu induite par \mathcal{G}^n sur Ω (c'est-à-dire $\mathcal{H} = \{A \in \mathcal{G}^n : A \subseteq \Omega \}$).
- c. Pour toute probabilité P sur (\mathbb{R}^n , \mathfrak{G}^n), on appelle support de P, et on note Supp (P) la plus petite (au sens de l'inclusion) partie fermée F de \mathbb{R}^n vérifiant P (F) = 1 (on admettra son existence).

Définitions.

Soient deux entiers strictement positifs, n et m; soit $\Omega \in \mathbb{B}^n$ et soit $\Theta \subset \mathbb{R}^m$; soit (P_θ) une famille de probabilités sur l'espace mesurable euclidien (Ω, \mathcal{A}) , indicée par Θ ; Ω est appelé l'ensemble des résultats, et Θ l'ensemble des paramètres de la famille (P_θ) .

On dit que la famille (P_{θ}) est exponentielle si et seulement si il existe :

une mesure σ -finie μ sur (Ω, \mathcal{H}) , un entier strictement positif k, une application mesurable T de (Ω, \mathcal{H}) dans $(\mathbf{R}^k, \mathcal{G}^k)$, une application U de Θ dans \mathbf{R}^k , une application mesurable a de (Ω, \mathcal{H}) dans $(\mathbf{R}, \mathcal{G})$, une application b de Θ dans \mathbf{R} ,

tels que, pour tout $\theta,~P_{\theta}$ soit absolument continue par rapport à μ et admette, pour densité par rapport à $\mu,$ la fonction

$$\omega \longrightarrow \exp \left[T(\omega) \cdot U(\theta) - a(\omega) - b(\theta) \right]$$
.

Le quadruplet (T, U, a, b) est appelé une représentation de référence μ (ou μ -représentation), de dimension k, de la famille (P₀); cette représentation est dite :

résultats-identique si n=k et, pour tout $\omega \in \Omega$, $T(\omega)=\omega$, paramètres-identique si m=k et, pour tout $\theta \in \Theta$, $U(\theta)=\theta$, de type nul si, pour tout $\omega \in \Omega$, $a(\omega)=0$;

la fonction b est appelée fonction de cumul.

- I. Généralités sur les familles exponentielles.
 - 1º Démontrer que les familles suivantes sont exponentielles :
- a. Étant donné un entier strictement positif h, $\Omega = \{0, 1, ..., h\}$; $\Theta =]0, 1[$; pour tout θ , P_{θ} est la loi binomiale d'ordre h et paramètre θ .
- b. $\Omega=N$; $\Theta=R_+^*$ (=]0, + ∞ [); pour tout θ , P_{θ} est la loi de Poisson de paramètre θ .

c. $\Omega=\mathbf{R}$; $\Theta=\mathbf{R}$; pour tout θ , P_{θ} est la loi de Laplace-Gauss (dite aussi loi normale) réduite (c'est-à-dire de variance égale à 1), de moyenne θ .

d. $\Omega = \mathbf{R}$; $\Theta = \mathbf{R}_+^*$; pour tout θ , P_{θ} est la loi de Laplace-Gauss centrée (c'est-à-dire de moyenne égale à 0), de variance θ .

e. $\Omega = \mathbf{R}$; $\Theta = \mathbf{R} \times \mathbf{R}_{+}^{*}$; pour tout $\theta = (\theta_1, \theta_2)$, P_{θ} est la loi de Laplace-Gauss de moyenne θ_1 et variance θ_2 .

2º Soit (P_{θ}) une famille exponentielle, d'ensemble des résultats Ω et ensemble des paramètres Θ ; soit (T, U, a, b) une μ -représentation de dimension k de (P_{θ}) .

a. Deux mesures σ -finies sur (Ω, \mathcal{J}_0) sont dites équivalentes si chacune est absolument continue par rapport à l'autre.

Démontrer que, pour toute mesure σ -finie ν équivalente à μ , la famille (P_{θ}) admet une représentation de référence ν et de dimension k.

Démontrer que, pour tout $\theta^0 \in \Theta$, la famille (P_{θ}) admet une représentation de référence P_{θ} et de dimension k, qui est de type nul.

b. Une application surjective φ , de Θ sur un ensemble Θ' , est appelée un codage compatible avec la famille (P_{θ}) si, et seulement si, pour tout couple $(\theta^1, \theta^2) \in \Theta^2$, tel que φ $(\theta^1) = \varphi$ (θ^2) , on a $P_{\theta^1} = P_{\theta^1}$; l'unique famille, notée $((_{\varphi}P)_{\theta^1})$, admettant Ω pour ensemble des résultats et Θ' pour ensemble des paramètres, définie par

$$(\forall \theta \in \Theta) \qquad P_{\theta} = (_{\varphi}P)_{\varphi(\theta)},$$

est dite $cod\acute{e}$ de (P_{θ}) par ϕ .

Soit $\Theta' = U(\Theta)$.

Démontrer que U est un codage compatible avec la famille (P₀).

Démontrer que la famille ($(UP)_{\theta}$), codée de (P_{θ}) par U, est exponentielle et admet une μ -représentation de dimension k, paramètresidentique.

c. f étant une application mesurable de (Ω, \mathcal{A}) dans un espace mesurable (Ω', \mathcal{A}') , on appelle transformée de (P_{θ}) par f la famille, notée $((fP_{\theta})_{\theta})$, admettant Ω' pour ensemble des résultats et Θ pour ensemble des paramètres, et où, pour tout $\theta \in \Theta$, $(fP)_{\theta}$ est l'image de P_{θ} par f (c'est-à-dire que, pour tout $A' \in \mathcal{A}'$, on a

$$(\ ' \ P)_{\theta} (A') = P_{\theta} [f^{-1}(A')])$$

Soit $\Omega' \in \mathcal{B}^k$, tel que $T(\Omega) \subset \Omega'$; T peut être considéré comme une application mesurable de (Ω, \mathcal{A}) dans l'espace mesurable euclidien (Ω', \mathcal{A}') .

Soit \dot{T}_{μ} la mesure, sur (Ω', \mathcal{B}') , image de μ par T; démontrer que la famille $((\dot{T}P)_{\theta})$, transformée de (P_{θ}) par T, est exponentielle et admet une \dot{T}_{μ} -représentation de dimension k, résultats-identique.

II. Représentation canonique d'une famille exponentielle.

A partir de toute famille exponentielle admettant une représentation de dimension k on peut obtenir, par les opérations détaillées en I 2° (changement de référence, codage, transformation), une famille exponentielle (P_{θ}), admettant une représentation de référence $P_{\theta^{\circ}}$ (où θ° appartient à l'ensemble des paramètres), de dimension k, qui est de type nul, paramètres-identique et résultats-identique; si de plus $\theta^{\circ}=0$ (ce qui est toujours réalisable par un codage défini par une application bijective de \mathbf{R}^k sur lui-même), la $P_{\theta^{\circ}}$ -représentation est dite canonique.

1º Soit P_0 une probabilité sur $(\mathbf{R}^k, \mathfrak{S}^k)$.

a. On note b l'application de \mathbf{R}^k dans $\mathbf{R} \cup \{+\infty\}$ définie par

$$(\forall y \in \mathbb{R}^k)$$
 $b(y) = \log \int_{\mathbb{R}^k} \exp(x \cdot y) P_0(dx)$;

soit $\Theta = b^{-1}(\mathbf{R})$; démontrer que Θ est une partie convexe non vide de \mathbf{R}^k .

b. On note Ω l'enveloppe convexe fermée de Supp (P_a); démontrer qu'il existe une famille exponentielle, dont l'ensemble des résultats est Ω et l'ensemble des paramètres Θ , admettant une P_0 -représentation canonique de fonction de cumul b (on s'autorise les « abus de langage » consistant à confondre :

1º P_0 , probabilité sur $(\mathbf{R}^k, \mathbf{G}^k)$, avec la probabilité qu'elle définit, par restriction, sur (Ω, \mathcal{A}) (car P_0 $(\Omega) = 1$),

20 b, application de \mathbb{R}^k dans $\mathbb{R} \cup \{+\infty\}$, avec l'application, à valeurs dans R, qui s'en déduit par restriction à 0).

La famille exponentielle ainsi définie est dite engendrée par P_a.

2º Dans chacun des cas ci-dessous (de a. à e.), caractériser (en donnant l'ensemble des résultats (Ω') , l'ensemble des paramètres (Θ') et la fonction de cumul de la représentation Po'-canonique (b')) la famille exponentielle engendrée par Po, et démontrer que cette famille peut être obtenue, par codage et transformation, à partir de la famille exponentielle étudiée dans le cas correspondant de la question I 1º.

a. Étant donné un entier strictement positif h, Po' est l'unique probabilité sur (R, B) qui vérifie

$$(\forall i \in \{ 0, 1, ..., h \}) \qquad P_{o}'(\{ i \}) = C_{h}'(\frac{1}{2})^{h}.$$

b. P_{o}' est l'unique probabilité sur (R, \mathcal{B}) qui vérifie

$$(\forall i \in \mathbb{N}) \qquad P_o'(\{i\}) = \frac{1}{e} \frac{1}{i!}.$$

c. Po' est la loi de Laplace-Gauss de dimension 1, centrée et réduite.

d. Po' est la probabilité sur (R, B) qui admet, pour densité par rapport à la mesure de Lebesgue, la fonction f_0 définie par :

si
$$x \le 0$$
 , $f_0(x) = 0$
si $x > 0$, $f_0(x) = \frac{1}{\sqrt{\pi}} e^{-x} x^{-\frac{1}{2}}$.

e. Po' est la probabilité définie sur (R2, B2) par les conditions

$$P_0'(\{(x_1, x_2) \in \mathbb{R}^2; x_2 = \frac{1}{2}(x_1)^2\}) = 1$$
,

la première marge de Po' (c'est-à-dire l'image de Po' par la projection $\pi_1:(x_1,x_2)\longmapsto x_1$) est la loi de Laplace-Gauss centrée et réduite.

3º Soit P_0 une probabilité sur $(\mathbf{R}^k, \mathcal{B}^k)$; soit (P_θ) la famille exponentielle (d'ensemble des résultats Ω et ensemble des paramètres Θ) engendrée par P_0 , et soit b (application de \mathbb{R}^k dans $\mathbb{R} \cup \{+\infty\}$) la « fonction de cumul » de sa P_o-représentation canonique.

a. Démontrer que, en tout élément θ de l'intérieur Θ de Θ, la fonction b est dérivable à tous les ordres.

b. Pour tout $i \in \{1, \ldots, k\}$, on note π_i la projection de Ω ($\subset \mathbb{R}^k$) dans \mathbb{R} définie par :

$$(\forall (x_j)_{1 \leq j \leq k} \in \Omega) \qquad \pi_i((x_j)_{1 \leq j \leq k}) = x_i$$

 $(\ \forall\ (x_j)_{\ 1\leqslant j\leqslant k}\in\Omega) \qquad \pi_i((x_j)_{\ 1\leqslant j\leqslant k})=x_i \quad .$ Démontrer que, pour tout $\theta\in\Theta$ $(\theta=(\theta_j)_{\ 1\leqslant j\leqslant k}), \text{ on a les}$ résultats suivants :

— pour tout $i \in \{1, \ldots, k\}$, l'espérance mathématique de π_i par rapport à P_{θ} est égale à $\frac{\partial b}{\partial \theta}$ (0);

— pour tout $i \in \{1, \ldots, k\}$, la variance de π_i par rapport à P_{θ} est égale à $\frac{\partial^2 b}{\partial \theta^2}$ (0);

— pour tout couple $(i, j) \in \{1, \ldots, k\}^2$, tel que $i \neq j$, la covariance de π_i et π_j , par rapport à P_{θ} , est égale à $\frac{\partial^2 b}{\partial \theta_i \partial \theta_i}$ (0).

III. Estimation par maximum de vraisemblance.

Soit P_0 une probabilité sur $(\mathbf{R}^k, \iota \mathcal{B}^k)$; soit (P_0) la famille exponentielle (d'ensemble des résultats Ω et ensemble des paramètres Θ) engendrée par P_0 , et soit b (application de \mathbf{R}^k dans $\mathbf{R} \cup \{+\infty\}$) la « fonction de cumul » de sa P_0 -représentation canonique (voir II 1°). On suppose que Supp (P_0) n'est contenu dans aucun hyperplan.

On va étudier le problème de l'estimation, en un résultat ω , du paramètre θ par la méthode du maximum de vraisemblance.

1º On appelle fonction convexe à k dimensions toute application f de \mathbb{R}^k dans $\mathbb{R} \cup \{+\infty\}$ vérifiant :

$$(\forall (x^1, x^2) \in (\mathbb{R}^k)^2) \quad (\forall \lambda \in]0,1[)$$

$$f(\lambda x^1 + (1-\lambda)x^2) \leq \lambda f(x^1) + (1-\lambda)f(x^2),$$

 $f^{-1}(\mathbf{R}) \neq \emptyset$ $(f^{-1}(\mathbf{R}) \text{ est appelé le domaine de } f, \text{ et noté } \mathbf{D}_f).$

Si de plus la fonction convexe f vérifie :

$$(\forall (x^1, x^2) \in (\mathring{\mathbf{D}}_f)^2) \quad (\forall \lambda \in]0,1[) :$$

$$x^{1} \neq x^{2} \Rightarrow f(\lambda x^{1} + (1 - \lambda) x^{2}) < \lambda f(x^{1}) + (1 - \lambda) f(x^{2})$$
,

elle est dite stricte.

Démontrer que b est une fonction convexe stricte, de domaine O.

2º On rappelle qu'une fonction convexe f est continue sur $\mathring{\mathbf{D}}_f \cup \mathbf{C} \ \overline{\mathbf{D}}_f$; elle est dite fermée si elle est semi-continue inférieurement sur \mathbf{R}^k , c'est-à-dire vérifie : $(\forall x \in \mathbf{R}^k)$ $f(x) = \liminf_{k \to \infty} f(x')$.

(On rappelle que, pour que $l = \lim_{x' \to x} \inf f(x')$, il faut que :

$$(\forall l' < l) \quad (\exists \eta > 0) \quad (\forall x' \in \mathbf{R}^k) \quad [|x' - x| < \eta \Rightarrow f(x') \ge l'])$$

Cette condition équivaut aussi au fait, pour f, d'être enveloppe supérieure des fonctions affines qu'elle majore, c'est-à-dire que, pour tout $x \in \mathbf{R}^k$,

$$f(x) = \sup \left\{ \alpha \in \mathbf{R} ; \left(\exists y \in \mathbf{R}^k \right) \left(\forall x' \in \mathbf{R}^k \right) y . (x' - x) + \alpha \leqslant f(x') \right\}.$$

a. Démontrer que, pour qu'une fonction convexe f soit fermée, il suffit qu'elle vérifie :

$$(\forall x \in \mathbf{R}^k)$$
 $f(x) \leqslant \lim_{x' \to x} \inf f(x')$.

- b. Démontrer que b est une fonction convexe fermée.
- 3° Deux fonctions convexes fermées à k dimensions, f et g, sont dites compatibles si, et seulement si, elles vérifient :

$$(\forall (x,y) \in (\mathbf{R}^k)^2) \qquad f(x) + g(y) \geqslant x \cdot y .$$

- a. Démontrer que, pour toute fonction convexe fermée f, l'ensemble des fonctions convexes fermées compatibles avec f est non vide, et admet un plus petit élément, noté f^* .
- b. Démontrer que, pour toute fonction convexe fermée f, on a $(f^*)^* \leq f$.

Soit l une fonction affine; démontrer, en calculant l^* et $(l^*)^*$, que $l=(l^*)^*$.

En déduire que, pour toute fonction convexe fermée f, on a $(f^*)^* = f$.

On dit que deux fonctions convexes fermées f et g sont conjuguées si, et seulement si, elles vérifient $f^* = g$ (ce qui équivaut à $f = g^*$).

c. Démontrer que l'estimation du paramètre par maximum de vraisemblance, en l'observation $\omega \in \Omega$, est, s'il existe et est unique, l'élément θ de Θ tel que b (θ) + b^* (ω) = θ . ω .

 4° On sait que l'ensemble des paramètres Θ est égal à D_b , domaine de la fonction convexe b; le but de cette question est de comparer Ω , ensemble des résultats, et D_{b^*} , domaine de la fonction convexe b^* .

On note S la boule unité fermée de \mathbb{R}^k ; pour tout $x \in \mathbb{R}^k$ et tout $\delta > 0$, $x + \delta S$ désigne la boule fermée de centre x et rayon δ

$$x + \delta S = \{ x' \in \mathbf{R}^k \quad ; \quad |x' - x| \leq \delta \}$$

a. Nous allons démontrer que $D_{h_{\bullet}} \subset \Omega$.

Soit
$$x_0 \in {\bf C}_{{\bf R}^k}\Omega$$
.

Démontrer qu'il existe $y_0 \in S$, et $\alpha < 0$, tels que, pour tout $\omega \in \Omega$, on ait y_0 . ($\omega - x_0$) $\leq \alpha$.

Démontrer qu'on a :

$$\lim_{r \to +\infty} [(ry_0) \cdot x_0 - b(ry_0)] = +\infty.$$

En déduire

$$x_0 \notin D_{h^*}$$
.

b. Nous allons démontrer que $\stackrel{\circ}{\Omega} \subset D_{b^*}$.

Soit $\omega_0 \in \mathring{\Omega}$.

On rappelle que Ω est l'enveloppe convexe fermée de Supp (P_0) ; on admet qu'il en résulte qu'il existe Ω' , partie finie de Supp (P_0) , telle que ω_0 appartienne à l'intérieur de l'enveloppe convexe de Ω' .

Soit y un élément de \mathbb{R}^k de norme 1; on note :

pour tout $\omega' \in \Omega'$, on note $d(\omega', y)$ la distance de ω' à H(y)

$$(d(\omega', y) = \inf_{x \in H(y)} |\omega' - x|)$$

et on pose

$$d(y) = \min \left[\max_{\omega' \in K^{+}(y)} d(\omega', y) \right] , \max_{\omega' \in K^{-}(y)} d(\omega', y) \right] ;$$

Démontrer que dans ces conditions on a : d(y) > 0.

Soit
$$d_0 = \inf_{|y|=1} d(y)$$
; démontrer qu'on a : $d_0 > 0$.

Démontrer que, pour tout élément ω de Supp (P_σ) et tout $\delta>0$, on a : $P_\sigma(\omega+\delta\,S)>0$.

On pose :
$$\alpha = \inf_{\omega' \in \Omega'} P_o(\omega' + d_o S) .$$

Démontrer qu'on a : $\alpha > 0$.

Démontrer que, pour tout y de norme 1, on a : $P_0[K^+(y)] \geqslant \alpha$.

En déduire : $\omega_0 \in D_{b^*}$

c. Démontrer l'égalité $\mathring{\mathbf{D}}_{b^*} = \mathring{\mathbf{\Omega}}$.

50 On appelle sous-gradient, en un point $x \in \mathbb{R}^k$, de la fonction

convexe à k dimensions f, la partie de \mathbf{R}^k .

$$\partial f(x) = \{ y \in \mathbb{R}^k \quad ; \quad (\forall x' \in \mathbb{R}^k) \qquad f(x') \geqslant f(x) + y \cdot (x' - x) \}.$$

a. Soit $(x, y) \in (\mathbb{R}^k)^2$, et soit (f, g) un couple de fonctions convexes fermées à k dimensions, conjuguées. Démontrer l'équivalence des 3 propositions suivantes :

$$y \in \partial f(x)$$
,
 $f(x) + g(y) = x \cdot y$,
 $x \in \partial g(y)$.

En déduire une condition nécessaire et suffisante d'existence, en $\omega \in \Omega$, d'une estimation du paramètre par maximum de vraisemblance.

b. Une fonction convexe fermée à k dimensions est dite douce si, et seulement si, en tout $x \in \mathbf{R}^k$, $\partial f(x)$ a au plus un élément; on admettra que cette condition équivaut au couple de conditions suivantes :

```
pour tout x \notin \overset{\circ}{\mathbf{D}}_f, \Im f(x) = \varnothing,
pour tout x \in \overset{\circ}{\mathbf{D}}_f, f est dérivable en x et, df(x) dénotant le gradient de f en x, on a \Im f(x) = \{df(x)\}.
```

Démontrer que, si la fonction convexe fermée f est stricte et douce, il en est de même de f^* (on pourra démontrer, à chaque fois par l'absurde, que f^* est douce, puis que f^* est stricte).

c. On suppose que la fonction b est douce.

Démontrer qu'alors l'estimation par maximum de vraisemblance n'est pas définie aux points ω appartenant à la frontière de Ω , est définie en tout point ω appartenant à Ω , et vaut $db^*(\omega)$ (dire quelle est alors l'espérance mathématique, par rapport à

6º Pour chacun des exemples étudiés en II 2º, on demande de :

 $P_{db^*(\omega)}$, de chacune des projections π_i $(1 \le i \le k)$ (voir II 3°)).

- a. s'assurer que la fonction de cumul est douce,
- b. calculer la fonction $(b')^*$,
- c. préciser Ω' et donner la valeur, pour tout $\theta' \in \Theta'$, de $P'_{\theta'}$ (Ω') ,
- d. calculer, en tout $\omega' \in \Omega'$, la valeur de l'estimation par maximum de vraisemblance.