Homework 2

1) Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition:

PDE:
$$u_t = ku_{xx}$$
, BC: $u(0,t) = u(L,t) = 0$, IC: $u(x,0) = f(x)$

- (a) Suppose k = 0.2, L = 1, and $f(x) = 180x(1-x)^2$. Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution
- (b) What happens to the solution as $t \to \infty$? Explain your answer in light of (a) and the physical interpretation of the problem. Does (b) reflect this?
 - (c) Redo parts (b) and (c) for $k = 01, L = \pi$, and $f(x) = 2\cos 3x$
- 2) Consider the one dimensional wave equation with boundary conditions and initial conditions:

PDE:
$$u_{tt} = c^2 u_{xx}$$
, BC: $u(0,t) = u(L,t) = 0$, IC: $u(x,0) = f(x)$ $u_t(x,0) = g(x)$.

- (a) Suppose $c = 1, L = 1, f(x) = 180x^2(1-x)$, and g(x) = 0. Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution
- (b) What happens to the solution as $t \to \infty$? Explain your answer in light of (a) and the physical interpretation of the problem. Does (b) reflect this?
 - (c) Redo parts (b) and (c) for $c = 1, L = \pi, f(x) = 2\sin 3x$, and g(x) = 1 x
- 3) (a) Show that $u(x,t) = (x+t)^3$ is a solution of the wave equation $u_{tt} = u_x x$.
 - (b) What initial condition does u satisfy?
 - (c) Plot the solution surface.
 - (d) Using (c), discuss the difference between the conditions u(x,0) and u(O,t).

4) In class (see page 138 of your text), we have proved that the solution of the one-dimensional wave equation

PDE:
$$u_{tt} = c^2 u_{xx}$$
, BC: $u(0,t) = u(L,t) = 0$, IC: $u(x,0) = f(x)$ $u_t(x,0) = g(x)$

is given by

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi ct}{L}\right) \right).$$

Use trigonometric identities to show that this can be expressed as

$$u(x,y) = R(x - ct) + S(x + ct),$$

where R and S are functions of one variable.

5) Consider a slightly damped vibrating string that satisfies

PDE:
$$u_{tt} = c^2 u_{xx} - \beta u_t$$
, BC: $u(0,t) = u(L,t) = 0$, IC: $u(x,0) = f(x)$ $u_t(x,0) = g(x)$.

Use separation of variables to determine the solutions. You may assume that $\beta < \frac{2\pi c}{L}$.

6) Write a computer program that numerically computes solutions of the heat equation with initial temperature given in Fig 6.3.4 (page 228 of your text). We may assume k=1 and L=1. Use your program to compute solution out to 10 steps in time, i.e. $m=0,1,\cdots 10$ for different values of s:

(a)
$$s = 0.49$$
 (b) $s = .50$ (c) $s = .52$.

Discuss stability based on these values of s.

7) Write a computer program that numerically computes solutions of the wave equation with

BC:
$$u(0,t) = u(1,t) = 0$$
, IC: $u(x,0) =\begin{cases} 1 & \frac{1}{4} < x < \frac{3}{4} \\ 0 & \text{else} \end{cases}$ $u_t(x,0) = 0$.

We may assume c=1. Use your program to compute solution out to 10 steps in time, i.e. $m=0,1,\cdots 10$ for different values of Δx and Δt :

(a)
$$\Delta t = \frac{\Delta x}{2}$$
 (b) $\Delta t = \Delta x$ (c) $\Delta t = 2\Delta x$.