Minimum Wages and Informal Self-Employment: Evidence from Perú

Paúl J. Corcuera

Universidad de Piura

March 13th, 2025

- 1. Minimum wage can reduce monopsony power and improve efficiency
 - (i) Raise wages and employment (Manning, 2003; Autor et al., 2016; Azar et al., 2023)
 - (ii) Firms raise wages as response to competitors (Engborn & Moser, 2023)
 - (iii) Reallocate employment from low to high productivity firms (Dustmann et al., 2022)
- 2. Minimum wage can *redistribute* resources from firm owners to low-wage individuals (Cengiz et al., 2019; Giupponi et al., 2024; Berger et al., 2024)
- 3. Developing countries are characterized by a large informal sector
 - ✓ "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)
 - ✓ Do the efficiency and redistribution channels work in the same way?

- 1. Minimum wage can reduce monopsony power and improve efficiency
 - (i) Raise wages and employment (Manning, 2003; Autor et al., 2016; Azar et al., 2023)
 - (ii) Firms raise wages as response to competitors (Engbom & Moser, 2023)
 - (iii) Reallocate employment from low to high productivity firms (Dustmann et al., 2022)
- 2. Minimum wage can *redistribute* resources from firm owners to low-wage individuals (Cengiz et al., 2019; Giupponi et al., 2024; Berger et al., 2024)
- 3. Developing countries are characterized by a large informal sector
 - ✓ "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)
 - ✓ Do the efficiency and redistribution channels work in the same way?

- 1. Minimum wage can reduce monopsony power and improve efficiency
 - (i) Raise wages and employment (Manning, 2003; Autor et al., 2016; Azar et al., 2023)
 - (ii) Firms raise wages as response to competitors (Engbom & Moser, 2023)
 - (iii) Reallocate employment from low to high productivity firms (Dustmann et al., 2022)
- 2. Minimum wage can *redistribute* resources from firm owners to low-wage individuals (Cengiz et al., 2019; Giupponi et al., 2024; Berger et al., 2024)
- 3. Developing countries are characterized by a large informal sector
 - ✓ "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)
 - ✓ Do the efficiency and redistribution channels work in the same way?

- 1. Minimum wage can reduce monopsony power and improve efficiency
 - (i) Raise wages and employment (Manning, 2003; Autor et al., 2016; Azar et al., 2023)
 - (ii) Firms raise wages as response to competitors (Engborn & Moser, 2023)
 - (iii) Reallocate employment from low to high productivity firms (Dustmann et al., 2022)
- 2. Minimum wage can *redistribute* resources from firm owners to low-wage individuals (Cengiz et al., 2019; Giupponi et al., 2024; Berger et al., 2024)
- 3. Developing countries are characterized by a large informal sector
 - ✓ "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)
 - ✓ Do the efficiency and redistribution channels work in the same way?

Answer: No, the size of informal sector reduces the efectiveness on both fronts

This paper

Q1. Is the informal sector key to understand the labor market impacts of the MW in developing countries?

- ► Firms' response to minimum wage increases
- Impact on workers employment and wage prospects
- Q2. Does this policy makes some workers or households worse-off?
- ► Estimate changes in expenses and income (i.e., purchasing power)
- ► Separate redistributional analysis for formal workers and households

Contribution

1. Minimum Wage

- Minimum wage impacts on labor market outcomes (Dustmann et al., 2022; Engbom & Moser, 2022; Azar et al., 2024)
- Minimum wage and firms margins of response (Harastozi & Lindner, 2019)
- Minimum wage and redistribution (Cengiz et al., 2019; Berger et al., 2024)

Empirical Contribution: Analysis encompassing all of these in a developing country

2. Informality in Labor Markets

- Theories of informality (Meghir et al., 2015; Ulyssea, 2019; Haanwinckel, 2024)
- Informality and concentration in labor markets (Amodio et al., 2023)

Theoretical Contribution: Novel framework of oligopsony + involuntary self-employment

Today's Talk

1. Conceptual Framework

- 2. Institutional Setting & Data
- 3. Effects of minimum wage on formal firms

- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners and losers

Monopsony 101: The labor market of store clerks

In the standard model $mc_C = \frac{1+\epsilon^*}{\epsilon^*} w(n_C)$, and $\epsilon^* := \frac{\partial \log n_C}{\partial \log w_C}$ is constant.

Oligopsony 101: The labor market of store clerks

It still holds that $mc_C = \frac{1+\epsilon^*}{\epsilon^*} w(n_C)$, but ϵ^* decreases with employment concentration.

*Source: Berger et al., 2023

Key Idea 1: Informal sector makes labor mkt more competitive

In the peruvian context, the informal sector concentrates $\approx 70\%$ of employment!

^{*}Figure based on Berger et al., 2023

Key Idea 2: Min wages more likely to descale least productive firms

Case A. A low minimum wage

There's a very thin margin where the min. wage expands employment in the corner store.

*Source: Berger et al., 2023

Key Idea 2: Min wages more likely to descale least productive firms

Case B. A high minimum wage

This is much more likely to happen, instead.

*Source: Berger et al., 2023

Key Idea 3: Excess supply driven towards informal self-employment

Workers*

 \blacktriangleright Heterogeneity: Efficiency units (ε)

Firms*

- ightharpoonup Choose a threshold $\underline{\varepsilon}_i$ and employment $\ell_j(w_j)$ that maximize profits
- ▶ Only hire workers such that $\varepsilon > \underline{\varepsilon_j}$

Consequences

- ightharpoonup As minimum wage increase, firms "raise the bar" $\underline{arepsilon_j}$
- ▶ Workers with $\varepsilon < \underline{\varepsilon_i} \forall j$ are involuntarily self-employed

Today's Talk

1. Conceptual Framework ✓

2. Setting and Data

3. Effects of minimum wage on formal firms

4. Effects of minimum wage on formal workers

5. Redistribution analysis: Winners and losers

MW has large bite and its timing is mostly politically driven

In the Peruvian context, informal sector \approx informal self-employment

In the Peruvian context, informal sector \approx informal self-employment

Data Sources

- Employer-Employee Dataset (Planilla Electrónica) 2015-2019
 - ✓ Universe of formal sector firms
 - ✓ Allows to follow worker labor market outcomes (wages, occupation, sector, hours) and firms over time
- Firm-level Census (Encuesta Económica Anual) 2014-2018
 - ✓ Census of medium and large formal firms
 - ✓ Contains detailed information on firms' balance sheet
 - √ Fuzzy matched to employer-employee data
 ► Construction
- ► Household Survey (Encuesta Nacional de Hogares) 2014-2018
 - ✓ Annual survey of households, representative at national/state level (cross-sec & panel)
 - ✓ Detailed information on working status (employed/self-emp/formal/informal), industry, occ, hh-level consumption

Today's Talk

1. Conceptual Framework ✓

2. Setting and Data ✓

3. Effects of minimum wage on formal firms

- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners and losers

Empirical Strategy I: Firm Approach (Harasztosi & Lindner, 2019)

- ightharpoonup FA_j: fraction of workers earning below the new minimum wage in February 2016.
- Estimate the following model:

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \mathsf{FA}_j + \gamma_t X_{jt} + u_{jt} \tag{1}$$

- ▶ **ID Assumption:** the outcomes in low versus high exposed firms would have followed similar trends in absence of a minimum wage increase.
- ▶ To explore the salience of informal sector I interact the model above with a firm-specific measure of informality exposure (FI_j) :
 - Informal occupation: above median of the share of workers under informality status
 - \blacksquare Fl_j: fraction of low-wage workers in the firm that are in informal occupations

Empirical Strategy I: Firm Approach (Harasztosi & Lindner, 2019)

- ightharpoonup FA_j: fraction of workers earning below the new minimum wage in February 2016.
- Estimate the following model:

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \mathsf{FA}_j + \gamma_t X_{jt} + u_{jt} \tag{1}$$

- ▶ **ID Assumption:** the outcomes in low versus high exposed firms would have followed similar trends in absence of a minimum wage increase.
- ► To explore the salience of informal sector I interact the model above with a firm-specific measure of informality exposure (Fl_j) :
 - Informal occupation: above median of the share of workers under informality status
 - \blacksquare Fl_j: fraction of low-wage workers in the firm that are in informal occupations

Effect on Employment and Average Wage

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{\text{MW in 2016}} + \gamma_t X_{jt} + u_{jt}$$
Fraction below MW in 2016

Linearity of FA (employment)

► Linearity of FA (wage)

Effect on Employment and Average Wage

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{t} + \gamma_t X_{jt} + u_{jt} \quad \Longrightarrow \quad \text{own-wage elasticity} = -0.85!$$

▶ Linearity of FA (employment)
▶ Linearity of FA (wage)

Employment effects

Wage effects

Effects by Informality

$$\frac{y_{jt}-y_{j2016}}{y_{j2016}} = \alpha_t^0 + \alpha_t^1 \mathsf{FA}_j + \beta_t^0 \mathsf{FA}_j + \beta_t^1 \underbrace{\mathsf{FI}_j}_{} + \beta_t \mathsf{FA}_j \times \mathsf{FI}_j + \gamma_t X_{jt} + \epsilon_{jt}$$
 Fraction informal occupation in 2016

Today's Talk

1. Conceptual Framework ✓

2. Setting and Data ✓

3. Effects of minimum wage on formal firms \checkmark

- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners and losers

Empirical Strategy II: Worker approach (Dustmann et al., 2022)

- ▶ Split workers into 15 earnings bins (100 PEN width)
- ► Compare changes before minimum wage (2015 vs 2016) to changes after minimum wage (2016 vs 2017)
- Estimate the following model:

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{ earnings_{i,t-1} \in bin_b \}$$

$$+ \sum_{b=1}^{15} \delta_b \mathbf{1} \{ earnings_{i,t-1} \in bin_b \} \times \mathbf{1} \{ t = 2017 \} + \beta X_{i,t-1} + \epsilon_{i,t}$$

▶ ID Assumption: macroeconomic time effects and mean reversion are stable over time.

Effects on Employment and Wage

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{ earnings_{i,t-1} \in bin_b \}$$
$$+ \sum_{b=1}^{15} \delta_b \mathbf{1} \{ earnings_{i,t-1} \in bin_b \} \times \mathbf{1} \{ t = 2017 \} + \beta X_{i,t-1} + \epsilon_{i,t}$$

Wage Effects (conditional on employment)

Employment Effects

Effects by Informality

Compare workers in informal occupations vs those who are not

I also provide evidence that the size of the formal sector is indeed reduced. • Evidence

Today's Talk

1. Conceptual Framework ✓

2. Setting and Data ✓

- 3. Effects of minimum wage on formal firms \checkmark
- 4. Effects of minimum wage on formal workers \checkmark
- 5. Redistribution analysis: Winners and losers

Change in expenses due to minimum wage $\left(\frac{\Delta}{\underline{w}}$ Expenses $\right)$

 \times Share of consumption in MW-produced goods \times Total Expenses

- $ightharpoonup \Delta$ Labor Cost: use firm approach on firm balance sheet data (pprox 12.3%) ightharpoonup
- ► Pass-through: use firm approach on the decomposition Table

$$\frac{\Delta LaborCost}{Revenue2016} = \underbrace{\frac{\Delta Revenue}{Revenue2016} - \frac{\Delta Material}{Revenue2016} - \frac{\Delta MiscItems}{Revenue2016} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{\text{Firm Owners Pay } (\approx 2 \text{ %})} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{\text{Firm Owners Pay } (\approx 2 \text{ %})}$$

Changes in Income due to minimum wage $\left(\underset{w}{\Delta} \text{Income} \right)$

$$\frac{\Delta}{w}$$
Income $\frac{\Delta}{w}$ • Alt. Approach

 Δ Income = Percentage Change in Income imes Initial Income

where the pct change in income is given by

$$\frac{\Delta I_b}{w_b} := \frac{\Delta w_b}{w_b} + \underbrace{\frac{(w_b^{\mathsf{inf}} - w_b)}{w_b}}_{\mathsf{Worker approach}} + \underbrace{\frac{\Delta \mathbf{Prob}_b(\mathsf{become informal})}{w_b}}_{\mathsf{Worker approach}}$$

Redistribution analysis by worker earnings bins (in monthly PEN)

Baseline bin $t-1$	[650, 750)	[750, 850)	[950, 1050)	[1050, 1150)	[1150, 2050)	[2050, max)	
Panel A. Income Change							
Mean formal wage	746	818	903	1,001	1,479	2,630	
Δ Income	82.06	65.44	45.15	40.04	29.58	0.00	
Panel B. Expenses Change	•						
Mean per capita expenses	590	643	700	613	792	1379	
Δ Expenses	16.35	17.82	20.25	17.73	22.91	43.22	
ΔIncome - ΔExpenses	65.71	47.62	25.25	22.31	6.67	-43.22	

Redistribution analysis by household income deciles (in monthly PEN)

HH income decile	1	2	3	4	5	6	7	8	9	10
Panel A. Income Change										
Prop. formal employment	0.01	0.03	0.11	0.19	0.26	0.34	0.46	0.60	0.72	0.82
Prop. formal employment near MW	0.00	0.02	0.05	0.1	0.13	0.15	0.19	0.21	0.22	0.15
Mean formal wage near MW	1	7	40	128	242	316	462	570	705	586
Δ Income	0.00	0.42	2.40	7.68	14.52	18.96	27.72	34.20	42.30	35.16
Panel B. Expenses Change										
Mean expenses	639	732	991	1,206	1,485	1,786	2,069	2,466	2,964	4,801
Δ Expenses	12.32	16.76	23.89	30.52	39.38	47.36	57.36	68.36	85.74	156.25
ΔIncome - ΔExpenses	-12.32	-16.34	-21.49	-22.84	-24.86	-28.40	-29.64	-34.16	-43.44	-121.09

Conclusion

- 1. Informal sector shapes the response to the minimum wage:
 - ✓ Reduce market power in formal sector, thus making markets more competitive
 - ✓ Increasing min wages is more likely to descale the least productive firms.
 - Excess supply is not reallocated to more productive firms
 - ✓ Consistent with a model of oligopsony and involuntary self-employment
- 2. There are some winners and losers
 - ✓ Purchasing power of rich individuals decreases
 - ✓ Purchasing power of low-wage formal workers increases (mostly in the middle-class)
 - ✓ Purchasing power of low-income household decreases (but very little)
- 3. Min wages are not that effective, but also not hurtful to the poor. They do transfer resources from rich households towards the middle class.

Thank you!

paulj.corcuera@udep.edu.pe

rriarinty

Appendix

Who are the most affected firms?

	Quartiles of FA_j in 2016			
	Q1	Q2	Q3	Q4
Lima	0.47	0.41	0.38	0.39
Avg Wage (PEN)	2480.81	1693.09	1170.64	888.55
Number of Workers	129.60	157.78	127.36	16.20
Firm Age	16.03	14.44	11.53	9.39
Manufacture	0.18	0.21	0.19	0.22
Commerce	0.35	0.31	0.30	0.31
Services	0.04	0.06	0.12	0.15
Observations	5,875	5,908	5,849	5,845

Who are the MW workers?

	Earnings bin in 2016 (PEN)			
	$650 < y_{t-1} \le 850$	$850 < y_{t-1} \le 1250$	$1,250 < y_{t-1} \le 3,250$	
Lima	0.14	0.18	0.18	
Female	0.42	0.38	0.27	
By education				
Share low skilled	0.05	0.05	0.03	
Share medium skilled	0.48	0.50	0.44	
Share high skilled	0.47	0.45	0.53	
By age				
Share less than 24	0.09	0.08	0.02	
Share 24-44	0.63	0.72	0.76	
Share 45-65	0.27	0.19	0.22	
By contract				
Permanent	0.36	0.22	0.30	
Part-time	0.02	0.01	0.01	

Is the relationship approx. linear?

Figure 6: Linearity of FA measure

Is the relationship approx. linear?

Figure 7: Linearity of FA measure

Own-wage elasticity in recent literature

Small gains from reallocation

Figure 8: Wage and reallocation effects of the minimum wage

Who pays for the MW? (Macurdy, 2015)

Compute how much is industry s exposed to the MW

$$e_s = (I - BU)^{-1} B \frac{\text{wagebill}_s^{MW}}{\text{wagebill}_s} \times \frac{2}{3}$$

- lacksquare B(i,j): share of commodity j produced by industry s
- lacksquare U(i,j): share of commodity j used by industry s
- Using budget information in ENAHO, I match every product to a particular industry that produces it
- Compute the following measure

Sh. cons produced by MW workers $=\sum$ share of expenses in s imes e_s

Who pays for the MW? (Macurdy, 2015)

- 1. Obtain place effects: $\ln w_{it} = \frac{\ln \lambda_{r(i,t)}}{\ln w_{it}} + \theta_t + X'_{it}\beta + u_{it}$
- 2. Obtain skill levels $w_{it}^* = \exp(\ln w_{it} \ln \lambda_{r(i,t)})$
- 3. $\Delta\%$ Employment in low-wage regions compared to those of same *skill level* at high-wage regions

Firm design on balance sheet data (1806)

- Cannot directly compute fraction affected in firm-level census
- ► Share common variables with employer-employee data: employment counts (by gender, contracts) and average wage cost per worker
- ▶ Regression forest using random 75% sample of employer-employee obs as training data to predict FA_i on firm-level census

Expenses - Firms' margins of adjustment (excl. closures)

 		(311311	, ,		
	2015 and 2016	2015 and 2017	2015 and 2014		
Panel A. Change in total labor cost					
Fraction affected	0.123	0.219	0.031		
	(0.039)	(0.051)	(0.022)		
Panel B. Change in revenue					
Fraction affected	0.074	0.051	0.011		
	(0.036)	(0.046)	(0.027)		
Panel C. Change in materials	5				
Fraction affected	0.079	-0.140	-0.147		
	(0.152)	(0.176)	(0.151)		
Panel D. Change in capital					
Fraction affected	0.135	0.165	0.006		
	(0.068)	(0.087)	(0.055)		
Panel E. Change in profits (relative to revenue in 2015)					
Fraction affected	-0.002	-0.006	-0.008		
	(0.010)	(0.012)	(800.0)		
Observations	3,440	3,185	4,343		
Controls	Yes	Yes	Yes		

Expenses - Incidence of the MW (Back)

Fraction paid by firm owners (percent)

	Changes 2016	Changes 2017
Change in total labor cost relative to revenue in 2015	0.0243	0.0327
Ch in revenue rel to revenue in 2015 ($\Delta Revenue$)	0.0757	0.0614
Ch in materials rel to revenue in 2015 (Δ Material)	0.0065	-0.0028
Ch in miscitems rel to revenue in 2015 ($\Delta MiscItems$)	0.0453	0.0442
Incidence on consumers ($\Delta Rev - \Delta Mat - \Delta MiscItems$)	0.0239	0.02
Ch in profits rel to revenue in 2015 ($\Delta Profit$)	-0.0007	-0.0095
Ch in depreciation rel to revenue in 2015 ($\Delta Depr$)	0.0004	-0.0032
Incidence on firm owners (- $\Delta Profit$ - $\Delta Depr$)	0.004	0.0127
Fraction paid by consumers (percent)	98.35	61.12

1.65

38.88

Alternative Income Change

- 1. Fit a model that predicts how much a formal employee at t-1 would earn in the informal sector at t
- 2. Impute observations that correspond to non-employment in EE data
- 3. Re-run the worker approach

Income in the Informal Sector

Figure 10: Changes in Income for Informal Workers

MW Consumption around MW increase

Laspeyre Prices from Survey Data

Figure 12: Change in food price index

Laspeyre Prices from Balance Sheet Data

Compare provinces with high vs low presence of informality

Effects on Output Price (Manufacture)

Transportation & Communication

