The Entity-Relationship Model

Davood Rafiei

Original material Copyright 2001-2019 (some material from textbooks and other instructors)

Database Design Process

ER Model Overview

- Developed by Peter Chen in the mid 70's
- Used for the design of conceptual schema.
- The "world" is described in terms of
 - entities
 - relationships
 - attributes
- The model is visualized by creating an ER diagram.

- Entity: a distinguishable object
 - e.g. person, thing, concept
- Entity set: a set of entities of the same type.
- Examples of entity sets:
 - students registered at UofA
 - cars currently registered in Alberta
 - flights offered by Air Canada
- Graphical representation:

students

cars

flights

- Relationship: represents the fact that certain entities are related to each other.
 - e.g. John has taken CMPUT 291.
- Relationship set: set of relationships of the same type.
- Examples of relationship sets:
 - students enrolled in courses
 - cars registered to owners
 - passengers booked on flights
- Graphical representation:

- Attribute: describes a property of an entity or a relationship.
- Attributes of entities examples
 - student: id, name, major, ...
 - car: VIN, year, model, ...
 - flight: No, source, destination, ...
- Graphical representation:

- Key: a minimal set of attributes that uniquely identifies each entity in an entity set.
- Attributes of relationships examples
 - student enrolled in a course: year, semester, grade
 - book on loan: loan date, due date

Examples

- Role: the function of an entity set in a relationship set.
- Role labels are needed whenever an entity set has multiple functions in a relationship set.

Constraints and Complications

- Key constraints
 - in binary relationships:
 binary relationship types

- in general relationships
- Participation constraints
- Set-valued attributes
- Weak entities
- ISA hierarchies

Binary Relationship Types: Many-to-Many

Constraint: none.

 Each employee can be in relationships with many projects and vice versa.

Binary Relationship Types: Many-to-One

Constraint: each employee works in at most one department.

 Given an employee, we can uniquely identify the department he/she works in.

Binary Relationship Types: One-to-One

 Constraint: each employee can manage at most one department and each department is managed by at most one employee.

 Each employee can be in relationship with at most one department and vice versa.

Ternary Relationships

- Meaning: Supplier s supplies part p for project r
- Can we represent this using binary relationships?
- Complication: add the Constraint "each part in each project is supplied by a unique supplier"
 - i.e. each part and each project together are in relationship with at most one supplier.

Participation Constraints

- Let's force each project to have a supervisor.
 - This is a <u>participation constraint</u>: the participation of Projects in Supervises is said to be *total* (vs. partial).
 - ✓ Every pid value in Projects must be in a "supervises" relationship with a sin of an employee (i.e., sin cannot be null)

Set-Valued Attributes

- Each employee can have one or more hobby.
 - Attribute value can be a set (in contrast to relational model)
 - E.g. (12345, Joe, (hockey, music))

- Other complex attributes
 - Not discussed

Weak Entities

- A weak entity models an entity which is "part-of" an owner entity, and it cannot be uniquely identified without the primary key of the owner entity.
 - Relationship is one-to-many (one owner, many weak entities).
 - Weak entity set has total participation in the identifying relationship set.

Weak Entities

ISA Hierarchy

Consider forming a new entity set as the union of two or more entity sets.

Professors

Attributes and relationships common to all lower-level entity sets are moved to the higher-level entity set.

ISA Hierarchy (cont.)

 Also consider forming a derived entity set by taking a subset of a given entity set.

We did a specialization

Properties of ISA

- Inheritance
 - Attributes of supertype are attributes of subtype
 - Key of supertype is key of subtype
 - Relationships of supertype are relationships of subtype
- Transitivity Hierarchy of IsA
 - Undergard student is subtype of Student, Student is subtype of Person, so Undergard student is also a subtype of Person
- Reasons for using ISA:
 - Makes ER diagram more concise and readable.
 - Common attributes/relationships need not be repeated.

ISA Constraints

Covering constraints:

Does every *Students* entity also have to be a *Graduates* or an *Undergrads* entity? (default:no)

 Overlap constraints: Can Joe be a Graduates as well as an Undergrads entity? (default:disallowed)

Conceptual Design Using the ER Model

Design choices:

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- Identifying relationships: binary or ternary?

Entity vs. Attribute

- Should address be an attribute (of Students) or an entity (connected to Students by a relationship)?
- Depends on (a) its use and (b) its relationships with other entities.
 - is it an object that we want to keep information about (independent of Students)?
 - does it participate in a relationship with an entity other than students?
 - are there many students with no addresses?
 - can several students share the same address?
- A positive answer to one or more of those questions implies address better be modeled as an entity.

Entity vs. Attribute (Contd.)

- Compare & contrast
- Can an employee work in two or more shifts in the same department?
 - first diagram: No
 - second diagram: Yes

We have made up an entity called Shifts!

Entity vs. Relationship

Compare & contrast

Binary vs. Ternary Relationships

- Can we represent this using binary relationships?
 - ✓ supplier s "supplies" part p,
 - ✓ part p "used_in" project r, and
 - ✓ Supplier s "supplies_to" project r
 - No combination of binary relationships implies that part p supplied by supplier s is used in project r.
 - Not clear how to record qty?

Binary vs. Ternary Relationships

Suppliers

qty

Projects

Supplies

Parts

- Now add the constraint: each part is supplied by a unique supplier.
 - not possible!
 - An arrow from supplies to supplier would mean each parts/projects pair is in relationship with at most one supplier!

What is the additional constraint here?

Work Out!

- Model the following in ER:
 - Canada Posts has for each employee a name, a phone number, and an employee id.
 - For each delivery employee, a cell number is also kept.
 - Each postal code in the city has a community name and a designated delivery employee.

ER Review

Basics:

- entities,
- relationships,
- attributes

emp

name

- Additions:
 - key constraint
 - participation constraint
 - Set-valued attributes
 - weak entities
 - isa hierarchy

dependent

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities and ISA hierarchies.

Summary of ER (Contd.)

- Constraints play an important role in determining the best database design for an enterprise.
 - Several kinds of integrity constraints can be expressed in the ER model.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
- ER design is subjective. There are often many ways to model a given scenario!

ER Exercise

- Professors have a SIN, a name, an age, a rank, and a research specialty.
- Projects have a project number, a sponsor name (e.g. NSERC), a starting date, an ending date, and a budget.
- Graduate students have a SIN, a name, an age, and a degree program (e.g. MS or PhD)
- Each project is managed by one professor (principal investigator).
- Each project is worked on by one or more professors (co-investigators).
- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (research assistants).
- When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- Departments have a department number, a department name, and a main office.
- Departments have a professor (chairman) who runs the department.
- Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.

