Hofstadter butterfly in transistion metal dichalcogenide monolayers

Presenter
Tran Khoi Nguyen ¹

 $\begin{array}{c} \textit{Supervisors} \\ \textit{Dr. Huynh Thanh Duc} \ ^2 \end{array}$

¹University of Science, Ho Chi Minh city

²Institute of Applied Mechanics and Informatics

Jul, 2025

Table of Contents

- Overview
- 2 Method
 - Three-band tigh-binding model without magnetic field
 - Three-band tigh-binding model under a magnetic field
 - Landau levels
 - Quantum Hall effect
- Summary and Outlook

Overview

Group VI-B Transition Metal Dichalcogenides (TMD) are compound semiconductors of the type MX_2

Figure: Transition metal dichalcogenides compound. Top view of monolayer MX_2 . The large sphere is M atom and the small sphere is X.

Transition Metal Dichalcogenides Monolayers

- One M layer sandwiched by two X layers as show in top view (a) and side view (b)
- They have the inverse

Three-band tigh-binding model under a magnetic field

Figure: Magnetic unit cell for TMD monolayers.

Landau levels

Classical Hall effect

Summary:

- We confirm the Hofstadter butterfly in this model corrected compared to previous study.
- ullet From three-band TB + magnetic field o QHE.

Further research:

- High Harmonic Generation
- High-order Side-band Generation
- Photovoltaic effect

Thank you for your listening.