Lecture 39

Simple Linear Regression: ANOVA & Coefficient of Determination

STAT 8010 Statistical Methods I December 4, 2019 Simple Linear
Regression: ANOVA
& Coefficient of
Determination

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

Whitney Huang Clemson University

- Suppose $Y = \beta_0 + \beta_1 X + \varepsilon$, where $\beta_0 = 3$, $\beta_1 = 1.5$ and $\sigma^2 \sim N(0,1)$
- We take 100 random sample each with sample size 20
- We then construct the 95% CI for each random sample (⇒ 100 CIs)

Simple Linear
Regression: ANOVA
& Coefficient of
Determination

Confidence Intervals vs. Prediction Intervals

Simple Linear Regression: ANOVA & Coefficient of Determination

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Simple Linear Regression: ANOVA & Coefficient of Determination

Review of Last Class

Partitioning Total Sums of Squares

Simple Linear Regression: ANOVA & Coefficient of

Review of Last Class

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The **total mean square** is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

• "Larg" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large" ⇒ Y_i's vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

ANOVA Table and F test

Source	_	SS	MS
Model		$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	
Error		$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Total	n – 1	$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$	

- Goal: To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1 = 0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

F Test: $H_0: \beta_1 = 0$ **vs.** $H_a: \beta_1 \neq 0$

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq F value Age 1 2724.50 2724.50 130.01

Residuals 13 272.43 20.96 Pr(>F)

3.848e-08 ***

Age 3.848e-08 **

Null distribution of F test statistic

Simple Linear Regression: ANOVA & Coefficient of Determination

Tieview of Last Glass

Review of Last Class

(ANOVA) Approach to Regression

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq

Age 1 2724.50 2724.50

Residuals 13 272.43 20.96

F value Pr(>F)

Age 130.01 3.848e-08

Parameter Estimation and T-Test

Coefficients:

Correlation and Simple Linear Regression

• Pearson Correlation:
$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- $-1 \le r \le 1$ measures the strength of the **linear** relationship between Y and X
- We can show

$$r = \hat{\beta}_1 \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}},$$

this implies

$$\beta_1 = 0$$
 in SLR $\Leftrightarrow \rho = 0$

Simple Linear
Regression: ANOVA
& Coefficient of
Determination

 Defined as the proportion of total variation explained by SLR

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

• We can show $r^2 = R^2$:

$$r^{2} = \left(\hat{\beta}_{1,LS} \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}\right)^{2}$$

$$= \frac{\hat{\beta}_{1,LS}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{\text{SSR}}{\text{SST}}$$

$$= R^{2}$$

Tiorion of Edot Glado

Analysis of Variance (ANOVA) Approach to Regression

- > summary(fit)\$r.squared
- [1] 0.9090967
- > cor(Age, MaxHeartRate)
- [1] -0.9534656

Interpretation:

There is a strong negative linear relationship between MaxHeartRate and Age. Furthermore, $\sim 91\%$ of the variation in MaxHeartRate can be explained by Age.

Residual Plot Revisited

- ⇒ Nonlinear relationship
 - Transform X
 - Nonlinear regression

- ⇒ Non-constant variance
 - Transform Y
 - Weighted least squares

Simple Linear Regression: ANOVA & Coefficient of Determination

Review of Last Class

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Simple Linear
Regression: ANOVA
& Coefficient of
Determination

Review of Last Class

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

Summary

Simple Linear Regression: ANOVA & Coefficient of Determination

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

In this lecture, we learned ANOVA Approach to Regression and Coefficient of Determination

Next time: Review