

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190908003

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 6.0 inch smartphone

Model No.: Eternity G60

Trade mark: Hyundai

FCC ID: 2AIOHHT3G60

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Aug., 2019

Date of Test: 21 Aug., to 17 Oct., 2019

Date of report issued: 22 Oct., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	22 Oct., 2019	Original

Tanet Wei Date:
Test Engineer

Date:

Date: 22 Oct., 2019 Tested by:

Reviewed by: 22 Oct., 2019

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 2 of 55

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
- 5		NERAL INFORMATION	
J	5.1	CLIENT INFORMATION	
	5.1	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	46
7	TES	ST SETUP PHOTO	54
0	E117	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 **Test Method:** ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc	
Address:	800 E Dyer Road Santa Ana, CA 92705 United States	
Manufacturer/ Factory:	Shen Zhen Cheng Fong Digital-Tech Limited	
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China	

5.2 General Description of E.U.T.

Product Name:	6.0 inch smartphone	
Model No.:	Eternity G60	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	1.0 dBi	
Power supply:	Rechargeable Li-ion Battery DC3.8V, 3000mAh	
AC adapter:	Model: K-T100501500U Input: AC100-240V, 50/60Hz, 0.25A Output: DC 5.0V, 1500mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Report No: CCISE190908003

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 55

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz		
Limit:	Frequency range	Limit (d	dBuV)	
Zirint.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test procedure	* Decreases with the log			
,	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	LISN	E.U.T EMI Receiver	Iter — AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	6.0 inch smartphone	Product model:	Eternity G60
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
8	MHz	dBu₹	₫B	₫B	dBu₹	dBu₹	<u>ab</u>	
1	0.178 0.182	43.52 29.63	-0.43 -0.42	10.77 10.77	53.86 39.98		-10.73	QP Average
3	0.226	37.77	-0.40	10.75	48.12	62.61	-14.49	QP
2 3 4 5 6 7 8 9	0.226 0.521	23.44 18.73	-0.40 -0.39	10.75 10.76	33.79 29.10			Average Average
6	0.634 0.634	39.17 23.66	-0.38 -0.38	10.77 10.77	49.56 34.05		-6.44	QP Average
8	1.172 1.172	30.14	-0.39	10.89	40.64 27.15	56.00	-15.36	QP
10	1.949	16.65 30.68	-0.41	10.96	41.23	56.00	-14.77	
11 12	2.678 3.491	16.87 30.39	-0.43 -0.45	10.93 10.90	27.37 40.84		-18.63 -15.16	Average QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	6.0 inch smartphone	Product model:	Eternity G60
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.182	49.70	-0.69	10.77	59.78	64.42		
1 2 3	0.182	35.80	-0.69	10.77	45.88	54.42	-8.54	Average
	0.219	44.35	-0.68	10.76	54.43	62.88	-8.45	QP
4 5 6	0.219	29.78	-0.68	10.76	39.86	52.88	-13.02	Average
5	0.230	28.07	-0.67	10.75	38.15	52.44	-14.29	Average
6	0.242	41.76	-0.66	10.75	51.85	62.04	-10.19	QP
7	0.266	24.65	-0.65	10.75	34.75	51.25	-16.50	Average
8	0.354	37.80	-0.64	10.73	47.89	58.87	-10.98	QP
9	0.630	27.21	-0.64	10.77	37.34	46.00	-8.66	Average
10	0.637	37.05	-0.64	10.77	47.18	56.00	-8.82	QP
11	0.675	24.56	-0.64	10.77	34.69	46.00	-11.31	Average
12	3.922	30.51	-0.70	10.89	40.70		-15.30	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	Limit(dBm)	Result			
Test Cn	802.11b	Limit(ubm)	Result			
Lowest	14.70	11.54	11.25	13.06		
Middle	14.71	13.62	13.63	13.61	30.00	Pass
Highest	14.93	14.29	14.06	13.58		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission B	andwidth (MHz)		Limit/IrLl=)	Result	
Test CH	802.11b	802.11b 802.11g 802.11n(H20) 802.11n(H4		802.11n(H40)	Limit(kHz)	Result	
Lowest	9.76	16.00	16.48	36.16			
Middle	8.72	14.64	15.28	26.72	>500	Pass	
Highest	9.76	16.00	16.64	24.00			
Test CH		99% Occupy Ba	andwidth (MHz)		Limit/kU=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	12.80	17.04	17.84	37.60			
Middle	12.24	16.64	17.68	35.68	N/A	N/A	
Highest	12.80	17.20	18.00	35.68			

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CH		Limit/dDm\	Dogult			
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result	
Lowest	-7.53	-14.60	-15.44	-16.49		
Middle	-9.39	-12.76	-12.84	-14.38	8.00	Pass
Highest	-9.41	-12.76	12.87	-13.87		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Ooliddoted Elillosion				
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission W							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Frequency Range:	2.3GHz to 2.5G	Hz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detector			'BW	Remark	
		Above 1GHz	Peak	1MHz		MHz	Peak Value	
	I incit.	Frequenc	RMS	1MHz Limit (dBuV/m		MHz I	Average Value Remark	
	Limit:	•		54.00	@3III)	А	verage Value	
		Above 1GH	Hz -	74.00			Peak Value	
	Test poture:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the material by the limit specified B. 6. If the emission of the EUT have 10dB	at a 3 meters the positive as set 3 meters as the positive as set 3 meters as the positive as	er camber. The counted on the high eters away from ounted on the varied from one the maximum ertical polarizant. It was turned to the enna was turned eading. It was set to with Maximum of the EUT in pure testing could eported. Other	ne table verses tradial and the interest radial and intere	vas rota tion. erferen variable to four of the f he ante arrange ghts fror degrees etect Fu de. e was 1 ped and e emissi one us	meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	Horn Antenna Tower Ground Reference Plane Test Receiver Amplifer Controller						
	Test Instruments:	Refer to section	5.9 for det	ails				
	Test mode:	Refer to section						
	Test results:	Passed						

802.11b mode:

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
$c^{\frac{1}{2}}$	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode: 802.11b Tx mode			
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	hannel: Lowest channel Polarization:		Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	st Channel: Highest channel Polarization		Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor							
	MHz	dBu₹	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	āB		
1 2	2483,500 2483,500	25.47 13.68	27.36 27.36	4.81 4.81	0.00 0.00	59.34 47.55	74.00 54.00	-14.66 -6.45	Peak Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	0 inch smartphone Product Model:			
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						Remark
	MHz	—dBu∇		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq	ReadAntenna eq Level Factor				Limit Level Line		Remark
	MHz	dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dB} \overline{uV/m}$	dBuV/m	
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization: Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000					59.53 46.59			The Control of the Control Con

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	MHz dBuV dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	 	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	MHz dBuV dB/	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000	The William Street William Street							(ACT COM AND

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Remark
	MHz	dBu∇	dB/m	<u>dB</u>	<u>d</u> B	$\overline{dB} \overline{uV/m}$	dBuV/m	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor					Over Limit	
MHz	dBu₹	dB/m	B/m	₫B	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	MHz dBuV dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
1	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

6.7.1 Conducted Emission	Metriod							
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreaspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etnoa								
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205						
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	Detector RBW		BW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value			
	Al 4011-	Peak	1MHz	3MHz		Peak Value			
	Above 1GHz	RMS	1MHz	3MHz		Average Value			
Limit:	Frequency	Remark							
	30MHz-88MH	z	40.0		Q	uasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M	•	46.0			uasi-peak Value			
	960MHz-1GH	z	54.0			uasi-peak Value			
	Above 1GHz	,	54.0		,	Average Value			
Test Procedure:			74.0 he top of a rot			Peak Value			
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizor make the med. 4. For each succase and the meters and to find the med. 5. The test-reconspecified Base. 6. If the emissist the limit spends the EUT we have 10dB reconstructions.	as rotated 360 ation. It is set 3 meter ich was mour ich was mour ich was mour ich ich was mour ich	degrees to do rs away from the top ried from one ried from one ried polarization sion, the EUT a was tuned to was turned from ing. was set to Per Maximum Ho re EUT in peak sting could be orted. Otherwis	he into of a meter value as of the was a o heigom 0 a mode stoppes the one by	erferent variable to four of the fante ante degree etect Fude. See was 1 ped and emission one un one	re-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 es to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi-			
Test setup:	Below 1GHz EUT Turn Table Ground I	0.8m 1							

Measurement Data (worst case):

Below 1GHz:

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq			ReadAntenna Cable Preamp Level Factor Loss Factor Lev			Limit Line	Over Limit	
-	MHz	dBu₹		<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	33.328	55.71	11.01	0.98	29.96	37.74	40.00	-2.26	QP
1 2 3 4	38.346	55.34	11.99	1.18	29.92	38.59	40.00	-1.41	QP
3	39.299	55.04	12.21	1.21	29.91	38.55	40.00	-1.45	QP
4	61.562	56.09	10.83	1.38	29.77	38.53	40.00	-1.47	QP
5 6	65.573	56.87	9.48	1.41	29.75	38.01	40.00	-1.99	QP
6	107.888	54.76	11.82	2.03	29.47	39.14	43.50	-4.36	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∀	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	63.759	51.80	9.98	1.38	29.76	33.40	40.00	-6.60	QP
2	66.733	52.02	9.23	1.44	29.75	32.94	40.00	-7.06	QP
2 3 4	108.267	48.59	11.79	2.03	29.47	32.94	43.50	-10.56	QP
4	165.487	50.83	9.49	2.62	29.09	33.85	43.50	-9.65	QP
5	189.074	53.89	10.26	2.79	28.91	38.03	43.50	-5.47	QP
6	208.580	50.22	11.00	2.86		35.30		-8.20	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz	•			000 11h								
			Tast als	802.11b								
				annel: Low								
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	48.23	30.94	6.81	41.82	44.16	74.00	-29.84	Vertical				
4824.00	47.71	30.94	6.81	41.82	43.64	74.00	-30.36	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	40.02	30.94	6.81	41.82	35.95	54.00	-18.05	Vertical				
4824.00	39.57	30.94	6.81	41.82	35.50	54.00	-18.50	Horizontal				
	Test channel: Middle channel Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	48.66	31.20	6.85	41.84	44.87	74.00	-29.13	Vertical				
4874.00	48.01	31.20	6.85	41.84	44.22	74.00	-29.78	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.35	31.20	6.85	41.84	36.56	54.00	-17.44	Vertical				
4874.00	40.10	31.20	6.85	41.84	36.31	54.00	-17.69	Horizontal				
			T4 -b									
					est channel							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.76	31.46	6.89	41.86	45.25	74.00	-28.75	Vertical				
4924.00	48.98	31.46	6.89	41.86	45.47	74.00	-28.53	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	40.71	31.46	6.89	41.86	37.20	54.00	-16.80	Vertical				
4924.00	40.69	31.46	6.89	41.86	37.18	54.00	-16.82	Horizontal				
,												

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g									
Test channel: Lowest channel													
	Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	49.13	30.94	6.81	41.82	45.06	74.00	-28.94	Vertical					
4824.00	48.50	30.94	6.81	41.82	44.43	74.00	-29.57	Horizontal					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	40.22	30.94	6.81	41.82	36.15	54.00	-17.85	Vertical					
4824.00	40.03	30.94	6.81	41.82	35.96	54.00	-18.04	Horizontal					
Test channel: Middle channel													
			De	tector: Peak	v Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	49.16	31.20	6.85	41.84	45.37	74.00	-28.63	Vertical					
4874.00	48.72	31.20	6.85	41.84	44.93	74.00	-29.07	Horizontal					
			Dete	ctor: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	40.68	31.20	6.85	41.84	36.89	54.00	-17.11	Vertical					
4874.00	39.59	31.20	6.85	41.84	35.80	54.00	-18.20	Horizontal					
				annel: High									
		T I		tector: Peak	v Value		T						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	49.13	31.46	6.89	41.86	45.62	74.00	-28.38	Vertical					
4924.00	49.02	31.46	6.89	41.86	45.51	74.00	-28.49	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	40.58	31.46	6.89	41.86	37.07	54.00	-16.93	Vertical					
4924.00	40.20	31.46	6.89	41.86	36.69	54.00	-17.31	Horizontal					
Remark:	4924.00 40.20 31.46 6.89 41.86 36.69 54.00 -17.31 Horizontal Remark:												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)												
Test channel: Lowest channel												
			De	tector: Peak	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	49.28	36.06	6.81	41.82	50.33	74.00	-23.67	Vertical				
4824.00	48.34	36.06	6.81	41.82	49.39	74.00	-24.61	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	39.89	36.06	6.81	41.82	40.94	54.00	-13.06	Vertical				
4824.00	39.31	36.06	6.81	41.82	40.36	54.00	-13.64	Horizontal				
Test channel: Middle channel												
				tector: Peak								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.53	36.32	6.85	41.84	50.86	74.00	-23.14	Vertical				
4874.00	47.88	36.32	6.85	41.84	49.21	74.00	-24.79	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.16	36.32	6.85	41.84	41.49	54.00	-12.51	Vertical				
4874.00	38.99	36.32	6.85	41.84	40.32	54.00	-13.68	Horizontal				
			Test ch	annel: High	est channel							
				tector: Peak								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.79	36.58	6.89	41.86	50.40	74.00	-23.60	Vertical				
4924.00	48.42	36.58	6.89	41.86	50.03	74.00	-23.97	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	40.67	36.58	6.89	41.86	42.28	54.00	-11.72	Vertical				
4924.00 Remark:	40.30	36.58	6.89	41.86	41.91	54.00	-12.09	Horizontal				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40)												
Test channel: Lowest channel												
			De	tector: Peal	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	49.50	36.06	6.81	41.82	50.55	74.00	-23.45	Vertical				
4844.00	49.09	36.06	6.81	41.82	50.14	74.00	-23.86	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	40.26	36.06	6.81	41.82	41.31	54.00	-12.69	Vertical				
4844.00	40.05	36.06	6.81	41.82	41.10	54.00	-12.90	Horizontal				
	Test channel: Middle channel											
	Dood	Antonno	Cable	tector: Peak	value		<u> </u>					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.22	36.32	6.85	41.84	50.55	74.00	-23.45	Vertical				
4874.00	48.91	36.32	6.85	41.84	50.24	74.00	-23.76	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.52	36.32	6.85	41.84	41.85	54.00	-12.15	Vertical				
4874.00	39.73	36.32	6.85	41.84	41.06	54.00	-12.94	Horizontal				
			Test ch	annel: High	est channel							
				tector: Peak								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	49.10	36.45	6.87	41.85	50.57	74.00	-23.43	Vertical				
4904.00	48.96	36.45	6.87	41.85	50.43	74.00	-23.57	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	40.75	36.45	6.87	41.85	42.22	54.00	-11.78	Vertical				
4904.00 Remark:	40.42	36.45	6.87	41.85	41.89	54.00	-12.11	Horizontal				

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366