$Medvedsky PV\ 20122024\text{--}155950$

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=1.52\text{-}3.91\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
8.6	0.597	125.7	3.137	14.6	0.122	33.5	0.142	154.5

Найти точку (см. рисунок 2), соответствующую s_{11} на частоте 4.3 ГГц.

Рисунок 2 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A

- 2) B3) C4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.491	-125.3	20.783	102.4	0.028	50.6	0.455	-60.3
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
4.1	0.485	173.4	6.866	60.3	0.059	51.6	0.247	-101.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
5.5	0.496	159.2	5.028	46.1	0.077	48.7	0.216	-114.6
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2

и частоты $f_{\text{\tiny H}}=1.3$ ГГц, $f_{\text{\tiny B}}=7.2$ ГГц.

Найти обратные потери по входу на $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

- 1) 5.5 дБ
- 2) 6.2 дБ
- 3) 12.4 дБ
- 4) 2.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.569	153.9	4.300	66.0	0.062	57.7	0.259	-45.5
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
1.9	0.598	135.5	2.940	50.9	0.086	53.9	0.245	-55.7
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8

и частоты $f_{\scriptscriptstyle \rm H}=1.8$ ГГц, $f_{\scriptscriptstyle \rm B}=1.9$ ГГц. **Найти** модуль s_{22} в дБ на частоте $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

- 1) -21.7 дБ
- 2) 9.8 дБ
- 3) -4.5 дБ
- 4) -12.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.5	0.691	100.0	1.641	17.4	0.141	38.3	0.212	-98.4
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1
3.8	0.709	95.1	1.497	12.2	0.150	35.3	0.212	-108.4
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0
4.4	0.743	86.0	1.256	1.2	0.166	29.8	0.221	-128.3
4.5	0.749	84.6	1.221	-0.8	0.169	28.9	0.225	-131.4

и частоты $f_{\rm H}=3.6$ ГГц, $f_{\rm B}=4.2$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 3.

Рисунок 3 – Частотная характеристика усиления

Варианты ОТВЕТА:

- 1) 0.8 дБ
- 2) 2.6 дБ
- 3) 1.6 дБ
- 4) 0.3 дБ

Задан двухполюсник на рисунке 4, причём R1 = 93.92 Ом.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.