FAI

Materiale Recapitulative

Cateva elemente de teorie si exercitii rezolvate pentru materia Fundamente Algebrice ale Informaticii

FAI	1
Teoria Numerelor	1
Algoritmul Extins al lui Euclid	1
Ecuatii de tipul ax+by=c = Ecuatii liniare diofantice	2
Calculul inversului modular	3
Functia lui Euler	3
Ecuatii congruentiale ax b mod m	4
Ecuatii congruentiale xn1 mod p	4
Teorema Chineza a resturilor	5
Simbolul Legendre	6
Simbolul Jacobi	7

Teoria Numerelor

Algoritmul Extins al lui Euclid

Fie a, b > 0

$$r_{-1} = a$$
; $r_0 = b$

$$r_{-1} = r_0 * q_1 + r_1$$

$$r_0 = r_1 * q_2 + r_2$$

...

$$r_{n\!-\!2} = r_{n\!-\!1} * q_n + r_n$$
 , unde r_n este ultimul rest nenul

$$\boldsymbol{r}_{n-1} = \boldsymbol{r}_n * \boldsymbol{q}_{n+1} + \boldsymbol{r}_{n+1}$$
 , unde \boldsymbol{r}_{n+1} este nul

$$(a,b) = (r_{-1},r_0) = \dots = r_n$$

Teorema: Numarul de impartiri ale calculului nu depasteste 5 * numarul de cifre al lui b

Ecuatii de tipul ax+by=c = Ecuatii liniare diofantice

Pentru a rezolva ecuatii de tipul: ax + by = c

Pasul 1: Calculam (a,b)

Pasul 2: Daca (a,b) nu divide c => se poate afirma ca ecuatia nu are solutie

Pasul 3: Daca (a,b) divide c atunci calculam d, unde d*(a,b)=c

Pasul 4: Folosind algoritmul extins al lui Euclid calculam (a,b) = α a + β b

Pasul 5: Solutia este reprezentata de: $x = \alpha d si y = \beta d$

Exemplu de ecuatie rezolvata pas cu pas:

Pentru a = 27, b = 21 si c = 12 avem ecuatia: 27x+21y=12

Pasul 1: Calculam (a,b)

$$(a,b) = (27,21) = 3$$

Pasul 2: Daca (a,b) nu divide c => se poate afirma ca ecuatia nu are solutie

3 divide 12 => ecuatia are solutie

Pasul 3: Daca (a,b) divide c atunci calculam d, unde d*(a,b)=c

Calculam d: d * 3 = 12 => d = $\frac{12}{3}$ = 4

Pasul 4: Folosind algoritmul extins al lui Euclid calculam (a,b) = α a + β b

Algoritmul lui Euclid	Algoritmul lui Euclid extins
27 = 21*1 + 6 21 = 6 * 3 + 3 6 = 3* 2 + 0	$\begin{array}{c} V_{27} = \text{(1,0) //intotdeauna} V_a = \text{(1,0)} \\ V_{21} = \text{(0,1) // intotdeauna} V_b = \text{(0,1)} \\ V_{r1} = \boxed{V_6} = V_{27} - V_{21} * 1 = \text{(1,0)} - \text{(0,1)} = \text{(1,-1)} \\ V_{r2} = \boxed{V_3} = V_{21} - 3* V_6 = \text{(0,1)} - 3* \text{(1,-1)} = \text{(-3,4)}, \\ \text{ultimul rest nenul} \end{array}$

Avem: (a,b) = α a + β b \Leftrightarrow 3 = α * 27 + β * 21 si cunoastem V_{r2} = (-3, 4). De aici se poate afirma ca α = -3 si β = 4

Pasul 5: Solutia este reprezentata de: $x = \alpha d si y = \beta d$

x = -12 si y = 16

Calculul inversului modular

 Z_m = clasa de resturi ale impartirii la m

 $Z_m^* = Z_m \setminus \{0\}$

a $\in Z_m^*$ este inversabil ddaca (a,m) = 1

Pentru a calcula inversul unui numar a (cand acesta exista):

Pasul 1: Folosind algoritmul extins al lui Euclid determinam α si β a.i. a α + m β =(a,m)= 1

Pasul 2: Daca a>m atunci inversul lui a, notat $a^{-1} = \alpha \mod m$

Pasul 3: Daca a<m atunci inversul lui a, notat $a^{-1} = \beta \mod m$

Exemplu: Z_6^* ={1, 2, 3, 4, 5}. Pentru a=5 inversul va fi calculat astfel:

Pasul 1: Folosind algoritmul extins al lui Euclid determinam α si β a.i. a α + m β =(a,m)= 1

Algoritmul lui Euclid	Algoritmul extins al lui Euclid
6 = 5*1 + 1 5 = 5*1 + 0	$V_6 = (1, 0)$ $V_5 = (0, 1)$ $V_1 = V_6 - V_5 = (1, -1)$

 $\alpha = 1 \text{ si } \beta = -1$

Pasul 2: Daca a>m atunci inversul lui a, notat $a^{-1} = \alpha \mod m$

a=5 si m=6 => a nu este mai mare decat b

Pasul 3: Daca a<m atunci inversul lui a, notat a^{-1} = β mod m

 $a=5 \text{ si } m=6 \Rightarrow a < m \Rightarrow 5^{-1} = \beta \mod m = -1 \mod 6 = 5$

Functia lui Euler

 $\phi(m) = \operatorname{card} Z_m^* \text{ unde } \operatorname{card} Z_m^* \Leftrightarrow |Z_m^*|$

 $\phi(m)$ = functia lui Euler

Proprietati:

1.
$$\phi(1) = 1$$

2.
$$\phi(p) = p - 1 \forall p \ prim$$

3.
$$\phi(a * b) = \phi(a) * \phi(b), \forall a, b, (a, b) = 1$$

4.
$$\phi(p^e) = p^e - p^{e-1} \ \forall p \ prim, \ e \ge 1$$

5.
$$\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) * ... * (p_k^{e_k} - p_k^{e_k-1})$$
 unde $n = p_1^{e_1} * ... * p_k^{e_k}$ este descompunerea in factori primi a lui n

Teorema: $a^{\phi(m)} = 1 \mod m \ \forall \ a \ cu \ (a, m) = 1$

Ecuatii congruentiale ax ≡ b mod m

Pot fi transformate in ecuatii diofantice:

$$ax \equiv b \mod m$$

$$ax - b \equiv 0 \mod m$$

$$\exists y \in Z a.i \text{ ax - b = ym}$$

ax-my=b => Trebuie aflat x si y folosind aceeasi pasi de mai sus

Altfel, daca o ecuatie de acest fel are solutie (i.e. daca (a,m) divide b) solutiile sunt de forma:

$$x_i = (x_0 + i \frac{m}{(a,m)}) \ mod \ m$$
 cu $0 \le i < (a,m)$ si x_0 este o solutie particulara.

Exemplu: $6x \equiv 36 \mod 15$.

36 mod 15 = 6 =>
$$x_0$$
 = solutie particulara = 1

$$x_1 = (1 + 1\frac{15}{3}) \mod 15 = 6 \mod 15$$

$$x_2 = (1 + 2\frac{15}{3}) \mod 15 = (1 + 2*5) \mod 15 = 11 \mod 15$$

Ecuatii congruentiale $x^n \equiv 1 \mod p$

Ecuatia are $(n, \varphi(m))$ solutii de forma $\alpha^i mod \ m$ unde α este radacina primitiva mod m si i este solutia ecuatiei $im \equiv 0 \ mod \ \varphi(m)$. Pentru ecuatiile $im \equiv 0 \ mod \ \varphi(m)$ se gasesc solutii de forma $i \in k * \frac{\varphi(m)}{(n,\varphi(m))}$, $0 \le k < (n,\varphi(m))$. Exista $\varphi(\varphi(m))$ radacini primitive mod m.

Un numar a este radacina primitiva mod n daca $ord_n(a) = \varphi(n)$. $ord_n(a) = cel mai mic k pentru care <math>a^k \equiv 1 \pmod{n}$

Exemplu: $x^6 \equiv 1 \mod 38$

Solutiile sunt de forma : $\alpha^i mod \ m$ cu i $\in k \frac{\varphi(m)}{(n,\varphi(m))}$, $0 \le k \le (n,\varphi(m))$ si α radacina primitiva mod 38

$$\phi(38) = 18$$

$$(6, \phi(38)) = (6,18) = 6 \Rightarrow i \in k \frac{18}{6} = 3k, 0 \le k < 6$$

Sunt $\phi(\phi(38)) = 6$ radacini primitive: {3, 5, 7, 11, 17, 23}

Teorema Chineza a resturilor

Consideram un sistem de forma:

$$x \equiv b_1 mod m_1$$

$$x \equiv b_2 mod m_2$$

•••

$$x \equiv b_k mod m_k$$

Cu m_1 , ... m_k coprime intre ele

Un astfel de sistem se rezolva prin urmatorii pasi:

Pasul 1: Calculam m= $m_1 * ... * m_k$

Pasul 2: Calculam $c_i = \frac{m}{m_i}$

Pasul 3: Rezolvam ecuatiile $c_i x \equiv b_i \mod m_i$ cu solutii unice notate x_i

Pasul 4: Calculam solutia finala: $x_0 = (c_1 * x_1 + ... + c_k * m_k) \mod m$

Exemplu: Pentru sistemul

 $x \equiv 5 \mod 7$

 $x \equiv 1 \mod 2$

 $x \equiv 6 \mod 3$

Pasul 1: Calculam m= $m_1 * ... * m_k$

m = 7*2*3 = 42

Pasul 2: Calculam $c_i = \frac{m}{m_i}$

$$c_1 = \frac{42}{7} = 6$$
; $c_2 = \frac{42}{2} = 21$; $c_3 = \frac{42}{3} = 14$

Pasul 3: Rezolvam ecuatiile $c_i x \equiv b_i \mod m_i$ cu solutii unice notate x_i

 $c_1 x \equiv b_1 \mod m_1 \Leftrightarrow 6 x \equiv 5 \mod 7 \Leftrightarrow x_1 = 2$

 $c_2 x \equiv b_2 \mod m_2 \Leftrightarrow 21 x \equiv 1 \mod 2 \Leftrightarrow x_1 = 1$

 $c_3 x \equiv b_3 \mod m_3 \Leftrightarrow 14 x \equiv 6 \mod 3 \Leftrightarrow x_3 = 0$

Pasul 4: Calculam solutia finala: $x_0 = (c_1 * x_1 + ... + c_k * m_k) \mod m$

$$x_0 = (c_1 * x_1 + ... + c_k * m_k) \mod m = 6*2 + 21*1 + 14*0 = 33$$

Consecinta: $ax = b \mod p^*q$ poate fi scrisa ca sistemul:

 $ax = b \mod p$

 $ax = b \mod q$

Din moment ce ambele ecuatii au o solutie unica si conduc la o solutie finala unica => ecuatia initiala are solutie unica

Teorema: Fie f(x) polinomiala cu m_1 , ... m_k coeficienti coprimi. O solutie pentru f(x)=0 mod $m_1 * ... * m_k$ exista daca si numai daca exista cate o solutie pentru orice ecuatie f(x) = 0 mod m_i

Simbolul Legendre

Pentru a \in Z, p>2, p = un numar prim

Simbolul Legendre notat:

 $\left(\frac{a}{p}\right) = 0$ daca p divide a;

1 daca p nu divide a si a rest patratic mod p

-1 daca p nu divide a si a nu este rest patratic mod p

a = rest patratic mod p \Leftrightarrow ecuatia $x^2 \equiv a \mod p$ are solutie

Proprietati:

1.
$$(\frac{a}{p}) = (\frac{b}{p}) \operatorname{daca} a \equiv b \mod p$$

$$2. \quad \left(\frac{a}{p}\right) = \left(\frac{a \bmod p}{p}\right)$$

3.
$$\left(\frac{a*b}{p}\right) = \left(\frac{a}{p}\right)*\left(\frac{b}{p}\right)$$
, a,b prime

4.
$$(\frac{a}{p}) = a^{\frac{p-1}{2}} \mod p$$

5.
$$(\frac{1}{p}) = 1$$

6.
$$(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}, p, q \text{ prime}$$

Exemplu:
$$(\frac{201}{17}) = (\frac{201 \mod 17}{17}) = (\frac{14}{17}) = (\frac{2}{17}) (\frac{7}{17}) = 1 * (-1) = -1$$

Simbolul Jacobi

Pentru a $\in Z$ si n $\in N$

Simbolul Jacobi notat:

$$(\frac{a}{n}) = 1, n=1$$

$$(\frac{a}{p_1})^{e_1}*...*(\frac{a}{p_k})^{e_k}$$
 unde $n=p_1^{e_1}*...*p_k^{e_k}$, altfel

Exemplu:

$$(\frac{5}{81}) = (\frac{5}{3})^4 = (-1)^4 = 1$$