DENSITY CUMULANT THEORY FOR GROUND AND EXCITED ELECTRONIC STATES

by

Andreas Victor Copan

(Under the Direction of Henry F. Schaefer III)

Abstract

Here is my abstract. Here is my abstract.

INDEX WORDS: Cool stuff, Deep learning, Big data, Crowdsourcing, Computer vision, Computer science

DENSITY CUMULANT THEORY FOR GROUND AND EXCITED ELECTRONIC STATES

by

Andreas Victor Copan

B.A., Bethel University, 2013

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Athens, Georgia

2018

©2018

Andreas Victor Copan All Rights Reserved

DENSITY CUMULANT THEORY FOR GROUND AND EXCITED ELECTRONIC STATES

by

Andreas Victor Copan

Approved:

Major Professor: Henry F. Schaefer III

Committee: Gary E. Douberly

Henning Meyer

Electronic Version Approved:

Suzanne Barbour Dean of the Graduate School The University of Georgia December 2018

In	memory	of	Valery	And reiye vich	and	Valtraut	Kirsch	Copan

Acknowledgments

All of your acknowledgments should go here. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et

magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis port-

titor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Contents

A	ckno	wledgments	\mathbf{v}
1	Intr	roduction	1
	1.1	Stuff	1
2	Gro	ound-State Density Cumulant Theory:	
	The	ermochemical and Kinetic Benchmark Calculations	3
	2.1	Abstract	3
	2.2	Introduction	4
	2.3	Overview of DCFT	7
	2.4	Computational Details	9
	2.5	Results and Discussion	9
	2.6	Conclusions	33
3	Line	ear-Response Density Cumulant Theory for Excited States:	
	Firs	st Implementation and Benchmark Calculations	36
4	Line	ear-Response Density Cumulant Theory for Excited States:	
	Bet	ter Algorithms, Bigger Systems	39

5 Conclusion	43
Appendices	46
A Extended Results	46
Bibliography	49

Chapter 1

Introduction

Here is the introduction. My dissertation introduces widgets. If I wish to cite someone, I could refer to them in text as in Pedersen, Fernández, and Koch¹, or parenthetically¹. I can also cite just the year 2001 or mention the author, Pedersen, Fernández, and Koch.

This dissertation template is handy. I like it and use it every time I write a dissertation.

— Abraham Lincoln 2001

1.1 Stuff

Here is a section on stuff.

1.1.1 Artificial Neural Networks

See Figure 1.1 for a neural network.

Cool.

Figure 1.1: An example neural network with two final outputs. Notice how each neuron in one layer connects to each neuron in the following layer. This is called *fully connected*.

Chapter 2

Ground-State Density Cumulant Theory:

Thermochemical and Kinetic Benchmark Calculations*

2.1 Abstract

We present an extensive benchmark study of density cumulant functional theory (DCFT) for thermochemistry and kinetics of closed- and open-shell molecules. The performance of DCFT methods (DC-06, DC-12, ODC-06, and ODC-12) is compared to that of coupled-electron pair methods (CEPA₀ and OCEPA₀) and coupled-cluster theory (CCSD and CCSD(T)) for the description of noncovalent interactions (A24 database), barrier heights of hydrogen-transfer reactions (HTBH38), radical stabilization energies (RSE30), adiabatic ionization energies (AIE), and covalent bond stretching in diatomic molecules. Our results indicate that out of four DCFT methods the ODC-12 method is the most reliable and accurate DCFT formulation to date. Compared to CCSD, ODC-12 shows superior results for all benchmark tests employed in our study. With respect to coupled-pair

^{*}A. V. Copan, A. Yu. Sokolov, and H. F. Schaefer., J. Chem. Theory Comput. **10**, 2389 (2014). Adapted with permission of the American Chemical Society.

theories, ODC-12 outperforms CEPA₀, and shows similar accuracy to the orbital-optimized CEPA₀ variant (OCEPA₀) for systems at equilibrium geometries. For covalent bond stretching, ODC-12 is found to be more reliable than OCEPA₀. For the RSE30 and AIE datasets, ODC-12 shows competitive performance with CCSD(T). In addition to benchmark results, we report new reference values for the RSE30 dataset computed using coupled cluster theory with up to perturbative quadruple excitations.

2.2 Introduction

Recent developments in *ab initio* quantum chemistry have resulted in a variety of computational models for studying molecules. Apart from concerns about efficiency and accuracy, several concepts have evolved as criteria for judging the merits of a particular method. Energy-based criteria typically define an "ideal" approximation as one yielding correlation energies that are size-consistent, extensive², well-defined (giving continuous, unique potential surfaces), and variational.³ While it has been argued that the practical benefits of variationality are rather limited,⁴ the efficiency of gradient computations, at least, is improved by formulating a theory in terms of a Hermitian and stationary energy functional.⁵ With respect to scope and stability, methods that show consistent performance for open-shell systems, strongly correlated states, and non-equilibrium geometries are particularly valuable.⁴

The incorrect scaling of truncated configuration interaction (CI) energies with system size has inspired the development of size-extensive alternatives. Among the earliest formulations, the coupled electron pair approximations (CEPAs)⁶⁻¹⁰ attracted much attention in 1970s, 11-15 offering rigorous extensivity and sizeconsistency while retaining much of the linearity ¹⁶ of CI in their equations. CEPA methods, however, have been shown to rapidly deteriorate as the molecular geometry deviates from equilibrium 16 and yield energies that vary under the rotation of the occupied orbitals. Partly in light of such defects, CEPA has been largely displaced by coupled-cluster (CC) theory. 4;17-23 In addition to size-extensivity, CC offers orbital invariance and improved stability for non-equilibrium structures ¹⁶, but has a non-Hermitian energy functional and non-linear equations which are not readily amenable to parallel implementation. Although neither class of methods is strictly variational, VCEPA (variational CEPA) has been shown to be effectively equivalent to its non-variational counterpart. 24 Various other modifications to resolve the deficiencies of traditional CEPA have been explored, including self-consistent size-consistent CI, $^{25;26}$ orbital-invariant CEPA, $^{27;28}$ and orbital-invariant CEPA, optimized CEPA formulations. ^{29–32} Recently, the CEPA methods have been revived by Neese and co-workers ^{24;33;34} who developed the local pair-natural-orbital CEPA (LPNO-CEPA) methods and have implemented them for massively parallel computer architectures.

It has recently been demonstrated ^{35–38} that CEPA methods naturally arise in the context of theories that obtain the molecular energies from density cumulants, the connected and extensive components of the reduced density matrices (RDMs). ^{39–44} The advantage of cumulant-based theories is that, unlike their RDM-based counterparts, ^{45–47} they are naturally size-extensive and size-consistent. ^{42;48}

We have recently achieved the first implementation ^{49;50} of density cumulant functional theory (DCFT), proposed by Kutzelnigg in 2006. ³⁵ In DCFT, the molecular energy is obtained in terms of a mean-field one-particle RDM and the two-particle density cumulant, constrained to be at least approximately N-representable (i.e. to correspond to a physical N-electron wavefunction). Like traditional CC theory, DCFT is size-extensive and orbital-invariant, but it has the additional advantage of a stationary and Hermitian energy functional, which simplifies the computation of molecular properties. In the original DCFT formulation (DC-06) ^{35;49;50} N-representability conditions derived from second-order Møller-Plesset perturbation theory (MPPT) were used, ⁵¹ yielding equations similar to those of the simplest CEPA model (CEPA₀), ^{8;10} but including higher-order terms in the description of one-particle correlation effects. Using the same set of conditions, we have developed new formulations of DCFT that take advantage of an improved description of the one-particle density matrix (DC-12) ⁵² and full orbital optimization (ODC-06 and ODC-12 methods). ⁵³

Our previous studies ^{49;50;52;53} demonstrated for a limited set of systems that the DC-06, DC-12, ODC-06 and ODC-12 methods generally yield molecular energies and properties competitive with those obtained by CCSD and CCSD(T), but may exhibit unstable performance due to imbalances in the description of electron correlation. Herein, we present an extensive benchmark of the DCFT methods with respect to thermochemical and kinetic molecular properties, including noncovalent interactions, barrier heights in hydrogen-transfer reactions, radical stabilization energies, and adiabatic ionization energies for challenging electron-

dense systems. We conclude our benchmark study by testing the performance of DCFT for covalent bond stretching in diatomic molecules.

2.3 Overview of DCFT

In this section a short overview of DCFT is presented. For details on the theory the reader is referred to our earlier publications. ^{49;52;53} In the RDM methods ⁵⁴ the exact molecular energy is expressed as a functional of the one- and two-particle reduced density matrices, γ_1 and γ_2 (1-RDM and 2-RDM):

$$E = h_p^q \gamma_q^p + \frac{1}{2} g_{pq}^{rs} \gamma_{rs}^{pq} , \qquad [\boldsymbol{\gamma}_1]_q^p \equiv \gamma_q^p , \qquad [\boldsymbol{\gamma}_2]_{rs}^{pq} \equiv \gamma_{rs}^{pq} . \tag{2.1}$$

In eq. (2.1), h_p^q and g_{pq}^{rs} are the usual one- and two-electron integrals in the orthonormal spin-orbital basis $\{\psi_p\}$ and summation over the repeated indices is implied. Expressing γ_1 through γ_2 via the partial trace relation $\sum_r \gamma_{qr}^{pr} = (N-1)\gamma_q^p$, the energy functional (2.1) can be minimized by varying γ_2 subject to N-representability constraints. This is the essence of the variational 2-RDM approach. ⁵⁴

In DCFT, some of the challenges of the 2-RDM approach are circumvented by expanding γ_2 in terms of its irreducible components – the 1-RDM and the two-particle cumulant (denoted by λ_2):

$$\gamma_{rs}^{pq} = \gamma_r^p \gamma_s^q - \gamma_r^q \gamma_s^p + \lambda_{rs}^{pq}. \tag{2.2}$$

In eq. (2.2), λ_2 describes the correlated part of γ_2 that cannot be expressed via γ_1 . The cumulant also determines the correlation contribution to γ_1 , allowing

the 1-RDM to be decomposed as the sum of an idempotent 1-RDM (κ) and a correlation correction (τ):

$$\gamma_1 = \kappa + \tau \,. \tag{2.3}$$

The correlation component τ is fully specified by λ_2 , whereas κ is independent of λ_2 . Equations (2.2) and (2.3) allow us to write an equivalent energy expression with κ and λ_2 as independent functional parameters:

$$E[\boldsymbol{\kappa}, \boldsymbol{\lambda}_2] = \frac{1}{2} (h_p^q + f_p^q) (\kappa_q^p + \tau_q^p) + \frac{1}{4} \overline{g}_{pq}^{rs} \lambda_{pq}^{rs},$$

$$f_p^q = h_p^q + \overline{g}_{pr}^{qs} (\kappa_s^r + \tau_s^r), \quad \overline{g}_{rs}^{pq} = g_{rs}^{pq} - g_{rs}^{qp}.$$
(2.4)

Here, the generalized Fock operator f differs from that of Hartree-Fock theory by the presence of an external potential $\overline{g}_{pr}^{qs}\tau_s^r$ due to electron correlation.³⁵

To date, all DCFT formulations make the energy (2.4) stationary with respect to variations of λ_2 , subject to cumulant N-representability constraints derived from second-order Møller-Plesset perturbation theory (MPPT).⁵¹ To account for orbital relaxation effects, the two earliest DCFT methods, DC-06^{35;49;50} and DC-12⁵², determined the orbitals by diagonalizing the generalized Fock operator f defined in eq. (2.4). These two methods differ in their description of 1-RDM N-representability. Whereas DC-06 employs an approximate expression for τ in terms of λ_2 , DC-12 uses the exact relationship. Recently, we proposed orbital-optimized variants of DC-06 and DC-12 (ODC-06 and ODC-12), ⁵³ which fully account for orbital relaxation effects.

2.4 Computational Details

All computations were performed using the Psi4 package. ⁵⁵ The results were benchmarked against coupled cluster theory with single and double excitations (CCSD)^{21–23}, CCSD with perturbative triple excitations [CCSD(T)], ^{56;57} coupled electron pair approximation zero (CEPA₀), ^{8;10} and the orbital-optimized variant of CEPA₀ (OCEPA₀)³⁰. All electrons were correlated in all computations. The cc-pCVXZ^{58;59} and aug-cc-pVXZ⁶⁰ basis sets (X = T, Q) were used (see text for details). Noncovalent interaction energies, hydrogen-transfer barrier heights, and radical stabilization energies were computed using geometries from the A24⁶¹, HTBH38⁶², and RSE30⁶³ benchmark databases, respectively, available in Psi4. Adiabatic ionization energies were computed from neutral and cation geometries optimized at each level of theory, with added harmonic zero-point vibrational energy corrections. Harmonic frequencies were computed by numerical differentiation of analytic energy gradients. Single-point energies were converged to $10^{-8} E_h/a_0$ for geometry optimizations.

2.5 Results and Discussion

2.5.1 Noncovalent Interactions

We begin by testing the accuracy of DCFT methods for the description of noncovalent interactions in 24 closed-shell molecular dimers, which are listed in table 2.1. These molecular complexes comprise the A24 dataset ⁶¹ developed by Řezáč and

Table 2.1: Errors in interaction energies (kcal mol⁻¹) for 24 noncovalently bound molecular dimers comprising the A24 database⁶¹ computed using seven methods with the aug-cc-pVTZ basis set. The errors are relative to CCSD(T) reference values (kcal mol⁻¹) shown in the rightmost column. For each method the mean absolute deviations from CCSD(T) (Δ_{MAE} , kcal mol⁻¹) and the standard deviations from the mean signed error (Δ_{SD} , kcal mol⁻¹) are also shown.

Complex (Sym.)	$\Delta { m CEPA}_0$	$\Delta DC-06$	$\Delta DC-12$	ΔCCSD	$\Delta ext{OCEPA}_0$	$\Delta \text{ODC-06}$	$\Delta \text{ODC-}12$	CCSD(T)
$H_2O\cdots NH_3$ (C _s)	0.26	0.24	0.22	0.36	0.19	0.20	0.18	-7.18
$H_2O\cdots H_2O$ (C _s)	0.19	0.18	0.16	0.25	0.13	0.14	0.12	-5.71
$HCN\cdots HCN (C_s)$	0.21	0.27	0.16	0.15	0.18	0.26	0.14	-7.12
$\mathrm{HF}\cdots\mathrm{HF}\ (\mathrm{C_s})$	0.14	0.13	0.11	0.16	0.08	0.09	0.07	-5.20
$NH_3 \cdots NH_3 (C_{2h})$	0.15	0.13	0.14	0.26	0.12	0.12	0.12	-3.43
$\mathrm{HF}\cdots\mathrm{CH}_{4}\ (\mathrm{C}_{3\mathrm{v}})$	0.17	0.16	0.20	0.23	0.12	0.12	0.16	-2.30
$NH_3 \cdots CH_4 (C_{3v})$	0.07	0.05	0.05	0.13	0.05	0.05	0.04	-1.08
$\mathrm{H_2O}$ ···· $\mathrm{CH_4}$ ($\mathrm{C_s}$)	0.06	0.05	0.04	0.11	0.05	0.05	0.04	-1.03
$\mathrm{CH_2O}\cdots\mathrm{CH_2O}$ (C _s)	0.89	0.99	0.65	0.46	0.62	0.87	0.46	-5.23
$H_2O\cdots C_2H_4$ (C _s)	0.15	0.16	0.15	0.31	0.20	0.26	0.21	-3.33
$\mathrm{CH_2O\cdots C_2H_4}$ (C _s)	0.21	0.18	0.14	0.27	0.19	0.24	0.16	-2.24
$\frac{\text{HCCH} \cdot \cdot \cdot \text{HCCH (C}_{2v})}{\text{HCCH} \cdot \cdot \cdot \text{HCCH (C}_{2v})}$	0.07	0.05	0.05	0.20	0.10	0.12	0.10	-2.57

۰	_	1
۰	_	1

Complex (Sym.)	ΔCEPA_0	$\Delta DC-06$	$\Delta DC-12$	ΔCCSD	$\Delta ext{OCEPA}_0$	$\Delta \text{ODC-06}$	$\Delta \text{ODC-12}$	$\overline{\mathrm{CCSD}(\mathrm{T})}$
$\overline{\mathrm{NH_3\cdots C_2H_4\ (C_s)}}$	0.09	0.06	0.08	0.24	0.12	0.15	0.13	-2.07
$C_2H_4\cdots C_2H_4$ (C_{2v})	0.10	0.02	0.07	0.33	0.14	0.13	0.15	-1.81
$CH_4 \cdots C_2 H_4 (C_s)$	0.02	-0.02	0.01	0.14	0.05	0.04	0.06	-0.92
$\mathrm{BH_3\cdots CH_4}\ (\mathrm{C_s})$	0.23	0.18	0.24	0.37	0.18	0.16	0.22	-2.52
$CH_4 \cdots C_2 H_4 (C_s)$	0.13	0.09	0.13	0.23	0.10	0.09	0.09	-1.37
$CH_4 \cdots C_2 H_6 (C_s)$	0.09	0.06	0.09	0.17	0.07	0.06	0.09	-1.14
$CH_4 \cdots CH_4 (D_{3d})$	0.08	0.06	0.08	0.14	0.06	0.05	0.08	-0.93
$Ar \cdots CH_4 (C_{3v})$	0.07	0.05	0.07	0.10	0.05	0.05	0.06	-0.78
$Ar \cdots C_2 H_4 (C_{2v})$	0.03	-0.01	0.02	0.11	0.05	0.03	0.05	-0.63
$C_2H_4\cdots HCCH (C_{2v})$	-0.02	-0.19	-0.01	0.38	0.07	-0.06	0.11	0.43
$C_2H_4\cdots C_2H_4$ (D_{2h})	-0.05	-0.30	-0.03	0.43	0.04	-0.16	0.11	0.41
$HCCH\cdots HCCH$ (D_{2h}) 0.01	-0.09	0.02	0.34	0.10	0.02	0.12	0.91
$\Delta_{ ext{MAE}}$:	0.14	0.16	0.12	0.25	0.13	0.15	0.13	
$\Delta_{ ext{SD}}$:	0.18	0.23	0.13	0.11	0.12	0.18	0.09	

Hobza to include a variety of noncovalent interactions, including hydrogen bonding and π - π stacking. Although Řezáč and Hobza reported the interaction energies at the CCSD(T) complete basis set (CBS) limit, we use CCSD(T)/aug-cc-pVTZ energies as reference values in order to effectively exclude basis-set incompleteness error from the comparison.

Figure 2.1 depicts mean absolute error (Δ_{MAE}) relative to CCSD(T) in the binding energies of CEPA₀, OCEPA₀, CCSD, and the four DCFT methods (DC-06, DC-12, ODC-06, and ODC-12), as well as the root mean square deviation from the average signed error (Δ_{SD}). All methods but CCSD give similar Δ_{MAE} values $(0.14\pm0.02 \text{ kcal mol}^{-1})$, and a comparison between CEPA₀, DC-06, and DC-12 and their orbital-optimized variants (OCEPA₀, ODC-06, and ODC-12) shows negligible $0.01~\rm kcal~mol^{-1}$ differences in each case. CCSD gives a significantly larger $\Delta_{\rm MAE}$ (0.25 kcal $\rm mol^{-1})$ than the other methods, exceeding the DC-12 $\Delta_{\rm MAE}$ by a factor of two (0.12 kcal mol⁻¹). The Δ_{SD} values are much more sensitive to the choice of method than the Δ_{MAE} values, and are noticeably affected by orbital optimization. ODC-12 gives the smallest standard deviation ($\Delta_{SD} = 0.09 \text{ kcal mol}^{-1}$), while the largest Δ_{SD} value was found for DC-06 (0.23 kcal mol⁻¹). The OCEPA₀, ODC-06, and ODC-12 methods ($\Delta_{SD} = 0.12, 0.18, \text{ and } 0.09 \text{ kcal mol}^{-1}, \text{ respectively}$) exhibit much more consistent performance than their non-orbital-optimized analogues, with Δ_{SD} smaller by 0.05 ± 0.01 kcal mol⁻¹ in each case. CCSD also exhibits a relatively small Δ_{SD} value (0.11 kcal mol⁻¹), possibly due to its inclusion of single excitations which partly account for orbital relaxation.

Errors in interaction energy and CCSD(T) reference values for each molecular

Figure 2.1: Mean absolute deviations (Δ_{MAE} , kcal mol⁻¹) and the standard deviations from the mean signed error (Δ_{SD} , kcal mol⁻¹) of the interaction energies for 24 noncovalently bound molecular dimers (A24 database) computed using seven methods with the aug-cc-pVTZ basis set. The errors are relative to CCSD(T)/aug-cc-pVTZ reference values. The Δ_{MAE} value is represented as a height of each colored box, while the Δ_{SD} value is depicted as a radius of the black vertical bar. See table 2.1 for data on individual database members.

complex are shown in table 2.1. The largest deviations from CCSD(T) were obtained for the formaldehyde dimer (CH₂O····CH₂O, complex 9 in table 2.1), for which DC-06, CEPA₀, and OCEPA₀ yield errors of 0.99, 0.89, and 0.87 kcal mol⁻¹, respectively. For this system, the best performance is shown by CCSD and ODC-12, both of which give an error of 0.46 kcal mol⁻¹. For systems with π -stacking

interactions (complexes 22-24 in table 2.1), CCSD shows large errors (0.38, 0.43, 0.34 kcal mol⁻¹) relative to the magnitude of the interaction energy (0.43, 0.41, 0.91 kcal mol⁻¹, respectively). Here CEPA₀, DC-12, and their orbital-optimized variants offer much better agreement with CCSD(T), with errors ranging from 0.01 to 0.15 kcal mol⁻¹.

2.5.2 Hydrogen-Transfer Reaction Barrier Heights

We continue by assessing the performance of DCFT methods in predicting barrier heights for 18 hydrogen-transfer reactions from the HTBH38 database: ⁶²

$$R_1 + R_2 H \longrightarrow [R_1 R_2 H]^* \longrightarrow R_1 H + R_2$$
 (2.5)

These reactions[†] involve molecules (R_1 and R_2) and transition states ($[R_1R_2H]^*$) with open-shell character, making their properties more sensitive to electron correlation effects. We employ barrier heights computed at the CCSD(T)/aug-cc-pVTZ level of theory as our reference rather than the values provided by Lynch⁶⁴ in order to effectively exclude basis-set incompleteness effects. We also omit the DC-06 and ODC-06 methods, which encounter frequent convergence problems due to the poor description of N-representability (see Supporting Information for incomplete DC-06 results).

Mean absolute deviations (Δ_{MAE}) and standard deviations (Δ_{SD}) for the hydrogentransfer barrier heights are presented in table 2.2 and plotted in fig. 2.2. The

[†]Reaction 19 in HTBH38, the cis-trans isomerization of piperylene, is omitted in the present study.

Table 2.2: Errors in barrier heights (kcal mol⁻¹) for 18 hydrogen-transfer reactions ($R_1 + R_2H \rightarrow R_1H + R_2$) comprising the HTBH38 database⁶⁴ computed using five methods with the aug-cc-pVTZ basis set. The errors are relative to CCSD(T) reference values (kcal mol⁻¹) shown in the rightmost column. Each reaction includes barrier heights in the forward ($R_1 + R_2H \rightarrow [R_1R_2H]^*$) and reverse ($[R_1R_2H]^* \leftarrow R_1H + R_2$) directions, respectively, except in the case of $R_1 = R_2 = H$ where they are the same. The mean absolute (Δ_{MAE} , kcal mol⁻¹) and the mean percent (Δ_{rel} , %) errors with respect to CCSD(T), as well as the standard deviations from the mean signed error (Δ_{SD} , kcal mol⁻¹) are also shown.

	Reaction Barrier	ΔCEPA_0	Δ DC-12	ΔCCSD	ΔOCEPA_0	$\Delta \text{ODC-12}$	CCSD(T)
1	$H + HCl \rightarrow [HHCl]^*$	0.74	0.49	0.09	-0.41	-0.28	5.22
2	$OH + H_2 \rightarrow [OHH_2]^*$	3.77	3.38	1.82	0.88	1.24	4.99
3	$CH_3 + H_2 \rightarrow [CH_3H_2]^*$	1.60	1.46	1.37	0.46	0.70	11.29
4	$OH + CH_4 \rightarrow [OHCH_4]^*$	4.26	3.85	2.61	1.22	1.65	5.64
5	$H + H_2 \rightarrow [HH_2]^*$	0.80	0.69	0.30	-0.27	-0.05	9.77
6	$OH + NH_3 \rightarrow [OHNH_3]^*$	6.02	5.25	3.54	1.18	1.82	3.17
7	$HCl + CH_3 \rightarrow [HClCH_3]^*$	1.93	1.78	1.79	0.68	0.92	0.10
8	$OH + C_2H_6 \rightarrow [OHC_2H_6]^*$	4.66	4.21	2.69	1.28	1.72	2.69
9	$F + H_2 \rightarrow [FH_2]^*$	3.40	3.14	1.20	0.52	0.78	1.13
10	$O + CH_4 \rightarrow [OHCH_3]^*$	3.40	3.12	2.37	0.70	1.20	13.62
11	$H + PH_3 \rightarrow [HPH_3]^*$	0.93	0.86	0.59	-0.16	0.10	2.29
12	$H + HO \rightarrow [OHH]^*$	2.03	1.59	0.44	-0.61	-0.26	10.25
13	$H + H_2S \rightarrow [HH_2S]^*$	1.01	0.92	0.65	-0.11	0.14	3.17
14	$O + HCl \rightarrow [OHCl]^*$	6.33	6.01	3.58	0.79	1.51	9.74
15	$NH_2 + CH_3 \rightarrow [CH_3NH_2]^*$	2.48	2.22	1.99	0.49	0.86	7.66
16	$NH_2 + C_2H_5 \rightarrow [NH_2C_2H_5]^*$	2.48	2.22	2.09	0.55	0.92	8.21
17	$C_2H_6 + NH_2 \rightarrow [C_2H_6NH_2]^*$	3.30	3.00	2.73	1.23	1.62	10.39
_18	$\mathrm{NH}_2 + \mathrm{CH}_4 {\rightarrow} [\mathrm{NH}_2 \mathrm{CH}_4]^*$	2.98	2.72	2.55	1.11	1.48	13.23

L		,
(_	
	_	•

		Reaction Barrier	ΔCEPA_0	Δ DC-12	ΔCCSD	ΔOCEPA_0	$\Delta \text{ODC-12}$	CCSD(T)
	1	$[HHCl]^* \leftarrow H_2 + Cl$	1.44	1.31	1.61	0.53	0.77	7.39
	2	$[OHH_2]^* \leftarrow H + H_2O$	2.09	1.66	0.09	-0.91	-0.58	21.07
	3	$[CH_3H_2]^* \leftarrow H + CH_4$	0.95	0.80	0.38	-0.38	-0.11	14.91
	4	$[OHCH_4]^* \leftarrow CH_3 + H_2O$	3.23	2.80	1.87	0.27	0.65	18.09
	6	$[OHNH_3]^* \leftarrow H_2O + NH_2$	5.46	4.62	3.14	0.79	1.33	13.17
	7	$[HClCH_3]^* \leftarrow Cl + CH_4$	1.97	1.94	2.31	0.78	1.16	5.89
	8	$[OHC_2H_6]^* \leftarrow H_2O + C_2H_5$	3.34	2.89	1.85	0.28	0.64	18.49
	9	$[FH_2]^* \leftarrow HF + H$	1.27	0.88	-0.78	-1.47	-1.33	32.95
	10	$[OHCH_3]^* \leftarrow OH + CH_3$	2.62	2.29	1.82	0.32	0.68	7.43
)	11	$[HPH_3]^* \leftarrow PH_2 + H_2$	1.14	1.11	1.37	0.39	0.63	23.21
	12	$[OHH]^* \leftarrow H_2 + O$	3.47	3.08	1.99	0.62	1.07	12.81
	13	$[HH_2S]^* \leftarrow H_2 + HS$	1.51	1.51	1.88	0.65	0.97	16.41
	14	$[OHCl]^* \leftarrow OH + Cl$	5.59	5.35	3.55	0.51	1.24	9.35
	15	$[CH_3NH_2]^* \leftarrow CH_4 + NH$	2.77	2.49	2.26	0.73	1.12	21.32
	16	$[\mathrm{NH_2C_2H_5}]^* \leftarrow \mathrm{C_2H_6} + \mathrm{NH}$	3.06	2.75	2.46	0.85	1.26	18.52
	17	$[C_2H_6NH_2]^* \leftarrow NH_3 + C_2H_5$	2.54	2.30	2.30	0.63	1.02	16.20
	18	$[\mathrm{NH_2CH_4}]^* \leftarrow \mathrm{CH_3} + \mathrm{NH_3}$	2.51	2.29	2.21	0.56	0.96	15.69
		$\Delta_{ ext{MAE}}$:	2.77	2.49	1.84	0.67	0.94	
		Δ_{SD} :	1.51	1.39	1.06	0.62	0.71	
		$\Delta_{ m rel} \ \%$:	99	90	77	29	40	

largest Δ_{MAE} values come from CEPA₀ and DC-12 (2.77 and 2.49 kcal mol⁻¹, respectively). Orbital optimization greatly improves the accuracy of these methods, resulting in Δ_{MAE} values of just 0.67 and 0.94 kcal mol⁻¹ for OCEPA₀ and ODC-12, respectively. The CCSD method shows intermediate performance with Δ_{MAE} = 1.84 kcal mol⁻¹. A similar trend is observed for the Δ_{SD} values, with OCEPA₀ (0.62 kcal mol⁻¹) and ODC-12 (0.71 kcal mol⁻¹) significantly improving upon CEPA₀ (1.51 kcal mol⁻¹), DC-12 (1.39 kcal mol⁻¹), and CCSD (1.06 kcal mol⁻¹). In addition to Δ_{MAE} and Δ_{SD} , table 2.2 includes mean percent error (Δ_{rel}) values, which are commonly used to benchmark performance for reaction kinetics. The smallest Δ_{rel} values are 29% and 40% for OCEPA₀ and ODC-12, respectively.

Turning to barrier heights for individual hydrogen-transfer reactions (table 2.2), the largest errors are observed for reactions 6 and 14, both involving the OH radical, for which CEPA₀ and DC-12 give errors of ~ 5 -6 kcal mol⁻¹. The best results for these reactions are obtained from OCEPA₀, with errors ranging from 0.51 to 1.18 kcal mol⁻¹. The ODC-12 method tends to predict larger barrier heights than OCEPA₀, yielding smaller errors only when OCEPA₀ underestimates the barrier heights.

2.5.3 Radical Stabilization Energies

In this section we study the performance of DCFT methods for predicting radical stabilization energies (RSEs). An R-group's RSE is defined as the enthalpy of a

Figure 2.2: Mean absolute deviations (Δ_{MAE} , kcal mol⁻¹) and the standard deviations from the mean signed error (Δ_{SD} , kcal mol⁻¹) of barrier heights for 18 hydrogen-transfer reactions ($R_1 + R_2H \rightarrow R_1H + R_2$, HTBH38 database) computed using five methods with the aug-cc-pVTZ basis set. The errors are relative to CCSD(T)/aug-cc-pVTZ reference values. The Δ_{MAE} value is represented as a height of each colored box, while the Δ_{SD} value is depicted as a radius of the black vertical bar. See table 2.2 for data on individual database members.

Table 2.3: Errors in radical stabilization energies (RSEs, kcal mol⁻¹) for 30 open-shell doublet species ('R) comprising the RSE30 database⁶³ computed using six methods with the cc-pCVTZ basis set. The errors are relative to CCSD(T) with an added quadruples correction ($\delta Q = E_{\text{CCSDT(Q)}} - E_{\text{CCSD(T)}}$) shown in the rightmost column in kcal mol⁻¹. The δQ correction was computed using the cc-pCVDZ basis set. RSE is defined as the reaction enthalpy for the homodesmotic reaction 'CH₃+RH \rightarrow CH₄+'R. To indicate the degree of spin-contamination in the UHF reference, the spin expectation values ($\langle \hat{S}^2 \rangle_{\text{SCF}}$) are also shown in units of \hbar^2 . For each method the mean absolute deviations from CCSD(T)+ δQ (Δ_{MAE} , kcal mol⁻¹) and the standard deviations from the mean signed error (Δ_{SD} , kcal mol⁻¹) are also presented.

'R	$\langle \hat{S}^2 \rangle_{ m SCF}$	ΔCEPA_0	$\Delta DC-12$	$\Delta { m CCSD}$	$\Delta ext{OCEPA}_0$	$\Delta \text{ODC-}12$	$\Delta \text{CCSD}(T)$	$CCSD(T) + \delta Q$
$^{\cdot}\mathrm{CH_{2}NO_{2}}$	0.78	1.24	0.95	0.66	0.16	0.27	0.32	-3.50
$^{\cdot}\mathrm{CH_{2}OCHO}$	0.76	1.16	1.12	0.63	0.40	0.48	0.10	-4.84
$^{\cdot}\mathrm{CH}_{2}\mathrm{SCH}_{3}$	0.76	1.89	1.70	0.81	0.63	0.72	0.15	-11.01
$^{\cdot}CF=CH_2$	0.94	6.12	3.71	0.96	0.42	0.64	0.46	6.26
$^{\cdot}\mathrm{CH_{2}CH_{2}F}$	0.76	0.30	0.27	0.13	0.08	0.10	0.04	-1.53
$^{\cdot}\mathrm{CH_{2}CHO}$	0.93	5.01	2.86	0.32	-0.16	0.02	0.46	-10.11
$^{\cdot}\mathrm{CH_{2}CN}$	0.94	6.36	3.52	0.65	-0.02	0.21	0.46	-8.66
$^{\cdot}\mathrm{CH_{2}F}$	0.76	1.03	1.00	0.52	0.55	0.57	0.06	-4.22
$^{\cdot}\mathrm{CH_{2}NH_{2}}$	0.76	1.28	1.18	0.59	0.50	0.52	0.06	-12.06
${}^{\cdot}\mathrm{CH_2NH_3}^+$	0.76	0.16	0.10	0.08	0.06	0.03	0.02	4.58
$^{\cdot}\mathrm{CH_{2}NHOH}$	0.77	1.76	1.57	0.78	0.58	0.64	0.15	-8.81
$^{\cdot}\mathrm{CH_{2}OH}$	0.76	1.29	1.23	0.62	0.57	0.60	0.07	-9.27
$^{\cdot}\mathrm{CH_{2}PH_{3}}^{+}$	0.76	0.21	0.14	0.01	0.01	-0.02	0.05	0.49
$^{\cdot}\mathrm{CH_{2}SH_{2}^{+}}$	0.77	0.41	0.30	0.12	0.11	0.08	0.06	2.29
$^{\cdot}\mathrm{CH_{2}SH}^{-}$	0.76	1.60	1.43	0.68	0.57	0.63	0.12	-9.68

·R	$\langle \hat{S}^2 \rangle_{\mathrm{SCF}}$	ΔCEPA_0	ΔDC -12	ΔCCSD	$\Delta ext{OCEPA}_0$	$\Delta \text{ODC-12}$	$\Delta \text{CCSD}(T)$	$CCSD(T) + \delta Q$
·CH ₂ C≡CH	1.00	6.23	3.47	0.82	-0.03	0.23	0.52	-13.17
$^{\cdot}\mathrm{CH_{2}CH_{3}}$	0.76	0.30	0.26	0.11	0.08	0.10	0.03	-3.36
$^{\cdot}\mathrm{CH_{2}Cl}$	0.77	1.13	1.02	0.50	0.48	0.51	0.09	-5.67
$^{\cdot}\mathrm{CH_{2}BH_{2}}$	0.76	0.17	0.17	0.05	0.03	0.04	0.05	-11.66
.CHO	0.77	2.26	2.24	1.48	1.55	1.56	0.20	-17.61
$^{\cdot}\mathrm{CH_{2}PH_{2}}$	0.76	1.17	1.02	0.39	0.36	0.39	0.12	-6.50
·CHClF	0.76	1.61	1.52	0.76	0.78	0.81	0.13	-6.61
\cdot CHFCH $_3$	0.76	1.07	1.01	0.50	0.51	0.53	0.08	-5.87
$^{\cdot}\mathrm{CH}(\mathrm{OH})_2$	0.76	1.30	1.22	0.60	0.60	0.61	0.08	-6.67
$^{\cdot}\mathrm{CHCl}_{2}$	0.77	1.78	1.57	0.72	0.72	0.75	0.15	-9.56
$^{\cdot}\mathrm{CHF}_{2}$	0.76	1.50	1.48	0.78	0.83	0.85	0.10	-4.07
$\mathrm{CH_2}{=}\mathrm{C'}{-}\mathrm{CN}$	1.39	19.10	11.50	2.36	-0.31	0.29	1.80	1.98
:С≡СН	1.15	11.20	6.51	0.77	-0.78	-0.07	0.82	26.25
$^{\cdot}\text{CH}=\text{CH}_2$	0.94	5.42	3.01	0.58	0.11	0.31	0.40	5.49
$^{\cdot}\text{CH}_2$ $-\text{CH}=\text{CH}_2$	0.97	4.98	3.17	0.51	0.11	0.31	0.48	-17.53
		Δ_{MAE} :	2.97	2.01	0.62	0.40	0.43	0.25
		Δ_{SD} :	3.97	2.27	0.45	0.43	0.35	0.35

homodesmotic reaction

$$RH + CH_3 \longrightarrow R + CH_4$$
 (2.6)

where exothermic (negative) values indicate that the radical 'R is more thermodynamically stable than 'CH₃. 65 For our benchmark we use the RSE30 dataset 63 , which provides a diverse variety of 'R species (listed in table 2.3). Since the performance of CCSD(T) is known to deteriorate for strongly spin-contaminated UHF references, $^{66-70}$ we augment CCSD(T) energies with a quadruples correction (Δ Q = $E_{\text{CCSDT(Q)}} - E_{\text{CCSD(T)}}$) and use these as our benchmark. CBS-extrapolated CCSD(T) reference values have been published for this dataset, 31 but we use CCSD(T) values computed with the cc-pCVTZ basis set to avoid basis-set incompleteness effects. The δ Q correction was evaluated using the cc-pCVDZ basis set. As in the previous Section, DC-06 and ODC-06 computations cannot be converged for all database members and are omitted in the analysis below (see Supporting Information for incomplete DC-06 and ODC-06 data).

The relative performance of the DCFT, CEPA, and CC methods for the RSE30 dataset is shown in fig. 2.3. The effect of orbital-optimization on accuracy is now even more pronounced, reducing the large Δ_{MAE} errors of CEPA₀ (2.97 kcal mol⁻¹) and DC-12 (2.01 kcal mol⁻¹) to 0.40 and 0.43 kcal mol⁻¹ for OCEPA₀ and ODC-12, respectively. CCSD has a slightly larger Δ_{MAE} value (0.62 kcal mol⁻¹), while CCSD(T) has the smallest overall Δ_{MAE} (0.25 kcal mol⁻¹). Both CEPA₀ and DC-12 show large standard deviations again (3.97 and 2.27 kcal mol⁻¹, respectively).

For OCEPA₀, the standard deviation (0.43 kcal mol⁻¹) is similar to that of CCSD (0.45 kcal mol⁻¹). ODC-12 and CCSD(T) exhibit the most consistent performance with the same Δ_{SD} value of 0.35 kcal mol⁻¹.

Deviations from CCSD(T)+ δ Q for individual RSEs predicted by each method are tabulated in table 2.3. In addition, table 2.3 includes expectation values of the square-norm spin operator computed for the UHF wavefunction of 'R ($\langle \hat{S}^2 \rangle_{SCF}$). The largest errors in computed RSEs were obtained for 'R species with $\langle \hat{S}^2 \rangle_{SCF} > 0.9 \,\hbar^2$ (radicals 4, 6, 7, 16, and 27-30 in table 2.3). For these systems, the average CEPA₀ and DC-12 errors are 8.05 and 4.72 kcal mol⁻¹, and the average CCSD(T) error is 0.68 kcal mol⁻¹. OCEPA₀ and ODC-12 offer remarkably better performance for this subset, with average errors of 0.24 kcal mol⁻¹ and 0.26 kcal mol⁻¹.

2.5.4 Adiabatic Ionization Energies in Electron-Dense Molecules

We conclude the assessment of DCFT methods for the description of thermodynamic properties by computing adiabatic ionization energies (AIEs) for a set of 10 di- and triatomic electron-dense molecules (table 2.4), i.e. those that are composed of elements with small atomic radius, high electron affinity, and high electronegativity (N, O, F), in order to increase the magnitude of electron correlation effects. We use experimentally measured ionization energies reported to high precision ($\sim 0.01 \text{ eV}$)^{71–74} as reference values for our benchmark (IE_{ref}, table 2.4). The AIEs were computed using the cc-pCVQZ basis set, with harmonic ZPVE corrections applied to each neutral and cationic system.

Figure 2.3: Mean absolute deviations (Δ_{MAE} , kcal mol^{-1}) and the standard deviations from the mean signed error (Δ_{SD} , kcal mol^{-1}) of the radical stabilization energies (RSEs) for 30 open-shell doublet species (RSE30 database) computed using six methods with the cc-pCVTZ basis set. The errors are relative to CCSD(T) with an added quadruples correction ($\delta Q = E_{\text{CCSDT}(Q)} - E_{\text{CCSD}(T)}$). The δQ correction was computed using the cc-pCVDZ basis set. RSE is defined as the reaction enthalpy for the homodesmotic reaction 'CH₃ + RH \rightarrow CH₄ + 'R. The Δ_{MAE} value is represented as a height of each colored box, while the Δ_{SD} value is depicted as a radius of the black vertical bar. See table 2.3 for data on individual database members.

Table 2.4: Errors in adiabatic ionization energies (AIEs, eV) for 10 di- and triatomic molecules computed using six methods with the cc-pCVQZ basis set. The errors are relative to experimental values (IE_{ref}, eV) from Ref. 71, unless noted otherwise. For all AIEs the harmonic zero-point vibrational energy corrections were included. For each method the mean absolute deviations from IE_{ref} (Δ_{MAE} , eV) and the standard deviations from the mean signed error (Δ_{SD} , eV) are also shown.

Molecule	Transition	ΔCEPA_0	$\Delta DC-12$	ΔCCSD	$\Delta ext{OCEPA}_0$	$\Delta \text{ODC-}12$	$\Delta \text{CCSD}(T)$	$\mathrm{IE}_{\mathrm{ref}}$
$\overline{\mathrm{N}_2}$	$^{1}\Sigma_{\rm g}^{+} \rightarrow ^{2}\Sigma_{\rm g}^{+}$	0.08	0.17	0.12	-0.05	0.07	-0.03	15.581 ± 0.008 ^a
O_2	$^3\Sigma_{\rm g}^- o {}^2\Pi_{\rm g}$	-0.11	-0.03	0.04	-0.09	-0.02	-0.04	12.0697 ± 0.0002
F_2	$^{1}\Sigma_{\mathrm{g}}^{+} \rightarrow ^{2}\Pi_{\mathrm{g}}$	0.06	0.06	0.04	0.08	0.01	-0.03	15.697 ± 0.003
NO	$^2\Pi \rightarrow ^1\Sigma^+$	-0.15	-0.05	-0.05	-0.05	-0.02	-0.09	9.26438 ± 0.00005
OF	$^2\Pi \rightarrow ^3\Sigma^-$	0.11	0.12	-0.10	-0.03	-0.02	-0.11	$12.77 \pm 0.01^{\ b}$
HNC	$^{1}\Sigma_{\mathrm{g}}^{+} \rightarrow ^{2}\Sigma^{+}$	0.27	0.14	-0.12	-0.14	-0.08	-0.04	$12.04\pm0.01~^{c}$
HOF	$^{1}\text{A}' \rightarrow {}^{2}\text{A}''$	0.20	0.17	-0.10	-0.03	-0.04	-0.07	12.71 ± 0.01
FNO	$^{1}\mathrm{A'} ightarrow ^{2}\mathrm{A''}$	0.51	0.10	-0.02	-0.02	-0.00	0.04	12.63 ± 0.03
F_2N	$^2\mathrm{B}_1 ightarrow {}^1\mathrm{A}_1$	0.07	0.10	0.07	0.01	0.03	-0.08	11.63 ± 0.01
F_2O	$^{1}\mathrm{A}_{1} ightarrow ^{2}\mathrm{B}_{1}$	0.49	0.37	-0.01	0.05	0.04	-0.04	13.11 ± 0.01
	$\Delta_{ ext{MAE}}$:	0.21	0.13	0.06	0.05	0.03	0.06	
	Δ_{SD} :	0.22	0.12	0.08	0.06	0.04	0.04	

^a Reference 72.

^b Reference 73.

^c Reference 74.

The Δ_{MAE} and Δ_{SD} values for our computed AIEs relative to experiment are plotted in fig. 2.4. Of the six methods, CEPA₀ and DC-12 exhibit the largest Δ_{MAE} values (0.21 and 0.13 eV, respectively). The closest agreement with experiment is given by ODC-12, with $\Delta_{\text{MAE}} = 0.03$ eV. OCEPA₀, CCSD, and CCSD(T) show somewhat poorer performance ($\Delta_{\text{MAE}} = 0.05$, 0.06 and 0.06 eV, respectively). The Δ_{SD} for ODC-12 matches that of CCSD(T) (0.04 eV). For the other methods, the Δ_{SD} values decrease in the order CEPA₀ (0.22 eV) > DC-12 (0.12) > CCSD (0.08) > OCEPA₀ (0.06).

Individual errors for each system are shown in table 2.4. Both DC-12 and CEPA₀ exhibit large deviations for F_2O (0.49 and 0.37 eV), and CEPA₀ also gives a large error for FNO (0.51 eV) which is the maximum error for this dataset. Both DC-12 and CEPA₀ give errors exceeding 0.1 eV for seven of the ten systems, whereas CCSD exhibits errors in excess of 0.1 eV for only three systems (OF, HNC, and HOF). CCSD(T) has only one such error (0.11 eV for OF), as does OCEPA₀ (0.14 eV for HNC). ODC-12 does the best of the methods considered, with a maximum error of 0.08 eV, found for the AIE of HNC.

2.5.5 Covalent Bond Stretching in Diatomic Molecules

Finally, we benchmark DCFT methods for covalent bond stretching. Although accurate description of bond stretching demands the use of multireference methods, our aim here is to explore the limits of DCFT away from equilibrium. For this purpose, we compute the energy as a function of bond distance for diatomic molecules with single (HF and BH), double (BeO), and triple (N_2) bonds using the

Figure 2.4: Mean absolute deviations (Δ_{MAE} , eV) and the standard deviations from the mean signed error (Δ_{SD} , eV) of adiabatic ionization energies for 10 diand triatomic molecules computed using six methods with the cc-pCVQZ basis set. The errors are relative to experimental values.^{71–74} The Δ_{MAE} value is represented as a height of each colored box, while the Δ_{SD} value is depicted as a radius of the black vertical bar. See table 2.4 for data on individual molecules.

Figure 2.5: Error in the total energy (mE_h) , relative to full CI, as a function of B–H internuclear separation (\mathring{A}) computed using six methods with the DZP basis set. The full CI reference is depicted with a horizontal dotted line. The dashed vertical line indicates the full CI equilibrium bond distance.

Figure 2.6: Error in the total energy (mE_h) , relative to full CI, as a function of H–F internuclear separation (\mathring{A}) computed using six methods with the DZP basis set. The full CI reference is depicted with a horizontal dotted line. The dashed vertical line indicates the full CI equilibrium bond distance.

Figure 2.7: Error in the total energy (m $E_{\rm h}$), relative to full CI, as a function of Be–O internuclear separation (Å) computed using six methods with the 6-31G basis set. The full CI reference is depicted with a horizontal dotted line. The dashed vertical line indicates the full CI equilibrium bond distance.

Figure 2.8: Error in the total energy (m $E_{\rm h}$), relative to full CI, as a function of N–N internuclear separation (Å) computed using six methods with the 6-31G basis set. The full CI reference is depicted with a horizontal dotted line. The dashed vertical line indicates the full CI equilibrium bond distance.

CEPA₀, OCEPA₀, DC-12, ODC-12, CCSD, and CCSD(T) methods. We restrict ourselves to modest basis sets in order to use full CI (FCI) as a reference, and plot the errors with respect to FCI (ΔE) as a function of internuclear distance for each molecule. The relative performance of the methods is described below using non-parallelity errors (NPE = $\Delta E_{\rm max} - \Delta E_{\rm min}$, m $E_{\rm h}$) computed for specific bond distance ranges.

BH Figure 2.5 shows errors relative to FCI for the BH molecule. DC-12 and CCSD increasingly overestimate the energy at larger internuclear distances, whereas the CEPA₀ error curve is concave down. Orbital optimization lowers the binding energy for OCEPA₀ even further compared to CEPA₀, leading to large errors with respect to FCI for r(B-H); 1.5 r_e , where r_e is the FCI equilibrium bond distance $(r_e = 1.244 \text{ Å})$. At 1.87 r_e , OCEPA₀ encounters convergence problems, which originate from numerical instabilities due to the method's deficiencies in the description of N-representability. The ODC-12 method exhibits much more stable behavior with respect to bond stretching in this case, fortuitously showing smaller errors and better parallelity than CCSD(T). For the range $[0.72 \ r_e, 2.47 \ r_e]$, the NPEs decrease in the order DC-12 $(24 \ \text{mE}_h) > \text{CEPA}_0$ (15) > CCSD (5) > CCSD(T) (3) > ODC-12 (1).

HF Errors for HF bond stretching are plotted in fig. 2.6. The ΔE values of CCSD and DC-12 increase as a function of r(H-F), while CEPA₀ fortuitously maintains parallelity similar to CCSD(T) over the range [0.74 $r_{\rm e}$, 1.94 $r_{\rm e}$] ($r_{\rm e} = 0.929$ Å). OCEPA₀ increasingly overestimates the HF binding energy away from equilibrium,

failing to converge past 1.82 $r_{\rm e}$. The ODC-12 method exhibits larger NPE than was observed for BH, and encounters convergence problems past 1.94 $r_{\rm e}$. CCSD(T) shows the best overall performance, with errors between 0 and 1 m $E_{\rm h}$. In the range [0.74 $r_{\rm e}$, 1.94 $r_{\rm e}$] the computed NPE values are: DC-12 (15 m $E_{\rm h}$) > CCSD (7) > ODC-12 (3) > CEPA₀ (1) \approx CCSD(T) (1). Recently, the orbital-optimized variants of CCSD(T) have been shown to yield good performance for HF bond stretching.⁷⁵

BeO The double bond of BeO presents a more challenging test for the single-reference methods under consideration (fig. 2.7). All methods but CCSD(T) show qualitatively similar error curves, with inflection points near the FCI equilibrium ($r_{\rm e}=1.394~{\rm \AA}$) and valleys/peaks around 0.6 $r_{\rm e}/1.2~r_{\rm e}$. OCEPA₀ encounters convergence problems past 1.10 $r_{\rm e}$. The ODC-12 method performs similarly to CCSD. Overall, the NPEs for the range [0.65 $r_{\rm e}$, 1.10 $r_{\rm e}$] decrease in the following order: DC-12 (29 m $E_{\rm h}$) > CEPA₀ (24) > ODC-12 (19) > CCSD (17) > CCSD(T) (3).

 N_2 Figure 2.8 depicts the errors relative to FCI for triple bond stretching in N_2 . Here, OCEPA₀ fails to converge past 1.24 $r_{\rm e}$ ($r_{\rm e}=1.135$ Å). The ODC-12 method significantly overestimates the binding energy, possibly due to the lack of three-body correlation effects, but shows much more stable performance compared to methods other than CCSD(T). NPEs in the range [0.79 $r_{\rm e}$, 1.39 $r_{\rm e}$] decrease in the order: CEPA₀ (802 m $E_{\rm h}$)[‡]> CCSD (27) > DC-12 (21) > ODC-12 (14) > CCSD(T) (4).

 $^{^{\}ddagger}\mathrm{CEPA_0}$ exhibits a vertical asymptote at 1.36 r_e for $\mathrm{N_2}$ stretching.

2.6 Conclusions

We have presented the benchmark study of four density cumulant functional theory (DCFT) methods (DC-06, DC-12, ODC-06, and ODC-12) developed recently in our group. ^{49;50;52;53} Specifically we have compared the performance of DCFT to that of coupled electron pair methods (CEPA₀ and OCEPA₀), as well as coupled-cluster theory [CCSD and CCSD(T)] for predicting a variety of chemical properties relevant to thermochemistry and kinetics, with a particular focus on open-shell, electron-dense, and non-equilibrium systems.

Our results indicate that among the four DCFT methods, the best agreement with available reference data is obtained for the ODC-12 method. While all four DCFT formulations yield similar results for the description of noncovalent interactions, DC-06, DC-12, and ODC-06 exhibit worse performance than ODC-12 for thermodynamic and kinetic properties of reactions involving open-shell molecules. In particular, DC-06 and ODC-06 frequently encounter convergence problems that originate from poor description of N-representability. In comparing ODC-12 to other methods, several trends can be observed:

- (i) For all benchmark datasets, ODC-12 outperforms CCSD with errors smaller by almost a factor of two, on average. ODC-12 is also superior to CCSD for the description of single bond stretching in BH and HF, although it does not converge for all bond distances.
- (ii) The performance of ODC-12 and OCEPA₀ is comparable. In particular, for hydrogen-transfer reaction barrier heights, the OCEPA₀ method yields smaller percent errors than ODC-12, whereas, for the radical stabilization energies (RSE)

and adiabatic ionization energies (AIE) in electron-dense molecules, the ODC-12 method smaller standard deviations than OCEPA₀. For AIEs, ODC-12 gives smaller mean absolute deviations by almost a factor of two. ODC-12 also shows significantly smaller non-parallelity errors than OCEPA₀ for covalent bond stretching, and can be converged for a larger range of distances for all diatomic molecules studied.

(iii) For the two most challenging datasets, RSE and AIE, the standard deviation of ODC-12 and CCSD(T) are similar. While CCSD(T) yields smaller mean absolute errors for the RSE database, the ODC-12 method significantly outperforms CCSD(T) for the AIE test case. However, for bond stretching ODC-12 is competitive with CCSD(T) only for the BH dissociation and shows worse results for other molecules.

Overall, the data presented herein indicates that the ODC-12 method can be used as an efficient $\mathcal{O}(n^6)$ alternative to CCSD, capable of predicting thermodynamic and kinetic quantities that are competitive in accuracy with the "gold-standard" $\mathcal{O}(n^7)$ CCSD(T). Although our current implementation of ODC-12 is far from optimal, the ODC-12 equations have reduced non-linearities compared to CCSD, which makes them more amenable to parallel implementation. The efficiency of ODC-12 can also greatly benefit from spin-adaptation, ^{42;76;77} local approximations, ^{34;78–80} and density fitting. ^{78;81–83} Another important advantage of ODC-12 over CCSD is its stationarity, which makes the computation of first-order properties and analytic gradients more efficient and easily accessible. In particular, ODC-12 has potential to be used for computing accurate response properties

which do not suffer from a lack of gauge-invariance. $^{1;84}$

Chapter 3

Linear-Response Density Cumulant Theory for Excited States: First Implementation and Benchmark Calculations*

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.

^{*}A. V. Copan and A. Yu. Sokolov (to be submitted in J. Chem. Theory Comput).

Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a fau-

cibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Chapter 4

Linear-Response Density Cumulant Theory for Excited States: Better Algorithms, Bigger Systems

Figure 4.1: A schematic illustrating the sequence of reduced representations of **E** in the algorithm employed in this study. The colored entries must be explicitly computed, whereas the gray entries are determined by Hermitian symmetry.

We have implemented the LR-ODC-12 method using a multi-root Davidson algorithm, which solves the generalized eigenvalue problem (??) by progressively growing an expansion space for the $n_{\rm root}$ lowest generalized eigenvectors of ${\bf E}$ and ${\bf M}$. The general procedure looks as follows:

1. Initialize the expansion space with a set of $n_{\rm guess} \geq n_{\rm root}$ orthonormal vectors.

$$\mathbf{R}^{(0)} = (\mathbf{u}_1^{(0)} \cdots \mathbf{u}_{n_{\mathrm{guess}}}^{(0)})$$

2. Express the energy-Hessian and metric matrices in the reduced expansion space.

$$\mathbf{E}^{(i)} = \mathbf{R}^{(i)\dagger}\mathbf{E}(\mathbf{R}^{(i)})$$

$$\mathbf{M}^{(i)} = \mathbf{R}^{(i)\dagger} \mathbf{M}(\mathbf{R}^{(i)})$$

3. Solve for the $n_{\rm root}$ highest eigenvectors of the inverse eigenvalue equation.

$$\mathbf{M}^{(i)}\mathbf{z}_k^{(i)} = \mathbf{E}^{(i)}\mathbf{z}_k^{(i)}/\omega_k^{(i)}$$

4. Determine the residual for each root.

$$\mathbf{d}_k^{(i)} = \mathbf{M}(\mathbf{z}_k^{(i)}) - \mathbf{E}(\mathbf{z}_k^{(i)})/\omega_k^{(i)}$$

If the residual elements are sufficiently small we consider the eigenvectors converged and exit the loop.

5. Form new direction vectors by preconditioning the residuals.

$$\mathbf{g}_k^{(i+1)} = -(\tilde{\mathbf{M}} - \tilde{\mathbf{E}}/\omega_k^{(i)})^{-1}\mathbf{d}_k$$

The tildes in this equation denote diagonal approximations to these matrices.

6. Project out the span of the current expansion space from the new direction vectors.

$$\mathbf{J}^{(i+1)} = (\mathbf{1} - \mathbf{R}^{(i)} \mathbf{R}^{(i)\dagger}) (\mathbf{g}_1^{(i+1)} \cdots \mathbf{g}_{n_{\mathrm{root}}}^{(i+1)})$$

7. Determine an orthonormal basis for the new direction vectors using a compressed singular value decomposition, and add these new vectors to the expansion space.

$$\mathbf{J}^{(i+1)} \approx \mathbf{U}^{(i+1)} \mathbf{\Sigma}^{(i+1)} \mathbf{V}^{(i+1)\dagger}$$

$$\mathbf{R}^{(i+1)} \leftarrow (\mathbf{R}^{(i)} \ \mathbf{U}^{(i+1)})$$

8. Increment i and return to step 2.

A key feature of this algorithm is that we never need to explicitly construct the energy-Hessian and metric matrices in memory, only their images over the expansion space.

For the diagonal approximations in step 5 we use the following.

$$\tilde{\mathbf{S}}_{11} \equiv \mathbf{1}_1$$

$$(\tilde{\mathbf{A}}_{11})_{ia,ia} \equiv -f_i^i + f_a^a$$

$$(ilde{\mathbf{A}}_{22})_{ijab,ijab} \equiv -\mathcal{F}_i^i - \mathcal{F}_j^j - \mathcal{F}_a^a - \mathcal{F}_b^b$$

These can also be used to construct the initial expansion space in step 1, namely by including unit vectors for the n_{guess} smallest positive entries in $\tilde{\mathbf{E}}$.

4.0.1 Ethylene, Butadiene, and Hexatriene

Table 4.1: Vertical excitation energies computed using LR-OLCCD, LR-ODC-12, and EOM-CCSD for the low-lying electronic states of ethylene (C_2H_4), butadiene (C_4H_6), and hexatriene (C_6H_8). Computations employed the ANO-L-pVDZ (for C_4H_6 and C_6H_8) and ANO-L-pVTZ (for C_2H_4) basis sets and the MP2/cc-pVQZ optimized geometries. For LR-OLCCD and LR-ODC-12, oscillator strengths of the allowed transitions are given in parentheses. All electrons were correlated in all computations. Also shown are the excitation energies from the frozen-core semistochastic heat-bath CI (SHCI) method, extrapolated to full CI limit.

		EOM-CCSD	LR-OLCCD	LR-ODC-12	SHCIa
C_2H_4	$^3\mathrm{B}_{1\mathrm{u}}$	4.46	4.66	4.52	4.59
	$^{1}\mathrm{B}_{1\mathrm{u}}$	8.14	8.20(1.8)	8.14(1.9)	8.05
C_4H_6	$^{3}\mathrm{B_{u}}$	3.20	3.58	3.43	3.37
	$^{1}\mathrm{B_{u}}$	6.53	6.76(4.2)	6.67(4.4)	6.45
	$^{1}\mathrm{A_{g}}$	7.28	7.14	6.81	6.58
C_6H_8	$^{3}\mathrm{B_{u}}$	2.64	3.01	2.83	2.77
	$^{1}\mathrm{B_{u}}$	5.60	5.89(6.5)	5.74(8.1)	5.59
	$^{1}\mathrm{A_{g}}$	6.55		5.73	5.58

^a The SHCI computations used the same basis sets and optimized geometries as those used for LR-OLCCD, LR-ODC-12, and EOM-CCSD.

Chapter 5

Conclusion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue

quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Appendix A

Extended Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue

quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Bibliography

- [1] T. B. Pedersen, B. Fernández, and H. Koch, J. Chem. Phys. 114, 6983 (2001).
- [2] M. Nooijen, K. R. Shamasundar, and D. Mukherjee, Mol. Phys. 103, 2277 (2005).
- [3] J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem. **10**, 1 (1976).
- [4] R. J. Bartlett, Annu. Rev. Phys. Chem. **32**, 359 (1981).
- [5] P. G. Szalay, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. **103**, 281 (1995).
- [6] H. P. Kelly and A. M. Sessler, Phys. Rev. **132**, 2091 (1963).
- [7] H. P. Kelly, Phys. Rev. A **134**, 1450 (1964).
- [8] W. Meyer, J. Chem. Phys. **58**, 1017 (1973).
- [9] R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979).
- [10] S. Koch and W. Kutzelnigg, Theor. Chim. Acta **59**, 387 (1981).
- [11] M. Gelus, R. Ahlrichs, V. Staemmler, and W. Kutzelnigg, Chem. Phys. Lett. 7, 503 (1970).

- [12] V. Staemmler and M. Jungen, Chem. Phys. Lett. 16, 187 (1972).
- [13] R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys. 62, 1235 (1975).
- [14] H. Kollmar and V. Staemmler, J. Am. Chem. Soc. 99, 3583 (1977).
- [15] J. Wasilewski, V. Staemmler, and S. Koch, Phys. Rev. A 38, 1289 (1988).
- [16] A. G. Taube and R. J. Bartlett, J. Chem. Phys. **130**, 144112 (2009).
- [17] F. Coester, Nucl. Phys. 7, 421 (1958).
- [18] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).
- [19] J. Čížek, J. Chem. Phys. **45**, 4256 (1966).
- [20] R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561 (1978).
- [21] T. D. Crawford and H. F. Schaefer, Rev. Comp. Chem. 14, 33 (2000).
- [22] R. J. Bartlett and M. Musiał, Rev. Mod. Phys. **79**, 291 (2007).
- [23] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics (Cambridge University Press, Cambridge, UK, 2009).
- [24] C. Kollmar and F. Neese, Mol. Phys. **108**, 2449 (2010).
- [25] J. P. Daudey, J. L. Heully, and J. P. Malrieu, J. Chem. Phys. 99, 1240 (1993).
- [26] J. P. Malrieu, H. Zhang, and J. Ma, Chem. Phys. Lett. 493, 179 (2010).

- [27] M. Nooijen and R. J. Le Roy, J. Mol. Struct. **768**, 25 (2006).
- [28] C. Kollmar and F. Neese, J. Chem. Phys. **135**, 84102 (2011).
- [29] C. Kollmar and A. Heßelmann, Theor. Chem. Acc. 127, 311 (2010).
- [30] U. Bozkaya and C. D. Sherrill, J. Chem. Phys. **139**, 054104 (2013).
- [31] E. Soydaŧ and U. Bozkaya, J. Comput. Chem. **35**, 1073 (2014).
- [32] U. Bozkaya, J. Chem. Phys. **139**, 154105 (2013).
- [33] F. Wennmohs and F. Neese, Chem. Phys. **343**, 217 (2008).
- [34] F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. **130**, 114108 (2009).
- [35] W. Kutzelnigg, J. Chem. Phys. **125**, 171101 (2006).
- [36] D. A. Mazziotti, Phys. Rev. Lett. **101**, 253002 (2008).
- [37] D. A. Mazziotti, Phys. Rev. A 81, 62515 (2010).
- [38] A. E. DePrince and D. A. Mazziotti, Mol. Phys. **110**, 1917 (2012).
- [39] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997).
- [40] D. A. Mazziotti, Chem. Phys. Lett. **289**, 419 (1998).
- [41] D. A. Mazziotti, Phys. Rev. A 57, 4219 (1998).
- [42] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 (1999).
- [43] L. Kong, Int. J. Quantum Chem. **111**, 3541 (2011).

- [44] M. Hanauer and A. Köhn, Chem. Phys. **401**, 50 (2012).
- [45] M. Nakata and K. Yasuda, Phys. Rev. A 80, 42109 (2009).
- [46] H. van Aggelen, B. Verstichel, P. Bultinck, D. Van Neck, P. W. Ayers, and D. L. Cooper, J. Chem. Phys. 132, 114112 (2010).
- [47] B. Verstichel, H. van Aggelen, D. Van Neck, P. W. Ayers, and P. Bultinck, J. Chem. Phys. 132, 114113 (2010).
- [48] J. M. Herbert and J. E. Harriman, Adv. Chem. Phys. **134**, 261 (2007).
- [49] A. C. Simmonett, J. J. Wilke, H. F. Schaefer, and W. Kutzelnigg, J. Chem. Phys. 133, 174122 (2010).
- [50] A. Y. Sokolov, J. J. Wilke, A. C. Simmonett, and H. F. Schaefer, J. Chem. Phys. 137, 054105 (2012).
- [51] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 120, 7350 (2004).
- [52] A. Y. Sokolov, A. C. Simmonett, and H. F. Schaefer, J. Chem. Phys. 138, 024107 (2013).
- [53] A. Y. Sokolov and H. F. Schaefer, J. Chem. Phys. **139**, 204110 (2013).
- [54] D. A. Mazziotti, ed., Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules, Advances in Chemical Physics, Vol. 134 (John Wiley & Sons, Inc., Hoboken, NJ, 2007).

- [55] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford, WIREs Comput. Mol. Sci. 2, 556 (2012).
- [56] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
- [57] J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).
- [58] T. H. Dunning, J. Chem. Phys. **90**, 1007 (1989).
- [59] D. E. Woon and T. H. Dunning, J. Chem. Phys. **103**, 4572 (1995).
- [60] R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
- [61] J. ÅŸezáč and P. Hobza, J. Chem. Theory Comput. 9, 2151 (2013).
- [62] Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005).
- [63] E. Soydaŧ and U. Bozkaya, J. Chem. Theory Comput. 9, 1452 (2013).
- [64] B. J. Lynch, Y. Zhao, and D. G. Truhlar, "enquote "bibinfo title The Minnesota Databases for Chemistry and Solid-State Physics,".
- [65] H. Zipse, Top. Curr. Chem. **263**, 163 (2006).

- [66] E. F. C. Byrd, C. D. Sherrill, and M. Head-Gordon, J. Phys. Chem. A 105, 9736 (2001).
- [67] G. J. O. Beran, S. R. Gwaltney, and M. Head-Gordon, Phys. Chem. Chem. Phys. 5, 2488 (2003).
- [68] R. C. Lochan and M. Head-Gordon, J. Chem. Phys. **126**, 164101 (2007).
- [69] W. Kurlancheek and M. Head-Gordon, Mol. Phys. 107, 1223 (2009).
- [70] U. Bozkaya, J. Chem. Phys. **135**, 224103 (2011).
- [71] S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, 1 (1988).
- [72] T. Trickl, E. F. Cromwell, Y. T. Lee, and A. H. Kung, J. Chem. Phys. 91, 6006 (1989).
- [73] Z. Zhang, S. C. Kuo, R. B. Klemm, P. S. Monks, and L. J. Stief, Chem. Phys. Lett. 229, 377 (1994).
- [74] A. Hansel, C. Scheiring, M. Glantschnig, W. Lindinger, and E. E. Ferguson, J. Chem. Phys. 109, 1748 (1998).
- [75] U. Bozkaya and H. F. Schaefer, J. Chem. Phys. **136**, 204114 (2012).
- [76] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 116, 4787 (2002).
- [77] W. Kutzelnigg, K. R. Shamasundar, and D. Mukherjee, Mol. Phys. **108**, 433 (2010).

- [78] H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).
- [79] A. G. Taube and R. J. Bartlett, Collect. Czech. Chem. Commun. 70, 837 (2005).
- [80] F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. **131**, 64103 (2009).
- [81] O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
- [82] G. Hetzer, M. Schütz, H. Stoll, and H.-J. Werner, J. Chem. Phys. 113, 9443 (2000).
- [83] M. Schütz and H.-J. Werner, J. Chem. Phys. **114**, 661 (2001).
- [84] T. B. Pedersen, H. Koch, and C. Hättig, J. Chem. Phys. 110, 8318 (1999).