Properties of Expectations

Conditional Expectation [Ross S7.5]

Recall that for 2 discrete random variables X and Y with P[Y = y] > 0:

$$p_{X|Y}(x|y) = P[X=x|Y=y]$$

$$= \frac{p_{XY}(x,y)}{p_Y(y)}$$
 We can define the **conditional expectation**:

 $E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$

Similarly, if
$$X$$
 and Y are continuous, then provided $f_Y(y) > 0$:

 $f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)},$

$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

and

Example 33.1: Say
$$X$$
 and Y have joint pdf [see Example 27.3]

 $f_{XY}(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y} & 0 < x < \infty, \ 0 < y < \infty \\ 0 & \text{else} \end{cases}$

Find
$$E[X|Y=y]$$
.
Solution: From Example 27.3, for $x>0, y>0$

 $f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$

tion, e.g.,

and

So,

 $=\frac{1}{y}e^{-x/y}$

So,
$$E[X|Y=y] = \int_0^\infty \frac{x}{y} e^{-x/y} dx = y$$

 $E[g(X)\mid Y=y] = \begin{cases} \sum_x g(x) p_{X\mid Y}(x|y) & \text{discrete case} \\ \\ \int_{-\infty}^{\infty} g(x) f_{X\mid Y}(x|y) dx & \text{continuous case} \end{cases}$

Note: Conditional expectations satisfy all the properties of ordinary expecta-

$$E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i | Y = y]$$

E[X|Y = y] = yE[X|Y] = Y

E[X|Y=y] is a function of y, say g(y). Let E[X|Y] be g(Y), i.e., in Example 33.1:

Computing Expectations by Conditioning

Proposition 33.1 E[X] = E[E[X|Y]], *i.e.*

 $E[X] = \sum_{y} E[X|Y = y]p_Y(y)$

 $E[X] = \int_{-\infty}^{\infty} E[X|Y = y] f_Y(y) dy$

Why? [Continuous Case]
$$\int_{-\infty}^{\infty} E[X|Y=y] f_Y(y) dy = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx \right] f_Y(y) dy$$

[discrete case]

 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_Y(y) \ dxdy$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x,y) \ dxdy$

[continuous case]

E[X] = E[X|Y = 1]P[Y = 1]+E[X|Y=2]P[Y=2]+E[X|Y=3]P[Y=3]

 $\Rightarrow E[X] = 15$

with mean 50.

Solution: Let X = time to leave building, and Y = door choice.

 $= \frac{1}{3}(E[X|Y=1] + E[X|Y=2] + E[X|Y=3])$

Also,
$$E[X|Y = 1] = 3$$

 $E[X|Y = 2] = 5 + E[X]$
 $E[X|Y = 3] = 7 + E[X]$

 $E[X] = \frac{1}{3}(3+5+E[X]+7+E[X])$

Example 33.3: The number of people that enter a store in a day is random

The amount spent by each person is iid with mean \$8, and independent of the

number of people that enter. What is the expected amount spent in the store in one day? [Hard]
$$Solution:$$
 Let $N=\#$ customers that enter store in one day.

Let X_i = amount spent by ith customer.

Total amount spent is $Y = \sum_{i=1}^{N} X_i$.

 $E\left[\sum_{i=1}^{N} X_i\right] = E\left[E\left[\sum_{i=1}^{N} X_i \middle| N\right]\right]$

and $E\left[\sum_{i=1}^{N} X_i \middle| N = n\right] = E\left[\sum_{i=1}^{n} X_i \middle| N = n\right]$ $= E \left[\sum_{i=1}^{n} X_i \right]$

 $=\sum_{i=1}^{n}E\left[X_{i}\right]$

$$= nE[X_1]$$
 so
$$E\left[\left.\sum_{i=1}^N X_i\right|N\right] = NE[X_1]$$

Therefore
$$E\left[\sum_{i=1}^{N}X_i\right] = E\left[NE[X_1]\right]$$

= $E[N]E[X_1]$
= 50×8