

Laser Technology – Exercise Sheet 1

Prof. Dr. Christian Jirauschek and Mark Schmidt, M.Sc.

Summer semester 2020

1 Photons in a laser cavity

From an optical laser resonator (depicted in Fig. 1) of length L, light is outcoupled through the right mirror with a power reflection coefficient R. The outcoupled light has a power P_{out} and a wavelength λ . The gain medium inside the cavity has a refractive index n. The reflection coefficient R is formed by the interface between the semiconductor and air (n = 1), and thus obtained as $R = (n - 1)^2 / (n + 1)^2$.

Figure 1 Schematic representation of the laser cavity.

- a) How many photons per second are outcoupled from the cavity?
- b) How many photons are in the cavity? Assume for the calculation that $(1 R) \ll 1$, and thus the power within the cavity can be assumed to be constant at different positions in the cavity.
- c) Calculate these quantities for typical values of a semiconductor laser, L = 1 mm, λ = 670 nm, $P_{\rm out}$ = 5 mW, n = 3.3.

2 Gain saturation

The power dependent roundtrip gain is often modeled by $G = G_0/(1 + P/P_{\rm sat})$, where G_0 is the small signal gain, P is the intracavity power and $P_{\rm sat}$ is the saturation power. The laser setup is as shown in Fig. 1, i.e., with outcoupling at the right side with a reflection coefficient R, and given G_0 and $P_{\rm sat}$. The outcoupled power is $P_{\rm out}$.

- a) How big is P and P_{out} as a function of R? What is the maximum obtainable P_{out} , and for which R is it obtained? What is the maximum obtainable P, and for which R is it obtained?
- b) Plot $P_{\rm out}$ as a function of R for typical values of a semiconductor laser, G_0 = 100, $P_{\rm sat}$ = 2 mW.