

Neutrino Mass and Neutrino Oscillations

Gelo Noel M. Tabia

PHYS703 Introduction to Quantum Field Theory

Outline

- Neutrinos in the Standard Model
- Phenomenology of neutrino oscillations
- Neutrino oscillation experiments
- Sterile neutrinos
- The see-saw mechanism

Standard Model

- Gauge group: $SU(3)_C \times SU(2)_L \times U(1)_{EM}$
- Gauge bosons: 8 gluons, W^{\pm}, Z^{0}, γ
- Quarks and leptons:

1st	u	d	Ф	$ u_e $
2nd	С	S	μ	$ _{\mathcal{U}_{\mu}}$
3rd	t	b	au	$oldsymbol{\mathcal{U}}_{ au}$

- Higgs boson
- 19 parameters

Summary of interactions

About the Neutrino

Pauli's hypothesis (1934) for beta decay

$$n \rightarrow p + e + \overline{\nu_e}$$

Experimental discoveries:

ν _e	Cowan, Reines	1956
ν _μ	Lederman, Schwartz, Steinberger	1962
ντ	DONUT collaboration	2000

• Properties: q = 0, weakly interacting, spin $\frac{1}{2}$, L = 1, tiny mass, (left-handed)

Neutrino Mass

Flavor states: superposition of mass states

$$|\nu_{\ell}\rangle = \sum_{a} U_{\ell a} |\nu_{a}\rangle$$

$$\left| \boldsymbol{\nu}_{\ell} \right\rangle = \sum_{a} \boldsymbol{U}_{\ell a} \left| \boldsymbol{\nu}_{a} \right\rangle \left| \left| \boldsymbol{\nu}_{\ell}(t) \right\rangle = \sum_{a} e^{-iE_{a}t} \boldsymbol{U}_{\ell a} \left| \boldsymbol{\nu}_{a} \right\rangle$$

Survival or transition probability

$$\left|\left\langle v_{\ell'} \middle| v_{\ell}(t) \right\rangle\right|^2 = \sum_{a,b} \left| U_{\ell'b} U_{\ell a} U_{\ell'a}^* U_{\ell b}^* \middle| \cos \left[\left(E_b - E_a \right) t - \phi \right] \right|$$

• Highly relativistic: $\left| E \approx p + \frac{m^2}{2p} \right|$

$$E \approx p + \frac{m^2}{2p}$$

$$\phi_i = \frac{m_i^2}{2p_i}x$$

• 2-flavor case:
$$|v_{\ell}(t)\rangle = e^{i\phi_1}\cos\theta|v_1\rangle + e^{i\phi_2}\sin\theta|v_2\rangle$$

Neutrino Oscillations

Oscillation probability

$$\left|\left\langle \boldsymbol{v}_{\ell'} \middle| \boldsymbol{v}_{\ell}(t) \right\rangle\right|^{2} = \sum_{a,b} \left| \boldsymbol{U}_{\ell'b} \boldsymbol{U}_{\ell a} \boldsymbol{U}_{\ell'a}^{*} \boldsymbol{U}_{\ell b}^{*} \middle| \cos \left(\frac{2\pi x}{L} - \phi \right) \right|$$

$$\Delta m_{ab}^2 = m_a^2 - m_b^2 \qquad L = \frac{4\pi p}{\Delta m_{ab}^2}$$

$$L = \frac{4\pi p}{\Delta m_{ab}^2}$$

- Nontrivial effects when $x \neq \kappa L, \kappa \in Z$
- Same for antineutrino = CPT conservation

PMNS Mixing Matrix

General neutrino mixing matrix: PMNS

$$U = \begin{pmatrix} c_{12}c_{13} & -s_{12}c_{13} & s_{13} \\ s_{12}c_{13} + c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & -s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & c_{12}s_{23} + s_{12}c_{23}s_{13} & c_{23}c_{13} \end{pmatrix}$$

$$c_{ab} = \cos \theta_{ab} \qquad s_{ab} = \sin \theta_{ab}$$

Similar in form to quark mixing: CKM

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Two-Flavor Oscillation

Limiting case: with one small mixing angle

$$\left|\left\langle v_{\ell} \left| v_{\ell}(t) \right\rangle \right|^{2} = 1 - \sin^{2} 2\theta_{ab} \sin^{2} \left(\frac{x \Delta m_{ab}^{2}}{4E} \right)$$

Valid for muon-tau mixing as well as electron- v_{χ} mixing, where

$$v_X = \alpha v_{\mu} + \beta v_{\tau}$$

because one mixing angle is small and two of the mass eigenstates are close relative to the other one.

Mass Term in Lagrangian

Phenomenology w/ 3 neutrinos:

$$L = \frac{1}{2} M_{ij} \bar{\nu}_i (1 + \gamma_5) \nu_i + L_{NC} + L_{CC}$$

- Neutral current term stays the same
- Mixing appears in charged current term

$$L_{cc} = i \frac{g}{\sqrt{2}} U_{ai} W_{\mu} (\bar{\ell}_a \gamma^{\mu} \gamma_L \nu_i) + \text{h.c.}$$

Solar Neutrinos₁₂

Nuclear reactions (H-He fusion):

$$p + p \rightarrow D + e^+ + \nu_e$$
 ⁸B $\rightarrow 2(^4\text{He}) + e^+ + \nu_e$

Detect: inverse beta decay (Davis, 1968)

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$$

Scatter off electron

$$e_{rest}^- + \nu_e \rightarrow \nu_e + e^-$$

Double ratio:

$$R = \frac{(\mu/e)}{(\mu/e)_{MC}}$$
 (SNO, 2001) R = 0.35

Atmospheric Neutrinos₂₃

Typical cosmic ray reaction chain:

$$p + X \rightarrow \pi^{\pm} + Y$$
 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ $\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} + \nu_{\mu}$

• Best double ratio R:

Super	Sub-GeV	$0.638 \pm 0.16 \pm 0.050$
Kamiokande	Multi-GeV	$0.658 \pm 0.030 \pm 0.078$

Up-down symmetry shows muon flux deficit

$$\alpha_{\ell} = \left(\frac{U-D}{U+D}\right)_{\ell}$$

$$\alpha_{e} = 0$$

$$\alpha_{\mu} < 0 \quad \text{(high momenta)}$$

Reactor & Accelerator Studies

- Reactors: antineutrinos from beta decay
- CHOOZ: $n+^m Gd \rightarrow^{m+1} Gd^* \rightarrow Gd + \gamma s$

$$\Delta m_{13}^2 = 2.5 \times 10^{-5} \,\text{eV}^2$$
$$\sin^2 2\theta_{13} = 0.15$$

Accelerators: Magnetically focused neutrino beam:

$$p \to \pi, K \to \mu, e, v_{e,\mu}$$

Muon disapperance, electron appearance

Double Beta Decay

35 natural isotopes w/ ground state s.t.

$$(Z,A) \rightarrow (Z+2,A) + 2e + 2\nu_e$$

• Guilio Racah(1937), Wendell Furry(1939):

$$(Z,A) \rightarrow (Z+1,A) + e + \overline{\upsilon}_e$$

$$(Z+1,A) + \upsilon_e \rightarrow (Z+2,A) + e$$

- Double beta w/o neutrinos = Majorana
- Mass limit (Ge to Se) : $m_{\nu} \approx 0.35 \text{eV}$

Summary of Experiments

Global analysis of oscillation parameters

Parameter	Best fit	2σ	3σ
$\Delta m_{12}^2 \ (10^{-5} \ \text{eV}^2)$	7.6	7.3 - 8.1	7.1 - 8.3
$ \Delta m_{13}^2 (10^{-3} \text{ eV}^2)$	2.4	2.1-2.7	2.0-2.8
$\sin^2 \theta_{12}$	0.32	0.28 - 0.37	0.26 - 0.40
$\sin^2 \theta_{23}$	0.50	0.38 - 0.63	0.34 - 0.67
$\sin^2 \theta_{13}$	0.007	≤ 0.033	≤ 0.050

3	2
	1
0	
2	
1 ——	3
normal	inverted

Sterile Neutrinos

Add N sterile neutrinos to 3 active ones

$$\mathbf{M} = \begin{pmatrix} m & \mu \\ \mu^T & M \end{pmatrix} \quad \text{dimension (3+N)}$$

Conserved lepton number: Dirac neutrinos

$$\psi_{a} = \begin{pmatrix} v_{a} \\ S_{a} \end{pmatrix} \qquad U' = \begin{pmatrix} c_{12}c_{13} & -s_{12}c_{13} & s_{13}e^{-i\delta} \\ s_{12}c_{13} + c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & -s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} + s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

• Majorana neutrinos: KU, $K = \text{diag}(e^{i\alpha_1}, e^{i\alpha_2}, e^{i\alpha_3})$

See-saw Mechanism

Single generation of sterile neutrino: N = 1

$$\mathbf{M} = \begin{pmatrix} 0 & \mu \\ \mu & M \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0 & \mu \\ \mu & M \end{pmatrix} \qquad m^{(\pm)} = \frac{1}{2} \sqrt{M^2 + 4\mu^2} \mp M$$

• Suppose $M >> \mu$. Then

$$m^{(-)} \approx \frac{\mu^2}{M}$$
 $m^{(+)} \approx M$

$$OMO^T = K^2m$$

$$m^{(+)} \uparrow, m^{(-)} \downarrow$$
 $m^{(+)} \downarrow, m^{(-)} \uparrow$

Conclusions

- Neutrino oscillations imply neutrino masses can't all be equal, in particular they can't all be zero (but one can be massless).
- The conversion probability is

$$\Pr[\nu_{\ell} \to \nu_{\ell'}] \propto \sin^2 2\theta_{ab}, \ \Delta m_{ab}^2$$

 Sources of neutrino mass: see-saw mechanism, expanded Higgs, GUTs, supersymmetry