Instituto Infnet

Professor: Denilson Vedoveto Martins

1º Teste de Performance da Disciplina: Arquitetura de Redes de Computadores

Bloco: Arquitetura de Computadores, Sistemas Operacionais e Redes

Índice

1	Principais usos das redes de computadores	3
2	CAT6a	3
3	Fontes de Interferência no Wi-fi e Dicas	3
4	Diferença nos padrões 802.11 Wi-fi	4
5	Comutação de Circuitos e Comutação de Pacotes	5
6	Topologia Wi-fi	5
7	Hub x Switch	5
8	OSI x TCP/IP	5
9	O que é a Internet das Coisa - IoT	6
10	ARP Request e ARP Reply	6
11	Configuração de Endereço MAC	7
12	Mudança de Endereço MAC	8
13	Tabela Comparativa de Hospedagem Brasil	9
14	Tabela Comparativa de Hospedagem Exterior	10
15	Leitura de captura de pacote ARP	10

Principais usos das redes de computadores

Todas as empresas de hoje precisam de uma rede de computadores, seja local ou a distância e suas utilidades vão desde o melhor compartilhamento dos recursos com ferramentas colaborativas e disponibilidade de conteúdos na internet ou recursos físicos como impressoras, outro principal uso da rede é para a economia de dinheiro o custo operacional pode ser muitas vezes mais em conta. Depois que uma rede está funcionando a troca de informação é muito barata, são de centavos gastos com energia e conexão para subir um documento para nuvem ou enviar um e-mail muito mais rápido e barato do que mandar por correspondência. No presente a internet está em um local e precisamos de um dispositivo conectado a rede(host) que vamos usar para ter acesso, o futuro é a internet estar em todo lugar ela será uma atmosfera que vamos estar inseridos, tudo em nossa vida estará conectado a ela, e ela irá desempenhar um papel estrutural na nossa vida! A demanda por informação e meios de comunicações altamente eficazes era muito alta quando a internet foi criada. Era uma época de tensão global, no auge da guerra fria. Então o esforço da comunidade acadêmica em expandir o uso da internet somado ao espírito jovem e a contracultura, hippies e movimentos políticos da época juntaram uma grande necessidade a uma grande solução o resultado foi o maior fenômeno midiático do século 20. O único meio de comunicação que em apenas 4 anos conseguiria atingir cerca de 50 milhões de pessoas.

CAT6a

Segundo a tabela de especificações técnicas EIA/TIA(Telecommunications Industries Association) o cabo ideal para cobrir uma distância de 100 metros a uma velocidade de 10 Gigabits por segundo o meio de transmissão ideal é cabo CAT6a.

Fontes de interferência no Wi-fi e dicas

Principais fontes de interferência no Wi-fi:

- Telefones sem fio de 2,4 ou 5 GHz: esses telefones que operam na mesma frequência dos aparelhos sem fio causam interferência no sinal, causando perda de dados ou perda de conexão entre cliente e estação base.
- Fontes elétricas externas: como estação de energia elétrica e linhas de alimentação.
- Fontes micro-ondas: utilizar o forno micro-ondas perto de computadores e roteadores wi-fi pode causar interferência.
- Espelho d'água: rios e lagoas refletem muito o sinal, podendo causar severa perda no sinal.
- Potencial de interferência de certos materiais Madeira, gesso, vidro e resina: baixo
- potencial de interferência Tijolo e mármore: médio potencial de interferência.
- Concreto e vidro blindado: alto potencial de interferência.
- Metal: o mais alto potencial de interferência.

Dicas de melhor desempenho de Wi-fi: Configurar seu roteador para dar prioridade a serviços que consomem menos banda de uma vez. posicionar em uma área distante de

outros sinais com a mesma frequência de Wi-fi e em um local mais amplo, e configurar a velocidade do vínculo para sinal 100 full-duplex nas propriedades de rede.

Diferença nos padrões 802.11 de Wi-Fi

O padrão de rede Wi-Fi é divido em várias partes, conheça algumas delas:

IEEE 802.11a: Esse tipo de padrão é usado normalmente em empresas de grande tráfego de informações. A principal vantagem desse tipo de padrão é a alta velocidade, como também a ausência de interferências. Esse padrão Wi-Fi é para frequência 5 GHz com capacidade teórica de 54 Mbps. O único problema encontrado nesse tipo de padrão é o seu alcance, que não costuma ser muito grande.

IEEE 802.11b: Esse padrão de rede é o mais usado no meio doméstico, isto é, em casas. Também é encontrado em pequenas empresas. A sua principal vantagem realmente é o seu alcance. Porém, como desvantagem, a sua velocidade, que costuma ser inferior se comparada às outras. O padrão Wi-Fi para frequência 2,4 GHz com capacidade teórica de 11 Mbps.

IEEE 802.11g: Esse padrão poder ser comparado ao (b), porém, se comparado a velocidade, esse padrão costuma responder melhor. Igualmente ao padrão (b), é amplamente usado em residência e empresas de porte pequeno. Para tanto, como desvantagem, o alcance costuma ser menor ao padrão (b). O padrão Wi-Fi para frequência 2,4 GHz com capacidade teórica de 54 Mbps.

IEEE 802.11n (Wi-fi 4): Atualmente chamado de Wi-fi 4 pela Wi-Fi Alliance (organização responsável pela certificação dos padrões Wi-fi), o padrão Wi-fi 802.11n já está ultrapassado. O Wi-fi 4 utiliza-se das frequências de 2,4Ghz e 5Ghz, sendo esta última opcional. A taxa de transferência liquida para o IEEE 802.11n varia entre 54Mbit/s e 600Mbit/s.

IEEE 802.11ac (Wi-fi 5): Chamado hoje de Wi-fi 5 pela Wi-Fi Alliance, o padrão Wi-fi 802.11ac é a tecnologia mais utilizada atualmente. Dentre as principais mudanças feitas comparado ao padrão Wi-fi 802.11n, estão o aumento da amplitude de canais (80Mhz ou 160Mhz contra 40Mhz) na banda de 5GHz, maior numero de fluxos (até 8 antenas contra quatro) e a adição da tecnologia MIMO multiusuário (MU-MIMO), que permite uma alta taxa de transferência de dados mesmo em ambientes com grande número de dispositivos cliente.

IEEE 802.11a | frequência 5 GHz | capacidade teórica de 54 Mbps

IEEE 802.11b | frequência 2,4 GHz | capacidade teórica de 11 Mbps

IEEE 802.11g | frequência 2,4 GHz | capacidade teórica de 54 Mbps

IEEE 802.11n | frequências de 2,4Ghz e 5Ghz | capacidade teórica varia entre 54Mbit/s e 600Mbit/ss

IEEE 802.11ac | frequências de 5Ghz | capacidade teórica varia entre 80Mhz ou 160Mhz

Comutação de Circuitos e Comutação de Pacotes

A comutação de circuitos é quando dois usuários desejam se comunicar e a rede estabelece uma comunicação dedicada fim a fim entre os dois aparelhos. Na comutação de pacotes a

conexão não é dedicada você pode ter múltiplos usuários usando um único meio de transmissão, a mensagem é dividida em pacotes e enviada ao destinatário e ao final a mensagem é montada na ordem que foi enviada, caso algum pacote esteja faltando o destinatário pede o pacote que ficou faltando. Exemplo de comutação de circuitos, telefonia fixa convencional. Exemplo de comutação de pacotes é a internet.

Topologia Wi-fi

A topologia física da rede Wi-fi é a topologia estrela, que é quando todos os equipamentos se conectam a um equipamento central. Dessa forma se um equipamento quer se comunicar com outro equipamento dentro da rede ele passa pelo roteador wi-fi que direciona essa comunicação para o destinatário. De acordo com pesquisas do IEEE o Wi-fi foi classificado como 802.11 LAN (Local Area Network) uma rede que tem um alcance de até 100 metros.

Hub x Switch

A diferença é que quando a rede está ligada a um hub ela funciona como uma topologia lógica de barramento e quando a rede é ligada a um switch a topologia lógica dessa rede é estrela. A topologia estrela é mais utilizada atualmente do que a topologia de barramento por vários motivos, dentre eles é que o hub é menos seguro possibilitando que os hosts "vejam" o conteúdo trafegado na rede com mais facilidade. O switch tem a vantagem de evitar que outros integrantes da própria rede possam ter acesso a conteúdos trafegados nessa rede por um determinado usuário. O hub não permite o tráfego simultâneo de informações nessa rede. O switch permite trafego simultâneo de informação na rede sendo o ideal 24 maquinas por switch na rede para um bom aproveitamento da conexão. Por tanto observado que o switch é mais ágil e mais seguro do que o hub, o hub passou a ser menos procurado e caiu em desuso. Com o switch vários computadores podem se comunicar com a internet e com outros computadores na rede de modo simultâneo com a segurança de não ser observado por outros computadores ou equipamentos nessa rede.

OSI x TCP/IP

Os Modelos de protocolo TCP/IP e OSI são muito parecidos. O protocolo IP já era usado desde quando a internet foi inventada em 1969, mas fez uma grande atualização em 1983 para a versão IPv4 e essa grande atualização se inspirou no modelo OSI que já estava em desenvolvimento na época (tudo feito com as permissões e as autorizações dos desenvolvedores do modelo OSI). O diferencial entre os modelos OSI e TCP/IP foi que o protocolo apresentado pelo modelo OSI era complicado, lento e cheio de falhas, e o protocolo TCP/IP acabou sendo escolhido por sua simplicidade e eficiência em relação ao modelo OSI. O modelo OSI e o

TCP/IP tinham o mesmo objetivo, estabelecer um protocolos de comunicação entre dois

computadores. O importante é lembrar que o modelo OSI mesmo tendo ficado aquém do seu concorrente tem sua importância por ter servido de inspiração para a evolução do protocolo TCP/IP como o temos hoje inclusive o modelo OSI também contribuiu para o desenvolvimento do modelo IPv6.

O que é Internet das Coisas - IoT

A Internet das coisas é o nascimento de uma nova era da tecnologia. No início da internet até 20 anos atrás íamos até um computador para nos conectarmos a internet, hoje já andamos conectados uns com os outros por meio de nossos celulares, tablets e etc... mas estamos vendo o nascimento da próxima fase, o próximo passo é além de nos comunicarmos com as pessoas, é a comunicação com o mundo que nos cerca, agora todas as coisas estarão conectadas, nossos eletrodomésticos, nossas casas, nossos carros e nossas roupas poderão tornar nossa vida mais prática, controlável e segura em muitos sentidos. Agora a internet deixará de ser uma coisa que usamos e passará a ser uma coisa que estamos inseridos. Isso é a internet das coisas!

ARP Request e ARP Reply

Monitorar com o Wireshark o tráfego da sua rede e capturar uma consulta ARP (request e reply) que mostre o endereço MAC e o endereço IP. Você deve capturar a tela do Wireshark e colocar setas para apontar as linhas onde o request e o reply acontecem. Observação: a captura da tela deve capturar a tela toda, inclusive com o horário e data na barra inferior para garantir a autenticidade da captura.

Configuração de Endereço MAC

Mostre a tela de configuração de "Filtro de endereço MAC" de um ponto de acesso Wi-Fi, onde é possível configurar os endereços MAC de clientes autorizados a acessar a rede Wi-Fi. Observação: a captura da tela deve capturar a tela toda, inclusive com o horário e data na barra inferior para garantir a autenticidade da captura.

Mudança de Endereço MAC

Altere o endereço MAC de uma placa de rede. Você deve capturar a tela com o endereço MAC original (usando o comando ipconfig /all) e depois com o endereço alterado. Observação: a captura da tela deve capturar a tela toda, inclusive com o horário e data na barra inferior para garantir a autenticidade da captura.

Tabela Comparativa de hospedagem no Brasil

Faça uma tabela comparativa com os custos para registrar e hospedar um site com domínio ".com.br". Faça a cotação em pelo menos 3 empresas e indique o nome da empresa, valor, principais recursos oferecidos (por exemplo: armazenamento ilimitado, e-mail gratuito, etc.).

<u>Aa</u> Name	∷ Armazenamento	≔ Sites	≡ Preço	+
HOSTGATOR https://www.hostgator. com.br/hospedagem- de-sites-seu-sucesso	150 GB SSD	ILIMITADO	R\$25,19	
LOCAWEB https://www.locaweb.c om.br/hospedagem- de-sites-com-dominio- gratis/	ILIMITADO	1 SITE	R\$9,90	
GO DADDY https://www.godaddy.c om/pt- br/hospedagem/hospe dagem-de-sites	ILIMITADO	ILIMITADO	R\$19,90	

COUNT 3

Tabela Comparativa de hospedagem no Exterior

Faça uma tabela comparativa com os custos para registrar e hospedar um site com domínio ".com" em empresas estrangeiras. Faça a cotação em pelo menos 3 empresas e indique o nome da empresa, valor, principais recursos oferecidos (por exemplo: armazenamento

ilimitado, e-mail gratuito, etc.). Compare com os preços nacionais do exercício anterior e argumente o motivo pelo qual existe diferenças de preços.

COUNT 3

Leitura de Captura de pacote ARP

Veja a seguir a captura de dois pacotes ARP feita com o software Wireshark. Explique o que estava acontecendo no momento em que os pacotes foram capturados. Indique qual era o endereço MAC relativo ao endereço IP 192.168.0.114.

No.	Time	Source	Destination	Protocol	Length	Info
	1 0.000000	00:16:ce:6e:8b:24	ff:ff:ff:ff:ff	ARP	42	Who has 192.168.0.1? Tell 192.168.0.114
	2 0.004081	00:13:46:0b:22:ba	00:16:ce:6e:8b:24	ARP	46	192.168.0.1 is at 00:13:46:0b:22:ba

No momento que a imagem foi capturada estava acontecendo um Arp request e um Arp Reply

Onde no evento 1 a maquina 00:16:ce:6e:8b:24(ip: 192.168.0.114) pediu uma resposta da máquina quem tem o IP 192.168.0.1, e a resposta do IP 192.168.0.1 foi seu endereço MAC 00:13:46:0b:22:ba.