

Licenciatura em Engenharia informática e de Computadores — Alameda Unidade Curricular de Sistemas Distribuídos — Ano Letivo 2017/2018

Relatório da 3º Entrega do Projeto (P3) Segurança

Grupo A46

Hélio Domingos 83473

Miguel Regouga 83530

João Pina 85080

Repositório GitHub:

https://github.com/tecnico-distsys/A46-SD18Proj

Segurança

Para garantir que o sistema BINAS é resistente a ataques maliciosos, tais como a adulteração de mensagens de rede e/ou a invocação de operações que afetam o saldo dos utilizadores de forma ilegítima, são aplicados diversos mecanismos de segurança, sob a forma de *handlers*.

Um handler é um mecanismo que permite intercetar e aceder diretamente as mensagens SOAP que saem e entram de um cliente (neste caso, Binas-WS-Cli) ou servidor (Binas-WS). Para assegurar a segurança de todo o sistema, foram implementados 4 handlers no projeto.

Nome do Handler	Mensagens de chegada (inbound)	Mensagens de envio (outbound)
KerberosClientHandler	• Recebe <i>RequestTime</i> e valida-o.	 Realiza a autenticação do cliente no servidor Kerberos; Recebe chave de sessão e ticket; Coloca ticket no cabeçalho da mensagem; Cria e coloca autenticador no cabeçalho da mensagem.
KerberosServerHandler	 Recebe ticket e valida-o; Recebe autenticador e valida-o. 	Envia RequestTime.
MACHandler	 Verifica se o resumo é consistente. 	 Cria um resumo do body da mensagem e coloca-o no header.
BinasAuthorizationHandler	 Verifica se os e-mails do ticket, autenticador e pedido de operação são iguais. 	

Tabela 1 — Especificação da funcionalidade dos handlers

Mensagens SOAP

O servidor *Kerberos* guarda os dados de autenticação dos utilizadores de um determinado sistema. Antes de poder interagir com o servidor, o cliente deve solicitar ao servidor Kerberos um ticket e uma chave de sessão, de forma a poder comunicar com o servidor.

O servidor *Kerberos* autentica o utilizador e gera o ticket e a chave de sessão caso este esteja autorizado a comunicar com o servidor para o qual pediu autorização; caso não esteja, é lançada uma exceção.

Controlo de Acessos

Para garantir a frescura da mensagem, antes de enviar um pedido ao servidor, o cliente regista o momento de criação do pedido; é depois cifrado dentro do autenticador e é enviado junto deste para o servidor. O servidor envia-o de volta na resposta ao cliente e o cliente deve verificar se são iguais, assegurando assim que a resposta corresponde ao pedido efetuado.

Ao receber um pedido, o servidor compara os e-mails presentes no *ticket*, autenticador e operação desejada — caso sejam todos iguais, é confirmado que o cliente tem acesso aos dados que está a pedir. Caso contrário, não é permitido o acesso ao cliente e é enviada uma exceção para o cliente.

Integridade dos Pedidos e Respostas

Para garantir a integridade dos pedidos e respostas, é adicionado ao cabeçalho de cada mensagem um MAC (*Message Authentication Code*). Este código é calculado com uma função de resumo aplicada ao corpo da mensagem, sendo também utilizada para este fim a chave de sessão gerada pelo *Kerberos*, que é usada tanto pelo cliente como pelo servidor.

Ao chegar ao destino, o MAC é recalculado utilizando também o corpo da mensagem *inbound* e é comparado com o MAC original. Caso sejam iguais, então está garantida a integridade da mensagem. Em caso contrário, é lançada uma exceção, uma vez que o corpo da mensagem pode ter sido alterado indevidamente.

Uma mensagem SOAP é um documento XML que contém um envelope (que identifica o dito documento como uma mensagem SOAP). Esse envelope é constituído por um cabeçalho, um corpo (que contém informação de pedidos e respostas) e um elemento *fault* opcional (que contém erros e informações do estado do sistema).

Cliente -> Servidor

Figura 2 — Mensagem SOAP, enviada do cliente para o servidor

Numa mensagem que é enviada do cliente para o servidor, o cabeçalho contém o *ticket*, o autenticador e o MAC, sendo que o corpo contém a operação pedida pelo cliente.

Servidor -> Cliente

Figura 3 — Mensagem SOAP, enviada do servidor para o cliente

No caso de uma mensagem enviada pelo servidor e recebida pelo cliente, o cabeçalho contém apenas o *RequestTime* e o MAC, sendo que o corpo contém a resposta ao pedido.