Stanley-Reisner Rings (10/24/02)

Speaker: Vic Reiner

 $k(\Delta)$ associated a simplicial complex Δ on vertex set $V = k[x_v : v \in V]/I_{\Delta}$, where

$$I_{\Delta} = \{x_{v_1}, \dots, x_{v_r} : \{v_1, \dots, v_r\} \not\in \Delta\}$$

= arbitrary square-free monimial ideal

Motivation (i)

Arbitrary graded rings deform to $k[\Delta]$'s, leaving many properties (Knull dimension, Hilbert series, degree of projection embedding) unchanged; and having many homological invariants only increasing.

Motivation (ii)

For k[d], almost any (ring-theoretic) homological invariant (e.g., $Tor^s(k[\Delta],)$, $H_m(k[\Delta])$ local cohomology) are computed via simplicial (co-) homology of Δ . E.g., dependence on the characteristic of the field k can be subtle for these ring invariants, but comes down to torsion for $H(\Delta, k)$.

= $\mathbb{R}P^2$ has $k[\Delta] = k[x_1, x_2, \dots, x_6]/(x_1x_2x_3, x_1x_2x_6, \dots)$ with most of its homological invariants depending upon whether $\mathrm{char}(k) = 2$ or not, since

$$\tilde{H}_i(\Delta; k) = \begin{cases} 0 & i > 2 \\ k & i = 2 \\ k & i = 1 \\ 0 & i = 0 \end{cases}$$
 if $\operatorname{char}(k) = 2$

Motivation (iii)

For some combinatorial problems about simplicial complexes Δ , the approach via $k[\Delta]$ is the easy way or the <u>only</u> way. E.g., The upper bound conjecture (UBC) for simplicial polytopes and spheres (Motzkin 1957?) CONJ: Δ a simplicial (d-1)-dimensional sphere (e.g., boundary of a simplicial convex polytope)

where

$$\begin{split} \Delta_{c(n,d)} &= \text{boundary of the cyclic } d\text{-polytope } C(n,d) \text{ with } n \text{ vertices} \\ &= \text{convex hull of any } n \text{ points on the moment curve } \{(t,t^2,\ldots,t^d): t \in \mathbb{R}\} \subset \mathbb{R}^d \end{split}$$

e.g. n = 6

UBC is proven for convex polytopes by Peter Mcmullen in 1970 (?) using key observations about the n-vectors ...

$$f(\Delta)(f_{-1}, f_0, f_1, f_2) = (1, 5, 9, 6)$$

$$h(\Delta)(h_0, h_1, h_2, h_3) = (1, 2, 2, 1)$$

So

$$\operatorname{Hilb}(k[\Delta], t) = f_{-1} + f_0 \left(\frac{t}{1-t}\right) + f_1 \left(\frac{t}{1-t}\right)^2 + f_2 \left(\frac{t}{1-t}\right)^3$$

$$= 1 + 5\left(\frac{t}{1-t}\right) + 9\left(\frac{t}{1-t}\right)^2 + 6\left(\frac{t}{1-t}\right)^3$$

$$= \frac{h_0 + h_1 t + h_2 t^2 + f_3 t^3}{(1-t)^3}$$

$$= \frac{1 + 2t + 2t^2 + t^3}{(1-t)^3}$$

McMullen's observation 1

UBC follows from

$$h_i(\Delta) \le \binom{n-d+i-1}{i}$$

where $n = f_0 = \#$ of vertices.

(follows from explicit knowledge of f_i for boundary of C(n,d) and a little mucking around...)

McMullen's observation 2

 $h_i(\Delta) \leq \binom{n-d+i-1}{i}$ is easy to prove by induction on $f_{d-1} = \#$ of facets (=maximal faces) for Δ which are pure shellable simplicial complies (of dimension d-1 with n vertices)

 Δ is *shellable* if it can be built up by ordering facets F_1, F_2, \ldots so that $\forall i \geq 2$,

$$F_i \cap \underbrace{\left(\overline{\cup_{j < i} F_j} \right)}_{\text{sub complex gen'd by } F_1, F_2, \dots, F_{i-1}}$$

is pure of codimension inside F_i

When d = 3, d - 1 = 2,

Brngesser & Mani (1969?), Boundary of convex polytopes are shellable (this proves UBC)

McMullen's observation 3

For Δ shellable, $h_i(\Delta)$ counts something: it is equal to the number of facets F_i is shelling having d-i new walls, i old walls, where d-i new walls are not in $\overline{\bigcup_{j < i} F_i}$.

e.g.,	
1	5
2	4
	3

For	shellable	Δ ,
-----	-----------	------------

	facets	new walls	d: #	# new walls
$\overline{F_1}$	123	12, 13, 23	0	$h_0 = 1$
F_2	134	14, 34	1	$h_1 = 2$
F_3	145	15, 45	1	$fn_1=2$
F_4	345	35	2	$h_2 = 2$
F_5	235	25	2	$fn_2 = 2$
F_6	125	Ø	3	$h_3 = 1$

Cor 1: $h_i(\Delta) \geq 0$

Cor 2: $h_i(\Delta) = h_{d-i}(\Delta)$ (provided Δ is the boundary of a d-dimensional polytope, or more generally has a shelling order whose reverse is also a shelling order).

 $\overbrace{\text{Dehn}-\text{Sommerville}}^{1905} \xrightarrow{\text{1927}} \\ \overbrace{\text{Dehn}-\text{Sommerville}}^{1907} \xrightarrow{\text{equations.}} \\ \text{(The reverse of a Barg-Mani shelling is still a shelling, and "old"} \leftrightarrow \text{"new"})$