SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Computer Academic Year: 2022 Duration: 3 hours

Engineering Date: 27.01.2023

Time: 09:00 am to 12:00 pm

Subject: Digital Electronics (Semester III)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question		Max. Marks
No.	: D. f f. 11	Marks
	i. Perform following conversions. a) (A 7 2 E) ₁₆ = (?) ₈ b) (6 5 5 3 5) ₁₀ = (?) ₁₆ c) (0 7 E 5) ₁₆ = (?) ₁₀ d) (2 4 7 . 3 6) ₈ = (?) ₁₆	[04]
Q1 (a)	 ii. Represent decimal number 27 in binary form using a) Binary code b) Gray code c) BCD code d) Octal code e) Excess-3 code f) Hexadecimal code 	[06]
	OR Perform following hexadecimal subtractions using 16's complement method. a) (69 A) – (C 1 3) b) (971) – (C B 1)	[10]
Q1 (b)	What is Hamming code? Generate 7 bit hamming code for given data bits 1011.	[05]
	i. Prove the following using Boolean algebra. (A+B)(Ā+C) = A C+ Ā B	[05]
Q2 (a)	ii. Solve the following function using K-map and implement simplified expression using NAND gate only.	[05]
	F = A B C D + B C + B D + A B C D + B C	

******* 1 *******

	OR i. Simplify following logical expression using Boolean algebra and implement the simplified expression using logic gates. $(A+C+D)(A+C+\overline{D})(A+\overline{C}+D)(A+\overline{B})$	[05]
	ii. Solve the following function using K-map and implement simplified expression using NAND gate only. $F = \sum m \ (0,1,2,3,7,8,\ 9,10,11,12,13)$	[05]
Q2 (b)	Implement Exclusive gates using NAND gates only.	[05]
Q3 (a)	Convert Y=A+BC'+AB+A'BC into canonical form.	[05]
Q3 (b)	i. What is Multiplexer? Implement given function using 8:1 Mux only. $F = \sum_{i=1}^{n} m(3, 9, 10, 11, 12, 13, 15)$	[05]
	ii. Design a combinational logic circuit that checks for even parity of four bits. A logic 1 output is required when four bits do not constitute an even parity.	[05]
	OR Explain BCD addition with suitable example and design BCD adder circuit with neat diagram.	[10]
Q4 (a)	Enlist types of Flip-Flops. Draw and explain J-K Flip-Flop.	[10]
	OR i. Enlist types of Flip-Flops. Draw and explain S-R Flip-Flop ii. Write and explain excitation table of SR Flip-flop.	[05] [05]
Q4 (b)	Design sequential logic circuit to generate sequence of bits 10110.	[05]
Q5 (a)	Design decade UP counter. Use JK FLIP-FLOPS.	[10]
	i. Write a short note on PLA.	[05]
Q5 (b)	OR	[05]
	ii. Write a short note on Sensors.	[05]

******* 2 *******

******** 3 *******

******* 4 ******