UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

${\bf Luka\ Horjak} \\ {\bf HOLOMORFNI\ AVTOMORFIZMI} \\$

Delo diplomskega seminarja

Mentor: prof. dr. Miran Černe

Kazalo

1	Holomorfni avtomorfizmi v kompleksni ravnini		4
	1.1	Enostavno povezana območja	4
	1.2	Kolobarji in punktirani diski	5
2	Riemannove ploskve		
	2.1	Gladke in kompleksne mnogoterosti	6
		Riemann-Rochov izrek	
		Weierstrassove točke	
	2.4	Hipereliptične ploskve	9
3	Avtomorfizmi Riemannovih poloskev		11
	3.1	Sfere in torusi	11
	3.2	Ploskve večjih rodov	11

Holomorfni avtomorfizmi

Povzetek

• • •

${\bf Holomorphic\ automorphisms}$

Abstract

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ...

 $\mathbf{Keywords:}\ ...,\ ...$

1 Holomorfni avtomorfizmi v kompleksni ravnini

1.1 Enostavno povezana območja

Definicija 1.1. *Območje* v kompleksni ravnini \mathbb{C} je vsaka odprta povezana množica.

Definicija 1.2. Holomorfni avtomorfizem območja Ω je bijektivna holomorfna preslikava $f: \Omega \to \Omega$ s holomorfnim inverzom.

Opazimo, da je zadosten pogoj že to, da je f bijektivna z neničelnim odvodom. Opazimo še, da množica avtomorfizmov nekega območja tvori grupo z operacijo kompozitum. To grupo označimo z $\operatorname{Aut}(\Omega)$.

Primer 1.3. Kompleksna ravnina je območje v $\mathbb{C}.$ Njena grupa avtomorfizmov je enaka

$$Aut(\mathbb{C}) = \{az + b \mid a \neq 0\}.$$

Primer 1.4. Naj bo Δ odprt enotski disk v \mathbb{C} . Tedaj je

$$\operatorname{Aut}(\mathbb{A}) = \left\{ e^{i\theta} \cdot \frac{z - a}{1 - \overline{a}z} \mid a \in \mathbb{A} \land \theta \in [0, 2\pi) \right\}.$$

Izkaže se, da smo s tem do izomorfizma natančno opisali grupe avtomorfizmov vseh povezanih in enostavno povezanih množic v \mathbb{C} . Velja namreč naslednja lema:

Lema 1.5. Naj bosta Ω_1 in Ω_2 biholomorfno ekvivalentni območji v \mathbb{C} . Tedaj je $\operatorname{Aut}(\Omega_1) \cong \operatorname{Aut}(\Omega_2)$.

Dokaz. Naj bo $f: \Omega_1 \to \Omega_2$ biholomorfna preslikava. Sedaj definiramo preslikavo $\Phi: \operatorname{Aut}(\Omega_1) \to \operatorname{Aut}(\Omega_2)$ s predpisom

$$\Phi(\phi) = f^{-1} \circ \phi \circ f.$$

Ker je s predpisom

$$\Phi^{-1}(\psi) = f \circ \psi \circ f^{-1}$$

očitno podan predpis inverza preslikave Φ , je ta bijektivna. Velja pa

$$\Phi(\phi \circ \psi) = f^{-1} \circ \phi \circ \psi \circ f = \left(f^{-1} \circ \phi \circ f \right) \circ \left(f^{-1} \circ \psi \circ f \right) = \Phi(\phi) \circ \Phi(\psi),$$

zato je Φ homomorfizem.

Spomnimo se na Riemannov upodobitveni izrek, ki pravi, da je vsako povezano in enostavno povezano območje v kompleksni ravnini ali biholomorfno ekvivalentno Δ ali pa kar enako \mathbb{C} . Grupe avtomorfizmov povezanih in enostavno povezanih območij so do izomorfizma natančno tako le $\operatorname{Aut}(\Delta)$ in $\operatorname{Aut}(\mathbb{C})$.

Omenimo še, da lahko kompleksno ravnino dopolnimo do Riemannove sfere $\hat{\mathbb{C}}$. Njeni avtomorfizmi so Möbiusove transformacije, torej

$$\operatorname{Aut}\left(\widehat{\mathbb{C}}\right) = \left\{ \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

1.2 Kolobarji in punktirani diski

Po obravnavi enostavno povezanih območij so naslednji korak območja z »luknjami«. Najosnovnejši tak primer je seveda kolobar.

Opazimo, da se pri velikem številu lukenj grupa avtomorfizmov bistveno zmanjša – enostavno povezana območja imajo neskončno avtomorfizmov, prav tako območja z eno luknjo.

2 Riemannove ploskve

2.1 Gladke in kompleksne mnogoterosti

Trditev 2.1. Naj bo $f: M \to N$ nekonstantna holomorfna preslikava med kompaktnima Riemannovima ploskvama. Tedaj obstaja naravno število m, za katero f doseže vsako točko $Q \in N$ natanko m-krat.¹

Dokaz. Iz kompleksne analize vemo, da za vsako točko $P \in M$ obstajajo take lokalne koordinate \tilde{z} , da je $f(\tilde{z}) = f(P) + \tilde{z}^n$. Število n-1 označimo z b(P) in mu pravimo BRANCHING NUMBER.

Za vsako naravno število m naj bo

$$\Sigma_m = \left\{ X \in N \mid \sum_{f(P)=X} (b(P)+1) \ge m \right\}.$$

Označimo še

$$\varphi(X) = \sum_{f(P)=X} (b(P) + 1).$$

Vse množice Σ_m so odprte – če je b(P) = n - 1, lahko v lokalnih koordinatah zapišemo $f(\tilde{z}) = \tilde{z}^n$. Enačba $f(\tilde{z}) = \varepsilon$ ima tako natanko n rešitev, zato za okolico U točke P velja

$$b(P) + 1 = \sum_{Q \in U \cap f^{-1}(P')} (b(Q) + 1),$$

kjer je $P' \in f(U)$. Če to enakost seštejemo po okolicah vseh točk $P \in f^{-1}(X)$, dobimo

$$m < \varphi(X) < \varphi(P').$$

Pokažimo še, da so te množice zaprte v $\widehat{\mathbb{C}}$. Naj bo Q limita zaporedja točk $Q_k \in \Sigma_m$, pri čemer je brez škode za splošnost b(P) = 0 za vsak $P \in f^{-1}(Q_k)$. Ker imajo vse množice $f^{-1}(Q_k)$ vsaj m elementov, lahko najdemo tako podzaporedje zaporedja $(Q_k)_{n=1}^{\infty}$, da lahko iz njihovih praslik tvorimo m konvergentnih zaporedij. Tako sledi

$$\sum_{P \in f^{-1}(Q)} (b(P) + 1) \ge m.$$

Sledi, da so vse množice Σ_m odprte in zaprte v $\widehat{\mathbb{C}}$. Čim je ena izmed množic Σ_m neprazna, je tako enaka celotni Riemannovi sferi, saj je ta povezana.

Stevilu m pravimo stopnja preslikave f.

Definicija 2.2. Za kompaktni Riemannovo ploskvi M in N ter nekonstantno preslikavo $f \colon M \to N$ definiramo $TOTAL\ BRANCHING\ NUMBER$ kot

$$B = \sum_{P \in M} b_f(P).$$

Število je dobro definirano, saj je množica $\{P \in M \mid b_f(P)\}$ diskretna in tako zaradi kompaktnosti končna.

¹Šteto z večkratnostmi.

Izrek 2.3 (Riemann-Hurwitz). Naj bosta M in N kompaktni Riemannovi ploskvi rodov g in γ , $f: M \to N$ pa nekonstantna preslikava stopnje N. Tedaj za TOTAL BRANCHING NUMBER B velja

$$g = n(\gamma - 1) + 1 + \frac{B}{2}.$$

Dokaz. Ker je množica $\{P \in M \mid b_f(P) > 0\}$ končna, jo lahko uporabimo za triangulacijo ploskve N. Denimo, da ima triangulacija F lic, E povezav in V vozlišč. To triangulacijo lahko z f^{-1} preslikamo na M. Tako dobimo triangulacijo ploskve M z nF lici, nE povezavami in nV - B vozlišči. Sledi, da je

$$F - E + V = 2 - 2\gamma,$$

$$nF - nE + nV - B = 2 - 2q.$$

Iz teh enačb očitno sledi

$$g = n(\gamma - 1) + 1 + \frac{B}{2}.$$

2.2 Riemann-Rochov izrek

Definicija 2.4. Delitelj na Riemannovi ploskvi M je formalni simbol

$$\mathfrak{A} = \prod_{P \in M} P^{\alpha(P)},$$

kjer za vsak P velja $\alpha(P) \in \mathbb{Z}$ in je $\alpha(P) \neq 0$ za kvečjemu končno mnogo točk $P \in M$. Stopnja delitelja \mathfrak{A} je definirana kot

$$\deg \mathfrak{A} = \sum_{P \in M} \alpha(P).$$

Delitelji na M tvorijo grupo za naravno definirano množenje – to grupo označimo z $\mathrm{Div}(M)$. Tako je deg: $\mathrm{Div}(M) \to \mathbb{Z}$ homomorfizem grup.

Za vsako neničelno meromorf
no funkcijo $f \in \mathscr{K}(M)$ definiramo njen glavni delitelj kot

$$(f) = \prod_{P \in M} P^{\operatorname{ord}_P f}.$$

Definiramo lahko še polarni delitelj

$$f^{-1}(\infty) = \prod_{P \in M} P^{\max(-\operatorname{ord}_P f, 0)}$$

in ničelni delitelj

$$f^{-1}(0) = \prod_{P \in M} P^{\max(\text{ord}_P f, 0)}.$$

Opazimo, da velja

$$(f) = \frac{f^{-1}(0)}{f^{-1}(\infty)}.$$

Lema 2.5. Naj bo M kompaktna Riemannova ploskev. Za vsako neničelno funkcijo $f \in \mathcal{K}(M)$ velja deg $f^{-1}(0) = \deg f^{-1}(\infty)$. Ekvivalentno je $\deg(f) = 0$.

Dokaz. Stopnja polarnega delitelja funkcije f je natanko število njenih polov, štetih z večkratnostmi, stopnja ničelnega delitelja pa število njenih ničel. Ti števili sta enaki po trditvi 2.1.

Posebej velja opomniti, da to pomeni, da imajo funkcije na kompaktnih Riemannovih ploskvah enako število ničel in polov (štetih z večkratnostmi).

Na deliteljih lahko uvedemo relacijo delne urejenosti kot

$$\prod_{P \in M} P^{\alpha(P)} \geq \prod_{P \in M} P^{\beta(P)} \iff \forall P \in M \colon \alpha(P) \geq \beta(P).$$

Ni težko videti, da je za vsak delitelj $\mathfrak A$ na M množica

$$L(\mathfrak{A}) = \{ f \in \mathscr{K}(M) \mid (f) \ge \mathfrak{A} \}$$

vektorski prostor – njegovo dimenzijo označimo z $i(\mathfrak{A})$. Podobno je tudi

$$\Omega(\mathfrak{A}) = \{ df \mid \omega \text{ je meromorfna 1-forma} \land 1(w) \geq \mathfrak{A} \}$$

vektorski prostor. Označimo $i(\mathfrak{A}) = \dim \Omega(\mathfrak{A})$.

Izrek 2.6 (Riemann-Roch). Naj bo M kompaktna Riemannova ploskev roda g in A delitelj na M. Tedaj velja

$$r\left(\mathfrak{A}^{-1}\right) = \deg \mathfrak{A} - g + 1 + i(\mathfrak{A}).$$

2.3 Weierstrassove točke

Izrek 2.7. Naj bo M ploskev roda q > 0 in $P \in M$. Tedaj obstaja natanko q števil

$$1 = n_1 < n_2 < \cdots < n_q < 2q$$

za katera ne obstaja funkcija $f \in \mathcal{K}(M)$, ki je holomorfna na $M \setminus \{P\}$ in ima pol reda n_j v P. Tem številom pravimo GAP.

Definicija 2.8. Točka $P \in M$ je Weierstrassova točka, če na M obstaja neničelna holomorfna diferencialna 1-forma z ničlo reda vsaj $g \vee P$.

Lema 2.9. Ekvivalentno, vsaj eno izmed števil $2, \ldots, g$ ni GAP.

Dokaz. Obstoj diferencialne 1-forme z ničlo reda vsaj g v P je ekvivalentna pogoju $i(P^g)>0$. Po Riemann-Rochovem izreku je ta neenakost ekvivalentna

$$r\left(P^{-g}\right) - 1 > 0,$$

oziroma $r(P^{-g}) \geq 2$. Ker je r(1) = 1, med $2, \ldots, g$ obstaja število, ki ni GAP. \square

Lema 2.10. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$. Tedaj za število w Weierstrassovih točk veljata oceni

$$2g + 2 \le w \le g^3 - g.$$

 $^{^{2}}$ V splošnem definiramo q-Weierstrassove točke – obstaja q-forma z ničlo reda vsaj dim $\mathcal{H}^{q}(M)$.

2.4 Hipereliptične ploskve

Definicija 2.11. Kompaktna Riemannova ploskev M je hipereliptična, če obstaja nekonstantna meromorfna funkcija $f: M \to \widehat{\mathbb{C}}$ z natanko dvema poloma.³

Ekvivalentno to pomeni, da obstaja tak CEL delitelj $D \in \text{Div } M$, da je deg D=2 in $r(D^{-1}) \geq 2$.

Trditev 2.12. Vsaka kompaktna Riemannova ploskev roda $g \le 2$ je hipereliptična.

Trditev 2.13. Naj bosta f in g dve funkciji $f: M \to \widehat{\mathbb{C}}$ stopnje 2. Tedaj obstaja Möbiusova transformacija A, za katero je

$$q = A \circ f$$
.

Dokaz. Naj bo $f^{-1}(\infty) = P_1Q_1$ in $g^{-1}(\infty) = P_2Q_2$. Ker na M ne obstajajo funkcije stopnje 1, sledi $r(P_1^{-1}Q_1^{-1}) = r(P_2^{-1}Q_2^{-1}) = 2$. Prostora $L(P_1^{-1}Q_1^{-1})$ in $L(P_2^{-1}Q_2^{-1})$ imata tako zaporedoma bazi $\{1, f\}$ in $\{1, g\}$. Ker velja $P_1Q_1 \sim P_2Q_2$, sledi, da obstajajo konstante α, β, γ in δ , za katere je

$$1 = \alpha h + \beta h f$$
 in $q = \gamma h + \delta h f$,

kjer je $(h)=P_1Q_1P_2^{-1}Q_2^{-1}$. Očitno je namreč $\varphi\mapsto h\varphi$ izomorfizem prostorov $L(P_1^{-1}Q_1^{-1})$ in $L(P_2^{-1}Q_2^{-1})$. Tako lahko izrazimo

$$g = \frac{\gamma + \delta f}{\alpha + \beta f}.$$

Trditev 2.14. Naj bo M kompaktna Riemannova ploskev roda g. Tedaj je M hipereliptična natanko tedaj, ko obstaja involucija $J \in \operatorname{Aut} M$ z natanko 2g + 2 fiksnimi točkami.

Dokaz. Predpostavimo najprej, da je M hipereliptična. Naj bo $f: M \to \widehat{\mathbb{C}}$ meromorfna funkcija stopnje 2. Za vsak $P \in M$ tako obstaja še ena točka $Q \in M$, za katero je f(P) = f(Q) (če je ord $_P f = 2$, vzamemo Q = P). Tako lahko enostavno definiramo J(P) = Q. Ni težko videti, da je J res involucija z 2g + 2 fiksnimi točkami.

Če je $Q=J(P)\neq P,$ lahko na okolici U_Q točke Q zapišemo

$$J(X) = (f|_{U_O})^{-1} (f(X)),$$

zato je J holomorfna na $M \setminus W$. Če pa je J(P) = P, pa je $h = \sqrt{f - f(P)}$ lokalna koordinata, pri čemer velja J(h) = -h. Tako je J holomorfna tudi na W.

Predpostavimo sedaj, da obstaja involucija $J \in \operatorname{Aut} M$ z 2g+2 fiksnimi točkami. Ker se projekcija $f \colon M \to M / \langle J \rangle$ BRANCHA v natanko 2g+2 točkah, po izreku 2.3 sledi, da je rod ploskve $M / \langle J \rangle$ enak 0. Sledi, da je $M / \langle J \rangle \cong \widehat{\mathbb{C}}$, zato je f meromorfna funkcija z dvema poloma.

Opazimo, da so fiksne točke hipereliptične involucije natanko Weierstrassove točke.

³Pri tem pole štejemo z večkratnostmi.

Trditev 2.15. Naj bo M hipereliptična Riemannova ploskev roda $g \geq 2$ in $T \in \text{Aut } M$. Če je $T \notin \langle J \rangle$, ima T kvečjemu 4 fiksne točke.

Dokaz. Naj bo $f\colon M\to\widehat{\mathbb C}$ funkcija z natanko dvema poloma. Tedaj je taka tudi $z\circ T,$ zato obstaja Möbiusova transformacija A, za katero je

$$f \circ T = A \circ f$$
.

Naj bo P fiksna točka avtomorfizma T. Sledi, da je

$$A(f(P)) = f(T(P)) = f(P),$$

zato je f(P) fiksna točka preslikave A. Opazimo, da je $A \neq \mathrm{id}$, saj bi v nasprotnem primeru veljalo $f \circ T = f$, kar implicira $T \in \langle J \rangle$. Tako ima A kvečjemu 2 fiksni točki, zato jih ima T največ 4.

3 Avtomorfizmi Riemannovih poloskev

3.1 Sfere in torusi

Za določanje grupe avtomorfizmov Riemannovih ploskev so pomembne njihove topološke lastnosti – vsak avtomorfizem je namreč tudi homeomorfizem. Iz geometrijske topologije vemo, da je vsaka orientabilna kompaktna ploskev homeomorfna vsoti g torusov. Številu g pravimo rod ploskve.

Najprej si oglejmo ploskve z ničelnim rodom – topološko so to kar sfere. V prejšnjih razdelkih smo ugotovili, da je grupa avtomorfizmov Riemannove sfere enaka

$$\operatorname{Aut}\left(\widehat{\mathbb{C}}\right) = \left\{ \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

Vemo pa, da je grupa avtomorfizmov odvisna ne samo od topoloških lastnosti objekta, ampak tudi njegove kompleksne strukture.

Naslednji izziv so ploskve z rodom g = 1 – torusi. Za toruse IZREK ne velja, zato imamo več različnih grup avtomorfizmov. Oglejmo si, kako jih dobimo:

3.2 Ploskve večjih rodov

Trditev 3.1. Naj bo $T \in \text{Aut } M$ netrivialen avtomorfizem. Tedaj ima T največ 2g + 2 fiksnih točk.

Dokaz. Naj bo $P \in M$ točka, za katero je $T(P) \neq P$. Tedaj obstaja meromorfna funkcija $f \in \mathcal{K}(M)$ s polarnim deliteljem P^r za nek $1 \leq r \leq g+1$. Oglejmo si funkcijo $h = f - f \circ T$. Njen polarni delitelj je očitno $P^r(T^{-1}P)^r$. Velja torej

$$\deg h^{-1}(0) = \deg h^{-1}(\infty) = 2r \le 2g + 2,$$

zato ima g kvečjemu 2g+2 ničel. Ni težko videti, da so njene ničle natanko fiksne točke avtomorfizma T.

Lema 3.2. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$, W pa množica njenih Weierstrassovih točk. Tedaj ta vsak avtomorfizem $T \in \operatorname{Aut} M$ velja T(W) = W.

Dokaz. Avtomorfizmi ohranjajo GAPE.

Izrek 3.3 (Schwarz). Grupe avtomorfizmov kompaktnih ploskev roda $g \geq 2$ so končne.

Dokaz. Po zgornji lemi sledi, da obstaja homomorfizem λ : Aut $M \to S_W$, kjer je S_W simetrična grupa. Dovolj je pokazati, da ima λ končno jedro. Ločimo dva primera.

- a) Če M ni hipereliptična, ima več kot 2g+2 Weierstrassovih točk. Vsak avtomorfizem, ki fiksira Weierstrassove točke, je zato kar identiteta, zato je ker λ trivialno.
- b) Če je M hipereliptična, velja kar ker $\lambda = \langle J \rangle$, kjer je J hipereliptična involucija, velja pa $|\langle J \rangle| = 2$.

Slovar strokovnih izrazov