Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 6

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 2EFF_{(16)}, \quad CX = 6B93_{(16)}, \quad DX = 54C7_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& \mathtt{CX} + (\mathtt{BX} - 11) \\ \mathtt{VAR2} &=& ((54 \lor \mathtt{CX}) + \mathtt{BX}) \lor \mathtt{CX} \\ \mathtt{VAR3} &=& \mathtt{DX} + ((18 \land \mathtt{CX}) - (\mathtt{DX} + \mathtt{BX})) \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 18 dhe numrit 40 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin DX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $3C_{(16)} \vee 75_{(16)}$
- b) $C7_{(16)} \vee 29_{(16)}$
- c) $9F_{(16)} 29_{(16)}$
- d) $02_{(16)} 63_{(16)}$
- e) $00_{(16)} + 95_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 512 bajtëshe. Cache memoria L1 ka kapacitet prej 8192KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 4-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$2D1FE0FF_{(16)}$$
, $247B8DA5_{(16)}$, $91E654FA_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 4-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{B_0}$	88	F0	EA	BB	6C	9B	F4	76
B_1	6D	D3	A8	DE	CA	4D	7F	17
B_2	1D	7E	C1	79	45	38	4B	D1
B_3	04	82	61	D6	A5	32	07	E4
B_4	09	4F	12	F6	B4	98	F6	86
B_5	D7	C8	25	CF	В7	48	22	D5
B_6	5E	29	42	AO	7E	D1	4B	37
B_7	30	16	EΑ	5B	8C	15	AC	BD
B_8	39	F4	C7	3F	ED	94	05	4D
B_9	ED	7E	D1	50	86	25	25	6E
B_A	56	BA	7C	1F	E4	FF	OF	26
B_B	В8	3D	54	29	27	E6	OD	OA
B_C	7B	FB	CO	E3	50	3B	1E	30
B_D	3C	D9	54	CA	88	E3	02	EO
B_E	54	5A	E5	00	7B	3D	52	50
B_F	FE	7F	60	CE	BD	E1	E9	AЗ

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?