BASIC ELECTRONICS

CONTENT

- Resistor
- Capacitor
- **❖**Diode
- **Transistor**

RESISTOR

A Resistor is a two terminal passive electronic component. It is an electrical component that limit the flow of current in an electronic circuit. Resistors can also be used to provide a specific voltage for an active device such as transistor.

Symbol:

Resistor

> SI Unit is: OHM

Symbol of OHM : Ω

> Notation for Resistor

O – for Ohm

K – for kilo Ohm

M – for Mega Ohm

Combination of Resistor

> Series Combination

▶ Parallel Combination

Series Combination

> Parallel Combination

> In Series the current remains same.

In Parallel the voltage remains same.

OHMS LAW

- Ohm's Law states that the current through a conductor between two points is directly proportional to the potential difference across the two points, and inversely proportional to the resistance between them.
- The mathematical equation that describes this relation is:

$$I = V/R$$

Resistor Color Code

Color	Color	1st Band	2nd Band	3rd Band Multiplier	4th Band Tolerance
Black		0	0	x1 Ω	
Brown		1	1	x10Ω	±1%
Red		2	2	x100Ω	±2%
Orange		3	3	x1kΩ	
Yellow		4	4	x10kΩ	
Green		5	5	x100kΩ	±0.5%
Blue		6	6	x1M Ω	±0.25%
Violet		7	7	x10MΩ	±0.10%
Grey		8	8	x100MΩ	±0.05%
White		9	9	x1GΩ	
Gold				x0.1Ω	±5%
Silver				x0.01Ω	±10%

Why we use Resistor?

- > Limiting of Current
- Limiting of Voltage
- Power dissipation

Capacitor

- > A Capacitor is a device for storing electric charge.
- ➤ A Capacitor is a passive electronic component consisting of conductors separated by a dielectric (insulator).

Capacitance

- > This is a measure of a capacitance's ability to store charge.
- > A large capacitance means that more charge can be stored
- > Capacitance can be measured using formula:

Where

C = Capacitance,

Q = Charge,

V = Potential Difference,

Unit of Capacitance is Farad (F)

Combination of Capacitors

- > Series Combination
- > Parallel Combination

Series Combination

- > When capacitors are connected in series, the capacitance decreases.
- > In series, total capacitance is given by the formula :

$$1/C_1 = 1/C_1 + 1/C_2$$

Parallel Combination

- > When capacitors are connected in parallel, the capacitance increases.
- > In parallel, total capacitance is given by the formula:

$$C_1 = C_1 + C_2 \dots C_n$$

Types of Capacitors

- > Polarized Capacitor
- > Non Polarized Capacitor

Non Polarized Capacitor

> The Capacitor which do not have a polarity.

Non Polarized capacitor

The capacitor which do not have a polarity

Polarised capacitor

· The capacitor which have a polarity

How to Read Ceramic Capacitor

Features

- > Capacitors offers low impedance to AC.
- > It offers high impedance to DC.
- > Reactance of capacitance is given by :

$$X_c = 1/2\pi f c$$

Application

- Blocking DC Voltage.
- Adjusting Frequency.
- > Use to generate a time delay application.
- > Smoothing of DC voltage.

Diode

- Diode is an electronic component which permits the flow of current in one direction only.
- Today diodes are made up of semiconductor material, therefore they are often called semiconductor diodes or crystal diodes.

Why we use it?

- > Diodes are used for rectification.
- > Diodes are used in electrical meters for there protection.
- > Diodes are used in wave shaping circuits.
- > Diodes (LED) are used in display.

Material

- > Diodes are semiconductor devices
- > Silicon(Si) or Germanium(Ge) are used.

Types

- > PN Junction diode
- > Zener Diode
- ➤ Light Emitting Diode (LED)
- Photo Diodes

PN Junction Diode

- > This diode is made by p-type & n-type material
- This PN junction diode works in forward bias i.e., anode is connected to positive terminal & cathode is connected to negative terminal.

Symbol

Diagram eqvivialent:

Real life image:

Current flow:

Zener Diode

- > Zener diode works in reverse bias
- > Symbol of Zener Diode.

How can we recognize Zener Diode?

There is black band which is negative terminal & other one is positive terminal

Light Emitting Diode

- Light Emitting Diode (LED) operates in forward bias.
- > It emits light when connected in circuit.
- > Symbol of LED

How can we recognize LED?

The shorter lead of the LED is negative terminal & longer one is positive, also on the negative terminal there is a flat spot when we see from the top.

Photo Diode

- Often known as Photo Detector
- Photo Diode operates in reverse bias
- ➤ Light falls on the PN Junction of the photo diode which creates electron-hole pair in the depletion layer which causes flow of current.
- Current depends upon the light intensity
- > When light incident on the photodiode then current flows in the circuit.

Physical view of Photo Diode:

Working of Photodiode

Basic Biasing arrangement and construction of photodiode

LDR(Light Dependent Resistor)

- A light dependent resistor is a semiconductor electric device that has a very high resistance to the flow of electrical current in the absence of light.
- ➤ When light strikes the device, it lowers its resistance, allowing electrical current to flow through it and on to other devices or electrical circuits.

Transistor

- A Transistor is a semiconductor device used to amplify and switch electronic signals. It is made of a solid piece of Semiconductor material, with at least three terminals for connection to an external circuit.
- ➤ Device with three terminals where one terminal can be use to control the flow of current through the other two terminals.

➤ The three terminals are Emitter , Base and Collector

Types of Transistors

- > Junction transistor
- > Field Effect transistor

Junction Transistor

> Transistor are of two types:

n-p-n as a switch

- ➤ When base of n-p-n is connected with logic voltage then it short circuit emitter and collector (SWITCH ON).
- ➤ When base of n-p-n is connected with logic low voltage then it open circuit both emitter and collector (SWITCH OFF).

#