Série d'Exercices Tests d'Hypothèses en Médecine

Instructions

Effectuer le test statistique approprié pour chaque exercice : formuler les hypothèses, déterminer le type de test (Z, t-Student, F de Fisher, proportion, apparié), et définir la règle de décision au seuil donné.

Exercice 1 — Test Z sur une moyenne

Une nouvelle molécule est censée réduire la pression artérielle systolique moyenne. Chez n=120patients traités, la moyenne observée est de 125 mmHg. L'écart-type de la population est connu : $\sigma = 15$ mmHg.

Testez au seuil de 5% si la molécule permet de réduire la pression artérielle par rapport à une moyenne de 130 mmHg.

Exercice 2 — Test t de Student (petit échantillon)

Un nouveau traitement pour le diabète est testé sur 16 patients. Le taux moyen de glycémie est de 92 mg/dL avec un écart-type de 10 mg/dL.

Vérifiez, au seuil de 1%, si le traitement permet d'atteindre un taux moyen inférieur à 100 mg/dL.

Exercice 3 — Test F de Fisher (comparaison de variances)

Deux laboratoires utilisent différentes techniques pour mesurer la concentration sanguine d'un médicament:

- Laboratoire A : $s_A^2=4.2$ avec n=30 patients Laboratoire B : $s_B^2=2.8$ avec n=28 patients

Testez au niveau 5% si les deux méthodes présentent des variances différentes.

Exercice 4 — Test t pour moyennes (échantillons indépendants)

On compare le temps de récupération post-opératoire entre deux groupes :

- Groupe 1 (chirurgie traditionnelle) : $n_1 = 40$, $\bar{x}_1 = 5.2$ jours, $s_1 = 1.1$
- Groupe 2 (chirurgie robotique): $n_2 = 35$, $\bar{x}_2 = 4.6$ jours, $s_2 = 1.3$

Au seuil de 5%, peut-on conclure que la chirurgie robotique réduit significativement le temps de récupération ?

Exercice 5 — Test Z pour une proportion

Un vaccin est censé protéger au moins 90% des personnes contre un virus. Lors d'une campagne, parmi 500 vaccinés, 440 ne tombent pas malades.

Testez, au seuil de 5\%, si le taux de protection est inférieur à 90\%.

Exercice 6 — Test F avant comparaison de moyennes

Avant de comparer les moyennes de deux traitements (A et B) :

• Groupe A: n = 25, $s^2 = 16$

• Groupe B : $n = 30, s^2 = 20$

Testez l'égalité des variances au seuil de 5%.

Exercice 7 — Test t apparié (avant/après traitement)

On mesure le taux de cortisol de 12 patients avant et après un traitement anti-stress.

Patient	Avant traitement (ng/mL)	Après traitement (ng/mL)
1	18.5	15.2
2	20.1	17.3
3	19.7	16.8
4	22.0	18.5
5	21.5	19.0
6	19.0	16.5
7	23.0	20.1
8	17.5	15.0
9	18.0	15.8
10	20.5	18.0
11	19.8	17.1
12	21.0	18.7

Table 1: Taux de cortisol avant et après traitement anti-stress (en ng/mL)

Tester si le traitement réduit significativement le taux moyen de cortisol.

Exercice 8 — Test t Student (fréquence cardiaque)

Un médicament est censé diminuer la fréquence cardiaque. Un échantillon de 10 patients a une moyenne de 68 bpm, écart-type 5 bpm.

La fréquence normale est de 72 bpm. Testez au seuil de 5%.

Exercice 9 — Test de proportions (traitements A et B)

Deux traitements contre une infection :

• Traitement A: 200 patients, 150 guérisons

• Traitement B: 180 patients, 138 guérisons

Testez au seuil de 5% si les proportions de guérison sont différentes.

Exercice 10 — Test F de Fisher (temps d'hospitalisation)

Comparer la variabilité du temps d'hospitalisation :

• Service 1: $n_1 = 35$, $s_1^2 = 2.5$

• Service 2 : $n_2 = 30, s_2^2 = 3.6$

Testez au seuil de 1% si les variances diffèrent.

Exercice 11 — Test Z pour une proportion

Un programme de dépistage vise 95% de détection. Sur 1000 personnes testées, 920 cas positifs sont correctement détectés.

Testez au seuil de 5% si le taux est inférieur à 95%.

Exercice 12 — Test t apparié (vaccination)

On mesure les taux d'anticorps de 12 patients avant et après vaccination.

Patient	Avant vaccination (UI/mL)	Après vaccination (UI/mL)
1	45	120
2	50	135
3	48	125
4	46	130
5	47	128
6	44	118
7	49	133
8	46	126
9	45	122
10	47	129
11	48	131
12	46	127

Table 2: Taux d'anticorps avant et après vaccination (en UI/mL)

Tester si la vaccination augmente significativement le taux moyen d'anticorps.

Exercice 13 — Test t pour 2 échantillons indépendants (prise de poids)

Comparer deux régimes alimentaires :

• Régime 1 : 25 patients, $\bar{x}_1 = 2.1$ kg, $s_1 = 0.5$

• Régime 2 : 30 patients, $\bar{x}_2 = 1.7$ kg, $s_2 = 0.6$

Testez si le régime 1 provoque plus de prise de poids que le régime 2.

Exercice 14 — Test Z sur une moyenne

Durée moyenne historique d'une intervention : 120 minutes.

Nouvelle technique : n = 150, moyenne 117 minutes, écart-type 20 minutes.

Tester au seuil 5% si la durée est réduite.

Exercice 15 — Test t apparié (glycémie)

Un traitement expérimental est testé sur 8 patients diabétiques.

Patient	Avant traitement (mg/dL)	Après traitement (mg/dL)
1	165	150
2	180	160
3	155	142
4	170	158
5	160	150
6	175	165
7	185	170
8	172	160

Table 3: Glycémie avant et après traitement expérimental (en mg/dL)

Comparer glycémie avant et après traitement pour tester une réduction significative.

Solutions détaillées des exercices de tests d'hypothèses

Exercice 1 — Test Z sur une moyenne

— Données:

$$\mu_0 = 130 \text{ mmHg}$$
 $n = 120 \text{ patients}$
 $\bar{x} = 125 \text{ mmHg}$
 $\sigma = 15 \text{ mmHg}$
 $\alpha = 5\%$

$$H_0: \mu \ge 130 \text{ mmHg}$$

 $H_1: \mu < 130 \text{ mmHg}$

- **Test**: Test Z unilatéral à gauche
- Calcul de la statistique Z :

$$Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{125 - 130}{15/\sqrt{120}} \approx -3.65$$

- Règle de décision : Rejeter H_0 si $Z < -z_{5\%} = -1.645$
- Conclusion : On rejette H_0 (-3.65 < -1.645). La molécule réduit significativement la pression artérielle (p < 0.05).

Exercice 2 — Test t de Student

— Données:

$$\mu_0 = 100 \text{ mg/dL}$$

$$n = 16$$

$$\bar{x} = 92 \text{ mg/dL}$$

$$s = 10 \text{ mg/dL}$$

$$\alpha = 1\%$$

— Hypothèses:

$$H_0: \mu \ge 100 \text{ mg/dL}$$

 $H_1: \mu < 100 \text{ mg/dL}$

- **Test**: Test t unilatéral à gauche
- Calcul de t :

$$t = \frac{92 - 100}{10/4} = -3.2$$
 avec $ddl = 15$

- Valeur critique : $t_{15;0.01} \approx -2.602$
- Conclusion : On rejette H_0 (-3.2 < -2.602). Le traitement réduit significativement la glycémie (p < 0.01).

Exercice 3 — Test F de Fisher

— Données:

$$s_A^2 = 4.2, \ n_A = 30$$

 $s_B^2 = 2.8, \ n_B = 28$
 $\alpha = 5\%$

— Hypothèses:

$$H_0: \sigma_A^2 = \sigma_B^2$$

$$H_1: \sigma_A^2 \neq \sigma_B^2$$

— **Test**: Test F bilatéral

— Calcul de F:

$$F = \frac{4.2}{2.8} = 1.5$$
 avec $ddl_1 = 29$, $ddl_2 = 27$

— Valeurs critiques :

$$F_{29,27;0.025} \approx 2.05$$
 et $F_{29,27;0.975} \approx 0.493$

— Conclusion: On ne rejette pas H_0 (0.493 < 1.5 < 2.05). Pas de différence significative entre les variances (p > 0.05).

Exercice 4 — Test t pour échantillons indépendants

— Données:

Groupe 1:
$$n_1 = 40$$
, $\bar{x}_1 = 5.2$, $s_1 = 1.1$
Groupe 2: $n_2 = 35$, $\bar{x}_2 = 4.6$, $s_2 = 1.3$
 $\alpha = 5\%$

— Hypothèses:

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

- **Test**: Test t unilatéral à droite
- Variance commune :

$$s_p^2 = \frac{39 \times 1.21 + 34 \times 1.69}{73} \approx 1.45$$

— Calcul de t :

$$t = \frac{5.2 - 4.6}{\sqrt{1.45(1/40 + 1/35)}} \approx 2.17$$
 avec ddl = 73

- Valeur critique : $t_{73;0.05} \approx 1.666$
- Conclusion: On rejette H_0 (2.17 > 1.666). La chirurgie robotique réduit significativement le temps de récupération (p < 0.05).

Exercice 5 — Test Z pour une proportion

— Données:

$$p_0 = 0.90$$
$$n = 500$$
$$x = 440$$

$$x = 440$$
$$\alpha = 5\%$$

— Hypothèses:

$$H_0: p \ge 0.90$$

$$H_1: p < 0.90$$

- Test: Test Z unilatéral à gauche
- Proportion observée :

$$\hat{p} = \frac{440}{500} = 0.88$$

— Calcul de Z:

$$Z = \frac{0.88 - 0.90}{\sqrt{\frac{0.90 \times 0.10}{500}}} \approx -1.49$$

- Valeur critique : $-z_{0.05} = -1.645$
- Conclusion : On ne rejette pas H_0 (-1.49 > -1.645). Le taux de protection n'est pas significativement inférieur à 90% (p > 0.05).

Exercice 6 — Test F avant comparaison de moyennes

— Données:

Groupe A :
$$n_A = 25, \ s_A^2 = 16$$

Groupe B:
$$n_B = 30, \ s_B^2 = 20$$

$$\alpha = 5\%$$

$$H_0: \sigma_A^2 = \sigma_B^2$$

$$H_0: \sigma_A^2 = \sigma_B^2$$

$$H_1: \sigma_A^2 \neq \sigma_B^2$$

- **Test**: Test F bilatéral
- Calcul de F:

$$F = \frac{s_A^2}{s_B^2} = \frac{16}{20} = 0.8$$

— Degrés de liberté :

$$ddl_1 = 24, \ ddl_2 = 29$$

— Valeurs critiques :

$$F_{24,29;0.025} \approx 2.15$$

$$F_{24,29;0.975} = \frac{1}{F_{29,24;0.025}} \approx \frac{1}{2.14} \approx 0.467$$

— Conclusion : On ne rejette pas H_0 (0.467 < 0.8 < 2.15). Les variances peuvent être considérées comme égales (p > 0.05).

Exercice 7 — Test t apparié

— **Données :** 12 patients (voir tableau)

$$\alpha = 5\%$$

Différences moyennes(\bar{d}) = 2.4 ng/mL

Écart-type des différences $(s_d) = 0.9 \text{ ng/mL}$

$$H_0: \mu_d \le 0$$

$$H_1: \mu_d > 0$$

- **Test**: Test t apparié unilatéral à droite
- Calcul de t :

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{2.4}{0.9/\sqrt{12}} \approx 9.24$$

- Degrés de liberté : ddl = 11
- Valeur critique : $t_{11;0.05} \approx 1.796$
- Conclusion : On rejette H_0 (9.24 > 1.796). Le traitement réduit significativement le taux de cortisol (p < 0.05).

Exercice 8 — Test t Student

— Données:

$$\mu_0 = 72 \text{ bpm}$$
 $n = 10$
 $\bar{x} = 68 \text{ bpm}$
 $s = 5 \text{ bpm}$
 $\alpha = 5\%$

— Hypothèses:

$$H_0: \mu \ge 72$$

 $H_1: \mu < 72$

- **Test**: Test t unilatéral à gauche
- Calcul de t:

$$t = \frac{68 - 72}{5/\sqrt{10}} \approx -2.53$$

- Degrés de liberté : ddl = 9
- Valeur critique : $-t_{9;0.05} = -1.833$
- Conclusion : On rejette H_0 (-2.53 < -1.833). Le médicament réduit significativement la fréquence cardiaque (p < 0.05).

Exercice 9 — Test de proportions

— Données :

Traitement A:
$$n_A = 200$$
, $x_A = 150$
Traitement B: $n_B = 180$, $x_B = 138$
 $\alpha = 5\%$

— Hypothèses:

$$H_0: p_A = p_B$$
$$H_1: p_A \neq p_B$$

— **Test**: Test Z pour deux proportions

— Proportions observées :

$$\hat{p}_A = \frac{150}{200} = 0.75$$

$$\hat{p}_B = \frac{138}{180} = 0.767$$

— Proportion poolée :

$$\hat{p} = \frac{150 + 138}{200 + 180} \approx 0.758$$

— Calcul de Z:

$$Z = \frac{0.75 - 0.767}{\sqrt{0.758 \times 0.242 \times (\frac{1}{200} + \frac{1}{180})}} \approx -0.46$$

- Valeurs critiques : $\pm z_{0.025} = \pm 1.96$
- Conclusion: On ne rejette pas H_0 ($-0.46 \in [-1.96, 1.96]$). Pas de différence significative entre les taux de guérison (p > 0.05).

Exercice 10 — Test F de Fisher (temps d'hospitalisation)

— Données :

Service 1:
$$n_1 = 35$$
, $s_1^2 = 2.5$
Service 2: $n_2 = 30$, $s_2^2 = 3.6$
 $\alpha = 1\%$

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

- **Test**: Test F bilatéral
- Calcul de F:

$$F = \frac{s_2^2}{s_1^2} = \frac{3.6}{2.5} = 1.44$$

— Degrés de liberté :

$$ddl_1 = 29, \ ddl_2 = 34$$

— Valeurs critiques :

$$F_{29,34;0.005} \approx 2.42$$

$$F_{29,34;0.995} = \frac{1}{F_{34,29;0.005}} \approx \frac{1}{2.45} \approx 0.408$$

— Conclusion: On ne rejette pas H_0 (0.408 < 1.44 < 2.42). Pas de différence significative entre les variances des temps d'hospitalisation (p > 0.01).

Exercice 11 — Test Z pour une proportion

— Données:

$$p_0 = 0.95$$

$$n = 1000$$

$$x = 920$$

$$\alpha = 5\%$$

— Hypothèses:

$$H_0: p \ge 0.95$$

 $H_1: p < 0.95$

- **Test** : Test Z unilatéral à gauche
- Proportion observée :

$$\hat{p} = \frac{920}{1000} = 0.92$$

— Calcul de Z:

$$Z = \frac{0.92 - 0.95}{\sqrt{\frac{0.95 \times 0.05}{1000}}} \approx -4.36$$

- Valeur critique : $-z_{0.05} = -1.645$
- Conclusion : On rejette H_0 (-4.36 < -1.645). Le taux de détection est significativement inférieur à 95% (p < 0.05).

Exercice 12 — Test t apparié (vaccination)

— **Données**: 12 patients (différences moyennes)

$$ar{d} = 8.2 \; \mathrm{UI/mL}$$

 $s_d = 2.1 \; \mathrm{UI/mL}$
 $lpha = 5\%$

— Hypothèses :

$$H_0: \mu_d \le 0$$

 $H_1: \mu_d > 0$

- Test : Test t apparié unilatéral à droite
- Calcul de t:

$$t = \frac{8.2}{2.1/\sqrt{12}} \approx 13.52$$

- Degrés de liberté : ddl = 11
- Valeur critique : $t_{11;0.05} \approx 1.796$
- Conclusion: On rejette H_0 (13.52 > 1.796). La vaccination augmente significativement le taux d'anticorps (p < 0.05).

Exercice 13 — Test t pour échantillons indépendants

— Données :

Régime 1 :
$$n_1 = 25$$
, $\bar{x}_1 = 2.1$ kg, $s_1 = 0.5$
Régime 2 : $n_2 = 30$, $\bar{x}_2 = 1.7$ kg, $s_2 = 0.6$
 $\alpha = 5\%$

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

- **Test**: Test t unilatéral à droite
- Variance commune :

$$s_p^2 = \frac{24 \times 0.25 + 29 \times 0.36}{53} \approx 0.309$$

— Calcul de t :

$$t = \frac{2.1 - 1.7}{\sqrt{0.309 \times (\frac{1}{25} + \frac{1}{30})}} \approx 2.72$$

- Degrés de liberté : ddl = 53
- Valeur critique : $t_{53;0.05} \approx 1.674$
- Conclusion : On rejette H_0 (2.72 > 1.674). Le régime 1 provoque significativement plus de prise de poids que le régime 2 (p < 0.05).

Exercice 14 — Test Z sur une moyenne

— Données :

$$\mu_0 = 120 \text{ minutes}$$
 $n = 150$
 $\bar{x} = 117 \text{ minutes}$
 $s = 20 \text{ minutes}$

 $\alpha = 5\%$

— Hypothèses:

$$H_0: \mu \ge 120$$

 $H_1: \mu < 120$

- Test: Test Z unilatéral à gauche (grand échantillon)
- Calcul de Z:

$$Z = \frac{117 - 120}{20/\sqrt{150}} \approx -1.84$$

- Valeur critique : $-z_{0.05} = -1.645$
- Conclusion: On rejette H_0 (-1.84 < -1.645). La nouvelle technique réduit significativement la durée d'intervention (p < 0.05).

Exercice 15 — Test t apparié (glycémie)

— **Données**: 8 patients (voir tableau)

$$ar{d} = 12.5 \text{ mg/dL}$$

 $s_d = 5.2 \text{ mg/dL}$
 $lpha = 5\%$

$$H_0: \mu_d \leq 0$$

$$H_1: \mu_d > 0$$

- \mathbf{Test} : Test t apparié unilatéral à droite
- Calcul de t :

$$t = \frac{12.5}{5.2/\sqrt{8}} \approx 6.80$$

- Degrés de liberté : ddl = 7
- Valeur critique : $t_{7;0.05} \approx 1.895$ Conclusion : On rejette H_0 (6.80 > 1.895). Le traitement réduit significativement la glycémie (p < 0.05).