

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5 : A61C 13/00	A1	(11) Numéro de publication internationale: WO 94/00074 (43) Date de publication internationale: 6 janvier 1994 (06.01.94)
--	----	--

(21) Numéro de la demande internationale: PCT/FR93/00620 (22) Date de dépôt international: 22 juin 1993 (22.06.93) (30) Données relatives à la priorité: 92/08128 26 juin 1992 (26.06.92) FR (71)(72) Déposant et inventeur: DURET, Francois [FR/FR]; Draye des Vignes, F-38690 Le-Grand-Lemps (FR). (74) Mandataire: CABINET GERMAIN ET MAUREAU; BP 3011, F-69392 Lyon Cedex 03 (FR). (81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	Publiée <i>Avec rapport de recherche internationale.</i>
---	---

(54) Title: DEVICE FOR THE CORRELATION OF THREE-DIMENSIONAL ACQUISITION DATA OF HUMAN ORGANS, ESPECIALLY FOR APPLICATIONS IN ODONTOIATRICAL

(54) Titre: DISPOSITIF DE CORRELATION DES SAISIES TRIDIMENSIONNELLES D'ORGANES HUMAIN, NOTAMMENT, POUR DES APPLICATIONS EN ODONTOIATRIE

(57) Abstract Device including at least three transmitters (S1-S8) and at least two receivers (R1-R3) fitted to the part of the organ to be analyzed, to a data acquisition camera, and/or to a plotting probe and/or to a stationary support, a pulse clock (18) connected to a pulse generator (19) causing the different transmitters (S1-S8) to emit in sequence, and to the receivers (R1-R3) in order to indicate to which transmitter corresponds the received signal, a converter (20) for transforming the information received by each probe into a numerical value, a computer (22-23) for determining the coordinates of each transmitter in relation to each receiver, storing the information according to each image, and deriving, based on one of the images serving as a reference, correlations of each image in relation to the reference image, in order to obtain a three-dimensional image of an organ. Application in odontology.

(57) Abrégé Ce dispositif comporte: au moins trois émetteurs (S1-S8) et au moins deux récepteurs (R1-R3) fixés sur la partie d'organe à analyser, sur une caméra de saisie, et/ou sur une sonde de tracé et/ou sur un support fixe, une horloge de pulsations (18) reliée, d'une part à un générateur d'impulsions (19) faisant émettre successivement les différents émetteurs (S1-S8) et, d'autre part, aux récepteurs (R1-R3) pour leur indiquer à quel émetteur correspond le signal reçu, un convertisseur (20) transformant l'information reçue par chaque capteur en une valeur numérique, un calculateur (22-23) déterminant les coordonnées de chaque émetteur par rapport à chaque récepteur, stockant les informations en fonction de chaque prise de vue, et réalisant, à partir de l'une des vues servant de référence, des corrélations de chaque vue par rapport à la vue de référence, afin d'obtenir une vue tridimensionnelle de l'organe dont la saisie est effectuée. Application à l'odontologie.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gabon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	NE	Niger
BE	Belgique	GN	Guinée	NL	Pays-Bas
BF	Burkina Faso	GR	Grèce	NO	Norvège
BG	Bulgarie	HU	Hongrie	NZ	Nouvelle-Zélande
BJ	Bénin	IE	Irlande	PL	Pologne
BR	Brésil	IT	Italie	PT	Portugal
BY	Bélarus	JP	Japon	RO	Roumanie
CA	Canada	KP	République populaire démocratique de Corée	RU	Fédération de Russie
CF	République Centrafricaine	KR	République de Corée	SD	Soudan
CG	Congo	KZ	Kazakhstan	SE	Suède
CH	Suisse	LI	Liechtenstein	SI	Slovénie
CI	Côte d'Ivoire	LK	Sri Lanka	SK	République slovaque
CM	Cameroun	LU	Luxembourg	SN	Sénégal
CN	Chine	LV	Lettonie	TD	Tchad
CS	Tchécoslovaquie	MC	Monaco	TG	Togo
CZ	République tchèque	MG	Madagascar	UA	Ukraine
DE	Allemagne	ML	Mali	US	Etats-Unis d'Amérique
DK	Danemark	MN	Mongolie	UZ	Ouzbékistan
ES	Espagne			VN	Viet Nam
FI	Finlande				

**DISPOSITIF DE CORRELATION DES SAISIES
TRIDIMENSIONNELLES D'ORGANES HUMAINS
NOTAMMENT, POUR DES APPLICATIONS EN ODONTOIATRIE.**

La présente invention a pour objet un dispositif de corrélation des saisies tridimensionnelles d'organes humains avec détermination spécifique de points caractéristiques et un dispositif pour sa mise en oeuvre. En particulier, ce système propose une méthode basée sur l'analyse de la position respective de l'instrument d'analyse ou de mesure par rapport à l'organe analysé ou mesuré, et éventuellement le tout par rapport à une référence fixe.

Il existe différentes méthodes pour saisir la forme d'un organe humain interne ou externe.

Une première méthode consiste à réaliser une empreinte de l'organe à l'aide de produit ou pâte plus ou moins élastique, permettant d'obtenir un moule dans lequel sera coulé du plâtre, afin d'obtenir une réplique complète dudit organe. Cette méthode est très ancienne et ne nécessite aucune corrélation pour la prise d'empreinte de l'organe lui-même. Tout au plus sera mise en jeu cette corrélation, si l'on désire connaître la position relative de l'organe étudié par rapport à un autre, si ceux-ci ne sont pas solidaires. En particulier, dans le domaine dentaire ont été utilisés, depuis de nombreuses années, des corrélateurs mécaniques appelés "mordus" et "articulateurs".

Toutefois, ceux-ci supposent que l'intégralité de l'organe a été saisie en une seule prise d'empreinte et l'analyse dite corrélative ne vise qu'à connaître la position statique et le suivi dynamique relatif de l'un des organes par rapport à l'autre.

Une deuxième méthode dite par micropalpage, présentée par Mushabac en 1977 (US 4 182 312) puis par Becker US (US 4 411 626) et enfin par Rekow (Journal of American Dental Association, Vol 122 # 13 p 42-48 : 1991) est plus récente et consiste à micropalper la surface d'étude et, éventuellement, la restituer à l'aide d'une microfraiseuse. Là encore, aucune méthode de corrélation intra-organes n'a été proposée.

Une troisième méthode d'empreinte est dite d'exploration interne et a pour but la visualisation d'organes internes soit par les RX en deux dimensions (Tomodensitométrie ou Scanner X), soit par d'autres procédés d'investigation, en trois dimensions, mettant en jeux des rayonnements spéciaux comme l'IRM (imagerie par résonance magnétique) ou

les gamma et Béta caméras. Si ces méthodes d'exploration supposent la corrélation de coupes ou de voxels (volumes élémentaires), elles supposent la connaissance a priori de la position du corps par rapport à l'émetteur et le récepteur. Hormis le brevet FR 83 07840 au nom du Demandeur, 5 aucune méthode de corrélation intervue n'a été proposée.

Une dernière méthode est la technique dite d'empreinte optique. Qu'il s'agisse de la stéréoscopie (Heitlinger, US 4 324 546) ou de l'interférométrie comme du moiré (Duret, US 4 611 288), elle permet de faire une lecture optique tridimensionnelle des objets photographiés. Là 10 encore, ces méthodes proposent une corrélation inter-organe par des moyens mécaniques (Duret FR 88 15483) mais aussi des système optiques (FR 82 06707) où il est proposé de suivre les mouvements de la mandibule par la lecture à l'aide d'une caméra en visualisant les mouvements respectifs de trois points sur le maxillaire supérieur et trois points 15 sur le maxillaire inférieur. Cette méthode nouvellement introduite, comme les autres déjà citées, ne donne pas la possibilité de corrélérer différentes saisies d'un même organe. A l'exception de la première technique du FR 88 15483 qui suppose l'utilisation de trois sphères visibles dans le champ de prise d'empreinte, toutes les autres méthodes supposent ou imposent la 20 fixation de l'objet analysé et de la caméra dans des positions connues a priori (Scanner, IRM...) du centre de calcul et d'analyse. Ainsi il est relativement courant aujourd'hui de procéder à une rotation ou un déplacement connu de l'objet face aux instruments d'analyse.

Comme le montrent les observations courantes de l'utilisateur, 25 ces deux approches, sphères et fixations, limitent et compliquent considérablement les méthodes d'empreintes optiques et micropalpées au point que certaines sociétés encouragent la prise de vue indirecte sur un modèle ne risquant pas de bouger, plutôt que sur le patient.

Toutes les autres méthodes de corrélation d'organes utilisant 30 des points lumineux ou autres techniques ne le font que pour le suivi dynamique des mouvements mandibulaires et, de par le nombre et la position des émetteurs et des récepteurs, elles ne peuvent ni permettre, ni optimiser la corrélation de saisies tridimensionnelles de prise d'empreinte de tout ou partie du corps analysé. Ces autres méthodes permettent entre 35 autre le suivi du mouvement d'un organe tel que le maxillaire par rapport à un organe tel que la mandibule, donc une corrélation dynamique de deux

organes (corrélation relative) mais ne permettent pas la corrélation de plusieurs vues prises sur un même organe (corrélation absolue par rapport à un repère dépendant de la prise d'empreinte).

Enfin, le repérage des points nécessaires à la construction de la prothèse, tel que décrit dans le brevet FR 88 15483, oblige à tracer à l'écran vidéo des lignes et points importants servant à la réalisation de la future prothèse, ce qui est aléatoire et difficile pour un homme de l'art médical.

La présente invention a pour but de permettre et d'optimiser d'une façon importante la corrélation d'un ensemble de vues tridimensionnelles dentaires ou médicales d'un objet ou d'une partie de celui-ci ou de corréler plusieurs objets ayant, éventuellement, fait l'objet d'une corrélation en eux-mêmes sans connaître, a priori, la position de l'objet et de la caméra au niveau du calculateur. Elle a aussi pour but de permettre le pointage des zones spécifiques des organes comme une dent, le tracé de lignes importantes comme la ligne de finition d'une couronne et les sillons et le repérage des éléments adjacents et antagonistes nécessaires à la construction de la prothèse. En particulier, cette technique permet le repérage direct sur le modèle ou dans la bouche sans avoir à travailler sur l'écran de visualisation des vues tridimensionnelles.

A cet effet, le dispositif qu'elle concerne, comporte :

- . au moins trois émetteurs et au moins deux récepteurs fixés sur la partie d'organe à analyser, sur une caméra de saisie, et/ou sur une sonde de tracé et/ou sur un support fixe,
- 25 . une horloge de pulsations reliée, d'une part, à un générateur d'impulsions faisant émettre successivement les différents émetteurs et, d'autre part, aux récepteurs pour leur indiquer à quel émetteur correspond le signal reçu,
- . un convertisseur transformant l'information reçue par chaque 30 capteur en une valeur numérique,
- . un calculateur déterminant les coordonnées de chaque émetteur par rapport à chaque récepteur, stockant les informations en fonction de chaque prise de vue, et réalisant, à partir de l'un des vues servant de référence, des corrélations de chaque vue par rapport à la vue de référence, afin d'obtenir une vue tridimensionnelle de l'organe dont la saisie 35 est effectuée.

Selon une première forme d'exécution, les émetteurs sont constitués par des diodes électroluminescentes, tandis que les récepteurs sont constitués par des capteurs photosensibles, tels que diodes ou CCD.

5 Selon une deuxième forme d'exécution, les émetteurs sont à ultra-sons, tandis que les récepteurs sont constitués par des récepteurs ultra-sonores.

10 Selon une troisième forme d'exécution, les émetteurs sont magnétiques ou électro-magnétiques, tandis que les récepteurs sont des antennes de mesure à effet Hall du champ variable en fonction de la position de l'organe qui est l'objet de la mesure, de la caméra et/ou de la sonde.

Dans le cas d'émetteurs optiques, les coordonnées de chaque émetteur sont calculées par triangulation à l'aide d'au moins deux caméras de capteurs photosensibles.

15 Dans le cas d'émetteurs à ultra-sons, les coordonnées de chaque émetteur sont déterminées par mesure des distances par propagation/réflexion d'une onde sonore, avec mise en oeuvre d'au moins trois récepteurs.

20 Dans le cas d'émetteurs magnétiques ou électro-magnétiques, les coordonnées de chaque émetteur sont déterminées par mesure de variation du champ magnétique, par mesure de l'effet Hall à l'aide d'au moins trois antennes orientées dans les trois directions de l'espace.

25 Ce dispositif comprend des moyens de commande du déclenchement de la mesure, c'est-à-dire de l'analyse des émissions concomitantes avec la prise d'empreinte optique.

Les émetteurs peuvent fonctionner en permanence, le début de la prise de vue déclenchant le stockage de l'information de la position des émetteurs, ou au contraire être mis en fonctionnement au début de la prise de vues.

30 Pour leur part, les récepteurs peuvent soit être mis en fonctionnement au moment de la prise de vue, soit fonctionner en permanence mais ne stocker les informations qu'au moment de la prise de vues.

35 De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de ce dispositif :

Figures 1 à 3 sont trois vues schématiques mettant en oeuvre trois types d'émetteurs et de récepteurs ;

Figure 4 est une vue schématisant les moyens de commande du dispositif ;

5 Figure 5 est une vue d'une sonde permettant un tracé ou un pointage ;

Figure 6 est une vue en perspective d'une variante de réalisation de ce dispositif ;

10 Figure 7 est une vue en perspective de ce dispositif dans le cas de la réalisation d'empreintes sur des parties du corps indépendantes l'une de l'autre au plan dynamique ;

Figures 8 et 9 sont deux vues représentant une réalisation de tracé du pourtour d'une dent antérieure ;

15 Figure 10 est une vue d'une représentation de la corrélation entre différents moyens d'investigation du corps humain ;

Figures 11 et 12 représentent la possibilité de corrélation d'une prise d'empreinte traditionnelle en bouche par rapport à d'autres saisies d'informations.

La figure 1 représente un dispositif permettant la corrélation 20 des saisies tridimensionnelles du maxillaire inférieur 2 d'un individu. Trois émetteurs 3 constitués, par exemple par des diodes électro-luminescentes, sont montés sur une caméra 4, trois émetteurs 5 sont installés sur le maxillaire inférieur, et deux émetteurs 6 sont disposés sur une sonde de repérage et de tracé de points et de lignes.

25 Ce dispositif comprend au moins deux récepteurs 8 montés sur un support fixe et stable admis comme référence. Ces récepteurs doivent être disposés à un emplacement d'où il est possible de voir, sans gêne, tous les émetteurs durant la manipulation.

La figure 2 est une variante d'exécution du dispositif de figure 30 1 dans laquelle les mêmes éléments sont désignés par les mêmes références que précédemment. Dans ce cas, les émetteurs 9, 10, 12 sont constitués par des émetteurs à ultra-sons, tandis que les récepteurs 13 sont également des récepteurs ultra-sonores.

35 Ce dispositif présente l'avantage par rapport au précédent de pouvoir travailler sans qu'il soit nécessaire que les récepteurs voient les émetteurs, ce qui simplifie considérablement les manipulations, mais oblige

à un étalonnage des milieux qui seront traversés pour éviter les risques d'erreurs.

Dans la forme d'exécution représentée à la figure 3, les émetteurs 14, 15, 16 sont des émetteurs magnétiques ou électro-magnétiques, 5 tandis que les récepteurs sont constitués par des antennes 17 à effet Hall, de mesure du champ magnétique variable en fonction du mouvement de la caméra 4, de la partie 2 du corps qui est l'objet de la mesure, et de la sonde 7 de tracé des lignes et des points.

La figure 4 représente schématiquement le mécanisme de 10 commande du dispositif et de traitement des informations de celui-ci.

Une horloge de pulsations 18 est reliée à un générateur d'impulsions 19 fournissant des instructions de commande aux émetteurs S1, S2, S3 de la caméra 4, aux émetteurs S4, S5 de la sonde 7, et aux émetteurs S6, S7, S8 de la partie 2 du corps dont l'analyse est effectuée. Cette 15 horloge de pulsations 18 fournit également une information aux récepteurs R1, R2 et R3 pour leur indiquer quel est l'émetteur dont ils reçoivent, respectivement, le signal.

Cette information, optique, ultrasonique ou magnétique est convertie en valeur numérique au niveau d'une carte 20 de conversion 20 analogique-numérique, pour être ensuite traitée dans un calculateur 22. Ce calculateur détermine les coordonnées de chaque émetteur, puis procède aux corrélations de chaque vue sur une prise de vues servant de référence, afin d'obtenir une seule vue tridimensionnelle.

Ce traitement des corrélations est effectué au niveau d'une 25 carte 17 associée à un système d'empreinte ou de commande assistée par ordinateur 24.

Les pulsations fournies par l'horloge 18 sont, par exemple, au moins de 0,5 KHz pour une précision de 50 µm et pour chaque émetteur, ce qui laisse largement le temps d'émettre au moins six signaux convenablement distincts et désignés provenant des émetteurs fixés sur la partie 30 du corps analysée, et de se fixer sur la caméra ou sur la sonde de tracé. Cette vitesse peut être modifiée en fonction du rapport existant entre les mouvements parasites, la précision désirée et les moyens techniques à disposition.

En particulier, si les émetteurs sont optiques, afin d'éviter les 35 phénomènes d'hystérésis, ou de dérives thermiques des diodes, il peut

être procédé à l'allumage et à l'extinction des diodes, par exemple avec un rythme de 2 KHz, avec une répétition minimale de quatre émissions pour permettre un affinage de l'information et l'établissement d'une moyenne pour les calculs.

5 Dans le cas d'émetteurs ultrasoniques, cette émission pouvant dépasser 50 pulsations par seconde, il sera proposé un cycle d'un minimum de deux émissions par émetteur.

10 Dans la mesure où il s'agit de la variation d'un champ magnétique, cette détection étant continue, c'est au niveau des antennes de mesure que se font les échantillonnage.

Dans l'exemple de la figure 4, l'horloge émettra donc successivement des signaux **S1, S2, S3, S4, S5, S6, S7 et S8**.

15 Les cinq premiers correspondent à l'émission des émetteurs de la caméra ou de la sonde de tracé. Ce sont ensuite les émetteurs **S6, S7 et S8** correspondant aux émetteurs fixés sur la partie du corps à analyser qui émettent des signaux successifs.

Le déclenchement de la mesure, c'est-à-dire de l'analyse des émissions des émetteurs est concomitante à la prise d'empreinte optique.

Deux possibilités peuvent être envisagée :

20 - Selon une première possibilité, les émetteurs émettent en permanence, et la prise de vue tridimensionnelle au temps T0 déclenche le stockage de l'information de la position des émetteurs au temps T0.

25 - Selon une autre possibilité, les émetteurs ne sont mis en action qu'au moment de la prise de vue, ce qui nécessite un mécanisme de synchronisation.

Dans les deux cas, les récepteurs R1, R2 et R3 sont soit en action en permanence, mais ne stockent les informations qu'au moment de la prise de vue, soit entrent en action au moment du déclenchement de la prise de vue tridimensionnelle.

30 Afin d'éviter les erreurs de mesure, celles-ci sont répétées à plusieurs reprises, et/ou le nombre des récepteurs et de émetteurs peut être augmenté. En particulier, dans le cas des ultra-sons, il est avantageux d'avoir recours à plus de trois récepteurs.

35 Afin de simplifier la structure de la sonde 7 de tracé ou de pointage, il est suffisant d'utiliser deux émetteurs 25, dans la mesure où l'on

connaît la distance exacte entre ces émetteurs et l'extrême **26** formant la pointe qui vient en contact avec les zones intéressantes.

Conformément à une autre possibilité, représentée à la figure 6, le dispositif comprend des récepteurs **27** sur la partie **2** du corps à analyser, et des émetteurs **28, 29** sur la caméra et sur la sonde respectivement. Cet agencement permet de corrélérer les vues de manière relative sur la première vue prise, ce qui est suffisant et limite le nombre d'émetteurs à cinq au lieu de huit.

Ce dispositif est de mise en oeuvre très simple, et présente l'avantage de pouvoir travailler en aveugle, en évitant toutes les manipulations de repérage à l'écran de l'ordinateur. Il s'agit d'un avantage essentiel car ces manipulations de repérage à l'écran sont très difficiles, voire impossibles sur des images bidimensionnelles, notamment en raison d'une représentation planaire des volumes, au caractère fixe des vues figées à l'écran, et aux ombres dans les zones d'intérêt.

En particulier, ce dispositif permet de supprimer le pointage à l'écran suivi du lissage et de la squelettisation mathématique, tels qu'ils sont décrits dans le document FR 88 15483. Ce dispositif permet une manipulation directe sur l'organe dont la saisie est réalisée, ou sur un modèle reproduisant cet organe.

Chaque fois que l'opérateur indique un point spécifique, ou un point d'une ligne comme celui d'une ligne de finition, il lui suffit d'appuyer sur un interrupteur afin de déclencher la recherche des données de positions des émetteurs par les récepteurs.

Pour augmenter la qualité de corrélation ainsi faites, il est possible au praticien de viser certains points. Ainsi, si l'utilisateur trace une ligne de finition d'une prothèse dentaire, celle-ci pourra servir de base de correction des corrélations, des vues faites entre la position des émetteurs de la caméra et les récepteurs sur l'objet ou à l'extérieur.

La mise en oeuvre du dispositif selon l'invention, dans le cas d'une application dentaire, est la suivante :

Le praticien réalise la taille de la ou des dents sur lesquelles il faut intervenir, et procède à la réalisation d'une empreinte optique soit directement en bouche, soit sur un modèle de reconstitution.

Comme montré à la figure 7, dans la mesure où le praticien travaille directement en bouche, il fixe des émetteurs au nombre de trois,

désignés par la référence 30 sur le maxillaire inférieur du patient. La prise d'empreinte en bouche a lieu à l'aide d'une sonde 7, elle-même équipée de trois émetteurs 32.

Ces différents émetteurs émettront, pour chaque prise de vue,
5 le signal convenu. A trois émetteurs il est possible de substituer trois récepteurs fixés à l'extérieur, par exemple au niveau du syalistique. Ainsi, il est possible d'avoir sur la sonde les trois émetteurs et de fixer sur le corps les trois récepteurs, ou inversement. Cette méthode a l'avantage de diminuer le nombre des éléments d'analyse.

10 Ce dispositif permet la corrélation simple des arcades portant la préparation et des arcades antagonistes. A cet effet, on effectue un mordu selon la méthode connue, mais sans avoir à viser les informations sur l'écran. Il suffit, en effet, de pointer les informations sur le mordu, à l'aide de la sonde posée sur l'arcade de préparation.

15 Il est également possible de faire des empreintes sur d'autres parties du corps indépendantes dynamiquement, par exemple, dans la forme d'exécution représentée à la figure 7 sur le maxillaire supérieure. A cet effet, des émetteurs 33 au nombre de trois sont fixés sur ce maxillaire supérieur, ce qui permet d'éviter l'utilisation du mordu dentaire tel que
20 décrit dans le brevet français 88 15483 et de repérer les points essentiels des dents antagonistes directement en bouche du patient ou sur le modèle de transfert.

La mise en oeuvre du procédé est, dans un tel cas, la suivante :

- Fixation d'émetteurs et de récepteurs en bouche du patient
25 portant la taille de la préparation et sur la caméra et sur la sonde.

- Fixation de trois émetteurs supplémentaires sur l'arcade antagoniste.

- Mesure des positions respectives des émetteurs et récepteurs, en position bouche fermée puis en position bouche ouverte, ce qui permet
30 de connaître le déplacement des surfaces occlusales depuis la position bouche ouverte jusqu'à la position bouche fermée.

- Sur les surfaces antagonistes, accessibles si la bouche est ouverte, sont tracés les lignes et les points importants pour une bonne occlusion. Le programme d'ordinateur applique à ces éléments dessinés
35 avec la sonde à deux émetteurs le mouvement inverse, bouche ouverte -

bouche fermée pour les positionner tels qu'ils sont lorsque le patient sert les dents.

Pour plus de précisions, il est aussi possible de faire bouger la bouche du patient et ainsi de faire bouger les surfaces antagonistes et les 5 éléments, sans qu'il soit nécessaire de les mesurer. Cela permet :

- de supprimer une utilisation importante des articulateurs dentaires souvent trop complexes,
- de supprimer la mise en oeuvre des articulateurs opto-électroniques, et

10 - d'utiliser des données statiques pour les suivis dynamiques.

En particulier, cela permet de ne suivre que le mouvements des centres et des sillons, ce qui est d'un intérêt capital et ce qui réduit l'utilisation globale de la mémoire par rapport au suivi de toutes les surfaces.

Si le praticien décide, pour des raisons personnelles et afin de 15 ne pas changer ses habitudes, de faire une empreinte classique, il saisit et travaille son empreinte de données sur un modèle de transfert qui est soit la pâte ayant servi à la réalisation de l'empreinte, soit un modèle issu de cette dernière et coulé par exemple en plâtre. La praticien peut aussi avoir recours à cette méthode si l'accessibilité en bouche est difficile.

20 Dans ce cas, il procède comme suit :

- réalisation d'une empreinte classique,
- fixation sur l'empreinte ou sur le modèle issu de cette empreinte ou encore sur le support de l'empreinte ou du modèle de trois émetteurs ou de trois récepteurs,
- utilisation de la sonde ayant elle-même trois émetteurs supplémentaires ou trois récepteurs si les émetteurs sont sur le modèle,
- mise en oeuvre de la sonde indiquée précédemment.

Dans les exemples cités précédemment sont mis en oeuvre cinq émetteurs et deux récepteurs. Il est possible, pour des raisons techniques 30 d'augmenter le nombre de récepteurs et le nombre d'émetteurs afin d'améliorer la précision.

Lorsqu'il s'agit d'utiliser des émetteurs optiques de type diodes électro-luminescentes, il est impossible de fixer les récepteurs en bouche ou sur la caméra en étant sûrs qu'ils verront ces émetteurs au moment de 35 la prise de vue.

Dans ces conditions, seuls des émetteurs sont placés en bouche sur la sonde et sur la caméra et au moins deux récepteurs sont placés à l'extérieur dans une zone où il recevront les rayonnements lumineux.

5 Les récepteurs ultrasoniques peuvent être à l'extérieur et en nombre supérieur à trois, ce qui a l'avantage d'augmenter considérablement la précision car il est possible d'avoir des antennes larges au-dessus du corps analysé.

10 Au moment où le praticien prend l'information, il déclenche l'horloge 18 qui fait émettre successivement chaque émetteur et qui indique à chaque récepteur de quel émetteur il a reçu successivement des signaux.

15 Par une triangulation classique, et après réalisation d'une moyenne mathématique, l'ordinateur calcule les coordonnées de chaque émetteur par rapport à chaque récepteur.

Dans le cas d'émetteurs optiques, il est procédé par triangulation classique à l'aide d'au moins deux caméras comportant des capteurs photo-sensibles de type diodes, CCD ou autres.

20 Dans le cas d'ultra-sons, il est procédé en mesurant le temps séparant l'émission de la réception selon la méthode connue de mesure des distances par propagation/réflexion d'une onde sonore. Dans ce cas, il faut mettre en oeuvre au minimum trois récepteurs.

Dans le cas de la variation du champ magnétique, il faut au minimum trois antennes disposées dans les trois directions de l'espace.

25 Ces informations sont stockées en regard de chaque prise de vues, par exemple selon un système matriciel. L'une de ces vues sert de référence zéro. A l'aide d'une matrice de transformation classique, il est procédé aux corrélations de chaque vue sur la vue servant de référence, afin de n'obtenir qu'une seule vue tridimensionnelle de l'organe dont la 30 saisie a été effectuée.

De même, à partir des informations issues de la mesure de points, ou de lignes à l'aide de la sonde, chaque information est corrélée à l'aide de la même matrice sur la vue obtenue par corrélation des vues en trois dimensions. On obtient ainsi une information complète de l'objet avec 35 l'indication de certains points.

Cette technique procure de nombreux avantages :

- réduction du temps clinique de préparation en bouche et sur plâtre par la non utilisation de sphères de corrélation, toujours fastidieux ;
 - confort pour le patient et pour le médecin car les sphères, utilisées de façon connue, doivent être positionnées de façon très précise
- 5 et sont gênantes pour le patient ;
- aucun risque de mouvement accidentel des sphères, puisque celles-ci ne sont plus utilisées ;
 - positionnement indifférent des récepteurs et des émetteurs, alors que les sphères ou toute autre forme d'indexation doivent toujours
- 10 être dans le champ de lecture ;
- liberté de prise d'informations, car il n'est plus nécessaire de voir les sphères dans le champ saisi des données durant cette prise d'informations ;
 - simplification de corrélation des dents adjacentes et antagonistes, car il suffit de pointer trois points communs pour repositionner les
- 15 deux mâchoires en occlusion ou tout autre organe, ou d'utiliser trois émetteurs supplémentaires ;
- possibilité de travailler dans des zones inaccessibles à la corrélation ;
- 20 - gain de temps de travail clinique très important.
D'autres avantages sont explicités ci-après.
- Avec les techniques traditionnelles, la définition du pourtour d'une dent antérieure reste impossible avec précision sur un écran, du fait des ombres et du travail en deux dimensions qu'impose l'écran.
- 25 Le fait de disposer d'un crayon sonde assure un tracé rigoureux, précis et facile, puisqu'il est effectué directement sur la dent ou tout autre organe avant l'intervention ou sur l'élément symétrique. Ce tracé permet le dessin correct des pourtours des dents antérieures 34, comme montré aux figures 8 et 9.
- 30 Cette méthode permet également une présélection des zones nécessitant plus de précisions, ce qui est très important en matière d'économie de mémoire et de rapidité de calcul pour le calculateur.
- Ce dispositif assure aussi la corrélation de vues à partir d'autres techniques telles que rayons X, ou autres méthodes d'investigation interne
- 35 et numérique, et le prélèvement des informations de surface.

En effet, s'il existe plusieurs méthodes d'investigation du corps humain, de surface ou en profondeur, il n'existe actuellement aucune possibilité de corrélation des méthodes entre elles.

L'invention permet une telle corrélation.

5 En effet, le fait de disposer d'émetteurs ou de récepteurs radios-opaques ou même visualisables par les méthodes d'investigation interne ou fonctionnant pendant celle-ci, permet leur repérage dans ces analyses d'investigation interne, et le repérage des éléments qui servent de repères de corrélation dans les autres méthodes décrites.

10 Le fait de repérer ces informations dans, par exemple, au moins deux films d'incidences différentes mais de même origine, permet de repositionner les vues radiologiques par rapport aux vues de surface. Cette méthode est d'autant plus performante qu'elle ne met en jeu aucun élément supplémentaire que ceux décrits précédemment.

15 Ainsi, il est possible d'associer la lecture du visage, avec trois repères tels que décrits, une analyse radiologique, une mesure d'information dans la bouche, puis une analyse de mouvements dynamiques des éléments présélectionnés à la sonde par le manipulateur. Cette analyse apporte des informations visuelles fondamentales au bon déroulement d'un
20 diagnostic et/ou des éléments corrélés entre eux, pourtant issus d'analyses faites sur des champs d'applications séparés, permettant de développer un logiciel d'intelligence artificielle ou un système expert.

Il est permis d'associer des mesures de type tomodensitométrique, avec des vues de surface assurant ainsi une ouverture du corps
25 à opérer dans une région et un suivi permanent des rapports anatomiques. En particulier, cette méthode est très importante pour l'implantologie ou le forage et la mise en place d'un implant nécessitant une très bonne connaissance de la zone de travail et de son environnement pour éviter les accidents.

30 Comme montré à la figure 10, un instrument de chirurgie 35 est équipé d'émetteurs 36 permettant la numérisation de l'acte, donc son suivi dans l'univers déjà corrélé et numérisé, visualisé à l'écran. Les limites des zones étant connues, par une action interactive antérieure à l'écran, ou avec la sonde directement, un signal sonore graduel peut être émis en
35 fonction de l'approche des zones fragiles ou dangereuses. Cela est d'une importance capitale dans les interventions chirurgicales où le praticien doit,

soit travailler en aveugle, soit largement ouvrir le corps du malade. Cette technique permet de réduire les ouvertures et, par suite, d'économiser les tissus sains.

Enfin, dans le domaine dentaire, si le praticien veut corréler sa prise d'empreinte traditionnelle par rapport à d'autres saisies d'informations, il peut, comme montré aux figures 10 et 11, fixer trois émetteurs 37 sur le porte-empreinte 38 lui-même puis, après coulée des modèles, placer son porte-empreinte avec le modèle sur un support portant les récepteurs 39 et permettant toutes corrélations postérieures.

10 Comme il ressort de ce qui précède, l'invention apporte une grande amélioration à la technique existante, en fournissant un dispositif de corrélation de vues tridimensionnelles, de conception simple, offrant une haute précision, et simplifiant considérablement la tâche du praticien.

15 Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce dispositif, ni à ses seules applications, décrites ci-dessus à titre d'exemples ; elle embrasse, au contraire, toutes les variantes de réalisation.

REVENDICATIONS

1. Dispositif de corrélation des saisies tridimensionnelles d'organes humains, caractérisé en ce qu'il comporte :
 - . au moins trois émetteurs (S1-S8) et au moins deux récepteurs (R1-R3) fixés sur la partie d'organe à analyser, sur une caméra de saisie, et/ou sur une sonde de tracé et/ou sur un support fixe,
 - . une horloge de pulsations (18) reliée, d'une part, à un générateur d'impulsions (19) faisant émettre successivement les différents émetteurs (S1-S8) et, d'autre part, aux récepteurs (R1-R3) pour leur indiquer à quel émetteur correspond le signal reçu,
 - . un convertisseur (20) transformant l'information reçue par chaque capteur en une valeur numérique,
 - . un calculateur (22-23) déterminant les coordonnées de chaque émetteur par rapport à chaque récepteur, stockant les informations en fonction de chaque prise de vue, et réalisant, à partir de l'une des vues servant de référence, des corrélations de chaque vue par rapport à la vue de référence, afin d'obtenir une vue tridimensionnelle de l'organe dont la saisie est effectuée.
2. Dispositif selon la revendication 1, caractérisé en ce que les émetteurs sont constitués par des diodes électroluminescentes (3, 5, 6), tandis que les récepteurs sont constitués par des capteurs photosensibles (8), tels que diodes ou CCD.
3. Dispositif selon la revendication 1, caractérisé en ce que les émetteurs (9, 10, 12) sont à ultra-sons, tandis que les récepteurs (13) sont constitués par des récepteurs ultra-sonores.
4. Dispositif selon la revendication 1, caractérisé en ce que les émetteurs (14, 15, 16) sont magnétiques ou électro-magnétiques, tandis que les récepteurs sont des antennes de mesure (17) à effet Hall du champ variable en fonction de la position de l'organe qui est l'objet de la mesure, de la caméra et/ou de la sonde.
5. Dispositif selon l'ensemble des revendications 1 et 2, caractérisé en ce que, dans le cas d'émetteurs optiques (3, 5, 6), les coordonnées de chaque émetteur sont calculées par triangulation à l'aide d'au moins deux caméras de capteurs photosensibles.
6. Dispositif selon l'ensemble des revendications 1 et 3, caractérisé en ce que, dans le cas d'émetteurs à ultra-sons (9, 10, 12), les

coordonnées de chaque émetteur sont déterminées par mesure des distances par propagation/réflexion d'une onde sonore, avec mise en oeuvre d'au moins trois récepteurs.

5 **7. Dispositif selon l'ensemble des revendications 1 et 4, caractérisé en ce que, dans le cas d'émetteurs magnétiques ou électro-magnétiques (14, 15, 16), les coordonnées de chaque émetteur sont déterminées par mesure de variation du champ magnétique, par mesure de l'effet Hall à l'aide d'au moins trois antennes (17) orientées dans les trois directions de l'espace.**

10 **8. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte des moyens de commande du déclenchement de la mesure, c'est-à-dire de l'analyse des émissions concomitante avec la prise d'empreinte optique.**

15 **9. Dispositif selon la revendication 8, caractérisé en ce que les émetteurs fonctionnent en permanence, le début de la prise de vue tridimensionnelle déclenchant le stockage de l'information de la position des émetteurs.**

20 **10. Dispositif selon la revendication 8, caractérisé en ce que les émetteurs sont mis en fonctionnement au début de la prise de vue.**

25 **11. Dispositif selon l'une quelconque des revendications 9 et 10, caractérisé en ce que les récepteurs sont en action en permanence, mais ne stockent les informations qu'au moment de la prise de vue.**

12. Dispositif selon l'une quelconque des revendications 9 et 10, caractérisé en ce que la mise en fonctionnement des récepteurs est commandée au moment de la prise de vue.

FIG 1

FIG 2

FIG 3

FIG 6

FIG 5

5/5

FIG 10

FIG 11

FIG 12

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 93/00620

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) ⁷

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB
CIB 5 A61C13/00

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée⁸

Système de classification	Symboles de classification		
CIB 5	A61F ;	A61C ;	A61B

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté⁹

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS¹⁰

Catégorie ¹¹	Identification des documents cités, avec indication, si nécessaire, ¹² des passages pertinents ¹³	No. des revendications visées ¹⁴
A	WO,A,9 102 496 (BERGMAN) 7 Mars 1991 voir le document en entier ---	1
A	WO,A,9 207 233 (SCHULZ) 30 Avril 1992 voir abrégé; figure 1 ---	1
A	FR,A,2 399 033 (THOMSON - CSF) 23 Février 1979 voir page 2, ligne 11 - page 3, ligne 7 ---	1
A	CH,A,658 178 (BALOGH) 31 Octobre 1986 voir abrégé; figure 4 ---	3,6
A	EP,A,0 004 888 (SIEMENS) 31 Octobre 1979 voir abrégé ---	4
		-/-

¹¹ Catégories spéciales de documents cités:¹¹

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.
- "&" document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée
21 SEPTEMBRE 1993

Date d'expédition du présent rapport de recherche internationale

08.10.93

Administration chargée de la recherche internationale

Signature du fonctionnaire autorisé

OFFICE EUROPEEN DES BREVETS

PAPONE F.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 93/00620

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US,A,4 688 037 (KRIEG) 18 August 1987 -----	

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

FR 9300620
SA 75618

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 21/09/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9102496	07-03-91	SE-B-	465498	23-09-91
		AU-A-	6153190	03-04-91
		CA-A-	2064790	18-02-91
		JP-T-	4507358	24-12-92
		SE-A-	8902765	18-02-91

WO-A-9207233	30-04-92	US-A-	5198877	30-03-93
		CA-A-	2094039	16-04-92
		EP-A-	0553266	04-08-93

FR-A-2399033	23-02-79	DE-A,B,C	2833272	08-02-79
		GB-A,B	2002986	28-02-79
		US-A-	4193689	18-03-80

CH-A-658178	31-10-86	None		

EP-A-0004888	31-10-79	DE-A-	2814551	18-10-79
		JP-A-	54136859	24-10-79
		US-A-	4303077	01-12-81

US-A-4688037	18-08-87	None		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 93/00620

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. 5 A61C13/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl. 5 A61F ; A61C ; A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,9 102 496 (BERGMAN) 7 March 1991 see the whole document	1
A	WO,A,9 207 233 (SCHULZ) 30 April 1992 see abstract; figure 1	1
A	FR,A,2 399 033 (THOMSON - CSF) 23 February 1979 see page 2, line 11 - page 3, line 7	1
A	CH,A,658 178 (BALOGH) 31 October 1986 see abstract; figure 4	3,6
A	EP,A,0 004 888 (SIEMENS) 31 October 1979 see abstract	4

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

21 September 1993 (21.09.93)

Date of mailing of the international search report

8 October 1993 (08.10.93)

Name and mailing address of the ISA/
EUROPEAN PATENT OFFICE

Authorized officer

Facsimile No.

Telephone No.

III. DOCUMENTS CONSIDERES COMME PERTINENTS ¹⁴		(SUITE DES RENSEIGNEMENTS INDIQUES SUR LA DEUXIEME FEUILLE)
Catégorie ^o	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendications visées ¹⁸
A	US,A,4 688 037 (KRIEG) 18 Août 1987 -----	

**ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO.**

FR 9300620
SA 75618

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

21/09/93

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication	
WO-A-9102496	07-03-91	SE-B- AU-A- CA-A- JP-T- SE-A-	465498 6153190 2064790 4507358 8902765	23-09-91 03-04-91 18-02-91 24-12-92 18-02-91
WO-A-9207233	30-04-92	US-A- CA-A- EP-A-	5198877 2094039 0553266	30-03-93 16-04-92 04-08-93
FR-A-2399033	23-02-79	DE-A, B, C GB-A, B US-A-	2833272 2002986 4193689	08-02-79 28-02-79 18-03-80
CH-A-658178	31-10-86	Aucun		
EP-A-0004888	31-10-79	DE-A- JP-A- US-A-	2814551 54136859 4303077	18-10-79 24-10-79 01-12-81
US-A-4688037	18-08-87	Aucun		