ОСНОВНЫЕ КЛАССЫ СОВРЕМЕННЫХ ПАРАЛЛЕЛЬНЫХ КОМПЬЮТЕРОВ

Массивно-параллельные системы (MPP). Массивно-параллельная система состоит из однородных вычислительных узлов, включающих один или несколько процессоров и локальную память (прямой доступ к памяти других узлов невозможен). Узлы связаны через коммутационную среду (высокоскоростная сеть, коммутатор). Общее число процессоров может достигать десятков и сотен тысяч. Программирование осуществляет в рамках модели передачи сообщений (например, MPI).

Кластерные системы. Кластерные системы являются дешевым вариантом MPP. Состоят из набора рабочих станций или персональных компьютеров общего назначения. Для связи узлов используется одна из стандартных сетевых технологий. Программирование, как правило, осуществляет в рамках модели передачи сообщений (обычно MPI).

Grid (вычислительная сеть). Grid — это объединение многих разнородных вычислительных ресурсов в сетях, в частности, в глобальных сетях (Интернет). Grid осуществляет распределённые вычисления. Свое название распределённая вычислительная сеть получила по аналогии с электрической сетью.

Графические процессоры (GPU – Graphics Processing Unit). GPU миниатюрные суперкомпьютеры в корпусе (видеокарты) – обычного персонального Графические компьютера. процессоры являются универсальными вычислительными модулями, обеспечивающими многопотоковое параллельное программирование. Чип GPU включает в себя некоторое множество вычислительных блоков, называемых потоковыми мультипроцессорами; каждый вычислительный блок содержит некоторое множество потоковых (универсальных) процессоров. Мультипроцессоры обмениваются информацией посредством оперативной памяти, называемой глобальной памятью. Потоковые процессоры взаимодействуют посредством быстрой разделяемой между этими процессорами памяти. Универсальные NVIDIA **GPUs** компании обеспечивает вычисления программирования CUDA (Compute Unified Device Architecture). Считается, что использование CUDA для графических процессоров сложнее, чем использование ОрепМР для многоядерных компьютеров.

Параллельные векторные системы (**PVP**). PVP состоит из вычислительных узлов, каждый узел — из нескольких векторно-конвейерных процессоров. Узлы могут быть связаны с помощью коммутатора.

Симметричные мультипроцессорные системы (SMP). SMP-система состоит из нескольких однородных процессоров и массива общей памяти. Все процессоры имеют доступ к любой точке памяти с одинаковой скоростью. Наличие общей памяти упрощает взаимодействие процессоров, но накладывает ограничение на их число — не более 32 в реальных системах. Для построения масштабируемых систем на базе SMP используются кластерные системы или NUMA-архитектуры. Программирование

осуществляется в рамках модели общей памяти. На SMP-компьютеры ориентирована, в значительной степени, технология программирования OpenMP. Персональные многоядерные компьютеры относятся к классу SMP.

Системы с неоднородным доступом к памяти (NUMA). Система состоит из нескольких однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Память физически распределена, но логически общедоступна: аппаратно поддерживается доступ к памяти других модулей.

Набор персональных компьютеров. Неструктурированное множество различных ненадежных вычислительных устройств, которые иногда могут предоставлять некоторую часть своих ресурсов.

Новое:

- Компьютеры с распределенной памятью с двухуровневой архитектурой: кластеры с гибридными вычислительными узлами на базе многоядерных процессоров и графических процессоров; пример суперкомпьютер «СКИФ GPU».
- Гибридные метакластерные архитектуры: объединение кластерных конфигураций с разными архитектурными и программно-аппаратными платформами в единую метакластерную суперкомпьютерную систему; пример суперкомпьютер «СКИФ ОИПИ» представляет метакластер, состоящий из кластера на базе четырехядерных процессоров и кластера на базе специализированных процессоров PowerXCell.
- Суперкомпьютеры, использующие многосокетные узлы с многоядерными микропроцессорами в сокетах. Например, используются четырехсокетные платы с 12-ядерными микропроцессорами MagnyCours, т.е. всего 48 ядер над общей памятью узла.