The key goal here is to eventually prove the following results:

- Direct sums of exact sequences of (pre)sheaves on a topological space are exact. (Propositions 2 and 3)
- ullet Direct products of epimorphisms of sheaves on X are not necessarily epimorphisms. (Construction 4)
- Let  $\mathcal{T}$  be a triangulated category and  $\mathcal{L}$  be a localizing subcategory of  $\mathcal{T}$ . If  $f: x \to y$  be a morphism in  $\mathcal{T}$  that is mapped to 0 by the projection  $\mathcal{T} \to \mathcal{T}_{/\mathcal{L}}$ , then f factors through an object of  $\mathcal{L}$ . (Proposition 5)

**Notation 1.** For a topological space X,  $\mathsf{Sh}(X)$  (resp.  $\mathsf{PSh}(X)$ ) denotes the category of sheaves (resp. presheaves) of abelian groups over X.

**Proposition 2.** Let X be a topological space and I be a set. If for each  $i \in I$ ,

$$0 \longrightarrow \mathcal{F}^i \longrightarrow \mathcal{G}^i \longrightarrow \mathcal{H}^i \longrightarrow 0$$

is an exact sequence in PSh(X), then,

$$0 \longrightarrow \bigoplus_{i} \mathcal{F}^{i} \longrightarrow \bigoplus_{i} \mathcal{G}^{i} \longrightarrow \bigoplus_{i} \mathcal{H}^{i} \longrightarrow 0$$

is also exact.

*Proof.* By assumption, for any open subset U of X,

$$0 \longrightarrow \mathcal{F}^i(U) \longrightarrow \mathcal{G}^i(U) \longrightarrow \mathcal{H}^i(U) \longrightarrow 0$$

is exact. Since direct sums of exact sequences are exact in the category Ab of abelian groups, the sequence

$$0 \longrightarrow \left(\bigoplus_{i} \mathcal{F}^{i}\right)(U) \longrightarrow \left(\bigoplus_{i} \mathcal{G}^{i}\right)(U) \longrightarrow \left(\bigoplus_{i} \mathcal{H}^{i}\right)(U) \longrightarrow 0$$

is exact. Thus, it follows that

$$0 \longrightarrow \bigoplus_{i} \mathcal{F}^{i} \longrightarrow \bigoplus_{i} \mathcal{G}^{i} \longrightarrow \bigoplus_{i} \mathcal{H}^{i} \longrightarrow 0$$

is exact.

**Proposition 3.** Let X be a topological space and I be a set. If for each  $i \in I$ ,

$$0 \longrightarrow \mathcal{F}^i \longrightarrow \mathcal{G}^i \longrightarrow \mathcal{H}^i \longrightarrow 0$$

is an exact sequence in Sh(X), then,

$$0 \longrightarrow \bigoplus_{i} \mathcal{F}^{i} \longrightarrow \bigoplus_{i} \mathcal{G}^{i} \longrightarrow \bigoplus_{i} \mathcal{H}^{i} \longrightarrow 0$$

is also exact.

*Proof.* Let  $U: \mathsf{Sh}(X) \to \mathsf{PSh}(X)$  denote the forgetful functor and  $\_^{\dagger}: \mathsf{Sh}(X) \to \mathsf{PSh}(X)$  denote the sheafification. Then, the sequence in Eq. (1) is isomorphic to the following sequence

$$0 \to (\bigoplus_i U(\mathcal{F}^i))^\dagger \to (\bigoplus_i U(\mathcal{G}^i))^\dagger \to (\bigoplus_i U(\mathcal{H}^i))^\dagger \to 0$$

For any  $x \in X$ , since the forgetful and sheafification functors preserve stalks and since direct sums commute with colimits, applying the stalk functor (\_) $_x$  yields (upto isomorphism) the following sequence

$$0 \longrightarrow \bigoplus_{i} \mathcal{F}_{x}^{i} \longrightarrow \bigoplus_{i} \mathcal{G}_{x}^{i} \longrightarrow \bigoplus_{i} \mathcal{H}_{x}^{i} \longrightarrow 0$$

which is exact since direct sums of exact sequences are exact in Ab.

Construction 4. Define

$$X := \{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subseteq \mathbb{R}$$

and

$$\tau := \{ [0, m) \cap X \mid m \in \mathbb{R}_{\geq 0} \} \cup \{ (0, m) \cap X \mid m \in \mathbb{R}_{\geq 0} \}$$

It is easy to see that  $(X, \tau)$  is a topological space. For each  $n \in \mathbb{N}$ , define a presheaf  $\mathcal{F}_n$  on X as follows

$$\mathfrak{F}_n(U) := egin{cases} \mathbb{Z} & ext{if} & \emptyset 
eq U \subseteq [0, 1/n) \\ 0 & ext{otherwise} \end{cases}$$

and the restriction map  $\mathcal{F}_n(U) \to \mathcal{F}_n(V)$  is defined to be  $\mathrm{Id}_{\mathbb{Z}}$  if  $\emptyset \neq V \subseteq U \subseteq [0, \frac{1}{n})$  and 0 otherwise. In fact,  $\mathcal{F}_n$  is further a sheaf. Base identity is clear and it is sufficient to check base gluability on open covers of the form  $[0, \frac{1}{m'}) = [0, \frac{1}{m}) \cup (0, \frac{1}{m'})$  where m' < m.

Let  $\mathcal{G} := \mathsf{Sky}_0(\mathbb{Z})$ , the skyscraper sheaf at 0 over X with stalk  $\mathbb{Z}$  at 0. By adjointness, the identity map  $(\mathcal{F}_n)_0 = \mathbb{Z} \to \mathbb{Z}$  induces a surjective map of sheaves  $\phi_n : \mathcal{F}_n \to \mathcal{G}$  for each  $n \in \mathbb{N}$ . We claim that  $\prod_i \phi_i : \prod_i \mathcal{F}_i \to \prod_i \mathcal{G}$  is not surjective. It is easy to see that  $(\prod_i \mathcal{G})_0 \cong \prod_i \mathbb{Z}$  which is uncountable. However, for any given open neighbourhood U of  $0, \mathcal{F}_i(U)$  is 0 for large enough i. Thus, every abelian group appearing in the countable colimit defining the stalk  $(\prod_i \mathcal{F}_i)_0$  is countable and consequently, the stalk  $(\prod_i (\mathcal{F}_i))_0$  is itself countable. This proves that  $\prod_i \phi_i$  is not surjective. 1.

**Proposition 5.** Let  $\mathbb{T}$  be a triangulated category,  $\mathcal{L}$  a localising subcategory and  $\mathbb{T}_{/\mathcal{L}}$  denote the Verdier quotient. A morphism  $f: x \to y$  in  $\mathbb{T}$  is mapped to the zero morphism by the projection  $\mathbb{T} \to \mathbb{T}_{/\mathcal{L}}$  if and only if f factors through an object in  $\mathcal{L}$ .

*Proof.* Suppose that f is taken to 0 by the projection. That is, there exist  $z, z' \in \mathcal{T}$ , quasi-isomorphisms (relative to  $\mathcal{L}$ )  $\sigma, \sigma'$  and morphisms f', g, h in  $\mathcal{T}$  making the following diagram commute.



Equivalently, there exists a quasi-isomorphism g such that  $g \circ f = 0$ . Hence, there exists a distinguished triangle of the following form in  $\mathcal{T}$ 

$$y \stackrel{g}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} z \stackrel{lpha}{-\!\!\!\!-\!\!\!\!-} w \stackrel{eta}{-\!\!\!\!-\!\!\!\!-} \Sigma y$$

<sup>&</sup>lt;sup>1</sup>The countability argument to simplify the proof of  $\prod_i \phi_i$  not being surjective is due to a friend, Atharva Raje, who listened to an earlier and dirtier version of the proof

where  $w \in \mathcal{L}$ . By one of the axioms defining a (pre)triangulated category, there exists a dotted arrow  $x \to \Sigma^{-1} w$  making the following diagram commute, thus yielding the required factorisation.

Conversely, suppose that f factors as in the following diagram, where  $w \in L$ .



As previously argued, it is sufficient to show that there exists a quasi-isomorphism g such that  $g \circ f = 0$ . By one of the axioms defining a (pre)triangulated category, there exists a diagram of the following form, where the rows are distinguished and there is a dotted arrow that completes the morphism of distinguished triangles.



We take the morphism  $y \to \text{cone}(\beta)$  in the above diagram to be g.