第五章习题答案

- 1. 氢原子的发射光谱中有一条谱线,是电子从 *n*=4 跃迁到 *n*=2 的轨道时放出 的辐射能所产生的,试计算该谱线的波长并指出该谱线属于哪一波段。
- 2. 根据 Bohr 理论计算第五个 Bohr 轨道的半径和电子在此轨道上的能量。
- 3. 用原子轨道符号表示下列各套量子数。

a. n=2, l=1, m=-1; b. n=4, l=0, m=0; c. n=5, l=2, m=0. $2p_y$ 4s $5d_{zx}$

- 4. 以下各亚层哪些能够存在?包含多少轨道? a. 2s; b. 3f; c. 4p; d. 5d; e. 1p; d. 2d.
- 5. 画出 Si、V、Fe 电子轨道图,指出这些原子各有几个未成对电子? Si 共有两个未成对电子

V 共有三个未成对电子

Fe 共有四个未成对电子

6. 下列的电子运动状态是否存在? 为什么?

- a. $n=2, l=2, m=0, m_s=+1/2;$
- b. n=3, l=2, m=2, $m_s=+1/2$;
- c. n=4, l=1, m=-3, $m_s=+1/2$;
- d. n=3, l=2, m=0, $m_s=+1/2$.
- 7. 对下列各组轨道,填充合适的量子数:
 - a. n=?, l=2, m=0, $m_s=+1/2$;
 - b. n=2, l=?, m=-1, $m_s=-1/2$:
 - c. n=4, l=2, m=0, $m_s=?$:
 - d. n=2, l=0, m=?, $m_s=+1/2$.
- a. $n \ge 3$ $n \in N$ b. 1 = 1 c. $m_s = +1/2, -1/2$ d. m = 0
- 8. 试用 *s*, *p*, *d*, *f* 符号表示下列各元素原子的电子分布式,指出它们各属于第几 周期、第几族?
 - a. 26Fe b. 18Ar c. 29Cu d. 35Br
- 9. 填充下表

原子	电子分布式	外层电	周	族
序数		子构型	期	
27	$1s^22s^22p^63s^23p^63d^74s^2$	$4s^2$	4	VIII
31	$1s^22s^22p^63s^23p^63d^{10}4s^24p^1$	$4s^24p^1$	4	∭ A
9	$1s^22s^22p^5$	$2s^22p^5$	2	V∏ A
42	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^5 5s^1$	$4d^55s^1$	5	WВ
80	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^2$	$5d^{10}6s^2$	6	IIB

- 10. 已知下列元素的原子的外层电子构型分别是:
 - a. $3s^2$; b. $2s^2p^4$; c. $3d^34s^2$; d. $4d^{10}5s^2$

请指出它们是什么元素,处于哪一周期,哪一族。

解

- a. $3s^2$ 是镁 M_s ,第三周期 II A 族
- b. $2s^2p^4$ 是硫 S, 第三周期 VI A 族
- c. $3d^34s^2$ 是钒 V. 第四周期 V B族
- d. 4d¹⁰5s²是镉 C_d, 第五周期 IIB 族
- 11. 若元素最外层仅有一个电子,该电子的量子数如下:

$$n=4$$
, $l=0$, $m=0$, $m_s=+1/2$

- 问: 1)符合上述条件的元素可以有几个?原子序数各为多少?
 - 2) 写出相应元素的电子分布式,指出在周期表中所处的位置。
- 解:1).3个,分别为钾,铬,铜原子序数为19,24,29
 - 2). K: 1s²2s²2p⁶3s²3p⁶4s¹ 第四周期, 第一主族
 - C_r: 1s²2s²2p⁶3s²3p⁶3d⁵4s¹ 第四周期, 第VIB族
 - C_n : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ 第四周期 第一副族

- 12. 写出下列各种离子的外层电子构型:
 - a. Ti^{4+} ; b. Mn^{2+} ; c. Fe^{3+} ; d. Cd^{2+} 促化.
 - $a.3s^23p^6$ $b.3d^5$ $c.3d^5$ $d.4d^{10}$
- 13. 指出下列分子的中心原子可能采用的杂化轨道类型,并写出分子的空间构型。
 - a. BBr₃; b. SiH₄; c. BeH₂; d. PH₃; e. H₂S

解: a: B 采用 sp²杂化轨道类型.空间结构是平面三角形.

- b. S: 采用 sp³杂化轨道类型, 空间结构是正四面体,
- c. Be 采用 sp 杂化轨道类型, 空间结构直线型.
- d. P 采用 sp³ 杂化轨道类型,空间结构是三角锥形.
- e. S采用 sp³杂化轨道类型,空间结构是"V"型.(类似于 H₂O)
- 14. 解释 H_2O 和 $BeCl_2$ 都是三原子分子,为何前者为 V 形,而后者为直线形?解:

氧原子的外层共有 6 个电子,因此水分子中氧原子形成 sp³ 杂化轨道类型,共四个轨道两个氢原子,则空出的两个轨道被氧原子中的两对孤对电子占据,由于电子的斥力,所以空间结构呈 V 形.而 Be 原子外层两个电子,其杂化时形成 sp 杂化轨道类型,所以呈直线型.

- 15. 指出下列分子之间存在哪几种分子间作用力(包括氢键)。
 - a. H₂分子间; b. H₂O 与 O₂分子间; c. H₂O 分子间; d. HCl 与 H₂O 分子间; e. CH₃Cl 分子间。
 - a 色散力
 - b 色散力 诱导力
 - c 色散力 诱导力 取向力 氢键
 - d 色散力 诱导力 取向力 氢键
 - e 色散力 诱导力 取向力
- 16. 为什么 a. 室温下 CH4 为气体, CCI4 为液体, 而 CI4 为固体?
 - b. H₂O 的沸点高于 H₂S, 而 CH₄的沸点却低于 SiH₄?

解: a 在这几个化合物中,随着 H Cl I 原子序数的增加,原子的核电荷数增大,所以它们的相对分子质量增大,分子间作用力会递增,沸点递增,所以在室温下分别呈现气体,液体和固体状态。

 $b H_2O$ 的沸点高于 H_2S 是因为 H_2O 能形成分子间的氢键,而 H_2S 却不能形成氢键,故 H_2S 沸点低于 H_2O ;

CH₄的沸点低于 SiH₄是因为都不存在氢键,只有范德华力,随着相对分子质量的增大而分子间作用力增大,所以 CH₄的沸点较低。

17. 乙醇和二甲醚的组成相同,但前者的沸点为 78.5℃,后者的沸点为-23℃, 为什么?

解:虽然二者的组成是相同的,但是由于分子结构上的差异,使得二者沸点差异很大,其原因是在乙醇中存在氢键,而在二甲醚中则不存在,虽然都有范德华力的存在,但是较之氢键能量差的很多,所以乙醇的沸点大于二甲醚的沸点。