Prof Fu-Lin Tsung

Name Chinese Name			ne, Pinyin	Student number			
Name, Englis	h						
1	2	3	4	5	6	7	Total
25	15	25	20	15			100
	1						

Sign	your	name
------	------	------

1) (25) 120 kg/s of steam enters the turbine of an ideal Rankine cycle at 16 MPa, 560 °C. The condenser pressure is 8 KPa. The condenser cooling water undergoes a temperature increase of

15 °C with negligible pressure change. Determine

Determine

- a. The net power developed, in KW
- b. The rate of heat transfer to the steam passing through the boiler, in KW
- c. The thermal efficiency
- d. The mass flow rate of the condenser cooling water, in kg/s, assuming the heat capacity of water is Cw = 4.18 kJ/kg-K (from Table A-19)

- 2) (15) For the previous problem, both the turbine and compressor efficiency is 85%,
 - a. sketch the TS diagram for the problem (including the ideal process from the previous) determine
 - b. The net power developed, in KW
 - c. The rate of heat transfer to the steam passing through the boiler, in KW
 - d. The thermal efficiency

- 3) (25) The inside temperature of a building is maintained at 22 °C by a heat pump using Refrigerant 134a (T-11: Saturated, T-12: Sup Vaper) while the average outside temperature is at 5 °C. Saturate vapor enters the compressor at -8 °C and exits at 50 °C, 10 bar. Saturated liquid exits the condenser at 10 bar. The steady refrigerant flow rate is 0.2 kg/s.
 - a. Sketch the T-S diagram, labeling all states & temperatures required to solve the problem

 Determine
 - b. The compressor power, in KW
 - c. The isentropic compressor efficiency
 - d. The heat transfer rate provided to the building, in \ensuremath{kW}
 - e. The coefficient of performance
 - f. The total cost of electricity, for 80 hrs of operation if electricity is 1 RMB per kW-h

State	T (°C)	p (bar)	h (kJ/kg)	s (kJ/kg-K)
1	-8	2.17	242.54	0.9239
2	50	10	280.19	-
3	-	10	105.29	-
4	-	2.17	105.29	-

4) (20) A company claims at steady-state, the device shown develops power from entering and exiting streams of water at a rate of 1175 kW. The table provides data for openings 1, 3, and 4. The pressure at inlet 2 is 1 bar. Stray heat transfer, KE, and PE effects are negligible. Evaluate the claim.

State	m_dot	р	Т	v	u	h	S
	(kg/s)	(bar)	(°C)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)
1	4	1	450	3.334	3049.0	3382.4	8.6926
3	5	2	200	1.080	2654.4	2870.5	7.5066
4	3	4	400	0.773	2964.4	3273.4	7.8985

5) The figure for a regenerative Gas turbine with intercooling and reheat along w/ its T-s diagram is shown

Write the equation

for

- a) the total turbine work per unit of mass flow
- b) the total compressor work input per unit of mass flow
- c) the total heat **added to the cycle** per unit of mass flow (i.e. draw a system boundary)
- d) the thermo efficiency of the cycle
- e) back work ratio