

A comparison of different parameter estimation methods for exponentially modified Gaussian distribution

Sajid Ali¹ • Jehan Ara^{1,2} • Ismail Shah¹

Received: 25 May 2020 / Accepted: 15 April 2022 / Published online: 5 May 2022 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2022

Abstract

The convolution of the independent Gaussian and exponential distribution is known as the exponentialy modified Gaussian (EMG) distribution. The main feature of this distribution is its differential behavior on the right and left tails. The distribution exhibits a normallydistributed left tail and an exponentially-distributed right tail. This distribution has found practical applications in a variety of scientific disciplines such as chromatography, cellular biology, radiotherapy, microarray preprocessing, and macroeconomics. With the precise measurement of different natural phenomena, fitting an appropriate distribution and estimation of its parameters is becoming challenging. This study discusses the complexity of parameter estimation of the EMG distribution. In particular, to estimate the parameters of the EMG, eleven different methods, namely the method of moment estimation (MME), approximated L-moment estimation (ALME), the maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least squares estimation (WLSE), the maximum product spacing (MPS), the minimum spacing absolute distance estimation (MSADE), the minimum spacing absolute log-distance estimation (MSALDE), Cramér-Von-Mises (CVM), Anderson-Darling method (AD), and right-tail Anderson-Darling method (RAD) are considered. Besides a comprehensive simulation study, a real data on time in hours to detect cancer cells using 3um erlotinib is also a part of this study.

Keywords Anderson–Darling method \cdot Cramér-Von-Mises estimation method \cdot Exponentially modified Gaussian distribution \cdot Maximum likelihood estimation \cdot Root mean squared error \cdot Weighted least squared estimation

Communicated by Ali.

Sajid Ali sajidali.qau@hotmail.com

Jehan Ara jehanarahed@gmail.com

Ismail Shah ishah@qau.edu.pk

- Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Statistics, Khadija Umar Government Collage for Women, Rawalpindi, Pakistan

58 Page 2 of 34 S. Ali et al.

Mathematics Subject Classification 62F10 · 62P10

1 Introduction

In probability literature, the sum of independent normal and exponential random variables is known as the exponentially modified Gaussian (EMG) distribution or exGaussian distribution, i.e., EMG random variable Z may be expressed as Z = X + Y, where X and Y are independent, X is Gaussian with mean μ and variance σ^2 , while Y is exponential with rate λ . The distribution exhibits a normally-distributed left tail and an exponentially-distributed right tail. This distribution has found practical applications in a variety of scientific disciplines such as chromatography [9, 18, 24], cellular biology [16, 17], radiotherapy [31], microarray preprocessing [23, 34] and macroeconomics [35].

In the literature, Grushka [18] used the EMG distribution to examine its utility in the analysis of strongly overlapped chromatographic peaks. Delley [9] suggested that the EMG distribution is more accurate model than the simple Gaussian function for analysis of chromatography. In another study, Kalambet et al. [24] motivated by the usage of the EMG distribution for peak approximation in chromatography and studied the EMG peak deconvolution routine for chromatography. In particular, they used a combination of two EMG formulas and linear optimization methods. Haney [20] derived the properties of EMG distribution by re-parameterization of the cumulative distribution function of the EMG distribution. Further, a new consistent parameter estimation method was also proposed which always returns valid parameter estimates. Howerton et al. [23] used the EMG distribution to analyze the experimental zone profiles. They devised a simulation study to generate a series of profiles assuming fixed values for retention time and different values for σ and λ . Statistical moments are used to analyze each profile while an iterative method was used to fit the EMG. It is noticed that the statistical moment method is much more susceptible to error when the degree of asymmetry is large, or the integration limit is inappropriately chosen, or the number of points is small, or when the signal-to-noise ratio is small.

Nicolaescu et al. [31] presented multi-parameter characterization results for clustering ion beams by using the EMG function. Moret-Tatay et al. [30] described that reaction times in psychology are usually modeled through the EMG distribution, as it provides a good fit to multiple empirical data. Silver et al. [34] introduced the "normexp" method to observe intensities of exponentially distributed signals with normally distributed background values. The authors developed an algorithm for exact maximum likelihood estimation (MLE) using an optimization method that uses saddle-point estimates as the starting values. They have shown numerically that the MLE performs better in terms of estimation accuracy.

Golubev [16] suggested that the EMG is suitable for the analysis of variabilities featured by a number of biological phenomena which are often thought to be associated with the lognormal distributions. The author used EMG to estimate deterministic and probabilistic parts of the transition probability model of cell cycles. Later, Golubev [17] discussed the applicability of EMG and exponentially modified gamma-distribution (EMGD) in biomedical sciences and related disciplines such as data on cell cycle, gene expression, physiological responses to stimuli. Recently, Ara et al. [4] introduced a control chart to monitor schedule time using the EMG distribution.

The EMG distribution is also used to capture the main features of exports [35]. The authors stated the sales data fits better to EMG than either of the often assumed log-normal distribution or Pareto distribution. Li [26] used a modified hyperbolic tangent function for

the error function to describe the chromatographic peaks and proposed a simplified analytical form of the EMG function.

Parameters estimation for different distributions, (for example, generalized exponential distribution [19], generalized Rayleigh distribution [25], Gompertz distribution [12], Marshall Olkin exponential distribution [5], weighted Lindley distribution [29], Rayleigh distribution [11], extended exponential geometric distribution [27], transmuted Rayleigh distribution [13], three-parameter log-normal distribution [6], and weighted exponential distribution [10] among others), assuming different estimation methods to select the most appropriate method is a very popular topic in probability theory.

With the precise measurement of different natural phenomena, fitting an appropriate distribution and estimation of its parameters is becoming challenging. Motivated by the importance of EMG distribution in different biological and chemical fields, this study discusses and compares eleven different methods of estimation, namely the method of moment estimation (MME), approximated L-moment estimation (ALME), the maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least squares estimation (WLSE), the maximum product spacing (MPS), the minimum spacing absolute distance estimation (MSADE), the minimum spacing absolute log-distance estimation (MSALDE), Cramer-Von-Mises (CVM), Anderson–Darling method (AD), and right-tail Anderson–Darling method (RAD).

2 EMG distribution

Assuming X and Y are two independent random variables, let define a random variable Z as Z = X + Y, where $X \sim N(\mu, \sigma^2)$, and $Y \sim Exp(\lambda)$. To this end, the random variable Z is the sum of normal and exponential random variables and is said to follow an EMG distribution with parameters (μ, σ, λ) . The cumulative distribution function (CDF) and probability density function (PDF), derived by convolution, are given in Eqs. (1) and (2), respectively.

$$G(z) = \frac{1}{2} - \frac{1}{2} \exp\left(\frac{\lambda^2 \sigma^2}{2} + \lambda \mu - z\lambda\right) \operatorname{erfc}\left(\frac{\lambda \sigma^2 + \mu - z}{\sqrt{2}\sigma}\right) + \frac{1}{2} \operatorname{erf}\left(z - \frac{\mu}{\sqrt{2}\sigma}\right)$$
(1)

$$g(z) = \frac{\lambda}{2} \exp\left(\frac{\lambda^2 \sigma^2}{2} + \lambda \mu - z\lambda\right) \operatorname{erfc}\left(\frac{\lambda \sigma^2 + \mu - z}{\sqrt{2}\sigma}\right)$$
 (2)

where $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$ and $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-t^2) dt = 1 - \operatorname{erf}(x)$. Hence, the EMG distribution generalizes both the normal and exponential distributions. To justify this, let the variance of an exponential distribution with rate parameter λ is λ^{-2} . It is noticed in the literature that the variance can be made arbitrarily small by increasing the value of λ , which corresponds to a point mass distribution. Similarly, the normal distribution also becomes a point mass distribution at μ as σ decreases. In other words, as the exponential part has zero variance, i.e., $\lambda \to \infty$, the EMG distribution behavior is like a normal distribution or an exponential distribution when its normal component has zero variance, i.e., $\sigma \to 0$. Furthermore, the exponential distribution controls the mass on the right tail. The graphical depiction of the PDF of EMG is given in Fig. 1a. Figure 1b shows the hazard rate of EMG distribution which allows for increasing, decreasing and constant hazard rates depending upon the different values of μ , σ and λ .

58 Page 4 of 34 S. Ali et al.

Fig. 1 PDF and hazard function of EMG distribution for different choices of μ , σ and λ parameters

3 Parameter estimation

This section describes eleven methods of parameter estimation for the EMG distribution. We assume that $\mathbf{Z} = (z_1, \dots, z_n)$ is a random vector of size n from the EMG distribution and interested to estimate the μ , σ and λ using the information of the observed sample.

3.1 Method of moment estimation (MME)

To obtain the MME of the three-parameter EMG distribution, equate the first three theoretical moments with the sample moments, i.e., $\frac{1}{n}\sum_{i=1}^{n}z_i$, $\frac{1}{n}\sum_{i=1}^{n}z_i^2$ and $\frac{1}{n}\sum_{i=1}^{n}z_i^3$ respectively. In this case,

$$\frac{1}{n}\sum_{i=1}^{n}z_{i}=\mu+\frac{1}{\lambda}\tag{3}$$

$$\frac{1}{n}\sum_{i=1}^{n}z_{i}^{2} = \sigma^{2} + \mu^{2} + \frac{2\mu}{\lambda} + \frac{2}{\lambda^{2}}$$
(4)

$$\frac{1}{n}\sum_{i=1}^{n}z_{i}^{3} = 3\mu\sigma^{2} + \frac{3\sigma^{2}}{\lambda} + \mu^{3} + \frac{3\mu^{2}}{\lambda} + \frac{6\mu}{\lambda^{2}} + \frac{6}{\lambda^{3}}$$
 (5)

Solving these equations simultaneously one can obtain the moment estimators $\hat{\mu}_{MME}$, $\hat{\sigma}_{MME}$ and $\hat{\lambda}_{MME}$ of the parameters μ , σ and λ , respectively.

3.2 Method of L-moments estimation (LME)

The L-moments estimators can be obtained as the linear combinations of order statistics. The L-moments estimators were originally proposed by Hosking [21] and they are known for their robustness compared to the usual moment estimators. The L-moments estimators are also obtained in the same way as the ordinary moment estimators, i.e., by equating the sample L-moments with the population L-moments. Another advantage of these estimators is that these exist whenever the mean of the distribution exists, even though some higher

moments may not exist, hence these are relatively robust to the effects of outliers [22]. The first three sample L-moments are

$$l_1 = \frac{1}{n} \sum_{i=1}^{n} z_i \tag{6}$$

$$l_2 = \frac{2}{n(n-1)} \sum_{i=1}^{n} (i-1)z_i - l_1 \tag{7}$$

where $z_i = z_{(i)}$ denote the order statistics, i.e., values arranged in ascending order $z_1 < z_2 < \cdots, z_n$ and

$$l_{3} = \frac{5}{n(n-1)(n-2)} \sum_{i=1}^{n} (i-1)(i-2)z_{i} - \frac{4}{n(n-1)} \sum_{i=1}^{n} (i-1)z_{i} + \frac{(n-2)}{(n-1)} l_{1} - \frac{1}{(n-1)} l_{1}$$

$$+ \frac{1}{n(n-1)(n-2)} \sum_{i=1}^{n} (i-2)^{2} z_{i} - \frac{2}{n(n-1)} \sum_{i=1}^{n} (i-2)z_{i} + \frac{1}{n(n-1)(n-2)} \sum_{i=1}^{n} (i-2)z_{i}$$
(8)

whereas the first three population L-moments are

$$\psi_1 = E(Z_{1:1}) = E(Z) = \mu + \frac{1}{\lambda} \tag{9}$$

$$\psi_2 = \frac{1}{2} [E(Z_{2:2}) - E(Z_{1:2})] \tag{10}$$

$$\psi_3 = \frac{1}{3} [E(Z_{3:3}) - 2E(Z_{2:3}) + E(Z_{1:3})] \tag{11}$$

where

$$E(Z_{2:2}) = \frac{2!}{(2-1)!(2-2)!} \int_{-\infty}^{\infty} zG(z)^{2-1} \{1 - G(z)\}^{2-2} dG(z)$$

$$= 2 \int_{-\infty}^{\infty} z[1 - \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})]$$

$$\times \{(\lambda/2) \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})\} \times \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z}{\sqrt{2}\sigma}\right) dz$$

$$= -2 \left\{ \frac{\exp(\lambda^{2}\sigma^{2}(1 + 2\lambda(\mu - \lambda\sigma^{2}))) - 4(1 + \lambda\mu)}{4\lambda} \right\}$$
(12)

and

$$E(Z_{1:2}) = \frac{2!}{(1-1)!(2-1)!} \int_{-\infty}^{\infty} zG(z)^{1-1} \{1 - G(z)\}^{2-1} dG(z)$$

$$= 2 \int_{-\infty}^{\infty} z[1 - 1 + \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})]$$

$$\times \{\lambda/2 \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})\} \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z}{\sqrt{2}\sigma}\right) dz$$

$$= -2 \left\{\frac{\exp(\lambda^{2}\sigma^{2}(-1 - 2\lambda\mu + 2\lambda^{2}\sigma^{2}))}{4\lambda}\right\}$$
(13)

58 Page 6 of 34 S. Ali et al.

Replacing the above results in ψ_2 , we get

$$\psi_2 = \frac{1}{\lambda} + \mu + \exp(\lambda^2 \sigma^2) \left(\lambda \sigma^2 - \mu - \frac{1}{2\lambda} \right)$$
 (14)

Now, for ψ_3

$$E(Z_{3:3}) = \frac{3!}{(3-1)!(3-3)!} \int_{-\infty}^{\infty} zG(z)^{3-1} \{1 - G(z)\}^{3-3} dG(z)$$

$$= 3 \int_{-\infty}^{\infty} z[1 - \exp(-\lambda z + \mu \lambda + 0.5\lambda^2 \sigma^2)]^2$$

$$\times \{(\lambda/2) \exp(-\lambda z + \mu \lambda + 0.5\lambda^2 \sigma^2)\} \operatorname{erfc}\left(\frac{\lambda \sigma^2 + \mu - z}{\sqrt{2}\sigma}\right) dz$$

$$= 3\lambda \sigma^2 - 3 \exp(\lambda^2 \sigma^2)(\lambda \sigma^2 + \mu^2) + \exp(3\lambda^2 \sigma^2)(\lambda \sigma^2 + \mu) + 3\mu$$
 (15)

Similarly,

$$E(Z_{2:3}) = \frac{3!}{(2-1)!(3-2)!} \int_{-\infty}^{\infty} zG(z)^{2-1} \{1 - G(z)\}^{3-2} dG(z)$$

$$= 6 \int_{-\infty}^{\infty} z[1 - \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})] [\exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})]$$

$$\times \{(\lambda/2) \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})\} \operatorname{erfc} \left(\frac{\lambda\sigma^{2} + \mu - z}{\sqrt{2}\sigma}\right) dz$$

$$= \frac{3 \exp(\lambda^{2}\sigma^{2})}{2\lambda} + 3 \exp(\lambda^{2}\sigma^{2})(\mu - \lambda\sigma^{2}) - \frac{2 \exp(2\lambda^{2}\sigma^{2})}{3\lambda}$$

$$- 2 \exp(2\lambda^{2}\sigma^{2})(\mu - 2\lambda\sigma^{2})$$

$$= \frac{3!}{(1-1)!(3-1)!} \int_{-\infty}^{\infty} zG(z)^{1-1} \{1 - G(z)\}^{3-1} dG(z)$$

$$= 3 \int_{-\infty}^{\infty} z[1 - 1 + \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})]^{2}$$

$$\times \{(\lambda/2) \exp(-\lambda z + \mu \lambda + 0.5\lambda^{2}\sigma^{2})\} \operatorname{erfc} \left(\frac{\lambda\sigma^{2} + \mu - z}{\sqrt{2}\sigma}\right) dz$$

$$= \frac{\exp(3\lambda^{2}\sigma^{2})}{3\lambda} - (\mu + 2\lambda\sigma^{2}) \exp(3\lambda^{2}\sigma^{2})$$
(17)

Again replacing the above results in ψ_3 , we get

$$\psi_3 = \lambda \sigma^2 + \mu + \exp(\lambda^2 \sigma^2)(\lambda \sigma^2 - 3\mu - 1/\lambda) + \exp(2\lambda^2 \sigma^2) \left(\frac{4}{9\lambda} + \frac{4\mu}{3} - \frac{8\lambda \sigma^2}{3}\right) + \exp(3\lambda^2 \sigma^2) \left(\frac{1}{9\lambda} - \frac{\lambda \sigma^2}{3}\right)$$

$$(18)$$

The resultant L-moments are called as the approximated L-moments. The approximated L-moments estimators $\hat{\mu}_{ALME}$, $\hat{\sigma}_{ALME}$ and $\hat{\lambda}_{ALME}$ of the parameters μ , σ and λ can be obtained numerically by solving the following equations.

$$\psi_1 = l_1, \quad \psi_2 = l_2 \quad \text{and} \quad \psi_3 = l_3$$
 (19)

3.3 Method of maximum likelihood estimation (MLE)

The MLE method is the most widely used parameter estimation method and its success stems from its many desirable properties, including, consistency, asymptotic efficiency, invariance property as well as its intuitive appeal. In our case, the likelihood function of the density is given by:

$$L(\mu, \sigma, \lambda, \mathbf{z}) = \prod_{i=1}^{n} g(z_i) = \prod_{i=1}^{n} \{\lambda/2e^{-z_i\lambda + \mu\lambda + 0.5\lambda^2\sigma^2}\} \operatorname{erfc}\left(\frac{\lambda\sigma^2 + \mu - z_i}{\sqrt{2}\sigma}\right)$$
(20)
$$\log L(\mu, \sigma, \lambda, \mathbf{z}) = n\log(\lambda/2) + (\lambda/2) \left\{n(2\mu) + n(\lambda\sigma^2) - 2\sum_{i=1}^{n} z_i\right\}$$
$$+ \sum_{i=1}^{n} \log \left(\operatorname{erfc}\left(\frac{\lambda\sigma^2 + \mu - z_i}{\sqrt{2}\sigma}\right)\right)$$
(21)

Taking partial derivatives of the logarithmic $L(\mu, \sigma, \lambda; \mathbf{z})$ with respect to μ , σ and λ and equating the resulting equation to zero we obtain the ML estimators for μ , σ , and λ as follows.

$$\frac{\partial \log L(\mu, \sigma, \lambda, \mathbf{z})}{\partial \mu} = \sum_{i=1}^{n} -\frac{\sqrt{\frac{2}{\pi}}e^{-\frac{(-z_i + \lambda\sigma^2 + \mu)^2}{2\sigma^2}}}{\sigma \operatorname{erfc}\left(\frac{-z_i + \lambda\sigma^2 + \mu}{\sqrt{2}\sigma}\right)} + \lambda n = 0$$
 (22)

$$\frac{\partial \log L(\mu, \sigma, \lambda, \mathbf{z})}{\partial \sigma} = \sum_{i=1}^{n} \frac{\sqrt{\frac{2}{\pi}} \left(-z_i + \lambda \sigma^2 + \mu \right) e^{-\frac{\left(-z_i + \lambda \sigma^2 + \mu \right)^2}{2\sigma^2}}}{\sigma^2 \operatorname{erfc} \left(\frac{-z_i + \lambda \sigma^2 + \mu}{\sqrt{2}\sigma} \right)} + \lambda^2 n \sigma = 0 \quad (23)$$

and

$$\frac{\partial \log L(\mu, \sigma, \lambda, \mathbf{z})}{\partial \lambda} = \frac{1}{2} \left(-2 \sum_{i=1}^{n} z_i + \lambda n \sigma^2 + 2\mu n \right) + \frac{1}{2} \lambda n \sigma^2 + \frac{n}{\lambda} = 0$$
 (24)

The solution of the above normal equations cannot be obtained in closed form, hence the MLEs can be obtained numerically by an iterative method, e.g., the Newton Raphson.

3.4 The method of least-squares (LS)

A standard approach in parameter estimation is the least squares estimators. For estimation of parameters μ , σ and λ of EMG distribution, the least squares estimator can be obtained by minimizing.

$$\sum_{i=1}^{n} \left(G(z_{(i)}) - \frac{i}{n+1} \right)^2 \tag{25}$$

with respect to the unknown parameters μ , σ and λ . For the simplicity of notation, let $z_i = z_{(i)}$ denote the ith order statistics. Then, $\hat{\mu}_{LSE}$, $\hat{\sigma}_{LSE}$ and $\hat{\lambda}_{LSE}$ are obtained by minimizing

$$\sum_{i=1}^{n} \left[\frac{1}{2} - \frac{1}{2} \exp(\lambda^2 \sigma^2 / 2 + \lambda \mu - z_i \lambda) \operatorname{erfc} \left(\frac{\lambda \sigma^2 + \mu - z_i}{\sqrt{2} \sigma} \right) + \frac{1}{2} \operatorname{erf} \left(\frac{z_i - \mu}{\sqrt{2} \sigma} \right) - \frac{i}{n+1} \right]^2$$
(26)

58 Page 8 of 34 S. Ali et al.

with respect to μ , σ and λ . Taking partial derivatives with respect to μ , σ and λ , we obtained the following equations.

$$\begin{split} &\sum_{i=1}^{n} 2 \left[-\frac{e^{\frac{-(z_{i} - \mu)^{2}}{2\sigma^{2}}}}{\sqrt{2\pi}\sigma} + \frac{e^{\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i} - \frac{(\lambda\sigma^{2} + \mu - z_{i})^{2}}{2\sigma^{2}}}}{\sqrt{2\pi}\sigma} \right] \left[1/2 - \frac{i}{(n+1)} \right] \\ &+ 1/2 \operatorname{erf}\left(\frac{z_{i} - \mu}{\sqrt{2}\sigma}\right) - 1/2e^{\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i}} \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) \right] = 0 \\ &\sum_{i=1}^{n} 2 \left[1/2 - \frac{i}{(n+1)} + 1/2 \operatorname{erf}\left(\frac{z_{i} - \mu}{\sqrt{2}\sigma}\right) - 1/2 \exp(\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i}) \right] \\ &\times \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) \left[-1/2 \exp(\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i})(\lambda^{2}\sigma) \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) - \frac{\exp\left(\frac{\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i} - \frac{(\lambda\sigma^{2} + \mu - z_{i})^{2}}{2\sigma^{2}}\right)(\lambda\sigma^{2} + \mu - z_{i})}{\sqrt{2\pi}\sigma^{2}} - \frac{\exp\left(\frac{-(z_{i} - \mu)^{2}}{2\sigma^{2}}(z_{i} - \mu)\right)}{\sqrt{2\pi}\sigma^{2}} \right] = 0 \\ &\sum_{i=1}^{n} \exp(\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i})(\lambda^{2}\sigma) \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) \left[1/2 - \frac{i}{(n+1)} + 0.5 \operatorname{erf}\left(\frac{z_{i} - \mu}{\sqrt{2}\sigma}\right) - 0.5 \exp(\lambda\mu + \lambda^{2}\sigma^{2}/2 - \lambda z_{i}) \operatorname{erfc}\left(\frac{\lambda\sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) \right] = 0 \end{aligned} \tag{29}$$

respectively. The weighted least squares estimators of the parameters of EMG distribution are obtained by minimizing

$$\sum_{i=1}^{n} w_i \left[G(z_{(i)}) - \frac{i}{n+1} \right]^2 \tag{30}$$

with respect to parameters, where $w_i = 1/V(Z_i) = \frac{(n+1)^2(n+2)}{i(n-i+1)}$ [12, 29]. Thus, $\hat{\mu}_{WLSE}$, $\hat{\sigma}_{WLSE}$ and $\hat{\lambda}_{WLSE}$ can be obtained by minimizing

$$\sum_{i=1}^{n} \frac{(n+1)^{2}(n+2)}{i(n-i+1)} \left[\frac{1}{2} - \frac{1}{2} \exp(\lambda^{2} \sigma^{2}/2 + \lambda \mu - z_{i}\lambda) \operatorname{erfc}\left(\frac{\lambda \sigma^{2} + \mu - z_{i}}{\sqrt{2}\sigma}\right) + \frac{1}{2} \operatorname{erf}\left(\frac{z_{i} - \mu}{\sqrt{2}\sigma}\right) - \frac{i}{n+1} \right]^{2}$$
(31)

with respect to μ , σ and λ , respectively.

3.5 Method of the maximum product of spacings (MPS)

An alternative to the MLE method is the maximum product of spacing (MPS) for parameter estimation suggested by Cheng and Amin [8]. The uniform spacing from the EMG distribution is given as

$$D_i = G(z_i|\mu,\sigma,\lambda) - G(z_{i-1}|\mu,\sigma,\lambda)$$
(32)

where z_i denote the ordered values for $i=1,2,\cdots,n$, with the upper and lower limits of D_i are 0 and 1, respectively. The estimators under the MPS, i.e., $\hat{\mu}_{MPS}$, $\hat{\sigma}_{MPS}$ and $\hat{\lambda}_{MPS}$,

are obtained by maximizing Eq. (33) with respect to the parameters, i.e., the geometric mean of the spacings

$$G(\mu, \sigma, \lambda) = \left[\prod_{i=1}^{n+1} D_i(\mu, \sigma, \lambda)\right]^{\frac{1}{n+1}}$$
(33)

or equivalently by maximizing the function

$$H(\mu, \sigma, \lambda) = \frac{1}{n+1} \sum_{i=1}^{n+1} \log D_i(\mu, \sigma, \lambda)$$
(34)

The $\hat{\mu}_{MPS}$, $\hat{\sigma}_{MPS}$ and $\hat{\lambda}_{MPS}$ can be obtained by solving the following non-linear equations

$$\frac{\partial}{\partial \mu} H(\mu, \sigma, \lambda) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{\delta_1(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0$$
 (35)

$$\frac{\partial}{\partial \sigma} H(\mu, \sigma, \lambda) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{\delta_2(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0$$
 (36)

$$\frac{\partial}{\partial \lambda} H(\mu, \sigma, \lambda) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{\delta_3(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0$$
 (37)

where

$$\delta_{1}(z_{i}|\mu,\sigma,\lambda) = \sum_{i=1}^{n} \left\{ -\frac{1}{2}\lambda \exp\left(-\lambda z_{i} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda\mu\right) \operatorname{erfc}\left(\frac{-z_{i} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right) + \frac{\exp\left(-\frac{(-z_{i} + \lambda\sigma^{2} + \mu)^{2}}{2\sigma^{2}} - \lambda z_{i} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda\mu\right)}{\sqrt{2\pi}\sigma} - \frac{\exp\left(-\frac{(z_{i} - \mu)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi}\sigma} \right\}$$

$$-\sum_{i=i-1}^{n} \left\{ -\frac{1}{2}\lambda \exp\left(-\lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda\mu\right) \operatorname{erfc}\left(\frac{-z_{i-1} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right) + \frac{\exp\left(-\frac{(-z_{i-1} + \lambda\sigma^{2} + \mu)^{2}}{2\sigma^{2}} - \lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda\mu\right)}{\sqrt{2\pi}\sigma} - \frac{\exp\left(-\frac{(z_{i-1} - \mu)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi}\sigma} \right\}$$

$$\delta_{2}(z_{i}|\mu,\sigma,\lambda) = \sum_{i=1}^{n} \left\{ -\frac{1}{2}\lambda^{2}\sigma \exp\left(-\lambda z_{i} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda\mu\right) \operatorname{erfc}\left(\frac{-z_{i} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right) \right\}$$
(38)

58 Page 10 of 34 S. Ali et al.

$$+\frac{(\sqrt{2}\lambda - \frac{-z_{i} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma^{2}}) \exp(-\frac{(-z_{i} + \lambda\sigma^{2} + \mu)^{2}}{2\sigma^{2}} - \lambda z_{i} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu)}{\sqrt{\pi}}$$

$$-\frac{(z_{i} - \mu) \exp\left(-\frac{(z_{i} - \mu)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi}\sigma^{2}}$$

$$-\sum_{i=i-1}^{n} \left\{-\frac{1}{2}\lambda^{2}\sigma \exp\left(-\lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right) \operatorname{erfc}\left(\frac{-z_{i-1} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right)$$

$$+\frac{(\sqrt{2}\lambda - \frac{-z_{i-1} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma^{2}}\right)}{\sqrt{\pi}}$$

$$\times \exp\left(-\frac{(-z_{i-1} + \lambda\sigma^{2} + \mu)^{2}}{2\sigma^{2}} - \lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right)$$

$$-\frac{(z_{i-1} - \mu) \exp\left(-\frac{(z_{i-1} - \mu)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi}\sigma^{2}}\right\}$$

$$-\frac{1}{2} \exp\left(-\lambda z_{i} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right)(-z_{i} + \lambda\sigma^{2} + \mu) \operatorname{erfc}\left(\frac{-z_{i} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right)$$

$$-\sum_{i=i-1}^{n} \left\{\frac{\sigma \exp\left(-\frac{(-z_{i-1} + \lambda\sigma^{2} + \mu)^{2}}{2\sigma^{2}} - \lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right)}{\sqrt{2\pi}}\right\}$$

$$-\frac{1}{2} \exp\left(-\lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right)(-z_{i-1} + \lambda\sigma^{2} + \mu)$$

$$-\frac{1}{2} \exp\left(-\lambda z_{i-1} + \frac{\lambda^{2}\sigma^{2}}{2} + \lambda \mu\right)(-z_{i-1} + \lambda\sigma^{2} + \mu)$$

$$\operatorname{erfc}\left(\frac{-z_{i-1} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right)$$

$$\operatorname{erfc}\left(\frac{-z_{i-1} + \lambda\sigma^{2} + \mu}{\sqrt{2}\sigma}\right)$$
(40)

Under different conditions, Cheng and Amin [8] showed that maximizing MPS estimators is as efficient and consistent as the MLE estimators.

3.6 Method of minimum spacing absolute distance estimator (MSADE)

The minimum spacing distance estimators [36] $\hat{\mu}_{MSADE}$, $\hat{\sigma}_{MSADE}$ and $\hat{\lambda}_{MSADE}$ of μ , σ and λ are obtained by minimizing

$$T(\mu, \sigma, \lambda) = \sum_{i=1}^{n+1} h\left(D_i(\mu, \sigma, \lambda), \frac{1}{n+1}\right)$$
(41)

where h(a, b) is an appropriate distance. A choice of h(a, b) is the absolute distance, i.e., |a - b|. These estimators are called the minimum spacing absolute distance estimators (MSADE). The MSADE for parameters μ , σ and λ can be obtained by minimizing

$$T(\mu, \sigma, \lambda) = \sum_{i=1}^{n+1} \left| D_i(\mu, \sigma, \lambda) - \frac{1}{n+1} \right|$$
(42)

with respect to μ , σ and λ , respectively. The estimators $\hat{\mu}_{MSADE}$, $\hat{\sigma}_{MSADE}$ and $\hat{\lambda}_{MSADE}$ of μ , σ and λ can be obtained by solving the following nonlinear equations

$$\frac{\partial T(\mu,\sigma,\lambda)}{\partial \mu} = \sum_{i=1}^{n+1} \frac{D_i(\mu,\sigma,\lambda) - \frac{1}{n+1}}{|D_i(\mu,\sigma,\lambda) - \frac{1}{n+1}|} \delta_1(z_i|\mu,\sigma,\lambda) = 0$$
 (43)

$$\frac{\partial T(\mu,\sigma,\lambda)}{\partial \sigma} = \sum_{i=1}^{n+1} \frac{D_i(\mu,\sigma,\lambda) - \frac{1}{n+1}}{|D_i(\mu,\sigma,\lambda) - \frac{1}{n+1}|} \delta_2(z_i|\mu,\sigma,\lambda) = 0 \tag{44}$$

$$\frac{\partial T(\mu, \sigma, \lambda)}{\partial \lambda} = \sum_{i=1}^{n+1} \frac{D_i(\mu, \sigma, \lambda) - \frac{1}{n+1}}{|D_i(\mu, \sigma, \lambda) - \frac{1}{n+1}|} \delta_3(z_i | \mu, \sigma, \lambda) = 0$$
 (45)

where $\delta_1(\cdot|\mu,\sigma,\lambda)$, $\delta_2(\cdot|\mu,\sigma,\lambda)$ and $\delta_3(\cdot|\mu,\sigma,\lambda)$ are given in Eqs. (38)–(40), respectively.

3.7 Method of minimum spacing absolute log-distance estimator (MSALDE)

The minimum spacing distance estimators of $\hat{\mu}_{MSALDE}$, $\hat{\sigma}_{MSALDE}$ and $\hat{\lambda}_{MSALDE}$ of μ , σ and λ are obtained by minimizing

$$T(\mu, \sigma, \lambda) = \sum_{i=1}^{n+1} h(D_i(\mu, \sigma, \lambda), \frac{1}{n+1})$$
(46)

where h(a,b) is an appropriate distance and $|\log a - \log b|$ is called the absolute-log distance. These estimators are called the minimum spacing absolute-log distance estimators (MSALDE). The MSALDE of parameters μ , σ and λ , are obtained by minimizing

$$T(\mu, \sigma, \lambda) = \sum_{i=1}^{n+1} \left| \log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1} \right|$$
 (47)

with respect to μ , σ and λ respectively. The estimators $\hat{\mu}_{MSALDE}$, $\hat{\sigma}_{MSALDE}$ and $\hat{\lambda}_{MSALDE}$ of μ , σ and λ can be obtained by solving the below nonlinear equations

$$\frac{\partial T(\mu, \sigma, \lambda)}{\partial \mu} = \sum_{i=1}^{n+1} \frac{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}}{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}} \cdot \frac{\delta_1(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0 \tag{48}$$

58 Page 12 of 34 S. Ali et al.

$$\frac{\partial T(\mu, \sigma, \lambda)}{\partial \sigma} = \sum_{i=1}^{n+1} \frac{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}}{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}} \cdot \frac{\delta_2(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0 \tag{49}$$

$$\frac{\partial T(\mu, \sigma, \lambda)}{\partial \lambda} = \sum_{i=1}^{n+1} \frac{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}}{\log D_i(\mu, \sigma, \lambda) - \log \frac{1}{n+1}} \cdot \frac{\delta_3(z_i | \mu, \sigma, \lambda)}{D_i(\mu, \sigma, \lambda)} = 0 \tag{50}$$

where the sum is taken over the indices for which $\log D_i(\mu, \sigma, \lambda) \neq \log \frac{1}{n+1}$ and $\delta_1(\cdot | \mu, \sigma, \lambda)$, $\delta_2(\cdot | \mu, \sigma, \lambda)$ and $\delta_3(\cdot | \mu, \sigma, \lambda)$ are given in the previous subsection.

3.8 Cramer-Von-Mises method of estimation

Macdonald [28] showed that the Cramer-von-Mises has a smaller bias as compared to other minimum distance type estimators. Assuming $\hat{\mu}_{CME}$, $\hat{\sigma}_{CME}$ and $\hat{\lambda}_{CME}$, the Cramer-von-Mises estimators are obtained by minimizing

$$C(\mu, \sigma, \lambda) = \frac{1}{12n} + \sum_{i=1}^{n} \left[G(z_i) - \frac{2_i - 1}{2n} \right]^2$$
 (51)

where $z_i = z_{(i)}$ denote the ith order statistics. To obtain the estimators of the EMG distribution, the following non-linear equations need to be solved numerically.

$$\sum_{i=1}^{n} \left[G(z_i) - \frac{2_i - 1}{2n} \right] \delta_1(z_i | \mu, \sigma \lambda) = 0$$
 (52)

$$\sum_{i=1}^{n} \left[G(z_i) - \frac{2_i - 1}{2n} \right] \delta_2(z_i | \mu, \sigma, \lambda) = 0$$
 (53)

$$\sum_{i=1}^{n} \left[G(z_i) - \frac{2_i - 1}{2n} \right] \delta_3(z_i | \mu, \sigma, \lambda) = 0$$
 (54)

where $\delta_1(\cdot|\mu,\sigma,\lambda)$, $\delta_2(\cdot|\mu,\sigma,\lambda)$ and $\delta_3(\cdot|\mu,\sigma,\lambda)$ are given in Eqs. (38)–(40), respectively.

3.9 Method of Anderson-Darling and right-tail Anderson-Darling

Anderson and Darling [2] introduced the Anderson–Darling (AD) test to detect sample distribution departure from the normality and a nice feature of this test is that it converges towards the asymptote very quickly [3, 32]. Denoting by $\hat{\mu}_{ADE}$, $\hat{\sigma}_{ADE}$ and $\hat{\lambda}_{ADE}$, the AD estimators are obtained by minimizing the following equation with respect to μ , σ and λ .

$$A(\mu, \sigma, \lambda) = -n - \frac{1}{n} \sum_{i=1}^{n} (2_i - 1) [\log G(z_{i:n} | \mu, \sigma, \lambda) + \log \bar{G}(z_{n+1-i:n} | \mu, \sigma, \lambda)]$$
 (55)

These estimators can also be obtained by solving the following system of non-linear equations.

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\delta_1(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} - \frac{\delta_1(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} \right] = 0$$
 (56)

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\delta_2(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} - \frac{\delta_2(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} \right] = 0$$
 (57)

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\delta_3(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} - \frac{\delta_3(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} \right] = 0$$
 (58)

where $\bar{G}(\cdot) = 1 - G(\cdot)$ denotes the survival function, $z_{i:n}$ denote the order statistics, and $\delta_1(\cdot|\mu,\sigma,\lambda)$, $\delta_2(\cdot|\mu,\sigma,\lambda)$ and $\delta_3(\cdot|\mu,\sigma,\lambda)$ are given in Eqs. (38)–(40).

The estimates of the Right-Tail Anderson–Darling, $\hat{\mu}_{RTADE}$, $\hat{\sigma}_{RTADE}$ and $\hat{\lambda}_{RTADE}$ of the parameters μ , σ and λ are obtained by minimizing

$$R(\mu, \sigma, \lambda) = \frac{n}{2} - 2\sum_{i=1}^{n} G(z_{i:n}|\mu, \sigma, \lambda) - \frac{1}{n}\sum_{i=1}^{n} (2i - 1)\log \bar{G}(z_{n+1-i:n}|\mu, \sigma, \lambda)$$
 (59)

or by solving the following system of non-linear equations.

$$-2\sum_{i=1}^{n} \frac{\delta_{1}(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} + \frac{1}{n}\sum_{i=1}^{n} (2i-1) \frac{\delta_{1}(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} = 0$$
 (60)

$$-2\sum_{i=1}^{n} \frac{\delta_2(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} + \frac{1}{n}\sum_{i=1}^{n} (2i-1) \frac{\delta_2(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} = 0$$
 (61)

$$-2\sum_{i=1}^{n} \frac{\delta_{3}(z_{i:n}|\mu,\sigma,\lambda)}{G(z_{i:n}|\mu,\sigma,\lambda)} + \frac{1}{n}\sum_{i=1}^{n} (2i-1) \frac{\delta_{3}(z_{n+1-i:n}|\mu,\sigma,\lambda)}{\bar{G}(z_{n+1-i:n}|\mu,\sigma,\lambda)} = 0$$
 (62)

where $\delta_1(\cdot|\mu,\sigma,\lambda)$, $\delta_2(\cdot|\mu,\sigma,\lambda)$ and $\delta_3(\cdot|\mu,\sigma,\lambda)$ are given in Eqs. (38)–(40).

4 Monte Carlo simulation study

This section presents a Monte Carlo simulation study to compare the performance of the different methods of estimation. To assess the performance of different estimators, we used bias, root mean squared error, the average absolute difference between the theoretical and empirical estimate of the distribution functions, and the maximum absolute difference between the theoretical and empirical distribution functions. In particular, different sample sizes, like n=20,50,100,200 and 250 are used to compare the performance. Further, we considered $\mu=0,-1,-2,2,3$, $\sigma=0.5,0.8,1,2$ and $\lambda=0.5,1,2,6$. The simulation study was repeated 5000 times to get stable results. To begin, we estimated the parameters using the method of maximum likelihood which are further used as initial values for all other methods. To generate random numbers from EMG for simulation, one can use the fact that Z=X+Y, i.e., sum of the random numbers generated from exponential and normal distributions follows the EMG. Similarly, R language [33] function uniroot() can also be used, which in fact find the root of the equation F(z)-u=0, where F(z) is the CDF of the EMG distribution and $u\sim Uniform(0,1)$. However, in this study, we used the R package 'emg' [15] to generate the random numbers from the EMG distribution.

For each estimator under each method of estimation, the bias, root mean-squared error, the average absolute difference between the theoretical and empirical estimate of the distribution functions, and the maximum absolute difference between the theoretical and empirical distribution functions were calculated. The formulae to calculate these statistics are given as follows:

$$Bias(\hat{\mu}) = \frac{1}{R} \sum_{i=1}^{R} (\hat{\mu}_i - \mu), \quad Bias(\hat{\sigma}) = \frac{1}{R} \sum_{i=1}^{R} (\hat{\sigma}_i - \sigma)$$

58 Page 14 of 34 S. Ali et al.

$$\begin{aligned} Bias(\hat{\lambda}) &= \frac{1}{R} \sum_{i=1}^{R} (\hat{\lambda}_i - \lambda), \quad RMSE(\hat{\mu}) = \sqrt{\frac{1}{R} \sum_{i=1}^{R} (\hat{\mu}_i - \mu)^2} \\ RMSE(\hat{\sigma}) &= \sqrt{\frac{1}{R} \sum_{i=1}^{R} (\hat{\sigma}_i - \sigma)^2}, \quad RMSE(\hat{\lambda}) = \sqrt{\frac{1}{R} \sum_{i=1}^{R} (\hat{\lambda}_i - \lambda)^2} \\ D_{abs}(\hat{\mu}) &= \frac{1}{nR} \sum_{i=1}^{R} \sum_{j=1}^{n} |G(z_{ij}|\mu, \sigma, \lambda) - G(z_{ij}|\hat{\mu}, \hat{\sigma}, \hat{\lambda})| \\ D_{max}(\hat{\mu}) &= \frac{1}{nR} \sum_{i=1}^{R} \max_{j} |G(z_{ij}|\mu, \sigma, \lambda) - G(z_{ij}|\hat{\mu}, \hat{\sigma}, \hat{\lambda})| \end{aligned}$$

Using the above accuracy measures, the results of a simulation study are presented in Tables 1, 5, 6, 7, 8, 9 and 10. Partial sum of the ranks are also shown in row with label $\sum Ranks$. A superscript shows the rank of each estimate among all the considered eleven estimation methods. For instance, Table 1 presents the MME, $Bias(\hat{\mu})$ as 0.280^3 for sample size n=20, which tells that $Bias(\hat{\mu})$ is calculated using the MME method of estimation is 0.280 and it ranked 3rd among all consider estimators used in simulation study. The following conclusion are drawn from the Tables 1, 5, 6, 7, 8, 9 and 10. The key findings are the following.

- 1 It is observed that all the eleven estimators have consistency property, i.e., the bias and RMSE decrease as the sample size *n* increased.
- 2 Comparing the D_{abs} and D_{max} for all eleven considered estimation methods, it is noticed that these both get smaller as sample size n becomes larger.
- 3 As far as the performance of different estimation methods is concerned, it is observed that the MPS method performs better as compared to other considered estimation methods on the basis of least biases and RMSEs. The MLE method is the next best method of estimation, followed by the MME. The AMLE ranked 4th while LS method ranked 5th, Anderson–Darling ranked 11 and the MSADE ranked 10 among the eleven estimation methods.
- 4 For fixed λ , the bias of μ increases with its nominal value. For example, assuming n=20 in Table 1 the bias of MLE is 0.216 for $\mu=0$, $\sigma=\lambda=1$, whereas the bias is 0.114 for $\mu=-2$, $\sigma=0.5$, $\lambda=1$ (Table 5). However, the bias, as reported in Table 8, is 0.432 for $\mu=\sigma=2$, $\lambda=0.5$. The same trend is noticed for the RMSE.
- 5 For fixed λ , the bias and RMSE decrease when μ and λ decreased.
- 6 It is also observed that the bias of λ is larger than μ and σ . We attribute this to the exponential distribution behavior, which is a skewed distribution, as the normal distribution is a symmetrical distribution. Since the EMG is the sum of the exponential and normal random variables, the effect of estimation is more serious on the rate parameter of the EMG.
- 7 Comparing Tables 1 and 6 it is noticed that the biases and RMSEs become large as σ gets large. Furthermore, the RMSE of λ decreases by increasing σ for a small sample size. As the sample size increases, the RMSE also increases.
- 8 For fixed λ , when σ and μ decrease, the RMSE and bias decrease for the MLE, MME, AMLE, whereas for the other methods the values of these measure increase.
- 9 The MPS and MLE perform more consistently than the other methods.
- 10 In general, the MSADE, MSALDE, and AD produce the largest biases and RMSEs. The same trend can be noticed in D_{abs} and D_{max} .

Ш
\prec
and
Т
Ш
р
Ó,
\parallel
3
for /
results
nulation
Sin
_
a)
Ť
늄

Tabl	e 1 Simulati	Table 1 Simulation results for $\mu = 0$,	р	$= 1$ and $\lambda = 1$								
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
70	$\mathrm{Bias}(\hat{\mu})$	0.280^3	-0.291^4	0.216^{2}	$-1.140e02^{6}$	$-5.278e02^{7}$	0.032^{1}	$-2.353e03^{9}$	8321.443^{10}	- 3.637e01 ⁵	16406.884 ¹¹	$-7.010e02^{8}$
	RMSE($\hat{\mu}$) 0.577 ²	0.5772	0.396^{1}	0.651^{4}	2.471e03 ⁶	$8.850e03^{8}$	0.619^{3}	$2.135e04^{9}$	74169.220^{10}	$6.847e02^{5}$	118718.843^{11}	7.977e03 ⁷
	$\mathrm{Bias}(\hat{\sigma})$	0.035^{2}	-0.998^4	-0.081^{3}	2.718e01 ⁶	$1.748e02^{8}$	0.018^{1}	$2.186e03^{10}$	2395.117^{11}	1.026e01 ⁵	639.204 ⁹	$1.004e02^{7}$
	$RMSE(\hat{\sigma})$	0.297^{1}	0.9994	0.3982.5	6.744e02 ⁶	$3.265e03^{8}$	$0.398^{2.5}$	$2.025e04^{11}$	8835.365^{10}		3558.826^9	1.265e03 ⁷
	$\mathrm{Bias}(\hat{\lambda})$	527060.569^{11}	-0.030^{1}	7.067^{2}	2.799e02 ⁵	$6.273e02^{7}$	7.239 ³	$9.438e02^{8}$	9215.620^{10}	$8.345e01^{4}$	8851.1639	$3.243e02^{6}$
	$RMSE(\hat{\lambda})$	7639526.297 ¹¹	0.081^{1}	13.845^2	8.311e03 ⁷	$8.958e03^{8}$	18.120^{3}	5.976e03 ⁶	42625.254^{10}	$2.915e03^4$	41091.820^9	4.582e03 ⁵
	D_{abs}	0.98710	0.9991^{11}	$0.061^{1.5}$	0.897 ⁵	9806.0	$0.061^{1.5}$	0.954^{8}	0.464^{3}	0.5874	0.9769	0.9457
	D_{max}	0.982^{10}	0.989^{11}	0.107^{2}	0.926^{5}	0.9346	0.102^{1}	0.9658	0.897^{3}	0.9034	0.9769	0.945^{7}
	Σ Ranks 50 ⁶	506	333	202	465	588	161	599	6710	364	73 ¹¹	547
50	$\mathrm{Bias}(\hat{\mu})$	0.169^{3}	-0.290^4	0.128^{2}	$-2.641e01^{5}$	$-8.173e02^{7}$	0.012^{1}	$-3.252e03^{10}$	-1362.890^9	$-9.659e01^{6}$	18056.062^{11}	$-9.915e02^{8}$
	$RMSE(\hat{\mu})$	0.420^{3}	0.338^{1}	0.453^{4}	2.677e03 ⁶	$9.178e03^{7}$	0.408^{2}	$3.694e04^{10}$	23644.620^9	$1.003e03^{5}$	139381.766^{11}	$1.228e04^{8}$
	$\mathrm{Bias}(\hat{\sigma})$	0.0322.5	-1.000^4	-0.009^{1}	$1.939e01^{5}$	$3.600e02^{8}$	$0.032^{2.5}$	$2.999e03^{11}$	1851.410^{10}	2.349e01 ⁶	676.5049	$1.519e02^{7}$
	$RMSE(\hat{\sigma})$	0.237^{2}	1.000^{4}	0.239^{3}	$5.087e02^{6}$	$3.454e03^{8}$	0.233^{1}	$4.868e04^{11}$	6158.604^{10}	5.066e02 ⁵	5594.8189	2.086e03 ⁷
	$Bias(\hat{\lambda})$	28226.792^{11}	-0.035^{1}	2.764 ³	$2.366e02^4$	$9.384e02^{7}$	2.302^{2}	$1.631e03^{8}$	2895.041^9	$3.147e02^{5}$	7193.613^{10}	4.147e02 ⁶
	$RMSE(\hat{\lambda})$	613339.112^{11}	0.058^{1}	7.999^{2}	6.992e03 ⁵	$9.591e03^{7}$	8.852^{3}	$9.629e03^{8}$	19243.880^9	8.337e03 ⁶	35817.556^{10}	5.034e03 ⁴
	D_{abs}	0.976^{10}	0.998^{11}	0.038^{1}	0.917 ⁴	0.943^{6}	0.039^{2}	0.956^{8}	0.475^{3}	0.932^{5}	0.9679	0.951 ⁷
	D_{max}	0.98710	0.998^{11}	0.067^{2}	0.912^{4}	0.953^{6}	0.065^{1}	0.9658	0.906^{3}	0.9235	0.9769	0.9637
	Σ Ranks 52.5 ⁶	52.56	373	182	394	₅₆₈	15.5^{1}	7410	649	435	78 ¹¹	547
100	100 Bias($\hat{\mu}$)	0.088^{3}	-0.293^{4}	0.063^{2}	$-9.089e01^{5}$	$-9.809e02^{7}$	-0.008^{1}	$-1.240e04^{10}$	-3231.035^{9}	$-9.707e01^{6}$	$1.536e04^{11}$	$-1.166e03^{8}$
	$\text{RMSE}(\hat{\mu})$	0.303^{2}	0.3174	0.306^{3}	$8.695e02^{5}$	$8.733e03^{7}$	0.275^{1}	$3.795e04^{10}$	12845.262^{8}	9.012e02 ⁶	$1.487e05^{11}$	1.393e04 ⁹
	$\mathrm{Bias}(\hat{\sigma})$	0.016^{2}	-1.000^4	0.0005^{1}	$1.841e01^{5}$	$3.700e02^{8}$	0.021^{3}	$7.164e03^{11}$	1831.493^{10}	$2.189e01^{6}$	5.909e02 ⁹	$1.640e02^{7}$
	$RMSE(\hat{\sigma}) 0.197^3$	0.197 ³	1.000^{4}	0.168^{2}	5.026e02 ⁵	3.751e03 ⁸	0.162^{1}	2.066e04 ¹¹	5523.077 ¹⁰	5.582e02 ⁶	4.626e03 ⁹	2.118e03 ⁷

continued
_
ø
ॼ
ī

и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$\mathrm{Bias}(\hat{\lambda})$	303.298 ⁶	-0.036^{1}	0.808^{3}	7.975e01 ⁴	6.313e02 ⁸	0.534^{2}	$4.731e03^{10}$	1796.8399	1.005e02 ⁵	5.968e03 ¹¹	4.478e02 ⁷
	$RMSE(\hat{\lambda})$	11426.028^9	0.049^{1}	3.949^{3}	$7.225e02^4$	$5.925e03^{7}$	3.754^{2}	$1.473e04^{10}$	8388.760^{8}	$1.453e03^{5}$	$3.121e04^{11}$	4.276e03 ⁶
	D_{abs}	0.985^{10}	0.997^{11}	$0.027^{1.5}$	0.9345	0.956^{7}	0.0271.5	$3.473e220^9$	0.475^{3}	0.952^{6}	0.9074	8/96.0
	D_{max}	0.987^{10}	0.998^{11}	$0.046^{1.5}$	0.8974.5	0.954^{7}	$0.046^{1.5}$	0.970^{9}	0.869^{3}	0.9436	0.8974.5	0.9638
	Nanks		404	172	37.53	597	13^{1}	80 ¹¹	608.5	466	70.5 ¹⁰	608.5
200	$\mathrm{Bias}(\hat{\mu})$	0.048^{3}	-0.292^4	0.029^{2}	-138.239^{5}	$-1.067e03^{8}$	-0.010^{1}	$-1.288e04^{11}$	-3598.212^9	-139.517^{6}	$5.639e03^{10}$	$-9.993e02^{7}$
	$RMSE(\hat{\mu})$	0.207^{3}	0.304^{4}	0.196^{2}	406.801^{6}	$8.779e03^{7}$	0.180^{1}	$3.842e04^{10}$	10059.239^{8}	378.691 ⁵	$5.859e04^{11}$	1.296e04 ⁹
	$\mathrm{Bias}(\hat{\sigma})$	0.0122.5	-1.000^4	0.001^{1}	16.092^{6}	$2.689e02^{8}$	0.0122.5	$7.321e03^{11}$	1775.331^{10}	15.856 ⁵	$3.185e02^{9}$	$1.509e02^{7}$
	$RMSE(\hat{\sigma})$	0.137^{3}	1.000^{4}	0.114^{2}	55.6496	$2.485e03^{9}$	0.110^{1}	$2.025e04^{11}$	5018.426^{10}	50.735 ⁵	$1.824e03^{7}$	$2.154e03^{8}$
	$\mathrm{Bias}(\hat{\lambda})$	118.7476	-0.036^{1}	0.136^{3}	91.335^4	$6.902e02^{8}$	0.040^{2}	$5.188e03^{11}$	1592.432^9	93.026^{5}	$4.402e03^{10}$	$4.151e02^{7}$
	$RMSE(\hat{\lambda})$	8383.076^9	0.043^{1}	1.162^{3}	270.822^5	$6.217e03^{8}$	0.642^{2}	$1.550e04^{10}$	5620.190^{7}	260.535^4	$2.477e04^{11}$	$3.715e03^{6}$
	D_{abs}	0.976^{10}	0.986^{11}	$0.019^{1.5}$	0.485 ⁵	0.956^{7}	$0.019^{1.5}$	0.965^{9}	0.465^{3}	0.485^4	0.943^{6}	0.964^{8}
	Dmax	0.978^{10}	0.997^{11}	$0.033^{1.5}$	0.915 ⁵	0.943^{7}	$0.033^{1.5}$	0.965^{9}	0.900^{3}	0.904^{4}	0.921^{6}	0.954^{8}
	Nanks		414	16^{2}	425	629	12.51	8211	597	383	7010	809
250	$\mathrm{Bias}(\hat{\mu})$	0.034^{3}	-0.293^4	0.019^{2}	-170.245^5	$-1.505e03^{8}$	-0.011^{1}	-1.307 e04 11	-3289.436^{9}	$-1.742e02^{6}$	$6.942e03^{10}$	$-1.017e03^{7}$
	$RMSE(\hat{\mu})$	0.178^{3}	0.303^{4}	0.161^{2}	501.423 ⁵	$1.098e04^{8}$	0.151^{1}	$3.933e04^{10}$	9289.105^7	$5.239e02^{6}$	$1.051e05^{11}$	1.306e04 ⁹
	$\mathrm{Bias}(\hat{\sigma})$	0.008^{2}	-1.000^4	0.002^{1}	20.257 ⁵	$3.806e02^{6}$	0.011^{3}	$7.710e03^9$	1581.650^{8}	$2.381e01^{7}$	$3.987e02^{11}$	$1.559e02^{10}$
	$RMSE(\hat{\sigma})$	0.131^{3}	1.000^{4}	0.099^{2}	69.844 ⁵	$3.006e03^{8}$	0.097^{1}	$2.344e04^{11}$	4564.647^{10}	$2.734e02^{6}$	$3.529e03^9$	$2.197e03^{7}$
	$\mathrm{Bias}(\hat{\lambda})$	0.092^{4}	-0.037^{1}	0.062^{3}	111.490^{5}	$8.964e02^{8}$	0.013^{2}	$5.790e03^{11}$	1488.802^9	$1.305e02^{6}$	$4.481e03^{10}$	$4.226e02^{7}$
	$RMSE(\hat{\lambda})$	0.943^{4}	0.042^{1}	0.493^{3}	322.505^{5}	$6.621e03^{9}$	0.335^{2}	$1.767e04^{10}$	4736.482^{8}	$1.263e03^{6}$	$2.514e04^{11}$	$3.640e03^{7}$
	D_{abs}	0.987^{10}	0.998^{11}	$0.017^{1.5}$	0.487^{4}	0.956^{7}	0.0171.5	0.9759	0.459^{3}	0.9436	0.934^{5}	8/96.0
	D_{max}	0.970^{10}	0.989^{11}	$0.029^{1.5}$	0.796^{4}	0.921^{7}	0.0291.5	0.942^{9}	0.738^{3}	0.9016	0.897^{5}	0.932^{8}
	\sum Ranks	394	405	16 ²	383	618	131	80 ¹¹	577	496	7210	639

5 Real data analysis

This section presents an application for illustration purposes of the EMG distribution to a real data set is presented. This real life application will highlight the EMG distribution flexibility in modelling practical data. For comparison purposes, we also fitted normal (N), exponential (E), lognormal, and Weibull distributions to the same data. The PDFs of these distributions are given as:

$$f(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right); -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$
(63)

$$f(x; \lambda) = \lambda \exp(-\lambda x); x, \lambda > 0$$
 (64)

$$f(x,\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right); x > 0, -\infty < \mu < \infty, \sigma > 0$$
 (65)

$$f(x, \beta, \lambda) = \beta \lambda^{\beta} x^{\beta - 1} \left(\exp(-\lambda x)^{\beta} \right); x, \lambda, \beta > 0$$
 (66)

To fit the distributions, R package *fitdistrplus* is used. In term of performance, we considered Akaike information criterion (AIC) [1] and Bayesian information criterion (BIC) [7] for comparing the distributions. Note that AIC = 2m - 2LL whereas $BIC = m \log(n) - 2LL$, where m is the number of parameters in the statistical model, n is the sample size, and LL is the maximized value of the log-likelihood function for the estimated model.

The data set given in Table 2 is taken from Gabriel et al. [14]. The data set is about the PC9 cancer cell observations with 3um erlotinib applied at time zero. The experiment was performed on 2011/9/9 in the Vito Quaranta laboratory at Vanderbilt University Cancer Biology Center by Darren Tyson. Cells were tracked by nuclear labeling with histone H2B and imaged on a BD Pathway 855 for several days. There are 341 observations and all the numerical values are in hours. The parameter estimates along with the model selection measures are given in Table 3. On the basis of AIC, BIC and log-likelihood, it is observed that the EMG is the best compared to normal, exponential, lognormal and Weibull as the EMG model has the lowest AIC and BIC compared to other models. The graphical illustration of the results is given in Fig. 2. Furthermore, parameters of the EMG distribution are also estimated using different estimation methods and results are listed in Table 4. It is clear from the table that the MLE, RAD, AD and MPS methods outperform the other methods, as these methods have the lowest sum of ranks. Hence, the conclusions of simulation study are supplemented by the real data estimates.

58 Page 18 of 34 S. Ali et al.

Table 2	Time in	hours to	detect car	icer cells	with 3um	erlotinib					
16.80	18.50	19.90	21.20	19.10	20.40	16.30	16.70	25.10	23.30	20.70	18.70
17.90	19.80	19.80	19.50	17.60	18.40	25.50	193.80	30.10	72.40	21.90	22.60
23.00	22.80	191.60	191.60	159.70	146.40	26.80	30.10	59.30	126.60	83.60	189.20
26.40	113.60	19.80	20.50	188.60	126.00	188.10	25.50	81.70	30.70	67.30	186.80
182.40	24.10	26.90	78.70	114.80	27.00	28.40	96.10	133.60	175.90	183.60	21.90
24.80	182.40	91.20	60.20	80.10	61.90	88.60	25.50	94.10	160.70	98.70	25.20
65.50	18.30	20.80	120.80	76.20	23.00	60.20	112.60	56.80	75.10	88.20	175.80
34.20	28.80	36.00	70.70	135.20	22.00	24.50	71.40	121.90	54.10	103.40	173.10
113.30	160.90	23.70	45.00	38.70	25.10	96.50	105.40	85.40	147.90	56.80	91.80
154.20	167.80	90.40	108.10	168.40	168.40	141.70	167.20	31.10	35.20	162.80	162.80
49.30	162.60	64.20	68.60	71.70	131.10	40.20	63.30	36.60	32.10	159.30	62.60
27.10	31.00	134.20	157.10	127.90	40.40	156.40	156.40	97.10	52.00	24.60	26.90
64.50	148.60	50.50	153.30	26.10	34.10	127.10	129.90	89.30	149.20	39.40	36.00
28.10	32.90	31.70	139.60	137.90	137.90	49.80	51.40	130.20	130.20	2.00	130.20
127.90	127.90	67.60	127.30	67.40	42.40	126.30	126.30	106.50	125.60	51.80	52.00
75.90	92.00	50.40	57.10	2.70	74.00	53.20	65.10	117.50	117.50	117.00	76.70
117.40	117.40	25.40	72.90	12.60	55.10	113.30	113.30	112.10	52.30	26.70	72.40
1.70	22.30	29.40	31.10	16.90	107.90	108.70	108.70	95.60	105.50	106.20	106.20
103.10	36.50	56.20	93.30	102.80	62.60	100.50	95.80	98.40	98.40	98.20	98.20
96.70	16.70	0.40	0.50	91.70	91.70	63.80	80.50	90.20	90.20	87.60	76.40
85.70	85.70	84.60	67.50	84.60	84.60	57.40	59.00	80.10	80.10	81.00	81.00
79.70	79.70	77.40	77.40	75.40	75.40	63.80	63.80	41.90	54.90	66.60	66.60
64.90	64.90	65.30	58.30	62.40	46.30	37.30	7.20	53.00	53.00	51.70	51.70
50.20	50.20	45.90	45.90	43.90	43.90	11.90	23.60	40.00	40.00	32.00	4.90
31.00	31.00	29.90	4.30	27.80	27.80	27.40	27.40	25.50	25.50	14.70	24.40
25.40	25.40	8.70	22.90	23.70	23.70	21.60	21.60	22.10	22.10	19.10	19.10
12.90	17.80	16.10	16.10	17.10	17.10	13.70	13.70	11.30	5.10	1.50	10.00
10.00	10.90	10.90	10.70	10.70	10.40	10.40	10.40	10.40	8.90	8.90	7.70
7.70	4.80	4.80	3.60	3.60							

Table 3 Parameter estimation of EMG and comparison with some existing distributions for the real data

Parameters estimates	Loglikelihood	AIC	BIC
$\hat{\mu} = 66.65543, \hat{\sigma} = 49.55686$ (2.683655, 1.897630)	- 1814.822	3633.644	3641.308
$\hat{\lambda} = 0.01500253, (0.0008088)$	-1773.042	3548.084	3551.916
$\hat{\mu} = 3.826037, \hat{\sigma} = 1.007248$ (0.05454551, 0.03856933)	- 1790.999	3585.998	3593.662
$\hat{\beta} = 1.308466, \hat{\lambda} = 0.01385474$ (0.05681653, 0.318151)	- 24883.625	49767.254	49767.26166
$\hat{\mu} = 7.92076067, \hat{\sigma} = 6.57293954, \hat{\lambda}$ = 0.01704493 (1.51175331, 1.264117615, 0.001012831)	- 1763.412	3532.824	3534.422
	$\hat{\mu} = 66.65543, \hat{\sigma} = 49.55686$ $(2.683655, 1.897630)$ $\hat{\lambda} = 0.01500253, (0.0008088)$ $\hat{\mu} = 3.826037, \hat{\sigma} = 1.007248$ $(0.05454551, 0.03856933)$ $\hat{\beta} = 1.308466, \hat{\lambda} = 0.01385474$ $(0.05681653, 0.318151)$ $\hat{\mu} = 7.92076067, \hat{\sigma} = 6.57293954, \hat{\lambda}$ $= 0.01704493 (1.51175331, 1.5117$	$\hat{\mu} = 66.65543, \hat{\sigma} = 49.55686 \qquad -1814.822$ $(2.683655, 1.897630)$ $\hat{\lambda} = 0.01500253, (0.0008088) \qquad -1773.042$ $\hat{\mu} = 3.826037, \hat{\sigma} = 1.007248 \qquad -1790.999$ $(0.05454551, 0.03856933)$ $\hat{\beta} = 1.308466, \hat{\lambda} = 0.01385474 \qquad -24883.625$ $(0.05681653, 0.318151)$ $\hat{\mu} = 7.92076067, \hat{\sigma} = 6.57293954, \hat{\lambda} \qquad -1763.412$ $= 0.01704493 (1.51175331,$	$\hat{\mu} = 66.65543, \hat{\sigma} = 49.55686 \qquad -1814.822 \qquad 3633.644$ $(2.683655, 1.897630)$ $\hat{\lambda} = 0.01500253, (0.0008088) \qquad -1773.042 \qquad 3548.084$ $\hat{\mu} = 3.826037, \hat{\sigma} = 1.007248 \qquad -1790.999 \qquad 3585.998$ $(0.05454551, 0.03856933)$ $\hat{\beta} = 1.308466, \hat{\lambda} = 0.01385474 \qquad -24883.625 \qquad 49767.254$ $(0.05681653, 0.318151)$ $\hat{\mu} = 7.92076067, \hat{\sigma} = 6.57293954, \hat{\lambda} \qquad -1763.412 \qquad 3532.824$ $= 0.01704493 (1.51175331, \qquad -1763.412 \qquad 3532.824$

Bold values denote the minimum values of AIC and BIC

Est.	MME	ALME	MLE	LSE	MLS	MPS	MSADE	MSALDE	CVM	AD	RAD
û	30.9681	0.4892	7.9112	- 3.4051	- 6.6000	0.6451	0.1001	0.0065	- 6.6000	10.0743	8.4206
$\mathrm{SD}(\hat{\mu})$	23.0481^{11}			9.97258	14.52009.5	7.27494	7.81996	7.91357	$14.5200^{9.5}$	2.1543^{3}	0.5006^{1}
(h	34.3846	0.0035	6.5652	0.2356	0.3000	1.2429	1.0499	0.9949	0.3000	4.8322	0.00003
$\mathrm{SD}(\hat{\sigma})$	27.8146^{11}	6.56659		11.3251^{10}	$6.2700^{7.5}$	5.32714		5.57516	$6.2700^{7.5}$	1.7378^2	0.00001^{1}
د.	0.0280	0.0341	0.0170	9.9895	5.9000	0.0126	0.9000	1.1021	5.9000	0.2064	0.2091
$SD(\hat{\lambda})$	0.0110^4	0.017715	0.0010^{2}	0.00002^{1}	$5.8830^{10.5}$	0.0044^{3}	0.8830^{8}	1.0857^9	$5.8830^{10.5}$	0.1894^{7}	0.1849^{6}
Ranks	269	961	51	196	27.5 ^{10.5}	123.5	196	228	27.510.5	123.5	82

58 Page 20 of 34 S. Ali et al.

Fig. 2 Visual check for the EMG fitted model to observed data

Conclusion

In this study, the EMG distribution is considered due to its practical application in biology and chemistry and parameters of the distribution are estimated by eleven different methods of estimation, namely, the method of moment estimation (MME), approximated L-moment estimation (ALME), the maximum likelihood estimation (MLE), the least squares estimation (LSE), the weighted least squares estimation (WLSE), the maximum product spacing (MPS), the minimum spacing absolute distance estimation (MSADE), the minimum spacing absolute log-distance estimation (MSALDE), Cramer-Von-Mises (CVM), Anderson-Darling (AD) method, and the right-tail Anderson-Darling (RAD) method. The performance of different estimators are assessed using a comprehensive Monte Carlo simulation study. The estimators are compared on the basis of bias, root mean-squared error, the average absolute difference between the theoretical and empirical estimate of the distribution functions, and the maximum absolute difference between the theoretical and empirical distribution functions. Results showed that the performance of the maximum product spacing estimation method is better than the rest methods. To show an application of the EMG distribution, a real data set has also been analyzed.

Appendix

This section presents some additional tables of biases, root mean squared errors, and other measures under different estimation methods (Tables 5, 6, 7, 8, 9, 10).

II
~
b
anc
3
$\overline{}$
II
р
<u>-</u> 2
Ш
3
_
for
\mathbf{z}
=
3
resı
_
=
.2
-=
lat
Ξ
≓
Ē.
S
ь
чn
Ф
ॼ
ര

Table	Table 5 Simulation results for $\mu =$	n results for		-2 , $\sigma = 0.5$ and $\lambda = 1$. = 1							
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	0.232^{3}	0.5484	0.114 ²	-4.032^{5}	2.411e01 ⁸	0.017^{1}	$-2.193e03^9$	50932.510^{11}	-5.621^{6}	19878.85710	-7.320^{7}
	$RMSE(\hat{\mu})$	0.419^{3}	0.558^{4}	0.404^{2}	13.227 ⁵	$1.618e03^{7}$	0.362^{1}	4.826e04 ⁹	2313433.025^{11}	16.7836	227216.550^{10}	$2.651e03^{8}$
	$\mathrm{Bias}(\hat{\sigma})$	0.119^4	-0.095^{3}	-0.056^{2}	0.182^{5}	6.0767	0.023^{1}	$2.299e03^{10}$	2763.911^{11}	0.372^{6}	574.5079	$1.537e01^{8}$
	$\text{RMSE}(\hat{\sigma})$	0.276^{3}	0.101^{1}	0.282^{4}	1.3245	$2.582e02^{7}$	0.270^{2}	$6.014e04^{10}$	62713.850^{11}	1.7656	6465.4749	$4.442e02^{8}$
	$\mathrm{Bias}(\hat{\lambda})$	5.164^{6}	1.303^{1}	3.435^{3}	4.0774	5.640^{7}	2.978^{2}	$7.054e02^9$	8239.500^{11}	4.541 ⁵	7463.072^{10}	$5.694e01^{8}$
	$RMSE(\hat{\lambda})$	24.1356	1.425^{1}	11.628^2	17.884^4	$2.553e03^{8}$	13.295^3	5.940e03 ⁹	44685.927^{11}	18.647 ⁵	43967.572^{10}	$1.972e03^{7}$
	D_{abs}	0.978^{10}	0.989^{11}	0.062^{2}	0.4493.5	0.9216	0.061^{1}	0.954^{8}	0.4635	0.4493.5	6896.0	0.942^{7}
	D_{max}	0.967^{10}	0.973^{11}	0.112^{2}	0.9394.5	0.9386	0.103^{1}	0.953^{8}	0.928^{3}	0.9394.5	0.965^9	0.942^{7}
	Nanks	456	363.5	192	363.5	267	12^{1}	729	7410	425	76 ¹¹	809
50	$\mathrm{Bias}(\hat{\mu})$	0.119^{3}	0.556^{4}	0.032^{2}	$3.275e01^{7}$	$9.410e - 01^5$	-0.010^{1}	$-3.401e03^{9}$	4108.892^{10}	$1.412e01^{6}$	$1.073e04^{11}$	-89.195^{8}
	$RMSE(\hat{\mu})$	0.261^{3}	0.560^{4}	0.225^{2}	$2.001e03^{8}$	$1.179e03^{5}$	0.204^{1}	2.063e04 ⁹	94314.401^{10}	$1.572e03^{7}$	$9.506e04^{11}$	1412.4146
	$\mathrm{Bias}(\hat{\sigma})$	0.066^{3}	-0.092^{4}	-0.020^{1}	$7.061e00^{7}$	$4.340e00^{5}$	0.022^{2}	$2.583e03^{11}$	1233.613^{10}	$4.458e00^{6}$	$3.316e02^{9}$	10.151^{8}
	$\text{RMSE}(\hat{\sigma})$	0.232^{4}	0.095^{1}	0.164^{3}	$3.322e02^{8}$	$1.885e02^{6}$	0.154^{2}	$2.082e04^{11}$	5080.594^{10}	$2.669e02^{7}$	2.892e03 ⁹	173.0835
	$Bias(\hat{\lambda})$	0.503^{3}	1.294^{4}	0.343^{2}	$5.009e01^{8}$	$2.592e01^{6}$	0.178^{1}	2.309e03 ⁹	3042.137^{10}	$2.289e01^{5}$	$8.491e03^{11}$	34.215 ⁷
	$RMSE(\hat{\lambda})$	4.736^4	1.365^{1}	2.793^{3}	$2.294e03^{8}$	$1.862e03^{7}$	2.398^{2}	1.649e04 ⁹	22137.822^{10}	$1.202e03^{6}$	4.576e04 ¹¹	425.571 ⁵
	D_{abs}	0.998^{11}	0.100^{3}	$0.039^{1.5}$	0.923^{7}	0.942^{8}	$0.039^{1.5}$	0.967^{10}	0.473 ⁵	0.920^{6}	0.953^{9}	0.4714
	D_{max}	0.997^{11}	0.186^{3}	0.069^{2}	9626.0	98260	0.067^{1}	0.989^{10}	0.965^{4}	9826.0	6086.0	0.9775
	Nanks	424	243	16.5^{2}	618	536	11.51	7810	669	496	8011	485
100	$\mathrm{Bias}(\hat{\mu})$	0.063^{3}	0.554^{4}	0.014^{2}	-10.791^{5}	-37.902^{7}	-0.008^{1}	$-9.556e03^{11}$	174.0759	-12.248^{6}	9314.169^{10}	-97.644^{8}
	$RMSE(\hat{\mu})$	0.191^{3}	0.556^{4}	0.141^{2}	24.675 ⁵	111.346^{7}	0.134^{1}	$3.083e04^{10}$	25565.034 ⁹	27.0276	124531.117^{11}	1014.504^{8}
	$\mathrm{Bias}(\hat{\sigma})$	0.027^{3}	-0.093^{4}	-0.007^{1}	0.940^{5}	3.462 ⁷	0.019^{2}	$5.955e03^{11}$	1087.139^{10}	1.136^{6}	280.1899	10.984^{8}
	$\text{RMSE}(\hat{\sigma})$	0.210^{4}	0.095^{1}	0.105^{3}	2.9435	10.0597	0.103^{2}	1.856e+04 ¹¹	4177.207^{10}	3.2536	3525.8899	126.2708

continued
'n
<u>•</u>
回
ī

u	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$\mathrm{Bias}(\hat{\lambda})$	0.142^{3}	1.2854	0.056^{2}	7.5526	-2.115^{5}	0.010^{1}	$4.544e03^{10}$	1926.0949	8.031 ⁷	5041.132^{11}	54.5818
	$RMSE(\hat{\lambda})$	1.898^{4}	1.325^{3}	0.539^{2}	15.831 ⁵	168.9737	0.509^{1}	$1.829e04^{10}$	17577.3189	19.050^{6}	34998.159^{11}	805.147^{8}
	D_{abs}	0.987^{11}	0.098^{3}	0.0271.5	0.478 ⁵	0.498^{9}	$0.027^{1.5}$	0.965^{10}	0.470^{4}	0.478^{7}	0.4786	0.482^{8}
	D_{max}	0.99911	0.180^{3}	0.0471.5	9686.0	0.9899	$0.047^{1.5}$	0.997^{10}	0.960^{4}	0.989^{7}	0.987 ⁵	8686.0
	Nanks	424.5		152	424.5	587	111	8311	648.5	516	7210	6410.5
200	$\mathrm{Bias}(\hat{\mu})$	0.038^{3}	0.555^{4}	0.007^{2}	-16.716^{6}	-69.871^{7}	-0.003^{1}	$-1.421e04^{11}$	-1217.978^9	-18.041^{5}	$1.133e04^{10}$	-857.242^{8}
	$RMSE(\hat{\mu})$	0.142^{4}	0.556^{3}	0.096^{2}	34.093 ⁵	167.904^{7}	0.093^{1}	3.664e04 ⁹	10253.707^{8}	35.7516	$1.749e05^{11}$	52347.810^{10}
	$\mathrm{Bias}(\hat{\sigma})$	0.011^{2}	-0.094^{4}	-0.003^{1}	1.7135	5.981 ⁷	0.013^{3}	$8.886e03^{11}$	1022.749^{10}	1.888^{6}	$3.726e02^9$	120.525^{8}
	$\text{RMSE}(\hat{\sigma})$	0.180^{4}	0.094^{3}	$0.069^{1.5}$	4.197 ⁵	14.471 ⁷	$0.069^{1.5}$	$2.254e04^{11}$	3788.3688	4.3986	$5.221e03^9$	7596.314^{10}
	$\operatorname{Bias}(\hat{\lambda})$	0.063^{3}	1.269^4	0.021^{2}	10.649^{5}	13.132^{7}	-0.001^{1}	$6.215e03^{11}$	824.872^9	11.3466	$1.735e03^{10}$	60.982 ⁸
	$RMSE(\hat{\lambda})$	0.184^{3}	1.289^{4}	0.124^{2}	19.9225	245.303^{7}	0.116^{1}	$1.924e04^{11}$	7005.5879	20.836^{6}	$1.722e04^{10}$	753.007^{8}
	D_{abs}	0.993^{11}	0.097^{3}	$0.019^{1.5}$	0.485 ^{5.5}	0.499^{8}	$0.019^{1.5}$	0.987^{10}	0.4574	0.4855.5	0.9679	0.4897
	D_{max}	0.986^{11}	0.178^{3}	$0.033^{1.5}$	0.955^{7}	0.955^{7}	$0.033^{1.5}$	0.976^{10}	0.935^{4}	0.955^{7}	0.9679	0.944 ⁵
	Nanks			13.52	43.5 ⁵	497	11.51	76 ¹⁰	618	47.56	77111	649
250	$\mathrm{Bias}(\hat{\mu})$	0.028^{3}	0.554^{4}	0.004^{2}	-19.818^{5}	-81.684^{7}	-0.004^{1}	$-1.491e04^{10}$	-919.662^9	-20.989^{6}	16343.007^{11}	-136.256^{8}
	$RMSE(\hat{\mu})$	0.127^{3}	0.556^{4}	0.082^{2}	38.285^{5}	184.564^{7}	0.080^{1}	$3.676e04^{10}$	11221.147^9	39.7316	219661.636^{11}	1677.062^{8}
	$\mathrm{Bias}(\hat{\sigma})$	0.002^{1}	-0.094^{4}	-0.003^{2}	2.120^{5}	6.957^{7}	0.011^{3}	$9.618e03^{11}$	881.656^{10}	2.2886	499.308 ⁹	15.3578
	$RMSE(\hat{\sigma})$	0.176^{4}	0.094^{3}	$0.061^{1.5}$	4.738 ⁵	15.834 ⁷	$0.061^{1.5}$	2.347 e 04^{11}	3345.5139	4.9236	6489.642^{10}	204.669^{8}
	$Bias(\hat{\lambda})$	0.047^{3}	1.266^{4}	0.014^{2}	12.412 ⁵	17.961 ⁷	-0.003^{1}	$6.240e03^{11}$	856.6589	12.7786	1242.352^{10}	71.6098
	$RMSE(\hat{\lambda})$	0.158^{3}	1.282^{4}	0.103^{2}	22.278 ⁵	274.050^{7}	0.098^{1}	$1.572e04^{11}$	13318.168^9	28.0126	14801.396^{10}	930.392^{8}
	D_{abs}	0.997^{11}	0.097^{3}	0.0171.5	0.4876	0.50^{9}	$0.017^{1.5}$	0.987^{10}	0.453^{4}	0.4876	0.4876	0.491^{8}
	D_{max}	0.9991^{11}	0.178^{3}	0.029^{1}	9966'0	0.996^{9}	0.030^{2}	0.998^{10}	0.9274	0.996^{7}	8966.0	0.995^{5}
	\sum Ranks	395	293	142	374	₂ 09	121	84 ¹¹	639	496	7510	618

Table 6 Simulation results for $\mu=0,\,\sigma=2$ and $\lambda=1$

		•										
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	0.169^{2}	-0.698^4	0.212^{3}	$-6.343e01^{5}$	$-3.288e02^{8}$	-0.077^{1}	$-2.272e03^{7}$	3251.097^9	$-2.134e02^{6}$	6978.946^{11}	$-5.218e03^{10}$
	RMSE($\hat{\mu}$) 0.763 ¹	0.763^{1}	0.855^{2}	0.995^{3}	$8.274e02^{5}$	$6.555e03^{7}$	1.061^{4}	$5.111e04^{8}$	101956.964^9	$2.847e03^{6}$	127585.485^{10}	1.806e05 ¹¹
	$\mathrm{Bias}(\hat{\sigma})$	-0.074^{2}	-2.001^4	-0.210^{3}	$1.449e01^{5}$	$1.702e02^{7}$	-0.029^{1}	$2.322e03^{8}$	2236.760^{11}	$5.029e01^{6}$	657.427 ⁹	7.914e02 ¹⁰
	$RMSE(\hat{\sigma}) 0.447^1$	0.447^{1}	2.001^4	0.619^{2}	$2.259e02^{5}$	$2.225e03^{7}$	0.632^{3}	$6.432e04^{11}$	9377.016^{8}	$9.581e02^{6}$	16427.930^9	2.678e04 ¹⁰
	$\mathrm{Bias}(\hat{\lambda})$	898142.188^{11}	-0.265^{1}	6.803^{2}	$1.506e02^4$	$6.817e02^{8}$	8.2143	$6.068e02^{7}$	10368.602^{10}	$1.564e02^{5}$	8414.9139	3.836e02 ⁶
	$RMSE(\hat{\lambda})$	RMSE($\hat{\lambda}$) 13008254.404 ¹¹	0.330^{1}	10.441^{2}	$4.079e03^{5}$	$8.575e03^{8}$	15.151 ³	$4.992e03^{7}$	44599.747^{10}	$2.309e03^4$	39675.1879	4.836e03 ⁶
	D_{abs}	0.989^{10}	0.999^{11}	$0.0.061^{1.5}$	0.845^{4}	0.943^{6}	$0.061^{1.5}$	9.9678	0.466^{3}	0.876 ⁵	0.9769	0.9547
	D_{max}	0.965^{10}	0.976^{11}	0.103^{2}	0.854^{4}	9268.0	0.099^{1}	0.9348	0.831 ³	0.886^{5}	0.9549	0.9237
	∑Ranks 48 ⁶	486	384	18.5 ²	373	577	17.5^{1}	649	638	435	75 ¹¹	6710
50	Bias($\hat{\mu}$) 0.184 ²	0.184^{2}	-0.704^4	0.233^{3}	$-1.750e02^{5}$	$-8.173e02^{8}$	0.015^{1}	$-6.154e03^{11}$	-615.156^{7}	$-2.091e02^{6}$	$4.760e03^{10}$	$-2.835e03^{9}$
	RMSE($\hat{\mu}$) 0.633 ¹	0.633^{1}	0.769^{3}	0.763^{2}	$1.642e03^{5}$	$7.350e03^{7}$	0.770^{4}	$2.709e04^{9}$	102376.706^{11}	2.784e03 ⁶	$3.991e04^{10}$	2.669e04 ⁸
	$\mathrm{Bias}(\hat{\sigma})$	-0.014^{2}	-2.000^4	-0.059^{3}	$3.859e01^{5}$	$4.591e02^{8}$	0.013^{1}	$3.773e03^{11}$	2400.437^{10}	$6.212e01^{6}$	$3.496e02^{7}$	4.891e02 ⁹
	$RMSE(\hat{\sigma}) 0.314^{1}$	0.314^{1}	2.000^4	0.356^{2}	$5.909e02^{5}$	4.217e03 ⁸	0.366^{3}	$2.066e04^{11}$	7896.269^{10}	$9.187e02^{6}$	$2.576e03^{7}$	5.019e03 ⁹
	$\mathrm{Bias}(\hat{\lambda})$	158076.460^{11}	-0.263^{1}	5.223^{2}	$4.083e02^{5}$	$1.041e03^{7}$	5.526^{3}	$2.069e03^{8}$	3902.231^9	$4.064e02^4$	$6.589e03^{10}$	6.222e02 ⁶
	$RMSE(\hat{\lambda})$	3414577.059^{11}	0.271^{1}	8.701^{2}	$8.478e03^{6}$	$9.814e03^{8}$	11.292^{3}	$9.480e03^{7}$	23367.7439	$6.681e03^{5}$	$3.426e04^{10}$	4.559e03 ⁴
	D_{abs}	0.965^{10}	0.976^{11}	$0.038^{1.5}$	0.856^{4}	0.921^{6}	$0.038^{1.5}$	0.9619	0.474 ³	0.897 ⁵	0.943 ⁷	0.9548
	D_{max}		0.976^{11}	$0.063^{1.5}$	0.765^4	0.921^{6}	$0.063^{1.5}$	0.954^{9}	0.765^{3}	0.897 ⁵	0.932^{7}	0.9438
	Σ Ranks 48 ⁶	486	393.5	171	393.5	587	182	75 ¹¹	629	435	68 ¹¹	618
100	100 Bias($\hat{\mu}$)	0.170^{2}	-0.709^4	0.2113	$-1.979e02^{5}$	$-9.869e02^{7}$	0.040^{1}	$-1.442e04^{10}$	-3941.980^{8}	$-2.135e02^{6}$	5326.0539	$-5.721e04^{11}$
	RMSE($\hat{\mu}$) 0.561 ¹	0.561^{1}	0.7414	0.638^{3}	$1.238e03^{5}$	$9.706e03^{7}$	0.621^{2}	4.039e04 ⁹	13284.646^{8}	$1.628e03^{6}$	78744.975^{10}	2.732e06 ¹¹
	$\mathrm{Bias}(\hat{\sigma})$	0.005^{1}	-2.000^4	-0.011^{2}	$3.656e01^{5}$	$6.531e02^{8}$	0.016^{3}	$8.406e03^{10}$	2387.2639	$3.885e01^{6}$	313.041^{7}	9.978e03 ¹¹
	$RMSE(\hat{\sigma})$	0.248^{1}	2.000^4	0.255^{2}	$3.842e02^{5}$	$5.474e03^{8}$	0.265^{3}	$2.589e04^{10}$	7182.353^9	$4.607e02^{6}$	2936.491^{7}	4.716e05 ¹¹
	$\mathrm{Bias}(\hat{\lambda})$	5827.851 ¹¹	-0.266^{1}	3.878 ³	$3.088e02^4$	$1.523e03^{7}$	3.668^{2}	4.432e03 ⁹	1726.367^{8}	5.920e02 ⁵	5666.633^{10}	7.448e02 ⁶
	$RMSE(\hat{\lambda})$	RMSE($\hat{\lambda}$) 356065.399 ¹¹	0.275^{1}	7.244 ²	$5.507e03^{5}$	$1.309e04^{8}$	8.462^{3}	$1.230e04^{7}$	8024.442^{6}	$1.428e04^{9}$	30489.634^{10}	5.326e03 ⁴

continued
9
<u>•</u>
ᅙ
Ţ

и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	D_{abs}	0.953^{10}	0.967 ¹¹	0.026^{1}	0.8015	0.856^{7}	0.027^{2}	0.897	0.471 ³	0.8326	0.476^4	0.8768
	D_{\max}	0.976^{10}	0.987^{11}	$0.044^{1.5}$	0.8545	0.9087	$0.044^{1.5}$	0.9439	0.765^{3}	0.876	0.786^4	0.9238
	\sum Ranks 47 ⁵	475	404	17.51.5	393	598	17.51.5	7311	547	506	619	7010
200	200 Bias($\hat{\mu}$)	0.151^{2}	-0.709^4	0.168^{3}	$-3.385e02^{6}$	$-2.336e03^{7}$	0.033^{1}	$-1.645e04^{10}$	-4177.841^{8}	$-3.842e02^{6}$	2.336e03 ⁹	$-4.581e04^{11}$
	$RMSE(\hat{\mu})$	0.481^{1}	0.726^{4}	0.522^{3}	1.948e03 ⁵	$1.297e04^{8}$	0.486^{2}	$4.198e04^{10}$	11522.587^7	$2.013e03^{6}$	2.550e04 ⁹	$2.986e06^{11}$
	$\mathrm{Bias}(\hat{\sigma})$	0.014^{3}	-2.000^4	0.006^{1}	$6.156e01^{5}$	$1.087e03^{8}$	0.009^{2}	$8.948e03^{11}$	2309.3499	6.415e01 ⁶	$2.439e02^{7}$	$8.352e03^{10}$
	$\text{RMSE}(\hat{\sigma})$	0.188^{1}	2.000^4	0.191^{2}	$5.013e02^{5}$	$6.544e03^{9}$	0.193^{3}	$2.308e04^{10}$	6417.002^{8}	$5.621e02^{6}$	$9.917e02^{7}$	$5.459e05^{11}$
	$\operatorname{Bias}(\hat{\lambda})$	603.979^{6}	-0.267^{1}	2.526^{3}	$5.361e02^{5}$	$1.969e03^9$	1.982^{2}	5.597e03 ¹¹	1604.817^{8}	$5.093e02^4$	$3.815e03^{10}$	$6.842e02^{7}$
	$RMSE(\hat{\lambda})$	42300.744^{11}	0.275^{1}	5.6383	$7.611e03^{7}$	$1.216e04^{8}$	5.589^{2}	$1.462e04^{9}$	5308.513 ⁵	7.184e03 ⁶	$2.359e04^{10}$	3.664e03 ⁴
	$D_{ m abs}$	0.019^{2}	0.980^{11}	0.019^{2}	0.876	0.908^{7}	0.019^{2}	0.976^{10}	0.461^4	0.854 ⁵	0.932^{8}	0.956^{9}
	D_{max}	0.031^{2}	0.976^{11}	0.031^{2}	0.8565.5	0.897^{7}	0.031^{2}	0.965^{10}	0.9474	0.8565.5	0.932^{8}	0.945^{9}
	Nanks	283	404	192	45.56	638	16^{1}	8111	537	44.5 ⁵	689	72 ¹⁰
250	250 Bias($\hat{\mu}$)	0.138^{2}	-0.712^4	0.155^{3}	$-3.627e02^{5}$	$-2.894e03^{8}$	0.031^{1}	$-1.665e04^{11}$	-4138.569^{9}	$-3.662e02^{6}$	2773.486^{7}	$-4.343e03^{10}$
	$\text{RMSE}(\hat{\mu})$	0.450^{2}	0.724^{4}	0.479^{3}	$2.341e03^{5}$	$1.438e04^{8}$	0.439^{1}	4.172e04 ⁹	12058.169^{7}	$2.637e03^{6}$	48663.190^{10}	$5.060e04^{11}$
	$\mathrm{Bias}(\hat{\sigma})$	0.015^{3}	-2.000^4	$0.012^{1.5}$	$7.441e01^{6}$	$1.313e03^9$	$0.012^{1.5}$	$9.407 e 03^{11}$	2199.338^{10}	$6.418e01^{5}$	266.028^{7}	$8.495e02^{8}$
	$\text{RMSE}(\hat{\sigma})$	0.1741.5	2.000^{4}	$0.174^{1.5}$	$6.518e02^{6}$	6.999e03 ⁹	0.175^{3}	$2.423e04^{11}$	5867.3438	$5.464e02^{5}$	1647.453 ⁷	$1.028e04^{10}$
	$\mathrm{Bias}(\hat{\lambda})$	3.300^{4}	-0.267^{1}	2.072^{3}	$4.529e02^{6}$	$2.462e03^9$	1.497^{2}	$5.667e03^{11}$	1704.7048	$3.605e02^{5}$	3180.221^{10}	$1.078e03^{7}$
	$RMSE(\hat{\lambda})$	8.8214	0.268^{1}	4.982^{3}	$5.815e03^{7}$	$1.423e04^{9}$	4.627^{2}	1.477 e 04^{10}	5002.107^{6}	$4.035e03^{5}$	19749.921^{11}	$5.943e03^{8}$
	D_{abs}	0.017^{2}	0.956^{11}	0.017^{2}	0.8977	0.912^{8}	0.017^{2}	0.932^{10}	0.458^{4}	0.8656	0.485^{5}	0.923^{9}
	D_{max}	0.0282.5	0.967^{11}	0.027^{1}	0.913 ⁷	0.923^{8}	$0.028^{2.5}$	0.954^{10}	0.842^{4}	0.8976	0.893^{5}	0.9349
	Nanks	213	404	182	496	402	151	8311	567	445	62 ⁸	7210

Ш
\prec
and
0.5
II
р
Ó,
\parallel
Z
for
results
ulation
Sim
le 7
-2

Table	e 7 Simulation	Table 7 Simulation results for $\mu = 0$,	р	$= 0.5$ and $\lambda = 2$								
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	0.147^{3}	-0.406^4	0.108^{2}	-1.165^{6}	-3.656^{7}	0.016^{1}	$-2.102e03^9$	9729.993^{10}	-1.659^{5}	$1.869e04^{11}$	-21.307^{8}
	$RMSE(\hat{\mu})$	0.300^{1}	0.421^4	0.326^{3}	15.030^{5}	24.578 ⁷	0.310^{2}	2.587e04 ⁹	128842.126^{10}	15.7576	$2.334e05^{11}$	419.8638
	$\mathrm{Bias}(\hat{\sigma})$	0.012^{3}	-0.320^{7}	-0.041^{5}	-0.031^{4}	0.2756	$0.009^{1.5}$	$2.378e03^{10}$	2607.557^{11}	$0.009^{1.5}$	$5.684e02^{9}$	2.4208
	$RMSE(\hat{\sigma})$	0.144^{1}	0.350^{4}	$0.199^{2.5}$	1.581 ⁵	2.467 ⁷	$0.199^{2.5}$	$3.279e04^{11}$	10449.553^{10}	1.661^{6}	$7.142e03^{9}$	53.060 ⁸
	$\mathrm{Bias}(\hat{\lambda})$	5999.909^{11}	-0.841^{1}	14.2756	2.557 ³	3.069^{4}	14.533 ⁷	$7.153e02^{8}$	4979.779 ⁹	2.278 ²	$5.568e03^{10}$	10.155 ⁵
	$RMSE(\hat{\lambda})$	737154.000^{11}	0.845^{1}	27.9276^4	23.666^3	46.6636	36.246 ⁵	7.294e03 ⁸	38769.497 ⁹	21.984^2	$4.776e04^{10}$	180.5827
	D_{abs}	0.974^{10}	0.987^{11}	0.062^{2}	0.456^{4}	0.4576	0.061^{1}	0.952^{9}	0.466^{7}	0.456^{4}	0.932^{8}	0.456^4
	D_{max}	0.994^{10}	0.997^{11}	0.107^{2}	0.9415.5	0.939^{4}	0.102^{1}	0.987	0.934^{3}	0.9415.5	0.982^{8}	0.942^{7}
	Nanks	507	435	292	35.5 ^{3.5}	476	21^{1}	7410	669	353.5	76 ¹¹	558
50	$\mathrm{Bias}(\hat{\mu})$	0.086^{3}	-0.414^4	0.064^{2}	-1.567^{5}	-7.057^{7}	0.006^{1}	$-4.184e03^{10}$	576.4119	-2.462^{6}	$3.006e04^{11}$	-14.269^{8}
	$RMSE(\hat{\mu})$	0.216^{2}	0.420^{4}	0.227^{3}	20.3945	39.454 ⁷	0.204^{1}	2.323e04 ⁹	60306.571^{10}	25.350^{6}	$2.762e05^{11}$	102.002^{8}
	$\mathrm{Bias}(\hat{\sigma})$	0.014^{2}	-0.3333^{6}	-0.005^{1}	0.067^{4}	0.536^{7}	0.016^{3}	$3.379e03^{11}$	1918.819^{10}	0.161^{5}	$8.916e02^{9}$	1.6228
	$RMSE(\hat{\sigma})$	0.1171.5	0.350^{4}	0.119^{3}	2.249 ⁵	3.5057	$0.117^{1.5}$	$2.299e04^{11}$	7725.475 ⁹	2.7826	$8.234e03^{10}$	12.3278
	$\mathrm{Bias}(\hat{\lambda})$	786.7058	-0.864^{1}	5.6976	2.033^{2}	4.1374	4.503^{5}	$1.661e03^{10}$	1587.8799	2.4113	$7.642e03^{11}$	8.792 ⁷
	$RMSE(\hat{\lambda})$	20750.270^{10}	0.866^{1}	16.467^{2}	22.000^{5}	107.662^{7}	17.255 ³	1.368e04 ⁹	9859.165^{8}	21.175^4	$4.597e04^{11}$	69.2446
	D_{abs}	0.967^{10}	0.987^{11}	$0.039^{1.5}$	0.4785.5	0.480^{7}	$0.039^{1.5}$	0.945^{9}	0.4763.5	0.4785.5	0.932^{8}	0.4763.5
	D_{max}	0.986.10	0.997^{11}	0.066^{2}	0.9785.5	0.9785.5	0.065^{1}	0.985^{9}	0.966^{3}	0.9785.5	0.9798	0.9785.5
	\sum Ranks	46.56	425	20.5^{2}	373	51.57	171	7810	61.59	414	79 ¹¹	548
100	$\mathrm{Bias}(\hat{\mu})$	0.044^{3}	-0.421^{5}	0.032^{2}	0.459^{6}	-10.667^{7}	-0.004^{1}	$-1.045e04^{10}$	4550.278 ⁹	-0.071^4	$2.821e04^{11}$	-22.734^{8}
	$RMSE(\hat{\mu})$	0.154^{3}	0.424^{4}	0.153^{2}	16.7045	62.440^{7}	0.137^{1}	3.482e04 ⁹	76738.442^{10}	20.299^{6}	$2.425e05^{11}$	947.9488
	$\mathrm{Bias}(\hat{\sigma})$	0.008^{3}	-0.342^{6}	$2.39e - 4^{1}$	-0.047^{5}	0.749^{7}	0.011^{4}	$6.269e03^{11}$	1373.924^{10}	-0.003^{2}	$8.172e02^{9}$	3.5318
	$RMSE(\hat{\sigma})$	0.098^{3}	0.351^{4}	0.084^{2}	1.897 ⁵	4.612^{7}	0.081^{1}	$2.412e04^{11}$	5282.065 ⁹	2.2746	$6.989e03^{10}$	168.3518
	$\operatorname{Bias}(\hat{\lambda})$	15.164 ⁸	-0.876^{1}	1.641 ⁵	0.398^{2}	5.8336	1.053^{4}	$3.359e03^{10}$	1158.718 ⁹	0.627^{3}	$5.961e03^{11}$	11.500 ⁷

ned
ntinu
20 /
<u>e</u>
Tab

Table	Table 7 continued											
u	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$RMSE(\hat{\lambda})$	216.435 ⁷	0.876^{1}	8.022^{3}	12.8394	75.613 ⁶	7.359 ²	$1.137e04^{10}$	10283.750^9	14.243 ⁵	3.707e04 ¹¹	420.7248
	$D_{ m abs}$	0.980^{10}	0.989^{11}	$0.027^{1.5}$	0.490^{6}	0.490^{6}	$0.027^{1.5}$	0.9789	0.4793	0.490^{6}	829678	0.488^4
	D_{max}	0.978^{10}	0.989^{11}	$0.046^{1.5}$	0.939^{5}	0.939^{5}	$0.046^{1.5}$	0.9679	0.929^{3}	0.940^{7}	0.956^{8}	0.9395
	Nanks	476	435	18 ²	383	517	161	7910.5	629	394	7910.5	₅₆₈
200	$\mathrm{Bias}(\hat{\mu})$	0.024^{3}	-0.424^4	0.014^{2}	1.873^{6}	-8.423^{7}	-0.005^{1}	$-7.488e03^{9}$	7856.221^{10}	1.872^{5}	26113.403^{11}	-17.820^{8}
	$RMSE(\hat{\mu})$	0.104^{3}	0.426^{4}	0.098^{2}	13.580^{6}	59.774 ⁷	0.090^{1}	2.795e04 ⁹	82967.770^{10}	13.331 ⁵	240866.827^{11}	809.4378
	$\mathrm{Bias}(\hat{\sigma})$	$0.006^{2.5}$	-0.350^{6}	$4.28e - 4^{1}$	-0.142^4	0.606^{7}	$0.006^{2.5}$	$4.755e03^{11}$	1032.266^{10}	-0.153^{5}	764.237 ⁹	2.6598
	$\text{RMSE}(\hat{\sigma})$	0.069^{3}	0.354^{4}	0.057^{2}	1.594^{6}	4.421 ⁷	0.055^{1}	$1.936e04^{11}$	4467.330 ⁹	1.540^{5}	7279.107^{10}	127.0488
	$\mathrm{Bias}(\hat{\lambda})$	0.922^{6}	-0.882^{5}	0.278^{2}	-0.752^{3}	6.452^{7}	0.087^{1}	$2.507e03^{10}$	1067.262^9	-0.770^{4}	5194.618^{11}	7.2638
	$RMSE(\hat{\lambda})$	18.6836	0.882^{1}	2.435 ³	8.2715	57.808 ⁷	1.482^{2}	$9.268e03^{10}$	7549.542 ⁹	8.163^{4}	32631.450^{11}	232.8178
	$D_{ m abs}$	0.978^{10}	0.989^{11}	$0.019^{1.5}$	0.496^{7}	$0.495^{4.5}$	$0.019^{1.5}$	0.9679	0.483 ³	0.496^{7}	0.496^{7}	0.495 ^{4.5}
	D_{max}	0.998^{10}	0.999^{11}	$0.033^{1.5}$	0.9955.5	0.9955.5	$0.033^{1.5}$	0.9879	0.974 ³	0.9955.5	8966.0	0.9955.5
	Nanks	43.5 ⁵	466	15 ²	42.54	527	11.51	7810.5	639	40.5 ³	78 ¹¹	588
250	$\mathrm{Bias}(\hat{\mu})$		-0.425^4	0.009^{2}	2.7786	-5.606^{7}	-0.006^{1}	$-5.597e03^{9}$	7927.342^{10}	2.672 ⁵	30534.316^{11}	-15.579^{8}
	$RMSE(\hat{\mu})$		0.426^{4}	0.081^{2}	9.500^{5}	54.552 ⁷	0.076^{1}	2.371e04 ⁹	75550.739^{10}	10.425^{6}	297402.908^{11}	1061.9518
	$\mathrm{Bias}(\hat{\sigma})$	0.004^{2}	-0.352^{7}	$7.96e - 4^{1}$	-0.227^{5}	0.341^{6}	0.006^{2}	$3.787e03^{11}$	721.006^9	-0.217^{4}	857.695^{10}	2.0038
	$RMSE(\hat{\sigma})$	0.065^{3}	0.355^{4}	0.049^{2}	1.1155	3.914^{7}	0.048^{1}	$1.655e04^{11}$	3393.580^9	1.2136	8271.222^{10}	128.7588
	$\mathrm{Bias}(\hat{\lambda})$	0.245^{3}	-0.883^{4}	0.123^{2}	-1.310^{6}	5.303^{8}	0.031^{1}	$1.949e03^{10}$	979.917 ⁹	-1.256^{5}	5538.853 ¹¹	5.1527
	$RMSE(\hat{\lambda})$	4.191^4	0.883^{2}	0.941^{3}	5.554 ⁵	45.753 ⁷	0.875^{1}	$8.180e03^{10}$	7213.1539	6.25^{6}	35517.715^{11}	335.3258
	D_{abs}	0.916^{10}	0.976^{11}	0.0171.5	0.498^{7}	0.497 ^{4.5}	0.0171.5	0.8979	0.487 ³	0.498^{7}	0.498^{7}	0.497 ^{4.5}
	D_{max}	0.999^{10}	1.000^{11}	$0.029^{1.5}$	0.9965.5	$0.996^{5.5}$	$0.029^{1.5}$	0.9989	0.979^{3}	0.9965.5	8,766.0	0.9965.5
	Nanks	383	476	15 ²	44.5 ^{4.5}	527	101	7810	609	44.5 ^{4.5}	7911	578

0.5
۳
ਹ
a
c
Ш
р
ų
II
H
or
y s
Ħ
SS
ĭ
ior
at
=
ij.
S
8
믉
<u>.</u>

Tab	le 8 Simulati	Table 8 Simulation results for $\mu = 2$,	Ь	$= 2$ and $\lambda = 0.5$	16							
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	0.564^4	-0.189^{2}	0.432^{3}	$-5.169e01^{5}$	-79.413^{6}	0.064^{1}	$-1.067e03^{8}$	7205.153 ¹¹	-81.208^{7}	3448.634^{10}	$-1.431e03^9$
	$RMSE(\hat{\mu}) 1.142^2$	1.142^{2}	0.617^{1}	1.300^4	$3.179e03^{7}$	300.338^{5}	1.238^{3}	$1.088e04^{8}$	59785.690^{10}	386.1126	1111111.546^{11}	2.766e04 ⁹
	$\mathrm{Bias}(\hat{\sigma})$	0.048^{2}	-2.000^4	-0.162^{3}	$2.489e01^{7}$	6.7876	0.036^{1}	$7.662e02^{11}$	568.319^{10}	6.278 ⁵	384.6739	3.588e02 ⁸
	$RMSE(\hat{\sigma})$	0.573^{1}	2.000^{4}	0.796^{3}	$9.722e02^{7}$	30.473 ⁵	0.795^{2}	6.828e03 ⁹	2872.1158	41.4476	8221.573^{10}	9.236e03 ¹¹
	$\operatorname{Bias}(\hat{\lambda})$	53797.411^{11}	0.543^{1}	3.448 ²	$8.061e01^{6}$	69.6074	3.643 ³	$9.318e02^{8}$	6265.634^{10}	71.830 ⁵	1647.6199	4.599e02 ⁷
	$RMSE(\hat{\lambda})$	923022.260^{11}	0.587^{1}	6.794^{2}	$1.467e03^{6}$	327.557 ⁴	9.0543	7.482e03 ⁸	31507.431^{10}	388.250^{5}	14622.1549	4.101e03 ⁷
	D_{abs}	0.954^{10}	0.987^{11}	$0.061^{1.5}$	0.842^{7}	0.438^{4}	$0.061^{1.5}$	0.9349	0.4576	0.4435	0.436^{3}	0.8678
	Dmax	0.986^{10}	0.997^{11}	0.107^{2}	0.954^{7}	0.920^{5}	0.102^{1}	0.9759	0.9134	0.9316	0.906^{3}	0.9648
	\sum Ranks	516	353	20.5^{2}	52 ⁷	394	15.51	70 ¹¹	6910	455	648	679
50	$\mathrm{Bias}(\hat{\mu})$	0.333^{4}	-0.186^{2}	0.256^{3}	$-6.443e01^{5}$	$-1.184e02^{7}$	0.024^{1}	$-1.397e03^{8}$	2457.340 ⁹	$-9.180e01^{6}$	4140.081^{10}	$-1.236e05^{11}$
	$RMSE(\hat{\mu})$	0.824^{3}	0.421^{1}	0.906^{4}	$1.581e03^{6}$	$2.259e03^{7}$	0.81^{2}	$1.155e04^{8}$	30804.133^9	$3.729e02^{5}$	72773.955^{10}	4.438e06 ¹¹
	$\mathrm{Bias}(\hat{\sigma})$	0.057^{2}	-2.000^4	-0.019^{1}	$1.145e01^{5}$	2.887e01 ⁶	0.063^{3}	$6.657e02^{9}$	283.441 ⁷	$7.633e00^4$	382.4348	2.895e04 ¹¹
	$RMSE(\hat{\sigma})$	0.4661.5	2.000^4	0.4773	$3.158e02^{6}$	$9.304e02^{7}$	$0.466^{1.5}$	$5.449e03^9$	2831.951 ⁸	5.720e01 ⁵	6487.252^{10}	$1.131e06^{11}$
	$\operatorname{Bias}(\hat{\lambda})$	4962.528^{11}	0.520^{1}	1.356^{3}	$1.689e02^{5}$	$2.015e02^{6}$	1.151^{2}	$1.031e03^{8}$	2448.498^{10}	$1.554e02^4$	1741.6799	6.485e02 ⁷
	$RMSE(\hat{\lambda})$			3.949 ²	$5.629e03^{7}$	$3.916e03^4$	4.424 ³	$7.597e03^{8}$	19246.754^{10}	5.394e03 ⁶	13108.2219	5.309e03 ⁵
	D_{abs}	0.986^{10}	0.997^{11}	$0.039^{1.5}$	0.932^{6}	0.959^{7}	$0.039^{1.5}$	0.9749	0.4714	0.897 ⁵	0.453^{3}	0.9648
	Dmax	0.974^{10}	0.986^{11}	0.066^{2}	$0.932^{6.5}$	$0.932^{6.5}$	0.065^{1}	0.9649	0.846^{4}	0.895^{5}	0.843^{3}	0.9548
	Σ Ranks 52.5 ⁷	52.57	353	19.5 ²	46.5 ⁵	50.56	15.0^{1}	68.0^{10}	618	40.04	62.09	72.0 ¹¹
100	100 Bias($\hat{\mu}$)	0.174^{3}	-0.192^4	0.126^{2}	-82.726^{5}	$-1.709e02^{7}$	-0.016^{1}	$-2.299e03^{9}$	857.264^{8}	-103.851^{6}	-76938.355^{10}	- 7.836e04 ¹¹
	$RMSE(\hat{\mu})$	0.598^{3}	0.326^{1}	0.612^{4}	284.301 ⁵	$7.990e02^{7}$	0.549^{2}	$1.706e04^{9}$	16815.949^{8}	333.3736	5555307.800^{11}	5.045e06 ¹⁰
	$\mathrm{Bias}(\hat{\sigma})$	0.030^{2}	-2.000^4	$9.38e - 4^{1}$	5.925 ⁵	$1.931e01^{7}$	0.042^{3}	$9.821e02^{9}$	137.956^{8}	7.8616	19426.883^{11}	1.881e04 ¹⁰
	$\text{RMSE}(\hat{\sigma})$	0.392^{3}	2.000^{4}	0.336^{2}	23.605 ⁵	$2.763e02^{7}$	0.324^{1}	$6.846e03^{9}$	1262.486^{8}	28.4636	1347211.203^{11}	$1.223e06^{10}$
	$Bias(\hat{\lambda})$	1.1704	0.5113	0.3962	71.687 ⁵	4.508e02 ⁷	0.275^{1}	1.240e03 ¹¹	877.8949	88.2676	1198.269 ¹⁰	7.748e02 ⁸

continued
œ
<u>•</u>
9
ī

_ u	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$RMSE(\hat{\lambda})$		0.520^{1}	1.944 ³	265.914 ⁵	9.138e03 ¹⁰	1.928^{2}	7.764e03 ⁸	12379.045 ¹¹	299.0216	7858.218 ⁹	5.048e03 ⁷
	D_{abs}	0.954^{10}	0.976^{11}	$0.027^{1.5}$	0.478 ^{5.5}	0.8547	$0.027^{1.5}$	0.908	0.4714	0.4785.5	0.460^{3}	0.8768
	D_{max}	0.994^{10}		$0.046^{1.5}$	$0.980^{5.5}$	0.982^{7}	$0.046^{1.5}$	0.991^{9}	0.948^{3}	$0.980^{5.5}$	0.9494	0.987
	Nanks	593.5	393.5	172	466	587	131	73 ¹¹	865	475	669	72 ¹⁰
200	$\mathrm{Bias}(\hat{\mu})$	0.096^{3}	-0.189^4	0.058^{2}	-93.575^{5}	$-4.538e02^{8}$	-0.019^{1}	$-2.252e03^9$	102.0576	-103.813^{7}	-261301.802^{11}	$-6.536e04^{10}$
	$RMSE(\hat{\mu})$	0.410^{4}	0.267^{1}	0.392^{3}	305.248^{5}	$4.482e03^{7}$	0.360^{2}	$1.690e04^9$	6448.070^{8}	326.819^{6}	13229032.789^{11}	$4.060e06^{10}$
	$\mathrm{Bias}(\hat{\sigma})$	0.024^{2}	-2.000^4	0.002^{1}	6.741 ⁵	$1.049e02^{8}$	0.025^{3}	$7.431e02^{9}$	57.745 ⁷	7.7846	56096.353^{11}	$1.399e04^{10}$
	$\text{RMSE}(\hat{\sigma})$	0.275^{3}	2.000^4	0.228^{2}	24.978 ⁵	$1.518e03^{8}$	0.220^{1}	$5.586e03^9$	735.702 ⁷	27.201^{6}	2785159.391^{11}	$8.468e05^{10}$
	$\mathrm{Bias}(\hat{\lambda})$	0.065^{2}	0.509^{4}	0.067^{3}	79.110 ⁵	$6.256e02^{8}$	0.023^{1}	$1.476e03^{11}$	322.927^{7}	88.4636	1299.839^{10}	$7.409e02^{9}$
	$RMSE(\hat{\lambda})$	0.430^{2}	0.513^{3}	0.577^{4}	261.016^{5}	$1.073e04^{11}$	0.398^{1}	$9.622e03^{10}$	5824.409^{8}	281.4716	7347.811 ⁹	$3.592e03^{7}$
	D_{abs}	0.965^{10}	0.976^{11}	$0.019^{1.5}$	0.485 ^{5.5}	0.921 ⁷	$0.019^{1.5}$	0.943^{9}	0.444^{3}	0.485 ^{5.5}	0.4634	0.932^{8}
	D_{max}	0.987^{10}	0.998^{11}	$0.033^{1.5}$	0.955 ^{5.5}	0.9657	$0.033^{1.5}$	0.9769	0.903^{3}	0.955 ^{5.5}	0.945 ⁴	8996.0
	Nanks	363	425	182	414	648	121	75 ¹¹	497	486	729.5	72 ^{9.5}
250	$\mathrm{Bias}(\hat{\mu})$	0.068^{3}	-0.192^4	0.039^{2}	-86.904^{6}	$-4.788e02^{8}$	-0.023^{1}	$-2.431e03^{10}$	-7.091^{5}	-94.786^{7}	-768.354^{9}	$-6.339e05^{11}$
	$RMSE(\hat{\mu})$	0.356^{4}	0.254^{1}	0.322^{3}	295.000^{5}	$4.624e03^{8}$	0.303^{2}	$1.630e04^9$	4209.149^{7}	309.240^{6}	71244.395^{10}	$2.823e07^{11}$
	$\mathrm{Bias}(\hat{\sigma})$	0.015^{2}	-2.000^4	0.003^{1}	6.5635	$1.071e02^{8}$	0.023^{3}	$7.383e02^{9}$	23.918^{7}	7.2276	873.518^{10}	$1.484e05^{11}$
	$\text{RMSE}(\hat{\sigma})$	0.261^{3}	2.000^{4}	0.199^{2}	25.408 ⁵	$1.563e03^{8}$	0.193^{1}	$5.002e03^{9}$	393.006^{7}	26.341^{6}	32243.159^{10}	$6.713e06^{11}$
	$Bias(\hat{\lambda})$	0.039^{3}	0.507^{4}	0.031^{2}	74.354 ⁵	$4.805e02^{8}$	0.007^{1}	$1.744e03^{11}$	167.214^{7}	81.207^{6}	1185.708^{10}	$8.972e02^{9}$
	$RMSE(\hat{\lambda})$	0.171^{2}	0.510^{4}	0.247^{3}	254.4895	$5.243e03^{8}$	0.159^{1}	$1.065e04^{11}$	2905.803^{7}	266.856 ⁶	6607.028^{10}	5.296e03 ⁹
	D_{abs}	0.976^{10}	0.987^{11}	$0.017^{1.5}$	0.487 ^{5.5}	0.943 ⁷	$0.017^{1.5}$	0.9679	0.433^{3}	0.487 ^{5.5}	0.4644	0.956^{8}
	D_{max}	0.987^{10}	0.999^{11}	$0.029^{1.5}$	0.9665.5	0.9737	$0.029^{1.5}$	0.986^{9}	0.880^{3}	0.9665.5	0.944 ⁴	0.976^{8}
	Nanks	373	435	162	424	628	121	7710	466	487	679	7811

9
II
\prec
ਰ
an
_
Ш
р
ć,
\parallel
3
for
\mathbf{z}
=
ร
e.
_
5
Ξ
<u>[</u>
=
Ξ
2
• 1
6
Ф
ਰ
æ

Table	e 9 Simulatio	Table 9 Simulation results for $\mu = 3$,	$3, \sigma = 1$	$\sigma = 1$ and $\lambda = 6$								
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	-0.071^{1}	0.100^{2}	$1.108e41^{11}$	2.978 ⁵	3.510^{6}	-0.201^{3}	$-2.154e03^{8}$	8343.066^{10}	2.7894	7607.114 ⁹	-49.390^{7}
	$RMSE(\hat{\mu})$	0.353^{2}	0.100^{1}	$3.819e42^{11}$	5.814^{4}	27.822^{6}	0.496^{3}	$2.895e04^{8}$	138691.671^{10}	8.3075	38416.360^9	1899.8177
	$\mathrm{Bias}(\hat{\sigma})$	-0.127^{3}	0.010^{1}	$-2.846e41^{11}$	-0.879^{6}	-0.525^4	-0.036^{2}	$5.034e03^{9}$	5075.519^{10}	-0.835^{5}	212.7438	5.751 ⁷
	$RMSE(\hat{\sigma})$	0.245^{2}	0.010^{1}	9.782e42 ¹¹	0.968^{4}	3.032^{6}	0.292^{3}	$5.043e04^{10}$	25690.181^9	1.061^{5}	1067.054^{8}	231.0987
	$\mathrm{Bias}(\hat{\lambda})$	76122.025^{10}	0.010^{1}	$1.223e41^{11}$	-0.749^4	-0.760^{3}	16.982^{5}	$1.124e02^{7}$	6025.720^{8}	-0.691^{2}	12422.994 ⁹	23.1816
	$RMSE(\hat{\lambda})$	691153.591 ¹⁰	0.010^{1}	$4.472e42^{11}$	5.411 ²	21.057^4	33.932^{5}	$1.101e03^{7}$	44813.580^{8}	6.309^{3}	63476.1759	902.3716
	D_{abs}	0.998^{11}	0.028^{1}	0.997^{10}	0.484^{6}	0.484^{6}	0.060^{2}	0.9659	0.4773	0.4846	0.487^{8}	0.480^4
	D_{max}	0.995^{11}	0.039^{1}	0.963^{10}	0.940^{6}	0.940^{6}	0.098^{2}	0.943^{9}	0.937^{3}	0.940^{6}	0.942^{8}	0.9394
	\(\sum_{\text{Ranks}} \)	507	91	8611	373.5	415	252	629	618	373.5	6810	486
50	$\mathrm{Bias}(\hat{\mu})$	-0.069^{2}	0.100^{3}	-0.065^{1}	4.069 ⁵	8.422 ⁷	-0.138^{4}	$-1.347e03^{9}$	20428.569^{11}	4.1266	1918.945^{10}	-6.407 e 01^{8}
	$RMSE(\hat{\mu})$	0.286^{2}	0.100^{1}	0.306^{3}	5.381 ⁵	25.894^{7}	0.358^{4}	1.511e04 ⁹	223330.010^{11}	6.0186	21736.264^{10}	4.819e03 ⁸
	$\mathrm{Bias}(\hat{\sigma})$	-0.077^4	0.010^{1}	-0.068^{3}	-0.923^{7}	-0.337^{5}	-0.023^{2}	$1.601e03^{11}$	1508.209^{10}	-0.912^{6}	54.0879	1.142e01 ⁸
	$RMSE(\hat{\sigma})$	0.146^{2}	0.010^{1}	0.161^{3}	0.9655	2.695^{7}	0.165^{4}	$2.094e04^{11}$	11752.962^{10}	0.9876	622.4118	8.435e02 ⁹
	$Bias(\hat{\lambda})$	46997.091^{11}	0.010^{1}	12.5386	$-1.602^{2.5}$	-3.795^4	13.934^{7}	$2.231e02^{8}$	836.8299	$-1.602^{2.5}$	2512.894^{10}	6.527 ⁵
	$RMSE(\hat{\lambda})$	656566.162^{11}	0.010^{1}	20.1825	2.826^{2}	19.748^4	28.4496	$2.618e03^{8}$	9142.7589	3.079^{3}	35958.381^{10}	5.631e02 ⁷
	D_{abs}	0.998^{11}	0.028^{1}	0.037^{2}	0.4996.5	0.4996.5	0.038^{3}	0.976^{10}	0.496^4	0.4996.5	0.4996.5	0.9679
	Dmax	0.997^{11}	0.039^{1}	0.0612.5	$0.980^{6.5}$	$0.980^{6.5}$	$0.061^{2.5}$	0.995^{10}	0.977 ⁴	$0.980^{6.5}$	0.9806.5	0.993 ⁹
	\sum Ranks	547	10^{1}	25.5 ²	39.54	476	32.53	76 ¹¹	689	42.5 ⁵	7010	638
100	$\mathrm{Bias}(\hat{\mu})$	-0.059^{2}	0.100^{3}	-0.045^{1}	4.140^{5}	9.4948	-0.105^{4}	$-1.654e02^{9}$	53402.787^{11}	4.1776	$1.855e03^{10}$	6.3037
	$RMSE(\hat{\mu})$	0.241^{2}	0.100^{1}	0.245^{3}	4.774 ⁵	24.8858	0.285^{4}	5.348e03 ⁹	268320.951^{11}	4.8346	$5.271e04^{10}$	11.472 ⁷
	$\mathrm{Bias}(\hat{\sigma})$	-0.054^4	0.010^{1}	-0.043^{3}	-0.943^{8}	-0.251^{5}	-0.020^{2}	$1.508e02^{10}$	1482.063^{11}	-0.942^{7}	$5.106e01^9$	-0.793^{6}
	$\text{RMSE}(\hat{\sigma})$	0.104^{2}	0.010^{1}	0.109^{3}	0.962^{6}	2.5798	0.115^{4}	$6.654e03^{10}$	7402.689^{11}	0.961 ⁵	1.472e03 ⁹	1.371 ⁷

١

u	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$\mathrm{Bias}(\hat{\lambda})$	21762.592 ¹¹	0.010^{1}	11.618 ⁷	-1.654^{2}	- 4.4435	10.9756	3.244e01 ⁸	1180.98110	-1.663^{3}	3.433e02 ⁹	- 2.7384
	$RMSE(\hat{\lambda})$		0.010^{1}	19.0435	2.260^{2}	19.4986	23.275 ⁷	$1.116e03^{8}$	7058.805^9	2.261 ³	$7.479e03^{10}$	7.441 ⁴
	D_{abs}	0.026^{2}	0.028^{4}	0.026^{2}	$0.500^{7.5}$	$0.500^{7.5}$	0.026^{2}	0.965^{11}	0.4995	$0.500^{7.5}$	0.943^{10}	$0.500^{7.5}$
	Dmax		0.039^{1}	0.042^{2}	$0.990^{7.5}$	$0.990^{7.5}$	0.0433.5	0.999^{11}	98862	$0.990^{7.5}$	0.996^{10}	$0.990^{7.5}$
	Nanks		131	262	435	558	32.53	7610	739	456	77111	50^{7}
200	$\mathrm{Bias}(\hat{\mu})$		0.100^4	-0.030^{1}	4.109 ⁵	9.9399	-0.079^{3}	9.7818	62453.947^{11}	4.1216	$3.246e03^{10}$	6.015^{7}
	$RMSE(\hat{\mu})$		0.100^{1}	0.205^{2}	4.149 ⁵	9.9718	0.231^{4}	10.288^9	231817.468^{11}	4.170^{6}	$1.563e05^{10}$	6.568^{7}
	$\mathrm{Bias}(\hat{\sigma})$		0.010^{1}	-0.029^{3}	$-0.952^{8.5}$	-0.300^{5}	-0.019^{2}	9662.0	1674.879^{11}	$-0.952^{8.5}$	$8.706e01^{10}$	-0.863^{7}
	$\text{RMSE}(\hat{\sigma})$	0.078^{2}	0.010^{1}	0.079^{3}	0.953^{8}	0.332^{5}	0.084^{4}	4.156^{9}	6261.079^{11}	0.952^{7}	$4.242e03^{10}$	0.903^{6}
	$\mathrm{Bias}(\hat{\lambda})$		0.010^{1}	10.785^{8}	-1.716^2	-4.912^{6}	8.572 ⁷	-3.796^{5}	2478.323^{10}	-1.722^3	$1.854e01^{9}$	-2.874^4
	$RMSE(\hat{\lambda})$		0.010^{1}	18.061^{7}	1.788^{2}	4.9186	19.197^{8}	4.1495	23400.272^{10}	1.795^3	$1.166e03^9$	3.062^{4}
	D_{abs}	$0.018^{1.5}$	0.028^{4}	$0.018^{1.5}$	$0.500^{7.5}$	$0.500^{7.5}$	0.019^{3}	$0.500^{7.5}$	$0.500^{7.5}$	$0.500^{7.5}$	0.923^{11}	$0.500^{7.5}$
	D_{max}		0.039^{4}	0.030^{2}	0.9958	0.995^{8}	0.030^{2}	0.9958	0.994^{5}	0.995^{8}	0.997^{11}	0.995^{8}
	Nanks	36.54	171	27.52	465	54.58	333	57.59	71.5 ¹⁰	496	80^{11}	50.5^{7}
250	$\mathrm{Bias}(\hat{\mu})$		0.100^{4}	-0.026^{1}	4.1095	8998.6	-0.073^{3}	10.249^{9}	66118.591^{11}	4.11116	104.006^{10}	5.7997
	$RMSE(\hat{\mu})$		0.100^{1}	0.191^{2}	4.141 ⁵	9.891^{8}	0.215^{4}	10.654^{9}	223194.160^{11}	4.1446	6583.304^{10}	6.285^{7}
	$\mathrm{Bias}(\hat{\sigma})$		0.010^{1}	-0.025^{3}	$-0.952^{8.5}$	-0.288^{5}	-0.017^{2}	0.592^{6}	1775.849^{11}	$-0.952^{8.5}$	1.951^{10}	-0.886^{7}
	$RMSE(\hat{\sigma})$	0.070^{2}	0.010^{1}	0.0713	0.952^{8}	0.315^{5}	0.076^{4}	3.815^{9}	6053.939^{11}	0.952^{7}	183.626^{10}	0.920^{6}
	$\operatorname{Bias}(\hat{\lambda})$		0.010^{1}	10.509^{8}	-1.759^{2}	-4.930^{6}	7.480 ⁷	-3.748^{5}	3090.765^{10}	-1.763^{3}	14.2229	-2.830^{4}
	$RMSE(\hat{\lambda})$	544060.291^{11}	0.010^{1}	17.7218	1.819^{2}	4.9356	17.300^{7}	4.268 ⁵	21167.612^{10}	1.822^{3}	1426.2549	2.9514
	D_{abs}	0.016^{2}	0.028^{4}	0.016^{2}	0.500^{8}	0.500^{8}	0.016^{2}	0.500^{8}	0.500^{8}	0.500^{8}	0.500^{8}	0.500^{8}
	D_{max}	$0.027^{2.5}$	0.039^{4}	0.026^{1}	8966.0	8966.0	0.0272.5	8966.0	8966 ⁰	0.996^{8}	0.996^{8}	8966.0
	\sum Ranks	37.54	171	282	46.5 ⁵	548	31.5 ³	599	80 ¹¹	49.56	7410	517

ĺ
\prec
$\overline{}$
anc
∞
0
II
р
T
Ш
3
for
lts
3
\mathbf{z}
5
n
2
.≍
Ħ
$\overline{}$
=
ij.
S
0
9
a)
÷
유
.ه

Tab	le 10 Simula	Table 10 Simulation results for $\mu=-1, \sigma=0.8$ and $\lambda=0.5$	$\mu = -1, \sigma$	= 0.8 and ;	$\lambda = 0.5$							
и	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
20	$\mathrm{Bias}(\hat{\mu})$	0.445^4	0.3773	0.181^{2}	$-1.199e04^{11}$	$-5.223e01^{6}$	0.027^{1}	$-1.863e03^{8}$	14981.464^{10}	$-1.839e01^{5}$	663.4419	$-2.378e02^{7}$
	RMSE($\hat{\mu}$) 0.755 ⁴	0.7554	0.489^{1}	0.679^{3}	$4.074e05^{10}$	$1.234e03^{6}$	0.607^{2}	$1.508e04^{8}$	86363.3549	2.960e02 ⁵	764313.533^{11}	2.906e03 ⁷
	$\mathrm{Bias}(\hat{\sigma})$	0.261^{3}	-0.796^4	-0.113^{2}	$1.985e04^{11}$	$5.851e01^{7}$	0.041^{1}	1.646e03 ⁹	960.7588	$1.635e01^{5}$	2088.085^{10}	3.289e01 ⁶
	$\text{RMSE}(\hat{\sigma})$	0.610^{3}	0.798^{4}	0.505^{2}	$6.711e05^{11}$	$1.049e03^{7}$	0.484^{1}	$1.403e04^{9}$	4974.1158	5.628e02 ⁵	123501.662^{10}	5.655e02 ⁶
	$\mathrm{Bias}(\hat{\lambda})$	7112.171^{10}	0.331^{1}	1.112^{3}	8.291e01 ⁵	$2.847e02^{7}$	0.920^{2}	$1.329e03^{8}$	14738.215^{11}	$6.037e01^4$	2240.609 ⁹	9.473e01 ⁶
	$RMSE(\hat{\lambda})$	381854.327^{11}	0.340^{1}	4.703^{2}	$2.269e03^{6}$	$4.897e03^{7}$	5.3873	8.566e03 ⁸	58581.314^{10}	$1.789e03^{5}$	19935.298 ⁹	$1.120e03^4$
	D_{abs}	0.995^{10}	0.997^{11}	0.061^{2}	9.8976	0.967 ⁷	0.060^{1}	6066.0	0.461^4	0.8535	0.449 ³	0.9878
		0.970^{10}	0.976^{11}	0.1111^{2}	,6	0.957	0.103^{1}	0.968 ⁹	0.922^{3}	0.942^{5}	0.934 ⁴	0.9618
	\sum Ranks 55 ⁷	557	363	182	66 ¹⁰	546	12^{1}	68 ¹¹	638	394	659	525
50	$\mathrm{Bias}(\hat{\mu})$	0.237^{3}	0.381^{4}	0.049^{2}	$-1.344e01^{6}$	$-1.140e02^{7}$	-0.014^{1}	$-1.575e03^9$	7827.213 ¹¹	$-1.334e01^{5}$	$3.933e03^{10}$	$-1.202e03^{8}$
	RMSE($\hat{\mu}$) 0.476 ⁴	0.476^4	0.430^{3}	0.372^{2}	$2.179e02^{6}$	$2.221e03^{7}$	0.338^{1}	$1.150e04^{8}$	59588.963^{10}	$1.662e02^{5}$	$1.086e05^{11}$	3.028e04 ⁹
	$\mathrm{Bias}(\hat{\sigma})$	0.169^{3}	-0.800^4	-0.041^{1}	8.4646	$5.381e01^{7}$	0.043^{2}	$8.648e02^{11}$	534.713^{10}	4.788 ⁵	$3.974e02^9$	$1.841e02^{8}$
	$RMSE(\hat{\sigma}) 0.477^3$	0.4773	0.800^{4}	0.287^{2}	$4.188e02^{6}$	$9.431e02^{7}$	0.274^{1}	$6.337e03^{10}$	2562.7458	$3.049e02^{5}$	$1.141e04^{11}$	5.116e03 ⁹
	$\mathrm{Bias}(\hat{\lambda})$	0.145^{3}	0.325^{4}	0.087^{2}	$3.683e01^{6}$	$2.970e02^{8}$	0.028^{1}	$1.349e03^{10}$	7366.662^{11}	2.885e01 ⁵	$1.142e03^9$	1.686e027
	$RMSE(\hat{\lambda})$	1.234 ⁴	0.328^{1}	0.837^{3}	$1.338e03^{6}$	$5.281e03^{8}$	0.646^{2}	9.770e03 ⁹	40784.365^{11}	$1.231e03^{5}$	$1.075e04^{10}$	2.332e03 ⁷
	D_{abs}	0.923^{10}	0.990^{11}	$0.039^{1.5}$	0.8216	0.843^{7}	$0.039^{1.5}$	0.9079	0.474 ³	0.796^{5}	0.7434	0.8768
		0.876^{10}	0.998^{11}	0.069^{2}	0.784 ⁵	0.796^{7}	0.067^{1}	0.856^{9}	0.965^{3}	0.784 ⁵	0.784 ⁵	0.832^{8}
	\sum Ranks 40 ^{3.5}	403.5	425	16.5^{2}	476	587	10.5^{1}	75 ¹¹	629	403.5	6910	648
100	100 Bias($\hat{\mu}$)	0.133^{3}	0.376^{4}	0.019^{2}	$-1.266e01^{5}$	$-5.558e01^{7}$	-0.012^{1}	$-2.524e03^{10}$	2209.643 ⁹	$-1.392e01^{6}$	-158029.082^{11}	$-6.123e02^{8}$
	$RMSE(\hat{\mu}) 0.351^3$	0.351^{3}	0.402^{4}	0.235^{2}	1.386e02 ⁵	$3.368e02^{7}$	0.225^{1}	1.533e04 ⁹	27145.010^{10}	1.412e02 ⁶	11226157.745^{11}	$1.142e04^{8}$
	$\mathrm{Bias}(\hat{\sigma})$	0.0814	-0.800^{3}	-0.017^{1}	4.4015	$1.979e01^{7}$	0.035^{2}	$1.238e03^{10}$	271.770^9	4.6156	32328.931^{11}	$1.119e02^{8}$
	$RMSE(\hat{\sigma}) 0.427^3$	0.427^{3}	0.800^{4}	0.185^{2}	2.928e02 ^{5.5}	$5.706e02^{7}$	0.183^{1}	$7.492e03^{10}$	1631.365^{8}	2.928e02 ^{5.5}	2215197.167^{11}	3.782e03 ⁹
	$\mathrm{Bias}(\hat{\lambda})$	0.0583	0.3234	0.0192	2.585e01 ⁵	$1.014e02^{7}$	0.000^{1}	1.915e03 ¹⁰	2812.946 ¹¹	2.779e01 ⁶	920.8859	1.942e02 ⁸

continued
9
Ф
9
Ta

u u	Est.	MME	ALME	MLE	LSE	WLS	MPS	MSADE	MSALDE	CVM	AD	RAD
	$RMSE(\hat{\lambda})$	0.205^{3}		0.122^{2}	$1.095e03^{5}$	2.373e03 ⁷	0.088^{1}	$1.192e04^{10}$	21766.985 ¹¹	1.096e03 ⁶	8239.861 ⁹	2.645e03 ⁸
	D_{abs}	0.843^{10}	0.897^{11}	$0.027^{1.5}$	0.6635.5	0.743^{7}	$0.027^{1.5}$	0.7969	0.475^{3}	0.6635.5	0.4774	0.7658
	D_{max}			0.048^{2}	0.9855.5	0.9877	0.047^{1}	0.995^{9}	0.967^{3}	0.9855.5	0.976^4	0.9938
	\sum Ranks	393	455	14.52	41.54	567	9.5^{1}	7711	649	46.56	7010	578
200	$\mathrm{Bias}(\hat{\mu})$		0.380^{4}	0.011^{2}	-10.980^{5}	$-6.073e04^{10}$	-0.003^{1}	$-2.115e03^{9}$	221.200^{7}	-12.064^{6}	-345059.428^{11}	$-8.926e02^{8}$
	$\text{RMSE}(\hat{\mu})$			0.162^{2}	29.8895	$3.065e06^{10}$	0.158^{1}	$1.426e04^{9}$	12214.004^{8}	31.005^{6}	9124679.817^{11}	$9.574e03^{7}$
	$\mathrm{Bias}(\hat{\sigma})$			-0.007^{1}	0.190^{4}	$2.503e04^{10}$	0.025^{2}	$9.682e02^{9}$	172.402^{8}	0.308^{5}	66351.116^{11}	$1.118e02^{7}$
	$\text{RMSE}(\hat{\sigma})$	0.374^{3}	0.800^{4}	0.122^{1}	3.350^{5}	1.287 e 06^{10}	0.123^{2}	6.647e03 ⁹	1143.282^{7}	3.4526	1950260.450^{11}	$1.264e03^{8}$
	$\operatorname{Bias}(\hat{\lambda})$	0.031^{3}	0.324^{4}	0.008^{2}	10.7995	6.042e01 ⁷	-0.001^{1}	$1.824e03^{11}$	1106.675^{10}	11.809^{6}	770.5279	$3.079e02^{8}$
	$RMSE(\hat{\lambda})$	0.088^{3}	0.324^{4}	0.055^{2}	33.864 ⁵	5.895e02 ⁷	0.052^{1}	$1.246e04^{11}$	12130.283^{10}	35.048^{6}	5308.8349	4.024e03 ⁸
	D_{abs}			$0.019^{1.5}$	0.4895.5	0.812^{7}	$0.019^{1.5}$	0.9019	0.466^{3}	0.4895.5	0.485^4	0.8978
	D_{max}		0.996^{11}	$0.033^{1.5}$	0.9755.5	0.983^{7}	$0.033^{1.5}$	0.9879	0.949^{3}	0.9755.5	0.9734	8986.0
	\sum Ranks		486	132	404	689	11^{1}	76 ¹¹	267	465	7010	628
250	$\mathrm{Bias}(\hat{\mu})$		0.378^{4}	0.005^{1}	-11.302^{5}	-5553.515^{9}	-0.006^{2}	$-2.309e03^{8}$	-86.771^{7}	-12.164^{6}	$-3.179e05^{11}$	$-6.741e04^{10}$
	$\text{RMSE}(\hat{\mu})$	0.236^{3}	0.388^{4}	0.138^{2}	30.659^{5}	359994.502^9	0.136^{1}	$1.480e04^{8}$	7350.686^{7}	34.151^{6}	$1.169e07^{11}$	$3.249e06^{10}$
	$\mathrm{Bias}(\hat{\sigma})$		-0.800^{6}	-0.006^{1}	0.205^{4}	6259.007^9	0.021^{3}	$1.084e03^{8}$	130.342^{7}	0.315^{5}	$5.249e04^{11}$	$1.428e04^{10}$
	$\text{RMSE}(\hat{\sigma})$		0.800^{4}	0.107^{1}	3.429 ⁵	436828.585^9	0.108^{2}	$6.790e03^{8}$	978.690 ⁷	3.8496	$1.938e06^{11}$	$7.398e05^{10}$
	$\mathrm{Bias}(\hat{\lambda})$	0.023^{3}	0.323^{4}	0.006^{2}	11.128 ⁵	55.676 ⁷	-0.002^{1}	$2.108e03^{11}$	903.777^{10}	11.927^{6}	$8.920e02^9$	$2.857e02^{8}$
	$RMSE(\hat{\lambda})$	0.075^{3}	0.324^{4}	0.046^{2}	34.0155	148.538^{7}	0.045^{1}	$1.297e04^{11}$	9089.949^{10}	37.7396	7.126e03 ⁹	$3.513e03^{8}$
	D_{abs}	0.854^{10}	0.897^{11}	$0.017^{1.5}$	$0.490^{4.5}$	0.491^{6}	$0.017^{1.5}$	0.832^{9}	0.456^{3}	$0.490^{4.5}$	0.7967	0.803^{8}
	D_{max}	0.976^{10}		$0.029^{1.5}$	0.956^{5}	0.956^{5}	$0.029^{1.5}$	0.972^{9}	0.928^{3}	0.956^{5}	0.965^{7}	8/96.0
	Nanks	373	486	122	38.54	618	121	729.5	547	44.5 ⁵	76 ¹¹	729.5

References

- 1. Akaike, H.: Likelihood of a model and information criteria. J. Econom. 16(1), 3–14 (1981)
- Anderson, T.W., Darling, D.A.: Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Ann. Math. Stat. 23(2), 193–212 (1952)
- 3. Anderson, T.W., Darling, D.A.: A test of goodness of fit. J. Am. Stat. Assoc. 49(268), 765–769 (1954)
- Ara, J., Ali, S., Shah, I.: Monitoring schedule time using exponentially modified Gaussian distribution. Qual. Technol. Quant. Manage. 17(4), 448–469 (2020)
- Bdair, O.M.: Different methods of estimation for Marshall–Olkin exponential distribution. J. Appl. Stat. Sci. 19(2), 13–29 (2012)
- Bílková, D.: Lognormal distribution and using L-moment method for estimating its parameters. Int. J. Math. Models Methods Appl. Sci. 6(1), 30–44 (2012)
- Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)
- Cheng, R.C.H., Amin, N.A.K.: Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B (Methodol.) 45(3), 394–403 (1983)
- 9. Delley, R.: Series for the exponentially modified Gaussian peak shape. Anal. Chem. **57**(1), 388–388 (1985)
- Dey, S., Ali, S., Park, C.: Weighted exponential distribution: properties and different methods of estimation.
 J. Stat. Comput. Simul. 85(18), 3641–3661 (2015)
- Dey, S., Dey, T., Kundu, D.: Two-parameter Rayleigh distribution: different methods of estimation. Am. J. Math. Manage. Sci. 33(1), 55–74 (2014)
- Dey, S., Moala, F.A., Kumar, D.: Statistical properties and different methods of estimation of Gompertz distribution with application. J. Stat. Manage. Syst. 21(5), 839–876 (2018)
- 13. Dey, S., Raheem, E., Mukherjee, S.: Statistical properties and different methods of estimation of transmuted Rayleigh distribution. Rev. Colomb. Estadística **40**(1), 165–203 (2017)
- Gabriel, P., Garbett, S.P., Quaranta, V., Tyson, D.R., Webb, G.F.: The contribution of age structure to cell population responses to targeted therapeutics. J. Theor. Biol. 311, 19–27 (2012)
- Garbett, S. Kozdoba, M.: emg: exponentially modified Gaussian (EMG) distribution. CRAN. https://cran. r-project.org/web/packages/emg/index.html, 1.0.7 edition (2018)
- Golubev, A.: Exponentially modified Gaussian (EMG) relevance to distributions related to cell proliferation and differentiation. J. Theor. Biol. 262(2), 257–266 (2010)
- Golubev, A.: Exponentially modified peak functions in biomedical sciences and related disciplines. Comput. Math. Methods Med. 20, 17 (2017)
- 18. Grushka, E.: Characterization of exponentially modified Gaussian peaks in chromatography. Anal. Chem. **44**(11), 1733–1738 (1972)
- Gupta, R.D., Kundu, D.: Generalized exponential distribution: different method of estimations. J. Stat. Comput. Simul. 69(4), 315–337 (2001)
- Haney, S.: Practical applications and properties of the Exponentially Modified Gaussian (EMG) distribution. PhD Thesis, Drexel University (2011)
- Hosking, J.R.: L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodol.) 52(1), 105–124 (1990)
- 22. Hosking, J.R.: The four-parameter kappa distribution. IBM J. Res. Dev. 38(3), 251–258 (1994)
- Howerton, S.B., Lee, C., McGuffin, V.L.: Additivity of statistical moments in the exponentially modified Gaussian model of chromatography. Acta Chem. Anal. 478(1), 99–110 (2003)
- Kalambet, Y., Kozmin, Y., Mikhailova, K., Nagaev, I., Tikhonov, P.: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function. J. Chemom. 25(7), 352–356 (2011)
- Kundu, D., Raqab, M.Z.: Generalized Rayleigh distribution: different methods of estimations. Comput. Stat. Data Anal. 49(1), 187–200 (2005)
- Li, J.: A simplified exponentially modified gaussian function for modeling chromatographic peaks. J. Chromatogr. Sci. 33(10), 568–572 (1995)
- Louzada, F., Ramos, P.L., Perdoná, G.S.C.: Different estimation procedures for the parameters of the extended exponential geometric distribution for medical data. Comput. Math. Methods Med. 20, 16 (2016)
- Macdonald, P.D.: Comment on "an estimation procedure for mixtures of distributions" by Choi and Bulgren. J. R. Stat. Soc. Ser. B (Methodol.) 33(2), 326–329 (1971)
- Mazucheli, J., Louzada, F., Ghitany, M.E.: Comparison of estimation methods for the parameters of the weighted Lindley distribution. Appl. Math. Comput. 220, 463–471 (2013)
- Moret-Tatay, C., Gamermann, D., Navarro Pardo, E., de Córdova, F., Castellá, P.: ExGUtils: a Python package for statistical analysis with the ex-Gaussian probability density. Front. Psychol. 9, 612 (2018)

58 Page 34 of 34 S. Ali et al.

 Nicolaescu, D., Takaoka, G.H., Ishikawa, J.: Multiparameter characterization of cluster ion beams. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(5), 2236–2245 (2006)

- 32. Pettitt, A.N.: A two-sample Anderson–Darling rank statistic. Biometrika 63(1), 161–168 (1976)
- R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013)
- 34. Silver, J.D., Ritchie, M.E., Smyth, G.K.: Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10(2), 352–363 (2008)
- Timoshenko, O.A., Sager, E.: The EMG distribution and aggregate trade elasticities. In: Working Papers 2016-15, Institute for International Economic Policy, The George Washington University, available at IDEAS (2016)
- Torabi, H.: A general method for estimating and hypotheses testing using spacing. J. Stat. Theory Appl. 8(2), 163–168 (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

