INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO

INTEGRALES Y FUNCIONES ELÍPTICAS

T E S I S

QUE PARA OBTENER EL TÍTULO DE

LICENCIADO EN MATEMÁTICAS APLICADAS

P R E S E N T A

ALONSO DELFÍN ARES DE PARGA

ASESOR: DR. GUILLERMO GRABINSKY STEIDER REVISOR: DR. CESAR LUIS GARCÍA GARCÍA

MÉXICO, D.F 2014

 $Dedicado\ a$

. . .

Agradecimientos

Muchas gracias a ...

Resumen

Se explica de qué trata esta tesis

Índice general

radecimientos			II
Resumen			III
osario de símbolos			VI
dice de figuras			VIII
Funciones Simplemente Periódicas			1
1.1. Funciones de Variable Compleja			1
1.2. Funciones Periódicas			1
1.3. Serie de Fourier			1
Funciones Doblemente Periódicas			2
Series de Taylor y de Laurent			3
Teoremas			5
bliografía			7

Glosario de símbolos

\mathbb{C}	Conjunto de los números complejos	(p.1)
\mathbb{C}^*	$\mathbb{C}ackslash\{0\}$	(p.4)
$\widehat{\mathbb{C}}$	La Esfera de Riemann $\equiv \mathbb{C} \cup \{\infty\}$	(p.6)
\mathbb{R}	Conjunto de los números reales	(p.2)
\mathbb{Z}	Conjunto de los números enteros	(p.??)
\mathbb{N}	Conjunto de los números naturales	(p.??)
Ω	Conjunto de todos los periodos de una función elíptica	(p.??)
Δ	Paralelogramo fundamental de una función elíptica	(p.??)
$\Delta_{m,n}$	Traslaciones del paralelogramo fundamental	(p.??)
\overline{A}	Cerradura del conjunto A	(p.??)
∂A	Frontera del conjunto A	(p.??)
A^o	Interior del conjunto A	(p.??)
γ	Parametrización de una curva	(p.??)
$int(\gamma)$	Interior de una curva <u>cerrada</u> parametrizada	(p.??)
[z o w]	Segmento de recta que une a z con w ambos incluidos	(p.??)
$[z \to w)$	Segmento de recta que une a z con w sin incluir a w	(p.??)
f(A)	Imagen directa del conjunto A bajo la función f	(p.??)
G_n	Serie de Eisenstein	(p.??)
$ord(f,\Delta)$	Orden de una función elíptica f	(p.??)
$2\omega_j$	para $j=1,3$ periodos fundamentales de una función elíptica	(p.??)
ω_{j}	para $j=1,2,3$ son los medios periodos de una función elíptica	(p.??)
e_{j}	para $j = 1, 2, 3$ $e_j = \wp(\omega_j)$	(p.??)
80	Función elíptica \wp de Weierstrass	(p.??)
$\wp(z \omega_1,\omega_3)$	Notación de \wp enfatizando dependencia en ω_1,ω_3	(p.??)
ζ	Función ζ de Weierstrass	(p.??)
σ	Función σ de Weierstrass	(p.??)
	7.77	

g_{j}	para $j=2,3$ son los invariantes de la función \wp	(p.??)
n(a)	Cantidad de a-puntos en Δ	(p.??)
s(a)	Suma de los a -puntos en Δ	(p.??)
q.e.d	"quod erat demonstrandum" indica el fin de una prueba	(p.??)
\forall	abreviación de "para todo"	(p.??)
$\mathfrak{Re}(z)$	Parte Real de $z \in \mathbb{C}$	(p.??)
$\mathfrak{Im}(z)$	Parte Imaginaria de $z \in \mathbb{C}$	(p.??)
\overline{z}	Conjugado complejo de $z\in\mathbb{C},\overline{z}=\mathfrak{Re}(z)-i\mathfrak{Im}(z)$	(p.??)
z	Modulo complejo de $z \in \mathbb{C}, z = \sqrt{(\mathfrak{Re}(z))^2 + (\mathfrak{Im}(z))^2}$	(p.??)
arg(z)	Argumento $z \in \mathbb{C}$, $z = z e^{i \cdot arg(z)}$	(p.??)
$\lfloor t \rfloor$	función piso de $t \in \mathbb{R}$, $\lfloor t \rfloor = \max \{ n \in \mathbb{Z} : n \le t \}$	(p.??)
$z_1 \equiv z_2$	congruencia módulo Ω	(p.??)
$\exp(z)$	Función exponencial, $\exp(z) = e^z$	(p.??)
\sum'	Suma perforada	(p.??)
\prod'	Producto perforado	(p.??)

Índice de figuras

Capítulo 1

Funciones Simplemente Periódicas

- 1.1. Funciones de Variable Compleja
 - (ver [13] Parte I p.160).
- 1.2. Funciones Periódicas
- 1.3. Serie de Fourier

Capítulo 2

Funciones Doblemente Periódicas

Apéndice A

Series de Taylor y de Laurent

Serie de Taylor [14]

Recordemos que se define el disco abierto de radio R > 0 con centro en z_0 como sigue:

$$D_R(z_0) = \{ z \in \mathbb{C} : |z - z_0| < R \}$$

y el disco cerrado de radio $R \geq 0$ con centro en z_0 como:

$$\overline{D_R(z_0)} = \{ z \in \mathbb{C} : |z - z_0| \le R \}$$

Teorema A.1. (Taylor): Sea $f: G \subseteq \mathbb{C} \to \mathbb{C}$ una función analítica donde G es un dominio, entonces $\forall z_0 \in G, \exists R > 0$ tal que:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

converge uniformemente en $\overline{D_R(z_0)}$ y coincide con f(z).

Serie de Laurent [14]

Recordemos que se define la región anular con radios r y R como sigue:

$$A_{r,R}(z_0) = \{ z \in \mathbb{C} : r < |z - z_0| < R \}$$

donde $0 \le r < R \le \infty$

Notamos que si $z \in A_{r,R}(z_0)$ y existe $\rho > 0$ tal que $\overline{D_{\rho}(z_0)} \subset A_{r,R}(z_0)$, entonces existen $\rho_1, \rho_2 > 0$ tales que $r < \rho_1 < \rho_2 < R$ y :

$$\overline{D_{\rho}(z_0)} \subset A_{\rho_1,\rho_2}(z_0)$$

a los anillos del estilo de $A_{\rho_1,\rho_2}(z_0)$ los llamamos subanillos de $A_{r,R}(z_0)$

Teorema A.2. (Laurent): Sea $f: A_{r,R}(z_0) \subseteq \mathbb{C} \to \mathbb{C}$ una función analítica con $0 \le r < R \le \infty$, entonces $\forall z \in A_{r,R}(z_0)$ se tiene que:

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

en donde la convergencia de cada serie es uniforme en cada subanillo cerrado $\overline{A_{\rho_1,\rho_2}(z_0)}$ de $A_{r,R}(z_0)$ con $0 \le r < \rho_1 < \rho_2 < R \le \infty$ Más aún si ρ es tal que: $r < \rho < R$, entonces:

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta \quad \forall n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} f(\zeta)(\zeta-z_0)^{n-1} d\zeta \quad \forall n=1,2,3,\cdots$$

Observación A.1. Las siguientes definiciones acerca de la serie de Laurent se dan para el caso en el que z_0 es una **singularidad aislada** de f, tenemos que f es analítica en el anillo $A_{0,R}(z_0)$ con R > 0:

1) Llamamos la parte principal de la serie de Laurent a la serie:

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

2) Llamamos el **residuo de** f en z_0 a b_1 que se denota como $Res(f, z_0)$ donde:

$$Res(f, z_0) = \frac{1}{2\pi i} \int_{\substack{|z-z_0|=\rho\\}} f(\zeta)d\zeta = b_1$$

- 3) Si existe una infinidad de $n \in \mathbb{N}$ tales que $b_n \neq 0$ entonces decimos que z_0 es una singularidad esencial.
- 4) Si existe $k \in \mathbb{N}$ tal que $b_k \neq 0$ pero $b_j = 0 \ \forall j > k$, entonces decimos que z_0 es un **polo** de orden k.
- 5) Si $b_n=0 \ \forall n\in\mathbb{N}$ y existe m>1 tal que $a_j=0 \ \forall j=0,1,\cdots,m$ pero $a_{m+1}\neq 0$ entonces z_0 es un **cero de orden** m
- 6) Si $b_n = 0 \ \forall n \in \mathbb{N}$ entonces la serie de Laurent de f se reduce a la de Taylor de f solamente si z_0 es una **singularidad removible**, es decir si:

$$\lim_{z \to z_0} (z - z_0) f(z) = 0$$

Apéndice B

Teoremas

El objetivo del apéndice B es enunciar, sin probar, los teoremas que usamos durante el texto. Para consultar con detalle las pruebas invitamos al lector a referirse a bibliografía señalada respectivamente al final del enunciado de cada teorema, principalmente los teoremas fueron tomados de [13] y [14].

Teorema B.1. (Unicidad Global): Sean $f,g:G\subseteq\mathbb{C}\to\mathbb{C}$ dos funciones analíticas en un domino G y $E\subseteq G$ un subconjunto con un punto de acumulación en G, entonces si $f(z)=g(z)\ \forall z\in E$ sucede que $f(z)=g(z)\ \forall z\in G$. [13]

Teorema B.2. (Mapeo Abierto): Sea $f: G \subseteq \mathbb{C} \to \mathbb{C}$ una función analítica y no constante en un dominio G, entonces para todo $U \subseteq G$ subconjunto abierto de G, se tiene que V = f(U) es un subconjunto abierto de \mathbb{C} . [14]

Teorema B.3. (Weierstrass): Sea $f: G \subseteq \mathbb{C} \to \mathbb{C}$ una función analítica en un dominio G, si $K \subseteq G$ es un subconjunto compacto de G y entonces f(K) es un subconjunto compacto de \mathbb{C} y por lo tanto f esta acotada en K. **[14]**

Teorema B.4. (Liouville): Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera. Si existe $M \in [0, \infty)$ tal que:

$$|f(z)| \leq M \ \forall \ z \in \mathbb{C}$$

entonces f es una función constante. [14]

Teorema B.5. (Teorema del Residuo) : Sea $t \in [t_1, t_2]$, y sea $\gamma(t)$ una curva cerrada, i.e. $\gamma(t_1) = \gamma(t_2)$. Si f es una función analítica en $int(\gamma)$ excepto en un conjunto de singularidades aisladas $\{z_1, z_2, \cdots, z_n\} \subset int(\gamma)$, entonces:

$$\int\limits_{\gamma(t)} f(z)dz = 2\pi i \sum_{k=1}^{n} Res(f, z_k) \quad \textbf{[13]}$$

Teorema B.6. (Principio del Argumento): Sea $t \in [t_1, t_2]$ con $\gamma(t)$ una curva cerrada, i.e. $\gamma(t_1) = \gamma(t_2)$ y sea g una función analítica en $\overline{int(\gamma)}$, si f es una función analítica en $\overline{int(\gamma)}$ excepto en un conjunto de polos $\{b_1, b_2, \dots, b_n\} \subset int(\gamma)$ donde cada polo b_j tiene orden β_j $(j = 1, 2, \dots, n)$, si además $a \in \mathbb{C}$ es un punto arbitrario tal que $\{a_1, a_2, \dots, a_m\} \subset int(\gamma)$ son los a-puntos de f donde cada a-punto a_k tiene orden α_k $(k = 1, 2, \dots, m)$, entonces:

$$\frac{1}{2\pi i} \int_{\gamma(t)} g(z) \frac{f'(z)}{f(z) - a} dz = \sum_{k=1}^{m} \alpha_k g(a_k) - \sum_{j=1}^{n} \beta_j g(b_j)$$
 [13]

Teorema B.7. (Prueba M de Weierstrass) : Si $G \subseteq \mathbb{C}$ es un dominio $y \{g_k\}_{k=1}^{\infty}$ es una sucesión de funciones $(g_k : G \to \mathbb{C} \ \forall \ k \in \mathbb{N})$ tal que:

i)
$$\forall k = 1, 2, \dots$$
 existe $M_k > 0$ tal que $|g_k(z)| \leq M_k \ \forall \ z \in G$

$$ii) \sum_{k=1}^{\infty} M_k < \infty$$

entonces la serie $\sum_{k=1}^{\infty} g_k$ converge absoluta y uniformemente en G. [14]

Teorema B.8. (Mapeo Conforme): Sea G un dominio y $f: G \to \mathbb{C}$ una función analítica en G, entonces la funcion f es un mapeo conforme de primer tipo en todo punto $z_0 \in G$ donde $f'(z_0) \neq 0$. [13]

Teorema B.9. (Raíces Conjugadas) : Sea p(z) un polinomio de grado n con coeficientes reales, si existe $z_j \in \mathbb{C}$ raíz del polinomio entonces $\overline{z_j}$ también es una raíz. [5]

Teorema B.10. (Factorizacion de Polinomios): Cualquier polinomio con coeficientes reales de grado n, se puede factorizar en polinomios con coeficientes reales de grado 1 y polinomios con coeficientes reales de grado 2, ademas dichos polinomios de grado dos tienen discriminante negativo (i.e. son irreducibles en \mathbb{R}). [5]

Teorema B.11. (Formula de Leibniz): Sea $G = \{(x,t) : a \le x \le b, c \le t \le d\}$ un rectángulo en \mathbb{R}^2 y sean $f, \frac{\partial f}{\partial t} : G \to \mathbb{R}$ dos funciones continuas en G, entonces si $\alpha, \beta : [c,d] \to [a,b]$ son dos funciones diferenciables en [c,d], se tiene que la función $\varphi : [c,d] \to \mathbb{R}$ dada por:

$$\varphi(t) = \int_{\alpha(t)}^{\beta(t)} f(x, t) dx$$

es una función diferenciable en [c,d] y más aún su derivada para cada $t \in [c,d]$ esta dada por:

$$\varphi'(t) = f(\beta(t), t)\beta'(t) - f(\alpha(t), t)\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} \frac{\partial f(x, t)}{\partial t} dx \quad [4]$$

Bibliografía

- [1] L.V Ahlfors. Complex Analysis. McGraw-Hill Book Company, 3rd edition, 1979.
- [2] N.I. Akhiezer. Elements of the Theory of Elliptic Functions. The American Mathematical Society, Rhode Island, 1990.
- [3] T.M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer, New York, 2nd edition, 1990.
- [4] R.G Bartle. Introducción al Análisis Matemático. Limusa, México, 1980.
- [5] G. Birkhoff and S. MacLane. <u>A Survey of Modern Algebra</u>. Macmillan Publishing Co., Inc., New York, 4th edition, 1977.
- [6] C.B. Boyer and U.C. Merzbach. <u>A History of Mathematics</u>. Wiley, New York, 2nd edition, 1991.
- [7] A.L Cauchy. <u>Mémoires sur les fonctions complémentaires</u>. Œuvres complètes d'Augustin Cauchy, 1882.
- [8] D. Th. Egoroff. Sur les suites de fonctions mesurables. <u>C. R. Acad. Sci., Paris</u>, 152:244–246, 1911.
- [9] A.R. Forsyth. <u>Theory of Functions of a Complex Variable, Vol. I.</u> Dover Publications, 1965.
- [10] E. Freitag and R. Busam. <u>Complex Analysis</u>. Springer, Heidelberg, 2nd edition, 2009.
- [11] K Knopp. Theory of Functions, Parte I y II. Dover Publications, 1973.
- [12] D.F. Lawden. Eliptic Functions and Aplications. Springer, New York, 1989.
- [13] J. Liouville. <u>Leçons sur les fonctions doublement périodiques</u>. Journal für die Reine und Angewandte Mathematik, 1879.
- [14] A.I. Markushevich. Theory of Functions of a Complex Variable, Parte I,II y III. The American Mathematical Society, Rhode Island, 2005.

- [15] J.E Marsden. <u>Análisis Básico de Variable Compleja</u>. Trillas, México, 1996, reimpresión 2008.
- [16] J.S. Milne. Elliptic Curves. BookSurge Publishers, 2006.
- [17] R.M. Porter. <u>Contribuciones de Weierstrass a la variable compleja</u>. Miscelánea Matemática 25, pp. 59-74, 1997.
- [18] E.D Rainville. Special Functions. Macmillan Company, New York, 1960.
- [19] C.L. Siegel. <u>Topics in Complex Function Theory, Vol. I.</u> Wiley-Interscience, New York, 1969.
- [20] E.T. Whittaker and G.N. Watson. <u>A Course of Modern Analysis</u>. Cambridge University Press, New York, 4th edition, 1927, reimpresión 1963.