Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

Trabajo Práctico 05 Álgebra Relacional

1. Operaciones básicas. Para las siguientes relaciones, calcule y muestre la tabla resultante (la solución de este punto la puede armar en una planilla de cálculo (Excel).

a. Selección (σ):

i. **σ** titulo ≠ "Programador" (P)

ld_p	profesor	titulo	cod_c
2	María	Abogado	2c
4	Manuel	Agrimensor	1c

ii. $\sigma_{id_m = 6 \text{ v } carga_hs < 7}$ (M)

id_m	materia	carga_hs	id_p
1	Cálculo 1	6	4
4	Programación	5	1
5	Electrónica 1	6	4
6	Caligrafía 5	10	3

iii. $\sigma_{id_a \le 5 \land id_a > 2 \land alumno \ne "Celeste"}$ (A)

id_a	alumno		
3	Alejandra		
5	Juan		

b. Proyección (π):

i. $\pi_{cargo, cod_c}(K)$

cargo	cod_c
Titular	1
Auxiliar	2
JTP	3

ii. π_{id_m} (σ_{id_m ≠ 4 ^ año = 2021} (CU))

ld_m
2
1
5

Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

iii. σ_{carga_hs > 7} (π_{materia, carga_hs} (M))

materia	carga_hs
Física 310	8
Caligrafía 5	10

c. Unión (U):

i. A U ($\pi_{id_p, profesor}(P)$)

id_a	alumno
1	Claudia
2	Roberto
3	Alejandra
4	Celeste
5	Juan
6	Claudia
1	Juan
2	María
3	Rosario
4	Manuel

ii.
$$\pi_{id_a}(\sigma_{a\tilde{n}o=2023}(CU)) U \pi_{id_a}(\sigma_{id_m=5}(CU))$$

id_a	
4	
6	
5	

d. Diferencia (-):

i.
$$M - (\sigma_{carga_hs = 6}(M))$$

id_m	materia	carga_hs	id_p
2	Física 310	8	3
3	Biología 2	7	2
4	Programación	5	1
6	Caligrafía 5	10	3

Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

ii. π_{id_a} (A) - (π_{id_a} ($\sigma_{id_c=4}$ (MT))

i	d_a
	2
	3
	5

e. Producto Cartesiano (x):

i. ($\sigma_{\text{título}} = \text{"Programador"}(P)$) $X(\sigma_{\text{cod}_c \ge 2}(K))$

id_p	profesor	titulo	cod_c	K.cod_c	cargo
1	Juan	Programador	3c	2	Auxiliar
1	Juan	Programador	3c	3	JTP
3	Rosario	Programador	2c	2	Auxiliar
. 3	Rosario	Programador	2c	3	JTP

ii. ($\sigma_{carrera \neq "Medicina"}$ (C)) $\chi \pi_{id_m, materia}$ ($\sigma_{carga_hs = 6}$ (M))

id_c	carrera	id_m	materia
1	Lic. Informática	1	Cálculo 1
1	Lic. Informática	5	Electrónica 1
2	Ing. Computación	1	Cálculo 1
2	Ing. Computación	5	Electrónica 1
3	Tec. Física	1	Cálculo 1
3	Tec. Física	5	Electrónica 1

f. Intersección (\cap):

i. $\pi_{profesor}(P) \cap \pi_{alumno}(A)$

ii. $\pi_{id_a}(\sigma_{a\tilde{n}o=2021}(CU)) \cap \pi_{id_a}(\sigma_{id_m=6}(CU))$

id_a	
4	

g. Unión Natural (|×|):

i. $\pi_{id_m, materia}((\sigma_{carga_hs>8}(M))|\times|_{M.id_m=id_m}(FO|\times|_{FO.id_c=C.id_c}(\sigma_{id_c\geq3}(C))))$

 $\beta \leftarrow (\ (\boldsymbol{\sigma}_{id_a > 2 \land id_a \neq 6}(A)) \ | \ \times \ |_{A.id_a = CU.id_a}(CU)) \ | \ \times \ |_{id_m = M.id_m}(M)$

id_a	alumno	id_m	año	materia	carga_hs	id_p
3	Alejandra	1	2020	Cálculo 1	6	4
3	Alejandra	1	2021	Cálculo 1	6	4
3	Alejandra	4	2022	Programación	5	1
4	Celeste	1	2021	Cálculo 1	6	4
4	Celeste	6	2022	Caligrafía 5	10	3
4	Celeste	6	2023	Caligrafía 5	10	3
5	Juan	1	2019	Cálculo 1	6	4
5	Juan	1	2020	Cálculo 1	6	4
5	Juan	4	2021	Programación	5	1
5	Juan	5	2021	Electrónica 1	6	4

iii. $\varphi \leftarrow (M \mid x \mid M.id_p = P.id_p (\sigma_{titulo} = "Programador" (P)))$

id_m	materia	carga_hs	id_p	profesor	titulo	cod_c
2	Física 310	8	3	Rosario	Programador	2c
4	Programación	5	1	Juan	Programador	3c
6	Caligrafía 5	10	3	Rosario	Programador	2c

iv. $\pi_{\text{alumno, materia, año, profesor}}(\beta \mid x \mid \beta_{\text{id}_p} = \phi_{\text{id}_p} \phi)$

alumno	β.materia	ф.materia	año	profesor
Alejandra	Programación	Programación	2022	Juan
Celeste	Caligrafía 5	Física 310	2022	Rosario
Celeste	Caligrafía 5	Caligrafía 5	2022	Rosario
Celeste	Caligrafía 5	Física 310	2023	Rosario
Celeste	Caligrafía 5	Caligrafía 5	2023	Rosario
Juan	Programación	Programación	2021	Juan

h. División (/):

i.
$$\pi_{\text{alumno}}$$
 ((A $|\times|_{\text{A.id_a} = \text{CU.id_a}}$ CU) $/\pi_{\text{id_a}}$ (A))

alumno

ii.
$$\pi_{\text{alumno}}$$
 ((A $|\times|_{\text{A.id_a} = \text{MT.id_a}}$ MT) $/\pi_{\text{id_c}}$ (C))

alumno Claudia

2. Con el mismo esquema del punto anterior, arme las operaciones necesarias del A-R para realizar las siguientes operaciones:

a. Obtener el id y nombre de los profesores que no tengan título de Programador.

 Π id p. profesor (σ titulo ≠ "programador" (P))

Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

b. Mostrar el nombre del profesor y de la materia que dicta, donde la carga horaria no supere las 7hs.

ⁿprofesor, materia (
$$P \sim P.id_p = M.id_p (\sigma_{carga_hs} <= 7 (M))$$
)

c. Mostrar el nombre del alumno y las materias que se cursaron del 2021 en adelante, que no sea Caligrafía 5.

^Πalumno, materia (A
$$^{\infty}$$
A.id_a = id_a ($^{\sigma}$ año >= 2021(CU $^{\infty}$ CU.id_m = M.id_m ($^{\sigma}$ materia $^{\neq}$ "Caligrafía 5" (M))))

d. Obtener el id y nombre de las materias que fueron cursadas por Juan y Alejandra (por ambos).

$$\begin{array}{l} \alpha \leftarrow \Pi_{id_m, \ materia} \ (M \ ^{\infty}M.id_m = id_m \ (CU \ ^{\infty}CU.id_a = A.id_a \ (\sigma_{alumno} = "Juan" \ (A)))) \\ \beta \leftarrow \Pi_{id_m, \ materia} \ (M \ ^{\infty}M.id_m = id_m \ (CU \ ^{\infty}CU.id_a = A.id_a \ (\sigma_{alumno} = "Alejandra" \ (A)))) \\ \alpha \cap \beta \end{array}$$

e. Obtener el id y nombre de los alumnos que solo se hayan matriculado en la carrera de Lic. Informática.

$$\alpha \leftarrow \Pi_{id}$$
a, alumno $((A^{\infty}A.id_a = MT.id_aMT)^{\infty}id_c = C.id_c(\sigma_{carrera} \neq \text{``Lic. Informatica''}(C))$
 Π_{id} a, alumno $(A^{\infty}A.id_a = MT.id_aMT) - \alpha$

f. Mostrar el id y nombre de los alumnos que no cursaron ninguna materia.

A -
$$\Pi$$
id_a, alumno (A $^{\infty}$ A.id_a = CU.id_a (CU))

g. Encontrar el id y nombre de las materias que forman parte de todas las carreras.

$$\Pi_{id}$$
 m, materia ((FO / Π_{id} c (C)) ∞_{id} m = M.id m (M))

h. Mostrar los alumnos que no hayan cursado Programación.

A -
$$\Pi$$
id a, alumno (A $^{\infty}$ A.id a = id a(CU $^{\infty}$ CU.id m = M.id m($^{\sigma}$ materia = "Programación" (M))))

i. Mostrar los alumnos que solo cursaron Caligrafía 5.

$$\alpha \leftarrow \Pi_{id}$$
a, alumno $(A \sim A.id_a = id_a (CU \sim CU.id_m = M.id_m (\sigma_{materia} \neq "Caligrafia 5" (M))))$
 Π_{id} a, alumno $(A \sim A.id_a = CU.id_a CU) - \alpha$

Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

j. Mostrar los alumnos que cursaron Cálculo 1 en el 2020 y a los que cursaron Caligrafía 5 en el 2023.

```
\alpha \leftarrow \Pi_{alumno}(A^{\infty}A.id_a = id_a(\sigma_{a\tilde{n}o} = 2020(CU^{\infty}CU.id_m = M.id_m(\sigma_{materia} = "Calculo 1" (M)))))
\beta \leftarrow \Pi_{alumno}(A^{\infty}A.id_a = id_a(\sigma_{a\tilde{n}o} = 2023(CU^{\infty}CU.id_m = M.id_m(\sigma_{materia} = "Caligrafia 5" (M)))))
\alpha \ U \ \beta
```

- 3. Determine las operaciones necesarias del A-R para realizar las siguientes operaciones en el siguiente esquema relacional (con notación crow's foot):
 - a. Muestre el título y precio de los artículos cuyo año de lanzamiento fue el 2019.

```
\Pi_{\text{titulo. precio}} (\sigma_{\text{anio}} = 2019 \text{ (articulo))))
```

b. Liste los empleados que cobren más de \$500.000.

```
\sigma_{\text{sueldo}} > 500000 \text{(empleado))}
```

^Πidempleado, empleado (α ∩ β)

c. Mostrar el origen de los artículos que fueron publicados entre los años 2010 y 2020.

```
\pi_{\text{origen (origen }|x|_{\text{o.idorigen }}} = \text{a.idorigen }(\sigma_{\text{anio}}) >= 2010 \text{ $\Lambda$ anio } <= 2020 \text{ (articulo))}
```

d. Mostrar el nombre y domicilio de los socios a quienes se le prestaron el artículo "Los Padecientes".

```
\Pi_{\text{socio}}, domicilio (\text{socio} |x|_{\text{s.idsocio}} = \text{idsocio} (\text{prestamo} |x|_{\text{p.idarticulo}} = \text{a.idarticulo})))
```

e. Liste el nombre de los socios que nunca hayan pedido prestado un artículo.

```
\Pi_{SOCIO} socio - \Pi_{SOCIO}(socio |x|s.idsocio = p.idsocio prestamo)
```

f. Encontrar los empleados que hayan realizado ventas los días 18/09/2024 y 22/09/2024 (ambos días).

```
\alpha \leftarrow \text{empleado} |x|_{\text{e.idempleado}} = \text{v.idempleado} (\sigma_{\text{fecha}} = "18/09/2024"(\text{venta})) \beta \leftarrow \text{empleado} |x|_{\text{e.idempleado}} = \text{v.idempleado} (\sigma_{\text{fecha}} = "22/09/2024"(\text{venta}))
```

Programador Universitario – Lic. en Informática – Ing. en Informática Facultad de Ciencias Exactas y Tecnología – UNT

g. Obtener los socios que solo hayan pedido el articulo "Ágilmente".

```
\begin{split} &\alpha \leftarrow & \Pi_{SOCiO}(SOCiO \mid X \mid_{S.idSOCiO} = p.idSOCiO \text{ prestamo}) \\ &\beta \leftarrow & \Pi_{SOCiO}(SOCiO \mid X \mid_{S.idSOCiO} = idSOCiO \text{ (prestamo} \mid X \mid p.idarticulo = a.idarticulo \\ &(\sigma_{titulo} \neq \text{"Agilmente" (articulo)) ))} \\ &\alpha - \beta \end{split}
```

h. Obtener el nombre de los socios y titulo de los artículos que hayan sido prestados el día 16/09/2024 y los mismos datos de las compras realizadas el mismo día.

```
α \leftarrow Π_{socio,titulo} (socio |x|s.idsocio = idsocio((σinicio = "16/09/2024" (prestamo)) |x|p.idarticulo = a.idarticulo (articulo))) β \leftarrow Π_{socio,titulo} (socio |x|s.idsocio = idsocio((σfecha = "16/09/2023" (venta)) |x|v.idventa = idventa (detalleventa |x|d.idarticulo = a.idarticulo(articulo)))) α U β
```

i. Mostrar los empleados que no hayan vendido el artículo "El principito".

```
\alpha \leftarrow \Pi_{idempleado,empleado} empleado
```

 $\beta \leftarrow \Pi$ idempleado, empleado (empleado |x|e.idempleado = idempleado (venta |x|v.idventa = idventa (detalleventa |x|dv.idarticulo = a.idarticulo (σ articulo = "El Principito" (articulo)))))

α - β

j. Mostrar todos los socios de Tucumán que hayan pedido prestado artículo del género Comedia en todo el mes de agosto de 2024.

```
AC \leftarrow articulo |x|_{a.idgenero} = g.idgenero (\sigma_{genero} = "Comedia" (genero))
ST \leftarrow socio |x|_{s.iddepartamento} = iddepartamento (departamento <math>|x|_{d.idprovincia} = p.idprovincia (\sigma_{provincia} = "Tucumán" (provincia)))
\Pi_{socio} (ST |x|_{ST.idsocio=idsocio} (\sigma_{inicio} >= "01/08/2024" \land inicio <= "31/08/2024" (prestamo |x|_{p.idarticulo} = AC.idarticulo (AC))))
```

k. Liste el id y título de los artículos que fueron prestados a todos los socios.

```
Π<sub>idarticulo,titulo</sub> ((Π<sub>idsocio,idarticulo</sub> (prestamo) / Π<sub>idsocio</sub> (socio))
|x|<sub>idarticulo</sub>=a.idarticulo (articulo))
```