Задание 6. Свойства выводимости.

1. Используя теорему дедукции, докажите следующие свойства отношения выводимости (где S и T — любые множества формул, φ , ψ и θ , если не оговорено противное, - произвольные формулы):

Если $\varphi \in T$, то $T \vdash \varphi$.

Если $T \vdash \varphi$, то $T_0 \vdash \varphi$ для подходящего конечного множества $T_0 \subseteq T$.

Если $S \vdash \varphi$ и все формулы множества S выводимы из T, то $T \vdash \varphi$.

Если $T \cup \{\varphi\} \vdash \theta$ и $T \cup \{\psi\} \vdash \theta$, то $T \cup \{\varphi \lor \psi\} \vdash \theta(\varphi$ и ψ — предложения).

Если $T \cup \{\varphi\} \vdash \psi$ и $T \cup \{\varphi\} \vdash \neg \psi$, то $T \vdash \neg \varphi \ (\varphi - предложение)$.

 $T \vdash \varphi \land \psi$ тогда и только тогда, когда $T \vdash \varphi$ и $T \vdash \psi$.

- 2. Докажите, что для любой формулы $\varphi = \varphi(x_1, \dots, x_n)$ и любых термов t_1, \dots, t_n в исчислении предикатов выводимы формулы $\forall x_1 \dots \forall x_n \varphi \to \varphi(t_1, \dots, t_n)$ и $\varphi(t_1, \dots, t_n) \to \exists x_1 \dots \exists x_n \varphi$.
 - 3. Докажите следующее:

Множество формул T противоречиво тогда и только тогда, когда из него выводима хотя бы одна формула вида $\theta \wedge \neg \theta$.

Если множества формул $T_n (n \in \mathbb{N})$ непротиворечивы и $T_0 \subseteq T_1 \subseteq \ldots$, то множество $\bigcup_n T_n$ непротиворечиво.

Если φ — предложение, T — множество формул и $T \cup \{\varphi\}$ противоречиво, то $T \vdash \neg \varphi$.

Если множество формул T непротиворечиво, то для любого предложения φ непротиворечиво хотя бы одно из множеств $T \cup \{\varphi\}$ и $T \cup \{\neg \varphi\}$.

Если множество предложений $S=T\cup\{\exists x\psi(x)\}$ непротиворечиво, то и множество $S\cup\{\psi(c)\}$ непротиворечиво для любого не входящего в формулы из S сигнатурного константного символа c.

4. Пусть T — теория Хенкина. Докажите следующее:

 $T \vdash \neg \varphi \iff T \not\vdash \varphi.$

 $T \vdash (\varphi \lor \psi) \iff T \vdash \varphi$ или $T \vdash \psi$.

 $T \vdash (\varphi \to \psi) \iff T \not\vdash \varphi \text{ или } T \vdash \psi.$

 $T \vdash \exists x \theta(x) \iff T \vdash \theta(t)$ для некоторого терма t без переменных.

 $T \vdash \forall x \theta(x) \iff T \vdash \theta(t)$ для любого терма t без переменных.

5. Докажите, что любая непротиворечивая теория не более чем счетной сигнатуры σ может быть расширена до теории Хенкина сигнатуры σ_C , где C — счетное множество новых константных символов.