



### **ODEs** - revision

Summary of methods for ODEs

Oscar Benjamin and Lucia Marucci

**Department of Engineering Mathematics** 



Spring Semester 2018

#### Classification of ODEs

Example:  $\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = 2t \frac{\mathrm{d} x}{\mathrm{d} t} + x + \sin t$ 

- $\normalfont{\begin{tabular}{l} $\mathsf{First}$ look at the derivatives in the ODE to identify the dependent and independent variables (e.g. <math>x$  and t)
- Also check the order of the derivatives to find the order of the ODE (e.g. 2nd order).
- Try to rearrange into standard form of linear ODE. If you can it's linear, otherwise nonlinear.
- If it is linear we can distinguish between homogeneous or non-homogeneous (this distinction doesn't apply to nonlinear ODEs).



Spring Semester 2018

#### **Definition of ODEs**

An ODE is an equation involving the derivatives of an unknown function/variable:

$$x \frac{\mathrm{d}^t}{\mathrm{d}^2 x} + \mathrm{e}^x = 0$$

- $\mathbf{k}$  If the equation involves e.g.  $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$  then y is the *dependent* variable and x is the *independent* variable.
- We typically want to solve the ODE to find the dependent variable as a function of the independent variable (e.g. y(x)).
- ★ The order of an ODE is the order of the highest-order derivative in the ODE e.g. the above are 1st order, 2nd order and 2nd order respectively.



Spring Semester 2018

K Standard form for e.g. 2nd order linear ODE is

$$a(t)\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b(t)\frac{\mathrm{d}x}{\mathrm{d}t} + c(t)x = f(t)$$

- $\text{ Given e.g. } \frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = 2t \frac{\mathrm{d} x}{\mathrm{d} t} + x + \sin t \text{ we need to rearrange to get into standard form.}$
- All terms involving the dependent variable (e.g. x) go on the left and terms not involving the dependent variable go on the right:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 2t \frac{\mathrm{d}x}{\mathrm{d}t} - x = \sin t$$

Ke This is in standard form with a(t)=1, b(t)=-2t, c(t)=-1 and  $f(t)=\sin t$  so it's linear.

## Homogeneous or non-homogeneous

- If an ODE is linear we can also say whether it is *homogeneous* or *non-homogeneous*.
- $\ensuremath{\mathbb{K}}$  put it into standard form for a linear ODE. If the right hand side f(t)=0 (for all t) then it is homogeneous.
- $\not$  If  $f(t) \neq 0$  (for any t) then it is non-homogeneous.
- $\mathbf{k}$  Example:  $\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = 2t \frac{\mathrm{d} x}{\mathrm{d} t} + x + \sin t$ .
  - ► Rearrange to get

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 2t \frac{\mathrm{d}x}{\mathrm{d}t} - x = \sin t$$

- So  $f(t) = \sin t$  which is not zero for all t.
- ► This example is non-homogeneous.



Spring Semester 2018

## General and particular solutions

- An ODE on its own will not have a unique solution. There will be a family of solutions.
- Kee The *general solution* is a solution with unknown integration constants representing all possible solutions (e.g. x=2t+C).
- ${\it \&}$  To get a unique solution we also need *initial conditions* (e.g. x(0)=-1).
- & With the initial condition we get the *particular solution* (x=2t-1).
- The problem where we have both an ODE and initial conditions is known as an initial value problem (IVP).
- An IVP has a unique solution if the number of initial conditions matches the order of the ODE (for well-behaved ODEs).



Spring Semester 2018

## Classification examples

 $\frac{\mathrm{d}\,x}{\mathrm{d}\,t} = \sin t$  : 1st order, linear, non-homogeneous.

 $\frac{d^2 x}{dt^2} = \sin x$ : 2nd order, nonlinear.

 $\frac{d^2y}{dx^2} = x\frac{dy}{dx}$ : 2nd order, linear, homogeneous.

 $\frac{\mathrm{d}^3\,y}{\mathrm{d}\,t^3} + y\frac{\mathrm{d}^2\,y}{\mathrm{d}\,t^2} = 1$   $\,$  : 3rd order, nonlinear.

 $\frac{1}{x}\frac{\mathrm{d}x}{\mathrm{d}t}=1$ : 1st order, linear, homogeneous.



Spring Semester 2018

## **Direct integration**

An ODE of order n in the form

$$\frac{\mathrm{d}^n x}{\mathrm{d} t^n} = f(t)$$

can be solved by direct integration. Simply integrate  $\boldsymbol{n}$  times.

Example:  $\frac{d^2 x}{dt^2} = 3$ .

Integrate once:  $\frac{d x}{d t} = 3t + C$ .

Integrate again:  $x = \frac{3}{2}t^2 + Ct + D$ .

Now use initial conditions to find the constants.



## Separation of variables

A 1st order ODE of the form

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)g(t)$$

can often be solved using separation of variables. Divide by f(x) then "multiply" by  $\mathrm{d}t$  and integrate

$$\int \frac{1}{f(x)} \, \mathrm{d} x = \int g(t) \, \mathrm{d} t$$

then rearrange for x.

Example:  $\frac{\mathrm{d}\,x}{\mathrm{d}\,t}=x^2$ .

$$\int \frac{1}{x^2} \, \mathrm{d} x = \int \mathrm{d} t \implies -\frac{1}{x} = t + C \implies x = -\frac{1}{t + C}$$



Spring Semester 2018

## Integrating factor example

Example:  $t^2 \frac{\mathrm{d}\,x}{\mathrm{d}\,t} = t(1-x)$ . First rearrange to standard form

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} + \frac{x}{t} = \frac{1}{t}$$

We have  $p(t)=rac{1}{t}$  so  $I=\mathrm{e}^{\int p(t)\,\mathrm{d}\,t}=\mathrm{e}^{\ln t}=t.$  Multiply through by I to get

$$t\frac{\mathrm{d}x}{\mathrm{d}t} + x = 1$$

Now rewrite the LHS (reverse product rule), integrate and rearrange:

$$\frac{\mathrm{d}}{\mathrm{d}t}(xt) = 1 \implies xt = t + C \implies x = 1 + \frac{C}{t}$$



Spring Semester 2018

## Integrating factor

Any 1st order, linear, homogeneous ODE can be written in standard form as

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} + p(t)x = q(t)$$

and can be solved using the integrating factor method.

- Put in standard form.
- $\norm{\ensuremath{\not{k}}}$  Multiply through by  $I = \exp(\int p(t) dt)$ .
- Write the LHS as  $\frac{d}{dt}(xI)$ .
- $\norm{1}{k}$  Integrate both sides wrt t.
- $\norm{\ensuremath{\not{k}}}$  Rearrange for x.



Spring Semester 2018

#### Clever substitution

Sometimes it may not appear possible to apply the previous methods to an ODE but a clever substitution gives a new ODE that can be solved. We have one case in particular.

Any ODE of the form  $\frac{\mathrm{d}\,x}{\mathrm{d}\,t}=f\left(\frac{x}{t}\right)$  can be made separable by the substitution  $y=\frac{x}{t}$ .

$$k = yt$$
  $\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}(yt)}{\mathrm{d}t} = t\frac{\mathrm{d}y}{\mathrm{d}t} + y.$ 

$$t \frac{\mathrm{d} y}{\mathrm{d} t} + y = f(y)$$

Example: 
$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} = \frac{x}{t} + \frac{t}{x} \implies t\,\frac{\mathrm{d}\,y}{\mathrm{d}\,t} + y = y + \frac{1}{y} \implies \int y\,\mathrm{d}\,y = \int \frac{\mathrm{d}\,t}{t}$$

So we have 
$$\frac{1}{2}y^2 = \ln t + C$$
  $\implies y = \pm \sqrt{2 \ln t + C}$ 



# Linear, homogeneous ODEs with constant coefficients

A linear, homogeneous ODE with constant coefficients has the standard form (e.g. for 2nd order):

$$a\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + cx = 0$$

We can always solve this with the *ansatz*  $x = e^{\lambda t}$  giving

$$a\lambda^2 e^{\lambda t} + b\lambda e^{\lambda t} + c e^{\lambda t} = 0$$

Since  $\mathrm{e}^{\lambda t} 
eq 0$  we can divide through to get the characteristic equation

$$a\lambda^2 + b\lambda + c = 0$$

Use quadratic formula to get  $\lambda_1$  and  $\lambda_2$  which gives the general solution

$$x = Ax_1 + Bx_2 = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$$



Spring Semester 2018

#### Constant coefficient examples

$$\stackrel{\mathbf{d}}{=} \frac{x}{dt} = -kx \implies x = Ae^{-kt}$$

$$\stackrel{\mathbf{d}^2 x}{\operatorname{d} t^2} = k^2 x \implies x = A e^{kt} + B e^{-kt}$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = -\omega^2 x \implies x = A \sin \omega t + B \cos \omega t$$

$$\overset{\mathbf{d}}{\overset{d}{\overset{d}}} \frac{d^2 x}{dt^2} = \frac{d x}{dt} + 2x \implies x = A e^{-t} + B e^{2t}$$

$$\stackrel{\mathbf{d}}{\overset{d}{\overset{d}}} \frac{d^2 x}{dt^2} + 2 \frac{d x}{dt} + x = 0 \implies x = (A + Bt) e^{-t}$$

$$\frac{d^3x}{dt^3} + \frac{d^2x}{dt^2} - \frac{dx}{dt} - 1 = 0 \implies x = (A + Bt)e^{-t} + Ce^{t}$$

Always two constants for a 2nd order ODE, three for 3rd etc. You don't need to know how to find roots of a cubic but should be able to follow (not solve) the last example here.



Spring Semester 2018

# Linear, 2nd order, homogeneous, constant coefficients

A linear, 2nd order, homogeneous ODE with constant coefficients has general solution

$$x = A e^{\lambda_1 t} + B e^{\lambda_2 t}$$
  $\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

We have 3 cases:

 $\not k$   $b^2 - 4ac > 0$  real roots, easy case.

 $\not k$   $b^2-4ac<0$  complex roots:  $\lambda_{1,2}=\alpha\pm j\beta$  and

$$x = e^{\alpha t} (A\cos\beta t + B\sin\beta t)$$

 $\not k$   $b^2-4ac=0$  degenerate case (repeated roots).  $\lambda=-\frac{b}{2a}$  and

$$x = A e^{\lambda t} + Bt e^{\lambda t}$$



Spring Semester 2018

## Higher-order Linear non-homogeneous ODEs

Integrating factor only works for 1st order non-homogeneous ODEs. For higher order we use complementary function and particular integral.

We want to solve e.g.

$$a\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + cx = f(t) \tag{1}$$

We write our general solution of (1) as  $x=x_c+x_p$  where  $x_c$  solves the homogeneous equation

$$a\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + cx = 0$$

and  $x_p$  is any particular solution of (1).

## Higher order, non-homogeneous example

Example:  $\frac{d^2 x}{dt^2} + 9x = 5e^t$ 

$$\frac{\mathrm{d}^2 x_c}{\mathrm{d} t^2} + 9x_c = 0 \implies x_c = A \sin 3t + B \cos 3t$$

 $\not k$  Try  $x_p = C e^t$  and find C:

$$\frac{d^2 x_p}{dt^2} + 9x_p = C e^t + 9C e^t = 10C e^t = 5 e^t$$

K

$$x = x_c + x_p = A\sin 3t + B\cos 3t + \frac{1}{2}e^t$$

(Note A and B are constants of integration to be determined from initial conditions. C is a parameter whose value is fixed by the ODE for  $x_p$ .)



Spring Semester 2018

## 1st order (state-space) form

Higher order ODEs can be written as systems of 1st-order ODEs e.g.:

$$\frac{\mathrm{d}^2 \,\theta}{\mathrm{d} \,t^2} = -4\sin\theta$$

If we introduce a new variable  $\alpha = \frac{\mathrm{d}\,\theta}{\mathrm{d}\,t}$  then we can rewrite this as

$$\frac{\mathrm{d}\,\theta}{\mathrm{d}\,t} = \alpha$$

$$\frac{\mathrm{d}\,\alpha}{\mathrm{d}\,t} = -4\sin\theta$$

All systems of ODEs of any order can be rewritten as systems of 1st order ODEs.



Spring Semester 2018

## Particular integral

We need to guess the particular integral depending on f(t) so

- $f(t) \text{ is a polynomial e.g.} f(t) = t^2$   $\operatorname{Try} x_p = Ct^2 + Dt + E.$
- f(t) is trigonometric e.g.  $f(t) = \cos 2t$ Try:  $x_n = C \cos 2t + D \sin 2t$ .
- $\not k$  f(t) is exponential:  $x_p$  should be exponential
- $\not k$  f(t) is a sum of different things:  $x_p$  should be a similar sum
- $\bigvee$  Corner case f(t) has terms in common with  $x_c$ : multiply them by t.

It doesn't matter how you find the particular inegral  $\boldsymbol{x}_p$  so nothing wrong with guessing.



Spring Semester 2018

# State-space for linear, homogeneous ODEs with constant coefficients

Linear, homogeneous ODEs with constant coefficients give a state-space form that can be written as

$$\frac{\mathrm{d}\,\mathbf{x}}{\mathrm{d}\,t} = \mathbf{M}\,\mathbf{x}$$

with x a vector of dependent variables and M a constant matrix. The general solution (assuming M is not defective) is given by

$$\mathbf{x} = A_1 \mathbf{v}_1 e^{\lambda_1 t} + A_2 \mathbf{v}_2 e^{\lambda_2 t} + \dots$$

where  $v_i$  is an eigenvector of M with eigenvalue  $\lambda_i$ . The  $A_i$  are the constants of integration.



Matrix ODEs example

Example:  $\frac{\mathrm{d}\,x}{\mathrm{d}\,t} = x + 2y \quad \frac{\mathrm{d}\,y}{\mathrm{d}\,t} = 2x + y$ 

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{cc}1&2\\2&1\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)$$

Matrix  ${f M}$  has eigenvectors

$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

with eigenvalues  $\lambda_1=-1$  and  $\lambda_2=3$  so the solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + B \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t}$$

So we have

$$x = -Ae^{-t} + Be^{3t}, \quad y = Ae^{-t} + Be^{3t}$$