

一、数字量与模拟量

• 1、模拟量与数字量

模拟量

- 在时间上和数量上都是连续的物理量。
- 如: 高度、重量等

数字量

- 在时间上和数量上都是离散的、不连续的物理量(存在最小的数量单位Δ)。
- 如: 数字、字母等

• 2、模拟电路与数字电路

二、电子技术

1、电子技术的发展历程

电子技术是一门研究电子器件及其应用的学科。

电子管时代 $(1905 \sim 1948)$

晶体管时代 $(1948 \sim 1959)$ 集成电路时代 $(1950 \sim)$

电子管 (1904)

晶体管 (1948)

中/小规模集成 大规模/超大规模 电路(1950年代)集成电路(1970年代)

• 2、摩尔定律

英特尔创始人之一 戈登·摩尔

集成电路上可容纳的晶体管数目,约每隔
 24个月便会增加一倍,性能也将提升一倍。

• 3、计算机的构成

集成电路

模块

三、课程内容

数学基础 一、数制和码制 二、逻辑代数基础 基本电路 三、门电路 四、组合逻辑电路 逻辑电路 五、半导体存储电路 六、时序逻辑电路 七、脉冲波形的产生和 其他电路 八、数-模和模-数转换 整形电路

一、数码的基本概念

数字电路所处理的各种数字信号是以数码形式给出的。

1、数制

在用数码表示数量大小时,常用进位计数制的方法组成多位数码。

• 2、码制

在用数码表示不同事物时,数码是不同事物的代号,简称为代码。

编制代码所需要遵循的规则,称为码制。

每个人都可以根据自己的需要,制定编码规则,编制代码。

考虑信息交换的需要, 必须制定一些共同使用的通用代码。

二、几种常用的数制

二进制 八进制 十进制 十六进制 数制的内容 0~9 0~15 0~1 0~7 每一位的 表示方法 两个数 八个数 十个数 十六个数 逢十六进 进位规则 逢二进一 逢八进一 逢十进-进制的表 B或2 H或16 O或8 D或10 示方式 示例 $(2A.7F)_{16}$ (101.11), $(12.4)_8$ $(5.75)_{10}$

不同进制数的对照表

十进制数	二进制	八进制	十六进制
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03 4307	3
04	0100	04	GU2834
05	0101	05	555
06	0110	06	650
12 07	0111	07	7 533
754087	1000	10	8
09/55/1	1001	11/20	9
10	1010	12	A
11	1011	13	В
12	1100	14	A C
13	1101	15	D.
14	1110	№ 16 ↓	E
15	1111	17	F

三、不同数制间的转换

十 进制

进制

采用通用展开式,实现任意进制向十进制的转换。

十六进制

$$D = \sum k_i N^i$$

i为位数

• ... 4 3 2 1 0 . -1 -2 -3 -4 ...

N为基数

· 二进制 N=2; 八进制 N=8; 十进制 N=10; 十六进制 N=16

 k_i 为第i位的系数,N为第i位的权

• 例1: (143.75) 10的展开式

位数i	2	1	0		-1	-2
权Ni	10 ²	10 ¹	10 ⁰	300	10 ⁻¹	10-2
系数k _i	1	4	3		7	5
项 $k_i N^i$	100	240	3		0.7	0.05
D	N	100 + 40	3+0.7	7 + 0.05	= 143.75	55

$$D = \sum_{i=0}^{\infty} k_i 10^i$$

$$= 1 \times 10^2 + 4 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 5 \times 10^{-2}$$

$$= (143.75)_{10}$$

• 例2 (二-十转换):将(101.11)2转换为十进制数

位数i	2	1	0	·	-1	-2
权Ni	2 ²	21	20	300	2-1	2-2
系数k _i	1	0	1		1	1
项 $k_i N^i$	4	00	1		0.5	0.25
D		4+0	±1+0.5	5 + 0.25	= 5.75	55

$$D = \sum_{i=1}^{\infty} k_i 2^{i}$$

$$= 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= (5.75)_{10}$$

· 例3(八-十转换):将(12.4)₈转换为十进制数

位数i	2	1	0		-1	-2
权Ni	8 ²	8 ¹	80	300	8-1	8-2
系数k _i		1	2		4	
项 $k_i N^i$	+ 5/	€8	2		0.5	
D		EF.	8+2+0	.5 = 10.5	5	55

$$D = \sum_{i} k_{i} 8^{i}$$

$$= 1 \times 8^{1} + 2 \times 8^{0} + 4 \times 8^{-1}$$

$$= (10.5)_{10}$$

· 例4(十六-十转换):将(2A.7F)₁₆转换为十进制数

位数i	2	1	0		-1	-2
权Ni	16 ²	16 ¹	16 ⁰	of the same	16 ⁻¹	16 ⁻²
系数k _i		2	A(10)		7	F(15)
项 $k_i N^i$	13	₹32	10		7/16	15/256
D	32	2 + 10 +	7/16 + 15/	256 = 4	2.496093	375

$$D = \sum_{i=0}^{\infty} k_i 16^{i}$$

$$= 2 \times 16^{1} + 10 \times 16^{0} + 7 \times 16^{-1} + 15 \times 16^{-2}$$

$$= (42.49609375)_{10}$$

- · 例5(十-二转换):将(173.8125)₁₀转换为二进制数
 - 1) 整数部分(173)10: 相除求余左向左

2) 小数部分 (0.8125) 10: 相乘取整右向右

3)整数部分与小数部分合并

 $(173.8125)_{10} = (10101101.1101)_2$

• 例6(十-八转换):将(173.8125)10转换为八进制数

.64

$$(173.8125)_{10} = (255.64)_{8}$$

· 例7(十-十六转换):将(173.8125)₁₀转换为十六进制数

.D

$$(173.8125)_{10} = (AD.D)_{16}$$

• 3、二进制与八进制的相互转换

十进制	二进制	八进制
0	000	0
1	001	12
2	010	275000
3	011	3
4	100	4
5	101	5
6	110	6
1907	111	Fig. 7
8	1000	10

将3位二进制数看做一个整体,等价于1位八进制数。

二-八转换

• 每3位二进制数看做一个整体,进行整体替换

八-二转换

• 将每1位八进制数逐个转换为3位二进制数

• 例8 (二-八转换): 将(11110.0101) 2转换为八进制数

· 例9(八-二转换):将(52.43)₈转换为二进制数

• 4、二进制与十六进制的相互转换

十进制	二进制	十六进制	十进制	二进制	十六进制
00	0000	0	08	1000	8
01	0001	1	09	1001	9
02	0010	2	10	1010	ESA
03	0011	3	11	1011	N.Bom
04	0100	4	12	1100	C'SU
05	0101	5 0	13	1101	D
06	0110	6	14	1110	E
07	0111	7	1500	3,1111	F
9	42977		16	10000	10

将4位二进制数看做一个整体,等价于1位十六进制数。

二-十六转换

• 每4位二进制数看做一个整体,进行整体替换

十六-二转换

• 将每1位十六进制数逐个转换为4位二进制数

 例10(二-十六转换):将(1011110.1011001)₂转换为 十六进制数

• 例11(十六-二转换):将(8FA.C6)₁₆转换为二进制数

四、二进制的算术运算

• 1、二进制的算术运算

• 2、二进制算术运算的特点

• 3、减法的计算流程

减法计算过程较复杂,且需要数值比较电路和减法运算电路。

山 西 夏

五、原码、补码与反码

• 1、无符号数与有符号数

• 例12: 4位十进制数和4位二进制的表示范围

No.

• 例13: 写出+14和-14的二进制数的原码

$$(14)_{10} = (1110)_{2}$$

 $(+14)_{10} = (01110)_{2}$
 $(-14)_{10} = (11110)_{2}$

• 例14: 写出(1010) 表示的十进制数

 无符号数 1010
 (10) 10

 有符号数 1010
 (-2) 10

• 2、十进制的补码(仅讨论数值位)

为了能够将减法运算转换为加法运算,提出了补码的概念。

• 3、二进制的补码(仅讨论数值位)

4、补码运算

对数值位(不包括符号位)为n位的二进制数M,共可表示2n个数。 补码(M)_{comp}的计算公式如下:

$$(M)_{COMP} = \begin{cases} M & M \ge 0 \\ 2^n - M & M < 0 \end{cases}$$

正数

- 本身就是加法运算
- 不需要求补码

负数

- 减法运算(加负数)
- 通过求补码转化为加法

由于补码运算涉及到减法运算,所以一般不直接求补码。

• 5、反码运算

对数值位(不包括符号位)为n位的二进制数M,将M中所有的数值位的0改为1、1改为0,即可得到反码(M)_{INV}

二进制反码运算步骤简单,极易实现。

• 6、补码与反码的关系

$$(M)_{COMP} = \begin{cases} M & M \ge 0 \\ 2^n - M & M < 0 \end{cases} (M)_{INV} = \begin{cases} M & M \ge 0 \\ (2^n - 1) - M & M < 0 \end{cases}$$

$$(M)_{COMP} = \begin{cases} M & M \ge 0 \\ (M)_{INV} + 1 & M < 0 \end{cases}$$

整个数值位的最后一位+1, 而不是整数位的最后一位+1

通过反码运算,间接获得补码,可避开直接求补码中的减法运算。

• 7、原码、反码、补码运算总结

原码 (n+1位)	符号位 (1 位)	数值位 (n位,模数为 2 ⁿ)
		WED
原码	0	数值为M
正数		原码=反码=补码
ides .	430	
原码	1	数值为M
998	保持「不变	↓ 0→1, 1→0
反码	1	数值为(2n-1)-M
- 5 1 A	保持『不变	↓最后一位+1
补码	1	数值为 2n - M

 例15: 写出带符号位二进制数001010(+10)、101010 (-10)、0101.11(+5.75)和1101.11(-5.75)的反码 和补码。

十进制数	+10	-10	+5.75	-5.75
原码	0 01010	01010	0 101.11	1 101.11
反码	0 01010	1 10101	0 101.11	1 010.00
补码	0 01010	1 10110	0 101.11	1 010.01

• 8、补码运算的应用

With Miles

• 例16: 用二进制补码运算求:

· 13+10 \ 13-10 \ -13+10 \ -13-10

十进 制数	原码衤	卜码 13+10	(+13) + (+10)
+23	0 10111 0 1	.0111	2500
-23	1 10111 1 0	1001 +13补码	0 01101
+13	0 01101 0 0	1101 +10补码	0 01010
-13	1 01101 1 1	0011	0.40444
+10	0 01010 0 0	1010 结果补码	0 10111
-10	1 01010 1 1	0110 结果原码	0 10111
+3	0 00011 0 0	0011 年末原码	0 10111
-3	1 00011 1 1	1101 结果	(+23) ₁₀

- NEW WEST
 - 例16: 用二进制补码运算求:
 - · 13+10 \ 13-10 \ -13+10 \ -13-10

十进 制数	原码 补码	13-10	(+13) + (-10)
+23	0 10111 0 10111		9555
-23	1 10111 1 01001	+13补码	0 01101
+13	0 01101 0 01101	-10补码	1 10110
-13	1 01101 1 10011	30	(1) 0 00044
+10	0 01010 0 01010	结果补码	(1) 0 00011
-10	1 01010 1 10110	(de HI FE TTI	0.00011
+3	0 00011 0 00011	结果原码	0 00011
-3	1 00011 1 11101	结果	(+3) ₁₀

- 11元数单次建立。
 - 例16: 用二进制补码运算求:
 - · 13+10 \ 13-10 \ -13+10 \ -13-10

十进 制数	原码	补码	-13+10	(-13) + (+10)
+23	0 10111	0 10111		- Stran
-23	1 10111	1 01001	-13补码	1 10011
+13	0 01101	0 01101	+10补码	0 01010
-13	1 01101	1 10011	(LEDATE B)	4 44404
+10	0 01010	0 01010	结果补码	1 11101
-10	1 01010	1 10110	结果原码	1 00011
+3	0 00011	0 00011	4米原吗	1 00011
-3	1 00011	1 11101	结果	(-3) ₁₀

- Name of the last o
 - 例16: 用二进制补码运算求:
 - · 13+10 \ 13-10 \ -13+10 \ -13-10

十进 制数	原码	补码	-13-10	(-13) + (-10)
+23	0 10111	0 10111		- SUPPL
-23	1 10111	1 01001	-13补码	1 10011
+13	0 01101	0 01101	-10补码	1 10110
-13	1 01101	1 10011	W. T. N. TT. So.	(1) 4 04004
+10	0 01010	0 01010	结果补码	(1) 1 01001
-10	1 01010	1 10110	社田唐 和	1 10111
+3	0 00011	0 00011	结果原码	1 10111
-3	1 00011	1 11101	结果	(-23) ₁₀

六、几种常用的编码

1、十进制代码 4位二进制数可表示16个数 10个用于表示十进制数0~9 6个废弃不用 不同编码规则 BCD码 2421码 5211码 余3码 余3循环码 (8421码)

		8
r	H	H
•		-

十进 制数	8421码 (BCD)	2421码	5211码
0	0000	0000	0000
1	0001	0001	0001
2	0010	0010	0100
3	0011	0011	0101
(AC)	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1100
8	1000	1110	1101
9	1001	Ja11112	1111

恒权码

- 编码中每一位的权恒定不变。
- 8421码的权: 8、4、2、1
- 2421码的权: 2、4、2、1
- 5211码的权: 5、2、1、1

编码方式

- 将代码中每一位数与权重相乘,并累积求和,即可获得对应的十进制数。
- · 2421码的"1101":

2 4 2 1

 \times 1 1 0 1

2+4+0+1=7

十进制数	余3码	余3循环码
0	0011	0010
1	0100	0110
2	0101	0111
3	0110	℃_0101
Characon .	0111	0100
54,00	1000	1100
6	1001	1101
7	1010	1111
8	1011	1110
9	1100	2010

余3码

- 将每一个余3码看做一个4位 二进制数;
- 它的数值比其所表示的十进 制数码多3。
- 余3码的"1010":

$$(1010)_2 = (10)_{10}$$

$$10-7=3$$
 ($\frac{1}{1}$ 3)

余3循环码

 相邻两个代码之间仅有一位 的状态发生变化。

编码顺序	二进制码	格雷码	编码顺序	二进制码	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
Reson	0101	0111	13	1101	1011
6	15139VN		31400	1110	1001
7	0111	0100	15	1111	1000

格雷码每一位的状态都按一定顺序循环, 因此也被称为循环码。

格雷码相邻两个代码之间只有一位发生变化,在代码转换过程中不会出现过渡"噪声"。

• 过渡"噪声"的产生

编码顺序	二进制码	格雷码	编码顺序	二进制码	格雷码
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000
第一	一位先改变	010	0	第二位后改变	变
第一0101			、第二位同		变
0101	理想情况	兄:第一位	、第二位同	対改变 第一位后改3	0 1 1 0

· 3、美国信息交换标准代码(ASCII)

ASCII码是由美国国家标准化协会制定的一种信息代码。

ASCII是一组7位二进制代码(b₇b₆b₅b₄b₃b₂b₁), 共128个。

数字0-9 (10个) 大、小写 英文字母 (52个)

各种符号代码 (32个)

控制码 (34个)

ASCII码是一种国际通用标准代码,广泛应用于计算机和通信领域。

ASCII表

(American Standard Code for Information Interchange 美国标准信息交换代码)

AB	IQ.						ASCIT	正明	行										_	CIII						
		_			000	0				_	001	10		00	10	00	11_	01	00	01	01	01	00		01	11
		-	333	AMERICAN	C TO	68.00		T 100	-	_	20	-		-		HERE!		-	HOUSE							
MA		調	字符	CM	H	转义 字符	字符解釋	神器	字符	CM	代码	转义 字符	字符解釋	型事	字符	世間	字符	制	宇符	병	字符	世間	字符	世書	字符	Ctrl
900	0	0		*@	MIL.	/0	空字符	16		^P	DEE		数据链路转叉	32		48	0	64	a	80	P	96	,	112	P	
001	1	1	0	^A	SOH		标题开始	17	4	^0	DC1		设备控制 1	33	1	49	1	65	A	81	Q	97	a	113	q	
010	2	2		^B	STX		正文开始	18	1	*R	DC2		设备控制 2	34	**	50	2	66	В	82	R	98	b	114	r	
011	3	3	٠	^C	ETX		正文结束	19	!!	^\$	DC3		设备控制 3	35	#	51	3	67	C	83	S	99	c	115	5	
100	4	4	٠	^D	EOT		传输结束	20	•	^T	DC4		设备控制 4	36	S	52	4	68	D	84	T	100	d	116	t	
101	5	5	٠	^E	ENG		查询	21	§	^U	NAE		否定应答	37	%	53	5	69	E	85	U	101	e	117	u	
110	6	6	٠	^F	<i>K</i> CX		常定应答	22	_	^V	SYN		同步空闲	38	&	54	6	70	F	86	V	102	ſ	118	v	
111	7	7	•	^G	BEL	la	响性	23	1	^W	BIB		传输块结束	39		55	7	71	G	87	W	103	g	119	w	
000	8	8	•	^H	BS	ъ	退格	24	†	*X	CAN		取消	40	(56	8	72	H	88	X	104	h	120	x	
100	,	9	0	4	нт	\t	横向制表	25	1	^Y	22		介质结束	41)	57	9	73	I	89	Y	105	i	121	y	
010	٨	10	8	*3	LF	In	换行	26		^Z	SIE		沙 特	42	*	58	:	74	J	90	Z	106	j	122	z	
011	8	11	♂	^K	VI	lv	纵向影表	27	4	"[ESC	\e	福出	43	+	59	;	75	K	91	1	107	k	123	{	
100	¢	12	Q	^L	Ħ	A	换页	28	L	~1	FS		文件分隔符	44	•	60	<	76	L	92	١	108	1	124	1	
101	D	13	Þ	^M	CR	le.	但车	29	\leftrightarrow	*]	GS		量分隔符	45	-	61	=	77	M	93	1	109	m	125	}	
110		14	ŗ,	^N	50		移出	30	A	**	RS		记录分隔符	46		62	>	78	N	94	٨	110	n	126	~	
111	E	15	ŧy.	10	51		移入	31	V	*	US		单元分隔符	47	1	63	?	79	o	95		111	0	127	Δ	*Backsp

习 题

- P18【题1.4】(1)(4)
- · P18【题1.9】(1)
- · P19【题1.11】(1)(3)
- · P19【题1.15】(1)(5)

