EE5175: Image Signal Processing

Lab-7

- 1. Assume a Markov-1 process with covariance matrix R of size 8×8 and $\rho = 0.91$. Compute the Energy Packing Efficiency and De-correlation Efficiency of the Walsh-Haddamard Transform and Discrete Cosine Transform for the above process. What is your observation about the eigenvectors of R in relation to the DCT basis?
- 2. Find $\beta^2 R^{-1}$, where $\beta^2 = \frac{1-\rho^2}{1+\rho^2}$. Does $\beta^2 R^{-1}$ have a tridiagonal structure?. Is it close to the tridiagonal matrix Q given by,

$$\mathbf{Q} = \begin{bmatrix} 1 - \alpha & -\alpha & 0 & 0 & 0 & 0 & 0 & 0 \\ -\alpha & 1 & -\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & -\alpha & 1 & -\alpha & 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 1 & -\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & -\alpha & 1 & -\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & -\alpha & 1 & -\alpha & 0 \\ 0 & 0 & 0 & 0 & 0 & -\alpha & 1 & -\alpha \\ 0 & 0 & 0 & 0 & 0 & 0 & -\alpha & 1 - \alpha \end{bmatrix}$$

where $\alpha = \frac{\rho}{1 + \rho^2}$

Try diagonalizing $\beta^2 R^{-1}$ and Q using the DCT matrix. What is your observation.?

- 3. Compute SVD for the given 8×8 image **g** (provided in imageFile.mat and also given below) using the following steps:
 - (a) Perform eigen-value decomposition of $\mathbf{g}^T\mathbf{g}$ and $\mathbf{g}\mathbf{g}^T.$
 - (b) Find the singular value matrix Σ .
 - (c) Reconstruct the image using Σ and the eigen-vector matrices.
- 4. Remove one singular value at a time from Σ and reconstruct the image $(\widehat{\mathbf{g}_k})$. Compute $\|\mathbf{g} \widehat{\mathbf{g}_k}\|^2$ and compare it with the sum of the squares of the first k singular values.

${\rm Image}~{\bf g} =$	255	255	255	255	255	255	255	255
	255	255	255	100	100	100	255	255
	255	255	100	150	150	150	100	255
	255	255	100	150	200	150	100	255
	255	255	100	150	150	150	100	255
	255	255	255	100	100	100	255	255
	255	255	255	255	50	255	255	255
	50	50	50	50	255	255	255	255

-end-