if there are a collumn in 1) we know that null(A) = dim (nullsPace of A) : dim (Am 20 where MER) now less say RanklA) = 8 8 840 of in row seduce echelon form, there are 8 nows with lending ones; >) An=0. has (n-x) collins of A without leading Zeroes Let M, M2 --- More denote soil obtained sequentially by setting each free voiring ble to 1 & remaining free Jarrables be 2000 i. M. 1 m2 -- Mn-8 will be linearly independent i got to Anzo is M: Edini 2) {m, m2 -- mn-r3 spary nullspace of(A) 5 nullity (A) = dm(n, m, ~m, ~m, ~2) or In, in -- mary one linesty independent

) Ran(A) + nullity(A) = r +n-r

nullity (A) = n-x

~ (

a)
$$M = \begin{bmatrix} 1 & 3 \\ 3 & 3 \end{bmatrix} \approx \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

The eq. is not satisfied so matrin is not Positive definite

to check mso will check A>O & C-BTA'B>O

:. Mis not positive definite

8)
a)
$$\begin{bmatrix}
1 & 3 & 2 \\
3 & 8 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 8 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 8 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 8 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 8 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 1 &$$

$$u_{3} = \frac{1 - 2\pi^{2}}{2}$$

$$u_{3} = \frac{1 - \pi^{2}}{2}$$

$$u_{3} = \frac{1 - \pi^{2}}{2}$$

of this is the undermined bytem this will have so sold as derived above but we want sold with min norm

but we want sold with min norm

i) min (nim). given [1 3 2] m = [3]

$$- \left(20\eta_2^2 + 1 - 2\eta_2 + \eta_2\right)/4 = 1 - 2\eta_2 + 21\eta_1^2$$

min (
$$\pi$$
[π) = π [$\frac{1}{4}$ ($1-2\pi_2+21\pi_3^{-1}$))

s) $\frac{\partial}{\partial n_3}$ (.RHs) = 0 will give a 80 f for it

-) $\frac{1}{4}$ ($-2+3\cdot21\,m_2$) = 0

-($-2\pi_2=-2\pi_2=-0.0952$

(π) = $-2\pi_2=-2\pi_2=-0.0952$

(π) = $-2\pi_2=-2\pi_2=-0.0952$

(π) if inner product defined as

(π) = π [$\frac{5}{4}$ = $\frac{1}{4}$ =

So on (RHS) will give roining 74 ×2 + 17 (1-×2) - 17 = 0. 9\$ n2 = 34

(M, M2, M3) = [-0.64 0.324 0.337)

	i R da
Then A : BB who	re Bissaugre of madern
here After splitting	,
M = 0 1	of = (ON mor) (Noor OT)
;) B - Novy	
A	were root of drag elements of 1

V root p