METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Tema 2

Calcul afectiv (Affective Computing)

Scop

- Detectarea şi recunoaşterea emoţiilor
- Construirea maşinilor emoţionale

Problematica ştiinţifică

- □ Vorbire emotivă → analiză şi recunoaştere de semnal vocal
- □ Texte emotive → analiză şi recunoaştere de informaţii textuale
- Mimică emotivă → analiză şi recunoaştere de informaţii vizuale
- □ Gesturi emotive → analiza şi recunoaşterea gesturilor
- Monitorizare psihologică

Domenii de aplicare

- E-learning
- Robotică
- Dispozitive personalizate (Siri, Kinect, Jocuri, SmartWatch-uri, SmartBand-uri, ...)

Calcul afectiv (Affective Computing)

Termenul Affective computing

- Introdus de Roz Picard în 1995 (a se vedea "Affective Computing", 1997)
- Definiție: "computing that relates to, arises from, and deliberately influences emotion"

■ Azi – o comunitate

- Societate profesională (Association for the Advancement of Affective Computing)
- Conferință internațională (ACII)
- Revistă (IEEE Transactions on Affective Computing)

■ Mai multe povești:

https://cs.uwaterloo.ca/~jhoey/teaching/cs886affect/schedule.html

Calcul afectiv (Affective Computing)

Recunoașterea emoțiilor în

- Vorbire
 - Emoții ale vorbirii naturale
 - Detectarea depresiei
- Texte
 - Opinii enunțate pe bloguri (Twitter)
 - Emoticoane
- Mimica facială
 - Înțelegerea impactului îmbătrânirii
- Psihologie
 - Interferarea muzică activitate cerebrală (electro-encefalogramă)
 - Detectarea stresului pe baza conductanței dermale
 - Activitate electordermală (EDA) proprietate a corpului uman de a cauza variații continue in caracterizarea electrică a pielii (galvanic skin response (GSR), electrodermal response(EDR)
- Jocuri sau amuzamente computaționale
 - Răspunsuri la câștiguri sau învingeri
 - Affective music player
 - Detectarea stărilor de plicitiseală
- Modelare
 - Modelarea influenței emoțiilor asupra luării decizilor
 - Modelarea factorilor care determină apariția emoțiilor
 - Modelarea comportamentelor

Detectarea emoțiilor în texte

- □ Ideea de bază
 - Scrierea este afectată de emoții
 - Procesarea emoţiilor din texte presupune
 - recunoașterea emoțiilor exprimate de text prin analiza unor șabloane
- Sistem de recunoaștere a emoțiilor în texte
 - etape
 - Extragerea atributelor din datele (textuale)
 - Clasificarea emoţiilor emise din texte

Detectarea emoțiilor în texte

- Clasificarea automată a textelor
 - Definire
 - Direcţii în automatizare
 - Abordarea bazată pe învăţare
 - Abordarea bazată pe cunoştinţe

Definire

- Categorizarea textelor
 - Atribuirea unor categorii (predefinite) documentelor
 - Documentele
 - rapoarte tehnice, pagini web, mesaje, cărţi
 - Categoriile
 - subiecte (artă, economie),
 - pertinenţe (mesaje spam, pagini web pt adulţi)

Exemple de probleme

	Cuvinte	Documente
Învățare supervizată	Etichetarea părților de vorbire	Clasificarea textelor, Filtrarea, Detectarea subiectelor
Învățare nesupervizată	Indexarea semantică, construcția automată a tezaurelor, extragerea cuvintelor cheie	Clusterizarea documentelor, Detectarea subiectelor

- □ Direcţii în automatizare
 - Abordarea bazată pe învăţare
 - Experţii etichetează o parte din exemple
 - Algoritmul etichetează noi exemple
 - Învăţarea poate fi:
 - supervizată
 - nesupervizată
 - Abordarea bazată pe cunoştinţe
 - Cunoştinţele despre clasificare sunt
 - obţinute de la experţi
 - codificate sub formă de reguli

Definirea problemei

- Se dă un set de documente D, |D|=N+n şi un set de categorii C, |C|=k, sub forma
 - □ date de antrenament (d_i, c_i), unde
 - i =1,N (N = nr datelor de antrenament)
 - $d_i \in D, c_i \in C$
 - date de test
 - (d_i), i =1,n (n = nr datelor de test)
- Se cere să se aproximeze o funcţie necunoscută de clasificare

Φ:DxC→{true, false}

definită astfel:

Φ(d,c)=true, dacă d ε c false, altfel

pentru orice pereche de documente și categorii (d,c).

- Tipuri de categorii
 - În funcție de modul de organizare
 - Categorii ierarhice
 - Directoarele de e-mail, MESH
 - Categorii liniare
 - Secţiunile unui ziar, Reuters
 - În funcție de apartenența documentelor la categorii
 - Categorii suprapuse
 - Reuters, MESH
 - Categorii disjuncte
 - Directoarele de e-mail, secţiunile unui ziar

Process

- Analiza documentelor de antrenament
 - Indexarea documentelor
 - Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
 - Învăţarea unui model de clasificare
- Clasificarea noilor documente(de test)
 - Indexarea documentelor
 - Utilizarea modelului de clasificare pentru stabilirea categoriilor fiecărui document de test

Process

- Analiza documentelor de antrenament
 - Indexarea documentelor
 - Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
 - Învăţarea unui model de clasificare
- Clasificarea noilor documente(de test)
 - Indexarea documentelor
 - Utilizarea modelului de clasificare pentru stabilirea categoriilor fiecărui document de test

Indexarea documentelor

- Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă
 - interpretabilă de către clasificator
 - indexată (organizată, ordonată)
- Obţinerea unor concepte/termeni reprezentative(i) → atribute şi calcularea unor ponderi pt aceste atribute
- 4 paşi:
 - Linearizarea documentelor
 - Filtrarea
 - Aducerea la formă canonică
 - Ponderarea

Reducerea dimensiunii vocabularului

- Linearizarea documentelor (segmentare)
 - Procesul de reducere a documentelor la un vector de termeni (atribute)
 - modelul sac de cuvinte (bag of words)
 - o matrice
 - pe linii documentele
 - pe coloane termenii
 - o celulă → 1/0 dacă termenul curent apare în documentul curent
 - Identificarea termenilor se face în 2 etape:
 - Înlăturarea formatării
 - Ex. eliminarea etichetelor în cazul documentelor HTML
 - Tokenization
 - Parsare (segmentare)
 - Transforamrea tuturor literelor în litere mici
 - Înlăturarea semnelor de punctuație

Iniţial	Liniarizat
Interactive query expansion modifies queries using terms from a user. Automatic query expansion expands queries automatically.	interactive query expansion modifies queries using terms from a user automatic query expansion expands queries automatically

□ Filtrarea

- Alegerea termenilor care să reprezinte documentul astfel încât să permită
 - descrierea conţinutului documentului
 - diferenţierea documentului de alte documente dintr-o colecţie dată
- Înlăturarea celor mai frecvenţi termeni (stopwords) adverbe, prepoziţii
 - găsiţi într-o listă predefinită
 - a căror frecvenţă în toate documentele este mai mică de un anumit prag (5%)

Segmentat	Filtrat
interactive query expansion modifies queries using terms from a user automatic query expansion expands queries automatically	interactive query expansion modifies queries terms automatic query expansion expands queries automatically

Aducerea la formă canonică

- Lematizarea
 - Analiză morfologică a termenilor pentru identificarea tuturor formelor de bază posibile
 - Poate acţiona asupra mai multor termeni
 - Acţionează în funcţie de context
 - Ex. "better" → "good"
- Reducerea termenilor la rădăcină (stemming)
 - Acţionează asupra unui singur termen
 - □ Ex. "computer", "computing", "compute" → "comput"
 - Algoritmul de stemming
 - al lui Martin Porter
 - din WordNet

Filtrat	Redus
interactive query expansion modifies queries terms automatic query expansion expands queries automatically	interact queri expan modifi queri term automat queri expan expand queri automat

Ponderarea

- Predeterminată (manuală)
 - Extragerea manuală de atribute
 - □ Ex. Bag of Words
- Automată (învățată)
 - Extragerea automată de atribute contextuale
 - Ex. embedded representations

- Ponderarea predeterminată
 - Ponderarea termenilor conform unui anumit model
 - Ponderi relative la
 - un singur document
 - frecvenţa termenilor (term frequency TF)
 - o colecție de documente
 - frecvenţa inversă în document (inverse document frequency IDF)
 - o combinație între *TF* și *IDF*
 - $TF \rightarrow$ cu cât un termen este mai frecvent într-un document, cu atât el este mai important pentru acel document
 - IDF → cu cât un termen apare în mai multe documente, cu atât el este mai puţin important în descrierea semanticii acelui document
 - Frecvenţele pot fi
 - □ Binare → prezenţa sau absenţa termenului (One-Hot encoding)
 - □ Reale ([0,1]) → importanţa termenului
 - Fiind dat un set D de documente şi un set T de termeni, ponderea p_{ij} a termenului t_i în documentul d_j (i=1,2,...,|T|, j=1,2,...,|D|) poate fi:
 - binară: $p_{ij} = 1$, dacă t_i apare în d_j 0, altfel
 - □ $TF: p_{ij} = tf_{ij}$ (nr. de apariţii a termenului t_i în documentul d_i)
 - □ TF.IDF: $p_{ij} = tf_{ij} * \log_2(|D|/df_i)$, unde $df_i = \text{nr.}$ de documente în care apare termenul t_i

Ponderarea automată

- Reprezentări / atribute contextuale învățate în mod nesupervizat
- Modelarea (probabilistică) a limbajului textual
- Modele clasice
 - Probabilitatea apariției unui cuvânt știindu-se k cuvinte care îl preced
 - Context la nivel de document
 - Relaţionare semantică (boat water)
 - https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
 - Modelare bazată pe numărare folosind
 - Latent Semantic Analysis (LSA)
 - Latent Dirichlet Allocation (LDÁ)
- Modele noi
 - Modelare predictivă folosind
 - RNN, LSTM
 - CNN
 - Recursive NN
 - Seq-to-seq
 - Attention
 - Memory-based nets
 - Modele pre-antrenate
 - Context la nivel de cuvânt
 - Similaritate semantică (boat sheep)

■ Ponderarea automată - Modele noi (câteva)

- Bengio (2003)
 - Word embedding
 - http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
 - Probabilitatea apariției unui cuvânt știindu-se k cuvinte care îl preced folosind o RNA
- Colbert (2008)
 - Probabilitatea apariției unei secvențe de cuvinte (secvențe corecte) folosind o RNA
 - https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
 - https://arxiv.org/abs/1103.0398
- Mikolov (2013)
 - Word2Vec
 - Se bazează pe probabilitățile de co-apariție a două cuvinte pentru a diferenția reprezentările asociate celor 2 cuvinte
 - https://arxiv.org/pdf/1301.3781.pdf
 - https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
 - Continous BoW probabilitatea apariției unui cuvânt folosind cuvintele care îl preced și cuvintele care îi urmează (predicția cuvântului central)
 - Skip-gram model folosirea cuvântului central pentru a prezice cuvintele din jurul lui
 - Pre-processings:
 - Sub-eşantionarea cuvintelor frecvente
 - Eliminarea cuvintelor rare
 - Ferestre contextuale dinamice
- Pennington (2014)
 - GloVe
 - Se bazează pe raportul dintre probabilitățile de co-apariție a două cuvinte pentru a diferenția reprezentările asociate celor 2 cuvinte
 - http://aclweb.org/anthology/D14-1162
 - https://nlp.stanford.edu/projects/glove/

Ponderarea automată

- Preocupări recente
 - Subword-level embeddings char-based embeedings
 - OOV char-based enbeddings, context
 - Multi-sense embeddings
 - Phrases and multi-word expressions
 - Temporal dimension
 - Transfer learning (Embeddings based on other contexts)
 - Embeddings for multiple languages

- Analiza documentelor de antrenament
 - Indexarea documentelor
 - □ Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
 - Învăţarea unui model de clasificare
- Clasificarea noilor documente(de test)

Reducerea dimensiunii

- Are drept scop
 - Creşterea eficacităţii
 - Reducerea timpului de învăţare a modelului de clasificare
 - Evitarea învăţării pe derost a modelului de clasificare
- Poate consta în
 - Selecţia atributelor (feature selection)
 - o submulţime a atributelor iniţiale (originale)
 - Extragerea atributelor
 - o mulţime de noi atribute determinate pe baza celor originale → proiecţia unui vector R-dimensional într-unul r-dimensional (r < R)
 - noile atribute (mai puţine) reprezintă o transformare a atributelor originale

Reducerea dimensiunii → Selecţia atributelor

- Dându-se o mulţime de atribute $X_k = (x_{k1}, x_{k2}, ..., x_{km})$ pentru un document $d_k \in D$, să se găsească o submulţime $X_k^p = (x_{K,i1}, x_{K,ip})$, cu p < m care să optimizeze o funcţie obiectiv $J(X_k^m)$
 - Fc. obiectiv → eroarea de clasificare
- Selecţia implică
 - O strategie de căutare pentru selecţia submulţimilor candidat
 - căutare exhaustivă → toate submulţimile posibile →nefezabil
 - căutare strategică
 - prin ordonarea atributelor
 - pe baza unei metrici
 - şi alegerea celor care depăşesc un anumit praq
 - prin selectarea unei anumite submulţimi de atribute
 - se alege o submulţime optimală
 - O funcţie obiectiv pentru evaluarea acestor submulţimi candidat
 - măsură a calității unei submulţimi de atribute
 - ajută selecția unei noi submulțimi candidat

Reducerea dimensiunii -> Selecţia atributelor

- Metode
 - Nesupervizate
 - Clusterizare
 - Factorizarea matricilor
 - Supervizate
 - Ordonarea atributelor
 - Selectia unei submultimi de atribute

Reducerea dimensiunii → Selecţia atributelor → Metode Nesupervizate

- → Clusterizare
- Se grupează atributele în clusteri
 - K-means
 - Hierarchical clustering

■ Se înlocuiesc (multe) atribute similare din aceiași ciuster custerului

Reducerea dimensiunii → Selecţia atributelor → Metode Nesupervizate

- → factorizarea matricilor
- Analiza componentelor principale
- Descompunerea in valori singulare
- Factorizarea matricilor non-negative
- Isomap-uri

Reducerea dimensiunii → Selecţia atributelor → Prin ordonarea atributelor

- □ Pp. că avem *n* date (\mathbf{x}_k, y_k) , k=1,2,...,n
 - **X**_k $\in \mathbb{R}^m \rightarrow \mathbf{x}_k = (x_{k1}, x_{k2}, ..., x_{km})$
 - $\mathbf{y}_k \in \mathbf{R}$
- Se calculează o funcție scor pentru fiecare pereche $S(i) = (x_{ki}, y_k)$
 - cu cât scorul este mai mare, cu atât variabila este mai importantă
- □ și se ordonează atributele în funcție de acest scor
- Notație

$$X_i \in \mathbb{R}^n \rightarrow X_i = (x_{1i}, x_{2i}, ..., x_{ni})$$

 $Y \in \mathbb{R}^n \rightarrow Y = (y_1, y_2, ..., y_n)$

Reducerea dimensiunii → Selecţia atributelor → Prin ordonarea atributelor

- Scoruri posibile
 - Coeficientul de corelație al lui Pearson
 - $R(i) = cov(X_i, Y)/(var(X_i)var(Y))^{1/2}$
 - □ $R(i) \approx \sum_{k=1,...,n} (x_{k,i} X_i^a) (y_k Y^a) / (\sum_{k=1,...,n} (x_{k,i} X_i^a)^2 \sum_{k=1,...,n} (y_k Y^a)^2)^{1/2}$ □ $R^2(i) \rightarrow \text{relaţie de dependenţă liniară între } X_i \text{ şi } Y$
 - Eroarea de clasificare
 - Mai mulţi clasificatori cu o singură variabilă
 - $(x_{ki}, y_k), k=1,2,...,n$
 - Se stabileste eroarea de clasificare pt fiecare i=1,2,...,n
 - Se ordonează variabilele în funcție de eroare
 - Cu cât eroarea este mai mică cu atât variabila este mai importantă
 - Informația teoretică
 - Informaţia mutuală între densitatea variabilei X_i şi densitatatea variabilei Y

 - □ $I(i) = \int_x \int_y p(x_i, y) \log(p(x_i, y) / (p(x_i)p(y))) dxdy$ □ p(x) probabilitatea densității lui $x \rightarrow$ greu de estimat

Reducerea dimensiunii -> Selecţia atributelor -> Prin ordonarea atributelor

Critici

- poate determina submulţimi de atribute redundante
- nu ţine cont de corelarea atributelor
- un atribut nefolositor în izolație poate fi util în combinație cu alte atribute

Reducerea dimensiunii → Selecţia atributelor → Prin alegerea unei submulţimi de atribute

- Căutarea
 - Căutare exhaustivă toate submulțimile posibile → nefezabilă
 - Căutare strategică alegerea doar a unor submulțimi
- Funcţia obiectiv tipuri
 - Wrapper
 - Filter
 - Embedded

Reducerea dimensiunii → Selecţia atributelor → Prin alegerea unei submulţimi de atribute

- Funcția obiectiv tipuri
 - Wrapper
 - Funcția obiectiv este un clasificator care evaluează fiecare submulțime prin puterea ei predictivă
 - Alegerea atributelor este **dependentă** de performanța clasificatorului (algoritmului de învățare)
 - □ Algoritmul de învățare = cutie neagră pentru evaluarea submulțimii de atribute în funcție de puterea de învățare (clasificare) a acesteia
 - Filter
 - □ Funcția obiectiv evaluează fiecare submulțime doar pe baza conținutului ei
 - □ Alegerea atributelor este independentă de performanța clasificatorului
 - □ Selecția atributelor este un pas anterior învățarii
 - Embedded
 - Alegerea atributelor are loc în timpul învățării

Reducerea dimensiunii → Selecţia atributelor → Prin alegerea unei submulţimi de atribute → Wrapper

- □ Ideea de bază
 - Wrapper → a înveli, a împacheta
 - Funcția obiectiv este un clasificator care evaluează fiecare submulțime prin puterea ei predictivă
 - Alegerea atributelor este dependentă de performanța clasificatorului (algoritmului de învățare)
 - Algoritmul de învățare = cutie neagră pentru evaluarea submulțimii de atribute în funcție de puterea de învățare (clasificare) a acesteia
- Algoritm
 - Se alege o metodă de clasificare (învăţare)
 - Se caută configurația optimă (submuţime de atribute şi parametri ai clasificatorului)
 - Se alege o submulţime de atribute
 - Se repetă
 - Învăţarea şi optimizarea clasificatorului
 - cuantificarea performanţei clasificatorului
 - alegerea unei noi submulţimi de atribute
 - până când se obţine cea mai bună performanţă în învăţare

Reducerea dimensiunii → Selecţia atributelor → Prin alegerea unei submulţimi de atribute → Wrapper

- Cum se alege o submulţime?
 - best-first
 - branch-and-bound
 - simulated annealing
 - algoritmi genetici
 - greedy
 - Forward selection
 - Variabilele sunt încorporate progresiv în submuţimi tot mai mari
 - Backward selection
 - Variabilele sunt eliminate progresiv din submulţime
- Cum se stabileşte performanţa algoritmului de învăţare?
 - Validare
 - Validare-încrucişată
- Care algoritm de învăţare să se folosească?
 - Arbori de decizie
 - Reţele neuronale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi, etc

Reducerea dimensiunii → Selecţia atributelor → Prin alegerea unei submulţimi de atribute → Filter

- Ideea de bază
 - Funcția obiectiv evaluează fiecare submulțime doar pe baza conținutului ei
 - Alegerea atributelor este independentă de performanța clasificatorului
 - Selecția atributelor este un pas anterior învățarii

Evaluare

- Distanţa sau măsura separabilităţii claselor
 - Ex. distanţa (Euclideană, Hamming, etc) între clase
- Corelația și măsuri de informație teoretică
 - Submulţimile bune conţin atribute
 - puternic corelate cu ieşirea
 - ne-corelate între ele
 - Măsuri liniare
 - Coeficientul de corelaţie
 - Măsuri neliniare
 - Informaţia mutuală

Reducerea dimensiunii >> Selecţia atributelor >> Prin alegerea unei submulţimi de atribute

- http://jmlr.csail.mit.edu/papers/volume3/guyon 03a/guyon03a.pdf
- http://jmlr.csail.mit.edu/proceedings/papers/v4/ guerif08a/guerif08a.pdf
- http://courses.cs.tamu.edu/rgutier/cs790 w02/l 5.pdf

- Analiza documentelor de antrenament
 - Indexarea documentelor
 - □ Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
 - Învăţarea unui model de clasificare
- Clasificarea noilor documente(de test)

Reducerea dimensiunii → Extragerea atributelor

- Definire
 - Determinarea unei noi mulţimi de atribute determinate pe baza celor originale \rightarrow proiecţia unui vector R-dimensional într-unul r-dimensional (r < R)
 - Noile atribute (mai puţine) reprezintă o transformare a atributelor originale
- Dându-se o mulţime de atribute $X_k = (x_{k1}, x_{k2}, ..., x_{km})$, să se găsească o transformare $z_k = g(x_k): R^m \rightarrow R^p$ cu p < m astfel încât transformarea z_k să păstreze (cea mai parte din) informația atributelor inițiale
 - Transformarea optimă cea care nu determină creşterea probabilității de eroare
 - Transformarea poate fi
 - Liniară y = Wx, $W \in M_{mn}$
 - Ne-liniară greu de determinat
 - Transformarea este ghidată de o funcție obiectiv care trebuie optimizată (min/max)
- Metode de extragere a atributelor în funcție de criteriul măsurat de funcția obiectiv:
 - Reprezentare a semnalului → transformarea are drept scop reprezentarea datelor cu o acurateţe cât mai bună într-un spaţiu mai redus
 - Analiza componentelor principale
 - Clasificare → transformarea are drept scop evidenţierea discriminării între clase într-un spaţiu mai mic
 - Analiza discriminantului liniar

- Metode de reducere a dimensiunii → Extragerea atributelor → Analiza componentelor principale
 - Scop
 - Transformarea unui set de variabile posibil corelate într-un set de variabile necorelate între ele (componente principale)
 - □ Prima componentă principală are cea mai mare varianţă → cuantifică cea mai mare variabilitate posibilă a datelor
 - ACP determină axele care explică cel mai bine dispersia datelor (norul de puncte)
 - Descrierea datelor într-un spaţiu din
 - Alte denumiri
 - Transformarea Karhunen-Loève (teoria comunicaţiilor)

- Metode de reducere a dimensiunii → Extragerea atributelor → Analiza componentelor principale
 - Tipologie
 - ACP liniară date separabile liniar
 - ACP bazată pe kernele date neseparabile liniar
 - Algoritm
 - □ Pp că avem un set de date x_i , i=1,2,...,n cu m atribute $(x_i \in R^m \rightarrow x_i = (x_{i1}, x_{i2},...,x_{im}))$
 - □ Scăderea mediei din fiecare dată (pe fiecare dimensiune) → centrarea datelor

•
$$x'_{ij} = x_{ij} - x_i^a$$
, unde $x_i^a = (x_{1i} + x_{2i} + ... + x_{ni})/n$

Calcularea matricii de covariație C

```
• C = (c_{ij}), i, j = 1, 2, ..., m, c_{ij} = cov(x_i, x_i), \text{ unde } x_i = (x_{1i}, x_{2i}, ..., x_{ni})
```

•
$$cov(X,Y) = \sum_{i=1,2,...,n} (X_i - X_a)(Y_i - Y_a)/(n-1)$$

- Determinarea vectorilor proprii \mathbf{v}_p şi a valorilor proprii \mathbf{v}_p (eigenvector, eigenvalue) corespunzătoare matricii de covariație A $\mathbf{v}_p = v_p$ \mathbf{v}_p
- Alegerea componentelor şi formarea vectorului de caracteristici (atribute)
 - Se ordonează vectorii proprii descrescător după valorile proprii → atributele în ordinea importanţei
 - Formarea vectorului de caracteristici cu acei vectori proprii care se doresc a fi reţinuţi
- Derivarea noilor date
 - Se înmulţeşte vectorul de caracteristici cu vectorul datelor centrate

- Metode de reducere a dimensiunii → Extragerea atributelor → Analiza discriminantului liniar
 - Scop
 - Determinarea unei combinaţii liniare de atribute care să separe datele (în clase) cât mai bine
 - Modelarea diferenţelor între clase
 - Proiectarea datelor pe o linie/plan/hiperplan pentru a se

- Metode de reducere a dimensiunii → Extragerea atributelor → Analiza discriminantului liniar
 - Găsirea celei mai bune proiecţii necesită definirea unei măsuri de separare între proiecţiile datelor
 - Distanţa între proiecţiile mediilor corespunzătoare datelor din fiecare clasă
 - Nu este foarte bine pentru că nu se ţine cont de dispersia datelor în interiorul claselor
 - □ Fisher → maximizarea raportului dintre
 diferenţa mediilor şi împrăştierea în interiorul claselor
 - o proiecţie astfel încât:
 - exemplele din aceeaşi clasă sunt proiectate foarte aproape unele de altele
 - proiecţiile mediilor fiecărei clase sunt cât
 mai depărtate unele de altele

- Metode de reducere a dimensiunii → Extragerea atributelor → Analiza discriminantului liniar
 - Algoritm
 - □ Pp că:
 - există k clase,
 - μ_i media instanţelor din clasa i, i=1,2,...,k
 - n nr total de instante
 - n_i nr de instanțe din clasa i, i=1,2,...,k
 - Se caută k-1 vectori de proiecție
 - Se calculează
 - Împrăștierea intra-clasă (scatter within class) S_w

$$S_w = \sum_{i=1,2,...,k} \sum_{x \in clasai} (x - \mu_i) (x - \mu_i)$$

• $S_w = \sum_{i=1,2,...,k} \sum_{x \in clasai} (x - \mu_i) (x - \mu_i)^T$ Împrăștierea între clase (scatter between classes) S_b

•
$$S_b = \sum_{i=1,2,...,k} n_i (\mu_i - \mu) (\mu_i - \mu)^T$$
, unde $\mu = 1/n \sum_{x \in clasai} n_i \mu_i$

- Se maximizează
 - Raportul dintre
 - Pătratul diferenței mediilor (claselor) și
 - Împrăștierea intra-clasă
- Soluţie

•
$$w=S^{-1}_{w}(\mu_1-\mu_2)$$

- http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf
- http://www.dtreg.com/lda.htm
- http://www.music.mcgill.ca/~ich/classes/mumt611 05/classifiers/lda theory.pdf

- Analiza documentelor de antrenament
 - Indexarea documentelor
 - □ Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
 - Învăţarea unui model de clasificare
- Clasificarea noilor documente(de test)
 - Indexarea documentelor
 - Utilizarea modelului de clasificare pentru stabilirea categoriilor fiecărui document de test

- Învăţarea unui model de clasificare
 - Alegerea unui algoritm de învăţare
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Reţele Bayesiene
 - Fixarea/optimizarea parametrilor algoritmului
 - Cum se aleg parametrii?
 - Construirea modelului de clasificare şi salvarea lui

Analiza documentelor de antrenament

- Indexarea documentelor
 - □ Construirea unei reprezentări a documentelor → transformarea documentelor într-o formă interpretabilă de către clasificator
 - Obţinerea unor concepte/termeni reprezentative(i) → atribute
 - Calcularea unor ponderi pt aceste atribute
 - Reducerea dimensiunii (a numărului de concepte/atribute/termeni reprezentative(i) pentru document)
 - Selecţia atributelor
 - Extragerea atributelor
- Învăţarea unui model de clasificare

Clasificarea noilor documente(de test)

- Indexarea documentelor
- Utilizarea modelului de clasificare pentru stabilirea categoriilor fiecărui document de test

Metode de reducere a dimensiunii

- Extragerea atributelor
 - Analiza componentelor principale
 - Analiza componentelor independente
 - Scalare multidimensională
 - Hărţi topografice
 - http://134.58.34.50/~marc/DM course/slides selections.pdf
 - http://www.esi.uem.es/~jmgomez/tutorials/eacl03/slides.pdf

Text to numbers

https://machinelearningmastery.com/preparetext-data-deep-learning-keras/

Word embedding

- https://www.tensorflow.org/tutorials/word2vec
- https://nlp.stanford.edu/projects/glove/
- https://machinelearningmastery.com/use-wordembedding-layers-deep-learning-keras/
- https://machinelearningmastery.com/developword-embeddings-python-gensim/