Appendix 2 ancestryinfer pipeline

Output of *mixnmatch* simulations <u>or</u> your own data can be input into the *ancestryinfer* pipeline to run local ancestry inference following (Corbett-Detig & Nielsen, 2017).

Install

```
Option 1 – install dependencies:
```

```
git clone https://github.com/Schumerlab/ancestryinfer.git
```

To install dependencies, follow instructions outlined in:

```
installation instructions.txt
```

Option 2 – load docker file for dependencies:

With docker:

```
git clone https://github.com/Schumerlab/ancestryinfer.git
```

docker pull schumer/mixnmatch-ancestryinfer-image:mixnmatchancestryinfer-docker

docker run -it mixnmatch-ancestryinfer-docker bash

With singularity:

```
git clone https://github.com/Schumerlab/ancestryinfer.git
```

singularity pull docker://schumer/mixnmatch-ancestryinferimage:mixnmatch-ancestryinfer-docker

singularity run mixnmatch-ancestryinfer-image_mixnmatch-ancestryinfer-docker.sif bash

Setting parameters in the configuration file

There is are example configuration files available on github:

```
hmm_configuration_file_parallel.cfg
hmm configuration file nonparallel.cfg
```

Parameter descriptions:

Parameter	Description	Example	Include if
-----------	-------------	---------	------------

genome1=	User provided fasta file for species 1	<pre>genome1=xiphophorus_birchmanni_10x_12Sep2018_yD AA6.fasta</pre>	Always
genome2=	User provided fasta file for species 2	<pre>genome2=Xmalinche_dovetail_assembly.fa</pre>	Always
read_type=	Indicated whether data is paired end or single end	read_type=PE	Always
read_list=	Provide list (including full paths) to the reads to be analyzed	read_list=combined_all_call_hybrids_read_list example list format for paired end data (single end file should contain one line per individual): ./reads/CALL1_read1.fq.gz ./reads/CALL1_read2.fq.gz ./reads/CALL2_read1.fq.gz ./reads/CALL2_read2.fq.gz ./reads/CALL3_read1.fq.gz ./reads/CALL3_read2.fq.gz	Always
read_length=	Provide expected read length	read_length=150	Always
<pre>prop_genome_g enome1_parent =</pre>	Expected proportion of the genome derived from the parent species listed under genome l	<pre>prop_genome_genome1_parent=0.5</pre>	If not provided, AncestryH MM will attempt to estimate (may increase run time)
number_indiv_ per_job=	Parallelize jobs such that each job processes this number of individuals. Low numbers mean high parallelization and high number mean low parallelization.	number_indiv_per_job=1	Always
program_path=	Path to the program install folder	<pre>program_path=/home/groups/schumer/shared_bin/An cestry_HMM_pipeline</pre>	If not provided the program will assume necessary scripts and

	Т		
			programs are in the working directory
provide_AIMs=	Coordinates and identities of ancestry informative sites that distinguish the two parent species	provide_AIMs=Xbirchmanni10xgenome_ancestry_info rmative_sites_filterF1 Example list format: ScyDAA6-2-HRSCAF-26 58345 T C ScyDAA6-2-HRSCAF-26 58976 T A ScyDAA6-2-HRSCAF-26 59896 T C ScyDAA6-2-HRSCAF-26 60164 G A ScyDAA6-2-HRSCAF-26 63105 G A ScyDAA6-2-HRSCAF-26 65532 G A ScyDAA6-2-HRSCAF-26 66290 C A ScyDAA6-2-HRSCAF-26 68233 T C ScyDAA6-2-HRSCAF-26 70398 G A ScyDAA6-2-HRSCAF-26 70398 G A ScyDAA6-2-HRSCAF-26 73869 G A	Required unless provided genomes are on the same coordinate system and can be auto detected
provide_count s=	Counts of parental allele frequencies at ancestry informative sites (and recombination rates between adjacent sites if available)	provide_counts=Xbirchmanni10xgenome_Xmalinche_observed_parental_counts_filterF1 Example format: ScyDAA6-2-HRSCAF-26 163722 129 3 0 54 0.00000078 ScyDAA6-2-HRSCAF-26 166158 135 5 0 54 0.00001374 ScyDAA6-2-HRSCAF-26 166535 6 0 0 6 0.00000754 Columns are: Chromosome site allele1_count_parent1 allele2_count_parent1 allele1_count_parent2 allele2_count_parent2 recombination_rate	If not provided, the program will assume that provided ancestry informative sites are fixed between species
per_site_erro r=	Per-site error parameter for HMM (i.e. due to sequencing error, contamination, etc)	per_site_error=0.02	Always
gen_initial_a dmix=	Estimated generation of initial admixture	gen_initial_admix=20	If not provided, AncestryH MM will attempt to estimate (may increase run time)
focal_chrom_l ist=	Provide a list of chromosomes to run (other	focal_chrom_list=mychrs.txt Example:	Not required

	chromosomes will not be run)	ScyDAA6-2-HRSCAF-26 ScyDAA6-7-HRSCAF-50	
rec_M_per_bp=	Estimated recombination rate in Morgans/bp	rec_M_per_bp=0.00000002	Always; Use an estimate for a related species if not available
max_alignment s=	Limit analysis to a maximum number of alignments (for computational speed)	max_alignments=2000000	Optional
retain_interm ediate_files=	Keep all intermediate files. Warning: setting this to 1 results in a high space footprint for a large run; only recommended for troubleshooting.	retain_intermediate_files=0	Options are 1 to keep or 0 to delete.
posterior_thr esh=	Posterior probability threshold to use for identifying ancestry transition intervals	posterior_thresh=0.9	Recommend ed 0.8-1
job_submit_co mmand=	Option to run sequentially if using Docker image for dependencies or from a desktop computer. Set bash to run sequentially and sbatch to run in parallel on a slurm cluter	<pre>job_submit_command=bash or job_submit_command=sbatch</pre>	Always required

slurm_command _map=	<pre>slurm_command_map=#!/bin/sh #SBATCHntasks=1 #SBATCHcpus-per-task=1 #SBATCH -p schumer mem=64000 #SBATCHtime=02:30:00 slurm_command_variant_call=#!/bin/sh #SBATCH ntasks=1 #SBATCHcpus-per-task=1 #SBATCH -p schumermem=64000 #SBATCHtime=05:00:00 slurm_command_hmm=#!/bin/sh #SBATCHntasks=1 #SBATCHcpus-per-task=1 #SBATCH -p schumer mem=64000 #SBATCHtime=03:00:00</pre>	Required if running on a cluster
---------------------	--	----------------------------------

Examples

Several example files are available with the git repository including example configuration files

Running the pipeline

After setting the parameters in the configuration file and loading required dependencies, simply run:

```
perl mixnmatch/simulate_admixed_genomes_v6.pl
hybrid simulation configuration.cfg
```

where path is the path to your simulator install

Appendix 3: Protocol used to generate low-coverage sequenced data for F_1 and F_2 individuals (X. birchmanni x X. malinche)

1. Pre-charge the Tn5 with the adaptors.

Combine on ice, <i>in the following order</i> , and mix by pipetting up and down after each addition:
$15~\mu l$ Tn5 (100 ng / $\mu l)$ $122~\mu l$ reassociation buffer/Glycerol (1:1 mix of reassociation buffer and glycerol, made in advance) $3~\mu l$ each adaptor (1 and 2)
Incubate in a thermal cycler at 37°C for 30 minutes (with a heated lid).
Note: this will exceed the allowed volume per well for most thermocyclers, so the mixture should be split between three wells with the appropriate volume per well
While the Tn5 is pre-charging, add 3 μ l of DNA (3-10 ng $/\mu$ l) to each well on a 96 well plate (label "tagmentation")
2. <u>Tagmentation</u>
Make up MasterMix for tagmentation reaction on ice. The volumes per 96 samples (107uL/well mmix in a strip) are: 120 ul Precharged Tn5 from step 1 240 ul 5X TAPS Buffer (contains DMF) – collect waste separately 500 ul H20
Add 7 uL of the MasterMix to each well of a 96 well plate, already containing your DNA. Mix up and down as you add the MasterMix. Spin briefly.
Incubate at 55°C for 7 minutes.
3. Kill the Tn5
Add 2.5 μl 0.2% SDS to each reaction, mix up and down, spin briefly.
Incubate at 55°C for 7 minutes in a thermal cycler.
4. <u>PCR</u>
Transfer 3 μl of your digested DNA from each well of your old 96 well plate to a new 96 well plate