

Autonomous UAV Capstone Final Status Presentation

1/c Domenico Bulone

1/c Cody Meyers

1/c Matthew Kim 1/c Jacob Schellman

1/c Gavin McGahey 1/c Ryan Von Brock

Advisors:

Professor Hartnett

Lieutenant Blanco Professor Swaszek

April 28th, 2022

Mission Needs Statement

To design a low cost, open architecture, and cooperative autonomous quadcopter adaptive for Coast Guard use.

- Supplement ScanEagle's success
- No dedicated launching system, usable on small platforms
- No dedicated pilot
- Cheap enough to be bought in large quantities

Boeing ScanEagle

Project Requirements

- The RoboBoat competition guidelines served as a baseline for UAV's requirements.
- RoboBoat is an international competition where an autonomous surface vessel (ASV) performs navigating and docking tasks.
- Each ASV is allowed to cooperate with a UAV.

Requirements:

- Lightweight (<10 lbs)
- Remain positively buoyant (120 seconds)
- Deliver small payloads (1.5 in. Diameter)
- Low cost (<\$1000)
- Capable of stable flight
- Utilize multiple modes of navigation
- Capable of flying autonomous search patterns
- Capable of autonomous landing/takeoff from vessel

Year in Review

1. Enabling Flight:

- i. Identifying Major Systems
- ii. Physical Platform
- iii. Calculations, Tuning
- 2. Workflow Separation
- 3. System Integration

Major Developmental Systems

Communications

Computer Vision

Drone Control

Satellite Navigation

Landing Assembly

Payload Delivery

Drone Hardware & Physical Specifications

- Built on S500 Platform (Total Weight = 3.4 lb)
- Flight Controller: PixHawk 2.4.8
- Microprocessor: Raspberry Pi 4
- Communications: Xbee Series 3, RC XMIT/RCV
- Navigation: LIDAR, ZED-F9P, Raspberry Pi Camera
- Power Supply: 11.1 V LiPo Battery
- Total Weight: 3.4 lbs
- Total Reproduction Cost: ~\$900
- Battery Life: 6-10.7 Minutes

Minimum Battery Life							
Battery Capacity (Ah)	Amperage D	Amperage Draw					
4.2	MT2213 Motor x4	38.4		C 00			
	Raspberry Pi	3		6.00			
	Xbee	0.017					
	Zed F9P	0.12					
	LIDAR	0.085					
	Pixhawk	0.28					
	PiCam	0.095					
	Total	41.997					

Average Battery Life							
Battery Capacity (Ah)		Amperage Draw			Battery Life (Minutes)		
4.2		MT2213 Motor x4	20		10.68		
		Raspberry Pi	3				
		Xbee	0.017				
		Zed F9P	0.12				
		LIDAR	0.085				
		Pixhawk	0.28				
		PiCam	0.095				
	·	Total	23.597				

Drone Control

- Connects the 6 major systems
- Pixhawk Flight Controller Hardware
- •PX4 Autopilot Software

Flight Modes

Testing

Pixhawk 2.4.8

Communications

- Digi DigiMesh[®]
 - Mesh Networking
 - Communication with arbitrary number of distinct systems
- Digi XBee 3 DigiMesh 2.4 RF Modules
- FrSky Taranis Radio Controller

XBee 3 DigiMesh Modules

FrSky 2.4 GHz 'Whip' Receiver

Demonstration of Manual Flight

Stability During Disturbance Inputs

Tuning Flight Controller Gains on Test Bed

Year in Review

- 1. Enabling Flight:
- 2. Workflow Separation
 - i. Satellite Navigation with Real-Time Kinematics (RTK)
 - ii. Computer Vision
 - iii. Simulation Environment
- 3. System Integration

Satellite Navigation with RTK

Real-Time Kinematic Positioning

- 2 Receivers
 - Base Station
 - Rover Receiver
- Improves accuracy
 - Control finely tuned movements
 - Accuracy for landing pad

Receiver Placement

ZED-F9P Rover Receiver

Base Station

RTK Testing Development

GNSS: Average +/- 60 cm

RTK (QGroundControl): +/- 6 cm

UBX - NAV (Navigation) - HPPOSECEF (High Precision Position ECEF)					
Time of week	417853.000	[s]			
ECEF -X	1473304.6442	[m]			
ECEF-Y	-4561312.0588	[m]			
ECEF · Z	4193547.4200	[m]			
ECEF Invalid					
Accuracy Estimate Position 3D 0.0173 [m]					

RTK: +/- 17 mm

Computer Vision

- What is Computer Vision
- Enables image detection
- Hardware
 - Raspberry Pi4 + PiCam
 - 480p @ 15-20 FPS
- Software
 - OpenCV & PyCharm EDU
- ArUco Markers

Dual ArUco Marker Solution

- 2' x 2' Velcro ArUco Marker
 - Smaller 4" x 4" marker in center
- Successful detection in real-world and simulated tests
- Large marker detectable up to at least 50'
- Small marker detectable at up to ~13'

Image Refinement

Raw video feed

- Grayscale
- Adaptive Mean Threshold
- Gaussian Adaptive Threshold

Simulation Environment

Software-in-the-Loop:

- Virtual world, virtual drone
 - Same inertial characteristics
- Low risk, rapid testing
 - Poor tuning transferability

Autonomous Landing in Simulation

Year in Review

- 1. Enabling Flight:
- 2. Workflow Separation
- 3. System Integration/Results
 - i. Flotation and Payload Delivery
 - ii. Landing Platform Development
 - iii. Autonomous Waypoint Flight
 - iv. Computer Vision Enabled Landing

Drone Flotation

Initial Solution:

- Foam under propellers
- 6.61 lb. of buoyant force
- Significantly impacted stability of drone during flight

Initial Flotation Solution

Proposed Solution

- Hydrostatic activation
- 10 lb. of buoyant force
- Drone would not float upright
- Untested

Proposed Solution: DR9 Drone Retriever

Payload Delivery

Scoop Mechanism:

- Servo Actuated
- Opens to 1.8 in.

SolidWorks Rendering of Delivery System

Live Test of Delivery

Landing Platform Development

<u>Autonomous Surface Vessel Landing Platform:</u>

- 2.5 x 2.5 ft. Plywood
- Velcro ArUco Marker
- Creates enough friction to secure drone and allow takeoff

Take-off From Velcro Connection

Stable Take-off After Missed Landing

Autonomous Waypoint Flight

Combining Stable Flight with Navigation:

- Standard GPS
- Predefined creeping line search

Autonomous Creeping Line Search

Computer Vision Enabled Landing

Real World Testing:

- Combine all workflows
- High risk, time-consuming

High-Reward Information

Video from the onboard camera.

Autonomous Landing (26 Mar. 2022)

Questions?

Budget

Major Costs:

- S500 Frame: \$59
- Motors: \$100
- Raspberry Pi 3B+: \$75
- Pixhawk 2.4.8: \$75
- RTK: \$350

Drone Reproduction Cost: \$900

Future Costs:

• Drone Retriever DR9: \$85

Platform Requirements

Requirement	Solution
Weigh less than 10 pounds (T), ideally 5 pounds (O).	Small Platform: 3.4 pounds.
Be capable of precision navigation, ideally 10cm (O).	Equipped with GPS-RTK, Lidar, and a camera.
Capable of transporting small objects.	Servo Actuated close/release scoop mechanism.
Positively buoyancy in water for 120 seconds (T), or indefinitely (O).	Foam outriggers underneath propellers. 5.1 lbs of buoyant force.
Safety guidelines: remote kill switch, not exceed 60 V DC.	Remote kill switch configured on RC transmitter. Utilizes an 11.1 V LiPo battery.
Total cost to reproduce less than \$1,000 (O).	Current sum of components is approximately \$900.

