

Ex. 03 - DIC

Exercício 01. Planeje um experimento na sua área de atuação no delineamento inteiramente casualizado.

Exercício 02. Obtenha um conjunto de dados da sua área, coletado num experimento instalado no delineamento inteiramente casualizado, faça a análise de variância e interprete os resultados.

EXERCÍCIO 01

Áreas de atuação:

- 1. Genética Quantitativa;
- 2. Melhoramento de Plantas;
- 3. Hortaliças;

• Título do experimento:

o Capacidade de multiplicação de diferentes acessos de Solanum tuberosum sob condições de cultivo protegido.

· Hipóteses testadas:

- o H0: Os acessos não se diferem quanto a capacidade de tuberizar e gerar batatas sementes para multiplicação;
- o Ha: Há, entre pelo menos dois acessos, diferenças entre o número de batatas sementes produzidas;

• Objetivos:

 Verificar o potencial propagativo de acessos de Solanum tuberosum como métrica para o planejamento do pipeline do programa de melhoramento de hortaliças da Esalq-USP.

• Fatores e níveis:

- Acessos de batata utilizados nos experimentos com clones avançados;
- o Níveis do tratamento:
 - a. Asterix Funciona como testemunha;
 - b. St57
 - c. St91
 - d. St346
 - e. St467
 - f. St614

• Variável resposta:

o Número de tubérculos viáveis produzidos após dessecação aos 110 dias após plantio;

• Design Experimental:

```
# Aleatorização das parcelas experimentais
set.seed(2001)
SampleDICp <- DICpotato[sample(nrow(DICpotato)), ]

# Cria um dataframe com linhas (n = x) e (n = y) colunas associarmos ao DICgarlic
Linha <- rep(1:8, each = 6)
Coluna <- rep(1:6, times = 8)
Arranjo <- data.frame(LINHA = Linha, COLUNA = Coluna)
SampleDICp <- cbind(SampleDICp, Arranjo)

# Transforma o genótipo em um fator
SampleDICp$Genotype <- as.factor(SampleDICp$Genotype)

# Paleta de cores do pacote RColorBrewer
paleta <- brewer.pal(6, "Greens")</pre>
```

Ex. 03 - DIC 1

```
# Plota o croqui da área
croquiDICp <- ggplot(SampleDICp, aes(x = LINHA, y = COLUNA, fill = Genotype)) +
  geom_tile(color = "white", lwd = 1) +
  geom_text(aes(label = Repetition), color = "black", size = 4) +
  scale_fill_manual(values = paleta) + # Usar uma escala contínua
  scale_x_continuous(breaks = unique(SampleDICp$LINHA), labels = unique(SampleDICp$LINHA),
                     expand = c(0, 0) +
  scale_y_continuous(breaks = unique(SampleDICp$COLUNA), labels = unique(SampleDICp$COLUNA),
                     expand = c(0, 0) +
 labs(
    x = "Coluna",
    y = "Linha",
   title = "DIC Batata | Croqui",
   fill = "Familia") +
  theme_light() +
  theme(
    axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5), # Ajustar a posição dos rótulo
    axis.text.y = element_text(angle = 0, vjust = 0.5, hjust = 0.5), # Ajustar a posição dos rótulo
    panel.grid = element_blank(),
   plot.title = element_text(hjust = 0.5)
print(croquiDICp)
```


A coloração das parcelas foi realizada em função do genótipo e o número interno representa a repetição;

EXERCÍCIO 02

Para esse exercício, será utilizada a variável número de tubérculos viáveis.

▼ Análise exploratória:

1. Gráfico de pontos:

```
ggplot(DICpotato, aes(x = Genotype, y = nTub)) +
  geom_point() +
  expand_limits(y = 0) +
  labs(
    x = "Genótipo",
    y = "Número de tubérculos",
    title = "DIC Batata | Gráfico de Pontos") +
  theme(
    plot.title = element_text(hjust = 0.5))
```

Ex. 03 - DIC 2

2. Gráfico BoxPlot:

```
ggplot(DICpotato, aes(x = Genotype, y = nTub)) +
  geom_boxplot() +
  expand_limits(y = 0) +
  labs(
    x = "Genótipo",
    y = "Número de tubérculos",
    title = "DIC Batata | BoxPlot") +
  theme(
    plot.title = element_text(hjust = 0.5))
```


▼ Validação das pressuposições da ANOVA:

Para realizar a validação das pressuposições da ANOVA, primeiro é necessário criar um modelo de ajuste linear para o conjunto de dados e depois prosseguir com os testes de normalidade e homogeneidade.

• Ajuste do modelo linear:

```
lmDICp = lm(nTub~Genotype, DICpotato)
resDICp <- residuals(lmDICp)  # Resíduos
resStudDICp <- rstandard(lmDICp)  # Resíduos studentizados</pre>
```

• Shapiro-Wilk | Teste de normalidade dos resíduos

```
shapiro.test(resStudDICp)
```

Resultado:

```
data: resStudDICp
W = 0.98719, p-value = 0.8741
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

• Levene | Teste de homogeneidade de variâncias

Ex. 03 - DIC 3

```
with(DICpotato,
     levene.test(nTub, Genotype, location = "mean"))
```

Resultado:

```
data: nTub
Test Statistic = 2.1659, p-value = 0.07615
```

Portanto → De acordo com o teste de Levene a 5% de probabilidade de erro, as variâncias podem ser consideradas homogêneas.

🧼 Visto que o conjunto de dados atendem as pressuposições da ANOVA, não há necessidade de realizar uma transformação de dados e é possível seguir para a Análise de Variância.

▼ ANOVA - Análise de variância

• Anova utilizando funções do Rbase:

```
# Code:
anova(lmDICp)
# ANOVA por meio do Rbase:
Analysis of Variance Table
Response: nTub
         Df Sum Sq Mean Sq F value Pr(>F)
Genotype 5 2580.2 516.04 5.4482 0.0005956 ***
Residuals 42 3978.1 94.72
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• Anova utilizando funções do pacote *ExpDes.pt*:

```
# Code:
DICpotato$Genotype <- as.numeric(DICpotato$Genotype)</pre>
with(DICpotato,
    dic(Genotype, nTub, hvar = "levene", quali = T, mcomp = "tukey", sigF = 0.05, sigT = 0.05))
# ANOVA por meio do ExpDes.pt:
Quadro da analise de variancia
______
        GL
             SQ QM Fc
                               Pr>Fc
Tratamento 5 2580.2 516.04 5.4482 0.00059559
Residuo 42 3978.1 94.72
       47 6558.3
Total
CV = 26.08 \%
```

- Interpretações:
 - o A hipótese nula é rejeitada, aceitando-se a hipótese alternativa de que há diferenças significativas a 5% de probabilidade de erro entre, pelo menos, dois tratamentos.
 - o Logo, é possível dizer que a radiação gama promoveu influência sobre a variável altura de plantas de alho.

CONCLUSÕES

- Há diferenças entre, pelo menos dois genótipos testados para a variável número de tubérculos propagativos viáveis produzidos com dessecação aos 110 dias após plantio. Portanto, deve ser realizado um teste de comparação múltipla adequado para o conjunto de dados, a fim de visualizar quais essas diferenças.
- Ainda, o pacote ExpDes.pt confere o coeficiente de variação do conjunto de dados analisados, o que permite analisar essa informação. Para os dados em questão, com CV de 26,08%, visto que são dados de produção, pode ser considerado adequado.

Fx. 03 - DIC 4