

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Rozwiązywanie układów równań liniowych metodami bezpośrednimi Zadanie 6b

Maciej Kmąk Informatyka WI AGH, II rok

1 Treść Zadania

Zdefiniuj trójdiagonalną macierz

$$A^{n \times n} = \begin{cases} k, & i = j, \\ \frac{1}{i+m}, & j = i+1, \\ \frac{k}{i+m+1}, & j = i-1, \\ 0, & |i-j| > 1. \end{cases}$$

przy czym w zadaniu przyjmujemy

$$k = 6, \qquad m = 4.$$

Oblicz wektor $x_{\text{zadany}} \in \{-1, 1\}^n$ generowany jest losowo, $x_i \in \{-1, 1\}$

$$b = A x_{\text{zadany}}$$
.

Następnie, traktując x jako niewiadomą, rozwiąż układ

$$Ax = b$$

dwoma metodami:

- metodą eliminacji Gaussa,
- metodą Thomasa.

Ćwiczenia powtórz dla różnych rozmiarów n oraz dwóch precyzji zmiennoprzecinkowych: float32 i float64. Dla każdej konfiguracji zmierz i porównaj:

- błąd w wybranej normie,
- czas wykonania algorytmu (bez czasu generowania macierzy),
- zużycie pamięci.

2 Dane techniczne

Eksperymenty przeprowadzono na komputerze o następującej konfiguracji:

- System operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel (R) Core (TM) i5-1235U @ 1.3 GHz (10 rdzeni)
- Pamięć RAM: 16 GB DDR4
- Środowisko programistyczne:
 - Python 3.12
 - NumPy (import numpy as np) obliczenia numeryczne
 - Pandas (import pandas as pd) analiza i przetwarzanie danych
 - time (import time) pomiar czasu wykonania fragmentów kodu

- tracemalloc (import tracemalloc) profilowanie i pomiar zużycia pamięci
- numpy.linalg.norm, numpy.linalg.inv (from numpy.linalg import norm, inv)
 obliczanie norm wektorów i odwrotności macierzy
- Matplotlib (import matplotlib.pyplot as plt) tworzenie wykresów i wizualizacji
- matplotlib.ticker.MaxNLocator (from matplotlib.ticker import MaxNLocator)
 zaawansowane formatowanie osi wykresów
- functools.wraps (from functools import wraps) zachowywanie metadanych oryginalnej funkcji w dekoratorach

3 Przebieg Doświadczenia

Eksperyment przeprowadzono według następującego schematu:

- 1. Ustawienie parametrów badania.
 - Ziarno generatora pseudolosowego: np.random.seed(0) dla powtarzalności.
 - Rozmiary układu: $n \in \{2, ..., 100\} \cup \{110, 120, ..., 1000\}$.
 - Precyzje zmiennoprzecinkowe: float32, float64.
- 2. **Generowanie danych.** Dla każdej pary (n, dtype):
 - Utworzono trzy wektory (dolny l, główny d, górny u) długości n lub n-1 za pomocą make tridiag A1.
 - Wektor x_{true} wylosowano z $\{-1,1\}^n$.
 - Obliczono $b = A_{\text{tri}} x_{\text{true}}$, gdzie $A_{\text{tri}} = \text{diag}(d) + \text{diag}(u, 1) + \text{diag}(l, -1)$.
- 3. Rozwiązywanie układu Ax = b. Dla obu metod zmierzono czas wykonania oraz zużycie pamięci.

Metoda Thomasa

- Macierz przechowywana jako trzy wektory pamięć $\mathcal{O}(n)$.
- Rozwiązanie w czasie liniowym $\mathcal{O}(n)$.

Eliminacja Gaussa

- Macierz pełna $n \times n$ pamięć $\mathcal{O}(n^2)$.
- Rozwiązanie w czasie $\mathcal{O}(n^3)$.
- 4. Analiza wyników. Dla każdej metody i konfiguracji obliczono:
 - błąd e_{max} : $||x_{\text{true}} x_{\text{calc}}||_{\infty}$,
 - błąd e_{euk} : $||x_{\text{true}} x_{\text{calc}}||_2$,
 - współczynnik uwarunkowania κ : cond $(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$.
- 5. **Wizualizacja.** Wykresy porównawcze (czas, pamięć, błędy, współczynniki) wykonano za pomocą Matplotlib oraz MaxNLocator w skalach liniowej i logarytmicznej.

4 Wyniki doświadczenia

Poniżej zestawiono wybrane tabele podzbiorów wyników układów o rozmiarach

 $n \in \{2, 3, \dots, 10, 20, 50, 100, 150, 200, 300, 400, 500, 750, 1000\}$

Pełne wyniki umieszczono w sekcji **Pełne tabele** na końcu dokumentu.

4.1 Tabela wyników – Thomas

		flo	oat32		float64				
n	e_{\max}	$e_{ m euk}$	t [s]	Pamięć [bajty]	e_{\max}	$e_{ m euk}$	t [s]	Pamięć [bajty]	
2	0.000e+00	0.000e+00	7.129e-04	9.500e + 02	0.000e+00	0.000e+00	4.980e-05	9.600e + 02	
3	5.960e-08	5.960 e-08	6.840 e - 05	9.120e + 02	1.110e-16	1.110e-16	9.160 e-05	9.840e + 02	
4	1.192e-07	1.192e-07	9.850 e-05	9.400e+02	1.110e-16	1.110e-16	7.970e-05	1.040e + 03	
5	1.192e-07	1.333e-07	9.850 e-05	9.680e + 02	2.220e-16	2.220e-16	9.990 e-05	1.096e + 03	
6	1.192e-07	1.192e-07	1.182e-04	9.960e + 02	2.220e-16	3.331e-16	1.187e-04	1.152e + 03	
7	1.192e-07	1.788e-07	1.486e-04	1.024e + 03	2.220e-16	2.719e-16	1.489e-04	1.208e + 03	
8	1.192e-07	1.788e-07	1.608e-04	1.052e + 03	1.110e-16	1.923e-16	1.582e-04	1.264e + 03	
9	1.192e-07	2.230e-07	2.812e-04	1.080e + 03	2.220e-16	3.846e-16	1.920 e-04	1.320e + 03	
10	5.960e-08	5.960 e-08	2.036e-04	1.108e + 03	2.220e-16	2.937e-16	3.152e-04	1.376e + 03	
20	1.192e-07	2.308e-07	3.916e-04	1.388e + 03	2.220e-16	3.331e-16	3.910e-04	1.936e + 03	
50	1.788e-07	3.909e-07	1.165e-03	2.228e + 03	2.220e-16	7.022e-16	1.235 e-03	3.616e + 03	
100	1.192e-07	6.166e-07	1.894e-03	3.628e + 03	2.220e-16	1.047e-15	2.164e-03	6.416e + 03	
200	1.192e-07	7.633e-07	4.699e-03	6.428e + 03	3.331e-16	1.506e-15	5.264 e-03	1.202e+04	
300	1.788e-07	9.629 e-07	7.446e-03	9.308e + 03	3.331e-16	1.720 e-15	1.083e-02	1.770e + 04	
400	1.788e-07	1.132e-06	9.170e-03	1.211e+04	2.220e-16	1.769 e-15	1.462 e-02	2.330e + 04	
500	1.788e-07	1.176e-06	1.541e-02	1.491e + 04	3.331e-16	2.161e-15	1.217e-02	2.890e + 04	
750	1.192e-07	1.507e-06	2.395e-02	2.191e+04	3.331e-16	2.753e-15	2.380e-02	4.290e + 04	
1000	1.788e-07	1.761e-06	5.323 e-02	2.891e + 04	3.331e-16	3.329 e-15	3.504 e-02	5.690e + 04	

4.2 Tabela wyników – Gauss

		fl	oat32		float64				
n	e_{\max}	$e_{ m euk}$	t [s]	Pamięć [bajty]	e_{\max}	$e_{ m euk}$	t [s]	Pamięć [bajty]	
2	0.000e+00	0.000e+00	5.003e-04	1.365e + 03	0.000e+00	0.000e+00	1.368e-04	1.384e + 03	
3	5.960e-08	5.960 e-08	2.748e-04	1.376e + 03	1.110e-16	1.110e-16	1.781e-04	1.488e + 03	
4	1.192e-07	1.192e-07	2.613e-04	1.444e + 03	1.110e-16	1.110e-16	2.167e-04	1.624e + 03	
5	1.192e-07	1.333e-07	3.871e-04	1.528e + 03	2.220e-16	2.220 e-16	3.023e-04	1.792e + 03	
6	1.192e-07	1.192e-07	4.195e-04	1.628e + 03	2.220e-16	3.331e-16	3.638e-04	1.992e + 03	
7	1.192e-07	1.788e-07	5.984e-04	1.744e + 03	2.220e-16	2.719e-16	5.345 e-04	2.224e + 03	
8	1.192e-07	1.788e-07	7.069e-04	1.876e + 03	1.110e-16	1.923e-16	9.618e-04	2.881e + 03	
9	1.192e-07	2.230e-07	1.080e-03	2.024e+03	2.220e-16	3.846e-16	6.944e-04	2.784e + 03	
10	5.960e-08	5.960 e-08	9.397e-04	2.188e + 03	2.220e-16	2.937e-16	8.721e-04	3.184e + 03	
20	1.192e-07	2.308e-07	2.707e-03	5.584e + 03	2.220e-16	3.331e-16	2.573e-03	1.054e + 04	
50	1.788e-07	3.909e-07	1.554 e-02	3.102e+04	2.220e-16	7.022e-16	1.490 e-02	6.142e+04	
100	1.192e-07	6.166e-07	5.359 e-02	1.214e + 05	2.220e-16	1.047e-15	5.651e-02	2.422e+05	
200	1.192e-07	7.633e-07	2.736e-01	4.822e + 05	3.331e-16	1.506e-15	4.543e-01	9.638e + 05	
300	1.788e-07	9.629 e-07	8.278e-01	1.083e + 06	3.331e-16	1.720 e-15	8.710e-01	2.165e + 06	
400	1.788e-07	1.132e-06	1.678e + 00	1.924e + 06	2.220e-16	1.769e-15	1.711e+00	3.847e + 06	
500	1.788e-07	1.176e-06	1.821e+00	3.005e + 06	3.331e-16	2.161e-15	1.797e + 00	6.009e+06	
750	1.192e-07	1.507e-06	4.008e+00	6.757e + 06	3.331e-16	2.753e-15	3.948e+00	1.351e + 07	
1000	1.788e-07	1.761e-06	1.166e + 01	$1.201\mathrm{e}{+07}$	3.331e-16	3.329 e-15	1.143e+01	2.402e+07	

4.3 Wykresy

Poniżej przedstawiono wykresy obrazujące przebieg czasów obliczeń, zużycie pamięci oraz błędy $e_{\rm max}$ i $e_{\rm euk}$. Każdy wykres zawiera dwie serie odpowiadające precyzjom float32 i float64. Dodatkowo sporządzono wykresy wspólne porównujące bezpośrednio różnice pomiędzy metodą Thomasa a eliminacją Gaussa w zakresie czasu, pamięci oraz obu norm błędu.

4.3.1 Czas obliczeń

Rysunek 1: Porównanie czasu rozwiązania (w sekundach) Ax = b w zależności od n.

Na podstawie wykresu 1 wyraźnie widać, że algorytm Thomasa charakteryzuje się złożonością liniową względem rozmiaru n (co przejawia się prostoliniowym przebiegiem czasu), dzięki czemu jest znacznie szybszy od pełnej eliminacji Gaussa, zwłaszcza dla dużych wartości n.

4.3.2 Zużycie pamięci

Rysunek 2: Porównanie zużycia pamięci (w bajtach) w zależności od n.

Na wykresie 2 widać, że metoda Thomasa zużywa pamięć proporcjonalnie do n (złożoność liniowa – trzy wektory długości n), podczas gdy eliminacja Gaussa wykazuje zależność kwadratową $\mathcal{O}(n^2)$, co jest zgodne z teoretycznymi przewidywaniami.

4.3.3 Błąd $e_{\rm max}$

Rysunek 3: Porównanie błędu $e_{\text{max}} = ||x_{\text{true}} - x_{\text{calc}}||_{\infty}$ w zależności od n.

4.3.4 Błąd e_{euk}

Rysunek 4: Porównanie błędu $e_{\text{euk}} = ||x_{\text{true}} - x_{\text{calc}}||_2$ w zależności od n w skali logarytmicznej.

Na wykresach 3 i 4 nie obserwujemy istotnych różnic między metodą Thomasa a eliminacją Gaussa — zarówno w normie maksymalnej $e_{\rm max}$, jak i w normie euklidesowej $e_{\rm euk}$ obie metody zachowują porównywalną dokładność dla wszystkich badanych rozmiarów n oraz dokładności obliczeniowych.

4.4 Wykresy porównawcze

W tej sekcji prezentowane są porównawcze wykresy, na których jednocześnie umieszczono cztery serie danych:

- o circle marker (okrągły znacznik) reprezentuje eliminację Gaussa w precyzji float32 (gauss32)
- x x marker (znacznik krzyżyka) reprezentuje metodę Thomasa w precyzji float32 (thomas32)
- s square marker (kwadratowy znacznik) reprezentuje eliminację Gaussa w precyzji float64 (gauss64)
- D diamond marker (romb) reprezentuje metodę Thomasa w precyzji float64 (thomas64)

Dzięki temu można bezpośrednio ocenić wpływ wyboru metody i precyzji na czas wykonania, zużycie pamięci oraz wielkość błędów e_{\max} i e_{euk} w funkcji rozmiaru n.

Rysunek 5: Porównanie czasu obliczeń (skala liniowa) dla metod Thomas i Gauss w obu precyzjach.

Rysunek 6: Porównanie zużycia pamięci (skala logarytmiczna) w zależności od n.

Rysunek 7: Porównanie błędu maksymalnego e_{max} (skala liniowa) dla obu metod i precyzji.

Rysunek 8: Porównanie błędu euklidesowego e_{euk} (skala logarytmiczna) dla obu metod i precyzji.

5 Opracowanie Danych

Czas obliczeń

Na podstawie wykresu 5 wyraźnie widać, że algorytm Thomasa jest znacznie szybszy od eliminacji Gaussa. Przebieg czasu dla Thomasa rośnie liniowo wraz ze wzrostem n, podczas gdy czas Gaussa rośnie znacznie szybciej, co odpowiada teoretycznej złożoności $\mathcal{O}(n^3)$ dla metody pełnej eliminacji.

Zużycie pamięci

Wykres 6 pokazuje, że zużycie pamięci przez Thomasa również rośnie liniowo (przechowywane są trzy wektory długości n), natomiast dla Gaussa widać wyraźną zależność kwadratową – macierz $n \times n$ zajmuje $\mathcal{O}(n^2)$ pamięci. Dodatkowo porównanie precyzji float32 vs float64 pokazuje dwukrotne zwiększenie pamięci przy wyższej precyzji, zgodne z przewidywaniami teoretycznymi.

Dokładność rozwiązań

Z wykresów 7 oraz 8 wynika, że obie metody osiągają porównywalną dokładność – nie ma istotnych różnic w normie maksymalnej e_{max} ani w normie euklidesowej e_{euk} pomiędzy Thomasem a Gaussem. Jedynym czynnikiem wpływającym na wielkość błędów jest precyzja arytmetyki (float32 vs float64), a nie sam wybór algorytmu.

6 Podsumowanie Zagadnienia

Efektywność obliczeniowa

Metoda Thomasa, zoptymalizowana dla macierzy trójdiagonalnych, wykazała znacznie lepszą wydajność niż klasyczna eliminacja Gaussa. Doświadczenia pokazały, że czas rozwiązania rośnie liniowo wraz ze wzrostem rozmiaru układu $(\mathcal{O}(n))$, podczas gdy w przypadku Gaussa obserwujemy przyrost o złożoności sześciennej $(\mathcal{O}(n^3))$. Przewaga Thomasa staje się tym bardziej widoczna dla dużych wymiarów n.

Zużycie pamięci operacyjnej

Analiza pamięci potwierdziła teoretyczne oczekiwania: Thomas przechowuje jedynie trzy wektory o długości n ($\mathcal{O}(n)$), natomiast Gauss operuje na pełnej macierzy $n \times n$ ($\mathcal{O}(n^2)$). W praktyce oznacza to, że dla dużych, rzadkich układów trójdiagonalnych Thomas wymaga znacznie mniej pamięci, co czyni go rozwiązaniem zdecydowanie skuteczniejszym w środowiskach o ograniczonych zasobach.

Dokładność numeryczna

Zarówno metoda Thomasa, jak i eliminacja Gaussa osiągają porównywalną precyzję wyników przy tej samej arytmetyce zmiennoprzecinkowej. Różnice w wartościach błędów wynikają wyłącznie z ograniczeń precyzji (float32 vs float64), nie zaś z samego algorytmu. Oznacza to, że obie metody są numerycznie stabilne w kontekście rozwiązywania układów z dobrze uwarunkowanymi trójdiagonalnymi macierzami.

7 Wnioski

Zgodność z teorią

Eksperymenty w pełni potwierdziły przewidywania analizy teoretycznej: dla struktur trójdiagonalnych metoda Thomasa jest najefektywniejsza zarówno czasowo, jak i pamięciowo, zaś uniwersalna metoda Gaussa, choć bardziej ogólna, obciążona jest znacznie wyższymi kosztami obliczeń i pamięci.

Rekomendacje

W zastosowaniach, gdzie macierz układu ma strukturę trójdiagonalną, metoda Thomasa powinna być metodą pierwszego wyboru. Eliminacja Gaussa pozostaje natomiast adekwatna w sytuacjach ogólnych, gdy macierz ma dowolną postać bądź wymagana jest większa elastyczność w stosunku do struktury danych.

Na następnych stronach, w sekcji **Pełne tabele**, przedstawiono szczegółowe wyniki dla wszystkich badanych rozmiarów n. Znajdują się tam wartości błędów $e_{\rm max}$ i $e_{\rm euk}$, czasy obliczeń oraz zużycie pamięci dla obu metod i obu precyzji. Pełny zestaw danych umożliwia pogłębioną analizę porównawczą oraz odtworzenie i weryfikację przeprowadzonych pomiarów.

8 Pełne tabele

8.1 Wyniki dla Thomasa

Tabela 1: Wyniki metody Thomas dla precyzji float32 vs float64

	l	flo	oat32		float64				
n	$\mathbf{e}_{\mathrm{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	$\mathbf{e}_{\mathrm{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	
2	0.000e+00	0.000e+00	7.129e-04	9.500e + 02	0.000e+00	0.000e+00	4.980 e - 05	9.600e + 02	
3	5.960e-08	5.960e-08	6.840e-05	9.120e+02	1.110e-16	1.110e-16	9.160e-05	9.840e+02	
4	1.192e-07	1.192e-07	9.850e-05	9.400e+02	1.110e-16	1.110e-16	7.970e-05	1.040e + 03	
5	1.192e-07	1.333e-07	9.850e-05	9.680e+02	2.220e-16	2.220e-16	9.990e-05	1.096e + 03	
6 7	1.192e-07 1.192e-07	1.192e-07 1.788e-07	1.182e-04 1.486e-04	9.960e+02 1.024e+03	2.220e-16 2.220e-16	3.331e-16 2.719e-16	1.187e-04 1.489e-04	1.152e+03 1.208e+03	
8	1.192e-07 1.192e-07	1.788e-07	1.608e-04	1.052e+03	1.110e-16	1.923e-16	1.582e-04	1.264e+03	
9	1.192e-07	2.230e-07	2.812e-04	1.080e+03	2.220e-16	3.846e-16	1.920e-04	1.320e+03	
10	5.960e-08	5.960e-08	2.036e-04	1.108e + 03	2.220e-16	2.937e-16	3.152e-04	1.376e + 03	
11	1.192e-07	2.230e-07	2.408e-04	1.136e + 03	2.220e-16	2.483e-16	2.317e-04	1.432e + 03	
12	1.192e-07	1.460 e - 07	2.373e-04	1.164e + 03	2.220e-16	3.846e-16	4.050e-04	1.488e + 03	
13	1.192e-07	1.460 e - 07	3.699e-04	1.192e+03	2.220e-16	3.846e-16	2.533e-04	1.544e + 03	
14	1.192e-07	1.333e-07	2.694e-04	1.220e + 03	2.220e-16	2.937e-16	2.762e-04	1.600e + 03	
15	1.788e-07	1.977e-07	2.939e-04	1.248e + 03	2.220e-16	4.003e-16	3.756e-04	1.656e + 03	
16	1.788e-07	2.308e-07	3.123e-04	1.276e+03	1.110e-16	1.923e-16	3.122e-04	1.712e+03	
17	1.788e-07	3.154e-07	3.273e-04 5.427e-04	1.304e+03	2.220e-16	4.003e-16	3.255e-04	1.768e + 03	
18 19	1.788e-07 1.192e-07	2.796e-07 2.149e-07	3.818e-04	1.332e+03 1.360e+03	2.220e-16 2.220e-16	4.441e-16 4.965e-16	3.768e-04 3.655e-04	1.824e+03 1.880e+03	
20	1.192e-07 1.192e-07	2.308e-07	3.916e-04	1.388e+03	2.220e-16 2.220e-16	3.331e-16	3.910e-04	1.936e+03	
21	1.192e-07 1.192e-07	2.796e-07	4.126e-04	1.416e+03	2.220e-16 2.220e-16	5.551e-16	4.150e-04	1.992e+03	
22	1.788e-07	3.476e-07	4.293e-04	1.444e+03	2.220e-16	4.839e-16	4.222e-04	2.048e + 03	
23	1.192e-07	2.065e-07	4.370e-04	1.472e + 03	2.220e-16	5.324e-16	4.118e-04	2.104e + 03	
24	1.788e-07	3.476e-07	6.052e-04	1.500e + 03	2.220e-16	4.710e-16	4.530e-04	2.160e + 03	
25	1.788e-07	3.154e-07	4.827e-04	1.528e + 03	2.220e-16	4.839e-16	4.864 e-04	2.216e + 03	
26	1.192e-07	3.039e-07	5.072e-04	1.556e + 03	2.220e-16	4.441e-16	4.970e-04	2.272e + 03	
27	1.192e-07	2.731e-07	5.271e-04	1.584e + 03	2.220e-16	4.300e-16	5.313e-04	2.328e + 03	
28	1.788e-07	3.424e-07	5.778e-04	1.612e+03	2.220e-16	4.300e-16	5.664e-04	2.384e+03	
29	1.192e-07	3.476e-07	5.780e-04	1.640e + 03	2.220e-16	4.578e-16	5.704e-04	2.440e+03	
30 31	1.788e-07	3.097e-07 2.980e-07	5.627e-04 6.044e-04	1.668e+03 1.696e+03	2.220e-16 2.220e-16	5.661e-16 4.441e-16	9.199e-04 5.606e-04	2.496e+03 2.552e+03	
$\frac{31}{32}$	1.788e-07 1.192e-07	3.626e-07	5.581e-04	1.724e+03	2.220e-16 2.220e-16	6.568e-16	5.594e-04	2.608e+03	
33	1.788e-07	4.172e-07	7.229e-04	1.752e+03	2.220e-16 2.220e-16	5.979e-16	7.510e-04	2.664e+03	
34	1.788e-07	4.380e-07	7.593e-04	1.780e + 03	2.220e-16	5.207e-16	8.150e-04	2.720e+03	
35	1.788e-07	4.805e-07	6.587e-04	1.808e + 03	2.220e-16	5.088e-16	5.819e-04	2.776e + 03	
36	1.192e-07	4.172e-07	5.779e-04	1.836e + 03	2.220e-16	4.003e-16	5.818e-04	2.832e + 03	
37	1.192e-07	3.097e-07	6.343e-04	1.864e + 03	2.220e-16	4.154e-16	6.159e-04	2.888e + 03	
38	1.788e-07	3.954e-07	6.143e-04	1.892e + 03	2.220e-16	7.280e-16	7.265e-04	2.944e + 03	
39	1.192e-07	3.154e-07	6.411e-04	1.920e+03	2.220e-16	5.207e-16	6.744e-04	3.000e+03	
40 41	1.192e-07 1.788e-07	3.154e-07 4.617e-07	1.044e-03 7.866e-04	1.948e + 03	2.220e-16 2.220e-16	6.378e-16 5.769e-16	6.378e-04 7.886e-04	3.056e+03 3.112e+03	
$\frac{41}{42}$	1.788e-07	4.617e-07 4.617e-07	8.045e-04	1.976e+03 2.004e+03	2.220e-16 2.220e-16	5.769e-16 5.551e-16	8.808e-04	3.112e+03 3.168e+03	
43	1.192e-07	2.666e-07	9.837e-04	2.032e+03	2.220e-16 2.220e-16	4.965e-16	1.022e-03	3.224e+03	
44	1.192e-07	3.265e-07	7.062e-04	2.060e+03	2.220e-16	5.551e-16	1.002e-03	3.280e+03	
45	1.192e-07	3.722e-07	8.777e-04	2.088e + 03	2.220e-16	5.769e-16	8.647e-04	3.336e + 03	
46	1.788e-07	4.130e-07	7.264 e-04	2.116e + 03	2.220e-16	6.280 e-16	7.424 e - 04	3.392e+03	
47	1.192e-07	3.674 e - 07	7.649e-04	2.144e + 03	2.220e-16	6.181e-16	8.644e-04	3.448e + 03	
48	1.788e-07	4.339e-07	8.062e-04	2.172e+03	2.220e-16	7.109e-16	9.569e-04	3.504e + 03	
49	1.788e-07	4.500e-07	9.308e-04	2.200e+03	2.220e-16	5.875e-16	9.362e-04	3.560e+03	
50	1.788e-07	3.909e-07	1.165e-03	2.228e+03	2.220e-16	7.022e-16	1.235e-03	3.616e + 03	
51	1.788e-07	4.298e-07	1.251e-03	2.256e+03	2.220e-16	7.364e-16	1.242e-03	3.672e+03	
52 53	1.788e-07 1.788e-07	4.617e-07 5.264e-07	1.262e-03 1.458e-03	2.284e+03 2.312e+03	2.220e-16 2.220e-16	6.661e-16 7.611e-16	2.131e-03 1.005e-03	3.728e+03 3.784e+03	
54	1.192e-07	4.693e-07	1.456e-05 1.022e-03	2.312e+03 2.340e+03	2.220e-16 2.220e-16	6.378e-16	1.593e-03	3.840e+03	
55	1.788e-07	4.842e-07	1.022e-03 1.076e-03	2.368e+03	2.220e-16 2.220e-16	7.109e-16	1.127e-03	3.896e+03	
56	1.192e-07	3.998e-07	1.922e-03	2.396e+03	2.220e-16 2.220e-16	7.772e-16	1.542e-03	3.952e+03	
57	1.192e-07	4.130e-07	1.548e-03	2.424e+03	2.220e-16	8.006e-16	1.435e-03	4.008e + 03	
58	1.192e-07	4.215 e-07	1.236e-03	2.452e + 03	2.220e-16	6.474 e-16	1.697e-03	4.064e + 03	
59	1.192e-07	3.722e-07	1.134e-03	2.480e + 03	2.220e-16	8.600e-16	1.150e-03	4.120e + 03	
60	1.788e-07	4.043e-07	1.303 e-03	2.508e + 03	2.220e-16	7.022e-16	1.769e-03	4.176e + 03	
61	1.192e-07	4.130e-07	1.207e-03	2.536e + 03	2.220e-16	5.769e-16	1.749e-03	4.232e+03	
62	1.192e-07	4.539e-07	1.841e-03	2.564e+03	2.220e-16	8.600e-16	1.776e-03	4.288e + 03	
63	1.788e-07	4.339e-07	1.694e-03	2.592e+03	2.220e-16	8.308e-16	1.817e-03	4.344e+03	
$\frac{64}{65}$	1.192e-07 1.192e-07	4.539e-07 5.093e-07	1.397e-03 1.323e-03	2.620e+03 2.648e+03	2.220e-16 2.220e-16	7.530e-16 7.611e-16	1.557e-03 1.578e-03	4.400e+03 4.456e+03	
00	1.1326-07	J.UJJE-U1	1.5256-05	2.0400+03	2.220e-10	1.0116-10	1.0106-09	4.4006+09	

Tabela 1 – kontynuacja

		flo	oat32	Tabela 1 – kont	float64				
n	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	$\mathbf{e}_{\mathrm{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	
66	1.192 e-07	4.805e-07	1.650 e-03	2.676e + 03	2.220e-16	7.448e-16	1.642 e-03	4.512e + 03	
67	1.192e-07	4.617e-07	1.359e-03	2.704e+03	2.220e-16	8.234e-16	1.285e-03	4.568e + 03	
68 69	1.192e-07 1.788e-07	5.058e-07 5.298e-07	1.288e-03 1.391e-03	2.732e+03 2.760e+03	2.220e-16 2.220e-16	7.772e-16 9.019e-16	1.290e-03 1.615e-03	4.624e+03 4.680e+03	
70	1.788e-07	5.298e-07	1.514e-03	2.788e + 03	2.220e-16 2.220e-16	8.234e-16	1.322e-03	4.736e + 03	
71	1.192e-07	5.331e-07	1.661e-03	2.816e + 03	2.220e-16	8.600e-16	1.470 e - 03	4.792e + 03	
72	1.788e-07	5.022 e-07	1.366e-03	2.844e + 03	2.220e-16	8.600 e-16	1.364 e-03	4.848e + 03	
73	1.788e-07	5.022e-07	1.694e-03	2.872e + 03	2.220e-16	9.992e-16	1.394e-03	4.904e+03	
74 75	1.192e-07	5.528e-07	1.447e-03	2.900e+03	2.220e-16 2.220e-16	8.158e-16	1.397e-03	4.960e+03	
75 76	1.192e-07 1.192e-07	4.578e-07 4.805e-07	1.539e-03 1.869e-03	2.928e+03 2.956e+03	2.220e-16 2.220e-16	6.844e-16 8.812e-16	1.494e-03 1.885e-03	5.016e+03 5.072e+03	
77	1.788e-07	5.162e-07	2.441e-03	2.984e+03	2.220e-16 2.220e-16	9.486e-16	1.498e-03	5.072e+03 5.128e+03	
78	1.788e-07	5.127e-07	1.894e-03	3.012e+03	2.220e-16	9.486e-16	1.529e-03	5.184e + 03	
79	1.192e-07	4.987e-07	1.758e-03	3.040e+03	2.220e-16	9.355e-16	1.543e-03	5.240e + 03	
80	1.788e-07	5.686e-07	1.527e-03	3.068e + 03	2.220e-16	9.088e-16	1.521e-03	5.296e + 03	
81	1.192e-07	5.230e-07	1.572e-03	3.096e+03	2.220e-16	8.382e-16	1.563e-03	5.352e+03	
82 83	1.192e-07 1.788e-07	5.093e-07 5.397e-07	1.646e-03 1.780e-03	3.124e+03 3.152e+03	2.220e-16 2.220e-16	8.882e-16 9.222e-16	1.623e-03 2.143e-03	5.408e+03 5.464e+03	
84	1.788e-07	5.528e-07	1.673e-03	3.132e+03 3.180e+03	2.220e-16 2.220e-16	7.929e-16	1.690e-03	5.404e+03 5.520e+03	
85	1.788e-07	5.931e-07	2.095e-03	3.208e+03	2.220e-16	7.022e-16	1.672e-03	5.576e + 03	
86	1.192e-07	4.731e-07	1.695 e-03	3.236e + 03	2.220e-16	8.382e-16	1.865e-03	5.632e + 03	
87	1.788e-07	5.870 e-07	1.796e-03	3.264e + 03	2.220 e-16	1.005e-15	1.963e-03	5.688e + 03	
88	1.788e-07	6.900e-07	1.974e-03	3.292e+03	2.220e-16	9.742e-16	1.752e-03	5.744e+03	
89 90	1.192e-07 1.192e-07	5.264e-07	1.708e-03	3.320e+03	2.220e-16 2.220e-16	9.155e-16 9.222e-16	1.680e-03	5.800e + 03	
91	1.192e-07 1.192e-07	5.022e-07 4.693e-07	2.347e-03 2.064e-03	3.348e+03 3.376e+03	2.220e-16 2.220e-16	9.222e-16 9.615e-16	1.739e-03 1.864e-03	5.856e+03 5.912e+03	
92	1.192e-07	5.840e-07	1.934e-03	3.404e+03	2.220e-16	8.812e-16	3.202e-03	5.968e + 03	
93	1.192e-07	5.655e-07	2.611e-03	3.432e+03	2.220e-16	1.059e-15	2.483e-03	6.024e+03	
94	1.788e-07	5.748e-07	2.007e-03	3.460e + 03	2.220e-16	8.812e-16	1.937e-03	6.080e + 03	
95	1.788e-07	6.049e-07	1.913e-03	3.488e+03	2.220e-16	9.550e-16	2.019e-03	6.136e + 03	
96 97	1.192e-07 1.192e-07	4.987e-07 5.463e-07	1.920e-03 1.855e-03	3.516e+03 3.544e+03	2.220e-16 2.220e-16	8.742e-16 1.059e-15	1.814e-03 1.894e-03	6.192e+03 6.248e+03	
98	1.192e-07 1.788e-07	5.430e-07	2.649e-03	3.572e+03	2.220e-16 2.220e-16	9.742e-16	2.000e-03	6.304e+03	
99	1.192e-07	5.686e-07	2.258e-03	3.600e+03	2.220e-16	9.486e-16	2.148e-03	6.360e+03	
100	1.192e-07	6.166e-07	1.894 e-03	3.628e + 03	2.220e-16	1.047e-15	2.164e-03	6.416e + 03	
110	1.788e-07	5.495 e - 07	2.497e-03	3.908e + 03	2.220 e-16	1.018e-15	2.699e-03	6.976e + 03	
120	1.788e-07	6.166e-07	2.892e-03	4.188e+03	3.331e-16	1.105e-15	2.912e-03	7.536e + 03	
130 140	1.192e-07 1.788e-07	7.324e-07 6.874e-07	2.664e-03 3.759e-03	4.468e+03	2.220e-16 2.220e-16	1.030e-15 1.164e-15	3.638e-03 3.581e-03	8.096e+03 8.656e+03	
150	1.788e-07	7.349e-07	2.901e-03	4.748e+03 5.028e+03	3.331e-16	1.104e-15 1.290e-15	4.363e-03	9.216e+03	
160	1.192e-07	6.447e-07	3.470e-03	5.308e + 03	2.220e-16	1.216e-15	4.164e-03	9.776e + 03	
170	1.788e-07	8.238e-07	5.319e-03	5.588e + 03	3.331e-16	1.318e-15	4.655e-03	1.034e + 04	
180	1.192e-07	7.445e-07	4.578e-03	5.868e + 03	3.331e-16	1.231e-15	3.923e-03	1.090e + 04	
190	1.192e-07	7.492e-07	4.134e-03	6.148e+03	2.220e-16	1.369e-15	4.181e-03	1.146e+04	
200 210	1.192e-07 1.192e-07	7.633e-07 8.281e-07	4.699e-03 6.938e-03	6.428e+03 6.708e+03	3.331e-16 2.220e-16	1.506e-15 1.280e-15	5.264e-03 5.611e-03	1.202e+04 1.258e+04	
220	1.788e-07	8.555e-07	6.069e-03	6.988e+03	3.331e-16	1.558e-15	4.710e-03	1.314e+04	
230	1.788e-07	8.941e-07	6.535 e-03	7.268e + 03	2.220e-16	1.510e-15	7.106e-03	1.370e + 04	
240	1.192e-07	9.098e-07	6.257 e-03	7.548e + 03	2.220e-16	1.477e-15	5.984e-03	1.426e + 04	
250	1.788e-07	9.079e-07	6.013e-03	7.828e + 03	3.331e-16	1.695e-15	6.523e-03	1.482e+04	
260	1.192e-07 1.788e-07	8.387e-07	5.637e-03	8.188e+03	3.331e-16	1.570e-15	6.799e-03	1.546e+04	
270 280	1.788e-07 1.192e-07	9.443e-07 8.881e-07	5.939e-03 8.362e-03	8.468e+03 8.748e+03	3.331e-16 3.331e-16	1.662e-15 1.643e-15	8.394e-03 7.522e-03	1.602e+04 1.658e+04	
290	1.788e-07	9.611e-07	9.019e-03	9.028e+03	3.331e-16	1.713e-15	7.237e-03	1.714e+04	
300	1.788e-07	9.629 e - 07	7.446e-03	9.308e+03	3.331e-16	1.720e-15	1.083e-02	1.770e + 04	
310	1.192e-07	1.010e-06	7.325e-03	$9.588e{+03}$	3.331e-16	1.647e-15	9.054 e-03	1.826e + 04	
320	1.788e-07	9.443e-07	1.196e-02	9.868e + 03	2.220e-16	1.762e-15	1.094e-02	1.882e + 04	
330	1.788e-07	1.022e-06	1.158e-02	1.015e+04	3.331e-16	1.897e-15	1.086e-02	1.938e+04	
340 350	1.788e-07 1.192e-07	9.938e-07 1.034e-06	1.329e-02 9.948e-03	1.043e+04 1.071e+04	3.331e-16 3.331e-16	1.773e-15 1.881e-15	1.039e-02 8.238e-03	1.994e+04 2.050e+04	
360	1.788e-07	1.070e-06	1.227e-02	1.099e+04	3.331e-16	1.907e-15	8.594e-03	2.050e+04 2.106e+04	
370	1.788e-07	1.128e-06	1.507e-02	1.127e+04	3.331e-16	1.936e-15	1.590e-02	2.162e+04	
380	1.788e-07	1.093 e-06	1.570 e-02	1.155e+04	3.331e-16	2.008e-15	1.746 e - 02	2.218e + 04	
390	1.788e-07	1.115e-06	9.452e-03	1.183e+04	3.331e-16	2.026e-15	1.319e-02	2.274e + 04	
400	1.788e-07	1.132e-06	9.170e-03	1.211e+04	2.220e-16	1.769e-15	1.462e-02	2.330e+04	
410 420	1.788e-07 1.788e-07	1.197e-06 1.174e-06	1.635e-02 1.695e-02	1.239e+04 1.267e+04	3.331e-16 2.220e-16	2.138e-15 1.974e-15	1.333e-02 1.257e-02	2.386e+04 2.442e+04	
430	1.788e-07	1.112e-06	1.334e-02	1.295e+04	3.331e-16	2.187e-15	1.604e-02	2.498e+04	
440	1.788e-07	1.137e-06	1.466e-02	1.323e+04	3.331e-16	2.071e-15	2.190e-02	2.554e + 04	
450	1.192e-07	1.194 e-06	1.935e-02	1.351e + 04	2.220e-16	2.138e-15	1.691 e-02	2.610e + 04	
460	1.192e-07	1.223e-06	2.297e-02	1.379e+04	3.331e-16	2.104e-15	1.760e-02	2.666e + 04	
470	1.788e-07	1.174e-06	2.279e-02	1.407e + 04	3.331e-16	2.232e-15	1.756e-02	2.722e+04	

Tabela 1 – kontynuacja

		flo	oat32	тарега 1 – копс	float64			
n	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	-e _{max}	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]
480	1.788e-07	1.243e-06	1.603 e-02	1.435e + 04	2.220e-16	2.118e-15	1.793e-02	2.778e + 04
490	1.788e-07	1.186e-06	1.502e-02	1.463e + 04	3.331e-16	2.109e-15	1.285e-02	2.834e + 04
500	1.788e-07	1.176e-06	1.541e-02	1.491e + 04	3.331e-16	2.161e-15	1.217e-02	2.890e + 04
510	1.788e-07	1.186e-06	1.690e-02	1.519e + 04	3.331e-16	2.195e-15	1.909e-02	2.946e + 04
520	1.788e-07	1.197e-06	2.479e-02	1.547e + 04	3.331e-16	2.402e-15	2.513e-02	3.002e+04
530	1.788e-07	1.174e-06	2.190e-02	1.575e + 04	3.331e-16	2.397e-15	1.700e-02	3.058e + 04
540	1.788e-07	1.247e-06	1.820e-02	1.603e + 04	3.331e-16	2.324e-15	1.696e-02	3.114e + 04
550	1.788e-07	1.295e-06	2.214e-02	1.631e + 04	3.331e-16	2.394e-15	1.991e-02	3.170e + 04
560	1.788e-07	1.256e-06	2.571e-02	1.659e + 04	2.220e-16	2.240e-15	2.110e-02	3.226e + 04
570	1.788e-07	1.361e-06	2.618e-02	1.687e + 04	2.220e-16	2.147e-15	2.381e-02	3.282e + 04
580	1.788e-07	1.358e-06	1.852e-02	1.715e + 04	3.331e-16	2.407e-15	1.962e-02	3.338e + 04
590	1.192e-07	1.329e-06	2.665e-02	1.743e + 04	3.331e-16	2.500e-15	2.225e-02	3.394e + 04
600	1.788e-07	1.367e-06	2.609e-02	1.771e + 04	2.220e-16	2.497e-15	1.570 e-02	3.450e + 04
610	1.788e-07	1.456e-06	1.714e-02	1.799e + 04	2.220e-16	2.554e-15	1.434e-02	3.506e + 04
620	1.788e-07	1.398e-06	2.002e-02	1.827e + 04	3.331e-16	2.620e-15	1.954 e-02	3.562e + 04
630	1.788e-07	1.422e-06	1.876e-02	1.855e + 04	3.331e-16	2.483e-15	1.878e-02	3.618e + 04
640	1.788e-07	1.407e-06	1.939e-02	1.883e + 04	3.331e-16	2.613e-15	2.052e-02	3.674e + 04
650	1.788e-07	1.434e-06	1.914e-02	1.911e+04	3.331e-16	2.694e-15	1.952e-02	3.730e + 04
660	1.788e-07	1.395e-06	1.741e-02	1.939e + 04	3.331e-16	2.749e-15	1.749e-02	3.786e + 04
670	1.788e-07	1.384e-06	1.811e-02	1.967e + 04	3.331e-16	2.582e-15	2.102e-02	3.842e + 04
680	1.788e-07	1.353e-06	1.818e-02	1.995e + 04	3.331e-16	2.744e-15	1.924e-02	3.898e + 04
690	1.788e-07	1.497e-06	2.069e-02	2.023e+04	3.331e-16	2.699e-15	1.887e-02	3.954e + 04
700	1.788e-07	1.497e-06	1.860e-02	2.051e+04	3.331e-16	2.627e-15	1.758e-02	4.010e+04
710	1.788e-07	1.470e-06	1.954e-02	2.079e + 04	3.331e-16	2.804e-15	2.008e-02	4.066e + 04
720	1.788e-07	1.566e-06	2.136e-02	2.107e + 04	3.331e-16	2.828e-15	2.848e-02	4.122e+04
730	1.788e-07	1.503e-06	5.244e-02	2.135e+04	3.331e-16	2.828e-15	3.297e-02	4.178e + 04
740	1.788e-07	1.580e-06	1.765e-02	2.163e+04	3.331e-16	2.857e-15	2.455e-02	4.234e + 04
750	1.192e-07	1.507e-06	2.395e-02	2.191e+04	3.331e-16	2.753e-15	2.380e-02	4.290e + 04
760	1.192e-07	1.491e-06	1.649e-02	2.219e+04	2.220e-16	2.729e-15	2.578e-02	4.346e+04
770	1.788e-07	1.522e-06	2.804e-02	2.247e + 04	2.220e-16	2.850e-15	3.477e-02	4.402e+04
780	1.788e-07	1.494e-06	2.199e-02	2.275e + 04	3.331e-16	2.918e-15	2.001e-02	4.458e + 04
790	1.788e-07	1.530e-06	2.023e-02	2.303e+04	3.331e-16	2.869e-15	2.426e-02	4.514e+04
800	1.788e-07	1.587e-06	2.073e-02	2.331e+04	3.331e-16	2.817e-15	2.568e-02	4.570e + 04
810	1.788e-07	1.605e-06	2.024e-02	2.359e+04	3.331e-16	2.906e-15	2.346e-02	4.626e + 04
820	1.788e-07	1.651e-06	2.633e-02	2.387e + 04	3.331e-16	2.925e-15	3.637e-02	4.682e + 04
830	1.788e-07	1.650e-06	4.394e-02	2.415e+04	3.331e-16	3.026e-15	4.078e-02	4.738e + 04
840	1.788e-07	1.674e-06	2.331e-02	2.443e+04	3.331e-16	3.097e-15	2.977e-02	4.794e + 04
850	1.788e-07	1.661e-06	2.887e-02	2.471e+04	3.331e-16	3.012e-15	3.486e-02	4.850e + 04
860	1.788e-07	1.612e-06	2.607e-02	2.499e+04	3.331e-16	2.977e-15	2.554e-02	4.906e+04
870	1.788e-07	1.729e-06	2.941e-02	2.527e + 04	3.331e-16	3.077e-15	3.176e-02	4.962e+04
880	1.788e-07	1.638e-06	3.770e-02	2.555e+04	3.331e-16	3.087e-15	3.102e-02	5.018e+04
890	1.788e-07	1.618e-06	3.245e-02	2.583e+04	2.220e-16	3.053e-15	3.831e-02	5.074e+04
900	1.788e-07	1.612e-06	2.197e-02	2.611e+04	3.331e-16	3.122e-15	3.184e-02	5.130e+04
910	1.788e-07	1.807e-06	3.330e-02	2.639e+04	3.331e-16	3.119e-15	3.288e-02	5.186e+04
920	1.788e-07	1.724e-06	3.103e-02	2.667e + 04	2.220e-16	3.051e-15	3.493e-02	5.242e+04
930	1.788e-07	1.758e-06	3.504e-02	2.695e+04	3.331e-16	3.189e-15	3.132e-02	5.298e + 04
940	1.788e-07	1.767e-06	3.872e-02	2.723e+04	3.331e-16	3.282e-15	3.285e-02	5.354e+04
950	1.788e-07	1.728e-06	4.207e-02	2.751e+04	3.331e-16	3.173e-15	3.204e-02	5.410e+04
960	1.788e-07	1.830e-06	4.988e-02	2.779e + 04	3.331e-16	3.154e-15	4.342e-02	5.466e+04
970	1.788e-07	1.743e-06	5.101e-02 2.967e-02	2.807e+04 2.835e+04	3.331e-16 2.220e-16	3.218e-15	4.125e-02 4.934e-02	5.522e+04 5.578e+04
980 990	1.788e-07 1.788e-07	1.774e-06 1.831e-06	2.967e-02 3.534e-02	2.835e+04 2.863e+04	2.220e-16 3.331e-16	3.271e-15 3.138e-15	4.934e-02 5.090e-02	5.634e+04
1000	1.788e-07 1.788e-07	1.761e-06	5.323e-02	2.891e+04	3.331e-16	3.329e-15	3.504e-02	5.690e+04
1000	1.1006-01	1.1016-00	J.JZJE-UZ	4.091e+04	5.551E-10	5.549 0- 15	5.504e-02	J.090e+04

8.2 Wyniki dla Gaussa

Tabela 2: Wyniki metody Gauss dla precyzji float32 vs float64

		fle	oat32		float64				
n	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	$\mathbf{e}_{\mathrm{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	
2	0.000e+00	0.000e+00	5.003e-04	1.365e + 03	0.000e+00	0.000e+00	1.368e-04	1.384e + 03	
3	5.960e-08	5.960e-08	2.748e-04	1.376e + 03	1.110e-16 1.110e-16	1.110e-16	1.781e-04	1.488e + 03	
4 5	1.192e-07 1.192e-07	1.192e-07 1.333e-07	2.613e-04 3.871e-04	1.444e+03 1.528e+03	2.220e-16	1.110e-16 2.220e-16	2.167e-04 3.023e-04	1.624e+03 1.792e+03	
6	1.192e-07 1.192e-07	1.192e-07	4.195e-04	1.628e+03 1.628e+03	2.220e-16 2.220e-16	3.331e-16	3.638e-04	1.792e+03 1.992e+03	
7	1.192e-07 1.192e-07	1.788e-07	5.984e-04	1.744e+03	2.220e-16 2.220e-16	2.719e-16	5.345e-04	2.224e+03	
8	1.192e-07	1.788e-07	7.069e-04	1.876e + 03	1.110e-16	1.923e-16	9.618e-04	2.881e+03	
9	1.192e-07	2.230e-07	1.080e-03	2.024e+03	2.220e-16	3.846e-16	6.944e-04	2.784e + 03	
10	5.960e-08	5.960e-08	9.397e-04	2.188e + 03	2.220e-16	2.937e-16	8.721e-04	3.184e + 03	
11	1.192e-07	2.230e-07	2.041e-03	2.368e + 03	2.220e-16	2.483e-16	1.339e-03	3.704e + 03	
12	1.192e-07	1.460e-07	1.644e-03	2.564e + 03	2.220e-16	3.846e-16	1.142e-03	4.272e + 03	
13	1.192e-07	1.460e-07	1.356e-03	2.776e + 03	2.220e-16	3.846e-16	1.440e-03	4.888e + 03	
14	1.192e-07	1.333e-07	1.556e-03	3.088e+03	2.220e-16	2.937e-16	1.374e-03	5.552e+03	
15 16	1.788e-07 1.788e-07	1.977e-07 2.308e-07	1.710e-03 1.841e-03	3.444e+03 3.824e+03	2.220e-16 1.110e-16	4.003e-16 1.923e-16	1.545e-03 1.819e-03	6.264e+03 7.024e+03	
17	1.788e-07	3.154e-07	2.048e-03	4.228e+03	2.220e-16	4.003e-16	1.930e-03	7.832e+03	
18	1.788e-07	2.796e-07	2.283e-03	4.656e + 03	2.220e-16 2.220e-16	4.441e-16	2.278e-03	8.688e+03	
19	1.192e-07	2.149e-07	2.479e-03	5.108e+03	2.220e-16	4.965e-16	2.471e-03	9.592e+03	
20	1.192e-07	2.308e-07	2.707e-03	5.584e + 03	2.220e-16	3.331e-16	2.573e-03	1.054e + 04	
21	1.192e-07	2.796e-07	2.905e-03	6.084e + 03	2.220e-16	5.551e-16	2.957e-03	1.154e + 04	
22	1.788e-07	3.476e-07	2.908e-03	6.608e + 03	2.220e-16	4.839e-16	3.014e-03	1.259e + 04	
23	1.192e-07	2.065e-07	3.436e-03	7.156e + 03	2.220e-16	5.324e-16	2.974e-03	1.369e + 04	
24	1.788e-07	3.476e-07	3.425e-03	7.728e + 03	2.220e-16	4.710e-16	3.498e-03	1.483e+04	
25	1.788e-07	3.154e-07	3.934e-03	8.324e+03	2.220e-16	4.839e-16	3.769e-03	1.602e+04	
$\frac{26}{27}$	1.192e-07 1.192e-07	3.039e-07 2.731e-07	4.264e-03 5.173e-03	8.944e+03 9.588e+03	2.220e-16 2.220e-16	4.441e-16 4.300e-16	4.092e-03 4.384e-03	1.726e+04 1.855e+04	
28	1.192e-07 1.788e-07	3.424e-07	5.670e-03	1.026e+04	2.220e-16 2.220e-16	4.300e-16 4.300e-16	4.364e-03 5.237e-03	1.989e + 04	
29	1.192e-07	3.476e-07	5.256e-03	1.025e+04	2.220e-16 2.220e-16	4.578e-16	5.025e-03	2.127e+04	
30	1.788e-07	3.097e-07	5.627e-03	1.166e+04	2.220e-16	5.661e-16	5.958e-03	2.270e+04	
31	1.788e-07	2.980e-07	5.851 e-03	1.240e + 04	2.220e-16	4.441e-16	5.226e-03	2.418e + 04	
32	1.192e-07	3.626e-07	6.092e-03	1.317e + 04	2.220e-16	6.568e-16	5.906e-03	2.571e + 04	
33	1.788e-07	4.172e-07	7.335e-03	1.396e + 04	2.220e-16	5.979e-16	6.780 e- 03	2.729e + 04	
34	1.788e-07	4.380e-07	8.091e-03	1.477e + 04	2.220e-16	5.207e-16	8.632e-03	2.891e + 04	
35	1.788e-07	4.805e-07	6.837e-03	1.560e+04	2.220e-16	5.088e-16	6.872e-03	3.058e + 04	
$\frac{36}{37}$	1.192e-07 1.192e-07	4.172e-07 3.097e-07	6.880e-03 7.123e-03	1.646e+04 1.735e+04	2.220e-16 2.220e-16	4.003e-16 4.154e-16	7.977e-03 7.165e-03	3.230e+04 3.407e+04	
38	1.788e-07	3.954e-07	8.675e-03	1.826e+04	2.220e-16 2.220e-16	7.280e-16	8.238e-03	3.589e+04	
39	1.192e-07	3.154e-07	1.013e-02	1.919e+04	2.220e-16	5.207e-16	1.076e-02	3.775e + 04	
40	1.192e-07	3.154e-07	1.131e-02	2.014e+04	2.220e-16	6.378e-16	9.733e-03	3.966e + 04	
41	1.788e-07	4.617e-07	1.099e-02	2.112e+04	2.220e-16	5.769e-16	1.020e-02	4.162e + 04	
42	1.788e-07	4.617e-07	1.143e-02	2.213e+04	2.220e-16	5.551e-16	1.086e-02	4.363e + 04	
43	1.192e-07	2.666e-07	1.606e-02	2.316e + 04	2.220e-16	4.965e-16	1.420e-02	4.569e + 04	
44	1.192e-07	3.265e-07	1.132e-02	2.421e+04	2.220e-16	5.551e-16	1.048e-02	4.779e + 04	
45	1.192e-07	3.722e-07	1.093e-02	2.528e+04	2.220e-16	5.769e-16	9.757e-03	4.994e+04	
$\frac{46}{47}$	1.788e-07 1.192e-07	4.130e-07 3.674e-07	1.151e-02 1.261e-02	2.638e+04 2.751e+04	2.220e-16 2.220e-16	6.280e-16 6.181e-16	1.031e-02 1.222e-02	5.214e+04 5.439e+04	
48	1.788e-07	4.339e-07	1.437e-02	2.751e + 04 2.866e + 04	2.220e-16 2.220e-16	7.109e-16	1.319e-02	5.669e+04	
49	1.788e-07	4.500e-07	1.472e-02	2.983e+04	2.220e-16	5.875e-16	1.401e-02	5.903e+04	
50	1.788e-07	3.909e-07	1.554e-02	3.102e+04	2.220e-16	7.022e-16	1.490e-02	6.142e+04	
51	1.788e-07	4.298e-07	1.958e-02	3.224e+04	2.220e-16	7.364e-16	2.192e-02	6.386e + 04	
52	1.788e-07	4.617e-07	1.678e-02	3.349e+04	2.220e-16	6.661e-16	1.832e-02	6.635e + 04	
53	1.788e-07	5.264e-07	2.007e-02	3.476e + 04	2.220e-16	7.611e-16	1.664e-02	6.889e + 04	
54	1.192e-07	4.693e-07	1.931e-02	3.605e+04	2.220e-16	6.378e-16	1.908e-02	7.147e+04	
55 56	1.788e-07	4.842e-07	1.843e-02	3.736e+04	2.220e-16	7.109e-16	3.194e-02	7.410e+04	
56 57	1.192e-07	3.998e-07	3.387e-02	3.870e+04 4.007e+04	2.220e-16	7.772e-16 8.006e-16	3.371e-02	7.678e + 04	
57 58	1.192e-07 1.192e-07	4.130e-07 4.215e-07	2.592e-02 3.052e-02	4.007e+04 4.146e+04	2.220e-16 2.220e-16	6.474e-16	2.077e-02 2.987e-02	7.951e+04 8.229e+04	
59	1.192e-07 1.192e-07	3.722e-07	2.238e-02	4.287e+04	2.220e-16 2.220e-16	8.600e-16	2.008e-02	8.511e+04	
60	1.788e-07	4.043e-07	2.710e-02	4.430e+04	2.220e-16	7.022e-16	3.389e-02	8.798e + 04	
61	1.192e-07	4.130e-07	3.706e-02	4.576e + 04	2.220e-16	5.769e-16	3.250 e-02	9.090e+04	
62	1.192e-07	4.539 e-07	3.324 e-02	4.725e + 04	2.220e-16	8.600 e-16	2.668e-02	9.387e + 04	
63	1.788e-07	4.339e-07	4.370 e- 02	4.876e + 04	2.220e-16	8.308e-16	3.567e-02	9.689e + 04	
64	1.192e-07	4.539e-07	4.060e-02	5.029e+04	2.220e-16	7.530e-16	3.036e-02	9.995e+04	
65 66	1.192e-07	5.093e-07	3.064e-02	5.184e+04	2.220e-16	7.611e-16	2.683e-02	1.031e+05	
66 67	1.192e-07 1.192e-07	4.805e-07 4.617e-07	2.634e-02 2.943e-02	5.342e+04 5.503e+04	2.220e-16 2.220e-16	7.448e-16 8.234e-16	2.655e-02 2.539e-02	1.062e+05 1.094e+05	
68	1.192e-07 1.192e-07	4.017e-07 5.058e-07	2.945e-02 2.596e-02	5.666e+04	2.220e-16 2.220e-16	7.772e-16	2.535e-02 2.535e-02	1.094e+05 1.127e+05	
69	1.788e-07	5.298e-07	2.929e-02	5.831e+04	2.220e-16 2.220e-16	9.019e-16	2.829e-02	1.127e + 05 1.160e + 05	
	1								

Tabela 2 – kontynuacja

		fl	oat32		float64				
n	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	
70	1.788e-07	5.298e-07	3.076e-02	5.998e + 04	2.220e-16	8.234e-16	2.969e-02	1.193e + 05	
71	1.192e-07	5.331e-07	3.134e-02	6.168e + 04	2.220e-16	8.600e-16	3.164e-02	1.227e+05	
72 73	1.788e-07 1.788e-07	5.022e-07 5.022e-07	2.938e-02 3.010e-02	6.341e+04 6.516e+04	2.220e-16 2.220e-16	8.600e-16 9.992e-16	2.964e-02 2.988e-02	1.262e+05 1.297e+05	
74	1.192e-07	5.528e-07	3.229e-02	6.693e+04	2.220e-16 2.220e-16	8.158e-16	3.209e-02	1.332e+05	
75	1.192e-07	4.578e-07	3.237e-02	6.872e + 04	2.220e-16	6.844e-16	3.233e-02	1.368e + 05	
76	1.192e-07	4.805 e-07	3.303e-02	7.054e + 04	2.220e-16	8.812e-16	3.351e-02	1.405e + 05	
77	1.788e-07	5.162e-07	3.657e-02	7.239e+04	2.220e-16	9.486e-16	3.524e-02	1.442e+05	
78 79	1.788e-07	5.127e-07	3.664e-02	7.426e+04 7.615e+04	2.220e-16 2.220e-16	9.486e-16 9.355e-16	3.907e-02 3.367e-02	1.479e+05 1.517e+05	
80	1.192e-07 1.788e-07	4.987e-07 5.686e-07	3.889e-02 3.777e-02	7.806e+04	2.220e-16 2.220e-16	9.355e-16 9.088e-16	3.367e-02 3.609e-02	1.517e+05 1.555e+05	
81	1.192e-07	5.230e-07	3.800e-02	8.000e+04	2.220e-16 2.220e-16	8.382e-16	3.951e-02	1.594e+05	
82	1.192e-07	5.093e-07	4.627e-02	8.197e + 04	2.220e-16	8.882e-16	4.277e-02	1.633e + 05	
83	1.788e-07	5.397e-07	3.859 e-02	8.396e + 04	2.220 e-16	9.222e-16	4.244e-02	1.673e + 05	
84	1.788e-07	5.528e-07	4.489e-02	8.597e + 04	2.220e-16	7.929e-16	4.417e-02	1.713e+05	
85 86	1.788e-07 1.192e-07	5.931e-07 4.731e-07	4.895e-02 4.494e-02	8.800e+04 9.006e+04	2.220e-16 2.220e-16	7.022e-16 8.382e-16	4.118e-02 4.111e-02	1.754e+05 1.795e+05	
87	1.788e-07	4.731e-07 5.870e-07	4.494e-02 4.195e-02	9.215e+04	2.220e-16 2.220e-16	1.005e-15	4.111e-02 4.543e-02	1.837e+05	
88	1.788e-07	6.900e-07	4.442e-02	9.426e+01	2.220e-16	9.742e-16	4.769e-02	1.879e + 05	
89	1.192e-07	5.264 e-07	4.682 e-02	9.639e + 04	2.220e-16	9.155e-16	4.910e-02	1.922e+05	
90	1.192e-07	5.022e-07	4.796e-02	9.854e + 04	2.220e-16	9.222e-16	5.440 e-02	1.965e + 05	
91	1.192e-07	4.693e-07	5.109e-02	1.007e + 05	2.220e-16	9.615e-16	4.891e-02	2.008e + 05	
92 93	1.192e-07 1.192e-07	5.840e-07 5.655e-07	6.388e-02 6.873e-02	1.029e+05 1.052e+05	2.220e-16 2.220e-16	8.812e-16 1.059e-15	7.919e-02 8.279e-02	2.052e+05 2.097e+05	
94	1.788e-07	5.748e-07	8.222e-02	1.074e + 05	2.220e-16 2.220e-16	8.812e-16	5.406e-02	2.037e+05 2.142e+05	
95	1.788e-07	6.049e-07	4.923e-02	1.097e + 05	2.220e-16	9.550e-16	5.438e-02	2.187e + 05	
96	1.192e-07	4.987e-07	5.769 e-02	1.120e + 05	2.220e-16	8.742e-16	5.622 e-02	2.233e+05	
97	1.192e-07	5.463e-07	6.027e-02	1.143e+05	2.220e-16	1.059e-15	5.887e-02	2.280e + 05	
98 99	1.788e-07 1.192e-07	5.430e-07 5.686e-07	8.122e-02 5.746e-02	1.167e+05 1.190e+05	2.220e-16 2.220e-16	9.742e-16 9.486e-16	7.035e-02 5.484e-02	2.327e+05 2.374e+05	
100	1.192e-07 1.192e-07	6.166e-07	5.740e-02 5.359e-02	1.190e+05 1.214e+05	2.220e-16 2.220e-16	9.460e-10 1.047e-15	5.464e-02 5.651e-02	2.422e+05	
110	1.788e-07	5.495e-07	7.474e-02	1.467e + 05	2.220e-16	1.018e-15	7.835e-02	2.928e + 05	
120	1.788e-07	6.166e-07	9.446e-02	1.744e + 05	3.331e-16	1.105e-15	8.329 e-02	3.481e + 05	
130	1.192e-07	7.324e-07	1.264e-01	2.045e + 05	2.220e-16	1.030e-15	1.267e-01	4.083e + 05	
140	1.788e-07	6.874e-07 7.349e-07	1.246e-01	2.369e+05 2.718e+05	2.220e-16 3.331e-16	1.164e-15 1.290e-15	1.316e-01 1.831e-01	4.733e+05	
150 160	1.788e-07 1.192e-07	6.447e-07	1.283e-01 1.938e-01	3.091e+05	3.331e-10 2.220e-16	1.290e-15 1.216e-15	1.863e-01	5.430e+05 6.176e+05	
170	1.788e-07	8.238e-07	2.511e-01	3.488e + 05	3.331e-16	1.318e-15	2.207e-01	6.969e + 05	
180	1.192e-07	7.445e-07	2.039e-01	3.909e + 05	3.331e-16	1.231e-15	2.012e-01	7.811e+05	
190	1.192e-07	7.492e-07	2.387e-01	4.353e + 05	2.220e-16	1.369e-15	2.327e-01	8.701e + 05	
$\frac{200}{210}$	1.192e-07	7.633e-07	2.736e-01	4.822e+05	3.331e-16	1.506e-15	4.543e-01 3.582e-01	9.638e + 05	
220	1.192e-07 1.788e-07	8.281e-07 8.555e-07	4.026e-01 5.264e-01	5.315e+05 5.832e+05	2.220e-16 3.331e-16	1.280e-15 1.558e-15	4.243e-01	1.062e+06 1.166e+06	
230	1.788e-07	8.941e-07	5.152e-01	6.373e + 05	2.220e-16	1.510e-15	4.487e-01	1.274e + 06	
240	1.192e-07	9.098e-07	4.817e-01	6.937e + 05	2.220e-16	1.477e-15	4.394 e-01	1.387e + 06	
250	1.788e-07	9.079e-07	5.036e-01	7.526e + 05	3.331e-16	1.695e-15	3.823e-01	1.505e + 06	
260	1.192e-07	8.387e-07	4.988e-01	8.139e+05	3.331e-16	1.570e-15	3.910e-01	1.627e + 06	
$\frac{270}{280}$	1.788e-07 1.192e-07	9.443e-07 8.881e-07	7.054e-01 5.450e-01	8.776e+05 9.437e+05	3.331e-16 3.331e-16	1.662e-15 1.643e-15	6.371e-01 5.629e-01	1.755e+06 1.887e+06	
290	1.788e-07	9.611e-07	6.277e-01	1.012e+06	3.331e-16	1.713e-15	6.304e-01	2.024e+06	
300	1.788e-07	9.629 e - 07	8.278 e-01	1.083e + 06	3.331e-16	1.720 e-15	8.710e-01	2.165e + 06	
310	1.192e-07	1.010e-06	7.658e-01	1.156e + 06	3.331e-16	1.647e-15	1.301e+00	2.312e+06	
320	1.788e-07	9.443e-07	9.478e-01	1.232e+06	2.220e-16	1.762e-15	1.078e + 00	2.463e+06	
330 340	1.788e-07 1.788e-07	1.022e-06 9.938e-07	1.158e+00 1.546e+00	1.310e+06 1.391e+06	3.331e-16 3.331e-16	1.897e-15 1.773e-15	1.359e+00 1.120e+00	2.620e+06 2.780e+06	
350	1.192e-07	1.034e-06	1.169e+00	1.473e+06	3.331e-16	1.881e-15	1.206+00 1.206e+00	2.946e+06	
360	1.788e-07	1.070e-06	1.241e+00	1.559e + 06	3.331e-16	1.907e-15	1.358e + 00	3.117e + 06	
370	1.788e-07	1.128e-06	1.963e + 00	1.646e + 06	3.331e-16	1.936e-15	2.061e+00	3.292e + 06	
380	1.788e-07	1.093e-06	2.227e+00	1.736e + 06	3.331e-16	2.008e-15	1.393e+00	3.472e + 06	
390	1.788e-07	1.115e-06	1.508e+00	1.829e + 06	3.331e-16	2.026e-15	1.493e+00	3.657e + 06	
400 410	1.788e-07 1.788e-07	1.132e-06 1.197e-06	1.678e+00 1.731e+00	1.924e+06 2.021e+06	2.220e-16 3.331e-16	1.769e-15 2.138e-15	1.711e+00 1.785e+00	3.847e+06 4.042e+06	
420	1.788e-07	1.174e-06	1.855e+00	2.121e+06	2.220e-16	1.974e-15	1.906e+00	4.241e+06	
430	1.788e-07	1.112e-06	2.131e+00	2.223e+06	3.331e-16	2.187e-15	2.187e + 00	4.445e + 06	
440	1.788e-07	1.137e-06	2.556e + 00	2.327e + 06	3.331e-16	2.071e-15	2.319e+00	4.654e + 06	
450	1.192e-07	1.194e-06	2.679e+00	2.434e+06	2.220e-16	2.138e-15	2.671e+00	4.868e+06	
460 470	1.192e-07 1.788e-07	1.223e-06 1.174e-06	2.900e+00 2.701e+00	2.544e+06 2.655e+06	3.331e-16 3.331e-16	2.104e-15 2.232e-15	3.032e+00 2.674e+00	5.086e+06 5.310e+06	
480	1.788e-07	1.243e-06	2.740e+00	2.769e+06	2.220e-16	2.118e-15	2.602e+00	5.538e+06	
490	1.788e-07	1.186e-06	1.851e + 00	2.886e + 06	3.331e-16	2.109e-15	1.501e+00	5.771e + 06	
500	1.788e-07	1.176e-06	1.821e+00	3.005e+06	3.331e-16	2.161e-15	1.797e + 00	6.009e+06	
510	1.788e-07	1.186e-06	2.913e+00	3.126e + 06	3.331e-16	2.195e-15	3.382e+00	6.251e + 06	

Tabela 2 – kontynuacja

		fl	oat32	Tabela 2 – kont	ynuacja float64				
n	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	$\mathbf{e}_{ ext{max}}$	$\mathbf{e}_{\mathrm{euk}}$	t [s]	Pamięć [bajty]	
520	1.788e-07	1.197e-06	4.163e+00	3.250e+06	3.331e-16	2.402e-15	3.887e + 00	6.499e + 06	
530	1.788e-07	1.174e-06	3.507e+00	3.376e + 06	3.331e-16	2.397e-15	3.332e+00	6.751e+06	
540	1.788e-07	1.247e-06	3.260e+00	3.504e+06	3.331e-16	2.324e-15	3.300e+00	7.008e + 06	
550	1.788e-07	1.295e-06	3.632e+00	3.635e+06	3.331e-16	2.394e-15	4.375e+00	7.269e+06	
560	1.788e-07	1.256e-06	4.446e+00	3.768e + 06	2.220e-16	2.240e-15	3.855e+00	7.536e + 06	
570	1.788e-07	1.361e-06	4.890e+00	3.904e+06	2.220e-16	2.147e-15	4.631e+00	7.807e + 06	
580	1.788e-07	1.358e-06	4.117e+00	4.042e+06	3.331e-16	2.407e-15	4.838e+00	8.084e+06	
590	1.192e-07	1.329e-06	4.747e+00	4.183e+06	3.331e-16	2.500e-15	4.658e+00	8.364e+06	
600	1.788e-07	1.367e-06	3.581e+00	4.325e+06	2.220e-16	2.497e-15	2.513e+00	8.650e + 06	
610	1.788e-07	1.456e-06	2.334e+00	4.471e+06	2.220e-16	2.554e-15	2.649e+00	8.941e+06	
620	1.788e-07	1.398e-06	3.210e+00	4.618e+06	3.331e-16	2.620e-15	3.077e+00	9.236e+06	
630	1.788e-07	1.422e-06	2.814e+00	4.768e+06	3.331e-16	2.483e-15	3.327e+00	9.536e+06	
640	1.788e-07	1.407e-06	3.042e+00	4.921e+06	3.331e-16	2.613e-15	2.902e+00	9.841e+06	
650	1.788e-07	1.434e-06	3.107e+00	5.076e+06	3.331e-16	2.694e-15	3.124e+00	1.015e+07	
660	1.788e-07	1.395e-06	3.418e+00	5.233e+06	3.331e-16	2.749e-15	3.564e+00	1.047e + 07	
670	1.788e-07	1.384e-06	3.137e+00	5.393e+06	3.331e-16	2.582e-15	3.987e + 00	1.078e + 07	
680	1.788e-07	1.353e-06	3.426e+00	5.555e+06	3.331e-16	2.744e-15	3.465e+00	1.111e+07	
690	1.788e-07	1.497e-06	3.565e+00	5.719e+06	3.331e-16	2.699e-15	3.594e+00	1.144e+07	
700	1.788e-07	1.497e-06	3.134e+00	5.886e+06	3.331e-16	2.627e-15	3.233e+00	1.177e+07	
710	1.788e-07	1.470e-06	4.393e+00	6.056e+06	3.331e-16	2.804e-15	4.416e+00	1.211e+07	
720	1.788e-07	1.566e-06	6.230e+00	6.227e+06	3.331e-16	2.828e-15	7.412e+00	1.245e+07	
730	1.788e-07	1.503e-06	7.349e+00	6.401e+06	3.331e-16	2.828e-15	4.087e+00	1.280e+07	
740	1.788e-07	1.580e-06	4.658e+00	6.578e+06	3.331e-16	2.857e-15	4.499e+00	1.315e+07	
750	1.192e-07	1.507e-06	4.008e+00	6.757e + 06	3.331e-16	2.753e-15	3.948e+00	1.351e+07	
760 770	1.192e-07	1.491e-06	3.907e+00	6.938e+06	2.220e-16	2.729e-15	4.424e+00	1.388e + 07	
770	1.788e-07	1.522e-06	5.555e+00	7.122e+06	2.220e-16	2.850e-15	5.679e+00	1.424e+07	
780 790	1.788e-07	1.494e-06	5.146e+00	7.308e+06 7.496e+06	3.331e-16	2.918e-15	6.525e+00 5.749e+00	1.461e+07	
	1.788e-07	1.530e-06	6.291e+00		3.331e-16	2.869e-15	·	1.499e + 07	
800	1.788e-07	1.587e-06	4.574e+00	7.687e + 06	3.331e-16	2.817e-15	4.818e+00	1.537e + 07	
810	1.788e-07	1.605e-06	6.361e+00	7.880e+06	3.331e-16	2.906e-15	5.467e+00	1.576e+07	
820	1.788e-07	1.651e-06	7.844e+00	8.076e+06	3.331e-16	2.925e-15	1.125e+01	1.615e+07	
830	1.788e-07	1.650e-06	1.114e+01 8.099e+00	8.274e+06	3.331e-16	3.026e-15	8.684e+00	1.655e + 07	
840 850	1.788e-07 1.788e-07	1.674e-06 1.661e-06	8.099e+00 7.130e+00	8.475e+06 8.677e+06	3.331e-16 3.331e-16	3.097e-15 3.012e-15	7.299e+00 8.195e+00	1.695e+07 1.735e+07	
860	1.788e-07	1.601e-06 1.612e-06	7.150e+00 7.564e+00	8.883e+06	3.331e-16	3.012e-15 2.977e-15	6.955e+00	1.756e+07 1.776e+07	
870	1.788e-07	1.729e-06	8.518e+00	9.090e+06	3.331e-16 3.331e-16	3.077e-15	7.057e+00	1.818e+07	
880	1.788e-07	1.729e-00 1.638e-06	8.379e+00	9.300e+06	3.331e-10 3.331e-16	3.087e-15	8.480e+00	1.860e+07	
890	1.788e-07	1.618e-06	8.184e+00	9.513e+06	2.220e-16	3.053e-15	8.559e+00	1.903e+07	
900	1.788e-07	1.612e-06	8.308e+00	9.728e+06	3.331e-16	3.122e-15	8.811e+00	1.946e+07	
910	1.788e-07	1.807e-06	8.485e+00	9.945e+06	3.331e-16	3.119e-15	1.057e+01	1.989e+07	
920	1.788e-07	1.724e-06	8.678e+00	1.016e+07	2.220e-16	3.051e-15	9.248e+00	2.033e+07	
920	1.788e-07 1.788e-07	1.724e-06 1.758e-06	9.546e+00	1.016e+07 1.039e+07	2.220e-16 3.331e-16	3.051e-15 3.189e-15	9.248e+00 9.745e+00	2.033e+07 2.077e+07	
930	1.788e-07 1.788e-07	1.758e-06 1.767e-06	9.546e+00 1.002e+01	1.039e+07 1.061e+07	3.331e-16 3.331e-16	3.189e-15 3.282e-15	9.745e+00 9.597e+00	2.077e+07 2.122e+07	
950	1.788e-07	1.707e-06 1.728e-06	9.171e+00	1.081e+07 1.084e+07	3.331e-16	3.173e-15	1.007e+00	2.122e+07 2.168e+07	
960 960	1.788e-07	1.728e-06 1.830e-06		1.084e+07 1.107e+07	3.331e-16	3.173e-15 3.154e-15	1.007e+01 1.350e+01	2.108e + 07 2.213e + 07	
960 970	1.788e-07 1.788e-07	1.830e-06 1.743e-06	1.137e+01 9.524e+00	1.107e+07 1.130e+07	3.331e-16 3.331e-16	3.154e-15 3.218e-15	8.931e+00	2.213e+07 2.260e+07	
970 980	1.788e-07 1.788e-07	1.743e-06 1.774e-06	9.524e+00 9.874e+00	1.153e+07 1.153e+07	3.331e-16 2.220e-16	3.218e-15 3.271e-15	8.931e+00 1.120e+01	2.260e+07 2.307e+07	
990	1.788e-07	1.774e-06 1.831e-06	9.874e+00 1.331e+01	1.177e+07	3.331e-16	3.138e-15	1.120e+01 1.587e+01	2.354e+07	
1000	1.788e-07	1.761e-06	1.351e+01 1.166e+01	1.177e+07 1.201e+07	3.331e-16	3.329e-15	1.387e+01 1.143e+01	2.354e+07 2.402e+07	
1000	1.1006-01	1.4016-00	1.1006 ± 01	1.201e+07	5.551e-10	ა.ა∡9e-1მ	1.1496+01	2.402e+07	