Лабораторная работа Минимизация функций

Ознакомиться с методами поиска минимума функции п переменных в оптимизационных задачах без ограничений

Даже для квадратичных функций сходимость градиентных методов за конечное число итераций не гарантирована. Однако если квадратичная функция n переменных приведена к виду суммы полных квадратов, то ее оптимум может быть найден в результате реализации n одномерных поисков по преобразованным координатным направлениям. Процедура преобразования квадратичной функции $f(x) = a + bx^T + \frac{1}{2}xHx^T$ к виду суммы полных квадратов эквивалентна нахождению такой матрицы преобразования Q, которая приводит матрицу квадратичной формы к диагональному виду. Таким образом, заданная квадратичная форма xHx^T путем преобразования x = zQ приводится к виду $xHx^T = zQ^THQz^T = zDz^T$, где D -диагональная матрица. Пусть $q^j - j$ - тая строка матрицы Q. Тогда преобразование x = zQ позволяет записать каждый вектор x в виде линейной комбинации векторов q^j : $x = zQ = z_1q^1 + z_2q^2 + ... + z_nq^n$. Другими словами, осуществляется переход к новой системе координат, задаваемой векторами q^j (заметим, что это преобразование не является единственным).

Следовательно, одномерный поиск точки минимума в пространстве преобразованных переменных эквивалентен поиску вдоль каждой из главных осей квадратичной функции. Для полученной системы векторов q^j будут выполняться равенства $q_i H(q_i)^T = 0, \ i \neq j$.

Определение. Система линейно независимых векторов q^j , для которой выполняются равенства $q_i H(q_j)^T = 0$, $i \neq j$, называется системой Н-сопряженных направлений.

Итак, если заданы любые n H-сопряженных направлений $q^1,q^2..q^n$, то процедура $x^{k+1}=x^k+a_kq^k$, где $a_k=\arg\min_a f(x^k+a_kq^k)$, k=1,2...n, позволяет найти минимум квадратичной функции.

Так как достаточно большой класс целевых функций может быть представлен в окрестности точки минимума своей квадратичной аппроксимацией, описанная идея применяется и для неквадратичных функций.

Построение системы Н- сопряженных направлений возможно различными способами.

Метод сопряжённых направлений Пауэлла

Итерационный процесс в методе Пауэлла организуется без предварительного построения H- сопряженных векторов, которые последовательно находятся в процессе минимизации с использованием свойства параллельного подпространства.

Утверждение (свойство параллельного подпространства). Если точка y^1 найдена в результате поиска из точки x^1 вдоль каждого из $m \ (m < n)$ сопряженных направлений, а точка y^2 получена в результате поиска из точки x^2 вдоль каждого из тех же m сопряженных направлений $q^1, q^2...q^m$, то вектор $y^2 - y^1$ задает направление, сопряженное со всеми выбранными mнаправлениями.

Алгоритм может быть организован следующим образом. Изначально полагается $q^{j} = e^{j}$, $j = \overline{1, n}$ (затем эти направления будут последовательно сопряженными направлениями). Вводится построенными вспомогательное направление $q^0 = e^n$. Находится минимум функции f(x)при последовательном движении из некоторой начальной точки x^0 по (n+1)направлениям $q_0, q_1, ..., q_n$, при этом каждая получаемая точка используется в качестве исходной для поиска по следующему направлению. По свойству параллельного подпространства, направление, проходящее через точки, полученные при первом и последнем поиске, будет H- сопряжено с q_n . Далее заменяется q_1 на q_2 , q_2 на q_3 и т.д. В качестве направления q_n выбирается полученное сопряженное направление, после чего повторяется поиск по (n+1) направлениям (уже не содержащим старого направления q_1). Для квадратичных функций последовательность n^2 одномерных поисков приводит к точке минимума.

Алгоритм метода сопряжённых направлений.

Шаг 0. Задать параметр точности e, выбрать $x^0 \in \mathbb{R}^n$, положить $\kappa = 0$, i = 0, $q^{j} = e^{j}, j = \overline{1, n}, q^{0} = e^{n}, y^{0} = x^{0}.$

- *Шаг* 2. Проверить условие i=n .
 - a) Если оно выполняется, то выяснить успешность поиска по n последним направлениям. Если $y^{n+1} = y^{l}$, поиск завершить, полагая $x^* = y^{n+1}$.
- b) Если i < n, положить i = i + I и перейти к шагу 1. *Шаг 3*. Положить $x^{k+1} = y^{n+1}$ и проверить критерий останова (например, $||x^0-x^1|| < e$ или $|f(x^0)-f(x^1)| < e$).

Если он выполнен, то вычисления завершить, полагая $x^* = x^{k+1}$.

Шаг 4. Положить
$$q^j = q^{j+1}$$
, $j = \overline{1, n-1}$, $q^0 = q^n = y^{n+1} - y^1$, $y^0 = x^{k+1}$, $i=0$, $\kappa = \kappa + 1$ и перейти к шагу 1.

Алгоритм метода наискорейшего спуска.

Шаг 0. Задать параметр точности e, выбрать $x^0 \in \mathbb{R}^n$.

 $extit{Шаг 1.}$ Найти $\nabla f(x^0)$ и проверить критерий останова: $\|\nabla f(x^0)\| < e$. Если он выполнен, то вычисления завершить, полагая $x = x^0$, $f = f(x^0)$.

Шаг 2. Решить задачу одномерной оптимизации

$$\Phi(\alpha)=f(x^0$$
- $\alpha \ \nabla f(x^0)) \to \min_{a>0}$, т.е. найти α^* .

Положить $x^0 = x^0 - \alpha * \nabla f(x^0)$ и перейти к шагу 1.

Метод сопряжённых градиентов

Данный метод позволяет получать сопряженные направления p^k для квадратичной функции f(x) с использованием ее производных. В качестве p^0 выбирается вектор-антиградиент, а остальные направления вычисляются по $p^{k+1} = -\nabla f(x^{k+1}) +$ $b_k p^k$ формуле k = 0, n - 1, $m{b}_k = \| \nabla \! f(x^{k+1}) \|^2 / \| \nabla \! f(x^k) \|^2$. Формула пересчета точки x^{k+1} имеет вид $x^{k+1} = x^k + a_k p^k$, причем шаг a_k ищется по правилу наискорейшего спуска.

При отсутствии вычислительных погрешностей метод сопряжённых градиентов обеспечивает отыскание минимума квадратичных функций не более чем за n итераций. Для неквадратичных функций сходимость метода за конечное число итераций не гарантирована.

Алгоритм метода сопряжённых градиентов.

- *Шаг 0*. Задать параметр точности e, выбрать $x^0 \in \mathbb{R}^n$, вычислить $f(x^0)$.
- *Шаг 1*. Положить $\kappa = 0$, $p^0 = -\nabla f(x^0)$;
- Шаг 2. Решить задачу одномерной минимизации $\Phi(\alpha)=f(x^0+\alpha p^k) o \min_{a>0}$, т.е. найти α_k . Шаг 3. Положить $x^{k+1}=x^k+\alpha_k p^k$.

Проверить критерий останова: $\|\nabla f(x^{k+1})\| < \mathbf{e}$.

Если он выполнен, то вычисления завершить, полагая $x^* = x^{k+1}, f^* = f(x^{k+1}).$

- *Шаг 4.* Проверить условие $\kappa + I = n$. Если оно выполняется, то положить $x^{0} = x^{k+1}$, $f(x^{0}) = f(x^{k+1})$ и перейти к шагу 1 (обновление метода).
- *Шаг* 5. Вычислить коэффициент $b_k = \|\nabla f(x^{k+1})\|^2 / \|\nabla f(x^k)\|^2$ и найти новое направление поиска $p^{k+1} = -\nabla f(x^{k+1}) + b_k p^k$. Положить $\kappa = \kappa + 1$ и перейти к шагу 2.

Порядок выполнения работы

- 1. Исследовать сходимость алгоритма, фиксируя точность определения минимума, количество итераций метода и количество вычислений минимизируемой функции в зависимости от задаваемой точности поиска. Результатом выполнения данного пункта должны быть выводы об объёме вычислений в зависимости от задаваемой точности и начального приближения.
- 2. Визуализировать работу алгоритма: построить траекторию спуска и наложить эту траекторию на рисунок с линиями уровня минимизируемой функции.

Указанным в индивидуальном варианте методом найти минимум квадратичной функции $f(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y$ с точностью ε .

No	a_{11}	2 <i>a</i> ₁₂	a_{22}	2 <i>a</i> ₁₃	2a ₂₃	Метод
Варианта						
1	2.5	1	2	-13	-4.5	Покоординатный спуск
2	3	1	1	-5	-10.5	Наискорейший спуск
3	3	1	1	-5.5	-6.5	Сопряженных направлений
4	4	1	0.5	-4.5	-3.5	Сопряженных градиентов
5	4	0.5	0.5	-9.3	-3.5	Покоординатный спуск
6	2.5	1	2	-5	-10.5	Наискорейший спуск
7	1	0.5	2.5	-2	-10.5	Сопряженных направлений
8	1	0.5	2.5	-3.5	-6.5	Сопряженных градиентов
9	2.5	-1	2	-12	0.5	Покоординатный спуск
10	2.5	-1	2	0	-9.5	Наискорейший спуск
11	3	-1	1	-6.5	-3.5	Сопряженных направлений
12	3	-1	1	-1.5	-2.5	Сопряженных градиентов
13	4	-0.5	0.5	-6.5	-2.5	Покоординатный спуск
14	4	-0.5	0.5	-2.2	-1.8	Наискорейший спуск
15	0.5	-0.5	2.5	0	-9.5	Сопряженных направлений

16	0.5	-0.5	2.5	-2.5	-3.5	Сопряженных градиентов
17	2.5	1	2	12	0.5	Покоординатный спуск
18	2.5	1	2	0	-10	Наискорейший спуск
19	3	1	1	6.5	-2.5	Сопряженных направлений
20	3	1	1	-1.5	-2.5	Сопряженных градиентов
21	4	0.5	0.5	6.5	-2.5	Покоординатный спуск
22	4	0.5	0.5	2.2	-1.8	Наискорейший спуск
23	0.5	0.5	2.5	0	-9.5	Сопряженных направлений
24	0.5	0.5	2.5	2.5	-3.5	Сопряженных градиентов
25	2.5	-1.0	2.0	7.0	4.0	Покоординатный спуск
26	3.5	1.5	0.5	-1.5	-2.5	Наискорейший спуск
27	4.5	-1.5	2	3.5	7	Сопряженных направлений
28	0.5	-0.5	3.5	-2.5	5	Сопряженных градиентов
29	1.5	1	2.5	4	-7	Покоординатный спуск
30	0.5	0.5	2	2	-2	Наискорейший спуск

Содержание отчета

Отчет должен содержать цель работы; задание; таблицы с результатами проведенных исследований, где должны быть отражены начальное приближение x^0 , задаваемая точность, количество итераций, число вычислений целевой функции, найденная точка и значение функции в ней, а также выводы о сходимости алгоритма в зависимости от точности и начального приближения с указанием преимуществ и недостатков.