

Stephen Merity 1 Nitish Shirish Keskar 1 Richard Socher 1

20160413 Soyoung Yoon 20150824 Jaeyoung Hwang 20150390 Dongmin Seo

1. Introduction

- 2. Previous Approaches
- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

Introduction

Language modeling is **useful** for pre-training decoders in Seq2Seq architectures, and **custom architectures** often proposed.

- **✓**
- Apply Generalization / Regularization Techniques
- **/**
- Propose new **Optimization** Techniques (NT-AvSGD)
- **/**

Apply pointer model & QRNN

Attained **State of The Art performance** for many tasks and become popular baseline model for LM papers

- 1. Introduction
- 2. Previous Approaches

- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

Neural networks suffer from over-parameterization (**overfitting**) - **Regularization** is important for performance

Dropout & Batch normalization: good for feed-forward and CNNs BUT Naive dropout disrupt RNN's ability to retain long term dependencies

-> 1. Retain **same** dropout mask over multiple time steps (variational dropout)

- 2. Limit updates to RNN's hidden state (≈ Zone-out)
- 3. Limit updates to RNN's recurrent state
 - 3-1. Restrict capacity of matrix
 - 3-2. Through element-wise interactions
- 4. Normalization Techniques
 - 4-1. Batch Normalization
 - 4-2. Recurrent Batch Normalization
 - 4-3. Layer Normalization

Need additional training parameters -> increase sensitivity of model

- 1. Introduction
- 2. Previous Approaches
- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

Optimization - NT-AvSGD

- SGD
 - Use mini-batch rather than entire data when calculate loss function
- ASGD (Averaged-SGD)
 - **K**: total number of iterations
 - T: user-specified averaging (T < K)
 - But, **unclear guidelines** for the learning-rate and T
- NT-ASGD (Non-monotonically Triggered ASGD)
 - Well defined guidelines for the learning-rate and T

Optimization - NT-AvSGD

- 1. Introduction
- 2. Previous Approaches
- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

recap: BPTT (Backpropagation Through Time)

- truncated-BPTT
 - Limit backprop distance
 - Apply BPTT for each divided batch

k1: window size

k2: shifting size

(generally k1 = k2 = k)

No backpropagation between batches

Truncated BPTT

Variational Dropout

Known Techniques: DropConnect

-> delete node

-> delete connections(weights)

Variational Dropout

same dropout mask for multiple connections!

Embedding dropout

Dropout on the embedding matrix at a word level

Weight tying

embedding layer weight == softmax layer weight

Independent embedding size and hidden size

Reduce embedding size

=> reduce total parameters

AR and TAR

AR (Activation Regularization)

on individual unit activations

$$\alpha L_2(m \odot h_t)$$

alpha <- scale coefficient m <- dropout mask

TAR(Temporal Activation Regularization)

on difference in outputs of an RNN

$$\beta L_2(h_t - h_{t+1})$$

beta <- scale coefficient

Pointer Models

Pointer models(neural cache model) can be directly added **on top** of a pre-trained language model

h: hidden state

x: word

- 1. Introduction
- 2. Previous Approaches
- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

Penn Treebank(PTB) & WikiText-2(WT2)

Single model perplexity: lower is better.

Model	Parameters	Validation	Test
Zaremba et al. (2014) - LSTM (medium)	20M	86.2	82.7
Zaremba et al. (2014 - LSTM (large)	66M	82.2	78.4
Gal & Ghahramani (2016) - Variational LSTM (medium)	20M	81.9 ± 0.2	79.7 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (medium, MC)	20M	_	78.6 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (large)	66M	77.9 ± 0.3	75.2 ± 0.2
Gal & Ghahramani (2016) - Variational LSTM (large, MC)	66M	_	73.4 ± 0.0
Kim et al. (2016) - CharCNN	19 M	_	78.9
Merity et al. (2016) - Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) - LSTM	_	_	82.3
Grave et al. (2016) - LSTM + continuous cache pointer	_	_	72.1
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	24M	75.7	73.2
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	51M	71.1	68.5
Zilly et al. (2016) - Variational RHN (tied)	23M	67.9	65.4
Zoph & Le (2016) - NAS Cell (tied)	25M	_	64.0
Zoph & Le (2016) - NAS Cell (tied)	54M	_	62.4
Melis et al. (2017) - 4-layer skip connection LSTM (tied)	24M	60.9	58.3
AWD-LSTM - 3-layer LSTM (tied)	24M	60.0	57.3
AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer	24M	53.9	52.8

+ variational dropout

Penn Treebank(PTB) & WikiText-2(WT2)

Single model perplexity: lower is better.

Model	Parameters	Validation	Test
Zaremba et al. (2014) - LSTM (medium)	20M	86.2	82.7
Zaremba et al. (2014) - LSTM (large)	66M	82.2	78.4
Gal & Ghahramani (2016) - Variational LSTM (medium)	20M	81.9 ± 0.2	79.7 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (medium, MC)	20M	_	78.6 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (large)	66M	77.9 ± 0.3	75.2 ± 0.2
Gal & Ghahramani (2016) - Variational LSTM (large, MC)	66M	_	73.4 ± 0.0
Kim et al. (2016) - CharCNN	19M	_	78.9
Merity et al. (2016) - Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) - LSTM	_	_	82.3
Grave et al. (2016) - LSTM + continuous cache pointer	_	_	72.1
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	24M	75.7	73.2
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	51M	71.1	68.5
Zilly et al. (2016) - Variational RHN (tied)	23M	67.9	65.4
Zoph & Le (2016) - NAS Cell (tied)	25M	_	64.0
Zoph & Le (2016) - NAS Cell (tied)	54M	_	62.4
Melis et al. (2017) - 4-layer skip connection LSTM (tied)	24M	60.9	58.3
AWD-LSTM - 3-layer LSTM (tied)	24M	60.0	57.3
AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer	24M	53.9	52.8

+ cache pointer

Penn Treebank(PTB) & WikiText-2(WT2)

Single model perplexity: lower is better.

Model	Parameters	Validation	Test
Zaremba et al. (2014) - LSTM (medium)	20M	86.2	82.7
Zaremba et al. (2014) - LSTM (large)	66M	82.2	78.4
Gal & Ghahramani (2016) - Variational LSTM (medium)	20M	81.9 ± 0.2	79.7 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (medium, MC)	20M	_	78.6 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (large)	66M	77.9 ± 0.3	75.2 ± 0.2
Gal & Ghahramani (2016) - Variational LSTM (large, MC)	66M	_	73.4 ± 0.0
Kim et al. (2016) - CharCNN	19M	_	78.9
Merity et al. (2016) - Pointer Sentinel-LSTM 21M		72.4	70.9
Grave et al. (2016) - LSTM	_	_	82.3
Grave et al. (2016) - LSTM + continuous cache pointer		_	72.1
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	24M	75.7	73.2
Inan et al. (2016) - Variational LSTM (tied) + augmented loss	51M	71.1	68.5
Zilly et al. (2016) - Variational RHN (tied)	23M	67.9	65.4
Zoph & Le (2016) - NAS Cell (tied)	25M	_	64.0
Zoph & Le (2016) - NAS Cell (tied)	54M	_	62.4
Melis et al. (2017) - 4-layer skip connection LSTM (tied)	24M	60.9	58.3
AWD-LSTM - 3-layer LSTM (tied)	24M	60.0	57.3
AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer	24M	53.9	52.8

+ weight tying

+ NT-AvSGD

Model	Parameters	Validation	Test
Inan et al. (2016) - Variational LSTM (tied) ($h = 650$)	28M	92.3	87.7
Inan et al. (2016) - Variational LSTM (tied) ($h = 650$) + augmented loss	28M	91.5	87.0
Grave et al. (2016) - LSTM	_	_	99.3
Grave et al. (2016) - LSTM + continuous cache pointer	_	_	68.9
Melis et al. (2017) - 1-layer LSTM (tied)	24M	69.3	65.9
Melis et al. (2017) - 2-layer skip connection LSTM (tied)	24M	69.1	65.9
AWD-LSTM - 3-layer LSTM (tied)	33M	68.6	65.8
AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer	33M	53.8	52.0

Penn Treebank(PTB) & WikiText-2(WT2)

+ Pointer

Model	Parameters	Validation	Test
Inan et al. (2016) - Variational LSTM (tied) ($h = 650$)	28M	92.3	87.7
Inan et al. (2016) - Variational LSTM (tied) ($h = 650$) + augmented loss	28M	91.5	87.0
Grave et al. (2016) - LSTM	_	_	99.3
Grave et al. (2016) - LSTM + continuous cache pointer	_	_	68.9
Melis et al. (2017) - 1-layer LSTM (tied)	24M	69.3	65.9
Melis et al. (2017) - 2-layer skip connection LSTM (tied)	24M	69.1	65.9
AWD-LSTM - 3-layer LSTM (tied)	33M	68.6	65.8
AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer	33M	53.8	52.0

Penn Treebank(PTB) & WikiText-2(WT2)

Evaluation - Hyperparameter Importance!

	PTB		WT2	
Model	Validation	Test	Validation	Test
AWD-LSTM (tied)	60.0	57.3	68.6	65.8
fine-tuning	60.7	58.8	69.1	66.0
- NT-ASGD	66.3	63.7	73.3	69.7
– variable sequence lengths	61.3	58.9	69.3	66.2
 embedding dropout 	65.1	62.7	71.1	68.1
weight decay	63.7	61.0	71.9	68.7
– AR/TAR	62.7	60.3	73.2	70.1
 full sized embedding 	68.0	65.6	73.7	70.7
- weight-dropping	71.1	68.9	78.4	74.9

Each variant is evaluated by removing each feature

Importance of each feature for decreasing the perplexity of the model

- Motivation & Research Problem
- 2. Previous Approaches
- 3. Optimization Techniques
- 4. Regularization Techniques
- 5. Evaluation
- 6. Conclusion & Contributions

Conclusion

Developed AWD-LSTM == ASGD Weight-Dropped LSTM (through DropConnect)

Optimization: Non-monotonic triggered ASGD >> SGD

Regularization: variable BPTT length, Variational/Embedding Dropout, AR & TAR, Independent embedding size & hidden size

Neural cache model: Further decrease perplexity

Contributions

No modifications are required for LSTM implementations

- Can be easily integrated to any blackbox LSTM layers (ex: can still use cuDNN LSTM)
- Generally applicable across other sequence learning tasks

Achieve State-of-the-Art Perplexity

- Became popular **baseline model** for LM papers (Universal Language Model Fine-tuning for Text Classification)