Nekilnojamojo turto objektų kainų analizė Lietuvoje Statistikos laboratorinis darbas Nr. 2

VU

2025-04-17

Contents

1	Įvao		1
2	Duc	nenų aprašymas	1
	2.1	Duomenų nuskaitymas	1
	2.2	Duomenų patikrinimas ir išskirčių šalinimas	2
	2.3	Duomenų vizualizacija	7
		2.3.1 Kainų pasiskirstymo analizė	8
		2.3.2 Komercinių patalpų ploto analizė	9
		2.3.3 Namų nuomos kainos ryšys su plotu	11
0	D		2
3	Pag	ndinės skaitinės charakteristikos 1	. 4
	3.1	Kiekybinių kintamųjų aprašomoji statistika	12

1 Įvadas

Šiame tyrime analizuojami Lietuvos nekilnojamojo turto rinkos duomenys, siekiant nustatyti įvairius dėsningumus ir statistines priklausomybes.

2 Duomenų aprašymas

Analizei naudojami duomenys buvo atsisiųsti iš Lithuanian Real Estate Listings GitHub repozitorijos. Duomenys buvo surinkti 2024 m. vasarį iš Aruodas.lt puslapio. Duomenų rinkinyje yra informacija apie parduodamus ir nuomojamus butus, garažus, namus, sklypus ir patalpas. Tyrime naudojami duomenys apima kainų, ploto, vietos ir kitų svarbių charakteristikų informaciją.

2.1 Duomenų nuskaitymas

Table 1: Nekilnojamojo turto duomenų kategorijos

Kategorijos
apartments
apartments_rent
garages_parking
garages_parking_rent
house_rent
houses land land_rent premises premises rent
premises_rent

```
# CSV failų nuskaitymas į sąrašą
csv_data_list <- list()

for (folder in folders) {
   file_path <- file.path(data_dir, folder, "all_cities_20240214.csv")
   if (file.exists(file_path)) {
     df <- read.csv(file_path)
        csv_data_list[[folder]] <- df
   }
}</pre>
```

2.2 Duomenų patikrinimas ir išskirčių šalinimas

Prieš pradedant statistinę analizę, būtina identifikuoti ir pašalinti galimai klaidingas ar nekorektiškas reikšmes duomenyse. Nekilnojamojo turto rinkoje egzistuoja neįprastai didelių ar mažų kainų, kurios gali atsirasti dėl duomenų įvedimo klaidų, klaidingo formato ar kitų priežasčių. Tokios išskirtys gali reikšmingai paveikti statistinės analizės rezultatus.

```
# Apibrėžiame kainų ribas išskirčių identifikavimui
min_threshold <- 20  # Minimali kaina eurais
max_threshold <- 25000000  # Maksimali kaina eurais

# Sukuriame rezultatų lentelę
removal_results <- data.frame(
    Kategorija = character(),</pre>
```

```
Pašalinta_eilučių = integer(),
  Per_dideles_kainos = integer(),
  Per_mažos_kainos = integer(),
  stringsAsFactors = FALSE
)
# Tikriname ir šaliname išskirtis kiekviename duomenų rinkinyje
for (type in names(csv data list)) {
  if (!is.null(csv_data_list[[type]]) && "price" %in% colnames(csv_data_list[[type]])) {
    # Identifikuojame kraštutines reikšmes
    extreme_high <- sum(csv_data_list[[type]] $price > max_threshold, na.rm = TRUE)
    extreme_low <- sum(csv_data_list[[type]]$price < min_threshold, na.rm = TRUE)</pre>
    extreme_total <- extreme_high + extreme_low</pre>
    if (extreme_total > 0) {
      # Išsaugome pradinį eilučių skaičių
      original_count <- nrow(csv_data_list[[type]])</pre>
      # Filtruojame duomenis, išlaikydami tik patikimas kainas arba NA reikšmes
      csv_data_list[[type]] <- csv_data_list[[type]][</pre>
        (csv_data_list[[type]]$price >= min_threshold &
         csv_data_list[[type]]$price <= max_threshold) |</pre>
          is.na(csv_data_list[[type]]$price), ]
      # Fiksuojame rezultatus
      new_count <- nrow(csv_data_list[[type]])</pre>
      removed_count <- original_count - new_count</pre>
      # Pridedame rezultatus į suvestinę
      removal_results <- rbind(removal_results, data.frame(</pre>
        Kategorija = type,
        Pašalinta_eilučių = removed_count,
        Per_dideles_kainos = extreme_high,
        Per_mažos_kainos = extreme_low
     ))
    }
 }
# Atvaizduojame išskirčių šalinimo rezultatus
if (nrow(removal_results) > 0) {
 kable(removal_results,
        caption = "Išskirčių šalinimo rezultatų suvestinė") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
}
```

Table 2: Išskirčių šalinimo rezultatų suvestinė

Kategorija	Pašalinta_eilučių	Per_didelės_kainos	Per_mažos_kainos
land_rent	2	0	2
premises	65	64	1
premises_rent	192	159	33

```
# Patikriname duomenų rinkinių dydžius po valymo
data_sizes <- data.frame(
    Eilučių_skaičius = sapply(csv_data_list, nrow),
    Stulpelių_skaičius = sapply(csv_data_list, ncol)
)

kable(data_sizes,
    caption = "Duomenų rinkinių dydžiai po išskirčių šalinimo") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 3: Duomenų rinkinių dydžiai po išskirčių šalinimo

	Eilučių_skaičius	Stulpelių_skaičius
apartments	7721	38
apartments_rent	3208	38
garages_parking	497	28
garages_parking_rent	307	27
house_rent	310	40
houses	7284	39
land	6322	27
land_rent	102	27
premises	1491	37
premises_rent	2547	37

Pašalintos ekstremalios kainos, kurios galėjo iškreipti vidutines reikšmes ir kitas statistines charakteristikas.

```
# Sukuriame lentelę su stulpelių sąrašais kiekvienam duomenų rinkiniui
columns by dataset <- data.frame(</pre>
  Duomeny_rinkinys = character(),
  Stulpeliu_skaičius = integer(),
 Stulpeliupavadinimai = character(),
  stringsAsFactors = FALSE
# Pildome lentele informacija apie stulpelius
for (folder name in names(csv data list)) {
  columns_by_dataset <- rbind(columns_by_dataset, data.frame(</pre>
   Duomenu_rinkinys = folder_name,
   Stulpeliu_skaičius = ncol(csv_data_list[[folder_name]]),
   Stulpeliu_pavadinimai = paste(colnames(csv_data_list[[folder_name]]), collapse = ", ")
 ))
}
# Atvaizduojame lentelę su stulpelių informacija
kable(columns_by_dataset,
      caption = "Kiekvieno duomenų rinkinio stulpelių struktūra") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
                latex_options = c("scale_down", "hold_position"),
                font_size = 8) %>%
  column_spec(1, width = "8em") %>%
  column spec(2, width = "8em") %>%
  column_spec(3, width = "32em")
```

Table 4: Kiekvieno duomenų rinkinio stulpelių struktūra

Duomenų_rinkinys Stulpelių_skaičius	Stulpelių_pavadinimai
apartments 38	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, number_of_rooms, area, floor, noof_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, selected, views_total, views_today, house_no., flat_no., building_energy_efficiency_class, description_tags, additional_premises, security, additional_equipment, valid_till, unique_item_number, object
apartments_rent 38	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, price_per_month, house_no., number_of_rooms, area, floor, noof_floors, build_year, equipment, building_type, heating_system, description_tags, additional_premises, additional_equipment, security, link, add_date, modified, selected, views_total, views_today, valid_till, flat_no., building_energy_efficiency_class, unique_item_number
garages_parking 28	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, area, type, accommodates_noof_cars, features, link, add_date, modified, valid_till, selected, views_total, views_today, number, unique_item_number, description_tags
garages_parking_rent 27	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, number, area, type, accommodates_noof_cars, features, link, add_date, modified, valid_till, selected, views_total, views_today, unique_item_number
house_rent 40	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, price_per_month, plot_area, area, noof_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, valid_till, selected, views_total, views_today, number_of_rooms, water_system, closest_body_of_water, distance_from_body_of_water, building_energy_efficiency_class, description_tags, additional_premises, additional_equipment, security, house_no., unique_item_number
houses 39	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, plot_area, area, noof_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, selected, views_total, views_today, house_no., number_of_rooms, water_system, closest_body_of_water, distance_from_body_of_water, description_tags, additional_premises, additional_equipment, security, valid_till, building_energy_efficiency_class, unique_item_number
land 27	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, area_a., purpose, type, link, add_date, modified, views_total, views_today, description_tags, valid_till, selected, unique_item_number, lot_no.
land_rent 27	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, lot_no., area_a., purpose, type, link, add_date, modified, valid_till, selected, views_total, views_today, description_tags, unique_item_number

```
premises
                                        listing id, type id, price, region, microdistrict, street, coordinates,
                                        images, description, phone_number, private_seller, call_forwarding,
                                        reserved, sold_or_rented, house_no., area, floor, no._of_floors,
                                        build_year, equipment, premises_sum, purpose, heating_system,
                                        water system, description tags, additional equipment, link,
                                        add_date, modified, selected, views_total, views_today,
                                        unique_item_number, premises_nr., valid_till, security,
                                        building\_energy\_efficiency\_class
premises_rent
                                        listing_id, type_id, price, region, microdistrict, street, coordinates,
                                        images, description, phone number, private seller, call forwarding,
                                        reserved, sold_or_rented, price_per_month, house_no., area, floor,
                                        no._of_floors, equipment, purpose,
                                        building\_energy\_efficiency\_class, \ link, \ add\_date, \ modified,
                                        valid till, selected, views total, views today, heating system,
                                        additional_equipment, security, water_system, description_tags,
                                        premises_nr., build_year, unique_item_number
```

```
# Randame unikalius stulpelių pavadinimus visuose duomenų rinkiniuose
all_columns <- unique(unlist(lapply(csv_data_list, colnames)))</pre>
unique columns <- sort(all columns)</pre>
# Analizuojame stulpelių pasikartojimą skirtinguose duomenų rinkiniuose
column_presence <- data.frame(</pre>
  Stulpelis = unique_columns,
  Pasikartojimu_skaičius = sapply(unique_columns, function(col) {
    sum(sapply(csv_data_list, function(df) col %in% colnames(df)))
  }),
  stringsAsFactors = FALSE
)
# Rikiuojame pagal pasikartojimų skaičių mažėjimo tvarka
column_presence <- column_presence[order(column_presence$Pasikartojimu_skaičius, decreasing = TRUE),]</pre>
# Atvaizduojame unikalių stulpelių analizę
kable(column presence,
      caption = paste("Unikalių stulpelių pasikartojimas duomenų rinkiniuose (iš viso:",
                      nrow(column presence), "stulpeliai)"),
      row.names = FALSE) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
  scroll_box(width = "100%", height = "300px")
```

Table 5: Unikalių stulpelių pasikartojimas duomenų rinkiniuose (iš viso: 52 stulpeliai)

Stulpelis	Pasikartojimų_skaičius
add_date	10
call_forwarding	10
coordinates	10
description	10
images	10
link	10
listing_id	10
microdistrict	10
modified	10

phone_number	10
price private_seller region reserved selected	10 10 10 10 10
sold_or_rented street type_id unique_item_number valid_till	10 10 10 10 10
views_today views_total description_tags area additional_equipment	10 10 9 8 6
build_year building_energy_efficiency_class equipment heating_system house_no.	6 6 6 6
noof_floors security additional_premises building_type floor	6 6 4 4 4
number_of_rooms purpose type water_system price_per_month	4 4 4 4 3
accommodates_noof_cars areaa. closest_body_of_water distance_from_body_of_water features	2 2 2 2 2
flat_no. lot_no. number plot_area premises_nr.	2 2 2 2 2 2
object premises_sum	1 1

2.3 Duomenų vizualizacija

Grafikai padės geriau suprasti Lietuvos nekilnojamojo turto rinkos ypatybes.

```
# Papildomų vizualizacijai reikalingų paketų įkėlimas
library(ggplot2)
library(scales)
library(gridExtra)
library(ggExtra)
# Nustatome bendrą grafikų stilių
theme_scientific <- function() {</pre>
  theme_minimal() +
   theme(
      plot.title = element_text(face = "bold", size = 11),
     plot.subtitle = element_text(size = 9, color = "gray50"),
      axis.title = element_text(face = "bold", size = 10),
      axis.text = element_text(size = 9),
      legend.title = element_text(face = "bold", size = 9),
      legend.text = element_text(size = 8)
   )
}
```

2.3.1 Kainų pasiskirstymo analizė

Pirmiausiai analizuojame butų kainų pasiskirstymą, siekdami nustatyti kainų tendencijas ir išsibarstymo charakteristikas.

```
# Buty kainy pasiskirstymo vizualizacija
if ("apartments" %in% names(csv_data_list) && "price" %in% colnames(csv_data_list[["apartments"]])) {
  # Pasiruošiame duomenis
  df <- data.frame(price = csv_data_list[["apartments"]]$price)</pre>
  # Braižome histogramą su tankio kreive
  price_hist <- ggplot(df, aes(x = price)) +</pre>
    geom_histogram(aes(y = after_stat(density)),
                   bins = 30,
                   fill = "steelblue",
                   color = "white",
                   alpha = 0.8) +
    geom_density(color = "darkred", linewidth = 1) +
   labs(title = "Buty kainy pasiskirstymas",
         subtitle = "Histograma ir tankio funkcija",
         x = "Kaina (EUR)",
         y = "Tankis") +
   theme_scientific() +
    scale_x_continuous(labels = comma, limits = c(0, 1000000)) +
    coord_cartesian(xlim = c(0, 500000))
  print(price_hist)
```


2.3.2 Komercinių patalpų ploto analizė

Analizuojame komercinių patalpų ploto pasiskirstymą skirtinguose segmentuose (pardavimas ir nuoma).

```
# Komercinių patalpų ploto analizė
premises_types <- c("premises", "premises_rent")</pre>
premises_data <- list()</pre>
# Apjungiame duomenis iš abiejų šaltinių
for (type in premises_types) {
  if (type %in% names(csv_data_list) && "area" %in% colnames(csv_data_list[[type]])) {
    df <- csv_data_list[[type]]</pre>
    df$type <- ifelse(type == "premises", "Pardavimas", "Nuoma") # Lietuviškas žymėjimas
    # Užtikriname, kad plotas būtų skaitinis
    df$area <- as.numeric(gsub(",", ".", as.character(df$area)))</pre>
    # Atmetame nelogiškus ploto dydžius (pvz., neigiamus ar per didelius)
    df <- df[!is.na(df$area) & df$area > 0 & df$area < 10000, ]</pre>
    # U\check{z}tikriname, kad visi stulpeliai b\bar{u}tų vienodi abiem šaltiniam (premises ir premises_rent)
    if (length(premises_data) > 0) {
      # Nustatome bendrus stulpelius tarp esamo ir pridedamo duomenų rinkinių
      common_cols <- intersect(colnames(df), colnames(premises_data[[1]]))</pre>
      # Paliekame tik bendrus stulpelius
      df <- df[, common_cols, drop = FALSE]</pre>
    }
    premises_data[[type]] <- df</pre>
```

```
}
}
# Sujungiame duomenis, užtikrindami stulpelių suderinamumą
if (length(premises_data) == 2) {
  # U\check{z}tikriname, kad stulpeliai abiem \check{s}altiniuose b\bar{u}t\psi identi\check{s}ki
  common_cols <- intersect(colnames(premises_data[[1]]), colnames(premises_data[[2]]))</pre>
  premises_data[[1]] <- premises_data[[1]][, common_cols, drop = FALSE]</pre>
  premises_data[[2]] <- premises_data[[2]][, common_cols, drop = FALSE]</pre>
# Sujungiame duomenis
combined_premises <- do.call(rbind, premises_data)</pre>
# Braižome boxplot
area_boxplot <- ggplot(combined_premises, aes(x = type, y = area, fill = type)) +
  geom_boxplot(outlier.color = "red", outlier.size = 1) +
  labs(title = "Komercinių patalpų ploto pasiskirstymas",
       subtitle = "Pardavimo ir nuomos sektoriuose",
       x = "Sektorius",
       v = "Plotas (kv. m)") +
  theme_scientific() +
  theme(legend.position = "none") +
  scale_fill_manual(values = c("Pardavimas" = "#619CFF", "Nuoma" = "#00BA38")) +
  scale_y_continuous(labels = comma) +
  coord_cartesian(ylim = c(0, 1250))
print(area_boxplot)
```

Komerciniu patalpu ploto pasiskirstymas

2.3.3 Namų nuomos kainos ryšys su plotu

Analizuojame, kaip namų nuomos kainų dydis priklauso nuo ploto.

```
# Namų nuomos kainos ir ploto priklausomybės analizė
if ("house_rent" %in% names(csv_data_list) &&
    all(c("price", "area") %in% colnames(csv_data_list[["house_rent"]]))) {
  # Pasiruošiame duomenis
  df <- csv_data_list[["house_rent"]]</pre>
  # Standartizuojame ploto stulpelį: pakeičiame kablelius taškais ir konvertuojame į skaičius
  df$area <- as.numeric(gsub(",", ".", as.character(df$area)))</pre>
  # Atmetame nelogiškas reikšmes
  df <- df[!is.na(df$area) & !is.na(df$price) &</pre>
           df$area > 0 & df$area < 500 &
           df$price > 0 & df$price < 6000, ]
  # Apskaičiuojame kainą už kvadratinį metrą
  df$price_per_sqm <- df$price / df$area</pre>
    # Braižome sklaidos diagramą su regresijos linija
  scatter_plot <- ggplot(df, aes(x = area, y = price)) +</pre>
    geom_point(alpha = 0.7, color = "steelblue") +
    geom_smooth(method = "lm", color = "darkred", se = FALSE) +
    labs(title = "Namu nuomos kainos priklausomybė nuo ploto",
         subtitle = "Su tiesine regresijos kreive",
         x = "Plotas (kv. m)",
         y = "Nuomos kaina (EUR/mėn.)") +
    theme scientific() +
    scale_color_viridis_c() +
    scale_y_continuous(labels = comma) +
    scale_x_continuous(labels = comma)
  print(scatter plot)
  # Pridedame koreliacijos koeficienta
  correlation <- cor(df$area, df$price, use = "complete.obs")</pre>
  cat("Koreliacijos koeficientas tarp namų ploto ir nuomos kainos:", round(correlation, 3), "\n")
}
```


Koreliacijos koeficientas tarp namų ploto ir nuomos kainos: 0.692

3 Pagrindinės skaitinės charakteristikos

3.1 Kiekybinių kintamųjų aprašomoji statistika

Šiame skyriuje pateikiamos pagrindinės skaitinės charakteristikos kiekybiniams kintamiesiems.

```
# Duomenų rinkinių filtravimas pagal stulpelio pavadinimą
filter_datasets_by_column <- function(data_list, column_name) {</pre>
  filtered <- data_list[sapply(data_list, function(df) column_name %in% colnames(df))]
  return(filtered)
}
# Statistikų skaičiavimas kintamajam
calculate_summary <- function(data_list, variable_name, target_datasets) {</pre>
  # Sukuriame tuščią rezultatų lentelę su lietuviškais pavadinimais
  results <- data.frame(</pre>
    Duomenu_rinkinys = character(),
    Vidurkis = numeric(),
    Mediana = numeric(),
    Moda = character(),
    Stand_nuokr = numeric(),
    Q1 = numeric(),
    Q3 = numeric(),
    Minimumas = numeric(),
```

```
Maksimumas = numeric(),
    stringsAsFactors = FALSE
  )
  for (df_name in target_datasets) {
    if (df_name %in% names(data_list) && variable_name %in% colnames(data_list[[df_name]])) {
      # Išskiriame reikšmes ir konvertuojame į skaitinius duomenis
      values <- data list[[df name]][[variable name]]</pre>
      numeric_values <- as.numeric(gsub(",", ".", as.character(values)))</pre>
      # Pašaliname NA reikšmes skaičiavimams
      clean_values <- numeric_values[!is.na(numeric_values)]</pre>
      if (length(clean_values) > 0) {
        # Apskaičiuojame papildomas statistikas
        mean_val <- mean(clean_values)</pre>
        median_val <- median(clean_values)</pre>
        sd_val <- sd(clean_values)</pre>
        quant_vals <- quantile(clean_values, probs = c(0.25, 0.5, 0.75))
        min_val <- min(clean_values)</pre>
        max_val <- max(clean_values)</pre>
        # Pridedame rezultatus į lentelę
        results <- rbind(results, data.frame(
          Duomenu_rinkinys = df_name,
          Vidurkis = mean val,
          Mediana = median_val,
          Stand_nuokr = sd_val,
          Q1 = quant_vals[1],
          Q3 = quant_vals[3],
          Minimumas = min_val,
          Maksimumas = max_val
        ))
     }
    }
 return(results)
}
# Apibrėžiame analizuojamus kiekybinius kintamuosius
columns to check <- c(
  "price", "price_per_month", "views_total", "area", "area_.a.",
  "build_year", "no._of_floors", "floor", "number_of_rooms", "plot_area"
# Sukuriame sąrašą rezultatams saugoti
column_results <- list()</pre>
# Apdorojame kiekvieną stulpelį ir saugome rezultatus
for (col in columns_to_check) {
  column_results[[col]] <- filter_datasets_by_column(csv_data_list, col)</pre>
```

```
# Apibrėžiame duomenų rinkinio grupes
sale_datasets <- c("apartments", "garages_parking", "houses", "land", "premises")
rent_datasets <- c("apartments_rent", "house_rent", "premises_rent")
all_datasets <- c("apartments", "apartments_rent", "garages_parking", "garages_parking_rent",
```

"house_rent", "houses", "land", "land_rent", "premises", "premises_rent")

```
sale_price_stats <- calculate_summary(csv_data_list, "price", sale_datasets)
rent_price_stats <- calculate_summary(csv_data_list, "price", rent_datasets)
views_stats <- calculate_summary(csv_data_list, "views_total", all_datasets)
floors_stats <- calculate_summary(csv_data_list, "no._of_floors", all_datasets)
rooms_stats <- calculate_summary(csv_data_list, "number_of_rooms", all_datasets)</pre>
```

kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

Table 6: Pardavimų kainų statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	143718.13	107558	146129.71	64000	172000	43	2500000
garages_parking	19015.55	15000	19477.64	10000	22499	500	248000
houses	183734.43	140000	223884.94	55000	235000	200	4200000
land	115388.60	35000	386437.38	18000	79900	100	12000000
premises	413170.38	165000	762212.43	70000	399850	490	10000000

Table 7: Nuomos kainų statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	$Stand_nuokr$	Q1	Q3	Minimumas	Maksimumas
apartments_rent	609.95	525	1529.12	380	690.0	20	84900
house_rent	1428.76	1200	1327.40	750	1500.0	50	13000
premises_rent	886472.97	1300	3213628.37	500	5268.5	22	24045000

Table 8: Peržiūrų skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	1573	892	2244	425	1860	0	56297
apartments_rent	1806	606	9703	286	1315	2	355786
garages_parking	727	433	1017	194	876	13	12209
garages_parking_rent	374	173	728	80	404	6	7521
house_rent	1275	582	2332	262	1411	20	24014
houses	2247	1133	3549	501	2612	2	71418
land	869	346	2965	140	872	1	191374
land_rent	477	256	560	100	619	11	2658
premises	647	310	1296	132	710	0	21298
premises_rent	742	257	2341	106	607	1	46715

Table 9: Aukštų skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	5.1	5	3.0	3	5	1	34
apartments_rent	5.3	5	3.0	4	6	1	34
house_rent	1.8	2	0.6	1	2	1	4
houses	1.6	2	0.6	1	2	1	15
premises	2.4	2	1.9	1	3	1	18
premises_rent	2.8	2	2.9	1	3	1	31

Table 10: Kambarių skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	$Stand_nuokr$	Q1	Q3	Minimumas	Maksimumas
apartments	2.4	2	1.0	2	3	1	13
apartments_rent	2.0	2	0.8	1	2	1	10
house_rent	4.2	4	1.7	3	5	1	13
houses	4.2	4	2.0	3	5	1	54

4. Sudarykite dažnių lenteles kategoriniams kintamiesiems.

- 5. Suformuluokite bent 6 tyrimo hipotezes iš savo duomenų rinkinio
- 6. Užrašykite kokius testus parinkote savo tyrimo hipotezėms. Hipotezės turi būti skirtos skirtingų testų naudojimui. Jei reikia susikurkite naujus kintamuosius iš turimų duomen.
- 7. Patikrinkite, ar kintamieji tenkina būtinas sąlygas testų taikymui. Jei netenkina, atlikite duomenų transformacijas.
- 8. Atlikite statistinį tyrimą savo suformuluotoms hipotezėms.
- 9. Pateikite tyrimo atsakymą.