Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине «Методы машинного обучения» на тему

«Обработка признаков (часть 2)»

Выполнил: студент группы ИУ5И-22М Лю Чжинань

Москва — 2023 г.

1. Цель лабораторной работы

Изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

2. Задание

- 1. Выбрать один или несколько наборов данных (датасетов) для решения следующих задач. Каждая задача может быть решена на отдельном датасете, или несколько задач могут быть решены на одном датасете. Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - і. масштабирование признаков (не менее чем тремя способами);
 - обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов);
 - iii. обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным);
 - iv. отбор признаков:
 - 1. один метод из группы методов фильтрации (filter methods);
 - 2. один метод из группы методов обертывания (wrapper methods);
 - 3. один метод из группы методов вложений (embedded methods).

1. Масштабирование признаков (не менее чем тремя способами);

data.head()

₽		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude	Y
	0	8.3252	41.0	6.984127	1.023810	322.0	2.55556	37.88	-122.23	4.526
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

[] # **Н**ужно ли масштабирование data.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude	Y
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070655	35.631861	-119.569704	2.068558
std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386050	2.135952	2.003532	1.153956
min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692308	32.540000	-124.350000	0.149990
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429741	33.930000	-121.800000	1.196000
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818116	34.260000	-118.490000	1.797000
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3.282261	37.710000	-118.010000	2.647250
max	15.000100	52.000000	141.909091	34.066667	35682.000000	1243.333333	41.950000	-114.310000	5.000010

```
[] # DataFrame не содержащий целевой признак
    X_ALL = data.drop('Y', axis=1)
[] # Функция для восстановления датафрейма
     # на основе масштабированных данных
    def arr_to_df(arr_scaled):
         res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
return res
[] # Разделим выборку на обучающую и тестовую X_train, X_test, y_train, y_test = train_test_split(X_ALL, data['Y'],
                                                                                            test_size=0.2,
                                                                                            random_state=1)
    # Преобразуем массивы в DataFrame
    X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)
    X_train_df.shape, X_test_df.shape
    ((16512, 8), (4128, 8))
рафия построение плотности распределения
    def draw_kde(col_list, df1, df2, label1, label2):
fig, (ax1, ax2) = plt.subplots(
          ncols=2, figsize=(12, 5))
# первый график
          ax1.set title(label1)
           sns.kdeplot(data=df1[col_list], ax=ax1)
           # второй график
           ax2.set_title(label2)
           sns.kdeplot(data=df2[col_list], ax=ax2)
          plt.show()
```

▼ МіпМах-масштабирование

cs31 = MinMaxScaler()
data_cs31_scaled_temp = cs31.fit_transform(X_ALL)
data_cs31_scaled = arr_to_df(data_cs31_scaled_temp)
data_cs31_scaled.describe()

D+			** 4						V 197
_		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
	count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
	mean	0.232464	0.541951	0.032488	0.022629	0.039869	0.001914	0.328572	0.476125
	std	0.131020	0.246776	0.017539	0.014049	0.031740	0.008358	0.226988	0.199555
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.142308	0.333333	0.025482	0.019943	0.021974	0.001398	0.147715	0.253984
	50%	0.209301	0.549020	0.031071	0.021209	0.032596	0.001711	0.182784	0.583665
	75%	0.292641	0.705882	0.036907	0.022713	0.048264	0.002084	0.549416	0.631474
	max	1.000000	1.000000	1.000000	1.000000	1,000000	1.000000	1.000000	1.000000

```
[] cs32 = MinMaxScaler()
cs32.fit(X_train)
data_cs32_scaled_train_temp = cs32.transform(X_train)
data_cs32_scaled_test_temp = cs32.transform(X_test)
data_cs32_scaled_train = arr_to_df(data_cs32_scaled_train_temp)
data_cs32_scaled_test = arr_to_df(data_cs32_scaled_test_temp)
```

[] draw_kde(['MedInc', 'AveRooms', 'Population'], data, data_cs31_scaled, 'ДО масштабирования', 'после масштабирования')

odraw_kde(['MedInc', 'AveRooms', 'Population'], data_cs32_scaled_train, data_cs32_scaled_test, 'обучающая', 'тестовая')

Масштабирование данных на основе Z-оценки

```
# Обучаем StandardScaler на всей выборке и масштабируем
csl1 = StandardScaler()
data_csl1_scaled_temp = csl1.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_csl1_scaled = arr_to_df(data_csl1_scaled_temp)
data_csl1_scaled
```

₽		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
	0	2.344766	0.982143	0.628559	-0.153758	-0.974429	-0.049597	1.052548	-1.327835
	1	2.332238	-0.607019	0.327041	-0.263336	0.861439	-0.092512	1.043185	-1.322844
	2	1.782699	1.856182	1.155620	-0.049016	-0.820777	-0.025843	1.038503	-1.332827
	3	0.932968	1.856182	0.156966	-0.049833	-0.766028	-0.050329	1.038503	-1.337818
	4	-0.012881	1.856182	0.344711	-0.032906	-0.759847	-0.085616	1.038503	-1.337818
		***		***	0.00			***	***
	20635	-1.216128	-0.289187	-0.155023	0.077354	-0.512592	-0.049110	1.801647	-0.758826
	20636	-0.691593	-0.845393	0.276881	0.462365	-0.944405	0.005021	1.806329	-0.818722
	20637	-1.142593	-0.924851	-0.090318	0.049414	-0.369537	-0.071735	1.778237	-0.823713
	20638	-1.054583	-0.845393	-0.040211	0.158778	-0.604429	-0.091225	1.778237	-0.873626
	20639	-0.780129	-1.004309	-0.070443	0.138403	-0.033977	-0.043682	1.750146	-0.833696

20640 rows × 8 columns [] data_cs11_scaled.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	2.064000e+04	2.064000e+04	2.064000e+04	2.064000e+04	2.064000e+04	2.064000e+04	2.064000e+04	2.064000e+04
mean	6.609700e-17	5.508083e-18	6.609700e-17	-1.060306e-16	-1.10 <mark>16</mark> 17e-17	3.442552e-18	-1.079584e-15	-8.526513e-15
std	1.000024e+00	1.000024e+00	1.000024e+00	1.000024e+00	1.000024e+00	1.000024e+00	1.000024e+00	1.000024e+00
min	-1.774299e+00	-2.196180e+00	-1.852319e+00	-1.610768e+00	-1.256123e+00	-2.290000e-01	-1.447568e+00	-2.385992e+00
25%	-6.881186e-01	-8.453931e-01	-3.994496e-01	-1.911716e-01	-5.638089e-01	-6.171062e-02	-7.967887e-01	-1.113209e+00
50%	-1.767951e-01	2.864572e-02	-8.078489e-02	-1.010650e-01	-2.29 <mark>1</mark> 318e-01	-2.431585e-02	-6.422871e-01	5.389137e-01
75%	4.593063e-01	6.643103e-01	2.519615e-01	6.015869e-03	2.644949e-01	2.037453e-02	9.729566e-01	7.784964e-01
max	5.858286e+00	1.856182e+00	5.516324e+01	6.957171e+01	3.025033e+01	1.194191e+02	2.958068e+00	2.625280e+00

💽 draw_kde(['MedInc', 'AveRooms', 'Population'], data, data_csli_scaled, 'до масштабирования', 'после масштабирования')


```
[] # Обучаем StandardScaler на обучающей выборке

# и масштабируем обучающую и тестовую выборки

cs12 = StandardScaler()

cs12.fit(X_train)

data_cs12.scaled_train_temp = cs12.transform(X_train)

data_cs12_scaled_test_temp = cs12.transform(X_test)

# формируем DataFrame на основе массива

data_cs12_scaled_train = arr_to_df(data_cs12_scaled_train_temp)

data_cs12_scaled_test = arr_to_df(data_cs12_scaled_test_temp)
```

[] data_cs12_scaled_train.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04
mean	-1.663183e-16	5.239134e-17	1.912768e-16	2.119321e-16	2.280691e-17	1.183377e-18	3.050962e-16	-1.818528e-15
std	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00
min	-1.784934e+00	-2.193326e+00	-1.758064e+00	-1.510898e+00	-1.265666e+00	-2.022041e-01	-1.446964e+00	-2.354008e+00
25%	-6.894428e-01	-8.425832e-01	-3.830692e- 0 1	-1.840409e-01	-5.688744e-01	-5.757397e-02	-7.965259e-01	-1.113670e+00
50%	-1.753078e-01	3.142707e-02	-8.210226e-02	-1.001681e-01	-2.32 <mark>4</mark> 925e-01	-2.427528e-02	-6.421054e-01	5.401142e-01
75%	4.619818e-01	6.670709e-01	2.359401e-01	-4.655013e-05	2.649611e-01	1.542318e-02	9.722905e-01	7.792156e-01
max	5.880939e+00	1.858903e+00	5.221361e+01	6.500353e+01	3.048505e+01	1.069443e+02	2.956360e+00	2.622289e+00

data_cs12_scaled_test.describe()

>		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
cou	unt 41	28.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000
me	an	-0.014481	0.013911	-0.023175	-0.028812	0.000977	-0.010484	-0.000777	0.011417
st	d	1.021662	0.999880	0.692871	0.604269	1.038310	0.100045	0.997493	0.989980
mi	in	-1.784934	-2.113871	-1.521001	-1.428741	-1.258546	-0.207179	-1,437605	-2.378915
25	%	-0.712242	-0.842583	-0.381876	-0.186036	-0.564647	-0.056193	-0.791846	-1.058876
50	1%	-0.198860	0.031427	-0.076683	-0.101062	-0.220479	-0.021970	-0.642105	0.530152
75	%	0.451514	0.667071	0.224293	-0.000800	0.271190	0.019040	0.976970	0.784197
ma	ax	5.880939	1.858903	17.369108	18.082473	24.152526	4.165286	2.914245	2,502738

[] # распределения для обучающей и тестовой выборки немного отличаются draw_kde(['MedInc', 'AveRooms', 'Population'], data_cs12_scaled_train, data_cs12_scaled_test, 'обучающая', 'тестовая')

Масштабирование по максимальному значению

```
[] cs51 = MaxAbsScaler()
data_cs51_scaled_temp = cs51.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_cs51_scaled = arr_to_df(data_cs51_scaled_temp)
data_cs51_scaled.describe()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	0.258043	0.550759	0.038257	0.032192	0.039949	0.002470	0.849389	-0.961558
std	0.126654	0.242030	0.017435	0.013911	0.031738	0.008353	0.050917	0.016112
min	0.033326	0.019231	0.005963	0.009785	0.000084	0.000557	0.775685	-1.000000
25%	0.170892	0.346154	0.031293	0.029533	0.022056	0.001954	0.808820	-0.979493
50%	0.235652	0.557692	0.036848	0.030786	0.032678	0.002267	0.816687	-0.952875
75%	0.316215	0.711538	0.042650	0.032276	0.048344	0.002640	0.898927	-0.949015
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	-0.919260

```
[] cs52_mas = MaxAbsScaler()
cs52_mas.fit(X_train)
cs52_mas.fit(X_train)
data_cs52_scaled_train_temp = cs52_mas.transform(cs52_mean.transform(X_train))
data_cs52_scaled_test_temp = cs52_mas.transform(cs52_mean.transform(X_train))
# $\phi p \text{Mupyem} p \text{Staled_test_temp} = cs52_mas.transform(cs52_mean.transform(X_test))
# $\phi p \text{Mupyem} p \text{Staled_test_temp} = cs52_mas.transform(cs52_mean.transform(X_test))
# $\phi p \text{Mupyem} p \text{Staled_test_temp} = cs52_mas.transform(cs52_mean.transform(X_test))
# $\phi p \text{Mupyem} p \text{Mupyem} p \text{Staled_test_temp})
data_cs52_scaled_test = arr_to_df(data_cs52_scaled_test_temp)
```

/usr/local/lib/python3.9/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but MaxAbsScaler was fitted with feature names warnings.warn(

warnings.warn(
/usr/local/lib/python3.9/dist-packages/sklearn/base.py: 439: UserWarning: X does not have valid feature names, but MaxAbsScaler was fitted with feature names
warnings.warn(
warnings.warn)

🕟 draw_kde(['MedInc', 'AveRooms', 'Population'], data, data_cs5i_scaled, 'До масштабирования', 'после масштабирования')

O draw_kde(['MedInc', 'AveRooms', 'Population'], data_cs52_scaled_train, data_cs52_scaled_test, 'Обучающая', 'тестовая')

Масштабирование по медиане

```
[] cs41 = RobustScaler()
data_cs41_scaled_temp = cs41.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_cs41_scaled = arr_to_df(data_cs41_scaled_temp)
data_cs41_scaled.describe()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	2.064000e+04	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	1.540799e-01	-0.018974	0.124015	0.512533	0.276628	0.296227	0.362926	-0.284882
std	8.715378e-01	0.662398	1.535166	5.071439	1.207316	12.182767	0.565067	0.528636
min	-1.392252e+00	-1.473684	-2.719533	-7.656179	-1.239872	-2.493559	-0.455026	-1.5 <mark>4</mark> 6174
25%	-4.456270e-01	-0.578947	-0.489191	-0.456959	-0.404051	-0.455561	-0.087302	-0.873351
50%	1.018608e-16	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	5.543730e-01	0.421053	0.510809	0.543041	0.595949	0.544439	0.912698	0.126649
max	5.259674e+00	1.210526	84.806698	353.332681	36.797441	1455.116059	2.034392	1.102902

cs42 = RobustScaler()
cs42.fit(X_train)
data_cs42_scaled_train_temp = cs42.transform(X_train)
data_cs42_scaled_test_temp = cs42.transform(X_test)
\$\phi\$ op Mupyen DataFrame H\$ ochose M\$coups
data_cs42_scaled_train = arr_to_df(data_cs42_scaled_train_temp)
data_cs42_scaled_test = arr_to_df(data_cs42_scaled_test_temp)

[] draw_kde(['MedInc', 'AveRooms', 'Population'], data, data_es41_scaled, 'До масштабирования', 'после масштабирования')

[] draw_kde(['MedInc', 'AveRooms', 'Population'], data_cs42_scaled_train, data_cs42_scaled_test, 'Обучающая', 'Тестовая')

2.Обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов)

```
[] import numpy as np
import pandas as pd
       import seaborn as sns
      import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
       import scipy.stats as stats
       from sklearn.svm import SVR
      from sklearn.svm import SVK
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
       from IPython.display import Image
       %matplotlib inline
       sns.set(style="ticks")
[ ] x_col_list = ['AveRooms', 'HouseAge', 'MedInc']
housing = fetch_california_housing()
       data = pd.DataFrame(housing.data,
                                                                   columns=housing.feature_names)
       data['Y'] = housing.target
       data. shape
 C (20640, 9)
[] def diagnostic_plots(df, variable, title):
fig, ax = plt.subplots(figsize=(10,7))
# гистограмма
                  plt.subplot(2, 2, 1)
                  df[variable].hist(bins=30)
                  ## Q-Q plot
                 plt.subplot(2, 2, 2)
                 stats.probplot(df[variable], dist="norm", plot=plt)
# ящик с усами
plt.subplot(2, 2, 3)
                  sns.violinplot(x=df[variable])
                 # ящик с усами
plt.subplot(2, 2, 4)
                  sns.boxplot(x=df[variable])
                  fig. suptitle(title)
                 plt.show()
```

[] diagnostic_plots(data, 'AveRooms', 'AveRooms - original')

<ip><ip><ip><ip>3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed. plt. subplot(2, 2, 1)

AveRooms - original

diagnostic_plots(data, 'HouseAge', 'HouseAge - original')

C. (ipython-input-27-1fe78d5d2ee2):4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed. plt.subplot(2, 2, 1)

diagnostic_plots(data, 'MedInc', 'MedInc - original')

0.0 2.5 5.0 7.5 10.0 12.5 15.0 Medinc

C <ipython-input-27-1fe78d5d2ee2:4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed. plt.subplot(2, 2, 1)

[] data.head()

	MedInc	HouseAge	AveRooms	AveBedrns	Population	Ave0ccup	Latitude	Longitude	Y
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

0.0 2.5 5.0 7.5 10.0 12.5 15.0 MedInc

[] data.describe().T

	count	mean	std	min	25%	50%	75%	max
Medinc	20640.0	3.870671	1.899822	0.499900	2.563400	3.534800	4.743250	15.000100
HouseAge	20640.0	28.639486	12.585558	1.000000	18.000000	29.000000	37.000000	52.000000
AveRooms	20640.0	5.429000	2.474173	0.846154	4.440716	5.229129	6.052381	141.909091
AveBedrms	20640.0	1.096675	0.473911	0.333333	1.006079	1.048780	1.099526	34.066667
Population	20640.0	1425.476744	1132.462122	3.000000	787.000000	1166.000000	1725.000000	35682.000000
AveOccup	20640.0	3.070655	10.386050	0.692308	2.429741	2.818116	3.282261	1243.333333
Latitude	20640.0	35.631861	2.135952	32.540000	33.930000	34.260000	37.710000	41.950000
Longitude	20640.0	- <mark>11</mark> 9.5697 0 4	2.003532	-124.350000	-121.800000	-118.490000	-118.010000	-114.310000
Y	20640.0	2.068558	1.153956	0.149990	1.196000	1.797000	2.647250	5.000010

[] #Использование 3 sigma

def three_sigma(df):

way = (df.mean() - 3 * df.std() < df) &(df.mean() + 3 * df.std() > df)

index = np.arange(df.shape[0])[way]

output= df.iloc[index]

return output

for col in data.columns: data[col]=three_sigma(data[col])

[] data.describe().T

	count	mean	std	min	25%	50%	75%	max
MedInc	20295.0	3.738741	1.604919	0.499900	2.550750	3.507600	4.667050	9.556100
HouseAge	20640.0	28.639486	12.585558	1.000000	18.000000	29.000000	37.000000	52.000000
AveRooms	20507.0	5.301245	1.285753	0.846154	4.435479	5.219810	6.029049	12.808511
AveBedrms	20495.0	1.069311	0.137882	0.333333	1.005747	1.048128	1.098000	2.514610
Population	20298.0	1333.286974	814.376106	3.000000	781.000000	1154.000000	1687.000000	4819.000000
AveOccup	20632.0	2.935397	0.904044	0,692308	2.429301	2.817800	3.281506	33.952941
Latitude	20640.0	35.631861	2.135952	32.540000	33.930000	34.260000	37.710000	41.950000
Longitude	20640.0	-119.569704	2.003532	-124.350000	-121,800000	-118.490000	-118.010000	-114.310000
Y	20640.0	2.068558	1.153956	0.149990	1.196000	1.797000	2.647250	5.000010

Использование межквартильного размаха

return lower_boundary, upper_boundary

```
[] # Тип вычисления верхней и нижней границы выбросов from emum import Enum class OutlierBoundaryType(Enum):
    SIGMA = 1
    QUANTILE = 2
    IRQ = 3

# Функция вычисления верхней и нижней границы выбросов def get_outlier_boundary_type == OutlierBoundaryType. SIGMA:
    K1 = 3
    lower_boundary_type == OutlierBoundaryType.SIGMA:
    K1 = 3
    lower_boundary = df[col].mean() - (K1 * df[col].std())
    upper_boundary = df[col].mean() + (K1 * df[col].std())

elif outlier_boundary_type == OutlierBoundaryType.QUANTILE:
    lower_boundary = df[col].quantile(0.05)
    upper_boundary = df[col].quantile(0.95)

elif outlier_boundary_type == OutlierBoundaryType.IRQ:
    K2 = 1.5
    IQR = df[col].quantile(0.75) - df[col].quantile(0.25)
    lower_boundary = df[col].quantile(0.25) - (K2 * IQR)
    upper_boundary = df[col].quantile(0.75) + (K2 * IQR)

else:
    raise NameError('Unknown Outlier Boundary Type')
```

Удаление выбросов

[] data.shape

(20640, 9)

□ Поле-AveRooms, метод-OutlierBoundaryType.SIGMA, строк-20507

Поле-AveRooms, метод-OutlierBoundaryType.QUANTILE, строк-18576

Замена выбросов

Поле-AveRooms, метод-OutlierBoundaryType.SIGMA

Поле-AveRooms, метод-OutlierBoundaryType.QUANTILE


```
[] import mampy as mp
import pandas as pd
import seaborn as sns
import datetime
import tydd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score,
from sklearn.model_selection import cross_val_score,
from sklearn.model_selection
from sklearn.model_select
[ ] data = pd.read_csv('Movies.csv', sep=',')
[] data.shape
 [] data.head()
                                                                   Title Release Date Year Description
                                                                                                                                                                                                                                              URL Rating Runtine
                                                                                                                                                                                                                                                                                                                                                                                                                                       Directors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Series Order
              0 0 101 Dalmatians 18-11-1996 1996 NaN https://www.imdb.com/title/tt0115433/ 5.7 103.0 Adventure, Comedy, Crime, Family 98439.0
                                                                                                                                                                                                                                                                                                                                                                                                                               Stephen Herek 101 Dalmatians 1

        1
        1
        102 Dalmatians
        22-11-2000
        2000
        NaN
        https://www.imdb.com/title/tt0211181/
        4.9
        100.0
        Adventure, Comedy, Family
        33823.0

        2
        2
        12 Rounds
        19-03-2009
        2009
        NaN
        https://www.imdb.com/title/tt1160368/
        5.6
        108.0
        Action, Crime, Thriller
        26828.0

                                                                                                                                                                                                                                                                                                                                                                                                                                         Kevin Lima 101 Dalmatians
                                                                                                                                                                                                                                                                                                                                                                                                                                      Renny Harlin 12 Rounds 1
              3 3 12 Rounds 2: Reloaded 04-06-2013 2013 NaN https://www.imdb.com/title/tt2317524/ 5.3 95.0 Action, Adventure, Thriller 5141.0 Roel Reinė 12 Rounds 2: 4 21 Jump Street 12-03-2012 2012 NaN https://www.imdb.com/title/tt1232829/ 7.2 109.0 Action, Comedy, Crime 498876.0 Christopher Miller, Phil Lord 21 Jump Street 1
         [] # Целевой признак
                        data['Order'].value_counts()
                                                364
                                                262
                          3
                                                113
                          4
                                                  52
                                                  24
                          6
                                                  14
                          9
                            10
                            12
13
                          Name: Order, dtype: int64
         [] # Закодируем целевой признак
                          target_le = LabelEncoder()
                           data['order_le'] = target_le.fit_transform(data['Order'])
                          data['order_le'].unique(), target_le.inverse_transform(data['order_le'].unique())
                          (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]))
```

data. dtypes

```
C. index
                      int64
    Title
                     object
    Release Date
                     object
                      int64
    Year
    Description
                    float64
    URL
                     object
    Rating
                    float64
    Runtime
                    float64
    Genres
                     object
    Votes
                    float64
    Directors
                     object
    Series
                     object
    order_le
dtype: object
                      int64
```

Выделение признаков из URL-адреса

```
[] п проверка наличия подотроки в URL
                   nbstr_in_url(substr).
lsubstr = substr.lover()
return dsta.apply(laabda x: 1 if lsubstr in x['URL'].lover() else 0, axis=1)
[] data['sz_get'] = substr_im_url('GET')
data['sz_gbp'] = substr_im_url('RET')
data['sz_gbp'] = substr_im_url('RET')
data['sz_gbr'] = substr_im_url('RET')
url('stature') = ('sz_get', 'sz_gbp', 'sz_gbr', 'sz_woft')
url_('stature') = ('sz_get', 'sz_gbp', 'sz_gbr', 'sz_woft')
```

ir	dex	Title	Release Date	Year	Description	URL	Rating	Runtine	Genres	Votes	Directors	Series	Order	order_le	is_get	is_php	is_js	is_woff
0	0	101 Dalmatians	18-11-1996	1996	NaN https://www.imdb.com/title/tt011	15433/	5.7	103.0	Adventure, Comedy, Crime, Family	98439.0	Stephen Herek	101 Dalmatians	1	0	0	0	0	0
1	1	102 Dalmatians	22-11-2000	2000	NaN https://www.imdb.com/title/tt021	11181/	4.9	100.0	Adventure, Comedy, Family	33823.0	Kevin Lima	101 Dalmatians	2	1	0	0	0	0
2	2	12 Rounds	19-03-2009	2009	NaN https://www.imdb.com/title/tt116	60368/	5.6	108.0	Action, Crime, Thriller	26828.0	Renny Harlin	12 Rounds	1	0	0	0	0	0
3	3	12 Rounds 2: Reloaded	04-06-2013	2013	NaN https://www.imdb.com/title/tt231	17524/	5.3	95.0	Action, Adventure, Thriller	5141.0	Roel Reiné	12 Rounds	2	1	0	0	0	0
4	4	21 Jump Street	12-03-2012	2012	NaN https://www.imdb.com/title/tt123	32829/	7.2	109.0	Action, Comedy, Crime	498876.0	Christopher Miller, Phil Lord	21 Jump Street	1	0	0	0	0	0

Обработка даты

data['Release Date']=pd.to_datetime(data['Release Date'])

Comprise Date 19-04-05-0713000a.1: UserSamming Parzing '15-11-1998' in DO/MOVITY format. Provide format or specify infer_datetime_format=True for consistent parzing. A comprehensive of the Consistent parzing of the Consistent

ение стандартных признаков даты и времени

[] g Ro N h
dstaf('sy'] = dstaf' Release Date'].dt. day
g N eo o all
dstaf('south') = dstaf' Release Date'].dt. south
g P o g
dstaf('year') = dstaf' Release Date'].dt. year

[] data.head()

in	dex	Title	Release Date	Year	Description	URL	Rating	Runtine	Genres	Votes		Series	Order	order_le	is_get	is_php	is_js	is_woff	day	nonth	year
0	0	101 Dalmatlans	1996-11-18	1996	NaN	https://www.imdb.com/title/tt0115433/	5.7	103.0	Adventure, Comedy, Crime, Family	98439.0		101 Dalmatians	- 1	0	0	0	0	0	18	11	1996
1	1	102 Dalmatians	2000-11-22	2000	NaN	https://www.imdb.com/title/tt0211181/	4.9	100.0	Adventure, Comedy, Family	33823.0	-	101 Dalmatians	2	1	0	0	0	0	22	11	2000
2	2	12 Rounds	2009-03-19	2009	NaN	https://www.imdb.com/title/tt1160368/	5.6	108.0	Action, Crime, Thriller	26828.0		12 Rounds	1	0	0	0	0	0	19	3	3 2009
3	3 12	Rounds 2: Reloaded	2013-04-06	2013	NaN	https://www.imdb.com/title/tt2317524/	5.3	95.0	Action, Adventure, Thriller	5141.0	-	12 Rounds	2	1	0	0	0	0	6	4	1 2013
4	4	21 Jump Street	2012-12-03	2012	NaN	https://www.imdb.com/title/tt1232829/	7.2	109.0	Action, Comedy, Crime	498876.0	_	21 Jump Street	1	0	0	0	0	0	3	12	2 2012
5 rows	× 21 col	umns																			

Создащим масштабируемые признаки для дальнейших экспериментов difeatures = ['pwa', 'dwy', 'nonth'] difeatures. could = [] for f in difeatures = for f in difeatures

['year_scaled', 'day_scaled', 'month_scaled']

[] data.head()

i	ndex	Title	Release Date	Year	Description	URL	Rating	Runtine	Genres	Votes		is_get i	s_php	is_js	is_woff	day	nonth	year	year_scaled	day_scaled	nonth_scale
0	0	101 Dalmatians	1996-11-18	1996	NaN	https://www.imdb.com/title/tt0115433/	5.7	103.0	Adventure, Comedy, Crime, Family	98439.0	-	0	0	0	0	18	11	1996	0.6750	0.566667	0.909091
1	1	102 Dalmatians	2000-11-22	2000	NaN	https://www.imdb.com/title/tt0211181/	4.9	100.0	Adventure, Comedy, Family	33823.0	1	0	0	0	0	22	11	2000	0.7250	0.700000	0.909091
2	2	12 Rounds	2009-03-19	2009	NaN	https://www.imdb.com/title/tt1160368/	5.6	108.0	Action, Crime, Thriller	26828.0	-	0	0	0	0	19	3	2009	0.8375	0.600000	0.181818
3	3	12 Rounds 2: Reloaded	2013-04-06	2013	NaN	https://www.imdb.com/title/tt2317524/	5.3	95.0	Action, Adventure, Thriller	5141.0	1	0	0	0	0	6	4	2013	0.8875	0.166667	0.272727
4	4	21 Jump Street	2012-12-03	2012	NaN	https://www.imdb.com/title/tt1232829/	7.2	109.0	Action Comedy Crime	498876.0	_	0	0	0	0	3	12	2012	0.8750	0.066667	1.000000

1) один метод из группы методов фильтрации (filter methods)

```
[] import numpy as np import pandas as pd
      import seaborn as sns import matplotlib.pyplot as plt
      from sklearn.datasets import load_iris
      from sklearn.datasets import fetch_california_housing
      import scipy.stats as stats from sklearn.svm import SVR
       from sklearn.svm import LinearSVC
      from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import Lasso
       from sklearn.linear_model import LogisticRegression
      from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier
      from sklearn.ensemble import RandomForestClassifier
       from sklearn.ensemble import GradientBoostingClassifier
      {\tt from \  \  sklearn.tree \  \  import \  \  Decision Tree Regressor}
      from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
      from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split
      from sklearn.feature_selection import VarianceThreshold
      from sklearn.feature_selection import mutual_info_classif, mutual_info_regression from sklearn.feature_selection import SelectKBest, SelectPercentile
      from IPython.display import Image
      %matplotlib inline
      sns.set(style="ticks")
[] iris = load_iris()
      iris = load_iris()
iris_X = iris.data
iris_y = iris.target
iris_feature_names = iris['feature_names']
iris_x_df = pd.DataFrame(data=iris['data'], columns=iris['feature_names'])
[ ] housing = fetch_california_housing()
      housing = fetch_california_housing()
housing_X = housing_data
housing_y = housing_target
housing_feature_names = housing['feature_names']
housing_x_df = pd_DataFrame(data=housing['data'], columns=housing['feature_names'])
```

Методы, основанные на корреляции

```
[ ] housing = fetch_california_housing()
      data = pd.DataFrame(housing.data,
                                                            columns=housing.feature_names)
      data['Y'] = housing.target
      data. shape
      (20640, 9)
sns.heatmap(data.corr(), annot=True, fmt='.3f')
C→ <Axes: >
                                                                     -1.00
          Medinc -1.000-0.1190.327-0.0620.005.0.019-0.0800.015<mark>0.688</mark>
        HouseAge -0.1191.000 0.1530.0780.2960.013 0.011-0.1080.10
        AveRooms
                    327-0,1531.000 0.848-0.072-0.005 0.106-0.028 0.152
       AveBedrms -
                   0.062-0.078<mark>0.848 1.000-</mark>0.066-0.006 0.070 0.013-0.047
                                                                     - 0.25
                    005-0.2960.0720.066<mark>1.000</mark>0.070-0.1090.100-0.02
       Population -
                                                                     - 0.00
        AveOccup -
                    019 0 013 0 0050 0060 070 1 000 0 002 0 002 0 02
                                                                     --0.25
         Latitude -0.080 0.011 0.106 0.070 -0.109 0.002 1.000 -0.925 0.14
                                                                     -0.50
        Longitude -0.0150.108-0.0280.013 0.100 0.002-0.925 1.000
```

[] make_corr_df(data)

```
        f1
        f2
        corr

        0
        Longitude
        Latitude
        0.924664

        1
        Latitude
        Longitude
        0.924664

        2
        AveRooms
        AveBedrms
        0.847621

        3
        AveBedrms
        AveRooms
        0.847621
```

```
[] # Обнаружение групп коррелирующих признаков
              def corr_groups(cr):
                                    grouped_feature_list = []
                                    correlated_groups = []
                                    for feature in cr['f1'].unique():
                                                          if feature not in grouped_feature_list:
                                                                               # находим коррелирующие признаки
                                                                                correlated_block = cr[cr['f1'] == feature]
                                                                                cur_dups = list(correlated_block['f2'].unique()) + [feature]
                                                                                grouped_feature_list = grouped_feature_list + cur_dups
                                                                                correlated_groups.append(cur_dups)
                                     return correlated_groups
 [] # Группы коррелирующих признаков
               corr_groups(make_corr_df(data))
               [['Latitude', 'Longitude'], ['AveBedrms', 'AveRooms']]
2)Один метод из группы методов обертывания (wrapper methods)
[] !pip install mlxtend
         import joblib
                         sys
         sys.modules['sklearn.externals.joblib'] = joblib
         from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS kmn = KNeighborsClassifier(n_neighbors=3)
        Looking in indexes: https://pvpi.org/simple. https://us-pvthom.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: mlxtend in /usr/local/lib/python3.9/dist-packages (0.14.0)
Requirement already satisfied: matched in /usr/local/lib/python3.9/dist-packages (from mlxtend) (1.4.4)
Requirement already satisfied: matched in /usr/local/lib/python3.9/dist-packages (from mlxtend) (3.5.3)
Requirement already satisfied: scikit-learn>-0.18 in /usr/local/lib/python3.9/dist-packages (from mlxtend) (1.2.2)
Requirement already satisfied: scity>-0.17 in /usr/local/lib/python3.9/dist-packages (from mlxtend) (57.4.0)
Requirement already satisfied: scipy>-0.17 in /usr/local/lib/python3.9/dist-packages (from mlxtend) (1.0.1)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.9/dist-packages (from mlxtend) (1.22.4)
Requirement already satisfied: cycler>-0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (4.39.0)
Requirement already satisfied: python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (2.8.2)
Requirement already satisfied: python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (2.8.2)
Requirement already satisfied: python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (2.8.2)
Requirement already satisfied: python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (3.0.9)
Requirement already satisfied: python3.9/dist-packages (from matplotlib>=1.5.1->mlxtend) (3.1.0)
Requiremen
 fs1 = EFS(knn,
                                                min_features=2,
                                                max_features=4,
                                                scoring='accuracy',
                                                print_progress=True,
         efs1 = efs1.fit(iris_X, iris_y, custom_feature_names=iris_feature_names)
         print('Best accuracy score: %.2f' % efs1.best_score_)
print('Best subset (indices):', efs1.best_idx_)
print('Best subset (corresponding names):', efs1.best_feature_names_)
 E Features: 11/11Best accuracy score: 0.97
Best subset (indices): (0, 2, 3)
Best subset (corresponding names): ('sepal length (cm)', 'petal length (cm)', 'petal width (cm)')
```

3)Один метод из группы методов вложений (embedded methods).

Использование линейных моделей

Линейная регрессия

```
[] # Используем L1-регуляризацию
e_ls! = Lasso(random_state=1)
e_ls!.fit(housing_X, housing_y)
# Коэфициенты регресоии
list(zip(housing_feature_names, e_ls!.coef_))

[('MedInc', 0.1454692320524941),
('HouseAge', 0.005814968844496919),
('AveRoome', 0.0),
('AveRoome', 0.0),
('Population', -6.372926073320524e-06),
('AveOccup', -0.0),
('Latitude', -0.0)]

sel_e_ls! = SelectFromModel(e_ls!)
sel_e_ls!.fit(housing_X, housing_y)
list(zip(housing_feature_names, sel_e_ls!.get_support()))

[('MedInc', True),
('AveRoome', False),
('AveRoome', False),
('AveRoome', False),
('AveRoome', False),
('AveRoome', False),
('AveOccup', False),
('AveOccup', False),
('Latitude', False),
('Latitude', False),
('Latitude', False),
('Longitude', False),
('Longitude', False),
('Longitude', False),
('Longitude', False),
('Longitude', False)]
```

Использование моделей на основе решающего дерева

Задача регрессии

```
from operator import itemgetter
   def draw_feature_importances(tree_model, X_dataset, title, figsize=(7,4)):
          Вывод важности признаков в виде графика
         # Сортировка значений важности признаков по убыванию
          list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importances_))
          sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)
          # Названия признаков
         labels = [x for x,_ in sorted_list]
         # Важности признаков
          data = [x for _,x in sorted_list]
          # Вывод графика
         fig, ax = plt.subplots(figsize=figsize)
          ax.set_title(title)
          ind = np.arange(len(labels))
         plt.bar(ind, data)
         plt.xticks(ind, labels, rotation='vertical')
          # Вывод значений
         for a,b in zip(ind, data):
               plt.text(a-0.1, b+0.005, str(round(b,3)))
         plt.show()
         return labels, data
[ ] dtr1 = DecisionTreeRegressor()
   rfr1 = RandomForestRegressor()
   gbr1 = GradientBoostingRegressor()
   dtrl.fit(housing_X, housing_y)
rfrl.fit(housing_X, housing_y)
   gbr1.fit(housing_X, housing_y)
   # Важность признаков
   dtr1.feature_importances_, sum(dtr1.feature_importances_)
    (array([0.52497546, 0.05076972, 0.05358679, 0.02674551, 0.03229779,
```

0.13148761, 0.09481681, 0.0853203]), 0.99999999999999999

[] _,_=draw_feature_importances(dtr1, housing_x_df, 'Решающее дерево', figsize=(10,4))

list(zip(housing_feature_names, SelectFromModel(dtr1).fit(housing_X, housing_y).get_support()))

```
[('MedInc', True),
('HouseAge', False),
('AveRooms', False),
('AveBedrms', False),
('Population', False),
('AveOccup', True),
('Latitude', False),
('Longitude', False)]
```

[] _,_=draw_feature_importances(gbr1, housing_x_df, 'Градиентный бустинг', figsize=(10,4))


```
[] list(zip(housing_feature_names, SelectFromModel(gbr1).fit(housing_X, housing_y).get_support()))
        [('MedInc', True),
('HouseAge', False),
('AveRooms', False),
('AveBedrns', False),
('Population', False),
('AveOccup', True),
('Latitude', False),
('Longitude', False)]
 [] list(zip(housing_feature_names, SelectFromModel(gbr1, threshold='0.25*mean').fit(housing_X, housing_y).get_support()))
        [('MedInc', True),
('HouseAge', True),
('AveRooms', False),
('AveBedtms', False),
('Population', False),
('AveOccup', True),
('Latitude', True),
('Longitude', True)]
 🚺 _,_=draw_feature_importances(rfr1, housing_x_df, 'Случайный лес', figsize=(10,4))
  C+
                                                             Случайный лес
          0.5
          0.4
           0.3
           0.2
          0.1
[ ] list(zip(housing_feature_names, SelectFromModel(rfr1).fit(housing_X, housing_y).get_support()))
         [('MedInc', True),
('HouseAge', False),
('AveRooms', False),
('AveBedrms', False),
('Population', False),
           ('AveOccup', True),
('Latitude', False),
('Longitude', False)]
1ist(zip(housing_feature_names, SelectFromModel(rfr1, threshold='0.1*mean').fit(housing_X, housing_y).get_support()))
[('MedInc', True),
('HouseAge', True),
('AveRooms', True),
          ('AveBodms', True),
('AveBodrms', True),
('Population', True),
('AveOccup', True),
('Latitude', True),
('Longitude', True)]
```