Digital Image Processing Using MATLAB

Malay S. Bhatt
Department of Computer Engineering
Faculty of Technology
Dharmsinh Desai University
Nadiad

Image Zooming (1) (Bi-linear Interpolation)

У

1,2	1.33,2	1.66,2	2,2
1,1,66	1.33,1.66	1.66,1.66	2,1.66
1,1.33	1.33,1.33	1.66,1.33	2,1.33
1,1	1.33,1	1.66,1	2,1

X

Image Zooming (2) (Bi-linear Interpolation)

$$f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})$$
 where $R_1 = (x, y_1)$,

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$
 where $R_2 = (x, y_2)$.

$$f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2).$$

$$f(x,y) \approx \frac{f(Q_{11})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y_2-y) + \frac{f(Q_{21})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y_2-y)$$

$$+\frac{f(Q_{12})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y-y_1)+\frac{f(Q_{22})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y-y_1).$$

Image Zooming (3) (Bi-linear Interpolation)

$$f(1.33,1) = 0.67 + 0.66$$
$$= 1.33$$

$$f(1.66,1) = 0.34 + 1.32$$

$$= 1.66$$

$$f(1.33,2) = 0.67 * 3 + 0.33 * 4$$
$$= 3.33$$

$$f(1.66,2) = 0.34 * 3 + 0.66 * 4$$
$$= 3..66$$

Image Zooming (4) (Bi-linear Interpolation)

$$f(1,1.33) = 0.67 + 0.99$$
$$= 1.66$$

$$f(1,1.66) = 0.34 + 1.99$$

$$= 2.33$$

$$f(2,1.33) = 0.67 * 2 + 0.33 * 4$$
$$= 2.66$$

$$f(2,1.66) = 0.34 * 2 + 0.66 * 4$$

= 3..33

Image Zooming (5) (Bi-linear Interpolation)

$$f(1,1.33) = 1.11 + 0.88$$
$$= 1.99$$

$$f(2,1.66) = 0.34 * 2.33 + 0.66 * 3.33$$
$$= 0.79 + 2.19$$
$$= 2.99$$

Image Zooming (6) (Bi-linear Interpolation)

3	4
1	2

3	3.33	366	4
2.33	2.67	2.99	3.33
1.66	1.99	2.33	2.66
1	1.33	1.66	2

Image Zooming (7) (Bi-linear Interpolation)

```
a=imread('c:\house2.bmp');
a=double(a);
x=linspace(1,64,64);
y=linspace(1,64,64);
xi=linspace(1,64,128);
yi=linspace(1,64,128);
[xx, yy]=meshgrid(xi,yi);
zz=interp2(x,y,a,xx,yy,'bilinear');
imshow(mat2gray(zz));
```

Iso-preference Curve

a b c

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Iso-preference Curve

FIGURE 2.23

Representative isopreference curves for the three types of images in Fig. 2.22.

4-neighbors of pixel

- •4-neighbors of pixel is denoted by $N_4(p)$
- It is set of horizontal and vertical neighbors

Diagonal neighbors of pixel

- Diagonal neighbors of pixel is denoted by $N_D(p)$
- It is set of diagonal neighbors

8-neighbors of pixel

- •8-neighbors of pixel is denoted by $N_8(p)$
- 4-neighbors and Diagonal neighbors of pixel

Connectivity

- Establishing boundaries of objects and components of regions in an image.
- Group the same region by assumption that the pixels being the same color or equal intensity will are the same region

Connectivity

- Let C is the set of colors used to define
- There are three type of connectivity:
 - 4-Connectivity: 2 pixels (p and q) with value in C are 4-connectivity if q is in the set N₄(p)
 - 8-Connectivity: 2 pixels (p and q) with value in C are 8-connectivity if q is in the set N₈(p)
 - M-Connectivity: 2 pixels (p and q) with value in C are 8-connectivity if
 - (i) Q is in $N_4(p)$, or
 - (ii) Q is in $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ is empty

Binary Image Represent

Example 4-Connectivity

Set of color consists of color 1; C = {1}

Example 8-Connectivity

Set of color consists of color 1; C = {1}

Example M-Connectivity

Set of color consists of color 1; C = {1}

4- Path, 8- Path and m-path

- Path: 4, 8, and m-paths
 - A sequence of distinct pixels from pixel p to q.

Connectivity

- Connectivity
 - Let S represent a subset of pixels in an image.
 Two pixels p and q are said to be connected in S if there exists a path between them entirely of pixels in S
 - There are 4, 8 and m-connectivity
 - Connect set: only has one connected component.

Labeling of connected Components

- Scan an image pixel by pixel from left to right and top to bottom
- Equivalent labeling

Step: 4-connected components

- P is pixel scanned process
- If pixel p is color value 0 move on the next scaning
- If pixel p is color value 1 examine pixel top and left
 - If top and left were 0, assign a new label to p
 - If only one of them're 1, assign its label to p
 - If both of them're 1 and have
 - the same number, assign their label to p
 - Different number, assign label of top to p and make note that two label is equivalent
- Sort all pairs of equivalent labels and assign each equivalent to be same type

Example 4-connected components

Step: 8-connected components

- Steps are same as 4-connected components
- But the pixel that are consider is 4 previous pixels (top-left, top, top-right, and left)

Example 8-connected components

Region and Boundary

- Region
 - Region is a connected set.

Region and Boundary

- Boundary
 - The set of pixels in the region which has one or more neighbors that are not in the region.

0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	1	0	0	1	0
0	1	1	0	0	1	0
0	0	0	0	0	0	0

Distance Measure

- For pixels p, q, and z, with coordinates (x,y), (s,t) and (u,v) respectively, D is a distance function or metric if
 - (a) $D(p,q) \ge 0$ and
 - (b) D(p,q) = 0 iff p = q and
 - (c) D(p,q) = D(q,p) and
 - (d) $D(p,z) \leq D(p,q) + D(q,z)$

The D₄ Distance

- Also called city-block distance
- Calculate between p and q is defined as

$$D_4(p,q) = |p_x - q_x| + |p_y - q_y|$$

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	

The D₈ Distance

- Also called city-block distance
- Calculate between p and q is defined as $D_8(p,q) = max(|p_x-q_x|,|p_y-q_y|)$

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2_	2	2_	2

