Delay Test

- Introduction and delay fault models
- Path Delay Fault
 - Path Sensitization
 - * Nonrobust
 - * Robust
 - * Hazard-free
 - Fault Simulation
 - Test Generation
- Transition Delay Fault
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

Path / Path Delay Fault

- What is a path?
 - A serial connection of combinational gates
 - Begins from a primary input or FF/latch
 - * Ends at a primary output or FF/latch
- Two path delay faults for each path
 - Rising (notation ↑)
 - Falling (notation ↓)
- Example: BEGJK is a path
 - 2 PDF: ↓BEGJK, ↑ BEGJK

Testable Path

- A path is testable if a transition can propagate from input to output along the path under certain sensitization criteria (condition)
 - tesetable path is also called a true path
- If such a test pattern does not exist, the path is untestable
 - Also known as (aka.) false path

- Note: there are many different sensitization criteria
 - untestable under criterion A may be testable under criterion B

Static Sensitization Criterion

- For a given target path
 - On-path signals: on target path (aka. on-input to the gate)
 - Off-path signals: not on target path but feed gates on target path (aka. side-input, off-input to the gate)
- A path is statically sensitized if
 - All off-path signals assume non-controlling values
 - Any signal change on a statically sensitized path is observed
- Example: target path BEGJK is statically sensitized
 - BEGJK: on-path signals
 - C, H: off-path signals. They are non-controlling

NOTE: static sensitization is for one single test pattern only

Delay Test

- Introduction and delay fault models
- Path Delay Fault
 - Path Sensitization
 - * Nonrobust
 - * Robust
 - * Hazard-free
 - Fault Simulation
 - Test Generation
- Transition Delay Fault
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

9-valued Logic

- 9-valued logic for two-pattern test
 - R: rising 0→1
 - F: falling 1→0
 - U0: X→0
 - U1: X→1
 - S0: static zero , 0→0
 - S1: static one, 1→1
 - 0*: static 0-hazard, $0 \rightarrow 1 \rightarrow 0$
 - 1*: static 1-hazard, 1→0→1
 - XX: unknown for both patterns X→X

- NOTE: there are many different logic systems
 - More logic values, handles timing more accurately
 - But more difficult for ATPG

How to Sensitize Path by 2 Patterns?

- PDF requires 2-pattern test
- How to sensitize target path in 2-pattern test?
 - Simple idea: all off-input hold non-controlling (NC) in 2nd pattern
- Example: PDF ↓ BEGJK
 - C is U0; H is U0

- Q: K may not have transition?
 - ANS: a non-robust test may NOT cause gate output transition
 - When A=0X, K =rising. This is called a strong non-robust test.
 - When A=1X, K =static-1 hazard. This is called a weak non-robust test. (not in exam)

Non-Robust Sensitization Criterion

- Non-robust sensitization Criterion: all off-inputs are x→nc
- Example: target path in blue

Gray area represents delay fault effect

NR Sensitization: off-input is NC in 2nd pat.

Why Non-Robust?

- Non-robust path delay test CANNOT guarantee to detect target PDF
 - test effectiveness depends on other path delay
 - Test escape when multiple PDF exist simultaneously
- Example: if off-input also has delay fault, NR test is invalidated

Example 2: ↓ BEQHK can invalidate NR test for ↓BEGJK

Delay Test

- Introduction and delay fault models
- Path Delay Fault
 - Path Sensitization
 - * Nonrobust
 - * Robust
 - * Hazard-free
 - Fault Simulation
 - Test Generation
- Transition Delay Fault
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

Need more stringent sensitization criterion than NR!

Robust Sensitization Criterion

- Idea
 - Output cannot change before the on-input change
- Robust Sensitization Criterion: (NC=non-controlling, C = controlling)
 - (1) when on-input is C→NC, off-inputs X→NC (same before)

• (2) when on-input is $NC \rightarrow C$, off-inputs MUST remain $NC \rightarrow NC$

Robust: on-input NC→C, off-input keep NC

Why Robust?

- A robust path delay test guarantees to detect target PDF,
 - regardless of other path delay
 - Because output cannot change before on-input change
- Example: even if both inputs have delay faults, still a valid test

- Example 2: PDF ↓BEQHK now can't invalidate robust test for ↓BEGJK
 - A is now S0, instead of XX

Robust test has better quality than NR test

Robust Test Still not Perfect ...

- Hazard can still invalidate a robust test
- Example: robust test for PDF ↓BEGJK
 - But target PDF not detected due to hazard

Delay Test

- Introduction and delay fault models
- Path Delay Fault
 - Path Sensitization
 - * Nonrobust
 - * Robust
 - * Hazard-free
 - Fault Simulation
 - Test Generation
- Transition Delay Fault
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

Need more stringent sensitization criterion than robust!

Hazard-free Sensitization Criterion

- Criterion: off-inputs are stable non-controlling NC→NC
 - Regardless on-input values
- Example: target path is blue

HF test requires off-inputs are stable NC

Hazard-free Path Delay Test

- A hazard-free path delay test guarantees to detect target PDF
 - regardless of other PDF and hazard
- Example:

- Example: hazard-free path delay test for PDF ↓BEGJK
 - C is now S0, instead of U0

Hazard-free Test is Good, but...

- Only a small number of PDF have hazard-free test
- Example: no hazard-free test for PDF ↓ BEQHK

HF tests are good but very few

Summary (PDF ↓ BEGJK)

Non-Robust

Robust

Hazard-free

3 Types Path Delay Tests

- A PDF is hazard-free testable if a test exists such that
 - all gates on that path are hazard-free sensitized
 - If no such test, it is hazard-free untestable
- A PDF is robustly testable if a test exists such that
 - all gates on that path are robustly (including hazard-free) sensitized
 - If no such test, it is robustly untestable
- A PDF is non-robustly testable if a test exists such that
 - at least one gates on the path is non-robustly sensitized
 - the other gates on the path are robustly/hazard-free sensitized
 - If no such test, it is non-robustly untestable

Summary

loose

Туре	On-input	Off-input	good	bad∜
Non- robust	C→ NC NC→ C	X→ NC	Easy to find	Invalidate by other PDF
Robust	C→ NC NC→ C	X→ NC NC→ NC	Effective even other PDF	Invalidated by hazard Few
Hazard- free	C→ NC NC→ C	NC→ NC NC→ NC	Effective	Very few

stringent

FFT

• Q1: How many PDF in this circuit?

Q2: Please show if ↑BEQHK is non-robust, robust or HF testable

PDF	Non-robustly Testable?	Robustly testable?	Hazard-free testable
↓BEGJK	Υ	Υ	Υ
↑BEQHK			

FFT2

• Q: How can we detect fault if output K is S1?

