Глава 13

Свойства на нормалните извадки, χ^2 и t разпределения

Ще разгледаме някои важни гранични резултати, свързани с извадки, направени от нормални съвкупности, т.е. предполагаме, че неизвестния признак, върху който правим наблюденията има нормално разпределение.

Теорема 13.1 Нека $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2), \ \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \ u \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

a) \bar{X} u s^2 са независими сл.в., b) $\bar{X}\sim N(\mu,\frac{\sigma^2}{n}),$

$$\vec{b}$$
) $\bar{X} \sim N(\mu, \frac{\sigma^2}{n}),$

c)
$$(n-1)\frac{s^2}{\sigma^2} \sim \chi^2(n-1)$$
.

Доказателство: а) Б.О.О. ще смятаме, че $\mu=0$ и $\sigma^2=1$. Тогава

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left((X_{1} - \bar{X})^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left(\sum_{i=1}^{n} X_{i} - \sum_{i=2}^{n} X_{i} - n\bar{X} + (n-1)\bar{X} \right)^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left(\sum_{i=1}^{n} (X_{i} - \bar{X}) - \sum_{i=2}^{n} (X_{i} - \bar{X}) \right)^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left(0 - \sum_{i=2}^{n} (X_{i} - \bar{X}) \right)^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left(\sum_{i=2}^{n} (X_{i} - \bar{X}) \right)^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right),$$

което показва, че s^2 е функция само на $(X_2 - \bar{X}, X_3 - \bar{X}, \dots, X_n - \bar{X})$.

Съвместната плътност на X_1, X_2, \dots, X_n е $f(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{n} x_i^2}, \quad x_i \in$ $(-\infty,\infty)$. Ще направим следната трансформация:

$$y_1 = \bar{x},$$

$$y_2 = x_2 - \bar{x},$$

$$\dots$$

$$y_n = x_n - \bar{x}.$$

Тогава обратната трансформация е:

$$x_1 = y_1 - \sum_{i=2}^{n} y_i,$$

 $x_2 = y_2 + y_1,$
...

 $x_n = y_n - y_1.$

Якобианът $|J| = \frac{1}{n}$ и съответно съвместната плътност на новите променливи има вида:

$$f(y_1, y_2, \dots, y_n) = \frac{n}{(2\pi)^{\frac{n}{2}}} e^{-\left[\frac{1}{2}\left(y_1 - \sum_{i=2}^n y_i\right)^2 + \sum_{i=2}^n (y_i + y_1)^2\right]}$$
$$= \left[\left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-\frac{ny_1^2}{2}}\right] \left[\frac{n^{\frac{1}{2}}}{(2\pi)^{\frac{n-1}{2}}} e^{-\frac{1}{2}\left[\sum_{i=2}^n y_i^2 + \left(\sum_{i=2}^n y_i\right)^2\right]}\right].$$

Понеже съвместната плътност се разлага на произведение на две плътности, това показва, че Y_1 е независимо от Y_2, \ldots, Y_n , следователно и \bar{X} е независимо от s^2 .

b) Ще използваме пораждаща моментите функция. За нормалното разпределение знаем, че тя има вида: $M_{X_i}(t)=\exp\left(\mu t+\frac{\sigma^2t^2}{2}\right)$. Тогава за п.м.ф. на \bar{X} имаме:

$$M_{\bar{X}}(t) = \mathbf{E}e^{t\bar{X}} = \mathbf{E}e^{t\frac{X_1 + \dots + X_n}{n}} = \mathbf{E}e^{\frac{t}{n}Y} = M_Y\left(\frac{t}{n}\right) = \left[M_{X_i}\left(\frac{t}{n}\right)\right]^n$$
$$= \left[\exp\left(\mu\frac{t}{n} + \frac{\sigma^2t^2}{2n^2}\right)\right]^n = \exp\left(n\left(\mu\frac{t}{n} + \frac{\sigma^2t^2}{2n^2}\right)\right) = \exp\left(\mu t + \frac{\frac{\sigma^2}{n}t^2}{2}\right),$$

където $Y=\sum\limits_{i=1}^n X_i$ и X_1,\ldots,X_n са независими. Оттук следва, че $\bar{X}\sim N(\mu,\frac{\sigma^2}{n})$.

Преди да докажем последното твърдение в теоремата, да напомним следните факти за χ -квадрат разпределението (виж Твърдение 4.7 и Твърдение 4.8):

- 1) Ако $Z \sim N(0,1),$ то $Z^2 \sim \chi^2(1).$
- 2) Ако X_1, \ldots, X_n са независими и $X_i \sim \chi^2(p_i)$, то $\sum_{i=1}^n X_i \sim \chi^2(\sum_{i=1}^n p_i)$.

Да се върнем към доказателството на теоремата.

с) Нека $\bar{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$ и $s_k^2 = \frac{1}{k-1} \sum_{i=1}^k (X_i - \bar{X}_k)^2$. Тогава имаме следната рекурентна зависимост (докажете!):

$$(n-1)s_n^2 = (n-2)s_{n-1}^2 + \frac{n-1}{n}(X_n - \bar{X}_{n-1})^2.$$

Ще използваме индукция по k:

$$k = 2: 0.S_1^2 = 0 \Rightarrow s_2^2 = \frac{1}{2}(X_2 - X_1)^2, \quad \frac{X_2 - X_1}{\sqrt{2}} \sim N(0, 1) \Rightarrow s_2^2 \sim \chi^2(1)$$

Нека е изпълнено за $k:(k-1)s_k^2 \sim \chi^2(k-1)$, тогава за k+1:

$$ks_{k+1}^2 = (k-1)s_k^2 + \frac{k}{k+1}(X_{k+1} - \bar{X}_k)^2.$$

Първото събираемо $(k-1)s_k^2 \sim \chi^2(k-1)$ от индукционното предположение, а за второто имаме $X_{k+1} - \bar{X}_k \sim N(0,\frac{k+1}{k})$. Освен това $(X_{k+1} - \bar{X}_k)^2$ и s_k^2 са независими, защото (X_{k+1},\bar{X}_k) не зависи от s_k^2 . Тогава $\frac{k}{k+1}(X_{k+1} - \bar{X}_k)^2 \sim \chi^2(1)$ и $ks_{k+1}^2 \sim \chi^2(k)$. Какво можем да кажем за разпределението на \bar{X} , когато σ^2 не е известно? Нека

разгледаме представянето:

$$\frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{s^2/\sigma^2}}.$$

Знаем, че $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, а $\sqrt{s^2/\sigma^2} \sim \sqrt{\chi^2(n-1)/(n-1)}$, така че задачата се свежда до намиране разпредлението на сл.в. $\frac{U}{\sqrt{V/p}}$, където $U \sim N(0,1)$ и $V \sim \chi^2(p)$. Съвместната плътност на U и V е:

$$f_{U,V}(u,v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}} v^{\frac{p}{2}-1} e^{-\frac{v}{2}}, \quad u \in (-\infty,\infty), \quad v > 0.$$

Правим трансформацията: $t = \frac{u}{\sqrt{v/p}}, w = v$. Якобианът $|J| = \left(\frac{w}{p}\right)^{\frac{1}{2}}$, а за маргиналната плътност на T получаваме:

$$f_{T}(t) = \int_{0}^{\infty} f_{U,V} \left(t \left(\frac{w}{p} \right)^{\frac{1}{2}}, w \right) \left(\frac{w}{p} \right)^{\frac{1}{2}} dw$$

$$= \frac{1}{\sqrt{2\pi} \Gamma(\frac{p}{2}) 2^{\frac{p}{2}}} \int_{0}^{\infty} e^{-\frac{t^{2}w}{2p}} w^{\frac{p}{2} - 1} e^{-\frac{w}{2}} \left(\frac{w}{p} \right)^{\frac{1}{2}} dw$$

$$= \frac{1}{\sqrt{2\pi} \Gamma(\frac{p}{2}) 2^{\frac{p}{2}} \sqrt{p}} \int_{0}^{\infty} e^{-\frac{1}{2} \left(1 + \frac{t^{2}}{p} \right) w} w^{\frac{p+1}{2} - 1} dw$$

Но под интеграла всъщност имаме плътността (ненормирана) на $\Gamma\left(\frac{p+1}{2}, \frac{2}{1+\frac{t^2}{2}}\right)$, следователно:

$$f_T(t) = \frac{1}{\sqrt{2\pi}\Gamma(\frac{p}{2})2^{\frac{p}{2}}\sqrt{p}}\Gamma\left(\frac{p+1}{2}\right)\left[\frac{2}{1+\frac{t^2}{p}}\right]^{\frac{p+1}{2}}$$
$$= \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)}\frac{1}{\sqrt{p\pi}\left(1+\frac{t^2}{p}\right)^{\frac{p+1}{2}}}, \quad t \in (-\infty, \infty)$$

Разпределението на T наричаме t-разпределение или разпределение на Стюдънт с pстепени на свобода (бележим T_p).