We have the basic feasible solution u = (0, 0, 0, 4, 2, 3, 6), with K = (4, 5, 6, 7). Since $c_K = (-1, 0, 0, -5)$ and c = (0, -2, 0, -1, 0, 0, -5) the first tableau is

34	1	14	6	0	0	0	0
$u_4 = 4$	1	1	1	1	0	0	0
$u_5 = 2$	1	0	0	0	1	0	0
$u_6 = 3$	0	0	1	0	0	1	0
$u_7 = 6$	0	3	1	0	0	0	1

Since $\bar{c}_j = c_j - c_K \gamma_K^j$, Row 0 is obtained by subtracting $-1 \times$ Row 1 and $-5 \times$ Row 4 from c = (0, -2, 0, -1, 0, 0, -5). Let us pick Column $j^+ = 1$ as the incoming column. We have the ratios (for positive entries on Column 1)

and since the minimum is 2, we pick the outgoing column to be Column $k^- = 5$. The pivot 1 is indicated in red. The new basis is K = (4, 1, 6, 7). Next we apply row operations to reduce Column 1 to the second vector of the identity matrix I_4 . For this, we subtract Row 2 from Row 1. We get the tableau

34	1	14	6	0	0	0	0
$u_4 = 2$	0	1	1	1	-1	0	0
$u_1 = 2$	1	0	0	0	1	0	0
$u_6 = 3$	0	0	1	0	0	1	0
$u_7 = 6$	0	3	1	0	0	0	1

To compute the new reduced costs, we want to set \bar{c}_1 to 0, so we apply the identical row operations and subtract Row 2 from Row 0 to obtain the tableau

32	0	14	6	0	-1	0	0
$u_4 = 2$	0	1	1	1	-1	0	0
$u_1 = 2$	1	0	0	0	1	0	0
$u_6 = 3$	0	0	1	0	0	1	0
$u_7 = 6$	0	3	1	0	0	0	1

Next, pick Column $j^+=3$ as the incoming column. We have the ratios (for positive entries on Column 3)

and since the minimum is 2, we pick the outgoing column to be Column $k^-=4$. The pivot 1 is indicated in red and the new basis is K=(3,1,6,7). Next we apply row operations to reduce Column 3 to the first vector of the identity matrix I_4 . For this, we subtract Row 1 from Row 3 and from Row 4 and obtain the tableau: