METHODOLOGY

Efficient Calculation of the Genomic Relationship 4

Matrix

Martin Schlather*

Correspondence:

schlather@math.uni-mannheim.de
Universität Mannheim, Institut für
Mathematik, C8, 5, 68131
Mannheim, Germany
Full list of author information is
available at the end of the article
*Equal contributor

Abstract

8

13

15

18

20

21

22

Background: The calculation of a genomic relationship matrix needs a large number of arithmetic operations. Therefore, fast implementations are of interest. The currently fastest implementations use AVX floating-point arithmetics.

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Results: Our fastest algorithm is more accurate and $25\times$ faster than a AVX double precision floating-point implementation.

Conclusions: The spectrum of presented methods suggests that further improvement might be possible and that bit manipulation in combination with hash tables might be of relevance also for other calculation problems.

Keywords: crossproduct; covariance matrix; genetic relationship; genomic relatedness matrix; hash table

23Background

²⁵the SNP information of the individuals, i.e., from the minor allele counts [1]. It is an ²⁵
²⁶important ingredient in mixed models and generalized mixed models for analyses ²⁶
²⁷and predictions in genetics [2].

²⁸ Let n be the number of individuals and s the number of SNPs per individual. Then, ²⁸
the calculation of the GRM needs of order sn² arithmetic operations. Most software ²⁹
³⁰ packages use floating-point arithmetics, for instance the R packages AGHmatrix [3], ³⁰
³¹ qgg [4], rrBLUP [5], snpReady [6], and GENESIS [7]. The software GCTA [8] treats ³¹
³² missings explicitly. The package SNPRelate [9] also uses floating-point arithmetics

 33 for the covariance matrix, but uses bit manipulation algorithms for other calcula-

²⁴The genomic relationship matrix (GRM) is the covariance matrix calculated from ²⁴

Schlather Page 2 of 9

¹tions (identity-by-descent estimates). PLINK [10] profits from bit manipulations for ¹ ²calculating the uncentred covariance matrix. ³ In this paper we present a couple of ideas, how the GRM can be calculated³ ⁴efficiently from a SNP matrix. We assume that no values are missing. The emphasis ⁴ ⁵will be on algorithms that allow for a vectorized implementation (SIMD) and that ⁵ ⁶take into account that the entries of the SNP matrix are most efficiently coded by ⁶ ⁷2 bits, namely for the values 0, 1 and 2, as they are present in diploid organism' ⁸under the common assumption of biallelic markers. 10 Results The standard mathematical formula for the GRM requires floating point arith-11 netics. An algebraic reformulation shows that the cost intensive part involves only 13 integers. Since the most elementary numbers need only a minimum of 2 bits, a 13 $_{14} {\rm diversity}$ of approaches for the integer arithmetics is thinkable. The investigated $_{14}$ methods are in brief: 15 • Multiply: uses 16-bit arithmetics 16 • Hamming2: uses pop counts (the number of bits that are 1) • ThreeBit: uses a 3-bit representation and a single large hash table 18 • TwoBit: uses the 2-bit representation and two large hash tables 19 • Shuffle: similar to TwoBit, but with two tiny hash tables 20 20 • Packed: uses 4-bit arithmetics They are all available through crossprodx in the package miraculix [11]. Tables 1_{22} $_{23}$ and 2 show that Shuffle is the fastest method, which is $35 \times$ faster than $\mathtt{crossprod}_{23}$ ₂₄ of R [12] in the SSSE3 implementation. 24 $_{25}$ Table 1 Accelaration of the calculation of $M^{ op}M$ by crossprodx. 25 Shuffle Packed Hamming2 Multiply ThreeBit TwoBit 26 35× 28× $24 \times$ $17 \times$ $15 \times$ acceleration 17× SSSE3 SIMD SSE2 SSE2 SSE2 SSE₂ none 27 27 The reference point is crossprod in R. 28 ₂₉Table 2 Accelaration of the calculation of $M^{\top}M$ by AVX2 implementations in crossprodx. Shuffle Packed Multiply AVX (double) AVX2 (32-bit integer) 30 30 acceleration 48 × 1.8× $4\times$ The reference point is crossprod in R. 31 31 The command relationshipMatrix in miraculix [11] for calculating the GRM is only negligibly slower than crossprodx. The AVX2 variant of Shuffle is even

Schlather Page 3 of 9

$^{1}48\times$ faster than crossprod [12] and $48/1.8\approx25\times$ faster than a standard AVX
$^2\mathrm{double}$ precision implementation for calculating the cross product of an $\mathrm{arbitrary}^2$
$^3\mathrm{matrix},$ cf. Table 2. Furthermore, our algorithms have not even any cumulative 3
⁴ rounding error.
5 $$ Tables 1 and 2 also show that the AVX2 performance is hard to predict from the 5
$^6\mathrm{SSE}$ performance. AVX2 variants for $TwoBit$ and $ThreeBit$ are not given since $full^6$
7 vectorization is not possible. Hamming 2 has not been persued because of its memory 7
⁸ demand.
$^{9}~$ For the benchmarks, we used an $s\times n$ SNP matrix with n = 1000 individuals 9
and $s = 5 \cdot 10^5$ SNPS. The calculations were performed on an Intel(R) Core(TM) ¹⁰
11 i 7-8550 U CPU @ 1.80 GHz with R version 3.6.0 on Xubuntu. Although the code in
¹² miraculix is parallelized, we used only a single core for the benchmarks. Nonethe-
¹³ less, the AVX2 variant of Shuffle takes not more than 7 seconds.
The code for the benchmarks is available from the man page of crossprodx in 14
niraculix.
16
¹⁷ Discussion
18 First, with respect to the memory needs of the SNP matrix, algorithms that use 18
¹⁹ the 2-bit representation of a SNP value should be preferred. Among them, we have
20 a sequence of distinct algorithms that differ in their speed-up and their SIMD 20
requirements: TwoBit (15×; SIMD not used), Packed (28×; SSE2); Shuffle (35×; 21
²² SSSE3).
Second, the use of perfect hash tables to cut calculations short might be of general ²³
importance. 24
Third, since loading from non-aligned memory allocation is reported to be slower
26 [13], the package miraculix was designed to avoid non-aligned loadings. Tests on
the implemented package however show that the running time by non-aligned load-
ings is not reduced for SSE implementations. The speed is reduced by 5 to 10 $\%^{28}$
in AVX2 implementations. As the compressed SNP matrix is made available to 29
the user as an R object and as the memory allocation by R is only 32-bit aligned, 30
additional memory is allocated and the SNP matrix is aligned to 128 or 256 bits. ³¹
Furthermore, additional zeros are appended so that the virtual number of SNPs is a
multiple of the number of the SNPs that can be treated in a single step. The storing

Schlather Page 4 of 9

¹ formats of TwoBit, Multiply, Packed, and Shuffle, including their AVX2 varian	$\mathrm{its},^{\mathtt{1}}$
² were made compatible, i.e., the allocations are all based on a 256-bit alignment.	. A ²
³ check and a reallocation are implemented for the case that memory is moved. T	his ³
⁴ might happen when the garbage collector gc is called by R, for instance.	4
5	5
6Conclusion	6
$_{7}$ The combination of algebraic reformulation, bit manipulations and hash tables of	an7
sreduce largely the computing time on SNP data. In the case of calculating the GR	М,в
sthe computing time could be reduced by factor 25 in comparison to a straightfe	or-9
10ward AVX double precision implementation. As a spectrum of implementation	nsı
$_{11}$ exist, there is a chance of further improvement and of further applications of t	heı
12underlying ideas.	12
13	13
Methods	14
Let M be an $s \times n$ SNP matrix of n individuals and s SNPs. We need to consider on	nly 15
the fast calculation of the cross product $M^{\top}M$, since the GRM A can be calculated	ted ₁₆
from $M^{\top}M$ at low costs. This can be seen as follows.	17
Let 1_k be the vector of length k whose components are all equal to 1. The centres	red 18
and normalized GRM A is calculated as	19
20	20
$A = (M-P)^{\top}(M-P)/\sigma^2$	21
²² where	22
	23
$P = p 1_{\underline{\mathbf{n}} s}^{\top} \text{with} p = \frac{1}{n} M 1_{n}.$	24
₂₅ and	25
$\sigma^2 = \sum_{n=1}^{s} n(1 - n/2)$ with $n = (n - n)$	26
$\sigma^2 = \sum_{i=1}^{5} p_i (1 - p_i/2) \text{with} p = (p_1, \dots, p_s).$	27
Note that replacing the value p_i by the allele frequency $\tilde{p}_i = p_i/2$, we have the use	ual ₂₈
$_{29}$ formula for σ^2 ,	29
$\sigma^2 = 2 \sum_{i=1}^s \tilde{p}_i (1 - \tilde{p}_i).$	30
31	31
Let $B = M^{\top} M 1_n$. Then	32

 $n^2 \sigma^2 A = n^2 M^\top M - n \mathbf{1}_s B^\top - n B \mathbf{1}_s^\top + \mathbf{1}_s \mathbf{1}_n^\top B \mathbf{1}_s^\top.$

32

Schlather Page 5 of 9

¹Hence, the integer-valued matrix $n^2\sigma^2A$ can easily be calculated from the matrix $^2M^\top M$ without any numerical error and at low computational costs of order n^2 . ³Now,

$$2n^2\sigma^2 = 2n^2\sum_{i=1}^s p_i - n^2\sum_{i=1}^s p_i^2 = 2n\mathbf{1}_s^\top M\mathbf{1}_n - \mathbf{1}_n^\top B.$$

⁶Again, $2n^2\sigma^2$ can easily be calculated from M and $M^{\top}M$ without any numeri-⁶ ⁷cal error. The computational costs are of order n(n+p)n(n+s), hence still some ⁸ magnitudes smaller than the costs of calculating the crossproduct $M^{\top}M$.

9

10

10Algorithms for scalar products

₁₁Instead of considering the crossproduct $M^{\top}M$, it suffices to consider the scalar₁₁
₁₂product of two vectors $a = (a_1, \ldots, a_s)$ and $b = (b_1, \ldots, b_s)$ whose components a_{i12} ₁₃and b_i have the values 0, 1 or 2. For simplicity and clarity, we will primarily refer₁₃
₁₄to SSE commands in the following, and not to AVX.

An immediate way of calculating the scalar product from a compressed 2-bit rep17 resentation is to extract the first two bits of each of the two vectors a and b and
18 to continue with integer arithmetics. Then the next two bits are extracted using
20 shifting, and so on. Clearly, this procedure can be vectorized. Of particular advan20 tage here is the SSE2 command _mm_madd_epi16, which multiplies and adds two
21 consecutive 16-bit integers so that only 7 shifts are necessary for a vector of 64 SNP
22 values, i.e., for 128 bits. We call this method Multiply.

Hamming Distance

The algorithm used in PLINK [14, 10] is based on the idea that a value is represented by the number of bits that equal 1 in a 4-bit representation. The values of the vectors a and b must be coded asymmetrically by two mappings f_a and f_b , say, as a coding by single mapping is not possible. Then, the bitwise &-operator is applied before the number of 1's is counted. Table 3 gives a possible realisation.

Table 3 Table of values for the Hamming distance method.

31	$f_a(\cdot) \& f_b(\cdot)$	$f_b(0) = 0000_b$	$f_b(1) = 0011_b$	$f_b(2) = 1111_b$	31
32	$f_a(0) = 0000_b$	0000_{b}	0000_{b}	0000_{b}	32
	$f_a(1) = 0110_b$	0000_{b}	0010_{b}	0110_{b}	
33	$f_a(2) = 1111_b$	0000_{b}	0011_{b}	1111_{b}	33

Schlather Page 6 of 9

The number of bits that equal 1 can be calculated by SSE2 commands based on work by [15, 16]. We call the method Hamming2. (An SSSE3 implementation in miraculix [11] is called Hamming3.) The method can be turned into a particularly fast implementation when novel AVX512 commands are used for the pop counts, seg. _mm512_popcnt_epi64. See also SNPRelate [9] for pop count implementations. Still, the storing costs of the SNP matrix M remain high, namely $2 \times 4 = 8$ bits for pop SNP in a standard implementation.

9Perfect Hash Table

¹⁰Let us consider the product of the first elements a_1 and b_1 of the two SNP vec-¹⁰
¹¹tors a and b. Let us code the SNP values 0, 1 and 2 by 3 bits, e.g. as 000_b , 011_b 11
¹²and 110_b , respectively, and denote this mapping by f. Then, a perfect hash table ¹²
¹³for $f(a_1)$ & $f(b_1)$ returns 0, 1, 2, 4 for 000_b , 011_b , 010_b , and 110_b , respectively, ¹³
¹⁴cf. Table 4.

15 Table 4 Table of values for the ThreeBit method.

16	$f(\cdot) \ \& \ f(\cdot)$	$f(0) = 000_b$	$f(1) = 011_b$	$f(2) = 110_b$	16
10	$f(0) = 000_b$	000_{b}	000_{b}	000_{b}	10
17	$f(1) = 011_b$	000_{b}	011_{b}	010_{b}	17
18	$f(2) = 110_b$	000_{b}	010_{b}	110_{b}	18

15

Subvectors of length k of a and b can be treated in the same way and the perfect hash table returns then the scalar product of the subvectors. The hash table will be indexed by 3k-bit numbers, i.e. by values between 0 and $2^{3k} - 1$. Since k should be as large as possible at a smallish size of the hash table, and 3k bits should fit nicely into 1, 2 or 4 bytes, the only reasonable choice for k is k = 5, so that 15 bits in a 16-bit representation of a vector with k = 5 components are used. The precise size of the hash table is then $110 \, 110 \,$

 $^{28}Two\ Perfect\ Hash\ Tables$

Since we did not find a simple way to use a single hash table based on a 2-bit 29 representation of the SNP values, we consider here two hash tables and the two 30 bitwise operators & and |. The first hash table should return 1 and 4 for 01_b and 32 10_b , respectively, while the second hash table returns 2 for 11_b . All other values in 33 the hash tables are 0, cf. Table 5.

Schlather Page 7 of 9

Table 5 Tables	of values f	or the	TwoBit	method.					1
	&	00_b	01_b	10_{b}		00_b	01_b	10_{b}	
2	00_{b}	00_b	00_{b}	00_{b}	00_{b}	00_b	01_{b}	10_{b}	2
3	01_b 10_b	$\begin{vmatrix} 00_b \\ 00_b \end{vmatrix}$	$01_{b} \\ 00_{b}$	00_{b} 10_{b}	01_b 10_b	$\begin{vmatrix} 01_b \\ 10_b \end{vmatrix}$	01_{b} 11_{b}	11_b 10_b	3
4	v	1		Ü		1		J	4
⁵ Then, the s	um of th	ne two	table	e values	yields the	prod	a_1	b_1 . Scal	ar products ⁵
6 of subvectors	of length	n k ca	n also	be trea	ated by two	o hasl	h tabl	es. Since	e the size of 6
both hash tab	oles is of	order	2^{2k} , c	ne possi	ble choice	is k =	= 8, so	that th	e size of the ⁷
*second hash t	able is 6	5536 1	oytes.	We call	this meth	od Tw	oBit.		8
⁹ The disadva	intage of	TwoB	it (an	ıd Three	Bit) is tha	at the	look-	up in th	e hash table ⁹
prohibits a fu	ll vector	izatio	n. A 1	nuch be	tter choice	is th	erefor	e k = 2	: the SSSE3 ¹⁰
command _mm	_shuffl	.e_ep:	i8 loo	ks 16 va	lues up at	once	in a h	ash tabl	e of size 16. 11
We call this v	ariant Sl	nuffl	e.						12
13									13
¹⁴ Packed arithm	netics								14
¹⁵ A last idea is	to emul	ate a	multi	plication	by bitwis	e ope	ration	s and p	artial sums. 15
16 Let \gg denote	the bity	vise sl	nift op	erator a	and let				16
17									17
$c_i =$	$a_i \& b_i$,								18
$d_i =$	$(c_i \gg 1)$	& 01	$_{b},$						19
$e_i =$	$(a_i \gg 1)$) & b_i	& 01 _b	, and					20
$f_i =$	$a_i \& (b_i$	≫ 1)	& 01 _b	,					21
22									22
so that $c_i + 2a$	$d_i = a_i b_i$	if a_i =	$=b_i$ as	nd 0 else	. Furthern	nore 2	$(e_i +$	$f_i) = a_i b$	$b_i \text{ if } a_i b_i = 2^{23}$
²⁴ and 0 else. Ir	ı total, v	ve ha	ve c_i	$+2d_i +$	$2(e_i + f_i)$	$= a_i$	b_i . Le	$t g_i = a$	$d_i + e_i + f_i^{24}$
²⁵ Since $g_i = d_i$	$\mid e_i \mid f_i$	for th	ne bity	wise ope	rator , on	ly the	e valu	es of g_i	and c_i need ²⁵
²⁶ to be summe	d up. An	imm	ediate	e extract	ion of the	value	es of g	$g = (g_1,$	$\ldots, g_s)$ and ²⁶
$c^{27}c = (c_1, \dots, c_s)$	s) by shif	ting a	s in th	ne Multi	ply algori	thm v	vould	be rathe	r expensive. ²⁷
²⁸ Instead, a 4-b	oit arithn	netic	can b	e introd	uced in an	inter	media	te step	for the four ²⁸
vectors									29
30									30
31	$00_b c_3 00_b$	c_1							31
32	$00_b c_4 00_b$	c_2							32

33

33

 $\dots 00_b g_3 00_b g_1$, and

Schlather Page 8 of 9

$\dots 00_b g_4 00_b g_2,$	1
2	2
3	3
⁴ which can be obtained by two shifts and 4 bitwise &-operations in total, if the	e4
⁵ ordering in the memory is $c_4 c_3 c_2 c_1$. Since the value of c_i is at most 2, a sevenfold	<u>1</u> 5
⁶ summation of the first two displayed vectors leaves each component within its	4 6
⁷ bits (using any unsigned integer SIMD addition). Since the value of g_i is either (07
⁸ or 1, even a fifteen-fold summation is possible for the last two displayed vectors	.8
⁹ Afterwards, the 4-bit values are extracted and further summed up. We call this	s^{9}
10method Packed.	10
11 The novel AVX512 command ${\tt _mm512_popcnt_epi64}$ might improve this approximation	_11
¹² proach, as it allows to count the number of bits being 1 in c_i , d_i and $e_i \mid f_i$, so	_O 12
$^{13} {\rm that}$ the number of products is counted that equal (i) 1^2 or $2^2,$ (ii) $2^2,$ and (iii) $1\cdot 2^2$	213
$^{14}\mathrm{or}\ 1\cdot 2.$ This variant can be seen as a 2-bit analogue of the Hamming2 algorithm	,14
¹⁵ and will be implemented in future.	15
16	16
₁₇ Abbreviations	17
₁₈ AVX: Advanced vector extensions	18
$_{19}\mathbf{SIMD:}$ Single instruction, multiple data	19
$_{20}\mathbf{SNP} ext{:}$ Single nucleotide polymorphism	20
₂₁ SSE: Streaming SIMD extensions	21
$_{22}$ SSSE: Supplemental streaming SIMD extensions	22
$_{23}$ GRM: Genomic relationship matrix	23
24	24
Ethics approval 25 Not applicable.	25
²⁶ Consent for publication	26
27Not applicable.	27
28Availability of the data and materials	28
Not applicable. 29	29
Competing interests 30 The author declares that he has no competing interests.	30
³¹ Funding	31
32 ^{None.}	32
Author's contributions 33 Not applicable.	33

Schlather Page 9 of 9

1 Ack	nowledgements	1
₂ The	author is grateful to Torsten Pook, Christopher Dörr and Alexander Freudenberg for hints and for comments.	2
3Refe	erences	3
1.	VanRaden, P.M.: Efficient methods to compute genomic predictions. Journal of Dairy Science 91(11),	
4	4414–4423 (2008)	4
5	Walsh, B., Lynch, M.: Evolution and Selection of Quantitative Traits. Oxford University Press, Oxford (2018)	5
6	Rampazo Amadeu, R., Cellon, C., Olmestead, J.W., Franco Garcia, A., Resende Jr, M.F.R.: AGHmatrix: R package to construct relationship matrices for autotetraploid and diploid species. The Plant Genome 9 (3), 1–10)6
7	(2016)	7
	Soerensen, P., Rohde, P.D., Soerensen, I.F.: qgg: An R package for Quantitative Genetic and Genomic analyses. http://psoerensen.github.io/qgg/ (2019)	_
8 5	Endelman, J.B.: Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant	8
9	Genome 4, 250–255 (2011)	9
10 6.	$\label{lem:continuous} Granato, I., Fritsche-Neto, R.: snpReady: Preparing Genotypic Datasets in Order to Run Genomic Analysis. R package version 0.9.6. https://cran.r-project.org/web/packages/snpReady/index.html (2018)$	10
11 7.	Gogarten, S.M., Sofer, T., Chen, H., Yu, C., Brody, J.A., Thornton, T.A., Rice, K.M., Conomos, M.P.: Genetic	:11
12 8.	association testing using the GENESIS R/Bioconductor package. Bioinformatics 35 , 5346–5348 (2019) Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M.: GCTA: a tool for genome-wide complex trait analysis. The	12
13	American Journal of Human Genetics 88(1), 76–82 (2011)	13
9. 14	Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., Chen, WM.: Robust relationship inference	14
₁₅ 10.	in genome-wide association studies. Bioinformatics 26 , 2867–2873 (2010) Chang, C.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M., Lee, J.J.: Second-generation PLINK:	15
16	rising to the challenge of larger and richer datasets. Gigascience 4(1), 7 (2015)	16
111.	Schlather, M., Erbe, M., Skene, F., Freudenberg, A.: miraculix: Algebraic and Statistical Functions for Genetics.	`
17 12	(2019). R package version 0.9.15. https://github.com/schlather/miraculix R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical	17
18	Computing, Vienna, Austria (2019). R Foundation for Statistical Computing. https://www.R-project.org/	18
13.	Ben-Haim, G.: Practical Intel(R) AVX Optimization on 2nd generation Intel(R) Core TM Processors.	
19	https://software.intel.com/en-us/articles/practical-intel-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-intel-core-avx-optimization-on-2nd-generation-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generation-on-2nd-generat	19
20	processors (2012)	20
21	Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de	21
22	Bakker, P.I.W., Daly, M.J., Sham, P.C.: PLINK: a toolset for whole-genome association and population-based	22
22	linkage analysis. American Journal of Human Genetics 81 (3), 559–575 (2007)	24
²³ 15.	Dalke, A.: Simple benchmark harness for different popcount implementations.	23
24	http://dalkescientific.com/writings/diary/popcnt.cpp (2011)	24
16.	Dalke, A.: Update: Faster population counts.	
25	http://www.dalkescientific.com/writings/diary/archive/2011/11/02/faster_popcount_update.html (2011)	25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33