CP317A Software Engineering

Low-level design-part 1 – week 4-1 Shaun Gao, Ph.D., P.Eng.

Agenda

- Review architecture design
- Low-level (detailed) design
 - Concept
- Key tasks in low-level design
 - Understanding requirements, architecture and systems
 - Creating detailed design
 - Interface design (internal and external)
 - Shared memory concurrency
 - Graphical User interface (GUI) design
 - ASCII code
 - Internal component design (structure and behavioral)
 - Data design, data structure design
 - Documenting detailed design
 - Evaluating detailed design
- Summary

Review week 3-2 topics

- Race condition
- Unified modeling language (UML)
- UML diagrams
 - Structure diagram
 - Class diagrams,
 - Component diagrams
 - Behavior diagram
 - Use case diagram,
 - State transition diagrams,
 - Sequence diagrams

Review week 3-2 topics – cont.

- Design principles (3 principles) they also apply to detailed design
 - Decomposition
 - Cohesion
 - Coupling
- Cohesion and coupling apply to both architecture design and detailed design

Introduction

- Low-level (detailed) design
 - Low-level (detailed) design is the process of refining and expanding the software architecture of a system or component to the extent that the design is sufficiently complete to be implemented.
 - It is the specification of the internal elements of all major system components, their properties, relationships, processing, and often their algorithms and the data structures, data types.
 - During detailed design, software engineers go deep into each component to define its data structure and behavioral capabilities, and the resulting design leads to natural and efficient construction of software.

Introduction – cont.

- Where we are?
 - Waterfall model

Fundamentals of low-level design

- Key tasks in detailed design
 - Understanding architecture and requirements,
 - Creating detailed design
 - Documenting detailed design
 - Evaluating detailed design
 - Managing implementation

Key tasks in detailed design

Understanding architecture and requirements

- This is the first step, and it is paramount
- Requirements are allocated to specific components I/F
- Always consider cohesion and coupling

- Creating detailed design
- When creating detailed design, focus is placed on the following:
 - Interface design (internal)
 - A software interface refers to a wide range of different types of interface at different levels.
 - Interface design (external)
 - Graphical User interface (GUI) design
 - Internal component design (structure and behavioral)
 - Data design (database), data structure for communication
 - data types

- Creating detailed design
 - Interface design (internal)
 - Interface among components (processes)
 - Shared memory
 - Defined by software
 - Message passing
 - Depend on OS
 - Inter-process communication (IPC)

• https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications

- Creating detailed design
 - Interface design (internal) cont.
 - Shared memory
 - Shared memory is a type of memory that can be shared by multiple processes with the intent of providing interapplication communication. – defined by software
 - Concurrency: it is the executions of several instructions occur at the same time.
 - Advantages:
 - Less operating system dependency, has higher portability
 - Risk:
 - Race conditions:

- Creating detailed design
 - Interface design (external)
 - Among devices and users
 - Involves data communication
 - Protocol + OS and CPU knowledges
 - TCP/IP or Serial (RS-232C)
 - Microcontroller
- Example: ATM, user ATM backend.
- Both internal and external interface design requires OS and CPU knowledges.

Mobile OS

laptop/desk

- Android 72.84%,
- Windows < 1 %,
- MacOS/iOS 16.55%,

0%

87.56%

9.54%

- Creating detailed design
 - Interface design (external)
 - Question?
 - Man-machine interface
 - American Standard Code for Information Interchange (ASCII) table/code
- Question?

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i
11	В	IVERTICAL TABI	43	2B	+	75	4B	K	107	6B	k
12	C	IFORM FEEDI	44	2C		76	4C	L	108	6C	i .
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	ISHIFT OUT1	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	IDATA LINK ESCAPEI	48	30	0	80	50	P	112	70	p
17	11	IDEVICE CONTROL 11	49	31	1	81	51	0	113	71	q
18	12	IDEVICE CONTROL 21	50	32	2	82	52	R	114	72	r
19	13	IDEVICE CONTROL 31	51	33	3	83	53	S	115	73	S
20	14	IDEVICE CONTROL 41	52	34	4	84	54	Т	116	74	t
21	15	INEGATIVE ACKNOWLEDGE	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	:	91	5B	Г	123	7B	1
28	10	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	i
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	3
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
WENT !		A TORREST MAN AND A STATE OF			950	0.5057		-		V-91-11	[

- Interface design (internal)
- Interface design (external)

- Think Pair Share
 - For the group project, which interface design is needed?

- Creating detailed design
 - Graphical User interface (GUI) design
 - .NET used in Windows, Linux, or Mac OS, and etc.
 - C#
 - JavaScript, HTML
 - WPF: windows presentation foundation

- Internal component design (structure and behavioral)
 - UML structure diagram
 - Class diagram
 - Component diagram
 - UML behavior diagram
 - Use case diagram
 - State transition diagram
 - Sequence diagram

- Data design, data structure design
 - Data structures
 - Array
 - Stack: last-in-first-out (LIFO) data structure
 - Queue: first-in-first-out (FIFO) data structure
 - Linked list
 - Singly linked list
 - Double linked list
 - Define your own data structures based on requirements
 - Data type
 - Different between integer and unsigned integer
 - Incorrect data type definition can be problematic.
 - Example: students' grade should use unsigned integer or just integer

Documenting detailed design

- Software design document (SDD)
- Software design specification (SDS)
- Software detailed design (SDD)

Think – Pair – Share

 What does the table of contents for the group project look like?

The sections of the SDD and sample table of contents:

Section	Date of issue is the day on which the SDD has been formally released. Every time the SDD is updated and formally released, there should be a new date of issue.						
Date of issue and status							
Scope	Scope provides a high level overview of the intended purpose of the software. It sets a limit as to what the SDD will describe and defines the objectives of the software.						
Issuing organization	Issuing organization is the company which produced the SDD.						
Authorship	Authorship pertains to who wrote the SDD and certain copyright information.						
References	References provide a list of all applicable documents that are referred within the SDD. If there is a certain technology that is used within the desig it is important to refer to the corresponding documentation on the technology, so it may be referenced. When reading the referenced document stakeholders may uncover inconsistencies in how the technology should used and how it is used in the software design.						
Context	Description of the context of the SDD.						
Body	Body is the main section of the SDD where the design is documented. This is where stakeholders look to understand the software and how it is to be constructed.						
Summary							
Glossary	A glossary provides definitions for all software related terms and acronyn used in the SDD.						
Change history	Change history is a brief description of the items added to, deleted from, or changed within the SDD.						

Documenting detailed design

- Software design document (SDD)
- Software design specification (SDS)
- Software detailed design (SDD)
- Example of Table of Contents of SDD
 - Just an example, you can add or remove items.

Contents example

References

Introduction 1.1. Date of Issue 1.2. Context 1.3. Scope 1.4. Authorship 1.5. Change history 1.6. Summary Software Architecture 2.1. Overview 2.2 Stakeholders 2.3. System Design Concerns 2.4. Architectural Viewpoint 1 2.4.1. Design View 1 2.5. Architectural Viewpoint 2 2.5.1. Design View 2 2.6. Architectural Viewpoint n 2.6.1. Design View n Detailed Design 3.1. Overview 3.2. Component 1 Design Viewpoint 1 3.2.1. Design View 1 3.3. Component 2 Design Viewpoint 2 3.3.1. Design View 2 3.4. Component n Design Viewpoint n 3.4.1. Design View n Glossary

Evaluating detailed design

- The most popular technique for evaluating detailed design is technical reviews.
- Keep in mind the following be professional
 - Send a review notice with enough time
 - Include a technical expert
 - Include a member of software quality assurance and testing team
 - Present how your design helps meet system requirements
 - Document the review process meeting note

- Managing implementation (4 steps)
 - Prepare a good implementation plan
 - Create an implementation model
 - Learn later
 - Take care of the component implementation

Summary

- Low-level (detailed) design
 - Concept
- Key tasks in detailed design
 - Understanding requirements, architecture and systems
 - Creating detailed design
 - Interface design (internal and external)
 - Shared memory concurrency
 - Graphical User interface (GUI) design
 - ASCII code
 - Internal component design (structure and behavioral)
 - Data design, data structure design
 - Documenting detailed design
 - SDD, how to write a SDD
 - Evaluating detailed design

Announcement

• 75% of you have a group. Please let me know if you need help.

- Oct. 8 (Tuesday) test 1 (60 minutes, cover week 1 week 4). Please bring your laptop
 - Locations
 - BA208 (the first letter of family name from A-H (42))
 - BA211 (the first letter of family name from I-P (31))
 - BA112 (the first letter of family name from Q-Z (28))