This is Exercise 1.2.4 from [UA].

1 An infinite partition of \mathbb{N} into infinite sets

We will construct a countably infinite collection of sets $\{A_i : i \in \mathbb{N}\}$ such that the following three properties hold.

- (1) Each A_i is countably infinite.
- (2) $A_i \cap A_j = \emptyset$ for i < j.
- (3) $\bigcup_{i=1}^{\infty} A_i = \mathbb{N}$.

Let p_i be the *i*th prime $(p_1 = 2, p_2 = 3, p_3 = 5, \text{ and so on})$, and define

```
A_1 = \{n \in \mathbb{N} : n \text{ is divisible by } 2\} \cup \{1\}
A_2 = \{n \in \mathbb{N} : n \text{ is divisible by } 3 \text{ but not by } 2\}
A_3 = \{n \in \mathbb{N} : n \text{ is divisible by } 5 \text{ but not by } 3 \text{ or } 2\}
\dots
A_i = \{n \in \mathbb{N} : n \text{ is divisible by } p_i \text{ but not by } p_{i-1}, \dots, 3, \text{ or } 2\}
\dots
```

We claim that these sets satisfy properties (1), (2), and (3).

- (1) Each A_i is infinite since $p_i^k \in A_i$ for each $k \in \mathbb{N}$, and countably infinite since $A_i \subseteq \mathbb{N}$.
- (2) For i < j, one has $n \in A_i$ only if p_i divides n; but in order to have $n \in A_j$ it is necessary that p_i does not divide n. It follows that $n \notin A_j$, so that $A_i \cap A_j = \emptyset$.
- (3) It is clear that $\bigcup_{i=1}^{\infty} A_i \subseteq \mathbb{N}$. For the reverse inclusion, suppose $n \in \mathbb{N}$. If n = 1, then $n \in A_1$. If n > 1, then let j be the index of the smallest prime appearing in the unique prime factorization of n. It follows that $n \in A_j$, so that $n \in \bigcup_{i=1}^{\infty} A_i$.

Finally, properties (1) and (2) together imply that the A_i 's are non-empty and distinct, so that the collection $\{A_i : i \in \mathbb{N}\}$ is indeed countably infinite.

[UA] Abbott, S. (2015) Understanding Analysis. 2nd edn.