

Fondamenti di Elettronica

28
2da esercitazione SPICE
Circuiti a diodi
Amplificatori a MOSFET

Enrico Zanoni enrico.zanoni@unipd.it

outline

- modelli SPICE del diodo
 - parametri del modello
 - come simulare un diodo ideale
 - esempi di caratteristiche I-V
- riassunto delle caratteristiche degli amplificatori di base a transistor MOS – circuiti e formule
- modello del transistor nMOS LEVEL 1: principali parametri e significato
- Temi per la seconda esercitazione SPICE

Modello SPICE del diodo

Il modello del diodo in un listato SPICE è identificato da una scheda .model .MODEL nome_del_modello del diodo D (parametro1, parametro 2, ...)

In conduzione diretta, la legge utilizzata da SPICE è la seguente

$$i_D = I_s [exp(qV_D/nkT) -1]$$

dove I_s è la corrente di saturazione del diodo, V_D è la tensione applicata al diodo k è la costante di Boltzmann, T è la temperatura assoluta

La formula differisce dalla legge del diodo «ideale» per la presenza del parametro n detto «fattore di idealità», che tiene conto degli effetti che sono stati trascurati nella derivazione della legge del diodo (ad esempio la generazione o ricombinazione di portatori nella regione di carica spaziale)

n viene ricavato sperimentalmente; il suo valore varia generalmente tra 1 e 2

Fattore di idealità n

Il parametro n può essere anche per simulare diodi con caratteristiche I-V arbitrarie (entro una qualche misura).

La caduta di tensione ai capi del diodo si ottiene invertendo la formula:

$$v_D = n \frac{kT}{q} \ln \left(\frac{i_D}{I_S} + 1 \right)$$

Quindi il valore di n può essere utilizzato per ottenere tensioni di ginocchio $V\gamma$ arbitrarie entro certi limiti. Dato che la caratteristica I-V del diodo è quasi esponenziale, non esiste di fatto una tensione al di sotto della quale il diodo sia «spento», cioè $I_D = 0$ (basta graficare le caratteristiche $In(I_D)$ vs V_D per rendersene conto).

 $V\gamma$ è di fatto definita come la caduta di tensione ai capi del diodo alla corrente diretta di interesse fissata ad es. v_D tale che i_D = 10 mA.

Il modello SPICE del diodo può inoltre comprendere la resistenza «parassita» in serie al diodo nel modello per largo segnale, r_s

Modello per largo segnale del diodo

Il modello per largo segnale del diodo in SPICE è quindi dato da un generatore di corrente pilotato in tensione con in serie una resistenza:

Il modello permette inoltre di definire la tensione di breakdown del diodo, e la corrente inversa che corrisponde alla condizione di breakdown

La tensione di breakdown è la tensione inversa per la quale il diodo non è più in grado di bloccare il passaggio di corrente inversa (per effetto «Zener» o per ionizzazione da impatto, o moltiplicazione a valanga)

I parametri da specificare sono BV e IBV (rispettivamente tensione di breakdown e corrente inversa di breakdown in corrispondenza di $V_D = -BV$

Notare il segno - !!!

Modello del breakdown del diodo

Nel modello SPICE la corrente inversa è pari a I_S per $V_D > -BV$ Per $V_D = -BV$, $I_D = -IBV$

Per V_D < -BV la corrente inversa I_D è limitata principalmente dalla resistenza serie r_s . La corrente del diodo è modellata come I_D

$$= I_s \left[\exp{-\frac{q}{kT}(-BV + V_D)} - 1 + un \ fattore \ di \ correzione \ dipendente \ da \ BV \right]$$

Nel seguito la simulazione LTSpice delle caratteristiche I-V in diretta, inversa e breakdown

.model D D Is=100pA n=1.6 BV=10V IBV=1m rs={res_serie}

.dc VD -12V 1V 10mV

.step param res_serie list 0.01 1 2 5 10 100

Effetto della resistenza serie – polarizzazione diretta

IS = 100pA n=1.6 BV=10V IBV=1m rs = 0.01 Ω , 1 Ω , 2 Ω , 5 Ω ,10 Ω ,100 Ω

Caratteristica I-V del diodo inversa e diretta

IS = 100pA n=1.6 BV=10V IBV=1m rs = 0.01 Ω , 1 Ω , 2 Ω , 5 Ω ,10 Ω ,100 Ω

Effetto della resistenza serie – in breakdown

IS = 100pA n=1.6 BV=10V IBV=1m rs = 0.01 Ω , 1 Ω , 2 Ω , 5 Ω ,10 Ω ,100 Ω

Modello per diodi con tensione di ginocchio Vγ definita

Dato che

$$v_D = n \frac{kT}{q} \ln \left(\frac{i_D}{I_S} + 1 \right)$$

uno dei modi per variare la caduta di tensione ai capi del diodo, a parità di corrente i_D , è quello di variare n. Per ottenere un diodo ideale, con caduta $V\gamma=0$ V, si può usare $I_S=100$ pA, $r_S=0\Omega$, n=0.01. Nella simulazione i valori di n utilizzati sono 0.01, 0.1, 0.5. 1, 1.5

.model D D Is=100pA n={enne} BV=10V

.dc VD -12V 1V 10mV

step param enne list 0.01 0.1 0.5 1 1.5

Definizione delle caratteristiche del diodo in base al fattore di idealità n

Parametri del diodo: $I_s = 100 \text{pA}$, $r_s = 0\Omega$, n = 0.01.

Nella simulazione i valori di n utilizzati sono 0.01, 0.1, 0.5. 1, 1.5. La resistenza da 0.001 Ω inserita nel circuito è ininfluente.

Si noti come il modello con n=0.01 (curva blu) rappresenti abbastanza fedelmente le caratteristiche di un diodo ideale con $V\gamma = 0$ V.

Si noti che il fattore di idealità n in questo caso non corrisponde ad un modello fisico, ma rappresenta solo un parametro di «fitting» che serve per ottenere determinate caratteristiche I-V per il diodo

Diodo ideale in LTSpice

In LTSpice esiste anche la possibilità di definire un «diodo ideale» rappresentato da una caratteristica lineare a tratti identificata da quattro parametri: RON, ROFF, VFWD e VREV;

ROFF è una resistenza in parallelo al diodo; utile per simulare il comportamento delle celle solari, che non sono diodi ideali. Nel nostro caso ROFF = ∞ .

VFWD è la tensione di ginocchio,

VREV è la tensione di breakdown; sia in polarizzazione diretta che in breakdown, in serie al diodo c'è una resistenza parassita pari a RON

Il modello emula diodi con tensione di ginocchio Vγ pari a 0, 0.5V, 0.75V, 1V

.model D D RON=1 VREV=10V VFWD={VGAMMA}
.dc VD -12V 3V 10mV
.step param VGAMMA list 0 0.5 0.75 1.0

Modello del diodo ideale in LTSpice

Negli esercizi con $V\gamma$ fissata conviene usare questo modello, con RON=Rf. Se Rf non è specificata, si pone RON=0.001

.model D D RON=1 VREV=10V VFWD={VGAMMA}

.dc VD -12V 3V 10mV

.step param VGAMMA list 0 0.5 0.75 1.0

Figure 14.28 The three FET amplifier configurations: (a) common-source, (b) common-drain, and (c) common-gate.

TABLE 14.11

Single-Transistor FET Amplifiers

Jingle-Transistor FET Ampuners							
COMMON-SOURCE AMPLIFIER	COMMON-DRAIN AMPLIFIER	COMMON-GATE AMPLIFIER					
$-\frac{g_m R_L}{1+g_m R_S}$	$+\frac{g_m R_L}{1+g_m R_L} \cong +1$	$+g_mR_L$					
$-\frac{g_m R_L}{1 + g_m R_S} \left(\frac{R_G}{R_I + R_G} \right)$	$+\frac{g_m R_L}{1+g_m R_L} \left(\frac{R_G}{R_I+R_G}\right) \cong +1$	$+\frac{g_m R_L}{1+g_m(R_I R_6)} \left(\frac{R_6}{R_I + R_6}\right)$					
∞	∞	$1/g_m$					
$r_o(1+g_mR_S)$	$1/g_m$	$r_o[1+g_m(R_I\ R_6)]$					
$0.2(V_{GS}-V_{TN})(1+g_mR_S)$	$0.2(V_{GS}-V_{TN})(1+g_mR_L)$	$0.2(V_{GS}-V_{TN})[1+g_m(R_I\ R_6)]$					
∞	∞	+1					
	COMMON-SOURCE AMPLIFIER $-\frac{g_m R_L}{1+g_m R_S}$ $-\frac{g_m R_L}{1+g_m R_S} \left(\frac{R_G}{R_I+R_G}\right)$ ∞ $r_o(1+g_m R_S)$ $0.2(V_{GS}-V_{TN})(1+g_m R_S)$	COMMON-SOURCE AMPLIFIER $-\frac{g_m R_L}{1 + g_m R_S} + \frac{g_m R_L}{1 + g_m R_L} \cong +1$ $-\frac{g_m R_L}{1 + g_m R_S} \left(\frac{R_G}{R_I + R_G}\right) + \frac{g_m R_L}{1 + g_m R_L} \left(\frac{R_G}{R_I + R_G}\right) \cong +1$ $\infty \qquad \infty \qquad \infty$ $r_o(1 + g_m R_S) \qquad 1/g_m$ $0.2(V_{GS} - V_{TN})(1 + g_m R_S) \qquad 0.2(V_{GS} - V_{TN})(1 + g_m R_L)$					

TA			- 4	A	44
IΑ	D	LE		4	-

Single-Transistor FET Amplifiers

	COMMON-SOURCE AMPLIFIER	COMMON-DRAIN AMPLIFIER	COMMON-GATE AMPLIFIER				
Terminal voltage gain $A_{vt} = \frac{v_o}{v_1}$	$-\frac{g_m R_L}{1+g_m R_S}$	$+\frac{g_m R_L}{1+g_m R_L} \cong +1$	$+g_mR_L$				
Signal-source voltage gain $A_v = \frac{v_o}{v_i}$	$-\frac{g_m R_L}{1 + g_m R_S} \left(\frac{R_G}{R_I + R_G} \right)$	$+\frac{g_m R_L}{1+g_m R_L} \left(\frac{R_G}{R_I + R_G}\right) \cong +1$	$+\frac{g_m R_L}{1+g_m(R_I R_6)} \left(\frac{R_6}{R_I + R_6}\right)$				
Input terminal resistance	∞	∞	$1/g_m$				
Output terminal resistance	$r_o(1+g_mR_S)$	$1/g_m$	$r_o[1+g_m(R_I\ R_6)]$				
Input signal range	$0.2(V_{GS}-V_{TN})(1+g_mR_S)$	$0.2(V_{GS}-V_{TN})(1+g_mR_L)$	$0.2(V_{GS}-V_{TN})[1+g_m(R_I\ R_6)]$				
Terminal current gain	∞	∞	+1				

Source comune con R_S

$$R_{G} = R_{1} / / R_{2}; R_{L} = R_{D} / / R_{3}$$
 $A_{V} = -\frac{g_{m}R_{L}}{1 + g_{m}R_{S}} \frac{R_{G}}{R_{I} + R_{G}}$
 $R_{IN} = R_{G}$

$$R_{OUT} = r_o (1 + g_m R_S) // R_D$$

$$v_g < 0.2(V_{GS} - V_T) (1+g_m R_S)$$

Drain comune

$$R_G = R_1 // R_2$$
$$R_L = R_6 // R_3$$

$$A_V = \frac{g_m R_L}{1 + g_m R_L} \frac{R_G}{R_I + R_G}$$

$$R_{IN} = R_{G}$$

$$R_{OUT} = (1/g_m)//R_6 \cong 1/g_m$$

$$v_{g} < 0.2(V_{GS} - V_{T}) (1+g_{m}R_{L})$$

$$R_{TH} = R_6 //R_1$$

$$R_L = R_D //R_3$$

$$A_V = \frac{g_m R_L}{1 + g_m R_{th}} \frac{R_6}{R_I + R_6}$$

$$R_{IN}=1/g_m//R_6\cong 1/g_m$$

$$R_{OUT} = r_o(1 + g_m R_{th})$$

$$v_g < 0.2(V_{GS} - V_T) (1+g_m R_{TH})$$

NB: R_3 = resistenza di carico esterna; R_1 resistenza da G a massa R_2 resistenza da G a V_{DD} R_6 = resistenza di source negli schemi a drain comune e gate comune

modello SPICE di un transistor MOSFET

Per inserire un transistor MOS in un listato SPICE:

<nome transistor Mx...> <nodo drain> <nodo gate> <nodo source> <nodo sub> <modello> <lunghezza del canale> <larghezza del canale>

M1 3 2 1 4 NMOS L=10u W=100u

Il modello citato ha il nome «NMOS»; ci deve essere un'istruzione che ne definisce le caratteristiche:

.MODEL NMOS <tipo> <soglia> <kp, kn> < λ >
.MODEL NMOS NMOS VT0= 1 V KP = 0,5m LAMBDA = 0.0133

NOTA BENE: IL PARAMETRO KP RAPPRESENTA QUELLO CHE ABBIAMO CHIAMATO $k'_n = \mu_n C_{ox}$ PER SPICE IL PARAMETRO SI CHIAMA SEMPRE KP ANCHE SE IL TRANSISTOR E' A CANALE N

Il modello utilizzato per il transistor MOS (SPICE LEVEL 1) è lo stesso modello visto a lezione,

$$I_D = 1/2k'_n(W/L)(V_{GS}-V_{Tn})^2(1+\lambda V_{DS})$$
 in saturazione;

 $I_D = k'_n(W/L)[(V_{GS}-V_{Tn}) - (1/2)V_{DS}]V_{DS}$ in zona lineare;

SPICE-list degli amplificatori base

Nel seguito, i circuiti e listati SPICE degli amplificatori di base (come esempi) e i due esercizi da svolgere

Caratteristiche del MOS enhancement a canale N amplificatore a source comune con doppia alimentazione amplificatore a source comune, a drain comune e a gate comune con 4R

Esercizio 1 – Circuito a diodi

obiettivo: verificare il comportamento di un diodo Zener in un circuito a diodi; il diodo Zener è modellato come un diodo qualsiasi con tensione di breakdown fissata.

(nota: questo non sarebbe del tutto corretto, perchè in questo modo la resistenza in serie in polarizzazione diretta è uguale a quella in breakdown, mentre solitamente la resistenza in breakdown è molto più bassa).

Esercizio 2 – Amplificatore con circuito di autopolarizzazione obiettivo: studiare come variano le condizioni di linearità (in senso generale, non solo quelle dettate dalla «linearizzazione» dell'espressione della corrente) introducendo una resistenza tra gate e massa nel circuito di autopolarizzazione del MOSFET.

caratteristiche I_D-V_D del MOSFET

MOS transistor transfer characteristics

.MODEL CMOSN1 NMOS LEVEL=1 VTO=0.8184 KP=45.1u LAMBDA=0.0332

VG 1 0 DC 1

VDD 4 0 DC 5

VM142

M1 2 1 0 0 CMOSN1

.DC VDD 0 8 0.05 VG 2 5 1

.backanno

.end

amplificatore a source comune con doppia alimentazione

- * D:\@FONDAMENTI DI ELETTRONICA\2017-
- *2018\file SPICE con circuiti\common source MOS
- *amplifier with RS.asc

M1 N002 vg N004 N004 NMOS

RD N001 N002 30k

RS N004 N005 2k

C3 vo N002 100µ

R3 vo 0 300k

RG vg 0 1MEG

C1 vg N003 100µ

RI vi N003 20k

R5 N003 vi 50

vi vi 0 DC 0 AC 100m sin(0 0.1V 10kHz 0 0 0)

VDD N001 0 10V

VSS 0 N006 10V

R4 N005 N006 30k

C2 N005 N006 100µ

.model NMOS NMOS VTO=1 Kp=0.5m

LAMBDA=0.0133

.model PMOS PMOS

*.ac DEC 10 10 10MEG

.TRAN 1u 250u 0 1u

*.op

.backanno

.end

amplificatore a source comune con doppia alimentazione

Amplificatore a source comune con 4R


```
*common source MOS amplifier 4R.asc
```

M1 VD vg VS VS NMOS

RD N001 VD 22k

RS VS N003 2k

C3 vo VD 100µ

R3 vo 0 100k

R1 vg 0 1.5Meg

C1 vg N002 100µ

RI N002 vi 2k

vi vi 0 DC 0 AC 100m sin(0 0.1V 10kHz 0 0 0)

VDD N001 0 10V

R4 N003 0 10k

C2 N003 0 100µ

R2 N001 vg 2.2Meg

.model NMOS NMOS VTO=1 Kp=0.5m

+ LAMBDA=0.0133

.model PMOS PMOS

*.ac DEC 10 10 10MEG

.TRAN 1u 250u 0 1u

*.op

.backanno

.end

Amplificatore a source comune con 4R

Amplificatore MOS a drain comune 4R

common drain MOS amplifier 4R.asc

M1 VD vg VS VS NMOS

RD N001 VD 22k

C3 vo VS 100u

R3 vo 0 100k

R1 vg 0 1.5Meg

C1 vg N002 100u

RI N002 vi 2k

Vi vi 0 SINE(0 100m 100k) AC 100m 0 DC 0

VDD N001 0 10

R4 VS 0 12k

R2 N001 vg 2.2Meg

C2 0 VD 100u

.model NMOS NMOS VTO=1 Kp=0.5m

+ LAMBDA=0.0133

.model PMOS PMOS

.TRAN 0u 250u 0 5u

*.ac DEC 10 10 10MEG

.op

.backanno

.end

Amplificatore MOS a drain comune 4R

Amplificatore MOS gate comune 4R


```
*common gate MOS amplifier 4R.asc
```

M1 VD vg VS VS NMOS

RD VDD VD 22k

*RD VDD VD {RDRAIN}

C3 vo VD 100U

R3 vo 0 100k

R1 vg 0 1.5Meg

C1 VS N002 100U

RI N002 vi 2k

Vi vi 0 SIN(0 100m 100k) AC 100m 0 DC 0

VDD VDD 0 10V

R4 VS 0 12k

R2 VDD vg 2.2Meg

C2 vg 0 100U

.model NMOS NMOS VTO=1 Kp=0.5m LAMBDA=0.0133

.model PMOS PMOS

*.STEP PARAM RDRAIN 2k 44k 8k

.TRAN 0u 25u 0 0.5u

*.ac DEC 10 10 10MEG

.op

.backanno

.end

Amplificatore MOS gate comune 4R

Esercizio 1 Circuito a diodi

Nel circuito in figura, D1 e D2 sono diodi ideali con una caduta di tensione in diretta $V\gamma$ =0.5 V e resistenza serie nulla. D3 è un diodo Zener con tensione di breakdown (o tensione di Zener) di 7 V, mentre la tensione di ginocchio in diretta è nulla: $V\gamma_{Zener}$ =0V. Queste caratteristiche sono già realizzate nelle .model SPICE inserite.

V2 e V3 sono generatori di tensione DC V=2 V, costante, mentre V1 varia tra -12V e +12V.

- A) Tracciare i grafici di Vout vs V1 e Vx vs V1 tra -12V e +12V, calcolati analiticamente
- B) simulare le caratteristiche Vout vs V1 e Vx vs V1 tra -12V e +12V con SPICE
- C) qual è la massima potenza dissipata dal diodo Zener ? (con qualunque metodo)

.dc V1 -12 12 0.5 .model D D RON=0 VFWD=0.5 .model DZ D Is=100pA n=0.001 RS=0 BV=7V IBV=10m

Il circuito in figura rappresenta un amplificatore a source comune con circuito di autopolarizzazione. Il transistor nMOS ha una tensione di soglia V_{Tn} pari a 1V, k'_n =8mA/V², W=100 μ m e L=2 μ m, λ =0. All'ingresso è connesso un generatore di tensione sinusoidale di ampiezza 10 mV, frequenza 1kHz; all'uscita una resistenza di carico da 1k Ω .

- 1. Porre RG1 pari al proprio numero di matricola, RG2 = ∞
- 1.1 Calcolare analiticamente il punto di polarizzazione DC del transistor (VI=0): VGSQ, VDSQ, IDQ
- 1.2 Calcolare g_m ; $(r_0 = \infty)$
- 1.3 Disegnare il modello per piccolo segnale dell'amplificatore e calcolare il guadagno in tensione Av = vout/vI, la resistenza di ingresso Rin, la resistenza di uscita vista da Vout senza R3.

- 1.4 Simulare con SPICE il punto operativo (DC) del circuito e verificare i valori trovati analiticamente
- 1.5 Con f(vI) = 1 kHz, simulare con SPICE 10 periodi di vI, vout; simulare Av=Vout/vI e confrontare il valore ottenuto con i risultati analitici
- 1.6 Ripetere il punto 1.5 con ampiezza del segnale vI pari a 100 mV: spiegare cosa avviene
- 1.7 Calcolare analiticamente e verificare tramite simulazioni il massimo valore dell'ampiezza del segnale vI che garantisce una risposta lineare dell'amplificatore

- 2. Porre RG1=RG2=al proprio numero di matricola
- 2.1 Calcolare analiticamente il punto di polarizzazione DC del transistor (VI=0): VGSQ, VDSQ, IDQ
- 2.2 Calcolare g_m ; $(r_0 = \infty)$
- 2.3 Disegnare il modello per piccolo segnale dell'amplificatore e calcolare il guadagno in tensione Av = vout/vI, la resistenza di ingresso Rin, la resistenza di uscita vista da Vout senza R3.

- 2.4 Simulare con SPICE il punto operativo (DC) del circuito e verificare i valori trovati analiticamente
- 2.5 Con f(vI) = 1 kHz, simulare con SPICE 10 periodi di vI, vout; simulare Av=Vout/vI e confrontare il valore ottenuto con i risultati analitici
- 2.6 Calcolare analiticamente e verificare tramite simulazioni il massimo valore dell'ampiezza del segnale vI che garantisce una risposta lineare dell'amplificatore

3. Ora ricalcolare il punto di lavoro come segue: **porre W=L=10µm,** k'_n =8 mA/V², V_{Tn} = 1V, 3.1 riprogettare il circuito (RG1, RG2 e RD) in modo che la corrente di drain sia I_D =1 mA, che V_{DS} = V_{OV} + 2V = V_{GS} - V_{Tn} +2V, e che la corrente attraverso RG1 e RG2 sia 100nA

Con il nuovo circuito:

- 3.2 Simulare con SPICE il punto operativo (DC) del circuito e verificare i valori trovati analiticamente
- 3.3 Con f(vI) = 1 kHz, simulare con SPICE 10 periodi di vI, vout; simulare Av=Vout/vI e confrontare il valore ottenuto con i risultati analitici
- 3.4 Verificare, solo tramite simulazioni il massimo valore dell'ampiezza del segnale vi che garantisce una risposta lineare dell'amplificatore
- 4. Confrontare Av, Rin, Rout nei tre amplificatori.

