Symbol	Definition
G(C,R)	Ontology graph
$C = \{c_1, c_2, \dots, c_n\}$	Set of concepts constituting the vertices of the ontology graph
$R = \{R_{ij} \mid i = 1,, n, j = 1,, n, j > i\}$	Set of relations constituting the edges of the ontology graph
$R_{ij} = \{r_{ij}^1, r_{ij}^2, \dots, r_{ij}^m, m < n\}$	Set of relations between concepts c_i and c_j in $G(C,R)$
$Q = \left\{ (k_t, c_t) \right\}$	Query as a collection of pairs (keyword, concept)
$G_Q(C_Q,R_Q)$	Query sub-graph for query Q
$C_{Q} = \{c_{t} \mid (k_{t}, c_{t}) \in Q\}$	Set of concepts constituting the query sub-graph
$R_Q = \{\overline{R_{ij}} \mid 1 \le i \le n, 1 \le j \le n, j > i\}$	Set of relations constituting the query sub-graph
$\overline{R}_{ii} = \left\{ \overline{r_{ii}} \mid c_i, c_j \in C_{O}, R_{ii} \ge 1 \right\}$	Set of relations between c_i and c_j in the query sub-graph
$\eta_{ii} = \overline{R}_{ii} $	Number of relations between c_i and c_j in $G_Q(C_Q, R_Q)$
A = (AC, AR)	Graph-based annotation (AC and AR are the sets of concepts and relations)
$AR_{ij} = \left\{ r_{ij}^{d} \mid r_{ij}^{d} \in AR, \ 1 \leq d \leq m \right\}$	Set of relations between c_i and c_j in AR
$G_{Q,p}(C_{Q,p},R_{Q,p})$	Page sub-graph for page p given the query Q
$C_{Q,p} = \left\{ c_t \mid c_t \in C_Q \cap AC \right\}$	Set of concept of page sub-graph $G_{Q,p}(C_{Q,p},R_{Q,p})$
$R_{Q,p} = \left\{ \overline{r}_{ij} \mid c_{ij}, c_{j} \in G_{Q,p} \right\}$	Set of relations of page sub-graph $G_{Q,p}(C_{Q,p},R_{Q,p})$
$\delta_{\vec{v}} = AR_{\vec{v}} $	Number of relations c_i and c_j in $G_Q(C_Q, R_Q)$
$ \tau_{ij} = P(\overline{r_{ij}}, p) = \delta_{ij} / \eta_{ij} $	Relation probability for $\overline{r_i}$ in page p given the query Q
$SF_{Q,p}(I)$	Set of spanning forests (l edges) for page p and query Q
$SF_{o,p}^{f}(l)$	f-th spanning forest (l edges) for page p and query Q
$\sigma_{q,p}(l) = SF_{q,p}(l) $	Number of spanning forests (l edges) for page p and query Q
P(Q,p,l)	Constrained relevance score for page p , query Q , relevance class l
$ps_{Q,p}$	Relevance score of page p for a given query Q

```
Label the edges in G_o, with an index ranging from 1 to R_o,
Define variables & and & to index graph edges
Set \eta_{r} = \eta_{r} //number of relations linking concepts
               //i and j in the ontology graph (edge eeR_{o,*})
                 //number of relations linking concepts
Set \delta_{r} = \delta_{r}
                 //i and j in the page sub-graph (edge e \in R_{0,p})
Set r_s = \eta_s / \delta_s //relation probability for edge e
Mark all the edges in G_{\alpha}, as not visited
Allocate weight vector W of size C_{\alpha} -1
                // W[I] stores the accumulated constrained
                //probabilities for page forests of length l
Allocate vector \Sigma of size |C_{o,r}|-1
                // \( \( \sum_{I} \) stores the number of page forests
                //for a given length I
Initialize W and \Sigma to zero
for e=1, e \le R_0, e=e+1
  mark edge eas visited
  visit (e,e,l,r,)
  W[1] = W[1] + r
  \Sigma[1] = \Sigma[1] + 1
function visit (o,e,l,s)
  a=a+1
  while a \le R_0, and l \le C_0, -1
    if a is not visited and a is safe
        //(does not introduce cycles, checked through DFS)
        mark edge a as visited
        visit (o,a,l+1,s×r)
        W[l+1] = W[l+1] + s
        \Sigma[l+1] = \Sigma[l+1] + 1
        set edge a as not visited
     al sa
         a = a + 1
```


Step# 01

User Quexy

lets Suppose usex types the guesty consisting the Following Concepts:

 $Q = \{(K_0,C_0), (K_1,C_1), (K_2,C_2), (K_3,C_3), (K_4,C_4)\}$

Here Ki represent Keywords like Activity, destination etc.

An Query Armotation Graph:-

$$R_{9} = \{R_{01}, R_{05}, R_{17}, R_{13}, R_{23}\}$$

and $R_{01} = \{Y_{01}, Y_{01}\}$.

Query Sub-Graph: -

Number of relation 6/w i and i Concepts:

8is	Mis	ZYE
· ×.	Mcs Mes	2
	η,,	3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nou	2
804		
813	N+3	2
7 10.00	n	2
8,3	73	

(Table: 1)

Step#02

when uses Presses the Sorch button then Suppose there are two pages where the Concepts mentioned in the Query are funded.

Page one Amotation Graph:-Gg.P. (Cg.P., Rg.P.):-

$$C_{9}, P_{1} = \{C_{0}, C_{1}, C_{2}, C_{3}\}$$
 $R_{9}, P_{1} = \{R_{01}, R_{12}, R_{13}, R_{3}\}$

and
 $R_{01} = \{X_{01}\}$

Page one Sub-Graph:

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	84	7re
701	801	
8 62	812	2.
8	8,3	
7	823	

Table(2)

Page Two Armotation Graph:-

: {Sis=Number of relations Shori and i Concepts.

$$C_{9,P_2} = \{C_{0,C_{1},C_{1},C_{3}}\}$$
 $R_{9,P_2} = \{R_{01},R_{12},R_{13},R_{23}\}$
 $R_{01} = \{R_{01},R_{12},R_{13},R_{23}\}$

Page Two Sub-Graph:

¥11	Sis	7re	
80,	801	10	
7,2	58126	A. T	
813	813	1	
Ý,3	8,3	2	
1	1		

Table (3).

Step#03.
Relational Probability (Tii):-

Page one,

$$P(\overline{\zeta_{01}}, P_{1}) = \overline{\zeta_{01}} = \frac{\delta_{01}}{\gamma_{01}} = \frac{1}{2} = 0.5$$

$$P(\overline{\zeta_{12}}, P_{1}) = \overline{\zeta_{12}} = \frac{\delta_{12}}{\gamma_{12}} = \frac{2}{3} = 0.66$$

$$P(\overline{\zeta_{13}}, P_{1}) = \overline{\zeta_{13}} = \frac{\delta_{13}}{\gamma_{13}} = \frac{1}{2} = 0.5$$

$$P(\overline{\zeta_{23}}, P_{1}) = \overline{\zeta_{23}} = \frac{\delta_{23}}{\gamma_{13}} = \frac{1}{2} = 0.5$$

Page Two: -

$$P(\overline{X}_{01}, P_{2}) = \overline{X}_{01} = \frac{801}{\eta_{01}} = \frac{c}{2} = 0$$

$$P(\overline{X}_{12}, P_{2}) = \overline{X}_{12} = \frac{812}{\eta_{12}} = \frac{1}{3} = 0.33$$

$$P(\overline{X}_{13}, P_{2}) = \overline{X}_{13} = \frac{817}{\eta_{13}} = \frac{1}{3} = 0.5$$

$$P(\overline{X}_{13}, P_{2}) = \overline{X}_{13} = \frac{817}{\eta_{13}} = \frac{1}{3} = 0.5$$

Minimum Leagth of spanning forest. Step#05 page one, l=No. of Non-zero weighted edges -1 L=4-1 = 3 Page Two: 1=3-1=2 Step# 06:-Page Relevence Score:- $P(G,P,U) = P[U] \left(\sum_{j=1}^{|SF_{g,p}(U)|} \left(\sum_{j=1}^{|SF_{g,p}(U)|} \left(\sum_{j=1}^{|SF_{g,p}(U)|} \sum_{$ irmoge for rodonie: Staple)

15Fa.p(l)

15Fa Page One: 3 6(2,63) = [b((2,102" Ux" Ux")N 2, E" b) (b((2,02" Ux")U2)) U(P((801) 813) N. SFG.P.) = [Jo1. J12. J23. EG,P] + [J01. J13. J23. EG,D] + [J., J,3. J, 2. 60, P.]

$$= \left[\left(\int_{0}^{1} \int_{12}^{1} \int_{23}^{1} \right) + \left(\int_{0}^{1} \int_{13}^{1} \int_{23}^{1} \right) + \left(\int_{0}^{1} \int_{13}^{1} \int_{12}^{1} \right) \right] / 869P_{1}$$

$$= \left[\left(\int_{0}^{1} + \int$$

P(G,P,3) = 0.1527

= 0.3333

Step#07 Final page Relevence Scores. PS g,p = P (g,p, Man(L)) + man(L) | P(g,P,L) + 0 satisfied. PS g.P. = 0.1527+3 = 3.1527, e[l,l+1] Page Two. PS_8,P2 = 0.3333+2 satisfied = 2·3333 , e [l, l+1] Step#08:-Arranging page relevenue score in decreosing order A Company 2.3333 V Hence page one will be shown before the page two