

The Models to be Covered

Linear Support
Vector
Classifier

Logistic Regression

Decision Trees

Naive Bayes

Linear Support Vector Classifier

Logistic Regression

$$L_{BCE} = -\frac{1}{n} \sum_{i=1}^{n} (Y_i \cdot \log \hat{Y}_i + (1 - Y_i) \cdot \log (1 - \hat{Y}_i))$$

Decision Trees

Student	Income	CR	Age	Buys
No	High	-	<=30	No
No	High	-	3140	Yes
No	Medium	Fair	>40	Yes
No	Medium	Fair	3140	Yes
No	Medium	Fair	<=30	No
Yes	Low	Fair	-	Yes
Yes	Low	Excellent	>40	No
Yes	Low	Excellent	3140	Yes
Yes	Medium	-	-	Yes
Yes	High	-	-	Yes
No	Medium	Fair	>40	? -> YES

Naive Bayes Classifier

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

- P(c|x) is the posterior probability of *class* (target) given *predictor* (attribute).
- P(c) is the prior probability of *class*.
- P(x|c) is the likelihood which is the probability of *predictor* given *class*.
- P(x) is the prior probability of *predictor*.