Home It have oboled by the Stevens Home Esyster - Home Golm Linear Algebra - 11A 232 > Hw #5 $1. \quad A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ $A\vec{x} = \lambda \vec{x}$ by def of eigen vector → (A-AI)x=ô ~ Find N(A-AI). det [-1-2 3] = 0 as couses space to "squish" to lower dim. $\rightarrow +\lambda +\lambda^2 -6 = 0 \rightarrow (\lambda +3)(\lambda -2) = 0$ For (1 = -3) $\begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} -3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 & 1 \end{bmatrix}$ dependent / For (1 = 2) $\begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0} \rightarrow \vec{x} = \vec{x}$ Note by the nature of eigenvalues, the transformation [-13] will not change its eigenvectors!!! Thus A2 has eigen vectors [vi = [-3] Finding A's eigen valeres: > Next page.

Eigenvalue =
$$\begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$$

Eigenvalue = $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$

Ev' A^2

Ev A^2

Ev A^2

Ev A^2

Ev A^2

Notice $A \circ A^2 - A^2$ of A . Calculate

$$A = \begin{bmatrix} x_1 & x_2 \\ x_1 & 2 \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} x_1 & \dots & x_{n1} \\ x_{1n} & \dots & x_{nn} \end{bmatrix}$$

Since $\forall A$, $det(A) = det(AT)$
 $\Rightarrow det(A - AT) = det(AT - AT)$ as as $-AT$ term only effects unchanged diagonal of $A \neq A^T$.

Ex. $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow (1 - A)(2 - A) \Rightarrow (1 - A)(2 -$

3. i)
$$\partial c + (A-I\lambda) = \hat{0}$$

 $\Rightarrow (1-\lambda)(3-\lambda) = 0$
 $\Rightarrow \lambda = 1, 3$

$$\frac{\lambda - 1}{\left[\begin{array}{c} 0 & \alpha \\ 0 & 2 \end{array} \right] \vec{x} = \vec{0} \Rightarrow \vec{V}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \frac{\lambda = 3}{\left[\begin{array}{c} -2 & \alpha \\ 0 & 0 \end{array} \right] \vec{x} = \vec{0} \Rightarrow \vec{V}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}}$$

$$S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 0 & 1 \end{bmatrix}$$

ii)
$$\det(B-I\lambda)=\hat{0}$$

 $\Rightarrow (1-\lambda)(3-\lambda)-3=\hat{0}\Rightarrow 3-4\lambda+\lambda^2-3=\lambda(\lambda-4)=0$
 $\Rightarrow \lambda=0,4$

$$\frac{\lambda=0}{\begin{bmatrix} 3\\3 \end{bmatrix}} \hat{x} = \hat{0} \Rightarrow \hat{V}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$\begin{bmatrix} -3\\3-1 \end{bmatrix} \hat{x} = \hat{0} \Rightarrow \hat{V}_2 = \begin{bmatrix} 1\\3 \end{bmatrix}$$

$$S = \begin{bmatrix} -1 & 3 \\ -1 & 3 \end{bmatrix}$$
 $S = \begin{bmatrix} -1 & 1 \\ -1 & 3 \end{bmatrix}$
 $S = \begin{bmatrix} -1 & 1 \\ -1 & 3 \end{bmatrix}$
 $S = \begin{bmatrix} -1 & 1 \\ -1 & 3 \end{bmatrix}$
 $S = \begin{bmatrix} -1 & 1 \\ -1 & 3 \end{bmatrix}$
 $S = \begin{bmatrix} -1 & 1 \\ -1 & 3 \end{bmatrix}$

$$\begin{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 \end{bmatrix} \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$$

#5)
$$\stackrel{?}{\lambda}$$
) $R^{T}R = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 1 & 1 \end{bmatrix}$
 $Oet(127) = (2)$
 $Oet(1235) = (1)$
 $Oet(135) = (1)$
 $Oet($

Is positive desinite