

Área de Aplicaçãoinhas de Transmissão

Título do Documento: Isolador Pilar de 138 kV

Público

Sumário

1.	OBJETIVO
2.	ÂMBITO DE APLICAÇÃO
3.	DEFINIÇÕES
	DOCUMENTOS DE REFERÊNCIA
5.	REGRAS BÁSICAS
3.	REGISTRO DE ALTERAÇÕES
	ANEXOS

1. OBJETIVO

Especificar as características técnicas do isolador pilar de porcelana de 138 kV para aplicação em linhas de distribuição.

2. ÂMBITO DE APLICAÇÃO

Distribuidoras do Grupo CPFL Energia.

2.1 Área

Engenharia, Operações de Subtransmissão, Suprimentos e Gestão de Ativos.

3. DEFINIÇÕES

3.1 Isolador pilar

É um componente utilizado para isolar a tensão entre os cabos da rede de energia dos outros componentes da estrutura de sustentação desta rede, utilizando a sua base para fixação, sem a utilização de pino.

4. DOCUMENTOS DE REFERÊNCIA

ABNT NBR 5032: Isoladores para Linhas Aéreas com Tensões Acima de 1000V;

ABNT NBR12459: Isolador Pilar de Porcelana – Padronização de Dimensões e Características.

Norma Técnica ANSI C29.7, Wet Process Porcelain Insulators, High Voltage Line Post Type

5. REGRAS BÁSICAS

5.1 Características gerais

Deve ser conforme o ANEXO A - Desenho, características e códigos do isolador pilar de 138 kV, além das prescrições aplicáveis da Norma Técnica ANSI C29.7.

O dielétrico do corpo do isolador deverá ser de porcelana aluminosa cerâmica, com acabamento vitrificado na cor cinza claro referência Munsell 5 BG 7.0/0.4.

Nº Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
5420	Manual	1.4	Caius Vinicíus S Malagoli	18/10/2019	1 de 5

Área de Aplicaçãoinhas de Transmissão

Título do Documento: Isolador Pilar de 138 kV

Público

A extremidade superior do isolador deverá:

- Na 'opção 1', ser provida de dispositivo para fixação e de grampo oscilante em alumínio para sustentação de cabos condutores com bitolas de diâmetros externos na faixa de 25 a 38 mm;
- Na 'opção 2', ser provida de ferragem em chapa com dois furos 26mm, 38mm de espaçamento entre furos para possibilitar a utilização de grampo de suspensão e a instalação de mão francesa de isolador polimérico.

A campânula superior e a base do isolador deverão ser confeccionadas em ferro maleável galvanizado a quente. A base deverá ser provida de 4 furos de 5/8" provido de 4 parafusos prisioneiros de 5/8", em aço SAE 1045, para fixação do isolador pilar ao suporte superior.

5.2 Ensaios

Deverão ser executados conforme a Norma Técnica ANSI C29.1, Test Methods for Electrical Power Insulators.

5.3 Identificação

Deverão ser marcadas de forma legível e indelével em cada isolador, no mínimo:

- a) Nome ou marca do fabricante
- b) Ano de fabricação
- c) Capacidade nominal de ruptura à flexão.

5.4 Acondicionamento

A fornecedor deverá garantir que a embalagem do material preserve seu desempenho e suas funcionalidades durante o transporte, movimentação e armazenamento. Sempre que necessário, deverá informar as condições especiais de transporte, movimentação e armazenamento. A embalagem deverá ser elaborada com material reciclável. Não serão aceitas embalagens elaboradas com poliestireno expandido, popularmente conhecido como "isopor".

6. REGISTRO DE ALTERAÇÕES

6.1 Colaboradores

Empresa	Área	Nome
CPFL Paulista	REDN	Marcelo de Moraes
CPFL Piratininga	REDN	Celso Rogério Tomachuk dos Santos

6.2 Alterações

Versão Anterior	Data da Versão Anterior	Alterações em relação à Versão Anterior
1.2		Item 3, incluída a opção 2, ferragem da cabeça para utilização de grampo de suspensão e fixação de mão francesa de isolador polimérico.
		Item 1, incluídas as distribuidoras RGE Rio Grande Energia, CPFL

Nº Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
5420	Manual	1 4	Caius Vinicius S Malagoli	18/10/2019	2 de 5

Área de Aplicaçãoinhas de Transmissão

Título do Documento: Isolador Pilar de 138 kV

Público

		Santa Cruz, CPFL Jaguari, CPFL Leste Paulista, CPFL Mococa e CPFL Sul Paulista.
1.3	18/12/2013	Atualizada as normas de referência. A formatação foi atualizada conforme norma interna vigente.

Área de Aplicaçãoinhas de Transmissão

Título do Documento: Isolador Pilar de 138 kV

Público

7. ANEXOS

ANEXO A - Desenhos, características e códigos do Isolador pilar de 138 kV

Nº Documento: 5420

Categoria: Manual Versão: 1.4

: Aprovado por: Caius Vinicíus S Malagoli

Data Publicação: 18/10/2019

Página: 4 de 5

Área de Aplicaçãoinhas de Transmissão

Título do Documento: Isolador Pilar de 138 kV

Público

Detalhes do suporte superior

Detalhes da placa de reforço

Distância de esc	2920				
Ruptura à flexão	12,5				
Ruptura à tração	Ruptura à tração [kN]				
	Tensão suportável nominal	A seco	335		
	de frequência industrial [kV]	Sob chuva	275		
	Tensão disruptiva	A seco	435		
Características	de frequência industrial [kV]	Sob chuva	335		
elétricas	Tensão suportável nominal de impulso atmosférico, NBI [kV]		650		
	Tensão de rádio interferência	Ensaio [kV]	88		
	em 1000 kHz	Máximo [μV]	200		
Cádigo do mator	ial	Opção 1	40-000-003-017		
Código de mater	iai	Opção 2	11-000-020-925		

N° Documento: 5420

Categoria: Manual Versão: 1.4

Aprovado por: Caius Vinicíus S Malagoli Data Publicação: 18/10/2019 Página: 5 de 5