Optimización Robusta de Planes de Extracción Minera

Juan Pablo Vielma

University of Pittsburgh

Trabajo conjunto con Daniel Espinoza, Guido Lagos y Eduardo Moreno

Universidad de Antofagasta, 2011 - Antofagasta, Chile

- Introducción
- Modelo Programación Entera Estocástica
- Medidas de Riesgo
- Experimentos Computacionales
- Conclusiones

Modelo de Bloque Mina de Rajo Abierto

Paso 1: Que bloques extraer?

Paso 2: Cuales Bloques Proceso?

Programa entero: eXtraer y Procesar

$$p_i \le x_i \quad \forall i$$

$$x_i = \begin{cases} 1 & \text{si el bloque } i \\ & \text{es extraido} \\ 0 & \text{si no} \end{cases}$$

$$p_i = \begin{cases} 1 & \text{si el bloque } i \\ & \text{es procesado} \\ 0 & \text{si no} \end{cases}$$

Extraer = Reglas de Precedencia

$$x_i \leq x_j \quad \forall j \in \mathcal{P}_i$$

Formulación 0-1

Ley del bloque

$$\max \sum_{i=1}^{N} (A_i \lambda_i - B_i) p_i + E_i x_i$$

$$p_i \le x_i \qquad \forall i \in \{1, \dots, n\}$$

$$x_i \le x_j \qquad \forall i \in \mathcal{P}_i$$

$$\sum_{i=1}^{n} D_i x_i \le D_0$$

Capacidad de Extracción

$$\sum_{i=1}^{n} F_i p_i \le F_0$$

$$x_i, p_i \in \{0, 1\}$$

$$x_i, p_i \in \{0, 1\} \quad \forall i \in \{1, \dots, n\}$$

Que pasa con ley incierta?

ución finta uniforme: k escenarios

das con simulación condicional

Simulacion Condicional v/s Kriging

Kriging

Simulación Condicional

Kriging = Tomar el Promedio

Múltiples Modelos Modelo Promedio

Optimización

Plan de Extracción

Podemos Evaluar Escenarios

Múltiples Modelos

Optimización

Múltiples Planes Mejor Plan

Programación Estocástica

Múltiples Modelos

Optimización

Plan de Extracción

Ley es un vector aleatorio

- Ley Estocástica
 - Distribución finta uniforme: k escenarios
 - Obtenidas con simulación condicional

$$\tilde{\lambda} \sim U\left(\left\{\lambda^{j}\right\}_{j=1}^{k}\right) \quad \Leftrightarrow \quad \mathbb{P}(\tilde{\lambda} = \lambda^{j}) = \frac{1}{k} \quad \forall j \in \{1, \dots, k\}$$

$$\mathbb{P}\left(\tilde{\lambda}_1 = \lambda_1^j \wedge \ldots \wedge \tilde{\lambda}_N = \lambda_N^j\right) = \frac{1}{k} \quad \forall j \in \{1, \ldots, k\}$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \sum_{i=1}^{N} E_i x_i + \sum_{i=1}^{N} \tilde{\lambda}_i p_i$$
$$x \in X \subset \{0,1\}^N \qquad p \in P \subset \{0,1\}^N$$
$$p_i \le x_i \quad \forall i \in \{1,\dots,n\}$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \sum_{i=1}^{N} E_i x_i + \sum_{i=1}^{N} \tilde{\lambda}_i p_i$$

$$x \in X \subset \{0,1\}^N \qquad p \in P \subset \{0,1\}^N$$

$$p_i \le x_i \quad \forall i \in \{1,\dots,n\}$$

Programa estocástico de 2 etapas

Programa estocástico de 2 etapa
$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^N E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^N \tilde{\lambda}_i p_i \\ p \in P \subset \{0,1\}^N \\ p_i \leq x_i \quad \forall i \in \{1,1\}^N \end{bmatrix}$$

$$\sum_{i=1}^{N} \lambda_i p_i$$

$$p \in P \subset \{0, 1\}^N$$

$$p_i \le x_i \quad \forall i \in \{1, \dots, n\}$$

Etapa 1

Programa estocástico de 2 etapas

Programa estocástico de 2 etapas
$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda}_i p_i \\ p \in P \subset \{0,1\}^N \\ p_i \leq x_i \quad \forall i \in \{1,\dots,n\} \end{bmatrix}$$

Etapa 1

Programa estocástico de 2 etapas

$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda}_i p_i \\ p \in P \subset \{0,1\}^N \\ p_i \le x_i \quad \forall i \in \{1,\dots,n\} \end{bmatrix}$$

Etapa 1

$$p \longrightarrow p\left(\tilde{\lambda}\right)$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda}_i p_i \\ p \in P \subset \{0,1\}^N \\ p_i \le x_i \quad \forall i \in \{1,\dots,n\} \end{bmatrix}$$

Etapa 1

$$p \longrightarrow p\left(\tilde{\lambda}\right) \longrightarrow p^j \quad \forall j \in \{1, \dots, k\}$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda}_i p_i^j \\ p^j \in P \subset \{0,1\}^N \\ p_i^j \le x_i \quad \forall i \in \{1,\dots,n\} \\ \forall j \in \{1,\dots,k\} \end{bmatrix}$$

Etapa 1

$$p \longrightarrow p\left(\tilde{\lambda}\right) \longrightarrow p^j \quad \forall j \in \{1, \dots, k\}$$

Programa estocástico de 2 etapas

Programa estocástico de 2 etapas
$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda}_i p_i^j \\ p^j \in P \subset \{0,1\}^N \\ p_i^j \leq x_i \quad \forall i \in \{1,\dots,n\} \\ \forall j \in \{1,\dots,k\} \end{bmatrix}$$

Etapa 1

Programa estocástico de 2 etapas

Programa estocástico
$$\max z(x,p) := \sum_{i=1}^{N} E_i x_i + x_i \in X \subset \{0,1\}^N$$

$$\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j}$$

$$p^{j} \in P \subset \{0, 1\}^{N}$$

$$p_{i}^{j} \leq x_{i} \quad \forall i \in \{1, \dots, n\}$$

$$\forall j \in \{1, \dots, k\}$$

Etapa 1

$$\sum_{i=1}^{N} \tilde{\lambda}_i p_i^j$$

Programa estocástico de 2 etapas

$$\operatorname{max} z(x,p) := egin{bmatrix} \sum_{i=1}^N E_i x_i \ x \in X \subset \{0,1\}^N \ \end{pmatrix} + egin{bmatrix} \sum_{i=1}^N \tilde{\lambda}_i p_i^j \ p^j \in P \subset \{0,1\}^N \ p_i^j \leq x_i \quad orall i \in \{1,\dots,k\} \end{cases}$$

$$\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j}$$

$$p^{j} \in P \subset \{0, 1\}^{N}$$

$$p_{i}^{j} \leq x_{i} \quad \forall i \in \{1, \dots, n\}$$

$$\forall j \in \{1, \dots, k\}$$

Etapa 1

$$\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j} \longrightarrow \mathbb{E} \left(\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j} \right)$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} \tilde{\lambda} \\ p^j \in \mathbb{Z} \end{bmatrix}$$

$$y^j \in \mathbb{Z}$$

$$\forall j \in \mathbb{Z}$$

$$\begin{array}{l}
\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j} \\
p^{j} \in P \subset \{0, 1\}^{N} \\
p_{i}^{j} \leq x_{i} \quad \forall i \in \{1, \dots, n\} \\
\forall j \in \{1, \dots, k\}
\end{array}$$

Etapa 1

$$\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j} \longrightarrow \mathbb{E}\left(\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j}\right) \longrightarrow \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{N} \lambda_{i}^{j} p_{i}^{j}$$

Programa estocástico de 2 etapas

$$\max z(x,p) := \begin{bmatrix} \sum_{i=1}^{N} E_i x_i \\ x \in X \subset \{0,1\}^N \end{bmatrix} + \begin{bmatrix} \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{N} \lambda_i^j p_i^j \\ p^j \in P \subset \{0,1\}^N \end{bmatrix}$$
$$p_i^j \leq x_i \quad \forall i \in \{1, \dots, k\}$$

$$\frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{N} \lambda_{i}^{j} p_{i}^{j}$$

$$p^{j} \in P \subset \{0, 1\}^{N}$$

$$p_{i}^{j} \leq x_{i} \quad \forall i \in \{1, \dots, n\}$$

$$\forall j \in \{1, \dots, k\}$$

Etapa 1

$$\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j} \longrightarrow \mathbb{E}\left(\sum_{i=1}^{N} \tilde{\lambda}_{i} p_{i}^{j}\right) \longrightarrow \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{N} \lambda_{i}^{j} p_{i}^{j}$$

Esperanza sin control de riesgo?

$$\tilde{z}(x,p) \sim U\left(\left\{z_j(x,p)\right\}_{j=1}^k\right)$$

Esperanza sin control de riesgo?

$$\tilde{z}(x,p) \sim U\left(\left\{z_j(x,p)\right\}_{j=1}^k\right)$$

$$\tilde{z} \sim U\left(\left\{z_j\right\}_{j=1}^k\right)$$

$$\mathbb{E}(\tilde{z}) = \frac{1}{k} \sum_{j=1}^{k} z_j$$

- $\min_{j=1}^{k} z_j = \tilde{z}_{(1)} \le \tilde{z}_{(2)} \le \dots \le \tilde{z}_{(k)} = \max_{j=1}^{k} z_j$
- $\overline{\operatorname{VaR}}_{\frac{j}{k}}(\tilde{z}) = \tilde{z}_{(j)}$
- $\overline{\text{CVaR}}_{\frac{j}{k}}(z) = \frac{1}{j} \sum_{i=1}^{j} z_{(i)}$

$$\overline{\mathrm{VaR}}_{\varepsilon}(\tilde{z}) = \sup\{t : \mathbb{P}(\tilde{z} \ge t) \ge 1 - \varepsilon\}$$

$\overline{ ext{CVaR}}_{arepsilon}(z) = \mathbb{E}ig(z|z \leq \overline{ ext{VaR}}_{\epsilon}(z)ig)$

19/27

•
$$\mathbb{E}(\tilde{z}) = \frac{1}{k} \sum_{j=1}^{k} z_j$$
, $\min_{j=1}^{k} z_j = \tilde{z}_{(1)} \le \tilde{z}_{(2)} \le \ldots \le \tilde{z}_{(k)} = \max_{j=1}^{k} z_j$

- $\overline{\operatorname{VaR}}_{rac{j}{k}}(ilde{z}) = ilde{z}_{(j)}$
- $\overline{\text{CVaR}}_{\frac{j}{k}}(z) = \frac{1}{j} \sum_{i=1}^{j} z_{(i)}$

•
$$\overline{\text{MCH}}_{\epsilon}(z) = (1 - \epsilon)\mathbb{E}(\tilde{z}) + \epsilon \min_{j=1}^{k} z_{j}$$

$$(1 - \epsilon)\overline{\text{CVaR}}_{1}(\tilde{z}) + \epsilon \overline{\text{CVaR}}_{\frac{1}{k}}(\tilde{z})$$

CVaR y MCH: Optimización Robusta

Experimentos Computacionales

- Minas de 16.000 y 2.728 bloques
- 50, 100 y 1,000 escenarios
- Experimento 1: Una etapa
 - Efecto de diferentes medidas de riesgo
 - Efecto de uso restringido de escenarios
- Experimento 2: Efecto de usar dos etapas
- Problemas Resueltos con CPLEX 12

16000 bloques y 100 escenarios

Si evaluamos con 1000 escenarios?

CVaR: 2728 bloques y 50 escenarios

CVaR: 2728 bloques y 50 escenarios

Conclusiones

Conclusiones

- Medidas de Riesgo:
 - Diferentes comportamientos
 - Sensible al uso restringido de escenarios
- Ley de corte variable ayuda.
- Problemas reales: no basta CPLEX:
 - Chicoisne, Espinoza, Goycoolea, Moreno y Rubio (2010), Bienstock y Zuckerberg (2011)