Aim:

To study the concepts of Filtering and applying the following filters on an image

- 1. Low pass filter
- 2. High pass filter
- 3. Median filter

1) Low Pass Filter

Input Image:

Code:

import cv2 import numpy as np

Load the image image = cv2.imread('spnoise.jpeg', cv2.IMREAD_GRAYSCALE)

Define the 3x3 and 5x5 low pass filter masks mask_3x3 = np.ones((3, 3), dtype=np.float32) / 9 mask <math>5x5 = np.ones((5, 5), dtype=np.float32) / 25

Apply the 3x3 and 5x5 low pass filters filtered_image_3x3 = cv2.filter2D(image, -1, mask_3x3) filtered_image_3x3=cv2.resize(filtered_image_3x3,(256,256)) filtered_image_5x5 = cv2.filter2D(image, -1, mask_5x5) filtered_image_5x5=cv2.resize(filtered_image_5x5,(256,256))

Display the original image and filtered images cv2.imshow('Original Image', image) cv2.imshow('Filtered Image (3x3)', filtered_image_3x3) cv2.imshow('Filtered Image (5x5)', filtered_image_5x5) cv2.waitKey(0) cv2.destroyAllWindows()

Output:

2) High Pass Filter

Input Image:

Code:

import cv2 import numpy as np

Load the image image = cv2.imread('cam.jpeg', cv2.IMREAD_GRAYSCALE)

```
# Define the 3x3 and 5x5 high-pass filter masks
mask_3x3 = np.array([[-1, -1, -1],
            [-1, 8, -1],
            [-1, -1, -1]], dtype=np.float32)
mask_5x5 = np.array([[-1, -1, -1, -1, -1],
            [-1, 1, 1, 1, -1],
            [-1, 1, 9, 1, -1],
            [-1, 1, 1, 1, -1],
            [-1, -1, -1, -1, -1]], dtype=np.float32)
# Normalize the filter masks to make sure the sum of the weights is 1
mask 3x3 = 9
mask_5x5 /= 25
# Apply the 3x3 and 5x5 high-pass filters using OpenCV's filter2D function
filtered image 3x3 = cv2.filter2D(image, -1, mask 3x3)
filtered_image_5x5 = cv2.filter2D(image, -1, mask_5x5)
# Convert the filtered images back to uint8 format
filtered_image_3x3 = cv2.convertScaleAbs(filtered_image_3x3)
filtered image 5x5 = cv2.convertScaleAbs(filtered image 5x5)
# Display the original and filtered images
cv2.imshow('Original Image', image)
cv2.imshow('3x3 High-Pass Filtered Image', filtered_image_3x3)
cv2.imshow('5x5 High-Pass Filtered Image', filtered image 5x5)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Output:

3) Median Filter

Input Image:

Code:

import cv2 import numpy as np

Load the image image = cv2.imread('cam.jpeg', cv2.IMREAD_GRAYSCALE)

Define the 3x3 and 5x5 median filter masks ksize_3x3 = 3

 $ksize_5x5 = 5$

Apply the 3x3 and 5x5 median filters using OpenCV's medianBlur function filtered_image_3x3 = cv2.medianBlur(image, ksize_3x3) filtered_image_5x5 = cv2.medianBlur(image, ksize_5x5)

Display the original and filtered images cv2.imshow('Original Image', image) cv2.imshow('3x3 Median Filtered Image', filtered_image_3x3) cv2.imshow('5x5 Median Filtered Image', filtered_image_5x5) cv2.waitKey(0) cv2.destroyAllWindows()

Output:

