ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИЧЕСКОЙ ЛОГИКИ И ТЕОРИИ АЛГОРИТМОВ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА) магистра

ПРИМЕНЕНИЕ ПРИНЦИПА РИССАНЕНА MDL ДЛЯ MAPKOBCKUX ЦЕПЕЙ

Ъ

выполнила студентка
группы М2 ЦТиИИ
Ремизова Анна Петровна
подпись студента
подпись студента
Поминий рукородители
Научный руководитель:
д. фм. н. профессор
Верещагин Николай Константинович

подпись научного руководителя

Москва

Содержание

1	Введение	3
	Марковские цепи с 2 состояниями 2.1 Таблицы с двоичными значениями 2.2 Анализ диграмм	4
3	Марковские цепи с 4 состояниями	11
4	Заключение	1 3
5	Приложения	15

1 Введение

Основные термины

В данной работе рассматриваются однородные марковские цепи – последовательность дискретных случайных величин x_n , обладающих Марковским свойством: $\forall n \geq 2, i_1, i_2, \cdots, i_n$ из пространства состояний $I: P(x_n = i_n | x_1 = i_1, \cdots, x_{n-1} = i_{n-1}) = P(x_n = i_n | x_{n-1} = i_{n-1})$ [1, с. 18].

Принцип Риссанена MDL используется в задаче выбора моделей для оценки моделей как по вероятности получить заданную реализацию x, так и по их сложности, отдавая преимущество более простым гипотезам. Пусть рассматривается класс параметрических моделей \mathcal{M}_k , тогда необходимо минимизировать

$$\mathcal{D}(\mathcal{M}, x) = C(\mathcal{M}) + \log_2 \frac{1}{P_{\mathcal{M}}(x)}$$
(1)

где \mathcal{M} – выбранная модель, $C(\mathcal{M})$ – сложность модели (complexity), $P_{\mathcal{M}}(x)$ – вероятность в модели \mathcal{M} получить реализацию x [2, c. 2751].

Актуальность, научная и практическая значимость работы

С помощью моделей Марковских цепей можно описывать как последовательности битов информации, так и тексты над конечным алфавитом, последовательности нуклеотидов в ДНК и т.д. Соответственно, при подборе оптимальной по сложности и по описательной точности модели можно добиться более компактного хранения и передачи информации.

Бюльманн П. и Винер А. Дж. (Bühlmann P., Wyner A. J.) в своей работе [3] рассматривают цепи Маркова переменной длины (VLMC) для контекстных моделей и задачи компактного хранения данных. При этом для решения задачи используют модификацю контекстного алгоритма Риссанена, и результатом работы является контекстный бутстрэп-алгоритм для категориальных временных рядов.

Также цепи Маркова переменной длины для анализа динамических систем бесконечных случайных буквенных последовательностей используют в работе Синак П. (Cénac P.) и др. [4]. В этой работе также используются соображения контекстного алгоритма Риссанена и понятия сложности модели при их оценке. Так как в данной работе рассматриваются бесконечные последовательности, то одной из задач ставится нахождение предельного распределения Марковской цепи, а таже меры стационарности.

Постановка задачи

По данной последовательности битов x подобрать модель Марковской цепи, оптимальную по принципу MDL для данной реализации. Подобрать модель означает указать количество состояний в модели, значения, печатаемые при посещении каждого состояния, а также матрицу переходных вероятностей за 1 шаг. Так как Марковские цепи рассматриваются однородные, то матрица переходных вероятностей не зависит от номера шага.

Цели и методы исследования

Целью исследования является поиск решений, с помощью которых для любой последовательности битов можно подобрать оптимальную по MDL модель Марковской цепи. Для

начала оптимальные модели находятся с помощью перебора моделей заранее определённого класса с варьирующимися переходными вероятностями, для каждой такой модели считается $\mathcal{D}(\mathcal{M},x)$ и выбирается оптимальная. Далее выявляются закономерности в полученных результатов и выдвигаются гипотезы о том, как можно решить задачу, не перебирая все возможные модели.

2 Марковские цепи с 2 состояниями

Для начала рассмотрим простые марковские цепи. Пусть марковская цепь состоит из 2 состояний (Рис. (1)). Дана последовательность состояний Марковской цепи из 2 состояний: 0 и 1. Найдём оптимальные переходные вероятности p из 0 в 1 и q из 1 в 0 по принципу Риссанена MDL. В данной задаче рассматриваются однородные цепи Маркова с конечным числом состояний, это означает, что переходные вероятности не зависят от номера шага, а зависят только от того состояния, в котором сейчас находится Марковская цепь.

Рис. 1: Марковская цепь с 2 состояниями

Для решения этой задачи запишем вероятность получения заданной реализации: пусть n(ij) – число переходов из состояния i в состояние j, тогда вероятность получить реализацию x цепи \mathcal{M} :

$$P_{\mathcal{M}}(x) = p^{n(01)} \cdot (1-p)^{n(00)} \cdot q^{n(10)} \cdot (1-q)^{n(11)} \to max$$
 (2)

$$\mathcal{L}(\mathcal{M}, x) = \log_2 \frac{1}{P_{\mathcal{M}}(x)} = -(n(01) \cdot \log_2 p + n(00) \cdot \log_2 (1 - p) + n(10) \cdot \log_2 q + n(11) \cdot \log_2 (1 - q))$$
(3)

Сложность $C(\mathcal{M})$ будем определять как суммарную длину дробной части записи p и q в двоичной системе счисления, так как $0 \le p, q \le 1$. Пусть вероятность p длины k, q – длины l, тогда $C(\mathcal{M}) = k + l$. Далее рассмотрим несколько реализаций Марковских цепей и исследуем, как меняются значения в зависимости от k и l.

2.1 Таблицы с двоичными значениями

В Таблицах (1, 2, 3) в каждой ячейке представлены сначала оптимальные (минимальные, т.к. ищем минимальную описательную длину) значения $\mathcal{L}(\mathcal{M}, x)$ (3), затем сложность по

Риссанену, а после - значения p и q, при которых оно достигается, представленные в двоичной системе счисления, для марковских цепей с траекториями, соответствующими 30 первым знакам π , $\sqrt{2}$, $\sqrt{3}$ соответственно. По горизонтали отмечены значения l - длина перебираемых q в двоичной системе, по вертикали - значения k - длина перебираемых p в двоичной системе.

Таблица 1: Таблица оптимальных зн-й р и q в двоичной записи для π

k / l	1	2	3	4	5	6
1	31.0	32.0	33.0	33.9891	34.9521	35.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.1001	0.10001	0.100010
2	32.0	33.0	34.0	34.9891	35.9521	36.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.100	0.1001	0.10001	0.100010
3	33.0	34.0	35.0	35.9891	36.9521	37.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.100	0.1001	0.10001	0.100010
4	34.0	35.0	36.0	36.9891	37.9521	38.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	0.1	0.10	0.100	0.1001	0.10001	0.100010
5	35.0	36.0	37.0	37.9891	38.9521	39.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000
	0.1	0.10	0.100	0.1001	0.10001	0.100010
6	36.0	37.0	38.0	38.9891	39.9521	40.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.100000	0.100000	0.100000	0.100000	0.100000	0.100000
	0.1	0.10	0.100	0.1001	0.10001	0.100010

Выводы к Таблице (1) для π : заметим, что при фиксированной длине l (по столбцам) двоичной записи переходной вероятности q оптимальное значение q неизменно, но при этом с увеличением k оптимальное значение логарифма уменьшается. Аналогично для фиксированного k (по строкам).

Выводы к Таблице (2): для $\sqrt{2}$ практически то же, что и для π .

Выводы к Таблице (3): для $\sqrt{3}$ результаты уже отличаются от π , но наблюдаются те же закономерности. Отличие $\sqrt{3}$ от π и $\sqrt{2}$ в количестве диграмм в их двоичной записи, были рассмотрены первые 30 знаков для каждого числа, не считая точки. Если для π и $\sqrt{2}$ распределение количества диграмм близко к равномерному, то для $\sqrt{3}$ оно менее сбалансированно: количество диграмм 00 меньше остальных, а диграмм 11 - больше (см. Таблицу 4).

Утверждение 1 Оптимальное значение p не зависит от q и наоборот, оптимальное значение q не зависит от p.

Таблица 2: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{2}$

k / l	1	2	3	4	5	6
1	31.0	32.0	32.9148	33.7965	34.7965	35.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.101	0.1001	0.10010	0.100101
2	32.0	33.0	33.9148	34.7965	35.7965	36.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.101	0.1001	0.10010	0.100101
3	33.0	34.0	34.9148	35.7965	36.7965	37.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.101	0.1001	0.10010	0.100101
4	33.9891	34.9891	35.9039	36.7856	37.7856	38.7842
	28.9891	28.9891	28.9039	28.7856	28.7856	28.7842
	0.0111	0.0111	0.0111	0.0111	0.0111	0.0111
	0.1	0.10	0.101	0.1001	0.10010	0.100101
5	34.9521	35.9521	36.8669	37.7485	38.7485	39.7471
	28.9521	28.9521	28.8669	28.7485	28.7485	28.7471
	0.01111	0.01111	0.01111	0.01111	0.01111	0.01111
	0.1	0.10	0.101	0.1001	0.10010	0.100101
6	35.9521	36.9521	37.8669	38.7485	39.7485	40.7471
	28.9521	28.9521	28.8669	28.7485	28.7485	28.7471
	0.011110	0.011110	0.011110	0.011110	0.011110	0.011110
	0.1	0.10	0.101	0.1001	0.10010	0.100101

Доказательство. Рассмотрим выражение (3) для логарифма. Значения n(00), n(01), n(10), n(11) – постоянные, и данное выражения можно представить в виде линейной комбинации двух функций $f_1(p) + f_2(q)$. Соотвественно, при максимизации всего выражения (логарифм (3) должен быть маленьким, а так как перед всем выражением стоит минус, то выражение в скобках должно быть большим), так как переменные p и q содержатся в отдельных слагаемых, необходимо найти минимум отдельно для $f_1(p)$ и $f_2(q)$, друг на друга их значения при минимизации не влияют.

2.2 Анализ диграмм

В Таблице (4) представлены количества диграмм по рассмотренным примерам - их сумма в каждом случае равна 29, так как рассматриваемые числа округлялись до 30 знаков в двоичной записи суммарно, далее оптимальные значения $k,l,\log_2\frac{1}{P_{\mathcal{M}}(x)},MDL$, найденные при $k,l\in[1,6]$ для минимизации MDL.

Таблица 3: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{3}$

k / l	1	2	3	4	5	6
1	31.0	32.0	33.0	33.8419	34.8419	35.8419
	29.0	29.0	29.0	28.8419	28.8419	28.8419
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.0111	0.01110	0.011100
2	31.9053	32.9053	33.9053	34.7472	35.7472	36.7472
	28.9053	28.9053	28.9053	28.7472	28.7472	28.7472
	0.11	0.11	0.11	0.11	0.11	0.11
	0.1	0.10	0.100	0.0111	0.01110	0.011100
3	32.4067	33.4067	34.4067	35.2486	36.2486	37.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.101	0.101	0.101	0.101	0.101	0.101
	0.1	0.10	0.100	0.0111	0.01110	0.011100
4	33.4067	34.4067	35.4067	36.2486	37.2486	38.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.1010	0.1010	0.1010	0.1010	0.1010	0.1010
	0.1	0.10	0.100	0.0111	0.01110	0.011100
5	34.4067	35.4067	36.4067	37.2486	38.2486	39.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.10100	0.10100	0.10100	0.10100	0.10100	0.10100
	0.1	0.10	0.100	0.0111	0.01110	0.011100
6	35.4029	36.4029	37.4029	38.2448	39.2448	40.2448
	28.4029	28.4029	28.4029	28.2448	28.2448	28.2448
	0.101001	0.101001	0.101001	0.101001	0.101001	0.101001
	0.1	0.10	0.100	0.0111	0.01110	0.011100

Таблица 4: Числа, количество диграмм в них, оптимальные k и l

Число	n(00)	n(01)	n(10)	n(11)	k	1	$\log_2 \frac{1}{P_{\mathcal{M}(x)}}$	MDL
π	7	7	8	7	1	1	29.0	31.0
$\sqrt{2}$	8	7	8	6	1	1	29.0	31.0
$\sqrt{3}$	4	7	8	10	1	1	29.0	31.0

Утверждение 2 Значения $p=\frac{n(01)}{n(01)+n(00)}$ и $q=\frac{n(10)}{n(10)+n(11)}$ являются точкой максимума функции $\log_2\frac{1}{P_{\mathcal{M}}(x)}$ (3). Их значения при заданных длинах двоичной записи k и l - это приближения оптимальных значений p и q числами вида $x=\frac{n}{2^k}$ и $x=\frac{n}{2^l}$ соответственно.

Доказательство

- 1. Найдём точку максимума функции $f_1(p)=n(01)\log_2 p+n(00)\log_2 (1-p)$. Её производная: $f_1'(p)=\frac{n(01)}{p\ln 2}-\frac{n(00)}{(1-p)\ln 2}$, критические точки $p=\frac{n(01)}{n(01)+n(00)}, p=0, p=1$. Т.к. $0\leq \frac{n(01)}{n(01)+n(00)}\leq 1$, то $f_1'(p)$ отрицательна на $p\in (-\infty;0)\cup\left(\frac{n(01)}{n(01)+n(00)};1\right)$, положительная на остальных промежутках, а значит точка максимума $p=\frac{n(01)}{n(01)+n(00)}$, если это значение отлично от 0 и 1, и p=0 иначе. Аналогично для $f_2(q)$ точкой максимума является $q=\frac{n(10)}{n(10)+n(11)}$, либо q=0.
- 2. Рассмотрим функцию вероятности $P(x) = x^p (1-x)^{1-p}$. Найдём её вторую производную: $P'(x) = (1-x)^{-p} (p-x) x^{p-1}, P''(x) = (p-1)p(1-x)^{-p-1} x^{p-2}$. При фиксированном р P''(x) имеет нули в точках x=0, x=1 и $P''(x)\geq 0$ на $x\in [0;1]$, а значит на этом интервале исходная функция выпукла вверх см. Рис. (2). Кроме того, её максимальное значение достигается при x=p. Так как при фиксированном k мы рассматриваем двоичные числа с k знаками после запятой, то $x=\frac{n}{2^k}, n\in \mathbb{N}$. Соответственно, оптимальным будет именно приближение точки максимума функции P(x): x=p, а будет это приближение с избытком или недостатком зависит от того, какое из чисел будет ближе к p по значению функции P(x).
- 3. Для π оптимальные p и q, вычисленные по указанным формулам, выглядят следующим образом: $p_0=0.5_{10}=0.1_2, q_0=0.5(3)_{10}=0.(1000)_2$, чему удовлетворяют значения из Таблицы (1).

Для $\sqrt{2}$ имеем: $p_0 = 0.4(6)_{10} = 0.(0111)_2, q_0 = 0.(571428)_{10} = 0.(100)_2$ – по Таблице (2) совпадает q, но не совпадает, на первый взгляд, p. Но значение, представленное в таблице, к примеру, для k = 6 – это $0.011110_2 = \frac{30}{64_{10}}$, а значение, равное округ-

лению до 6 знаков после запятой найденного по формуле p – это $0.011101_2=\frac{29}{64}_{10}$ И действительно, если обозначить p_0 - найденное по формуле, то $\frac{29}{64}< p_0<\frac{30}{64}$ и

$$0.00019 \approx \left| f_1(p_0) - f_1\left(\frac{30}{64}\right) \right| < \left| f_1(p_0) - f_1\left(\frac{29}{64}\right) \right| \approx 0.00800.$$

Для $\sqrt{3}$ имеем: $p_0=0.(63)_{10}=0.(1010001011)_2, q_0=0.(4)_{10}=0.(011100)_2$ – по Таблице (3) также совпадает q, и также совпадает p с верхним приближением: для k=6, к примеру, $0.101001_2=\frac{41}{64_{10}},\ 0.101000_2=\frac{40}{64_{10}},\ \frac{40}{64}< p_0<\frac{41}{64}.$

Таким образом, на представленных примерах всё согласуется с утверждением.

Заметим по Таблице (4), что для рассмотренных трёх случаев высокая точность переходных вероятностей p и q не выгодна по Риссанену, Minimal description length достигается при k=l=1. Это будет не так, если при увеличении на 1 бит точности переходной вероятности логарифм будет уменьшаться больше, чем на 1. Т.е. количество диграмм n(00) и n(01) должно быть сильно не сбалансированно.

Рассмотрим различные значения n(01) для n(00)=1 и найдём, при каком k достигается MDL. Алгоритм: берём $p=\frac{n(01)}{n(01)+n(00)}$, переводим в двоичную систему с k знаками после

Рис. 2: График функции P(x) при различных значениях p

запятой, считаем для каждого $Description length = k - (n(01)\log_2 p + n(00)\log_2 (1-p))$ и ищем минимальное такое при различных $k \in [1,100]$ В Таблицах (5,6) видно, что результаты k уже нетривиальные – мы нашли те примеры последовательностей, для которых оптимальная

модель подразумевает достаточно точные значения переходных вероятностей. Симметричная ситуация будет наблюдаться и для l.

Таблица 5: Оптимальные k для разных n(01) – отличие от n(00) в 2^x раз

n(00)	n(01)	k	р двоичная	р десятичная	$\log_2 \frac{1}{P_{\mathcal{M}}(x)}$	MDL
1	4	2	0.11	0.8	3.6601	5.6601
1	8	2	0.11	0.8889	5.3203	7.3203
1	16	3	0.111	0.9412	6.0823	9.0823
1	32	4	0.1111	0.9697	6.9795	10.9795
1	64	5	0.11111	0.9846	7.9314	12.9314
1	128	6	0.111111	0.9922	8.9082	14.9082
1	256	7	0.1111111	0.9961	9.8967	16.8967
1	512	8	0.11111111	0.9981	10.891	18.891
1	1024	9	0.111111111	0.999	11.8882	20.8882

Таблица 6: Сравнение оптимальных k для разных n(01) по MDL и по логарифму, отличие от n(00) в x раз

n(00)	n(01)	k	р двоичная	р десятичная	$\log_2 \frac{1}{P_{\mathcal{M}}(x)}$	MDL	k_{log}	$\min \log_2 \frac{1}{P_{\mathcal{M}}(x)}$
100000	200000	9	0.101010101	0.6667	275489.1627	275498.1627	29	275488.7502
100000	300000	2	0.11	0.75	324511.2498	324513.2498	2	324511.2498
100000	400000	8	0.11001101	0.8	360965.426	360973.426	26	360964.0474
100000	500000	9	0.110101011	0.8333	390014.7766	390023.7766	34	390013.453
100000	600000	9	0.110110111	0.8571	414171.2664	414180.2664	31	414170.945
100000	700000	3	0.111	0.875	434851.5546	434854.5546	30	434851.5546
100000	800000	9	0.111000111	0.8889	452932.8105	452941.8105	27	452932.5013
100000	900000	9	0.111001101	0.9	468996.8194	469005.8194	30	468995.5936
100000	1000000	10	0.1110100011	0.9091	483446.7613	483456.7613	33	483446.6856

В Табл. (6) представлены кроме оптимальных по MDL также значения k, минимизирующие $\log_2 \frac{1}{P_{\mathcal{M}}(x)}$. Для 8 рассмотренных вариантов из 9 MDL предлагает более простую модель, а значение логарифма отличается при этом от минимального не более, чем на 0.001%.

Заметим, что для всех кодов в общем случае верно соотношение $\sum_b n(ab) = \sum_b n(ba)$ для

всех букв a, кроме первой и последней (для них левая и правая части могу отличаться на 1) [5, стр. 147]. Тогда над двоичным алфавитом условие будет выглядеть несколько проще, т.е. будет выполнено одно из соотношений:

- а) n(10) = n(01), если код начинается и заканчивается одной и той же буквой;
- б) n(10) = n(01) 1, если код начинается с 0, а заканчивается 1;

в) n(10) = n(01) + 1, если код начинается с 1, а заканчивается 0. При этом n(00), n(11) произвольны.

Так как в рассмотренных выше примерах кодами, реализациями Марковской цепи являлись первые 30 знаков двоичного представления чисел: $\pi \approx 11.001001000011111101101010000_2$, $\sqrt{2} \approx 1.01101010000010011110011001100_2$, $\sqrt{3} \approx 1.1011101101101110111011010000$ – все они начинаются с 1, а заканчиваются 0, то для них как раз выполнено соотношение (в) (Табл. (4)).

Выводы

В результате, для модели Марковсой цепи с 2 состояниями мы можем для различных комбинаций n(00), n(01) вычислять оптимальную вероятность р по формуле из Утверджения (1), в зависимости от n(01) задавать n(10), отличающееся от n(01) не более, чем на 1, и произвольное n(11) - по ним находить оптимальную переходную вероятность q. И такой подход позволяет проанализировать любую возможную последовательность битов и найти для неё оптимальную модель.

3 Марковские цепи с 4 состояниями

Рассмотрим более сложную марковскую цепь с четырьмя состояниями, но по-прежнему над двоичным алфавитом. Пусть в цепи четыре состояния a,b,c,d, при посещении части их них печатается 1, при посещении остальных -0. Для некоторых последовательностей, в частности для тех, которые имеют период 4, например $x=00010001\dots0001$, такая модель будет давать более оптимальный с точки зрения MDL результат: возьмём Марковскую цепь \mathcal{M} с состояниями a=b=c=0, d=1, (Puc. (3)) тогда при переходных вероятностях p(a,b)=p(b,c)=p(c,d)=p(d,a)=1, остальных p(i,j)=0 получаем $P_{\mathcal{M}}(x)=1$, $\log_2\frac{1}{P_{\mathcal{M}}(x)}=0$, а значит сложность $\mathcal{D}(\mathcal{M},x)=C(\mathcal{M})=0$, так как все переходные вероятности равны либо 0, либо 1 – имеют 0 знаков после запятой в двоичной записи, и это, очевидно, MDL для данной реализации цепи, так как по определению $\mathcal{D}(\mathcal{M},x)\geq 0$. Вообще говоря, для описания данной модели также нужно дополнительно 4 бит информации на описание чисел для каждого из 4 состояний, также 2 бит на начальное состояние (номер состояния — число от 0 до 4), но этот размер памяти одинаков для всех моделей из 4 состояний, поэтому при сравнении моделей его можно не учитывать.

Рис. 3: Оптимальная Марковская цепь с 4 состояниями для последовательности $0001 \cdots 0001$

Рассмотрим обратную задачу: зададим Марковскую цепь, случайным блужданием по ней получим некоторую реализацию и для неё найдём с помощью перебора оптимальную с точки зрения MDL модель. Сравним полученную подель с исходной. В случае Марковской цепи с 4 состояниями вероятность в модели $\mathcal M$ получить реализацию x вычисляется по рекурсивной формуле:

$$P_a(x) = \begin{cases} \frac{1}{k} \sum_a P_b(x[1:]) & \text{, a - первый символ} \\ \sum_b p(a,b) & \text{, a - предпоследний символ} \\ \sum_b p(a,b) \cdot P_b(x[1:]) & \text{, иначе} \end{cases}$$
 (4)

где k – количество состояний Марковской цепи, выдающих первый символ строки, т.е. начальное состояние выбираем равновероятно, b – состояние Марковской цепи, выдающее символ, следующий за символом, выдаваемым состоянием a, p(a,b) – переходная вероятность из состояния a в состояние b, x[1:] – строка x без первого символа.

Рассмотрим произвольную нетривиальную матрицу P переходных вероятностей для 4 состояний (Табл. (7)), в ней элемент p_{ij} – вероятность перехода из состояния і в состояние j. Такая матрица обладает следующим свойством: сумма элементов по строкам равна 1. Пусть в состояниях а и b печатается 0, в состояниях с и d – 1. Обозначим такую модель за \mathcal{M} .

Таблица 7: Матрица переходных вероятностей для 4 состояний

	a	b	c	d
a	0.25	0.25	0.5	0
b	0.5	0.25	0	0.25
c	0.25	0.5	0	0.25
d	0.25	0	0.25	0.5

Пусть k=10 – количество диграмм в слове, случайным блужданием по представленной Марковской цепи была получена реализация x=01001111010 длины k+1, вероятность получить её в модели $\mathcal{M}: P(x) \approx 0.000856$.

Переберём модели класса: в состояниях а и b печатается 0, в состояниях c и d-1, c разными матрицами переходных вероятностей. Пусть вероятности - числа от 0 до 1 включительно c не более чем 2 знаками после запятой в двоичной записи, в каждой строке сумма переходных вероятностей равна 1. Таким образом, переходные вероятности можем получить, перебрав всевозможные разбиения отрезка [0,1] на 4 части, некоторые из которых, в том числе, могут быть нулевой длины. Таких разбиений всего 35, а значит вариантов матриц переходных вероятностей $35^4 = 1500625$.

Результат: с точки зрения MDL получена матрица переходных вероятностей (Табл. (8)), отличающая от исходной. Все вероятности содержат не более 1 знака после запятой в дво-ичной записи. Кроме того, с таким значением MDL=11.0 эта матрица не единственная, их всего 20 - они так же все состоят из 2 строк с переходной вероятностью 1 в одно из состояний, отличное от текущего, и 2 строк с двумя переходными вероятностями 0.5. В полученных матрицах переходных вероятностей вероятность получить рассматриваемую реализацию равна: $P(x) = 0.0078125 = 2^{-7}$, что примерно в 9 раз больше вероятности получить реализацю в исходной модели.

Также были найдены модели, максимизирующая вероятность получить данную реализцию, и одна из таких моделей представлена в Таблице (9). В этой матрице уже присутствуют вероятности, задаваемые в двоичной записи числами с 2 знаками после запятой, то есть модель более сложная, чем предложенная по MDL, $\mathcal{D}(\mathcal{M}, x) \approx 12.2451, P_{\mathcal{M}}(x) \approx 0.0131836$ –

Таблица 8: Оптимальная по MDL матрица переходных вероятностей для 4 состояний

	a	b	c	d
a	0	0	0	1
b	0	0.5	0.5	0
С	0.5	0	0.5	0
d	0	1	0	0

 $\mathcal{D}(\mathcal{M},x)$ приблизительно на 12.2451 больше MDL, вероятность приблизительно в 1,69 раз больше той, что получена по MDL. В представленных двух матрицах ненулевые компоненты стоят на одних и тех же местах, однако эти матрицы не единственны.

Таблица 9: Оптимальная по вероятности Матрица переходных вероятностей для 4 состояний

	a	b	c	d
a	0	0	0	1
b	0	0.5	0.5	0
С	0.25	0	0.75	0
d	0	1	0	0

Выводы

Было показано, в каких случаях модель из 4 состояний даёт преимущество относительно модели из 2 состояний, получены формулы для вычисления вероятности реализации в заданной модели. Для фиксированной матрицы переходных вероятностей была получена реализация с помощью случайного блуждания, и для этой реализации были получены и сравнены 2 модели - оптимальные по MDL и по вероятности.

4 Заключение

В работе была рассмотрена задача поиска оптимальной модели Марковской цепи по принципу MDL для заданных последовательностей битов – реализаций Марковской цепи. Сначала были рассмотрены 3 конкретные последовательности, для них подобраны оптимальные Марковские модели с 2 состояниями. На основе полученных результатов было получено свойство независимости оптимальных переходных вероятностей друг от друга и получены формулы для их значений, которые при фиксированной длине их двоичного представления минимизируют $\mathcal{D}(\mathcal{M}, x)$. Были также приведены примеры последовательностей на основе диграмм, для которых принцип MDL даёт нетривиальные результаты.

Во 2 части работы были рассмотрены модели Марковских цепей с 4 состояниями: приведён пример, когда такая модель лучше модели, состоящей из 2 состояний, для фиксированной матрицы переходных вероятностей получена случайная реализация и по ней найдена оптимальная по MDL модель с 4 состояниями, произведено сравнение полученной модели с исходной и с моделью, полученной без учёта описательной сложности модели.

Список литературы

- [1] Чжун К. Однородные цепи Маркова. М.: МИР, 1964.
- [2] Barron A. R., Rissanen J., Yu B. The MDL Principle in Modeling and Coding, special issue of IEEE Trans //Information Theory to commemorate. 1998. T. 50. C. 2743-2760.
- Bühlmann P., Wyner A. J. Variable length Markov chains //The Annals of Statistics. 1999.
 T. 27. №. 2. C. 480-513.
- [4] Cénac P. et al. Variable length Markov chains and dynamical sources //arXiv preprint arXiv:1007.2986. 2010.
- [5] Верещагин Н., Щепин Е. Информация, кодирование и предсказание. М.: МЦНМО, 2012

5 Приложения

Программный код на Python: github.com/apremizova/MDLprinciple