Brazilian Portuguese Speech Recognition for Navigation on Mobile Device Applications

Proposal

Edwin Miguel Triana Gómez MSc student of Computer Science

Institute of Mathematics and Statistics
University of São Paulo
Brazil

Outline

- Problem statement
- Objectives
- Background
- Methodology
- Preliminary results
- Implications/Contributions

Problem Statement

Problem Statement Modern mobile devices

Problem Statement

Mobile devices

- High portability
- Easy manipulation
- Easy transportation
- Higher configurations
- Many connectivity options

Problem Statement Focus on operation

- Operation requires high attention levels
- Detrimental performance in parallel activities
- Tiny screens -vscomplicated functions

Problem Statement Multimodal interfaces

Problem Statement Speech Recognition

Natural skill

No direct attention

Acess to handicapped persons

Problem Statement

Borbo eta

- Check patient status
 - General
 - Vital signs
 - Related information
- Limited time for a visit
 - More scheduled visits
 - One or more procedures for the same patient

Problem Statement

Borbo

- Input the data into the device
 - Verify input data
 - Navigate through the system
 - Select the correct interface

Problem Statement Borboleta

Verify if the introduction of voice as an alternative input method to navigate through the system will improve the Borboleta system's usability

Verify if the introduction of voice as an alternative input method to navigate through the system will improve the Borboleta system's usability

Use a small Portuguese vocabulary to control the Borboleta system, and to open the path for speech recognition of health care notes, requiring a larger specialized vocabulary

Verify if the introduction of voice as an alternative input method to navigate through the system will improve the Borboleta system's usability

Use a small Portuguese vocabulary to control the Borboleta system, and to open the path for speech recognition of health care notes, requiring a larger specialized vocabulary

Evaluate and conclude how the speech recognition approaches perform within the Borboleta system

Background Speech Recognition

Speech Recognition

Automatic speech recognition is a process where utterances are translated to character string with an equivalent meaning

Speech Recognition Process

Speech Recognition

Front End: Signal processing

Voice utterances are digitized to waveforms and subsequently transformed to a parametric representation

Methods: Filter-banks, LPC, MFCC

Speech Recognition Mel Frequency Cepstral Coefficients

Speech Recognition

Back End: Speech Recognition Approaches

Speech Recognition

Back End: Speech Recognition Approaches

- Types
 - Isolated word
 - Semi- and Continuous
- Methods
 - Whole word
 - Phoneme
- Techniques
 - Template matching
 - Statistical modeling

Speech Recognition Template Matching

- When a person says a word several times, each signal representation will follow a pattern.
- Acoustic pattern: Template
- Find the closest template
- Dynamic Time Warping (DTW)
- Euclidean distance

Speech Recognition Statistical Approach

- Speech variations like pitch, length, internal noise, environmental noise and co-articulation effects at word boundaries make sentences harder to recognize
- Uses Acoustic and Language modeling
- Hidden Markov models (HMMs) is the most used technique

Speech Recognition Statistical Approach - HMM

$$\underset{i}{\operatorname{argmax}} \{ P(w_i|O) \} \longrightarrow P(w_i|O) = \frac{P(O|w_i)P(w_i)}{P(O)}$$

$$P(O|w_i) = P(o_1, o_2 \dots |w_i)$$

HMM

$$P(O|w_i) = P(O|M_i)$$

Speech Recognition Statistical Approach – Language Model

- P(Wi) = Language Model
- Reduce the search space
- Probabilistic model of the all possible sequences in the system
- CFG and N-gram

Speech Recognition

Software - Sphinx

- From Carnegie Mellon University (1988)
- HMM-based Speaker independent
- Sphinx-(X): I, II, III, 4 and Pocketsphinx
- Sphinx-based projects:
 - Lumenvox
 - Microsoft Whisper
 - Jvoice-xml
 - Gnome-voice-control
 - Zanzibar

Speech Recognition Software - HTK

- From Cambridge University (1989)
- HMM Tool Kit
- Became part of the ECRL in 1995
- Microsoft purchased the ECRL in 1999
- Source code released in September 2000
- Current version 3.4

Speech Recognition Software - Julius

- From Kyoto University (1991)
- Copyrighted by Nagoya Institute of Technology in 2005
- Widely compatible with HTK
- Target platform: Linux
- There is a speech recognition system for Brazilian Portuguese

Word Error Rates

Task	Vocabulary Size	WER (%)
Connected digits	11	0.6
Resource Management	1000	2.7
Wall Street Journal	5000	7.2

WER for Sphinx 4¹

Background Brazilian Portuguese Corpora

Brazilian Portuguese Corpora

- Corpus: Data set of utterances and their transcriptions
- Available Brazilian Portuguese corpora
 - OGI-22 WER = $19.9\%^{1}$
 - Spoltech WER = $18.6\%^1$
 - GlobalPhone
 - VoxForge
- Common vocabulary domain

Background Speech Recognition on Mobile Devices

Speech Recognition on Mobile Devices Mobile devices and platforms

Speech Recognition on Mobile Devices Mobile devices and platforms

Mobile OS market Q1 2010

Speech Recognition on Mobile Devices Symbian

Speech Recognition on Mobile Devices POSIX libraries for Symbian

Implementation	Supported libraries
P.I.P.S	libc, libm, libpthread, libdl
Open C	P.I.P.S, libz, libcrypt, libcrypto, libssl, libglib
Open C/C++	Open C, IOStreams, STL, Boost

Speech Recognition on Mobile Devices Java Micro Edition

Speech Recognition on Mobile Devices Approaches

Speech Recognition on Mobile Devices Embedded Speech Recognition

Speech Recognition on Mobile Devices Network Speech Recognition

Speech recognition server

Speech Recognition on Mobile Devices Distributed Speech Recognition

Speech recognition server

Speech Recognition on Mobile Devices Current Applications

Software	Developer	Words	WER		
PocketSphinx	CMU	994	14%		
PocketSUMMIT	MIT	2000	19%		

Borboleta General Architecture

Borboleta Interface

Methodology

Methodology Activities

- 1. Literature Review
- 2. Software Review
- 3. Data Collection
- 4. Initial Training and Testing
- 5. Software Design and Development
- 6. Evaluation

Methodology Activities

1. Literature Review

- State of the Art

2. Software Review

- Speech recognition robustness and accuracy
- Software compatibility with mobile devices
- Software architecture
- Source code availability, license and community activity

Methodology Activities – Data collection

Data Collection

- Keyword definition
- Utterance Collection
 - 525 samples (35 samples/word)
- Data preparation

Methodology Keyword definition

- 1. Main menu
- 2. Patient list
- 3. Patient
- 4. Appointment book
- 5. Schedule visit
- 6. Delete patient confirmation
- 7. Visit history
- 8. Import patients
- 9. CID categories
- 10. Select patients
- 11. Export patients
- 12. Residential visit
- 13. Specific data
- 14. General description
- 15. Problems/Needs
- 16. Final program

Methodology Keyword definition

Portuguese	English
Menú Inicial	Main menu
Dados específicos	Specific data
Caracterização geral	General description
Problemas e necessidades	Problems and needs
Programação final	Final program
Encontros realizados	Visit history
Encontro	Residential visit
Novo encontro	New residential visit
Paciente	Patient
Agenda	Appointment book
Agendar visita	Schedule visit
Catálogo CID	International Disease Catalog(IDC)
Sair	Exit
Voltar	Back
Fechar	Close

Methodology Activities - Initial Training and Testing

- Initial testing on desktop
- Get the system accuracy
 - Whole-word
 - Phoneme
- 70% Training (367 samples)
- 30% Testing (158 samples)

Methodology Software design and development

- Borboleta was developed for Java ME
- PocketSphinx is developed in C++
- Challenges
 - Port PocketSphinx to Symbian (OpenC++)
 - Modify the capture protocols for Symbian compatibility
 - Define PocketSphinx Borboleta communication
 - Reduce resource usage

Methodology Activities

- Evaluation
 - System performance
 - Response time
 - Resource usage
 - System accuracy (WER)
 - Preliminary usability evaluation
 - Feedback in development
 - Final usability evaluation

Methodology Workplan

Activity	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Fev	Mar
Literature Review													
Software evaluation													
Keyword definition													
Utterance collection													
Data preparation													
Training and Testing													
Software Design													
Software Development													
Accuracy tests													
Usability tests													
Thesis writing													
Thesis preparation & defense													
Corrections													
Paper writing													

Completed task
Current task
Incomplete task

Preliminary Results

- State of the art defined for SR mobile devices and Brazilian Portuguese
- Borboleta navigation and cost diagrams created
- Keyword collection done (525 samples)
- Java ME software developed to collect samples
- Infrastructure for large vocabulary SR is being prepared

Significance/Contributions

- Multimodal interfaces for Borboleta
- Foundations for subsequent research in speech recognition for Brazilian Portuguese (medical domain)
- SR performance and accuracy results
- SR advances closer to real life cases

Thanks!