Feuille d'exercices séquence 3

Résoudre dans $\mathbb C$ les équations suivantes :

1)
$$\delta^2 = 1 - i$$
,

3)
$$\delta^2 = -8 - 6i$$
,

5)
$$\delta^2 = 4 - i$$
,

2)
$$\delta^2 = 2 + 2\sqrt{3}i$$
,

4)
$$\delta^2 = 1 + i\sqrt{3}$$
,

6)
$$\delta^2 = 5 - 12i$$
.

Correction:

1)
$$\delta = \pm \sqrt[4]{2} e^{-i\frac{\pi}{8}}$$
.

2)
$$\delta = \pm \sqrt{4} \exp\left(i\frac{\pi}{6}\right) \pm (\sqrt{3} + i)$$
.
3) $\delta_1 = 1 - 3i$ ou $\delta_2 = -1 + 3i$.

3)
$$\delta_1 = 1 - 3i$$
 ou $\delta_2 = -1 + 3i$

4)
$$\delta = \pm \sqrt{2} \exp\left(i\frac{\pi}{6}\right) = \pm \left(\frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)$$
.

5)
$$\delta_1 = \sqrt{\frac{\sqrt{17} + 4}{2}} - \sqrt{\frac{\sqrt{17} - 4}{2}}i$$
 ou $\delta_2 = -\sqrt{\frac{\sqrt{17} + 4}{2}} + \sqrt{\frac{\sqrt{17} - 4}{2}}i$.

6)
$$\delta_1 = 3 - 2i$$
 ou $\delta_2 = -3 + 2i$.

Exercice 2.

Déterminer les racines carrées de $Z = \frac{1+i}{\sqrt{2}}$ sous forme algébrique puis sous forme exponentielle. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Correction: Si on applique la méthode trigonométrique, on obtient $z_{1,2} = \pm \exp\left(i\frac{\pi}{8}\right)$. Par contre, si on utilise la méthode algébrique, on trouve

$$z_1 = \sqrt{\frac{1 + \frac{1}{\sqrt{2}}}{2}} + i\sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{2}}$$
 ou $z_2 = -\sqrt{\frac{1 + \frac{1}{\sqrt{2}}}{2}} - i\sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{2}}$

Donc $z_1=\exp\left(i\frac{\pi}{8}\right)=\sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2}}+i\sqrt{\frac{1-\frac{1}{\sqrt{2}}}{2}}.$ D'où

$$\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 + \frac{1}{\sqrt{2}}}{2}}, \qquad \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{2}}.$$

S Exercice 3.

Résoudre l'équation $z^2 = \sqrt{3} + i$. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Correction: Si on applique la méthode trigonométrique, on obtient $z_{1,2} = \sqrt{\pm} \exp\left(i\frac{\pi}{12}\right)$. Par contre, si on utilise la méthode algébrique, on trouve

$$z_1 = \sqrt{\frac{2+\sqrt{3}}{2}} + i\sqrt{\frac{2-\sqrt{3}}{2}}$$
 ou $z_2 = -\sqrt{\frac{2+\sqrt{3}}{2}} - i\sqrt{\frac{2-\sqrt{3}}{2}}$.

Donc $z_1=\sqrt{2}\exp\left(i\frac{\pi}{12}\right)=\sqrt{\frac{2+\sqrt{3}}{2}}+i\sqrt{\frac{2-\sqrt{3}}{2}}.$ D'où

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2}, \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}.$$

Puisque $\sqrt{2+\sqrt{3}}=\sqrt{\frac{2+\sqrt{4-3}}{2}}+\sqrt{\frac{2-\sqrt{4-3}}{2}}=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}},$ on retrouve les valeurs trouvées dans la feuille d'exercices de la séquence 2 :

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}+1}{2\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{4}, \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{4}.$$

S Exercice 4.

Résoudre dans \mathbb{C} les équations suivantes :

1)
$$z^2 + 3z + 4 = 0$$
,

2)
$$z^2 - \sqrt{3}z - i = 0$$
,

3)
$$z^2 - 2iz + 2(1+2i) = 0$$

4)
$$iz^2 - 4iz - 2 + 4i = 0$$
,

5)
$$z^4 = 1$$
,

6)
$$z^4 - \sqrt{2}z^2 + 1 = 0$$
.

Correction:

1)
$$z_{1,2} = \frac{-3 \pm i\sqrt{5}}{2}$$
.

2)
$$z_1 = \frac{\sqrt{3} + (2+i)}{2} = \frac{\sqrt{3} + 2 + i}{2}$$
 et $z_2 = \frac{\sqrt{3} - (2+i)}{2} = \frac{\sqrt{3} - 2 - i}{2}$.

3)
$$z_1 = 1 - i$$
 et $z_2 = -1 + 3i$.
4) $z_1 = 3 - i$ et $z_2 = 1 + i$.

4)
$$z_1 = 3 - i \text{ et} z_2 = 1 + i$$

5)
$$z_{1,2}=\pm 1, z_{3,4}=\pm i.$$

6)
$$z_{1,2} = \pm \exp\left(i\frac{\pi}{8}\right), z_{3,4} = \pm \exp\left(-i\frac{\pi}{8}\right).$$

Exercice 5. – Généralisation de la méthode trigonométrique

Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

- 1) Preuve de la méthode : Considérons $\delta = r' e^{i\theta'}$, avec $r' \in \mathbb{R}_+^*$ et $\theta' \in \mathbb{R}$, tel que $\delta^2 = \Delta$. Montrer que $r' = \sqrt{r}$ et $\theta' = \frac{\theta}{2} + k\pi$ avec $k \in \mathbb{Z}$. En déduire que les solutions de $\delta^2 = \Delta$ sont $\pm \sqrt{r} e^{i\frac{\theta}{2}}$.
- 2) Généralisation de la méthode : Soit $n \in \mathbb{N}^*$.

Le nombre $\delta \in \mathbb{C}$ est dit racine n-ième de Δ si $\delta^n = \Delta$.

Considérons $\delta = r' e^{i\theta'}$, avec $r' \in \mathbb{R}$ et $\theta' \in \mathbb{R}$, tel que $\delta^n = \Delta$. Quelle relation existe-t-il entre r' et r? Même question entre θ' et θ ? En déduire une expression des racines n-ièmes $de \Delta$.

3) Application: Résoudre dans C l'équation

$$\delta^6 = i$$
.

Exercice 6. – Démonstration de la méthode algébrique

Soit $\Delta=a+ib\neq 0$ avec a et b deux réels. Considérons $\delta=x+iy$, avec x et y deux réels, tel que $\delta^2=\Delta$.

- 1) Simplifier δ^2 . En déduire que $x^2 y^2 = a$ et 2xy = b.
- 2) Montrer que $|\delta^2| = |\delta|^2$. En déduire que $x^2 + y^2 = \sqrt{a^2 + b^2}$.