WHAT IS CLAIMED IS:

l	I. A method for preventing dopant leaching from a doped structural f	ilm
2	during fabrication of a microelectromechanical system, the method comprising:	
3	producing a microstructure that includes the doped structural film, sacrific	ial
4	material, and metallic material by a combination of techniques selected from the group	
5	consisting of deposition, patterning, and etching;	
6	dissolving the sacrificial material with a release solution, the release soluti	on
7	comprising a substance destructive to the sacrificial material and acting as an electrolyte to	Ю.
8	form a galvanic cell with the doped structural film and metallic material acting as electrod	les
9	and	
10	suppressing effects of the galvanic cell by including a nonionic detergent	
11	mixed in the release solution.	
1	2. The method recited in claim 1 wherein the release solution comprise	ses
2	an acid.	
1	The method recited in claim 2 wherein the acid is HF.	
1	4. The method recited in claim 1 wherein the doped structural film	
2	comprises a doped semiconductor.	
1	5. The method recited in claim 4 wherein the doped structural film	
2	comprises doped silicon.	
1	6. The method recited in claim 5 wherein the doped structural film	
2	comprises doped polysilicon.	
1	7. The method recited in claim 1 wherein the sacrificial material	
2	comprises an oxide.	
1	8. The method recited in claim 7 wherein the oxide is a silicon oxide.	
. 1	9. The method recited in claim 7 wherein the oxide comprises alumin	ıa.
1	10. The method recited in claim 1 wherein the sacrificial material	
2	comprises a nitride.	

The method recited in claim 10 therein the nitride is a silicon nitride. 1 1 12. The method recited in claim 7 wherein the sacrificial material 2 comprises photoresist. 1 13. The method recited in claim 1 wherein the metallic material comprises 2 gold. 1 14. The method recited in claim 1 wherein the metallic material comprises 2 aluminum. 1 The method recited in claim 1 wherein the metallic material comprises 15. 2 copper. 1 16. The method recited in claim 1 wherein the metallic material comprises 2 platinum. 1 17. The method recited in claim 1 wherein the metallic material comprises 2 nickel 1 18. The method recited in claim 1 wherein the nonionic detergent 2 comprises an alkyl group and a polyether-linked hydroxy group commonly linked to an aryl 3 group. The method recited in claim 18 wherein the nonionic detergent 1 19. 2 comprises a Triton X[™] detergent. 1 20. The method recited in claim 18 wherein the nonionic detergent 2 comprises Triton X-100.™ 1 21. The method recited in claim 20 wherein the Triton X-100™ is included 2 in the release solution with a concentration approximately between 0.01 and 0.1 vol. %. 1 22. The method recited in claim 1 wherein the nonionic detergent 2 comprises Igepal CA-630.™ 1 23. The method recited in claim 1 wherein the nonionic detergent

2

comprises Nonidet P-40.™

I	24. The method recited in claim I wherein the nonionic detergent
2	comprises a hydrophilic moiety and a hydrophobic moiety commonly linked to an aryl group.
1	25. The method recited in claim I wherein the microelectromechanical
2	system is surface micromachined.
1	26. The method recited in claim 1 wherein the microelectromechanical
2	system comprises part of a mirror array for use in a wavelength router.
1	27. A microelectromechanical system made according to the method
2	recited in claim 1.
1	28. A method for preventing dopant leaching from a doped polysilicon
2	structural film during fabrication of a surface micromachined mirror array having a plurality
3	of moveable reflective surfaces for use in a wavelength router, the method comprising:
4	producing a mirror microstructure that includes the doped polysilicon,
5	sacrificial silicon oxide material, and gold by a combination of techniques selected from the
6	group consisting of deposition, patterning, and etching;
7	dissolving the silicon oxide material with a release solution, the release
8	solution comprising HF and acting as an electrolyte forming a galvanic cell with the doped
9	polysilicon structural film and gold acting as electrodes; and
10	suppressing effects of the galvanic cell by including a nonionic detergent
11	mixed in the release solution.
1	29. The method recited in claim 28 wherein the nonionic detergent
2	comprises an alkyl group and a polyether-linked hydroxy group commonly linked to an aryl
3	group.
1	30. The method recited in claim 29 wherein the nonionic detergent
2	comprises a Triton X [™] detergent.
1	31. The method recited in claim 29 wherein the nonionic detergent
2	comprises Triton X-100.™
1	32. The method recited in claim 28 wherein the nonionic detergent
2	comprises a hydrophilic moiety and a hydrophobic moiety commonly linked to an aryl group.

1	33. A surface micromachined mirror array made according to the method
2	recited in claim 28.
1	34. A method for fabricating a routing mechanism for use in a wavelength
2	router of the type configured to receive, at an input port, light having a plurality of spectral
3	bands and to direct subsets of the spectral bands to respective ones of a plurality of output
4	ports by providing optical paths in a free-space optical train disposed between the input ports
5	and the output ports and by providing the routing mechanism to direct a given spectral band
6	to different output ports depending on a state of a dynamically configurable routing unit in
7	the routing mechanism, the method comprising:
8	forming a plurality of such dynamically configurable routing units on a doped
9	structural film with sacrificial material and metallic material by a combination of techniques
.0	selected from the group consisting of deposition, patterning, and etching;
. 1	dissolving the sacrificial material with a release solution, the release solution
.2	comprising a substance destructive to the sacrificial material and acting as an electrolyte
. 3	forming a galvanic cell with the doped structural film and metallic material acting as
4	electrodes; and
.5	suppressing the effects of the galvanic cell by including a nonionic detergent
16	mixed in the release solution,
17	whereby dopant leaching from the doped structural film due to the effects of
8	the galvanic cell is suppressed.
1	35. The method recited in claim 34 wherein the nonionic detergent
2	comprises an alkyl group and a polyether-linked hydroxy group commonly linked to an aryl
3	group.
1	36. The method recited in claim 35 wherein the nonionic detergent
2	comprises a Triton X [™] detergent.
1	37. The method recited in claim 35 wherein the nonionic detergent
2	comprises Triton X-100 TM

comprises a hydrophilic moiety and a hydrophobic moiety commonly linked to an aryl group.

The method recited in claim 34 wherein the nonionic detergent

1

2

38.

- 1 39. The method recited in claim 34 wherein the release solution comprises
- 2 HF, the doped structural film comprises doped polysilicon, the sacrificial material comprises
- 3 a silicon oxide, the metallic material comprises gold, and the nonionic detergent comprises
- 4 Triton X-100.™
- 1 40. A routing mechanism made according to the method recited in claim
- 2 39.
- 1 41. A routing mechanism made according to the method recited in claim
- 2 34.
- 1 42. A wavelength router comprising a routing mechanism made according
- 2 to the method recited in claim 34.