

Modul Matematika

S1 Ilmu Komputer

Pertemuan 9:

Limit

Disusun Oleh:

Asisten Dosen Matematika Jurusan Ilmu Komputer Universitas Lampung

Tim Penyusun

Pengarah

Dewi Asiah Shofiana, M.Kom

Penyusun

- Rhalasya Eleina Putri (2217051083)
- Dhiya Ghina Hasri (2217051068)
- Nicholas Vitto Adrianto (2217051024)
- Ayu Fibri Suryanti (2217051013)
- Devano Michael Nainggolan (2217051081)
- Yunnisa Diah Pratiwi (2217051078)
- Widyasti Bella Kurnia (2217051092)
- Ananda Karunia Putri (2217051152)

Gambaran Umum

Modul ini memberikan gambaran dasar tentang konsep limit dalam kalkulus atau matematika. Limit satu sisi, limit tak hingga, dan teorema limit utama menjadi fokus utama dalam modul ini.

Capaian Pembelajaran

- 1. Praktikan dapat memahami konsep limit
- 2. Praktikan dapat menguasai penggunaan limit satu sisi
- 3. Praktikan dapat menguasai perhitungan limit tak hingga
- 4. Praktikan dapat menerapkan teorema limit utama dalam menghitung limit fungsi
- 5. Praktikan dapat menyelesaikan latihan dan kasus studi yang melibatkan konsep limit dengan baik

Materi Praktikum

Limit

Misal fungsi f terdefinisi pada selang terbuka I yang memuat a, Limit f(x) ketika x mendekati a sama dengan L, ditulis dengan:

$$\lim_{x \to a} f(x) = L$$

nilai f(x) dapat dibuat sedekat mungkin ke L, dengan cara mengambil nilai x yang cukup dekat ke a, tetapi $x \neq a$, Note:

- 1. Fungsi f tidak harus terdefinisi di a
- 2. Jika f terdefinisi di a, f(a) tidak harus sama dengan L

Limit Satu Sisi

Limit satu sisi menggambarkan perilaku fungsi jika peubahnya mendekati suatu titik dari satu arah saja, kiri atau kanan.

Contoh soal:

Diketahui:
$$f(x) = [[x]], x \in [-1,2)$$

 a) nilai f (x) dapat dibuat sedekat mungkin ke -1, dengan cara mengambil x yang cukup dekat ke 0 dari arah kiri dan x ≠ 0.
 Notasi:

$$\lim_{x o 0^-}f(x)=-1$$

 b) nilai f (x) dapat dibuat sedekat mungkin ke 0, dengan cara mengambil x yang cukup dekat ke 0 dari arah kanan dan x ≠ 0. Notasi:

$$\lim_{x \to 0^+} f(x) = 0$$

A. Limit Kanan

Misalkan fungsi f terdefinisi pada selang [a, b), kecuali mungkin di a. Limit kanan f(x) ketika x mendekati a. Limit kanan f(x) ketika x mendekati a sama dengan L, ditulis:

$$\lim_{X \to a+} f(x) = L$$

Jika nilai f(x) dapat dibuat sedekat mungkin ke L dengan cara mengambil nilai x yang cukup dekat ke a dan x>a.

B. Limit Kiri

Misalkan fungsi f terdefinisi pada selang (b, a], kecuali mungkin di a. Limit kiri f(x) ketika x mendekati a. Limit kiri f(x) ketika x mendekati a sama dengan L, ditulis

$$\lim_{X \to a^{-}} f(x) = L$$

Jika nilai f(x) dapat dibuat sedekat mungkin ke L dengan cara mengambil nilai x yang cukup dekat ke a dan x<a.

C. Teorema limit di suatu titik dengan limit satu sisi:

Limit fungsi f(x) untuk x mendekati c akan memiliki nilai jika dan hanya jika

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x)$$
Limit kiri Limit kanan

Jika
$$\lim_{x \to c^{-}} f(x) = L \operatorname{dan} \lim_{x \to c^{+}} f(x) = L$$

maka $\lim_{x \to c} f(x) = L$

Apabila
$$\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)$$

Limit kiri

Limit kanan

Maka limit fungsi f(x) untuk x mendekati c tidak memiliki nilai limit

D. Contoh Soal

1. Tentukan limit satu sisi berikut:

$$\lim_{x \to -3^{-}} f(x), \lim_{x \to -3^{+}} f(x), \lim_{x \to -3} f(x) \, \operatorname{dan} f(-3)$$

Jawab:

$$\lim_{x \to -3^{-}} f(x) = 5 \qquad \qquad \lim_{x \to -3^{+}} f(x) = 5$$

Jika
$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{+}} f(x)$$
, maka $\lim_{x \to -3} f(x) = 5$

2. Tentukan hasil dari limit berikut:

$$\lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x), \lim_{x \to 1} f(x) \, \operatorname{dan} f(1)$$

Jawab:

$$\lim_{x \to 1^{-}} f(x) = 5.5 \qquad \lim_{x \to 1^{+}} f(x) = 3$$

$$\lim_{x\to 1^+} f(x) = 3$$

Jika $\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$, maka $\lim_{x\to 1} f(x) = \text{tidak ada}$

3. Diberikan fungsi:

$$f(x) = \begin{cases} 2x - 1, & x < 1 \\ x^3, & x > 1 \end{cases}$$

Jawab:

Karena untuk x < 1 adalah fungsi f(x) = 2x - 1, maka

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x - 1) = 1.$$

Secara sama, untuk x > 1, kita gunakan fungsi

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^3 = 1.$$

Selanjutnya, karena nilai $\lim_{x\to 1^-} f(x) = 1 = \lim_{x\to 1^+} f(x)$ maka $\lim_{x\to 1} f(x) = 1$

Limit Tak Hingga

Limit tak hingga menggambarkan perilaku nilai fungsi yang membesar atau mengecil tanpa batas jika peubahnya mendekati suatu titik.

A. Limit Tak Hingga Positif

Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a_i kecuali mungkin di a. Limit f(x) ketika x mendekati a sama dengan ∞ , ditulis:

$$\lim_{x \to a} f(x) = \infty$$

apabila nilai f(x) dapat dibuat sebesar mungkin, dengan cara mengambil nilai x yang cukup dekat ke a_i tetapi $x \neq a$. Contoh:

Diketahui: $f(x) = \frac{1}{x^2}$

Nilai f(x) dapat dibuat sebesar mungkin, dengan cara mengambil x yang cukup dekat ke 0, tetapi $x \neq 0$.. Notasi: $\lim f(x) = \infty$

$$x\rightarrow 0$$

B. Limit Tak Hingga Negatif

Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a, kecuali mungkin di a. Limit f(x) ketika x mendekati a sama dengan - ∞ , ditulis:

$$\lim_{x \to a} f(x) = -\infty$$

apabila nilai f(x) dapat dibuat sekecil mungkin, dengan cara mengambil nilai x yang cukup dekat ke a, tetapi $x \neq a$. Contoh:

Diketahui: $f(x) = -\frac{1}{x^2}$

Nilai f(x) dapat dibuat sekecil mungkin, dengan cara mengambil x yang cukup dekat ke 0, tetapi $x \neq 0$.

Notasi:
$$\lim_{x \to 0} f(x) = -\infty$$

C. Limit Tak Hingga Satu Sisi

Definisi serupa dapat diberikan untuk limit tak hingga satu sisi:

- $\lim_{x \to x^+} f(x) = \infty$
- $\lim_{x \to a^{-}} f(x) = \infty$
- $\lim_{x \to a^+} f(x) = -\infty$
- $\lim_{x \to a^{-}} f(x) = -\infty$

D. Contoh Soal

1.
$$\lim_{x \to 3^+} \frac{2}{x-3} = \frac{+}{+} = +\infty$$

2.
$$\lim_{\kappa \to 1^{-}(\kappa-1)(\kappa-2)} = \frac{+}{(-)(-)} = +\infty$$

3.
$$\lim_{x \to -2^+} \frac{x-1}{x^2(x+2)} = \frac{-}{(+)(+)} = -\infty$$

Hukum Limit

A. Teorema Limit Utama

Misalkan c konstanta, n bilangan bulat positif dan kedua limit

 $x \rightarrow a$

$$\lim f(x) \, \mathrm{dan} \lim g(x)$$

 $x \rightarrow a$

$$\blacksquare \lim_{x \to a} c = c$$

$$\blacksquare \lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

$$= \lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$= \lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$

$$\blacksquare \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{asalkan } \lim_{x \to a} g(x) \neq 0$$

$$\blacksquare \lim_{x \to a} x^n = a^n$$

$$\blacksquare \lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$$

$$\blacksquare \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 asalkan $a > 0$ ketika n genap

7

B. Contoh Soal

1. Tentukan nilai dari limit berikut:

$$\lim_{x\to 2}\bigl((x^2-1)(x+1)\bigr)$$

2. Tentukan nilai dari limit berikut:

$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$

3. Tentukan nilai dari limit berikut:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{\sqrt{x - 2}}$$

4. Tentukan nilai dari limit berikut:

$$\lim_{x \to 1} \frac{\sqrt{3x-2} - \sqrt{4x-3}}{x-1}$$

Jawab:

1.
$$\lim_{x \to 2} ((x^2 - 1)(x + 1))$$

$$= (\lim_{x \to 2} (x^2 - 1)) (\lim_{x \to 2} (x + 1))$$

$$= (\lim_{x \to 2} (x^2) - \lim_{x \to 2} (1)) (\lim_{x \to 2} (x)^{+} \lim_{x \to 2} (1))$$

$$= (4-1)(2+1) = 3.3 = 9$$

2.
$$\frac{(x-3)(x+3)}{(x-3)} = (x+3). \left(\frac{x-3}{x-3}\right) = 1$$

$$Jadi, \lim_{x \to 3} \frac{x^2 - 9}{x-3} = \lim_{x \to 3} \frac{(x-3)(x+3)}{(x-3)}$$

$$= \lim_{x \to 3} (x+3)$$

$$= 3 + 3 = 6$$

3.
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{\sqrt{x - 2}} = \lim_{x \to 2} \frac{x^2 - 3x + 2}{\sqrt{x - 2}} \cdot \frac{\sqrt{x - 2}}{\sqrt{x - 2}}$$

$$= \lim_{x \to 2} \frac{\left(x^2 - 3x + 2\right)\left(\sqrt{x - 2}\right)}{\left(\sqrt{x - 2}\right)^2}$$

$$= \lim_{x \to 2} \frac{\left(x - 1\right)\left(x - 2\right)\left(\sqrt{x - 2}\right)}{\left(x - 2\right)}$$

$$= \lim_{x \to 2} (x - 1)\sqrt{x - 2}$$

$$= (2 - 1)\sqrt{2 - 2}$$

$$= 1 \cdot 0$$

$$= 0$$

4.
$$\lim_{x \to 1} \frac{\sqrt{3x - 2} - \sqrt{4x - 3}}{x - 1}$$

$$= \lim_{x \to 1} \frac{\sqrt{3x - 2} - \sqrt{4x - 3}}{x - 1} \cdot \frac{\sqrt{3x - 2} + \sqrt{4x - 3}}{\sqrt{3x - 2} + \sqrt{4x - 3}}$$

$$= \lim_{x \to 1} \frac{\left(\sqrt{3x - 2}\right)^2 - \left(\sqrt{4x - 3}\right)^2}{\left(x - 1\right)\left(\sqrt{3x - 2} + \sqrt{4x - 3}\right)}$$

$$= \lim_{x \to 1} \frac{-x + 1}{\left(x - 1\right)\left(\sqrt{3x - 2} + \sqrt{4x - 3}\right)}$$

$$= \lim_{x \to 1} \frac{-(x - 1)}{\left(x - 1\right)\left(\sqrt{3x - 2} + \sqrt{4x - 3}\right)}$$

$$= \lim_{x \to 1} \frac{-1}{\sqrt{3x - 2} + \sqrt{4x - 3}}$$

$$= \frac{-1}{\sqrt{3 \cdot 1 - 2} + \sqrt{4 \cdot 1 - 3}}$$

$$= \frac{-1}{\sqrt{1} + \sqrt{1}} = \frac{-1}{1 + 1} = -\frac{1}{2}$$