Michael S. Lee

Email: symikelee@gmail.com Website: https://symikelee.github.io/

My research in explainable AI studies how to increase the *transparency* (i.e. understandability and predictability) of **AI decision making** *to humans*. I operationalize principles from cognitive science and education into a computational model for teaching AI decision making to humans **using demonstrations**.

Education

PhD in Robotics, Carnegie Mellon University

Expected Feb 2024

Advisers: Prof. Reid Simmons, Prof. Henny Admoni

Undergraduate research mentee: Vignesh Rajmohan (Everyday Robots / Google X intern, Automat AI)

Master of Science in Robotics, Carnegie Mellon University

Aug 2018

Advisers: Prof. Red Whittaker, Prof. Nathan Michael

Thesis: Radiation Source Localization using a Gamma-ray Camera

BSE in Mech. & Aero. Engineering, Minor in Computer Science, Princeton University

May 2016

Advisers: Prof. Robert Stengel, Prof. Nathan Michael

Thesis: Modeling Uncertainty in Stereo Vision for Precise and Robust State Estimation

Research Experience

Carnegie Mellon University

Improving the Transparency of Agent Decision Making to Humans using Demonstrations Aug 2018 –

- Developing algorithms for teaching AI policies to humans through informative demonstrations, toward transparency and accurate prediction of AI behavior by humans in unseen scenarios.
- · Modeling humans as inverse reinforcement learners and using education techniques (e.g. scaffolding) to incrementally increase human knowledge with demonstrations of appropriate informativeness & difficulty.
- · A user study finds that our demonstration-based teaching model reduces the regret in human predictions of AI behavior by 64% compared to a common baseline of directly communicating the AI's reward function.

Radiation Source Localization using Gamma Camera (R. Whittaker, N. Michael) Aug 2016 – Aug 2018

• Developed novel gamma radiation map representation and source localization algorithm for efficient and autonomous radiological characterization of nuclear facilities using a gamma-ray camera equipped robot.

Physically-assisted Navigation of the Elderly and Visually-Impaired (Ralph Hollis)

Jun – Aug 2016

· Created a voice-controlled ROS SMACH state machine for a dynamically stable ballbot toward hand-assisted leading of the elderly and the visually impaired using speech and force-based communication.

Predicting Feature-Based Visual Odometry Failure using Saliency (Nathan Michael) Jun – Aug 2015

- · Identified and characterized three classes of sparse visual odometry failures through a suite of visual metrics that extracted relevant saliency information from incoming images.
- · Trained classifiers to anticipate and label imminent visual odometry failures in support of robust visual state estimation and autonomous UAV flight.

Jet Propulsion Laboratory (NASA)

Estimating Forest Biomass using Ouadcopter (Roland Brockers, Stephan Weiss, Adam Wolf) Jun – Aug 2014

- · Collected forest microclimate data using a custom sensor suite onboard a quadcopter, and developed interactive ecology maps over Google Earth based on the completed surveys.
- Extracted correlations between microclimate data and first-order estimates of forest biomass based on tree diameters estimated from stereo images.

Representative Publications

- M. Lee, R. Simmons, H. Admoni, Closed-loop Teaching via Demonstrations to Improve Policy Transparency, IEEE Robotics & Automation Letters, 2024. Under review.
- M. Lee, H. Admoni, R. Simmons, Closed-loop Reasoning about Counterfactuals to Improve Policy Transparency, ICML Workshop on Counterfactuals in Minds and Machines, 2023.
- R. Zhang, M. Lee, S. Chen, Leveraging Contextual Counterfactuals Toward Belief Calibration, ICML Workshop on Counterfactuals in Minds and Machines, 2023.
- M. Lee, H. Admoni, R. Simmons, Reasoning about Counterfactuals to Improve Human Inverse Reinforcement Learning, International Conference on Intelligent Robots and Systems (IROS), 2022.
- M. Lee, H. Admoni, R. Simmons, Machine Teaching for Human Inverse Reinforcement Learning, Frontiers in Robotics and AI, 2021.
- M. Lee, Self-Assessing and Communicating Manipulation Proficiency Through Active Uncertainty Characterization. Pioneers Workshop at ACM/IEEE Conference on Human-Robot Interaction, 2019.

Leadership & Service

Reviewer

ICRA (2024), ICAPS Explainable Planning Workshop (2023), IROS (2022), RSS Pioneers (2022-23), AAAI Undergrad Consortium (2022), AAAI Fall Symposium (2021), HRI Pioneers Workshop (2020-24)

Undergraduate AI Mentorship, Mentor

Jan 2019 - May 2023

Provide guidance on relevant coursework and experiences for graduate school through monthly meetings.

Teaching Assistant (Carnegie Mellon University)

Jan – May 2020, 2021

Created/graded assignments, advised projects for these classes: human-robot interaction, computer vision

Robotics Institute Summer Scholars Admissions Committee, Reviewer

Feb – Mar 2017, 2019

Assisted in reviewing over 680 applicants for the Summer Scholars program, an eleven-week research experience for 30 undergraduates hosted by the Robotics Institute at Carnegie Mellon University.

RISS Working Papers Journal Committee, Managing Editor

Jun – Dec 2015

Oversaw the journal comprising research papers written by the 2015 Robotics Institute summer scholars.

Princeton Robotics Club, Ouadcopter Control Subteam Leader

Sep 2013 – Jun 2015

Co-led a team of eight students in building a quadcopter from scratch and implementing controls for flight.

Outdoor Action Orientation Program, Week-long Backpacking Trip Leader

Jan 2014 – Jun 2015

Honors & Awards

AAAI Doctoral Consortium, Member

2024

2018

One of 30 PhD students selected to present/discuss work with peers and senior scholars in the field of AI. 2019 HRI Pioneers Workshop, Member

One of 19 PhD students selected to present/discuss work with peers and senior scholars in the field of HRI.

National Defense Science and Engineering Graduate (NDSEG) Fellowship, Finalist

Sigma Xi, Associate Member 2016 - 2017

Nominated for induction into the honor society by the Mech. & Aero. Eng. Department at Princeton Univ. Robotics Institute Summer Scholars Program, Member Jun – August 2015, 2016

Technical Skills

Languages: Python, MATLAB, C++, HTML5, JS, CSS | Tools: Flask, psiTurk, Prolific, ROS, Git