Friedrich-Alexander-Universität Erlangen-Nürnberg

Bounded Inquisitive Logics: Sequent Calculi and Schematic Validity

Tadeusz Litak¹ and Katsuhiko Sano²

¹Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, University of Naples Federico II

²Faculty of Humanities and Human Sciences, Hokkaido University

September 27, 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus
- 2.3 Truth Semantics
- 2.4 The Casari Scheme

3. Conclusions & Future Work

Inquisitive FOL can be seen as an extension of classical logic by questions.

Inquisitive FOL can be seen as an extension of classical logic by questions.

Example

Natural Language	Formula
Luisa is guilty.	Guilty (Luisa)
If Luisa was there, do we know whether Luisa is guilty?	WasThere (Luisa) \rightarrow ? Guilty (Luisa)
If we knew whether Luisa was there, do we know whether Luisa is guilty?	? WasThere (Luisa) \rightarrow ? Guilty (Luisa)
Is there some person, who is guilty?	$\exists x. \text{ Guilty } (x)$

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

4/28

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

Consider the following possible worlds regarding Luisa:

	Guilty	Not Guilty
Was There	w_1	$\overline{w_2}$
Was Not There	w_3	w_4

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

Guilty Not Guilty Was There Consider the following possible worlds regarding Luisa: w_1 w_2 **Was Not There**

 We get the following properties regarding the single worlds:

```
w_1 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}
w_2 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}
w_3 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}
w_4 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}
```

4/28

 w_4

 w_3

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

Guilty Not Guilty Was There Consider the following possible worlds regarding Luisa: w_1 w_2 **Was Not There**

 We get the following properties regarding the single worlds:

$$w_1 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$$

 $w_2 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $w_3 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $w_4 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$

 If we look at information states, we get the following support properties:

$$\{w_1, w_2\} \not\models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$$

 $\{w_1, w_3\} \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $\{w_1, w_2, w_3\} \not\models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$

 w_3

 w_4

4/28

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, ar_{\Sigma}, rigid_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $rigid_{\Sigma} \subseteq F_{\Sigma}$ indicates whether a function symbol is rigid.

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, ar_{\Sigma}, rigid_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $\operatorname{rigid}_{\Sigma} \subseteq F_{\Sigma}$ indicates whether a function symbol is rigid.

Fix a set Var of variables.

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, \operatorname{ar}_{\Sigma}, \operatorname{rigid}_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $\operatorname{rigid}_{\Sigma} \subseteq F_{\Sigma}$ indicates whether a function symbol is rigid.

Fix a set Var of variables.

Definition

Terms and Formulae over a signature Σ are defined as follows:

$$t \in \operatorname{Ter}_{\Sigma} ::= x \mid f\left(t_{1}, \dots, t_{\operatorname{ar}_{\Sigma}(f)}\right)$$

$$\phi, \psi \in \mathcal{F}_{\Sigma} ::= P\left(t_{1}, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) \mid \bot \mid \phi \to \psi \mid \phi \land \psi \mid \phi \lor \psi \mid \forall x. \phi \mid \exists x. \phi$$

$$?\phi := \phi \lor \neg \phi$$

$$f \in \mathsf{F}_{\Sigma}$$

$$P \in \mathsf{P}_{\Sigma}$$

Models, States

Definition

Let Σ be a signature.

 $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathbf{W}_{\mathfrak{M}}, \mathbf{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.
- $I_{\mathfrak{M}}$ is a (non-empty) set of individuals.
- $\mathfrak{M}_w \llbracket f \rrbracket : \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq \operatorname{I}^{\operatorname{ar}_{\Sigma}(P)}_{\mathfrak{M}}$ is the interpretation of P in a world w.

Models, States

Definition

Let Σ be a signature.

- A tuple $\mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right)$ is called a model.
- W_M is a set of possible worlds.
- $I_{\mathfrak{M}}$ is a (non-empty) set of individuals.
- $\mathfrak{M}_w \llbracket f \rrbracket : \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq I_{\mathfrak{M}}^{\operatorname{ar}_{\Sigma}(P)}$ is the interpretation of P in a world w.
- for every rigid $f \in \mathsf{F}_{\Sigma}$ and for all $w_1, w_2 \in \mathsf{W}_{\mathfrak{M}}$ we have $\mathfrak{M}_{w_1} \llbracket f \rrbracket = \mathfrak{M}_{w_2} \llbracket f \rrbracket$.

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.
- $I_{\mathfrak{M}}$ is a (non-empty) set of individuals.
- $\mathfrak{M}_w \llbracket f \rrbracket : \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq \operatorname{I}_{\mathfrak{M}}^{\operatorname{ar}_{\Sigma}(P)}$ is the interpretation of P in a world w.
- for every rigid $f \in \mathsf{F}_{\Sigma}$ and for all $w_1, w_2 \in \mathsf{W}_{\mathfrak{M}}$ we have $\mathfrak{M}_{w_1} \llbracket f \rrbracket = \mathfrak{M}_{w_2} \llbracket f \rrbracket$.

Definition

Let Σ be a signature, \mathfrak{M} be a model. A subset $s \subseteq W_{\mathfrak{M}}$ is called an (information) state.

Referent of a Term

Definition

Let Σ be a signature, \mathfrak{M} be a Model, $s \subseteq W_{\mathfrak{M}}$ an information state and $\eta \colon \operatorname{Var} \to I_{\mathfrak{M}}$ a variable assignment. The referent of a term $t \in \operatorname{Ter}_{\Sigma}$ is defined as follows:

$$\mathfrak{M}_{w,\eta} \llbracket x \rrbracket := \eta \left(x \right)$$

$$\mathfrak{M}_{w,\eta} \llbracket f \left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(f)} \right) \rrbracket := \mathfrak{M}_w \llbracket f \rrbracket \left(\mathfrak{M}_{w,\eta} \llbracket t_1 \rrbracket, \dots, \mathfrak{M}_{w,\eta} \llbracket t_{\operatorname{ar}_{\Sigma}(f)} \rrbracket \right)$$

Support

Definition

The support relation \models is defined as follows:

8/28

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) :\iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_1\right]\!\right], \dots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_w\left[\!\left[P\right]\!\right]$$

September 27, 2025

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_1\right]\!\right], \dots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_w\left[\!\left[P\right]\!\right] \\ \mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset$$

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta} \llbracket t_1 \rrbracket, \dots, \mathfrak{M}_{w,\eta} \llbracket t_{\operatorname{ar}_{\Sigma}(P)} \rrbracket\right) \in \mathfrak{M}_w \llbracket P \rrbracket$$
 $\mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset$
 $\mathfrak{M}, s, \eta \models \phi \to \psi : \iff \text{for all } t \subseteq s, \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi$

8/28

8/28

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_{1}, \ldots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_{1}\right]\!\right], \ldots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_{w}\left[\!\left[P\right]\!\right] \\ \mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset \\ \mathfrak{M}, s, \eta \models \phi \rightarrow \psi : \iff \text{for all } t \subseteq s, \ \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \land \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ and } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \lor \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ or } \mathfrak{M}, s, \eta \models \psi$$

8/28

Support

Definition

The support relation \models is defined as follows:

```
\mathfrak{M}, s, \eta \models P\left(t_{1}, \ldots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_{1}\right]\!\right], \ldots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_{w}\left[\!\left[P\right]\!\right] \\ \mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset \\ \mathfrak{M}, s, \eta \models \phi \rightarrow \psi : \iff \text{for all } t \subseteq s, \ \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \land \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ and } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \lor \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ or } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \forall x. \phi : \iff \text{for all } i \in I_{\mathfrak{M}}, \ \mathfrak{M}, s, \eta \left[x \mapsto i\right] \models \phi \\ \mathfrak{M}, s, \eta \models \exists x. \phi : \iff \text{there exists } i \in I_{\mathfrak{M}}, \ \mathfrak{M}, s, \eta \left[x \mapsto i\right] \models \phi
```


Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

• $\mathfrak{M}|_s := (s \subseteq W_{\mathfrak{M}}, I_{\mathfrak{M}}, \ldots)$

Locality

$$\mathfrak{M}, s, \eta \models \phi \iff \mathfrak{M}|_{s}, s, \eta \models \phi$$

Semantics InqFOL

Definition

Define Inquisitive First-Order Logic as follows:

$$\mathsf{InqLog}_{\Sigma} := \{ \phi \in \mathcal{F}_{\Sigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq \mathsf{W}_{\mathfrak{M}}, \eta \colon \mathsf{Var} \to \mathsf{I}_{\mathfrak{M}} \}$$

Semantics InqFOL

Definition

Define Inquisitive First-Order Logic as follows:

$$\mathsf{InqLog}_{\Sigma} := \{ \phi \in \mathcal{F}_{\Sigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq \mathsf{W}_{\mathfrak{M}}, \eta \colon \mathsf{Var} \to \mathsf{I}_{\mathfrak{M}} \}$$

• There exists a ND-System by Ciardelli/Grilletti [CG22] which is sound, but not yet proven to be complete.

10/28

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus
- 2.3 Truth Semantics
- 2.4 The Casari Scheme

3. Conclusions & Future Work

Boundedness

Introduction

Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.

$$\begin{split} & \mathsf{InqLogB}_{\Sigma,\mathsf{n}} := \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M} \text{ with } |\mathcal{W}_{\mathfrak{M}}| < n, s \subseteq \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \\ & \mathsf{InqLogB}_{\Sigma} := \bigcap_{n \in \mathbb{N}} \mathsf{InqLogB}_{\Sigma,\mathsf{n}} \\ & = \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq_{\mathsf{fin}} \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \end{split}$$

Boundedness

Introduction

Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.

$$\begin{split} & \mathsf{InqLogB}_{\Sigma,\mathsf{n}} := \{\phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M} \text{ with } |\mathcal{W}_{\mathfrak{M}}| < n, s \subseteq \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \\ & \mathsf{InqLogB}_{\Sigma} := \bigcap_{n \in \mathbb{N}} \mathsf{InqLogB}_{\Sigma,\mathsf{n}} \\ & = \{\phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq_{\mathsf{fin}} \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \end{split}$$

- Ciardelli/Griletti [CG22] extended their ND-System for InqLogB_{Σ,n} and it proved the resulting extensions to be complete (for most signatures).
- Added axiom: Cardinality Formula, which depends on the concrete signature.
- Apart from signature-dependency, such axioms seem to destroy most desirable proof-theoretic properties of a ND system . . .

12/28

Cardinality Formulae[CG22]

Only One Predicate

$$\begin{split} C_0^{\{P\}} &:= \bot \\ C_1^{\{P\}} &:= \forall x ? P x \\ C_{n+1}^{\{P\}} &:= \exists x \bigvee_{i=1}^n \left[\; (Px \to C_i^{\{P\}}) \land (\neg Px \to C_{n+1-i}^{\{P\}}) \; \right] \end{split}$$

Cardinality Formulae [CG22]

Assuming all function symbols are rigid

$$C_0^{\Sigma} := \bot$$

$$C_1^{\Sigma} := \forall \overline{x}_1 ? R_1(\overline{x}_1) \wedge \ldots \wedge \forall \overline{x}_l ? R_l(\overline{x}_l)$$

$$C_{n+1}^{\Sigma} := \exists \overline{x}_1 \bigvee_{i=1}^n \left[(R_1(\overline{x}_1) \to C_i^{\Sigma}) \wedge (\neg R_1(\overline{x}_1) \to C_{n+1-i}^{\Sigma}) \right] \vee \ldots$$

$$\ldots \vee \exists \overline{x}_l \bigvee_{i=1}^n \left[(R_l(\overline{x}_l) \to C_i^{\Sigma}) \wedge (\neg R_l(\overline{x}_l) \to C_{n+1-i}^{\Sigma}) \right]$$

Cardinality Formulae [CG22]

Adding equality to the syntax

$$\begin{split} C_0^\Sigma &:= \bot \\ C_1^\Sigma &:= \bigwedge_{j=1}^l \forall \overline{x}_j ? R_j(\overline{x}_j) \ \land \ \bigwedge_{j=1}^h \forall \overline{y}_j \exists z (f_j(\overline{y}_j) = z) \\ C_{n+1}^\Sigma &:= \bigvee_{j=1}^l \exists \overline{x}_j \bigvee_{i=1}^n [\ (R_j(\overline{x}_j) \to C_i^\Sigma) \land (\neg R_j(\overline{x}_j) \to C_{n+1-i}^\Sigma) \] \lor \\ \lor \ \bigvee_{j=1}^h \exists \overline{y}_j z \bigvee_{i=1}^n [\ (f_j(\overline{y}_j) = z \to C_i^\Sigma) \ \land \ (f_j(\overline{y}_j) \neq z \to C_{n+1-i}^\Sigma) \] \end{split}$$

Schematic validity

- Proof theorists developed various criteria for well-designed ND and sequent systems
- The cardinality/coherence axioms we've seen above have a brutally Hilbertian flavour
- By its very nature, inquisitive logic cannot even meet a standard Hilbert-style criterion: closure under uniform substitution

- This naturally leads to the question of schematic validity in inquisitive logic:
- What is its schematic core/fragment, i.e., the largest standard superintuitionistic logic (closed under substition) contained in it?
- For the propositional inquisitive logic InqL, Ciardelli [Cia09] established that its schematic fragment is exactly Medvedev's logic ML of finite problems or finite (topless) boolean cubes.
- Conversely, InqL can be obtained as the negative counterpart of ML, i.e., the collection of formulas whose negatively substituted variants (replacing each atom with its negation) belong to ML.
- To the best of our knowledge, corresponding first-order characterizations do not exist.
- (This even after going through the exercise of formulating a suitable predicate notion of schematic validity and uniform substitution of formulas for predicates: Ono [Ono73], Church [Chu58, Ch. III], Gabbay, Shehtman and Skvortsov [GSS09, § 2.2–2.5], Kleene [Kle52, § VII.34, pp. 155–162] . . .)

17/28

A Sequent Calculus

• We provide a sequent calculus for $lnqLogB_{\Sigma}$ which we prove to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)

- We provide a sequent calculus for InqLogB_∑ which we prove to be sound and complete for each $InqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity

18/28

- We provide a sequent calculus for $lnqlogB_{\Sigma}$ which we prove to be sound and complete for each $lnqlogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.

- We provide a sequent calculus for $lnqlogB_{\Sigma}$ which we prove to be sound and complete for each $lnqlogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1,2\}, \phi)$.

18/28

- We provide a sequent calculus for $lnqLogB_{\Sigma}$ which we prove to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to W_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

$$\begin{array}{ll} \text{If } \mathfrak{M}, f, \eta \models (X, \phi) \quad \text{for all} & (X, \phi) \in \varGamma, \\ \text{then } \mathfrak{M}, f, \eta \models (X, \psi) \quad \text{for some} & (Y, \phi) \in \varDelta \end{array}$$

- We provide a sequent calculus for $lnqLogB_{\Sigma}$ which we prove to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to W_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

$$\begin{array}{ll} \text{ If } \mathfrak{M}, f, \eta \models (X, \phi) \quad \text{for all } & (X, \phi) \in \varGamma, \\ \text{then } \mathfrak{M}, f, \eta \models (X, \psi) \quad \text{for some } & (Y, \phi) \in \varDelta \end{array}$$

 The TABLEAUX setup for simplicity restricted to purely relational signatures; no function symbols, no complex terms, no discussion of rigidity

- We provide a sequent calculus for $lnqLogB_{\Sigma}$ which we prove to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- Moreover, we managed to prove cut elimination/admissibility!
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to W_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

$$\begin{array}{ll} \text{ If } \mathfrak{M}, f, \eta \models (X, \phi) \quad \text{for all } & (X, \phi) \in \varGamma, \\ \text{then } \mathfrak{M}, f, \eta \models (X, \psi) \quad \text{for some } & (Y, \phi) \in \varDelta \end{array}$$

- The TABLEAUX setup for simplicity restricted to purely relational signatures; no function symbols, no complex terms, no discussion of rigidity
- A slightly adapted version suggested by my former FAU student MO Elliger covers, e.g., nontrivial rigid terms.
- Note that such extensions may break down metatheory, like completeness or cut elimination (although no evidence for that so far)
- Soundness of the extended variants of the calculi already formalized in Coq

Table 2 Sequent Calculus **G**(FBlnqBQ)

$$\overline{X:P(\overline{x}),\Gamma\Rightarrow \varDelta,Y:P(\overline{x})} \text{ (id) where } X\supseteq Y \qquad \overline{X:\bot,\Gamma\Rightarrow \varDelta} \text{ (\bot\Rightarrow$)}$$

$$\frac{\{\Gamma\Rightarrow \varDelta,\{k\}:P(\overline{x})\mid k\in X\}}{\Gamma\Rightarrow \varDelta,X:P(\overline{x})} \text{ (\Rightarrow at)}$$

$$\frac{\Gamma\Rightarrow \varDelta,X:\varphi}{\Gamma\Rightarrow \varDelta,X:\varphi\wedge\psi} \text{ (\Rightarrow \land$)} \qquad \frac{X:\varphi,X:\psi,\Gamma\Rightarrow \varDelta}{X:\varphi\wedge\psi,\Gamma\Rightarrow \varDelta} \text{ (\land\Rightarrow$)}$$

$$\frac{\Gamma\Rightarrow \varDelta,X:\varphi,X:\psi}{\Gamma\Rightarrow \varDelta,X:\varphi\wedge\psi} \text{ (\Rightarrow \land$)} \qquad \frac{X:\varphi,\Gamma\Rightarrow \varDelta}{X:\varphi\wedge\psi,\Gamma\Rightarrow \varDelta} \text{ (\land\Rightarrow$)}$$

$$\frac{\{Y:\varphi,\Gamma\Rightarrow \varDelta,Y:\psi\mid X\supseteq Y\}}{\Gamma\Rightarrow \varDelta,X:\varphi\to\psi} \text{ (\Rightarrow\Rightarrow$)}$$

$$\frac{\{Y:\varphi,\Gamma\Rightarrow \varDelta,Y:\psi\mid X\supseteq Y\}}{\Gamma\Rightarrow \varDelta,X:\varphi\to\psi} \text{ (\Rightarrow\Rightarrow$)}$$

$$\frac{X:\varphi\to\psi,\Gamma\Rightarrow \varDelta}{X:\varphi\to\psi,\Gamma\Rightarrow \varDelta} \text{ (\Rightarrow\Rightarrow$)} \text{ where } X\supseteq Y$$

$$\frac{X:\varphi\to\psi,\Gamma\Rightarrow \varDelta}{X:\varphi\to\psi,\Gamma\Rightarrow \varDelta} \text{ (\Rightarrow\Rightarrow$)} \text{ where } X\supseteq Y$$

$$\frac{\Gamma\Rightarrow \varDelta,X:\varphi[z/x]}{\Gamma\Rightarrow \varDelta,X:\forall x.\varphi} \text{ (\Rightarrow\Rightarrow$)} \Rightarrow \frac{X:\varphi[y/x],X:\forall x.\varphi,\Gamma\Rightarrow \varDelta}{X:\forall x.\varphi,\Gamma\Rightarrow \varDelta} \text{ (\forall\Rightarrow$)}$$

$$\frac{\Gamma\Rightarrow \varDelta,X:\exists x.\varphi,X:\varphi[y/x]}{\Gamma\Rightarrow \varDelta,X:\exists x.\varphi} \text{ (\Rightarrow\Rightarrow$)} \Rightarrow \frac{X:\varphi[z/x],\Gamma\Rightarrow \varDelta}{X:\exists x.\varphi,\Gamma\Rightarrow \varDelta} \text{ (\exists\Rightarrow$)} \Rightarrow \uparrow$$

where \dagger is the eigenvariable condition: z does not occur in the conclusion.

Note: it is enough to be provable without the atomic rule to be schematically valid! The converse remains an open question

Defined via support of singleton states:

$$\mathfrak{M}, w, \eta \models_{\mathsf{truth}} \phi : \iff \mathfrak{M}, \{w\}, \eta \models \phi$$

Defined via support of singleton states:

$$\mathfrak{M}, w, \eta \models_{\mathsf{truth}} \phi : \iff \mathfrak{M}, \{w\}, \eta \models \phi$$

Truth semantics yield semantics of classic first-order logic.

Defined via support of singleton states:

$$\mathfrak{M}, w, \eta \models_{\mathsf{truth}} \phi : \iff \mathfrak{M}, \{w\}, \eta \models \phi$$

- Truth semantics yield semantics of classic first-order logic.
- Therefore, classic first-order logic is precisely $lnq Log B_{\Sigma,1}$.

Defined via support of singleton states:

$$\mathfrak{M}, w, \eta \models_{\mathsf{truth}} \phi : \iff \mathfrak{M}, \{w\}, \eta \models \phi$$

- Truth semantics yield semantics of classic first-order logic.
- Therefore, classic first-order logic is precisely $lnq Log B_{\Sigma,1}$.

Example

$$\begin{array}{ll} \neg \neg P\left(x\right) \to P\left(x\right) & \in \mathsf{InqLog}_{\Sigma} \\ \neg \neg \phi \to \phi & \in \mathsf{InqLogB}_{\Sigma,1} \\ \neg \neg \left(P\left(x\right) \vee \neg P\left(x\right)\right) \to \left(P\left(x\right) \vee \neg P\left(x\right)\right) & \not \in \mathsf{InqLogB}_{\Sigma,2} \end{array}$$

21/28

The Casari Scheme

Consider the following scheme:

Casari :=
$$(\forall x. (\phi(x) \rightarrow \forall x. \phi(x)) \rightarrow \forall x. \phi(x)) \rightarrow \forall x. \phi(x)$$

We get the following properties:

$$(\forall x. \ (P\left(x\right) \rightarrow \forall x. \ P\left(x\right)) \rightarrow \forall x. \ P\left(x\right)) \rightarrow \forall x. \ P\left(x\right) \in \mathsf{InqLog}_{\Sigma} \\ (\forall x. \ (\phi\left(x\right) \rightarrow \forall x. \ \phi\left(x\right)) \rightarrow \forall x. \ \phi\left(x\right)) \rightarrow \forall x. \ \phi\left(x\right) \in \mathsf{InqLogB}_{\Sigma} \\ (\forall x. \ ((\exists y. R(x,y)) \rightarrow \forall x. \ \exists y. R(x,y)) \rightarrow \forall x. \ \exists y. R(x,y) \neq \mathsf{InqLog}_{\Sigma} \\ \end{pmatrix}$$

The Casari Scheme

Regarding Schematic Bounded Validity

Theorem

The Casari Scheme is schematically bounded valid.1

Proof.

- 1. Prove that for every label X, the sequent $\Rightarrow (X, Casari)$ is derivable in the given sequent calculus.
- 2. By the rule $(\Rightarrow \rightarrow)$, it suffices to show for every $Y \subseteq X$ the derivability of the following sequent:

$$(Y, \forall x. \ (\phi(x) \rightarrow \forall x. \phi(x)) \rightarrow \forall x. \phi(x)) \Rightarrow (Y, \forall x. \phi(x))$$

3. Use wellfounded induction on Y to proceed. Proof uses the rule of cut.

23/28

The Casari Scheme

Regarding Schematic Validity

Theorem

The Casari Scheme is not schematically valid, e.g. Casari instantiated with $\phi := \exists y.R(x,y)$ is not schematically valid.

Proof Sketch.

By a suitable counterexample... whose formalization took MO Elliger quite a while, and then a TABLEAUX referee proposed a dramatically simplified version. We're still recovering from the shock.

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus
- 2.3 Truth Semantics
- 2.4 The Casari Scheme

3. Conclusions & Future Work

Conclusions & Future Work

Conclusions

- We introduced cut-free labelled sequent calculi complete for *n*-bounded inquisitive logics.
- We illustrate the intricacies of schematic validity in such systems by showing that
 - the well-known Casari formula is atomically valid in (a weak sublogic of) predicate inquisitive logic lnqBQ,
 - o fails to be schematically valid in it, and yet
 - is schematically valid under the finite boundedness assumption.
- The derivations in our calculi, however, are guaranteed to be schematically valid whenever a single specific rule is not used.
- (not discussed here, see a remark in the paper) We can capture entailments with so-called rex conclusions without additional rules
- We are also seeing the benefits of working with a (nascent) Coq/Rocq formalization: more about it in the afternoon at the Rocqshop!

Conclusions & Future Work

Future Work

- The Craig interpolation property for logics considered herein?
- Relationship with papers concerning model theory and correspondence theory of extensions of CD [MTO90; Ono73]?
- Resolving Ciardelli and Grilletti's challenge of algorithmically identifying formulas coherent for a fixed cardinality?
- Extend existing computational interpretations of sequent calculi to this setting?
- Potential database connections, e.g., the discussion of Armstrong relations by Abramsky and Väänänen [AV09] or Ciardelli's perspective on mention-some questions [Ciardelli2016]?

References

References

- [AV09] S. Abramsky and J. A. Väänänen. "From IF to BI". In: Synthese 167.2 (2009), pp. 207–230. DOI: 10.1007/S11229-008-9415-6.
- [CG22] I. Ciardelli and G. Grilletti. "Coherence in inquisitive first-order logic". en. In: Annals of Pure and Applied Logic 173.9 (Oct. 2022), p. 103155. DOI: 10.1016/j.apal.2022.103155.
- [Chu58] A. Church. Introduction to mathematical logic. Volume I (2nd printing). Princeton, 1958.
- [Cia09] I. Ciardelli. "Inquisitive Semantics and Intermediate Logics". MA thesis. Institute for Logic, Language and Computation, Universiteit van Amsterdam, 2009.
- [Cia22] I. Ciardelli. Inquisitive Logic: Consequence and Inference in the Realm of Questions. en. Vol. 60. Trends in Logic. Cham: Springer International Publishing, 2022. DOI: 10.1007/978-3-031-09706-5.
- [GSS09] D. M. Gabbay, D. Skvortsov, and V. Shehtman. Quantification in Nonclassical Logic. Volume I. Vol. 153. Studies in Logic and the Foundations of Mathematics. Elsevier, 2009.
- [Kle52] S. Kleene. Introduction to metamathematics. Amsterdam-Oxford: North-Holland, 1952.
- [LS25] Na & Hokkaidak and K Sano. Bounded Inquisitive Logics: Sequent Calculi and Schematic Validity. en. A