Handout 6

Estimation and diagnostic Checking for ARMA and ARIMA Models

Copyright 2004 W. Q. Meeker.

February 14, 2007 14h 46min

6 - 1

ARMA Estimation Methods

For a specified ARMA(p,q) model and data, (Z_1,Z_2,\ldots,Z_n) , we "fit" the model by estimating the parameters ϕ_1,\ldots,ϕ_p and θ_1,\ldots,θ_q .

- Method of moments: Compute $\hat{\rho}_1, \hat{\rho}_2, \ldots, \hat{\rho}_{p+q}$, substitute into the "true" ACF equations $\rho_1 = \cdots, \rho_2 = \cdots, \ldots, \rho_{p+q} = \cdots$ and solve for $\hat{\phi}_1, \ldots, \hat{\phi}_p, \ \hat{\theta}_1, \ldots, \hat{\theta}_q$.
- Nonlinear least squares: Find $\hat{\phi}_1,\ldots,\hat{\phi}_p,\ \hat{\theta}_1,\ldots,\hat{\theta}_q$ to minimize

$$SSQ = \sum_{t=1}^{n} \hat{a}_{t}^{2} = \sum_{t=1}^{n} (Z_{t} - \hat{Z}_{t})^{2}$$

where \widehat{Z}_t is the one-step-ahead forcast for Z_t .

• Maximum Likelihood: Find values of the parameters that maximize the probability of the data. $Log(likelihood) \approx -n log(SSQ)$.

6-2

Example: Nonlinear Least Squares for IMA(1,1)

Minimize:
$$SSQ(\theta) = \sum_{t=1}^{n} \hat{a}_{t}^{2} = \sum_{t=1}^{n} (Z_{t} - \hat{Z}_{t})^{2}$$

IMA(1,1) forecast: $\hat{Z}_{t} = Z_{t-1} - \theta_{1}\hat{a}_{t-1}$

$$SSQ(\theta) = \sum_{t=1}^{n} [Z_{t} - (Z_{t-1} - \theta_{1}\hat{a}_{t-1})]^{2}$$

$$= \sum_{t=1}^{n} (W_{t} + \theta_{1}\hat{a}_{t-1})^{2}$$

where $W_t=Z_t-Z_{t-1}$ and $\hat{a}_{t-1}=Z_{t-1}-\hat{Z}_{t-1}=W_{t-1}+\theta_1\hat{a}_{t-2}.$ $\hat{\theta}$ is the value of θ that minimizes SSQ(θ).

- ullet Need to compute \widehat{a} recursively.
- Need some way to start the recursion (i.e., what is \hat{a}_0 ?).
- Nonlinear optimization needed in general.

6-3

Time Series Plot of Simulated Series C

Simulated Time Series #C

6-4

Function iden Output for Simulated Series C

Function iden Output for the First Differences of Simulated Series C

Plot of IMA(1,1) Model Log-likelihood for Simulated Series C

$$Z_t = Z_{t-1} - \theta_1 a_{t-1} + a_t$$

Plot of IMA(1,1) Model Log-likelihood for Simulated Series C

$$Z_t = Z_{t-1} - \theta_1 a_{t-1} + a_t$$

Function esti Output for Simulated Series C IMA(1,1) Model—Part 1

Function esti Output for for Simulated Series C IMA(1,1) Model—Part 2

6 - 10

Time Series Plot of the Device Inventory Data (negative inventory indicates number of units that have been back-ordered)

Function iden Output for The Device Inventory Data

Function iden Output for the First Differences of the Device Inventory Data

Function iden Output for the Second Differences of the Device Inventory Data

Graphical Outputs From the esti command

- Plot of residuals versus time
- Plot of residuals versus fitted values
- Plot of ACF of the residuals
- Plot showing original data, fitted values, forecasts, and forecast intervals
- Normal probability plot of the residuals

6 - 15

Plot of AR(1) Model Log-likelihood for the Device Inventory Data

$$Z_t = \theta_0 + \phi_1 Z_{t-1} + a_t$$

Plot of AR(1) Model Log-likelihood for the Device Inventory Data

$$Z_t = \theta_0 + \phi_1 z_{t-1} + a_t$$

Commands for Making Plots of ARMA Model Log-likelihoods

arima.likelihood.plot(device.inventory.d,
model = model.pdq(p = 1), list(1, seq(.8, .999, length = 50)))
#this is the zoom-in of the AR(1);
arima.likelihood.plot(device.inventory.d,
model = model.pdq(p = 1), list(1, seq(.97, .999, length = 50)))

6 - 17

Function esti Output for the Device Inventory Data AR(1) Model—Part 1

Function esti Output for the Device Inventory Data AR(1) Model—Part 2

6 - 20

Function esti Output for the Device Inventory Data AR(2) Model—Part 2

6-22

Tabular Outputs From the esti Command

- Log likelihood, $S=\widehat{\sigma}_a$, and the Akaike Information Criterion ${\rm AIC}_c=-2\log({\rm Likelihood})+2M$ where M is the number of estimated parameters in the model (usually M=p+q). ${\rm AIC}_c$ is one, of many, "model-choice" criteria (see Section 7.7 of Wei for discussion of others).
- Table giving MLEs, SE of MLEs, t-ratio, and approximate confidence limits for each estimated parameter.
- Constant term estimate, SE, and t-ratio
- Variance-covariance and correlation matrices of the estimated partameters.
- Table of Ljung-Box statistics
- Table of ACF of the residuals. SE's and t-ratios
- Table of forecasts and prediction intervals

Tabular esti Output for the Device Inventory Data

+ + Estimation/Forecasting Output for Device Inventory 1984-1994 ARIMA estimation results:

Model: Component 1 :: ar: 1 2

AICc: 385.1348

-2(Log Likelihood): 381.1348

S: 1.048085

Parameter Estimation Results

MLE se t.ratio 95% lower 95% upper ar(1) 1.3780133 0.08015244 17.192406 1.2209145 1.5351121 ar(2) -0.4059878 0.08015244 -5.065196 -0.5630866 -0.2488891

Constant term: 6.193324 Standard error: 0.09192312

t-ratio: 67.37504

Tabular esti Output for the Device Inventory Data

Correlation matrix

ar(1) ar(2)

ar(1) 1.0000000 -0.9801033

ar(2) -0.9801033 1.0000000

Ljung-Box Statistics

dof Ljung-Box p-value

4 3.360982 0.4993286

4.143612 0.5289303

4.358709 0.6282547

36 31.849559 0.6663509

Tabular esti Output for the Device Inventory Data

Residual ACF

ACF Lag t-ratio se

1 -0.054279383 0.08770580 -0.61888019 1

2 0.132883340 0.08796383 1.51065894 3 -0.035326410 0.08949467 -0.39473200

38 38 -0.065383330 0.10392757 -0.62912398

Forecasts

Lower Forecast Upper

1.59811508 3.652324 5.706532

2 -0.02084244 3.476698 6.974238

6-26

Diagnostic Checks Based on Residuals

- Need to check the assumption $a_t \sim \operatorname{nid}(0, \sigma^2)$
- ullet Plot of the residuals "time series" \hat{a}_t versus time
- ACF function $\hat{\rho}_k(\hat{a})$ of the residuals To judge $\mathrm{H}_0: \rho_k(a) = \mathrm{O}$, be suspicious of values of the associated t-like-ratio $t_k=\widehat{\rho}_k(\widehat{a})/\mathsf{S}_{\widehat{\rho}_k(\widehat{a})}$ that are outside ± 1.5 .
- Ljung-Box test for H_0 : $\rho_1(a)=\rho_2(a)=\ldots=\rho_K(a)=0$

$$Q=n(n+2)\sum_{k=1}^K(n-k)^{-1}\hat{\rho}_k^2(\hat{a})$$
 Be suspicious if $Q>\chi^2_{(1-\alpha;K-p-q)}$

- Plot of residuals versus fitted values
- Normal probability plot of residuals to check normailty assumption

6-27

6-25

Other Diagnostic Checks

- Overfitting (add parameters to model looking for improvement)
- Make sure that the forecasts are reasonable; compare forecasts from different candadate models.
- Split the realization to see if the model and parameters agree on both sides (check for a change in the process).
- If there are outliers, do sensitivity analysis by moving outliers into the data
- If there is an indication of estimation problems, look at the likelihood (or sum of squares) surface

6 - 28

Plot of AR(2) Model Log-likelihood Surface for the **Device Inventory Data**

Plot of AR(2) Model Log-likelihood Surface for the **Device Inventory Data**

Plot of AR(2) Model Log-likelihood Surface for the Device Inventory Data Close-up View

Commands for making Log-likelihood Surface Contour Plots

```
arima.contour(device.inventory.d,
model = model.pdq(p = 2),
list(1, seq(-1.9, 1.9, length = 50)),
list(2, seq(-.99, .99, length = 50)))

arima.contour(device.inventory.d,
model = model.pdq(p = 2),
list(1, seq(1.377, 1.394, length = 40)),
list(2, seq(-0.406, -0.390, length = 40)))
```

6 - 32

Function esti Output for the Device Inventory Data AR(3) Model—Part 1

Function esti Output for the Device Inventory Data AR(3) Model—Part 2

6 - 34

Function esti Output for the Device Inventory Data ARIMA(1,1,0) Model—Part 1

Function ${\tt esti}$ Output for the Device Inventory Data ${\tt ARIMA(1,1,0)}$ Model—Part 2

Function esti Output for the Device Inventory Data ARIMA(1,1,1) Model—Part 1

Function esti Output for the Device Inventory Data ARIMA(1,1,1) Model—Part 2

6 - 38

Plot of ARIMA(1,1,1) Model Log-likelihood Surface for the Device Inventory Data

Plot of ARIMA(1,1,1) Model Log-likelihood Surface for the Device Inventory Data

6 - 39

Plot of ARIMA(1,1,1) Model Log-likelihood Surface for the Device Inventory Data

Plot of ARIMA(1,1,1) Model Log-likelihood Surface for the Device Inventory Data

Comparison of Modles for the Device Inventory Data

	ARIMA(p,d,q) Model				
	(1,0,0)	(2,0,0)	(3,0,0)	(1,1,0)	(1,1,1)
d (# differences)	0	0	0	1	1
ϕ_1	.98	1.37	1.35	.39	.55
	(55.4)	(17.2)	(15.4)	(4.9)	(3.0)
ϕ_2	_	4	24	_	_
		(-5.1)	(-1.7)		
ϕ_3	_	_	11	_	_
			(-1.2)		
$ heta_1$	_	_	_	_	.18
					(.84)
Sig. $\widehat{ ho}_k(\widehat{a})$	1,2	2	_	_	
S	1.14	1.04	1.06	1.06	1.06
AIC_c	409.05	385.13	386.35	386.13	387.08
-2 log(Likelihood)	407.05	381.13	380.35	384.13	383.08
Ljung-Box χ^2_6	30.26	4.35	2.17	3.49	2.73
	6 - 43				