Approximation Algorithms

- Center Selection
- Vertex Cover
- Knapsack Problem

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ-approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Center Selection

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min $c \in C$ dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,..., s<sub>n</sub>) {
    C = \( \phi \)
    repeat k times {
        Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
        Add s<sub>i</sub> to C
    }
        site farthest from any center
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- Consider any site s and its closest center c_i^* in C^* .
- $dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i^*) + dist(c_i^*, c_i) \leq 2r(C^*)$.
- Thus $r(C) \le 2r(C^*)$. $\bigwedge_{\Delta \text{-inequality}} \bigvee_{\leq r(C^*) \text{ since } c_i^* \text{ is closest center}}$

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

\ e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no ρ -approximation for center-selection problem for any ρ < 2.

LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

• Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

Vertex covers in 1-1 correspondence with 0/1 assignments:

$$S = \{i \in V : x_i = 1\}$$

- Objective function: minimize $\Sigma_i w_i x_i$.
- Must take either i or j: $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i, j) \in E$

$$x_i \in \{0,1\} \quad i \in V$$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers a_{ij} and b_i , find integers x_j that satisfy:

$$\begin{array}{cccc}
\max & c^t x \\
s. t. & Ax & \ge & b \\
& x & \text{integral}
\end{array}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$

$$x_{j} \geq 0 \qquad 1 \leq j \leq n$$

$$x_{j} \qquad \text{integral} \qquad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j , b_i , a_{ij} .
- Output: real numbers x_j .

(P)
$$\max c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$

(P)
$$\max \sum_{j=1}^{n} c_j x_j$$

s. t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad 1 \le i \le m$
 $x_j \ge 0 \quad 1 \le j \le n$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1 \quad (i, j) \in E$

$$x_i \ge 0 \quad i \in V$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

- Q. How can solving LP help us find a small vertex cover?
- A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_{i} \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x^*_i + x^*_j \ge 1$, either $x^*_i \ge \frac{1}{2}$ or $x^*_j \ge \frac{1}{2} \implies (i, j)$ covered.

Pf. [S has desired cost]

Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\text{LP is a relaxation} \qquad \mathbf{x^*}_{\mathbf{i}} \geq \frac{1}{2}$$

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P \neq NP, then no ρ -approximation for ρ < 1.3607, even with unit weights.

Open research problem. Close the gap.

Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i has value $v_i > 0$ and weighs $w_i > 0$. ← we'll assume $w_i \le W$
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

Claim. SUBSET-SUM ≤ P KNAPSACK.

Pf. Given instance $(u_1, ..., u_n, U)$ of SUBSET-SUM, create KNAPSACK instance:

$$v_i = w_i = u_i \qquad \sum_{i \in S} u_i \leq U$$

$$V = W = U \qquad \sum_{i \in S} u_i \geq U$$

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 using up to weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of 1, ..., i-1 using up to weight limit w wi

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Running time. O(n W).

- W = weight limit.
- Not polynomial in input size!

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v.

- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 that achieves exactly value v
- Case 2: OPT selects item i.
 - consumes weight w_i , new value needed = $v v_i$
 - OPT selects best of 1, ..., i-1 that achieves exactly value v

$$OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \end{cases}$$

$$OPT(i-1, v) & \text{if } v_i > v \\ \min \{OPT(i-1, v), w_i + OPT(i-1, v-v_i)\} \text{ otherwise}$$

$$V^* \le n v_{max}$$

Running time. $O(n V^*) = O(n^2 v_{max})$.

- V^* = optimal value = maximum v such that $OPT(n, v) \leq W$.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight
1	934,221	1
2	5,956,342	2
3	17,810,013	5
4	21,217,800	6
5	27,343,199	7

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

W = 11

W = 11

original instance

rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:
$$\bar{v}_i = \left| \begin{array}{c} v_i \\ \theta \end{array} \right| \theta$$
, $\hat{v}_i = \left| \begin{array}{c} v_i \\ \theta \end{array} \right|$

- v_{max} = largest value in original instance
- $-\epsilon$ = precision parameter
- $-\theta$ = scaling factor = $\varepsilon v_{max} / n$

Observation. Optimal solution to problems with \overline{v} or \hat{v} are equivalent.

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$.

• Dynamic program II running time is $O(n^2 \hat{v}_{max})$, where

$$\hat{v}_{\text{max}} = \left| \frac{v_{\text{max}}}{\theta} \right| = \left| \frac{n}{\epsilon} \right|$$

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\overline{v}_i = \left| \begin{array}{c} v_i \\ \overline{\theta} \end{array} \right| \theta$

Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in S}v_i\geq\sum_{i\in S^*}v_i$

Pf. Let S* be any feasible solution satisfying weight constraint.

References

References

- Sections 11.2, 11.6 and 11.8 of the text book "algorithm design" by Jon Kleinberg and Eva Tardos
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.