У звіті до лабораторної роботи скласти схеми алгоритмів і написати програми мовою С++, розв'язання завдань яких організувати у функціях. Тобто основна програма повинна містити введення вхідних даних, виклик функції, в якій реалізовано розв'язання, та виведення результатів.

Варіанти завдань для створення функції з одним результатом

№	Завдання				
вар.	0.				
1	Створити функцію обчислення $\frac{x+\sin y}{\sin x+y}$ та визначити $y = \frac{1+\sin 4}{\sin 1+4} + \frac{7+\sin 5}{\sin 7+5} + \frac{3+\sin 2}{\sin 3+2}$ за допомоги цієї функції				
	A.F.				
2	Створити функцію обчислення факторіала та за її допомоги визначити число різних сполучень із n елементів по m ($n > m$) за формулою $C_n^m = \frac{n!}{m!(n-m)!}$				
3	Створити функцію обчислення середнього геометричного трьох чисел за формулою $\sqrt[3]{x \cdot y \cdot z}$ та за допомоги цієї функції визначити для трьох введених чисел значення середнього геометричного				
4	Обчислити для двох введених чисел a та b значення $z = \min(a,2b) + \min(2a-b,b)$, створивши функцію визначення найменшого з двох чисел				
5	Для трикутника з довжинами сторін a , b і c значення медіани для сторони a обчислюється за формулою $0.5\sqrt{2b^2+2c^2-a^2}$. Створити функцію для обчислення медіани та за її допомоги визначити медіани для всіх сторін трикутника				
6	Створити функцію обчислення $\frac{\sqrt{x}+x}{y+\sqrt{y}}$ та визначити $\frac{\sqrt{5}+5}{7+\sqrt{7}}+\frac{\sqrt{12}+12}{15+\sqrt{15}}+\frac{\sqrt{22}+22}{32+\sqrt{32}}$ за допомоги цієї функції				

7	Створити функцію для обчислення $sh(x) = (e^x - e^{-x})/2$ та за її допомоги	
\ '	визначити $sh(x)tg(x+1) - ctg^2(2 + sh(x-1))$ для введеного значення x	
8	Обчислити для двох введених чисел а та b значення	
	$y = \max(2a - b, 2b - a) + \max(a, b)$, створивши функцію визначення	
	найбільшого з двох чисел	
9	Створити функцію обчислення суми цифр числа та визначити за її допомоги	
	суми цифр для кожного із трьох введених чисел	
	Створити функцію визначення абсолютного значення (за модулем) числа	
10	(без використання стандартних математичних функцій) та обчислити	
	за її допомоги модуль значення для трьох введених чисел	
	Створити функцію обчислення степеня натурального числа з натуральним	
11	показником (без використання функції pow) та обчислити за її допомоги	
	значення a^x та x^a для введених натуральних чисел a та x	
12	Створити функцію обчислення кількості цифр числа та визначити	
12	за її допомоги кількості цифр для кожного із трьох введених чисел	

13	Створити функцію обчислення третього степеня значення дійсного числа (без використання функції pow) та визначити для трьох введених чисел значення їх кубів за допомоги цієї функції		
14	Створити функцію обміну значеннями двох дійсних змінних та за її допомоги поміняти місцями введені x та y		
15	Створити функцію визначення кількості цифр числа та за її допомоги обчислити розмірності трьох введених чисел		
16	Створити функцію обчислення факторіала та визначити $z = \frac{3 \cdot 7! - 2 \cdot 6!}{5! + 3!}$ за допомоги цієї функції		
17	Визначити, якою кількістю способів можна розсадити 4, 5 та 8 студентів у ряд, якщо число всіх перестановок із n елементів обчислюється як n !		
18	Скількома можливими способами можна вибрати з 6, 7 та 9 людей делегацію в складі 3 осіб, якщо число всіх сполучень із n елементів по k , де $1 \le n \le k$, обчислюється за формулою $C_n^k = \frac{n!}{k!(n-k)!}$		
19	Створити функцію обчислення середнього геометричного чотирьох чисел за формулою $\sqrt[4]{a \cdot b \cdot c \cdot d}$ та за допомоги цієї функції визначити для чотирьох введених чисел значення середнього геометричного		
20	Створити функцію обчислення $\frac{\sqrt{x}+x}{2}$ та визначити $\frac{\sqrt{5}+5}{2}+\frac{\sqrt{11}+11}{2}+\frac{\sqrt{17}+17}{2}$ за допомоги цієї функції		
21	Створити функцію обчислення найбільшого спільного дільника (НСД) двох натуральних чисел за алгоритмом Евкліда та за допомогою неї визначити НСД чотирьох введених чисел		
22	Створити функцію обчислення гіпотенузи прямокутного трикутника за значеннями двох катетів та за допомоги цієї функції визначити для двох		

Варіанти завдань для створення функції з трьома результатами

введених значень катетів значення гіпотенузи

№ вар.	Обчислювані значення	Вхідні параметри
1	$y = a \sin^2 b + b \cos^2 a$; $a = \sqrt[3]{ b+c }$; $b = \sqrt{x}$	x, c
2	$y = a^2 + b^2$; $a = \ln x $; $b = e^k + a$	x, k
3	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x, b
4	$y = \sqrt[3]{ a-b }$; $a = \lg x$; $b = \sqrt{x^2 + t^2}$	x, t
5	$y = a^3 / b^2$; $a = e^{\sqrt{ x }}$; $b = (\sin p^2 + x^3)$	x, p
6	$y = p^{2} + t^{4}$; $p = x^{2} - \sqrt{ x }$; $t = \sqrt[3]{x + a^{2}}$	x, a

7	$y = c^3 / \cos c$; $c = a^2 + b^2$; $a = \sqrt{ x } + e^{\sqrt{b}}$	x, b
8	$y = \sin^3(a+b); a = t^3 + \sqrt{b}; b = \lg^2 x $	x, t
9	$y = \operatorname{arctg}^{3} x^{2}; x = p + k; k = \sqrt{p + t^{2}}$	t, p
10	$y = \cos^2(a + \sin b); \ a = \sqrt{ x }; \ b = x^4 + m^2$	m, x
11	$y = \sin^3 a + \cos^2 x$; $a = c + k^2$; $c = \arctan x $	k, x
12	$y = e^{\sqrt{ x }} + \cos x; x = a + c^3; a = \sin^5 b$	b, c
13	$y = a\cos x - b\sin x; \ x = \sqrt[3]{a - b}; \ a = t^2b$	t, b
14	$y = \sqrt{x} \sin a + \sqrt{b} \cos x; \ a = \lg x ; \ b = x + p^3$	x, p
15	$y = \lg a / \lg b$; $a = \sqrt{x^2 + b^2}$; $x = e^b + n$	n, b
16	$y = \ln x + t $; $x = t^2 + p$; $t = \sqrt{m}$	m, p
17	$y = e^{a+b}$; $a = \lg t + b^2 $; $t = b^2 + \sqrt{bx}$	b, x
18	$y = \sqrt[3]{x^2 + c^2}$; $x = e^{mk}$; $c = \cos^2 m + k^2$	k, m
19	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x, b
20	$y = x^3 / t^2$; $x = e^{\sqrt{p+a}}$; $t = p^3 + a^3$	a, p
21	$y = c^2 + \sqrt{ a }; \ c = \lg b ; \ a = (b+x)^3$	b, x
22	$y = \operatorname{arctg}^2 x ; \ x = t^3 + b^2; \ t = b^3 + e^{\sqrt{q}}$	q, b
	y-weig x , x-1 10, 1-0 10	4,0