Multi-Node Training

Different Kinds of "Multi-Node Jobs"

- model fits into single GPU
- model needs multiple GPUs but fits on single node
- model needs multiple nodes
- model is replicated across multiple GPUs on a single node
- model is replicated across multiple nodes

Mixed Communications

- PCI bus for CPU, CPU
 ⇔GPU (computations involving single model)
- RDMA to CPU memory (data)
- GPUdirect for I/O to GPU, RDMA (data loading, inter-node parameters)
- NVLINK between GPUs (multi-GPU SGD within a node)
- standard Ethernet to CPU memory (control messages, maybe data)

Bottlenecks of Single Node Jobs

- limited number of GPUs per node
- limited PCI bus bandwidth
- limited CPU power
- limited local storage

Multi-GPU / Multi-Node Training

(source: Horovod)

IEEE BigData19

Parameter Servers

(source: Horovod)

IEEE BigData19

Direct Parameter Exchanges

(source: Horovod)

IEEE BigData19

How do you distribute?

- starting up jobs across clusters / machines
 - Ansible
 - Kubernetes
 - Slurm
- communications libraries
 - sockets, ZMQ
 - NCCL, Gloo
 - torch.distributed, Horovod
- all-in-one
 - o MPI

My Toolkit

- Ansible
- Kubernetes
- ZMQ, NCCL
- toch.distributed

