LBM, Part 2 Slide 1/12

Example

- Use D2Q9 incompressible model.
- Grid is 32×16 where $\Delta x = 1.0/16.0 = 0.0625$.
- Viscosity is $\nu = 1.0$. Relaxation parameter is $\omega = 0.8$.

- Pressure is p = 1.1 at left edge.
- Pressure is p = 1.0 at right edge.
- Velocity is v = 0.0 at top edge.
- Velocity is v = 0.0 at bottom edge.

LBM, Part 2 Slide 2/12

Initial Conditions

- Pressure is p = 1.05 at all interior points.
- Velocity is v = 0.0 at all interior points.
- Distribution $g^1 = g^0$ at all interior points.
- Calculate equilibrium g^0 from v and p.

$$e_{i} = \langle x_{i}, y_{i} \rangle$$

$$s_{i}(v) = \hat{w}_{i} \left[3 \frac{e_{i} \cdot v}{c} + 4.5 \frac{(e_{i} \cdot v)^{2}}{c^{2}} - 1.5 \frac{v \cdot v}{c^{2}} \right]$$

$$g_{i}^{0} = \{ -4\sigma, \lambda, \lambda, \lambda, \lambda, \gamma, \gamma, \gamma, \gamma \} \frac{p}{c^{2}} + s_{i}(v)$$

LBM, Part 2 Slide 3/12

Parameters

 $\Delta x = 0.0625$

•
$$\nu = 1.0$$

$$\bullet \omega = 0.8$$

$$\bullet$$
 $c = \Delta x / \Delta t$

$$\bullet \ \sigma = 5/12$$

$$\bullet \lambda = 1/3$$

Parallel Computing

TJHSST

LBM, Part 2 Slide 4/12

Main Loop

- 1. Collision.
- 2. Boundary conditions.
- 3. Streaming.
- 4. Update flow field.

• Repeat until velocity stops changing:

$$\frac{\Sigma (v - v_{old})^2}{\Sigma v^2} < 10^{-6}$$

LBM, Part 2 Slide 5/12

Main Loop

- 1. Collision.
 - Calculate g^0 from v and p, then g^2 from g^1 and g^0 .
- 2. Boundary conditions.
 - Specify values in g^2 .
- 3. Streaming.
 - Update g^1 from g^2 .
- 4. Update flow field.
 - Calculate v and p from g^1 .

LBM, Part 2 Slide 6/12

Collision

• We already know g^1 and v and p.

• Calculate g^0 from v and p.

$$e_{i} = \langle x_{i}, y_{i} \rangle$$

$$s_{i}(v) = \hat{w}_{i} \left[3 \frac{e_{i} \cdot v}{c} + 4.5 \frac{(e_{i} \cdot v)^{2}}{c^{2}} - 1.5 \frac{v \cdot v}{c^{2}} \right]$$

$$g_{i}^{0} = \{ -4\sigma, \lambda, \lambda, \lambda, \lambda, \gamma, \gamma, \gamma, \gamma \} \frac{p}{c^{2}} + s_{i}(v)$$

- Then $g^2 = (1 \omega) \cdot g^1 + \omega \cdot g^0$.
 - If $\omega > 1$ then this is an <u>over</u>relaxation.

LBM, Part 2 Slide 7/12

Boundary Conditions (1)

• Assume no internal walls for now.

- At left and right edge where pressure p is proscribed:
 - $-\operatorname{Set} v$ from grid and p as specified.

- \bullet At top and bottom edge where velocity v is proscribed:
 - -Set v as specified and p from grid.

•

• Regardless of direction go horizontal vertical only.

LBM, Part 2 Slide 8/12

Boundary Conditions (2)

• Using the identified v and p, then find g.

• Set
$$g^2 = g + (1 - \omega) \cdot (g^1 - g^0)$$
.

• Only required for directions that will stream *into* the field.

•

- Trick
 - -Put an extra row and column on each side of the grid.
 - Looping over actual field will access these extra cells.

LBM, Part 2 Slide 9/12

Streaming

• Set g^1 from directional value of g^2 , so that only g[0] stays put.

• Boundary cells only need values that stream *into* the field.

LBM, Part 2 Slide 10/12

Update Flow Field

• Velocity components sum over each g.

$$v_x = \sum_{i} (cx_i g_i)$$
$$v_y = \sum_{i} (cy_i g_i)$$

• Incompressible. Pressure also a sum.

$$p = \frac{c^2}{4\sigma} \cdot \left(\frac{1.5\hat{w}_0(v \cdot v)}{c^2} + \sum_{i \neq 0} g_i \right)$$

LBM, Part 2 Slide 11/12

Collision (next loop)

• We now have new values for g^1 and v and p.

• So calculate a new equilibrium g^0 from v and p.

$$e_{i} = \langle x_{i}, y_{i} \rangle$$

$$s_{i}(v) = \hat{w}_{i} \left[3 \frac{e_{i} \cdot v}{c} + 4.5 \frac{(e_{i} \cdot v)^{2}}{c^{2}} - 1.5 \frac{v \cdot v}{c^{2}} \right]$$

$$g_{i}^{0} = \{ -4\sigma, \lambda, \lambda, \lambda, \lambda, \gamma, \gamma, \gamma, \gamma \} \frac{p}{c^{2}} + s_{i}(v)$$

• Then a new $g^2 = (1 - \omega) \cdot g^1 + \omega \cdot g^0$.

LBM, Part 2 Slide 12/12

Visualize

• Plot y versus v_x at horizontal midline, in Gnuplot: easy.

 \bullet Plot |v| contours, in Matlab:

```
X=load('xfield.txt');
Y=load('yfield.txt');
V=load('vfield.txt');
%
contour(X,Y,V);
colorbar;
```