Algebra Lineare - lezione 6

Appunti di Davide Vella 2024/2025

Marco Radeschi

marco.radeschi@unito.it

Link al moodle:

informatica.i-learn.unito.it/course/view.php?id=3004

07/10/2024

Contenuti

- 1. Matrici
 - 1.1. Entrate/coefficienti
- 2. Somma e moltiplicazione
 - 2.1 Somma
 - 2.2 Moltiplicazione
- 3. Matrici quadrate
- 4. Span di vettori

Matrici

Def:

Poniamo che K sia un campo, allora una matrice ha 'm' righe e 'n' colonne $(m \cdot n)$.

$$A = egin{bmatrix} a_1 & a_2 & \dots & a_{1n} \ \dots & & & & \ a_{m1} & \dots & \dots & a_{mn} \end{bmatrix}.$$

Entrate/coefficienti

Le entrate (o coefficienti) di A sono $\forall i,j o a_{ij} \in K.$

Exemple

$$A = \begin{bmatrix} 3 & 1+i & -2 \\ 1 & i & 0 \end{bmatrix}. \ A \ \text{è una matrice} \ 2 \cdot 3 \ \text{a coefficienti in} \ \mathbb{C}.$$

Def:

Per definire una matrice diciamo che questa è definita in M(m. n, K), dove m sta per le righe, n

per le colonne e infine diciamo in cosa è definita la matrice.

 $A\in M(2,3,\mathbb{C}).$

Somma e moltiplicazione

Somma

$$A = egin{bmatrix} a_{1\,1} & \dots & a_{1\,n} \ a_{m\,1} & \dots & a_{m\,n} \end{bmatrix} \quad B = egin{bmatrix} b_{1\,1} & \dots & b_{1\,n} \ b_{m\,1} & \dots & b_{m\,n} \end{bmatrix}$$

La somma tra due matrici si può fare solo se le due matrici (A e B in questo caso) hanno lo stesso numero di elementi.

$$A+B = \left[egin{array}{cccc} a_{1\,\,1} + b_{1\,\,1} & \ldots & a_{1\,\,n} + b_{1\,\,n} \ a_{m\,\,n} + b_{m\,\,1} & \ldots & a_{m\,\,n} + b_{m\,\,n} \end{array}
ight]$$

Moltiplicazione

La moltiplicazione per ora si limita a moltiplicare una costante (λ) con ogni elemento della matrice. La moltiplicazione tra matrici è più complessa e la si vede alla lezione 8.

Per moltiplicare una costante λ dobbiamo avere che $\lambda \in K$ e quindi possiamo dire che :

$$\lambda \cdot A = egin{bmatrix} a_{1\,1} \cdot \lambda & \dots & a_{1\,n\cdot\lambda} \ a_{m\,1} \cdot \lambda & \dots & a_{m\,n} \cdot \lambda \end{bmatrix}$$

Proprietà:

M(m, n, K) è uno spazio vettoriale su K,

Def:

Sia V uno spazio vettoriale su K, un sottospazio vettoriale è un sottoinsieme $W\subseteq V$ tale che :

- 1. $0_V \in W$
- 2. $\forall w_1, w_2 \in W
 ightarrow w_1, w_2 \in W$
- 3. $\forall w \in W, \forall \lambda \in K \rightarrow \lambda w \in W$

Proprietà:

Un sottospazio vettoriale (di V in questo caso) è uno spazio vettoriale su K.

KEX CE FISSIANO FISSIANO d EN >0 [K[x] C|K(x), |K[x] DEG(P(1)) ed $= \left\{ P(x) = \alpha_0 + \alpha_1 \times + \dots + \alpha_d \times \right\}$ | no ... , ad ElKZ 1) 0=0+0x+0x2+...+0xd E [K[x]] 2) P(x) = ao + a,x+ - + a,x d e IK [x]d ()(x) = 6 0 + 6 x + ... + 6 1 x d e |K [x]d P+Q + IKC×) 3) P(X) = a,+...+Q, x & [K[X] 2.P(x) = lat. + lalx & elk[x]

ES; $C_{1} \subseteq |K[\times]| = \{P(x) \in |K[\times]| D \in G(P(x)) = d\}$ $C_{1} \in A$ $C_{2} \in A$ $C_{3} \in A$ $C_{4} \in A$ $C_{5} \in A$ $C_{5} \in A$ $C_{6} \in A$ $C_{6} \in A$

$$ES: \mathbb{R}^{2}$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

$$\{(x,y) \in \mathbb{R}^{2} | y = \frac{1}{2} \times \} = V$$

Matrici quadrate

Def:

Una matrice $n \times n$ è detta quadrata. M(n) = M(n,K) = M(n,n,K). Sono tutti spazi vettoriali di M(n) :

1. D(n) (diagonale) =
$$\left\{ A = \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} \right\} = \{ A \in M(n) | a_{ij} = 0, \forall i \neq j \}.$$
2. U(n) (triangolo superiore) =
$$\left\{ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \right\} = \{ A \in M(n) | a_{ij} = 0, \forall i > j \}.$$

3. L(n) (triangolo inferiore) =
$$\left\{ A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \right\} = \left\{ A \in M(n) | a_{ij} = 0, \forall i < j \right\}$$

4. S(n) (simmetriche, esempio) =
$$\left\{ A = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 4 \\ 3 & 4 & 0 \end{bmatrix} \right\} = \{A|a_{ij}=a_{ji}, \forall i,j\}.$$

5. A(n) (anti simmetriche, esempio) = =
$$\left\{ A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix} \right\} = \{A|a_{ij} = -a_{ji}, \forall i, j\}.$$

Span di vettori

V spazio vettorale su K, fissiamo vettori : $v_1, v_2, \ldots, v_n \in V$.

Exemple

$$V=K[x], v_1=x, v_2=1+x, v_3=5\\$$

 $a_1v_1+a_2v_2+\cdots+a_nv_n$ si dice combinazione lineare dei vettori : v_1,v_2,\ldots,v_n .

Exemple

 $3x + (-1)(1+x) + 7 \cdot 5$, esempio di combinazione lineare di : x + (1+x) + 5.

Def:

Lo span dei vettori (v_1,v_2,v_3) = $\{v\in V|a_1v_1+a_2v_2+\cdots+a_nv_n\}$ è lo spazio generato di v_1,\ldots,v_n

Proprietà:

 $\mathsf{Span}(v_1,\ldots,v_n)\subseteq\mathsf{V}$ è sempre un sottospazio vettoriale.

Exemple

$$V = R^3$$

$$\mathsf{SPAN}\;(v_1,v_2) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in R^3 | \begin{bmatrix} x \\ y \\ z \end{bmatrix} = a_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}. \; \mathsf{II}\;\mathsf{piano}\;\mathsf{preso}\;\mathsf{\grave{e}}\;\mathsf{x}\;\mathsf{e}\;\mathsf{y},\;\mathsf{iI}\;\mathsf{piano}\;\mathsf{preso}\;\mathsf{\grave{e}}\;\mathsf{x}\;\mathsf{e}\;\mathsf{y},\;\mathsf{iI}\;\mathsf{piano}\;\mathsf{preso}\;\mathsf{\grave{e}}\;\mathsf{z}.$$