南方科技大学 Artinx 机器人战队

机械拼装建模入门手册

V1.0

编写人: Artinx 徐康 卢睿

最新更新日期: 2017年8月2日

Tips: 目录星号以及正文加下划线粗体红字为常用的,需要特别注意的条目。

0	前言.	
	0.1	装配的含义
	0.2	装配基础
1	基本]	[具
	1.1	加工工具
		1.1.1 内六角扳手*
		1.1.2 其他扳手
		1.1.3 电烙铁
		1.1.4 热熔胶*
		1.1.5 激光切割机
		1.1.6 3d 打印机
		1.1.7 电动磨机,电钻
	1.2	装配工具
		1.2.1 钳类*
		1.2.2 热缩管
		1.2.3 理线管
		1.2.4 线束固定座
		1.2.5 卡箍
		1.2.6 电工胶带
		1.2.7 波纹管 (开口)
2	装配匀	零件
	2.1	分类
		2.1.1 螺栓*
		2.1.2 螺母*
		2.1.3 垫圈*
		2.1.4 卡簧
		2.1.5 铜柱
3	结构零	ş件
	3.1	同步带
	3.2	丝杆
	3.3	轴承

1							
4							
	4.1	亚克力			 	 	
	4.2	木板			 	 	
	4.3	碳板			 	 	
	4.4	3d 打印塑料			 	 	
	4.5	铝型材			 	 	
	4.6	电子器件			 	 	
5	机械厂	原理与机械设	tt		 	 	
	5.1	SolidWorks 简	万单入门和学习	方法	 	 	
	5.2	机器人基础	(概念篇)		 	 	
	5.3	机器人基础	(机械篇)		 	 	
	5.4	设计实例一	底盘		 	 	
	5.5	设计实例一	云台		 	 	
	5.6	设计实例——	-补给站		 	 	
	5.7	设计实例一	-英雄车登岛	吉构	 	 	
	5.8	设计实例—	一工程车功能等	实现	 	 	
6	比赛想	观则及其他			 	 	
	6.1	比赛规则综边	比(赛场角度な	}析)	 	 	
	6.2	2017 各赛区	央赛队伍与比 第	赛分析	 	 	

0 前言

装配一线装备:一个小马扎,一套内六角扳手,一把 M3/M4 六角扳手,一把 M5/M6 扳手。可以和你的爱车幸福快乐一整夜了。

但是在上前线之前,还是要对爱车的零件有所了解,才能够拼装出一辆好车~一辆不会掉螺 丝的,好车~本册只提供实战中的经验,较少涉及严整的基础知识(可以在网络大量获得), 意在提供从入门到精通的进阶模式。

通过学习,希望在前期对基本工具分类、机械结构、软件使用、组织架构有一个了解。

0.1 装配的含义

装配是指将零件按规定的技术要求组装起来,并经过调试、检验使之成为合格产品的过程, 装配始于装配图纸的设计。.

装配必须按照图纸、一般装配顺序、设计装配顺序、零件装配要求等进行。重点是公差和装配顺序。

装配前请务必准备好打印好的,或者三维的<u>待装配图纸</u>,和设计者<u>完全沟通</u>,并且整理所有加工件到位,确认大致需要的装配零件。

装配时,按照规范,并且保持环境整洁。

0.2 装配基础

尺寸和公差是设计中最为精密的部分,决定了每个结构的强度、有效性。尺寸和公差在设计 是指导细节,在工程图中指导制造,在装配中指导方法。以上提及的方面,均可以从网络中 查到丰富资料供参考。以下举例说明。

例如:轴承轴向固定。轴向固定有多种方法,万一损坏,需要拆卸,则极少用过盈配合,用间隙配合,还需要配合外附件进行固定。常用卡簧(挡圈)。轴承中间轴会以轴承内径尺寸系列设计,而卡簧一般往小了选。孔用则往大了选。

选定后,设计卡簧槽,需要查表。一般距离断面 1~1.5 个卡簧槽宽度。

标注工程图时,卡簧配的轴内径和宽度可以配正公差(0-0.02,即 2 个丝以内),因为对于 卡簧一类的粗制标准件,其精度差,尺寸不稳定。对于轴承一类精密零件,需要查表得到公 差。

装配时, 需要使用专业的卡簧钳。

1 基本工具

1.1 一般工具

1.1.1 内六角扳手*

1.1.2 其他扳手

1.1.3 电烙铁

1.1.4 热熔胶*

1.1.5 激光切割机

基本步骤:

打开电源, 打开冷却水, 打开抽风机

调节激光头高度

导入文件(不同材料不同厚度不同加工方式需要调节)

确认加工范围(省材料为主)

关防护罩, 开始加工

1.1.6 3d 打印机

1.1.7 电动磨机,电钻

1.2 装配工具

1.2.1 钳类*

名称	样式	备注
钢丝钳	THAT GO DAOM	材质为镍铬合金钢 、铬钒合金 钢、高碳钢、球墨铸铁,因而较 脆,不能当榔头使用。 为防止生锈,钳轴要经常加油。
尖嘴钳	MAIGOGCOM	材质一般由 45# 钢制作,韧性硬度都合适。
管子钳	MAIGOQ com	一般管子钳不能作为锤头使用。
迷你钳		
斜嘴钳	MAISOS con	是一种金属切断工具,用于切断 金属丝。 材质可有 45#碳钢、55#碳钢、 铬钒钢等。

扁嘴钳	RAIG00 con	主要用于弯曲金属薄片,及金属细丝成为所需的形状。
鹰嘴钳	A ALCO COM	
卡簧钳	FAISO2 con	一种用来安装内簧环和外簧环 的专用工具。 锻造而成,较脆。
鲤鱼钳	MAGOO COM	用于夹持圆形零件,也可代替扳 手旋小螺母和小螺栓,钳口后部 刃口可用于切断金属丝,在汽修 行业中运用较多。
电缆钳	DIALCO COM	
剥线钳		专供电工剥除电线头部的表面绝缘层用。

Tips:

- 1 不要把钳子当锤头!
- 2 虽然钳子有折弯剪断的功能,但也只是针对强度较小的材料对象。
- **3** 因为钳子的强度有限,所以不能用它去操作它能力范围外的工作,特别是型号较小的普通的尖嘴钳,如过分使用会将其钳口损坏的。
- 4 钳子的钳柄是用手去握力的,避免使用外部加力,如用锤子捶打,用台虎钳夹,这都是不允许的,会将其损坏的。

1.2.2 热缩管

Tips:

- 1 套在接线处,打火机烧,使其收缩
- 2 直径范围很大,从 1mm 至 80mm 均有

1.2.3 缠线管

1.2.4 线束固定座、扎带

1.2.5 卡箍

1.2.6 电工胶带

1.2.7 波纹管(开口,闭口)

2 装配零件

螺栓螺母垫片一般综合使用,因此装配重点只要集中写在垫片的 tips 里面。

2.1 分类

2.1.1 螺栓*

八米子汁	なわ	1X -b	友 sh
分类方法	名称	样式 受振动载荷的零件宜用铰制孔螺栓	备注
受力方式	普通	普通螺栓 绞制孔螺栓	轴向力,横向的载荷
			承受方法主要是靠
			预紧力矩带来的摩
			擦力
	铰制孔		横向力横向载荷的
			承受方法是靠螺栓
		000	本身的抗剪强度
			77-21 1111/121 12/2
			塞打螺栓(六角头铰
			制孔螺栓)
头部形状	外六角	11 8	
	J. Y. M.		DI A LT V
	<u>内六角</u>		别名杯头
	圆头十		还有梅花六角字
	字		
		E & 3	

	方形头		多用于铝型材
	沉 头 十 字	X	减小空间,注意孔设计
	特殊用途:有孔锁紧,焊接螺柱	1月1月1日日 日本時期金生	孔加短销
螺纹牙型	粗牙 细牙		标准螺距为粗牙,细 牙会有 2-3 个不同类
螺纹长度	全螺纹		
	非全螺纹		

tips:

- 1 性能等级; 8.8 以上为高强度螺栓, 8.8 级以下为普通螺栓
- 2 螺纹主要为右旋,少数左旋。一根轴上为了防止松动一般是一个左旋一个右旋
- 3 高强度要求和震动处需要螺栓止退,点焊、胶粘、充点
- 4 螺钉在紧固运动装置或维护时无须拆卸部件的场合,**装配前螺丝上**应加涂螺纹胶
- 5 一般情况下,螺纹孔的螺纹连接应有防松弹簧垫圈 螺纹联接的其他防松办法:
- 1) 采用锁紧螺母防松
- 2) 用金属丝来防松或成对的螺栓
- 3) 用开口销插入六角槽形螺母的槽或螺母的孔中来止动
- 4) 用弹簧垫圈、止动垫圈或带翅垫圈来防松

- 5) 用点铆的办法来制止螺母的回松
- 6) 沉头螺钉用打样冲眼的方法来止动定位
- 6 螺栓安装有顺序,从中间到旁边,先定位再固定,防止变形。尤其是脆性亚克力,韧性碳纤维板

2.1.2 螺母*

名称	样式	备注
六角螺母		少用,特殊时候,空间有限,或者用于支撑距离
防松螺母		螺栓螺纹必须超过螺母 2-3 丝(圈) 基本只用防松螺母,震动处在使用 几小时后需要二次紧固
吊环螺母		

圆螺母	The second secon	别名锁紧螺母 用于轴端轴承轴向固定的圆螺母 需要配合止退垫圈 外圆柱圆螺母可以用于为管件添 加内螺纹
焊接方 / 六 角螺母		

Tips:

- 1 以上为常用螺母, 材质为不锈钢, 还有铜、合金材料螺母
- 2 过度加垫片减小联接螺纹长度,会减小强度,每个螺母下使用一个垫片为佳
- 3 螺栓需要一定预紧力,我们的机器不需要精确的预紧,适当的预紧力,不会损坏工件,又可以提高强度,必须注意材料承受力

2.1.3 垫圈*

名称	样式	备注
平垫圈		平垫圈一般用在连接件中一个是软质地的,一个是硬质地较脆的,其主要作用是增大接触面积,分散压力,防止把质地软的压坏
弾簧垫圈		增大螺母和螺栓之间的摩擦力 无螺母有震动联接等处必须增加弹簧垫圈
防松垫圈		

Tips:

1 对一般的螺栓连接,螺栓头和螺母下面应放置平垫圈,以增大承压面积。垫圈用于保护被连接件的表面不受螺母擦伤,分散螺母对被连接件的压力,一定注意材料。实际操作中为了减重和简化装配,只在特殊位置使用垫片,以下为理论的装配要求,实际需要看情况决定是否使用

2 哪里需要垫片:

- 1) 螺纹孔部分必须安装弹簧垫圈
- 2)螺栓头和螺母侧应分别放置平垫圈,螺栓头侧放置的平垫圈一般不应多于 2 个,螺母侧放置的平垫圈一般不应多于 1 个
- 3)对于设计有要求防松动的螺栓、锚固螺栓应采用防松动装置的螺母或弹簧垫圈,弹簧垫圈必须设置在螺母一侧
- 4)对于承受动荷载或重要部位的螺栓连接,应按设计要求放置弹簧垫圈,弹簧垫圈必须设置在螺母一侧
- 3 怎么装螺栓螺母垫片:
- 1) 螺栓、螺钉装配时应该用手拧入大于2至3个螺距,然后再用扳手或电动工具拧紧
- 2) 螺母拧紧后,螺栓头部应露出螺母端面 2 至 3 个螺距,螺母和垫圈均以反面面向被连接体(螺母标有字样的一面为正面,垫圈圆滑一面的为正面)

2.1.4 卡簧 (弹性挡圈)

名称	样式	备注
C型-孔用RTW		选型孔径为基准,查表,往 大选

c 型-轴用 STW	Вайдава	选型轴径为基准,查表,往小选
异型-E 型		

tips:

1 轴用孔用都有不同的安装工具——卡簧钳。使用时,先套到轴上再用钳子撑开,或者直接 压缩放入孔中

2.1.5 铜柱

3 结构零件

3.1 同步带(轮)

3.2 滚珠丝杠

3.3 轴承

滑动轴承根据轴承所能承受的载荷方向不同,可分为向心滑动轴承和推力滑动轴承。向心滑动轴承用于承受径向载荷;推力滑动轴承用于承受轴向载荷。

滚动轴承按滚动体的形状分,可分为球轴承和滚子轴承两大类。

按滚动体的列数,滚动轴承又可分为单列、双列及多列滚动轴承。

按工作时能否调心可分为调心轴承和非调心轴承。调心轴承允许的偏位角大。

按承受载荷方向不同,可分为向心轴承和推力轴承两类。

深沟球		主要承受径向载荷,少量的轴向载荷。转速 很高而轴向载荷不太大时,可代替推力球轴 承承受纯轴向载荷。生产量大,价格低。
圆锥滚子	a	能承受以径向载荷为主的径向、轴向联合载荷,当接触角 α 大时,亦可承受纯单向轴向联合载荷。因为是线接触,承载能力大于 7 类轴承。内、外圈可以分离,装拆方便,一般成对使用。
角接触	ब	能同时承受径向和轴向联合载荷。接触角 α 越大,承受轴向载荷的能力也越大。接触角 α 有 15°、25°和40°三种。一般成对使用,可以分装于两个支点或同装于一个支点上。
推力球		接触角 α=0°, 只能承受单向轴向载荷。而且载荷作用线必须与轴线相重合, 高速时钢球离心力大, 磨损、发热严重, 极限转速低。所以只用于轴向载荷大, 转速不高之处。

Tips:

- 1 一般轴承装配有两种方法:
- 1) 冷压法: 用专用压套压装轴承, 先加专用压套, 再用压力机压入或用手锤轻轻打入
- 2) 热装法:将轴承放入油池或加热炉中加热至80~100℃,然后套装在轴上

- 2 以上装配方法针对间隙或者过盈配合的大型轴承。对于普通小型轴承(机器人中使用的全部轴承),基本使用简短小力敲击装入
- 3 轴承装配设计必须配备公差,一般使用间隙配合,特殊紧固处使用过盈配合

4 为了便于用专用工具拆卸轴承,设计时应使轴上定位轴肩的高度小于轴承内圈的高度

3.4 联轴器

名称	样式	特点
膜片式联轴器		高刚性,零背隙
十字式联轴器		偏心反作用力小
沟槽式联轴器		低惯性矩,高响应
爪形联轴器		绝缘性好,可吸收震动

波纹管形联轴器	低惯性矩,等速性好
刚性联轴器	高刚性,零背隙
万向接头联轴器	可设置角度实现不等速 旋转

tips:

1

3.5 弹簧

4 材料

4.1 亚克力

4.2 木板

4.3 碳板

4.4 3d 打印塑料

4.5 铝型材

4.6 电子器件

5 机械原理与机械设计

5.1 SolidWorks 简单入门和学习方法(三维和二维)

5.1.1 导引

Solidworks 是我们车队的主力软件,具有功能强大、易学易用和技术创新三大特点。

注意,Solidworks 仅支持向下兼容,低版本无法打开高版本保存的文件,所以在车队内工作时请注意自己使用的版本。

本教程均以 SolidWorks2017 为例。

5.1.2 基本介绍

画图思路:

由二维至三维,由简单到具体。

注意,画图时,始终记得为后期调试修改留好后路,争取让自己画出来的图,步骤简洁,且便于修改。

2.3.3 画图习惯

1.零件在空间中的位置

零件在空间中的位置即零件与原点,基准面的相对位置,这个位置不是随便定义的,应 当根据其在装配体中的位置及装配方法而调整。这样,在制作装配体的过程中将会获得极大 的便利。

例如, 摇杆在装配体的位置如图

则摇杆与三个基准面 的关系最好如右图所 示,上视基准面穿过 轴心。

原点位于轴线中点。

而对于底板则较为随意,一般将底面画在上视基准面中,右视基准面和前视基准面穿过轴线中点。

2.草图的关系定义

合理地定义草图关系可以使后期的检查和修改更方便,同时也方便队友间的交流。 例如,在仪表盘上开孔:

上面两个小孔大小相等,关于过底下大圆 圆心的一条竖直线对称。

一种较好的定义方法如下:

首先做一条竖直线和一条水平中点线,中点线的两个端点为小孔的圆心,竖直线的底端点为大孔的圆心。

定义好竖直线和中点线的长度→定义两小孔相等 →定义小孔的直径→定义大孔的直径→定义大孔 与原点的竖直距离→定义竖直线与原点的水平距 离。

这里特别提一点,这三个孔在仪表板上的位置均 以原点为参照。这样做的好处是,当我们改变仪 表板的大小时,三个孔在仪表板上的位置不会发

生变化。假如我们以仪表板底边为参照,当我们将仪表板的宽度加大时,三个孔的位置就会下移,这时我们还得对孔与底边的距离进行修改,增加了修改的麻烦性。

一般情况下,完成好的草图中不应该出现蓝线(未定义)。

3.装配体中的配合

装配体中的零件如何配合在一起,考验着绘图者的综合水平。以下介绍较好的装配习惯:

(1) 定好基准零件

每次做装配体的时候,都应当首先放入基准零件。如整车装配中,车架就是我们的基准零件。

基准零件应当正确地完全定义,有些时候 SolidWorks 会帮我们固定第一个插入的零件,这个时候零件并没有真正地定义好,取消固定后将会使零件浮动,造成不必要的麻烦。所以建议插入基准零件后,就取消零件的固定(即设置为浮动),再用正确的关系将其与空间配合。以后新加入的零件就不必与空间配合了,而是直接配合在基准零件上。(注:很多情况下,只要基准零件的三个基准面定得好,就只需将空间的三个基准面与基准零件的三个基准面重合就行了)

(2) 正确运用子装配体

SolidWorks 中可以存在多级子装配体,正确运用子装配体可以使大型装配体中的结构清晰明了,易于整理。但在大装配体中无法移动小装配体中的零件(如悬架装配体中的轮胎,在整车装配体中无法再鼠标的拖动下旋转),所以某个零件是否应该放在子装配体中,应该根据该零件在大装配体中应具有的配合关系决定

(3) 正确运用文件夹

在左侧的 FeatureManager 设计树中,零件可以被归入某一个文件夹。同一个文件夹中的零件可以同时被隐藏、压缩、孤立显示等等,所以及时将零散的零件有序地归入文件夹中,可以使大型装配体的层次结构清晰明了。

(4) 及时检查配合错误

大型装配体中出现配合错误是一种常见现象,我们应当及时检查、及时处理出现的错误,避免错误累积,不便修改。

配合错误常常由于过定义和配合冲突产生,对于过定义的配合,我们只需要删掉次要配合关系即可,而配合冲突则常常由多种因素造成,一种可能是两个相互配合的零件在设计的时候就存在配合误差,所以装配过程中,SolidWorks 就会由于无法解出该配合而报错(即使是 0.00000......1 的偏差也会使 SolidWorks 报错)。这种情况下,建议使用其他配合方式。

最后完成的装配体不应当存在报错情况。

5.1.3 二维尺寸标注基础

1.合理选择尺寸基准

尺寸基准是尺寸的起点,合理选择尺寸基准,是尺寸标注的第一步 尺寸基准分为设计基准和工业基准 1)设计基准是指零件设计时主要用来定型的中心线、构造线等,在标注时可先将零件的设计基准补全,再进行尺寸标注,如下图的 20°角的标注

2)工业基准是为了便于加工和测量零件所设的辅助基准

如下图如果以 A 面为基准则可以清楚地标出孔的深度并且便于测量,而以 B 面则不便于控制加工与测量

2.重要尺寸需要直接标出

对于某个有特殊功用的零件, 其有些尺寸是比较重要的, 如保证零件工作性能或是与其

他零件装配的尺寸,这些尺寸都必须直接标出,而不能由其他尺寸推出。

如下图的钣金件,上面的两个孔是为了和另一个零件用螺栓连接,因此这两个孔的孔心 距是一个重要的定位尺寸,应直接标出。

3.一般尺寸应尽量符合加工工艺

在对零件的尺寸进行标注时, 要考虑到加工的步骤

以下图耳片为例,加工时会以给的角度 106°和底边长度 37 切个等腰三角形,之后顶角切成 R9,靠从底边的距离 31.8 打直径为 8 的通孔,最后在底边上切出 R13 的半圆缺口

4.避免出现重复标注和封闭的尺寸链

在零件加工时重复标注标注可能会引起加工时的问题,如果同一个尺寸标注了两次,而这两次不一样的话,加工时会不知道以哪个为准。

而所谓封闭的尺寸链,如图(不合理例子)中间的间距 24 是可以由 34-5-5 得出的。这样子在标注的时候也许看不出什么问题,也没有标错什么,但是在实际加工时,由于种种因素,尺寸都不是绝对的,这样全部标出,就表示对所有尺寸都有要求,这在实际加工中显然是不可能的。

现在假设中间的间距 24 和两个 5 的厚度是比较重要的,那在标注时就只标注这两个尺寸,并且注上公差,24 为 ± 0.05 ,这样既保证了重要尺寸的精度要求,又降低了次要尺寸 (34) 的精度

合理

Tips:

1、对于使用较大图纸(A0、A1、A2)的零件工程图,尺寸的字体应相应调大,因为加工的时候是打印成纸质版,再拿到车间里加工,A0、A1的纸太大了,不方便使用,所以会选择小一点的纸,这时上面的尺寸如果继续沿用图纸自带的大小,就会看不清了。

2、尺寸数字不要与零件的轮廓线重合

- 3、 标注尺寸、特别是复杂零件的尺寸时,注意标注完整、清晰、有序
- 4、像是直径之类可以选择放置角度的尺寸,记得将引出线末端改成水平,方便阅读

5.1.4 视图的选择

除了前视、俯视和左视三个基本视图之外,对于不同的零件,还可以选择添加辅助视图来使零件的表达更清晰、尺寸标注更方便。其中最经常使用到的即为剖视图。其他还有局部剖、局部放大、向视图、断面图等。

有时候零件不是十分复杂时,可以选取尽量少的视图,使用最具有代表性的视图就足够了,如下面的锥形垫片,只需要一张图片就可以将其表达清楚

在图纸空白处可选择放置一张轴测图,方便加工人员直观地了解零件的外形

5.1.5 表面粗糙度基础

粗糙度越小,即越光滑,在工作时磨损也会小,工作性能也会更好,但是与之相对的,造价也会更高。工业上对其的要求是,在保证性能的前提下,尽量使用大的表面粗糙度,以

节省成本。详细的我就不在这介绍了,如果有兴趣的话可以自己找相关资料阅读,接下来就讲一下需要用到的基本知识。

一般平面、非配合平面	无要求/12.5
较为重要的平面	6. 3
与光杆相配合的孔、转动滑动速度不高的接触面	3. 2
轴套(用来与轴承外圈配合的孔)(由于不好加工)	1.6
轴上安装轴承的表面 (好加工)	0.8

Tips:

SOLIDWROKS 表面粗糙度标注方法简要说明

符号一般选择第二个,表示表面去除材料的表面粗糙度,之后在符号布局中填写相应的表面粗糙度即可。放置位置可以选择放置在尺寸线上,也可以另外引出引线。

5.1.6 尺寸极限偏差基础

在零件加工过程中,由于种种因素,尺寸是无法加工到绝对精准的,但是如果尺寸不合适,会给零件的配合带来困难。而可行的方法是在满足零件性能要求的条件下,允许尺寸在所限定的范围内变动。这个允许变动的范围就称为尺寸极限偏差,也称作公差。

基础知识:像是有一个孔,它是要有一根直径为8的光杆通过的,那么这个孔的直径至少要是8,可以稍微大一点但是不可以小,因此公差应为

Tips:

SOLIDWORKS 公差标注方法简要说明:

先点击尺寸,在右边就会出现下图,在公差/精度这边选择类型,填写数字,上面那个孔的 公差是选择了双边

5.1.7 几何公差基础

零件上的一些特征部分,如点、线或者面称为要素,这些要素在加工的时候可能会出现 形状、位置或方向等方面的误差,如两个圆柱的轴线没有重合,这时就需要几何公差来限制 允许的偏差。

下图是一张几何公差, 也可以叫形位公差的表格

分 类	名 称	符 号	有无基准
形状公差	直线度		无
	平面度		. 无
	圆度	0	无
	圆柱度	A	无
	线轮廓度		无
	面轮廓度		无
方向公差	平行度	//	有
	垂直度		有
	倾斜度	_	有
	线轮廓度		有
	面轮廓度		有
位置公差	位置度	+	有或无
	同心度 (用于中心点)	0	有
	同轴度 (用于轴线)	0	有
	对称度	=	有
	线轮廓度		有
	面轮廓度		有
跳动公差	圆跳动	1	有
	全跳动	L	有

就好比需要装轴承的内圈,那么其圆柱度就有相应的要求,而且用来给轴承限位的轴肩也应 垂直于内圈,因此也有垂直度的要求。

5.1.8 总结

好的画图习惯需要在平时的练习中养成,日积月累的练习不但能提升画图能力,还能使好的画图习惯成为本能。创建大型装配体可以让我们更深地体会到画图习惯的重要性,建议大家在具备了基本的画图能力后,尝试创建一个大型装配体,并在装配体完成后,对零件进行修改,以加深对画图习惯的理解。

5.2 机器人基础 (概念篇)

机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。

5.2.1 机器人分类

5.3 机器人基础(机械篇)

5.4 设计实例——底盘

5.5 设计实例——云台

- 5.6 设计实例——补给站
- 5.7 设计实例——英雄车登岛结构
- 5.8 设计实例——工程车功能实现
- 6 比赛规则及其他
- 6.1 比赛规则综述 (赛场角度分析)
- 6.2 2017 各赛区决赛队伍与比赛分析