Design and Analysis of Algorithms Quick Sort

Dr. Lê Nguyên Khôi

The VNU University of Engineering and Technology

Contents

- Divide and conquer
- Partitioning
- Worst-case analysis
- Intuition
- Randomized quicksort
- Analysis

Quick Sort

- Proposed by C.A.R. Hoare in 1962
- Divide-Conquer technique
- Sorts "in place" (like insertion sort, but not like merge sort)
- Very practical (with tuning)

Divide Conquer

Quick sort an *n*-element array:

- ▶ Divide: Partition the array into 2 sub-arrays around a pivot element x such that elements in left sub-array $\le x$ and elements in right sub-array $\ge x$
- Conquer: Recursively sort the 2 sub-arrays
- Combine: trivial

Key: Linear-time partitioning sub-routine

Partitioning Subroutine - Pseudocode

Partition
$$(A, p, q)$$
 \Rightarrow $A[p, q]$ $x \leftarrow A[p]$ \Rightarrow pivot $A[p]$ $i \leftarrow p$ for $j \leftarrow p+1$ to q do

if $A[j] \leq x$ then

 $i \leftarrow i+1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[p] \leftrightarrow A[i]$

return i $x \leq x \geq x$?

Maintain p i j q

Partition – Example

```
3 2 11
6 10 13 5
            8
                          i=1
                          j=2->4
   5 13 10
          8 3 2 11
                          i=2
                          j=5->6
      3 10
            8 13
                 2 11
                          i=3
                          j=7
            8 13 10
                          i=4
                          j=8
            8 13 10 11
                          i=4
```

Partition – Other Method

Partition
$$(A, p, q)$$
 \Rightarrow $A[p, q]$ $x \leftarrow$ pivot

Partition – Ex 7.1-1 p.173

$$A = \langle 13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11 \rangle$$

Quick Sort - Pseudocode

```
QuickSort (A, p, q)

if p < q then

r \leftarrow \text{Partition } (A, p, q)

QuickSort (A, p, r - 1)

QuickSort (A, r + 1, q)
```

1st call: QuickSort (A, 1, n)

Quick Sort - Analysis

- Assume all input elements are distinct
 - In practice, there are better partitioning algorithms for when duplicate input elements may exist
- Let T(n) = worst-case running time on an array of n elements

Worst-case Analysis

- Input sorted or reverse sorted
- Partition around min or max element
- One side of partition always has no elements

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$\in \Theta(n^2)$$

Worst-case Analysis

$$T(n) = T(n-1) + \Theta(n)$$

- Mathematical method
- Substitution method
- Recurrence-tree method
- Master theorem
 - In recurrence form T(n) = aT(n/b) + f(n)

Best-case Analysis

Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \log n)$ (like MergeSort)

Other-case Analysis

Partition splits the array by the ratio of $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

Solution to this currence T(n) = ?

$$cn \log_{10} n \le T(n) \le cn \log_{10/9} n + O(n)$$

Other-case Analysis

Partition splits the array as worst-case and best-case in turn

$$L(n) = 2U(n/2) + \Theta(n)$$
 best-case $U(n) = L(n-1) + \Theta(n)$ worst-case

$$L(n) = 2\left(L\left(\frac{n}{2} - 1\right) + \Theta\left(\frac{n}{2}\right)\right) + \Theta(n)$$
$$= 2L\left(\frac{n}{2} - 1\right) + \Theta(n)$$
$$L(n) \in \Theta(n \log n)$$

Randomized Quick Sort

Partition around a random element:

- Running time is independent of the input order
- No assumptions need to be made about the input distribution
- No specific input elicits the worst-case behavior
- The worst case is determined only by the output of a random-number generator

Partition – More Discussion

- Assumption for analysis
 - All input elements are distinct
- If there are non-distinct elements?
- Special case: all input elements are the same
 - Worse-case running time

Partition – More Discussion

- Partition into 3 sub-arrays
 - ▶ Left sub-array < x</p>
 - Right sub-array > x
 - ▶ Central sub-array = x
- A bit faster
- Special case, all input elements are the same
 - Linear time
- Pseudocode?

Quick Sort In Practice

- Quick sort is a great general-purpose sorting algorithm
- Quick sort is typically over twice as fast as merge sort
 - Constant c in $\Theta(n)$ is quite small
- Quicksort can benefit substantially from code tuning
- Quicksort behaves well even with caching and virtual memory