Trigonométrie - 3 - Fonctions sinusoïdales

1. Fonctions sinusoïdales

[a] Remarque 1 : \cos et \sin étant 2π -périodiques, on les étudie sur une période : $]-\pi;\pi]$.

1.1. Signe

1.2. Variations

0	Exercice 2 : Compléter les tableaux de variations de cosinus e							
	\boldsymbol{x}	$-\pi$		$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π	
				,	1			
	$\cos(x)$			0				
			1					
		-1					-1	

et	sinus:						
	\boldsymbol{x}	$-\pi$		$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
	$\sin(x)$	0	V	-1			0

Exercice 3 : Quel est le nombre de points d'intersection des courbes représentant les fonctions \cos et \sin sur l'intervalle $[0;200\pi]$?

2. Parité

2.1. Fonctions paires

Définition 1 : Une fonction f est **paire** lorsqu'elle est définie sur un ensemble de définition \mathcal{D}_f symétrique par rapport à 0 (par exemple [-1,5;1,5]) et vérifie les conditions (équivalentes) suivantes :

- ullet pour tout $x\in \mathcal{D}_f$, f(x)=f(-x) .
- la courbe de f est symétrique par rapport à l'axe vertical (Oy).

Exemple 1:

Exemple 2: les fonctions définies par : x^n avec n entier pair et $\cos(x)$ sont des fonctions paires.

2.2. Fonctions impaires

Définition 2 : Une fonction f est **impaire** lorsqu'elle est définie sur un ensemble de définition \mathcal{D}_f symétrique par rapport à 0 (par exemple [-1,5;1,5]) et vérifie les conditions (équivalentes) suivantes :

- ullet pour tout $x\in \mathcal{D}_f$, f(x)=-f(-x).
- ullet la courbe de f est symétrique par rapport au centre du repère.

Exemple 4 : les fonctions définies par : x^n avec n entier impair, $\sin(x)$, la fonction inverse, et $\tan(x)$ sont des fonctions impaires.

Exercice 4:

- 1. Donner un exemple de fonction ni paire ni impaire
- 2. On note f une fonction définie sur \mathbb{R} . On pose $p(x)=\dfrac{f(x)+f(-x)}{2}$. Montrer que p est une fonction paire.
- 3. On pose $i(x)=rac{f(x)-f(-x)}{2}$. Montrer que i est une fonction impaire.
- 4. En déduire que f est la somme d'une fonction paire et d'une fonction impaire.

Moralité : une fonction qui n'est ni paire ni impaire est quand même la somme d'une fonction paire et d'une fonction impaire.

3. Signal sinosoïdal

3.1. Paramètres : période, pulsation, fréquence et phase à l'origine

Définition 3 : Une fonction du temps de la forme $f(t) = A\cos(\omega t + \varphi)$ ou $g(t) = A\sin(\omega t + \varphi)$ s'appelle signal sinusoïdal d'amplitude ou bien valeur max A, de pulsation ω et de phase à l'origine φ .

Propriété 1 : Le graphe du signal est le même que les fonctions \sin et \cos vues précedemment, mais il oscille entre les valeurs $\pm A$ au lieu de ± 1 et sa période n'est plus forcément 2π :

On a
$$\omega=rac{2\pi}{T}=2\pi F$$
 où :

Définition 4 :

- ullet T est la **période** (un temps, généralement en seconde dans le système international) ;
- $F=rac{1}{T}$ est la **fréquence** (généralement en hertz : Hz) ; $\omega=rac{2\pi}{T}=2\pi F$ est la **pulsation** (généralement en radians par seconde : rad/s).

Exemple 5: $f(x) = 2\cos\left(2\pi x + \frac{\pi}{3}\right)$ et $g(x) = 4\sin\left(4\pi x - \frac{\pi}{6}\right)$:

Exercice 5 : Identifier sur l'écriture du signal l'amplitude, la pulsation et la phase à l'origine des deux signaux ci-dessus. En déduire leur périodes et leurs fréquences

\ Exercice 6 : Tracer sur [-2;10] le signal sinusoïdal $h(t)=2\cos\left(rac{\pi}{2}t
ight)$. Commencer par calculer la période.

3.2. Utiliser: pulsation, période, fréquence

- **Méthode 1 :** Pour déterminer la pulsation et la fréquence à partir d'un graphique :
 - on détermine la longueur minimale du motif qui se répète sur la courbe du signal ;
 - ullet on en déduit ω et F par le calcul : $\omega=rac{2\pi}{T}$ et $F=rac{1}{T}.$
- **[a] Remarque 2 :** En général, on laisse ω en valeur exacte (avec des π) lorsque c'est possible.

Exercice 7 : Déterminer à partir du graphique la période, la pulsation et la fréquence de ce signal, ainsi que son amplitude *A*.

3.3. Utiliser : phase à l'origine

Remarque 3 : La phase à l'origine introduit un décalage horizontal (dans le temps) du signal. C'est un angle, exprimé en degrés ou radians.

Exemple 6 : Le signal rouge est de la même forme qu'un sinus (il s'annule en 0). En mesurant sa période et son amplitude, on sait qu'il s'écrit $g(t) = 3\sin(\pi t)$.

Le signal vert f est la même signal que g mais décalé dans le temps (déphasé). Il s'écrit donc $f(t)=3\sin(\pi t+\varphi)$. Comment trouver φ ?

Méthode 2 :

- ullet On mesure le décalage horizontal Δt (ici 0,25) qui correspond à l'abscisse du point A sur le schéma.
- Pour obtenir le **signe** de φ :
 - 1. On se décale vers la droite (comme sur le schéma) : signe moins ;
 - 2. On se décale vers la gauche : signe plus ;
- On effectue une règle de proportionalité pour obtenir une valeur angulaire : en effet, un tour complet (2π) correspond à une période T :

temps	angle			
T=2	$2\pi=360^\circ$			
$\Delta t = 0.25$	$\varphi=???$			

Donc $arphi=[\mathrm{Signe}]\Delta t imes rac{2\pi}{T}=-\omega \Delta t=-\pi imes 0, 25=rac{-\pi}{4}$ • On écrit le signal : $f(t)=3\sin\left(\pi t-rac{\pi}{4}
ight)$

extstyle extmaximum de f, un cosinus (non déphasé) présentant un max en zéro.

Exercice 9 : Écrire les signaux suivants sous la forme $A\sin{(\omega t + arphi)}.$

