

Outline

Intro/Background

Problem Statement

Data

Data Preprocessing

Preliminary Modeling

Final Models

Conclusion

Main reasons of flight delays

Based on data from US Bureau of Transportation Statistics flight delays (in 2015) are caused by...

39.8%	Late-arriving aircraft		
32.2%	Air Carrier		
22.9%	National Aviation System (NAS) delay		
5%	Extreme Weather		
0.1%	Security		

Airlines do not report the causes of the late-arriving aircraft. Weather contributed to 32.8% of total delay minutes in 2015.

("Understanding the Reporting of Causes of Flight Delays and Cancellations", 2021).

Flight delays are costly for airline companies

\$28 billion **\$65.**43 min

FAA/Nextor estimated the annual costs of delays...to be \$28 billion ("U.S. Passenger Carrier Delay Costs", 2020).

In 2015, the cost of aircraft block (taxi plus airborne) time for U.S. passenger airlines was \$65.43 per minute ("Cost of Aircraft Delay to U.S. Passenger Carriers").

Problem Statement: Can we predict severity of flight delays?

For domestic flights in the U.S. minimum connection times range from 30 minutes to 2 hours. ("What is Minimum Connection Time?", 2021).

3 classes

On-time Minor delay Major delay (early or no delay) (0-30 min delay) (30+ min delay)

'2015 Flight Delays and Cancellations'

5,819,079 flights

from Kaggle

Daily climate data from the National Oceanic and Atmospheric Administration (NOAA) in 2015

Queens, NY

&

Chicago, IL

Data Preprocessing

Flight Data

- Scoped data to one flight plan:
 - Origin airport: LGA
 Destination airport: ORD
- ~80% of delay type columns were null
- Included only features for data that is only known prior to the flight
- Extracted data from date and time columns into categorical data

Climate Data

- Merged climate data from Queens & Chicago
- Almost all weather-type columns were null
- Included various features for daily temperature, wind speed, wind direction, snowfall, precipitation

Baseline Model

ratios:

on-time: 0.656390

minor: 0.202201

major: 0.141410

Baseline score is <u>65.6%</u>

Preliminary modeling:

Model	Train Scores	Test Scores	Recall Scores	
XGB Classifier	86.4%	72.1%	56.6%	Highest recall score
Random Forest Classifier	92.0%	70.2%	55.4%	
Extra Trees Classifier	92.0%	69.0%	54.4%	
Decision Tree Classifier	92.0%	65.6%	52.8%	
Gradient Boosting Classifier	73.2%	71.2%	48.6%	Train & Test scores are not overfit and
KNeighbors Classifer	75.5%	68.8%	47.2%	has high recall scores
Bernoulli Naive Bayes	63.1%	64.1%	46.1%	
Ada Boost Classifier	69.2%	68.4%	43.7%	
svc	71.7%	69.0%	43.2%	Recall scores calculated ith macro-average
Logistic Regression	67.8%	68.2%	42.1%	

Final Models

Gradient Boosting Classification Matrix

XGBoost Classification Matrix

Final models had the best predictions for minor delay (green) and major delay (red).

Final Models

Gradient Boosting Classifier:

Train score: $73.2\% \rightarrow 73.9\%$ Test score: $71.2\% \rightarrow 71.5\%$

Recall score: $48.6\% \rightarrow 52.6\%$

XGBoost Classifier:

Train score: $86.4\% \rightarrow 76.2\%$ Test score: $72.6\% \rightarrow 72.1\%$

Recall score: $56.6\% \rightarrow 55.0\%$

Conclusions

- Model performed better than baseline
- Explore other methods to deal with unbalanced data
 - Oversampling
 - Decrease the threshold
- Need to collect more data:
 - Hourly climate data
 - Data with complete weather-type values
 - Data with complete delay-reason values
- Expand the scope of the project to include additional flight plans
- Future Project ideas:
 - Predict flight delay from weather before the flight

