

Čeho chceme dosáhnout?

Jaké budou "hmatatelné" výstupy?

Minimálně

- Prototypy, nebo finální verze rozličných senzorů
- Plynule proudící "data" z měření do DP KSK
- Vizualizace dodávaných dat v rámci DP KSK
 - Dostupné pověřeným uživatelům v rámci škol a krajského úřadu
 - Případně formou veřejných ~pohledů na WWW stránkách DP KSK
 - Součástí vizualizace může být informace o zdroji dat: identifikace školy, pracovní skupiny a pod.

Volitelně

 Lze vybudovat i lokální datové platformy jednotlivých škol pro zobrazení všech dat, měřených/sledovaných v rámci školy

Jak prakticky postupovat?

Návrh organizace "projektu"

Minimální cíle:

Každá zúčastněná škola

- Ustanoví jednu nebo více pracovních skupin
- Vybuduje místní komunikační infrastrukturu pro IoT
- Zajistí komponenty pro realizaci místního koncentrátoru a zvoleného počtu senzorů

Každá pracovní skupina

- Zvolí typ budovaného senzoru
- Navrhne jeho elektrické zapojení a realizuje funkční prototyp
- Vytvoří a ověří vestavný kód senzoru tak, aby periodicky měřil určenou veličinu a výsledky měření předával na místní koncentrátor
- Vytvoří a ověří kód pro místní koncentrátor, který převezme každé měření senzoru a předá je datové platformě KSK ve veřejném cloudu

Místní ("školní") IoT infrastruktura

Doporučený koncept: zřídit samostatnou "IoT LAN"

- LAN/VLAN logicky zcela oddělená od zbývající IT infrastruktury školy
 - Chrání integritu "školního IT"
- Poskytuje připojení do Internetu prostřednictvím bezp. brány ("firewall")
- Vybavena samostatným (virtuálním) přístupovým bodem Wifi
- Určena pro připojení místního IoT koncentrátoru
 - Ideálně na vyhrazeném "DMZ" segmentu
- S možností vzdáleného VPN přístupu pro spol. Simac
 - Pomoc se zřízením a/nebo správou místního IoT koncentrátoru

Možná budoucí rozšíření:

- Připojení místní datové platformy IoT
 - Ideálně opět na vyhrazeném "DMZ" segmentu
- Doplnění místního přístupového bodu LoRa

Realizace IoT LAN, další podrobnosti

Doporučený Firewall Router

- MikroTik hEX PoE, RB96oPGS
 - 5x Ethernet 10/100/1000
 - 1x SFP slot
 - Podpora PoE Out na všech Eth portech
 - OpenVPN server

Upozornění:

VPN přístup vyžaduje IP adresu dostupnou pro příchozí TCP spojení

Doporučený Wifi AP:

- MikroTik mAP lite, RBmAPL-2nD
 - 1x Ethernet
 - Podpora PoE In
- MikroTik mAP, RBmAP2nD
 - 2x Ethernet
 - Podpora PoE In + Out "řetězení" vice AP

Doporučený (hrubý) harmonogram

Etapa	Termín dokončení
Místní IoT infrastruktura (IoT LAN, firewall, VPN, Wifi AP, komponenty)	Konec září 2022
Místní IoT koncentrátor	Konec října 2022
Prototyp senzoru - návrh a oživení	Konec října 2022
Integrace dat senzorů do datové platformy KSK	Konec listopadu 2022
Veřejně dostupná prezentace (prvních) získaných dat (WWW UI platformy KSK)	Prosinec 2022 až leden 2023

Řečeno technicky...

Simac IoT Software Stack

Soubor 3 funkčních "vrstev":

- Správa telemetrií
 - Zobrazení přehledů okamžitých a historických dat
 - Varování/zpětná vazba v reálném čase
 - Zpřístupnění dat pro pokročilé analýzy
 - Úchování normalizovaných dat
- Sběr a přenos dat
 - Přenos dat do vyšší/centrální vrstvy
 - Uchování dat při výpadku komunikace
 - Převzetí informace ze zdroje dat (senzoru)
- Měření
 - Jednoúčelové senzory
 - Komplexní systémy, nebo aplikace

(pohled "shora dolů")

"DIY" IoT soustava "krok za krokem"

(pohled "zdola nahoru")

- 1. Volba převodníků fyzikálních veličin
- Návrh a realizace "senzoru"
 - Elektronická a mechanická konstrukce "senzorové jednotky"
- 3. Digitalizace veličin a přenos jednotlivých měření
 - Vestavěný SW "senzorové jednotky"
- 4. Koncentrace záznamů v rámci lokality, místní řídicí funkce
 - Integrační SW
- 5. Připojení na centrální "úložiště telemetrií"
 - Bezplatný přenos dat prostřednictvím Internetu
 - Vyšší analytické a řídicí funkce

Volba převodníků fyzikálních veličin

Běžně dostupné, levné prvky

- Základní úroveň: parametry prostředí
 - Teplota, atmosferický tlak, relativní vlhkost vzduchu
 - Koncentrace škodlivých či nebezpečných plynů
 - Stav dveřního snímače, měření vzdálenosti, přítomnost osob
- Náročnější úroveň: spotřeba energií a pod.
 - Snímání impulsního výstupu elektroměru
 - Snímání vibrací, orientace v prostoru
 - Drobná regulace

Návrh a realizace "senzoru"

Konstrukce na bázi Open Source

- HW: Arduino Nano r3, popř. Nano 33 IoT
 - Metalické připojení Ethernet
 - Bezdrátové připojení BlueTooth/BLE, nebo Wifi
- Dokumentace zapojení, návrh plošných spojů:
 - KiCAD
- Mechanické konstrukce
 - FreeCAD + 3D tisk
- Sdílení "výtvorů"
 - git, GitHub

Digitalizace veličin a přenos měření

"Vestavný" software

- Jednoduchý C++ kód
- Široká škála předpřipravených knihoven a příkladů pro jednotlivé typy převodníků
- Přenos měření na místní "koncentrátor" s využitím předpřipravených komunikačních knihoven a příkladů
 - na bázi IP protokolu (Ethernet nebo Wifi), popř.
 - Na bázi BlueTooth/BLE komunikace
- Sdílení osvědčeného kódu
 - Git, GitHub

Místní "koncentrátor"

Tzv. hraniční ("edge") prvek

- Přijímá jednotlivá měření ze všech místních senzorů (prostřednictvím "IoT LAN")
- Vytváří jejich lokální zálohu (soubory, nebo RDBMS)
- Spolehlivě doručuje přijaté údaje na nadřazenou úroveň (prostřednictvím Internetu)
- Volitelně implementuje místní regulační algoritmy

HW řešení

- Mikropočítač Raspberry PI, model 3B nebo 4B
- Mechanické prvky: volitelně 3D-tisk

Open Source programové vybavení

- OS Linux, Node-RED, Node.JS, JavaScript, PostgreSQL
- Automatizace nasazení na bázi Ansible
- Sdílení osvědčených řešení na bázi git, GitHub

Rocky Linuxtm

Předání záznamů do "úložiště telemetrií"

Primární cíl:

 Doručit data všech provedených měření ve všech lokalitách do centrální "datové platformy" v prostředí veřejného "cloudu"

Volitelný cíl:

 Paralelně zpracovávat data jednotlivé lokality v místní IoT platformě na bázi Open Source

Otázky?

Krok za krokem – podrobně!

Krok #o: prostředí pro spolupráci (a)

GitHub

Každý potřebuje:

- Osobní účet -> pokud nemáte, zaregistrujte se na https://github.com
 ("ASAP" a pošlete email pro zaslání pozvánky)!
- Klientskou aplikaci git na vlastní pracovní stanici
 - Pro Windows např. "GIT-GUI" (https://git-scm.com/download/win)
- Pár klíčů SSH -> pokud nemáte, vyrobte si a nahrajte do osobního účtu
 GitHub
 - GIT-GUI vám pomůže SSH klíče vytvořit

Krok #o: prostředí pro spolupráci (b)

GitHub

V rámci GitHub využijeme firemní účet Simac Technik ČR, a.s. (https://github.com/SimacTechnik)

- Každý účastník získá pozvánku do skupiny "KSK-DIY-IoT" (https://github.com/orgs/SimacTechnik/teams/ksk-diy-iot)
 - Přístup pro čtení ke všem zdrojům/výstupům napříč školami a pracovními skupinami
- Každý účastník bude zařazen do podkupiny pro školu, resp. pracovní skupinu
 - Přístup pro čtení a zápis (změny) informací v rámci vlastní skupiny

Úvodní informace již nyní v repository "ksk-iot-intro"

(https://github.com/SimacTechnik/ksk-iot-intro)

Krok #2.1: el. zapojení senzoru (a)

KiCAD (https://www.kicad.org/)

"A Cross Platform and Open Source Electronics Design Automation Suite"

- Schema el. zapojení
 - Aktuální knihovny součástek udržuje komunita
 - Editory knihoven snadné doplnění podle potřeby
- Seznamy součástek ("BoM")
- Návrh plošného spoje, včetně generování výstupů pro automatizované výrobní linky
- Pokročilé funkce: kontroly, simulace obvodů, 3D model budoucího výrobku, ...

Krok #2.1: el. zapojení senzoru (b)

KiCAD – jak na něj?

KCad

Veřejné zdroje Internetu

Mezi jinými YouTube:

Krok #2.2: mech. konstrukce senzoru (a)

Vývoj prototypu

Vyžaduje pružnost

Opravy chyb

Doplnění funkcí

dobrý přístup k prvkům

Diagnostika

Univerzální modulová "stavebnice"

3D modely "k vytištění" (GitHub):

Montážní deska DIN 7u, západka DIN, příchytky kontaktního pole

- Příprava tiskového souboru dle typu dostupné tiskárny
- Následně bude třeba mnoho malých vrutů s půlkulatou hlavou (d=2.2 až 2.5 mm, l = 8 až 10 mm)

Krok #2.2: mech. konstrukce senzoru (b)

Vzorek finálního "výrobku"

1. Návrh 3D modelu

FreeCAD (<u>https://www.freecadweb.org/</u>)

Vstupem 3D model osazeného plošného spoje – KiCAD

Jak na FreeCAD?

Opět veřejné zdroje Internetu, primárně YouTube

Máte k dispozici AutoCAD®?

Bezva, použijte ho!

2. 3D tisk

 Příprava tiskového souboru – dle typu dostupné tiskárny

Krok #2 a 3/4: školní loT LAN

Bez této infrastruktury

- Lze oživit HW zapojení senzoru
- Lze ověřit jeho základní funkce testovacím vestavným kódem
- Nelze však nikam přenášet naměřené údaje!

Krok #3: vestavný SW senzoru (a)

Arduino (https://www.arduino.cc/)

Vývojové prostředí pro Windows: Microsoft Store

Pozor: má potíže při běhu v rámci VM (VirtualBox)

Následně nutno doinstalovat

Knihovnu "desky" Arduino Nano 33 IoT (Tools -> Board -> Boards Manager, "Arduino SAMD Boards (32-bit ARM Cortex-Mo+)")

Knihovnu sběrnice "OneWire" ("1W"; Tools -> Manage Libraries, "OneWire")

Po doplnění knihoven možno kompilovat a ~instalovat ukázky programů:

- File -> Examples -> Basics -> Blink; nevyžaduje žádný doplňkový HW
- File -> Examples -> OneWire -> DS18x2o_Temperature; vyžaduje připojení teplotního senzoru
- GitHub, repo "SimacTechnik/ksk-iot-intro", složka "code/..."

Krok #3: vestavný SW senzoru (b)

Ukázky programů:

- Blink
 - Nevyžaduje žádný doplňkový HW
 - Hodí se k základnímu ověření funkce prostředí
- DS18x2o_Temperature
 - Vyžaduje připojení teplotního senzoru
 - Může být třeba úprava kódu: číslo pinu s připojeným senzorem
 - Ověří správnost připojení senzoru
- GitHub ro "SimacTechnik/ksk-iot-intro", složka "code/..."
 - Postupně doplníme pokročilejší příklady: připojení na IoT Wifi, odeslání naměřené veličiny
 - Pro funkci bude nutno dodržet zapojení prototypu dle souvisejícího schematu

Kroky #4 a #5: kde jsou?

Doplníme později!

- Instalace "místního koncentrátoru"
 - OS
 - RDBMS
 - Integrační SW
- Integrační "kód"
 - Příjem měření ze senzorů
 - Odesílání dat do DP KSK

Pozor:

Bez vzdáleného VPN přístupu pro spol. Simac (viz IoT LAN infrastruktura) nebudeme schopni poskytnout účinnou pomoc!

Otázky?

Ukázka

Děkujeme za pozornost

