Алгебра и геометрия Лекция 5

Алгебраические линии и поверхности

Определение

Алгебраической линией называется ГМТ P_2 , которое в некоторой ОДСК может быть задано уравнением

$$A_1 x^{k_1} y^{l_1} + \dots + A_s x^{k_s} y^{l_s} = 0$$
, (*)

где все показатели степеней $\in \mathbb{Z}^+$, $A_i = \mathrm{const.}$

Определение

 $p = max\{k_1 + l_1, ..., k_s + l_s\}$ называется порядком алгебраической линии (а также степенью уравнения (*)).

Определение

Алгебраической поверхностью называется ГМТ P_3 , которое в некоторой ОДСК может быть задано уравнением

$$A_1 x^{k_1} y^{l_1} z^{m_1} + \dots + A_s x^{k_s} y^{l_s} z^{m_s} = 0, (**)$$

где все показатели степеней — целые положительные числа, а все $A_i = {\sf const.}$

Определение

 $p = max\{k_1 + l_1 + m_1, ..., k_s + l_s + m_s\}$ называется порядком алгебраической поверхности (а также степенью уравнения (**)).

Теорема 10.1

- 1. Алгебраическая линия порядка p на плоскости в \forall ОДСК может быть задана уравнением (*).
- 2. Алгебраическая поверхность порядка *p* в пространстве в ∀ ОДСК может быть задана уравнением (**).

Доказательство

1. Перейдем от ОДСК (O, \vec{e}) к ОДСК (O', \vec{e}') :

$$x = a_1 x' + b_1 y' + c_1,$$
 $y = a_2 x' + b_2 y' + c_2$

Подставим в (*)

(его удобно записать в виде F(x, y) = 0).

$$(a_1x' + b_1y' + c_1)^k$$
 — многочлен степени k , $(a_2x' + b_2y' + c_2)^l$ — многочлен степени l .

Степень суммы многочленов не выше max степеней слагаемых. Поэтому в "новой" ОДСК алгебраическая линия задается уравнением G(x',y')=0 вида (*), причем степень $G\leq$ степени F.

Доказательство (продолжение)

Итак, при замене ОДСК порядок алгебраической линии не повышается. Но он и не понижается, потому что при переходе от (O', \vec{e}') к (O, \vec{e}) G(x', y') = 0 перейдет в F(x, y) = 0 и при этом степень $F \leq$ степени G.

Следовательно, порядок линии не изменился.

Замечание 1

Величина, которая не изменяется при некотором преобразовании, называется инвариантом этого преобразования. Мы доказали, что порядок алгебраической линии — инвариант при замене ОДСК.

Замечание 2

Вторая часть теоремы доказывается аналогично.

Пусть в P_2 в некоторой ОДСК задана линия второго порядка:

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0. (1)$$

1. НУО ОДСК есть ПДСК (если это не так, то перейдем в какую-то ПДСК, что не изменит порядок линии и общий вид (1)).

2. Сделаем поворот ПДСК на угол φ :

$$x = x' \cos \varphi - y' \sin \varphi$$
$$y = x' \sin \varphi + y' \cos \varphi$$

Тогда
$$A(x'\cos\varphi - y'\sin\varphi)^2 + 2B(x'\cos\varphi - y'\sin\varphi) \times$$

 $\times (x'\sin\varphi + y'\cos\varphi) + C(x'\sin\varphi + y'\cos\varphi)^2 + \dots = 0,$

$$B' = -A\sin\varphi\cos\varphi + 2B(\cos^2\varphi - \sin^2\varphi) + C\sin\varphi\cos\varphi$$

- 3. Если B=0, то поворачивать не будем.
- 4. Если $B \neq 0$, то выберем ϕ так, чтобы B' = 0:

при
$$A=C$$
 $\qquad \qquad \varphi=\frac{\pi}{4}$

при
$$A \neq C$$
 $2B \cos 2\varphi = (A - C) \sin 2\varphi \Rightarrow$

$$\Rightarrow \varphi = \frac{1}{2} \operatorname{arctg} \frac{2B}{A - C}$$
 (2)

Тогда
$$A'x'^2 + C'y'^2 + 2D'x' + 2E'y' + F' = 0$$
. (3)

Утверждение 10.1

Если в (3) входит x' или y', то параллельным переносом начала координат можно обратить в ноль слагаемые с первой степенью этой координаты.

Доказательство

Пусть $A' \neq 0$. Тогда

$$A'\left(x'^{2} + \frac{2D'}{A'}x' + \left(\frac{D'}{A'}\right)^{2}\right) + C'y'^{2} + 2E'y' + F' - \frac{D'^{2}}{A'} = 0$$

Перенос
$$x'' = x' + \frac{D'}{A'}$$
, $y'' = y'$ приводит (2) к виду
$$A'x''^2 + C'y''^2 + 2E'y'' + F'' = 0$$

Если $C' \neq 0$, то действуем аналогично.

Продолжим преобразования

$$I. \ A'C' \neq 0. \$$
Из утверждения $10.1 \Rightarrow (2) \rightarrow (2')$ вида $A'{x''}^2 + C'{y''}^2 + F'' = 0 \qquad (2')$

- 1) A'C' > 0.
 - а) Знак F'' противоположен знаку A' и C'. Тогда (2') имеет вид

$$rac{{x^{\prime\prime}}^2}{a^2} + rac{{y^{\prime\prime}}^2}{b^2} = 1$$
, где $a^2 = -rac{F^{\prime\prime}}{A^\prime}$, $b^2 = -rac{F^{\prime\prime}}{C^\prime}$

НУО a>0, b>0 и $a\geq b$ (иначе сделаем замену $x''=-y^*$, $y''=x^*$). Тогда

$$\frac{{x''}^2}{a^2} + \frac{{y''}^2}{b^2} = 1$$

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a \ge b > 0,$$

называется эллипсом (заданным каноническим уравнением в канонической ПДСК).

Замечание

Если a = b, то эллипс вырождается в окружность

$$x^2 + y^2 = a^2.$$

б) Знак F'' совпадает со знаками A' и C'. Действуя аналогично а), приведем уравнение к виду

$$\frac{{x''}^2}{a^2} + \frac{{y''}^2}{b^2} = -1$$

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

называется мнимым эллипсом (очевидно, что это \emptyset).

в)
$$F^{\prime\prime}=0$$
. Тогда $a^2x^{\prime\prime}{}^2+c^2y^{\prime\prime}{}^2=0$.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$a^2x^2 + c^2y^2 = 0,$$

называется парой мнимых пересекающихся прямых (очевидно, что ему удовлетворяет одна точка: (0,0)).

- 2) A'C' < 0
 - а) $F'' \neq 0$. НУО знак F'' противоположен знаку A' (иначе сделаем замену $x'' = -y^*, y'' = x^*$).

Тогда уравнение приводится к виду

$$\frac{{x''}^2}{a^2} - \frac{{y''}^2}{b^2} = 1$$
, где $a^2 = -\frac{F''}{A'}$, $b^2 = \frac{F''}{C'}$.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

называется гиперболой.

б)
$$F'' = 0$$
. Уравнение имеет вид $a^2 x''^2 - c^2 y''^2 = 0$.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$a^2x^2 - c^2y^2 = 0,$$

называется парой пересекающихся прямых.

II.
$$A'C' = 0$$

НУО A' = 0 (иначе та же замена).

 $C' \neq 0$, иначе уравнение не второго порядка.

Из утверждения $10.1 \Rightarrow C'y''^2 + 2D'x'' + F'' = 0.$

1)
$$D' \neq 0$$
. Тогда $C'y''^2 + 2D'\left(x'' + \frac{F''}{2D'}\right) = 0$.

Перенос $x^* = x'' + \frac{F''}{2D'}$, $y^* = y''$ приводит уравнение к виду $C'y^{*2} + 2D'x^* = 0 \Leftrightarrow y^{*2} = 2px^*$, где $p = -\frac{D'}{C'}$.

НУО p>0 (иначе замена, меняющая направление оси абсцисс).

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$y^2 = 2px, p > 0,$$

называется параболой.

2)
$$D' = 0$$
. Тогда $C'y''^2 + F'' = 0$.

a)
$$C'F'' < 0 \Rightarrow y''^2 - a^2 = 0$$
.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$y^2 - a^2 = 0$$

называется парой параллельных прямых.

б)
$$C'F'' > 0$$
. Тогда $y''^2 + a^2 = 0$.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$y^2 + a^2 = 0$$

называется парой мнимых параллельных прямых (очевидно, что это \emptyset).

в)
$$F'' = 0$$
. Тогда ${y''}^2 = 0$.

Определение

Линия, которая в некоторой ПДСК имеет уравнение

$$y^2 = 0$$

называется парой совпавших прямых.

Мы получили следующие результаты:

Теорема 10.2

Пусть в ОДСК задано уравнение второго порядка

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0.$$

Тогда ∃ ПДСК, в которой это уравнение принимает один из следующих девяти канонических видов:

$$1 \cdot \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$2 \cdot \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

$$3. a^2x^2 + c^2y^2 = 0$$

$$4.\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$5. a^2 x^2 - c^2 y^2 = 0$$

$$6. y^2 = 2px$$

7.
$$y^2 - a^2 = 0$$

$$8. y^2 + a^2 = 0$$

9.
$$y^2 = 0$$

Приведем некоторые теоремы, которые входят в наш курс без доказательства.

Теорема 10.3

Числа
$$A+C$$
, $\delta=\begin{vmatrix}A&B\\B&C\end{vmatrix}$, $\Delta=\begin{vmatrix}A&B&D\\B&C&E\\D&E&F\end{vmatrix}$

являются инвариантами уравнения (1) относительно замены ОДСК.

Определение

Линия второго порядка, имеющая единственный центр симметрии, называется центральной, а ее центр симметрии — центром линии.

Теорема 10.4

Если линия второго порядка задана уравнением (1), то координаты центра (x_0, y_0) удовлетворяют системе уравнений

$$\begin{cases} Ax_0 + By_0 + D = 0, \\ Bx_0 + Cy_0 + E = 0. \end{cases}$$

Теорема 10.5

Линия второго порядка центральна $\Leftrightarrow \delta \neq 0$.

Определение

При $\delta>0$ линия второго порядка называется линией эллиптического типа; при $\delta<0$ — гиперболического типа; при $\delta=0$ — параболического типа.

Следствие

Линии эллиптического и гиперболического типа центральны.

Замечание

Если линия центральна, то перенос начала координат в центр линии "уничтожает" члены (1), содержащие x и y в первой степени.