

initial value										
X ₁	X ₂	X ₃	α	Т	$Y_{d,6}$					
0.7	Λ 0	0.0	0.1	1.0	0.0					

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ ₅	θ ₆
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Forward Pass Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function

Y ₄	Y ₅	Y ₆	е
0,38	0,75	0,21	-0,21

	e (euler number)	2,7183	output	
y ₄	$y4 = 1/(1+e^{-(x1 * w1,4 + x2 * w2,4 + x3 * w3,4 + T04)})$	-0,5100	0,3752	0,375193526
y ₅	$y5 = 1/(1+e^{-(x1 * w1,5 + x2 * w2,5 + x3 * w3,5 + T05)})$	1,0900	0,7484	0,748381722
У ₆	$y6 = 1/(1+e^{-(y4* w4,6 + y5 * w5,6 + T06)})$	-1,3366	0,2081	0,208073025
е	$e = y_{d,6} - y_6$		-0,2081	

Backward Pass
Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections

δ_6	V ₄₆	∇ ₅₆	∇θ ₆
-0,0343	-0,0013	-0,0026	-0,0014
δ_6	$\delta_6 = y_6$	-0,0343	
∇w _{4,6}	∇w _{4,6} =	-0,0013	
∇w _{5,6}	∇w _{5,6} =	-0,0026	
$\nabla \theta_6$	$\nabla \theta_6 = c$	x * θ ₆ * δ ₆	-0,0014

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Layer/Hidden Layer

δ_4	δ_5
0.0088	0.0045

δ_4	$\delta_4 = y_4 * (1-y_4) * \delta_6 * w_{4,6}$	0,0088
δε	$\delta_{5} = v_{5} * (1-v_{5}) * \delta_{6} * w_{56}$	0.0045

Langkah 4: Hitung weight corrections

∇ w ₁₄	∇w ₂₄	V w ₃₄	∇θ₄	⊽ w ₁₅	∇ w ₂₅	∇ w ₃₅	∇ θ ₅
0,0006	0,0007	0,0008	0,0002	0,0003	0,0004	0,0004	0,0001
$\nabla w_{1,4}$		α * x ₁ * δ ₄	0,0006				
$\nabla w_{2,4}$		α * x ₂ * δ ₄	0,0007				
$\nabla w_{3,4}$		α * x ₃ * δ ₄	0,0008				
$\nabla \theta_4$	$\nabla \theta_4 = c$	ι * θ ₄ * δ ₄	0,0002				
$\nabla w_{1,5}$		α * x ₁ * δ ₅	0,0003				
$\nabla w_{2,5}$		α * x ₂ * δ ₅	0,0004				
∇w _{3,5}		α * x ₃ * δ ₅	0,0004				
$\nabla \theta_5$	$\nabla \theta_5 = 0$	ι * θ ₅ * δ ₅	0,0001				

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ_4	θ_5	θ_6
0,50	0,60	0,30	1,10	-1,00	0,10	0,20	0,30	0,40

W _{1,4} '	$W_{1,4}' = W_{1,4} + \nabla W_{1,4}$	0,5006
W _{1,5} '	$W_{1,5}' = W_{1,5} + \nabla W_{1,5}$	0,6003
W _{2,4} '	$W_{2,4}' = W_{2,4} + \nabla W_{2,4}$	0,3007
W _{2,5} '	$W_{2,5}' = W_{2,5} + \nabla W_{2,5}$	1,1004
W _{3,4} '	$W_{3,4}' = W_{3,4} + \nabla W_{3,4}$	-0,9992
W _{3,5} '	$W_{3,5}' = W_{3,5} + \nabla W_{3,5}$	0,1004
W _{4,6} '	$W_{4,6}' = W_{4,6} + \nabla W_{4,6}$	-0,0013
W _{5,6} '	$W_{5,6}' = W_{5,6} + \nabla W_{5,6}$	-0,7026
θ_4	$\theta_4' = \theta_4 + \nabla \theta_4$	0,2002
θ_5	$\theta_5' = \theta_5 + \nabla \theta_5$	0,3001
θ_6 '	$\theta_6' = \theta_6 + \nabla \theta_6$	0,3986