## Project Design Phase-II Technology Stack (Architecture & Stack)

| Date         | 06 May 2023       |
|--------------|-------------------|
| Team ID      | PNT2022TMIDxxxxxx |
| Project Name | Project - xxx     |

## **Technical Architecture:**



| S.No | Component               | Description                                                                                       | Technology                                            |
|------|-------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1.   | Dataset                 | Collect a comphrensive dataset of tea leaf images representing various diseases and healty leaves | LibriSpeech ,CIFAR-10,CIFAR-100,MNIST                 |
| 2.   | preprocessing           | Preprocess the tea leaf image to enchance their quality and prepare them for training             | Libraries like Natural Language<br>Toolkit,spaCy      |
| 3.   | Deep learning framework | Choose a deep learning framework such as TensorFlow,PyTorch or keras                              | Caffe,MXNet,Theano,Microsoft Cognitive Toolkit        |
| 4.   | Model architecture      | Design an appropriate deep learning architecture for tea leaf disease detection                   | CNNs,RNNs,LSTM,GANs,RL                                |
| 5.   | Transfer learning       | Leverage transfer learning by utilizing pre trained models on large scale like image dataset      | ImageNet or Pre trained CNNs models                   |
| 6.   | Training                | Train the deep learning model using the labled tea leaf dataset                                   | Graident –based optimization,backpropagation.         |
| 7.   | Validation              | Validate the trained model using a seprate validation dataset to monitor its performance          | Cross validate,holdout validate,metrics and evalution |
| 8.   | Testing                 | Test its accuracy and generalization on a seprate test dataset                                    | ONNX RunTime,TensorRT,A/B testing                     |
| 9.   | Deployment              | Deploy the trained model for disease detection in tea leaf                                        | Raspberry Pi NVIDIA jetson                            |
| 10.  | Model evaluation        | Continuously evaluate the models performance on new tea leaf images                               | Scikit-learn or Tensorflows.                          |
| 11.  | Continuous improvement  | As a new set of data becomes available or new diseases are identified                             | Data Version Control or data versioning tools         |

**Table-2: Application Characteristics:** 

| S.No | Characteristics            | Description                                                                                                                                                            | Technology                            |
|------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1.   | Hierachical Representation | Deep learning models are designed to learn hierarchical representations of data.                                                                                       | Technology of Opensource framework    |
| 2.   | Non-Linearity              | Deep learning models incorporate non-linear activation functions, such as sigmoid, tanh, or rectified linear unit (ReLU), to introduce non-linearity into the network. | WORD2VEC,Glo<br>Ve,RNNs,GRU,LSTM.     |
| 3.   | Feature Extraction         | Deep learning models are adept at automatically extracting relevant features from raw or high-dimensional data.                                                        | Technology used CNNs,Autoencoders,PCA |
| 4.   | Generalization             | Deep learning models aim to generalize well to unseen data by learning from a diverse range of examples during training                                                | Technology used Cross validate        |
| 5.   | Black Box Nature           | Deep learning models are often characterized as Black Boxes due to the difficulty in interpreting their internal representation and decision making process            | Technology used Grad-Cam,SHAP         |