f: C→C' fibred > R°f* (loc const) < loc. const. does not seem to imply that the base change functors are heg's. Grothendieck's approach to the fundamental groupoid of a category C: Consider the transform all maps into isomorphisms. This category L is the full subcategory of locally constant objects in the topos C' = Hom(C') Sets). Each object X in C determines a fibre functor $L \longrightarrow \text{sets}$ $F \mapsto F(X)$ and IC can be identified with the dual of the consisting of the functors of the above form. C with respect to all its morphisms. Then the $\mathcal{L} = \mathbf{L} \left(\underline{\mathbb{T}}^{\mathcal{C}} \right)^{\mathcal{L}}$ and the inclusion of L in C' can be viewed as the inverse image for the morphism of topoi induced by the functor $C \longrightarrow \underline{\mathbb{T}}C$. Now points in C' may be identified with Pro(C), and since $\underline{\mathbb{T}}C$ is

a groupoid, $Pro(\underline{\underline{u}}C)\cong\underline{\underline{u}}C$. Thus we can recover $\underline{\underline{u}}C$ as fibre functors on L. Let us now consider the functor

and factor it in the standard way

 $C \longrightarrow \widetilde{C} \longrightarrow \underline{\pi}C$

where an object of C is a triple $(x, y, u(x) \rightarrow y)$.

Think of E as being the category of formality with 1-com.

coverings of C and u as the functor assigning to x.

The pointed covering over x. Then we can view C as being the fibred cat. over C consisting if an $x \in C$,

a covering y, and a point in the fibre of y over x.

Clearly C is equivalent to C. (In general if we have a functor $C \rightarrow B$ with B a groupoid, then the rategory of $(x, y, t(x) \rightarrow y)$ is equivalent to C.)

In the other hand, the fibre of C over y is simply the covering category of C defined by y. Now suppose that we are given a function

f: C-> C'.

f is fibred and that the base chan

consider the full subcategory L of C' consisting

of those F which are locally in the image of f^* . What this means is that for every $X \in \mathbb{C}$, there exists a $G: (C'|fX_0) \longrightarrow \text{sets}$ and an ismorphism (*) $F(X) \stackrel{\sim}{\longrightarrow} G(fX)$

of functors on C/X_0 . Clearly this implies that when $X \to X_0$ is $\ni fX \Longrightarrow fX_0$, then $F(X) \cong F(X_0)$. In particular F is locally constant on each fibre of f.

Conversely, suppose we are given F and X_0 and we want to construct G so that (*) holds on C/X_0 . Ussume f is fibred. Then given $Y \in C'/fX_0$, say $u: Y \longrightarrow fX_0$, put

 $G(Y) = F(u^*X_o).$

 $fX \xrightarrow{u=f(x)} fX_o$

and $F(X) \stackrel{\sim}{=} F(u^*X_o) = G(fX)$, (better notation:

 $F(X) \sim F(fX \times X_{o})$

showing F is locally in the image of ft.

Conclude: If $f: C \to C'$ is fibred, then $F \in C^{\Lambda}$ is locally in the image of f^{\star} iff F is locally constant on each fibre of f.

So now let \mathcal{L} be the full subcat of C' consisting of these functors. Let \overline{C} denote the category obtained by inverting all of the arrows in C which become isomorphisms in C', or equivalently inverting just the arrows in the fibres. Then we may identify $\mathcal{L} = \overline{C} \wedge$

and the inclusion of L in C^{Λ} is just the inverse image for the functor $C \longrightarrow \overline{C}$

It is cleare that

 $\overline{e} \longrightarrow e'$

is fibred and the fibre over y is

 $\overline{e}_y = \underline{\pi} e_y$.

(actually, this requires a good proof. Intuitively the base change functor $C_y \rightarrow C_y'$

will extend to a functor of groupoids

and the resulting fibred category in groupoids will clearly be

June 15, 1972
C.)
The can think of objects of C as the 1-connected coverings of the fibres of f . g assigns to $x \in C$ the pointed 1-connected covering with basepoint over X .
with basepoint over X.
flygoth the first of base change
Suppose now that $f: \mathcal{C} \longrightarrow \mathcal{C}'$ is fibred and that
(*) for any local coeff system of sets (resp. grps, resp. ab. gps) L on C , $R^{i}_{+}(L)$ is locally constant for $g=0$ (resp. $g \leq 1$, resp. all g). Here $R^{i}_{+}(L)$ is computed using covariant functors so that
Rofx is computed using covariant functors so that
$R^{g}f_{*}(L)_{g} = H^{g}(C_{g}, L).$
I want then to conclude that the base change functors $C_y \rightarrow C_y$ are heg's. I can assume C' is 1-connected by pulling back to any 1-com. covering, as this closuit change the fibres.
any 1-com. covering, as this clossit change the fibres.
Now for any set S we have that $f_{\star}(S)$ is locally constant, hence for any y

 $H^{\circ}(C', f_{\star}(S)) \stackrel{\sim}{\Rightarrow} f_{\star}(S)_{y} = H^{\circ}(C_{g}, S) = H_{om}(\pi_{o}C_{g}, S)$ $H'(C,S) = Ham(\pi_0C,S)$ and so we conclude that To Cy ~> To C for all

y. We can suppose C is connected since of is the sum of its restrictions to the components of C and since the RF*(L) decompose. Then Cy is also connected. MANA MANA CONTRACTOR

Let F be a covering of C, i.e. a local coefficient system on C and suppose F has a section over Cy. Since for F is locally constant, hence constant

 $H^{\circ}(C_{\mathfrak{Z}},F)=(f_{\mathfrak{X}}F)_{\mathfrak{X}}\stackrel{\sim}{\smile} H^{\circ}(C_{\mathfrak{Z}},F)=H^{\circ}(C_{\mathfrak{Z}},F)$

so the section over C_y may be extended to all of C. This implies that $T_{\eta}(C_y, \chi) \longrightarrow T_{\eta}(C, \chi)$

for any χ in C_y . (Take F to be the covering defined by the $T_q(C,\chi)$ -set $T_q(C,\chi)/I_m T_q(C,\chi)$.)

Let $\widetilde{C} \xrightarrow{f} C$ be the universal covering of C; it is fibred so the composite $\widetilde{C} \xrightarrow{f} C \xrightarrow{f} C'$ is fibred. It is clear that \widetilde{C}_y is $= C_y \times_{\widetilde{C}} \widetilde{C}$ is the induced covering.

 $R(f_p)_*(L) = R^6 f_*(p_* L)$

is locally constant. If we succeed in establishing that the base change $C_y \to C_{y'}$ is an heg, it will follow that $C_y \to C_{y'}$ is. (Our problem is that we have only $H^*(C_{y'}, L) \xrightarrow{\sim} H^*(C_{y}, L)$

for L which come from C and not all local coeff.
septems on Cyo.) Thus we may asseme C is
1-connected. fic > C' is filered, C, C' are 1-connected, and for all local coeff systems L on C, Rof (L) is loc. court. Let u: y'-> y be an arrow in C' fill the form $u^*: \mathcal{C}_{\mathcal{Y}} \longrightarrow \mathcal{C}_{\mathcal{Y}}$ the base change functor. Let x & Cy and consider $\Pi_{1}(C_{y}, x) \longrightarrow \Pi_{1}(C_{y}, x).$ We have for any group G that R1/4 (G) is locally constant hence $H^1(\mathcal{C}_{g'},G) \xrightarrow{\sim} H^1(\mathcal{C}_{g},G)$ Ham (TICy, G) ~~ Ham (TICy, G) where the Hom's are taken in the category of groups up to inner automorphisms. Since this holds for all & we can conclude that their 11/Cyx ~ 11/Cy, u*x).

Suppose we now consider the factorization of f

where \overline{C} is obtained from C by inverting the maps in the fibres. Then \overline{C} is fibred with $\overline{C}_y = \overline{w} C_y$. By what we have just shown the base changes $\overline{C}_y \to \overline{C}_y$ are equivalences of groupoids.

Let x_o be a basepoint of C and set $G = \pi_1(C_{f_{X_o}}, x_o)$

For each $y \in C'$ choose a principal G-bundle $P_y \rightarrow C_g$ which is a universal covering. This is possible as we have shown $\pi_{_q} C_y \simeq G$. For each map $u: y' \rightarrow y$ in C there exists at least one covering map Θ_u P_y .

Py Py Cy

compatible with the action of G. Any two choices for O_n differ by miltiplication by an element of the center Z of G. On effect we only have to check this for autos. Any auto. O of P_{ij} must is determined by its effect in the fibre over the basepoint and hence is a map $P_{ij} \rightarrow P_{ij} \times Compatible with left mult. by <math>\pi_i(C_{ij} \times)$ and also right mult. by G. These Only maps $G \rightarrow G$ which commute with both left + right mult. Care mult. by element of Z.) Therefore we obtain a compatible family of covering maps.

 $P_{y}/Z \longrightarrow P_{y'}/Z$ $C_{y} \longrightarrow C_{y'}$ (prinicipal)

whence we obtain a covering of C with group G/Z. Since $\pi_1 C = 0$, it follows this covering is trivial, so restricting to the fibre C_{fx_0} , we see that G/Z = 0. Thus G is abelian. So we conclude

TyCy is abelian.

Remark: E C' is a gerb for the group G= To Cy. It is non-trivial, otherwise we would able to find a coherent system of Py and hence construct a covering of C.

Now we have reached the following problem. Consider the map $C \to C$ whose fibres are essentially the universal coverings of the fibres of f. given a map $P_a \to P_{ac}$

 $\begin{array}{c}
P_{g} \longrightarrow P_{g'} \\
\downarrow \\
C_{g} \longrightarrow C_{g'}
\end{array}$

in C, we know that $H^*(C_{g'}, A) \xrightarrow{\sim} H^*(C_{g}, A)$ for all abelian groups A, but we don't know this for all G-modules, $G = \Pi_1 C_g$. Thus for example we have

$$0 \longrightarrow H^{2}(G, A) \longrightarrow H^{2}(C_{y}, A) \longrightarrow H^{2}(P_{y}, A) \xrightarrow{G} H^{3}(G, A) \longrightarrow H^{3}(C_{y}, A)$$

$$0 \longrightarrow H^{2}(G, A) \longrightarrow H^{2}(C_{y}, A) \longrightarrow H^{2}(P_{y}, A) \xrightarrow{G} H^{3}(G, A) \longrightarrow H^{3}(C_{y}, A)$$

which shows that

 $(\pi_2 P_y)_G \xrightarrow{\sim} (\pi_2 P_y)_G$.

This for Example it appears that it

I don't see how to get anything better. Thus

Rg*(A)

complex of complex of is some covariant functors on E such that when pushed down to C, it becomes locally constant.

2