FIG. 1

FIG. 2

FIG. 3: Panel A

1 1 1 1	.CCAAGCGAGCCGGG -GAAAGCGACCTTAG -CAAAGAGAGGCTGT	TAAAGAGAGCCGGG ACGAGCGAGCCTGA	AAGCGAA-TCTGG	-TTTTAGCGAGTCCGG *GTACAGCGAGTTAAG	-TAAAGCGAGCTCGG	TCAAGCGAGTTTGG
	COTCATGI		TCTGTT	TT-ATTT	<u>T</u> TTC <u>T</u> GATCT	* :
CAAGTACTTGC CAAGTACTTGC CAAGTACTTGC CAGTACTTGATTCCT	ATAGTAGTTAACC <u>C</u> TC 3AAGTACTTGCGTTTA AGAAATTGTATTTT	3GAGTAGC <u>TCTGAT</u> TT 3GAGTACCG-CGAAGA	3AAGTAAAAG <u>AA</u> CC <u>C</u>	ATAGTAACAAAAGCT FTAAATAATCTATCAA	AAATAGCAGG	AAGICITAT AGGAIGCAAG
AGCTTCATATGAAAAGGTAAAAGALUGAGACAAGTAGA-ATATCCT ATTATTAATAATAAGTAGCGATGACGGACT-TATAAGTACTTGC ATTATTAATAATAAGTAGCGATGACGGACT-TATAAGTACTTGC	ATCATATATGGATCGCGATGACSCATCA/ TTATTAAATATGTTGCAGTGAGAGAAA(AATTTAATATCTATACAATGACAAAGAT	TTAATAATGGATTGGCAGTGAACCCCA(GAAGTTAAATA CGTAC <mark>GAAGAĀ</mark> AAAGA(CTTGACAAAATGGGAAAATAGĀGCTAG	ATCAACTAATAGGTACGTTGĀAGGĀAAA1 GTCACAAAACACATTAATTTTACTTGCCT	TGTGATAAACTAACCAATAG-GAAAGA	NTTTTGATATAATAGTCAGCAGGAAAGA SCTTTATGCTAAACTAGACTCTAGGAAAA
B.sub tyrs AG B.ant glys AT B.cer glys AT B.hal glys AA	91 <u>ys</u> 91 <u>ys</u> 91ys	glys glys	<u>91ys</u> 91ys	91 <u>yS</u> 91yS	9178	91 <u>ys</u> 91ys

FIG. 3: Panel B

GGGATATATC - GAA TACA - CTCATGAACC GCAAG - GAA - ACGGCA - GTCTCGAGC
GAA TACA - GAA - ACGGCA GAA - ACGGCA GAA - ACGGCA GAA - ACGGCA GAA - ACGCA - GAA - ACGCA - ACGC - GAA - ACGCA - ACGC - ACT - ACGC -
B. sub tyrs B. ant glys B. car glys B. ste glys B. ste glys B. sub glys C. ace glys C. ace glys C. hyd glys C. hyd glys C. hyd glys C. hac glys L. lac glys L. lac glys L. mon glys S. aur glys S. avr glys

FIG. 3: Panel C

GCTAAACCAAAGCC		CTT	-ACGGACCTGATCCGTTATCAGG	1 : 1 1		
B.sub tyrs B.ant glys B.cer glys B.hal glys B.hal glys B.st	E. sub givs C. ace givs C. hyd givs D. rad givs	E. fae g1yS L. lac g1yS L. mon g1yS S. aur g1yS S. equ g1yS S. mut g1yS S. pne g1yS	B. sub tyrS B. ant glyS B. cer glyS B. hal glyS B. ste glyS	B. sub glyS C. ace glyS C. hyd glyS D. rad glyS	E. fae g1yS L. lac g1yS L. mon g1yS S. aur g1yS S. equ g1yS S. mut g1yS S. pre g1yS S. pre g1yS	

FIG. 3: Panel E

1	E C E E E E E E E E E E E E E E E E E E		
CXES	A <u>S</u> T.SA	TAAGACGAATGTTTG	CATTC-TCTTATTA
<u>91ys</u>	AGTGGAT		7TGTBTGT
$g_{1}y_{S}$	AGTGGAT		
91yS			
$g_{1}y_{S}$	AGGGGAT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
glys	TTTTAAAAAGAGGCT		
$g_{1}y_{S}$			
g_{1yS}	AGAGTTTTGAGGTGGGC		
glys	ACAACCGGTCTGAAAGGTGCTG		
91yS			
g_{1yS}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
glys	GGTGGGA		77TTAATTAAT
glys	AGCGAGT	GACTA	
glys		GTAGCTTGACATCTGTT	
glys	CTAACA	ATCAGATAAA	1
S.pne glys	TATAGTAT		TA
91yS		TATATAAA	
		FIG. 3: Panel F	
B.sub tyrs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-GTAGGGTGGTACCGCGATAATCA	HOOD BOUR
	AACTAGGGTGGAACCGCGGGC	1	1
	1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	
	1 1 1 1 1 1	1 1 1 1 1	1
B.ste glys	AACTAGGGTGG	AACTAGGGTGGAACCGCGGGAGCTAC	1
	AACTAGGGTGGAACCGCGGGA	AACCGCGGGAGAAC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	AATAAGGGTGGAACCGCGAA	AACCGCGGAAGTAA	1 1 1 1

-----CTAACT----CTCGT-----CCTAT------ACGC-----CCCTA-------GACGC-----CCCTAG----ACGC-----CCCTAG-----TTTG-------TTTG---------AATTTGGGTGGAACCGCGGGTT*--------AATTAGGGTGGAACCGCGTT---------AITAAAGGTGGAACCGTGC----TGAAGTAATAAATTAGGGTGGAACCGCGT----

91ys 91ys 91ys 91ys

S.pne

S.equ

S.aur S.mut

L.mon

91ys 91ys 91ys 91ys

C.hyd D.rad E.fae L.lac

	ORGANISMS WITH LEADER SEQUENCES	NCBI GENOME SEQUENCE FILE NAME
	HAVING THE T BOX PATTERN	•
5		
	Bacillus anthracis	NC_003997
	Bacillus cereus	NC_004722
	Bacillus halodurans	NC_002570
	Bacillus subtilis	NC_000964
10	Carboxydothermus hydrogenoformans	NC_002972
	Clostridium acetobutylicum	NC 003030
	Clostridium botulinum	NC 003223
	Clostridium difficile	NC_002933
	Clostridium perfringens	NC_003366
15	Clostridium tetani	NC 004557
	Clostridium thermocellum	NZ AABG0000000
	Corynebacterium glutamicum	NC 003450
	Corynebacterium diptheriae	NC 002935
	Deinococcus radiodurans	NC 001263
20	Desulfitobacterium hafniense	NZ AAAW0000000
	Enterococcus faecalis	NC 004668
	Enterococcus faecium	NZ AAAK0000000
	Geobacillus stearothermophilus	NC 002926
	Geobacter sulfurreducens	NC 002939
25	Lactococcus lactis	NC 002662
	Leuconostoc mesenteroides	NZ_AABH00000000
	Listeria innocua	NC_003212
	Listeria monocytogenes	NC_003210
	Mycobacterium leprae	NC_002677
30	Mycobacterium tuberculosis	NC_000962
	Oceanobacillus iheyensis	NC_004193
	Oenococcus oeni	NZ_AAAAZ00000000
	Ruminococcus albus	NC_003373
	Spiroplasma kunkelii	NC_003999
35	Staphylococcus aureus	NC_002758
	Staphylococcus epidermidis	NC_004461
	Streptococcus equi	NC_002955
	Streptococcus gordoniae	NC_002979
	Streptococcus mutans	NC_004350
40	Streptococcus pneumoniae	NC_003098
	Streptococcus pyogenes	NC_002737
	Streptomyces coelicolor	NC_003888
	Thermoanaerobacter tengcongensis	NC_003869
	Thermobifida fusca	NZ_AAAQ00000000

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

Polynucleotide sequence for the *glyQS* gene from *Bacillus subtilis* corresponding to the *in vitro* transcription template: from *B. subtilis* 168.

Sequence of same region from BR151MA (T to A at +6 position relative to transcription start-site)

ATTGATTTATATTACGAAGAATATTCGGGATTGTATTTAAAATCAAAGCGCTTTTTAGATCAAATGGAAAGCATGAA ACATCTTATTATGATCAAAAAGCATGAAACATGAAAACAAAAGTTGACATTTTGGTCCATCTTTTTATATGATCATTTATTATAAAATATGTTGCAG TGAGAGAAAGAAGTACTTGCGTTTACCTCATGAAAGCGACCTTAGGGCGGTGTAAGCTAAGGATGAGCACGCAACGA AAGGCATTCTTGAGCAATTTTAAAAAAAGAGGCTGGGATTTTGTTCTCAGCAACTAGGGTGGAACCGCGGGAGAACTC TCGTCCCTATGTTTGCGGCTGGCAAGCATAGAGACAGAGAAAAAAGGGGTGCTTGAAATGAAATATTCAAGACATGATTCTAACCTTGCAAAAGC

tRNA^{Gly} DNA sequence: (from SubtiList, confirmed by sequencing of region in BR151MA)
GCGGAAGTAGTTCAGTGGTAGAACACCACCTTGCCAAGGTGGGGGTTCGGATCCCGTCTTCCGCTCCA

{DHD1025.DOC;2}

PCR primers used for preparing glyQS template:

GlyQUS1Xba: ATTGATCTAGATTACGAAGAATATTCGGGATTGTA (contains two changes from sequence shown in Fig. 12 to introduce an XbaI site (TCTAGA) at the 5' end of the fragment for generation of the glyQS-lacZ fusion construct)

GlyQDS2H3Pac: GGGTATTTAATTAAGCTTTTGCAAGGTTAGAATCA (introduces extra 14 nt downstream of glyQS sequence shown in Fig. 12 to provide a HindIIIsite (AAGCTT) for generation of the glyQS-lacZ fusion construct)

The PCR primers used to generate the tyrS template:

TyrUSBM: GGCTGGGGATCCGTCAACAATGGAGG TyrN2b: CCGCGGAAGGATAAAGCTTCAAGTAAG

Polynucleotide sequence for the tyrS template DNA (identical for 168 or BR151MA).

The oligos used to generate $tRNA^{Tyr}$:

5': TyrUSBM: GGCTGGGGATCCGTCAACAATGGAGG 3': TyrN2b: CCGCGGAAGGATAAAGCTTCAAGTAAG

5': tRNATyrUST7: TAATACGACTCACTATAGGAGGGGTAGCG (the tRNA sequence starts with GGAGGGGTAGCG)

3': tRNATyrDS: TGGTGGAGGGGGGCAGATTCG

The oligos used to generate tRNA^{Gly}:

5': Glytrnaus: TAATACGACTCACTATAGCGGAAGTAGTTCAGTGG

(the first part of this oligo is the T7 promoter; the tRNA starts

with GCGGAAGTAGTTCAGTGG)

3': GlytRNADS: TGGAGCGGAAGACGGGATTCGAAC

 $tRNA^{Tyr}$ DNA sequence.

 $\tt GGAGGGGTAGCGAAGTGGCTAAACGCGGCGGACTGTAAATCCGCTCCCTCAGGGTTCGGCAGTTCGAATCTGCCCCCCCTCCACCA$