- 16 The planets orbit the Sun in approximately circular orbits. The orbital time T of a planet is related to the average distance r of the planet from the Sun.
 - (a) (i) Show that T is related to r by the expression:

$$T^2 \propto r^3$$

(ii) When planets align as they orbit the Sun they are said to be 'in opposition'. The diagram shows the Earth and Jupiter in opposition.

NOT TO SCALE

A website states that the Earth and Jupiter are in opposition every 13 months.

Deduce whether this statement is correct.

mean distance from Earth to Sun = 1.5×10^{11} m mean distance from Jupiter to Sun = 7.8×10^{11} m $T_{\rm Earth}$ = 12 months

ſ	5	1
	J	,
•		/

(b)	The distance	of Jupiter	from th	he Sun	varies	from	$7.4 \times$	10^{11}	m to	8.2	× 10) ¹¹ m
-----	--------------	------------	---------	--------	--------	------	--------------	-----------	------	-----	------	-------------------

Calculate the change in gravitational potential energy of Jupiter as it moves from its closest distance to its furthest distance from the Sun.

mass of Sun = 2.0×10^{30} kg mass of Jupiter = 1.9×10^{27} kg

Change in gravitational potential energy =

(Total for Question 16 = 11 marks)