First-Order Ordinary Differential Equations

Separable Variables

□A first-order differential equation of the form

$$\frac{dy}{dx} = g(x)h(y)$$

is said to be separable or to have separable variables.

$$\frac{dy}{dx} = g(x)h(y) \implies \frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$p(y) = \frac{1}{h(y)} \implies p(y)dy = g(x)dx$$

$$\int p(y)dy = \int g(x)dx + c$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Separable Variables (Examples)

$$(e^{2y} - y)\cos x \frac{dy}{dx} = e^y \sin 2x, \quad y(0) = 0$$

$$(1+x)dy - ydx = 0$$

$$\frac{(e^{2y} - y)}{e^y} dy = \frac{\sin 2x}{\cos x} dx$$

$$\frac{dy}{y} = \frac{dx}{1+x}$$

$$\int (e^y - ye^{-y})dy = 2\int \sin x dx$$

$$\int \frac{dy}{y} = \int \frac{dx}{1+x} + c$$

$$e^{y} + ye^{-y} + e^{-y} = -2\cos x + c$$
$$y(0) = 0 \implies c = 4$$

$$\ln \left| \frac{y}{1+x} \right| = c$$

$$e^{y} + ye^{-y} + e^{-y} = 4 - 2\cos x$$

$$\frac{y}{1+x} = e^c = c_1$$

$$e^{x} + ye^{-x} + e^{-x} = 4 - 2\cos x$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Mixing Problem

 \square Let's assume y(t) is the amount of salt in the tank at time t.

☐ The concentration of the salt in inflow is 2 lb/gal.

 $\frac{dy}{dt}$ = Input Rate of Salt - Output Rate of Salt

Input Rate of Salt = (2 lb/gal)(3 gal/min) = 6 lb/min

Output Rate of Salt = $(\frac{y}{300} \text{ lb/gal})(3 \text{ gal/min}) = \frac{y}{100} \text{ lb/min}$

$$\frac{dy}{dt} = 6 - \frac{y}{100} \qquad \Rightarrow \qquad \frac{100 \, dy}{600 - y} = dt$$

output rate of brine 3 gal/min

Cooling of an Object

□Consider an object, such as a potato or a cake, which is removed from an oven with initial temperature of 300°F. Three minutes later its temperature is 200°F. How long will it take for the object to reach within one degree of the room temperature of 70°F.

$$-hA(T - T_{\infty}) = mc_{p} \frac{dT}{dt} \implies \frac{dT}{T - T_{\infty}} = -\frac{hA}{mc_{p}} dt$$
Let's take $\frac{hA}{mc_{p}} = b$, then $\frac{dT}{T - 70} = -bdt$

$$\ln|T - 70| = -bt + c \text{ or } T - 70 = c_{1}e^{-bt}$$

$$T(0) = 300 \implies c_{1} = 230 \implies T = 70 + 230e^{-bt}$$

$$T(3) = 200 \implies b = 0.19$$

$$T = 70 + 230e^{-0.19t}$$

$$T(t) = 71^{\circ}F \implies t = 28.62 \text{ min}$$

Advanced Mech. Eng. Analysis (ME 230)

Advanced Mech. Eng. Analysis (ME 230)

unes Shabany

Linear Equations

□ A first-order differential equation of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

is said to be a linear equation in the dependent variable y.

- \square If g(x)=0, the equation is said to be homogeneous.
- ☐ To solve this equation, it is converted to the standard form

$$\frac{dy}{dx} + P(x)y = f(x).$$

☐ Then, it is multiplied by the integrating factor $e^{[P(x)dx}$.

$$e^{\int P(x)dx} \frac{dy}{dx} + P(x)e^{\int P(x)dx} y = e^{\int P(x)dx} f(x) \quad \Rightarrow \quad \frac{d}{dx} \left[e^{\int P(x)dx} y \right] = e^{\int P(x)dx} f(x)$$

 \square Integrate both sides to find y(x).

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Linear Equations (Examples)

$$x \frac{dy}{dx} - 4y = x^{6}e^{x}$$

$$\frac{dy}{dx} - 2xy = 2, \quad y(0) = 1$$

$$\frac{dy}{dx} - \frac{4}{x}y = x^{5}e^{x}$$

$$P(x) = -\frac{4}{x}$$

$$e^{\int P(x)dx} = e^{\int -(4/x)dx} = e^{-4\ln x} = e^{\ln x^{4}} = x^{-4}$$

$$x^{-4} \frac{dy}{dx} - x^{-4} \frac{4}{x}y = x^{-4}x^{5}e^{x}$$

$$x^{-4} \frac{dy}{dx} - 4x^{-5}y = xe^{x}$$

$$\frac{d}{dx}[x^{-4}y] = xe^{x}$$

$$x^{-4}y = xe^{x} - e^{x} + c$$

$$y = x^{5}e^{x} - x^{4}e^{x} + cx^{4}$$

$$y = e^{x^{2}} \frac{dy}{dx} - 2xy = 2, \quad y(0) = 1$$

$$e^{\int P(x)dx} = e^{\int -2xdx} = e^{-x^{2}}$$

$$e^{-x^{2}} \frac{dy}{dx} - 2xy = x^{2} = 2e^{-x^{2}}$$

$$e^{-x^{2}} \frac{dy}{dx} - 2xy = x^{2} = 2e^{-x^{2}}$$

$$e^{-x^{2}} y = \int_{0}^{x} 2e^{-x^{2}} dt + ce^{x^{2}}$$

$$y(0) = 1 \implies c = 1$$

$$y = 2e^{x^{2}} \int_{0}^{x} e^{-x^{2}} dt + e^{x^{2}}$$

$$y = e^{x^{2}} (1 + \sqrt{\pi} \operatorname{erf}(x))$$

Younes Shabany

RL and RC Circuits

$$L\frac{di}{dt} + Ri = E(t) \implies \frac{di}{dt} + \frac{R}{L}i = \frac{1}{L}E(t)$$

$$\frac{d}{dt}\left[i \cdot e^{\frac{R}{L}t}\right] = e^{\frac{R}{L}t} \frac{1}{L}E(t)$$

If E(t) is constant with time,

$$i(t) = \frac{E}{R} + c_1 e^{-\frac{R}{L}t}$$

 $Ri + \frac{1}{C}q = E(t)$ or $R\frac{dq}{dt} + \frac{1}{C}q = E(t)$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Exact Equations

- □ A first-order differential equation M(x,y)dx+N(x,y)dy=0 is an **exact differential equation** in a region R of the xy-plane if the left side corresponds to the exact differential of some function f(x,y) in that region; i.e. $M(x,y)=\partial f/\partial x$ and $N(x,y)=\partial f/\partial y$.
- □ Examples of exact differentials are state equations such as ideal gas equation $P(\rho,T)=\rho RT$.
- □ A necessary and sufficient condition that M(x,y)dx+N(x,y)dy be an exact differential is $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
- Solution method is as follows

$$\frac{\partial f}{\partial x} = M(x, y) \implies f(x, y) = \int M(x, y) dx + g(y)$$

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) dx + g'(y)$$

$$g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) dx \implies g(y) = \int N(x, y) dy - \int \frac{\partial}{\partial y} \int M(x, y) dx dy$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

29

Solution by Substitution

- ☐ Sometimes the first step in solving a differential equation is transforming it into another differential equation by **substitution**.
- \square If a function f possesses the property

$$f(tx,ty) = t^{\alpha}f(x,y)$$
,

then f is called a **homogeneous function** of order α .

■ A first order differential equation

$$P(x,y)dx+Q(x,y)dy=0$$

is a **homogeneous** equation if both coefficients ${\it P}$ and ${\it Q}$ are homogeneous functions of the same degree.

☐ A homogeneous differential equation

$$P(x,y)dx+Q(x,y)dy=0$$

can be transformed to a separable differential equation by either of the substitutions

$$y=ux$$
 or $x=vy$.

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Exact Equations (Examples)

$$2xydx + (x^2 - 1)dy = 0$$

$$M(x, y) = 2xy \text{ and } N(x, y) = x^2 - 1$$

$$\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$$

$$\frac{\partial f}{\partial x} = M(x, y) = 2xy$$

$$\Rightarrow f(x, y) = x^2y + g(y)$$

$$\Rightarrow x^2 + g'(y) = x^2$$

$$f(x, y) = x^2y - y$$

$$f(x, y) = x^2y -$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Solution by Substitution

$$(x^{2} + y^{2})dx + (x^{2} - xy)dy = 0$$

$$y = ux$$

$$\Rightarrow (x^{2} + u^{2}x^{2})dx + (x^{2} - ux^{2})(udx + x^{2} + u^{2}x^{2})dx + (x^{2} - ux^{2})(udx + u^{2}x^{2})dx + (x^{2} - ux^{2})dx + (x^{2} - ux^{2})(udx + u^{2}x^{2})dx + (x^{2}$$

$$y = ux dy = udx + xdu$$
 \Rightarrow $(x^2 + u^2x^2)dx + (x^2 - ux^2)(udx + xdu) = 0$

$$x^{2}(1+u)dx + x^{3}(1-u)du = 0$$

$$\frac{1-u}{1+u}du + \frac{dx}{x} = 0$$
$$\left(-1 + \frac{2}{1+u}\right)du + \frac{dx}{x} = 0$$

$$-u + 2\ln|1 + u| + \ln|x| = c$$

$$\ln \left| x(1+u)^2 \right| = c + u$$

$$x(1+u)^2 = e^{c+u} = e^c e^u = c_1 e^u$$

$$x(1+\frac{y}{x})^{2} = c_{1}e^{y/x}$$
$$(x+y)^{2} = c_{1}xe^{y/x}$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Solution by Substitution

☐ The differential equation

$$\frac{dy}{dx} + P(x)y = f(x)y^n,$$

where n is any real number, is called **Bernoulli's equation**.

 $lue{}$ The substitution $u=y^{1-n}$ reduces any Bernoulli's equation to a linear equation.

$$x\frac{dy}{dx} + y = x^{2}y^{2}$$

$$\frac{dy}{dx} + \frac{1}{x}y = xy^{2}$$

$$n = 2 \implies u = y^{-1} \implies y = u^{-1} \implies \frac{dy}{dx} = -u^{-2}\frac{du}{dx}$$

$$-xu^{-2}\frac{du}{dx} + u^{-1} = x^{2}u^{-2} \implies \frac{du}{dx} - \frac{1}{x}u = -x$$

Advanced Mech. Eng. Analysis (ME 230)

ounes Shaban

22

Chapter Exercises

$$\frac{dy}{dt} + 2y = 1, \quad y(0) = 2.5$$

$$\frac{dN}{dt} + N = Nte^{t+2}$$

$$x^{2}y' + x(x+2)y = e^{x}$$

$$\left(1 - \frac{3}{y} + x\right)\frac{dy}{dx} + y = \frac{3}{x} - 1$$

$$xy^{2}\frac{dy}{dx} = y^{3} - x^{3}, \quad y(1) = 2$$

$$t^{2}\frac{dy}{dt} + y^{2} = ty$$

$$\frac{dy}{dx} = 1 + e^{y-x+5}$$

Advanced Mech. Eng. Analysis (ME 230)

Younes Shabany

Solution by Substitution

■ The differential equation

$$\frac{dy}{dx} = f(Ax + By + C)$$

can always be reduced to a separable equation by the substitution u=Ax+By+C.

$$\frac{dy}{dx} = (-2x + y)^2 - 7$$

$$u = -2x + y \quad \Rightarrow \quad \frac{du}{dx} = -2 + \frac{dy}{dx}$$

$$2 + \frac{du}{dx} = u^2 - 7 \quad \Rightarrow \quad \frac{du}{dx} = u^2 - 9$$

$$\frac{du}{u^2 - 9} = dx \quad \Rightarrow \quad \frac{du}{(u - 3)(u + 3)} = dx \quad \Rightarrow \quad \left[\frac{1}{u - 3} - \frac{1}{u + 3}\right] du = 6dx$$

Advanced Mech. Eng. Analysis (ME 230

Younes Shabany

_