

JAN 09, 2024

W-3 WATER STORAGE

REDI-NET
Consortium¹

¹REDI-NET Consortium

REDI-NET Consortium

University of Notre Dame, Naval Medical Research Center, Wal...

DISCLAIMER

This work is supported by the US Army Medical Research and Development Command under Contract No.W81XWH-21-C-0001, W81XWH-22-C-0093 and HT9425-23-C-0059. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army or Navy position, policy or decision unless so designated by other documentation.

ABSTRACT

This protocol describes leech storage.

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.8epv5xm96g1b/v1

Protocol Citation: REDI-NET Consortium 2024. W-3 WATER STORAGE. protocols.io https://dx.doi.org/10.17504/p rotocols.io.8epv5xm96g1b/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Nov 17, 2023

Last Modified: Jan 09, 2024

Oct 9 2024

PROTOCOL integer ID:

91105

Keywords: STORAGE PROCEDURE FOR UNTREATED SAMPLE, STORAGE PROCEDURE FOR **TOTAL NUCLEIC ACID**

Funders Acknowledgement:

USAMRAA

Grant ID: W81XWH-21-C-0001

USAMRAA

Grant ID: W81XWH-22-C-

0093

USAMRAA

Grant ID: HT9425-23-C-0059

GUIDELINES

OBJECTIVE

To outline steps for properly storing field-collected leech samples and nucleic acid samples purified from these soil.

SUMMARY/SCOPE

The overarching aim of the REDI-NET is to develop a collaborative laboratory network between domestic and international partnering institutions to address disease surveillance needs in order to effectively detect, predict and contain potentially emergent zoonosis. This SOP provides guidance on storage of leech samples and their purified nucleic acid to preserve their integrity for downstream nucleic acid extraction and/or sequencing library preparation.

MAINTENANCE OF EQUIPMENT

Decontaminate a PCR workstation by keeping the UV light on for 60 00:15:00

EQUIPMENT AND MATERIALS

Note

NOTE: If product number is listed, please ensure use of this or equivalent product.

A	В	С
Equipment / Material	Description	Mfg / Product #
-80°C freezer	For sample storage	Locally sourced
Forceps	Clean, stainless	Locally sourced
Ice	To maintain cold chain during sample handling	Locally sourced
96-Well Microfuge tube racks with cover	To hold microplates	Locally sourced
KingFisher™ 96 KF microplate	To store the sample	ThermoFisher, 97002540
PCR Workstation	PCR cabinet with UV light	Locally sourced
Clear Adhesive Film	To seal the KingFisher™ 96 KF microplate	ThermoFisher, 4306311
Adjustable micropipettes	To handle the samples	Locally sourced
Multi-channel micropipettes	8- or 12- channel; to handle the sample	Locally sourced
Nuclease-free filter tips low-retention	To ensure appropriate sample handling	Locally sourced
Nuclease free microfuge tubes	1.5 mL	Locally sourced
Saran wrap	Plastic wrap; to seal rack holding sample	Locally sourced
Permanent markers	To label tubes and microplates	Locally sourced
Data sheet	REDI-NET DCS T-3 Tick Storage	REDI-NET Data Portal

•

RISKS AND PERSONAL PROTECTION:

Gloves should be worn all the time when handling samples.

STORAGE PROCEDURE FOR UNTREATED SAMPLE

1

Note

NOTES:

- Collected water samples need to be kept on a cold chain all the time to prevent RNA degradation.

 The following procedure will apply only where 8 -80 °C storage is feasible.
- If \$\mathbb{E}\$ -80 °C storage is not possible, temporarily store the soil samples in a \$\mathbb{E}\$ -20 °C freezer and follow water sample processing SOP (REDI-NET Water Processing SOP W-2) as soon as possible for total nucleic acid extraction. Subsequently, use a portion of the total nucleic acid and reverse- transcribe RNA into cDNA for \$\mathbb{E}\$ -20 °C storage. To do this, follow the initial steps of the water sample testing SOP (REDI-NET Water Testing SOP W-4) cDNA synthesis until finishing step 40.

Each collected water sample will be given a unique ID.

- 2 Store water samples for up to 24 hours at 4 °C and up to 7 days at 4 °C before processing the samples.
- **3** Follow the SOP for water processing (REDI-NET SOP W-2 Water Processing) till the section "Microorganism collection" is completed.
- **4** Each water sample filtered membrane will be moved into an individual 60 mm Petri dish labeled with its original sample ID.
- 5 Seal the Petri dish with parafilm and multiple Petri dishes can be stacked together, enclosed with Saran

wrap and transferred to a 4 -80 °C freezer.

6 Update the freezer inventory so that samples can be tracked properly.

STORAGE PROCEDURE FOR TOTAL NUCLEIC ACID

7

Note

NOTES:

- The following procedure is to properly store total nucleic acid extracted from water samples (including negative controls) using KingFisher nucleic acid purification system. The eluted total nucleic acid will be in either 96-well microplate (Flex model) or elution strip (Duo Prime model).
- Total nucleic acid samples need to be kept On ice all the time to minimize RNA degradation.

In the clean PCR workstation, carefully transfer the eluted total nucleic acid to a 96-well PCR microplate.

Note

IMPORTANT: Mark the "A1" position of the 96-well microplate to prevent any mistakes on plate orientation.

- 8 Cover the 96-well PCR microplate with adhesive film to prevent spill over or contamination.
- **9** Label the film with a unique plate ID.
- 10 Immediately transfer the 96-well PCR microplate to 8 -80 °C freezer

11 Update the freezer inventory so that samples can be tracked properly.