Statistical Inference I

Prof. Chin-Tsang Chiang

Lecture Notes 14

November 6, 2015

Scribe: Wei-Chang Lee, Chi-Ning Chou

0.1 Continuous distribution

0.1.1 Uniform distribution

In continuous regime, we define a uniform random variable on a close interval [a, b], where a < b, and denote it as Uni(a, b). If $X \sim \text{Uni}(a, b)$, then

- $f_X(x|a,b) = \frac{1}{b-a}$
- $\mathbb{E}[X|a,b] = \frac{a+b}{2}$
- $Var[X|a,b] = \frac{(b-a)^2}{12}$

0.1.2 Exponential family

Here, we define three highly related continuous random variables: exponential, Weibull, and gamma. We first write down their distribution respectively, then introduce their relationship and properties.

Exponential: Exponential random variable captures a single interleaving time of a Poisson process with frequency $1/\beta$. If $X \sim \text{exponential}(\beta)$

$$f_X(x|\beta) = \frac{1}{\beta}e^{-x/\beta}\mathbf{1}_{(0,\infty)}(x)$$

Weibull: If $Y = X^{1/\gamma}$, where $X \sim \text{exponential}(\beta)$ and $\gamma > 0$, we say Y has a Weibull (β, γ) distribution.

$$f_Y(y|\beta,\gamma) = \frac{\gamma}{\beta} y^{\gamma-1} e^{-y^{\gamma}/\beta} \mathbf{1}_{(0,\infty)}(y)$$

In other words, Weibull random variable is a power transformed version of exponential random variable. And as $\gamma = 1$, the Weibull degenerates to exponential.

Gamma: Intuitively, gamma distribution captures the total interleaving time up to more than one appearances. We use two parameters α, β to define a gamma random variable and denote it as $Gamma(\alpha, \beta)$. If $X \sim Gamma(\alpha, \beta)$, then

$$f_X(x|\alpha,\beta) = \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}} \mathbf{1}_{(0,\infty)}$$

As we mentioned earlier, these three distributions are highly related to Poisson distribution in the sense that they describe the waiting time of a counting process given the number of desired observations while Poisson distribution captures the number of appearances given the amount of observing time. The two aspects are just two side of a coin, and we can use the following equation to relate them all together: Let $\{N(t)\}$ be a counting process and T be the corresponding waiting time for a single event to happen. We have

$${T > t} = {N(t) = 0}$$

If we write down the probability of each side and do some computation, we can derive a relationship between exponential distribution and Poisson distribution.