PWDFT.jl Documentation

Fadjar Fathurrahman

This document is a work in progress

In this part I will describe my design choices in implementing PWDFT.jl. This design is by no means perfect and it might change in the future to accommodate more complex use cases.

1 Overview

The design of PWDFT.jl is intended to be rather simple. One constraint that is set to the code is that it should be possible to perform application of Hamiltonian operator to wave function as simple as:

```
Hpsi = Ham*psi # or
Hpsi = op_H(Ham, psi)
```

where psi is, currently, of type Array {ComplexF64,2} ¹. This comes with an important consequences: all other pieces of information about how this operation is done should be present in the type of Ham. ². In PWDFT.jl, the type of Ham is Hamiltonian. Several important fields of Hamiltonian are instances of the following types (please refer to the source code for more details about this):

- Atoms: contains information about atomic structure: cell vectors, atomic species and atomic coordinates.
- PsPot_GTH: contains information about atomic pseudopotentials.
- Electrons: contains information about electronic states.
- PWGrid: contains information about plane wave basis set.
- Potentials: contains information about local potentials such as local pseudopotential, Hartree and exchange-correlation potential.
- PsPotNL: contains information about nonlocal pseudopotential terms.
- Energies: contains information about components of Kohn-Sham energy.
- SymmetryInfo: contains information about symmetry operations.

2 Atomic structure

The type Atoms contains the following information:

- Number of atoms: Natoms::Int64
- Number of atomic species: Nspecies::Int64
- Atomic coordinates: positions::Array{Float64,2}
- Unit cell vectors (lattice vectors): LatVecs::Array{Float64,2}

 $^{^{1}}$ This function may be extended take other types other that plain Julia array for more complex case.

 $^{^2}$ We will also see some quirks related to this design choice later, such as applying Hamiltonian to several k-points or spin-polarized case

Atoms also contains several other fields such as Zvals which will be set according to the pseudopotentials assigned to the instance of Atoms. 3

```
mutable struct Atoms
   Natoms::Int64
   Nspecies::Int64
   positions::Array{Float64,2}
   atm2species::Array{Int64,1}
   atsymbs::Array{String,1}
   SpeciesSymbols::Array{String,1}
   LatVecs::Array{Float64,2}
   Zvals::Array{Float64,1}
end
```

Figure 1: Definition of Atoms.

LatVecs is a 3×3 matrix. The vectors are stored column-wise which is opposite to the PWSCF input convention. Convenience functions to calculate lattice vectors for several types of Bravais lattice are provided in PWDFT.jl. These functions adopt PWSCF definition. Several of these functions are listed below:

- gen_lattice_sc or gen_lattice_cubic for generating simple cubic lattice vectors.
- gen_lattice_fcc: for fcc structure
- gen_lattice_bcc: for bcc structure
- gen_lattice_hcp: for hcp structure

Please see file gen_lattice.jl for more information.

There are several ways to initialize an instance of Atoms. The following are typical cases.

• From xyz file. We need to supply the path to xyz file as string and set the lattice vectors:

```
atoms = Atoms(xyz_file="file.xyz", LatVecs=gen_lattice_sc(16.0))
```

• For crystalline systems, using keyword argument xyz_string_frac is sometimes convenient:

IMPORTANT We need to be careful to also specify in_bohr keyword to get the correct coordinates in bohr (which is used internally in PWDFT.jl).

• From extended xyz file, the lattice vectors information is included along with several others information, if any, however they are ignored):

```
atoms = Atoms(ext_xyz_file="file.xyz")
```

 $^{^3}$ Maybe we should include pseudopotential information under the Atoms type. However this would make Atoms "heavier".

3 Plane wave basis set, real space grid, and k-points

The type PWGrid wraps various variables related to plane wave basis set. This has two fields of type GVectors and GVectorsW for storing information about **G**-vectors that are used in potential and wave functions, respectively.

```
struct PWGrid
    ecutwfc::Float64
    ecutrho::Float64
    Ns::Tuple{Int64,Int64,Int64}
    LatVecs::Array{Float64,2}
    RecVecs::Array{Float64,2}
    CellVolume::Float64
    r::Array{Float64,2}
    gvec::GVectors
    gvecw::GVectorsW
    planfw
    planbw
end
```

Figure 2: Definition of PWGrid. The type annotation of planfw and planbw is omitted because they are too long.

We can define grid points over unit cell as:

$$\mathbf{r} = \frac{i}{N_{s1}} \mathbf{a}_1 + \frac{j}{N_{s2}} \mathbf{a}_2 + \frac{k}{N_{s3}} \mathbf{a}_3$$

where $i = 0, 1, ..., N_{s1} - 1, j = 0, 1, ..., N_{s2} - 1, k = 0, 1, ..., N_{s3} - 1$

```
struct GVectors
    Ng::Int64
    G::Array{Float64,2}
    G2::Array{Float64,1}
    idx_g2r::Array{Int64,1}
    G2_shells::Array{Float64,1}
    idx_g2shells::Array{Int64,1}
end
```

Figure 3: Definition of GVectors.

```
Struct GVectorsW
    Ngwx::Int64
    Ngw::Array{Int64,1}
    idx_gw2g::Array{Array{Int64,1},1}
    idx_gw2r::Array{Array{Int64,1},1}
    kpoints::KPoints
end
```

Figure 4: Definition of GVectorsW.

The **G**-vectors can be defined as:

$$\mathbf{G} = n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2 + n_3 \mathbf{b}_3 \tag{1}$$

where n_1, n_2, n_3 are integer numbers and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are three vectors describing unit cell of reciprocal lattice or unit reciprocal lattice vectors. They satisfy the following relations:

$$\mathbf{a}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\Omega} \mathbf{a}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\Omega} \mathbf{a}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\Omega}$$
 (2)

A periodic function

$$f(\mathbf{r}) = f(\mathbf{r} + \mathbf{L}), \ \mathbf{L} = n_1 a_1 + n_2 a_2 + n_3 a_3$$
 (3)

can be expanded using plane wave basis basis functions as:

$$f(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} C_{\mathbf{G}} \exp(i\mathbf{G} \cdot \mathbf{r})$$
 (4)

where $C_{\mathbf{G}}$ are expansion coefficients. This sum is usually truncated at a certain maximum value of \mathbf{G} -vector, \mathbf{G}_{\max} .

Kohn-Sham wave function:

$$\psi_{i,\mathbf{k}}(\mathbf{r}) = u_{i,\mathbf{k}}(\mathbf{r}) \exp\left[i\mathbf{k} \cdot \mathbf{r}\right] \tag{5}$$

where $u_{i,\mathbf{k}}(\mathbf{r}) = u_{i,\mathbf{k}}(\mathbf{r} + \mathbf{L})$

Using plane wave expansion:

$$u_{i,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} C_{i,\mathbf{k},\mathbf{G}} \exp(i\mathbf{G} \cdot \mathbf{r}), \tag{6}$$

we have:

$$\psi_{i,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} C_{i,\mathbf{G}+\mathbf{k}} \exp\left[i(\mathbf{G} + \mathbf{k}) \cdot \mathbf{r}\right]$$
 (7)

With this expression we can expand electronic density in plane wave basis:

$$\rho(\mathbf{r}) = \sum_{i} \int f_{i,\mathbf{k}} \psi_{i,\mathbf{k}}^{*}(\mathbf{r}) \psi_{i,\mathbf{k}}(\mathbf{r}) \, d\mathbf{k}$$

$$= \frac{1}{\Omega} \sum_{i} \int f_{i,\mathbf{k}} \left(\sum_{\mathbf{G}'} C_{i,\mathbf{G}'+\mathbf{k}} \exp\left[-i(\mathbf{G}'+\mathbf{k}) \cdot \mathbf{r}\right] \right) \left(\sum_{\mathbf{G}} C_{i,\mathbf{G}+\mathbf{k}} \exp\left[i(\mathbf{G}+\mathbf{k}) \cdot \mathbf{r}\right] \right) d\mathbf{k}$$

$$= \frac{1}{\Omega} \sum_{i} \int f_{i,\mathbf{k}} \sum_{\mathbf{G}} \sum_{\mathbf{G}'} C_{i,\mathbf{G}+\mathbf{k}} C_{i,\mathbf{G}'+\mathbf{k}} \exp\left[i(\mathbf{G}-\mathbf{G}') \cdot \mathbf{r}\right] d\mathbf{k}$$

$$= \frac{1}{\Omega} \sum_{\mathbf{G}''} C_{\mathbf{G}''} \exp\left[i\mathbf{G}'' \cdot \mathbf{r}\right] d\mathbf{k}$$

The sum over G'' extends twice the range over the range needed by the wave function expansion.

For wave function expansion we use plane wave expansion over G vectors defined by:

$$\frac{1}{2}\left|\mathbf{G} + \mathbf{k}\right|^2 \le E_{\text{cut}} \tag{8}$$

where E_{cut} is a given cutoff energy which corresponds to ecutwfc field of PWGrid. For electronic density (and potentials) we have:

$$\frac{1}{2}\mathbf{G}^2 \le 4E_{\text{cut}} \tag{9}$$

The value of $4E_{\mathrm{cut}}$ corresponds to ecutrho field of of PWGrid.

In the implementation, we first generate a set of **G**-vectors which satisfy Equation (9) and derives several subsets from it which satisfy Equation (??) for a given **k**-points.

An instance of PWGrid can be initialized by using its constructor which has the following signature:

```
function PWGrid( ecutwfc::Float64, LatVecs::Array{Float64,2};
   kpoints=nothing, Ns_=(0,0,0) )
```

There are two mandatory arguments: ecutwfc and LatVecs. ecutwf is cutoff energy for kinetic energy (in Hartree) and LatVecs is usually correspond to the one used in an instance of Atoms.

Structure factor

FFT

operators op nabla op nabla 2

```
struct KPoints
    Nkpt::Int64
    mesh::Tuple{Int64,Int64,Int64}
    k::Array{Float64,2}
    wk::Array{Float64,1}
    RecVecs::Array{Float64,2}
end
```

Figure 5: Definition of KPoints.

4 Electronic states

```
mutable struct Electrons
   Nelectrons::Float64
   Nstates::Int64
   Nstates_occ::Int64
   Focc::Array{Float64,2}
   ebands::Array{Float64,2}
   Nspin::Int64
end
```

Figure 6: Definition of Electrons.

5 Potentials and energies

In KSDFT approach [1, 2], total energy per unit cell system $E_{\rm total}^{\rm KS}$ can be written as

$$E_{\text{total}}^{\text{KS}} = E_{\text{kin}} + E_{\text{ele-nuc}} + E_{\text{Ha}} + E_{\text{xc}} + E_{\text{nuc-nuc}}$$
(10)

Kohn-Sham equations:

$$H_{KS}\psi_{i\mathbf{k}}(\mathbf{r}) = \epsilon_{i\mathbf{k}}\psi_{i\mathbf{k}}(\mathbf{r})$$
 (11)

```
mutable struct Potentials
   Ps_loc::Array{Float64,1}
   Hartree::Array{Float64,1}
   XC::Array{Float64,2}
   Total::Array{Float64,2}
end
```

Figure 7: Definition of Potentials.

```
mutable struct Energies

Kinetic::Float64

Ps_loc::Float64

Ps_nloc::Float64

Hartree::Float64

XC::Float64

NN::Float64

PspCore::Float64

end
```

Figure 8: Definition of Energies.

Calculation of electron density and total energy

5.1 XC energy and potential

PWDFT.jl uses Libxc.jl[3], a Julia wrapper to Libxc[4, 5], to calculate exchange correlation energy and potentials.

For LDA we have:

$$E_{\rm xc}\left[\rho_{\sigma}\right] = \int \epsilon_{\rm xc}^{\rm HEG}\left[\rho_{\sigma}(\mathbf{r})\right] \rho_{\rm tot}(\mathbf{r}) \,\mathrm{d}\mathbf{r} \tag{12}$$

$$= \int \left\{ \epsilon_{\mathbf{x}}^{\mathrm{HEG}} \left[\rho_{\sigma}(\mathbf{r}) \right] + \epsilon_{\mathbf{c}}^{\mathrm{HEG}} \left[\rho_{\sigma}(\mathbf{r}) \right] \right\} \rho(\mathbf{r}) \, d\mathbf{r}$$
 (13)

$$\delta E_{\rm xc} \left[\rho_{\sigma} \right] = \sum_{\sigma} \int \left(\epsilon_{\rm xc}^{\rm HEG} + \rho_{\rm tot} \frac{\partial}{\partial \rho_{\sigma}} \epsilon_{\rm xc}^{\rm HEG} \right) \, \mathrm{d}\mathbf{r} \, \delta \rho_{\sigma} \tag{14}$$

6 Pseudopotentials

Currently, PWDFT.jl supports a subset of GTH (Goedecker-Teter-Hutter) pseudopotentials. This type of pseudopotential is analytic and thus is somewhat easier to program. PWDFT.jl distribution contains several parameters of GTH pseudopotentials for LDA and GGA functionals.

These pseudopotentials can be written in terms of local $V_{\rm loc}^{\rm PS}$ and angular momentum l dependent nonlocal components $\Delta V_l^{\rm PS}$:

$$V_{\text{ene-nuc}}(\mathbf{r}) = \sum_{I} \left[V_{\text{loc}}^{\text{PS}}(\mathbf{r} - \mathbf{R}_{I}) + \sum_{l=0}^{l_{\text{max}}} V_{l}^{\text{PS}}(\mathbf{r} - \mathbf{R}_{I}, \mathbf{r}' - \mathbf{R}_{I}) \right]$$
(15)

```
struct PsPot_GTH
    pspfile::String
    atsymb::String
    zval::Int64
    rlocal::Float64
    rc::Array{Float64,1}
    c::Array{Float64,1}
    h::Array{Float64,3}
    lmax::Int64
    Nproj_l::Array{Int64,1}
    rcut_NL::Array{Float64,1}
end
```

Figure 9: Definition of PsPot_GTH.

6.1 Local pseudopotential

The local pseudopotential for *I*-th atom, $V_{\text{loc}}^{\text{PS}}(\mathbf{r} - \mathbf{R}_I)$, is radially symmetric function with the following radial form

$$V_{\text{loc}}^{\text{PS}}(r) = -\frac{Z_{\text{val}}}{r} \text{erf}\left[\frac{\bar{r}}{\sqrt{2}}\right] + \exp\left[-\frac{1}{2}\bar{r}^2\right] \left(C_1 + C_2\bar{r}^2 + C_3\bar{r}^4 + C_4\bar{r}^6\right)$$
(16)

with $\bar{r} = r/r_{\rm loc}$ and $r_{\rm loc}$, $Z_{\rm val}$, C_1 , C_2 , C_3 and C_4 are the corresponding pseudopotential parameters. In **G**-space, the GTH local pseudopotential can be written as

$$V_{\text{loc}}^{\text{PS}}(G) = -\frac{4\pi}{\Omega} \frac{Z_{\text{val}}}{G^2} \exp\left[-\frac{x^2}{2}\right] + \sqrt{8\pi^3} \frac{r_{\text{loc}}^3}{\Omega} \exp\left[-\frac{x^2}{2}\right] \times \left(C_1 + C_2(3 - x^2) + C_3(15 - 10x^2 + x^4) + C_4(105 - 105x^2 + 21x^4 - x^6)\right)$$
(17)

where $x = Gr_{loc}$.

6.2 Nonlocal pseudopotential

```
struct PsPotNL
    NbetaNL::Int64
    prj2beta::Array{Int64,4}
    betaNL::Array{ComplexF64,3}
end
```

Figure 10: Definition of PsPotNL.

The nonlocal component of GTH pseudopotential can written in real space as

$$V_l^{\mathrm{PS}}(\mathbf{r} - \mathbf{R}_I, \mathbf{r}' - \mathbf{R}_I) = \sum_{\mu=1}^{N_l} \sum_{\nu=1}^{N_l} \sum_{m=-l}^{l} \beta_{\mu l m}(\mathbf{r} - \mathbf{R}_I) h_{\mu\nu}^l \beta_{\nu l m}^*(\mathbf{r}' - \mathbf{R}_I)$$
(18)

where $\beta_{\mu lm}(\mathbf{r})$ are atomic-centered projector functions

$$\beta_{\mu l m}(\mathbf{r}) = p_{\mu}^{l}(r) Y_{l m}(\hat{\mathbf{r}}) \tag{19}$$

and $h_{\mu\nu}^l$ are the pseudopotential parameters and Y_{lm} are the spherical harmonics. Number of projectors per angular momentum N_l may take value up to 3 projectors. In **G**-space, the nonlocal part of GTH pseudopotential can be described by the following equation.

$$V_l^{\rm PS}(\mathbf{G}, \mathbf{G}') = (-1)^l \sum_{\mu}^{3} \sum_{\nu}^{3} \sum_{m=-l}^{l} \beta_{\mu l m}(\mathbf{G}) h_{\mu \nu}^l \beta_{\nu l m}^*(\mathbf{G}')$$
(20)

with the projector functions

$$\beta_{\mu lm}(\mathbf{G}) = p_{\mu}^{l}(G)Y_{lm}(\hat{\mathbf{G}}) \tag{21}$$

The radial part of projector functions take the following form

$$p_{\mu}^{l}(G) = q_{\mu}^{l}(Gr_{l}) \frac{\pi^{5/4} G^{l} \sqrt{r_{l}^{2l+3}}}{\sqrt{\Omega}} \exp\left[-\frac{1}{2} G^{2} r_{l}^{2}\right]$$
(22)

For l = 0, we consider up to $N_l = 3$ projectors:

$$q_1^0(x) = 4\sqrt{2} \tag{23}$$

$$q_2^0(x) = 8\sqrt{\frac{2}{15}}(3-x^2) \tag{24}$$

$$q_3^0(x) = \frac{16}{3} \sqrt{\frac{2}{105}} (15 - 20x^2 + 4x^4)$$
 (25)

For l = 1, we consider up to $N_l = 3$ projectors:

$$q_1^1(x) = 8\sqrt{\frac{1}{3}} \tag{26}$$

$$q_2^1(x) = 16\sqrt{\frac{1}{105}}(5 - x^2) \tag{27}$$

$$q_3^1(x) = 8\sqrt{\frac{1}{1155}}(35 - 28x^2 + 4x^4)$$
 (28)

For l=2, we consider up to $N_l=2$ projectors:

$$q_1^2(x) = 8\sqrt{\frac{2}{15}}\tag{29}$$

$$q_2^2(x) = \frac{16}{3} \sqrt{\frac{2}{105}} (7 - x^2) \tag{30}$$

For l = 3, we only consider up to $N_l = 1$ projector:

$$q_1^3(x) = 16\sqrt{\frac{1}{105}}\tag{31}$$

In the present implementation, we construct the local and nonlocal components of pseudopotential in the **G**-space using their Fourier-transformed expressions and transformed them back to real space if needed. We refer the readers to the original reference [6] and the book [7] for more information about GTH pseudopotentials.

Due to the separation of local and non-local components of electrons-nuclei interaction, Equation (??) can be written as

$$E_{\text{ele-nuc}} = E_{\text{loc}}^{\text{PS}} + E_{\text{nloc}}^{\text{PS}} \tag{32}$$

The local pseudopotential contribution is

$$E_{\text{loc}}^{\text{PS}} = \int_{\Omega} \rho(\mathbf{r}) V_{\text{loc}}^{\text{PS}}(\mathbf{r}) d\mathbf{r}$$
(33)

and the non-local contribution is

$$E_{\text{nloc}}^{\text{PS}} = \sum_{\mathbf{k}} \sum_{i} w_{\mathbf{k}} f_{i\mathbf{k}} \int_{\Omega} \psi_{i\mathbf{k}}^{*}(\mathbf{r}) \left[\sum_{I} \sum_{l=0}^{l_{\text{max}}} V_{l}^{\text{PS}}(\mathbf{r} - \mathbf{R}_{I}, \mathbf{r}' - \mathbf{R}_{I}) \right] \psi_{i\mathbf{k}}(\mathbf{r}) d\mathbf{r}.$$
(34)

7 Hamiltonian operators

```
mutable struct Hamiltonian
   pw::PWGrid
   potentials::Potentials
   energies::Energies
   rhoe::Array{Float64,2}
   electrons::Electrons
   atoms::Atoms
   sym_info::SymmetryInfo
   rhoe_symmetrizer::RhoeSymmetrizer
   pspots::Array{PsPot_GTH,1}
   pspotNL::PsPotNL
   xcfunc::String
   ik::Int64
   ispin::Int64
end
```

Figure 11: Definition of Hamiltonian.

Operators:

- op_H
- op_K
- op_V_loc
- op_V_Ps_loc
- op_V_Ps_nloc

7.1 Iterative diagonalization of Hamiltonian

8 Self-consistent field

```
Density vs potential mix
```

```
KS_solve_SCF
KS_solve_SCF_potmix
```

In the mean time, they are separated. They might be combined into one function in the future development.

Mixing algorithms:

- Simple or linear mixing
- Adaptive linear mixing
- Anderson mixing
- Broyden mixing
- Pulay mixing
- Restarted Pulay mixing
- Periodic Pulay mixing

9 Direct minimization

```
KS_solve_Emin_PCG
```

A Howtos

This part contains miscellaneous info.

A.1 Referring or including files in sandbox (or other dirs in PWDFT.jl)

```
using PWDFT
const DIR_PWDFT = joinpath(dirname(pathof(PWDFT)),"..")
const DIR_PSP = joinpath(DIR_PWDFT, "pseudopotentials", "pade_gth")
const DIR_STRUCTURES = joinpath(DIR_PWDFT, "structures")

pspfiles = [joinpath(DIR_PSP, "Ag-q11.gth")]
```

A.2 Using Babel to generate xyz file from SMILES

```
babel file.smi file.sdf
babel file.sdf file.xyz
```

Use babel -h to autogenerate hydrogens.

A.3 Setting up pseudopotentials

One can use the function get_default_psp(::Atoms) to get default pseudopotentials set for a given instance of Atoms.

Currently, it is not part of main PWDFT.jl package. It is located under sandbox subdirectory of PWDFT.jl distribution.

```
using PWDFT
```

```
DIR_PWDFT = jointpath(dirname(pathof(PWDFT)),"..")
include(jointpath(DIRPWDFT, "sandbox", "get_default_psp.jl"))
atoms = Atoms(ext_xyz_file="atoms.xyz")
pspfiles = get_default_psp(atoms)
```

Alternatively, one can set pspfiles manually because it is simply an array of String:

```
pspfiles = ["Al-q3.gth", "O-q6.gth"]
```

IMPORTANT Be careful to set the order of species to be same as atoms. SpeciesSymbols. For example, if

```
atoms.SpeciesSymbols = ["Al", "O", "H"]
then
pspfiles = ["Al-q3.gth", "O-q6.gth", "H-q1.gth"]
```

A.4 Initializing Hamiltonian

```
For molecular systems:
```

Empty extra states can be specified by using extra_states keyword.

For spin-polarized systems, Nspin keyword can be used.

A.5 Iterative diagonalization of Hamiltonian

A.6 Calculating electron density

Several ways:

```
Rhoe = calc_rhoe( Nelectrons, pw, Focc, psiks, Nspin )
# or
Rhoe = calc_rhoe( Ham, psiks )
# or
calc_rhoe!( Ham, psiks, Rhoe )
```

A.7 Read and write array (binary file)

Write to binary files:

```
for ikspin = 1:Nkpt*Nspin
    wfc_file = open("WFC_ikspin_"*string(ikspin)*".data","w")
    write( wfc_file, psiks[ikspin] )
    close( wfc_file )
end
```

Read from binary files:

```
psiks = BlochWavefunc(undef,Nkpt)
for ispin = 1:Nspin, ik = 1:Nkpt
    ikspin = ik + (ispin-1)*Nkpt
    # Don't forget to use read mode
    wfc_file = open("WFC_ikspin_"*string(ikspin)*".data","r")
    psiks[ikspin] = Array{ComplexF64}(undef,Ngw[ik],Nstates)
    psiks[ikspin] = read!( wfc_file, psiks[ikspin] )
    close( wfc_file )
end
```

11

Subspace rotation

In case need sorting:

```
Hr = psiks[ikspin]' * op_H( Ham, psiks[ikspin] )
evals, evecs = eigen(Hr)
evals = real(evals[:])

# Sort in ascending order based on evals
idx_sorted = sortperm(evals)

# Copy to Hamiltonian
Ham.electrons.ebands[:,ikspin] = evals[idx_sorted]

# and rotate
psiks[ikspin] = psiks[ikspin]*evecs[:,idx_sorted]
```

Usually we don't need to sort the eigenvalues if we use Hermitian matrix. We can calculate the subspace Hamiltonian by:

```
evals, evecs = eigen(Hermitian(Hr))
```

Status

29 July 2019 Total energy results are now similar to ABINIT and Quantum ESPRESSO. A rather comprehensive test has been added for SCF and Emin PCG for several simple systems.

28 May 2018 The following features are working now:

- LDA and GGA, spin-paired and spin polarized calculations
- Calculation with k-points (for periodic solids). SPGLIB is used to reduce the Monkhorst-Pack grid points for integration over Brillouin zone.

Band structure calculation is possible in principle as this can be done by simply solving Schrodinger equation with converged Kohn-Sham potentials, however there is currently no tidy script or function to do that.

Total energy result for isolated systems (atoms and molecules) agrees quite well with ABINIT and PWSCF results

Total energy result for periodic solid is quite different from ABINIT and PWSCF. I suspect that this is related to treatment of electrostatic terms in periodic system.

These discrepancies have been minimized. For several systems the agreement is very good even though I did not use the same algorithm as ABINIT.

SCF is rather shaky for several systems, however it is working in quite well in nonmetallic system.

SCF stability has been improved with Pulay mixing and its variants.

References

- [1] P. Hohenberg and W. Kohn. Inhomogenous electron gas. Phys. Rev., 136:B864-871, 1964.
- [2] W Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. *Phys. Rev.*, 140(4A):A1333–1138, 1965.
- [3] Libxc.jl. https://github.com/unkcpz/Libxc.jl.
- [4] Miguel A.L. Marques, Micael J.T. Oliveira, and Tobias Burnus. Libxc: A library of exchange and correlation functionals for density functional theory. *Comput. Phys. Commun.*, 183(10):2272 2281, 2012.

- [5] Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira, and Miguel A.L. Marques. Recent developments in Libxc a comprehensive library of functionals for density functional theory. *SoftwareX*, 7:1–5, 2018.
- [6] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. *Phys. Rev. B*, 54:1703–1710, 1996.
- [7] Dominik Marx and Jürg Hutter. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, 2009.