STAT 331 Final Project

Krishna Prem Pasumarthy & Islam Amin

April 11, 2020

1 Summary

2 Descriptive Statistics

First, take a look at summary statistics of the fhsd dataset.

Table 1: Summary Statistics

						abic	· Dan	iiiiai j	Deac	100100							
chdris	skex	totch	odge	sysbp	odiabp	cursn	n cilg pd	labymi	diabe	e tep me	edkeart	nghico	sp revi	npirevs	s tprk evl	nynydlc	ldlc
Min.	Fem	Min.	Min.	Min.	Min.	No	Min.	Min.	No	No	Min.	Min.	No	No	No	Min.	Min.
:0.00		:112	:44.0	:	:	:150	:	:14.4	:214:	:197	:	:	:218!	:226	:	:	:
1st	Male	1st	1st	$\frac{86.0}{1st}$	30.00 1st	Yes:	0.00 1 st	1st	Yes:	Yes:	44.00 1st	46.00 1st	Yes:	Yes:	957 Yes:1	10.00 3449	$\frac{20.0}{1st}$
Qu.:0	:1320	Qu.:2	2 Q u0:5	5 3Q 00:1	•		Qu.:			333	Qu.:	Qu.:	117			Qu.:	Qu.:152
Med	NA	Med	Med	Med	73.00 Med		0.00 Med	Med	NA	NA		75.00 Med		NA	NA	38.00 Med	Median
:0.22		:235.	:60.0	:136.			:	:25.4			:					:	:180.0
Mean	NA	Mear	ı Mear	ı Mear		ιNA		ı Mear	ιNA	NA		.83.00 Mear		NA	NA	47.00 Mean	Mean
:0.265	55	:237.8	8:60.2	3:139.5			:	:25.7	8		:					:	:183.1
3rd	NA	3rd	3rd	3rd	81.07 3rd		6.84 3rd	3rd	NA	NA		89.07 3rd		NA	NA	48.89 3rd	
Qu.:		Qu.:	Qu.:	Qu.:	•		Qu.:	Qu.:			•	Qu.:				•	Qu.:210
3.5	37.4	3.6	3.5	3.5	88.00	3.7.4	3.5	3.5	37.4	3.T.A		95.00		37.4	37.4	57.00	
Max. :0.977				Max. 0:246.0				.Max 0:46.5		NA		.Max 00178		ΝA	ΝA		Max. 0565.0

Then take a look at chdrisk grouped by sex as well as chdrisk grouped by cursmoke.

```
## fhsd$sex: Female
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
    0.005
          0.104 0.179
                           0.215 0.285
                                          0.949
  fhsd$sex: Male
     Min. 1st Qu. Median
                            Mean 3rd Qu.
   0.0210 0.1860 0.2860 0.3314 0.4060 0.9770
## fhsd$cursmoke: No
     Min. 1st Qu. Median
                            Mean 3rd Qu.
   0.0050 0.1390 0.2350 0.2754 0.3580 0.9770
## fhsd$cursmoke: Yes
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                           Max.
```

0.0080 0.1220 0.1995 0.2471 0.3140 0.9710 [ADD SOME COMMENTS HERE REGARDING SUMMARY] Now take a look at pair plots of all numeric explanatory variates i.e. variates excluding response variate chdrisk and logical variates such as cursmoke.

Pair Plots of Continuous Variables

From the pair plots, we can observe a strong correlation between low density lipoprotein cholesterol and serum total cholestrol. This correlation could be explained by the fact that there could be a relationship between the amount [TO BE CONTINUED]

Now take a look at the VIFs of these variates.

Warning: package 'gtools' was built under R version 3.6.2

##	sexMale	totchol	age	sysbp	diabp	cursmokeYes
##	1.225191	10.634882	1.489926	2.918660	2.406411	2.978609
##	cigpday	bmi	${\tt diabetesYes}$	bpmedsYes	heartrte	glucose
##	2.973594	1.181865	1.286401	1.214744	1.105902	1.308923
##	prevmiYes	prevstrkYes	prevhypYes	hdlc	ldlc	
##	1.067134	1.045746	1.823014	2.287571	10.367649	

[ADD COMMENTS]

3 Candidate Models

3.1 Automated Model Selection

1.509 21.298

15.406

```
# model with only intercept
MO <- lm(logit(chdrisk) ~ 1, data = fhsd)
Mmax <- lm(logit(chdrisk) ~ (.)^2, data = fhsd)</pre>
# starting model for stepwise selection
Mstart <- lm(logit(chdrisk) ~ ., data = fhsd)</pre>
# find model coefficients which are NA
beta.max <- coef(Mmax)</pre>
names(beta.max)[is.na(beta.max)]
## [1] "cursmokeYes:cigpday" "bpmedsYes:prevhypYes"
# find the problem with the NA coeffs
kable(table(fhsd[c("cursmoke", "cigpday")]), "latex")
                                               9
                                                   10
                                                       12
                                                            14
                                                                15
                                                                     16
                                                                              18
                                                                                  19
      1504
 No
                  0
                           0
                               0
                                               0
                                                    0
                                                             0
                                                                      0
                                                                               0
                                                                                        0
                                                        0
 Yes
         0
            16 | 18 | 34 | 11 | 18 | 24
                                       9 | 18 |
                                               5 \mid 76
                                                        3
                                                             3 | 50
                                                                      6
                                                                          1
                                                                               8
                                                                                   1
                                                                                      279
                                                                                             1
kable(table(fhsd[c("bpmeds", "prevhyp")]), "latex")
       No
             Yes
 No
      957
            1016
 Yes
            333
        0
# remove the coeffs with the problem and add quadratic terms for the continuous variables
Mmax <- lm(logit(chdrisk) ~ (.)^2 - cursmoke:cigpday - bpmeds:prevhyp +</pre>
             I(totchol ^ 2) + I(sysbp ^ 2) + I(diabp ^ 2)
           + I(bmi ^ 2) + I(glucose ^ 2)
           + I(hdlc ^ 2) + I(ldlc ^ 2), data = fhsd)
anyNA(coef(Mmax)) # check if there are any remaining NAs
## [1] FALSE
#forward model selection
system.time({
 Mfwd <- step(object = MO,
                scope = list(lower = MO, upper = Mmax),
                direction = "forward", trace = FALSE)
})
      user system elapsed
   14.011
            1.255 15.551
#backward model selection
system.time({
 Mback <- step(object = M0,</pre>
                scope = list(lower = MO, upper = Mmax),
                direction = "forward", trace = FALSE)
})
##
      user system elapsed
```

25

0

14

26

1

27

0

1

```
#stepwise model selection
system.time({
  Mstep <- step(object = Mstart,</pre>
                scope = list(lower = MO, upper = Mmax),
                direction = "both", trace = FALSE)
})
##
      user system elapsed
## 54.411
           4.117 65.644
# Stepwise model selection
Mstep$call
## lm(formula = logit(chdrisk) ~ sex + totchol + age + sysbp + diabp +
##
       cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) +
##
       I(bmi^2) + I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
##
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk, data = fhsd)
# Forward model selection
Mfwd$call
## lm(formula = logit(chdrisk) ~ prevmi + sysbp + sex + age + ldlc +
##
       prevhyp + diabetes + hdlc + I(hdlc^2) + cigpday + I(bmi^2) +
##
       bmi + totchol + I(glucose^2) + I(sysbp^2) + bpmeds + heartrte +
##
       cursmoke + prevstrk + prevmi:sysbp + sysbp:age + prevhyp:hdlc +
##
       prevmi:diabetes + sysbp:prevhyp + prevhyp:totchol + sysbp:diabetes +
##
       prevmi:hdlc + prevmi:prevhyp + age:ldlc + age:cigpday + hdlc:cigpday +
       prevhyp:bmi + ldlc:bmi + prevmi:totchol + ldlc:prevhyp +
##
##
       sysbp:bpmeds + sysbp:hdlc + hdlc:totchol + totchol:heartrte +
       age:heartrte + diabetes:hdlc + sysbp:heartrte + bmi:bpmeds +
##
##
       sysbp:sex + ldlc:hdlc + prevmi:bmi + age:bmi + prevmi:age +
##
       sysbp:cursmoke + hdlc:cursmoke + ldlc:cursmoke + prevmi:cigpday +
       sex:diabetes + prevmi:prevstrk, data = fhsd)
##
# Backward model selection
Mback$call
## lm(formula = logit(chdrisk) ~ prevmi + sysbp + sex + age + ldlc +
##
       prevhyp + diabetes + hdlc + I(hdlc^2) + cigpday + I(bmi^2) +
##
       bmi + totchol + I(glucose^2) + I(sysbp^2) + bpmeds + heartrte +
##
       cursmoke + prevstrk + prevmi:sysbp + sysbp:age + prevhyp:hdlc +
##
       prevmi:diabetes + sysbp:prevhyp + prevhyp:totchol + sysbp:diabetes +
##
       prevmi:hdlc + prevmi:prevhyp + age:ldlc + age:cigpday + hdlc:cigpday +
##
       prevhyp:bmi + ldlc:bmi + prevmi:totchol + ldlc:prevhyp +
##
       sysbp:bpmeds + sysbp:hdlc + hdlc:totchol + totchol:heartrte +
       age:heartrte + diabetes:hdlc + sysbp:heartrte + bmi:bpmeds +
##
```

```
## sysbp:sex + ldlc:hdlc + prevmi:bmi + age:bmi + prevmi:age +
## sysbp:cursmoke + hdlc:cursmoke + ldlc:cursmoke + prevmi:cigpday +
## sex:diabetes + prevmi:prevstrk, data = fhsd)
```

- 3.2 Manual Model Selection
- 4 Model Diagnostics
- 5 Model Selection
- 6 Discussion