

Forward Kinematics using DH notation - Pybullet practice

MECH439 Intro. to Robotics

TA Session

2024.04.03.(W)

Forward Kinematics

How to get end-effector's homogeneous transformation(orientation, position) from joint variables?

PoE, DH notation, ...

DH notation

Solve FK problem using relative transformation between two adjacent coordinate frames, with predefined convention

$${}^{i}D_{i+1} = T_{z_{i}}(d_{i+1})R_{z_{i}}(\theta_{i+1})T_{x_{i+1}}(r_{i+1})R_{x_{i+1}}(\alpha_{i+1})$$

$${}^{i}D_{i+1} = \begin{bmatrix} C\theta_{i+1} & -S\theta_{i+1}C\alpha_{i+1} & S\theta_{i+1}S\alpha_{i+1} & r_{i+1}C\theta_{i+1} \\ S\theta_{i+1} & C\theta_{i+1}C\alpha_{i+1} & -C\theta_{i+1}S\alpha_{i+1} & r_{i+1}S\theta_{i+1} \\ 0 & S\alpha_{i+1} & C\alpha_{i+1} & d_{i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_n = D_0^0 D_1^1 D_2 \cdots^{n-1} D_n$$

Mission

- 1. Implement FK of Indy7 robot using DH notation in Python
- 2. Compare the result of 1 with that of simulation(Pybullet)

Provided:

- 1. Pybullet skeleton code
- 2. Indy7 urdf file
- 3. Indy7 geometric parameters

If your work is not done until the end of today's class, that will be your homework due to April 17th (W)

Indy7

<u>뉴로메카 | 협동로봇 인디(Indy) (neuromeka.com)</u>

Overall structure of skeleton code

Start simulation (Do not touch)

Import libraries

Numpy print options (precision)

Connect to GUI

GUI configurations

Simulation settings

Load plane

coordinate frame visualization function

Load robot

Forward Kinematics

DH notation

Functions required to get end-effector's transformation

▼ Test

Set target joint variables

Get desired transformation using DH method

Apply joint variables to robot and get current transformation