STUDIO DELLE PRESTAZIONI DEL QUANTUM ANNEALER D-WAVE

28 Settembre 2018

Prof. Giuseppe Vallone

Indice

Indice:

- **Introduzione Computer Quantistico**
- Algoritmi Classici
- Conclusioni

Federico Berra 01/11

Legge di Moore

120 Years of Moore's Law

Federico Berra 02/11

Universal Quantum

Federico Berra 03/11

Federico Berra 04/11

 H_1 Semplice

*H*₂ *Difficile*

$$H(t) = t \cdot H_1 + (1-t) \cdot H_2$$

Federico Berra 05/11

$$H_p = \sum_{i=1}^{N} h_i \sigma_i^z + \sum_{i,j=1}^{N} J_{ij} \sigma_i^z \sigma_j^z$$

$$H(t) = \Gamma(t) \sum_{i=1}^{N} \Delta_i \sigma_i^x + \Lambda(t) H_p$$

Federico Berra 06/11

Simulated Annealing

- se $\Delta E \le 0$ viene tenuta
- altrimenti viene tenuta con probabilità

$$P(\Delta E) = exp\left(-\frac{\Delta E}{k_B \cdot T}\right)$$

Federico Berra 07/11

Federico Berra 08/11

Federico Berra 09/11

Federico Berra 10/11

- Tunneling accorcia le distanze
- Meglio del CT
- Non testato sopra il 2d

Federico Berra 11/11

Fine Q&A