

Introdução à Lógica Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

11 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação¹.

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.

Sumário

- Introdução
- 2 Linguagem proposicional
- Sérmulas da lógica proposicional
- Sub fórmulas
- Tamanho de fórmulas
- 6 Expressando ideias com o uso de fórmulas

Introdução à Lógica proposicional

Linguagem Natural

Exemplo

Expressão da linguagem natural que é ambígua ou imprecisa.

Problemas

- Ambiguidades
- Imprecisões
- Linguagem Formal

Linguagem Formal

Definicão

São objetos matemáticos, cujas regras de formação são precisamente definidas e às quais podemos atribuir um único sentido, sem ambiguidade.

- Diversos níveis de expressividade
- Quanto maior a expressividade, maior a complexidade de manipulação da linguagem
- Lógica proposicional
 - Expressividade limitada, mas nos permite expressar uma série de relações lógicas interessantes

Proposição

Definição

É um enunciado ao qual podemos atribuir um valor verdade (verdadeiro ou falso).

- Nem toda sentença possui valor verdade
- Exemplo: "Esta sentença é falsa"
- Auto-referente
- A linguagem proposicional exclui sentenças auto-referentes

Lógica Proposicional

- A Lógica Proposicional Clássica nos permite tratar de enunciados aos quais podemos atribuir valor verdade (as proposições) e as operações que permitem compor proposições mais complexas.
 - A partir de proposições mais simples, utilizando: conjunção ("E"), a disjunção ("OU"), a implicação ("SE...ENTÃO...") e a negação ("NÃO")
- A linguagem proposicional n\u00e3o nos permite expressar rela\u00f3\u00f3es sobre elementos de um conjunto
 - o como as noções de "todos", "algum" ou "nenhum".
 - relações quantificadoras
 - lógica de primeira ordem

Linguagem Proposicional

- Ao apresentarmos uma linguagem formal, precisamos fornecer os componentes básicos da linguagem, chamados de alfabeto, para em seguida fornecer as regras de formação da linguagem, também chamadas de gramática.
- No caso da lógica proposicional, o alfabeto é composto pelos seguintes elementos:
 - Um conjunto infinito e contável de símbolos proposicionais, também chamados de átomos ou variáveis proposicionais: $\mathcal{P} = \{p_0, p_1, ...\}$.
 - O conectivo unário ¬ (negação, lê-se: NÃO)
 - os conectivos binários \land (conjunção, lê-se: E), \lor (disjunção, lê-se: OU), e \rightarrow (implicação, lê-se: SE...ENTÃO...).
 - Os elementos de pontuação, que contêm apenas os parênteses: '(' e ')'.

- Os elementos da linguagem $\mathcal{L}_{\mathcal{LP}}$ da lógica proposicional são chamados de fórmulas (ou fórmulas bem-formadas).
- O conjunto das fórmulas da lógica proposicional será definido por indução.
- Uma definição por indução pode possuir vários casos.
- O caso básico da indução é aquele no qual alguns elementos já conhecidos são adicionados ao conjunto que estamos definindo.
- Os demais casos, chamados de casos indutivos, tratam de adicionar novos elementos ao conjunto, a partir de elementos já inseridos nele.

Dessa maneira, o conjunto $\mathcal{L}_{\mathcal{LP}}$ das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguintes regras de formação:

- Caso básico: Todos os símbolos proposicionais estão em $\mathcal{L}_{\mathcal{LP}}$; ou seja, $\mathcal{P} \subseteq \mathcal{L}_{\mathcal{LP}}$. Os símbolos proposicionais são chamados de fórmulas atômicas ou átomos.
- Caso indutivo 1: Se A $\in \mathcal{L}_{\mathcal{LP}}$, então $\neg A \in \mathcal{L}_{\mathcal{LP}}$
- Caso indutivo 2: Se A,B $\in \mathcal{L}_{\mathcal{LP}}$, então $(A \lor B) \in \mathcal{L}_{\mathcal{LP}}$, $(A \land B) \in \mathcal{L}_{\mathcal{LP}}$, $(A \to B) \in \mathcal{L}_{\mathcal{LP}}$

- Se p,q e r são símbolos proposicionais, pelo item 1, ou seja, o caso básico, eles são também fórmulas da linguagem proposicional
- Então, ¬p e ¬¬p também são fórmulas, como
 - $(p \land q)$, $(p \lor (p \lor \neg q))$, $((r \land \neg p) \to \neg q)$ etc
 - Em geral, usamos as letras minúsculas p,q,r e s para representar os símbolos atômicos
 - E as letras maiúsculas A,B,C e D para representar fórmulas
 - Desse modo, se tomarmos a fórmula $((r \land \neg p) \to \neg q)$, podemos dizer que ela é da forma $(A \to B)$ em que
 - A= $(r \lor \neg p) e B= \neg q$
 - Já a fórmula A é da forma (A_1 e A_2), onde A_1 =r e A_2 =¬ p; similarmente, B é da forma ¬ B_1 , onde B_1 =q

- A definição de $\mathcal{L}_{\mathcal{LP}}$ ainda exige que $\mathcal{L}_{\mathcal{LP}}$ seja o menor conjunto satisfazendo as regras de formação. Essa condição é chamada de cláusula maximal
- Isto é necessário para garantir que nada de indesejado se torne também uma fórmula
- Por exemplo: para evitar que os números naturais sejam considerados fórmulas da lógica proposicional

- De acordo com a definição de fórmula, o uso de parênteses é obrigatório ao utilizar os conectivos binários. Na prática, no entanto, usamos abreviações que permitem omitir os parênteses em diversas situações:
 - Os parênteses mais externos de uma fórmula podem ser omitidos. Dessa forma, podemos escrever p \land q em ver de $(p \land q), (r \land \neg p) \rightarrow \neg q$ em vez de $((r \land \neg p) \rightarrow \neg q)$
 - O uso repetido dos conectivos \land e \lor dispensa o uso de parênteses. Por exemplo, podemos escrever $p \land q \land \neg r \land \neg s$ em vez de $((p \land q) \land \neg r) \land \neg s$; note que os parênteses aninham-se à esquerda
 - O uso repetido do conectivo \to também dispensa o uso de parênteses, só que os parênteses aninham-se à direita. Dessa forma, podemos escrever $p \to q \to r$ para representar $p \to (q \to r)$

- Além disso, nas fórmulas em que há uma combinação de conectivos, existe uma precedência entre eles, dada pela ordem: ¬, ∧, ∨, →. Dessa forma:
 - $\neg p \land q$ representa $(\neg p \land q)$ [e não $\neg (p \land q)$]
 - $p \lor q \land r$ representa $p \lor (q \land r)$
 - $p \lor \neg q \to r$ representa $(p \lor \neg q) \to r$

Em geral, deve-se preferir clareza à economia de parênteses e, na dúvida, é bom deixar alguns parênteses para explicitar o sentido de uma fórmula.

Sub fórmulas

- Definiremos a seguir, por indução sobre estrutura das fórmulas (também chamada de indução estrutural), a noção do conjunto de sub fórmulas de uma fórmula A, Subf(A)
- Na indução estrutural, o caso básico analisa as fórmulas de estrutura mais simples, ou seja, o caso básico trata de fórmulas atômicas
- Os casos indutivos tratam das fórmulas de estrutura composta, ou seja, de fórmulas que contêm conectivos unários e binários
- Assim, o conjunto Subf(A) de sub fórmulas de uma fórmula A é definido da seguinte maneira:
 - Caso básico: A=p. Subf(p)= $\{p\}$, para toda fórmula atômica p $\in \mathcal{P}$
 - Caso A= \neg B. Subf($\neg B$) = { $\neg B$ } \cup Subf(B)
 - Caso A= B \wedge C. Subf(B \wedge C)= {B \wedge C} \cup Subf(B) \cup Subf(C)
 - Caso A= B \vee C. Subf(B \vee C)= {B \vee C} \cup Subf(B) \cup Subf(C)
 - Caso A= B \rightarrow C. Subf(B \rightarrow C)= {B \rightarrow C} \cup Subf(B) \cup Subf(C)

Sub fórmulas

- Os três últimos casos indutivos poderiam ter sido expressos da seguinte forma compacta: Para $^{\circ} \in \{\land, \lor, \rightarrow\}$, se A= B $^{\circ}$ C então Subf(A)= $\{A\} \cup Subf(B) \cup Subf(C)$
- Dessa forma, temos que o conjunto de sub fórmulas da fórmula $A=(p \lor \neg q) \to (r \land \neg q)$ é o conjunto $\{A, p \lor \neg q, p, \neg q, q, r \land \neg q, r\}$
- Note que não há necessidade de contabilizar sub fórmulas "repetidas" mais de uma vez
- Pela definição anterior, uma fórmula sempre é sub fórmula de si mesma
- No entanto, definimos B como uma sub fórmula própria de A se B ∈ Subf(A)-A, ou seja, se B é uma sub fórmula de A diferente de A
- Se A=(p $\vee \neg$ q) \rightarrow (r $\wedge \neg$ q), as sub formulas próprias de A são $\{p \vee \neg q, p, \neg q, q, r \wedge \neg q, r\}$

Tamanho das fórmulas

Definição

O tamanho ou complexidade de uma fórmula A, representado por |A|, é um número inteiro positivo, também definido por indução estrutural sobre uma fórmula:

- |p|=1 para toda fórmula atômica $p \in \mathcal{P}$
- $|\neg A| = 1 + |A|$
- $|A^{\circ}B| = 1 + |A| + |B|$, para $^{\circ} \in \{\land, \lor, \rightarrow\}$

Tamanho das fórmulas

- O primeiro caso é a base da indução e diz que toda fórmula atômica possui tamanho 1
- Os demais casos indutivos definem o tamanho de uma fórmula composta a partir do tamanho de seus componentes
- O item 2 trata do tamanho de fórmulas com conectivo unário
- O item 3 trata do tamanho de fórmulas com conectivos binários, tratando dos três conectivos binários de uma só vez
- Note que o tamanho |A| de uma fórmula A assim definido corresponde ao número de símbolos que ocorrerem na fórmula, excetuando-se os parênteses

Tamanho das fórmulas

• Por exemplo: suponha que temos a fórmula $A=(p \lor \neg q) \to (r \land \neg q)$ e vamos calcular sua complexidade:

$$\begin{aligned} |(p \lor \neg q) \to (r \land \neg q)| &= 1 + |p \lor \neg q| + |r \land \neg q| \\ &= 3 + |p| + |\neg q| + |r| + |\neg q| \\ &= 5 + |p| + |q| + |r| + |q| \\ &= 9 \end{aligned}$$

• Note que se uma sub fórmula ocorre mais de uma vez em A, sua complexidade é contabilizada cada vez que ela ocorre

Expressando ideias com o uso de fórmulas

- Já temos base para começar a expressar propriedades do mundo real em lógica proposicional
- Assim, podemos ter símbolos atômicos com nomes mais representativos das propriedades que queremos expressar
- Por exemplo, se queremos falar sobre pessoas e suas atividades ao longo da vida, podemos utilizar os símbolos proposicionais criança, jovem, adulto, idoso, estudante, trabalhador e aposentado

Expressando ideias com o uso de fórmulas

• Com esse vocabulário básico, para expressarmos que uma pessoa é criança, ou jovem, ou adulto ou idoso, escrevemos a fórmula:

criança ∨ jovem ∨ adulto ∨ idoso

• Para expressar que um jovem trabalha ou estuda, escrevemos

 $jovem \rightarrow trabalhador \lor estudante$

• para expressar a proibição de que não podemos ter uma criança aposentada, umas das forma possíveis é escrever:

¬ (criança ∧ aposentado)

• Iremos ver mais adiante que esta é apenas uma das formas de expressar essa ideia, que pode ser expressa de diversas formas equivalentes

Próxima Aula

O que vem por aí?

- Semântica da lógica proposicional
 - valores verdade
 - matriz de conectivos
 - valoração de fórmulas complexas

Introdução à Lógica Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

11 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação².

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.