Read in Auto.csv

```
In [1]: import pandas as pd
        df = pd.read_csv('Auto.csv')
        print(df.head())
        print('\nShape of Auto.csv: {}'.format(df.shape))
          mpg cylinders displacement horsepower
                                                            acceleration year
                                                     weight
        18.0
                                  307.0
                                                130
                                                       3504
                                                                     12.0 70.0
                        8
      1 15.0
                                  350.0
                                                165
                                                       3693
                                                                     11.5 70.0
      2 18.0
                        8
                                                                     11.0 70.0
                                  318.0
                                                150
                                                       3436
      3 16.0
                        8
                                  304.0
                                                150
                                                       3433
                                                                     12.0 70.0
      4 17.0
                        8
                                  302.0
                                                140
                                                       3449
                                                                      NaN 70.0
         origin
                 chevrolet chevelle malibu
      1
                         buick skylark 320
              1
      2
                         plymouth satellite
              1
      3
              1
                              amc rebel sst
                                ford torino
              1
      Shape of Auto.csv: (392, 9)
```

Print out data on the mpg, weight, and year columns

```
In [2]: dfSum = df.loc[:, ['mpg', 'weight', 'year']].describe()
    print(dfSum)

mpgRange = dfSum['mpg']['max'] - dfSum['mpg']['min']
    weightRange = dfSum['weight']['max'] - dfSum['weight']['min']
    yearRange = dfSum['year']['max'] - dfSum['year']['min']

print('\nMPG Range: {}\nMPG Average: {}'.format(mpgRange, dfSum['mpg']['mean']))
    print('\nWeight Range: {}\nWeight Average: {}'.format(weightRange, dfSum['weight'][
    print('\nYear Range: {}\nYear Average: {}'.format(yearRange, dfSum['year']['mean'])
```

```
year
                      weight
             mpg
count 392.000000
                  392.000000
                              390.000000
       23.445918 2977.584184
                               76.010256
mean
       7.805007 849.402560
                               3.668093
std
       9.000000 1613.000000
                               70.000000
min
25%
       17.000000 2225.250000
                               73.000000
50%
       22.750000 2803.500000
                               76.000000
       29.000000 3614.750000
75%
                               79.000000
       46.600000 5140.000000
                               82.000000
max
```

MPG Range: 37.6

MPG Average: 23.445918367346938

Weight Range: 3527.0

Weight Average: 2977.5841836734694

Year Range: 12.0

Year Average: 76.01025641025642

Explore Column Data Types

Original column data types

```
In [3]:
        df.dtypes
Out[3]: mpg
                         float64
        cylinders
                           int64
        displacement
                         float64
        horsepower
                           int64
                           int64
        weight
        acceleration
                        float64
                         float64
        year
        origin
                           int64
                          object
        name
        dtype: object
In [4]: df.cylinders = df.cylinders.astype('category').cat.codes
        print('Cylinders type: {}'.format(df['cylinders'].dtype))
       Cylinders type: int8
In [5]: df.origin = df.origin.astype('category')
        print('Origin type: {}'.format(df['origin'].dtype))
       Origin type: category
        Modified column data types
       df.dtypes
In [6]:
```

```
float64
Out[6]: mpg
        cylinders
                           int8
        displacement float64
        horsepower
                         int64
       weight
                         int64
        acceleration
                      float64
                       float64
       year
        origin
                       category
        name
                         object
        dtype: object
```

Handle NAs in the Data

```
In [7]: df.isnull().sum()
Out[7]: mpg
                        0
        cylinders
                        0
        displacement
        horsepower
                        0
        weight
        acceleration
        year
        origin
                        0
                        0
        name
        dtype: int64
In [8]: print('Original dimensions: {}'.format(df.shape))
        df = df.dropna()
        print('Dimensions after removing NAs: {}'.format(df.shape))
      Original dimensions: (392, 9)
      Dimensions after removing NAs: (389, 9)
```

Modify Columns

Add new mpg_high column, which indicates the vehicle's mpg is higher than the average mpg

```
In [9]: mpgSum = df.loc[:, 'mpg'].describe()
    mpgAverage = mpgSum['mean']

df = df.assign(mpg_high=lambda x: x.mpg > mpgAverage)
    df.mpg_high = df.mpg_high.astype('category').cat.codes
```

Remove mpg and name columns

```
In [10]: df = df.drop(columns=['mpg', 'name'])
    df.head()
```

Out[10]:		cylinders	displacement	horsepower	weight	acceleration	year	origin	mpg_high
	0	4	307.0	130	3504	12.0	70.0	1	0
	1	4	350.0	165	3693	11.5	70.0	1	0
	2	4	318.0	150	3436	11.0	70.0	1	0
	3	4	304.0	150	3433	12.0	70.0	1	0
	6	4	454.0	220	4354	9.0	70.0	1	0

Data Exploration with Graphs

Catplot

```
In [11]: import seaborn as sb
sb.catplot(x='mpg_high', kind='count', data=df)
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x173c023b250>

From the catplot above, it can be seen that there are roughly equal amounts of vehicles with high/low mpg. This makes sense, since mpg_high was assigned based on a vehicle's mpg compared to the average mpg from the dataset

Relplot

In [12]: sb.relplot(x='horsepower', y='weight', hue='mpg_high', style='mpg_high', data=df)

Out[12]: <seaborn.axisgrid.FacetGrid at 0x173c02ae750>

From the relplot above, it can be seen that good mpg is based on a vehicle's horsepower and weight. Roughly speaking, it seems that most vehicles with a weight under 3000 and horsepower under 125 were classified as mpg_high. Although there are outliers on both sides of this classification, it largely holds true

Boxplot

```
In [13]: sb.boxplot(x='mpg_high', y='weight', data=df)
Out[13]: <Axes: xlabel='mpg_high', ylabel='weight'>
```


From the boxplot above, it can be seen that the average weight for mpg_high vehicles is nearly half of non-mpg_high vehicles. Also, it is interesting how wide the range of non-mpg_high vehicles' weight is; this leads me to believe that, although it plays a role in determining a vehicle's mpg, perhaps a vehicle's weight isn't as influential as other factors.

Train/Test Split

Random sample 80/20 split, drop mpg_high column from both sets

```
In [14]: from sklearn.model_selection import train_test_split
    X = df.loc[:, ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration',
    y = df.mpg_high

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
    print('Dimensions of X_train: {}'.format(X_train.shape))
    print('Dimensions of X_test: {}'.format(X_test.shape))
Dimensions of X_train: (311, 7)
Dimensions of X_test: (78, 7)
```

Logistic Regression

```
In [18]: X_train.cylinders = X_train.cylinders.astype('category').cat.codes
X_train.displacement = X_train.displacement.astype('category').cat.codes
X_train.horsepower = X_train.horsepower.astype('category').cat.codes
```

```
X_train.weight = X_train.weight.astype('category').cat.codes
X_train.acceleration = X_train.acceleration.astype('category').cat.codes
X_train.year = X_train.year.astype('category').cat.codes
X_train.origin = X_train.origin.astype('category').cat.codes

X_test.cylinders = X_test.cylinders.astype('category').cat.codes
X_test.displacement = X_test.displacement.astype('category').cat.codes
X_test.horsepower = X_test.horsepower.astype('category').cat.codes
X_test.weight = X_test.weight.astype('category').cat.codes
X_test.acceleration = X_test.acceleration.astype('category').cat.codes
X_test.year = X_test.year.astype('category').cat.codes
X_test.origin = X_test.origin.astype('category').cat.codes
```

```
In [19]: from sklearn.linear_model import LogisticRegression

clf = LogisticRegression()
clf.fit(X_train, y_train)
clf.score(X_train, y_train)
```

Out[19]: 0.9131832797427653

```
In [20]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
    pred = clf.predict(X_test)

print('Accuracy score: ', accuracy_score(y_test, pred))
    print('Precision score: ', precision_score(y_test, pred))
    print('Recall score: ', recall_score(y_test, pred))
    print('f1 score: ', f1_score(y_test, pred))
```

Accuracy score: 0.3974358974358974
Precision score: 0.373333333333333333

Recall score: 1.0

f1 score: 0.5436893203883496

f1 score: 0.5652173913043478

Decision Tree

Neural Network

```
In [33]: from sklearn import preprocessing
         scaler = preprocessing.StandardScaler().fit(X_train)
         X_train_scaled = scaler.transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         Guidelines on the number of hidden nodes
         (1) 1 - 7 (2) 3 (3) < 14
         For my first topology, I decided to try a (3,1) layout
In [89]: from sklearn.neural_network import MLPClassifier
         clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(3,1), max_iter=500, random_
         clf.fit(X_train_scaled, y_train)
         pred = clf.predict(X_test_scaled)
In [90]: from sklearn.metrics import classification_report, confusion_matrix
         print(classification_report(y_test, pred))
          confusion_matrix(y_test, pred)
                      precision recall f1-score
                                                      support
                                     0.22
                   0
                           1.00
                                                0.36
                                                            50
                   1
                           0.42
                                     1.00
                                                0.59
                                                            28
            accuracy
                                                0.50
                                                            78
           macro avg
                           0.71
                                     0.61
                                                0.48
                                                            78
                           0.79
                                     0.50
                                               0.44
                                                            78
        weighted avg
Out[90]: array([[11, 39],
                 [ 0, 28]], dtype=int64)
         Next, I try more hidden nodes with a (5,2) layout
In [91]: clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(5,2), max_iter=1500, random
         clf.fit(X_train_scaled, y_train)
          pred = clf.predict(X_test_scaled)
In [92]: print(classification_report(y_test, pred))
         confusion matrix(y test, pred)
```

	precision	recall	f1-score	support
0	1.00	0.08	0.15	50
1	0.38	1.00	0.55	28
accuracy			0.41	78
macro avg	0.69	0.54	0.35	78
weighted avg	0.78	0.41	0.29	78

The first topology was a better model, having a higher average. This is likely due to the fact that the training was done on a small dataset, so the less complex topology would be a better fit. The second topology likely picked up on too much noise in the data.

Analysis

Of all the algorithms tested, it seems the first Neural Network performed the best, having an accuracy of 0.50. I am a little surprised that even the best performing algorithm only had an accuracy of 0.50.

Logistic Regression

Accuracy score: 0.3974358974358974

Precision score: 0.37333333333333333

Recall score: 1.0

Decision Tree

Accuracy score: 0.48717948717948717

Precision score: 0.40625

Recall score: 0.9285714285714286

Neural Network

Topology 1

precision	recall	f1-score	support	
0	1.00	0.22	0.36	50
1	0.42	1.00	0.59	28
accuracy			0.50	78

Topology 2

precision	recall	f1-score	support	
0 1	1.00 0.38	0.08 1.00	0.15 0.55	50 28
accuracy			0.41	78

Since the boundary between mpg_high and non-mpg_high was a little muddy, as could be seen in the relplot, perhaps the overtraining on the neural network worked well for random assignment.

Personally, I enjoyed working with python and sklearn much more than R. Although it was somewhat simpler in R since R was designed for machine learning, I absolutely despise the syntax in R. In my opinion, the python/sklearn approach was much more readable and enjoyable.