Differenciálás III

Matematika G1 – Kalkulus

Utoljára frissítve: 2024. október 27.

9.1. Elméleti Áttekintő

Teljes függvényvizsgálat lépései:

1. Értelmezési tartomány (\mathcal{D}_f)

Zérushelyek (x tengelymetszet)

Paritás (f(x) = f(-x) - páros, f(x) = -f(-x) - páratlan)

Periodicitás $(f(x) = f(x + kp), \text{ ahol } k \in \mathbb{Z})$

Határérték (±∞-ben, szakadási pontokban, határpontokban)

- 2. f'(x) vizsgálata: monotonitás, lokális szélsőértékek
 - f'(x) > 0 monoton nő
 - f'(x) < 0 monoton csökken
- 3. f''(x) vizsgálata: konvexitás, konkávitás, inflexiós pontok
 - f''(x) > 0 konvex
 - f''(x) < 0 konkáv
- 4. Lineáris aszimptoták keresése:
 - Az x = a egyenes függőleges aszimptota, ha $\lim_{x \to a^+} = \pm \infty$, vagy $\lim_{x \to a^-} = \pm \infty$.
 - Az y = b egyenes vízszintes aszimptota, ha $\lim_{r \to +\infty} = b$.
 - Ferde aszimptotákat y = mx + b alakban keressük, ahol

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 és $b = \lim_{x \to +\infty} f(x) - mx$.

5. Táblázat készítése, ábrázolás és értékkészlet leolvasása az ábráról

Tétel 9.1: Lokális szélsőérték

Ha az f függvény deriválható az értelmezési tartományának egy x_0 belső pontjában, akkor az x_0 -beli lokális szélsőérték létezésének

- szükséges feltétele: $f'(x_0) = 0$,
- · elégséges feltétele:
 - 1. $f'(x_0) = 0$ és f' előjelet vált az x_0 -ban
 - 2. ha f második deriváltja is létezik az x_0 -ban, akkor $f''(x_0) \neq 0$.
 - Ha $f''(x_0) > 0$, akkor f-nek lokális minimuma van az x_0 -ban.
 - Ha $f''(x_0) < 0$, akkor f-nek lokális maximuma van az x_0 -ban.

Tétel 9.2: Inflexiós pont

Ha az f függvény kétszer deriválható az értelmezési tartományának egy x_0 belső pontjában, akkor az x_0 -beli inflexiós pont létezésének

- szükséges feltétele: $f''(x_0) = 0$,
- elégséges feltétele: f''(x) előjelet vált az x_0 -ban, vagy $f'''(x_0) \neq 0$.

Szöveges feladatok

Ezen a gyakorlaton olyan szöveges feladatokkal fogunk foglalkozni, amelyekben valamilyen szélsőértéket kell meghatároznunk.

Tudjuk, hogy egy f függvénynek az értelmezési tartományának egy x_0 pontjában akkor van szélsőértéke, ha $f'(x_0) = 0$ és f'(x) előjelet vált az x_0 pontban, vagy $f''(x_0) \neq 0$.

Ezen feladatok esetén fontos, hogy a feladat elolvasása után a szöveg alapján felírjuk az alapösszefüggéseket. Ezután meg kell határoznunk azt a függvényt, amelynek a szélsőértékét keressük. Miután meghatároztuk a függvény szélsőértékeit, ellenőriznünk kell, hogy valóban szélsőértéke-e.

9.2. Feladatok

- 1. Végezze el az $f(x) = \frac{2x^2}{x^2 9}$ függvény teljes vizsgálatát!
- 2. Határozza meg az 1 literes felül nyitott legkisebb felszínű hengert!
- 3. Határozza meg a legnagyobb térfogatú *h* alkotójú kúpot!
- 4. Határozza meg az *r* sugarú körbe írt legnagyobb területű derékszögű négyszöget!
- 5. Egy *a* szélességű csatornából derékszögben kinyúlik egy *b* szélességű csatorna. Határozza meg mekkora azon gerenda hossza, amely befordítható egyik csatornából a másikba!
- 6. A gazda épp a kocsmában mulat, mikor neje felhívja, hogy hol van. (Természetesen titokban ment meccset nézni). A gazda, nehogy lebukjon, azt hazudja, hogy a szomszédnál van és sietve indul haza. Azonban, hogy a kocsmaszagot lemossa magárol, elhatározza, hogy megfürdik a patakban. Milyen úton halad, ha a lehető leggyorsabban akar hazaérni?

