Princípios de aprendizado de máquina Inteligência Artificial

Prof. Rodrigo Pedrosa

19 de Setembro de 2022

- 1. O que é aprendizado de máquina?
- 2. Descreva os seguintes tipos de aprendizado:
 - (a) Aprendizado supervisionado.
 - (b) Aprendizado não supervisionado.
 - (c) Aprendizado por reforço.
 - (d) Aprendizado semi-supervisionado.
 - (e) Aprendizado online.
 - (f) Aprendizado offline.
- 3. Para cada tipo de aprendizado listado abaixo, apresente DUAS aplicações.
 - (a) Aprendizado supervisionado.
 - (b) Aprendizado não supervisionado.
 - (c) Aprendizado por reforço
 - (d) Aprendizado semi-supervisionado.
 - (e) Aprendizado online.
 - (f) Aprendizado offline.
- 4. Para cada uma das métricas de avaliação de modelos abaixo apresente, (i) a definição matemática, (ii) casos de uso (em que situações devem ser utilizadas), (iii) vantagens e desvantagens.
 - (a) Erro 0/1.
 - (b) Erro absoluto.
 - (c) Erro quadrado médio.
 - (d) Erro de pior-caso.
 - (e) Verossimilhança (Likelihood).
 - (f) Log-verossimilhança (log-likelihood).
- 5. Qual a diferença entre um problema de regressão e um problema de classificação?
- 6. Explique o que significa dizer que "duas classes são linearmente separáveis".
- 7. Por quê dividimos erros em falso positivos e falso negativos? Esta divisão faz sentido para problemas de regressão? Explique.

8. Considere a seguinte base de dados:

Example	Author	Thread	Length	$Where_read$	$User_action$
e_1	known	new	long	home	skips
e_2	unknown	new	short	work	reads
e_3	unknown	followup	long	work	skips
e_4	known	followup	long	home	skips
e_5	known	new	short	home	reads
e_6	known	followup	long	work	skips
e_7	unknown	followup	short	work	skips
e_8	unknown	new	short	work	reads
e_9	known	followup	long	home	skips
e_{10}	known	new	long	work	skips
e_{11}	unknown	followup	short	home	skips
e_{12}	known	new	long	work	skips
e_{13}	known	followup	short	home	reads
e_{14}	known	new	short	work	reads
e_{15}	known	new	short	home	reads
e_{16}	known	followup	short	work	reads
e_{17}	known	new	short	home	reads
e_{18}	unknown	new	short	work	reads
e_{19}	unknown	new	long	work	?
e_{20}	unknown	followup	short	home	?

- (a) Apresente uma árvore de decisão para a classificação das User-actions.
- (b) De acordo com a árvore apresentada, qual a classificação dos exemplos e_{19} e e_{20} ?
- (c) Mostre como a árvore de decisão proposta pode ser representada como um conjunto de cláusulas definidas.
- 9. Uma abordagem comum para treinamento de modelos em aprendizado supervisionado é formular o problema de aprendizado como um problema de otimização. Estes problemas, por sua vez, podem ser resolvidos com algoritmos de descida de gradiente. Neste contexto:
 - (a) Apresente a formulação matemática para o problema de minimização do erro quadrado de um modelo de regressão linear.
 - (b) Derive o gradiente da função objetivo definida em (a) em relação aos pesos (w_{i_s}) do modelo.
 - (c) Apresente a formulação matemática para o problema de minimização do erro quadrado de um modelo de regressão logística (modelo que utiliza a função sigmoide).