## 11\_DSI\_Carsten\_Brauer

Mittwoch, 3. Juni 2020

14:29

## Task A)

| Age  | Income 🔻 | Student 💌 | Credit-Raf ▼ | Buys_com 🗗 |
|------|----------|-----------|--------------|------------|
| <=30 | High     | No        | Excellent    | No         |
| <=30 | Low      | No        | Excellent    | No         |
| <=30 | Medium   | No        | Excellent    | No         |
| <=30 | High     | No        | Fair         | No         |
| <=30 | Low      | No        | Fair         | No         |
| <=30 | Medium   | No        | Fair         | No         |
| >40  | Medium   | No        | Excellent    | No         |
| >40  | Low      | Yes       | Excellent    | No         |
| <=30 | Medium   | Yes       | Excellent    | Yes        |
| <=30 | Low      | Yes       | Fair         | Yes        |
| >40  | Medium   | Yes       | Excellent    | Yes        |
| >40  | Medium   | No        | Fair         | Yes        |
| >40  | Low      | Yes       | Fair         | Yes        |
| >40  | Medium   | Yes       | Fair         | Yes        |
| 3140 | High     | No        | Excellent    | Yes        |
| 3140 | Medium   | No        | Excellent    | Yes        |
| 3140 | Low      | Yes       | Excellent    | Yes        |
| 3140 | High     | No        | Fair         | Yes        |
| 3140 | High     | Yes       | Fair         | Yes        |
| 3140 | Low      | Yes       | Fair         | Yes        |

Einflussgrößen x<sub>i</sub>: Age, Income, Student, Credit-Rating

Gesucht: y (Buys\_computer y/n)

Entropie:  $E(S) = \sum_{i=1}^{c} -p_i * (\log_2 p_i)$ 

$$E(Buys - computer) = E(8; 12) = E(0,4; 0,6) = -(0,4 * log_2(0,4)) - (0,6 * log_2(0,6)) = 0,97$$

Wir teilen den Datensatz nach Attributen und rechnen  $E(Buys\_computer, x_i)$  aus:

|         |                       | Buys Computer |         | Entropy      | Proportional |
|---------|-----------------------|---------------|---------|--------------|--------------|
|         |                       | yes           | no      |              |              |
| Age     | <=30                  | 2             | 6       | 0,81127812   | 0,32451125   |
|         | 3140                  | 6             | 0       | 0            | 0            |
|         | >40                   | 4             | 2       | 0,91829583   | 0,27548875   |
| Gain =  | E(Buys_comp           | outer) -      |         |              |              |
| E(Bu    | E(Buys_computer, Age) |               | 0,37    | Summe:       | 0,6          |
|         |                       |               |         |              |              |
|         |                       |               |         |              |              |
| Buys Co |                       | mputer        | Entropy | Proportional |              |
|         |                       | yes           | no      |              |              |
| Income  | Low                   | 4             | 3       | 0,98522814   | 0,344829848  |
|         | Medium                | 5             | 3       | 0,954434     | 0,381773601  |
|         | High                  | 3             | 2       | 0,97095059   | 0,242737649  |

| ı                               |                           | · ·     | _          | -,           | -,           |
|---------------------------------|---------------------------|---------|------------|--------------|--------------|
| Income                          | Medium                    | 5       | 3          | 0,954434     | 0,381773601  |
|                                 | High                      | 3       | 2          | 0,97095059   | 0,242737649  |
| Gain =                          | Gain = E(Buys_computer) - |         |            |              |              |
| E(Buys_computer, Income)        |                           |         | 0,0006589  | Summe:       | 0,969341097  |
|                                 |                           |         |            |              |              |
|                                 |                           |         |            |              |              |
| Buys                            |                           | Buys Co | mputer     | Entropy      | Proportional |
|                                 |                           | yes     | no         |              |              |
| Student                         | Yes                       | 8       | 1          | 0,50325833   | 0,226466251  |
|                                 | No                        | 4       | 7          | 0,9456603    | 0,520113168  |
|                                 |                           |         |            |              |              |
| Gain =                          | Gain = E(Buys_computer) - |         |            |              |              |
| E(Buys_computer, Student)       |                           |         | 0,22342058 | Summe:       | 0,746579418  |
|                                 |                           |         |            |              |              |
|                                 |                           |         |            |              |              |
| Buys Co                         |                           | mputer  | Entropy    | Proportional |              |
|                                 |                           | yes     | no         |              |              |
| Credit-Rating                   | Fair                      | 7       | 3          | 0,8812909    | 0,44064545   |
|                                 | Excellent                 | 5       | 5          | 1            | 0,5          |
|                                 |                           |         |            |              |              |
| Gain = E(Buys_computer) -       |                           |         |            |              |              |
| E(Buys_computer, Credit-Rating) |                           |         | 0,02935455 | Summe:       | 0,94064545   |
|                                 |                           |         |            |              |              |

Unser erstes Kriterium ist also das Alter, dann Student, dann Credit-Rating, dann Income:



## Task B)

import numpy as np import pandas as pd from sklearn.tree import export\_graphviz from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from IPython.display import Image

df = pd.read\_csv('computer\_purchase\_data.csv')

```
lenc = LabelEncoder()
lenc.fit(['<=30', '31...40', '>40', 'High', 'Medium', 'Low', 'Fair', 'Excellent', 'Yes', 'No'])
raw values = df.values.reshape(-1, 1)
encoded_values = lenc.transform(raw_values).reshape(-1, 5)
X = encoded_values[:, 0:4]
y = encoded_values[:, 4:5]
tree_classifier = DecisionTreeClassifier(max_depth=10)
tree_classifier.fit(X, y)
export_graphviz(
    tree_classifier,
    out_file="computer_purchase_decision_tree.dot",
    feature_names=df.columns.values[0:4].tolist(),
    class_names=["Buying", "Not Buying"],
    #rounded=True,
    filled=True
)
```

## **Ergibt:**

