## Electrocardiograph



Figure 1:

- Pairs of electrodes at different locations give different V at same t because of spatial structure of cardiac electric field
- ECG Leads differential electrode config across the body
- Each picks up different projections of cardiac vector time waveform
- Pair of electrodes form a lead
- Lead Vector for pair of electrode locations
- Unit vector defines direction a const magnitude cardiac vector must have to generate maximal V in pair of electrodes positioned at given location
- Important to have standard positions, e.g. limbs, for clinical eval of ECG
- Lead vector a
- unit vector in direction  $r_1 r_2$



Figure 2:



Figure 3:



Figure 4:



Figure 5:

- Lead Voltage
- $v_a(t) = v_1(t) v_2(t)$  Differential V between end points of lead vector
- $v_a(t) = M(t).a$



Figure 6:



Figure 7:



Figure 8:



Figure 9:



Figure 10:



Figure 11:



Figure 12:



Figure 13:



Figure 14:



Figure 15:



Figure 16:



Figure 17:



Figure 18:



Figure 19:



Figure 20:



Figure 21:



Figure 22: