

MS-BCS-SPL J. E. Fowler

Introduction BCS

MS-BCS

MS-BCS-SPL

Results

Conclusio

### Multiscale Block Compressed Sensing with Smoothed Projected Landweber Reconstruction

James E. Fowler, Sungkwang Mun, and Eric W. Tramel

Department of Electrical & Computer Engineering Geosystems Research Institute Mississippi State University, MS USA

August 2011





## **Motivation**

MS-BCS-SPL

J. E. Fowler

Introduction

\_\_\_\_

MS-BCS

MS-BCS-SPL Results

Conclusion

## Image Recovery With Compressed Sensing (CS)

- Assumption: Image is sparse
- Prior knowledge can improve reconstruction; e.g.,
  - Exploit wavelet structure in both sampling and reconstruction (statistical coefficient models)
  - Mutiscale CS—Sampling rate adjusted with DWT level (baseband retained in full)

## **Block-Based Compressed Sensing (BCS)**

- BCS: CS sampling within small image blocks
- Advantage: very fast, low memory
- Drawback: reduced reconstruction quality (CS works better with global sampling)
- Motivation: deploy BCS within multiscale framework

## **CS Overview**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

MS-BCS-SPI

Results

Conclusion

### Goal

Recover  $\mathbf{x} \in \Re^N$  from

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \Re^M$$

- **A:**  $M \times N$  random measurement matrix,  $M \ll N$
- $\circ$   $S = \frac{M}{N}$ : subsampling rate, or subrate

#### **Fundamental Tenet of CS**

If x is sufficiently sparse, recovery is exact from

$$M \ge O(K \cdot \log N)$$

measurements by solving tractable program.

• K: number of nonzero coefficients in some transform  $\Psi$ ,  $\check{\mathbf{x}} = \Psi \mathbf{x}$ 



# **Block Compressed Sensing (BCS)**

MS-BCS-SPL

J. E. Fowler

Introduction

BCS

MS-BCS

MS-BCS-SPI

Results

. . .

Conclusio

### **Block Compressed Sensing (BCS)**

Image partitioned into small blocks ( $B \times B$ )

$$\mathbf{y}_j = \mathbf{\Phi} \mathbf{x}_j$$

Φ:  $M_B \times B^2$ ,  $\mathbf{x}_i$ : block j of image

thus:

$$\mathbf{A} = \begin{bmatrix} \mathbf{\Phi} & 0 & \cdots & 0 \\ 0 & \mathbf{\Phi} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{\Phi} \end{bmatrix}$$



# **Multiscale BCS (MS-BCS)**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

WIS-DC

MS-BCS-SPL

Results

Conclusio

## **Multiscale Sampling**

Sampling operator is split into

$$\mathbf{A} = \mathbf{\Phi}'\mathbf{\Omega}$$

thus,

$$\mathbf{y} = \mathbf{\Phi}' \mathbf{\Omega} \mathbf{x}$$

- $\circ$   $\Omega$ : multiscale transform (i.e., *L*-level DWT)
- ullet  $\Phi'$ : multiscale block-based sampling operator
  - set of BCS sampling operators with subrates varying with level
  - $\bullet \Phi' = \{\Phi_l\}, 1 \le l \le L$



# Multiscale BCS (MS-BCS)

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

Results

### Multiscale Transform and Sampling

 $\circ$   $\Omega$  produces L levels of wavelet decomposition:

$$\tilde{\mathbf{x}} = \mathbf{\Omega}\mathbf{x}$$

- Subband s at level l of  $\tilde{\mathbf{x}}$  is divided into  $B_l \times B_l$  blocks
- Each  $B_l \times B_l$  block sampled with  $\Phi_l$  of size  $M_l \times B_l^2$ :

$$\mathbf{y}_{l,s,j} = \mathbf{\Phi}_l \tilde{\mathbf{x}}_{l,s,j}$$

 $\tilde{\mathbf{x}}_{l,s,j}$ : raster-scan of block j of subband s at level l

 $\bullet$   $\Phi_l$  yields subrate  $S_l = M_l/B_l^2$  at level l



# **Multiscale BCS (MS-BCS)**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

....

MS-BCS-SPL

Results

Conclusion





## **Multiscale BCS Reconstruction**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

MS-BCS-SPI

Results

Conclusio

#### MS-BCS-SPL reconstruction

- Adapt BCS-SPL algorithm (Gan 2007, Mun & Fowler 2009) to multiscale setting
- BCS-SPL:
  - Full-image smoothing with Wiener filter
  - Sparsity-enhancing thresholding in sparsity transform Ψ
  - Between smoothing and thresholding are Landweber steps:

$$\tilde{\mathbf{x}} \leftarrow \tilde{\mathbf{x}} + \mathbf{\Phi}^T (\mathbf{y} - \mathbf{\Phi} \tilde{\mathbf{x}})$$



## **Multiscale BCS Reconstruction**

MS-BCS-SPL

J. E. Fowler

Introduction

B00

MS-BCS

MS-BCS-SPL

Results

Conclusion

### MS-BCS-SPL algorithm

```
function \tilde{\mathbf{x}}^{(i)} = \text{MS-BCS-SPL}\left(\mathbf{y}, \left\{\mathbf{\Phi}_{l,\ 1 \leq l \leq L}\right\}, \mathbf{\Psi}, \mathbf{\Omega}, \tilde{\mathbf{x}}_{l,s,j}^{(0)}\right)
do \mathbf{x}^{(i)} = \mathbf{\Omega}^{-1} \tilde{\mathbf{x}}^{(i)}
                \hat{\mathbf{x}}^{(i)} = \text{Wiener}(\mathbf{x}^{(i)})
                \hat{\tilde{\mathbf{x}}}^{(i)} - \mathbf{\Omega}\hat{\mathbf{x}}^{(i)}
                 for each l, for each s, for each j
                      \hat{\hat{\mathbf{x}}}_{l,s,i}^{(i)} = \hat{\hat{\mathbf{x}}}_{l,s,i}^{(i)} + \mathbf{\Phi}_{l}^{T}(\mathbf{y}_{l,s,j} - \mathbf{\Phi}_{l}\hat{\hat{\mathbf{x}}}_{l,s,j}^{(i)})
                \dot{\tilde{\mathbf{x}}}^{(i)} = \mathbf{\Psi} \mathbf{\Omega}^{-1} \hat{\tilde{\mathbf{x}}}^{(i)}
                \check{\mathbf{x}}^{(i)} = \text{Threshold}(\check{\check{\mathbf{x}}}^{(i)})
                \mathbf{\tilde{\tilde{\mathbf{x}}}}^{(i)} = \mathbf{\Omega} \mathbf{\Psi}^{-1} \mathbf{\check{\mathbf{x}}}^{(i)}
                 for each l, for each s, for each j
                      \tilde{\mathbf{x}}_{l,s,i}^{(i+1)} = \bar{\tilde{\mathbf{x}}}_{l,s,i}^{(i)} + \mathbf{\Phi}_{l}^{T}(\mathbf{y}_{l,s,i} - \mathbf{\Phi}_{l}\bar{\tilde{\mathbf{x}}}_{l,s,i}^{(i)})
                D^{(i+1)} = \|\tilde{\mathbf{x}}^{(i+1)} - \hat{\tilde{\mathbf{x}}}^{(i)}\|_{2}
                i = i + 1
  until |D^{(i)} - D^{(i-1)}| < 10^{-2}
```



# **Experimental Results**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

MS-BCS-SPL

Results

Conclusion

## **Experiment Setup**

- Sparsity basis, Ψ: dual-tree DWT (DDWT)
- ullet Sampling basis,  $\Omega$ : 3-level 9/7 biorthogonal DWT
- ullet  $B_l imes B_l$  blocks sampled using structured random matrices (SRM)
- $\bullet$  Block size  $B_1 = 16$ ,  $B_2 = 32$ ,  $B_3 = 64$

### **Algorithms Compared**

- Original BCS-SPL (Mun & Fowler 2009)
- TV (Candès et al. 2006)
- MS-GPSR (Schniter et al. 2008)—multiscale version of GPSR
- SALSA (Afonso et al. 2010) with DWT sparsity transform



# **Experimental Results**

MS-BCS-SPL

J. E. Fowler

Introduction BCS

MS-BCS

MS-BCS-SPL

Results

Result

Conclusio

### Reconstruction PSNR in dB

|            | Subrate |      |      |      |      |  |  |  |  |
|------------|---------|------|------|------|------|--|--|--|--|
| Algorithm  | 0.1     | 0.2  | 0.3  | 0.4  | 0.5  |  |  |  |  |
| Lenna      |         |      |      |      |      |  |  |  |  |
| MS-BCS-SPL | 31.6    | 34.7 | 36.7 | 37.9 | 39.0 |  |  |  |  |
| BCS-SPL    | 28.0    | 31.6 | 33.7 | 35.4 | 36.9 |  |  |  |  |
| TV         | 29.9    | 32.9 | 35.0 | 36.8 | 38.4 |  |  |  |  |
| MS-GPSR    | 30.3    | 33.6 | 35.2 | 36.3 | 37.8 |  |  |  |  |
| SALSA      | 23.9    | 28.5 | 31.6 | 34.0 | 36.0 |  |  |  |  |
| Peppers    |         |      |      |      |      |  |  |  |  |
| MS-BCS-SPL | 31.1    | 34.2 | 35.7 | 36.8 | 37.7 |  |  |  |  |
| BCS-SPL    | 29.0    | 32.1 | 33.8 | 35.2 | 36.4 |  |  |  |  |
| TV         | 30.4    | 33.1 | 34.7 | 35.9 | 37.0 |  |  |  |  |
| MS-GPSR    | 29.3    | 31.9 | 33.1 | 34.2 | 35.8 |  |  |  |  |
| SALSA      | 23.3    | 28.2 | 31.2 | 33.3 | 35.0 |  |  |  |  |



# **Experimental Results**

MS-BCS-SPL

J. E. Fowler

Introduction BCS

MS-BCS

...

Results

Result

Conclusio

### **Reconstruction PSNR in dB**

|            | Subrate |      |      |      |      |  |  |  |
|------------|---------|------|------|------|------|--|--|--|
| Algorithm  | 0.1     | 0.2  | 0.3  | 0.4  | 0.5  |  |  |  |
| Mandrill   |         |      |      |      |      |  |  |  |
| MS-BCS-SPL | 21.4    | 23.0 | 24.6 | 25.5 | 26.5 |  |  |  |
| BCS-SPL    | 20.5    | 21.8 | 22.9 | 23.9 | 25.1 |  |  |  |
| TV         | 20.5    | 22.0 | 23.4 | 24.9 | 26.5 |  |  |  |
| MS-GPSR    | 21.5    | 22.9 | 24.3 | 25.1 | 26.3 |  |  |  |
| SALSA      | 16.6    | 19.6 | 21.1 | 22.5 | 24.2 |  |  |  |
| Goldhill   |         |      |      |      |      |  |  |  |
| MS-BCS-SPL | 29.0    | 31.1 | 32.8 | 33.7 | 34.7 |  |  |  |
| BCS-SPL    | 27.1    | 29.1 | 30.5 | 31.8 | 33.1 |  |  |  |
| TV         | 27.5    | 29.9 | 31.6 | 33.2 | 34.8 |  |  |  |
| MS-GPSR    | 28.5    | 30.4 | 32.2 | 33.0 | 34.1 |  |  |  |
| SALSA      | 22.9    | 26.0 | 28.2 | 30.2 | 32.0 |  |  |  |



# **Simulation Results for 2D Images**

MS-BCS-SPL J. E. Fowler

Introduction BCS

MS-BCS

MS-BCS-SPL

Results

ricourt

Conclusion





MS-BCS-SPL 31.6 dB 50 seconds BCS-SPL 28.0 dB 30 seconds



# **Simulation Results for 2D Images**

MS-BCS-SPL J. E. Fowler

Introduction

MS-BCS

Results





**MS-GPSR** 30.3 dB 20 minutes

TV 29.9 dB 1.8 hours



## **Conclusions**

MS-BCS-SPL

J. E. Fowler

Introduction

MS-BCS

MS-BCS-SPI

Results

Conclusion

### **Conclusions**

- MS-BCS-SPL achieves 1- to 3-dB gain over original BCS-SPL
- MS-BCS-SPL only slightly slower than original BCS-SPL
- MS-BCS-SPL rivals TV in PSNR, but significantly faster

### **Matlab Source Code**

MS-BCS-SPL Version 1.0 http://www.ece.msstate.edu/~fowler/BCSSPL