

### 28.19 TIMO Input Mapping Module (MAP)

#### 28.19.1 Overview

The MAP submodule generates the two input signals *TRIGGER* and *STATE* for the submodule DPLL by evaluating the output signals of the channel 0 up to channel 5 of submodule TIM0. By using the TIM as input submodule, the filtering of the input signals can be done inside the TIM channels themselves. The MAP submodule architecture is depicted in **Figure 119**.



Figure 119 MAP Submodule architecture

Generally, the MAP submodule can route the channel signals coming from TIM0 in three ways. First, it is possible to route the whole 49 bits of data coming from channel 0 of module TIM0 (TIM0\_CH0) to the *TRIGGER* signal which is then provided to the DPLL together with the *T\_VALID* signal.

Second, the MAP module can route one of the five signals coming from the module TIMO (i.e. the signals coming from channel 1 up to channel 5) to the output signal *STATE* which is then provided to the module DPLL together with the *S\_VALID* signal.



Third, the *TRIGGER*, *T\_VALID*, *STATE* and *S\_VALID* signals can be generated out of the TIM Signal Preprocessing (TSPP) subunits. This is done in combination with the Sensor Pattern Evaluation (SPE) submodule described in chapter "Sensor Pattern Evaluation".

There, the signal TRIGGER is generated in subunit TSPP0 out of the TIM0 signals coming from channel 0 up to 2.

The signal STATE is generated in subunit TSPP1 out of the TIM signals coming from channel 3 up to channel 5.

This is only be done, when the TSSPx subunits are enabled and when the *SPEx\_NIPD* signal is raised by the SPE submodule. The *SPEx\_NIPD\_NUM* signal encodes, which of the 3 *TIMx\_CHy* input signals has been changed. The *SPEx\_DIR* signal is routed through the TSPPx subunit and implements the *T\_DIR* or *S\_DIR* signal.

A third method to provide a direction signal to DPLL is to use TIM0 channel 6 input (*TIM0\_IN6*) and to route it instead of the *DIR* signal coming from TSSOP0 to the MAP output *T\_DIR* (set TSEL=0)

### 28.19.2 TIM Signal Preprocessing (TSPP)

The TSPP combines the three 49 bit input streams coming from the TIMO submodule and generates one combined 49 bit output stream *TSPPO*. The input stream combination is done in the unit Bit Stream Combination (BSC). The architecture of the TSPP is shown in **Figure 120**.



Figure 120 TIM Signal Preprocessing (TSPP) subunit architecture

#### 28.19.2.1 Bit Stream Combination

The BSC subunit is used to XOR-combine the three most significant bits  $TIM0\_CHx(48)$ ,  $TIM0\_CHy(48)$  and  $TIM0\_CHz(48)$  of the TIM0 inputs. The XOR-combined signal is merged with the remaining 48 bits of one of the three input signals  $TIM0\_CHx(47...0)$ ,  $TIM0\_CHy(47...0)$  or  $TIM0\_CHz(47...0)$  the TSPPO signal. The selection is done with the  $SPEx\_NIPD\_NUM$  input signal coming from the SPE submodule. The action, when the 49 bits are transferred to the TSPPO and the T\_VALID or S\_VALID signal is raised is determined by the SPEx\_NIPD signal coming from the SPE submodule. The TSPPO output signal generation is shown in the example in **Figure 121**.





Figure 121 TSPP Signal generation for signal TSPPO

The  $SPEx_NIPD_NUM$  input signal determines, which data is routed to the TSPPO signal. At the first edge of  $TIMO_CHx(48)$  the new data X11 and X12 are routed to TSPPO(47:0). The values X11 and X12 are the two 24 bit values coming from the TIM input channel TIMO\_CHx. The next edge is at time  $t_1$  on signal  $TIMO_CHy(48)$ . Therefore, at time  $t_1$  the TSPPO(48) signal level changes and the TSPPO(47:0) is set to Y11 and Y12 and so forth.

### 28.19.3 MAP Register overview

Table 69 MAP Register overview

| Register name | Description          | see Page |
|---------------|----------------------|----------|
| MAP_CTRL      | MAP Control register | 434      |



# 28.19.4 MAP Register description

# 28.19.4.1 Register MAP\_CTRL

## **MAP Control Register**

| MAD  | CTDI  |
|------|-------|
| MAP_ | _CTRL |

|   | MAP C | ontrol        | Registe       | er            |    |    |               | (000F0       | )0 <sub>H</sub> ) |               | Ар            | plicatio      | n Res | et Valu | ie: 0000      | 0000 <sub>H</sub> |
|---|-------|---------------|---------------|---------------|----|----|---------------|--------------|-------------------|---------------|---------------|---------------|-------|---------|---------------|-------------------|
|   | 31    | 30            | 29            | 28            | 27 | 26 | 25            | 24           | 23                | 22            | 21            | 20            | 19    | 18      | 17            | 16                |
|   | 0     | TSPP1<br>_I2V | TSPP1<br>_I1V | TSPP1<br>_IOV |    | 0  | TSPP1<br>_DLD | TSPP1<br>_EN | 0                 | TSPP0<br>_I2V | TSPP0<br>_I1V | TSPP0<br>_IOV | (     | )<br>D  | TSPP0<br>_DLD | TSPP0<br>_EN      |
| j | r     | rw            | rw            | rw            |    | r  | rw            | rw           | r                 | rw            | rw            | rw            |       | r       | rw            | rw                |
|   | 15    | 14            | 13            | 12            | 11 | 10 | 9             | 8            | 7                 | 6             | 5             | 4             | 3     | 2       | 1             | 0                 |
|   |       | i i           | ı             | II            |    | 0  | 1             | 1            | 1                 | 1             | ı             | LSEL          |       | SSL     | 1             | TSEL              |
|   |       |               |               |               |    | r  | -1            |              | I.                | •             |               | rw            |       | rw      | 1             | rw                |

| Field     | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSEL      | 0    | rw   | TRIGGER signal output select  0 <sub>B</sub> TIM0_CH0 selected as TRIGGER output signal. TIM0_IN6 (TIM0 channel 6 input) is used as direction signal T_DIR.  1 <sub>B</sub> TSPP0_TSPPO selected as TRIGGER output signal                                                                                                                                                                                                                                       |
| SSL       | 3:1  | rw   | STATE signal output select  000 <sub>B</sub> TIM0_CH1 selected as STATE output signal  001 <sub>B</sub> TIM0_CH2 selected as STATE output signal  010 <sub>B</sub> TIM0_CH3 selected as STATE output signal  011 <sub>B</sub> TIM0_CH4 selected as STATE output signal  100 <sub>B</sub> TIM0_CH5 selected as STATE output signal  101 <sub>B</sub> TSPP1_TSPPO selected as STATE output signal  110 <sub>B</sub> Same as 0b000  111 <sub>B</sub> Same as 0b000 |
| LSEL      | 4    | rw   | TIMO_IN6 input level selection  0 <sub>B</sub> TIMO_IN6 input level '0' encodes TRIGGER in forward direction  1 <sub>B</sub> TIMO_IN6 input level '1' encodes TRIGGER in forward direction                                                                                                                                                                                                                                                                      |
| TSPPO_EN  | 16   | rw   | Enable of TSPP0 subunit  0 <sub>B</sub> TSPP0 disabled  1 <sub>B</sub> TSPP0 enabled                                                                                                                                                                                                                                                                                                                                                                            |
| TSPP0_DLD | 17   | rw   | DIR level definition bit  0 <sub>B</sub> SPEx_DIR signal is routed through as is  1 <sub>B</sub> SPEx_DIR signal is inverted                                                                                                                                                                                                                                                                                                                                    |
| TSPP0_IOV | 20   | rw   | Disable of TSPP0 TIM0_CHx(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP0 is set to zero (0)                                                                                                                                                                                                                                                                                                             |

# **AURIX™ TC3xx**



## **Generic Timer Module (GTM)**

| Field     | Bits                                   | Type | Description                                                                                                                                         |
|-----------|----------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| TSPP0_I1V | 21                                     | rw   | Disable of TSPP0 TIM0_CHy(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP0 is set to zero (0) |
| TSPP0_I2V | 22                                     | rw   | Disable of TSPP0 TIM0_CHz(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP0 is set to zero (0) |
| TSPP1_EN  | 24                                     | rw   | Enable of TSPP1 subunit  0 <sub>B</sub> TSPP1 disabled  1 <sub>B</sub> TSPP1 enabled                                                                |
| TSPP1_DLD | 25                                     | rw   | DIR level definition bit  0 <sub>B</sub> SPEx_DIR signal is routed through as is  1 <sub>B</sub> SPEx_DIR signal is inverted                        |
| TSPP1_IOV | 28                                     | rw   | Disable of TSPP1 TIM0_CHx(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP1 is set to zero (0) |
| TSPP1_I1V | 29                                     | rw   | Disable of TSPP1 TIM0_CHy(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP1 is set to zero (0) |
| TSPP1_I2V | 30                                     | rw   | Disable of TSPP1 TIM0_CHz(48) input line  0 <sub>B</sub> Input line enabled  1 <sub>B</sub> Input line disabled; input for TSPP1 is set to zero (0) |
| 0         | 15:5,<br>19:18,<br>23,<br>27:26,<br>31 | r    | Reserved Read as zero, shall be written as zero.                                                                                                    |