Exercise 10d

Question 1.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{\sqrt{\frac{1-\cos x}{2}}\right\}$$

Answer:

To find: Value of $\sin^{-1} \left\{ \sqrt{\frac{1-\cos x}{2}} \right\}$

Formula used: (i) $\cos \theta = 2 \sin^2 \frac{\theta}{2}$

We have, $\sin^{-1} \left\{ \sqrt{\frac{1-\cos x}{2}} \right\}$

 $\Rightarrow \sin^{-1}\left\{\sqrt{\frac{2\sin^2\frac{x}{2}}{2}}\right\}$

 $\Rightarrow \sin^{-1}\left\{\sqrt{\sin^2\frac{x}{2}}\right\}$

 $\Rightarrow \sin^{-1}\left\{\sin\frac{x}{2}\right\}$

 $\Rightarrow \frac{x}{2}$

Now, we can see that $\sin^{-1} \left\{ \sqrt{\frac{1-\cos x}{2}} \right\} = \frac{x}{2}$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{x}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{1}{2}$$

Ans)
$$\frac{1}{2}$$

Question 2.

Differentiate each of the following w.r.t x:

$$\tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$$

Answer:

To find: Value of
$$tan^{-1} \left(\frac{sinx}{1 + cosx} \right)$$

Formula used: (i) $\sin 2\theta = 2\sin \theta \cos \theta$

(ii)
$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

We have,
$$\tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin x}{2\cos^2\frac{x}{2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\tan \frac{x}{2}\right)$$

$$\Rightarrow \frac{x}{2}$$

Now, we can see that $\tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right) = \frac{x}{2}$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{x}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{1}{2}$$

Ans)
$$\frac{1}{2}$$

Question 3.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$$

Answer:

To find: Value of $\cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$

Formula used: (i) $\sin 2\theta = 2\sin \theta \cos \theta$

(ii)
$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

We have, $\cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$

$$\Rightarrow \cot^{-1}\left(\frac{2\cos^2\frac{x}{2}}{\sin x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\cot \frac{x}{2}\right)$$

$$\Rightarrow \frac{x}{2}$$

Now, we can see that $\cot^{-1}\left(\frac{1+\cos x}{\sin x}\right) = \frac{x}{2}$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{x}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{1}{2}$$

Ans)
$$\frac{1}{2}$$

Question 4.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)$$

Answer:

To find: Value of
$$\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)$$

Formula used: (i) $\sin 2\theta = 2\sin \theta \cos \theta$

(ii)
$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

We have,
$$\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\sqrt{\frac{1+\cos x}{1+\cos x}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\frac{(1+\cos x)^2}{1-\cos^2 x}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\frac{(1+\cos x)^2}{\sin^2 x}}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\frac{x}{2}\right)$$

$$\Rightarrow \frac{x}{2}$$

Now, we can see that
$$\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right) = \frac{x}{2}$$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{x}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{1}{2}$$

Ans)
$$\frac{1}{2}$$

Question 5.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)$$

Answer:

To find: Value of $tan^{-1} \left(\frac{cosx + sinx}{cosx - sinx} \right)$

Formula used: (i) tan $(A+B) = \frac{tanA+tanB}{1-tanAtanB}$

We have, $tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)$

Dividing numerator and denominator by cosx

$$\Rightarrow \tan^{-1} \left(\frac{\frac{\cos x + \sin x}{\cos x}}{\frac{\cos x - \sin x}{\cos x}} \right)$$

$$\Rightarrow \tan^{-1}\left(\frac{1+\tan x}{1-\tan x}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan x \tan\frac{\pi}{4}}\right)$$

$$\Rightarrow \tan^{-1}\left(\tan\left(\frac{\pi}{4}+x\right)\right)$$

$$\Rightarrow \frac{\Pi}{4} + X$$

Now, we can see that $tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right) = \frac{\pi}{4} + x$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{n}{4} + x\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{4}\right)}{dx} + \frac{dx}{dx}$$

$$\Rightarrow 0 + 1$$

$$\Rightarrow 1$$

Ans) 1

Question 6.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

Answer:

To find: Value of $\cot^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$

Formula used: (i)
$$tan (A-B) = \frac{tanA-tanB}{1+tanAtanB}$$

We have,
$$\cot^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

Dividing numerator and denominator by cosx

$$\Rightarrow \cot^{-1} \left(\frac{\frac{\cos x - \sin x}{\cos x}}{\frac{\cos x + \sin x}{\cos x}} \right)$$

$$\Rightarrow \cot^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\tan\frac{\pi}{4}-\tan x}{1+\tan x\,\tan\frac{\pi}{4}}\right)$$

$$\Rightarrow \cot^{-1}\left(\tan\left(\frac{\Pi}{4}-x\right)\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{n}{2}-\left(\frac{n}{4}-x\right)\right)\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{\Pi}{4}+x\right)\right)$$

$$\Rightarrow \frac{\Pi}{4} + X$$

Now, we can see that
$$\cot^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right) = \frac{\pi}{4} + x$$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{\Pi}{4} + x\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{4}\right)}{dx} + \frac{dx}{dx}$$

$$\Rightarrow 0 + 1$$

$$\Rightarrow 1$$

Question 7.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}}\right)$$

Answer:

To find: Value of
$$\cot^{-1}\left(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}}\right)$$

Formula used: (i) 1 -
$$\cos \theta = 2\sin^2 \frac{\theta}{2}$$

(ii)
$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

We have,
$$\cot^{-1}\left(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\frac{1+\cos 3x}{2\sin^2\frac{3x}{2}}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\frac{2\cos^2\frac{3x}{2}}{2\sin^2\frac{3x}{2}}}\right)$$

$$\Rightarrow \cot^{-1}\left(\sqrt{\cot^2\left(\frac{3x}{2}\right)}\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{3x}{2}\right)\right)$$

$$\Rightarrow \frac{3x}{2}$$

Now, we can see that
$$\cot^{-1}\left(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}}\right) = \frac{3x}{2}$$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{3x}{2}\right)}{dx}$$

$$\Rightarrow \frac{3}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{3}{2}$$

Ans)
$$\frac{3}{2}$$

Question 8.

Differentiate each of the following w.r.t x:

$$\sec^{-1}\left(\frac{1+\tan^2 x}{1-\tan^2 x}\right)$$

Answer:

To find: Value of
$$\sec^{-1}\left(\frac{1+\tan^2x}{1-\tan^2x}\right)$$

Formula used: (i)
$$\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$$

We have,
$$\sec^{-1}\left(\frac{1+\tan^2x}{1-\tan^2x}\right)$$

Dividing numerator and denominator by 1+tan²x

$$\Rightarrow \sec^{-1}\left(\frac{\left(\frac{1+tan^2 x}{1+tan^2 x}\right)}{\left(\frac{1-tan^2 x}{1+tan^2 x}\right)}\right)$$

$$\Rightarrow \sec^{-1}\left(\frac{1}{\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right)}\right)$$

$$\Rightarrow \sec^{-1}\left(\frac{1}{\cos 2x}\right)$$

$$\Rightarrow$$
 sec⁻¹(sec 2x)

$$\Rightarrow 2x$$

Now, we can see that
$$\sec^{-1}\left(\frac{1+\tan^2 x}{1-\tan^2 x}\right) = 2x$$

Now differentiating,

$$\Rightarrow \frac{d(2x)}{dx}$$

⇒2
$$\frac{dx}{dx}$$

$$\Rightarrow 2$$

Question 9.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right)$$

Answer:

To find: Value of $\sin^{-1}\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right)$

Formula used: (i) $\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$

We have, $\sin^{-1}\left(\frac{1-\tan^2x}{1+\tan^2x}\right)$

 $\Rightarrow \sin^{-1}(\cos 2x)$

 $\Rightarrow \sin^{-1}\left(\sin\left(\frac{n}{2}-2x\right)\right)$

 $\Rightarrow \frac{\pi}{2}$ -2x

Now, we can see that $\sin^{-1}\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right) = \frac{\pi}{2}-2x$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{n}{2}-2x\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{2}\right)}{dx} - 2\frac{dx}{dx}$$

$$\Rightarrow 0 - 2$$

Question 10.

Differentiate each of the following w.r.t x:

$$\cos ec^{-1} \left(\frac{1 + \tan^2 x}{2 \tan x} \right)$$

Answer:

To find: Value of $\operatorname{cosec}^{-1}\left(\frac{1+\tan^2 x}{2\tan x}\right)$

Formula used: (i) $\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$

We have, $\operatorname{cosec}^{-1}\left(\frac{1+\tan^2 x}{2\tan x}\right)$

Dividing Numerator and Denominator with 1+tan²x

$$\Rightarrow \csc^{-1}\left(\frac{\left(\frac{1+\tan^2 x}{1+\tan^2 x}\right)}{\left(\frac{2\tan x}{1+\tan^2 x}\right)}\right)$$

$$\Rightarrow \csc^{-1}\left(\frac{(1)}{\left(\frac{2\tan x}{1+\tan^2 x}\right)}\right)$$

$$\Rightarrow \csc^{-1}\left(\frac{1}{\sin 2x}\right)$$

$$\Rightarrow$$
 cosec⁻¹(cosec 2x)

$$\Rightarrow 2x$$

Now, we can see that
$$cosec^{-1}\left(\frac{1+tan^2x}{2tanx}\right) = 2x$$

Now differentiating,

$$\Rightarrow \frac{d(2x)}{dx}$$

$$\Rightarrow 2 \frac{dx}{dx}$$

$$\Rightarrow 2$$

Ans) 2

Question 11.

Differentiate each of the following w.r.t x:

$$\cot^{-1}(\cos ecx + \cot x)$$

Answer:

To find: Value of $\cot^{-1}(\csc x + \cot x)$

Formula used: (i) $\sin 2\theta = 2\sin \theta \cos \theta$

(ii)
$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

We have, $\cot^{-1}(\csc x + \cot x)$

$$\Rightarrow \cot^{-1}\left(\frac{1}{\sin x} + \frac{\cos x}{\sin x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{2\cos^2\frac{x}{2}}{\sin x}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\frac{x}{2}\right)$$

$$\Rightarrow \frac{x}{2}$$

Now, we can see that $\cot^{-1}(\csc x + \cot x) = \frac{x}{2}$

Now differentiating,

$$\Rightarrow \frac{d\left(\frac{x}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{dx}{dx}$$

$$\Rightarrow \frac{1}{2}$$

Ans)
$$\frac{1}{2}$$

Question 12.

Differentiate each of the following w.r.t x:

$$\tan^{-1}(\cot x) + \cot^{-1}(\tan x)$$

Answer:

To find: Value of $tan^{-1}(\cot x) + \cot^{-1}(\tan x)$

The formula used: (i) $\tan \theta = \cot \left(\frac{\pi}{2} - \theta\right)$

(ii) cot
$$\theta = \tan \left(\frac{n}{2} - \theta\right)$$

We have, $tan^{-1}(\cot x) + \cot^{-1}(\tan x)$

$$\Rightarrow$$
 tan⁻¹ $\left[tan \left(\frac{n}{2} - x \right) \right] + cot^{-1} \left[cot \left(\frac{n}{2} - x \right) \right]$

$$\Rightarrow \left(\frac{n}{2}-x\right)+\left(\frac{n}{2}-x\right)$$

Now, we can see that $tan^{-1}(\cot x) + \cot^{-1}(\tan x) = \pi - 2x$

Now differentiating,

$$\Rightarrow \frac{d(n-2x)}{dx}$$

$$\Rightarrow \frac{dn}{dx} - \frac{d2x}{dx}$$

$$\Rightarrow$$
 -2

Question 13.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{\sqrt{1-x^2}\right\}$$

Answer

To find: Value of $\sin^{-1}{\{\sqrt{1-x^2}\}}$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\sin^{-1}\{\sqrt{1-x^2}\}$

⇒ Putting $x = \cos\theta$

$$\theta = \cos^{-1} x ... (i)$$

Putting $x = \cos\theta$ in the equation

$$\Rightarrow \sin^{-1}\{\sqrt{1-\cos^2\theta}\}$$

$$\Rightarrow \sin^{-1}\left(\sqrt{\sin^2\theta}\right)$$

$$\Rightarrow \sin^{-1}(\sin\theta)$$

$$\Rightarrow \theta$$

$$\Rightarrow \frac{d\theta}{dx}$$

$$\Rightarrow \frac{d(\cos^{-1}x)}{dx} [From (i)]$$

$$\Rightarrow -\frac{1}{\sqrt{1-x^2}}$$

Ans)
$$-\frac{1}{\sqrt{1-x^2}}$$

Question 14.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right)$$

Answer:

To find: Value of
$$\sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right)$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right)$$

⇒ Putting
$$x = \cos\theta$$

$$\theta = \cos^{-1} x ... (i)$$

Putting $x = \cos\theta$ in the equation

$$\Rightarrow \sin^{-1}\left(\sqrt{\frac{1-\cos\theta}{2}}\right)$$

$$\Rightarrow \sin^{-1}\left(\sqrt{\sin^2\frac{\theta}{2}}\right)$$

$$\Rightarrow \sin^{-1}\left(\sin\frac{\theta}{2}\right)$$

$$\Rightarrow \frac{\theta}{2}$$

Now, we can see that
$$\sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right) = \frac{\theta}{2}$$

$$\Rightarrow \theta = \cos^{-1}x$$

$$\Rightarrow \frac{d\left(\frac{\theta}{2}\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\cos^{-1}X}{2}\right)}{dx}$$

$$\Rightarrow -\frac{1}{2\sqrt{1-x^2}}$$

Ans)
$$-\frac{1}{2\sqrt{1-x^2}}$$

Question 15.

Differentiate each of the following w.r.t x:

$$\cos^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\}$$

Answer:

To find: Value of $\cos^{-1}\left(\sqrt{\frac{1+x}{2}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\cos^{-1}\left(\sqrt{\frac{1+x}{2}}\right)$$

⇒ Putting
$$x = \cos\theta$$

$$\theta = \cos^{-1} x ... (i)$$

Putting $x = \cos\theta$ in the equation

$$\Rightarrow \cos^{-1}\left(\sqrt{\frac{1+\cos\theta}{2}}\right)$$

$$\Rightarrow \cos^{-1}\left(\sqrt{\cos^2\frac{\theta}{2}}\right)$$

$$\Rightarrow \cos^{-1}\left(\cos\frac{\theta}{2}\right)$$

$$\Rightarrow \frac{\theta}{2}$$

Now, we can see that $\cos^{-1}\left(\sqrt{\frac{1+x}{2}}\right) = \frac{\theta}{2}$

$$\Rightarrow \theta = \cos^{-1}x$$

$$\Rightarrow \frac{d\left(\frac{\theta}{2}\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\cos^{-1}X}{2}\right)}{dx}$$

$$\Rightarrow -\frac{1}{2\sqrt{1-x^2}}$$

Ans)
$$-\frac{1}{2\sqrt{1-x^2}}$$

Question 16.

Differentiate each of the following w.r.t x:

$$\cos^{-1}\left\{\sqrt{1-x^2}\right\}$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\cos^{-1}(\sqrt{1-x^2})$

⇒ Putting $x = \sin\theta$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \cos^{-1}\left(\sqrt{1-(\sin\theta)^2}\right)$$

$$\Rightarrow \cos^{-1}(\sqrt{1-\sin^2\theta})$$

$$\Rightarrow \cos^{-1}(\cos\theta)$$

$$\Rightarrow \theta$$

Now, we can see that $\cos^{-1}(\sqrt{1-x^2}) = \theta$

$$\Rightarrow \theta = \sin^{-1}x$$

$$\Rightarrow \frac{d(\theta)}{dx}$$

$$\Rightarrow \frac{\mathsf{d}(\sin^{-1}x)}{\mathsf{d}x}$$

$$\Rightarrow \frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{\sqrt{1-x^2}}$$

Question 17.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{2x\sqrt{1-x^2}\right\}$$

Answer:

To find: Value of $\sin^{-1}(2x\sqrt{1-x^2})$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\sin^{-1}(2x\sqrt{1-x^2})$

⇒ Putting
$$x = \sin\theta$$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \sin^{-1}\left(2\sin\theta\sqrt{1-(\sin\theta)^2}\right)$$

$$\Rightarrow \sin^{-1}(2\sin\theta\sqrt{1-\sin^2\theta})$$

⇒
$$\sin^{-1}(2\sin\theta\cos\theta)$$

$$\Rightarrow \sin^{-1}(\sin 2\theta)$$

$$\Rightarrow 2\theta$$

$$\Rightarrow$$
 2sin⁻¹x

Now, we can see that $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x$

Now Differentiating

$$\Rightarrow \frac{d2\theta}{dx} = \frac{d(2\sin^{-1}x)}{dx}$$

$$\Rightarrow 2 \frac{d(\theta)}{dx}$$

$$\Rightarrow 2\frac{\mathsf{d}(\sin^{-1}x)}{\mathsf{d}x}$$

$$\Rightarrow 2\frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{2}{\sqrt{1-x^2}}$$

Question 18.

Differentiate each of the following w.r.t x:

$$\sin^{-1}(3x - 4x^3)$$

Answer:

To find: Value of $sin^{-1}(3x - 4x^3)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\sin^{-1}(3x - 4x^3)$

 \Rightarrow Putting x = sinθ

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \sin^{-1}(3\sin\theta - 4(\sin\theta)^3)$$

$$\Rightarrow \sin^{-1}(3\sin\theta - 4\sin^3\theta)$$

$$\Rightarrow \sin^{-1}(\sin 3\theta)$$

 $\Rightarrow 3\theta$

Now, we can see that $\sin^{-1}(3x - 4x^3) = 3\theta$

Now Differentiating

$$\Rightarrow \frac{d3\theta}{dx} = \frac{d(3\sin^{-1}x)}{dx}$$

$$\Rightarrow 3 \frac{d(\sin^{-1}x)}{dx}$$

$$\Rightarrow 3\frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{3}{\sqrt{1-x^2}}$$

Question 19.

Differentiate each of the following w.r.t x:

$$\sin^{-1}(1-2x^2)$$

Answer:

To find: Value of $sin^{-1}(1 - 2x^2)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\sin^{-1}(1 - 2x^2)$

⇒ Putting $x = \sin\theta$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \sin^{-1}(1 - 2(\sin\theta)^2)$$

$$\Rightarrow \sin^{-1}(1 - 2\sin^2\theta)$$

$$\Rightarrow \sin^{-1}(\cos 2\theta)$$

$$\Rightarrow \sin^{-1}\left(\sin\left(\frac{n}{2}-2\theta\right)\right)$$

$$\Rightarrow \frac{\pi}{2} - 2\theta$$

Now, we can see that $\sin^{-1}(1 - 2x^2) = \frac{\pi}{2} - 2\theta$

Now Differentiating

$$\Rightarrow \frac{d\left(\frac{n}{2}-2\theta\right)}{dx} = \frac{d\left(\frac{n}{2}\right)}{dx} - \frac{d2\theta}{dx}$$

$$\Rightarrow 0 - \frac{d2\theta}{dx}$$

$$\Rightarrow -2 \frac{dsin^{-1}x}{dx}$$

$$\Rightarrow \frac{-2}{\sqrt{1-x^2}}$$

Ans)
$$\frac{-2}{\sqrt{1-x^2}}$$

Question 20.

Differentiate each of the following w.r.t x:

$$\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$$

Answer:

To find: Value of $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$$

⇒ Putting $x = \sin\theta$

$$\theta = \sin^{-1}x ... (i)$$

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \sec^{-1}\left(\frac{1}{\sqrt{1-(\sin\!\theta)^2}}\right)$$

$$\Rightarrow \sec^{-1}\left(\frac{1}{\sqrt{1-\sin^2\theta}}\right)$$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1}{\sqrt{\cos^2 \theta}}\right)$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1}{\cos\theta}\right)$

⇒
$$sec^{-1}(sec\theta)$$

$$\Rightarrow \theta$$

Now, we can see that
$$\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right) = \theta$$

Now Differentiating

$$\Rightarrow \frac{d\theta}{dx}$$

$$\Rightarrow \frac{d(\sin^{-1}x)}{dx}$$

$$\Rightarrow \frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{\sqrt{1-x^2}}$$

Question 21.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$$

Answer:

To find: Value of $tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$

⇒ Putting $x = \sin\theta$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \tan^{-1}\left(\frac{\sin\!\theta}{\sqrt{1\!-\!(\sin\!\theta)^2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{\sqrt{1-\sin^2\theta}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{\sqrt{\cos^2\theta}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{\cos\theta}\right)$$

$$\Rightarrow$$
 tan⁻¹(tan θ)

$$\Rightarrow \theta$$

Now, we can see that
$$\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right) = \theta$$

Now Differentiating

$$\Rightarrow \frac{d\theta}{dx}$$

$$\Rightarrow \frac{d(sin^{-1}x)}{dx}$$

$$\Rightarrow \frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{\sqrt{1-x^2}}$$

Question 22.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$$

Answer:

To find: Value of $\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$$

⇒ Putting
$$x = \sin\theta$$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{1+\sqrt{1-(\sin\theta)^2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{1+\sqrt{1-\sin^2\theta}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{1+\sqrt{\cos^2\theta}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{\sin\theta}{1+\cos\theta}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}\right)$$

$$\Rightarrow \tan^{-1}\left(\tan\frac{\theta}{2}\right)$$

$$\Rightarrow \frac{\theta}{2}$$

Now, we can see that
$$\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right) = \frac{\theta}{2}$$

Now Differentiating

$$\Rightarrow \frac{d\left(\frac{\theta}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{d(\theta)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{d sin^{-1} x}{dx}$$

$$\Rightarrow \frac{1}{2\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{2\sqrt{1-x^2}}$$

Question 23.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$$

Answer:

To find: Value of $\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$

⇒ Putting $x = \sin\theta$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \cot^{-1}\left(\frac{\sqrt{1-(\sin\theta)^2}}{\sin\theta}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\sqrt{\cos^2\theta}}{\sin\theta}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\cos\theta}{\sin\theta}\right)$$

$$\Rightarrow$$
 cot⁻¹(cot θ)

$$\Rightarrow \theta$$

Now, we can see that
$$\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right) = \theta$$

Now Differentiating

$$\Rightarrow \frac{d(\theta)}{dx}$$

$$\Rightarrow \frac{d(sin^{-1}x)}{dx}$$

$$\Rightarrow \frac{1}{\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{\sqrt{1-x^2}}$$

Question 24.

Differentiate each of the following w.r.t x:

$$\sec^{-1}\left(\frac{1}{1-2x^2}\right)$$

Answer:

To find: Value of
$$\sec^{-1}\left(\frac{1}{1-2x^2}\right)$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sec^{-1}\left(\frac{1}{1-2x^2}\right)$$

⇒ Putting
$$x = \sin\theta$$

$$\theta = \sin^{-1}x$$
 ... (i)

Putting $x = \sin\theta$ in the equation

$$\Rightarrow \sec^{-1}\left(\frac{1}{1-2(\sin\theta)^2}\right)$$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1}{1 - 2\sin^2\theta}\right)$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1}{\cos 2\theta}\right)$

$$\Rightarrow$$
 sec⁻¹(sec2 θ)

$$\Rightarrow 2\theta$$

Now, we can see that
$$\sec^{-1}\left(\frac{1}{1-2x^2}\right) = 2\theta$$

Now Differentiating

$$\Rightarrow \frac{d(2\theta)}{dx}$$

$$\Rightarrow 2 \frac{d(sin^{-1}x)}{dx}$$

$$\Rightarrow \frac{2}{\sqrt{1-x^2}}$$

Ans)
$$\frac{2}{\sqrt{1-x^2}}$$

Question 25.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{\frac{1}{\sqrt{1+x^2}}\right\}$$

Answer:

To find: Value of
$$\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

⇒ Putting
$$x = \cot\theta$$

$$\theta = \cot^{-1}x$$
 ... (i)

Putting $x = \cot \theta$ in the equation

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{1+(\cot\theta)^2}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{1+\cot^2\theta}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{\csc^2\theta}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\csc\theta}\right)$$

$$\Rightarrow \sin^{-1}(\sin\theta)$$

$$\Rightarrow \theta$$

Now, we can see that $\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) = \theta$

Now Differentiating

$$\Rightarrow \frac{d(\theta)}{dx}$$

$$\Rightarrow \frac{d(cot^{-1}x)}{dx}$$

$$\Rightarrow -\frac{1}{1+x^2}$$

Ans)
$$-\frac{1}{1+x^2}$$

Question 26.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{1+x}{1-x}\right)$$

Answer:

To find: Value of $tan^{-1}\left(\frac{1+x}{1-x}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $tan^{-1}\left(\frac{1+x}{1-x}\right)$

⇒ Putting
$$x = tan\theta$$

$$\theta = \tan^{-1}x ... (i)$$

Putting $x = \tan\theta$ in the equation

$$\Rightarrow \tan^{-1}\left(\frac{1+\tan\theta}{1-\tan\theta}\right)$$

$$\Rightarrow tan^{-1}\left(\frac{tan_{\overline{4}}^{n}+tan\theta}{1-tan_{\overline{4}}^{n}tan\theta}\right)$$

$$\Rightarrow \tan^{-1}\left(\tan\frac{\pi}{4} + \theta\right)$$

$$\Rightarrow \frac{\pi}{4} + \theta$$

Now, we can see that $\tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \theta$

Now Differentiating

$$\Rightarrow \frac{d\left(\frac{\pi}{4} + \theta\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{4}\right)}{dx} + \frac{d(\theta)}{dx}$$

$$\Rightarrow 0 + \frac{d(\theta)}{dx}$$

$$\Rightarrow \frac{d(tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{1}{1+x^2}$$

Ans)
$$\frac{1}{1+x^2}$$

Question 27.

Differentiate each of the following w.r.t x:

$$\cot^{-1}\left(\frac{1+x}{1-x}\right)$$

Answer:

To find: Value of $\cot^{-1}\left(\frac{1+x}{1-x}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\cot^{-1}\left(\frac{1+x}{1-x}\right)$

⇒ Putting $x = tan\theta$

$$\theta = \tan^{-1}x$$
 ... (i)

Putting $x = tan\theta$ in the equation

$$\Rightarrow \cot^{-1}\left(\frac{1+\tan\theta}{1-\tan\theta}\right)$$

$$\Rightarrow \cot^{-1}\left(\frac{\tan^{n}_{\frac{1}{4}}+\tan\theta}{1\,-\,\tan^{n}_{\frac{1}{4}}\!\tan\theta}\right)$$

$$\Rightarrow \cot^{-1}\left(\tan\frac{\pi}{4} + \theta\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{\pi}{2}-\left(\frac{\pi}{4}+\theta\right)\right)\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{\pi}{2}-\left(\frac{\pi}{4}+\theta\right)\right)\right)$$

$$\Rightarrow \cot^{-1}\left(\cot\left(\frac{\pi}{4}-\theta\right)\right)$$

$$\Rightarrow \frac{\pi}{4} - \theta$$

Now, we can see that $\cot^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} - \theta$

Now Differentiating

$$\Rightarrow \, \frac{d\left(\frac{\pi}{4} - \theta\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{4}\right)}{dx} - \frac{d(\theta)}{dx}$$

$$\Rightarrow 0 - \frac{d(\theta)}{dx}$$

$$\Rightarrow -\frac{d(tan^{\text{-}1}x)}{dx}$$

$$\Rightarrow -\frac{1}{1+x^2}$$

Ans)
$$-\frac{1}{1+x^2}$$

Question 28.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$$

Answer:

To find: Value of $\tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$

⇒ Putting $x = tan\theta$

$$\theta = \tan^{-1}x ... (i)$$

Putting $x = tan\theta$ in the equation

$$\Rightarrow \tan^{-1}\left(\frac{3\tan\theta - (\tan\theta)^3}{1 - 3(\tan\theta)^2}\right)$$

$$\Rightarrow$$
 tan⁻¹(tan3 θ)

$$\Rightarrow \tan^{-1}\left(\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}\right)$$

$$\Rightarrow$$
 tan⁻¹(tan3 θ)

$$\Rightarrow$$
 30

Now, we can see that
$$tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)=3\theta$$

$$\Rightarrow \frac{d(3\theta)}{dx}$$

$$\Rightarrow 3\frac{d(tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{3}{1+x^2}$$

Ans)
$$\frac{3}{1+x^2}$$

Question 29.

Differentiate each of the following w.r.t x:

$$\cos ec^{-1} \left(\frac{1+x^2}{2x} \right)$$

Answer:

To find: Value of $\operatorname{cosec}^{-1}\left(\frac{1+x^2}{2x}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\operatorname{cosec}^{-1}\left(\frac{1+x^2}{2x}\right)$

⇒ Putting $x = tan\theta$

 $\theta = \tan^{-1}x$... (i)

Putting $x = tan\theta$ in the equation

$$\Rightarrow \mathsf{cosec}^{-1}\left(\frac{1+(\tan\theta)^2}{2\tan\theta}\right)$$

$$\Rightarrow$$
 cosec⁻¹ $\left(\frac{1+\tan^2\theta}{2\tan\theta}\right)$

$$\Rightarrow$$
 cosec⁻¹ $\left(\frac{1}{\sin 2\theta}\right)$

⇒ **2θ**

Now, we can see that $\csc^{-1}\left(\frac{1+x^2}{2x}\right) = 2\theta$

Now Differentiating

$$\Rightarrow \frac{d(2\theta)}{dx}$$

$$\Rightarrow 2 \frac{d(tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{2}{1+x^2}$$

Ans)
$$\frac{2}{1+x^2}$$

Question 30.

Differentiate each of the following w.r.t x:

$$\sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$

Answer:

To find: Value of $\sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$

⇒ Putting
$$x = tan\theta$$

$$\theta = \tan^{-1}x ... (i)$$

Putting $x = tan\theta$ in the equation

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1+(\tan\theta)^2}{1-(\tan\theta)^2}\right)$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1+\tan^2\theta}{1-\tan^2\theta}\right)$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{1}{\cos 2\theta}\right)$

$$\Rightarrow$$
 sec⁻¹(sec2 θ)

$$\Rightarrow$$
 20

Now, we can see that
$$\sec^{-1}\left(\frac{1+x^2}{1-x^2}\right) = 2\theta$$

Now Differentiating

$$\Rightarrow \frac{d(2\theta)}{dx}$$

$$\Rightarrow 2\frac{d(tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{2}{1+x^2}$$

Ans)
$$\frac{2}{1+x^2}$$

Question 31.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

Answer:

To find: Value of
$$\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

⇒ Putting $x = tan\theta$

$$\theta = \tan^{-1}x ... (i)$$

Putting $x = \tan\theta$ in the equation

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{1+(\tan\theta)^2}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{1 + \tan^2\theta}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sqrt{\sec^2\theta}}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{1}{\sec\theta}\right)$$

$$\Rightarrow \sin^{-1}(\cos\theta)$$

$$\Rightarrow \sin^{-1}\left(\sin\left(\frac{\pi}{2}-\theta\right)\right)$$

$$\Rightarrow \frac{\pi}{2} - \theta$$

Now, we can see that $\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) = \frac{\pi}{2} - \theta$

Now Differentiating

$$\Rightarrow \, \frac{\mathsf{d}\left(\frac{\pi}{2} - \theta\right)}{\mathsf{d}x}$$

$$\Rightarrow \frac{\mathsf{d}\left(\frac{\pi}{2}\right)}{\mathsf{d}x} - \frac{\mathsf{d}(\theta)}{\mathsf{d}x}$$

$$\Rightarrow$$
 0- $\frac{d(tan^{-1}x)}{dx}$

$$\Rightarrow -\frac{1}{1+x^2}$$

Ans)
$$-\frac{1}{1+x^2}$$

Question 32.

Differentiate each of the following w.r.t x:

$$\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$$

Answer:

To find: Value of $\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$$

⇒ Putting
$$x = tan\theta$$

$$\theta = \tan^{-1}x ... (i)$$

Putting $x = tan\theta$ in the equation

$$\Rightarrow \sec^{-1}\left(\frac{(\tan\theta)^2 + 1}{(\tan\theta)^2 - 1}\right)$$

$$\Rightarrow$$
 sec⁻¹ $\left(\frac{\tan^2\theta + 1}{\tan^2\theta - 1}\right)$

$$\Rightarrow \sec^{-1}\left[-\left(\frac{1+\tan^2\theta}{1-\tan^2\theta}\right)\right]$$

$$\Rightarrow \Pi - \sec^{-1}\left(\frac{1 + \tan^2\theta}{1 - \tan^2\theta}\right)$$

$$\Rightarrow \Pi - \sec^{-1}\left(\frac{1}{\cos^{2}\theta}\right)$$

$$\Rightarrow \pi - \sec^{-1}(\sec 2\theta)$$

$$\Rightarrow \pi - 2\theta$$

$$\Rightarrow \pi - 2 tan^{-1} x$$

Now, we can see that $\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right) = \pi - 2\tan^{-1}x$

$$\Rightarrow \frac{d(\pi - 2tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{d(\pi)}{dx} - \frac{d(2tan^{-1}x)}{dx}$$

$$\Rightarrow$$
 0-2 $\frac{d(tan^{-1}x)}{dx}$

$$\Rightarrow -\frac{2}{1+x^2}$$

Ans)
$$-\frac{1}{1+x^2}$$

Question 33.

Differentiate each of the following w.r.t x:

$$\cos^{-1}\left(\frac{1-x^{2n}}{1+x^{2n}}\right)$$

Answer:

To find: Value of $\cos^{-1}\left(\frac{1-x^{2n}}{1+x^{2n}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\cos^{-1} \left(\frac{1 - x^{2n}}{1 + x^{2n}} \right)$

$$\Rightarrow \cos^{-1}\left(\frac{1-(x^n)^2}{1+(x^n)^2}\right)$$

⇒ Putting $x^n = tan\theta$

$$\theta = \tan^{-1}(x^n) ... (i)$$

Putting $x^n = \tan\theta$ in the equation

$$\Rightarrow \cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right)$$

$$\Rightarrow \cos^{-1}(\cos 2\theta)$$

$$\Rightarrow$$
 2tan⁻¹ (xⁿ)

Now, we can see that $\cos^{-1}\left(\frac{1-x^{2n}}{1+x^{2n}}\right) = 2\tan^{-1}(x^n)$

Now Differentiating

$$\Rightarrow \frac{d(2tan^{-1}(x^n))}{dx}$$

$$\Rightarrow 2 \frac{d(tan^{-1}(x^n))}{dx^n} \frac{dx^n}{dx}$$

$$\Rightarrow 2 \frac{1}{1+(x^n)^2} n x^{n-1}$$

$$\Rightarrow \frac{2nx^{n-1}}{1+x^{2n}}$$

Ans)
$$\frac{2nx^{n-1}}{1+x^{2n}}$$

Question 34.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left\{\frac{x}{\sqrt{a^2-x^2}}\right\}$$

Answer:

To find: Value of $tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$

⇒ Putting
$$x = asin\theta$$

$$\sin\theta = \frac{x}{a}$$

$$\theta = \sin^{-1}\left(\frac{x}{a}\right)...(i)$$

Putting $x = asin\theta$ in the equation

$$\Rightarrow tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2-(a\sin\theta)^2}}\right)$$

$$\Rightarrow tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2-a^2\sin^2\theta}}\right)$$

$$\Rightarrow tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2\left(1-\sin^2\theta\right)}}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{a\sin\theta}{a\cos\theta}\right)$$

$$\Rightarrow tan^{-1}(tan\theta)$$

 $\Rightarrow \theta$

$$\Rightarrow$$
 sin⁻¹ $\left(\frac{x}{a}\right)$

Now, we can see that
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right) = \sin^{-1}\left(\frac{x}{a}\right)$$

$$\Rightarrow \frac{d\left(\sin^{-1}\left(\frac{x}{a}\right)\right)}{dx}$$

$$\Rightarrow \frac{d\left(\sin^{-1}\left(\frac{x}{a}\right)\right)}{d\left(\frac{x}{a}\right)} \frac{d\left(\frac{x}{a}\right)}{dx}$$

$$\Rightarrow \left(\frac{1}{\sqrt{1-\left(\frac{X}{a}\right)^2}}\right)\frac{1}{a}$$

$$\Rightarrow \left(\frac{1}{\sqrt{1 - \frac{x^2}{a^2}}}\right) \frac{1}{a}$$

$$\Rightarrow \left(\frac{1}{\sqrt{\frac{a^2-x^2}{a^2}}}\right)\frac{1}{a}$$

$$\Rightarrow \left(\frac{a}{\sqrt{a^2-x^2}}\right)\frac{1}{a}$$

$$\Rightarrow \frac{1}{\sqrt{a^2 - x^2}}$$

Ans)
$$\frac{1}{\sqrt{a^2-x^2}}$$

Question 35.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{2ax\sqrt{1-a^2x^2}\right\}$$

Answer:

To find: Value of
$$\sin^{-1} \left\{ 2ax \sqrt{1-a^2x^2} \right\}$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1} \left\{ 2ax \sqrt{1-a^2x^2} \right\}$$

⇒ Putting $ax = sin\theta$

$$\theta = \sin^{-1}(ax) ... (i)$$

Putting $ax = sin\theta$ in the equation

$$\Rightarrow \sin^{-1}\left\{2\sin\theta\sqrt{1-(\sin\theta)^2}\right\}$$

$$\Rightarrow \sin^{-1}\left\{2\sin\theta\sqrt{1-\sin^2\theta}\right\}$$

$$\Rightarrow \sin^{-1}{2\sin\theta\cos\theta}$$

$$\Rightarrow \sin^{-1}{\sin 2\theta}$$

$$\Rightarrow 2 \sin^{-1}(ax)$$

Now, we can see that
$$\sin^{-1}\left\{2ax\sqrt{1-a^2x^2}\right\} = 2\sin^{-1}(ax)$$

$$\Rightarrow \frac{\mathsf{d}(2\sin^{-1}(ax))}{\mathsf{d}x}$$

$$\Rightarrow 2 \frac{d(\sin^{-1}(ax))}{dax} \frac{dax}{dx}$$

$$\Rightarrow \left(2\frac{1}{\sqrt{1-(ax)^2}}\right)a$$

$$\Rightarrow \left(\frac{2\mathsf{a}}{\sqrt{1-a^2x^2}}\right)$$

Ans)
$$\frac{2a}{\sqrt{1-a^2x^2}}$$

Question 36.

Differentiate each of the following w.r.t x:

$$tan^{-1}\left\{\frac{\sqrt{1+a^2x^2}-1}{ax}\right\}$$

Answer:

To find: Value of $tan^{-1} \left\{ \frac{\sqrt{1+a^2x^2}-1}{ax} \right\}$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\tan^{-1} \left\{ \frac{\sqrt{1+a^2x^2}-1}{ax} \right\}$$

⇒ Putting $ax = tan\theta$

$$\theta = \tan^{-1}(ax) \dots (i)$$

Putting $ax = tan\theta$ in the equation

$$\Rightarrow \tan^{-1} \left\{ \frac{\sqrt{1 + (\tan \theta)^2} - 1}{\tan \theta} \right\}$$

$$\Rightarrow \tan^{-1} \left\{ \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right\}$$

$$\Rightarrow \tan^{-1}\left\{\frac{\sec\theta-1}{\tan\theta}\right\}$$

$$\Rightarrow \tan^{-1}\left\{\frac{\frac{1}{\cos\theta}^{-1}}{\frac{\sin\theta}{\cos\theta}}\right\}$$

$$\Rightarrow \tan^{-1} \left\{ \frac{\frac{1 - \cos \theta}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}} \right\}$$

$$\Rightarrow \tan^{-1}\left\{\frac{1-\cos\theta}{\sin\theta}\right\}$$

$$\Rightarrow \tan^{-1} \left\{ \frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right\}$$

$$\Rightarrow \tan^{-1} \left\{ \tan \frac{\theta}{2} \right\}$$

$$\Rightarrow \frac{\theta}{2}$$

$$\Rightarrow \frac{tan^{-1}(ax)}{2}$$

Now, we can see that
$$\tan^{-1} \left\{ \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right\} = \frac{\tan^{-1}(ax)}{2}$$

Now Differentiating

$$\Rightarrow \frac{d\left(\frac{\tan^{-1}(ax)}{2}\right)}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{\mathsf{d}(\tan^{-1}(ax))}{\mathsf{d}ax} \frac{\mathsf{d}ax}{\mathsf{d}x}$$

$$\Rightarrow \frac{1}{2} \left(\frac{1}{1 + (ax)^2} \right) a$$

$$\Rightarrow \frac{a}{2(1+a^2x^2)}$$

$$\text{Ans) } \frac{\text{a}}{2 \left(1 + \text{a}^2 x^2 \right)}$$

Question 37.

Differentiate each of the following w.r.t x:

$$\sin^{-1}\left\{\frac{x^2}{\sqrt{x^4 + a^4}}\right\}$$

Answer:

To find: Value of $\sin^{-1} \left\{ \frac{x^2}{\sqrt{x^4 + a^4}} \right\}$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1}\left\{\frac{x^2}{\sqrt{x^4+a^4}}\right\}$$

⇒ Putting
$$x^2 = a^2 \cot \theta$$

$$\theta = \cot^{-1}\left(\frac{x^2}{a^2}\right)...(i)$$

Putting $x^2 = a^2 \cot \theta$ in the equation

$$\Rightarrow sin^{-1} \left\{ \frac{a^2 \cot \theta}{\sqrt{(a^2 \cot \theta)^2 + a^4}} \right\}$$

$$\Rightarrow \sin^{-1}\left\{\frac{a^2 \cot \theta}{\sqrt{a^4 \cot^2 \theta + a^4}}\right\}$$

$$\Rightarrow \sin^{-1} \left\{ \frac{a^2 \cot \theta}{\sqrt{a^4 (\cot^2 \theta + 1)}} \right\}$$

$$\Rightarrow \sin^{-1}\left\{\frac{\mathsf{a}^2\cot\theta}{a^2\cos\epsilon\theta}\right\}$$

$$\Rightarrow \sin^{-1}{\cos\theta}$$

$$\Rightarrow \sin^{-1}\left\{\sin\left(\frac{\pi}{2}-\theta\right)\right\}$$

$$\Rightarrow \frac{\pi}{2} - \theta$$

$$\Rightarrow \frac{\pi}{2} - \cot^{-1}\left(\frac{x^2}{a^2}\right)$$

Now, we can see that
$$\sin^{-1}\left\{\frac{x^2}{\sqrt{x^4+a^4}}\right\} = \frac{\pi}{2} - \cot^{-1}\left(\frac{x^2}{a^2}\right)$$

$$\Rightarrow \frac{d\left(\frac{\pi}{2} - \cot^{-1}\left(\frac{x^2}{a^2}\right)\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{2}\right)}{dx} - \frac{d\left(\cot^{-1}\left(\frac{X^2}{a^2}\right)\right)}{dx}$$

$$\Rightarrow 0 - \frac{d\left(cot^{-1}\left(\frac{X^2}{\overline{a}^2}\right)\right)}{d\frac{X^2}{\overline{a}^2}} \frac{d\frac{X^2}{\overline{a}^2}}{dx}$$

$$\Rightarrow \left(\frac{1}{1 + \left(\frac{x^2}{a^2}\right)^2}\right) \frac{1}{a^2} 2x$$

$$\Rightarrow \left(\frac{a^4}{a^4 + x^4}\right) \frac{1}{a^2} 2x$$

$$\Rightarrow \left(\frac{2a^2x}{a^4 + x^4}\right)$$

Ans)
$$\frac{2a^2x}{a^4 + x^4}$$

Question 38.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left\{\frac{e^{2x}+1}{e^{2x}-1}\right\}$$

Answer:

To find: Value of $\tan^{-1} \left\{ \frac{e^{2x}+1}{e^{2x}-1} \right\}$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1}\left\{\frac{e^{2x}+1}{e^{2x}-1}\right\}$

$$\Rightarrow \tan^{-1}\left\{\frac{1+e^{2X}}{-(1-e^{2X})}\right\}$$

$$- \tan^{-1} \left\{ \frac{1 + e^{2x}}{1 - e^{2x}} \right\}$$

Putting $e^{2x} = \tan\theta$

$$\theta = \tan^{-1}(e^{2x}) ... (i)$$

Putting $e^{2x} = \tan\theta$ in the equation

$$\Rightarrow$$
 -tan⁻¹ $\left\{ \frac{1 + \tan \theta}{1 - \tan \theta} \right\}$

$$\Rightarrow -\tan^{-1} \left\{ \frac{\tan \frac{\pi}{4} + \tan \theta}{1 - \tan \frac{\pi}{4} \tan \theta} \right\}$$

$$\Rightarrow$$
 -tan⁻¹ $\left\{ \tan \left(\frac{\pi}{4} + \theta \right) \right\}$

$$\Rightarrow -\left(\frac{\pi}{4} + \theta\right)$$

$$\Rightarrow -\frac{\pi}{4} - \theta$$

$$\Rightarrow -\frac{\pi}{4} - \tan^{-1}(e^{2x})$$

Now, we can see that $\tan^{-1} \left\{ \frac{e^{2x} + 1}{e^{2x} - 1} \right\} = -\frac{\pi}{4} - \tan^{-1} (e^{2x})$

$$\Rightarrow \frac{d\left(-\frac{\pi}{4} - tan^{-1}(e^{2x})\right)}{dx}$$

$$\Rightarrow \frac{d\left(-\frac{\pi}{4}\right)}{dx} - \frac{d\left(\tan^{-1}(e^{2x})\right)}{dx}$$

$$\Rightarrow 0 - \frac{d(tan^{-1}(e^{2x}))}{de^{2x}} \frac{de^{2x}}{d2x} \frac{d2x}{dx}$$

$$\Rightarrow -\left(\frac{1}{1+(\mathbf{e}^{2x})^2}\right)\mathbf{e}^{2x}\mathbf{2}$$

$$\Rightarrow -\left(\frac{2e^{2x}}{1+e^{4x}}\right)$$

$$\Rightarrow \frac{-2e^{2x}}{1+e^{4x}}$$

Ans)
$$\frac{-2e^{2x}}{1+e^{4x}}$$

Question 39.

Differentiate each of the following w.r.t x:

$$\cos^{-1}(2x) + 2\cos^{-1}\sqrt{1-4x^2}$$

Answer:

To find: Value of $\cos^{-1}(2x) + 2\cos^{-1}\sqrt{1-4x^2}$

The formula used: (i) $\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(cos^{-1}x)}{dx} = -\frac{1}{\sqrt{1-x^2}}$$

We have, $\cos^{-1}(2x) + 2\cos^{-1}\sqrt{1-4x^2}$

Putting $2x = \cos\theta$

$$\theta = \cos^{-1}(2x)$$
 ... (i)

Putting $e^{2x} = \tan\theta$ in the equation

$$\Rightarrow$$
 cos⁻¹(cos θ) + 2 cos⁻¹ $\sqrt{1 - (cos\theta)^2}$

$$\Rightarrow \cos^{-1}(\cos\theta) + 2\cos^{-1}\sqrt{1-\cos^2\theta}$$

$$\Rightarrow \theta + 2\cos^{-1}\sqrt{\sin^2\theta}$$

$$\Rightarrow \theta + 2\cos^{-1}(\sin\theta)$$

$$\Rightarrow \theta + 2\cos^{-1}\left(\cos\left(\frac{\pi}{2} - \theta\right)\right)$$

$$\Rightarrow \theta + 2\left(\frac{\pi}{2} - \theta\right)$$

$$\Rightarrow \pi - \theta$$

$$\Rightarrow \pi - \cos^{-1}(2x)$$

Now, we can see that $\cos^{-1}(2x) + 2\cos^{-1}\sqrt{1-4x^2} = \pi - \cos^{-1}(2x)$

$$\Rightarrow \frac{d(\pi - \cos^{-1}(2x))}{dx}$$

$$\Rightarrow \frac{d(\pi)}{dx} - \frac{d(\cos^{-1}(2x))}{dx}$$

$$\Rightarrow 0 - \frac{d(\cos^{-1}(2x))}{d2x} \frac{d2x}{dx}$$

$$\Rightarrow \left(\frac{1}{\sqrt{1-(2x)^2}}\right)2$$

$$\Rightarrow \left(\frac{2}{\sqrt{1-4x^2}}\right)$$

Ans)
$$\frac{2}{\sqrt{1-4x^2}}$$

Question 40.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{a-x}{1+ax}\right)$$

Answer:

To find: Value of $\tan^{-1} \left\{ \frac{a-x}{1+ax} \right\}$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(tan^{-1}x)}{dx} = \frac{1}{1+x^2}$$

We have, $\tan^{-1} \left\{ \frac{a-x}{1+ax} \right\}$

$$\Rightarrow$$
 tan⁻¹a – tan⁻¹x

Now Differentiating

$$\Rightarrow \frac{d(tan^{-1}a - tan^{-1}x)}{dx}$$

$$\Rightarrow \frac{d(tan^{\text{-}1}a\)}{dx} - \frac{d(tan^{\text{-}1}x)}{dx}$$

$$\Rightarrow 0 - \frac{1}{1 + x^2}$$

Ans)
$$-\frac{1}{1+x^2}$$

Question 41.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left\{\frac{\sqrt{x}-x}{1+x^{\frac{3}{2}}}\right\}$$

Answer:

To find: Value of $\tan^{-1} \left(\frac{\sqrt{x} - x}{1 + x^{\frac{3}{2}}} \right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1}\left(\frac{\sqrt{x}-x}{1+x^{\frac{3}{2}}}\right)$

$$\Rightarrow \tan^{-1}\left(\frac{\sqrt{x}-x}{1+x\sqrt{x}}\right)$$

$$\Rightarrow \tan^{-1} \sqrt{x} - \tan^{-1} x$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1}\sqrt{x} - \tan^{-1}x)}{\mathsf{d}x}$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1}\sqrt{x})}{\mathsf{dx}} - \frac{\mathsf{d}(\tan^{-1}x)}{\mathsf{dx}}$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1}\sqrt{x})}{\mathsf{d}\sqrt{x}}\frac{\mathsf{d}\sqrt{x}}{x} - \frac{\mathsf{d}(\tan^{-1}x)}{\mathsf{d}x}$$

$$\Rightarrow \frac{1}{1+(\sqrt{x})^2} \frac{1}{2\sqrt{x}} - \frac{1}{1+x^2}$$

$$\Rightarrow \frac{1}{2\sqrt{x}(1+x)} - \frac{1}{1+x^2}$$

Ans)
$$\frac{1}{2\sqrt{x}(1+x)} - \frac{1}{1+x^2}$$

Question 42.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{ax}}\right)$$

Answer:

To find: Value of $\tan^{-1}\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{ax}}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1} \left(\frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \right)$

$$\Rightarrow \tan^{-1}\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{x}\sqrt{a}}\right)$$

$$\Rightarrow$$
 tan⁻¹ \sqrt{a} + tan⁻¹ \sqrt{x}

$$\Rightarrow \frac{d\left(tan^{-1}\sqrt{a} + tan^{-1}\sqrt{x}\right)}{dx}$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1}\sqrt{a})}{\mathsf{dx}} - \frac{\mathsf{d}(\tan^{-1}\sqrt{x})}{\mathsf{dx}}$$

$$\Rightarrow 0 - \frac{\mathsf{d}(\tan^{-1}\sqrt{x})}{\mathsf{d}\sqrt{x}} \frac{\mathsf{d}\sqrt{x}}{x}$$

$$\Rightarrow -\frac{1}{1+\left(\sqrt{x}\right)^2}\frac{1}{2\sqrt{x}}$$

$$\Rightarrow -\frac{1}{2\sqrt{x}(1+x)}$$

Ans)
$$-\frac{1}{2\sqrt{x}(1+x)}$$

Question 43.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\!\left(\frac{3-2x}{1+6x}\right)$$

Answer:

Given: Value of $\tan^{-1} \left(\frac{3-2x}{1+6x} \right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1}\left(\frac{3-2x}{1+6x}\right)$

$$\Rightarrow \tan^{-1}\left(\frac{3-2x}{1+3\times 2x}\right)$$

$$\Rightarrow \tan^{-1} 3 - \tan^{-1} 2x$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1} 3 - \tan^{-1} 2x)}{\mathsf{dx}}$$

$$\Rightarrow 0 - \frac{\mathsf{d}(\tan^{-1}2x)}{\mathsf{d}2x} \frac{\mathsf{d}2x}{dx}$$

$$\Rightarrow -\frac{1}{1+(2x)^2}2$$

$$\Rightarrow -\frac{2}{1+4x^2}$$

Ans)
$$-\frac{2}{1+4x^2}$$

Question 44.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{5x}{1-6x^2}\right)$$

Answer:

Given: Value of $\tan^{-1} \left(\frac{5x}{1-6x^2} \right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1}\left(\frac{5x}{1-6x^2}\right)$

$$\Rightarrow \tan^{-1}\left(\frac{3x + 2x}{1 - 3x \times 2x}\right)$$

$$\Rightarrow \tan^{-1} 3x + \tan^{-1} 2x$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1} 3x \mp \tan^{-1} 2x)}{\mathsf{dx}}$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1}3x)}{\mathsf{d}3x} \frac{\mathsf{d}3x}{dx} + \frac{\mathsf{d}(\tan^{-1}2x)}{\mathsf{d}2x} \frac{\mathsf{d}2x}{dx}$$

$$\Rightarrow \frac{1}{1 + (3x)^2} 3 + \frac{1}{1 + (2x)^2} 2$$

$$\Rightarrow \frac{3}{1+9x^2} + \frac{2}{1+4x^2}$$

Ans)
$$\frac{3}{1+9x^2} + \frac{2}{1+4x^2}$$

Question 45.

Differentiate each of the following w.r.t x:

$$\tan^{-1}\left(\frac{2x}{1+15x^2}\right)$$

Answer:

Given: Value of $\tan^{-1}\left(\frac{2x}{1+15x^2}\right)$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have, $\tan^{-1}\left(\frac{2x}{1+15x^2}\right)$

$$\Rightarrow \tan^{-1}\left(\frac{5x - 3x}{1 + 5x \times 3x}\right)$$

$$\Rightarrow \tan^{-1} 5x - \tan^{-1} 3x$$

$$\Rightarrow \frac{\mathsf{d}(\tan^{-1} 5x - \tan^{-1} 3x)}{\mathsf{dx}}$$

$$\Rightarrow \frac{d(\tan^{-1}5x)}{d5x} \frac{d5x}{dx} - \frac{d(\tan^{-1}3x)}{d3x} \frac{d3x}{dx}$$

$$\Rightarrow \frac{1}{1 + (5x)^2} 5 + \frac{1}{1 + (3x)^2} 3$$

$$\Rightarrow \frac{5}{1+25x^2} + \frac{3}{1+9x^2}$$

Ans)
$$\frac{5}{1+25x^2} + \frac{3}{1+9x^2}$$

Question 46.

Differentiate each of the following w.r.t x:

If
$$t = tan^{-1} \left(\frac{ax - b}{bx + a} \right)$$
, prove that $\frac{dy}{dx} = \frac{1}{(1 + x^2)}$.

Answer:

Given: Value of $\tan^{-1} \left(\frac{ax-b}{bx+a} \right)$

To Prove:
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\tan^{-1}\left(\frac{ax-b}{bx+a}\right)$$

Dividing numerator and denominator with a

$$\Rightarrow \tan^{-1} \left(\frac{\frac{ax - b}{a}}{\frac{bx + a}{a}} \right)$$

$$\Rightarrow \tan^{-1}\left(\frac{x - \frac{b}{a}}{1 + \frac{b}{a}x}\right)$$

$$\Rightarrow \tan^{-1} x - \tan^{-1} \left(\frac{b}{a}\right)$$

Now Differentiating

$$\Rightarrow \frac{\mathsf{d}\left(\tan^{-1}x - \tan^{-1}\left(\frac{b}{a}\right)\right)}{\mathsf{dx}}$$

$$\Rightarrow \frac{d(tan^{-1}x)}{dx} - \frac{d\left(tan^{-1}\left(\frac{b}{a}\right)\right)}{dx}$$

$$\Rightarrow \frac{1}{1+x^2} + 0$$

Ans)
$$\frac{1}{1+x^2}$$

Question 47.

Differentiate each of the following w.r.t x:

If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$
, show that $\frac{dy}{dx} = \frac{4}{(1+x^2)}$.

Answer:

Given: Value of
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$

To Prove:
$$\frac{dy}{dx} = \frac{4}{(1+x^2)}$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) + \sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$

Putting $x = tan\theta$

$$\theta = \tan^{-1}x$$

Dividing numerator and denominator with a

$$\Rightarrow \sin^{-1}\left(\frac{2\tan\theta}{1+(\tan\theta)^2}\right) + \sec^{-1}\left(\frac{1+(\tan\theta)^2}{1-(\tan\theta)^2}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) + \sec^{-1}\left(\frac{1+\tan^2\theta}{1-\tan^2\theta}\right)$$

$$\Rightarrow \sin^{-1}(\sin 2\theta) + \sec^{-1}\left(\frac{1}{\cos 2\theta}\right)$$

$$\Rightarrow$$
 sin⁻¹(sin2 θ) + sec⁻¹(sec2 θ)

$$\Rightarrow$$
2 θ +2 θ

$$\Rightarrow$$
 4tan⁻¹x

$$\Rightarrow \frac{\mathsf{d}(4\tan^{-1}x)}{\mathsf{d}x}$$

$$\Rightarrow 4\frac{1}{1+x^2}$$

Ans)
$$\frac{4}{1+x^2}$$

Question 48.

Differentiate each of the following w.r.t x:

If
$$y = sec^{-1}\left(\frac{x+1}{x-1}\right) + sin^{-1}\left(\frac{x-1}{x+1}\right)$$
, show that $\frac{dy}{dx} = 0$.

Answer

Given: Value of
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

To Prove:
$$\frac{dy}{dx} = 0$$

Formula used: (i)
$$\cos \theta = \sin \left(\frac{n}{2} - \theta\right)$$

(ii)
$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

We have,
$$\sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

$$\Rightarrow \cos^{-1}\left(\frac{x-1}{x+1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

$$\Rightarrow \frac{\Pi}{2}$$

$$\Rightarrow \frac{d\left(\frac{\pi}{2}\right)}{dx}$$

Ans)
$$\frac{4}{1+x^2}$$

Question 49.

Differentiate each of the following w.r.t x:

If
$$y = sin \left\{ 2 tan^{-1} \left(\sqrt{\frac{1-x}{1+x}} \right) \right\}$$
, show that $\frac{dy}{dx} = \frac{-x}{\sqrt{1-x^2}}$.

Answer:

Given: Value of
$$y = sin \left\{ 2 tan^{-1} \left(\sqrt{\frac{1-x}{1+x}} \right) \right\}$$

To Prove:
$$\frac{dy}{dx} = \frac{-x}{\sqrt{1-x^2}}$$

Formula used: (i)
$$\frac{d(cos^{-1}x)}{dx} = -\frac{1}{\sqrt{1-x^2}}$$

Let
$$x = \cos\theta$$

$$\theta = \cos^{-1}x$$

Putting $x = \cos\theta$ in equation

$$\Rightarrow \sin \left\{ 2 \tan^{-1} \left(\sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \right) \right\}$$

$$\Rightarrow \sin \left\{ 2 \tan^{-1} \left(\sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2}} \right) \right\}$$

$$\Rightarrow \sin \left\{ 2 \tan^{-1} \left(\sqrt{\tan^2 \frac{\theta}{2}} \right) \right\}$$

$$\Rightarrow \sin \left\{ 2 \tan^{-1} \left(\tan \frac{\theta}{2} \right) \right\}$$

$$\Rightarrow \sin\left\{2\frac{\theta}{2}\right\}$$

$$\Rightarrow$$
 sin θ

$$\Rightarrow$$
 sin(cos⁻¹x)

Now Differentiating

$$\Rightarrow \frac{d(\sin(\cos^{-1}x))}{dx}$$

$$\Rightarrow \frac{d(\sin(\cos^{-1}x))}{d\cos^{-1}x} \frac{d\cos^{-1}x}{dx}$$

$$\Rightarrow -\cos(\cos^{-1}x)\frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow -\frac{x}{\sqrt{1-x^2}}$$

Ans)
$$\frac{4}{1+x^2}$$

Question 50.

Differentiate each of the following w.r.t x:

If
$$y = tan^{-1} \left\{ \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right\}$$
. Prove that $\frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}}$.

Answer:

Given: Value of
$$y = tan^{-1} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$$

To Prove:
$$\frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}}$$

The formula used: (i)
$$\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$$

(ii)
$$\frac{d(cos^{-1}x)}{dx} = -\frac{1}{\sqrt{1-x^2}}$$

Let $x = \cos 2\theta$

$$2\theta = \cos^{-1}x$$

$$\theta = \frac{1}{2}\cos^{-1}x$$

Putting $x = \cos 2\theta$

$$y = tan^{-1} \frac{\sqrt{1 + cos2\theta} - \sqrt{1 - cos2\theta}}{\sqrt{1 + cos2\theta} + \sqrt{1 - cos2\theta}}$$

$$y = \tan^{-1} \frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2 \theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2 \theta}}$$

$$y = tan^{-1} \frac{\sqrt{2}cos\theta - \sqrt{2}sin\theta}{\sqrt{2}cos\theta + \sqrt{2}sin\theta}$$

$$y = tan^{-1} \frac{\sqrt{2}(cos\theta - sin\theta)}{\sqrt{2}(cos\theta + sin\theta)}$$

Dividing by $\cos\theta$ in the numerator and denominator

$$y = tan^{-1} \frac{\frac{cos\theta - sin\theta}{cos\theta}}{\frac{cos\theta + sin\theta}{cos\theta}}$$

$$y = tan^{-1} \frac{1 - tan\theta}{1 + tan\theta}$$

$$y = \tan^{-1} \frac{\tan \frac{\Pi}{4} - \tan \theta}{1 + \tan \frac{\Pi}{4} \tan \theta}$$

$$y = tan^{-1}tan\left(\frac{\Pi}{4}-\theta\right)$$

$$y = \frac{\pi}{4} - \theta$$

$$y = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$$

Now Differentiating

$$\Rightarrow \frac{d\left(\frac{n}{4} - \frac{1}{2}cos^{-1}x\right)}{dx}$$

$$\Rightarrow \frac{d\left(\frac{\Pi}{4}\right)}{dx} - \frac{1}{2} \frac{d\cos^{-1}x}{dx}$$

$$\Rightarrow \frac{1}{2} \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow \frac{1}{2\sqrt{1-x^2}}$$

Ans)
$$\frac{1}{2\sqrt{1-x^2}}$$

Question 51.

Differentiate each of the following w.r.t x:

Differentiate
$$\sin^{-1} \left(\frac{2^{x+1}}{1+4^x} \right)$$
 w. r. t. x

Answer:

Given: Value of
$$y = \sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$$

To find:
$$\frac{dy}{dx}$$

The formula used: (i) $\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$

(ii)
$$\frac{d(tan^{-1}x)}{dx} = \frac{1}{1+x^2}$$

$$y = \sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$$

$$y = \sin^{-1}\left(\frac{2^{x}.2}{1+(2^{2})^{x}}\right)$$

$$y = \sin^{-1}\left(\frac{2^{x}.2}{1+(2^{x})^{2}}\right)$$

Let $2^x = \tan\theta$

$$\theta = \tan^{-1}(2^{x})$$

Putting $2^x = \tan\theta$

$$y = \sin^{-1}\left(\frac{\tan\theta.2}{1 + (\tan\theta)^2}\right)$$

$$y = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$$

$$y = sin^{-1}(sin2\theta)$$

$$y=2\theta$$

$$y=2tan^{-1}(2^x)$$

$$\Rightarrow \frac{d(2tan^{-1}(2^{x}))}{dx}$$

$$\Rightarrow 2\frac{d(tan^{-1}(2^{x}))}{d2^{x}}\frac{d2^{x}}{dx}$$

$$\Rightarrow 2\frac{1}{1+(2^x)^2}.\ 2^x \log 2$$

$$\Rightarrow \frac{2^{1+x}\log 2}{1+4^x}.$$

$$Ans) \ \frac{2^{1+x} \log 2}{1+4^x}$$