Algorytm sita Eratostenesa

Wejście:

n-liczba określająca górny kraniec przedziału poszukiwania liczb pierwszych, $n \in N$, n > 1.

Wyjście:

Kolejne liczby pierwsze w przedziale od 2 do n.

Zmienne pomocnicze:

S – tablica wartości logicznych. S [i] ∈ {false, true}, dla i = 2, 3, ..., n.

g –zawiera granicę wyznaczania wielokrotności. g ∈ N.

i −przebiega przez kolejne indeksy elementów S [i]. i ∈ N.

w –wielokrotności wyrzucane ze zbioru S, w \in N.

Lista kroków:

K01: Dla i = 2, 3, ..., n,

wykonuj S [i] ← true zbiór początkowo zawiera wszystkie liczby

KO2: $g \leftarrow [sqr(n)]$ obliczamy granicę eliminowania wielokrotności

K03: Dla i = 2, 3, ..., g,

wykonuj kroki K04...K08 w pętli wyrzucamy ze zbioru wielokrotności i

KO4: Jeśli S [i] = false,

to następny obieg pętli KO3 sprawdzamy, czy liczba i jest w zbiorze

K05: $w \leftarrow i 2$ jeśli tak, wyrzucamy jej wielokrotności

K06: Dopóki $w \le n$,

wykonuj kroki K07...K08 ze zbioru

K07: $S[w] \leftarrow false$

K08: $w \leftarrow w + i \text{ następna wielokrotność}$

K09: Dla i = 2, 3, ..., n,

wykonuj krok K10 przeglądamy zbiór wynikowy

K10: Jeśli S [i] = true,

to pisz i wyprowadzając pozostałe w nim liczby

K11: Zakończ