

CHAPTER 6
Work and Kinetic Energy

CH6 in a Nutshell

• Hook's Law: $F = k \cdot \Delta x$

$$F = k \cdot \Delta x$$

$$[N = \frac{kg}{s^2} \cdot m]$$

• Work:

$$W = Fx = \int F \, dx = \frac{1}{2} \, kx^2 \quad [J = N \cdot m]$$

$$[J=N\cdot m]$$

• Kinetic Energy: $K = \frac{1}{2} mv^2$

$$K = \frac{1}{2} m v^2$$

$$[J = N \cdot m]$$

Power:

$$P = \frac{W}{\Delta t} = F \frac{\Delta x}{\Delta t} = F \cdot v \qquad \left[W = \frac{J}{S} \right]$$

$$\left[W = \frac{J}{s}\right]$$

Hooke's Law

 ... states that the strain of the material is proportional to the applied stress within the elastic limit of that material.

$$F = k \cdot \Delta x$$

where k is the stiffness of the spring [N/m].

Overview

- 6.1 Work
- 6.2 Kinetic Energy
- 6.3 Work and Energy
- 6.4 Power

Introduction

- A baseball pitcher does work with his throwing arm to give the ball a property called kinetic energy.
- In this chapter, the introduction of the new concepts of work, energy, and the conservation of energy will allow us to deal with problems in which Newton's laws alone aren't enough.

Work

• A force on an object does **work** if the object undergoes a displacement.

These people are doing work as they push on the car because they exert a force on the car as it moves. If a particle moves through a displacement \vec{s} while a constant force \vec{F} acts on it in the same direction ...

... the work done by the force on the particle is W = Fs.

Units of Work

$$1J = \frac{kg \cdot m^2}{s^2}$$

- The SI unit of work is the **joule** (named in honor of the 19th-century English physicist James Prescott Joule).
- Since W = Fx, the unit of work is the unit of force multiplied by the unit of distance.

• In SI units:

1 joule = (1 newton) (1 meter) or $1 J = 1 N \cdot m$

 If you lift an object with a weight of 1 N a distance of 1 m at a constant speed, you do 1 J of work on it.

Work Done by a Constant Force (1 of 2)

 The work done by a constant force acting at an angle to the displacement is:

This can be written more compactly as:

Positive Work

 When the force has a component in the direction of the displacement, work is positive.

Negative Work

 When the force has a component opposite to the direction of the displacement, work is negative.

Zero Work (1 of 2)

 When the force is perpendicular to the direction of the displacement, the force does no work on the object.

Zero Work (2 of 2)

 A weightlifter does no work on a barbell as long as he holds it stationary.

Lowering the Barbell to the Floor: Slide 1

A weightlifter lowers a barbell to the floor.

Lowering the Barbell to the Floor: Slide 2

The barbell does *positive* work on the weightlifter's hands.

Lowering the Barbell to the Floor: Slide 3

The weightlifter's hands do *negative* work on the barbell.

Total Work

- The work done by the net force on a particle as it moves is called the **total work** W_{tot} .
- The particle speeds up if $W_{\text{tot}} > 0$, slows down if $W_{\text{tot}} < 0$, and maintains the same speed if $W_{\text{tot}} = 0$.

Kinetic Energy (1 of 4)

The energy of motion of a particle is called kinetic energy

Kinetic energy
$$K = \frac{1}{2}mv_{\infty}^{2}$$
 Speed of particle

- Like work, the kinetic energy of a particle is a scalar quantity; it depends on only the particle's mass and speed, not its direction of motion.
- Kinetic energy can never be negative, and it is zero only when the particle is at rest.
- The SI unit of kinetic energy is the joule.

Kinetic Energy (2 of 4)

 Kinetic energy does not depend on the direction of motion.

Same mass, same speed, different directions of motion: *same* kinetic energy

Kinetic Energy (3 of 4)

 Kinetic energy increases linearly with the mass of the object.

Kinetic Energy (4 of 4)

 Kinetic energy increases with the square of the speed of the object.

The Work-Energy Theorem

 The work-energy theorem: The work done by the net force on a particle equals the change in the particle's kinetic energy.

Work-energy theorem: Work done by the net force on a particle equals the change in the particle's kinetic energy.

Total work done on particle =
$$W_{tot} = K_2 - K_1 = \Delta K$$
 Change in kinetic energy net force

Final kinetic energy

Total work done by the net force on a particle energy.

Ahead: We will be using the work-energy theorem to formulate the conservation of energy.

Work and Energy with Varying Forces (1 of 3)

- Many forces are not constant.
- Suppose a particle moves along the x-axis from x_1 to x_2 .

A particle moves from x_1 to x_2 in response to a changing force in the x-direction.

Work and Energy with Varying Forces (2 of 3)

- We calculate the approximate work done by the force over many segments of the path.
- We do this for each segment and then add the results for all the segments.

A particle moves from x_1 to x_2 in response to a changing force in the x-direction.

... but over a short displacement Δx , the force is essentially constant.

Work and Energy with Varying Forces (3 of 3)

• The work done by the force in the total displacement from x_1 to x_2 is the integral of F_x from x_1 to x_2 :

 On a graph of force as a function of position, the total work done by the force is represented by the area under the curve between the initial and final positions.

Work Done by a Constant Force (2 of 2)

The rectangular area under the graph represents the work done by the constant force of magnitude F during displacement s: W = Fs

Hooke's Law: Stretching a Spring

- The force required to stretch a spring a distance x is proportional to x: $F_x = kx$.
- The area under the graph represents the work done on the spring to stretch it a distance:

The area under the graph represents the work done on the spring as the spring is stretched from x = 0 to a maximum value X:

Work-Energy Theorem for Motion Along a Curve

- A particle moves along a curved path from point P₁ to P₂, acted on by a force that varies in magnitude and direction.
- The work can be found using a line integral:

Upper limit = Scalar product (dot product) of \vec{F} and displacement $d\vec{l}$ final position

Work done on $W = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{l} = \int_{P_1}^{P_2} F \cos \phi \, dl = \int_{P_1}^{P_2} F \, dl$ a particle by a varying force \vec{F} Lower limit = Angle between along a curved path initial position \vec{F} and $d\vec{l}$ parallel to $d\vec{l}$

Power (1 of 2)

- Power is the rate at which work is done.
- Average power is:

Average power during
$$P_{av} = \frac{\Delta W}{\Delta t}$$
 Work done during time interval Δt

Instantaneous power is:

Instantaneous

P =
$$\lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$$

Time rate of doing work

Average power over infinitesimally short time interval

• The SI unit of power is the watt (1 W = 1 J/s), but another familiar unit is the horsepower (1 hp = 746 W).

Power: Lifting a Box Slowly

Power: Lifting a Box Quickly

Power (2 of 2)

 In mechanics we can also express power in terms of force and velocity:

Instantaneous power for a force doing work
$$P = \vec{F} \cdot \vec{v}_{\text{*}}$$
.... Force that acts on particle on a particle

 Here is a one-horsepower (746-W) propulsion system.

Watts to horsepower conversion:

$$1 W = \frac{1}{746} hp$$

