Title

D. Zack Garza

Friday 20th March, 2020

Contents

1 Fri	Frid	iday February 21st		
	1.1	Singularities	1	
	1.2	Singularities at Infinity	2	

1 Friday February 21st

1.1 Singularities

Recall that there are three types of singularities:

- Removable
- Poles
- Essential

Recall that a function g is holomorphic at z_0 iff

$$\lim_{z \to z_0} (z - z_0)g(z) = 0$$

Theorem 1.1(3.2).

An isolated singularity z_0 of f is a pole $\iff \lim_{z \longrightarrow z_0} f(z) = \infty$.

Theorem 1.2(3.3, Casorati-Weierstrass).

If f is holomorphic in $D_r(z_0) \setminus \{z_0\}$ and has an essential singularity z_0 , then there exists a radius r such that $f(D_r(\{z_0\}) \setminus \{z_0\})$ is dense in \mathbb{C} .

Proof.

Proceed by contradiction. Suppose there exists a $w \in \mathbb{C}$ and a $\delta > 0$ such that

$$D_{\delta}(w) \bigcap f(D_r(\{z_0\}) \setminus \{z_0\}) = \emptyset.$$

If
$$z \in D_r(w) \setminus z_0$$
, then $|f(z) - w| > \delta$. Define $g(z) = \frac{1}{f(z) - w}$ on $D_r(z_0) \setminus \{z_0\}$; then $|g(z)| < \frac{1}{\delta}$.

Note that this implies that g(z) is holomorphic on $D_r(z_0) \setminus \{z_0\}$. g(z) being holomorphic here follows from f being holomorphic here.

Then g(z) has a removable singularity at $z = z_0$ by theorem 3.1.

If $g(z_0) \neq 0$, then f(z) - w is holmorphic at z_0 , contradicting the fact that z_0 is an essential singularity.

If instead $g(z_0) = 0$, then z_0 is a pole, again a contradiction.

Note: revisit why this is a contradiction.

1.2 Singularities at Infinity

The point $z = \infty$ can be one of three types of singularities:

- 1. Removable $\iff f(z) = \sum_{k=-1}^{\infty} c_k \frac{1}{z^k}$.
 - I.e. only one positive exponent.
- 2. Pole $\iff f(z) = \sum_{k=-\infty}^{n} c_k z^k$
 - I.e. there are finitely many positive exponents.
- 3. Essential $\iff f(z) = \sum_{k=-\infty}^{\infty} c_k z^k$
 - There are infinitely many positive exponents.

Definition 1.2.1 (Meromorphic).

A function f is **meromorphic** on Ω iff there exists a sequence $\{z_i\} \subset \Omega$ with no limit point in Ω such that

- 1. f is holomorphic on $\Omega \setminus \{z_i\}$, and
- 2. f has poles at each z_i .

Theorem 1.3(3.4, Meromorphic Functions are Rational).

f is meromorphic on \mathbb{CP}^1 iff f is a rational function.

Proof.

 \implies : By part 1 of the definition above, the point z=0 is either a pole or a removable singularity of the function $F(z)=f\left(\frac{1}{z}\right)$. By part 2, F has finitely many poles $\{z_k\}_{k=1}^N$. So for each k, write

$$f(z) = f_k(z) + g_k(z)$$

where f_k is the principal part and g_k is holomorphic in a neighborhood of z_k . Then $f_k(z)$ is a

polynomial in $\left(\frac{1}{z-z_k}\right)$, say of degree m_k . But then

$$F(z) := f\left(\frac{1}{z}\right) = \tilde{f}_{\infty}(z) + \tilde{g}_{\infty}(z)$$

where $\tilde{f}_{\infty}(z)$ is a polynomial in z, and $\tilde{g}_{\infty}(z)$ is holomorphic near zero. Thus $\tilde{f}_{\infty}\left(\frac{1}{z}\right)$ is a polynomial in $\frac{1}{z}$.

Define $f_{\infty}(z) = \tilde{f}_{\infty}\left(\frac{1}{z}\right)$ and

$$H(z) = f(z) - f_{\infty}(z) - \sum_{k} f_{k}(z).$$

Then H is entire and bounded and thus constant, and since $\lim_{z \to \infty} H(z) = 0$, H is identically zero. Thus

$$f(z) = f_{\infty}(z) + \sum_{k} f_{k}(z)$$

⇐ : To be continued, uses the argument principle, Rouche's theorem, and Jordan's lemma.