数电实验3报告

17341015 数据科学与计算机学院 计科一班 陈鸿峥

1 预习报告

设计一个代码转换电路,输入为4位8421码输出为4位循环码

1.1 逻辑真值表

	842	1码		4位循环码							
Q3	Q2	Q1	Q0	G3	G2	G1	G0				
0	0	0	0	0	0	0	0				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	1	1				
0	0	1	1	0	0	1	0				
0	1	0	0	0	1	1	0				
0	1	0	1	0	1	1	1				
0	1	1	0	0	1	0	1				
0	1	1	1	0	1	0	0				
1	0	0	0	1	1	0	0				
1	0	0	1	1	1	0	1				
1	0	1	0	1	1	1	1				
1	0	1	1	1	1	1	0				
1	1	0	0	1	0	1	0				
1	1	0	1	1	0	1	1				
1	1	1	0	1	0	0	1				
1	1	1	1	1	0	0	0				

1.2 设计流程

由二进制转换为循环码的规则可得

$$G3 = Q3, G2 = Q3 \oplus Q2, G1 = Q2 \oplus Q1, G0 = Q1 \oplus Q0$$

设计电路如下:

仿真结果如下:

其中A0-A3对应Q0-Q3脚,A8-A11对应输出G0-G3脚;连续脉冲频率为10Hz. 可见Q0-Q3输入电平对

应0-15时, G0-G3输出电平对应其循环码.

2 加分项目(已在实验课上记录)

输出16进制数码

2.1 法一

直接用逻辑门暴力解决

Q3	Q2	Q1	Q0	NUM	a	b	c	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	0	1	1	0	0	0	0
0	0	1	0	2	1	1	0	1	1	0	1
0	0	1	1	3	1	1	1	1	0	0	1
0	1	0	0	4	0	1	1	0	0	1	1
0	1	0	1	5	1	0	1	1	0	1	1
0	1	1	0	6	1	0	1	1	1	1	1
0	1	1	1	7	1	1	1	0	0	0	0
1	0	0	0	8	1	1	1	1	1	1	1
1	0	0	1	9	1	1	1	1	0	1	1
1	0	1	0	A	1	1	1	0	1	1	1
1	0	1	1	b	0	0	1	1	1	1	1
1	1	0	0	С	1	0	0	1	1	1	0
1	1	0	1	d	0	1	1	1	1	0	1
1	1	1	0	Е	1	0	0	1	1	1	1
1	1	1	1	F	1	0	0	0	1	1	1

设G3为A, G2为B, G1为C, G0为D, 用POS形式表示有

$$a = M_{3,5,12,15}$$

$$b = M_{1,2,4,5,10,11}$$

$$c = M_{1,2,4,14}$$

$$d = M_{1,6,9,12,15}$$

$$e = M_{7,9,11,12,13,15}$$

$$f = M_{3,9,13,14,15}$$

$$g = M_{4,9,15,16}$$

设计电路如下图所示

左边是将所有 M_i 均列出来,右侧再进行整合

2.2 法二

采用选择器(MUX)构造,这里选用的是74HC151,比较起法一会简单得多. Q1、Q2、Q3作为MUX的A、B、C输入,通过比较输出与Q0的异同,可通过恰当连线使得MUX表示任意四元逻辑表达式. 下面的真值表列出了构造,其中N代表 $\overline{Q0}$ (Q0取非),S代表Q0(与Q0)相同,1代表输出恒为1(接电源),0代表输出恒为0(接地).

Q3	Q2	Q1	Q0	a		b		c		d		e		f		g	
0	0	0	0	1	3.7	1	1	1	-	1	».T	1	a.t	1	3.7	0	
0	0	0	1	0	N	1	1	1	1	0	N	0	N	0	N	0	0
0	0	1	0	1	-	1	1	0	- C	1	1	1	N	0	0	1	1
0	0	1	1	1	1	1		1	S	1		0		0		1	
0	1	0	0	0		1		1	- 1	0	0	0	0	1	1	1	1
0	1	0	1	1	S	0	N	1		1	S	0		1		1	
0	1	1	0	1		0	~	1	1	3.7	1		1		1		
0	1	1	1	1	1	1	S	1	1	0	N	0	N	0	N	0	N
1	0	0	0	1	-	1	_	1	1	1	1	1	N	1	1	1	1
1	0	0	1	1	1	1	1	1		1		0		1		1	
1	0	1	0	1		1		N 1 1	_	0	0 1	1	-	1	-	1	
1	0	1	1	0	N	0	N		1	1		1	1	1	1	1	1
1	1	0	0	1	3.7	0	S	0	G	1	1	1		1	3.7	0	
1	1	0	1	0	N	1		1	S	1		1	1	0	N	1	S
1	1	1	0	1	1	0	0	0		1	N	1	1	1	1	1	
1	1	1	1	1		0		0	0	0		1		1		1	1

实验电路如下

经测试可得出正确结果

3 实验报告

3.1 实验仪器及器件

- 1. 数字电路实验箱、示波器
- 2. 74LS197*1、74LS86*1

3.2 实验箱静态、动态测试步骤

1. 接通实验箱电源

- 2. 用逻辑开关模拟二进制代码输入,并把输出接入"0-1"显示器(即实验箱有右上角LED灯);检查电路,看电路是否正常操作
- 3. 用74LS197构成十六进制计数器作为代码转换电路的输入信号源,其中CP0作为时钟输入(接连续脉冲或单步脉冲),QO与CP1相连, \overline{MR} 、 \overline{PL} 接HIGH,Q3、Q2、Q1、Q0为十六进制计数器的输出
- 4. 按照预习报告的电路图连接74LS197和74LS86
- 5. 将74LS86的输出连接到"0-1"显示器和示波器中,注意示波器两侧的导线要接地
- 6. 观察"0-1"显示器的数码变化及示波器的波形变化,进行实验分析

3.3 结果分析及结论

这里的D0-D3对应74LS86输出的Q3-Q0. 从图中可以看出4位循环码的排布;并且,与仿真结果类似,同样出现了毛刺现象(尖峰脉冲),这是因为组合电路中存在着竞争与冒险行为(实验八,还未进行深究,但这是个有意思的问题).

4 心得体会

1. 学会基本逻辑电路的设计与分析过程

- 2. 进一步熟悉Proteus的操作,但是连线实在太麻烦了!!!
- 3. 进一步学会调整示波器, 使其能够正确稳定显示波形