MEC302: Embedded Computer Systems

Theme I: Modeling Dynamic Behaviors

Lecture 3 – Discrete Dynamics:
Discrete and Hybrid Systems

Dr. Timur Saifutdinov

Assistant Professor at EEE, SAT

Email:

Timur.Saifutdinov@xjtlu.edu.cn

Lecture outline

- Discrete dynamics:
 - Discrete systems;
 - State machines;
 - Finite-state machines;
 - State machine properties;
 - Extended state machines;
- Hybrid system modelling:
 - Hybrid systems;
 - Timed automata;
 - Supervisory control.

Discrete dynamics

A discrete system operates in a sequence of discrete steps and is said to have discrete dynamics.

Discrete systems operate with **discrete signals** of the form $e: \mathbb{R} \to \{absent\} \cup X$:

- It is absent most of the time and we can count, in order, the times at which it is not absent;
- If $X = \{present\}$, the signal carries no value and it is called a **pure signal**;
- Otherwise, the signal is not pure and X can be any set of values $(X \subseteq \mathbb{R})$.

在离散系统中,纯信号是指只包含有限个离散时间点上的数值,而且在这些时间点上的数值都是确定的、单一的、不受干扰和噪声的信号。

Examples of discrete systems:

- Calculators/computers/controllers;
- Traffic lights;
- Board games;
- Etc.

Discrete systems

Consider a counter system (e.g., at a parking garage):

• Inputs:

- $u: \mathbb{R} \to \{absent, present\};$
- $d: \mathbb{R} \to \{absent, present\};$
- States*:
 - $s: \mathbb{R} \to \mathbb{Z}$;
- Output (two options):
 - $c: \mathbb{R} \to \{absent\} \cup \mathbb{Z}$ **Mealy machine** (produces output during transition);
 - $c: \mathbb{R} \to \mathbb{Z}$ Moore machine (produces output when in a state).

^{* –} Discrete models with finite state space are called finite-state machines. George H. Mealy and Edward F. Moore are Bell Labs engineers in 1950s.

State machines

A **State Machine (SM)** is a model of a system with **discrete dynamics** that at each reaction maps valuations of the inputs to valuations of the outputs, where the map may depend on its current state.

inputs: name : type/set
outputs: name : type/set

It can be represented **graphically** with:

- Inputs specified with names and types/sets;
- Outputs specified with names and types/sets;
- System states distinguished with balloons;
- *Transitions* represented with arrows;
- Predicate (logical expression) guards;
- *Reaction* (update) action on a guard.

Or, it can be explicitly formulated with a Mathematical model of a Finite-SM (FSM):

FSM(States; Inputs; Outputs; update; initialState)

Finite-state machines

A **Finite-State Machine (FSM)** is an **SM** where the set *States* of possible states is finite.

FSM model for the garage counter (graphical representation):

inputs: up, down: pure **output:** count: $\{0, \dots, M\}$

Predicate standard code (key):

true	Transition is always enabled.	$p_1 \wedge p_2$	Transition is enabled if both p_1 and p_2 are <i>present</i> .
p_1	Transition is enabled if p_1 is <i>present</i> .	$p_1 \vee p_2$	Transition is enabled if either p_1 or p_2 is <i>present</i> .
$\neg p_1$	Transition is enabled if p_1 is <i>absent</i> .	$p_1 \wedge \neg p_2$	Transition is enabled if p_1 is <i>present</i> and p_2 is <i>absent</i> .

Finite-state machines

Mathematical model of an **FSM** is formulated with a five-tuple:

```
FSM(States; Inputs; Outputs; update; initialState) = 
     States = \{0,1,...,M\}
     Inputs = (\{up, down\} \rightarrow \{present, absent\})
     Outputs = (\{count\} \rightarrow \{0,1,...,M,absent\})
      initialState = 0
    update(s,i) = \begin{cases} (s+1,s+1) \text{ if } s < M \land i(up) = present \land i(down) = absent \\ (s-1,s-1) \text{ if } s > 0 \land i(up) = absent \land i(down) = present \\ (s,abs) & \text{otherwise} \end{cases}
```

State machine properties

Important properties of **State Machines (SM)**:

- **Determinacy** An SM is said to be deterministic if, for each state, there is at most one transition enabled by each input value.
- Receptiveness An SM is said to be receptive if, for each state, there is at least one transition possible on each input symbol.

As a result, if an SM is both deterministic and receptive, there is exactly one transition possible on each input value.

Is the FSM model of the garage counter deterministic, receptive, neither or both?

inputs: up, down: pure **output:** count: $\{0, \dots, M\}$

Extended state machines

An **FSM** with large number of states can be generalized with an **Extended State Machine (ESM)**.

Consider ESM model for garage counter:

variable: $c: \{0, \dots, M\}$ inputs: up, down: pure output: $count: \{0, \dots, M\}$

Extended state machines

The general notation for an **ESM** is as follows:

variable declaration(s) input declaration(s) output declaration(s)

There are three main differences:

- Variable declarations;
- Variables initialization initial set action;
- Assignments to variables set actions.

The state of an **ESM** is defined by both the discrete state (a "bubble") and states of variables (ie, their values).

Further reading on SM in the textbook (sections: **3.5 Nondeterminism; 3.6 Behaviors and Traces**): Lee, E.A. and Seshia, S.A., 2016. Introduction to embedded systems: A cyber-physical systems approach. Mit Press.

Hybrid system modelling

Modelling techniques considered previously were:

- Continuous dynamics uses differential/integral equations to model continuous and "smooth" processes;
- Discrete dynamics uses state machines to model discrete systems.

Hybrid system modelling is a formalism that incorporates both.

Hybrid systems can be very powerful to model cyber-physical systems by integrating their continuous physical dynamics with discrete computational systems.

Hybrid systems

Discrete **state machines** can be extended to **hybrid systems** by allowing any of the following:

- Continuous inputs (i.e., continuous-time signals);
- Continuous dynamics of the output(s);
- State refinement (i.e., continuous state variables).

Timed automata

Timed Automata (TA) is a modal model with time-based refinement of states.

For example, let us consider a thermostat model that does not allow chattering (frequent transition between modes):

The main differences from **discrete machines** reside in:

- "Bubbles" (States) become modes;
- In each mode, state is defined by it variables;
- The model tracks the **clock** using a first-order diff.eq.:

$$\dot{s}(t)=1.$$

Timed automata

Let us consider another example of an **TA**, which models both continuous and discrete dynamics of a bouncing ball:

Problem description:

- Initial parameters at t = 0:
 - Ball is released at high h_0 ($y(0) := h_0$);
 - Initial speed is zero $(\dot{y}(0):=0)$;
- State refinement:
 - Passage of time $(\dot{s}(t) = 1)$;
 - Ball position in space $(\ddot{y}(t) = -g)$;
- Predicate (guard):
 - Ball hits the ground (y(t) = 0)
- Set action (on the predicate):
 - Change ball speed $(\dot{y}(t) = -a\dot{y}(t))$, where $a \in R_{(0,1)}$ inelastic collision.
 - Pure signal *bump* is produced.

TA characteristics:

- Two outputs (and no inputs);
- Only one mode "free" (instantaneous collision).

Supervisory control

A control system includes four main components:

- A system to be controlled (ie, plant);
- Environment (where system operates);
- Sensors (measure some variables of the plant and environment);
- **Controller** (provide control signals to the plant).

The **controller** has two levels:

- **Low-level control** determines time-based inputs to the plant;
- Supervisory control determines control strategy to follow.

#Let us consider an Automated Guided Vehicle (AGV) that moves along a closed track painted on a warehouse floor.

Supervisory control

Problem description:

- Two control variables (of AGV):
 - Translational speed $u(t) \in R_{[0,10]}$ [m/s];
 - Rotational speed $\omega(t) \in R_{[-\pi,\pi]}$ [rad/s];

AGV position can be defined with:

- Coordinates $(x(t), y(t)) \in \mathbb{R}^2$;
- Orientation $\theta(t) \in R_{(-\pi,\pi]}$.

AGV position can be modelled by the **ODE** system:

$$\begin{cases} \dot{x}(t) = u(t)\cos\theta(t), \\ \dot{y}(t) = u(t)\sin\theta(t), \\ \dot{\theta}(t) = \omega(t). \end{cases}$$

#Let us consider an Automated Guided Vehicle (AGV) that moves along a closed track painted on a warehouse floor.

Supervisory control

Suppose AGV has a sensor that measures distance from the track:

$$e(t) = f(x(t), y(t)),$$

where

- e(t) < 0 to the right of the track;
- e(t) > 0 to the left of the track.

Specify two thresholds $0 < \varepsilon_1 < \varepsilon_2$:

- ε_1 AGV is close enough;
- ε_2 AGV far away.

Let's assume the simplest low-level control:

- $u(t) \in \{0,10\} \text{ m/s};$
- $\omega(t) \in \{-\pi, 0, \pi\}$ rad/s.

AGV **Supervisory control** model:

To sum up

- A discrete system operates in a sequence of discrete steps and is said to have discrete dynamics;
- Discrete systems can be modelled with state machines:
 - Graphical notation useful for FSM and ESM;
 - Mathematical notation to ensure precise model formulation;
- Two main properties of state machines are determinacy and receptiveness, determining if the system can be effectively controlled;
- Hybrid systems provide a bridge between continuous and discrete dynamics:
 - State machines are used to reflect discrete dynamics (i.e., mode transition);
 - State refinement is used to model continuous dynamics within a mode;
- Timed automata is the particular example of a hybrid system, where timebased refinement of states is modelled;
- Supervisory control model has been considered to illustrate the use of hybrid systems when designing multi-level control.

The End

See you next time (March 13)