Summary of Equations in Aerodynamics Lecture Notes

By Kelvin Le

Modified: February 23, 2025

Contents

1	Fun	adamental Aerodynamics Equations	1
	1.1	Equation of State for a Gas (Ideal Gas Law)	1
	1.2	Specific Volume	1
	1.3	Kinetic Energy and Temperature Relation	1
	1.4	Shear Stress Due to Viscosity (Newton's Law of Friction)	2
	1.5	Reynolds Number (Flow Characterization)	2
	1.6	Mach Number (Compressibility Effects)	2
2	Exa	ample Calculations	2
	2.1	Finding Temperature Using Ideal Gas Law	2
	2.2	Air Weight in a Room	2
	2.3	Percentage Change in Air Weight Due to Temperature Drop	3
$egin{array}{c} 1 \ 1. \end{array}$		Fundamental Aerodynamics Equations Equation of State for a Gas (Ideal Gas Law)	
	_	$p = \rho RT$	(1)
		$p = \rho n I$	(1)
w]	nere:		
	• p	= Pressure (Pa or N/m^2)	
	 ρ 	= Density (kg/m^3)	
	• R	z = Specific Gas Constant (J/kg·K)	

1.2 Specific Volume

• T = Temperature (K)

$$v = \frac{1}{\rho} \tag{2}$$

where v is the specific volume (m³/kg).

1.3 Kinetic Energy and Temperature Relation

$$K_e = \frac{3}{2}kT\tag{3}$$

where:

- K_e = Average kinetic energy of molecules (J)
- T = Temperature (K)

1.4 Shear Stress Due to Viscosity (Newton's Law of Friction)

$$\tau = \mu \frac{du}{dy} \tag{4}$$

where:

- $\tau = \text{Shear stress (Pa or N/m}^2)$
- $\mu = \text{Dynamic viscosity (Pa·s or N·s/m}^2)$
- $\frac{du}{du}$ = Velocity gradient (s⁻¹)

1.5 Reynolds Number (Flow Characterization)

$$Re = \frac{\rho V l}{\mu} = \frac{V l}{\nu} \tag{5}$$

where:

- Re =Reynolds number (dimensionless)
- V = Flow velocity (m/s)
- l = Characteristic length (m)
- $\mu = \text{Dynamic viscosity (Pa·s or N·s/m}^2)$
- $\nu = \text{Kinematic viscosity (m}^2/\text{s})$

1.6 Mach Number (Compressibility Effects)

$$M = \frac{V}{a} \tag{6}$$

where:

- M = Mach number (dimensionless)
- V = Object speed (m/s)
- a =Speed of sound in the medium (m/s)

2 Example Calculations

2.1 Finding Temperature Using Ideal Gas Law

$$T = \frac{p}{\rho R} \tag{7}$$

Example:

$$T = \frac{8.9876 \times 10^4}{(1.1117)(287)} = 281K \tag{8}$$

2.2 Air Weight in a Room

First, use the equation of state to find ρ :

$$\rho = \frac{p}{RT} \tag{9}$$

Then, find mass:

$$m = \rho V \tag{10}$$

where m is mass (kg) and V is volume (m³).

Finally, weight:

$$W = mg (11)$$

where g is gravitational acceleration (9.81 m/s²), and W is weight (N).

2.3 Percentage Change in Air Weight Due to Temperature Drop

Since the temperature changes, we recalculate density:

$$\rho = \frac{2116}{(1716)(460 - 10)} = 0.00274 \frac{\text{slug}}{\text{ft}^3}$$
 (12)

Compare densities:

$$\Delta \rho = 0.00274 - 0.00237 = 0.00037 \frac{\text{slug}}{\text{ft}^3}$$
 (13)

Percentage change:

%change =
$$\frac{\Delta \rho}{\rho} \times 100 = \frac{0.00037}{0.00237} \times 100 = 15.6\%$$
 increase (14)

Alternative solution:

$$\Delta W = \Delta m \cdot g = 0.888 \times 32.2 = 28.5936 \text{ lb}$$
 (15)

%change =
$$\frac{\Delta W}{W_1} \times 100 = \frac{28.5936}{183} \times 100 = 15.6\%$$
 (16)