Statistical learning and Visualization:

Supervised learning - classification (1/2)

Erik-Jan van Kesteren

Department of Methodology and Statistics

Applied Data Science

- 1 Introduction
- 2 KNN
- 3 Discriminative
- 4 Generative
- **5** Break
- 6 Trees!
- 7 Evaluating classifiers

About me

- Assistant professor of data science @ UU M&S
- Team lead for the Social Data Science Team (ODISSEI national consortium)
- Background in statistics
- I will teach two classification weeks in this course
- I will coordinate the INFOMDA2 course!

Topics this week

- Classification
- KNN
- Logistic regression
- Linear discriminant analysis
- Generative vs discriminative
- Trees
- Confusion matrix

Classification

The thing you're trying to predict is *discrete*:

- Titanic: Survival/Nonsurvival
- Banking data: Default on/payment of debt
- GPS/Accelerometer data: Work/Home/Friend/Parking/Other
- Imagenet: gazelle/tank/pirate/sea lion/tandem bicycle/...
- Etc.

KNN

FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a s

Discriminative classifier

Directly model p(Y = k|X) as a function of X.

$$p(Y = k|X) = f(X)$$

$$p(\mathbf{Y}=1|\mathbf{X}) = \textit{logit}^{-1}(\beta_0 + \beta_1 \mathbf{X}) = \frac{\mathbf{e}^{\beta_0 + \beta_1 \mathbf{X}}}{1 + \mathbf{e}^{\beta_0 + \beta_1 \mathbf{X}}}$$

$$\beta_0 = -10.65, \beta_1 = 0.0055$$

Turning this function around:

$$\log\left(\frac{\rho(\mathsf{Y}=1|\mathsf{X})}{1-\rho(\mathsf{Y}=1|\mathsf{X})}\right) = \beta_0 + \beta_1 \mathsf{X}$$

Get comfortable with odds, log-odds, the logit, and the inverse logit!

$$log\left(rac{oldsymbol{p}(\mathbf{Y}=1|\mathbf{X})}{1-oldsymbol{p}(\mathbf{Y}=1|\mathbf{X})}
ight)=eta_0+eta_1\mathbf{X}$$

If $\beta_0=0; \beta_1=2$: Interpretation for log-odds? When X increases by 1, the log-odds of Y=1 increase by 2.

$$\frac{\boldsymbol{\rho}(\mathbf{Y}=1|\mathbf{X})}{1-\boldsymbol{\rho}(\mathbf{Y}=1|\mathbf{X})} = \mathbf{e}^{\beta_0+\beta_1\mathbf{X}}$$

If $\beta_0 = 0$; $\beta_1 = 2$: Interpretation in odds? When X increases by 1, the odds of Y = 1 multiply by $e^2 = 7.39$

$$p(Y=1|X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

If $\beta_0 = 0$; $\beta_1 = 2$: Interpretation in probabilities?

- When X increases from 0 to 1, Pr(Y = 1) increases from $logit^{-1}(0 + 2 \cdot 0) = 0.5$ to $logit^{-1}(0 + 2 \cdot 1) \approx 0.88$
- When X increases from 1 to 2, Pr(Y = 1) increases from $logit^{-1}(0 + 2 \cdot 1) \approx 0.88$ to $logit^{-1}(0 + 2 \cdot 2) \approx 0.98$

Tip: use predicted probabilities (predict(model, type = "response")
function in R)

Generative classifier

Use Bayes' rule to get to p(Y = k|X).

$$p(Y = k|X) = \frac{\pi_k \cdot p(X|Y = k)}{\sum_{k=1}^{K} \pi_k \cdot p(X|Y = k)}$$

Linear discriminant analysis

- π_k is the proportion of observations in class k
- p(X|Y=x) is a normal distribution with mean μ_k and common variance σ^2

Linear discriminant analysis

Advantages over logistic regression:

- Easy to extend to K > 2 classes
- Really easy to estimate (analytic solution for μ_k and σ^2). You can program it yourself!
- You can generate new X from the model (generative model).

Disadvantages:

- Assumption that X is normally distributed within each class k (categorical predictors???)
- Assumption that the variance of each normal distribution is the same!

Linear discriminant analysis

Discriminative classifiers

• Directly model p(Y = k|X), for example using the logit link function.

Generative classifiers

- Estimate p(X|Y=k) and π_k
- Use Bayes' rule to turn this into p(Y = k|X):

$$p(Y = k|X) = \frac{\pi_k \cdot p(X|Y = k)}{\sum_{k=1}^{K} \pi_k \cdot p(X|Y = k)}$$

Break

Trees!

Using decision trees for prediction

Decision tree: should I buy a car?

Prediction tree: wood you survive the *Titanic*?

Growing decision trees from data

Recursive partitioning

- Find the split that makes observations as similar as possible on the outcome within that split;
- Within each resulting group, do (1).

Recursive partitioning

- Find the split that makes observations as similar as possible on the outcome within that split;
- 2 Within each resulting group, do (1).
- Criteria for "as similar as possible": Purity, Reduction in MSE, ...
- Early stopping: add after (2):
 - "unless there are fewer than n_{\min} observations in the group" (typically 10);
 - "unless the total complexity of the model becomes more than *cp*" (typically 0.05);

Simple example

More interesting example

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd

Sex sex Age Age in years

gadia # of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket Ticket number fare Passenger fare cabin Cabin number

Port of Embarkation embarked

C = Cherbourg, Q = Queenstown, S = Southampton

Getting the Titanic data from Kaggle

```
# Import the Titanic data from Kaggle
train url <-
"http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv"
titanic df kaggle <- read.csv(train url)
# Make sure the results are reproducible
set.seed(1027)
# Randomize the rows
nobs <- nrow(titanic df kaggle) # Number of rows
idx df <- 1:nobs # Indices of rows
titanic df kaggle <- titanic df kaggle[sample(idx df), ] # Randomize
# Split the data into 70% train and 30% validation data
train idx <- seq(1, nobs * 0.7) # Training data indices
val idx < -seq((max(train idx) + 1), nobs) # Validation data indices
train_df <- titanic_df_kaggle[train_idx, ] # Training data
val df <- titanic df kaggle[val idx. ] # Validation data
```

> head(t	train_df)												
Pass	sengerId Sur	vived Pc1	lass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
133	133	0	3 Robins	, Mrs.	Alexander A (Grace Charity Laury)	female	47.0	1	0	A/5. 3337	14.5000		S
184	184	1	2		Becker, Master. Richard F	male	1.0	2	1	230136	39.0000	F4	S
687	687	0	3		Panula, Mr. Jaako Arnold	male	14.0	4	1	3101295	39.6875		S
178	178	0	1		Isham, Miss. Ann Elizabeth	female	50.0	0	0	PC 17595	28.7125	C49	C

Youseff, Mr. Gerious male 45.5

1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0

880

204

0

880

204

C

C

C50

11767 83.1583

0

2628 7.2250

Fitting a classification tree in R

```
library(rpart)

titanic_tree <-
    rpart(
        Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked,
        data = train_df,
        control = list(cp = 0.02)
)</pre>
```

Evaluating classifiers

THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

Table 5. Place Confusion Matrix

	Inferred labels							
Truth	Work	Home	Friend	Parking	Other	FN		
Work	5	0	0	0	0	0		
Home	0	4	0	0	0	0		
Friend	0	0	3	0	2	0		
Parking	0	0	0	8	0	2		
Other	0	0	0	0	28	1		
FP	0	0	1	1	2	-		

More on this next week.

Wednesday: Q&A session for practical.

Have a nice day!