VGG

Paper

Architecture

- 1. All filters of same size (3 x 3) : smallest size to capture left/right/up/down/center
- 2. Sometimes used 1x1 but the models without it seemed to be better: purpose of such filter is to add non-linearity within convolution but is this reaallly necessary?
- 3. Spatial resolution conserved during convolution (padding=1)

Paper

Training

- 1. Optimize multinomial logistic regression (== softmax classifier?)
 - 2. Learning rate decreased by factor of 10 when learning stagnates
 - 3. 74 epochs == 370K iterations required to learn well: learns faster than previous models due to 1) implicit regularization imposed by greater depth 2) pre-initialization of certain layers
 - 4. Random initialization == normal_
 - 5. Pretraining with configuration A with random initialization
 - 6. RandomCrop / RandomHorizontalFlip / RGB Color Shift

Paper

Others

- 1. Single/Multi-scale evaluation : larger the better, range of scale is even better
- 2. ConvNet Fusion : averaging softmax outputs

Paper

Others...

Multi-crop evaluation

1. Using a large set of crops

Q

2. feature map is padded with zero : from the input ??

Dense evaluation

O

1. What is dense evaluation: using the whole image as opposed to multi-crop? Or something more?

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	•	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Summary: what I've done

- 1. Pretraining on configuration A for CIFAR10 20 epochs
- 2. Training on configuration for 74 epochs
- 3. Pretraining on configuration A for ImageWoof 20 epochs
- 4. Training on configuration for 74 epochs

Summary: what I didn't do

Q

- 1. RGB color shift for image / data augmentation
- 1. How to do RGB color shift in torchvision.transforms

Snaps: Beginning notes

```
# going to use imagewoof dataset for training VGG net D 16

# brief note on VGG 16 architecture :

# seems like there is no batch normalisation
# all hidden layers "equipped" with ReLU
# dropout on first two layers of fully connected layers (p=0.5)
# L2 regularizer
# mini-batch gradient descent with momentum (batchsize=256) (based on LeNet)
# initial learning rate 10^-2
# learning rate decreased fater of 10 when val acc stop improving (ReduceLRonPlateau?)
# 370K iterations = 74 epochs
# augmentations : randomcrop, horizontalflip, randomrgbcolorshift
# shallow train net A first and then do transfer learning?
# random initialization with zero mean 10-^2 variance
```

Snaps #2 What I use

```
import torch
     import torch.nn as nn
     import torch.nn.functional as F
     from torch.utils.data import DataLoader
Double-click (or enter) to edit
[ ] torch.__version__
     '1.7.0+cu101'
    import torchvision
     import torchvision.transforms as transforms
    import numpy as np
     import matplotlib.pyplot as plt
     %matplotlib inline
[ ] print("check device:", torch.cuda.get_device_name())
     print("how many?:", torch.cuda.device_count())
     print("so can i use it?", torch.cuda.is_available())
     check device: Tesla P4
     how many?: 1
     so can i use it? True
```

Snaps #3 Augmentation

```
# page 2
     # "The only preprocessing we do is subtracting the mean RGB value,
     # computed on the training set, from each pixel."
     mean = 0.0
    for image, _ in train_set:
        mean += image.mean([1,2])
     mean = mean/len(train_set)
    print(mean)
     del train_set, train_transform
    tensor([0.4914, 0.4822, 0.4465])
[] # using torchvision transformation
    # augmentations : randomcrop, horizontalflip, randomrgbcolorshift
     # image for CIFAR10 is too small for randomcrop... so add padding
     # googled std :P
     train_transform = transforms.Compose([
                                  transforms.RandomCrop(32, padding=4),
                                  transforms.RandomHorizontalFlip(p=0.5),
                                  transforms.ToTensor(),
                                  transforms.Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.2023, 0.1994, 0.2010))
    ])
     test_transform = transforms.Compose([
                                 transforms.ToTensor(),
                                 transforms.Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.2023, 0.1994, 0.2010))
    1)
```

Snaps #4 How the images turn out

Snaps #5 Construction

```
class VGGa(nn.Module):
    def __init__(self):
        super(VGGa, self).__init__()
        self.conv1a = nn.Sequential[
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU()
       self.convld = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU()
       self.conv2a = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU()
        self.conv2d = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU()
```

• • •

Snaps #6 Construction

```
def forward(self, x):
   x = self.conv1a(x)
   x = self.maxpool(x)
   x = self.conv2a(x)
   x = self.maxpool(x)
   x = self.conv3a(x)
   x = self.maxpool(x)
   x = self.conv4a(x)
   x = self.maxpool(x)
   x= self.conv5a(x)
   x = self.maxpool(x)
   #print('before view', x.shape)
   x = x.view(-1, 512)
   #print('after view', x.shape)
   x = self.dropout(x)
   x = self.fca(x)
   \#x = self.softmax(x)
```

Snaps #7 Weight_init

```
# as in the paper,
# init weights with normal distribution
# init biases with zeros
# init all weights and biases
# next time try making this inside the module
def init_weights(m):
    for i, child in enumerate(m.children()):
        if type(child) is (nn.Linear or nn.Conv2d):
            torch.nn.init.normal_(child.weight, mean=0.0, std=0.01)
            torch.nn.init.zeros_(child.bias)
        elif type(child) == nn.Sequential:
            for j, grandchild in enumerate(child.children()):
                #print(j, grandchild)
                if type(child) is (nn.Linear or nn.Conv2d):
                    torch.nn.init.normal_(grandchild.weight, mean=0.0, std=0.01)
                    torch.nn.init.zeros_(grandchild.bias)
```

Snaps #8 lossfn / optim / sched

Snaps #9 Pretraining after 20 epoch

```
after looking at 32 images, running_acc is 0.9062
after looking at 1632 images, running_acc is 0.8536
after looking at 3232 images, running_acc is 0.8493
after looking at 4832 images, running_acc is 0.8506
after looking at 6432 images, running_acc is 0.8484
after looking at 8032 images, running_acc is 0.8461
after looking at 9632 images, running_acc is 0.8478
epoch 19 : acc 0.8477
### saving current model...###
```

Thoughts: 20 epoch might make overfit the model, since it is "pre-training" the training could have been lighter

Snaps #10 Result Graph

Notes on result

- 1. FC layer for CIFAR10 is just one nn.Linear(512,10)
- 2. FC layer for Imagewoof is three as given in the paper
- 3. The FC layer for Imagewoof seems to be too big too complicated for the given problem / given dataset size needs simplifying (or even simplifying conv layers reduce padding to make spatial resolution shrink)