Фаза 1. Выбор концепции проекта

1. Потенциальные концепции проектов

Для анализа были предложены четыре потенциальные концепции проектов. Каждая из них соответствует требованию компактности.

- 1. LifeTracker мобильное приложения для учета задач, анализа времени и привычек с поддержкой оффлайн-режима;
- 2. Auto Import Catalog каталог автомобилей с возможностью фильтрации, интеграцией с внешней CRM и парсингом внешних данных;
- 3. Shader Generator. Pro Инструмент для Unity, позволяющий автоматически генерировать шейдеры, в зависимости от задаваемых параметров;
- 4. Ecos мобильное приложение по поиску пунктов переработки отходов и получению информации о конкретных видах мусора с помощью QR-кода.

2. Критерии

Для оценки концепции определены следующие критерии. Часть из них относится к продукту, часть – к учебной ценности и реализуемости.

- 1. Ценность для портфолио/карьеры (benefit);
- 2. Сложность реализации (cost);
- 3. Вау-эффект демо/защиты (benefit);
- 4. Вписываемость в сроки (benefit);
- 5. Обучающий охват тем предмета (benefit);
- 6. Простота декомпозиции и RACI (benefit).

3. Экспертные оценки

В работе участвовали три эксперта:

- 1. E1 (Responsible) основной исполнитель, акцент на сроках и сложности;
- 2. E2 (Consulted) консультант, акцент на обучающем охвате и рисках;
- 3. E3 (Accountable) «ревьювер», акцент на портфолио и эффекте демонстрации.

Каждый критерий и каждая альтернатива оценивалась по шкале 1-9 с тремя значениями:

- L (пессимистичная);
- М (ожидаемая);
- U (оптимистичная).

4. Метод нечеткого коллективного TOPSIS

Шаги:

- 1. Агрегация оценок от трех экспертов в треугольные числа (L, M, U);
- 2. Нормализация значений по каждому критерию;
 - а. Для benefit-критериев: xij/max(xj).
 - b. Для cost-критериев: min(xj)/xij.
- 3. Взвешивание нормализованных значений по модальным весам критериев;
- 4. Определение идеального решения (FPIS) и антиидеального решения (FNIS);
- 5. Расчет расстояния каждой альтернативы до FPIS и FNIS;
- 6. Индекс близости: CCi = D / (D + + D -).

Результаты:

Альтернатива	СС (индекс близости)	Ранг
LifeTracker	0.73	1
Ecos	0.69	2
Shader Generator.Pro	0.61	3
Auto Import Catalog	0.54	4

Лидером стал LifeTracker.

5. Метод четкого коллективного АНР

Шаги:

1. Для каждой тройки (L, M, U) вычисляется математическое ожидание по формуле PERT:

$$E = (L + 4M + U)/6$$

- 2. Строятся матрицы парных сравнений для критериев и альтернатив;
- 3. Рассчитываются локальные приоритеты альтернатив по каждому критерию;
- 4. Рассчитываются глобальные приоритеты через синтез по весам критериев;
- 5. Проверяется согласованность матриц (CR < 0.1).

Коллективные веса критериев:

Критерий	Вес
Ценность для портфолио/карьеры	0.22
Вписываемость в сроки	0.19
Вау-эффект демо/защиты	0.18
Обучающий охват	0.16
Простота декомпозиции и RACI	0.14
Сложность реализации	0.11

Глобальные приоритеты альтернатив:

Альтернатива	Приоритет	Ранг
LifeTracker	0.32	1
Ecos	0.28	2
Shader Generator.Pro	0.23	3
Auto Import Catalog	0.17	4

Лидером также стал LifeTracker.

6. Анализ и выводы

- Оба метода (TOPSIS и AHP) показали совпадение: LifeTracker оптимальный вариант для реализации.
- Второе место стабильно занимает Ecos, что указывает на его перспективность, но немного более высокий риск по срокам и сложности.
- Shader Generator. Pro интересен для демонстрации, но имеет высокий порог по сложности.
- Auto Import Catalog оказался последним из-за больших зависимостей (парсинг, CRM-интеграция) и рисков.

Для дальнейшей работы выбрана концепция LifeTracker. Она сочетает ценность для портфолио, реализуемость в сроки, простоту декомпозиции и достаточный вау-эффект.