

# Fundamentals of Momentum, Heat, and Mass Transfer

**Sixth Edition** 

Welty • Rorrer • Foster

# **Chapter 8**

Analysis of a Differential Fluid Element in Laminar Flow

# Fully developed laminar flow in a circular conduit



#### **Assumption**:

- The fluid behaves as a continuum.
- 2. The fluid is incompressible and Newtonian.
- 3. The flow is **laminar and fully developed**.
- 4. The flow is not influenced by entrance effects and represents a **steady-state** situation.

Fully developed: the velocity profile does not vary along the axis of flow

Conservation of Mass and Momentum should apply!!





$$\Sigma F_{x} = \iint_{\partial S} \rho v_{x}(\mathbf{v} \cdot \mathbf{n}) dA + \frac{\partial}{\partial t} \iiint_{\partial W} \rho v_{x} dV$$
 (5-5a)

$$-r\frac{dP}{dx} + \frac{d}{dr}(r\tau_{rx}) = 0 ag{8-1}$$

$$\tau_{rx} = \left(\frac{dP}{dx}\right)\frac{r}{2} \tag{8-2}$$

$$\tau_{rx} = \mu \frac{dv_x}{dr} \tag{8-3}$$



$$\Sigma F_{x} = \iint_{\text{c.s.}} \rho v_{x}(\mathbf{v} \cdot \mathbf{n}) dA + \frac{\partial}{\partial t} \iiint_{\text{c.v.}} \rho v_{x} dV$$
 (5-5a)
Flux integral

ρ**v**: mass flux

ρ**vv**: convective momentum flux

τ: stress; momentum flux by molecular (viscous) transfer

$$v_x = -\left(\frac{dP}{dx}\right) \frac{1}{4\mu} (R^2 - r^2)$$

$$(8-4)$$

$$v_x = -\left(\frac{dP}{dx}\right)\frac{R^2}{4\mu}\left[1 - \left(\frac{r}{R}\right)^2\right]$$

$$v_{\text{max}} = -\left(\frac{dP}{dx}\right)\frac{R^2}{4\mu}$$

$$v_x = v_{\text{max}} \left[ 1 - \left( \frac{r}{R} \right)^2 \right]$$

$$v_{\text{avg}} = \frac{v_{\text{max}}}{2} = -\left(\frac{dP}{dx}\right)\frac{R^2}{8\mu}$$

$$(8-8)$$

# **Hagen-Poiseuille equation**

$$-\frac{dP}{dx} = \frac{8\mu v_{\text{avg}}}{R^2} = \frac{32\mu v_{\text{avg}}}{D^2}$$

$$(8-9)$$

# **Hagen-Poiseuille equation**

$$-\frac{dP}{dx} = \frac{8\mu v_{\text{avg}}}{R^2} = \frac{32\mu v_{\text{avg}}}{D^2}$$
 (8-9)

**Reynolds number** for fluids flowing in tubes

$$Re = \frac{D \partial v_{avg} \rho}{\mu}$$

Re < 2100, laminar flow

Re > 2100, turbulent flow

The shear stress components in cylindrical coordinates 
The shear stress components in spherical coordinates

$$\begin{split} \tau_{r\theta} &= \tau_{\theta r} = \mu \Bigg[ r \frac{\partial}{\partial r} \bigg( \frac{\upsilon_{\theta}}{r} \bigg) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \Bigg] \\ \tau_{z\theta} &= \tau_{\theta z} = \mu \Bigg[ \frac{\partial}{\partial z} + \frac{1}{r} \frac{\partial}{\partial \theta} \bigg] \\ \tau_{z\theta} &= \tau_{\theta z} = \mu \Bigg[ \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \bigg( \frac{\upsilon_{\theta}}{\sin\theta} \bigg) + \frac{1}{r\sin\theta} \frac{\partial\upsilon_{\theta}}{\partial \phi} \bigg] \\ \tau_{zr} &= \tau_{rz} = \mu \Bigg[ \frac{\partial\upsilon_{z}}{\partial r} + \frac{\partial\upsilon_{r}}{\partial z} \bigg] \\ \tau_{\theta r} &= \tau_{r\theta} = \mu \Bigg[ \frac{1}{r\sin\theta} \frac{\partial\upsilon_{r}}{\partial \phi} + r \frac{\partial}{\partial r} \bigg( \frac{\upsilon_{\theta}}{r} \bigg) \Bigg] \end{split}$$

# **Hagen-Poiseuille equation**

$$-\frac{dP}{dx} = \frac{8\mu v_{\text{avg}}}{R^2} = \frac{32\mu v_{\text{avg}}}{D^2}$$
 (8-9)

Other forms?

Calculate the force of the fluid acting on the wetted surface of the pipe

Calculate the mass rate of flow and average velocity

# **Experimental observation**

**Reynolds number** for fluids flowing in tubes

$$Re = \frac{D \partial_{avg} \rho}{\mu}$$

Re < 2100, laminar flow

Re > 2100, turbulent flow

Physical meaning of Re: inertia force/viscous force; ρv²a²/μva



#### Laminar flow of a Newtonian Fluid down on inclined-plane surface



# **Assumption**:

- The fluid behaves as a continuum.
- The fluid is incompressible and Newtonian.
- 3. The flow is laminar and fully developed.
- The flow is not influenced by entrance effects and represents a steady-state situation.

Conservation of Mass and Momentum should apply!!





$$\frac{d}{dy}\tau_{yx} + \rho g \sin\theta = 0 \tag{8-10}$$

$$\tau_{yx} = \rho g L \sin\theta \left[ 1 - \frac{y}{L} \right] \tag{8-11}$$

$$v_{x} = \frac{\rho g L^{2} \sin \theta}{\mu} \left[ \frac{y}{L} - \frac{1}{2} \left( \frac{y}{L} \right)^{2} \right]$$
 (8-12)

$$v_{\text{max}} = \frac{\rho g L^2 \sin \theta}{2\mu} \tag{8-13}$$

Calculate the force of the fluid acting on the wetted surface of the wall

Calculate the mass rate of flow and film thickness

#### **Experimental observation**

**Reynolds number** for fluids flowing in tubes

$$Re = \frac{4Lv_{avg}\rho}{\mu}$$

Re < 20, laminar flow with negligible rippling 20 < Re < 1500, laminar flow with pronounced rippling Re > 1500, turbulent flow



