Measure Theory

HaiyangYu & WangSong

Mathematics Institute

April 23, 2020

Introduction

In mathematical analysis, a measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. (Picture taken from Wikipedia)

Definition

Let X be a set and Σ a σ -algebra over X. A function μ from Σ to the extended real number line is called a measure if it satisfies the following properties:

- Non-negativity: For all E in Σ : $\mu(E) \geq 0$.
- Null empty set: $\mu(\emptyset) = 0$.
- Countable additivity (or σ -additivity): For all countable collections $\{E_i\}_{i=1}^{\infty}$ of pairwise disjoint sets in Σ :

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} (E_k)$$

Examples

Some important measures are listed here.

- The counting measure is defined by $\mu(S)$ = number of elements in S.
- The Lebesgue measure on **R** is a complete translation-invariant measure on a σ -algebra containing the intervals in **R** such that $\mu([0,1]) = 1$; and every other measure with these properties extends Lebesgue measure.
- Circular angle measure is invariant under rotation, and hyperbolic angle measure is invariant under squeeze mapping.

Properties

Let μ be a measure.

- Monotonicity: If E_1 and E_2 are measurable sets with $E_1 \subseteq E_2$ then $\mu(E_1) \leq \mu(E_2)$.
- Subadditivity: For any countable sequence E_1, E_2, E_3, \dots of (not necessarily disjoint) measurable sets E_n in Σ :

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} \mu(E_k)$$

• Continuity from below: If $E_1, E_2, E_3, ...$ are measurable sets and E_n is a subset of E_{n+1} for all n, then the union of the sets E_n is measurable, and

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \lim_{i \to \infty} \mu(E_i)$$

Thank you!