R WORKSHOP

INSTALLING R

R Studio is an IDE while R is a programming language You can install R in the following website

INTRODUCTION TO THE PANELS

There are four panels when it comes to R

CODE EDITOR

· Opening a script

R CONSOLE

- This is where you write the commands and press enter
- (try yourself) type
- >install.packages(swirl)
- >library("swirl")

>swirl()

PLOTS AND FILES

- Displays files, plots, packages
- Help: (try yourself) try exploring the 'lm' package using help(), demo() and example() commands, have a look at this article:

https://www.r-project.org/help.html

ENVIRONMENT/HISTORY

- This displays the variables
- rm(list = ls()) (clears the console)

DATA TYPES IN R

ASSIGNING A VALUE TO A VARIABLE

value_1 <- 50

value_2 <- "cat"

DATA TYPES IN R

Logical: TRUE, FALSE

Integer: 15L, 12L

Numeric: 12.5, 13.5

Character: "hi", "Noor"

OPERATOR PRIORITY

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

ARITHMETIC OPERATORS IN R

• exponentiation: 3^5

• integer division: 15 %/% 6

• modulo: %

· Addition: 1+2

• multiplication: 4*5

· division:12/5

• sqrt(121)

• log(100)

• log10(100)

abs(-28220985)

LOGICAL OPERATORS IN R

less than: <

greater than: >

less than or equal to: <=

• greater than or equal to: >=

equal to: ==

not equal to: !=

LOGICAL OPERATORS IN R

· logical not: !TRUE

· logical and: TRUE && FALSE

logical or: TRUE || FALSE

Logical operations:

NOT AND ! TRUE yields FALSE TRUE && TRUE ! FALSE yields TRUE TRUE && FALSE yields FALSE FALSE && TRUE yields FALSE FALSE && FALSE yields FALSE

VECTORS:

- · vectors can be either numbers or characters
- · It is useful since we are dealing with structured data

GENERATING A VECTOR

- vector <- c(21, 34, 39, 54, 55) (just simply assigns a list of vectors)
- vector <- seq(from = 2, to=10, by=3)
- vector <- rep(4, times = 10) (replicates elements)
- length(vector) (will give you the length of the vector)
- class(weight_g) (will give your the datatype of the elements)
- vector <- c("name1"=1, "name2"=2) (creates a named vector)

INDEXING A VECTOR:

- vector[1]
- vector[2:5]
- vector[c(1,3,4)]
- vector[logical_conditon]

CREATING DATAFRAMES

OR

TRUE || TRUE yields TRUE

TRUE || FALSE yields TRUE

FALSE || TRUE yields TRUE

FALSE || FALSE yields FALSE

- cbind(1:5, 6:10, 11:15) (Combine vectors as columns in a matrix)
- rbind(1:5, 6:10, 11:15) (Combine vectors as rows in a matrix)
- matrix(x = 1:12, nrow = 3, ncol = 4)(Create a matrix from a vector
 x)
- data.frame("age" = c(19, 21), sex = c("m", "f")) (Create a dataframe from named columns)

STARTING WORK WITH OUR OWN DATAFRAME

HOW TO START OFF WITH A SCRIPT

- go to session > "set working directory." This leads you to the directory
- · copy the code which comes below

HOW TO READ A CSV

#install.packages(readr)

library(readr)

data <- read_csv("Angry moods.csv")

HOW TO RETRIEVE A COLUMN

There are two ways to retrieve a column

data\$Column_name

data[1]

TIDYVERSE

- x %>% f(y) is the same as f(x,y)
- select(data, column_name) (select columns form the dataset)
- filter(data, condition) (select specific rows)