

Exercise on Z-Algorithm and KMP-Algorithm Matching Machine of Poker Cards in a Casino

Let us consider a computer game in a casino where a sequence of N random cards are generated. Each card is from the classical set of 52 poker cards. Multiple repetitions of cards are allowed so N may be greater than 52.

The game generates a **sequence of M random cards** for the player such that M < N.

The player wins iff there one or more occurrences of his sequence of M random cards in the first sequence of N cards generated by the computer.

	Ace	2	3 4	5 6	7	8 9	10	Jack	Queen	King
Clubs	* *	2 * • • • • • • • • • • • • • • • • • • •	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		\$	K A
Diamonds	* • •	2	3	\$\ldot \dot \dot \dot \dot \dot \dot \dot \			10 0	i	\$	K X
Hearts	* • • • • • • • • • • • • • • • • • • •	2 V	3 y y A a ;				10 V V V	į	\$ 8	K X
Spades	•	2 A • • • •	3 A A A A A A A A A A A A A A A A A A A						\$ \$\diag{\diag}{\diag}\$	* X

Your Task is to code a program that must modify and use Z-Algorithm and/or KMP-Algorithm to find occurrences of the player's card sequence into the computer's card sequence.

Each card is read from input in the format: SUIT#RANK where # is the number sign character (ASCII 35).

Some examples:

HEARTS#JACK SPADE

SEE INPUT/OUTPUT EXAMPLE IN THE NEXT SLIDE.

Hint:

The trick in the problem is to consider the cards as symbols from an alphabet. But now, our alphabet has 52 different symbols.

Exercise on Z-Algorithm and KMP-Algorithm Matching Machine of Poker Cards in a Casino

EXAMPLE INPUT:

computer

player

EXAMPLE OUTPUT:

The word "WIN" followed by the positions of the occurrences of the player's sequence in the computer's sequence. For the input above we have the output: WIN 3 6

(If there were no occurrences simply print LOSS)

<u>BONUS:</u> Extend your solution by considering that the player may have <u>exactly maximum one</u> <u>JOKER</u> card in his sequence which can match with any card.

If we consider the computer's sequence above and now the player's sequence is:

player

...we have the output:

WIN 0 1 2