PSY 5939: Longitudinal Data Analysis

Contents

erpreting fixed and random effects					
Review					
Fixed effects					
Random effects					
CC and model comparison					
Intra-class correlation (ICC)					
Likelihood ratio (LR) test					
Variance explained					
Adding predictors					
Predictors of growth					
Level 2 predictors					

Interpreting fixed and random effects

Review

Linear mixed model

$$Y = \mathbf{X}\beta + \mathbf{Z}\gamma + \epsilon$$

$\mathbf{X}\beta$ are the fixed effects

• What all the people have in common

$\mathbf{Z}\gamma$ are the random effects

• How the people are different from one another

ϵ is the residual

• Error in estimating each person's trajectory

aka multilevel model

Linear change over time, random intercept, random slope

Level 1 = measurement occasion: Model of observations over time

$$Y_{ij} = \pi_{0i} + \pi_{1i}(Time_{ij}) + e_{ij}$$

Level 2 = participant: Model of participant level differences

$$\pi_{0i} = \beta_{00} + r_{0i}$$

$$\pi_{1i} = \beta_{10} + r_{1i}$$

Combined equation

$$Y_{ij} = \beta_{00} + \beta_{10}(Time_{ij}) + r_{0i} + r_{1i}(Time_{ij}) + e_{ij}$$

Model results - R

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Y \sim 1 + time1 + (1 + time1 | subject)
##
      Data: tall_data
##
##
        AIC
                 BIC
                       logLik deviance df.resid
                       -666.9
##
     1345.8
              1365.6
                                1333.8
                                             194
##
## Scaled residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
## -2.37379 -0.55722 0.01556 0.49778 2.58483
##
## Random effects:
##
    Groups
            Name
                         Variance Std.Dev. Corr
    subject (Intercept) 4.94
                                  2.223
                         10.50
                                  3.240
##
                                           -0.15
             time1
                         27.50
                                  5.244
## Residual
## Number of obs: 200, groups: subject, 50
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 100.5470
                            0.6955 144.561
## time1
                 5.3124
                            0.5657
                                     9.391
##
## Correlation of Fixed Effects:
##
         (Intr)
## time1 -0.476
```

Model results - SPSS

Fixed Effects

Type III Tests of Fixed Effects ^a						
		Denominator				
Source	Numerator df	df	F	Sig.		
Intercept	1	50.000	20897.726	.000		
time1	1	50	88.199	.000		
a. Dependent Variable: Y.						

Estimates of Fixed Effects ^a							
						95% Confidence Interval	
						Lower	Upper
Parameter	Estimate	Std. Error	df	t	Sig.	Bound	Bound
Intercept	100.546956	.695536	50.000	144.560	.000	99.149931	101.943981
time1	5.312409	.565665	50	9.391	.000	4.176238	6.448580
a. Dependent Variable: Y.							

Covariance Parameters

Estimates of Covariance Parameters ^a							
						95% Confidence Interval	
						Lower	Upper
Parameter		Estimate	Std. Error	Wald Z	Sig.	Bound	Bound
Residual		27.498364	3.888856	7.071	.000	20.841491	36.281475
Intercept + time1	UN (1,1)	4.939640	5.551009	.890	.374	.545937	44.693904
[subject = subject]	UN (2,1)	-1.115745	3.294692	339	.735	-7.573223	5.341733
	UN (2,2)	10.499151	3.292935	3.188	.001	5.677862	19.414381
a. Dependent Variable: Y.							

Random Effect Covariance Structure (G) ^a					
	Intercept	time1			
	subject	subject			
Intercept subject	4.939640	-1.115745			
time1 subject	-1.115745	10.499151			
Unstructured					
a. Dependent Variable: Y.					

exe.

Individual (linear) trajectories

Fixed effects

Fixed effects

Using functions built in to 1me4

fixef(model1)

```
## (Intercept) time1
## 100.546956 5.312409
```

Using the broom package

• I don't care for how much it rounds the numbers

```
tidy(model1, effects = "fixed", conf.int = TRUE)
```

```
## # A tibble: 2 x 7
                        estimate std.error statistic conf.low conf.high
##
     effect term
     <chr> <chr>
                           <dbl>
                                      <dbl>
                                                <dbl>
                                                         <dbl>
                                                                    <dbl>
                                      0.696
                                               145.
                                                         99.2
                                                                   102.
## 1 fixed
           (Intercept)
                          101.
                                                 9.39
## 2 fixed time1
                            5.31
                                      0.566
                                                          4.20
                                                                     6.42
```

Spaghetti plot with fixed effects

Random effects

Random effects

Using functions built in to 1me4

```
print(VarCorr(model1), comp=c("Variance", "Std.Dev."))
```

```
## Groups Name Variance Std.Dev. Corr
## subject (Intercept) 4.9395 2.2225
## time1 10.4992 3.2402 -0.155
## Residual 27.4984 5.2439
```

Using the broom package

• Here, I don't care for the table format

```
tidy(model1, effects = "ran_pars", scales = "vcov")
```

```
## # A tibble: 4 x 4
##
     effect
              group
                       term
                                               estimate
              <chr>>
                       <chr>
                                                  <dbl>
##
     <chr>>
## 1 ran_pars subject var__(Intercept)
                                                   4.94
## 2 ran_pars subject cov__(Intercept).time1
                                                  -1.12
## 3 ran_pars subject var__time1
                                                  10.5
## 4 ran_pars Residual var__Observation
                                                  27.5
```

Covariance as correlation

Covariance between intercept and slope as a correlation

- SAS: "gcorr" option
- R: VarCorr() function (and now default in lmer()?)
- SPSS: I don't think you can get it
- Calculate by hand:

$$\frac{\sigma_{r_{0i}r_{1i}}}{\sqrt{\sigma_{r_{0i}}^2}\sqrt{\sigma_{r_{1i}}^2}}$$

Also remember that a standard deviation is the square root of a variance

Prediction interval for individuals

Interval for likely values of individual intercepts and slopes

- Remember last week, I said that γ is normally distributed with mean 0 and variance \mathbf{G} : $\gamma \sim N(0, \mathbf{G})$
- In a normal distribution, 95% of values will be \pm 1.96 standard deviation from the mean

95% of individual intercepts are in

•
$$[\beta_{00} - 1.96 \times \sqrt{\sigma_{r_{0i}}^2}, \beta_{00} + 1.96 \times \sqrt{\sigma_{r_{0i}}^2}]$$

95% of **individual slopes** are in

•
$$[\beta_{10} - 1.96 \times \sqrt{\sigma_{r_{1i}}^2}, \, \beta_{10} + 1.96 \times \sqrt{\sigma_{r_{1i}}^2}]$$

Prediction interval for individuals

$$[\beta_{00} - 1.96 \times \sqrt{\sigma_{r_{0i}}^2}, \, \beta_{00} + 1.96 \times \sqrt{\sigma_{r_{0i}}^2}]$$

$$[100.547 - 1.96 \times \sqrt{4.94},\, 100.547 + 1.96 \times \sqrt{4.94}]$$

95% of individual intercepts are in [96.191, 104.903]

$$[\beta_{10} - 1.96 \times \sqrt{\sigma_{r_{1i}}^2}, \, \beta_{10} + 1.96 \times \sqrt{\sigma_{r_{1i}}^2}]$$

$$[5.312 - 1.96 \times \sqrt{10.499}, \, 5.312 + 1.96 \times \sqrt{10.499}]$$

95% of **individual slopes** are in [-1.038, 11.663]

Spaghetti plot with fixed and random intercepts

95% of individual intercepts range from 96.191 to 104.903

Spaghetti plot with fixed and random slopes 95% of individual slopes range from -1.038 to 11.663

ICC and model comparison

Intra-class correlation (ICC)

Quantifying similarity

Previously:

Non-independence due to repeated measuring the same individual

- Standard errors are underestimated
- How much the standard errors are underestimated depends on how much the observations are related to one another

The intraclass correlation (ICC) quantifies this "more alike" ness

Intraclass correlation

- Calculated from the results of an "unconditional mixed model" that has no predictors, not even time
- Number between 0 and 1
- Proportion of total variability that is at level 2
 - Since level 2 is the person, ICC tells you what proportion of the variability is **between people**, not **between occasions**

Unconditional model

Also called "random effects ANOVA"

Level 1 model:

$$Y_{ij} = \pi_{0i} + e_{ij}$$

Level 2 model:

$$\pi_{0i} = \beta_{00} + r_{0i}$$

Combined model:

$$Y_{ij} = \beta_{00} + r_{0i} + e_{ij}$$

Overall mean (β_{00}) + variability between people $(\text{var}(r_{0i}) + \text{variability in observations over time (from the same person) } (\text{var}(e_{ij}))$

• Note that all variance is either between people or within people

Calculating ICC

Use the level 2 intercept variance: $\sigma_{r_{0i}}^2$ And the level 1 residual variance: σ_e^2

$$ICC = \frac{\sigma_{r_{0i}}^2}{\sigma_{r_{0i}}^2 + \sigma_e^2}$$

ICC is the proportion of variance that is due to differences between people

- Level 2 variation
- 1-ICC is the proportion of variance due to errors in predicting individuals over time
 - Level 1 variation

Unconditional model

```
uncond <- lmer(Y ~ 1 + (1|subject), tall_data, REML = "false")
summary(uncond)
## Linear mixed model fit by maximum likelihood ['lmerMod']
  Formula: Y ~ 1 + (1 | subject)
##
      Data: tall_data
##
##
        AIC
                BIC
                       logLik deviance df.resid
##
     1494.6
              1504.5
                       -744.3
                                1488.6
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
  -2.2096 -0.6350 -0.1259 0.6475 2.5714
## Random effects:
##
   Groups
           Name
                         Variance Std.Dev.
   subject (Intercept)
                         9.082
                                  3.014
   Residual
                         92.033
                                  9.593
## Number of obs: 200, groups: subject, 50
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 108.5156
                            0.8011
```

Calculating ICC

$$ICC = \frac{\sigma_{r_{0i}}^2}{\sigma_{r_{0i}}^2 + \sigma_e^2} = \frac{9.0818}{9.0818 + 92.0331} = \frac{9.0818}{101.1149} = 0.0898$$

9% of the variance in the outcome is **between people**

• Differences between people

91% of the variance is within people

• People varying over time

Design effect

The design effect is how much standard errors still be underestimated

$$D_{eff} = 1 + (n-1) * ICC$$

where n is the cluster size

• Here, the (average) number of repeated observations per person

In this example, $D_{eff} = 1 + (n-1) * ICC = 1 + (4-1) * 0.0898 = 1.269$

- If we ignored the repeated measures, our standard errors would be need to be multiplied by 1.269 to account for non-independence
- (This is also ignoring a bunch of other reasons we might need to do a mixed model that we haven't yet talked about)
- In general, design effect goes up with ICC and with number of repeated measures

Likelihood ratio (LR) test

Deviance

Mixed models are estimated with maximum likelihood (ML)

Unlike linear regression, no sums of squares (SS)

- No $SS_{explained}$ or $SS_{residual}$
- No R^2 , which is $\frac{SS_{explained}}{SS_{explained} + SS_{residual}}$
- No F-tests of the overall model

Maximum likelihood instead provides **deviance** (also called -2 log likelihood)

- Conceptually, kind of similar to $SS_{residual}$
- How far you are from a "perfect" model
- Relative, not absolute

Likelihood ratio (LR) test

Deviance = $-2 \times log-likelihood$

Difference in deviance between two models is $\sim \chi^2$ with degrees of freedom equal to the difference in number of parameters estimated

• Significant likelihood ratio test:

- Models are different, use the more complex one
- NS likelihood ratio test:
 - Models are equivalent, so use the simpler one (parsimony)

Unconditional versus linear time model

Linear model parameters = 6: β_{00} , β_{10} , $\sigma_{r_{0i}}^2$, $\sigma_{r_{1i}}^2$, $\sigma_{r_{0i}r_{1i}}$, σ_e^2

Unconditional model parameters = 3: $\beta_{00},\,\sigma_{r_{0i}}^{2},\,\sigma_{e}^{2}$

Model	# parameters	deviance
Linear time	6	1333.8436
Unconditional	3	1488.6397
(Absolute) difference	3	154.7962

Critical value for $\chi^2(3) = 7.815$

• 154.796 > 7.815, so the test is significant

The more complex model (linear time) is significantly better than the simpler (unconditional) model

• Adding linear time to the model is better than not having linear time

Variance explained

 \mathbb{R}^2 analogues

Mixed models produce deviance

- Not $SS_{explained}$ or $SS_{residual}$
- No R^2 , which is $\frac{SS_{explained}}{SS_{explained} + SS_{residual}}$

Pseudo- \mathbb{R}^2 values for mixed models

- Not as good as \mathbb{R}^2
 - $-R^2$ can never be negative but pseudo- R^2 can (report as 0)

Variance explained and variance reduction

When you compare your model to the unconditional model

- Variance explained
- How much variance does my model explain?
- Like R^2

When you compare your model to some other (simpler) model

- \bullet Variance reduction
- How much is (error) variance reduced by adding whatever you added?
- Like R_{change}^2

Variance explained and variance reduction

Model 1 is simpler, Model 2 is more complex

• The model you "care about" is Model 2

Reduction in variance =

$$\frac{\sigma_e^2(Model1) - \sigma_e^2(Model2)}{\sigma_e^2(Model1)}$$

Variance explained example

Unconditional model: $\sigma_e^2 = 92.0331$

Linear model with time centered at first wave: $\sigma_e^2 = 27.4984$

Variance explained =
$$\frac{\sigma_e^2(uncond) - \sigma_e^2(linear)}{\sigma_e^2(uncond)} = (92.0331 - 27.4984)/(92.0331) = 0.7012$$

Interpret similar to \mathbb{R}^2

- 70.1% of the residual variance is **explained** by adding the linear trend
- Reduced 70.1% of the variance in the unconditional model by adding the linear trend

Adding predictors

Predictors of growth

Growth parameters

The model so far...

- β_{00} and β_{10} are mean intercept and slope
- $\sigma_{r_{0i}}^2$ is the intercept variance
- $\sigma_{r_{1i}}^2$ is the slope variance
- $\sigma_{r_{0i}r_{1i}}$ is the covariance between intercept and slope

Describe growth (and individual variability in growth)

• But we're not yet trying to explain growth

Predictors of growth

Mixed models can have predictors at different levels

- Predictors at level 1: **Time varying** predictors = change over time
 - At the level of the measurement occasion
 - Have a (potentially) different value at each measurement occasion
- Predictors at level 2: **Time invariant** predictors = don't change
 - At the level of the **participant**
 - Same value at every measurement occasion

Level 2 predictors are easy, but level 1 predictors are a bit more complex

Level 2 predictors

Level 2 predictors

Time invariant predictors don't change with time

- Biological sex, experimental group, etc.
- Something that can change but is unlikely to change during the study: e.g., SES
- Something that changes but is perfectly correlated with time: e.g., age

Level 2 predictors

Level 2 predictors go in the level 2 equation(s)

$$\pi_{0i} = \beta_{00} + \beta_{01}(L2PRED) + r_{0i}$$

$$\pi_{1i} = \beta_{10} + \beta_{11}(L2PRED) + r_{1i}$$

 β_{01} = the effect of L2PRED on average intercept value

 β_{11} = the effect of L2PRED on average slope value

You can add a predictor of the intercept, the slope, or both

• You decide, as a researcher, what the predictor does

Level 2 predictors

Level 1:

$$Y_{ij} = \pi_{0i} + \pi_{1i}(time_{ij}) + e_{ij}$$

Level 2:

$$\pi_{0i} = \beta_{00} + \beta_{01}(L2PRED) + r_{0i}$$

$$\pi_{1i} = \beta_{10} + \beta_{11}(L2PRED) + r_{1i}$$

Combined model:

$$Y_{ij} = \beta_{00} + \beta_{01}(L2PRED) + \beta_{10}(time_{ij}) + \beta_{11}(L2PRED)(time_{ij}) + r_{0i} + r_{1i}(time_{ij}) + e_{ij}$$

Centering level 2 predictors

You don't need to center level 2 predictors if they are

- dummy coded (0, 1)
- effects coded (-1,1)

If your level 2 predictor is coded another way, center it

- You should "grand mean center" the level 2 predictor
- Subtract the mean of all observations from the predictor

Interpreting fixed effects

I'm going to work with a model with **only** a random intercept here.

Combined model:

$$Y_{ij} = \beta_{00} + \beta_{01}(L2PRED) + \beta_{10}(time_{ij}) + \beta_{11}(L2PRED)(time_{ij}) + r_{0i} + e_{ij}$$

Just the fixed effects:

$$Y_{ij} = \beta_{00} + \beta_{01}(L2PRED) + \beta_{10}(time_{ij}) + \beta_{11}(L2PRED)(time_{ij})$$

This should look familiar

• Just like a two predictor regression with an **interaction**

Example level 2 predictor

Remember that there is a level 2 variable in the dataset: group

```
head(tall_data, n = 12)
```

```
## # A tibble: 12 x 5
##
      subject group time
##
        <dbl> <dbl> <dbl> <dbl> <dbl> <
##
   1
            1
                  1
                        0 101.
                                     0
##
   2
            1
                  1
                        1 113.
                                     1
##
  3
            1
                        2 124.
                  1
##
  4
            1
                        3 128.
                                     3
                  1
##
   5
                  0
                        0 95.3
  6
            2
                  0
##
                        1 106.
##
  7
                  0
                        2 111.
            2
                  0
                        3 107.
                                     3
##
   8
   9
            3
                  1
                        0 96.4
                                     0
##
## 10
            3
                  1
                        1 99.1
                                     1
## 11
            3
                  1
                        2 103.
                                     2
                        3 110.
## 12
                  1
```

Combined model:

$$Y_{ij} = \beta_{00} + \beta_{01}(group) + \beta_{10}(time_{ij}) + \beta_{11}(group)(time_{ij}) + r_{0i} + e_{ij}$$

Model with level 2 predictor

```
model2 <- lmer(Y ~ 1 + group + time1 + time1*group + (1|subject), tall_data, REML = "false")
summary(model2)</pre>
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
  Formula: Y ~ 1 + group + time1 + time1 * group + (1 | subject)
##
      Data: tall_data
##
##
                 BIC
        AIC
                       logLik deviance df.resid
##
     1295.2
              1315.0
                       -641.6
                                 1283.2
                                             194
##
## Scaled residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
```

```
## -2.20536 -0.58245 0.01897 0.55369 2.42595
##
## Random effects:
                         Variance Std.Dev.
   Groups
             Name
##
   subject (Intercept)
                          8.874
                                  2.979
  Residual
                         29.368
                                  5.419
##
## Number of obs: 200, groups: subject, 50
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 101.2629
                            1.1839
                                    85.537
                -1.2344
                            1.5545
                                    -0.794
## group
## time1
                 1.7138
                            0.5289
                                      3.241
                            0.6944
## group:time1
                 6.2045
                                      8.935
##
## Correlation of Fixed Effects:
##
               (Intr) group time1
## group
               -0.762
               -0.670 0.510
## time1
## group:time1 0.510 -0.670 -0.762
```

Interpreting fixed effects

$$Y_{ij} = \beta_{00} + \beta_{01}(group) + \beta_{10}(time_{ij}) + \beta_{11}(group)(time_{ij}) =$$

$$101.263 + -1.234(group) + 1.714(time_{ij}) + 6.205(group)(time_{ij})$$

Interpretation of the fixed effects plays out the same as a 2 predictor regression with continuous (time) and categorical (group) predictors and an interaction

 β_{00} : Mean Y value for group = 0 when time1 = 0

- Mean value of Y for control group at first time point
- 101.263

 β_{01} : Difference between groups when time 1=0

- Difference between control (group = 0) and treatment (group = 1) at first time point (baseline differences)
- -1.234

Interpreting fixed effects

$$Y_{ij} = \beta_{00} + \beta_{01}(group) + \beta_{10}(time_{ij}) + \beta_{11}(group)(time_{ij}) =$$

$$101.263 + -1.234(group) + 1.714(time_{ij}) + 6.205(group)(time_{ij})$$

Interpretation of the fixed effects plays out the same as a 2 predictor regression with continuous (time) and categorical (group) predictors and an interaction

 β_{10} : Linear change over time for group = 0

- Increase in Y for a 1 unit change in time1 for the control group
- 1.714

 β_{11} : Difference between groups in linear change over time

- Difference between control and treatment in the increase in Y for a 1 unit change in time1
- 6.205

Simple slopes

When group = 0 (control):

$$101.263 + -1.234(group) + 1.714(time_{ij}) + 6.205(group)(time_{ij})$$
$$101.263 + -1.234(0) + 1.714(time_{ij}) + 6.205(0)(time_{ij})$$
$$101.263 + 1.714(time_{ij})$$

When group = 1 (treatment):

$$101.263 + -1.234(group) + 1.714(time_{ij}) + 6.205(group)(time_{ij})$$

$$101.263 + -1.234(1) + 1.714(time_{ij}) + 6.205(1)(time_{ij})$$

$$101.263 + -1.234 + 1.714(time_{ij}) + 6.205(time_{ij})$$

$$100.029 + 7.919(time_{ij})$$

Spaghetti plot with fixed effects

Random effects

```
print(VarCorr(model2), comp = c("Variance", "Std.Dev"))
```

```
## Groups Name Variance Std.Dev.
## subject (Intercept) 8.8743 2.9790
## Residual 29.3675 5.4192
```

$$[\beta_{00} - 1.96 \times \sqrt{\sigma_{r_{0i}}^2}, \, \beta_{00} + 1.96 \times \sqrt{\sigma_{r_{0i}}^2}]$$

95% of individual intercepts in the control group are in:

$$[101.263 - 1.96 \times \sqrt{8.874}, 101.263 + 1.96 \times \sqrt{8.874}]$$

[95.424, 107.102]

95% of individual intercepts in the treatment group are in:

$$[100.029 - 1.96 \times \sqrt{8.874}, 100.029 + 1.96 \times \sqrt{8.874}]$$

[94.19, 105.867]

Spaghetti plot with fixed and random effects

