A Maxwell-egyenletek és az elektromágneses hullám

Eltolási áram

Ampere:

$$\oint \mathbf{B} \, d\mathbf{l} = \mu_0 \, I$$

Ampere-Maxwell:

$$\oint \mathbf{B} \, d\mathbf{l} = \mu_0 \left(I + \varepsilon_0 \frac{d\phi_E}{dt} \right)$$

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \varepsilon_0 \frac{d\mathbf{E}}{dt} \right)$$

Anyagban: $\nabla \times \mathbf{H} = \mathbf{j} + \frac{d\mathbf{H}}{dt}$

Maxwell-egyenletek vákuumban

	Integrális alak (makroszkopikus)	Differenciális alak (makroszkopikus)
I. Elektromos Gauss- törvény	$ \oint \mathbf{E} d\mathbf{A} = \frac{q}{\varepsilon_0} $	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$
II. Mágneses Gauss- törvény	$ \oint \mathbf{B} d\mathbf{A} = 0 $	$\nabla \cdot \mathbf{B} = 0$
III. Faraday-törvény	$\oint \mathbf{E} d\mathbf{l} = -\frac{d \phi_B}{dt}$	$\nabla \times \mathbf{E} = -\frac{d\mathbf{B}}{dt}$
IV. Ampere-Maxwell- törvény	$\oint \mathbf{B} d\mathbf{l} = \mu_0 \left(I + \varepsilon_0 \frac{d \phi_E}{dt} \right)$	$ abla extbf{\textit{B}} = \mu_0 \left(extbf{j} + arepsilon_0 rac{d extbf{E}}{dt} ight)$

Maxwell-egyenletek anyag jelenlétében

$q = q_{szabad} + q_{k\"{o}t\"{o}tt}$ $I = I_{vezet\'{e}si} + I_{eltol\'{a}si}$	Integrális alak (makroszkopikus)	Differenciális alak (makroszkopikus)
I. Elektromos Gauss- törvény	$ \oint \mathbf{D} d\mathbf{A} = q_{sz} $	$ abla \cdot \mathbf{D} = ho_{sz}$
II. Mágneses Gauss- törvény		$\nabla \cdot \mathbf{H} = 0$
III. Faraday-törvény	$\oint \mathbf{E} d\mathbf{l} = -\frac{d \phi_B}{dt}$	$\nabla \times \mathbf{E} = -\frac{d\mathbf{B}}{dt}$
IV. Ampere-Maxwell- törvény	$\oint \mathbf{H} d\mathbf{l} = I_v + \varepsilon_0 \frac{d \phi_E}{dt}$	$\nabla \times \mathbf{H} = \mathbf{j}_v + \frac{d\mathbf{D}}{dt}$

Mechanikai hullámok

Surface Waves

Hullámegyenlet

1D:

$$u(x,t) = A \cdot \sin(\omega t - kx)$$

$$\frac{dx}{dt} = \frac{\omega}{k} = v_{f\acute{a}zis} = c$$

$$\frac{\partial^2 u}{\partial t^2} = \left(\frac{\omega}{k}\right)^2 \cdot \frac{\partial^2 u}{\partial x^2} = c^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

3D:

$$u(\mathbf{r}(x, y, z), t) = A \cdot \sin(\omega t - \mathbf{kr})$$

<u>Fázissebesség</u>

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = c^2 \cdot \nabla^2 u$$

2D hullám megoldás

2D hullám megoldás határfeltételekkel