

ENHANCING MULTI-FIELD GAS PRODUCTION VIA NETWORK OPTIMIZATION

Daniel Aluma

Advanced Process Modeling Forum, London, April 2014

IRAQ: THE POTENTIAL

- ■140 billion bbl of proven oil reserves
- ■110 tcf of gas (mostly associated)
- Opened up in 2010 to IOCs.
- ■3 mmbbl/d current oil production
- ■9 mmbbl/d; projection for 2020

IRAQ: THE CHALLENGE

BGC: THE NETWORK

SIMPLE COMPRESSOR STATION

KAZ NGL/LPG PLANT SCHEMATIC

Khor Al Zubair (KAZ) NGL/ LPG Plant Schematic

OBJECTIVES

Network modeling aimed at optimizing:

- □ Selectivity of the network
 - □ Vary yields of Dry Gas/LPG/C5+
 - □ Control: flow rate of different feed streams; compressor operating points
- □Flexibility of the network
 - □ Identify bottlenecks (e.g hardware constraints)
 - □ Establish sensitivity of overall production to certain inputs
 - □ Optimize production under failure scenarios
 - Maintenance planning
- □ Profitability of the network
 - □ Investment planning to maximize NPV
 - □ \$\$ focused on debottlenecking the network
 - Optimized asset locations
- □Environmental performance

GPROMS MODELING APPROACH

- □All BGC facilities modeled as 1 Network
- □Network development philosophy is top-down.
 - ☐ The nodes of the network are 'called' at the Network level as instances of some standard models.
 - □ Specific variables and parameter input done via dialog box at Network level.

The following standardised models have been developed:

- □Standard Compressor station models: 1 Train, 2 Trains and 3 Trains
- □Standard NGL plant yield model.
- □Standard De-Ethanizer, De-Propanizer, De-butanizer yield models
- □Standard LPG plant yield model.

MODEL DEVELOPMENT: THE NETWORK

MODEL DEVELOPMENT: 3-TRAIN CS

MODEL DEVELOPMENT: NGL YIELD MODEL

MODEL DEVELOPMENT: LPG YIELD MODEL

SIMULATION RESULTS

Metric	Unit	Plant Operation	gPROM S Model	
C3+ /Dry Gas Yield	ton/mmscf	6.7	7.5	11
Compressor Absorbed Power	MW	2.19	2.21	1

- □Yield difference can probably be accounted for by simplification of NGL yield models.
- □Yield difference is not significantly different from accuracy of field meters.

NEXT STEPS

- □ Detailed models of fractionation columns
- □Detailed pipeline models
- ■Run Optimization Cases
 - **□**Selectivity
 - □Flexibility
 - □ Profitability
 - **...**

Questions?

Suggestions?

