高一入学考试数学试题

高一数学

一、选择题(共10小题,每小题5分,共40分)

- √9 的值等于
 - (A) 3

(B) -3

(C) ±3

(D) $\sqrt{3}$

下列运算正确的是

(A)
$$a^2 + a^3 = a^5$$
 (B) $a^2 \cdot a^3 = a^6$ (C) $a^3 + a^2 = a$ (D) $(a^2)^3 = a^6$

(B)
$$a^2 \cdot a^3 = a^6$$

(C)
$$a^3 + a^2 = a^2$$

(D)
$$(a^2)^3 = a^6$$

- 近年来,随着交通网络不断完善,我市近郊游持续升温.据统计,在今年"五一"期间,某风 3. 景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为
 - (A) 20.3×10⁴ 人

(B) 2.03×10⁵人

(C) 2.03×10⁴人

(D) 2.03×10³ 人

4. 如图,在梯形 ABCD 中, AD//BC, 对角线 AC, BD 相交于点 O, 若 AD=1, BC=3, 则 $\frac{AO}{CO}$ 的值为

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$

(C) $\frac{1}{4}$

5. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他

区别,现从这个盒子中随机摸出一个球,摸到红球的概率为

(A)
$$\frac{5}{18}$$

(B)
$$\frac{1}{3}$$

(C)
$$\frac{2}{15}$$

(D)
$$\frac{1}{15}$$

6. 抛物线
$$y = x^2 - 6x + 5$$
 的顶点坐标为

- 7. 已知关于x的一元二次方程 $(a-1)x^2-2x+1=0$ 有两个不相等的实数根,则a的取值范围 是
 - (A) a < 2

(B) a > 2

- (C) $a < 2 \exists a \neq 1$ (D) a < -2
- 已知如图:(1)(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中 AB、CD 交 于 0 点,对于各图中的两个三角形而言,下列说法正确的是

(A) 都相似

- (B) 都不相似
- (C) 只有(1)相似
- (D) 只有(2)相似
- 如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是

10. 如图,四边形 ABCD 中, AC = a, BD = b, 且 $AC \perp BD$, 顺次连接四边形 ABCD 各边中点,得到四边形 $A_1B_1C_1D_1$,再顺次连接四边形 $A_1B_1C_1D_1$ 各边中点,得到四边形 $A_2B_2C_2D_2\cdots$,如此进行下去,得到四边形 $A_nB_nC_nD_n$.下列结论正确的有

- ①四边形 A,B,C,D, 是矩形
- ③四边形 $A_5B_5C_5D_5$ 的周长是 $\frac{a+b}{A}$

- ②四边形 $A_4B_4C_4D_4$ 是菱形
- ④四边形 $A_n B_n C_n D_n$ 的面积是 $\frac{ab}{2^{n+1}}$

(A) 12

(B) 23

(C) 234

(D) 1234

二、填空题(共6小题,每小题4分,共24分)

11. 如图,在 $\triangle ABC$ 中, D 、 E 分别是边 AC、BC 的中点, \overline{A} DE = 4,则 AB = _____.

12. 分解因式: a³-10a²+25a=____.

13. 如图,菱形 ABCD 的边长是 2cm, E 是 AB 的中点,且 DE L AB, 则菱形 ABCD 的面积为

14. 函数 $y = \frac{1}{\sqrt{x-2}} + x$ 的取值范围是 _____.

15. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:

①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;

②若报出的数为3的倍数,则报该数的同学拍手一次.在此过程中,甲同学需拍手的次数为

16. 设
$$S_1 = 1 + \frac{1}{1^2} + \frac{1}{2^2}, S_2 = 1 + \frac{1}{2^2} + \frac{1}{3^2}, S_3 = 1 + \frac{1}{3^2} + \frac{1}{4^2}, \dots, S_n = 1 + \frac{1}{n^2} + \frac{1}{(n+1)^2}.$$
 设 $S = \sqrt{S_1} + \sqrt{S_2} + \dots + \sqrt{S_n}, \quad \text{则 } S = \underline{\qquad}. \quad (用含 n \text{ 的代数式表示,其中 } n \text{ 为正整数})$

- 26. "五个重庆"建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形 ABCD 是矩形,分别以 $AB \times BC \times CD \times DA$ 边为直径向外作半圆,若整个广场的周长为 628 米,设矩形的边长 AB = y 米, BC = x 米. (注:取 $\pi = 3.14$)
- (I) 试用含x的代数式表示v;
- (II) 现计划在矩形 ABCD 区域上种植花草和铺设鹅卵石等, 平均每平方米造价为 428 元, 在 四个半圆的区域上种植草坪及铺设花岗岩, 平均每平方米造价为 400 元;
- ① 设该工程的总造价为W元, 求W关于x的函数关系式;
- ② 若该工程政府投入1千万元, 问能否完成该工程的建设任务?若能, 请列出设计方案, 若不能, 请说明理由?
- ③ 若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的 边 BC 的长不超过 AB 长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工 程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.

