

Trees

Definitions & Terminologies

Trees are the first data structure different from what you've seen in

previous courses

Definition

- ✓ Node based data structure
 - A rooted tree data structure stores information in nodes
- ✓ Similar to linked lists:
 - There is a first node, or root
 - Each node has variable number of references to successors
 - Each node, other than the root, has exactly one node pointing to it
- ✓ Dynamic data structures
 - Size limited by the amount of free memory in O.S.
- ✓ Hierarchical (or non-linear) data structure
 - Unlike Array and Linked List, which are linear data structures

Definition

- ✓ are useful for hierarchically ordered data
 - unlike the Linear lists which are useful for serially ordered data
- ✓ is a data structure which allows associate a parent-child relationship between various pieces of data and thus allows us to arrange our records, data and files in a hierarchical fashion
- ✓ is a data structure that simulates a hierarchical tree structure, with a root value and sub-trees of children, represented as set of linked nodes
- ✓ can also be seen as collection of nodes, where each node is a
 data structure consisting of a value
- ✓ has a root, branches, and leaves

Definition

- ✓ A *tree* **T** is a set of *nodes* storing elements such that the nodes have a *parent-child* relationship that satisfies the following properties:
 - If **T** is nonempty, it has a special node, called the **root** of **T**, that has no parent.
 - Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w.
- ✓ A tree can be empty, meaning that it does not have any nodes.

Definition

- ✓ Trees are used in many areas of computer science, such as:
 - operating systems (e.g. file system)
 - graphics
 - database systems
 - computer networking
 - XHTML

...

Terminologies

✓ Empty or Null Tree Tree having no nodes

The shape of a rooted tree gives a natural flow from the *root node*

Terminologies

All nodes will have zero or more child nodes or *children*

Four children: I, J, K and L

✓ Parent Node

For all nodes other than the root node, there is one parent node, the opposite notion of child

- H is the parent for I
- I is the parent for J, K, L

Terminologies

✓ Siblings

Nodes with the same parent (brothers)

• J, K, and L are siblings

✓ Degree of a Node

The degree of a node is defined as the number of its children

- number of sub trees of a node
- deg(I) = 3

Terminologies

✓ Ordered Trees

A tree is *ordered* if there is a meaningful linear order among the children of each node;

Terminologies

✓ Leaf Node

- Nodes with no child nodes
- Nodes with degree zero
- Also known as *External Nodes*
 - D, F, G, J, K, L, M

✓ Internal Nodes

- All other nodes (other than leaves) are said to be internal nodes, that is, they are internal to the tree
- Nodes with at least one child
 - A, B, C, E, H, I

Tree Leaf Nodes

Tree Internal Nodes

Terminologies

✓ Descendant

- Child (inheritor)
- A node reachable by repeated proceeding from parent to child

✓ Ancestor

- Grandparent
- A node reachable by repeated proceeding from child to parent

Terminologies

If a path exists from node a to node b:

- a is an ancestor of b
- b is a descendent of a

Thus, a node is both an ancestor and a descendant of itself

• We can add the adjective *strict* to exclude equality: *a* is a *strict descendent* of *b* if *a* is a descendant of *b* but *a* ≠ *b*

The **Root** node is an ancestor of all nodes

Terminologies

The descendants of node B are B, C, D, E, F, and G:

The ancestors of node I are I, H, and A:

Terminologies

All descendants (including itself) of the indicated node

Terminologies

All ancestors (including itself) of the indicated node

Terminologies

√ Edge

Connection between one node to another

✓ Path

- A path is a sequence of nodes (and edges) connecting a node with a descendant

$$(a_0, a_1, ... a_n)$$
 where $a_k + 1$ is a child of a_k

- For each node in a tree, there exists a unique path from the root node to that node

Paths of length 10 (11 nodes) and 4 (5 nodes)

Terminologies

✓ Length

Number of edges on the path

• the path (B, E, G) has length 2

✓ Level

The level of a node is defined by 1 + the number of edges (connections) between the node and the **Root**

Level of G is: 1 + 3 (connections) = 4

Terminologies

✓ Depth

- Length of the unique path from the **Root** to that node
- Number of edges from the node to the tree's **Root** node
 - E has depth 2
 - L has depth 3

Nodes of depth up to 17

Terminologies

√ Height of Tree

- The maximum depth of any node within the tree
- Number of edges on the longest downward path between the **Root** and a leaf
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be -1

Terminologies

The height of this tree is 17

Terminologies

√ Height of Node

- Length of the longest path from that node to a leaf
- Number of edges on the longest downward path between that node and a leaf

Terminologies

Another approach to a tree is to define the tree recursively:

- A degree-0 node is a tree
- A node with degree *n* is a tree if it has *n* children and all of its children are disjoint trees (*i.e.*, with no intersecting nodes)

Given any node (a) within a tree with root (r), the collection of (a) and all of its descendants is said to be a *sub-tree of the tree with root* (a)

Not a Tree

Abstract Tree

- ✓ An abstract tree does not restrict the number of nodes
 - In this tree, the degrees vary:

Degree	Nodes
0	D, F, G, J, K, L, M
1	С
2	B, E, H
3	1

- Stores an element
- Stores the children in a linked-list

Abstract Tree

The tree with six nodes would be stored as follows:

