IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA TAREA 5

Pregunta 1

Sean $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$ dos funciones cualesquiera. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

Pregunta 1.a

Si $f(n) \in \Theta(g(n))$ entonces mín $\{f(n), g(n)\} \in \Theta(\text{máx } f(n), g(n)\}$).

Solución:

Definiendo $h(n) = min\{f(n), g(n)\}$ y $H(n) = max\{f(n), g(n)\}$ Como $f \in \mathcal{O}(g)$, existen constantes $c_1, c_2 \in R, n_o \in N$ tal que

$$c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \tag{1}$$

Despejando de la parte derecha de la desigualdad

$$\frac{1}{c_2}f(n) \le g(n) \ \forall n \ge n_0 \tag{2}$$

Tenemos dos escenarios desde $n \geq n_0$:

1. Cuando $f(n) \leq g(n)$, $h(n) = f(n) \wedge H(n) = g(n)$. Usando (1) y la condición de este caso:

$$c_1 * g(n) \le f(n) \le 1 * g(n)$$
 para $n \ge n_0$ tq $f(n) \le 1 * g(n)$

$$min\{c_1, \frac{1}{c_2}\} g(n) \le c_1 g(n) \le f(n) \le 1 * g(n)$$

$$min\{c_1, \frac{1}{c_2}\} H(n) \le c_1 g(n) \le h(n) \le 1 * H(n)$$

2. Cuando $g(n) < f(n), h(n) = g(n) \land H(n) = f(n)$ Con (2) queda:

$$\frac{1}{c_2}f(n) \le g(n) \le 1 * f(n) \ para \ n \ge n_0 \ tq \ f(n) > g(n)$$

$$min\{c_1, \frac{1}{c_2}\} f(n) \le \frac{1}{c_2}f(n) \le g(n) \le 1 * f(n)$$

$$min\{c_1, \frac{1}{c_2}\} H(n) \le \frac{1}{c_2}h(n) \le g(n) \le 1 * H(n)$$

Combinando ambos casos:

$$min\{c_1, \frac{1}{c_2}\} H(n) \le h(n) \le 1 * H(n) \ \forall n \ge n_0$$

 $c'_1 H(n) \le h(n) \le c'_2 H(n) \ \forall n \ge n_0$

Con lo cual, $h(n) \in \mathcal{O}(H(n))$

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Punto) La demostración es correcta
- (3 Punto) Por diferenciar en dos casos, pero fallar en demostración o análisis de uno.
- (2 Punto) Por plantear inecuación (1) y (2) correctamente
- (0 Punto) En otro caso

Pregunta 1.b

Si $f(n) \in O(g(n))$ entonces $f(n)^{g(n)} \in O(g(n)^{f(n)})$.

Solución:

La afirmación anterior es falsa, se puede demostrar a través de un contraejemplo:

Sea f(n) = 2 y g(n) = n. De acuerdo a la jerarquía en notación \mathcal{O} vista en clases se cumple que $f(n) \in \mathcal{O}(g(n))$. Se debe demostrar ahora que $f(n)^{g(n)} \notin \mathcal{O}(g(n)^{f(n)})$:

Nuevamente si consideramos la jerarquía en notación \mathcal{O} vista en clases, si $f(n)^{g(n)} = 2^n$ y $g(n)^{f(n)} = n^2$. Entonces no se cumple que $f(n)^{g(n)} \in \mathcal{O}(g(n)^{f(n)})$, lo que es equivalente a $f(n)^{g(n)} \notin \mathcal{O}(g(n)^{f(n)})$.

Por demostración a través de contraejemplo queda demostrado que la afirmación no se cumple para dos funciones arbitrarias.

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Punto) La demostración es correcta
- (3 Punto) Se presenta un contraejemplo válido, se demuestra correctamente que $f(n) \in \mathcal{O}(g(n))$, pero no se demuestra correctamente que $f(n)^{g(n)} \notin \mathcal{O}(g(n)^{f(n)})$
- (2 Punto) Se presenta un contraejemplo inválido, pero se demuestra correctamente que $f(n) \in \mathcal{O}(g(n))$
- (**0 Punto**) En otro caso

Pregunta 2

En clases se vio que, dado un alfabeto finito Σ , se puede definir recursivamente el conjunto \mathcal{P}_{Σ} como:

- $\epsilon \in \mathcal{P}_{\Sigma}$.
- $a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.
- si $u \in \mathcal{P}_{\Sigma}$, entonces $a \cdot u \cdot a \in mathcal P_{\Sigma}$ para todo $a \in \Sigma$.

Por otro lado, para una palabra $w = a_1 a_2 \cdots a_n \in \Sigma^*$ se define su palabra reversa $w^R = a_n \cdots a_2 a_1$.

Pregunta 2.a

Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w \in \mathcal{P}_{\Sigma}$, entonces $w = w^R$.

Solución:

Se busca demostrar por inducción que para toda palabra $w \in \Sigma^*$, si $w \in P_{\Sigma}$ entonces $w = w^R$ Usamos inducción estructural sobre P_{Σ} . Se definen $S[0] = \{\epsilon, a\}$ con $a \in P_{\Sigma}$ y S[n] la enésima capa del conjunto P_{Σ} .

- Caso base.
 - Se tiene ϵ en la primera capa S[0], caso en que se cumple claramente $\epsilon = \epsilon^R$.
 - Se tienen aquellas letras $a \in \Sigma$ en la primera capa S[0], cumpliéndose también $a = a^R$.
- Hipótesis inductiva.

Se define $w \in P_{\Sigma}$ perteneciente a la enésima capa S[n], de modo que se cumple $w = w^R$.

Caso inductivo.

Ahora, sea $u \in P_{\Sigma}$ tal que $|u| \geq 2$ perteneciente a S[n+1], entonces se tiene que $\exists a \in \Sigma$ tal que $u = a \cdot w \cdot a$ con $w \in P_{\Sigma}$. Ahora, $u^R = (a \cdot w \cdot a)^R = a \cdot w^R \cdot a = a \cdot w \cdot a = u$, quedando así demostrado que si $u \in P_{\Sigma} \to u = u^R$.

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Puntos) Por concluir correctamente que $u = u^R$
- (3 Puntos) Por definir u en base a $w \in P_{\Sigma}$, indicando que $w = w^R$
- (2 Puntos) Por mencionar que se usa inducción estructural sobre P_{Σ} y desarrollar el caso base ϵ y a
- (**0 Puntos**) En otro caso

Pregunta 2.b

Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces $w \in \mathcal{P}_{\Sigma}$.

Solución:

Se busca demostrar por inducción que para toda palabra $w \in \Sigma^*$, si $w = w^R$ entonces se cumple $w \in P_{\Sigma}$ mediante inducción estructural sobre Σ^* .

Caso base.

Se considera ϵ que claramente cumple $\epsilon = \epsilon^R$, luego por definición del conjunto base de P_{Σ} se tiene que $\epsilon \in P_{\Sigma}$.

■ Hipótesis inductiva.

Se asume que para toda palabra u de largo menor a w, se tiene que si $u=u^R$ entonces se cumple $u\in P_{\Sigma}$.

Caso inductivo.

Ahora, dado $w \in \Sigma^*$, por la definición recursiva del conjunto se tiene que $w = u \cdot a$ para algún $u \in \Sigma^*$ y $a \in \Sigma$ con $u = a_1 \cdot a_2 \dots a_n$. Para demostrar que si $w = w^R$ entonces se cumple $w \in P_{\Sigma}$, se asume $w = w^R$ de modo que

$$a_1 \cdot a_2 \dots a_n \cdot a = w = w^R = (a_1 \cdot a_2 \dots a_n \cdot a)^R = a \cdot a_n \dots a_2 \cdot a_1$$

A partir de esto se deduce que $a=a_1$, con lo que se define $w'=a_2...a_n$ y $w=a\cdot w'\cdot a$, y dado que |w'|< w por hipótesis inductiva entonces $w'\in P_{\Sigma}$. Finalmente, por la definición recursiva de P_{Σ} , puesto que $w=a\cdot w'\cdot a$ y $w'\in P_{\Sigma}$, se cumple que $w\in P_{\Sigma}$, quedando así demostrada la implicancia.

Dado lo anterior la distribución de puntaje es la siguiente:

(4 Puntos) Por concluir que w se puede escribir como $a \cdot w' \cdot a$ con $w' \in P_{\Sigma}$

(3 Puntos) Por plantear el caso inductivo definiendo $w = a_1 \dots a_n \cdot a$

(2 Puntos) Por plantear el caso base y la hipótesis inductiva sobre Σ^*

(**0 Puntos**) En otro caso