#### Xilinx 7系列FPGA收发器架构之接收器 (RX) (十四)

原创 FPGA技术实战 FPGA技术实战 2020-05-18

收录于话题

#Xilinx7系列收发器详解

20个

引言:本文介绍GTX/GTH收发器以下内容:

- FPGA RX接口
- RX时钟校准
- RX通道绑定

### 1.FPGA RX接口

# 1.1 功能概述

FPGA RX接口是GTX/GTH收发器并行接口,实现收发器并行数据输出到FPGA内部逻辑。FPGA在RXUSRCLK2时钟的上升沿读取RXDATA端口数据,该端口可以配置为2字节、4字节或者8字节。

RXDATA宽度和RX\_DATA\_WIDTH和RX\_INT\_DATAWIDTH属性以及RX8B10BEN有关。并行时钟RXUSRCLK2速率由RX线速率、RXDATA宽度以及8B10B编码属性决定。RXUSRCLK时钟提供给PCS内部逻辑使用。

### 1.2 FPGA RX接口配置

7系列GTX/GTH收发器包含2字节和4字节内部数据路径,通过RX\_INT\_DATAWIDTH属性配置。RX接口配置如图1所示。

| RX8B10BEN | RX_DATA_WIDTH | RX_INT_DATAWIDTH | FPGA Interface<br>Width | Internal Data<br>Width |
|-----------|---------------|------------------|-------------------------|------------------------|
|           | 20            | 0                | 16                      | 20                     |
| 1         | 40            | 0                | 32                      | 20                     |
| 1         | 40            | 1/               | 32                      | 40                     |
|           | 80            | 1                | 64                      | 40                     |
|           | 16            | 0                | 16                      | 16                     |
|           | 20            | 0                | 20                      | 20                     |
|           | 32            | 0                | 32                      | 16                     |
| 0         | 32            | <b>,1</b> .      | 32                      | 32                     |
| U         | 40            | 0                | 40                      | 20                     |
|           | 40            | 1                | 40                      | 40                     |
|           | 64            | 1                | 64                      | 32                     |
|           | 80            | 1                | 80 -C FF                | SA技术学战                 |

图1、FPGA RX接口配置

当8B/10B解码器旁路时,RXDISPERR和RXCHARISK端口用来扩展RXDATA端口。如图2所示。

|                  |              |                                         |    |                         |   |     |              |              |               |    | <             | < < | D  | ata | R                                      | ec | ep           | ioi          | ı is          | R  | igh         | t t          | o L         | .ef | t (I        | LS          | Вt                   | 0  | MS  | B) | <   | < < |    |    |    |    |    |    |   |   |  |
|------------------|--------------|-----------------------------------------|----|-------------------------|---|-----|--------------|--------------|---------------|----|---------------|-----|----|-----|----------------------------------------|----|--------------|--------------|---------------|----|-------------|--------------|-------------|-----|-------------|-------------|----------------------|----|-----|----|-----|-----|----|----|----|----|----|----|---|---|--|
|                  | 39           | 38                                      | 37 | 36                      | 3 | 5 3 | 3 3          | 32           | 31            | 30 | 29            | 28  | 27 | 26  | 25                                     | 24 | 23           | 22           | 21            | 20 | 19          | 18           | 17          | 16  | 15          | 14          | 13                   | 12 | 2 1 | 10 | 9   | 8   | 7  | 6  | 5  | 4  | 3  | 2  | 1 | 0 |  |
| Data<br>Received | RXDISPERR[3] | KXDISPERR[3] RXCHARISK[3] RXDATA[31:24] |    |                         |   |     | RXDISPERR[2] | RXCHARISK[2] | RXDATA[23:16] |    |               |     |    |     | RXCHARISK[1] RXCHARISK[1] RXDATA[15.8] |    |              |              |               |    | RXDISPERRIO | RXCHARISK[0] | RXDATA[2:0] |     |             |             |                      |    |     |    |     |     |    |    |    |    |    |    |   |   |  |
|                  |              |                                         |    |                         |   |     |              |              |               |    | <             | < < | D  | ata | R                                      | ec | ep           | ioi          | n is          | R  | igh         | t t          | o L         | .ef | t (I        | LS          | Вt                   | 0  | MS  | B) | <   | < < |    |    |    |    |    |    |   |   |  |
|                  | 79           | 78                                      | 77 | 77 76 75 74 73 72 71 70 |   |     |              | 70           | 69            | 68 | 67            | 66  | 65 | 64  | 63                                     | 62 | 61           | 60           | 59            | 58 | 57          | 56           | 55          | 54  | 53          | 52          | 2 5                  | 50 | 49  | 48 | 47  | 46  | 45 | 44 | 43 | 42 | 41 | 41 |   |   |  |
| Data<br>Received | RXDISPERR[7] | RXCHARISK[7] RXCHARISK[7] RXDATA[56:63] |    |                         |   |     |              | RXDISPERR[6] | RXCHARISK[6]  |    | RXDATA[48:55] |     |    |     |                                        |    | RXDISPERR[5] | RXCHARISK[5] | RXDATA[40:47] |    |             |              |             |     | 1 CAPERRIAL | (CHARISK[4] | leczely.<br>FPGA技术实品 |    |     |    | TÖ. |     |    |    |    |    |    |    |   |   |  |

图2、8B/10B解码器旁路时RX接收数据格式

# 1.3 RXUSRCLK和RXUSRCLK2时钟产生

FPGA RX接口包括两个并行时钟: RXUSRCLK和RXUSRCLK2。RXUSRCLK用于收发器 PCS内部逻辑资源使用,RXUSRCLK2用于FPGA RX接口所有信号同步时钟。 RXUSRCLK时钟产生方程如图3所示。

# $RXUSRCLK\ Rate = \frac{Line\ Rate}{Internal\ Datapath\ Wiath}$ PGA技术实战

图3、RXUSRCLK时钟产生

RXUSRCLK和RXUSRCLK2时钟之间关系如图4所示。当线速率 (Line Rate) 超过 6.6Gb/s时,RX内部数据路径必须设置为4字节。

| FPGA Interface<br>Width | RX_DATA_WIDTH | RX_INT_DATAWIDTH | RXUSRCLK2 Frequency                                |
|-------------------------|---------------|------------------|----------------------------------------------------|
| 2-Byte                  | 16, 20        | 0                | $F_{RXUSRCLK2} = F_{RXUSRCLK}$                     |
| 4-Byte                  | 32, 40        | 0                | $F_{RXUSRCLK2} = F_{RXUSRCLK} / 2$                 |
| 4-Byte                  | 32, 40        | 1                | $F_{RXUSRCLK2} = F_{RXUSRCLK}$                     |
| 8-Byte                  | 64, 80        | 1                | F <sub>RXUSRCLK2</sub> = F <sub>RXUSRCLK</sub> / 2 |

图4、RXUSRCLK和RXUSRCLK2时钟之间关系

RXUSRCLK和RXUSRCLK2时钟使用必须遵循以下规则:

- RXUSRCLK和RXUSRCLK2必须是上升沿对齐,尽可能保持较小的时钟偏移。
   可以使用低偏移资源,如BUFG和BUFRs,驱动RXUSRCLK和RXUSRCLK2。
- 如果通道发送器和接收器配置为相同的时钟,TXOUTCLK时钟可以按照驱动 TXUSRCLK和TXUSRCLK2时钟的方式来驱动RXUSRCLK和RXUSRCLK2。当时 钟校准关闭或者RX buffer旁路时,RX相位对齐电路必须用来对齐串行时钟和 并行时钟。
- 如果通道发送器和接收器配置为不同的时钟,并且时钟校准未使用, RXUSRCLK和RXUSRCLK2必须由RXOUTCLK驱动,同时RX相位对齐电路必须 使用。
- 如果时钟校准使用,RXUSRCLK和RXUSRCLK2可以由RXOUTCLK或者 TXOUTCLK驱动。

#### 1.4 端口定义

FPGA RX端口如图5所示。

| 端口                  | 方向     | 时钟域       | 描述                                                                                                                                         |  |  |  |  |  |  |
|---------------------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| RXCHARDISPMODE[7:0] | output | RXUSRCLK2 |                                                                                                                                            |  |  |  |  |  |  |
| RXCHARDISPVAL[7:0]  | output | RXUSRCLK2 |                                                                                                                                            |  |  |  |  |  |  |
| RXDATA[63:0]        | output | RXUSRCLK2 | FPGA 发送端口,该端口位宽基于 RX_DATA_WIDTH:  ■ RX_DATA_WIDTH =16, 20: RX_DATA[15:0] = 16bits 位宽;  ■ RX_DATA_WIDTH =64, 80: RX_DATA[63:0] = 16bits 位宽。 |  |  |  |  |  |  |
| RXUSRCLK            | output | 时钟        | 为 TX PCS 内部提供时钟                                                                                                                            |  |  |  |  |  |  |
| RXUSRCLK2           | output | 时钟        | 同步 FPGA RX接口信号。当 RXUSRC 中田户提供的 地时钟 必须与 RXUSRCLK 上升沿保持对齐                                                                                    |  |  |  |  |  |  |

图5、FPGA RX端口定义

### 2.RX时钟校准

#### 2.1 功能描述

RX弹性缓冲器用来设计桥接RXUSRCLK和XCLK时钟域。理想情况下这两个时钟应该频率和相位相同,实际应用中两者在频率和相位上会存在一定偏移。RX弹性缓冲器可以实现两个时钟域数据稳定传输。RX时钟校准功能通过删除或者复制特定的空闲字符来防止RX弹性缓冲器上溢出或者下溢出。



图6中举例RXUSRCLK和XCLK时钟三种应用场景。正常情况下,读时钟RXUSRCLK和XCLK时钟频率相同,此时RX弹性缓冲器保持半满状态。当读时钟RXUSRCLK快于写时钟XCLK时,为避免出现读空RX弹性缓冲器,需要进行重复读或者空读操作。当读时钟RXUSRCLK慢于写时钟XCLK时,为避免出现RX弹性缓冲器溢出,需要丢弃一些数据。

#### 3.RX 通道绑定

#### 3.1 功能概述

XAUI和PCIe等协议使用多个串行收发器以产生更高的数据速率。由于每个收发器所在的通道延迟可能存在差异,这会导致通道间数据会存在"错位"现象,RX通道绑定功能就解决此问题。



图7、通道绑定概念示意图

通常在收发器TX发送端发送一串特殊字符,称为通道绑定序列。每个收发器接收到特殊字符后,GTX/GTH接收器可以决定每个通道之间的偏移,通过RX弹性缓冲器调整延迟,保证用户接口可以无偏移接收。



#### 欢迎关注FPGA技术实战公众号,持续更新原创!

收录于话题 #Xilinx7系列收发器详解·20个

上一篇

Xilinx 7系列FPGA收发器架构之硬件设计 Xilinx 7系列FPGA收发器架构之接收器 指导(一)

(RX) (十三)

下一篇

阅读 72

分享 收藏 赞 在看