# Mixture Language Models and EM Algorithm

**Pu-Jen Cheng** 

### **Outline**

- Mixture Model & its Applications
- EM Algorithm

### **Outline**

- Mixture Model & its Applications
- EM Algorithm

### **General Formula: Mixture Model**

- Unigram Mixture Model
  - Document LM + Background LM

model discriminative and common words

Single document

$$P(w_i \mid \theta_D) = \lambda P(w_i \mid \theta_D) + (1 - \lambda)P(w_i \mid \theta_C)$$

Multiple feedback documents

Feedback documents:  $F = \{ d_1, d_2, ..., d_k \}$ 

$$P(w_i \mid \theta_F) = \lambda P(w_i \mid \theta_F) + (1 - \lambda)P(w_i \mid \theta_C)$$

- Multi-topic Documents

$$P(w_i \mid \theta_1 \oplus \theta_2) = \lambda P(w_i \mid \theta_1) + (1 - \lambda)P(w_i \mid \theta_2)$$

### Relevance Feedback



### **Model Multiple Feedback Documents**



$$P(w_i \mid \theta_F) = \lambda P(w_i \mid \theta_F) + (1 - \lambda)P(w_i \mid \theta_C)$$

# Modeling a Multi-topic Document

#### A document with 2 types of vocabulary

. . .

text mining passage

food nutrition passage

text mining passage

text mining passage

food nutrition passage

. .

How do we model such a document?

How do we "generate" such a document?

How do we estimate our model?

Solution:
A mixture model + EM

### $p(w|\theta_1 \oplus \theta_2) = \lambda p(w|\theta_1) + (1 - \lambda)p(w|\theta_2)$

text 0.2  $\lambda = 0.7$ mining 0.1 association 0.01 Model/topic 1 clustering 0.02  $p(w|\theta_1)$ food 0.00001  $1-\lambda = 0.3$ Model/topic 2 food 0.25 nutrition 0.1  $p(w|\theta_2)$ healthy 0.05 diet 0.02

### **Parameter Estimation**

Likelihood:

$$p(d \mid \theta_1 \oplus \theta_2) = \prod_{w \in V} [p(w \mid \theta_1) + (1 - \lambda)p(w \mid \theta_2)]^{c(w,d)}$$
$$\log p(d \mid \theta_1 \oplus \theta_2) = \sum_{w \in V} c(w,d) \log[\lambda p(w \mid \theta_1) + (1 - \lambda)p(w \mid \theta_2)]$$

#### **Estimation scenarios:**

 $-p(w|\theta_1)$  &  $p(w|\theta_2)$  are known; estimate  $\lambda \leftarrow | \frac{\text{The } \alpha_1}{\text{how } \alpha_2} |$ 

The doc is about text mining and food nutrition, how much percent is about text mining?

-p(w| $\theta_1$ ) &  $\lambda$  are known; estimate p(w| $\theta_2$ )  $\leftarrow$ 

30% of the doc is about text mining, what's the rest about?

-p(w| $\theta_1$ ) is known; estimate  $\lambda$  & p(w| $\theta_2$ )  $\longleftarrow$ 

The doc is about text mining, is it also about some other topic, and if so to what extent?

-λ is known; estimate  $p(w|\theta_1)$ &  $p(w|\theta_2)$ 

30% of the doc is about one topic and 70% is about another, what are these two topics?

-Estimate  $\lambda$ ,  $p(w|\theta_1)$ ,  $p(w|\theta_2)$  =clustering



The doc is about two subtopics, find out what these Two subtopics are and to what extent the doc covers Each.

Will talk about EM algorithm to estimate solve these parameters

### **Outline**

- Mixture Model & its Applications
- EM Algorithm

## **Unigram Mixture Model & EM**

- Unigram Mixture Models
  - Slightly more sophisticated unigram LMs
  - Related to smoothing
- EM Algorithm
  - VERY useful for estimating parameters of a mixture model or when latent/hidden variables are involved

### A General Introduction to EM

The Expectation-Maximization (EM) algorithm is a general algorithm for maximum-likelihood estimation, where

```
the data are "incomplete" or
the likelihood function involves "latent variables"
(i.e., we can associate some latent variables with the missing data)
```

Data: X (observed) + H(hidden) Parameter:  $\theta$ 

"Incomplete" likelihood:  $L(\theta) = \log p(X|\theta)$ 

"Complete" likelihood:  $L_c(\theta) = \log p(X,H|\theta)$ 

For LM, EM is often used to estimate parameters of a mixture model, in which the exact component model (from which a data point is "generated") is hidden from us

# Parameter Estimation Example: Given $\lambda$ and p(w|C), estimate p(w| $\theta_F$ )

• Log-likelihood of the feedback documents F for  $heta_{\!F}$ 

$$F = \{ d_1, d_2, ..., d_k \}$$

$$\log L(\theta_F) = \log p(\mathcal{F} \,|\, \theta_F) \quad = \quad \sum_{i=1}^k \sum_{j=1}^{|d_i|} \log((1-\lambda)p(d_{ij} \,|\, \theta_F) + \lambda p(d_{ij} \,|\, \mathcal{C}))$$
 
$$\textit{d}_{ij} \text{: } \textit{j-th word in } \textit{d}_i$$

ML estimation

$$\begin{split} \hat{\theta}_{F} &= \underset{\theta_{F}}{\operatorname{arg\,max}} \, L(\theta_{F}) \\ &= \underset{\theta_{F}}{\operatorname{arg\,max}} \sum_{i=1}^{k} \sum_{j=1}^{|d_{i}|} \log((1-\lambda)p(d_{ij} \, | \, \theta_{F}) + \lambda p(d_{ij} \, | \, \mathcal{C})) \end{split}$$

Any simple solution? Think about  $p(d_{ii}|\theta_F)$  as a variable

### **Basic Idea of EM**

 "Augment" the observed data X with some latent/hidden variables H so that the complete data has a much simpler likelihood function for finding a maxima

Data: X (observed) + H(hidden) Parameter:  $\theta$ 

 Maximizing the incomplete data likelihood through maximizing the expected completed data likelihood

```
"Incomplete" likelihood: L(\theta) = \log p(X|\theta) "Complete" likelihood: L_c(\theta) = \log p(X,H|\theta)
```

Expectation is taken over all possible values of the hidden variables

### **Hidden Variable**

• Introduce a hidden variable z to indicate whether a word is generated from model C or model  $\theta_F$ 

$$z_{ij} = \begin{cases} 1 & \text{if word } d_{ij} \text{ is from background} \\ 0 & \text{otherwise} \end{cases}$$

Complete data log-likelihood

$$L_c(\theta_F) = \log p(\mathcal{F}, \mathbf{z} \mid \theta_F)$$

$$= \sum_{i=1}^k \sum_{j=1}^{|d_i|} [(1 - z_{ij}) \log((1 - \lambda)p(d_{ij} \mid \theta_F)) + z_{ij} \log(\lambda p(d_{ij} \mid C))]$$

Assume that we know which model generates  $d_{ij}$ 

# Relation between $L_c(\theta_F)$ and $L(\theta_F)$

• Assume our parameter is  $\theta$ 

$$L_c(\theta) = \log p(X, H|\theta) = \log p(X|\theta) + \log p(H|X, \theta) = L(\theta) + \log p(H|X, \theta)$$

```
"Incomplete" likelihood: L(\theta) = \log p(X|\theta) "Complete" likelihood: L_c(\theta) = \log p(X,H|\theta)
```

### Lower Bound of Likelihood

- More specifically, the idea of EM is to
  - start with some initial guess of the parameter values  $\theta^{(0)}$ , and then
  - iteratively search for better values for the parameters
  - $L(\theta^{(n+1)})$  is better than  $L(\theta^{(n)})$
- ullet A potentially better parameter value heta

$$L(\theta) - L(\theta^{(n)}) = L_c(\theta) - L_c(\theta^{(n)}) + \log \frac{p(H|X,\theta^{(n)})}{p(H|X,\theta)}$$

The expectation

$$\begin{split} L(\theta) - L(\theta^{(n)}) &= \sum_{H} L_c(\theta) p(H|X, \theta^{(n)}) - \sum_{H} L_c(\theta^{(n)}) p(H|X, \theta^{(n)}) \\ &+ \sum_{H} p(H|X, \theta^{(n)}) \log \frac{p(H|X, \theta^{(n)})}{p(H|X, \theta)} \end{split}$$

# Lower Bound of Likelihood (cont.)

$$L(\theta) - L(\theta^{(n)}) = \sum_{H} L_c(\theta) p(H|X, \theta^{(n)}) - \sum_{H} L_c(\theta^{(n)}) p(H|X, \theta^{(n)}) \cdot \frac{1}{2} \left( \frac{1}{2} \int_{H} L_c(\theta^{(n)}) p(H|X, \theta^{(n)}) d\theta^{(n)} d\theta^{(n)} \right)$$

$$+\sum_{H} p(H|X,\theta^{(n)}) \log \frac{p(H|X,\theta^{(n)})}{p(H|X,\theta)}$$

KL-divergence of  $p(H|X, \theta^{(n)})$  and  $p(H|X, \theta)$ 

$$D(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

$$L(\theta) - L(\theta^{(n)}) \ge \sum L_c(\theta) p(H|X, \theta^{(n)}) - \sum L_c(\theta^{(n)}) p(H|X, \theta^{(n)})$$

$$L(\theta) \geq \sum_{H} L_c(\theta) p(H|X, \theta^{(n)}) + L(\theta^{(n)}) - \sum_{H} L_c(\theta^{(n)}) p(H|X, \theta^{(n)})$$

original incomplete data likelihood

lower bound

## Lower Bound of Likelihood (cont.)

• 
$$L(\theta) \geq \sum_{H} L_c(\theta) p(H|X, \theta^{(n)}) + L(\theta^{(n)}) - \sum_{H} L_c(\theta^{(n)}) p(H|X, \theta^{(n)})$$

The expectation of Ignore because of no  $\theta$  the complete likelihood  $L_c(\theta)$ 

Maximizing this lower bound is to maximize the original (incomplete) likelihood

#### Q-function

$$Q(\theta; \theta^{(n)}) = E_{p(H|X,\theta^{(n)})}[L_c(\theta)] = \sum_{H} L_c(\theta)p(H|X,\theta^{(n)})$$

### Lower Bound of Likelihood (cont.)

• Q-function of our mixture model  $L(\theta_F)$ 

$$Q(\theta_F; \theta_F^{(n)}) = \sum_{\mathbf{z}} L_c(\theta_F) p(\mathbf{z}|\mathcal{F}, \theta_F^{(n)})$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{|d_i|} [p(z_{ij} = 0 | \mathcal{F}, \theta_F^{(n)}) \log((1 - \lambda)p(d_{ij} | \theta_F)) + p(z_{ij} = 1 | \mathcal{F}, \theta_F^{(n)}) \log(\lambda p(d_{ij} | \mathcal{C}))]$$

$$L_c(\theta_F) = \log p(\mathcal{F}, \mathbf{z} \mid \theta_F)$$

$$= \sum_{i=1}^k \sum_{j=1}^{|d_i|} [(1 - z_{ij}) \log((1 - \lambda)p(d_{ij} \mid \theta_F)) + z_{ij} \log(\lambda p(d_{ij} \mid \mathcal{C}))]$$

### A General Introduction to EM

"Incomplete" likelihood:  $L(\theta) = \log p(X|\theta)$ 

"Complete" likelihood:  $L_c(\theta) = \log p(X,H|\theta)$ 

EM tries to iteratively maximize the complete likelihood: Starting with an initial guess  $\theta^{(0)}$ ,

1. E-step: compute the expectation of the complete likelihood

$$Q(\theta; \theta^{(n)}) = E_{H}[L_{c}(\theta) | X, \theta^{(n)}]$$

$$= \sum_{h_{i}} p(H = h_{i} | X, \theta^{(n)}) \log p(X, H = h_{i} | \theta)$$

2. M-step: compute  $\theta^{(n)}$  by maximizing the Q-function

$$\theta^{(n+1)} = \underset{\theta}{\operatorname{arg\,max}} Q(\theta; \theta^{(n)})$$

$$= \underset{\theta}{\operatorname{arg\,max}} \sum_{h_i} p(H = h_i \mid X, \theta^{(n)}) \log p(X, H = h_i \mid \theta)$$

# E-step for $L(\theta_F)$

• Compute  $p(H|X, \theta^{(n)})$ 

$$p(z_{ij} = 1|\mathcal{F}, \theta_F^{(n)}) = \frac{\lambda p(d_{ij}|C)}{\lambda p(d_{ij}|C) + (1 - \lambda)p(d_{ij}|\theta_F^{(n)})}$$

$$p(z_{ij} = 0|\mathcal{F}, \theta_F^{(n)}) = 1 - p(z_{ij} = 1|\mathcal{F}, \theta_F^{(n)})$$

#### Replace $d_{ij}$ with $z_w$

$$p(z_w = 1 | \mathcal{F}, \theta_F^{(n)}) = \frac{\lambda p(w|C)}{\lambda p(w|C) + (1 - \lambda)p(w|\theta_F^{(n)})}$$

# M-step for $L(\theta_F)$

- Maximize the Q-function
- Apply Lagrange multiplier  $\sum_{w \in V} p(w|\theta_F) = 1$

$$\sum_{w \in V} p(w|\theta_F) = 1$$

$$g(\theta_F) = Q(\theta_F; \theta_F^{(n)}) + \mu(1 - \sum_{w \in V} p(w|\theta_F))$$

$$\frac{\partial g(\theta_F)}{\partial p(w|\theta_F)} = \left[ \sum_{i=1}^k \sum_{j=1, d_{ij}=w}^{|d_i|} \frac{p(z_{ij} = 0 | \mathcal{F}, \theta_F^{(n)})}{p(w | \theta_F)} \right] - \mu$$

$$p(w|\theta_F) = \frac{\sum_{i=1}^k \sum_{j=1, d_{ij}=w}^{|d_i|} p(z_{ij} = 0|\mathcal{F}, \theta_F^{(n)})}{\sum_{i=1}^k \sum_{j=1}^{|d_i|} p(z_{ij} = 0|\mathcal{F}, \theta_F^{(n)})}$$

$$= \frac{\sum_{i=1}^k p(z_w = 0|\mathcal{F}, \theta_F^{(n)}) c(w, d_i)}{\sum_{i=1}^k \sum_{w \in V} p(z_w = 0|\mathcal{F}, \theta_F^{(n)}) c(w, d_i)}$$

# **EM** for $L(\theta_F)$

#### • E-step:

$$p(z_w = 1 | \mathcal{F}, \theta_F^{(n)}) = \frac{\lambda p(w|C)}{\lambda p(w|C) + (1 - \lambda)p(w|\theta_F^{(n)})}$$

#### • M-step:

$$p(w|\theta_F^{(n+1)}) = \frac{\sum_{i=1}^k (1 - p(z_w = 1|\mathcal{F}, \theta_F^{(n)}))c(w, d_i)}{\sum_{i=1}^k \sum_{w \in V} (1 - p(z_w = 1|\mathcal{F}, \theta_F^{(n)})c(w, d_i))}$$

### **EM** Iteration

#### EM repeats the E and M steps until convergence

$$\theta^{i+1} = \underset{\theta}{\operatorname{argmax}} E_H \Big[ \log P(X, H \mid \theta) \mid X, \theta^i \Big]$$

# 1. E (expectation) Step:

• To expect the value distribution of H according to current hypothesis  $(\theta^i) \rightarrow H^i$ 

### 2. M (maximization) Step:

• To compute the optimal hypothesis according to current data distribution  $(H^i, X) \rightarrow \theta^{i+1}$ 

(X are fixed values while H<sup>i</sup> are value distribution and change in each iteration)

### Parameter Estimation Example:

Given  $p(w|\theta_1)$  and  $p(w|\theta_2)$ , estimate  $\lambda$ 

**Maximum Likelihood:** 

$$L(\lambda) = \prod_{w \in V} [\lambda p(w | \theta_1) + (1 - \lambda) p(w | \theta_2)]^{c(w,d)}$$

$$\log L(\lambda) = \sum_{w \in V} c(w,d) \log[\lambda p(w | \theta_1) + (1 - \lambda) p(w | \theta_2)]$$

$$\lambda^* = \arg\max_{\lambda} \log L(\lambda)$$

Expectation-Maximization (EM) Algorithm is a commonly used method

Basic idea: Start from some random guess of parameter values, and then Iteratively improve our estimates ("hill climbing")



# **EM Algorithm: Intuition**



# Can We "Guess" the Identity?

Identity ("hidden") variable:  $z_w \in \{1 \text{ (w from } \theta_1), 0 \text{ (w from } \theta_2)\}$ 

| $\mathbf{Z}_{\mathbf{W}}$                          |                                                                                                                                                                                                |                                            |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| the                                                | $p(z_{w} = 1   w) = \frac{p(z_{w} = 1)p(w   z_{w})}{p(z_{w} = 1)p(w   z_{w} = 1) + p(z_{w})}$ $= \frac{\lambda p(w   \theta_{1})}{\lambda p(w   \theta_{1}) + (1 - \lambda)p(w   \theta_{2})}$ | $z_{w} = 1$ $= 0) p(w   z_{w} = 0)$ E-step |
| text — 0 mining — 0 algorithm— 0 the — 1 paper — 0 | $\lambda^{new} = \frac{\sum_{w \in V} c(w, d) p(z_w = 1)}{\sum_{w} c(w, d)}$                                                                                                                   | M-step                                     |

Initially, set  $\lambda$  to some random value, then iterate ...

## An Example of EM Computation

$$Log - Likelihood : \log L(\lambda) = \sum_{w \in V} c(w, d) \log[\lambda p(w \mid \theta_1) + (1 - \lambda) p(w \mid \theta_2)]$$

E-step: 
$$p(z_w = 1 \mid w) = \frac{\lambda p(w \mid \theta_1)}{\lambda p(w \mid \theta_1) + (1 - \lambda) p(w \mid \theta_2)}$$

$$M - step: \qquad \lambda^{new} = \frac{\sum_{w \in V} c(w, d) p(z_w = 1 \mid w)}{\sum_{w \in V} c(w, d)}$$

| Word           | # | $P(w \theta_1)$ | $P(w \theta_2)$ | Init            | Iteration 1 |                 | Iteration 2 |                 |
|----------------|---|-----------------|-----------------|-----------------|-------------|-----------------|-------------|-----------------|
|                |   |                 |                 | $\lambda^{(0)}$ | P(z=1 w)    | $\lambda^{(1)}$ | P(z=1 w)    | $\lambda^{(2)}$ |
| The            | 4 | 0.5             | 0.2             |                 | 0.71        |                 | 0.68        |                 |
| Paper          | 2 | 0.3             | 0.1             | 0.5             | 0.75        | 0.46            | 0.72        |                 |
| Text           | 4 | 0.1             | 0.5             |                 | 0.17        |                 | 0.14        | 0.43            |
| Mining         | 2 | 0.1             | 0.3             |                 | 0.25        |                 | 0.22        |                 |
| Log-Likelihood |   | -15.45          | -15.39          |                 | -15.35      |                 |             |                 |
|                |   |                 |                 |                 |             |                 |             |                 |

# **Any Theoretical Guarantee?**

- EM is guaranteed to reach a LOCAL maximum
- When "local maxima" = "global maxima", EM can find the global maximum
- But, when there are multiple local maximas, "special techniques" are needed (e.g., try different initial values)

# **Convergence Guarantee**

Goal: maximizing "Incomplete" likelihood:  $L(\theta) = \log p(X|\theta)$ l.e., choosing  $\theta^{(n+1)}$ , so that  $L(\theta^{(n+1)}) - L(\theta^{(n)}) \ge 0$ 

Note that, since 
$$p(X,H|\theta) = p(H|X,\theta) \ P(X|\theta)$$
,  $L(\theta) = L_c(\theta) - log \ p(H|X,\theta)$   
 $L(\theta^{(n+1)}) - L(\theta^{(n)}) = L_c(\theta^{(n+1)}) - L_c(\theta^{(n)}) + log \ [p(H|X,\theta^{(n)})/p(H|X,\theta^{(n+1)})]$ 

Taking expectation w.r.t.  $p(H|X, \theta^{(n)})$ ,

$$L(\theta^{(n+1)})-L(\theta^{(n)}) = \underbrace{Q(\theta^{(n+1)}; \theta^{(n)})-Q(\theta^{(n)}; \theta^{(n)})}_{\uparrow} + \underbrace{D(p(H|X, \theta^{(n)})||p(H|X, \theta^{(n+1)}))}_{\uparrow}$$

EM chooses  $\theta^{(n+1)}$  to maximize Q KL-divergence, always non-negative Since we have maximized the Q function for model  $\theta$ ,

$$Q(\theta^{(n+1)}; \theta^{(n)})-Q(\theta^{(n)}; \theta^{(n)})\geq 0$$

Therefore, 
$$L(\theta^{(n+1)}) \ge L(\theta^{(n)})!$$

# Another way of looking at EM



E-step = computing the lower bound M-step = maximizing the lower bound

### Parameter $\lambda$ Estimation



## Parameter $\lambda$ Estimation (cont.)



# Parameter $\lambda$ Estimation (cont.)



# Parameter $\lambda$ Estimation (cont.)



### What You Should Know

- What is mixture model?
- How to estimate parameters of simple unigram mixture models using EM
- Know the general idea of EM