Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 4: Lernen rekursiver Funktionen

Version 1.1

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

7 Parameters of Inductive Inference

1. zu lernende Objekte

totale berechenbare Funktionen

2. Beispiele (Syntax)

Paare von Ein-/Ausgabewerten

3. Beispiele (Semantik)

im Limes korrekte und vollständige Beschreibung der Funktion

4. Lernverfahren

berechenbare Funktion

5. Hypothesenraum (Syntax)

Natürliche Zahlen

6. Semantik von Hypothesen

Programm in festgelegter Programmiersprache

7. Erfolgskriterium

Konvergenz im Limes

Begriffe

- \mathbb{N} ... Menge der natürlichen Zahlen $\{0,1,2,\dots\}$
- \mathcal{P} ... Menge aller berechenbaren (partiell-rekursiven) Funktionen
- \mathcal{P}^n ... Menge aller berechenbaren (partiell-rekursiven) n-stelligen Funktionen
- \mathcal{R} ... Menge aller überall definierten berechenbaren (allgemein-rekursiven, oder kurz *rekursiven*) Funktionen

Gödelnumerierungen

Definition 4.1:

Eine Funktion $\varphi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ heißt *Gödelnumerierung* der einstelligen berechenbaren Funktionen gdw.

- 1. arphi ist berechenbar, d.h. $arphi \in \mathcal{P}^2$.
- 2. φ ist universell für \mathcal{P}^1 , d.h. $\forall f \in \mathcal{P}^1 \; \exists j \in \mathbb{N} \; \forall x \in \mathbb{N} : \varphi(j,x) = f(x)$.
- 3. Jede Aufzählung berechenbarer Funktionen kann nach φ übersetzt werden, d.h. $\forall \psi \in \mathcal{P}^2 \; \exists c \in \mathcal{R} \; \forall x \in \mathbb{N} : \psi(i,x) = \varphi(c(i),x).$

Schreibweise: $\varphi_i(x)$ statt $\varphi(i,x)$

Information

Definition 4.2:

Eine Informationsfolge σ für eine allgemein-rekursiven Funktion f ist eine Folge $\{(x_i,y_i)\}_{i\in\mathbb{N}}$ so daß folgendes gilt:

- $\bullet \ f(x_i) = y_i$
- jedes $x \in \mathbb{N}$ kommt in σ vor, d.h. $\{x_i \mid i \in \mathbb{N}\} = \mathbb{N}$
- Wir beschränken uns zunächst auf *Standardreihenfolge*, d.h. $\sigma=(0,f(0))$, $(1,f(1)),(2,f(2)),\ldots$
 - auch als *Graph* bezeichnet
- Anfangsstücke wie üblich
 - spezielle Notation für Graphen: $\mathbf{f}[\mathbf{n}] = (0, f(0)), \dots, (n, f(n))$ * abgekürzt durch $f(0), f(1), \dots, f(n)$

Lernen im Limes

analog zu formalen Sprachen

Definition 4.3:

Ein Lernverfahren $M \in \mathcal{P}$ lernt eine Funktion $f \in \mathcal{R}$ im Limes genau dann wenn:

- 1. M berechnet für jedes Anfangsstückvon f eine Hypothese, d.h. $\forall n \in \mathbb{N}: M(f[n]) \downarrow$
- 2. M konvergiert gegen eine korrekte Hypothese, d.h. $\exists h \in \mathbb{N} : \varphi_h = f$ und $\exists m \in \mathbb{N} \ \forall n \geq m : M(f[n]) = h$.

M lernt eine Klasse $U\subseteq \mathcal{R}$ im Limes gdw. es jede Funktion aus der Klasse lernt (Bezeichnung: $U\subseteq \mathit{LIM}(M)$).

Die Menge aller Klassen allgemein-rekursiver Funktionen, die von einem berechenbaren Lernverfahren gelernt werden, heißt *LIM*. Also,

$$LIM = \{ U \subseteq \mathcal{R} \mid \exists M \in \mathcal{P} : U \subseteq LIM(M) \}.$$

Anmerkung: Wenn man formal ganz sauber sein will, muß man noch eine Kodierung von Anfangsstücke nach $\mathbb N$ definieren, da unsere Lernverfahren aus $\mathcal P$ sind, d.h. über nat. Zahlen arbeiten.

Finites Lernen

analog zu formalen Sprachen

Definition 4.4:

Ein Lernverfahren M lernt eine Funktion $f \in \mathcal{R}$ finit im Limes genau dann wenn es ein $d \in \mathcal{R}$ gibt, so daß:

- 1. M berechnet für jedes Anfangsstück von f eine Hypothese, d.h. $\forall n \in \mathbb{N}: M(f[n]) \downarrow$,
- 2. M konvergiert gegen eine korrekte Hypothese, d.h. $\exists h \in \mathbb{N}: \varphi_h = f$ und $\exists m \in \mathbb{N} \ \forall n \geq m: M(f[n]) = h$
- 3. d zeigt die Endhypothese an, d.h. $\forall n \in \mathbb{N}: d(f[n]) = 1 \Leftrightarrow M(f[n]) = h$.

Erkennungstyp: FIN

Konsistentes Lernen

analog zu formalen Sprachen

Definition 4.5:

Ein Lernverfahren $M \in \mathcal{P}$ lernt eine Funktion $f \in \mathcal{R}$ konsistent im Limes genaudann wenn:

- 1. M berechnet für jedes Anfangsstück von f eine Hypothese, d.h. $\forall n \in \mathbb{N}: M(f[n]) \downarrow$,
- 2. M konvergiert gegen eine korrekte Hypothese, d.h. $\exists h \in \mathbb{N}: \varphi_h = f$ und $\exists m \in \mathbb{N} \ \forall n \geq m: M(f[n]) = h$
- 3. Jede Hypothese von M ist konsistent, d.h. $\forall n \in \mathbb{N} \ \forall x \leq n : \varphi_{M(f[n])}(x) = f(x)$.

Erkennungstyp: CONS

Totale Hypothesen

Definition 4.6:

Ein Lernverfahren $M \in \mathcal{P}$ Iernt eine Funktion $f \in \mathcal{R}$ mit *totalen Hypothesen* im Limes genau dann wenn:

- 1. M berechnet für jedes Anfangsstück von f eine Hypothese, d.h. $\forall n \in \mathbb{N}: M(f[n]) \downarrow$,
- 2. M konvergiert gegen eine korrekte Hypothese, d.h. $\exists h \in \mathbb{N} : \varphi_h = f$ und $\exists m \in \mathbb{N} \ \forall n \geq m : M(f[n]) = h$,
- 3. jede Hypothese von M ist total, d.h. $\forall n \in \mathbb{N} : \varphi_{M(f[n])} \in \mathcal{R}$.

Erkennungstyp: TOTAL

Erste Einsichten

Theorem 4.1:

 $\mathit{FIN} \subseteq \mathit{TOTAL} \subseteq \mathit{CONS} \subseteq \mathit{LIM}$

Beweis.

→ Übungsaufgabe

Beispielklassen

Beispiel 1:

Functions of finite support:

$$U_{FFS} = \{ f \in \mathcal{R} \mid f(x) > 0 \text{ nur für endlich viele } x \in \mathbb{N} \}$$

Menge aller primitiv-rekursiven Funktionen

Selbstbeschreibende Funktionen:

$$U_S = \{ f \in \mathcal{R} \mid \varphi_{f(0)} = f \}$$

$$U_{S1} = \{ f \in \mathcal{R} \mid \varphi_{f(0)} = f, f(x) > 0 \text{ für alle } \in \mathbb{N} \}$$

Selbstbeschreibung → *Quines*

Beispiel für Java:

```
import java.text.*; class a{public static void main(String x[]) {char b[]={34}; char c[]={123}; String s[]=new String[3]; s[0]="import java.text.*; class a{2} public static void main(String x[]) {2} char b[]={2}34}; char c[]={2}123}; String s[]=new String[3]; s[0]={1}{0}{1}; s[1]=new String(b); s[2]=new String(c); System.out.println(MessageFormat.format(s[0],s));} "; s[1]=new String(b); s[2]=new String(c); System.out.println(MessageFormat.format(s[0],s));}}
```

Lernen durch totale Verfahren

- in Bedingung 1 Termination nur für Anfangsstücke der Zielfunktion gefordert
 - Macht das einen Unterschied?
- Können nun noch fordern, daß IIM total ist

Definition 4.7:

Sei ET ein Erkennungstyp. R-ET bezeichnet die Menge aller lernbaren Funktionen-klassen, für die es eine *totale* IIM gibt.

Erkennungstypen: *R-LIM*, *R-FIN*, *R-CONS*, ...

Lernen durch totale Verfahren

Theorem 4.2:

R-LIM = LIM.

R-TOTAL = TOTAL.

R-FIN = FIN.

Beweisidee.

Gegeben: IIM $M \in \mathcal{P}$

M'(f[n]):

Suche das größte $k \leq n$, so daß M(f[k]) innerhalb von n Schritten eine Hypothese berechnet.

Falls solch ein k gefunden, gib M(f[k]) aus, ansonsten eine Defaulthypothese.

Analyse:

- $M' \in \mathcal{R}$
- ullet Wenn M eine Funktion im Limes lernt, dann auch M'

Beweis für TOTAL und FIN analog.

qed

Konsistentes Lernen durch totale Verfahren

Theorem 4.3:

R- $CONS \subset CONS$

ohne Beweis

Konsistentes Lernen vs. Lernen im Limes

Theorem 4.4: $CONS \subset LIM$

Wir zeigen: $U_{S1} \cup U_{FFS} \in \mathit{LIM} \setminus \mathit{CONS}$

Wir definieren ein Aufzählung ψ rekursiver Funktionen wie folgt:

$$\psi_i(0) = i$$

$$\psi_i(x+1) = \begin{cases} 1 : M(\psi_i[x]) \neq M(\psi_i[x] \circ 1) \\ 2 : \mathsf{sonst} \end{cases}$$

Analyse:

- 1. ψ_i ist berechenbar
 - trivial
- 2. U_{FFS} ist anfangsstückvollständig
 - \bullet deshalb: $M(\tau)$ ist definiert für jedes beliebige Anfangsstück τ
 - ullet insbesondere ist M(au) konsistent für jedes au
- 3. ψ_i ist total
- 4. entweder arbeitet M auf dem Graph von ψ_i inkonsistent oder M konvergiert nicht

Konsistentes Lernen vs. Lernen im Limes

Wir haben nur ein Problem: M muß ja ψ_i mglw. gar nicht lernen, d.h. gilt $\psi_i \in U_{S1} \cup U_{FFS}$?

Theorem 4.5:

Fixpunktsatz

Für jede Gödelnumerierung φ gilt:

Für jede allgemein-rekursive Funktion $f \in \mathcal{R}$ existiert ein $n \in \mathbb{N}$ (der Fixpunkt) so daß $\varphi_n = \varphi_{f(n)}$ gilt.

Wir bringen nun alles zusammen

- Bedingung 3 der Gödelnumerierung: $\forall \psi \in \mathcal{P}^2 \; \exists c \in \mathcal{R} \; \forall x \in \mathbb{N} : \psi_i(x) = \varphi_{c(i)}(x).$
- $c \in \mathcal{R} \to \text{es gibt einen Fixpunkt } i^*$, d.h. $\varphi_{i^*} = \varphi_{c(i^*)}$
- $\bullet \ \psi_{i^*} = \varphi_{c(i^*)} = \varphi_{i^*}$
- nach Definition gilt $\varphi_{i^*}(0) = i^*$ und $\varphi_{i^*}(x) > 0$ für alle $x \in \mathbb{N}$
- daraus folgt: $\varphi_{i^*} \in U_{S1} \cup U_{FFS}$

Aber: M kann φ_{i^*} nicht konsistent lernen!

Konsistentes Lernen vs. Lernen im Limes

$$U_{S1} \cup U_{FFS} \in LIM \rightarrow \ddot{\mathsf{U}}$$
bungsaufgabe

qed

Total-Konsistentes Lernen

Es gibt einen Unterschied im konsistenten Lernen für totale und partielle IIMs.

Aber: Auch *R-CONS*-Maschinen müssen jedoch nicht überall konsistent sein, sondern nur auf Anfangsstücken zu lernender Funktionen.

Definition 4.8:

Ein Lernverfahren M heißt *total-konsistent* gdw. $M \in \mathcal{R}$ und $\forall f \in \mathcal{R} \ \forall n \in \mathbb{N}: \varphi_{M(f[n])}[n] = f[n].$

T-CONS= $\{U \subseteq \mathcal{R} \mid \exists M \in \mathcal{R} : M \text{ ist total-konsistent } \text{ und } U \subseteq \mathit{LIM}(M)\}.$

Total-Konsistentes Lernen

Der vorige Beweis ergibt auch direkt die Einsicht, daß $U_S \notin \textit{T-CONS}$ gilt.

Theorem 4.6:

T- $CONS \subset R$ -CONS. T-CONS # FIN.

Ohne Beweis:

Theorem 4.7:

T-CONS#TOTAL.R-CONS#TOTAL.

Grenzen des Lernens im Limes

Theorem 4.8:

 $LIM \subset \wp(\mathcal{R})$

$$U_S \cup U_{FFS} \notin \textit{LIM}$$

Beweis wie eben, nur etwas komplizierter...

Wir definieren ein Aufzählung ψ rekursiver Funktionen wie folgt:

Schritt 0: $\psi_i(0) = i$

Schritt n>0: Sei ψ_i bis zu Stelle x definiert.

Suche das kleinste $j \in \mathbb{N}$ so daß

(a)
$$M(\psi_i[x]) \neq M(\psi_i[x] \circ 1 \circ 0^j)$$
 oder

(b)
$$M(\psi_i[x]) \neq M(\psi_i[x] \circ 2 \circ 0^j)$$

gilt.

Im Fall (a) setze ψ_i fort mit $1 \circ 0^j$, im Fall (b) mit $2 \circ 0^j$.

Was ist eigentlich mit Identification by Enumeration?

Definition 4.9:

Eine Funktionenklasse $U \subseteq \mathcal{R}$ heißt *effektiv aufzählbar* ($U \in NUM$) gdw. $\exists g \in \mathcal{R} : U \subseteq \{\varphi_{g(n)} \mid n \in \mathbb{N}\} \subseteq \mathcal{R}$.

Theorem 4.9:

 $NUM \subseteq TOTAL$. $NUM \subseteq T-CONS$.

Wegen U_S und U_{FFS} wissen wir nun:

Folgerung 4.10:

 $\overline{NUM} \subset \overline{TOTAL}$. $NUM \subset \overline{T-CONS}$. NUM # FIN.

Exakte Aufzählbarkeit

Achtung: es gibt noch die exakte Variante von Aufzählbarkeit:

Definition 4.10:

Eine Funktionenklasse $U \subseteq \mathcal{R}$ heißt *exakt effektiv aufzählbar* ($U \in NUM!$) gdw. $\exists g \in \mathcal{R} : U = \{\varphi_{g(n)} \mid n \in \mathbb{N}\}.$

Theorem 4.11:

 $NUM! \subset NUM.$

Beweis.

Sei M irgendeine nicht-aufzählbare Menge von Zahlen. Betrachte die Teilmenge U aller konstanten Funktionen, die M entspricht.

Die Menge aller konstanten Funktionen ist klarerweise aufzählbar, also auch U. U ist aber nicht exakt aufzählbar...

qed

Was passiert bei Nicht-Standardreihenfolge?

Mit ET^{arb} bezeichnen wir die Erkennungstypen, bei denen die IIM die Zielfunktion auf beliebigen Informationsfolgen erkennen muß.

Beweis.

→ Übungsaufgabe

Theorem 4.13:

```
CONS^{arb} \subset CONS.
R\text{-}CONS^{arb} \subset R\text{-}CONS.
T\text{-}CONS^{arb} \subset T\text{-}CONS.
```

Literatur:

- [4] K.P. Jantke & H.-R. Beick: Combining Postulates of Naturalness in Inductive Inference. *Elektronische Informationsverarbeitung und Kybernetik* 17, pp. 465–484, 1981.
- [5] R. Wiehagen & Th. Zeugmann: Learning and Consistency. *In: Jantke & Lange (eds.) Algorithmic Learning for Knowledge-Based Systems*, Lecture Notes in Artificial Intelligence 961, pp. 1–24, Springer-Verlag 1995.

Changelog

V1.1:Folie 7: : →⇔