Zettel 3

xx.xx.2025

Contents

3.1	(i)																						3
3.2	(ii)																						3
3.3	(iii)																						3
3.4	(iv)																						3
3.5	(v)																						3
4.1	(i)																						3
42	(ii)																						4

1

2

3

3.1 (i)

Sei $K = \bigcup_i k_i \subset X$ mit k_i kompakten Mengen. Da k_i kompakt gibt es jeweils eine offene Überdeckung $U_i = \bigcup_j \left(\{U_j\}_i\right)$, s.d. $k_i \subset U_i$. Wir finden jeweils eine Teilmenge M_i sodass M_i eine endliche Teilmenge von U_i ist, welche k_i bedeckt.

Jetzt ist $\bigcup_i U_i$ eine offene Überdeckung von K und $\bigcup_i M_i$ eine endliche Teilmenge von $\operatorname{cup}_i U_i$. Da dies für beliebige $K = \bigcup_i k_i$ gilt ist die Aussage korrekt.

3.2 (ii)

Sei $K_n = [1/n, 1]$. Diese Mengen sind kompakt. Jetzt sei $K = \bigcup_{n=1}^{\infty} K_n$, diese Menge ist

(0, 1]

Diese Menge ist offen in \mathbb{R} , und somit nicht kompakt. Die Aussage ist somit falsch.

3.3 (iii)

 \mathbb{R} ist vollständig, allerdings ist \mathbb{R} offen und somit nicht kompakt.

3.4 (iv)

Sei X ein kompakter Raum. In kompakten Räumen hat jede Folge eine Konvergierende Teilfolge. Sei x_n eine Cauchy Folge, dann hat x_n eine konvergierende Teilfolge. In einem metrischen Raum konvergieren alle Cauchy Folgen die eine konvergierende Teilfolge haben, somit konvergieren alle Cauchy Folgen und X ist Vollständig

3.5 (v)

Sei a_n eine Folge in ℓ^2 . Sei $a_n = e_n$ die *n*-te Basis. ℓ^2 ist unendlich dimensional, also hat a_n keinen Grenzwert, und auch keine konvergierende Teilfolge. Somit ist ℓ^2 nicht kompakt.

4

4.1 (i)

Sei $A \subset X$ abgeschlossen. Sei U_i eine offene Überdeckung von A. Da A in X abgeschlossen ist, ist $X \setminus A$ offen. Dann ist $U_i \cap X \setminus A$ eine offene Überdeckung von X. Da X Kompakt ist, existiert eine endliche Teilüberdeckung $\{U_1, \cdots, U_n\} \cap X \setminus A$. Dann ist $\{U_1, \cdots, U_n\}$ eine offene Teilüberdeckung von A. Somit ist A kompakt.

4.2 (ii)

Sei U eine offene Überdeckung von f(K). Weil f stetig ist, ist $f^{-1}(u)$ offen für alle $u \in U$. Die Menge $\{f^{-1}(u)|u \in U\}$ ist eine offene Überdeckung von K, weil für alle $x \in K$ f(x) in einem $u \in U$ sein muss.

Weil K kompakt ist, hat es eine endliche Überdeckung $\{f^{-1}(u_1), \cdots, f^{-1}(u_n)\}$. Daraus folgt dass $\{u_1, \cdots, u_n\}$ eine endliche Überdeckung von f(K) ist.