Universidade Federal do Paraná

Algebra Linear, CM 005

2° semestre 2015. Olivier Brahic

Lista de exercícios 8 Bases e Dimensão.

Exercício 1: No exercício 1 da Folha 7, indique se os vetores formam uma base para \mathbb{R}^2 .

Exercício 2: No exercício 2 da Folha 7, indique se os vetores formam uma base para \mathbb{R}^3 .

Exercício 3: Considere os vetores:
$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\mathbf{x}_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $\mathbf{x}_3 = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$,

- a) Mostre que $\mathbf{x}_1, \mathbf{x}_2$ formam uma base de \mathbb{R}^2 .
- b) Por que $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ devem ser linearmente independentes ?
- c) Qual é a dimensão de $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$?

Exercício 4: Dados os vetores $\mathbf{x}_1 := \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$, $\mathbf{x}_2 := \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix}$, $\mathbf{x}_3 := \begin{pmatrix} -6 \\ 4 \\ -8 \end{pmatrix}$. Qual é a dimensão de $Cob(\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_3)$?

Exercício 5: Sejam
$$\mathbf{x}_1 := \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \ \mathbf{x}_2 := \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \ \mathbf{x}_3 := \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \in \mathbb{R}^3.$$

- a) Mostre que $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ são linearmente dependentes.
- b) Mostre que $\mathbf{x}_1, \mathbf{x}_2$ são linearmente independentes.
- c) Qual é a dimensão de $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$?
- d) Dê uma interpretação geométrica de $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$.

Exercício 6: No exercício 2 da folha 7, alguns dos conjuntos de vetores formavam subespaços de \mathbb{R}^3 . Em cada um desses casos, encontre uma base para o subespaço e determine sua dimensão.

Exercício 7: Para cada uma das seguintes matrizes, encontre uma base e deduza a dimensão do kernel $N(A) = \ker A$. Em cada caso, deduza a dimensão da imagem de A.

Dica: pode se ajudar dos resultados da Folha 2: veja no Exercício 3, os itens a) b) c) e) e no Exercício 2, os itens d) e e).

a)
$$A = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & -3 \\ -4 & 6 \end{pmatrix}$

$$c) A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 3 & -2 \end{pmatrix}$$

e)
$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

d)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 1 \\ 3 & 4 & 2 \end{pmatrix}$$

Exercício 8: Encontre uma base para o subespaço S de \mathbb{R}^4 consistindo em todos os vetores da forma $(a+b,a-b+2c,b,c)^{\intercal}$, nos quais a,b,c são números reais. Qual é a dimensão de S?

Exercício 9: Seja S o subespaço de todos os polinômios da forma $ax^2 + bx + 2a + 3b$. Encontre uma base para S.

Exercício 10: No exercício 4 da Folha 7, alguns dos conjuntos de vetores formavam subespaços de $\mathbb{R}^{2\times 2}$. Em cada um desses casos, encontre uma base para o subespaço e determine sua dimensão.

Exercício 11: Em cada um dos seguintes itens, ache a dimensão do subespaço de P_3 coberto pelos vetores dados:

a)
$$x, x-1, x^2+1$$

b)
$$x, x-1, x^2+1, x^2-1$$
 c) $x^2, x^2-x-1, x+1$ d) $2x, x-2$

e)
$$x^2$$
, $x^2 - x - 1$, $x + 1$

d)
$$2x, x -$$

Exercício 12: Seja S um subespaço de P_3 consistindo em todos os polinômios tais que p(0) = 0 e seja T o subespaço de todos os polinômios q(x) tais que q(1) = 0. Encontre bases para:

c)
$$S \cap T$$

Soluções

Resolução do Exercício 1:

- a) Segundo o Exercício 1, item a) da Folha 7, os vetores $\mathbf{v}_1 = (2,1)$ e $\mathbf{v}_2 = (3,2)$ são linearmente independentes, no espaço \mathbb{R}^2 que tem dimensão 2, portanto $\{\mathbf{v}_1, \mathbf{v}_2\}$ é é uma base do \mathbb{R}^2 .
- b) Segundo o Exercício 1, item b) da Folha 7, os vetores $\mathbf{v}_1 := (2,3)$ e $\mathbf{v}_2 := (4,6)$ não são linearmente independentes logo não formam uma base do \mathbb{R}^2 .
- c) Os vetores $\mathbf{v}_1 := (-2,1)$, $\mathbf{v}_2 := (1,3)$ e $\mathbf{v}_3 := (2,4)$ não podem formar uma base do \mathbb{R}^2 , pois são três vetores e \mathbb{R}^2 tem dimensão 2 só.
- d) Segundo o Exercício 1, item d) da Folha 7, os vetores (-2,1), (1,-2) e (2,-4) não são linearmente independentes, logo não formam uma base do \mathbb{R}^2 ,
- e) Segundo o Exercício 1, item e) da Folha 7, os vetores (1,2) e (-1,1) são linearmente independentes, no espaço \mathbb{R}^2 que tem dimensão 2, portanto formam uma base do \mathbb{R}^2 .

Resolução do Exercício 2:

- a) Os vetores dados por $\mathbf{v}_1 := (1,0,0)$, $\mathbf{v}_2 := (0,1,1)$ e $\mathbf{v}_3 := (1,0,1)$ são linearmente independentes, no espaço \mathbb{R}^3 que tem dimensão 3, portanto $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ é base de \mathbb{R}^3 .
- b) Os vetores em \mathbb{R}^3 dados por $\mathbf{v}_1 := (1,0,0)$, $\mathbf{v}_2 := (0,1,1)$, $\mathbf{v}_3 := (1,0,1)$ e $\mathbf{v}_4 := (1,2,3)$, não são linearmente independentes logo não formam uma base de \mathbb{R}^3 .

Observação. Tambem pode-se argumentar que uma base do \mathbb{R}^3 tem exatamente 3 vetores.

- c) Os vetores (2,1,-2), (3,2,-2), (2,2,0) sendo linearmente independentes, no espaço de dimensão três \mathbb{R}^3 , portanto $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ é uma base do \mathbb{R}^3 .
- d) Os vetores $\mathbf{v}_1 := (2, 1, -2)$, $\mathbf{v}_2 := (-2, -1, 2)$ e $\mathbf{v}_3 := (4, 2, -4)$ não são linearmente independentes logo não formam um base do \mathbb{R}^3 .
- e) Os vetores (1,1,3) e (0,2,1) são linearmente independentes, porem não formam uma base do \mathbb{R}^3 pois \mathbb{R}^3 tem dimensão 3.

Resolução do Exercício 3:

- a) A matriz $\begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$ tendo determinante diferente de 0, os vetores $\mathbf{v}_1, \mathbf{v}_2$ são linearmente independentes. O espaço \mathbb{R}^2 tendo dimensão 2, segue que $\{\mathbf{v}_1, \mathbf{v}_2\}$ é uma base do \mathbb{R}^2 .
- b) Três vetores num espaço de dimensão 2 não podem ser linearmente independentes.

c) O espaço $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ tem dimensão 2. Pode ser justificado de maneira rigorosa assim: temos

$$\operatorname{Cob}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \subset \mathbb{R}^2 \quad \Rightarrow \quad \dim \operatorname{Cob}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \leq 2,$$

$$\operatorname{Cob}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) \text{ contem dois vetores L.I.} \quad \Rightarrow \quad \dim \operatorname{Cob}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) \geq 2.$$

Portanto dim $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = 2$.

Resolução do Exercício 4: Preimeiro apresentamos uma maneira ingénua de resolver. Os vetores $\mathbf{x}_1 := (3, -2, 4)$ e $\mathbf{x}_2 := (-3, 2, -4)$ não são linearmente independentes pois satisfazem a relação não trivial $\mathbf{x}_1 + \mathbf{x}_2 = 0_{\mathbb{R}^3}$. Segue que:

$$Cob\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = Cob\{\mathbf{x}_1, \mathbf{x}_3\}.$$

É fácil ver que \mathbf{x}_1 e $\mathbf{x}_3 := (-6, 4, -8)$ são linearmente independentes pois não são colineares, logo dim $Cob\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = \dim Cob\{\mathbf{x}_1, \mathbf{x}_2\} = 2$.

Observação. A dimensão de um espaço E gerado por k vetores não pode superar k (dim $E \le k$). Se ele contem k vetores linearmente independentes, então ele tem dimensão k (dim E = k).

Resolução alternativa do exercício 4: Pode-se argumentar de maneira mais conceptual assim. Notemos A a matriz cujas colunas são os vetores $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$:

$$A := \begin{pmatrix} 3 & -3 & -6 \\ -2 & 2 & 4 \\ 4 & -4 & 8 \end{pmatrix}.$$

Lembremos que por definição:

Im
$$A = \text{Cob}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\},\$$

$$\ker A = \{\mathbf{y} \in \mathbb{R}^3 \ A \cdot \mathbf{y} = 0_{\mathbb{R}^3}\}.$$

Resolvendo o seguinte sistema:

$$\begin{cases} y_1 - 3y_2 - 6y_3 = 0 \\ -2y_1 + 2y_2 - 4y_3 = 0 \\ 4y_1 - 4y_2 - 8y_3 = 0. \end{cases}$$

obtemos facilmente que:

$$\ker A = \{(y_1, y_2, y_3) \in \mathbb{R}^3 \mid (y_1, y_2, y_3) = \alpha(1, -1, 0) \text{ onde } \alpha \in \mathbb{R}\}.$$

= Cob\{(1, -1, 0)\}.

Em particular, segue que dim ker A=1. Aplicando o Teorema do posto, que diz que:

$$\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^3,$$

obtemos que $\dim(\operatorname{Im} A) = 2$.

Resolução do Exercício 5: Sejam
$$\mathbf{x}_1 := \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \ \mathbf{x}_2 := \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \ \mathbf{x}_3 := \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \in \mathbb{R}^3.$$

- a) A matrix $\begin{pmatrix} 2 & 3 & 2 \\ 1 & -1 & 6 \\ 3 & 4 & 4 \end{pmatrix}$ tendo determinante igual a 0, os vetores $\mathbf{x}_1 := (2,1,3)$, $\mathbf{x}_2 := (3,-1,4)$ e $\mathbf{x}_3 := (2,6,4)$ são linearmente dependentes.
- b) Sejam $\lambda_1, \lambda_2 \in \mathbb{R}$ escalares tais que $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 = 0_{\mathbb{R}^3}$. Então, temos:

$$\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 = 0_{\mathbb{R}^3} \quad \Rightarrow \quad \begin{cases} 2\lambda_1 + \lambda_2 = 0 \\ 3\lambda_1 - \lambda_2 = 0 \\ 2\lambda_1 + 6\lambda_2 = 0 \end{cases} \quad \Rightarrow \quad \lambda_1 = \lambda_2 = 0,$$

logo $\mathbf{x}_1, \mathbf{x}_2$ são linearmente independentes.

- c) Os vetores $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ sendo linearmente dependentes, temos dim $\mathrm{Cob}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) < 3$, este espaço contendo dois vetores linearmente independentes $\mathbf{x}_1, \mathbf{x}_2$, ele tem necessariamente dimensão 2.
- d) O espaço $Cob(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ é o plano gerado por \mathbf{x}_1 , \mathbf{x}_2 (ou seja o plano que passa pelos três pontos \mathbf{x}_1 , \mathbf{x}_2 e $0_{\mathbb{R}^3}$ em \mathbb{R}^3).

Resolução do Exercício 6:

- a) Os vetores em \mathbb{R}^3 dados por $\mathbf{v}_1 := (1,0,0)$, $\mathbf{v}_2 := (0,1,1)$ e $\mathbf{v}_3 := (1,0,1)$ sendo linearmente independentes no espaço de dimensão três \mathbb{R}^3 , eles formam uma base dele.
- b) Os vetores em \mathbb{R}^3 dados por $\mathbf{v}_1 := (1,0,0)$, $\mathbf{v}_2 := (0,1,1)$, $\mathbf{v}_3 := (1,0,1)$ e $\mathbf{v}_4 := (1,2,3)$ não são linearmente independentes, mais qualquer um dos seguintes subconjuntos de três vetores são linearmente independentes, logo formam uma base de \mathbb{R}^3 :

$$\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\},\quad \{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_4\},\quad \{\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4\},\quad \{\mathbf{v}_1,\mathbf{v}_3,\mathbf{v}_4\}.$$

- c) Os vetores (2,1,-2), (3,2,-2) e (2,2,0) formam uma base do \mathbb{R}^3 pois são 3 vetores linearmente independentes.
- d) Os vetores $\mathbf{v}_1 := (2, 1, -2)$, $\mathbf{v}_2 := (-2, -1, 2)$ e $\mathbf{v}_3 := (4, 2, -4)$ não são linearmente independentes. mais qualquer um dos seguintes subconjuntos de dois vetores são linearmente independentes, logo formam uma base de Cob $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$:

$$\{\mathbf{v}_1,\mathbf{v}_2\}$$
 $\{\mathbf{v}_1,\mathbf{v}_3\}$ $\{\mathbf{v}_2,\mathbf{v}_3\}$.

O subespaço $Cob\{v_1, v_2, v_3\}$ tem dimensão 2.

e) Os vetores (1,1,3) e (0,2,1) são linearmente independentes logo formam uma base de Cob $\{v_1, v_2\}$, que tem dimensão 2.

Resolução do Exercício 7:

Observação. Primeiro, lembremos o seguinte resultado. Consideremos $A \in \mathcal{M}_{m,n}(\mathbb{R})$ e $\mathbf{b} \in \mathbb{R}^m$ fixados. Notemos (1) o sistema de equações lineares correspondente e (2) o sistema homogêneo associado:

$$A \cdot x = b, \tag{1}$$

$$A \cdot \mathbf{x} = 0_{\mathbb{R}^m} \tag{2}$$

Notemos também S e S_0 os conjuntos solução respetivos. Observa que por definição: $S_0 = N(A)$. Vimos que se o sistema (1) é consistente ($S \neq \emptyset$) então o conjunto solução é sempre da forma:

$$S = x_{part} + S_0$$

onde $\mathbf{x}_{part} \in \mathcal{S} \subset \mathbb{R}^n$ denota uma solução particular qualquer de (1).

Muitas vezes, este resultado se usa para calcular S: encontrando primeiro uma solução particular, e depois calculando S_0 . Porem, pode ser usado para encontrar S_0 jà que S é conhecido (caso não é vazio) sem ter que resolver (2).

a) Vimos no exercício 3-a) da Folha 2 que o sistema:

$$\begin{cases} x_1 - 2x_2 = 3 \\ 2x_1 - x_2 = 9. \end{cases}$$

tem uma solução única: $S = \{(5,1)\} \subset \mathbb{R}^2$, logo $N(A) = S_0 = \{0\}$. É o subespaço trivial, ele tem dimensão zero e não admite nenhuma base.

Aplicando o Teorema do posto: $\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^2$, conclua-se que o subespaço imagem $\operatorname{Im} A \subset \mathbb{R}^2$ tem dimensão 2. Segue que $\operatorname{Im} A = \mathbb{R}^2$

b) Vimos no exercício 3-b) da Folha 2 que o sistema

$$\begin{cases} 2x_1 - 3x_2 = 5 \\ -4x_1 + 6x_2 = 8. \end{cases}$$

é inconsistente, logo não podemos deduzir S_0 , e temos que resolver o sistema homogêneo:

$$\begin{cases} 2x_1 - 3x_2 = 0 \\ -4x_1 + 6x_2 = 0. \end{cases}$$

Obtemos o seguinte resultado:

$$S_0 = N(A) = \{(x_1, x_2) \in \mathbb{R}^2 \mid (x_1, x_2) = (3\alpha, 2\alpha) \text{ onde } \alpha \in \mathbb{R}\}.$$

De maneira equivalente, tem-se que $N(A) = \text{Cob}\{(3,2)\}$. Logo N(A) admite $\{(3,2)\}$ como base, e tem dimensão 1.

Aplicando o Teorema do posto: $\dim \ker A + \dim \operatorname{Imim} A = \dim \mathbb{R}^2$, conclua-se que o subespaço imagem $\operatorname{Im} A \subset \mathbb{R}^2$ tem dimensão 1. Segue que Segue que $\operatorname{Im} A = \operatorname{Cob}\{(2, -4)\}$

c) Vimos no exercício 3-c) da Folha 2 que o sistema

$$\begin{cases} x_1 + x_2 = 0 \\ 2x_1 + 3x_2 = 0 \\ 3x_1 - 2x_2 = 0. \end{cases}$$

tem uma solução única $S_0 = \{(0,0)\}$. Logo N(A) tem dimensão zero e não admite nenhuma base. Aplicando o Teorema do posto: $\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^2$, conclua-se que o subespaço imagem de $A \operatorname{im} A \subset \mathbb{R}^3$ tem dimensão 2. Segue que $\operatorname{Im} A = \mathbb{R}^2$

d) Vimos no exercício 3-e) da Folha 2 que o sistema

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \\ 3x_1 + 4x_2 + 2x_3 = 4. \end{cases}$$

tem conjunto solução uma reta em \mathbb{R}^3 :

$$S = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid (x_1, x_2, x_3) = (8 - 2\alpha/7, -5 + \alpha, \alpha) \text{ onde } \alpha \in \mathbb{R} \}.$$

Aqui, $\mathbf{x}_{part} = (8, -5, 0)$ é solução particular e o sistema homogêneo tem conjunto solução:

$$S_0 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid (x_1, x_2, x_3) = (-2\alpha/7, \alpha, \alpha) \text{ onde } \alpha \in \mathbb{R} \}.$$

= Cob \{(-2/7, 1, 1)\}

Logo N(A) tem base $\{(-2/7,1,1)\}$ (ou $\{(-2,7,7)\}$ também...) e tem dimensão 1.

Aplicando o Teorema do posto: $\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^3$, conclua-se que o subespaço imagem $\operatorname{Im} A \subset \mathbb{R}^3$ tem dimensão 2. Os vetores (2,1,3) e (3,1,4) sendo claramente linearmente independente, eles formam uma base de $\operatorname{Im} A$, e $\operatorname{Im} A = \operatorname{Cob} \{(2,1,3),(3,1,4)\}$.

e) Vimos no exercício 2-d) da Folha 2 que o sistema

$$\begin{cases} x_1 + 2x_2 + x_4 = 5 \\ x_3 + 3x_4 = 4. \end{cases}$$

tem conjunto solução:

$$S = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid (x_1, x_2, x_3, x_4) = (5 - 2\alpha - \beta, \alpha, 4 - 3\beta, \beta) \text{ onde } \alpha, \beta \in \mathbb{R} \}.$$

Aqui, $\mathbf{x}_{part} = (5, 0, 4, 0)$ é solução particular e o sistema homogêneo tem conjunto solução:

$$S_0 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid (x_1, x_2, x_3, x_4) = (-2\alpha - \beta, \alpha, -3\beta, \beta) \text{ onde } \alpha, \beta \in \mathbb{R} \}$$

= Cob{(-2, 1, 0, 0), (-1, 0, -3, 1)}

Os vetores (-2,1,0,0) e (-1,0,-3,1) sendo linearmente independentes, N(A) admite o conjunto $\{(-2,1,0,0),(-1,0,-3,1)\}$ como base, e tem dimensão 2.

Aplicando o Teorema do posto: $\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^4$, conclua-se que o subespaço imagem $\operatorname{Im} A \subset \mathbb{R}^2$ tem dimensão 2. Segue que $\operatorname{Im} A = \mathbb{R}^2$. Os vetores (1,0,0,0) e (1,1,0,0) sendo linearmente independentes, eles formam um base de $\operatorname{Im} A$.

f) Vimos no exercício 2-e) da Folha 2 que o sistema

$$\begin{cases} x_1 + 5x_2 - 2x_3 + x_4 = 3 \\ x_4 = 6. \end{cases}$$

tem conjunto solução:

$$S = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid (x_1, x_2, x_3, x_4) = (3 - 5\alpha + 2\beta, \alpha, \beta, 6) \text{ onde } \alpha, \beta \in \mathbb{R} \}.$$

Aqui, $\mathbf{x}_{part} = (3, 0, 0, 6)$ é solução particular e o sistema homogêneo tem conjunto solução:

$$S_0 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid (x_1, x_2, x_3, x_4) = (-5\alpha + 2\beta, \alpha, \beta, 0) \text{ onde } \alpha, \beta \in \mathbb{R} \}$$

= Cob{(-5, 1, 0, 0), (2, 0, 1, 0)}.

Os vetores (-5, 1, 0, 0) e (2, 0, 1, 0) sendo linearmente independentes, conclua-se que N(A) admite o conjunto $\{(-5, 1, 0, 0), (2, 0, 1, 0)\}$ como base e tem dimensão 2.

Aplicando o Teorema do posto: $\dim(\ker A) + \dim(\operatorname{Im} A) = \dim \mathbb{R}^4$, conclua-se que o subespaço imagem $\operatorname{Im} A \subset \mathbb{R}^4$ tem dimensão 2.

Resolução do Exercício 8: Notemos $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ os seguintes vetores em \mathbb{R}^4 :

$$\mathbf{v}_1 = (1, 1, 0, 0),$$

 $\mathbf{v}_2 = (1, -1, 1, 0),$
 $\mathbf{v}_3 = (0, 0, 0, 1).$

Observe que pelas definições, temos:

$$S = \{ (y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \mid (y_1, y_2, y_3, y_4) = (a + b, a - b + 2c, b, c) \text{ onde } a, b, c \in \mathbb{R} \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^4 \mid \mathbf{y} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3, \text{ onde } a, b, c \in \mathbb{R} \}$$

$$= \text{Cob}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$$

Falta mostrar que $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ são linearmente independentes. Sejam $a, b \in \mathbb{R}$ escalares tais que $a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = 0_{\mathbb{R}^4}$. Resolvendo o sistema:

$$\begin{cases} a+b = 0 \\ a-b+2c = 0 \\ b = 0 \\ c = 0. \end{cases}$$

obtemos facilmente que a=b=c=0. Segue que $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ são linearmente independentes, portanto eles formam uma base de $\mathrm{Cob}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$.

Resolução do Exercício 9: Notemos v_1, v_2 os seguintes vetores em P_3 :

$$\mathbf{v}_1 := x^2 + 2, \quad \mathbf{v}_2 := x + 3,$$

Observe que pelas definições, temos:

$$S = \{ p \in P_3 \mid p(x) = ax^2 + bx + 2a + 3b \text{ onde } a, b \in \mathbb{R} \}$$

= \{ p \in P_3 \ | p = a\mathbf{v}_1 + b\mathbf{v}_2 \text{ onde } a, b \in \mathbf{R} \}
= \text{Cob}\{\mathbf{v}_1, \mathbf{v}_2\}.

Falta mostrar que $\mathbf{v}_1, \mathbf{v}_2$ são linearmente independentes: sejam $a, b, c \in \mathbb{R}$ escalares tais que $a\mathbf{v}_1 + b\mathbf{v}_2 = 0_{P_3}$, então calculemos que temos:

$$a\mathbf{v}_1 + b\mathbf{v}_2 = 0_{P_3} \quad \Longleftrightarrow \quad ax^2 + bx + 2a + 3b = 0 \quad \Longleftrightarrow \quad \begin{cases} a = 0 \\ b = 0 \\ 2a + 3b = 0. \end{cases} \quad \Longleftrightarrow \quad \begin{cases} a = 0 \\ b = 0. \end{cases}$$

Segue que $\mathbf{v}_1, \mathbf{v}_2$ são linearmente independentes, portanto eles formam uma base de Cob $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Resolução do Exercício 10:

- a) Vimos que os vetores $\mathbf{v}_1 := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ e $\mathbf{v}_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ são linearmente independentes, logo eles formam um base do subespaço Cob $\{\mathbf{v}_1, \mathbf{v}_2\}$. Segue que ele tem dimensão 2.
- b) Os vetores $\mathbf{v}_1 := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{v}_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $\mathbf{v}_3 := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ são linearmente independentes, logo formam uma base de $\text{Cob}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, que tem dimensão 3.
- c) Os vetores $\mathbf{v}_1 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{v}_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $\mathbf{v}_3 := \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ não são linearmente independentes porem, é fácil ver que $\mathbf{v}_1, \mathbf{v}_2$ o são. Eles formam uma base de $\mathrm{Cob}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathrm{Cob}\{\mathbf{v}_1, \mathbf{v}_2\}$ que tem dimensão 2.

Resolução do Exercício 11:

- a) É fácil ver que os vetores x, x-1, x^2+1 são linearmente independentes logo $Cob\{x, x-1, x^2+1\} = P_3$, de dimensão 3.
- b) Os vetores x, x-1, x^2+1 , x^2-1 não podem ser linearmente independentes pois P_3 tem dimensão 3, é fácil ver que eles geram P_3 , pois este espaço tem dimensão 3.
- c) Os vetores x^2 , $x^2 x 1$ e x + 1 não são linearmente independentes pois satisfazem a relação não trivial: $x^2 (x^2 x 1) (x + 1) = 0$ _{P3}. Os vetores x^2 , $x^2 x 1$ são linearmente independentes logo x^2 , $x^2 x 1$ e x + 1 geram um subespaço de dimensão 2 em P3.

d) Os vetores 2x, x-2 são claramente linearmente independentes, logo eles geram um subespaço de dimensão 2 em P_3 .

Resolução do Exercício 12:

a) Um polinomio em P_3 pertence em S se e somente se ele admite 0 por raiz. Portanto:

$$S = \{ p \in P_3 \mid p(x) = x(ax + b) \text{ onde } a, b \in \mathbb{R} \},$$

= $\{ p \in P_3 \mid p(x) = ax^2 + bx \text{ onde } a, b \in \mathbb{R} \},$
= $\text{Cob}\{x, x^2\}$

Os polinomios x e x^2 sendo linearmente independentes, eles formam um base de S, em particular S tem dimensão 2.

b) Um polinomio em P_3 pertence em T se e somente se ele admite 0 por raiz. Portanto:

$$T = \{ p \in P_3 \mid p(x) = (x-1)(ax+b) \text{ onde } a, b \in \mathbb{R} \},$$

= \{ p \in P_3 \left| p(x) = ax^2 + (b-a)x - b \text{ onde } a, b \in \mathbb{R} \},
= \{ p \in P_3 \left| p(x) = a(x^2 - 1) + b(x - 1) \text{ onde } a, b \in \mathbb{R} \},
= \text{Cob}\{x^2 - 1, x - 1\}

Os polinomios x^2-1 e x-1 sendo linearmente independentes, eles formam um base de T, em particular T tem dimensão 2.

c) Um polinomio em P_3 pertence em $Ts \cap T$ se e somente se ele admite 0 e 1 por raiz. Portanto:

$$S \cap T = \{ p \in P_3 \mid p(x) = ax(x-1) \text{ onde } a \in \mathbb{R} \},$$

= Cob{x(x - 1)}

Portanto $\{x(x-1)\}$ forma um base de $S \cap T$, em particular $S \cap T$ tem dimensão 1.

Referências

[1] Steven J. Leon, Álgebra Linear com aplicações, 8^a edição, LTC 2011.