Contributeurs

ACT-3000 Théorie du risque

aut. Gabriel Crépeault-Cauchon

src. Étienne Marceau

1 Rappels d'intro 2

1.1 Mesures de risques

Voir les preuves de TVaR en annexe. Il est pratique de se rappeler des 3 formes de la TVaR.

Value-at-risk $VaR_{\kappa}(X) = F_X^{-1}(\kappa)$. De plus, pour φ une fonction strictement croissante, on a que

$$VaR_{\kappa}(\varphi(X)) = \varphi(VaR_{\kappa}(X))$$

2 Distribution multivariées

2.1 Classes de Fréchet

Soit F_1, \ldots, F_n des fonction de répartition univariées et $F_{\mathbf{x}} = F_{X_1, \ldots, X_n}$ la fonction de répartition du vecteur \mathbf{X} .

On définit la classe de Fréchet $CF(F_1, ..., F_n)$ par l'ensemble des fonctions de répartition F_X dont les marginales sont $F_1, ..., F_n$.

2.1.1 Bornes d'une classe de Fréchet

Si $F_{\mathbf{X}} \in CF(F_1, \ldots, F_n)$, alors

$$W(x_1,\ldots,x_n) \leq F_{\mathbf{X}}(x_1,\ldots,x_n) \leq M(x_1,\ldots,x_n)$$

où

$$W(x_1,...,x_n) = \max \left(\sum_{i=1}^n F_i(x_i) - (n-1); 0 \right)$$

et

$$M(x_1,\ldots,x_n)=\min\left(F_1(x_1),\ldots,F_n(x_n)\right) \tag{2}$$

Preuve des bornes à savoir!

2.2 Comonotonicité

Les composantes de **X** sont dites comonotones si $X_i = F_{X_i}(U)$, i = 1, ..., n et $U \sim U(0,1)$.

2.2.1 Algorithme

- 1. Simuler $U^{(j)}$ de la v.a. $U \sim U(0,1)$
- 2. Calculer $X_i^{(j)} = F_{X_i}(U^{(j)}), i = 1, ..., n$
- 1. L'antimonotonicité est seulement définie pour n=2.

variable comonotone et la borne supérieure de Fréchet

Le vecteur **X** a des composantes comonotones ssi

$$F_{\mathbf{X}(x_1,\ldots,x_n)}=M(x_1,\ldots,x_n)$$

Preuve à savoir

Additivité des VaR et TVaR

On définit $S=\sum_{i=1}^n X_i=\sum_{i=1}^n F_{X_i}(U)=\varphi(U)$, où φ est une fonction croissante pour $y\in(0,1)$. Alors, on a

$$VaR_{\kappa}(S) = \sum_{i=1}^{n} VaR_{\kappa}(X_{i})$$

$$TVaR_{\kappa}(S) = \sum_{i=1}^{n} TVaR_{\kappa}(X_{i})$$

Preuve à savoir

2.3 Antimonotonicité

Un couple de v.a. ${}^1\mathbf{X}=(X_1,X_2)$ dont les composantes sont définies par $X_1=F_{X_1}(U)$ et $X_2=F_{X_2}(1-U)$ est antimonotone par définition.

2.3.1 Algorithme

(1)

- 1. Simuler $U_{(i)}$ de la v.a. $U \sim U(0,1)$
- 2. Calculer $X_1^{(j)} = F_{X_1}(U^{(j)})$ et $X_2^{(j)} = F_{X_2}(1 U^{(j)})$

variable antimonotone et la borne inférieure de Fréchet

Le vecteur $\mathbf{X} = (X_1, X_2)$ a des composantes antimonotone ssi $F_{\mathbf{X}(x_1, x_2)} = W(x_1, x_2)$

Preuve à savoir

2.4 Loi de Poisson bivariée Teicher

- \rightarrow Couple de v.a. (M_1, M_2) dont les marginales sont $Pois(\lambda_1)$ $Pois(\lambda_2)$
- > paramètre de dépendance α_0 avec $0 \le \alpha_0 \le \min(\lambda_1, \lambda_2)$
- $\Rightarrow \alpha_1 = \lambda \alpha_0 \text{ et } \alpha_2 = \lambda_2 \alpha_0$

> On définit les v.a. M_1 et M_2 telles que (avec $K_i \sim Pois(\alpha_i)$) $M_1 = K_1 + K_0 \text{ et } M_2 = K_2 + K_0$ avec $M_i \sim Pois(\lambda_i)$

2.4.1 Fonction de masse de probabilité (fmp)

$$f_{M_1,M_2}(m_1,m_2) = e^{-\lambda_i - \lambda_2 + \alpha_0} \sum_{j=0}^{\min(m_1,m_2)} \frac{\alpha_0^j}{j!} \frac{(\lambda_1 - \alpha_0)^{m_1 - j}}{(m_1 - j)!} \frac{(\lambda_2 - \alpha_0)^{m_2 - j}}{(m_2 - j)!}$$

Preuve à savoir

2.4.2 Fonction génératrice des probabilités (fgp)

$$P_{M_1,M_2}(t_1,t_2)=e^{(\lambda_1-lpha_0)(t_1-1)}e^{(\lambda_2-lpha_0)(t_2-1)}e^{lpha_0(t_1t_2-1)}$$
 Preuve à savoir

Covariance de M_1 **et** M_2 Cov $(M_1, M_2) = \text{Var}(K_0) = \alpha_0$ Preuve à savoir

2.4.3 Connaître la loi de $N = M_1 + M_2$

À terminer

2.5 Loi exponentielle bivariée EFGM

fonction de répartition La fonction de répartition est

$$F_{X_1,X_2}(x_1,x_2) = (1 - e^{-\beta_1 x_1})(1 - e^{-\beta_2 x_2}) + \theta(1 - e^{-\beta_1 x_1})(1 - e^{-\beta_2 x_2})e^{-\beta_1 x_1}e^{-\beta_2 x_2}$$

fgm Il faut savoir prouver que la fgm est

$$\begin{split} M_{X_1,X_2}(t_1,t_2) &= (1+\theta) \left(\frac{\beta_1}{\beta_1-t_1}\right) \left(\frac{\beta_2}{\beta_2-t_2}\right) \\ &-\theta \left(\frac{2\beta_1}{2\beta_1-t_1}\right) \left(\frac{\beta_2}{\beta_2-t_2}\right) - \theta \left(\frac{\beta_1}{\beta_1-t_1}\right) \left(\frac{2\beta_2}{2\beta_2-t_2}\right) \\ &+\theta \left(\frac{2\beta_1}{2\beta_1-t_1}\right) \left(\frac{2\beta_2}{2\beta_2-t_2}\right) \end{split}$$

Coefficient de corrélation Il faut savoir prouver que la coefficient de corrélation est

$$\rho_P(X_1, X_2) = \frac{\theta}{4}$$

Fonction de densité On peut obtenir la fonction de densité de la loi exponentielle bivariée en dérivant 2 fois

$$f_{X_1, X_2}(x_1, x_2) = \frac{\partial^2}{\partial x_1 \partial x_2} F_{X_1, X_2}(x_1, x_2)$$

3 Problématiques d'un rapport du BSIF

Un extrait d'un rapport du BSIF² présente **plusieurs incohérences**, notamment :

- > La corrélation est la formule ou la méthode utilisée dans le présent document pour mesurer l'association entre des variables;
- > L'intervalle de confiance est de -1 à 1
- > Une corrélation de 1 (corrélation positive parfaite) sous-entend que l'augmentation d'une variable donnée équivaudra à la hausse d'une autre variable;
- > Une corrélation de -1 (corrélation négative parfaite) sous-entend que l'augmentation d'une variable donnée se traduira par une baisse correspondante d'une autre variable
- > Une corrélation zéro sous-entend l'absence de relation, ou indépendance, entre deux variables.

4 Théorie des copules

^{2.} Étude d'impact quantitative No4 du BSIF, 2012.

Définition d'une copule

Une copule C est la fonction de répartition d'un vecteur de va $\mathbf{U} = (U_1, U_2)$ dont les composantes $U_i \sim U(0,1)$, i=1,2. Une copule satisfait les propriétés suivantes :

- (1) $C(u_1, u_2)$ est non-décroissante sur $(0, 1)^2$
- (2) $C(u_1, u_2)$ est continue à droite sur $(0, 1)^2$
- (3) $\lim_{u_i \to 0} C(u_1, u_2) = 0, i = 1, 2$
- (4) $\lim_{u_{2-1}\to 1} C(u_1, u_2) = u_i, i = 1, 2$
- (5) Inégalité du rectangle : $\forall a_i \le b_i$, i = 1, 2, on a $C(b_1, b_2) C(b_1, a_2) C(a_1, b_2) + c(a_1, a_2) \ge 0$.

Cette égalité sera satisfaite si $\frac{\partial^2}{\partial u_1 \partial u_2} C(u_1, u_2) \ge 0$.

On peut généraliser ces définitions pour une copule multivariée.

4.1 Théorème de Sklar

Théorème de Sklar

Soit $F_X \in \mathcal{CF}(F_1, F_2)$ ayant les fonctions de répartition F_1 et F_2 . Il y a 2 volets au théorème :

Volet #1 Il existe une copule C telle que, $\forall x \in \mathbb{R}^n$,

$$F(x_1,\ldots,x_n)=C(F_1(x_1),\ldots,F_n(x_n))$$

Volet # 2 Inversement, si C est une copule de F_1, \ldots, F_n sont des fonctions de répartition, alors la fonction définie par

$$F(x_1,\ldots,x_n)=C(F_1(x_1),\ldots,F_n(x_n))$$

est une fonction de répartition multivariée avec les fonctions de répartition marginales F_1, \ldots, F_n .

À prouver

4.2 Comment extraire une copule?

Soit un vecteur de v.a. continues avec fonction de répartition $F_X \in \mathcal{CF}(F_1, \dots, F_n)$. Alors, la copule C associée à F_X est donnée par

$$C(u_1,\ldots,u_n) = F_{\mathbf{X}}\left(F_1^{-1}(u_1),\ldots,F_n^{-1}(u_n)\right)$$

4.3 Bornes de Fréchet

Puisque C est une fonction de répartition, on a

$$W(u_1,\ldots,u_n) \leq C(u_1,\ldots,u_n) \leq M(u_1,\ldots,u_n)$$

où W et M sont les bornes inférieures (voir Éq. 1) et supérieures (voir Éq. 2), respectivement .

4.4 Fonction de densité d'une copule

$$c(u_1, \dots, u_n) = \frac{\partial^2}{\partial u_1, \dots, \partial u_n} C(u_1, \dots, u_n)$$
(4)

De plus, on a

$$f_{\mathbf{X}}(x_1,\ldots,x_n) = \frac{\partial^2}{\partial u_1,\ldots,\partial u_n} F_{\mathbf{X}}(x_1,\ldots,x_n)$$

$$= \frac{\partial^2}{\partial u_1,\ldots,\partial u_n} C(F_1(x_1),\ldots,F_n(x_n))$$

$$= c(u_1,\ldots,u_n) f_{X_1}(x_1) \ldots f_{X_n}(x_n)$$

4.5 Fonction de répartition conditionnelle d'une copule

$$C_{2|1}(u_2|u_1) = \frac{\partial}{\partial u_1} C(u_1, u_2)$$
 (5)

Une relation similaire existe pour $C_{1|2}$. On peut obtenir, par exemple, la fonction de répartition conditionnelle $F_{X_2|X_1=x_1}(x_2)$ avec

$$F_{X_2|X_1=x_1}(x_2) = C_{2|1}(F_{X_2}(x_2)|F_{X_1}(x_1))$$

4.6 Construction d'une copule archimédienne

Une copule archimédienne est construite à partir de 2 v.a $Y_i|\Theta \sim \text{Exp}(\Theta)$, i=1,2 (et Θ qui suit une certaine distribution) peut être construite avec

$$C(u_1, u_2) = \overline{F}_{\mathbf{Y}} \left(\overline{F}_{Y_1}^{-1}(u_1), \overline{F}_{Y_2}^{-1}(u_1) \right)$$
 (6)

où l'on déduit que

$$F_{Y_i}(x_i) = E\left[F_{Y|\Theta}(x_i|\theta)\right] = E\left[e^{-\Theta x}\right] = \mathcal{L}_{\Theta}(x)$$

Plusieurs copules possibles :

Clayton $\Theta \sim \Gamma(\frac{1}{\alpha}, 1)$

AMH $\Theta \sim \text{BinNég}$

Frank $\Theta \sim \text{Logarithmique}(\gamma = 1 - e^{-\alpha})$

4.7 Méthode des rectangles

On peut approximer $F_S(s)$ avec la méthode des rectangles ³

4.7.1 Méthode lower

On additionne les masses de probabilité associées aux $2^m - 1$ rectangles se trouvant en-dessous de la diagonale $x_1 + x_2 = s$.

$$A_S^{(l,m)}(s) = \sum_{i=1}^{2^m - 1} \left[F_{X_1, X_2} \left(\frac{i}{2^m} s, \frac{2^m - i}{2^m} s \right) - F_{X_1, X_2} \left(\frac{i - 1}{2^m} s, \frac{2^m - i}{2^m} s \right) \right] \tag{7}$$

4.7.2 Méthode upper

On additionne les masses de probabilité associées aux 2^m rectangles se trouvant <u>au-dessus</u> de la diagonale $x_1 + x_2 = s$

$$A_S^{(u,m)}(s) = \sum_{i=1}^{2^m} \left[F_{X_1, X_2} \left(\frac{i}{2^m} s, \frac{2^m + 1 - i}{2^m} s \right) - F_{X_1, X_2} \left(\frac{i - 1}{2^m} s, \frac{2^m + 1 - i}{2^m} s \right) \right]$$
(8)

On a que

$$A_S^{(l,m)}(s) \le A_S^{(l,m+k)}(s) \le F_S(s) \le A_S^{(u,m+k)}(s) \le A_S^{(u,m)}(s).$$

^{3.} Plutôt que d'apprendre les formules ci-dessous, il est mieux de se dessiner les rectangles par rapport à la diagonale puis déduire les F_{X_1,X_2} à additionner et soustraire.

5 Annexe

5.1 Les 3 formes explicites de la TVaR

Pour la TVaR, il y a 3 preuves à bien connaître :

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa}\pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

Démonstration.

$$TvaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X)du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X) + VaR_{\kappa}(X))du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (\underbrace{VaR_{u}(X)}_{\text{fonction quantile}} - VaR_{\kappa}(X))du + \underbrace{\int_{\kappa}^{1} VaR_{\kappa}(X)du}_{\text{intégration d'une constante}}$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (F_{X}^{-1}(u) - VaR_{\kappa}(X)) \underbrace{\int_{U \cap Unif(0,1)} du}_{U \cap Unif(0,1)}$$

$$+ \underbrace{\frac{1}{1-\kappa} VaR_{\kappa}(X)(1-\kappa)}_{F_{X}^{-1} \cap X}$$

$$= \frac{1}{1-\kappa} E[\max(F_{X}^{-1}(U) - VaR_{\kappa}(X);0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[\max(X - VaR_{\kappa}(X);0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} \pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

Démonstration.

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[\max(X - VaR_{\kappa}(X); 0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[(X - VaR_{\kappa}(X)) \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] - \frac{1}{1-\kappa} E[VaR_{\kappa}(X) \times \underbrace{1_{\{X > VaR_{\kappa}(X)\}}}]$$

$$+ VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] - \frac{1}{1-\kappa} VaR_{\kappa}(X)(1 - F_{X}(VaR_{\kappa}(X)))$$

$$+ \frac{1-\kappa}{1-\kappa} VaR_{\kappa}(X)$$

$$= \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(-1 + F_{X}(VaR_{\kappa}(X)) + 1 - \kappa)}{1-\kappa}$$

$$= \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(F_{X}(VaR_{\kappa}(X)) - \kappa)}{1-\kappa}$$

Une dernière preuve fortement utilisée pour la *TVaR*, qui découle directement de la dernière :

$$TVaR_{\kappa}(X) = \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}]}{1 - \kappa}$$

Démonstration. Étant donné que cette formule ne fonctionne seulement que pour une v.a. continue, elle est très facile à prouver :

si
$$X$$
 est continue, $\forall x, F_X(VaR_{\kappa}(X))) = \kappa$

Alors, on peut enlever la partie de droite de l'équation.

à partir de la preuve ci-dessus, on peut démontrer celle-ci :

$$TVaR_{\kappa}(X) = \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(F_X(VaR_{\kappa}(X)) - \kappa)}{1 - \kappa}$$