Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	_

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Monday 11 January 2010 – Morning

Time: 1 hour 30 minutes

Examiner's use only						
Team L	eader's u	ise only				

Question Number

1

2

3

4

5

6

7

8

9

10

Leave

PMT

Materials required for examination	Items included with question papers
Mathematical Formulae (Pink or	Nil
Green)	

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

W850/R6663/57570 3/5/5/3

Turn over

Total

Leave
blank

PMT

1.	Given that $y = x^4 + x^{\frac{1}{3}} + 3$, find $\frac{dy}{dx}$.	3)
		_
		_
		_
		_
		-
		_
		_
		_
		_
		_
		_
		_
		_
		_
		-
		_
		_
		_
		-
		-
		_
		Q 1
	(Total 3 marks	s)

(a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$.	(3)
$7+\sqrt{5}$	(-)
(b) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $a+b\sqrt{5}$, where a and b are integers.	(2)
	(3)

3

The line l_1 has equation $3x + 5y - 2 = 0$	
(a) Find the gradient of l_1 .	
	(2)
The line l_2 is perpendicular to l_1 and passes through the point $(3, 1)$.	
(b) Find the equation of l_2 in the form $y = mx + c$, where m and c are constant	c
This the equation of t_2 in the form $y = mx + \varepsilon$, where m and ε are constant	(3)

Given that v = 35 at r =	$\frac{dy}{dx} = 5x^{-\frac{1}{2}} + x\sqrt{x},$ 4, find y in terms of x, g		implest form
Given that $y = 33$ at $x =$	4, find y in terms of x , g	iving each term in its s	(7)

y - 3x + 2 = 0	
$y^2 - x - 6x^2 = 0$	
	(7)

Leave blank

6. The curve C has equation

$$y = \frac{(x+3)(x-8)}{x}$$
, $x > 0$

(a) Find $\frac{dy}{dx}$ in its simplest form.

(4)

(b) Find an equation of the tangent to C at the point where x = 2

(4)

Leave
blank

PMT

7.	Jill gave money to a charity over a 20-year period, from Year 1 to Year 20 inclusive. She gave £150 in Year 1, £160 in Year 2, £170 in Year 3, and so on, so that the amounts of money she gave each year formed an arithmetic sequence.
	(a) Find the amount of money she gave in Year 10.
	(b) Calculate the total amount of money she gave over the 20-year period. (3)
	Kevin also gave money to the charity over the same 20-year period.
	He gave £A in Year 1 and the amounts of money he gave each year increased, forming an arithmetic sequence with common difference £30. The total amount of money that Kevin gave over the 20-year period was twice the total amount of money that Jill gave.
	(c) Calculate the value of A. (4)

Question 7 continued		
		Q7
	(Total 9 marks)	

Leave blank

8.

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x).

The curve has a maximum point (-2, 5) and an asymptote y = 1, as shown in Figure 1.

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x) + 2$$
 (2)

(b)
$$y = 4f(x)$$
 (2)

(c)
$$y = f(x + 1)$$
 (3)

On each diagram, show clearly the coordinates of the maximum point and the equation of the asymptote.

Question 8 continued		blank
		Q8
ℓT_{α}	tal 7 marks)	
(10	tai / mai NS)	19

Leave	
blank	

9. (a) Factorise completely $x^3 - 4x$

(3)

(b) Sketch the curve C with equation

$$y = x^3 - 4x,$$

showing the coordinates of the points at which the curve meets the *x*-axis.

(3)

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.

(c) Find an equation of the line which passes through A and B, giving your answer in the form y = mx + c, where m and c are constants.

(5)

(d) Show that the length of *AB* is $k\sqrt{10}$, where *k* is a constant to be found.

(2)

·	

Question 9 continued	blank

PMT

Leave
blank

10.	$f(x) = x^2 + 4kx + (3+11k),$	where k is a constant.

(a) Express f(x) in the form $(x+p)^2+q$, where p and q are constants to be found in terms of k.

(3)

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

(4)

Given that k = 1,

(c)	sketch the graph of $y = f(x)$, showing the coordinates of any point at which the	grapi
	crosses a coordinate axis.	

(3)

•

	(Total 10 marks)
	TOTAL FOR PAPER: 75 MARKS
END	

Leave blank