Abgabe: 14.11.21, 10:00 Besprechung: KW46



PD Dr. Elmar Langetepe Christine Dahn Joshua Könen Institut für Informatik

## Übungszettel 4

## Aufgabe 4.1: Äquivalenzklassen

(2+2+2+2 Punkte)

- a) Beschreiben Sie für die folgenden Äquivalenzrelationen die Äquivalenzklassen.
  - i)  $R_1 = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid |a| = |b|\},\$
  - ii)  $R_2^p = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists z \in \mathbb{Z} : a b = z \cdot p\}$  für eine vorgegebene Konstante  $p \in \mathbb{N}$ .
- b) Bestimmen Sie die folgenden Äquivalenzklassen. Vereinfachen Sie die Schreibweise dabei so weit wie möglich. Schreiben Sie zum Beispiel [1] statt [7] für die Äquivalenzklasse  $\{\ldots, -5, -2, 1, 4, 7, \ldots\}$  der Relation  $\equiv_3$ .
  - i)  $[33] \oplus_{25} [173]$
  - ii)  $[17] \odot_{13} [23]$

## Aufgabe 4.2: Äquivalenzrelationen und Abbildungen

(4+4 Punkte)

Seien A, B nichtleere Mengen. Zeigen Sie:

a) Ist  $f: A \longrightarrow B$  eine Abbildung von A nach B, so wird durch

$$\forall a_1, a_2 \in A : (a_1 \sim a_2 \iff f(a_1) = f(a_2))$$

eine Äquivalenzrelation  $\sim$  auf A definiert.

b) Ist  $\sim$  eine beliebige Äquivalenzrelation auf A und ist  $C = \{ [a]_{\sim} \mid a \in A \}$  die Menge der Äquivalenzklassen von  $\sim$ , so gibt es eine Abbildung  $p: A \longrightarrow C$ , so dass für alle  $a_1, a_2 \in A$ :

$$a_1 \sim a_2 \Longleftrightarrow p(a_1) = p(a_2)$$