Family Enterobacteriaceae

Members - Family Enterobacteriaceae

Family Enterobacteriaceae

- Some are commensals & some are pathogens.
- Found in soil, water, plants.
- Principal habitat lower GIT
- Infections may be sporadic or occur in outbreaks

Members are

- Gram-negative bacilli
- Non-spore-forming
- Facultative anaerobes
- All ferment glucose and some ferment other sugars
- Reduce nitrate to nitrite
- Produce catalase
- Do not produce oxidase
- Most are motile peritrichous flagellae

- Produce relatively large, dull gray, dry / mucoid colonies on blood agar
- Haemolysis variable
- Biochemical profile can make species identification

Culture media use to detect the organisms

1.Non selective mediaUse for primary isolationEg: Blood agar

2. Selective media

Isolation media

Eg: MacConkey agar

1. Contains lactose.

pH indicator-Neutral red

Lactose fermenters produce pink colour colonies.

Eg:E.coli, Klebsiella

3. Highly selective media

Made highly selective by adding inhibitors in higher concentrations.

Eg:SS agar.

- -Inhibit growth of coliforms.
- -Allows to grow Salmonella, Shigellaonly.

Salmonella Shigella agar

⁻ For isolation and differential medium for pathogenic Gram-negative bacilli in particular, Salmonella and Shigella. Inhibitor for Coliforms.

4. Enrichment media

Enhance the growth of certain bacterial species while inhibiting unwanted microorganisms.

Eg:Selenite broth.

- -Inhibitory to *E.coli* & other coliforms
- -Enhance the growth of Salmonella, Shigella.

Selenite F Broth

Motility

Bacteria can move by flagella.

Tests can be used to detect the motility

1. Hanging drop technique

Non motile Motile

Shigella Proteus

Klebsiella Salmonella

E. coli

Ix

- 1.Gram staining
- 2.Culture
 - Immediately after collection
 - On BA/ MA/selective media
 - Overnight incubation at 37°C
- 3. Biochemical investigations
- 4. Serotyping
 - Using type specific antisera

Escherichia coli

Clinical manifestations

Intestinal

- Diarrhoea
- Dysentery

Extra intestinal

- ♣ UTI (Most common cause)
- Wound infections
- Pneumonia (nosocomial)
- Neonatal meningitis
- Abscess
- Peritonitis
- Billiary tract infections

Bacteremia / Septicemia / Endotoxic shock

Escherichia coli

- Common member of normal flora of the Large intestine.
- Most commonly encountered pathogen from the Enterobacteriaceae Family

Cultural characteristics

 Grow on ordinary culture media

Eg: Nutrient agarNutrient brothBA

 Some strains show β haemolysis on blood agar

Cultural characteristics

- Bile tolerant
 - Grow on MacConkey agar
 - •Form smooth, glossy, pink colour colonies
 - Ferment lactose & produce acid & gas

Escherichia coli on MacConkey agar. Pink colony pigment is due to lactose fermentation.

Optimal temperature for growth 36-37°C

Ferment lactose, glucose & produce acid & gas

Antigenic structure

- Serotyping based on 3 types of antigens.
- 1.0 antigen(Cell wall lypopolysaccaride)
- 2.H antigen (Flagella protein)
- 3.K antigen (Capsular polysaccharide /envelop)

Virulence factors

1.Toxins

Eg: Enterotoxin

Haemolysin

Verotoxin

Enterotoxin

Haemolysin

• Mainly from *E. coli* isolated from extra intestinal sites

2.Adhesin3.Capsule

Diarrhoael diseases

- Mainly by 5 strains
- Defined on the basis of distinct virulence characteristics

- 1.Enterotoxigenic *E.coli* (ETEC).
- 2.Enteroinvasive E.coli (EIEC).
- 3. Verocytotoxin producing *E.coli* (VTEC).
- 4.Enterotopathogenic *E.coli* (EPEC).
- 5.Enteroaggregative *E.coli* (EAEC)

Lab diagnosis

Specimens

Depend on the site of the infection

2.Urine UTI

3.Pus Wound

4.CSF Pyogenic meningitis

Rx

- ► Wide range of antibiotics can be used
- ▶ But resistance developed (Plasmid mediated)
- ► Therefore ABSTis necessary
- ► For diarrhoeal diseases specific treatment is not necessary except in life threatening conditions

Control

Sanitary measures

Prevent fecal oral transmission

- Hand washing
- Proper preparation of food
- ♦ Chlorination of water supplies
- ♦ Proper disposal of excreta

Salmonella

Salmonella

Clinical importance

1. Diarrhoeal diseases

Gastroenteritis (food poisoning) (Vastmajority)

2. Enteric fevers

Typhoid fever

Paratyphoid fever

Typhoid fever

Epidemiology of typhoid fever

Features of the organism

- ► Motile with peritrichous flagella
- ► All are capsulated except *S. typhi*
- ► Only a single species S. enterica
- ► Has more than 2,200 serotypes
- ► Normal habitat animal intestine

Cultural characteristics

- Grow readily on ordinary media
- Selective medium is needed to suppress other bacteria
- Bile tolerant
- Growth temperature 15-45°C (optimal at 37°C)

Antigenic structure

Posses 3 major antigens.

1.Somatic antigen (O)

Occur on the surface of the outer membrane

2.Flagellar antigen (H)

3. Capsular antigen (Vi)

Superficial antigen overlying the Oantigen

Present only in few serotypes

Eg: S. typhi

IX

1. Culturespecimen differ according to the stage of the illness

A. Blood culture

- Organisms can be isolated from blood cultures of > 90% of typhoid patients during 1st/ 52 of illness
- Obtain 5-10 ml of blood beforeantibited Appropriate otics

2.Feaces/ urine culture

 Chance of isolation is high during 2nd – 3rd / 52 of illness

3.Bone marrow culture

- Rarely useful
- Do only if bone marrow biopsy has been performed

Serology

♠ Detection of antibody in patients by the widal test.

Widal test

♠ Detecting antibody in the patient's blood for somatic(0) flagellar(H) & capsular (Vi) antigen of the organism.

♠ Pared sera should be taken in 10-14 days apart

♠ Progressive increase (4 fold rise) in antibody titre suggests current infection

♠ Widal test is often unreliable
4 fold rise can only be demonstrated in about 50% of untreated & 25% of

antibiotic treated

Food poisoning salmonella

- **♦** S. typhimurium
- **♦** S. enteritidis
- **♦** S. virchow
- ♠ S. agona

SHIGELLA

Clinical Importance

▶ Bacillary dysentery

 Genus contain 4 species (according to O antigen) in descending order of severity of symptoms)

• Group A Shigella dysenteriae

• Group B S. boydii

• Group C S. flexineri

• Group D S. sonnei

Epidemiology

Shigellosis is predominantly caused by *S. sonnei* in industrialized countries, whereas *S. flexneri* prevails in the developing world

Global Distribution of Shigella Species

Features.

- Gram (-)ve bacilli.
- Non motile.
- Non capsulate.
- Facultative anaerobic.

Transmission

- Main mode: faeco- oral route
- Infective dose small(10 organisms)

Virulence factors

Toxins

1. Exotoxins. act as,

Enterotoxin

Neurotoxin

Shiga toxin

Produce by S. dysentriae type 1

Virulence factors

Toxins

2. Endotoxins

Cause diarrhoae &

subsequent

intestinal

ulcerations.

Gross of Intestinal pathologic changes aused by acute bacterial dysentery

Lab diagnosis

- 1.Specimens
 - Fresh stool
 - Mucus fleks
 - Rectal swabs collect with aseptic preparation

Prevention

- Interrupt the faeco oral route.
- No vaccine available.