Key to Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use a pencil or red ink.

Exercise 1 (9 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).
- 3. Determine the smallest and largest absolute values of a single-precision IEEE-754 **denormalized** number. Use the following form: 2^n for the smallest number and $(1 2^{n1}) \times 2^{n2}$ for the largest number where n, n1 and n2 are integers (either positive or negative). Write down the base-10 numerical values of n, n1 and n2 on the answer sheet.

Exercise 2 (3 points)

Let us consider the following circuit:

- 1. Complete the truth table shown on the <u>answer sheet</u>.
- 2. What is the name of this circuit?

Exercise 3 (2 points)

Give the type of each flip-flop below (answer on the <u>answer sheet</u>).

Exercise 4 (6 points)

- 1. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for a gated RS latch (Q0), a positive-edge-triggered RS flip-flop (Q1), a negative-edge-triggered RS flip-flop (Q2) and a master-slave RS flip-flop (Q3).
- 2. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1.

Number	S	Е	M
165	0	10000110	01001010000000000000000
59.625	0	10000100	11011101000000000000000
0.921875	0	01111110	1101100000000000000000

2.

IEEE-754 Representation	Associated Representation
485C 0000 0000 0000 ₁₆	7×2^{132}
7FF0 0000 0000 0000 ₁₆	+∞
0002 3000 0000 0000 ₁₆	35×2^{-1030}
3FF0 0000 0000 0000 ₁₆	1× 2°

3.

n	n1	n2
-149	-23	-126

Exercise 2

A	В	Q
0	0	q
0	1	1
1	0	0
1	1	0

Name of the circuit
RS latch

Exercise 3

Flip-Flop	Type of Flip-Flop	
1	Positive-edge-triggered RS flip-flop	
2	Master-slave RS flip-flop	
3	Gated RS latch	
4	Negative-edge-triggered RS flip-flop	

Exercise 4

Feel free to use the blank space below if you need to:

Timing diagram of figure 2