Matice známych transformácií

Nech $f:\mathbb{R}^2 o \mathbb{R}^2$ je transformácia daná maticou

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

potom obraz vektora $[x, y]^T$ je

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix},$$

teda **vzor** je vektor $[x,y]^T$ a **obraz** je vektor $[ax+by,cx+dy]^T$.

Ako bude vyzerať matica pre osovú súmernosť, stredovú súmernosť, otočenie, posunutie?

ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet os súmernosti je o_y , matica je $egin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet os súmernosti je o_y , matica je $egin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je y=x, matica je $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet os súmernosti je o_y , matica je $egin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je y=x, matica je $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- os súmernosti je y=ax+b, matica je $\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$.

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet os súmernosti je o_y , matica je $egin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je y=x, matica je $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- os súmernosti je y=ax+b, matica je $\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$.

Ako budú matice vyzerať pre \mathbb{R}^3 ?

Osová súmernosť v \mathbb{R}^3

ullet os súmernosti je rovina xy, matica je $egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Osová súmernosť v \mathbb{R}^3

- ullet os súmernosti je rovina xy, matica je $egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.
- os súmernosti je rovina xz, matica je $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Osová súmernosť v \mathbb{R}^3

- \bullet os súmernosti je rovina xy, matica je $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \, .$
- os súmernosti je rovina xz, matica je $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je rovina yz, matica je $egin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

 \bullet stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

- ullet stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet stred súmernosti je S=[a,b], matica je $\left[egin{matrix} ? & ? \\ ? & ? \end{bmatrix}$.

- ullet stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- ullet stred súmernosti je S=[a,b], matica je $\left[egin{matrix} ? & ? \\ ? & ? \end{bmatrix}$.

Ako budú matice vyzerať pre \mathbb{R}^3 ?

- ullet stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- \bullet stred súmernosti je S=[a,b], matica je $\begin{bmatrix}?&?\\?&?\end{bmatrix}.$

Ako budú matice vyzerať pre \mathbb{R}^3 ?

ullet stred súmernosti je S=[0,0,0], matica je

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Nech koeficient zmenšenia (zväčšenia) je $k \in \mathbb{R}^+$, matica je

$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}.$$

Nech koeficient zmenšenia (zväčšenia) je $k \in \mathbb{R}^+$, matica je

$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}.$$

Ako budú matice vyzerať pre \mathbb{R}^3 ?

Nech koeficient zmenšenia (zväčšenia) je $k \in \mathbb{R}^+$, matica je

$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}.$$

Ako budú matice vyzerať pre \mathbb{R}^3 ?

$$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}.$$

Rotácia

Rotácia

Uhol rotácie je φ , stred je [0,0], matica je $\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$.

Rotácia

Uhol rotácie je
$$\varphi$$
, stred je $[0,0]$, matica je $\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$. Ako

budú matice vyzerať pre \mathbb{R}^3 ?

Rotácia v \mathbb{R}^3

• Rotácia okolo osi o_x : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}.$$

Rotácia v \mathbb{R}^3

• Rotácia okolo osi o_x : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}.$$

Rotácia okolo osi o_y : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix}.$$

Rotácia v \mathbb{R}^3

• Rotácia okolo osi o_x : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}.$$

Rotácia okolo osi o_y : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix}.$$

• Rotácia okolo osi o_z : Uhol rotácie je φ , stred je [0,0], matica je

$$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Translácia

Translácia

Vektor translácie (posunutia) je
$$[u,v]$$
, matica je $\begin{bmatrix}?&?\\?&?\end{bmatrix}$.

- Vieme nahradiť "?" v matici?
- Je to problém?
- Homogénne súradnice.

Homogénne súradnice

Homogénne súradnice

Homogénnymi súradnicami bodu $A=[x_A,y_A]$ euklidovského priestoru sa nazýva každá usporiadaná trojica reálnych čísel $[a_1,a_2,a_0];a_0\neq 0$, pre ktorú platí

$$x_A = \frac{a_1}{a_0}, y_A = \frac{a_2}{a_0}.$$

Základný tvar homogénnych súradníc vlastného bodu A je usporiadaná trojica reálnych čísel $[x_A, y_A, 1]$.

ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- \bullet os súmernosti je o_y , matica je $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

- ullet os súmernosti je o_x , matica je $egin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je o_y , matica je $egin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- ullet os súmernosti je y=x, matica je $egin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

$$\bullet$$
 stred súmernosti je $S=[0,0]$, matica je
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- \bullet stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
- Nech koeficient zmenšenia (zväčšenia) je $k \in \mathbb{R}^+$, stred je S = [0,0], matica je

$$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

- stred súmernosti je S=[0,0], matica je $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
- Nech koeficient zmenšenia (zväčšenia) je $k \in \mathbb{R}^+$, stred je S = [0,0], matica je

$$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

 \bullet Uhol rotácie je φ , stred je S=[0,0], matica je

$$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Vektor translácie (posunutia) je [u,v], matica je $\begin{bmatrix} 1 & 0 & u \\ 0 & 1 & v \\ 0 & 0 & 1 \end{bmatrix}.$

Vektor translácie (posunutia) je
$$[u,v]$$
, matica je $\begin{bmatrix} 1 & 0 & u \\ 0 & 1 & v \\ 0 & 0 & 1 \end{bmatrix}$.

Vektor translácie (posunutia) je
$$[u,v,t]$$
, matica je
$$\begin{bmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$