

સમપ્રમાણ અને વ્યસ્ત પ્રમાણ

પ્રકરણ

13

13.1 પ્રાસ્તાવિક

મોહન પોતાના માટે અને પોતાની બહેન માટે ચા બનાવે છે. આ માટે તે 300 મિલી પાણી, 2 ચમચી ખાંડ, 1 ચમચી ચાની ભૂકી અને 50 મિલી દૂધનો ઉપયોગ કરે છે. હવે જો તેને પાંચ વ્યક્તિઓ માટે ચા બનાવવી હોય તો, ઉપરોક્ત વસ્તુઓનો કેટલો જથ્થો જોઈશે ?

જો બે વિદ્યાર્થીઓને કોઈ એક સભામાં ખુરશીઓ ગોઠવવામાં 20 મિનિટનો સમય લાગે તો આ જ કામ પાંચ વિદ્યાર્થીઓ કેટલા સમયમાં કરી શકે ?

દૈનિક જીવનમાં આપણે આવી ઘણી બધી પરિસ્થિતિઓનો સામનો કરતાં હોઈએ છીએ જેમાં, આપણે જોઈએ છીએ કે કોઈ એક રાશિમાં થતાં પરિવર્તનને કારણે અન્ય રાશિમાં પણ પરિવર્તન આવે છે.

- (i) જો ખરીદેલી વસ્તુની સંખ્યામાં વધારો થાય તો તેની કુલ ખરીદ કિંમતમાં પણ વધારો થાય છે.
- (ii) બેંકમાં વધારે રકમ જમા કરાવીએ તો વધારે વ્યાજ મેળવી શકાય.
- (iii) જો વાહનની ઝડપમાં વધારો થાય તો અંતર કાપવા માટે લાગતાં સમયમાં ઘટાડો થાય છે.
- (iv) કોઈ એક કાર્ય માટે, કારીગરની સંખ્યા વધે તો કાર્ય પૂરું કરવા લાગતો સમય ઘટે. ધ્યાન રાખો, અહીં એક રાશિમાં થતાં પરિવર્તનને કારણે બીજી રાશિમાં પરિવર્તન થાય છે.

આવી બીજી પાંચ પરિસ્થિતિઓ લખો કે જેમાં એક રાશિમાં થતાં પરિવર્તનને કારણે અન્ય રાશિમાં પણ પરિવર્તન આવે છે.

મોહનને જોઈતી વસ્તુઓનો જથ્થો આપણે કેવી રીતે શોધીશું ? અથવા પાંચ વિદ્યાર્થીઓ દ્વારા કાર્યને પુરું કરવા માટે લાગતાં સમયને કેવી રીતે શોધીશું ?

આ પ્રકારના પ્રશ્નોના જવાબ આપવા માટે આપણે ચલન (variation)ના મહત્ત્વના મુદ્દાઓનો અભ્યાસ કરીશું.

13.2 સમપ્રમાણ

તે ₹ 108 થાય.

જો 1 કિગ્રા ખાંડની કિંમત ₹ 36 હોય, તો 3 કિગ્રા ખાંડની કિંમત કેટલી હશે ?

આ જ પ્રકારે, આપણે 5 કિગ્રા તથા 8 કિગ્રા ખાંડની કિંમત શોધી શકીશું. નીચેના કોષ્ટકનો અભ્યાસ કરો.

ધ્યાન આપો, અહીં ખાંડના જથ્થામાં વધારો થતાં તેની કિંમતમાં પણ એવી રીતે વધારો થાય છે કે જેથી તેનો ગુણોત્તર અચળ રહે.

બીજું એક ઉદાહરણ લઈએ. ધારો કે એક કાર 60 કિમી અંતર કાપવા માટે 4 લિટર પેટ્રોલ વાપરે છે તો 12 લિટર પેટ્રોલમાં તે કેટલું અંતર કાપશે ? જવાબ 180 કિમી આવશે. આ અંતર કેવી રીતે શોધીશું ?

અહીં આપેલ પરિસ્થિતિમાં 12 લિટર પેટ્રોલ એટલે કે 4 લિટરનું ત્રણ ગણું પેટ્રોલ વપરાય છે. તેથી કાપેલું અંતર પણ 60 કિમીનું ત્રણ ગણું થશે. એટલે કે પેટ્રોલનો વપરાશ ત્રણ ગણો વધારે થાય તો કાપેલું અંતર પણ અગાઉના અંતર કરતાં ત્રણ ગણું થશે. હવે, ધારો કે પેટ્રોલનો વપરાશ x લિટર અને તેને અનુરૂપ કાપેલું અંતર y કિમી છે. હવે, નીચેનું કોપ્ટક પૂર્ણ કરો.

પેટ્રોલ લિટરમાં (<i>x</i>)	4	8	12	15	20	25
અંતર કિમીમાં (૪)	60		180			

અહીં આપણે જોઈશું કે xના મૂલ્યમાં વધારો થાય છે ત્યારે yના મૂલ્યમાં પણ એવી રીતે વધારો યાય છે કે જેથી ગુણોત્તર $\frac{x}{y}$ માં કોઈ ફેરફાર ન થાય. એટલે કે તે અચળ રહે. (ધારો કે k) આ સ્થિતિમાં અચળાંક $\frac{1}{15}$ છે.

(જાતે ચકાસો !)

આમ, આપણે કહી શકીએ કે જો $\frac{x}{y}=k$ અથવા x=ky હોય તો x એ y ના સમપ્રમાણમાં છે.

આ ઉદાહરણમાં, $\frac{4}{60}=\frac{12}{180}$ છે, જ્યાં 4 અને 12 વપરાયેલા પેટ્રોલનો જથ્થો (x) લિટરમાં છે તથા 60 અને 180 એ કપાયેલ અંતર (y) કિમીમાં છે. આમ, જો x અને y સમપ્રમાણમાં હોય, તો આપણે $\frac{x_1}{y_1}=\frac{x_2}{y_2}$ લખી શકીએ. (જ્યાં xનાં મૂલ્યો x_1 અને x_2 ને અનુરૂપ yનાં મૂલ્યો અનુક્રમે y_1 અને y_2 છે.)

પેટ્રોલનો વપરાશ અને કાર દ્વારા કપાયેલ અંતર એક સમપ્રમાણની સ્થિતિ બતાવે છે. આ જ પ્રમાણે કુલ ખર્ચેલ ૨કમ અને ખરીદેલ વસ્તુઓની સંખ્યા પણ સમપ્રમાણનું એક ઉદાહરણ છે.

સમપ્રમાણનાં થોડાંક વધારે ઉદાહરણો વિશે વિચારો. શરૂઆતના ઉદાહરણમાં પાંચ વ્યક્તિઓ માટે ચા બનાવવા માટે મોહન 750 મિલી પાણી, 5 ચમચી ખાંડ, $2\frac{1}{2}$ ચમચી ચાની ભૂકી અને 125 મિલી દૂધનો ઉપયોગ કરશે. ચાલો સમપ્રમાણના આ મુદાને નીચેની પ્રવૃત્તિ દ્વારા સમજવાનો પ્રયત્ન કરીએ.

આટલું કરો

- (i) એક ઘડિયાળ લો અને તેના મિનિટ કાંટાને 12 પર ગોઠવો.
 - મિનિટ કાંટાએ તેની પ્રારંભિક સ્થિતિ સાથે બનાવેલ ખુણા તથા વીતેલા સમયને નીચેના કોષ્ટક સ્વરૂપે દર્શાવો.

વિતેલો સમય મિનિટમાં (T)	(T ₁) 15	(T ₂) 30	(T ₃) 45	(T ₄) 60
બનાવેલ ખૂશો	(A ₁)	(A ₂)	(A ₃)	(A ₄)
(ડિગ્રીમાં) (A)	90°	•••	•••	
$\frac{T}{A}$	•••	•••	•••	

તમને T અને Aના અવલોકન દ્વારા શું જાણવા મળ્યું ? શું બંનેમાં એક સાથે વધારો થાય

છે ? શું $\frac{\mathrm{T}}{\mathrm{A}}$ દરેક વખતે સમાન હોય છે ?

શું મિનિટ કાંટાએ બનાવેલ ખુશો વિતેલા સમયના સમપ્રમાણમાં છે ? હા. ઉપરોક્ત કોષ્ટકમાં તમે જોઈ શકો છો કે,

$$T_1: T_2 = A_1: A_2 \text{ sirel }$$

 $T_1: T_2 = 15: 30 = 1: 2$
 $A_1: A_2 = 90: 180 = 1: 2$

ચકાસો $T_2: T_3 = A_2: A_3$ અને $T_3: T_4 = A_3: A_4$ થાય છે ? હવે તમે પોતાની રીતે સમયગાળો નક્કી કરી અને ઉપરોક્ત પ્રવૃત્તિ ફરીથી કરી શકો છો.

(ii) તમારા મિત્રને નીચેનું કોષ્ટક ભરવાનું કહો તથા તેની ઉંમરને અનુરૂપ તેની માતાની ઉંમરનો ગુણોત્તર શોધવાનું પણ કહો.

	પાંચ વર્ષ પહેલાની ઉંમર	હાલની ઉંમર	પાંચ વર્ષ પછીની ઉંમર
મિત્રની ઉંમર (F)			
માતાની ઉંમર (M)			
FM			

તમે શું અવલોકન કર્યું ? શું F અને Mમાં એકસાથે વધારો (અથવા ઘટાડો) થાય છે ? શું $\frac{F}{M}$ નું મૂલ્ય દરેક વખતે સમાન છે ? ના. આ પ્રવૃત્તિને તમે તમારા અન્ય મિત્રો સાથે ફરીથી કરો અને અવલોકનો નોંધો.

આમ, એક સાથે વધતાં (અથવા ઘટતા) ચલ હંમેશા સમપ્રમાણમાં જ હોય તે જરૂરી નથી. ઉદાહરણ તરીકે :

- (i) સમયની સાથે મનુષ્યમાં શારીરિક ફેરફારો થાય છે પરંતુ તે જરૂરી નથી કે તે પૂર્વનિર્ધારિત ગુણોત્તરમાં જ હોય.
- (ii) મનુષ્યના વજન અને ઊંચાઈમાં થતાં ફેરફારો કોઈ નિશ્ચિત પ્રમાણમાં નથી હોતા.
- (iii) કોઈ વૃક્ષની ઊંચાઈ અને તેની ડાળીઓ પર રહેલા પાનાની સંખ્યા વચ્ચે કોઈ સીધો સંબંધ નથી આવાં બીજાં ઉદાહરણો વિશે વિચારો.

પ્રયત્ન કરો

1. નીચેનાં કોષ્ટકનું અવલોકન કરો અને જણાવો કે x અને y સમપ્રમાણમાં છે કે નહીં.

(i)	x	20	17	14	11	8	5	2
	у	40	34	28	22	16	10	4

(ii)	$\int x$	6	10	14	18	22	26	30
	y	4	8	12	16	20	24	28

(iii)	x	5	8	12	15	18	20
	у	15	24	36	60	72	100

 મુદલ = ₹ 1000, વ્યાજનો દર = વાર્ષિક 8% માટે નીચે દર્શાવેલ કોષ્ટક પૂર્શ કરો અને ચકાસો કે આ પ્રકારનું વ્યાજ (સાદું અથવા ચક્રવૃદ્ધિ) આપેલ સમયના સમપ્રમાણમાં છે.

આપેલ સમયગાળો	1 વર્ષ	2 વર્ષ	3 વર્ષ
સાદુ વ્યાજ (₹માં)			
ચક્રવૃદ્ધિ વ્યાજ (₹માં)			

વિચારો, ચર્ચા કરો અને લખો

જો આપણે સમયગાળો તથા વ્યાજનો દર નિશ્ચિત રાખીએ તો સાદું વ્યાજ તેના મુદલના સમપ્રમાણમાં હોય છે, શું આ જ સંબંધ ચક્રવૃદ્ધિ વ્યાજ માટે પણ સત્ય છે ? કેમ ?

ચાલો, હવે થોડાંક એવાં ઉદાહરણોના ઉકેલ મેળવીએ જેમાં સમપ્રમાણના મુદ્દાનો ઉપયોગ થતો હોય.

<mark>ઉદાહરણ 1 :</mark> એક વિશેષ પ્રકારના 5 મીટર કાપડની કિંમત ₹ 210 છે. તો આ પ્રકારના 2, 4, 10 અને 13 મીટર કાપડની કિંમત માટે કોષ્ટક બનાવો.

6કેલ : ધારો કે કાપડની લંબાઈ x મીટર છે અને તેની કિંમત $\not\equiv y$ છે.

x	2	4	5	10	13
У	y_2	y_3	210	y_4	y_5

હવે જેમ કાપડની લંબાઈમાં વધારો થાય તેમ કાપડની કિંમત પણ તે જ ગુણોત્તરમાં વધે છે. આ એક સમપ્રમાણની સ્થિતિ છે.

આપણે અહીં $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ પ્રકારના સંબંધનો ઉપયોગ કરીએ.

(i) અહીં
$$x_1=5,\ y_1=210$$
 અને $x_2=2$ માટે $\frac{x_1}{y_1}=\frac{x_2}{y_2}$ એટલે $\frac{5}{210}=\frac{2}{y_2}$ અથવા $5y_2=2\times 210,\ \therefore\ y_2=\frac{2\times 210}{5}=84$

[અહીં
$$\frac{x_2}{y_2} = \frac{x_3}{y_3}$$
 નો ઉપયોગ કરી શકાય ? પ્રયત્ન કરો.]

(iii) જો
$$x_4 = 10$$
 હોય તો $\frac{5}{210} = \frac{10}{y_4}$, $\therefore y_4 = \frac{10 \times 210}{5} = 420$

(iv) જો
$$x_5 = 13$$
 હોય તો $\frac{5}{210} = \frac{13}{y_5}$, $\therefore y_5 = \frac{13 \times 210}{5} = 546$

[ધ્યાન આપો, અહીં આપણે $\frac{5}{210}$ ની જગ્યાએ $\frac{2}{84}$ અથવા $\frac{4}{168}$ અથવા $\frac{10}{420}$ નો પણ ઉપયોગ કરી શકીએ.]

ઉદાહરણ 2:14 મીટર ઊંચાઈ ધરાવતા વિજળીના એક થાંભલાના પડછાયાની લંબાઈ 10 મીટર છે. આ જ પરિસ્થિતિમાં એક વૃક્ષના પડછાયાની લંબાઈ 15 મીટર હોય, તો વૃક્ષની ઊંચાઈ શોધો. ઉકેલ: ધારો કે વૃક્ષની ઊંચાઈ x મીટર છે. હવે નીચે પ્રમાણે કોષ્ટક બનાવતાં,

પદાર્થની ઊંચાઈ (મીટરમાં)	14	x
પડછાયાની લંબાઈ (મીટરમાં)	10	15

ધ્યાન આપો, પદાર્થની ઊંચાઈ જેટલી વધારે, તેટલી જ તેના પડછાયાની લંબાઈ વધારે હશે. આથી આ એક સમપ્રમાણની સ્થિતિ છે. અર્થાત્ $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ લેતાં,

આપણને
$$\frac{14}{10} = \frac{x}{15}$$
 મળે. (કેમ ?)

$$\therefore \qquad \frac{14}{10} \times 15 = x$$

$$\therefore \qquad \frac{14 \times 3}{2} = x$$

તેથી
$$21 = x$$

આમ, વૃક્ષની ઊંચાઈ 21 મીટર છે.

આપણે
$$\frac{x_1}{y_1} = \frac{x_2}{y_2}$$
 ને $\frac{x_1}{x_2} = \frac{y_1}{y_2}$ તરીકે પણ દર્શાવી શકીએ.

એટલે કે,
$$x_1: x_2 = y_1: y_2$$

$$\therefore$$
 14 : $x = 10$: 15

માટે
$$10 \times x = 15 \times 14$$

$$\therefore \qquad x = \frac{15 \times 14}{10} = 21$$

ઉદાહરણ 3: જો 12 જાડા કાગળનું વજન 40 ગ્રામ હોય, તો આ જ પ્રકારના કેટલા કાગળનું વજન $2\frac{1}{2}$ કિલોગ્રામ થાય ?

6કેલ : ધારો કે x સંખ્યાના કાગળનું વજન $2\frac{1}{2}$ કિગ્રા થાય છે. ઉપરોક્ત માહિતીને કોષ્ટક સ્વરૂપે દર્શાવતાં,

કાગળની સંખ્યા	12	x
કાગળનું વજન (ગ્રામમાં)	40	2500

કાગળની સંખ્યા વધારે હશે તો તેનું વજન પણ વધશે. તેથી કાગળની સંખ્યા તેના વજનના સમપ્રમાણમાં છે.

તેથી,
$$\frac{12}{40} = \frac{x}{2500}$$

$$\therefore \frac{12 \times 2500}{40} = x$$

$$\therefore$$
 750 = *x*

આમ, માંગેલ કાગળની સંખ્યા = 750

બીજી રીત : બે રાશિઓ x અને y એકબીજાના સમપ્રમાણમાં રહેલ છે. તેથી x=ky અથવા $\frac{x}{y}=k$

અહીં,
$$k=\frac{\text{કાગળની સંખ્યા}}{\text{કાગળનું ગ્રામમાં વજન}}=\frac{12}{40}=\frac{3}{10}$$

હવે જો x સંખ્યાના કાગળનું વજન $2\frac{1}{2}$ કિગ્રા (2500 ગ્રામ) હોય તો,

$$x = ky$$
નો ઉપયોગ કરતાં, $x = \frac{3}{10} \times 2500 = 750$

આમ, 750 કાગળનું વજન $2\frac{1}{2}$ કિગ્રા હશે.

ઉદાહરણ 4 : એક રેલગાડી, 75 કિમી/કલાકની અચળ ઝડપે ગતિ કરે છે. તો,

- (i) 20 મિનિટમાં કેટલું અંતર કાપશે ?
- (ii) 250 કિલોમીટર અંતર કાપવા માટે લાગતો સમય શોધો.

6કેલ : ધારો કે રેલગાડીએ 20 મિનિટમાં કાપેલ અંતર x કિમી છે અને 250 કિમી માટે લાગતો સમય (મિનિટમાં) y છે.

કાપેલ અંતર (કિમીમાં)	75	x	250
સમય (મિનિટમાં)	60	20	у

અહીં ઝડપ અચળ છે, તેથી કાપેલું અંતર સમયના સમપ્રમાણમાં હશે.

(i) અહીં,
$$\frac{75}{60} = \frac{x}{20}$$

$$\therefore \frac{75 \times 20}{60} = x$$

$$\therefore x = 25$$

તેથી, રેલગાડી 20 મિનિટમાં 25 કિમીનું અંતર કાપશે.

(ii) અને
$$\frac{75}{60} = \frac{250}{y}$$

$$y = \frac{250 \times 60}{75} = 200$$
 મિનિટ અથવા 3 કલાક અને 20 મિનિટ

ઉદાહરણ તરીકે, નકશા પરનું 1 સેમી અંતર વાસ્તવિક અંતર 8 કિમી દર્શાવતું હોય (એટલે કે પ્રમાણમાપ 1 સેમી : 8 કિમી અથવા 1 : 8,00,000) તો નકશા પરનું 2 સેમીનું માપ 16 કિમી દર્શાવશે. આથી આપણે કહી શકીએ કે નકશા પર દર્શાવેલ પ્રમાણમાપ, સમપ્રમાણતાને આધારિત છે.

6કેલ : ધારો કે નકશા પરનું અંતર x સેમી અને વાસ્તવિક અંતર γ સેમી છે.

$$1:30000000 = x:y$$

$$\therefore \frac{1}{3 \times 10^7} = \frac{x}{y}$$

પરંતુ
$$x = 4$$
 છે. તેથી, $\frac{1}{3 \times 10^7} = \frac{4}{y}$

$$y = 4 \times 3 \times 10^7 = 12 \times 10^7$$
 સેમી = 1200 કિમી

આમ, નકશામાં 4 સેમીના અંતરે આવેલા બે શહેર વાસ્તવિક રૂપે એકબીજાથી 1200 કિમીના અંતરે આવેલ છે.

તમારા રાજ્યનો ભૌગોલિક નકશો લો. તેમાં આપેલ પ્રમાણમાપની નોંધ કરો. હવે ફૂટપટ્ટીની મદદથી નકશામાં દર્શાવેલ બે શહેર વચ્ચેનું અંતર માપો. હવે તેમનું વાસ્તવિક અંતર શોધો.

સ્વાધ્યાય 13.1

એક રેલવે સ્ટેશન પર કાર પાર્કિંગનો દર નીચે પ્રમાણે છે :

4 4414 ₹ 60 8 કલાક ₹ 100 12 કલાક ₹ 140 24 કલાક ₹ 180

ઉપરોક્ત પાર્કિંગના દર તેમને અનુરૂપ સમય સાથે સમપ્રમાણમાં છે કે નહીં તે ચકાસો.

2. એક રંગના મુળ મિશ્રણના 8 ભાગમાં, 1 ભાગ લાલ રંગ મેળવીને મિશ્રણ તૈયાર કરેલ છે. નીચેના કોષ્ટકમાં મુળ મિશ્રણનો ભાગ શોધો.

લાલ રંગ	1	4	7	12	20
મૂળ મિશ્રણ	8	-	-	-	-

3. પ્રશ્ન 2માં, જો લાલ રંગના પદાર્થના 1 ભાગ માટે 75 મિલી મૂળ મિશ્રણ જોઈએ તો 1800 મિલી મૂળ મિશ્રણમાં કેટલા ભાગનો લાલ રંગનો પદાર્થ જોઈશે ?

4. ઠંડાં પીણાં બનાવતી એક ફેક્ટરીમાં, એક યંત્ર 6 કલાકમાં 840 બૉટલ ભરે છે, તો આ યંત્ર 5 કલાકમાં કેટલી બૉટલ ભરશે ?

5. એક જીવાણં(bacteria)ના ચિત્રને 50,000 ગણું મોટું કરતાં તેની લંબાઈ 5 સેમી થાય છે. જે આકૃતિમાં બતાવેલ છે. તો આ જીવાણુની વાસ્તવિક લંબાઈ કેટલી હશે ? હવે જો ચિત્રને 20,000 ગણું કરવામાં આવે તો તેની લંબાઈ શોધો.

6. એક વહાણની પ્રતિકૃતિમાં તેના કૂવાયંભની ઊંચાઈ 9 સેમી છે અને વાસ્તવિક વહાણમાં તેની ઊંચાઈ 12 મીટર છે. હવે જો વહાણની લંબાઈ 28 મીટર હોય, તો તેની પ્રતિકૃતિની લંબાઈ શોધો.

- 7. જો 2 કિગ્રા ખાંડમાં રહેલા સ્ફટિકોની સંખ્યા 9×10^6 છે, તો નીચે દર્શાવેલ જથ્થામાં કેટલા સ્ફરિકો હશે ? (i) 5 કિગ્રા(ii) 1.2 કિગ્રા
- રશ્મિ પાસે, 1 સેમી બરાબર 18 કિમી પ્રમાણમાપ ધરાવતો એક સડક માર્ગનો નકશો છે. હવે જો તે આ સડક પર 72 કિમીનું અંતર કાપે છે, તો તેના દ્વારા કાપેલ અંતર નકશામાં કેટલું દર્શાવ્યું હોય ?
- 9. એક 5 મીટર અને 60 સેમી ઊંચા શિરોલંબ થાંભલાના પડછાયાની લંબાઈ 3 મીટર 20 સેમી છે. આ જ સમયે (i) 10 મીટર 50 સેમી ઊંચા થાંભલાના પડછાયાની લંબાઈ શોધો. (ii) 5 મીટર લંબાઈનો પડછાયો હોય તેવા થાંભલાની ઊંચાઈ શોધો.
- 10. એક ભારવાહક ખટારો 25 મિનિટમાં 14 કિમી અંતર કાપે છે. આ જ ઝડપે ગતિ કરે તો 5 કલાકમાં કેટલું અંતર કાપશે ?

આટલું કરો

1. એક ચોરસ પેપર ઉપર અલગ-અલગ લંબાઈના પાંચ ચોરસ દોરો. નીચેની માહિતી કોષ્ટકમાં લખો :

	ચોરસ-1	ચોરસ-2	ચોરસ-3	ચોરસ-4	ચોરસ-5
બાજુની લંબાઈ (L)					
પરિમિતિ (P)					
$\frac{\mathbf{L}}{\mathbf{P}}$					

क्षेत्रइण (A)			
$\frac{\mathbf{L}}{\mathbf{A}}$			

શોધવાનો પ્રયત્ન કરો કે, તેની બાજુની લંબાઈ

- (a) ચોરસની પરિમિતિના સમપ્રમાણમાં છે.
- (b) ચોરસના ક્ષેત્રફળના સમપ્રમાણમાં છે.
- 2. પાંચ વ્યક્તિઓ માટે શીરો બનાવવા નીચેની સામગ્રીની જરૂરિયાત છે. સોજી/રવો = 250 ગ્રામ, ખાંડ = 300 ગ્રામ, ઘી = 200 ગ્રામ, પાણી = 500 મિલી. સમપ્રમાણના પરિણામનો ઉપયોગ કરીને તમારા વર્ગનાં બધાં જ બાળકો માટે શીરો બનાવવા કેટલી સામગ્રી જોઈશે તે શોધો.
- 3. કોઈ એક પ્રમાણમાપ નક્કી કરીને તમારા વર્ગખંડનો એક નકશો બનાવો જેમાં બારી, બારણાં, કાળું પાટિયું વગેરે દર્શાવેલ હોય. (ઉદાહરણ આપેલ છે.)

વિચારો, ચર્ચા કરો અને લખો

અત્યાર સુધી ચર્ચામાં લીધેલ સમપ્રમાણના ઉદાહરણો પૈકી થોડાક ઉદાહરણો લો અને વિચારો કે આ ઉદાહરણનો ઉકેલ એકમ પદ્ધતિ દ્વારા મળી શકે ?

13.3 વ્યસ્ત પ્રમાણ

બે રાશિઓ નીચે પ્રમાણે પણ પરિવર્તિત થઈ શકે છે. જેમ કે, એક રાશિમાં વધારો થાય તો તેને અનુરૂપ બીજી રાશિમાં ઘટાડો થાય અથવા તો એક રાશિમાં ઘટાડો થાય તો તેને અનુરૂપ બીજી રાશિમાં વધારો થાય. ઉદાહરણ તરીકે એક કામ પૂરું કરવા માટે કારીગરની સંખ્યામાં વધારો થાય તો કામ પૂરું કરવા માટે લાગતા સમયમાં ઘટાડો થાય છે. એ જ પ્રમાણે જો કોઈ નિયત અંતર કાપવા માટે, ઝડપમાં વધારો થાય તો, તેને અનુરૂપ સમયમાં ઘટાડો થાય છે. આ બાબત સમજવા માટે નીચે આપેલ સ્થિતિનો વિચાર કરીએ.

ઝાહિદા તેની શાળાએ ચાર અલગ-અલગ રીતે જઈ શકે છે : ચાલીને, દોડીને, સાયકલ ઉપર

ધ્યાન આપો, અહીં જેમ ઝડપમાં વધારો થાય છે, તેમ નિયત અંતર કાપતાં લાગતા સમયમાં ઘટાડો થાય છે. જ્યારે ઝાહિદા દોડીને પોતાની ઝડપ બમણી કરે છે

ત્યારે અંતર કાપતાં લાગતો સમય $\frac{1}{2}$ ભાગનો થાય છે. હવે જ્યારે તે સાયકલનો ઉપયોગ કરીને ઝડપ ત્રણ ગણી કરે છે ત્યારે લાગતો સમય $\frac{1}{3}$ ભાગનો થાય છે. આ જ પ્રમાણે ઝડપમાં 15 ગણો વધારો થતાં નિયત અંતર કાપવા માટે લાગતો સમય $\frac{1}{15}$ ગણો થાય છે. અર્થાત્, નિયત અંતર કાપવા માટે લાગતા સમયમાં થતો ઘટાડો, ઝડપમાં થતાં વધારાના વ્યસ્ત પ્રમાણમાં હોય છે. શું આપણે કહી શકીએ કે, ઝડપ અને સમય એકબીજાના વ્યસ્ત પ્રમાણમાં પરિવર્તિત થાય છે ?

બે પરસ્પર વ્યસ્ત સંખ્યાઓનો ગુણાકાર 1 થાય. તેથી $\frac{1}{2}$ એ 2 ની વ્યસ્ત સંખ્યા છે. તેમજ 2 એ $\frac{1}{2}$ ની વ્યસ્ત સંખ્યા છે. (અહીં $2 \times \frac{1}{2} = \frac{1}{2} \times 2 = 1$)

ચાલો, એક બીજું ઉદાહરણ જોઈએ. એક શાળા, ગણિતના પાઠ્યપુસ્તક માટે ₹ 6000 ખર્ચ કરવા માંગે છે. ₹ 40 પ્રતિ પુસ્તકના દરે કેટલાં પુસ્તક ખરીદી શકાય ? અહીં, સ્પષ્ટ છે કે 150 પુસ્તક ખરીદી શકાય. હવે જો પુસ્તકની કિંમત ₹ 40થી વધારે હોય તો આપેલ રકમમાં 150થી ઓછાં પુસ્તકોની ખરીદી શક્ય બનશે. નીચે આપેલ કોષ્ટક જુઓ :

એક પુસ્તકની કિંમત (₹ માં)	40	50	60	75	80	100
ખરીદી શકાય તેટલા પુસ્તકોની સંખ્યા	150	120	100	80	75	60

તમે શું અવલોકન કર્યું ? તમે જોઈ શકો છો કે જ્યારે એક પુસ્તકની કિંમતમાં વધારો થાય છે ત્યારે નિયત રકમમાં ખરીદી શકાય તેવાં પુસ્તકોની સંખ્યામાં ઘટાડો થાય છે.

જ્યારે પુસ્તકની કિંમત ₹ 40થી વધીને ₹ 50 થાય છે ત્યારે તેની વૃદ્ધિમાં થતો ગુણોત્તર 4 : 5 છે અને તેમને અનુરૂપ પુસ્તકોની સંખ્યા 150થી ઘટીને 120 થાય છે. તેથી તેમનો ગુણોત્તર 5 : 4 થાય. અર્થાત્ આ બંને ગુણોત્તરો એકબીજાના વ્યસ્ત છે.

[.]ધ્યાન આપો, બે રાશિઓને અનુરૂપ મૂલ્યોનો ગુણાકાર અચળ હોય છે.

અર્થાત્ 40 × 150 = 50 × 120 = 6000.

હવે જો આપણે એક પુસ્તકની કિંમત x અને ખરીદી શકાય તેવાં પુસ્તકોની સંખ્યાને y તરીકે દર્શાવીએ તો જ્યારે xમાં વધારો થાય ત્યારે yમાં ઘટાડો થશે અને તે જ પ્રમાણે xમાં ઘટાડો થાય તો yમાં વધારો થશે. અહીં બંનેનો ગુણાકાર xy અચળ રહે તે અગત્યનું છે. આમ આપણે કહી શકીએ કે x એ yના વ્યસ્ત પ્રમાણમાં ચલે છે અને y એ xના વ્યસ્ત પ્રમાણમાં ચલે છે. આમ, બે રાશિઓ x અને y એકબીજાના વ્યસ્ત પ્રમાણમાં ચલે છે તેમ કહેવાય, જો તેમની વચ્ચે xy = k પ્રકારનો કોઈ સંબંધ હોય, અહીં k અચળાંક છે.

હવે જો xનાં મૂલ્યો x_1 અને x_2 ને અનુરૂપ yનાં મૂલ્યો અનુક્રમે y_1 અને y_2 હોય તો

$$x_1 y_1 = x_2 y_2 (= k)$$
 અર્થાત $\frac{x_1}{x_2} = \frac{y_2}{y_1}$ થાય.

આમ, x અને y વ્યસ્ત પ્રમાણમાં છે.

આમ, ઉપરોક્ત ઉદાહરણમાં એક પુસ્તકની કિંમત અને નિયત રકમમાં ખરીદાયેલ પુસ્તકોની સંખ્યા એકબીજાના વ્યસ્ત પ્રમાણમાં છે. તેવી જ રીતે વાહનની ઝડપ અને નિયત અંતર કાપવા માટે લાગતો સમય એકબીજાના વ્યસ્ત પ્રમાણમાં છે. આ પ્રકારનાં બીજાં અન્ય રાશિયુગ્મો વિશે વિચારો કે જેઓ વ્યસ્ત પ્રમાણમાં પરિવર્તિત થતાં હોય. હવે તમે આ પ્રકરણની શરૂઆતમાં આપેલ ખુરશીઓની ગોઠવણી વિશેની સમસ્યાનો વિચાર કરો.

વ્યસ્ત પ્રમાણમાં આ મુદ્દાને નીચેની પ્રવૃત્તિ દ્વારા વધુ સારી રીતે સમજવાનો પ્રયત્ન કરીએ.

આટલું કરો

એક ચોરસ કાગળ લો અને તેના પર 48 'કુકરી'ને અલગ-અલગ સંખ્યાની હરોળમાં દર્શાવ્યા મુજબ ગોઠવો.

4 હાર, 12 સ્તંભ

6 હાર, 8 સ્તંભ

હરોળની	(R ₁)	(R ₂)	(R ₃)	(R ₄)	(R_5)
સંખ્યા (R)	2	3	4	6	8
સ્તંભની	(C ₁)	(C ₂)	(C ₃)	(C ₄)	(C ₅)
સંખ્યા (C)			12	8	

શું તમે જોયું ? અહીં જ્યારે Rમાં વધારો થાય છે ત્યારે Cમાં ઘટાડો થાય છે.

- (i) $\{i, R_1: R_2 = C_2: C_1 \ \hat{\otimes} \ ?$ (ii) $\{i, R_3: R_4 = C_4: C_3 \ \hat{\otimes} \ ?$
- (iii) શું R અને C એકબીજાના વ્યસ્ત પ્રમાણમાં છે ?

આ પ્રવૃત્તિ 36 'કુકરી' લઈને ફરીથી કરો.

પ્રયત્ન કરો

નીચે દર્શાવેલ કોષ્ટકનો અભ્યાસ કરીને બતાવો કે કયા બે ચલ(અહીં x અને y)ની જોડ પરસ્પર વ્યસ્ત પ્રમાણમાં છે.

(i) 50 40 30 20 x 8

(ii)	$\int x$	100	200	300	400
	у	60	30	20	15

(iii) 90 60 45 30 20 5 15 25 30 35 10 20

હવે થોડાંક એવાં ઉદાહરણ જોઈએ જેમાં વ્યસ્ત પ્રમાણનો ઉપયોગ થતો હોય,

જ્યારે બે રાશિઓ x અને y સમપ્રમાણમાં (અથવા સમચલનમાં) હોય, તો તેને $x \propto y$ લખી શકાય. જ્યારે બે રાશિઓ x અને y વ્યસ્ત પ્રમાણમાં (અથવા વ્યસ્ત ચલનમાં) હોય ત્યારે તેને $x \propto \frac{1}{y}$ લખાય.

ઉદાહરણ 7 : એક ટાંકીને 1 કલાક અને 20 મિનિટમાં ભરવા માટે 6 પાઇપનો ઉપયોગ કરવો પડે છે. હવે જો ફક્ત 5 પાઇપનો ઉપયોગ કરીએ તો ટાંકીને ભરાતા કેટલો સમય લાગે ?

ઉકેલ : ધારો કે ટાંકીને ભરવા માટે લાગતો સમય x મિનિટ છે.

તેથી આપેલ કોષ્ટક પ્રમાણે :

પાઇપની સંખ્યા	6	5
સમય (મિનિટમાં)	80	x

પાઇપની સંખ્યા જેટલી ઓછી, ટાંકી ભરાવામાં લાગતો સમય એટલો જ વધારે. અર્થાત્ આ વ્યસ્ત પ્રમાણની સ્થિતિ છે.

માટે,
$$80 \times 6 = x \times 5$$
 $[x_1 y_1 = x_2 y_2]$

$$\therefore \frac{80 \times 6}{5} = x$$

$$\therefore$$
 $x = 96$

ઉદાહરણ 8 : એક છાત્રાલયમાં 100 વિદ્યાર્થીઓ છે. 20 દિવસ ચાલે તેટલી ભોજનસામગ્રી પડેલ છે. હવે જો 25 વિદ્યાર્થીઓ નવા આવે, તો ભોજનસામગ્રી કેટલા દિવસ ચાલશે ?

6કેલ : ધારો કે 125 વિદ્યાર્થીઓ હોય તો ભોજનસામગ્રી y દિવસ સુધી ચાલશે. આપની પાસે નીચે પ્રમાણેનું કોષ્ટક છે :

વિદ્યાર્થીઓની સંખ્યા	100	125
દિવસ	20	у

ધ્યાન આપો, અહીં જેમ વિદ્યાર્થીઓની સંખ્યા વધશે, તેમ સામગ્રી ખલાસ થવા માટેના દિવસો ઘટશે.

આથી, આ વ્યસ્ત પ્રમાણની સ્થિતિ છે.

તેથી,
$$100 \times 20 = 125 \times y$$

અથવા
$$\frac{100 \times 20}{125} = y$$
 અથવા $16 = y$

આમ, જો 25 વિદ્યાર્થી વધારે જોડાય તો ભોજનસામગ્રી 16 દિવસ ચાલશે.

બીજી રીત : અહીં
$$x_1 y_1 = x_2 y_2$$
 ને $\frac{x_1}{x_2} = \frac{y_2}{y_1}$ તરીકે પણ લખી શકાય.

અર્થાત
$$x_1 : y_1 = x_2 : y_2$$

$$\therefore$$
 100 : 125 = y : 20

$$\therefore \qquad y = \frac{100 \times 20}{125} = 16$$

ઉદાહરણ 9 : જો 15 કારીગર એક દીવાલ 48 કલાકમાં બનાવી શકે તો આ જ કામને 30 કલાકમાં પૂરું કરવા કેટલા કારીગર જોઈએ ?

6કેલ : ધારો કે 30 કલાકમાં કામ પૂરું કરવા માટે જરૂરી કારીગરોની સંખ્યા y છે.

તેથી આપણને નીચે પ્રમાણે કોષ્ટક મળે.

સમય (કલાકમાં)	48	30
કારીગરની સંખ્યા	15	у

અહીં વધારે કારીગર હોય તો દીવાલ બનાવવા ઓછો સમય લાગે. આમ, આ એક વ્યસ્ત પ્રમાણની સ્થિતિ છે.

માટે,
$$48 \times 15 = 30 \times y$$

$$\therefore \frac{48 \times 15}{30} = y$$

$$\therefore \quad y = 24$$

અર્થાત્ આ કામને 30 કલાકમાં પૂરું કરવા માટે 24 કારીગરની જરૂર પડે.

- 1. નીચેનામાંથી કયાં વિધાનો વ્યસ્ત પ્રમાણમાં છે ?
 - (i) કોઈ એક કામમાં કારીગરોની સંખ્યા અને કામ પૂર્ કરવા માટે લાગતો સમય.
 - (ii) યાત્રા કરવા માટેનો કુલ સમય અને અચળ ઝડપથી કાપેલું અંતર.
 - (iii) એક ખેતરનું ક્ષેત્રફળ અને તેમાંથી લીધેલ પાકનો જથ્થો.
 - (iv) એક નિશ્ચિત યાત્રા માટે લાગતો સમય અને વાહનની ઝડપ.
 - (v) કોઈ એક દેશની કુલ જનસંખ્યા અને વ્યક્તિ દીઠ જમીનનું ક્ષેત્રફળ.
- 2. એક ટેલીવિઝન ગેમ શો(game show)માં પુરસ્કારની રકમ ₹ 1,00,000 દરેક વિજેતાને સરખા ભાગે વહેંચવામાં આવે છે. નીચે દર્શાવેલ કોષ્ટકને પૂર્ણ કરો અને જણાવો કે કોઈ એક વ્યક્તિગત વિજેતાને મળેલી પરસ્કારની રકમ કલ વિજેતાઓની સંખ્યાના સમપ્રમાણમાં છે કે વ્યસ્ત પ્રમાણમાં છે ?

વિજેતાઓની સંખ્યા	1	2	4	5	8	10	20
પ્રત્યેક વિજેતાને મળેલ પુરસ્કાર (₹માં)	1,00,000	50,000					

રહેમાન, એક પૈડામાં આરા (spokes) લગાવે છે. આ માટે તે સમાન લંબાઈના આરાનો 3. ઉપયોગ કરે છે. હવે તે આરા એવી રીતે લગાવે છે કે જેથી બે ક્રમિક આરા વચ્ચે બનતો ખૂશો સમાન હોય. હવે તેને નીચે આપેલ કોષ્ટક પૂર્ણ કરીને મદદ કરો.

આરાની સંખ્યા	4	6	8	10	12
બે ક્રમિક આરા વચ્ચે બનતો ખૂણો	90°	60°			

- (i) શું આરાની સંખ્યા અને બે ક્રમિક આરા વચ્ચે બનતો ખૂણો પરસ્પર વ્યસ્ત પ્રમાણમાં છે ?
- (ii) 15 આરાવાળા એક પૈડામાં બે ક્રમિક આરાની જોડ વચ્ચે બનતા ખૂણાનું માપ શોધો.
- (iii) બે ક્રમિક આરાની જોડ વચ્ચે બનતા ખૂણાનું માપ 40° છે તો આરાની સંખ્યા શોધો.
- **4.** ડબ્બામાં રહેલી મીઠાઈને 24 બાળકો વચ્ચે વહેંચતાં પ્રત્યેક બાળકને મીઠાઈના 5 ટુકડા મળે છે. હવે જો બાળકોની સંખ્યામાં 4નો ઘટાડો થાય તો પ્રત્યેક બાળકને કેટલી મીઠાઈ મળશે ?
- 5. એક ખેડૂત પાસે 20 પશુઓને 6 દિવસ સુધી ખવડાવી શકાય તેટલો ઘાસચારો છે. હવે જો તેની પાસે 10 પશુઓ વધારે આવે તો આ ઘાસચારો કેટલા દિવસ ચાલશે ?
- 6. એક ઠેકેદાર અંદાજ મૂકે છે કે જશમિંદરના ઘરે ફરીથી વીજતાર લગાવવાનું કામ 3 વ્યક્તિ, 4 દિવસમાં પૂરું કરી શકે છે. હવે જો તે 3ના બદલે 4 વ્યક્તિને આ કામ પર લગાવે તો આ કામ કેટલા દિવસમાં પૂરું થાય ?
- 7. એક જથ્થામાં રહેલી શીશીઓને, 1 બૉક્સમાં 12 શીશીઓ હોય તેવા 25 બૉક્સમાં રાખવામાં આવેલ છે. હવે જો આ જથ્થાની શીશીઓને એવી રીતે રાખવામાં આવે કે જેથી પ્રત્યેક બૉક્સમાં 20 શીશીઓ હોય તો આવાં કેટલાં બૉક્સ ભરાશે ?

- 8. એક ફેક્ટરીમાં નિશ્ચિત સંખ્યાની વસ્તુઓ 63 દિવસમાં બનાવવા 42 યંત્રોની જરૂર પડે છે. આ જ સંખ્યાની વસ્તુઓ 54 દિવસમાં બનાવવા કેટલાં યંત્રો જોઈએ ?
- 9. એક કારને 60 કિમી/કલાકની ઝડપથી કોઈ એક સ્થાન પર પહોંચવા માટે 2 કલાકનો સમય લાગે છે. હવે જો કારની ઝડપ 80 કિમી/કલાક હોય તો કેટલો સમય લાગશે ?
- 10. એક ઘરમાં નવી બારીઓ લગાવવા માટે 2 વ્યક્તિઓને 3 દિવસ લાગે છે.
 - (i) કાર્યની શરૂઆતમાં જ એક વ્યક્તિ બીમાર પડે તો કાર્ય પૂરું કરવામાં કેટલો સમય લાગશે ?
 - (ii) એક જ દિવસમાં બારીઓ લગાવવા કેટલી વ્યક્તિઓની જરૂર પડશે ?
- 11. કોઈ એક શાળામાં 45 મિનિટનો એક એવા 8 તાસ છે. હવે જો શાળામાં 9 તાસ કરવા હોય તો દરેક તાસનો સમય કેટલો રાખવો પડે ? (અહીં, શાળાનો સમય સમાન રહે છે તેવું માનવું.)

આટલું કરો

1. એક કાગળ લો. આકૃતિમાં દર્શાવ્યા મુજબ તેમાં ગડી પાડી અને સમાન ભાગમાં વિભાજિત કરો. દરેક સ્થિતિમાં બનતા ભાગની સંખ્યા અને કોઈ એક ભાગનું ક્ષેત્રફળ લખો.

તમારા અવલોકનોને કોષ્ટક સ્વરૂપે દર્શાવો અને તમારા મિત્રો સાથે ચર્ચા કરો. શું આ એક વ્યસ્ત પ્રમાણની સ્થિતિ છે ? કેમ ?

ભાગની સંખ્યા	1	2	4	8	16
પ્રત્યેક ભાગનું ક્ષેત્રફળ	કાગળનું ક્ષેત્રફળ	કાગળના ક્ષેત્રફળનો $\frac{1}{2}$ ભાગ			

2. ગોળાકાર તળિયું ધરાવતાં અલગ અલગ માપનાં પાત્ર લો. પ્રત્યેક પાત્રમાં નિશ્ચિત જથ્થાનું પાણી ભરો. હવે દરેક પાત્રનો વ્યાસ અને તેમાં રહેલા પાણીની ઊંચાઈ નોંધો. તમારાં અવલોકનોનું કોષ્ટક બનાવો. શું આ એક વ્યસ્ત પ્રમાશની સ્થિતિ છે ?

આપણે શું ચર્ચા કરી ?

1. જો બે રાશિ x અને y એક સાથે એવી રીતે વધે (કે ઘટે) કે જેથી તેમનાં અનુરૂપ મૂલ્યોનો ગુણોત્તર અચળ રહે તો તે સમપ્રમાણમાં છે તેમ કહેવાય. એટલે કે જો $\frac{x}{y} = k \ (k \ \text{s})$ ઈ ધન સંખ્યા છે.) હોય તો x અને y સમપ્રમાણમાં છે તેમ કહેવાય. આ સ્થિતિમાં xનાં મૂલ્યો x_1 અને x_2 ને અનુરૂપ yનાં ક્રમિક મૂલ્યો y_1 અને y_2 હોય, તો $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ થાય.

2. બે રાશિ x અને y માટે જો રાશિ xમાં થતો વધારો (કે ઘટાડો), રાશિ yમાં એવી રીતે ઘટાડો (કે વધારો) કરે કે જેથી તેમનાં અનુરૂપ મૂલ્યોનો ગુણાકાર અચળ રહે તો તેઓ એકબીજાના વ્યસ્ત પ્રમાણમાં છે તેમ કહેવાય. એટલે કે જો xy=k હોય તો x અને y પરસ્પર વ્યસ્ત પ્રમાણમાં છે. આ સ્થિતિમાં xનાં મૂલ્યો x_1 અને x_2 ને અનુરૂપ yનાં ક્રમિક મૂલ્યો y_1 અને y_2 હોય તો $x_1y_1=x_2y_2$ અથવા $\frac{x_1}{x_2}=\frac{y_2}{y_1}$ થાય.

