

- O EXECUTIVE SUMMARY
- o INTRODUCTION
- o METHODOLOGY
- o RESULTS
 - o Visualization Charts
 - o Dashboard
- o DISCUSSION
 - o FINDINGS & IMPLICATIONS
- o CONCLUSION
- o APPENDIX

EXECUTIVE SUMMARY

- Understanding the success probability percentage of SpaceX rocket launches can be used to generate financial cost analysis models for competing companies
- Using the following data science methods gives us a robust understanding of the data:
 - Data collection via API & Web Scraping
 - EXPLORATORY DATA ANALYSIS & VISUALIZATION
 - Performing Predictive Analysis
- We found the following trends:
 - AS THE # OF FLIGHTS INCREASES, SUCCESS RATE (SAFELY LANDING 1ST STAGE) ALSO INCREASES
 - As payload increases, the average success rate decreases
 - OVERALL SUCCESS RATE HAS INCREASED SINCE THE BEGINNING OF THE PROGRAM

INTRODUCTION

We will predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

- o Data Collection API
 - Calculate the number of launches on each site
 - Calculate the number and occurrence of each orbit
 - Calculate the number and occurrence of mission outcome per orbit type
 - Create a landing outcome label from Outcome column
- Web Scraping
 - o Request the Falcon 9 Launch Wiki Page from URL
 - Extract all column/variable names from the HTML table header
 - Create a data frame by parsing the launch HTML tables

DATA ANALYSIS & VISUALIZATION (STATIC)

- Scatter Plots
 - o Flight Number vs. Payload Mass
 - o Flight Number vs. Launch Site
 - o Flight Number vs. Orbit
 - o Payload vs. Orbit
- Bar Chart
 - o Success Rate by Launch Site
- Line Chart
 - Success Rate by Year

DATA ANALYSIS & VISUALIZATION (INTERACTIVE)

- Interactive Map w/ Folium
 - o Showing launch sites
 - Showing relationship between launch sites and significant geographical landmarks (I.e. railroads, highways and coastlines)
- o Interactive Dashboard w/ Plotly
 - Launch site dropdown input
 - Success pie chart
 - Range slider to select payload
 - Success payload scatter plot

A SAMPLE OF THE DATA
SET IMPORTED USING THE
SPACEX .CSV DATA FILE

Data Analysis

Load Space X dataset, from last section.

In [2]:	df=pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_1.csv"	
	df.head(10)	

ut[2]:		FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longit
	0	1	2010- 06- 04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577
	[2]: F 0 1 2 3 4 5 6 7 8	2	2012- 05- 22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577
0 1 2 3 4 5 6	3	2013- 03- 01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577	
	0 1 2 3 4 5 6 7	4	2013- 09- 29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610
	4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577
	5	6	2014- 01- 06	Falcon 9	3325.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1005	-80.577
	6	7	2014- 04- 18	Falcon 9	2296.000000	ISS	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1006	-80.577
	7	8	2014- 07-14	Falcon 9	1316.000000	LEO	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1007	-80.577
	8	9	2014- 08- 05	Falcon 9	4535.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1008	-80.577
	9	10	2014- 09- 07	Falcon 9	4428.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1011	-80.577

IDENTIFY &
CALCULATING MISSING
VALUES IN EACH
ATTRIBUTE

Identify and calculate the percentage of the missing values in each attribute

```
df.isnull().sum()/df.count()*100
                   0.000
FlightNumber
                   0.000
BoosterVersion
                   0.000
PayloadMass
                   0.000
Orbit
                   0.000
LaunchSite
                   0.000
                   0.000
Outcome
Flights
                   0.000
GridFins
                   0.000
Reused
                   0.000
                   0.000
Legs
LandingPad
                  40.625
Block
                   0.000
ReusedCount
                   0.000
Serial
                   0.000
Longitude
                   0.000
Latitude
                   0.000
dtype: float64
```

Identify which columns are numerical and categorical:

IDENTIFYING

DF.TYPES

df.dtypes

FlightNumber	int64
Date	object
BoosterVersion	object
PayloadMass	float64
Orbit	object
LaunchSite	object
Outcome	object
Flights	int64
GridFins	bool
Reused	bool
Legs	bool
LandingPad	object
Block	float64
ReusedCount	int64
Serial	object
Longitude	float64
Latitude	float64
dtype: object	

CREATE A LANDING OUTCOME LABEL FROM OUTCOME COLUMN

TASK 4: Create a landing outcome label from Outcome column

Using the Outcome , create a list where the element is zero if the corresponding row in Outcom to the variable landing_class:

```
# landing_class = 0 if bad_outcome
# landing_class = 1 otherwise
landing_class = []
for outcome in df['Outcome']:
    if outcome in bad_outcomes:
        landing_class.append(0)
    else:
        landing_class.append(1)
```

This variable will represent the classification variable that represents the outcome of each launcl means the first stage landed Successfully

```
df['Class']=landing_class
df[['Class']].head(8)
```

Understanding the different orbit types

DATA VISUALIZATION FLIGHT NUMBER VS. PAYLOAD

DATA VISUALIZATION FLIGHT NUMBER VS. LAUNCH SITE

PAYLOAD MASS (KG)

VS.

LAUNCH SITE

```
# Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be the launch site, and hue to be the class value
sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df)
plt.xlabel("Pay Load Mass (kg)",fontsize=20)
plt.ylabel("Launch Site",fontsize=20)
plt.show()
```


Now if you observe Payload Vs. Launch Site scatter point chart you will find for the VAFB-SLC launchsite there are no rockets launched for heavypayload mass(greater than 10000).

SUCCESS RATE

BY

LAUNCH SITE

```
# HINT use groupby method on Orbit column and get the mean of Class column
t = df.groupby(['Orbit', 'Class'])['Class'].agg(['mean']).reset_index()
sns.barplot(y="Class", x="Orbit", data=t)

plt.xlabel("Orbit",fontsize=20)
plt.ylabel("Class",fontsize=20)
plt.show()
```


FLIGHT NUMBER VS. ORBIT

```
# Plot a scatter point chart with x axis to be FlightNumber and
sns.catplot(y="Orbit", x="FlightNumber", hue="Class", data=df)
plt.xlabel("FlightNumber",fontsize=20)
plt.ylabel("Orbit",fontsize=20)
plt.show()
```


PAYLOAD VS. ORBIT

```
# Plot a scatter point chart with x axis to be Payload and y as
sns.catplot(y="Orbit", x="PayloadMass", hue="Class", data=df)
plt.xlabel("Payload",fontsize=20)
plt.ylabel("Orbit",fontsize=20)
plt.show()
```


ANNUAL SUCCESS RATE

```
sns.lineplot(data=df1, x="Date", y="Class")
plt.xlabel("Date",fontsize=20)
plt.ylabel("Success Rate",fontsize=20)
plt.show()
```


you can observe that the sucess rate since 2013 kept increasing till 2020

EDA WITH SQL

Task 1

Display the names of the unique launch sites in the space mission

%sql SELECT Distinct LAUNCH_SITE FROM SPACEXTBL

* sqlite:///my_datal.db

Done.

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Task 2

Display 5 records where launch sites begin with the string 'CCA'

%sql SELECT * FROM SPACEXTBL WHERE LAUNCH SITE LIKE 'CCA%' LIMIT 5

* sqlite:///my_data1.db

Done

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

*sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER='NASA (CRS)'

* sqlite:///my_data1.db

Done

SUM(PAYLOAD_MASS__KG_)

45596

Task 4

Display average payload mass carried by booster version F9 v1.1

*sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE BOOSTER_VERSION='F9 v1.1'

* sqlite:///my_datal.db

Done.

AVG(PAYLOAD_MASS__KG_)

2928.4

Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

\$sql SELECT min(DATE) FROM SPACEXTBL WHERE "Landing_Outcome" ='Success (ground pad)'

* sqlite:///my_data1.db Done.

min(DATE)

IIIII(DAI

None

EDA WITH SQL

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 *sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE "PAYLOAD_MASS__KG_" between 4000 and 6000 AND "LANDING_OUTCOME"='Success (drone ship) * sqlite:///my_datal.db Done. Booster_Version Task 7 List the total number of successful and failure mission outcomes *sql SELECT COUNT(*) FROM SPACEXTBL WHERE MISSION_OUTCOME LIKE '%Success%' OR MISSION_OUTCOME LIKE '%Failure%' * sqlite:///my_datal.db Done. COUNT(*) 101

EDA WITH SQL

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date,7,4)='2015' for year.

```
%%sql SELECT COUNT("LANDING_OUTCOME") AS COUNT, "LANDING_OUTCOME", DATE
FROM SPACEXTBL
WHERE "Landing_Outcome" LIKE "%%SUCCESS%%" AND DATE BETWEEN '01-01-2015' AND '12-31-2015'
GROUP BY "LANDING_OUTCOME", DATE
ORDER BY COUNT DESC

* sqlite:///my_data1.db
Done.
COUNT "LANDING_OUTCOME" Date
```

Task 10

Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

```
**sql
SELECT "LANDING_OUTCOME", COUNT("LANDING_OUTCOME") AS TOTAL_NUMBER
FROM SPACEXTBL
WHERE DATE BETWEEN '04-06-2010' AND '03-20-2017'
GROUP BY "LANDING_OUTCOME"
ORDER BY TOTAL_NUMBER DESC

* sqlite:///my_datal.db
Done.
"LANDING_OUTCOME" TOTAL_NUMBER
```


FLORIDA LAUNCH SITES

CALIFORNIA LAUNCH SITES

PLOTLY DASHBOARD

PREDICTIVE ANALYSIS

MACHINE LEARNING

CONFUSION MATRIX SHOWING:

- 3 TRUE NEGATIVES
- 3 FALS NEGATIVES
- O FALSE POSITIVES
- 12 TRUE POSITIVES

PREDICTIVE ANALYSIS

TASK 12

Find the method performs best:

```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.best_score_,'LogisticRegression':logreg_cv.best_score_})
bestalgorithm = max(algorithms, key=algorithms.get)
print('Best Algorithm is',bestalgorithm,'with a score of',algorithms[bestalgorithm])
if bestalgorithm == 'Tree':
    print('Best Params is :',tree_cv.best_params_)
if bestalgorithm == 'KNN':
    print('Best Params is :',knn_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg_cv.best_params_)

Best Algorithm is Tree with a score of 0.875
Best Params is : {'criterion': 'entropy', 'max_depth': 2, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

It was determined that the best machine learning model was the decision tree classifier

FINAL THOUGHTS

- CURRENTLY, SPACEX IS CAPABLE OF LAUNCHING 2.6 ROCKETS FOR EVERYONE 1 ROCKET OF COMPETING COMPANIES.
- It can be assumed that the success rate of SpaceX rockets will continue to increase over time, widening the potential gap between them and their competitors
- There <u>May</u> be a correlation between payload and success rate the warrants further examination. However there are still too many variables not included in this study including:
 - ENVIRONMENTAL STATS INCLUDING WIND, TEMPERATURE, BAROMETRIC PRESSURE, SEASON, ETC.
 - ENHANCEMENTS AND MODIFICATIONS TO THE OPERATING SYSTEMS OF THE ROCKET IN BETWEEN LAUNCHES
- FINAL CONCLUSION: WE HAVE BUILT A USEFUL TOOL TO PREDICT THE SUCCESS PROBABILITY OF THE FALCON9 ROCKET RETURNING SAFELY TO BE REUSED. THIS INFORMATION COULD BE USED TO BUILD A FINANCIAL FORECAST FOR A STARTUP COMPANY. HOWEVER, IT SHOULD BE ASSUMED THAT THEY WILL HAVE TO CATCH UP WITH SPACEX FIRST AND THAT CAN ONLY COME WITH EXPERIENCE AND FAILED LAUNCHES OF THEIR OWN.