

Benjamin Car M2 FESup physique

Table des matières

1	Introduction de la leçon	2
2	Plan détaillé	2
	2.1 Solubilité d'une espèce chimique	2
	2.2 Etude de l'équilibre de dissolution	
	2.3 Facteurs d'influence	4
3	Pour préparer	4
	3.1 Justification choix pédagogiques	4
	3.2 Biblio	5
	3.3 Animations, illustrations et expériences possibles	5
	3.4 Questions posées et Remarques correcteur	5
	3.5 Notions liées, en vrac	5

1 Introduction de la leçon

Niveau: CPGE

Prérequis : solvants et dissolution

évolution, constantes d'équilibre et activités.

Acide/base et titrage.

Objectifs choisis

- Notions générales de solubilité
- ▶ Produits de solubilité, conditions d'équilibre et diagrammes d'existence
- ▶ Effet sur un titrage et mesure de Ks
- ▶ Facteurs influençant la solubilité

å å Attention! Le plan nécessite une réorganisation, plus proche du cours basique et moins liée à l'exemple fil rouge (essentiellement sur les diagrammes d'existence et les facteurs d'influence).

2 Plan détaillé

Introduction: La production d'aluminium ne cesse d'augmenter afin de satisfaire un besoin croissant. A partir d'un ensemble de minéraux (Bauxite), comment peut on extraire uniquement l'alumine Al_20_3 (Al(OH) $_3$ déshydraté) qui nous intéresse? Il va tout d'abord falloir dissoudre tout ces cristaux ... Nous allons revenir sur les notions de solubilité vues au lycée mais cette fois en la quantifiant et en étudiant quels sont ses facteurs d'influence.

2.1 Solubilité d'une espèce chimique

▶ Quantification de la solubilité

Solubilité : Quantité maximale d'un soluté que l'on peut dissoudre dans un litre de solvant. La solution et alors dite saturée.

Soluté : liquide, solide ou gazeux. On se concentrera ici sur les solides au programme et une transposition au gaz serait possible.

Solvant : On se limitera ici au cas de l'eau en gardant à l'esprit que toutes les valeurs seraient modifiées dans un autre solvant.

Solubilité quantifiée (concentration ou titre) : $s = \frac{n}{v}$ (mol.L⁻¹) ou $s = \frac{m}{v}$ (g.L⁻¹)

 $Ex: \underline{Liquides\ miscibles\ s} \to \infty$

$$s(CO_2) \approx 1.7 \text{ g.L}^{-1} \text{ à } 20^{\circ}$$

$$s(Fe(OH)_3) \approx 2.10^{-18} \text{ g.L}^{-1} \text{ à } 20^{\circ}$$

L'espèce de plus grand s est la plus soluble.

► Cas des solides

Def produit de solubilité: Constante d'équilibre d'une réaction de dissolution (pour une solution saturée!)

$$NaCl_s \rightarrow Na^+ + Cl^- \text{ avec } Ks = \frac{[Na^+]_{eq}[Cl^-]_{eq}}{c^0} \text{ et } pKs = -\log(Ks).$$

 $Al(OH)_3 \rightarrow Al^{3+} + 3HO^- \text{ avec } Ks = \frac{[Al^{3+}]_{eq}[HO^-]_{eq}^3}{(c^0)^4}$

Un tableau d'avancement permet de remonter à la solubilité

	NaCls	\rightarrow	Na ⁺	+Cl ⁻
initial	п		0	0
final	n - sV		sV	sV

On a donc ici $s = c^0 \sqrt{Ks}$.

Variation de s et Ks dans le même sens. De plus s indep de n.

Transition : L'équilibre n'est donc pas toujours établi (n<sV) ...

2.2 Etude de l'équilibre de dissolution

► Critère d'évolution

Dans quel sens se fait l'équilibre? Calcul du quotient de réaction avec les concentrations en présence $Q = \frac{[Al^{3+}][HO^{-}]^3}{(c^0)^4}$

Q > Ks sens de la précipitation

Q = Ks équilibre

Q < Ks sens dissolution.

Dans le dernier cas deux possibilités : solution saturée (si assez de solide) ou rupture d'équilibre.

Transition: Pour visualiser à quel moment se fait la rupture (dissolution totale) on trace un diagramme d'existence.

▶ Diagrammes d'existence

Quelle est la limite d'existence de Al(OH)₃?

Méthode tracé du diagramme :

- ▶ Choisir l'ion à concentration variable
- ▶ Tracer l'axe en -log de cette concentration
- Placer les espèces restantes
- ▶ Déterminer la valeur de la frontière

Équilibre défini à la frontière (Q=Ks) : $[OH^-]_{lim} = \sqrt[3]{\frac{Ks(c^0)^4}{[Al^{3+}]}}$ ou plutôt $pH_{lim} = 14 - pOH = 14 - \frac{pKs + log[Al^{3+}]}{3}$. Approx : $[Al^{3+}] = s)\frac{n_0}{V}$ si on part d'une solution saturée et $[Al^{3+}] = [Al^{3+}]_0$ sinon.

Transition: Pour tracer le diagramme d'existence, on a besoin de la valeur de Ks!

▶ Mesure de Ks par pH-métrie

Manip : Titrage pH-métrique d'une solution de (Al^{3+}, H^+) de 100mL (pour négliger la dilution) par HO^- . Quand Q < Ks l'équilibre n'es pas défini, H^+ sont titrés normalement. Jusqu'à ce que pH suffisant pour arriver dans le domaine d'existence du précipité. Dès le premier grain de solide formé, tous les HO^- servent à la précipitation (K très élevé!) donc pas de modification du pH : Point anguleux. Ajouter des HO^- provoque alors la consommation des Al^{3+} pour maintenir l'équilibre.

Mesure de Ks (dilution négligée) par la formule

$$pKs = 3(14 - pH) - log\left(\frac{[Al^{3+}]_0}{c^0}\right)$$
 (2.1)

 $pKs = 32 \pm 2$: Très faiblement soluble!

C'est donc normal que la bauxite ne se soit pas dissoute dans l'eau!

Tracé des diagrammes d'existence de Fe(OH)₃et Al(OH)₃pour la bauxite préparée. Attention on prend ici $[Al^{3+}] = s = \frac{n_0}{V}$ Les deux sont dissout quasiment au même pH. Non séparables ...

Transition : Quels sont les autres facteurs permettant de modifier la solubilité?

2.3 Facteurs d'influence

▶ Modification du Ks

Ks dépend du solvant (ex : Sel non soluble dans l'huile car non polaire) : fixé ici.

Attention, notion discutable : si on change de solvant, pas le même Ks (ne pas écrire (aq) si pas H20!)

Ks varie aussi avec la température (Loi de Van't Hoff). Quand on met du sel dans de l'eau, celui-ci se dissout à chaud. Ks augmente souvent avec la température (dissolution endothermique) et donc il en va de même pour la solubilité. Attention pas général, calcaire inverse! A la base de la technique de recristallisation.

Transition: Bauxite insoluble à 80 degrés sans modification du pH!

▶ Déplacement de l'équilibre

On a vu que l'on peut déplacer l'équilibre en modifiant le pH. C'était un cas particulier d'un effet plus général, l'effet d'ion commun.

Effet d'ion commun : La solubilité diminue quand la solution contient un des ions produits de la dissolution. (Prendre le temps d'illustrer avec un tableau d'avancement).

Cas des hydroxydes : Ajouter Al^{3+} diminue la solubilité de Al(OH)₃. Mais HO^{-} diminue donc la solubilité de Al(OH)₃ et Fe(OH)₃ ? Oui mais ...

Il peut aussi y avoir d'autres réactions en compétition : Si je rajoute encore des HO^- dans mon bécher il y a disparition du précipité!

Autre réaction en compétition : Formation du complexe Al(OH)4.

 $Al(OH)_3 + HO^- \rightarrow [Al(OH)_4]^-$ Consommation ions HO^- et déplacement dans le sens de la dissolution.

Forte augmentation de la solubilité de Al(OH)₃ seulement : dissolution sélective!

Manip, filtration du précipité rouge restant (Fe(OH)₃) et acidification pour reprécipiter Al(OH)₃.

Transition: Tout ça est très bien mais pollue beaucoup et relache du CO2.

▶ Transposition au cas des gaz

Cas du CO2 cause de l'acidification des océans. La solubilité d'un gaz soit la loi de Henry $s = \frac{P_{CO_2}}{P^0}$. Comme la quantité de CO_2 augmente, sa solubilité aussi. Dérègle les équilibres acido-basiques du carbonate de calcium et tue les coraux (qui n'arrivent plus à faire précipiter le calcium!).

Conclusion Connaître les produits de solubilité des différentes réactions et maîtriser l'évolution de la solubilité des métaux est donc crucial pour l'extraction de minerais et de nombreuses autres applications. Il faudra ensuite réaliser une catalyse pour parvenir à l'aluminium...

3 Pour préparer

3.1 Justification choix pédagogiques

• Choix d'un exemple fil rouge pour illustrer chaque point de la leçon + exemple simple NaCl pour introduire certaines notions.

• Eviter au maximum les allers-retours entre dissolution et précipitation. (apparemment pas important ...)

• Bien insister sur la rupture d'équilibre car c'est la grosse différence avec les autres espèces.

3.2 Biblio

- Tout en un Chimie PCSI p.549
- BUP 790 1997 p.37
- Chimie Physique Expérimentale Fosset p.123

3.3 Animations, illustrations et expériences possibles

Vidéo intro? https://www.youtube.com/watch?v=R8LC50AFJdI Site Alu: https://www.wikiwand.com/fr/Alumine

Manip:

- Mesure de Ks par pH-métrie (point anguleux) ou Potentiométrie
- ▶ Dissolution sélective de l'alumine
- ► Expérience de la pluie d'or (influence de T)
- ▶ Titrage de Cl[−] de différentes solution saturée de NaCl

3.4 Questions posées et Remarques correcteur

- ▶ fonctionnement recristallisation : s augmente avec T, impuretés en faible quantité donc ne précipitent pas en refroidissant.
- > quelle quantité de solvant? juste assez pour dissoudre à chaud / Facile à recristalliser et peu de pertes.
- ▶ pourquoi pH augmente un fois le précipité formé Q doit s'adapter à Ks alors qu'on consomme des Al³+
- > pourquoi calcaire moins soluble à chaud : enthalpie de réaction <0 mais microscopiquement?
- différence existence et prédominance : frontière mobile!
- ▶ pourquoi faire précipiter à la fin $Al(OH)_4$: Eliminer SiO_2 qui a lui aussi été dissout à chaud.

Remarques correcteur & Attention! Globalement, moins se sentir lié au titre "solubilité". On peut traiter de précipitation dans les cas où ça arrange.

Se sentir moins lié à l'exemple fil rouge. Écrire le cours au tableau et application à l'exemple sur slides. Attention à la manip en fin de leçon, elle peut vite passer à la trappe et c'est dommage ...

3.5 Notions liées, en vrac

- ▶ Solubilité : programme 1S / Ks jusqu'à effet du pH en STL!
- aluminium intéressant car léger et inoxydable (Passivé par l'alumine)
- ▶ gibbsite (forme la plus commune de l'alumine minérale) cristal monoclinique avec octaèdres autour de Al.
- ▶ Procédé Bayer pour l'alumine (Première étape, en réalité : aluminate de soude à 250deg) et électrolyse jusqu'à l'aluminium $(Al^{3+}/Al \text{ avec } CO_2/O_2$.
- > autres impuretés non dissoutes, sauf SiO2 qui va se dissoudre mais pas re-précipiter et sera donc filtré.
- ► Al(OH)₃trihydraté : 2 Al(OH)₃+ $H_2O \rightarrow Al_2O_3$
- ▶ Compétition entre dissociation (endothermique) et solvatation (exothermique)
- ▶ liaisons H 10 kJ/mol, ioniques 100 kJ/mol
- ▶ liquides : coefficient de partage equivalent à la solubilité?
- ▶ Réaction endothermique mais peut être spontané si compensé par l'entropie! (dG=dH-TdS <0)
- ▶ s varie avec la force ionique (Formule de Debye-Huckel)
- ▶ Dosages de Cl- par précipitation : Potentiométrie, conductimétrie ou indicateur (Sel de Mohr réagit avec Ag+)
- ▶ Solubilité des Gaz, s dépend de Pi=xi*P (Loi de Henry valable pour GP infiniement dilué) ($CO_2(g) \rightarrow CO_2(aq)$ donc $K = \frac{x^l + k}{x^S + P}$ et donc $x^l = s = \frac{x^S P}{k}$ où k est la constante de Henry.

▶ Dosage O2 dans l'eau par méthode de Winkler, titrage indirect de I2 (iodométrie), dureté d'une eau.

▶ Autres exemples : Bulles quand on ouvre une bière, mal des montagnes ou accident de décompression. Hemoglobyne fixe O2 et déplace l'équilibre (augmente s)