

Data Creation and Training with Weak Supervision

Daeyoung Hong Seoul National University

Introduction

- Labeling training data is the main bottleneck in ML
 - Hiring experts to label large training data is time consuming and expensive

Introduction

- Labeling training data is the main bottleneck in ML
 - Possible solutions when we have limited resources
 - Active learning (Sequentially choose what to label among all data)
 - Transfer learning (Utilize a trained model in a domain to another domain)
 - Semi supervised learning (Utilize unlabeled data and labeled data together)
 - Weak supervision (Label unlabeled data and utilize them for training)
 - Distant supervision (machine generated labels using knowledge bases)
 - Crowdsourced labels
 - Rules and heuristics

An Example of Weak Supervision

- Distant supervision quickly generates noisy labels using external data source
 - A task to find a relationship between two entities in the sentence
 - Assume that knowledge base has a relation (Seoul, sister_city, Tehran)
 - A distant supervision method simply annotates sister_city relation if there exist Seoul and Tehran entities in a sentence

Why Weak Supervision?

- A large amount of data improves the accuracy of models
- But, labeling a lot of data from human experts is expensive or practically impossible
- Weak supervision can generate a lot of labeled data quickly
- Recently, many companies and organizations have succeeded in improving model performance through weak supervision even if the generated labels are noisy

Snorkel's Collaborators

Snorkel is the most popular weak supervision project

USERS & SPONSORS

List of Papers Covered in this Seminar

- Snorkel [Ratner, Bach, Ehrenberg, Fries, Wu and Ré: PVLDB 2017]
 - Snorkel reduces the human effort in training data labeling by utilizing labeling functions (LFs) without human-labeled data
- Snuba [Varma and Ré: PVLDB 2018]
 - Snuba automatically generates a set of LFs by using a small set of human-labeled data
- GOGGLES [Das, Chaba, Wu, Gandhi, Chau and Chu: SIGMOD 2020]
 - GOGGLES is a domain-agnostic method for automated image data labeling with the affinity scores of instance pairs and a small set of human-labeled data
- SPamCo [Fan Ma, Deyu Meng, Xuanyi Dong, Yi Yang: JMLR 2020]
 - Aggregate existing models' outputs to generate pseudo-labels and update models using the pseudo-labels
- Dual supervision framework [Jung and Shim: COLING 2020]
 - It effectively utilizes both weakly-supervised and human-annotated data to train a relation extraction model

List of Papers Covered in this Seminar

- Snorkel [Ratner, Bach, Ehrenberg, Fries, Wu and Ré: PVLDB 2017]
 - Snorkel reduces the human effort in training data labeling by utilizing labeling functions (LFs) without human-labeled data
- Snuba [Varma and Ré: PVLDB 2018]
 - Snuba automatically generates a set of LFs by using a small set of human-labeled data
- GOGGLES [Das, Chaba, Wu, Gandhi, Chau and Chu: SIGMOD 2020]
 - GOGGLES is a domain-agnostic method for automated image data labeling with the affinity scores of instance pairs and a small set of human-labeled data
- SPamCo [Fan Ma, Deyu Meng, Xuanyi Dong, Yi Yang: JMLR 2020]
 - Aggregate existing models' outputs to generate pseudo-labels and update models using the pseudo-labels
- Dual supervision framework [Jung and Sh
 - It effectively utilizes both weakly-supervise relation extraction model

These papers propose a method to generate pseudo-labels

List of Papers Covered in this Seminar

- Snorkel [Ratner, Bach, Ehrenberg, Fries, Wu and Ré: PVLDB 2017]
 - Snorkel reduces the human effort in training data labeling by utilizing labeling functions (LFs) without human-labeled data
- Snuba [Varma and F
 - Snuba automatical
- GOGGLES [Das, Chall
 - GOGGLES is a dom affinity scores of in

This paper proposes a method to train a model with both human-annotated and pseudo-labeled dataset

n-labeled data

ng with the

- SPamCo [Fan Ma, Deyu Mer
 - Aggregate existing models' of the pseudo-labels

Dong, Yi Yang: JMLR 2020]

to generate pseudo-labels and update models using

- Dual supervision framework [Jung and Shim: COLING 2020]
 - It effectively utilizes both weakly-supervised and human-annotated data to train a relation extraction model

Snorkel: Rapid Training Data Creation with Weak Supervision

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, Christopher Ré

PVLDB 2017

Various Sources of Weak Supervision

- Label source 1
 - e.g., Heuristics / pattern generated from experts
 - More accurate & low coverage
- Label source 2
 - e.g., Distant supervision
 - Less accurate & high coverage

• ...

Need to resolve conflicts between label sources

Overview of Snorkel

Knowledge Discovery

& Database Lab

KDDLAB

- 1. Labeling functions (rather than labeling training data)
- 2. Generative model (combines the results of the labeling functions)
- 3. Discriminative model (e.g., deep learning model)

labeling functions

2. Automatically resolves conflicts

Labeling Functions

- Hand-defined labeling function
 - Arbitrary snippet of code
 - External sources (e.g., knowledge bases) can be utilized
 - input: a candidate object x with a local context
 - output: a label (True or False) or abstains (None)

Context hierarchy

e.g., If {Chemical} appears ahead of {Disease} and "causes" is between {Chemical} and {Disease}, the labeling function outputs true.

Generative Model

Given

- Label matrix Λ
 - $\Lambda_{i,j} = \lambda_j(x_i)$ (x_i : i-th unlabeled data, λ_j : j-th labeling function)
- Generative model (GM)
 - $p_w(\Lambda, Y) = Z_w^{-1} \exp(\sum_{i=1}^m w^T \phi_i(\Lambda, y_i))$
 - Y: a latent variables for true labels
 - w: a vector of model parameters
 - Z_w : normalizing constant
 - ϕ_i : feature vector
 - Labeling: $\phi_{i,j}^{Lab}(\Lambda,Y) = \mathbb{I}\{\Lambda_{i,j} \neq \emptyset\}$
 - Accuracy: $\phi_{i,j}^{Acc}(\Lambda, Y) = \mathbb{I}\{\Lambda_{i,j} = y_i\}$
 - Correlation: $\phi_{i,j,k}^{Corr}(\Lambda,Y) = \mathbb{I}\{\Lambda_{i,j} = \Lambda_{i,k}\}$

Find

- Model parameters w which maximizes the marginalized likelihood
 - $\widehat{w} = \operatorname{argmin}_{w} \log \sum_{Y} p_{w}(\Lambda, Y)$
- Probabilistic training labels \tilde{Y}
 - $\tilde{Y} = p_{\widehat{W}}(Y|\Lambda)$

The generative model combines the results of the labeling functions

Label matrix Λ

	λ_1	λ_2	 λ_n	1 : True
x_1	1	-1	0	0 : Ø
x_2	0	1	1	-1: False
x_3	-1	0	-1	
x_m	1	0	0	

Generative model

Probabilistic labels $ilde{Y}$

Discriminative Model

- Instead of directly using pseudo-labels generated from the generative model, they additionally produce a discriminative model for final labeling
- The discriminative model $h_{ heta}$ generalizes beyond the information expressed in the labeling functions
- The model can be trained by minimizing the expected loss from the probabilistic label \widetilde{Y}
- Noise-aware expected loss

The probability of *i*-th unlabeled data to be **true**

The probability of *i*-th unlabeled data to be **true**

•
$$\sum_{i=1}^{m} \mathbb{E}_{y \sim \tilde{Y}}[l(h_{\theta}(x_i), y)]$$

•
$$\mathbb{E}_{y \sim \tilde{Y}}[l(h_{\theta}(x_i), y)] = \tilde{y}_i \cdot [l(h_{\theta}(x_i), 1)] + (1 - \tilde{y}_i) \cdot [l(h_{\theta}(x_i), -1)]$$

•
$$\hat{\theta} = \operatorname{argmin}_{\theta} \sum_{i=1}^{m} \mathbb{E}_{y \sim \tilde{Y}}[l(h_{\theta}(x_i), y)]$$

The loss when the label is **true**

The loss when the label is **false**

Evaluation

& Database Lab

- Models
 - Majority Vote: a majority vote from label functions
 - Snorkel (Gen.): the generative model of Snorkel
 - Snorkel (Disc.): a discriminative model trained by probabilistic labels \tilde{Y} (from the generative model)

- Relation extraction tasks
 - **Chem**: extracting chemical reactions (collaborated with FDA)
 - CDR: finding chemical-disease relations

Effects of Generative Model

- Compared discriminative models
 - Unweighted LFs: trained by a majority vote from labeling functions
 - Hand Supervision: trained by true labels by human experts (with a lot of labor)
 - Snorkel (Disc.): trained by probabilistic labels \tilde{Y} (from the generative model)

Additional Unlabeled Data

- Relation extraction tasks
 - CDR: finding chemical-disease relations
 - **Spouses**: identifying the spouse relationship between two person mentions
 - EHR: extracting mentions of pain levels at precise anatomical locations in electronic health records

Snuba: Automating Weak Supervision to Label Training Data

Paroma Varma, Christopher Ré

PVLDB 2018

Snuba

Knowledge Discovery

& Database Lab

KDDI AB

- An automated system that
 - takes a small labeled and a large unlabeled dataset as input
 - outputs probabilistic training labels for the unlabeled data

Snuba

- Synthesizer: generates a number of labeling functions from given dataset
- Pruner: selects good labeling functions
- Verifier: evaluates selected labeling functions and decide whether to stop generating labeling functions or not
 - If we repeat the steps, decide a subset of dataset to generate labeling functions and send to synthesizer

Labeled data

$$(x_1^L, y_1^L), (x_2^L, y_2^L), \dots, (x_{N_L}^L, y_{N_L}^L)$$

Feature vector Subset of feature

Generate labeling functions

Possible labeling functions :

- Decision Tree
- Logistic Regressor
- K-Nearest Neighbor

Labeled data

$$(x_1^L, y_1^L), (x_2^L, y_2^L), \dots, (x_{N_L}^L, y_{N_L}^L)$$

Feature vector

Generate labeling functions

Possible labeling functions:

- Decision Tree
- Logistic Regressor
- K-Nearest Neighbor

Generate a labeling function on a subset of features

Labeled data

$$(x_1^L, y_1^L), (x_2^L, y_2^L), \dots, (x_{N_L}^L, y_{N_L}^L)$$

Feature vector

Generate labeling functions

Possible labeling functions:

- Decision Tree
- Logistic Regressor
- K-Nearest Neighbor

Generate a labeling function on a subset of features

Labeled data

$$(x_1^L, y_1^L), (x_2^L, y_2^L), \dots, (x_{N_L}^L, y_{N_L}^L)$$

Feature vector

Generate labeling functions

Possible labeling functions:

- Decision Tree
- Logistic Regressor
- K-Nearest Neighbor

Generate labeling functions for all combinations

Labeled data

$$(x_1^L, y_1^L), (x_2^L, y_2^L), \dots, (x_{N_L}^L, y_{N_L}^L)$$

Feature vector

Generate labeling functions

Possible labeling functions:

- Decision Tree
- Logistic Regressor
- K-Nearest Neighbor

For each data, a labeling function assigns label or give up

Find the best β_j w.r.t F1 score for each labeling function \mathbf{h}_j

Selected labeling Pruner functions Add Already labeled **Unlabeled data** New label? $x_1^U, x_2^U, ..., x_{N_U}^U$ Coverage Labeled data $(x_1^L, y_1^L), (x_2^L, y_2^L), ..., (x_{N_L}^L, y_{N_L}^L)$ F1 score Generated labeling functions Best labeling function

Pruner selects the best labeling function from generated ones

Pruner

Pruner

Selected labeling

Add

Pruner

The best labeling function is added to the selected set

Uncertain labeled data w.r.t. the generative model are used in next iteration

Uncertain data

$$\hat{y}_{i_1}^L, \hat{y}_{i_2}^L, \dots$$

The generative model labels unlabeled data

Experiments

- Datasets
 - Image classification
 - Bone Tumor: Tumor classification
 - Mammogram: Tumor classification
 - Visual Genome: Identifying person on bike
 - Text and Multi-Modal classification
 - MS-COCO: Object detection
 - IMDB: Plot summary classification
 - **Twitter**: Sentiment analysis
 - CDR: Chemical-Disease relation extraction
 - Hardware: Classifying valid specification of hardwares

- Baselines
 - Decision Tree
 - Boosting (AdaBoost)
 - Adjust weights in Random Forest
 - Transfer Learning
 - Tune the last layer of a pre-trained model
 - Semi-Supervised Learning [NIPS 2004]
 - Propagates labels to nearby points
 - UDF (User-Driven labeling Functions, by Snorkel)

		Snuba Improvement Over						
Application	Snuba F1 Score	Decision Tree	Boosting	Transfer Learning	Semi-Supervised	UDF		
Bone Tumor	71.55	+6.37	+8.65	-	+6.77	+9.13		
Mammogram	74.54	+5.33	+5.02	+5.74	+3.26	+9.74		
Visual Genome	56.83	+7.62	+6.20	+5.58	+5.94	+6.38		
MS-COCO	69.52	+1.65	+2.70	+2.51	+1.84	+2.79		
IMDb	62.47	+7.78	+12.12	+3.36	+14.35	+3.67		
Twitter	78.84	+5.03	+4.43	-	+3.84	+13.8		
CDR	41.56	+5.65	+11.22	-	+7.49	-12.24		
Hardware	68.47	+5.20	+4.16	-	+2.71	-4.75*		

- Report of Snuba is the result of an end model trained on labels generated by Snuba
- Snuba outperforms other methods, except UDF on CDR and Hardware

Annliantion	User Heuristics		Snu	Snuba Heuristics			
Application	$\mathbf{F1}$	\mathbf{P}	${f R}$	$\mathbf{F1}$	\mathbf{P}	${f R}$	Lift(F1)
Bone Tumor	30.91	89.47	18.68	31.58	33.75	29.67	+0.67
Visual Genome	34.76	98.28	21.11	46.06	48.10	44.19	+11.30
MS-COCO	21.43	63.66	12.88	24.41	29.40	41.49	+12.98
IMDb	20.65	76.19	11.94	46.47	48.03	45.52	+25.82

 Labeling functions generated by Snuba (Snuba Heuristics) show lower precision but higher recall than user heuristics

Application	Snuba Heuristics			Snuba + End Model			
Application	$\mathbf{F1}$	\mathbf{P}	${f R}$	$\mathbf{F1}$	\mathbf{P}	${f R}$	Lift(F1)
Bone Tumor	31.58	33.75	29.67	71.55	58.86	91.21	+39.97
Visual Genome	46.06	48.10	44.19	56.83	41.34	90.91	+10.77
MS-COCO	24.41	29.40	41.49	69.52	55.80	92.16	+35.11
IMDb	46.47	48.03	45.52	62.47	45.42	100.	+16.00

 Discriminative model on labels generated by Snuba highly improves both precision and recall

GOGGLES: Automatic Image Labeling with Affinity Coding

Nilaksh Das, Sanya Chaba, Renzhi Wu, Sakshi Gandhi, Duen Horng Chau, Xu Chu

SIGMOD 2020

LFs (Labeling Functions) for Image Labeling

- Existing works (Snorkel, Snuba) require associated metadata for each image
 - Text annotations (e.g., medical notes associated with X-Ray images)
 - Primitives (e.g., bounding boxes for X-Ray images)
- The metadata is difficult to obtain
 - In Snuba, radiologists have pre-extracted bounding boxes for X-Ray images
- For every new dataset, a new set of labeling functions is required
- In this paper, the authors propose a method to automatically generate probabilistic labels for images without such metadata

```
Tumor (benign vs. malignant)
```

```
def labeling_function_1(x)
  Obtain primitive bounding_box from x
  If bounding_box.area > 210.8:
    return False
  If bounding_box.area < 150:
    return Abstain</pre>
```

Overview of GOGGLES

- Step 1: Similarity Matrix Construction
 - Similarity matrix consists of similarity scores between all pairs of samples w.r.t. multiple similarity functions

- Step 2: Class Inference
 - Cluster unlabeled and labeled data together using the similarity matrix
 - Find cluster-to-class mapping with a small number of labeled data

Problem Definition

- Given
 - A large number of unlabeled data
 - A small number of labeled data
 - *K*: the number of classes
- Find
 - The probabilistic labels of the unlabeled data

Computing Similarity Scores

- Pre-trained convolutional neural networks (CNN) is utilized
- Between the features extracted from each layer of CNN, similarity scores are obtained
 - Similarity scores are computed based on cosine similarity between vectors

Similarity Matrix Construction

- α : the number of similarity scores between a pair of samples
- *N*: the number of all examples
- $\mathcal{A} \in \mathbb{R}^{N \times \alpha N}$: the similarity matrix

Clustering based on the Similarity Matrix

- The i-th row of the similarity matrix \mathcal{A} is considered as the feature vector of the i-th sample
- Apply the GMM (Gaussian mixture model) to the feature vectors from \mathcal{A} where the number of clusters is equal to the number of classes K
- We obtain (soft) cluster assignments of data

Finding Cluster-to-class Mapping

- Utilize the cluster assignment results for the labeled data
- Find the cluster-to-class mapping g(k) which maximize the sum of assignment probability

$$\sum_{k=1}^{K} \sum_{i \in LS_{g(k)}} P(y_i = k)$$

• $LS_{k'}$: the set of the indices of labeled examples for class k'

& Database Lab

Datasets

- **CUB**: bird species classification
 - Provides image-level attribute annotations that help explain the visual characteristics of the bird in the image, e.g., white head, grey wing etc.
- **GTSRB**: traffic sign classification
- **Surface**: metallic surface classification
- TB-Xray: classification for normal lung X-ray and abnormal X-ray
- PN-Xray: pneumonia chest X-ray classification

Compared Methods

- Snorkel [Ratner, Bach, Ehrenberg, Fries, Wu and Ré: PVLDB 2017]
- Snuba [Varma and Ré: PVLDB 2018]: utilizing a pretrained CNN network to extract feature
- FSL [Chen, Liu, Kira, Wang and Huang: ICLR 2019]: a domain adaptation method using pretrained CNN network and a small number of labeled data

Evaluation of Labeling Accuracy

 GOGGLES outperforms the other data programming methods in terms of labeling accuracy

Dataset	GOGGLES	Data Progr	Data Programming		
Dataset	(our results)	Snorkel	Snuba		
CUB	97.83	89.17	58.83		
GTSRB	70.51	-	62.74		
Surface	89.18	-	57.86		
TB-Xray	76.89	-	59.47		
PN-Xray	74.39	-	55.50		
Average	81.76	-	58.88		

CUB is the **only dataset** having **metadata** to design labeling functions

Comparison of Discriminator Accuracy

- The generated probabilistic labels are used to train the downstream classification model
 - A convolutional neural network (VGG-16) is used for the discriminator
- GOGGLES outperforms the other methods

Dataset	FSL	Snorkel	Snuba	GOGGLES
CUB	84.74	87.85	56.32	95.30
GTSRB	90.72	_	70.11	91.54
Surface	76.00	_	51.67	83.33
TB-Xray	66.42	_	62.71	70.90
PN-Xray	68.28	-	62.19	69.06
Average	77.23	-	60.60	82.03

Self-paced Multi-view Co-training

Fan Ma, Deyu Meng, Xuanyi Dong, Yi Yang

JMLR 2020

Self-paced Multi-view Co-training (SPamCo)

- Aggregate multiple models' outputs to generate pseudo labels and update models using the pseudo labels
- Problem definition
 - Given
 - A small number of labeled data
 - A large number of unlabeled data
 - Multiple classifiers on different modalities
 - Find
 - The labels of unlabeled data

A small number of labeled data

A large number of unlabeled data

Overview of SPamCo

- Initially, each classifier is trained with the labeled data
- Repeat the following steps
 - Find the aggregated pseudo-labels for the unlabeled data with the multiple models
 - Compute the importance weight of each pseudo-label for training
 - Train each classifier by using the labeled data and the unlabeled data with aggregated pseudo-labels and importance weights

Generating Aggregated Pseudo-labels

 The pseudo-label of each sample is generated by using the averaged prediction from models

The Importance Weight of a Pseudo-label

- For each model, each pseudo-label's importance weight for training is computed
 - The smaller the confidence for the pseudo-label is, the smaller the weight of the pseudo-label becomes
 - There exists a regularization to make the weights similar across the models

Experimental Result

- Task: person re-identification on Market-1501 dataset
- Evaluation measure: the area under the Precision-Recall curve
- Base classifiers: Resnet-50 and DenseNet-121

Ensembled by averaging

•	Base:	Use	only	labeled	l data
---	-------	-----	------	---------	--------

- SelfTrain: Each classifier use its own pseudo-label
- Cotrain: Pseudo-labels are exchanged with each other

	Resnet-50	DenseNet-121	Ensemble
Base	40.5±1.57	38.5 ± 1.20	47.7 ± 0.78
SelfTrain	59.2 ± 0.70	61.7 ± 1.14	67.7 ± 0.72
Cotrain	59.3 ± 0.50	61.9 ± 0.80	67.0 ± 0.33
Cotrain(Rep)	60.1 ± 0.72	62.5 ± 0.77	67.7 ± 0.42
SPamCo(soft)	$61.7{\pm}0.21$	$64.7 {\pm} 0.66$	$69.5 {\pm} 0.33$

Dual Supervision Framework for Relation Extraction with Distant Supervision and Human Annotation

Woohwan Jung, Kyuseok Shim

COLING 2020

- Relation extraction (RE)
 - Task to identify the semantic relationship between entities from text

[Seoul] is the capital city of [Korea]

 Training deep RE models requires a huge amount of labeled data in the form of entity-annotated text and corresponding relations

- Human annotation
 - Accurate
 - Expensive
- Distant supervision [M. Mintz, S. Bills, R. Snow, D. Jurafsky: ACL-IJCNLP 09]
 - Using knowledge base, automatically generate labels
 - Easy to obtain a large-scale data
 - Less accurate

- There exists a labeling bias in distant supervision
- Definition of inflation

$$Inflation(r) = \frac{\Pr[r] \text{ in distantly supervised data}}{\Pr[r] \text{ in human annotated data}}$$

- Inflation(sister_city)=68.03
- Inflation(capital)=12.18

Distant supervision generates more than 10 times of labels for some relations!

 The labeling bias can degrade the accuracy of models when we use distant supervision in addition to human annotations

- Existing RE models
 - The human annotated label and distantly supervised label can be different even for the same sentence

Dual Supervision Framework

- A feature encoder
- Separate two prediction networks
 - HA-Net: Trained by human annotated labels
 - DS-Net: Trained by distantly supervised labels
- Loss function

$$L = L_{DS} + L_{HA}$$

 L_{DS} : loss for distant supervision L_{HA} : loss for human annotation

- Measuring the disagreement
 - Assume that the inflation X_r for a relation r follows $LogNormal(\mu_r, \sigma_r)$

$$P(X_r = x) = \frac{1}{x\sigma_r\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\log x - \mu_r}{\sigma_r}\right)^2\right)$$

The disagreement penalty is the negative log-likelihood of X

$$L_{DS-HA} = -\log P(p_r^{DS}/p_r^{HA})$$

$$= \frac{1}{2} \left(\frac{\log p_r^{DS} - \log p_r^{HA} - \mu_r}{\sigma_r} \right)^2 + \log p_r^{DS} - \log p_r^{HA} + \log \sigma_r$$

Module	HA-Net	DS-Net	μ -Net	σ -Net
Output	p_r^{HA}	p_r^{DS}	μ_r	σ_r

- Datasets
 - KBP, NYT: sentence-level relation extraction datasets
 - **DocRED**: a document-level relation extraction dataset

Data		Number of instances Train-HA Train-DS Dev Test				
KBP NYT	378 756	132,369 323,126	14,103 34,871	1,488 3,021	7 25	
DocRED	38,269	1,508,320	12,332	12,842	96	

Experimental result

When DS data contains more errors, the performance gain becomes higher

Relation extraction accuracy improvement

Questions

