

Fizyka 3.1 Podstawowe pomiary elektryczne (ćwiczenie 100B)

Sprawozdanie z Labolatorium

15 października 2023

Wydział i kierunek studiów
W12N, Automatyka i Robotyka
Termin zajęć
każdy wtorek, 15:15 - 16:55
Prowadzący
dr Krzysztof Gałkowski
Numer i temat ćwiczenia
100B Podstawowe pomiary elektryczne
Data ćwiczenia, termin oddania sprawozdania
10.10.2023, 17.10.2023
Skład grupy

Adam Prystupa, Antoni Piałucha

Spis treści

1	Cel ćwiczenia								
	1.1	Opis wykonania ćwiczenia	2						
	1.2	Przedstawienie układu pomiarowego i narzędzi pomiarowych wraz z							
		ich dokładnością.	3						
2	Wst	ęp teoretyczny	5						
	2.1	Prawo Ohma	5						
3	Użyte wzory i przykładowe obliczenia.								
	3.1	Niepewność standardowa pomiaru napięcia	5						
	3.2	Niepwenośc standardowa pomiaru natężenia.	6						
	3.3	Pośrednie wyliczenie rezystancji	6						
	3.4	Niepewność złożona pomiaru rezystancji	6						
4	Tab	ele	6						
5 Wnioski									
6	Źró	dła	10						

1 Cel ćwiczenia

- Zapoznanie się z podstawowymi pomiarami elektrycznymi.
- Wyznaczenie zależności natężenia prądu elektrycznego płynącego przez oporniki od przyłożonego napięcia.
- Analiza otrzymanych wyników i nauka pisania sprawozdań.

1.1 Opis wykonania ćwiczenia

Ćwiczenie polegało na:

- 1. Zapoznaniu się z przyrządami pomiarowymi: płytką z opornikami, multimetrami (MASTER M890G), zasilaczem.
- 2. Zmontowaniu układu elektrycznego.
- 3. Zmierzeniu rezystancji dwóch oporników za pomocą omomierza.
- 4. Zmierzeniu rezystancji dwóch rezystorów w sposób pośredni za pomocą woltomierza i amperomierza dla różnych wartości źródła napięcia.
- 5. Opracowanie wyników w formie sprawozdania.

1.2 Przedstawienie układu pomiarowego i narzędzi pomiarowych wraz z ich dokładnością.

Pomiary, których wyniki wykorzystano do obliczeń w dalszej części sprawozdania, zostały dokonane w układzie pomiarowym przedstawionym na poniższym rysunku.

Rysunek 1: Schemat układu pomiarowego.

Rysunek 2: Zdjęcie układu pomiarowego.

Rysunek 3: Zdjęcie płytki z opornikami.

Rysunek 4: Zdjęcie wykorzystanego multimetru.

18. Multimetr	MO00C - MO0	OCL. ETOO
18. Viultimetr	VINYUG: VINY	U C+ : K1890

FUNKCJA	ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
	200 mV		100 μV
Napięcie stałe	2 V	$\pm 0.5 \% \text{ rdg} + 1 \text{ dgt}$	1 mV
(DC V)	20 V		10 mV
$(10 \mathrm{M}\Omega)$	200 V		100 mV
, , ,	1000 V	± 0,8 % rdg + 2 dgt	1 V
Napięcie zmienne	2 V		1 mV
(AC V)	20 V	$\pm 0.8 \% \text{ rdg} + 3 \text{ dgt}$	10 mV
$(10 \text{ M}\Omega)$	200 V		100 mV
(40400Hz)	700 V	± 1,2 % rdg + 3 dgt	1 V
	2 mA		1 μΑ
Prąd stały	20 mA	$\pm 0.8 \% \text{ rdg} + 1 \text{ dgt}$	10 μΑ
(DC A)	200 mA	$\pm 1,2 \% \text{ rdg} + 1 \text{ dgt}$	100 μΑ
Max. czas pom. 15 sekund	20 A	± 2,0 % rdg + 5 dgt	10 mA
Prąd zmienny (AC A)	20 mA	$\pm 1,0 \% \text{ rdg} + 3 \text{ dgt}$	10 μΑ
(40400Hz)	200 mA	$\pm 2.0 \% \text{ rdg} + 3 \text{ dgt}$	100 μΑ
Max. czas pom. 15 sekund	20 A	± 3,0 % rdg + 7 dgt	10 mA
	200Ω	$\pm 0.8 \% \text{ rdg} + 3 \text{ dgt}$	0,1 Ω
	2 kΩ		1 Ω
Rezystancja	20 kΩ	$\pm 0.8 \% \text{ rdg} + 1 \text{ dgt}$	10 Ω
	200 kΩ		100 Ω
	$2 \mathrm{M}\Omega$		1 kΩ
	$20~\mathrm{M}\Omega$	± 1,0 % rdg + 2 dgt	10 kΩ

Rysunek 5: Dokładność miernika MASTER M890G

2 Wstęp teoretyczny

2.1 Prawo Ohma

W ćwiczeniu sprawdzimy prawdziwość prawa Ohma w rzeczywistym układzie elektrycznym. Prawo to mówi, że prąd płynący przez rezystor jest proporcjonalny do spadku napięcia na nim, a współczynikiem tej proporcjonalności jest rezystancja.

$$I = \frac{U}{R}$$

3 Użyte wzory i przykładowe obliczenia.

3.1 Niepewność standardowa pomiaru napięcia.

$$\Delta U = 0.5\% rdg + 1dgt$$

$$u(U) = \frac{\Delta U}{\sqrt{3}} = \frac{0,005 \cdot 2,030 + 0,01}{\sqrt{3}} \approx 0,01213 \approx 0,013[V]$$

3.2 Niepwenośc standardowa pomiaru natężenia.

$$\Delta I = 1,2\% rdg + 1dgt$$

$$u(I) = \frac{\Delta I}{\sqrt{3}} = \frac{0,012 \cdot 12, 6 + 0,01}{\sqrt{3}} \approx 0,08834 \approx 0,089[mA]$$

3.3 Pośrednie wyliczenie rezystancji

$$R = \frac{U}{I} = \frac{2,030 \cdot 12,6}{1000} \approx 161,1111 \approx 161,11[\Omega]$$

3.4 Niepewność złożona pomiaru rezystancji

$$u(R) = \sqrt{\left(\frac{\partial R}{\partial U} \cdot u(U)\right)^2 + \left(\frac{\partial R}{\partial I} \cdot u(I)\right)^2} =$$

$$= \sqrt{\left(\frac{1}{I} \cdot u(U)\right)^2 + \left(\frac{-U}{I^2} \cdot u(I)\right)^2} =$$

$$\sqrt{\left(\frac{1}{0,0126} \cdot 0,013\right)^2 + \left(\frac{-2,03}{0,0126^2} \cdot 0,088\right)^2} \approx$$

$$\approx 0,001576 \approx 0,0016[\Omega]$$

4 Tabele

Pomiar bezpośredni	R [Ω]	ΔR [Ω]	u(R) [Ω]
R1	161,2	1,59	0,92
R2	122,1	1,28	0,74

Rysunek 6: Pomiary bezpośreednie rezystancji.

Rezystancja z		
regresji liniowej	R [Ω]	u(R) [Ω]
R1	160,70	0,12
R1*	160,56	0,17
R2	121,96	0,011

Rysunek 7: Rezystancje wyliczone z regresji liniowej.

1 2 2,030 0,021 0,013 12,6 0,152 0,088 161,1111 0,000 2 4 4,080 0,031 0,018 25,3 0,304 0,18 161,2648 0,000 3 6 6,000 0,040 0,024 37,2 0,447 0,26 161,2903 0,000 4 8 7,990 0,050 0,029 49,7 0,597 0,35 160,7646 0,000 5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000										
1 2 2,030 0,021 0,013 12,6 0,152 0,088 161,1111 0,000 2 4 4,080 0,031 0,018 25,3 0,304 0,18 161,2648 0,000 3 6 6,000 0,040 0,024 37,2 0,447 0,26 161,2903 0,000 4 8 7,990 0,050 0,029 49,7 0,597 0,35 160,7646 0,000 5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	R1									
2 4 4,080 0,031 0,018 25,3 0,304 0,18 161,2648 0,000 3 6 6,000 0,040 0,024 37,2 0,447 0,26 161,2903 0,000 4 8 7,990 0,050 0,029 49,7 0,597 0,35 160,7646 0,000 5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	L.p	U[V]	U [V]	ΔU [V]	u(U) [V]	I [mA]	ΔI [mA]	u(I) [mA]	R [Ω]	u(R) [Ω]
3 6 6,000 0,040 0,024 37,2 0,447 0,26 161,2903 0,000 4 8 7,990 0,050 0,029 49,7 0,597 0,35 160,7646 0,000 5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	1	2	2,030	0,021	0,013	12,6	0,152	0,088	161,1111	0,0016
4 8 7,990 0,050 0,029 49,7 0,597 0,35 160,7646 0,000 5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	2	4	4,080	0,031	0,018	25,3	0,304	0,18	161,2648	0,0014
5 10 10,020 0,061 0,036 62,4 0,749 0,43 160,5769 0,000 6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	3	6	6,000	0,040	0,024	37,2	0,447	0,26	161,2903	0,0013
6 12 11,960 0,070 0,041 74,5 0,895 0,52 160,5369 0,000	4	8	7,990	0,050	0,029	49,7	0,597	0,35	160,7646	0,0013
	5	10	10,020	0,061	0,036	62,4	0,749	0,43	160,5769	0,0013
	6	12	11,960	0,070	0,041	74,5	0,895	0,52	160,5369	0,0013
Średnia 7 7,013 0,046 0,027 43,6 0,524 0,31 160,7948 0,000	Średnia	7	7,013	0,046	0,027	43,6	0,524	0,31	160,7948	0,0013

Rysunek 8: Tabela zbiorcza pomiarów i wyliczeń dla rezystora R1 dla pierwszej serii pomiarowej.

R1*									
L.p	U[V]	U [V]	ΔU [V]	u(U) [V]	I [mA]	ΔI [mA]	u(I) [mA]	R [Ω]	u(R) [Ω]
1	2	2,05	0,021	0,027	12,7	0,153	0,089	161,4173	0,0025
2	4	4,09	0,031	0	25,4	0,305	0,177	161,0236	0,0012
3	6	6,04	0,041	0	37,5	0,451	0,261	161,0667	0,0012
4	8	7,99	0,050	0	49,6	0,596	0,345	161,0887	0,0012
5	10	10,04	0,061	0	62,6	0,752	0,435	160,3834	0,0012
6	12	11,97	0,070	0	74,7	0,897	0,518	160,2410	0,0012
Średnia	7	7,03	0,046	0	43,75	0,526	0,304	160,6857	0,0012

Rysunek 9: Tabela zbiorcza pomiarów i wyliczeń dla rezystora R1 dla drugiej serii pomiarowej.

R2									
L.p	U[V]	U [V]	ΔU [V]	u(U) [V]	I [mA]	ΔI [mA]	u(I) [mA]	R [Ω]	u(R) [Ω]
1	2	2,050	0,021	0,013	16,8	0,202	0,117	122,0238	0,0012
2	4	4,040	0,031	0,018	33,1	0,398	0,23	122,0544	0,0011
3	6	6,060	0,041	0,024	49,7	0,597	0,345	121,93159	0,00098
4	8	8,000	0,05	0,029	65,6	0,788	0,455	121,95122	0,00096
5	10	9,940	0,06	0,035	81,5	0,979	0,566	121,96319	0,00095
6	12	11,940	0,07	0,041	97,9	1,175	0,679	121,96118	0,00095
Średnia	7	7,005	0,046	0,027	57,4	0,69	0,399	121,96750	0,00097

Rysunek 10: Tabela zbiorcza pomiarów i wyliczeń dla rezystora R2.

Rysunek 11: Charakterystyka prądowo napięciowa rezystora R1 dla pierwszej serii pomiarów.

Rysunek 12: Charakterystyka prądowo napięciowa rezustora R1 dla drugiej serii pomiarów.

Rysunek 13: Charakterystyka prądowo napięciowa rezystora R2.

5 Wnioski

- Na podstawie wyników pomiarów i analizy wykresu, można stwierdzić, że prawo Ohma jest prawdziwe dla badanych obiektów.
- Wartość wielkości szukanej można wyznaczyć w sposób bezpośredni jak i pośredni.
- Wraz ze wzrostem napięcia i prądu niepewności pomiarowe wartości mierzonych bezpośrednio rosną. Co pokazuje, że ważne jest dobranie odpowiednich warunków pomiarowych dla konkretnego dośwadczenia.
- Antagonistycznie do poprzedniego zaobserwowanego wniosku wartości niepewności pomiarów pośrednich maleją wraz ze wzrostem napięcia i natężenia.

6 Źródła

- https://lpf.wppt.pwr.edu.pl/pomoce/niedokladnosc-miernikow-lpf.pdf
- https://lpf.wppt.pwr.edu.pl/instrukcje/cwn100b.pdf
- https://lpf.wppt.pwr.edu.pl/pomoce-dydaktyczne.php