Solutions to Homework 9

Section 12.7 # 12: Let D be the region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the paraboloid $z = 2 - x^2 - y^2$. Setup integrals in cylindrical coordinates which compute the volume of D.

Solution:

The intersection of the paraboloid and the cone is a circle. Since $z=2-x^2-y^2=2-r^2$ and $z=\sqrt{x^2+y^2}=r$ (assuming r is non-negative), $2-r^2=r$, which implies that $r^2+r-2=(r+2)(r-1)=0$. Since $r\geq 0$, r=1. Therefore, z=1. So, the intersection of these surfaces is a circle of radius 1 in the plane z=1.

(a) Use $dV = r dz dr d\theta$.

The cone is the lower bound for z and the paraboloid is the upper bound for z, as is clear from a sketch of the figure. The projection (i.e. the shadow) of the region onto the xy-plane is the circle of radius 1 centered at the origin. Therefore,

$$\iiint_D dV = \int_0^{2\pi} \int_0^1 \int_r^{2-r^2} r \, dz \, dr \, d\theta.$$

(b) Use $dV = r dr dz d\theta$.

The region is not simple in the r-direction. The lower bound for r is zero, but the upper bound is sometimes the cone z=r and sometimes the paraboloid $z=2-r^2$. The plane z=1 divides D into two r-simple regions. Therefore,

$$\iiint_D dV = \int_0^{2\pi} \int_0^1 \int_0^z r \, dr \, dz \, d\theta + \int_0^{2\pi} \int_1^2 \int_0^{\sqrt{2-z}} r \, dr \, dz \, d\theta.$$

(c) Use $dV = r d\theta dz dr$.

There is no restriction on θ as this region is rotationally symmetric. However, z is still constrained by the cone and the parabola. Therefore,

$$\iiint_D dV = \int_0^1 \int_r^{2-r^2} \int_0^{2\pi} r \, d\theta \, dz \, dr.$$

Section 12.7 # 18: Let D be the region enclosed by the cylinders $r = \cos \theta$ and $r = 2\cos \theta$ and by the planes z = 0 and z = 3 - y. Set up an iterated integral which computes $\iiint_D f(r, \theta, z) dz \, r \, dr \, d\theta$.

Solution: Since $0 \le z \le 3 - y$, it follows that $0 \le z \le 3 - r \sin \theta$ in cylindrical coordinates. The projection of D onto the xy-plane is the region between the circles given in polar coordinates by $r = \cos \theta$ and $r = 2 \cos \theta$. The first circle is inside the second, and these two circles intersect when $\theta = -\pi/2, \pi/2$. This can be seen from a sketch or by solving the equation $\cos \theta = 2 \cos \theta$; gather like terms to obtain $0 = \cos \theta$. Therefore,

$$\iiint_D f(r,\theta,z) dV = \int_{-\pi/2}^{\pi/2} \int_{\cos\theta}^{2\cos\theta} \int_0^{3-r\sin\theta} f(r,\theta,z) r dz dr d\theta.$$

Note: You cannot double the integral and integtrate over $0 \le \theta \le \pi/2$. Doubling is only permissible if the function $f(r, \theta, z)$ is even with respect to the variable θ .

Section 12.7 # 32:a Let D be the region bounded below by the cone $z=\sqrt{x^2+y^2}$ and above by the plane z=1. Set up triple integrals which compute the volume of D.

Solution:

(a) Use $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$.

If the point P lies in the region D, then varying its ρ -coordinate keeps P inside D so long as $0 \le \rho \le \sec \phi$. The upper bound is determined by the plane z = 1, which has equation $z = \rho \cos \phi = 1$ in spherical coordinates; solving for ρ yields $\rho = \sec \phi$.

Ignoring ρ (projecting onto $\rho = 1$ for instance), one see that the variable ϕ varies from 0 to $\pi/4$. Finally, since the figure is rotationly symmetric, θ varies from 0 to 2π . Therefore,

$$\iiint_D dV = \int_0^{2\pi} \int_0^{\pi/4} \int_0^{\sec \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

(b) Use $dV = \rho^2 \sin \phi \, d\phi \, d\rho \, d\theta$.

This integral is tricky to set up. If P lies in the region D, then varying its ϕ -coordinate keeps P inside D so long as either its distance from the origin

is less than or equal to one and $0 \le \phi \le \pi/4$, or its distance from the origin is greater than or equal to one and its ϕ -coordinate is bounded below by the restriction that z=1 and above by $\pi/4$. In other words, this region is not ϕ -simple: two integrals are required. For the second integral, the condition z=1 implies that $\rho\cos\phi=1$ so that $\sec^{-1}\rho\le\phi\le\pi/4$. Ignoring, ϕ , then the z coordinate can vary from 1 to $\sqrt{2}$; the upper bound is determined by the maximum distance from the origin to a point inside the region D, which is realized by a point which lies on the intersection of the cone with the plane z=1.

The above shows that

$$\iiint_D dV = \int_0^{2\pi} \int_0^1 \int_0^{\pi/4} \rho^2 \sin\phi \, d\phi \, d\rho \, d\theta + \int_0^{2\pi} \int_1^{\sqrt{2}} \int_{\sec^{-1}(\rho)}^{\pi/4} \rho^2 \sin\phi \, d\phi \, d\rho \, d\theta.$$

Section 12.7 # 34: Set up an integral in spherical coordinates which computes the volume of the region bounded below by the hemisphere $\rho=1,\,z\geq0$, and above by the cardioid of revolution $\rho=1+\cos\phi$. Then compute the value of the integral.

Solution: Clearly $1 \le z \le 1 + \cos \phi$. A careful sketch of the figure reveals that $0 \le \phi \le \pi/2$. This can also be determined algebraically. The cardioid and the hemisphere meet when $1 = 1 + \cos \phi$, which implies that $\cos \phi = 0$. Thus,

$$\iiint_D dV = \int_0^{2\pi} \int_0^{\pi/2} \int_1^{1+\cos\phi} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$$

The innermost integral evaluates to

$$\frac{(1+\cos\phi)^3}{3}\sin\phi - \frac{\sin\phi}{3}.$$

An anti-derivative with respect to ϕ can be determined for the first summand by using the substitution $u = 1 + \cos \phi$, $du = -\sin \phi d\phi$. The second summand is easy to integrate. Answer: $11\pi/6$.

Section 12.8 # 2: Solve the system u = x + 2y, v = x - y in terms of x and y and compute the Jacobian determinant $\partial(x,y)/\partial(u,v)$. Then sketch the image under the transformation T(x,y) = (u,v) of the triangular region in the xy-plane bounded by the lines y = 0, y = x, and x + 2y = 2.

Solution: Solving the system for x and y results in x = (1/3)(u + 2v) and y = (1/3)(u - v). The transformed region is a triangle bounded by the line v = 0 (which corresponds to x = y), the line u = 2 (which corresponds to x + 2y = 2), and the line u = v (which corresponds to y = 0). The Jacobian determinant is equal to -1/3.

Section 12.8 # 4: Solve the system u = 2x - 3y, v = -x + y in terms of x and y and compute the Jacobian determinant $\partial(x,y)/\partial(u,v)$. Then sketch the image under the transformation T(x,y) = (u,v) of the parallelogram in the xy-plane with boundary lines x = -3, x = 0, y = x, and y = x + 1.

Solution: Solving the system for x and y results in x=-u-3v and y=-u-2v. The transformed region is again a parallelogram. It is bounded by the line v=0 (corresponding to y=x), the line v=1 (corresponding to y=x+1), the line u+3v=3 (corresponding to x=-3), and the line u+3v=0 (corresponding to x=0). The Jacobian determinant is equal to x=-3.

Section 12.8 # 17: Show that the Jacobian determinant of the transformation from Cartesian (ρ, ϕ, θ) -space to Cartesian (x, y, z)-space is $\rho^2 \sin \phi$.

Solution: The equations $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, and $z = \rho \cos \phi$ define a transformation from (ρ, ϕ, θ) into (x, y, z). The Jacobian matrix is equal to

$$\begin{bmatrix} \sin\phi\cos\theta & \rho\cos\phi\cos\theta & -\rho\sin\phi\sin\theta \\ \sin\phi\sin\theta & \rho\cos\phi\sin\theta & \rho\sin\phi\cos\theta \\ \cos\phi & -\rho\sin\phi & 0 \end{bmatrix}$$

The determinant of the above matrix is most easily computed by using the last row since one of the terms is equal to zero. The Jacobian determinant is equal to

$$\cos\phi\begin{vmatrix}\rho\cos\phi\cos\theta & -\rho\sin\phi\sin\theta\\\rho\cos\phi\sin\theta & \rho\sin\phi\cos\theta\end{vmatrix} + (-1)(-\rho\sin\phi)\begin{vmatrix}\sin\phi\cos\theta & -\rho\sin\phi\sin\theta\\\sin\phi\sin\phi\sin\theta & \rho\sin\phi\cos\theta\end{vmatrix}$$

From here, evaluate the 2×2 determinants and simplify by gathering terms so as to apply $\cos^2 \theta + \sin^2 \theta = 1$ (twice) and $\cos^2 \phi + \sin^2 \phi = 1$ (once).

(Bonus) Compute the determinant of the following square tri-diagonal matrix assuming that the matrix has has 2012 rows:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \dots \\ 1 & 1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 1 & 1 & 0 & \dots \\ 0 & 0 & 1 & 1 & 1 & \\ 0 & 0 & 0 & 1 & 1 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

Clarification: the matrix has 1's along each of the middle three diagonals, and 0's in all other entries.

Solution: Let A_n be the tridiagonal matrix with n rows, and let $A_n(i,j)$ be the (i,j) minor. Computing the cofactors of the first row, one obtains

$$\det A_n = \det A_n(1,1) - \det A_n(1,2) = \det A_{n-1} - \det A_n(1,2)$$

To compute the determinant of $A_n(1,2)$, compute the cofactors of its first column:

$$\det A_n(1,2) = \det A_{n-2}$$

Therefore, $\det A_n = \det A_{n-1} - \det A_{n-2}$. Since, $\det A_1 = 1$, $\det A_2 = 0$, the sequence $\{\det A_n\}$ is for $n \ge 1$ is equal to the following:

$$1, 0, -1, -1, 0, 1, 1, 0, \ldots$$

which is periodic with period of length 6 and one period is equal to 1, 0, -1, -1, 0, 1. Since $2012 \equiv 2 \mod 6$, one deduces that $\det A_{2012} = 0$.