Necessary and Sufficient Conditions for Sketched Subspace Clustering

Daniel Pimentel-Alarcón, Laura Balzano & Robert Nowak University of Wisconsin-Madison

Allerton 2016

```
\begin{bmatrix} 1 & 4 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 6 & 3 & 2 & 2 & 2 & 4 & 1 \\ 3 & 4 & 3 & 9 & 3 & 3 & 2 & 3 & 6 & 1 \\ 1 & 8 & 1 & 3 & 6 & 1 & 4 & 1 & 2 & 2 \\ 2 & 8 & 2 & 6 & 6 & 2 & 4 & 2 & 4 & 2 \\ 3 & 8 & 3 & 9 & 6 & 3 & 4 & 3 & 6 & 2 \end{bmatrix}
```


We are given: Columns in a union of subspaces.

```
\begin{bmatrix} 1 & 4 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 6 & 3 & 2 & 2 & 2 & 4 & 1 \\ 3 & 4 & 3 & 9 & 3 & 3 & 2 & 3 & 6 & 1 \\ 1 & 8 & 1 & 3 & 6 & 1 & 4 & 1 & 2 & 2 \\ 2 & 8 & 2 & 6 & 6 & 2 & 4 & 2 & 4 & 2 \\ 3 & 8 & 3 & 9 & 6 & 3 & 4 & 3 & 6 & 2 \end{bmatrix}
```


We are given: Columns in a union of subspaces.

Goal: Cluster the columns, or find the subspaces.

```
\begin{bmatrix} 1 & 4 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 6 & 3 & 2 & 2 & 2 & 4 & 1 \\ 3 & 4 & 3 & 9 & 3 & 3 & 2 & 3 & 6 & 1 \\ 1 & 8 & 1 & 3 & 6 & 1 & 4 & 1 & 2 & 2 \\ 2 & 8 & 2 & 6 & 6 & 2 & 4 & 2 & 4 & 2 \\ 3 & 8 & 3 & 9 & 6 & 3 & 4 & 3 & 6 & 2 \end{bmatrix}
```


Sketched Subspace Clustering

Projections of

We are given: Columns in a union of subspaces. Goal: Cluster the columns, or find the subspaces.

```
\begin{bmatrix} 1 & 4 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 6 & 3 & 2 & 2 & 2 & 4 & 1 \\ 3 & 4 & 3 & 9 & 3 & 3 & 2 & 3 & 6 & 1 \\ 1 & 8 & 1 & 3 & 6 & 1 & 4 & 1 & 2 & 2 \\ 2 & 8 & 2 & 6 & 6 & 2 & 4 & 2 & 4 & 2 \\ 3 & 8 & 3 & 9 & 6 & 3 & 4 & 3 & 6 & 2 \end{bmatrix}
```


Sketched Subspace Clustering

Projections of

We are given: Columns in a union of subspaces. Goal: Cluster the columns, or find the subspaces.

Applications

Applications

Applications

Fortunately

Not all subsets of coordinates are bad

Fortunately

Not all subsets of coordinates are bad

If we pick the right subsets of coordinates, we will be fine.

The catch: How do we know which are the right subsets?

First thing to ask

How many subsets of coordinates are good? (This depends on the subspaces)

New measure of similarity

New measure of similarity

Definition 1. Given $S, S' \in Gr(r, \mathbb{R}^d)$, define the partial coordinate discrepancy between S and S' as:

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S_{\boldsymbol{\omega}}'\}}.$$

New measure of similarity

Dimension of subspaces

Definition 1. Given $S, S' \in Gr(r, \mathbb{R}^d)$, define the partial coordinate discrepancy between S and S' as:

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S_{\boldsymbol{\omega}}'\}}.$$

New measure of similarity

Definition 1. Given $S, S' \in Gr(r, \mathbb{R}^d)$, define the partial coordinate discrepancy between S and S' as:

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S_{\boldsymbol{\omega}}'\}}.$$

New measure of similarity

Definition 1. Given $S, S' \in Gr(r, \mathbb{R}^d)$, define the partial coordinate discrepancy between S and S' as:

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S_{\boldsymbol{\omega}}'\}}.$$

Subsets of {1,...,d} with exactly r+1 elements

New measure of similarity

Ambient dimension

Definition 1. Given $S, S' \in Gr(r, \mathbb{R}^d)$, define the partial coordinate discrepancy between S and S' as:

$$\delta(S, S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S'_{\boldsymbol{\omega}}\}}.$$

Subsets of {1,...,d} with exactly r+1 elements

Are subspaces equal on these *r*+1 coordinates?

New measure of similarity

```
egin{array}{c|c} S & S' \ \hline 1 & 1 & 1 \ 1 & -1 \ 1 & -1 \ \end{array}
```

$$egin{array}{cccc} S & S' \ 1 & 1 & 1 \ 1 & -1 \ 1 & -1 \ \end{array}$$

$$\delta(S, S') = \frac{4}{6}$$

of good combinations

/ of r+1 coordinates

$$\delta(\mathbf{S}, \mathbf{S'}) = \frac{4}{6}$$

of good combinations / of r+1 coordinates

$$\delta(\mathbf{S}, \mathbf{S'}) = \frac{4}{6}$$

of good combinations

/ of r+1 coordinates

$$\delta(\mathbf{S}, \mathbf{S'}) = \frac{4}{6}$$

of total combinations of r+1 coordinates

Example

Probability that 2 subspaces are different on *r*+1 coordinates chosen randomly

Depending on the subspaces, there may be way too many bad subsets!

Depending on the subspaces, there may be way too many bad subsets!

Lucky break!

Depending on the subspaces, there may be way too many bad subsets!

Lucky break!

Lucky break!

Lucky break!

A little more about δ

A little more about δ

Long story short: none implies the other.

A little more about δ

Long story short: none implies the other.

ullet is an *all or nothing* metric.

ullet is an *all or nothing* metric.

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S'_{\boldsymbol{\omega}}\}}.$$

kind of an ℓ_0 norm.

ullet is an *all or nothing* metric.

$$\delta(S,S') := \frac{1}{\binom{d}{r+1}} \sum_{\boldsymbol{\omega} \in [d]^{r+1}} \mathbb{1}_{\{S_{\boldsymbol{\omega}} \neq S'_{\boldsymbol{\omega}}\}}.$$

kind of an ℓ_0 norm.

• Can we come up with more practical metrics? kind of an ℓ_1 norm.

Thank you.