HELIDA TECH DATA ACQUISITION BOARD

TCSPC(PC+TDC) + DIGITAL DELAY GENERATOR(DDG)

SPCB-PCIe-TCSPC-DDG数据采集与信号发生卡

2个触发输入+2个光子信号输入+4个波形发生

产品介绍

和力达科技的SPCB-PCIe-TCSPC-DDG (A2-D4)数据 采集与信号发生卡,是专为波形发生与飞行时间(TOF) 测量应用设计的板卡。该板卡的输入具有如下特性:

- 1 具有2个光子信号输入通道(可扩展至4个)
- 2 2个触发输入通道(带同步清零)
- 3 触发频率最大可达100MHz
- 4 每个输入通道具有高速比较器(4Gbps)
- 5 可进行直方图统计功能(TCSPC)
- 6 每个通道最大时间片个数为65K
- 7 PC模式时间片N×5ns(5ns、10ns、15ns等)
- 8 TDC模式时间片16ps至4096ps
- 9 8GB DDR存储空间

该板卡的输出具有如下特性:

- 1 具有4个门控通道
- 2 每个门控精度5ns
- 3 最小脉冲宽度5ns
- 4 最大脉冲宽度21s
- 5 每个输出最大门控4个

典型应用场所:

- 1 FLIM成像(TDC)
- 2 光致发光 (TDC)
- 3 电致发光 (PC)
- 4 激光雷达 (TDC)
- 5 时序发生器(DDG)
- 6 自由基分析仪(PC)
- 7 瞬态光谱仪(TDC)
- 8 高端分析仪器

功能框图(Hardware block diagram)

图2 电路架构框图

软件与平台(Software)

操作系统	编程语言	支持软件
• Windows10, 11	\bullet C, C++, C#, Python	• HLD-DAQ
• Linux kernel 3.10+	 Java, VB, Delphi 	• MATLAB
		• LabView

参数说明(Specifications)

参数		规格	备注
信号输入	通道数量	2 通道	可扩展4通道
	输入类型	单端/ 50Ω/ DC	MMCX 内孔
	输入范围	-2.2V~+3V	
	比较器设置范围	-2V~+2V	程序配置
触发输入	输入类型	单端/ 50Ω/ DC	MMCX 内孔
	TRIG_IN1	触发输入	见图 3
	TRIG_IN2	清零(同步通道)	见图 4
	触发类型	上升沿、下降沿	程序配置
	最大频率	100MHz	
	最小脉宽	10ns	
	输入范围	-2.2V~+3V	
	比较器设置范围	-2V~+2V	程序配置
触发输出	输出数量	4通道	
	输出类型	单端	MMCX 内孔
	输出高电平	5V	
	输出低电平	0V	
	输出精度	5ns	
	最小/大脉宽	5ns/21s	
功能	TCSPC 精度	16ps/ 32ps/ 64ps/ 128ps/ 256ps/ 512ps/ 1024ps/ 2048ps/ 4096ps	TDC
	TCSPC 精度	n×5ns(5ns/ 10ns/ 15ns 等)	Photon Counter
	通道数量	65K	程序配置
	DDG 脉冲数量	最多4个正脉冲/每通道	
传输接口	PCIe×8 Gen 3	使用 PCIe×8 或×16 插槽	
	传输方式	DMA	
其它	尺寸	230×120×20mm	长×宽×高
	占用空间	1个标准插槽	注意散热风扇

工作模式(Hardware Features and Function)

1 TCSPC普通工作模式(无清零模式)

在该模式下,用户设置好时间片精度(Time Slice)、通道数(Time Channels)以及触发次数N(Frequence)这3个参数,运行后就会按照设置好的参数进行数据采集。采集到的数据通过FPGA的空中顺序存入DDR存储器中,并通过PCIe接口传送给计算机。TCSPC模式的工作示意图如下所示。

注意: 设置参数时会有一些限制,具体如下:

触发周期要大于时间片乘以通道数: Time Slice × Time Channels; 1)

$$\frac{1}{F}$$
 > (Time Slice × Time Channels)

- 每通道的通道数量(Time Channels)不能大于65K; 2)
- TCSPC有两种模式可选,分别是TDC与PC模式,两种模式的精度不同,低成 3) 本板卡没有TDC模式(皮秒精度),只有PC模式(纳秒精度)。

2 TCSPC同步工作模式(带清零模式)

该模式与普通模式不同在于,具有同步清零信号(TRIG IN2)。当有TRIG IN2信 号输入后,会产生清零信号,内部数据与计数值全部清零。这种工作模式一般用于 具有扫描功能的成像系统中,如FLIM成像系统等。该工作模式工作示意图如下所示:

图4 TCSPC同步工作模式示意图

注意: 设置参数时会有一些限制,具体如下:

设置的Trig IN1触发次数N占用的时间要小于Trig IN2的周期。 1)

3 DDG工作模式

图5 DDG工作模式示意图(外触发)

注意: 设置参数时会有一些限制,具体如下:

- 通过程序可配置成内部触发,此时Trig OUT输出以内部触发为基准源; 1)
- 每个输出通道最多可输出4个脉冲; 2)
- 每个通道设置的时间总和要小于Trig IN1的周期 3)

$$\frac{1}{F} > (t_1 + t_2 + *** + t_8)$$

输出高电平默认为5V,需要3.3V需要出厂前设置。 4)

4 触发与信号输入设置(阈值与边沿)

输入端可配置为在脉冲的上升沿或下降沿触发计数。采集卡的外部触发输入及 信号输入电路均内置了支持正负电平的高速比较器,因此能够处理正负信号输入。 当输入信号按照选定的触发方向(上升沿或下降沿)越过设定的阈值电平时,即允 许有效信号讲入下一个处理环节。具体如下图6所示。

图6信号与触发输入的比较器阈值、上升沿、下降沿之间的关系

5 触发输入设置(鉴别滤波)

在外部触发输入信号上设置了鉴别滤波功能,以防止触发输入信号质量较差导 致的误触发现象。若启用该鉴别滤波功能,触发输入的第1秒内为判断和调整阶段, 采集卡在第1秒时间内的工作会受到影响,1秒后进入到正常工作状态。若外部触发 输入信号质量较好,则可不启用触发输入的鉴别滤波功能。

另外, 内部具有触发频率检测模块, 可实时探测触发频率值, 该值会实时传递 给用户,通过该值的准确与否来判断触发信号的质量好坏。

小窍门: 在不启用触发输入的鉴别滤波器时,通过比较器阈值的调整也可以将 外部触发频率值调整正常。

注意: 鉴别滤波功能的启用与否不影响触发时刻的改变, 即鉴频滤波模块不会 导致触发输入信号的延迟。

6 TCSPC模式中累计次数设置要求

由于数据的处理、存储有一定的时间要求, 所以本板卡对数据累计的次数的设 置有一定的要求,具体如下:

累计次数 >
$$\frac{(5\text{ns} \times 信号数 \times 通道数) + 400\text{ns}}{\text{触发周期}}$$

触发周期的单位是ns:信号数是指外部输入的信号,一般为2或4:通道数指最小 时间片的数量,最大为65K;时间片为设置的最小时间分辨率,如TDC模式的16ps-4096ps, PC模式的N×5ns。

注意: 时间片×通道数所占用的时间长度, 要小于触发周期, 即:

时间片×通道数<触发周期

由于系统设置的是触发对齐,那么当设置的时间片×通道数大于触发周期,那 么大于触发周期的那些通道的值保持不变。

典型应用 (Applications)

1 探测器需要探测激光的发射波长(如LiDAR)

该模式用于在激光器应用中保护光电探测器。其核心是利用门控技术与激光发射进行精确时序同步。

- 1) 激光触发与门控关闭:由内部触发信号(经 DDG 处理)产生激光器触发信号(Trig_IN),启动激光发射。在此期间,探测器的门控输入(Gate_IN)保持非激活状态(门控关闭),使探测器对光不响应。
- 2) 门控开启延迟: 激光脉冲结束后,需要延迟一段时间再开启探测器门控。 因为门控型探测器 (特别是门控 PMT) 从接收 Gate_IN 信号到实际开启(能有效探测光子)存在一个固有的响应时间或开启延迟,典型值为 150ns 到 180ns。
- 3) 精确时序控制:必须精确控制 Trig_IN 与 Gate_IN 信号的相对时序。Gate_IN 的触发时刻相对于 Trig_IN 的延时,必须大于激光脉冲宽度与探测器开启延迟之和,以确保探测器在激光完全结束后才开始工作。
- 4) 典型实现(参考图7): DDG接收内部触发信号后,通过其不同通道输出具有精确、可调延时的 Trig IN 和 Gate IN 信号,实现所需的时序配合。

图7 采集卡典型应用(DDG使用内触发、TCSPC外触发)

协议(DLL)(采购后提供;)