

Amorphous Silicon Pixel Detectors for Radiography

Gerhard Roos

Varian Imaging Products

Presentation Outline

- Background
- Operation
- > Typical Specifications
- Current Applications and Trends

Background

Definition

- Large area integrating image detectors
- Deposition of amorphous silicon structures on glass
- Inverse flat panel display
- Mostly used for medical radiographic imaging

Flat Panel History

1985 to 90 – Theoretical studies and early research

-Xerox PARC, Varian, GE, Thomson, Philips, U. Mich. etc.

1991 – First small area functional prototypes

1993 – First full size (40 x 64 cm) prototypes

1997 – First commercial products announced

1998 – First production shipments

1998 - Cone Beam CT application published

2003 – First commercial CBCT products

2006 – Annual volume >8000 imagers

a-Si as image detector

Advantages:

- > Low cost per area, large area per device
- Radiation hard
- Good quantum efficiency

Disadvantages:

- > Time response
- **Uniformity**
- > Simple, relatively large pixel structures only
- Complex system implementation

VARÍAN PaxScan 4030 Imager

14" x 16" x 1.5"- 2.5" Fiber-optic data cable 24V dc power cable Passive cooling

Command Processor:

10" x 11" x 2.5"

Real-time normalization

Recursive filter

Frame accumulation

X-ray generator control signals

16 bit digital video output

Power Supply:

10" x 11" x 2.75" 5V/10A, 24V/3A

Operation

Indirect Conversion Imagers

Indirect Conversion Imagers- **Sensor Schematic**

Indirect Conversion Imagers - Actual pixels Data Line Bias Line

Photodiode

TFT Switch

One Pixel

Commonly Used Scintillator Screens

Phosphor

Cesium Iodide

Layer Structure

Light Spreading

Direct Conversion Imagers

x-ray photons

Direct Conversion Imagers- Sensor Schematic

Typical signal readout

Specifications

Typical Specifications for Medical Flat Panels

- > Entrance exposure: 5 nGy/frame to 50 μGy/frame
- **High exposure DQE:**
 - Diagnostic ~70% at 80 kV and ~40% at 125 kV
 - Therapy Portal Imaging ~2% at 6MV
- Photodiode quantum efficiency: ~80% (500 to 600 nm)
- > Spatial resolution (10% MTF): 3.5 to 10 lp/min
- > 12 to 17 bit A/D conversion
- **Pixel time constant (C**_{pix} $x R_{TFT}$): 1 to 10 us
- Pixel size: 65 μm to 500 μm
- > Pixel capacity: 0.5 to 50 pC
- > Readout rate: >32 μs/line; 0.1 to 100 frames per second
- Dark current: <1 pA/mm²</p>
- > Active area: 200 x 200 mm to 430 x 430 mm

Flat panel dynamic range

- Flat panel
 - noise ~1000 ē
 - Saturation ~ 60M ē
 - 60k range at 1x1
 - 120k range at 2x2

- Charge amplifier
 - noise ~1700 ē
 - Saturation ~ 12M ē
 - 7k range at 1x1
 - 10k range at 2x2

- > A/D converter
 - < 16k range

Multiple gain ranging flat panel read out

Signal-to-noise performance

DQE in Low Dose Fluoroscopy

PVD HgI2 imager #37

Image lag

Applications

Cardiac Imaging

- Radiography and fluoroscopy

VARIAN DSA Images of the Liver

Flat panel imager

85kVp, 200mA, 100msec

- Better contrast for imaging small blood vessels, at 20% less dose
- Image quality is uniform out to the edges

Radiographic images

Radiographic images

- direct vs. indirect conversion

Radiation Therapy

- > Therapy Portal Imaging
- Orthogonal Radiography and fluoroscopy
- Cone beam CT

CBCT scan of a human head

MV Portal Images

Also:

- Mamography and CT Mamography
- Wireless radiography
- Dental radiography and CT
- Security applications
- Industrial non-destructive testing
- Scientific research

Alternatives

Improved MV Sensitivity

Csl array Scintillator

Csl array Scintillator

Prototype MV Imager

Comparison

Conventional

Dose = 0.092 cGy

Csl Array Scintillator

Dose = 0.046 cGy

Fast readout

Strip Detectors:

64 x 576 3.3 x 30 cm 520 μm pixel 1700 fps 1x1 3000 fps 2x2 Photon counting mode

VARIAN Phase-2 Concept

