Árboles y variables inútiles

Clase 20

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Lenguajes libres de contexto (clase ant.)

Árboles y derivaciones

Variables inútiles

Outline

Lenguajes libres de contexto (clase ant.)

Árboles y derivaciones

Variables inútiles

Recordatorio: Gramáticas libres de contexto

Definición

Una gramática libre de contexto (CFG) es una tupla:

$$G = (V, \Sigma, P, S)$$

- *V* es un conjunto finito de variables o no-terminales.
- Σ es un alfabeto finito (o terminales) tal que $\Sigma \cap V = \emptyset$.
- $P \subseteq V \times (V \cup \Sigma)^*$ es un subconjunto finito de reglas o producciones.
- $S \in V$ es la variable inicial.

Recordatorio: Gramáticas libres de contexto

Ejemplo

Consideré la grámatica $G = (V, \Sigma, P, S)$ tal que:

- $V = \{X, Y\}$
- $\Sigma = \{a, b\}$
- $P = \{ (X, aXb), (X, Y), (Y, \epsilon) \}$
- S = X

$$G: X \to a.$$

$$X \to Y$$

$$Y \to \epsilon$$

Recordatorio: Producciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

Definimos la relación $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ de **producción** tal que:

$$\alpha \cdot X \cdot \beta \Rightarrow \alpha \cdot \gamma \cdot \beta$$
 si, y solo si, $(X \rightarrow \gamma) \in P$

para todo
$$X \in V$$
 y $\alpha, \beta, \gamma \in (V \cup \Sigma)^*$.

Si $\alpha X \beta \Rightarrow \alpha \gamma \beta$ entonces decimos que

- lacktriangledown $\alpha X eta$ produce $\alpha \gamma eta$ o
- \bullet $\alpha \gamma \beta$ es producible desde $\alpha X \beta$.

 $\alpha X \beta \Rightarrow \alpha \gamma \beta$ es reemplazar γ en X en la palabra $\alpha X \beta$.

Recordatorio: Derivaciones

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Dada dos palabras $\alpha, \beta \in (V \cup \Sigma)^*$ decimos que α deriva β :

$$\alpha \stackrel{\star}{\Rightarrow} \beta$$

Si existe $\alpha_1, \alpha_2, \ldots, \alpha_n \in (V \cup \Sigma)^*$ tal que:

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \beta$$

Recordatorio: Derivaciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

Dada dos palabras $\alpha, \beta \in (V \cup \Sigma)^*$ decimos que α deriva β :

$$\alpha \stackrel{\star}{\Rightarrow} \beta$$

 $con \stackrel{\star}{\Rightarrow} es la clausura refleja y transitiva de <math>\Rightarrow$, esto es:

- 1. $\alpha \stackrel{\star}{\Rightarrow} \alpha$
- $2. \ \alpha \overset{\star}{\Rightarrow} \beta \quad \text{si, y solo si,} \quad \text{existe } \gamma \text{ tal que} \quad \alpha \overset{\star}{\Rightarrow} \gamma \quad \text{y} \quad \gamma \Rightarrow \beta$ para todo $\alpha, \beta \in (V \cup \Sigma)^*.$

Notar que \Rightarrow y $\stackrel{\star}{\Rightarrow}$ son relaciones entre palabras en $(V \cup \Sigma)^*$

Recordatorio: Lenguaje definido por una gramática

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

El lenguaje de una grámatica \mathcal{G} se define como:

$$\mathcal{L}(\mathcal{G}) = \left\{ w \in \Sigma^* \mid S \stackrel{\star}{\Rightarrow} w \right\}$$

 $\mathcal{L}(\mathcal{G})$ son todas las palabras en Σ^* que se pueden derivar desde S.

Lenguajes libres de contexto

Definición

Diremos que $L \subseteq \Sigma^*$ es un lenguaje libre de contexto ssi existe una gramática libre de contexto \mathcal{G} tal que:

$$L = \mathcal{L}(\mathcal{G})$$

Ejemplos

Los siguientes son lenguajes libres de contexto:

- $L = \{a^n b^n \mid n \ge 0\}$
- Par = $\{ w \in \{a, b\}^* \mid w \text{ tiene largo par } \}$
- Pal = $\{ w \in \{a, b\}^* \mid w = w^{rev} \}$

Outline

Lenguajes libres de contexto (clase ant.)

Árboles y derivaciones

Variables inútiles

Árboles ordenados y etiquetados

Definiciones

El conjunto de árboles ordenados y etiquetados (o solo árboles) sobre etiquetas Σ y V, se define recursivamente como:

- $t := \epsilon$ o t := a es un árbol para todo $a \in \Sigma$.
- si t_1, \ldots, t_k son árboles, entonces $t \coloneqq X(t_1, \ldots, t_k)$ es un árbol para todo $X \in V$.

Para un árbol $t = X(t_1, ..., t_k)$ cualquiera se define:

- raiz(t) = X
- hijos $(t) = t_1, \ldots, t_k$

Si $t := a \text{ con } a \in \Sigma \cup \{\epsilon\}$, entonces decimos que t es una **hoja**, raiz(t) = a y hijos $(t) = \epsilon$.

Árboles de derivación de una gramática

Fije una gramática libre de contexto $\mathcal{G} = (V, \Sigma, P, S)$.

Definiciones

Se define el conjunto de árboles de derivación recursivamente como:

- Si $a \in \Sigma \cup \{\epsilon\}$, entonces t = a es un árbol de derivación.
- Si $X \to X_1 \dots X_k \in P$ y t_1, \dots, t_k son árboles de derivación con raiz $(t_i) = X_i$ para todo $i \le k$ entonces $t = X(t_1, \dots, t_k)$ es un árbol de derivación.

Decimos que t es un árbol de derivación de \mathcal{G} si:

- 1. t es un árbol de derivación y
- 2. $\operatorname{raiz}(t) = S$.

Los árboles de derivación son todos los árboles que parten desde S.

Árboles de derivación de una gramática

Ejemplo de árbol de derivación
$$\mathcal{G} \colon E \to E + E \mid E * E \mid n$$
 Algunos árboles de derivación para $\mathcal{G} \colon$
$$E \quad \times \quad E \quad E \quad + \quad E \quad$$

Árbol de derivación para una palabra

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG y $w \in \Sigma^*$.

Definiciones

Se define la función yield sobre árboles, recursivamente como:

- Si $t = a \in \Sigma \cup \{\epsilon\}$, entonces yield(t) = a.
- Si t no es una hoja y hijos $(t) = t_1 t_2 \dots t_k$, entonces:

$$yield(t) = yield(t_1) \cdot yield(t_2) \cdot ... \cdot yield(t_k)$$

Decimos que t es un árbol de derivación de \mathcal{G} para w si:

- $1. \,\, t$ es un árbol de derivación de ${\cal G} \,\,$ y
- 2. yield(t) = w.

Las hojas de t forman la palabra w.

Equivalencia entre árboles de derivación y derivaciones

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG y $w \in \Sigma^*$.

Proposición

 $w \in \mathcal{L}(\mathcal{G})$ si, y solo si, existe un árbol de derivación de \mathcal{G} para w.

Un arbol de derivación es la representación gráfica de una derivación.

Equivalencia entre árboles de derivación y derivaciones

Ejemplo

$$E \rightarrow E+E \mid E*E \mid n$$

$$E \quad * \quad E$$

$$E \quad * \quad E$$

$$E \quad + \quad E$$

$$n \quad n$$

- 1) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow n + E * E \Rightarrow n + n * E \Rightarrow n + n * n$
- 2) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow E + n * E \Rightarrow E + n * n \Rightarrow n + n * n$
- 3) $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$
- 4) $E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow n + E * n \Rightarrow n + n * n$
- 5) $E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$
- 6) ...

Dado un árbol de derivación, ¿con cuál derivación nos quedamos?

Derivaciones por la izquierda y por la derecha

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Definición

■ Definimos la derivación por la izquierda $\Rightarrow_{lm} \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$\mathbf{w} \cdot X \cdot \beta \underset{\text{lm}}{\Rightarrow} \mathbf{w} \cdot \gamma \cdot \beta \qquad \text{si, y solo si,} \qquad X \rightarrow \gamma \in P$$
 para todo $X \in V$, $\mathbf{w} \in \Sigma^*$ y $\beta, \gamma \in (V \cup \Sigma)^*$.

■ Definimos la derivación por la derecha $\Rightarrow_{rm} \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$\alpha \cdot X \cdot \mathbf{w} \underset{rm}{\Rightarrow} \alpha \cdot \gamma \cdot \mathbf{w}$$
 si, y solo si, $X \rightarrow \gamma \in P$

para todo $X \in V$, $\mathbf{w} \in \Sigma^*$ y $\alpha, \gamma \in (V \cup \Sigma)^*$.

Se define $\stackrel{\star}{\underset{lm}{\mapsto}} y \stackrel{\star}{\underset{m}{\mapsto}} como$ la clausura refleja y transitiva de $\underset{lm}{\Rightarrow} y \stackrel{\star}{\underset{m}{\Rightarrow}}$, resp.

 \Rightarrow y \Rightarrow solo reemplaza **a la izquierda** (leftmost) y **derecha** (rightmost).

Derivaciones por la izquierda y por la derecha

Ejemplo anterior

$$E \rightarrow E+E \mid E*E \mid n$$

$$E \mid E \mid E$$

$$E \mid E \mid E$$

$$E \mid E \mid E$$

Derivación por la izquierda (lm)

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} E + E * E \underset{lm}{\Rightarrow} n + E * E \underset{lm}{\Rightarrow} n + n * E \underset{lm}{\Rightarrow} n + n * n$$

Derivación por la derecha (rm)

$$E \Rightarrow E * E \Rightarrow E * n \Rightarrow E + E * n \Rightarrow E + n * n \Rightarrow n + n * n$$

¿cuál es la relación entre el tipo de derivación y el recorrido del árbol?

Derivaciones por la izquierda y por la derecha

Sabemos que . . .

- Por cada derivación, existe un único árbol de derivación.
- Por cada árbol de derivación existen **múltiples** posibles derivaciones.

Proposición

Por cada árbol de derivación, existe una única derivación por la izquierda y una única derivación por la derecha.

Por lo tanto, desde ahora podemos hablar de **árbol de derivación y derivación (izquierda o derecha)** indistintamente.

Outline

Lenguajes libres de contexto (clase ant.)

Árboles y derivaciones

Variables inútiles

¿cómo podemos simplificar está gramática?

¿cuáles son variables inútiles?

Variables inútiles

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG.

Definición

Diremos que una variable $X \in V$ es útil si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta \stackrel{\star}{\Rightarrow} w$$

Al contrario, diremos que una variable X es **inútil** si NO es útil.

¿qué variables son inútiles?

Variables inútiles

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Diremos que una variable $X \in V$ es útil si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta \stackrel{\star}{\Rightarrow} w$$

Al contrario, diremos que una variable X es **inútil** si NO es útil.

¿cómo podemos determinar si una variable es inútil?

Desde el lado positivo: símbolos útiles

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Para una variable $X \in V$:

1. Decimos que X es alcanzable si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta$$

2. Decimos que X es generadora si existe una derivación:

$$X \stackrel{\star}{\Rightarrow} w$$

¿cómo determinamos si una variable es alcanzable o generadora?

¿cómo determinamos si una variable es alcanzable?

Sea $G = (V, \Sigma, P, S)$ una CFG.

Propiedad

Para toda variable $X \in V - \{S\}$,

existe una producción $Y \to \alpha X \beta$ en P tal que $Y \in V$ es alcanzable

si, y solo si, X es alcanzable.

Demostración: ejercicio.

¿cómo determinamos si una variable es alcanzable?

```
input : Gramática G = (V, \Sigma, P, S)
output: Conjunto C de variables alcanzables
```

```
Function alcanzables (G)
     let C_0 := \{S\}
     let C := \emptyset
     while C_0 \neq \emptyset do
      take Y \in C_0
C_0 := C_0 - \{Y\}
C := C \cup \{Y\}
         foreach X \in V - C tal que existe una regla (Y \rightarrow \alpha X \beta) \in P do
            C_0 \coloneqq C_0 \cup \{X\}
     return C
```

¿cómo determinamos si una variable es alcanzable?

¿cuáles son las variables alcanzables?

S → aAa

A → ab

¿cómo determinamos si una variable es generadora?

Sea $G = (V, \Sigma, P, S)$ una CFG.

Propiedad

Para toda variable $X \in V$:

existe una regla $X \to \alpha$ tal que todas las variables en α son generadoras

si, y solo si, X es generadora.

Demostración: ejercicio.

¿cómo determinamos si una variable es generadora?

```
input: Gramática \mathcal{G} = (V, \Sigma, P, S)
output: Conjunto G de variables generadoras
Function Generadores (G)
   let G_0 := \{ X \in V \mid (X \to w) \in P \}
   let G := \emptyset
   while G_0 \neq G do
   foreach (X \to \alpha) \in P do
   return G
```

¿cómo determinamos si una variable es generadora?

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Teorema

Sea \mathcal{G}'' una gramática creada a partir de \mathcal{G} después de:

- eliminar todos la variables y reglas **NO** generadoras.
- eliminar todas las variables y reglas NO alcanzables.

Entonces, $\mathcal{L}(\mathcal{G}'')$ = $\mathcal{L}(\mathcal{G})$ y \mathcal{G}'' no contiene variables ínutiles.

¿qué falla al eliminar primero las no alcanzables y después las no generadoras?

Ejemplo

Al eliminar variables no alcanzables en G:

Al eliminar variables no generadoras en \mathcal{G}' :

$$\begin{array}{cccc} \mathcal{G}'': & & S & \rightarrow & b \\ & A & \rightarrow & a \end{array}$$

Teorema

Sea \mathcal{G}'' una gramática creada a partir de \mathcal{G} después de: ... Entonces, $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$ y \mathcal{G}'' no contiene variables ínutiles.

Demostración

Sea $G = (V, \Sigma, P, S)$ una CFG.

Sea $\mathcal{G}' = (V', \Sigma, P', S)$ al eliminar las variables no generadoras de \mathcal{G} :

$$V' = \{X \in V \mid \exists w. \ X \stackrel{\star}{\underset{\mathcal{G}}{\Rightarrow}} w\}$$

$$P' = \{X \to \alpha \in P \mid X \in V' \land \alpha \in (V' \cup \Sigma)^*\}$$

Sea $\mathcal{G}'' = (V'', \Sigma, P'', S)$ al eliminar las variables no alcanzables de \mathcal{G}' :

$$\begin{array}{lcl} V'' & = & \big\{ \, X \in V' \ \big| \ \exists \alpha, \beta. \ S \overset{\star}{\underset{\mathcal{G}'}{\otimes}} \alpha X \beta \, \big\} \\ P'' & = & \big\{ \, X \to \alpha \in P' \ \big| \ X \in V'' \land \alpha \in \big(V'' \cup \Sigma\big)^* \, \big\} \end{array}$$

Demostración

Sea
$$\mathcal{G}' = (V', \Sigma, P', S)$$
 tal que $V' = \{ X \in V \mid \exists w. X \underset{\mathcal{G}}{\overset{\star}{\Rightarrow}} w \}.$

Sea
$$\mathcal{G}'' = (V'', \Sigma, P'', S)$$
 tal que $V'' = \{ X \in V' \mid \exists \alpha, \beta. S \stackrel{\star}{\underset{G'}{\Rightarrow}} \alpha X \beta \}.$

Considere las siguientes propiedades de \mathcal{G} , \mathcal{G}' y \mathcal{G}'' .

- 1. Para todo $\alpha \in (V \cup \Sigma)^*$, si $\alpha \underset{G}{\overset{\star}{\Rightarrow}} w$ entonces $\alpha \underset{G'}{\overset{\star}{\Rightarrow}} w$.
- 2. Para todo $\alpha \in (V' \cup \Sigma)^*$, si $S \underset{G'}{\overset{\star}{\Rightarrow}} \alpha$ entonces $S \underset{G''}{\overset{\star}{\Rightarrow}} \alpha$.
- 3. Para todo $\alpha \in (V'' \cup \Sigma)^*$, si $\alpha \underset{g'}{\overset{\star}{\Rightarrow}} w$ entonces $\alpha \underset{g''}{\overset{\star}{\Rightarrow}} w$.

Ejercicio: demuestre las propiedades.

Demostración

- 1. Para todo $\alpha \in (V \cup \Sigma)^*$, si $\alpha \stackrel{\star}{\underset{G}{\Rightarrow}} w$ entonces $\alpha \stackrel{\star}{\underset{G'}{\Rightarrow}} w$.
- 2. Para todo $\alpha \in (V' \cup \Sigma)^*$, si $S \underset{g'}{\stackrel{\star}{\Rightarrow}} \alpha$ entonces $S \underset{g''}{\stackrel{\star}{\Rightarrow}} \alpha$.
- 3. Para todo $\alpha \in (V'' \cup \Sigma)^*$, si $\alpha \underset{G'}{\overset{\star}{\Rightarrow}} w$ entonces $\alpha \underset{G''}{\overset{\star}{\Rightarrow}} w$.

PD:
$$\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$$
.

Como
$$V'' \subseteq V$$
 y $P'' \subseteq P$, entonces $\mathcal{L}(\mathcal{G}'') \subseteq \mathcal{L}(\mathcal{G})$.

PD:
$$\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{G}'')$$
.

Sea
$$w \in \mathcal{L}(\mathcal{G})$$
 tal que $S \stackrel{\star}{\underset{\mathcal{G}}{\Rightarrow}} w$.

- Por la propiedad 1. tenemos que $S \underset{cl}{*} w$.
- Por la propiedad 2. tenemos que $S \stackrel{*}{\underset{C''}{\longrightarrow}} w$.

Por lo tanto $w \in \mathcal{L}(\mathcal{G}'')$ y concluimos que $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{G}'')$.

Demostración

PD: Para todo $X \in V''$, X es útil en \mathcal{G}'' .

Como
$$X \in V''$$
, entonces $S \underset{G'}{\overset{\star}{\Rightarrow}} \alpha X \beta$ para algún $\alpha, \beta \in (V' \cup \Sigma)^*$.

Por la propiedad 2. se tiene que: $S \stackrel{\star}{\underset{C''}{\Rightarrow}} \alpha X \beta$ y $\alpha, \beta \in (V'' \cup \Sigma)^*$.

Como $X \in V'$ y $\alpha, \beta \in (V' \cup \Sigma)^*$, entonces existen u, v, w tal que:

$$\alpha \overset{\star}{\underset{\mathcal{G}}{\Rightarrow}} u , \quad X \overset{\star}{\underset{\mathcal{G}}{\Rightarrow}} v , \quad \beta \overset{\star}{\underset{\mathcal{G}}{\Rightarrow}} w$$

Por la propiedad 1. se tiene que: $\alpha \overset{\star}{\underset{\mathcal{G}'}{\Rightarrow}} u$, $X \overset{\star}{\underset{\mathcal{G}'}{\Rightarrow}} v$, $\beta \overset{\star}{\underset{\mathcal{G}'}{\Rightarrow}} w$.

Por la propiedad 3. se tiene que: $\alpha \overset{\star}{\underset{\mathcal{G}''}{\otimes}} u$, $X \overset{\star}{\underset{\mathcal{G}''}{\otimes}} v$, $\beta \overset{\star}{\underset{\mathcal{G}''}{\otimes}} w$.

Juntando todo $S \underset{G''}{\overset{\star}{\Rightarrow}} \alpha X \beta \underset{G''}{\overset{\star}{\Rightarrow}} uvw \ y \ X \ \text{es útil en } \mathcal{G}''.$

Cierre de clase

En esta clase vimos:

- 1. Árboles de derivación.
- 2. Eliminación de variables inútiles.

Próxima clase: Forma normal de Chomsky