1019 426: 12/17/21 15457/50/

13장. SW품질

Contents

- 1. 소프트웨어 품질의 중요성
- 2. 소프트웨어 품질 요소
- 3. 인공지능 소프트웨어 품질
- 4. 소프트웨어 품질 모델 및 표준
- 5. 소프트웨어 품질 관리

1. 소프트웨어(품질)개요 (1/3)

与智慧、外路和十分以外的是对对外是一种人们对

- 어떤 스마트폰을 선택할 것인가?
 - 선택의 기준은 무엇인가?
 - 사용자는 무엇을 기대하고 있는가?

नस्यापन

미래의 스마트폰

1. 소프트웨어 품질 개요 (2/3)

- 소프트웨어 품질의 특징
 - 눈으로 확인할 수 없음
 - 개발 초기에 사용자의 요구를 정확히 알 수 없음
 - 시간이 지날수록 사용자가 원하는 품질 수준이 점점 높아짐 : 발이빨리방
 - 100점, 90점과 같이 절대적으로 평가할 수 없음
 - 품질은 다양한 관련자들을 고려해야 하는

<u>다차원적인 것</u>

一步和双汉和四步大片沉高

1. 소프트웨어 품질 개요 (3/3)

- 소프트웨어 품질의 정의
 - 1990년 IEEE
 - [♥]시스템, 구성 요소 또는 프로세스에 명시된 요구사항을 충족시키는 정도 → [♥]보객 및 사용자의 요구 및 기대를 충족시키는 정도
 - 1999년 ISO
- '' 오구사항을 만족하는 소프트웨어 제품의 능력
 - 2004년 프레스만(Pressman)
 - 명시적인 기능 및 성능 요구사항, 명시적으로 문서화된 개발 표준, 개발된 소프트웨어에서 기대되는 목시적인 특성에 대한 적합성

1.1 SW 품질의 중요성

= 3254

• 소프트웨어 품질 요소는 매우 다양

● 이 모든 요소를 모두 만족시키지 못하기 때문에

대상 소프트웨어의 특성을 고려한 적절한 품질 목표

설정 중요

소프트웨어 품질 특성을 나타내는 품질 아이스버그

SWAIS रामाना पर्य

1.2 소프트웨어 스테이크 홀더

= 5M7Hकिया केन्द्रश् भिर्मा भारति

● 주요 스테이크홀더

기대시카다음

역할	기대치	대응 품질 요소
스폰서 (Sponsor)	 적은 비용으로 소프트웨어가 개발되기를 원한다. 개발된 소프트웨어가 다른 응용에 사용되기를 원한다. 기존 컴포넌트의 재사용을 통해 개발되기를 원한다. 비즈니스 과정에 이득이 되기를 원한다. 	 낮은 비용 적용성(Adaptabiliy) 재사용성 비용 효율성
사용자 (User)	 소프트웨어의 기능이 정확히 동작하기를 원한다. 고장이 나지 않기를 바란다. 사용하기 쉬워야 한다. 적은 비용으로 구매하기를 원한다. 	- 정확성 - 신뢰성 - 사용성(Usability) - 낮은 비용
<mark>유지보수자</mark> (Maintainer)	 소스 코드를 이해하기 쉬워야 한다. 표준 코딩 스타일에 따라 코드가 개발되기를 원한다. 변경 영향이 한 부분으로 국한되기를 원한다. 수정된 코드를 쉽게 테스트하기를 원한다. 코드와 일관성 있는 문서가 제공되어야 한다. 	- 가동성 - 코딩 표준 준수성 - 프로그램 구조 - 검증 가능성 - 문서화

2. 소프트웨어(품질)요소

제동자체 < 의적 ; 개방자 도로세스

- 외적 품질 요소(External Quality)
 - 기능적인 품질 : SW가 기대되는 동작을 하는지 등
- 내적 품질 요소(Internal Quality)
 - 구조적인 품질. 내적품질이 확보되지 않으면 외적

품질도 낮아지게 됨

● 프로세스 품질

2.1 SW 외적 품질 요소 (1/5)

사용자관심

- 정확성(Correctness)
 - 주어진 명세서의 내용을 하나씩 테스트하여 원하는 결과를 생성하는지 여부로 판단
 - - P: 정확성을 알고 싶은 프로그램
 - B: 사용자의 전체 요구사항 개수
 - A : 테스트를 통해서 명세 내용대로 동작하지 못한 기능 수

2.1 SW 외적 품질 요소 (2/5)

신뢰성(Reliability)

- 소프트웨어를 사용하는 동안 나타나는 오류(정확하게는 고장) 발생 정도로 판단
- 소프트웨어 고장의 빈도수와 그 치명도로 나타냄
- 예)MTBF (Mean Time Between Failure) = 10,000Hour

2.1 SW 외적 품질 요소 (3/5)

- (Robustness) ← 반과생발다 함께하는 안전이 당보되야하는 시트템(欧.하나기제미)
 - 사용자가 제시한 요구사항 명세에 정의하지 않은 조건이나 환경에서도 소프트웨어가 합리적으로 동작해야 견고 ፡፡ (X) 하더라 사용가능한 있나의 2학인시? → 이제때는 시단템의 8억
- ❷ 성능(Performance)
 - 소프트웨어의 효율성(Efficiency)을 의미
 - 소프트웨어를 수행하기 위해 필요한 메모리의 양(Byte), 총 실행 시간(μsec) 등이 척도

了州些的各则处有对外告,们是对的想还是对告。这明告

2.1 SW 외적 품질 요소 (4/5)

- (5)
- 사용자 친숙성(User Friendliness)
 - 소프트웨어가 사용하기(편리한 정도→인터떼이느관점
 - 편의성 지원 기능이 얼마나 제공되는가로 측정
 - UI에서 도움말 말풍선, 스크롤 바, 핫 키 등의 개수
- 아 가용성(Availability) 사용되었다.
 - 서버와 네트워크, 프로그램 등의 정보 시스템이 정상적으로 사용 가능한 정도
 - 예)

2.1 SW 외적 품질 요소 (5/5)

① 보안성(Security)

- 외부의 악의적인 공격이나 해커(Hacker)의 위협을 소프트웨어가 막아낼 수 있도록 구현하여 잠재적인 공격이 예측되는 상황에서도 소프트웨어가 올바르게 동작
- 소프트웨어 시스템에서 발견된 취약점의 개수, 사고 통계, 보안 취약으로 인한 연간 손실액 등이 척도
- 안전성(Safety), 무결성(Integrity) 등

િ સાજા મુદ્ધાનું દાવસ્તુ ઘાઝારા — — — નાજી દાતા કે લાગદા ધારેનું કુ વ્યુક્ષ સાજા મુક્કા માત્ર મ

2.2 SW(내적)품질 요소 (1/5) भागम सम्भ

- - 소프트웨어가 지닌 속성이 올바르다는 것을 안전하게 확인 가능
 - 정형 검증(Formal Verification)과 테스트로 평가
- 정형 검증 : 검증 대상을 <u>형식 언</u>어로 표현하고 이를 풀거나 시뮬레이션함으로써 검증 대상이 정확하게 동작한다는 것을 보이는 방법 - 낡아나이다
 - <mark>테스트</mark> : 소프트웨어의 정확한 동작을 확인하기 위하여 적절하게 생성된 테스트 데이터를 이용하여 실행시키는 방법
 - > जिला गाँध देश Hg, जा महत्र देर्ण, ...

2.2 SW 내적 품질 요소 (2/5)

- गुर्मिक्त्राक्तिभूतिकः मार्थिकः मार्थिकः मार्थिकः निक्ति मार्या मार् ラットといれた

- 유지보수성(Maintainability)
 - 수정 유지보수(Corrective Maintenance)

 - 적응 유지보수(Adaptive Maintenance)
 완전 유지보수(Perfective Maintenance)
 - 예방 유지보수(Preventive Maintenance)
- (Portability) → 자원가능하는 등깻등의 까누고 나다
 - 얼마나 다양한 하드웨어 플랫폼을 지원하는가와 얼마나 다양한 버전의 소프트웨어 플랫폼을 지원하는가

2.2 SW 내적 품질 요소 (3/5)

include wolthan office from the second of th

재사용성(Reusability)

 새로운 소프트웨어를 개발하기 위해 기존 소프트웨어 컴포넌트를 사용하는 정도

- Reusability(P) = LOC(R)/LOC(S) = นหางช่ายง
 - P : 특정 대상
 - LOC(S): 전체 개발된 산출물의 양
 - LOC(R): 재사용에 의해 개발된 부분의 양

भूतः भूत्रायक्त्रायालह सम्भक्ष क = समिक्षेत्रहार कि स्रात्रा नाम द्वात क

2.2 SW 내적 품질 요소 (4/5)

- 생산성(Productivity) 기자장기와 사용내업가 (Loc) 15년 표표 전 이 시 이 기기 표표 전 이 시 이 기기 대표 전 이
 - 외적 품질 요소인 성능(Performance)의 속성을 적용한 내적 품질 속성
 - 주어진 시간 내에 얼마만큼의 성과를 내고 있는가를 척도로 사용
- ७ 상호 운용성(Interoperability)
 - 서로 다른 소프트웨어들이 협업을 수행할 수 있는 능력을 충분히 제공하는 것
 - IoT(Internet of Things) 기술을 근간으로 하는 스마트 시티 환경에서 매우 중요 → 앤데바. 퇴생되었다.

2.2 SW 내적 품질 요소 (5/5)

- 기타 품질 요소
 - ① 적시성(Timeliness)
 - (Visibility)
 - 의복성 (Recoverability)
 - (Changeability)
 - (॥) 적응성 (Adaptability)
 - (P) 추적성(Traceability) 등

18

2.3 프로세스 품질

५४ भाषित्र से का तमक कुत्र

- 프로세스 품질개선 → product 자세이 막혀 했다!
 - 프로세스 관련 표준 : ISO 12207, CMMI, ISO 15504:SPICE
- 엔지니어링 관점의 프로세스 품질 요소
 - ७ 프로세스 모델 적합성
 - O• 개발 방법론 적합성 가까지. 박세계생동. ···
- ामधेर्रहर्भित .गर्डिन्स्व।य्रहर्ष्ट्रिया
- 도구 적합성 : CASE(Computer-Aided SE) 도구들
- (A)· 표준 준수성 웹. 전 프로 및 의사와 기계가하지 및 등학에 M 간 등 및 기계가 하지 및 등학 에 시간 및 기계가 하지 및 기계가 되었다고 및 기계가
- (5) 프로젝트 데이터 관리 수준 → 말겠는데에서 (유나하는 말에 도 전) 나고는 , 개비는데용 악성 인명, … 학생하는 있도록

3. AI 소프트웨어 품질 (1/2)

L क्षेत्राधि

- 전통적인 소프트웨어 vs. 인공지능 소프트웨어
 - 학습 모델의 입력과 결과 사이의 관계는 입력 데이터의 일부에 대해서만 정의 됨 (행제에터) → 발바생성
- 배생하 캡슐화 및 모듈화 같은 소프트웨어 엔지니어링의 생생하세상 일반적인 개발 원칙을 그대로 적용하기 어려움
 - 기계학습을 포함하는 컴포넌트의 개발과 통합의 접근 방법은 매우 다양한 방식에 의해 이루어질 수 있음 → 5세에서서 + 이동당하다 있는 10~2 차이지나 + 이동당하다 있는 10~2 차이지나 + 10~
 - <u>학습 및 테스트에 사용하는 데이터가 알고리즘 보다</u> 훨씬 더 중요하게 고려 됨

ग्वभक्षी नात्त्र ताग्राचि क्रिक्षिक्षणा स्मेष भन्ने देख

3. AI 소프트웨어 품질 (2/2)

- AI SW 품질에 대한 연구
 - EU: Ethics Guidelines for Trustworthy

 - 독일 DIN SPEC 92001일본 QA4AI Consortium
- AI SW 품질속성
 - 투명성과 책임
 - 다양성/공정성 및 사회적 웰빙
 - 보안과 안전성
 - 기술적 견고성 및 신뢰성법적/윤리적 측면

3.1 AI SW 품질 특성 (1/4)

71691425号29155 -> かまなにちかいるできかっとれたをき

्र नेम्नामा भूषे । १ १५३ <u>श्वित्र १ १६६</u> १ १०६६

- 투명성(Transparency)과 책임(Accountability)

 기계학습 기반 시스템은 동일한 입력에 대하여 서로 다른 결과를 제공할 수 있음 - 새해워 방생나 있는 방생하고 개발하다
 - AI 시스템이 제공하는 출력은 시간에 따라 변할 수 있다는 가능성 때문에, 출력에 대한 해석 가능성 및 실명 가능성이 중요 => XAI(eXplainable AI)
 - 출력 결과가 부정적인 결과를 유발하는 경우, 이를 사용자에게 알려주는 보고 기능이 부가적으로 제공되는 것이 좋음 处约如了外给处片别至多

3.1 AI SW 품질 특성 (2/4)

☞ 다양성(Diversity), <mark>공정성</mark>(Fairness), <mark>사회적</mark> 웰빙(well-being)

- AI 시스템 개발에서 학습 모델의 구성과 이에 필요한 의사결정 정책 등은 특정 요소에 편중하여 출력을 제공하는 오류가 있어서는 안됨 생생에서의 땡챙시
- 모든 가능한 데이터들을 수용하여 출력을 제공할 수 있는 모델 설계 필요
- 다양한 이해관계자의 참여를 통해 AI 시스템은 환경 친화적 방향으로 구축되어 사회적 웰빙을 제공해야 함

3.1 AI SW 품질 특성 (3/4)

- (Security)과 <mark>안전성</mark>(Safety)
 - AI 시스템의 응용 범위가 넓어져 <u>개인 정보의</u> 누출이나 프라이버시 침해 소지가 있음
 - 정확한 문제 해결을 위해서 사용되는 데이터가 좋은 품질과 무결성을 가져야 하는 것은 물론, 데이터에 존재할 수 있는 오류, 노이지(Noisy), 정체 불명 또는 악의적인 데이터들에 대처할 수 있어야 함
 - 기술적 견고성(Robustness)과 <mark>신뢰성</mark>(Reliability)
 유해한 입력, 오류 있는 입력에 대해서도 믿을
 - 유해한 입력, 오류 있는 입력에 대해서도 믿을 만하고 이해할 만한 결과가 제공되어야 함

3.1 AI SW 품질 특성 (4/4)

(于) 법적·윤리적 측면 : N브뎅의작사이가 사상의각사이가

• AI 시스템이 인간이 해온 일들을 대행하는 에이전트(Agent) 역할을 수행하거나 인간이 하는 일들을 감독하고 모니터링할 수 있으므로 인간에게 적용되는 법적·윤리적 문제들을 보장할 수 있도록 개발되어야 함

3.2 시스템 관점별 품질요소 (1/2)

● ML 시스템의 구성 관점

<u>2020년</u> 독일의 프란호퍼 연구소에서 제시한 모델

기계학습 기반 소프트웨어 시스템의 구성 관점

오델 관점

 학습 모델과 관련되며, 분류나 차원 축소 같은 작업을 수행하기 위해 데이터에 대한 훈련이 이루어지는 부분

3.2 시스템 관점별 품질요소 (2/2)

나 데이터 관점

• 모델에 입력되는 실데이터와 관련된 부분 데에터팅성

h) 시스템 관점

• 기계학습 컴포넌트(모델과 데이터)들을 연결하고, 형상 (Configuration)을 정의하는 부분

4) 인프라 관점

• 어떻게 구현되는가에 초점을 맞춘 부분으로 시스템 관점과 밀접한 관계가 있음

♪ 환경 관점

• 시스템 외부 관점으로 시스템과 사용자가 어떻게 상호작용 하는가를 표현하는 부분

4. 소프트웨어 품질 모델 및 표준

- McCall의 FCM
- HP의 FURPS 모델
- ሾ ISO 9126 품질 모델
 - ISO 25010 품질 모델
 - 1 3x1142

धुभ्र

4.1 McCall의 FCM 모델 (1/2)

- FCM의 기본 개념
 - (Factors
 - 사용자에게 보이는 소프트웨어의 외적 특성을 기술하며, 시스템의 동작 특성을 나타냄
 - Criteria
 - 개발자에게 보이는 소프트웨어의 내적 특성을 기술하며, 소프트웨어 개발 및 설계와 관련된 품질 요소를 정의
 - Metrics
 - 소프트웨어의 내적·외적 특성을 측정하기 위한 기본 단위와 방법을 정의하고 설명

4.1 McCall의 FCM 모델 (2/2)

● 운영관점, 개선 관점, 전환 관점으로 구분

MIL	されるなかから	세부품질 요소
	제품 운영	정확성(Correctness), 신뢰성(Reliability), 효율성(Efficiency), 무결성(Integrity), 사용성(Usability)
	제품 개선	시험 가능성(Testability), 융통성(Flexibility), 유지보수성(Maintainability)
	게품 전환	이식성(Portability), 재사용성(Reusability), 상호 운용성(Interoperability)

4.2 HP의 FURPS 모델

> FURPS+ ETY: NYHYOLONMMES EN 25 SENGHAMAGN MG

- 🔑 F (Functionality) নাদ্ধ
 - SW 수행기능, 기능의 일반성 및 보안성 요소들
- U (Usability) นา
 - SW 외관구성 및 특성, 일관성 및 문서화 요소들
- R (Reliability)
 - 고장빈도, 치명도, MTBF, 고장회복력 등
- P (Performance) ។
 - 처리속도 및 응답시간, 자원사용율 등
- 🕽 S (Supportability) นะเหล
 - SW 확장, 적용, 수정 등과 관련된 요소들

4.3 ISO 9126 품질 모델 (1/2)

- ISO/IEC 9126: 2001 วันเซ็ร
 - Software Engineering: Product Quality

4.3 ISO 9126 품질 모델 (2/2)

● ISO 9126에서 정의한 세부품질 요소 + 첫째도 metrics까지까의

품질특성	세부품질요소	
가능성	적합성(Suitability), 정확성(Accuracy), 상호 운용성(Interoperability), 준수성(Compliance), 보안성(Security)	
신뢰성	성숙성(Maturity), 결함 허용성(Fault-Tolerance), 회복성(Recoverability)	
₩ ₩ ₩	이해성(Understandability), 학습 용이성(Learnability), 운영성(Operability)	
	시간 효율성(Time behaviour), 자원 효율성(Resource behaviour)	
ਨ 유지보수성	분석성(Analyzability), 변경성(Changeability), 안정성(Stability), 시험 가능성(Testability)	
이식성	적용성(Adaptability), 설치 용이성(Installability), 부합성(Conformance), 대체 가능성(Replaceability)	

4.4 ISO 25010 품질 모델

- ISO/IEC 25010: 2011 วันเซ็ร (จเวยรูนฟน)
 - Systems and software engineering-Systems and software Quality Requirements and Evaluation (SQuaRE)

5. 소프트웨어 품질 개선

◉ 소프트웨어 개발 과정에서 적용하는 품질 관리 프로세스(박양제) म्यक्तिम्सिकामप्रिः りついれたりをかられるったかしますいのはなら 사용자 피드백 정보 지원 관리 단계 મિલા (ex. 76/546) 측정 계획 적도 조정 단계 준비 단계 측정 단계 새로운 이슈 THOTE 1 52 5 78 EXCLENIA. 是代好. +नव्यता द्रेयक्ट्रिया (अयहक्री) CRC24/E/43x3 결과 분석 및 성능 척도 独特 평가 단계 개선 활동 कुत्रुन्_रिका ex 41327 हिल्हे ताल्ड भेरे 10/9