# Modules over orders, conjugacy classes of integral matrices and abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

July 18 2024 - ANTS XVI - MIT



### Back in Bristol...during the RUMP session

Thank you ANTS

Welcome to your Linear Algebra 1 exam!

Don't forget to motivate your answers. The use of the (Magma) calculator is allowed.

Stefano Marseglia RUMP Session ANTS XV 10 August 2022 1/5

- Let R be an integral domain with unity.
- $A, B \in \operatorname{Mat}_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in \operatorname{GL}_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

- Let R be an integral domain with unity.
- $A, B \in \text{Mat}_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in GL_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

**Question 1:** Are the following two matrices  $\mathbb{Q}$ -conjugate? Are they  $\mathbb{Z}$ -conjugate?

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

- Let R be an integral domain with unity.
- $A, B \in \text{Mat}_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in GL_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):



- Let R be an integral domain with unity.
- $A, B \in Mat_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in GL_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

### Answer(s):

Over  $\mathbb{Q}$ : yes! Same characteristic polynomial  $x^2 + 5$ , which is irreducible.

- Let R be an integral domain with unity.
- $A, B \in \text{Mat}_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in GL_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

### Answer(s):

Over  $\mathbb{Q}$ : yes! Same characteristic polynomial  $x^2 + 5$ , which is irreducible.

But...



- Let R be an integral domain with unity.
- $A, B \in \text{Mat}_{n \times n}(R)$  are R-conjugate  $(A \sim_R B)$  if AP = PB for some  $P \in GL_n(R)$ .
- The **minimal** polynomial m(x) of  $A \in \operatorname{Mat}_{n \times n}(R)$  is the monic polynomial of smallest degree such that m(A) = O (the zero  $n \times n$  matrix).
- The characteristic polynomial of  $A \in \operatorname{Mat}_{n \times n}(R)$  is  $\det(xI_n A)$ .

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

### Answer(s):

Over  $\mathbb{Q}$ : yes! Same characteristic polynomial  $x^2 + 5$ , which is irreducible.

But...

Over Z: no! Why?



- $\bullet$  each  $m_i$  irreducible and
- $m_i \neq m_j$  if  $i \neq j$ . (i.e. m is squarefree)

Stefano Marseglia (UPF)

ANTS XVI - MIT

- each  $m_i$  irreducible and
- $m_i \neq m_j$  if  $i \neq j$ . (i.e. m is squarefree)

Question 2 Can we describe the representatives of the Z-conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial *h*?

- $\bullet$  each  $m_i$  irreducible and
- $m_i \neq m_j$  if  $i \neq j$ . (i.e. m is squarefree)

Question 2 Can we describe the representatives of the Z-conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial *h*?

#### Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order 
$$\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$$
 acts on  $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$ . We have a bijection

$$\{\mathbb{Z}[\pi]$$
-lattices in  $V\}_{\simeq_{\mathbb{Z}[\pi]}}$ 

- $\bullet$  each  $m_i$  irreducible and
- $m_i \neq m_j$  if  $i \neq j$ . (i.e. m is squarefree)

Question 2 Can we describe the representatives of the Z-conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial *h*?

#### Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order 
$$\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$$
 acts on  $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$ . We have a bijection

$$\left\{\mathbb{Z}[\pi]\text{-lattices in }V\right\}_{\cong_{\mathbb{Z}[\pi]}}$$
 
$$\left\{\text{matrices with min. poly. m and char. poly. h}\right\}_{\sim_{\mathbb{Z}}}$$

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

### Proof (idea):

• Let M be a  $\mathbb{Z}[\pi]$ -lattice in V and fix a  $\mathbb{Z}$ -basis  $\mathscr{B}$ .

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

- Let M be a  $\mathbb{Z}[\pi]$ -lattice in V and fix a  $\mathbb{Z}$ -basis  $\mathscr{B}$ .
- Let A be the matrix representing the multiplication-by- $\pi$  wrt  $\mathscr{B}$ .

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

- Let M be a  $\mathbb{Z}[\pi]$ -lattice in V and fix a  $\mathbb{Z}$ -basis  $\mathscr{B}$ .
- Let A be the matrix representing the multiplication-by- $\pi$  wrt  $\mathscr{B}$ .
- The induced map is well-defined and injective.

If  $h = x^2 + 5$  then  $K = V = \mathbb{Q}(\sqrt{-5})$ .

The conjugacy classes of matrices with char. poly h are in bijection with  $Pic(\mathcal{O}_K)$ , which has 2 elements.

- Let M be a  $\mathbb{Z}[\pi]$ -lattice in V and fix a  $\mathbb{Z}$ -basis  $\mathscr{B}$ .
- Let A be the matrix representing the multiplication-by- $\pi$  wrt  $\mathscr{B}$ .
- The induced map is well-defined and injective.
- For the 'surjectivity' part: take the Z-span of 'algebraic eigenvectors'.

**Question 3** Fix a Weil polynomial  $h = m_1^{s_1} \cdots m_n^{s_n}$  which is ordinary over  $\mathbb{F}_q$ , or over  $\mathbb{F}_p$  and without real roots.

**Question 3** Fix a Weil polynomial  $h = m_1^{s_1} \cdots m_n^{s_n}$  which is ordinary over  $\mathbb{F}_q$ , or over  $\mathbb{F}_p$  and without real roots. How do you compute abelian varieties over  $\mathbb{F}_q$  with char. poly of Frobenius h? (up to  $\mathbb{F}_q$ -isomorphism)?

**Question 3** Fix a Weil polynomial  $h = m_1^{s_1} \cdots m_n^{s_n}$  which is ordinary over  $\mathbb{F}_q$ , or over  $\mathbb{F}_p$  and without real roots. How do you compute abelian varieties over  $\mathbb{F}_q$  with char. poly of Frobenius h? (up to  $\mathbb{F}_q$ -isomorphism)?

**Answer:** Do the same thing with  $\mathbb{Z}[\pi, q/\pi]$  instead of  $\mathbb{Z}[\pi]$ :

**Question 3** Fix a Weil polynomial  $h = m_1^{s_1} \cdots m_n^{s_n}$  which is ordinary over  $\mathbb{F}_q$ , or over  $\mathbb{F}_p$  and without real roots. How do you compute abelian varieties over  $\mathbb{F}_q$  with char. poly of Frobenius h? (up to  $\mathbb{F}_q$ -isomorphism)?

**Answer:** Do the same thing with  $\mathbb{Z}[\pi, q/\pi]$  instead of  $\mathbb{Z}[\pi]$ :

Theorem (Deligne/Centelghe-Stix)

 $\{abelian\ varieties\ with\ char.\ poly.\ h\}_{\simeq_{\mathbb{F}_q}}$ 

**Question 3** Fix a Weil polynomial  $h = m_1^{s_1} \cdots m_n^{s_n}$  which is ordinary over  $\mathbb{F}_q$ , or over  $\mathbb{F}_p$  and without real roots. How do you compute abelian varieties over  $\mathbb{F}_q$  with char. poly of Frobenius h? (up to  $\mathbb{F}_q$ -isomorphism)?

**Answer:** Do the same thing with  $\mathbb{Z}[\pi, q/\pi]$  instead of  $\mathbb{Z}[\pi]$ :

Theorem (Deligne/Centelghe-Stix)

$$\begin{split} & \left\{ abelian \ varieties \ with \ char. \ poly. \ h \right\}_{\simeq_{\mathbb{F}_q}} \\ & \left\{ \mathbb{Z}[\pi,q/\pi] \text{-lattices in } V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n} \right\}_{\simeq_{\mathbb{Z}[\pi,q/\pi]}} \end{aligned}$$

How do we make these two theorems effective?

### How do we make these two theorems effective?

- Find a 'finite box' that contains representatives of all isomorphism classes.
- (Use other people's work to) pick out a minimal set of representatives.

- $K_1, ..., K_n$  number fields, with ring of integers  $\mathcal{O}_i \subset K_i$ .
- $K = K_1 \times ... \times K_n$ .
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$ , the maximal order of K.

Stefano Marseglia (UPF)

- $K_1,...,K_n$  number fields, with ring of integers  $\mathcal{O}_i \subset K_i$ .
- $K = K_1 \times ... \times K_n$ .
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$ , the maximal order of K.
- $s_1, ..., s_n$  integers > 0,  $V = K_1^{s_1} \times ... \times K_n^{s_n}$ , with the component-wise diagonal action of K.
- for an order R in K, set  $\mathcal{L}(R, V) = \{R \text{-lattice in } V\}.$
- By the Jordan-Zassenhaus Theorem,  $\mathcal{L}(R,V)/\simeq_R$  is finite.

- $K_1, ..., K_n$  number fields, with ring of integers  $\mathcal{O}_i \subset K_i$ .
- $K = K_1 \times ... \times K_n$ .
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$ , the maximal order of K.
- $s_1, ..., s_n$  integers > 0,  $V = K_1^{s_1} \times ... \times K_n^{s_n}$ , with the component-wise diagonal action of K.
- for an order R in K, set  $\mathcal{L}(R, V) = \{R \text{-lattice in } V\}.$
- By the Jordan-Zassenhaus Theorem,  $\mathcal{L}(R, V)/\simeq_R$  is finite.

# Proposition (Steinitz)

Let M be in  $\mathcal{L}(\mathcal{O}, V)$ .

- $K_1, ..., K_n$  number fields, with ring of integers  $\mathcal{O}_i \subset K_i$ .
- $K = K_1 \times ... \times K_n$ .
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$ , the maximal order of K.
- $s_1, ..., s_n$  integers > 0,  $V = K_1^{s_1} \times ... \times K_n^{s_n}$ , with the component-wise diagonal action of K.
- for an order R in K, set  $\mathcal{L}(R, V) = \{R\text{-lattice in } V\}$ .
- By the Jordan-Zassenhaus Theorem,  $\mathcal{L}(R, V)/\simeq_R$  is finite.

## Proposition (Steinitz)

Let M be in  $\mathcal{L}(\mathcal{O}, V)$ . Then there are fractional  $\mathcal{O}_i$ -ideals  $I_i$  and an  $\mathcal{O}$ -linear isomorphism

$$M \simeq \bigoplus_{i=1}^n \left( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$$

- $K_1, ..., K_n$  number fields, with ring of integers  $\mathcal{O}_i \subset K_i$ .
- $K = K_1 \times ... \times K_n$ .
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$ , the maximal order of K.
- $s_1, ..., s_n$  integers > 0,  $V = K_1^{s_1} \times ... \times K_n^{s_n}$ , with the component-wise diagonal action of K.
- for an order R in K, set  $\mathcal{L}(R, V) = \{R\text{-lattice in } V\}.$
- By the Jordan-Zassenhaus Theorem,  $\mathcal{L}(R,V)/\simeq_R$  is finite.

## Proposition (Steinitz)

Let M be in  $\mathcal{L}(\mathcal{O}, V)$ . Then there are fractional  $\mathcal{O}_i$ -ideals  $I_i$  and an  $\mathcal{O}$ -linear isomorphism

$$M \simeq \bigoplus_{i=1}^n \left( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$$

The isomorphism class of M is uniquely determined by the isomorphism class of the fractional  $\mathcal{O}$ -ideal  $I = I_1 \oplus \cdots \oplus I_n$ .

• Let  $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .

- Let  $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

Stefano Marseglia (UPF)

- Let  $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

#### **Theorem**

Let M be in  $\mathcal{L}(R, V)$ .

- Let  $\mathfrak{f} = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

#### **Theorem**

Let M be in  $\mathcal{L}(R, V)$ . Then there exist M' in  $\mathcal{L}(R, V)$ , and fractional  $\mathcal{O}_i$ -ideals  $I_i$  such that

- Let  $\mathfrak{f} = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

Let M be in  $\mathcal{L}(R, V)$ . Then there exist M' in  $\mathcal{L}(R, V)$ , and fractional  $\mathcal{O}_i$ -ideals  $I_i$  such that

•  $M' \simeq M$  as an R-module.

- Let  $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

Let M be in  $\mathcal{L}(R, V)$ . Then there exist M' in  $\mathcal{L}(R, V)$ , and fractional  $\mathcal{O}_i$ -ideals  $I_i$  such that

- $M' \simeq M$  as an R-module.
- $\bullet \quad M'\mathcal{O} = \bigoplus_{i=1}^n \Big( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \Big).$

- Let  $\mathfrak{f} = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

Let M be in  $\mathcal{L}(R, V)$ . Then there exist M' in  $\mathcal{L}(R, V)$ , and fractional  $\mathcal{O}_i$ -ideals  $I_i$  such that

- $M' \simeq M$  as an R-module.
- $\bullet \quad M'\mathcal{O} = \bigoplus_{i=1}^n \left( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$
- $\bullet \quad \bigoplus_{i=1}^n \left( f_i^{\oplus (s_i-1)} \oplus f_i I_i \right) \subseteq M' \subseteq \bigoplus_{i=1}^n \left( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$

- Let  $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$  be the conductor of R in  $\mathcal{O}$ .
- Write  $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$ ,  $\mathfrak{f}_i$  a fractional  $\mathcal{O}_i$ -ideal in  $K_i$ .

Let M be in  $\mathcal{L}(R, V)$ . Then there exist M' in  $\mathcal{L}(R, V)$ , and fractional  $\mathcal{O}_i$ -ideals  $I_i$  such that

- $M' \simeq M$  as an R-module.
- $\bullet \quad M'\mathscr{O} = \bigoplus_{i=1}^n \left( \mathscr{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$
- $\bullet \quad \bigoplus_{i=1}^n \left( \mathfrak{f}_i^{\oplus (s_i-1)} \oplus \mathfrak{f}_i I_i \right) \subseteq M' \subseteq \bigoplus_{i=1}^n \left( \mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$

#### Proof:

By Steinintz: there are  $I_i$ 's and an  $\mathcal{O}$ -isomorphism such that

$$\psi: M\mathscr{O} \to \bigoplus_{i=1}^n \left( \mathscr{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$$

Set 
$$M' = \psi(M)$$
. QED

$$\mathscr{Q}(I) = \frac{\mathscr{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathscr{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}.$$

10 / 12

$$\mathscr{Q}(I) = \frac{\mathscr{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathscr{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}.$$

• For each fractional  $\mathscr{O}$ -ideal  $I = \bigoplus_i I_i$ , we have an  $\mathscr{O}$ -isomorphism  $\Psi_I : \mathscr{Q}(I) \to \mathscr{Q}(\mathscr{O})$  inducing a bijection between the sub-R-modules.

$$\mathscr{Q}(I) = \frac{\mathscr{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathscr{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}.$$

- For each fractional  $\mathscr{O}$ -ideal  $I = \bigoplus_i I_i$ , we have an  $\mathscr{O}$ -isomorphism  $\Psi_I : \mathscr{Q}(I) \to \mathscr{Q}(\mathscr{O})$  inducing a bijection between the sub-R-modules.
- Important: there are algorithms IsIsomorphic that answer the following question:

$$\mathscr{Q}(I) = \frac{\mathscr{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathscr{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}.$$

- For each fractional  $\mathscr{O}$ -ideal  $I = \bigoplus_i I_i$ , we have an  $\mathscr{O}$ -isomorphism  $\Psi_I : \mathscr{Q}(I) \to \mathscr{Q}(\mathscr{O})$  inducing a bijection between the sub-R-modules.
- Important: there are algorithms IsIsomorphic that answer the following question: given  $M, M' \in \mathcal{L}(R, V)$ , is there an R-linear isomorphism  $M \simeq M'$ ?

  See:
  - Bley, Hofmann, Johnston. Computation of lattice isomor- phisms and the integral matrix similarity problem, (2022), in Nemo/Hecke, or
  - Eick, Hofmann, O'Brien. The conjugacy problem in  $GL(n,\mathbb{Z})$ , (2019), in Magma.

マート・イラト・イラト・オラト・ラー・クスで Stefano Marseglia(UPF) ANTS XVI - MIT July 18 2024 10 / 12

July 18 2024

• Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .

- Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .
- ② Compute the set  $\mathcal{M}_{\mathcal{O}}$  of their lifts to V (via the natural quotient map).

- Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .
- ② Compute the set  $\mathcal{M}_{\mathcal{O}}$  of their lifts to V (via the natural quotient map).
- ① Use IsIsomorphic, to sieve-out from  $\mathcal{M}_{\mathcal{O}}$  a set  $\mathcal{L}_{\mathcal{O}}$  of representative of the R-isomorphism classes.

- Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .
- ② Compute the set  $\mathcal{M}_{\mathcal{O}}$  of their lifts to V (via the natural quotient map).
- ① Use IsIsomorphic, to sieve-out from  $\mathcal{M}_{\mathcal{O}}$  a set  $\mathcal{L}_{\mathcal{O}}$  of representative of the R-isomorphism classes.
- For each class  $[I] \in \text{Pic}(\mathcal{O})$  compute  $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$ .



- Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .
- ② Compute the set  $\mathcal{M}_{\mathcal{O}}$  of their lifts to V (via the natural quotient map).
- ① Use IsIsomorphic, to sieve-out from  $\mathcal{M}_{\mathcal{O}}$  a set  $\mathcal{L}_{\mathcal{O}}$  of representative of the R-isomorphism classes.
- For each class  $[I] \in \text{Pic}(\mathcal{O})$  compute  $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$ .
- **5** Define  $\mathcal{L}_I$  as the 'pull-back' of  $\mathcal{L}_{\mathcal{O}}$  vie  $\Psi_I$ .

- Enumerate all sub-R-modules of  $\mathcal{Q}(\mathcal{O})$ .
- ② Compute the set  $\mathcal{M}_{\mathcal{O}}$  of their lifts to V (via the natural quotient map).
- ① Use IsIsomorphic, to sieve-out from  $\mathcal{M}_{\mathcal{O}}$  a set  $\mathcal{L}_{\mathcal{O}}$  of representative of the R-isomorphism classes.
- **⑤** For each class [I] ∈ Pic( $\mathscr{O}$ ) compute  $\Psi_I : \mathscr{Q}(I) \to \mathscr{Q}(\mathscr{O})$ .
- **5** Define  $\mathcal{L}_I$  as the 'pull-back' of  $\mathcal{L}_{\mathcal{O}}$  vie  $\Psi_I$ .
- **o** Return  $\sqcup_I \mathscr{L}_I$ .

Let

$$m_1 = x^2 - x + 3,$$
  $m_2 = x^2 + x + 3,$   
 $m = m_1 m_2,$   $h = m_1^2 m_2.$ 

12 / 12

Let

$$m_1 = x^2 - x + 3,$$
  $m_2 = x^2 + x + 3,$   
 $m = m_1 m_2,$   $h = m_1^2 m_2.$ 

Set: 
$$K_i = \mathbb{Q}[x]/m_i$$
,  $K = K_1 \times K_2 = \mathbb{Q}[\pi]$ ,  $V = K_1^2 \times K_2$ ,  $E = \mathbb{Z}[\pi]$ ,  $R = \mathbb{Z}[\pi, 3/\pi]$ .

Let

$$m_1 = x^2 - x + 3,$$
  $m_2 = x^2 + x + 3,$   
 $m = m_1 m_2,$   $h = m_1^2 m_2.$ 

Set:  $K_i = \mathbb{Q}[x]/m_i$ ,  $K = K_1 \times K_2 = \mathbb{Q}[\pi]$ ,  $V = K_1^2 \times K_2$ ,  $E = \mathbb{Z}[\pi]$ ,  $R = \mathbb{Z}[\pi, 3/\pi]$ . Then:

• the  $\mathbb{Z}$ -conj. classes of  $6 \times 6$ -matrices with min. poly m and char. poly h are in bijection with  $\mathcal{L}(E,V)/\simeq_E$ : there is 4 of them.

Let

$$m_1 = x^2 - x + 3,$$
  $m_2 = x^2 + x + 3,$   
 $m = m_1 m_2,$   $h = m_1^2 m_2.$ 

Set:  $K_i = \mathbb{Q}[x]/m_i$ ,  $K = K_1 \times K_2 = \mathbb{Q}[\pi]$ ,  $V = K_1^2 \times K_2$ ,  $E = \mathbb{Z}[\pi]$ ,  $R = \mathbb{Z}[\pi, 3/\pi]$ . Then:

- the  $\mathbb{Z}$ -conj. classes of  $6 \times 6$ -matrices with min. poly m and char. poly h are in bijection with  $\mathscr{L}(E,V)/\simeq_E$ : there is 4 of them.
- the  $\mathbb{F}_3$ -isomorphism classes of abelian varieties in the  $\mathbb{F}_3$ -isogeny class determined by the 3-Weil polynomial h are in bijection with  $\mathcal{L}(R,V)/\simeq_R$ : there is 2 of them.

Let

$$m_1 = x^2 - x + 3,$$
  $m_2 = x^2 + x + 3,$   
 $m = m_1 m_2,$   $h = m_1^2 m_2.$ 

Set:  $K_i = \mathbb{Q}[x]/m_i$ ,  $K = K_1 \times K_2 = \mathbb{Q}[\pi]$ ,  $V = K_1^2 \times K_2$ ,  $E = \mathbb{Z}[\pi]$ ,  $R = \mathbb{Z}[\pi, 3/\pi]$ . Then:

- the  $\mathbb{Z}$ -conj. classes of  $6 \times 6$ -matrices with min. poly m and char. poly h are in bijection with  $\mathscr{L}(E,V)/\simeq_E$ : there is 4 of them.
- the  $\mathbb{F}_3$ -isomorphism classes of abelian varieties in the  $\mathbb{F}_3$ -isogeny class determined by the 3-Weil polynomial h are in bijection with  $\mathcal{L}(R,V)/\simeq_R$ : there is 2 of them.

# Thank you!

