Memory Analysis with Volatility3 Framework

AIM: Use volatility3 framework and analyse memory dump file to find the operating system, hash of passwords, network info

Introduction

The Volatility3 framework is a powerful and flexible tool used for memory forensics and analysis. It allows digital forensic investigators and security professionals to extract valuable information from memory dumps of operating systems, including details about running processes, network connections, open files, and even artifacts like passwords and encryption keys. Volatility3 supports various operating systems and provides a range of plugins and capabilities to analyze memory images efficiently, making it a go-to tool in the field of digital forensics for uncovering crucial evidence during investigations.

After downloading Volatility from GitHub, the initial step is to execute the command **python3 vol.py -h**. This command provides a comprehensive list of all available commands that can be executed within the Volatility framework.

Analyse of memory dump file

Command to analyse : python3 vol.py -f "C:\Users\chitr\OneDrive\Desktop\BTECH SEM VI\Cybersecurity\lastActivity\memdump.mem" windows.info.Info

Result

```
PS C:\Users\chitr\OneOr\ve\Desktop\BTECH SEM VI\Cybersecurity\\lastActivity\volatility3> python3 vol.py -f "C:\Users\chitr\OneOr\ve\Desktop\BTECH SEM VI\Cybersecurity\\lastActivity\volatility3\\ python3 vol.py -f "C:\Users\chitr\OneOr\ve\Desktop\BTECH SEM VI\Cybersecurity\\lastActivity\volatility3\\ python3 vol.py -f "C:\Users\chitr\OneOr\ve\Desktop\BTECH SEM VI\Cybersecurity\\lastActivity\\volatility3\\ python3 vol.python3 vol.pytho
```

After analyzing the memory dump file, we can interpret certain observations, which can be summarized as follows:

- Kernel Base: This is the base address of the kernel in memory. In this case, it is 0x81832000.
- DTB: This is the Dynamic Trace Buffer, which is a kernel component that can be used to trace system activity. In this case, it is located at 0x122000.
- Symbols: This section shows the path to the symbol file that was used to help Volatility interpret the memory dump. The symbol file is located at "C:\Users\chitr\OneDrive\Desktop\BTECH SEM VI\Cybersecurity\lastActivity\volatility3\volatility3\symbols\windows\ntkrpamp.pdb".
- 64-bit support: The analysis shows that the memory dump is from a 32-bit system (x86).
- OS: The system is Windows Server 2008 RTM (release to manufacturing).
- Build info: The build lab of the system is 6001.18000.x86fre.longhorn_rtm.0
- Date/Time: The system time captured in the dump is 2014-01-08 17:54:20.

Network Information

Command:

python vol.py -f "C:\Users\chitr\OneDrive\Desktop\memdump.mem" windows.netscan.NetScan

/olatility 3 Fr Progress: 100.			DDD									
Offset Proto			PDB scanning fir LocalPort		ForeignAddr		ForeignPort		State	PID	Owner	Created
0x1cde008	UDPv4	0.0.0.0	56153		Θ		1088	svchost.	exe	2014-01	-08 02:1	7:50.000000
0x1cde008	UDPv6		56153		0		1088	svchost.	exe	2014-01	-08 02:1	17:50.000000
0x1cde490	UDPv4	0.0.0.0	56152		0		1088	svchost.	exe	2014-01	-08 02:1	17:50.000000
0x3c45008	UDPv4	0.0.0.0	1701		Θ		4	System	2014-01-	-08 02:19	9:53.006	0000
0x3c45008	UDPv6		1701		Θ		4	System	2014-01-	-08 02:1	9:53.000	0000
x4ff9de0	TCPv4	0.0.0.0	1031	0.0.0.0	0	LISTENIN	IG	604	services	s.exe	N/A	
x4ff9de0	TCPv6		1031		0	LISTENIA	IG	604	services	s.exe	N/A	
x7f68de0	TCPv4	0.0.0.0	1031	0.0.0.0	0	LISTENIN	IG	604	services	s.exe	N/A	
x7f68de0	TCPv6		1031		0	LISTENIN	IG	604	services	s.exe	N/A	
0x8231008	UDPv4	0.0.0.0	1701		0		4	System	2014-01-	-08 02:1	9:53.006	0000
0x8231008	UDPv6		1701		Θ		4	System	2014-01-	-08 02:19	9:53.006	0000
x886bde0	TCPv4	0.0.0.0	1031	0.0.0.0	Θ	LISTENIN	IG	604	services	s.exe	N/A	
x886bde0	TCPv6		1031		Θ	LISTENIN	IG	604	services	s.exe	N/A	
x1e0ea430	TCPv4	0.0.0.0	1723	0.0.0.0	Θ	LISTENIN	IG		System	N/A		
x1e0ec008	UDPv4	0.0.0.0	1701		Θ		4	System	2014-01-	-08 02:1	9:53.006	0000
x1e0ec008	UDPv6		1701		0		4	System		-08 02:19	9:53.000	0000
x1e0ef008	UDPv6	::1	65012		0		1000	svchost.	exe	2014-01	-08 02:1	19:54.000000
x1e0f3a08	UDPv6	::1	65011		0		1000	svchost.	exe	2014-01	-08 02:1	19:54.000000
x1e10a878	UDPv4	192.168	119.191	137		Θ		4	System	2014-01	-08 17:2	29:33.000000
x1e13f6f8	TCPv4	0.0.0.0	445	0.0.0.0	0	LISTENIN	IG	4	System	N/A		
x1e13f6f8	TCPv6		445		0	LISTENI		4	System	N/A		
x1e143e10	TCPv4		1399	54.213.	58.70	80	CLOSED	1888	iexplore			
x1e159008	TCPv4	192.168	119.191		0.0.0.0		LISTENI		4	System	N/A	
x1e168008	TCPv4		1392	54.230.	117.162	80	CLOSED		iexplore	e.exe		
x1e172c30	TCPv4		1424	93.184.			CLOSED		iexplore			
x1e18de10	TCPv4		1407	23.214.	3.146	80		1888	iexplore	e.exe		
x1e20c050	UDPv4	0.0.0.0	0		0		1620	snmp.exe	2			L7:49.000000
x1e20c050	UDPv6		0		0		1620	snmp.exe	2	2014-01	-08 02:1	17:49.000000
x1e20c280	UDPv4	0.0.0.0	52325		0		1620	snmp.exe	2	2014-01	-08 02:1	17:49.000000
x1e20d9b8	UDPv4	0.0.0.0	161		0		1620	snmp.exe	2	2014-01	-08 02:1	17:49.000000
x1e20d9b8	UDPv6	::	161	*	Θ		1620	snmp.exe		2014-01-	-A8 A2 · 1	17:49.000000

The windows.netscan.NetScan plugin is a tool designed to scan and present network-related information extracted from memory dumps. It provides detailed insights into network connections, including protocols, local and foreign addresses, ports, connection statuses, Process IDs (PIDs), and process owners. This data is valuable for identifying active network connections, potential malicious activities, and the services operating on the system. The plugin covers a wide range of connections, both TCP and UDP, displaying their states, associated processes, and timestamps of creation. Noteworthy connections include those related to commonly used services like DNS (port 53), FTP (port 21), RDP (port 3389), and SMB (port 445), offering a comprehensive view of network operations and potential security threats.

Hash of passwords

Command:

python vol.py -f "C:\Users\chitr\OneDrive\Desktop\memdump.mem" windows.hashdump

```
Volatility 3 Framework 2.7.0
          100.00
Progress:
                                PDB scanning finished
        rid
                1mhash nthash
Administrator
                500
                        aad3b435b51404eeaad3b435b51404ee
                                                                 e19ccf75ee54e06b06a5907af13cef42
                aad3b435b51404eeaad3b435b51404ee
                                                         31d6cfe0d16ae931b73c59d7e0c089c0
Guest
       501
student 1000
                aad3b435b51404eeaad3b435b51404ee
                                                         e19ccf75ee54e06b06a5907af13cef42
        1002
                aad3b435b51404eeaad3b435b51404ee
                                                         e19ccf75ee54e06b06a5907af13cef42
probe
                aad3b435b51404eeaad3b435b51404ee
                                                         cfeac129dc5e61b2eb9b2e7131fc7e2b
        1004
waldo
                        aad3b435b51404eeaad3b435b51404ee
```

The windows.hashdump.Hashdump plugin retrieves password hashes from a memory dump, including the username, Relative Identifier (RID), LM hash, and NT hash for each user account detected in memory. The LM hash and NT hash represent the user's password in a cryptographic format, which can be decrypted offline to reveal the actual password.

Here's an analysis of the extracted data:

- Administrator (RID: 500) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: e19ccf75ee54e06b06a5907af13cef42
- Guest (RID: 501) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: 31d6cfe0d16ae931b73c59d7e0c089c0
- student (RID: 1000) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: e19ccf75ee54e06b06a5907af13cef42
- probe (RID: 1002) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: e19ccf75ee54e06b06a5907af13cef42
- waldo (RID: 1004) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: cfeac129dc5e61b2eb9b2e7131fc7e2b
- YOUR-NAME (RID: 1005) LM hash: aad3b435b51404eeaad3b435b51404ee, NT hash: 958c8526e4252b277d8d70adbd2ea2ce

Learning

- Get to know about the Volatility framework that is used for memory forensics and analysis, extracting valuable information from memory dumps for cybersecurity investigations.
- Common commands in Volatility include imageinfo, pslist, netscan, hashdump, malfind, and connections, each serving specific analysis purposes.
- Learning Volatility involves understanding memory structures, interpreting output, identifying malicious activity, and correlating findings for comprehensive forensic analysis.