Counting pseudo-Anosovs and fully irreducibles

Inhyeok Choi

Cornell University

53rd Barrett Lectures: Recent Development in Geometric Group
Theory

1/1

Setup

- G: group
- ullet \mathcal{P} : property about group elements

Example

- $G = \mathbb{Z}/4\mathbb{Z}$
- \mathcal{P} = "having order 2"

$$G = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$$

3/1

Finite group

• Basically, we just count.

Example

- $G = \mathbb{Z}$
- \mathcal{P} = "being identity"

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Example

- $G = \mathbb{Z}$
- \mathcal{P} = "being even"

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Example

- $G = \mathbb{Z}$
- \mathcal{P} = "being prime"

$$\mathbb{Z} = \{\ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$$

Setup

- G: group generated by $S \subseteq G$
- \bullet \mathcal{P} : some property
- $\|\cdot\|_S:G\to\mathbb{Z}_{\geq 0}$ gives an exhaustion
- $B_S(n) := \{g \in G : ||g||_S \le n\}$

Problem

$$\lim_{n\to+\infty}\frac{\#B_S(n)\cap\mathcal{P}}{\#B_S(n)}=?$$

8/1

Disclaimer

- Only cares about finitely generated groups
- Focuses on the word metrics

Missing many important work by Maher, Yang, ...

Groups

$$F_2$$
, $Mod(\Sigma)$, $Out(F_N)$, $F_2 \times F_3$

Sorry for: $\pi_1(\Sigma)$, braid groups, CAT(0) (cubical) groups, 3-manifold groups, small cancellation groups, handlebody group, Torelli group, Aut(F_N), ...

Elliptics, parabolics, loxodromics

Dani '05, Gekhtman-Taylor-Tiozzo '18 Let S be a finite generating set of F_2 . Then

$$\lim_{n\to+\infty}\frac{\#\big(B_{\mathcal{S}}(n)\cap\{\text{loxodromics}\}\big)}{\#B_{\mathcal{S}}(n)}=1.$$

Something like F_2

• $PSL(2,\mathbb{Z}) \simeq \mathbb{Z}_2 * \mathbb{Z}_3$

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right)$$

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

$$\left(\begin{array}{cc}2&5\\1&3\end{array}\right)$$

Hyperbolic group

- $G \curvearrowright X$, G: hyperbolic, X: hyperbolic
- Elliptics, parabolics, loxodromcis

Dani '05, Gekhtman-Taylor-Tiozzo '18

Let G be a word hyperbolic group with a non-elementary action on a Gromov hyperbolic space X. Let S be a finite generating set of G. Then

$$\lim_{n \to +\infty} \frac{\# \big(B_S(n) \cap \{ \operatorname{loxodromics} \} \big)}{\# B_S(n)} = 1.$$

In fact, there exists $\epsilon > 0$ such that

$$\frac{\#\{g\in B_{\mathcal{S}}(n):\tau_X(g)\geq \epsilon n\}}{\#B_{\mathcal{S}}(n)}\geq 1-e^{-\epsilon n}\quad (n\gg 1).$$

$F_2 \times F_3$

- $G \curvearrowright X$, G: f.g. group, X: hyperbolic
- Weakly hyperbolic groups (Maher-Tiozzo '18)
- $F_2 \times F_3 \curvearrowright F_2 : (a,b) \cdot c := a \cdot c$

Gekhtman-Taylor-Tiozzo '18 (cf. Kim)

Consider the action of $G = F_2 \times F_3$ on the Cayley graph of $Cay(F_2)$. Then \exists finite generating sets S and S' of G such that

$$\lim_{n \to +\infty} \frac{\# \big(B_{S}(n) \cap \{ \text{loxodromics} \} \big)}{\# B_{S}(n)} = 1,$$

$$\lim_{n \to +\infty} \frac{\# \big(B_{S'}(n) \cap \{ \text{loxodromics} \} \big)}{\# B_{S'}(n)} < 1.$$

Takeaway

- Genericity problem is not QI-invariant in general.
- 2 Even when the QI map is *G*-equivariant, or even when fixing the group and changing the word metrics.

Interlude: $\mathbb{Z} * \mathbb{Z}^2$

- Right-angled Artin groups, or more generally relatively hyperbolic groups
- Gekhtman-Taylor-Tiozzo '20, Yang '20
- More generally, groups with strongly contracting elements in the word metric

$\mathsf{Mod}(\Sigma)$

- $\mathsf{Mod}(\Sigma) := \mathsf{Homeo}^+(\Sigma) / \mathsf{Homeo}_0(\Sigma)$
- Infinite
- Finitely generated
- Resembles hyperbolic group? (non-amenability, Tits alternative, etc.)
- Not (relatively) hyperbolic (thick)
- HHG?

$\mathsf{Mod}(\Sigma)$

Nielsen-Thurston '40s, '70s

Finite-order / reducible / pseudo-Anosov

Folklore conjecture (Farb '06)

In $Mod(\Sigma)$, pseudo-Anosovs are generic elements.

Answered by Rivin '07, Maher '11, somehow by C. '24, C. '24, C. '24, C. '25

$Out(F_N)$

- $\operatorname{Out}(F_N) = \operatorname{Aut}(F_N) / \operatorname{Inn}(F_N)$
- Resembles hyperbolic group? or $SL(n, \mathbb{Z})$?
- Not (relatively) hyperbolic, not an HHG

Bestvina-Handel '92

Finite-order / reducible / irreducible / fully irreducible

$Out(F_N)$

??

Is a typical outer automorphism fully irreducible?

Answered by Sisto '16, Maher-Tiozzo '18, somehow by C. '25

Best scenario for some S

C. '24

Let G be a finitely generated group with a non-elementary action on a Gromov hyperbolic space X.

Then \exists finite generating set S of G and $\epsilon > 0$ such that

$$\frac{\{g \in B_S(n) : \tau_X(g) \le \epsilon n\}}{\#B_S(n)} \lesssim e^{-\epsilon n}.$$

Ingredient: ping-pong argument + Gouëzel's pivoting technique '22

$Mod(\Sigma)$ with any S

C. '25

For any finite generating set S of $Mod(\Sigma)$, we have

$$\frac{B_{\mathcal{S}}(n) \cap \{\text{non-pseudo-Anosovs}\}}{\#B_{\mathcal{S}}(n)} \lesssim n^{-k}. \quad (k = 1, 2, \ldots)$$

Ingredient: weakly contracting property of pseudo-Anosovs (Behrstock '06, Duchin-Rafi '09)

$Out(F_N)$ with any S

C. '25

For any finite generating set S of $Out(F_N)$, we have

$$\lim_{n\to+\infty}\frac{B_{\mathcal{S}}(n)\cap\{\text{fully irreducibles}\}}{\#B_{\mathcal{S}}(n)}=1$$

Ingredient: weak proper discontinuity (WPD property) of fully irreducibles (Bestvina-Feighn '10, '14)

More than 3 theorems

- More specific info: principal stratum/atoroidal/triangular
- Many subgroups: Torelli group, handlebody group, ...
- Group extension: Braid group (!)
- Quasi-isometries: CAT(0) groups, groups QI to (some) 3-manifold groups, ...

Behrstock's inequality

Geometric separation

Geometric separation

	X	f(D, M)	Density of non-loxodromics
F_2	$Cay(F_2)$	constant in M	$\lesssim \lambda^{-n}$ for some $\lambda > 1$
$Mod(\Sigma)$	$\mathcal{C}(\Sigma)$	linear in M	$\lesssim n^{-k} \; (\forall k)$
$Out(F_N)$	\mathcal{FF}_{N}	finite	tends to 0
Out (F_N) $F_2 \times F_3$	$Cay(F_2)$	$+\infty$	can be bounded away from 0

Questions

What is f(D, M) for $Out(F_N)$? for other AHG?

Are pseudo-Anosovs exponentially generic in $Mod(\Sigma)$?

Are Morse elements generic in hyperbolic-like groups?

Thank you very much!

