

Quiz #6 Solutions

Monday, November 6 2017

Problem 1.

(1)

$$\sigma^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$$

$$\sigma^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 2 & 4 \end{pmatrix}$$

$$\sigma^{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$$

$$\sigma^{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

(2) The identity element in the group S_5 is the identical permutation

$$id = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array}\right) .$$

We see from our answer to the previous answer that the smallest positive integer $n \in \mathbb{N}$ such that $\sigma^n = id$ is n = 6. Thus, σ has order 6 in S_5 .

- (3) σ is a generator of S_5 provided that $\langle \sigma \rangle = S_5$. However, we know from the previous question that $\langle \sigma \rangle$ has 6 elements. Indeed: $\langle \sigma \rangle = \{id, \sigma, \dots, \sigma^5\}$. Therefore we see that $\langle \sigma \rangle \neq S_5$, because S_5 has more than 6 elements: it has 5! = 120 elements. *Note:* S_5 is not a cyclic group, so it cannot be generated by one element.
- (4) σ has two orbits: $\{1, 3\}$ and $\{2, 4, 5\}$.

(5)
$$\sigma = (1,3)(2,5,4) = (2,5,4)(1,3)$$
.

(6) $\sigma = (1,3)(2,4)(2,5)$ (there are other possibilities).

(7) Since σ is a product of 3 transpositions, and 3 is an odd number, σ has signature -1. Alternatively: since σ has 2 orbits, its discriminant is $disc(\sigma) = 5 - 2 = 3$, therefore the signature of σ is $(-1)^3 = -1$.

Problem 2. The map

$$sign: S_n \to \{-1, 1\}$$

$$\sigma \mapsto sign(\sigma)$$

is well-defined as a map from S_n to $\{-1, 1\}$. In order to show that it is a group homomorphism, we need to show that:

$$\forall \sigma \in S_n \ \forall \tau \in S_n \quad sign(\sigma \tau) = sign(\sigma) sign(\tau)$$
.

Let σ and τ be any two elements of S_n ; let us prove that $sign(\sigma \tau) = sign(\sigma)sign(\tau)$.

We know that σ and τ can be both be written as a product of transpositions:

$$\sigma = s_1 s_2 \dots s_N$$
$$\tau = t_1 t_2 \dots t_M$$

where N and M are nonnegative integers, and s_1, s_2, \ldots, s_N as well as t_1, t_2, \ldots, t_M are transpositions.

By definition of the signature,

$$sign(\sigma) = (-1)^N$$

 $sign(\tau) = (-1)^M$.

Taking the product of σ and τ , we see that it can be written as a product of transpositions as:

$$\sigma \tau = s_1 s_2 \dots s_N t_1 t_2 \dots t_M$$

There are N + M transpositions in this product, therefore:

$$\begin{aligned} sign(\sigma\tau) &= (-1)^{N+M} \\ &= (-1)^{N} (-1)^{M} \\ &= sign(\sigma) sign(\tau) \; . \end{aligned}$$

This was the identity required, therefore we have successfully proved that $sign: S_n \rightarrow \{-1, 1\}$ is a group homomorphism.