Deep Generative Models

Lecture 4

Roman Isachenko

Moscow Institute of Physics and Technology

2023. Autumn

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] o \max_{\phi, \theta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$, Monte Carlo estimation

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta})$, reparametrization trick

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}$$

$$pprox
abla_{m{\phi}} \log p(\mathbf{x}|g(\mathbf{x}, m{\epsilon}^*, m{\phi}), m{ heta}) -
abla_{m{\phi}} \mathsf{KL}$$

Variational assumption

$$\begin{split} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \\ \mathbf{z} &= g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{split}$$

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$.

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \theta)$ makes the model expressive, but posterior collapse is possible.
- ► PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

KL annealing

$$\mathcal{L}(\phi, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Start training with $\beta=0$, increase it until $\beta=1$ during training.

Free bits

Ensure the use of less than λ bits of information:

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))).$$

This results in $KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \geq \lambda$.

VAE objective

$$\log p(\mathbf{x}|\theta) \geq \mathcal{L}(q,\theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \log \frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x},\phi)} \rightarrow \max_{q,\theta}$$

IWAE objective

$$\mathcal{L}_{K}(q, \theta) = \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{K} \sim q(\mathsf{z}|\mathsf{x}, \phi)} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathsf{x}, \mathsf{z}_{k}|\theta)}{q(\mathsf{z}_{k}|\mathsf{x}, \phi)} \right) o \max_{\phi, \theta}.$$

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta) \ge \mathcal{L}(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}$ is bounded.
- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- Gradient signal becomes really small, training is complicated.
- ▶ IWAE is a standard quality measure for VAE models.

Outline

1. Normalizing flows (NF)

2. Forward and Reverse KL for NF

3. Linear flows

Outline

1. Normalizing flows (NF)

2. Forward and Reverse KL for NF

3. Linear flows

Likelihood-based models so far...

Autoregressive models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta})$$

- tractable likelihood,
- no inferred latent factors.

Latent variable models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

- latent feature representation,
- intractable likelihood.

How to build model with latent variables and tractable likelihood?

Generative models zoo

Normalizing flows prerequisites

Jacobian matrix

Let $f: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let **x** be a random variable with density function $p(\mathbf{x})$ and $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, **invertible** function (diffeomorphism). If $\mathbf{z} = f(\mathbf{x})$, $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$, then

$$p(\mathbf{x}) = p(\mathbf{z})|\det(\mathbf{J}_f)| = p(\mathbf{z})\left|\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)\right| = p(f(\mathbf{x}))\left|\det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$
$$p(\mathbf{z}) = p(\mathbf{x})|\det(\mathbf{J}_g)| = p(\mathbf{x})\left|\det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right)\right| = p(g(\mathbf{z}))\left|\det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right)\right|.$$

Jacobian determinant

Inverse function theorem

If function f is invertible and Jacobian matrix is continuous and non-singular, then

$$\mathbf{J}_f = \mathbf{J}_{g^{-1}} = \mathbf{J}_g^{-1}; \quad |\det(\mathbf{J}_f)| = rac{1}{|\det(\mathbf{J}_g)|}.$$

- **x** and **z** have the same dimensionality (\mathbb{R}^m) .
- $f(\mathbf{x}, \boldsymbol{\theta})$ could be parametric function.
- Determinant of Jacobian matrix $\mathbf{J} = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$ shows how the volume changes under the transformation.

Fitting normalizing flows

MLE problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x}, \boldsymbol{\theta})) \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \to \max_{\boldsymbol{\theta}}$$

Composition of normalizing flows

Theorem

Diffeomorphisms are **composable** (If $\{f_k\}_{k=1}^K$ satisfy conditions of the change of variable theorem, then $\mathbf{z} = f(\mathbf{x}) = f_K \circ \cdots \circ f_1(\mathbf{x})$ also satisfies it).

$$\begin{aligned} \rho(\mathbf{x}) &= \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f_K}{\partial f_{K-1}} \dots \frac{\partial f_1}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(f(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial f_k}{\partial f_{k-1}} \right) \right| = \rho(f(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{f_k}) \right| \end{aligned}$$

Normalizing flows (NF)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data ${\bf x}$ to the noise ${\bf z}$.

- Normalizing means that the inverse flow takes samples from $\pi(\mathbf{x})$ and normalizes them into samples from the density $p(\mathbf{z})$.
- **Flow** refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\mathbf{z} = f_{\mathcal{K}} \circ \cdots \circ f_1(\mathbf{x}); \quad \mathbf{x} = f_1^{-1} \circ \cdots \circ f_{\mathcal{K}}^{-1}(\mathbf{z}) = g_1 \circ \cdots \circ g_{\mathcal{K}}(\mathbf{z})$$

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_{\mathcal{K}} \circ \cdots \circ f_1(\mathbf{x})) + \sum_{k=1}^{K} \log |\det(\mathbf{J}_{f_k})|,$$

where $\mathbf{J}_{f_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

Note: Here we consider only **continuous** random variables.

Normalizing flows

Example of a 4-step flow

Flow log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

What is the complexity of the determinant computation?

What we need:

- efficient computation of the Jacobian matrix $\mathbf{J}_f = \frac{\partial f(\mathbf{x}, \theta)}{\partial \mathbf{x}}$;
- \triangleright efficient inversion of $f(\mathbf{x}, \boldsymbol{\theta})$;
- loss function to minimize.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Outline

1. Normalizing flows (NF)

2. Forward and Reverse KL for NF

3. Linear flows

Forward KL vs Reverse KL

Forward KL ≡ MLE

$$\begin{aligned} \mathsf{KL}(\pi||p) &= \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x} \\ &= -\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x}|\boldsymbol{\theta}) + \mathsf{const} \to \min_{\boldsymbol{\theta}} \end{aligned}$$

Forward KL for NF model

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \\ \mathcal{K} L(\pi||p) &= -\mathbb{E}_{\pi(\mathbf{x})} \left[\log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \right] + \text{const} \end{split}$$

- ▶ We need to be able to compute $f(\mathbf{x}, \theta)$ and its Jacobian.
- ▶ We need to be able to compute the density p(z).
- We don't need to think about computing the function $g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$ until we want to sample from the flow.

Forward KL vs Reverse KL

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for NF model (LOTUS trick)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) + \log |\det(\mathbf{J}_f)| = \log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)|$$

$$KL(p||\pi) = \mathbb{E}_{p(\mathbf{z})} [\log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)| - \log \pi(g(\mathbf{z}, \boldsymbol{\theta}))]$$

- ▶ We need to be able to compute $g(\mathbf{z}, \theta)$ and its Jacobian.
- We need to be able to sample from the density $p(\mathbf{z})$ (do not need to evaluate it) and to evaluate(!) $\pi(\mathbf{x})$.
- ▶ We don't need to think about computing the function $f(x, \theta)$.

Flow KL duality

Theorem

Fitting NF model $p(\mathbf{x}|\theta)$ to the target distribution $\pi(\mathbf{x})$ using forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\theta)$ to the base $p(\mathbf{z})$ using reverse KL:

$$\underset{\theta}{\arg\min} \ KL(\pi(\mathbf{x})||p(\mathbf{x}|\theta)) = \underset{\theta}{\arg\min} \ KL(p(\mathbf{z}|\theta)||p(\mathbf{z})).$$

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Flow KL duality

Theorem

$$\underset{\boldsymbol{\theta}}{\arg\min} \ KL(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \underset{\boldsymbol{\theta}}{\arg\min} \ KL(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

Proof

- ightharpoonup $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}), \ \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta});$

$$\log p(\mathbf{z}|\boldsymbol{\theta}) = \log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)|;$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|.$$

$$\begin{aligned} \mathsf{KL}\left(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})\right) &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \big[\log p(\mathbf{z}|\boldsymbol{\theta}) - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \big[\log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)| - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \big[\log \pi(\mathbf{x}) - \log |\det(\mathbf{J}_f)| - \log p(f(\mathbf{x},\boldsymbol{\theta}))\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \big[\log \pi(\mathbf{x}) - \log p(\mathbf{x}|\boldsymbol{\theta})\big] = \mathsf{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})). \end{aligned}$$

Outline

1. Normalizing flows (NF

2. Forward and Reverse KL for NF

3. Linear flows

Jacobian structure

Normalizing flows log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

The main challenge is a determinant of the Jacobian matrix.

What is the $det(\mathbf{J})$ in the following cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. Let z be a permutation of x.
- 2. Let z_j depend only on x_j .

$$\log \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{i=1}^{m} \frac{\partial f_j(x_j, \boldsymbol{\theta})}{\partial x_j} \right| = \sum_{i=1}^{m} \log \left| \frac{\partial f_j(x_j, \boldsymbol{\theta})}{\partial x_j} \right|.$$

3. Let z_i depend only on $\mathbf{x}_{1:i}$ (autoregressive dependency).

Linear flows

$$z = f(x, \theta) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

In general, we need $O(m^3)$ to invert matrix.

Invertibility

- ▶ Diagonal matrix O(m).
- ▶ Triangular matrix $O(m^2)$.
- It is impossible to parametrize all invertible matrices.

Invertible 1x1 conv

 $\mathbf{W} \in \mathbb{R}^{c \times c}$ - kernel of 1x1 convolution with c input and c output channels. The computational complexity of computing or differentiating $\det(\mathbf{W})$ is $O(c^3)$. Cost to compute $\det(\mathbf{W})$ is $O(c^3)$. It should be invertible.

Linear flows

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_f = \mathbf{W}^T$$

Matrix decompositions

LU-decomposition

$$W = PLU$$
,

where **P** is a permutation matrix, **L** is lower triangular with positive diagonal, **U** is upper triangular with positive diagonal.

QR-decomposition

$$W = QR$$

where \mathbf{Q} is an orthogonal matrix, \mathbf{R} is an upper triangular matrix with positive diagonal.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1×1 Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

Summary

- ► Change of variable theorem allows to get the density function of the random variable under the invertible transformation.
- Normalizing flows transform a simple base distribution to a complex one via a sequence of invertible transformations with tractable Jacobian.
- Normalizing flows have a tractable likelihood that is given by the change of variable theorem.
- We fit normalizing flows using forward or reverse KL minimization.
- Linear flows try to parametrize set of invertible matrices via matrix decompositions.