

MGMT59000 Machine Learning

Seonkyu Kim Yu-Hui Lin

Table of contents

01

Project Intro

Background description and project goal

02

Data Preparation

Data preprocessing and feature engineering

03

Data Analysis

Model building, selection, and comparison

Performance Evaluation

Model prediction results

Project Intro

Background description and project goal

Background

Project Goal

Apply machine learning practice to help Walmart better forecast future product sales

Scope

Future 28-day daily product sales of 10 stores in California, Texas, and Wisconsin

Datasets

Data Preparation

Data preprocessing and feature engineering

Supervised Machine Learning

Features

- 5-year historical prices and sales
- Events and context of products

Predicted Sales

- Forcasting horizon: 28 days ahead
- Loss function: Mean square error

Feature Processing

Data Analysis

Model building, selection, and comparison

Model Comparison

		Gradient Boosting	Transformer	Ensemble
:	Structure	 10 Models 1-1913d Training 1914-1941d Validation Iterations=150 Learning rate=0.01 	 10 Models 1885-1913d Training 1914-1941d Validation Attention heads=12 Dropout=0.2 	Two models combined
(v	MSE validation)	6.23-9.38	0.47-3.92	-
	Private Score*	2.5986	0.90539	MAX: 1.42651 AVG: 1.5558 MIN: 3.11345
			on the submission score on Kagg value for all products scores 5	- '

Another Approach

Another Approach (Result)

DNN

Private Score = 1.5520

LSTM

Private Score = 0.6860

1D_CNN

Private Score = 1.0079

Transformer

Private Score = 3.6327

Performance Evaluation

Model prediction results

Forecasted Sales

Daily Sales for Product B

Conclusion

Thanks!

Do you have any questions?

