

Department of Computer Science and Engineering
Data Science

Department of Computer Science and Engineering Data Science

Academic Year: 2024-2025 Name of Student: Annsh Yadav

Semester: VI Student ID:22107012

Class / Branch: CSE Data Science Date Of Performance: 03/04/2025 Subject: ML lab Date Of Submission:03/04/2025

Name of Instructor: Prof. Ujwala Pagare

Experiment No. 9

Aim:- To implement the Feature Selection technique for dimensionality reduction using python.

Program:-

#Import required libraries

import time

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib.pyplot import figure

import seaborn as sns

#Load the data

data = pd.read_csv('datacancer.csv')

data.head()

Department of Computer Science and Engineering
Data Science

ćs D	imp imp imp fro imp #Lo dat	poort time poort numpy poort pandas poort matplo pom matplotl poort seabor pad the dat	s as pd otlib.pyplo lib.pyplot : rn as sns ta								
₹		4.4	444-		tovtura mass	norimator mass					co
		10	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smootnness_mean	compactness_mean	concavity_mean	points
	0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	points 0.
	0										points
	1	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.
	1 2	842302 842517	м м	17.99 20.57	10.38 17.77	122.80	1001.0 1326.0	0.11840 0.08474	0.27760 0.07864	0.3001 0.0869	0. 0.
	1 2 3	842302 842517 84300903	м м м	17.99 20.57 19.69	10.38 17.77 21.25	122.80 132.90 130.00	1001.0 1326.0 1203.0	0.11840 0.08474 0.10960	0.27760 0.07864 0.15990	0.3001 0.0869 0.1974	0. 0. 0.

#Get feature names

col = data.columns

print(col)

#Target variable

y = data.diagnosis

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

list = ['Unnamed: 32','id','diagnosis']

x = data.drop(list,axis = 1)

x.head()

#Visualize the class labels

#ax = sns.countplot(y,label="Count") # M = 212, B = 357

sns.countplot(x=y, label="Count")

B, M = y.value_counts()

print('Number of Benign: ',B)

print('Number of Malignant : ',M)

Department of Computer Science and Engineering
Data Science

#Correlation map

f,ax = plt.subplots(figsize=(18, 18))

sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)

Department of Computer Science and Engineering
Data Science

drop_list1 = ['perimeter_mean','radius_mean','compactness_mean','concave
points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst',
'compactness_worst','concave points_worst','compactness_se','concave
points_se','texture_worst','area_worst']

 $x_1 = x.drop(drop_list1,axis = 1)$

x_1.head()

#After dropping features, we will create a correlation matrix again as shown below:

#Correlation heatmap

f,ax = plt.subplots(figsize=(14, 14))

sns.heatmap(x_1.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

#Split the data

x_train, x_test, y_train, y_test = train_test_split(x_1, y, test_size=0.3,

random_state=42)

#Now, let's train our classifier and find its accuracy score:

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import f1_score,confusion_matrix

from sklearn.metrics import accuracy_score

#Build a random forest classifier with n_estimators=10 (default)

clf_rf = RandomForestClassifier(random_state=43)

clr_rf = clf_rf.fit(x_train,y_train)

ac = accuracy_score(y_test,clf_rf.predict(x_test))

print('Accuracy is: ',ac)

cm = confusion_matrix(y_test,clf_rf.predict(x_test))

sns.heatmap(cm,annot=True,fmt="d")

Department of Computer Science and Engineering
Data Science

Conclusion: Thus, we have implemented the Feature Selection technique for dimensionality reduction using Python.

A.P. SHAH INSTITUTE OF TECHNOLOGY

A.P. SHAH INSTITUTE OF TECHNOLOGY

A.P. SHAH INSTITUTE OF TECHNOLOGY