# Register Transfer and Microoperations

### Digital system : -

- A digital system is an interconnection of digital hardware modules.
- The modules are constructed from digital components such as registers, decadors, arthmetic elements, and control looks
- The various modules are interconnected with common date and control paths to form a digital computer system.

#### Microoperation:

- Register contains data.
- The operations executed on data stored in registers are celled micro operations.
- The result of the operation may replace the previous binary information of a register or may be transferred
  - Example of micro operations:
    - shift
    - count
    - clear
    - load

# Register transfer Language: -

The symbolic notation wed to describe the mion man

#### Register Transfer

Different types of register: -

- MAR: Memory Address Register
- PC: Program Counter
- IR: Instruction Keyister
- RI, Rz: Processon register.

Information transfer from one register to another is designated in symbolic form by means of a replacement operator.

denotes a transfer of the content of Register R, into register R2.



#### Control function

A control function is a Boolean variable that is equal to 0 or 1. The control function is included in the statement as follows:

P: R2 + R,

The transfer operation be executed by the hardware only if P=1.



Transfer occurs here

((b) Timing diagram)

- The n (no. of bits) outputs of register R, and connected to the n imputs of register R2.

- Register R2 has a local imput that activated by the control variable P.

#### Bus:

A bus consists of a set of common lines, one for each bit of a register, through which binary information is transferred one at a time

Construction of bus system with multiplexers:



each to produce an n-line common bus

Number of multipleness = n

The size of multiplex and must be KXI

## Three-state Bus Buffers

A bus system can be constructed with three-state gates in stead of multiplexers. A three-state gate is a digital circuit that exhibits three states. Two of the states are signals (1 or 0) and third state is a high-impedance state.

The high-impledance state behaves like a open circuit.



(Graphic symbol for three-state buffer)



(Bus line with three-state buffer)

#### Memory Transfer:

#### Operations:

- 1. Read: The transfex of information from a memory word to the outside environment.
- 2. write: The transfer of new information to be stored into the memory.

#### Memory real:

Reed: DR + M[AR]

where: DR > Data Register

M & Memory word

AR -> Address Register

#### Memory write:

write: M[AR] + R,

#### Types of Microaperations

- 1. Register transfer microoperations
- 2. Arithmetic microsperations
- 3. Logic microoperations
- 4. Shift microoperation

## Arithmetic Microoperation

The besic arithmetic microoperations are addition, substrattion, increment federicment,

Symbolic designation

#### Description

 $R_3 \leftarrow R_1 + R_2$  — Contents of  $R_1$  plus  $R_2$  transferred to  $R_3$   $R_3 \leftarrow R_1 - R_2$  — Contents of  $R_1$  minus  $R_2$  transferred to  $R_2$   $R_2 \leftarrow \overline{R_2}$  — Complement the contents of  $R_2$  (1's coo)  $R_2 \leftarrow \overline{R_2} + 1$  — 2's complement of Constants of  $R_2$  (suspect that  $R_1 \leftarrow R_1 + 1$  — increment  $R_1 \leftarrow R_1 + 1$  — increment

#### 4-bit binary adder: -



where Co - input Carry

Cy - output Carry

5 - output

An n-bit binary adder requires n full adders.

#### 4-bit adder-Subtractor: -



When M=0 the circuit is adder

M=1 the circuit is subtractor

$$B \oplus O = B$$
 $B \oplus I = B'$ 

#### Anithmetre Circult



4-bit arithmetic circuit

## Arithmetic Circuit Function Table

| select |    |     | Input                |                                    |                          |  |  |
|--------|----|-----|----------------------|------------------------------------|--------------------------|--|--|
|        |    | Cin | Y                    | D= ++7+cin                         | Microoperation           |  |  |
|        | 0  |     | В                    | D = A+R                            | AL                       |  |  |
|        | 0  |     | 8                    | D= ATE+1                           | Add with carry           |  |  |
|        | 1  |     | To the second second | D= A+E                             | Subtract with berso      |  |  |
| •      | 0  | .0  | 0                    | $D = A + \overline{e} + 1$ $D = A$ | Subtract                 |  |  |
|        | 0  |     | 0                    | D = 14+1                           | Transfer A               |  |  |
|        | 1  |     | -1.                  | D= A-1                             | Increment A  Decrement A |  |  |
|        | -1 |     | -1                   | D= A                               | Transfer A               |  |  |

Note: when  $S_1S_0 = 11$ , all 1's are inserted to into the y imput of the adder to produce the decrement operation D = A - 1, because a number with all 1's is equal to 2's complete of 1(2's) complete operation is 1111). F = A + 2's complement = A - 1

## Logic Microoperation

Logic microoperation specify binary operations for strings of hits stoned in registers.

Truth tables for 16 Functions of Two Variables

| ~ | • |   | -  | -  | _  |    |    |    |   |    | 7 . | wo 1 | سام | ble | 1 |   |   |
|---|---|---|----|----|----|----|----|----|---|----|-----|------|-----|-----|---|---|---|
| _ | 7 |   | -1 | 12 | .3 | Fy | F5 | Fr | F | Fg | F,  | Fio  | F.  | . E | - | - |   |
|   |   |   |    |    |    |    |    |    |   |    |     |      |     |     |   |   |   |
| 0 | 1 | 0 | •  | •  | •  | 1  | 1  | 1  | 1 | 0  | 0   | 0    | 0   | 1   | 1 | 1 |   |
| 1 | 0 | 0 | 0  | 1  | 1  | •  | 0  | 1  | 1 | •  | 0   | 1    | 1   |     | 0 | 1 |   |
| 1 | 1 | 0 | 1  | 6  | 1  | 0  | 1  | 0  | 1 | 0  | 1   | 0    | 1   | 0   | 1 | 0 | 1 |

Sinteen Lopic microoperations

| Boolean Function | Microgeration  |               |
|------------------|----------------|---------------|
|                  | (Ageneral des) | Name          |
| Fo = 0           | Feo            |               |
| F1 = 27          |                | Clear         |
| F2 = 2y'         | FEAAB          | AND           |
|                  | FEARE          | - AMD         |
| F2 = 2           | FEA            |               |
| F, ==')          | FERRE          | Transfer M    |
| F-= Y            | Fee            |               |
| to = = Ey        | FE NOB         | Transfer &    |
| F3 = 2+1         |                | Feelwive - OR |
|                  | F+ AVB         | OR.           |
| Fo = (sety)      | FE AVE         | Noc .         |
| 5 = (AD)         | F + ADB        | EX-NOR        |
| hosy'            | F4 E           | complement &  |
| Fil = x+y1       | FE AVE         | - The mean    |

#### Hardware Implementation of logic microoperations

There are 16 logic microoperations, most computers use only for - AND, OR, XOR and complement - from which all others can be derived.



| S, S.            | output \ | operation  |  |  |  |  |  |
|------------------|----------|------------|--|--|--|--|--|
| 00               | E = A NB | AND        |  |  |  |  |  |
| 0 1              | E = A VB | OR         |  |  |  |  |  |
| 10               | E = A DB | XOR        |  |  |  |  |  |
| 1.1              | E = A    | Complement |  |  |  |  |  |
|                  |          |            |  |  |  |  |  |
| (Function table) |          |            |  |  |  |  |  |

- 1. Logical shift: A logical shift is one that transfer o through the serial input.
- 2. Circular shift: The circular shift circulates the bits of the register around the two ends without toes of information.
- 3. Arithmetic shift: An arithmetic shift is a microeperation that shifts a signed binary as number
  to the left or right.



Symbolic designation

Reshilt R

Shift-left register R

Shift-night register R

Shift-night register R

Circular shift-left Register R

Recist R

Circular shift-night Register R

Reach R

Recist R



| Fun    | nction tal | ble            |     |                |  |  |
|--------|------------|----------------|-----|----------------|--|--|
| select | 02         | output         |     |                |  |  |
| S      | Ho         | HI             | H2_ | H3             |  |  |
| 0      | IR         | Ao             | A,  | A <sub>2</sub> |  |  |
| 1      | A          | A <sub>2</sub> | A   | IL.            |  |  |