

Summative Capstone

Data Analysis of Universal Studios Theme Parks

Contents:

- 1. Introduction
- 2. Objective
- 3. ER Diagram
- 4. Methodology
- 5. Process Workflow
- 6. Results
- 7. Conclusions
- 8. Appendix

1. Introduction

- Who are you?:
 - Ex-Operations Team Member in Universal Studios Singapore
 - Analyst for Universal Studios Theme Parks

2. Objective

- Target audience:
 - Business Development Managers
 - Guest Service Managers
- Business case and Goals:
 - Constantly improve theme park quality
 - To continue attract visitors
 - Increase financial profit
 - To know which park merchandise is currently popular
- How will your prediction work help?
 - Give insights by analysing guest reviews and their links to higher or lower rating results

3. ER Diagram:

4.1. Methodology

- Datasets:
 - Kaggle
 - https://www.kaggle.com/dwiknrd/ reviewuniversalstudio
 - 50,000+ reviews
 - 3 Universal Studios branches (Florida, Singapore and Japan)
- Data Analysis Tools:
 - MS SQL
 - Python
 - Power BI

4.2. Methodology

- Models:
 - Supervised Machine Learning Model
 - Random Forest
 - Logistic Regression
 - Support Vector Machines (SVM)
 - Naive Bayes
 - Decision Tree
- Metrics:
 - F1 Score

5.1. Process Workflow

- Data Preparation
 - Data Pre-Processing and Cleaning
 - Remove punctuations, rare and common occurring words, etc
 - Natural Language Process (NLP)

1. Tokenizing

Break text into sentences, words, or other units

2. Removing Stop Words

• e.g. "if," "but," "or," etc

3. Normalizing words

- Condensing all forms of word into a single form
- Using Stemming or Lemming method

4. Vectorizing

• Turning text into numerical representation

5.2. Process Workflow

- EDA
 - Guest rating are very skewed
 - Conducted sentiment analysis
 - Used mean polarity score from sentiment analysis to split and decrease skewness

- 0 = Negative Sentiment
- 1 = Positive Sentiment

5.3. Process Workflow

Data Analysis (Word Cloud)

Negative Sentiment:

Positive Sentiment:

5.4. Process Workflow

- ML Model Training & Rvaluation
 - Logistic Regression Best Model

5.5. Process Workflow

• Hyperparameter fine-tuning for Logistic Regression:

```
# Hyperparameter fine-tuning for Logistic Regression on multi-class dataset
parameters = {'penalty': ['11', '12', 'elasticnet', 'none'],
              'C': np.logspace(-2, 2, 5)}
gs_clf = RandomizedSearchCV(LogisticRegression(multi_class='ovr', max_iter= 100000),
                      parameters,
                      cv=5.
                      # scoring='f1 macro',
                      scoring='roc auc ovr',
                      n jobs=-1
  = gs_clf.fit(X_test_clean, y_test)
print(gs clf.best estimator )
print(gs_clf.best_params_)
print(gs_clf.best_score_)
print("'{}' gives the best F1-score at: {:.2%}".format(gs_clf.best_params_, gs_clf.best_score_))
```

6.1. Results

- ML model Test & Evaluation
 - F1 Score: **68.09** %

```
LogisticRegression(C=0.1, max_iter=100000, multi_class='ovr', penalty='none') {'penalty': 'none', 'C': 0.1} 0.6809420490856961 '{'penalty': 'none', 'C': 0.1}' gives the best F1-score at: 68.09%
```

Classification	n report:				
	precision	recall	f1-score	support	
0	0.64	0.57	0.60	4900	
1	0.64	0.70	0.67	5281	
accuracy			0.64	10181	
macro avg	0.64	0.64	0.64	10181	
weighted avg	0.64	0.64	0.64	10181	
Confusion Matrix:					
array([[2797, 2103], [1580, 3701]], dtype=int64)					

6.2. Results

Prediction using observations from Test Model

	Desired Output (Actuals)	Predicted Output
40686	1	1
14285	0	1
25004	0	0
38742	1	1
16573	1	0
5748	0	0
15714	1	1
34726	0	0
21394	0	1
18968	1	1
50064	1	1
33921	1	1
43051	1	0
9798	1	1
7515	1	1
33942	0	1

```
In [131]: x = ['unfortunate weekend stressful experience horrible food worst service outdated park']
    x = clean_text(x)
    vec = Tfidf.transform([x])
    gs_clf.predict(vec)

Out[131]: array([0], dtype=int64)

In [132]: x = ['Best wonderful park']
    x = clean_text(x)
    vec = Tfidf.transform([x])
    gs_clf.predict(vec)

Out[132]: array([1], dtype=int64)
```

7.1. Conclusions

- What are the results and insights from the data analysis?
 - Rides are the main draw for all parks
 - In Florida and Japan, the Harry Potter themed area is most popular
 - In Singapore, Transformer ride is most popular
 - Main reason for low rating is long wait time in queues and lines

7.2. Conclusions

- Recommendations:
 - Constant update, revamp of rides
 - Higher prices and more variety of Harry Potter and Transformer merchandises
 - Live entertainment and Hai Di Lao restaurant style customer services for long queue

8. Appendix

Power BI Dashboards screenshots:

