USN	
 CUNOLOGY NITTE	

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

(An Autonomous Institution affiliated to VTU, Belagavi)
RAIN Sem B.E. (Credit System) Mid Semester Examinations - II, March 2017

16EE105 - BASIC ELELCTRICAL ENGINEERING

	16EE105 – BASIC ELELCTRICAL ENGINEERING	ax. Marks:	20	
tion:	1 Hour			
	Note: Answer any One full question from each Unit.		BT*	
a)	Unit – I A current of 5A flows through a non-inductive resistance in series with a choking	Marks	ы	
16	and across the coil 200V, calculate (i) impedance, reactance and resistance of the coil (ii) the power absorbed by the coil and (iii) the total power. Draw the phaser diagram	4 2	L*4 L*	
The Court of the C	List out any four advantages of a 3-Φ system over a 1-Φ system.	_	_	
	which indicate 50kW. If the power factor of the motor between the factor of	4	L	.3
a)	A resistance of 10Ω , inductive reactance of 8Ω and a capacitive reactance of 15Ω are connected in parallel across a single phase 120V, 50Hz supply. Determine (i) resultant admittance (ii) resultant impedance (iii) total current (iv)	4	. !	L3
b) c)	circuit power factor and (v) power Prove that the sum of emfs at any instant in a 3-Φ system is zero. Prove that the sum of emfs at any instant to measure the 3-Φ power when the	2		L2 L2
5 ,	load is balanced and connected in starr as a			
100 N	Unit – II With a neat sketch, explain the working of an induction type 1-Φ energy meter. A 1- Φ, 4kVA transformer has 400 primary turns and 1000 secondary turns. The A 1- Φ, 4kVA transformer has 60cm². When the primary winding its constant area of the core is 60cm².	e is	4	L2
	net cross sectional area of the secondary winding and (iii) the core (ii) the voltage induced in the secondary winding and (iii) the the core (iii) the voltage induced in the secondary winding and (iii) the core (iii) the voltage induced in the secondary winding and (iii) the core (iii) the	l V	3	L3 L2
	Derive the emf equation of a DC generator. With a neat sketch explain the working of a dynamometer type wattmeter. With a neat sketch explain of a 1- Φ transformer.		4	L2
b)	Derive the emi equation of a flux per pole of 0.02Wb, a DC generator has	an lux	3	L2 L3
	emf of 200V. If the speed is increased to 1100 pm and at the came and emf of 200V. If the speed is increased to 1100 pm and at the came and emf? per pole is reduced to 0.019Wb per pole, what is the induced emf?		-	

Bloom's Taxonomy, L* Level

	USN	
TITUTE OF TEC	HNOLO	OGY, NITTE

5

5

5

NMAM INST

(An Autonomous Institution affiliated to VTU, Belagavi)

11 Sem B.E. (Credit System) Mid Semester Examinations - I, February 2017

16EE105 - BASIC ELELCTRICAL ENGINEERING

Max. Marks: 20 uration: 1 Hour

Note: Answer any One full question from each Unit.

	Unit – I	Marks	ВТ*
(a)	When a certain battery is loaded by a 60Ω resistor, its terminal voltage is 98.4 V. When it is loaded by a 90Ω resistor, its terminal voltage is 98.9V. What load resistance would give a terminal voltage of $90V$?	5	L*4
b)	Derive the condition for transferring maximum power to a resistive load in a pure DC resistive circuit. Also find the maximum power transferred to the load.	5	L2
2. a) b)	Explain the loop/mesh method of analyzing a three mesh, single source, DC resistive circuit to obtain the branch currents. Obtain the Thevenin's equivalent circuit for the network given below between the terminals a and b:	5	L2

Unit - II

- List out the similarities and differences between a magnetic circuit and an electric circuit.
 - The instantaneous value of voltage in a circuit is represented by v= 141.4 sin (120πt - 25°) volts. Find out the (i) maximum value (ii) rms value (iii) average value (iv) phase lag and (v) frequency of the voltage.
- Two coils having 30 and 600 turns respectively are wound side by side on a closed iron circuit of area of cross section 100sq.cm and a mean length of 200cm. Estimate the mutual inductance between the coils if the relative permeability of iron is 2000. If a current of zero amperes grows to 20A in a time of 0.02 seconds in the first coil, find the emf induced in the second coil.
 - b) Prove that the average power supplied to a pure capacitive load over a complete cycle is zero.

BT* Bloom's Taxonomy, L* Level

STATILITY OF	ECHNOLOGY Z		USN	_
-7 Car	1=1			_
≒ \ 50			HNOLOGY, NITTE	
	(An Autonomo	us Institution affilia	ated to VTU, Belagavi)	
ESem-	B. R. Credit System	i) Mid Semester	Examinations - II, October 2017	

17EE105 - BASIC ELECTRICAL ENGINEERING

Duration: 1 Hour

Max. Marks: 20

Note: Answer an	y One full	question	from	each Unit.	

		Unit – 1	Marks	BT:	*
1.	a) b)	Deduce the equation for resultant current in the series RC circuit and plot waveforms of current and voltage. A resistance of 20 Ω , an inductance of 0.2 H and a capacitance of 100 μ F are connected in series across 220-V, 50-Hz mains. Determine the following:	5	L*2	2
		(i) impedance (ii) current, (iii) voltage across R, L and C (iv) power (v) phase angle and p.f.	5	L	3
2.	a)	Derive an expression for line and phase voltages in a star connected 3-phase system.	5	Ī	.3
	b)		5	5	L3
		Unit – II			
3.		Explain power loss in transformers and derive the condition for maximum		5	L2
	b)	With neat diagram explain the construction and working of induction type single phase energy meter.	;	5	L2
4.		Explain the method of measurement of 3-phase power using two wattmeters.	е	5	L2
	b)	secondary winding. The primary is connected to 3000-V, 50-Hz supply. Find the full-load primary and secondary currents, the secondary e.m.f and the maximum flux in the core.		5	L3

BT* Bloom's Taxonomy, L* Level