(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Oktober 2004 (14.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2004/087949\ A2$

(51) Internationale Patentklassifikation⁷:

C12Q 1/68

(21) Internationales Aktenzeichen:

PCT/EP2004/003419

(22) Internationales Anmeldedatum:

31. März 2004 (31.03.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

 103 15 031.5
 2. April 2003 (02.04.2003)
 DE

 103 36 511.7
 8. August 2003 (08.08.2003)
 DE

 103 40 395.7
 2. September 2003 (02.09.2003)
 DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIRS-LAB GMBH [DE/DE]; Winzerlaer Strasse 2a, 07745 Jena (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): RUSSWURM, Stefan [DE/DE]; Von-Hase-Weg 32, 07743 Jena (DE). REIN-HART, Konrad [DE/DE]; Philosophenweg 17, 07743 Jena (DE). SALUZ, Hans-Peter [CH/DE]; Sophienstrasse 7, 07743 Jena (DE). STRAUBE, Eberhard [DE/DE]; Hermann-Löns-Strasse 58, 07745 Jena (DE). ZIPFEL, Peter, F. [DE/DE]; Lauensteinweg 4, 07745 Jena (DE). DEIGNER, Hans-Peter [DE/DE]; Martin-Luther-Strasse 23, 68623 Lampertheim (DE).

- (74) Anwalt: KAISER, Jürgen; Winter Brandl Fürniss Hübner Röss Kaiser Polte - Partnerschaft, Alois-Steinecker-Strasse 22, 85354 Freising (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben. für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, 7W
- (84) Bestimmungsstaaten (soweit nicht anders angegeben. für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts
- mit dem Sequenzprotokollteil der Beschreibung in elektronischer Form getrennt veröffentlicht; auf Antrag vom Internationalen Büro erhältlich

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR RECOGNISING ACUTE GENERALISED INFLAMMATORY CONDITIONS (SIRS), SEPSIS, SEPSIS-LIKE CONDITIONS AND SYSTEMIC INFECTIONS
- (54) Bezeichnung: VERFAHREN ZUR ERKENNUNG AKUTER GENERALISIERTER ENTZÜNDLICHER ZUSTÄNDE (SIRS), SEPSIS, SEPSISÄHNLICHEN ZUSTÄNDEN UND SYSTEMISCHEN INFEKTIONEN
- (57) Abstract: The invention relates to a method for in vitro recognition of SIRS, sepsis and/or sepsis-like conditions. Said method enables the degree of severity to be evaluated and/or assessment during the course of therapy of sepsis and serious infections, especially sepsis-like systemic infections. The invention also relates to the use of recombinant or synthetically produced nucleic acid sequences or peptide sequences derived therefrom as a calibrator in sepsis-assays and/or in order to assess the effect and toxicity in active substance screening and/or in the production of therapeutics in order to prevent and treat SIRS, sepsis, sepsis-like systemic inflammatory conditions and sepsis-like systemic infections.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur in vitro Erkennung von SIRS, Sepsis und/oder sepsisähnlichen Zuständen, das es ermöglicht, den Schweregrad und/oder den therapiebegleitenden Verlauf von Sepsis und schweren Infektionen, insbesondere sepsisähnlichen systemischen Infektionen zu beurteilen. Ferner betrifft die vorliegende Erfindung die Verwendung von rekombinant oder synthetisch hergestellten Nukleinsäuresequenzen oder davon abgeleiteten Peptidsequenzen als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika zur Vorbeugung und Behandlung von SIRS, Sepsis, sepsisähnlichen systemischen entzündlichen Zuständen und sepsisähnlichen systemischen Infektionen.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Verfahren zur Erkennung akuter generalisierter entzündlicher Zustände (SIRS), Sepsis, sepsisähnlichen Zuständen und systemischen Infektionen

Die vorliegende Erfindung betrifft ein Verfahren zur in vitro Erkennung akuter generalisierter entzündlicher Zustände (SIRS) gemäß Anspruch 1 oder Anspruch 30, sowie die Verwendung von rekombinant oder synthetisch hergestellten Nukleinsäuresequenzen oder davon abgeleiteten Peptidsequenzen gemäß Anspruch 57.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur in vitro Erkennung von Sepsis und/oder sepsisähnlichen Zuständen gemäß Anspruch 2 oder Anspruch 31, sowie die Verwendung von rekombinant oder synthetisch hergestellten Nukleinsäuresequenzen oder davon abgeleiteten Peptidsequenzen gemäß Anspruch 58.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur in vitro Erkennung von schwerer Sepsis gemäß Anspruch 3 oder Anspruch 32, sowie die Verwendung von rekombinant oder synthetisch hergestellten Nukleinsäuresequenzen oder davon abgeleiteten Peptidsequenzen gemäß Anspruch 59.

Zur Beschreibung der vorliegenden Erfindung gehört ein 1430-seitiges Sequenzprotokoll, welches drei Teile umfasst, nämlich die Teile I bis III. Teil I des Sequenzprotokolls umfasst die SEQUENZ-IDs: I.1 bis I.6242, Teil II umfasst die SEQUENZ-IDs: II.1 bis II.130 und Teil III umfasst die SEQUENZ-IDs III.1 bis III.4168.

Das vollständige Sequenzprotokoll mit den Teilen I bis III ist Bestandteil der Beschreibung und somit Bestandteil der Offenbarung der vorliegenden Erfindung.

Insbesondere betrifft die vorliegende Erfindung Genaktivitätsmarker für die Diagnose und Therapieoptimierung von akuten generalisierten entzündlichen Zuständen (SIRS). Außerdem betrifft die vorliegende Erfindung Verfahren zur Erkennung akuter generalisierter entzündlicher Zustände und/oder, Sepsis, sepsisähnlichen Zuständen,

schwerer Sepsis und systemischen Infektionen ebenso wie zur entsprechenden Therapieoptimierung bei akuten generalisierten entzündlichen Zuständen (SIRS).

Weiterhin betrifft die vorliegende Erfindung neue Diagnosemöglichkeiten, die sich aus experimentell abgesicherten Erkenntnissen im Zusammenhang mit dem Auftreten von Änderungen der Genaktivitäten (Transkription und nachfolgende Proteinexpression) bei Patienten mit akuten generalisierten entzündlichen Zuständen (SIRS) ableiten lassen.

Trotz Fortschritten im pathophysiologischen Verständnis und der supportiven Behandlung von Intensivpatienten ist SIRS eine bei Patienten auf Intensivstationen sehr häufig auftretende und erheblich zur Sterblichkeit beitragende Erkrankung [2-5].

Im internationalen Schrifttum haben sich zwischenzeitlich die Kriterien der Konsensuskonferenz des "American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (ACCP/SCCM)" aus dem Jahr 1992 am breitesten zur Definition des SIRS-Begriffs durchgesetzt [4]. Entsprechend dieser Definition wird SIRS (in diesem Patent als "akute generalisierte entzündliche Zustände" übersetzt) als die systemische Antwort des inflammatorischen Systems auf einen nichtinfektiösen Reiz definiert. Dazu müssen mindestens zwei der folgenden klinischen Kriterien erfüllt sein: Fieber >38°C oder Hypothermie <36°C, eine Leukozytose >12G/I oder eine Leukopenie <4G/I bzw. eine Linksverschiebung im Differentialblutbild, eine Herzfrequenz von über 90/min, eine Tachypnoe >20 Atemzüge/min oder ein PaCO2 <4,3 kPa.

Die Sterblichkeit des SIRS beträgt ca. 20 % und steigt bei Entwicklung stärkerer Organfunktionsstörungen weiter an [6]. Der Morbiditäts- und Letalitätsbeitrag von SIRS ist dabei von fachübergreifender Bedeutung. Dadurch werden in zunehmenden Maße die Behandlungserfolge der fortgeschrittensten oder experimentellen Therapieverfahren zahlreicher medizinischer Fachgebiete (z.B. Herzchirurgie, Traumatologie, Transplantationsmedizin, Hämatologie/ Onkologie) gefährdet, da diesen ohne Ausnahme eine Erhöhung des Risikos zur Ausbildung akuter generalisierter entzündlicher Zustände immanent ist. Die Senkung der Morbidität und

Letalität einer Vielzahl von schwer erkrankten Patienten ist daher an einen gleichzeitigen Fortschritt in der Vorbeugung, Behandlung und insbesondere der Erkennung und Verlaufsbeobachtung von akuten generalisierten entzündlichen Zuständen gebunden.

SIRS ist ein Ergebnis von komplexen und stark heterogenen molekularen Vorgängen, die gekennzeichnet sind durch eine Einbeziehung von vielen Komponenten und deren Wechselwirkungen auf jeder organisatorischen Ebene des menschlichen Körpers: Gene, Zellen, Gewebe, Organe. Die Komplexität der zugrundeliegenden biologischen und immunologischen Prozesse haben viele Arten von Forschungsstudien hervorgerufen, die einen weiten Bereich klinischer Aspekte umfassen. Eines der hieraus zu erkennenden Ergebnisse war, dass die Bewertung neuerer Therapien durch die heute verwendete relativ unspezifische, klinischbasierte Definition, welche die molekularen Mechanismen in nicht ausreichender Weise wiederspiegeln, erschwert wird [7].

Leider zählen Sepsis und konsekutive Organfunktionsstörungen auch heute noch zu den Haupttodesursache auf nichtkardiologischen Intensivstationen [1-3]. Man nimmt an, daß in den U.S.A. jährlich ca. 400.000 Patienten an einer Sepsis erkranken [4]. Die Letalität beträgt ca. 40 % und steigt bei Entwicklung eines Schocks auf 70-80 % an [5,6]. Die von der Grunderkrankung der Patienten und der zugrundeliegenden Infektion unabhängige Exzessletalität beträgt bis zu 35 % [8].

Im internationalen Schrifttum haben sich zwischenzeitlich ebenfalls die Kriterien der Konsensuskonferenz des "American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (ACCP/SCCM)" aus dem Jahr 1992 am breitesten zur Definition des Sepsisbegriffs durchgesetzt [4]. Entsprechend dieser Kriterien [4] werden die klinisch definierten Schweregrade "systemic inflammatory response syndrom" (SIRS), "sepsis", "severe sepsis" und "septic shock" unterschieden. Als SIRS (in diesem Patent als "sepsisähnlicher akuter entzündlicher Zustand übersetzt) wird dabei die systemische Antwort des inflammatorischen Systems auf einen infektiösen oder nichtinfektiösen Reiz definiert. Dazu müssen mindestens zwei der folgenden klinischen Kriterien erfüllt sein: Fieber >38°C oder

WO 2004/087949 PCT/EP2004/003419

Hypothermie <36°C, eine Leukozytose >12G/l oder eine Leukopenie <4G/l bzw. eine Linksverschiebung im Differentialblutbild, eine Herzfrequenz von über 90/min, eine Tachypnoe >20 Atemzüge/min oder ein PaCO2 <4,3 kPa. Als Sepsis werden solche klinischen Zustände definiert, bei denen die SIRS-Kriterien erfüllt sind und ursächlich eine Infektion nachgewiesen wird oder zumindest sehr wahrscheinlich ist. Eine Organfehlfunktionen zusätzlichen Auftreten von ist vom Sepsis schwere Änderungen Organfehlfunktionen sind Häufige gekennzeichnet. Bewusstseinslage, eine Oligurie, eine Laktazidose oder eine sepsisinduzierte Hypotension mit einem systolischen Blutdruck von weniger als 90 mmHg bzw. ein Druckabfall um mehr als 40 mmHg vom Ausgangswert. Wenn eine solche Hypotension nicht durch die Verabreichung von Kristalloiden und/oder Kolloiden zu beheben ist und es zusätzlich zu einer Katecholaminpflichtigkeit des Patienten kommt, so spricht man von einem septischen Schock. Dieser wird bei etwa 20 % aller Sepsispatienten nachgewiesen.

Die klinische Anwendung von Katecholaminen bei der Behandlung von Patienten mit einer schweren Sepsis ist stark subjektiv geprägt. Während viele Ärzte auf den Abfall des Blutdruckes mit der Verabreichung großer Mengen von Infusionslösungen reagieren und so den Einsatz von Katecholaminen vermeiden, gibt es auch viele Ärzte, welche ein solches Vorgehen ablehnen und bei gleicher klinischer Schwere der Erkrankung viel frühzeitiger Katecholamine verabreichen und diese auch noch höher dosieren. Konsequenz dessen ist, dass in der täglichen Praxis Patienten mit gleicher klinischer Schwere nur auf Grund rein subjektiver Gründe in die Gruppe "severe sepsis" oder "septic shock" [4] eingeordnet werden können. Vor diesem Hintergrund hat es sich im internationalen Schrifttum durchgesetzt, Patienten mit den Schweregraden "severe sepsis" und "septic shock" [4] in einer Gruppe zusammenzufassen. Der in dieser Patentschrift benutzte Begriff "schwere Sepsis" wird deshalb entsprechend der o.g. Konsensuskonferenzdefinition auf Patienten mit Sepsis plus zusätzlichem Nachweis von Organfunktionsstörungen angewendet und umfasst damit alle Patienten der Gruppen "severe sepsis" und "septic shock" entsprechend [4]

Die Sterblichkeit der Sepsis beträgt ca. 40 % und steigt bei Entwicklung einer schweren Sepsis auf 70-80 % an [5,6]. Der Morbiditäts- und Letalitätsbeitrag von Sepsis und schwerer Sepsis ist von fachübergreifender Bedeutung. Im Vergleich dazu stieg die Häufigkeit der Erkrankungen kontinuierlich an (z.B. zwischen 1979 139% und 1987 um von 73.6 auf 176 Krankheitsfälle Krankenhauspatienten) [7]. Dadurch werden in zunehmenden Maße Behandlungeerfolge der fortgeschrittensten oder experimentellen Therapieverfahren zahlreicher medizinischer Fachgebiete (z.B. Viszeralchirurgie. Transplantationsmedizin, Hämatologie/Onkologie) gefährdet, da diesen ohne Ausnahme eine Erhöhung des Sepsisrisikos immanent ist. Die Senkung der Morbidität und Letalität einer Vielzahl von schwer erkrankten Patienten ist daher an einen gleichzeitigen Fortschritt in der Vorbeugung, Behandlung und insbesondere der Erkennung und Verlaufsbeobachtung der Sepsis und schweren Sepsis gebunden. Von namhaften Autoren wird deshalb schon lange kritisiert, dass zu Lasten einer verbesserten Sepsisdiagnose in der vergangenen Dekade zuviel Energie und finanzielle Ressourcen für die Suche nach Sepsistherapeutika aufgewendet wurden.

Sepsis ist ein Ergebnis von komplexen und stark heterogenen molekularen Vorgängen, die gekennzeichnet sind durch eine Einbeziehung von vielen Komponenten und deren Wechselwirkungen auf jeder organisatorischen Ebene des menschlichen Körpers: Gene, Zellen, Gewebe, Organe. Die Komplexität der zugrundeliegenden biologischen und immunologischen Prozesse haben viele Arten von Forschungsstudien hervorgerufen, die einen weiten Bereich klinischer Aspekte umfassen. Eines der hieraus zu erkennenden Ergebnisse war, daß die Bewertung neuer Sepsis-Therapien durch relativ unspezifische, klinisch-basierte Einschlusskriterien, welche die molekularen Mechanismen in nicht ausreichender Weise wiedergeben, erschwert wird [9].

Daher ist ein dringender Bedarf für innovative diagnostische Mittel entstanden, welche die Fähigkeit des Fachmanns verbessern sollen, Patienten mit SIRS, Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen frühzeitig zu diagnostizieren, die Schwere einer SIRS auf molekularer Ebene

messbar zu machen und im klinischem Verlauf vergleichbar zu gestalten, und bezüglich der individuellen Prognose und dem Ansprechen auf spezifische Behandlungen Aussagen abzuleiten.

Der Morbiditäts- und Letalitätsbeitrag der Sepsis ist von fachübergreifender Bedeutung. In den letzten Jahrzehnten veränderte sich die Letalität der Sepsis nur unwesentlich. Im Vergleich dazu stieg die Inzidenz kontinuierlich an (z.B. zwischen 1979 und 1987 um 139 % von 73,6 auf 176 pro 100.000 Krankenhauspatienten) [7]. Maße die Behandlungserfolge zunehmenden werden in Dadurch fortgeschrittensten oder experimentellen Therapieverfahren zahlreicher Fachgebiete (Viszeralchirurgie, Transplantationsmedizin, Hämatologie/Onkologie) gefährdet, da diesen ohne Ausnahme eine Erhöhung des Sepsisrisikos immanent ist. Die Senkung der Morbidität und Letalität einer Vielzahl von schwer erkrankten Patienten ist daher an einen gleichzeitigen Fortschritt in der Prophylaxe, Behandlung und insbesondere der Diagnose der Sepsis gebunden.

Sepsis ist ein Ergebnis von stark heterogenen molekularen Vorgängen, die gekennzeichnet sind durch eine Einbeziehung von vielen Komponenten und deren Wechselwirkungen auf jeder organisatorischen Ebene des menschlichen Körpers: Zellen, Gewebe, Organe. Die Komplexität der zugrundeliegenden vielc Arten haben Prozesse biologischen immunologischen und Forschungsstudien hervorgerufen, die einen weiten Bereich klinischer Aspekte umfassen. Eines der hieraus zu erkennenden Ergebnisse war, daß die Bewertung klinisch-basierte unspezifische, relativ durch Sepsis-Therapien neuer Einschlusskriterien, welche die molekularen Mechanismen in nicht ausreichender Weise wiedergeben, erschwert wird [9].

Technologische Fortschritte, insbesondere die Entwicklung der Microarray-- Technologie, versetzen den Fachmann nun in die Lage, 10 000 oder mehr Gene und deren Genprodukte gleichzeitig zu vergleichen. Die Anwendung solcher Microarray-Gesundheit, von Status den auf Hinweise ทนท Technologien kann und biochemischer Wechselwirkungen Regulationsmechanismen. Signalisierungsnetzwerken geben. Das Verbessern des Verständnisses darüber, wie ein Organismus auf Infektionen reagiert, sollte die Entwicklung von verstärkten Erkennungs-, Diagnose- und Behandlungsmodalitäten für systemische Erkrankungen erleichtern.

Microarrays stammen vom "Southern blotting" [10] ab, was die erste Herangehensweise darstellt, DNA-Moleküle in einer räumlich ansprechbaren Art und Weise auf einer festen Matrix zu immobilisieren. Die ersten Microarrays bestanden aus DNA-Fragmenten, oft mit unbekannter Sequenz, und wurden auf eine poröse Membran (normalerweise Nylon) punktweise aufgebracht. Routinegemäß wurden cDNA, genomische DNA oder Plasmid-Bilbliotheken verwendet, und das hybridisierte Material wurde mit einer radioaktiven Gruppe markiert [11-13].

Kürzlich hat es die Verwendung von Glas als Substrat und Fluoreszenz zur Detektion zusammen mit der Entwicklung neuer Technologien für die Synthese und für das Aufbringen der Nukleinsäuren in sehr hohen Dichten erlaubt, die Nukleinsäurearrays zu miniaturisieren bei gleichzeitiger Erhöhung des experimentellen Durchsatzes und des Informationsgehaltes [14-16].

Weiterhin ist aus WO 03/002763 bekannt, dass Microarrays grundsätzlich für die Diagnose von Sepsis und sepsisähnlichen Zuständen verwendet werden können.

Eine Begründung für die Anwendbarkeit der Microarray-Technologie wurde zunächst durch klinische Untersuchungen auf dem Gebiet der Krebsforschung geliefert. Hier haben Expressionsprofile ihre Nützlichkeit bei der Identifizierung von Aktivitäten einzelner Gene oder Gengruppen gezeigt, die mit bestimmten klinischen Phänotypen korrelieren [17]. Durch die Analyse vieler Proben, die von Individuen mit oder ohne akute Leukämie oder diffuse Lymphome großer B-Zellen stammten, wurden Genexpressionsmarker (RNA) gefunden und auf die Klassifizierung dieser Krebsarten angewandt [17,18]. Golub et al. haben herausgefunden, daß verläßliche Vorhersagen nicht aufgrund von irgendeinem einzelnen Gen gemacht werden können, aber daß Vorhersagen, die auf den Expressionsspiegeln von 53 Genen (ausgewählt aus über 6000 Genen, die auf den Arrays vertreten waren) basieren, sehr genau sind [17].

Alisadeh et al. [18] untersuchten große B-Zell Lymphome (DLBCL). Die Autoren erarbeiteten Expressionsprofile mit einem "Lymphochip", einem Microarray, der 18 000 Klone komplementärer DNA trug und entwickelt worden war, um Gene zu überwachen, die in normale und abnormale Lymphozytenentwicklung involviert sind. Unter Verwendung von Cluster-Analyse waren sie in der Lage, DILBCL in zwei Kategorien einzuteilen, welche starke Unterschiede bezüglich der Überlebenschancen der Patienten aufzeigten. Die Genexpressionsprofile dieser Untergruppen entsprachen zwei bedeutsamer Stadien der B-Zelldifferenzierung.

Besonders wertvoll hat sich die Bestimmung von Genexpressionsprofilen zur differentialdiagnostischen Unterscheidung von Krankheitserscheinungen, die auf systemische Microbielle Infektionen zurückzuführen sind, von anderen Krankheitserscheinungen nichtinfektiöser Ätiologie erwiesen, die aufgrund ihres klinischen Erscheinungsbildes auf eine Sepsis hindeuten könnten, jedoch in Wirklichkeit nicht auf eine systemische Microbielle Infektion zurückzuführen sind, z.B. von Krankheitserscheinungen, die auf nicht-infektiöse Entzündungen einzelner Organe zurückzuführen sind [19-22]. Die Messung von Genexpressionprofilen zur Diagnose von SIRS aus Körperflüssigkeiten wurde noch nicht beschrieben.

Ausgangspunkt für die in der vorliegenden Patentanmeldung offenbarten Erfindung ist die Erkenntnis, daß vor der Diagnose von SIRS, Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen in biologischen Proben eines Individuums sich von normalen Werten unterscheidende RNA-Spiegel, bzw. sich davon ableitbare Peptid- und Teilpeptid-Spiegel in einem Serum oder Plasma eines Patienten, bei dem ein SIRS-Risiko besteht bzw. bei dem SIRS-typische Krankheitserscheinungen festgestellt werden, feststellbar sind.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das die Erkennung, die Beurteilung des Schweregrads und/oder die therapiebegleitende Verlaufsbeurteilung von SIRS und/oder Sepsis und/oder schwerer Sepsis und/oder systemischen Infektionen, ermöglicht.

Diese Aufgabe wird durch ein Verfahren mit den kennzeichnenden Merkmalen der Ansprüche 1 bis 3 und 30 bis 32 gelöst.

Weiterhin liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Verwendungsmöglichkeit von Markern in dem Verfahren gemäß Anspruch 1-56 zur Verfügung zu stellen.

Diese Aufgabe wird durch die Verwendungen gemäß den Ansprüchen 57 bis 59 gelöst.

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man in einer Probe einer biologischen Flüssigkeit eines Individuums die Aktivität eines oder mehrerer Markergene bestimmt und aus der festgestellten Anwesenheit und/oder Menge des bestimmten Genprodukts SIRS und/oder den Erfolg einer therapeutischen Behandlung ableiten kann.

Eine Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur in vitro Erkennung von SIRS folgende Schritte umfaßt:

- a) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für SIRS spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- d) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für SIRS spezifisches Gen oder Genfragment ist;
- e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für SIRS spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine alternative Ausführungsform ist dadurch gekennzeichnet, dass das Verfahren zur in vitro Erkennung von Sepsis und/oder sepsisähnlichen Zuständen folgende Schritte umfasst:

- g) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- h) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- i) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- j) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Gen oder Genfragment ist;
- k) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für Sepsis und/oder sepsisähnliche Zustände spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere alternative Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass das Verfahren zur in vitro Erkennung von schwerer Sepsis, folgende Schritte umfasst:

- m) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- n) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für schwere Sepsis spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
 - o) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;

- p) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für schwere Sepsis spezifisches Gen oder Genfragment ist;
- q) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- r) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für schwere Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA hybridisiert und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfaßt und gegebenenfalls in Form einer Kalibrierkurve oder –tabelle ablegt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des therapeutischen Verlaufs, zur Risikoabschätzung für Patienten sowie zur post mortem Diagnose von SIRS und/oder Sepsis und/oder schwerer Sepsis und/oder systemischen Infektionen und/oder septischen Zuständen und/oder Infektionen, eingesetzt wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß es sich bei dem Säuger um einen Menschen handelt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für SIRS spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. III.1 bis SEQUENZ-ID No. III.4168, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für Sepsis und/oder sepsisähnliche Zustände spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQENZ-ID No. I.1 bis SEQUENZ-ID·No. I.6242, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für schwere Sepsis spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. II.1 bis SEQUENZ-ID No. II.130, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die immobilisierten Sonden markiert werden. Für diese Ausführungsform finden selbstkomplementäre Oligonukleotide, so genannte Molecular beacons, als Sonden Verwendung. Sie tragen an ihren Enden ein Fluorophor/Quencher-Paar, so daß sie in Abwesenheit einer komplementären Sequenz in einer gefalteten Haarnadelstruktur vorliegen und erst mit einer entsprechenden Probensequenz ein Fluoreszenzsignal liefern. Die Haarnadelstruktur der Molecular Beacons ist so lange stabil, bis die Probe an der spezifischen Fängersequenzsequenz hybridisiert, was zu einer Konformationsänderung und damit auch Freisetzung der Reporterfluoreszenz führt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.

200 10070 1000

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die als cDNA von den in Anspruch 10 aufgelisteten Genen ersetzt wird durch synthetische Analoga, sowie Peptidonukleinsäuren.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die synthetische Analoga der Gene 5-100, insbesondere ca. 70 Basenpaare umfassen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA dieselbe Markierung tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA unterschiedliche Markierungen tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die cDNA-Sonden auf Glas oder Kunststoff, immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen cDNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen cDNA Moleküle mittels Adsorption, insbesondere mittels elektrostatischerund/oder Dipol-Dipol- und/oder hydrophober Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.

Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zur in vitro Erkennung von SIRS ist dadurch gekennzeichnet, daß es folgende Schritte umfaßt:

- a) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- b) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- c) In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für SIRS spezifisches Peptid- oder Peptidfragment bindet;
- d) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für SIRS spezifisches Peptid- oder Peptidfragment bindet;
- e) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für SIRS spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere alternative Ausführungsform des erfindungsgemäßen Verfahrens zur in vitro Erkennung von Sepsis und/oder sepsisähnlichen Zuständen ist dadurch gekennzeichnet, daß es folgende Schritte umfaßt:

- g) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- h) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- i) In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für

Sepsis und/oder sepsisähnliche Zustände spezifisches Peptid- oder Peptidfragment bindet;

- j) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Peptid- oder Peptidfragment bindet;
- k) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;
- I) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für Sepsis und/oder sepsisähnliche Zustände spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zur in vitro Erkennung von schwerer Sepsis ist dadurch gekennzeichnet, dass es folgende Schritte umfasst:

- m) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- n) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- o) In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für schwere Sepsis spezifisches Peptid- oder Peptidfragment bindet;
- p) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für schwere Sepsis spezifisches Peptid- oder Peptidfragment bindet;
- q) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;

r) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für schwere Sepsis spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß der Antikörper auf einem Träger in Form eines Microarrays immobilisiert ist.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß es als Immunoassay ausgebildet ist.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des therapeutischen Verlaufs, zur Risikoabschätzung für Patienten sowie zur post mortem Diagnose von SIRS und/oder Sepsis und/oder schwerer Sepsis und/oder systemischen Infektionen eingesetzt wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß Gewebe- oder Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß es sich bei dem Säuger um einen Menschen handelt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für SIRS spezifische Peptid ein Expressionsprodukt eines Gens oder Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. III.1 bis SEQUENZ-ID No. III.4168 sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für Sepsis und/oder sepsisähnliche Zustände spezifische Peptid ein Expressionsprodukt eines Gen oder Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ - ID No. I.1 bis SEQUENZ - ID No. I.6242, sowie

Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, besonders bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das für schwere Sepsis spezifische Peptid ein Expressionsprodukt eines Gens oder Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. II.1 bis SEQUENZ-ID No. II.130, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche Peptide verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche Peptide verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche Peptide verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche Peptide verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche Peptide verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker und/oder quantum dots oder ein elektrische messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-Peptide und Kontroll-Peptide dieselbe Markierung tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-Peptide und Kontroll-Peptide unterschiedliche Markierungen tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Peptid-Sonden auf Glas oder Kunststoff, immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle mittels Adsorption, insbesondere mittels elektrostatischerund/oder Dipol-Dipol- und/oder hydrophober Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden an das Trägermaterial immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle mittels monoklonaler Antikörper oder deren bindenden Fragmenten erkannt werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Bestimmen einzelner Peptide mittels Immunoassay, oder Präzipitationsassay unter Verwendung monoklonaler Antikörper durchgeführt wird.

Eine weitere Ausführungsform der Erfindung besteht in der Verwendung von rekombinant oder synthetisch hergestellten, für SIRS spezifischen Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in SIRS-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von SIRS.

Eine weitere Ausführungsform der Erfindung besteht in der Verwendung von rekombinant oder synthetisch hergestellten, für Sepsis und/oder sepsisähnlichen Zustände spezifischen Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in

Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von Sepsis, sepsisähnlichen systemischen entzündlichen Zuständen und sepsisähnlichen systemischen Infektionen.

Eine weitere Ausführungsform der Erfindung besteht in der Verwendung von rekombinant oder synthetisch hergestellten, für schwere Sepsis spezifischen Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von schwerer Sepsis.

Es ist dem Fachmann klar, daß die in den Ansprüchen dargelegten einzelnen Merkmale der Erfindung ohne Einschränkung beliebig miteinander kombinierbar sind.

Als Markergene im Sinne der Erfindung werden alle abgeleiteten DNA-Sequenzen, Partialsequenzen und synthetischen Analoga (beispielsweise Peptido-Nukleinsäuren, PNA) verstanden. Weiterhin werden im Sinne der Erfindung alle von den Markergenen kodierten Proteine, Peptide bzw. Partialsequenzen oder synthetische Peptidomimetica verstanden. Die auf Bestimmung der Genexpression auf RNA-Ebene bezogene Beschreibung der Erfindung stellt keine Einschränkung sondern nur eine beispielhafte Anwendung dar.

Die auf Blut bezogene Beschreibung der Erfindung stellt nur eine beispielhafte - Anwendung der Erfindung dar. Als biologische Flüssigkeiten im Sinne der Erfindung werden alle Körperflüssigkeiten des Menschen verstanden.

Eine Anwendung des erfindungsgemäßen Verfahrens liegt in der Messung der differentiellen Genexpression bei SIRS, Sepsis, sepsisähnlichen Zuständen,

WO 2004/087949 PCT/EP2004/003419

Vollblut von entsprechenden Patienten und eine Kontrollprobe eines gesunden Probanden oder eines nicht an einer der erwähnten Krankheiten erkrankten Patienten isoliert. Die RNA wird anschließend markiert, beispielsweise radioaktiv mit ³²P oder mit Farbstoffmolekülen (Fluoreszenz). Als Markierungsmoleküle können alle im Stand der Technik zu diesem Zwecke bekannten Moleküle und/oder Detektionssignale eingesetzt werden. Entsprechende Moleküle und/oder Verfahren sind dem Fachmann ebenfalls bekannt.

Die so markierte RNA wird anschließend mit auf einem Microarray immobilisierten cDNA-Molekülen hybridisiert. Die auf dem Microarray immobilisierten cDNA-Moleküle stellen eine spezifische Auswahl der Gene gemäß Ansprüch 12 dieser Erfindung für die Messung von SIRS, gemäß Ansprüch13 für Sepsis und sepsisähnlichen Zuständen, gemäß Ansprüch 14 für schwere Sepsis und systemische Infektionen, dar.

Die Intensitätssignale der hybridisierten Moleküle werden im Anschluss durch geeignete Messgeräte (Phosporimager, Microarray-Scanner) gemessen und durch weitere softwaregestützte Auswertungen analysiert. Aus den gemessenen Signalintensitäten werden die Expressionsverhältnisse zwischen der Patientenprobe und der Kontrolle bestimmt. Aus den Expressionsverhältnissen der unter- und/oder überregulierten Gene lassen sich,wie in den nachstehend dargestellten Experimenten, Rückschlüsse auf das Vorhandensein von SIRS, Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen ziehen.

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Messung der differentiellen Genexpression für die therapiebegleitende Bestimmung der Wahrscheinlichkeit, daß Patienten auf die geplante Therapie ansprechen werden, und/oder für die Bestimmung des Ansprechens auf eine spezialisierte Therapie und/oder auf die Festlegung des Therapieendes im Sinne eines "drug monitoring" bei Patienten mit SIRS, Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen. Hierzu wird aus den in zeitlichen Abständen gesammelten Blutproben des Patienten die RNA (Proben-RNA) isoliert. Die verschiedenen RNA-Proben werden zusammen mit der Kontrollprobe markiert und

mit ausgewählten Genen, welche auf einem Microarray immobilisiert sind, hybridisiert. Aus den jeweiligen Expressionsverhältnissen läßt sich somit beurteilen, welche Wahrscheinlichkeit besteht, daß Patienten auf die geplante Therapie ansprechen werden und/oder ob die begonnene Therapie wirksam ist und/oder wie lange die Patienten noch entsprechend therapiert werden müssen und/oder ob der maximale Therapieeffekt mit der verwendeten Dosis und Dauer schon erreicht worden ist.

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Messung des Bindungsgrades von Proteinen, beispielsweise monoklonaler Antikörper, mittels der Verwendung von Immunoassays, Protein- oder Peptidarrays oder Präpitationsassays. Durch die Bestimmung der Konzentration der von den Sequenzen der in Anwendungsbeispiel 1 aufgeführten Nukleinsäuren entsprechenden Proteine oder Peptide kann auf ein erhöhtes Risiko zur Entwicklung einer SIRS geschlossen werden. Weiterhin ermöglicht diese Verfahrenweise die differentialdiagnostische Erkennung bei Patienten mit SIRS, Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen.

Ebenso kann auf ein erhöhtes Risiko zur Entwicklung einer Sepsis, sepsisähnlichen Zuständen, schwerer Sepsis und systemischen Infektionen geschlossen werden.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aufgrund der Beschreibung von Ausführungsbeispielen sowie an Hand der Zeichnung.

Es zeigt:

- Figur 1 ein 2-dimensionales Gel, das darauf aufgetragenes präzipitiertes Serum-Protein eines Patienten mit Sepsis enthält, und
- Figur 2 ein 2-dimensionales Gel, das darauf aufgetragenes präzipitiertes Serum-Protein eines Kontroll-Patienten enthält.

WO 2004/087949 PCT/EP2004/003419

Ausführungsbeispiel 1 - SIRS:

Untersuchungen zur differentiellen Genexpression bei SIRS-erkrankten Patienten.

Für die Messung der differentiellen Genexpression bei SIRS wurden Untersuchungen von Vollblutproben von Patienten, welche auf einer operativen Intensivstation behandelt wurden, durchgeführt.

Als Kontrollproben dienten Vollblutproben der Patienten, welche unmittelbar vor der Operation entnommen wurden. Keiner dieser Patienten wies zu diesem Zeitpunkt oder vor der stationären Behandlung eine Infektion und/oder wies klinische Zeichen einer SIRS (definiert entsprechend SIRS-Kriterien [4]) auf.

Zusätzlich wurden Vollblutproben der gleichen operativ behandelten Patienten vier Stunden nach der Operation (Patientenproben) entnommen. Jeder dieser Patienten entwickelte nach der Operation eine SIRS. Ausgewählte Charakteristika der Patienten mit SIRS sind in Tabelle 1 dargestellt. Dabei werden Angaben zum Alter, Geschlecht, Diagnose sowie die Dauer der extrakorporalen Behandlung angegeben.

Tabelle1: Daten der Patientengruppe

Patient	Geschlecht	Alter	Diagnose	Dauer der extrakorporalen Behandlung [min]
1	männlich	57	koronare Herzerkrankung	82
2	männlich	70	koronare Herzerkrankung	83
3	weiblich	67	koronare Herzerkrankung	72
4	männlich	70	koronare Herzerkrankung	55

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen des PAXGene Blood RNA Kit gemäß den Vorgaben des Herstellers (Qiagen) isoliert. Im Anschluss wurde aus der totalen RNA die cDNA mittels reverser Transkrition mittels Superscript II RT (Invitrogen) nach dem Protokoll des Herstellers synthetisiert, mit Aminoallyl-dUTP und Succinimidylester von der Fluoreszenzfarbstoffe Cy3 und Cy5 (Amersham) markiert und hydrolisiert.

Für die Hybridisierung wurden die Microarrays (Lab-Arraytor human 500-1 cDNA) der Firma SIRS-Lab GmbH verwendet. Diese Microarrays sind mit 340 humanen cDNA-Molekülen bestückt. Die 340 humanen cDNA-Moleküle sind auf jedem Microarray 3-fach in drei Subarrays immobilisiert.

Die vorbereiteten und markierten Proben wurden mit den Microarrays entsprechend den Anweisungen des Herstellers hybridisiert und im Anschluss gewaschen. Die Fluoreszenzsignale der hybridisierten Moleküle wurden mittels eines Auslesegerätes (AXON 4000B) gemessen.

Auswertung

Die Auswertung eines Experiments erfolgte aufgrund von eingescannten Bildern der Microarrays nach der Hybridisierung. Der mittlere Intensitätswert der detektierten Spots wurde als der gemessene Expressionswert des zugehörigen Gens definiert. In einer Bildanalyse wurden Spots automatisch erkannt und ihre Homogenität überprüft. Die Analyse wurde manuell kontrolliert. Die ermittelten Signale beinhalteten neben der gewünschten Information, nämlich der Menge gebundener Nukleinsäuren aber

auch Hintergrundsignale, welche durch unspezifische Bindungen an der Membranoberfläche verursacht wurden. Die Definition des Hintergrundbereichs ermöglichte eine optimale Unterscheidung zwischen Spots und der Chipoberfläche, welche ebenfalls Farbeffekte aufwies. In der Auswertung der Microarrays wurden leere Spots als Hintergrund gewählt. Der mittlere Expressionswert ausgewählter leeren Spots innerhalb eines Blocks (von 14 mal 14 Spots) wurde von Expressionswerten der Gene-Spots (im entsprechenden Block) subtrahiert.

Punktuelle Signale, die nicht durch Bindung von Nukleinsäuren sondern durch Staubpartikel oder sonstige Störungen auf dem Filter verursacht wurden, konnten von realen Spots durch ihre Unregelmäßigkeit der Form unterschieden werden und wurden von der weiteren Analyse ausgeschlossen.

Um die Werte zwischen den 3 Subarrays und zwischen verschiedenen Microarrays miteinander vergleichbar zu machen, wurde anschließend eine Normalisierung der Daten notwendig. Wegen der hohen Anzahl der Spots auf dem Microarray wurde als Normalisierungsreferenz der Mittelwert aller Expressionswerte festgelegt. Für die Berechnung der mittleren Expression pro Gen wurden die zwei (aus drei) Wiederholungen gewählt, welche am nächsten zueinander lagen.

Aus den Signalintensitäten wurden mittels der Software AIDA Array Evaluation die Expressionsverhältnisse zwischen Kontroll- und Patientenproben Probe berechnet. Die Höhe des Expressionsverhältnisses jedes Gens stellte das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse waren die Gene, die in den Patientenproben gegenüber Kontrollproben am meisten überexprimiert bzw. unterexprimiert wurden.

Aus Tabelle 2 ist ersichtlich, dass 57 Gene der Patientenprobe gefunden wurden, die gegenüber der Kontrollprobe signifikant überexprimiert waren. Weiterhin wird aus Tabelle 3 deutlich, dass 16 Gene der Patientenprobe signifikant unterexprimiert gegenüber der Kontrollprobe waren. Aus den Ergebnissen wird deutlich, dass die in Tabelle 2 und Tabelle 3 aufgeführten Gene mit dem Auftreten von SIRS korrelieren.

Somit stellen die aufgeführten Genaktivitäten der Gene Marker für eine Diagnose von SIRS dar.

Tabelle 2: Signifikant gesteigerte Transkriptionsaktivitäten und deren relatives Verhältnis zur Kontrollprobe bei SIRS

GeneBank Accession-Nr.	Hugo-Name	Patient 1	Patient 2	Patient 3	Patient 4	SEQUENZ- ID
XM_051958	ALOX5	2,43	1,49	1,81	1,40	· III.36
XM 015396	ALOX5AP	3,71	7,39	3,89	2,68	111.37
XM_008738	BCL2	1,16	6,76	1,55	1,04	111.38
BC016281	BCL2A1	13,71	10,29	1,41	4,36	111.96
NM 021073	BMP5	2,02	1,83	1,78	1,51	111.39
XM_002101	вмр8	2,32	10,85	1,31	0,87	111.40
XM_045933	CAMKK2	2,20	1,26	1,95	1,13	111.41
XM_055386	CASP1	1,40	1,76	1,89 ·	1,45	111.42
NM_004347	CASP5	1,92	2,77	0,67	1,89	III.43
NM_004166	CCL14	1,24	1,58	2,46	0,77	III.91
XM_012649	SCYA7	1,24	9,78	0,85	1,82	111.93
NM_001760	CCND3	1,23	2,68	1,56	1,12	111.44
NM_000591	CD14	3,45	4,43	1,76	2,05	111.45
XM_038773	CD164	0,84	1,91	3,26	3,15	111.46
XM_048792	CD1A	3,24	3,10	1,00	1,11	111.47
. –	CD58	2,14	2,11	1,54	2,91	111.48
NM_001779 XM_002948	CD80	1,69	1,16	2,25	0,69	111.51
_	CFLAR	2,33	4,97	1,44	1,39	. 111.52
XM_027978	CSF3R	1,55	1,47	1,81	1,02	111.53
NM_000760	CSNK1D	1,95	3,15	1,24	1,32	111.54
XM_012717	SCYD1	3,70	12,12	0,86	3,88	111.94
XM_048068	CXCR4	2,33	2,10	2,15	1,60	111.55
XM_051229	DUSP10	2,49	3,77	0,90	1,10	III.57
XM_039625	DUSP9	2,17	5,27	1,12	1,63	111.58
XM_010177	ENTPD1	1,91	3,18	0,71	0,86	111.59
XM_055699	FOXO1A	1,61	3,10	1,09	1,67	111.60
XM_007189	FUT4	1,55	5,07	1,88	0,93	111.61
XM_012039	HPRT1	5,15	66,19	1,44	2,28	111.62
XM_040683	OBRGRP	1,93	1,10	1,53	1,40	111.63
NM_017526	ICAM1	1,27	1,88	2,05	1,30	III.64
XM_049516	ICAM3	2,31	2,32	1,61	1,45	111.65
XM_049531 XM_041744	IER3	4,17	7,25	1,98	2,08	111.66
ı -	IFNAR1	2,16	4,87	1,09	2,36	111.67
XM_048562	IL10RA	1,02	1,51	1,96	0,67	111.68
XM_006447 M90391	IL-16	1,77	1,50	1,16	1,09	111.69
- I	IL1R2	2,84	12,75	1,03	2,75	111.70
XM_002765	IL1R2.	3,34	6,44	2,05	2,79	111.71
NM_000418	IL4K	1,72	1,48	1,53	1,37	111.72
XM_057491	IL6ST	2,50	9,25	1,07	1,87	.111.73
NM_002184	IL8RA	2,30	3,73	1,45	1,68	111.74
NM_000634	ISGF3G	1,72	1,08	2,54	1,12	111.75
NM_006084 XM_045985	ITGA2B	3,69	2,00	0,83	3,79	111.76

XM_008432	ITGA3	2,11	7,62	1,08	1,06	111.77
XM_028642	ITGA5	2,49	4,48	1,39	3,54	111.78
XM_036107	ITGB2	1,72	1,13	2,08	1,13	111.79
XM_009064	JUNB	2,21	1,84	3,59	2,05	111.80
XM 036154	LAMP2	1,79	1,68	1,62	1,41	111.81
GeneBank Accession-Nr.	Hugo-Name	Patient 1	Patient 2	Patient 3	Patient 4	SEQUENZ- ID
XM_042066	MAP3K1	2,06	7,67	2,91	8,93	111.82
NM_001315	MAPK14	2,50	12,01	0,90	4,20	111.83
NM_003684	MKNK1	2,58	17,17	1,74	1,83	111.84
U68162	MPL	2,58	1,10	1,39	6,99	111.85
NM_004555	NFATC3	1,40	1,70	2,80	0,75	111.86
XM_006931	OLR1	1,53	5,01	1,10	3,16	111.87
XM 039764	PDCD5	1,11	3,09	1,21	1,95	111.88
XM 029791	PIK3C2G	0,93	1,62	0,96	1,52	111.89
NM_006219	PIK3CB	1,52	0,99	0,94	1,66	111.95
XM 043864	PIK3R1	1,81	4,07	1,48	1,26	111.90

Tabelle 3: Signifikant reduzierte Transkriptionsaktivitäten und deren relatives Verhältnis zur Kontrollprobe bei SIRS

GeneBank Accession-Nr.	Hugo-Name	Patient 1	Patient 2	Patient 3	Patient 4	SEQUENZ- ID
BC001374	CD151	0,00	0,00	0,39	0,71	111.3
XM_006454	CD3G	0,63	0,40	0,75	1,01	111.6
XM_043767	CD3Z	0,43	0,00	0,82	0,77	111.7
XM_056798	CD81	0,50	1,12	0,32	0,00	111.8
M26315	CD8A	1,45	0,00	0,30	1,31	111.9
NM_004931	CD8B1	0,40	0,90	0,50	1,19	111.10
NM_001511	CXCL1	0,09	0,00	0,50	1,34	III.13
XM_057158	ADCY6	1,17	0,00	0,42	1,34	111.11
XM 044428	ICAM2	0,00	1,16	0,50	1,10	111.14
NM_000880	IL7	0,00	1,06	0,74	0,10	III.16
L34657	PECAM-1	0,68	0,39	1,13	0,64	111.24
XM_044882	PTGS1	0,00	1,34	0,52	0,76	111.25
XM_035842	SCYA5	0,60	0,50	0,80	0,99	111.29
NM 021805	SIGIRR	0,00	0,40	0,45	0,66	111.30
XM 057372	TNFRSF5	0,00	0,49	0,59	1,03	111.34
NM 003809	TNFSF12	1,34	0,99	0,53	0,60	111.35

Diese charakteristischen Veränderungen sind beispielsweise für das erfindungsgemäße Verfahren gemäß Anspruch 1 und 30 ausnutzbar.

Die in den Tabellen 2 und 3 aufgeführten GenBank Accession Nummern (Internet-Zugang über http://www.ncbi.nlm.nih.gov/) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 1430-seitigen Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen jeweils einer Sequenz ID (Sequenz ID: III.1 bis zur Sequenz ID:

Ausführungsbeispiel 2 - SIRS:

Untersuchung zur Genexpression zwischen drei Patienten mit SIRS und einer Kontrollprobe.

Es wurde die Genexpression bei Patienten mit SIRS und einer Kontrollprobe gemessen. Alle Patienten entwickelten eine SIRS entsprechend den Kriterien nach [4]. Die Kontrollprobe wurde aus einem Patienten gewonnen, der operativ behandelt wurde, jedoch während der gesamten stationären Behandlung keine SIRS aufwiesen. Die Daten der Patienten mit SIRS und der Kontrolle sind in Tabelle 4 zusammengefasst.

Tabelle 4: Charakteristika der Patienten- und Kontrollproben

III.4168) zugeordnet.

Patient	Geschlecht	Alter	Diagnose	Apache Score [Pkt.]	SAPS II [Pkt.]
1	männlich	50	koronare Herzerkrankung	18	36
2	männlich	70	Zökumperforation	19	64
3	männlich	67	Aortenklappenin- suffizienz	9	21
Kontrolle	Geschlecht	Alter	Diagnose	Apache Score [Pkt.]	SAPS II [PkL]
1	männlich	70	Schädeldach- fraktur	1	12

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen des RNAeasy-Kits gemäß den Vorgaben des Herstellers (Qiagen) isoliert. Im Anschluss wurde aus der totalen RNA die cDNA mittels reverser Transkrition mittels Superscript

II RT (Invitrogen) nach dem Protokoll des Herstellers synthetisiert, mit ³³P radioaktiv markiert und hydrolisiert.

Für die Hybridisierung wurden Filtermembranen der Deutschen Ressourcenzentrum für Genomforschung gGmbH (RZPD) verwendet. Diese Filtermembran war mit ca. 70.000 humanen cDNA-Molekülen bestückt.

Die vorbereiteten und markierten Proben wurden mit der Filtermembran entsprechend den Anweisungen des RZPD hybridisiert und im Anschluss gewaschen. Nach einer 24-stündigen Exposition im Phosphorimager wurden die radioaktiven Signale ausgewertet.

Auswertung

Die Auswertung der Genexpressionsdaten aus den radioaktiv markierten Filtern beruht auf der Messung der Färbungsintensitäten im digitalisierten Bild. Dazu werden über allen 57600 Spotpositionen kreisförmige Flächen definiert, innerhalb derer die Pixelintensitäten integriert werden. Die möglichst exakte Positionierung der Flächen über die Spots erfolgt automatisch durch die Analysesoftware (AIDA Array Evaluation, raytest Isotopenmessgeräte GmbH).

Die ermittelten Signale beinhalten neben der gewünschten Information, nämlich der Menge gebundener Nukleinsäuren aber auch Hintergrundsignale, welche durch unspezifische Bindungen an der Membranoberfläche verursacht werden. Um diese Einflüsse zu eliminieren, werden die Hintergrundsignale in 4608 leeren Flächen des Filters bestimmt und als Grundrauschen von den Hybridisierungssignalen subtrahiert.

Um die Werte verschiedener Filter miteinander vergleichbar zu machen, ist anschließend eine Normalisierung der Daten notwendig. Wegen der hohen Anzahl der Spots auf dem Filter wird als Normalisierungsreferenz der Mittelwert aller Expressionswerte festgelegt. Weiterhin ist der Ausschluss niedriger Spotsignale (unterhalb 10% des durchschnittlichen Expressionssignals) notwendig, da diese einem prozentual großen Fehler unterliegen und bei den späteren Berechnungen zu starken Schwankungen der Ergebnisse führen würden.

Die Selektion der SIRS-relevanten Gene basiert auf dem Vergleich der Genexpressionswerte bei einer Kontrollperson ohne SIRS gegenüber den Patienten mit SIRS. Die Höhe des Expressionsverhältnisses jedes Gens stellt das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse sind die Gene, die in den Patienten gegenüber der Kontrolle signifikant überexprimiert bzw. unterexprimiert wurden.

Aus Tabelle 5 ist ersichtlich, dass 24 Gene der Patientenprobe gefunden wurden, die gegenüber der Kontrollprobe signifikant überexprimiert waren. Weiterhin wird aus Tabelle 6 deutlich, dass 24 Gene der Patientenprobe signifikant unterexprimiert gegenüber der Kontrollprobe waren. Aus den Ergebnissen wird deutlich, dass die in Tabelle 5 und Tabelle 6 aufgeführten Gene mit dem Auftreten von SIRS korrelieren. Somit stellen die aufgeführten Gene Markergene für die Diagnose von SIRS dar.

GenBank Accession-Nr.	Hugo-Name	Patient 1	Patient 2	Patient 3	SEQUENZ-ID
R33626	TFAP2A	. 57,57	30,43	96,57	III.135
N54839	CRSP3	47,17	29,00	63,17	111.180
AA010908	LCAT	32,90	15,00	18,60	111.189
R59573	TU12B1	85,50	60,50	49,00	111.198
R65820	GEF	38,00	45,80	78,00	111.222
N30458	NCL	26,57	20,00	17,86	111.252
H86783	RINZF	43,33	17,00	31,33	111.274
R11676	CDC20	30,75	52,00	55,25	111.300
H79834	SLC20A2	16,56	14,33	27,44	III.309 ·
H05746	SLC12A5	70,78	20,00	17,22	III.313
N21112	ARHGEF12	62,00	14,50	27,00	III.321
R71085	PCANAP7	23,00	17,63	21,96	111.325
R40287	NIN283	35,00	28,00	28,00	III.331
H52708	PDE2A	32,78	14,11	59,22	111.351
AF086381	GNPAT	18,94	19,75	25,63	111.353
W57892	FN1	23,61	14,67	17,06	111.381
H75516	KIN	19,23	17,15	20,00	111.389
R59212	MN1	19,65	16,65	18,61	111.404
H62284	СМАН	23,40	36,20	32,40	111.421
W16423	GCMB	23,83	45,67	21,00	111.446
N40557	U5	55,78	20,67	22,11	111.454
H52695	DDC	14,80	13,70	22,30	111.472
R68244	HMG14	15,81	23,19	27,56	HI.493
R34679	ITGB8	19,20	32,00	79,20	111.502

באופחרים ואור מחתחמזמנים ו >

Tabelle 6: Signifikant reduzierte Transkriptionsaktivitäten und deren relatives Verhältnis zur Kontrollprobe bei SIRS

GenBank Accession-Nr.	Hugo-Name	Patient 1	Patient 2	Patient 3	SEQUENZ-ID
H18595	RPL10A	0,03	0,07	0,15	III.181
N90220	DGUOK	0,04	0,07	0,12	III.202
R19651	H19	0,09	0,07	0,19	111.329
R52108	UBE2D2	0,13	0,07	0,02	111.369
R83836	LYN	0,07	0,03	0,18	111.387
H04648	CSF2RB	0,06	0,07.	0,13	111.395
H27730	PPP2R1B	0,09	0,07	0,16	III.416
N70020	PRO2822	0,10	0,04	0,11	111.422
N52437	CHI3L2	0,07	0,08	0,16	111.440
W96179	GCLM	0,04	0,01	0,19	111.450
H42506	GABARAP	0,08	0,03	0,17	111.470
H66258	SCP2	0,10	0,05	0,21	111.474
N38985	RAP140	0,10	0,06	0,21	111.524
N73912	TMP21	0,09	0,07	0,08	111.533
N51024	TEGT	0,08	0,06	0,07	111.537
R99466	EEF1A1	0,07	0,02	0,14	III.636
R14080	CAMLG	0,11	0,02	0,18	111.662
W93782	XPC	0,12	0,05	0,21	111.664
N91584	RPS6	0,06	0,05	0,12	. III.981
W52982	PIG7	0,05	0,07	0,10	III.1040
AA033725	KLF8	0,06	0,08	0,19	III.1163
N20406	SRP14	0,10	0,04	0,16	III.1193
T83104	TAF2F	0,02	0,05	0,12	III.1258
H79277	CASP8	0,12	0,06	0,13	III.1305

Diese charakteristischen Veränderungen sind beispielsweise für das erfindungsgemäße Verfahren gemäß Anspruch 1 oder 30 ausnutzbar.

Die in den Tabellen 5 und 6 aufgeführten GeneBank Accession Nummern (Internet-Zugang über http://www.ncbi.nlm.nih.gov/) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 1430-seitigen Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen jeweils einer Sequenz ID (Sequenz ID: III.1 bis zur Sequenz ID: III.4168) zugeordnet.

Ausführungsbeispiel 3 - Sepsis:

Untersuchung zur Genexpression zwischen einem Patienten mit einer frühen Sepsis und einer Kontrollprobe

Es wurde die Genexpression bei Auftreten einer frühen Sepsis und einer Kontrollprobe gemessen. Die Patientendaten sind in Tabelle 7 zusammengefasst.

Tabelle 7: Daten der Patienten- und Kontrollprobe

	33	
Ausgewählte klinische Daten	Temperatur: 35,2 °C Herzfrequenz: 97/min MAP 1: 62 mmHg; art. PH: 7,29 Na: 135 mmol/l; Kreatin: 757 µmol/l Cholesterin: - Atemfreq:: 16/min; Syst. BD: 105 mmHg Hämatokrit:: 33 % Gesamtleukozytenzahl: 13100 Harnstoff: 19 mmol/l Diast. BD: 40 mmHg PaO2: 12,3 kPa; K: 4,2 mmol/l Bilirubin: 15,1 mmol/l	Temp: 38,8 °C Herzfrequenz: 84 /min MAP 1: 72 mmHg art. plf: 7,42, /l Na:140 mmol Kreatin: 56 µmol/l Atemfreq:: 13 /min Syst. BD: 107 mmHg Hämatokrit.: 37% HCO3: 28,2 mmol/l Gesamtleukozytenzahl: 12600 Harnstoff: 4,7 mmol/l, Diast. BD: 54 mmHg FaO21: 10,9 kPa K: 3,8 mmol/l Bilirubin: 13,4 mmol/l
SAPS-II [Pkt.]		12
Apache Score (Pkt.)	16	
Indikation	Sepsis/ Sehock Schock	Intrakra- nielle Blutung
Operationen	1. Anastomosenund Sigmanachresektio n, Rektumblindversc hluß 2. Punktions- tracheotomie nach Griggs 3. Reverdrahtung 4. subtotale Hemikolektomie rechts 5. Definitive Ilenstomaanlage	1. Kraniotomie und definitive Blutstillung
Interkurrente Diagnosen	Darm-, instabiles Stemum	Schmale Hygrome bds.
- Fauptdiagnose	Septischer Schock nach Zörkumperforati on und postoperativer Anastomosen- Insuffizienz	Schädel- dachfraktur, Kopfschwartenh ämatom
Gewicht/Größe	78 kg/178 cm	90 kg/180 cm
Alter [a]	70	35
Geschlecht	Manulich	Kontrolle Männlich
	Patient	Kontrolle

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen von RNAeasy gemäß den Vorgaben des Herstellers (Quiagen) isoliert. Im Anschluss wurde aus der totalen RNA die cDNA mittels reverser Transkrition mittels Superscript II RT (Invitrogen) nach dem Protokoll des Herstellers synthetisiert, mit ³³P radioaktiv markiert und hydrolisiert.

Für die Hybridisierung wurden Filtermembranen der Deutschen Ressourcenzentrum für Genomforschung gGmbH (RZPD) verwendet. Diese Filtermembran war mit ca. 70.000 humanen cDNA-Molekülen bestückt.

Die vorbereiteten und markierten Proben wurden mit der Filtermembran entsprechend den Anweisungen des RZPD hybridisiert und im Anschluss gewaschen. Nach einer 24-stündigen Exposition im Phosphorimager wurde die radjoaktiven Signale ausgewertet.

Aus den Signalintensitäten wurden mittels der Software AIDA Array Evaluation die Expressionsverhältnisse zwischen Patienten- und Kontrollprobe berechnet.

Aus Tabelle 8 ist ersichtlich, dass 230 Gene der Patientenprobe gefunden wurden, die gegenüber der Kontrollprobe signifikant überexprimiert waren (Expressionsverhältnisse zwischen 13,67 und 98,33). Weiterhin wird aus Tabelle 3 deutlich, dass 206 Gene der Patientenprobe signifikant unterexprimiert gegenüber der Kontrollprobe waren (Expressionsverhältnisse zwischen 0,01 und 0,09). Aus den Ergebnissen wird deutlich, dass die in Tabelle 2 und Tabelle 3 aufgeführten Gene mit dem Auftreten einer frühen Sepsis korrelieren. Somit stellen die aufgeführten Gene Markergene für die Diagnose einer frühen Sepsis dar.

Tabelle 8: Expressionverhältnis überexprimierter Gene zwischen Patienten- und Kontrollprobe

GeneBank Accession-Nr.	HUGO-Name	Expressionsverhältnis überexprimierter Gene gegenüber der Kontrolle	SEQUENZ-ID
AI086982	FLJ20623	90,13	1.325
AI272878	FGF20	73,48	1.268
AI218453	FLJ22419	48,8	1.294
AI473374	SPAM1	42,63	1.235
AI301232	PRG4	36,79	1.262
AI452559	FLJ13710	32	1.240
AI339669	FLJ21458	31	1.248
AI142427	CGRP-RCP	30	1.331
AA505969	LOC56994	. 26,67	1.486
AI333774	AGM1	26,19	1.251
W86875	PSEN1	25,66	1.903
AI591043	NR2E3	25	1.196
AI128812	RBM9	23,56	1.324
AA453019	FLJ21924	23,07	
AI690321	KCNK15	22,71	
AA918208	ADAM5	21,83	
AI344681	ABCA1	21,42	
A1654100	KIAA0610	21,04	
AI086719	FLJ12604	20,95	1.326
AA453038	LOC63928	20,74	1.671
AI740697	SP3	20,5	1.114
AI332438	KIAA1033	20,17	1.253
AI734941	MSR1	19,93	1.116
AA541644	PRV1	19,5	1.489
AA513806	C5ORF3	19,3	1.485
AI381513	B4GALT7	18,8	1.273
AI671360	SIMI	18,5:	1.154
AI624830	SAGE	17,5	1.187
AI001846	KIAA0480	17,5	1.358
AA504336	TRAP95	17,2	
AI142901	IMPACT	17,1	1.330
AI077481	SEMA5B	17,1	3 1.327
H41851	TNFRSF12	17,0	
AI160574	FLJ23231	1	
AI033829	KIF13B	16,5	
AI554655	HLALS	16,5	
AI074113	LOC51095	16,	
AA992716	KIAA1377	16,1	
AI382219	SETBP1	16,0	
AI469528	KIAA1517	15,8	
AI090008	NFYB	15,7	
AI203498	WRN	15,7	
AI832179	HPGD	15,6	
AI278521	SPRR3	15,6	
AA909201	FLJ23129	15,1	
AI383932	ZNF214	14,9	1.269

AA455096	MDM1	14,9	1.652
AA953859	NOL4	14,68	1.363
GeneBank Accession-Nr.	HUGO-Name	Expressionsverhältnis überexprimierter Gene gegenüber der Kontrolle	SEQUENZ-ID
			1.4755
R56800	GDF1	14,67	1.1755
AI676097	FCER1A	14,54	1.151
AI380703	KIAA1268	14,51	1.275
AI832086	RTKN	14,51	1.66
AI125328	FLJ22490	14,33	1.317
AI056693	LOC57115	14,3	1.329

Tabelle 9: Expressionverhältnis unterrexprimierter Gene zwischen Patienten- und Kontrollprobe

GeneBank Accesssion-Nr.	HUGO-Name	Expressionsverhältnis unterexprimierter Gene gegenüber der Kontrolle	Sequenz-ID
215206	C9ORF9	0,01	1.2050
215296	<u> </u>	0,01	1.375
AA609149	FLJ10058	0,01	1.211
AI566451	KAII	0,01	1.250
A1334246	PDCD7	0,01	1.1477
H38679	NXPH3	0,01	1.130
A1696866	KIAA1430	0,01	1.23
AI922915	FLJ00012	0,01	1.46
A1889612	KPNA6	0,02	1.26
AI921695	FLJ23556	. 0,02	1.764
AA410933	HRH1	0,02	1.383
AA705423	LOC57799	0,02	1.298
AI206507	RAD54B	0,02	1.28
A1921327	MED6	0,02	I.146
AI682701	VNN1	0,02	1.1352
H82822	METAP2	0,02	1.42
AI890612	MAGE1	0,02	1.257
AI262169	ALDOB	0,02	1.1502
H44908	C21ORF51	0,02	1.203
AI572407	FLJ22833	0,02	1.19
AI924869	STX4A	0,02	1.12
AI925556	AF140225	0,02	1.95
AI798388	KIAA0912		1.188
AI623978	SCEL	0,03	1.47
AI889598	MLYCD	0,03	
AI889648	PAWR		
AI431323	AREG	0,03	1.500
AA446611	CDH6	0,03	
AI697365	P53DINP1		
H82767	VAMP3	0,03	
AI688916	FLJ10933	0,03	
AI888660	FLJ11506	0,03	
AI890314	RAB6B	0,03	
AI653893	LAMA5	0,03	
R89811	HGFAC	0,03	1
AI863022	MAGEA4	0,04	<u> </u>
AA749151	XPOT	0,04	
AI355007	ITPKB	0,04	
AI582909	MESDC2	0,0	
AI832016	APOL1	0,0	
H11827	THOP1	0,0	
AI560205	KIAA1841	0,0	
AA503092	UMPH1	0,0	·
A1932616	FLJ22294	0,0	
AI799137	FLJ11274	0,0	
AI686838	SARDH	0,0	
AI623132	SREC	0,0	1.105

2	1
J	ソ

GeneBank Accesssion-Nr.	HUGO-Name	Expressionsverhältnis unterexprimierter Gene gegenüber der Kontrolle	SEQUENZ-ID	
R96713	DKFZP434A0131	0,04	1.1442	
AI674926	LBC	0,04	1.152	
AI886302	HRI	0,04	1.53	
AI434650	MGC2560	0,04	1.238	
AI631380	GNG4	0,04	1.180	
AA508868	ORC6L	0,04	1.491	
AI620374	HP1-BP74	0,04	l.190	
AI679115	KIAA1353	0,04	l.148	
AA652703	MRPL49	0,04	1.386	
AI355775	CDK3	0,04	1.245	

Diese charakteristischen Veränderungen sind insbesondere für das erfindungsgemäße Verfahren gemäß Anspruch 2 und/oder 31 ausnutzbar.

Die in den Tabellen 8 und 9 aufgeführten GeneBank Accession Nummern (Internet-Zugang über http://www.ncbi.nlm.nih.gov/) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 1430-seitigen Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen jeweils einer SEQUENZ-ID (SEQUENZ-ID: I.1 bis zur SEQUENZ-ID: I.6242) zugeordnet.

Durchführung:

RNA-Vorbereitung. Die konditionierten Medien wurden aus den Kulturflaschen entfernt und die adherenten Zellen wurden gemäß den Herstelleranweisungen direkt in den Kulturflaschen unter Verwendung von TRIzol-Reagens (GIBCO/BRL) lysiert. Nach einem Deproteinierungszyklus wurde die RNA durch Zusatz von Isopropanol präzipitiert, danach mit Äthanol gespült und erneut in 200 µl RNA-sicherer Resuspensions-Lösung (Ambion, Austin, TX) gelöst.. Die RNA-Präparate wurden mit 0,1 Mengeneinheiten/µl DNase I abgebaut, in DNase 1 Puffer von CLONTECH. Die RNA-Einheiten wurden zusätzlich in einer Alkoholmischung aus Phenol, Chloroform und Isoamylalkohol von Proteinen befreit, durch Zusatz von Äthanol präzipitiert und in 50-100µl RNA-sicherer Resupensions-Lösung gelöst. Die RNA-Konzentration wurde spektrophotometrisch unter der Prämisse, daß 1A₂₆₀ einer Konzentration von 40 µg/ml entspricht, bestimmt. Die Proben wurden auf eine Endkonzentration von 1 mg/ml angepasst und bei 80°C gelagert, ohne daß irgendwelche Anzeichen der

Qualitätsverschlechterung festzustellen waren. Alle RNA-Präparate wurden durch eine Agarosegelelektrophorese auf ihre Ganzheit (im Sinne von Nichtzerfall in seine Bestandteile) hin beurteilt, wobei RNA-Standards (GIBCO/BRL) zu Hilfe genommen wurden. Alle hier beschriebenen Präparate enthielten intakte RNA mit eindeutig erkennbaren 28S-, 18S- and 5S-Banden (Daten sind nicht angegeben). Es wurden keine erkennbaren Unterschiede hinsichtlich der elektrophoretisch bestimmten RNA-Muster zwischen gesunden und infektiösen Zellen festgestellt.

Vorbereitung von radioaktiv-markierten cDNA-Proben und Hybridisierung mittels DNA-Arrays. Gemäß dem Herstellerprotokoll wurde die cDNA-Synthese unter Verwendung von genspezifischen Primern (CLONTECH) und [32P]-dATP mit der Moloney Murine Leukemea Virus Reverse Transkriptase (SuperScript II, GIBCO/BRL) durchgeführt. Für die cDNA-Synthese wurden gleiche Mengen (5 µg) an RNA von jeder Probe verwendet.

Alternative Möglichkeit

RNA wurde aus den Gewebeproben mit Hilfe von Guanidinium Thiocyanate extrahiert und danach wie beschrieben [19] in CsCl zentrifugiert. Gemäß den Herstellerempfehlungen wurde die RNA aus den Zell-Linien mit RNAzol (Biotex Laboratories, Houston) extrahiert. Die Poly(A)-RNA wurde von 500 µg RNA mittels DynaBeads (Dynal, Oslo) isoliert, ganz entsprechend den Empfehlungen des Herstellers.

Die Unterschiede in der Genexpression wurden unter Verwendung von Atlas Array Membranen (CLONTECH) untersucht. In einem ersten kurzen Arbeitsschritt wurden jeweils 1 μg RNA von jeder Zell-Linie in [-32P]dATP-markierte cDNA umgeschrieben.

Auswertung

Die Auswertung der Genexpressionsdaten aus den radioaktiv markierten Filtern beruht auf der Messung der Färbungsintensitäten im digitalisierten Bild. Dazu werden über allen 57600 Spotpositionen kreisförmige Flächen definiert, innerhalb derer die Pixelintensitäten integriert werden. Die möglichst exakte Positionierung der Flächen

über die Spots erfolgt automatisch durch die Analysesoftware (AIDA Array Evaluation, raytest Isotopenmessgeräte GmbH).

Die ermittelten Signale beinhalten neben der gewünschten Information, nämlich der Menge gebundener Nukleinsäuren aber auch Hintergrundsignale, welche durch unspezifische Bindungen an der Membranoberfläche verursacht werden. Um diese Einflüsse zu eliminieren, werden die Hintergrundsignale in 4608 leeren Flächen des Filters bestimmt und als Grundrauschen von den Hybridisierungssignalen subtrahiert. Punktuelle Signale, die nicht durch Bindung von Nukleinsäuren sondern durch Staubpartikel oder sonstige Störungen auf dem Filter verursacht werden, können von realen Spots durch ihre Unregelmäßigkeit der Form unterschieden werden und werden von der weiteren Analyse ausgeschlossen.

Um die Werte verschiedener Filter miteinander vergleichbar zu machen, ist anschließend eine Normalisierung der Daten notwendig. Wegen der hohen Anzahl der Spots auf dem Filter wird als Normalisierungsreferenz der Mittelwert aller Expressionswerte festgelegt. Weiterhin ist der Ausschluss niedriger Spotsignale (unterhalb 10% des durchschnittlichen Expressionssignals) notwendig, da diese einem prozentual großen Fehler unterliegen und bei den späteren Berechnungen zu starken Schwankungen der Ergebisse führen würden.

Die Selektion der SIRS/Sepsis-relevanten Gene basiert auf dem Vergleich der Genexpressionswerte bei einer Kontrollperson ohne SIRS/Sepsis gegenüber jeweils einem Patienten mit der Diagnose Sepsis/SIRS. Die Höhe des Expressionsverhältnisses jedes Gens stellt das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse sind die Gene, die in den Patienten gegenüber der Kontrolle am meisten überexprimiert bzw. unterexprimiert wurden.

Ausführungsbeispiel 4-Sepsis:

Untersuchung zur Proteinexpression zwischen einem Patienten mit einer Sepsis und einer Kontrollprobe

Es wurde die Proteinexpression bei Auftreten einer Sepsis und einer Kontrollprobe gemessen. Die Patientendaten sind in Tabelle 10 zusammengefasst.

	Ausgewählte klinische Daten	Temperatur: 35,3 °C Herzfrequenz 146/min MAP 1: 68 mmHg; Art. PH: 7,48 Na: 145 mmol/l; Kreatin: 52 µmol/l Syst. BD: 94 mmHg; Diast. BD: 56 mmHg Hamatokrit.: 0,26 % Gesamtleukozytenzahl: 9200 Harnstoff: 7,1 mmol/l K: 5 mmol/l Bilirubin: 11,1 mmol/l	Temp: 37,7 °C Hcrzfrequenz: 139/min MAP I: 64 mmHg, art. pll: 7,15 Na: 142 mmol/l, Kreatin: 187 Mmol/l Atemfreq:: 19/min Syst. BD: 99 mmHg, Diast. BD: 49 mmHg; Hämatokrit:: 24 % HCO3: 13,7 mmol/l, Gesamtleukozytenzahl: 5200 Harnstoff: 27,6 mmol/l PaO2I: 13,2 kPA, K: 5,3 mmol/l Billinubin: 33,9 mmol/l
CAPC.	II Pkt.]		74
Anscha	Score [Pkt.]		288
	Indikation	enffälk	Septischer Schock
	Operationen	keine	Relaparotomie, Lavage, Lavage und Teilentfernung des Omentum,
	Interkurrente Diagnosen	Genneralisiertes Hirnödem, Srłammhirnkontusion, Fraktur des lateralen Orbitalpfeilers, Laterale Nascngerüstfraktur, Einblutung in den Seitenventrikel rechts, Freie Luft intracraniellfrontal links, Siebbeinfraktur, Fraktur des vorderen Beckenringes rechts mit Impression und Dislokation der Pragmente, Fraktur des Massa lateralis des OS sacrum rechts in Höhe S1/S2,	Pleuraergilsse bds., Multiorganversagen,, Multiple Nekrosen der Akren und bds. Prätibial, arterielle Mirkoembolien und Thrombosen, Sekundäre Thrombozytopenie, Akute Niereninsuffiezienz
tenprobe	Haupt- diagnose		Septischer Schock nach Perforation eines Ulcus pylori und anschließend em 4- Quadranten- Peritonitis
Tabelle 10: Daten der Kontroll- und Patienten	Gewicht/Größe	62 kg/167 cm	70 kg/175 cm
Kont	Alter [a]	21	59
0: Daten der	Geschlecht	weiblich	Mänulich
Tabelle 1		Kontrolle	Palient

Nach Abnahme des Vollblutes in ein Serum-Röhrchen erfolgte eine Zentrifugation (5500 rcf; 10 min; 4° C). Der Serum-Überstand wurde unmittelbar nach der Zentrifugation in Kryoröhrchen überführt und dann bei –35° C gelagert.

Das Serum wurde zur Abreicherung des Albumins mit Affi-Gel Blue Affinity Chromatographie Gel for Enzyme and Blood Protein Purifications (Bio-Rad) gemäß den Angaben des Herstellers behandelt. Zur Vermeidung unerwünschter Protein-Matrix-Wechselwirkungen wurden Equilibrierungs- und Bindungspuffer zusätzlich mit 400 mM NaCl versetzt.

Nicht bindende Proteine wurden gesammelt und mit Methanol und Chloroform entsprechend dem Protokoll von Wessel und Flügge (Anal Biochem. 1984 Apr;138(1):141-3.) präzipitiert.

250 Microgramm des präzipitierten Serum-Proteins wurden in einer Lösung bestehend aus 8M Harnstoff; 2,0 M Thioharnstoff; 4% CHAPS; 65 mM DTT und 0,4% (w/v) Bio-Lytes 3/10 (Bio-Rad) aufgenommen und einer isoelektrischen Fokussierung, sowie einer nachfolgenden SDS-PAGE unterzogen.

SDS-PAGE

In Figur 1 und in Figur 2 ist mit K4 das Akutphase Protein Transthyretin (TTR; P02766, SEQUENZ-ID I.6241, SEQUENZ-ID I.6242) und mit K5 und K6 das Vitamin D-bindende Protein (DBP; P02774, SEQUENZ-ID I.1554, SEQUENZ-ID I.1555) bezeichnet.

Die Gele (Cibacron FT, W1-W3, 400mM NaCl, IEF pH 3-10, Coomassie) können wie folgt erstellt werden:

250 Microgramm präzipitiertes Serum-Protein werden in einer Lösung bestehend aus 8M Harnstoff; 2,0 M Thioharnstoff; 4% CHAPS; 65 mM DTT und 0,4% (w/v) Bio-Lytes 3/10 (Bio-Rad) aufgenommen und einer isoelektrischen Fokussierung, sowie einer nachfolgenden SDS-PAGE unterzogen.

Die fertigen 2-dimensionalen Gele wurden mit Coomassie Brilliant Blau G-250 angefärbt und differentiell exprimierte Proteine wurden massenspektrometrisch identifiziert.

Die vergleichende Analyse (Figur 1, Figur 2) zeigt, dass das Akutphase Protein Transthyretin (TTR; P02766, SEQUENZ-ID: I.6241, SEQUENZ-ID I.6242), sowie das Vitamin D-bindende Protein (DBP; P02774, SEQUENZ-ID I.1554, SEQUENZ-ID I.1555) beim Sepsis-Patienten gegenüber dem Kontroll-Patienten schwächer exprimiert wird.

Aus diesen Ergebnissen lässt sich eindeutig ableiten, dass die Proteinexpression bzw. die Proteinzusammensetzung von Serum und Plasma krankheitsbegleitend verändert werden.

Ausführungsbeispiel 5 - schwere Sepsis:

Untersuchungen zur differentiellen Genexpression bei Patienten mit schwerer Sepsis.

Für die Messung der differentiellen Genexpression bei schwerer Sepsis wurden Untersuchungen von Vollblutproben von Patienten, welche auf einer operativen Intensivstation behandelt worden, durchgeführt.

Als Kontrollproben dienten Vollblutproben von Patienten nach einer unkomplizierten neurochirurgischen Operation, welche auf der gleichen Intensivstation behandelt wurden. Keiner dieser Patienten entwicklete während seiner gesamten stationären Behandlung eine Infektion und/oder wies klinische Zeichen einer generalisierten Entzündungsreaktion (definiert entsprechend SIRS-Kriterien [4]) auf.

Zusätzlich wurden Vollblutproben von sechs männlichen und zwei weiblichen Patienten abgenommen (Patientenproben). Jeder dieser Patienten entwickelte

47

im Zeitraum von 24 Stunden vor Vollblutentnahme neu eine schwere Sepsis mit Organfunktionsstörung. Ausgewählte Charakteristika der Patienten mit schwerer Sepsis sind in Tabelle 1 dargestellt. Dabei werden Angaben zum Alter, Geschlecht, der Ursache der schweren Sepsis (siehe Diagnose) sowie klinischer Schwere, gemessen anhand der im klinischen Schrifttum gut belegten APACHE-II- und SOFA-Scores (jeweils in Punkte), gemacht. Gleichfalls sind die Plasmaproteinspiegel von Procalcitonin (PCT), einem neuartigen Sepsismarker, und der individuelle Überlebensstatus angegeben.

Tabelle11: Daten der Patientengruppe

Alter	Geschlecht	Diagnose	Klassifikation nach [4]	APACHE- II Score [Punkte]	SOFA Score [Punkte]	PCT [ng/ml]	Überlebens- status
68	weiblich	Peritonitis	severe sepsis	17	4	269	gestorben
39	männlich	ARDS	septic shock	17	11	0,39	gestorben
36	männlich	Peritonitis	septic shock	11	7	9,77	überlebt
	männlich	Peritonitis	severe sepsis	28	4	23,61	überlebt
32	männlich	bakterielle Pancreatitis	septic shock	21	7	1,69	überlebt
73	männlich	ARDS	septic shock	16	14	9,96	gestorben
67	männlich	ARDS	septic shock	24	12	12,88	überlebt
67 76	weiblich	Peritonitis	septic shock	30	11	4,19	gestorben

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen des PAXGene Blood RNA Kit gemäß den Vorgaben des Herstellers (Qiagen) isoliert. Im Anschluss wurde aus der totalen RNA die cDNA mittels reverser Transkrition mittels Superscript II RT (Invitrogen) nach dem Protokoll des Herstellers synthetisiert, mit Aminoallyl-dUTP und Succinimidylester von der Fluoreszenzfarbstoffe Cy3 und Cy5 (Amersham) markiert und hydrolisiert.

Für die Hybridisierung wurden die Microarrays (Lab-Arraytor human 500-1 cDNA) der Firma SIRS-Lab GmbH verwendet. Diese Microarrays sind mit 340 humanen cDNA-Molekülen bestückt. Die 340 humanen cDNA-Moleküle sind auf jedem Microarray 3-fach in drei Subarrays immobilisiert.

Die vorbereiteten und markierten Proben wurden mit den Microarrays entsprechend den Anweisungen des Herstellers hybridisiert und im Anschluss gewaschen. Die Fluoreszenzsignale der hybridisierten Moleküle wurden mittels eines Auslesegerätes (AXON 4000B) gemessen.

<u>Auswertung</u>

Die Auswertung eines Experiments erfolgte aufgrund von eingescannten Bildern der Microarrays nach der Hybridisierung. Der mittlere Intensitätswert der detektierten Spots wurde als der gemessene Expressionswert des zugehörigen Gens definiert. In einer Bildanalyse wurden Spots automatisch erkannt und ihre Homogenität überprüft. Die Analyse wurde manuell kontrolliert. Die ermittelten Signale beinhalteten neben der gewünschten Information, nämlich der Menge gebundener Nukleinsäuren aber auch Hintergrundsignale, welche durch unspezifische Bindungen an der Membranoberfläche verursacht wurden. Die Definition des Hintergrundbereichs ermöglichte eine optimale Unterscheidung zwischen Spots und der Chipoberfläche, welche ebenfalls Farbeffekte aufwies. In der Auswertung der Microarrays wurden leere Spots als Hintergrund gewählt. Der mittlere Expressionswert ausgewählter leeren Spots innerhalb eines Blocks (von 14 mal 14 Spots) wurde von Expressionswerten der Gen-Spots (im entsprechenden Block) subtrahiert.

Punktuelle Signale, die nicht durch Bindung von Nukleinsäuren sondern durch Staubpartikel oder sonstige Störungen auf dem Filter verursacht wurden, konnten von realen Spots durch ihre Unregelmäßigkeit der Form unterschieden werden und wurden von der weiteren Analyse ausgeschlossen.

Um die Werte zwischen den 3 Subarrays und zwischen verschiedenen Microarrays miteinander vergleichbar zu machen, wurde anschließend eine Normalisierung der Daten notwendig. Wegen der hohen Anzahl der Spots auf dem Microarray wurde als Normalisierungsreferenz der Mittelwert aller Expressionswerte festgelegt. Für die Berechnung der mittleren Expression pro Gen wurden die zwei (aus drei) Wiederholungen gewählt, welche am nächsten zueinander lagen.

Aus den Signalintensitäten wurden mittels der Software AIDA Array Evaluation die Expressionsverhältnisse zwischen Kontroll- und Patientenproben Probe berechnet. Die Höhe des Expressionsverhältnisses jedes Gens stellte das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse waren die Gene, die in den Patientenproben gegenüber Kontrollproben am meisten überexprimiert bzw. unterexprimiert wurden.

Aus Tabelle 12 ist ersichtlich, dass 41 Gene der Patientenprobe gefunden wurden, die gegenüber der Kontrollprobe signifikant überexprimiert waren.

WO 2004/087949 50 PCT/EP2004/003419

Weiterhin wird aus Tabelle 13 deutlich, dass 89 Gene der Patientenprobe signifikant unterexprimiert gegenüber der Kontrollprobe waren. Aus den Ergebnissen wird deutlich, dass die in Tabelle 12 und Tabelle 13 aufgeführten Gene mit dem Auftreten einer schweren Sepsis korrelieren. Auch korrelieren diese Ergebnisse mit der klinischen Eingruppierung entsprechend [4] sowie PCT-Konzentrationen der Patienten, welche typisch sind für das Auftreten einer schweren Sepsis [23]. Somit stellen die aufgeführten Genaktivitäten der Gene Marker für eine Diagnose einer schweren Sepsis dar.

Tabelle 12: Expressionverhältnis überexprimierter Gene zwischen Patienten- und Kontrollprobe

GenBank Accession- Nr.	HUGO Name	Expressionsverhältnis überexprimierter Gene gegenüber der Kontrolle	SEQUENZ-ID
XM 086400	S100A8	4.4	11.1
XM 001682	S100A12	3.03	II.2
NM 002619	PF4	2.21	II.3
NM 002704	PPBP	1.66	11.4
NM 001101	ACTB	1.65	11.5
NM 001013	RPS9	- 1.61	II.6
		1.61	11.7
XM_057445	SELP	1.53	11.8
BC018761	IGKC		11.9
XM_030906	TGFB1	1.51	
NM_001760	CCND3	1.48	II.10
XM_035922	IL11	1.28	11.11
XM_039625	DUSP10	1.17	II.12
XM_002762	TNFAIP6	1.17	II.13
XM_015396	ALOX5AP	1.15	11.14
NM_003823	TNFRSF6B	1.15	II.15
XM 029300	DPP4	1.15	II.16
NM 001562	IL18	1.14	11.17
NM 005037	PPARG	1.11	II.18
M90746	FCGR3B	1.07	II.19
NM_001315	MAPK14	0.99	11.20
BC001506	CD59	0.88	11.21
XM 042018	BSG	0.88	11.22
XM 010177	DUSP9	0.87	11.23
BC013992	MAPK3	0.84	11.24
NM 001560	IL13RA1	0.82	11.25
NM_004555	NFATC3	0.74	11.26
NM_001154	ANXA5	0.73	11.27
NM_001310	CREBL2	0.7	II.28 II.29
XM_036107	ITGB2	0.65 0.65	11.30
XM_009064	JUNB . CD37	0.62	II.31
NM 001774 XM 049849	TNFRSF14	0.6	11.32
NM 003327	TNFRSF4	0.57	11.33
BC001374	CD151	0.56	11.34
XM_051958	ALOX5	0.56	11.35
NM_021805	SIGIRR	0.5	11.36
NM_017526	HSOBRGR	0.48	II.37 II.38
XM_011780	DAPK1	0.46	11.39
NM_006017	PROML1	0.44	II.130
D49410 XM 027885	RPL13A	0.43	11.40

Tabelle 13: Expressionverhältnis unterrexprimierter Gene zwischen Patienten- und Kontrollprobe

HUGO Name	Expressionsverhältnis unterexprimierter Gene gegenüber der Kontrolle	SEQUENZ- ID
24245	<u> </u>	11.41
		11.42
		11.43
		11.44
		11.45
		11.46
		11.47
		11.48
		11.49
		11.50
		II.51
		11.52
		11.53
		11.54
		11.55
		11.56
		11.57
		11.58
		11.59
		11.60
		11.61
		11.62
		11.63
		11.64
		11.65
		!1.66
		11.67
		11.68
		11.69
		11.70
		11.71
		11.72
		11.73
		11.74
		- 11.75
	1	11.76
		11.77
		11.78
	1.0	11.79
		11.80
		11.81
		11.82
		11.83
		11.84
	4.00	11.85
IFNAR2	4.00	11.86
	MME SCYA13 ENG BMP5 TGFB3 GFRA2 AHCY CD36L1 CD33 DUSP4 CD244 CD19 CD8B1 CD3G TNF MAP3K6 ITGA2B TIMP1 TIAF1 ITGA3 PAFAH1B1 DAPK2 PIK3R1 CCR5 DSIPI F2R IL16 LY9 EDG6 CD69 CCL28 CXCL1 PVR CDK4 MAP3K1 TGFBR2 CD84 ATF6 PLA2G2A BRF2 IL17BR CD81 BTK JUN TNFAIP2	Name unterexprimierter Gene gegenüber der Kontrolle MME -2.11 SCYA13 -2.06 ENG -2.01 BMP5 -1.99 TGFB3 -1.93 GFRA2 -1.88 AHCY -1.86 CD36L1 -1.86 CD33 -1.86 DUSP4 -1.83 CD244 -1.77 CD19 -1.75 CD8B1 -1.73 CD3G -1.71 TNF -1.65 MAP3K6 -1.62 ITGA2B -1.61 TIMP1 -1.61 TIMP1 -1.61 TIGA3 -1.57 PAFAH1B1 -1.56 DAPK2 -1.55 PIK3R1 -1.49 DSIPI -1.49 F2R -1.45 IL16 -1.45 LY9 -1.45 IL16 -1.45 LY9 -1.45 EDG6 -1.41

GeneBank Accession- Nr.	HUGO Name	Expressionsverhältnis unterexprimierter Gene gegenüber der Kontrolle	SEQUENZ- ID
XM 041060	FOS	-1.23	11.87
XM 056556	TNFSF7	-1.23	11.88
XM 016747	LTBP1	-1.22	11.89
XM 006953	TNFRSF7	-1.21	11.90
NM 015927	TGFB1I1	-1.19	11.91
XM 010807	INHBB	-1.16	11.92
NM 002184	IL6ST	-1.14	11.93
XM 008570	VAMP2	-1.13	11.94
NM 006856	ATF7	-1.1	11.95
NM 000674	ADORA1	-1.09	11.96
NM 000173	GP1BA	-1.08	11.97
XM 048068	SCYD1	-1.07	11.98
NM 022162	CARD15	-1.07	11.99
NM 001199	BMP1	-1.02	II.100
NM 000960	PTGIR	-1.01	II.101
XM 012039	FUT4	-0.99	II.102
XM 034166	NOS2A	-0.99	II.103
NM 003188	MAP3K7	-0.98	II.104
NM 006609	MAP3K2	-0.98	II.105
XM 027358	PCMT1	-0.95	II.106
XM 007189	FOXO1A	-0.93	II.107
XM 030523	MAP3K8	-0.92	11.108
XM 002923	CCR2	-0.88	II.109
XM 054837	TNFRSF1B	-0.87	<u>li.110</u>
NM 000634	IL8RA	-0.87	11.111
NM 004590	CCL16	-0.86	II.112
XM_012717	CSNK1D	-0.86	II.113
XM_012649	SCYA7	-0.84	II.114
XM_008679	TP53	-0.84	II.115
XM_030509	PTGIS	-0.83	II.116
XM_039086	CDW52	-0.82	11.117
XM_027978	CFLAR	-0.81	II.118
NM_005343	HRAS	-0.79	11.119
XM_043574	DAP3	-0.78	11.120
NM_002188	IL13	-0.77	II.121
XM_055699	ENTPD1	-0.72	11.122
NM_000565	IL6RA	-0.67	II.123
NM_002211	ITGB1	-0.65	II.124
XM_049864	CSF3	-0.63	II.125
XM_045933	CAMKK2	-0.63	II.126
NM_033357	CASP8	-0.55	11.127
XM_008704	DNAM-1	-0.52	11.128
NM_030751	TCF8	-0.5	II.129

Diese charakteristischen Veränderungen sind beispielsweise für das erfindungsgemäße Verfahren gemäß Anspruch 3 und 32 ausnutzbar.

SOUND SUND SUNDER 1848 1

Die in den Tabellen 12 und 13 aufgeführten GenBank Accession Nummern (Internet-Zugang über http://www.ncbi.nlm.nih.gov/) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 1430-seitigen Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen jeweils einer SEQUENZ-ID (SEQUENZ-ID: II.1 bis zur SEQUENZ-ID: II.130) zugeordnet. Dieses Sequenzprotokoll ist Teil der vorliegenden Erfindung.

Literatur

- Natanson C, Hoffmann WD, Suffredini A, Eichacker PQ, and Danner RL: Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med 1994;120:771-783
- 2. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parillo JE: Endotoxemia in human septic shock. Chest 1991; 99: 169-175
- 3. Niederman MS, Fein AM: Sepsis syndrome, the adult respiratory distress syndrome, and nosocomial pneumonia. A common clinical sequence. Clin Chest Med 1990;11: 633-656
- 4. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.. Crit Care Med 1992; 20: 864-874
- Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B: Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 1995; 274: 968-974
- Le-Gall JR, Lemeshow S, Leleu G, Klar J, Huillard J, Rue M, Teres D, Artigas
 A: Customized probability models for early severe sepsis in adult intensive
 care patients. Intensive Care Unit Scoring Group. JAMA 1995; 273: 644-650
- 7. Increase in National Hospital Discharge Survey rates for septicemia--United States, 1979-1987. MMWR Morb Mortal Wkly Rep 1990 ; 39: 31-34
- 8. Pittet D, Tarara D, Wenzel RP: Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1994; 271: 1598-1601
- Vincent JL, Angus D, Annane D, et al. (2001) Clinical expert round table discussion (session 5) at the Margaux Conference on Critical Illness: outcomes of clinical trials in sepsis: lessons learned. Crit Care Med 29:S136-137.
- 10. Southern EM (1974) An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal Biochem 62:317-318

- 11. Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12:829-842
- 12.Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7: 314-317
- 13. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucl Acid Res 7:1541-1552
- 14. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Lightdirected, spatially addressable parallel chemical synthesis. Science 251:767-773
- 15. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA 91:5022-5026
- 16. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470
- 17. Golub TR, Slonim DK, Tamayo P, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537
- 18. Alizadeh AA, Eisen MB, Davis RE, et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511
- 19. Varambally S, Dhanasekaran SM, Zhou M, et al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624-629
- 20. Fillion I, Ouellet N, Simard M, et al.(2002) Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. J Immunol.;166(12):7353-61.

- 21. Zhao B, Bowden RA, Stavchansky SA, Bowman PD (2001) Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. Am J Physiol Cell Physiol. Nov;281(5):C1587-95.
- 22. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C et al. (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol. 159(4):1199-209.

<u>Ansprüche</u>

1. Verfahren zur in vitro Erkennung von akuten generalisierten entzündlichen Zuständen (SIRS),

dadurch gekennzeichnet, daß

- a) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für SIRS spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- d) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für SIRS spezifisches Gen oder Genfragment ist;
- e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für SIRS spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

2. Verfahren zur in vitro Erkennung von Sepsis und/oder sepsisähnlichen Zuständen,

dadurch gekennzeichnet, dass

- g) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- h) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- i) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- j) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Gen oder Genfragment ist;
- k) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- I) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für Sepsis und/oder sepsisähnliche Zustände spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

3. Verfahren zur in vitro Erkennung von schwerer Sepsis,

dadurch gekennzeichnet, dass

- m) Isolieren von Proben-RNA aus einer aus einem Säuger stammenden Probe;
- n) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein für schwere Sepsis spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- o) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- p) In-Kontakt-Bringen von Kontroll-RNA, welche eine Kontrolle für nichtpathologische Zustände darstellt, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein für schwere Sepsis spezifisches Gen oder Genfragment ist;
- q) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- r) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für schwere Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.
 - 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA hybridisiert und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfaßt und gegebenenfalls in Form einer Kalibrierkurve oder –tabelle ablegt.

- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nicht veränderte Gene aus der Proben- und/oder Kontroll-RNA als Bezugsgene für die Quantifizierung genutzt werden.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.
- der Ansprüche 1 bis 7. nach einem 8. Verfahren gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des klinischen Verlaufs, zur individuellen Abschätzung zur für Patienten. Risikoabschätzung wahrscheinlichen Ansprechens auf eine spezifische Behandlung sowie zur post mortem Diagnose von SIRS und/oder Sepsis und/oder schwerer Sepsis und/oder systemischen Infektionen und/oder septischen Zuständen und/oder Infektionen, eingesetzt wird.
- 8, dadurch der Ansprüche 1 bis 9. Verfahren nach einem Probe ausgewählt wird aus: die daß gekennzeichnet, Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß es sich bei dem Säuger um einen Menschen handelt.

- 12. Verfahren nach einem der Ansprüche 1 oder 4 bis 11 dadurch gekennzeichnet, daß das für SIRS spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. III.1 bis SEQUENZ-ID No. III.4168, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.
- 13. Verfahren nach einem der Ansprüche 2 oder 4 bis 11, dadurch gekennzeichnet, dass das für Sepsis und/oder sepsisähnliche Zustände spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQENZ-ID No. I.1 bis SEQUENZ-ID No. I.6242, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.
- 14. Verfahren nach einem der Ansprüche 3 oder 4 bis 11, dadurch gekennzeichnet, daß das für schwere Sepsis spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. II.1 bis SEQUENZ-ID No. II.130, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.
 - 15. Verfahren nach einem der Ansprüche 1 bis 14 dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.
 - 16. Verfahren nach einem der Ansprüche 1 bis 15 dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.
 - 17. Verfahren nach einem der Ansprüche 1 bis 16 dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.
 - 18. Verfahren nach einem der Ansprüche 1 bis 17 dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.

- 19. Verfahren nach einem der Ansprüche 1 bis 18 dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.
- 20. Verfahren nach einem der Ansprüche 1 bis 19 dadurch gekennzeichnet, daß die cDNA von den in den Ansprüchen 12, 13 und 14 aufgelisteten Genen durch synthetische Analoga sowie Peptidonukleinsäuren ersetzt wird.
- 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet daß die synthetischen Analoga der aufgelisteten Gene 5-100, insbesondere ca. 70 Basenpaare, umfassen.
- 22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.
- 23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.
- 24 Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA dieselbe Markierung tragen.
- 25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA unterschiedliche Markierungen tragen.
- 26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass die immobilisierten Sonden eine Markierung tragen.

27. Verfahren nach einem der Ansprüche 1 bis 26 dadurch gekennzeichnet, daß die cDNA-Sonden auf Glas oder Kunststoff immobilisiert werden.

- 28. Verfahren nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß die einzelnen cDNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.
- 29. Verfahren nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß die einzelnen cDNA Moleküle mittels Adsorption, insbesondere mittels elektrostatischer- und/oder Dipol-Dipol- und/oder hydrophobe Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.
- 30. Verfahren zur in vitro Erkennung von SIRS,

dadurch gekennzeichnet, daß

- a) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- b) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- c) In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für SIRS spezifisches Peptid- oder Peptidfragment bindet;
- d) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für SIRS spezifisches Peptid- oder Peptidfragment bindet;

- e) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für SIRS spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.
- 31. Verfahren zur in vitro Erkennung von Sepsis und/oder sepsisähnlichen Zuständen,

dadurch gekennzeichnet, dass

- g) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- h) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- i) In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Peptid- oder Peptidfragment bindet;
- j) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für Sepsis und/oder sepsisähnliche Zustände spezifisches Peptid- oder Peptidfragment bindet;
- k) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;
- l) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für Sepsis und/oder sepsisähnliche Zustände

spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

32. Verfahren zur in vitro Erkennung von schwerer Sepsis,

dadurch gekennzeichnet, dass

- m) Isolieren von Proben-Peptiden aus einer aus einem Säuger stammenden Probe;
- n) Markieren der Proben-Peptide mit einem detektierbaren Marker;
- In-Kontakt-Bringen der markierten Proben-Peptide mit wenigstens einem Antikörper oder dessen bindendem Fragment, wobei der Antikörper ein für schwere Sepsis spezifisches Peptid- oder Peptidfragment bindet;
- p) In-Kontakt-Bringen von markierten Kontroll-Peptiden, welche aus gesunden Probanden stammen, mit wenigstens einem, in Form eines Microarray auf einem Träger immobilisierten Antikörper oder dessen bindendes Fragment, wobei der Antikörper ein für schwere Sepsis spezifisches Peptid- oder Peptidfragment bindet;
- q) quantitatives Erfassen der Markierungssignale der Proben-Peptide und der Kontroll-Peptide;
- r) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob für schwere Sepsis spezifisches Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.
- 33. Verfahren nach einem der Ansprüche 30 bis 32, dadurch gekennzeichnet, daß der Antikörper auf einem Träger in Form eines Microarrays immobilisiert ist.

- 34. Verfahren nach einem der Ansprüche 30 bis 33, dadurch gekennzeichnet, daß es als Immunoassay ausgebildet ist.
- 35. Verfahren nach einem der Ansprüche 30 bis 34, dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des klinischen und therapeutischen Verlaufs, zur Risikoabschätzung für Patienten sowie zur post mortem Diagnose von SIRS und/oder Sepsis und/oder schwerer Sepsis und/oder systemischen Infektionen und/oder septischen Zuständen und/oder Infektionen eingesetzt wird.
- 36. Verfahren nach einem der Ansprüche 30 bis 35, dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.
- 37. Verfahren nach einem der Ansprüche 30 bis 36, dadurch gekennzeichnet, daß Zellproben gegebenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.
- 38. Verfahren nach einem der Ansprüche 30 bis 37, dadurch gekennzeichnet, daß es sich bei dem Säuger um einen Menschen handelt.
- 39. Verfahren nach einem der Ansprüche 30 oder 33 bis 38, dadurch gekennzeichnet, daß das für SIRS spezifische Peptid ein Expressionsprodukt eines Gen oder Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. III.1 bis SEQUENZ-ID No. III.4168, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, besonders bevorzugt 20-80 Nukleotiden.
- 40. Verfahren nach einem der Ansprüche 31 oder 33 bis 38, dadurch gekennzeichnet, daß das für Sepsis und/oder sepsisähnliche Zustände spezifische Peptid ein Expressionsprodukt eines Gen oder

Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ - ID No. I.1 bis SEQUENZ - ID No. I.6242, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, besonders bevorzugt 20-80 Nukleotiden.

- 41. Verfahren nach einem der Ansprüche 32 oder 33 bis 38, dadurch gekennzeichnet, daß das für schwere Sepsis spezifische Peptid ein Expressionsprodukt eines Gen oder Genfragmentes ist, welches ausgewählt wird aus der Gruppe bestehend aus SEQUENZ-ID No. II.1 bis SEQUENZ-ID No. II.130, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.
- 42. Verfahren nach einem der Ansprüche 30 bis 41, dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche Peptide verwendet werden.
- 43. Verfahren nach einem der Ansprüche 30 bis 42, dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche Peptide verwendet werden.
- 44. Verfahren nach einem der Ansprüche 30 bis 43, dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche Peptide verwendet werden.
- 45. Verfahren nach einem der Ansprüche 30 bis 44, dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche Peptide verwendet werden.
- 46. Verfahren nach einem der Ansprüche 30 bis 45, dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche Peptide verwendet werden.
- 47. Verfahren nach einem der Ansprüche 30 bis 46, dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.

- 48. Verfahren nach einem der Ansprüche 30 bis 47, dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.
- 49. Verfahren nach einem der Ansprüche 30 bis 48, dadurch gekennzeichnet, daß die Proben-Peptide und Kontroll-Peptide dieselbe Markierung tragen.
- 50. Verfahren nach einem der Ansprüche 30 bis 49, dadurch gekennzeichnet, daß die Proben-Peptide und Kontroll-Peptide unterschiedliche Markierungen tragen.
- 51. Verfahren nach einem der Ansprüche 30 bis 50, dadurch gekennzeichnet, dass als Sonden solche Peptide verwendet werden, an welche markierte Antikörper gebunden sind, die durch eine Konformationsänderung bei Bindung an die Proben-Peptide eine Signaländerung der markierten Antikörper bewirken.
- 52. Verfahren nach einem der Ansprüche 30 bis 51 dadurch gekennzeichnet, daß die Peptid-Sonden auf Glas oder Kunststoff immobilisiert werden.
- 53. Verfahren nach einem der Ansprüche 30 bis 52, dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.
- 54. Verfahren nach einem der Ansprüche 30 bis 53, dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle mittels Adsorption, insbesondere mittels elektrostatischer- und/oder Dipol-Dipol- und/oder hydrophober Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.

- 55. Verfahren nach einem der Ansprüche 30 bis 54, dadurch gekennzeichnet, daß die einzelnen Peptidmoleküle mittels monoklonaler Antikörper oder deren bindenden Fragmenten erkannt werden.
- 56. Verfahren nach einem der Ansprüche 30 bis 55, dadurch gekennzeichnet, daß das Bestimmen einzelner Peptide mittels Immunoassay, oder Präzipitationsassay unter Verwendung monoklonaler Antikörper durchgeführt wird.
- 57. Verwendung von rekombinant oder synthetisch hergestellten, für SIRS spezifischen Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in SIRS-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von SIRS.
- 58. Verwendung von rekombinant oder synthetisch hergestellten, für sepsisähnlichen Zustände spezifischen und/oder Sepsis Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von Sepsis, Zuständen und entzündlichen systemischen sepsisähnlichen sepsisähnlichen systemischen Infektionen.
- 59. Verwendung von rekombinant oder synthetisch hergestellten, für schwere Sepsis spezifischen Nukleinsäuresequenzen, Partialsequenzen oder davon abgeleiteten Protein-/ Peptidsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening

und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von schwerer Sepsis.

Kontrolle, Cibacron FT, W1-W3, 400mM NaCl, IEF pH3-10; Coomassie

K4: TTR (P02766), Sequenz-ID: I.6241, Sequenz-ID: I.6242 K5: DBP (P02774), Sequenz-ID: I.1554, Sequenz-ID: I.1555 K6: DBP (P02774), Sequenz-ID: I.1554, Sequenz-ID: I.1555 (P02766), Sequenz-ID: I.6241, Sequenz-ID: I.6242

Sepsis, Cibacron FT, W1-W3, 400mM MaCl, IEF pH 3-10, Coomassie

(P02766), Sequenz-ID: 1.6241, Sequenz-ID: 1.6242 K4: TTR K5: DBP (

(P02774), Sequenz-ID: I.1554, Sequenz-ID: I.1555

(P02774), Sequenz-10: 1.1554, Sequenz-1D: 1.1555 K6: DBP

Fig. 2

This Page Blank (uspto)