Supporting Security Sensitive Tenants in a Bare-Metal Cloud

Background

~70% of businesses utilize cloud

60% of F500 companies experienced a compromised cloud account last year

☐ Biggest cyber threat of 2020

Tenants

Security Sensitive

Security Sensitive Tenants

Prepared to pay

Own security arrangements

Minimize trust in provider

Security problems with existing clouds

- Virtualized clouds
- Huge trusted computing base(TCB)
- One-size-fits-all
- Limited visibility and control

What is a bare-metal node?

- No virtualization
- Single tenant
- Tenant optimizes the server
- Avoid noisy-neighbor effect
- Efficient billing model

Bare Metal Clouds: Security Limitations

- Large parts of codebase in TCB.
- One-size fits all approach to security
- Trust the provider
- Can't verify the firmware installed

Bolted

Key goals of Bolted

- To minimize trust in provider
- Tenants with security expertise implement functionality themselves
- To enable tenants to make their own cost/performance/security tradeoffs

Security Assumptions

Provider gives physical security

Servers equipped with Trusted Platform Module

Components

- Isolation service
- Secure Firmware
- Provisioning Service
- Attestation Service

Isolation Service - Hardware Isolation Layer

- Allocates nodes, creates networks
- Controls provider's switches
- Provides VLAN based isolation
- Must be deployed by provider
- Invoked by tenant

Provisioning Service- Bare Metal Imaging

- Responsible for provisioning servers
- ☐ Tenants can run their own
- Allows for diskless provisioning
- Only fetches part of the image that it uses

Attestation Service - Keylime

- Provides attestation for software
- Security sensitive tenants run continuous attestation
- Handles network and disk key distribution

LUKS and IPSec

- Linux Unified Key Setup
- Disk encryption for Linux
- Keylime supported auto-configuration
- Low overhead
 - **IPSec**
- Used for network encryption
- Higher overhead

Secure Firmware - Linuxboot

- Open source
- Deterministically built
- Ensures memory scrub
- Allow attestation agent to execute
- Minimal build of Linux
- Faster to POST

Use cases

 Alice (HPC): Maximizes performance and minimizes cost; does not care about security

Bob (Developer): Don't trust other tenants but is willing to trust the provider

Charlie (NSA): Not only does not trust other tenants but wants to minimize his trust in the provider

Bolted's Architecture

Key Components:

- Isolation Service
- Provisioning Service
- Attestation Service
- Secure Firmware

Use cases

 Alice (HPC): Maximizes performance and minimizes cost; does not care about security

Bob (Developer): Don't trust other tenants but is willing to trust the provider

Charlie (NSA): Not only does not trust other tenants but wants to minimize his trust in the provider

Bolted implementation

- Bare Metal Imaging (BMI) Provisioning Service
- Hardware Isolation Layer (HIL) Isolation Service
- Keylime Attestation Service
- LinuxBoot Firmware to speed up provisioning
- LUKS Memory/Disk Encryption
- IPSec Network Encryption

Network Encryption vs Memory Encryption

Network Encryption vs Memory Encryption

Network Encryption (IPSec)

Protects against Man-in-the-middle

Also applies to Node-Node communication (i.e. parallel programming - MPI)

Network Encryption vs Memory Encryption

Memory Encryption (LUKS)

Cost of encryption

Network Encryption

LUKS: a disk encryption specification originally intended for Linux

IPSec: an Internet Engineering Task Force (IETF) standard suite of protocols between 2 communication points across the IP network that provides network encryption

Provisioning time

Application performance

Concluding remarks

Minimize trust tenants need to place in the provider

Supporting even the most security sensitive tenants

Tenants can make the performance/security tradeoff

Thank you! Any questions?

