ARTIFICIAL INTELLIGENCE

ASSIGNMENT-4: Hill Climb

(Read all the instructions carefully & adhere to them.)

Date: 16 Sept 2023 Deadline: 1 Oct 2023

Total Credit: 30

Instructions:

- 1. The assignment should be completed and uploaded by 1 October 2023, 11:59 PM IST.
- 2. Marking will depend on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments are mandatory.
- 4. You should zip all the required files and name the zip file as: <roll_no_of_all_group_members.zip>, eg.1501cs11_1201cs03.zip.
- 5. Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/RQgWlll91RzXFAEEr9vk

For any queries regarding this assignment, you can contact:				
Ratnesh Kumar Joshi (<u>ratneshkr.joshi@gmail.com</u>)				
Ramakrishna Appicharla (<u>ramakrishnaappicharla@gmail.com</u>)				
Question				

A local search algorithm tries to find the optimal solution by exploring the states in the local region. Hill climbing is a local search technique that constantly looks for a better solution in its neighborhood.

- 1. Implement the Hill Climbing Search Algorithm for solving the 8-puzzle problem.
- 2. Check the algorithm for the following heuristics:
 - a. h1(n) = number of tiles displaced from their destined position.
 - b. h2(n) = sum of the Manhattan distance of each tile from the goal position.

Instructions:

1. Take the input and store the information in a matrix. Configuration of the start state and the goal state can be anything. For example, T1, T2, ..., and T8 are tile numbers, and B is blank space.

Initial state:

Т6	T7	Т3
Т8	T4	T2
T1	В	T5

Goal State:

T1	T2	Т3
T4	T5	T6
T7	Т8	В

- 2. The output should have the following information:
 - a. On success:
 - i. Success Message
 - ii. Start State / Goal State
 - iii. Total number of states explored
 - iv. Total number of states to the optimal path
 - v. Optimal Path
 - vi. Optimal Path Cost
 - vii. Time taken for execution
 - b. On failure:
 - i. Failure Message
 - ii. Start State / Goal State
 - iii. Total number of states explored before termination

https://docs.google.com/document/d/1iYmeKc-X319tAtXuBTe2TGu_NdmpRqQH5-N-a6oMh7Y/edit?usp=sharing