Chapter 7

Boolean Algebra

Solve problems using algebra

- 7.1 Finite Boolean Algebras
- 7.2 Function on Boolean Algebras
- 7.3 Laws of Boolean Algebras
- 7.4 Simplification of Boolean Expressions
- 7.5 Use of Karnaugh Map (*K*-map) up to 4 variables

7.1 Finite Boolean Algebras (cont)

- Boolean variables are the variables that can take only value 0 or 1.
- The simplest Boolean algebra consists of set {0, 1} together with the operations of disjunction (∨), conjunction (∧), and negation (¹).
 OR
 AND

NOT

 $\bar{p} \lor q \land r$

Theorem 1

If $S_1 = \{x_1, x_2, ..., x_n\}$ and $S_2 = \{y_1, y_2, ..., y_n\}$ are any two finite sets with n elements, then the lattices $(P(S_1), \subseteq)$ and $(P(S_2), \subseteq)$ are isomorphic. Consequently, the Hasse diagrms of these lattices may be drawn identically.

Example 1:

Let $A = \{1, 2, 3, 6\}$ and considered the lattice D_6 consisting of all positive integer divisors of 6 under the partial order of divisibility.

 D_6 is isomorphic with B_2 . In fact, $f:D_6 \to B_2$ is an isomorphism, where

$$f(1) = , f(2) = , f(3) = , f(6) =$$

A finite lattice is called a Boolean algebra if it is isomorphic with B_n for some nonnegative integer n. Thus each B_n is a Boolean algebra and so is each lattice $(P(S), \subseteq)$, where S is a finite set.

Example 2:

Consider the lattices D_{20} and D_{30} of all positive integer divisors of 20 and 30, respectively, under the partial order of divisibility.

Since D_{20} has six elements and $6 \neq 2^n$ for any integer $n \geq 0$, we conclude that D_{20} is not a Boolean algebra.

The poset D_{30} has eight elements, and since 8 = 2^3 , it could be a Boolean algebra.

By comparing the diagrams above, we see that D_{30} is isomorphic with B_3 . In fact, $f: D_{30} \rightarrow B_3$ is an isomorphism, where

$$f(1) = 000$$
 , $f(2) = 001$, $f(3) = 010$, $f(5) = 100$ $f(6) = 011$, $f(10) = 101$, $f(15) = 10$, $f(30) = 111$ Thus D_{30} is a Boolean algebra.

7.2 Function on Boolean Algebras

- A Boolean function of the n Boolean variables, x_1 , x_2 , ..., x_n , is a function $f: B^n \to B$ such that $f(x_1, x_2, ..., x_n)$ is a Boolean expression.
- Boolean function can be expressed in an equivalent standard form, called the disjunctive normal form (sum of products).

$$B = \{0,1\}$$

Example 3:

Construct a truth table for the Boolean function $f: B^3 \to B$ where

$$f(x, y, z) = (x \wedge y) \vee (x' \wedge z).$$

Then write the disjunctive normal form for f(x, y, z).

X	У	Z	$X \wedge y$	X	$X' \wedge Z$	$(x \wedge y) \vee (x' \wedge z)$
0	0	0	0	1	0	0
0	0	1	0	1	1	$x' \wedge y' \wedge z$
0	1	0	0	1	0	0
0	1	1	0	1	1	$1 \qquad x' \wedge y \wedge z$
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	$1 x \wedge y \wedge z'$
1	1	1	1	0	0	$1 x \wedge y \wedge z$

7.3 Laws of Boolean Algebras

(Will be given in exams)

1.
$$(x')' = x$$
 Involution Property

2. $(x \wedge y)' = x' \vee y'$
 $(x \vee y)' = x' \wedge y'$ De Morgan's Laws

3. $x \wedge y = y \wedge x$
 $x \vee y = y \vee x$ Commutative Laws

7.3 Laws of Boolean Algebras

4. $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ $(x \vee y) \vee z = x \vee (y \vee z)$	Associative Laws
5. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$	
$6. \ X \land X = X \\ X \lor X = X$	Idempotent Laws

7.3 Laws of Boolean Algebras

7. $x \wedge (x \vee y) \equiv x$ $x \vee (x \wedge y) = x$	Absorption Laws
8. $x \wedge x' = 0$ $x \vee x' = 1$	Inverse Laws
9. $x \wedge 0 = 0$ $x \vee 1 = 1$	Dominance Laws
$10.x \wedge 1 = x$ $x \vee 0 = x$	Identity Laws

The following table summarises the correspondence between Boolean operations, the logical operators in propositional calculus and set operations:

Logical Operation	Set Operation	Boolean Operation	
not, ~		,	
or, ∨		V	
and, ∧		^	

7.4 Simplification of Boolean Expressions

$$LHS = (x' \land y)' \land (x \lor y)$$

$$= (\mathbf{x} \lor y') \land (\mathbf{x} \lor y)$$

$$= x \lor (y' \land y)$$

$$= x \lor 0$$

$$= x = RHS$$

RHS

- To find a 'simpler' equivalent equation, i.e. use fewer symbols than the original expression.
- Applied to disjunctive normal form of the given expression.

Example 5:

Usually in Question 1

Simplify the expression below.

$$(X \wedge Y \wedge Z) \vee (X \wedge Y \wedge Z) \vee (X \wedge Y \wedge Z)$$

```
= z \wedge [(\mathbf{x'} \wedge y') \vee (\mathbf{x'} \wedge y) \vee (x \wedge y')]
= z \wedge [x' \wedge (y' \vee y) \vee (x \wedge y')]
= z \wedge [(x' \wedge 1) \vee (x \wedge y')]
= z \wedge [x' \vee (x \wedge y')]
= z \wedge [(\mathbf{x'} \vee x) (\mathbf{x'} \vee y')]
= z \wedge [1 (x' \vee y')]
= z \wedge (x' \vee y')
```

is there a shortcut?

7.5 Use of Karnaugh Map (K-map) up to 4 variables Usually in last Q

A Karnaugh map is a device invented as an aid to logical circuit design that uses a visual display to simplify a sum-of-product Boolean expression by indicating which pairs of minterms can be brought together and merged into a single simpler expression.

Once we get logical expression:

- 1. Work out truth table
- 2. Find PDNF
- 3. Get Karnaugh Map
- 4. Get simplest form

- Given a sum-of-product Boolean expression.
 - If two variables x and y are involved, a Karnaugh map consists of a table with two rows and two columns. Each cell corresponds to a minterm. During exam, empty table given to fill in

	<i>y</i> '	У
X	$X \wedge Y$	<i>x</i> '∧ <i>y</i>
X	$X \wedge y'$	$X \wedge y$

00	01
10	11

 \square A rectangle of size 2 \times 4 is used for three variables x, y, and z in a Boolean expression.

_	y'	y'	У	У	
X	$X \wedge Y \wedge Z$	$X \wedge Y \wedge Z$	$X \wedge y \wedge z$	$\mathbf{X} \wedge \mathbf{y} \wedge \mathbf{Z}'$	
X	$X \wedge y' \wedge z'$	$X \wedge y' \wedge Z$	$X \wedge y \wedge Z$	$X \wedge y \wedge Z'$	
_	Z'	Z	Z	Z'	
	00	01	11	10	
0	000	001	011	010	
1	100	101	111	110	

□ *K*-map with four variables, *w*, *x*, *y*, and *z*.

			•				
X] y	1
X'						<i>y</i>	•
X						<i>y</i>	•
X						_ <i>] y</i> '	ı
,	w'	V	V	W	W	,	
	00			01	1	11	10
00	000	0	0	001	00)11	0010
01	010	0	0	101	01	111	0110
11	110	0	1	101	11	111	1110
10	100	0	1	001	10)11	1010

- For a given Boolean expression in disjunctive normal form we write a one in each of the box representing minterms which appear.
- In a K-map, two cells are adjacent if their minterms differ in only one variable.
- The required simplification is to group the 1's in adjacent cells and the variable that appears in pair will be eliminated.

Steps:

- Make rectangles around groups of one, two, four or eight 1s.
- All of the 1s in the map should be included in at least one rectangle.
- Do not include any of the 0s.

- 2) Each group corresponds to one product term. For the simplest result:
- Make as few rectangles as possible, to minimize the number of products in the final expression.
- Make each rectangle as large as possible, to minimize the number of literals in each term.
- It's all right for rectangles to overlap, if that makes them larger.

May have more than one valid solution.

Example 6:

Simplify the following Boolean expressions using Karnaugh map.

i.
$$(x \wedge y) \vee (x' \wedge y) \vee (x' \wedge y')$$

Check

$$(x \wedge y) \vee (x' \wedge y) \vee (x \wedge y') = [y \wedge (x \vee x')] \vee (x' \wedge y')$$

$$= [y \wedge 1] \vee (x' \wedge y')$$

$$= y \vee (x' \wedge y')$$

$$= (y \vee x') (y \vee y')$$

$$= (y \vee x') \wedge 1$$

$$= y \vee x'$$

Note: overlap to make them larger

Example 6:(cont)

ii.
$$(X \wedge y \wedge z) \vee (X' \wedge y \wedge z') \vee (X \wedge y' \wedge z)$$

$$(x \wedge z) \vee (x' \wedge y \wedge z')$$

Example 6: (cont)

iii.
$$(x \wedge y \wedge z) \vee (x' \wedge y' \wedge z') \vee (x' \wedge y \wedge z)$$

 $\vee (x \wedge y \wedge z') \vee (x' \wedge y \wedge z')$

$\underline{y'}$	y'	y	$y_{\underline{\hspace{0.5cm}}}$
	0	1	1
0	0	1	1
Z'	Z	\overline{Z}	Z'

Typical steps:
1. Expression
Truth Table
PDNF
KMap
Simplest form

Example 7:

Simplify the Boolean expression

$$f(x, y, z) = [(x \vee y)' \wedge z] \vee (y \vee z)'.$$

X	У	Z	$X \vee Y$	$(x \vee y)$	$(x \vee y)' \wedge z$	$y \lor z$	$(y\vee z)$	f(x, y, z)
0	0	0	0	1	0	0	1	1
0	0	1	0	1	1	1	0	1
0	1	0	1	0	0	1	0	0
0	1	1	1	0	0	1	0	0
1	0	0	1	0	0	0	1	1
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	1	0	0
1	1	1	1	0	0	1	0	0

$$PDNF = (x' \land y' \land z') \lor (x' \land y' \land z) \lor (x \land y' \land z')$$
$$= x'y'z' + x'y'z + xy'z'$$

$$f(x, y, z) = = x'y'z' + x'y'z + xy'z'$$
$$\equiv x'y' + y'z'$$

Note: cannot be simplified further. You can overlap, but you cannot include 0

Example 8:

 Refer to the given Karnaugh maps, simplify the Boolean expressions.

Example 8:(cont)

