UTF-8 Encoding Algorithm

Determine the character you want to encode, e.g., the 'REVERSED SEMICOLON'

- 1. determine its UTF-8 index, e.g., U+204F
- 2. lookup information about this character
 - a. UTF-8 index: index= 0x 204F
 - b. UTF-8 hex encoding: encoding= 0x e2818f

Algorithm to encode the UTF-8 index → UTF-8 encoding

1. Use gdb to obtain the binary representation of UTF-8 index

(gdb) print /t 0x204F \$3 = 10000001001111

2. If the number of significant digits <= 7, lookup the index in the ASCII table Otherwise: separate the binary bit pattern in groups of 6, from right to left

10 000001 001111 (original)

- a. 10
- b. 000001
- c. 001111
- 3. Identify the number of bytes needed to encode the sequence, e.g., 3
- 4. Select the appropriate row within the 'Layout of UTF-8 byte sequence' table

Number of bytes	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
3	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	

- Add the extra encoding bits (see Step #4) to each of your bit patterns from Step #2
 - a. Byte 1: 10 \rightarrow 1110 xx10 b. Byte 2: 000001 \rightarrow 10 000001 c. Byte 3: 001111 \rightarrow 10 001111
- 6. Concatenate the encoded bytes
 - a. 1110 xx10 1000 0001 1000 1111
- 7. Replace any remaining x bits in byte 1 with zeros.
 - a. 1110 0010 1000 0001 1000 1111

This value is the binary encoding of the UTF-8 encoding: 0x e2818f

Double check your work, by obtinain the binary representation of the UTF-8 encoding (gdb) print /t 0xe2818f

\$4 = 111000101000000110001111

Compare the binary pattern with the value you obtained in Step 7.

Layout of UTF-8 byte sequences

Number of bytes	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	U+0000	U+007F	0xxxxxxx			
2	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	U+10000	^[nb 3] U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx