697B Example Sheet 1

Paul Hacking

7 September 2010

(1) Let $X = (y^2 = x) \subset \mathbb{C}^2$. Consider the inclusion

$$\mathbb{C}^2 \subset \mathbb{P}^2_{\mathbb{C}}, \quad (x,y) \mapsto (X:Y:Z) = (x:y:1).$$

Let $L_{\infty} = (Z = 0) \subset \mathbb{P}^2$, the line at infinity.

- (a) What is the closure $\overline{X} \subset \mathbb{P}^2_{\mathbb{C}}$? (What is its homogeneous equation?)
- (b) What is $\overline{X} \cap L_{\infty}$?
- (c) Show that \overline{X} is smooth and identify it with a standard Riemann surface.
- (2) Let f(z) = p(z)/q(z) be a rational function of a complex variable z. Here p(z) and q(z) are polynomials with no common factors.
 - (a) Show that f(z) defines a holomorphic map

$$F: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}.$$

[If $F: X \to Y$ is a continuous map between Riemann surfaces X and Y with charts $\phi_i: U_i \to \mathbb{C}, \ \psi_j: V_j \to \mathbb{C}, \ \text{we say } F$ is holomorphic if $\psi_j \circ F \circ \phi_i^{-1}$ is holomorphic on $\phi_i(U_i \cap F^{-1}(V_j))$ for each i and j.]

- (b) What is $F(\infty)$?
- (c) What is the size of $F^{-1}(\alpha)$ for $\alpha \in \mathbb{C} \cup \{\infty\}$ a general point?
- (3) Find the singular points of the following curves. Draw the locus of real points $X \cap \mathbb{R}^2 \subset \mathbb{R}^2$. Which of the singular points are nodes (ordinary double points)?
 - (a) $X = (y^2 = x^2(x+1)) \subset \mathbb{C}^2$.

- (b) $X = (y^2 = x^3) \subset \mathbb{C}^2$.
- (c) $X = ((x^2 + y^2)^2 + 3x^2y y^3 = 0) \subset \mathbb{C}^2$. [Hint: To draw the real locus use polar coordinates and the identity $\sin 3\theta = 3(\cos \theta)^2 \sin \theta (\sin \theta)^3$.]
- (4) Let $X = (y^2 = x(x-1)(x-\lambda)) \subset \mathbb{C}^2$ where $\lambda \in \mathbb{C} \setminus \{0,1\}$.
 - (a) Compute the closure $\overline{X}\subset \mathbb{P}^2$ and show that \overline{X} is smooth.
 - (b) Show that the map $X\to\mathbb{C}$ given by $(x,y)\mapsto x$ extends to a map $F\colon\overline{X}\to\mathbb{P}^1_\mathbb{C}.$
 - (c) By considering the map F determine the topological type of \overline{X} .