Arquitetura de Computadores

Aula T26-09 Junho de 2023

Dispositivos de E/S orientados para a transferência de blocos: discos de tecnologia magnética e SSD; RAID

Bibliografia:

OSTEP Caps. 37, 38 e 44

https://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-raid.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf

Dispositivos orientados para a transferência de blocos

- Dispositivos tipo bloco (ex: discos)
 - Comandos: ler_bloco, escrever_bloco
 - "Raw I/O" acesso directo aos blocos normalmente só para programas com privilégios especiais
 - Através do sistema de ficheiros

Periféricos tipo bloco

- Tipicamente discos rígidos latência elevada, taxa de transferência elevada
- Optimização é ler muitos bytes contíguos numa operação única: cache de blocos de disco

Leitura de um bloco do disco: Passo 1

Leitura de um bloco do disco: Passo 2

Leitura de um bloco do disco: Passo 3

Discos magnéticos

Objectivo:

- armazenamento não volátil a longo prazo
- grande capacidade, nível mais lento na hierarquia de memória
- Características:
 - Seek Time (~8 ms média)
 - latência posicional
 - latência de rotação
- Ritmo de transferência
 - Aprox. 1 sector per ms (5-15 MB/s)
 - Blocos
- Capacidade: gigabytes e quadruplica de 3 em 3 anos

7200 RPM = 120 RPS => 8 ms por rot. Latência de rotação média = 4 ms 128 sectors por pista => 0.25 ms por sector 1 KB por sector => 16 MB / s

Tempo de resposta = Fila + Controlador + Seek + Rot + Xfer

Tempo de serviço

Performance do I/O de disco

Tempo de resposta = Tempo na Fila + Tempo de Serviço do Disco

$$Tr = Ts/(1-U)$$

Percentagem de utilização do disco

Tempo de resposta de um disco

- Parâmetros do disco:
 - Tamanho do bloco é 8K bytes
 - Seek time publicitado é de 12 ms
 - Disco roda a 7200 RPM
 - taxa de transferência é 4 MB/sec
- Overhead no controlador de 2 ms
- Suponhamos que o disco está sempre livre não há tempo de espera
- Qual é o tempo médio de acesso a um sector?
 - T. seek médio + rot delay médio + tempo transf. + ov. controlador
 - 12 ms + 0.5/(7200 RPM/60) + 8 KB/4 MB/s + 2 ms
 - 12 + 4.15 + 2 + 2 = 20 ms
- O seek time assume que não há localidade: o real é tipicamente menor do que o anunciado:

Parâmetros que ditam o tempo de acesso ao disco (2)

- Tempo de acesso
 - Soma do seek time com o rotational delay (exemplo 7ms+4ms)
 - Tempo de transferência desprezável: a transferência fazse enquanto o sector passa debaixo da cabeça (no exemplo do WD 8ms/280 sectores ~ 28 uS por sector (17 Mbytes/s)
- Naturalmente, o tempo de acesso de acesso a um ficheiro será tanto menor quanto mais os seus sectores estiverem próximos

Escalonamento de acesso ao disco

- O "Seek time" é o principal factor no tempo de acesso ao disco
- Para cada disco há um certo número de pedidos de acesso pendentes
- A reordenação da fila pode conduzir a tempos médios de acesso mais pequenos do que os conseguidos com FCFS (first come first served)
- As métricas que definem a qualidade dos algoritmos são:
 - Número de pistas atravessadas pela cabeça
 - Número de inversões de sentido de deslocamento

Escalonamento dos pedidos de acesso ao disco

- A seguir ilustram-se dois algoritmos para escalonar (ordenar) a execução de pedidos de I/O sobre o disco
- Os algoritmos são ilustrados para:
 - um disco com pistas de 0 a 199
 - sequência de pedidos para as pistas 98, 183, 37, 122, 14, 124, 65, 67
 - posição corrente da cabeça: pista 53

Por ordem de chegada

A cabeça movimenta-se sobre um total de 640 cilindros

SSTF (shortest seektime first)

- Selecciona o pedido que corresponde à pista mais próxima da posição corrente da cabeça.
- SSTF pode causar esperas muitas longas a alguns pedidos.

SSTF (Cont.)

No exemplo o total de movimentos da cabeça é 236 cilindros

SSD (Solid State Disks)

- Os discos de tecnologia magnética (HD) existem desde 1956
 - Ainda são a forma mais barata de armazenar dados
 - A capacidade continua a aumentar de forma sustentada
- São lentos quando comparados com o CPU e até com alguns periféricos (rede)
- Têm alguns problemas para serem integrados em portáteis, tablets e smartphones
 - tamanho
 - Fragilidade mecânica
 - Consumo

Solid State Drives

• Baseados na tecnologia NAND flash memory

Armazena-se uma carga elétrica num transistor que

Flash memory chip

Bits espalhados pelos vários memory chips

Vantagens dos SSDs

- Mais resistentes a danos físicos
 - Não têm partes móveis (cabeças R/W)
 - São imunes a mudanças de temperatura
- Consomem menos que os HD
- Mais rápidos que os HD
 - >500 MB/s vs ~200 MB/s para HD
 - Não têm problemas com escritas aleatórias
 - Cada "flash cell" pode ser endereçada diretamente
 - Não há "seek time" nem latência rotacional
 - Débito muito elevado
 - Os "flash chips" transferem em simultâneo

Inconvenientes dos SSDs

- Custo por bit
- Controladores complexos por causa da organização da flash memory
- Cada flash cell só pode ser alterada um número limitado de vezes (~10000)

Dificuldades com a memória Flash

- Na memória Flash a escrita é ao nível da página, mas para apagar é preciso apagar um bloco
 - Páginas: 4 16 KB, Blocos: 128 256 KB
 - Problema amplificação das escritas (write amplification)

Para que se escreva uma página pode haver necessidade de ler apagar e reescrever um ou mais blocos

- A memória Flash tem um nº limite de vezes que pode ser alterada
 - Típico 3000 5000 vezes
 - Isto obriga a mudar os dados de posição para distribuir as escritas por todas as células de forma equilibrada (wear leveling) por todas as células
 - Com isto, pretende-se garantir uma vida útil de 5 anos

Controladores dos SSD

 SSD são bastante complicados internamente

- O controlador do SSD
 - Mapeia o Nº do bloco para uma página física
 - Gere um mapa de páginas livres e sua relação com os blocos
 - Pode, em background, realizar compactação de espaço (garbage collection) procurando maximizar o nº de blocos com todas as páginas livres
 - Faz wear leveling rodando os blocos lógicos dos ficheiros por diferentes blocos do SSD

Dois tipos de Flash Memory

Multi-Level Cell (MLC)

- Mais de um bit por flash cell
 - 2 níveis: 00, 01, 10, 11
 - Há MLC de 2, 3 e 4 bits
- Mais capacidade e menor preço por bit que as SLC flash
- Menor velocidade de leitura e escrita
- 3000 5000 ciclos de escrita
- Maior consumo

Single-Level Cell (SLC)

- Um bit por flash cell
 - 0 or 1
- Menor capacidade e maior custo / bit que a MLC flash
- Maior velocidade de leitura e escrita do que as MLC
- 10000 100000 ciclos de escrita

Usados em servidores de desempenho elevado

Usadas em portáteis, ...

Estruturas RAID

- RAID múltiplas unidades de disco suportam elevada fiabilidade através de redundância.
- Inicialmente foram definidos 6 níveis RAID
 - RAID 0 : só assegura aumento da velocidade de acesso, porque permite acessos em paralelo
 - RAID 1, 2, 3, 4 e 5: permite tolerância a falhas, porque há discos extra que asseguram redundância
- Outros níveis definidos mais recentemente
 - 6, 10 (ou 1+0) ...
- A maior parte das vezes é um sistema complexo (exterior à caixa do computador) conhecido por disk array
 - Com um Sistema operativo dedicado; memória não-volátil,...

Proposta inicial (Patterson 1988)

Substituir um grande disco por muitos pequenos discos! (Patterson 1988)

	<u>IBM 3390 (K)</u>	IBM 3.5" 0061	x70
Capacidade	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.
Potência	3 KW	11 W	1 KW
Ritmo de transf	15 MB/s	1.5 MB/s	120 MB/s
Ritmo de ops I/O	600 I/Os/s	55 I/Os/s	3900 IOs/s
MTTF	250 KHrs	50 KHrs	??? Hrs
Custo	\$250K	\$2K	\$150K

Disk Arrays têm potencial para high MB por cu. ft., high MB por KW fiabilidade?

Fiabilidade do Array

Fiabilidade de N discos = Fiabilidade de 1 Disco ÷ N

 $50,000 \text{ Horas} \div 70 \text{ discos} = 700 \text{ horas}$

MTTF do sistema de discos : Desce de 6 anos para 1 mês!

 Arrays (sem redundância) demasiado pouco fiáveis para terem utilidade!

Suporte de "hot swap" com reconstrução em paralelo com a operação normal permite tem uma disponibilidade extremamente elevada

RAID=Redundant Arrays of Independent Disks

- Os blocos são distribuídos ("striped") por vários discos
- Redundância garante alta disponibilidade dos dados

Em caso de falha de um disco, o conteúdo é reconstruído a partir de dados redundantes armazenados no array

- → Perde-se capacidade para os armazenar
- → Existe uma penalização em bandwidth para actualização

RAID (cont)

- Duas técnicas usadas:
 - "Disk striping" usa um grupo de discos como uma unidade lógica: diferentes partes dos dados são armazenados em discos diferentes
 - Aumento da velocidade de acesso e da fiabilidade através do armazenamento de dados redundantes.
 - Mirroring ou shadowing duplica discos inteiros.
 - · Block interleaved parity usa muito menos redundância.

RAID Nível 0 (não redundante)

RAID 1 Disk Mirroring/Shadowing

- Cada disco é completamente duplicado no seu "shadow"
 Pode ser atingida uma disponilidade muito elevada
- Sacrifício da largura de banda em escrita: uma escrita lógica = duas escritas físicas
- As leituras podem ser optimizadas
- A solução mais cara: 100% de custos extra em capacidade

Usado em ambientes em que interessa alta disponibilidade

RAID 2 e 3

Códigos de correção de erros ao nível do bit

Praticamente, não são usados

Exemplo de correção de erros

O conteúdo do disco i pode ser obtido fazendo

$$b_i = b_0 XOR b_1 XOR \dots b_{j-1} XOR B_j (j \iff i)$$

(paridade par)

Isto permite:

- Operar com o disco i estragado
- Introduzir o disco i e refazer o seu conteúdo

RAID 4 (paridade a nível do bloco)

RAID 5 (paridade a nível do bloco distribuída)

bloco 0 bloco 2 bloco 3 P(0-3)bloco 1 bloco 5 P(4-7) bloco 4 bloco 6 bloco 7 bloco 9 bloco 10 bloco 11 P(8-11) bloco 8 bloco 12 P(12-15) bloco 13 bloco 14 bloco 15 P(16-19) bloco 16 bloco 17 bloco 18 bloco 19

Escritas em RAID 5

- RAID 5 é um bom compromisso velocidade / espaço desperdiçado para redundância
- Em RAID 5 uma operação de escrita inclui:
 - Escrever um novo conteúdo Y um bloco de dados D que continha X:
 - Ler o bloco D
 - Ler o bloco de paridade correspondente com o conteúdo Z
 - Escrever Y em D
 - Se fizermos (X xor Y) temos a 1 os bits diferentes
 - o novo conteúdo do bloco é Z xor (X xor Y); troca os bits de paridade nas posições em que há diferenças
 - 2 leituras e duas escritas, mas pode haver paralelismo entre as duas leituras e as duas escritas