Seminar Nr. 5, Continuous Random Variables and Continuous Random Vectors

Theory Review

 $X: S \to \mathbb{R}$ continuous random variable with pdf $f: \mathbb{R} \to \mathbb{R}$ and cdf $F: \mathbb{R} \to \mathbb{R}$. Properties:

1.
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

2.
$$f(x) \ge 0, \forall x \in \mathbb{R}, \int_{\mathbb{R}}^{-\infty} f(x) = 1$$

3.
$$P(X = x) = 0, \forall x \in \mathbb{R}, P(a < X < b) = \int_{a}^{b} f(t)dt$$

4.
$$F(-\infty) = 0, F(\infty) = 1$$

 $(X,Y):S \to {
m I\!R}^2$ continuous random vector with pdf $f=f_{(X,Y)}:{
m I\!R}^2 \to {
m I\!R}$ and

$$\operatorname{cdf} F = F_{(X,Y)} : \mathbb{R}^2 \to \mathbb{R}, \ F(x,y) = P(X \le x, Y \le y) = \int\limits_{-\infty}^{x} \int\limits_{-\infty}^{y} f(u,v) \ dv \ du, \ \forall (x,y) \in \mathbb{R}^2. \text{ Properties:}$$

1.
$$P(a_1 < X \le b_1, a_2 < Y \le b_2) = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2)$$

2. $F(\infty, \infty) = 1$, $F(-\infty, y) = F(x, -\infty) = 0$, $\forall x, y \in \mathbb{R}$
3. $F_X(x) = F(x, \infty)$, $F_Y(y) = F(\infty, y)$, $\forall x, y \in \mathbb{R}$ (marginal cdf's)

2.
$$F(\infty,\infty) = 1$$
, $F(-\infty,y) = F(x,-\infty) = 0$, $\forall x,y \in \mathbb{R}$

3.
$$F_X(x) = F(x, \infty), \ F_Y(y) = F(\infty, y), \ \forall x, y \in \mathbb{R}$$
 (marginal cdf's)

4.
$$P((X,Y) \in D) = \int_D \int f(x,y) \, dy \, dx$$

5.
$$f_X(x) = \int_{\mathbb{R}} f(x,y) dy$$
, $\forall x \in \mathbb{R}$, $f_Y(y) = \int_{\mathbb{R}} f(x,y) dx$, $\forall y \in \mathbb{R}$ (marginal densities)

6. X and Y are independent
$$\langle = \rangle f_{(X,Y)}(x,y) = f_X(x)f_Y(y), \ \forall (x,y) \in \mathbb{R}^2$$
.

Function Y = g(X): X r.v., $g : \mathbb{R} \to \mathbb{R}$ differentiable with $g' \neq 0$, strictly monotone

$$f_Y(y) = \frac{f_X\left(g^{-1}(y)\right)}{|g'\left(g^{-1}(y)\right)|}, \ y \in g\left(\mathbb{R}\right) \text{ (note that } f_X(g^1(y)) = 0, \text{ when y is in } g(Z), \text{ where } Z \text{ is the set of x with } f_X(x) = 0)$$

Uniform distribution $U(a,b), \ -\infty < a < b < \infty : \mathrm{pdf} \ f(x) = \frac{1}{b-a}, x \in [a,b].$

Normal distribution
$$N(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$$
: pdf $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$.

Gamma distribution
$$Gamma(a,b),\ a,b>0: \mathrm{pdf}\ f(x)=\frac{1}{\Gamma(a)b^a}x^{a-1}e^{-\frac{x}{b}}\ ,\ x>0.$$

Exponential distribution $Exp(\lambda) = Gamma(1, 1/\lambda), \ \lambda > 0$: pdf $f(x) = \lambda e^{-\lambda x}, x > 0$.

- Exponential distribution models time: waiting time, interarrival time, failure time, time between rare events, etc; the parameter λ represents the frequency of rare events, measured in time⁻¹.
- Gamma distribution models the *total* time of a multistage scheme.
- For $\alpha \in \mathbb{N}$, a $Gamma(\alpha, 1/\lambda)$ variable is the sum of α independent $Exp(\lambda)$ variables.

1. The lifetime, in years, of some electronic component is a random variable with density

$$f(x) = \begin{cases} \frac{k}{x^4}, & \text{for } x \ge 1\\ 0, & \text{for } x < 1. \end{cases}$$

Find

a) the constant k;

- b) the corresponding $\operatorname{cdf} F$;
- c) the probability for the lifetime of the component to exceed 2 years.
- **2.** (The Uniform property) Let $X \in U(a,b)$. For any h > 0 and $t, s \in [a,b-h]$,

$$P(s < X < s + h) = P(t < X < t + h).$$

The probability is only determined by the length of the interval, but not by its location.

Example: A certain flight can arrive at any time between 4.50 and 5.10 pm. Let X denote the arrival time of the flight.

- a) What distribution does X have?
- b) When is the flight more likely to arrive: between 4:50 and 4:55 or between 5 and 5:05; before 4:55 or after 5:05?
- **3.** On the average, a computer experiences breakdowns every 5 months. The time until the first breakdown and the times between any two consecutive breakdowns are independent Exponential random variables. After the third breakdown, a computer requires a special maintenance.
- a) Find the probability that a special maintenance is required within the next 9 months;
- b) Given that a special maintenance was not required during the first 12 months, what is the probability that it will not be required within the next 4 months?
- **4.** The joint density for (X,Y) is $f_{(X,Y)}(x,y) = \frac{1}{16}x^3y^3$, $x,y \in [0,2]$.
- a) Find the marginal densities f_X , f_Y .
- b) Are X and Y independent?
- c) Find $P(X \le 1)$.
- **5.** Let X be a random variable with density $f_X(x) = \frac{1}{4}xe^{-\frac{x}{2}}$, $x \ge 0$ and let $Y = \frac{1}{2}X + 2$. Find f_Y .
- **6.** Let $X \in N(0,1)$. Find the probability density function of Y = |X|.

Bonus Problems:

- 7. An internet service provider has two connection lines for its customers. Eighty percent of customers are connected through Line I, the rest through Line II. Line I has a Gamma(3,1/2) connection time (in minutes), while Line II has a U(20,50) connection time (in seconds). Find the probability that it takes a randomly selected customer more than 30 seconds to connect to the internet.
- **8.** Let $X, Y \in N(0,1)$ be independent random variables. Let D_r be the disk centered at the origin with radius r. Find r such that $P((X,Y) \in D_r) = 0.3$.