UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Zadanie 1. (0 - 1pkt.)

...../1

Podczas zbliżania magnesu do stalowej śruby zaobserwujemy, że śruba

- A. będzie odpychana przez magnes.
- B. będzie przyciągana przez magnes.
- C. będzie przyciągana lub odpychana przez magnes.
- D. nie będzie reagowała na zbliżanie magnesu.

Zadanie 2. (0 - 1pkt.)

...../1

Przeczytaj uważnie poniższe stwierdzenia dotyczące wad wzroku.

- 1. Może ostro widzieć tylko bliskie przedmioty.
- 2. Soczewka w jego oku za silnie załamuje światło.
- 3. Promienie biegnące od bliskich przedmiotów przecinają się za siatkówką jego oka.
- 4. Wadę tą korygować można przez zastosowanie okularów z soczewkami rozpraszającymi.

Osoby z wadą krótkowzroczności dotyczą odpowiedzi o numerach

A. 1 i 3.

B. 2 i 3.

C. 3 i 4.

D. 1, 2 i 4.

Zadanie 3. (0 – 1pkt.)

Powiększenie obrazu uzyskanego przy użyciu soczewki skupiającej jest równe 3. Wyraźny obraz przedmiotu powstał na ekranie umieszczonym w odległości 36 cm od soczewki. Odległość przedmiotu od soczewki oraz dwie brakujące w opisanej wyżej sytuacji cechy obrazu są wymienione w odpowiedzi

- A. 12 cm i obraz jest rzeczywisty i odwrócony.
- B. 12 cm i obraz jest pozorny i prosty.
- C. 108 cm i obraz jest rzeczywisty i odwrócony.
- D. 108 cm i obraz jest pozorny i prosty.

Zadanie 4. (0 - 1pkt.)

Podczas naprawy zegarków zegarmistrz używa lupy. Jest to przyrząd optyczny, w którym zastosowano soczewkę skupiającą i który daje możliwość uzyskania obrazu powiększonego

- A. rzeczywistego i nieodwróconego.
- B. rzeczywistego i odwróconego.
- C. pozornego i odwróconego.
- D. pozornego i nieodwróconego.

UWAGA: W zadaniach o numerach 5. i 6. **wybierz** i **zaznacz** (otaczając kółkiem odpowiednią literę i cyfrę) właściwe stwierdzenie oraz jego poprawne uzasadnienie tworzące dokończenie rozpoczętego zdania.

Podczas badania ruchu drgającego uczniowie stwierdzili, że okres drgań wahadła (metalowa kulka zawieszona na długiej i nierozciągliwej nitce) zależy od jego długości. Następnie zawiesili na rozciągniętej między statywami lince pięć wahadeł, których długości spełniały następujące zależności: $l_1=l_2;\ l_3=\frac{3}{4}l_1;\ l_4=l_5=\frac{1}{3}l_1$. Wahadło o długości l_3 wychylono o niewielki kąt i puszczono. Uczniowie zaobserwowali, że po pewnym czasie

A.	wahadła krótsze od l_3 zaczęły się wahać,	ponieważ energia drgań	1.	większą niż częstotliwość wahadła l_3 .
В.	wahadła dłuższe od l_3 zaczęły się wahać,	może zostać przekazana takim wahadłom, które mają częstotliwość	2.	taką samą jak częstotliwość wahadła l_3 .
C.	tylko wahadło l_3 wahało się,	drgań własnych	3.	mniejszą niż częstotliwość wahadła l_3 .

Zadanie 6. (0 – 1pkt.)

...../1

Podczas przechodzenia promieni światła przez granicę między dwoma ośrodkami (np. gdy światło przechodzi z wody do powietrza) mamy do czynienia ze zjawiskiem

Α.	odbicia,	ponieważ	1.	jest taka sama we wszystkich ośrodkach przezroczystych.
В.	załamania,	wartość prędkości światła	2.	zależy od ośrodka, w którym się rozchodzi.
C.	rozproszenia,	Swiatia	3.	zależy od kąta padania na powierzchnię graniczną między ośrodkami.

Zadanie 7. (0 - 6 pkt.) Do termosu zawierającego 1 kg wody o temperaturze 6°C wrzucono po o temperaturze -24°C. Po uzyskaniu stanu równowagi termodynamicznej, tempi lodu w naczyniu była równa 0°C. Przyjmując, że przepływ energii cieplnej by wodą i lodem, oblicz minimalną masę lodu, który został wrzucony do naczynia z jak długo temperatura mieszaniny wody i lodu będzie równa 0°C jeżeli zaczwymiana ciepła z otoczeniem. Uzasadnij swoją odpowiedź w oparciu o zjaw Ciepła właściwe wody i lodu są odpowiednio równe 4200 J oraz 2100 J kg°C	peratura wody ł tylko między wodą. Zapisz, znie zachodzić viska fizyczne.
	/6

Zadanie 8. Statek badawczy wyznaczający głębokość morza używa tzw. sonaru aktywnego. Jourządzenie, które emituje falę akustyczną i po odbiciu się jej od przeszkody (np. od dna mrejestruje sygnał odbity. Średnia prędkość fali emitowanej przez sonar w wodzie morskierówna 1500 $\frac{m}{s}$.	norza)
Zadanie 8.1. (0 - 4 pkt.) Podczas jednego z badań, gdy statek poruszał się z szybkością 10 $\frac{m}{s}$, otrzymano, że cza:	s, jaki
upłynął od wysłania fali emitowanej przez sonar do odebrania sygnału odbitego od dna i był równy 3 sekundy. Oblicz głębokość morza w miejscu badania z dokładnością do d miejsc po przecinku.	
	/4
Zadanie 8.2. (0 - 2 pkt.) Oblicz głębokość morza, gdyby statek nie poruszał się. Na podstawie wyników otrzymadla sytuacji opisanej w zadaniu 8.1. i dla nieporuszającego się statku określ, cz	_
wyznaczenia głębokości morza z dokładnością do 1 metra można nie uwzględniać fak	
statek z sonarem porusza się po powierzchni wody. Uzasadnij swoją odpowiedź.	/2

Zadanie 9. W dokumentacji technicznej elektrycznego zespołu trakcyjnego PESA DART (dalej zwanego pociągiem) zawarte są następujące informacje: masa całkowita: 400 ton; napięcie zasilające silnik: 3000 V; moc silnika: 400 kW; liczba silników: 6; szybkość maksymalna: 200 km/h; szybkość eksploatacyjna: 120 km/h. Zadanie 9.1. (0 - 2 pkt.) Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 m/s², oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
pociągiem) zawarte są następujące informacje: masa całkowita: 400 ton; napięcie zasilające silnik: 3000 V; moc silnika: 400 kW; liczba silników: 6; szybkość maksymalna: 200 km/h; szybkość eksploatacyjna: 120 km/h. Zadanie 9.1. (0 - 2 pkt.) Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 m/s², oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	Zadanie 9.
silnik: 3000 V; moc silnika: 400 kW; liczba silników: 6; szybkość maksymalna: 200 km/h; szybkość eksploatacyjna: 120 km/h. Zadanie 9.1. (0 - 2 pkt.) Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 m/s², oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	W dokumentacji technicznej elektrycznego zespołu trakcyjnego PESA DART (dalej zwanego
szybkość eksploatacyjna: 120 km/h. Zadanie 9.1. (0 - 2 pkt.) Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 m/s², oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. /2 Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi. /3	pociągiem) zawarte są następujące informacje: masa całkowita: 400 ton; napięcie zasilające
Zadanie 9.1. (0 - 2 pkt.) Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 \$\frac{m}{s^2}\$, oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 \$\frac{m}{s^2}\$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stalej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	silnik: 3000 V; moc silnika: 400 kW; liczba silników: 6; szybkość maksymalna: 200 $\frac{km}{h}$;
Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym 0,6 $\frac{m}{s^2}$, oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi. /3	szybkość eksploatacyjna: 120 $\frac{\text{km}}{\text{h}}$.
0,6 $\frac{m}{s^2}$, oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9,2, (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi. /3	Zadanie 9.1. (0 - 2 pkt.)
0,6 $\frac{m}{s^2}$, oblicz czas, po którym osiągnąłby szybkość eksploatacyjną. Zadanie 9,2, (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi. /3	Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem równym
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	$\frac{1}{s^2}$
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi/3	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi/3	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi/3	
Zadanie 9.2. (0 - 3 pkt.) Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 m/s². Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	
wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak będzie się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	Zadanie 9.2. (0 - 3 pkt.)
się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu, oblicz
się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkości przy zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.	wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{c^2}$. Zapisz, czy i jak będzie
zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi/3	3
/3	zachowaniu stałej siły napedowej. Zapisz uzasadnienie swojej odpowiedzi.

Zadanie 9.3. (0 - 3 pkt.)	
Silniki pociągu mogą pracować pełną mocą tylko przez pewien czas z uwagi na moż	liwość
przegrzania się. Pociąg wtedy porusza się z maksymalną prędkością ruchem jednosta	ajnym.
Oblicz wartość siły napędzającej uzyskanej przy wykorzystaniu pełnej mocy silników.	
	/3
	• •
Zadanie 9.4. (0 - 4 pkt.)	
Zadanie 9.4. (0 - 4 pkt.) Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię c wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energię o wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest ich moc.	pełna