Relationale Algebra II

Aufgabe 1

- a) $\Pi_{Titel}\sigma_{KP=4}(Vorlesungen)$
- b) $\rho_{\mathrm{Matrix}\leftarrow\mathrm{Legi}}\Pi_{\mathrm{Legi}}\sigma_{\mathrm{Name}=\mathrm{Jonas}}(\mathrm{Studenten})$
- c) |Vorlesungen| = 10, |Assistenten| = 6, $|Vorlesungen \times Assistenten| = <math>10 \cdot 6 = 60$
- d) $\Pi_{\text{Thema}} \rho_{\text{Thema} \leftarrow \text{Titel}} \sigma_{\text{VorlNr}=4052} (\text{Vorlesungen})$

Aufgabe 2

- a) $\Pi_{VorlNr, Titel, Nachfolger}[\sigma_{VorlNr=Vorgänger}(Vorlesungen \times voraussetzen)]$
- b) $\Pi_{Assistenten.Name,Boss.Name}$ Assistenten $\bowtie_{Boss=Professor.PersNr}$ Professoren
- c) $\Pi_{Assistenten.Name,Boss.Name}[\sigma_{Assistenten.Boss=Professoren.PersNr}(Assistenten \times Professoren)]$

Aufgabe 3

Es handelt sich um einen Right Outer Join: Es werden alle Studenten angezeigt, selbst wenn ihnen kein Professor zugerodnet ist.

Aufgabe 4

a)

$$S_1 \cup S_2$$

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0
44	Guppy	5	35.0

$$S_1 \cap S_2$$

sid	sname	rating	age
31	Lubber	8	55.5
58	Rusty	10	35.0

 $S_1 \setminus S_2$

sid	sname	rating	age
22	Dustin	7	45.0

b)

$\Pi_{\mathsf{sname},\mathsf{rating}}(S_2)$

sname	rating
Yuppy	9
Lubber	8
Guppy	5
Rusty	10

$\Pi_{\rm age}(S_2)$

age
35.0
55.5
35.0
35.0

c)

$\sigma_{\mathrm{rating}>8}(S_2)$

sid	sname	rating	age
28	Yuppy	9	35.0
58	Rusty	10	35.0

 $\Pi_{\text{sname}, \text{rating}}[\sigma_{\text{rating}>8}(S_2)]$

sname	rating
Yuppy	9
Rusty	10

Aufgabe 5

a)

$$S_1 \times R_1 = \rho_{\text{sid} \to S_1.\text{sid}}(S_1) \times \rho_{\text{sid} \to R_1.\text{sid}}(R_1)$$

sid	bid	day	sid	sname	rating	age
22	101	10.10.06	22	Dustin	7	45.0
22	101	10.10.06	31	Lubber	8	55.5
22	101	10.10.06	58	Rusty	10	35.0
58	103	11.12.06	22	Dustin	7	45.0
58	103	11.12.06	31	Lubber	8	55.5
58	103	11.12.06	58	Rusty	10	35.0

b)

 $S_1 \bowtie_{S_1.\text{sid} < R_1.\text{sid}} R_1$

S_1 .sid	sname	rating	age	R_1 .sid	bid	day
22	Dustin	7	45.0	58	103	11.12.06
58	Lubber	8	55.5	58	103	11.12.06

c)

 $S_1 \bowtie_{\mathsf{sid}} R_1$

sid	sname	rating	age	bid	day
22	Dustin	7	45.0	101	10.10.06
58	Rusty	10	35.0	103	11.12.06

Aufgabe 6

Alle Ausdrücke liefern das gewünschte Resultat.

Aufgabe 7

b) ist effizienter, da nicht zuerst sämtliche Reservationen zu sämtlichen Seglern zugeordnet werden, sondern nur diejenigen Reservationen, die sich auf ein rotes Boot beziehen.