GCP Data Engineering Certification

Your company built a TensorFlow neutral-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

- A. Threading
- B. Serialization
- C. Dropout Methods
- D. Dimensionality Reduction

Ans - C

You are building a model to make clothing recommendations. You know a user's fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

- A. Continuously retrain the model on just the new data.
- B. Continuously retrain the model on a combination of existing data and the new data.
- C. Train on the existing data while using the new data as your test set.
- D. Train on the new data while using the existing data as your test set.

Ans - B

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patient records. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

- A. Add capacity (memory and disk space) to the database server by the order of 200.
- B. Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.
- C. Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.
- D. Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

ANS - C

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

- A. Disable caching by editing the report settings.
- B. Disable caching in BigQuery by editing table details.
- C. Refresh your browser tab showing the visualizations.
- D. Clear your browser history for the past hour then reload the tab showing the virtualizations.

ANS - A

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values(CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

- A. Use federated data sources, and check data in the SQL query.
- B. Enable BigQuery monitoring in Google Stackdriver and create an alert.
- C. Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.
- D. Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Ans - D

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

- A. Issue a command to restart the database servers.
- B. Retry the query with exponential backoff, up to a cap of 15 minutes.
- C. Retry the query every second until it comes back online to minimize staleness of data.
- D. Reduce the query frequency to once every hour until the database comes back online.

ANS - B

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

- A. Linear regression
- B. Logistic classification
- C. Recurrent neural network
- D. Feedforward neural network

ANS - A

Q-8

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

- A. Include ORDER BY DESC on timestamp column and LIMIT to 1.
- B. Use GROUP BY on the unique ID column and timestamp column and SUM on the values.
- C. Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.
- D. Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

ANS - D

Q - 9

Your company is using WILDCARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

Syntax error : Expected end of statement but got "-" at [4:11] SELECT age -

FROM -

bigquery-public-data.noaa_gsod.gsod

WHERE -

age != 99

AND_TABLE_SUFFIX = "~1929'

ORDER BY -

age DESC

Which table name will make the SQL statement work correctly?

- A. "~bigquery-public-data.noaa_gsod.gsod"~
- B. bigquery-public-data.noaa_gsod.gsod*
- C. "~bigquery-public-data.noaa_gsod.gsod'*
- D. "~bigquery-public-data.noaa_gsod.gsod*`

Ans: B

Our Ans - `bigquery-public-data.noaa_gsod.gsod*`

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

- A. Disable writes to certain tables.
- B. Restrict access to tables by role.
- C. Ensure that the data is encrypted at all times.
- D. Restrict BigQuery API access to approved users.
- E. Segregate data across multiple tables or databases.
- F. Use Google Stackdriver Audit Logging to determine policy violations.

ANS .- BDF

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

- ⇒ No interaction by the user on the site for 1 hour
- ⇒ Has added more than \$30 worth of products to the basket
- ⇒ Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

- A. Use a fixed-time window with a duration of 60 minutes.
- B. Use a sliding time window with a duration of 60 minutes.
- C. Use a session window with a gap time duration of 60 minutes.
- D. Use a global window with a time based trigger with a delay of 60 minutes.

ANS - C

https://cloud.google.com/dataprep/docs/html/SESSION-Function_ 57344754

https://cloud.google.com/dataflow/docs/concepts/streaming-pipelines#session-windows

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other's data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

- A. Load data into different partitions.
- B. Load data into a different dataset for each client.
- C. Put each client's BigQuery dataset into a different table.
- D. Restrict a client's dataset to approved users.
- E. Only allow a service account to access the datasets.
- F. Use the appropriate identity and access management (IAM) roles for each client's users.

ANS - BDF

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling. Which Google database service should you use?

- A. Cloud SQL
- B. BigQuery
- C. Cloud Bigtable
- D. Cloud Datastore

Our Ans - A

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

- A. There are very few occurrences of mutations relative to normal samples.
- B. There are roughly equal occurrences of both normal and mutated samples in the database.
- C. You expect future mutations to have different features from the mutated samples in the database.
- D. You expect future mutations to have similar features to the mutated samples in the database.
- E. You already have labels for which samples are mutated and which are normal in the database.

ANS - AD

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

- A. Re-write the application to load accumulated data every 2 minutes.
- B. Convert the streaming insert code to batch load for individual messages.
- C. Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.
- D. Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

ANS - D

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

- A. Use Google Stackdriver Audit Logs to review data access.
- B. Get the identity and access management IIAM) policy of each table
- C. Use Stackdriver Monitoring to see the usage of BigQuery query slots.
- D. Use the Google Cloud Billing API to see what account the warehouse is being billed to.

ANS - A

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

- A. Create a Google Cloud Dataflow job to process the data.
- B. Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.
- C. Create a Hadoop cluster on Google Compute Engine that uses persistent disks.
- D. Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.
- E. Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

ANS - D

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

- A. Supervised learning to determine which transactions are most likely to be fraudulent.
- B. Unsupervised learning to determine which transactions are most likely to be fraudulent.
- C. Clustering to divide the transactions into N categories based on feature similarity.
- D. Supervised learning to predict the location of a transaction.
- E. Reinforcement learning to predict the location of a transaction.
- F. Unsupervised learning to predict the location of a transaction.

ANS - BCF

Your company's on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for- like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?

- A. Put the data into Google Cloud Storage.
- B. Use preemptible virtual machines (VMs) for the Cloud Dataproc cluster.
- C. Tune the Cloud Dataproc cluster so that there is just enough disk for all data.
- D. Migrate some of the cold data into Google Cloud Storage, and keep only the hot data in Persistent Disk.

ANS - A

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

- A. The message body for the sensor event is too large.
- B. Your custom endpoint has an out-of-date SSL certificate.
- C. The Cloud Pub/Sub topic has too many messages published to it.
- D. Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

ANS - D

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

- A. Assign global unique identifiers (GUID) to each data entry.
- B. Compute the hash value of each data entry, and compare it with all historical data.
- C. Store each data entry as the primary key in a separate database and apply an index.
- D. Maintain a database table to store the hash value and other metadata for each data entry.

ANS - A

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks.

What should you do?

- A. Run a local version of Jupiter on the laptop.
- B. Grant the user access to Google Cloud Shell.
- C. Host a visualization tool on a VM on Google Compute Engine.
- D. Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Ans - D

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

- A. Send the data to Google Cloud Datastore and then export to BigQuery.
- B. Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.
- C. Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.
- D. Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Correct Answer: B

You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?

- A. Delete the table CLICK_STREAM, and then re-create it such that the column DT is of the TIMESTAMP type. Reload the data.
- B. Add a column TS of the TIMESTAMP type to the table CLICK_STREAM, and populate the numeric values from the column TS for each row. Reference the column TS instead of the column DT from now on.
- C. Create a view CLICK_STREAM_V, where strings from the column DT are cast into TIMESTAMP values. Reference the view CLICK_STREAM_V instead of the table CLICK_STREAM from now on.
- D. Add two columns to the table CLICK STREAM: TS of the TIMESTAMP type and IS_NEW of the BOOLEAN type. Reload all data in append mode. For each appended row, set the value of IS_NEW to true. For future queries, reference the column TS instead of the column DT, with the WHERE clause ensuring that the value of IS_NEW must be true.

• E. Construct a query to return every row of the table CLICK_STREAM, while using the built-in function to cast strings from the column DT into TIMESTAMP values. Run the query into a destination table NEW_CLICK_STREAM, in which the column TS is the TIMESTAMP type. Reference the table NEW_CLICK_STREAM instead of the table CLICK_STREAM from now on. In the future, new data is loaded into the table NEW_CLICK_STREAM.

Correct Answer: E

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

- A. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
- B. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
- C. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
- D. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Correct : D

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users' privacy?

- A. Grant the consultant the Viewer role on the project.
- B. Grant the consultant the Cloud Dataflow Developer role on the project.
- C. Create a service account and allow the consultant to log on with it.
- D. Create an anonymized sample of the data for the consultant to work with in a different project.

Correct Answer: B

service account is a special kind of account used by an application or a <u>virtual machine (VM) instance</u>, not a person.

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you

do?

• A. Eliminate features that are highly correlated to the output

labels.

B. Combine highly co-dependent features into one

representative feature.

• C. Instead of feeding in each feature individually, average

their values in batches of 3.

D. Remove the features that have null values for more than

50% of the training records.

Correct Answer: B

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour. The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read - .named("ReadLogData")

.from("clouddataflow-readonly:samples.log_data")

You want to improve the performance of this data read. What should you do?

- A. Specify the TableReference object in the code.
- B. Use .fromQuery operation to read specific fields from the table.
- C. Use of both the Google BigQuery TableSchema and TableFieldSchema classes.
- D. Call a transform that returns TableRow objects, where each element in the PCollection represents a single row in the table.

Correct Answer: D

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

- A. Use a row key of the form <timestamp>.
- B. Use a row key of the form <sensorid>.
- C. Use a row key of the form <timestamp>#<sensorid>.
- D. Use a row key of the form >#<sensorid>#<timestamp>.

Correct Answer: D

Your company's customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

- A. Add a node to the MySQL cluster and build an OLAP cube there.
- B. Use an ETL tool to load the data from MySQL into Google BigQuery.
- C. Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.
- D. Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Correct Answer: B

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

- A. Update the current pipeline and use the drain flag.
- B. Update the current pipeline and provide the transform mapping JSON object.
- C. Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.
- D. Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Correct Answer: A

Drain - You want to update your pipeline to handle changes in data format, or to account for version or other changes in your data source.

Your company is running their first dynamic campaign, serving different offers by analyzing real-time data during the holiday season. The data scientists are collecting terabytes of data that rapidly grows every hour during their 30-day campaign. They are using Google Cloud Dataflow to preprocess the data and collect the feature (signals) data that is needed for the machine learning model in Google Cloud Bigtable. The team is observing suboptimal performance with reads and writes of their initial load of 10 TB of data. They want to improve this performance while minimizing cost. What should they do?

- A. Redefine the schema by evenly distributing reads and writes across the row space of the table.
- B. The performance issue should be resolved over time as the site of the BigDate cluster is increased.
- C. Redesign the schema to use a single row key to identify values that need to be updated frequently in the cluster.
- D. Redesign the schema to use row keys based on numeric IDs that increase sequentially per user viewing the offers.

Correct Answer: A

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in the dashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

- A. Check the dashboard application to see if it is not displaying correctly.
- B. Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.
- C. Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.
- D. Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Correct Answer: B

Flowlogistic Case Study -

Company Overview -

Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.

Company Background -

The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.

Solution Concept -

Flowlogistic wants to implement two concepts using the cloud:

Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads
⇒ Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They

also want to use predictive analytics to learn earlier when a shipment will be delayed.

Existing Technical Environment -

Flowlogistic architecture resides in a single data center:

⇒ Databases

8 physical servers in 2 clusters

- SQL Server "" user data, inventory, static data
- 3 physical servers
- Cassandra "" metadata, tracking messages
- 10 Kafka servers "" tracking message aggregation and batch insert
- ⇒ Application servers "" customer front end, middleware for order/customs

60 virtual machines across 20 physical servers

- Tomcat "" Java services
- Nginx "" static content
- Batch servers
- ⇒ Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) "" SQL server storage
- Network-attached storage (NAS) image storage, logs, backups
- ⇒ 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
- ⇒ 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,

Business Requirements -

- ⇒ Build a reliable and reproducible environment with scaled panty of production.
- → Aggregate data in a centralized Data Lake for analysis
- ⇒ Use historical data to perform predictive analytics on future shipments
- Accurately track every shipment worldwide using proprietary technology
- Improve business agility and speed of innovation through rapid provisioning of new resources
- Analyze and optimize architecture for performance in the cloud
- Migrate fully to the cloud if all other requirements are met

Technical Requirements -

- Handle both streaming and batch data
- Migrate existing Hadoop workloads
- ⇒ Ensure architecture is scalable and elastic to meet the changing demands of the company.
- Use managed services whenever possible
- ⇒ Encrypt data flight and at rest
- Connect a VPN between the production data center and cloud environment

SEO Statement -

We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around. We need to organize our

information so we can more easily understand where our customers are and what they are shipping.

CTO Statement -

IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO's tracking technology.

CFO Statement -

Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to

BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

- A. Store the common data in BigQuery as partitioned tables.
- B. Store the common data in BigQuery and expose authorized views.
- C. Store the common data encoded as Avro in Google Cloud Storage.
- D. Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Correct Answer: B Our Ans is C or D - need to check https://cloud.google.com/dataproc/docs/tutorials/bigquery-connect_or-spark-example

Update: Ans D is wrong since it is not cost effective.

Storing the data in GCS is cost-efficient since you only pay for the time the job is running and then you can shut down the cluster when you aren't using it without losing all its data since it is now stored in Cloud Storage

Flowlogistic Case Study -

Company Overview -

Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.

Company Background -

The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.

Solution Concept -

Flowlogistic wants to implement two concepts using the cloud:

Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They

also want to use predictive analytics to learn earlier when a shipment will be delayed.

Existing Technical Environment -

Flowlogistic architecture resides in a single data center:

⇒ Databases

8 physical servers in 2 clusters

- SQL Server "" user data, inventory, static data
- 3 physical servers
- Cassandra "" metadata, tracking messages
- 10 Kafka servers "" tracking message aggregation and batch insert
- ⇒ Application servers "" customer front end, middleware for order/customs

60 virtual machines across 20 physical servers

- Tomcat "" Java services
- Nginx "" static content
- Batch servers
- ⇒ Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) "" SQL server storage
- Network-attached storage (NAS) image storage, logs, backups
- ⇒ 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
- ⇒ 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,

Business Requirements -

- ⇒ Build a reliable and reproducible environment with scaled panty of production.
- → Aggregate data in a centralized Data Lake for analysis
- ⇒ Use historical data to perform predictive analytics on future shipments
- Accurately track every shipment worldwide using proprietary technology
- Improve business agility and speed of innovation through rapid provisioning of new resources
- Analyze and optimize architecture for performance in the cloud Migrate fully to the cloud if all other requirements are met

.

Technical Requirements -

- Handle both streaming and batch data
- Migrate existing Hadoop workloads
- ⇒ Ensure architecture is scalable and elastic to meet the changing demands of the company.
- Use managed services whenever possible
- Encrypt data flight and at rest
- ⇒ Connect a VPN between the production data center and cloud environment

SEO Statement -

We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.

We need to organize our information so we can more easily understand where our customers are and what they are shipping.

CTO Statement -

IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO's tracking technology.

CFO Statement -

Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.

Flowlogistic's management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system.

You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

- A. Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage
- B. Cloud Pub/Sub, Cloud Dataflow, and Local SSD
- C. Cloud Pub/Sub, Cloud SQL, and Cloud Storage

 D. Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Correct Answer: C Our Ans A verify it

Flowlogistic Case Study -

Company Overview -

Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.

Company Background -

The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.

Solution Concept -

Flowlogistic wants to implement two concepts using the cloud:

Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They

also want to use predictive analytics to learn earlier when a shipment will be delayed.

Existing Technical Environment -

Flowlogistic architecture resides in a single data center:

⇒ Databases

8 physical servers in 2 clusters

- SQL Server "" user data, inventory, static data
- 3 physical servers
- Cassandra "" metadata, tracking messages
- 10 Kafka servers "" tracking message aggregation and batch insert
- ⇒ Application servers "" customer front end, middleware for order/customs

60 virtual machines across 20 physical servers

- Tomcat "" Java services
- Nginx "" static content
- Batch servers
- ⇒ Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) "" SQL server storage
- Network-attached storage (NAS) image storage, logs, backups
- ⇒ 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
- ⇒ 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,

Business Requirements -

- ⇒ Build a reliable and reproducible environment with scaled panty of production.
- → Aggregate data in a centralized Data Lake for analysis
- ⇒ Use historical data to perform predictive analytics on future shipments
- Accurately track every shipment worldwide using proprietary technology
- Improve business agility and speed of innovation through rapid provisioning of new resources
- Analyze and optimize architecture for performance in the cloud
- Migrate fully to the cloud if all other requirements are met

Technical Requirements -

- Handle both streaming and batch data
- Migrate existing Hadoop workloads
- ⇒ Ensure architecture is scalable and elastic to meet the changing demands of the company.
- Use managed services whenever possible
- Encrypt data flight and at rest
- Connect a VPN between the production data center and cloud environment

SEO Statement -

We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.

We need to organize our information so we can more easily understand where our customers are and what they are shipping.

CTO Statement -

IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO's tracking technology.

CFO Statement -

Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.

Flowlogistic's CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they've purchased a visualization tool to simplify the creation of BigQuery reports. However, they've been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

- A. Export the data into a Google Sheet for virtualization.
- B. Create an additional table with only the necessary columns.

- C. Create a view on the table to present to the virtualization tool.
- D. Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Correct Answer: C

Flowlogistic Case Study -

Company Overview -

Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.

Company Background -

The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.

Solution Concept -

Flowlogistic wants to implement two concepts using the cloud:

Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They

also want to use predictive analytics to learn earlier when a shipment will be delayed.

Existing Technical Environment -

Flowlogistic architecture resides in a single data center:

- ⇒ Databases
- 8 physical servers in 2 clusters
- SQL Server "" user data, inventory, static data
- 3 physical servers
- Cassandra "" metadata, tracking messages
- 10 Kafka servers "" tracking message aggregation and batch insert
- ⇒ Application servers "" customer front end, middleware for order/customs

60 virtual machines across 20 physical servers

- Tomcat "" Java services
- Nginx "" static content
- Batch servers
- ⇒ Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) "" SQL server storage
- Network-attached storage (NAS) image storage, logs, backups
- ⇒ 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
- ⇒ 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,

Business Requirements -

- ⇒ Build a reliable and reproducible environment with scaled panty of production.
- → Aggregate data in a centralized Data Lake for analysis
- ⇒ Use historical data to perform predictive analytics on future shipments
- Accurately track every shipment worldwide using proprietary technology
- Improve business agility and speed of innovation through rapid provisioning of new resources
- Analyze and optimize architecture for performance in the cloud
- Migrate fully to the cloud if all other requirements are met

Technical Requirements -

- Handle both streaming and batch data
- Migrate existing Hadoop workloads
- ⇒ Ensure architecture is scalable and elastic to meet the changing demands of the company.
- Use managed services whenever possible
- Encrypt data flight and at rest

Connect a VPN between the production data center and cloud environment

SEO Statement -

We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.

We need to organize our information so we can more easily understand where our customers are and what they are shipping.

CTO Statement -

IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO's tracking technology.

CFO Statement -

Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single

Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in

Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

 A. Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

- B. Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.
- C. Use the NOW () function in BigQuery to record the event's time.
- D. Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Correct Answer: B

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- ⇒ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

- ⇒ Ensure secure and efficient transport and storage of telemetry data
- ⇒ Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
- ⇒ Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

⇒ Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

MJTelco's Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow

Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

- A. The zone
- B. The number of workers
- C. The disk size per worker
- D. The maximum number of workers

Correct Answer: A

D

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- ⇒ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

- ⇒ Ensure secure and efficient transport and storage of telemetry data
- ⇒ Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
- ⇒ Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

⇒ Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

You need to compose visualizations for operations teams with the following requirements:

- The report must include telemetry data from all 50,000 installations for the most resent 6 weeks (sampling once every minute).
- ⇒ The report must not be more than 3 hours delayed from live data.
- ⇒ The actionable report should only show suboptimal links.
- Most suboptimal links should be sorted to the top.
- Suboptimal links can be grouped and filtered by regional geography.
- ⇒ User response time to load the report must be <5 seconds.</p>Which approach meets the requirements?
 - A. Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.
 - B. Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.
 - C. Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.
 - D. Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Correct Answer: C or D

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- ⇒ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

- ⇒ Ensure secure and efficient transport and storage of telemetry data
- ⇒ Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
- ⇒ Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

⇒ Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source.

It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

- A. Ensure all the tables are included in global dataset.
- B. Ensure each table is included in a dataset for a region.
- C. Adjust the settings for each table to allow a related region-based security group view access.
- D. Adjust the settings for each view to allow a related region-based security group view access.
- E. Adjust the settings for each dataset to allow a related region-based security group view access.

Correct Answer: BD / BE

MJTelco Case Study -

Company Overview

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data provides in system. After consumers and their careful consideration. they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- ⇒ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

- ⇒ Ensure secure and efficient transport and storage of telemetry data
- ⇒ Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
- ⇒ Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

⇒ Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records.

Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day.

Which schema should you use?

- A. Rowkey: date#device_id Column data: data_point
- B. Rowkey: date Column data: device_id, data_point
- C. Rowkey: device id Column data: date, data point
- D. Rowkey: data point Column data: device id, date
- E. Rowkey: date#data_point Column data: device_id

Correct Answer: D - wrong

Update: Having Date as first key is not recommended.

Ideal rowkey should be device_id#date.Since that option is not

available the correct answer should be A or C.

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

- A. Rewrite the job in Pig.
- B. Rewrite the job in Apache Spark.
- C. Increase the size of the Hadoop cluster.
- D. Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Correct Answer: A

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

- A. Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.
- B. Add a new column called FullName to the Users table.
 Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.
- C. Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.
- D. Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ""Movie' the property ""actors' and the property ""tags' have multiple values but the property ""date released' does not. A typical query would ask for all movies with actor=<actorname> ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

• A. Manually configure the index in your index config as

```
Indexes:
-kind: Movie
    Properties:
    -name: actors
    name: date_released
-kind: Movie
    Properties:
    -name: tags
    name: date released
```

follows:

B. Manually configure the index in your index config as

```
-kind: Movie
Properties:
-name: actors
-name: tags
follows: -name: date_published
```

Indexes:

- C. Set the following in your entity options: exclude_from_indexes = "~actors, tags'
- D. Set the following in your entity options: exclude_from_indexes = "~date_published'

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file is processed once per day as inexpensively as possible. What should you do?

- A. Change the processing job to use Google Cloud Dataproc instead.
- B. Manually start the Cloud Dataflow job each morning when you get into the office.
- C. Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.
- D. Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

- A. Load the data every 30 minutes into a new partitioned table in BigQuery.
- B. Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery
- C. Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore
- D. Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

- ⇒ The user profile: What the user likes and doesn't like to eat
- ⇒ The user account information: Name, address, preferred meal times
- ⇒ The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

- A. BigQuery
- B. Cloud SQL
- C. Cloud Bigtable
- D. Cloud Datastore

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

- A. The CSV data loaded in BigQuery is not flagged as CSV.
- B. The CSV data has invalid rows that were skipped on import.
- C. The CSV data loaded in BigQuery is not using BigQuery's default encoding.
- D. The CSV data has not gone through an ETL phase before loading into BigQuery.

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low. You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (Choose two.)

- A. Introduce data compression for each file to increase the rate file of file transfer.
- B. Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.
- C. Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.
- D. Assemble 1,000 files into a tape archive (TAR) file.
 Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.
- E. Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premises data to the designated storage bucket.

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required. You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

- A. Redis
- B. HBase
- C. MySQL
- D. MongoDB
- E. Cassandra
- F. HDFS with Hive

You are training a spam classifier. You notice that you are overfitting the training data. Which three actions can you take to resolve this problem? (Choose three.)

- A. Get more training examples
- B. Reduce the number of training examples
- C. Use a smaller set of features
- D. Use a larger set of features
- E. Increase the regularization parameters
- F. Decrease the regularization parameters

You are implementing security best practices on your data pipeline. Currently, you are manually executing jobs as the Project Owner. You want to automate these jobs by taking nightly batch files containing non-public information from Google Cloud Storage, processing them with a Spark Scala job on a Google Cloud Dataproc cluster, and depositing the results into Google BigQuery.

How should you securely run this workload?

- A. Restrict the Google Cloud Storage bucket so only you can see the files
- B. Grant the Project Owner role to a service account, and run the job with it
- C. Use a service account with the ability to read the batch files and to write to BigQuery
- D. Use a user account with the Project Viewer role on the Cloud Dataproc cluster to read the batch files and write to BigQuery

You are using Google BigQuery as your data warehouse. Your users report that the following simple query is running very slowly, no matter when they run the query:

SELECT country, state, city FROM [myproject:mydataset.mytable] GROUP BY country

You check the query plan for the query and see the following output in the Read section of Stage:1:

What is the most likely cause of the delay for this query?

- A. Users are running too many concurrent queries in the system
- B. The [myproject:mydataset.mytable] table has too many partitions
- C. Either the state or the city columns in the [myproject:mydataset.mytable] table have too many NULL values
- D. Most rows in the [myproject:mydataset.mytable] table have the same value in the country column, causing data skew

Your globally distributed auction application allows users to bid on items. Occasionally, users place identical bids at nearly identical times, and different application servers process those bids. Each bid event contains the item, amount, user, and timestamp. You want to collate those bid events into a single location in real time to determine which user bid first. What should you do?

- A. Create a file on a shared file and have the application servers write all bid events to that file. Process the file with Apache Hadoop to identify which user bid first.
- B. Have each application server write the bid events to Cloud Pub/Sub as they occur. Push the events from Cloud Pub/Sub to a custom endpoint that writes the bid event information into Cloud SQL.
- C. Set up a MySQL database for each application server to write bid events into. Periodically query each of those distributed MySQL databases and update a master MySQL database with bid event information.
- D. Have each application server write the bid events to Google Cloud Pub/Sub as they occur. Use a pull subscription to pull the bid events using Google Cloud Dataflow. Give the bid for each item to the user in the bid event that is processed first.

Your organization has been collecting and analyzing data in Google BigQuery for 6 months. The majority of the data analyzed is placed in a time-partitioned table named events_partitioned. To reduce the cost of queries, your organization created a view called events, which queries only the last 14 days of data. The view is described in legacy SQL. Next month, existing applications will be connecting to BigQuery to read the events data via an ODBC connection. You need to ensure the applications can connect. Which two actions should you take? (Choose two.)

- A. Create a new view over events using standard SQL
- B. Create a new partitioned table using a standard SQL query
- C. Create a new view over events_partitioned using standard SQL
- D. Create a service account for the ODBC connection to use for authentication
- E. Create a Google Cloud Identity and Access Management (Cloud IAM) role for the ODBC connection and shared "events"

You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to query all of the tables for the past 30 days in legacy SQL. What should you do?

- A. Use the TABLE_DATE_RANGE function
- B. Use the WHERE_PARTITIONTIME pseudo column
- C. Use WHERE date BETWEEN YYYY-MM-DD AND YYYY-MM-DD
- D. Use SELECT IF.(date >= YYYY-MM-DD AND date <= YYYY-MM-DD

Your company is currently setting up data pipelines for their campaign. For all the Google Cloud Pub/Sub streaming data, one of the important business requirements is to be able to periodically identify the inputs and their timings during their campaign. Engineers have decided to use windowing and transformation in Google Cloud Dataflow for this purpose. However, when testing this feature, they find that the Cloud Dataflow job fails for the all streaming insert. What is the most likely cause of this problem?

- A. They have not assigned the timestamp, which causes the job to fail
- B. They have not set the triggers to accommodate the data coming in late, which causes the job to fail
- C. They have not applied a global windowing function, which causes the job to fail when the pipeline is created
- D. They have not applied a non-global windowing function, which causes the job to fail when the pipeline is created

You architect a system to analyze seismic data. Your extract, transform, and load (ETL) process runs as a series of MapReduce jobs on an Apache Hadoop cluster. The ETL process takes days to process a data set because some steps are computationally expensive. Then you discover that a sensor calibration step has been omitted. How should you change your ETL process to carry out sensor calibration systematically in the future?

- A. Modify the transformMapReduce jobs to apply sensor calibration before they do anything else.
- B. Introduce a new MapReduce job to apply sensor calibration to raw data, and ensure all other MapReduce jobs are chained after this.
- C. Add sensor calibration data to the output of the ETL process, and document that all users need to apply sensor calibration themselves.
- D. Develop an algorithm through simulation to predict variance of data output from the last MapReduce job based on calibration factors, and apply the correction to all data.

Question #59

An online retailer has built their current application on Google App Engine. A new initiative at the company mandates that they extend their application to allow their customers to transact directly via the application. They need to manage their shopping transactions and analyze combined data from multiple datasets using a business intelligence (BI) tool. They want to use only a single database for this purpose. Which Google Cloud database should they choose?

- A. BigQuery
- B. Cloud SQL
- C. Cloud BigTable
- D. Cloud Datastore

You launched a new gaming app almost three years ago. You have been uploading log files from the previous day to a separate Google BigQuery table with the table name format LOGS_yyyymmdd. You have been using table wildcard functions to generate daily and monthly reports for all time ranges. Recently, you discovered that some queries that cover long date ranges are exceeding the limit of 1,000 tables and failing. How can you resolve this issue?

- A. Convert all daily log tables into date-partitioned tables
- B. Convert the sharded tables into a single partitioned table
- C. Enable query caching so you can cache data from previous months
- D. Create separate views to cover each month, and query from these views

Your analytics team wants to build a simple statistical model to determine which customers are most likely to work with your company again, based on a few different metrics. They want to run the model on Apache Spark, using data housed in Google Cloud Storage, and you have recommended using Google Cloud. Dataproc to execute this job. Testing has shown that this workload can run in approximately 30 minutes on a 15-node cluster, outputting the results into Google BigQuery. The plan is to run this workload weekly. How should you optimize the cluster for cost?

- A. Migrate the workload to Google Cloud Dataflow
- B. Use pre-emptible virtual machines (VMs) for the cluster
- C. Use a higher-memory node so that the job runs faster
- D. Use SSDs on the worker nodes so that the job can run faster

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?

- A. Set a single global window to capture all the data.
- B. Set sliding windows to capture all the lagged data.
- C. Use watermarks and timestamps to capture the lagged data.
- D. Ensure every datasource type (stream or batch) has a timestamp, and use the timestamps to define the logic for lagged data.

You have some data, which is shown in the graphic below. The two dimensions are X and Y, and the shade of each dot represents what class it is. You want to classify this data accurately using a linear algorithm. To do this you need to add a synthetic feature. What should the value of that feature be?

- A. X^2+Y^2
- B. X^2
- C. Y^2
- D. cos(X)

You are integrating one of your internal IT applications and Google BigQuery, so users can query BigQuery from the application's interface. You do not want individual users to authenticate to BigQuery and you do not want to give them access to the dataset. You need to securely access BigQuery from your IT application. What should you do?

- A. Create groups for your users and give those groups access to the dataset
- B. Integrate with a single sign-on (SSO) platform, and pass each user's credentials along with the query request
- C. Create a service account and grant dataset access to that account. Use the service account's private key to access the dataset
- D. Create a dummy user and grant dataset access to that user. Store the username and password for that user in a file on the files system, and use those credentials to access the BigQuery dataset

You are building a data pipeline on Google Cloud. You need to prepare data using a casual method for a machine-learning process. You want to support a logistic regression model. You also need to monitor and adjust for null values, which must remain real-valued and cannot be removed. What should you do?

- A. Use Cloud Dataprep to find null values in sample source data. Convert all nulls to ""none' using a Cloud Dataproc job.
- B. Use Cloud Dataprep to find null values in sample source data. Convert all nulls to 0 using a Cloud Dataprep job.
- C. Use Cloud Dataflow to find null values in sample source data. Convert all nulls to "none' using a Cloud Dataprep job.
- D. Use Cloud Dataflow to find null values in sample source data. Convert all nulls to 0 using a custom script.

You set up a streaming data insert into a Redis cluster via a Kafka cluster. Both clusters are running on Compute Engine instances. You need to encrypt data at rest with encryption keys that you can create, rotate, and destroy as needed. What should you do?

- A. Create a dedicated service account, and use encryption at rest to reference your data stored in your Compute Engine cluster instances as part of your API service calls.
- B. Create encryption keys in Cloud Key Management Service. Use those keys to encrypt your data in all of the Compute Engine cluster instances.
- C. Create encryption keys locally. Upload your encryption keys to Cloud Key Management Service. Use those keys to encrypt your data in all of the Compute Engine cluster instances.
- D. Create encryption keys in Cloud Key Management Service. Reference those keys in your API service calls when accessing the data in your Compute Engine cluster instances.

You are developing an application that uses a recommendation engine on Google Cloud. Your solution should display new videos to customers based on past views. Your solution needs to generate labels for the entities in videos that the customer has viewed. Your design must be able to provide very fast filtering suggestions based on data from other customer preferences on several TB of data. What should you do?

- A. Build and train a complex classification model with Spark MLlib to generate labels and filter the results. Deploy the models using Cloud Dataproc. Call the model from your application.
- B. Build and train a classification model with Spark MLlib to generate labels. Build and train a second classification model with Spark MLlib to filter results to match customer preferences. Deploy the models using Cloud Dataproc. Call the models from your application.
- C. Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud Bigtable, and filter the predicted labels to match the user's viewing history to generate preferences.
- D. Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud SQL, and join and filter the predicted labels to match the user's viewing history to generate preferences.

You are selecting services to write and transform JSON messages from Cloud Pub/Sub to BigQuery for a data pipeline on Google Cloud. You want to minimize service costs. You also want to monitor and accommodate input data volume that will vary in size with minimal manual intervention. What should you do?

- A. Use Cloud Dataproc to run your transformations. Monitor CPU utilization for the cluster. Resize the number of worker nodes in your cluster via the command line.
- B. Use Cloud Dataproc to run your transformations. Use the diagnose command to generate an operational output archive. Locate the bottleneck and adjust cluster resources.
- C. Use Cloud Dataflow to run your transformations. Monitor the job system lag with Stackdriver. Use the default autoscaling setting for worker instances.
- D. Use Cloud Dataflow to run your transformations. Monitor the total execution time for a sampling of jobs. Configure the job to use non-default Compute Engine machine types when needed.

Your infrastructure includes a set of YouTube channels. You have been tasked with creating a process for sending the YouTube channel data to Google Cloud for analysis. You want to design a solution that allows your world-wide marketing teams to perform ANSI SQL and other types of analysis on up-to-date YouTube channels log data. How should you set up the log data transfer into Google Cloud?

- A. Use Storage Transfer Service to transfer the offsite backup files to a Cloud Storage Multi-Regional storage bucket as a final destination.
- B. Use Storage Transfer Service to transfer the offsite backup files to a Cloud Storage Regional bucket as a final destination.
- C. Use BigQuery Data Transfer Service to transfer the offsite backup files to a Cloud Storage Multi-Regional storage bucket as a final destination.
- D. Use BigQuery Data Transfer Service to transfer the offsite backup files to a Cloud Storage Regional storage bucket as a final destination.

You are designing storage for very large text files for a data pipeline on Google Cloud. You want to support ANSI SQL queries. You also want to support compression and parallel load from the input locations using Google recommended practices. What should you do?

- A. Transform text files to compressed Avro using Cloud Dataflow. Use BigQuery for storage and query.
- B. Transform text files to compressed Avro using Cloud Dataflow. Use Cloud Storage and BigQuery permanent linked tables for query.
- C. Compress text files to gzip using the Grid Computing Tools. Use BigQuery for storage and query.
- D. Compress text files to gzip using the Grid Computing Tools. Use Cloud Storage, and then import into Cloud Bigtable for query.

You are developing an application on Google Cloud that will automatically generate subject labels for users' blog posts. You are under competitive pressure to add this feature quickly, and you have no additional developer resources. No one on your team has experience with machine learning. What should you do?

- A. Call the Cloud Natural Language API from your application. Process the generated Entity Analysis as labels.
- B. Call the Cloud Natural Language API from your application. Process the generated Sentiment Analysis as labels.
- C. Build and train a text classification model using TensorFlow. Deploy the model using Cloud Machine Learning Engine. Call the model from your application and process the results as labels.
- D. Build and train a text classification model using TensorFlow. Deploy the model using a Kubernetes Engine cluster. Call the model from your application and process the results as labels.

You are designing storage for 20 TB of text files as part of deploying a data pipeline on Google Cloud. Your input data is in CSV format. You want to minimize the cost of querying aggregate values for multiple users who will query the data in Cloud Storage with multiple engines. Which storage service and schema design should you use?

- A. Use Cloud Bigtable for storage. Install the HBase shell on a Compute Engine instance to query the Cloud Bigtable data.
- B. Use Cloud Bigtable for storage. Link as permanent tables in BigQuery for query.
- C. Use Cloud Storage for storage. Link as permanent tables in BigQuery for query.
- D. Use Cloud Storage for storage. Link as temporary tables in BigQuery for query.

You are designing storage for two relational tables that are part of a 10-TB database on Google Cloud. You want to support transactions that scale horizontally. You also want to optimize data for range queries on non-key columns. What should you do?

- A. Use Cloud SQL for storage. Add secondary indexes to support query patterns.
- B. Use Cloud SQL for storage. Use Cloud Dataflow to transform data to support query patterns.
- C. Use Cloud Spanner for storage. Add secondary indexes to support query patterns.
- D. Use Cloud Spanner for storage. Use Cloud Dataflow to transform data to support query patterns.

Your financial services company is moving to cloud technology and wants to store 50 TB of financial time-series data in the cloud. This data is updated frequently and new data will be streaming in all the time. Your company also wants to move their existing Apache Hadoop jobs to the cloud to get insights into this data. Which product should they use to store the data?

- A. Cloud Bigtable
- B. Google BigQuery
- C. Google Cloud Storage
- D. Google Cloud Datastore

An organization maintains a Google BigQuery dataset that contains tables with user-level data. They want to expose aggregates of this data to other Google Cloud projects, while still controlling access to the user-level data. Additionally, they need to minimize their overall storage cost and ensure the analysis cost for other projects is assigned to those projects. What should they do?

- A. Create and share an authorized view that provides the aggregate results.
- B. Create and share a new dataset and view that provides the aggregate results.
- C. Create and share a new dataset and table that contains the aggregate results.
- D. Create dataViewer Identity and Access Management (IAM) roles on the dataset to enable sharing.

Government regulations in your industry mandate that you have to maintain an auditable record of access to certain types of data. Assuming that all expiring logs will be archived correctly, where should you store data that is subject to that mandate?

- A. Encrypted on Cloud Storage with user-supplied encryption keys. A separate decryption key will be given to each authorized user.
- B. In a BigQuery dataset that is viewable only by authorized personnel, with the Data Access log used to provide the auditability.
- C. In Cloud SQL, with separate database user names to each user. The Cloud SQL Admin activity logs will be used to provide the auditability.
- D. In a bucket on Cloud Storage that is accessible only by an AppEngine service that collects user information and logs the access before providing a link to the bucket.

Your neural network model is taking days to train. You want to increase the training speed. What can you do?

- A. Subsample your test dataset.
- B. Subsample your training dataset.
- C. Increase the number of input features to your model.
- D. Increase the number of layers in your neural network.

You are responsible for writing your company's ETL pipelines to run on an Apache Hadoop cluster. The pipeline will require some checkpointing and splitting pipelines. Which method should you use to write the pipelines?

- A. PigLatin using Pig
- B. HiveQL using Hive
- C. Java using MapReduce
- D. Python using MapReduce

Your company maintains a hybrid deployment with GCP, where analytics are performed on your anonymized customer data. The data are imported to Cloud Storage from your data center through parallel uploads to a data transfer server running on GCP. Management informs you that the daily transfers take too long and have asked you to fix the problem. You want to maximize transfer speeds. Which action should you take?

- A. Increase the CPU size on your server.
- B. Increase the size of the Google Persistent Disk on your server.
- C. Increase your network bandwidth from your datacenter to GCP.
- D. Increase your network bandwidth from Compute Engine to Cloud Storage.

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their to.pologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- → Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

Ensure secure and efficient transport and storage of telemetry data

Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.

Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

MJTelco is building a custom interface to share data. They have these requirements:

- 1. They need to do aggregations over their petabyte-scale datasets.
- 2. They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

- A. Cloud Datastore and Cloud Bigtable
- B. Cloud Bigtable and Cloud SQL
- C. BigQuery and Cloud Bigtable
- D. BigQuery and Cloud Storage

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- → Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

Ensure secure and efficient transport and storage of telemetry data

Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.

Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

You need to compose visualization for operations teams with the following requirements:

- → Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)
- ⇒ The report must not be more than 3 hours delayed from live data.
- ⇒ The actionable report should only show suboptimal links.
- Most suboptimal links should be sorted to the top.
- Suboptimal links can be grouped and filtered by regional geography.
- ⇒ User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

- A. Look through the current data and compose a series of charts and tables, one for each possible combination of criteria.
- B. Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.
- C. Export the data to a spreadsheet, compose a series of charts and tables, one for each possible combination of criteria, and spread them across multiple tabs.
- D. Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

MJTelco Case Study -

Company Overview -

MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.

Company Background -

Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.

Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.

Solution Concept -

MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:

- ⇒ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
- Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.

MJTelco will also use three separate operating environments "" development/test, staging, and production "" to meet the needs of running experiments, deploying new features, and serving production customers.

Business Requirements -

- Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
- ⇒ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
- ⇒ Provide reliable and timely access to data for analysis from distributed research workers
- ⇒ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.

Technical Requirements -

Ensure secure and efficient transport and storage of telemetry data

Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.

Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day

Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.

CEO Statement -

Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.

CTO Statement -

Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.

CFO Statement -

The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day's events. They also want to use streaming ingestion. What should you do?

- A. Create a table called tracking_table and include a DATE column.
- B. Create a partitioned table called tracking_table and include a TIMESTAMP column.
- C. Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.
- D. Create a table called tracking_table with a TIMESTAMP column to represent the day.

Flowlogistic Case Study -

Company Overview -

Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.

Company Background -

The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.

Solution Concept -

Flowlogistic wants to implement two concepts using the cloud:

Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They

also want to use predictive analytics to learn earlier when a shipment will be delayed.

Existing Technical Environment -

Flowlogistic architecture resides in a single data center:

- ⇒ Databases
- 8 physical servers in 2 clusters
- SQL Server "" user data, inventory, static data
- 3 physical servers
- Cassandra "" metadata, tracking messages
- 10 Kafka servers "" tracking message aggregation and batch insert
- Application servers "" customer front end, middleware for order/customs
- 60 virtual machines across 20 physical servers
- Tomcat "" Java services
- Nginx "" static content
- Batch servers
- ⇒ Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) "" SQL server storage

Network-attached storage (NAS) image storage, logs, backups

- ⇒ 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
- ⇒ 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,

Business Requirements -

Build a reliable and reproducible environment with scaled panty of production.

.

- ⇒ Aggregate data in a centralized Data Lake for analysis
- ⇒ Use historical data to perform predictive analytics on future shipments
- Accurately track every shipment worldwide using proprietary technology
- Improve business agility and speed of innovation through rapid provisioning of new resources
- Analyze and optimize architecture for performance in the cloud
- Migrate fully to the cloud if all other requirements are met

Technical Requirements -

- Handle both streaming and batch data
- → Migrate existing Hadoop workloads
- ⇒ Ensure architecture is scalable and elastic to meet the changing demands of the company.
- Use managed services whenever possible
- Encrypt data flight and at rest

Connect a VPN between the production data center and cloud environment

SEO Statement -

We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.

We need to organize our information so we can more easily understand where our customers are and what they are shipping.

CTO Statement -

IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO's tracking technology.

CFO Statement -

Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.

Flowlogistic's management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system.

You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

- A. Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage
- B. Cloud Pub/Sub, Cloud Dataflow, and Local SSD
- C. Cloud Pub/Sub, Cloud SQL, and Cloud Storage

- D. Cloud Load Balancing, Cloud Dataflow, and Cloud Storage
- E. Cloud Dataflow, Cloud SQL, and Cloud Storage

After migrating ETL jobs to run on BigQuery, you need to verify that the output of the migrated jobs is the same as the output of the original. You've loaded a table containing the output of the original job and want to compare the contents with output from the migrated job to show that they are identical. The tables do not contain a primary key column that would enable you to join them together for comparison. What should you do?

- A. Select random samples from the tables using the RAND() function and compare the samples.
- B. Select random samples from the tables using the HASH() function and compare the samples.
- C. Use a Dataproc cluster and the BigQuery Hadoop connector to read the data from each table and calculate a hash from non-timestamp columns of the table after sorting. Compare the hashes of each table.
- D. Create stratified random samples using the OVER() function and compare equivalent samples from each table.

You are a head of BI at a large enterprise company with multiple business units that each have different priorities and budgets. You use on-demand pricing for BigQuery with a quota of 2K concurrent on-demand slots per project. Users at your organization sometimes don't get slots to execute their query and you need to correct this. You'd like to avoid introducing new projects to your account. What should you do?

- A. Convert your batch BQ queries into interactive BQ queries.
- B. Create an additional project to overcome the 2K on-demand per-project quota.
- C. Switch to flat-rate pricing and establish a hierarchical priority model for your projects.
- D. Increase the amount of concurrent slots per project at the Quotas page at the Cloud Console.

Correct Answer: C

Reference: https://cloud.google.com/blog/products/gcp/busting-12-myths-about-bigguery

You have an Apache Kafka cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins. What should you do?

- A. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
- B. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
- C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Source connector. Use a Dataflow job to read from PubSub and write to GCS.
- D. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read from PubSub and write to GCS.

You've migrated a Hadoop job from an on-prem cluster to dataproc and GCS. Your Spark job is a complicated analytical workload that consists of many shuffing operations and initial data are parquet files (on average 200-400 MB size each). You see some degradation in performance after the migration to Dataproc, so you'd like to optimize for it. You need to keep in mind that your organization is very cost-sensitive, so you'd like to continue using Dataproc on preemptibles (with 2 non-preemptible workers only) for this workload. What should you do?

- A. Increase the size of your parquet files to ensure them to be 1 GB minimum.
- B. Switch to TFRecords formats (appr. 200MB per file) instead of parquet files.
- C. Switch from HDDs to SSDs, copy initial data from GCS to HDFS, run the Spark job and copy results back to GCS.
- D. Switch from HDDs to SSDs, override the preemptible VMs configuration to increase the boot disk size.

Your team is responsible for developing and maintaining ETLs in your company. One of your Dataflow jobs is failing because of some errors in the input data, and you need to improve reliability of the pipeline (incl. being able to reprocess all failing data). What should you do?

A. Add a filtering step to skip these types of errors in the future, extract erroneous rows from logs.

B. Add a try... catch block to your DoFn that transforms the data, extract erroneous rows from logs.

- C. Add a try... catch block to your DoFn that transforms the data, write erroneous rows to PubSub directly from the DoFn.
- D. Add a try... catch block to your DoFn that transforms the data, use a sideOutput to create a PCollection that can be stored to PubSub later.

You're training a model to predict housing prices based on an available dataset with real estate properties. Your plan is to train a fully connected neural net, and you've discovered that the dataset contains latitude and longitude of the property. Real estate professionals have told you that the location of the property is highly influential on price, so you'd like to engineer a feature that incorporates this physical dependency.

What should you do?

- A. Provide latitude and longitude as input vectors to your neural net.
- B. Create a numeric column from a feature cross of latitude and longitude.
- C. Create a feature cross of latitude and longitude, bucketize at the minute level and use L1 regularization during optimization.
- D. Create a feature cross of latitude and longitude, bucketize it at the minute level and use L2 regularization during optimization.

do?

You are deploying MariaDB SQL databases on GCE VM Instances and need to configure monitoring and alerting. You want to collect metrics including network connections, disk IO and replication status from MariaDB with minimal development effort and use StackDriver for dashboards and alerts. What should you

A. Install the OpenCensus Agent and create a custom metric collection application with a StackDriver exporter.

- B. Place the MariaDB instances in an Instance Group with a Health Check.
- C. Install the StackDriver Logging Agent and configure fluentd in_tail plugin to read MariaDB logs.
- D. Install the StackDriver Agent and configure the MySQL plugin.

You work for a bank. You have a labelled dataset that contains

information on already granted loan application and whether

these applications have been defaulted. You have been asked to

train a model to predict default rates for credit applicants. What

should you do?

A. Increase the size of the dataset by collecting additional data.

B. Train a linear regression to predict a credit default risk score.

C. Remove the bias from the data and collect applications that

have been declined loans.

D. Match loan applicants with their social profiles to enable

feature engineering.

You need to migrate a 2TB relational database to Google Cloud Platform. You do not have the resources to significantly refactor the application that uses this database and cost to operate is of primary concern. Which service do you select for storing and serving your data?

- A. Cloud Spanner
- B. Cloud Bigtable
- C. Cloud Firestore
- D. Cloud SQL

You're using Bigtable for a real-time application, and you have a heavy load that is a mix of read and writes. You've recently identified an additional use case and need to perform hourly an analytical job to calculate certain statistics across the whole database. You need to ensure both the reliability of your production application as well as the analytical workload. What should you do?

- A. Export Bigtable dump to GCS and run your analytical job on top of the exported files.
- B. Add a second cluster to an existing instance with a multi-cluster routing, use live-traffic app profile for your regular workload and batch-analytics profile for the analytics workload.
- C. Add a second cluster to an existing instance with a single-cluster routing, use live-traffic app profile for your regular workload and batch-analytics profile for the analytics workload.
- D. Increase the size of your existing cluster twice and execute your analytics workload on your new resized cluster.

You are designing an Apache Beam pipeline to enrich data from Cloud Pub/Sub with static reference data from BigQuery. The reference data is small enough to fit in memory on a single worker. The pipeline should write enriched results to BigQuery for analysis. Which job type and transforms should this pipeline use?

- A. Batch job, PubSubIO, side-inputs
- B. Streaming job, PubSubIO, JdbcIO, side-outputs
- C. Streaming job, PubSubIO, BigQueryIO, side-inputs
- D. Streaming job, PubSubIO, BigQueryIO, side-outputs

You have a data pipeline that writes data to Cloud Bigtable using

well-designed row keys. You want to monitor your pipeline to

determine when to increase the size of you Cloud Bigtable cluster.

Which two actions can you take to accomplish this? (Choose

two.)

A. Review Key Visualizer metrics. Increase the size of the Cloud

Bigtable cluster when the Read pressure index is above 100.

B. Review Key Visualizer metrics. Increase the size of the Cloud

Bigtable cluster when the Write pressure index is above 100.

C. Monitor the latency of write operations. Increase the size of the

Cloud Bigtable cluster when there is a sustained increase in write

latency.

D. Monitor storage utilization. Increase the size of the Cloud

Bigtable cluster when utilization increases above 70% of max

capacity.

E. Monitor latency of read operations. Increase the size of the

Cloud Bigtable cluster of read operations take longer than 100

ms.

Correct Answer: AC

_

Need to check

You want to analyze hundreds of thousands of social media posts daily at the lowest cost and with the fewest steps.

You have the following requirements:

- ⇒ You will batch-load the posts once per day and run them through the Cloud Natural Language API.
- ⇒ You will extract topics and sentiment from the posts.
- You must store the raw posts for archiving and reprocessing.
- ⇒ You will create dashboards to be shared with people both inside and outside your organization.

You need to store both the data extracted from the API to perform analysis as well as the raw social media posts for historical archiving. What should you do?

- A. Store the social media posts and the data extracted from the API in BigQuery.
- B. Store the social media posts and the data extracted from the API in Cloud SQL.
- C. Store the raw social media posts in Cloud Storage, and write the data extracted from the API into BigQuery.
- D. Feed to social media posts into the API directly from the source, and write the extracted data from the API into BigQuery.

You store historic data in Cloud Storage. You need to perform

analytics on the historic data. You want to use a solution to detect

invalid data entries and perform data transformations that will not

require programming or knowledge of SQL. What should you do?

A. Use Cloud Dataflow with Beam to detect errors and perform

transformations.

B. Use Cloud Dataprep with recipes to detect errors and perform

transformations.

C. Use Cloud Dataproc with a Hadoop job to detect errors and

perform transformations.

D. Use federated tables in BigQuery with queries to detect errors

and perform transformations.

Your company needs to upload their historic data to Cloud

Storage. The security rules don't allow access from external IPs

to their on-premises resources. After an initial upload, they will

add new data from existing on-premises applications every day.

What should they do?

A. Execute gsutil rsync from the on-premises servers.

B. Use Cloud Dataflow and write the data to Cloud Storage.

C. Write a job template in Cloud Dataproc to perform the data

transfer.

D. Install an FTP server on a Compute Engine VM to receive the

files and move them to Cloud Storage.

You have a query that filters a BigQuery table using a WHERE clause on timestamp and ID columns. By using bq query ""-dry_run you learn that the query triggers a full scan of the table, even though the filter on timestamp and ID select a tiny fraction of the overall data. You want to reduce the amount of data scanned by BigQuery with minimal changes to existing SQL queries. What should you do?

- A. Create a separate table for each ID.
- B. Use the LIMIT keyword to reduce the number of rows returned.
- C. Recreate the table with a partitioning column and clustering column.
- D. Use the bq query -maximum_bytes_billed flag to restrict the number of bytes billed.

You have a requirement to insert minute-resolution data from

50,000 sensors into a BigQuery table. You expect significant

growth in data volume and need the data to be available within 1

minute of ingestion for real-time analysis of aggregated trends.

What should you do?

A. Use bq load to load a batch of sensor data every 60 seconds.

B. Use a Cloud Dataflow pipeline to stream data into the

BigQuery table.

C. Use the INSERT statement to insert a batch of data every 60

seconds.

D. Use the MERGE statement to apply updates in batch every 60

seconds.

You need to copy millions of sensitive patient records from a relational database to BigQuery. The total size of the database is 10 TB. You need to design a solution that is secure and time-efficient. What should you do?

- A. Export the records from the database as an Avro file. Upload the file to GCS using gsutil, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.
- B. Export the records from the database as an Avro file. Copy the file onto a Transfer Appliance and send it to Google, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.
- C. Export the records from the database into a CSV file. Create a public URL for the CSV file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the CSV file into BigQuery using the BigQuery web UI in the GCP Console.
- D. Export the records from the database as an Avro file. Create a public URL for the Avro file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?

- A. Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.
- B. Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.
- C. Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
- D. Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.

You have a data stored in BigQuery. The data in the BigQuery dataset must be highly available. You need to define a storage, backup, and recovery strategy of this data that minimizes cost. How should you configure the BigQuery table?

- A. Set the BigQuery dataset to be regional. In the event of an emergency, use a point-in-time snapshot to recover the data.
- B. Set the BigQuery dataset to be regional. Create a scheduled query to make copies of the data to tables suffixed with the time of the backup. In the event of an emergency, use the backup copy of the table.
- C. Set the BigQuery dataset to be multi-regional. In the event of an emergency, use a point-in-time snapshot to recover the data.
- D. Set the BigQuery dataset to be multi-regional. Create a scheduled query to make copies of the data to tables suffixed with the time of the backup. In the event of an emergency, use the backup copy of the table.

You used Cloud Dataprep to create a recipe on a sample of data in a BigQuery table. You want to reuse this recipe on a daily upload of data with the same schema, after the load job with variable execution time completes. What should you do?

- A. Create a cron schedule in Cloud Dataprep.
- B. Create an App Engine cron job to schedule the execution of the Cloud Dataprep job.
- C. Export the recipe as a Cloud Dataprep template, and create a job in Cloud Scheduler.
- D. Export the Cloud Dataprep job as a Cloud Dataflow template, and incorporate it into a Cloud Composer job.

.

You want to automate execution of a multi-step data pipeline running on Google Cloud. The pipeline includes Cloud Dataproc and Cloud Dataflow jobs that have multiple dependencies on each other. You want to use managed services where possible, and the pipeline will run every day. Which tool should you use?

A. cron

- B. Cloud Composer
- C. Cloud Scheduler
- D. Workflow Templates on Cloud Dataproc

You are managing a Cloud Dataproc cluster. You need to make a

job run faster while minimizing costs, without losing work in

progress on your clusters. What should you do?

A. Increase the cluster size with more non-preemptible workers.

B. Increase the cluster size with preemptible worker nodes, and

configure them to forcefully decommission.

C. Increase the cluster size with preemptible worker nodes, and

use Cloud Stackdriver to trigger a script to preserve work.

D. Increase the cluster size with preemptible worker nodes, and

configure them to use graceful decommissioning.

You work for a shipping company that uses handheld scanners to read shipping labels. Your company has strict data privacy standards that require scanners to only transmit recipients' personally identifiable information (PII) to analytics systems, which violates user privacy rules. You want to quickly build a scalable solution using cloud-native managed services to prevent exposure of PII to the analytics systems. What should you do?

- A. Create an authorized view in BigQuery to restrict access to tables with sensitive data.
- B. Install a third-party data validation tool on Compute Engine virtual machines to check the incoming data for sensitive information.
- C. Use Stackdriver logging to analyze the data passed through the total pipeline to identify transactions that may contain sensitive information.
- D. Build a Cloud Function that reads the topics and makes a call to the Cloud Data Loss Prevention API. Use the tagging and confidence levels to either pass or quarantine the data in a bucket for review.

You have developed three data processing jobs. One executes a Cloud Dataflow pipeline that transforms data uploaded to Cloud Storage and writes results to BigQuery. The second ingests data from on-premises servers and uploads it to Cloud Storage. The third is a Cloud Dataflow pipeline that gets information from third-party data providers and uploads the information to Cloud Storage. You need to be able to schedule and monitor the execution of these three workflows and manually execute them when needed. What should you do?

- A. Create a Direct Acyclic Graph in Cloud Composer to schedule and monitor the jobs.
- B. Use Stackdriver Monitoring and set up an alert with a Webhook notification to trigger the jobs.
- C. Develop an App Engine application to schedule and request the status of the jobs using GCP API calls.
- D. Set up cron jobs in a Compute Engine instance to schedule and monitor the pipelines using GCP API calls.

You have Cloud Functions written in Node.js that pull messages

from Cloud Pub/Sub and send the data to BigQuery. You observe

that the message processing rate on the Pub/Sub topic is orders

of magnitude higher than anticipated, but there is no error logged

in Stackdriver Log Viewer. What are the two most likely causes of

this problem? (Choose two.)

A. Publisher throughput quota is too small.

B. Total outstanding messages exceed the 10-MB maximum.

C. Error handling in the subscriber code is not handling run-time

errors properly.

D. The subscriber code cannot keep up with the messages.

E. The subscriber code does not acknowledge the messages that

it pulls.

Correct Answer: CD

Need to check

You are creating a new pipeline in Google Cloud to stream IoT

data from Cloud Pub/Sub through Cloud Dataflow to BigQuery.

While previewing the data, you notice that roughly 2% of the data

appears to be corrupt. You need to modify the Cloud Dataflow

pipeline to filter out this corrupt data. What should you do?

A. Add a SideInput that returns a Boolean if the element is

corrupt.

B. Add a ParDo transform in Cloud Dataflow to discard corrupt

elements.

C. Add a Partition transform in Cloud Dataflow to separate valid

data from corrupt data.

D. Add a GroupByKey transform in Cloud Dataflow to group all of

the valid data together and discard the rest.

You have historical data covering the last three years in BigQuery and a data pipeline that delivers new data to BigQuery daily. You have noticed that when the Data Science team runs a query filtered on a date column and limited to 30""90 days of data, the query scans the entire table. You also noticed that your bill is increasing more quickly than you expected. You want to resolve the issue as cost-effectively as possible while maintaining the ability to conduct SQL queries.

What should you do?

- A. Re-create the tables using DDL. Partition the tables by a column containing a TIMESTAMP or DATE Type.
- B. Recommend that the Data Science team export the table to a CSV file on Cloud Storage and use Cloud Datalab to explore the data by reading the files directly.
- C. Modify your pipeline to maintain the last 30""90 days of data in one table and the longer history in a different table to minimize full table scans over the entire history.
- D. Write an Apache Beam pipeline that creates a BigQuery table per day. Recommend that the Data Science team use wildcards on the table name suffixes to select the data they need.

You operate a logistics company, and you want to improve event delivery reliability for vehicle-based sensors. You operate small

data centers around the world to capture these events, but leased

lines that provide connectivity from your event collection

infrastructure to your event processing infrastructure are

unreliable, with unpredictable latency. You want to address this

issue in the most cost-effective way. What should you do?

A. Deploy small Kafka clusters in your data centers to buffer

events.

B. Have the data acquisition devices publish data to Cloud

Pub/Sub.

C. Establish a Cloud Interconnect between all remote data

centers and Google.

D. Write a Cloud Dataflow pipeline that aggregates all data in

session windows.

You are a retailer that wants to integrate your online sales capabilities with different in-home assistants, such as Google Home. You need to interpret customer voice commands and issue an order to the backend systems. Which solutions should you choose?

- A. Cloud Speech-to-Text API
- B. Cloud Natural Language API
- C. Dialogflow Enterprise Edition
- D. Cloud AutoML Natural Language

Your company has a hybrid cloud initiative. You have a complex data pipeline that moves data between cloud provider services and leverages services from each of the cloud providers. Which cloud-native service should you use to orchestrate the entire pipeline?

- A. Cloud Dataflow
- B. Cloud Composer
- C. Cloud Dataprep
- D. Cloud Dataproc

You use a dataset in BigQuery for analysis. You want to provide

third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is

current. Which solution should you choose?

A. Create an authorized view on the BigQuery table to control

data access, and provide third-party companies with access to

that view.

B. Use Cloud Scheduler to export the data on a regular basis to

Cloud Storage, and provide third-party companies with access to

the bucket.

C. Create a separate dataset in BigQuery that contains the

relevant data to share, and provide third-party companies with

access to the new dataset.

D. Create a Cloud Dataflow job that reads the data in frequent

time intervals, and writes it to the relevant BigQuery dataset or

Cloud Storage bucket for third-party companies to use.

A shipping company has live package-tracking data that is sent to an Apache Kafka stream in real time. This is then loaded into BigQuery. Analysts in your company want to query the tracking data in BigQuery to analyze geospatial trends in the lifecycle of a package. The table was originally created with ingest-date partitioning. Over time, the query processing time has increased. You need to implement a change that would improve query performance in BigQuery. What should you do?

- A. Implement clustering in BigQuery on the ingest date column.
- B. Implement clustering in BigQuery on the package-tracking ID column.
- C. Tier older data onto Cloud Storage files, and leverage extended tables.
- D. Re-create the table using data partitioning on the package delivery date.

You are designing a data processing pipeline. The pipeline must

be able to scale automatically as load increases. Messages must

be processed at least once and must be ordered within windows

of 1 hour. How should you design the solution?

A. Use Apache Kafka for message ingestion and use Cloud

Dataproc for streaming analysis.

B. Use Apache Kafka for message ingestion and use Cloud

Dataflow for streaming analysis.

C. Use Cloud Pub/Sub for message ingestion and Cloud

Dataproc for streaming analysis.

D. Use Cloud Pub/Sub for message ingestion and Cloud Dataflow

for streaming analysis.

You need to set access to BigQuery for different departments within your company. Your solution should comply with the following requirements:

⇒ Each department should have access only to their data.

Each department will have one or more leads who need to be able to create and update tables and provide them to their team.

⇒ Each department has data analysts who need to be able to query but not modify data.

How should you set access to the data in BigQuery?

- A. Create a dataset for each department. Assign the department leads the role of OWNER, and assign the data analysts the role of WRITER on their dataset.
- B. Create a dataset for each department. Assign the department leads the role of WRITER, and assign the data analysts the role of READER on their dataset.
- C. Create a table for each department. Assign the department leads the role of Owner, and assign the data analysts the role of Editor on the project the table is in.
- D. Create a table for each department. Assign the department leads the role of Editor, and assign the data analysts the role of Viewer on the project the table is in.

You operate a database that stores stock trades and an application that retrieves average stock price for a given company over an adjustable window of time. The data is stored in Cloud Bigtable where the datetime of the stock trade is the beginning of the row key. Your application has thousands of concurrent users, and you notice that performance is starting to degrade as more stocks are added. What should you do to improve the performance of your application?

- A. Change the row key syntax in your Cloud Bigtable table to begin with the stock symbol.
- B. Change the row key syntax in your Cloud Bigtable table to begin with a random number per second.
- C. Change the data pipeline to use BigQuery for storing stock trades, and update your application.
- D. Use Cloud Dataflow to write summary of each day's stock trades to an Avro file on Cloud Storage. Update your application to read from Cloud Storage and Cloud Bigtable to compute the responses.

You are operating a Cloud Dataflow streaming pipeline. The pipeline aggregates events from a Cloud Pub/Sub subscription source, within a window, and sinks the resulting aggregation to a Cloud Storage bucket. The source has consistent throughput. You want to monitor an alert on behavior of the pipeline with Cloud Stackdriver to ensure that it is processing data. Which Stackdriver alerts should you create?

- A. An alert based on a decrease of subscription/num_undelivered_messages for the source and a rate of change increase of instance/storage/ used_bytes for the destination
- B. An alert based on an increase of subscription/num_undelivered_messages for the source and a rate of change decrease of instance/storage/ used_bytes for the destination
- C. An alert based on a decrease of instance/storage/used_bytes for the source and a rate of change increase of subscription/num_undelivered_messages for the destination
- D. An alert based on an increase of instance/storage/used_bytes for the source and a rate of change decrease of subscription/ num undelivered messages for the destination

Correct Answer: B

Need to check

You currently have a single on-premises Kafka cluster in a data center in the us-east region that is responsible for ingesting messages from IoT devices globally. Because large parts of globe have poor internet connectivity, messages sometimes batch at the edge, come in all at once, and cause a spike in load on your Kafka cluster. This is becoming difficult to manage and prohibitively expensive. What is the Google-recommended cloud native architecture for this scenario?

- A. Edge TPUs as sensor devices for storing and transmitting the messages.
- B. Cloud Dataflow connected to the Kafka cluster to scale the processing of incoming messages.
- C. An IoT gateway connected to Cloud Pub/Sub, with Cloud Dataflow to read and process the messages from Cloud Pub/Sub.
- D. A Kafka cluster virtualized on Compute Engine in us-east with Cloud Load Balancing to connect to the devices around the world.

You decided to use Cloud Datastore to ingest vehicle telemetry data in real time. You want to build a storage system that will account for the long-term data growth, while keeping the costs low. You also want to create snapshots of the data periodically, so that you can make a point-in-time (PIT) recovery, or clone a copy of the data for Cloud Datastore in a different environment. You want to archive these snapshots for a long time. Which two methods can accomplish this?

(Choose two.)

- A. Use managed export, and store the data in a Cloud Storage bucket using Nearline or Coldline class.
- B. Use managed export, and then import to Cloud Datastore in a separate project under a unique namespace reserved for that export.
- C. Use managed export, and then import the data into a BigQuery table created just for that export, and delete temporary export files.
- D. Write an application that uses Cloud Datastore client libraries to read all the entities. Treat each entity as a BigQuery table row via BigQuery streaming insert. Assign an export timestamp for each export, and attach it as an extra column for each row. Make sure that the BigQuery table is partitioned using the export timestamp column.
- E. Write an application that uses Cloud Datastore client libraries to read all the entities. Format the exported data into a JSON file. Apply compression before storing the data in Cloud Source Repositories.

You need to create a data pipeline that copies time-series transaction data so that it can be queried from within BigQuery by your data science team for analysis.

Every hour, thousands of transactions are updated with a new status. The size of the intitial dataset is 1.5 PB, and it will grow by 3 TB per day. The data is heavily structured, and your data science team will build machine learning models based on this data. You want to maximize performance and usability for your data science team. Which two strategies should you adopt? (Choose two.)

- A. Denormalize the data as must as possible.
- B. Preserve the structure of the data as much as possible.
- C. Use BigQuery UPDATE to further reduce the size of the dataset.
- D. Develop a data pipeline where status updates are appended to BigQuery instead of updated.
- E. Copy a daily snapshot of transaction data to Cloud Storage and store it as an Avro file. Use BigQuery's support for external data sources to query.

You are designing a cloud-native historical data processing system to meet the following conditions:

- The data being analyzed is in CSV, Avro, and PDF formats and will be accessed by multiple analysis tools including Cloud Dataproc, BigQuery, and Compute Engine.
- A streaming data pipeline stores new data daily.
- ⇒ Peformance is not a factor in the solution.
- ⇒ The solution design should maximize availability. How should you design data storage for this solution?
- A. Create a Cloud Dataproc cluster with high availability. Store the data in HDFS, and peform analysis as needed.
- B. Store the data in BigQuery. Access the data using the BigQuery Connector on Cloud Dataproc and Compute Engine.
- C. Store the data in a regional Cloud Storage bucket. Access the bucket directly using Cloud Dataproc, BigQuery, and Compute Engine.
- D. Store the data in a multi-regional Cloud Storage bucket. Access the data directly using Cloud Dataproc, BigQuery, and Compute Engine.

You have a petabyte of analytics data and need to design a

storage and processing platform for it. You must be able to

perform data warehouse-style analytics on the data in Google

Cloud and expose the dataset as files for batch analysis tools in

other cloud providers. What should you do?

A. Store and process the entire dataset in BigQuery.

B. Store and process the entire dataset in Cloud Bigtable.

C. Store the full dataset in BigQuery, and store a compressed

copy of the data in a Cloud Storage bucket.

D. Store the warm data as files in Cloud Storage, and store the

active data in BigQuery. Keep this ratio as 80% warm and 20%

active.

You work for a manufacturing company that sources up to 750 different components, each from a different supplier. You've collected a labeled dataset that has on average 1000 examples for each unique component. Your team wants to implement an app to help warehouse workers recognize incoming components based on a photo of the component. You want to implement the first working version of this app (as Proof-Of-Concept) within a few working days. What should you do?

- A. Use Cloud Vision AutoML with the existing dataset.
- B. Use Cloud Vision AutoML, but reduce your dataset twice.
- C. Use Cloud Vision API by providing custom labels as recognition hints.
- D. Train your own image recognition model leveraging transfer learning techniques.

You are working on a niche product in the image recognition

domain. Your team has developed a model that is dominated by

custom C++ TensorFlow ops your team has implemented. These

ops are used inside your main training loop and are performing

bulky matrix multiplications. It currently takes up to several days

to train a model. You want to decrease this time significantly and

keep the cost low by using an accelerator on Google Cloud. What

should you do?

A. Use Cloud TPUs without any additional adjustment to your

code.

B. Use Cloud TPUs after implementing GPU kernel support for

your customs ops.

C. Use Cloud GPUs after implementing GPU kernel support for

your customs ops.

D. Stay on CPUs, and increase the size of the cluster you're

training your model on.

Correct Answer: C

Need to check

You work on a regression problem in a natural language processing domain, and you have 100M labeled examples in your dataset. You have randomly shuffled your data and split your dataset into train and test samples (in a 90/10 ratio). After you trained the neural network and evaluated your model on a test set, you discover that the root-mean-squared error (RMSE) of your model is twice as high on the train set as on the test set. How should you improve the performance of your model?

- A. Increase the share of the test sample in the train-test split.
- B. Try to collect more data and increase the size of your dataset.
- C. Try out regularization techniques (e.g., dropout of batch normalization) to avoid overfitting.
- D. Increase the complexity of your model by, e.g., introducing an additional layer or increase sizing the size of vocabularies or n-grams used.

You use BigQuery as your centralized analytics platform. New data is loaded every day, and an ETL pipeline modifies the original data and prepares it for the final users. This ETL pipeline is regularly modified and can generate errors, but sometimes the errors are detected only after 2 weeks. You need to provide a method to recover from these errors, and your backups should be optimized for storage costs. How should you organize your data in BigQuery and store your backups?

- A. Organize your data in a single table, export, and compress and store the BigQuery data in Cloud Storage.
- B. Organize your data in separate tables for each month, and export, compress, and store the data in Cloud Storage.
- C. Organize your data in separate tables for each month, and duplicate your data on a separate dataset in BigQuery.
- D. Organize your data in separate tables for each month, and use snapshot decorators to restore the table to a time prior to the corruption.

The marketing team at your organization provides regular updates of a segment of your customer dataset. The marketing team has given you a CSV with 1 million records that must be updated in BigQuery. When you use the UPDATE statement in BigQuery, you receive a quotaExceeded error. What should you do?

A. Reduce the number of records updated each day to stay within the BigQuery UPDATE DML statement limit.

B. Increase the BigQuery UPDATE DML statement limit in the Quota management section of the Google Cloud Platform Console.

C. Split the source CSV file into smaller CSV files in Cloud Storage to reduce the number of BigQuery UPDATE DML statements per BigQuery job.

D. Import the new records from the CSV file into a new BigQuery table. Create a BigQuery job that merges the new records with the existing records and writes the results to a new BigQuery table.

As your organization expands its usage of GCP, many teams have started to create their own projects. Projects are further multiplied to accommodate different stages of deployments and target audiences. Each project requires unique access control configurations. The central IT team needs to have access to all projects.

Furthermore, data from Cloud Storage buckets and BigQuery datasets must be shared for use in other projects in an ad hoc way. You want to simplify access control management by minimizing the number of policies. Which two steps should you take? (Choose two.)

- A. Use Cloud Deployment Manager to automate access provision.
- B. Introduce resource hierarchy to leverage access control policy inheritance.
- C. Create distinct groups for various teams, and specify groups in Cloud IAM policies.
- D. Only use service accounts when sharing data for Cloud Storage buckets and BigQuery datasets.
- E. For each Cloud Storage bucket or BigQuery dataset, decide which projects need access. Find all the active members who have access to these projects, and create a Cloud IAM policy to grant access to all these users.

Your United States-based company has created an application for assessing and responding to user actions. The primary table's data volume grows by 250,000 records per second. Many third parties use your application's APIs to build the functionality into their own frontend applications. Your application's APIs should comply with the following requirements:

- Single global endpoint
- → ANSI SQL support
- ⇔ Consistent access to the most up-to-date data What should you do?
- A. Implement BigQuery with no region selected for storage or processing.
- B. Implement Cloud Spanner with the leader in North America and read-only replicas in Asia and Europe.
- C. Implement Cloud SQL for PostgreSQL with the master in Norht America and read replicas in Asia and Europe.
- D. Implement Cloud Bigtable with the primary cluster in North America and secondary clusters in Asia and Europe.

A data scientist has created a BigQuery ML model and asks you to create an ML pipeline to serve predictions. You have a REST API application with the requirement to serve predictions for an individual user ID with latency under 100 milliseconds. You use **SELECT** following query to generate the predictions: **ML.PREDICT** (MODEL predicted label, user id FROM ""dataset.model', table user features). How should you create the ML pipeline?

- A. Add a WHERE clause to the query, and grant the BigQuery Data Viewer role to the application service account.
- B. Create an Authorized View with the provided query. Share the dataset that contains the view with the application service account.
- C. Create a Cloud Dataflow pipeline using BigQueryIO to read results from the query. Grant the Dataflow Worker role to the application service account.
- D. Create a Cloud Dataflow pipeline using BigQueryIO to read predictions for all users from the query. Write the results to Cloud Bigtable using BigtableIO. Grant the Bigtable Reader role to the application service account so that the application can read predictions for individual users from Cloud Bigtable.

You are building an application to share financial market data with consumers, who will receive data feeds. Data is collected from the markets in real time.

Consumers will receive the data in the following ways:

- ⇒ Real-time event stream
- ANSI SQL access to real-time stream and historical data
- ⇒ Batch historical exports

Which solution should you use?

- A. Cloud Dataflow, Cloud SQL, Cloud Spanner
- B. Cloud Pub/Sub, Cloud Storage, BigQuery
- C. Cloud Dataproc, Cloud Dataflow, BigQuery
- D. Cloud Pub/Sub, Cloud Dataproc, Cloud SQL

You are building a new application that you need to collect data from in a scalable way. Data arrives continuously from the application throughout the day, and you expect to generate approximately 150 GB of JSON data per day by the end of the year. Your requirements are:

- Decoupling producer from consumer
- ⇒ Space and cost-efficient storage of the raw ingested data, which is to be stored indefinitely
- ⇒ Near real-time SQL query
- ⇒ Maintain at least 2 years of historical data, which will be queried with SQL

Which pipeline should you use to meet these requirements?

- A. Create an application that provides an API. Write a tool to poll the API and write data to Cloud Storage as gzipped JSON files.
- B. Create an application that writes to a Cloud SQL database to store the data. Set up periodic exports of the database to write to Cloud Storage and load into BigQuery.
- C. Create an application that publishes events to Cloud Pub/Sub, and create Spark jobs on Cloud Dataproc to convert the JSON data to Avro format, stored on HDFS on Persistent Disk.
- D. Create an application that publishes events to Cloud Pub/Sub, and create a Cloud Dataflow pipeline that transforms the JSON event payloads to Avro, writing the data to Cloud Storage and BigQuery.

Correct Answer: A

Need to check

You are running a pipeline in Cloud Dataflow that receives messages from a Cloud Pub/Sub topic and writes the results to a BigQuery dataset in the EU. Currently, your pipeline is located in europe-west4 and has a maximum of 3 workers, instance type n1-standard-1. You notice that during peak periods, your pipeline is struggling to process records in a timely fashion, when all 3 workers are at maximum CPU utilization. Which two actions can you take to increase performance of your pipeline? (Choose two.)

- A. Increase the number of max workers
- B. Use a larger instance type for your Cloud Dataflow workers
- C. Change the zone of your Cloud Dataflow pipeline to run in us-central1
- D. Create a temporary table in Cloud Bigtable that will act as a buffer for new data. Create a new step in your pipeline to write to this table first, and then create a new pipeline to write from Cloud Bigtable to BigQuery
- E. Create a temporary table in Cloud Spanner that will act as a buffer for new data. Create a new step in your pipeline to write to this table first, and then create a new pipeline to write from Cloud Spanner to BigQuery

You have a data pipeline with a Cloud Dataflow job that aggregates and writes time series metrics to Cloud Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. Which two actions should you take? (Choose two.)

- A. Configure your Cloud Dataflow pipeline to use local execution
- B. Increase the maximum number of Cloud Dataflow workers by setting maxNumWorkers in PipelineOptions
- C. Increase the number of nodes in the Cloud Bigtable cluster
- D. Modify your Cloud Dataflow pipeline to use the Flatten transform before writing to Cloud Bigtable
- E. Modify your Cloud Dataflow pipeline to use the CoGroupByKey transform before writing to Cloud Bigtable

You have several Spark jobs that run on a Cloud Dataproc cluster on a schedule. Some of the jobs run in sequence, and some of the jobs run concurrently. You need to automate this process.

What should you do?

A. Create a Cloud Dataproc Workflow Template

B. Create an initialization action to execute the jobs

C. Create a Directed Acyclic Graph in Cloud Composer

D. Create a Bash script that uses the Cloud SDK to create a cluster, execute jobs, and then tear down the cluster

You are building a new data pipeline to share data between two

different types of applications: jobs generators and job runners.

Your solution must scale to accommodate increases in usage and

must accommodate the addition of new applications without

negatively affecting the performance of existing ones. What

should you do?

A. Create an API using App Engine to receive and send

messages to the applications

B. Use a Cloud Pub/Sub topic to publish jobs, and use

subscriptions to execute them

C. Create a table on Cloud SQL, and insert and delete rows with

the job information

D. Create a table on Cloud Spanner, and insert and delete rows

with the job information

You need to create a new transaction table in Cloud Spanner that

stores product sales data. You are deciding what to use as a

primary key. From a performance perspective, which strategy

should you choose?

A. The current epoch time

B. A concatenation of the product name and the current epoch

time

C. A random universally unique identifier number (version 4

UUID)

D. The original order identification number from the sales system,

which is a monotonically increasing integer

Data Analysts in your company have the Cloud IAM Owner role assigned to them in their projects to allow them to work with multiple GCP products in their projects. Your organization requires that all BigQuery data access logs be retained for 6 months. You need to ensure that only audit personnel in your company can access the data access logs for all projects. What should you do?

- A. Enable data access logs in each Data Analyst's project. Restrict access to Stackdriver Logging via Cloud IAM roles.
- B. Export the data access logs via a project-level export sink to a Cloud Storage bucket in the Data Analysts' projects. Restrict access to the Cloud Storage bucket.
- C. Export the data access logs via a project-level export sink to a Cloud Storage bucket in a newly created projects for audit logs. Restrict access to the project with the exported logs.
- D. Export the data access logs via an aggregated export sink to a Cloud Storage bucket in a newly created project for audit logs. Restrict access to the project that contains the exported logs.

Each analytics team in your organization is running BigQuery jobs in their own projects. You want to enable each team to monitor slot usage within their projects. What should you do?

- A. Create a Stackdriver Monitoring dashboard based on the BigQuery metric query/scanned_bytes
- B. Create a Stackdriver Monitoring dashboard based on the BigQuery metric slots/allocated_for_project
- C. Create a log export for each project, capture the BigQuery job execution logs, create a custom metric based on the totalSlotMs, and create a Stackdriver Monitoring dashboard based on the custom metric
- D. Create an aggregated log export at the organization level, capture the BigQuery job execution logs, create a custom metric based on the totalSlotMs, and create a Stackdriver Monitoring dashboard based on the custom metric

You are operating a streaming Cloud Dataflow pipeline. Your engineers have a new version of the pipeline with a different windowing algorithm and triggering strategy. You want to update the running pipeline with the new version. You want to ensure that no data is lost during the update. What should you do?

- A. Update the Cloud Dataflow pipeline inflight by passing the --update option with the --jobName set to the existing job name
- B. Update the Cloud Dataflow pipeline inflight by passing the --update option with the --jobName set to a new unique job name
- C. Stop the Cloud Dataflow pipeline with the Cancel option. Create a new Cloud Dataflow job with the updated code
- D. Stop the Cloud Dataflow pipeline with the Drain option. Create a new Cloud Dataflow job with the updated code

You need to move 2 PB of historical data from an on-premises storage appliance to Cloud Storage within six months, and your outbound network capacity is constrained to 20 Mb/sec. How should you migrate this data to Cloud Storage?

- A. Use Transfer Appliance to copy the data to Cloud Storage
- B. Use gsutil cp ""J to compress the content being uploaded to Cloud Storage
- C. Create a private URL for the historical data, and then use Storage Transfer Service to copy the data to Cloud Storage
- D. Use trickle or ionice along with gsutil cp to limit the amount of bandwidth gsutil utilizes to less than 20 Mb/sec so it does not interfere with the production traffic

You receive data files in CSV format monthly from a third party. You need to cleanse this data, but every third month the schema of the files changes. Your requirements for implementing these transformations include:

- ⇒ Executing the transformations on a schedule
- Enabling non-developer analysts to modify transformations
- ⇒ Providing a graphical tool for designing transformations What should you do?
- A. Use Cloud Dataprep to build and maintain the transformation recipes, and execute them on a scheduled basis
- B. Load each month's CSV data into BigQuery, and write a SQL query to transform the data to a standard schema. Merge the transformed tables together with a SQL query
- C. Help the analysts write a Cloud Dataflow pipeline in Python to perform the transformation. The Python code should be stored in a revision control system and modified as the incoming data's schema changes
- D. Use Apache Spark on Cloud Dataproc to infer the schema of the CSV file before creating a Dataframe. Then implement the transformations in Spark SQL before writing the data out to Cloud Storage and loading into BigQuery

You want to migrate an on-premises Hadoop system to Cloud Dataproc. Hive is the primary tool in use, and the data format is Optimized Row Columnar (ORC). All ORC files have been successfully copied to a Cloud Storage bucket. You need to replicate some data to the cluster's local Hadoop Distributed File System

(HDFS) to maximize performance. What are two ways to start using Hive in Cloud Dataproc? (Choose two.)

- A. Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to HDFS. Mount the Hive tables locally.
- B. Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to any node of the Dataproc cluster. Mount the Hive tables locally.
- C. Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to the master node of the Dataproc cluster. Then run the Hadoop utility to copy them do HDFS. Mount the Hive tables from HDFS.
- D. Leverage Cloud Storage connector for Hadoop to mount the ORC files as external Hive tables. Replicate external Hive tables to the native ones.
- E. Load the ORC files into BigQuery. Leverage BigQuery connector for Hadoop to mount the BigQuery tables as external Hive tables. Replicate external Hive tables to the native ones.

Correct Answer: BC

Need to check

You are implementing several batch jobs that must be executed on a schedule. These jobs have many interdependent steps that must be executed in a specific order. Portions of the jobs involve executing shell scripts, running Hadoop jobs, and running queries in BigQuery. The jobs are expected to run for many minutes up to several hours. If the steps fail, they must be retried a fixed number of times. Which service should you use to manage the execution of these jobs?

- A. Cloud Scheduler
- B. Cloud Dataflow
- C. Cloud Functions
- D. Cloud Composer

You work for a shipping company that has distribution centers where packages move on delivery lines to route them properly. The company wants to add cameras to the delivery lines to detect and track any visual damage to the packages in transit. You need to create a way to automate the detection of damaged packages and flag them for human review in real time while the packages are in transit. Which solution should you choose?

- A. Use BigQuery machine learning to be able to train the model at scale, so you can analyze the packages in batches.
- B. Train an AutoML model on your corpus of images, and build an API around that model to integrate with the package tracking applications.
- C. Use the Cloud Vision API to detect for damage, and raise an alert through Cloud Functions. Integrate the package tracking applications with this function.
- D. Use TensorFlow to create a model that is trained on your corpus of images. Create a Python notebook in Cloud Datalab that uses this model so you can analyze for damaged packages.

You are migrating your data warehouse to BigQuery. You have migrated all of your data into tables in a dataset. Multiple users from your organization will be using the data. They should only see certain tables based on their team membership. How should you set user permissions?

- A. Assign the users/groups data viewer access at the table level for each table
- B. Create SQL views for each team in the same dataset in which the data resides, and assign the users/groups data viewer access to the SQL views
- C. Create authorized views for each team in the same dataset in which the data resides, and assign the users/groups data viewer access to the authorized views
- D. Create authorized views for each team in datasets created for each team. Assign the authorized views data viewer access to the dataset in which the data resides. Assign the users/groups data viewer access to the datasets in which the authorized views reside

You want to build a managed Hadoop system as your data lake. The data transformation process is composed of a series of Hadoop jobs executed in sequence. To accomplish the design of separating storage from compute, you decided to use the Cloud Storage connector to store all input data, output data, and intermediary data. However, you noticed that one Hadoop job runs very slowly with Cloud Dataproc, when compared with the on-premises bare-metal Hadoop environment (8-core nodes with 100-GB RAM). Analysis shows that this particular Hadoop job is disk I/O intensive. You want to resolve the issue. What should you do?

- A. Allocate sufficient memory to the Hadoop cluster, so that the intermediary data of that particular Hadoop job can be held in memory
- B. Allocate sufficient persistent disk space to the Hadoop cluster, and store the intermediate data of that particular Hadoop job on native HDFS
- C. Allocate more CPU cores of the virtual machine instances of the Hadoop cluster so that the networking bandwidth for each instance can scale up
- D. Allocate additional network interface card (NIC), and configure link aggregation in the operating system to use the combined throughput when working with Cloud Storage

You work for an advertising company, and you've developed a Spark ML model to predict click-through rates at advertisement blocks. You've been developing everything at your on-premises data center, and now your company is migrating to Google Cloud. Your data center will be closing soon, so a rapid lift-and-shift migration is necessary. However, the data you've been using will be migrated to migrated to BigQuery. You periodically retrain your Spark ML models, so you need to migrate existing training pipelines to Google Cloud. What should you do?

- A. Use Cloud ML Engine for training existing Spark ML models
- B. Rewrite your models on TensorFlow, and start using Cloud ML Engine
- C. Use Cloud Dataproc for training existing Spark ML models, but start reading data directly from BigQuery
- D. Spin up a Spark cluster on Compute Engine, and train Spark ML models on the data exported from BigQuery

You work for a global shipping company. You want to train a model on 40 TB of data to predict which ships in each geographic region are likely to cause delivery delays on any given day. The model will be based on multiple attributes collected from multiple sources. Telemetry data, including location in GeoJSON format, will be pulled from each ship and loaded every hour. You want to have a dashboard that shows how many and which ships are likely to cause delays within a region. You want to use a storage solution that has native functionality for prediction and geospatial processing. Which storage solution should you use?

- A. BigQuery
- B. Cloud Bigtable
- C. Cloud Datastore
- D. Cloud SQL for PostgreSQL

You operate an IoT pipeline built around Apache Kafka that normally receives around 5000 messages per second. You want to use Google Cloud Platform to create an alert as soon as the moving average over 1 hour drops below 4000 messages per second. What should you do?

- A. Consume the stream of data in Cloud Dataflow using Kafka IO. Set a sliding time window of 1 hour every 5 minutes. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.
- B. Consume the stream of data in Cloud Dataflow using Kafka IO. Set a fixed time window of 1 hour. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.
- C. Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to Cloud Bigtable. Use Cloud Scheduler to run a script every hour that counts the number of rows created in Cloud Bigtable in the last hour. If that number falls below 4000, send an alert.
- D. Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to BigQuery. Use Cloud Scheduler to run a script every five minutes that counts the number of rows created in BigQuery in the last hour. If that number falls below 4000, send an alert.

You plan to deploy Cloud SQL using MySQL. You need to ensure high availability in the event of a zone failure. What should you

do?

A. Create a Cloud SQL instance in one zone, and create a

failover replica in another zone within the same region.

B. Create a Cloud SQL instance in one zone, and create a read

replica in another zone within the same region.

C. Create a Cloud SQL instance in one zone, and configure an

external read replica in a zone in a different region.

D. Create a Cloud SQL instance in a region, and configure

automatic backup to a Cloud Storage bucket in the same region.

Your company is selecting a system to centralize data ingestion and delivery. You are considering messaging and data integration systems to address the requirements. The key requirements are:

- ⇒ The ability to seek to a particular offset in a topic, possibly back to the start of all data ever captured
- ⇒ Support for publish/subscribe semantics on hundreds of topics
- Retain per-key ordering

Which system should you choose?

- A. Apache Kafka
- B. Cloud Storage
- C. Cloud Pub/Sub
- D. Firebase Cloud Messaging

You are planning to migrate your current on-premises Apache Hadoop deployment to the cloud. You need to ensure that the deployment is as fault-tolerant and cost-effective as possible for long-running batch jobs. You want to use a managed service.

What should you do?

A. Deploy a Cloud Dataproc cluster. Use a standard persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

B. Deploy a Cloud Dataproc cluster. Use an SSD persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

- C. Install Hadoop and Spark on a 10-node Compute Engine instance group with standard instances. Install the Cloud Storage connector, and store the data in Cloud Storage. Change references in scripts from hdfs:// to gs://
- D. Install Hadoop and Spark on a 10-node Compute Engine instance group with preemptible instances. Store data in HDFS. Change references in scripts from hdfs:// to gs://

Correct Answer: A

Need to check

Your team is working on a binary classification problem. You have

trained a support vector machine (SVM) classifier with default parameters, and received an area under the Curve (AUC) of 0.87

on the validation set. You want to increase the AUC of the model.

What should you do?

A. Perform hyperparameter tuning

B. Train a classifier with deep neural networks, because neural

networks would always beat SVMs

C. Deploy the model and measure the real-world AUC; it's always

higher because of generalization

D. Scale predictions you get out of the model (tune a scaling

factor as a hyperparameter) in order to get the highest AUC

Correct Answer: D

Need to check

You need to deploy additional dependencies to all of a Cloud Dataproc cluster at startup using an existing initialization action. Company security policies require that Cloud Dataproc nodes do not have access to the Internet so public initialization actions cannot fetch resources. What should you do?

A. Deploy the Cloud SQL Proxy on the Cloud Dataproc master

B. Use an SSH tunnel to give the Cloud Dataproc cluster access to the Internet

C. Copy all dependencies to a Cloud Storage bucket within your VPC security perimeter

D. Use Resource Manager to add the service account used by the Cloud Dataproc cluster to the Network User role

You need to choose a database for a new project that has the following requirements:

- ⇒ Fully managed
- ⇒ Able to automatically scale up
- ⇒ Transactionally consistent
- ⇒ Able to scale up to 6 TB
- Able to be queried using SQL

Which database do you choose?

- A. Cloud SQL
- B. Cloud Bigtable
- C. Cloud Spanner
- D. Cloud Datastore

You work for a mid-sized enterprise that needs to move its operational system transaction data from an on-premises database to GCP. The database is about 20 TB in size. Which database should you choose?

- A. Cloud SQL
- B. Cloud Bigtable
- C. Cloud Spanner
- D. Cloud Datastore

You need to choose a database to store time series CPU and memory usage for millions of computers. You need to store this data in one-second interval samples. Analysts will be performing real-time, ad hoc analytics against the database. You want to avoid being charged for every query executed and ensure that the schema design will allow for future growth of the dataset. Which database and data model should you choose?

- A. Create a table in BigQuery, and append the new samples for CPU and memory to the table
- B. Create a wide table in BigQuery, create a column for the sample value at each second, and update the row with the interval for each second
- C. Create a narrow table in Cloud Bigtable with a row key that combines the Computer Engine computer identifier with the sample time at each second
- D. Create a wide table in Cloud Bigtable with a row key that combines the computer identifier with the sample time at each minute, and combine the values for each second as column data.

You want to archive data in Cloud Storage. Because some data is very sensitive, you want to use the "Trust No One" (TNO)

approach to encrypt your data to prevent the cloud provider staff

from decrypting your data. What should you do?

A. Use gcloud kms keys create to create a symmetric key. Then

use gcloud kms encrypt to encrypt each archival file with the key and unique additional authenticated data (AAD). Use gsutil cp to

upload each encrypted file to the Cloud Storage bucket, and keep

the AAD outside of Google Cloud.

B. Use gcloud kms keys create to create a symmetric key. Then

use gcloud kms encrypt to encrypt each archival file with the key.

Use gsutil cp to upload each encrypted file to the Cloud Storage

bucket. Manually destroy the key previously used for encryption,

and rotate the key once.

C. Specify customer-supplied encryption key (CSEK) in the .boto

configuration file. Use gsutil cp to upload each archival file to the

Cloud Storage bucket. Save the CSEK in Cloud Memorystore as

permanent storage of the secret.

D. Specify customer-supplied encryption key (CSEK) in the .boto

configuration file. Use gsutil cp to upload each archival file to the

Cloud Storage bucket. Save the CSEK in a different project that

only the security team can access.

Correct Answer: B

Need to check

You have data pipelines running on BigQuery, Cloud Dataflow, and Cloud Dataproc. You need to perform health checks and monitor their behavior, and then notify the team managing the pipelines if they fail. You also need to be able to work across multiple projects. Your preference is to use managed products of features of the platform. What should you do?

- A. Export the information to Cloud Stackdriver, and set up an Alerting policy
- B. Run a Virtual Machine in Compute Engine with Airflow, and export the information to Stackdriver
- C. Export the logs to BigQuery, and set up App Engine to read that information and send emails if you find a failure in the logs
- D. Develop an App Engine application to consume logs using GCP API calls, and send emails if you find a failure in the logs

Suppose you have a table that includes a nested column called "city" inside a column called "person", but when you try to submit the following query in BigQuery, it gives you an error.

SELECT person FROM `project1.example.table1` WHERE city = "London"

How would you correct the error?

- A. Add ", UNNEST(person)" before the WHERE clause.
- B. Change "person" to "person.city".
- C. Change "person" to "city.person".
- D. Add ", UNNEST(city)" before the WHERE clause.

What are two of the benefits of using denormalized data

structures in BigQuery?

A. Reduces the amount of data processed, reduces the amount of

storage required

B. Increases query speed, makes queries simpler

C. Reduces the amount of storage required, increases query

speed

D. Reduces the amount of data processed, increases query

speed

Which of these statements about exporting data from BigQuery is false?

A. To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B. The only supported export destination is Google Cloud Storage.

- C. Data can only be exported in JSON or Avro format.
- D. The only compression option available is GZIP.

What are all of the BigQuery operations that Google charges for?

- A. Storage, queries, and streaming inserts
- B. Storage, queries, and loading data from a file
- C. Storage, queries, and exporting data
- D. Queries and streaming inserts

Correct Answer: A

Google charges for storage, queries, and streaming inserts. Loading data from a file and exporting data are free operations.

Reference: https://cloud.google.com/bigquery/pricing

Which of the following is not possible using primitive roles?

A. Give a user viewer access to BigQuery and owner access to Google Compute Engine instances.

- B. Give UserA owner access and UserB editor access for all datasets in a project.
- C. Give a user access to view all datasets in a project, but not run queries on them.
- D. Give GroupA owner access and GroupB editor access for all datasets in a project.

Which of these statements about BigQuery caching is true?

- A. By default, a query's results are not cached.
- B. BigQuery caches query results for 48 hours.
- C. Query results are cached even if you specify a destination table.
- D. There is no charge for a query that retrieves its results from cache.

Correct Answer: D

When query results are retrieved from a cached results table, you are not charged for the query.

BigQuery caches query results for 24 hours, not 48 hours.

Query results are not cached if you specify a destination table.

A query's results are always cached except under certain conditions, such as if you specify a destination table.

Reference:

https://cloud.google.com/bigquery/querying-data#query-caching

Which of these sources can you not load data into BigQuery from?

- A. File upload
- B. Google Drive
- C. Google Cloud Storage
- D. Google Cloud SQL