Assignment2 Solution

1、【参考答案】

- (1) 不含左递归; 不含公共左因子;
- (2) FIRST 集合和 FOLLOW 集合结果如下:

$$\begin{split} & FIRST(S) = \{(, a, b, \ \land)\} & FOLLOW(S) = \{\$,) \} \\ & FIRST(S') = \{+, \epsilon\} & FOLLOW(S') = \{\$,) \} \\ & FIRST(A) = \{(, a, b, \ \land)\} & FOLLOW(A) = \{+, \$,) \} \\ & FIRST(A') = \{\epsilon, (, a, b, \ \land)\} & FOLLOW(A') = \{+, \$,) \} \\ & FIRST(B) = \{(, a, b, \ \land)\} & FOLLOW(B) = \{(, a, b, \ \land, \ +, \$,) \} \\ & FIRST(B') = \{*, \epsilon\} & FOLLOW(B') = \{(, a, b, \ \land, \ +, \$,) \} \\ & FIRST(C) = \{(, a, b, \ \land)\} & FOLLOW(C) = \{*, (, a, b, \ \land, \ +, \$,) \} \end{split}$$

(3) 考虑如下四个产生式: $S' \to +S \mid \epsilon$; $A' \to A \mid \epsilon$; $B' \to *B' \mid \epsilon$; $C \to (S) \mid a \mid b \mid \land$ 做出如下判定:

$$FIRST(+S) \cap FIRST(\epsilon) = \{+\} \cap \{\epsilon\} = \emptyset$$

$$FIRST(A) \cap FIRST(\epsilon) = \{(, a, b, \land) \cap \{\epsilon\} = \emptyset$$

$$FIRST(*B') \cap FIRST(\epsilon) = \{*\} \cap \{\epsilon\} = \emptyset$$

$$FIRST((S)) \cap FIRST(a) \cap FIRST(b) \cap FIRST(\land) = \{(\} \cap \{a\} \cap \{b\} \cap \{\land\} = \emptyset$$

$$FOLLOW(A') \cap FIRST(A) = \{+, \$, \} \cap \{(, a, b, \land) = \emptyset$$

$$FOLLOW(B') \cap FIRST(*B') = \{(, a, b, \land, +, \$,) \} \cap \{*\} = \emptyset$$

通过检查 LL(1)文法的充分必要条件,可证明文法是 LL(1)的。

(4) 构建预测分析表如下所示:

1	+	*	()	a	ь	^	\$
S			$S \rightarrow AS'$		$S \rightarrow AS'$	$S \rightarrow AS'$	$S \rightarrow AS'$	
S'	S'→+S			$S' \to \epsilon$				$S' \to \epsilon$
A			$A \rightarrow BA'$		A → BA'	A → BA'	$A \rightarrow BA'$	
A'	$A' \rightarrow \epsilon$		A'→ A	$A' \to \epsilon$	A'→ A	A' → A	A' → A	$A' \to \epsilon$
В			$B \to CB$		$B \rightarrow CB'$	$B \rightarrow CB'$	$B \to CB$ '	
B'	$B' \to \epsilon$	B'→*B'	$B' \to \epsilon$	$B' \to \epsilon$	$\mathrm{B'} \to \epsilon$	$\mathrm{B'} \to \epsilon$	$B' \to \epsilon$	$B' \to \epsilon$
С			$C \rightarrow (S)$		$C \rightarrow a$	$C \rightarrow b$	$C \rightarrow \wedge$	

通过构建 LL(1)预测分析表发现每个入口都仅有一个产生式,证明了(3)中的结论。

(5) 句子 "a+b"的完整分析过程如下所示:

步骤	符号栈	输入串	动作(Derive/Match)	输出
0	S \$	a+b \$	Derive	$S \rightarrow AS'$
1	AS'\$	a+b \$	Derive	A → BA'

2	BA'S'\$	a+b \$	Derive	$B \rightarrow CB'$
3	CB'A'S'\$	a+b \$	Derive	$C \rightarrow a$
4	aB'A'S'\$	a+b\$	Match	
5	B'A'S'\$	+b \$	Derive	$B' \rightarrow \epsilon$
6	A'S'\$	+b \$	Derive	$A' \rightarrow \epsilon$
7	S'\$	+b \$	Derive	$S' \rightarrow +S$
8	+S \$	+b \$	Match	
9	S \$	b \$	Derive	$S \rightarrow AS'$
10	AS'\$	b \$	Derive	$A \rightarrow BA'$
11	BA'S'\$	b \$	Derive	$B \to CB'$
12	CB'A'S'\$	b \$	Derive	$C \rightarrow b$
13	bB'A'S'\$	b \$	Match	
14	B'A'S'\$	\$	Derive	$B' \rightarrow \epsilon$
15	A'S'\$	\$	Derive	$A' \rightarrow \epsilon$
16	S'\$	\$	Derive	$S' \rightarrow \epsilon$
17	\$	\$	Accept	

2、【参考解答】

- (1) 将文法 G(E)拓广为 G(E'):
 - $(0) E' \rightarrow E$
 - $(1) E \rightarrow aE$
 - $(2) E \rightarrow bE$
 - $(3) E \rightarrow a$

构造该文法的 LR(0)项目集规范族:

$$\begin{split} &I_0 = CLOSURE(\{E^\prime \rightarrow \bullet \ E\ \}) = \{\ E^\prime \rightarrow \bullet \ E, \ E \rightarrow \bullet \ aE, \ E \rightarrow \bullet \ bE, \ E \rightarrow \bullet \ a\ \} \\ &I_1 = GOTO(I_0, a) = CLOSURE(\{\ E \rightarrow a \bullet \ E, \ E \rightarrow a \bullet \ \}) = \{\ E \rightarrow a \bullet \ E, \ E \rightarrow a \bullet \ , E \rightarrow \bullet \ aE, \ E \rightarrow \bullet \ bE, \ E \rightarrow \bullet \ a\ \} \\ &\rightarrow \bullet \ a\ \} \end{split}$$

$$I_2 = GOTO(I_0,b) = CLOSURE(\{E \rightarrow b \cdot E\}) = \{E \rightarrow b \cdot E, E \rightarrow \bullet aE, E \rightarrow \bullet bE, E \rightarrow \bullet a\}$$

$$I_3 = GOTO(I_0,E) = CLOSURE(\{E' \rightarrow E \bullet \}) = \{E' \rightarrow E \bullet \}$$

$$GOTO(I_1,a) = CLOSURE(\{E \rightarrow a \cdot E, E \rightarrow a \cdot \}) = I_1$$

$$GOTO(I_1,b) = CLOSURE(\{E \rightarrow b \cdot E\}) = I_2$$

$$I_4 = GOTO(I_1,E) = CLOSURE(\{E \rightarrow aE \bullet \}) = \{E \rightarrow aE \bullet \}$$

$$GOTO(I_2,a) = CLOSURE(\{E \rightarrow a \cdot E, E \rightarrow a \cdot \}) = I_1$$

$$GOTO(I_2,b) = CLOSURE(\{E \rightarrow b \cdot E\}) = I_2$$

$$I_5 = GOTO(I_2,E) = CLOSURE(\{E \rightarrow aE \bullet \}) = \{E \rightarrow bE \bullet \}$$

所以,项目集 $I_0 \sim I_5$ 构成了该文法的 LR(0)项目集规范族。

(2) 根据(1),识别文法 G(E)所产生的活前缀的 DFA 如下(其中 I_0 为初始状态,所有状态均为终止状态):

(3) 从上述 DFA 中可以注意到状态 II 存在"移进-归约"冲突,计算 FOLLOW(E)={\$} \cap {a,b}= \emptyset ,所以文法 G(E)是 SLR 文法。构建 SLR 分析表如下:

	ACTION			GOTO
状态	a	ь	\$	E
0	s1	s2		3
1	s1	s2	r3	4
2	s1	s2		5
3			acc	
4			r1	
5			r2	

(4) 分析过程如下:

步骤	栈		输入串	ACTION	GOTO
少孫	状态	符号	刊八中	ACTION	0010
0	0	\$	ababa \$	s1	
1	01	\$a	baba\$	s2	
2	012	\$ab	aba\$	s1	
3	0121	\$aba	ba\$	s2	
4	01212	\$abab	a\$	s1	
5	012121	\$ababa	\$	r3	5
6	012125	\$ababE	\$	r2	4

7	01214	\$abaE	\$ r1	5
8	0125	\$abE	\$ r2	4
9	014	\$aE	\$ r1	3
10	03	\$E	\$ acc	

3、【参考解答】

(1~2) 完整的 DFA 如下:

(3) 存在以下冲突:

状态	输入符号	冲突类型
2	+	"移进一归约"冲突
6	+	"移进一归约"冲突

- (4) 为保证性质 P,我们需要规定算符"—"的优先级要高于算符"+",并且算符"+"是右结合的。
- (5) 为保证性质 P, 按以下方式解析冲突:

状态	输入符号	冲突类型	为解析冲突选择
2	+	"移进一归约"冲突	归约
6	+	"移进一归约"冲突	移进

(6) 与原文法等价且能够保证性质 P 的无二义文法如下:

$$S \rightarrow E$$

$$E \rightarrow T+E \mid T$$

$$T \rightarrow -T \mid id$$