PRUEBA DE ACCESO (EBAU)

UNIVERSIDAD DE CASTILLA Y LEÓN

<u>JULIO - 2020</u>

(RESUELTOS por Antonio Menguiano)

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

El alumno deberá escoger libremente CINCO problemas completos de los DIEZ propuestos. Se expresará claramente los elegidos. Si se resolvieran más, solo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados. Se permite el uso de calculadoras no programables. Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las propuestas. Claridad y coherencia en la exposición. Precisión de los cálculos y en las anotaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

- 1°) Se considera el sistema de ecuaciones lineales: $\begin{cases} x y + az = 0 \\ x z = 0 \\ 2x + ay 2z = 0 \end{cases}$.
- a) Estudie la existencia y número de soluciones según los valores del parámetro a.
- b) Resuélvalo, si es posible, para el valor del parámetro a = -1.

La matriz de coeficientes es $M = \begin{pmatrix} 1 & -1 & a \\ 1 & 0 & -1 \\ 2 & 3 & 2 \end{pmatrix}$.

Por tratarse de un sistema lineal homogéneo, a efectos de rango, las matrices de coeficientes y ampliada son equivalentes.

El rango de la matriz de coeficientes en función de a es el siguiente:

$$|M| = \begin{vmatrix} 1 & -1 & a \\ 1 & 0 & -1 \\ 2 & a & -2 \end{vmatrix} = a^2 + 2 + a - 2 = a^2 + a = a(a+1) = 0 \Rightarrow$$

$$\Rightarrow a_1 = 0; \ a_2 = -1.$$

Según el teorema de Rouché-Fröbenius, un sistema es compatible determinado cuando los rangos de las matrices de coeficientes y ampliada son iguales e iguales al número de incógnitas; en el caso que nos ocupa el número de incógnitas es tres, por lo cual:

$$Para \left\{ \begin{matrix} a \neq 0 \\ a \neq -1 \end{matrix} \right\} \Rightarrow Rang \ M = 3 = n^{\underline{o}} \ incóg. \Rightarrow S. \ C. \ D.$$

Para $\begin{cases} a \neq 0 \\ a \neq -1 \end{cases}$ el sistema tiene únicamente la solución trivial x = y = z = 0.

$$Para\ a=0\Rightarrow M=\begin{pmatrix}1&-1&0\\1&0&-1\\2&0&-2\end{pmatrix}\Rightarrow \begin{vmatrix}1&-1\\1&0\end{vmatrix}\neq 0\Rightarrow Rang\ M=2.$$

$$Para\ a = -1 \Rightarrow M = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & -1 \\ 2 & -1 & -2 \end{pmatrix} \Rightarrow \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} \neq 0 \Rightarrow Rang\ M = 2.$$

$$Para \left\{ \begin{matrix} a = 0 \\ a = -1 \end{matrix} \right\} \Rightarrow Rang M = 2 < n^{\underline{o}} incóg. \Rightarrow S. C. I.$$

b)

Para a=-1 el sistema resulta $\begin{cases} x-y-z=0\\ x-z=0\\ 2x-y-2z=0 \end{cases}$, que es compatible indeterminado. Para su resolución se elimina una ecuación (tercera).

Haciendo $x = z = \lambda$: y = 0.

Solución:
$$x = \lambda$$
, $y = 0$, $z = \lambda$, $\forall \lambda \in R$.

2°) Sea la matriz
$$A = \begin{pmatrix} a+1 & 1 \\ a-3 & a-3 \end{pmatrix}$$
:

- a) Indique para qué valores de α existe la matriz inversa A^{-1} .
- b) Si a = 4, $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, encuentre la matriz X que verifica la siguiente ecuación: $B + X \cdot A = C$.
- a)
 Una matriz tiene inversa cuando su determinante es distinto de cero.

$$|A| = \begin{vmatrix} a+1 & 1 \\ a-3 & a-3 \end{vmatrix} = (a-3) \cdot \begin{vmatrix} a+1 & 1 \\ 1 & 1 \end{vmatrix} = (a-3) \cdot (a+1-1) =$$
$$= a \cdot (a-3) = 0 \Rightarrow a_1 = 0, a_2 = 3.$$

La matriz A es invertible $\forall a \in R - \{0, 3\}$.

b)
$$Si \ a = 4 \Rightarrow A = \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}.$$

$$B + X \cdot A = C; \ X \cdot A = C - B; \ X \cdot A \cdot A^{-1} = (C - B) \cdot A^{-1};$$

$$X \cdot I = (C - B) \cdot A^{-1} \Rightarrow X = (C - B) \cdot A^{-1}. \quad (*)$$

$$C - B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$|A| = \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix} = 5 - 1 = 4. \quad A^{t} = \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}. \quad Adj. \ de \ A^{t} = \begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix}.$$

$$A^{-1} = \frac{Adj. de \ B^{t}}{|A|} = \frac{\begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix}}{4} = \frac{1}{4} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix}.$$

Sustituyendo los valores obtenidos en la expresión (*):

$$X = (C - B) \cdot A^{-1} = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \frac{1}{4} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix} = \frac{1}{4} \cdot \begin{pmatrix} -2 & 6 \\ -2 & 6 \end{pmatrix} = \frac{1}{2} \cdot \begin{pmatrix} -1 & 3 \\ -1 & 3 \end{pmatrix}.$$
$$X = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}.$$

3°) Sean el plano $\pi \equiv x - 2y + 2z + 1 = 0$, la recta $r \equiv \begin{cases} x - y = 0 \\ z + 1 = 0 \end{cases}$ y A(1, 3, -1). Halla la ecuación del plano β que pasa por A, es paralelo a r y perpendicular a π .

La expresión de r por unas ecuaciones paramétricas es $r \equiv \begin{cases} x = \lambda \\ y = \lambda \end{cases}$. Un vector director de r es $\overrightarrow{v_r} = (1, 1, 0)$.

Un vector normal de π es $\vec{n} = (1, -2, 2)$.

La expresión general del plano β pedido es la siguiente:

$$\beta(A; \overrightarrow{v_r}, \overrightarrow{n}) \equiv \begin{vmatrix} x - 1 & y - 3 & z + 1 \\ 1 & 1 & 0 \\ 1 & -2 & 2 \end{vmatrix} = 0;$$

$$2(x - 1) - 2(z + 1) - (z - 1) - 2(y - 3) = 0;$$

$$2(x - 1) - 3(z + 1) - 2(y - 3) = 0; \quad 2x - 2 - 3z - 3 - 2y + 6 = 0.$$

$$\underline{\beta} \equiv 2x - 2y - 3z + 1 = 0.$$

- 4°) Dados el punto A(1, 2, 4) y la recta $r \equiv \frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{2}$:
- a) Halla un punto B de la recta r de forma que el vector \overrightarrow{AB} sea paralelo al plano de ecuación $\pi \equiv x + 2z = 0$
- b) Halla un vector $\vec{w} = (a, b, c)$ perpendicular a $\vec{u} = (1, 0, -1)$ $y \vec{v} = (2, 1, 0)$.

a)

La expresión de r dada por unas ecuaciones paramétricas es $r \equiv \begin{cases} x = 1 + 2\lambda \\ y = 1 + \lambda \end{cases}$. Un punto genérico de r es $B(1 + 2\lambda, 1 + \lambda, 1 + 2\lambda)$.

Un vector normal de π es $\vec{n} = (1, 0, 2)$.

$$\overrightarrow{AB} = [B - A] = [(1 + 2\lambda, 1 + \lambda, 1 + 2\lambda) - (1, 2, 4)] = (2\lambda, \lambda - 1, 2\lambda - 3).$$

Los vectores \overrightarrow{AB} y \overrightarrow{n} son perpendiculares, por lo cual, su producto escalar es 0:

$$\overrightarrow{AB} \cdot \overrightarrow{n} = 0 \Rightarrow (2\lambda, \lambda - 1, 2\lambda - 3) \cdot (1, 0, 2) = 0; \ 2\lambda + 4\lambda - 6 = 0 \Rightarrow \lambda = 1.$$

El punto de r pedido es B(3,2,3).

b)

El vector $\vec{w} = (a, b, c)$ es linealmente dependiente (paralelo) al producto vectorial de los vectores $\vec{u} = (1, 0, -1)$ y $\vec{v} = (2, 1, 0)$:

$$\vec{w} = (a, b, c) = \vec{u} \wedge \vec{v} = \begin{vmatrix} i & j & k \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{vmatrix} = -2j + k + i = (1, -2, 1).$$

$$\vec{w} = (1, -2, 1).$$

5°) Representar gráficamente la función $f(x) = x \cdot e^x$, calculando previamente sus extremos relativos, intervalos de crecimiento y decrecimiento, concavidad y convexidad y sus asíntotas.

La función $f(x) = x \cdot e^x$ es continua en su dominio (que es R) por ser producto de dos funciones continuas.

Una función es creciente o decreciente cuando su primera derivada es positiva o negativa, respectivamente.

$$f'(x) = 1 \cdot e^x + x \cdot e^x = e^x(1+x).$$

$$f'(x) = 0 \Rightarrow e^{x}(1+x) = 0 \Rightarrow x = -1.$$

Teniendo en cuenta la continuidad de la función, su dominio, y que, por ejemplo, $f'(0) = e^0(1+0) = 1 > 0$, los periodos de crecimiento y decrecimiento son los siguientes:

Crecimiento:
$$f'(x) > 0 \Rightarrow x \in (-1, +\infty)$$
.

Decrecimiento:
$$f'(x) < 0 \Rightarrow x \in (-\infty, -1)$$
.

Para que una función tenga un extremo relativo es condición necesaria que se anule su primera derivada.

$$f''(x) = e^{x} \cdot 1 + e^{x} \cdot (1+x) = e^{x}(2+x).$$

$$f''(-1) = e^{-1} \cdot (2-1) = \frac{1}{e} > 0 \Rightarrow \text{Minimo para } x = -1.$$

$$f(-1) = -1 \cdot e^{-1} = -\frac{1}{e} \Rightarrow \text{Minimo relativo: } P\left(-1, -\frac{1}{e}\right).$$

Una función es cóncava (\(\O\)) o convexa (\(\U\)) cuando su segunda derivada es negativa o positiva, respectivamente.

$$f''(x) = 0 \Rightarrow e^{x}(2+x) = 0; \ e^{x} \neq \forall x \in R \Rightarrow 2+x = 0 \Rightarrow x = -2.$$

$$\underline{Concavidad} \ (\cap): f''(x) < 0 \Rightarrow x \in (-\infty, -2).$$

Convexidad (
$$\cup$$
): $f'(x) > 0 \Rightarrow x \in (-2, +\infty)$.

$$f(-2) = -2 \cdot e^{-2} = -\frac{2}{e^2} \Rightarrow Punto \ de \ inflexión: Q\left(-2, -\frac{2}{e^2}\right).$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x \cdot e^x) = \infty \cdot \infty = \infty.$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x \cdot e^x) = -\infty \cdot e^{-\infty} = -\frac{\infty}{e^{\infty}} = -\frac{\infty}{\infty} \Rightarrow Ind. \Rightarrow \{L'Hopital\} \Rightarrow$$

$$\Rightarrow \lim_{x \to -\infty} \frac{x}{\frac{1}{e^x}} = \lim_{x \to -\infty} \frac{1}{\frac{-e^x}{e^{2x}}} = -\lim_{x \to -\infty} \frac{1}{\frac{1}{e^x}} = -e^{-\infty} = -\frac{1}{e^{\infty}} = -\frac{1}{\infty} = 0.$$

El eje de abscisas es asíntota horizontal en su parte negativa.

Con los datos anteriores y teniendo en cuenta que la función contiene al origen, la representación gráfica, aproximada, de la función es la que indica la figura siguiente.

6°) Demuestre que la ecuación $x^3 - 12x = -2$ tiene una solución en el intervalo [-2, 2] y pruebe además que esa solución es única.

Considerando la función $f(x) = x^3 - 12x + 2$ que, por ser polinómica, es continua y derivable en R, por lo cual le son aplicables los teoremas de Rolle y de Bolzano en cualquier intervalo finito que se considere.

El teorema de Rolle dice que "si una función f(x) en continua en [a, b] y derivable en (a, b), con $a, b \in R$ y a < b, y se cumple que f(a) = f(b), existe al menos un valor c, a < c < b tal que f'(c) = 0".

Demostrar que la ecuación $x^3 - 12x = -2$ tiene una solución en el intervalo [-2, 2] es equivalente a demostrar que la función $f(x) = x^3 - 12x + 2$ tiene una solución en el intervalo [-2, 2].

El teorema de Bolzano dice que: "si f(x) es una función continua en [a,b] y toma valores de distinto signo en los extremos del intervalo, entonces $\exists c \in (a,b)$ tal que f(c) = 0".

$$f(-2) = (-2)^3 - 12 \cdot (-2) + 2 = -8 + 24 + 2 = 18 > 0.$$

$$f(2) = 2^3 - 12 \cdot 2 + 2 = 8 - 24 + 2 = -14 < 0.$$

Queda probado que la función $f(x) = x^3 - 12x + 2$ tiene al menos una raíz real en [-2, 2].

Si la función f(x) tuviera otra raíz $x = \alpha$ en el intervalo [-2, 2], cumpliéndose que $f(\alpha) = 0$, se podría aplicar el teorema de Rolle a la función f(x) en el intervalo [-2, 2]:

 $f'(x) = 3x^2 - 12 \Rightarrow f'(c) = 3c^2 - 12 = 0$; $c^2 = 4 \Rightarrow c_1 = -2, c_2 = 2$ y estas raíces no pertenecen al intervalo considerado: $c_1 = -2, c_2 = 2 \notin [-2, 2]$.

Queda demostrado que $x^3 - 12x = -2$ tiene una solución única en [-2, 2].

7°) a) Calcular:
$$\lim_{x\to 0} \frac{e^x - \cos x - x}{e^x + \sin x - 1}$$

7°) a) Calcular:
$$\lim_{x\to 0} \frac{e^x - \cos x - x}{e^x + \sin x - 1}$$
. b) Calcular: $I = \int_0^{\frac{\pi}{2}} (\sin x + \cos x) \cdot dx$.

a)
$$\lim_{x \to 0} \frac{e^{x} - \cos x - x}{e^{x} + \sin x - 1} = \frac{e^{0} - \cos 0 - 0}{e^{0} + \sin 0 - 1} = \frac{1 - 1 - 0}{1 + 0 - 1} = \frac{0}{0} \Rightarrow Indet. \Rightarrow \{L'Hopital\} \Rightarrow$$

$$\Rightarrow \lim_{x \to 0} \frac{e^x + sen \, x - 1}{e^x + cos \, x} = \frac{e^0 + sen \, 0 - 1}{e^0 + cos \, 0} = \frac{1 + 0 - 1}{1 + 1} = \frac{0}{2} = 0.$$

$$\lim_{x\to 0}\frac{e^x-\cos x-x}{e^x+\sin x-1}=0.$$

b)
$$I = \int_0^{\frac{\pi}{2}} (\sin x + \cos x) \cdot dx = [-\cos x + \sin x]_0^{\frac{\pi}{2}} =$$

$$= \left[-\cos \frac{\pi}{2} + \sin \frac{\pi}{2} \right] - \left[-\cos 0 + \sin 0 \right] = -0 + 1 + 1 - 0 = 2.$$

$$I = \int_0^{\frac{\pi}{2}} (\operatorname{sen} x + \cos x) \cdot dx = 2$$

- 8°) a) Calcule los puntos de corte de las gráficas $f(x) = \frac{2}{x} y g(x) = 3 x$.
- b) Sabiendo que en el intervalo [1, 2] se verifica que $g(x) \ge f(x)$ calcular el área del recinto limitado por las gráficas de ambas funciones en dicho intervalo.

a)

Las abscisas de los puntos de corte de las gráficas de dos funciones son las raíces de la ecuación que resulta de la igualación de sus expresiones:

$$f(x) = g(x) \Rightarrow \frac{2}{x} = 3 - x; \quad 2 = 3x - x^2; \quad x^2 - 3x + 2 = 0; \quad x = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm \sqrt{1}}{2} = \frac{3 \pm 1}{2} \Rightarrow x_1 = 1, x_2 = 2.$$

Los puntos de corte son $\underline{A(1,2) \ y \ B(2,1)}$.

b)
$$S = \int_{1}^{2} [g(x) - f(x)] \cdot dx = \int_{1}^{2} \left[(3 - x) - \frac{2}{x} \right] \cdot dx = \int_{1}^{2} \left(3 - x - \frac{2}{x} \right) \cdot dx =$$

$$= \left[3x - \frac{x^{2}}{2} - 2Lx \right]_{1}^{2} = \left(3 \cdot 2 - \frac{2^{2}}{2} - 2L2 \right) - \left(3 \cdot 1 - \frac{1^{2}}{2} - 2L1 \right) =$$

$$= 6 - 2 - 2L2 - 3 + \frac{1}{2} + 0 = \frac{3}{2} - 2L2.$$

$$\underline{S} = \frac{3 - 4L2}{2} u^{2}.$$

- 9°) El peso de los alumnos de 2° de bachillerato de un instituto de León, sigue una distribución normal, de media 75 kg y desviación típica 5. Si se elige al azar un alumno, calcular la probabilidad de que:
- a) Tenga un peso entre 70 y 80 kg. b) Tenga un peso superior a 85 kg.

a) Datos:
$$\mu = 75$$
; $\sigma = 5$.
 $X \to N(\mu; \sigma) = N(75; 5)$. Tipificando la variable: $Z = \frac{X - 75}{5}$.
 $P = P(70 \le X \le 80) = P\left(\frac{70 - 75}{5} \le Z \le \frac{80 - 75}{5}\right) = P(-1 \le Z \le 1) =$
 $= P(Z < 1) - [1 - P(Z < 1)] = 2 \cdot P(Z < 1) - 1 = 2 \cdot 0,8413 - 1 =$
 $= 1,6826 - 1 = 0,6826$.

b)
$$P(X > 85) = P\left(Z > \frac{85 - 75}{5}\right) = P\left(Z > \frac{10}{5}\right) = P(Z > 2) = 1 - P(Z < 2) = 1 - 0.9772 = 0.0228.$$

- 10°) La probabilidad de que a un puerto llegue un barco de tonelaje bajo, medio o alto es 0,6, 0,3 y 0,1, respectivamente. La probabilidad de que necesite mantenimiento en el puerto es de 0,25 para los barcos de bajo tonelaje, 0,4 para los de tonelaje medio y 0,6 para los de tonelaje alto.
- a) Si llega un barco a puerto, calcule la probabilidad de que necesite mantenimiento.
- b) Si un barco ha necesitado mantenimiento, calcule la probabilidad de que sea de tonelaje medio.

$$P = P(M) = P(Ba \cap M) + P(Me \cap M) + P(Al \cap M) =$$

$$= P(Ba) \cdot P(M/Ba) + P(Ba) \cdot P(M/Ba) + P(Al) \cdot P(M/Al) =$$

$$= 0.6 \cdot 0.25 + 0.3 \cdot 0.40 + 0.1 \cdot 0.60 = 0.150 + 0.120 + 0.060 = 0.330.$$

b)
$$P = P(Me/M) = \frac{P(Me \cap M)}{P(M)} = \frac{P(Me) \cdot P(M/Me)}{P(M)} = \frac{0.3 \cdot 0.40}{0.33} = \frac{0.120}{0.33} = \frac{0.3636}{0.33}.$$