Decoder

Truth table မှာပြထားတဲ့အတိုင်း decode လုပ်မှာဖြစ်ပါတယ်။ ena, enable input တစ်ဖြစ် မှ decode လုပ်မှာဖြစ်ပြီးတော့ 0 ဆိုရင် output က 8bit စလုံး 0 တွေဘဲထွက်မှာဖြစ်ပါတယ်။ n input က 000 ဖြစ်ပြီး ena 1 ဖြစ်ရင် d[0] မှာ 1 ဖြစ်မှာပါ။ DE-10 Lite နဲ့လက်တွေ့စမ်းထားတဲ့ ပုံလေးတွေကို ကြည့်ရင်နားလည်သွားမှာပါ။

Input			Output								
ena	n[2]	n[1]	n[0]	d[7]	d[6]	d[5]	d[4]	d[3]	d[2]	d[1]	d[0]
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0
0	X	X	X	0	0	0	0	0	0	0	0

module decoder3e(n, ena, d);

input [2:0] n;

input ena;

output [7:0] d;

reg[7:0] d;

always @ (ena or n) begin

d=8'b0;

d[n]=ena;

end

endmodule

Verilog Code ကိုဆက်ပြီးတော့ရှင်းပြပါမယ်။

Code ရဲ့ ပထမစာကြောင်းမှာ module decoder3e (n,ena,d); ဆိုပြီးတော့ enable input နဲ့အတူ 3-8 decoder တစ်ခုတည်ဆောက်ထားပါတယ်။ input [2:0] n; မှာ input ပင်လာမယ့် n ကို [2:0] နဲ့ 3 bits ဖြစ်တယ်ဆိုပြီးတော့ ကြေညာထားပါတယ်။ [2:0] ဆိုတာ 0 ကနေ 2 အထိဆို 3 bit ရှိပါတယ်။ input ena; မှာ enable input ကို ena အဖြစ် input variable ကြေညာထားတာဖြစ်ပါတယ်။ output [7:0] d; မှာ output တွေအဖြစ်ထုတ်မယ့် d ကို 2^3 =8 bits ဖြစ်တယ်လို့ပြောထားတာဖြစ်ပါတယ်။ [7:0] က 0 ကနေ 7 အထိ စုစုပေါင်း 8 bit ရှိတယ်လို့ပြောတာဖြစ်ပါတယ်။ reg [7:0] d; က ထွက်လာမယ့် output တန်ဖိုးတွေကိုသိမ်းဆည်းမယ့် register အဖြစ် d ကိုသတ်မှတ်လိုက်တာဖြစ်ပါတယ်။ reg ဆိုတာ register ရဲ့ keyword ဖြစ်ပါတယ်။ always block ထဲမှာ d ရဲ့ bit ၈ ခုစလုံးကို default တန်ဖိုး 0 သတ်မှတ်လိုက် ပါတယ်။ ena input က 1 ဖြစ်တာနဲ့ d ရဲ့ nth bit နေရာမှာ 1 ကိုထည့်လိုက်ပါတယ်။

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location
out d[7]	Output	PIN_D14	7	B7_N0	PIN_D14
out d[6]	Output	PIN_E14	7	B7_N0	PIN_E14
out d[5]	Output	PIN_C13	7	B7_N0	PIN_C13
out d[4]	Output	PIN_D13	7	B7_N0	PIN_D13
^{out} d[3]	Output	PIN_B10	7	B7_N0	PIN_B10
^{out} d[2]	Output	PIN_A10	7	B7_N0	PIN_A10
^{cut} d[1]	Output	PIN_A9	7	B7_N0	PIN_A9
^{out} d[0]	Output	PIN_A8	7	B7_N0	PIN_A8
in_ ena	Input	PIN_C10	7	B7_N0	PIN_C10
in_ n[2]	Input	PIN_C12	7	B7_N0	PIN_C12
in n[1]	Input	PIN_D12	7	B7_N0	PIN_D12
in_ n[0]	Input	PIN_C11	7	B7_N0	PIN_C11

Pin Planner နဲ့ pin assignment သတ်မှတ်ပြီးရင် compilation ပြန်လုပ်ပါ။ ပြီးတာနဲ့ board ထဲကို ထည့်လိုက်ရင် ရပါပြီ။