18

1

2

WHAT IS CLAIMED IS:

1	1. A method for connecting component-side pad electrodes and
2	substrate-side pad electrodes when a surface-mount component is mounted onto
3	the substrate, wherein the component-side pad electrodes are formed on the
4	surface of the component opposed to a substrate, solder bumps are formed on the
5	component-side pad electrodes, and substrate-side pad electrodes are formed on
6	the surface of the substrate, the method comprising:
7	arranging the substrate-side pad electrodes inside a component-
8	corresponding region which corresponds to the plan view of the surface-mount
9	component;
10	setting the length of each of the substrate-side pad electrodes in the
11	direction substantially perpendicular to the outer edge of the component-
12	corresponding region larger than the length of the corresponding component-side
13	pad electrode in the direction substantially perpendicular to the outer edge of the
14	surface-mount component;
15	placing the surface-mount component on the substrate so that each of the
16	solder bumps are opposed to a predetermined substrate-side pad electrode; and
17	melting the solder bumps by heating to connect each of the component-

2. A method for connecting pad electrodes in accordance with claim 1, wherein the width of each of said component-side pad electrodes and the width of the solder bump on each of said component-side pad electrodes are larger than the width of each of said substrate-side pad electrodes.

side pad electrodes to one of the substrate-side pad electrodes through the solder.

- 3. A method for inspecting the connection state of pad electrodes comprising the steps of:
- connecting the pad electrodes by a connection method in accordance with claim 1;

11

5	detecting the shapes of the solder after each of said solder bumps has
6	been melted and flowed on one of said substrate-side pad electrodes by a
7	nondestructive inspection; and
8	making a pass/fail discrimination of the connection state between each of
9	the component-side pad electrodes and one of the substrate-side pad electrodes.
1	4. A method for inspecting the connection state of pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 2;
5	detecting the shapes of the solder after each of said solder bumps has
6	been melted and flowed on one of said substrate-side pad electrodes by a
7	nondestructive inspection; and
8	making a pass/fail discrimination of the connection state between each of
9	the component-side pad electrodes and one of the substrate-side pad electrodes.
1	5. A method for inspecting the connection state of the pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 1;
5	obtaining an X-ray transmission image by radiating X rays from the back
6	surface side of said substrate; and
7	detecting the shape of solder after each of said solder bumps has been
8	melted and flowed on one of said substrate-side pad electrodes, from the obtained
9	X-ray transmission image; and
10	making a pass/fail discrimination of the connection state between each of

the component-side pad electrodes and one of the substrate-side pad electrodes.

I	6. A method for inspecting the connection state of the pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 2;
5	obtaining an X-ray transmission image by radiating X rays from the back
6	surface side of said substrate; and
7	detecting the shape of solder after each of said solder bumps has been
8	melted and flowed on one of said substrate-side pad electrodes, from the obtained
9	X-ray transmission image; and
10	making a pass/fail discrimination of the connection state between each of
11	the component-side pad electrodes and one of the substrate-side pad electrodes.
	(
1	7. A connection structure comprising:
2	a substrate having a surface and substrate-side pad electrodes formed on
3	the substrate surface;
4	a surface mount component having a surface and component side and

a surface-mount component having a surface and component-side pad electrodes formed on the surface, the surface being opposed to the substrate with each component-side pad electrode opposed to one of the substrate-side pad

7 electrodes;

8

9

10

11

12

13

14

wherein the substrate-side pad electrodes are arranged inside a component-corresponding region, the length of each of the substrate-side pad electrodes being larger than that of the corresponding component-side pad electrode, and wherein each of the component-side pad electrodes is connected to the corresponding substrate-side pad electrode by a solder which has flowed between the component-side pad electrodes and the substrate-side pad electrodes by melting of a solder bump.

- 1 8. A connection structure between the pad electrodes in accordance
- 2 with claim 7, wherein the width of each of said component-side pad electrodes is
- 3 set to be larger than the width of each of said substrate-side pad electrodes.