Université Lille 1 - Sciences et Technologies Master Mathématiques Recherche, Semestre 3 (2014-15) Homologue et Topologie Problèmes, Feuille 4

§1. Homologie des sphères et des bouquets

1. Problème : Exercices élémentaires sur le degré

Le degré d'une application continue $f: S^n \to S^n$ est le nombre $\deg(f) \in \mathbb{Z}$ tel que l'on a la relation $f_*(c) = \deg(f) \cdot c$ au niveau du module d'homologie $H_n(S^n, \mathbb{Z})$, pour toute classe $c \in H_n(S^n, \mathbb{Z})$.

On utilise $S^n = \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} | x_0^2 + x_1^2 + \dots + x_n^2 = 1\}$ comme modèle de la sphère. **1.1)** Prouver que l'application $\sigma : (x_0, x_1, \dots, x_n) \mapsto (-x_0, x_1, \dots, x_n)$ est de degré deg $\sigma = -1$, soit en revenant au calcul de $H_*(S^n)$ par la suite exacte de Mayer-Vietoris (et en utilisant la fonctorialité de la suite exacte), soit en utilisant une description de la classe fondamentale de S^n . **1.2)** Prouver que l'application d'antipodie $-id : v \mapsto -v$ est de degré deg $(-id) = (-1)^{n+1}$.

1.3) Prouver que l'application $\rho_m: S^n \to S^n, m \in \mathbb{Z}$, telle que $\rho_m(r\cos(\theta), r\sin(\theta), x_2 \dots, x_n) = (r\cos(m\theta), r\sin(m\theta), x_2 \dots, x_n)$, où on note $r = \sqrt{1 - (x_2^2 + \dots + x_n^2)}$, est de degré deg $\rho_m = m$. (Pour m = -1, on retrouve le résultat de la question 1.) *Indication*: On utilisera la suite exacte de Mayer-Vietoris et un argument de récurrence pour se ramener au cas n = 1.

2. Problème : Homologie de bouquets

Le bouquet de deux espaces X et Y munis d'un point base $x_0 \in X$ et $y_0 \in Y$ est le sous espace $X \vee Y = X \times \{y_0\} \cup \{x_0\} \times Y$ de $X \times Y$ avec $(x_0, y_0) \in X \vee Y$ comme point base. On a aussi une identification $X \vee Y = (X \coprod Y)/x_0 \equiv y_0$, pour tout couple d'espaces pointés X et Y, où on considère le quotient de la somme disjointe $X \coprod Y$ par la relation $x_0 \equiv y_0$ qui identifie le point base de X avec le point base de Y.

On a des applications naturelles

$$X \stackrel{p}{\rightleftharpoons} X \vee Y \stackrel{q}{\rightleftharpoons} Y$$

telle que $pi = id_X$ et $qj = id_Y$. De plus, pour tout couple d'applications $f: X \to Z$ et $g: Y \to Z$ satisfaisant $f(x_0) = g(y_0)$, on a une unique application $f + g: X \lor Y \to Z$ telle que le diagramme

commute.

2.1) On suppose que le point x_0 possède un voisinage contractile dans X, de même que le point y_0 dans Y. Prouver, en appliquant la suite de Mayer-Vietoris de façon appropriée, que l'on a un isomorphisme $\tilde{H}_n(X \vee Y) = \tilde{H}_n(X) \oplus \tilde{H}_n(Y)$ au niveau de l'homologie réduite, pour tout degré $n \geq 0$. On montrera aussi comment déterminer au moyen des applications (i, j) et de (p, q) l'image d'une classe $c \in \tilde{H}_n(X \vee Y)$ dans $\tilde{H}_n(X) \oplus \tilde{H}_n(Y)$ par cet isomorphisme et vice versa.

2.2) On considère maintenant le cas $X = Y = S^n$. On travaille avec un modèle cubique $S^n = I^n/\partial I^n$ de la sphère de dimension n, où on note I = [0,1]. On a alors $S^n = I^n_+/\partial I^n_+ = I^n_-/\partial I^n_-$

BF, Courriel: Benoit.Fresse@math.univ-lille1.fr

où $I_+^n = \{(t_1, \dots, t_n) \in [1/2, 1] \times I^{n-1}\}$, et $I_-^n = \{(t_1, \dots, t_n) \in [0, 1/2] \times I^{n-1}\}$, ce qui permet d'obtenir une expression:

$$S^n \vee S^n = (I_-^n/\partial I_-^n) \vee (I_+^n/\partial I_+^n) = \underbrace{(I_-^n \cup I_+^n)}_{=I^n}/(\partial I_-^n \cup \partial I_+^n)$$

(faire un dessin). On a aussi une application $p: S^n \to S^n \vee S^n$ induite par l'identité $I^n = I^n_- \cup I^n_+$. Donner l'expression du morphisme induit par cette application p en homologie réduite, ainsi que le degré du morphisme défini par l'application composée $rp: S^n \to S^n$ où $r = id + id: S^n \vee S^n \to S^n$.

2.3) Généraliser les résultats de la question précédente aux bouquets de m copies de S^n . Retrouver le résultat de la question 3 du problème 1.

§2. Homologie d'espaces classiques

3. Problème : Homologie des espaces projectifs réels

- **3.1)** Déterminer le complexe cellulaire des espaces projectifs réels $\mathbb{R}P^n$ en utilisant la décomposition en somme amalgamée $\mathbb{R}P^n = D^n \cup_p \mathbb{R}P^{n-1}$ du problème 9 de la feuille 2 pour définir la structure de CW-complexe de $\mathbb{R}P^n$.
- **3.2)** Déterminer l'homologie des espaces projectifs réels $\mathbb{R}P^n$ à coefficients dans $\mathbb{Z}/2\mathbb{Z}$, \mathbb{Q} , \mathbb{Z} en utilisant le résultat de la question précédente.

4. Problème : Homologie des espaces projectifs complexes

Déterminer l'homologie à coefficients dans $\mathbb Z$ des espaces projectifs complexes $\mathbb CP^n$ en adaptant les arguments du problème précédent.

§3. Premières applications

5. Problème : Théorème de Brouwer

On utilise le modèle euclidien de la sphère de dimension n-1, soit $S^{n-1}=\{(x_1,\ldots,x_n)\in\mathbb{R}^{n+1}|x_1^2+\ldots+x_n^2=1\}$, et le modèle euclidien du disque de dimension n, soit $D^n=\{(x_1,\ldots,x_n)\in\mathbb{R}^{n+1}|x_1^2+\ldots+x_n^2\leq 1\}$.

- **5.1)** Soit $A \subset X$ un sous-espace d'un espace X. On dit que A forme un rétract de X si l'application d'inclusion $i: A \hookrightarrow X$ possède un inverse à gauche $r: X \to A$, satisfaisant $ri = id_A$. Montrer que la sphère S^{n-1} n'est pas rétract de D^n , pour toute valeur de $n \ge 1$. Indication: On utilisera la fonctorialité de l'homologie pour montrer que l'existence d'une application $r: D^n \to S^{n-1}$ telle que ri = id conduit à une absurdité.
- **5.2)** Utiliser le résultat de la question précédente pour montrer que toute application $f: D^n \to D^n$ possède un point fixe. *Indication*: Si ce n'est pas le cas, et $v \neq f(v)$ pour tout $v \in D^n$, alors on peut considérer l'application $r: D^n \to S^{n-1}$ telle que $r(v) = \{f(v) + t(v f(v)) | t > 0\} \cap S^{n-1}$.

6. Problème : Théorème d'invariance du domaine

- **6.1)** Soit U un ouvert (non-vide) de \mathbb{R}^m . On fixe $x \in U$. Calculer $H_*(U, U \setminus \{x\}; \mathbb{Z})$. Indication: on utilisera l'axiome d'excision de façon appropriée.
- **6.2)** Utiliser le résultat obtenu dans la question précédente pour montrer le théorème d'invariance du domaine : des ouverts (non-vides) U de \mathbb{R}^m et V de \mathbb{R}^n ne peuvent être homéomorphes lorsque $m \neq n$.