

Universidade de Pernambuco Escola Politécnica de Pernambuco

Atividade Final - Monitoramento da Estufa

José Willyan Silva Gomes. Laís Carla da Silva.

Universidade de Pernambuco Escola Politécnica de Pernambuco

JOSÉ WILLYAN SILVA GOMES.. LAÍS CARLA DA SILVA.

Atividade Final - Monitoramento de Estufa

Trabalho acadêmico apresentado à Disciplina de Microcontroladores, solicitado pela professora Andrea Ribeiro como requisito para obtenção da nota referente à II unidade.

Sumário

-					-		
C	\cap	n	٠	Δ		М	
_	v		L	ᆫ	u	u	v

INTRODUÇÃO	2
DIAGRAMA DE BLOCO	2
DIMENSIONAMENTO	2
SIMULAÇÃO	3
CUSTO TOTAL DO PROJETO	3
ESTUDOS FUTUROS	3
CONCLUSÃO	4

INTRODUÇÃO

Neste documento, apresentaremos a etapa final voltada ao desenvolvimento da estufa. Este trabalho busca explorar o monitoramento de uma estufa utilizando microcontroladores com o objetivo de fornecer dados sobre o controle da umidade e temperatura com base nos dados lidos pelos sensores.

Para alcançar esses objetivos, fez-se necessário a utilização do software Tinkercad para a realização das simulações, além de plataforma para o desenvolvimento do código responsável pelo monitoramento.

Portanto, este trabalho está estruturado da seguinte forma: na seção seguinte, serão apresentados o diagrama de bloco; seguido por dimensionamento e simulação.

FLUXOGRAMA E DIAGRAMA DE BLOCO

Faz-se necessário antes de partimos para a simulação a descrição do processo. Para isso, montamos inicialmente o diagrama para estruturarmos a ideia inicial e, em seguida, um fluxograma para nos nortearmos na montagem do código.

Diagrama de blocos.

A montagem do fluxograma baseia-se na lógica de programação que segue as seguintes simbologias:

Nomenclatura	Símbolo	Função
Terminal		Indica o INÍCIO ou FIM de um processamento Exemplo: Início do algoritmo
Processamento		Processamento em geral Exemplo: Calculo de dois números
Entrada de dado manual		Indica entrada de dados através do Teclado Exemplo: Digite a nota da prova 1.
Exibir		Mostra informações ou resultados Exemplo: Mostre o resultado do calculo
Decisão	\Diamond	Indica quando há alguma decisão a ser tomada_tendo como_resposta_somente dois estados: sim ou não.

Tabela de símbolos do fluxograma..

DIMENSIONAMENTO

Para a realização dos cálculos utilizamos como base a seguinte tabela:

Cor do led	Faixa de tensão	Corrente máxir
Vermelho	1,8 V - 2,0 V	20 mA
Amarelo	1,8 V - 2,0 V	20 mA
Laranja	1,8 V - 2,0 V	20 mA
Verde	2,0 V - 2,5 V	20 mA
Azul	2,5 V - 3,0 V	20 mA
Branco	2,5 V - 3,0 V	20 mA

Tabela de valores de tensão e corrente dos leds.

A partir desses valores fornecidos acima, calculamos qual seria o resistor necessário para o acionamento dos Led's. Salienta-se que, para fins de cálculo, estabelecemos que os Led's possuem uma tensão máxima de até 2V. A seguir, temos a esquematização de um circuito equivalente:

Onde os componentes possuem os seguintes valores:

Fonte: 5V Tensão led: 2V

Corrente máxima: 20 mA

Circuito Equivalente.

Logo, temos que: 5=Vled+Vresistor 5=2+R*20*10⁻³

R=150 Ω

A partir disso, conseguimos realizar a montagem no Tinkercad.

SIMULAÇÃO

Para a simulação utilizamos o software Tinkercad e com isso obtemos o seguinte layout:

Simulação inicial no Tinkercad.

CUSTO TOTAL DO PROJETO

De acordo com informações fornecidas pelo Sistema Nacional de Custos e Índice da Construção Civil – SINAPI, o valor homem-hora para os serviços da categoria de engenheiro eletricista é um valor base de pagamento de R\$ 86,76.

No projeto em questão houve a participação igualitária de 02 integrantes responsáveis pela montagem, testes e simulações do circuito abordado. As atividades ocorreram durante um dia, e totalizaram 3 horas e 20 minutos de cada profissional, o que resulta um custo total de mão de obra de R\$ 577,82.

Além disso, foram utilizados os seguintes materiais:

Material	Quantidade	Valor	
Protoboard	2	R\$ 27,80	
Led verde	1	R\$ 1,00	
Led vermelho	1	R\$ 1,00	
Led azul	1	R\$ 1,00	
Led amarelo	1	R\$ 1,00	
Resistor (100 e 220)	4	R\$ 3,00	
Jump	5	R\$ 1,50	
Esp 32	1	R\$ 89,00	
Notebook	1	R\$ 3694,93	
Contêiner plástico	1	R\$ 30,00	
Potes plásticos	10	R\$ 10,00	
Motor	1	R\$ 31,00	
Relé	1	R\$ 24,50	
Sensor de luminosidade	1	R\$ 1,20	
Transistor	1	R\$ 2,90	
Octoaclopador	1	R\$ 1,84	

Tabela de custo de materiais.

ESTUDOS FUTUROS

Apesar dos avanços alcançados neste estudo na implementação e vigilância da estufa, reconhecemos que há áreas importantes que não foram abordadas, como o monitoramento da luminosidade e do pH do ambiente. Esses são fatores críticos para o crescimento saudável das plantas e, portanto, merecem atenção em pesquisas futuras.

A falta de monitoramento da luminosidade pode impactar diretamente a fotossíntese das plantas, afetando seu crescimento e desenvolvimento. Da mesma forma, o pH do solo desempenha um papel fundamental na disponibilidade de nutrientes para as plantas, influenciando sua saúde e produtividade.

Assim, sugerimos que futuros estudos se concentrem em incorporar sensores de luminosidade e pH ao sistema de monitoramento da estufa. Isso permitirá uma análise mais abrangente e precisa das condições ambientais, proporcionando insights valiosos para o cultivo eficaz de plantas.

CONCLUSÃO

Neste estudo, dedicamo-nos à implementação e vigilância de uma estufa, utilizando microcontroladores para capturar informações cruciais sobre a umidade e temperatura do ambiente. Ao longo desta pesquisa, exploramos a aplicação prática dos conhecimentos adquiridos, ressaltando a importância do controle ambiental para o cultivo de plantas.

Por meio da utilização do software Tinkercad para simulações e da plataforma para desenvolvimento do código, conseguimos conceber um sistema de monitoramento eficaz. Isso nos possibilitou uma compreensão mais profunda das nuances do ambiente da estufa, permitindo-nos tomar decisões embasadas para otimizar as condições de crescimento das plantas.

Ao apresentarmos o diagrama de blocos e o fluxograma, proporcionamos uma visualização clara do funcionamento do sistema, simplificando a compreensão do processo de monitoramento e controle. Ademais, a seção de dimensionamento e simulação nos permitiu validar o desempenho do sistema em diversos cenários.