Processamento de Imagens para Detecção de Furos em Bicos Injetores Diesel

1st Wellinthon da Silveira Kiiller

Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI-CT)
Universidade Tecnológica Federal do Paraná (UTFPR)
Curitiba, Paraná, Brasil
https://orcid.org/0009-0000-8591-0393

I. Introducão

Os bicos injetores desempenham uma função fundamental nos sistemas de combustão a diesel. Em uma multinacional especializada na produção desses bicos, é essencial assegurar a rastreabilidade do produto ao longo dos diversos processos de fabricação. Uma forma eficaz de garantir a rastreabilidade é por meio de gravações a laser, que, ao contrário de etiquetas ou adesivos, permanece intacta durante o processo de fabricação.

Nesse contexto, este trabalho tem como objetivo demonstrar a aplicação de técnicas de processamento de imagens para detectar furos na superfície de vedação de bicos injetores diesel, uma área estratégica para a gravação a laser com fins de rastreabilidade. O artigo está organizado da seguinte forma: na Seção 2.A, é apresentada uma breve explicação sobre os bicos injetores; an Seção 2.B, são descritas as técnicas de processamento de imagens utilizadas; por fim, a Seção de Considerações Finais encerra o artigo, destacando as contribuições do estudo.

II. Metodologia

A. Bico Injetor Diesel

A Figura 1 ilustra um modelo de bico injetor, um dos principais componentes de um sistema de combustão a diesel. Como o foco deste trabalho é a aplicação de técnicas de processamento de imagens, o funcionamento do injetor não será abordado em detalhes. No entanto, a Figura 2 destaca alguns de seus componentes.

A Figura 2 destaca as seguintes regiões do bico injetor: base (1), haste (2), cúpula (3), furos de fixação (4 e 5),

Figura 1. Bico injetor diesel. Fonte: [1].

Figura 2. Componentes de um bico injetor diesel. Fonte: [2].

Figura 3. Superfície de vedação de um bico injetor diesel

furo de injeção de combustível (6), guia do corpo (7), furo cego (8), assento da agulha (9), ponta da agulha (10), guia da agulha (11) e espiga da agulha (12) [2]. Os furos de fixação (4 e 5) e injeção de combustível (6) estão localizados em uma região chamada de superfície de vedação, conforme ilustra a Figura 3.

B. Processamento de Imagem

Nesta seção, são abordadas as técnicas de processamento de imagem utilizadas para detecção dos furos presentes na superfície de vedação do bico injetor, utilizando o *software* Matlab.

1) Carregar imagem: esta seção de código descreve as etapas para o carregamento e a visualização da imagem.

No Código 1 apresentado, foi carregada uma imagem correspondente à Figura 3.

```
% Clear workspace
clear

% Set working directory
workDir = pwd + "/ProjetoFinal/Images/";

% Read image
imName = "Image0001.jpg";
imNozzle = imread(workDir + imName);

% Show image
imshow(imNozzle);
```

Código 1. Carregamento e visualização da imagem

2) Filtrar a imagem: esta seção de código apresenta as etapas de pré-processamento da imagem, utilizando filtros, conforme demonstrado no Código 2. Inicialmente foi construído o elemento estrutural "se"em formato de disco por meio da função strel para aplicação do filtro. Em seguida, o elemento "se"foi utilizado em um filtro de closing, gerando a imagem apresentada na Figura 4. Por fim, foi implementado um laço for para determinar o valor de sensibilidade mais adequado para a binarização da imagem, utilizando a função imbinarize. A Figura 5 mostra as imagens binarizadas, obtidas com diferentes valores de sensibilidade.

```
% Create structuring element
se = strel('disk', 3);

% Apply closing morphology and show image
imClosed = imclose(imNozzle, se);
figure; imshow(imClosed);

% Show binarized images with different sensitivities
% Increment sensivity by 0.1
figure;
for i=0.1:0.1:1.0
    imBinarized = imbinarize(imClosed, ...
    "adaptive", "Sensitivity", i);
    subplot(2, 5, i*10); imshow(imBinarized)
    title(i);
end
```

Código 2. Filtragem e análise da sensibilidade para binarização

Figura 4. Imagem após aplicação de filtro de closing

Figura 5. Imagens binarizadas com diferentes níveis de sensibilidade

3) Segmentar os círculos: esta seção apresenta as etapas para segmentação dos círculos na imagem, conforme demonstrado no Código 3. Inicialmente foi definida a variável de sensibilidade como 1.0, conforme indicado na análise realizada no Código 2, e estabelecidas as variáveis de cores para visualização dos círculos (verde) e dos textos na imagem (branco e azul). Em seguida, a imagem foi binarizada utilizando a função imbinarize com o método adaptativo. Após a binarização, empregou-se a função imFindCircles para detectar os círculos na imagem, especificando o intervalo de raio entre 50 e 200 pixels e definindo a polaridade dos objetos como escura. Posteriormente, a função viscircles foi utilizada para visualizar os círculos encontrados. Por fim, a Figura 6 apresenta a imagem após as etapas de segmentação.

```
% Select sensivity to segmentation
% Select colors to draw circles and text
sensivity = 1;
edgeColor = [0 1 0];
backgroundColor = [0 0 1];
textColor = [1 1 1];
% Segment image and compute area
imSegmented = imbinarize(imClosed, "adaptive", ...
              "Sensitivity", sensivity);
[c, r] = imfindcircles(imSegmented, [50,200], ...
         "ObjectPolarity", "dark");
% Show images and circles found
figure;
imshow(imNozzle);
title('Original');
imshow(imSegmented);
viscircles(c, r, 'EdgeColor', edgeColor);
title('Segmented');
```

Código 3. Segmentação dos círculos escuros

4) Calcular os ângulos dos círculos: esta seção apresenta as etapas para o cálculo do ângulo de cada círculo encontrado, conforme demonstrado no Código 4. Primeiramente, realizou-se o cálculo dos ângulos dos círculos em relação ao centro da imagem. Como a imagem possui dimensões de 1400x1400 pixels, o centro está localizado na

Figura 6. Imagem após segmentação e detecção dos círculos escuros

coordenada (700, 700). Para realizar o cálculo, utilizouse a função *atan*2, que retorna o valor de ângulo em radianos, posteriormente convertido para graus com a função *rad2deg*. Por fim, o valor do ângulo obtido é exibido na imagem, seguindo as cores especificadas no Código 3, como ilustrado na Figura 7.

```
hold on;
for i=1:1:numOfCircles
    % Draw circle contour
    x = c(i, 1);
    y = c(i, 2);

% Compute angles between circles and image
        center
    theta = atan2(y - imCenterX, x - imCenterY);
    deg = rad2deg(theta);
    text(c(i, 1)+r(i), c(i, 2)+r(i), ...
        num2str(i)+"="+num2str(deg) + '\circ', ...
        "BackgroundColor", backgroundColor, ...
        "Color", textColor, "FontWeight", "bold");
end
hold off;
```

Código 4. Cálculo dos ângulos em relação ao centro da imagem

Figura 7. Imagem após o cálculo dos ângulos

Considerações Finais

Este trabalho teve como objetivo demonstrar a aplicação de técnicas de processamento de imagens para detecção de furos na superfície de vedação de bicos injetores diesel. Os filtros morfológicos e funções empregadas comprovaram a eficácia das técnicas utilizadas, evidenciando o potencial dessas abordagens para aplicações de gravação a laser voltadas à rastreabilidade de produtos.

Neste contexto, após a detecção dos furos e o cálculo de seus ângulos, é possível transferir essas informações para uma gravadora a laser por meio de protocolos de comunicação industrial. Dessa forma, garante-se que a gravação seja realizada na área mais adequada que, nesse caso, corresponde à maior região livre de furos ou maior distancia angular entre dois furos.

Referências

- [1] Karhub, "Bico Injetor Diesel Bosch 0 433 175 140," 2025, acessado em: 17 maio 2025. [Online]. Available: https://www.karhub.com.br/p/bico-injetor-diesel-bosch-0-433-175-140-13607060
- [2] V. Girotto, "Análise técnica para remanufatura de um bico injetor diesel," p. 75, 2023.