4: 48 AD A 077

VISCHER FERRY DAM

SARATOGA COUNTY **NEW YORK**

INVENTORY NO NY 170

John B. /Steten

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

> Vischer Ferry Dam (NY 170), Mohawk River Basin, Saratoga County, New York. Phase I Inspection Report,

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED CONTRACT NO DACW 51-79-C0001

AND POLICE THE NEW YORK DISTRICT CORPS OF ENGINEERS

SEPTEMBER 1979

393970

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	1 (9)5
SECURITY CLASSIFICATION OF THIS PAGE (
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESS	ION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
Phase I Inspection Report	Phase I Inspection Report
Vischer Ferry Dam	National Dam Safety Program
Mohawk River Basin, Saratoga County, New York Inventory No. 170	6. PERFORMING ORG. REPORT NUMBER
John B. Stetson, P.E.	DACW-51-79-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS STATE OF STREET	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
New York State Department of Environmental	Cone 28 September 1979
servation/ 50 Wolf Road Albany, New York 12233	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling	Office) 15. SECURITY CLASS. (of this report)
Department of the Army 26 Federal Plaza/ New York District, Coff	UNCLASSIFIED
New York, New York 10007	15. DECLASSIFICATION DOWNGRADING SCHEDULE

17. DISTRIBUTION STATEMENT of the abstract entered in Block 20, if different from Report)

Approved for public release; Distribution unlimited.

18. SUPPLEMENTARY NOTES

ORIGINAL CONTAINS COLOR PLATES: ALL DDC REPRODUCTIONS WILL BE IN BLACK AND WHITE.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability

16. DISTRIBUTION STATEMENT (of this Report)

Vischer Ferry Dam Saratoga County Vischer Ferry

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

DD 1 JAN 73 1473 EDITION OF 1 HOV 65 IS OBSOLETE

- Investigate the extent of the deterioration of the spillway sections and the affect of this deterioration on the stability of this structure. Obtain borings and perform stability analysis on those sections of the spillway which have become deteriorated. Follow up with the necessary repairs as indicated by the investigation.
- (2.) Repair the south abutment of the north spillway to prevent further deterioration of the shale foundation.
- (3.) The outlet gates on the northern end of the dam are inoperative. The work on the reconstruction of the sluice gates structure which has been awarded for contract by the New York State Department of Transportation should be performed continuously until its completion.

It is therefore recommended that within 3 months of the date of notification of the Owners, the above mentioned investigations be undertaken and that required remedial work be completed within 2 years of notification.

Computations prepared according to the Corps of Engineers' screening criteria, established the spillway capacity at 165,000 cfs. This represents 29% of the Probable Maximum Flood and 58% of the 1/2 Probable Maximum Flood. The PMF and 1/2 PMF flows are 572,00 cfs and 285,000 cfs, respectively. The spillway is not considered seriously inadequate based on the Corps of Engineers' screening criteria since the dam is structurally stable during the 1/2 PMF event.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

Accession For

NTIS GAL&I
DDC TAB
Unconcunced
Justification

By
Distribution

Availability Codes
Availand/or
special

TABLE OF CONTENTS

	<u>Page</u>
Preface	
Assessment of General Conditions	i
Overall View of Dam	ii-viii
Section 1 - Project Information	1-4
Section 2 - Engineering Data	5
Section 3 - Visual Inspection	6-7
Section 4 - Operational Procedures	8
Section 5 - Hydrologic/Hydraulic Computations	9-11
Section 6 - Structural Stability	12-15
Section 7 - Assessment/Remedial Measures	16-17

FIGURES

Figure 1 - Location Map Figure 2 thru 18 - Contract Plans Figure 19 thru 27 - Repair of Gates Figure 28 - Geology Map

APPENDIX

Field Inspection Report	1
Previous Inspection Report/Relevant Correspondence	-
Hydrologic and Hydraulic Computations	(
Stability Analysis	- 1
References	-

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam Vischer Ferry Dam at Lock No. 7, NY170

State Located New York County Located Saratoga and Schenectady Mohawk River Stream Date of Inspection August 1, 1979

ASSESSMENT OF GENERAL CONDITIONS

Examination of available documents and a visual inspection of the dam did not reveal conditions which constitute an immediate hazard to human life or property. However, additional studies should be undertaken to further evaluate conditions affecting the dam.

- 1. Investigate the extent of the deterioration of the spillway sections and the affect of this deterioration on the stability of this structure. Obtain borings and perform stability analysis on those sections of the spillway which have become deteriorated. Follow up with the necessary repairs as indicated by the investigation.
- 2. Repair the south abutment of the north spillway to prevent further deterioration of the shale foundation.
- 3. The outlet gates on the northern end of the dam are inoperative. The work on the reconstruction of the sluice gates structure which has been awarded for contract by the New York State Department of Transportation should be performed continuously until its completion.

It is therefore recommended that within 3 months of the date of notification of the Owners, the above mentioned investigations be undertaken and that required remedial work be completed within 2 years of notification.

Computations prepared according to the Corps of Engineers' screening criteria, established the spillway capacity at 165,000 cfs. This represents 29% of the Probable Maximum Flood and 58% of the 1/2 Probable Maximum Flood. The PMF and 1/2 PMF flows are 572,00 cfs and 285,000 cfs, respectively. The spillway is not considered seriously inadequate based on the Corps of Engineers' screening criteria since the dam is structurally stable during the 1/2 PMF event.

Dale Engineering Company

Col. Clark H. Benn

New York District Engineer

Approved By: Date:

Overview of north dam section from hydropower forebay area. The center portion of the dam consists of a rock section which comes up to near the spillway crest. Another section of dam is located on the other side of the rock area. The total length of the dam is approximately 1900 feet.

8.30.79

2305

108

STETSON · DALE

JPG

VISCHERS FERRY DAM iii

 View of north dam section and hydropower facility on north shore of river.

View of south dam section across pool area to the north shore. A dam inspector can be seen in the center of picture at the location of severe leakage through the flashboards. In this area, flow across deteriorated horizontal construction joints can be seen as well as flow along monolith joints.

3. Close-up of abutment of dam in south shore.

 Close-up of eroded spillway surface area near the center of the south dam section.

 Close-up of eroded spillway surface near the north abutment of the south dam section.

 View of gated spillway system which is currently not operational.

Close-up of north dam section spillway. Note flow along monolith joints. This section is not as eroded as the south dam section.

8. View of forebay wall just below abutment area. Notice seepage through construction joint.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM NAME OF DAM - VISCHER FERRY DAM ID# - NY 170

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The New York State Department of Environmental Conservation.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the existing condition of the Vischer Ferry Dam and appurtenant structures, owned by the New York State Department of Transportation, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the State of New York.

This Phase I inspection report does not relieve an Owner or Operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

The Vischer Ferry Dam on the Mohawk River consists of three sections of spillway structure which span between the Barge Canal-Lock No. 7, on the south bank of the river and a power generating station located on the north bank of the river. The total length of the three sections of the spillway is 2,087 feet. The center section of the dam is a low concrete spillway section which is formed at the upstream end of a bedrock island. This section varies from approximately 2 feet to 5 feet in height. The north and the south sections of the dam span the main channels of the Mohawk River. These sections are approximately 33 feet in height. A sluice gate structure is located at the north end of the northerly spillway section adjacent to the power generating station. This sluice gate structure consists of 6

sluice gates, 8 feet wide by 14 feet high and 1 gate 8 feet wide by 12 feet high. These gates are electrically operated. The concrete wall which forms the forebay to the power generating station also functions as a side channel spillway at higher water levels. There are no gates controlling flow into the forebay of the power generating station. The dam is the second in a series of dam which regulate flow in the Mohawk River for use in navigation and power generation.

b. Location

The Vischer's Ferry Dam is located in the Town of Niskayuna, Schenectady County and in the Town of Clifton Park, Saratoga County.

c. Size Classification

The maximum height of the dam is approximately 42 feet. The storage volume of the impoundment is approximately 25,000 acre feet.*

Therefore, the dam is in the Intermediate Size Classification as defined by The Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The Mohawk River flows through the City of Cohoes and the City of Troy. The Mohawk River is also used for navigational and recreational purposes. Therefore, the dam is in the High Hazard Category as defined by The Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the New York State Department of Transportation.

Waterway Maintenance Subdivision:

New York State - DOT Main Office - State Campus 1220 Washington Avenue Albany, New York 12232 Director - Mr. Joseph Stellato (518) 457-4420 Region One:

New York State - DOT Region 1 Office 84 Holland Avenue Albany, New York 12208 Engineer - Mr. John Hulchanski

f. Purpose of the Dam

The dam is used to regulate flows on the Mohawk River for navigational use and power generation. The Mohawk River is also used for recreational purposes.

^{*}This is the volume of the river channel upstream to the next dam with an assumed depth of 34 feet at the downstream and 14 feet at the upstream end.

g. Design and Construction History

No data was available regarding the design and construction history. Plans for the construction of the dam and lock are dated 1907. The construction of the dam was completed in 1913.

h. Normal Operational Procedures

The facility is operated by the New York State Department of Transportation. The main function of the facility is to provide adequate pool elevations for navigation in the Barge Canal. The secondary function of the facility is to maintain flows for power generation at the power generating station. The gates are manipulated to provide optimum flows to fulfill both of these functions. The gates which presently control flow from the impoundment are inoperative. Plans have been prepared by the New York State Department of Transportation for the rehabilitation of these sluice gates.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of Vischer Ferry Dam is 3385 square miles.

b. Discharge at Dam Site

No discharge records are available for this site.

Computed discharges:

Ungated spillway, top of dam Ungated spillway, design flood		cfs	from Plans
Gated drawdown thru hydropower facility	4,342	cfs	
New gates: 6 @ 14 x 8 feet to be constructed, capacity unknown			

c. <u>Elevation (Feet above MSL)</u> (Elevations are in Barge Canal Datum. Barge Canal = USGS + 0.99 ft.

Top of dam	219.0
Maximum pool - Design discharge	217.0 Est. from Plans
Spillway crest	211.0
Stream bed at centerline of dam	177 <u>+</u>

d. Reservoir

Length of maximum pool	54,500 ft
Length of normal pool	54,500 ft

e. Storage

Top of dam Normal pool 33,500 acre feet 25,100+acre feet

f. Reservoir Area

Spillway pool

1046.8+ acre

g. Dam

Type - Concrete, gravity.

Length - 2087+ feet

Height - 42+ feet

Freeboard between normal reservoir and top of dam - 8 feet

Top width - Spillway - 11.5 ft., Abutment - 18 ft.

Side slopes - Downstream - 2 vertical/l horizontal, Upstream - vertical

Zoning - N/A

Impervious core - N/A

Grout curtain - N/A

h. Spillway

Type - Ogee crest Length - 1918.7 ft. Crest elevation - 211.0 Gates - Ungated U/S channel - Natural D/S channel - Natural, rock Flashboards - 27 inches to elevation - 213.25

Regulating Outlets

l sluice gate - 8 feet wide x 14 feet high Sill elevation - 190 Lintel elevation - 204

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

The information available for the evaluation of this dam has been included in this report. The information consisting of contract drawings is contained in Figures 2 through 27. No information on the design of this dam was available. The drawings show cross-sections and dimensions of the various structural elements of the dam but do not include information on the properties of the foundations material nor stability analysis.

2.2 CONSTRUCTION

Details regarding the construction of this facility are included in Figures 2 through 27. These figures also include the plans for the rehabilitation of the sluice gate structure.

2.3 OPERATION

No operation manual is known to exist for this structure.

2.4 EVALUATION

The plans for the construction of the facility agree with the visual observations made in the field. The information included in this report is adequate to complete this Phase I investigation. Therefore, no additional research for data is required in order to complete this Phase I investigation.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

The Vicher Ferry Dam was inspected on August 1, 1979. The Dale Engineering Company Inspection Team was accompanied on the inspection by Walter Elliot of the New York State Department of Transportation.

b. Dam

At the time of the inspection, the water level in the impoundment was approximately 9 inches above the crest of the dam. Wooden flashboards, 27 inches high, were also in place on the spillway crest. Leakage between the bottom of the flashboards and the spillway crest allowed substantial flow over the spillway. Therefore, a detailed observation of the face of the spillway was not possible. In general, the surface of the spillway viewed through the flowing water indicates substantial deterioration along the horizontal and vertical joints throughout the structure. The deterioration is worse on the south section of the dam than it is on the north section. Photographs show areas where substantial surface deterioration was observed. In one area near the center of the northerly spillway section, the crest of the spillway had eroded to a depth of approximately 6 inches. The length of this deteriorated section was approximately 15 feet. Flow across the spillway face prevented observation of any leakage along the joints. The spillway was in proper alignment throughout its length and no evidence of displacement was noted in any of the spillway sections. At the south abutment end of the north dam, on Goat Island, about 10 feet of the original shale contact with the concrete abutment has been removed by erosion, possibly in conjunction with frost action. The impression of the shale originally in contact with the concrete is clearly visible in the abutment concrete. Additional future backward erosion of the shale relative to the abutment could eventually lead to frost action and resulting deterioration behind the abutment.

c. Appurtenant Structures

The concrete on the wall of the forebay to the power generating station is also in a deteriorated condition. A walkway on the power generating station has broken away and fallen into the downstream channel. Lock No. 7 is in good operating condition, although some surface deterioration of the concrete exists.

d. Control Outlet

Outlet from the impoundment is controlled through 7 sluice gates located near the north bank of the river. These sluice gates are in poor condition and are reputedly inoperative at the present time. The New York State Department of Transportation has prepared plans for the replacement of the gates and the rehabilitation of the concrete surfaces.

e. Reservoir Area

The reservoir area is the Mohawk River Channel which extends approximately 10-1/2 miles upstream to a dam in the City of Schenectady. There are no known areas on bank instability along this course.

g. Downstream Channel

The downstream channel is formed in bedrock. No evidence of recent erosion was noted.

3.2 EVALUATION

The visual inspection revealed generally deteriorated surfaces on the spillway structure and the control gates are in need of repair. No major deformation of the alignment of the structure was noted in the visual inspection. Deteriorated shale at the south abutment of the north dam has been displaced and a void remains behind the abutment wall. This area should be repaired by filling with concrete to prevent further deterioration which could effect the structural integrity of the spillway.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The primary operational procedure is to control water levels in the impoundment upstream from the dam for navigational purposes in the Barge Canal. The sluice gates located near the north bank are used to control this water level. Flashboards are installed on the dam and remain in place during the summer. The flashboards are installed in May and removed in December. Flows through the power generating station are also controlled to provide adequate upstream water levels for navigational purposes. The operation of this facility is under the control of the New York State Department of Transportation.

When the water is 2.5 feet above the masonry dam and the flashboards are on the waste gates are open. When the water recedes to 2.5 feet above masonry dam the gates are closed. Flashboards are installed on both dams by May 1 or when the flow is below 5,000 C.F.S. They are removed at the close of the navigable season in December.

4.2 MAINTENANCE OF THE DAM

Maintenance and operation of the dam is controlled by the New York State Department of Transportation. The Department inspects the facility every two years and a report on the condition of the structure is filed at the Central Office in Albany. Maintenance of the structure is scheduled on a priority basis as a result of the bi-annual inspections.

4.3 MAINTENANCE OF OPERATING FACILITIES

The gates controlling the flow into the downstream channel are under the control of the New York State Department of Transportation. These gates are not operational at the present time.

4.4 DESCRIPTION OF WARNING SYSTEMS

No warning system is in effect at present.

4.5 EVALUATION

The dam and appurtenant structures are inspected at regular intervals by the New York State Department of Transportation. Maintenance on the structure has been minimal in recent years as evidence by the deteriorated conditions of the concrete and of the sluice gates. These conditions indicate that, in the past, maintenance has not been adequate. The New York State Department of Transportation has recently awarded a Construction Contract for the rehabilitation of the sluice gates which control discharge from the impoundment.

SECTION 5 - HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The Mohawk River Basin drains 3456 square miles above Cohoes, New York, according to the USGS stream gage which is located downstream of the dam. The river flows south from its source in west-central New York until it reaches the City of Rome, from which it proceeds in a east-southeast direction to Cohoes where it joins the Hudson River. For most of its 156 miles, the Mohawk River is paralleled by the State Barge Canal. Two of the basin's three major reservoirs are used to supplement the flow in the canal. They are Delta Reservoir, on the Mohawk River itself; Hinkley Reservoir, on West Canada Creek; the third impoundment, Schoharie Reservoir, is located on Schoharie Creek in the southern most part of the study area used to supplement the water supply of the City of New York.

5.2 ANALYSIS CRITERIA

The purpose of this investigation is to evaluate the dam and spillway with respect to their flood control potential and adequacy. Where the structure is integrated with hydropower and navigation lock facilities, interrelationships from a hydrologic standpoint have been evaluated. In general, in this screening analysis, control structures and gates used for the latter two purposes are not considered as flood control devices.

Different scenarios of partial dam failures, i.e., monolith failures are beyond the scope of this analysis due to the fact that the dam is a run-of-river facility and the downstream dam break flood wave analysis is multi-dimensional. The initial hazard area is one-half mile below the dam.

The dam's stability and flood discharge capacity is assessed through the evaluation of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the flood through the dam's spillway system. The PMF event is that hypothetical flow induced by the most critical combination of precipitation, minimum infiltration loss and concentration run-off of a specific location that is considered reasonably possible for a particular drainage area. Since this dam is in the Intermediate Dam Category and is a High Hazard, the guidelines criteria (Ref. 1) require that the dam be capable of passing the Probable Maximum Flood.

An HEC-1 computer model for the basin was published by the New York District Corps of Engineers in a report entitled <u>Hydrologic Flood</u> Routing Models, Upper Hudson and Mohawk Rivers, dated October, 1976.

The report was reviewed for the purpose of this investigation and the model which was used for preparation of the report was obtained from the New York District. The model was recoded and executed for analysis of the PMF. No changes were made to the unit hydrograph, base flow, loss rate or routing parameters.

The U.S. Army Corps of Engineers' Hydrologic Engineering Center's Computer Program HEC-1 DB was utilized to evaluate the PMF hydrology. The Probable Maximum Precipitation (PMP) was 21.9 inches according to Hydrometeorological Report (HMR #51) for a 24-hour duration, 200 square mile basin. Loss rates used were those applied in the Transferred Agnes Storm and SPF Analysis in the report. One multi-plan analysis (.2, .4, .5, .6, .8, 1.0 PMP) was performed. Rainfall was distributed evenly over the basin.

5.3 SPILLWAY CAPACITY

The spillway system is composed of a 1230 foot crest shaped spillway section plus a 690 foot trapezoided spillway section with an estimated design head of 6 feet. Discharge coefficients were computed between 3.3 and 4.15. Submergence was not checked.

At the top of dam elevation, the overflow spillway capacity was computed at 165,000 cfs. Two sources of information were used to assess flood magnitudes on the Mohawk in the vicinity of the dam. The aforementioned computer model and the USGS gage at Cohoes, New York. The PMF and 1/2 PMF values computed from the computer model were 572,000 cfs and 285,000 cfs respectively. A frequency analysis of the gage which was obtained from the New York District of the Corps of Engineers indicates that the 500 year flood has a peak of 198,000 cfs. Plotting and extending the frequency analysis results suggests that the PMF and 1/2 PMF may be 300,000 cfs and 225,000 cfs.

SPILLWAY CAPACITY

	HEC-1	DB Model	Frequency A	nalysis of Gage
	Discharge	Capacity as % of Discharge	Discharge	Capacity as % of Discharge
PMF 1/2 PMF	572,000 285,000	29% 58%	300,000 225,000	55% 71%

5.4 RESERVOIR CAPACITY

The reservoir storage capacity at top of dam is estimated at approximately 33,500 acre feet.

5.5 FLOODS OF RECORD

Floods have been measured at USGS gaging station 01357500 at Cohoes, New York since 1918. No events have been recorded which are greater than the top of dam spillway capacity. Four floods have occurred equal or greater in magnitude than the high water elevation of 217 feet shown on Contract No. 14 Plans. That elevation equates to a design flood capacity of 100,000 cfs.

1964	143,000	cfs
1936	130,000	
1938	102,000	
1956	100,000	

5.6 OVERTOPPING ANALYSIS

Overtopping of the dam would occur as follows:

OVERTOPPING IN FEET

	HEC-DB Model	Frequency Analysis
PMF 1/2 PMF	10.0 3.5	4.0
1/2 FMF	3.5	2.0

According to this analysis, the dam would be overtopped by the 1/2 PMF using either procedure for developing the hydrologic and hydraulic information.

5.7 EVALUATION

The spillway is inadequate to pass the 1/2 Probable Maximum Flood without overtopping the dam. Based on the Corps of Engineers' criteria, the spillway is not considered seriously inadequate since the stability computations performed in Section 6 have indicated that the dam is stable under the 1/2 PMF event. The hydrologic analysis performed in this report indicates that the dam would be overtopped by a flood event with a return interval probability of once in every 300 years.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

Vischer Ferry Dam, extending generally in a north-south direction across the Mohawk River, consists of two separate main dam/spillway sections connected by a lesser dam/spillway structure which is founded on a rock outcropping island (Goat Island) near the middle of the river. Observations indicate all three dam segments retain structural stability with no indication of displacement or other structural movement. However, the facility was inspected under conditions where limited spillway flow was occurring, and the physical condition of the concrete comprising the structures was not fully visible for detailed evaluation. It was evident that surface deterioration of the concrete in the dam's downstream faces has occurred. The more significant deterioration consists of spalling and erosion at the numerous vertical construction joints. Because of the spillway overflow condition, it could not be determined if through-the-dam seepage is occurring.

A generating station with sluice gate structure and forebay is located on the north bank of the river and marks the northerly limit of the dam. The concrete in the gate structure is experiencing some deterioration. What apparently was a section of concrete walkway for the river-side of the generating station has separated from the building and dropped into the river. There is no apparent structural affect on the station building.

On Goat Island, the rock shale at the downstream side of the abutment structure for the northerly dam section has experienced a significant degree of erosion. The abutment remains essentially intact, however.

The Barge Canal lock for the area exists on the southerly bank of the river, and the lock wall forms the south abutment for the dam. Some surface deterioration has occurred in the concrete lock wall but no affects of structural significance were observed.

Geology and Seismic Stability - Vischer Ferry

Vischer Ferry is located within the Hudson Valley lowland which is a section of the Valley and Ridge Province. Both the dam and spillway are sited on bedrock of the Canajoharie Shale of Late Ordovician Age. The rock unit consists mainly of a grayish to black shale with some interbeds of graywacke sandstone. Although some very tight folds are present the general strike of the bedding is N30E to N40E with a dip close to vertical. Bedding is nearly parallel to the orientation of the northern dam and within 20 degrees of the southern dam. Two sets of joints are displayed, N40W with a dip of 25 degrees N, and N60-70 W with a dip of 80 to 85 degrees S. Joint spacing is from 18 inches to 36 inches. Strike of the joints are within 10 degrees of being perpendicular to the north dam orientation; the N40W joint set

is within 5 degrees of being perpendicular to the south dam. Its low angle of dip (25 degrees N) and close spacing would readily permit frost loosening of blocks from the outcroping.

At the south abutment end of the north dam, on Goat Island, about 10 feet of the original shale contact with the concrete abutment has been removed by erosion, possibly in conjunction with frost action. The impression of the shale originally in contact with the concrete is clearly visible in the abutment concrete. Additional future backward erosion of the shale relative to the abutment could eventually lead to frost action behind the abutment.

Faults are present in the region. A minor fault whose orientation is about N7 degrees E cuts across the dam site according to the Geologic Map of New York State (See Geologic Map 1). The area is located within Zone 2 of the Seismic Probability Map but does have potential of a Zone 3.

Information on some of the larger earthquakes for the area is tabulated below:

Date	Intensity - Modified Mercalli	Location Relative to Dam
1845	VI	22 mi SSE
1907	IV	8 mi W
1916	IV-V	10 mi NW
1916	V	35 mi NNE
1931	VII	42 mi N
1955	V	12 mi NNE
1958	IV	10 mi S

Many earthquakes of lesser intensity are known to have occurred in the region, according the the records of the New York State Geological Survey. Two of these were located about 2 miles west of the dam site.

Data Review and Stability Evaluation

Design drawings available for review show cross-sections for the various structural elements comprising the dam facility but do not include information on the properties of the dam and foundation materials, nor stability analysis. As part of the present study, stability evaluations have been performed for the dam/spillway sections. Actual properties of the dam's construction materials and foundations were not determined as part of this study; where information on properties were necessary for computations but lacking, assumptions felt to be practical were made. These stability computations assumed a dam cross-section based on dimensions indicated by the plans included in this report. The analysis also assumed the dam section to be a monolith possessing necessary internal resistance to shear and bending occurring as a result of loading. It should be considered that in areas where deterioration has occurred the section dimensions would be less than indicated by the plans, with some adverse effect on the structural strength expected.

RESULTS OF STABILITY COMPUTATIONS

1

	Loading Condition	Factor of Safety* Overturning Sliding**	safety* Sliding**	Location of Resultant Passing through Base***
Ξ	Water elevation at normal operating level, uplift on base plus 7.5 kip per lineal foot ice load acting.	1.4+(1)	6.1+(1)	0.36b(1)
(II)	Water elevations at 1/2 PMF levels, uplift acting on base as computed for normal operating conditions.	1.34+(2)	4.4+(2)	0.33b(2)
(111)	Water elevations at PMF levels, uplift acting on base as computed for normal operating conditions.	1.31+(2)	4.1+(2)	0.33b(2)

^{*}These factors of safety indicate the ratio of moments causing overturning to those moments resisting, and the ratio of forces causing sliding to those resisting.

^{**}As determined applying the friction-shear method.

^{***}Indicated in terms of the dam's base dimension, b, measured from the toe of the dam.

⁽¹⁾ Not considering affects of passive resistance at toe

⁽²⁾ Includes affects of some passive resistance at toe

The results of the stability computations are summarized in the preceeding table. The stability analyses are included in Appendix D.

The analysis indicate the dam is stable when subject to forces possible during normal operations, and the $1/2\ PMF$ and PMF conditions.

Critical to the analysis and resulting indication of stability are the items of uplift water pressures acting on the base of the dam and relative permeabilities of the site's foundation rock. For the "normal operating conditions" case, the analysis uplift force was based on a full headwater hydrostatic pressure acting on the dam's upstream corner and a full tailwater hydrostatic pressure acting at the dam's downstream corner. Uplift pressures were assumed to vary linearly between the dam's upstream and downstream corner, and act upon 100 percent of the dam's base. The resulting uplift force represents a condition that is significant in arriving at the computed factors of safety for the normal operations condition.

Uplift as computed for the normal operating condition was also assigned for the flood conditions studied, it being assumed that uplift pressures would not increase significantly over a relatively short flood stage time period because of expected low foundation rock permeability.

Though the computations indicate the dam facility will be stable for the loading conditions studied, the analyses have been based on having dam sections which possess structural integrity related to sound and undeteriorated construction materials. Field inspection observations indicate that concrete deterioration is occurring at numerous locations in the various dam sections. For assurance of stability, maintenance and repair need be undertaken to rehabilitate the structural concrete comprising the spillway and abutment strutures. Areas where erosion of rock close to any dam or abutment section has occurred should be protected by means of a concrete overlay or other method. The maintenance/repair program should include an inspection with the reservoir level slightly below spillway elevation to detect possible through-the-dam and under-dam seepage. An inspection should also be performed with a lowered reservoir to evaluate the physical condition of the dams upstream face.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety

The Phase I inspection of the Vischer Ferry Dam at Lock No. 7 did not indicate conditions which constitute an immediate hazard to human life or property. The sluice gate structure controlling discharge from the impoundment is presently inoperative. However, contracts have been awarded for the reconstruction of this facility. Although the dam will be topped by the 1/2 PMF event, the spillway is not considered seriously inadequate since the stability computations indicate that the dam is stable under the 1/2 PMF event. The structural stability analysis indicates that the dam remains stable under all of the loading conditions prescribed by the Corp of Engineers' criteria.

The following specific safety assessments are based on the Phase I visual examination, analysis of hydrology and hydraulics, and structural stability:

- The sluice gate structure which controls flow from the impoundment is severely deteriorated and is inoperative at the present time.
- The spillway structure has experienced substantial deterioration of the concrete surfaces. One section of the northerly spillway structure has deteriorated to the depth of approximately 6 inches at the crest of the spillway.
- A shale strata at the south abutment of the northerly spillway section has been displaced and a void remains behind the abutment wall.

Adequacy of Information

The information available is adequate for this Phase I inspection. Design and construction information is limited to the construction plans.

c. Urgency

The sluice gate structure is in a serverely deteriorated condition. Indications are that the sluice gates are inoperative at the present time. The New York State Department of Transportation indicates that a contract has been awarded for the repair of this structure. It is recommended that the structural investigative work begin within 3 months of notification and the remedial work be completed within two years.

d. Need for Additional Investigation

Further investigations should be undertaken to determine the extent of the deterioration of the spillway structures. Borings should be obtained and structural stability analysis performed on those sections of the spillway which have become deteriorated. A continued deterioration of concrete section could substantially affect the stability of the spillway section.

7.2 RECOMMENDED MEASURES

The following steps should be undertaken:

- Investigate the extent of the deterioration of the spillway sections and the affect of this deterioration on the stability of this structure. Obtain borings and perform stability analysis on those sections of the spillway which have become deteriorated. Follow up with the necessary repairs as indicated by the investigation.
- 2. Repair the south abutment of the north spillway to prevent further deterioration of the shale foundation.
- 3. The outlet gates on the northern end of the dam are inoperative. The work on the reconstruction of the sluice gates structure which has been awarded for contract by the New York State Department of Transportation should be performed continuously until its completion.

LOCATION PLAN

FIGURE I

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 9

FIGURE 11

Contract

FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 26

Osc - Schenectady Formation Oag-Austin Glen Formation Omi-Mount Merino Formatio Osf-Stugresant Falls Fm Oc - Canajoharie Shale On - Normanskill Shak Eg - Germantown Fm LEGEND ŏ

h Normal Fault Hachures on downthrown side Thrust Plate Teeth on overthrust block ... Formation Contact V.F.- Vischer Ferry Dam I Fault line

En-Nassau Formation

8.21.79

2305

HM FIGURE

GEOLOGIC MAP

APPENDIX A
FIELD INSPECTION REPORT

CHECK LIST VISUAL INSPECTION

PHASE 1

Name Dam Vischer Ferry	County Albany	Albany	State New York ID	10 / NY170
Type of Dam Concrete Gravity			Hazard Category H18h	
Date(s) Inspection August 1, 1979	Weather Sunny	Sunny	Temperature 90	
Pool Elevation at Time of Inspection 211.80* M.S.L. * Barge Canal Datum	211,80*	H.S.L.	Tailwater at Time of Inspection 184.50*	184.50*

Inspection Personnel:

				portation
Dale Engineering Company	Dale Engineering Company	Dale Engineering Company	Dale Engineering Company	New York State Department of Transportation
N. F. Dunlevy	F. W. Byszewski	D. F. McCarthy	H. Muskatt	Walter Elliot

Recorder

Neal F. Dunlevy

CONCRETE/MASONRY DAMS

VISIIAI EXAMINATION OF	Aperations	
VISUAL EXAMINATION OF	UBSERVALIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	None observed since considerable flow over spillway was occurring.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Abutment on north side is hydropower forebay wall, on south side is lock wall Both walls have surface deterioration, but no major cracks.	
DRAINS		
WATER PASSAGES	Open passage in forebay area,	
FOUNDATION	Bedrock.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	The surface of the spillway is significantly eroded. Most areas have eroded less than 6 inches. The top of the crest has eroded so that leakage occurs below flashboards. Some construction joints provide leakage.	
STRUCTURAL CRACKING	No structural cracks were observed.	
VERTICAL & HORIZONTAL ALIGNMENT	Good alignment.	
MONOLITH JOINTS	Some leakage through joints.	
CONSTRUCTION JOINTS	Surface erosion is greater along horizontal construction joints.	
STAFF GAGE OF RECORDER	At lock.	
		CHEET

SHEET 3

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	N/A	
ANY NOTICEABLE SEEPAGE	N/A	
STAFF GAGE AND RECORDER	N/A	
DRAINS	N/A	

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	See sheets 2 and 3.	
APPROACH CHANNEL	Width of river.	
DISCHARGE CHANNEL	Width of river.	
BRIDGE AND PIERS	None.	

GATED SPILLWAY

I

I

I

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Gated spillway not operable. Awaiting repairs.	
APPROACH CHANNEL	North bank of river.	
DISCHARGE CHANNEL	North side of river adjacent to powerhouse	
BRIDGE AND PIERS	None.	
GATES AND OPERATION EQUIPMENT	Electrically operated gates.	

OUTLET WORKS
THROUGH POWERHOUSE

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT		
INTAKE STRUCTURE		
OUTLET STRUCTURE		
OUTLET CHANNEL		
EMERGENCY GATE		

DOWNSTREAM CHANNEL

		Control of the Contro
DEBRIS, ETC.)	Unobstructed, no debris.	
SLOPES No	Not a problem.	
APPROXIMATE NC. OF HOMES AND POPULATION The	Crescent dam is 10 miles downstream. A significant number of residential and commercial structures adjacent to tiver. This reach of river is highly used for recreational purposes such as boating.	iver.

Regulated Invested In

ITEM	REMARKS
AS-BUILT DRAWINGS	See this report
REGIONAL VICINITY MAP	See this report
CONSTRUCTION HISTORY	See this report
TYPICAL SECTIONS OF DAM	See this report
OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS	See this report
RAINFALL/RESERVOIR RECORDS	

	104
ITEM	REMARKS
DESIGN REPORTS	None available
GEOLOGY REPORTS	None available
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None available
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None available
POST-CONSTRUCTION SURVEYS OF DAM	None available
BORROW SOURCES	

	Comment of the Commen
ITEM	REMARKS
MONITORING SYSTEMS	See New York State Department of Transportation for information and this report.
MODIFICATIONS	See New York State Department of Transportation for information and this report.
HIGH POOL RECORDS	See New York State Department of Transportation for information and this report.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None available.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	No data available.
MAINTENANCE OPERATION: RECORDS	See New York State Department of Enviromental Conservation for information and this report.

CHECK LIST HYDROLOGIC & HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTERISTICS:		2285 s	q. mi.
	TOP NORMAL POOL (STORAGE CAPAC		213.33	w/flashboards* w/o flashboards
ELEVATION	TOP FLOOD CONTROL POOL (STORAGE	E CAPACITY):		
ELEVATION	MAXIMUM DESIGN POOL:		211	
ELEVATION	TOP DAM:		219	
CREST:				
a.	Barge Canal Datum Elevation			w/flashboards* w/o flashboards
b.	Type	Crest shaped.		
c.	Width	See plan in t	his repo	ort.
d.	Length	1900 total bo	th sect	ions
e.	Location Spiriover	Entire width	of rive	r
f.	Number and Type of Gates			
OUTLET WO	Туре	Through hydro	station	and locks.
b.	Location			
c.	Furtance miles (2)			
d.	EXIT Inverts			
e.	Emergency Draindown Facilities			
HYDROMETE	OROLOGICAL GATES:			
a.	Type			
b.	Location			
c.	Location Records	-		
	ON-DAMAGING DISCHARGE:		ed in M	av.

APPENDIX B

PREVIOUS INSPECTION REPORTS/RELEVANT CORRESPONDENCE

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

William C. Hennessy, Commissioner

Region 1 Office: 84 Holland Avenue, Albany, New York 12208

September 13, 1979

Neal F. Dunlevy, P.E. Stetson Dale Bankers Trust Building Utica, NY 13501

> Re: Information on Crescent and Vischer Ferry Dem

Dear Mr. Dunlevy:

In answer to your letter of August 29, 1979, we offer the following. The responses listed are numbered in the order of your questions.

- In the 1909 Report of the State Engineer and Surveyor, we found the enclosed photographs of the dam construction. We didn't find any narrative information on construction of the dams. Our records indidate the dam at Vischer Ferry was completed in 1913; the dam at Crescent was completed in 1912.
- 2. At normal pool elevation, both dams discharge 4342 C.F.S. (2 units)
- 3. Enclosed find graphs showing the Annual Mean High Water Elevations of Guage 137 which is of the upper end of Lock 7Erie (1916 to present) Mr. Elliott said that the only time that he saw the water over the Grescent Powerhouse forebay walls was in March 1968. (7 ft. over crest of dam). We have no gauging station at this location.
- 4. None
- 5. None
- 6. Crescent Dam When water is 2.0 feet above masonry dam and the flash-boards are on the dam the taintor gate is open 9.0 feet, provided no ice is in the river. When the water recedes to 1.0 feet above masonry dam, the taintor gate is closed.

Vischer Ferry Dam - When the water is 2.5 feet above the masonry dam and the flashboards are on the waste gates are open. When the water recedes to 2.5 feet above masonry dam the gates are closed. Flashboards are installed on both dams by May 1 or when the flow is below 5,000 C.F.S. They are removed at the close of the navigable season in December.

Neal F. Dunlevy, P.E. September 13, 1979 Page Two

7. Attached find a set of contract plans (Contract D95985) and specifications for the rehabilitation of including concrete replacement, installation of sluice gates and trash gate and other miscellaneous work to dam 3 at Vischer Ferry Dam — (Canal reference No. M79—1) Contract letting date is September 13, 1979.

If we can be of any further assistance, please feel free to contact us.

Sincerely,

John Louch ...

John Hulchanski (**)
Regional Waterways Engineer

JH: jm Attachment

cc: J. R. Stellato, Waterways Subdiv., Bldg. 5, Rm. 216
W. Elliott, Superintendent, Hydroelectric Powerplants

BARGE CANAL, CONTRACT NO. 14, View of the castern portion of the dam near Crescent.

BARGE CANAL, CONTRACT NO. 11.

View at Vischer's Ferry, showing afternate completed sections of western portion of dam and lock under construction.

4 + 75. + +11 3MAC + + + + Annual Meen High Wiet - Elevative BS YOU + 1.0 30 208+ 206+

イ

DAME - FEB. 1978 MRDE BY- J. R. GATEMAN

Herrar Fren Hich WATER ELEVATION

F

APPENDIX C
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PROJECT NAME NEW YORK STATE DAM INSPECTION DATE 7.31.79

INDUSECT MOHAWK RIVER DRAINAGE BASIN PROJECT NO. 2305

DEPTH - AREA- DURATION RELATIONSHIP * DRAWN BY JPG

AREA	DURATION	DEPTH	% OF INDEX	
200 5a MI	6 HR	16.0	73	
	12 HR	19.4	89	
	24 HR	21.9	100	- PMF INDEX RAINFALL
	48 HK	24.5	112	
200 Sanı	72 HR	25.9	118	
1000 Sa m	6 HR	11.5	53	
	12 HR	14.8	60	
	24 He	17.3	79	
	48 Hz	20.0	71	
1000 SQ MI	72 HR	21.0	96	
5000 SQ MI	6 HR	1.0	32	
	12 He	10.3	47	
	24 He	12.5	57	
	48 HR	15.1	69	
5000 Sa Mi	72 He	16.3	74	
10000 Sa Mi	6 HR	5.3	24	
	12 He	8.6	39	
	4He	10.5	48	
	48 Hz	12.8	58	
10000 5a MI	72 He	14.0	64	

* FROM HYDROMETEOROLOGICAL REPORT Nº 51 SEPT 1976

PMF	DURATION	% OF INDEX
	6 HR	37.5
	12 HR	52.0
	24 HR	625
	48 HR	73.5
	72 HR	79.0

Table 6.1

MOHAWK BASIN ABOVE LITTLE FALLS, N.Y.
SUBBASIN CHARACTERISTICS

Subbasin	Area	Storage Area	Coeff	ark icients	Snyd Coeffi	cients	Recess Parame	
No.	(m12)	(\$ + 1.0)	(hr)	(hr)	(hr)	(-)	(cfs)	RTIOR (-)
1	150	1.02	15.0	7.3	12.3	.75	1900	1.3
2	7	1.00	7.0	4.5	5.9	.69	50	1.3
3	289	1.04	17.6	8.2	14.4	.76	4100	1.3
4	93	1.06	13.4	7.0	11.2	.74	1100	1.3
5	158	1.17	15.7	8.2	13.2	.75	2100	1.3
6	375	2.32	22.6	15.9	20.0	.68	5700	1.3
7	7	1.13	7.1	4.9	6.1	.66	50	1.3
8	53	1.03	11.6	6.2	9.7	.73	550	1.3
9	121	1.01	14.2	7.0	11.6	.75	1450	1.3
10	45	1.10	11.3	6.4	9.5	.72	500	1.3
11	27	1.03	9.8	5.6	8.2	.71	280	1.3
12	23	1.04	9.5	5.5	8.0	.72	250	1.3

MOHAWK BASIN ABOVE LITTLE FALLS, N.Y. SUBBASIN 3-HOUR UNIT HYDROGRAPHS

15	266	1275	625	359	318	8	క్ల క	32													
=	291 970	1449	277	447	150	87	8	3 =													
10	354	1995	1530	920	366	227	Ξ	\$ 4 8 4	34	12											
6	632	3950 4969	4646	3395	1422	920	595	385 249	191	104	8										
80	1409	2325	1850	1134	683	261	091	8 6	37	23											
1	136 394	425 257	137	23	25	=	9														
9	478 1746	3448	9969	8020	7813	6642	5495	3762	3113	2575	1763	1459	666	826 684	299	387	320	265	181	124	288
2	2192	4083 5474	5782	4838	23400	1620	1118	532	367	253	120	82	5								
4	527 1833	3244	3513	2445	100	660	426	178	115	74	•										
6	953 3354	6314	9963	9342	1600	3452	2383	136	28	541	258	178	3	,							
2	152	439	122	58	3 7	:-															
-	698	5771	5762	4483	1945	1281	84	35.6	241	159	8 8										
Time (hrs)	e 9	6.2		2	7	22	8	E %	3 8	24	Ç Q	<u>ت</u> کا	27	98	88	69	72	8 8	4 6	28	282

All flows in cfs/unit rainfall.

Table, 6.3 MOHAWK BASIN ABOVE LITTLE FALLS, N.Y. INITIAL FLOW AND INFILTRATION PARAMETERS

December, 1948 Initial Initial Constant Initial Constant Flow (cfs) Loss (in) Loss (in/hr) Flow (cfs) Loss (in) Loss (in/hr)	itial Constant Initial Initial Solin Solin Constant Initial Initial Solin Constant Solin Constan	Constant Initial Initial Loss (in/hr) Flow (cfs) Loss (in)	June, 1972 Initial Loss (in)		Const Loss (1	nhr)	SPF and Initial Flow (cfs)	Initial Cons Loss (in) Loss	Constant Loss (in/hr
90 .50 .045 250 0.25	.045 250 0.25	45 250 0.25	0.25			.045	250	1.0	.075
7 .50 .045 7 2.00	7	7	7 2.00	2.00		.075	1	2.0	.075
200 .50 .040 540 2.00	. 040 540	540		2.00		.125	540	2.0	.125
50 .50 .040 140 2.00	.040	140		2.00		.125	140	2.0	.125
100 .50 .040 265 2.00	.040 265	592		2.00		. 100	592	2.0	.100
280 .25 .055 0.10	.055	725		0.10		.040	725	1.0	.075
7 .25 .045 7 0.10	.045	1	7 0.10	0.10		.020	7	1.0	520.
25 .25 .045 72 0.10	.045 72	72		0.10		.040	72	1.0	.075
70 .25 .045 190 0.10	.045	190		01.0		.045	190	1.0	.075
20 .20 .045 60 0.35	.045 60	9 90		0.35		.075	09	2.0	.075
10 .10 .040 32 0.30	.040 32	32		0.30		.050	32	1.0	.075
10 .10 .040 27 0.30	.040	27		0.30		090.	22	1.0	.075

Table 6.4

MOHAWK BASIN ABOVE LITTLE FALLS, N.Y.

ROUTING REACH CHARACTERISTICS

R

I

Transaction of the

			Muskir Parame		
Reach No.	Length (mi)	Slope (ft/mi)	NSTEPS (-)	(hrs.)	(-)
1001-1002	5.2	8.7	1	1.0	.3
1002-1003	7.8	2.1	. 2	1.4	.3
1003-1004	5.2	2.1	1	2.0	.2
1004-1005	13.1	2.1	2	2.4	.2
1005-1010	3.9	2.1	1	1.5	.2
1006-1007		**	DUMMY LINK	**	
1007-1008		**	DUMMY LINK	**	
1008-1009	23.1	11.9	4	1.1	.3
1009-1010	4.4	14.1	1	0.7	.3
1010-1011	5.7	2.1	1	2.1	.2
1011-1012	4.6	2.1	1	1.7	.2

Table 6.5

DELTA RESERVOIR

Storage-Discharge Relationship

(ft. above MSL)	Storage (acre-ft)	Discharge (cfs)
550	62330	0
550.5	64170	337
551	65540	954
551.5	66920	1753
552	68750	2698
552.5	69900	3771
553	71500	4957
555	76770	10666
561.8	94617	30000

Initial Storage Level (acre-ft)

December 1948	(not simulated)
June 1972	64170
SPF and Transposed Agnes	62330

Table 6.6
HINCKLEY RESERVOIR
Storage-Discharge Relationship

I

Elevation (ft. above MSL)	Storage (acre-ft)	Discharge (cfs)
1225	157900	0
1225.5	161100	474
1226	164540	1340
1226.5	167750	2462
1227	170960	3790
1227.5	174400	5297
1230	190670	14982
1239	211515	50000

Initial Storage Level (acre-ft)

December 1948	(not simulated)
June 1972	157900
SPF and Transposed Agnes	157900

Table .6.7
MOHAWK BASIN ABOVE LITTLE FALLS, N.Y. SUBBASIN RAINFALL AND PEAK FLOWS

	0	December, 1948	1948		June, 19	1972	SPF		Tra	Transposed Agnes	Agnes
Subbasin	Rainfall	Excess	Peak Flow (cfs)	Rainfal	Excess	Peak Flow (cfs)	Rainfall (in)	Peak Flow (cfs)	Rainfa	T (in) Excess	Peak Flow (cfs)
-	3.69	1.51	9985	4.14	2.50	10796	12.0	47388	11.3	8.1	30707
2	3.55	1.46	351	3.99	1.71	634	13.5	\$259	10.7	5.7	1095
	3.38	1.03	5125	3.94	1.28	10536	11.4	69424	10.7	3.9	25050
•	3.62	1.37	1592	4.17	1.46	4670	12.4	30463	10.7	3.9	8906
5	3.62	1.4	4373	3.76	1.33	6209	12.0	44203	11.9	1.6	30068
9	5.45	2.40	1916	4.07	2.40	13693	11.2	63107	14.0	10.7	69847
1	4.96	2.47	475	2.53	1.82	572	13.5	4023	12.7	9.5	2227
80	4.34	2.19	3132	2.57	1.26	2627	12.8	21441	12.4	9.5	13350
•	4.41	1.95	4417	3.59	1.83	5471	12.2	40602	13.3	10.0	30669
10	3.28	1.05	ונוו	3.28	0.87	1266	12.9	18330	12.6	8.9	11482
=	3.55	1.40	888	2.40	1.14	628	13.2	12558	13.3	10.2	8152
12	3.72	1.60	808	2.28	1.24	109	13.3	10996	13.7	10.6	7269

Table 6.8

MOHAWK BASIN ABOVE LITTLE FALLS, N.Y. SIMULATED PEAK FLOWS AT CONTROL POINTS (All Flows in cfs)

Control	Description	December 1948	June 1972	SPF	Transposed Agnes	Drainage Area (m12)
1001	Mohawk R. at Delta Dam, USGS 3360	651R	6335 ^R	28630	21819	150
1002	Mohawk R. at Rome, NY above Barge Canal	869	6249	28733	22539	157
1003	Mohawk R. at Oriskany, NY	5720	17016	83307	47381	446
1004	Mohawk R. at Utica, NY	8317	2002	11095	54269	539
1005	Mohawk R. at Ilion, NY	12254	22693	112525	66034	269
9001	W. Canada Cr. below Hinckley Reservoir, USGS 3440	300 ^R	0099	35759	45461	375
1001	W. Canada Cr. at Trenton Falls, NY	, 211	6648	35759	45511	382
1008	W. Canada Cr. below Cincinnati Cr.	3848	1114	36264	46977	435
1009	W. Canada Cr. at Kast Bridge, USGS 3460	8054	9408	58143	58538	956
0101	Mohawk R. below W. Canada Cr.	16903	31438	151042	125403	1298
1101	Moháwk R. at Little Falls, NY	17258	31204	150221	125863	1325
1012	Mohawk R. at Little Falls, USGS 3470	17413	31132	149572	126143	1348

R = Assumed Regulated Discharge

Table 6.11

MOHAWK RIVER, LITTLE FALLS, N.Y. TO MOUTH SUBBASIN CHARACTERISTICS

Subbasin No.	Area (mi ²)	Storage Area (% + 1.0)	Coeff TC (hr)	ark icients R (hr)	Snyd Coeffi LAG (hr)	er cients CP (-)	Recess Parame QRCSN (cfs)	
13	261	1.01	17.1	7.9	14.0	.77	3650	1.3
14	30	1.01	10.0	5.6	8.3	.71	320	1.3
15	35	1.03	10.5	5.9	8.9	.73	400	1.3
16	151	3.25	18.6	17.9	17.4	.59	3500	1.3
17	59.2	1.01	11.9	6.3	10.0	.74	600	1.3
18	13.1	1.08	8.2	5.2	7.0	.69	100	1.3
19	72	1.00	12.4	6.4	10.3	.74	700	1.3
20	55	1.05	11.8	6.4	9.9	.74	550	1.3
21	12.7	1.39	8.6	6.3	7.4	.65	120	1.3
22	23	1.12	9.6	5.9	8.2	.70	250	1.3
23	84	1.07	13.1	6.9	11.1	.74	870	1.3
24	39.3	1.18	11.1	6.6	9.4	.70	420	1.3
25	186.5	1.14	16.2	8.2	13.4	.74	2500	1.3
26	10.2	1.00	7.7	4.7	6.3	.69	70	1.3
127	78	1.09	13.0	6.9	10.9	.74	800	1.3
27	491	1.19	20.8	9.9	17.2	.76	6800	1.3
28	78	1.02	12.8	6.6	10.5	.74	800	1.3
29	87	1.03	13.1	6.8	11.0	.75	920	1.3
30	103	1.90	15.6	11.1	13.8	.67	1150	1.3
31	28	1.06	10.0	5.8	8.3	.71	300	1.3
32	32	2.14	11.7	10.2	10.4	.61	350	1.3
33	38	1.02	10.7	5.9	9.0	.73	400	1.3
34	108	1.39	14.8	8.8	12.6	.71	1250	1.3
35	33	1.07	10.4	6.0	8.9	.73	370	1.3

AD-A077 484

NEW YORK STATE DEPT OF ENVIRONMENTAL NATIONAL DAM SAFETY PROGRAM. VISCHER SEP 79 J B STETSON

UNCLASSIFIED

OACH-51-79-C0001

NL

OACH-51-79-C0001

NL

OACH-51-79-C0001

OACH-51-7

"	
12	
•	
ė.	
_	
ē	
•	
-	
-	
_	
Tab	
-	
_	

MOHAWK BASIN, LITTLE FALLS, N.Y. TO MOUTH SUBBASIN 3-HOUR UNIT HYDROGRAPHS

	24	309 1739 1739 1310 1310 1310 1310 1310 1310 1310 13
	2	496 1723 3026 3645 3151 1380 889 572 368 63 63 41
	22	249 10256 10555 10555 135 135 135 177
	12	152 674 674 676 676 78 78 78 78 78 78 78 78 78 78 78 78 78
)	02	2550 2350 2550 2550 1204 177 110 68 68 26 26 26
	19	1696 2893 3313 3313 2660 1679 647 402 249 96 37
	18	195 170 170 185 186 186 186 186 186 186 186 186 186 186
	17	2536 2536 2767 2113 1296 183 113 269 269 269 269 269 269 269 269
3	16	231 2535 3395 3395 3395 3395 3395 3395 3395
	15	1124 1752 1644 1089 134 134 17 17 17 17 17 17
	=	33 1585 11585 172 172 190 190 190 190 190 190 190 190 190 190
	13	933 3275 6134 6264 1971 1971 1988 133 90 90
ř	Time (hrs)	E & & STER C \$ 2 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		101

All flows in cfs/unit rainfall.

35	311 1053 1053 1023 613 367 79 79 79 79
*	434 1535 2851 3771 3855 3125 2223 1117 792 562 282 282 282 282 282 282 282 283 283 28
8	350 1789 1789 1789 1208 718 718 725 253 150 89 89 53
32	162 1013 1013 1013 1013 1013 1013 1013 101
31	289 1304 1304 1304 167 288 28 20 34 20 34
30	313 2148 22967 3259 2239 1708 1302 993 758 578 114 114 87 66 50
62	525 1820 3185 3821 3220 2209 2209 230 1405 894 569 362 230 147 93 59
88	502 1735 2998 3513 2912 1192 750 472 297 118 74
12	1080 3848 7363 10879 13431 14333 13446 10867 7999 5889 4335 3191 2349 11729 11729 1273 937 690 508 374 275 203
127	469 1630 2850 3405 1958 11262 1958 1140 91 58 38
92	183 548 560 108 80 17 8 15 8
22	2446 4579 6221 6721 6721 6721 5814 4204 2907 2010 1389 961 664 459 317 219 1152 105
E	6655 545 545 545 545 55 55 55 55 55 55 55
3	66556555555555555555555555555555555555

MOHAWK RIVER, LITTLE FALLS, H.Y. TO MOUTH INITIAL FLOW AND INFILTRATION PARAMETERS

	56	sember, 1948			June, 1972		SPF and	Transposed	Agnes
Subbasin No.	Initial Flow (cfs)	Initial Loss (in)	Constant Loss (1n/hr)	Initial Flow (cfs)	Initial Loss (in)	Constant Loss (1n/hr)	Initial Flow (cfs)	Initial Loss (in)	Constant Loss (in/hr
13	180	0.10	0.04	480	0.10	0.05	480	1.0	0.075
=	12	0.10	9.04	37	0.10	0.05	37	1.0	0.075
15	15	0.10	90.0	\$	0.10	0.05	\$	1.0	0.075
91	8	0.40	90.0	250	0.50	0.05	250	1.0	0.075
11	82	0.40	9.0	88	0.50	90.0	83	1.0	0.075
82	•	0.40	0.04	*	0.50	0.05	±	1.0	0.075
19	36	0.40	0.04	103	0.50	90.0	103	1.0	0.075
02	92	0.40	0.04	75	0.50	0.05	75	1.0	0.075
12	80	0.40	0.05	13	1.30	0.05	13	1.3	0.075
22	.01	0.40	0.05	22	1.30	0.05	27	1.3	0.075
8	4	0.40	0.05	125	1.00	0.03	125	1.0	0.075
77	13	0.50	0.055	. 15	2.00	0.03	15	2.0	0.075
52	120	0.50	0.05	320	5.00	0.013	320	2.0	0.075
56	&	0.50	0.05	01	1.50	0.05	9	1.5	0.075
121	. 42	0.50	0.055	115	1.50	0.05	115	1.5	0.075
12	380	0.50	0.055	1010	1.25	0.01	0101	1.25	0.075
. 82	9	0.50	0.05	115	1.25	٥.01	115	1.25	0.075
62	. 94	0.50	9.04	132	1.10	0.04	132	=	0.075
8	22	0.10	0.09	.091	0.70	0.05	160	1.0	0.075
31	=	0.10	90.0	34	0.70	0.05	34	1.0	0.075
32	13	0.10	0.05	9	0.25	0.04	9	1.0	0.075
33	11	0.10	0.05	64	0.25	90.0	49	1.0	0.075
*	8	0.10	9.09	170	0.25	0.04	170	1.0	0.075
35	13	0.10	0.05	\	0.25	0.04	=	1.0	0.075

Table 6.14

MOHAWK RIVER, LITTLE FALLS, N.Y. TO MOUTH

ROUTING REACH CHARACTERISTICS

				ingum meters	
Reach No.	Length (m1)	Slope (ft/mi)	NSTEPS (-)	(hrs.)	(-)
1012-1015	2.3	2.1	1	0.9	.2
1013-1114		**	DUMMY LINK	**	
1114-1014	(Kyser and	d E. Canada Lakes	3) 1	14.0	.0
1014-1015	1.4	14.3	1	1.0	.2
1015-1016	6.6	2.1	1	2.5	.2
1016-1018	2.5	2.1	1	1.0	2
1017-1018		**	DUMMY LINK	**	
1018-1019	3.3	2.1	1	1.2	.2
1019-1020	3.1	2.1	1	1.2	.2
1020-1023	8.3	2.1	2	1.6	.2
1021-1022		**	DUMMY LINK	**	
1022-1023	8.5	41.5	1	1.4	.3
1023-1029	5.5	2.1	1	2.5	.2
1024-1025	12.2	27.9	1	1.3	.3
1025-1026		**	DUMMY LINK	**	
1127-1027	33.0	11.8	4	1.4	.3
1027-1028	6.6	9.1	1	1.2	.2
1028-1029	15.2	15.3	1	2.1	.2
1029-1030	5.6	2.1	1	2.1	.2
1030-1031	3.4	2.1	1	1.3	.2
1031-1032	5.6	2.1	1,	2.1	.2
1032-1033	8.0	2.1	2	1.5	.2
1033-1034	9.5	2.1	2 .	1.8	.2
1034-1035	10.2	13.1	1	1.5	.2

Table 6.15
SCHOHARIE RESERVOIR
Storage-Discharge Relationship

Elevation (ft. above MSL)	Storage (acre-ft)	Discharge (cfs)
1130	60660	. 0
1131	61750	3480
1132	62840	9890
1133	63920	18160
1134	65010	27960
1135	66100	39080
1139.6	71091	90000

Initial Storage Level (acre-ft)

December 1948	15530
June 1972	60660
SPF and Transposed Agnes	60660

Table 6.16

MOHAWK BASIN, LITTLE FALLS, N.Y. TO MOUTH SUBBASIN RAINFALL AND PEAK FLOWS

Agnes	Flow (cfs)	68095	9226	10565	27973	18047	4895	20949	15206	3973	7538	22043	9154	29251	2076	12464	81426	23896	28406	22887	8521	7702	11416	19529	4479
ansposed	11 (4n) Excess	10.7	10.8	10.5	10.8	11.2	12.2	10.7	10.0	9.8	8.9	10.0	7.4	7.0	7.2	8.9	8.1	11.5	6.6	8.5	8.2	8.2	8.0	5.9	4.1
T	Rainfa	13.9	14.0	13.6	14.0	14.3	15.3	13.9	13.2	11.6	11.9	13.1	1.0	===	=:	10.7	12.0	14.8	12.9	11.4	=:	10.8	10.5	8.4	8.9
	Flow (cfs)	70974	13765	15449	27889	23618	6875	27614	21927	5981	10655	30114	15973	52595	5747	28157	103558	29052	31436	27188	12756	10381	16684	32452	14498
SPF	Rainfall (in)	11.5	13.1	13.1	12.0	12.7	13.4	12.6	12.8	13.4	13.3	12.5	13.0	11.8	13.4	12.5	10.9	12.5	12.4	12.3	13.2	13.1	13.0	12.3	13.1
972	Peak Flow (cfs)	1118	820	756	1810	1490	910	1955	1096	366	629	1500	2740	16152	446	2573	0299	1412	1173	2202	791	426	518	1175	404
June, 1	Excess	1.65	1.59	1.27	1.48	1.45	1.78	1.58	1.24	1.68	1.69	1.39	4.59	3.99	1.73	1.78	1.57	1.44	1.03	1.51	1.28	0.61	0.58	0.60	0.54
	Rainfa	2.52	2.03	1.69	2.76	5.56	2.90	2.67	2.43	3.36	3.36	2.68	7.16	6.18	3.85	3.89	3.08	2.63	2.40	2.88	2.64	2.31	2.27	2.39	1.59
1948	Flow (cfs)	8000	1435	953	3731	2165	429	3611	2498	115	957	3364	2469	10185	202	2589	12611	3832	8609	6387	2090	1864	2576	91/9	3170
ecember.	T (fn)	2.24	2.14	1.17	1.83	1.56	1.58	2.04	2.13	2.11	2.05	1.60	2.97	3.07	1.76	1.40	1.40	2.01	3.01	3.17	3.03	2.68	2.68	.2.84	3.46
0	Rainfa	4.53	3.76	3.43	4.34	3.98	4.07	4.53	4.40	5.19	5.12	4.54	6.03	5.92	4.46	4.46	4.48	4.47	5.24	5.76	5.59	5.24	5.24	5.40	5.85
	Subbasin	13	*	15	16	11	18	19	20	12	22	53	24	52	56	127	27	88	53	30	31	32	33	34	35

Table 6.17

MOHAWK RIVER, LITTLE FALLS, N.Y. TO MOUTH SIMULATED PEAK FLOWS AT CONTROL POINTS (All Flows in cfs)

E. Canada Cr. at Bolgeville, N.Y. E. Canada Cr. at East Creek, USGS 3480 Mohawk R. below E. Canada Cr. Otsquago Cr. at Fort Plain, USGS 3490 Mohawk R. Below Caroga Cr. Mohawk R. Below Canajoharie Cr. Mohawk R. Below Canajoharie Cr. Mohawk R. at Sprakers, N.Y. Cayadutta Cr. at Gloversville, N.Y. Cayadutta Cr. at Johnstown, N.Y. Mohawk R. Below Cayadutta Cr. Batavia Kill at Windham, N.Y. Schoharie Cr. Below Batavia Kill	8000 6907 23401 25026 2156 26324 29087 30862 511 1467	8711 5615 36010 36651 1490 37158 37673 37899 366 1045	70974 46206 183761 194176 23618 195199 196138 196354 5981	68095 52369 176014 196968 18047 203707 212635	261 291 1674 1825 59.2 1897.3 1969.3 12.7
at East Creek, USGS 3480 w E. Canada Cr w Caroga Cr. t Fort Plain, USGS 3490 w Otsquago Cr. w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. t Windham, N.Y. Below Batavia Kill	6907 23401 25026 2156 26324 29087 30862 511 1467 33528	5615 36010 36651 1490 37158 37673 37899 366 1045	46206 183761 194176 23618 195199 196138 196354 5981	52369 176014 196968 18047 203707 212635	291 1674 1825 59.2 1897.3 1969.3 12.7
w E. Canada Cr w Caroga Cr. t Fort Plain, USGS 3490 w Otsquago Cr. w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. t Windham, N.Y.	23401 25026 2156 26324 29087 30862 511 1467	36010 36651 1490 37158 37673 37899 366 1045	183761 194176 23618 195199 196138 196354 5981	176014 196968 18047 203707 212635	1674 1825 59.2 1897.3 1969.3 2024.3
w Caroga Cr. t Fort Plain,USGS 3490 w Otsquago Cr. w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. t Windham, N.Y. Below Batavia Kill	25026 2156 26324 29087 30862 511 1467	36651 1490 37158 37673 37899 366 1045	194176 23618 195199 196138 196354 5981	196968 18047 203707 212635 218553	1825 59.2 1897.3 1969.3 2024.3
or Fort Plain, USGS 3490 w Otsquago Cr. w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. it Windham, N.Y. Below Batavia Kill	2156 26324 29087 30862 511 1467,	1490 37158 37673 37899 366 1045	23618 195199 196138 196354 5981	18047 · 203707 212635 218553	59.2 1897.3 1969.3 2024.3
w Otsquago Cr. w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. it Windham, N.Y. Below Batavia Kill	26324 29087 30862 511 1467, 33528	37158 37673 37899 366 1045 38595	195199 196138 196354 5981 16289	203707 212635 218553	1897.3 1969.3 2024.3 12.7
w Canajoharie Cr. prakers, N.Y. at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. t Windham, N.Y. Below Batavia Kill	29087 30862 511 1467, 33528	37673 37899 366 1045 38595	196138 196354 5981 16289	212635	1969.3 2024.3 12.7
at Gloversville, N.Y. at Johnstown, N.Y. m Cayadutta Cr. it Windham, N.Y. Below Batavia Kill	30862 511 1467, 33528	37899 366 1045 38595	196354 5981 16289	218553	2024.3
at Gloversville, N.Y. at Johnstown, N.Y. w Cayadutta Cr. t Windham, N.Y. Below Batavia Kill	511 1467 , 33528	366 1045 38595	5981 16289		12.7
at Johnstown, N.Y. M Cayadutta Cr. It Windham, N.Y. Below Batavia Kill	1467 , 33528 2460	1045 38595	16289	3973	
M Cayadutta Cr. it Windham, N.Y. Below Batavia Kill	33528	38595		11498	35.7
Below Batavia Kill	2460		195513	229900	2144
Below Batavia Kill		2740	15973	9154	39.3
at Dratteville 11555 3500		18784	64462	37654	225.8
at Lights and Stores and		19025	66414	39513	236
Outflow at Gilboa Dam		21070	87488	51789	314
Below Cobleskill Cr.		26334	173316	131666	805
at Burtonsville, USGS 351		26797	180196	149922	883
w Schoharie Cr.		64118	293924	379254	3114
Mohawk R. at Amsterdam, N.Y.		64116	297861	395809	3217
ranesville, N.Y.	62612	64026	297090	397365	3245
otterdam Jct., N.Y.	63986	63525	295736	. 398075	3277
chenectady, N.Y.	65146	63339	293535	396922	3315
1scher Ferry, N.Y.	99569	63320	291113	397577	3423
ohoes, 11565, 3575	70486	63291	290206	397659	3456
Mohawk R. at Cranesville, N.Y. Mohawk R. at Rotterdam Jct., N.Y. Mohawk R. at Schenectady, N.Y. Mohawk R. at Vischer Ferry, N.Y.	62612 63986 65146 69566 70486	64026 63525 63339 63320 63291	297090 295736 293535 291113 290206		397365 · 398075 396922 397577

EXCEDENCE FREQUENCY PER 100 YRS 80 10 60 50 40 30 20 10 2 1 .5 .2 .1 .05 .02.01 PMF = 578,300 CF5 2 8 EXCEEDENCE INTERVAL IN YES VISCHER'S FERRY DAM DISCHARGE - FREQUENCY
_CURVE

8.23.79

2305

STETSON · DALE

```
* FLUUD FLUM PREMUENCY ANALYSIS *
 * PRELIMINARY ----- JUNE 1976 *
O**TITLE CARD(S)**
         MUMARK HIVER AT COMDES, N.Y.
 TT
         1918-1975
TT
         D.A. = 3456 SQ. MI.
U**JOB CARD(8)**
     IPPC ISKFX IPHOUT
                             IFMT
                                     INYR
                                            IUNIT
0**STATION IDENTIFICATION **
ID 01357500 MUMANK HIVER AT CUHDES, N.Y.
D**GENERALIZED SKEWA*
GS
             .70
0 ** SYSTEMATIC FLOUD PEAKS **
     58 GR CARDS SUPPLIED
O. END OF IMPUT DATA.
```

0

	PHEL	IMINA	HY HES	ULTS						
					וטוא ס	HANK HI	VER AT	CUHUES, N.	٧.	
*	****			YZED	****	*****	*****		*******	**
-	• • • •		ANAL	1220	•••	• • • • • •	WATER	PEREU DATA	MEDIAN	• *
	MON	DAY	YEAR	FLUA		RANK	YEAR	FLO*	PLOT POS	
			1644	7504			IEAN	7604	PCC1 PUS	
*	0	0	1918	45400.	,	1	1964	145000.	.0120	
*	0	U	1919	35000.		2	1936	130000.	.0291	
	o	0	1920	64500.		1	1938	102000.	.0462	
	0	- 0	1921	47100.			1956	100000.	.0634	
	0	0	1922	56400.		5	1949	86300.	.0805	
	0	v	1923	58500.		6	1960	H3300.	.0976	
	0	0	1924	71500.		7	1948	82700.	.1147	
	0	0	1925	57500.		8	1974	80900.	.1318	
*	0	0	1920	52000.	•	9	1951	77300.	.1490	*
	0	0	1927	54800.		10	1975	74200.	.1061	
	. 0	0	1928	54800.		11	1950	72800.	.1832	
*	0	0	1929	72000.		12	1929	72000.	.2003	
*	0	0	1950	58500.		15	1961	71900.	.2175	
	0	U	1931	35000.		14	1924	71500.	.2346	
	0	0	1932	41000.		15	1920	64500.	.2517	
	0	U	1933	47600.		10	1959	64400.	.2088	
	0	. 0	1934	45200.		17	1943	65900.	.2860	
	0	0	1435	61100.		18	1440	65000.	.3031	
	0	0	1450	130000.		19	1965	61900.	.3202	
	0	0	1957	48900.		50	1965	01600.	. 3373	
	. 0	0	1958	102000.		15	1935	61100.	,3545	
	0	U	1454	51000.		55	1952	60800.	.3710	
	•	•	1000	****		77				

-						
4						
-		41 49100.	* 24		.4058	
-		42 47200.	* 25	1923 5830		•
•		63900.	. 26	1972 5810		•
·		44 46000.	. 27		4572	
•		45 47500.	* 28	1954 5680		
4			* 29	1922 5640		
		147 51300. 148 82700.	* 30	1970 5640		<u> </u>
3		49 86300.	* 31	1968 5586 1973 5586		•
		50 72800.	* 32	1928 5486		
1		77300.	* 34	1927 5486		
9		52 60800.	• 35	1926 526		*
		53 59000.	* 56	1955 5150		
		54 56800.	* 37			
•		55 51500.	* 38	1947 5130 1939 5100		•
•		156 100000.	* 39	1941 491		•
		23000.	* 40	1937 489		
		39700.	* 41	1933 476		
•		59 64400.	. 42	1945 475		
		60 83300.	* 43	1942 472		*
		71900	* 44	1921 471		
-		62 61900.	4 45	1944 460		
	the same of the sa	63 61600.	* 46	1918 454		;
1		164 143000.	* 47	1934 452		
		65 27800.	* 48	1969 423		
-		66 32700.	* 49	1932 410		*
4		67 24000.	* 50	1971 406		;
1		68 55000.	* 51	1958 3976		
	and the second s	69 42300.	* 52	1930 385		
T		70 56400.	* 53	1919 3500		
I	-	71 40000.	* 54	1931 3300		
	The second secon	72 58100.	* 55	1966 327		•
		75 55800.	* 56	1965 2780		
I		74 60900.	* 57	1967 246		•
		75 74200.	* 58	1957 230		•
_	*********	*********	********	*********	**********	
1						1
· · · · · · · · · · · · · · · · · · ·						
1	PRELIMINARY	RESULTS				
	-FREWUENCY CU		O MUHANK HIY	ER AT CUMUE	S. N.Y.	
51	*********	**********	********	*********	**********	
	* PEAK	FLUAS	•	* CUNFI	DENCE LIMITS	•
,			. EXCEEDANCE			*
•	* CUMPUTED	PHUUABILITY	* PHUHABILIT	Y * .05 LI	MIT .95 LIMIT	•
_	**********		*********			*
1	. 182000.	196000.	* .002	23000	0. 153000.	•
	* 15.7000.		.005	* 19300		•
1	. 140000.		.010	16900		
-	* 124000.		. 020	* 14600		
1						
I	* 100000.	110000.		- 16300	40000	
I	* 100000. * 88600.	89600.	• .100			
ı				* 99700	80600.	•

c

```
41300, 41100, # .800 * .36200, 35900, # .900 * .32300, # .950 * .27300, 26700, # .990 *
                                                   44900.
                                                                  37400.
                                                 * 39700.
* 36100.
                                                                  32300.
                                                                  28700.
                                                      30800.
                                                                 23400.
          FREQUENCY CURVE STATISTICS . STATISTICS BASED ON
         MEAN LUGARITHM 4.7464 * SYSTEMATIC DATA 58
STANDARD DEVIATION .1528 * HISTURIC EVENTS 0
CUMPUTED SKEW .0256 * HIGH UUTLIERS 0
GENERALIZED SKEW .7000 * LOW UUTLIERS 0
ADOPTED SKEW .4000 * ZERO OR MISSING 0
* TOTAL PERIOD, YLARS 58
0
.
        PRELIMINARY RESULTS
       -FREQUENCY PLOT - 01357500 MUHANK RIVER AT COHOES, N.Y.
       BASED UN COMPUTED VALUES, FLOW IN CUBIC FEET PER SECOND
.
•
        100000----
0
                              . 000 000 . . .
        50000 ----
                                                    . 0 00 0 x
O
0
        20000 ---
            .999 .997
                                                                   .70 .50
                                                                     EXCEEDANCE PF
              LEGEND - USUBSERVED VALUE, HEHIGH OUTLIER UR HISTORIC VALUE, LELE
        FINAL HESULTS
        -ANNUAL PEARS - 01357500 MUHANK RIVER AT COHUES, N.Y.
"
```

•							MATER		MEDIAN	•
•	MUN	DAY	YEAR	FLOW	*	RANK	YEAR	FLUW	PLUT PUS	•
:	0	0	1918	45400.		1	1964	143000.	.0120	••
	o	Ü	1919	35000.		5	1956	130000.	1950	
	0	Ö	1920	64500.	-	3	1938	102000.	.0462	
	0	o	1921	47100.		4	1956	100000.	.0634	
-	0	0	1922	56400.		5	1449	86300.	.0805	
	Ö	0	1923	58300.	*	6	1960	85300.	.0976	
	0	0	1924	71500.		7	1948	82700	.1147	
	0	U	1925	57500.	*	8	1974	80900.	.1318	
	o	ō	1926	52000.		•	1951	77300.	.1490	
	o	ŏ	1927	54800.		10	1975	74200.	,1001	
	0	0	1928	54800.		11	1950	72800.	.1832	•
	o	o	1929	72000.		12	1929	72000.	.2003	
	ō	Ö	1930	38500.		13	1961	71900	2175	:
*	0	0	1931	53000.	-	14	1924	71500.	.2346	•
	Ü	o	1932	41000.		15	1920	64500.	.2517	
	0	0	1933	47600.		10	1959	64400.	.2688	
	0	0	1954	45200.	*	17	1943	63900.	.2860	•
	0	ō	1935	61100.		18	1940	63000.	.3031	•
*	0	o	1930	130000.		19	1962	61900.	.3202	
	0		1937	48900.		50	1963	61600.	.3373	
*	0	0	1938	102000.		21	1935	61100.	.3545	
*	0	0	1959	51000.	*	55	1952	50500.	.3716	
	0	0	1940	63000.	*	23	1953	59000.	.3887	*
*	0	0	1941	49100.		24	1946	58300.	.4058	
*	0	0	1942	47200.		25	1923	58500.	.4229	
	0	0	1945	63400.		26	1972	58100.	.4401	•
*	0	0	1944	46000.		27	1925	57500.	.4572	
	0	0	1945	47500.		28	1954	56800.	.4745	
	0	0	1946	58300.	*	59	1922	56400.	.4914	
*	0	0	1947	51300.		30	1970	56400.	.5086	
*	0	0	1948	82700.		31	1968	55800.	.5257	
*	0	0	1949	86300.		32	1973	55800.	.5428	•
*	0	0	1950	72800.		33	1926	54800.	.5599	*
*	0	O	1951	77500.	*	34	1927	54800.	.5771	*
*	0	0	1952	60800.		35	1926	52600.	.5942	•
*	0	0	1955	59000.	*	36	1955	51500.	.0113	*
	-	0	1954	50000.	*	37	1947	51300.	. 6284	•
	0	0	1955	51500.		38	1939	51000.	.0455	•
	0	0	1950	100000.		39	1941	49100.	.6627	•
*	v	0	1957	23000.	*	40	1937	48900.	.6798	•
*	0	0	1958	39700.	*	41	1933	47600.	.6969	*
*	0	0	1959	04400.		42	1945	47500.	.7140	*
*	0	0	1960	85500.	*	43	1942	47200.	.7512	*
*	0	0	1461	71900.		44	1951	47100.	.7483	*
*	0	. 0	1005	61900.	*	45	1944	46000.	.7654	*
*	0	U	1905	61600.	*	. 46	1918	45400.	.7825	•
*	0	0	1964	143000.		47	1934	45200.	.7997	
*	0	0	1405	27800.		48	1969	42300.	.8168	•
.*		0	1966	\$2700.		49	1935	41000.	.8339	
*	0	U	1967	24600.	*	50	1971	40000.	.8510	•
*	0	0	1000	55800.		51	1958	39700.	.8682	•

C-0-0-0-0

J

4

•	0	0	1969	42300.	*	52	1930	38500.	.8853	
•	0	0	1970		•		1919	35000.	.9024	•
1	0	0	1971	40600.		54	1931	33000.	.9195	•
•	0	0	1972	58100.		55	1966	32700.	.9366	
	0	0	1975		*	50	1965	27800.	.9538	*
•	0	0	1974	80900.	*	57	1967	24600.	.9709	
	0	0	1975	74200.		58	1957	23000.	.9880	

1 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 23470.4

```
FINAL RESULTS
-FREQUENCY CURVE- 01357500 MOHAWK RIVER AT COHOES, N.Y.
     ***************
EXPECTED * EXCEEDANCE *
                                     * . . . CONFIDENCE LIMITS . . .
  COMPUTED
            PROBABILITY * PROBABILITY *
                                        .05 LIMIT .95 LIMIT *
   181000.
              146000.
                                         227000.
                                                    153000.
                            .002
   156000.
              165000.
                             .005
                                         191000.
                                                    134000.
   139000.
              145000.
                            .010
                                         166000.
                                                    121000.
              126000.
                             .050
   122000.
                                         144000.
                                                    108000.
                             .040
   107000.
              109000.
                                         123000.
                                                     95900.
    87900.
               88800.
                                          98200.
                            .100
                                                     80300.
    73900.
               74200.
                             .200
                                     * . 80900.
                                                     66400.
    54700.
               54700.
                             .500
                                          58800.
                                                     50800.
    41800.___
               41800.
                                          45300 .
                            .800
                                                     38000.
    36600.
                             .900
               30500.
                                          40100.
                                                     32800.
    32800.
               32500.
                             .950
                                          30300.
                                                     28900.
                             . 490
*+++++++++++++++++++++++++++++++
                                  *****************
   FREQUENCY CURVE STATISTICS
                                     STATISTICS BASED UN
  MEAN LOGARITHM
                       4.7531 *
                                    SYSTEMATIC DATA
  STANDARD DEVIATION
                        .1452
                                    HISTURIC EVENTS
  CUMPUTED SKEN
                        .2299
                                    HIGH UUTLIERS
  GENERALIZED SKEN
                        .7000
                                    LUW UUTLIERS
  ADOPTED SKEW
                        .5000
                                     ZERO UR MISSING
                                     TOTAL PERIOD, YEARS
```

FINAL RESULTS
-FREGUENCY PLUT - 01357500 MOHAWK RIVER AT CUMUES, N.Y.
BASED ON COMPUTED VALUES, FLOW IN CUBIC FEET PER SECOND

•

d

9

CT

C,

I

()

2	C	C	(0		0		0	0	-	o.	0	1	•	0		0	0	1	0	-	0			. 0		.o		0	1
											-		1	-								-					-		-		-
																	-			1											-
											1		-							-		1		,							
				-										-															-		
		-		1																-											-
																				-									-		
											1									-					1		-				-
		:		1		/					:						-												1		-
					1			1						-			-			-							-				
				-														•••	• •		• •	• •	• •	• •	• •	•••	•	•••	•	••	
			1	1	•									,		FE0141	.012	670	.0034	.007	.131		. 2003	.217	.251	260	303	. 537	.35-	. 1967	
						11411	-							4056. 4	POEKED DATA	.07	.5000.	30000.	000000	63300.	00609	7.200	7.0000.	71900.	.0350	. 6000.	. 5000		.1160	24000.	
														•	CAPER	47FP	1 9961	936 1			970				,		1		1	453	
								Cumots.						47.8		. ****	-	~ ~	30	•-	••	0	- 2	51	.2	• •	99	502		22	
		47.4LY815		SCHUD!	:			=		:3			i	404 69		••		••	• •	- :-	••	•	••	• •		••	•	• •	•		ì
		FLOOR FLOW FRENCHALL JUNE 1979		TUTTE AT CONDES, M.Y.	4.7 3.50 54. *1.	Total		10 31857500 -Unter Alver	.10	De 58 LA CARDS BUPPLIED	NO OF ENDIN DATES			01357560 PURKER RIVER	ED.		.5.00	35000	50400	71500.		0097	72000	\$6500	.1000	.5500	61100		102600.	3000	1
	1	C FLC. FELUENC.			0.4	240(8)0+1		200	70	10 FLO	0 1001		1	*		7649	1010	1920	1951	1923	1925	1957	1929	1950	1632	1635	1955	1436	1936	000	1
		FLOUG FLO				2442	~	31357500	65 65 65	11816-471C	נח פיים		1	PHELITIANY MESULTS	0	PC+ 047	0	• •	00	00	00				1	00	-	, 0	1		
				=	==	507	5	2		: 8	3.	:	1		::		! .	••	• •												1

を できる から とうかん

			c	1	0		•			1	0		0	the same and a second or and any	;)		•			1				1	,	,		,				3		•	
### ### ### ### ### ### ### ### ### ##	1							1												1															
### ### ### ### ### ### ### ### ### ##	!											, , , , , , , , , , , , , , , , , , , ,		-																					
### ### ### ### ### ### ### ### ### ##										1																									
### ### ### ### ### ### ### ### ### ##				•														* * 11 * 17 * **																	
			••		••		••		••	•	••	•		•	• •		••			• •			•		•						•		•		
		050		. 4572		. 5060	.5426	. 5594	.5942		****	1200.	00.00	.7160	7.63	.705.	1997	.6100	. 8510	. 6082	1700.	50.00	9539	0000	•				;	65 11-11	.00055	155000.	106000	83800.	
		\$6300.	50300.	\$1500.	50000	.00.00	55600.	.000	52500.	\$1500.	515000	*6100	1000	.1500.	.7100.	.000	45200.	.2500.	.0000	39700.	35000.	33000.	27800.	23000°						1417 5	20005	94000	5000	25000	
1						1070	1000					1701	1937	10.5	1961	1040	1934	6901	1932	1950	1616	160	1405		•		1	•	•		٠	• •	•	••	
		į								2		1		į		1		1		•							*		*CEEDA!	104491	200.		000	000	200
				,		1								1		1											1357500 "		-				•	• •	•
		1		1		1		1		1		1		1		1	_	1									UNVE- 0	1.043	Straft.	40074	1000		1670	660	343
			••		•••	0			••			0			• •			1		-		i					RECUENCY C			CJ-Pu160	164000.	1.0000.	164005	.00000	74 136

I

		:				.003 .001	
			0			10. 50	
			, A.	0			
				ט סאסח סר ס		90 110 30 10 10 10 10 10 10 10 10 10 10 10 10 10	
				מהמסמסם		RUBABILITY On DUTLIER,	
00000		•		מפסימות	999	EXCEEDANCE PRUBABILITY C VALUE, LELON DUTLIER	
34 100 000 000 000 000 000 000 000 000 00	49 94 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DADES, N. V.			0 ×	OH HISTORIC	9, 7, 7, 0 b 1 b 1 b 1 b 1 b 1 b 1 b 1 b 1 b 1 b
M W W W W W W W W W W W W W W W W W W W	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				3 3 3		
00000	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70444 41VE			**	. 97 . 97 . 16. herig	ACHARK RIVE
	2011 2011 2011 2011 2011 2011 2011 2011	0178 - 01357500 D VALUES. P			••••	99 . 697 . 499 97 LEGEND - DRUJSERYED VALUE, MEHIGA	- 01357500 MChank
Bardo. Bardo.	MENT LUCEALITH ANTHOR STANDARD DEVICE DEVICE SAGE OF S	PRELITIVARY ALBULTS -FREGORICY PL.T - 013575CO FURANT RIVER 045ED ON COMPUTED VALUES, PLU. IN CUBIC				20000- 000 . 00 L	FIREL MESULTS
	1 4004	111	0000	9		90%	44

11000000 11000000000000000000000000000
145000
- POS
#
MEAN LOGARITHM 4.7531 SYSTEMATIC DATA ST

Ţ.

	0 0		c			0 0	•	•	•	0	.0.	.3		
				.003	1.						••	• •		100
*				10	1			• •	•••	••	•	• • •		.01
				60				× 0	•••	• •	• •			.0.
	3			10	ED CURVE				* U *	••	• •	• • •		•10
	0010		i		XECOPECT				0 0×00	2				
•••	00000		••••	06401617	- OUTLIER,			• • •	• • •	0000	• • •	• • • •		.30
•••	00000			ELOANCE PR	+LUE, LELO	PER SECUND		• •	•••	ovooxoo	• • •	· · ·		EXCEEDANCE PROBABILITY
•••		00.00.00	••••	,	ISTURIC Y				•••	•	000 0	 !		
		300		5	TLIER OR P	COMOES, PLON IN CU					30000			
			3 0 * 3	•		STATES AT						9 0 x 0		•
				5	ED VALUE,	500 #0" billity & bo.	• 1		•••	1	1			
					- COURSE HY	11 - 01357 11ED - 4LUBA					1			
				00002	9	EXPE		000001					.00	•
		* * * * * * * * * * * * * * * * * * *				OUCDIDUMNO	C C C C C C C C C C C C C C C C C C C	PUCCUOUS OUTLIER, XECUPUTED CURVE	THE, MENIER OF HISTORIC VALUE, LELO. DUTLIER, METUPPLIED CURVE	U U U U U U U U U U U U U U U U U U U	TO DO	DOUGO OU DE COO UNE CO	OUNCORONO DE LA SECUCIO DE LA CONTRETA MARCHA DE CARVE LA DASTARTA TA CONCESA A CONTRETA MARCHA DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A TA SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A TA CONCESA A SECUCIO DE CARVE LA DASTARTA TA CONCESA A T	C O O O O O O O O O O O O O O O O O O O

=

MUHALK PIVER BASIN

		,						-									21500	4957							-											
		3						o									30669	3771		CANAL					J											
		J				-		J	79.6				-			62336	68750	3692	-	IBOVE BARGE CANAL			-		J	26.6				-	AT RCME	-				-
	2	3			1.1	0	RUNOFF	ن	73.5				٥			J	02699	1753	J	ROME ABO			0		0	73.5				o	IK RIVER	ى	ORISKANY)
	RODEL CCLARK COLFFICIENT	u			*	3	RESERVCIA	3456	65.5				J	\$65 3360)	-	3	65540	756	J	RIVER TO 8	-	۳.	J		3456	62.5				J	FCR POHAWK	J	RIVER TO C	-	5.3	u
	CLARK C	S			•.	0	DELTA	J	52.0				o	DAM CU	-	3	6417C	337	J	FOHNEK	0	-	J		J	52.0				0	HYDROGRAFIS	J	FCHANK	J	1.45	J
RIVER BASIN				-	s.	3	-1. AEOVE	150	37.5	1.0		1.3	0	ER DELTA	٥	3	62330	0	3	RCUTE -	ن	9	ن	-2 RUNGE	1	37.5	1.0		1.3	J	7	ں	ROUTE -	၁	v)
POHAKE EIV	HYDROLCGIC	-		4	*.	-	SUB AREA	J	21.5	1.0	1.25	1500	1001	FOUTE OV	٥	J	5015C	S	1052	CHANNEL	0	J	2	SUB AREA	0	4.15	2.6	17.4	35	1002	COMBINING	1603	_	J	J	2
	H	150	~	-	~	Ų	-	-	v	.075	14.97	352	-	~	5	-	38500	٠,	-	3	U	-	J	,	-	u	.075	6.95	-	v	~	-	•	S	~	,
=	2 7	4	£ 1	-	=	*	×		•	-	>	×	*		-	7	YZ	13	*	2	-	7	×	ī	*		-	3	*	¥	×	×	K.1	-	11	
(1000)	(6003)	(4390)	(5000)	(Onno)	((000)	(2000)	(6000)	(((1))	(1100)	(5012)	(5013)	(2(33)	(0015)	(0010)	(((1)))	(0018)	(6015)	(3733)	(1207)	(6022)	((()))	(7700)	(6200)	(6553)	(0057)	(9230)	(6233)	(0530)	(((31)	(5035)	(5633)	(1034)	(5533)	(0533)	(((32)	(((1))

.

	c	,												J													J										
		7.07				-	ORISKANY	-				•		J	26.62				-	AT UTICA	•				-		u	79.6				-	7 1L10h	-	NADA CREEK		
		, ,				0	4	0				0		u	5				0	VER	0				0		(3)	~				0	E R	0	3		
		7.3	:				K RIVE		UTICA						73.					LEK RI		1110			_		_	73.				_	IK RIVI	_	LCH K		
	3656	62.5				9	ROHAL	3	IVER TO	-		٥		3456	62.5				J	RCP PCHI	3	RIVER TO	-	17.	0		()	62.5				u	OR PCHANK	ပ	IVER BELCH	-	.2
	J					o	S FD	0	×	0	~	0		0	9				0	IS FI	0	HK	ں	5	0		00	0				S	IS FC	0	N. F	S	2
		52	:				GRAPH		ANCH				316		25					SERAPI		- PCHAW		2.4		110	34	52.0					GRAPHS		ECHAN!		-
2 01 20	205	37.5		:	1.3	3	2 HYDRO	0	ROUTE -	9			1-4 RUN	.53	37.5	1.0		1.3	ی	S HYDR	သ	ROUTE	J	J	0	1-5 RUNG	158	37.5	1.0		1.3	3	Z HYDRO	3	ROUTE .	S	3
455A		21.9	2.5	6.15	4100	1663	OMBINE	1004	CHANNEL	v	3	•	SUB ARE	J	51.5	3.5	26.9	1100	1001	COMEINE	1005	CHANNEL	د.	u	•	SUE ARE	J	21.5	2.00	8.17	2100	1005	COMEINE	1010	CHARREL	J	ပ
	-		1123	17.65	246	2	8	-	,	J	-	ن	10	-	٠	.125	13.44	140	~	=	-	12	(3	2	0	13	-	9	10	15.69	592	~	1,	-	15	J	-
.,			-	>	×	*	¥	×	2	-	11	¥	ž		•	-	>	*	×	F.	¥	*	-	;	¥	2		۵	-	>	*	¥	2	¥	2		11
105.301	(0,000)	(0041)	(6642)	(6043)	(9400)	(6045)	(9572)	(2500)	(8000)	(6700)	(0620)	(0051)	(5005)	(6053)	(0024)	(2003)	(9500)	(00057)	(8573)	(6500)	(CCeC)	(1903)	(2077)	(6063)	(0000)	(5900)	(9903)	(2 + 33)	(0000)	(6990)	(0233)	(1,200)	(2230)	((2))	(66074)	(5003)	(0(2))
		-												16																							

1.000

RCHAWK WIVER BASIN

14

ŀ

	2772	10040																										
		*			•					~							-											
										CREE														(0/				
						,				MADA							u					ALLS	-	.5 34				
2.62	4			-		3.62				RIVER BELOW W. CANADA CREEK	-	57			,		u	3.62				LITTLE FALLS	-	FALLS (USES 3470)			-	
	3									BELO		E FALLS						1				×		_				
73.5			2	0	٠	73.5	,		0	RIVER	0	LITTLE			O		٥	73.5			C	RIVER	0	רווורנ			3	1
62.5	٥	0 0 0			757	62.5			J	ROPAUK	U	RIVER AT	-	2.	ی		3456	5.5			J	#C+ 4 .K		11	-	2.	S	
	3				-					A TA							~	9				* 14		C A IVER				
\$2.0	1.3		200		340	\$2.0			0	GRAPHS	3	POHALK	J	2.1	0	910	U	\$2.0			9	GRAPHS	3	FOHANK	J	1.7)	
37.5	2.7	0	ac	00	-10 RUN	37.5	1.0	1.3	0	HYDRO	ى	ROUTE -	J	٥	0	11 KUN	22	37.5	3.	2		2 HYDROGRAPHS	د.	- 31004	0	3	ں	1
1.0	1450			2	SUB AREA.	21.15	5.0	275	0101	COMBINE	1011	CHANNEL .	٥	٠,	11	SUE AREA-	u	21.9	2.7	22.5	1011	4.		EL	u	0	12	
	7,				5 9Z					27 C		32				56 21					·	36 60		31 C				
20.5	15.	-	٥.	. 3			50:	3			-		u	-	U		-	3,00		37	10		•		O	•	7	
4->	× * 2		- 5		£ .	•	- ;		*	=	×	2	-	7		=	*			. ×	*	K1	*	K.1		11	×	
(6115)	(6116)	(0121)	(6123)	(0125)	(6126)	(6213)	(0124)	(6131)	(C135)	(0133)	(0134)	(6135)	(0136)	(6157)	(6138)	(6139)	(0140)	(6141)	(24(0)	(5117)	(6145)	(6146)	((141)	(6143)	(6147)	(0150)	(0151)	
			-							-	-	_	-				_				_	-	,	•	_		Ĭ	

						TITLE FALLS (USGS 347C)							-							-						AT EAST CREEK (USGS 348C)		•									-
J	,					FALLS (U		**					J							J						CREEK		1868 3480				EK					u
	2.62	ACR			-	N LITTLE	-	CANADA CREEK			-		3	7.62				-		٥	2.62				-		-	CREEK TO EAST CREEK (USGS 3480)			-	CANADA CREEK			-		ပ
	73.5				ပ	RIVER	S				J		٥	73.5				٥		0	73.5				o	ADA CREEK	ပ	TO EAST			O	BELOW E. CA			0		u
3658	62.5				u	T ROPAUK	J	RIVER BELOW	-	7.	J		3456	62.5)		3456	62.5				J	T E. CANADA			-	ں	U	RIVER BE	-	٠,	ပ		3456
3	\$2.0				0	SCRAPES A	0	MCHANK	0	6.	0	1101	0	52.0				ی	DEF	0	52.0				0	HYDROGRAPHS A	0	E. CANADA	0	*	٥	FOHALK.	S	1.0	0	CFF	C
23	37.5	1.6		1.3	J	E 2 HYDRO	U	ROUTE	0	J	9	EA-13 RUN	261	37.5	1.0		1.3	0	14-14 RUN	36	37.5	1.6		1.3	ن	~		- ROUTE -	. د	٠	J	. ROUTE -	ပ	J	5	A-15 RUN	33
0	21.9	1.6	5.54	250	1612	S COMBINI	1015	CHAMBE	0	J	13	SUE AR	J	29.1	1.0	7.68	3650	1.	SUB ARE	J	21.9	٠.٢	2.64	356	1014	COMBINE	1014	CHANNEL	۰ د	د	1015	CHANNEL	0	J	15	, sue ARE	٦
•	. ,,	520.	9.46	27	7	3.	-	34	3	-	u	35	-	3	\$20.	17.69	480	3	36	-	3	.075	10.04	57	2	3	-	*	، د	_	-	35	S	-	3	7,	-
		-	>	×	×		*	3	~	11	×	2	E	4	-	>	×	¥	ž	*	4	-	>	*	¥	ž	×	¥ .	-	=	×	×	*	7	×	2	×
(6153)	(0154)	(c155)	(0156)	(6157)	(6158)	(0159)	(0160)	((101))	(0162)	(0103)	(0164)	(0165)	(6166)	10101	(0168)	(0169)	(0213)	(0171)	(0172)	(6173)	(0174)	(6175)	(6116)	(0177)	(0178)	(C179)	(0180)	(0101)	(C182)	(0183)	(01:4)	(6125)	(0186)	(0187)	(6188)	(0109)	(0513)

*	•	•	-
CANADA	CREEK	S	J
	CAROS CREEK		1.67
C BELON E. CAROGA CREEK	3.5 79.	2	52
EELCH CARGGA CREE	73.5 79.C 73.5 79.C RIVER BELOW CAROGA	73.5	73.55
MOHALK C C C C C C C C C C C C C C C C C C C	3456 62.5 7 62.5 7 1 FOHANK RI C C RIVER EELOW	3456 62.5	5456 62.5
4 4	* ×		0 00 0
1.5 52.0 1.6 1.3 HYDROCRAPHS C C C C C C C C C C C C C C C C C C C	151 52 52.0 7.5 52.0 1.0 52.0 1.3 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SS	SS
37.5 1.5 2.1 3.1.8 3.1.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.16 g 37.5 1.03 2 HYD ROUTE	3.52 37.5 37.5 2.1	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
21.9 1.0 5.86 400 1015 1016 CMANNEL	SUB AREL C 21.5 17.0 17.0 17.0 1016 1018 1018 1018	21.9 21.9 21.9 500	SUB-ARE, 21.9 1.0 5.22 100 1018
25.5.	2.03.85 3.55 5.55 5.55 5.55 5.55 5.55 5.55	20.1 20.1 5.11	27.8 27.8 27.8 27.8
>***	Z*****Z*Z*2	* 2 * * + > *	****
60193 60183 60183 60183 60183 60183 60183 60183 60183	25.55.55.55.55.55.55.55.55.55.55.55.55.5	(C216) (C217) (C218) (C218) (C218)	(622) (622) (622) (622) (622) (622) (622) (622)

PCHALK RIVER BASIA

=

															•						CREEK							-									
		U						JOHNSTORN		PEEEK					ن						RIVER SFLOW CAYABUTTA CREEK		LEK					J									
	-	J	28.6					Y		DUTTA C					U	79.6				•	SFLOW C/	-	HARIE CF			-		U	1.67				-				
_	,	J	73.5				ن	TTA CREEK	J	OU CAYA			,		C	73.5				O			CH SCHO			0		ن	73.5				و	LINGHAM			١.
	J	3455	62.5				J	T CAYADUT	J	RIVER BELOW CAYABUTTA CREEEK	-	۳.	Ų		3456	62.5				u	ST PCFAWK	u	RIVER BELOW SCHOHARIE CREEK	,-	,	J		3456	62.5				J	FILL AT	-	۳.	
	RUNGEF	J	52.0				o	HYCROGRAPHS A	3	MOHALK	U	1.4	J	RUNCFF	0	52.0				ú	DRCCRAPHS	J	MOHAWK	0	5.5	u	RUNDEF	J	52.0				J	BATAVIA	J	1.3	,
	4-22 Rt	. 23	37.5	1.0		1.3	ပ	2 HYDRC	J	ROUTE -	ن	J	J	1-23 RU	40	37.5	1.0		1.3	J	E S HYDR	ن	ROUTE -	Ü	ن	ပ	1-24 RU	39.3	37.5	1.6		1.3	ر	ROUTE -	3	J	
23	SUB ARE	J	21.9	1.5	5.86	250	1022	COMBINE	163	CHANNEL	رن	o	53	SUB ARE	S	21.9	١.١	6.92	378	1023	COMBIN	1029	CHANGEL	9	J	54	SUG ARE!	J	51.5	2.66	6.63	420	1625	CHANNEL	ن	ں	31
c	57	-	0	520.	5.61	22	2	58	-	55	נו	-	c	60	-	0	.675	13.14	125	٣	10	-	29	Ü	-	J	6.5	-	د	.075	11.12	5.1	-	70	Ü	-	,
*	. 5	»:	a	-	>	×	¥	Ž	¥	×	-	-	×	ž	×	_	-	>	*	×	, ,	×	7	-		¥	×	a.	u	-	>	×	¥	× ,	*	11	,
(5267)	(2027)	(1565)	(2753)	(1753)	(6272)	(6273)	(0274)	(6225)	(1676)	(6277)	(0270)	(5753)	(0320)	(6261)	(62.23)	(6283)	(6257)	(6565)	(0520)	(0267)	(5853)	(65:50)	(0573)	(1523)	(6292)	(0293)	(0584)	(6255)	(1580)	((552)	(8420)	(6520)	(6300)	(0361)	(63.2)	((313)	(7.23)

I

PCFA.K PIVER BASIN

		(0)		35080
•	-	1	*	27960
J	J	FRATTSVILLE (USGS 35CO)	61LBCA	63920 18160 CREEK
2.4	79.62	AT FRAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62640 9890 1 1 1
73.5	23.57	SCHCHARIE CREEK C C C 3456 C C C 66.5 73.5	RIE RÉSERVOIR AT GILBCA DAM C ACGAC	6175C 6284C 6392C 348C 989C 1816C C 1 3ELOW COELESTILL CREEK
3465 62.5	5456 62.5	SCHCHAR C 3456 62.5	i	
52.0 5.0 7 7 8	3.00	CERAPHS AT		002£041
166.5 37.5 1.0 1.3	26 c 16.2 37.5 1.0	127 RU 76 87.5 12.5 RU 1.0	1.3 CVER GILBOA DAY	၂၁၁ <u>မ</u> ျာပ္သ
21.5 21.5 37.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	SUE AREA- 21.5 1.5 4.73	1026 COMETINE 2 127 SUB AREA-	88.0 12.7 12.7 12.7 12.7 12.7 12.7	36656 491 16.7 CHANNEL ROU 6 6 27 50.2 AER-27
320.00	26.53.5	3 2 - 75	20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 F F > K A 2	*****		> * * £ * £ * È	72727272 5
6555 6555 6555 6555 6555 6555 6555 655	20000000000000000000000000000000000000	62525255 62525 625	6322 6332 6332 6333 6333 6333 6333 6333	6888 6888 6888 6888 6888 6888 6888 688

,

	-												•	-													_						JUNCTION					
	ں													ے													ب					7	100					
	.,	75.6				-	T ARSTERDAM		111					٠	26.6				-	CRANESVILLE		ROTTERDAR JUNCTION			-		ٍ ں	3.51				_	ROTTERDA	-	1701			
		73.5				ب	K RIVER A	3	CRANESVI			ı		ن	73.5				ر	FIVER AT	U	ROTTERDA			د		ر	73.5				ر	RIVEP AT	0	SCHENECT			
	3575	62.5				,	PE MULPH)	FIVER AT	-		J		3456	65.5				u	FEFANK		PIVER AT	-		٠		3450	65.3				(,,)	AT MCIANK	J	FIVER AT	-	2.	
FUNCES	ر	35.0				၁	CGRAPHS	. ر	*CHALK	3	1.3	ن	NO.	J	52.C				د	GRAPPS A	ں	KOHAKK	o	2.1	O	RUNGEF	J	35.5				,	GRAPIS A	၁	VORENK	J	1.5	
-3C FU	11.3	57.3	1.6		7:7	ŗ	S HYDE	د	ROUTE -	J	၁	د	1-31 KU	77	37.5	٦.١		1.3	٠,	. PYDPC6	J	ROUTE -	ن	,,	•	1-32 RU	32	37.5	1.6		1.3		2 PYDROGE	د.	SCU1E -		3	
SUS FREA		11.7	1.1	11.14	1150	1650	COPI INE	11.31	CHARLIEL	د	ن	3.1	SUE AREA	١	21.5	1.6	5.19	100	1631	CUPINE .	1032	CHANGEL	ن	ر	3.2	SUC ARE	()	4.13	1.1	10.17	355	1636	COND INE	1033	CHARAEL	,	Ç	
51		,	-675	15.61	100		82	-	£ 2	,	-	٠	34	-	O	1015	.5.6		2	\$3	-	90	()	-	J	20	-		.075	11.65	7.7	,	250	,	52	,	,	
K.1		14	-	>	4		7	×		-	-	¥	-			-			×	, ×	×.		-	7	×	2	à.	-	-	.>	*	7.		×	× 2	*	11	
(138.1)	(13.5)	(6565)	(1384)	(1365)	(6304)	((367)	((388)	(1365)	(03%)	(1,81)	(5453)	(1,353)	(1354)	(6355)	(6356)	((35))	(0350)	(635.4)	(3753)	((**1)	(2 53)	(6453)	(0404)	(14.5)	(6743)	((475)	((4:4:0)	(476)	(0410)	((111)	(2415)	(513)	(5414)	((415)	(6416)	(71,7)	((143)	

I

I

I

I

I

*CEA.K RIVER BASIS

1.1

	-													-													-						75)			
	J						TADY							J						FERRY							U						(USGS 3575)			
-	J	1.52				•	SCHERECIADY	-				-		J	79.6				-	VISCHERS		(8568 3575)			-		J	75.6				-	CONCES			
U	J	73.5)	RIVER AT	0				٥		()	73.5				U	PIVER AT	0	CCNOES (o		0	73.5				J	FIVER AT			
U	3456	65.59				J	MCFASK	J	FEFET	-		J		3456	62.5				U	MC+ ANK	u	VER AT C	-	٠,	J		345+	29				U	MOHENK			
3 340	٥	52.1				U	AFES AT	J	VISCHERS	ر	1.0	ن		د	52.0				J	FREES AT	J	-YUHANK KIN	ن	1.5	J	110)	52.6				J	TA SIGA			
-33 RUN	3.8	37.5	1.1		1.3	ر	Z LYDROGS	ر	FCUTE - 1	,	ن	ن	-34 FUNCE	11.0	37.5	1.0		1.5	3	E HYBRUGE	J	ACUTE -Y	ر	٠	9	-35 PUN	*)	57.5	1.0		1.3	ر	HYDROLD S			
SUE AREA	J	51.5	1.1	5.85	774	1633	COMBINE	1034	CHALLEL	,	O	34	SUB AREA	د	21.9	1.0	8.61	1250	34	COMERCE	1635	CHALLEL	ပ	J	35	SUB APEA	J	21.7	1.6	35.5	376	1035	CONFILE			
0,0	-			15.67	57	,	1.5	-	26	,	2	ن	93	-	0	.675	14.85	17.	~	76	-	56	(J	-	J	25		.,	.673.	15.42	4.1	>	25	4.5		
. 2			-	2	*	*		×	*1	-	11	×	¥		4	-	,	~	×	1,	4	×		11	×	K .		•	1	,	×	×	K1	*	٠,	4
(0419)	((421)	(1775)	((473)	(1777)	(6752)	(1797)	(2273)	(0750)	(6773)	(143.)	(6431)	(0432)	((433)	(1434)	(6435)	(0573)	((6437)	(5635)	(5643)	(0440)	(0441)	(7445)	(6443)	(5444)	(6445)	((440)	(2770)	(2443)	(6440)	(0450)	((542))	(6452)	(0453)	(1454)	(0455)	((450)

********* INARE ISTAGE 17010 6.114 WSTAN ALS#X C.CC ISAME 00.0 1681 C. 0C ********* D7165= 1 30 ISNON 75.00 1996 IFLT 0 STRTL C.DC MULTI-PLAN ANALYSES TO BE PERFORPED NFLAN= 1 MRTIG= 6 LETIG= 1 C.2C C.4C C.5C O.6C C.EC 1.00 6.00CC 73.50 MCTRC 0 TRACE SUB-AREA RUNOFF COPFLIATION JPLT 0 PTIUL ERAIN STPKS PTIOK 1.CC C.CC C.OC 1.0C 10= 14.57 R= 7.29 NT RECESSION DATA JOE SPECIFICATION Shar TRSDA TRSFC C.CC 3456.00 0.0C 1 SLE AREA-1 ABOVE DELTA RESERVOIR KUNOFF
1STAG 1CCMP 1ECON 1TAFE
1 0 0 0 RECIP DATA R12 R24 37.50 52.00 62.50 LPCPT ********* HYDROLUGIC MODEL (CLASK COEFFICIENT) 0 10 10 47 JCFER PCHANK RIVER BASIA ******** 1046 TAREA C 150.00 SPFE PMS LOC 21.90 LASPE COMPUTED OF THE PFICERAF IS L.929 ¥1.4 C.C7 1.00 201-334 LAST MODIFICATION AS FEE 79 1645. RUN DATE 2 FRI. AUG 10 1979 Lauft 11FE211:48:54

1

1125. 1765.
2504.
1664.
167
5537
OVER DELTA DAM (LSGS 336C) ISTAG ICCPF IECON I
0.00
NSTUL
64170.00
- MCHANK ICCNF
0.00
NSTEL

I.

Para de la constante de la con

Townson W.

Towns and the same of the same

-

SLE-PREA RULOFF COMPLIATION

Company Company Company Company Company Company Company Company Company Company

I

16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	CCAF IECON ITAFE JPLT JFFT CCC G O O O O O SAAF TRSOA TRSEC RATIC ISNOA CCC 3456.CC C.CC C.OCC	1:		147	3	
HYGROGWAPH DATA HYGROGWAPH DATA HYGROGWAPH DATA CC 3456.CC C.CC C.OCC	HYGROGWAPH DATA HYGROGWAPH DATA HYGROGWAPH DATA CC 3456.CC C.CC C.OCC	1STAGE		ANE LC	-	
HYGROGHAPH DATA HYGROGHAPH DATA HYGROGHAPH DATA CC 3456.CC C.CC C.OCC	HYGROGHAPH DATA HYGROGHAPH DATA HYGROGHAPH DATA CC 3456.CC C.CC C.OCC					
HYGROSHAPH DATA HYGROSHAPH DATA HYGROSHAPH DATA CC 3456.CC C.CC	HYGROSHAPH DATA HYGROSHAPH DATA HYGROSHAPH DATA CC 3456.CC C.CC					
1574G 1C.F. 1ECON 1 2 C 0 8 HYDROGWA 148EA SA.F. 1855A 7.CC C.CC 3456.CC	ISTAG ICCFF IECON I		PH DATE			
1574G 1000F	1874G 1000FF 1874G 1000FF 1076 148EA SAPE	JECON 1	HYDROSHA	TRSDA	3456.00	
18745 18745 1886 7.00	ISTAC ISTAC S IUFG TAREA					
	1010	ISTAG S				

SFFE FMS HO R12 R24 R46 P72
THSPC COMFLIED BY THE PFOURAN IS C.925

LOSS DATA
LAGET STREE OLIKE RIJGE ERAIN STRES RIJOK STRTE CNSTE ALSPX RIIPE
L C.C? 2.0C 1.CC C.OC 0.0C 1.CC C.CC C.CC C.CC UNIT MYDROGRAPH DATA TC= 6.95 R= 4.47 NTA= C

SIRTU= 7.CC GRESN= 5C.CO RILOK= 1.30

UNITHYBEGGRAFF 20 END-OF-FERIOD ORDINATES, LAC= 5.92 HOLRS, CP= 0.69 VOL= 1.CO 24. 127. 245. 376. 477. 526. 516. 444. 355. 284. 157. 159. 74. 55. 47. 35. 3C. 161. 15. 15. 10. 8. 6. 5.

SUF 16.07 11.62 4.45 53901. (406.)(295.)(113.)(1526.30) 3 4403 CONF. C. DA HE, MN FERTOD PAIN EXCS LCSS COMP. G PC. DA HR.MN FERTOD RAIN EXCS LOSS

COMBINE HYDROGRAFHS

.........

.........

S CONCINING Z HYDROGERFES FOR MODAWK RIVER AT ROME
18140 10.00 1 10.00 114PE JPLT JERT INAME ISTAGE 14UTO
1002 2 0 0 0 0 0 0

PYDEOGRAPH ROUTING

........

........

· (..... | B. | T. - M | L. X | D | U. E | 7. | 0.5 | CK | 1. | Y

		:		20							8276.	208C.	613.	180.	
	- 0			0 1.UTO	10001		91119			VOL= 1.00	7353.	2351.	692.	504.	
1 1 1	186647			15146	ISAME L	20	ALSPY C.CC								
-	STORA	:		JERT INAME ISTAGE		896 C.00	CNSTL C.OC		30	5	6351.	2656.	762.	230.	
0 40	15K C.CCO	•		1447	15NO'S	75.00	51871 C		RT10K= 1.30	14.43 HOLRS.	5344.	3002.	284.	266.	
9 1401	C.3C0		ATION	1146	PATIC C.000	848 73.50		TA NTA= C					. 665	. 457	,
-	1.45C C	:	CORFET		18810 0.00	0ATA R24 62.50	•	36 E A PH DA	CESSION DATA QRCSN= 410C.00	-	. 2727	3252.	55	57	371
ROUTING DATA	LAG 1	•	SUB-AKEA RUPOFF COMFUTATION	IECON ITAFE	HYDROGRAPH TRSOA 3456.00	FRECIP DATA R12 R2 52.00 62.5	LOSS DATA STRKS C.OC	1.417 HYDROGEAPH DATA	RECESSION DATA QRCSN= 410C.	GROILATES,	3355.	3033	1129.	334.	301030-10-203
=			JE-AKEA		SKAF C.CC 34	37.56 \$	ERAIN C.CO	U.II 10= 17±03		0	. 7177	4232.	1276.	316.	111.
2.0	* 576L	:	35	3			1.00	10:	STRT0= 54C.CC	54 ENC-CF-FERIC	. 2172	7.7	15	~	
11.13	KSTFS	•		7 SUE AFEA-3 RUNCEF	249.C0	21.90 21.90	2.00		5181	. 54 611	1531.	.66.95	1442.	465.	125.
9,000				SLE A	100	SPFE C.CC 21	STRKR D			HYDRUGRAFA			1625.	٠,	141.
		:			11106	E PPC.					766		16	72.	-
						6 8Y TH	LROFT			2	205.	6251.	1841.	546.	:
						TRSPC CONFLIED BY THE PPCHRA									C.
						3484									

SUM 16.07 10.18 5.89 2012222.

			:	:	***************************************		*********	:	:	
				CCMBINE	COMBINE HYDREGRAFHS	н				
	CCFUILE	2 HYDR 15749 1663	SCORAFHS F	JECON O	C CCMULE 2 HYDROGRAFHS FOR MOHANK RIVER AT CRISKANY 15TAG 1CCMP JECON JTAPE JPLT JFRT 1CC3 2 2 0 0 0	AT CRISK JPLT		INAVE	INAPE ISTAGE LAUTO	21041
			:	:				:	:	
				HYDROGR	HYDROGRAPH ROUTING	N.G				
•	S CHANNEL ROUTE ISTAG 1564		ICCPF IECON ITAFE	RIVER T	O UTICA ITAFE	1140	JFRT C	INAME	JERT INAME ISTAGE 1/UTO	1/10
	0.0	00000	97.0	IRES	IRES ISAME	1061	440		LSTR	
		NSTPS NSTBL	NSTOL	LA 6	AMSKK 2.CCO	C.200 C.COO C.	156	STCRA C.	ISFRAT	
* * * * * * * * *			:	:	:			:	:	
			SUE-	REA RUN	SUB-AREA RUNGEF COMPUTATION	TATION				
	1C SLE AREA-4 RUNGFF ISTAG ICOMF 4 C	15TAG		1ECON 0	JECON JTAFE JPLT JFRT INAME ISTAGE 1-UTO	1146	JFRT	INAPE	15TAGE C	1201
1 PY 0 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAREA 53.CC		NYDROGRA SNAF TRSDA C.CC 3456.00	HYDROGRAPH DATA TRSDA TRSFC 3456.00 0.00		15N01	15A	RATIO ISNO, ISAME LOCAL	د ب
THSFC COMPUTED OF THI FRUC	SPF2 SPC 21.90 THI FRUGRAN 18 6.929	21.90 929.	37.56	FREC11 812 52.00	FRECIF DATA R12 R24 2.00 r2.50	848 73.50	R72	, 196 C.OC	a u	

I

· ·

-

-

I

I

LOSS DATA
STRKE BLIKE KIICL FRAIR, STRKS KIICK SIRTL
C.13 2.0C 1.0C C.0C C.0C 1.0C C.0C
LAIT HYDROGRAPH DATA
TC: 14,44 P= 4.5F ATE C

LEGET

CASTL ALSPY RTINE

5UF 16.07 16.18 5.89 642854. 3946. 1534. 365. 87. O W. OA HR.M. FERIOD RASN EXCS LOSS COMP O FC. DE HR.M. FERIOD RAIN EXCS LOSS ********* 1.010 ********* UNAT HYDRUGERFE 45 END-OF-FERICO CROINGTES, LRG= 11.23 HULRS, CP= 0.74 VOL= 1.(C 425. 851. 851. 354. 3719. 1843. 2368. 2893. 3364. 3719. 1751. 891. 5014. 1771. 891. 5014. 1771. 5014. 501 INAME ISTAGE ILUTO INAME ISTAGE LSTR PECESSION DATA ORCSN= 1100.00 RTIDE= 1.30 ********* ********* 1946 PPT 1570 11 COMBINE 2 HYDROGRAFIS FROM MOHAWK RIVER AT UTICA 1513G ICCRF IECON ITAFE JPLT JF 1664 2 JPLT 1011 COMBINE HYDEGGRAFHS HYDROGRAPH ROUTING ROUTING DATA
IRES ISAME
0 12 CHANZEL RUUTE - POHANK RIVER TO ILION ISTRA ICOPP JECON JAFE 1005 1 0 0 ********* ********* 33.371 =91.78 0.00 ********* ********* 0.000 01055 ********* ********* 115. 1365. 316. ::

SUC-PREA RUNCEF COMPLIATION

TSK STORA ISPRAT

0.25.0

LAG AMSKK 0 2.450

NSTEL

NSTES.

13 SUB AFEA-5 RUNGEF ISTRU ICCRE IECON ITAFE JELT JERT INAME ISTRUE C C C C

HYSERSTAFF DATE

						٠	. 2							
						0 M P	15.1e 10.0s 5.10 1085146. (386.)(256.)(130.)(30727.8E							
					3333. 979. 287. 84.		10							
					388	5507	5.10	:		90	;		00	
40		1.5			5	s	08	********		12010	•		1.410	
7007					VOL= 1.00 4757. 3768. 1106. 325.	EXCS	10.	:		ں پ	:		w 0	LSTR
		ALSPX C.C.				RAIN	.18			1STAGE			ISTAGE	1.5
15A*[30.0				CP= 0.75 4149. 4259. 1250. 367.					INAFE			INAFE	
	~ 3	CNSTL 0.00		.30		PERIOD	SUR	:		ž	:		184	
Nonsi	75.60			RT10R= 1.30	13.21 HOLRS. 34.92. 4814. 1413. 122.					LERI			JERT	1649
30		STRTL C.OC	v	R 7 10	21 48 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#. AH		:		10 NO	:		3	-
RATIC C.00C	73.50	* 3	NTA.		5	40.04				AT 11.			CAMADA CREEK JPLT JFR	1011
TRSFC C.CC	25.	1.00 1.00	A 0	ATA CC.CC	28.88. 53.85. 15.58.	9.0			RAFES	450		UTING	; ;	
. 20	824 62.50	STRKS U.OL	YDROGRAF!	0 4 0	ES.	RICE		:	0080	AWK RIV	:	108 1	TAFE	3 2 4 5 1
TRS04	FREC1P R12 \$4.00	LOSS DATA STRKS U.OL	UNII HYDROGRAPH DATA	RECESSION DATA ORCSN= 21CC.CC	ORDINATES, LAGE 2195. 2838 5721. 5355 1806. 1551 156. 136	END-OF-FERICO FLOW COMP & MO.		***************************************	COMBINE HYDROGRAFHS	OHAN		HYDROGRAPH RCUTING	TVER PELCE A.	
: 23	7 7	ERAIN C.OC	110	3		-343			JME I P	FCR MON		YDEC	FECON	1865
158.CC 3456.CC	37.56	a 0	UN 15.69	265.00	52 END-OF-FERICO 050. 1577. 1915. 5887. 308. 2041. 678. 176.				3	2		Ī	ICCMP IECON ITAEE	
345		1.00	10=		25.52	1655		:		JCCKF 2	:		100%P	
SE.CC	SFFE FMS L.C. 21.9L 15 0.677	~		STRTG=		EXCS				HYDR	•••••••		1500	٠,٠
	.67	01.TK3		S	- vo ~			:		15149 15149 1005	:		PANTEL - CUTE 157.00 1010	CLISS
101	SFF.	٥			4	8 A I A				CMB I			TAN.	S .
96	44,	STRKK C.10			2666.	00				7,4			15 6	279
16436	3				1 50	FERICO		:			:			
	7 7	14981			25.45. 25.45. 25.45. 25.4.	¥.								
	۵				-222			:			:			
	103%					A0.0M								
	TRSPC COMFUTED BY THE FROURAM													
	7.85													

I

I

I

in the second

C.C U.CCC C.CC G 1 C C C C C C C C C C C C C C C C C		SUB-BREA RUNCEF COMPLIATION	16 SUB AREA-C RUNOFF SECON STAFE JPLT JFRT INAPE ISTAGE 12UTO	IMPEG JUHG TAREA SNAF TRSDA TRSFC RATIC ISNOW ISAME LOCAL 1 0 375.60 6.CC 3456.00 0.CC C.OCC C 1 C	SPFE FMS RC R12 R24 R48 R72 R95 C.OC 21.90 37.50 52.00 62.50 73.50 79.00 C.OC	LOSS DATA LACET STRKR DLTKR PTICL ERAIN STRKS RTIOK STRTL CNSTL ALSPX KITYF C 6.07 7.00 1.00 6.00 1.00 6.00 0.00	UNIT HYDROGRAFH DATA TC= 22.55 R= 15.88 NTA= C	RECESSION DATE STRIG= 725.[C QRCSN= 5700.00 RIIOR= 1.30	ULIT HYDROCKAFE 97 END-OF-FERICS CROINATES, LAC= 20.02 HOURS, CP= 0.68 VOL= 1.00	567. 754. 1212. 1722. 2270. 2847. 3446. 5463. 6547. 7651. 7475. 7222. 8053. 8287.	8234. 7919. 7476. 7019. 6591. 61ck. 5811. 5456.	1991. 1870. 1756. 1648. 1548.	1261. 1263. 1136. 1061. \$96. 935. 676. 824.	563. 341. 320. 301. 283. 265.	171. 16C. 15G. 141. 133. 125. 117 91. e5. 60. 75.	ENG-OF-PERICO FLOW MO.DA HR. "W PERICO RAIN EXCS LOSS COMP G PO.DA HR.MN FERIOD RAIN EXCS LOSS COMP G	SUM 16.07 12.00 4.07 2988156. (40x.)(305.)(103.)(84615.08)
--	--	-----------------------------	---	---	--	--	---	--	--	--	---	-------------------------------	--	-------------------------------	--	--	--

174466.60 5297.00 293. 20446.46 129716.60 157506.00 161166.00 164546.00 167756.CC 170,66.00 1346.00 2462.00 3750.00 ********* ********* 1,110 18 SUB AKEA-7 RUNDEF.

1814C ICCPF IECON ITAFE JPLT JFRT INAME ISTAGE I.UTO
0 0 C 1 1 C 0 U IT PIDELURALE SI END-CF-FEETCO GEOTISTES, LAC= 0.CC HOURS, CP= C.CC VOL= 1.C 1. 113. 223. 34C. 437. 451. 454. 440. 37C. 1. 155. 159. 130. 100. 76. 27 RATIC ISNOL ISAME LOCAL 17 CHANNEL ROUTE - L. CANADA CREEK GELON HINCKLEY RESERVOIR (USGS 344C)
1STAG ICCMP IECON ITAGE JELT JART INAME ISTAGE
1CLO 1 0 0 0 1 C LSTR LAG AMSKK X TSK STCRA ISFRAT G G.CCG G.OCO C.CCO 1579CC. C C.0C C.GC C.CC C.00. ********* ORCSN= 50.00 RTIOR= 1.30 SPEC PMS R6 R12 R24 R43 R72 COMFUTED SY THE FROMEN'S L.9C 37.5C 52.0C 62.5C 73.5G 75.CO 0 A 4 T R= 4.51 NTA= C 101 SUB-AREA RUNDEF COMPLIATION 79.727 LOSS DATA

LECAT STACE CLTRA RTICE ERAIN STACKS RTICK

C C.CT 1.0C 1.CC C.CO C.CC 1.00 TC= 7.12 R= 4.51 MIT HYDECORAFE ROUTING INTOS TUPE TAREA SNAF TRSDA TRSEC 1 6 7.CC 6.CC 5456.GC 6.CC RECESSION DATA IRES ISAME ********* 0.00 57RTG= 7.CC 97.0 HSTFS NSTOL 0.00 ******** ********* 00000 0.00 0.0 ********* 5517 i. out STURBER

toward &

[

SUM 16.0? 12.00 4.07 426114. C. MO.DA HR.YN FERIUG RAIN EXCS LESS TOMP O MO.DA HP.MA FERIOD RAIN EXES LOSS COMP 6 ********* ********* 21 CCPDINE 2 HYDROGRAFHS FOR W. CANACA CREEK BELCK CINNCINNATI CREEK 14UTO 1STAG ICCPF IECON ITAFE JPLT JAFT INAME ISTAGE 14UTO 0 0 0 1 CC2 12070 JERT INAME ISTAGE IAUTO 22 CHANNEL ROUTE - L. CANADA CREEK TO KAST BRIDGE (LSGS 346C)
122 Trop iecon itase jelt jert inape istage
0 1 0 LSTR AMSKK X 15K STORA ISPRAT 1.080 0.300 0.000 C. C ********* ******** ********* IFFF SUE-AVEA RUNOFF COMPLIATION TOFT ISTAG ICCPF IECON ITAFE JPLT COMBINE HYDROGRAFHS ROUTIEG DATA ********* ********* IRES ISAME ******** 0 0.00 NSTEL 23 SUE PIER-S RUNDER ********** ********* ********* 00000 ASTES ********* *********

-

B

Berner 2

-

Supremark .

Branco d

Secured !

-

RATIC ISNOW ISAME LOCAL SPEE PMS RE R12 R24 R48 R72 C.C. 21.9C 37.5C 52.00 62.5C 73.5C 75.00 HYDROGRAPH DATA

INYES 10HS TAFFA SNAF TRSDA TRSPC

1 121.CC 5.CC 3456.0C 5.CC

TC= 14.17 R= 7.CO NIAE C

	RIIOK = 1.30
	RI
ECESSION DATA	ORCSN= 1450.00
	150.00
	STATE

							5 1403	SUM 16.07 12.00 4.07 977259.
	4867	2130	. 505	122			1055	103.)
10.C	4555.	2458.	588.	146.			PERIOD RAIN ENCS	12.00
6.75	72.	36.	78.	62.			RAIN	16.07
S, CP=	34	28	•	•			PERIOD	SUR
1.63 HCLR	3473.	3272.	782.	187.			HR. HR	
LAC= 11	2639.	3775.	503.	216.		FLOW	40.04	
ORDINATES, 1	2216.	4345.	1041.	572	75. 69. 60.	END-OF-FERICO FLOW	COMP G	
OF-FERICO	1558.	4812.	1202.	287.	. 59	ER	1655	
45 END-	1021.	5055.	1386.	331.	.52		EXCS	
COCKAFI				•			RAIR	
11 PYDE	136. 510.	513	1600	385	5		FEFICE	
20	136.	. 6205	1846.	441.	106.		HR. WN FERTOD	
						0	*0	

COMBINE HYDRCGRAFHS

********* 24 COMBINE 2 HYDROGRAPHS FOR W. CANADA CREEK AT KAST BRIDGE (USGS 346C)
1STAG - ICCRF - IECON - ITAFE JPLT JFRT INAME ISTAGE IJUTO
1CC9 - 2 0 0 0 0 1 C ********* ********* ********

EYDROGRAPH FOUTING

	INAME ISTAGE INUTO	ی		LSTR	J	STURA ISFRAT	
ER	JFRT	٥		OLCSS CLOSS AVG IRES ISAME 10FT IFFP	0	TSK	011
FANK RIV	JPLT	0		IOPI	0	×	014 0
EK TO MO	TTAFE	S	ING DATA	ISAME	-	AMSKK	000
N DA CRE	1 ECCN	0	ROUT	IRES	0	LAG	C
40 .4	ICCPF	-		914	23.3	NSTEL	c
EL ROUTE	ISTAG	1616		CLUSS	00000	MSTES	
S CHAN.				SECSS	3.3		

SLE-AREA RUNOFF COMFLIATION

	11 17
	-
	-
	4
	2186
	v
	-
	4
	44.
	_
	193
	-
	-
	1 1 1
	-
	-
	7 4 6
	-
	?
	Frn
	-
	ı
-	*
URDFI	16.88
3	_
œ	
REA-10	4
-	4171
É	-
4	
u	
SLE	
0	
11	

					2242. 573. 126. 25.	S COPF 6	16.07 11.62 4.45 351728. (468.)(255.)(113.)(9959.82)				
1,7001		0.00			2266. 2266. 676. 140. 29.	Excs LOSS	11.62 4.4 295.00 113			14470	
ISAVE L	.00 .00	ALS#X C.CC				414				EK 151/6E	
ISNC	872 75.00	CNSTL 0.00		PTIOF= 1.30	9.46 HCURS, CP= 0.72 1871. 2C85. 916. 783. 192. 164.	N PERIOD	ns	•		COMBINE 3 HYDROGRAFFS AT MOMPAN FIVER BELCH W. CANADA CREEK ISTAG ICCAF IECON ITAFE JFLT JFRT INAME 1010 3 0 0 0 1	
8411C C.0CC	73.50	00 C.00	TA NTA= C		3:32	PO.DA HR.MA		:	5	JELCE W. C	
HYDROGRAFH DATA THSDA TRSFC RAT 3456.00 0.00 C.0	P DATA R24 62.50	STRKS RTIOK C.00 1.00	33 R= 6.41 NT	PECESSION DATA GRCSN= S00.C0	10, 146	ERICO F			COMBINE HYDROGRAFHS	K FIVER BITAFE	
SKAF THSSA C.CC 3456.00	PREC1P R12 52.00	ERAIN ST	LAIT HTOR		1285. 1285. 1285. 1285. 268. 55.	END-OF-P		:	OMEINE H	AT FOHANK FIV	
	37.50	#110L E	10= 11.	33.03 =	852. 1464. 307.	10.55			J	FOGRAFIS ICCAR	
1010 1ARE	21.9C C.525	30.5 2.00		S1R10=	75. 1716. 1859. 1859.	Excs		•		INE 3 HYD ISTAC 1010	
Irrica Iu	SPFE C.OC 21 CUMPLIED BY THE PRUGRAM IS C.927	STRKE C.C7			UNIT HYDROCPAFE 41 END-OF-FEFICD 287. 852. 852. 1784. 1714. 1464. 419. 359. 3C7. 88. 75. 64.	PERICO RAIN				27 CC#8	
å	3Y THE P	LECFT			216C. 49C. 103.						
	UMFLIED				N	PC.DA HP.AN		•			

165FL

I

1.070

INAME ISTAGE

JEFF

AS CHANGEL ROUTE - MCHANG RIVER AT LITTLE FALLS
ISTAG ICCRE IECON ITAGE JALT
1511 1

PYDROGRAFH ROUTING

0L0SS CLCSS ANG IRES 15AME 10FT IFWF LSTR C.0 0.000 0.00 0	ASTES ASTOL LAG AMSKK X TSK STORA ISFRAT		SUB-AREA RUNCIF COMPLIATION	29 SUB PREA-11 RUNDER 16CCH 17FFE JELT JERT INPFE ISTAGE 1:UTO 11 C 0 0 0 1 C C	HYDROGRAPH DATA INTOG TUFG TAREA SNAF TRSDA TRSPC RATIC ISNOW ISAME LOCAL 1 C 27.CC G.CC 3456.CC G.GC C.GCC C	SPFE PMS RC R12 R24 R48 R72 R96 C.CC 21.9C 37.5C 52.0C 62.5G 73.5G 75.CO C.OO	LOSS DATA LHOFT STRUK DLTKR ETIGL ERAIN STRUK STRUK STRUL CHSTL ALSPY KITYF C C.C? 1.0C 1.0C C.OO C.OC C.OC C.CC C.CC	UNIT HYDROGRAPH DATA TC= 9.23 R= 5.63 NTA= C	RECESSION DATA STRIG= 32.CC GRESN= 28C.CO RIIOR= 1.3C	65. 8.2C HCLRS, CP= 0.71 VOL= 1./C 65. 234. 473. 733. 1004. 1250. 1422. 1522. 1525. 1446. 1259. 1154. 252. 732. 612. 517. 433. 362. 363. 254. 21c. 176. 149. 124. 104. 87. 73. 61. 51. 43.	C HO.DA HP.YR FERIOD RAIN EXCS LYSS COMP G PO.DA HR.MN PERIOD RAIN EXCS LOSS COMP G	SUM 16.07 12.6C 4.07 217007. (406.) (305.) (103.) (6144.95)
--	--	--	-----------------------------	---	---	--	---	---	---	---	---	---

COMEINE HYCROGRAPHS

3G CUMBINE 2 HYDROGRAPHS AT MOHANK RIVER IN LITTLE FALLS
1STAGE 16CPF 1ECON 1TAFE JPLT JPRT INAPE 1STAGE 14UTO
1CT1 2 0 0 0 0 1 C 0

f-----

No. of

1574 1679 1670 1786 JPLT JERT INAPE

HYDROGRAPH ROUTING

	E ISTAGE IVUTO	ں		LSTR	J	A ISFEAT	
2470)	INA					STORA	٥
CUSES	JFRT INAPE I	3			0	15K	003.3
FALLS	JFLT	0		ICFT	0	*	0.200
AT LITTL	ITAFE	J	TING DATA	ISAME	0 1 0 00.00 00.00 00.0	AMSKK	
RIVER	IECON.	0	ROU	IRES	0	LAG	0
- PCHANK	14331	-		911	0.00	NSTOL	J
EL ROUTE	15146	1612		CLOSS	0000	NSTFS	-
31 CHANN				OLCSS	0.0		

SUB-AREA RUNGEF COMPUTATION

		ISTAG BEOFF	1 COVP	1ECON 0	114FE 0	1745	JPRT 1	INAME 15	1STAGE 1	1:010
					APA DATA					
IHYGG	IUF				TRSPC		ISNO	ISAME		
-	၁	23.00	0.00		3456.00 0.00	0.000	0	-	0	
				FREC						
	SFFE	PMS				878	R72	R9c		
	C.00 21.	21.90	37.50	\$2.00	62.50	73.50	00.57	20.3		

LNIT HYDROGRAPH DATA TC= 5.46 R= 5.54 NTA=

1.00

LADET STRKE

| RECESSION DATA | STRTG= 27.CC | GRCSN= 25C.00 | RTIOR= 1.30

	1217.	3.	
	121	32	-
VCL = 1.(C	1332.	243.	. 17
CP= 0.72	1342.	291.	. 47
OF HOLRS.	1275.	345.	23
LAG= &	1130.	418.	
	915.		
OF-FERICO	676.	.11.	. 35
35 ENC.	453.	126.	111
HYDROGRAFE	219. 453. 676.	c63.	141
11.40		1634.	

The second second

(4CE.) (3CS.) (103.) (5242.25) 3 4403 1 LOSS 14010 33 CCMBINE 2 HYDROGRAPHS AT MOMAWK RIVER IN LITTLE FALLS (USGS 347C)
15149 ICCMF IECON ITAFE JELT JFRT INAME ISTAGE 1-UTO
1612 2 0 0 0 0 0 0 14010 RAIR EXCS 12.00 : 10001 INAME ISTAGE LSTR JERT INAME ISTAGE STORA ISFRAT 16.07 ISAME . SUP #0.04 PR.MR FEE100 ********* ******** ********* ISNOP 15K C.CCO 1649 JFRI 34 CHANDEL ROUTE - POHANK RIVER BELOW E. CANADA CREEK ISTAG ICOPF IECON ITAPE JPLT JFRI FAT10 6.900 C.200 1567 SUB-PREA RUNCFF COMFLIATION JFLT 1011 . . . AC. DA RR. YN PERIOD RAIN EXCS LOSS COMP G. COMBINE PYDREGRAFIES HYDROGRAPH RCUTING ROUTING DATA
IRES ISAME
1 PRECIP DATA R12 R24 52.00 62.50 SNAF TRSDA TRSECUTE CTC 3456.CC ICCMP IECON ITAFE ******** ********* ********* 13: 0 O 1007 0.00 NSTDL 0 35 SUB AFEA-13 RUNGEF ISTAG ICCPP 13 C ********* ********* ********* TUPE TAREA 15140 #STPS 15. 00000 0.0 IHYEU 1 ********* ********* 28.

-

Townson &

20.0

75.00

73.50

37.50

SPEE PRS 30.0 COMFUTED BY THE PROCEAM IS U.929

LROPT STRKR DLTKR RTIOL ERAIN STRKS RTIOK STRTL CMSTL ALSRX RTIPP 0 0.07 1.00 1.0C C.00 0.0C 1.00 0.00 G.0C G.CC	TC= 17.C9 R= 7.86 NTA= C	STRTG= 480.CC GRCSN= 3650.00 RTIOR= 1.30	JUST HYDRCGRAFH 52 EMD-OF-FERIOD ORDINATES, LAE* 14.C2 HOURS, CP= 0.77 WOL= 1.LO 746. 15CG. 2361. 3283. 4237. 52GB. 6181. 7137.	9093. 7367. 9466. 9392. 9134. 8646. 7843. 6913 4722. 4158. 3662. 3225. 2840. 2501. 2203. 1940	327. 288. 254. 224. 197. 173. 153.	HO.DA HR.MW PERIOD RAIN EXCS LCSS COMP & MO.DA HR.MW PERIOD RAIN EXCS LOSS COMP &	\$0# 21.36 T6.91 4.45 2943572.		SUB-AREA RUNOFF COMPUTATION	36 SUB AREA-14 RUNOFF 1STAG ICOPP IECON ITAPE SPLT SPRT INAME ISTAGE 1AUTO 14 0 0 0 0 1 C C	INVOG TAREA SNAF TRSDA TRSFC RATIC ISNOW ISAME LOCAL 1 C 50.CC 0.CC 3456.0C 0.CC C.OCC 0 1 C	SPFE PMS R6 R12 R48 R72 R96 0.00 21.90 37.50 52.00 62.50 73.50 75.00 C.00	LROPT STRKP DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMY RTIFF C G.G7 1.00 1.00 C.O0 0.00 0.00 0.CC 0.CC	UNIT HYDROGRAPH DATA TC= 10.C4 R= 5.64 NTA= C	STRTG= 37.CC GRESN= 32C.00 RTIOR= 1.30
---	--------------------------	--	---	--	------------------------------------	---	--------------------------------	--	-----------------------------	---	--	--	---	--	--

25.5	25.4		169.	142.		202. 119. 20.	2.5	63.	83. 70.	.0.	28.	. 69.	
# . M	PERICO	1	EXCS	1088	END-OF-PERIOD COMP Q	-	F100	PO.DA HR.BN PERIOD	PER 100	414	EXCS	\$507	COMP
	,							,	200	16.07 12.00 4.07 241383. (408.)(305.)(103.)(6835.20)	305.)(103.36	241383
				•	:							:	
					SOMBINE	COMBINE HYDROGRAFHS	FHS						
	37 66	CAB INE	E 2 HYDE 1514 1014	MBINE 2 HYDROGRAPHS ISTAG ICOMP 1014 2	AT E. C. IECON	AT E. CANADA CREEK AT EAST CREEK (USGS IECON ITAFE JALT JART INAHE O 0 0 0 0 1	EEK AT JPLT	EAST CRI	EEK (USG	15 348C) 157AGE	1 AUTO	00	
				:	:			•				:	
					HYDROGR	HYDROGRAPH ROUTING	911						
	38.0	HANREL 1	38 CHANKEL ROUTE 15749	- E. CAN ICOPP	IECON O	ICOPP IECON ITAFE JPLT JPRT INA	ST CREE JPLT 0	K CUSGS	3480) INAPE	ISTAGE	IAUTO	20	
	0.0 0.0		0000.0	946	IRES	ES ISAME	1061	I PRO		LSTR	***		
			MSTFS	NSTDL	LAG	14.000	¢.000	15K 0.000	STORA	ISFRA	-0		
***************************************	:				:			•	:		******	:	
					HYDROGR	HYDROGRAPH ROUTING	981						
	3 65	FANNEL 1	39 CHANNEL RCUTE ISTAG 1015	- PCHALK ICOPP	RIVER	ICOPP IECON ITAPE	CANADA CREEK JPLT JFR	CREEK JFRT 0	INAPE	ISTAGE	12010	00	
	0.055		0000.0	970	IRES 0	ES ISAME 0 1	1061	1660		LSTR			
		2	NSTPS	MSTOL 0	1 V 0	AMSKK 1.000	0.200	15K	STORA	ISFRAT			

L

L

L

Į.

I.

I.

I-

I.

I.

Į.

I

I

Total Local Land Local Local Sum 16.07 12.00 4.07 297725. (4C8.)(3C5.)(103.)(8430.63) COMP G 392. 1055 ************* ********* 40 SUB AREA-15 RUNOFF IECON ITAFE JOLY JOHN INAME ISTAGE JAUTO D O O 1 15 0 D 41 COMBINE 3 HYDROGRAPHS AT MOHAWK RIVER BELDW E. CARADA CREEK
15144 ICCMP IECON ITAPE JPLT JPRT INAME ISTAGE 12UTO
1615 3 0 0 0 0 0 0 STRKR DLTKR RIEGL ERAIN STRKS RIEGK STRTL CASTL ALSHX RIEPP D.G7 1.0C 1.0C C.OO 0.00 1.00 C.OC 0.0C C.OC 0.CC UNIT HYDRCGRAFH 37 END-OF-FERICO ORDINATES, LAC# 8.87 HCURS, CP= 0.73 VOL# 1.(C 287. 870. 1542. 1542. 1542. 1549. 1095. 923. 778. 655. 552. 466. 279. 235. 198. 167. 141. 118. 100. 84. 50. 45. 36. 36. 25. 21. PU.DA HR.MA PERIOD RAIN EXCS C.DOC 0 15AME LOCAL C.00 ********* ********* ********* 0 RT10R= 1,30 SPFE PMS R6 R12 R24 R48 R72 TASFC COMFLTED BY THE PROGRAM IS 0.929 UNIT HYDROGRAPH DATA

TC= 1C.48 R= 5.86 NTA= C SUB-AREA RUNOFF COMPUTATION Toronto S 1532. 778. 141. 25. 98CSN= 40C.00 C END-OF-PERIOD RAIN EXCS LCSS COMP Q PG.D COMBINE HYDROGRAFHS INVOG TUNG TAREA SWAF TRSOA TRSPC 1 C 37.CC C.CC 3456.00 0.00 RECESSION DATA ********* ********* ********* 33.35 ********* ********* ********* STRTG= Name of Street ********* ********* LROPT 1798. 331. 66. -I

HYDROGRAPH ROUTING

1

14010	•		1	
ISTAGE	•	9LOSS CLOSS AVG IRES ISANE IOFT IPAP LSTR	MSTPS MSTDL LAG AMSKK X TSK STORA ISPRAT	:
INARE	-		STORA C.	:
JPRT	0	40	15K	
JPLT	•	1061	0.200	
ITAFE	TWG DATA	ISARE	AMSKK 2.500	
1ECON	00	IRES	LAG	:
ICCPP	-	0.00	MSTBL	:
ISTAG	- 1616	0007.0	MSTPS	********
		0.055		
			i	•

SUB-AREA RUNOFF COMPUTATION

		•	346										
			-	ISTAG ICOMP		1ECON	ITAPE	1146	JPRT	INAME I	ISTAGE	IAUTO	
			1	16							9	0	
						HYDROGR	APH DATA						
	1	THYLG	1046	TAREA	SNAF	TRSDA	TRSPC		HONST	ISAME	LOCAL	_	
		-	0	151.00	0.00	3456.00	3456.00 0.00	0.000	0			0	
						PRECI							
			SPFE	PMS	Ré	R12		848	R72	896			
		0.00 21.90	0.00	21.90	37.50	\$2.00	62.50	73.50	25.00	00.3			
TRSPC COMFUTED BY THE	BY THE	PROGRAM	1 15 0.	626									

UNIT HYDROGRAPH DATA TC= 18.56 R= 17.91 NTA= C

RIIOL ERAIN STRKS RIIOK 1.0C C.00 C.00 1.00

> DLTKR 1.00

LROPT STRKE G C.C7

ALSMX RIIFF

STRTL CNSTL C.00 C.00

RECESSION DATA STRTG= 25C.CC GRCSN= 3500.CO RTIOR= 1.30

OF-FERIOD ORDINATES, LAGE	OF-FERIOD ORDINATES, LAGE	ORDINATES, LAG=	LAG= 17.3	7.3	S HOURS	CP= 0.59	VOL = 0.59	
363. 586. 834. 1102.	586. 834. 1102.	834. 1102.	1102.		1385.			2293.
3036. 3156. 3321. 3405.	3156. 3321. 3405.	3321. 3405.	3405.		3443.			3171.
2682. 2536. 2399. 2268.	2536. 2399. 2268.	2399. 2268.	2268.		2145.			1814.
1534. 1451. 1372. 1298.	1451. 1372. 1298.	1372. 1298.	1298.		1227.			1038.
878. 830. 785. 742.	£30. 785. 742.	785. 742.	742.		702.			. 765
562. 475. 449. 425.	475. 449. 425.	449. 425.	425.		402.			346.
247. 272. 257. 243.	272. 257. 243.	257. 243.	243.		230.			194.
164. 155. 147. 139.	155. 147. 139.	147. 139.	139.		131.			111.
08 78 38 77	08 78 38	78	08		75			77

1		S 4HOS	.63														
	36.	8	12125														
		1055	103.)	:		20	:		50			:		20			
;	38.	EXCS LOSS	365.36			14010			1AUTO 0					14010	רפכשר		
		8714	1.07			ISTAGE			ISTAGE	LSTR	ISFRAT			ISTAGE			
:			SUM 16.07 12.60 4.07 1212559.	•		#-			INARE ISTAGE		STORA C.			INAME ISTAGE	ISAME	896 C.00	
;	43.	PERI	•			A CREE			<u>.</u> 0	9891				JFR1 1	ISNOW	872 79.00	
	•	PO.DA HR.MN PERIOD		:		CAROG	:		CREEK		15K	:	=		RATIC C.00C		
;	\$	10.04			FHS	BELGE		186	SQUAGO	1061	C.2C0		UTATIO	JPLT			
		4 401 8			DROGRA	ITAFE 0	***************************************	H ROUT	BELCE OF	ISAME	AMSKK 1.000	*********	F COMP	TAFE	PH DATA TRSPC 0.00	0ATA R24 c2.5C	
:	48.	COMP G PO.			COMBINE HYDROGRAFHS	44 COMBINE 2 HYDROGRAPHS AT MOHAWK RIVER BELCW CAROGA CREEK ISTAG ICOPF IECON ITAPE JPLT JPRT INJ 1016 2 0 0 0		HYDROGRAPH ROUTING	ICCPF RECON TAFE JPLT JF	ROUTING DATA IRES ISAME 0 1	L46 A	:	SUB-AREA RUNCFF COMPUTATION	IECON ITAFE	HYDROGRAPH DATA TRSDA TRSPC 3456.00 0.00	PRECIP DATA R12 R2 52.00 62.5	
:	51.	sson			8	PHS AT		ī	HALK F		10		UB-ARE		SMAF 0.00	86 37.50	
				:		DROGRA ICOF	:			946	MSTOL	:	S	ICCFP			
:	24.	EXCS				151A6			45 CHANNEL ROUTE 1STAG	00000	WSTFS			AREA-17 RUNCHE ISTAG ICCPP	TAREA 59.20	FE PMS	. 7 5 7
		RAIN				COMB 1N		1	CHANNE	0.0				46 SUB AR	1076	SPFE 0.00	2
÷	57.	ER 100		:		;	:		\$	đ		:		\$	IHY DG	4000	
:	. 29	MO.DA MR.RN FERIOD													-	Aqs	4
	•			:			:					:				1	
		9.0														3	
																200	

4146 2201

16. 13.	EXCS 1055 COMP 6	16.07 12.00 4.07 104233. (408.)(365.34 103.34 2951.55)			14UTO 0			1 4 5 7 0			***************************************		1,070	40	
20.	RAIN	16.07 12.	:		INAME ISTAGE	•		ISTAGE	LSTR	ISFRAT	•		INAME ISTAGE	ISAME LOCAL	896 00.00
24.	HR.MA PERIOD	8			JPRT INAME			JPRT INAME	0	TSK STORA C.COO C.	*********		JFRT INAME	ISNOW IS	R72 R
29.			1	HS.	48 COMBINE 3 HYDROGRAFHS AT MOHAWK RIVER BELCW OTSQUAGO CREEK 1STAG ICCPF IECOM ITAFE JPLT JPRT INAM 1C18 3 0 0 0 0	•	94	٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C.200 C.C	:	TATION	JPLT JF	8ATIC 0.00C	848 73.50 7
35.	END-OF-FERICO FLOW			COMBINE HYDRCGRAPHS	AUK RIVER I ITAFE		HYDROGRAPH ROUTING	RIVER BELOW CANAJOHARIE IECON ITAFE JPLT	ES ISAME	AMSKK 1.200 (SUB-AREA RUNDEF COMPLIATION	ITAFE	HYDROGRAPH DATA TRSDA TRSPC 3456.00 0.00	R12 R24
2 2	LCSS COMP		:	COMBINE	FHS AT MOH	:	HYDROG		2	O O O	•	UB-AREA RU	FF IECON	HYDROGR SNAF TRSDA C.CC 3456.00	R6 R12
2	EXCS LC				E 3 HYDROGRAFI ISTAG ICCFF 1C18			L ROUTE-MOHAMI ISTAG ICCPP 1619	CLOSS AVG 0.000 0.00	NSTPS NSTDL	**********	S	AREA - 19 RUNCEF ISTAG ICCPF 19 C	TAREA 72.CC	PMS 21.90
	411		:		8 COMBINE 15	:		49 CHANNEL ROUTE-MOHAMK ISTAG ICCPP 1619	0.0 0.0 0.0 0.0	S	•		SO SUB AKEA	3 0 0	SPFE
	HR. MN FERIOD					***************************************		•					Ň	IHYDG	
•	NG. DA MR.	1.	1			•					•				

-1

11111111111111

- [

				5 4H03	352.51)									
			3393. 1018. 213. 45.	1088	16.07 12.00 4.07 577484. (468.)(365.)(103.)(16352.51)	:		20	:		90			
0.00		i	3265. 1150. 249. 52.	EXCS	12.00	*******		1 JAUTO			E 14UTO	***	- 0	
ALSHX 0.00				RAIN	16.07			INAME ISTAGE			ISTAGE	LSTR	ISPRA	
0.00 0.00		1.30	85, CP= 3C	HR.MN PERIOD	SUR	*********		ARIE CRI	*******		INAME		STORA C.	
STRTL C.00	u u	RT10R= 1.30	341.	4 E		:		CANAJOHI	:		JFRT	PMPI	TSK C.CC0	
1.00	H DATA NTA	700.00	2187. 2187. 1903. 399.	FLOW RO.DA			AFHS	R BELCH JPLT		TING	KERS JPLT	1001	0.2C0	
SIRKS 0.00	UNIT HYDROGRAPH DATA	RECESSION DATA GRCSN= 700.	ORDINATES, LAG= 10.28 HOURS, CP= 0.74 1709. 2187. 2646. 3C18. 2225. 1503. 1627. 1392. 466. 399. 341. 292. 98. 83. 71. 61.	END-OF-PERICD FLOW		***************************************	COMBINE HYDROGRAFHS	51 CCMBINE 2 HYDROGRAPHS AT MOHAWK RIVER BELCW CANAJOHARIE CREEK ISTAG ICOMP IECON ITAPE JPLT JPRT INAME 1619 2 0 0 0 0 1		HYDROGRAPH ROUTING	ICCMP IECON ITAPE J	ROUTING DATA ES ISAME 0 1	AMSKK 1.260	*******
C.00	2.44	103.CC REC					COMBIN	IECON 0	•	HYDROG	K RIVER IECON	IRES	LAG	:
1.00	TC= 12.44	STRTG= 1C3	10-0f-FERI 1241. 2601. 545.	S TCSS		::		DROGRAPH ICOMP				D.CC	NSTBL	:
PLTKR 1.00	•	STR	796. 1241. 30C4. 2601. 545. 114.	RAIN EXCS		*******		INE 2 HY ISTAG 1619	******		S2 CHANNEL ROUTE ISTAG 1620	00000	NSTES 1	********
STRKE C.07	•	: -	399. 3294. 745. 156.					51 CCHB			S2 CHANS	0.0		
LROPT	,		108. 3406. 871. 182. 38.	HR.MN FERIOD		***************************************								***************************************
			M	0 0 W		•			:					:

SUB-AREA RUNOFF COMPLIATION

		53	SUB ARE	A-20 RUI	110								
			-	15TAQ 1CCHF 20 0		1ECON 0	TAFE 0	196.0	I TAPL	1	ISTAGE	14610	
						HYDROGR	APH DATA						
		1HYD6	IUPG	TAREA	SMAF		TRSDA TRSPC	RATIC	HONSI	ISARE	LOCAL		
		-		22.00	0.00		0.00	100.0	3				
						PRECI							
			SPFE	PAS	98	R12	R24	848	R72	896		100	
			6.00 21.90	21.90	37.50	52.00		73.50	00.54	00.0			
TRSPC COMFUTED BY THE	6 BY TH		1 15 C.	526									

LOSS DATA DLTKR RTIGL ERAIN STRKS RTIOK STRTL CNSTL 1.GC 1.GC C.GC C.GC 0.OC C.OC UNIT HYDROGRAPH DATA TC= 11.78 R= 6.38 MTA= C

C-02

LROPT

0.00

ALSHX C.CC

		2690.	728.	151.	31.	
	-	2623.				
1.30		2455.				
RT10R= 1.3	9.94 HOURS	2182.	1165.	242.	50.	
550.60	LAGE	1819.	1364.	284.	.65	
RECESSION D GRCSN= 5	0	1422.				
75.66	-FER 100	1032.	1867.	388.	81.	
STRTG=	41 END-08	662. 1032.	2184.	454.	. 76	
	1	332.				
	TIND	.06	2655.	622.	129.	27.

	_
RAIN EXCS LOSS COMF 6	SUM 16.07 12.00 4.07 441616.
1055	103.)
EXCS	12.00
RAIN	16.07
PERIOD	¥0S
H. H.	
FLOW #0.0#	
COMP G MO.DA	
>1053	
EXCS	
RAIA	
PERICO	
0.04 HR.FN	
MO. DA	

COMBINE HYDROGRAFHS

	IAUTO	0
	ISTAGE	S
	INARE	-
KERS	JFRT	0
AT SPRA	JPLT	0
RIVER	TAFE	ن
AT MOHALK	IECON I	2
ROGRAPHS	1CCPP	. 7
COMBINE 2 HYDROGRAPHS AT MOHALK RIVER AT SPRAKER	ISTAG	1620
24		

HYDBOGRAPH BOUTING

												COMP 0
											664. 124. 25.	٠
1											126	1055
TAUTO 0					1110			40			٥	2
4			:		-	40		0.00			VOL= 1.CC 689. 145. 30. 6.	EXCS
AGE	151	EA	:		NO.	רסכשר		×u			100	
INAME 1STAGE	-	ISFEAT			INAME ISTAGE	y -	***	ALSHX C.OC				RAIN
=-		4.			3.	ISANE	89.5 C.00				7.3E HOURS, CP= 0.65 705. 727. 199. 170. 41. 35.	
È		STORA C.	:		1	3 U		0.00 0.00		30	ä	HR, MN PERIOD
	• •	*8			1847	ISNOW	75.00			RTIOR= 1.30	00085, 05. 99. 41.	3
JFRT	IFAP	1.000 0.000			=		2	STRTL C.00		108	HOURS 705. 199. 41.	ž,
10			1	*		8A11C C.00C	73,50	20	٠ ١	a	7.36	
AYABUTT	1001	0.200		IATE	110		2	1.00	NTA .	9	****	40.04
5	ž			MFL		TRSPC 0.00	#24 2.50	•	- E	ATA 20.05	LA 26.	5.
BELOP	ISANE	AMSKK 1.550		50 4	146	# 50	0 0	TRKS 0.00	6KAP	4	ES.	810
# -	ROUTING DATA ES ISANE U 1	٠-		DNI	JECON ITAFE	HYBROGRAPH DATA TRSDA TRSPC 3456.00 0.0C	RT2 RT2 2.00	LOSS DATA STRKS G.00	LA R= 6.32 NI	RECESSION DATA GRCSN= 120.00	523. 274. 56.	END-OF-PERICO FLOW
RIVE	IRES	LAG	•	-	000	TREDA TREDA 456.00	PREC I R 12 52.00	7 20	=	RECE	080	0-06-PE
ICCPP IECON ITAFE JPLI JFR				SUB-AREA RUNOFF COMFLIATION	=	SMAF TRSOA 0.CC 3456.00		EPAIN C.00	8.61	90	93	ä
TCCPP	0.00	NSTOL		SUB	PUNOF P	8 .	37.50			STRTG= 13.00	384. 320. 13.	1055
	3	2	:		55	< 0		1.00	10≈	u	-0-	
HANNEL ROUTE	SS	2~			282	TAREA 12.70	SPFE PMS C.OC 21.9C M IS C.929			TRIC	39 END 247. 376. 77.	EXCS
# 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.000	WSTPS	:		UB AREA-21 ISTAG		26.3	1.3C		•	324	
4	\$50					TUHE	5.00 6.00 115	•				RAIR
SS C	0.00 0.0				8			STRKR C.07			UNIT HYDROGRAFH 39 END-OF-FERICO ORDINATES. LAG: 124. 523. 634. 634. 634. 634. 634. 634. 634. 63	•
	1		:		•	INYBG	PRCG	20			Ŧ-,	ER 10
						-	¥	LROPT			5	-
								3			34. 516. 106.	H. H.
							TRSPC COMFUTED BY THE PROGRAM					NO.DA HR.MN PERIOD
							D# F.					A
-							2					
	1		-	Y			TRS					
	1			1								

Su# 16.07 11.90 4.17 100847. (408.)(362.)(106.)(2855.67)

1.

I.

(466.)(362.)(106.)(5201.54) COMP C O SOUTH SERIOD RAIN EXCS LOSS COMP O PO.DA HR.MR PERIOD RAIN EXCS LOSS 4.17 ********* 0.10 55. 203. 464. 626. 859. 1667. 1214. 1290. 1254. 1041. 877. 739. 623. 525. 442. 373. 314. 265. 188. 159. 159. 179. 17. 17. 14. 17. 12. SUR 16.07 11.90 רסכער JFRT INAME ISTAGE ALSHX C.CC ISNOW ISAME O.OC ********* ********* RECESSION DATA GRCSN= 256.00 RTIOR= 1.30 73.50 75.00 STRTL 0.00 C.00C TC= 9.61 R= 5.86 MIRE C SUB-AREA RUNCFF CORPLIATION LOSS BATA BLTKR RTIOL ERAIN STRKS RTIOK 1.3G 1.0G C.GG G.0G 1.0G SPFE PRS R6 R12 R24 0.00 21.90 37.50 52.00 62.50 SMAF TRSDA TRSPC C.CC 3456.00 0.00 ******** SECON STAFE ********* STRTG= 27.CC ST SUB AREA-22 RUNOFF
1STAG REGRE TUHE TABEA ********* ********* O.07 JAYD6 ********* *********

I-I-I-

Į-

Į.

I.

1.

I.

1

town of

1

.

to and

Service Services

COMBINE EYDROGRAFHS

S& COMBINE 2 HYDROGRAPHS AT CAYADUTTA CREEK AT JOHNSTOWN
1STAG . ICCPF IECON ITAFE JPLT JFRT INAME ISTAGE 12UTO
1G22 2 0 0 0 1 0

********* ********* ********* ******** *********

The Road State of the State St

1	ų	9	
	2		
1	:		
1	Č	5	
0	a		
	2	5	
	2040	ì	
1	٥		
į	Š	2	
	2		
	200		

I

I

I

1

0

0

												1927.
		1										8-
20			:		20						3651. 1342. 315.	0.00
170	# O	¥°			GE IAUTO	0		RTIME 0.CC			3457. 3457. 1551. 365. 86.	EXCS C.C.C.
HE ISTAGE	LSTR	RA ISFRAT			INAME ISTAGE	ISAME	00.00	ALS#X C.CC			CP= 0.74 v 3144. 1792. 421. 99.	414 a
INAME		STORA C.	:			ISNON		CNSTL 0.00		1.30		PER100
A CREEK JFRT	4441	15K	:		184	RATIC 18	2,	STRTL C.0C	U	RTIOK= 1.30	ORDINATES, LAG= 11.06 HOURS, 1734. 2226. 2716. 2767. 2394. 2071. 651. 563. 487. 153. 132. 115.	4.00 M
AVABUTT	1061	008.0		PUTATIO	116		4 R48 0 73.50	1.00	DATA	870.00	A6= 11 2226. 2394. 563. 132.	FLOW 1.04
ICCMP IECON ITAPE JPLT O 0	ES ISARE	AMSKK 1.4CO		SUB-AREA RUNOFF COMPUTATION	IECON ITAPE	AP h	IP DATA R24 62.50	LOSS DATA STRKS 0.00	UNIT HYDROGRAPH 14 R= 6.92	RECESSION DATA QRCSN= 870.	DINATES, L 1734. 2767. 651. 153.	COMP 0 FO. 1.22.
IECON O	IRES	100	:	REA RUN	IE CON	HYDROGRAPH TRSDA 3456.00	FREC1P R12 52.00	ERAIN S	INIT HYD			END-OF-P1 COMP Q 122.
ICCPP	946	NSTDL	:	SuB-1	BUNCFF ICCFF	SNAF G.CC	37.50	PTIGL ER	UN TC= 13.14	125.00	0F-FERIC 1254. 3191. 752. 177.	103
S9 CHANNEL ROUTE ISTAG 1023	00000	MSTPS 1			60 SUB AREA-23 A	TAREA 84.CC	PFE PMS 1.00 21.90 IS 0.929	1.00 1		STRTG=	44 END- 8C1. 3536. 869. 2C4.	Excs
ANNE					4	1046	SPFE 0.00	19.			RAF	C.C.
29 CH	91055	i	:		ns 09	IHYDG	NO.	T STRKR			UNIT HYDROGRAFH 44 END-OF-FERICD 40C 8C1. 1254. 3701. 3536. 3191. 10G4. 869. 752. 236. 2C4. 177. 56. 4E. 42.	FERICO
							B 4 TH	LROPT			108. 3733. 1161. 273.	1.00 1.00
							SPC COMFUTED BY THE PROGRAP					1.0.0
,							S					

I.

T.

25.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	200000 44. 46. 46. 47. 48. 48. 48. 49. 49. 49. 49. 49. 49. 49. 49
	1000 1000 1000 1000 1000 1000 1000 100
000000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	20.07 4 4 (28.7) 19110. 12.46 13.16.38 13.16.38 16.9. 68.795. 68.795. 68.795. 68.795. 169. 68.795. 169. 169. 169. 169. 169. 169. 169. 169. 169. 169. 169. 169. 169. 169. 175. 17
22.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	101 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0000000000000000000000000000000000000	R 72-HOUR 9045. 256. 3 12.202 3 12.202 5 3819. 6 6385. 10.25. 11.25.
27920. 25121. 22340. 19740. 17383. 17383. 17384. 11581. 10038. 8687. 8687. 8735. 8735. 8745. 8745. 8745. 8745. 8745. 8745. 8746. 8746. 8746.	24-HOUR 21453. 667. 5241.38 9241.38 42551. 52486. 32. 625. 122. 5350. 5330. 5300. 53
	2026. 92026. 92026. 95.09. 15881. 15881. 15881. 15881. 17589.
000000000000000000000000000000000000000	23. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25
55 CCCC 56 CCCC 57 CCCC 58 CCCCC 58 CCCC 58	CFS CFS CFS INCHES 24 18 24 18 482 565 565 170 131 101 77 66 66 66 66 77
332200000000000000000000000000000000000	2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	~ ~ ~

£

1

HHILIAHAHAHAHAHA

:		1463 1488 1488 1483 1483 1483 1683 178 178 178 178	48. 810. 1415. 5611. 1682. 5791. 530. 530. 530.
;	ł	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	16628. 16628. 16628. 1662. 1862. 1862. 1862. 1862.
į	134971. 134971. 3822. 2.49 63.28 11155.	336. 1258. 1369. 6300. 620. 579. 579. 579. 172. 132.	269543. 76443. 76443. 126.55 22369. 27516. 1573. 1573. 16357. 7635. 764. 7645. 764. 7646.
;	101A	674. 675. 676. 676. 677. 677. 136. 177. 136. 177.	RT10 3 262. 1610. 1610. 1561. 1561. 1561. 1561. 1561. 1561. 1561.
:	72-NOUR 1809. 51. 2.40 61.06 10764.	FLAN 1. 1143	72-H0U 36102 1023 1124-8 1124-8 124-8 124-8 143-9 143-
•	24-HOUR 4291. 121. 1.90 46.28 8510. 10457.	23 FOR 63. 1257. 1702. 1702. 1706599. 1706599. 1706599. 17065999999999999999999999999999999999999	24-HOUR 243. 243. 3.80 96.55 17021. 20995. 1572. 1572. 1572. 1572. 1572. 1572. 1573.
	6-HOUR 181. C.71 14.02 3176.		28 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
•	7 EAK 0651.	06RPF 1194 1194 1194 26148 26148 323 323 1191 113	77. 27. 27. 90. 14.93. 14.93. 11.98. 11
;		1096- 1096- 11239- 1166- 1066- 1066- 156- 156- 156- 156- 156- 156- 156- 1	13.9 13.9 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
;	THOUS CU M	47. 86.3. 68.36. 21.26. 26.3.	THOUS CU TAGES 59. 59. 54. 51. 51. 51. 51. 51. 51. 51. 51. 51. 51
:		44. 37. 5695. 5825. 6015. 1238. 1238. 1238. 1238. 1229. 1220.	61. 47. 11373. 11373. 6069. 8069. 8019. 1547. 1547. 195.

Į.

I.

I.

1.

E-second state of the second state of the seco

	;		
:		972 1699 6733 19827 2026 636 636 114 145 145 166	2265 2265 2265 26436 2694 2694 2694 2525 322
i		28. 1799. 1799. 1799. 1795. 1740. 1740. 175. 175. 176. 176.	23.58. 23.58. 26.61. 26.61. 29.62. 99.2. 99.2. 83.6.
- AOLUM	337429. 9555. 6.23 158.19 27887. 34398.	1687 15819 15819 15819 15819 1586 1586 1586 1586 1586 1586 1586 1586	AL VOLUME 404515. 11466. 17.47 189.83 33464. 41277. 2516. 677. 2516. 26139. 12200. 3251. 1158. 582. 447.
. ~	22. 20. 20. 20. 20. 20. 20. 20. 30. 30. 30. 30. 30. 30. 30. 30. 30. 3	1932. 1932. 1932. 16436. 16436. 1011. 1011. 1011. 1011. 1011. 1011. 1011. 1011.	101 102 102 103 103 103 103 103 103 103 103 103 103
: 2	7. 4522 34. 128. 75 152.6 16. 26910	FOR PLAN 1 1732 1732 1755 1755 1755 1755 1756 1756 1756 160 161 161	UR 72-K 4. 1 70 7 70 7 70 7 83 183 1. 398 2. 398 4.101. 23408. 4.101. 23408. 4.101. 4.
; %		23 66 1866 1350 1255 1255 1255 1255 1255 1255 1255 12	24-8 14-4 14-4 14-4 14-6 14-6 14-6 14-6 14-6
; •		2145. 1791. 2145. 14198. 14198. 1433. 1433. 2817. 2817. 2817. 170.	6-H0 1921 54. 54. 54. 1175 96. 1175 88. 88. 96. 1977 1971 1971 1971
;	FS 16628.	MYDROGR 69. 1643. 1659. 1859. 1857. 457. 586. 226. 226. 134.	FS 19954. FT 19954. FT 74. 2191. 2478. 16335. 2035. 663. 510. 510.
į	INCH INCH AC-	71. 1656. 10256. 10256. 10256. 1707. 1707. 1707. 1707. 1707. 1707. 1707. 1708.	INCHE INCHE 100 AC-1 1926-2559-1926-2559-2559-2559-2556-2556-2556-2556-2
1		73. 1648. 1648. 1923. 1923. 1856. 536. 536. 536. 1141.	97. 1019. 12197. 11151. 2475. 2475. 538. 414.

- []

- []

The state of the s

	132211. 135211. 135211. 135211. 135211. 135211. 135211. 1456. 1456.	:
	1221 2958 33258 33256 13324 1260 1260 127 127	
wad		•
15285. 15288. 1528. 253.10 44619. 555.36.	4. 101. 3. 345. 5. 7531. 2. 32673. 5. 458. 6. 727. 6. 559. 7. 151. 7.	CREEK
101AL	106. 923. 923. 923. 106. 1085. 1685. 1685. 1685. 1685. 1685. 1685. 1685. 1685. 1685. 1766.	AYABUTTA C
7236. 7236. 205. 9.62. 244.23 43055. 53108.	256. 256. 256. 256. 3381. 3381.	COMBINE HYDROGRAFHS COMBINE HYDROGRAFHS COMBINE 3 HYDROGRAFHS AT MOHAWK RIVER BELOW CAYABUTTA CREEK
-	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GRAFHS
24-HOUR 17162. 486. 7.60 193.10 34041. 41989.	23 FOR 110. 158. 2424. 22346. 22346. 287. 2159. 2159. 265. 275	COMBINE HYDROGRAFHS S AT MOHAWK RIVER B
25621. 25621. 726. 2.84. 72.07 12705.	-HOUR 2026- 907- 3.55 5681- 5589-	COMBIN COMBIN
	# 1	PROGRAP ICCRP
26605. 753.	116. 93. 2739. 3058. 27920. 7523. 2611. 829. 638. 451. 377. 290. 223. 172. 33256. 5 942.	NE 3 HYDRO
INCHES INCHES AND ACT IT	25 3 1 2 2	COMBIN
1 10 1	2406. 2406. 2406. 30345. 30345. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2845. 2846. 2846. 2846.	5
	122. 2023. 2746. 2746. 32062. 3084. 693. 693. 672. 396. 396. 396.	

I

-

Accorded to

Samuel S

Appropriate and the second

1

...

:

.

::

:

. . .

:

...

:

HYDROGRAPH ROUTING

THAKE TSTAGE TAUTO C2 CHANNEL ROUTE - MCHALK RIVER BELOW SCHOHAPIE CREEK ISTAD ICCPF IFON ITAFF JEST JEST

												9 4800
											*****	G
:9	ì		:		20	1:					1944. 507. 112. 25.	5507
:			***************************************		14010	0 0 TOO TO	ì	871FF 0.00			1920. 1920. 550. 130. 29.	EXCS
	123	ISPAAT			1STAGE C	2		ALSPX C.CC			7,	
;					=======================================	ISAME	8.00 0.00	A			686. 1517. 151. 33.	RAIN
		STORA	:		INAME		-3	CMSTL C.00			CP= 0.7C 1817. 686. 151. 33.	901
:0	. 0	*0				ISNON	75.00	20		1.3		PERIOD
	0	13K			1847			STRTL C.0C	J	RTIOR= 1.30	9.36 HOURS, 1635. 758. 176. 39.	#. A. X
; 0	. 0	¥ 0		10	50	RATIC 0.000	73.50			~	9.36	
	0	0.200		UTAT	JPLT			1.00	DATA	620.00	1375. 928. 205. 45.	10.04
ROUTING DATA	ISARE	2.500	************	SUB-AREA RUNOFF COMPUTATION	ITAFE	HYDROGRAPH DATA TRSDA TRSPC 3456.00 0.00	PATA R24 62.50	æ	UNIT HYDROGRAPH DATA	_	5-	COMP a FO.
. 11				UNDE		TRSDA TRSDA	R12 2.00	LOSS DATA STRKS C.OC	YDRO	CESSION ORCSN=	ORDINATES, 1076. 1079. 236. 53.	D-0F-FE
	IRES	140		REA A	IECON 0	HYDROGR TRSDA 3456.00	PREC. R12 82.00	ERAIN C.00	1	NE C	0.00	0-0M
	90	20		NB-A1		SWAP 0.00	37.56	30		51.00	42 END-OF-FERIOD 459. 78C. 440. 1255. 322. 277.	
	0.00	MSTOL	:	Š	RUNOF F ICORP		37	1.00	16= 11		12. 22. 2	7025
10	20					1AREA 39.30	21.90	2-		STR10=	ğ	EXCS
1629	0.000	NSTFS 1			157A0		.:	017KR 2.00		ST		
	0.0		,	1	SUB AREA-24 15740	100					GRAF	8 I F
	-		4	1	5 5			STRKR 0.07	1		1695. 375. 83.	90
						IHYDG	RSFC COMFUTED BY THE PROGRE				1695. 375. 1895. 375.	PER 100
							7	LROPT			1870. 436. 96.	
			:				8 03				24	0.04 HR. Ma
							5					0.0
	1						3					
	'	1					25					

ŀ

ŀ

ŀ

Į.

I.

I

1

1

1

SUM 16.07 11.62 4.45 306584. (4C8.)(255.)(113.)(8681.4E)

HYDROGRAPH ROUTING

I

I

·I

1111111111111

CHARN	CHAMBEL RCUTE -	- EATA	IN KILL	AT WINDHAM					
	ISTAG	ICCPP	MECON.	ITAFE	196	2587	INAME		14010
	1625	-	0	•	0	0	-	0	0
			ROUT	FING DATA					
550	CLOSS	944	IRES	ISAME	TOFT	1666		LSTR	
3.3	0.00	00.0	0	0 0 0 1	0	0		•	
	MSTPS 1	NSTUL	90	1.300	0.300	15K 0.000	STORA C.	ISPRAT	

SUB-AREA RUNOFF COMPUTATION

01041		
INAME ISTAGE IAUTO	1007	
NAME 15	1SAME	96#
I TARL 0	NONST	872 79.00
	RA110 C.000	#48 73.50
TAFE	TRSPC 0.00	R24 62.50
ECON I	SNAF TRSDA TRSPC C.CC 3465.00 0.0C	PREC1P R12 52.00
ICCPP IECON ITAFE JPLT		37.5C
	148.5C	PMS 21.90
65 SUB AREA-25 ISTAQ	June	SPFE PMS C.0C 21.9C
\$	18706	
		,
		THSPC COMPUTED BY THE
,		SPC

LOSS DATA LROPT STRKR DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSWX G G.G7 2.0G 1.0C C.0O 0.0C 1.0O C.0G 0.0C UNIT HYDROGRAPH DATA TC= 10.24 R= 8.22 NTA= C

RECESSION DATA STRIG= 320.CC GRCSN= 2500.00 RT10R= 1.30 80688FH ST FMD-0F-FFBICD ORDINATES, 1.46= 13.45 HCHBS, CP= 0.74 NOT

	5924.	4102.	1213.	355.	106.	
VOL= 1.CC	5334.	4633.	1371.	465.	120.	
CP= 0.74	4632.	5234.	1548.	458.	135.	
	3857.					
LAG= 13	3166.	6422.	1975.	584.	173.	
	5445.					
	1756.					
-	1115.					
HYDROGRA	554.	6653.	3215.	951.	201.	63.
TIND			3632.			

S SAUJ EXES LESS COMP & PO. NA MA, MN PERIOD BAIN FYES LOSS Mr.CA FR.FN FFBTOD BATA

SUM 16.07 11.62 %.45 1465833. *** ******** ********* JPRT INAME ISTAGE 15UTO JERT RNAME ISTAGE TAUTO I 03.0 ***** 1 1 1 RATIO ISNOL ISANE LOCAL IIIIIIIIIIIIIIIIII DLTKR RIIUL ERAIN STRKS RIIOK STRTL CHSTL ALSHX 1.50 1.00 C.00 G.00 1.00 C.00 G.0C G.CC ****** ***** ********** ********* SPFE PMS R6 R12 R24 R48 R72 TRSFC COMFUTED BY THE PROGRAM IS G.929 66 COMBINE HYDROGRAPHS AT BATAVIA KILL AT WINDHAM ISTAG 1628 1628 2 0 0 0 0 0 TC= 7.65 R= 4.73 NTA= C 161 SUB-AREA RUNOFF COMPUTATION COMBINE HYDRCGRAFHS SNAF TRSDA TRSPC 0.CC 3456.CC G.GC ********* ********* SCORF SECON STAPE ********* INTEG TUNG TAREA ********* 67 SUB AREA-26 ISTAG LROPT STRKE C 0.07 ********* *********

SUM 16.07 11.82 4.25 79783. PO.DA HR.MN PERIOD RAIN EXCS LOSS CORF 9 456. 55. UNIT HYDROGRAFH 3C END-OF-FERIOD ORDINATES, LAG= 6.32 HOURS, CP= 0.69 WOL# 1.LC 153. 3CC. 46C. 6G1. 690. 717. 669. 563. 296. 241. 195. 158. 128. 103. 83. 67. 36. 36. 296. 297. 297. 195. 15. 103. 83. 67. NO.DA HR.MN FERIJO RAIN EXCS LOSS COMP G PO.D

STRTG= 10.CC GRCSM= 70.00 RTIOR* 1.30

SUM 16.07 11.82 4.25 617686. (408.)(7490.90) COMP 3423. 1229. 290. 69. PO.DA HE.MN PERIOD RAIN EXCS LOSS ******** 68 COMBINE 2 HYDROGRAPHS AT SCHOMARIE CREEK AT PRATTSVILLE (USGS 35CO)
15TAG ICOPP IECON ITAPE JPLT JFRT INAME ISTAGE IAUTO
1626 2 0 0 0 0 1 0 0 JERT INAME ISTAGE LAUTO UNIT HYDRGGRAFH 44 END-OF-FERICD ORDINATES, LAG= 10.92 HOURS, CP= 0.74 VOL= 1.CC 379. 758. 1186. 1640. 2106. 2567. 2965. 3250. 3250. 3446. 3264. 2922. 2529. 2189. 1895. 1640. 1420. 3216. 597. 517. 447. 387. 335. 217. 188. 163. 141. 122. 106. 91. 79. 59. C.000 0 15MPE LOCAL LOSS DATA
LROPT STREAD DLTER RIJOL ERAIN STRES RIJOK STRTL CNSTL ALSMX
G C.G? 1.5C 1.0C C.OC 0.0C 1.00 C.OC 0.CC E.00 ********** ********* RECESSION DATA QRCSN= 800.00 RTIOR= 1.30 SPFE PMS R6 R12 R24 R48 R72 C.CC 21.9C 37.5C 52.0C 62.5C 73.5C 75.0D SCOPP SECON STAFE JPLT SUB-AREA RUNOFF CORPUTATION LAIT HYDROGRAPH DATA O END-OF-FERIOD FAIN EXCS LCSS COMP 9 PO.D COMBINE HYDRUGRAFHS SNAF TRSDA TRSPC 0.CC 3456.00 0.0C ********* ******** STRTG= 115,CC ********* ******** 10HG TAREA C 78.00 69 SUB AREA-127 127 INYDE ********* ********** 3467. 1064. 251. 59.

I.

.

.

[]·

II:

1

1

-

1 . 1.

HYDROGRAPH ROUTING

	ISTAGE IAUTO			LSTR	v	ISPHAT
	INAME IS	-				STORA IS
ILL CREE!	JPRT	0		IPMP	0 0 1 0 00.0 0.0	15K C.CCO
COBLESK	JPLT	0		IOFT	0	0.3C0
EK BELOL	ITAFE	0	ING DATA	ISAME	-	AMSKK 1.400
ALIE CRE	.ECON	0	ROUT	IRES	D	146
- SCHOH	ICCFF	-		201	0.00	NSTOL
EL ROUTE	ISTAG	1627		CLOSS	000.0	NSTPS 4
71 CHANA				OFCSS	0.0	

SUB-FREA RUNOFF COMPUTATION

SUB AREA-27 RUNCFF ISTAG ICCMP IECON ITAFE JPLT JPRT INAME ISTAGE I-1000
RUNCFF IECON ITAFE JPLT JERT INAFE I
SCOPP SECON STAFE JPLT JERT S
RUNCFF ICCPP IECON ITAFE JPLT O O O
RUNCFF ICCPP IECON ITAFE
RUNCFF ICCPP IECON
RUNCFF
•
SUB AREA-27 ISTAG
SUB
72

ISHOW ISAME LOCAL	R72 R96 79.00 C.00	CMSTL ALSMX ATIME 0.00 C.CC 0.(C		1.30	17.22 HOURS, CP= 0.76 VOL= 1.CC 6182. 7392. 8611. 983C. 14467. 14398. 14145. 13683. 7121. 6435. 5814. 5254. 25583. 2109. 1906. 937. 847. 765. 691. 340. 307. 278. 251.	PERIOD RAIN EXCS LOSS COMF &	Sur 16.07 11.92 4.15 3945252. (468.) (363.) (106.) (\$111716.)			DLESKILL CREEK 17 INAME ISTAGE 1+UTO 0 1 C 0
SMAF TRSDA TRSFC MATIGI	PRECIP DATA R4 R48 37.56 52.00 62.56 73.50 79	EBAIN STRKS RIIOK STRTL C.GO 0.0C 1.00 C.OC	UNIT MYDROGRAPH DATA TC= 20.79 R= 9.87 NTA= C	0.00 GRCSN= 6800.00 RTIOR= 1.30	3835. LA6= 3835. 4991. 14073. 14358. 8723. 7281. 3164. 2259. 1148. 1637.	END-OF-FERIOD FLOW SS COMP Q PO.DA HR.MN		****	COMBINE HYDROGRAFHS	73 COMBINE 2 HYDROGRAPHS AT SCHOHARIE CREEK BELOW COBLESKILL CREEK ISTAG ICCMF IECON ITAFE JFLT JFRT INAME IS 1627 2 0 0 0 0 0
INYDG IUEG TAREA	SPFE PMS C.OC 21.9C 37.	LEGET STAKE DLTKR R110L	10* 2	STRTG= 1010.00	228. 850. 1724. 2736. 11023. 12089. 12948. 13606. 12948. 13606. 12949. 13606. 1727. 4289. 3876. 3502. 1722. 1556. 1406. 1270. 527. 205. 185. 167.	HR.PN FERIOD RAIN EXCS LCSS				73 COMBINE 2 HYDROGRAPH ISTAG ICCPF 16.27
	COMFUTE					MG. DA				

JASPC

HYDROGRAPH ROUTING

......

74 CHANNEL ROUTE - SCHOHARIE CREEK AT BURTONSVILLE (USGS 3515)
151AO 160PP 1FON 17AFF JRIT JEST 14AFF 151AO

										COMP	16.07 11.92 4.15 622578.
	1		20						3561. 1162. 254. 56.	\$507	4.15
	-0	***********	E IAUTO	1007		BTIVE 0.00			34C2. 1352. 1352. 256. 65.	EXCS	11.92
153	A ISFAAT		IE ISTAGE	1SAME L	96%	ALSEX 0.00			EP= 0.74 VO 3123. 1575. 344.	RAIN	16.07
0 40	K STORA	***************************************	T SWAME	I Nows I	79.00 C	CNSTL C.DC		1.30		PERIOD	SUF
D D	0 0.000		1 1581	RATEO 1	R48 73.50 79	STRTL G.0C	ں H	R110R= 1.30	10.51 HOURS. 272C. 1833. 401. 88.	HR. BY	
AATA LOFT	0 0.260		ם זפרג	TRSPC R	PATA R24 62.50 73	A #110K	PH DATA	800.00	LAGE 2239- 2134- 467- 102-	P0.04	
ROUTING DATA	1.200		NOFF PP IECON ITAFE APLT C 0 0 0 0 0	HYDROGRAPH TRSDA 1 3456.00	PRECIP DA R12 52.00 62	LOSS DATA STRKS 0.00	UNIT HYDROGRAPH DATA	RECESSION DATA GRCSN= 800.	ORDINATES. 1748. 2485. 543. 119.	END-OF-PERIOD FLOW	
. 4			CCPP IECON	SKAF TO	37.50 52	ERAIN 0.00		115.0C RE		END-	
8 S O O O O	S. MSTBL	***************************************	100	TAREA 78.CC	8 0 ·	1.00	10= 12	STRTG= 11	¥0-0¥	EXCS LC	
1028	MSTPS		PREA 151	1046 7	, 3 12 25 25 25 25	DLTKR 1.25		ST	F. E	RAIN E.	
6.0	ļ		75 SUB	IHYDG	PROGRAM	STRKR 0.07	;		T HYDROGRI 406. 3526. 857. 187.	FERICO	
				•	SPF 0.0 RSPC COMFUTED BY THE PROGRAM IS	LROPT			110. 3604. 998. 218.	HR.AN F	
					OMFUTED					90.0H	

I

I

business a

Sales of Sales

Lincoln

-

1

1

COMBINE HYDROGRAFHS

I

76 COMBINE 2 HYDROGGRAFHS AT SCHCHARTE CREEK AT BURTCHSVILLE (USGS 3515)
ISTAG ICCPP IECON ITAPE JPRT INAME ISTAGE IAUTO
1628 2 0 0 0 0 0 1

HYDROGRAPH ROUTING

.......

14010		
15766	LSTR	ISFRAT
INAME		STORA 0.
JPRT 0	0	15K
ECOPP SECON STAFE JPLT SECON STAFE JPLT O 0 0 O 0 0	1061	C.200
BELON S 17AFE	ISAME	AMSKK 2.100
IECON O O	IRES	LAG
I CORP	0.00	MSTOL
CHAMNEL ROUTE 15180 1029	00000	MSTPS 1
CHAR.	0.0	1 1 7 1

SUB-AREA RUNDFF COMPLIATION

14010	
15TAGE 0	10001
INAME 15	1SAME
1 1947	ISNOW
1145	RATIC C.00C
TAPE 0	PH DATA TRSFC 0.00
IECCN 1	HYDROGRAPH TRSDA 3456.00
	S##F
AREA - 25 BLNCFF ISTAG ICCPF 29 C	TAREA 87.00
SUB AR	10 to 0
8	16726

	R96	00.0
	872	00.25
	848	73.50
	R24	
PRECIE	R12	
	Ré	37.56
	SWd	21.90
	SFFE	COMPUTED BY THE PROGRAF IS C.929
		Y THE
		COPPUTED B
		RSPC

	FIIPE	0.00
	ALSMX	23.3
	CNSTL	20.3
	STRTL	20.3
	Œ	1.00
LOSS DATA	STRKS	30.3
1		00.0
	RTIOL	1.00
	DLTKR	1.16
	STRKE	13.3
	LROFT	

TC= 13.13 R= 6.75 NTA= C

STRTG= 132.CC GRCSN= 926.UC RTIOR= 1.30

1383. 1365. 309. 70.	LOSS COMP 6	16.07 11.97 4.10 698533. (468.)(364.)(104.)(19780.23)			2	0	:		G	0						
76. 1.(C. 3635. 1563. 359. 81.	EXCS	364.)			IAUTO				140	•				IAUTO		3
CP# 0.75 VC 3311. 1837. 416. 94.	RAIN	16.07			ISTAGE		•		ISTAGE	LSTR	C ISPRAT	:		1STAGE	, , ,	
	PERIOD	SUR			CREEK	-	***		INAME		STCRA C.	:		INARE	ISA	
11.0C HOURS, 2864. 2130. 483. 105.	H. 38		*********		CHOHARIE JFRT		***************************************		JPRT	194	1.000 0.000	•		1891	ISNOW	
2350. 2350. 2471. 380. 127.	FLOW			AFHS	BELOW S			ING	RDAR	101	0.2C0		TATION	JPLT	RATIC C.066	
0861MATES. 1832. 2867. 65C. 147.	COMP 0 FO.		*********	COMBINE HYDROGRAFHS	AT MOMAWK RIVER BELOW SCHOHARIE JECON ITAPE JPLT JPRT 0 0 0 0		***************************************	HYDROGRAPH ROUTING	R AT AMSTERDAM	ES ISANE	AMSKK 2.100	***************************************	SUB-AREA RUNOFF COMPLIATION	ITAFE	HYDROGRAPH DATA TRSDA TRSFC 3456.UC U.CC	IP DATA
				COMBIA	AT MOH!			HYDRO	K RIVE IECON	IRES G	LAG	:	REA RUI	1ECCN 0	HYDROGR TRSDA 3456.CC	PRECTO
44 END-OF-FERICO 845. 1327. 69C. 3319. 874. 754. 198. 171.	EXCS LOSS				79 COMINE 3 NYDROGRAFHS ISTAG ICCPP 1629 3		•		ICCPP ICCON	٥٠٠٥	MSTOL	:	SUB-A	RUNCHE ICCPF	SNAF C.CC	
BAFH	PAIN EX				1NE 3 HY 1STA0 1C29				EC CHANNEL ROUTE ISTAQ 1030	000.0	NSTPS	*******		AREA-30 ISTAG	6 TAREA	
HYDROGRAFH 425. 3872. 1074. 230. 52.	PER100				79 CO				EC CHAN	GLCSS C.C				81 SUB A	Ž	
115. 3912. 1177. 267. 66.	HR.AN PE					*********								€.	IHYE 6	
6	#0.0#															

I

1

No. of Street, or other Persons and Street, o

-

İ							.08)								
			ı			COMP	823683								
NA .			1	2867.	367	1055	103.)	:		20	:		20		
	BTIME.			2526. 2526. 2419.	461. 163. 67.	Excs	12.00			14010			14010		
	70.0 C.0C					RAIR	16.07 12.00 4.07 823683. (408.)(3C5.)(103.)(23324.08)	•		ISTAGE	•		ISTAGE	LSTR	
90.0	,			CP= 0.67 2177. 2646.	439. 179. 73.		SUR 16	•		INAKE			INAME		
79.00	CMSTL 0.00		RT10R= 1.30	2	486. 196. 86. 32.	PERIOD	S	•					JFRT I	0	
73.50	STR7L C.00		R1108	13.78 MOUR 1815. 2895.		HR. H.		i		MS TE	:				
	1.00 1.00	BATA	.00 00.0		225. 214. 87.	FLOW			AFHS			ING	SVILL	101	
#24 62.50	STRKS 0.00	MYDROGRAPH. R= 11.14	GESSION DATA GRCSN= 1156.00	2		ERICO		********	COMBINE HYDROGRAFHS	HYDRCGRAPES AT MOHAWK RIVER 1 ICOPP IECON ITAPE 1 2 0 0 0		HYDROGRAPH ROUTING	T CRAN	ES ISANE	
82.00		HYDR.	RECESSION GRCSN=	ORDINATES, 1117. 3281.	23.52	END-OF-PERICE COMP G		:	BINE H	AT MOHA IECON	:	DROGRA	RIVER AT	RES	
37.50	ERAIN 0.00	15.61	160.00		543. 629. 256. 104.				COM	APES A		H	_	1	
	1.00	TC = 15		68 END-OF-PERICD 495. 794. 289. 3321.	1543 256 256 104 104 104 104	S 1.055		:		YDRCERA ICCPP	:		ICCFF	0.00	
24.90 0.929	1.00		STATGE	-	280. 280. 114.	EXCS				* M			NEL ROUTE ISTAQ 1631	00000	
w 0				-		RAIN				82 COMBINE 2 IST 1CT			CHAN	0.0	
PROGRA	STEKE 0.07				752. 386. 125. 51.	PERIOD		:		8	:		8	đ	
8v 7m6	LROPT			65. 031.	2021. 623. 335. 137.	HR. HN									
SPF 0.0 COMFUTED BY THE PROGRAM IS				•	~	MO.DA		•							

I.

I.

I.

I.

[].

[].

[].

COMP 0 PC.DA HR.MN PERIOD RAIN EXCS LOSS 9999779999 JPLT JPRT INAME ISTAGE IAUTO UNIT HYDROGRAPH 37 END-OF-FERICD ORDINATES, LAG= 8.31 HOURS, CP= 0.71 VOL= 1.CC 236. 469. 727. 997. 1248. 1434. 1538. 1562. 1109. 932. 784. 659. 555. 466. 392. 330. 196. 165. 139. 17. 98. 83. 69. 58. 58. 35. 29. 25. 21. 17. 17. 15. 0.00 IHYDG IUHG TAREA SMAF TRSDA TRSPC RATIC ISMOG ISAME LOCAL 1 0 28.00 0.00 0.00 0.00 0.00 0 1 0 ... ALSHX C.CC .00° 0 1.360 6.260 6.660 6. CASTL C.0C RT10R= 1.30 \$PFE PMS R6 R12 R24 R48 R72 C.CC 21.9C 37.5C 52.0C 62.5C 73.5C 79.0C LOSS DATA
LEOPT STRKR DLTKR RTIOL ERAIN STRKS RTIOK STRTL
6 6.67 1.06 1.06 6.00 6.00 6.00 SUB-AREA RUNOFF COMPLIATION TC= 9.58 R= 5.79 NT RECESSION DATA QRCSN= 100.00 COMP G PC. E4 SUB AREA-31 RUNCFF IECON ITAFE ISTAG ICOPF IECON ITAFE 34.00 MO.DA HR.WH PERICO RAIN EXCS LCSS ... STRIGE **********

1

COMBINE HYDROGRAFHS

16.07 12.00 4.07 219623. (406.)(305.)(103.)(6219.02)

50.91 408

INAME ISTAGE IAUTO CS COMINE 2 HYDROGRAFHS AT MOHAWK RIVER AT CRAMESVILLE ISTAG ICCPP IECON ITAPE JPLT JPRT 1651 2 0 0 0 0 0

I											
LEI											
1.											
4					i						
4	•			.							262. 267. 77. 29. 11.
41	0	24.0			14010	J 0		0.00			23. 23. 33. 12.
	•	1STAGE	SPAAT	1:	ISTAGE	1007					1151. 1151. 269. 228. 85. 85.
		INAME 45				ISAME	88 C.00	ALSPX 0.CC			# 0.61 1054. 671. 251. 94. 35.
4		1	\$108A		INAME	NONSI	222	CNSTL 0.00		1.30	5
4		JUNCTION O O O O	G.000		LPRI		R72 79.00	STRTL C.00	u	R 1 106=	5 HOURS, 741. 277. 104. 35. 15.
4			0.200	A110m	1140	8AT 10	848 73.50		DATA NTA=		M6= 10.4 752. 817. 306. 115. 43.
L	ROUTING	T ROTTERDAN LTAFE. JR. 0 NG DATA ISANE LO	AMSKK 2.160 C	COMPUTATIO	ITAPE	TRSPC 0.00	R24 62.50	1A 1.00		350.00	-
П	NY DROGRAPH ROU	A 1 51 51 51 51 51 51 51 51 51 51 51 51 5		RUNOFF COR		ā	R12 62.00 6	LOSS DATA STRKS C.OC	MYDROGRAPH R= 10.19	RECESSION QRCSN=	ORDINATES 577- 901- 338- 126- 47- 16-
-11		2 H	30	SUB-AREA P	IECON		•	EFAIN C.00	UNIT 69		•
-[]		ICCEP. J	1915		1000	SNAF C.CC	37.50		C= 11.	46. CC	F-FERICO 411. 594. 372. 139. 20.
-0		_	MSTPS		32 EU	1AREA 32.00	21.90	1.00	•	STRTG=	61 END-0 259. 057. 411. 154. 22.
Ln	•		188	•	151A0	10 HG	SPFE C.00 2 IS 0.92	1.00			AFH 61 E6 259. 1057. 411. 154. 22.
0		86 CHANNEL 1			87.508		GRAN 1	G.07			нуркобкарн 61 128. 255 1185. 1057 453. 411 453. 611 64. 556
T-L					;	INVOG	THE PRO				FINA
-0	1						1 49	LROPT			34. 1225. 506. 187. 74. 26. 16.
-0							RSPC COMFUTED BY THE PROGRAM IS 0.929				
Ln							BSPC (

PO.DA MR.MM PERIOD RAIM EXCS LOSS CORP & and the same of NO.DA MR.MW FERIOD RAIN EXCS LCSS COMP. B. PO.D

SUM 16.07 12.00 4.07 256081.

Į.

-

Tourse of the last

Name of Street

COMBINE HYDROGRAPHS

INAME ISTAGE TAUTO 66 COMBINE 2 HYDROGRAPHS AT MOHAWK RIVER AT ROTTERDAM JUNCTION ISTAC ICCYF IECON ITAPE JPLT JPRT INAME 1632 2 0 0 0 0 1

HYDROGRAPH ROUTING

.........

1AUTO 0 LSTR INAPE ISTAGE STORA ISPRAT 15K 1847 D 0.200 89 CHANNEL ROUTE - MCHANK RIVER AT SCHENECTADY 151A9 15CPP 16CGN 17AFE JPLT LOFT ROUTING DATA 1.5C0 ISAME LAG IRES 0.00 MSTOL 0.000 NSTFS 2 1.33 0.0

SUB-AREA RUNCFF COMFLIATION

IAUTO רסכשר INAPE ISTAGE ISAME ISNON PRI C.OOC SMAF TRSDA TRSPC 0.00 3456.00 0.00 HYDROGRAPH DATA JECON ITAFE 0 0 90 SUB AREA-33 RUNOFF ISTAG ICCPP 33 C TAREA 38.00 JUFG C 1HYD6

COSS DATA STORE RITCE FEATH STREE STORE STORE STORE

75.00

848 73.50

R12 R24 812 R24 52.00 62.50

SPFE PMS RC C.O.C. 21.9C 37.5G TRSPC COMPUTED BY THE PROGRAM IS C.929

			!		_								
				9 4400	305765.								
		*	2009.	1055	SUM 16.07 12.00 4.07 305765.	•		20	:		90		
0.0	4		2030. 450. 69.		.00	************		Tuc1	***************************************		14010		
	*	-		RAIN EXCS	.07 12	:		INAME ISTAGE LAUTO	:		ISTAGE 0	LSTR	ISFRAT
0.00 0.00			CP= 0.7 1957. 581. 106.		5 mus			INAPE 1	:		JPRT INAME ISTAGE		STORA ISFRAT
	0	RTIOR= 1.30	UNIT HYDROGRAFH 38 END-OF-FERICD ORDINATES, LAG= 9.02-MCURS, CP= 0.73 286. 568. 881. 1209. 1530. 1751. 1957. 1614. 1361. 1148. 968. 817. 689. 581. 294. 248. 209. 177. 149. 126. 106. 54. 45. 38. 32. 27. 23. 19.	HR.MK PERIOD		**********		JPRT	***************************************		1881 0	9491	15K C.CCO
1.00 1.00 0.00 0.00 1.00 0.00		8	1530. 1730. 179. 149.	*			, HS	91 CCMBINE 2 NYDHOGRAFHS AT MOHANK RIVER AT SCHENECTADY ISTAG ICOMF IECOM ITAFE JPLT JPRT 1633 2 0 0 0 0		911	JPLT	1061	C.260
. 00.0	TC= 10.67 R= 5.89 MTA	RECESSION DATA GRCSN= 400.00	11ES. LA	ER100 F			COMBINE HYDROGRAFHS	K RIVER ITAFE 0		HYDROGRAPH ROUTING	ITAPE	ES ISANE	AMSKK 1.800
.00	NIT MYDE	1	D ORDINATE 1205. 968. 177. 32.	END-OF-P		•	OMBINE H	AT MOHANK RIVE IECON ITAFE 0 0	*	TOROGRA	HS FERRY IECON ITAPE 0	IRES	947
10	Je 10.6	49.66	F-FERIC 881. 1148. 209. 38.	1055			ŭ	ICOMP.		Ī	ICCPP IECON	97.0	MSTDL
00		STRTGE	38 END-0 568. 1361. 248.	EXCS				E 2 HYDRO ISTAG I					MSTPS N
			OGRAPH	RAIR	i	. !		CCMBINE I	•		52 CHANNEL ROUTE 1STAG 1C34	0 . 9.3 C.6. 0	ï
20.0	!		286. 1614. 294. 54.	PERICO	1			2	:		3	3	
			,8 1862. 345.	HR.NN PERICO									
				9.0.									

I

-

L

- Inned

SUB-AREA RUNOFF COMPUTATION

.......

JERT THAME TSTACE TALLTO 1141 53 SUB AREA-34 RUNUFF TECON TTAFF

S. C. S. S. C. S.

TASPC COMFUTED BY THE PROGRAM CAOPT STRKE	TEO BY THE P	PROGRAP STRKE STRKE C.C.C.	IN CO. O	F TAREA SNAF C 108.CC C.CC C.929 CLTKR RTICL ERA T.CC C. T.CC C. STRTG= 170.CC FH 55 END-OF-FERTOD	TAREA SNAF 108.CC G.CC 21.9C 37.5C 29 TIGL ERA C 1.CC C.UN TC= 14.ES STRTG= 170.CC	MA SO II	P DATA O DATA P DATA	2 00 TA 00 "	5 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	30 00 00 00 00 00 00 00 00 00 00 00 00 0	ALSP 6.00 6.00	MTIFF 0.CC 0.CC		
94.05	38855. 1947. 525. 2011. 64.	3583. 1738. 556. 179. 57.	* * * * * * * * * * * * * * * * * * *	4021. 1551. 490. 160. 51.	3962. 1385. 144. 143. 46.			3436. 1103. 354. 114.	3067. 3067. 985. 316. 101.	ER 10	2738. 2738. 879. 282. 91.	2444. 2444. 784. 252. £11.	2635. 2181. 700. 225. 72.	9 460
	***************************************	•		***	:	COMBINE	**************************************	A X		Wins .		(355.)(10	103.3 62	16.07 12.00 4.07 868935. (408.)(3C5.)(103.)(24605.48)
		2 2	CMB JAE	COMBINE 2 HYDROGRAPHS ISTAG ICCNP 34 2 AMMENENTE - MCHAMK ISTAG ICCNP	106RPHS 106RPHS 106RPHS 106RPHS 106RPHS	IECON HYDROGR	AT MOHALK RIVER AT IECON ITAFE J ON OF THE J ANNERS AT CONDES C IECON ITAPE J	R AT VISC JFLT JFLT TING	ž	ERS FERRY JERT INAME AREASSESSES S75) JERT INAME	4E ISTAGE	6E 1AUTO	20 : 0	

.

.

34

, ,										•	.î.
										COMP	266676.
0			00						1742. 357. 67.	8507	103.)(
	F 0		E IAUTO	10001	i	611#F			VOL= 1.CC 1774. 422. 79.	EXCS	16.07 12.00 4.07 (468.)(3C5.)(103.)(
D T C	ISPRAT	!	E ISTAGE	ISANE L	90.0	ALSEX C.CC				RAIN	16.07
	STORA C.		T INAME	I AONSI	R72 79.00 C	CNSTL C.OC		1.30	3	PERIOD	SUR
0 441 10	1		T JPRT	#ATIC 1	848 73.50 79	STRTL C.OC	v	RT108= 1.30	3.86 HOUR 1582. 590. 110. 21.	M. WH	
9	002.0	SUB-AREA RUNGEF COMPLIATION	4	TRSPC BLOOC O.OC O.	23	RTIOK 1.00	H DATA	DATA 370.00	1358. 697. 130. 24.	FLOW #0.0A	
O O O O O O O O O O O O O O O O O O O	1.500	RUNOFF COM	ITAFE	¥ _	9	LOSS DATA STRKS 0.00	UNIT HYDROGRAPH DATA	RECESSION D	ORDINATES. 1076. 824. 154. 25.	END-OF-PERICO	
10000	P. C.	-AREA R	IECON	SNAF TRSDA	•	ERAIN G.00					
P. CO	NSTOL		RUNCEF		37.	1.00	10= 10	0= 41.CC	0-0f-FERICO 784. 975. 182. 34.	S LOSS	
16.55	NSTPS 1		AREA-35 157AQ 35	UHG TAREA G 33.00	21.96 6.929	1.00		STRTO=	H 38 END-OF 564. 1153. 216.	N EXCS	
0.0		*	80 S 96	•	SPFE 0.00 GRAF IS	STRKR 0	· ·		UNIT HYDROGRAFH 254. 1363. 255.	OD RAIN	
				INYDG	THE PRO	LROFT S			H II	HR.MN FERIOD	
					TEC 81	3			1596. 302. 50.		
•					SPE G.C TRSPC COMPUTED BY THE PROGRAP IS					AO.DA	
.	:		i		TRS						1

IIIIIIII

在我在我在我也在我

COMBINE HYDROGRAFHS

92 COMBINE 2 HYDROGRAPHS AT MONAMK RIVER AT CONDES (USGS 3575)
15189 ICOPP SECON ITAPE JPLT JPRT INAME ISTAGE IAUTO
1035 2 0 0 0 0 0 1

********* *********

PEAK FLOW AND SIGRAGE (END OF PERIOD) SUMMARY FOR MULITPLE PLAN-RATIO ECCNOMIC COMPLIATIONS.
FLOWS IN CUEIC FEET PER SECOND (CUBIC METERS PER SECOND)

-1

.[

-1

-[

-I

-[

-[

-[

				AREA IN SQU	SQUARE MILES	(SQUARE K	(SQUARE KILOMETERS)			
						RATICS AP	RATICS APPLIED TO FLOWS	CONS		
CFERATION.	STATION	AREA	PLAN	RATIC 1 C.20	RATIO 2 0.40	RATIC 3	RATIO 4 0.60	8ATJC 5	1.00	
HYDROGRAPH AT	-	156.60	-	314.98)	22247.	27809.	33371.	44494.	55618.	
RCUTED TO	1001	150.00	-	5981.	13919.	17760.	21565.	29121.	36633.	
RCUTED TO	1022	156.60	-~	5565. 169.01)(\$01.79)	21518.	25059.	36556.	
HYDROGRAPH AT	~~	18.13)	-	786.	1571.	1964.	2357.	3143.	3929.	
2 COMBINED	1002	157.66	-~	176.73)(14048.	507.51)	21761.	29382.	36963.	
ROUTED TO	1003	157.66	_~	5971.	13921.	17763.	21569.	29126.	36639.	
HYDROGRAFE AT	m ~	285.00	-~	17626.	35252.	44065.	52879.	76505.	88131.	
2 COMBINED	1003	446.66	-~	21041.	44563.	56371.	68118.	91510.	114822. 3251.39)(
PCUTED TO	1604	446.60	-~	26742.	43969.	55537.	1950.43)(96172.	3204.08)	
HYDRUGRAFF AT	, ~	93.00	-~	6762. 185.75)(13405.	16756.	2C1C7. 569.38)(26810.	33512.	
c comerner	1064	539.CC 1395.99)	-~	25589.	53113.	67163.	81061. 2255.38)(106886.	136626.	
RCUTED TC	1005	539.60		24517.	\$1014. 1444.56)(64399.	22(2.12)(104445.	131060.	
HTDRUSRAFH AT	~~	156.00	-,	9678.	19757.	24696.	29635.	39514.	1398.6336	
Z COMPTHED	1005	10,191	•	31662.	41674	. 72318	J5725	121816.	144169	

890.90)(1818.46)(2288.95)(2760.62)(3704.23)(4647.06)(22677. 32063. 43168. 54253. 967.92)(1222.39)(1536.29)(30965. 41726. 52436. 877.39)(1181.55)(1484.63)(23239. 27867. 37182. 46478. 658.06)(789.67)(1052.89)(1316.11)(31491. 35817. 484C2. 65648. 82843. 891.74)(1127.48)(137C.6C)(1858.94)(2345.85)(46213. 94756. 119745. 144782. 194834. 244826. (1308.62)(2683.19)(3390.81)(4099.76)(5517.07)(6532.69)(2529. 5056. 6322. 7586. 10115. 12644. 71.61)(143.22)(179.02)(214.82)(286.43)(358.C4)(46253. 94865. 119820. 144834. 194865. 244848. (1309.74)(2686.28)(3392.91)(41(1.25)(5517.95)(6533.31)(31184. 63790. 80311. 96861. 124558. 163023. 883.03)(1806.32)(2274.14)(2742.79)(3680.00)(4616.28)(34690. 43363. 52035. 65380. 86725. 962.31)(1227.89)(1473.47)(1964.63)(2455.79)(30962. 41664. 52284. 875.05)(1178.11)(1480.53)(3616. 3771. 85.42)(106.77)(31988. 43C71. 54123. 9C5.79)(1219.63)(1532.58)(31557. 39931. 48522. 65812. 83057. 893.59)(1130.71)(1373.99)(1863.58)(2351.52)(7685. 9607. 11528. 15370. 19213. 217.62)(272.03)(326.43)(435.24)(544.C5)(45517. 93629. 118275. 142961. 192393. 241756. (1288.89)(2651.28)(3349.16)(4048.75)(5447.95)(6845.82)(747871 18142. 103701 13666. 2262. 147474 25537. 26493. 26427. 25604. 11339. 1885. 115 PRS. 20899. 20841. 590.14)(18591. 20148. 1508. 20202. 9071. 10175 15296. 5296. 15307. 3843. 17345. 9219. \$552. 269.78)(9241. 4535. 21.35)(12967 375.00 375.00 18.13) 382.00 \$3.C0 137.27 45.00 27.00 1010 697.60 435.00 (1126.64) 121.00 (1440.02) 1440.02) (3361.78) (3431.71) (1805.21) (3361.78) 1325.60 1011 1009 1010 1011 1000 1008 1009 1010 1017 1001 HYDRCGRAPH AT HYDROGRAPP AT EYDROGRAFH AT HYDRCGRAFF AT HYDROGRAPH AT FYDROGRAPH AT 2 CUMBINED 2 COMBINED 2 COPBINED S COMBINED Z COMBINED ECUTED TO ROUTED TO PEUTED TO RCUTED TU RCUTED TO SCHITFD TO

309.80) 26574. 53148. 66435. 79722. 106296. 432871. - 752.49)(1504.99)(1861.24)(2257.48)(3009.98)(3762.47)(25169. 6637. (1296.25)(2667.20)(3366.44)(4068.35)(5473.39)(6877.34)(46262. 95021. 119922. 144913. 194939. 244945. 1310.00)(2690.70)(3395.81)(4103.48)(5520.04)(6936.07)(2791. 5581. 6576. 8372. 11162. 13953. 75.C2)(158.C4)(197.55)(237.C6)(316.08)(395.10)(46152. 94851. 119712. 444660. 194596. 244512. 1306.87)(2685.88)(3389.87)(4096.32)(5510.35)(6523.80)(24547. 49095. 61368. 73642. 98190. 122737. 695.10)(1390.21)(1737.76)(2085.31)(2780.42)(3475.52)(53802. 42552. .5C702. 67603. .84504. .957-16)(1196.44)(1435.73)(1914.31)(2392.89)(16461. 33721. 42151. 50562. 67442. 64363. 477.44)(954.88)(1193.59)(1432.31)(1909.75)(2387.19)(63735. 129914. 163541. 197255. 264723. 332170. (1804.77)(3678.76.(4630.97)(5585.63)(7496.10)(9405.59)(27500. 34875. 79C.04)(587.55)(62354. 139049. 174283. 210810. 282731. 354656. 1935.56)(3937.44)(4952.14)(5969.47)(8006.04)(10042.72)(62197. 138775. 174534. 210385. 282157. 353933. (1931.13)(5929.66)(4942.24)(5957.44)(7989.78)(10022.27)(16766. 62786. 127997. 161693. 1943C1. 26C738. 327148. 1777.90)(3624.46)(4561.65)(55C1.98)(7383.28)(5263.80)(7 7 5 4 5 1 247.84)(20087. 568.80)(6682. 8353. 1Cu23. 13455. 189.22)(236.53)(283.83)(378.44)(156.34)([]-718546 185.88)(6975. 1395G. 17438. 2092: 197.51)(395.02)(493.78)(592.53)(3318. 3982. 93.57)(112.76)(426.60)(213128 12554. 355.50)(123.92)(154.90)(171.510. 10043. 2655. 140412 3341. 5022. 2188. 16501. 1327. []-26574. 65272. 261.00 30.00 291.00 (4340.74) 59.57) 291.00 291.00 37.00 351.05) 59.20 33.53) 1348.00 (3431.71) (3491.28) (4340.79) 1827.00 (4731.88) (4731.68) 17.99.30 1015 1016 1012 1015 1015 1016 1018 1614 1014 16 1111 130 CHENCHARR AT RESECURACE AT HTDROGRAPH AT TORGGRAFH AT TURCGRAFF AT HYCROGRAPH AT HYDRUGRAFF AT CCHRINED ! OBSTRE? 2 COMPINED 3 COMBINED COMBINED 2 RCUTED TO RCUTED TO RCUTED TO RCUTED TO CUTED TO

16665. (1961.56)(3981.68)(5006.96)(6035.11)(8093.33)(10151.71)(65C4C. 140296. 176409. 212618. 285115. 357626. (1955.00)(3972.72)(4995.33)(6020.66)(8073.55)(10126.82)(5965. 11929. 14912. 17854. 23859. 29824. 168.901(337.801)(422.26)(506.71)(675.61)(844.51)(70137, 142291, 178798, 215452, 288894, 362350,-(1986,06)(4029,24)(5062,98)(6100,92)(8180,56)(10260,59)(302.44) 69934, 141918, 178411, 215004, 288277, 361572, (1980,30)(4018,68)(5052,04)(6028,23)(8163,08)(10238,57)(4647. 9295. 11618. 13942. 18589. 23236. (131.60)(263.19)(326.99)(394.79)(526.38)(657.58)(5882. 466.4636 76607. 143182. 179886. 216768. 296630. 364513. (1999.38)(4054.46)(5093.79)(6138.19)(8229.70)(10321.84)(71172. 14433C. 1813G5. 218373. 292699. 367G66. (2015.36)(4086.98)(5133.98)(6184.2C)(8288.30)(1C394.15)(70518. 143062. 179770. 216566. 296259. 363956. (1996.85)(4051.23)(5090.50)(6132.45)(8219.21)(10307.21)(76665.312 (4021.94)(5055.44)(6051.61)(8166.49)(16242.18)(165-195 541.71) 468.27) 16537. 16315. 14074 13052. 13332. 26605. 13182. 13229. 3529. 4705. 99.53)(133.24)(6468. 8544. 181.46)(241.95)(51217. 283.13)(272.1936 19954. 256.3636 279.96)(38613 235.94)(8239. 233.30)(230.99)(16628. 2541. 8268. 4272. 5340. 120.98)(151.22)(32611. 126.64)(6526. 188.76)(13302. 2353. 6615. 25609 2136. 3263. 188.34)(3333. 33.31)(93,32)(93.65)(12204. 3307. (5105.61) 55.00 2, 2626.30 186.48) 1 5558.08) (5105.61) (5248.06) 32.85) 23.60 35.70 84.66 2146.66 5558.08) 39.36 35.30 (4919.13) 4919.13) 35.70 134.25 186.50 217.563 1020 1015 1019 1020 1023 1022 1023 1023 1625 1023 2 HYDRUGRAPI AT MYDROGRAFE AT HYDROGRAFY AT HYDROGRAFH AT HYDRUGRAPH AT PYDROGRAFF AT HYDRUGRAPH AT Z COMEINED CCHBINED Z COMBINED S CUMBINED REUTED TO RCLIED TO RCUTED TO RCUTED TO ROUTED TO FCUTED TO

I-

1-

I-

Į.

I-I-153.57) (C 362.58)(725.15)(906.44)(1087.73)(1450.30)(1812.88)(49680. 99790. 124761. 149722. 199636. 249547. 1406.78)(2825.74)(3532.83)(4235.65)(5653.05)(7666.37)(49364. 99212. 124647. 148869. 198503. 248132. 1397.84)(2809.36)(3512.61)(4215.50)(5620.97)(7626.30)(15879. 19055. 25406. 31758. 449.64)(539.57)(719.42)(899.28)(39503. 47884. 63845. 79866. 1129.93)(1355.91)(1807.89)(2259.86)(33106. 41382. 49658. 66211. 82764. 937.44)(1171.80)(1406.16)(1874.88)(2343.60)(24784. 3C960. 22695. 45390. 56738. 68085. 9C780. 113475. 642.65)(1285.30)(1606.63)(1927.96)(257C.61)(3213.26)(22247. 44750. 55540. 67129. 89506. 111883. 625.97)(1267.18)(1584.05)(1900.89)(2534.53)(3168.17)(21588. 43412. 54276. 45136. 86851. 108565. 611.30)(1229.28)(1536.93)(1844.44)(2459.35)(3074.21)(28651. 57301. 71626. 85952. 114602. 143255. 811.29)(1622.58)(2028.23)(2433.88)(3245.17)(4056.46)(52436. 105537. 131580. 1584C1. 211221. 264033. 1484.81)(2986.48)(3737.25)(4485.40)(5981.11)(7476.57)(51621. 103856. 129500. 15592C. 207931. 259929. 1461.73)(2940.87)(3678.36)(4415.15)(5887.95)(736C.35)(17385. 2C8c2. 27816. 34770. 492.29)(550.74)(787.66)(564.57)(112163. 224869. 281339. 337866. 451066. 564425. 3176.090 6367.570 7966.62)(9567.29)(12772.76)(15982.71)(111293. 223167. 279225. 335339. 447763. 560363. 3151.47)(6319.39)(7906.76)(9455.73)(12679.23)(15868.25)(3262. 4350. 92.38)(123.18)(25388 15490. 18588. 438.63)(526.35)(10001 2719-15867. 12392. 4352. 12703. 175.86)(359.71)(31922. 2175. 6554. 1390E. 196.91)(393.83)(12496. 175.45)(30.79) 451.97) 468.72)(1767 16553. (1271.68) (5084.93) 202.623 813.25) 314.00 78.00 87.00 225.33) 225 40 564.62) 236.00 314.00 613.25) 3116.00 (2084.53) 883.00 3116.00 483.033 (2286.94) 16.20 26.42) 16.3. C.C. 1029 1030 1025 1026 1027 1022 1028 1029 50 127 16127 1027 16127 * TORCGRAPH AT HYCROURAPH AT LYBREGRAFF AT PYDREGRAPH AT HYDROGRAPH AT TORCGRAPH AT Z COMBINED 2 COMBINED COMBINED 5 2 COMBINED Z CUNBINED S CUMBINED ACUTED TO KCUTED TO RCLTED TO RCUTED TO CUTED TO

(175.72)(359.45)(449.31)(539.17)(718.90)(898.62)(113cu1. 227867. 285147. 342491. 457319., 572262. 365.52) 114402. 229385. 286992. 344665. 460145. 575778. (3239.50) (6495.45) (8126.83) (9759.81) (13029.85) (16304.21) (114C62. 228738. 286186. 343687. 458825. 5741C9. (3225.46)(6477.13)(8103.87)(9732.12)(12992.47)(16256.95)(2227. 4455. 5568. 6682. -8909. 11136. 65.07)(126.14)(157.67)(189.21)(252.27)(315.34)(335330. 453104. 567014. 9608.75)(12830.47)(16056.02)(22438. 29917. 37356. 113500. 227642. 284£28. 342067. 456679. 5714£6. 3213.96)(6446.10)(2065.43)(96£6.26)(12931.69)(16182.68)(113310. 227281. 284390. 341554. 456014. 570669. 3202.57)(6435.87)(8053.02)(9671.72)(12912.87)(16159.52)(114303. 229221. 286790. 344411. 459791. 575317. (3236.70)(6490.81)(8120.97)(9752.64)(13019.83)(16291.15)(114669. 228781. 286251. 343775. 45856. 574278. 3236.08)(6478.34)(8105.73)(9734.62)(12996.17)(16261.72)(3401. 6802. 8502. 10202. 13603. 12004. 94.30)(192.60)(240.75)(288.90)(385.20)(481.50)(1135CC. 227095. 284176. 341316. 455797. 570416. 3265.47)(6430.61)(6046.96)(9664.97)(12906.72)(16152.36)(113533. 227727. 284547. 342223. 456906. 521727. 3214.88)(6448.51)(8068.81)(9690.67)(12938.14)(16189.48)((320c.91)(6437.76)(2055.90)(9675.70)(12912.92)(16167.37) 2964. 5927. 7409. 8891. 11854. 83.52)(167.84)(205.29)(251.75)(335.67)(182.96)(219.55)(292.74)(211.79)(423.58)(529.47)(112547. 22576G. (282512.) (3186.99)(6392.79)((7999.85) 146.37)(73.18)((266.77) 28.50 (8469.63) 32.00 38.C0 \$8.42) 108.00 (8870.65) 3425.66 33.00 (8337.11) 1036 3219.00 (8409.63) (8492.51) (6590.93) (8590.93) 3458.66 3229.00 (8492.51) 1031 1031 1032 1033 1034 1035 1032 1635 35 1033 3 33 HYDRUGRAPH AT HYDR.GRAFF AT HYDROGRAFF AT COMBINED ? 2 COMBINED 2 CCMBINED 5 CA 31. ED 2 COMBINED RYDRORATE COMBINED RCUTED TO PUUTED TO RCUTED TO PULLED TO RCUTED JU

	PROJECT NAME					DATE 8-16-79
	NUMBERT VISCI	her's f	erry			PROJECT NO.
1						DRAWN BY JAG
_	Spillway :	Discha	irge - fro	om 1230	ogee c	rest plus
1	690' t	rapeso	dal Spillu	say.		
T	Ogee	Cres	t- uncon	trolled o	verflow	
1	L	ength.	L = 1230'			Elev. = 211.0
T	51	sillway	Height , h	~32'		
	H. 19	W. Elec	v. ~217 :	ASSUME	hy =6	alea Oh
T	Α.	$C_1 = 1$	e: Open 403 .	h/. 22	el myara	rulies -Chow
確別		a	4.03	"/Hz = 32/6	k = 5.3	
	E la c	He	Helu.	C/A.	1	0 11 11 3/2
41	<u>Elev.</u> 211		He/Hd	6/20		Q= CL He 42
	2/3	2	0.33	0.84	3.38	11,760 cfs
П	215	4	0,67	0.94	3.79	37,290
	217 219	8	1.0	1.0	4.03	72,850
	221	10	1.67	1.02	4.11	161, 420
2.1	223	12	2.0	1.03	4.15	212, 190
	225	14	2.33	1.03	4.15	267, 390
	227 229	18	2.67 3.0	1.03	4.15 4.15	326,690
L	231	20	3,33	1.03	4.15	389,820 156,560
71						, 40, 500
			1, 6 11			
	50	Mwan	<u>dal Spillwa</u> Length, L	= 690'		
411	Ref	erence:	Handbook	of Hydran	dies - Ki	ng & Brater
I		#	<u>c</u> ,			
-	*	4	~3.4			,
I		6	3.5	(conserva	tively)	

PROJECT NAME	P's FORPII	DAT	12
SUBJECT TISCIPE			WN BY JAG
Downstrea So as not	m of spillway a to affect dis	oppears to slope suffer harge over spillway	
E/ev. 211 213 215 217 219 221 223 225 227 229 231	He C 2' 3.4 4 3.4 6 3.5 8 10 12 14 16 18 20 3.5	Q = C L He 3/2 6,640 cfs 18,770 35,490 54,650 76,370 100,390 126,500 154,560 184,430 216,000	
	w Over Spillw	ay - Ogee + Trape Zordan Q (cfs)	Sections
211 213 215 217 219 221 223 225 227 229 231	0 2 4 6 8 10 12 14 18 20	18,400 56,060 108,340 169,040 237,790 312,580 393,890 481,250 574,250 672,560	

STATION 01336000 HOMANK R BELOW DELTA DAM. NEAR ROME. N. Y.

TOTAL D.A. = 150.00 CONTR. D.A. = GAGE DATUM = 474.00 FT.

3000														36																																
DATE														12-30-41																	46-22-10															
ANNUAL MAX GAGE HT.FT														24.4																	3.36															
CODE											*			Į																	Ę															
GAGE METGHT OF ANNUAL PEAK.FT	o. •.	6.4	6.4	5.85	9.6	*:*	7.1	7.6	6.6	7.31	4.67	6.83	4.35	4,35	6.25	5.78	6.37	11.18	9.06	7.61	2.00	5.41	5.52	5.19	4.88	5.35	5.33	9.49	90.7	3.60	200	35.0	3.63	6.21	6.72	5.95	4.07	3.56	6.54	10.02	5.36	5.12	9.87	4.27	7.25	33.8
HIGHEST SINCE					,																																									
_	S X X	æ	2	*	~	2	æ	æ	a x	æ	×	A A	Z X	a x	*	æ	æ	a a	X	K X	X X	æ	Z Z	*	*	*	*	*	* 4	2 0	2 2	×	æ	æ	A A	æ	×	æ	æ	æ	3	*	æ	7 2	æ	¥
DATE	05-08-28	01-15-30	04-11-31	01-10-32	11-02-32	04-13-34	07-09-35	03-27-36	01-15-37	03-21-38	12-13-38	04-17-40	12-31-40	27-11-90	03-22-43	94-52-40	9-30-45	10-05-45	19-52-50	03-55-48	03-58-49	05-70-70	04-13-51	25-80-70	05-03-53	04-28-54	04-15-55	05-13-56	13-27-51	16-02-21	04-24-60	06-22-61	24-01-62	69-90-90	14-15-64	14-22-65	99-61-50	15-12-67	06-28-68	69-02-50	14-25-70	12-00-50	21-22-90	04-05-73	05-13-74	19-24-75
×	1940																																													
VEAR	1928	1930	1631	1932	1933	1934	1935	1436	1937	1938	1939	140	1361	1942	1943	1966	1945	1946	1947	1948	6.6	1950	1951	1952	1953	***	1955	1426	1052	000	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1471	1972	1973	1574	14/5

MOTAWK RIVED VEAP LITTLE FALLS. N. T. STATION 01347000

•

TOTAL 0.A. = 1348.00 - CONTO. 5.A. = GAGE DATUM = 310.0 FT.

C00E		2		3
DATE		03-05-34		01-23-57
ANYUAL MAK		15.95		15.34
3000	•	I		3
GAGE HEISHT OF ANNUAL PEAK.FT	12:00		17.50 15.57 15.52 15.62 16.93 17.13	
HIGHEST SINCE				
C006 S	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	261611661661	11166671111	***************************************
DATE	03-28-13 11-30-27 03-15-29 01-10-30 07-22-31	10-06-32 03-27-34 03-18-36 04-06-35 04-06-37 04-22-38 03-27-39 04-06-40 03-17-42 03-17-43	10-03-65 06-06-67 03-20-68 03-29-50 03-27-53 02-17-54 03-11-55	02-27-57 12-21-57 01-22-59 11-28-59 02-27-61 03-05-61 03-05-64 03-05-64 03-12-65 03-12-69 03-12-69 04-01-71 06-23-72 11-09-72 07-03-74
ANNUAL PEAK				10600 12400 23000 23000 23000 14400 12100 12100 12100 12100 22700 22700
4ATER TEAR	• 1913	1935	1955 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************

.

APPENDIX D
STABILITY ANALYSIS

PROJECT NAME VISCHERS FERRY DAM	DATE
ANDJECT STARILITY ANALYSIS -	_PROJECT NO
DUERTURNING & SLIDING	- DRAWN BY
Assumed Section Based on Dimensions for Dam"	D
82.176' 2007 - St. 175' 24.5' (+040) 6 24.5' (+040) 11' 7 - St. 175' 24.5' (+040) 11' 7 - St. 168'	
Pessiting moment about toe due to mass of dam = = (40.5x7x.15)(40.5) + (\frac{1}{2}x18636x.15)(11+\frac{2x18}{3}) + (36x11.5) = 861 + 111812 + 215812 = 413712	x.15)(29+ =)=
Wt. of dam = (40.5 27 x.15) + (1/2 x18 x36x.15) + (36x11.	= (21×2

PROJECT NAME

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF

BUBJECT	_PROJECT NO
	- DRAWN BY
I. Wh @ normal operating levels upstream elev.	184'
162-7.5k	
- 81, 211'	
(21. 168') - 58.175' (21.184)	
P= 43×62.4=2.60 lest	
assume uglift based on	
hydroslatic pressures determined from elevation difference above	
have of dam; if flow net for	
peggage through foundation was	
bece then hydroctatic, but de pressure to be great	
less than hydroctatic, but do pressure to be great	ka.
assumption expected to be slightly conserva	11 for look
Moments about toe recisting overturning = 4137 "+ (1.0 x 2 x 3) + (9x9x62,4x 2)
= 4137 " + 43" + 23" = 4203 "	
Moments about toe causing overturning = (2.08x 43° x 43) + (1	10 x 40.5 x 40.5) +
uplift=1852 + (2.68-1.0)	=)(= x40=)+(7.50
= 826" + 820" + 1032 " 36" 2993 "	
FS against overturning = 4203 " = 1.4 +	

PROJECT NAME	DATE
SUBJECT	BEO JECT MO
Position of resultant measured from toe, d = \frac{240}{20} d = \frac{(4203 - 2993)^{16}}{1536 - (2.48+1.0) \tag{40.5} + (9x9x 2044)} = \frac{121016}{83.56}	= 14.5'
d in terms of base dimension, d = 14.5' (b)	
FS against sliding (friction-shear method, assuming and $\mu = 0.65$)	bond is so
FS = MN + bond/chean + det. H20	recustance
ES = (0.62) (83.2) + (.02 x 144 x 40.2) + (1.0x 1/2) =	354 = 61 ±

PROJECT NAME	DATE
SUBJECT	PROJECT NO.
Position of resultant measured from tox, d = 514	DRAWN BY
Position of resultant measured from toe, d = \frac{24}{20} d = \frac{(4203 - 2993)^{18}}{153^8 - (2.48+1.8) \tau(40.5) + (9x9x part)} = \frac{121018}{83.5}	= 14.5
d in terms of base dimension, d = 14.5' (6))= 0.36(6)
FS against sliding (friction-shear method, assuming and $\mu = 0.65$)	bond is sopic
FS = MN + bond/shear +dst. H. O upstream H. O	recistance of rock downstream
FS = (0.65)(83.5) + (.05x144x40.5) + (1.0x1/2) =	354 = 61 ±

AD-A077 484

NEW YORK STATE DEPT OF ENVIRONMENTAL NATIONAL DAM SAFETY PROGRAM. VISCHER SEP 79 J B STETSON

NSERVATION ALBANY F/G 13/13 RRY DAM (NY 170), MOHAWK--ETC(U) DACW-51-79-C0001

UNCLASSIFIED

3 of 3 AD 77484

END DATE FILMED

NL

PROJECT NAME	_ 0476
eve user	_PROJECT NO
I. WL @ 17 PMF elevations upatream cho. 272.	
11.5×62.4=0.72.465	
- Eu. Zu'	
Se. Mu.S	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(91.103) 44	
= 2.08 ksf 0.72 ksf	
7.10 3.40 -2.48 bsl -> 1.0 h cd	1.00
for normal operations case.	ye wineld
() 129.	L ZVIR LAN
Moments about be resisting overturning = 4137 "+ (1782 = 285)+2(9x71.5x,0624x)
= 41371" + 241" + 27" = 4405 1K.	
Moments about toe causing overturning -	
Moments about tos causing overturning = 4108+ 43) + 1552 = 33441K	
FS against and 1000 = 4405 10 = 1000 1	
constant in process	
Jowethean more	

PROJECT NAME	DATE
SUBJECT	PROJECT NO
Position of resultant measured from tor , d = ZW	DRAWN BY
Position of resultant measured from too $d = \frac{2M_{H}}{ZV}$ $\frac{d}{d} = \frac{(4405 - 37.44)^{1/2}}{153 - 74.5 + (\frac{1}{2} \times 9.21.5 \times .0024)} = \frac{1061}{84.5^{2}}$	= 12.6
d'in terme of base dimension, d= 40.5 (P)	= 0.31 (6)
FS against sliding (friction - shear method: bond =	50 psi , u=0.65)
(0.65)(84.5) + (.05×40.5×144) + (178) (3.4.5) (0.72+3.40)(43')	72 = 4.2 ±

500)

	DATE
HAME	PROJECT NO.
Passive resistance by downstream apron and tock has not been considered but is expected to exist.	= 17.5',
Required Mtor for result to be at 0.33(b) is = (84.54)(13.5') = 1141	(5//9)
ray'd Extra moment resisting overturing = 1141"-	1061 = 8016
persontianing strock aprovation (a) for 80's moment a provided from bond and rock, bond	bot toe to be between apron force road in-
developed within rock if bond is sopei,	
(b) reasonable to expect the resistance could be de sheer/bond in rock ad if required.	veloped by horis/dia
FS against overturning world be = 4405+80	= 1.34+ d=0.336)
To against stilling would be = 777+16 = 4	

PROJECT NAME			DATE
BUBJECT			PROJECT NO.
			DRAWN BY
II. WC @	PMF elevations	downstream olev. 229	(18' alasse dem)
. /	18x 62.4- 1.12 lest		
19	1 - ચારા		
/=	<u>v</u>	- El. 204'	
/:]	(3)		
/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
/	(9)		
4, 4	11168 73	1	
43x6214: 2.60 Acf		16'2 W1.4 = 2.25 lest	
7.00 40	() I mobile		
	accome uplift as con	uputed	
	for normal operation	nt case	
	•	., 1	ن با
Moments about	toe resisting overt	orning = 4157 + (2.25 2 3)	+36)+(1)(1)(1)(1)
and the	W.		37
-, 4137	+ 486 + 37 = 4	460 12	
Mounts at	42) + (2.68 x 42 x 43) 1	urning	
: (10 - 42 x	41 + (, , , , ,)	1 1 - 2717 1K	
- (1.12 - 4)	3) ((108, 3, 3)	1025 . 11.	
ES against	overturning = 4660 "	= 1.26 ±	
- Mains	3717, "	-	
		omitting possion	recisiones
		olds apron	c (100 /2

BJECT	PROJECT NO
Pocition of resultant measured from tor, d	= Utro
d= (4600-3713)" 947" = 947" = 96.5 =	= 11, +
d in terms of base dimension, d- 4015	6)=0.77(6)

	DATE
Wester	PROJECT NO
For cocultant to be located at b/s, dry = 13.5%. recistance by downstream apron and rock has not consisted but is superted to exist.	Passive been
Required Man for resultant to be at 0.33(b) 12 =	
= 80.5 = 13.5 = 1108 12	
regld extra moment resisting overturning = 1168 = 94	1" = 221 1C
passive recretance developed within rock majorited in analysis L= (.orniva) = 6.25	(to expect) (to expect) of the length of
FS against overturning would be = (4660+221)"	1.31 + , d=0.3/b)
FC against sliding would be = (389+42) = 4.1	

APPENDIX E

REFERENCES

APPENDIX

REFERENCES

- Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
- U.S. Nuclear Regulatory Commission: Design Basis Floods for Nuclear Power Plants, Regulating Guide 1.59, Revision 2, August 1977
- Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
- W. Viessman, Jr., J. Knapp, G. Lewis, 1977, 2nd Edition, Introduction to Hydrology
- 5. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
- 6. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
- The Hydrologic Engineering Center, Computer Program: Flood Hydrograph Package (HEC-1) Users Manual For Dam Safety
- 8. The University of the State of New York The State Education Department - State Museum and Science Service - Geological Survey: Geological Map of New York (1961)
- 9. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963
- 10. Ven Te Chow: Open Channel Hydraulics, McGraw-Hill, 1959
- 11. Bureau of Reclamation, United States Department of the Interior, Design of Small Dams: A Water Resources Technical Publication, Third Printing, 1965
- 12. Louis C. Schreiner and John T. Riedel: Hydrometeorological Report No. 51, U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Weather Service, Office of Hydrology; Silver Springs, Maryland, September 1976
- 13. Y.W. Isachsen and W.G. McKendree, 1977, Preliminary Brittle Structures Map of New York, Adirondack Sheet: New York State Museum Map and Chart Series No. 31A
- Resource Analysis, Upper Hudson & Mohawk River Basins, Hydrologic Flood Routing Models, October 1976