آزمایش اثر هال

آزمایش شماره سه - آزمایشگاه فیزیک حالت جامد

پارسا رنگریز – ۹۷۱۱۰۳۱۴ ۱۶ فروردین ۱۴۰۱

چکیده

در این آزمایش اثر هال و استفاده از آن در اندازه گیری میدان مغناطیسی مورد مطالعه قرار گرفته است. همچنین ضریب هال کریستال نیمهرسانای InSb و ضریب هدایت الکتریکی و قابلیت تحرک بارهای الکتریکی کریستال تعیین شده است. به مقداری نیز به خاصیت حاصل ضربی اثر هال پرداخته شده است.

مقدمه

زمانی که یک فلز یا نیمههادی که جریان I از آن می گذرد را در یک میدان مغناطیسی B قرار دهیم، میدان الکتریکی E_H در جهت عمود بر جریان و میدان مغناطیسی در نمونه بوجود می آید. از این پدیده تحت عنوان اثر هال نام برده می شود. از این اثر برای مشخص کردن نوع آلاییدگی σ و قابلیت تحرک الکتریکی بارهای کردن نوع آلاییدگی μ و همچنین در اندازه گیری میدان مغناطیسی μ استفاده می شود.

مطابق شکل ۱ یک پیکربندی آزمایش اثر هال قابل مشاهده است. جریان I در جهت مثبت محور طول و میدان مغناطیسی B در جهت مثبت محور ارتفاع باشد، در این صورت نیروی وارد بر حاملهای جریان در جهت مثبت محور عرض خواهد بود. بنابراین چنان چه نمونه مورد بررسی ما یک نیمه هادی و صفحه x=0 قطب منفی و صفحه x=0 قطب مثبت باشد، اگر صفحه ۱ نسبت به صفحه ۲ دارای پلاریته مثبت شود، نیمه هادی از نوع x=0 و در غیراینصورت از نیمه هادی از نوع x=0 خواهد بود. در این شرایط نیروی وارده بر حاملهای جریان به صورت زیر است:

$$eE_H = ev \times B = ev_X B_Z$$

که e مقدار بار حامل و v_X سرعت آن است.

شكل ١: نمونه نيمه هادى براى بررسى اثر هال

می توان با توجه به رابطه بالا و یک سری روابط دیگر ضریب هال یک نمونه هادی یا نیمه هادی R_H را به صورت زیر نوشت:

$$R_H = \frac{V_H W}{BI}$$

که V_H ولتاژ هال، W عرض نمونه در جهت میدان مغناطیسی است. کمیت قابلیت تحرک بارهای الکتریکی μ به صورت زیر تعریف می شود:

$$\mu = v_X/E_X$$

در حالت سادهای که هدایت توسط بارهای همنام صورت گرفته باشد، داریم:

$$\mu = \sigma R_H = \frac{V_H l}{V_X B d}$$

که V_X ولتاژ بایاس و نیز I و d ابعاد نمونه هستند. همچنین σ ضریب هدایت الکتریکی نمونه است.

رابطه $V_H = IB \frac{R_H}{W}$ نشان می دهد که اگر جهت یکی از کمیتهای جریان یا میدان عوض شود، جهت ولتاژ هال تغییر خواهد کرد و از طرفی اگر یکی از کمیتهای فوق صفر گردد، ولتاژ هال نیز صفر می شود. این خاصیت به خاصیت حاصل ضربی اثر هال معروف است.

وسایل آزمایش

نیمه هادی مورد استفاده InSb است. مشخصات این نیمه هادی به صورت زیر است:

حداکثر میدان مغناطیسی مجاز ۱ تسلا، حداکثر جریان مجاز ۲۰۰ میلی آمپر، مقاومت ورودی ۱.۳ اهم و ابعادی به طول ۱۳ میلیمتر، عرض ۵.۰ میلیمتر و عمق ۶ میلیمتر.

میکروولتمتر که در شکل ۲ به تصویر کشیده شده است.

شکل ۲: میکروولت متر و کلیدهای اساسی آن مگنت که در شکل ۳ نشان داده شده است و حداکثر جریان آن ۲.۵ آمیر است.

شکل ۳: مگنت و اجزای آن وسایل دیگر عبارتند از منبع جریان مگنت (حداکثر ۲ آمپر)، دو عدد آمپرسنج، رئوستای ۴۴ اهمی، جعبه مقاومت و منبع جریان (حداکثر ۲۰۰ میلی آمیری)

شكل ۴: منبع تغذيه

شرح آزمایش

ابتدا مدار آزمایش را مطابق شکل ۵ میبندیم.

شكل ۵: مدار آزمايش اثر هال

آزمایش اول

در حالتی که جریان مگنت I_m صفر است. به ازای جریانهای I از صفر تا ۲۰۰ میلی آمپر، ولتاژ هال V_H را توسط میکروولت متر اندازه گیری می کنیم و در جدول ۱ ثبت می کنیم.

 V_χ ولتاژ بایاس، ولتاژ دو سر نمونه، است که که بهوسیله ولت متر اندازه گیری می شود. در حین آزمایش ممکن است اثر پسماند مگنت بر جواب غیرقابل چشم پوشی باشد. در صورت نیاز به صفر کردن، با تکرار سریع فیش های ورودی مگنت در جریانهای کم، پسماند را صفر می کنیم و این کار را قبل هر آزمایش انجام می دهیم.

آزمایش دوم

ضمن صفر کردن اثر پسماند، این آزمایش را در شرایطی شروع می کنیم که مگنت در وضعیت عمود بر میدان زمین باشد. I_M جریان مگنت را به وسیله منبع جریان بر روی ۱ آمپر تنظیم می نماییم. سپس با تغییر جریان I از صفر تا ۲۰۰ میلی آمپر، V_K و V_K را به ازای هر تغییر اندازه می گیریم و در جدول ۲ ثبت می کنیم. ضمنا می دانیم

$$B(I_m = 1A) = 0.19 T$$

آزمایش سوم

جریان مگنت را $I_m=2A$ قرار می دهیم و آزمایش دو را تکرار می کنیم و در جدول ۳ ثبت مینماییم. ضمنا می دانیم

$$B(I_m = 2A) = 0.27 T$$

آزمایش چهارم

با مقادیر ثابت I=200~mA و I=1 و I=1، جهت I=1 و I=1 و ازد می کنیم.

آزمايش ينجم

جریان MA و تنظیم می کنیم. سپس با تغییر جریان I_m از صفر تا ۲ آمپر، ولتاژ هال را اندازه گرفته و جدول ۵ را پر می کنیم. در نهایت هم در زمان خاموش بودن دستگاهها و منبع تغذیه، مقاومت نمونه را با اهم متر اندازه گیری می کنیم.

جدول داده ها جدول ۱: تغییرات V_X و V_Y به ازای جربان مگنت صفر و مقادیر مختلف جربان V_X

I(mA)	•	۲٠	۴.	۶٠	۸۰	١	
$V_H(mV)$	٠.٠	۴. ۱	٠.٩	1.1	1.9	۲.۴	
$V_X(mV)$	٠.٠	177.9	401.9	7 7.1	۵۱۳.۰	5°T.•	
I(mA)	17.	14.	18.	۱۸۰	۲۰۰		
$V_H(mV)$	٨٢	٣.۴	۳۸	4.4	۴۸		
$V_X(mV)$	V9V.•	۸۹۸.۰	1.74.	1147.	1779.0		

I و مقادیر مختلف جریان مگنت I و مقادیر مختلف جریان V_X به ازای جریان

I(mA)	•	۲٠	۴,	۶٠	۸۰	1	
$V_H(mV)$	٠.٠	٣.١	۶.۱	۳.۶	17.5	10.0	
$V_X(mV)$	٠.٠	177.0	7.767	N. P. N.	۵۱۹.۰	940.	
I(mA)	14.	14.	16.	۱۸۰	۲۰۰		
$V_H(mV)$	11.6	Y1.V	747	٩.٧٢	٣٠.٩		
$V_X(mV)$	٧٧٣.٠	9.7.	1.44.0	118	1716.		

I و مقادیر مختلف جریان مگنت 2A و مقادیر مختلف جریان V_X به ازای جریان

I(mA)	•	۲٠	۴٠	۶۰	۸٠	1	
$V_H(mV)$	٠.٠	۵.۱	1٢	16.4	۲۰.۲	7.67	
$V_X(mV)$	٠.٠	144.4	790.7	498.9	۵۲۲.۰	۵۶۱.۰	
I(mA)	14.	14.	18.	۱۸۰	۲٠٠		
$V_H(mV)$	۳۰.۳	40.1	4.7	40.4	۵۰.۲		
$V_X(mV)$	۷۸۲.۰	٩٠٨.٠	1.4	1199.	1797.		

I=200~mA و $I_m=2A$ و ازاى $I_m=1$ و $I_m=1$ و جدول $I_m=1$ و جدول $I_m=1$

V_H	+	-	_	+
I	+	+	_	_
В	+	-	+	-

$I=200\ mA$ جدول ۵: تغییرات ولتاژ هال بر حسب تغییرات جریان مگنت و

I(mA)	٠.٠	۲. ۰	۴. ۱	٠.۶	۰۸	١.٠	1.7	1.1	1.9	۱۸	۲.۰
$V_H(mV)$	4.7	٩.٩	10.4	۷۰.۵	79.7	۴۰.۴	۳۵.۰	۴۰۸	44.4	49.0	۵۰.۱

نمودار دادهها

I نمودار ۱: تغییرات V_H به ازای جریان مگنت صفر و مقادیر مختلف جریان

I نمودار ۲: تغییرات V_X به ازای جریان مگنت صفر و مقادیر مختلف جریان

I نمودار ۳: تغییرات V_H به ازای جریان مگنت I و مقادیر مختلف جریان

I نمودار ۴: تغییرات V_X به ازای جریان مگنت I و مقادیر مختلف جریان

I نمودار ۵: تغییرات V_H به ازای جریان مگنت 2A و مقادیر مختلف جریان

I نمودار ۶: تغییرات V_X به ازای جریان مگنت 2A و مقادیر مختلف جریان

 $I=200\ mA$ نمودار ۷: تغییرات ولتاژ هال بر حسب تغییرات جریان مگنت و

خطای آزمایش

خطاهای این آزمایش بدین شرحاند: اثر پسماند مگنت، کالیبریزه نبودن دستگاهها، خطای میدان مغناطیسی زمین، خطای سیستماتیک دستگاهها و نیز آزمایشگر.

خطای شیب نمودار خطی برازش شده نیز اینگونه بدست می آید:

$$\Delta b = b \sqrt{\frac{1}{N-2} \left(\frac{1}{r^2} - 1\right)}$$

که N تعداد دادهها و r رگرسیون است. برای سه کمیت نهایی، خطا اینگونه بدست می آید:

$$\Delta R_H = \frac{w}{B} \Delta b$$

$$\Delta \mu = \mu \sqrt{\left(\frac{\Delta b_H}{b_H}\right)^2 + \left(\frac{\Delta b_x}{b_x}\right)^2}$$

$$\Delta \sigma = \sigma \sqrt{\left(\frac{\Delta R_H}{R_H}\right)^2 + \left(\frac{\Delta \mu}{\mu}\right)^2}$$

نتيجه گيري

است و بعد از قطع شدن به علت نیمرسانای مورد استفاده دارای خاصیت مغناطیسی است و بعد از قطع شدن $I_m=0$ علت مشاهده ولتاژهال زمانی که $I_m=0$ به علت نیمرسانای مورد استفاده دارای خاصیت مغناطیسی است و بعد از قطع شدن شدت جریان، مقداری پسماند در این ماده باقی می ماند.

را برگزینیم، خواهیم داشت
$$I=200~mA$$
 اگر $I=100~mA$ داشت داشت . خواهیم داشت

$$I=200~mA,~~I_m=0~A~~\rightarrow~~V_H=4.8~mV$$

$$I = 200 \text{ mA}, \quad I_m = 1 \text{ A} \quad \rightarrow \quad V_H = 30.9 \text{ mV}$$

$$I = 200 \text{ mA}, \quad I_m = 2 \text{ A} \rightarrow V_H = 50.2 \text{ mV}$$

با توجه به اعداد بالا، بنظر مى رسد يك رابطه مستقيمي بين افزايش جريان مگنت و ولتاژ هال وجود دارد.

- 3 . جدول ۴ بیان دارد که ولتاژ هال همزمان متناسب با حاصل ضرب جریان و میدان مغناطیسی است؛ چرا که در حالتی مثبت خواهد بود که این دو هم علامت شوند.
- با استفاده از نمودار V_H در جدول ۳، می توان ضریب هال را بدست آورد. از قبل در بخش شرح آزمایش مقادیر میدان را بر حسب جریان مگنت داشتیم. آن را نیز لحاظ می کنیم.

$$V_H = \frac{R_H B}{w} I \qquad \rightarrow \qquad R_H = \frac{bw}{B}$$

از آزمایش دو و سه به ترتیب داریم:

$$b = 0.1549 \rightarrow R_H = 4.08 \times 10^{-4} (SI)$$

$$b = 0.2508 \rightarrow R_H = 4.64 \times 10^{-4} (SI)$$

بهترین حالت این است که میانگین این دو مقدار را بعنوان ضریب هال معرفی کنیم:

$$R_H = 4.36 \times 10^{-4} \, (SI)$$

. مقاومت نمونه از طریق شیب V_X بدست می آید. بنابر این برای سه آزمایش به تر تیب داریم:

$$R = 6.38 \,\Omega, \qquad R = 6.43 \,\Omega, \qquad R = 6.47 \,\Omega$$

بنابراین بهترین حالت این است که میانگین این سه مقدار را بعنوان مقاومت نمونه معرفی کنیم:

$$R = 6.43~\Omega$$
 علت اختلاف این مقاومتها همان اثر یسماند موجود در مسأله است.

اکنون می خواهیم σ و μ را بیابیم. با توجه به نمودار آزمایش دوم و سوم می خواهیم کمیت $\frac{V_H}{V_X} = \frac{b_H}{b_X} = \frac{\mu B d}{l}$ را حساب کنیم که به ترتیب داریم:

$$\mu = 0.27 \, (SI), \quad \mu = 0.31 \, (SI)$$

ما مقدار زیر را بعنوان مقدار واقعی تر معرفی می کنیم:

$$\mu = 0.29 \, (SI)$$

و نیز ضریب رسانندگی از رابطه $\sigma = \frac{\mu}{R_H}$ بدست می آید.

$$\sigma = 665.14 \, (SI)$$

- σ . فریب رسانندگی σ با ثابت هابل رابطه عکس دارد و می دانیم که رساناها دارای رسانندگی بیش تری از نیمهرسانا اند پس فریب هال در آنها کمتر است و اثر هال در رساناها سخت تر از نیمهرساناها دیده می شود.
- 7. دستگاه گاوسیمتر دستگاهی برای اندازه گیری میدان مغناطیسی است که برای اینکار با قراردادن یک جریان مشخص در یک میدان مغناطیسی و اندازه گیری ولتاژهال، میدان را اندازه گیری می کنید. اینکار بر پایه رابطه زیر استوار خواهد بود.

$$V_H = \frac{IBR_H}{W}$$