CV Homework 5

Eric Feuvrier Danziger

1.1

$$p' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $p'=\begin{bmatrix}0\\0\\1\end{bmatrix}$ $p^T=[001]\ F=\begin{bmatrix}F_{21}F_{22}F_{23}\\F_{31}F_{32}F_{33}\end{bmatrix}$ The equation for converting points in two

cameras based on the fundamental matrix is $p^T * F * p' = 0$

This means

$$p^T * F = [F_{31}F_{32}F_{33}]$$

This times p' is $[F_{31}F_{32}F_{33}] * \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

The result is $F_{33} = 0$

1.2

$$l = E * p$$
$$l = R * [t_x] * p$$

Since there is no rotation, the R matrix is identity.

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And the matrix t is:
$$\begin{bmatrix} t_x \end{bmatrix} = \begin{bmatrix} 0 & -t_3 & t_2 \\ t_3 & 0 & -t_1 \\ -t_2 & t_1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$
Since y and z translation in this example are 0, we get:

$$t = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -t_x \\ 0 & t_x & 0 \end{bmatrix} \text{ Thus } R * [t_x] \text{ is: } \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -t_x \\ 0 & t_x & 0 \end{bmatrix}$$

The epipolar line is then given by: $l = \begin{bmatrix} 0 \\ -t_x * z \\ t_x * y \end{bmatrix}$ Since it is of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ where the line is given by ax + by + c = 0, this

means the line is $(-t_x * z)y' + t_x * y = 0$. This describes a line that is totally dependent on the constant, since a is zero meaning ax will always be zero. This is a horizontal line.

1.3 Reflection

The image reflected in the mirror represents a different image plane of the object, similar to a camera that looked at the object from a different rotation.

The rays of the image first pass through the mirror, which translate them to a different coordinate frame and also translate them in the ultimate single image.

Essentially the mirror is acting as the second camera, showing the image in a different rotation and translating it to a different location as well.

2.1 Eightpoint

The F matrix I got was:

-0.0000 0.0000 -0.0019 0.0000 -0.0000 -0.0000 0.0019 -0.0000 0.0075

The epipolar lines looked like:

Epipole is outside image boundary

Select a point in this image (Right-click when finished)

Epipole is outside image boundary

Verify that the corresponding point is on the epipolar line in this image

Figure 1: Epipoles from Eightpoint

2.2 Seven Point

The best F matrix I got was my third result:

-0.0000	-0.0000	0.0008	
0.0000	0.0000	-0.0000	
-0.0008	0.0000	0.0044	

The epipolar lines of the best one looked like:

Epipole is outside image boundary

Select a point in this image (Right-click when finished)

Epipole is outside image boundary

Verify that the corresponding point is on the epipolar line in this image

Figure 2: First F Matrix

2.X EC- Ransac

Using the noisy parameters, I get an F matrix using eightpoint of:

I run RANSAC with the minimum number of points (eightpoint just runs on all the points you give it, so when calculating the F matrix above I used all the noisy points). Then I calculate error (for deciding inliers) using the fact that $p'^T F p = 0$ I square the result and normalize the result by the sum of the values of the points, with each value for each point squared. This made points that were close to 0 closer, and I used a threshold of 1e-12 to decide if a point was an inlier. After 100 iterations, I got a result that was substantially better than just giving all the noisy points to eightpoint. The

resultant F matrix was:

-0.0000	-0.0000	-0.0011	
0.0000	0.0000	-0.0001	
0.0011	0.0000	0.0008	

Epipole position for this image show in red

Select a point in this image (Right-click when finished)

Epipole position for this image show in red

Verify that the corresponding point is on the epipolar line in this image

Figure 3: Eightpoint with Noisy Points

Epipole is outside image boundary

Select a point in this image (Right-click when finished)

Epipole is outside image boundary

Verify that the corresponding point is on the epipolar line in this image

Figure 4: RANSAC

2.3 E

-0.0108	0.3387	-2.8773	
0.4151	-0.0060	0.0762	
2.8856	0.0206	0.0011	

2.6 Epipolar Correspondence

Select a point in this image (Right-click when finished)

Verify that the corresponding point is on the epipolar line in this image

Figure 5: Matched points

2.6 Reconstruction

Figure 6: Reconstruction 1st View

Figure 7: Reconstruction 2nd View

Figure 8: Reconstruction 3rd View