01 파이썬 이용한 시각화 기본

import matplotlib.pyplot as plt

02 기본 그래프

import matplotlib.pyplot as plt

```
def plt_plot1():
 plt.plot([1,2,3,4])
 plt.show()
```

plt_plot1()


```
y축의 값 1,2,3,4를 지나는 직선을 확인
(QA)
plt.plot([1,2,3,4])와 같이 지정하면 어떤 값이 자동으로 입력이 될까?
```

나. x, y값 입력

import matplotlib.pyplot as plt

```
x = range(0, 100)
y = range(0, 200, 2)
plt.plot(x, y)
plt.show()
```

다. x, y=x*x 값 그래프 입력

```
x = range(0, 100)
y = [v * v for v in x]
plt.plot(x, y, 'ro')
plt.show()
```

'ro': 'r'은 red를 의미하고, 'o'는 그래프의 마커 모양을 의미한다.

matplotlib 주요 색상

문자	색상
b	blue(파란색)
g	green(녹색)
r	red(빨간색)
С	cyan(청록색)
m	magenta(마젠타색)
y	yellow(노란색)
k	black(검은색)
W	white(흰색)

주요 마커

마커	의미
0	circle(원)
V	triangle_down(역 삼각형)
^	triangle_up(삼각형)
S	square(네모)
+	plus(플러스)
	point(점)

(실습1)

x = range(0, 50)

y = x*x*x의 값을 갖는 검은색을 갖는 역삼각형 모양의 그래프를 그려보자.

03 여러개의 그래프 그리기

한 화면에 여러개의 그래프를 그리기 위해서는

- (1) figure 함수를 통해 Figure 객체를 먼저 만들고
- (2) add_subplot 메서드를 통해 그리려는 그래프 개수만큼 subplot를 만들면 된다.

fig = plt.figure() ax1 = fig.add_subplot(2,1,1) # 2행 1열 의 것중에 첫번째 ax2 = fig.add_subplot(2,1,2) # 2행 1열 의 것중에 두번째 plt.show()
 Figure안에 두 개의 subplot가 존재한다.

 행 방향으로 2개, 열방향으로 1개의

subplot가 위치한다.


```
fig = plt.figure()
ax1 = fig.add_subplot(1,3,1) # 1행 3열 의 것중에 첫번째
ax2 = fig.add_subplot(1,3,2) # 1행 3열 의 것중에 두번째
ax3 = fig.add_subplot(1,3,3) # 1행 3열 의 것중에 두번째
plt.show()
```

fig.add_subplot(행, 열, 순서)

여러개의 그래프(plot, bar)

```
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
x=range(0,100)
y=[v*v for v in x]

ax1.plot(x,y)
ax2.bar(x,y)
plt.show()
```

- (1) fig.add_subplot(2,1,1), fig.add_subplot(2,1,2)을 이용하여 2행 1열의 그래프를 생성했다.
- (2) 1행 1열의 그래프는 plot 그래프

(3) 2행 1열의 그래프는 bar 그래프를 그렸다.

sin, cos 그래프 그려보기

import numpy **as** np **import** matplotlib.pyplot **as** plt

```
x = np.arange(0.0, 2 * np.pi, 0.1)
sin_y = np.sin(x)
cos_y = np.cos(x)

fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
```

```
ax2 = fig.add_subplot(2, 1, 2)
ax1.plot(x, sin_y, 'b--')
ax2.plot(x, cos_y, 'r--')
plt.show()
```


(실습2)

2행 2열의 그래프를 그려보자.

1행 1열: sin() 그래프

1행 2열: cos() 그래프 (표시 형식:빨간색 사각형)

2행 1열: tan() 그래프 (표시 형식:청록색 점) 2행 2열: arctan() 그래프 (표시 형식:노란색 원)

04 라벨 및 범례 표시하기

그래프를 그릴 때 가장 주의해야 할 것은 그래프의 x축과 y축의 값이 어떤 데이터인지 표시해 주어야 한다.

sin, cos 그래프에 축 제목 표시

import numpy as np import matplotlib.pyplot as plt

x = np.arange(0.0, 2 * np.pi, 0.1) $sin_y = np.sin(x)$

```
cos_y = np.cos(x)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add\_subplot(2, 1, 2)
ax1.plot(x, sin_y, 'b--')
ax2.plot(x, cos_y, 'r--')
ax1.set_xlabel('x')
ax1.set_ylabel('sin(x)')
ax2.set_xlabel('x')
ax2.set_ylabel('cos(x)')
plt.show()
범례 표시 - 기본
x = np.arange(10)
plt.plot(x, 1*x, label='y = %ix' % 1)
plt.legend()
plt.show()
```

2018. 12. 12.

범례 표시 - 기본(두개의 선 그래프)

```
x = np.arange(10)
plt.plot(x, 1*x, label='y = %ix' % 1)
plt.plot(x, 2*x, label='y = \%ix' \% 2)
plt.legend()
plt.show()
```


범례 표시 - 기본(다섯개의 선 그래프)

```
x = np.arange(10)
for i in range(5):
plt.plot(x, i * x, label='y = %ix' % i)
plt.legend()
plt.show()
```


범례의 위치를 바꿀 수 있다.

범례의 위치 변경

```
x = np.arange(10)
plt.plot(x, 1*x, label='y = %ix' % 1)
plt.plot(x, 2*x, label='y = %ix' % 2)
plt.legend(loc='upper left')
plt.show()
```


참고자료 (1) Matplotlib 범례 https://matplotlib.org/users/legend_guide.html

bar 차트 그리기 :

pie 차트 그리기 : https://wikidocs.net/4768