

Graphs for Visualization 1/8

D.E. Brown

Motivation

Examples

Graphical Visualizations of Probabilistic Models

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904

Graphical Models for Visualization

Graphs for Visualization 3/8

Motivation

- Graphical models are very useful for visualizing a problem and its components item
- Make complex relationships easier to understand
- Automatic generators of graphical models
- Example graphviz
 - Specify the model
 - Produce the graphical visualization
- Characteristics
 - Plates in the model used to represent multiple nodes
 - May not show all the variables e.g., predictors

Regression Example

Graphs for Visualization 5/8

D.E. Bro

Motivatio

- Response variable: y = total SAT score
- Predictor variables: x_1 = spending and x_2 = % taking the test
- Parameters: $\beta_0 \sim \mathcal{N}(\mu_0, \tau_0^{-1})$ and β_1, β_2 are each $\mathcal{N}(\mu, \tau^{-1})$
- Model error: $\eta \sim t \operatorname{Dist}(\nu, \mu, \sigma)$

Regression Graphical Model

Graphs for Visualization 6/8

D.E. Brow

Motivatio

Hierarchical Classification Example

Graphs for Visualization 7/8

D.E. Bro

Motivatio:

- $y_{is} \in \{0,1\}$ is the response of a subject $s \in (1,\ldots,N)$ to a drug on test $i \in (1,\ldots,M)$
- $\theta_s \in [0, 1]$ is the probability of a positive (1) response by subject s.
- Let $p(\theta_s) \sim \text{Beta}(\omega, \kappa)$ where $\alpha = \omega \kappa$ and $\beta = (1 \omega)\kappa$
- Let $\omega \sim \text{Beta}(A_{\omega}, B_{\omega})$ and $\kappa \sim \text{Gamma}(S_{kappa}, R_{kappa})$

Kruschke Diagram - Hierarchical Model for Binary Response

Graphs for Visualization 8/8

D.E. Bro

Motivatio

