Alcuni esercizi risolti di MATEMATICA DISCRETA C.L. Informatica

1. È assegnata la seguente relazione $\mathcal R$ sull'insieme $\mathbb Q^*$ dei numeri razionali non nulli

$$\forall a, b \in \mathbb{Q}^* \ (a, b) \in \mathcal{R} \Leftrightarrow ((\exists h \in \mathbb{Z})(a = 5^h b)).$$

- (a) Verificare che \mathcal{R} è una relazione di equivalenza
- (b) determinare la classe di euivalenza di $\frac{1}{5}$.

Soluzione 1a)

 \mathcal{R} è riflessiva poichè $\forall a \in \mathbb{Q}^* \ \exists 0 \in \mathbb{Z}$ tale che $a = 5^{\circ} a$, e quindi

$$\forall a \in \mathbb{Q}^* \quad (a, a) \in \mathcal{R}.$$

 \mathcal{R} è <u>simmetrica</u>. Siano, infatti $a, b \in \mathbb{Q}^*$ tali che $(a, b) \in \mathcal{R}$. Allora $\exists h \in \mathbb{Z}$ tale che $a = 5^h b$ quindi $5^{-h} a = 5^{-h} 5^h b = b$ cioè $(b, a) \in \mathcal{R}$. Pertanto

$$\forall a, b \in \mathbb{Q}^* \quad (a, b) \in \mathcal{R} \implies (b, a) \in \mathcal{R}.$$

 \mathcal{R} è <u>transitiva</u>. Siano, infatti $a,b,c\in\mathbb{Q}^*$ tali che $(a,b)\in\mathcal{R},\ (b,c)\in\mathcal{R}$. Allora $\exists h\in\mathbb{Z}$ tale che $a=5^hb,\ \exists k\in\mathbb{Z}$ tale che $b=5^kc$. Quindi $a=5^hb=5^h5^kc=5^{h+k}c$, ovvero $\exists t=h+k\in\mathbb{Z}$ tale che $a=5^tc$ e pertanto $(a,c)\in\mathcal{R}$, cioè

$$\forall a, b, c \in \mathbb{Q}^* \ ((a, b) \in \mathcal{R} \ \land \ (b, c) \in \mathcal{R}) \Rightarrow (a, c) \in \mathcal{R}.$$

1b) Si ha:

$$a \in \left[\frac{1}{5}\right]_{\mathcal{R}} \iff (a, \frac{1}{5}) \in \mathcal{R} \iff \exists h \in \mathbb{Z} \text{ tale che } a = 5^{h} \frac{1}{5}$$

 $\Leftrightarrow \exists h \in \mathbb{Z} \text{ tale che } a = 5^{h-1} \iff \exists k \in \mathbb{Z} \text{ tale che } a = 5^{k}.$

2. È assegnata la seguente relazione ${\mathcal R}$ sull'insieme ${\mathbb Z}$ dei numeri razionali non nulli

$$\mathcal{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} ; 2 \mid (x + y)^2\}.$$

- (a) Verificare che \mathcal{R} è una relazione di equivalenza
- (b) determinare la classe di euivalenza di 0 rispetto a \mathcal{R} .

Soluzione 2a)

 \mathcal{R} è <u>riflessiva</u> poiché $\forall x \in \mathbb{Z}, 2 \mid (x+x)^2$, cioè $(x,x) \in \mathcal{R}$.

 $\mathcal{R} \$ è <u>simmetrica</u>. Siano, infatti $x,y \in \mathbb{Z}$, tali che $(x,y) \in \mathcal{R}$. Allora $2 \mid (x+y)^2$ e quindi $2 \mid (y+x)^2$, ovvero $(y,x) \in \mathcal{R}$.

 \mathcal{R} è <u>transitiva</u>. Siano $x,y,z\in\mathbb{Z}$ tali che 2 | $(x+y)^2$ e 2 | $(y+z)^2$. Allora 2 | x^2+y^2+2xy e 2 | y^2+z^2+2yz e quindi sommando, 2 | $x^2+2y^2+2xy+z^2+2yz$. D'altra parte 2 | $2y^2+2xy+2yz$, per cui 2 | x^2+z^2 ed inoltre 2 | 2xze, ancora sommando, 2 | x^2+z^2+2xz , vale a dire 2 | $(x+z)^2$. 2b) Si ha:

$$x \in [0]_{\mathcal{R}} \Leftrightarrow (x,0) \in \mathcal{R} \Leftrightarrow 2 | (x+0)^2$$

 $\Leftrightarrow 2 | x^2 \Leftrightarrow 2 | x.$

Quindi $[0]_{\mathcal{R}} = \{2h : h \in \mathbb{Z}\}.$