Dynamic Programming III - Longest common subsequence

1 Longest common subsequence problem

A strand of DNA can be represented as a string over the finite set {A,C,G,T}

We want to know how similar two strings of DNA are. Our measure is the length of the longest common subsequence

In this problem we allow gaps between letters to form a common subsequence, so ABCBDAB and BDCABA have a common subsequence of BCA

1.1 Formal definition

Definition: Subsequence

Given a sequence $X = \langle x_1, ..., x_m \rangle$, another sequence $Z = \langle z_1, ..., z_k \rangle$ is a subsequence of X if $z_1 = x_{i_1}, ..., z_k = x_{i_k}$ for some $i_1 < i_2 < ... < i_k$

Definition: Common subsequence

A common subsequence of X and Y is a subsequence of both X and Y

2 Dynamic programming for longest common subsequence

2.1 Step 1: Characterizing a longest common subsequence

Theorem: Optimal substructure:

Let $Z = \langle z_1, ..., z_k \rangle$ be an LCS of $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z[1..k 1] is an LCS of X[1..m 1] and Y[1..n 1]
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X[1..m-1] and Y
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y[1..n-1]

2.1.1 **Proof**

1. If $z_k \neq x_m$ then appending $x_m = y_n$ to Z yields a common subsequence longer than Z. This is a contradiction, this $z_k = x_m = y_n$

Then Z[1..k-1] is a common subsequence of X[1..m-1] and Y[1..m-1]. Suppose there is a longer one, way W. Again appending x_m to W wields a common subsequence of X and Y longer than Z. This is a contradiction, thus Z[1..k-1] is an LCS of X[1..m-1] and Y[1..m-1]

- 2. If $z_k \neq x_m$, then Z is a common subsequence of X[1..m-1] and Y. Suppose there is a longer one, say W. Then W is also a common subsequence of X and Y but is longer than Z. This is a contradiction, thus Z is an LCS of X[1..m-1] and Y
- 3. By symmetry

2.2 Step 2: A recursive solution

Let c[i, j] be the length of an LCS of X[1..i] and Y[1..j]

The theorem then yields

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Unlike rod cutting and matrix chain multiplication problems, this time we can readily rule out some subproblems (those where $x_i = y_i$)

2.3 Step 3: Computing the length of an LCS

```
Let us use a bottom up approach Input: X = \langle x_1, ..., x_m \rangle and Y = \langle y_1, ..., y_n \rangle
```

The algorithm stores the values c[0..m, 0..n] and also maintains the table b[1..m, 1..n] where b[i, j] "points" to the next pair (i,j) to consider while reconstructing the LCS

3 Algorithm

Listing 1 LCS(X,Y)

```
Let b[1..m,1..n] and c[0..m, 0..n] be new tables
   for i = 1 to m do
2
3
        c[i,0] = 0
4
   for j = 0 to n do
5
        c[0,j] = 0
   for i = 1 to m do
6
7
        for i = 1 to n do
            if x_i == y_i then
8
9
                c[i,j]=c[i-1,j-1]+1
10
                b[i,j]="√"
11
            else if c[i-1,j] \ge c[i,j-1] then
12
                c[i,j] = c[i-1,j]
13
                b[i,j]="↑"
14
            else
15
                c[i,j]=c[i,j-1]
                n[i,j]="←"
16
17
   return c and b
```

	j	0	1	2	3	4	5	6
i		y _j	В	D	С	Α	В	Α
0	Χį	0	0	0	0	0	0	0
1	Α	0	↑ 0	↑ 0	↑ 0	^۲ 1	← 1	1
2	В	0	<u>۲</u>	← 1	← 1	↑ 1	^۲ 2	← 2
3	С	0	↑ 1	↑ 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	1	^۲ 2	↑ 2	↑ 2	↑ 3	↑ 3
6	Α	0	↑ 1	↑ 2	↑ 2	3	↑ 3	۲ 4
7	В	0	<u>ر</u> 1	↑ 2	↑ 2	↑ 3	^۲ 4	↑ 4

4 Constructing an LCS

Listing 2 PRINT-LCS(b,X,i,j) 1 **if** i==0 or j==0 **then** 2 return 3 if $b[i,j] == " \ "$ then ${\tt PRINT-LCS(b,X,i-1,j-1)}$ 4 5 print x_i 6 else if $b[i,j] == "\uparrow"$ then 7 PRINT-LCS(b,X,i-1,j) 8 else 9 PRINT-LCS(b,X,i,j-1)

Initial call: PRINT-LCS(b,X,m,n)