Decision Trees

CSCI-P556 Applied Machine Learning Lecture 20

D.S. Williamson

Agenda and Learning Outcomes

Today's Topics

- Topics:
 - Decision Trees
- Announcements
 - Pairings for Homework

Decisions

A Restaurant Example

- Suppose you are deciding whether you will (or won't) wait for a table at a restaurant.
- Different features/attributes contribute to this decision:
 - Alternative restaurant options available? Is it a bar? Is it Friday?
 - Are you hungry? How busy is the restaurant? Price?

•

Decisions

A Restaurant Example

Ex.	Features/Attributes										Target
	Alt.	Bar	Friday	Hungry	Patrons	Price	Rain	Reservati	Туре	Wait	Will Wait
X1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
Х3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	T
X9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X11	F	F	F	F	None	\$	F	F	Thai	0-10	F
X12	Τ	Т	Т	T	Full	\$	F	F	Burger	30-60	T

Decision Tree

A Restaurant Example

Decision Trees

- Input examples: feature vectors
- Output:
 - Interior nodes: yes/no decision (e.g. conditionals)
 - Leaf nodes: Action or classification
- A method that can be applied directly to the data without the need for preprocessing or tuning of learning algorithm
- Learns by progressively subdividing data into clusters with homogeneous properties
- Good at determining which features are good discriminators

Decision Trees

Decision tree representation:

- Each internal node tests an attribute/ feature
- Each branch corresponds to attribute/feature value
- Each *leaf* node assigns a classification

Decision Tree Decision Boundaries

 Decision Trees divide the feature space into axis-parallel rectangles and label each rectangle with one of the K classes

Decision Tree Decision Boundaries

• What is the Decision Tree for this problem? Write as nested if.

When do you use Decision trees?

- Instances describable by attribute-value pairs
- Target function is discrete valued (though can be used for regression)
- Disjunctive hypothesis (e.g. nested conditions) may be required
- Possibly noisy training data
- Need for interpretable model

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Building a decision tree

Classification and Regression Tree (CART) Algorithm

- 1) Find a feature k and threshold for the feature, t_k , that splits the data into two subsets in the purest sense (e.g. subsets come from the same class)
- 2) Divide the data into two subsets based on (k, t_k)
- 3) Recursively return to step 1 and split the two subsets
- 4) Stop when:
 - 1) the maximum depth is reached (specified parameter) or
 - 2) the subsets cannot be split into two subsets that reduce impurity or child nodes contain data of one class

Choosing the Best Partition

Classification and Regression Tree (CART) algorithm

- CART is a <u>greedy</u> algorithm: searches for optimum split at root of tree and repeats this process at each level. <u>Solution is not guaranteed to be</u> <u>optimum</u>.
- Greedy algorithm's choose the split that optimizes performance at each node
 - Generate all possible splits
 - For each split, calculate performance
 - Choose split with highest gain or purest subsets
- Performance is measured in terms of <u>Gini (measure of purity)</u> or <u>Entropy</u> (measure of uncertainty)

CART Impurity Performance Measures

Gini Impurity:
$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

n: number of classes

k: index for class

i: index for node in tree

 $p_{i,k}$: percentage of class k instances

Find feature and threshold that minimizes the following cost function

 $J(k, t_k) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$

Gini of right subset

 m_{left} : number of instances in the left subset

 m_{right} : number of instances in the right subset

Gini of left subset

- Goal: Classify flower based on length and width of petal
- Flower classes: Iris-Setosa, Iris-Versicolor, Iris-Virginia

Train a Decision Tree Classifier: Gini Loss

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)
```

Gini at root:

$$1 - (\frac{50}{150})^2 - (\frac{50}{150})^2 - (\frac{50}{150})^2$$

Train a Decision Tree Classifier: Gini Loss

CART Entropy Performance Measures

A measure of uncertainty

Entropy:
$$H_i = -\sum_{k=1}^n p_{i,k} \log_2(p_{i,k})$$

$$k=1$$

$$p_{i,k} \neq 0$$

n: number of classes

k: index for class

i: index for node in tree

 $p_{i,k}$: percentage of class k instances

 $H_i = 1$ for uniformly distributed data

- Which measure to use? Both lead to similar trees, so it does not really matter all the time!
 - Gini is slightly faster
 - Entropy tends to produce slightly more balanced trees

Train a Decision Tree Classifier: Entropy Loss

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree_clf = DecisionTreeClassifier(criterion="entropy", max_depth=2, random_state=42)
tree_clf.fit(X, y)
```

- Resulting Decision Tree (same as before using Gini)
- Entropy at root:

$$H_{root} = -\left[\left(\frac{50}{150} \right) \log_2 \left(\frac{50}{150} \right) + \left(\frac{50}{150} \right) \log_2 \left(\frac{50}{150} \right) + \left(\frac{50}{150} \right) \log_2 \left(\frac{50}{150} \right) \right]$$

Feature and Threshold Selection with Entropy

- When determining when and how to split the data for the nodes, choose the feature k and threshold t_k that has the highest <u>mutual information (e.g.</u> <u>information gain)</u>
- Gain is calculated by computing the difference between the entropy of the parent and the weighted sum of the entropy for the child nodes

Entropy:
$$H_i = -\sum_{k=1}^n p_{i,k} \log_2(p_{i,k})$$

 $H_i = 1$ for uniformly distributed data

Recall: Decisions

A Restaurant Example

Ex.	Features/Attributes										Target
	Alt.	Bar	Friday	Hungry	Patrons	Price	Rain	Reservati	Туре	Wait	Will Wait
X1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
Х3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X11	F	F	F	F	None	\$	F	F	Thai	0-10	F
X12	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Determine what Attribute should be used to split

Consider 'Alternate' restaurant feature

Green: Wait=Y

Brown: Wait=N

•6 records where Alt=Y and 6 where Alt=N. Hence, $H_{alt}=1$

Gain = 1 -
$$[6/12*H_{left} + 6/12*H_{right}]$$

= 1 - $[.5*1 + .5*1] = 0$

k = 6, 3 have WAIT=t, 3 have WAIT=f
$$H_{left} = H_{right} = -3/6\log_2 3/6 - 3/6\log_2 3/6$$

Determine what Attribute should be used to split

Consider 'Type' restaurant feature

Green: Wait=Y Brown: Wait=N

Gain =
$$1 - [2/12*H_{french} + 2/12*H_{italian} + 4/12*H_{Thai} + 4/12*H_{Burger}]$$

= $1 - [1/6 + 1/6 + 2/6 + 2/6] = 0$

k = 4, 2 have WAIT=t, 2 have WAIT=f
$$H_{Thai} = H_{Burger} = -2/4 \log_2 2/4 - 2/4 \log_2 2/4$$

Determine what Attribute should be used to split

Consider 'Patrons' restaurant feature

Green: Wait=Y Brown: Wait=N

• Gain =
$$1 - [2/12*H_{None} + 4/12*H_{Some} + 6/12*H_{Full}]$$

• $= 1 - [2/12*0 + 4/12*0 + 6/12*.918]$

$$= 1 - .459 = .541$$

So this is a better split than 'Alt' and 'Type'

What do we do with the decision tree?

- Present it with new data (test data)
- See how well it classifies
- Report classification success on test data
- Deploy it in the field

Overfitting

- Decision Trees have a very flexible hypothesis space
- As the nodes increase, we can represent arbitrarily complex decision boundaries — training set error is always zero
- This can lead to overfitting

Avoiding Overfitting

Regularization for a Decision Tree

- Typical stopping criterion
 - No error (if all instances belong to same class)
 - If all the attribute values are same
- More restrictive conditions
 - Increase the minimum number of samples a node must have
 - Increase the minimum number of samples a leaf must have
 - Reduce the maximum number of leaf nodes
 - Reduce the maximum allowable depth
 - Reduce the maximum number of features that are evaluated for splitting

Avoiding Overfitting

Setting minimum number for leaf samples

- Decision tree on the left is clearly overfitting
- Regularization avoids overfitting

Avoiding Overfitting

Pruning

- Idea: Grow a full tree, then post-prune
 - Separate training data into training set and validation set
 - Evaluate impact on validation set when a node is "pruned"
 - Greedily remove the one that improves the performance the most
 - Produces the smallest version of most accurate subtree
- May start pruning at root or leaf nodes.
 Simpliest start at leaf.

Decision Trees for Regression

- In Scikit-Learn, use DecisionTreeRegressor
- Instead of predicting a class, it predicts a value
- Traverse tree as is done for classification to generate estimated values

CART algorithm splits data by minimizing MSE (instead of Gini)

Pros/Cons of Decision Trees

Advantages:

- Do not require data pre-processing
- Easy to interpret and understand, unlike other algorithms (e.g. DNNs)
- Decision trees perform feature selection. Easily can see key features and values for them

Disadvantages:

- Decision trees can overfit
- They can be unstable to small variations in the data.
- Not guaranteed to find globally optimal solution
- Data set may need to be balanced amongst classes

Next Class

Ensemble Learning and Random Forests