# Quarry

Providing fast circuit fidelity estimation.

Hayden Coffey, Kanghee Park, Saurabh Kulkarni

#### **Motivation**

- Hardware noise impacts circuit performance.
  - Noisy backend -> poor fidelity.
  - Each platform has its own pitfalls.
  - How do we know which one is best for our circuit?
    - Trying each one is impractical (long queue times, etc.).
    - More platforms -> larger search space.
    - Simulating platform specific noise is expensive/slow.

- Goal: Provide a tool to help researchers make this decision.
  - A rough estimate of platform performance gives researchers a starting point.

### **Existing Work**

- Estimating Fidelity:
  - Simulation [2.1, 2.2]
  - Variational Hybrid Quantum-Classical Algorithms (VHQCA) [4.2]
  - Execution and measurement of select qubits. [5.3]
  - Estimated Success Probability (ESP) [5.6]
  - Machine Learning Methods [5.7]
- Previous approaches are either too slow, or do not take into account platform specific attributes.
- Our goal is a tool that can provide real time updates to estimates as researchers design a circuit.

### Quarry

- A tool to assist with quantum circuit design.
- Strategy:
  - Query the search space of available platforms/configurations with a circuit.
  - Provide researchers with an ordered list of recommended compatible machines.

#### Challenges:

- What is a meaningful order? (What metrics?)
- Recommendations can be rough estimates, but still need to be valid.
- Needs to be fast. (Low latency)
- Answers should be presented in a meaningful way. (Reach Goal: VSCode Plugin)

### Quarry: Output Metrics

- Given a quantum circuit and a platform, provide a subset of the following:
  - Fidelity: PST, TVD, ESP, L2 Distance, Hellinger distance, and Entropy.
  - Mapping Cost: Inserted swap count.

#### Challenges:

- Computational cost cannot explode.
- Metrics need to be distinct / meaningful.
- Qubits drift, calculated values are subject to change.
- Provided machine characterization data can be faulty.

# Quarry: Design



### Quarry: Design

```
n = 10
    backends = QUtil.qetFakeBackends(qc, n)
#Simulation
query(qc, backends, evalCircuitSim, printResults)
#ESP Estimate
query(qc, backends, evalCircuitESP, printResultsESP)
PredictorV1.load_models()
query(qc, backends, evalCircuitPredictV1, printResults)
PredictorV2.load_models()
query(qc, backends, evalCircuitPredictV2, printResults)
```

## Estimating via Simulation

- Naive approach.
- Simulate a circuit on all compatible backends.
- Calculate "fitness" of platforms and provide recommendation.
- Fitness ~= PST / (TVD + Entropy + Swaps + L2 + Hellinger)
  - Only ordering WRT other machines matters.
  - Formula could use improvement.

| Backend Name      | PST   | TVD   | Entropy | Swaps | L2    | Hellinger | Fitness |
|-------------------|-------|-------|---------|-------|-------|-----------|---------|
| fake_rueschlikon  | 0.812 | 0.357 | 5.557   | 0     | 0.044 | 0.659     | 0.503   |
| fake_melbourne    | 0.431 | 0.638 | 6.328   | 25    | 0.068 | 0.992     | 0.089   |
| fake_johannesburg | 0.440 | 0.651 | 6.305   | 31    | 0.076 | 1.002     | 0.081   |
| fake_poughkeepsie | 0.391 | 0.687 | 6.328   | 31    | 0.074 | 1.048     | 0.070   |
| fake_montreal     | 0.460 | 0.645 | 6.247   | 85    | 0.072 | 0.988     | 0.042   |
| fake_guadalupe    | 0.477 | 0.631 | 6.250   | 96    | 0.067 | 0.962     | 0.040   |
| fake_boeblingen   | 0.407 | 0.682 | 6.326   | 78    | 0.078 | 1.037     | 0.040   |
| fake_tokyo        | 0.418 | 0.673 | 6.286   | 82    | 0.070 | 1.046     | 0.039   |
| fake_singapore    | 0.411 | 0.666 | 6.348   | 128   | 0.070 | 1.030     | 0.027   |
| fake_almaden      | 0.366 | 0.706 | 6.353   | 119   | 0.080 | 1.085     | 0.025   |

## Estimating via ESP

- Exchange detail for speed.
- Estimate probability of success from noise model.
- Does not require simulation.

$$ESP = \prod_{i=1}^{N_{gates}} g_i^s * \prod_{j=0}^{N_{meas}} m_i^s$$

$$g_i^s = (1 - g_i^e) \quad m_i^s = (1 - m_i^e)$$

```
qasm/SupermarQ/qaoa_fermionic_10.qasm 5.922470(s)
Backend Name
                    ESP
fake_rueschlikon
                    1.000
fake_quadalupe
                    0.211
fake_melbourne
                    0.040
fake_montreal
                    0.018
fake_poughkeepsie
                    0.014
fake_boeblingen
                    0.002
fake_singapore
                    0.001
fake_almaden
                    0.000
fake_johannesburg
                    0.000
fake_tokyo
                    0.000
```

#### Predictive Model V1

- Neural Network: Aim to estimate metrics obtained from simulation
- Design and train a model for each target metric.
- Does not require compilation of circuit beyond unrolling of gates to platform basis gates.
- Inputs: Gate counts, machine name/size, topology average node degree.

| qasm/SupermarQ/qao | a_fermion: | ic_10.qasm | 0.923696(s) | ++++++ | ++++++ |           | Televisia. |
|--------------------|------------|------------|-------------|--------|--------|-----------|------------|
| Backend Name       | PST        | TVD        | Entropy     | Swaps  | L2     | Hellinger | Fitness    |
| fake_melbourne     | 0.917      | 0.160      | 0.917       | 0      | N/A    | N/A       | 0.407      |
| fake_rueschlikon   | 0.917      | 0.160      | 0.917       | 0      | N/A    | N/A       | 0.407      |
| fake_poughkeepsie  | 0.917      | 0.160      | 0.917       | 0      | N/A    | N/A       | 0.407      |
| fake_tokyo         | 0.917      | 0.160      | 0.917       | 0      | N/A    | N/A       | 0.407      |
| fake_montreal      | 0.107      | 0.430      | 1.416       | 1      | N/A    | N/A       | 0.039      |
| fake_guadalupe     | 0.107      | 0.430      | 1.452       | 1      | N/A    | N/A       | 0.039      |
| fake_almaden       | 0.064      | 0.409      | 1.386       | 0      | N/A    | N/A       | 0.025      |
| fake_boeblingen    | 0.064      | 0.409      | 1.396       | 0      | N/A    | N/A       | 0.025      |
| fake_johannesburg  | 0.057      | 0.409      | 1.244       | 0      | N/A    | N/A       | 0.022      |
| fake_singapore     | 0.057      | 0.411      | 0.991       | 6      | N/A    | N/A       | 0.018      |
|                    |            |            |             |        |        |           |            |

#### Predictive Model V2

- Inputs can be improved.
- New parameters:
  - Fidelity: Average success rate per gate type / measurement.
  - Topology: Graph density. Average connectivity, clustering, and shortest path.
  - Circuit: QASMBench (Pacific Northwest National Laboratory)
    - Circuit width/depth, retention lifespan, gate/measurement density, size factor, entanglement variance.

| <pre>qasm/SupermarQ/qaoa_fermionic_10.qasm 6.609076(s)</pre> |       |       | +++++++++++ |       |       |           |         |
|--------------------------------------------------------------|-------|-------|-------------|-------|-------|-----------|---------|
| Backend Name                                                 | PST   | TVD   | Entropy     | Swaps | L2    | Hellinger | Fitness |
| fake_guadalupe                                               | 0.987 | 0.228 | 3.962       | 0     | 0.038 | 0.000     | 0.376   |
| fake_montreal                                                | 0.992 | 0.239 | 4.139       | 0     | 0.039 | 0.000     | 0.374   |
| fake_singapore                                               | 0.837 | 0.597 | 3.390       | 0     | 0.067 | 0.000     | 0.285   |
| fake_melbourne                                               | 0.988 | 0.734 | 1.837       | 16    | 0.364 | 0.000     | 0.215   |
| fake_poughkeepsie                                            | 0.988 | 0.734 | 2.078       | 16    | 0.417 | 0.000     | 0.214   |
| fake_tokyo                                                   | 0.988 | 0.734 | 2.306       | 16    | 0.428 | 0.000     | 0.213   |
| fake_boeblingen                                              | 0.588 | 0.470 | 3.657       | 0     | 0.113 | 0.000     | 0.207   |
| fake_rueschlikon                                             | 0.931 | 0.712 | 1.842       | 16    | 0.364 | 0.000     | 0.204   |
| fake_almaden                                                 | 0.526 | 0.482 | 3.736       | 0     | 0.112 | 0.000     | 0.184   |
| fake_johannesburg                                            | 0.511 | 0.744 | 4.043       | 0     | 0.108 | 0.000     | 0.162   |

#### **Evaluation**

- Per circuit performance evaluation in progress.
- Scaling in time and memory consumption:

| Circuit Name                                 | Method     | Wall Clock Time (s) | User Time (s) | System Time (s) | Peak RSS (KB) |
|----------------------------------------------|------------|---------------------|---------------|-----------------|---------------|
| qasm/SupermarQ/qaoa_fermionic_10.qasm        | Simulation | 18.025355           | 113.93        | 5.98            | 927344        |
| qasm/SupermarQ/qaoa_fermionic_10.qasm        | ESP        | 8.300045            | 13            | 2.5             | 717196        |
| qasm/SupermarQ/qaoa_fermionic_10.qasm        | PredV1     | 0.925668            | 5.44          | 2.37            | 1623340       |
| qasm/SupermarQ/qaoa_fermionic_10.qasm        | PredV2     | 6.169059            | 11.3          | 2.51            | 1722360       |
| qasm/QASMBench/medium/qf21_n15/qf21_n15.qasm | Simulation | 790.637025          | 14758.46      | 9.43            | 1410568       |
| qasm/QASMBench/medium/qf21_n15/qf21_n15.qasm | ESP        | 9.192249            | 14.17         | 2.61            | 717368        |
| qasm/QASMBench/medium/qf21_n15/qf21_n15.qasm | PredV1     | 1.080091            | 5.49          | 2.45            | 1619380       |
| qasm/QASMBench/medium/qf21_n15/qf21_n15.qasm | PredV2     | 7.045953            | 12.39         | 2.57            | 1721648       |

# Results (V1)



# Results (V1)

| Prediction | Actual  |
|------------|---------|
| .510997    | .526367 |
| .041219    | .078125 |
| .060580    | .058594 |
| .643715    | .649414 |
| .132602    | .142578 |
| .208487    | .186523 |
| .758020    | .781250 |

| Prediction | Actual  |
|------------|---------|
| .134381    | .612305 |
| .083689    | .344727 |
| .144355    | .000977 |
| .191454    | .465820 |
| .175614    | .560547 |
| .142928    | .721680 |
| .134386    | .617187 |

14

Similar circuit New circuit

# Results (V2)



# Results (V2)

| Prediction | Actual  |
|------------|---------|
| .741174    | .765625 |
| .696171    | .649414 |
| .862628    | .898438 |
| .865645    | .875000 |
| .663417    | .703125 |
| .125723    | .152344 |
| .740014    | .721680 |

| Prediction | Actual  |
|------------|---------|
| .536968    | .137695 |
| .625335    | .306641 |
| .407491    | .086914 |
| .358605    | .133789 |
| .439015    | .068359 |
| .458579    | .078125 |
| .726478    | .294922 |

16

Similar circuit New circuit

#### Conclusions

- Quarry: Tool for providing rapid quantum circuit fidelity estimation.
- Simulation
  - Detailed results, too slow for usage in tool.
  - Scales poorly in time/memory usage.
- ESP
  - Relatively cheap, provides limited details.
- Predictor V1/V2
  - Fast, currently inaccurate.
  - Memory intensive (WRT ESP).



Image Source: https://www.youtube.com/watch?v=ljz5uQQ\_HkM

#### **Future Works**

- Optimize selection of machines
- Fitness function redesign
  - Better input/output metrics
- Neural Network Design
  - Look for more sophisticated model
  - Data sanitization
  - Find more efficient data generation methods
- Optimize query and remove redundant calculations
- Add compiler optimization options to search space
- Plugin/Frontend to visualize output

#### References

- [2.1] Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. Modeling and simulating the noisy behavior of near-term quantum computers
- [2.2] Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and David G. Cory.
   Modeling quantum noise for efficient testing of fault-tolerant circuits
- [4.2] Marco Cerezo, Alexander Poremba, Lukasz Cincio, and Patrick J. Coles. Variational Quantum Fidelity Estimation
- [5.3] Steven T. Flammia and Yi-Kai Liu. Direct Fidelity Estimation from Few Pauli Measurements.
- [5.6] Nishio, Shin and Pan, Yulu and Satoh, Takahiko and Amano, Hideharu and Meter, Rodney Van. Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation
- [5.7] Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi Luo, and Xiaoqi Zhou. Direct Fidelity Estimation of Quantum States Using Machine Learning