Semi-rotary drives DRQD, twin pistons

FESTO

The sturdier, faster, smaller and more powerful unit

The DRQD:

The sturdier, faster, smaller and more powerful unit

Available with many cushioning options. For cycles rates up to 10 times faster, or loads that are ten times heavier when using the hydraulic shock absorbers. Its twin cylinder principle means that it is twice as precise, making it ideal for handling and assembly tasks. As a MINI e. g. for the electronics and medical technology industries, and as MIDI and MAXI for e.g. mechanical engineering and production technology.

Powerful

Whether it is the MINI or the MAXI, torques of 1.5 to 50 Nm are possible

Modular

Its configuration: various end position cushioning functions, rotation and X angle, drive shaft or mid position module and also tubing and energy throughfeed.

Clearly defined

Adapter plates and direct mounting are used as interfaces to grippers, linear modules or slides. Precision adaptation to Festo's modular system for handling and assembly.

Reliable

Thanks to its sturdy design, standardised cylinder sensors, air connection on 2 sides and the clever flanged shaft throughfeed for air tubing and sensor cables.

	Advantages for designers	Advantages for purchasers
Modular and space-saving design	 Ideal solution for every application Flexibility for maximum freedom in design Minimised installation space 	 ■ Price follows function: you only pay for the functionality you need ■ Reduced acquisition and follow-up costs
Co-ordinated interfaces for the handling and assembly technology kits	 Minimised design complexity Simple, reliable connections No need for expensive in-house solutions 	Minimised ordering costsFast access to all required parts
All your automation technology from one source	 Use of standard cylinder sensors SMx-8 and SMx-10 Broadest range of valves and valve terminals on the market Easily fitted using the appropriate tubing and fittings 	 1 contact for the entire world of pneumatics 1 delivery, 1 delivery note and 1 delivery date for the entire project Max. operational reliability thanks to the harmonized components

Key features

FESTO

General

- Rack and pinion principle
- High accuracy
- Extremely good rigidity
- Backlash-free and dynamic
- Piston Ø 6 ... 50 mm
- Torque 0.16 ...50 Nm
- Swivel angle 0 ... 360°
- End-position adjustment -60 ... +6°
- Defined interfaces
- Choice of mounting options
- Supply port at one end
- Ideal for use in handling applications

Wide choice of variants

Spigot shaft

■ Piston Ø 6 ... 50 mm

Flanged shaft

■ Piston Ø 6 ... 50 mm

Adjustable end-position cushioning

- Piston Ø 16 ... 50 mm
- Pneumatic
- With hydraulic shock absorbers

Intermediate position

- Piston Ø 16 ... 50 mm
- Allows positioning of the drive shaft in a mid-position

Position sensing

- Piston Ø 6 ... 50 mm
- For piston Ø 6 ...12 mm: proximity sensor SME/SMT-10
- For piston Ø 16 ...50 mm: proximity sensor SME/SMT-8

$\label{prop:equation:equation} \mbox{Adapter kits for grippers and drive combinations}$

■ Piston Ø 6 ... 50 mm

Energy through-feed

- Piston Ø 6 ... 50 mm
- Simple and space-saving installation of tubing through the hollow flanged shaft
- DRQD-...-SD... 1 ... 4 DUO tubes

- Piston Ø 16 ... 50 mm
- Simple and space-saving installation of tubing and cables through the hollow flanged shaft
- DRQD-...-E... 1 ... 2 DUO tubes and 2 ... 4 electrical cables

Mounting options

using through holes

via thread in housing profile

Twin-piston semi-rotary drives DRQD Features

Possible combination	s with	grippe	rs								
Semi-rotary drive DRQD	6	8	12	16	20	25	32	40	50	Semi-rotary drive 6 8 12 16 20 25 32 40 DRQD 40	50
Micro grippers HGPM-	G8						WW	w.festo	.com	Micro grippers HGWMG8 www.fest	o.com
	•	•	•	_	_	_	_	_	_		_
Parallel grippers HGP							WW	w.festo	o.com	Three-point gripper HGD www.fest	o.com
	•	•	•	•	•	•	•	•	•		•
Radial grippers HGR							\\/\/	w.festo	com	Angle grippers HGW www.fest	o com
The state of the s	•	•	•	-	•	•	•		•		•
Precision parallel grip	pers H	GPP					WW'	w.festo	o.com	T-slot grippers HGPT www.fest	o.com
	_	-	-	•	•	•	•	•	•		•
Long-stroke grippers H	IGPL	•	•	•		•	WW'	w.festo	.com	Parallel grippers HGPC www.fest	co.com
	-	-	-	•	•	•	•	•	•		-

Twin-piston semi-rotary drives DRQD System example

System product for handling and assembly technology

Twin-piston semi-rotary drives DRQD System example

Syste	m elements and accessories		
		Brief description	→ Page
1	Drive units	Wide range of combination options within handling and assembly technology	www.festo.com
2	Grippers	Wide range of combination options within handling and assembly technology	www.festo.com
3	Adapters	For drive/drive and drive/gripper combinations	www.festo.com
4	Basic mounting components	Profiles and profile connectors as well as profile/drive connectors	www.festo.com
5	Installation components	For achieving a clear-cut, safe layout for electrical cables and tubing	www.festo.com
-	Axes	Wide range of combination options within handling and assembly technology	www.festo.com
-	Motors	Servo and stepper motors, with or without gearing	www.festo.com

Twin-piston semi-rotary drives DRQD Product range overview

Function	Version	7	Piston Ø [mm]	Swivel angle [°]	Adjustable end-position range [°]	Position sensing A	End-position adjustment with flexible buffers in the end positions J
Double-	Basic version	<u> </u>					
acting		Semi-rotary drive DRQD	6, 8, 12	90	-20 +6° -60 +6°	•	•
			16, 20, 25, 32, 40, 50	90 180 360 0 340	-20 +6°	•	-

Function	Version	Туре	Piston \varnothing	Output shaft			
				Spigot shaft	Flanged shaft	Integrated adapter for direct	
						mounting of micro grippers	
			[mm]	ZW	FW	A	
Double-	Basic version						
acting	\sim	Semi-rotary drive	6, 8, 12				
		DRQD					
				•	•	•	
			16, 20, 25,				
			32, 40, 50				
				•	•	-	
	0						

Twin-piston semi-rotary drives DRQD Product range overview

FESTO

Туре	Piston \varnothing	Type of cushioning		Pneumatic connection	
		Adjustable, pneumatic	Adjustable, hydraulic shock	left	right
			absorbers		
	[mm]	PPVJ	YSRJ	AL	AR
Basic version					
Semi-rotary drive	6, 8, 12				
DRQD					
		-	-	-	•
	16, 20, 25,				
	32, 40, 50				
		•	•	•	•

Туре	Piston \varnothing	Intermediate position	Energy through-feed	Adapter kits for grippers	→ Page
	[mm]	Z1	SD, E		
Basic version					
Semi-rotary drive	6, 8, 12				10
DRQD					
		-	•	•	
	16, 20, 25,				26
	32, 40, 50				
		•	•	•	

Piston Ø 6 ... 12

Twin-piston semi-rotary drives DRQD-6 ... 12 Peripherals overview

	ants, mounting attachments and	Brief description	Piston ∅			→ Page
		Site description	6	8	12	
1	Centre section	Centre section for 90° or 180° swivel				13
		angle	-	-		
2	Connector cap	With integrated compressed air				
	commetter cap	directional function	-	-		
3	End-position adjustment	Flexible end position cushioning with				
_	120	adjustable end positions (-20 +6°)	-	•	-	
4	End-position adjustment	Flexible end position cushioning with				
7	J60	adjustable end positions (-60 +6°)	-	•	-	
5	Position sensing	Contactless via proximity sensors				63
)	A	SME-/SMT-10	-	•	-	
6	Spigot shaft	Hollow with woodruff key	-			13
0	ZW ¹⁾	Hottow with woodrun key	-	-	-	
7	Flanged shaft	Hollow	+			
7	FW ¹)	Hottow	•	-		
		Hollow for an age the second for a				
8	Flanged shaft	Hollow, for energy through-feed	-	-		
_	FW-SD32	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
9	Adapters	For micro grippers HGWM-08G8 and	-		-	
	A08 ²⁾	HGPM-08G8				
10	Adapters	For micro grippers HGWM-12G8 and	_			
	A12 ²⁾	HGPM-12G8				
11	Micro grippers	HGPMG8 and HGWMG8				www.festo.com
	HGPM/HGWM		_	_	_	
12	Adapters	For standard grippers HGP-06-A,	_			13
	AS1	HGR-10-A and HGW-10-A	_	_	_	
13	Adapters	For standard grippers HGD-16-A				
	AS2		_	-	_	
14	Standard grippers	HGP-06-A, HGD-16-A, HGR-10-A,		_	_	www.festo.com
	HGP/HGD/HGR/HGW	HGW-10-A	_	•	•	
15	Energy through-feed	2 tubes with O.D. 3 mm		_	_	18
	SD32		_	•	•	
16	Socket head screw	Mounting of ZW and FW			1	13
	ZS	3	-	•	-	
17	Hollow bolt	Mounting of ZW, FW, A08, A12 and air				
1/	HS	supply for attachments	-	•	-	
18	Type of mounting	For connection of DRQD/FW-SD32:				
Ю	B1	Locking screws in centring sleeves	•	-	-	
19	Type of mounting	For connection of DRQD/FW-SD32:		-		
17	B2	Through screws in attachment	•	-		
20		For connection of DRQD/FW-SD32:				
20	Type of mounting			-		
24	B3	Clamping via profile, grid 40 mm				4.0
21	Centring sleeve	For centring (2 pieces included in scope		-		18
	ZBH	of delivery for DRQD)				
22	Rotary push-in fitting ³⁾	Quick Star push-in fittings, rotatable		_		
	QS	with ball bearing	_		_	

The socket head screw ZS is included in the scope of delivery. The hollow bolt HS must be ordered separately
 Only in conjunction with hollow bolt HS. The hollow bolt HS must be ordered separately
 For energy through-feed in combination with HS

Type codes

Technical data

Function

- **Ø** - Diameter 6 ... 12 mm

- **=** - Force 0.16 ... 0.76 Nm

- www.festo.com/en/ Spare_parts_service

Variants

- 90° and 180° swivel angle
- Spigot or flanged shaft
- Adapters for grippers
- End-position adjustment
- Position sensing
- Energy through-feed
- Different types of mounting

General technical data						
Piston ∅		6	8	12		
Pneumatic connection		M3				
	HS	M5				
	SD32	- QS3 for tube O.D. 3 mm				
Constructional design		Semi-rotary drive with twin pistons based on the rack and pinion principle				
Cushioning		Flexible buffer at both ends				
Position sensing		For proximity sensing				
Type of mounting		Via through-hole				
		Via female thread				
Assembly position		Any				

Operating and environmental co	nditions				
Piston Ø			6	8	12
Operating medium			Filtered compressed air, lubricated o	r unlubricated	
Operating pressure	[bar]		1 8		
		SD32	-	1.5 8	-
Adjustable end-position range	[°]	J20	-20 +6		
		J60	-60 +6		
Max. permissible swivelling	[Hz]	90°	5	4	3
frequency at 6 bar		180°	3.5	2.5	2
(for completed cycle of motion)		SD32	-	A reduction of max. 5% of the values	indicated above
Repetition accuracy	[°]		< 0.2		
Ambient temperature ¹⁾	[°C]		-10 +60		
Corrosion resistance class CRC ²)			1		

¹⁾ Note operating range of proximity sensors

²⁾ Corrosion resistance class 1 according to Festo standard 940 070
Components requiring low corrosion resistance. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Twin-piston semi-rotary drives DRQD-6 ... 12 Technical data

Forces and torques					
Piston Ø			6	8	12
Theoretical torque	[Nm]		0.16	0.33	0.76
at 6 bar		SD32	_	0.28	0.72
			- ♦ - Note: If torque acts agains	t the direction of rotation in the end po	sition, a drive with a rating of twice
			the maximum theoretical t	orque should be selected.	
Max. permissible radial and axial			Diagrams → 17		
forces					
Max. permissible mass moment	[kgm ²]		0.075×10^{-4}	0.25×10^{-4}	0.7×10^{-4}
of inertia			The data applies to the variants ZW,	FW, A without grippers, unthrottled.	

Pneumatic sizing using Pro Pneu www.festo.com/en/engineering

Weights [g]							
Piston Ø			6	8	12		
Centre section	90°	J20	66	90	145		
-		J60	67	92	148		
	180°	J20	82	111	177		
		J60	83	113	180		
Output shaft		ZW	2	4	·		
		FW	4	7	7		
Adapters		A08	6	11			
		A12	6	11			
		AS1	-	13			
		AS2	-	15			
Screws		ZS	1	·			
		HS	4		5		
Flanged shaft with energy		SD32	-	71			
through-feed							
Mounting in combination with		B1	-	17			
SD32		B2	-	17	18		
		В3	-	81	•		

Twin-piston semi-rotary drives DRQD-6 ... 12 Technical data

Pisto	n Ø	6	8	12			
1	Cylinder barrel (centre section)	Anodised aluminium					
2	Connector cap	Anodised aluminium					
3	Gear rack	Anodised aluminium					
4	Pinion	Stainless steel; milled teeth					
5	Piston	Anodised aluminium					
6	Threaded pin, hex nuts	Galvanised steel					
7	Piston seal	Nitrile rubber	Polyurethane				
8	Buffer for end-position cushioning	Nitrile rubber					
-	DUO spiral tubing	Polyurethane					
-	Woodruff key	Steel					
-	Hollow bolt, centring sleeves	Stainless steel					
-	Static seals	Steel, nitrile rubber					
-	Material note	Copper, PTFE and silicone-free					

Direction of rotation of the drive shaft

Pneumatic actuation of ports 1 or 2 produces a rotational movement in direction R1 or R2 respectively.

FESTO

Technical data

Max. permissible radial and axial forces on the drive shaft

Combined load

A semi-rotary drive DRQD-8-... is to be statically loaded with a radial force F_y = 60 N, which is at a distance of Z = 5 mm from the housing, and an

axial force $F_{x, push} = 30 \text{ N}$, which is at a distance of V = 12 mm from the shaft (\Rightarrow diagram of flanged shaft on right).

Answer
An:

Is it permissible to statically load a semi-rotary drive DRQD-8-... with these combined forces?

Graph 1 (→ 17) indicates that the maximum permissible radial force is F_y, max. (stat.) (5) = 193 N for a distance

Z = 5 mm. Graph 3 (→ 17) indicates that the maximum axial force is

 $F_{x*push max. (stat.)}$ (12) = 169 N for a distance V = 12 mm.

The following equation applies to combined loads:

$$\frac{F_{y\;(z)}}{F_{y,\;max.\;(z)}} + \frac{F_{x,\;push\;(v)}}{F_{x,\;push,max.\;(v)}} + \frac{F_{x,\;pull\;(v)}}{F_{x,\;pull,max.\;(v)}} \leq \ 1$$

The following values are assumed:

$$F_{y(5)} = 60 \text{ N}$$

 $F_{x, \text{ push (stat.)}} (12) = 30 \text{ N}$
 $F_{y, \text{ max. (stat.)}} (5) = 193 \text{ N}$
 $F_{x, \text{ max. (stat.)}} (12) = 169 \text{ N}$

 $\frac{60 \text{ N}}{193 \text{ N}} + \frac{30 \text{ N}}{169 \text{ N}} \le 1$

With values inserted:

 $0.311 + 0.178 \le 1$

 $0.489 \le 1$

Thus the drive may be statically loaded with the forces indicated above.

Technical data

Maximum dynamic radial force

Graph 2

 $F_{y, max. (dyn.)} = f_{(z)}$

Maximum static pull and push axial forces

Graph 3

 $F_{x, \text{max. (stat.)}} = f_{(v)}$

Maximum dynamic pull and push axial forces

Graph 4

 $F_{x, \text{max. (dyn.)}} = f_{(v)}$

Twin-piston semi-rotary drives DRQD-6 ... 12 Technical data

Energy through-feed

The energy through-feed consists of DUO tubing (two lengths of tubing are fused together into a pair), whereby each tube has an O.D. of 3 mm. Compressed air is supplied via the push-in fittings in the transfer plate. Only Quick-Star push-in fittings may be used to connect compressed air tubing to consuming devices (e.g. grippers).

DRQD-...-SD...

- For piston Ø 8 ... 12
- Swivel angles of up to 180° are possible
- 1 DUO tube

Technical data				
Piston Ø		8	12	
Number of spiral tubes		1 DUO tube		
Standard nominal flow rate	[l/min]	min. 70		
per tube				
Theoretical air consumption	[cm ³]	5.3		
per tube at 6 bar				
Operating pressure as a function	[bar]	0 10 (at -10 +30 °C)		
of ambient temperature		0 9 (at +30 +40 °C)		
		0 7 8 (at +40 +60 °)		
Push-in fittings for connection to		QS3 for tube O.D. of 3 mm		
consuming device				

¹⁾ Centring possible with D3

Twin-piston semi-rotary drives DRQD-6 ... **12** Technical data

For Ø	Swivel angle	D11	D2 ∅	L1	L2	L3
[mm]	[°]		h7			
8	90			4.9		8.2
	180	M4	q	4.9	2	0.2
12	90	1414	,	5.9	<u> </u>	9.2
	180			3.7		7.2

For Ø	Swivel angle	D3	H1	L4	L5	L6	L7	L8
[mm]	[°]						+0.1	±0.03
8	90			E				
	180	M5	46	9	40	60	10	36
12	90	CIMI	40	0	40	60	10	36
	180			9				

Twin-piston semi-rotary drives DRQD-6 ... 12 Technical data

For adapter	1 Drive	2 Grippers	Type of screw	B1	B2	B3 ±0.03	D1	D2 Ø	= ©1
A08	DRQD-6 DRQD-8 DRQD-12	HGWM-08G8 HGPM-08G8	HS	15.2	13	9.6	M3	16	1.5
A12	DRQD-6 DRQD-8 DRQD-12	HGWM-12G8 HGPM-12G8	HS	20.2	19	14.6	M3	21	1.5

For adapter	1 Drive	2 Grippers	B1	B2	D1	D2	D3	D4 Ø	=©1	= ©2
AS1	DRQD-8 DRQD-12	HGP-06 HGR-10 HGW-10	10.2	8	M3	M2	M4	28	2.5	2
AS2	DRQD-8 DRQD-12	HGD-16	10.2	8	M3	M2	M4	29	2.5	2

Twin-piston semi-rotary drives DRQD-6 ... 12 Ordering data – Modular products

M Mandator	M Mandatory data →									
Module No.	Function	Size	Swivel angle	End-position adjustment	Position sensing	Output shaft/ adapter				
187 431	DRQD	6	90	J20	A	ZW				
187 432		8	180	J60		FW				
187 433		12				A08				
						A12				
						AS1				
						AS2				
Ordering										
example										
187 432	DRQD	- 8	- 180	- J60	- A	- A12				

Ordering table							
Size		6	8	12	Condi-	Code	Enter
					tions		code
M Module No.		187 431	187 432	187 433			
Function		Semi-rotary drive with tw	in pistons			DRQD	DRQ
Piston ∅	[mm]	6	8	12			
Swivel angle		90°				-90	
		180°				-180	
End-position adjus	stment	Adjusting range +6°/-20	re +6°/–20°			-J20	
		Adjusting range +6°/–60°				-J60	
Position sensing		For proximity sensing				-A	-A
Output shaft/adap	ter	Spigot shaft			1	-ZW	
		Flanged shaft	Flanged shaft			-FW	
	Ada		Adapter for HGPM-	08/HGWM-08	3	-A08	
		Adapter for HGWM-12	apter for HGWM-12 Adapter for HGPM-12/HGWM-12		3	-A12	
		-	Adapter for HGW/H	GR-10-A, HGP-6-A	4	-AS1	
↓		-	Adapter for HGD-1	6-A	4	-AS2	

1 ZW	Not with energy through-feed SD32	3 A08, A12	Not with energy through-feed SD32
	Only with screw type ZS, HS		Only with screw type HS
2 FW	Required for energy through-feed SD32	4 AS1, AS2	Required for energy through-feed SD32
	Only with screw type ZS, HS		Not with screw type ZS, HS

Twin-piston semi-rotary drives DRQD-6 ... 12 Ordering data – Modular products

→	O Options			
	Energy through-feed	Type of screw	Type of mounting	User's manual
	SD32	ZS	B1	E
		HS	B2	F
			B3	S
				1
				V
				В
				_
-	SD32	- HS	- B2	- B

0r	dering table						
Siz	re	6	8	12	Condi- tions	Code	Enter code
0	Energy through-feed	-	2x tubing O.D. 3 mm		5	-SD32	
	Type of screw	Socket head screw				-ZS	
		Hollow bolt				-HS	
	Type of mounting	-	Mounting type 1			-B1	
		-	Mounting type 2		6	-B2	
		-	Mounting type 3		6	-B3	
	Alternative language user docu-	English				-E	
	mentation (standard is German)	French				-F	
		Spanish				-S	
		Italian				-1	
		Swedish				-V	
		Express waiver – no user n	nanual to be included (al	ready available)		-B	

5	SD32	Only with mo	unting type B1.	B2. B

6 **B1, B2, B3** Only with energy through-feed SD32

	Transfer order code				
-		-	-	-	

Twin-piston semi-rotary drives DRQD-16 ... 50 Peripherals overview

Vari	ants, mounting attachments a	nd accessories							
		Brief description	Piston	Ø					→ Page
			16	20	25	32	40	50	
1	Centre section	Centre section for 90°, 180° or 360°		Τ.	Τ.	Τ_	T _		60
		swivel angle	•	-	-	•	-		
2	End cap	With integrated compressed air							7
		directional function	_	_		_	_	_	
3	Connector cap	Flexible end position cushioning with							1
	PPVJ	adjustable end positions (-20° +6°)	_	_		-	_	-	
4	Connector cap	Adjustable shock absorbers with							7
	YSRJ	adjustable end positions (-20° +6°)	_	_		-	_	-	
5	Position sensing	Contactless via proximity sensors							63
	A	SME-/SMT-8	_	-		-	_	-	
6	Spigot shaft	With woodruff key							60
	ZW		_	_		-	_	-	
7	Flanged shaft	Hollow, for energy through-feed							1
	FW		_	_		-	_	-	
8	Intermediate position	Mid-position at centre of nominal angles							37
	Z1	of rotation of 90° and 180° (±10°)	_	_		_	_	_	
9	Energy through-feed	2 tubes with O.D. 3 or 4 mm					_	_	38
	SD32, SD42		_	_		_	_	_	
	Energy through-feed	2 tubes with O.D. 6 mm	_			_			
	SD62		_	_	_	_	_	_	
10	Energy through-feed	4 tubes with O.D. 6 mm	_			_			1
	SD64		_	_	_	_	_	_	
11	Energy through-feed	8 tubes with O.D. 4 mm	_						7
	SD48		_	_	_	_	_	_	
12	Energy through-feed	2 tubes with O.D. 4 mm and 1 4-pin				_	_	_	1
	E422	cable to 2 3-pin cables	_	_	_	_	_	_	
13	Energy through-feed	4 tubes with O.D. 4 mm and 2 4-pin	_				_	_	7
	E444	cables to 4 3-pin cables	_	_		-	_	_	
14	Energy through-feed	4 tubes with O.D. 6 mm and 4 3-pin							7
	E644	cables	-	-	_	-	•	•	
15	Centring sleeve	For centring (2 pieces included in scope		+-	+-				62
	ZBH	of delivery for DRQD)	_	_	-	-	_	_	

Twin-piston semi-rotary drives DRQD-16 ... **50** Type codes

Type code

Twin-piston semi-rotary drives DRQD-16 ... **50** Technical data

Function

16 ... 50 mm

www.festo.com/en/ Spare_parts_service

Variants

- 90°, 180° and 360° or X swivel
- Spigot or flanged shaft
- Adjustable end-position cushioning or shock absorbers
- Position sensing
- Intermediate position
- Energy through-feed
- Different types of mounting

General technical data									
Piston Ø		16	20	25	32	40	50		
Pneumatic connection		M5			G ¹ /8		G1//4		
	SD32	QS3 for tubing	0.D. ∅ 3 mm ¹⁾		•	-	-		
	SD42/SD48	QS4 for tubing	0.D. ∅ 4 mm ¹⁾			-	-		
	E422	QS4 for		-					
		tubing O.D. 4 mm	ı						
	E444	-		QS4 for		_			
				tubing O.D. 4 mr	n				
	SD62/SD64/	-		•		QS6 for	QS6 for		
	E644				tubing O.D. 6 mm				
Constructional design		Semi-rotary drive with twin pistons based on the rack and pinion principle							
Cushioning	PPVJ	Adjustable, pneumatic							
	YSRJ	Adjustable, hydraulic shock absorbers							
Position sensing		For proximity sensing							
Type of mounting		Via through-hole							
		Via female thread							
Assembly position		Any							

Operating and environme	ntal con	ditions								
Piston Ø				16	20	25	32	40	50	
Operating medium	Operating medium				ssed air, lubricat	ed or unlubricate	ed			
Operating pressure	[bar]	PPVJ		1 10						
		YSRJ		2 10						
		Z1		1 10						
Adjustable end-position	[°]	PPVJ		-20 +6						
range		YSRJ		1						
Max. permissible swivel-	[Hz]	PPVJ	90°	4	3	2	1.2	1.2	1.2	
ling frequency at 6 bar			180°	3	2.2	1.3	0.8	0.9	0.9	
(for completed cycle of			360°	1.5	1.2	0.8	0.5	0.5	0.5	
motion)		YSRJ	90°	2	2	1.5	1.2	1	0.9	
			180°	1.8	1.8	1.5	1.2	1	0.8	
			360°	1	1	0.9	0.8	0.7	0.6	
SD/E				A reduction of max. 5% of the values indicated above						
				-	mperatures < 0°	C, a max. frequer	ncy of 1 Hz applies i	n the case of varian	nt YSRJ.	

Twin-piston semi-rotary drives DRQD-16 ... 50 Technical data

Operating and environmental conditions										
Piston ∅	Piston \varnothing					25	32	40	50	
Minimum cycle times	[s]	PPVJ	90°	0.20	0.22	0.18	0.21	0.20	0.18	
in conjunction with Z1			180°	0.26	0.41	0.20	0.26	0.21	0.35	
(from the end position to the intermediate		YSRJ	90°	0.20	0.22	0.17	0.20	0.47	0.35	
position)			180°	0.23	0.31	0.22	0.23	1.10	0.99	
Repetition accuracy	[°]			≤ 0.05	'	•	<u>.</u>	•	•	
(approached from both ends)		Z1		≤ 0.15			≤ 0.25	≤ 0.20	≤ 0.30	
Ambient temperature	[°C]			-10 +60			•	•	•	
Corrosion resistance class	CRC ¹⁾			1	1					

¹⁾ Corrosion resistance class 1 according to Festo standard 940 070 Components requiring low corrosion resistance. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Forces and torques									
Piston Ø			16	20	25	32	40	50	
Theoretical torque at 6 bar	[Nm]	PPVJ	1.6	3.1	6.1	12.5	25	50	
		YSRJ	1.6	3.1	6.1	12.5	25	50	
		Z1	1.7	3.6	6.2	13.5	32.2	78.6	
			Note: If torque acts against the direction of rotation in the end position, a drive with a rating of twice the maximum theoretical torque should be selected.						
Max. permissible radial and axial forces			Graphs → 35						
Max. permissible mass	[kgm ²]	PPVJ	5 x 10 ⁻⁴	10 x 10 ⁻⁴	20 x 10 ⁻⁴	40 x 10 ⁻⁴	200 x 10 ⁻⁴	500 x 10 ⁻⁴	
moment of inertia		YSRJ	Graphs → 33						
		PPVJ-Z1	5 x 10 ⁻⁴	10 x 10 ⁻⁴	20 x 10 ⁻⁴	40 x 10 ⁻⁴	200 x 10 ⁻⁴	500 x 10 ⁻⁴	
		YSRJ-Z1	-	-	-	-	1000 x 10 ⁻⁴	2000 x 10 ⁻⁴	
			The data applies t	The data applies to the variants ZW, FW, without grippers and unthrottled.					

Pneumatic sizing using Pro Pneu www.festo.com/en/engineering

Weights [g]									
Piston Ø			16	20	25	32	40	50	
Connection cap AL/AR		PPVJ	116	220	358	609	1,170	2,320	
		YSRJ	140	240	441	917	2,170	4,270	
Centre section/output shaft	90°	ZW	379	609	1,026	1,891	3,330	6,860	
		FW	380	586	1,018	1,848	3,960	7,010	
	180°	ZW	467	753	1,267	2,325	4,340	8,850	
		FW	468	730	1,259	2,282	4,570	9,000	
	360°	ZW	643	1,039	1,741	3,199	6,350	12,890	
		FW	644	1,016	1,733	3,165	6,580	13,040	
End cap			40	53	82	140	370	610	
Intermediate position	90°	Z1	235	315	550	805	2,510	3,960	
	180°	Z1	235	315	550	805	2,510	3,960	
Flanged shaft with energy thro	ough-feed	SD32	152		303	•	-		
		SD42	152		303	303		-	
		SD48	-				1,220		
		SD62	-				900		
SD64			-				930		
		E422	400		-	- 800			
	E444	-		800					
		E644	-		•		2,700	2,700	

Twin-piston semi-rotary drives DRQD-16 ... 50 Technical data

Direction of rotation of the drive shaft

Connection cap on right (AR)

Pneumatic actuation of ports 1 or 2 produces a rotational movement in direction R1 or R2 respectively.

Connection cap on left (AL)

Pneumatic actuation of ports 1 or 2 produces a rotational movement in direction R1 or R2 respectively.

Materials

Sectional view

Piston ∅	16	20	25	32	40	50			
Basic drive	Basic drive								
Cylinder barrel (centre section)	Anodised alumin	Anodised aluminium Wroug							
					anodised				
2 Connector cap	Anodised alumin	ium							
3 Gear rack	- '	ess steel, hardened	1		High-alloy steel				
4 Pinion	Tempered steel								
5 Piston	Anodised alumin	ium							
6 Adjustable sleeve	Galvanised steel								
7 Piston seal	Polyurethane								
 Material note 	Copper, PTFE and	l silicone-free							
Function end cap PPVJ									
 Cushioning seal 	Nitrile rubber/po				Polyurethane				
 Buffer sleeve, regulating screw 	Anodised alumin	ium							
Function end cap YSRJ									
– Buffer	Delrin								
 Rod wiper seal 	Nitrile rubber/po	lyurethane							
Energy through-feed SD/E									
- Transfer plate/sliding disc	Anodised alumin	ium							
- DUO spiral tubing	Polyurethane								
·	Z1 intermediate position module								
– Piston	Stainless steel; n	itrile rubber							
- Piston rod, nut	Stainless steel								
- Bearings	POM								
 Rod wiper seal 	Polyurethane								

Technical data

DRQD-25-...-YSRJ

DRQD-40-...-YSRJ

DRQD-50-...-YSRJ

----- 180° - 360°

FESTO

Technical data

Max. permissible radial and axial forces on the drive shaft

Combined load

A semi-rotary drive type DRQD-16-...-FW is to be statically loaded with a radial force $F_y = 300$ N, which is at a distance of Z = 15 mm from the

flanged shaft, and an axial force $F_{x, push} = N$, which is at a distance of V = 25 mm from the shaft (\rightarrow diagram of flanged shaft on right).

Ouestion:	Answer:
Question.	/IIIJWCI.

Is it permissible to statically load a DRQD-16-...-FW semi-rotary drive with these combined forces?

According to graph 1 (→ 35), a distance of Z = 15 mm results in a maximum permissible radial force

 $F_{y, max. (stat.)}$ (15) = 400 N. According to graph 3 (\Rightarrow 35), a distance of V = 25 mm results in a maximum permissible axial force $F_{x, push max. (stat.)}(25) = 550 N.$

The following equation applies to combined loads:

$$\frac{F_{y \text{ (z)}}}{F_{y, \text{ max. (z)}}} + \frac{F_{x, \text{ push (v)}}}{F_{x, \text{ push,max. (v)}}} + \frac{F_{x, \text{ pull (v)}}}{F_{x, \text{ pull,max. (v)}}} \leq 1$$

The following values are assumed:

$$\begin{split} F_{y(15)} &= 300 \text{ N} \\ F_{x, \text{ push (stat.)}} (25) &= 100 \text{ N} \\ F_{y, \text{ max. (stat.)}} (15) &= 400 \text{ N} \\ F_{x, \text{ max. (stat.)}} (25) &= 550 \text{ N} \end{split}$$

With values inserted:

$$\frac{300 \text{ N}}{400 \text{ N}} + \frac{100 \text{ N}}{550 \text{ N}} \le 1$$
$$0.75 + 0.182 \le 1$$

 $0.932 \le 1$

Thus the drive may be statically loaded with the forces indicated above.

FESTO

Technical dat

Z1 intermediate position module

For DRQD-16 ... 50

The intermediate position module is fitted in place of the end cap, and allows for adjustable, backlash-free positioning of the drive at 50% of its

nominal rotation angle. The intermediate position module is available for nominal rotation angles of 90° and 180°.

Function

A piston incorporating two screw fastened piston rods is pressurised and shifts the semi-rotary drive gear racks until both make full contact with the piston rods in the mid-position module. The mid-position can be accurately adjusted within a range of $\pm 10^\circ$ with the adjusting screws in the piston

rods. Thanks to the hollow shaft design of the piston rod, adjustment can be performed under pressure. The through rods in the mid-position module are guided by means of multiple bearings in the cover and in the adapter.

Actuation

In order for the mid-position module to function, the DRQD basic actuator must be pressurised at both sides.

This can be accomplished with two different types of actuation:

Actuation type 1

 Mid-position module (supply air must be restricted) with a 3/2-way valve DRQD basic drive with a 5/3-way valve, mid-position pressurised

Actuation type 2

 Mid-position module (supply air must be restricted) with a 3/2-way valve DRQD basic drive with two
 3/2-way valves, spring return

Note

Even if the semi-rotary drives DRQD-16 to 32 have been equipped with shock absorbers (type YSRJ), the mid-position may not be loaded with more than the max. permissible mass moment of inertia for the PPVJ variant! The reason for this is the cushioning: Whereas loads can be absorbed in the end positions with the shock absorbers, the mid-position is only equipped with basic flexible cushioning. Additional information on the permissible mass moment of inertia for the sizes 40 and 50 mm:

→ 31

Technical data

Energy through-feed

DRQD-...-SD...

The energy through-feed consists of one to max. four DUO tubes (fused tubing pair), whereby each tube has an O.D. of 3 ... 6 mm. Compressed air is supplied via the push-in fittings in

the transfer plate. Only Quick-Star push-in fittings may be used to connect compressed air tubing to consuming devices (e.g. grippers).

DRQD-...-E...

The energy through-feed consists of one to max. two DUO tubes (fused tubing pair), whereby each tube has an O.D. of 4 ... 6 mm. Compressed air is supplied via the push-in fittings in the transfer plate. Only Quick-Star

push-in fittings may be used to connect compressed air tubing to consuming devices (e.g. grippers). In addition, up to four proximity sensors can be connected by means of this energy through-feed.

DRQD-...-SD...

Transfer plate

■ For piston Ø 16 ... 50

■ Swivel angles of up to 360° are possible

■ 1 ... 4 DUO tubes

Technical data								
Piston Ø			16	20	25	32	40	50
Number of DUO tubes		SD32	1				-	
		SD42	1				-	
		SD48	-				4	
		SD62	-				1	
		SD64	-				2	
Standard nominal flow rate	[l/min]	SD32	min. 70				-	
(per tube)		SD42	min. 130				-	
		SD48	-				min. 130	
		SD62	-				min. 250	
		SD64	-				min. 250	
Theoretical air consumption	[cm ³]	SD32	5.3				-	
per line at 6 bar		SD42	9.5				-	
		SD48	-				9.5	
		SD62	-				24.4	
		SD64	-				24.4	
Operating pressure as a func-	[bar]			:-10 +30 °C)			•	
tion of ambient temperature				-30 +40 °C)				
			0 7 (at -	-40 +60 °)				
Tube O.D. on flanged shaft	[mm]	SD32	3				-	
drive side		SD42	4				-	
		SD48	-				4	
		SD62	-				6	
		SD64	-				6	
Push-in fittings for connection to consuming device	[mm]	SD32	QS3 fo	r tube O.D. 3 mm			-	
		SD42	QS4 fo	r tube O.D. 4 mm			-	
		SD48	-:				QS4 for	
							tube O.D.	
		SD62	-				QS6 for	
							tube O.D.	
		SD64	-				QS6 for	
							tube O.D. 6	6 mm

Twin-piston semi-rotary drives DRQD-16 ... **50** Technical data

Energy through-feed

DRQD-...-E422

- For piston \varnothing 16/20
- Swivel angles of up to 180° are possible
- 1 DUO tube with O.D. 4 mm
- 1 4-pin cable to 2 3-pin cables

- For piston \emptyset 25/32
- Swivel angles of up to 180° are possible
- 2 DUO tubes each with O.D. 4 mm
- 2 4-pin cables to 4 3-pin cables

DRQD-...-E644

- For piston Ø 40/50
- Swivel angles of up to 180° are
- 2 DUO tubes each with O.D. 6 mm
- 4 3-pin cables

Technical data								
Piston \varnothing			16	20	25	32	40	50
Number of DUO tubes		E422	1		-			
		E444	-		2		-	
		E644	-				2	
Standard nominal flow rate	[l/min]	E422	min. 130		-			
(per tube)		E444	-		min. 130		-	
		E644	-				min. 250	
Theoretical air consumption	[cm ³]	E422	9.5		-			
per line at 6 bar		E444	-		9.5		-	
		E644	-				24.4	
Operating pressure as a func-	[bar]		0 10 (at -10	+30 °C)			•	
tion of ambient temperature			0 9 (at +30	+40 °C)				
			0 7 (at +40	+60 °)				
Tube O.D. on flanged shaft	[mm]	E422	4		-			
drive side		E444	-		4		-	
		E644	-				6	
Push-in fittings for connection	[mm]	E422	QS4 for		-		•	
to consuming device			tube O.D. 4 mm					
		E444	-		QS4 for		-	
					tube O.D. 4 mm			
		E644	-		•		QS6 for	
							tube O.D. 6 mm	

FESTO

Twin-piston semi-rotary drives DRQD-16 ... 32 Technical data

Dimen	cione												Dow	nload C	AD data	- -	w focto c	om/en/eng	incoring
Ø	Swivel	B1	B2	B3	B4	, 1	B5	В6	В	7 I	B8	1 1	DOW D1			D3	W.iesto.c	Dm/en/eng D7	D8
Ø	angle	DI	DZ.	כם	D2	†	CO	ВО	B	′	Во		Ø	Ø		Ø	υ4	D/	Ø
[mm]	[°]												g6						H13
16	90												50						1117
10	180	30	25.5	23	17	Q	4	14.8	2	2	23.		10	12		18	M3	M4	8
	360	1 30	23.3	23	1/	.0	4	14.0		_	۷).		10	12		10	כואו	1414	o
20	90			+								+		+	-				
	180	36	32.5	30	21	.8	4	19.8	2	6	30.	5 :	12	15		24	M4	M4	8
	360	1																	
25	90																		
	180	42	42.5	40	24	.8	4	24.8	3	0	40.	5 :	16	20		30	M5	M5	10
	360	1																	
32	90																		
	180	51	52.5	50	29	.8	2	29.8	3	6	50.	5 2	20	25		35	M6	M5	10
	360																		
Ø	Swivel	D9	D10	D11	EE	H1	H2	L1	L	.2	L3	L4		L5		L6		L7	L8
	angle	Ø		Ø															
[mm]	[°]			H7											min.	max	k. min	. max.	±0.03
16	90							71	. 3!	5.5									
	180	4.2	M5	9	M5	50	11.2			6.5	10	24	+	20.8	1.7	5.7	23.4	28.2	60
	360							13		8.5									
20	90]						78.		9.2									
	180	4.2	M5	9	M5	56	13.5			2.4	10	31.	.5	27	2.4	7	28.6	35.9	60
	360							157		8.8									
25	90		14.6		145		4.0	91.		5.6		2.	_	2.2	2.6			50.0	
	180 360	5.3	M6	9	M5	67	18	12		52	11	36.	.5	33	2.6	8.9	42	50.2	60
32	90							189		4.6 7.4			+						
32	180	5.3	M6	9	G1/8	79	22.5			7.8	13	39		39	4.3	11.	8 59.4	70.1	80
	360	1 5.5	WIO		0 / 6	17	22.5	237		18.7	1)))	4.7	11.		70.1	00
	300							231	.4 11	10.7									
Ø	Swivel	L9	L10	L11	N1	T1		T2	T3	T4		T5	Te	(T7	=©1	=©2	=©3	=©4
×	angle	Lý	LIO	LII	INI	11		12	1)	14	,	1)	10	'	17	-51	-52	-37	~54
[mm]	[°]	±0.03			P9														
16	90	_																	
10	180	_	7.6	5.3	3	18.	1	9	3.5	5		10	2		2	4	9	13	17
	360	20	,.0	,,,		10.	^		J.J			10			-	7			''
20	90	-		+		+	+	\dashv											
-	180	_	8	5	4	25.	1 1	10	3.5	5		12	2		2	7	11	15	19
	360	20	1						-	1									
25	90	-									-								
	180	-	11	5	5	36.	1 1	2.5	5	6		12	2		2	7	15	19	24
	360	20	1																
32	90	-	İ	İ															
	180	20	13.1	8	6	45.	1 1	16	5	6		14	2		2	8	20	27	32
	360	20	1	1	1					1			1					1	1

FESTO

Twin-piston semi-rotary drives DRQD-40 ... 50 Technical data

Dimens	ions										Download	d CAD data	a → www	.festo.con	n/en/eng	ineering
/	Swivel	B1	B2	В3	B4	B5	В6	В7	B8	D1 Ø	D2 Ø	D3 Ø	D4	D7	D8 Ø	D9
	angle [°]									Ø g6	Ø	Ø			₩ H13	Ø
	90									50					1117	
l	180	70	53.5	50	42	4	42	80	50.5	22	30	48.5	M8	M6	15	8.5
•	360														-	
50	90															
	180	86	63.5	60	50	16	50	80	60.9	28	38	58.5	M12	M6	15	8.5
	360															
Ø	Swivel	D10	D11	EE	H1	H2	L1	L2	L3	L4	L5	Lo	6	L7	7	L8
	angle		Ø									min.				.0.02
	[°]		H7				4440	72.4				min.	max.	min.	max.	±0.03
l ' ' L	90 180	M10	15	G ¹ /8	120	24.5	146.8 201.8	73.4 100.9	16	49	41.5	5	14.6	85.1	96.4	100
	360	WITO	1)	U78	120	24.7	311.8	155.9	10	47	41.)	J	14.0	0).1	70.4	100
50	90						191.4	95.7								
	180	M10	15	G1/4	144	31	262.8	131.4	18	64	55	8	20.7	107.8	120.6	100
	360						405.8	202.9								
Ø	Swivel	L9	L10	N1	T1	T2	T3	T4	T5	T6	T7	=©1	= ©2	=©3	=©4	=©6
	angle															
	[°]	±0.03		P9		+2										
I	90	-														
	180	-	17	6	45.1	26	10	10	28	3	3	10	24	32	36	27
50	360 90	50														
l L	180	50	21.2	8	56.1	28	10	11	28	3	3	14	28	36	46	41
	360	100	21.2		50.1	20	10		20			17	20		70	7.

Twin-piston semi-rotary drives DRQD-16 ... 32 Technical data

Dimen	sions										Downloa	d CAD dat	a → www	.festo.cor	n/en/eng	ineering
Ø	Swivel	B1	B2	В3	B4	B5	В6	B7	D1	D2	D3	D4	D5	D6	D7	D8
	angle								Ø	Ø	Ø	Ø		Ø		Ø
[mm]	[°]									±0.025	Н8			H7		H13
16	90															
	180	30	6.5	6	17.8	4	14.8	22	34	25	14	9	M4	7	M4	8
	360									_		-				
20	90															
	180	36	6.5	6	21.8	4	19.8	26	38	28	16	11	M4	7	M4	8
	360															
25	90															
	180	42	9.5	9	24.8	4	24.8	30	48	34	16	12	M6	9	M5	10
	360	1														
32	90															
	180	51	9.5	9	29.8	2	29.8	36	58	45	19	14	M6	9	M5	10
	360	1														
	1	'	I	I	1	I	1	1	I				I	1	I	1
Ø	Swivel	D9	D10	D11	EE	H1	L1	L2	L3	L4	L5	L	6	L	7	L8
	angle	Ø		Ø												
[mm]	[°]			H7								min.	max.	min.	max.	±0.03
16	90						71	35.5								
	180	4.2	M5	9	M5	50	93	46.5	10	24	20.8	1.7	5.7	23.4	28.2	60
	360	1	5		5		137	68.5		- '	20.0		3.,	23.1	20.2	
20	90						78.4	39.2								
	180	4.2	M5	9	M5	56	104.8	52.4	10	31.5	27	2.4	7	28.6	35.9	60
	360	1					157.6	78.8		3 - 13			,			
25	90						91.2	45.6								
	180	5.3	M6	9	M5	67	124	62	11	36.5	33	2.6	8.9	42	50.2	60
	360						189.2	94.6								
32	90						114.8	57.4								
	180	5.3	M6	9	G ¹ /8	79	155.6	77.8	13	39	39	4.3	11.8	59.4	70.1	80
	360	1					237.4	118.7								
	1		l .	l .		l .	l .	l .	l .	-			l .	l .	l .	!
Ø	Swivel	L9	L10	L11	T1	T2	T3	T4	T5	T6	T7	T8	=©1	= ©2	=©3	=34
	angle															
[mm]	[°]	±0.03														
16	90	-														
	180	_	7.6	5.3	3	1.6	3.5	5	10	2	2	1.4	4	9	13	17
	360	20			_											
20	90	-														
	180	_	8	5	3	1.6	3.5	5	12	2	2	1.4	7	11	15	19
	360	20														
25	90	-														
	180	-	11	5	3	2	5	6	12	2	2	2	7	15	19	24
	360	20														
32	90	-														
	180	20	13.1	8	3	2	5	6	14	2	2	2	8	20	27	32
	360	20														
		<u> </u>			ı		ı	ı		-						

Twin-piston semi-rotary drives DRQD-40 ... 50 Technical data

Dimen	sions										Downloa	d CAD data	a → ww w	.festo.cor	n/en/eng	ineering
Ø	Swivel	B1	B2	В3	B4	B5	В6	В7	D1	D2	D3	D4	D5	D6	D7	D8
	angle								Ø	Ø	Ø			Ø		Ø
[mm]	[°]									±0.025	H7			H7		H13
40	90															
	180	70	13	12	42	4	42	80	80	64	30	20	M8	12	M6	15
	360															
50	90	0.6	12	12	50	16	F0	0.0	0.5	()	20	2.6	Mo	12	MC	1.5
	180 360	86	13	12	50	16	50	80	85	64	30	24	M8	12	M6	15
	300															
Ø	Swivel	D9	D10	D11	EE	H1	L1		L2	L3	L4	L5	Le	۷	L	7
, w	angle	Ø	D10	Ø	LL	111	LI		LZ	L	L4	L	L	b	L	,
[mm]	[°]	~		₩7									min.	max.	min.	max.
40	90						146.8	8	73.4							
'	180	8.5	M10	15	G ¹ /8	120	201.8		100.9	16	49	41.5	5	14.6	85.1	96.4
	360	1					311.8		155.9	1						
50	90						191.4	4	95.7							
	180	8.5	M10	15	G1/4	144	262.8	8	131.4	18	64	55	8	20.7	107.8	120.6
	360						405.8	8	202.9							
Ø	Swivel	L8	L9	L10	T1	T2	T3	T4	T5	T6	T7	= ©1	=©2	=©3	=©4	=©6
, ,	angle															
[mm]	[°]	±0.03	±0.03													
40	90		-													
	180	100	-	17	4	2.7	10	10	28	3	3	10	24	32	36	27
50	360 90		50													
30	180	100	- 50	21.2	4	2.7	10	11	28	3	3	14	28	36	46	41
	360	100	100	21.2	4	2./	10	11	20	ر	ر	14	20	טכ	40	41
	000		100													

Twin-piston semi-rotary drives DRQD-16 ... 32 Technical data

Dimens	sions										Down	load CAD o	lata → wv	vw.festo.co	m/en/eng	ineering
Ø [mm]	Swivel angle [°]	B1	B2	В3	B4	B5	B6	В7	B10	B11	l B12	D7	D8 ∅ H13	D9 Ø	D10	D11 Ø H7
16	90 180	30	6.5	6	17.8	4	14.8	22	6.4	4.5	3	M4	8	4.2	M5	9
20	90 180	36	6.5	6	21.8	4	19.8	26	6.5	4.5	5.6	M4	8	4.2	M5	9
25	90 180	42	9.5	9	24.8	4	24.8	30	9.1	6.9	8.2	M5	10	5.3	M6	9
32	90 180	51	9.5	9	29.8	2	29.8	36	9	8	9	M5	10	5.3	M6	9
Ø [mm]	Swivel angle [°]	EE	H1	L1	L2	L4	L5	m	L6	max.	L min.	7 max.	L8 ±0.03	L9 ±0.03	L10	L11
16	90 180	M5	50	71 93	35.5 46.5	24	20.	8 1.	.7	5.7	23.4	28.2	60	_	7.6	5.3
20	90 180	M5	56	78.4 104.8	39.2 52.4	31.5	27	2.	.4	7	28.6	35.9	60	-	8	5
25	90 180	M5	67	91.2 124	45.6 62	36.5	33	2.	.6	8.9	42	50.2	60	-	11	5
32	90 180	G1/8	79	114.8 155.6	57.4 77.8	39	39	4.	.3	11.8	59.4	70.1	80	- 20	13.1	8
Ø [mm]	Swivel angle [°]	L13	L14	min.	.15 max.	Т3	T4	Т	5	T6	T7	= ©1	= ©2	= ©3	=©4	=©5
16	90 180	52.2	12.3	0	19.1	3.5	5	1	0	2	2	4	9	13	17	3
20	90 180	55.4	12.3	0	21.8	3.5	5	1	2	2	2	7	11	15	19	3
25	90 180	62.1	15	0	26	5	6	1	2	2	2	7	15	19	24	4
32	90 180	68.2	15.5	0	31.5	5	6	1	4	2	2	8	20	27	32	4

Twin-piston semi-rotary drives DRQD-40 ... 50 Technical data

Dimen	sions											Downl	oad CAD d	lata → wı	ww.festo.co	om/en/eng	ineering
Ø	Swivel angle	B1	B2	В3	B4	B5	B6	В	7	B10	B1	11	B12	D7	D8 Ø	D9 Ø	D10
[mm]	[°]														H13		
40	90																
	180	70	13	12	42	4	42	8	0	92.5	9	9	12	M6	15	8.5	M10
	360																
50	90	0.6														0.5	
	180	86	13	12	50	16	50	8	0 1	105.7	9	9	14	M6	15	8.5	M10
	360																
Ø	Swivel	D11	EE	H1	L1	L2	L4	L	5	Le	5		Li	7	L8	L9	L10
	angle	Ø		''1				-		L			۲,		20		LIO
[mm]	[°]	H7								min.	ma	ax.	min.	max.	±0.03	±0.03	
40	90				146.8	73.4										-	
	180	15	G1/8	120	201.8	100.9	49	41	.5	5	14	i.6	85.1	96.4	100	-	17
	360				311.8	155.9)									50	
50	90				191.4											-	
	180	15	G1/4	144	262.8	_		5	5	8	20).7	107.8	120.6	100	50	21.2
	360				405.8	202.9	9									100	
~	6 1 1	ا میا			- 1	T0	- ,			l		0.4				0.5	
Ø	Swivel angle	L13	L14	L1	5	T3	T4	T5	T6	T7		= ©1	=©2	=©3	=©4	= ©5	=©6
[mm]	[°]			min.	max.												
40	90			111111	max.												
-10	180	92.5	18.5	0	41.95	10	10	28	3	3		10	24	32	36	7	27
	360	,,		-		- *	- 0							"		'	-,
50	90																
	180	105.7	20.5	0	52.95	10	11	28	3	3		14	28	36	46	7	41
	360																

Twin-piston semi-rotary drives DRQD-16 ... 32 Technical data

Dimens	ions										Do	wnload C	AD data	→ www.f	esto.com	/en/engi	neering
Ø	Swivel angle	B1	B2	В3	B4	B5	В6	В7	B8	В9	D1 Ø	D2 Ø	D5	D6 Ø	D7	D8 Ø	D9 Ø
[mm]	[°]											±0.025		H7		H13	
16	90																
	180	30	6.5	6	17.8	4	14.8	22	20	7	34	25	M4	7	M4	8	4.2
	360																
20	90																
	180	36	6.5	6	21.8	4	19.8	26	20	7	38	28	M4	7	M4	8	4.2
	360																
25	90																
	180	42	9.5	9	24.8	4	24.8	30	25	7	48	34	M6	9	M5	10	5.3
	360																
32	90																
	180	51	9.5	9	29.8	2	29.8	36	25	7	58	45	M6	9	M5	10	5.3
	360																
Ø	Swivel	D10	D11	EE	E1	H1	Н3	H4	L1	L2	L3	L4	L5	L	6	L	7
	angle	Ø	Ø		Ø												
[mm]	[°]	H13	H7											min.	max.	min.	max.
16	90								71	35.5							
	180	5.5	9	M5	4	50	51	-	93	46.5	10	24	20.8	1.7	5.7	23.4	28.2
	360								137	68.5							
20	90								78.4	39.2							
	180	5.5	9	M5	4	56	51	-	104.8	52.4	10	31.5	27	2.4	7	28.6	35.9
	360								157.6	78.8							
25	90								91.2	45.6							
	180	6.6	9	M5	4	67	60	40	124	62	11	36.5	33	2.6	8.9	42	50.2
	360								189.2	94.6							
32	90								114.8	57.4							
	180	6.6	9	G1/8	4	79	60	40	155.6	77.8	13	39	39	4.3	11.8	59.4	70.1
	360								237.4	118.7							
Ø	Swivel	L8	L9	L10	L11	L12	L13	T2	T3	T4	T6	T8	T9	=©1	= ©2	=©3	=©4
[]	angle	.0.00	.0.00														
[mm]	[°]	±0.03	±0.03				min.										
16	90		-														
	180	60	-	7.6	5.3	72	255	1.6	3.5	5	2.1	1.4	2	4	9	13	17
	360		20														
20	90		-	_	_	_								_			
	180	60	-	8	5	72	250	1.6	3.5	5	2.1	1.4	2	7	11	15	19
2.5	360		20														
25	90	,-	-		_			_	_					_			
	180	60	-	11	5	95	240	2	5	6	2.1	2	2	7	15	19	24
	360		20														
32	90	0.0	-	42.		0.5	222	_	_				_		2.2	2-	2.2
	180	80	20	13.1	8	95	230	2	5	6	2.1	2	2	8	20	27	32
	360		20														

Twin-piston semi-rotary drives DRQD-40 ... 50 Technical data

Dimen	sions												Downlo	ad CAD	data •	→ ww	/w.fest	o.com/e	en/engir	eering
Ø	Swivel	Variant	B1	B2	В3	В4	B5	В6	В7	В8	В9	B10	D1	D2	D3	D4	D5	D6	D7	D8
	angle												Ø	Ø	Ø	Ø		Ø		Ø
[mm]	[°]													±0.05	H7			H7		H13
40	90	SD62/SD64								28	9	-								
40		SD48	70	13	12	42	4	42	80	40	7.75	15.5	80	64	30	20	M	3 12	M6	15
	180	SD62/SD64								28	9	_								
		SD48	70	13	12	42	4	42	80	40	7.75	15.5	80	64	30	20	M8	3 12	M6	15
	360	SD62/SD64	7.0	4.2	4.0		,	//	-	28	9	-			20	20	146	. 40	11/	4.5
		SD48	70	13	12	42	4	42	80	40	7.75	15.5	80	64	30	20	M	3 12	M6	15
50	90	SD62/SD64	86	13	12	50	16	50	80	28	9	-	85	64	30	24	M8	3 12	M6	15
		SD48	00	13	12	50	10	30	80	40	7.75	15.5	65	04	30	24	IVIC) 12	MO	15
	180	SD62/SD64	- 86	13	12	50	16	50	80	28	9	-	85	64	30	24	M	3 12	M6	15
		SD48	00	10	12	50	10	30	00	40	7.75	15.5	0,5	04	50	27	1110	, 12	Mio	17
	360	SD62/SD64	86	13	12	50	16	50	80	28	9	-	85	64	30	24	M	3 12	M6	15
		SD48	00			,,,	10	30	00	40	7.75	15.5	0,5	0,	,,,	- '		, 12	0	1,
Ø	Swivel	Variant	D9	D10	D11	Ef		E1	H1	Н3	L1	L2	L3	L4	L	5	L	6	L	7
	angle		Ø	Ø	Ø											L				
[mm]	[°]				H7												min.	max.	min.	max.
40	90	SD62/SD64	8.5	M10	15	G¹⁄	/o	6	120	110	146.8	73.4	16	49	41	5	5	14.6	85.1	96.4
		SD48	0.5	WITO	1)	U-7	' o	4	120	110	140.0	73.4	10	43	41	,	J	14.0	05.1	30.4
	180	SD62/SD64	8.5	M10	15	G ¹ /	/2	6	120	110	201.8	100.9	16	49	41	5	5	14.6	85.1	96.4
		SD48	0.5	MIIO	17	0 /		4	120	110	201.0	100.7	10	77	71	,	,	14.0	05.1	70.4
	360	SD62/SD64	8.5	M10	15	G ¹ /	/8	6	120	110	311.8	155.9	16	49	41	.5	5	14.6	85.1	96.4
		SD48				- /		4			, , , ,		1	.,	ļ. ·					,
50	90	SD62/SD64	8.5	M10	15	G ¹ /	/4	6	144	110	191.4	95.7	18	64	5	5	8	20.7	107.8	120.6
		SD48						4												
	180	SD62/SD64	8.5	M10	15	G1/	/ ₄	6	144	110	262.8	131.4	18	64	5	5	8	20.7	107.8	120.6
	260	SD48			-			4						-						
	360	SD62/SD64 SD48	8.5	M10	15	G1/	/4 _	6	144	110	405.8	202.9	18	64	5	5	8	20.7	107.8	120.6
		3048						4												
~		lv. · ·		ا ما					70		1				To					0.4
Ø	Swivel	Variant	L8	L9	L10	L11	L12	T1	T2	T3	T4	T5	T6	T7	T8	=©1	. =©:	2 =©3	3 =©4	=©6
[mm]	angle [°]		±0.03	+U U3					min.				±0.15							
		CD (2 CD ()	10.03	10.05					111111	-			10.13							
40	90	SD62/SD64 SD48	100	-	17	140	42	4	2.7	10	10	28	3	3	2.3	10	24	32	36	27
	180	SD48 SD62/SD64						+-	+	+	+					-	+	-		+
	100	SD62/SD64 SD48	100	-	17	140	42	4	2.7	10	10	28	3	3	2.3	10	24	32	36	27
	360	SD48 SD62/SD64						-	+	+	1					1	-		-	+
	700	SD62/SD64 SD48	100	50	17	140	42	4	2.7	10	10	28	3	3	2.3	10	24	32	36	27
50	90	SD62/SD64						+	+	+	+					-	+		-	+
00		SD48	100	-	21.2	140	26	4	2.7	10	11	28	3	3	2.3	14	28	36	46	41
	180	SD62/SD64						+	+		+					1	+			+
	100	SD48	100	50	21.2	140	26	4	2.7	10	11	28	3	3	2.3	14	28	36	46	41
	360	SD62/SD64					-	+	+	+	+			-		+	+		-	+
		SD48	100	100	21.2	140	26	4	2.7	10	11	28	3	3	2.3	14	28	36	46	41
		00,0	1								1	l	l	l		1				1

Twin-piston semi-rotary drives DRQD-16 ... 50 Technical data

Ordering data – Standard types				
	1	1	l	
DRQD	Ø	Swivel angle	Part No.	Туре
	[mm]	[°]		
PPVJ – Adjustable end-position cushioni	ng			
	AL – Connection on	left		
	16	180	540 456	DRQD-16-180-PPVJ-A-AL-FW
-	20	1	540 460	DRQD-20-180-PPVJ-A-AL-FW
Sec	25		540 464	DRQD-25-180-PPVJ-A-AL-FW
8.0		•	•	
	AR – Connection on	right		
	16	180	540 457	DRQD-16-180-PPVJ-A-AR-FW
	20		540 461	DRQD-20-180-PPVJ-A-AR-FW
	25		540 465	DRQD-25-180-PPVJ-A-AR-FW
		•		
YSRJ – Adjustable shock absorbers				
	AL – Connection on	left		
	16	180	540 454	DRQD-16-180-YSRJ-A-AL-FW
	20		540 458	DRQD-20-180-YSRJ-A-AL-FW
	25		540 462	DRQD-25-180-YSRJ-A-AL-FW
		•		
(A)	AR – Connection on	right		
	16	180	540 455	DRQD-16-180-YSRJ-A-AR-FW
	20	1	540 459	DRQD-20-180-YSRJ-A-AR-FW
	25	1	540 463	DRQD-25-180-YSRJ-A-AR-FW

Twin-piston semi-rotary drives DRQD-16 ... 50 Ordering data – Modular products

Module No	Function	Size	Swivel ang	le Cushioning	Position sensing		neumatic onnection	Outp	ut shaft
175 801	DRQD	16	90	PPVJ	A	Al		ZW	
175 802	BINQ5	20	180	YSRJ		Al		FW	
175 803		25	360	1.5,		1	•		
175 804		32	1 340						
197 373		40							
197 374		50							
Ordering example	DRQD	_ 40	- 280	– YSRJ	- A	- AI	R	- FW	
rdering tab	le								
ize		16	20 25	32	40	50	Condi-	Code	Enter
							tions		code
Module N	No.	175 801	175 802 175	803 175 804	197 373	197 374	tions		code
Module N	No.		175 802 175 ve with twin pistons	803 175 804	197 373		tions	DRQD	code
		Semi-rotary dri		803 175 804			tions	DRQD	
Function Piston Ø		Semi-rotary dri	ve with twin pistons			197 374	tions		
Function Piston Ø Swivel ar	[mm]	Semi-rotary dri	ve with twin pistons			197 374	tions		
Function Piston Ø Swivel ar	[mm] ngle (standard) g range +6°/–20°	Semi-rotary dri 16 90°	ve with twin pistons			197 374	tions		
Function Piston Ø Swivel ar Adjusting	[mm] ngle (standard) g range +6°/-20° et)	Semi-rotary dri 16 90° 180° 360°	ve with twin pistons			197 374		 -90 -180	
Function Piston Ø Swivel ar Adjusting (not pres X-rotation	[mm] ngle (standard) g range +6°/-20° et)	Semi-rotary dri 16 90° 180° 360° 1° 70°, with	ve with twin pistons 20 25	32		197 374		 -90 -180 -360	
Function Piston Ø Swivel ar Adjusting (not pres X-rotation	[mm] Ingle (standard) Ingrange +6°/-20° In angle Ingrange ±6°	Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, v	ve with twin pistons 20 25 centre section 90°	32 80°		197 374		 -90 -180 -360	
Function Piston Ø Swivel ar Adjusting (not pres X-rotation Adjusting	[mm] grange +6°/-20° et) n angle grange ±6° eset ±1°	Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, \\ 190° 340°, \\	ve with twin pistons 20 25 centre section 90° with centre section 1	32 80° 60°		197 374	1	 -90 -180 -360 	
Function Piston Ø Swivel ar Adjusting (not pres X-rotation Adjusting Angle pre	[mm] grange +6°/-20° et) n angle grange ±6° eset ±1°	Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, \\ 190° 340°, \\	ve with twin pistons 20 25 centre section 90° with centre section 1 with centre section 3 -position cushioning	32 80° 60°		197 374	1	 -90 -180 -360 	
Function Piston Ø Swivel ar Adjusting (not pres X-rotation Adjusting Angle pre	[mm] Ingle (standard) Ingrange +6°/-20° In angle Ingrange ±6° Ingrange ±6° Ingrange ±6° Ingrange ±6°	Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, v 190° 340°, v Adjustable end	ve with twin pistons 20 25 centre section 90° with centre section 1: with centre section 3: -position cushioning ck absorbers	32 80° 60°		197 374	1	 -90 -180 -360 	
Function Piston S Swivel ar Adjusting (not pres X-rotation Adjusting Angle pre Cushioni	[mm] Ingle (standard) Ingrange +6°/-20° In angle Ingrange ±6° Ingrange ±6° Ingrange ±6° Ingrange ±6°	Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, v 190° 340°, v Adjustable end Adjustable sho For proximity s Connection on	ve with twin pistons 20 25 centre section 90° with centre section 1: with centre section 3: -position cushioning ck absorbers ensing left	32 80° 60°		197 374	1	 -90 -180 -360 -PPVJ -YSRJ	DRQD
Piston Ø Swivel ar Adjusting (not pres X-rotation Adjusting Angle pre Cushioni	[mm] Ingle (standard) Ingrange +6°/-20° et) In angle Semi-rotary dri 16 90° 180° 360° 1° 70°, with 100° 160°, v 190° 340°, v Adjustable end Adjustable sho For proximity s	ve with twin pistons 20 25 centre section 90° with centre section 1: with centre section 3: -position cushioning ck absorbers ensing left	32 80° 60°		197 374	1	 -90 -180 -360 -PPVJ -YSRJ -A	DRQD	

1 190 360 N	Not with energy through-feed E422, E444, E644
-------------	---

3 **FW**

Required for energy through-feed SD32, SD42, SD48, SD62, SD64, E422, E444, E644

-FW

2 **ZW** Not with energy through-feed SD32, SD42, SD48, SD62, SD64, E422, E444, E644

Flanged shaft

Transfer order	cod	e								
		DRQD	-	-	-	-	Α	_	- [

Twin-piston semi-rotary drives DRQD-16 ... 50 Ordering data – Modular product system

>	O Options											
	Intermediate position			Energy th	rough-feed			User's man	ual			
	Z1			SD32				E				
				SD42				F				
				SD42				S				
				SD40								
				SD64				V				
				E422				В				
				E444								
				E644								
				2044								
_			٦_	SD64			-	В				
Ore	lering table											
Siz		16	20		25	32	40	50	Condi-	Code		Enter
							'		tions			code
0	Intermediate position	1 intermediate	nns	ition (mid-	nosition)				4	-Z1		
\subseteq	Energy through-feed	2x tubing 0.D.			position)		_	1_		-SD32	1	
	Lifergy through reed	2x tubing 0.D.					_			-SD42	1	
			_		_	_	8x tubing 0.	D /ı mm		-SD48	1	
		_	_		_	_	2x tubing 0.			-SD62	1	
		_			_	_	4x tubing 0.			-SD64	1	
		2x tubing O.D.	/ı m	m			4x tubing o.	J. 0 IIIIII		-E422	1	
		1x 4-pin cable			_	_				1 2722		
		cable	. 10 2	x y piii								
		cubic		_	4x tubing O.D	/ı mm				-E444	1	
		_			2x 4-pin cable							
					cable	2 to 4x 5 pm						
					cubic		4x tubing 0.	D 6 mm		-E644	1	
		-	-		-	_	4x 3-pin cab			-1044		
	Alternative language user docu-	English								-E		
	mentation (standard is German)	French								-F		
		Spanish								-S		
		Italian								-1		
		Swedish							-V			
		Express waive	r – n	o user mar	nual to be inclu	ded (already av	/ailable)			-В		

4 **Z1** Cannot be combined with swivel angle (standard) 360° and X swivel angle

	Transfer order code			
-		-	-	

Twin-piston semi-rotary drives DRQD Accessories

Ordering data						
	For Ø	Remarks	Design	Part No.	Туре	PU ¹⁾
Centring sleeve ZBH					Technical data → www	.festo.com
	6	For centring the drive on attachments		186 717	ZBH-7	10
J	8 32			150 927	ZBH-9	
	40/50			191 409	ZBH-15	
	16 32	For centring attachments on the flanged shaft FW		186 717	ZBH-7	
	40/50			189 653	ZBH-12	
A.L. A. L. ALLANGY					T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u> </u>
Adapter kit HMSV	1.4400	[14	1.6	1	Technical data → www	
	16/20	Mounting via dovetail profile for variant with energy through and E	n-1eed SJ	177 647	HMSV-1	1
Slot nut NST	·				Technical data → www	.festo.com
	25 50	Mounting via profile slot nut for variant with energy through	n-feed SD	150 914	NST-5-M5	1
Rotary push-in fitting					Technical data → www	.festo.com
	6 12	With ball bearing, for standard O.D. tubing	Straight	153 526	QSR-M5-4	1
	Only in combina-		L-shape	153 529	OSRL-M5-4	_
	tion with hollow bolt HS					
T-connector NEDU			ı		Technical data → www	.festo.com
	16 32	Included in the scope of delivery if semi-rotary drive DRQD i energy through-feed E422 and E444. Suitable for connection of two proximity sensors SME/SMT-8 SMT-10		544 391	NEDU-M8D3-M8T4	1
Cable socket NECU					Technical data → www	festo com
Capie Source NECO	16 32	Included in the scope of delivery if semi-rotary drive DRQD i	s ordered with	544 392	NECU-M8G4	1
	10)2	energy through-feed E422 and E444.	3 OIUTITU WILII	344 332	NECOTINOU	

¹⁾ Packaging unit quantity

Twin-piston semi-rotary drives DRQD Accessories

Ordering data	– Proximity sensor	s for C-slot, ma	gneto-resistive					Technical data → www.festo.com
	Assembly	Switch output	Electrical conne	ection	Cable length	Connection direction	Part No.	Туре
			Cables	M8 plug	[m]			
N/O contact								
	Insertable from	PNP	3-wire	-	2.5	In-line	525 915	SMT-10F-PS-24V-K2,5L-OE
	above		-	3-pin	0.3	In-line	525 916	SMT-10F-PS-24V-K0,3L-M8D
S						Lateral	526 675	SMT-10F-PS-24V-K0,3Q-M8D
a	Insertable from	PNP	-	3-pin	0.3	In-line	173 220	SMT-10-PS-SL-LED-24
	end		3-wire	-	2.5		173 218	SMT-10-PS-KL-LED-24

Ordering data	- Proximity senso	rs for C-slot, magnetic r	eed				Technical data → www.festo.com
	Assembly	Electrical connection		Cable length	Connection direction	Part No.	Туре
		Cables	M8 plug	[m]			
N/O contact							
R	Insertable from	_	3-pin	0.3	In-line	525 914	SME-10F-DS-24V-K0,3L-M8D
	above	3-wire	-	2.5	In-line	525 913	SME-10F-DS-24V-K2,5L-OE
		2-wire	1			526 672	SME-10F-ZS-24V-K2,5L-OE
as .	Insertable from	-	3-pin	0.3	In-line	173 212	SME-10-SL-LED-24
	end	3-wire	-	2.5		173 210	SME-10-KL-LED-24

Ordering data	– Plug sockets with	h cable					Technical data → www.festo.com
	Assembly	Switch output		Connection	Cable length	Part No.	Туре
		PNP	NPN		[m]		
Straight plug s	ocket						
	M8 union nut	_		3-pin	2.5	159 420	SIM-M8-3GD-2,5-PU
OF THE PARTY OF TH		_	_		5	159 421	SIM-M8-3GD-5-PU
Angled plug so	cket						
	M8 union nut			3-pin	2.5	159 422	SIM-M8-3WD-2,5-PU
		_	_		5	159 423	SIM-M8-3WD-5-PU

Ordering data	– Proximity senso	ors for T-slot, ma	gneto-resistive	9				Technical data → www.festo.com
	Assembly	Switch output	Electrical conr	nection		Cable length	Part No.	Туре
			Cables	M8 plug	M12 plug	[m]		
N/O contact								
N	Insertable from	PNP	3-wire	-	-	2.5	525 898	SMT-8F-PS-24V-K2,5-OE
•	above	NPN					525 909	SMT-8F-NS-24V-K2,5-OE
		_	2-wire	-	-	2.5	525 908	SMT-8F-ZS-24V-K2,5-OE
		PNP	-	3-pin	-	0.3	525 899	SMT-8F-PS-24V-K0,3-M8D
		NPN					525 910	SMT-8F-NS-24V-K0,3-M8D
		PNP	-	-	3-pin	0.3	525 900	SMT-8F-PS-24V-K0,3-M12
S	Insertable from	PNP	3-wire	Ī-	-	2.5	175 436	SMT-8-PS-K-LED-24-B
	end, flush with							
	the cylinder		-	3-pin	-	0.3	175 484	SMT-8-PS-S-LED-24-B
	profile							
N/C contact								
18	Insertable from	PNP	3-wire	-	-	7.5	525 911	SMT-8F-PO-24V-K7,5-OE
6	above							

Core Range

Twin-piston semi-rotary drives DRQD Accessories

Ordering data	a – Proximity senso	rs for T-slot, magnetic reed				Technical data → www.festo.com
	Assembly	Electrical connection		Cable length	Part No.	Туре
		Cables	M8 plug	[m]		
N/O contact						
18	Insertable from	3-wire	-	2.5	525 895	SME-8F-DS-24V-K2,5-OE
•	above			5.0	525 897	SME-8F-DS-24V-K5,0-OE
		2-wire	-	2.5	525 907	SME-8F-ZS-24V-K2,5-OE
		-	3-pin	0.3	525 896	SME-8F-DS-24V-K0,3-M8D
R	Insertable from	3-wire	-	2.5	150 855	SME-8-K-LED-24
	end, flush with					
	the cylinder	-	3-pin	0.3	150 857	SME-8-S-LED-24
	profile					
N/C contact						
18	Insertable from	3-wire	-	7.5	525 906	SME-8F-DO-24V-K7,5-OE
	above					

Ordering data	- Plug sockets wit	h cable					Technical data → www.festo.com
	Assembly	Switch output		Connection	Cable length	Part No.	Туре
		PNP	NPN		[m]		
Straight plug	socket						
	M8 union nut	_	_	3-pin	2.5	159 420	SIM-M8-3GD-2,5-PU
		_	-		5	159 421	SIM-M8-3GD-5-PU
	M12 union nut	_	_	3-pin	2.5	159 428	SIM-M12-3GD-2,5-PU
		_	_		5	159 429	SIM-M12-3GD-5-PU
Angled plug so	ocket						
	M8 union nut	_	•	3-pin	2.5	159 422	SIM-M8-3WD-2,5-PU
		_	_		5	159 423	SIM-M8-3WD-5-PU
NIX	M12 union nut	_		3-pin	2.5	159 430	SIM-M12-3WD-2,5-PU
		_	_		5	159 431	SIM-M12-3WD-5-PU

Ordering data	 Slot cover for T-s 	lot		
	Assembly	Length	Part No.	Туре
		[m]		
				100 - 0
	Insertable from	2x 0.5	151 680	ABP-5-S
	above	2x 0.5	151 680	ABP-5-S

What must be observed when using Festo components?

Specified limit values for technical data and any specific instructions must be adhered to by the user in order to ensure recommended operating conditions.

When pneumatic components are used, the user shall ensure that they are operated using correctly prepared compressed air without aggressive media.

When Festo components are used in safety-oriented applications, the user shall ensure that all applicable

national and local safety laws and regulations, for example the machine directive, together with the relevant references to standards are observed. Unauthorised conversions or modifications to products and systems from Festo involve a safety risk and are thus not permissible.

Festo does not accept any liability for resulting damages.

You should contact Festo's advisors if one of the following apply to your application:

- The ambient conditions and conditions of use or the operating medium differ from the specified technical data.
- The product is to perform a safety function.
- A risk or safety analysis is required.
- You are unsure about the product's suitability for use in the planned application.
- You are unsure about the product's suitability for use in safety-oriented applications.

All technical data applies at the time of going to print.

All texts, representations, illustrations and drawings included in this catalogue are the intellectual property of Festo AG & Co. KG, and are protected by copyright law.

All rights reserved, including translation rights. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of Festo AG & Co. KG. All technical data subject to change according to technical update.

Products and services – everything from a single source

Products incorporating new ideas are created when enthusiasm for technology and efficiency come together.

Tailor-made service goes without saying when the customer is the focus of attention.

Pneumatic and electrical drives

- Pneumatic cylinders
- Semi-rotary drives
- Handling modules
- Servopneumatic positioning systems
- Electromechanical drives
- Positioning controllers and controllers

Valves and valve terminals

- Standard valves
- Universal and applicationoptimised valves
- Manually and mechanically actuated valves
- Shut-off, pressure control and flow control valves
- Proportional valves
- Safety valves

Fieldbus systems/ electrical peripherals

- Fieldbus Direct
- Installation system CP/CPI
- Modular electrical terminal CPX

Compressed air preparation

- Service unit combinations
- Filter regulators
- Filters
- Pressure regulators
- Lubricators
- On-off and soft-start valves
- Dryers
- Pressure amplifiers
- Accessories for compressed air preparation

Components

Customer-specific solutions

Modules

Industry-specific solutions

Services from Festo to increase your productivity – across the entire value creation sequence

- --- Engineering for greater speed in the development process
- CAD models
- 14 engineering tools
- Digital catalogue
- FluidDRAW®
- More than 1,000 technical consultants and project engineers worldwide
- Technical hotlines

- Supply chain for greater speed in the procurement process
- E-commerce and online shop
- Online order tracking
- Euro special manufacturing service
- Logistics optimisation

Gripping and vacuum technology

- Vacuum generators
- Vacuum grippers
- Vacuum security valves
- Vacuum accessories
- Standard grippers
- Micro grippers
- Precision grippers
- Heavy-duty grippers

Sensors and monitoring units

- Proximity sensors
- Pressure and flow sensors
- Display and operating units
- Inductive and optical proximity sensors
- Displacement encoders for positioning cylinders
- Optical orientation detection and quality inspection

Controllers/bus systems

- Pneumatic and electropneumatic controllers
- Programmable logic controllers
- Fieldbus systems and accessories
- Timers/counters
- Software for visualisation and data acquisition
- Display and operating units

Accessories

- Pipes
- Tubing
- Pipe connectors and fittings
- Electrical connection technology
- Silencers
- Reservoirs
- Air guns

All in all, 100% product and service quality

A customer-oriented range with unlimited flexibility:
Components combine to produce ready-to-install modules and systems. Included in this are special designs – since at Festo, most industry-specific products and customer-specific solutions are based on the 23,000 plus catalogue products. Combined with the services for the entire value creation sequence, the end result is unbeatable economy.

Assembly – for greater speed in the assembly/commissioning process

- Prepack
- Preassembly
- Turnkey pneumatics
- Handling solutions

Operation – for greater speed in the operational process

- Spare parts service
- Energy saving service
- Compressed air consumption analysis
- Compressed air quality analysis
- Customer service