Обнаружение аномалий во временных рядах с помощью сигнатур

Отливанчик Павел

Аномалии во временных рядах

Fig. 1. Examples of different time series applications and types of anomalies.

Figure 1: Example time series with different anomaly types, with anomalous regions highlighted in red.

Цели проекта

- 1. Изучить проблематику обнаружения аномалий.
- 2. Изучить актуальные подходы к решению этой задачи.
- 3. Изучить сигнатуры и их виды.
- 4. Разработать решения, основанные на сигнатурах.
- 5. Протестировать их и сравнить между собой и с бессигнатурными методами.

Что такое сигнатура?

Definition 1.4 (Signature). The *signature* of a path $X : [a,b] \to \mathbb{R}^d$, denoted by $S(X)_{a,b}$, is the collection (infinite sequence) of all the iterated integrals of X. Formally, $S(X)_{a,b}$ is the collection of real numbers

$$S(X)_{a,b} = (1, S(X)_{a,b}^{1}, \dots, S(X)_{a,b}^{d}, S(X)_{a,b}^{1,1}, S(X)_{a,b}^{1,2}, \dots)$$

where the "zeroth" term, by convention, is equal to 1, and the index in the superscript runs along the set of all *multi-indexes*

$$W = \{(i_1, \dots, i_k) \mid k \ge 0, i_1, \dots, i_k \in \{1, \dots, d\}\}.$$
 (4)

$$S(X)_{a,t}^{i_1,\dots,i_k} = \int_{a < t_k < t} \dots \int_{a < t_1 < t_2} dX_{t_1}^{i_1} \dots dX_{t_k}^{i_k}.$$

Другие виды сигнатур

Definition 5.9 (Localized Randomized Signature). Let $A_1, \ldots, A_d \in \mathbb{R}^{k \times k}$ and $b_1, \ldots, b_d \in \mathbb{R}^k$ with entries sampled i.i.d. from a normal distribution. Let further denote σ a activation function $\sigma : \mathbb{R} \to \mathbb{R}$ that is applied componentwise. Then

$$dZ_{t} = \sum_{i=i}^{d} \sigma(A_{i}Z_{t} + b_{i})dX^{i}(t), \quad Z_{0} = z \in \mathbb{R}^{k}, \quad t \in [0, T]$$
(5.28)

is called the Localized Randomized Signature of X.

Definition 1.27 (Log-signature). For a path $X : [a, b] \to \mathbb{R}^d$, the log-signature of X is defined as the formal power series $\log S(X)_{a,b}$.

For two formal power series x and y, we define their Lie bracket by

$$[x, y] = x \otimes y - y \otimes x. \tag{24}$$

A direct computation shows that the first few terms of the log-signature are given by

$$\log S(X)_{a,b} = \sum_{i=1}^{d} S(X)_{a,b}^{i} e_{i} + \sum_{1 \le i < j \le d} \frac{1}{2} \left(S(X)_{a,b}^{i,j} - S(X)_{a,b}^{j,i} \right) [e_{i}, e_{j}] + \dots (25)$$

Основные датасеты

2.5

5.0

7.5

10.0

12.5 15.0

17.5

- 1. Одномерные процессы О-У.
- Десятимерные процессы О-У(1 случайное измерение аномально).

$$dx_t = heta(\mu - x_t)\,dt + \sigma\,dW_t$$

Сигнатура

Лог-сигнатура

Рандомизированная сигнатура

Без сигнатуры

Модель	Accuracy	ROC-AUC
NN(1)	0.81	0.88
NN(2)	0.81	0.89
NN(3)	0.81	0.89
NN(4)	0.81	0.89
NN(5)	0.81	0.89

Сигнатура

Лог-сигнатура

Рандомизированная сигнатура

Без сигнатуры

Модель	Accuracy	ROC-AUC
NN(1)	0.68	0.74
NN(2)	0.77	0.84
NN(3)	0.78	0.86
NN(4)	0.78	0.86
NN(5)	0.77	0.85

Подходы к обнаружению аномалий

- 1. Брать сигнатуру по всему ряду и строить классификатор на них.
- 2. Использовать imputation модель(диффузионка CSDI) для генерации выборки, сравнивать сигнатуры выборки с истинной сигнатурой.
- 3. Брать сигнатуру на каждом шаге ряда и использовать RNN. $X_t = Sig_{[1,t]}$
- 4. Брать сигнатуру на каждом шаге ряда как препроцессинг для данных и затем использовать модели(TimesNet) на преобразованных данных.

1	2	$1{+}2$	3
Isolation forest MAE KDE	MAE KDE Mahalanobis dist One Class SVM HMM GMM	VAE+finetuning VAE+Mahalanobis dist	GRU autoencoder LSTM autoencoder

Лучшие результаты

LSTM autoencoder (Semi-supervised)

LSTM autoencoder без сигнатур

Accuracy	ROC-AUC
0.7	0.76

Без сигнатуры (Supervised)

Модель	Accuracy	ROC-AUC
NN(1)	0.81	0.88
NN(2)	0.81	0.89
NN(3)	0.81	0.89
NN(4)	0.81	0.89
NN(5)	0.81	0.89

Accuracy	ROC-AUC	
0.66	0.71	

Модель	Accuracy	ROC-AUC
NN(1)	0.68	0.74
NN(2)	0.77	0.84
NN(3)	0.78	0.86
NN(4)	0.78	0.86
NN(5)	0.77	0.85

Что в мире?

Published as a conference paper at ICLR 2025

SIGDIFFUSIONS: SCORE-BASED DIFFUSION MODELS FOR TIME SERIES VIA LOG-SIGNATURE EMBEDDINGS

Планы

- 1. Попробовать использовать сигнатуру как предобработчик данных для зарекомендовавших себя моделей по поиску аномалий(TimesNet: temporal 2d-variation modeling for general time series analysis).
- Исследовать базис сигнатуры в shuffle-алгебре порождаемой словами Линдона.

Theorem 1.14 (Shuffle product identity). Consider a path $X : [a,b] \to \mathbb{R}^d$ and two multi-indexes $I = (i_1, \ldots, i_k)$ and $J = (j_1, \ldots, j_m)$ with $i_1, \ldots, i_k, j_1, \ldots, j_m \in \{1, \ldots, d\}$. Then

$$S(X)_{a,b}^{I}S(X)_{a,b}^{J} = \sum_{K \in I \cup J} S(X)_{a,b}^{K}.$$
 (13)

Спасибо за внимание!