

Universidade Federal do Paraná Setor de Ciências da Terra / Departamento de Geomática

Curso: Engenharia Cartográfica e de Agrimensura Disciplina: GA106 – Ajustamento I

Prof.: Dr. Tiago Lima Rodrigues

2ª LISTA DE EXERCÍCIOS

1) No georreferenciamento de imóveis rurais deve-se implantar uma base, denominada vértice C1, para ser utilizada como apoio básico dentro do levantamento da propriedade. As coordenadas deste vértice devem ser estimadas a partir de pelo menos dois pontos do Sistema Geodésico Brasileiro (SGB). A partir dos dados a seguir estime as coordenadas do vértice C1.

- Coordenadas dos pontos do SGB:

E1	645545.053
N1	8624964.644
E2	645945.053
N2	8625264.644
E3	646445.053
N3	8624864.644

- Distâncias:			
	ΔE_{1C1}	558.856	±0,031
	$\Delta N_{1\text{C1}}$	-1376.407	±0,025
	ΔE_{2C1}	158.736	±0,069
	ΔN_{2C1}	-1676.925	±0,047
	ΔE _{3C1}	-341.368	±0,038
	ΔN_{3C1}	-1276.806	±0,029

2) A transformação de coordenadas topográfica locais x e y para coordenadas UTM fuso 23 E e N pode ser realizada a partir de uma transformação de similaridade no plano com parâmetros a, b, Δx , Δy , considerando efeitos de translação em x e y, 1 rotação e 1 fator de escala. Dadas as coordenadas de quatro pontos em ambos os Sistemas, estime os parâmetros ajustados e as observações ajustadas utilizando o método combinado de ajustamento. Na sequência faça a análise da precisão do ajustamento. As precisões das coordenadas no Sistema topográfico local são também dadas. As coordenadas no Sistema UTM são consideradas constantes e livres de erro. (5,0)

Ponto	<i>E</i> (m)	<i>N</i> (m)	x (m)	<i>y</i> (m)
Α	212729.2789	7656862.3784	1505.6975±0,005	2514.9592±0,002
В	212754.9376	7656910.8808	1532.1860±0,002	2562.9840±0,005
С	212716.3034	7656716.5359	1490.1870±0,003	2369.4340±0,007
D	212590.6534	7656993.0930	1369.4380±0,005	2648.0090±0,001

Modelo matemático funcional (transformação de similiaridade no plano) para um ponto i:

$$x_i = \Delta x + aE_i + bN_i$$

$$y_i = \Delta y - bE_i + aN_i$$

3) Na maioria das vezes, no georreferenciamento de imagens de satélite, a transformação afim de 1º grau é utilizada relacionando dois espaços: o da imagem (coluna e linha) e o do terreno (E, N).

$$col = a_1 + a_2E + a_3N$$

 $linha = b_1 + b_2E + b_3N$

A partir do conjunto de pontos dado a seguir, coletados com precisão de 0,5 pixel sobre a imagem, com coordenadas E e N conhecidas estime os parâmetros (a_i, b_i) da transformação.

Ponto	coluna	linha	E	N
G01	3145.25	814.75	636640.89	7520309.75
G02	2238.436	1499.397	609418.498	7499756.56
G03	2974.154	1217.432	631457.733	7508218.73
G04	1782.074	1297.547	595816.27	7505732.91

4) Sabe-se que para diversas atividades de engenharia altitudes com sentido físico, como a altitude ortométrica, são de completa importância. Por outro lado, sabe-se também que a altitude fornecida pelo GNSS não possui sentido físico, pois é referenciada ao Elipsóide de Referência (altitude geométrica). Supondo que exista uma rede com altitudes ortométricas no local de interesse, dispondo-se de um rastreador GNSS há a possibilidade de interpolação dos valores de altura geoidal a partir dos seguintes modelos funcionais:

$$z = aE + bN + c$$

$$z = aE + bN + cEN + d$$

$$z = aE + bN + cE^{2} + dN^{2} + e$$

sendo *E* e *N* as coordenadas UTM das estações e *z* a altura geoidal. A partir do conjunto de dados abaixo, estime os parâmetros da superfície geoidal local utilizando os modelos funcionais apresentados.

Ponto	E (m)	N (m)	z (m)
M01	5468792,235	8618613,854	4,135
M02	5468254,112	8618105,967	3,208
M03	5468312,758	8618516,854	3,561
M04	5468567,489	8618425,347	4,002
M05	5468435,546	8618551,204	3,746
M06	5468296,463	8618492,438	3,946
M07	5468677,938	8618397,105	4,224

5) Faça o ajustamento da rede altimétrica apresentada a seguir. Dados: H_A = 763,245 m. Considere os elementos da matriz peso o inverso da distância da linha nivelada.

Linha	Desnível (m)	Comprimento (m)	
l1	0,786	613,4392	
12	-0,942	476,1046	
13	1,279	580,6570	
14	-0,296	378,9997	
15	0,045	446,2192	
16	-1,009	460,3333	
17	0,234	555,2597	
18	-1,641	389,3580	
19	0,921	353,9457	
l10	0,659	304,7903	
l11	-2,951	908,1987	
l12	-3,354	534,8984	
l13	-0,234	583,8855	
114	-2,065	405,7017	
l15	0,6454	329,1027	
l16	0,298	496,6747	
l17	-0,352	297,9362	
l18	-2,301	566,4929	
l19	0,826	463.2291	
120	-2,7651	453,6255	

6) A trajetória de um satélite foi registrada em um determinado espaço de tempo com frequência de 1s e modelada a partir de um polinômio de 2º grau indicado a seguir. Ajuste a trajetória e estime as componentes da posição no instante 2,3 s, utilizando os seguintes modelos matemáticos funcionais:

$$\begin{aligned} X_S &= X_0 + a_1 \cdot t + a_2 \cdot t^2 \\ Y_S &= Y_0 + b_1 \cdot t + b_2 \cdot t^2 \\ Z_S &= Z_0 + c_1 \cdot t + c_2 \cdot t^2 \end{aligned}$$

X_{S} (m)	Y_S (m)	Z_S (m)	Tempo t (s)
6509399.707	-1261084.883	-2696126.041	0
6506451.417	-1261725.022	-2702950.158	1
6503496.051	-1262363.788	-2709771.328	2
6500533.613	-1263001.183	-2716589.544	3
6497564.107	-1263637.203	-2723404.798	4
6494587.535	-1264271.850	-2730217.083	5
6491603.901	-1264905.121	-2737026.392	6