無線通訊積體電路 Homework 2 電機 4B 107501019 魏子翔

- 1. The properties of constant amplitude zero auto-correlation (CAZAC) Zadoff-Chu sequence.
 - (a). We set u_1 as 9.
 - (b). Plot the real part and imaginary part of sequence $S(n, u_1)$.

Figure 1: the real part and imaginary part of sequence $S(n, u_1)$

(c). Plot
$$|\Phi_s(k)|$$
, $\Phi_s(k) = \frac{1}{N} \sum_{n=0}^{N-1} S(n, u_1) S^*(n - k, u_1)$

Figure 2: auto-correlation $|\Phi_s(k)|$

(d). Plot
$$|\Omega_s(m)|$$
, $\Omega_s(m) = \frac{1}{N} \sum_{n=0}^{N-1} S(n, u_1) S^*(n - k, u_1 + m)$, k=3

Figure 3: cross-correlation $|\Omega_s(m)|$

(e). Plot
$$|\Omega_s(k)|$$
, $\Omega_s(k) = \frac{1}{N} \sum_{n=0}^{N-1} S(n, u_1) S^*(n - k, u_1 + m)$, m=3

Figure 4: cross-correlation $|\Omega_s(k)|$

(f). Show |p(m)|, $p(m) = \sum_{n=0}^{N-1} y(n+m)S^*(n, u_1)$

Figure 5: |p(m)|

Initially, we define y(n) as $y(n) = [0.3S(N-2,u_1)\ 0.3S(N-1,u_1)\ 0.3S(0,u_1)$ $0.3S(1,u_1) \dots 0.3S(N-1,u_1)\ 0.3S(0,u_1)\ 0.3S(1,u_1)\ 0.3S(2,u_1)]$. This indicates that y(n) is a right-shifted version of $S(n,u_1)$ by 2 samples, and its amplitude is scaled by a factor of 0.3. The function $p(m) = \sum_{n=0}^{N-1} y(n+m)S^*(n,u_1)$ represents the auto-correlation between y(n) and $S^*(n,u_1)$. Since the parameter u remains unchanged for both y(n) and $S^*(n,u_1)$, and only the index n in y(n) varies, option (c) is the most appropriate explanation among (c) to (e).

Because y(n) is a right-shifted version of $S^*(n, u_1)$ by 2 samples, the pulse in Figure 5 also shifts right by 2 units. The observed peak value is 8.7, which, when divided by N=29, results in approximately 0.3—matching the scaling factor applied to y(n) in relation to $S^*(n, u_1)$.

2. Given the Barker code list, please check the periodic autocorrelation function defined as $\Phi_s(k) = \frac{1}{N} \sum_{n=0}^{N-1} S(n) S^*([n-k]_N)$

Figure 6: Barker code 约 auto-correlation

3. Walsh Hadamard code is also widely used for multiple access because of good cross-correlation.

Figure 7: 10^{th} columns of the matrix W_{32}

Figure 8: 24^{th} columns of the matrix W_{32}

Figure 9: cross correlation $\frac{1}{32}\sum_{j=1}^{32}(W_{32}(j,\alpha+1)W_{32}(j,24))$

(b). Choose $c_1 = W_{32}(:, \alpha + 1)$ and $c_2 = W_{32}(:, 14)$ as two codes for user 1 and user 2. Randomly generate 5 symbols $(d_0 \sim d_4)$ from the set $\{+1, -1\}$. Spread the data by code 1 as $y = [d_0c_{1,1} d_0c_{2,1} \dots d_0c_{32,1} d_1c_{1,1} \dots d_1c_{32,1} \dots d_4c_{1,1} \dots d_4c_{32,1} 0 0 0]$.

We genetate $(d_0 \sim d_4)$ as (+1, -1, +1, +1, +1)

Figure 10: 5 symbols $(d_0 \sim d_4)$ before spreading and after spreading

(c). Plot p(i) using index I as the x-axis, p(i) = $\frac{1}{32}\sum_{j=1}^{32}(y_{32i+j+1})c_{j,1}$.

Figure 11: p(i) perfect synchronization is not achieved

(d). Plot p(i) using index I as the x-axis, p(i) = $\frac{1}{32}\sum_{j=1}^{32}(y_{32i+j})c_{j,2}$.

Figure 12: p(i) perfect synchronization is achieved

(e). Please comment the results in (c) and (d).

For sub-question (c), this case represents non-perfect synchronized

despreading. When performing despreading on y, the signal has already been advanced by one sample. As a result, the despread signal becomes $\{-1, +1, -1, -1, -1\}$, which is exactly the inverse of the original signal $\{+1, -1, +1, +1\}$. Moreover, the despread values are not strictly +1 or -1—they are significantly smaller in magnitude.

Through experimentation by adjusting the value of α alpha α , we observe the following behavior:

- When α is **odd**, the despread result is the inverse of the original signal.
- When α is **even**, the despread result matches the original signal.

This shows how synchronization offset affects the correlation result.

For sub-question (d), this is a case of **perfectly synchronized despreading**. However, the despreading code used (Code 2) is completely different from the original y signal. Since the cross-correlation between the two sequences is zero, the result of the despreading operation is a sequence of all zeros.