Mobile Manipulation Calibration

Adam Heins

August 21, 2022

1 Introduction

The frames of interest are listed in Table 1.

Table 1: Coordinate frames.

Name	Subscript
World	\overline{w}
Mobile base	b
Base of arm	a
End effector	e
Tool	t

The pose T_{wt} of an arbitrary tool attached to the end effector can be computed using the sequence of transforms

$$T_{wt} = T_{wb}(q_b)T_{ba}T_{ae}(q_a)T_{et}, \qquad (1)$$

where T_{wb} depends on the base configuration $q_b = [x_b, y_b, \theta_b]^T$ and T_{ae} depends on the arm configuration q_a .

2 Base Calibration

We need to calibration the Vicon measured base poses \hat{q}_b so that the origin of T_{wb} is correct. We have

$$T_{wb}(q_b) = \begin{bmatrix} C_z(\theta_b) & r_b \\ \mathbf{0}^T & 1 \end{bmatrix}, \tag{2}$$

where $C_z(\theta) \in SO(3)$ is a rotation about the z-axis and $r_b = [x_b, y_b, z_b]^T$ with z_b a constant. Our goal in this section is to calibrate the origin (x_b, y_b) so that it is located at the point of rotation of θ_b .

Starting at an arbitrary configuration $q_{b,0}$, we will move the base to a sequence of desired yaw angles $\theta_{b,i}^d$ and obtain the corresponding measured configurations $\hat{q}_{b,i}$. We would like to find an offset Δr_b such that

$$\mathbf{r}_{b,i}^d = \hat{\mathbf{r}}_{b,i} + \Delta \mathbf{r}_b \tag{3}$$

is satisfied as closely as possible for each i. We will do so by solving the least squares problem

$$\underset{\Delta \mathbf{r}_{b}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i} \| \mathbf{r}_{b,0} - \hat{\mathbf{r}}_{b,i} - \Delta \mathbf{r}_{b} \|^{2}, \tag{4}$$

where we've used the fact that $r_{b,i}^d = r_{b,0}$.

3 Arm-End Effector-Tool Calibration

Having calibrated the base pose T_{wb} , we now wish to calibrate (static) the transforms between the base and arm T_{ba} and the EE and tool T_{et} . We will assume that factory calibration for the arm transform $T_{ae}(q_a)$ is good enough.

To do so, we will collect a sequence of pairs $(q_{a,i}, \hat{T}_{wt,i})$ by moving the arm to the sequence of configurations $q_{a,i}$. We will then solve the (nonlinear) least squares problem¹

$$\underset{\boldsymbol{T}_{ba}, \boldsymbol{T}_{wt}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i} \| \boldsymbol{\Xi} (\boldsymbol{T}_{wt}(\boldsymbol{q}), \hat{\boldsymbol{T}}_{wt}) \|^{2}. \tag{5}$$

over the manifold SE(3), where T_{wt} is computed using (1) and

$$\exists (T_1, T_2) = \log(T_1^{-1}T_2)^{\vee}$$
 (6)

is the error between the poses.

¹We may have nominal guesses for the transforms, in which case we would actually optimize over (for example) ΔT_{ba} , where $T_{ba} = \Delta T_{ba} \bar{T}_{ba}$ with nominal guess \bar{T}_{ba} .