SINGULAR VALUE DECOMPOSITION MATH 578 Mini-Seminar Talk

Kai Yang

McGill University Montréal, Quebec Canada H3A 1A2

McGill University

October 22, 2020

Introduction

- Singular Value Decomposition (SVD) is one of most important tools for mathematical computation
- The content of this presentation is taken from Numerical linear algebra [1] and Matrix Computations [2]
- As we'll see later, SVD is connect to eigenvalues; but in applications, eigenvalues are more connected to the behaviour of iterated forms of A, e.g., A^k or e^{tA} ; SVD is more related to the behavior of A or A^{-1}
- We'll start with the geometric observation as a motivation for SVD

Geometric Observation

Figure: SVD of 2 × 2 matrix [1]

- We assume A is a real matrix here for the sake of geometric interpretation
- The image of unit sphere under any m x n matrix A is a hyperellipse – a hyperellipse is a m-dimensional generalization of an ellipse.

Geometric Interpretation

- Define *n* singular values of *A*: these are the lengths of *n* principal semiaxes of *AS* it's conventional to number the singular values in a descending order, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$
- Define *n* left singular vectors of *A*: these are the unit vectors $\{u_1, u_2, ..., u_n\}$ oriented in the directions of principal semiaxes of *AS*, numbered corresponding to the singular values
- Define *n* right singular vectors of *A*: these are the *unit* vectors $\{v_1, v_2, ..., v_n\} \in S$ that are pre-images of principal semiaxes of *AS*, numbered so that $Av_j = \sigma_j u_j$
- For the moment, let's assume A of full column rank n.

Reduced SVD

• Write the linear map as $Av_j = \sigma_j u_j$, $\forall 1 \le j \le n$; and express in matrix form:

$$AV = \hat{U}\hat{\Sigma}$$

- $\hat{\Sigma}$ is a $n \times n$ diagonal matrix with diagonal entries $\sigma_1, \sigma_2, \dots, \sigma_n > 0$
- $\hat{U} \in \mathbb{C}^{m \times n}$ has orthonormal columns $u_1, u_2, \dots, u_n \in \mathbb{C}^m$
- $V \in \mathbb{C}^{n \times n}$ is a unitary matrix with columns v_1, v_2, \dots, v_n
- Then we have $A = \hat{U}\hat{\Sigma}V^*$
- Note the column vectors of \hat{U} does not form a basis of \mathbb{C}^n this is why it's called "reduced"

Full SVD

- By adjoining m-n orthonormal columns \hat{U}_{m-n} , \hat{U} can be extended to a unitary matrix let's call the result U
- $\hat{\Sigma}$ also needs to change to accommodate this by adjoining m-n rows of 0
- As a result, the full SVD is

$$A = \hat{U}\hat{\Sigma}V^* = \begin{bmatrix} \hat{U} & \hat{U}_{m-n} \end{bmatrix} \begin{bmatrix} \hat{\Sigma} \\ 0 \end{bmatrix} V^* =: U\Sigma V^*$$

• Now we can discard the initial assumption that A has full (column) rank – all it changes is now not n but only r of the left singular vectors of A are determined by the geometry of hyperellipse, then we'll have $\hat{U} \in \mathbb{C}^{m \times r}$, $\hat{\Sigma} \in \mathbb{C}^{r \times r}$ will be a diagonal matrix with positive diagonal entries $\sigma_1, \sigma_2, \ldots, \sigma_r$, put at the upper-left corner of the otherwise-0 matrix $\Sigma \in \mathbb{C}^{m \times n}$

Formal Definition

• Given $A \in \mathbb{C}^{m \times n}$, a SVD of A is a factorization

$$A = U\Sigma V^*$$

- where $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ are both unitary; $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, with diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ and $\sigma_{r+1}, \ldots, \sigma_p = 0$, where $p = \min\{m, n\}$
- The image of a unit sphere in \mathbb{R}^n under linear map $A = U\Sigma V^*$ will indeed be a hyperellipse in \mathbb{R}^m : the unitary map V^* perserves the sphere, then the diagonal matrix Σ stretches the sphere into a hyperellipse aligned with canonical basis, finally unitary map U rotates or reflects the hyperellipse without changing its shape.

Existence and Uniqueness

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ has a SVD. Furthermore, the singular values are uniquely determined, and if A is square and σ_j are distinct, the left and right singular vectors $\left\{u_j\right\}$ and $\left\{v_j\right\}$ are uniquely determined up to the complex signs.

 The existence statement can be proved by induction on the dimension of A, whose induction step is established by: for submatrix B of A,

$$B = U_2 \Sigma_2 V_2^* \Rightarrow A = U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix}^* V_1^*$$

is a SVD of A.

 The uniqueness statement is justified by the geometric interpretation: should the semiaxis lengths of a hyperellipse are distinct, then the semiaxes are determined by the geometry signs.

SVD v.s. Eigen-Decomposition

- SVD represents a change of bases, i.e., every matrix is diagonal if using proper bases for domain and range spaces – it uses two different bases, the sets of left (for range space) and right (for domain space) singular vectors. Eigen-decomposition uses one bases – the set of eigenvectors
- SVD uses orthonormal bases; while eigenvectors in general are not orthonormal
- Not all matrices (even square ones) have an eigenvalue decomposition, but all matrices have a SVD

Matrix Properties via SVD I

- rank(A) = r, the number of nonzero singular values. (note that U, V are full rank)
- range $(A) = \langle u_1, ..., u_r \rangle$ and null $(A) = \langle v_{r+1}, ..., v_n \rangle$. (observing the range and null spaces of Σ)
- $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$. (U, V are unitary, together with the fact that ℓ_2 norm and Frobenius norm is invariant under unitary multiplication)
- The nonzero singular values of A square roots of nonzero eigenvalues of A*A or AA*. (substitution by SVD)
- If $A = A^*$, the singular values of A are the absolute values of eigenvalues of A. (using the fact that the eigenvalues for every Hermitian matrix are real, and the eigenvectors corresponding to distinct eigenvalues are orthogonal)

Matrix Properties via SVD II

- $\forall A \in \mathbb{C}^{m \times m}$, $|\det(A)| = \prod_{i=1}^{m} \sigma_i$. (substitution by SVD)
- $\forall A \in \mathbb{C}^{m \times n}$, $E \in \mathbb{C}^{m \times n}$,

$$\sigma_{\max}(A+E) \le \sigma_{\max}(A) + ||E||_2$$

$$\sigma_{\min}(A+E) \ge \sigma_{\min}(A) - ||E||_2$$

$$\begin{array}{l} (AV = \Sigma U^* \overset{unitary}{\Rightarrow} \sup_{\|x\|_2 = 1} \|Ax\|_2 = \sup_{\|x\|_2 = 1} \|\Sigma x\|_2 = \\ \sigma_{\max}(A), \ \inf_{\|x\|_2 = 1} \|Ax\|_2 = \inf_{\|x\|_2 = 1} \|\Sigma x\|_2 = \sigma_{\min}(A), \ then \\ \sigma_{\min}(A) \leq \frac{\|Ax\|_2}{\|x\|_2} \leq \sigma_{\max}(A), \ and \ the \ results \ follow) \end{array}$$

• $\forall A \in \mathbb{C}^{m \times n}$, m > n, and $\forall z \in \mathbb{C}^m$,

$$\sigma_{\max}([A \ z]) \ge \sigma_{\max}(A)$$
 $\sigma_{\min}([A \ z]) \le \sigma_{\min}(A)$

(similar to above proof)

Low Rank Approximations

- $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$. (trivial)
- Define $A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$ for some $0 \le k \le r$, and define $\sigma_{k+1} = 0$ if $k = \min\{m, n\}$. Then

$$\min_{B \in \mathbb{C}^{m \times n}, \, \text{rank}(B) \le k} ||A - B||_2 = ||A - A_k||_2 = \sigma_{k+1}$$

(second equality is trivial; prove first equality by assuming $||A - B||_2 < ||A - A_k||_2 = \sigma_{k+1}$, then $\forall w \in null(B)$ (dim $\geq n - k$),

$$||Aw||_2 = ||(A - B)w||_2 \le ||A - B||_2 ||w||_2 < \sigma_{k+1} ||w||_2$$

on the other hand, the first k+1 right singular vectors of A span a k+1-dimensional space s.t. for all w in it, $||Aw||_2 \ge \sigma_{k+1} ||w||_2$, which leads to contradiction)

• Similar to above statement (and proof), we also have

$$\min_{B \in \mathbb{C}^{m \times n}, \, \text{rank}(B) \le k} ||A - B||_F = ||A - A_k||_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$$

Some Basic Facts

• For linear system Ax = b, applying SVD, we have

$$x = A^{-1}b = \left(U\Sigma V^{T}\right)^{-1}b = \sum_{i=1}^{n} \frac{u_{i}^{T}b}{\sigma_{i}}v_{i}$$

which means should σ_n be small, a small changes in A or b can induce relatively large changes in x

- One way to compute SVD of A is, form A^*A and take eigen-decomposition of $A^*A = V\Gamma V^*$, then $\Sigma \in \mathbb{R}^{m \times n}$ will have diagonal square root of Γ , and we can solve $U\Sigma = AV$ for unitary U. But this algorithm is unstable eigen-decomposition of A^*A will be much more sensitive to perturbations
- One can, however, reduce the SVD to an eigenvalue problem by taking a different approach

A Different Approach

• Construct the Hermitian matrix $H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \in \mathbb{C}^{2m \times 2m}$ for square matrix A, then based on SVD of A we have

$$\begin{bmatrix}
0 & A^* \\
A & 0
\end{bmatrix}
\begin{bmatrix}
V & V \\
U & -U
\end{bmatrix} =
\begin{bmatrix}
V & V \\
U & -U
\end{bmatrix}
\begin{bmatrix}
\Sigma & 0 \\
0 & -\Sigma
\end{bmatrix}$$

- Then singular values of A are the absolute values of the eigenvalues of H, and singular vectors of A can be extracted from eigenvectors of H
- And this allows us to convert SVD problem of A to eigen-decomposition of H, which is stable

Two Phrases

- Golub, Kahan, et al. proposed the two-phrase method to obtain SVD: the first phrase is to convert the matrix to a bi-diagonal form (diagonal and first super-diagonal); and the second phrase is to diagonalize the bi-diagonal matrix
- The first phrase of bi-diagonalization is called Golub-Kahan bi-diagonalization
- The second phrase of diagonalization was conventionally solved by a variant of QR algorithm; and more recently, divide-and-conquer algorithms were also developed for the second phrase.

Golub-Kahan Bi-Diagonalization

Figure: Golub-Kahan bi-diagonalization for a 6 × 4 matrix [1]

- Golub-Kahan bi-diagonalization applies Householder reflectors alternatively to left and right
- Left reflection introduces a column of 0s below diagonal
- Right reflection introduces a row of 0s to the right of first superdiagonal
- Both left and right reflections will preserve zeros introduced before

Kai Yang

Faster Methods for the First Phrase

Figure: LHC bi-diagonalization [1]

- Golub-Kahan method *per se* is not efficient for $m \gg n$. Lawson, Hanson and Chan discussed a much more efficient way: use a single QR factorization step to introduce zeros everywhere below diagonal, then apply Golub-Kahan on the upper $n \times n$ matrix only indeed, this will destroy some zeros introduced by the QR step
- LHC procedure is advantageous only when $m > \frac{5}{3}n$; note the Golub-Kahan process will make the matrix thinner as it proceeds, then one can apply QR factorization step when adequate
- And it was discussed that QR step should be performed when the matrix reaches an aspect ratio of 2

Bibliography

- [1] Lloyd Trefethen. Numerical linear algebra. Philadelphia, Pa: Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, 1997. ISBN: 0898719577.
- [2] Gene H. Golub. *Matrix Computations*. J. Hopkins Uni. Press, Jan. 7, 2013. ISBN: 1421407949. URL: https://www.ebook.de/de/product/20241149/gene_h_golub_matrix_computations.html.