# **Rainfall Time Series**

**Project ID: PRAICP-1004-RainfallTS** 

Rainfall time series analysis is a specialized field within time series analysis that focuses on understanding and predicting rainfall patterns over time.

In this project we build a Machine Learning Model based on provided dataset.

This project completed while doing DataMites Internship.



# Rainfall Time Series Analysis Report

# 1. INTRODUCTION

This report presents an analysis and forecast of daily highest recorded rainfall using a time series model. The objective is to predict future rainfall trends for decision-making and climate study purposes.

# 2. BUSINESS CASE

Develop a Machine Learning (ML) model to predict the rainfall for the next one year with the help of previous data, Also make forecast about highest rainfall occurred in a day for a single month.

# 3. OBJECTIVES

- ➤ Prediction of rainfall accurately or next one year.
- > Forecasting the rainfall for occurring highest rainfall in a single day.

# 4. PROJECT GOAL

- 1. Data understanding and preprocessing.
- 2. ML model to Forecast.

# **5. DATA OVERVIEW**

#### **Dataset:**

- rainfall-monthly-highest-daily-total.csv
- rainfall-monthly-number-of-rain-days.csv
- rainfall-monthly-total.csv

#### **&** Columns:

- Month: The date of recorded rainfall
- Total rainfall: Highest Rainfall
- Maximum\_rainfall\_in\_a\_day: Maximum rainfall recorded in a day (in mm)
- Number\_of\_rainy\_days: Total number of rainy days

# \* Time Period: Historical daily rainfall data.

# 6. METHODOLOGY

#### **Data Extraction:**

 Data extraction is a fundamental process in data management, and it plays a critical role in preparing data for analysis, machine learning.

## **\*** Data preprocessing:

- Data Cleaning: Cleaning data from dataset.
- Handling Missing Values: Removal of rows or columns with excessive missing values.

#### **❖** Data Transformation:

• Normalization and Scaling: Rescaling numerical data to a specific range (e.g., 0 to 1) or standardizing it to have a mean of 0 and a standard deviation of 1.

#### **❖** Time Series Line Plots:

This is the most common plot. It shows rainfall amounts over time, allowing us to see how rainfall changes from day to day, month to month, or year to year.

#### **❖** Models:

# 1. ARIMA (Autoregressive Integrated Moving Average):

- ARIMA is a statistical model.
- It's designed to capture linear dependencies in time series data.
- It relies on the idea that past values of a time series can be used to predict future values.

#### 2. LSTM (Long Short-Term Memory):

- LSTM is a type of recurrent neural network (RNN).
- It's designed to capture complex, non-linear dependencies in sequential data.
- It excels at handling long-term dependencies.

### 3. GRU (Gated Recurrent Unit):

- GRU is also a type of RNN, and a simplified version of LSTM.
- It aims to achieve similar performance to LSTM with fewer parameters.

#### **Performance Metrics**

- Mean Absolute Error (MAE): MAE calculates the average of the absolute differences between predicted and actual values.
- Mean Squared Error (MSE): MSE calculates the average of the squared differences between predicted and actual values.

# **Accuracy Plots**

#### > Predicted vs. Actual Plots:

- It plots the predicted rainfall values against the actual observed rainfall values over time.
- This is the most direct way to visualize accuracy.

## > Scatter Plots (Predicted vs. Actual):

- A scatter plot where the x-axis is the actual rainfall and the y-axis is the predicted rainfall.
- If the model is perfect, the points will fall along a straight diagonal line.

#### > Residual Plots:

- Residuals are the differences between the predicted and actual values.
- These plots visualize the distribution of residuals.

# > Error Distribution Plots (Histograms, Box Plots):

- These plots visualize the distribution of errors.
- They show the frequency of different error magnitudes.

# 7. CHALLENGES

- Data Variability: Rainfall patterns can be highly variable and unpredictable.
- Model Complexity: Capturing the complex dynamics of rainfall requires sophisticated models.

# 8. SUMMERY

Summery of Rainfall Time Series project that depends on LSTM, GRU and ARIMA models below is the summery report of our models that gives us correct information.

Date, ARIMA Forecast, ARIMA Lower, ARIMA Upper, GRU Forecast, GRU Lower, GR U Upper, LSTM Forecast, LSTM Lower, LSTM Upper

| Date       | ARIMA For | ARIMA Lov | ARIMA Up | GRU Fored | GRU Lowe | GRU Uppe | LSTM Fore | LSTM Low | LSTM Uppe |
|------------|-----------|-----------|----------|-----------|----------|----------|-----------|----------|-----------|
| 01-02-1982 | 0.387678  | -0.0941   | 0.869461 | 0.378948  | -1.62105 | 2.378948 | 0.364032  | -1.63597 | 2.364032  |
| 01-03-1982 | 0.447397  | -0.05172  | 0.946511 | 0.389453  | -1.61055 | 2.389453 | 0.364929  | -1.63507 | 2.364929  |
| 01-04-1982 | 0.48481   | -0.02304  | 0.992663 | 0.405249  | -1.59475 | 2.405249 | 0.37125   | -1.62875 | 2.37125   |
| 01-05-1982 | 0.441278  | -0.07626  | 0.958818 | 0.388939  | -1.61106 | 2.388939 | 0.380237  | -1.61976 | 2.380237  |
| 01-06-1982 | 0.467757  | -0.07912  | 1.014636 | 0.387578  | -1.61242 | 2.387578 | 0.383942  | -1.61606 | 2.383942  |
| 01-07-1982 | 0.41842   | -0.14599  | 0.982833 | 0.403353  | -1.59665 | 2.403353 | 0.388844  | -1.61116 | 2.388844  |
| 01-08-1982 | 0.441283  | -0.15159  | 1.034154 | 0.410443  | -1.58956 | 2.410443 | 0.407066  | -1.59293 | 2.407066  |
| 01-09-1982 | 0.445864  | -0.16342  | 1.055149 | 0.385951  | -1.61405 | 2.385951 | 0.430196  | -1.5698  | 2.430196  |
| 01-10-1982 | 0.453419  | -0.17269  | 1.079525 | 0.362664  | -1.63734 | 2.362665 | 0.430027  | -1.56997 | 2.430027  |
| 01-11-1982 | 0.441238  | -0.20085  | 1.083324 | 0.365367  | -1.63463 | 2.365367 | 0.382654  | -1.61735 | 2.382654  |
| 01-01-1983 | 0.445853  | -0.21528  | 1.10699  | 0.369029  | -1.63097 | 2.369029 | 0.361178  | -1.63882 | 2.361178  |
| 01-02-1983 | 0.441508  | -0.23613  | 1.119144 | 0.375009  | -1.62499 | 2.375009 | 0.355307  | -1.64469 | 2.355307  |
| 01-03-1983 | 0.445314  | -0.24926  | 1.139889 | 0.380175  | -1.61983 | 2.380175 | 0.348787  | -1.65121 | 2.348787  |
| 01-04-1983 | 0.444559  | -0.26551  | 1.154628 | 0.386779  | -1.61322 | 2.386779 | 0.360851  | -1.63915 | 2.360851  |
| 01-05-1983 | 0.44578   | -0.27994  | 1.171498 | 0.399085  | -1.60091 | 2.399086 | 0.355606  | -1.64439 | 2.355606  |
| 01-06-1983 | 0.44377   | -0.29708  | 1.184617 | 0.384086  | -1.61591 | 2.384086 | 0.350027  | -1.64997 | 2.350027  |
| 01-07-1983 | 0.44467   | -0.31144  | 1.200775 | 0.380488  | -1.61951 | 2.380488 | 0.347108  | -1.65289 | 2.347108  |
| 01-09-1983 | 0.44421   | -0.32653  | 1.214954 | 0.37717   | -1.62283 | 2.37717  | 0.373694  | -1.62631 | 2.373694  |
| 01-10-1983 | 0.444813  | -0.3404   | 1.230029 | 0.402291  | -1.59771 | 2.402291 | 0.375611  | -1.62439 | 2.375611  |
| 01-11-1983 | 0.444487  | -0.35482  | 1.243794 | 0.394958  | -1.60504 | 2.394958 | 0.388106  | -1.61189 | 2.388106  |
| 01-01-1984 | 0.444693  | -0.36856  | 1.257951 | 0.39987   | -1.60013 | 2.39987  | 0.388797  | -1.6112  | 2.388797  |
| 01-04-1984 | 0.444411  | -0.38251  | 1.271336 | 0.37132   | -1.62868 | 2.37132  | 0.38912   | -1.61088 | 2.38912   |
| 01-05-1984 | 0.444583  | -0.39584  | 1.285005 | 0.370587  | -1.62941 | 2.370587 | 0.401842  | -1.59816 | 2.401842  |
| 01-07-1984 | 0.444508  | -0.40915  | 1.298167 | 0.389418  | -1.61058 | 2.389418 | 0.421366  | -1.57863 | 2.421366  |

# Summery of forecast of highest rainfall occurred in a day for a single month. Date, Forecast, Lower Bound, Upper Bound

| Date             | Forecast    | Lower Bound  | Upper Bound |
|------------------|-------------|--------------|-------------|
| 02-01-1970 00:00 | 0.387678446 | -0.09410369  | 0.869460582 |
| 03-01-1970 00:00 | 0.447396606 | -0.051718059 | 0.946511272 |
| 04-01-1970 00:00 | 0.484809693 | -0.023043211 | 0.992662597 |
| 05-01-1970 00:00 | 0.441278084 | -0.076262046 | 0.958818214 |
| 06-01-1970 00:00 | 0.467757198 | -0.079121744 | 1.014636139 |
| 07-01-1970 00:00 | 0.418419826 | -0.145993687 | 0.982833339 |
| 08-01-1970 00:00 | 0.44128307  | -0.15158832  | 1.03415446  |
| 09-01-1970 00:00 | 0.445863562 | -0.163422003 | 1.055149127 |
| 10-01-1970 00:00 | 0.453419151 | -0.172686746 | 1.079525047 |
| 11-01-1970 00:00 | 0.441238052 | -0.200847671 | 1.083323775 |
| 12-01-1970 00:00 | 0.44585311  | -0.215284136 | 1.106990357 |
| 13-01-1970 00:00 | 0.441507812 | -0.236128855 | 1.119144479 |
| 14-01-1970 00:00 | 0.445314003 | -0.249260534 | 1.139888539 |
| 15-01-1970 00:00 | 0.444558875 | -0.265510072 | 1.154627823 |
| 16-01-1970 00:00 | 0.445779656 | -0.279938814 | 1.171498126 |
| 17-01-1970 00:00 | 0.443769977 | -0.297077113 | 1.184617067 |
| 18-01-1970 00:00 | 0.444669549 | -0.311436338 | 1.200775435 |
| 19-01-1970 00:00 | 0.44420989  | -0.326533776 | 1.214953555 |
| 20-01-1970 00:00 | 0.444813003 | -0.340402751 | 1.230028758 |
| 21-01-1970 00:00 | 0.444487037 | -0.35481994  | 1.243794014 |
| 22-01-1970 00:00 | 0.444693164 | -0.368564296 | 1.257950624 |
| 23-01-1970 00:00 | 0.444410901 | -0.382513774 | 1.271335577 |
| 24-01-1970 00:00 | 0.444583256 | -0.395838251 | 1.285004763 |
| 25-01-1970 00:00 | 0.444508426 | -0.409149745 | 1.298166598 |
| 26-01-1970 00:00 | 0.444599651 | -0.422113305 | 1.311312607 |
| 27-01-1970 00:00 | 0.444527446 | -0.435030724 | 1.324085616 |
| 28-01-1970 00:00 | 0.444566018 | -0.447669401 | 1.336801438 |
| 29-01-1970 00:00 | 0.444527301 | -0.460198052 | 1.349252654 |
| 30-01-1970 00:00 | 0.444557964 | -0.472494067 | 1.361609995 |
| 31-01-1970 00:00 | 0.444542599 | -0.48466597  | 1.373751168 |

# 9. CONCLUSION

- The ARIMA model successfully predicts the highest rainfall for the next month.
- LSTM models are a powerful tool for working with sequential data.
- GRUs are a powerful and efficient type of RNN that excels at processing sequential data. They offer a good balance between performance and computational efficiency.
- All of three models LSTM, GRU, and ARIMA have nearly identical performance based on Mean Absolute Error and Root Mean Squared Error
- The forecast can assist in weather preparedness, disaster management, and agricultural planning.