Lecture 07 – What is Vector Database | Internal Implementation of Vector DataBase

(Expert-level, engaging, and complete — by Harshal Chauhan (\$\frac{1}{2}\))

Introduction – Kyun Chahiye Vector Databases?

Traditional databases (SQL/NoSQL) sirf exact match search karte hain, jabki **Vector Databases** "meaning-based" search karte hain 🔍

SQL/NoSQL: "Rohit Negi 9 ke comments lao" → Exact Match **Vector DB:** "Rohit Negi 9 jaisi profiles lao" → Semantic Similarity

2 Real-World Example – Blinkit Recommendation

User adds "Onion" to cart → Vector DB recommends similar items

Recommended (Similar Vectors)

- Tomato \rightarrow [0.8, 0.2, 0.0, 0.8, 0.2]
- Dhaniya \rightarrow [0.7, 0.1, 0.0, 0.9, 0.0]
- Nimbu \rightarrow [0.1, 0.8, 0.1, 0.7, 0.3]

X Not Recommended (Different Vectors)

- Banana \rightarrow [0.1, 0.9, 0.1, 0.1, 0.9]
- Protein \rightarrow [0.0, 0.1, 0.9, 0.1, 0.7]
- Creatine \rightarrow [0.0, 0.0, 0.95, 0.0, 0.1]
- System meaning ke basis par recommend karta hai, na ki sirf text match pe!

IIII III II

♦ Formula (Euclidean Distance):

Distance= $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$ Distance= $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$ Distance= $\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$

Example:

Onion [2,3] & Tomato [3,4] $\rightarrow \sqrt{[(3-2)^2 + (4-3)^2]} = \sqrt{2} \approx 1.4$

Rule:

Jitni chhoti distance, utni zyada similarity!

■ Brute Force Approach – The Slow Killer

Query:

Find 10 nearest neighbors of "Onion"

Steps:

- 1. Onion vector = [0.9, 0.1, 0.0, 0.9, 0.1]
- 2. Compare with 1 billion vectors
- 3. Calculate distance for each
- 4. Sort results
- 5. Return top 10

∧ Result:

- Accuracy: 100%
- Speed: Extremely slowBad User Experience
- Rute Force = Perfect but Painfully Slow

5 ANN – Approximate Nearest Neighbor

6 Smart Trade-off

Accuracy	Speed		
4000/	A 100		
100% → 90 – 95%			

Example:

10 recommendations \rightarrow 9 correct + 1 slightly off = still worth it!

Speed > Perfection in real-world systems.

Phase 1: Indexing

- Step 1: Find Centroids using K-Means
- Step 2: Assign each vector to nearest centroid (cluster)

Phase 2: Searching

- Query "Grapes" → Compare with 100 centroids
- Choose nearest (say C2) → Search only in that cluster
- 100x faster!
- **Multi-Centroid Strategy:**

Query top 3 closest centroids → better accuracy **6**

[C1] [C2] [C3] /|\ /|\ /|\ V V V V V V V V V

Each C = centroid, connected to its vectors.

♠ 6. KD-Tree – Binary Space Partitioning

Process:

- Divide data recursively using X & Y splits
- Create a decision tree
- Query travels through branches based on coordinates

Example:

Query Q(13,8)

- \rightarrow Root split at x=11 \rightarrow Go Right
- \rightarrow y=10 \rightarrow Go Left
- → Compare only with nearby nodes
- # Efficient for low-dimensional data.

III Text Figure:

6. HNSW – Hierarchical Navigable Small Worlds

Concept: Multi-layer graph structure

Layers:

- Layer 0: All nodes connected to 3 nearest
- Layer 1: Random nodes promoted
- Layer 2: Even fewer nodes
- Top Layer: Only 2-3 nodes

Search Process:

- 1. Start at top layer
- 2. Find nearest
- 3. Move layer by layer downward
- 4. Continue till Layer 0
- Pastest and most accurate ANN algorithm.
- National Text Figure:

6.4 PQ – Product Quantization

Problem:

1 Billion vectors = 6.1 TB 🔞

Solution (Compression):

- Step 1: Split vector into 12 chunks
- Step 2: Create 256 centroids (codebook)
- Step 3: Replace chunks with centroid indices → only 12 bytes!

Memory Saved:

6.1 TB → 12 GB (≈500x reduction!)

PQ Search:

- Split query into chunks
- Compare with precomputed distance tables
- ♦ Super-fast lookup!
- Text Figure:

```
Vector [v1 v2 v3 v4 ... v12]

↓ Split into chunks

[ ] [ ] [ ] ... [ ]

↓ Quantized (Centroid IDs)

[05][19][02]...[77]
```

6.5 IVF + PQ – Hybrid Approach

Combo of:

- 1. IVF: Smart clustering
- 2. PQ: Compression within each cluster
- **@** Result:
- → High speed
- → Low memory
- → Great accuracy
- Value of the second of the sec

O Text Figure:

[Clusters]

 ${\tt C1} \, o \, {\tt PQ}$ compressed vectors

 $\text{C2} \rightarrow \text{PQ}$ compressed vectors

 $\text{C3} \rightarrow \text{PQ}$ compressed vectors

11 Performance Comparison

Algorith m	Spe ed	Accura cy 	Memo ry 🖺	Ideal Use
Y HNSW	9/1 0	10/10	8/10	Maximum Performance
∜ IVF + PQ	8/1 0	8/10	4/10	Large Datasets
IVF Only	6/1 0	6/10	5/10	Balanced Needs
♠ KD-Tree	4/1 0	5/10	6/10	Low Dimensions
Brute Force	1/1	10/10	9/10	Small Datasets

8 Vector Database Ecosystem

Native Vector Databases

+++	+		
Database Algorithm	Feature		
++	+		
Milvus HNSW, IVFPQ	Open-source, scalable		
Pinecone HNSW	Managed, high performance		
Weaviate HNSW	GraphQL + Knowledge Graph		
Qdrant HNSW + Quantization Built in Rust, fast			
++			

Integrated Solutions

- PostgreSQL → pgvector extension
- Elasticsearch → Text + Vector search
- Redis → In-memory + Vector support

Foundation Library

• Faiss (Meta) → HNSW, IVFPQ (Industry Standard)

Vector Database Storage Structure

```
→ Unique key
ID
Vector → Similarity search
Metadata → Filters (category, price, etc.)
```

Example:

```
{ id: "product_456", vector: [0.98,0.23,...],
metadata: {"name":"Red Shoes", "price":89.99} }
```


10 Search Types

- 1. **Vector Similarity Search** → "Onion jaisi items lao"
- 2. Exact ID Search → "Product 456 lao"
- 3. **Hybrid Search** → "Onion jaisi items under ₹50 lao"

1 1 Algorithm Selection Guide

Case Recommended

```
✓ Best Performance → HNSW
\square Low Memory \rightarrow IVF + PQ

    Balanced → IVF Only

 Low Dimension → KD-Tree
```

1 Ultimate Summary

- **6** Key Insights
 - 1. **X** Brute Force → Slow
 - 2. \checkmark ANN \rightarrow Fast + Smart
 - 3. \mathbf{Y} HNSW \rightarrow Best performance
- Vector DBs samajhte hain meaning, sirf words nahi!

1 Implementation Roadmap

Type → Tool

 $\begin{array}{ll} \text{Startup} & \to \text{Pinecone} \\ \text{Enterprise} & \to \text{Milvus} \end{array}$

SQL Users → PostgreSQL + pgvector

Developers/Researchers → Faiss

1 Imal Takeaway

- **♦ Traditional DBs** → Exact Match
- ♦ Vector DBs → Semantic Understanding
- ♦ ANN Algorithms → Fast + Smart
- ♦ Hybrid Systems → Best Real-World Performance

: In short:

"Vector DBs think like humans — they understand meaning, not just text." 💥

🦬 Made by Harshal Chauhan | Expert Notes for Visual Learning 🌠