STATS300B – Lecture 4

Julia Palacios Scribed by Michael Howes

01/13/22

Contents

 1 Relationships between the modes of convergence
 1

 2 Scales of magnitude
 2

 3 Inequalities for the L^r space
 2

 4 Convergence in distribution
 4

1 Relationships between the modes of convergence

We ended last lecture with the statement of the following implications,

$$X_n \stackrel{a.s.}{\to} X \Longrightarrow X_n \stackrel{p}{\to} X \Longrightarrow X_n \stackrel{d}{\to} X,$$

and for any r > 0,

$$X_n \xrightarrow{L^r} X \Longrightarrow X_n \xrightarrow{p} X \Longrightarrow X_n \xrightarrow{d} X.$$

None of the converse are true in generality, but today we will see some partial converses. Starting with the following,

Proposition 1. Suppose that $X_n \stackrel{p}{\to} X$, then there exists a subsequence X_{n_k} such that $X_{n_k} \stackrel{a.s.}{\to} X$ as $k \to \infty$.

Proof. Suppose that $X_n \stackrel{p}{\to} X$. Then for every $k \in \mathbb{N}$, there exists n_k such that,

$$\mathbb{P}(\|X_{n_k} - X\| \ge 1/k) \le 2^{-k}.$$

We may choose the integers n_k so that they are strictly increasing in k. We will now show that $X_{n_k} \stackrel{a.s.}{\to} X$. Let B be the set on which $X_{n_k} \to X$. Note that

$$A_m = \bigcap_{k=m}^{\infty} \{ \|X_{n_k} - X\| < 1/k \} \subseteq B.$$

Furthermore,

$$\mathbb{P}(A_m^C) \le \sum_{k=m}^{\infty} \mathbb{P}(\|X_{n_k} - X\| \ge 1/k) \le \sum_{k=m}^{\infty} \frac{1}{2^k}.$$

Thus, $\mathbb{P}(A_m^C) \to 0$ as $m \to \infty$ and hence $\mathbb{P}(A_m) \to 1$ as $m \to \infty$. Since $\mathbb{P}(B) \ge \mathbb{P}(A_m)$ for every m we have $\mathbb{P}(B) = 1$.

2 Scales of magnitude

Recall the following definitions for describing the asymptotic relationship between sequences of numbers.

Definition 1. Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be sequences of constants. Then,

- 1. $a_n = o(b_n)$ means that $\frac{a_n}{b_n} \to 0$ as $n \to \infty$.
- 2. $a_n = O(b_n)$ means that $\limsup_{n \to \infty} \left| \frac{a_n}{b_n} \right| < \infty$.
- 3. $a_n \sim b_n$ means that $\frac{a_n}{b_n} \to 1$ as $n \to \infty$.

These definitions all have probabilistic analogs for sequences of random variables.

Definition 2. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables and let $\{b_n\}_{n\geq 0}$ be a sequence of constants. Then,

- 1. $X_n = o_p(b_n)$ means that $\frac{X_n}{a_n} \stackrel{p}{\to} 0$ as $n \to \infty$.
- 2. $X_n = O_p(1)$ means that

$$\lim_{K \to \infty} \sup_{n} \mathbb{P}(|X_n| \ge K) = 0.$$

3. $X_n = O_p(b_n)$ means that $\frac{X_n}{b_n} = O_p(1)$.

The following arithmetic rules are useful and simple to prove.

Lemma 1. We have

$$\begin{aligned} o_p(1) + o_p(1) &= o_p(1) \\ O_p(1) + O_p(1) &= O_p(1) \\ O_p(a_n)O_P(b_n) &= O_P(a_nb_n) \\ O_p(a_n)o_p(b_n) &= o_p(a_nb_n). \end{aligned}$$

3 Inequalities for the L^r space

We will now state and prove some important inequalities and facts about random variables in L^r .

Proposition 2. If $\mathbb{E}|X|^r < \infty$, then $\mathbb{E}|X|^{r'} < \infty$ for all $r' \leq r$.

Proof. If $r' \leq r$, then $|X|^{r'} \leq 1 + |X|^r$. Thus, if $\mathbb{E}|X|^r < \infty$, then

$$\mathbb{E}|X|^{r'} \le 1 + \mathbb{E}|X|^r < \infty$$

Proposition 3. For any random variable X, $Var(X) < \infty$ if and only if $\mathbb{E}[X^2] < \infty$.

Proof. If $\mathbb{E}[X^2] < \infty$, then $\mathbb{E}[X] \leq \mathbb{E}[|X|] < \infty$. And thus

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 < \infty.$$

If $\operatorname{Var}(X) < \infty$, then $\mathbb{E}[(X - \mathbb{E}[X])^2] < \infty$ in particular $\mathbb{E}[X] \in \mathbb{R}$. Thus, $\mathbb{E}[X^2] = \mathbb{E}[X]^2 + \operatorname{Var}(X) < \infty$.

Proposition 4. For every r > 0, $\mathbb{E}|X + Y|^r \le c_r \mathbb{E}|X|^r + c_r \mathbb{E}|X|^r$ where $c_r = 1$ if $0 < r \le 1$ and $c_r = 2^{r-1}$ for $r \ge 1$.

Proof. First suppose that r > 1. The function $f(x) = |x|^r$ is convex and thus,

$$\left| \frac{X+Y}{2} \right|^r \le \frac{1}{2} |X|^2 + \frac{1}{2} |Y|^r.$$

Thus, $|X + Y|^r \le 2^{r-1}|X|^r + 2^{r-1}|Y|^r$. Now suppose $0 < r \le 1$. If $|X + Y|^r \le |X|^r$, then we are done. If $|X + Y|^r > |X|^r$, then

$$\begin{split} |X+Y|^r - |X|^r &= \int_{|X|}^{|X+Y|} r t^{r-1} dt \\ &\leq \int_{|X|}^{|X|+|Y|} r t^{r-1} dt \\ &= \int_0^{|Y|} r (t+|Y|)^{r-1} dt \\ &\leq \int_0^{|y|} r t^{r-1} dt \\ &= |Y|^r. \end{split}$$

Thus, $|X + Y|^r \le |X|^r + |Y|^r$.

We next prove Hölder's inequality.

Proposition 5. Let $r, s \ge 1$ be such that $\frac{1}{r} + \frac{1}{s} = 1$, then

$$\mathbb{E}|XY| \le \left(\mathbb{E}|X|^r\right)^{1/r} \left(\mathbb{E}^{1/s}|Y|^s\right)^{1/s}.$$

Proof. If $\mathbb{E}|X|^r = 0$ or $\mathbb{E}|Y|^s = 0$, then X = 0 almost surely or Y = 0 almost surely. Hence, XY = 0almost surely and thus $\mathbb{E}|XY|=0$. Thus, we may assume $\mathbb{E}|X|^r, \mathbb{E}|Y|^s>0$. If $\mathbb{E}|X|^{r'}=\infty$ or $\mathbb{E}|Y|^s = \infty$, then we are done. Thus, we will assume that $\mathbb{E}|X|^r$, $\mathbb{E}|Y|^s \in (0,\infty)$. We will first prove Young's inequality which states for all $a, b \ge 0$,

$$ab \le \frac{a^r}{r} + \frac{b^s}{s}.$$

Note that if a=0 or b=0, then Young's inequality is an equality. Thus assume that a,b>0. We know that the function $x \mapsto e^x$ is convex. Since $\frac{1}{r} + \frac{1}{s} = 1$, we thus have

$$ab = e^{\log(ab)}$$

$$= e^{\log(a) + \log(b)}$$

$$= e^{\frac{1}{r} \log(a^r) + \frac{1}{s} \log(b^r)}$$

$$\leq \frac{1}{r} e^{\log(a^r)} + \frac{1}{s} e^{\log(b^s)}$$

$$= \frac{a^r}{r} + \frac{b^s}{s},$$

as claimed. We will now apply Young's inequality point-wise to prove Hölder's inequality,

$$\begin{split} \frac{\mathbb{E}[|XY|]}{\left(\mathbb{E}|X|^r\right)^{1/r} \left(\mathbb{E}^{1/s}|Y|^s\right)^{1/s}} &= \int_{\Omega} \frac{|X||Y|}{\left(\mathbb{E}|X|^r\right)^{1/r} \left(\mathbb{E}^{1/s}|Y|^s\right)^{1/s}} d\mathbb{P} \\ &\leq \int_{\Omega} \frac{1}{r} \frac{|X|^r}{\mathbb{E}|X|^r} + \frac{1}{s} \frac{|Y|^s}{\mathbb{E}|Y|^s} d\mathbb{P} \\ &= \frac{1}{r\mathbb{E}|X|^r} \int_{\Omega} |X|^r d\mathbb{P} + \frac{1}{s\mathbb{E}|Y|^s} \int_{\Omega} |Y|^s d\mathbb{P} \\ &= \frac{1}{r} + \frac{1}{s} \\ &= 1. \end{split}$$

Thus
$$\mathbb{E}|XY| \leq (\mathbb{E}|X|^r)^{1/r} (\mathbb{E}^{1/s}|Y|^s)^{1/s}$$
.

4 Convergence in distribution

The following theorem shows that we can study convergence in distribution of random vectors by projecting onto one dimensional subspaces.

Theorem 1 (Cramér–Wold device). Let X_n and X be random vectors in \mathbb{R}^d , then $X_n \stackrel{d}{\to} X$ if and only if $a^T X_n \stackrel{d}{\to} a^T X$ for all constants $a \in \mathbb{R}^d$.

We also have a version of the continuous mapping theorem for convergence in distribution and almost sure convergence. The version for convergence in probability was stated in the first lecture.

Theorem 2 (Continuous mapping theorem). Let g be a continuous function on a set B such that $\mathbb{P}(X \in B) = 1$. Then

- 1. If $X_n \stackrel{p}{\to} X$, then $g(X_n) \stackrel{p}{\to} g(X)$.
- 2. If $X_n \stackrel{d}{\to} X$, then $g(X_n) \stackrel{d}{\to} g(X)$.
- 3. If $X_n \stackrel{a.s.}{\to} X$, then $g(X_n) \stackrel{d}{\to} g(X)$.

We have already proved 1. For now, we will only prove 3. Once we have Skorokhod's theorem we will see that 3 implies 2.

Proof. Let A be the set on which $X_n \to X$. Since g is continuous on B, we have $g(X_n) \to g(X)$ on $A \cap B$. Since A and B both have probability 1, $\mathbb{P}(A \cap B) = 1$ and thus $\mathbb{P}(g(X_n) \to g(X)) = 1$.

Definition 3. Given a cumulative distribution function F on \mathbb{R} , define $F^{-1}:(0,1)\to\mathbb{R}$ to be the function

$$F^{-1}(t) = \inf\{x : F(x) \ge t\}.$$

The function F^{-1} is called the quantile function of F.

Proposition 6. The function F^{-1} is non-decreasing and left-continuous. And for all $t \in (0,1)$ and $x \in \mathbb{R}$,

$$F^{-1}(t) \le x \iff t \le F(x).$$

Proof. The set $\{x: F(x) \geq t\}$ are non-increasing with t and thus if $t \leq t'$, then

$$F^{-1}(t) = \inf\{x : F(x) \ge t\} \le \inf\{x : F(x) \ge t'\} = F^{-1}(t').$$

Showing that F^{-1} is non-increasing. Continuity can be proved by considered first the points t such that F is continuous at $F^{-1}(t)$ and then the points t where F is discontinuous at $F^{-1}(t)$. A picture helps.

Finally, if $F^{-1}(t) \le x$, then $\inf\{z : F(z) \ge t\} \le x$. Thus, for any $\varepsilon > 0$, there exists $z < x + \varepsilon$ such that $F(z) \le t$. Since F is right-continuous, this implies that

$$F(x) = \lim_{z \searrow x} F(z) \le t.$$

Conversely, if $t \leq F(x)$, then $x \in \{z : F(z) \geq t\}$ and so $F^{-1}(t) \leq x$.

The function F^{-1} also have the following properties.

Proposition 7. Let X be random variable with CDF F. Then for all $t \in (0,1)$,

$$\mathbb{P}(F(X) \le t) \le t,$$

and we have equality if and only if t is in the range of F. In particular if F is continuous, then the above holds for all $t \in (0,1)$ and thus $F(X) \sim U(0,1)$. We can also write the above inequality as for all $t \in (0,1)$

$$F(F^{-1}(t)) \ge t.$$

We also have $F^{-1}(F(x)) \leq x$ for all $x \in \mathbb{R}$ with strict inequality if and only if $F(x - \varepsilon) = F(x)$ for some $\varepsilon > 0$. Thus, $\mathbb{P}(F^{-1}(F(X)) \neq X) = 0$.

We also have

Proposition 8. Let $U \sim U(0,1)$ and let F be some CDF function. Let $X = F^{-1}(U)$. Then $\{X \leq x\} = \{U \leq F(x)\}$ and so $X \sim F$.

We will now state and prove Skorokhod's representation theorem.

Theorem 3. Suppose that $X_n \stackrel{d}{\to} X$, then there exist random variables X_n^* and X^* such that $X_n^* \stackrel{a.s.}{\to} X^*$, $X_n^* \stackrel{\text{dist}}{=} X_n$ and $X^* \stackrel{\text{dist}}{=} X$.

Proof. Let F_n be the CDF of X_n and let F be the CDF of X. Define $X_n^* = F_n^{-1}(U)$ and $X^* = F^{-1}(U)$. We will show that for all but a countable number of $t \in (0,1)$ we have $F_n^{-1}(t) \to F^{-1}(t)$. This will imply that $X_n^* \to X^*$ with probability 1.

Since F^{-1} is increasing, F^{-1} has at most countably many discontinuities. Let $t \in (0,1)$ be a point such that F^{-1} is continuous at t and let $\varepsilon > 0$. We can find a value x such that F is continuous at x and

$$F^{-1}(t) - \varepsilon < x < F^{-1}(t)$$
.

It follows that F(x) < t. Since F is continuous at x we know that $F_n(x) \to F(x)$. Thus, for large enough n, $F_n(x) < t$ which implies $x \le F_n^{-1}(t)$ and so

$$\liminf_n F_n^{-1}(t) \ge x \ge F^{-1}(t) - \varepsilon.$$

Which implies $\liminf_n F_n^{-1}(t) \ge F^{-1}(t)$. Now consider s > t and choose y such that $F^{-1}(s) < y < F^{-1}(s) + \varepsilon$ and F is continuous at y. Thus, $t < s \le F(y)$. Thus, for large enough n, $t < F_n(y)$ which implies $F_n^{-1}(t) \le y \le F^{-1}(s) + \varepsilon$. This implies that

$$\limsup_{n} F_n^{-1}(t) \le F^{-1}(s) + \varepsilon,$$

for all s > t and $\varepsilon > 0$ since F^{-1} is continuous at t this implies that

$$\limsup_{n} F_n^{-1}(t) \le F^{-1}(t).$$

Thus, $F_n^{-1}(t) \to F^{-1}(t)$ as required.

As a corollary of Skorokhod's theorem we can prove the continuous mapping theorem for convergence in distribution.

Corollary 1. Suppose that $X_n \stackrel{d}{\to} X$ and g is continuous on a set B with $\mathbb{P}(X_0 \in B) = 1$, then $g(X_n) \stackrel{d}{\to} g(X)$

Proof. Let X_n^* and X^* be as in Skorokhod's theorem. Then $g(X_n^*) \stackrel{a.s.}{\to} g(X^*)$ be the continuous mapping theorem for almost sure convergence. Thus, $g(X_n^*) \stackrel{d}{\to} g(X^*)$. But $g(X_n^*) \stackrel{\text{dist}}{=} g(X_n)$ and $g(X^*) \stackrel{\text{dist}}{=} g(X)$ and thus $g(X_n) \stackrel{d}{\to} g(X)$.