МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 1

ЭЛЧЕТ		
АЩИЩЕН С ОЦЕНКОЙ УКОВОДИТЕЛЬ		
		5 5 74
доцент, канд.техн.наук должность, уч. степень, звание	подпись, дата	В. Б. Коцкович инициалы, фамилия
ОТЧЕТ ПО	ЛАБОРАТОРНОЙ РАБ	OTE №2
ИССЛЕДОВАНИЕ ДЕФОР	МАЦИИ ПЛОСКОГО ИЗ	ГИБА КОНСОЛЬНОГО
СТЕРЖНЯ ПРЯМОХ	УГОЛЬНОГО ПОПЕРЕЧЬ	ЮГО СЕЧЕНИЯ
по	дисциплине: МЕХАНИКА	
по	дисциплине: МЕХАНИКА	
по	дисциплине: МЕХАНИКА	
	дисциплине: МЕХАНИКА	
по РАБОТУ ВЫПОЛНИЛ	дисциплине: МЕХАНИКА	

1. Цель работы: экспериментальное исследование прогибов консольного стержня прямоугольного поперечного сечения при плоском изгибе.

2. Описание лабораторной установки:

Рис 1 – Схема лабораторной установки

Схема лабораторной установки приведена на рис. 1. Она состоит из массивной платформы I со стойкой 2, на которой закреплен объект исследования - стержень 7.

Стержень 7 представляет собой стальную линейку длиной $l=500\,$ мм и размером поперечного сечения $b*h-31*7\,$ мм². Стержень 7 закреплен на стойке 2 с помощью муфты 5 стопорным винтом 6. На левом торце стержня закреплен диск 4 со шкалой углового положения объекта исследования. Угол наклона, а главной оси инерции поперечного сечения к вертикальному направлению указан на шкале. Угол наклона, а устанавливается по шкале диска 4 при освобождении стопорного винта 6 с помощью поворотного винта 3. Нагружение стержня осуществляется грузами 8. Грузы 8 подвешиваются к наружному кольцу подшипника 9 с помощью специального крючка. Подшипник 9 обеспечивает вертикальное положение грузов 8 в независимости от положения стержня 7. Для измерения прогиба конца стержня используется индикатор 10, закрепленный на стойке 11.

3. Результаты измерений и вычислений:

Таблица 1- Результаты измерений для угла поворота 0 градусов

Расстояние, мм	250	200	250	400
Масса, кг	250	300	350	400
1	0,04	0,07	0,08	0,1
2	0,1	0,14	0,16	0,2
3	0,15	0,2	0,25	0,32
4	0,23	0,28	0,35	0,42
fэi	0,13	0,173	0,21	0,26

Таблица 2 - Результаты измерений для угла поворота 90 градусов

Расстояние, мм	250	200	250	400
Масса, кг	250	300	350	400
1	0,85	1,19	1,5	1,89
2	1,72	2,42	3,05	3,85
3	2,64	3,64	4,6	5,75
4	3,54	4,83	6,16	7,63
fэi	2,1875	3,2	3,8275	4,78

Таблица 3 - Вычисление fт угла поворота 0 градусов

Расстояние, мм	250	300	350	400
Масса, кг	230	300	330	400
1	-0,03746	-0,05395	-0,06755	-0,0844
2	-0,07493	-0,10358	-0,13511	-0,1688
3	-0,11239	-0,15537	-0,20266	-0,25319
4	-0,14985	-0,20716	-0,27022	-0,33759

Таблица 4 - Вычисление fт угла поворота 90 градусов

			•	1 1 2
Расстояние, мм	250	300	350	400
Масса, кг	230	300	330	400
1	-0,73474	-1,01571	-1,32488	-1,65522
2	-1,46948	-2,03141	-2,64977	-3,31045
3	-2,20422	-3,04712	-3,97465	-4,96567
4	-2,93896	-4,06282	-5,29954	-6,6209

Таблица 5 — Вычисление погрешностей для угла поворота 0 градусов

	· ·			1 1 2
Расстояние, мм	250	300	350	400
Масса, кг	250	300	330	400
1	5,47004	4,10405	3,47911	2,98417
2	3,2349	2,61676	2,23946	1,99208
3	2,49002	2,07784	1,82633	1,66141
4	2,11754	1,80838	1,61973	1,49606

Таблица 6 - Вычисление погрешностей угла поворота 90 градусов

Расстояние, мм	250	300	350	400
Масса, кг	230	300	330	400
1	4,97724	3,74433	3,20566	2,76547
2	2,98862	2,43853	2,10283	1,88273
3	2,32575	1,95902	1,73522	1,58849
4	1,93896	1,71926	1,55141	1,44137

3.1. Исследование косого изгиба:

Таблица 7 — Результаты измерений (45 градусов).

Расстояние, мм	250		31	00	350			400
Масса, кг	230]	50	330			+00
1	0,36	0,45	0,51	0,64	0,63	0,81	0,81	1,01
2	0,71	0,9	1,01	1,29	1,29	1,64	1,62	2,06
3	1,09	1,38	1,53	1,94	1,97	2,48	2,46	3,1
4	1,46	1,86	2,03	2,58	2,62	3,31	3,27	4,12
fVi, fHi	0,905	1,148	1,27	1,613	1,628	2,06	2,04	2,573
fэi	1,4328	33	1,697	84	1,920	42	2,14	779

Таблица 8 — Теоретический расчёт

Расстояние, мм	250	300	350	400
Масса, кг	230	300	330	400
1	0,037464	0,05179	0,067554	0,084398
2	0,074927	0,103579	0,135109	0,168796
3	0,112391	0,155369	0,202663	0,253194
4	0,149854	0,207158	0,270217	0,337592

Таблица 9 — Погрешности

Расстояние, мм	250	300	350	400
Масса, кг	230	300	330	400
1	1,97278	1,78001	1,67397	1,61026
2	1,64193	1,56633	1,52453	1,149907
3	1,5519	1,50772	1,46387	1,4647
4	1,51178	1,48122	1,66483	1,145303

4. Рабочие формулы:

$$f_{\ni i} = \frac{\sum_{j=1}^{n} c_j}{n} \tag{1}$$

 $f_{\ni i}$ - экспериментальное значение прогибов, для каждой подвешиваемой массы.

 C_j - показания индикатора, где $j = 1 \dots 4$ - количество измерений.

$$f_{Ti} = \frac{P_i l_p^2}{6EI} * (3l_u - l_p)$$
 (2)

 f_{Ti} — теоретический расчет прогибов.

 $l_p\,$ — расстояние от защемленного конца стержня до точки.

 l_u — расстояние от защемленного конца стержня до точки контакта индикатора со стержнем.

Е – модуль Юнга первого рода (для стали Е=200ГПа).

I – момент инерции поперечного сечения.

$$\gamma_{fi} = \frac{f_{Ti} - \Delta f_{pi}}{f_{Ti}} * 100\%$$
 (3)

 γ_{fi} — погрешность эксперемента.

 Δf_{pi} — прирощение прогиба.

$$\gamma = arctg(\frac{f_{Ti}}{l_p}) \tag{4}$$

•
$$\Delta f_{ui} = (l_{ui} + l_{pi}) * tg \gamma$$
 (5)

 Δf_{ui} — приращение прогиба

 $_{\Delta}f_{pi}$ — приращение прогиба на участке

5. Примеры вычислений:

Для 0 градусов:

$$f_{3i} = \frac{\sum_{i}^{n} = 1C_{j}}{n} = \frac{0,05 + 0,1 + 0,16 + 0,22}{4} = 0,13$$

$$I = \frac{bh^{3}}{12} = \frac{7 * 31^{3}}{12} = 17378$$

$$f_{Ti} = -\frac{P_{i}l_{p}^{2}}{6EI} * (3l_{u} - l_{p}) = -\frac{10 * 250^{2} * (3 * 500 - 250)}{6 * 200 * 17378} = -0,0374636$$

$$\gamma = arctg\left(\frac{f_{Ti}}{l_{p}}\right) = arctg\left(\frac{-0,0374636}{250}\right) = -0,000149854$$

$$\gamma_{fi} = \frac{f_{Ti} - \Delta f_{pi}}{f_{Ti}} * 100\% = \frac{-0,0374636 - 0,1674636}{-0,0374636} * 100\% = 5,47004\% \approx 5,47\%$$

Для 90 градусов:

$$f_{3i} = \frac{\sum_{i}^{n} = 1C_{j}}{n} = \frac{0,85 + 1,73 + 2,66 + 3,55}{4} = 2,1$$

$$\begin{split} I &= \frac{bh^3}{12} = \frac{31*7^3}{12} = 886,0833 \\ f_{Ti} &= -\frac{P_i l_p^2}{6EI} * \left(3l_u - l_p\right) = -\frac{10*250^2*(3*500 - 250)}{6*200*886,0833} = -0,73474 \\ \gamma &= arctg\left(\frac{f_{Ti}}{l_p}\right) = arctg\left(\frac{-0,73474}{250}\right) = -0,002938955 \\ \Delta f_{\text{M}i} &= \left(l_u - l_{pi}\right)tg\gamma = (500 - 250)* -0,002938955 = -0,734740901 \\ \Delta f_{pi} &= f_{\ni i} - \Delta f_{\text{M}i} = 2,1875 - (-0,734740901) = 2,922240901 \\ \gamma_{fi} &= \frac{f_{Ti} - \Delta f_{pi}}{f_{Ti}} * 100\% = \frac{-0,73474 - 2,922240901}{-0,73474} * 100\% = 4,97724\% \approx 4,98\% \end{split}$$

Для 45 градусов:

$$\begin{split} f_y &= -\frac{P_i l_p^2}{6EI} * \left(3l_u - l_p \right) * \sin(\alpha) = -\frac{10 * 250^2 * (3 * 500 - 250)}{6 * 200 * 886,0833} * \sin(45) = -0,625194 \\ f_z &= -\frac{P_i l_p^2}{6EI} * \left(3l_u - l_p \right) * \cos(\alpha) = -\frac{10 * 250^2 * (3 * 500 - 250)}{6 * 200 * 886,0833} * \cos(45) = 0,385976 \\ \varphi &= \arctan\left(\frac{f_y}{f_z} \right) = \arctan\left(\frac{-0,625194}{0,385976} \right) = -1,0177 \\ \beta &= \varphi - \alpha = -1,0177 - 45 = -46,0177 \\ f_{TiV} &= f_{Ti} \cos(\beta) = 0,0374636 * \cos(-46,0177) = 0,0167864 \\ f_{TiH} &= f_{Ti} \sin(\beta) = 0,0374636 * \sin(-46,0177) = -0,0334924 \\ \gamma_{fiV} &= \frac{f_{Ti} - \Delta f_{piV}}{f_{Ti}} * 100\% = \frac{0,0374636 - 0,0167864}{0,0374636} * 100\% = 0,551928\% \approx 0,55\% \\ \gamma_{fiH} &= \frac{f_{Ti} - \Delta f_{piH}}{f_{Ti}} * 100\% = \frac{0,0374636 - (-0,0334924)}{0,0374636} * 100\% = 1,894\% \approx 1,89\% \\ \gamma_{fi} &= \sqrt{\gamma_{fiV}^2 + \gamma_{fiH}^2} = \sqrt{0,55^2 + 1,89^2} = 1,9684\% \approx 1,97\% \end{split}$$

6. Вывод:

В ходе выполнения лабораторной работы были изучены виды изгиба вала. В работе были исследованы плоский изгиб вала и косой изгиб. Были проведены теоретические расчёты и вычислены погрешности, значения которых свидетельствуют о правильности проведения испытаний