Overfitting, Regularization, Cross-validation

Dr. Wojtek Kowalczyk

wojtek@liacs.nl

Overfitting, Regularization, Cross-validation

- 1. Overfitting: model learns "small details" of the training set and is unable to correctly classify cases of the test set (usually: too many parameters/degrees of freedom)
- 2. Regularization: preventing overfitting by imposing some constraints on values or the number of model parameters
- 3. Cross-validation: monitoring the error both on the training and the test set

Regression: Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Regression: Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Neural Networks

Α0

Through optimization, we need to find the model (red) y(x,w) that minimizes the error function.

E_{SSE}(w): Sum squared error: 2E(w)

E_{RMS}(w): Root mean squared error

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Finding optimal coefficients: the *polyfit.m* function.

|x-y| instead of (x-y)2? Then error wouldn't be "smooth"...

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial (over-fitting)

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

REGULARIZATION

Regularization is a powerful technique of limiting overfitting.

The key idea: somehow enforce the absolute values of model parameters to be relatively small (in our case: coefficients of the polynomial).

<u>For example</u>: add to the error function an extra term: "the sum of squared coefficients of your model":

$$\lambda \sum_{i=0}^{M} w_i^2$$

where λ a tunable parameter that controls the size "punishment" for too big values of coefficients.

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Minimize training error while keeping the weights small. This is known as:
 - shrinkage,
 - ridge regression,
 - weight decay (neural networks)

Regularization (M=9; λ =0)

13

Regularization (d=9; λ =1)

Regularization (M=9; λ =1.5230e-08)

Regularization: error vs. lambda

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

TASK 1

Try to reconstruct (with help of Python) all the plots shown in the previous slides. In concreto, start with the function

$$y(x)=0.5+0.4*\sin(2*\pi^*x)$$
, for x in [0, 1].

Generate two noisy sets of n points (train and test) that will be used for approximating y, for n=9, 15, 100. The x-coordinates should be uniformly distributed in [0,1], y-coordinates should be contaminated with Gaussian noise with mean=0, std=0.05:

Task 2

Consider a unit cube in n-dimensional space $U_n=[0,1]^n$, and an n-dimensional unit ball B_n that is included in U_n :

$$B_n = \{(x_1, x_2, ..., x_n) \mid (x_1 - 0.5)^2 + (x_2 - 0.5)^2 + ... + (x_n - 0.5)^2 < 0.5^2\}$$

for n=1, 2, ..., 100.

- a) find the number of vertices ("corners") of U_n, Corners(n)
- b) calculate the length of the longest diagonal of U_n, Diag(n)
- c) estimate (or calculate) the volume of B_n, VolumeB(n)

Hint: generate 10⁶ points, uniformly distributed in U_n (points=rand(10⁶,n);) and check how many of them are in B_n

- d) calculate the volume of the "0.01-skin" of U_n : VolumeS(n) = 1^n-(1-2*0.01)^n
- e) For n= 2, 4, 8, ..., 1024 generate 1000 points in U_n, uniformly distributed, find distances between all pairs of these points, and produce a histogram these distances.

Produce a single script that generates all these figures.