Computer Organization and Architecture

4 Integer Arithmetic

Tongwei Ren

Sep. 17, 2018

Review

- Integer representation
- Floating-point Representation
- Decimal representation

Arithmetic And Logic Unit (ALU)

- ALU is that part of the computer that actually performs arithmetic and logical operations on data
 - Data are presented to the ALU in registers, and the results of an operation are stored in registers
 - The flag values, also stored in registers, are set as the operation result
 - The control unit provides signals that control the operation of the ALU and the movement of the data into and out of the ALU

Full Adder

- Addition: X + Y
- One bit addition:

$$S_i = X_i \oplus Y_i \oplus C_{i-1}$$

$$C_i = X_i C_{i-1} + Y_i C_{i-1} + X_i Y_i$$

AND gate latency: 1ty OR gate latency: 1ty XOR gate latency: 3ty

CarryOut = B & CarryIn | A & CarryIn | A & B

Sum = A XOR B XOR Carryln

Serial Carry Adder

- Latency
 - *Cn*: 2n ty
 - *Sn*: (2n+1) ty
- Drawback: slow

Carry Look Ahead Adder

Carry look ahead

$$C_i = X_i C_{i-1} + Y_i C_{i-1} + X_i Y_i$$

$$C_1 = X_1 Y_1 + (X_1 + Y_1) C_0$$

$$C_2 = X_2 Y_2 + (X_2 + Y_2) X_1 Y_1 + (X_2 + Y_2) (X_1 + Y_1) C_0$$

$$C_3 = X_3 Y_3 + (X_3 + Y_3) X_2 Y_2 + (X_3 + Y_3) (X_2 + Y_2) X_1 Y_1$$

$$+ (X_3 + Y_3) (X_2 + Y_2) (X_1 + Y_1) C_0$$

$$C_4 = \dots$$
Let
$$P_i = X_i + Y_i \quad G_i = X_i Y_i$$

$$C_1 = G_1 + P_1 C_0$$

$$C_2 = G_2 + P_2 G_1 + P_2 P_1 C_0$$

$$C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0$$

$$C_4 = \dots$$

Carry Look Ahead Adder (cont.)

Drawback: complex

Latency = 1ty + 2ty + 3ty = 6ty

[李嘉麒, 131250089]

Partial Carry Look Ahead Adder

- Idea
 - Serially connect some CLA adders
- Example

Latency = 3ty + 2ty + 2ty + 5ty = 12ty

Addition

- $[X+Y]C = [X]C + [Y]C (MOD 2^n)$
- Overflow

- $C_n \neq C_{n-1}$: $overflow = C_n \oplus C_{n-1}$
- $S_n \neq X_n, Y_n$: $overflow = X_n Y_n \overline{S_n} + \overline{X_n} \overline{Y_n} S_n$

Subtraction

- $[X-Y]c = [X]c + [-Y]c (MOD 2^n)$
- Overflow: same to addition

[袁睿, 131250088]

Multiplication

- Manual multiplication
 - If $Y_i = 0$, result is 0; otherwise, result is X
 - Left shift result in each step
 - Add all results
- Modification for computer
 - Compute partial product in each step
 - Right-shift partial product instead of leftshift results
 - Only shift partial product if $Y_i = 0$

7	0111
6	× 0110
42	0000
	0111
	0111
	0000
	0101010

Example

Partial product

initial		0000	
0	->	00000	
1	+	01110	
	->	001110	
1	+	101010	
	->	<mark>0101</mark> 010	
0	->	<mark>0010</mark> 1010	42

Implementation

• Implementation (cont.)

7	0111		p	roduct	T
× 6	× 0110	initial		0000	0110
		0	->	0000	0011
42	0000 0111	1	+	0111	0011
	0111		->	0011	10 01
	0000	1	+	1010	1001
	0101010		->	0101	0100
		a	_ <	0010	1010

• Problem: $[X \times Y]c \neq [X]c \times [Y]c$

- Rough idea
 - Change multiplicand and multiplier from complement representation to sign magnitude representation
 - Change product from sign magnitude representation to complement representation

Booth's algorithm

$$\begin{split} X \times Y &= X \times Y_n Y_{n-1} \dots Y_2 Y_1 \\ &= X \times \left(-Y_n \times 2^{n-1} + Y_{n-1} \times 2^{n-2} + \dots + Y_2 \times 2^1 + Y_1 \times 2^0 \right) \\ &= X \times \begin{pmatrix} -Y_n \times 2^{n-1} + Y_{n-1} \times (2^{n-1} - 2^{n-2}) + \dots \\ +Y_2 \times (2^2 - 2^1) + Y_1 \times (2^1 - 2^0) \end{pmatrix} \\ &= X \times \begin{pmatrix} (Y_{n-1} - Y_n) \times 2^{n-1} + (Y_{n-2} - Y_{n-1}) \times 2^{n-2} + \dots \\ + (Y_1 - Y_2) \times 2^1 + (Y_0 - Y_1) \times 2^0 \end{pmatrix} \quad \mathbf{Y_0} = \mathbf{0} \\ &= 2^n \times \underbrace{\sum_{i=0}^{n-1} \left(X \times (Y_i - Y_{i+1}) \times 2^{-(n-i)} \right)}_{P_{i+1}} \\ &= 2^{-1} \times \left(P_i + X \times (Y_i - Y_{i+1}) \right) \end{split}$$

- Booth's algorithm (cont.)
 - 1. Add $Y_0 = 0$
 - 2. According to $Y_{i+1}Y_i$, determine whether add +X, -X, +0
 - 3. Right shift partial product
 - 4. Repeat step 2 and step 3 *n* times, and get the final product

• Booth's algorithm (cont.)

-7		product	Y	
× -6	initial	0000	10100	
42	$Y_0 - Y_1 = \emptyset$	-> 0000	<mark>0</mark> 1010	
	$Y_1-Y_2 = -1$	-X 0111	<mark>0</mark> 1010	
[X]c = 1001		-> 0011	10 101	
[-X]c = 0111	$Y_2 - Y_3 = 1$	+X 1100	10 101	
		-> 0110	01010	
[Y]c = 1010	$Y_3 - Y_4 = -1$	-X 1101	01010	
		-> 0110	10101	106

• Booth's algorithm (cont.)

-7			product	Y	
× -6	initial		0000	10100	
42	$Y_0 - Y_1 = 0$	->	0000	<mark>0</mark> 1010	
	$Y_1 - Y_2 = -1$	-X	0111	<mark>0</mark> 1010	
[X]c = 1001		->	0011	10 101	
[-X]c = 0111	$Y_2-Y_3 = 1$	+X	1100	10 101	
		->	1110	01010	
[Y]c = 1010	$Y_3 - Y_4 = -1$	-X	0101	<mark>010</mark> 10	
		->	0010	10101	42

Array multiplier

Division

- Preprocessing
 - If X = 0 and $Y \neq 0$: 0
 - If $X \neq 0$ and Y = 0: exception
 - If X = 0 and Y = 0: NaN (Not a Number)
 - If $X \neq 0$ and $Y \neq 0$: further processing

Manual division

- Examine dividend from left to right, until the set of bits examined represents a number greater than or equal to the divisor
- Subtract divisor from dividend, the result is 1 if the partial remainder is larger than 0; otherwise, the results is 0
- Right shift divisor and repeat the above step

Implementation

remainder

divisor

quotiont

Example

		remainuei		uivisui	4	uotient
0010	initial	00000111		00110000		0000
		00000111	->	00011000		0000
	not	00000111		00011000	<-	0000
		00000111	->	00001100		0000
0000	not	00000111		00001100	<-	0000
00111		00000111	->	00000110		0000
	enough -	00000001		00000110	<-	0001
		00000001	->	00000011		0001
0001	not	00000001		00000011	<-	0010
	00111 0011 0001 0000	0010 00000111 0000 000111 0001 0001 0001 0000 enough -	0010 initial 00000111 00000111 00000 111 00000 00000111 00000111 00000111 00011 00000111 00011 0000001 0000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000000	O010	Oolo	Oolo

Implementation

romainder quotient

• Example (cont.)

		re	mainue	ar d	uotient	uivisui
0010	initial		0000		0111	0011
00000111		<-	0000	<-	111	0011
0000	not		0000		1110	0011
000111 0000		<-	0001	<-	110	0011
	not		0001		1100	0011
00111 0011		<-	0011	<-	100	0011
0001	enough -		0000		1001	0011
0000		< -	0001	<-	001	0011
0001	not		0001		0010	0011
	00000111 0000 000111 0000 00111 0001 0000	00000111 0000 not 000111 0000 not 00111 00011 0001 enough -	0010 initial 00000111	0010 initial 0000 00000111 <- 0000	0010 initial 0000 00000111 <- 0000	0010 initial 0000 0111 00000111 <- 0000

divisor

- How to judge whether remainder is large enough
 - If remainder has the same sign with divisor: subtraction
 - If remainder has the different sign with divisor: addition

remainder Divisor		Subtra	action	Addition		
sign	sign	0	1	0	1	
0	0	Enough	Not enough			
0	1			Enough	Not enough	
1	0			Not enough	Enough	
1	1	Not enough	Enough			

Procedure

- Extend the dividend by adding n bits sign in the front, and store it in the remainder and quotient registers
- Left shift the remainder and quotient, and judge whether the remainder large enough
 - If large enough, do addition or subtraction and set quotient to 1
 - If not large enough, set quotient to 0
- Repeat the above step
- If the dividend has the different sign with divisor, replace quotient with its complement
- The remainder is in the remainder register

[王子安, 141250146]

Division (Ganter) quotient divisor initial < -< - Example + (recover) -< -< -+ (recover) -< -(enough) + -2 + 0011 < -+ 0000 +(recover) -

- Problem: recover remainder is high cost
- Idea: not recover remainder
 - Only consider subtraction
 - If remainder R_i is large enough

$$R_{i+1} = 2R_i - Y$$

If remainder is not large enough

$$R_{i+1} = 2(R_i + Y) - Y = 2R_i + Y$$

Procedure

- Extend the dividend by adding n bits sign in the front, and store it in the remainder and quotient registers
- If dividend has the same sign with divisor, do subtraction; otherwise, do addition
 - If the remainder has same sign with divisor, $Q_n=1$; otherwise, $Q_n=0$
- If the remainder has the same sign with divisor, $R_{i+1} = 2R_i Y$; otherwise, $R_{i+1} = 2R_i + Y$
 - If the new remainder has the same sign to divisor, set quotient to 1; otherwise, set quotient to 0
- Repeat the above step

- Procedure (cont.)
 - Left shift quotient, if quotient is negative (the dividend has the different sign with divisor), quotient adds 1
 - The remainder has the different sign with dividend
 - Remainder adds divisor if the dividend has the same sign with divisor, and subtracts divisor otherwise

	remainder	q	uotien	t	divisor
initial	1111		1001		0011
+	0010		1001	1	0011
<-	0101	< -	001 <mark>1</mark>		0011
-	0010		001 <mark>1</mark>	1	0011
<-	0100	< -	0111		0011
-	0001		0111	1	0011
<-	0010 <	< -	1111		0011
-	1111		1111	0	0011
<-	1111	< -	1 110		0011
+	0010		1 110	1	0011
	. -		↓ <	-,+	1
	1111		1110		

 Array division $\mathbf{X_1}$ $\mathbf{X_2}$ X_4 \mathbf{X}_{6} X_7 X_8 P=1 Q_0^{\blacktriangleleft} Q_1 Q_2 $Q_3 \blacktriangleleft$

P

Carry in

Control P

Carry out

 R_4

 R_3

 \mathbf{R}_2

 R_1

 $\mathbf{R}_{\mathbf{0}}$

Summary

- Integer representation
- ALU, full adder, serial carry adder, carry look ahead adder
- Operation
 - Addition
 - Subtraction
 - Multiplication
 - Division

Thank You

rentw@nju.edu.en

