Math 134, Spring 2022

Lecture #3: Linear stability analysis & potentials

Friday April 1st

Slides and lecture recording

• The lecture will be recorded and posted to the Canvas page after class. You are not allowed to store or record the lectures by any other means.

Math 134, Spring 2022

Lecture #3: Linear stability analysis & potentials

Friday April 1st

Last time

• We considered continuous flows on the line given by the ODE

$$\dot{x} = f(x)$$
.

- We said that x^* is a fixed point if $f(x^*) = 0$.
- We discussed what it means to say a fixed point is stable, unstable, and half-stable.

Learning objectives

Today we will discuss:

- How to compute the linearization about a fixed point.
- How to use the linearization to determine the stability of a fixed point.
- How to find the potential function for a flow on the line.
- How to show there are no non-constant periodic solutions of continuous flows on the line (time permitting).

Linear stability analysis

Question: Can we say more about what happens close to fixed points?

$$\dot{x} = x(x+1)(x-1)^{2}$$
(Local method)
$$\dot{x}$$

$$\dot{y}$$
Linearization
$$\eta(t) = x(t) - (-1)$$

$$\chi(t) = \eta(t) - 1$$

$$\dot{x}(t) = \dot{\eta}(t)$$

$$\chi(x+1)(x-1)^{2} = (\eta-1)(\eta)(\eta-2)^{2}$$

$$= -4\eta + O(\eta^{2})$$

$$i = -4\pi$$
 $y = -4\pi$
 $y = -4\pi$

$$\dot{x} = f(x)$$

$$\frac{4}{4} = -44$$

The linearization

Suppose that x^* is a fixed point of the system

$$\dot{x} = f(x)$$
.

The **linearization** of this equation about x^* is the equation

Assume that
$$x^*$$
 is a fixed point, i.e. $f(x^*)=0$
Let $y = x - x^*$. Then

$$y' = x' = f(x)$$

$$y' = f'(x^*) + f'(x$$

$$\int \dot{\eta} = f'(x^*)\eta$$

$$\Psi(0) = \Psi$$

Theorem: Suppose that x^* is a fixed point of the system

$$\dot{x} = f(x)$$
.

Then, if

- $f'(x^*) < 0$, the fixed point x^* is stable.
- $f'(x^*) > 0$, the fixed point x^* is unstable.

Proof (sketch)

Look at the linearization,
$$y = x - x^{t}$$
 $y = 1^{t}(x^{t})y$
 $y = x^{t} + y(t)$

An example

Determine the stability of the fixed point $x^* = 0$ of

$$\dot{x} = \int_0^x e^{-\frac{1}{2}y^2} dy - 2x.$$
A) Stable

- > A) Stable
 - B) Unstable
 - C) Half-stable
 - D) None of the above

$$f'(x) = e^{-\frac{1}{2}x^2}$$

FTC

 $i = -4$

What happens if 1! (x+1=0? Answer: Anything!! $\dot{x} = -x^3 \quad f'(x) = -3x^3$ stable $\vec{x} = x^2 + f'(x) = 2x$

$$x = 0$$
 is stable

 $x = x^2$
 $f'(x) = 2x$
 $f'(0) = 0$
 $x = 0$
 $x = 0$

And $x =$

Potentials

Potentials

• Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and consider the system

$$\dot{x} = f(x)$$
.

ullet A function $V\colon \mathbb{R} o \mathbb{R}$ so that

$$f(x) = -V'(x)$$

is called a **potential** for f.

• Our system can be written as a gradient flow

$$\dot{x} = -V'(x).$$

An example

Recall: a potential V satisfies f(x) = -V'(x).

Which of the following is a potential function for

$$\dot{x} = x - x^3$$

- A) $1 3x^2$
- B) $\frac{1}{2}x^2 \frac{1}{4}x^4$
- C) $3x^2 1$
- D) $\frac{1}{4}x^4 \frac{1}{2}x^2$

Theorem: Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

Then the **potential energy** V(x(t)) is non-increasing (as a function of time). Further, if x(t) is not a fixed point for all $t \in (T_1, T_2)$ then the potential energy is strictly decreasing on (T_1, T_2) .

Proof:

Corollary: Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

If x^* is an isolated critical point of V then

- If it is a local minima of V, it is a stable fixed point.
- If it is a local maxima of V, it is an unstable fixed point.
- If it is an inflection point of V, it is a half-stable fixed point.

Proof:

An example (Exercise!)

Consider the system

$$\dot{x} = -V'(x)$$

Suppose that:

- V is smooth.
- The only solutions of V(x) = 0 are $x = \pm 1$.
- V(0) = -1.

Which of the following is a true statement?

- A) 0 is a stable fixed point
- B) There are no unstable fixed points
- C) There is a stable fixed point in (-1,1)
- D) There is at least one unstable fixed point

- *V* is smooth.
- The only solutions of V(x) = 0 are $x = \pm 1$.
- V(0) = -1.