

ROBERT v 1.2.1 2025/05/11 11:55:11

How to cite: Dalmau, D.; Alegre Requena, J. V. WIREs Comput Mol Sci. 2024, DOI: 10.1002/WCMS.1733

Section A. ROBERT Score

This score is designed to evaluate the models using different metrics.

No PFI (standard descriptor filter):

Model = GB · Train:Validation:Test = 81:9:10 Points(train+valid.):descriptors = 597:198 Score = 9 / 10

STRONG

Train: $R^2 = 1.0$, MAE = 7.2, RMSE = 1.1e+01 Valid.: $R^2 = 1.0$, MAE = 9.0, RMSE = 1.3e+01 Test: $R^2 = 0.99$, MAE = 1.6e+01, RMSE = 3e+01

Severe warnings

No severe warnings detected

Moderate warnings

- Uneven y distribution (Section C)
- Moderately correlated features (Section D)
- Potential "faulty" outliers (Section E)

Overall assessment

Reliable model, but examine warnings

PFI (only most important descriptors):

Model = GB · Train:Validation:Test = 81:9:10 Points(train+valid.):descriptors = 597:78 Score = 10 / 10

STRONG

Train: $R^2 = 1.0$, MAE = 7.2, RMSE = 1.1e+01 Valid.: R² = 1.0, MAE = 9.7, RMSE = 1.4e+01 Test: $R^2 = 0.99$, MAE = 1.5e+01, RMSE = 2.7e+01

Severe warnings

No severe warnings detected

Moderate warnings

- Uneven y distribution (Section C)
- Moderately correlated features (Section D)
- Potential "faulty" outliers (Section E)

Overall assessment

Reliable model, but examine warnings

ROBERT v 1.2.1 Page 1 of 8

Section B. Advanced Score Analysis

This section explains each component that comprises the ROBERT score.

1. Model vs "flawed" models (3 / 3

The model predicts right for the right reasons. Pass: +1, Unclear: 0, Fail: -1. *Details here.*

1. Model vs "flawed" models (3 / 3

The model predicts right for the right reasons. Pass: +1, Unclear: 0, Fail: -1. *Details here.*

2. Predictive ability of the model (2 / 2

Good predictive ability with R^2 (test) = 0.99. R^2 0.70-0.85: +1, R^2 >0.85: +2.

2. Predictive ability of the model (2 / 2

Good predictive ability with R^2 (test) = 0.99. R^2 0.70-0.85: +1, R^2 >0.85: +2.

3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. (2/2) Good predictive ability with R^2 (5-fold CV) = 0.97. R^2 0.70-0.85: +1, R^2 >0.85: +2.

3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. (2 / 2)

Good predictive ability with R^2 (5-fold CV) = 0.97. R^2 0.70-0.85: +1, R^2 >0.85: +2.

ROBERT v 1.2.1 Page 2 of 8

3b. Avg. standard deviation (SD) (2 / 2 Low variation, 4*SD (test) = 229.8 (17% y-range).

4*SD 25-50% y-range: +1, 4*SD < 25% y-range: +2. *Details here.*

3b. Avg. standard deviation (SD) (2 / 2

Low variation, 4*SD (test) = 222.8 (17% y-range). 4*SD 25-50% y-range: +1, 4*SD < 25% y-range: +2. Details here.

4. Points(train+valid.):descriptors (0 / 1 ===)

Number of descps. could be lower (ratio 597:198). 5 or more points per descriptor: +1.

4. Points(train+valid.):descriptors (1 / 1 ===)

38 points

26 points

Decent number of descps. (ratio 597:78). 5 or more points per descriptor: +1.

Section C. Distribution of y Values

This section shows the distribution of y values within the training and validation sets.

0 200 400 600 800 YSI values

y distribution analysis

x WARNING! Your data is not uniform (Q4 has 10 points while Q1 has 523)

y distribution analysis

100

80

60

40

x WARNING! Your data is not uniform (Q4 has 10 points while Q1 has 523)

10 points

1000

1200

ROBERT v 1.2.1 Page 3 of 8

Section D. Feature Importances

This section presents feature importances measured using the validation set.

BertzCT
AMID_C
BCUTV-1h
BCUTp-1h
SaasC
EState_VSA8
ETA_dBeta
RNCG
AXP-5d
ATSC1p

-25 0 25 50 75 100 125 150
SHAP value (impact on model output)

Pearson maps not created if >30 descriptors. descriptors.

Pearson maps not created if >30

Correlation analysis

x WARNING! Noticeable correlations observed (up to r = 0.84 or $R^2 = 0.7$, for ATSC3d and AATSC3d)

Correlation analysis

x WARNING! Noticeable correlations observed (up to r = 0.83 or $R^2 = 0.69$, for Mp and ETA_dBeta)

ROBERT v 1.2.1 Page 4 of 8

Section E. Outlier Analysis

This section detects outliers using the standard deviation (SD) of errors from the training set.

No PFI (standard descriptor filter):

Outliers (max. 10 shown)

Train: 32 outliers out of 537 datapoints (6.0%)

- M58 (5.7 SDs)
- M59 (5.5 SDs)
- M60 (5.4 SDs)
- M61 (5.4 SDs)
- M63 (4.9 SDs)
- M64 (4.8 SDs)
- M65 (4.4 SDs)
- M66 (4.3 SDs) - M67 (4.2 SDs)
- M68 (3.9 SDs)

Validation: 5 outliers out of 60 datapoints (8.3%)

- M96 (3.3 SDs)
- M124 (3.5 SDs)
- M153 (3.0 SDs)
- M175 (4.7 SDs)
- M191 (2.3 SDs)

Test: 8 outliers out of 66 datapoints (12.1%)

- M281 (2.0 SDs)
- M355 (1.7e+01 SDs)
- M141 (4.8 SDs)
- M137 (5.9 SDs)
- M115 (9.3 SDs)
- M102 (1.1e+01 SDs)
- M92 (2.2 SDs)
- M76 (7.2 SDs)

15 10 5 SD of the errors 0 -10 10 15 -15 -10 SD of the errors

PFI (only most important descriptors):

Outliers (max. 10 shown)

Train: 32 outliers out of 537 datapoints (6.0%)

- M58 (5.7 SDs)
- M59 (5.5 SDs)
- M60 (5.4 SDs)
- M61 (5.4 SDs)
- M63 (4.9 SDs)
- M64 (4.8 SDs)
- M65 (4.4 SDs)
- M66 (4.3 SDs)
- M67 (4.2 SDs)
- M68 (3.9 SDs)

Validation: 6 outliers out of 60 datapoints (10.0%)

- M73 (2.6 SDs)
- M96 (2.9 SDs)
- M124 (5.8 SDs)
- M153 (2.8 SDs)
- M175 (4.5 SDs)
- M230 (2.1 SDs)

Test: 9 outliers out of 66 datapoints (13.6%)

- M355 (5.0 SDs)
- M141 (3.5 SDs)
- M137 (6.2 SDs)
- M128 (2.3 SDs)
- M115 (8.4 SDs)
- M102 (1.7e+01 SDs)
- M89 (3.9 SDs)
- M76 (4.4 SDs)
- M62 (5.4 SDs)

ROBERT v 1.2.1 Page 5 of 8

Section F. Model Screening

This section compares different combinations of hyperoptimized algorithms and partition sizes.

Section G. Reproducibility

This section provides all the instructions to reproduce the results presented.

1. Download these files (the authors should have uploaded the files as supporting information!):

- CSV database (YSI-mordred.csv)

2. Install and adjust the versions of the following Python modules:

- Install ROBERT and its dependencies: conda install -y -c conda-forge robert
- Adjust ROBERT version: pip install robert==1.2.1
- Install scikit-learn-intelex: pip install scikit-learn-intelex==2024.7.0

(if scikit-learn-intelex is not installed, slightly different results might be obtained)

3. Run ROBERT using this command line in the folder with the CSV database:

python -m robert --names "Name" --y "YSI" --csv name "YSI-mordred.csv"

4. Execution time, Python version and OS:

Originally run in Python 3.12.2 using Linux #1 SMP Fri Apr 20 16:44:24 UTC 2018

Total execution time: 3718.96 seconds (the number of processors should be specified by the user)

ROBERT v 1.2.1 Page 6 of 8

Section H. Transparency

min_samples_leaf: 1

This section contains important parameters used in scikit-learn models and ROBERT.

1. Parameters of the scikit-learn models (same keywords as used in scikit-learn):

No PFI (standard descriptor filter): PFI (only most important descriptors):

sklearn model: GradientBoostingRegressor sklearn model: GradientBoostingRegressor

random state: 233 random state: 233 names: Name names: Name n estimators: 60 n estimators: 60 max depth: 40 max depth: 40 max features: 0.25 max features: 0.25 min samples split: 2 min samples split: 2

min_weight_fraction_leaf: 0 min_weight_fraction_leaf: 0

ccp_alpha: 0 ccp_alpha: 0 learning_rate: 0.05 learning_rate: 0.05 subsample: 1.0 subsample: 1.0 validation fraction: 0.1 validation fraction: 0.1

2. ROBERT options for data split (KN or RND), predict type (REG or CLAS) and hyperopt error (RMSE, etc.):

min_samples_leaf: 1

No PFI (standard descriptor filter): PFI (only most important descriptors):

split: KN split: KN type: reg type: reg

error_type: rmse error_type: rmse

Section I. Abbreviations

Reference section for the abbreviations used.

ACC: accuracy KN: k-nearest neighbors **REG:** Regression ADAB: AdaBoost MAE: root-mean-square error RF: random forest

CSV: comma separated values MCC: Matthew's correl. coefficient RMSE: root mean square error

CLAS: classification ML: machine learning RND: random

CV: cross-validation MVL: multivariate lineal models SHAP: Shapley additive explanations

F1 score: balanced F-score NN: neural network VR: voting regressor

PFI: permutation feature importance **GB:** gradient boosting GP: gaussian process R2: coefficient of determination

ROBERT v 1.2.1 Page 7 of 8

Miscellaneous

General tips to improve the models and instructions to predict new values.

Some general tips to improve the score

1. Adding meaningful datapoints might help to improve the model. Also, using a uniform population of datapoints across the whole range of y values usually helps to obtain reliable predictions across the whole range. More information about the range of y values used is available in Section C.

2. Adding meaningful descriptors or replacing/deleting the least useful descriptors used might help. Feature importances are gathered in Section D.

How to predict new values with these models?

- 1. Create a CSV database with the new points, including the necessary descriptors.
- 2. Place the CSV file in the parent folder (i.e., where the module folders were created)
- 3. Run the PREDICT module as 'python -m robert --predict --csv_test FILENAME.csv'.
- 4. The predictions will be shown at the end of the resulting PDF report and will be stored in the last column of two CSV files called MODEL_SIZE_test(_No)_PFI.csv, which are in the PREDICT folder.

ROBERT v 1.2.1 Page 8 of 8