Low-rank adaptation (LoRA) fine-tune

Adds small trainable adapter layers, and trains *only* these new layers.

Reduces memory and compute significantly, and reduces catastrophic forgetting.

Usually best.

Research Computing and Data

QLoRA fine-tune

Just like LoRA, but also quantizes the model to 4-bit precision, further reducing memory requirements.

Allows for fine-tuning models otherwise too large to fit in available memory.

Research Computing and Data

Best when the Pretrained model weights available (frozen and quantized to 4bit) hardware isn't large **Outputs** Inputs enough to just do Adapter A Adapter B LoRA. COMPLITING AND

Prompt tuning

Instead of modifying the model weights, learns small trainable prompt embeddings.

Less powerful than LoRA (sometimes a good thing!) and very efficient.

Best for: task adaptation without modifying the model.

Fine-tuning methods comparison

Method	Trainable parameters	Computational cost	Memory usage	Retains general knowledge?	Best use cases
Full fine-tuning	All model parameters	High	Very high	Risk of catastrophic forgetting	Task-specific, highly customized models
Lora	Small adapter layers	Low	Moderate	Yes	Domain adaptation, style control
QLoRA	Small adapter layers	Very low	Very low	Yes	Fine-tuning very large LLMs (relative to hardware)
Prompt tuning	Very small prompt embeddings	Low	Low	Yes	Task adaptation with minimal change to model

