SymPDE → Model

Incorporating PDE symmetries into equivariant models

MSc Thesis intermediate presentation

Elias Dubbeldam

Supervised by Alex Gabel

Outline

- Motivation
- ☐ Literature overview
- ☐ My work
- Planning

Motivation

- Setting: PDE future prediction
- Neural PDE solvers can speed up classical solvers
- However:
 Neural PDE solvers are data hungry
- Therefore:
 - Incorporate PDE symmetries into equivariant models: "SymPDE → Model"
- Symmetries of PDEs are described by the group *Lie point* symmetries:

$$egin{align} \Delta(x,t,u) &= u_t + uu_x + u_{xx} + u_{xxxx} = 0. \ \ \Delta(oldsymbol{x},oldsymbol{u}) &= 0 \Longrightarrow \Delta[g\cdot(oldsymbol{x},oldsymbol{u})] = 0, \quad orall g \in G \ \ g_1 &= \partial_t,\, g_2 = \partial_x,\, g_3 = t\partial_x - \partial_u,\, g_4 = 3t\partial_t + x\partial_x - 2u\partial_u \ \ \end{pmatrix}$$

Single Symmetry Nets

Incorporating Symmetry into Deep Dynamics Models for Improved Generalization

ICLR21 by Wang, Yu & Walters (Univ of California)

- First work that incorporates Lie point symmetries (LPS).
- 'Only' able to incorporate a single symmetry (besides space and time translation) with e2cnn
- Implemented separate equivariant ResNet and U-Net.

Literature Overview

Equivariant architectures

- Single Symmetry Nets Incorporating Symmetry into Deep Dynamics Models for Improved Generalization, ICLR21 by Wang, Yu & Walters (Univ of California)
- **G-FNO** *Group Equivariant Fourier Neural Operators for Partial Differential Equations*, PMLR23 by Helwig et al (Texas A&M University) Group CNNs for FNO. 'Only' for *p4m*: translations, 90° rotations and reflections

LPSDA

Lie Point Symmetry Data Augmentation for Neural PDE Solvers
PMLR22 by Brandstetter, Welling & Worall (UvA)

Augment training data with continuous LPS:

$$\mathbf{u}'=g_d\left(\epsilon_d
ight)\cdots g_1\left(\epsilon_1
ight)\mathbf{u}$$

- With g time and space translation, Galilean boosting and scaling; Typically, $\epsilon \sim \mathcal{U}(-0.5, 0.5)$
- Using FNO and ResNets

Literature Overview

Equivariant architectures

- Single Symmetry Nets Incorporating Symmetry into Deep Dynamics Models for Improved Generalization, ICLR21 by Wang, Yu & Walters (Univ of California)
- **G-FNO** *Group Equivariant Fourier Neural Operators for Partial Differential Equations*, PMLR23 by Helwig et al (Texas A&M University) Group CNNs for FNO. 'Only' for *p4*: translations, 90° rotations and reflections

"External" equivariant models

- LPSDA Lie Point Symmetry Data Augmentation for Neural PDE Solvers, PMLR22 by Brandstetter, Welling & Worall (UvA)
- LPS in PINN Lie Point Symmetry and Physics Informed Neural Networks, ICML23 and NeurIPS23, by Akhound-Sadegh, Brandstetter, et all (McGill, Quebec, MSR) Trains a PINN with an additional symmetry loss term: $\mathcal{L}(\theta) = \alpha \mathcal{L}_{PDE} + \beta \mathcal{L}_{data-fit} + \gamma \mathcal{L}_{sym}$
- SSL Self-Supervised Learning with Lie Symmetries for Partial Differential Equations, ICLR23 by Mialon et al (incl. LeCun) (Meta AI FAIR, LIGM, MIT) Similar approach a LPSDA, but trained on similarity between augmentations from same PDE using SSL: $\mathcal{L}(\mathbf{Z}, \mathbf{Z}') \approx \alpha \mathcal{L}_{\text{sim}}(\mathbf{Z}, \mathbf{Z}') + \beta (\mathcal{L}_{\text{reg}}(\mathbf{Z}) + \mathcal{L}_{\text{reg}}(\mathbf{Z}'))$

Literature Overview

Equivariant architectures

- Single Symmetry Nets Incorporating Symmetry into Deep Dynamics Models for Improved Generalization, ICLR21 by Wang, Yu & Walters (Univ of California)
- **G-FNO** *Group Equivariant Fourier Neural Operators for Partial Differential Equations*, PMLR23 by Helwig et al (Texas A&M University) Group CNNs for FNO. 'Only' for *p4*: translations, 90° rotations and reflections

"External" equivariant models

- LPSDA Lie Point Symmetry Data Augmentation for Neural PDE Solvers, PMLR22 by Brandstetter, Welling & Worall (UvA)
- LPS in PINN Lie Point Symmetry and Physics Informed Neural Networks, ICML23 and NeurIPS23, by Akhound-Sadegh, Brandstetter, et al (McGill, Quebec, MSR) Trains a PINN with an additional symmetry loss term: $\mathcal{L}(\theta) = \alpha \mathcal{L}_{PDE} + \beta \mathcal{L}_{data-fit} + \gamma \mathcal{L}_{sym}$
- SSL Self-Supervised Learning with Lie Symmetries for Partial Differential Equations, ICLR23 by Mialon et al (incl. LeCun) (Meta AI FAIR, LIGM, MIT) Similar approach a LPSDA, but trained on similarity between augmentations from same PDE using SSL: $\mathcal{L}(\mathbf{Z}, \mathbf{Z}') \approx \alpha \mathcal{L}_{\text{sim}}(\mathbf{Z}, \mathbf{Z}') + \beta (\mathcal{L}_{\text{reg}}(\mathbf{Z}) + \mathcal{L}_{\text{reg}}(\mathbf{Z}'))$

Lie symmetry convolutions

- LieConv Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data, PMLR20 by Finzi et al (NYU)
- L-conv Automatic Symmetry Discovery with Lie Algebra Convolutional Network, NeurIPS21 by Dehmamy, Walters, Yu, et al (Northwestern Univ)

Limitations of current SymPDE \rightarrow Model

Data: Existing work analyses only a few PDEs, landscape is scattered.

- Models are hard to compare
- Contribution per symmetry is poorly understood

			Heat	Burger's	KdV	KS	NS	SWE	Other
Equivariant architectures		Single Symmetry Nets	2D						Ocean currents, Rayleigh–Bénard convection
		G-FNO					2D, 3D	2D, 3D	
"External" equivariant models		LPSDA		1D	1D	1D			
		LPS in PINNs	1D	1D					
		SSL		1D	1D	1D	2D		

Model

- Equivariant architectures don't use all symmetries and only work discretized → Not all inductive biases are used
- "External' equivariant models do not exploit symmetry inside model, therefore not guaranteed.

Data: PDE Suite

PDE Suite: a benchmark for SymPDE → Model

- As a start use, the PDEs from *Data-driven Lie Point Symmetry Detection for Continuous Dynamical Systems* (Gabel, unpublished).
- Most PDEs have much more symmetries than 'standard' PDEs

This solves the problem that current SymPDE → Model landscape is scattered, enabling to:

- ☐ Have a comparative overview of SymPDE → Model techniques
- Analyse and understand the contribution per type of symmetry

Index	PDE	Generators
1	$u_t=0.1u_{xx}$	$X_1=\partial_t,\ X_2=\partial_x,\ X_3=2t\partial_t+x\partial_x,\ \dots,\ X_\infty=b(t,x)rac{\partial}{\partial u}$
	l <u>:</u>	
4	$oxed{u_t = \left(e^u u_x ight)_x}$	$igg X_1 = \partial_t, \ X_2 = \partial_x, \ X_3 = 2t\partial_t + x\partial_x, \ \dots, \ X_7 = \partial_x - t\partial_t + \partial_u$
	:	
12	$igg u_t = \left(e^u u_x ight)_x + 1$	$igg X_1=\partial_t,\ X_2=\partial_x,\ X_3=e^{-t}rac{\partial}{\partial t}+e^{-t}rac{\partial}{\partial u},\ X_4=xrac{\partial}{\partial x}+2rac{\partial}{\partial u}$
	l <u>:</u>	
24	$\Big \left(e^u u_x ight)_x - u u_x$	$X_1=\partial_t,\ X_2=\partial_x,\ X_3=trac{\partial}{\partial t}+(x+t)rac{\partial}{\partial x}+rac{\partial}{\partial u}$

Experimenting baseline models

Task

- PDE future prediction on PDE Suite
- $(N_{train}, N_{val}, N_{test}) = (500,100,100)$

Next steps

- \rightarrow Apply other SymPDE \rightarrow Model techniques (such as LPSDA, LPS in PINNs, G-FNO) to PDE Suite
- ✓ Have a comparative overview of SymPDE → Model techniques

Performance across models and PDEs

Analysing symmetries

Reproducing LPSDA

Next steps

- → Apply to PDE Suite with all generators
- ✓ Analyse and understand the contribution per type of symmetry

Best generator strength for KdV with LPSDA

Contribution per symmetry

Some plot which: 'groups' the symmetries in PDE suite and analyses the contribution per symmetry

Model

Equivariant kernel method?

• To incorporate all symmetries continuously inside the model architecture.

Planning

Nov Literature review, data generation

Nov-Dec Implementing literature

Jan-March Researching and experimenting for new method

April Implementing new method

May-June Finalizing and writing thesis

Backup slides

G-FNO

	NS			
	# PAR. (M)	TEST (%)		
FNO	0.93	8.41(0.41)		
FNO+p4	0.93	10.44(0.47)		
FNO+p4m	0.93	22.09(1.46)		
G-FNO- $p4$	0.85	4.78(0.39)		
G-FNO- $p4m$	0.84	$\underline{6.19}(0.61)$		
U-Net- $p4$	3.65	18.40(0.44)		
RADIALFNO- $p4$	1.03	9.21(0.26)		
${\tt RADIALFNO-} p4m$	0.95	10.86(0.18)		

LPS in PINNs

Incorporate symmetry loss term using MLPs in PINN loss:

$$\mathcal{L}(heta) = lpha \mathcal{L}_{ ext{PDE}} + eta \mathcal{L}_{ ext{data-fit}} + \gamma \mathcal{L}_{ ext{sym}}$$

- \mathcal{L}_{PDE} learns solution solving the PDE; $\mathcal{L}_{data-fit}$ learns IC and BC; \mathcal{L}_{sym} learns LPS.
- $ullet \ \mathcal{L}_{ ext{sym}} = \sum_{k=1}^K J_{\Delta}^{ op} \operatorname{coef}\left(\operatorname{pr}^{(n)} \mathbf{v}_k
 ight)$
 - The orthogonality of the K prolonged vector fields and the gradient vector.
 - Equivalent to $\operatorname{pr}^{(n)}\mathbf{v}[\Delta]=0$ when $\Delta=0$. That is: asserting that applying a generator (e.g. $\mathbf{v}=2\nu t\partial_x-xu\partial_u$) to the PDE (e.g. $\Delta=u_t-\nu u_{xx}$) still solves the PDE.

Table 1: The average test set mean-squared error for the Heat equation.

Number of Points (N_r)	No Symmetry	Symmetry	Number of Poi (N_r)	
500	1.12 ± 0.58	0.30 ± 0.15	5000	
2000	0.36 ± 0.19	$\boldsymbol{0.24 \pm 0.14}$	25000	
10000	0.22 ± 0.14	0.21 ± 0.13	100000	

Table 2: The average test set mean-squared error for Burgers' equation.

 Number of Points (N_r)	No Symmetry	Symmetry
 5000	0.041 ± 0.042	0.034 ± 0.039
25000	0.030 ± 0.038	0.017 ± 0.020
100000	0.018 ± 0.022	0.013 ± 0.020

SSL

