4367K4 - KP4NHO MH-BO

TYM4 - KP4NH4 PETUGA OF EN. HA

E3UK - MN-BO OF TYMU u = a1a2 -- a n v = b1b2 ·- bm 40 v = anax -.. an bibz ... bm 141 = n 1 1 = m 44 KI THE THE - 3 Orepayor right Egunger L10L2 = { X. B | XeL1, B = L2} neN, L-EZUK $L^{n} = \begin{cases} \{e\} & n=0 \\ L & L^{n-1} \\ n \geq 1 \end{cases}$ * L* = 0 Ln I - EGUK BER DER BOUTKU IJNU HAT [

Ted PETYAGREM EZUK HAT [486YKA) pergrapeur · Axo Ly u Le ca pergrapme, 70 Liota, LiUL2, Lit oa pergrap mu Jep Hez Esprennen Kpach 1870 Mata A = < \(\Sigma\), 1/ Z - 43 BYK4 2/ Q - KPATITO NH-BO (00 0000 940 9) 3/SEQ - na vanto occosmie $4/\Delta \subseteq Q \times Z \times Q$ ($\Delta \subseteq Q \times (Z \cup \{e\}) \times Q$) $5/F \subseteq Q - \phi$ unanne coccosine $\Delta^* \subseteq Q \times \Sigma^* \times Q$ $\Delta^{(0)} = \left\{ \left(q, 8, 9 \right) \mid q \in Q \right\}$ $\Delta^{(m+1)} = \{ (p, \alpha, \alpha, \Gamma) | \exists q \in \mathbb{Q}((p, \alpha, q) \in A^{(m)}) \}$ (q, a, r) ∈ Δ}

 $\Delta^* = \bigcup_{n=0}^{\infty} \Delta^{(n)}$

 $L(A) = \{ \alpha \in \Sigma^* \mid \exists f \in F((s, \alpha, f) \in \Delta^*) \}$

Teopena na Krumu

HEKA / S e ASGYKA U LES. TOTABA HUTTE CA EKBUBANEHTHUI:

1) L - pergnapsen ezux

2/ UNA KPAEH ABTONAT A C L(A)=L

<u>j-00</u> 1/=>2/ -> unggrugus no get ra per. ezuk

 $L = \emptyset$; $L = \{\epsilon\}$; $L = \{\alpha\}$

 $s \rightarrow s \rightarrow 0$

· Hera L1 u L2 - pergrapeu ezunger u

ICI L(AU) = L(An) UL(Ax)

A. = < \(\S_1, Q_1 \cup Q_2, S_1, A, \neq > = 1, UD2 U} (f1, a, B2 | f1 ∈ F1 1 (S, a, B2) ∈ 4) Torala L (Ao) = L (A1) · L(A2)/ (E, Q1 U (s }, S, A, F, U/s } U (f, a, p1) | f & F1 (s,a, Pe Toraba L(A+) = (L(A)) B uz Bears + amora " pears propane" 13 ronara, axo ce Junares 0000 some

TOKAZAMENCTIBO JA UTEPAYUR (L(A)) = (L(A)) Hera Lida. Im E L (An) / Lez. Tomos una fr, f2, ---, fm: (s, d, f:) E A, Toro BA odi= $\alpha\beta$ i det Δ (S, α i, fi) $\in \Delta$, Samoro ano $\langle S$ 1, α 2, α 3, α 4, α 5) $\in \Delta$ 1 α 4 α 5, α 5, α 6, α 7, α 8, α 9, α 9, => (s, a, p1> E 1 4 < p1, B; fix) · Ocben 1069 < fi-1, a, p1> e => <fi-1, aBi, fi > e A => $\langle S, \alpha_{\Lambda}, f_{\Lambda} \rangle \in \Delta^{+}$ $\cup \langle f_{\Lambda}, \alpha_{\Lambda+\Lambda}, f_{\Lambda+\Lambda} \rangle \in \Delta^{+}$ 3a $\lambda \geq \Lambda => \langle S, \alpha_{\Lambda}, \alpha_{\Lambda}, \alpha_{\Lambda}, \alpha_{\Lambda}, \alpha_{\Lambda}, \alpha_{\Lambda} \rangle \in \Delta^{+}$ Toraba $d = \alpha_1 \alpha_2 \dots \alpha_m = \alpha$

2/ -> 1/ Hera A = (E, Q, s, A, F) e xporn ABTOLIAT 5.0.0. MOHE ga TRETHONALTAME, WE Q = 11,2,-, $\frac{1}{2}$ UN S=1. Rijk = $\frac{1}{2}$ $\frac{1}$ (B 4acTROGTI TPU K= n Kij = { < / < i, < , j > E] TOTE PASTREHGAVE TOTULA B A, NOUTO UNOTT TOTE AND OPPARAGENUS TO LE USTONS BOT ASVOU С индукция то к ще дока нем, не (+1+) (Rijpergrapen) (*) Auo (*) e Bapho, To L(A) = { x | = f (-1, x, f > e =)}: = U R, f e répaire observeme na feF perjos pour ezuru => L(A) e pergrapen

- показване (+) 1. k=0 li te zorjava 6677 peutus Occosamus To Tettolujara or i zo j. Toraba Tezu Toruna ca unu $\stackrel{\cdot}{i}$ $\stackrel{\cdot}{j}$ $\stackrel{\cdot}{i}$ $=> \begin{cases} \{\alpha\} < i, \alpha, j > \in \Delta \end{cases} \quad \bar{i} \neq j$ (tegutal (i,a,j> ∈ ∆g, i=j Tou navo das sa a e \(\) u de s ca pergrapen sa boureur $R_{ij} = R_{ij}^{(\kappa)}$

TI GTULLATA, KOUTO OTPETERATA
PORZONGAS NA GBE YACTU Rijero) ce B1 1/te uz For zbas K+d. $(R_{i}^{(k)})$ (B) 2/ Uzmonzbar K+1. Воеки пет, който заточва в і, опта до ји
шнава през к+1 се раздива на: B22.1/ 165, KOUTO 301646a 6 1 90 K+1
(sez ga uzvorzba K+1) $\frac{6}{32.2}$ HOUROU OF HOURO HE WHONZER K+1 paro Barpewen) G_{2} 3/ not or k+1 to j, kot to re uzvorgla

K+1 kato le tremen => За т. Та се построи петериштиран. L={we{a,b}* 1 w zamorba c=<=> m 30 gebongo c p3

Trumpo 3a Torra popuymponka lu zarouba c a => w zobspuba c b } = {a,b}* \ { w 3avore la c = 4 w +e zabepula c = } = = {a, b]* (Lan [b) 1, 5 1 - Tongrabare JETTE printipan ABTOMATA Hera rooppour ABTONATO Ja La $> \frac{a}{s}$ Hera TO OFFOUR ABTOURT Ja Lb B f omzar caro operage &

b restarante b => H gy mu, kouro zabapenbar c

b ce pazorozna bar or ezuka. Hera d= Bb. Tou Karo abromator e TOTANEM, $\delta^*(S, \beta) = \rho$ e get. Or guarpariasa ce

me $\delta(p,b) = f \otimes p \in \{s,d\}!$ =) { (s, x) = f => de L(4) S = S = S = C = T TODENTARE LA B
TYMA CE HAMPANE BPHera 39 Lb = {a, b} \ Lb (abtoliation e town new) построин автомат OG PELYANE QUINAMOCTATELL

HA OGCTOSHUSTAL Tyx La ne e voranem => Axo ucxave ga nonyrum Tomprenere => Tours bave 20 Toronen => Osponance funancio crotas +4 060 00 940 951 > Sola, b => La = {a, b}* 1 La > f a, b Qf re e rojo au thumo (te formante de form punanno vo cro sure) => Hote ga ro:

LanLb (a, b > -> <8,5> <f,5> -39 39 <f, s> <f,s> <f,f> <f,f> <f,s> <f,f> финантиче осогочныя са двойки от фин. Об стояния но двога автомать.
В случая само (f, f) 2 Yapamares La 1 La Ib o La >*\(\f\,\gen\) \(\f\,\gen\) \(\f\,\gen\) \(\f\,\gen\) \(\f\,\gen\) (S, gen) (S, gen) (f, gen) Panls

LanTb L= (LanLb) V (Tan Ib) 8 Or BOAVO { Q_ {Pz} Occionne c Gyrba uzwza 1 $\{Q_3\}$ 5 A II

Tyx mother 34 TPORETEN JYMU OF CREITING -> { A} | { B, C, D | { B, C, D * (B,C,D) C- carus * {c} | {c} Bevere c-soug, Joann Have C MEXOZA Y & TPGXOJU, FOCULTURUS OF Hexa munu muzupame ABTOMATA. TYK UMAME TOTANGH ABTOMAT JOCTUHULO.

>	0	->	0		0,1
	A 0, 1	13		C	
	40	E 	0	101	101
	D			9	
		F			22

<u>Sa</u> =	Her	LA LU	ımım z	4 PAUE	APAUOTA
-14.8	9	X	Y	Z	1/ TOTAKEN U TETEPHUH
0 >	*91	93	9,9	97	pam & orcoarma
0	· 19/2	9,3	9,5	94	2/ 2000 HO MI.
1	93	94	9,6	93	U TPENOS BANE MEZOCTU HULLUSTE OF COOSHU 9
0	¥ 94	99	99	92	3/ Tect na egnasa
1	9,5	98	99	99	БУКва
1	9,6	92	9,6	92	
0	* 9,7	9,5	9,5	91	
O	* 98	9,5	9,5	91	AST SA
1	9,9	97	9,5	9,5	1.6 1.6 1.6 1.7

Разделяме на финални и всички останали

CC COODEW 9

CLICOKY

$$B_{1}^{(0)} = \{ q_{3}, q_{5}, q_{6}, q_{9} \}$$

I CTGTKA

B ₀	X	}	Z		B(0)	X	J	Z	1
9,1	B(0)	B(0)	B.(0)		9,3	B.	B ₄ ⁽⁰⁾	B(0)	+
92	B ₁ ⁽⁰⁾	B1	B .(0)	7 esc, u3	9.5	B.	B ₁	B1) +
9,4	(o) B <u>1</u>	(0) B _A	B 0 (0)		9,6	B.(0)	B(°)	B(0)	-
9,7	G ₁	(°)	G 0	12	9,9	B.(0)	B(0)	B. (0)	+
9,8	B 4 (0)	B. 0	B D		2 1	CV III	51	ŭ.	
1455 40	my Cape	usq=	10	1	2/4	1		1	

I CTOTKA

	B(1)	X	7	7	B1)	X	7	7	B ₂	X	7	Z
8	9,1	B1	B,(A)	B. (v)	9,3	B.	By	B"	96	\		
	9,2	B1	B(A)			B. (^)	B(v)	B(1)	رف			
	94	B(1)	B, (4)	(1)	7,5	(4)	B(1)	(A)	1 2/			
	9,7	B1 (v)	B(1)	130	9,9	Bo	134	=1	101	4		(
	98	B1	B(^)	B.	i il		1	12		7		
			1		X				1/2	: 1	In-BO	00

HEHYMANO: MA-BOC

$$B_{0}^{(2)} = \begin{cases} 91, 92, 94, 97, 98 \end{cases}$$

$$B_{1}^{(2)} = \begin{cases} 95, 99 \end{cases} \quad B_{1}^{(2)} \times \begin{cases} 77, 78 \end{cases}$$

$$B_{2}^{(2)} = \begin{cases} 96 \end{cases} \quad 95 \quad B_{0}^{(2)} \quad B_{1}^{(2)} \quad B_{1}^{(2)} \quad B_{1}^{(2)} \quad B_{2}^{(2)} \quad B_{2}^{(2)} \quad B_{3}^{(2)} \quad B_{3}$$

			-		
B(2)	X	J	Z		
9,1	B3	B(a)	(2) B ₀	121	
92	B3	B(2)	Bo (2)		
94		< · >	•	x 1 172	
9,7	0.10	1		Torola	tx
		- V	19-5 -	Management of the Contract of	

Pumping Lemma

Hexa L - pergrapen. Torala In & N.

Jua W & L c | W| > n una:

X, y, Z: W = xy Z U

1)
$$|xy| \le h$$

2) $|y| \ge 1$
3) $|x| (xy)^2 \ne L$
 $|x| = L$

 $\frac{1}{3}$ - BO | $\frac{1}{6}$ KATO | L - perynapeh, TO WA | $\frac{1}{6}$ KPaeh gerephumpah abto hat C = Suk $\frac{1}{6}$ (A)=L | $\frac{1}{6}$ A = $\frac{1}{6}$ $\frac{1}{6}$

LIGE FORAMEN, 4e N = 1Q1 uma Henamoto CB-BO

Hexa
$$d = a_1 a_2 \dots a_m \in L$$
 $u = |L| \ge n$

Toraba $\int_{-\infty}^{\infty} (s, a_1 \dots a_m) \in L$

B 4acrthocra Pi = 8* (S, 9, 9, 02 ... 9i) ca gedum.

Po = S, P1, Pa, ..., Pan e peguya on m+1>n+1

Occoroanua => =1i+j (pi = Pi)

Hexa j e navi-mankoro i uma i < j ($P_i = P_j$).

Toraba P_0, P_1, \dots, P_{j-1} ca pagnimum => $\Rightarrow j \leq |Q| = N$

$$x = \alpha_1 \alpha_2 ... \alpha_i$$

$$y = \alpha_{i+1} ... \alpha_j$$

$$z = \alpha_{j+1} ... \alpha_m$$

$$3/S*(S,x)=p_i$$

$$P_{i} = P_{j} = S^{*}(s, \star y) = S^{*}(S^{*}(s, \star), y)$$

$$p_{m}=\delta^{*}(s,xyz)=\delta^{*}(p_{i},z)$$

Hera
$$x \in N$$

Toraba $S^*(p_i, J^k) = p_i(p_i = S^*(S^*, J^k))$

$$= \int_{-\infty}^{\infty} \left(S, \chi y^{k} z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), y^{k} \right), z \right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(S, \chi \right), z \right) dz \right) dz \right)$$

$$= S^* \left(S^* \left(S^* \left(S, x \right), y^* \right), z \right) =$$

$$= \int_{P_i}^{*} \left(\int_{P_i}^{*} \left(\int_{P_i}^{*} \left(\int_{P_i}^{*} \left(P_i \right) \right) \right) dx = \int_{P_i}^{*} \left(P_i \right$$