ECE 340: Semiconductor Electronics

Chapter 4: Excess Carriers in Semiconductors

Wenjuan Zhu

Outline

- Optical absorption
 - Luminescence
 - Carrier lifetime and photoconductivity
 - Direct recombination of electrons and holes
 - Steady state carrier generation; Quasi-Fermi levels
 - Photoconductive devices

Turn the light ON semiconductors

When we turn light on, we can generate excess electron-hole pairs (EHPs), depending on the light frequency (energy)

- If $hv \ge E_g$ photon can be absorbed, and generate EHP
- If $h\nu < E_g$ no light absorption and EHP generation.

Optical absorption experiment

Transmitted light and absorption coefficient

• Assume photon with $h\nu \geq E_g$, intensity I_0 , sample thickness l, then

$$-\frac{dI(x)}{dx} = \alpha I(x)$$

The intensity of transmitted photons is:

$$I_t = I_0 e^{-\alpha l}$$

where α is called absorption coefficient. Unit: cm⁻¹

Dependence of optical absorption on the wavelength of incident light

If E is in eV, and λ in μ m, then

$$\lambda = \frac{1.24}{E}$$

 A semiconductor absorbs photons with energies equal to or larger than the band gap.

Band gaps of common semiconductors relative to the optical spectrum

Outline

- Optical absorption
- Luminescence
 - Carrier lifetime and photoconductivity
 - Direct recombination of electrons and holes
 - Steady state carrier generation; Quasi-Fermi levels
 - Photoconductive devices

Luminescence

- Luminescence: light emission resulting from recombination of the excited carriers.
- According to the excitation mechanism, there are different types of luminescence:
 - Photoluminescence: carrier are excited by photon absorption
 - Electroluminescence: carrier excitation occurs by the introduction of current into the sample

Photoluminescence

If $h\nu < E_g$, no light absorption If $h\nu \ge E_g$, then

- (a) Absorb photon with energy $h\nu_1$
- (b) Give up extra kinetic energy $h\nu_1 E_g$ to lattice as heat
- (c) Recombination, release photon with energy E_g

Excess carrier

• Incident photon flux is the number of incident photons per unit time:

$$\Phi = \frac{P_{op}}{h\nu}$$
Photon energy (unit: J)

Example

A 0.46-um thick sample of GaAs is illuminated with monochromatic light of $h\nu$ =2eV. The absorption coefficient α is $5 \times 10^4 \text{cm}^{-1}$. The power incident on the sample is 10mW.

- (a) Find the total energy absorbed by the sample per second (J/s).
- (b) Find the rate of excess thermal energy given up by the electrons to the lattice before recombination(J/s).
- (c) Find the number of photons per second given off from recombination events, assuming perfect quantum efficiency.

Outline

- Optical absorption
- Luminescence
- Carrier lifetime and photoconductivity

- Direct recombination of electrons and holes
- Steady state carrier generation; Quasi-Fermi levels
- Photoconductive devices

Recall: Intrinsic material at thermal equilibrium

 Recombination rate is determined by the number of electron and hole concentration:

$$r_i = \alpha n_i^2$$
 α is a constant

At equilibrium:

$$g_i = r_i$$

$$\Rightarrow g_i = \alpha n_i^2$$

$$n = p = n_i$$

Extrinsic material at thermal Equilibrium

Generation rate = recombination rate

$$\alpha n_i^2 = \alpha n_0 p_0$$

$$n_0 p_0 = n_i^2$$

Shine light: recombination of electrons and holes

 Direct EHP recombination occurs spontaneously, emitting a photon of energy Eg

Carrier concentration notation:

Equilibrium carrier concentration: n_0 , p_0 Initial excess carrier concentration Δn , Δp . Excess carrier concentration at any time: $\delta n(t)$, $\delta p(t)$

Excess carrier concentration

 The net rate of change in the conduction band electron concentration is:

$$\frac{dn(t)}{dt} = \alpha_r n_i^2 - \alpha_r n(t) p(t)$$
Generation rate

Recombination rate

Generation rate is not equal to recombination rate at non-equilibrium condition!

Recall: at thermal equilibrium condition generation rate = recombination rate $(\alpha_r n_i^2 = \alpha_r n_0 p_o)$

• Assume at t=0, excess electron-hole population is created: $\Delta n = \Delta p$. The net rate of change in electron concentration is:

$$\frac{d\delta n(t)}{dt} = \alpha_r n_i^2 - \alpha_r [n_0 + \delta n(t)][p_0 + \delta p(t)]$$

• Note $\alpha_r n_i^2 = \alpha_r n_0 p_0$. For low level injection, $[\delta n(t)]^2$ is very small. If material is p type $(p_0\gg n_0)$, then the rate of change is:

$$\frac{d\delta n(t)}{dt} = \alpha_r p_0 \delta n(t)$$

Excess carrier concentration

The excess carrier concentration:

$$\delta n(t)=\Delta n e^{-\alpha_r p_0 t}=\Delta n e^{-t/\tau_n}$$
 Where $\tau_n=(\alpha_r p_0)^{-1}$, electron recombination lifetime

 If material is n type, the minority carrier is hole:

$$\delta p(t) = \Delta p e^{-\alpha_r n_0 t} = \Delta p e^{-t/\tau_p}$$
 where $\tau_p = (\alpha_r n_0)^{-1}$, hole recombination lifetime

More generally:

$$\tau = \frac{1}{\alpha_r(n_0 + p_0)}$$

Total carrier concentration

 Electron and hole concentration as a function of time

$$n(t) = n_0 + \Delta n e^{-t/\tau_n}$$

$$p(t) = p_0 + \Delta p e^{-t/\tau_p}$$

Example 1

• Assume a sample of GaAs is doped with $10^{15}acceptors/cm^3$. The intrinsic carrier concentration of GaAs is approximately 10^6cm^{-3} , Now if $10^{14}EHP/cm^3$ are created at t=0, carrier recombination lifetime is $\tau_n = \tau_p = 10^{-8}s$. Find out the electron and hole carrier concentration as a function of time.

Decay of excess electrons and hole by recombination

In p type material:

$$p_0 > n_0$$
 and $\Delta n = \Delta p$

$$\implies \frac{\Delta p}{p_0} < \frac{\Delta n}{n_0}$$

- Minority carrier concentration: large percentage change
- Majority carrier concentration: small percentage change

Experiment setup for photoconductivity and recombination lifetime measurement

Outline

- Optical absorption
- Luminescence
- Carrier lifetime and photoconductivity
 - Direct recombination of electrons and holes

- Steady state carrier generation; Quasi-Fermi levels
 - Photoconductive devices

Steady state carrier generation

At thermal equilibrium:

$$g(T) = \alpha_r n_i^2 = \alpha_r n_0 p_0$$

· If a steady light is shone on the sample,

$$g(T) + g_{op} = \alpha_r np = \alpha_r (n_0 + \delta n)(p_0 + \delta p)$$

$$\nearrow$$
Thermal generation rate Optical generation rate Recombination rate

• For steady state recombination and no trapping, $\Delta n = \Delta p$, then

$$g(T) + g_{op} = \alpha_r n_0 p_0 + \alpha_r (n_0 + p_0) \delta n + \delta n^2$$

Excess carrier concentration

• For low level injection (δn^2 is small), then:

$$g_{op} = \alpha_r (n_0 + p_0) \delta n = \frac{\delta n}{\tau}$$

The excess carrier concentration:

$$\delta n = \delta p = g_{op} \tau$$

Quasi-Fermi Level

 At thermal equilibrium, carrier concentration is expressed by Fermi level:

$$n = n_i e^{(E_F - E_i)/kT}$$
$$p = p_i e^{(E_i - E_F)/kT}$$

 At steady state, the carrier concentration can be written in similar form by defining separate quasi-Fermi levels:

$$n = n_i e^{(F_n - E_i)/kT}$$
$$p = p_i e^{(E_i - F_p)/kT}$$

$$p = p_i e^{(E_i - F_p)/kT}$$

 F_n : quasi-Fermi level for electron

 F_{p} : quasi-Fermi level for hole

Example

• Assume that 10^{13} EHP/cm³ are created optically every microsecond in a Si sample with n_0 = 10^{14} cm⁻³ and $\tau_n=\tau_p=2\mu s$. Where is the quasi-Fermi level F_n and F_p ?

Quasi-Fermi level and carrier concentration

	Thermal equilibrium carrier concentration n_0, p_0	Excess carrier concentration $\Delta n, \Delta p$	Percentage change in carrier concentratio n $\Delta n/n_0, \Delta p/p_0$	Derivation of quasi-Fermi level from equilibrium Fermi level $F_n - E_i, E_i - F_p$
Majority carrier	High	same	Small	Small
Minority carrier	Low	same	Large	Large

• At equilibrium:

$$F_n = F_p = E_F$$

Example

A semiconductor sample is illuminated with a steady state laser beam characterized by a photon energy of 1eV and an intensity of 10 mW. The semiconductor has a cross section $A=10^{-2} cm^2$ and a thickness of 1µm. The minority carrier lifetime is $\tau=10$ ns.

- a) By assuming the intensity of the transmitted light is negligible, compute the photon absorption rate (number of photons absorbed/sec)?
- b) If each photon produces an electron-hole pair (EHP), compute the optical generation rate?
- c) What is the concentration of excess minority carrier?

Outline

- Optical absorption
- Luminescence
- Carrier lifetime and photoconductivity
 - Direct recombination of electrons and holes
 - Steady state carrier generation; Quasi-Fermi levels

Photoconductive devices

Application of photodetectors

Digital camera

Street light

Infrared Satellite

Autortratiatiodoor

Night vision camera

Semiconductor materials for photodetectors

• Semiconductor are most sensitive to photons with energies equal to the band gap or slightly more energetic than band gap.

Photoconductivity of a photodetector

 Under steady state light illumination, the excess carrier concentration is:

$$\delta n = g_{op} \tau_n \qquad \delta p = g_{op} \tau_p$$

 The conductivity change due to the light, called photoconductivity is:

$$\Delta \sigma = \sigma - \sigma_0 = q(\delta n \mu_n + \delta p \mu_p)$$
With light Without light

$$\implies \Delta\sigma = qg_{op}(\tau_n\mu_n + \tau_p\mu_p)$$