Arquitetura e Organização de Computadores

COMPONENTES BÁSICOS DE UM COMPUTADOR

Profa Ms. Adriane Ap. Loper

- Unidade de Ensino: 2
- Competência da Unidade: Aprofundar o conhecimento sobre componentes e a Arquitetura e Organização de Computadores
- Resumo: Nesta unidade será apresentado diversos componentes como memória, CPU, barramentos, Abordando também a funcionalidade destes componentes.
- Palavras-chave: CPU; Unidade Lógica e Aritmética;
 Unidade de Controle; Barramentos;
- Título da Teleaula: Componentes básicos de um computador
- Teleaula nº: 02

Contextualização

- Vamos analisar a situação em que se encontra uma fábrica de componentes de computadores de altíssima tecnologia.
- Nesse contexto, vamos considerar o setor de pesquisa e desenvolvimento que está sempre em busca de mecanismos e formas de aprimorar e melhorar esses componentes: de microprocessadores, placas de memória, disco rígido e vários outros até a entrega de equipamentos completos.
- Você será um dos integrantes do time de pesquisa e desenvolvimento dessa empresa e poderá aprimorar esse desenvolvimento e melhorar esses componentes.
- Você terá a visão de uma cidade inteligente!

Fonte: Shutterstock

Unidade central de processamento

Sua missão

A sua primeira tarefa é apresentar as características de um processador.

Uma das tendências identificadas pela empresa de fabricação de microprocessadores, é a integração de operações básicas de controle, disponibilidade de serviços e oferta de segurança para ampliar a qualidade de vida da população, que se pretende inserir com as "cidades inteligentes" (Ex. disponibilizar ao cidadão uma identificação de locais em que têm vagas de estacionamento disponíveis nas alamedas e ruas de uma determinada cidade; pontos da cidade em obras e mesmo congestionados).

É necessário que os computadores e dispositivos que executarão estas tarefas tenham processadores com grande capacidade e

Fonte: Shutterstock

Sua missão

permitam viabilizar essas operações.

Vamos conhecer mais sobre os processadores e encontrar uma boa opção para todas estas questões?

Apresentar as características de um processador que permite realizar essas operações, e ainda, identificar no mercado um modelo que já esteja disponível, minimizando os investimentos e fortalecendo parcerias comerciais.

Faça a **sugestão de um processador existente no mercado** e que possa atender aos requisitos dos sistemas propostos na situação real, como, por exemplo, identificação de locais com vagas de estacionamento disponíveis, pontos da cidade em obras e/ou congestionados e disponibilidade de agenda para serviços de saúde.

Fonte: Shutterstock

Arquitetura de von Neumann

Fonte: Wikipedia

Fonte: Tangon e Santos 2016 p.48

CPU- Unidade Central de Processamento (ou UCP)

- Os computadores têm na CPU o seu principal componente, pois ele organiza as informações na memória principal, permite as condições necessárias para o processamento dos dados e seu retorno e, também, é responsável por controlar todos os demais componentes, a placa-mãe do computador, os dispositivos que nela estiverem conectados, independente se exercem funções de entrada ou saída de dados.
- A UCP tem duas funções essenciais: controle e processamento.
- Na função de processamento dos dados é realizada a manipulação de dados em uma determinada sequência cujas instruções (uma instrução é uma tarefa a ser processada pelo UCP) estão na memória.

Fonte: Shutterstock

CPU- UC E ULA

- Outra função da UCP é o controle. Após a interpretação de uma instrução, em geral, temos alguma ação / algum resultado, e daí surge a função controle, que emite sinais para os demais componentes interligados.
- A unidade de controle(UC) é a responsável por essa função; ela define a sequência de instruções a serem executadas e dispara sinais de controle para os outros componentes, como memória e unidade lógica aritmética.
- A UCP contém, além da unidade de controle(UC) e a unidade lógica e aritmética (ULA), que é responsável por executar operações aritméticas (como subtração (SUB), adição (ADD) e comparações), operações lógicas e transferência de dados,

Fonte: Shutterstock

CPU- ULA

- como operações de carregamento (LOAD) e armazenamento (STORE) dos dados.
- Os dados usados para esses cálculos são armazenados na memória do computador, também chamados de registradores.

Função do Processador

Consiste nas seguistes etapas:

1º Buscar uma instrução na memória;

2º Interpretar que operação a instrução esta explicitando (soma de 2 números por ex.);

3º Buscar os dados onde estiverem armazenados;

4º executar efetivamente a operação com os dados, guardar o resultado

5º reiniciar o processo buscando uma nova instrução

Ciclo de Instrução

Diagrama funcional

diagrama funcional básico da CPU, no qual a Unidade Funcional **Processamento** pelos composta registradores, ACC e ULA, e a Unidade Funcional de Controle é composta pelos elementos: RDM, REM, CI, RI, Decodificador de Instruções, UC e *Clock* (relógio) (FÁVERO, 2011).

Barramentos

- De dados: faz a ligação da memória com a CPU e vice-versa; determina diretamente o desempenho do sistema, pois quanto maior o número de vias de comunicação, maior o número de bits transferidos e, portanto, maior a rapidez com que estes dados serão processados.
- •De endereços: Interliga o CPU à memória, indicando o local onde os processos devem ser extraídos e para onde devem ser enviados após o processamento.
- •De controle: Interliga o CPU, mais especificamente a unidade de controle, aos componentes e dispositivos de um computador, componentes de entrada e saída, memórias auxiliares e de armazenamento, entre outros.

Fonte: Shutterstock

Evolução dos processadores

AnandTech	Cores	Base Freq	Turbo Freq	IGP	IGP Freq	DDR4	TDP	Price (lku)
i9-9900K	8/16	3.6 GHz	5.0 GHz	UHD 630	1200	2666	95 W	\$488
i9-9900KF	8/16	3.6 GHz	5.0 GHz	-	-	2666	95 W	-
i7-9700K	8/8	3.6 GHz	4.9 GHz	UHD 630	1200	2666	95 W	\$374
i7-9700KF	8/8	3.6 GHz	4.9 GHz	-	-	2666	95 W	-
i5-9600K	6/6	3.7 GHz	4.6 GHz	UHD 630	1150	2666	95 W	\$262
i5-9600KF	6/6	3.7 GHz	4.6 GHz	-	-	2666	95 W	-
i5-9400	6/6	2.9 GHz	4.1 GHz	UHD 630	1050	2666	65 W	-
i5-9400F	6/6	2.9 GHz	4.1 GHz	-	-	2666	65 W	\$182
i3-9350KF	4/4	4.0 GHz	4.6 GHz	-	-	2400	91 W	-

<u>Fonte:https://macmagazine.uol.com.br/post/2019/01/09/ces-2019-intel-lanca-novos-processadores-de-9a-geracao-amd-anuncia-gpu-de-7nm/ Acesso 01nov21</u>

Fonte: https://www.hardware.com.br/tutoriais/hardware-iniciantes/pagina4.html Acesso 01nov21

CISC X RISC

Arquitetura CISC (Complex Instruction Set Computers)

Conjunto de instruções complexas;

Utiliza a memória principal;

Grande variedade de tipo de dados;

Acesso aos dados é via memória;

Utilizados nos PCs.

Arquitetura RISC (Reduced Instuction Set Computes)

Conjunto reduzido de instruções;

Utiliza Registradores;

Pouca variedade de Dados;

Acesso aos dados é via registrador;

é empregado nos processadores ARM utilizados pelos smartphones e *tablets* atuais.

Fonte: Shutterstock

Processador para cidade inteligente

- ✓ A empresa quer investir em sistemas de navegação GPS para a linha automotiva que possam ser conectados à internet e definir melhores rotas considerando as informações do trânsito em tempo real.
- ✓ O desafio consiste em apresentar as características de um processador que permita a realização dessas operações e, ainda, identifique no mercado um modelo que já esteja disponível, minimizando os investimentos e fortalecendo parcerias comerciais.
- ✓ É importante destacarmos os processadores da atualidade, como os da série i7, i9 e Xeon.
- ✓ Esses são processadores com alto desempenho para diversas aplicações, não apenas para informações de trânsito em tempo real, mas para qualquer tipo de aplicação que trabalhe

- ✓ com grandes quantidades de dados.
- ✓ Alguns dos processadores que podem ser citados para a resolução da SP são as séries, i7, i9 e Xeon; além desses processadores, podemos mencionar os processadores de alto desempenho da AMD.

Modelo	Frequência	Núcleos	Cache	Frequência Turbo max
i7-10510U	4.8 GHz	4	8 MB	4,90 GHz
i7-9700K	4.90 GHz	8	12 MB	4.90 GHz
AMD Ryzen 9 3900X	3.8 GHz	12	64 MB (máx L3)	4.6 GHz
i9-9900KS	4 GHz *(5GHz)	8	16 MB	5 GHz
i9-9900	3.10 GHz *(5 GHz)	8	18 MB	5 GHz
i9 -10980XE	4.80 GHz	10	24.75 MB	4.60 GHz
i9 -7920 X	2.90 GHz	12	16.5 MB	4.30 GHz
i9 -79980XE	2.60 GHz	18	24.75 MB	4.20 GHz
Xeon Platinun 8168	2.70 GHz (*3.70 GHz)	28	33 MB	3.70 GHz
XEON Plati- num 9282	2.60 GHz *(3.80 GHz)	56	77 MB	3.80 GHz
AMD Ryzen** Threadripper 3990 X	2.9 GHz	64	256 MB (máx L3)	4.3 GHz

Memória Principal e Memória Cache

Sua missão

A sua segunda tarefa é que a empresa de fabricação de microprocessadores, pretende por meio das câmeras de segurança das cidades inteligentes, inserir a maior quantidade de serviços possíveis por meio da comparação de dados e de imagens capturadas por elas.

Para que a empresa de fabricação possa incluir essa inovação em suas soluções, é necessário que o setor de pesquisa e desenvolvimento consiga inserir uma **memória** que contemple essa necessidade de armazenamento e ofereça a oportunidade de identificação, comparação e localização, utilizando os dados armazenados em seus servidores.

Para tal, a documentação das especificações técnicas desse produto e o estreitamento das relações comerciais com o

Fonte: Shutterstock

Sua missão

fornecedor dessa tecnologia são essenciais e devem ser contemplados nessa etapa.

A empresa quer investir em uma linha de computadores que possam oferecer grande capacidade de processamento para atender a essa demanda, porém, precisa que os computadores tenham máxima eficiência de consumo de energia pelas limitações atuais e mundiais de geração de energia.

O desafio consiste em realizar uma pesquisa e apresentar as características de um computador servidor que permita o uso de memórias com alto desempenho e baixo consumo de energia. Monte uma tabela com as descrições de alguns fabricantes de memória e relacione um perfil de usuário com as memórias.

Fonte: Shutterstock

Memórias - Hierarquia

Fonte: Santos (2020, p.78)

Memórias - Características

Características básicas dos tipos de memória					
MEMÓRIA	LOCALIZAÇÃO/ É VOLÁTIL		VELOCIDADE	CAPACIDADE DE ARMAZE- NAMENTO	CUSTO
Registrador	Processador	Sim	Muito alta (opera na velocidade do processador)	Muito baixa (Bytes)	Muito alto
Cache	Processador	Sim	Alta (opera na velocidade do processador)	Baixa (KB)	Alto
Principal	Placa-mãe	RAM - sim RAM - não	Depende do tipo de memória instalada	Média (GB)	Médio (tem caído muito)
Secundária	HD, CDs, etc.	Não	Baixa (lenta)	Alta (GB)	Baixo (tem caído muito)

Fonte: Santos (2020, p.80)

Memória Principal (RAM)

Memória Principal (RAM): memória endereçável por programa, a partir dos dados e instruções podem ser diretamente carregados nos registradores, para subsequente processamento ou execução.

DRAM (*Dynamic* RAM)

Tipo de memória que utiliza carga de capacitores para armazenar os dados; Necessita refrescamento;

Consomem muitos ciclos de processamento e mais energia que outros tipos de memória;

A memória dinâmica é mais densa, possui menores células; SRAM(Static RAM)

Este tipo de memória utiliza as configurações de flip-flops com portas lógicas para armazenar informações. São feitas com

Fonte: Shutterstock

Memória Principal (RAM)

capacitores. A leitura de um capacitor que esteja descarregado gera o *bit* "0" (zero). A leitura de um capacitor carregado gera o *bit* "1". Ocorre que o capacitor deve ser recarregado de tempos em tempos para que sua carga não se deteriore e, assim, o *bit* seja perdido. Esse processo de leitura por descarga de capacitores é lento, o que torna este tipo de memória mais lenta. O ponto a favor é o custo.

Fonte: Shutterstock

Registradores

Registradores: Memória rápida interna da CPU, alguns registradores são visíveis para o usuário, isto é, são disponíveis para o programador via conjunto de instruções de máquina. Outros registradores são usados apenas pela CPU, para funções de controle.

- Velocidade bastante alta;
- Capacidade de armazenamento baixa;
- Custo alto;

Memória Cache - Características

Memória especial de armazenamento, menor e mais rápida que a memória principal, usada apenas para a cópia de instruções ou dados da memória principal mais prováveis de ser requeridos pelo processador em um futuro próximo; essas instruções e dados são obtidos automaticamente da memória principal .

L1 – Level 1 (nível 1) - Dentro do processador;

Mesma velocidade do processador;

L2 – Level 2 (nível 2) - Dentro do invólucro, fora do chip;

Metade da velocidade do processador; Pentium Pro, II, III, IV

L3 – Level 3 (nível 3) - Cache externa, situada na placa mãe

K6-3 da AMD;

Memória ROM

Memória ROM: memória semicondutora cujo o conteúdo não pode ser alterado, exceto pela distribuição da unidade de memória. Memória não apagável.

Apenas função de leitura;

São três os principais programas gravados em uma memória ROM:

- BIOS;
- POST;
- SETUP

Memória ROM

PROM (*Programmable Read-Only Memory*): A gravação de dados neste tipo é feita uma única vez e os dados gravados na memória PROM não podem ser apagados ou alterados.

EPROM (*Erasable Programmable Read-Only Memory*): Estas memórias permitem a regravação de dados.

EEPROM (*Electrically-Erasable Programmable Read-Only Memory*): Permite a regravação de dados, feitos eletricamente, não sendo necessário mover o dispositivo para que a regravação ocorra.

Hierarquia de memória com velocidades e capacidade

Fonte: adaptada de Hennessy (2014).

Memórias para cidade inteligente

Como sugestão de resposta, deve-se pesquisar alguns fabricantes de memória e especificar o usurário e uma quantidade mínima para ser utilizada de acordo com a aplicação do usuário. Por meio das referências citadas pelo fabricante, no site UserBenchmark podemos ter acesso à listagem de memórias e seus tamanhos.

Para o melhor entendimento da RAM e suas velocidades de acordo com o processador, recomendamos a leitura do artigo no site da Intel: Desmistificando a tecnologia de pcs: RAM versus processador: o que é mais importante para as tarefas da sua empresa?

É possível estabelecer parâmetros para quantidades de memória RAM de acordo com a aplicação desejada. Como uma sugestão de tabela, pesquise a quantidade de memória de acordo com o perfil de um usuário, como segue: Relatórios consolidados e testes encomendados pelo fabricante: Como sugestão, é possível considerar um quadro de classificação de uso de quantidade de memória:

Requisitos de Memória (Ideal)	Usuário frequente	Jogador	Usuário Profissional
DESKTOP	8 GB+ (WINDOWS e MAC_OS)	16 GB+ (WIN- DOWS)	16 GB+ (WINDOWS e MAC_OS)
NOTEBOOK	8 GB+ (WINDOWS e MAC_OS)	16 GB+ (WIN- DOWS)	16 GB+ (MAC_OS)
Uso			
	Email, Internet	A maioria dos jogos atuais exige 8-16 GB de RAM	Design Gráfico, Modelagem 3D
	Baixar e organizar fotos músicas, filmes e TV		Suíte completa Pro- dutos Office
		Alto desempenho em Jogo	
			Software Corporativo
	Suíte completa Office		CRM, Produção etc.
	Word, Excel, Power Point etc.		
			Programação de Softwares
	Software Corpo- rativo		Engenharia de Som
	CRM, Produção etc.		Design
			Páginas WEB avan- çadas
			Desenvolvimento de Banco de Dados

Entenderam as necessidades de CPU e Memória?

Fonte: https://gifer.com/en/XIOL9

Memórias Secundárias

Sua missão

A sua terceira tarefa é fazer uma descrição detalhada da capacidade de modelos SSDs de alguns fabricantes, apresentando suas respectivas capacidades de memória, velocidades de taxa de transferência de dados dessas memórias e demais capacidades técnicas.

Veja como elas podem atender aos requisitos dos sistemas propostos na situação-problema, como o acesso rápido às informações médicas de um paciente pela equipe médica da ambulância no momento do atendimento.

Fonte: Shutterstock

Memórias - Hierarquia

Fonte: Santos (2020, p.78)

Memória Secundária

- Armazenam dados para uso posterior;
- Não voláteis; Podem ser alteradas e regraváveis;
- Não são endereçadas diretamente pelo processador, precisam ser carregados na memória principal para serem processados.
- Exs: Discos rígidos(HDs), CDs, DVDs, pendrives.
- O pendrive é um dispositivo portátil de armaz. com memória flash, do mesmo tipo das usadas em dispositivos SSD, e são acessados quando conectados a uma porta USB.
- Mídia portátil rápida na gravação e leitura dos dados.
- A memória secundária também é chamada de memória de massa, por possuir uma capacidade de armazenamento muito superior à das outras memórias.

Fonte: Shutterstock

HD – Hard Disk ou Discos Rígido

- ✓ Memória secundária mais usada;
- ✓ É nele que são gravados os sistemas operacionais e demais arquivos de um computador.
- ✓ O disco rígido se comunica com o computador através de uma interface, que é composta por conectores.
- ✓ Estes conectores podem ser de diferentes tipos e padrões, cada qual com sua característica específica. Ex: SCSI, IDE/ATA (PATA), SATA, SSD.

Fonte: Shutterstock

Solid-State Drive (SSD)

- É um tipo de dispositivo para armazenamento de dados.
- Maior custo do que os HD's convencionais;
- Substitui os HDs.
- Capacidade ainda é menor;
- Velocidade muito maior;
- Baixo consumo de energia.
- As unidades SSD podem ser encontradas nos formatos dos próprios HDs, só que com chips de memória em vez de discos.

	Armazename nto	Consumo de Energia (Baixo)	Velocidade de acesso (Rápido)	Custo
HD	x			x
SSD		X	x	

Fonte: Shutterstock

Conectores - tipos e padrões - Padrão SCSI

- Small Computer Systems Interface Permite a comunicação entre dispositivos com confiabilidade de transmissão e velocidade rápida.
- ✓ Esta tecnologia foi mais aplicada em servidores do que em computadores.
- ✓ Classificadas de acordo com a capacidade do *clock* da controladora número de bits, quantidade de discos conectados na controladora e velocidade de transferência de dados.
- A tecnologia SCSI tem como base uma controladora externa ao dispositivo, que permite sua comunicação com o computador por meio da interface SCSI. A controladora pode estar presente na placa-mãe ou ser instalada através de uma placa colocada em um slot livre, por exemplo (HARDWARE, 2015).

Fonte: Shutterstock

Conectores - tipos e padrões Padrão IDE/ATA(PATA)

- ✓ Foi o primeiro que integrou ao HD a controladora do dispositivo reduziu os problemas de sincronismo, tornando seu funcionamento mais rápido e eficiente. Na tecnologia ATA, os dados são transmitidos por cabos de 40 ou 80 fios paralelos;
- ✓ Seus cabos de conexão eram menores, o que facilitou sua aplicação em computadores pessoais

IDE/ATA Fonte: Livro Tangon e Santos 2016 p.80

Conectores - tipos e padrões

Padrão SATA:

É o sucessor do padrão ATA; Funciona de forma serial, diferente do IDE/ATA que funciona de forma paralela. Utiliza um canal para mandar dados e outro para receber. SSD (Solid-State Drive):

Tipo de dispositivo para armazenamento de dados Pode substituir o HD (mais caro);

Alta velocidade; Baixo consumo de energia. Usado em dispositivos portáteis, como notebooks ultrafinos (*ultrabooks*) e tablets.

SATA: Fonte: https://bit.ly/2LhMPrf

SSD Fonte: Livro Tangon e Santos 2016 p.95

Memórias secundárias

Para a resolução da situação-problema, você deve realizar um levantamento dos principais fabricantes de **SSDs** e verificar as velocidades dos SSDs e os tipos de interfaces utilizadas.

Deve realizar uma análise das velocidades das interfaces, bem como das velocidades de leitura e gravação dos SSDs.

Para uma análise comparativa sobre memórias SSD você poderá acessar o site da Kingston (2017, [s.p.]). Como uma sugestão, pode ser apresentado um quadro com as seguintes

características:

	Modelo	Capacidade	Velocidade leitura/gravação	Interface
SSD	Kingston - 480G DC500R	480 GB	555MBs/520MBs	SATA Rev. 3.0 (6Gb/s)
SSD	SanDisk SSD PLUS	480 GB	535 MBs / 445 MBs	SATA Rev. 3.0 (6Gb/s)
SSD	WDS100T2G0A	1TB	545MB/s / 430 MB/s	SATA III 6 Gb/s
SSD	SSD Intel 660P Series	1 TB	1800 MB / 1800 MB / s	PCIe NVMe 3.0 x4 (4GB/s)

Dispositivos de entrada e saída

Sua missão

A sua quarta tarefa consiste em apresentar as características de um computador servidor que permita o processamento com alta performance e baixo consumo de energia, e que seja capaz de atender à demanda de acessos às informações e retorno das solicitações com rapidez.

Para isso, acesse as especificações sobre o tipo de processador do fabricante e verifique quantos núcleos apresenta, quais os tipos de memórias RAM, SSDs aplicados e aceitos, e taxas de transferência de entrada e de saída de dados.

Fonte: Shutterstock

Dispositivos

Dispositivos de Entrada – onde podemos inserir/entrar com dados no computador. Exemplo: teclado, mouse, telas sensíveis ao toque.

Dispositivos de Saída – onde os dados podem ser visualizados. – Exemplo: telas e impressoras.

Dispositivos de Entrada/Saída – são dispositivos que podem enviar e receber dados, como o disco rígido, pendrives, as conexões de internet via cabo e wifi, monitores e telas touch screen, entre outros.

Fonte: Shutterstock

Barramentos

✓ Um barramento é o caminho por onde trafegam todas as informações de um computador.

Existem três tipos principais de barramentos:

- ✓ Barramento de dados.
- ✓ Barramento de endereços.
- ✓ Barramento de controle.

Fonte: adaptada de Souza Filho e Alexandre (2014, p. 54).

Barramentos de Dados

- ✓ Este barramento interliga a CPU à memória, e vice-versa, para a transferência das informações que serão processadas.
- ✓ Ele determina diretamente o desempenho do sistema, pois quanto maior o número de vias de comunicação, maior o número de bits transferidos e, consequentemente, maior a rapidez.
- ✓ Os primeiros PCs possuíam barramento de 8 vias. Atualmente, dependendo do processador, este número de vias pode ser de 32, 64 e até de 128 vias (FÁVERO, 2011).

Fonte: Shutterstock

Barramentos de Endereços

- ✓ Interliga a CPU à memória fazendo seu endereçamento.
- ✓ Tem o número de vias correspondente à tecnologia de *bits* do processador, ou seja, nos computadores mais modernos, 32 *bits* ou 64 *bits*, permitindo endereçar até quatro GB (*Gigabytes*) de memória em processadores 32 *bits* e cerca de 16 PB (*Petabytes*) no caso de processadores 64 *bits* (SOUZA FILHO, 2014).

Fonte: Shutterstock

Barramentos de Controle

- ✓ Interliga na CPU a Unidade de Controle aos componentes e dispositivos de um computador, componentes de entrada e saída, memórias auxiliares e de armazenamento, entre outros.
- ✓ O barramento de controle faz a comunicação entre os periféricos de entrada e saída com a CPU do computador.
- ✓ Durante o processamento de um programa, cada instrução é levada à CPU a partir da memória, junto aos dados necessários para executá-la.
- ✓ A saída do processamento é retornada à memória e enviada a um dispositivo, como um monitor de vídeo.

Fonte: Shutterstock

Barramento Local

- ✓ Existem, atualmente, diferentes tipos de barramentos adotados pelos fabricantes destes dispositivos, onde podemos citar:
- ✓ Barramento Local: funciona na mesma velocidade do clock (relógio) do processador.
- ✓ Em geral, interliga o processador aos dispositivos com maior velocidade, memória cache e memória principal.

Fonte: Shutterstock

Barramento de Sistema

- ✓ Barramento de Sistema: adotado por alguns fabricantes, faz com que o barramento local faça a ligação entre o processador e a memória cache, e esta memória cache se interliga com a memória principal (RAM).
- ✓ Dessa forma não acontece acesso direto do processador à memória principal.
- ✓ Um circuito integrado auxiliar é usado para sincronizar o acesso entre a memória cache e a RAM, chamado de ponte e mais conhecido como "Chipset".

Fonte: Shutterstock

Barramentos de Expansão

- ✓ Barramento de expansão: também chamado de barramento de entrada e de saída (E/S), é responsável por interligar os diversos dispositivos de E/S aos demais componentes do computador, tais como: monitor de vídeo, impressoras, CD/DVD.
- ✓ Neste caso, também, é usado um chipset para cada dispositivo poder se conectar ao barramento do sistema, estes chipsets (pontes) sincronizam as diferentes velocidades dos barramentos. (FÁVERO, 2011).

Fonte: Shutterstock

Barramentos

Fonte: Shutterstock

Barramentos de Conectores

Os tipos mais conhecidos de padrões de são:

- ISA (Industry Standard Adapter)
- PCI (Peripheral Component Interconnect)
- AGP (Accelerated Graphics Port)
- PCI Express (Peripheral Component Interconnect Express)
- USB (Universal Serial Bus)

Comunicação entre CPU e Memória

Três métodos para gerenciar a entrada e saída:

- Entrada e saída programada

A CPU precisa verificar continuamente se cada um dos dispositivos necessita de atendimento. Este método não é mais utilizado.

- Entrada e saída controladas por interrupção

Este método possibilita que a CPU não fique presa em espera ocupada até que um dispositivo esteja pronto para realizar a transferência de dados propriamente dita. Não é mais utilizado.

Comunicação entre CPU e Memória

Acesso direto à memória (DMA – Direct Memory Access)

A função do controlador (ou interface) é controlar seu dispositivo de E/S e manipular para ele o acesso ao barramento.

Quando um programa quer dados do disco, por exemplo, ele envia um comando ao controlador de disco, e este controlador irá emitir comandos de busca e outras operações necessárias para que ocorra a transferência.

Dessa forma, a CPU solicita a transferência para um dispositivo denominado controlador de acesso direto à memória principal (DMA Controller), o qual se responsabiliza totalmente pela transferência. A CPU é avisada apenas no início e no final da operação de transferência entre dispositivo e memória principal. Este é o tipo de acesso utilizado atualmente pelas interfaces de E/S.

Dispositivos de E/S

Descrição do Servidor	PowerEdge T140		
Fabricante	DELL		
Processador	Intel* Xeon* E-2224 3.4GHz, 8M cache, 4C/4T, turbo (71W)		
Chipset	Intel C246		
Memória RAM	16GB UDIMM DDR4 de 2666 MT/s		
HD	1TB SATA cabeado, 6 Gbps, 7200 RPM		
Slots	PCIe 1 slot de 3º geração (x16) 2 slots de 3º geração (x8) 1 slot de 3º geração (x1) Placa de vídeo 1 VGA		
Portas de E/S e legadas	Portas frontais 1 micro-USB dedicada para iDRAC 1 USB 3.0 Portas traseiras 1 serial 2 USB 3.0 4 USB 2.0 1 VGA Portas internas 1 USB 3.0		
Comunicações (Placas possíveis de redes contidas neste servidor)	Placa de rede integrada Broadcom 5720 com duas portas de 1Gb Placa de rede Broadcom 5719 com quatro portas de 1Gb		

Compreenderam a importância dos componentes básicos dos computadores?

Fonte: https://gifer.com/en/XIOL9

Recapitulando

- Unidade central de processamento (CPU)
- Memória principal e Memória Cache
- Memória secundária
- Dispositivos de entrada e saída

