## مصطلحات

السمّي تجربةً عشوائيّةً كلُّ تجربة الأيمكنُ الجزمُ بنتيجتها رغم معرفة مجموعة إمكانياتها الكلية.

 $\Omega = \{e_1, e_2, \dots, e_n\}$  في نسمي مجموعة الإمكانيات المجموعة الشّاملة و نرمز لها بـ  $\{e_1, e_2, \dots, e_n\}$  عنصر عنصر و منها مخرجاً.

• Card(A) من  $\Omega$  تُسمّى حادِثةً و نرمز لعدد عناصرها بـ A

الله إذا كان Card(A) = 1 فإنّ A تُسمّى حادثةً أوليّة. 3

أَسُمّي Ω الحادثة الأكيدة ، ونُسمّي ∅ (المجموعة الحالية) الحادثة المُستحيلة.

 $A \cap B$  الحادثة " A و B " هي المجموعة التي تضمَّ العناصرَ المُشتركة بين A و B ، و نرمزُ لها بـ  $A \cap B$  .

 $A \cup B$  هي المجموعة التي تضمّ كلّا من عناصر A و B ، و نرمزُ لها بـ  $A \cup B$  .

 $oldsymbol{A}$  وهي المجموعة التي تضمَّ جميع عناصر  $\Omega$  ماعدا عناصر  $\overline{A}$  وهي المجموعة التي تضمَّ







نعرّف قانون احتمال تجربة عشوائية ، عندما نُرفق بكلّ مخرج  $e_i$  الحقيقي الموجب  $p_i$  ويُسمّى احتمال  $\sum_{i=1}^{n} \frac{e_1}{e_2} \frac{e_2}{e_3} \frac{e_3}{e_1} \frac{e_2}{e_3} \frac{e_3}{e_1} \frac{e_2}{e_2}$ 

 $\sum_{i=1}^n p_i = 1$  عبد  $\begin{vmatrix} e_1 & e_2 & e_3 & \cdots & e_n \\ \hline p_1 & p_2 & p_3 & \cdots & p_n \end{vmatrix}$  :  $e_i$  تحقق المخرج

احتمال الحادثة A هو العدد الحقيقي الموجب (P(A) ويساوي مجموع احتمال حوادثها الأوليّة ، فمثلا ،

 $P(A) = p_3 + p_5 + p_{11}$  : فإنّ  $A = \{e_3, e_5, e_{11}\}$ 

•  $p_1 = p_2 = p_3 = \dots = p_n$  : نقول عن تجربة أنّها متساوية الاحتمال إذا كان

يُشارُ إلى تساوي الاحتمال بعبارات مثل: زهرة نرد أصلية أو غير مزيّفة ، قطعة نقود متوازنة ،
كريّات لايفرق بينها عند اللمس ٠٠٠ إلخ.

إذا كانت التجربة متساوية الاحتمال فإنّ:

 $P(A) = \frac{A}{3}$ عدد الطرق الملائمة لـ  $= \frac{Card(A)}{Card(\Omega)}$ 

## خواص الاحتمالات

$$P(\emptyset)=0$$
 و  $P(\Omega)=1$  و  $0\leq P(A)\leq 1$  و  $P(\Omega)=0$  و  $P(\Omega)=0$  و  $P(\Omega)=0$ 

$$P(\overline{A}) = 1 - P(A) \bullet P(A \cup B) = P(A) + P(B) - P(A \cap B) \bullet$$

$$A \subseteq B \Rightarrow P(A) \le P(B)$$
 6  $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$  6

## المتغير العشوائي

 $X(\Omega) = \{x_1, x_2, \dots, x_n\}$  : برمز لمجموعة القيم التي يأخذها متغيّر عشوائي X بالمجموعة (  $X(\Omega) = \{x_1, x_2, \dots, x_n\}$ 

 $p(X=x_i)$  عندما نُرفق بكلّ عدد حقيقي  $x_i$  الحقيقي الموجب  $x_i$  عندما نُرفق بكلّ عدد الحقيقي الموجب  $x_i$ 

$$\sum_{i=1}^{n} p_i = 1 \quad X = X_i \quad X_1 \quad X_2 \quad X_3 \quad \cdots \quad X_n \quad x_n \quad x_i = p(X = x_i) \quad p_1 \quad p_2 \quad p_3 \quad \cdots \quad p_n$$

4

| $\sigma(X)$ الانحراف المعياري | V(X) التباين                                                         | E(X) الأمل الرياضياتي                 |
|-------------------------------|----------------------------------------------------------------------|---------------------------------------|
| $\sigma(X) = \sqrt{V(X)}$     | $V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 \cdot p_i = E(X^2) - (E(X))^2$ | $E(X) = \sum_{i=1}^{n} x_i \cdot p_i$ |

في ميدان الألعاب: • الربح المحتمل = المبلغ المتحصل عليه - المبلغ المدفوع

| فإنَّ اللعبة        | إذا كان  |
|---------------------|----------|
| في صالح اللاعب      | E(X) > 0 |
| ليست في صالح اللاعب | E(X) < 0 |
| عادلة               | E(X) = 0 |