Computer Networks and Distributed Systems

Computer Networks – Data Link Layer

Course 527 – Spring Term 2014-2015

Anandha Gopalan

a.gopalan@imperial.ac.uk http://www.doc.ic.ac.uk/~axgopala

Contents

- Overview of Data Link Layer
 - How do we divide data into chunks for the physical layer?
 - How do we control access to a physical channel?
- Data Framing
 - Gaps, counting, delimiters
 - Ethernet/IEEE 802.3 formats
- Medium Access Control
 - In wired networks
 - ALOHA, Ethernet (CSMA/CD), Token Ring
 - In wireless networks
 - IEEE 802.11 (CSMA/CA)

Data Link Layer

- Arranges data into bit stream for sending over physical link
 - Defines communication between two physically connected network nodes
 - Must cope with different physical layer technologies
- Two sub-layers:
- Logical Link Control (LLC)
 - Low-level flow and error control for single hop
 - Not really covered in this course
- Media Access Control (MAC)
 - Framing, addressing and channel access

Data Link Layer Services

- Unacknowledged connectionless service
 - Independent frames with no logical connection
 - No recovery from loss but fast
 - Common in LANs at data link layer
- Acknowledged connectionless service
 - Each frame in acknowledged
 - Out of order delivery possible
 - Good for unreliable channels such as wireless
- Acknowledged connection-oriented service
 - Connection established before data is sent
 - Each frame numbered and guaranteed to be delivered exactly once and in order
 - Provides reliable bit stream

Detection

LLC: Error Detection and Correction

- Serial connections use 8 data + 1 parity bit
 - Makes total number of 1s odd (or even)
 - Detects all single (and odd numbered) bit errors, misses even bit errors
- Cyclic Redundancy Check (CRC)
 - Hash-based checksum (often implemented in H/W)
- Forward Error Correction (FEC)
 - Add more redundancy → greater capacity to detect/correct bursts of errors
 - e.g. use 5 bit codewords to encode 2 data bits

Data Framing

- Need to group bits into separate messages
 - Large frames have less overhead, but:
 - Have greater chance of collision
 - Cost more to retransmit if error detected
- Need to add meta data to control protocol
 - Addressing, length, frame type, CRC, ...
- Need to provide error detection/correction
 - Physical layer may introduce errors by adding, removing, or modifying bits

Framing: Gaps & Counting

- Insert gaps
 - But timing hard to guarantee
- Count characters
 - Include length field to delimit data
 - Often used with another framing method

Count:		E	L	L	O	Count:		
5	H					8	• • •	

Serial Line Framing

8 Stop Start 1

1 1 0 1

Line Level

Resynchronise on this transition

- Counting for framing
 - Data transmitted at agreed rate
 - But clocks may not be accurate
- Use start/stop bits
 - At least 1 transition per byte
 - Bit asynchronous and byte synchronous

Framing: Flags

- Start and end flags
 - Special signal at start & end of frame: "FLAG"
 - Search for flag if receiver loses track

FLAG	Header	Payload data from network layer	Trailer	FLAG	FLAG	Header	
------	--------	------------------------------------	---------	------	------	--------	--

- Uses byte stuffing
 - Identify data with same bit pattern as the flag
 - Use escape sequence to identify "next byte is data"

Stuffing A ESC FLAG B C ESC D

IEEE 802.3 and Ethernet

- Originally developed by Xerox
 - Became open standard
 - These days it's almost a marketing term...
- Uses Manchester encoding for line transitions
- Operates over various physical media
 - Data link layer is separate to physical layer
 - But physical layer affects parameters of Ethernet
- Two standards: IEEE 802.3 and Ethernet

IEEE 802.3: Frame Format

- Ethernet standard slightly different
 - Doesn't have SD field
 - Replaces Length with Type field

IEEE 802.3: Frame Fields I

Preamble

- 7-byte alternating 0s and 1s to establish synchronisation
- Framing then by timing, spaces between frames plus counting from length field
- SFD (start frame delimiter)
 - 10101011 indicates start of frame
 - Allows receiver to miss start of preamble and still synchronise
 - Compatibility with 802.4 and 802.5 (Token Ring)

IEEE 802.3: Frame Fields II

Destination address

- 16 or 48 bits (depending on implementation)
- Host(s) intended to receive
 - Single host (unicast)
 - Group address (multicast)
 - Global address (broadcast)

Source address

16 or 48 bit address of sender

Ethernet Addresses

Usually, Ethernet addresses are 48 bits:

Bit 47: 0 = ordinary addr 1 = group addr

0 = global addr (fixed in hardware), 1 = local addr (assigned by admin) Bit 46:

Vendor code (IEEE assigned) Bits 23-45:

Unique code, set by vendor Bits 0-23:

• $2^{46} \Rightarrow 7 * 10^{13}$ possible global addresses

Written as 6 pairs of hex digits

- e.g. 00:11:85:7A:BC:E4

IEEE 802.3: Frame Fields III

- Type (Ethernet only)
 - Identifies higher level protocol
- Length (IEEE 802.3 only)
 - Bytes in this frame (optional)

- Data
 - Speaks for itself
 - Includes higher layer headers

IEEE 802.3: Frame Fields IV

Pad

 0-46 bytes to ensure frame is long enough to enable collision detection (a few slides away)

- FCS (Frame Check Sequence)
 - CRC, based on all fields except preamble, SD and FCS
 - Enables error detection

Medium Access Control

- Physical channel supports multiplexing scheme
- But how do we allocate communications channels?
 - Contention
 - Fairness
 - Access latency

Static allocation vs. dynamic allocation

Static Allocation

- Recall: TDM, FDM and CDMA
 - Static ways for stations to access fixed part of medium
- Properties
 - Connection-oriented service
 - Guaranteed, allocated bandwidth
 - Bounded latency to transmit

Dynamic Allocation

- But in many computer networks the following applies:
 - Most stations do not want to transmit at once
 - Don't waste bandwidth on silent stations
 - Need to ensure fair access to medium
 - Would like bounded delay to transmit
 - Single transmitter on medium is simpler electronically
- Use dynamic allocation
 - Allocate time to use medium on demand
 - Connection-less service
- Use statistical multiplexing for TDM

Propagation Delay

- Finite time for signal to go from one node to another:
 delay = distance / speed (where speed = 2 * 10⁸ m/s)
- Finite time to send each signal:
 time = 1 / baud rate
- Nodes will receive signal at different times
 - Depends on distance from sender
 - Different nodes will perceive medium to be busy/quiet at different times
- Need to keep this in mind when managing who transmits when!

Collision Detection: ALOHA

- Original contention network
 - Developed at U. Hawaii
- Send whenever data ready to go
- Two stations whose signals overlap get garbled data
 - By listening can detect collision
 - Wait random time and try again
- Not very efficient
 - 18% theoretical maximum channel utilisation

Slotted ALOHA

- Divide time into slots
 - Start time of frames is synchronised
 - Probability of collisions is reduced
- Cannot assume synchronised clocks between stations
 - Master station sends short signal at start of each time frame
- Successful transmission 37% of the time

CSMA (or being polite)

- ALOHA has simple problem:
 - No-one listens before they start to send
 - Leads to lots of collisions

- Carrier Sense Multiple Access (CSMA)
 - When ready to send, listen
 - If channel busy, wait until idle
 - When channel idle, send
 - If collision, wait random time and start listening again

CSMA with Collision Detection

- What if two hosts want to transmit?
 - Two overlapping signals interfere, needs to be spotted
- Collision Detection (CD)
 - Listen to channel while sending
 - When collision, abort signal with noise burst
 - Wait random time and try again
- Properties
 - Designed for fair access
 - Gives unbounded time to access network
 - Doesn't waste channel sending broken frames

IEEE 802.3: Collision Detection

- Ensure sender still sending when collision noise arrives
 - Must send for twice the propagation delay
- 802.3 allows for 2.5 km max LAN (with repeaters)
 - Specifies minimum frame length that takes at-least 51.2 μs to transmit
 - Assuming 100 ns transitions for sending 1 bit, this means at least 512 bits, hence the pad

Data Frame Format

- 7+1+2+2+46+4 bytes * 8 bits = 512 bits = 51.2
 μs on a 10 Mbps link
 - Time to detect collision over longest network while still transmitting
 - When finished sending, cannot guarantee that still listening to hear collision

IEEE 802.3: Retry Timing

- Must avoid repeated collisions
 - At n^{th} retry, wait between 0 and 2^{n-1} slot times (51.2 μs)
 - Do this up to a maximum of 1023 slot times
 - Give up on 16th collision
- Properties
 - Low delay for two hosts' frames colliding
 - Reasonable delay for many hosts' frames colliding

IEEE 802.3: Inter-frame Gap

- 9.6 μs interval between successive frames from host
 - Allows other hosts to use medium
 - Initial frame can be transmitted immediately

CSMA/CD Summary

- Fairness
 - Equal access to all stations
 - No priorities
- Probabilistic
 - Unbounded access time
 - Bad at heavy loads due to exponential back-off
- IEEE 802.3/Ethernet use this

Token Passing

- Arrange more orderly sharing of medium
 - Uses permission token
 - Access to medium signalled by passing token around

- Avoids collisions through strict control
 - But need to handle token control
 - Differentiate between tokens and data

IEEE 802.5 Token Ring

- Developed by IBM
 - Token Ring and Bus
- Token frame inserted by Active Ring Monitor (ARM)
 - 1. Any station takes token and sends data frame
 - 2. Destination copies passing data
 - 3. Sender removes frame on return

Token Passing

- Bounded access delay for fair use
 - Control passes round all nodes
 - But no instant on demand access
- Supports giving some stations priority over others
 - Not just equal/fair access of contention like CSMA
 - Good for real-time control systems
- Nice idea but complex in practice rarely used
 - All stations must cooperate
 - Must handle token loss
- IEEE 802.4/802.5 Token Bus/Ring and FDDI use this

Summary: MAC in Wired LANs

ALOHA

- Contention based service
- Low performance but simple, equal access

CSMA/CD

- Tries to avoid collisions, will detect collisions
- Probabilistic/unbounded access time, equal access

Token Passing

- Avoids collisions
- Bounded access time, access hierarchy but complex

MAC in Wireless LANs

- Centralised Medium Access Control
 - Good where data is time-sensitive or high priority
 - Suffers limits of centralisation
- Distributed Medium Access Control
 - Good for ad-hoc peers with bursty traffic

- No guarantee that all nodes can hear each other
 - Makes collision detection harder

Undetectable Collisions

IEEE 802.11 - WLAN

- Basic Service Set (BSS)
 - Smallest building block with stations sharing medium using the same MAC protocol, aka cell
 - BSSes can overlap
- Extended Service Set (ESS)
 - Two or more BSSes, connected by distribution system
 - Appears as single logical LAN to higher levels

IEEE 802.11 Station Types

- Station types based on mobility
- No Transition
 - Stationary/only moves within range of one BSS
- BSS Transition
 - Moves between BSSes in one ESS
 - Addressing must recognise new location and deliver via appropriate BSS
- ESS Transition
 - Moves between BSSes in different ESSes
 - Does not guarantee connection to upper layers

IEEE 802.11 Media Types

- Frequency-hopping spread spectrum
 - 2.4GHz ISM band with 20 x 1MHz hopping channels
 - 1 or 2Mb/s with different FSK encodings
 - Low bandwidth but good interference resistance
- Direct-sequence spread spectrum (similar to CDMA)
 - 2.4GHz ISM band at up to 11Mb/s (802.11b)
 - Very good range and variable speed
- Orthogonal FDM (similar to ADSL)
 - 5Ghz ISM band with 52 narrow bands (802.11a)
 - 2.4Ghz ISM band (802.11g)
 - Up to 54Mb/s but lower range

Distributed Foundation Wireless MAC

- Distributed access control
 - With optional centralised control by base station
- DCF uses CSMA/CA
 - Collision Avoidance but no detection (not practical)
 - Inter Frame Spaces (IFS) give fair access with priorities

Collision Avoidance

- RTS (Ready to Send) request the channel
- CTS (Clear To Send) response to RTS frame

- ACK (Acknowledgement) –
 sent on receipt of frame
 - MAC-level ACK provides efficient collision recovery
- Other stations hear exchange and "sense" channel
 - Stations infer how long the channel will be busy
 - Repeated failures to transmit → greater back-off time

CSMA with Collision Avoidance

- Station with frame to transmit senses medium
 - If idle and remains idle for IFS period → transmit immediately

If busy → wait until transmission ends + another IFS

If still idle → back off random amount of time (exponential algorithm) + then transmit, otherwise wait until idle again

Priority and Timing

Short IFS (SIFS)

- Immediate response actions (e.g. ACK, CTS)
- Short IFS gets medium first

PCF IFS (PIFS)

- Medium length
- Polls from central controller

DCF IFS (DIFS)

- Ordinary & management data
- 1st MAC Protocol Data Units (MPDU) of series

Contention example

Multi-Frame Transmissions

- Data unit broken into multiple frames
 - Individual ACKs good for noisy channels
- Once medium acquired sent data without interruption
 - Following frames sent on receipt of ACK

- Use DCF IFS to initiate connection (1st MPDU)
- Use Short IFS for later frames of MPDU

IEEE 802.11 Summary

Wireless LAN network

- Distributed communication
 - Not always via centralised controller
- CSMA/CA but no CD
- Inter-frame spacing
 - Provide priority system using CSMA