

## **ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS**



### Generalidades

#### Contador de energía

Los contadores eléctricos sirven para determinar la energía activa (en kW-h), la reactiva (en KWAr-h), emitida por un generador o absorbida por un receptor.

Entre los contadores de motor, los más importantes son los de inducción o Ferraris para corriente alterna con rotor exento de bobina en forma de un disco sencillo de aluminio dispuesto en el campo alterno de dos electroimanes (hierros del circuito

amperométrico y del voltimétrico).

Los contadores de corriente trifásica disponen de variossistemas de accionamiento, que actúan sobre un mismo eje. La integración de la potencia a lo largo del tiempo se realiza mediante el disco rotativo del sistema de medida, cuya velocidad de giro es proporcional a la potencia instantánea



De acuerdo con la norma IRAM 2016 de Medidores de Energía Eléctrica para Corriente Alterna. Se describen los puntos más importantes de la misma:

- <u>Contador de energía:</u> es el aparato integrador que mide energía eléctrica y consta de un disco que gira por la acción que sobre él ejercen los electroimanes de tensión y de intensidad.
- <u>Circuito de tensión:</u> es el circuito al que debe aplicarse la tensión de alimentación.
- <u>Circuito de intensidad:</u> es el circuito que debe ser recorrido por la corriente de utilización.
- <u>Elemento motor</u>: es cada conjunto de electroimanes de tensión e intensidad que vinculados entre sí, actúan sobre un disco.
- <u>Numerador</u>: es el mecanismo que, al integrar las vueltas del disco, indica la energía eléctrica utilizada.
- Constante del medidor: es la relación entre el número de vueltas del disco y la energía que indica el contador. n(rev)

 $Km = \frac{n(rev)}{P.t(KWh)}$ 

- <u>Tensión nominal</u>: es la tensión para la cual ha sido construido el contador, indicada por el fabricante.
- <u>Intensidad nominal:</u> es la intensidad de corriente indicada por el fabricante, que sirve de base para determinar las características de funcionamiento del contador.
- <u>Intensidad máxima:</u> es la máxima intensidad de corriente, indicada por el fabricante, que admite el contador sin que su error ni tampoco la elevación de temperatura de sus arrollamientos exceda los valores determinados, (se indica entre paréntesis a continuación de In).
- Orden de fase directo: es el orden de fases indicado por el fabricante.
- <u>Frecuencia nominal:</u> es la frecuencia para la cual ha sido construido el contador, indicada por el fabricante.
- <u>Curvas Normales:</u> son las curvas de errores del medidor en función de la intensidad de corriente, con tensión y frecuencia nominales, a temperatura normal, en posición vertical y con factores de potencia igual a 1 y a 0,5.

• Error del contador: 
$$\varepsilon\% = \frac{(Wm - Wv)}{Wv}$$
. 100

#### **Mantenimiento**

El lapso durante el cual un medidor eléctrico a inducción conserva una adecuada precisión de registro, es muy largo. Sin embargo se requiere una correcta colocación en una ambiente libre de vapores o agresores químicos, así como evitar lugares expuestos o vibraciones. Con el tiempo una correcta limpieza y lubricación permite volver a las condiciones iniciales optimas.

#### **Ensayos**

Los ensayos más comunes a que se someten los contadores son:

Marcha en Vacío: el disco no debe girar en forma continua, estando el circuito de intensidad abierto (I = 0) al aplicar una tensión del 110% Un a Fn.

<u>Arranque en vacío</u>: el disco arrancará y seguirá en movimiento al aplicar Un a Fn y circular una intensidad del 0,5% In, con fdp igual a 1.

<u>Errores:</u> los errores del medidor monofásico, funcionando en condiciones normales (Un ;

Fn ; temperatura, etc.) no excederán:

| % de In   | cos φ | 8máx. [%] |  |  |
|-----------|-------|-----------|--|--|
| 5         | 1     | ± 2       |  |  |
| 10 a 100  | 1     | ±1,5      |  |  |
| 100 a 200 | 1     | ±2        |  |  |
| 20 a 100  | 0,5   | ±2        |  |  |

## **MANIOBRA OPERATIVA**

### **Objetivos**

- 1. Obtener potencia activa trifásica con el contador de energía.
- 2. Obtener las potencias aparente y reactiva de la carga
- 3. Determinar el factor de potencia del circuito.

### **Circuitos**



## **MANIOBRA OPERATIVA**

### Cn del contador

La constante del contador Cn se indica:  $Cn = \frac{K.n}{P.t}$ 

- Cn es la constante del contador de energía en [rev / kW-h]
- $K = 3.6.10^6$  constante de conversión de unidades para expresar en W
- n el número de revoluciones del contador en un tiempo "t" en segundos
- P la potencia activa en Watts.
- De la constante del contador podemos obtener la potencia activa:

$$P = \frac{K.\,n}{Cn.\,t}$$

## **MANIOBRA OPERATIVA**

### Cálculo de potencia reactiva

Del circuito a analizar obtenemos la potencia activa P y la potencia aparente S que sale de multiplicar la tensión medida U y la corriente I. A partir de estos podemos determinar Q:

potencia y ángulo de potencia.



$$\cos \varphi = \frac{P}{S}$$

$$\varphi = arc \cos \left(\frac{P}{S}\right)$$

$$Q = S.sen\varphi$$
 ;  $Q = \sqrt{S^2 - P^2}$  ;  $Q = P \cdot tg\varphi$ 

## **VALORES OBTENIDOS**

Contador de energía monofásico (analógico y digital)

| Valores Obtenidos |              |        |      | Valores Calculados |        |       |   |
|-------------------|--------------|--------|------|--------------------|--------|-------|---|
| Carga             | Cn[rev/KW-h] | n[rev] | T[s] | P[W]               | Q[var] | cos φ | φ |
| R                 |              |        |      |                    |        |       |   |
| RL                |              |        |      |                    |        |       |   |
| RLC               |              |        |      |                    |        |       |   |

## **VALORES OBTENIDOS**

**Contador de energía trifásico CARGAS EQUILIBRADAS** 

|   | Valores Obtenidos |              |        |      | Valores Calculados |        |       |   |
|---|-------------------|--------------|--------|------|--------------------|--------|-------|---|
| ľ | Carga             | Cn[rev/KW-h] | n[rev] | T[s] | P[W]               | Q[var] | cos φ | φ |
| ı | R                 |              |        |      |                    |        |       |   |
| ı | RL                |              |        |      |                    |        |       |   |
|   | RLC               |              |        |      |                    |        |       |   |

Contador de energía trifásico
CARGAS DESEQUILIBRADAS En este caso medir la tensión con respecto al neutro Vo

| Valores Obtenidos |              |        |      | Valores Calculados |        |       |   |
|-------------------|--------------|--------|------|--------------------|--------|-------|---|
| Carga             | Cn[rev/KW-h] | n[rev] | T[s] | P[W]               | Q[var] | cos φ | φ |
| R                 |              |        |      |                    |        |       |   |
| RLC               |              |        |      |                    |        |       |   |

# **Conclusiones**

;?