

Pflichtenheft

FennecBot

ein ser gutes und strukturiertes Pflichtenheft, obwohl an manchen Stellen ungenau ist.

Projektplan ist sehr gut aufgebaut. Wweitere Anmerkungen siehe unten!

Wertung:

PH: 18 Punkte PPlan: 5 Punkte

Autor: Team FennecBot Letzte Änderung: 19. Mai 2021

Dateiname: Pflichtenheft_FennecBot.docx

Version: 1.0

HTW-Berlin Seite 1 von 18

Pflichtenheft

FennecBot

Inhaltsverzeichnis

Versionshistorie	4
Vorhandene Dokumente	5
Überblick	5
Annahmen und Abgrenzungen	6
Workflow	6
Funktionalität	8
Überblick der Funktionalität	8
Funktion 1: Die Umgebung scannen	8
Funktion 2: Einen Ball autonom suchen und erkennen	10
Funktion 3: Gegen den Ball fahren und schießen	12
Funktion 4: Hindernisse umfahren	13
Funktion 5: Automatisch abschalten	14
Funktion 6: Tore erkennen und auseinanderhalten	15
Funktion 7: Fernsteuerung	16
Verwendete Hardware	17

HTW-Berlin Seite 2 von 18

Pflichtenheft

FennecBot

Tabellenverzeichnis

Tabelle 1: Relevante Unterlagen	5
Tabelle 2: Die Hauptziele, basierend auf dem Lastenheft	5
Tabelle 3: Fachliche und technische Projektannahmen	6
Tabelle 4: Projektabgrenzungen	6
Tabelle 5: Beschreibung der Funktion 1	9
Tabelle 6: Beschreibung der Funktion 2	10
Tabelle 7: Beschreibung der Funktion 3	12
Tabelle 8: Beschreibung der Funktion 4	13
Tabelle 9: Beschreibung der Funktion 5	14
Tabelle 10: Beschreibung der Funktion 6	15
Tabelle 11: Beschreibung der Funktion 7	16
Tabelle 12: Beschreibung der verwendeten Hardware	17
Abbildungsverzeichnis	
Abbildung 1: Aktivitätsdiagramm des Fennec-Bot-Systems	7
Abbildung 2: Use-Case-Diagramm des Fennec-Bot-Systems	8
Abbildung 3: Aktivitätsdiagramm für die Funktion 2	11

HTW-Berlin Seite 3 von 18

Pflichtenheft

FennecBot

Copyright

© Team FennecBot

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Versionshistorie

Version:	Datum:	Verantwortlich	Änderung
0.1	04.05.2021	Lukas Evers	Initiale Dokumenterstellung
0.2	10.05.2021	Son Khue Nguyen	Erweiterungen
0.3	11.05.2021	Umut Uzunoglu	Erweiterungen
0.4	12.05.2021	Hien Anh Nguyen Manh	Erweiterungen
0.5	16.05.2021	Lukas Evers, Son Khue Nguyen, Hien Anh Nguyen Manh, Umut Uzunoglu	Erweiterungen
0.8	18.05.2021	Lukas Evers, Son Khue Nguyen, Hien Anh Nguyen Manh, Umut Uzunoglu	Erweiterungen und Korrekturen
1.0	19.05.2021	Lukas Evers	Korrektur

HTW-Berlin Seite 4 von 18

1 Vorhandene Dokumente

Tabelle 1: Relevante Unterlagen

Dokument	Autor	Datum
Lastenheft	Team FennecBot	12.05.2021
Technische Spezifikation <u>JetRacer Al Kit</u>	Waveshare	01.02.2021

2 Überblick

Für das Projekt soll auf Basis eines Waveshare JetRacers ein autonom fahrendes Auto erstellt werden. Die dazu zu erstellenden Teile bestehen aus einem 3D - gedruckten Chassis und der Software zur Verarbeitung der Sensordaten, um die Motoren des JetRacers entsprechend anzusteuern. Die Software wird auf einem Nvidia Jetson Nano ausgeführt. Die Software soll mittels Bilderkennung einen kleinen Fußball erkennen und dann den JetRacer autonom zum Ball fahren lassen um ihn zu schießen oder ihn zu dribbeln. Neben dem autonomen Modus kann man das Auto auch manuell mit einem Controller steuern.

Die Hauptziele des Projektes sind in der folgenden Tabelle dargestellt.

Tabelle 2: Die Hauptziele, basierend auf dem Lastenheft

#	Ziel	Beschreibung der Implementation
1	Erkennung eines Balles	ROS Package über Intel Realsense (Tiefenkamera) und LiDAR (Laserscanner)
2	Erkennung einer Linie auf dem Boden	ROS Package über Intel Realsense
3	Autonomes Verfolgen und Abfahren einer Linie	ROS Package für Erkennung mit der Intel Realsense und LiDAR, Abfahren über ROS Navigation
4	Autonomes Erkunden und Suche nach einem Ball falls nicht im Sichtfeld des Roboters	ROS Navigation mit Intel Realsense und LIDAR für SLAM-Funktionalität
5	Steuerung FennecBot mit einem Remote Controller	Ferngesteuert mit ROS Teleop
6	Autonomes Vermeiden von Hindernissen welches nicht Bälle sind	ROS Navigation mit Tiefenkamera und LIDAR
7	Erkennung eines Tores für den Ball	ROS Package über Intel Realsense
8	Beförderung des Balles in das richtige Tor	ROS Navigation, Intel Realsense, LIDAR
9	Variierung der Fahrgeschwindigkeit für Anpassung an verschiedene Situation (viele, wenig Hindernisse, Erkundung, Schießen, Dribbeln)	Phasenerkennung und Übermittlung der Fahrgeschwindigkeit an den ROS Controller (Steuerung über PWM)
10	Rückwärtsfahren und autonom rangieren	ROS Navigation

HTW-Berlin Seite 5 von 18

3 Annahmen und Abgrenzungen

Tabelle 3: Fachliche und technische Projektannahmen

#	Annahmen
1	Verwendung von Open-Source-Code ist ohne Einschränkungen möglich
2	Verwendung eines Waveshare JetRacers
3	Einsatz von ROS
4	Bilderkennung über Intel Realsense

Tabelle 4: Projektabgrenzungen

#	Abgrenzungen
1	Genaue Implementierung der Funktionalität des eigentlichen "Fennecs" (z.B. Springen)
2	Alles, was über die Möglichkeiten des JetRacer hinausgeht

HTW-Berlin Seite 6 von 18

4 Workflow

Abbildung 1: Aktivitätsdiagramm des Fennec-Bot-Systems

HTW-Berlin Seite 7 von 18

5 Funktionalität

5.1 Überblick der Funktionalität

Die Funktionalität wird durch das folgende Use-Case-Diagramm dargestellt, dessen Funktionen in den folgenden Tabellen detailliert beschrieben werden.

Abbildung 2: Use-Case-Diagramm des Fennec-Bot-Systems

HTW-Berlin Seite 8 von 18

5.2 Funktion 1: Die Umgebung scannen

Tabelle 5: Beschreibung der Funktion 1

Tabelle 5. bescrireibul	ig dei Funktion i
Zweck/Ziel	Der Fennec kann mit der Intel Realsense und dem Laserscanner (LiDAR) eine Karte von der Umgebung erzeugen und autonom erkunden
Akteur/Auslöser	LiDAR/Intel Realsense
Vorbedingung	keine
Daten-Input	Tiefendaten/-bilder, Farbbilder, Laserscandaten
Verarbeitungsschritte	 Intel Realsense/LiDAR nehmen die Umgebung auf (Abstand und Position) und geben die Tiefendaten/Laserscandaten weiter an ROS In einen SLAM-Algorithmus (Simultaneous Localization and Mapping) werden Laserscan- und Odometriedaten (Bewegungsdaten) verarbeitet. Der SLAM-Algorithmus liefert eine stetig erweiterbare Karte und die aktuelle Schätzung der Position in dieser neu erstellten Karte basierend auf einem probabilistischen Algorithmus zur Posenbestimmung
Ergebnis	Der Fennec besitzt eine genaue Repräsentation seiner Umgebung und kann basierend auf dieser Information autonom einen Pfad zu seinem Ziel abfahren.
Plausibilitäten	 Die Reichweite und die Aktualisierungsgeschwindigkeit der gescannten Karte, wenn sich der Fennec mit unterschiedlicher Tempo bewegt Die Reaktionsgeschwindigkeit bei der Begegnung mit verschiedenen Objekten (mehr dazu in Plausibilitätsprüfungen Funktionen 2, 4, 6)
Fehlerhandling	
Anforderung	Funktionale Anforderung 1
Test Cases	 Erkennen und eingrenzen des Spielfeldes Hindernisse, die die Fahrt beeinflussen umgehen

HTW-Berlin Seite 9 von 18

5.3 Funktion 2: Einen Ball autonom suchen und erkennen

Tabelle 6: Beschreibung der Funktion 2

Tabelle 6: Beschreibu	ı Taramanının İ
Zweck/Ziel	Der Fennec kann einen Ball autonom suchen und erkennen, macht somit sein Ziel und die Fahrtrichtung fest und fährt in Richtung Ball
Akteur/Auslöser	Intel Realsense/LiDAR, Motoren, Achse, ROS
Vorbedingung	Funktion 1 muss erfüllt sein
Daten-Input	Tiefendaten/-bilder, Farbbilder
Verarbeitungsschritte	 Der Ball, welcher einen Umfang von 64cm - 66cm wird mit der Intel RealSense Kamera aus zahlreichen Positionen fotografiert um eine robuste Erkennung des Spielballs zu ermöglichen. Während der Erkundung der Umgebung wird ständig mit der Farbkamera analysiert, ob ein Ball im Frame zu sehen ist. Abstand zum Ball bzw. die Position Balles auf der Karte wird gespeichert. Wurde der Ball nicht gefunden, soll der Fennec sich im Spielfeld/Raum bewegen und den Ball suchen.
Ergebnis	Der Ball wurde gefunden und der Fennec fährt auf den Ball zu. Darauf folgt das Führen/Schießen des Balles
Plausibilitäten	Zu überprüfen:
	Die maximale und minimale Entfernung, in der der Ball erkannt werden kann
Fehlerhandling	 Ball wird nicht aus verschiedenen Perspektiven erkannt → mehr Bilder als Input für die Erkennung Fennec bewegt sich zu schnell und erkennt den Ball nicht → Mehr FPS für die Bilderkennung (max. 60 FPS)
Anforderung	Funktionale Anforderung 1.1, 1.4
Test Cases	Rollenden Ball erkennenStillen Ball erkennen

HTW-Berlin Seite 10 von 18

Abbildung 3: Aktivitätsdiagramm für die Funktion 2

HTW-Berlin Seite 11 von 18

5.4 Funktion 3: Gegen den Ball fahren und schießen

Tabelle 7: Beschreibung der Funktion 3

Tabelle 7: Beschreibur Zweck/Ziel	Der Fennec kann mit maximaler Geschwindigkeit gegen den Ball fahren und
ZWECNZIEI	schießen, um einen Treffer zu erzielen/den Ball vorzulegen und hinterher zu fahren.
Akteur/Auslöser	Motoren, Achse, ROS
Vorbedingung	Funktion 2 und Funktion 6 müssen erfüllt sein und der Ball erkannt.
Daten-Input	Entfernung vom Ball zum Tor über Algebra
Verarbeitungsschritte	 Nach der Erkennung des Balles und eines Tores wird die Geschwindigkeit erhöht und zur Zielpose navigiert. Eine Pose ist in diesem Fall definiert als eine Position mit zugehöriger Orientierung im Raum. Die Zielpose wird errechnet aus der Position des Balles und der Position des Tores. Zum Zeitpunkt des Schießen werden die Motoren direkt angesprochen und nicht über ROS Navigation, da der Roboter sonst einem Hindernis autonom ausweichen würde. Je nach Entfernung zum Tor wird der Ball geführt oder möglichst hart geschossen. (Große Distanz -> Ball führen, kurze Distanz -> direkter Schuss) Um die Entfernung zu berechnen, identifiziert die Tiefenkamera beim Erkunden den Ball und das Tor, wobei beide Objekte als Punkte auf der erstellten Karte gespeichert werden.
Ergebnis	Der Ball und das Tor wurden gefunden und der Fennec fährt auf den Ball zu. Darauf folgt das Führen/Schießen des Balles in Richtung des Tores
Plausibilitäten	 Die größte Kraft, die auf den Ball ausgeübt werden kann, ohne dass sich der Fennec selbst schadet Die geringste Kraft, die auf den Ball ausgeübt werden kann, um ihn zu bewegen
Fehlerhandling	Der Ball wird aufgrund des Geländes oder des Winkels der gerichteten Kraft in eine unerwartete Richtung bewegt → Falls Ball verloren → suchen, falls nicht → Zum Ball fahren und korrigieren
Anforderung	Funktionale Anforderung 1.2, 1.3
Test Cases	 Gegen stillliegenen Ball fahren und schießen. Gegen leicht rollenden Ball in einer gewissen Entfernung fahren und schießen.

HTW-Berlin Seite 12 von 18

5.5 Funktion 4: Hindernisse umfahren

Tabelle 8: Beschreibung der Funktion 4

Zweck/Ziel	Der Fennec kann Hindernisse erkennen und seine Route entsprechend anpassen, um Kollisionen zu vermeiden
Akteur/Auslöser	Motoren, Achse, ROS Navigation, LiDAR, Intel RealSense
Vorbedingung	Funktion 1 muss erfüllt sein
Daten-Input	Tiefen-/Laserscandaten
Verarbeitungsschritte	 Der Fennec erhält permanent Tiefen-/Laserscandaten über die Intel Realsense/LiDAR, diese werden über ROS in Koordinaten im Raum transformiert → der Fennec weiß, wo ein Hindernis ist Falls der Fennec sich einem Hindernis nähert, ermittelt der Fennec über Tiefendaten der Intel RealSense die Entfernung zum Hindernis. Falls die Entfernung zu nah wird, wird eine optimierte Route berechnet und der Fennec dreht seine Achse entsprechend Der Fennec folgt der neuen Route und kehrt zur normalen Geschwindigkeit zurück
Ergebnis	Der Fennec meidet unerwartete Hindernisse und erreicht sein Ziel auf einer kollisions freien Route.
Plausibilitäten	 Zu überprüfen: Die benötigte Zeit für die Berechnung einer angepassten Route, die der Fennec braucht, um große Hindernisse zu umfahren Die Größe und Position der toten Winkel bei der Bewegung mit dem Ball
Fehlerhandling	 Der Fennec steht vor einer Sackgasse → Bei der Berechnung der neuen Route muss der Wendekreis berücksichtigt werden (Joint Limits).
Anforderung	Funktionale Anforderung 1.8, 1.9
Test Cases	 Hindernisse unterschiedlicher Größe werden in unterschiedliche Richtungen und Winkel gesetzt. Plötzlich auftauchte Hindernisse

HTW-Berlin Seite 13 von 18

5.6 Funktion 5: Automatisch abschalten

Tabelle 9: Beschreibung der Funktion 5

Tabelle 9. Descriteibung der Funktion 3		
Zweck/Ziel	Der Fennec kann langsamer werden und sich selbst abschalten, nachdem bestimmte Bedingungen erfüllt sind.	
Akteur/Auslöser	Motoren, Temperatursensoren integriert in der CPU	
Vorbedingung	Die Innentemperatur erreicht eine bestimmte Schwelle (ca. 90°C).	
Daten-Input	Temperatur (in °C)	
Verarbeitungsschritte	 Die CPU wird durch lange Nutzung aufgeheizt, bis zu einer vorbestimmten Temperatur Der Fennec wird langsamer Der Fennec schaltet sich automatisch ab 	
Ergebnis	Der Fennec ist ausgeschaltet und die CPU muss vor dem erneuten Einschalten abgekühlt werden.	
Plausibilitäten	Zu überprüfen: Die höchste Temperatur, die die CPU aushalten kann	
Fehlerhandling	Mögliche Kollision durch Herunterfahren → Mehr Zeit zum Manövrieren vor dem Herunterfahren	
Anforderung	Nicht-Funktionale Anforderung 3.2	
Test Cases	Die Abgrenzung der CPU beim langen Fahrt testen	

HTW-Berlin Seite 14 von 18

5.7 Funktion 6: Tore erkennen und auseinanderhalten

Tabelle 10: Beschreibung der Funktion 6

Tabelle 10. Describela	ang der i anktion o		
Zweck/Ziel	Der Fennec soll wissen, was er mit dem Ball machen soll, heißt er muss die Tore als Ziel definieren können, damit er den Ball auch ins Tor führen/schießen kann.		
Akteur/Auslöser	Intel Realsense (Tiefen- und Farbkamera)/ LiDAR (Laserscanner)		
Vorbedingung	Funktion 1 muss erfüllt sein		
Daten-Input	Farbbilder, Tiefendaten		
Verarbeitungsschritte	 Über Laserscandaten von der Funktion 1 können die Tore als Ziel festgelegt werden. Da die Laserscandaten gespeichert werden und sich die Tore nicht bewegen werden, muss die Erfassung der Tore nicht in Echtzeit erfolgen. Durch die Kartierung der Umgebung sind die Abmessungen des Spielfeldes bekannt und ein Platzieren der Tore in dieser Karte ist autonom möglich. Außerdem wird über die Farbkamera der Intel Realsense das Tor erkannt. Dafür werden die Tore mit Muster oder QR-Coder markiert. Dies vereinfacht die Erkennung von Features bzw. Unterscheidung eser. Dies macht das Unterscheiden der Tore erheblich einfacher. Features sind Eigenschaften, die die Bilderkennung erleichtert. Beispielsweise Kanten/Ecken.		
Ergebnis	Der Fennec kann mit den gegebenen Informationen den Ball ins Tor führen/schießer		
Plausibilitäten	 Zu überprüfen: Die Entfernung, aus der der Fennec ein Tor unterscheiden kann Die mögliche Art der Kennzeichnung des Tores (z.B. farbige Klebestreifen als Muster oder durch QR-Codes) 		
Fehlerhandling	 Das Tor ist blockiert → Der Fennec muss in der Lage sein, in einen anderen Winkel umzuleiten Die Kennzeichnung auf dem Tor wird getauscht → die Positionen der Toren im Speicher müssen flexibel austauschbar sein 		
Anforderung	Funktionale Anforderung 1.7		
Test Cases	 Fennec vor dem Tor mit/ohne Ball platzieren und das Tor erkennen lassen Fennec während Bewegung mit/ohne Ball das Tor erkennen lassen Aus verschiedenen Perspektiven das Tor erkennen lassen 		

HTW-Berlin Seite 15 von 18

5.8 Funktion 7: Fernsteuerung

Tabelle 11: Beschreibung der Funktion 7

Zweck/Ziel	Der Benutzer kann einen Controller verwenden, um den Fennec fernzusteuern		
Akteur/Auslöser	Bluetooth-Empfänger (Wireless Controller), Motoren, Achsen		
Vorbedingung	Fernbedienungsmodus wurde aktiviert		
Daten-Input	Controller-Input		
Verarbeitungsschritte	 Der Fennec empfängt über Bluetooth die Benutzereingaben auf dem Controller Der Fennec bewegt sich entsprechend 		
Ergebnis	Der Benutzer steuert den Fennec nach Belieben		
Plausibilitäten	Das sofortige Umschalten des Modus wird überprüft (z.B während der Hochgeschwindigkeitsfahrt)		
Fehlerhandling	keine		
Anforderung	Funktionale Anforderung 1.5, Nicht-Funktionale Anforderung 2.3		
Test Cases	Die Konnektivität in unterschiedlicher Entfernung testen		

HTW-Berlin Seite 16 von 18

6 Verwendete Hardware

Tabelle 12: Beschreibung der verwendeten Hardware

Name	Funktionen/Schnittstellen	Bild
Waveshare Jetson Racer	Stromversorgung, Motorsteuerung, Lenkung	
Intel RealSense D415	RGB-3D Tiefenkamera, USB-Schnittstelle	
Nvidia Jetson Nano	Leistungsstarker Mini-Computer für KI und Robotik, HDMI-, Ethernet-, USB-Schnittstellen, GPIO-Ports, I ² C, SPI, UART	
RPLiDAR A1	2D-Laserscan im Bereich von 30cm - 6m, USB-Schnittstelle	C C C C C C C C C C C C C C C C C C C
Intel Model 8265NGW	Wifi Communication Chip	The descention of the control of the

HTW-Berlin Seite 17 von 18

Ultimaker 2+

3D-Drucker zur Chassis-Erstellung

Ultimaker

Ultimaker

HTW-Berlin Seite 18 von 18