Microprocesseurs (MIC)

Chapitre 3: Interruptions

Rappel : le cycle du processeur

Présentation du problème

- Le cycle du processeur vu exécute tout un processus en une fois
 - Quid si un événement extérieur? (frappe au clavier, click souris...)
 - Quid si erreur d'exécution? (instruction inconnue, division par 0...)
 - Quid du dialogue avec le système? (appel système, scheduling de processus...)

Le polling (scrutation)

- Exemple : traitement de texte
- Comment détecter une frappe au clavier sans interruptions?
- Seule solution : le *polling*
- Problème : attente active

Interruptions - définition

- Interruption automatique du processus en cours
- Exécution d'une « routine de traitement d'interruption » (interrupt handler)
- En général, reprise ultérieure du programme interrompu

Types d'interruptions

- Interruptions matérielles
 - Provoquées par un matériel extérieur
- Exceptions
 - Provoquées par un programme, généralement suite à une erreur
- Appels-système
 - Provoquées par un programme, pour demander un service à l'O.S.

Interruptions matérielles

- Exemples :
 - Frappe sur le clavier
 - Arrivée d'un paquet sur le réseau
 - Click sur la souris
 - Fin de lecture sur disque
 - . . .

Exceptions

- Exemples :
 - Division par 0
 - Instruction inconnue
 - . . .

Appels-système

- Exemples :
 - Demande de lecture sur fichier
 - Demande d'écriture sur fichier
 - . . .

Numéros d'interruptions (80386)

- Chaque interruption a un numéro (« vecteur »)
- 256 types différents
- 0-31 : réservés pour des exceptions
 - 0 : division par 0
 - 6 : opcode non-défini
 - ..
- 32-255 :
 - Définis par l'OS
 - Programmés dans le PIC (interruptions matérielles)

Cycle du processeur avec interruptions

La broche INTR

- INTR = INTerrupt Request
- Signale au processeur l'arrivée d'une interruption matérielle

La broche INTR

- INTR = INTerrupt Request
- Signale au processeur l'arrivée d'une interruption matérielle

La broche INTR

- INTR = INTerrupt Request
- Signale au processeur l'arrivée d'une interruption matérielle

 La broche INTR est unique

- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions

- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions

- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions
- Rôle du Contrôleur d'interruptions (PIC : Programmable Interrupt Controller)

- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions
- Rôle du Contrôleur d'interruptions (PIC : Programmable Interrupt Controller)
- Set pour les interruptions matérielles

- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions
- Rôle du Contrôleur d'interruptions (PIC : Programmable Interrupt Controller)
- Set pour les interruptions matérielles
- Exemple: Intel 8259

	$\overline{}$	\neg		1
-CS	1		28	□ vcc
-WR □	2	Intel 8259	27	□ A0
-RD 🗌	3		26	INTA
D7 🗌	4		25	🗌 IR7
D6 🗌	5		24	☐ IR6
D5 🗆	6		23	☐ IR5
D4 🗌	7		22	□ IR4
D3 🗌	8		21	☐ IR3
D2 🗌	9		20	☐ IR2
D1 🗌	10		19	□ IR1
D0 🗆	11		18	☐ IR0
CAS 0	12		17	☐ INT
CAS 1	13		16	SP/-EN
GND 🗌	14		15	CAS 2

Exemple: Intel 8259

 Relié aux périphériques via bornes IR(Q)

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)

-CS 🗌	1		28	□ vcc
-WR 🗌	2	Intel 8259	27	☐ A0
-RD 🗌	3		26	INTA
D7 🗌	4		25	□ IR7
D6 🗌	5		24	☐ IR6
D5 🗆	6		23	🗌 IR5
D4 🗌	7		22	□ IR4
D3 🗌	8		21	☐ IR3
D2 🗌	9		20	☐ IR2
D1 🗌	10		19	☐ IR1
D0 🗆	11		18	☐ IR0
CAS 0	12		17	☐ INT
CAS 1	13		16	SP/-EN
GND 🗌	14		15	CAS 2

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)
- Programmable pour donner des priorités différentes à chaque périphérique

-CS	1.		28	□ vcc
-WR □	2		27	☐ A0
-RD 🗌	3	Intel 8259	26	-INTA
D7 🗌	4		25	□ IR7
D6 🗆	5		24	□ IR6
D5 🗆	6		23	🗌 IR5
D4 🗌	7		22	□ IR4
D3 🗌	8		21	☐ IR3
D2 🗌	9		20	☐ IR2
D1 🗌	10		19	☐ IR1
D0 🗆	11		18	☐ IR0
CAS 0	12		17	☐ INT
CAS 1	13		16	SP/-EN
GND 🗌	14		15	CAS 2

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)
- Programmable pour donner des priorités différentes à chaque périphérique
- PIC= Programmable Interrupt Controller

Les IRQ

- IRQ0 timer programmable
- IRQ1 clavier
- IRQ2 mise en cascade d'un 2^e PIC
- IRQ3 port série
- IRQ4 port série
- IRQ5 port parallèle
- IRQ6 disque floppy
- IRQ7 port parallèle

Deux PIC en cascade

 Permet d'augmenter le nombre d'IRQ

 Arrivée de l'interruption sur INTR

 Arrivée de l'interruption sur INTR

 Arrivée de l'interruption sur INTR

- Arrivée de l'interruption sur INTR
- Accusé de réception sur INTA

- Arrivée de l'interruption sur INTR
- Accusé de réception sur INTA
- Envoi du n° d'interruption sur bus de données

Table d'interruptions

- Contient les adresses des handlers d'interruptions
- Indexée par le numéro d'interruption
- Dans la RAM
- Gérée par l'OS
- Détails : leçon ultérieure et cours de Systèmes

Table d'interruptions : schéma général

Structure d'un handler (monoprogrammation)

- Sauver registres utilisés (sur pile)
- Traiter l'interruption
- Restaurer registres utilisés (àpd pile)
- IRET

L'instruction IRET

- Exécutée en fin de handler d'interruption
- Restaure automatiquement l'ancien EIP
- Permet de revenir au programme interrompu

Le flag IF

- Si IF=0, le CPU est non-interruptible
- SI IF=1, le CPU est interruptible
- CLI: instruction pour mettre IF à 0
- STI : instruction pour mettre IF à 1
- CLI/STI : utilisés par l'OS

