Nr ćw.	Pracownia z Elektroniki – Fizyka Medyczna gr. 2		Ocena Wstęp:
1A			
Temat ćw.:	Badanie wzmacniacza rezystorowego		Ocena:
Data: 17.03.2022	Imię: Krzysztof	Nazwisko: Jagła	Ocena Końcowa:
Data:		_	

1. Teoria

Wzmacniacze tranzystorowe są najprostszymi ze względu na konstrukcje wzmacniaczami. Ze względu na swoją charakterystykę, wzmacniacze WE, czyli wspólny emiter są najczęstszą implementacją wzmacniacza tranzystorowego. Wzmacniacze WE, w szczególności w wykorzystaniu do wzmacniania niskich częstotliwości, są dominujące ze względu na swoją prostotę i charakterystykę pracy.

Do efektywnej pracy takiego wzmacniacza wystarczy kilka elementów pasywnych, a zapewniają one stosunkowo wysokie wzmocnienie napięciowe jak i prądowe.

Przykładowy układ wzmacniacza WE z minimalną ilością komponentów:

Sercem tego układu jest tranzystor bipolarny, pracujący w układzie wspólnego emitera. W tym ćwiczeniu mamy styczność z tranzystorem bipolarnym typu NPN. Co oznacza że Baza tranzystora jest typu P, a Emiter i Kolektor są typu N. Charakterystyki statyczne tranzystora opisują jego zachowanie przy pracy dla prądów stałych, a charakterystyka mieszana takiego tranzystora wynika z nieliniowości w okolicach zera.

Przykładowa charakterystyka:

Wzory:

$$U_{wy} = \frac{U_{we}}{R_1 + R_2} * R_1$$

$$K_U = \frac{U_{WY}}{U_{WE}} = \frac{-h_{21}}{h_{11}} R_L$$

$$K_I = -\frac{I_{WY}}{I_{WE}} = -h_{21}$$

$$K_P = K_U * K_I = \frac{h_{21}^2}{h_{11}} R_L$$

$$R_{WE} = h_{11}$$

$$R_{WY} =$$

2. Zdjęcia układu

a.

b.

c.

d.

e.

3. Wyniki pomiarowe

4. Opracowanie wyników

a.

Amplification characteristics

b.

Frequency characteristics

c.

Dynamic characteristics

d.

$$K_U =$$

$$K_I = -280$$

$$K_P =$$

$$R_{WE}=3k\Omega$$

$$R_{WY} =$$

e.

f.