Class 12: Review

Schedule

Problem Set 5 is due Friday at 6:29pm.

Exam 1 is in class on **Thursday, 6 October**. See Notes 11 for details. Remember to bring a good writing instrument (sharp pencil is recommended) and your page of notes to the exam.

Exam Review

Below are some notations you should understand. We use variables P and Q to represent logical propositions (with **T** or **F** value), A and B and D (domain of discourse) to represent sets, and x represents any mathematical object.

Logical Operators

Logical Operators	
$P \text{ implies } Q, P \implies Q$	Logical implication: when P is T , Q must be T
$P \text{ IFF } Q, P \iff Q$	Double implication: $P \implies Q \lor Q \implies P$
$NOT(P)$, $\neg P$, \overline{P}	Logical negation
P and Q , $P \wedge Q$	Logical conjunction (T when both P and Q are T)
P or Q , $P \vee Q$	Logical disjunction (\mathbf{T} when P or Q is \mathbf{T} (or both)
P xor Q , $P \oplus Q$	Exlusive or (T when either <i>P</i> or <i>Q</i> is T , but not both
Quantifiers	
$\forall x \in A. P(x)$	P(x) for <i>every</i> element x of the set A
$\exists x \in A. P(x)$	P(x) for at least one element x of the set A
Set Operators	
$x \in A$	Set membership, <i>A</i> contains the element <i>x</i>
$x \notin A$	Set non-membership, <i>A</i> does not contain <i>x</i>
$A \subseteq B$	<i>A</i> is a subset of <i>B</i> : $\forall x \in A.x \in B$.
A = B	set equality: $A \subseteq B \lor Bsubseteq A$
$A \cup B$	Set Union: $\forall x.x \in A \cup B \iff x \in A \lor x \in B$.
$A \cap B$	Set Intersection: $\forall x.x \in A \cup B \iff x \in A \land x \in B$.
A - B	Set Difference: $\forall x.x \in A - B \iff x \in A \land x \notin B$.
\overline{A}	Set Complement: $\forall x.x \in D.x \in \overline{A} \iff x \notin A$.
$A \times B$	Cartesian Product: $\forall a \in A, b \in B. (a, b) \in A \times B.$
pow(A)	Power Set: $S \in A \iff S \subseteq A$.

Well-Ordering Principle

Remember the well-ordering principle template from Class 3:

To prove that P(n) is true for all $n \in \mathbb{N}$:

- 1. Define the set of counterexamples, $C := \{n \in \mathbb{N} | NOT(P(n)) \}$.
- 2. Assume for contradiction that *C* is non-empty.
- 3. By the well-ordering principle, there must be some smallest element, $m \in C$.
- 4. Reach a contradiction (this is the creative part!). One way to reach a contradiction would be to show P(m). Another way is to show there must be an element $m' \in C$ where m' < m.
- 5. Conclude that C must be empty, hence there are no counter-examples and P(n) always holds.

Since we didn't finish the winning strategy proof in class, I've written it out fully here.

Theorem. Player 1 has a winning strategy in Take-Away if the number of sticks, *n* is not divisible by 4.

For any induction proof, the first thing we need to do is write the theorem as a predicate on the natural numbers.

 $\forall n \in \mathbb{N}$. P(n) ::=Player 1 has a winning strategy if $\exists a \in \{1,2,3\}$, $\exists k \in \mathbb{N}$ such that n = 4k + a.

Base cases: P(1), P(2), P(3).

P(1): If there is 1 stick remaining, Player 1 wins by taking 1 stick.

P(2): If there are 2 sticks remaining, Player 1 wins by taking 2 sticks.

P(3): If there are 3 sticks remaining, Player 1 wins by taking 3 sticks.

Inductive case: Using strong induction, $\forall m \in \mathbb{N}, m \geq 4$. $(\forall k \in \mathbb{N}, k \leq m.P(k)) \implies P(m+1)$.

Since m > 4 we can write m = 4k + b for some $k \in \mathbb{N}^+$ and $b \in \{0, 1, 2, 3\}$.

We consider four cases for each value of b.

Case 3: b = 3. Since m = 4k + 3, m + 1 = 4k + 4 = 4(k + 1). Since m + 1 is divisible by 4, P(m + 1) holds because the predicate makes no claims when n is divisible by 4.

Cases 0, 1, 2: Since m = 4k + b for $b \in \{0, 1, 2\}$, we know m + 1 = 4k + c for $c \in \{1, 2, 3\}$ (since c = b + 1 to produce m + 1). We need to show P(m + 1), which means showing that player 1 has a winning strategy for n = 4k + c, $c \in \{1, 2, 3\}$. Player 1 takes c sticks, leaving 4k sticks.

For the next turn, Player 2 can remove 1, 2, or 3 sticks, leaving 4k-d sticks, $d \in \{1,2,3\}$. This can be simplified to 4(k-1)+e sticks where e=4-d since 4k-4+(4-d)=4k-d=4(k-1)+e. Hence, after Player 2's turn it will be Player 1's turn with 4(k-1)+e sticks, $e \in \{1,2,3\}$. We know 4(k-1)+e < m and it is not divisible by 4. So, Player 1 has a winning strategy from P(m+1) since she has a move to make such that no matter what move player 2 makes, it leads to a number that is not divisible by 4 and is less than m, which we know is a position where Player 1 has a winning strategy but strong induction.

Note that 4(k-1) + e is m-1, m-2 or m-3, so we need to know $m \ge 4$ for this to be valid. That's why we needed three base cases!