Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 2: lista M 9 6 grudnia 2016 r.

M9.1. 1,5 punktu Wykazać, że wielomiany Czebyszewa T_0, T_1, \ldots, T_n tworzą układ wielomianów ortogonalnych w sensie dyskretnego iloczynu skalarnego

$$\langle f, g \rangle := \sum_{k=0}^{n} f(t_k)g(t_k),$$

gdzie t_0, t_1, \ldots, t_n są zerami wielomianu T_{n+1} .

M9.2. I punkt Wykazać, że wielomian $I_n \in \Pi_n$ interpolujący funkcję f w węzłach

$$t_k \equiv t_{n+1,k} = \cos \frac{2k+1}{2n+2}\pi$$
 $(k = 0, 1, \dots, n)$

(zerach wielomianu T_{n+1}) można zapisać w postaci

$$I_n(x) = \sum_{i=0}^{n} ' \alpha_i T_i(x),$$

gdzie

$$\alpha_i := \frac{2}{n+1} \sum_{j=0}^n f(t_j) T_i(t_j) \qquad (i = 0, 1, \dots, n).$$

- **M9.3.** I punkt Niech $p_n, q_n \in \Pi_n$ będą wielomianami optymalnymi dla funkcji ciągłej f na odcinku [a, b] w sensie normy jednostajnej. Udowodnić, że $p_n \equiv q_n$. Co z tego wynika?
- **M9.4.** 1 punkt (Część twierdzenia Czebyszewa o alternansie) Niech f będzie funkcją ciągłą na odcinku [a,b], a w_n wielomianem stopnia nie wyższego niż n. Udowodnić, że jeśli istnieją takie n+2 punkty $x_0, x_1, \ldots, x_{n+1} \in [a,b]$, że $x_0 < x_1 < \ldots < x_{n+1}$ i że

(i)
$$f(x_j) - w_n(x_j) = -[f(x_{j-1}) - w_n(x_{j-1})]$$
 $(j = 1, 2, ..., n+1),$

(ii)
$$|f(x_k) - w_n(x_k)| = ||f - w_n||_{\infty}^{[a,b]}$$
 $(k = 0, 1, \dots, n+1),$

to w_n jest n-tym wielomianem optymalnym w sensie aproksymacji jednostajnej dla funkcji f.

M9.5. 1,5 punktu (Charles Jean de la Vallée-Poussin) Niech f będzie funkcją ciągłą na odcinku [a,b], a p_n — wielomianem stopnia nie wyższego niż n. Udowodnić, że jeśli istnieją takie n+2 punkty $x_0, x_1, \ldots, x_{n+1} \in [a,b]$, że $x_0 < x_1 < \ldots < x_{n+1}$ i że

$$sign(f(x_j) - p_n(x_j)) = \lambda(-1)^j \quad (j = 1, 2, ..., n + 1),$$

gdzie $\lambda \in \{-1,1\}$ jest ustaloną liczbą, to dla dowolnego wielomianu $w_n \in \Pi_n$ zachodzi nierówność

$$\min_{0 \le j \le n+1} |f(x_j) - p_n(x_j)| \le ||f - w_n||_{\infty}^{[a,b]}.$$

Wywnioskować, stąd, że

$$\min_{0 \le j \le n+1} |f(x_j) - p_n(x_j)| \le \inf_{w_n \in \Pi_n} ||f - w_n||_{\infty}^{[a,b]}.$$

- **M9.6.** 1 punkt Niech $\bar{T}_k(x)$ będą standardowymi wielomianami ortogonalnymi w przedziale [-1,1], z wagą $(1-x^2)^{-1/2}$. Znaleźć związek rekurencyjny spełniany przez te wielomiany.
- M9.7. $\boxed{1 \text{ punkt}}$ Jakim wzorem wyraża się n-ty wielomian optymalny dla funkcji f w sensie normy

$$||f||_2 := \sqrt{\int_{-1}^{1} (1 - x^2)^{-1/2} f^2(x) \, dx}?$$

M9.8. 1 punkt Normę jednostajną funkcji $f \in C[a, b]$ podaje wzór $||f||_{\infty} \equiv ||f||_{\infty}^{[a, b]} := \max_{a \leq x \leq b} |f(x)|$. Sprawdzić, że n-ty błąd aproksymacji optymalnej funkcji f z przestrzeni C[a, b], określony wzorem

$$E_n(f) \equiv E_n(f; [a, b]) := \inf_{w_n \in \Pi_n} ||f - w_n||_{\infty}^{[a, b]},$$

ma następujące własności:

- a) $E_n(\alpha f) = |\alpha| E_n(f);$
- b) $E_n(f+g) \le E_n(f) + E_n(g);$
- c) $E_n(f+w) = E_n(f);$
- $d) E_n(f) \leqslant ||f||_{\infty},$

gdzie f, g są dowolnymi funkcjami z C[a, b], w jest dowolnym wielomianem stopnia $\leq n$, natomiast α – dowolną liczbą rzeczywistą.

- **M9.9.** 1 punkt Niech f będzie funkcją ciągłą w przedziale [a, b]. Wykazać, że dla dowolnego podprzedziału [c, d] tego przedziału zachodzi nierówność $E_n(f; [c, d]) \leq E_n(f; [a, b])$.
- **M9.10.** I punkt Znaleźć 5-ty wielomian optymalny dla funkcji $f(x) := 2016x^7 + 12x^5 + x^4 + x^3 + x^2 + x + 1$ w sensie normy jednostajnej na przedziale [-1,1].