Three-input models

ADVANCED DEEP LEARNING WITH KERAS

Zach Deane Mayer
Data Scientist

Simple model with 3 inputs

```
from keras.layers import Input, Concatenate, Dense
in_tensor_1 = Input(shape=(1,))
in_tensor_2 = Input(shape=(1,))
in_tensor_3 = Input(shape=(1,))
out_tensor = Concatenate()([in_tensor_1, in_tensor_2, in_tensor_3])
output_tensor = Dense(1)(out_tensor)
```


Simple model with 3 inputs

```
from keras.models import Model
model = Model([in_tensor_1, in_tensor_2, in_tensor_3], out_tensor)
```


Shared layers with 3 inputs

```
shared_layer = Dense(1)
shared_tensor_1 = shared_layer(in_tensor_1)
shared_tensor_2 = shared_layer(in_tensor_1)
out_tensor = Concatenate()([shared_tensor_1, shared_tensor_2, in_tensor_3])
out_tensor = Dense(1)(out_tensor)
```


Shared layers with 3 inputs

```
from keras.models import Model
model = Model([in_tensor_1, in_tensor_2, in_tensor_3], out_tensor)
```


Fitting a 3 input model

```
from keras.models import Model
model = Model([in_tensor_1, in_tensor_2, in_tensor_3], out_tensor)
model.compile(loss='mae', optimizer='adam')
```


Let's practice

ADVANCED DEEP LEARNING WITH KERAS

Summarizing and plotting models

ADVANCED DEEP LEARNING WITH KERAS

Zach Deane Mayer
Data Scientist

Understanding a model summary

Layer (type) 	Output	Shape	Param #	Connected to
<pre>input_1 (InputLayer)</pre>	(None,	1)	0	
input_2 (InputLayer)	(None,	1)	0	
input_3 (InputLayer)	(None,	1)	0	
concatenate_1 (Concatenate)	(None,	3)	0	input_1[0][0] input_2[0][0] input_3[0][0]
dense_1 (Dense)	(None,		4	concatenate_1[0][0]
Total params: 4 Trainable params: 4 Non-trainable params: 0	======	=======	=========	

Understanding a model summary

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, 1)	0	
embedding_1 (Embedding)			
flatten_1 (Flatten)	(None, 1)	0	embedding_1[0][0]
input_2 (InputLayer)	(None, 1)	0	
input_3 (InputLayer)		0	
concatenate_1 (Concatenate)	(None, 3)	0	flatten_1[0][0] input_2[0][0] input_3[0][0]
dense_1 (Dense)	(None, 1)	4	concatenate_1[0][0]
Total params: 10,891 Trainable params: 10,891 Non-trainable params: 0	=======================================	========	=======================================

Understanding a model plot!

Let's Practice

ADVANCED DEEP LEARNING WITH KERAS

Stacking models

ADVANCED DEEP LEARNING WITH KERAS

Zach Deane Mayer
Data Scientist

Stacking models requires 2 datasets

```
from pandas import read_csv
games_season = read_csv('datasets/games_season.csv')
games_season.head()
   team_1 team_2 home score_diff
    3745
            6664
                                17
     126
            7493
            3593
            9881
                                16
    1846
                               12
     2675
         10298
```

```
games_tourney = read_csv('datasets/games_tourney.csv')
games_tourney.head()

team_1 team_2 home seed_diff score_diff
0 288 73 0 -3 -9
1 5929 73 0 4 6
2 9884 73 0 5 -4
3 73 288 0 3 9
4 3920 410 0 1 -9
```


Enrich the tournament data

```
in_data_1 = games_tourney['team_1']
in_data_2 = games_tourney['team_2']
in_data_3 = games_tourney['home']
pred = regular_season_model.predict([in_data_1, in_data_2, in_data_3])
```

```
games_tourney['pred'] = pred
games_tourney.head()
  team_1 team_2 home seed_diff pred score_diff
     288
                            -3 0.582556
                                                -9
    5929
                   0 4 0.707279
    9884
                             5 1.364844
                                                -4
            288
                            3 0.699145
                             1 0.833066
                                                -9
    3920
            410
```


3 input model with pure numeric data

```
games_tourney[['home','seed_diff','pred']].head()

home seed_diff pred
0 0 -3 0.582556
1 0 4 0.707279
2 0 5 1.364844
3 0 3 0.699145
4 0 1 0.833066
```

3 input model with pure numeric data

3 input model with pure numeric data

```
from keras.layers import Input, Dense
in_tensor = Input(shape=(3,))
out_tensor = Dense(1)(in_tensor)
```

```
from keras.models import Model
model = Model(in_tensor, out_tensor)
model.compile(optimizer='adam', loss='mae')
train_X = train_data[['home','seed_diff','pred']]
train_y = train_data['score_diff']
model.fit(train_X,train_y, epochs=10, validation_split=.10)
```


Let's practice!

ADVANCED DEEP LEARNING WITH KERAS

