

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2560

วิชา ENE 240 การวัดทางไฟฟ้าและอิเล็กทรอนิกส์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ซั้นปีที่ 2 (ปกติ) สอบ วันอังคารที่ 15 พฤษภาคม พ.ศ. 2561

เวลา 13.00 - 16.00 น.

คำสั่ง

- 1. ข้อสอบวิชานี้มี 8 ข้อ 9 หน้า (รวมใบปะหน้า) คะแนนรวม 40 คะแนน
- 2. ไม่อนุญาตให้นำหนังสือประกอบการเรียนเข้าห้องสอบ
- 3. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

คำเตือน/คำแนะนำ

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำ และควรอ่านคำถามให้รอบคอบก่อนเริ่มทำการคำนวณ เพื่อไม่ให้เสียเวลากับการคำนวณที่ไม่มีประโยชน์

ข้อสอบข้อที่	1	2	3	4	5	6	7	8	คะแนนรวม
คะแนนเต็ม	5	5	5	5	5	5	5	5	40
คะแนนที่ได้									

ผู้ช่วยศาสตราจารย์ ดร.วีรพล จิรจริต (โทร. 0-2470-9070) ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผู้ช่วยศาสตราจารย์ ดร.สุวัฒน์ ภัทรมาลัย)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1. จงอธิบายขั้นตอนการใช้โอห์มมิเตอร์แบบอนุกรม (series type ohmmeter) ในการวัดหาค่าความต้านทาน R_{x} (5 คะแนน)

3

2. จงอธิบายเหตุผลและขั้นตอนการใช้ Kelvin double bridge ในการวัดหาค่าความต้านทาน R_1 (5 คะแนน)

3. กำหนดให้วงจรบริดจ์กระแสสลับความถี่ 1 kHz มีค่าอิมพีแดนซ์ขณะสมดุล $Z_2 = 20\sqrt{20}^\circ \Omega$, $Z_3 = 100 \Omega$ และ $Z_4 = 50 / -60^\circ \Omega$ จงคำนวณหาค่า Z_1 และวาดรูปแบบจำลองทั้งแบบอนุกรมและแบบขนาน (5 คะแนน)

d	م ، م
ชื่อ-สกุล	รหัสประจำตัว

4. จงอธิบายการใช้ Hay bridge ในการวัดหาค่าความเหนี่ยวนำไฟฟ้า L_4 ค่าความต้านทานสมมูล R_4 และค่า ตัวประกอบคุณภาพ (Q factor) (5 คะแนน)

5. กำหนดให้วงจร Schering bridge ที่ความถี่ 10 kHz มีค่าอิมพีแดนซ์ขณะสมดุล $R_1=1$ k Ω , $C_1=200$ pF, $C_2=10$ pF และ $R_3=20$ Ω จงคำนวณหาค่าความจุไฟฟ้า C_4 ค่าความต้านทานสมมูล R_4 และค่า ตัวประกอบการสูญเสีย (D factor) (5 คะแนน)

6. จงอธิบายการใช้วัตต์มิเตอร์จำนวน 2 ตัวในการวัดหาค่ากำลังไฟฟ้าของระบบไฟฟ้าสามเฟสแบบสมดุล และ คำนวณหาค่ากำลังจริง (true power) กำลังรีแอคทีฟ (reactive power) และค่าตัวประกอบกำลัง (power factor)

ชื่อ-สกุล	รหัสประจำตัว
-----------	--------------

7. จงอธิบายการทำงานของโวลท์มิเตอร์ดิจิทัลแบบ ramp type และแสดงการทำงานใน timing diagram

8. จงอธิบายขั้นตอนการทำงานของ successive-approximation ADC และเติมค่าในตารางเมื่อใช้ 9-bit converter ในการหาค่า 301 (5 คะแนน)

ครั้งที่	เอาต์พุตดิจิทัล	V_{SAR}
1		
2		
3		
4		
5		
6		
7		
8		
9		