Supervivencia

Sergio Carrero

2022-06-21

```
library(survival)
str(lung)
                    228 obs. of 10 variables:
##
   'data.frame':
               : num
                      3 3 3 5 1 12 7 11 1 7 ...
##
   $ time
                      306 455 1010 210 883 ...
               : num
                      2 2 1 2 2 1 2 2 2 2 ...
##
   $ status
               : num
                      74 68 56 57 60 74 68 71 53 61 ...
##
   $ age
               : num
##
   $ sex
                      1 1 1 1 1 1 2 2 1 1 ...
               : num
##
   $ ph.ecog
              : num
                      1 0 0 1 0 1 2 2 1 2 ...
##
   $ ph.karno : num
                      90 90 90 90 100 50 70 60 70 70 ...
##
   $ pat.karno: num
                      100 90 90 60 90 80 60 80 80 70 ...
   $ meal.cal : num
                      1175 1225 NA 1150 NA ...
   $ wt.loss
                      NA 15 15 11 0 0 10 1 16 34 ...
              : num
library(km.ci)
```

Asignacion:

#Asumir los datos como un cultivo de palma #Time = Tiempo, Variable respuesta: Tiempo de supervivencia #Edad = Age meses de plantación #Hibrido = sexo #Severidad = ph.ecog Severidad en la misma escala #Nitrogeno M 17 n17= meal.cal : Nitrogeno medido en hoja 17 # P17 = wt.losss: Fosforo medido en la hoja 17

#Definiciones preliminares

$Elae is\ guine ensis$

```
Supeg<-Surv(SupEG$Tiempo, SupEG$Estado)</pre>
Eg.fit<-survfit(Supeg~1)</pre>
summary(Eg.fit)
## Call: survfit(formula = Supeg ~ 1)
##
      time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
##
     0.167
               228
                              0.9956 0.00438
                                                     0.9871
                                                                     1.000
                          1
               227
##
     0.367
                          3
                              0.9825 0.00869
                                                     0.9656
                                                                     1.000
     0.400
               224
                              0.9781 0.00970
                                                     0.9592
                                                                     0.997
##
                          1
##
     0.433
               223
                              0.9693 0.01142
                                                      0.9472
                                                                     0.992
     0.500
##
               221
                              0.9649 0.01219
                                                     0.9413
                                                                     0.989
                          1
##
     0.867
               220
                          1
                              0.9605 0.01290
                                                     0.9356
                                                                     0.986
                                                                     0.983
##
     1.000
               219
                              0.9561 0.01356
                                                     0.9299
```

##	1.033	218	1	0 0E10	0.01419	0.9243	0.980
##			1				
##	1.767	217	2		0.01536	0.9134	0.974
##	1.800	215	1		0.01590	0.9079	0.970
##	1.967	214	1		0.01642	0.9026	0.967
##	2.000	213	2	0.9254	0.01740	0.8920	0.960
##	2.033	211	1	0.9211	0.01786	0.8867	0.957
##	2.067	210	1	0.9167	0.01830	0.8815	0.953
##	2.167	209	2	0.9079	0.01915	0.8711	0.946
##	2.367	207	1	0.9035	0.01955	0.8660	0.943
##	2.633	206	1	0.8991	0.01995	0.8609	0.939
##	2.700	205	2		0.02069	0.8507	0.932
##	2.933	203	2		0.02140	0.8406	0.925
##	3.067	201	1		0.02174	0.8356	0.921
##	3.100	199	1		0.02207	0.8306	0.917
##		198	2				
	3.167				0.02271	0.8206	0.910
##	3.500	196	1		0.02302	0.8156	0.906
##	3.567	194	2		0.02362	0.8056	0.898
##	3.667	192	1		0.02391	0.8007	0.894
##	3.867	191	1		0.02419	0.7957	0.891
##	3.933	190	1	0.8374	0.02446	0.7908	0.887
##	4.067	189	1	0.8330	0.02473	0.7859	0.883
##	4.367	188	1	0.8285	0.02500	0.7810	0.879
##	4.400	187	2	0.8197	0.02550	0.7712	0.871
##	4.500	185	1	0.8153	0.02575	0.7663	0.867
##	4.733	184	1	0.8108	0.02598	0.7615	0.863
##	4.800	183	1	0.8064	0.02622	0.7566	0.859
##	4.833	182	2		0.02667	0.7469	0.852
##	4.900	180	1		0.02688	0.7421	0.848
##	5.100	179	1		0.02710	0.7373	0.844
##	5.200	178	2		0.02710	0.7277	0.836
			3		0.02731		0.824
##	5.433	176				0.7134	
##	5.533	173	2		0.02845	0.7039	0.816
##	5.567	171	1		0.02863	0.6991	0.811
##	5.667	170	1		0.02880	0.6944	0.807
##	5.833	167	1		0.02898	0.6896	0.803
##	5.867	165	1		0.02915	0.6848	0.799
##	5.900	164	1	0.7353	0.02932	0.6800	0.795
##	5.967	162	2	0.7262	0.02965	0.6704	0.787
##	6.000	160	1	0.7217	0.02981	0.6655	0.783
##	6.033	159	2	0.7126	0.03012	0.6559	0.774
##	6.067	157	1	0.7081	0.03027	0.6511	0.770
##	6.100	156	1	0.7035	0.03041	0.6464	0.766
##	6.200	154	1	0.6989	0.03056	0.6416	0.761
##	6.300	152	1		0.03070	0.6367	0.757
##	6.467	149	1		0.03085	0.6318	0.753
##	6.567	147	1		0.03099	0.6269	0.749
##	6.633	145	1		0.03113	0.6219	0.744
##	6.700	144	2		0.03141	0.6120	0.735
##	6.733	142	1		0.03141	0.6071	0.733
			1		0.03168		
##	6.900	139				0.6020	0.726
##	6.933	138	1		0.03181	0.5970	0.722
##	7.000	137	1		0.03194	0.5920	0.717
##	7.067	135	1		0.03206	0.5870	0.713
##	7.267	134	1	0.6421	0.03218	0.5820	0.708

##	7.400	132	1		0.03231	0.5769	0.704
##	7.433	130	1	0.6323	0.03243	0.5718	0.699
##	7.533	126	1	0.6273	0.03256	0.5666	0.694
##	7.633	125	1	0.6223	0.03268	0.5614	0.690
##	7.667	124	1	0.6172	0.03280	0.5562	0.685
##	7.967	121	2	0.6070	0.03304	0.5456	0.675
##	8.167	117	1		0.03316	0.5402	0.670
##	8.200	116	1		0.03328	0.5349	0.666
##	8.900	112	1		0.03341	0.5294	0.661
##	8.933	111	1		0.03353	0.5239	0.656
##	8.967	110	1		0.03364	0.5184	0.651
	9.000	108	1		0.03376	0.5104	0.645
##							
##	9.433	104	1		0.03388	0.5071	0.640
##	9.467	103	1		0.03400	0.5014	0.635
##	9.500	101	2		0.03424	0.4899	0.624
##	9.533	99	1		0.03434	0.4841	0.619
##	9.600	98	1		0.03444	0.4784	0.614
##	9.700	97	1	0.5363	0.03454	0.4727	0.608
##	9.767	94	1	0.5306	0.03464	0.4669	0.603
##	10.033	91	1	0.5248	0.03475	0.4609	0.597
##	10.100	89	1	0.5189	0.03485	0.4549	0.592
##	10.167	87	1	0.5129	0.03496	0.4488	0.586
##	10.200	86	1	0.5070	0.03506	0.4427	0.581
##	10.333	85	2	0.4950	0.03523	0.4306	0.569
##	10.667	82	1	0.4890	0.03532	0.4244	0.563
##	10.967	81	1	0.4830	0.03539	0.4183	0.558
##	11.233	79	1		0.03547	0.4121	0.552
##	11.333	78	1		0.03554	0.4060	0.546
##	11.500	77	1		0.03560	0.3998	0.540
##	11.600	76	1		0.03565	0.3937	0.534
##	11.667	75	1		0.03569	0.3876	0.528
##	11.700	74	1		0.03573	0.3815	0.522
##	11.767	73	2		0.03578	0.3693	0.510
##	12.033	70	1		0.03581	0.3631	0.504
##	12.100	69	2		0.03583	0.3508	0.492
##	12.133	67	1		0.03582	0.3447	0.486
##	12.367	65	2		0.03581	0.3323	0.473
##	12.900	60	1		0.03582	0.3258	0.467
##	13.000	59	1		0.03582	0.3193	0.460
##	13.133	58	1	0.3768	0.03580	0.3128	0.454
##	14.200	55	1	0.3700	0.03580	0.3060	0.447
##	14.267	54	1	0.3631	0.03579	0.2993	0.440
##	14.300	53	1	0.3563	0.03576	0.2926	0.434
##	14.433	52	1	0.3494	0.03573	0.2860	0.427
##	14.733	51	1	0.3426	0.03568	0.2793	0.420
##	14.800	50	1	0.3357	0.03561	0.2727	0.413
##	15.000	48	1	0.3287	0.03555	0.2659	0.406
##	15.167	47	1		0.03548	0.2592	0.399
##	15.233	46	1		0.03539	0.2525	0.392
##	15.333	44	1		0.03530	0.2456	0.385
##	15.767	43	1		0.03520	0.2388	0.378
##	15.900	42	1		0.03508	0.2320	0.371
##	17.300	39	1		0.03498	0.2248	0.363
##	17.333	38	1		0.03485	0.2177	0.356
11	17.000	50	1	J. 2102	3.00-00	V.ZIII	0.000

```
## 17.467
               37
                            0.2632 0.03455
                                                  0.2035
                                                                0.340
## 17.767
               34
                            0.2554 0.03439
                                                  0.1962
                                                                0.333
                        1
               32
                            0.2475 0.03423
## 18.333
                                                  0.1887
                                                                0.325
## 18.600
               30
                            0.2392 0.03407
                                                  0.1810
                                                                0.316
                        1
   18.900
               28
                        1
                            0.2307 0.03391
                                                  0.1729
                                                                0.308
## 19.133
               27
                            0.2221 0.03371
                                                  0.1650
                                                                0.299
                        1
## 19.433
               26
                            0.2136 0.03348
                                                  0.1571
                                                                0.290
                        1
## 20.433
                            0.2047 0.03325
               24
                                                  0.1489
                                                                0.281
                        1
##
   20.800
               23
                        1
                            0.1958 0.03297
                                                  0.1407
                                                                0.272
## 21.367
               22
                            0.1869 0.03265
                                                  0.1327
                                                                0.263
                        1
## 21.433
               21
                        1
                            0.1780 0.03229
                                                  0.1247
                                                                0.254
## 21.800
               20
                            0.1691 0.03188
                                                  0.1169
                                                                0.245
                        1
## 21.833
               19
                            0.1602 0.03142
                                                  0.1091
                                                                0.235
                        1
## 22.900
               18
                            0.1513 0.03090
                                                  0.1014
                                                                0.226
## 22.967
               17
                            0.1424 0.03034
                                                  0.0938
                                                                0.216
                        1
##
   23.500
               16
                        1
                            0.1335 0.02972
                                                  0.0863
                                                                0.207
## 23.567
               15
                            0.1246 0.02904
                                                  0.0789
                                                                0.197
                        1
## 24.267
                            0.1157 0.02830
               14
                                                  0.0716
                                                                0.187
## 24.367
               13
                            0.1068 0.02749
                                                  0.0645
                                                                0.177
                        1
## 24.500
               12
                            0.0979 0.02660
                        1
                                                  0.0575
                                                                0.167
## 25.500
               10
                        1
                            0.0881 0.02568
                                                  0.0498
                                                                0.156
## 26.367
                9
                            0.0783 0.02462
                                                  0.0423
                                                                0.145
                        1
## 27.133
                7
                            0.0671 0.02351
                                                                0.133
                                                  0.0338
                        1
## 29.433
                4
                        1
                            0.0503 0.02285
                                                  0.0207
                                                                0.123
plot(Eg.fit,xlab="Meses despues de plantado",ylab="Cantidad de plantas vivas")
title("Supervivencia de individuos Vs Tiempo transcurrido")
abline(h = 0.5, col='red')
abline(v = 10, col='blue')
abline(h = c(0.02, 1), col='orange')
abline(v = c(0, 20), col='purple')
abline(v = c(0, 30), col='deeppink')
```

Supervivencia de individuos Vs Tiempo transcurrido

Meses despues de plantado

```
plot(Eg.fit,xlab="Meses despues de plantado",ylab="Cantidad de plantas vivas ")
title("Curva de supervivenvia de la cantidad de individuos vs Tiempo ", cex.main = 1 )
abline(h = 0.5, col='orange')
abline(v = 10.32, col='red')
abline(h = c(0.02, 1), col='orange')
abline(v = c(0, 20), col='purple')
abline(v = c(0, 30), col='deeppink')
points(c(10.32, 10.32), c(0.44, 0.58), pch = 23, col='yellow')
points(c(9.5, 12.2), c(0.5, 0.5), pch = 23, col='yellow')
segments(x0 = 9.52,
         x1 = 12.2,
         y0 = 0.44,
         y1 = 0.44,
         lwd = 2,
         col = "grey")
segments(x0 = 9.52,
         x1 = 12.2,
         y0 = 0.58,
         y1 = 0.58,
         lwd = 2,
         col = "grey")
segments(x0 = 9.52,
         x1 = 9.52,
         y0 = 0.44,
         y1 = 0.58,
         lwd = 2,
         col = "grey")
segments(x0 = 12.2,
         x1 = 12.2,
```

```
y0 = 0.44,

y1 = 0.58,

lwd = 2,

col = "grey")

arrows(x0 = 10,

x1 = 30,

y0 = 0.8,

y1 = 0.2)
```

Curva de supervivenvia de la cantidad de individuos vs Tiempo

Meses despues de plantado

Supervivencia de la palma por daño causado por la severidad

Meses despues de plantado

Supervivencia de la palma segun tipo de hibrido


```
a<-km.ci(Eg.fit, conf.level=0.95, tl=NA, tu=NA, method="loghall")
plot(a, lty=2, lwd=2,xlab = 'Meses despues de plantado',ylab = "Cantidad de plantas vivas vivas", col =
lines(Eg.fit, lwd=2, lty=1, col = 'green')
lines(Eg.fit, lwd=1, lty=4, conf.int=T, col = 'black')
linetype<-c(1, 2, 4)
title("Intervalos de confianza para 3 estimadores ")
legend(x = "topright", .9, c("Kaplan-Meier", "Hall-Wellner", "Pointwise"),
       lty = linetype,
       col = c('red', 'green', 'black'))
abline(h = 0.5, col = 'red')
abline(v = 10.32, col = 'red')
points(c(10.32,10.32), c(0.44,0.58), pch = 16, col='yellow') #Probabilidad de supervivencia
points(c(280,360), c(0.5,0.5), pch = 16, col='yellow') # Tiempo
points(c(9.5, 12.2), c(0.5, 0.5), pch = 16, col='yellow')
segments(x0 = 9.52,
         x1 = 12.2,
         y0 = 0.44
         y1 = 0.44,
         lwd = 2,
         col = "yellow")
segments(x0 = 9.52,
         x1 = 12.2,
         y0 = 0.58,
         y1 = 0.58,
         lwd = 2,
         col = "yellow")
segments(x0 = 9.52,
```

Intervalos de confianza para 3 estimadores

Meses despues de plantado

Estimadores de riesgo acumulado

barplot(sum_aalen.fit\$time, cumsum(sum_aalen.fit\$n.event),xlab = 'Tiempo al evento: evento de interes.'

Tiempo al evento: evento de interes.

plot(sum_aalen.fit\$time, cumsum(sum_aalen.fit\$n.event),xlab = 'Meses despues de plantado',ylab = "Cantid
title("Curva de muertes acumuladas en funcion del Tiempo")

Curva de muertes acumuladas en funcion del Tiempo


```
mod_suv = lm(cumsum(sum_aalen.fit$n.event) ~ sum_aalen.fit$time)
summary(mod_suv)
```

```
##
## lm(formula = cumsum(sum_aalen.fit$n.event) ~ sum_aalen.fit$time)
## Residuals:
                1Q Median
                                3Q
                                       Max
## -49.044 -11.535
                     4.049
                           12.868
                                    20.208
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
                       22.1780
                                   2.1715
                                            10.21
## (Intercept)
                                                    <2e-16 ***
## sum_aalen.fit$time
                        6.5187
                                   0.1773
                                            36.76
                                                    <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.43 on 137 degrees of freedom
## Multiple R-squared: 0.908, Adjusted R-squared: 0.9073
## F-statistic: 1352 on 1 and 137 DF, p-value: < 2.2e-16
plot(sum_aalen.fit$time, cumsum(sum_aalen.fit$n.event), xlab="Meses despues de plantado", ylab="Plantas m
abline(mod suv)
points(c(6, 6), c(62, 62), pch =16, col='yellow')
points(c(19, 19), c(146, 146), pch =16, col='yellow')
arrows(x0 = 5,
      x1 = 30,
      y0 = 10,
      y1 = 140)
```


survdiff(Supeg~Severidad,SupEG)

```
## survdiff(formula = Supeg ~ Severidad, data = SupEG)
## n=227, 1 observation deleted due to missingness.
##
##
                 N Observed Expected (O-E)^2/E (O-E)^2/V
## Severidad=0
               63
                         37
                              54.153
                                         5.4331
                                                   8.2119
## Severidad=1 113
                         82
                              83.528
                                         0.0279
                                                   0.0573
                                        12.1893
## Severidad=2 50
                         44
                              26.147
                                                  14.6491
## Severidad=3
                          1
                               0.172
                                         3.9733
                                                   4.0040
##
## Chisq= 22 on 3 degrees of freedom, p= 7e-05
survdiff(Supeg~Hibrido,SupEG, rho = 0)
## Call:
## survdiff(formula = Supeg ~ Hibrido, data = SupEG, rho = 0)
##
               N Observed Expected (O-E)^2/E (O-E)^2/V
## Hibrido=1 138
                      112
                              91.6
                                         4.55
                                                   10.3
## Hibrido=2 90
                              73.4
                                         5.68
                       53
                                                   10.3
  Chisq= 10.3 on 1 degrees of freedom, p= 0.001
survdiff(Supeg~Hibrido,SupEG, rho = 1)
## survdiff(formula = Supeg ~ Hibrido, data = SupEG, rho = 1)
##
               N Observed Expected (0-E)^2/E (0-E)^2/V
##
                     70.4
                              55.6
                                         3.95
## Hibrido=1 138
                                                   12.7
## Hibrido=2 90
                     28.7
                              43.5
                                         5.04
                                                   12.7
```

```
##
## Chisq= 12.7 on 1 degrees of freedom, p= 4e-04
survdiff(Supeg~Hibrido + Severidad,SupEG)
## Call:
## survdiff(formula = Supeg ~ Hibrido + Severidad, data = SupEG)
## n=227, 1 observation deleted due to missingness.
##
                           N Observed Expected (0-E)^2/E (0-E)^2/V
## Hibrido=1, Severidad=0 36
                                   28
                                        33.051
                                                   0.772
                                                             0.986
## Hibrido=1, Severidad=1 71
                                       43.318
                                                   2.634
                                                             3.636
## Hibrido=1, Severidad=2 29
                                       14.416
                                                  12.799
                                   28
                                                            14.128
## Hibrido=1, Severidad=3 1
                                   1
                                        0.172
                                                   3.973
                                                             4.004
## Hibrido=2, Severidad=0 27
                                   9
                                        21.101
                                                   6.940
                                                             8.020
## Hibrido=2, Severidad=1 42
                                   28
                                        40.210
                                                   3.707
                                                             4.999
## Hibrido=2, Severidad=2 21
                                   16
                                        11.731
                                                   1.553
                                                             1.693
## Chisq= 32.9 on 6 degrees of freedom, p= 1e-05
Eg.fit.strata<-survfit(Supeg~Hibrido,SupEG)</pre>
plot(Eg.fit.strata, conf.int = 0.95,
     col=1:2, xlab = 'Meses despues de plantado', lwd=1)
title("Tasa de supervivencia por híbrido y tipo de estimador")
legend("topright", .9, c("Hibrido 1", "Hibrido 2"), col=1:2, lwd=3)
# abline(v = 400)
abline(h = 0.5, col = 'red')
abline(v = 10.32, col='black', lty = 3)
abline(h = c(0.02, 1), col='black', lty = 3)
abline(v = c(0, 20), col='black', lty = 3)
abline(v = c(0, 30), col='black', lty = 3)
```

Tasa de supervivencia por híbrido y tipo de estimador


```
Meses despues de plantado
```

```
# points(c(10.32, 10.32), c(0.44, 0.58), pch =23, col='blue')
# points(c(9.5, 12.2), c(0.5, 0.5), pch =23, col='green')
par.wei<-survreg(Supeg~1,dist="w")</pre>
par.wei
## Call:
## survreg(formula = Supeg ~ 1, dist = "w")
##
## Coefficients:
##
  (Intercept)
      2.633707
##
##
## Scale= 0.7593936
##
## Loglik(model) = -592.7 Loglik(intercept only) = -592.7
## n= 228
```