Betriebssysteme

Übungsblatt 8

Micha Erkel Felix Ruh

Aufgabe 1

a) symbolische vs harte Links:

	symbolische Links	harte Links		
Unterschied:	Symbolische Links enthalten	Hardlinks erstellen ein		
	Pfade zu Objekten	Verzeichniseintrag, mit neuem		
		Namen, mit Verweisung auf das		
		eigentliche Zielobjekt auf der Festplatte.		
Vorteile:	Kann auf Verzeichnisse	Funktioniert nach umbenennen		
	zeigen	und verschieben des Referenz Objekts noch		
	Referenz Objekt kann	Können zur Sicherung		
	überall im Dateibaum	des Referenz Objekts dienen, da Datei		
	des Systems sein	beim löschen in dem Link erhalten bleibt		
Nachteile:	Funktioniert nach	Kann nicht auf		
	umbenennen oder	Verzeichnisse zeigen		
	verschieben des Referenz	(mindestens bei Linux)		
	Objekts nicht mehr			
	Zum löschen des Referenz	Referenz Objekt muss		
	Objekts muss nur das	im selben Dateisystem liegen		
	Objekt selbst gelöscht werden			

- b) Ein möglicher Grund ist, dass wenn ein Hardlink angelegt wird auch der Linkzähler um 1 erhöht wird. Trenne ich jetzt beide Dateisysteme (bspw. die Verbindung zwischen zwei Festplatten wird unterbrochen) kann das System, beim löschen der Referenzdatei, diesen Link nicht entfernen, der Linkzähler geht nicht auf 0 und die Datei könnte nie gelöscht werden.
- c) Harte Links auf ein Verzeichnis würden die hierarchische Baumstruktur des Verzeichnissystems stören und könnten zu Schleifen führen.

Aufgabe 2

a) Die Tabelle:

	Angabe in Bits		Angabe in Bytes	
Angabe	2er-Potenz	dezimal	2er-Potenz	$\operatorname{dezimal}$
2Byte	2^4 Bit	16 Bit	2 ¹ Byte	2 Byte
2048 MiB	2^{34} Bit	17.179.869.184 Bit	2^{31} Byte	2.147.483.648 Byte
32 Byte	2 ⁸ Bit	256 Bit	2 ⁵ Byte	32 Byte
16 MiBit	2^{24} Bit	16.777.216 Bit	2^{21} Byte	2.097.152 Byte
1024 KiBit	2^{20} Bit	1.048.576 Bit	2 ¹⁷ Byte	131.072 Byte

b) Die Hersteller Innen wählen 3TB = 3 Tera Byte, da dadurch Herstellungskosten gespart werden können. Bei einer 3TB Festplatte fällt dadurch ein Unterschied von 278,032 GiB an.

Aufgabe 3

- a) Ein Hardlink zeigt auf ein Referenzobjekt auf der Festplatte. Er würde also bei aufrufen des Links keine auslesen des entsprechenden Verzeichniseintrags statt finden, sonder direkt die Datei ausgelesen werden. Dies würde zu schwerwiegenden Problemen, z.B. wegen den umgangenen Zugriffsbeschränkung, führen.
- b) FAT:

Plattenblock 0	-
Plattenblock 1	8
Plattenblock 2	10
Plattenblock 3	11
Plattenblock 4	7
Plattenblock 5	-
Plattenblock 6	3
Plattenblock 7	2
Plattenblock 8	9
Plattenblock 9	-1
Plattenblock 10	12
Plattenblock 11	14
Plattenblock 12	-1
Plattenblock 13	1
Plattenblock 14	-1
Plattenblock 15	13

Verzeichniseinträge:

Dateiname	Erwiterung	Datei-Attribute	Erster Plattenblock	Datei-Größe
BRIEF	TXT	()	4	129 KB
EDITOR	EXE	()	6	101 KB
AUFGABE	DOC	()	15	158 KB

Liste freier Plattenblöcke:

Aufgabe 4

a) Die Formel:
$$N_b(b,z) = 10 + \sum_{j=1}^{3} (\frac{b}{z})^j$$

Das Maximum an freien Datenblöcken bedeutet, dass keiner bisher belegt ist. Dabei ist b/z die Anzahl der Zeiger (wie in der Vorlesung berechnet) die auf die nächsten Daten- bzw. Plattenblöcke zeigen. Die Potenzen folgen daraus, dass jeder Plattenblock diese Zahl an Zeigern enthält und diese wiederum auf jeweils ein weiteren Plattenblock gefüllt mit dieser Zahl an Zeigern, welche auf die Datenblöcken zeigen, deutet.

b) Für 1 KB:

$$g_{max}(1KB, 4Byte) = 1KB \cdot N_b(1KB, 4Byte)$$

 $g_{max}(1KB, 4Byte) = 15.687.760.000Byte \approx 15,7GB$

Für 4 KB:

$$g_{max}(4KB, 4Byte) = 4KB \cdot N_b(4KB, 4Byte)$$

 $g_{max}(4KB, 4Byte) = 4.004.004.040.000Byte \approx 4TB$

32-Bit Blocknummer $\longrightarrow 2^{32}$ eindeutige Adressierungsmöglichkeiten