

F.P.: Desarrollador de Dispositivos IoT

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Funcionamiento de la Base de datos del Proyecto FP

Informe: Uso y Acceso a la Base de Datos

En este proyecto, hemos creado una base de datos con dos tablas principales: sensor_datos y actuador_datos, que gestionan la información recolectada de sensores y actuadores en un sistema de control y monitoreo IoT.

Este documento detalla el uso de esta base de datos, cómo otros desarrolladores pueden acceder a ella, modificarla, y los pasos necesarios para visualizar su contenido y realizar gestiones a través de MySQL Workbench.

Descripción de las Tablas

1. Tabla sensor_datos:

o Estructura:

- id_sensor: Identificador único de cada sensor (tipo entero, clave primaria).
- tipo_sensor: Tipo de sensor (cadena de texto que describe el tipo, como "temperatura", "humedad").
- valor registrado: Valor capturado por el sensor (tipo numérico).
- tiempo medicion: Fecha y hora de la medición (tipo datetime).

Esta tabla se utiliza para almacenar las lecturas capturadas por los sensores conectados al sistema loT.

2. Tabla actuador_datos:

o Estructura:

- id_actuador: Identificador único de cada actuador (tipo entero, clave primaria).
- tipo_actuador: Tipo de actuador (cadena de texto que describe el tipo, como "bomba de agua", "luces").
- estado_actuador: Estado actual del actuador, por ejemplo, encendido o apagado (tipo booleano o texto).
- hora_accion: Fecha y hora en la que el actuador fue activado (tipo datetime).

Esta tabla almacena los datos sobre las acciones que se ejecutan en los actuadores controlados por el sistema.

F.P.: Desarrollador de Dispositivos IoT

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Relación entre Tablas

Ambas tablas se pueden relacionar a través de un **ID compartido** que identifique los eventos de control de un sensor y el actuador que responde a él. Sin embargo, en este caso, no hemos implementado una relación directa en términos de claves foráneas, pero es posible que en futuras versiones se introduzca una tabla adicional, como evento_control, que relacione los datos de sensores y actuadores mediante eventos.

Exportación e Importación de la Base de Datos

Exportar la Base de Datos

Para compartir esta base de datos, puedes exportarla en formato .sql siguiendo estos pasos:

- 1. Abre MySQL Workbench y conéctate al servidor donde se encuentra la base de datos.
- 2. Selecciona "Server" > "Data Export".
- 3. Selecciona la base de datos en la lista.
- 4. Elige "Dump Structure and Data" para exportar tanto la estructura de las tablas como los datos almacenados.
- 5. Selecciona la ubicación donde deseas guardar el archivo .sql y haz clic en "Start Export".

Este archivo se puede compartir, quienes podrán importarlo en sus propias instalaciones de MySQL Workbench.

Importar la Base de Datos

Cualquier desarrollador que reciba el archivo .sql podrá importarlo y trabajar con él siguiendo estos pasos:

- 1. Abrir MySQL Workbench.
- 2. Conectarse a su servidor MySQL local o remoto.
- 3. Seleccionar "Server" > "Data Import" en el menú superior.
- 4. Seleccionar "Import from Self-Contained File" y buscar el archivo .sql que se les ha enviado.
- 5. Elegir un esquema existente o crear uno nuevo donde se restaurará la base de datos.
- 6. Hacer clic en "Start Import" para cargar la base de datos.

De esta manera, los alumnos podrán ver y modificar la base de datos en sus entornos.

F.P.: Desarrollador de Dispositivos IoT

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Modificación de Datos

Una vez que los desarrolladores han importado la base de datos, podrán consultar y modificar los datos dentro de las tablas sensor_datos y actuador_datos utilizando sentencias SQL.

Consultas de Ejemplo

Consultar todos los registros de sensores:

SELECT * FROM sensor_datos;

• Consultar los actuadores que están encendidos:

SELECT * FROM actuador_datos WHERE estado_actuador = 'encendido';

Inserción de Nuevos Datos

Insertar un nuevo registro de sensor:

INSERT INTO sensor_datos (id_sensor, tipo_sensor, valor_registrado, tiempo_medicion) VALUES (1, 'temperatura', 23.5, '2024-10-20 10:30:00');

• Insertar un nuevo registro de actuador:

INSERT INTO actuador_datos (id_actuador, tipo_actuador, estado_actuador, hora_accion)
VALUES (1, 'bomba de agua', 'apagado', '2024-10-20 11:00:00');

Creación de un Diagrama Entidad-Relación (ERD)

Para visualizar gráficamente las relaciones y la estructura de la base de datos, MySQL Workbench permite generar un **Diagrama Entidad-Relación (ERD)**:

- 1. En MySQL Workbench, selecciona "Database" > "Reverse Engineer".
- 2. Selecciona la conexión a tu base de datos.
- 3. Sigue los pasos para crear el modelo basado en tu base de datos actual.
- 4. Una vez completado, verás un diagrama visual con las tablas y relaciones definidas.

Este diagrama se puede exportar como una imagen o PDF para incluirlo en presentaciones.

Conclusión

Este documento proporciona una guía detallada para que otros alumnos puedan acceder, visualizar y modificar la base de datos con las tablas sensor_datos y actuador_datos en MySQL Workbench.