Problem 3

3.1. Approach to Recovering the Cookie

1. Finding the Cookie Length

- Send requests with incrementing path lengths and observe the corresponding ciphertext length.
- When the ciphertext size jumps by one full block (16 bytes), it indicates that padding has caused a new block to be added.
- O Using this observation, I derived the exact cookie length by subtracting the known prefix (";cookie=") and the padding adjustment.

2. Byte-by-Byte Recovery via CBC Chaining.

- Step 1: Align the Unknown Byte.
 We choose a path length so that the *i*-th cookie byte appears at the final position
 - We choose a path length so that the *i*-th cookie byte appears at the final position of an AES block.
- Step 2: Obtain a "Reference" Block for the Next Encryption.
 We send a "setup" request (device(prefix)) to get a ciphertext whose final block becomes the IV for the next request.
- Step 3: Brute Force Each Cookie Byte (0–255).

Constructs the input, specifically input= (known_part+guess) XOR C_i XOR C_last. If the guess is correct, the corresponding block in the ciphertext obtained by calling the device(input) at this point is the same as the block we got from the previous block.

- C_i is the block that contains the i-th byte of the cookie. C_last is the last block.
- o Step 4: Repeat for All Cookie Bytes.

3.2. Runtime Analysis

Let n be the length of the cookie.

- For each byte of the cookie, we generally perform:
 - a. One setup call.
 - b. Up to 256 guess calls (worst-case) to test each possible byte value.

Hence, the total number of oracle calls is approximately $n \times (1 + 256) = 257n$. In **big-O** terms, it is O(n), more precisely O(256n).

Problem 4

4.1. Insecure Use of CBC-MAC

• CBC-MAC Definition (simplified).

For blocks $M_1, M_2, ..., M_\ell$ of a message M, with an all-zero IV, the CBC-MAC is T_ℓ , where

$$T_i = E_k(T_{i-1} \oplus M_i), T_0 = 0.$$

• Vulnerability to Variable-Length Messages.

If the receiver does not "bind" the length of *M* into the MAC (e.g., by prepending or appending the length), an attacker can perform a *chaining trick* to link partial computations.

4.2. Attack Demonstration

- 1. Query the MAC of message A. Let T_A be the MAC of A.
- 2. Query the MAC of message B. Let T_B be the MAC of B.
- 3. Construct a New Message M^* :

$$M^* = A \| (T_A \oplus B_1) \| B_2 \| \dots \| B_\ell$$

where $B_1, B_2, ..., B_\ell$ are the blocks of B.

- \circ After processing A, the internal state is T_A .
- O By adding a "bridging block" $T_A \oplus B_1$, the CBC decryption at that stage yields B_1 as if we are continuing with message B.
- \circ Consequently, the final CBC-MAC block computed for M^* will match T_B .

Therefore, $M^* \neq A$ and $M^* \neq B$, yet you have produced a valid MAC for M^* . This is a forgery demonstrating why CBC-MAC is insecure for variable-length messages under a single key without length binding.