SIGGRAPH +202+

SIGGRAPH +202+

Soft Things

Robust Treatment of Collisions, Contact and Friction for Cloth Animation

Robert Bridson (presenting), Ronald Fedkiw and John Anderson

An example of our algorithm

- 1.2 million triangles
- Thousands of contacts per timestep
- ~1 day of computation on a laptop

First problem: sheer size

- Every node is on the surface, surface folds easily
 - 10,000+ collisions per time step easily possible when cloth folds over onto itself
 - Too expensive to resolve in time order

Second problem: low tolerance

- Cloth is very thin once it interpenetrates, it pops
 out
 the other side
 - In most interesting folding, effect is too severe to try to untangle after the fact
- Need to stop all interpenetration

One solution: repulsion forces

- Put a repelling force-field around cloth
 - e.g. Terzopoulos et al, Moore & Wilhelms, Carignan et al, Lafleur et al, Baraff & Witkin

- Good for automatically handling contact
- If set correctly, models cloth thickness and compressibility (e.g. the fuzz on a towel)
- When resolved, smooth and accurate

Problems with repulsion forces

- Not robust
 - Can miss multiple or fast collisions
 - Once on wrong side, pushes the wrong way
- Partial fix: increase size and strength
 - Makes cloth "float"
 - Numerical difficulties

Another solution: geometric collisions

- Consider trajectories over timestep, find all collisions, apply impulses
 - e.g. Provot '97
 - If rounding error properly handled, never misses a collision

Problems with geometric collisions

- Difficult to resolve multiple collisions simultaneously
 - Fixing one may cause others...
 - Expensive to iterate too long
- Triangles resist sliding over each other
 - Catastrophic error: "chainmail" friction inconsistent with physics

How can do we do better?

- Combine the two approaches!
 - First apply repulsion forces quickly and accurately handles almost everything
 - Check new trajectories geometrically, eliminate all remaining intersections
- Well-conditioned and bullet-proof, almost as cheap as repulsions alone

Time stepping

- Advance x and v (internal cloth dynamics)
 - $(X^n, V^n) \rightarrow (X^{n+1}, V^{n+1})$
- Get average v over step
 - $v_{n+1/2} = (x_{n+1} x_n)/\Delta t$
- Adjust vn+1/2 for repulsions/friction
- Adjust vn+½ to resolve all geometric collisions
- Get new x from modified vn+½
 - $x^{n+1} = x^n + \Delta t v^{n+1/2}$
- Advance modified v (internal cloth dynamics)
 - $v^{n+1} = v^{n+1/2} + \frac{1}{2}\Delta t \ a(x^{n+1}, v^{n+1})$

Internal cloth dynamics

- Could be anything! (Use existing code)
 - One implicit step, many Runge-Kutta steps, masses and springs, finite elements, ...
- We use masses and springs, Provot '95
 - Additional impulses limit excess strain rate: helps keep cloth together after collisions

Limiting strain

- Like Provot '95, apply impulses to limit strain
- Implicit integration (Gauss-Seidel) of biphasic springs

Limiting strain

- Like Provot '95, apply impulses to limit strain
- Implicit integration (Gauss-Seidel) of biphasic springs
- Zero compression
 - Causes buckling
 - See next talk...

Repulsion forces

- Check for triangle/point, edge/edge at old positions
- Limit repulsion to a fraction of cloth thickness - eliminate "kicks"
- Normal force gives Coulombic friction
 - If v_T is tangential velocity before friction, Δv_N is normal repulsion impulse, then v_T friction = max ($|v_T| \mu \Delta v_N$, 0) $v_T/|v_T|$

Resolving geometric collisions

- Use Provot '97:
 - Apply inelastic collision impulses
 - Check for additional collisions
 - After 3 rounds of impulses, solidify intercolliding patches into rigid "impact zones"
- To prevent cloth creeping through with round-off error, enforce minimum separation

Subdivision

- Sharp folds barely resolved in simulation
 - Unacceptable for rendering
- Can subdivide mesh in each frame
 - We use Loop
- Convex-hull property helps, but...
 self-intersections and object intersections may be introduced

Collision-aware subdivision

- Modify subdivision to avoid collisions
 - Start with refined mesh (linear rule)
 - Move to smooth subdivision positions
 - Check "motion" for collisions, scale down "velocities"

Results

 Minutes per frame on a laptop, 15k-40k simulation nodes, subdivided twice

Thanks!

- Igor Neverov, Neil Molino, Joey Teran, Henrik Wann Jensen
 rendering examples
- Sebastian Marino, Cliff Plumer,
 Andy Hendrickson, and Lucasfilm
 Yoda