

# Полупроводникови свойства на материалите

Материалознание

Въпроси 10, 11, 12

### Съдържание

- Обствени полупроводници
- Разпределение на Ферми
- Примесни полупроводници
- Обствена и примесна проводимост
- **Е**фект на Хол

#### 1.1. Основни свойства

Полупроводниците (ПП) имат тясна забранена зона  $\Delta W < 3$  eV.

Съгласно зонната теория свойствата на полупроводниковите материали зависят от енергетичното им състояние и могат да се проявяват като проводници и диелектрици.

Полупроводниците имат кристална структура, изградена с ковалентна химическа връзка – *ковалентни кристали*.

**Собствени** полупроводници са кристали, които нямат примеси и дефекти в кристалната решетка.

Чистотата на полупроводниковите материали се измерва с брой на примесните атоми на единица обем.

Собствени полупроводници са елементите от IV валентна група на Менделеевата таблица – *силиции* (Si) и германий (Ge).

#### 1.1. Основни свойства





Зонна диаграма

В чистия полупроводников кристал при температура Т = 0 К няма свободни токоносители.

#### 1.1. Основни свойства





Зонна диаграма

Когато енергията на валентния електрон е достатъчна, за да напусне ковалентната връзка на кристала (да преодолее забранената зона) той става свободен електрон.

**Електронна "дупка"** – некомпенсиран положителен заряд, получен при напускане на ковалентната връзка от електрона, чийто носител е ядрото на атома.

**Генерация** – получаване на двойка токоносители.

#### 1.1. Основни свойства



Зонна диаграма

**Рекомбинация** – заемане на "дупка" от свободен електрон.

Освободената енергия се излъчва като фонон (топлина) или фотон (светлина).

### 1.2. Разпределение на Ферми и брой на токоносителите



Вероятността за получаване на свободни електрони се описва от разпределението на Ферми:

$$P(W) = \frac{1}{1 + \exp\left(\frac{W - W_F}{kT}\right)}$$

Разпределението на Ферми е симетрично спрямо нивото на Ферми (което се намира в средата на забранената зона), което означава че броят на свободните електрони  $n_i$  е равен на броят на дупките  $p_i$  или

$$n_i = p_i$$

### 1.2. Разпределение на Ферми и брой на токоносителите

Концентрацията на свободните електрони  $n_i$  (или дупки  $p_i$ ) при собствените полупроводници се изчислява по израза:

$$n_i = p_i = \sqrt{N_B N_C} \exp\left(-\frac{\Delta W}{2kT}\right)$$

където  $N_{\rm C}$  е плътност на енергийните състояния в свободната зона;  $N_{\rm B}$  – плътност на енергийните състояния във валентната зона.

### 1.3. Собствена проводимост



### 1.3. Собствена проводимост



**N-проводимост** – насочено движение на свободни електрони.

Р-проводимост – насочено движение на дупки.

Насоченото движение на дупките в полупроводниковия кристал физически се осъществява чрез движение на валентните електрони от съседни ковалентни връзки.

$$\sigma_i = n_i e \mu_n + p_i e \mu_p = n_i e (\mu_n + \mu_p)$$

където  $\mu_{p}$  е подвижност на електроните,  $\mu_{p}$  – подвижност на дупките.

Проводимост, получена от светлинно облъчване, се нарича фотопроводимост.

### 2.1. Основни свойства и видове

Примесни полупроводници – материали със значително количество строго контролирани примеси (като количесво и чистота).

В тях се проявя примесна проводимост.

Ако примесните атоми заместват собствен атом във възела на кристалната решетка, те се наричат примеси на заместване.

Ако се разполагат между възлите – примеси на внедряване.

Примесите се разделят на *донорни* и *акцепторни* в зависимост от валенността на примесния елемент.

### 2.1.1. Донорни полупроводници

Донорни примеси – увеличават електроните в свободната зона.

За полупроводник от IV валентност (Si или Ge) да се превърне в донорен полупроводник, то примесният елемент трябва да е от V валентност (P, As и др.).



Донорното ниво  $W_D$ , заето от петия електрон на донорните атоми, е разположено в забранената зона, близо до свободната.

### 2.1.1. Донорни полупроводници



Тъй като  $\Delta W_D < \Delta W$ , то повечето свободни електрони са от донорните нива, а не от нивата във валентната зона.

### $n > p \Rightarrow N$ -тип полупроводници

### 2.1.2. Акцепторни полупроводници

За полупроводник от IV валентност (Si или Ge) да се превърне в акцепторен полупроводник, то примесният елемент трябва да е от III валентност (B, Al и др.).



Акцепторното ниво  $W_A$ , получено от незапълнените ковалентни връзки на примесните атоми, е разположено близо до валентната зона.

### 2.1.2. Акцепторни полупроводници



 $\Delta W_D$  – енергия за йонизация на акцепторните примеси

Тъй като  $\Delta W_A < \Delta W$ , то повечето дупки са от йонизиране на акцепторните примеси.

 $p > n \Rightarrow P$ -тип полупроводници

### 2.2. Разпределение на Ферми

Токоносителите в примесните полупроводници са от собствен и от примесен тип, при което вероятността за генериране на примесни токоносители е поголяма от вероятността за получаване собствени токоносители.

Поради това разпределението на Ферми не е симетрично спрямо средата на забранената зона т. е. нивото на Ферми не се намира всредата на забранената зона.

### 2.2. Разпределение на Ферми





### 2.2. Разпределение на Ферми

В зависимост от концентрацията им в примесните полупроводници има основни и неосновни токоносители.

В **донорните полупроводници** основните токоносители са електроните, а неосновните са дупките.

Концентрацията на електроните е:

$$n \approx \sqrt{N_D N_C} \exp\left(-\frac{\Delta W_D}{2kT}\right)$$

където  $N_D$  е концентрация на донорните примеси.

В **акцепторните полупроводници** основните токоносители са дупките, а неосновните са електроните.

Концентрацията на дупките е:

$$\rho \approx \sqrt{N_A N_C} \exp\left(-\frac{\Delta W_A}{2kT}\right)$$

където  $N_A$  е концентрация на акцепторните примеси.

### 2.3. Температурна зависимост на примесната проводимост

Примесна проводимост 
$$\sigma = ne\mu_n + pe\mu_p$$

За донорен полупроводник  $n > p \Rightarrow \sigma \approx ne\mu_n$ 

### 2.3. Температурна зависимост на примесната проводимост

### Зависимост на *п* от температурата



$$n \approx \sqrt{N_D N_C} \exp\left(-\frac{\Delta W_D}{2kT}\right)$$

$$\ln(n) = \ln(\sqrt{N_D N_C}) - \frac{\Delta W_D}{2k} \frac{1}{T}$$

$$n_i = \sqrt{N_B N_C} \exp\left(-\frac{\Delta W}{2kT}\right)$$

$$\ln(n_i) = \ln(\sqrt{N_B N_C}) - \frac{\Delta W}{2k} \frac{1}{T}$$

### 2.3. Температурна зависимост на примесната проводимост

**Примесна проводимост** – токоносителите се генерират за сметка на йонизация на примесите

**Изтощени примеси** – всички примеси са се йонизирали и *n* не се променя

**Собствена проводимост** – генериране на собствени токоносители

#### Зависимост на µ от температурата

С увеличаване на температурата μ намалява, но по стенен закон.

Следователно нейното влияние може да се наблюдава само в областта на изтощени примеси.

### 2.3. Температурна зависимост на примесната проводимост



### 2.3. Температурна зависимост на примесната проводимост

$$\sigma = \mu_n.e.n = \mu_n.e.\sqrt{N_D N_C} \exp\left(-\frac{\Delta W_D}{2kT}\right) = A \exp\left(-\frac{b}{T}\right)$$

$$A$$

$$\rho = \frac{1}{\sigma} = A_1 \exp\left(\frac{b}{T}\right)$$
 където  $A_1 = \frac{1}{A}$ 

$$\alpha_{\rho} = \frac{1}{\rho} \frac{d\rho}{dT} = \frac{1}{A_{1} \exp\left(\frac{b}{T}\right)} \cdot A_{1} \exp\left(\frac{b}{T}\right) \cdot \left(-\frac{b}{T^{2}}\right) = -\frac{b}{T^{2}}$$

Основен извод: За разлика от металите, полупроводниците имат  $\alpha_{o}$  < 0.

## 3. Определяне типа на примесната проводимост

### 3.1. Метод на горещата сонда



## 3. Определяне типа на примесната проводимост

3.2. Ефект на Хол



 $J_X$  – плътност на тока по остта X

 $B_{Y}$  – интензитет на магнитното поле по остта Y

### 3. Определяне типа на примесната проводимост

### 3.2. Ефект на Хол

Под влияние на магнитното поле, движещите се електрони се отклоняват към задната страна на полупроводниковия образец.

Така възниква напречно е. д. н., наречено поле на Хол с интензитет  $E_H$ 

$$E_H = R_H B_Y J_X$$

Коефициентът на Хол  $R_H$ :

За N-тип 
$$R_{H} = \frac{1}{ne}$$
 За P-тип  $R_{H} = \frac{1}{pe}$ 

$$\mu_n = \frac{E_H}{B_Y E_X}$$

Чрез ефектът на Хол може да се определи типа на проводимостта, концентрацията и подвижността на токоносителите.