Floating Point Arithmetic

Murat Manguoğlu
Sections 1-2

Patterson Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3rd Edition

Floating-Point Addition

- **■** Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - -1.0015×10^{2}
- 4. Round and renormalize if necessary
 - -1.002×10^2

Floating-Point Addition

■ Now consider a 4-digit binary example

$$\blacksquare$$
 1.000₂ × 2⁻¹ + -1.110₂ × 2⁻² (0.5 + -0.4375)

■ 1. Align binary points

- Shift number with smaller exponent
- \blacksquare 1.000₂ × 2⁻¹ + -0.111_2 × 2⁻¹

2. Add significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

■ 3. Normalize result & check for over/underflow

- $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- **■** FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- **■** Consider a 4-digit decimal example
 - \blacksquare 1.110 × 10¹⁰ * 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- **2.** Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - -1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- **■** FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- **■** FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

x86 FP Architecture

- Originally based on 8087 FP coprocessor (x87)
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...

x86 FP Architecture

- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Not easy to generate and optimize code
 - Result: poor FP performance
 - With XMM registers in X86-64 this is no longer the case

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultageously
 - Single-Instruction Multiple-Data

Thank you!