

Note:

Einführung in das mathematische Arbeiten Roland Steinbauer, Wintersemester 2004/05 3. Prüfungstermin (10.12.2004)

- 1. (Kurvendiskussion)
 - (a) Ermittle die Koeffizienten der Polynomfunktion 3. Grades, $p: \mathbb{R} \to \mathbb{R}$,

$$p(x) = ax^3 + bx^2 + cx + d,$$

deren Graph in $E_1 = (3, y_1)$ einen Extrempunkt und in $W = (2, y_w)$ den Wendepunkt hat. Die Gleichung der Wendetangente lautet t_w : 3x + y = 4. (5 Punkte)

- (b) Bestimme Nullstellen und Hoch- sowie Tiefpunkte von p. (4 Punkte)
- (c) Skizziere den Funktionsgraphen im Intervall [0,4] und berechne das Flächenstück, das vom Funktionsgraphen und der x-Achse zwischen den Nullstellen eingeschlossen wird. (3 Punkte)
- 2. (a) (Analytische Geometrie) Berechne die Gleichung des Kreises k, mit Mittelpunkt im 2. Quadranten der durch den Punkt P = (-12, 9) geht, die y-Achse berührt und den Kreis

$$k^*$$
: $(x+6)^2 + y^2 = 9$

von außen berührt. (5 Punkte)

- (b) (Ungleichungen) Bestimme die Lösungsmengen der folgenden Ungleichungen
 - $\bullet \ \ 0 < e^x \le 1,$
 - $|1 2x| \le 3x + 1$.

(2 Punkte)

- 3. (a) (Algebra) Beweise die Aussage: In einer Gruppe ist das neutrale Element eindeutig bestimmt. (5 Punkte)
 - (b) (Logik 1) Verneine die folgenden Aussagen
 - $\forall x \in M \ \exists y \in M : \ A(x,y),$
 - $\exists ! x \in M : \forall y \in M : B(x, y).$

Hier ist M eine beliebige Menge, A und B sind beliebige Aussagen. (2 Punkte)

- (c) (Logik 2)
 - Was versteht man unter der disjunktiven Normalform einer Schaltung?
 - ullet Bestimme die disjunktive Normalform der Schaltung f mit der folgenden Schaltwerttabelle.

a	b	c	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(3 Punkte)

- 4. (a) (Abbildungen 1) Skizziere den Graphen einer Funktion $f:\mathbb{R}\to\mathbb{R}$ mit den Eigenschaften
 - \bullet f ist surjektiv aber nicht injektiv,
 - $\bullet \ f$ ist injektiv aber nicht surjektiv,
 - ullet f ist weder injektiv noch surjektiv,

(3 Punkte)

- (b) (Abbildungen 2) Sei $f:A\to B$ eine Abbildung von der Menge A in die Menge B.
 - Seien $M \subseteq A$ und $N \subseteq B$. Wie lautet die Definition des Bildes f(M) von M unter f und des Urbilds $f^{-1}(N)$ von N unter f. (2 Punkte)
 - Seien $N_1, N_2 \subseteq B$. Formuliere die Aussage

$$f^{-1}(N_1 \cap N_2) = f^{-1}(N_1) \cap f^{-1}(N_2)$$

in Worten und beweise sie. (5 Punkte)