DM₂ Mathématiques

Problème 1

Le groupe symplectique

1. On calcule J^2 et J^{\top} en fonction de I_{2n} et de J:

$$J^2=\begin{pmatrix}0_n-I_n&0_n+0_n\\0_n+0_n&-I_n+0_n\end{pmatrix}=-\begin{pmatrix}I_n&0_n\\0_n&I_n\end{pmatrix}=-I_{2n},$$

 et

$$J^{\top} = \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix} = -J.$$

On remarque que $J \times J^{\top} = J \times (-J) = -(-I_{2n}) = I_{2n}$. On en déduit que J est inversible et $J^{-1} = J^{\top}$.

2. On remarque que $J^{\top} \times J \times J = I_{2n} \times J = J$ et donc $J \in \mathcal{S}p_{2n}$.

$$\begin{pmatrix} I_n & -\alpha I_n \\ 0_n & I_n \end{pmatrix} \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix} \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix} = \begin{pmatrix} -\alpha I_n & -I_n \\ I_n & 0_n \end{pmatrix} \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix}$$

$$= \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix} = J.$$

On en déduit que $K(\alpha) \in \mathcal{S}p_{2n}$ pour tout réel α .

3. Soit $U \in \mathcal{G}_n$. Soit L_U comme défini dans l'énoncé. On calcule $L_U^\top J L_U$:

$$\begin{pmatrix} U^\top & \mathbf{0}_n \\ \mathbf{0}_n & U^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{0}_n & -I_n \\ I_n & \mathbf{0}_n \end{pmatrix} \cdot \begin{pmatrix} U & \mathbf{0}_n \\ \mathbf{0}_n & (U^{-1})^\top \end{pmatrix} = \begin{pmatrix} \mathbf{0}_n & -U^\top \\ U^{-1} & \mathbf{0}_n \end{pmatrix} \cdot \begin{pmatrix} U & \mathbf{0}_n \\ \mathbf{0}_n & (U^{-1})^\top \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{0}_n & -I_n \\ I_n & \mathbf{0}_n \end{pmatrix} = J.$$

On en déduit que $L_U \in \mathcal{S}p_{2n}$ pour toute matrice $U \in \mathcal{G}_n$.

4. Soit $M \in \mathcal{S}p_{2n}$. On a donc $M^{\top} J M = J$, d'où

$$\det(M^{\top}) \times \det(J) \times \det(M) = \det J$$
 i.e. $\det(M)^2 = 1$

car det $J \neq 0$ (car elle est inversible) et donc, on en déduit que det $M \in \{-1, 1\}$.

5. Soient A et B deux matrices de $\mathcal{S}p_{2n}$. On a donc A^{\top} J A = J, et B^{\top} J B = J. On pose $M = A \cdot B$ et

$$M^{\top}JM = B^{\top}A^{\top}JAB = B^{\top}JB = J.$$

On en déduit que $A \cdot B \in \mathcal{S}p_{2n}$.

- 6. On sait que $I_{2n} \in \mathcal{S}p_{2n}$. Soit $A \in \mathcal{S}p_{2n}$. On sait que det $A \neq 0$; la matrice A est donc inversible. On a $A^{\top}JA = J$, d'où $(A^{\top})^{-1} \cdot A^{\top} \cdot J \cdot A \cdot A^{-1} = (A^{\top})^{-1} \cdot J \cdot A^{-1}$. On en déduit donc que $J = (A^{-1})^{\top} \cdot J \cdot A^{-1}$ et donc $A^{-1} \in \mathcal{S}p_{2n}$.
- 7. Soit $M \in \mathcal{S}p_{2n}$. On a donc $M^{\top}JM = J$, d'où $(M^{\top}JM)^{-1} = J^{-1}$ i.e. $M^{-1}J^{\top}(M^{\top})^{-1} = J^{\top}$. D'où $M \cdot M^{-1}J^{\top}(M^{\top})^{-1} \cdot M^{\top} = M \cdot JM^{\top}$ et donc $J = M \cdot J \cdot M^{\top}$, autrement dit.

$$M^{\top} \in \mathcal{S}p_{2n}$$
.

À faire...

8.

Centre de Sp_{2n}

9. Soit $N\in\mathcal{S}p_{2n}$. On sait que $I_{2n}\cdot N=N=N\cdot I_{2n}$, d'où $I_{2n}\in\mathcal{Z}$. De même, $-I_{2n}\cdot N=-N=N\cdot (-I_{2n})$, d'où $-I_{2n}\in\mathcal{Z}$. On a donc

$$\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}.$$

10. On remarque que $L = K(-1)^{\top} \in \mathcal{S}p_{2n}$. Or, comme $M \in \mathcal{Z}$, $L \cdot M = M \cdot L$. D'où

$$M \cdot L = \begin{pmatrix} A & A+B \\ C & C+D \end{pmatrix} = \begin{pmatrix} A+C & B+D \\ C & D \end{pmatrix} = L \cdot M.$$

On en déduit que $C=0_n,\,A=D.$ On sait que $L^{\top}\in\mathcal{S}p_{2n},$ d'où $L^{\top}\cdot M=M\cdot L^{\top}$ et donc

$$\begin{pmatrix} A+B & B \\ C+D & D \end{pmatrix} = \begin{pmatrix} A & B \\ A+C & B+D \end{pmatrix}.$$

On en déduit donc que $B=0_n$. La matrice M est donc de la forme

$$M = \begin{pmatrix} A & 0_n \\ 0_n & A \end{pmatrix}.$$

Or, $\det M = (\det A)^2 \neq 0$ et donc $\det A \neq 0.$ On en déduit que la matrice A est inversible.

11. On calcule $M \cdot L_U$ puis $L_U \cdot M$:

$$M \cdot L_U = \begin{pmatrix} A & 0_n \\ 0_n & A \end{pmatrix} \cdot \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^{\top} \end{pmatrix}$$
$$= \begin{pmatrix} A \cdot U & 0_n \\ 0_n & A \cdot (U^{-1})^{\top} \end{pmatrix};$$

$$L_U \cdot M = \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^\top \end{pmatrix} \cdot \begin{pmatrix} A & 0_n \\ 0_n & A \end{pmatrix}$$
$$= \begin{pmatrix} U \cdot A & 0_n \\ 0_n & (U^{-1})^\top \cdot A \end{pmatrix}.$$

Or, $M \in \mathcal{Z}$ et $L_U \in \mathcal{S}p_{2n}$, d'où $M \cdot L_U = L_U \cdot M$. On en déduit donc que $U \cdot A = A \cdot U$.

12. Les seules matrices commutant dans \mathcal{G}_n sont les matrices I_n et $-I_n$, on a donc $A \in \{I_n, -I_n\}$ et donc $M = I_{2n}$ ou $M = -I_{2n}$, d'où $\mathcal{Z} \subset \{-I_{2n}, I_{2n}\}$. On en déduit que

$$\mathcal{Z} = \{-I_{2n}, I_{2n}\}.$$

Déterminant d'une matrice symplectique

13. On pose $M = \binom{a\ b}{c\ d} \in \mathcal{M}_2$ et on calcule $M^\top \cdot J \cdot M$:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & -a \\ d & -b \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \begin{pmatrix} ac - ca & cb - ad \\ da - bc & db - bd \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\det M \\ \det M & 0 \end{pmatrix}$$

Or,

$$M \in \mathcal{S}p_2 \iff M^{\top} \cdot J \cdot M = J.$$

D'où

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{S}p_2 \iff \begin{cases} \det M = 1 \\ -\det M = -1 \end{cases} \iff \det M = 1.$$

On a montré que

$$M \in \mathcal{S}p_2 \iff \det M = 1.$$

$14.\,$ On procède à une analyse-synthèse.

Analyse Soient $Q, U, V, W \in \mathcal{M}_n$. On calcule

$$\begin{pmatrix} I_n & Q \\ 0_n & I_n \end{pmatrix} \cdot \begin{pmatrix} U & 0_n \\ V & W \end{pmatrix} = \begin{pmatrix} U + QV & QW \\ V & W \end{pmatrix}.$$

Ainsi, en comparant avec les coefficients de la matrice $\binom{A\ B}{C\ D},$ on en déduit que

$$D = W$$
 $V = C$ $Q = B \cdot D^{-1}$ $U = A - B \cdot D^{-1} \cdot C$.

Synthèse On pose $W=D,\,V=C,\,Q=B\cdot D^{-1}$ et $U=A-BD^{-1}C.$ On calcule

$$\begin{pmatrix} I_n & Q \\ 0_n & I_n \end{pmatrix} \cdot \begin{pmatrix} U & 0_n \\ V & W \end{pmatrix} = \begin{pmatrix} U + QV & QW \\ V & W \end{pmatrix}$$
$$= \begin{pmatrix} A - BD^{-1}C + BD^{-1}C & BD^{-1} \cdot D \\ C & D \end{pmatrix}$$
$$= \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$