

wtorek, 20 listopada 2018 11:16

LISTA 6

od 1. kilka:

$$\frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} = \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} = \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} = \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} = \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} \cdot \frac{1}{4\pi \epsilon_{0}} = \frac{1$$

$$\varphi_{1} = \varphi_{4.4} + \varphi_{4.2} = \frac{Q_{14}}{2\epsilon_{0}} + \frac{Q_{12}R}{2\epsilon_{0}\sqrt{R^{2}+N^{2}}}$$

$$\varphi_{2} = \frac{1}{2\epsilon_{0}} \cdot \left(Q_{12} + \frac{Q_{14}R}{\sqrt{R^{2}+N^{2}}}\right)$$

$$Q_{5} = 7 = \frac{Q_{5}}{5}$$
 $S = 4\pi r^{2}$

9DP: Q 5, = 10.40 - 101.4.3,14.40-6	Q152 = 101.314.4.100.10-4
Zaloienia do vorniagrania:	$\varphi_1 = \varphi_2$
3 I = IV · 10A	Vo = 4 cm ρ=100 Ω m
k=0,8m	$\rho = \frac{\Lambda}{\delta}$
VI ₽	$V_{k_r} = \int_{0}^{r_0} E_{d_r} = \frac{1}{2\pi i} \int_{0}^{r_0} \frac{1}{r^2} d_r = \frac{1}{2\pi} \left(\frac{r_0}{r_0}\right)$
77 / / / / / / / / / / / / / / / / / /	V _B = V _A + 0, 8
r, r	27T (VA VA128)
	$100 = \frac{N1000}{2\pi} \left(\frac{0.8}{V_A^2 + 0.8 V_A} \right)$
	N1000 = 128 = 0.8 m
(ra + 0,8 ra) 6,28 = 8N	
VA +0, 8 VA = 3N	$r_A^2 + 0, 8 r_A - \frac{8N}{626} = 0$
$V = \varphi_A - \varphi_B$ $\varphi =$	<u>Γρ</u> 2η r
$K \rightarrow A$	
(4) A	$Q_{s} = ?$ $Q_{v} = ?$
Qsk esq	

$$-\frac{Q_{V}}{e} = \varphi''(x)$$

$$\varphi = k \cdot x^{\frac{4}{3}} \qquad \varphi'' = -\frac{4}{3}k x^{\frac{2}{3}}$$

$$Q_{V} = -e^{\frac{4}{3}}k \frac{1}{\sqrt[3]{x^{2}}}$$

$$Q_{2N} = Q_{3}$$

$$E = -g_{VO} \downarrow V = -\frac{1}{3x} \bigvee (x)$$

$$Q_s = 6E = -\frac{4}{3} |_{X} x^{\frac{1}{3}} e$$

Nie zmieni się -> przy voznarciu klucza k ładunek jest stały, natomiast przenikalność elektuyczna otoczenia nie wpłyna na woktorindukcji elektuycznoj

$$\vec{D} = \vec{e} \vec{E} = \frac{Q}{4\pi r^2}$$

$$\vec{E} = \frac{Q}{4\pi r^2 \vec{e}}$$

$$\vec{E} =$$

$$\overrightarrow{D} = e \overrightarrow{E} = \frac{2}{4\pi r^2} = \frac{4\pi e r_2 U}{4\pi r^2} = \frac{e U}{r}$$