МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет физический Кафедра радиофизики

Отчет по контрольной работе на тему:

«Формирование негауссовских случайных процессов»

Специальность 03.04.03 «Радиофизика»

Специализация: Компьютерные методы обработки радиофизической информации

Выполнил Дроздов Д. Г.

Студент 1 курса магистратуры

Преподаватель Радченко Ю. С.,

д.ф.-м.н., профессор

Общая схема моделирования

Задача моделирования негауссовского процесса $\xi(t)$ с заданными одномерным распределением $W_{\xi}(x,t)$, моментными функциями $m_k[\xi]$ и ковариационной $B_{\xi}(t_1,t_2)$ и нормированной корреляционной функцией $R_{\xi}(t_1,t_2)$ может быть реализована с помощью двухэтапной процедуры (рис. 1). Этап 1: формируется стандартный гауссовский процесс x(t) с заданной нормированной корреляционной функцией $R_x(t_1,t_2)$ из белого шума $\eta(t)$. Этап 2: нелинейное безынерционное преобразование $\xi = g(x)$ процесса x(t).

Рис. 1. Общая схема моделирования.

Нелинейное монотонное преобразование $\xi = g(x)$ нетрудно получить из следующих преобразований

$$F_{\chi}(u) = P[\chi < u] = P[g^{-1}(\xi) < u] = P[\xi < g(u)] = F_{\xi}[g(u)]. \tag{1}$$

Дифференцируя обе части соотношения (1) по u и учитывая, что $\frac{d}{du}F_{x}(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^{2}}{2}\right),$ получаем итоговое нелинейное дифференциальное уравнение

$$W_{\xi}[g(u)]\frac{dg(u)}{du} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right). \tag{2}$$

Расчет начальных моментов можно выполнить по формуле

$$m_k[\xi] = \int_{-\infty}^{\infty} g^k(u) W_x(u) du$$
(3)

Соответственно: $m_{\xi} = m_1[\xi], \ D_{\xi} = m_2[\xi] - (m_{\xi})^2$, и ковариационная функция равна

$$B_{\xi}(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u_1)g(u_2)W_{\chi_2}(u_1, u_2; t_1, t_2)du_1du_2, \qquad (4)$$

где $W_{x2}(u_1,u_2;t_1,t_2)$ - двумерная плотность вероятности гауссовского процесса x(t). Тогда нормированную корреляционную функцию $R_{\xi}\left(t_1,t_2\right)$ можно рассчитать по формуле $R_{\xi}\left(t_1,t_2\right)=(B_{\xi}\left(t_1,t_2\right)-(m_{\xi})^2)/D_{\xi}$. В приведенных расчетах функция $\xi=g(x)$ должна быть монотонно возрастающей. Если же мы выберем монотонно убывающую функцию, то (1) преобразуется в соотношение $F_{x}\left(u\right)=1-F_{\xi}[g\left(u\right)]$. Тогда дифференциальное уравнение (2) принимает вид

$$\left| \frac{dg(u)}{du} \right| W_{\xi}[g(u)] = W_{\chi}(u). \tag{5}$$

Трехэтапная схема формирования негауссовского процесса.

Модифицируем общую двухэтапную схему формирования негауссовкого процесса в трехэтапную. Этап 1: формируется стандартный гауссовский процесс x(t) с заданной нормированной корреляционной функцией $R_x(t_1,t_2)$. Этап 2: нелинейное безынерционное преобразование $\alpha = g(x)$ процесса x(t) в процесс $\alpha(t)$ с стандартным равномерным распределением $W_{\alpha}(u) = 1$. Этап 3: монотонное нелинейное преобразование $\xi(t) = f[\alpha(t)]$ согласно методу обратных функций.

Дифференциальное уравнение для преобразования $\alpha = g\left(x\right)$ принимает вид dg(u)/g(u)] = $W_{x}(u)$. Откуда получаем $g\left(u\right) = \Phi(u)$, то есть $\alpha\left(t\right) = \Phi[x(t)]$, где $\Phi(u)$ — интеграл вероятности. По методу обратных функций $f\left(u\right) = F_{\xi}^{-1}\left(u\right)$. Таким образом, общее нелинейное преобразование имеет вид

$$\xi(t) = F_{\xi}^{-1} \left[\Phi(x(t)) \right]. \tag{6}$$

Модифицированный трехэтапный метод формирования процессов.

Пусть $X_1(t)$ и $X_2(t)$ - независимые стандартные гауссовские процессы с параметрами N(0,1) . Тогда величина $Y(t) = \left(X_1^2(t) + X_2^2(t)\right)/2$ имеет стандартное экспоненциальное распределение $W_Y(u) = \exp(-u)$, которое связано с равномерно распределенным случайным числом преобразованием $Y = -ln(\alpha)$. Таким образом, можно записать

$$\alpha(t) = \exp\left[-\left(X_1^2(t) + X_2^2(t)\right)/2\right]. \tag{7}$$

Далее по методу обратных функций

$$\xi(t) = F_{\xi}^{-1}[\alpha(t)] = F_{\xi}^{-1} \left[\exp\left(-\left(X_{1}^{2}(t) + X_{2}^{2}(t)\right)/2\right) \right]. \tag{8}$$

По сравнению с соотношением (6) в (8) отсутствует функция $\Phi(u)$, не имеющая простого аналитического вида. Алгоритм формирования равномерно распределенного процесса $\alpha(t)$ по формуле (7) проще, чем по формуле $\alpha(t) = \Phi[X(t)]$. Но для этого требуется формирования двух гауссовских реализаций, вместо одной, присутствующей в стандартном трехэтапном алгоритме.

Пример моделирования негауссовского равномерно распределенного процесса.

Сформировать коррелированный случайный процесс с равномерной плотностью вероятности $W_{\xi}(x) = \frac{1}{2*a}$, $|x| \le a$.

Решение: Дифференциальное уравнение (2) принимает вид

$$\frac{1}{2a} \frac{dg(u)}{du} = \frac{1}{\sqrt{2\pi}} exp \left(-\frac{u^2}{2} \right).$$

Его решение с учетом соответствия: при $x=-\infty$ $\xi=-a$, есть

$$g(u)=a[2\Phi(u)-1],$$

где $\Phi(u) = (1/\sqrt{2\pi}) \int_{-\infty}^{u} \exp(-t^2/2) dt$ - интеграл вероятностей. Первые моменты процесса $\xi(t)$: $m_{\xi} = 0$, $D_{\xi} = m_2[\xi] = a^2/3$. Нормированная корреляционная функция $R_{\xi}(\tau) = (6/\pi) \arcsin(0.5R_{\chi}(\tau))$,

или $R_X(\tau) = 2\sin\left[(\pi/6)R_\xi(\tau)\right]$. Учитывая, что $\sin(z)\approx z$ при $|z|\leq \pi/6$, и $|R_\xi(\tau)|\leq 1$, можно записать $R_X(\tau)\approx (\pi/3)R_\xi(\tau)$, или $R_\xi(\tau)\approx (3/\pi)R_X(\tau)\approx R_X(\tau)$.

Практическая часть

Вариант№1

Моделирование негауссовских процессов

1. Сформировать равномерно распределенный процесс $W_{\xi}(x) = 1/2, x \in [0, 2]$ с корреляционной функцией $R_{\xi}(\tau) = \exp(-|\tau|/\tau_k)$. $\tau_k = 0.5$ с. Учесть, что нормированные корреляционные функции производящего процесса X(t) и $\xi(t)$ $R_X(\tau) \approx R_{\xi}(\tau)$.

Листинг программы

$$W(x) := \begin{bmatrix} \frac{1}{2} & \text{if } 0 \le x \le 2 \\ 0 & \text{otherwise} \end{bmatrix}$$

$$\tau k := 0.5 \qquad \alpha := \frac{1}{\tau k} \qquad Rt(\tau) := e^{-\alpha \cdot |\tau|}$$

$$Rt(\tau)_{0.5}$$

$$0 \qquad 0.5 \qquad 1 \qquad 1.5 \qquad 2$$

$$L := 170$$
 $\gamma := 0.02$ $k := 0...$

$$C(\mathbf{k}) := \sqrt{2 \cdot \gamma} \cdot \exp(-\mathbf{k} \cdot \gamma)$$

$$\left(\sum_{\mathbf{k}=0}^{L} C(\mathbf{k})^{2}\right) = 1.019$$

$$N := 1400 \qquad J := 1000 \qquad j := 0...J$$

u := mom(N, 0, 1)

150

$$x(j) := \sum_{k \,=\, 0}^L \, \left(C(k) \cdot u_{j-k+L} \right) \quad \text{гауссовский процесс} \overset{\Phi}{\sim} (x) := \left(\frac{1}{\sqrt{2 \cdot \pi}} \right) \cdot \int_{-\,\,\infty}^x \, exp\! \left(\frac{-t^2}{2} \right) dt$$

$$y(j) := 2 \cdot \Phi(x(j)) - 1$$
 негауссовский процесс

Анализ процесса

$$\begin{split} B(\tau) &:= \left(\frac{1}{J-\tau}\right) \cdot \left[\sum_{j=0}^{J-\tau} \left(y(j) \cdot y(j+\tau)\right)\right] \\ \frac{R(\tau)}{D} &:= \frac{B(\tau)}{D} \end{split} \qquad \Delta t := \frac{\gamma}{\alpha} = 0.01 \end{split}$$

