BLEURT

Notes by Trexd

Overview

- BLEURT is a metric used to evaluate model based on the popular transformer model, BERT
- The authors claim that BLEURT is the new SOTA and can better model human judgements than other natural language metrics such as BLEU and ROUGE
- They accomplish this using synthetic data for pretraining stage.

Purpose

Humans:

Pros	Cons				
Accurate	ExpensiveTime Consuming				

Automated Metrics:

Pros	Cons
FastCheap	Subpar Accuracy compared to humans

Previous Metrics

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	а	cat	on	the	mat

$$\mathrm{P}=rac{m}{w_t}=rac{7}{7}=1$$

BLEU (2002)

Candidate	the						
Reference 1	the	cat	is	on	the	mat	

$$m_{max}=2,\,m_w=7$$

$$P = \frac{2}{7}$$

Bleu score on bigrams

Reference 1: The cat is on the mat. Example: Reference 2: There is a cat on the mat. MT output: The cat the cat on the mat. the cat cat the 1 4 cat on on the + 0 the mat

We compute the brevity penalty BP,

Then,

 $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c < r \end{cases}.$

BLEU= BP · exp $\left(\sum_{n=1}^{N} w_n \log p_n\right)$.

BLEURT (No "Priming")

BLEURT (No "Priming")

x: reference \hat{x} : prediction y: human score

Reference: The cat is very happy

Prediction: 猫はとても幸せです

Human Score: 1.00

BLEURT ("No Priming")

Now we have a dataset...

$$v_{[ext{CLS}]}, v_{x_1}, \dots, v_{x_r}, v_1, \dots, v_{ ilde{x}_p} = ext{BERT}(x, ilde{x})$$

$$\hat{y} = f(x, ilde{x}) = W ilde{v}_{ ext{[CLS]}} + b$$

$$ext{MSE}(y, \hat{y}) = \frac{1}{N} \sum_{n=1}^{N} ||y_i - \hat{y}||^2$$

...but it's too small for BERT fine-tuning

Synthetic "Priming"

Synthetic "Priming"

- Random perturbations on Wikipedia (1.8 million segments)
- Completed after pre-training but before fine-tuning
- Consists of:
 - 1. Mask-filling (15 masks per sentence)
 - Randomly mask a tokens in a given sentence
 - Mask sections of a sentence
 - 2. Backtranslation
 - Eg. English → French → English
 - o 3. Randomly Dropping words

Pre-Training Signals

Task Type	Pre-training Signals	Loss Type
BLEU	$ au_{ ext{BLEU}}$	Regression
ROUGE	$ au_{\text{ROUGE}} = (au_{\text{ROUGE-P}}, au_{\text{ROUGE-R}}, au_{\text{ROUGE-F}})$	Regression
BERTscore	$ au_{\text{BERTscore}} = (au_{\text{BERTscore-P}}, au_{\text{BERTscore-R}}, au_{\text{BERTscore-F}})$	Regression
Backtrans. likelihood	$oldsymbol{ au}_{ ext{en-fr},oldsymbol{z} ar{oldsymbol{z}}}, oldsymbol{ au}_{ ext{en-fr},ar{oldsymbol{z}} oldsymbol{z}}, oldsymbol{ au}_{ ext{en-de},oldsymbol{z} oldsymbol{z}}, oldsymbol{ au}_{ ext{en-de},ar{oldsymbol{z}} oldsymbol{z}}$	Regression
Entailment	$oldsymbol{ au}_{ ext{entail}} = (au_{ ext{Entail}}, au_{ ext{Contradict}}, au_{ ext{Neutral}})$	Multiclass
Backtrans. flag	→ backtran_flag	Multiclass

Table 1: Our pre-training signals.

Backtranslation Likelihood

$$P(\hat{z} \mid z)$$
- Probability that z_hat is a backtranslation of z $P_{ ext{en} o ext{fr}}(z_{ ext{fr}}\mid z)$ - Two Language Models $P_{ ext{fr} o ext{en}}(z\mid z_{ ext{fr}})$ $P(\hat{z}\mid z) = \sum_{z_{ ext{fr}}} P_{ ext{fr} o ext{en}}(\hat{z}\mid z_{ ext{fr}}) P_{ ext{en} o ext{fr}}(z_{ ext{fr}}\mid z)$ $z_{ ext{fr}}^* = ext{argmax} P_{ ext{en} o ext{fr}}(z_{ ext{fr}}\mid z)$

 $P(ilde{z}\,|\,z)pprox P_{ ext{fr} o ext{en}}(ilde{z}\,|\,z_{ ext{fr}}^*)\longrightarrow au_{ ext{en} o ext{fr}}, ilde{z}\,|\,z=rac{\log(\mathrm{P}(ilde{z}\,|\,z))}{| ilde{z}|}$

Textual Entailment

Does statement B entail statement A?

Statement A	"I will be 28 this year"				
Statement B	"I am currently living"				

$$au_{ ext{entail}} = (au_{ ext{Entail}}, au_{ ext{Contridict}}, au_{ ext{Neutral}})$$

Backtranslation flag

Is a Boolean that indicates whether the perturbation was generated with backtranslation or with mask-filling.

Modeling - Putting it all together

- MSE for regression tasks
- Multiclass cross-entropy for classification tasks

All together:

$$\ell_{ ext{pre-training}} = rac{1}{M} \sum_{m=1}^{M} \sum_{k=1}^{K} \gamma_k \ell_k(m{ au}_k^m, \hat{m{ au}}_k^m)$$

Experiments and Results

Quick Note on Metrics - "DARR", Kendall's Tau

- 1. Get all translations for a given reference segment and enumerate all pairs
- 2. Discard all similar scores (less than 25 points away on a 100 point scale)
- 3. For each remaining pair, they then determine which translation is the best according both human judgment and the candidate metric
- |Concordant| = number of pairs where NLG metrics agree
- |Discordant| = number of pairs where NLG metrics disagree

```
oxed{	ext{Concordant} - 	ext{Discordant}}{	ext{Concordant} + 	ext{Discordant}}
```

Models and Results

- 1. Bleurt: BERT-Large (24 layers, 1024 hidden units, 16 heads)
- 2. BLEURTbase: (12 layers, 768 hidden units, 12 heads)
- "Pre" means no priming

model	de-en	fi-en	gu-en	kk-en	lt-en	ru-en	zh-en	avg
	τ / DA							
sentBLEU	19.4 / 5.4	20.6 / 23.3	17.3 / 18.9	30.0 / 37.6	23.8 / 26.2	19.4 / 12.4	28.7 / 32.2	22.7 / 22.3
BERTscore w/ BERT	26.2 / 17.3	27.6 / 34.7	25.8 / 29.3	36.9 / 44.0	30.8 / 37.4	25.2 / 20.6	37.5 / 41.4	30.0 / 32.1
BERTscore w/ roBERTa	29.1 / 19.3	29.7 / 35.3	27.7 / 32.4	37.1 / 43.1	32.6 / 38.2	26.3 / 22.7	41.4 / 43.8	32.0 / 33.6
ESIM	28.4 / 16.6	28.9 / 33.7	27.1 / 30.4	38.4 / 43.3	33.2 / 35.9	26.6 / 19.9	38.7 / 39.6	31.6 / 31.3
YiSi1 SRL 19	26.3 / 19.8	27.8 / 34.6	26.6 / 30.6	36.9 / 44.1	30.9 / 38.0	25.3 / 22.0	38.9 / 43.1	30.4 / 33.2
BLEURTbase -pre	30.1 / 15.8	30.4 / 35.4	26.8 / 29.7	37.8 / 41.8	34.2 / 39.0	27.0 / 20.7	40.1 / 39.8	32.3 / 31.7
BLEURTbase	31.0 / 16.6	31.3 / 36.2	27.9 / 30.6	39.5 / 44.6	35.2 / 39.4	28.5 / 21.5	41.7 / 41.6	33.6 / 32.9
BLEURT -pre	31.1 / 16.9	31.3 / 36.5	27.6 / 31.3	38.4 / 42.8	35.0 / 40.0	27.5 / 21.4	41.6 / 41.4	33.2 / 32.9
BLEURT	31.2 / 16.9	31.7 / 36.3	28.3 / 31.9	39.5 / 44.6	35.2 / 40.6	28.3 / 22.3	42.7 / 42.4	33.8 / 33.6

Figure 1: Distribution of the human ratings in the train/validation and test datasets for different skew factors.

Figure 2: Agreement between BLEURT and human ratings for different skew factors in train and test.

How skew works

- Sample the training and testing sets
- 1. Split the data into 10 bins of equal size
- 2. Sample using the following probabilities for the train and test sets

$$\frac{1}{B^a}$$
 $\frac{1}{(11-B)^a}$

Where B is the bin index and a is the skew factor

Figure 3: Absolute Kendall Tau of BLEU, Meteor, and BLEURT with human judgements on the WebNLG dataset, varying the size of the data used for training and validation.

Figure 4: Improvement in Kendall Tau on WMT 17 varying the pre-training tasks.