

Baby Steps towards building your first ML model

Manogna Mantripragada

Data Scientist

Greenlink Analytics

Objectives

Machine Learning Simplified >>>

Introduction

MACHINE LEARNING

If building a model was like cooking...

Building it right >>>

Steps for building the model

- 1. Define Problem Statement
- 2. Gather required data
- 3. EDA + Preprocessing
- 4. Baseline/Dummy model
- Choosing evaluation metrics

- 6. Candidate models training
- 7. Best model selection
- 8. Hyperparameter tuning
- 9. Cross validation
- 10. Model testing
- 11. Results

Problem Statement

Explore trends in energy burden in

- two states (CO and GA)
- across 4 years (2013 2016)

ENERGY BURDEN = Mean Household Energy Bills

Mean Household Income

Sourced via Walt Disney Television Animation

Get Data? From where? >>>

Data Gathering

Real-time data gathering

Pre-existing data sets

Tabular

Image

Text

Audio

EDA + Preprocessing

Data Transformation

Feature Engineering

EDA + Preprocessing - Data Cleaning (STEP 1)

Dealing with Missing Values:

NOTE: NO CHANGING THE DATA DISTRIBUTION!!!

- o Drop:
 - Data (rows or columns) > 70% nulls can be dropped
 - Specific Rows
- Keep:
 - Mean/Median/Mode
 - Missing value indicator column
 - Forward fill and Backward fill Time series model
 - Build a Regression model
 - Linear Regression for Continuous variable
 - Logistic Regression for discrete/categorical
- Removing Duplicates

EDA + Preprocessing - Feature Selection (STEP 2)

Practice of choosing subset features for eliminating irrelevant and redundant features:

Correlation Matrix

Drop columns with high

multicollinearity

- Use Variance Inflation Factor(VIF)
 - (Implementation and interpretation in the colab notebook)
- Statistical significance p-value
 - P<0.05 Significant

EDA + Preprocessing - Data Transformation (Step 3)

Outlier Detection

- Univariate analysis
- Multivariate analysis
- Skewness
- Kurtosis

Scaling and normalizing data

- a. Log transformations
- b. Balancing unbalanced data
 - i. Oversampling
 - ii. Undersampling

EDA + Preprocessing - Feature Engineering (Step 4)

- One-Hot Encoding
- 2. Feature Creation
- 3. Dimensionality Reduction
 - a. Eg: PCA

Model data + Evaluation Metrics - (STEP 1)

Train/Test Split

- Shuffle data (if required)
- Split Train, Validation/test

Evaluation metrics

- Set Evaluation metrics
 - Eg: R2, Accuracy, Precision
- Set evaluation error
 - Eg: MSE, MAE, Log loss

Baseline/Dummy model - (STEP 2)

Candidate models for training - (STEP 3)

Regression (Continuous Variable)

- Linear Regression
- Neural Networks
- Support Vector regressor
- Decision Tree
 Regressor
- Random Forest Regressor
- etc

Regression (Categorical Variable)

- Logistic Regression
- Neural Networks
- Support Vector
 Classifier
- Decision Tree Classifier
- Random Forest
 Classifier
- Naive Bayes Classifier, etc.

Clustering (unsupervised)

- K-means clustering
- DBSCAN clustering
- Hierarchical Clustering
- Mean-shift clustering
- Variational
 Autoencoders (VAEs)
- etc.

Model selection - (STEP 4)

Select Model based on the metrics established, eg: Accuracy, R2 etc, Loss function, MSE etc)

- Bias-Variance Tradeoff
- No Overfitting

 $Source: Ken \ Hoffman \ Medium \ article \\ https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9 \\$

Hyperparameter tuning - (STEP 5)

Tweak hyperparameters for the selected model to improve the performance

- Random Search
- Grid Search

Eg: Decision Tree: Max depth, minimum sample split, criterion, max features, etc.

Cross validation & Regularization - (STEP 6)

Model testing - (STEP 7)

- Use the final model (after hyperparameter tuning to test on unseen data.
- Check the performance metrics for learning how well the model performed.
- If not good, go back and repeat all steps again.

Source: https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

		Predicted Class		
	ĺ	Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

confusion matrix for a binary classification problem

Results

- Tie back Results to the problem statement
- Identify trends, exceptions etc and highlight in analysis
- 3. Acceptable margin of error of the model may differ
- 4. Use Visualizations to display results
- 5. Account for scaling and deployment

Source: https://www.onlc.com/blog/10-types-tableau-charts-using/

We learnt..

- 1. Always define your problem statement
- 2. Data gathering and cleaning is time consuming, but very important
- 3. Explore the data, visually if possible, and preprocess before training
- 4. Select metrics and create baseline model
- 5. Train and test the model
- Displaying Results

Takeaways

- 1. Model building is like building your own ice cream.
- 2. Identify when ML needs to used and when not
- 3. Explore about Pre-built models
- 4. No project is a failed project Always a learning from a data project
- 5. Get your hands Dirty with the data.

Next Steps

- 1. Start with an existing dataset
 - a. <u>Kaggle</u>, <u>Registry of open data on AWS</u>, <u>Awesome Public Datasets</u>
- 2. Spend time on EDA and Feature Engineering
- 3. Try different approaches to understand how they work
- 4. Read Documentation
- 5. Towards Data Science Articles

Thankyou....

Manogna Mantripragada LinkedIn: manogna-mantripragada Email: mmantripragada@greenlinkanalytics.org