Randomness

Chinese

You're given a string S of N characters. It's known that the string consists of lowercase Latin letters. The string is generated randomly. That means that every symbol is chosen randomly and independently from others from the set $\{'a', 'b', ..., 'z'\}$. All the letters have equal probability to appear.

You're given Q queries on this string. Each query is of the form PC, where P is an integer between 1 and N (both inclusive) and C is a character from the set $\{'a', 'b', ..., 'z'\}$. Both P and C were chosen at random and independently from other queries.

When you have a query of the form PC you have to change the P^{th} symbol of S to C. After every change we ask you to output the number of distinct nonempty sub-strings of S.

Input Format

The first line of input consists of two single space-separated integers N and Q, the length of the string S and the number of queries, respectively.

The second line contains string S.

The following $m{Q}$ lines describe the queries in the form \mbox{PC} , where $m{P}$ and $m{C}$ are also separated with a single space.

Constraints

 $\begin{array}{l} 4 \leq N \leq 75000 \\ 4 \leq Q \leq 75000 \end{array}$

Output Format

Output Q lines. Output the number of distinct substrings of S after the i^{th} query on the i^{th} line of the output.

Sample Input

Sample Output

Explanation

After replacing the character at the first index with *a*, we still have the original string aaab. The total non empty substrings of aaab are

a b aa ab aaa aab aaab		

After replacing the character at the second index with b, we have the string abab. The non-empty substrings of abab are

a b ab ba aba bab abab

hence 7.

After replacing the character at the third index with c, we have the string abcb. The total non empty substrings of abcb are

a b c ab bc cb abc bcb abcb

hence 9.

After replacing the character at the fourth index with d, we have the string abcd. The total non empty substrings of abcd are

a b c d ab bc cd abc bcd abcd

hence 10.

Scoring

There are 12 test cases.

The first four test cases N = 100 and Q = 500

The next four test cases N = 75000 and Q = 10

The last four test cases N = 75000 and Q = 75000