Organización y Arquitectura de Computadoras 2019-2

Práctica 1: Medidas de desempeño

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

Fecha de entrega: 17 de febrero del 2019

1. Ejerccios

1. Identifica cuales de las pruebas miden el tiempo de respuesta y cuales miden el rendimiento.

■ GZip Compression

Description: This test measures the time needed to archive/compress two copies of the Linux 4.13 kernel source tree using Gzip compression.

Por lo que es una prueba de tiempo de respuesta.

■ DCRAW

Description: This test times how long it takes to convert several high-resolution RAW NEF image files to PPM image format using dcraw.

Por lo que es una prueba de tiempo de respuesta.

■ FLAC Audio Encoding

Description: This test times how long it takes to encode a sample WAV file to FLAC format five times. Por lo que es una prueba de tiempo de respuesta.

■ GnuPG

Description: This test times how long it takes to encrypt a file using GnuPG.

Por lo que es una prueba de tiempo de respuesta.

REDIS

Description: Redis is an open-source data structure server.

Como es un servidor, probablemente la prueba sea de rendimiento, donde mide la cantidad de peticiones en un determinado tiempo.

MAFFT

Description: This test performs an alignment of 100 pyruvate decarboxylase sequences.

Por lo que es una prueba de tiempo de respuesta.

Bayes Analysis

Description: This test performs a bayesian analysis of a set of primate genome sequences in order to estimate their phylogeny.

Por lo que es una prueba de tiempo de respuesta.

■ MPlayer

Description: This test times how long it takes to build the MPlayer media player program.

Por lo que es una prueba de tiempo de respuesta.

PHP

Description: This test times how long it takes to build PHP 5 with the Zend engine.

Por lo que es una prueba de tiempo de respuesta.

- 2. Usando la medida de tendencia central adecuada y tu reporte de resultados, calcula
 - La medida de tiempo de respuesta.
 - La medida de rendimiento.
- 3. Calcula los tiempos normalizados y obtén la medida de tendencia central adecuada de cada una de las computadoras.

Datos de tiempo de respuesta

ID	1	2
REDIS_LPOP	1211506	2115110
REDIS_SADD	1027961	1710230
REDIS_LPUSH	870849	1342941
REDIS_GET	1361435	2133463
REDIS_SET	951458	1492232
Media arit	1084641.8	1758795.2

Datos de rendimiento

ID	1	2
GZip	59.49	46.43
DCRAW	67.86	53.56
FLAC	19.93	13.49
GnuPG	18.99	14.26
MAFFT	11.21	8.73
MrBayes	763	625
MPlayer	3.49	2.84
PHP	295	218
Media arm	15.53	12.17

4. Plantea un caso de uso para una computadora. De acuerdo a los requerimientos del usuario, pondera loas resultados de las pruebas y obtén la medida de desempeño de cada una de las computadoras de tu equipo.

2. Preguntas

- 1. ¿Cuál computadora tiene el mejor tiempo de ejecución? ¿Porqué factor es mejor computadora comparado a la peor?
- 2. ¿Cuál computadora tiene el mejor desempeño? ¿Porqué factor es mejor la computadora comparado a la peor?
- 3. De acuerdo a la referencia ¿cuál computadora tiene el mejor desempeño y cuál tiene el peor desempeño?
- 4. ¿Cuál computadora tiene el mejor desempeño para el usuario planteado en el caso de uso?
- 5. De los atributos de cada máquina, ¿cuáles resultan determinantes en la pérdida o ganancia de desempeño?