Tongta Inverter

TDS-F8

MODBUS Communication Application Manual

Please ensure the user gets this manual, for the optimal use of this device.

TEK-DRIVE / TDS-F8 INVERTER MODBUS Communication

1. Introduction:

TEK-DRIVE / TDS-F8 INVERTER uses the RS-485 series communication port and Modbus protocol for connecting with a PLC. Up to 31 inverters can be monitored and controlled simultaneously by a host controller with such links.

2. TDS-F8 Communication specifications:

- (1) Uses RS-485 series communication port for Hardware link.
- (2) Communication Format: Modbus RTU mode protocol.
- (3) Communication Format setting: via setting of parameters of the 9th group:
 - (i) Parameter $(9-01) = 1 \sim 255$... Communication address (default =1)

In the Communication Format, each communication unit requires a unique address, up to 31 inverters can be linked.

(ii) Parameter $(9-02) = 0 \sim 3$ ----- transfer speed (default =3)

Parameter (9-02) = 0 ----- 1200 Bps

Parameter (9-02) = 1 ----- 2400 Bps

Parameter (9-02) = 2 ----- 4800 Bps

Parameter (9-02) = 3 ----- 9600 Bps

For setting RS-485 communication transfer speed

(iii) Parameter (9-03) = $0\sim2$ ----- Parity setting (default =0)

Parameter (9-03) =0 ----- No Parity

Parameter (9-03) =1 ----- Even Parity

Parameter (9-03) =2 ----- Odd Parity

Parity format in RS-485 communication set by (9-03).

(Note): In case of changing (9-02) or (9-03), the inverter must be switched OFF and re-started again.

- (4) Other parameters related to RS-485:
 - (i) Setup inverter response mode during a RS-485 communication failure:

Parameter $(9-04) = 0\sim3$ ----- Inverter stop method during RS-485 communication failure (default =0)

Parameter (9-04) = 0 ----- decelerate according to (1-13)

Parameter (9-04) = 1 ----- stop by free run

Parameter (9-04) = 2 ----- decelerate according to (1-15)

Parameter(9-04) = 3 ----- continue to run (can be stopped by pressing "STOP")

(ii) Setup Detection time for releasing alarm after a communication failure:

Parameter $(9-05) = 00.0 \sim 25.5s$ ----- Detection time for communication failure (default =01.0s)

Parameter (9-05) = 00.0 s ----- for "No Detection" of communication failure
When the (9-05) set period elapses, the digital controller will display " [Err "

(iii) For setting up whether RS-485 is used for command source:

Parameter (2-01)= 2 ----- Operation Command comes from RS-485 port.

Parameter (2-02)= 2 ----- Frequency Command comes from RS-485 port.

(iv) For setting up that the signal of the inverter output terminal comes from RS-485 port.

Parameters (3-06) and (3-07) = 25 ----- signal of the Digital output terminal comes from RS-485 port.

3. TDS-F8 connections:

RS-485 series communication port comprises S(+) and S(-) pins for semi-duplex communication transfer. For connecting multi RS-485 ports, just series-link all the S(+)s and all the S(-)s respectively.

RS-485 connecting diagram

4. TDS-F8 connection procedures:

- (1) Power ON the inverter, then setup RS-485 related parameters and connect the RS-485 cable. Communication with the controller is now enabled.
- (2) During wiring the cable, if the inverter parameter setting for Operation/Frequency command comes from RS-485 port (2-01=2 or 2-02=2), if the inverter, in the STOP mode, does not receive any information in the period set by (9-05), the digital controller will display the "blinking message, indicating that the system is in standby for communication. On receipt of data, the blinking message will go off. During the operation, if no data comes in during the period set by (9-05), the system will respond according to the (9-04) setting, and the digital controller will display the "error message."

5. The Modbus RTU protocol:

(1) Definition of the Character:

In the Modbus RTU mode, each Character, or byte, is composed of 11 bits: 1 start bit, 8 data bits, 1 parity bit and 1 stop bit. If (9-03)=0 for "No Parity", the parity bit shall be set "1". The transfer carries out one by one starting from the start bit. The following are the formats of the character:

Character with parity check:

LSB										MSB
1	2	3	4	5	6	7	8	9	10	11
Start	Data	Parity	Stop							
bit	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit	bit

Character without parity check:

LSB										MSB
1	2	3	4	5	6	7	8	9	10	11
Start	Data	Stop	Stop							
bit	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit	bit

(2) Definition of a Message:

In the Modbus RTU mode protocol, each message comprises 4 components namely Slave Address, Function Code, Data and Checking Code (CRC-16). Messages are separated with starting and ending periods equal to the length of 3.5 Characters. The message format is as follows:

Period > length of 3.5 Characters	Communication Address (Slave Address)	Function Code		(CRC-16)	Period > length of 3.5 Characters
Characters	1 Character	1 Character	n Character	CRC_L CRC_F	Characters

(3) Message format:

(i) Communication Address (Slave Address)

One Character-length is used for the RTU mode communication address of the inverter in the message. Parameter (9-01) is used for setting up this address, with the range of $1\sim31$.

Message sent by the Master can be received by all Slaves, but only the one with the same Slave Address as that in the message will execute the received message, with a response sent back to the Master. When the Master sends a message with the Slave Address set as "0", all slaves will execute the massage without sending back any response.

(ii) Function Code

One Character length is used for the RTU mode function Code in a message, for making the slave execute the command. Function Codes used by this inverter are listed as follow; each function will be detailed in "Message Mode".

Function Code	Function
03H	Read data from Register
06H	Write a single datum to Register
H80	Loop test
10H	Write data to Register

(iii) Data

Due to different data requirements of different functions, the data bytes of different messages have different lengths; detailed discussions will be given in "Message Mode".

(iv) Checking Code (CRC-16)

In the message format, a CRC-16 checking code of 2 characters long is used for errors in the transferred data. CRC-16 is a 16-bit binary value. When transferred, checking code of the low-byte is transferred first, then that of the high-byte. CRC-16 is operated as follows:

- 1 Set CRC_16 as FFFFH.
- ² Execute XOR operation for the low-byte of the CRC_16 with the first byte of the message, send the result back to the low-byte of the CRC_16.
- 3 LSB of CRC_16 is 0, CRC_16 is shifted one bit to the right, with a 0 filled into the highest bit. If LSB of CRC_16 is 1, CRC_16 is shifted one bit to the right, with a 0 filled into the highest bit, and than execute XOR with A001H.
- 4 Repeat step 3 until shifting to the right 8 times.
- ⁵ Repeat steps ² ~ ⁴ for the next byte of the message, until all bytes are done.

The final CRC_16 value is the check code of the CRC_16.

Use Basic to run CRC_16, for example:

```
Function CRC_16(message$) as long
crc16& = 65535
FOR CHAR% = 1 to LEN (message$)
    crc16& = crc16& XOR ASC (MID$ (message$, CHAR*, 1))
    FOR BIT% = 1 to 8
        IF crc16& MOD 2 THEN
          crc16\& = (crc16\& \setminus 2) XOR 40961
        ELSE
          crc16& = crc16& \ 2
        END IF
   NEXT BIT%
NEXT CHAR%
crc_hi% = crc16& \ 256
crc lo% = crc16& MOD 256
message$ = message$ + CHR$(crc_lo%) + CHR$(crc_hi%)
CRC_16 = crc16
END FUNCTION CRC 16
```

(4) Message mode:

Messages are divided into commands and responses. Messages send from Master to a Slave is a Command, the respond send back to Master by a Slave is a Response. In general conditions, after 5ms a Command will be responded by the Slave with the denoted address. No response will be given by any Slave for the following conditions:

The "Slave Address" in the Commend does not match with any of the linked Slaves.

² An error is detected when the Slave receives the message (Parity, Framing, Overrun, or CRC-16 error).

6. TDS-F8 message format

TDS-F8 Inverter accepts only 3 types of command messages: Read data from (03H), Loop Test (08H) and Write data to (06H and 10H). See the following table:

Command	Function Code	Function	Host Query		Inverter return	
Command	Function Code	Function	Byte (Min.)	Byte (Max.)	Byte (Min.)	Byte (Max.)
Data Read	1 03H	Read data from Holding Register	8	8	7	37
Data Write	06H	Write a single datum to Register	8	8	8	8
Loop Test	08H	Loop test	8	8	8	8
Data Write	10H	Write data to Register	11	41	8	8

Command and Inverter return formats acceptable to the Inverter:

(1) Read command (03H):

Read data from Register. Data of a maximum of 16 registers can be read at a time.

Command message

Slave Ad	01H	
Function	Code	03H
Head Address	High Byte	00H
	Low Byte	20H
Access Count	High Byte	00H
	Low Byte	01H
CRC-16	High Byte	85H
	Low Byte	C0H

Inverter Return (Error Detected)

Slave A	01H	
80H + Fund	83H	
Error	02H	
CRC-16	High Byte	01H
CKC-10	Low Byte	31H

Inverter Return (Normal)

Slave Ad	01H		
Function	Code	03H	
Data Byte	Data Byte Count		
Head Address	High Byte	H80	
	Low Byte	02H	
CRC-16	High Byte	3EH	
CIXO-10	Low Byte	45H	

(2) Write command (06H):

Writes datum to a holding register. If the Slave Address in the Write Command is set to 0, all Slaves on-line will receive and execute this message, but this can only be used for setting register addresses 0000H and 0001H. No response will be made by any Slave. If Write Command is used for changing parameters, the change is not saved into EEPROM when the machine is switched off. For saving into EEPROM, it must be written into address 0600H.

Host Query

Slave Ad	01H	
Function	Code	06H
Head Address	High Byte	00H
	Low Byte	01H
Data character	High Byte	00H
byte	Low Byte	20H
CRC-16	High Byte	D9H
	Low Byte	D2H

Inverter Return (Error Detected)

Slave A	01H	
80H + Fund	86H	
Error (03H	
CRC-16	High Byte	02H
	Low Byte	61H

Inverter Return (Normal)

Slave Ad	01H	
Function	Code	06H
Head Address	High Byte	00H
	Low Byte	01H
Data character	High Byte	00H
byte	Low Byte	20H
CRC-16	High Byte	D9H
	Low Byte	D2H

(3) Loop Test Command (08H):

Check if communication circuit is normal

Slave Ad	01H	
Function	Code	08H
Test Code	High Byte	00H
	Low Byte	00H
Test Data	High Byte	12H
	Low Byte	34H
CRC-16	High Byte	EDH
	Low Byte	7CH

Inverter Return (Error Detected)

Slave A	01H	
80H + Function Code		88H
Error Code		03H
CRC-16	06H	
	01H	

Inverter Return (Normal)

Slave Ac	01H	
Function	08H	
Test Code	High Byte	00H
rest Code	Low Byte	00H
Test Data	High Byte	12H
iesi Dala	Low Byte	34H
CRC-16	High Byte	EDH
CKC-16	Low Byte	7CH

(4) Write Command (10H):

Writes multiple data to holding register. A maximum of 16 registers can be written at a time. If the Slave Address of the Write Commend is set to 0, all Slaves on-line will receive and execute this message, but this can only be used for setting register addresses 0000H and 0001H. No response will be made by any Slave. If Write Command is used for changing parameters, the change is not saved into EEPROM when the machine is switched off. For saving into EEPROM, it must be written into address 0600H.

Host Query

Slave Ad	01H	
Function	Code	10H
Head Address	High Byte	00H
Head Address	Low Byte	01H
Access Count	High Byte	00H
Access Count	Low Byte	01H
Data byte Count*		02H
The first data	High Byte	00H
character byte	Low Byte	30H
CRC-16	High Byte	A7H
CIC-10	Low Byte	95H

Inverter Return (Error Detected)

Slave A	01H		
80H + Fund	90H		
Error (03H		
CRC-16	CRC-16 High Byte		
	01H		

Inverter Return (Normal)

Slave Ad	01H			
Function	Code	10H		
Head Address	Head Address High Byte			
	Low Byte	01H		
Access Count	High Byte	00H		
	Low Byte	01H		
CRC-16	High Byte	50H		
	Low Byte	09H		

* Number of data bytes is 2 times of Access Count.

7. TDS-F8 Registers:

There are 3 types of registers: Control, Monitor and Inverter Parameters:

Register Type	Register Property	Register Address
Control Data	Read/Write	0000H~000FH
Monitor Data	Read-only. Non-Writeable	0020H~002FH
Inverter Parameter Data	Read/Write	0100H~0600H

(1) Control Data register (Read/Write): Register for controlling inverter operation

List of Control Data Registers

Address	Bits	Function Description		
0000H (*1)	0	0: STOP; 1: RUN		
	1	0: Forward; 1: Reverse		
	2	External Fault (0: disable; 1: enable)		
	3	Fault Reset (0: disable; 1: enable)		
	4~7	Reserved		
	8	0: disable; 1: switch from PRG mode to DRV mode, auto clear to 0		
	9	0: disable; 1: switch from DRV mode to PRG mode, auto clear to 0		
	10~15	Reserved		
0001H(*1)	Freque	ency Command: 7530H /100% (30000/100%); 100% =(1-03)		
0002H~0006H	Reserv	ved		
0007H	0	Output terminal Ra-Rb-Rc output setting; 0: disable; 1: enable		
	1	Output terminal MO+-MO- output setting; 0: disable; 1: enable		
	2~15	Reserved		
0008H~000FH	0008H~000FH Reserved			

^{*1.} This control data register can be used for Slave Address "0" write-in message.

(2) Monitor Data Register (Read-only. Non-Writeable): For monitoring Inverter operation status

List of Monitor Data Registers

Address	Bits	Function Description		
0020H	0	0: STOP; 1: RUNNING		
	1	1: Zero Speed		
2 0: Forward; 1: Reverse		0: Forward; 1: Reverse		
	3	1: Inverter Ready		
	4	0: PRG mode; 1: DRV mode		

	5	Reserved
	6	1: Inverter Alarm
	7	1: Inverter Fault
	8	Reserved
	9	
	10	
	11	
	12	0001: Parameter Setting Invalid
	13	0010: Multi-Function Digital Input Parameter Setting Invalid
	14	0011: Auto-Run Mode Parameter Setting Invalid
	15	0100: V/F Pattern Parameter Setting Invalid
	13	0101: Frequency Limited Parameter Setting Invalid
		0110: Jump Frequency Parameter Setting Invalid
000411	_	0111~1111: Reserved
0021H	0	1: Under Voltage Fault (UV1)
	1	1: Over Current Fault (OC)
	2	1: Over Voltage Fault (OV)
	3	1: Over heat Fault (OH)
	4	1: Motor Over Load Fault (OL1)
	5	1: Inverter Over Load Fault (OL2)
	6	1: Output Over Torque Fault (OL3)
	7	Reserved
	8	1: External Fault MI2 (EF2)
	9	1: External Fault MI3 (EF3)
	10	1: External Fault MI4 (EF4)
	11	1: External Fault MI5 (EF5)
	12	1: EEPROM Fault
	13	1: CPU A/D Fault
	14	1: Ground Fault (GF)
	15	Reserved
0022H	0	Reserved
	1	
	2	1: Braking Resistor Over Heat Alarm
	3	1: RS-485 Communication transfer Alarm
	4	1: PID Alarm
	5~15	Reserved
0023H	0	1: Under Voltage Alarm (UV)
	1	1: Over Voltage Alarm (OV)
	2	1: Over Heat Alarm (OH)
		\ \ - / -

	_	4. O T Ala (OLO)			
	3	1: Over Torque Alarm (OL3)			
	4	1: Two Line Terminal 1,2 External Alarm (EF)			
	5	1: Base Block Alarm (bb)			
	6	1: EEPROM Alarm			
	7	Reserved			
	8				
	9				
	10				
	11	1: Braking Resistor Over Heat Alarm			
	12	1: RS-485 Communication Alarm			
	13	Reserved			
	14	1: PID Alarm			
	15	Reserved			
0024H	Frequ	uency Command (30000/100%) 100%=(1-03)			
0025H	Outp	ut Frequency (30000/100%) 100%=(1-03)			
0026H	Outp	ut Voltage 1V/1			
0027H	Outp	ut Current 0.1A/1			
0028H	Main	circuit DC Current 1V/1			
0029H	Analo	og Input VAIN Value; 10V/100.0% or 20mA/100.0%			
002AH	Pane	l's VR input; 100%=(1-03)			
002BH	Reserved				
002CH	0	Terminal 1 0: Open; 1: Close			
Input	1	Terminal 2 0: Open; 1: Close			
Terminal status	2	Terminal 3 0: Open; 1: Close			
Status	3	Terminal 4 0: Open; 1: Close			
	4	Terminal 5 0: Open; 1: Close			
	5	Terminal 6 0: Open; 1: Close			
	6	Terminal 7 0: Open; 1: Close			
	7	Terminal 8 0: Open; 1: Close			
	8~15	Reserved			
002DH	Analo	og Output AO1 Value; 10V/100.0%			
002EH	Reserved				
002FH	0	Terminals Ra-Rb-Rc; 0: Open; 1: Close			
Output					
Terminal status	2~15	Reserved			

(3) Inverter Parameter Register (Read/Write): List of Inverter Parameter vs. Register Address

List of Inverter Parameter Register

Address Inverter Parameter		Unit	Setting Range	Mark	
0100H	0-01	-01 Display mode, Digital Controller		0~1999	
0101H	0-02	Display content after Power ON	_	0~2	

Address		Inverter Parameter		Setting Range	Mark
0180H	1-01	Inverter Capacity	_	0~3	
0181H	1-02	Factory Setting Selection	_	0~1	
0182H	1-03	Max. Output Frequency	0.1Hz	50.0~400.0Hz	
0183H	1-04	Max. Voltage	0.1V	0.1~ 255.0V	
0184H	1-05	Frequency of the Max. Voltage	0.1Hz	0.1~400.0Hz	
0185H	1-06	Middle Output Frequency	0.1Hz	0.1~400.0Hz	
0186H	1-07	Voltage at Middle Output Frequency	0.1V	0.1~255.0V	
0187H	1-08	Min. Output Frequency	0.1Hz	0.1~400.0Hz	
0188H	1-09	Voltage at Min. Output Frequency	0.1V	0.1~255.0V	
0189H	1-10	Frequency Command Upper Bound	1%	0~109%	
018AH	1-11	Frequency Command Lower Bound	1%	0~109%	
018BH	1-12	Acceleration time 1	0.1s	0.0~999.9s	
018CH	1-13	Deceleration time 1	0.1s	0.0~999.9s	
018DH	1-14	Acceleration time 2	0.1s	0.0~999.9s	
018EH	1-15	Deceleration time 2	0.1s	0.0~999.9s	
018FH	1-16	Jog Frequency Command	0.01Hz	0.00~400.00 Hz	
0190H	1-17	S Curve Time in Starting Accel.	0.1s	0.0~1.0s	
0191H	1-18	S Curve Time in Ending Accel.	0.1s	0.0~1.0s	
0192H	1-19	S Curve Time in Starting Decel.	0.1s	0.0~1.0s	
0193H	1-20	S Curve Time in Ending Decel.	0.1s	0.0~1.0s	

Address		Inverter Parameter	Unit	Setting Range	Mark
0200H	2-01	Run Source selection	_	0~2	
0201H	2-02	Frequency Command selection	_	0~3	
0202H	2-03	STOP method selection		0~3	
0203H	2-04	Controller STOP button selection		0~1	
0204H	2-05	Prohibition of REV run		0~1	
0205H	2-06	Carrier Frequency Setting	_	1~6	

0206H	2-07	External UP/DOWN Memory Function	_	0~1	
0207H	2-08	Output frequency Up/Down function		0~1	

Address		Inverter Parameter	Unit	Setting Range	Mark
0280H	3-01	Analog Output FM Function Selection	_	0~11	
0281H	3-02	Analog Output Gain	1%	1~255%	
0282H	3-03	Random Frequency Detection Level, accelerating	0.1Hz	0.0~400.0Hz	
0283H	3-04	Random Frequency Detection Level, decelerating	0.1Hz	0.0~400.0Hz	
0284H	3-05	Detection amplitude, for consistent Frequency	0.1Hz	0.1~25.5Hz	
0285H	3-06	Ra -Rc function selection	_	00~25	
0286H	3-07	MO function selection	—	00~25	
0287H	3-08	Multiplier select, Pulse output	_	01~16	

Address		Inverter Parameter	Unit	Setting Range	Mark
0300H	4-01	Analog frequency command VIN gain	0.1%	0.0~1000.0%	
0301H	4-02	Analog frequency command VIN bias	0.1%	-99.9~100.0%	
0302H	4-03	Analog Frequency Input command properties selection	_	0~1	
0303H	4-04	Analog Frequency Command Input properties selection	_	0~1	
0304H	4-05	Terminal MI2 Function Selection		00~21	
0305H	4-06	Terminal MI3 Function Selection	_	01~22	
0306H	4-07	Terminal MI4 Function Selection	_	02~23	
0307H	4-08	Terminal MI5 Function Selection	_	03~24	
0308H	4-09	Scan Times of Input Terminal	_	0~1	
0309H	4-10	Analog Input Filter	_	1~80	
030AH	4-11	Counter Setting Value	_	0~9999	

Address		Inverter Parameter	Unit	Setting Range	Mark
0380H	5-01	Frequency Command 1	0.01Hz	0.00~400.00 Hz	
0381H	5-02	Frequency Command 2	0.01Hz	0.00~400.00 Hz	
0382H	5-03	Frequency Command 3	0.01Hz	0.00~400.00 Hz	
0383H	5-04	Frequency Command 4	0.01Hz	0.00~400.00 Hz	
0384H	5-05	Frequency Command 5	0.01Hz	0.00~400.00 Hz	
0385H	5-06	Frequency Command 6	0.01Hz	0.00~400.00 Hz	

0386H	5-07	Frequency Command 7	0.01Hz	0.00~400.00 Hz	
0387H	5-08	Frequency Command 8	0.01Hz	0.00~400.00 Hz	
0388H	5-09	Auto Run mode operation selection	_	0~6	
0389H	5-10	Auto Run mode operation selection 1	_	0~2	
038AH	5-11	Auto Run mode operation selection 2	_	0~2	
038BH	5-12	Auto Run mode operation selection 3	_	0~2	
038CH	5-13	Auto Run mode operation selection 4	_	0~2	
038DH	5-14	Auto Run mode operation selection 5	_	0~2	
038EH	5-15	Auto Run mode operation selection 6	_	0~2	
038FH	5-16	Auto Run mode operation selection 7	_	0~2	
0390H	5-17	Auto Run mode operation selection 8	_	0~2	
0391H	5-18	1'st Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0392H	5-19	2'nd Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0393H	5-20	3'rd Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0394H	5-21	4'th Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0395H	5-22	5'th Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0396H	5-23	6'th Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0397H	5-24	7'th Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	
0398H	5-25	8'th Step Time Under Auto Run Mode	0.1s	0.0~6000.0s	

Address		Inverter Parameter	Unit	Setting Range	Mark
0400H	6-01	Stall prevention during Accel. function selection		0~1	
0401H	6-02	Stall prevention during Decel. function selection		0~1	
0402H	6-03	Stall prevention during running function selection		0~1	
0403H	6-04	Stall Prevention During Acceleration	1%	30~150%	
0404H	6-05	Stall Prevention During Running	1%	30~150%	
0405H	6-06	Detection Level, Over Torque	1%	30~150%	
0406H	6-07	Detection Time, Over Torque	0.1s	0.0~25.5s	
0407H	6-08	Over Torque Detection select		0~4	
0408H	6-09	Motor overload protection select		0~4	
0409H	6-10	Detection Level, Under Voltage	1V	150~210V	

Address		Inverter Parameter	Unit	Setting Range	Mark
0480H	7-01	Motor Rated Current	0.1A	*.*A	

0481H	7-02	No Load Current of Motor	1%	0~99%	
0482H	7-03	Rated Slip of Motor	0.1%	0~9.9%	
0483H	7-04	Auto torque compensation gain	0.1	0.0~2.0	

Address		Inverter Parameter	Unit	Setting Range	Mark
0500H	8-01	DC Injection Braking Starting Frequency	0.1Hz	0.1~10.0Hz	
0501H	8-02	DC Brake Current	1%	0~80%	
0502H	8-03	DC Injection Braking Time at Stop	0.1s	0.0~25.5s	
0503H	8-04	DC Injection Braking Time at Start	0.1s	0.0~25.5s	
0504H	8-05	Re-Start selection after momentary interruption	_	0~1	
0505H	8-06	Speed Search Current Level	1%	0~150%	
0506H	8-07	Speed Search Deceleration Time	0.1s	0.1~25.5s	
0507H	8-08	Min. Base Block Time	0.1s	0.5~5.0s	
0508H	8-09	Frequency Jump Point 1	0.1Hz	0.0~400.0Hz	
0509H	8-10	Frequency Jump Point 2	0.1Hz	0.0~400.0Hz	
050AH	8-11	Frequency Jump Point 3	0.1Hz	0.0~400.0Hz	
050BH	8-12	Frequency Jump Range	0.1Hz	0.0~25.5Hz	
050CH	8-13	Number of times, Reset after fault	_	0~10	
050DH	8-14	Timer ON delay time	0.1s	0.0~999.9s	
050EH	8-15	Timer OFF delay time	0.1s	0.0~999.9s	
050FH	8-16	PID Function Selection	_	0~1	
0510H	8-17	PID Detection gain	1%	1~1000%	
0511H	8-18	PID Proportional gain (P)	1%	1~1000%	
0512H	8-19	PID Integral Time (I)	0.1s	0.0~100.0s	
0513H	8-20	PID Differential time (D)	1ms	0~1000ms	
0514H	8-21	PID Output Bias	1%	0~109%	
0515H	8-22	PID Integral Upper Bound	1%	0~109%	
0516H	8-23	PID Output Delay Time	0.1s	0.0~2.5s	

Address		Inverter Parameter	Unit	Setting Range	Mark
0580H	9-01	RS-485 Slave Address		01~255	
0581H	9-02	RS-485 baud rate setting		0~3	
0582H	9-03	RS-485 transmission parity setting		0~3	
0583H	9-04	RS-485 comm. Fault stop selection	—	0~3	
0584H	9-05	Communication Fault Detection Time	0.1s	0.0~25.5s	

0600H	Save parameters into EEPROM	Write 0000H here will save the		
		parameters into EEPROM		

Reading of all parameters are not confined with any limitations of modes, but writing is only applicable in the PRGM mode unless specified applicable both in PRGM and DRIVE.

8. Content of Error Codes

Content of error message display is as per the following Table:

Error Code	Error Name	Possible Cause
01H	Function Code Error	Function code is not 03H, 08H or 10H; or Function code is 08H but sub- Function code is not 0000H
02H	Data Address Error	Invalid register address during Retrieval / Writing of command
03H	Data Value Error	Invalid data during Read / Write of command
04H	CRC_16 Error	CRC reception differs from calculated CRC
21H	Device Busy	Handling task of the previous command, such as parameter change or storing data into EEPROM
22H	Device Fail	EEPROM fail while writing data
No response	Data Format Error	Invalid format of received data
No response	UART Error	Parity bit, Overrun or Frame error detected during transfer.

9. Example of TDS-F8 Communication

Demonstrates how a TDS-F8 Inverter, with communication address 1, is controlled by PLC via the RS-485 port for the following operations:

Correctly setup inverter parameters 9-02 (transfer speed), 9-03 (Parity setting), 9-04 (Inverter stop method during RS-485 communication failure) and 9-05 (Detection time for releasing alarm after a communication failure) according to the previous descriptions, then setup the following parameters:

- (i) 9-01 = 01 (Inverter Address)
- (ii) 2-01 =2 (Operation Command controlled by RS-485 communication)
- (iii) 2-02 =2 (Main Speed Command controlled by RS-485 communication)
- (iv) 3-06 =25 (Terminal Ra controlled by RS-485 communication)
- (v) 3-07 =25 (Terminal MO controlled by RS-485 communication)

Then connect cables according to wiring procedures and carry out communication. Configure the Master (PLC) Controller with the following program for accomplishing the desired operations:

Step 1:Command message sent by Master

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	08H
Data Byte Cou	nt	10H
1st Data byte	High Byte	00H
	Low Byte	01H
2 nd Data byte	High Byte	5DH
	Low Byte	C0H
3 rd Data byte	High Byte	00H
	Low Byte	00H
4 th Data byte	High Byte	00H
	Low Byte	00H
5 th Data byte	High Byte	00H
	Low Byte	00H
6 th Data byte	High Byte	00H
	Low Byte	00H
7 th Data byte	High Byte	00H
	Low Byte	00H
8 th Data byte	High Byte	00H
	Low Byte	01H
CRC-16	High Byte	44H
	Low Byte	91H

Response message from Slave (Inverter)

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	08H
CRC-16	High Byte	C1H
	Low Byte	CFH

- 1. Send 1st Data byte 0001H to register 0000H, stand for Forward Run.
- 2. Send 2nd Data byte 5DC0H to register 0001H, for running in 80% speed; (1-03) (Max. Frequency output) is100%(7530H).
- Send 8th Data byte 0001H to register 0007H, stand for control of multi-function by RS-485 and for enable output terminals Ra-Rc and disable MO+_MO-.
- 4. Then the Inverter is initiated; multi-function output terminals Ra-Rc activated, and acceleration is carried out to 80% of max. Output Frequency according to Acceleration Time.

Step 2:

Command message sent by Master

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	08H
Data Byte Count	_	10H
1st Data byte	High Byte	00H
	Low Byte	01H
2 nd Data byte	High Byte	3AH
	Low Byte	98H
3 rd Data byte	High Byte	00H
	Low Byte	00H
4 th Data byte	High Byte	00H
	Low Byte	00H
5 th Data byte	High Byte	00H
	Low Byte	00H
6 th Data byte	High Byte	00H
	Low Byte	00H
7 th Data byte	High Byte	00H
	Low Byte	00H
8 th Data byte	High Byte	00H
	Low Byte	01H
CRC-16	High Byte	FDH
	Low Byte	2EH

Inverter return from Slave (Inverter)

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	H80
CRC-16	High Byte	C1H
	Low Byte	CFH

- 1. Send 1st Data byte 0001H to register 0000H, stand for Forward Run.
- 2. Send 2nd Data byte 3A98H to register 0001H, for running in 50% speed.
- 3. Send 8th Data byte 0001H to register 0007H, stand for control of multi-function by RS-485 and for enable output terminals Ra-Rc.
- Then the Inverter multi-function output terminals MO+-MO- are disabled and Ra-Rc activated, and deceleration is carried out to 50% of max. Output Frequency according to Deceleration Time.

Step 3

Command message sent by Master

	_	
Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Data Byte Count		10H
1st Data byte	High Byte	00H
	Low Byte	03H
2 nd Data byte	High Byte	3AH
	Low Byte	98H
3 rd Data byte	High Byte	00H
	Low Byte	00H
4 th Data byte	High Byte	00H
	Low Byte	00H
5 th Data byte	High Byte	00H
	Low Byte	00H
6 th Data byte	High Byte	00H
	Low Byte	00H
7 th Data byte	High Byte	00H
	Low Byte	00H
8 th Data byte	High Byte	00H
	Low Byte	01H
CRC-16	High Byte	7FH
	Low Byte	2FH

Inverter return from Slave (Inverter)

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	08H
CRC-16	High Byte	C1H
	Low Byte	CFH

- Send 1st Data byte 0003H to register 0000H, stand for Reverse Run.
- 2. Send 2nd Data byte 3A98H to register 0001H, for running in 50% speed.
- 3. Send 3rd Data byte 0001H to register 0007H, stand for control of multi-function by RS-485 and for enable output terminals Ra-Rc.
- 4. Then the Inverter shall decelerate to Stop from 50% speed and reverse and accelerate to 50% of the full Reverse speed; multi-function output terminals Ra-Rc continue Output actions.

Step 4:Command message sent by Master

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	01H
Data Byte Count		02H
1st Data byte	High Byte	00H
	Low Byte	00H
CRC-16	High Byte	A6H
	Low Byte	50H

Inverter return from Slave (Inverter)

Slave Address		01H
Function Code		10H
Head Address	High Byte	00H
	Low Byte	00H
Access Count	High Byte	00H
	Low Byte	01H
CRC-16	High Byte	C1H
	Low Byte	C9H

- 1. Send 1st Data byte 0000H to register 0000H, stand for stopping the operation.
- 2. Then the Inverter decelerates from 50% Reverse to ZERO speed and stop operation. Since the content of 0007H register has not been changed, the multi-function output terminals Ra-Rc continue their Output actions.