1

AI1103: Assignment 1

Santosh Dhaladhuli - MS20BTECH11007

Download all python codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103-Assignment-1/blob/main/Assignment %201.py

and latex codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103-Assignment-1/blob/main/Assignment %201.tex

PROBLEM 5.12

Random Variable X has the following Probability Distribution

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$

Determine:

- 1) k
- 2) Pr(X < 3)
- 3) Pr(X > 6)
- 4) Pr(0 < X < 3)

Solution

$$\Pr(X) = \begin{cases} 0, & \text{for } X = 0 \\ k, & \text{for } X = 1 \\ 2k, & \text{for } X = 2 \\ 2k, & \text{for } X = 3 \\ 3k, & \text{for } X = 4 \\ k^2, & \text{for } X = 5 \\ 2k^2, & \text{for } X = 6 \\ 7k^2 + k, & \text{for } X = 7 \end{cases}$$
 (5.12.1)

1) It is known that the sum of probabilities of a probability distribution is always one.

$$\therefore 0 + k + 2k + 3k + k^2 + 2k^2 + (7k^2 + k) = 1$$
(5.12.2)

$$\implies 10k^2 + 9k - 1 = 0 \implies (10k - 1)(k + 1) = 0$$
(5.12.3)

$$\implies k = -1, \frac{1}{10}$$
 (5.12.4)

$$\therefore k = \frac{1}{10} (\because k \ge 0) \tag{1}$$

Fig. 1: Probability Mass Function(PMF)

Fig. 1: Cumulative Distribution Function(CDF)

We know that
$$Pr(X \le x) = F(x)$$

and $Pr(x < X \le y) = F(y) - F(x)$

X	0	1	2	3	4	5	6	7
F(X)	0	0.1	0.3	0.5	0.8	0.81	0.83	1

TABLE 1: CDF of X

2)
$$\Pr(X < 3) = \Pr(X \le 3) - \Pr(X = 3)$$

 $\implies \Pr(X < 3) = F(3) - \Pr(X = 3) \quad (5.12.5)$
 $\implies \Pr(X < 3) = \frac{5}{10} - \frac{2}{10} \quad (5.12.6)$
 $\therefore \Pr(X < 3) = \frac{3}{10} \quad (2)$

3)
$$\Pr(X > 6) = 1 - \Pr(X \le 6) = 1 - F(6)$$

 $\implies \Pr(X > 6) = 1 - \frac{83}{100}$ (5.12.7)
 $\therefore \Pr(X > 6) = \frac{17}{100}$ (3)

4)
$$\Pr(0 < X < 3) = \Pr(0 < X \le 3) - \Pr(X = 3)$$

$$\implies \Pr(0 < X < 3) = F(3) - F(0) - \Pr(X = 3)$$

$$\implies \Pr(0 < X < 3) = \frac{5}{10} - 0 - \frac{2}{10}$$

$$(5.12.8)$$

$$\therefore \Pr(0 < X < 3) = \frac{3}{10}$$

$$(4)$$