**Ejercicio 2.** Encontrar un autómata que acepte el mismo lenguaje que el asociado a la expresión regular  $(0+10)^*011$ 

## PRIMERA PARTE Expresión Regular → Autómata

El autómata tiene que aceptar cadenas que contengan previamente las subcadenas 0 o 10 en cualquier número (\*  $\rightarrow$  >= 0 ) y orden (no tienen que venir primero todos los 0 y después todos los 10) y que la cadena termine en 011.

Ejemplo de cadena que se acepta: 0010010011

(\*\*\*NOTA: no he seguido los pasos que seguiría jflap, me he ahorrado estados "inútiles para hacer esta demostración aunque sé que siguiendo el procedimiento del analizador léxico se generan esos estados (como q1) y que se eliminan minimizando.)

Cómo diría Jack el Destripador, vamos por partes:

- A) Construimos autómatas que acepten las subcadenas 0, 10 y 011
  - a.1) Autómata que acepta la cadena 10

Autómata que acepta un 1



Autómata que acepta un 0



Para aceptar 10, uno ambos autómatas por transiciones nulas. Q1 pierde su carácter de estado final y Q2 pierde su carácter de estado inicial.



- Q1 se puede suprimir y pasar directamente de q0 a q2 leyendo un 1.
- a.2) Autómata que acepta la cadena 0



B) Ya tenemos los autómatas que aceptan las cadenas 10 y 0 por separado. Ahora crearemos un nuevo autómata que acepte 0 + 10 (ser capaz de leer 0 y aceptarlo o ser capaz de leer 10 y aceptarlo). Unimos el autómata final de a.1 y el autómata de a.2, para ello necesitaremos de un nuevo estado 'Q6' que servirá como estado inicial y que se conectará al autómata final de a.1 y al autómata final de a.2 por transiciones nulas.



Q4 y Q0 pierden su carácter de estado final

b.1) Para conseguir que sea (0+10)\* conectaremos q5 y q3 a q6 por transiciones nulas para que pueda leer tantas cadenas de 0 o 10 cómo sean necesarias (siguiendo los pasos del analizador léxico aparecería un nuevo estado inicial Q7 que se uniría a Q6 por transición nula y Q6 perdería su carácter inicial).



C) Ahora tenemos el autómata que acepta cadenas (0+10)\*. Nos falta crear el autómata que acepta la cadena 011 y unirlo al autómata del b.1.

#### c.1) Autómata que acepta la cadena 011



### c.2) Uno el autómata c.1 con el de b.1 por transiciones nulas



Conecto q6 (estado inicial) por transición nula a q7 dado que la cadena puede ser únicamente  $011 (* \rightarrow >= 0)$ 

Conecto q5 y q3 a q7 dado que la cadena puede tener previamente cadenas 0 o 10.

Ya tengo el autómata que necesito para leer cadenas correspondientes a la expresión regular (0+10)\*011.

#### **JFLAP**

Me voy a regular expressions e introduzco (0+10)\*011

Lo convierto a autómata finito no determinista.



Me da como resultado el siguiente autómata:



Do all → Me termina el autómata



Lo exporto y paso a autómata determinista.



## Le doy a complete





Le doy a done y se exporta. Ya tengo el autómata determinista.



Ahora, voy a probar unas cuantas cadenas para ver si funciona correctamente.



Parece que está todo en orden. Por último voy a mostrar como quedaría el autómata minimizado:





Este sería el autómata finito determinista final. No hay mejor versión que esta.



# SEGUNDA PARTE Autómata → Expresión Regular

Partimos del autómata finito determinista minimizado. Lo paso a expresión regular en jflap:



Lo exportamos y nos devuelve la expresión regular equivalente a ese autómata.



Si repitiera de nuevo todo el proceso, volvería a obtener el mismo autómata. Por tanto concluimos que el autómata se representa por 2 expresiones regulares distintas, esto nos hace ver que la expresión regular no es única.

El autómata finito y la expresión regular son equivalentes.