

에디로봇아카데미 임베디드 마스터 Lv2 과정

제 1기 2022. 07. 16

손표훈

CONTENTS

- 멀티 프로세스
 - ▶ 프로세스란?
 - ▶ 부모 프로세스와 자식프로세스
 - Copy On Write(COW)
 - ▶ 프로세스와 쓰레드의 차이
- SIGNAL
 - ➤ SIGNAL이란?
 - ➤ wait 함수

- ▶ 프로세스란?
- → 프로세스는 실행 중인 프로그램이며, 생성, 준비, 대기, 실행, 완료 등의 다양한 상태를 가지고 있다
- → 리눅스에서는 시분할 스케줄링 알고리즘(Completely Fair Scheduler-CFS)에 의해 프로세스를 제어 한다 * CFS는 RB트리 구조로 구성 되어 있다
- → 프로세스간에 서로 공유하는 자원이 없다. 즉, 먼저 CPU를 점유하는 프로세스가 CPU의 자원을 사용한다 *프로세스는 CPU의 추상화다!

포인터	상태		
프로세스 ID			
프로그램 카운터			
버퍼 포인터			
레지스터			
메모리 제한			
열린 파일 목록			
자식 링크			

Process Control Block

*사물인터넷을 위한 리눅스 프로그래밍 with 라즈베리파이(서영진 지음) 참고

- ▶ 부모 프로세스와 자식프로세스
- → 자식 프로세스는 부모 프로세스의 분신과 같다
- → 자식 프로세스가 생성 될 때 부모 프로세스의 메모리 구조를 상속 받지만 서로 분리되어 있다(즉 각각의 독립된 메모리 구조를 갖는다)
- → 즉 또 다른 프로세스가 하나 더 생성되는 것
- → 리눅스에서 fork 함수를 통해 자식 프로세스를 생성 할 수 있다
- → fork 함수 이전을 통해 자식 프로세스의 메모리 구조는 다음과 같이 복사 된다

Copy On Write(COW)

https://wizardzines.com/comics/copy-on-write/ JULIA EVANS copy on write @bork On Linux, you start copying all that memory the cloned process new processes using every time we fork has EXACTLY the same would be slow and a the fork() or clone() memory. waste of RAM system call. - same heap Often processes call calling fork creates - same stack exec right after fork which means they a child process that's - same memory maps don't use the parent a copy of the caller if the parent has 36B of process's memory memory, the child will too. basically at all ? child so Linux lets them share when a process tries Linux does this by giving both the processes to write to a shared physical RAM and only memory address: identical page tables. copies the memory 1) there's a spage fault when one of them 2 Linux makes a copy tries to write > same of the page & updates the page table RAM I'd like to change 3 the process continues, process (that memory blissfully ignorant process (my own copu okay! I'll make you but it marks every page your own copy! as read only.

- ▶ 프로세스와 쓰레드의 차이
- → 프로세스와 쓰레드의 차이는 메모리 공유 여부이다
- → 프로세스는 하나의 독립적인 프로그램이라고 하며, Task라고도 한다
- → 프로세스는 CPU를 점유하고 멀티 프로세스 환경에서 스케줄링에 의해 프로세스의 CPU 할당 순서가 정해진다
- → 즉, 프로세스는 CPU의 모든 자원을 다 사용한다(프로세스는 CPU의 추상화)
- → 프로세스는 서로 메모리를 공유하지 않기 때문에 IPC(Inter Process Communication) 방식을 이용하여 정보 공유를 할 수 있다.

- → 쓰레드는 Stack영역만 개별적으로 할당 받고 DATA, HEAP, TEXT영역은 공유 한다
- → 같은 프로세스 안에서 여러 쓰레드들은 HEAP과 DATA 영역을 공유할 수 있다

SIGNAL

- ➤ SIGNAL이란?
- → SIGNAL은 system call로 유일한 소프트웨어 인터럽트이다 → 특정 이벤트(프로세스 종료, 비정상 종료, 비정상적인 기계어 명령 등)가 발생했을 때 인터럽트가 발생한다 → 리눅스에서 주요 시그널은 다음과 같다

시그널 이름		14	SIGALRM(ALRM)	- 경보(alarm) 시그널; alarm(n)에 의해 n초 후 생성됨
1 SIGHUP(HUP) - 로그아웃과				- 알람 타이머 만료 시에 사용
		사용 15 5	SIGTERM(TERM)	- 일반적으로 kill 시그널이 전송되기 전에 전송된다.
	- 네온 관련 완경 질성 파일을 면경시키고, 면와된 내용을 식용하기 위해 새시식일 때 이 시그날이 사용 됨			- 잡히는 시그널이기 때문에 종료되는 것을 트랙할 수 있다.
- internet 시그년·ftd+c·실해유주	- interrupt 시그널: Ctrl + r · 실행을 준지	16	SICTUEIT	코프로세서 스택 실패
SIGINT(INT)		10	SIGIRFLI	고프도세시 스펙 필패
	-quit 시그널: Ctrl +\	17	SIGCHLD (CHLD)	프로세스 종료시 그 부모 프로세스에게 보내지는 시그널
	- 사용자가 터미널에서 종료키를 누를 때	18	SIGCONT(CONT)	STOP 시그널 이후 계속 진행할 때 사용. ; 정지 되지 않은 경우 무시됨
SIGILL(ILL)	잘못된명령	19	SIGSTOP(STOP)	정지 시그널; SIGSTP과 같으나 잡거나 무시할 수 없음
SIGTRAP(TRAP)	트렙추적		,	
6 SIGIOT(IOT)	- IOT 명령	20	SIGTSTP(TSTP)	키보드에 의해 발생하는 시그널로 Ctrl+Z 로 생성된다. ; 터미널 정지 문자
	- Abort(비정상 종료) 함수에 의해 발생	21	SIGTTIN	백그라운드에서의 제어터미널 읽기
SIGBUS(BUS)	버스 에러	22	SIGTTOIL	백그라운드에서의 제어터미널 쓰기
SIGFPE(FPE)	부동 소수점 에러			
9 SIGKILL(KILL)	- 무조건적으로 즉시 중지한다.	23	SIGURG	소켓에서의 긴급한 상태
	- Kill, 실행 중인 프로세스를 강제 종료할 때 사용	24	SIGXCPU	CPU 시간 제한 초과 setrlimit(2) 메뉴얼 패이지 참조
SIGUSR1(USR1)	사용자 정의 시그널1	25	SIGXFSZ	파일 크기제한 초과 setrlimit(2) 메뉴얼 패이지 참조
- 세그엔테이션 위반 11 SIGSEGV(SECV) - 세그엔테이션 위반 - Segmentation Violation, 메모리 엑세스가 잘못되었을 때 발생		26	SIGVTALRM	가상 시간 경고 setitimer(2) 메뉴얼 패이지 참조
		27	SIGPROF	프로파일링 타이머 경고. setitimer(2) 메뉴얼 페이지 참조
SIGUSR2(USR2)	사용자 정의 시그널2			
13 SIGPIPE(PIPE)	- 읽으려는 프로세스가 없는데 파이프에 쓰려고 함	28	SIGWINCH	윈도우 사이즈 변경
	- 종료된 소켓에 쓰기를 시도할 때	29	SIGIO	기술자에서 입출력이 가능함. fcntl(2) 메뉴얼 참조
	SIGINT(INT) SIGQUIT(QUIT) SIGILL(ILL) SIGITAP(TRAP) SIGIOT(IOT) SIGEBUS(BUS) SIGFPE(FPE) SIGKILL(IILL) SIGUSRI (USR1) SIGSECV(SECV) SIGUSRZ(USR2)	hangup 시그날: 천화선 끊어짐 -로그아오과 같은 터미널에서 접속이 끊혔을 때 보내지는 시그널 -대로 관련 환경 설정 파일을 반경시키고, 변화된 내용을 작용하기 위해 재시작할 때 이 시그날이 사용 됨 interrupt 시그날: Ctrl + c : 실행을 중지 -키보드로부터 오는 인터템트 시그널로 설행을 중지시킨다. '이보고 무무된 명칭	14 14 15 15 15 15 15 15	1

SIGNAL

- ➤ wait함수
- → 부모 프로세스가 자식 프로세스의 종료 상태를 얻기 위해서 wait함수를 사용한다
- → 동작은 아래와 같다

- → wait 함수는 blocking 동작이므로 해당 함수가 끝날 때 까지 다른 연산들을 진행하지 못한다
- → 여러 개의 자식들이 생성/종료 되는 멀티 프로세스 환경에서 비정상 종료된 자식들이 동시 다발적으로 발생할 때 하나의 wait처리로 인해 다른 비정상 종료된 상황을 인지하지 못하는 예외 상황이 발생할 수 있다
- → 이를 동기처리 방식이라 한다
- → 위 와 같은 상황을 방지하기 위해 Non-blocking 처리를 하게 되고 이를 bottom half 처리라 한다

* WNOHANG은 기다리는 PID가 종료되지 않아서 즉시 종료 상태를 회수 할 수 없는 상황에서 호출자는 차단되지 않고 반환 값으로 0을 받는다