Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Proveď te energetickou kalibraci α -spektrometru a určete jeho rozlišení.
- 2. Určete absolutní aktivitu kalibračního radioizotopu $^{241}\mathrm{Am}.$
- 3. Změřte závislost ionizačních ztrát α -částic na tlaku vzduchu $\Delta T = \Delta T(P)$.
- 4. Určete specifické ionizační ztráty α -částic ve vzduchu při normálním tlaku $-\frac{dT}{dx} = f(T)$. Srovnejte tuto závislost se závislostí získanou pomocí empirické formule pro dolet α -částic ve vzduchu za normálních podmínek.
- 5. Určete energie α -částic vyletujících ze vzorku obsahujícím izotop 239 Pu a příměs izotopu 238 Pu a porovnejte je s tabelovanými hodnotami. Stanovte relativní zastoupení izotopu 238 Pu ve vzorku s přesností lepší než 10 %, jsou-li $T_{1/2}(^{238}$ Pu) = 87,71 yr a $T_{1/2}(^{239}$ Pu) = 24,13 · 10³ yr.

Teoretická část

Absolutní aktivita vzorku A je celkový počet částic, který ze vzorku vyletí za jednotku času. Pokud naměříme ve spektrometru aktivitu a, pak platí

$$A = a \frac{4\pi}{\Omega} \approx a \frac{r^2 4\pi}{S} \,, \tag{1}$$

kde Ω je pokrytý prostorový úhel, r je vzdálenost terčíku od vzorku a S je povrch terčíku. V přiblížení $r^2 \gg S$ platí $\Omega \approx S/r^2$.

Předpokládáme, že hustota vzduchu je přímo úměrná tlaku. Potom ionizační ztráty při tlaku P na vzdálenosti r jsou stejné jako ionizační ztráty při atmosférickém tlaku P_0 a na vzdálenosti

$$x = r \frac{P}{P_0} \,. \tag{2}$$

Specifické ionizační ztráty definujeme [1]

$$f(T) := -\frac{dT}{dx} = -\frac{P_0}{r} \frac{dT}{dP}. \tag{3}$$

Derivaci dT/dP budeme počítat numericky jako rozdíl dvou vedlejších bodů

$$\frac{dT}{dP} = \frac{T_{i+1} - T_i}{P_{i+1} - P_i} \,. \tag{4}$$

Zdroj [1] udává (po derivaci doletu částic R) teoretickou závislost

$$f(T) = \frac{2}{3} \frac{1}{\xi \sqrt{T}},\tag{5}$$

kde $\xi = 0.31 \,\mathrm{cm} \,\mathrm{MeV}^{-\frac{3}{2}}$ a T v rozmezí 4–7 MeV.

Standardní nejistotu středu píku σ_T určíme jako

$$\sigma_T = \frac{\text{FWHM}}{2\sqrt{2\log 2}\sqrt{N}},\tag{6}$$

kde N je celkový výtěžek náležící píku ($net\ count$) a FWHM je pološířka píku.

Pokud máme vzorek dvou radioaktivních izotopů, u kterých známe poločasy rozpadu $T_{1/2}$, můžeme ze změřených aktivit určit jejich relativní molární podíl

$$\frac{N(1)}{N(2)} = \frac{A(1)T_{1/2}(1)}{A(2)T_{1/2}(2)},\tag{7}$$

kde A jsou aktivity. Pokud měříme stejný čas, je podíl aktivit rovný podílu výtěžků. Z jejich poměru už můžeme snadno určit relativní zastoupení

$$\eta(1) = \frac{1}{1 + \frac{N(2)}{N(1)}}, \qquad \eta(2) = \frac{1}{1 + \frac{N(1)}{N(2)}}.$$
(8)

Výsledky měření

Kalibraci jsme provedli pomocí 241 Am při vyčerpané komoře. Pík na 5485,74 keV měl pološířku 110 keV. Rozlišení spektrometru v okolí tohoto píku je odpovídající σ 47 keV, tedy 0,85 %.

Aktivitu a jsme naměřili $(83.5\pm0.5)\,\mathrm{cps}$. Kruhový terčík byl od vzorku vzdálen $r=(3.0\pm0.5)\,\mathrm{cm}$ a měl plochu $S=(17.1\pm0.1)\,\mathrm{mm}^2$ Podle (1) jsme určili absolutní aktivitu vzorku

$$A = (55\,000 \pm 20\,000) \,\mathrm{cps}$$

Závislost energie částic Měření při všech tlacích probíhala 300 s a celkový výtěžek byl vždy v rozmezí 24 800–25 400. Pomocí (6) jsme vypočetli nejistotu každého středu píku a pohybuje se v rozmezí 0,25–0,50 keV, takže je zcela zanedbatelná pro naše účely. Nejistotu tlaku odhadujeme na 10 hPa.

Do grafu 1 jsme vykreslili závislost ionizačních ztrát $\Delta T(P) = T(0) - T(P)$, závislost T(P) je pouze posunutá a s opačným znamínkem. Tuto závislost jsme nafitovali funkcí $ax + bx^2 + cx^3$ (bez absolutního členu, aby bylo splněno $\Delta T(0) = 0$)

$$\Delta T(P \text{ [hPa]}) \text{[keV]} = -3.27 \cdot P + 0.0016 \cdot P^2 - 1.7 \cdot 10^{-6} \cdot P^3$$

Dále jsme spočítali f(T) podle (3) a (4), výsledky jsou v grafu 2.

P (hPa)	T (keV)	FWHM (keV)
0	5485,74	110,07
100	5157,09	109,15
200	4885,78	106,8
300	$4608,\!68$	$112,\!43$
400	4339,77	$107,\!47$
500	4031,14	122,11
600	3733,13	123,86
700	3394,79	135,83
800	3038,95	$145,\!19$
900	2593,76	164,2
960	2317,31	178,31

Tabulka 1: Naměřené píky při různých tlacích

Měřili jsme spektrum vzorku 239 Pu s příměsí 238 Pu, výsledky jsou v tabulce 2. Podle (7) jsme spočítali jejich poměr

$$\frac{N(^{238}\text{Pu})}{N(^{239}\text{Pu})} = (3.8 \pm 0.3) \cdot 10^{-5} \,.$$

Z toho máme relativní zastoupení

$$\eta(^{238}\text{Pu}) = (0.0038 \pm 0.0003) \%, \qquad \eta(^{239}\text{Pu} = (99.996 \pm 0.001) \%$$

Diskuze

Bohužel jsme zapomněli jsme změřit vzdálenost vzorku 241 Am od terčíku a hodnota $(3,0\pm0,5)$ cm je odhad, který v rámci nejistoty považujeme za správný. Velká chyba r se projevila velkou chybou absolutní aktivity A. Velikost terčíku S jsme zjistili od spolužáků, nicméně je možné, že byl použit jiný terčík, a proto hodnotu bereme s rezervou a nevěříme jí.

Funkci f(T) jsme určili až na škálovací faktor způsobený nepřesným r. Přesto závislost přibližně odpovídá teoretické závislosti (5), což napovídá, že jsme vzdálenost r odhadli správně.

V numerické derivaci (4) odčítáme ve jmenovateli blízká čísla, což způsobuje chybu, pokud jsme tlak nezměřili přesně.

Tlak vzduchu byl $P_0 = 960 \,\mathrm{hPa}$, což bylo způsobeno jinou teplotou a vlhkostí než je normální ($P_0 = 1013 \,\mathrm{hPa}$). Proto jsme i specifické ionizační ztráty f vztahovali ve vzorci 3 k tlaku 960 hPa a dostali jsme funkci, jejíž teoretický tvar se může lišit od (5).

Naměřené energie α -částic vylétajících ze vzorku mají o trochu nižší energii než tabelovanou, což mohlo být způsobeno vdáleností od terčíku a nedokonalým vakuem.

Graf 1: Ionizační ztráty v závislosti na tlaku

Graf 2: Specifické ionizační ztráty

izotop	\ /	FWHM (keV)	výtěžek (cps)	$T_{1/2} (yr)$	$T_{\rm tab}~({\rm keV})$
²³⁹ Pu	$5136,0 \pm 0,4$	110,07	16910 ± 130	24 130	5142,90
238 Pu	5475 ± 3	109,15	178 ± 14	87,71	5499,21

Tabulka 2: Naměřené píky při různých tlacích

Závěr

Zkalibrovali jsme spektrometr a určili jeho rozlišení 0,85 %. Určili jsme absolutní aktivitu vzorku $^{241}\mathrm{Am}$ (viz Diskuze)

$$A = (75 \pm 20) \, \text{kBq}$$
.

Změřili jsme závislost $\Delta T(P)$ ionizačních ztrát na tlaku (viz graf 1). Z ní jsme určili specifické ionizační ztráty f(t) (viz graf 2).

Změřili jsme relativní zastoupení izotopů Pu ve vzorku

$$\eta(^{238}\text{Pu}) = (0.0038 \pm 0.0003) \%, \qquad \qquad \eta(^{239}\text{Pu} = (99.996 \pm 0.001) \%.$$

Seznam použité literatury

1. Spektrometrie záření alfa—Základní fyzikální praktikum [online]. [cit. 2017-12-12]. Dostupný z WWW: \http://physics.mff.cuni.cz/vyuka/zfp/zadani/405\).