Security Proof of FLUTE

카이스트 전산학부 한승우

2025년 3월 26일

Preliminaries

Notations

Notations

• Let Q be a nonempty set of $\langle \cdot \rangle$ -shared values (wires). We use the following notation:

$$\mathsf{m}_{\mathcal{Q}} \triangleq \bigwedge_{u \in \mathcal{Q}} \mathsf{m}_u$$
 and $\lambda_{\mathcal{Q}} \triangleq \bigwedge_{u \in \mathcal{Q}} \lambda_u$.

Lookup Table

LUT (Lookup Table)

 δ -to- σ lookup table T is a function T: $\{0,1\}^{\delta} \to \{0,1\}^{\sigma}$.

x_1	x_2	x_3	у
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

$$(\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3})$$

$$\oplus (\overline{x_1} \wedge x_2 \wedge x_3)$$

$$\oplus (x_1 \wedge \overline{x_2} \wedge x_3)$$

DNF Representation of T

$$y = \begin{pmatrix} \overline{x_1} \\ \overline{x_1} \\ x_1 \end{pmatrix} \odot \begin{pmatrix} \overline{x_2} \\ \underline{x_2} \\ \overline{x_2} \end{pmatrix} \odot \begin{pmatrix} \overline{x_3} \\ x_3 \\ x_3 \end{pmatrix}$$

"Multi-Fan-In Inner Product" representation

Secret Sharing Schemes

$[\cdot]$ Secret Sharing

 P_0 , P_1 : parties

$[\cdot]$ Secret Sharing

A bit $v \in \mathbb{Z}_2$ is said to be $[\cdot]$ -shared between P_0 and P_1 if P_i holds $[v]_i$ such that

$$\nu = [\nu]_0 \oplus [\nu]_1.$$

Multiplication of [·]-shared Values

Beaver's Multiplication Triple

Suppose P_0 and P_1 have $[\cdot]$ -shares of $u, v \in \mathbb{Z}_2$. Suppose additionally that they have $[\cdot]$ -shares of a, b, c where c = ab.

- P_i computes $[u \oplus a]_i$ and $[v \oplus b]_i$, and sends them to P_{1-i} .
- ② P_0 and P_1 now know $d := u \oplus a$ and $e := v \oplus b$.

Then, $[z]_0 \oplus [z]_1 = z = uv$.

$$z = uv = (d \oplus a)(e \oplus b)$$

$$= \underbrace{de}_{\text{public}} \oplus db \oplus ea \oplus \underbrace{ab}_{=c}$$

$\langle \cdot \rangle$ Secret Sharing

⟨·⟩ Secret Sharing

A bit $v \in \mathbb{Z}_2$ is said to be $\langle \cdot \rangle$ -shared if:

- **1** A value $\lambda_{\nu} \in \mathbb{Z}_2$ is $[\cdot]$ -shared between P_0 and P_1 .
- ② A value $m_{\nu} \in \mathbb{Z}_2$ is public.

The $\langle \cdot \rangle$ -share of ν is denoted $\langle \nu \rangle_i = (\mathsf{m}_{\nu}, [\lambda_{\nu}]_i)$.

Multiplication of [·]-Shared Values

We will use the following functionality as black-box. In other words, we assume that there is some protocol that securely realizes this functionality.

\mathcal{F}_{AND} : Multiplication of [·]-Shared Values (Ideal)

Input $[\cdot]$ -shares of $u, v \in \mathbb{Z}_2$ from P_0 and P_1 .

Output $[\cdot]$ -shares of $uv \in \mathbb{Z}_2$ to each P_i

- Recover $u, v \in \mathbb{Z}_2$ from the shares and calculate z = uv.
- 2 Sample random $[z]_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_2$.
- \odot Send $[z]_0$ to P_0 and $[z]_0 \oplus z$ to P_1 .

Note that both $[z]_0$ and $[z]_1$ are independent from inputs and are uniformly distributed in \mathbb{Z}_2 .

Simulation Based Notion of Security

Definition

Let $X=\{X(a,n)\}_{a\in\{0,1\}^*,n\in\mathbb{N}}$ and $Y=\{Y(a,n)\}_{a\in\{0,1\}^*,n\in\mathbb{N}}$ be two probability ensembles. Then, we say that X and Y are computationally indistinguishable if, for any PPT algorithm D, and for any $a\in\{0,1\}^*$, we have

$$Pr[D(X(a, n), a) = 1] - Pr[D(Y(a, n), a) = 1] = negl(n).$$

We write $X \stackrel{c}{\equiv} Y$ if they are computationally indistinguishable.

Simulation Based Notion of Security

Definition

Let $f = (f_1, f_2)$ be a two-party functionality. A (poly-time) protocol π securely computes f against static semi-honest adversaries if there are PPT algorithms S_1 and S_2 such that

$$\begin{split} &\left\{\left(\mathcal{S}_1(1^n,x,f_1(x,y)),f(x,y)\right)\right\}_{x,y,n} \stackrel{\subseteq}{=} \left\{\left(\mathsf{view}_1^\pi(x,y,n),\mathsf{output}^\pi(x,y,n)\right)\right\}_{x,y,n} \\ &\left\{\left(\mathcal{S}_2(1^n,y,f_1(x,y)),f(x,y)\right)\right\}_{x,y,n} \stackrel{\subseteq}{=} \left\{\left(\mathsf{view}_2^\pi(x,y,n),\mathsf{output}^\pi(x,y,n)\right)\right\}_{x,y,n} \end{split}$$

where

- x and y are inputs of P_0 and P_1 , respectively,
- *n* is the security parameter,
- view $_i^{\pi}(x, y, n)$ is the tuple of P_i 's input, incoming messages, and internal random tape, and
- output $\pi(x, y, n)$ is the output of π (of both parties).

Functionality and Protocol for LUT Computation The LUT Functionality

\mathcal{F}_{LUT} : LUT (Ideal)

Input $\langle \cdot \rangle$ -shares of $x^1, \dots, x^\delta \in \mathbb{Z}_2$

Output $\langle \cdot \rangle$ -shares of $\mathbf{z} := \mathsf{T}(x^1, \dots, x^\delta)$ to each user.

- Reconstruct $x^1, \dots, x^\delta \in \mathbb{Z}_2$ from the shares and calculate $z = \mathsf{T}(x^1, \cdots, x^\delta).$
- ② Sample random $[\lambda_z]_i \stackrel{\$}{\leftarrow} \mathbb{Z}_2$ for $i \in \{0,1\}$ and set $\mathbf{m}_z \coloneqq z \oplus \lambda_z$.
- **3** Return $(m_{\alpha}, [\lambda_{\alpha}]_i)$ to P_i .

If $(m_z, [\lambda_z]_0)$ and $(m_z, [\lambda_z]_1)$ denote outputs of P_0 and P_1 , respectively, then m_z , $[\lambda_z]_0$, and $[\lambda_z]_1$ are independent and unifromly distributed in \mathbb{Z}_2 .

FLUTE Protocol

Π_{LUT} : LUT (Real)

Input $\langle \cdot \rangle$ -shares of $x^1, \dots, x^\delta \in \mathbb{Z}_2$

Output $\langle \cdot \rangle$ -shares of $\mathbf{z} := \mathsf{T}(x^1, \dots, x^\delta)$ to each user.

Setup Phase:

- Each user samples $[\lambda_{\mathbf{z}_w}]_i \stackrel{\$}{\leftarrow} \mathbb{Z}_2$ for $w \in [\sigma]$ and $i \in \{0, 1\}$.
- ② Each user let $\mathcal{I} := \{x^1, \cdots, x^{\delta}\}$ and use $\mathcal{F}_{\mathsf{AND}}$ to get shares $[\lambda_{\mathcal{O}}]_i$ for $\emptyset \neq \mathcal{Q} \subseteq \mathcal{I}$.

Online Phase:

- **1** P_i computes its share of $\mathbf{u}_{\nu}^j = \overline{x^j} \oplus \mathbf{e}_{\nu}^j$ for $j \in [\delta]$ and $k \in [2^{\delta}]$.
- 2 P_i computes, for each $w \in [\sigma]$,

$$[\mathbf{z}_w]_i = i \cdot \bigoplus_{k=1}^{2^\delta} (\mathbf{y}_k^w \cdot \mathbf{m}_{\mathcal{I}_k}) \oplus \bigoplus_{k=1}^{2^\delta} \left[\mathbf{y}_k^w \cdot \bigoplus_{\mathcal{Q} \subseteq \mathcal{I}_k} \left(\mathbf{m}_{\mathcal{Q}} \cdot [\lambda_{\mathcal{I}_k \backslash \mathcal{Q}}]_i \right) \right].$$

3 P_i computes $[\mathbf{m}_{\mathbf{z}_w}]_i = [\mathbf{z}_w]_i \oplus [\lambda_{\mathbf{z}_w}]_i$ for $w \in [\sigma]$ and sends them to P_{1-i} .

Building the Simulator

Building the simulator S_0 when P_0 is corrupt

Input 1^n , $\langle x^j \rangle_0$ for $j \in [\delta]$, and $(\mathsf{m}_{\mathbf{z}_w}, [\lambda_{\mathbf{z}_w}]_0)$ for $w \in [\sigma]$.

Output Simulation of P_0 's view. In other words, $(\langle \mathbf{x} \rangle_0, r; (\text{transcripts from } \mathcal{F}_{\text{AND}}), [\mathsf{m_z}]_1)$ mimicking P_0 's view. P_0 's incoming messages

- **1** Randomly fix a random tape r for P_0 .
- ② Imagine P_1 with arbitrary inputs in the head. For instance, inputs of P_1 are all zero.
- **3** Execute Π_{IUT} with the imaginary party P_1 except:
- When P_1 is about to send its $[m_{\mathbf{z}_w}]_1$ values, hand P_0 the (possibly flipped) values so that P_0 's output matches $(m_{\mathbf{z}_w}, [\lambda_{\mathbf{z}_w}]_0)$.
- **1** Output the view from the imaginary execution of Π_{LUT} .

Building the Simulator

When P_1 is about to send its $[m_{\mathbf{z}_w}]_1$ values, hand P_0 the (possibly flipped) values so that P_0 's output matches $(m_{\mathbf{z}_w}, [\lambda_{\mathbf{z}_w}]_0)$.

This is possible since P_1 can always *fake* the sampled value of $[\lambda_{\mathbf{z}_w}]_1$. (P_1 randomly samples $[\lambda_{\mathbf{z}_w}]_1$ in the setup phase.)

Building the Simulator

Proof? that S_0 works

The only differences between the real and the ideal world are:

- **①** Possible lying about the choice of $[\lambda_{\mathbf{z}_w}]_1$.
- ② Inputs of P_1 are arbitrarily chosen.

Hence, any good distinguisher *D* for the real and the ideal world must distinguish one of them.

- If D distinguishes $[\lambda_{\mathbf{z}_w}]_1$, then it successfully attacks the PRF primitive.
- ② If D detects that the simulators decided the choice, then it successfully attacks the $\mathcal{F}_{\mathsf{AND}}$ functionality. $\mathcal{F}_{\mathsf{AND}}$ is called a constant number (< 2^{δ}) of times.

References

- Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., & Yalame, H. (2023). Flute: Fast and secure lookup table evaluations. 2023 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/sp46215.2023.10179345
- Yehuda L. (2016). How To Simulate It A Tutorial on the Simulation Proof Technique. Cryptology ePrint Archive. https://eprint.iacr.org/2016/046