Семинар 1

(Темы: Проективные резольвенты в гомотопической категории, абелевость гомотопической категории)

Мы движемся к тому, чтобы определить производную категорию – это наша стратегическая цель. Наша тактическая цель на данном этапе – установить нужные нам свойства фунткора взятия проективной резольвенты.

Сот 1.1. Проективная резольвента с точностью до гомотопической эквивалентности определена однозначно.

Prop 1.2. Пусть P_{\bullet} – проективная резольвента M, Q_{\bullet} – какая-то резольвента N. Тогда

$$\operatorname{Hom}_{\mathcal{K}(A)}(P_{\bullet}, Q_{\bullet}) = \operatorname{Hom}_{A}(M, N)$$

Доказательство. Рассмотрим связывающий морфизм между резольвентой и объектом как морфизм комплексов $f\colon Q_{\bullet} \to N[0]$, тогда его конус – это просто $P_{\bullet} \to Q \to 0$. Теперь, как обычно, имеем короткую точную последовательность, к которой можем применить функтор $\underline{\text{Hom}}(P_{\bullet},-)$ и из леммы о зигзаге получим длинную точную последовательность:

$$Q_{\bullet} \to N[0] \to C(f) \to Q_{\bullet}[1]$$

$$\operatorname{Hom}_{\mathfrak{K}(\mathcal{A})}(P_{\bullet},N[-1]) \to \operatorname{Hom}_{\mathfrak{K}(\mathcal{A})}(P_{\bullet},Q_{\bullet}) \stackrel{\cong}{\to} \operatorname{Hom}_{\mathfrak{K}(\mathcal{A})}(P_{\bullet},N[0]) \to \operatorname{Hom}_{\mathfrak{K}(\mathcal{A})}(P_{\bullet},C(f)) \to \operatorname{Hom}_{\mathfrak{K}(\mathcal{A})}(P_{\bullet},N[1]) \to \dots$$

Так как f – квазиизоморфизм, то C(f) – ацикличен. В силу $\ref{eq:condition} g \in \operatorname{Hom}(P_{\bullet}, C(f)[i])$ выполнено, что $g \sim 0$. Также в $\operatorname{Hom}(P_{\bullet}, N[0])$ нет нетривиальных гомотопий, они все пропускаются через 0. А также $\operatorname{fd}_1 = 0$ и $\operatorname{P}_0/\operatorname{imd}_1 = \operatorname{M}^1$. Отсюда получаем

$$\operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(P_{\bullet},Q_{\bullet})\cong\operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(P_{\bullet},N[0])\cong\operatorname{Hom}(P_{\bullet},N[0])\cong\operatorname{Hom}(M,N)$$

Corr 1.3. Пусть P^1_{ullet} , P^2_{ullet} – проективные резольвенты $M \Rightarrow P^1_{ullet} \sim P^2_{ullet}$.

Corr 1.4. Проективная резольвента от модиля – строгий полный функтор.??

$$\mathcal{P} \colon \mathcal{A} \to \mathcal{K}(\mathcal{A})$$
$$A \mapsto \mathsf{P}_{\bullet}(A)$$

Com 1.5. \mathcal{P} не является фунткором в категоию комплексов, но является функтором в гомотопическую категорию.

Com 1.6. Понятно, что категория комплексов является абелевой, так как все ядра и коядра можно брат почленно, однако гомотопическая категория абелевой, вообще говоря, не является.

$$\mathcal{A} \in \mathbf{Ab} \Rightarrow \mathsf{Kom}(\mathcal{A})$$
$$\mathcal{A} \in \mathbf{Ab} \Rightarrow \mathfrak{K}(\mathcal{A})$$

Ex 1.7 (Потеря эпиморфности при переходе в гомотопическую категорию). $f: \mathbb{Z} \to \mathbb{Z}_p$ не является эпиморфизмом в $\mathcal{K}(\mathcal{A})$.

Доказательство. Предположим, что f - epi

В абелевой категории любой морфизм раскладывается в композицию mono и ері.

$$\begin{array}{cccc}
A & \xrightarrow{f} & C \\
& \uparrow & \uparrow & A \xrightarrow{\alpha} & B \xrightarrow{\beta} & C \\
& & \text{imf} = B
\end{array}$$

¹универсальность коядра гомоморфизмов групп

Теперь снова рассмотрим точные тройки из последовательности с конусами, на диаграмме ниже дуговые стрелки гомотопны 0

$$A \xrightarrow{B \to C(\alpha)} B \xrightarrow{B \to C(\alpha)} C$$

$$C(\beta)[-1] \to B \to C(\alpha)$$

Таким образом получили, что В – расщепим. Тогда, используя ?? мы можем представить его в виде

И подобрать квазиизоморфный комплекс с когомологиями, сосредоточенными только в нулевом члене.

Но тогда имеем следующую последовательность морфизмов и противоречие:

 \mathbf{def} 1.8. \mathcal{A} – полупроста \Leftrightarrow \forall точная последовательность расщепима.

Claim 1.9. $\mathcal{K}(\mathcal{A})$ – $abeneba \Leftrightarrow \mathcal{A}$ – $nonynpocma^2$.

Ех 1.10 (Нерасщенимая короткая точная последовательность).

$$0 \to \mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z} \to \mathbb{Z}_p \to 0$$

То есть **Ab** – не полупроста.

 $^{^2}$ то есть \forall точная последовательность расщепима