1 ère année LMD Mathématique et Informatique Matière: Algèbre 1

Responsable de Matière Mr: Hariri. M

Examen Final: Algèbre 1

Durée : 1h30 min

Exercice 1 (05 pts).

Soient P et Q deux prédicats (propositions). On considère les connecteurs logiques et: \land , ou: \lor , implique: \Rightarrow , négation: \overline{P} . Compléter le tableau de vérité.

P	Q	\overline{P}	\overline{Q}	$P \lor Q$	$\overline{P} \lor Q$	$P \Rightarrow Q$	$\overline{\overline{P}} \lor Q$	$Q \Rightarrow \overline{\overline{P} \lor Q}$	$(Q \Rightarrow \overline{\overline{P} \vee Q}) \wedge (P \vee Q)$
1	1								
1	0								
0	1								
0	0								

Exercice 2 (05 pts).

On considère sur $\mathbb R$ la loi de composition interne notée \star définie par:

$$\forall x, y \in \mathbb{R}: \quad x \star y = x + y + xy$$

- 1. Existe-t-il $x \in \mathbb{R}$ let que $x \star y = x$, $\forall y \in \mathbb{R}$.
- 2. Montrer que $(\mathbb{R} \{-1\}, \star)$ est un groupe commutatif .
- 3. Calculer $1 \star (1 \times 1)$ et $(1 \star 1) \times (1 \star 1)$. La loi \star est-elle distributive par rapport a la multiplication ?.

Exercice 3 .(05 pts).

On définit la relation binaire \mathfrak{R} sur l'ensemble des nombres réels \mathbb{R} comme suit:

$$\forall x, y \in \mathbb{R}: \quad x\Re y \Longleftrightarrow x^3 - y^3 = x - y$$

- 1. Montrer que \Re est une relation d'équivalence.
- 2. Déterminer les classes d'équivalences $\overline{1}$ et $\overline{2}$.
- 3. Quelles sont les classes d'équivalence de cette relation. (Exactement deux éléments).

Exercice 4 (05 pts).

Soit $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

Démontrer que

- 1. La composée deux injections est une injection.
- 2. La composée deux surjections est une surjection.
- 3. Si la composition $g \circ f$ est injective alors f est injective.

Université Ain Temouchent Facul 1 ère année LMD Mathématique et Informatique

FACULTÉ DES SCIE ET TÉC , DÉARTEMENT DE MATHÉS ET INFO

TEMENT DE MATHES ET INFO Année Universitaire 2021-2022

Matière: Algèbre 1

Responsable de Matière Mr: Hariri. M

Examen Final: Algèbre 1

Durée: 1h30 min

Exercice 1 (05 pts).

Soient P et Q deux prédicats (propositions). On considère les connecteurs logiques et: \land , ou: \lor , implique: \Rightarrow , négation: \overline{P} . Compléter le tableau de vérité.

P	Q	\overline{P}	\overline{Q}	$P \lor Q$	$\overline{P} \lor Q$	$P \Rightarrow Q$	$\overline{\overline{P}} \lor Q$	$Q \Rightarrow \overline{\overline{P} \lor Q}$	$(Q \Rightarrow \overline{\overline{P} \vee Q}) \wedge (P \vee Q)$
1	1								
1	0								
0	1								
0	0								

Exercice 2 (05 pts).

On considère sur $\mathbb R$ la loi de composition interne notée \star définie par:

$$\forall x, y \in \mathbb{R}: \quad x \star y = x + y + xy$$

- 1. Existe-t-il $x \in \mathbb{R}$ let que $x \star y = x$, $\forall y \in \mathbb{R}$.
- 2. Montrer que $(\mathbb{R} \{-1\}, \star)$ est un groupe commutatif .
- 3. Calculer $1 \star (1 \times 1)$ et $(1 \star 1) \times (1 \star 1)$. La loi \star est-elle distributive par rapport a la multiplication ?.

Exercice 3 .(05 pts).

On définit la relation binaire $\mathfrak R$ sur l'ensemble des nombres réels $\mathbb R$ comme suit:

$$\forall x, y \in \mathbb{R} : \quad x \Re y \iff x^3 - y^3 = x - y$$

- 1. Montrer que \Re est une relation d'équivalence.
- 2. Déterminer les classes d'équivalences $\overline{1}$ et $\overline{2}.$
- 3. Quelles sont les classes d'équivalence de cette relation. (Exactement deux éléments).

Exercice 4 .(05 pts).

Soit $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Démontrer que

- 1. La composée deux injections est une injection.
- 2. La composée deux surjections est une surjection.
- 3. Si la composition $g \circ f$ est injective alors f est injective.

module; Afge'she of

Corrigé type de l'éxamen final

pet of dear proposition Soient

P	9	F	19	PVP	FUG	P => 9	PUP	9 = > PU9	(φ⇒ PV9) Λ (PV9)
, 1	١	0	0)	1	l	0	6	O
1	0	0	1	1	0	0	1	1	1
0	١	İ	0	1	ı	1	0	0	O
0	0	l	1	O	1	(0		0
	(ON	(011)) (OI)	(ON)	(OI)	(011)	61)	(01)

Exercic Nº 02

$$1/Vy \in \mathbb{R}$$
: $X \neq y = X = y + y + xy$

2/ (IR-(-7), #) groupe commutatif.

- commutativité:

Commutativité:

$$x * y = x + y + xy = y + x + yx = y * x$$
 $X * y = x + y + xy = y + x + yx = y * x$

OII

$$(x*y)*z = (x+y+xy)*z$$

= $x+y+xy+z+(x+y+xy)z$
= $x+y+xy+z+yz+xyz$
= $x+y+xy+z+xz+yz+xyz$

$$\begin{array}{rcl}
X * (y * z) &=& X * (y + z + yz) \\
&=& X + y + z + yz + x(y + z + yz) \\
&=& X + y + z + yz + xy + xz + xyz \\
&=& X + y + z + yz + xy + xz + xyz \\
&=& X + y + z + yz + xy + xz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz + xyz + xyz \\
&=& X + y + z + xyz + xyz + xyz + xyz + xyz \\
&=& X + xy + z + xyz \\
&=& X + xy + z + xyz $

- Elément mentre : Soit e l'élement mentre s'il existe => => e(1+1/=0=) e=001 HXE1: X * e= X = X + e + ex - Element symétrique: soit x' le sy métrije dex. on Done pour X = -1 ; X = -1 fino le mat (R-{-1}x) -st un glorpe communtatif, 3/ 1*(1*1) = (1*1) = 1+1+1=3 (01) (1*1) x (1*1) = 3 x 3 = 9. On 2 1 x (1x1) = (1*1) x (1*1) La loi * m'et do-c par distributive par rapport à' la multiplications Wx,yelf: x 2 y = x3-y3= x-y. Exercice Nº 03 1 Soient kiyet & dans IF, x3-x3===x-x => x2x, d'on' 2 st- réflexion.

 $\Rightarrow y^3 - x^3 = y - x \Rightarrow y \neq x$

 $y x + y \Rightarrow x^3 - y^3 = x - y \Rightarrow -x^3 + y^3 = -x + y$

don 2 et symétrique

(2

y = x + y = $\begin{cases} x^{3} - y^{3} = x - y \\ y^{3} - z^{3} = y - z \end{cases} = \begin{cases} x^{3} - z^{3} = x - z \\ y^{3} - z^{3} = y - z \end{cases} = \begin{cases} x^{3} - z^{3} = x - z \\ y^{3} - z^{3} = y - z \end{cases}$ d'a 2 et transitize ou l'annoité Done: a), b) et e) => & sh une role to déguiralence. 1 X E T E X3-1 = X-1 E (X-1) (X2+1) = 0 $(=) \quad \chi = 0, 1 \quad \text{on} \quad -1 \quad \text{do-c} \quad \overline{I} = \{0, 1, -1\}.$ $x^3 - x$ x - 1 $x \in \mathbb{Z}$ (=) $x^3 - 2^3 = x - 2$ = $x^3 - x - 6 = 0$ => (X-2/(X2+4X+3) =0 $\chi^{2} - \chi - 6 = 0$ $\chi^{2} - \chi - 6 = 0$ $\chi^{2} - \chi - 6 = 0$ $\chi^{2} + \chi + \chi + 3 = 0$ $\chi^{2} - \chi - 6 = 0$ $\chi^{2} + \chi + 3 = 0$ $\chi^{2} - \chi - 6 = 0$ $\chi^{2} + \chi + 3 = 0$ de: 2= {2}. (0,7) 3/ Les classes d'égnita len & soit: x ∈ a ∈/ x²-a²= x-a (=) x²-x-a²+a=0 (=) (x-a) (x+ax+a1-1)=0 x3-x-a3+a x-a x2+ax+a2-1 => X=a on X+ax+a-1=0, do-s a combient dens éléments si et pen lement si $a=\pm \frac{2}{13} \Rightarrow a=\left\{-\frac{2}{15}, \frac{2}{15}\right\}$. $D=-3a^2+4=o$ (e) $a=\pm \frac{7}{13} \Rightarrow a=\left\{-\frac{2}{15}, \frac{2}{15}\right\}$.

3

Soil- fie pf of gif -> 6 Exercice Nº 6 of soit X, et X2 deux c'limats de E tel j-c. g(fru) = g(fixe), comme g stinjelize f(x) = f(xe). Comme fstingetize x, = x2. cela pronte que got stimpetize. 2/ Démotrons que la composée deux jurjectés est une Comme g et surjectize, & CEG D'erist du Mois un élément bef tel/--- g(b)=c, Comme f et subjetite, il existe au moins un élément a E E let / c f (9/= b. Donc: GCEG Deviote du moins unélément a CE Ellg(f(a)) = c. Ceta pronte que gof st sujetize, Démonstrons que got et injelize en fat injelize. Soit X, , Xe EE telj-r. f(xy = f(xn) -> g(f(xy)) = g(f(xe)), pan hypotheise Jefstinjetine, do-c x = x cela implij- 1-1