

Week 7: Exercises

- 1. Get the itemsets with minimal support of 60%:
 - Install the Associate Add-On to Orange
 - Options > Add-Ons > Associate
 - File
 - Titanic
 - Frequent Itemsets
 - Minimal support: 60%
 - Click Find Itemsets

- 1. Get the itemsets with minimal support of 60%:
 - Frequent 1-itemsets?
 - Survived = no
 - Sex = male
 - Age = adult
 - Frequent 2-itemsets?
 - Adult and Did-Not-Survive
 - Adult and Male
 - Male and Did-Not-Survive

Frequent 3-	itemset?
-------------------------------	----------

- Adult and Male and Did-Not-Survive
- Monotonicity: all subsets of a frequent set must be frequent
- How many people did not survive?
 - 1490

lte	msets	Support	%
	survived=no	1490	67.7
>	age=adult	2092	95.05
	survived=no	1438	65.33
	✓ sex=male	1667	75.74
	survived=no	1329	60.38
¥	sex=male	1731	78.65
	survived=no	1364	61.97

2. Find the association rules with minimal support 40% and

minimal confidence 20%.

- File
 - Titanic
- Association Rules
 - Minimal support: 40%
 - Minimal Confidence: 20%
 - Click Find Rules

2. Find the association rules with minimal support 40% and minimal confidence 20%.

Supp	Conf	Covr	Strg	Lift	Levr	Antecedent		Consequent
0.757	0.963	0.786	1.209	1.013	0.010	sex=male	→	age=adult
0.757	0.797	0.950	0.827	1.013	0.010	age=adult	→	sex=male
0.653	0.687	0.950	0.712	1.015	0.010	age=adult	→	survived=no
0.653	0.965	0.677	1.404	1.015	0.010	survived=no	→	age=adult
0.620	0.788	0.786	0.861	1.164	0.087	sex=male	→	survived=no
0.620	0.915	0.677	1.162	1.164	0.087	survived=no	→	sex=male
0.604	0.797	0.757	0.894	1.178	0.091	age=adult, sex=male	→	survived=no
0.604	0.768	0.786	0.831	1.175	0.090	sex=male	→	age=adult, survived=no
0.604	0.635	0.950	0.652	1.025	0.015	age=adult	→	sex=male, survived=no
0.604	0.974	0.620	1.534	1.025	0.015	sex=male, survived=no	→	age=adult
0.604	0.924	0.653	1.204	1.175	0.090	age=adult, survived=no	-	sex=male
0.604	0.892	0.677	1.119	1.178	0.091	survived=no	→	age=adult, sex=male
0.402	0.423	0.950	0.423	1.052	0.020	age=adult	→	status=crew
0.402	1.000	0.402	2.364	1.052	0.020	status=crew	→	age=adult

- 3. In your opinion, which association rules are the strongest?
 - Consider the following measures:

Confidence =
$$\underbrace{count(A \text{ and } C)}_{count(A)}$$

Strength =
$$\frac{support(C)}{support(A)}$$

Lift =
$$support(A \rightarrow C)$$

 $support(A)*support(C)$

Leverage =
$$support(A \rightarrow C) - support(A)*support(C)$$

- 4. Calculate the conditional probability of a male not surviving. (If a passenger is male, what are the chances of not surviving?)
 - Conditional probability: $P(A|B) = P(A \cap B) / P(B)$ $P(DNS \mid Male) = P(DNS \cap Male) / P(Male)$ = 0.6197 / 0.7865 = 0.788
 - Compare to the confidence of Rule: Male → Does not survive
 0.788

- 5. Look at the rules more in depth.
 - Which two rules would you choose?
 - How do these findings compare to the exercise using Naïve Bayes Classification?
 - Any conclusions?

The following options are no longer available in Orange:

- Association Rules Filter (question 2)
- Association Rules Explorer (question 5)

Want more practice?

- Check out this multiple choice quiz from the University of British Columbia:
 - https://www.ugrad.cs.ubc.ca/~cs100/2016W2/exercises/apriori.html

Any questions?