Simulação computacional - Resolução da Equação de Poisson

Projeto 2 - Métodos Computacionais em Física

Renan de Assis, NUSP: 9865401

Maio 2020

1 Introdução

1.1 Objetivos

Em aulas passadas foi obtido o potencial $V(\mathbf{r})$ através da resolução numérica da equação de Laplace (1.15), estendendo essa tarefa, o seguinte relatório tem como objetivo resolver numericamente a equação de Poisson em duas dimensões (plano (x,y)) para dois casos distintos:

- 1. Uma carga pontual em uma placa quadrada com potencial nulo nas bordas;
- 2. Uma carga pontual entre duas placas de um capacitor.

Para isso será dada uma introdução[1] sobre o problema físico.

1.2 Campo elétrico

Na eletrostática, estudo onde as cargas elétricas são estacionárias, partimos do pressuposto que existe uma Força elétrica \mathbf{F} que uma carga de prova Q sente devida a uma carga pontual q em repouso com uma distância r entre as cargas. Essa força é dada pela lei de Coulomb (1.1) abaixo.

$$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r^2} \hat{\mathbf{r}} \tag{1.1}$$

onde ϵ_0 é a constante de permissividade do vácuo.

Se tivermos n cargas pontuais a diferentes distâncias da carga de prova Q, pelo princípio da sobreposição, a força total sobre Q será

$$\mathbf{F} = Q\mathbf{E} \tag{1.2}$$

com

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i$$
 (1.3)

Assim definimos **E** sendo o campo elétrico das cargas fontes, o qual é uma grandeza vetorial que varia de ponto a ponto por todo o espaço. Podemos estender o conceito de campo elétrico que definimos com uma série de cargas pontuais para distribuições contínuas de carga fazendo com que a somatória da equação (1.3) se torne uma integral linear, superficial ou volumétrica.

Ainda relativo ao campo elétrico, podemos fazer uso da lei de Gauss (1.4) para afirmar que o fluxo de \mathbf{E} através de qualquer superfície fechada S com elemento de área $d\mathbf{a}$ é uma medida da carga total no seu interior Q_{int}

$$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_{0}} Q_{int} \tag{1.4}$$

Aplicando o teorema do divergente na equação acima, temos a lei de Gauss na forma diferencial(1.5)

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \tag{1.5}$$

Calculando também uma integral em torno de um caminho fechado onde o campo elétrico de uma carga q iria passar, temos a equação (1.6)

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0 \tag{1.6}$$

E aplicando o teorema de Stokes temos

$$\nabla \times \mathbf{E} = 0 \tag{1.7}$$

A equação (1.7) é válida independentemente onde a carga está localizada.

1.3 Potencial Elétrico

Incluindo as condições de contorno adequadas para a eletrodinâmica (ou eletrostática) em que o campo elétrico se anula no 'infinito', o teorema de Helmholtz (1.8) diz que se o rotacional de um campo vetorial (**F**) se anula em toda parte, então **F** pode ser escrito como o gradiente de um potencial escalar (V):

$$\nabla \times \mathbf{F} = 0 \Leftrightarrow \mathbf{F} = -\nabla V \tag{1.8}$$

Assim, sabendo que a equação (1.7) para o campo elétrico é válida em todo o espaço onde a carga se encontra pode-se definir um potencial elétrico V como a integral de caminho a seguir

$$V(\mathbf{r}) \equiv -\int_{P}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} \tag{1.9}$$

onde P é algum ponto de referência.

Temos que a diferença entre dois pontos \mathbf{a} e \mathbf{b} é dada por

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{P}^{b} \mathbf{E} \cdot d\mathbf{l} + \int_{P}^{a} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$
(1.10)

E utilizando o teorema fundamental do gradiente temos

$$V(\mathbf{b}) - V(\mathbf{a}) = \int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l}$$
 (1.11)

Assim igualando (1.10) e (1.11), temos

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$
 (1.12)

E por fim, já que essa relação é válida para quaisquer pontos \mathbf{a} e \mathbf{b} , os integrandos devem ser iguais:

$$\mathbf{E} = -\nabla V \tag{1.13}$$

A equação (1.13) é a forma diferencial da equação (1.9).

1.4 Equação de Poisson

Utilizando a equação do potencial elétrico em sua forma diferencial (1.13) podemos escrever, abaixo, a lei de Gauss na forma diferencial (1.5) em termos de ${\cal V}$

$$\nabla^2 V = -\frac{\rho}{\epsilon_0} \tag{1.14}$$

Essa expressão é conhecida como equação de Poisson e com ela podemos obter o potencial elétrico em uma região que contém uma distribuição de cargas ρ . Já nas regiões onde não existem cargas a equação de Poisson se torna a equação de Laplace (1.15)

$$\nabla^2 V = 0 \tag{1.15}$$

Essa é a bagagem física que necessitaremos para a compreensão e resolução do problema inicialmente proposto.

2 Descrição da simulação e dos resultados

A partir da discussão na seção 1 vamos resolver numericamente a equação de Poisson (1.14), primeiramente precisamos discretizar essa expressão.

2.1 Discretizar potencial

Considerando que estaremos trabalhando em duas dimensões (x,y) podemos reescrever a equação de Poisson (1.14) da seguinte forma

$$\frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = \frac{\rho(x,y)}{\epsilon_0}$$
 (2.1)

com ρ sendo a densidade de carga volumétrica.

Neste ponto precisamos definir melhor como será tratada a densidade de carga ρ . Como usaremos apenas cargas pontuais e estamos trabalhando apenas no plano x-y então ρ será uma densidade superficial de carga discretizada abaixo.

$$\rho(x,y) = \frac{Q}{\Delta x \Delta y} \tag{2.2}$$

sendo Q a carga em Coulombs e $\Delta x \Delta y$ o elemento de área do nosso espaço.

Com isso definido, podemos aproximar as duas derivadas parciais do lado direito da equação (2.1) com o método das diferenças finitas

$$\frac{\partial^2 V}{\partial x^2} \approx \frac{V_{x+\Delta x,y} - 2V_{x,y} + V_{x-\Delta x,y}}{(\Delta x)^2} \tag{2.3}$$

$$\frac{\partial^2 V}{\partial y^2} \approx \frac{V_{x,y+\Delta y} - 2V_{x,y} + V_{x,y-\Delta y}}{(\Delta y)^2} \tag{2.4}$$

onde definimos a notação do potencial como $V(x,y) \to V_{x,y}$ a fim de não ter equações muito extensas.

Assumindo $\Delta x = \Delta y$ e colocando as expressões (2.2), (2.3) e (2.4) na equação (2.1) obtemos

$$\frac{V_{x+\Delta x,y} + V_{x-\Delta x,y} + V_{x,y+\Delta y} + V_{x,y-\Delta y} - 4V_{x,y}}{(\Delta x)^2} = -\frac{Q}{\epsilon_0} \frac{1}{(\Delta x)^2}$$
(2.5)

Isolando o termo $V_{x,y}$ temos

$$V_{x,y} = \frac{1}{4} \left[V_{x+\Delta x,y} + V_{x-\Delta x,y} + V_{x,y+\Delta y} + V_{x,y-\Delta y} + f(x,y) \right]$$
 (2.6)

com $f(x,y) \equiv Q/\epsilon_0$ sendo uma função que percorre todo o nosso espaço e apenas onde existe uma carga é diferente de zero.

A partir de agora discretizamos x e y do seguinte modo

$$x_i = (i-1)\Delta x$$

$$y_i = (j-1)\Delta y$$
(2.7)

Assim, podemos utilizar os novos x e y para reescrever a expressão (2.6)

$$V_{i,j} = \frac{1}{4} \left[V_{i+1,j} + V_{i-1,j} + V_{i,j+1} + V_{i,j-1} + f(i,j) \right]$$
 (2.8)

sendo usada a seguinte notação $V(x_i, y_j) \to V(i, j) \to V_{i,j}$

Agora precisaríamos apenas descobrir o valor do potencial em cada ponto desse grid, entretanto como cada ponto depende dos vizinhos não conseguimos iterar a partir da borda como foi utilizado até agora no curso, assim precisaremos de um outro método, descrito abaixo, chamado Método de relaxação de Jacobi.

2.2 Método de relaxação de Jacobi

O método de relaxação de Jacobi consiste em definir um valor inicial $V_1(i,j)$ para o grid de pontos do potencial e a partir desse valor calcular um $V_2(i,j)$ e desse último calcular um $V_3(i,j)$ e assim por diante. Definindo $V_n(i,j)$ como $V_{i,j}^n$ para a fácil visualização da equação teremos

$$V_{i,j}^{n+1} = \frac{1}{4} \left[V_{i+1,j}^n + V_{i-1,j}^n + V_{i,j+1}^n + V_{i,j-1}^n + f(i,j) \right]$$
 (2.9)

Esse processo iterativo se repetirá até atingir um número n_{max} de iterações ou quando a somatória do módulo da diferença entre uma aproximação posterior $V_{n+1}(i,j)$ e uma atual $V_n(i,j)$ forem menor que determinado valor ϵ , como mostrado na expressão abaixo

$$\Delta V = \sum_{i,j} |V_{i,j}^{n+1} - V_{i,j}^n| < \epsilon \tag{2.10}$$

2.3 Especificações das simulações

Para resolver os problemas da seção 1.1 foram feitas duas simulações diferentes, entretanto existem vários parâmetros e características em comum nelas que serão especificadas abaixo.

Em ambos os problemas foi utilizado um espaço quadrado de lado L = 1 m com cada dimensão desse espaço dividida em 21 intervalos de 0.05 m e a carga foi tratada sendo um parâmetro Q_eps0 = Q/ϵ_0 em N m²/C. O critério de convergência (2.10) foi definido como $\epsilon = 10^{-3}$ e com um número de iterações máximo $n_{max} = 600$.

Para os dois problemas também foram definidas as condições de contorno nas bordas (V = 0 no nosso "infinito") e o chute inicial do método de relaxação de Jacobi $V_1(i,j) = 0$, esse último escolhido levando em consideração as condições de contorno.

2.4 Problema 1 - Placa Quadrada

Para o primeiro problema da seção 1.1 foi preciso calcular o potencial através da equação de Poisson (1.14) discretizando-o até chegar na expressão (2.8) e encontrando um valor aceitável pelo método de relaxação de Jacobi, segundo o critério de convergência estabelecido. Após isso, foi calculado o campo elétrico pela expressão (1.13).

A Figura 1, abaixo, representa uma carga positiva no centro da placa com o parâmetro $Q/\epsilon_0=2~{\rm N\,m^2/C}.$

Figura 1: Campo elétrico e curvas de nível do potencial de uma carga positiva no centro de uma placa quadrada

Ao redor da carga existe o campo vetorial do campo elétrico (representado pelas setas) e as curvas de nível do potencial calculado. Vemos que o campo elétrico é

maior e aponta para fora quanto mais perto da carga e ao mesmo tempo o potencial é maior perto da carga e vai diminuindo conforme se afasta dela.

Além disso foi feito um gráfico 3D (Figura 2) que nos fornece uma melhor visualização da diferença de potencial nos arredores da carga positiva.

Placa quadrada com uma carga positiva 1.4 Diferenca de potencial (V) 1.2 8.0 0.6 0.4 0.2 0 8.0 0.6 8.0 0.4 0.6 y (m) 0.4 0.2 x (m) 0.2 0

Figura 2: Gráfico 3D da diferença de potencial nos arredores de uma carga positiva no centro de uma placa quadrada

Na simulação acima foram realizadas 543 iterações e o valor alcançado para ΔV foi de 0,00099167 V.

Como uma forma de analisar se nosso resultado é coerente com os valores teóricos, foi feito um gráfico (Figura 3) a partir dos valores obtidos na Figura 1 comparando o valor do campo elétrico obtido numericamente com duas curvas teóricas, uma para o esperado em duas dimensões e outra para o real em 3 dimensões.

O gráfico foi feito obtendo a diferença entre cada ponto em x pela posição, também em x, da carga (x_q) com y na altura da mesma (y = 0.5), nessa linha foi obtido o campo elétrico em x calculado. Para a curva esperada em 3 dimensões usamos a equação (1.3) considerando apenas a direção em x e tirando o logaritmo natural de ambos os lado para obter um ajuste aceitável.

$$E_x = \frac{C}{(x - x_q)^2} \Rightarrow \ln E_x = -2\ln x - x_q + \ln C$$
 (2.11)

sendo $C = Q/4\pi\epsilon_0$. O valor dessa constante no ajuste da Figura 3 foi $C = e^3$.

Em duas dimensões é esperado que o campo elétrico caia com 1/r ao invés de $1/r^2$, assim foi feito o ajuste da curva azul da Figura 3 com o seguinte raciocínio

$$E_x = \frac{C}{(x - x_q)} \Rightarrow \ln E_x = -\ln x - x_q + \ln C \tag{2.12}$$

sendo a mesma constante C da equação (2.11). Nesse ajuste a constante teve um valor de C=e.

Figura 3: Comparação entre o valor do campo elétrico obtido numericamente e os esperados em 2D e 3D

É perceptível que os valores calculados do campo elétrico não são compatíveis com a curva esperada em 3 dimensões, justamente por estarmos trabalhando apenas em duas. Entretanto os pontos seguem satisfatoriamente o ajuste para o esperado em duas dimensões, exceto um pequeno desvio no final a partir do valor de -1 do eixo x que é relativo aos efeitos das condições de contorno do nosso espaço não ser infinito.

Adicionalmente foi realizada uma simulação com 2 cargas pontuais diferentes, uma positiva $(Q/\epsilon_0 = 2\,\mathrm{N}\,\mathrm{m}^2/\mathrm{C})$ e outra negativa $(Q/\epsilon_0 = -2\,\mathrm{N}\,\mathrm{m}^2/\mathrm{C})$. O resultado é mostrado na Figura 4.

Figura 4: Campo elétrico e curvas de nível do potencial de duas cargas (uma positiva e outra negativa) na placa quadrada

Da mesma forma que com a Figura 2, foi feito um gráfico 3D do potencial das duas cargas (positiva e negativa) representado na Figura 5

Placa quadrada com uma carga positiva e outra negativa

Figura 5: Gráfico 3D da diferença de potencial nos arredores de uma carga positiva e outra negativa na placa quadrada

Aqui é possível visualizar melhor a diferença de potencial das duas cargas no espaço.

2.5 Problema 2 - Capacitor

Para o segundo problema da seção 1.1 também foi realizado o mesmo procedimento de resolução do problema 1, calculando o potencial (2.8) e o campo elétrico (1.13), entretanto temos agora uma carga pontual positiva com entre duas placas de um capacitor.

A Figura 6, abaixo, representa uma carga com $Q/\epsilon_0 = 2 \text{ N m}^2/\text{C}$ entre duas placas de capacitor, a esquerda com -1 V e a direita com 1 V.

Figura 6: Campo elétrico e curvas de nível do potencial de uma carga positiva entre as placas de um capacitor

É possível ver claramente o campo elétrico e as curvas de nível do potencial negativas ao redor da placa de $-1\,\mathrm{V}$ e as positivas ao redor da placa de $1\,\mathrm{V}$, além da carga positiva alterando visualmente tanto o campo elétrico como o potencial entre as placas.

Na simulação acima foram realizadas 156 iterações e o valor alcançado para ΔV foi de 0,00095543 V.

Nesse resultado obtido é possível ter uma ideia do que acontece nas bordas das placas do capacitor, o que normalmente não é estudado nas matérias de eletromagnetismo da graduação.

Além disso foi realizada mais um cálculo com duas cargas pontuais fora das placas do capacitor, uma negativa de $Q/\epsilon_0 = -2 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}$ e outra positiva de $Q/\epsilon_0 = 2 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}$. O resultado é mostrado na Figura 7.

Figura 7: Campo elétrico e curvas de nível do potencial de duas cargas (uma positiva e outra negativa) fora das placas de um capacitor

Na Figura acima temos o campo elétrico e potencial entre as placas praticamente inalterado, entretanto as cargas positiva e negativa fazem parecer que as placas se tornaram "triângulos", em que o esquerdo é negativo e o direito positivo.

3 Manual do usuário para o script

Para a resolução numérica dos problemas especificados na seção 1.1 foram feitos dois *scripts* com o *software* Octave[2]. O primeiro (*script* 1) para a carga pontual em uma placa quadrada com potencial nulo nas bordas e o segundo (*script* 2) para a carga pontual entre as duas placas de um capacitor. Exceto algumas pequenas modificações, os dois *scripts* possuem uma estrutura semelhante separada nas seções abaixo

- 1. Definições iniciais para o espaço em 2 dimensões
- 2. Características para uma carga pontual
- 3. Opção para colocar mais de uma carga no espaço

- 4. Vetor com o potencial V em cada ponto
- 5. Condições de contorno para as placas do capacitor (script 2)
- 6. Critérios para a convergência do cálculo
- 7. Loop para resolver a equação de Poisson
- 8. Cálculo do campo elétrico
- 9. Figura das curvas de nível do potencial e o campo vetorial do campo elétrico
- 10. Figura 3D das curvas de nível do potencial (script 1)
- 11. Figura comparação entre o campo elétrico calculado e esperados em 2D e 3D

A 1^a seção define os vetores x e y que contemplam o nosso espaço em duas dimensões. A 2^a seção especifica o parâmetro Q_eps0 e a posição da carga além do grid de densidade de carga em que todas as posições serão nulas menos no lugar da carga. Na 3^a seção é possível tirar os comentários e especificar os valores para trabalhar com mais de uma carga pontual nesse espaço e ver o que aconteceria. Na 4^a seção criamos o vetor potencial V que abrange todo o espaço já sendo aplicadas as condições de contorno e o chute inicial do método de relaxação de Jacobi.

A 5ª seção existe apenas para o script 2 e define as condições de contorno para as placas do capacitor. A 6ª seção define os critérios de convergência para o cálculo. A 7ª seção é o loop principal para preencher o potencial pelo método de relaxação de Jacobi. Na 8ª seção calculamos o campo elétrico a partir do potencial. Na 9ª seção criamos as Figuras 1, 4, 6 e 7 e na 10ª seção que só existe no script 1 criamos as Figuras 2 e 5. Por último na 11ª seção (apenas para o script 1) foi feita a comparação entre o campo elétrico obtido numericamente pelo método de relaxação de Jacobi e os valores teóricos esperados em 2D e 3D, isso gerou a Figura 3.

As variáveis que podem ser modificadas são o lado do quadrado (L) e o elemento de linha (dx = dy) na 1ª seção, o valor do parâmetro $Q_{-}eps\theta$, relativo ao valor da carga, e a posição da carga nas seções 2 e 3 e o erro para a convergência (erro) e o número máximo de iterações (nmax) da seção 6.

4 Conclusão

Com as simulações numéricas realizadas conseguimos obter resultados com precisão de 10^{-3} em poucas iterações para ambos os potenciais dos problemas abordados. No caso da placa quadrada conseguimos visualizar as curvas de nível do potencial e também o campo elétrico o que é uma importante noção para se ter a partir dos resultados teóricos. Além disso foram comparados os valores do campo elétrico em duas dimensões calculados a partir do método de relaxação de Jacobi com o que era esperado na teoria em duas e três dimensões, isso na Figura 3. Assim, como esperado, os valores calculados são compatíveis apenas com o esperado em duas dimensões.

Para o caso da carga entre as placas do capacitor foi possível ver como uma carga altera o potencial e campo elétrico entre as placas e também fora delas. Também foi verificado o quanto um potencial nulo no "infinito" modifica o resultado. Além disso, algo que não é possível considerar facilmente são os efeitos de borda em um capacitor e que pela simulação podemos ter uma noção do que acontece.

Referências

- [1] David J Griffiths. Introduction to electrodynamics, 2005.
- Søren Hauberg, [2] John W. Eaton, David Bateman, and Rik Wehbring. GNUOctaveversion5.2.0a high-level manual:incomputations, URL teractivelanguage fornumerical2020. https://www.gnu.org/software/octave/doc/v5.2.0/.