

Basic Computations in Pandas DataFrame

Pandas 常见运算

特别介绍 groupby()、apply()方法

别弄乱了我的圆!

Don't disturb my circles!

—— 阿基米德 (Archimedes) | 数学家、发明家、物理学家 | 287 ~ 212 BC

- ◀ pandas.DataFrame.apply() 将一个自定义函数或者 lambda 函数应用到数据帧的行或列上,实现数据的转换和处理
- ◀ pandas.DataFrame.corr() 计算 DataFrame 中列之间 Pearson 相关系数 (样本)
- ◀ pandas.DataFrame.count() 计算 DataFrame 每列的非缺失值的数量
- ◀ pandas.DataFrame.cov() 计算 DataFrame 中列之间的协方差矩阵 (样本)
- ◀ pandas.DataFrame.describe() 计算 DataFrame 中数值列的基本描述统计信息,如平均值、标准差、分位数等
- pandas.DataFrame.groupby() 在分组后的数据上执行聚合、转换和其他操作,从而对数据进行更深入的分析和处理
- ◀ pandas.DataFrame.kurt() 计算 DataFrame 中列的峰度 (四阶矩)
- ◀ pandas.DataFrame.kurtosis() 计算 DataFrame 中列的峰度 (四阶矩)
- ◀ pandas.DataFrame.max() 计算 DataFrame 中每列的最大值
- ◀ pandas.DataFrame.mean() 计算 DataFrame 中每列的平均值
- ◀ pandas.DataFrame.median() 计算 DataFrame 中每列的中位数
- ◀ pandas.DataFrame.min() 计算 DataFrame 中每列的最小值
- ◀ pandas.DataFrame.mode() 计算 DataFrame 中每列的众数
- ◀ pandas.DataFrame.nunique() 计算 DataFrame 中每列中的唯一值数量
- ◀ pandas.DataFrame.quantile() 计算 DataFrame 中每列的指定分位数值,如四分位数、特定百分位等
- ◀ pandas.DataFrame.rank() 计算 DataFrame 中每列元素的排序排名
- ◀ pandas.DataFrame.skew() 计算 DataFrame 中列的偏度 (三阶矩)
- ◀ pandas.DataFrame.std() 计算 DataFrame 中列的标准差 (样本)
- ◀ pandas.DataFrame.sum() 计算 DataFrame 中每列元素的总和
- ◀ pandas.DataFrame.var() 计算 DataFrame 中列的方差 (样本)

23.1 四则运算

在 Pandas 中,可以通过简单的语法实现各列之间的四则运算。以鸢尾花数据帧为例,图 1 中代码所示为鸢尾花数据帧花萼长度 (X_1)、花萼宽度 (X_2) 两列之间的运算。

- a 计算花萼长度去均值,即 $X_1 E(X_1)$ 。其中, $X_df_{[X1'].mean()}$ 计算列均值。也可以用 pandas.DataFrame.sub() 完成减法运算。
 - 助计算花萼宽度去均值,即 X₂ E(X₂)。
 - $^{\circ}$ 计算花萼长度、宽度之和,即 $X_1 + X_2$ 。也可以用 pandas.DataFrame.add() 完成加法运算。

 - ❷计算花萼长度、宽度乘积,即 X₁X₂。也可以用 pandas.DataFrame.mul() 完成乘法运算。
 - \bigcirc 计算花萼长度、宽度比例,即 X_1/X_2 。也可以用 pandas.DataFrame.div() 完成除法运算。

```
000
                                                           四则运算
import seaborn as sns
import pandas as pd
iris df = sns.load dataset("iris")
# 从Seaborn中导入鸢尾花数据帧
X df = iris df.copy()
X df.rename(columns = {'sepal length':'X1',
                        'sepal width': 'X2'},
            inplace = True)
X df = X df[['X1','X2', 'species']]
# 数据转换
X_{df_{['X1 - E(X1)']}} = X_{df_{['X1']}} - X_{df_{['X1']}}.mean()
X_df_{['X2 - E(X2)']} = X_df_{['X2']} - X_df_{['X2']}.mean()
X df ['X1 + X2'] = X df ['X1'] + X df ['X2']
X df ['X1 - X2'] = X df ['X1'] - X df ['X2']
X df ['X1 * X2'] = X df ['X1'] * X df ['X2']
X df ['X1 / X2'] = X df ['X1'] / X df ['X2']
X df .drop(['X1','X2'], axis=1, inplace=True)
# 可视化
sns.pairplot(X df , corner=True, hue="species")
```

图 1. 鸢尾花数据帧花萼长度 (X_1) 、花萼宽度 (X_2) 两列之间的运算

图 2 所示为经过上述转换后用 seaborn.pairplot() 绘制的成对特征散点图。我们在鸢尾花书《统计至简》还会用到这幅图。

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```


图 2. 鸢尾花花萼长度、宽度特征完成转换后的成对特征散点图

23.2 统计运算

Pandas 中还给出大量用于统计运算(也叫聚合操作)的方法,表1总结常用的几种方法。

在数据分析中,聚合操作 (aggregation) 通常用于从大量数据中提取出有意义的摘要信息,以便更好地理解数据的特征和行为。

常见的聚合操作包括计算平均值、求和、计数、标准差、方差、相关性等。这些操作可以帮助我们 了解数据的集中趋势、离散程度、相关性等特征,从而做出更准确的分析和决策。

图 3 所示为 pandas.DataFrame.cov() 计算得到的鸢尾花前四列协方差矩阵热图。当然,在计算协方差时,我们也可以考虑到数据标签。图 5 所示为三个不同标签数据各自的协方差矩阵、相关性系数热图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

此外, pandas.DataFrame.agg() 方法用于对 DataFrame 中的数据进行自定义聚合操作。该方法按照指定的函数对数据进行聚合,可以是内置的统计函数,也可以是自定义的函数。

比如, iris_df.iloc[:,0:4].agg(['sum', 'min', 'max', 'std', 'var', 'mean']) 对鸢尾花数据帧前四列进行各种统计计算。

函数名称	描述
pandas.DataFrame.corr()	计算 DataFrame 中列之间 Pearson 相关系数 (样本)
pandas.DataFrame.count()	计算 DataFrame 每列的非缺失值的数量
pandas.DataFrame.cov()	计算 DataFrame 中列之间的协方差矩阵 (样本)
pandas.DataFrame.describe()	计算 DataFrame 中数值列的基本描述统计信息,如平均值、标准差、分位数等
pandas.DataFrame.kurt()	计算 DataFrame 中列的峰度 (四阶矩)
pandas.DataFrame.kurtosis()	计算 DataFrame 中列的峰度 (四阶矩)
pandas.DataFrame.max()	计算 DataFrame 中每列的最大值
pandas.DataFrame.mean()	计算 DataFrame 中每列的平均值
pandas.DataFrame.median()	计算 DataFrame 中每列的中位数
pandas.DataFrame.min()	计算 DataFrame 中每列的最小值
pandas.DataFrame.mode()	计算 DataFrame 中每列的众数
pandas.DataFrame.quantile()	计算 DataFrame 中每列的指定分位数值,如四分位数、特定百分位等
pandas.DataFrame.rank()	计算 DataFrame 中每列元素的排序排名
pandas.DataFrame.skew()	计算 DataFrame 中列的偏度 (三阶矩)
pandas.DataFrame.sum()	计算 DataFrame 中每列元素的总和
pandas.DataFrame.std()	计算 DataFrame 中列的标准差 (样本)
pandas.DataFrame.var()	计算 DataFrame 中列的方差 (样本)

表 1. Pandas 中常用统计运算方法

计算 DataFrame 中每列中的唯一值数量

图 3. 鸢尾花数据协方差矩阵、相关性系数矩阵热图

pandas.DataFrame.nunique()

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

22.3 分组聚合: groupby()

在 Pandas 中, groupby() 是一种非常有用的数据分组聚合计算方法。groupby() 按照某个或多个列的值对数据进行分组, 然后对每个分组进行聚合操作。图 4 代码介绍如何使用 groupby() 方法, 并结合 mean()、std()、var()、cov() 和 corr() 对分组后的数据进行聚合操作。

图 5、图 6 所示为考虑鸢尾花分类的协方差矩阵、相关性系数矩阵热图。其中,groupby(['species']).cov() 得到的数据帧为两层行索引。根据前文介绍的多层行索引数据帧切片方法,groupby_cov.loc['setosa'] 提取鸢尾花类别为'setosa'的协方差矩阵。也可以用 groupby_cov.xs('setosa') 提取相同数据。此外,我们也可以用 iris_df.loc[iris_df['species'] == 'setosa'].cov() 专门计算鸢尾花类别为 'setosa'的协方差矩阵。

```
import seaborn as sns import pandas as pd

iris_df = sns.load_dataset("iris")

# 从Seaborn中导入鸢尾花数据帧

# 分组计算统计量

groupby_mean = iris_df.groupby(['species']).mean()
groupby_std = iris_df.groupby(['species']).std()
groupby_var = iris_df.groupby(['species']).var()
groupby_cov = iris_df.groupby(['species']).cov()
groupby_corr = iris_df.groupby(['species']).corr()
```

图 4. 鸢尾花数据帧 groupby(['species']) 计算统计量

图 5. 协方差矩阵热图,考虑分类

图 6. 相关性系数矩阵热图, 考虑分类标签

还是用上一章的例子, 给出如何用 groupby() 汇总学生成绩。

```
000
                                                                     groupby (
import pandas as pd
import numpy as np
# 创建班级、学号和科目的所有可能组合
classes = ['A', 'B']
stu_ids = [1, 2, 3, 4]
subjects = ['Art', 'Math', 'Science']
# 使用随机数生成成绩数据
np.random.seed(0)
length = len(classes ) * len(stu ids) * len(subjects)
data = np.random.randint(3, 6, size=(length))
# 创建多行标签数据帧
index = pd.MultiIndex.from product(
    [classes, stu_ids, subjects],
names=['Class', 'Student ID', 'Subject'])
df = pd.DataFrame(data, index=index, columns=['Score'])
# 1) 每个班级各个科目平均成绩
class_subject_avg = df.groupby(
        ['Class', 'Subject'])['Score'].mean()
# 2) 每个班级各个学生的平均成绩
class_student_avg = df.groupby(
    ['Class', 'Student ID'])['Score'].mean()
# 3) 两个班级放在一起各个科目平均成绩
both class avg = df.groupby(
     Subject')['Score'].mean()
# 4) 两个班级每个同学总成绩,并排名
student total_score = df.groupby(
    ['Class', 'Student ID'])['Score'].sum().sort_values(
     ascending=False)
```

图 7. 利用 groupby() 汇总学生成绩,代码

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

df.groupby(['Class', 'Subject'])['Score'].mean()

Class	Student ID	Subject	Final	
		Art	3	
	1	Math	4	
		Science	3	
		Art	4	
	2	Math	4	
А		Science	5	
А		Art	3	
	3	Math	5	(
		Science	3	
		Art	3	
	4	Math	3	
		Science	5	
	1	Art	4	
		Math	5	
		Science	5	
	2	Art	3	
		Math	4	
В		Science	4	
	3	Art	4	
		Math	4	
		Science	3	
	4	Art	4	
		Math	3	
		Science	3	

Class	Subject	Score
А	Art	3.25
	Math	4.00
	Science	4.00
В	Art	4.00
	Math	3.75
	Science	3.75

df.groupby(['Class', 'Student ID'])['Score'].mean()

Class	Student ID	Score
А	1	3.33
	2	4.33
	3	3.67
	4	3.67
В	1	4.67
	2	3.67
	3	3.67
	4	3.33

df.groupby('Subject')['Score'].mean()

Subject	Score
Art	3.50
Math	4.00
Science	3.88

df.groupby(['Class', 'Student ID'])['Score'].sum().sort_values(ascending=False)

Student ID	Score
1	3.33
2	4.33
3	3.67
4	3.67
2	4.67
3	3.67
1	3.67
4	3.33
	1D 1 2 3 4 2 3 1

图 8. 利用 groupby() 汇总学生成绩

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

22.4 自定义操作: apply()

在 Pandas 中,可以使用 apply() 方法对 DataFrame 的行或列进行自定义函数的运算。apply() 方法是 Pandas 中最重要和最有用的方法之一,它可以实现 DataFrame 数据的处理和转换,也可以实现计算和数据清洗等功能。

如图 9代码所示, ②定义函数 map_fnc(), 这个函数的目的是将花萼长度 sepal_length 转化为等级。转化的规则为, 如果 sepal_length < 5, 等级为 D; 如果 5 <= sepal_length < 6, 等级为 C; 如果 6 <= sepal_length < 7, 等级为 B; 其余情况 (sepal_length > 6), 等级为 A。 ⑤ 利用 apply() 将自定义函数用在数据帧 iris_df['sepal_length'] 上。

```
000
                                                          apply ()
import seaborn as sns
import pandas as pd
iris df = sns.load dataset("iris")
# 从Seaborn中导入鸢尾花数据帧
# 定义函数将花萼长度映射为等级
def map fnc(sepal length):
    if sepal length < 5:</pre>
        return 'D'
    elif 5 <= sepal length < 6:</pre>
        return 'C'
    elif 6 <= sepal length < 7:</pre>
        return 'B'
    else:
        return 'A'
# 使用 apply 函数将 sepal length 映射为等级并添加新列
iris df['ctg'] = iris df['sepal length'].apply(map fnc)
```

图 9. 鸢尾花数据帧使用 apply() 自定义函数,对于特定一列

apply() 方法可以接受一个函数作为参数,这个函数将会被应用到 DataFrame 的每一行或每一列上。 这个函数 Pandas 中已经定义好的函数,可以是自定义函数,也可以是匿名 lambda 函数。

比如,图 10 代码使用 apply() 和 lambda 函数计算鸢尾花数据集中每个类别中最小的花瓣宽度。

③等价于 iris df.groupby('species')['sepal length'].min()。

图 11 中 apply() 的输入先是匿名 lambda 函数,对象定义为 row,代表数据帧的每一行。而 lambda 函数调用自定函数 map_petal_width(),这个函数有两个输入。

```
import seaborn as sns
import pandas as pd

iris_df = sns.load_dataset("iris")
# 从Seaborn中导入鸢尾花数据帧

# 使用apply() 和lambda函数计算每个类别中最小的花瓣宽度
iris_df.groupby('species')['sepal_length'].apply(
    lambda x: x.min())
# iris_df.groupby('species')['sepal_length'].min()
```

图 10. 鸢尾花数据帧使用 apply() 匿名 lambda 函数,对于特定一列

```
000
   import seaborn as sns
   import pandas as pd
                                                         lambda函数
   iris df = sns.load dataset("iris")
   # 从Seaborn中导入鸢尾花数据帧
   # 计算鸢尾花各类花瓣平均宽度
  mean X2 by species = iris df.groupby(
       'species')['petal width'].mean()
   # 定义映射函数
   def map petal width (petal width, species):
      if petal width > mean X2 by species[species]:
          return "YES"
      else:
          return "NO"
   # 使用 map 方法将花瓣宽度映射为是否超过平均值
   iris df['greater than mean'] = iris df.apply(lambda
         row: map petal width(row['petal width'],
6
                              row['species']), axis=1)
```

图 11. 鸢尾花数据帧使用 apply() 匿名 lambda 函数,对于特定两列

此外,在 Pandas 中,可以使用 map() 方法对 Series 或 DataFrame 特定列进行自定义函数的运算。这个映射关系可以由用户自己定义,也可以使用 Pandas 中已经定义好的函数。

除了 apply() 和 map() 方法之外,Pandas DataFrame 还提供 applymap()、transform() 等方法,请大家 自行学习使用。需要大家注意,applymap() 用于对 DataFrame 中的每个元素应用同一个函数,返回一个新的 DataFrame。

有关数据帧分组聚合操作, 请大家继续阅读:

https://pandas.pydata.org/docs/user_guide/groupby.html

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```