

LEARNING IN

Hussein AL-NATSHEH, CIAPPLE

Jordan Open Source Association Amman, Aug 22, 2015

Hussein AL-NATSHEH ©2015

AGENDA

- From supervised to unsupervised learning
- Identifying a ML problem?
- Recommended python libraries
- Data preparation
- Case study; Author name disambiguation of CERN digital library (use case)
- References, recommended readings and courses

FROM SUPERVISED TO UNSUPERVISED LEARNING

RECALL SUPERVISED LEARNING

Relati	Relation: breast-cancer									
No.	age Nominal	menopause Nominal	tumor-size Nominal	inv-nodes Nominal	node-caps Nominal	deg-malig Nominal	breast Nominal	breast-quad Nominal	irradiat Nominal	Class Nominal
1	40-49	premeno	15-19	0-2	yes	3	right	left_up	no	recurrence-events
2	50-59	ge40	15-19	0-2	no	1	right	central	no	no-recurrence-events
3	50-59	ge40	35-39	0-2	no	2	left	left_low	no	recurrence-events
4	40-49	premeno	35-39	0-2	yes	3	right	left_low	yes	no-recurrence-events
5	40-49	premeno	30-34	3-5	yes	2	left	right_up	no	recurrence-events
6	50-59	premeno	25-29	3-5	no	2	right	left_up	yes	no-recurrence-events
7	50-59	ge40	40-44	0-2	no	3	left	left_up	no	no-recurrence-events
8	40-49	premeno	10-14	0-2	no	2	left	left_up	no	no-recurrence-events
9	40-49	premeno	0-4	0-2	no	2	right	right_low	no	no-recurrence-events
10	40-49	ge40	40-44	15-17	yes	2	right	left_up	yes	no-recurrence-events
11	50-59	premeno	25-29	0-2	no	2	left	left_low	no	no-recurrence-events
12	60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
13	50-59	ge40	30-34	0-2	no	1	right	central	no	no-recurrence-events
14	50-59	ge40	25-29	0-2	no	2	right	left_up	no	no-recurrence-events
15	40-49	premeno	25-29	0-2	no	2	left	left_low	yes	recurrence-events
16	30-39	premeno	20-24	0-2	no	3	left	central	no	no-recurrence-events
17	50-59	premeno	10-14	3-5	no	1	right	left_up	no	no-recurrence-events
18	60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
19	50-59	premeno	40-44	0-2	no	2	left	left_up	no	no-recurrence-events
20	50-59	ge40	20-24	0-2	no	3	left	left_up	no	no-recurrence-events
21	50-59	lt40	20-24	0-2		1	left	left_low	no	recurrence-events
22	60-69	ge40	40-44	3-5	no	2	right	left_up	yes	no-recurrence-events
										1

UNSUPERVISED LEARNING

Relati	Relation: breast-cancer									
No.	age Nominal	menopause Nominal	tumor-size Nominal	inv-nodes Nominal	node-caps Nominal	deg-malig Nominal	breast Nominal	breast-quad Nominal	irradiat Nominal	Class Nominal
1	40-49	premeno	15-19	0-2	yes	3	right	left_up	no	recurrence-events
2	50-59	ge40	15-19	0-2	no	1	right	central	no	no-lecurrence-events
3	50-59	ge40	35-39	0-2	no	2	left	left_low	no	recurrence-events
4	40-49	premeno	35-39	0-2	yes	3	right	left_low	yes	no-recurrence-events
5	40-49	premeno	30-34	3-5	yes	2		right_up	no	recurrence-events
6	50-59	premeno	25-29	3-5	no	2		left_up	yes	no-recurrence-events
7	50-59	ge40	40-44	0-2	no	3		left_up	no	no-recurrence-events
8	40-49	premeno	10-14	0-2	no	2	left	left_up	no	no-recurrence-e/ents
9	40-49	premeno	0-4	0-2	no	2	right	right_low	no	no-recurrence-events
10	40-49	ge40	40-44	15-17	yes	2	right	left_up	yes	no-recurrence-events
11	50-59	premeno	25-29	0-2	no	2	left	left_low	no	no-recurrence-events
12	60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
13	50-59	ge40	30-34	0-2	no	1	right	central	no	no-recurrence-events
14	50-59	ge40	25-29	0-2	no	2	right	left_up	no	no-recurrence-events
15	40-49	premeno	25-29	0-2	no	2	left	left_low	yes	recurrence-events
16	30-39	premeno	20-24	0-2	no	3	left	central	no	no-recurrence-events
17	50-59	premeno	10-14	3-5	no	1	right	left_up	no	no-recurrence-events
18	60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
19	50-59	premeno	40-44	0-2	no	2	left	left_up	no	no-recurrence-events
20	50-59	ge40	20-24	0-2	no	3	left	left_up	no	no recurrence-events
21	50-59	lt40	20-24	0-2		1		left_low	no	recurrence-events
22	60-69	ge40	40-44	3-5	no	2	right	left_up	yes	o-recurrence-events

CLUSTERING

- A flat partition (set of clusters or segments)
- A hierarchical tree or taxonomy (a set of nested partitions)
- Hard or soft (or fuzzy) memberships to clusters

SOME CLUSTERING ALGORITHMS (10F2)

- K-Means, Expectation Maximization
- Hierarchal Agglomerative Clustering (HAC)
- Density-based spatial clustering of applications with noise (DBSCAN)
- Graph-based clustering (Modularity, Weighted communities, Clique percolation)
- Unsupervised Neural Networks (Adaptive Resonance Theory)

SOME CLUSTERING ALGORITHMS (20F2)

HIERARCHAL AGGLOMERATIVE CLUSTERING (HAC) AND DENDROGRAM

CLUSTERING METHODS

- Graph methods
 - Single link
 - Complete link
 - Average
 - Weighted
- Geometric methods
 - Ward
 - Centroid
 - Median

DISSIMILARITY

- Some distance functions
 - Euclidean distance
 - Jaccard Similarity
 - Cosine Similarity
 - Edit distance
- Distance estimator
 - Model an estimator to be used with a predict probability function
 - Better for merging feature importances
- Dissimilarity (affinity) matrix

HIERARCHAL CLUSTERING EXAMPLE (10F4)

We consider 5 data points in \mathbb{R}^2 :

•
$$x_1 = (1, 2)$$

•
$$x_2 = (1, 2.5)$$

•
$$x_3 = (3,1)$$

•
$$x_4 = (4, 0.5)$$

•
$$x_5 = (4,2)$$

We consider the euclidean distance between data points.

HIERARCHAL CLUSTERING EXAMPLE (20F4)

Single Link method

$$D_{sl}(C_k, C_{k'}) = \min_{\mathbf{x} \in C_k, \mathbf{y} \in C_{k'}} \{D(\mathbf{x}, \mathbf{y})\}$$

HIERARCHAL CLUSTERING EXAMPLE (30F4)

$$\mathbf{D} = \mathbf{D}_{\text{eucl}} = \mathbf{D}_{\text{sl}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{0} \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 2.24 \\ 2.5 \\ 0 \\ 3.35 \\ 3.61 \\ 1.12 \\ 0 \\ 1.5 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ 0.5 \\ 2.24 \\ 2.5 \\ 0 \\ 3.35 \\ 3.61 \\ 1.12 \\ 0 \\ 1.5 \\ 0 \end{bmatrix}$$

$$\begin{aligned} \textit{dend}(h) &= \big\{ & \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\} & \text{if } 0 \leq \textit{h} \\ \textit{Merge } x_1 \text{ and } x_2 \\ \textit{dend}(h) &= \left\{ & \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\} & \text{if } 0 \leq \textit{h} < 0.5 \\ & \{x_1, x_2\}, \{x_3\}, \{x_4\}, \{x_5\} & \text{if } 0.5 \leq \textit{h} \\ \end{aligned} \right.$$

HIERARCHAL CLUSTERING EXAMPLE (40F4)

NUMBER OF CLUSTERS

- Flat cutting forming partitioned clustering from HAC
- Semi-supervised clustering
- DBSCAN

labels = hac.fcluster(self.linkage_, threshold)

NUMBER OF CLUSTERS (SEMI-SUPERVISED)

1 and 5 must be in the same cluster \rightarrow n_clust = 2

IDENTIFYING A MAGHINE LEARNING PROBLEM

TASKS MAPPED TO ML (1 OF 2)

- Classification, recognition and completion
 - Decision trees
 - Supervised Neural Networks
 - Graph models: Hidden Markov Model, Bayesian Nets
- Optimization
 - Genetic Algorithms
 - Numerical Optimization and regression
- Smart Control
 - Fuzzy rules

TASKS MAPPED TO ML (2 OF 2)

- Clustering, grouping and segmentation
 - Unsupervised Neural Networks
 - HAC, K-Means, DBSCAN, Graph-based clustering
- Simulation
 - Multi-agent systems
- Relations
 - Graph networks
 - Collaborative filtering
 - Association rules and frequent sets

SOME ML APPLICATIONS (1 OF 2)

- Text mining: Topic and concept extraction → Unsupervised: Clustering, Graph and ontologies. Semi-supervised
- Pattern recognition: Character, speech and image recognition → Supervised: Classification
- Cross selling and personalized recommendation → Collaborative filtering, Association rules, frequent sets
- Churn management and customer retention → classification and clustering
- Games \rightarrow search for optimal solution and multi-agent systems

SOME ML APPLICATIONS (2 OF 2)

- Financials: risk management in insurance fraud detection → Graph, classification,
 clustering
- Security: Intrusion detection, spam filtering → Supervised: Classification
- Social networks: friends suggestion → Graph
- Bioinformatics (DNA)
- High energy physics (Higgs)
- Computer vision, Robotics ...

UNDERSTANDING THE DATA

- General statistics
- Correlations
- Plotting
- Understanding the source and the business behind the data
- Well-understanding of the requirements and the goal of the project

O DATA PREPARATION

DATA CHALLENGES

- Feature extraction (What is a good feature?)
- Categories vs. continuous features vs. mixed
- Features Correlation
- Dimensionality reduction (the less the better for generalization)
- Missing values
- Normalization
- Outliers
- Feature selection
- Sampling
- Unbalanced dataset

RECOMMENDED PYTHON LIBRARIES

RECOMMENDED PYTHON LIBRARIES

- Scipy
- Numpy (vectorized data operations)
- Matplotlib (plotting)
- Scikit-Learn
- Pandas (data frames)
- NetworkX (Graphs analysis)
- Pylearn2 (deep learning and neural networks)
- BEARD (entity recognition) to be presented within the use case

SCIKIT-LEARN API

- fit
- predict
- fit_transform
- Transformers
- Pipelines
- Features union
- Feature importances
- @property
- Joblib and parallel computing

CERN Digital Library

ENTITY RESOLUTION, DUPLICATION

Source: http://www.datacommunitydc.org/blog/2013/08/entity-resolution-for-big-data

WHAT IS THE PROBLEM?

Please meet Yang Yang, Yang Yang, and Yang Yang!

Source: Laura Rueda Garcia, CERN

OPEN SOURCE PROJECT @ CERN: BEARD

Beard is a Python library of machine learning tools for Bibliographic Entity Automatic Recognition and Disambiguation.

DATA OVERVIEW

Signature: Unique occurrence of author name and publication id

- We have over:
 - 1.07 million publications
 - 9.27 millions signatures
 - 1.2 million claimed signatures (Ground-truth)
- Pair of signature (sig1, sig2, {0,1})
- Need for deviding into blocks

TRANSFORMER AND FEATURE UNION

```
def build distance estimator(X, y, verbose=0, ethnicity estimator=None):
    """Build a vector reprensation of a pair of signatures."""
    transformer = FeatureUnion([
        ("author full name similarity", Pipeline([
            ("pairs", PairTransformer(element_transformer=Pipeline([
                ("full name", FuncTransformer(func=get author full name)),
                ("shaper", Shaper(newshape=(-1,))),
                ("tf-idf", TfidfVectorizer(analyzer="char wb",
                                           ngram_range=(2, 4),
                                           dtype=np.float32,
                                           decode_error="replace")),
            ]), groupby=group_by_signature)),
            ("combiner", CosineSimilarity())
        ])),
        ("author second initial similarity", Pipeline([
            ("pairs", PairTransformer(element_transformer=FuncTransformer(
                func=get second initial
            ), groupby=group_by_signature)),
            ("combiner", StringDistance(
                similarity function="character equality"))
        ])),
```


FEATURE COULD BE ESTIMATED

```
])),
    ("year_diff", Pipeline([
        ("pairs", FuncTransformer(func=get_year, dtype=np.int)),
        ("combiner", AbsoluteDifference())
    1))1)
if ethnicity estimator is not None:
    transformer.transformer list.append(("author ethnicity", Pipeline([
        ("pairs", PairTransformer(element transformer=Pipeline([
            ("name", FuncTransformer(func=get_author_full_name)),
            ("shaper", Shaper(newshape=(-1,))),
            ("classifier", EstimatorTransformer(ethnicity estimator)),
        ]), groupby=group_by_signature)),
        ("sigmoid", FuncTransformer(func=expit)),
        ("combiner", ElementMultiplication())
    ])))
```


ETHNICITY ESTIMATOR: EXTERNAL DATA

```
# Load data
data = pd.read_csv(args.input_datafile)
y = data.RACE.values
X = ["%s, %s" % (last, first) for last, first in zip(data.NAMELAST.values,
                                                      data.NAMEFRST.values)]
X = [normalize name(name) for name in X]
# Train an estimator
estimator = Pipeline([
    ("transformer", TfidfVectorizer(analyzer="char_wb",
                                     ngram_range=(1, 5),
                                     min df = 0.00005,
                                     dtype=np.float32,
                                     decode error="replace")),
    ("classifier", LinearSVC(C=args.C))])
estimator.fit(X, y)
```


PIPELINE OF TRANSFORMER AND CLASSIFIER

```
# Train a classifier on these vectors
    classifier = GradientBoostingClassifier(n estimators=500,
                                            max depth=9,
                                            max features=10,
                                            learning rate=0.125,
                                            verbose=verbose)
    # Return the whole pipeline
    estimator = Pipeline([("transformer", transformer),
                          ("classifier", classifier)]).fit(X, y)
    return estimator
def learn model(distance pairs, input signatures, input records,
                distance_model, verbose=0, ethnicity_estimator=None):
    """Learn the distance model for pairs of signatures.
```


BLOCK CIUSTERING

```
clusterer = BlockClustering(
    blocking=block last name first initial,
    base estimator=ScipyHierarchicalClustering(
        affinity= affinity,
        threshold=clustering threshold,
        method=clustering method,
        supervised scoring=b3 f score),
    verbose=verbose,
   n_jobs=n_jobs).fit(X, y)
labels = clusterer.labels
```


HAC CLUSTERING

```
import scipy.cluster.hierarchy as hac
from sklearn.base import BaseEstimator
from sklearn.base import ClusterMixin
class ScipyHierarchicalClustering(BaseEstimator, ClusterMixin):
    """Wrapper for Scipy's hierarchical clustering implementation.
    Attributes
    labels : ndarray, shape (n samples,)
       Array of labels assigned to the input data.
    linkage : ndarray
        The linkage matrix.
   def init (self, method="single", affinity="euclidean",
                 threshold=None, n_clusters=None, criterion="distance",
                 depth=2, R=None, monocrit=None, unsupervised_scoring=None,
                 supervised scoring=None, scoring data=None):
```



```
@property
def labels (self):
    """Compute the labels assigned to the input data.
   Note that labels are computed on-the-fly from the linkage matrix,
    based on the value of self.threshold or self.n clusters.
    n clusters = self.n clusters
    if n clusters is not None:
        if n clusters < 1 or n clusters > self.n samples :
            raise ValueError("n clusters must be within [1; n samples].")
        else:
            thresholds = np.concatenate(([0],
                                        self.linkage [:, 2],
                                        [self.linkage [-1, 2]]))
            for i in range(len(thresholds) - 1):
                t1, t2 = thresholds[i:i + 2]
                threshold = (t1 + t2) / 2.0
                labels = hac.fcluster(self.linkage , threshold,
                                      criterion=self.criterion,
                                      depth=self.depth, R=self.R,
                                      monocrit=self.monocrit)
                if len(np.unique(labels)) == n clusters:
                    _, labels = np.unique(labels, return_inverse=True)
                    return labels
```

PROPERTY

FEATURE IMPORTANCES

Feature Importances

RECURSIVE REMOVAL

Recursive Removal of Least Important Features

Number of features

Feature / Importances

CLUSTERING METHODS

Comparing Different Clustering Methods

REFERENCES AND RECOMMENDED READINGS

REFERENCES

- Data Clustering- Part 2, M2 DMKM Slides, Julien Ah-Pine, Universit´e Lyon 2, 2014
- BEARD: https://github.com/inveniosoftware/beard
- Scikit-learn: http://scikit-learn.org
- Hussein, AL-NATSHEH. "Bibliographic Entity Automatic Recognition and Disambiguation.", CERN, 2015

https://preprints.cern.ch/record/2036112/files/CERN-THESIS-2015-098.pdf

 Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae et al. "API design for machine learning software: experiences from the scikit-learn project." arXiv preprint arXiv:1309.0238 (2013).

http://arxiv.org/pdf/1309.0238.pdf

RECOMMENDED WIL COURSES

Stanford University

Machine Learning

University of Washington Introduction to Data Science Practice on:

CONTACT DETAILS:

- https://ch.linkedin.com/in/natsheh
- https://twitter.com/hnatsheh
- h.natsheh@ciapple.com

HUSSEIN AL-NATSHEH

Thanks for attending!

