时间序列复习

题型分析

题型	分值	考点
填空题	24分/8题	上课笔记
选择题	18分/6题	上课笔记
简答题	8分/1题	建模流程图
计算题	30分/2题	作业
综合题	20分/1题	作业、课后习题

作业题详解

第一题

若序列长度为 100, 前 12 个样本自現笑系数如下.:

 $\rho_1=0.02, \rho_2=0.05, \rho_3=0.10, \rho_4=-0.02, \rho_5=0.05, \rho_6=0.01$ $\rho_7=0.12, \rho_8=-0.06, \rho_9=0.08, \rho_{10}=-0.05, \rho_{11}=0.02, \rho_{12}=-0.05$. 该序列能否视为纯随机序列 $(\alpha=0.05)$?

解答

计算该序列各阶延迟的Q统计量及相应P值。由于延迟1-12阶Q统计量的p值均显著大于0.05,所以该序列为纯随机序列。

阶数	Q	р	阶数	Q	р
1	0.04	0.8414806	7	3.03	0.8822132
2	0.29	0.8650223	8	3.39	0.9075571
3	1.29	0.731509	9	4.03	0.9094269
4	1.33	0.8562654	10	4.28	0.9338329
5	1.58	0.9036573	11	4.32	0.9596046
6	1.59	0.9532936	12	4.57	0.9708238

第二题

已知某 $\mathrm{AR}(2)$ 模型为: $x_t=\phi_1x_{t-1}+\phi_2x_{t-2}+\varepsilon_t, \varepsilon_t\sim\mathrm{WN}\left(0,\sigma_\varepsilon^2\right)$, 且 $\rho_1=0.5, \rho_2=0.3$, 求 ϕ_1,ϕ_2 的值。

解答

AR(2) 模型有:

$$\begin{cases} \rho_1 = \frac{\phi_1}{1 - \phi_2} \\ \rho_2 = \phi_1 \rho_1 + \phi_2 \end{cases} \Rightarrow \begin{cases} 0.5 = \frac{\phi_1}{1 - \phi_2} \\ 0.3 = 0.5 \phi_1 + \phi_2 \end{cases} \Rightarrow \begin{cases} \phi_1 = \frac{7}{15}, \phi_2 = \frac{1}{15} \\ \phi_2 = \frac{1}{15} \end{cases}$$

第三题

已知某 AR(2) 模型为: $(1-0.5B)(1-0.3B)x_t=arepsilon_t, arepsilon_t \sim \mathrm{WN}(0,1)$,求 $E\left(x_t\right)$, $\mathrm{Var}\left(x_t\right),
ho_k, \phi_{kk}$,其中 k=1,2,3 。

解答

$$egin{aligned} (1)\ (1-0.5B)(1-0.3B)x_t &= arepsilon_t \Leftrightarrow x_t = 0.8x_{t-1} - 0.15x_{t-2} + arepsilon_t \ E\left(x_t
ight) &= rac{\phi_0}{1-\phi_1-\phi_2} = 0 \end{aligned}$$

(2)
$$\operatorname{Var}(x_t) = \frac{1 - \phi_2}{(1 + \phi_2)(1 - \phi_1 - \phi_2)(1 + \phi_1 - \phi_2)}$$

$$= \frac{1 + 0.15}{(1 - 0.15)(1 - 0.8 + 0.15)(1 + 0.8 + 0.15)}$$

$$= 1.98$$

(3)
$$\rho_1 = \frac{\phi_1}{1 - \phi_2} = \frac{0.8}{1 + 0.15} = 0.70$$

$$\rho_2 = \phi_1 \rho_1 + \phi_2 = 0.8 \times 0.7 - 0.15 = 0.41$$

$$\rho_3 = \phi_1 \rho_2 + \phi_2 \rho_1 = 0.8 \times 0.41 - 0.15 \times 0.7 = 0.22$$

(4)
$$\phi_{11} = \rho_1 = 0.7$$

 $\phi_{22} = \phi_2 = -0.15$
 $\phi_{33} = 0$

第四题

某 ARMA(2, 2) 模型为: $\Phi(B)x_t=3+\Theta(B)\varepsilon_t$, 求 $E\left(x_t\right)$ 。其中: $\varepsilon_t\sim \mathrm{WN}\left(0,\sigma_\varepsilon^2\right),\Phi(\mathrm{B})=(1-0.5B)^2$

解答

$$egin{align} \Theta(B) &= (1-0.5B)^2 \Rightarrow \phi_1 = 0.5, \quad \phi_2 = -0.25 \ E\left(x_t
ight) &= rac{\phi_0}{1-\phi_1-\phi_2} = rac{3}{1-0.5+0.25} = 4 \ \end{array}$$

第五题

对于 AR(1) 模型: $x_t - \mu = \phi_1(x_{t-1} - \mu) + \varepsilon_t$, 根据 t 个历史观察值数据: \cdots , 10.1, 9.6, 已求出 $\hat{\mu} = 10$, $\hat{\phi}_1 = 0.3$, $\hat{\sigma}_{\epsilon}^2 = 9$ 。

- (1) 求 x_{t+3} 的 95% 的置信区间。
- (2) 假定新获得观察值数据 $x_{t+1} = 10.5$, 用更新数据求 x_{t+3} 的 95% 的置信区间。

解答

(1)

$$egin{aligned} \phi_0 &= \mu \left(1 - \phi_1
ight) = 10 imes \left(1 - 0.3
ight) = 7 \ \hat{x}_{t+1} &= 7 + 0.3 imes 9.6 = 9.88 \ \hat{x}_{t+2} &= 7 + 0.3 imes 9.88 = 9.964 \ \hat{x}_{t+3} &= 7 + 0.3 imes 9.964 = 9.9892 \ \mathrm{Var} \left(\hat{x}_{t+3}
ight) = \left(G_0^2 + G_1^2 + G_2^2
ight) \sigma_{arepsilon}^2 = \left(1 + 0.3^2 + 0.3^4
ight) imes 9 = 9.8829 \end{aligned}$$

所以 \hat{x}_{t+3} 的 95% 的置信区间等于 $9.9892 \pm 1.96\sqrt{9.8829}$, 即 (3.83, 16.15)

(2) 更新数据后

$$\hat{x}_{t+2} = 7 + 0.3 \times 10.5 = 10.15$$

$$\hat{x}_{t+3} = 7 + 0.3 \times 10.15 = 10.045$$

$$\operatorname{Var}\left(\hat{x}_{t+3}\right) = \left(G_0^2 + G_1^2\right)\sigma_{\varepsilon}^2 = \left(1 + 0.3^2\right) \times 9 = 9.81$$

所以 \hat{x}_{t+3} 的 95% 的置信区间等于 $10.045 \pm 1.96\sqrt{9.819}$, 即 (3.91, 16.18)

第六题

判断下列模型是否平稳

1.
$$x_t=0.4+0.6x_{t-1}+\epsilon_t$$
2. $x_t=0.56+0.5x_{t-1}-0.06x_{t-2}+\epsilon_t$
3. $x_t=2x_{t-1}-x_{t-2}+\epsilon_t$

解答

- 1. (特征根判别法) 先中心化,即 $\mu=\frac{\phi_0}{1-\phi_1}=1$,令 $y_t=x_t-1$,原式变为 $y_t=0.6y_{t-1}+\epsilon_t$,设 $y_t=\lambda^t$ 为 $y_t-0.6y_{t-1}=0$ 的解,则 $\lambda^t-0.6\lambda^{t-1}=0$ \Rightarrow $\lambda=0.6$,由于 $|\lambda|<1$,可知模型平稳
- 2. (平稳域判别法) 先中心化,即 $\mu=rac{\phi_0}{1-\phi_1-\phi_2}=1$,令 $y_t=x_t-1$,原式变为 $y_t=0.5y_{t-1}-0.06y_{t-2}+\epsilon_t$,可以知道 $\phi_1=0.5,\phi_2=-0.06$,于是有

$$egin{cases} |\phi_2| < 1 \ \phi_2 + \phi_1 < 1 \ \phi_2 - \phi_1 < 1 \end{cases}$$

故模型平稳

3. (Green函数判别法)设模型的传递函数为 $x_t=\sum\limits_{j=1}^\infty G_j\epsilon_{t-j}$,则有 $(1-lpha B+B^2)(G_0+G_1B+\cdots)\epsilon_j=\epsilon_j$

$$egin{cases} G_0 = 1 \ G_1 - 2G_0 = 0 \ G_2 - 2G_1 + G_0 = 0 \ & \ddots & G_j - 2G_{j-1} + G_{j-2} = 0 (j \geq 2) \end{cases} \Rightarrow egin{cases} G_0 = 1 \ G_1 = 2 \ G_j = 1 + G_{j-1} \ G_j = rac{(-1)^{j+1}}{2} \end{cases}$$

由于 $\lim_{j\to\infty}G_j=0$,因此该模型平稳。

第七题

判断下列模型是否可逆

1.
$$x_t=\epsilon_t-0.5\epsilon_{t-1}$$
 2. $x_t=\epsilon_t-0.6\epsilon_{t-1}+0.09\epsilon_{t-2}$

解答

1. 设模型的逆转形式为 $\epsilon_t=\sum\limits_{j=0}^{\infty}I_jx_{t-j}$,即 $x_t=(1-0.5B)(I_0+I_1B+\cdots)x_t$,于是有

$$egin{cases} I_0 = 1 \ I_1 - 0.5I_0 = 0 \ \cdots \ I_j - 0.5I_{j-1} = 0 (j \geq 1) \end{cases} \Rightarrow egin{cases} I_0 = 1 \ I_j = 0.5^j \end{cases}$$

由于 $\lim_{i o\infty}I_j=0$,因此该模型可逆。

2. 设模型的逆转形式为 $\epsilon_t=\sum\limits_{j=0}^\infty I_jx_{t-j}$,即 $x_t=(1-0.6B+0.09B^2)(I_0+I_1B+\cdots)x_t$,于是有

$$egin{cases} I_0 = 1 \ I_1 - 0.6I_0 = 0 \ I_2 - 0.6I_1 + 0.09I_0 = 0 \ \cdots \ I_j - 0.6I_{j-1} + 0.09I_{j-2} = 0 (j \geq 2) \end{cases} \Rightarrow egin{cases} I_0 = 1 \ I_j - 0.3I_{j-1} = 0.3(I_{j-1} - 0.3I_{j-2}) \ I_j = (j+1) imes 0.3^j \end{cases}$$

由于 $\lim_{j o \infty} I_j = 0$,因此该模型可逆。

第八题

判断下列模型的平稳性与可逆性

1.
$$x_t=x_{t-1}-0.5x_{t-2}+\epsilon_t-\frac{4}{5}\epsilon_{t-1}+\frac{16}{25}\epsilon_{t-2}$$
 2. $x_t=0.5x_{t-1}-0.06x_{t-2}+\epsilon_t-0.8\epsilon_{t-1}+0.16\epsilon_{t-2}$

解答

1. (平稳性) 令
$$\lambda^t$$
代入 $x_t - x_{t-1} + 0.5x_{t-2} = 0$ 得 $\lambda^t - \lambda^{t-1} + 0.5\lambda^{t-2} = 0$,可以解得 $\lambda_1 = \frac{1+i}{2}, \lambda_2 = \frac{1-i}{2}$,由于 $|\lambda_1| < 1, |\lambda_2| < 1$,因此该模型平稳 (可逆性) 令 $\epsilon_t = \lambda^t$ 代入 $\epsilon_t - \frac{4}{5}\epsilon_{t-1} + \frac{16}{25}\epsilon_{t-2} = 0$ 得 $\lambda^t - \frac{4}{5}\lambda^{t-2} = 0$,可以解得 $\lambda_1 = \frac{2}{5} + \frac{2\sqrt{3}}{5}i, \lambda_2 = \frac{2}{5} - \frac{2\sqrt{3}}{5}i,$ 由于 $|\lambda_1| = |\lambda_2| = \frac{4}{5} < 1$,因此该模型可逆 【特征根判别法】

2. (平稳性) 设模型传递形式为 $x_i=\sum\limits_{j=0}^\infty G_j\epsilon_{t-j}$,即 $(1-0.5B+0.06B^2)(G_0+G_1B+\cdots)\epsilon_t=(1-0.8B+0.16B^2)\epsilon_t$,于是有

$$\begin{cases} G_0 = 1 \\ G_1 - 0.5G_0 = -0.8 \\ G_2 - 0.5G_1 + 0.06G_0 = 0.16 \\ G_3 - 0.5G_2 + 0.06G_1 = 0 \\ \dots \\ G_j - 0.5G_{j-1} + 0.06G_{j-2} = 0 \\ (j \ge 3) \end{cases} \Rightarrow \begin{cases} G_0 = 1 \\ G_1 = -0.3 \\ G_2 = -0.05 \\ G_j = -0.3G_{j-1} = 0.2^j \\ G_j = \sum_{n=0}^{j-1} 0.3^n \times 0.2^{j-n} + 0.3^j \end{cases}$$

由于 $\lim_{j o\infty}G_j=0$,因此该模型平稳。

(可逆性) 设模型传递形式为
$$\epsilon_i=\sum\limits_{j=0}^\infty I_jx_{t-j}$$
,即
$$(1-0.5B+0.06B^2)x_t=(1-0.8B+0.16B^2)(I_0+I_1B+\cdots)x_t$$
,于是有

$$\begin{cases} I_0 = 1 \\ I_1 - 0.8I_0 = -0.5 \\ I_2 - 0.8I_1 + 0.16I_0 = 0.06 \\ I_3 - 0.8I_2 + 0.16I_1 = 0 \\ \dots \\ I_j - 0.8G_{j-1} + 0.16I_{j-2} = 0 \\ (j \ge 3) \end{cases} \Rightarrow \begin{cases} I_0 = 1 \\ I_1 = 0.3 \\ I_2 = 0.14 \\ I_j - 0.4I_{j-1} = 0.02 \times 0.4^{j-2} \\ I_j = 0.02 \times (j-1)0.4^{j-2} + 0.3 \times 0.4^{j-1} \end{cases}$$

由于 $\lim_{j o\infty}I_j=0$,因此该模型可逆。

【Green函数判别法】