Линейные методы классификации

Паточенко Евгений НИУ ВШЭ

План занятия

- Линейные методы классификации (бинарная)
- Логистическая регрессия
- Метрики качества классификации

Линейные методы классификации (повтор)

Классификация

Модель машинного обучения, используемая для прогнозирования категориальной (дискретной) целевой переменной на основе одной или нескольких независимых переменных (признаков). Целевая переменная принимает конечное число классов или меток.

Может быть:

- Бинарной (классификация на два класса) $Y = \{0,1\}$
- Многоклассовой (классификация на М непересекающихся классов) $Y = \{1, ..., M\}$
- Многоклассовой (классификация на М классов, которые могут пересекаться) $Y = \{0,1\}^M$

Линейные методы классификации (повтор)

Классификация

Модель машинного обучения, используемая для прогнозирования категориальной (дискретной) целевой переменной на основе одной или нескольких независимых переменных (признаков). Целевая переменная принимает конечное число классов или меток.

Может быть:

- Бинарной (классификация на два класса) $Y = \{\mathbf{0}, \mathbf{1}\}$
- Многоклассовой (классификация на М непересекающихся классов) $Y = \{1, ..., M\}$
- Многоклассовой (классификация на М классов, которые могут пересекаться) $Y = \{0,1\}^M$

Модель

$$f(x,\beta) = sign\left(\sum_{i=1}^{n} \beta_i x_i\right)$$

Модель

$$f(x,\beta) = sign\left(\sum_{i=1}^{n} \beta_i x_i\right)$$

Если $\sum_{i=1}^n \beta_i x_i > 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = +1$, объект относится к положительному классу

Если $\sum_{i=1}^n \beta_i x_i < 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = -1$, объект относится к отрицательному классу

Модель

$$f(x,\beta) = sign\left(\sum_{i=1}^{n} \beta_i x_i\right)$$

Если $\sum_{i=1}^n \beta_i x_i > 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = +1$, объект относится к положительному классу

Если $\sum_{i=1}^n \beta_i x_i < 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = -1$, объект относится к отрицательному классу

 $\sum_{i=1}^n eta_i x_i = 0$ — это уравнение разделяющей границы

Модель

$$f(x,\beta) = sign\left(\sum_{i=1}^{n} \beta_i x_i\right)$$

Если $\sum_{i=1}^n \beta_i x_i > 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = +1$, объект относится к положительному классу

Если $\sum_{i=1}^n \beta_i x_i < 0$, то $sign(\sum_{i=1}^n \beta_i x_i) = -1$, объект относится к отрицательному классу

$$\sum_{i=1}^n \beta_i x_i = 0$$
 — это уравнение разделяющей границы

В двумерном случае разделяющая граница — это прямая

В многомерном — плоскость

Обучение

При обучении классификатора мы минимизируем долю ошибок:

$$Q(f,X) = \frac{1}{n} \left(\sum_{i=1}^{n} [f(x_i) \neq y_i] \right) \to min,$$

где $[f(x_i) \neq y_i] = 1$, если предсказание на объекте неверное, иначе — 0

Отступ (margin)

Отступ — степень уверенности классификатора в ответе

Обозначим отступ на *i*-ом объекте:

$$M_i = y_i \cdot (\beta, x_i)$$

Тогда решение задачи оптимизации при обучении классификатора эквивалентно решению задачи

$$Q(f,X) = \frac{1}{n} \left(\sum_{i=1}^{n} [M_i < 0] \right) \to min$$

Отступ

Чем ближе отступ к нулю, тем меньше уверенность алгоритма в ответе

Функция потерь

Функция, которую минимизируем при обучении: $Q(f,X) = \frac{1}{n} (\sum_{i=1}^n [M_i < 0]) \to min$

Такая функция потерь называется пороговой и она разрывна, что затрудняет процесс ее минимизации

Функция потерь

Для решения этой проблемы используются непрерывные или гладкие функции — верхнюю оценку пороговой функции. Они дифференцируемы и по значению больше либо равны исходной пороговой ⇒ автоматически минимизируют и пороговую.

Конкретную функцию выбирают в зависимости от задачи.

$$V(M) = (1-M)$$
 — кусочно-линейная $H(M) = (-M)$ — кусочно-линейная $L(M) = \log{(1+e^{-M})}$ — логистическая $Q(M) = (1-M)^2$ — квадратичная $S(M) = 2 \cdot (1+e^M)^{-1}$ — сигмоидная $E(M) = e^{-M}$ — экспоненциальная

Определение

Логистическая регрессия — это линейный классификатор, который предсказывает вероятности классов, то есть:

 $f(x,\beta)$ — это вероятность того, что y=+1 на объекте x:

$$f(x,\beta) = P(y = +1|x;\beta)$$

Определение

Логистическая регрессия — это линейный классификатор, который предсказывает вероятности классов, то есть:

 $f(x,\beta)$ — это вероятность того, что y=+1 на объекте x:

$$f(x,\beta) = P(y = +1|x;\beta)$$

Представляет собой сигмоиду:

$$f(x,\beta) = \sigma(\beta^T x) = \frac{1}{1 + e^{-\beta^T x}}$$

Напоминание

Сигмоида:
$$\sigma(z) = \frac{1}{1 + e^{-z}}, \, \sigma(z) \in (0; 1)$$

Почему сигмоида?

Напоминание

Сигмоида: $\sigma(z) = \frac{1}{1+e^{-z}}$

Почему сигмоида?

• Область допустимых значений $\sigma(z)$: [0,1]

Напоминание

Сигмоида:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Почему сигмоида?

- Область допустимых значений $\sigma(z)$: [0,1]
- Интерпретируемая вероятность противоположного события $\sigma(-z) = 1 \sigma(z)$

Напоминание

Сигмоида: $\sigma(z) = \frac{1}{1+e^{-z}}$

Почему сигмоида?

- Область допустимых значений $\sigma(z)$: [0,1]
- Интерпретируемая вероятность противоположного события $\sigma(-z) = 1 \sigma(z)$
- Существование обратной функции:

$$z(s) = \ln \frac{s}{1-s}$$
, где s — значение сигмоиды

Напоминание

Сигмоида:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Почему сигмоида?

- Область допустимых значений $\sigma(z)$: [0,1]
- Интерпретируемая вероятность противоположного события $\sigma(-z) = 1 \sigma(z)$
- Существование обратной функции:

$$z(s) = \ln \frac{s}{1-s}$$
, где s — значение сигмоиды

$$\sigma'^{(z)} = \sigma(z)(1 - \sigma(z))$$

Напоминание

Сигмоида:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Функция потерь

Квадратичную функцию для логистической регрессии использовать не получится:

- Функция примет вид $Q(f,X)=rac{1}{n}\sum_{i=1}^n \left(rac{1}{1+e^{-eta T_X}}-y
 ight)^2$, а это не выпуклая функция, то есть можем не попасть в глобальный минимум при оптимизации
- На совсем неправильных предсказаниях (например, вероятность 0% для положительного объекта), штраф будет маленьким: $(1-0)^2 = 1$

Функция потерь

Вместо квадратичной используется логистическая функция (log-loss):

$$logloss = -\frac{1}{n} \sum_{i=1}^{n} [y_i \cdot logf(x_i, \beta) + (1 - y_i) log(1 - f(x_i, \beta))]$$

Логистическая ошибка на одном объекте

Функция потерь

В отличие от квадратичной функции потерь, у логистической:

- если $f(x,\beta)=1$ и y=+1 (алгоритм сделал верное предсказание), штраф $\mathrm{L}(f,y)=0$
- если $f(x,\beta) \to 0$, при y=+1 (т. е. предсказание неверное), штраф $L(f,y) \to +\infty$

Константное решение

Пусть:

- а ответ алгоритма
- n_1 объектов положительного класса
- n_2 объектов отрицательного класса
- $n_1 + n_2$ всего объектов в выборке

Константное решение

Тогда функция потерь примет вид:

$$logloss = -\frac{1}{n} \sum_{i=1}^{n} [y_i \cdot \log a + (1 - y_i) \log(1 - a)]$$

Так как в выборке n_1 положительных и n_2 отрицательных объектов, функцию можно представить как:

$$logloss = -\frac{n_1}{n}\log a - \frac{n_2}{n}\log(1-a)$$

Константное решение

Возьмем производную по a и приравняем к 0:

$$\frac{\partial logloss}{\partial a} = -\frac{n_1}{n} \frac{1}{a} + \frac{n_2}{n} \frac{1}{1-a} = 0$$

Выразим a:

$$a = \frac{n_1}{n}$$

Что в точности соответствует вероятности встретить объект положительного класса в выборке

Оптимизация logloss

Хотя logloss потенциально неограниченная функция, имеет смысл рассматривать значения лучше константного, поэтому принимается диапазон:

$$logloss \in \left[0, -\frac{n_1}{n} \log \frac{n_1}{n} - \frac{n_2}{n} \log \frac{n_2}{n}\right]$$

Accuracy

Accuracy — доля правильных ответов

$$accuracy(f,X) = \frac{1}{n} \sum_{i=1}^{n} [f(x_i) = y_i]$$

Accuracy

Accuracy — доля правильных ответов

$$accuracy(f,X) = \frac{1}{n} \sum_{i=1}^{n} [f(x_i) = y_i]$$

При сильном дисбалансе классов не отражает качество работы алгоритма

Accuracy

Пример: Нам необходимо обучить классификатор, который будет определять болен человек или здоров. В нашей обучающей выборке заболевание встречается у трех человек из тысячи. Чему будет равна ассигасу константного классификатора классификатора классификатора, который утверждает, что все здоровы?

$$accuracy(f,X) = \frac{1}{n} \sum_{i=1}^{n} [f(x_i) = y_i]$$

Accuracy

Пример: Нам необходимо обучить классификатор, который будет определять болен человек или здоров. В нашей обучающей выборке заболевание встречается у трех человек из тысячи. Чему будет равна ассигасу константного классификатора классификатора классификатора, который утверждает, что все здоровы?

$$accuracy(f,X) = \frac{1}{n} \sum_{i=1}^{n} [f(x_i) = y_i]$$

Accuracy составит 0,997

Можем ли мы считать, что модель хорошая?

Accuracy

Пример: Нам необходимо обучить классификатор, который будет определять болен человек или здоров. В нашей обучающей выборке заболевание встречается у трех человек из тысячи. Чему будет равна ассигасу константного классификатора классификатора, который утверждает, что все здоровы?

$$accuracy(f,X) = \frac{1}{n} \sum_{i=1}^{n} [f(x_i) = y_i]$$

Accuracy составит 0,997

Матрица ошибок (confusion matrix)

Матрица ошибок (confusion matrix)

Ошибка І рода: истинный класс отрицательный, предсказанный класс — положительный (False Positive)

Ошибка II рода: истинный класс положительный, предсказанный класс — отрицательный (False Negative)

Матрица ошибок (confusion matrix)

Ошибка І рода: истинный класс отрицательный, предсказанный класс — положительный (False Positive)

Ошибка II рода: истинный класс положительный, предсказанный класс — отрицательный (False Negative)

Какая ошибка более критична?

Precision (точность)

Показывает, насколько можно

доверять классификатору при

$$f(x) = +1$$

$$precision(f, X) = \frac{TP}{TP + FP}$$

Precision (точность)

Показывает, насколько можно доверять классификатору при f(x) = +1

$$precision(f,X) = \frac{TP}{TP + FP}$$

Модель 1

	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a (x) = - 1 Не получили кредит	20	80

Модель 2

	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

Precision = ?

Precision = ?

Precision (точность)

Показывает, насколько можно доверять классификатору при f(x) = +1

$$precision(f,X) = \frac{TP}{TP + FP}$$

Модель 1

	y = 1 Могут вернуть	y = -1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a(x) = - 1 Не получили кредит	20	80

Модель 2

	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

Precision = 0.8

Precision = 0.96

Recall (полнота)

Показывает, как много

объектов положительного

класса находит классификатор

$$recall(f, X) = \frac{TP}{TP + FN}$$

Recall (полнота)

Показывает, как много объектов положительного класса находит классификатор

$$recall(f, X) = \frac{TP}{TP + FN}$$

Модель 1

	y=1 Могут вернуть	y=-1 Не могут вернуть
a(x) = 1 Получили кредит	80	20
a (x) = - 1 Не получили кредит	20	80

Модель 2

	y=1 Могут вернуть	y=-1 Не могут вернуть
a(x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

Precision = 0.8

Recall = ?

Precision = 0.96

Recall = ?

Recall (полнота)

Показывает, как много объектов положительного класса находит классификатор

$$recall(f, X) = \frac{TP}{TP + FN}$$

Модель 1

	y=1 Могут вернуть	y=-1 Не могут вернуть
a(x) = 1 Получили кредит	80	20
a (x) = - 1 Не получили кредит	20	80

Модель 2

	y = 1 Могут вернуть	$oldsymbol{y} = -1$ Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

Precision = 0.8

Recall = 0.8

Precision = 0.96

Recall = 0.48

Precision vs recall

F-мера

Метрика, учитывающая и точность, и полноту

$$F(f,X) = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Precision, recall and f-score of true and predicted class labels

Регулировка точности и полноты

Обозначим уверенность классификатора в том, что объект x относится к классу +1, за p(x)

Если p(x) > 0.5, мы относим объект к положительному классу, иначе — к отрицательному

Регулировка точности и полноты

Обозначим уверенность классификатора в том, что объект x относится к классу +1, за p(x)

Если p(x) > 0.5, мы относим объект к положительному классу, иначе — к отрицательному

Этот порог t можно менять в зависимости от задачи на любое число от 0 до 1

ROC-AUC

Метрика, которая помогает измерить качество всего семейства классификаторов независимо от выбранного порога

AUC — Area Under ROC Curve (площадь под ROC-кривой)

ROC-AUC

Метрика, которая помогает измерить качество всего семейства классификаторов независимо от выбранного порога

AUC — Area Under ROC Curve (площадь под ROC-кривой)

Для каждого значения порога t вычислим:

False Positive Rate
$$(FPR) = \frac{FP}{FP+TN}$$
 u True Positive Rate $(TPR) = \frac{TP}{TP+FN}$

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

AUC ∈ [0; 1] — площадь под ROC-кривой

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

AUC ∈ [0; 1] — площадь под ROC-кривой

Чему равна AUC при идеальной классификации?

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

AUC ∈ [0; 1] — площадь под ROC-кривой

Чему равна AUC при идеальной классификации?

AUC = 1

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

AUC ∈ [0; 1] — площадь под ROC-кривой

Чему равна AUC при идеальной классификации?

AUC = 1

Чему равна AUC при случайной классификации?

ROC-AUC

ROC-кривая — кривая, состоящая из точек с координатами (FPR, TPR) для всех возможных порогов

AUC ∈ [0; 1] — площадь под ROC-кривой

Чему равна AUC при идеальной классификации?

AUC = 1

Чему равна AUC при случайной классификации?

AUC = 0.5

PR-кривая

При малой доле объектов положительного класса ROC-AUC может давать неадекватно хороший результат.

Поэтому для задач с несбалансированными классами используют precision-recall-кривую

Precision-Recall example: AUC=0.79

AUC-PR

Precision-Recall example: AUC=0.79

Площадь под PR-кривой

