Diseño de Bloques Completamente al Azar (DBCA) con arreglo factorial

Luis Fernando Delgado Muñoz - Ing. Agroindustrial, M.Sc

Ifdelgadom@unal.edu.co

Universidad Nacional de Colombia Facultad de Ingeniería y Administración Departamento de Ingenieria

Diseño de Bloques Completamente al Azar (DBCA) con arreglo factorial

Se llaman así aquellos experimentos en los cuales se estudian en forma simultánea dos o más factores, esto permite obtener información sobre la respuesta de la planta a cada uno de los factores, y al conjunto de ellos.

Estos experimentos son muy útiles en la investigación biológica, porque, en la práctica los cultivos y los animales se ven afectados por varios factores que influyen simultáneamente sobre ellos y que de acuerdo a la forma como se presentan afectan en forma diferente al organismo animal o vegetal, es decir, los cambios en un factor pueden influir sobre los efectos del otro factor.

El modelo

$$Y_{ijk} = \mu + \tau_i + \alpha_j + (\tau \alpha)_{ij} + \varepsilon_{ijk}$$

$$i = 1, 2, \dots, a \qquad j = 1, 2, \dots, b \qquad k = 1, 2, \dots, r$$

- Y_{ijk} Es la observación de la variable de respuesta debida al i-esimo nivel del factor A y el j-esimo nivel del factor B en la k-esimo réplica.
 - μ Es la media global.
 - τ_i Es el efecto del i-esimonivel del factor A sobre la variable de respuesta.
 - α_j Es el efecto del j-esimo nivel del factor B sobre la variable de respuesta.
- $(\tau \alpha)_{ij}$ Es el efecto de la interacción entre el i-esimo nivel del factor A con el j-esimo nivel del factor B sobre la variable de respuesta.
 - ε_{ijk} Es el error aleatorio debido al i-esimo nivel del factor A v el i-esimo nivel del factor B en la k-esimo

Hipótesis

1. Hipótesis de Interacción

$$H_o: (\tau \alpha)_{ij} = 0 \quad \forall ij$$

 $H_a: \text{Al menos una } (\tau \alpha)_{ij} \neq 0.$

2. Hipótesis de efectos principales

$$H_o: \tau_1 = \tau_2 = \dots = \tau_a = 0$$

 $H_a: \tau_i \neq 0$ para algún $i = 1, 2, \dots, a$.

$$H_o: \alpha_1 = \alpha_2 = \dots = \alpha_b = 0$$

 $H_a: \alpha_i \neq 0$ para algún $j = 1, 2, \dots, b$.

Análisis de Varianza

En este caso,

$$SC_T = SC_{\tau} + SC_{\alpha} + SC_{\tau\alpha} + SC_{\varepsilon}$$

Análisis de Varianza

Fuente de	Grados de	Suma de	Cuadrados		
Variabilidad	Libertad	Cuadrados	Medios	F_c	Valor p
Factor A	a-1	$br \sum_{i=1}^{a} (\bar{Y}_{i} - \bar{Y}_{})^2$	$CM_{\tau} = \frac{SC_{\tau}}{a-1}$	$\frac{CM_{\tau}}{CM_{\varepsilon}}$	$\Pr(F > F_c)$
Factor B	b-1	$ar \sum_{j=1}^{i=1} (\bar{Y}_{.j.} - \bar{Y}_{})^2$	$CM_{\alpha} = \frac{SC_{\alpha}}{b-1}$	$\frac{CM_{\alpha}}{CM_{\varepsilon}}$	$\Pr(F > F_c)$
Interacción	(a-1)(b-1)	$r\sum_{i=1}^{a}\sum_{j=1}^{b}(\bar{Y}_{ij.}-\bar{Y}_{i}-\bar{Y}_{.j.}+\bar{Y}_{})^{2}$	$CM_{\tau\alpha} = \frac{SC_{\tau\alpha}}{(a-1)(b-1)}$	$\frac{CM_{\tau\alpha}}{CM_{\varepsilon}}$	$\Pr(F > F_c)$
Error	ab(r-1)	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (Y_{ijk} - \bar{Y}_{ij.})^2$	$CM_{\varepsilon} = \frac{SC_{\varepsilon}}{ab(r-1)}$		
Total	abr - 1	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (Y_{ijk} - \bar{Y}_{})^{2}$			

Diseños factoriales: 3 factores

$$Y_{ijkl} = \mu + \tau_i + \alpha_j + \gamma_k + (\tau \alpha)_{ij} + (\tau \gamma)_{ik} + (\alpha \gamma)_{jk} + (\tau \alpha \gamma)_{ijk} + \varepsilon_{ijkl}$$

Hipótesis para el ANOVA

$$H_o: (\tau \alpha \gamma)_{ijk} = 0 \quad \forall ijk$$

 $H_a: \text{Al menos una } (\tau \alpha \gamma)_{ijk} \neq 0.$

Grados de libertad

$$\tau = a - 1$$

$$\alpha = b - 1$$

$$\gamma = c - 1$$

$$\tau \alpha = (a - 1)(b - 1)$$

$$\tau \gamma = (a - 1)(c - 1)$$

$$\alpha \gamma = (b - 1)(c - 1)$$

$$\tau \alpha \gamma = (a - 1)(b - 1)(c - 1)$$

$$\varepsilon = abc(r - 1)$$

Suma de cuadrados (efectos principales)

$$a-1$$

$$bcr \sum_{i=1}^{a} (\bar{Y}_{i...} - \bar{Y}_{...})^2$$

$$b - 1$$

$$acr \sum_{j=1}^{b} (\bar{Y}_{.j..} - \bar{Y}_{....})^2$$

$$c-1$$

$$abr \sum_{c}^{c} (\bar{Y}_{..k.} - \bar{Y}_{....})^2$$

Suma de Cuadrados (interacciones de primer nivel)

$$(a-1)(b-1) = ab - a - b + 1$$

$$cr \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{Y}_{ij..} - \bar{Y}_{i...} - \bar{Y}_{.j..} + \bar{Y}_{...})^{2}$$

$$(a-1)(c-1) = ac - a - c + 1$$

$$br \sum_{i=1}^{a} \sum_{k=1}^{c} (\bar{Y}_{i.k.} - \bar{Y}_{i...} - \bar{Y}_{..k.} + \bar{Y}_{...})^{2}$$

$$(b-1)(c-1) = bc - b - c + 1$$

$$ar \sum_{i=1}^{b} \sum_{k=1}^{c} (\bar{Y}_{.jk.} - \bar{Y}_{.j..} - \bar{Y}_{..k.} + \bar{Y}_{...})^{2}$$

Suma de Cuadrados (interacciones de segundo nivel)

$$(a-1)(b-1)(c-1) = abc - ab - ac - bc + a + b + c - 1$$

$$r\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{c}(\bar{Y}_{ijk\cdot}-\bar{Y}_{ij\cdot\cdot}-\bar{Y}_{i\cdot k\cdot}-\bar{Y}_{\cdot jk\cdot}+\bar{Y}_{i\cdot\cdot\cdot}+\bar{Y}_{\cdot j\cdot\cdot}+\bar{Y}_{\cdot k\cdot}-\bar{Y}_{\cdot\cdot\cdot\cdot})^{2}$$

$$Error = abc(r - 1) = abcr - abc$$

$$\sum_{i=1}^{a} \sum_{i=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{r} (\bar{Y}_{ijkl} - \bar{Y}_{ijk.})^2$$

Ejemplo: experimento factorial, conducido bajo un diseño de bloques al azar:

Se presentan los datos de Rendimiento de arroz en ton/ha, de dos variedades; una de porte alto y la otra de porte bajo, expuestas a tres niveles de fertilización con nitrógeno (0, 100. 200 kg/ha).

Rendimiento en Ton/ha de dos variedades de arroz, bajo tres niveles de Nitrogeno.

Tratamientos	Descr	ipcion	BLOQUE					
			1	2	3	4	$Y_{i,*}$	$\overline{Y}_{i\bullet}$
1	VAR ALTA	N 0	7.5	6	7	8.5	29	7.25
2		N 100	8.5	6.8	7.3	8.4	31	7.75
3		N 200	7.6	5.9	7.3	8.2	29	7.25
						89		
4	VAR BAJA	N O	7	5.5	6	7.5	26	6.5
5		N 100	7.9	6.1	7.5	8.5	30	7.5
6		N 200	8.5	6.3	7.9	9.3	32	8
						88		
Total bloque Y _{•j}			47	36.6	43	50.4	177	
Promedio $\overline{Y}_{\bullet j}$			7.83	6.1	7.16	8.4		-

Se tienen 6 tratamientos, los cuales surgen de todas las combinaciones posibles de Variedad x Nitrógeno. Este experimento es una factorial Variedad x Nitrógeno 2 x 3, es decir, 2 modalidades en el factor variedad y 3 niveles en el factor Nitrógeno.

$$FC = \frac{(Y..)^2}{r \times t}$$
 $FC = \frac{(177)^2}{4x6}$ $FC = 1305.375$

$$SCTotal(c) = \sum_{i=1}^{4} \sum_{j=1}^{6} Y_{ij}^{2} - FC$$

$$SCT(c) = (7.5^{2} + 6^{2} + 7^{2} \dots 6.3^{2} + 7.9^{2} + 9.3^{2}) - 1305.375$$

$$SCT(c) = 24.025$$

$$SCB = \frac{\sum Y_{\bullet J}^{2}}{t} - FC$$

$$SCB = \frac{47^{2} + 36.6^{2} + 43^{2} + 50.4^{2}}{6} - 1305.375$$

$$SCB = 17.578$$

Luis Fernando Delgado Muñoz, Ing. Agroindustrial

$$SCTR = \frac{\sum Y_{i\bullet}^{2}}{b} - FC$$

$$SCTR = \frac{29^{2} + 31^{2} + 29^{2} + 26^{2} + 30^{2} + 32^{2}}{4} - 1305.375$$

$$SCTR = 5.375$$

$$SCEE = SCT(c) - SCTR - SCB$$

 $SCEE = 24.025 - 5.375 - 17.578$
 $SCEE = 1.072$

Para descomponer la suma de cuadrados de los tratamientos se procede así:

	VARIE		
	ALTA	ВАЈА	
NITROGENO			
0	29	26	55
100	31	30	61
200	29	32	61
	89	88	177

$$SCV = \frac{\sum_{Vi=1}^{2} V^{2}}{b * N} - FC$$

$$SCV = \frac{89^{2} + 88^{2}}{(4)(3)} - 1305.375$$

$$SCV = 0.042$$

$$SCN = \frac{\sum_{Ni=1}^{3} N^{2}}{b*V} - FC$$

$$SCN = \frac{55^{2} + 61^{2} + 61^{2}}{(4)(2)} - 1305.375$$

$$SCN = 3$$

$$SC V*N = SCTR - SCV - SCN$$

 $SC V*N = 5.375-0.0416-3$
 $SC V*N = 2.333$

Análisis de varianza para la variable rendimiento de arroz en Ton/ha.

F d V	GL	SC	CM	Fc	Ft
Bloques	3	17.578	5.86	82.53*	3.29
Tratamientos	5	5.375	1.075	15.14*	2.9
Variedad	1	0.0416	0.0416	0.586 NS	4.54
Nitrogeno	2	3	1.5	21.12*	3.68
Variedad x Nitrogeno	2	2.37	1.18	16.69*	3.68
Error	15	1.072	0.071		
Total (c)	23	24.025		-	

Ejercicio

Una empresa encargada en la comercialización de productos apícolas, esta interesada en determinar el efecto de la temperatura ambiente y la viscosidad del liquido sobre la energía consumida por las abejas al beber.

Los niveles de temperatura (T) fueron 20, 30 y 40 °C. La viscosidad del líquido se controló por la concentración de sacarosa (S) que eran 20, 40 y 60% del total de solidos disueltos en el liquido que beben las abejas.

Los investigadores registraron la energía gastada por las abejas en joules/segundo.

Datos

Temperatura	Sacarosa (%)			
$(^{\circ}C)$	20	40	60	
	3.1	5.5	7.9	
20	3.7	6.7	9.2	
	4.7	7.3	9.3	
	6.0	11.5	17.5	
30	6.9	12.9	15.8	
	7.5	13.4	14.7	
	7.7	15.7	19.1	
40	8.3	14.3	18.0	
	9.5	15.9	19.9	

MUCHAS GRACIAS