Description d'une liaison HDLC & technique du ieton

David Bromberg

Introduction

Elements de liaison

- Communication entre systèmes informatiques :
 - S'effectue via des *liaisons*.
 - Définis par les recommandations de l'UIT-T.

Elements de liaison

ETTD

- Situé à l'extrémité de la liaison.
- Equipement de traitement de données.
- Intègre un contrôleur de communication.
- Equipement qui ne se connecte pas directement à ligne de transmission.

Elements de liaison ETCD

- ETCD (DCE):
 - Equipement de terminaison de circuit de données.
 - Exemple : modem, multiplexeur, adaptateur....
 - Adapte le signal binaire entre l'ETTD et la ligne de transmission.
 - Codage ou modulation
 - Gestion de la liaison :
 - Etablissement, maintient et libération de la ligne à chaque extrémité.

Elements de liaison

Jonction

- Jonction:
 - Constitue l'interface entre ETCD et ETTD.

Le niveau Liaison de Données <u>Définition (1)</u>

- Niveau OSI = 2
 - Fournit procédures et moyens fonctionnels nécessaires à :
 - <u>Établir une connexion</u> (ex: choix du mode de fonctionnement)
 - Maintenir (transferts uni ou bidirectionnels) et <u>libérer la connexion</u>
 - Achemine des trames sur la liaison physique
 - Effectue un contrôle de flux afin d'éviter la saturation
 - <u>Détecte et corrige les erreurs de transmission</u>, provoque des retransmissions en cas d'anomalie
- Mais certaines technologies n'assurent pas toutes ces fonctionnalités!

Le niveau Liaison de Données <u>Définition (2)</u>

- Caractéristiques d'une liaison de données
 - Configuration point-à-point ou multipoint (plus rare)
 - Exploitation en full-duplex ou half-duplex
 - Gestion hiérarchique ou symétrique de la transmission
 - Hiérarchique : distinction primaire/secondaire(s)
 - Fonctionne par invitation à émettre (« polling »)
 - Symétrique : une station accède au médium sans autorisation
 - Gestion de la correction des erreurs ≠
 - 1 ou plusieurs trames retransmises (fonction acquittement)

Le niveau Liaison de Données <u>Définition (3)</u>

- Parfois (ex : IEEE802.X) la couche ISO = 2 est découpée en :
 - 1 couche "basse" : MAC (Medium Access Control)
 - Contrôle la méthode d'accès au support physique partagé
 - Ex : Toutes les stations du réseau accèdent au même canal => concertation préalable
 - 1 couche "haute" : LLC (Logical Link Control) (IEEE 802.2)
 - Liaison de données à proprement parler
 - Contrôle la qualité de la transmission

Les protocoles de Liaison de Données Quelques standards

- Il en existe beaucoup:
 - SDLC:
 - Synchronous Data Link Control (IBM réseau SNA)
 - HDLC:
 - High level Data Link Control
 - Normalisé ISO (1976) avec nombreux sous-ensembles (LAP, PPP)
 - IEEE802.3 et "Ethernet"
 - IEEE802.5 (Token Ring)
 - Sans-fil IEEE802.11(1 à 2Mb/s), IEEE802.11b(11Mb/s)
 - FDDI (ANSI X3T9)

Les protocoles de Liaison de Données

Quelques standards

Caractéristiques protocole de liaison

Temps d'émission d'une trame

- Trame de données, Trame d'acquittement
- Temps d'émission de la trame
- Temps de propagation de la trame

Gestion des acquittements

- Protocole de base peu performant : Attendre et Envoyer
 - Émetteur envoie sa trame
 - Récepteur acquitte la trame reçue ou demande la retransmission
 - Perte d'une ou des trames : attente d'un délai de temporisation pour le redémarrage du processus

Gestion des acquittements

Émission trames n,n+1,n+2 ...

Acquittement groupés des trames N°< n

Récepteur

- Protocoles modernes et actuels : Anticipation
 - Groupement des acquittements
- Mode non connecté (ex : Ethernet)
 - Envoie de trame selon un processus commun à tous (statistique)
- Mode connecté (ex : HDLC)
 - Établissement liaison par trame de gestion

Introduction

• HDLC

- Définie des procédures synchrones pour assurer :
 - Création de liaisons point à point d'accès à un réseau d'opérateurs.
 - Exemple : Transpac, X25,ATM, RNIS
 - Partage du support physique par différents systemes ou stations.
 - Exemple : liaisons multipoints, réseaux locaux.

Introduction

• Pour gérer une liaison :

- Il est nécessaire d'utiliser :
 - Des trames spécifiques :
 - Dites de <u>trames de supervision</u> et <u>trames de contrôles</u>.
 - ⇔ Ces trames permettent :
 - D'établir ou libérer une liaison.
 - De préciser les @ du ou des destinataires.
 - D'acquitter ou de rejeter les trames émises.
 - De contrôler le flux des trames d'information.

Introduction

- Les protocoles et procédures utilisées pour :
 - Les phases d'établissement,
 - De transmission
 - De libération
 - ⇒ Sont liés au type de réseau et de données échangées.
- HDLC utilisé dans le réseau Transpac X25.
 - ⇔ Définie des mécanismes standards d'échange.

High level Data Link Control

- Issue de SDLC d'IBM
- La procédure HDLC :
 - Ensemble
 - De classes
 - De procédures
 - De fonctionnalités optionnelles
 - ⇔ Normalisée par l'ISO et l'UIT-T en 1976

High level Data Link Control

- HDLC est définie pour :
 - Des transmissions synchrones :
 - Semi-duplex
 - Duplex intégral
 - Pour des liaisons :
 - Point à point
 - Multipoints.
- Toutes informations transmises sont considérées comme des groupements binaires.
 - ⇔ Indépendantes d'un codage ou d'un alphabet particulier.

Modes opératoires(1)

- 3 modes opératoires principaux :
 - NRM : Mode normal de réponse (non équilibré primaire/ secondaire)
 - Station primaire autorise explicitement le secondaire à émettre.
 - Secondaire envoie trame(s) + trame de fin d'émission.
 - ARM : Mode asynchrone de réponse (non équilibré primaire/secondaire)
 - Station secondaire peut émettre sans autorisation.
 - Nécessite <u>l'ajout d'infos</u> sur l'état du secondaire (N° trame suivante, prêt, occupé ...)

Modes opératoires (2)

- ABM : Mode asynchrone équilibré (balanced) (le + courant)
 - Tous les équipements agissent de la même façon
 - Nécessite l'ajout d'infos sur l'état de la station (N° trame suivante, prêt, occupé ...)
- Étude restreinte au mode ABM pour limiter les ≠ cas de figure
 - ⇔ Mode LAPB, utilisé sur les réseaux X25.

Mode HDLC/LAPB

- Chaque station possède une fonction primaire et une fonction secondaire.
- Les trames de commandes et d'information peuvent être échangées simultanément.

Trames HDLC:

Structure des trames.

8 bits	8 bits	8 bits	taille variable	16 bits	8 bits
Fanion	Adresse	Contrôle	Données	FCS	Fanion

Trame de données

8 bits	8 bits	8 bits	16 bits	8 bits
Fanion	Adresse	Contrôle	FCS	Fanion

Trame de supervision

• Bit de poids le + faible transmis en premier.

HDLC:

Champ Fanion

8	8 bits	8 bits	8 bits	taille variable	16 bits	8 bits
	Fanion	Adresse	Contrôle	Données	FCS	Fanion

• Fanion (8 bits) :

- Délimiteur de trame (01111110).
- Permet la synchronisation de l'horloge du récepteur.
- Sur les lignes point à point au repos
 - Transmission continuelle de trame de longueur minimale (32 bits)

Adresses

8 bits	8 bits	8 bits	taille variable	16 bits	8 bits
Fanion	Adresse	Contrôle	Données	FCS	Fanion

Adresse (8bits) :

- Caractérise le destinataire de la trame.
- Sur les liaisons point à point utilisant le protocole PPP (trame HDLC) adresse = 11111111
- LAP-B (mode équilibré) : adresses variables
 - Si il s'agit de commandes ou des réponses
 - Si il s'agit de liaison simple ou des multi liaisons.
 - Si il s'agit ETTD vers ETCD ou l'inverse
- Étendue sur 2 octets pour le canal D RNIS multipoint (trames I & S)

Contrôle

Trois types de trames :

- 1. <u>Trame I</u>:
 - D'information, contenant données et indications sur l'état de la transmission.

16 bits

FCS

8 bits

Fanion

- 2. Trame S:
 - De supervision permettant la gestion des erreurs du flux.
- 3. **Trame U**:
 - Non numérotée permettant notamment l'établissement et la libération de la liaison.

Contrôle

- Contrôle : type de la trame
 - Information, sUpervision, non nUméroté
 - NS: N° du bloc émis
 - <u>P/F</u>: invitation à émettre (Poll) (commande)
 - <u>P/F :</u> bit Final pour une réponse
 - NR: N° de séquence en Réception
 - S: Type de commandes à utiliser
 - M: Modification de la commande

Trame d'information (I)

8 bits	8 bits	8 bits	taille variable	16 bits	8 bits
Fanion	Adresse	Contrôle	Données	FCS	Fanion
	0 N	S P/F	NR		

- Trame contenant les données
 - NS codé sur 3 bits : fenêtre d'anticipation de 7 trames au maximum
 - NR acquitte trames reçues (convention:N° de trame non encore reçue)
 - **P/F** (Poll/Final)
 - P:Permet l'invitation à émettre
 - F: Indique une réponse à la requête précédente
 - Nom issu des modes non équilibrés, F indiquait la dernière trame des esclaves

Trame de supervision (S) ou Trame de commande (S)

• Supervision de la liaison (sans données)

Commandes	Réponses	Codages (2bits SS)	
RR (prêt à recevoir)	RR (prêt à recevoir)	0	0
RNR (non prêt à recevoir)	RNR (non prêt à recevoir)	1	0
REJ (Rejet)	REJ (Rejet)	0	1
SREJ (Rejet Sélectif)	SREJ (Rejet Sélectif)	1	1

Supervision de la liaison (1)

- RR: Commande/Réponse prêt à recevoir (Receive Ready)
 - ETTD prêt à recevoir une trame I
 - Acquitte trame I dont N° de séquence ≤ NR -1
- RNR: Commande/Réponse non prêt à recevoir (Receive Not Ready)
 - Indique l'état d'occupation de l'ETTD(Ctrl-Flux)
 - Doit acquitter trame I dont N° de séquence ≤ NR -1

Supervision de la liaison (2)

- REJ : Commande/Réponse rejet (REJect)
 - ETTD demande la retransmission de trame(s) I à partir de NR
 - Doit acquitter trame I dont N° de séquence ≤ NR 1
- SREJ : Commande/Réponse rejet sélectif (Selective REJect)
 - ETTD demande la retransmission d'une trame I à partir de NR
 - Acquitte trame I dont N° de séquence ≤ NR 1

Supervision de la liaison (3)

- Chaque station maintient des compteurs :
 - 1. Compteur VS
 - 2. Compteur VR

Trame non numérotée

Trame non numérotée (U)

Trame non numérotée

1 1 M M P/F M M M	Symbole	
11 1 1 F 0 0 0	DM	Disconnect Mode
11 1 1 P 1 0 0	SABM	Set Asynchronous Balanced mode
11 0 0 P 0 1 0	DISC	Disconnected
1100F110	UA	◆ Unumberred Acknolewdgment
11 1 0 F 1 0 1	FRMR	Frame Reject
11 0 0 P/F 1 0 1	XID	eXchange IDentification

HDLC Données

8	bits	8 bits	8 bits	taille variable	16 bits	8 bits
	Fanion	Adresse	Contrôle	Données	FCS	Fanion

- Les données utiles à transmettre ...
- Règles à respecter :
 - Insertion d'un 0 après séquence de 5 bit codé à 1 => différentiation du fanion
 - Désinsertion de ce 0 par le récepteur.

HDLC FCS

8 bits	8 bits	8 bits	taille variable	16 bits	8 bits
Fanion	Adresse	Contrôle	Données	FCS	Fanion

- FCS: Frame Check Sequence (16bits)
 - Détection des informations transmises de façon erronée,
 - Calcul pour l'émetteur et le récepteur d'une trame
 - Constitué du reste de la division polynomiale des N bits de la trame par un polynôme « générateur » normalisé de degré 16
 - Reste = FCS, on admet que la transmission s'est passée correctement
 - Même règle que pour données (élimination codage Fanion)

Rejet de trames

- Calcul du FCS
- La taille minimale de la trame (hors fanions)
 est de 32 bits => zone de données vide
 - si la taille de la trame est < 32 bits => Destruction de la trame (erreur certaine de transmission)
- Si VR (locale) ≠ NS (de la trame)

Exemple d'échange (1)

Exemple d'échange (2)

Exemple d'échange (3)

Exemple d'échange (4)

Exemple d'échange (5)

Exemple d'échange (6)

Analogies

 De nombreux mécanismes présents avec HDLC se retrouvent dans les couches supérieures (ex: TCP)

```
Numérotation des trames => Numéro de séquence TCP
```

```
Acquittements => Champ ACK de l'en-tête TCP
```

```
Délai de retransmission => Idem avec TCP
```

```
Fenêtre d'émission => Idem avec TCP
```

Niveau 2 Niveau 4

Mais attention on ne travaille pas au même niveau!

Protocoles dérivés LAP-B

LAP B Link Access Protocol Balanced

- Utilisé par X25 (asynchrone + full duplex) (ABM)
- Utilisé par le canal B (Bearer Channel) de transfert de RNIS
- Fournit un service de bout en bout.
- Fournit un circuit commuté de qualité numérique.

Protocoles dérivés LAP-D

- LAP D Link Access Protocol on D channel
 - Utilisé par le canal D de signalisation du RNIS (16 Kb/s)
 - Champ d'adresse de 2 octets : SAPI & TEI
 - SAPI : Identificateur du Point d'Accès au Service
 - Pour multiplexer au niveau 2 différentes liaisons de données (≈ différents services)
 - signalisation, commutation de paquets d'informations utilisateur, la télé-action, ...
 - TEI : Identificateur d'Extrémité de Terminal
 - Gestion de l'accès de plusieurs terminaux sur un même bus
 - Identifie les récepteurs vis-à-vis du réseau,
 - Le terminal trouve les informations qui lui sont destinées.
 - TEI = 127 dont la valeur est fixée par convention est réservée à la diffusion
 - Affectation du TEI non automatique (0 à 63) ou automatique (64 à 126).

Protocoles dérivés LAP-X

- LAP X Link Access Protocol Balanced
 - Liaison à l'alternat (half duplex)
 - Utilisation de HDLC en mode équilibré sur liaison à l'alternat (≠ avec le mode symétrique initial)

Technique du jeton 802.4 & 802.5

Techniques du jeton

- En général jeton ≈ permission d'émettre
- 802.4 : Bus à jeton
 - Applications industrielles
- 802.5 : Anneau à jeton
 - Token-Ring (TR)
- Standard US de l'ANSI (comité X3T9.5)
 - FDDI (Fiber Distributed Data Interface)

Techniques du jeton

Jeton sur boucle : Principes (1)

- Prise du jeton :
 - FDDI : Par retrait du réseau et émission de trames multiples par la station (limité en temps)
 - TR : Bit de statut qui convertit le jeton en trame
 - Émission d'une trame pour TR4
 - Émission de trames multiples pour TR16

Jeton sur boucle: Principes (2)

- Libération du jeton : influence sensiblement l'efficacité du protocole
 - (1) Si la trame est revenue entièrement (lent & peu efficace)
 - (2) Si la trame est revenue partiellement
 - (3) Immédiatement (la + efficace)
- TR à 4Mb/s utilise la méthode (2)
- TR à 16Mb/s et FDDI (100Mb/s) la (3)

Jeton sur boucle : Priorités (1)

- Pas spécifique au réseau à jeton, mais non abordée précédemment
- Un champ "priorité" est inclus dans la trame
 - Affectation d'une priorité à la station
 - TR4 : 6 bits pour la mise en place des priorités
 - 3 bits pour coder les 8 niveaux (0 à 7, 7 est le + prioritaire)
 - 3 bits pour la réservation : demande explicite si aucune station + prioritaire l'a fait avant
 - Prise du jeton, si priorité ≥ à la priorité de la station

Jeton sur boucle : Priorités (2)

• FDDI :

- Réglage possible du temps de rétention du jeton
 - 4000 à 16000 µs
- Négocié par les machines à la connexion
 - Hardware is cxBus FDDI, address is 0000.0c3a.258c
 - Phy-A state is active, neighbor is B, cmt signal bits 008/20C, status ILS
 - Phy-B state is active, neighbor is A, cmt signal bits 20C/008, status ALS
 - Requested token rotation 5000 μs, negotiated 5000 μs
 - Upstream neighbor 0040.0b3b.cce2, downstream neighbor 00e0.1ee5.054d

Réseaux locaux Ethernet & 802.3

Plan

- La norme IEEE 802.3
 - Historique, Introduction et Principes
 - Position dans le modèle OSI
 - Format d'une trame
 - Adresses IEEE802.3 ou Ethernet
 - Couche liaison (MAC) (émission/réception)
 - Couche physique (mécanismes)
 - Collision (mode opératoire)
 - Différences avec le standard Ethernet
- Conclusion

Ethernet & 802.3

Présentation

- 802.3 et Ethernet :
 - Protocoles à compétition.
 - Incompatibles entre eux.
- Ethernet est actuellement le réseau le plus employé.

IEEE802.3

Historique (1) Origine

Origine :

- Dans les îles Hawaï au début des années 1970.
- Université répartie sur 6 îles différentes.
- ⇔ Problématique :
 - ⇔ Interconnecter les différents sites utilisant la
 - « transmission de données par émission d'ondes radioélectriques. »

Historique (2)

Naissance du concept

- Système ALOHA (Bonjour en Hawaïen) d'Abramson exploité à Hawaï en 1970.
 - Bloc de données reçu par tout le monde.
 - Emis par ondes radio sur une même fréquence.
 - Identifié par une entête déterminant l'@ du destinataire.
 - Lorsque plusieurs stations émettent en même temps :
 - Collisions entre blocs de données.
 - Emission brouillée.
 - Données perdues.

Historique (3) Création 1973

- Alto Aloha Network: (1973) Conçus et mis en œuvre par XEROX.
 - Débit : 3 Mb/s (Experimental Ethernet)
 - Médium : Coaxial de 1000 mètres
 - Nombre maximum de stations : 100
- Utilisé pour relier les ordinateurs personnels du Xerox-Labs de Palo-Alto.

Historique (4) 1976-1980

- (1976), document révélé au public.
- (1979), Collaboration avec Digital.
- (1980), Intel se joint aux travaux.
 - Intégration électronique des composants du standard.
 - Promotion comme standard industriel
 - ⇔ Sous le nom de *DIX Ethernet V1.0.*
- Standard soumis à l'IEEE et à ECMA.

Historique (5) 1982-1983

- (1982), DIX Version 2 ou ETERNET II adoptée par l'ECMA.
- (1983), DIX Version 2 modifiée adoptée par l'ANSI/IEEE sous le nom de 802.3.
 - ⇔ Standards incompatibles.

Introduction (1) Collisions

- Les stations émettent quand elles le désirent.
 - Accés aléatoire au canal.
 - ⇔ Collision possible si deux stations souhaitent émettre en même temps.

Introduction (2) CSMA/CD

- Basé sur la méthode d 'accès CSMA/CD
 - CSMA : Carrier Sense Multiple Access (Accès multiple avec écoute de la porteuse).
 - ⇔ Accés multiple après écoute de la porteuse.
 - ⇔ Permet de réduire le nombre de collisions.
 - CD : Collision Detection (Détection de collision)
 - ⇔ Détection de collisions
 - ⇔ Si une station émettrice se rend compte que son message participe à une collision :
 - ⇔ Elle arrête l'émission du message

Introduction (3) <u>Limites</u>

- CSMA non adapté pour tous les types de réseaux locaux sur un support à diffusion.
 - Exemples :
 - La détection de collisions ne peut s'appliquer au réseaux :
 - Sans fils (802.11).
 - ⇔ La puissance d'émission d'un équipement brouille toute réception.
 - Réseaux de télévision câblés (802.14)
 - ⇔ Les délais de propagation sont trop importants.

Introduction (4) Objectifs initiaux

- Simple Faible coût.
- Peu de fonctions optionnelles.
- Pas de priorité.
- On ne peut pas faire taire son voisin.
- Débit : 10 Mb/s.
- Performances peu dépendantes de la charge.

Introduction (4) Objectifs non prévus

Non Prévus

- Full duplex
- Contrôle d'erreur (minimal, pas d'acquittement => simplicité)
- Sécurité et confidentialité
- Vitesse variable (auto-négociation)
- Priorité (Token Ring)
- Protection contre un utilisateur malveillant (FDDI)
- Déterminisme (capacité de borner en temps des transmissions de données)

Principes (1)

- Support de transmission
 - Segment = Bus = Câble coaxial
 - Bus Passif
 - Pas de boucle, pas de sens de circulation
 - Diffusion de l'information, écoute sélective
 - Transmission en Bande de Base
- Équipement raccordé sur ce câble par un transceiver transmitter + receiver = transceiver
- Un équipement Ethernet a une adresse unique au monde (adresse ethernet ou adresse MAC).

Principes (2)

- Sur le câble circulent des **trames**:
 - Suites d'éléments binaires (trains de bits)
- À un instant donné, une seule trame circule sur le câble
 - Pas de multiplexage en fréquence.
 - Pas de full duplex.
- Trame émise par un équipement est reçue par tous les <u>transceivers</u> du segment Ethernet
- Trame contient l'adresse de l'émetteur et du destinataire

Principes (3)

- Un coupleur est à l'écoute de la totalité des trames qui circulent sur le câble
 - Si une trame lui est destinée :
 - Adresse destinataire = Sa propre adresse physique
 - Il la prend, la traite et la délivre à la couche supérieure
 - Sinon, le coupleur ne fait rien

Principes (4)

- Une station qui veut émettre
 - Regarde si le câble est libre
 - Si oui, elle envoie sa trame
 - Si non elle attend que le câble soit libre
- Si 2 stations émettent ensemble, il y a collision
 - Les 2 trames sont inexploitables
 - Les 2 stations détectent la collision, elles réémettront leur trame ultérieurement

Principes (5)

- Ethernet est un réseau
 - Probabiliste
 - Sans chef d'orchestre
 - Égalitaire
- Comparaison avec une réunion sans animateur entre gens polis

Modèle OSI et IEEE 802

Modèle OSI et IEEE 802

Format d'une trame IEEE 802.3

Taille du Champs en octet

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Débit d'émission / réception : 10 Mb/s
 - 10 bits par μs
- Longueur des trames (avec préambule et SFD) :
 - 26 octets réservés au protocole
 - Longueur minimale : **72 octets**
 - Longueur maximale : 1526 octets

Format d'une trame IEEE 802.3

- Sens de circulation des octets
 - Premier: premier octet du préambule
 - Dernier : dernier octet de la séquence de contrôle
- Sens de circulation des bits pour un octet
 - Premier: bit de poids faible (bit 0)
 - Dernier : bit de poids fort (bit 7)
 - Inverse pour Token Ring (IEEE 802.5) par exemple

Format d'une trame IEEE 802.3

- Espace inter-trames minimal de 9.6 μs
 - Espace inter-trames 9.6 μs = 96 bits time soit 12 octets
 - Utilisation du réseau dans un délai relativement faible.
 - Une machine ne peut émettre toutes ses trames en même temps : seulement les unes à la suite des autres.
 - Cet espace inter-trames permet :
 - Aux circuits électroniques de récupérer l'état de repos du média.
 - Aux autres machines de reprendre la main à ce moment là

Préambule

 Taille du Champs en octet

 7
 1
 6
 6
 2
 de 46 à 1500
 4

 Préambule SFD @ DEST @ SRC Lg DATA DATA FCS

- Taille: 7 octets identiques (10101010) <=> Simple suite continue de bit à 0 et de bit à 1
- Assez long pour servir à la synchronisation de l'horloge locale.

Trame IEEE 802.3 SFD

Taille du Champs en octet

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- SFD : Start Frame Delimitor
- Marque le début de la trame
- Taille: 1 octet
- SFD = 10101011

Adresses

Taille du Champs en octet

	1	6	6	2	<u>de 46 à 1500</u>	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Détails dans RFC 1700
- Adresses IEEE 802.3 ou Ethernet : 48 bits (6 octets).
 - syntaxe: 08:00:20:05:B3:A7 ou 8:0:20:5:B3:A7

Adresses

Taille du Champs en octet

7	1	6	6	2	de 46 à 1500	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

• Exemples :

- Broadcast (diffusion) : FF:FF:FF:FF:FF
- Multicast (groupe): 1er Bit à 1 (1er octet d'adresse impair):
- Individuelle: 1er Bit à 0 (1er octet d'adresse pair) :
 - 08:00:20:09:E3:D8 ou 00:01:23:09:E3:D5

Adresses

Taille du Champs en octet

7	1	6	6	2	de 46 à 1500	4
Préambul	e SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Plus généralement avec les 2 premiers octets à 0
- Attribuées aux fabricants de coupleur Ethernet pour définir l'adresse physique de leur coupleur
- Les 3 derniers octets étant librement alloués par le fabricant
 - $(256)^3$ = **16.78 millions** de possibilités pour le fabricant
 - Cisco 00:00:0C:XX:XX:XX Sun 08:00:20:XX:XX:XX
 Cabletron 00:00:1D:XX:XX:XX HP 08:00:09:XX:XX:XX

Adresses

Taille du Champs en octet

7	1	6	6	2	de 46 à 150	00
4 Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- L'adresse destinataire peut donc représenter :
 - L'adresse physique d'une machine locale
 - L'adressage d'un groupe de machines (multicast)
 - Toutes les machines du réseau local (broadcast)
- L'adresse source représente seulement :
 - L'adresse physique de la station émettrice

<u>Longueur</u>

Taille du Champs en octet
6 2 de 46 à 1500

I _	/	1	U	U		<u>uc 40 a 1300</u>	
	Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- Taille : 2 octets (valeur ≤ 1500)
- Donne le nombre d'octets utilisé par les données dans I trame
- Ce champ est différent dans un trame Ethernet

Trame Ethernet Type données

Taille du Champs en octet

١.	7	1	6	6	2	de 46 à 1500	4	
	Préambule	SFD	@ DEST	@ SRC	TYPE Data	DATA	FCS	

- Taille: 2 octets
- Norme : "Si la valeur du champ taille > 1500 alors la trame peut être ignorée, détruite ou utilisée à d'autres fins que IEEE802.3"
 => permet la compatibilité avec Ethernet.

Données

- 1 < Taille du champs de données utiles < 1500 octets
- <u>Padding</u>: Ajout d'octet(s) sans signification pour envoyer moins de 46 octets de données
- => Longueur minimale de la trame : 72 octets

Trame IEEE 802.3: FCS

Taille du Champs en octet

7	1	6	6	2	<u>de 46 à 1500</u>	4
Préambule	SFD	@ DEST	@ SRC	Lg DATA	DATA	FCS

- FCS: Frame Check Sequence
- Contrôle à la réception de la trame par calcul
 - Calcul = CRC (Cyclic Redundancy Check) (Division polynomiale)
 - CRC sur champs destination, source, longueur et données
- Taille: 4 octets

Sous Couche LLC (1)

89

Sous Couche LLC (1)

- LLC: Logical Link Control
- Pour réseau IEEE 802.3 (et d'autres), mais pas pour le réseau Ethernet (champ type déjà dans la couche MAC).
- Contrôle la transmission de données
 - Type 1 : Mode datagramme (aiguillage (3 octets) vers protocoles de niveau 3 développés à l'origine pour ethernet) (modèle ISO non respecté)
 - Ex: Token Ring (IEEE 802.5), FDDI
 - Type 2 : Mode connecté (contrôle d'erreur et de flux Ex: X25 HDLC)
 - Type 3 : Mode datagramme acquitté (réseaux industriels)

Sous Couche LLC (2)

- En-tête (3 octets):
 - DSAP : Destination Service Access Point (1 octet)
 - SSAP : Source Service Access Point (1 octet)
 - Control : Contrôle d'erreur et de séquencement (1 octet)
- DSAP = 0xAA => Va vers la sous couche SNAP
- SSAP = 0xAA => Provient de la sous couche SNAP
- Principe de fonctionnement dans IEEE 802.2

Sous Couche SNAP

- SNAP : Sub-Network Access Protocol
- En-tête: 5 octets
 - 3 octets : Organizational Unit Identifier (OUI)
 - 2 octets : Code du protocole de niveau 3
- En-tête LLC + SNAP = 8 octets => résoud pb alignement
- Permet au protocole de niveau 3 de travailler avec X25, FDDI, ATM, Frame Relay ...

MAC

Transmission d'une trame

- La sous-couche LLC a fait un appel "transmettrame".
- La couche MAC :
 - Ajoute préambule, SFD, padding si nécessaire
 - Assemble les champs : @source, @destinataire, taille, données et padding
 - Calcule le FCS et l'ajoute à la trame
 - Transmet la trame à la couche physique :
 - Si "écoute porteuse" faux depuis 9.6 µs au moins, la transmission s'effectue.
 - Sinon, elle attend que "écoute porteuse" devienne faux,
 - Attend 9.6 µs et commence la transmission (suite de bits).

MAC

Transmission d'une trame

MAC: Réception d'une trame (1)

- La sous-couche LLC a fait un appel "reçoit-trame".
- La couche MAC est à l'écoute du signal "écoute porteuse",
 - Reçoit tous les trains de bits qui circulent sur le câble :
 - Les limites des trames sont indiquées par le signal "écoute porteuse"
 - Ôtes le préambule et le SFD
 - Analyse l'adresse du destinataire dans la trame
 - Si l'adresse de destination de la trame est différente de l'adresse de la station => poubelle

-

MAC : Réception d'une trame (2) garder vocabulaire

- Si l'adresse destination est ou inclue la station :
 - Elle découpe la suite de bits reçus en octet, puis en champs
 - Transmet à la sous-couche LLC les champs :
 - @destination, @source, taille et données
 - Calcule le FCS et indique une erreur à la couche LLC si :
 - FCS incorrect
 - Trame trop grande: >1526 octets (avec préambule et SFD)
 (giants)
 - Longueur de la trame n'est pas un nombre entier d'octets (erreur d'alignement)
 - Trame trop petite: < 72 octets (trame avec collision) (runts)

MAC

Réception d'une trame

Couche Physique

- Fonctions de la couche physique
 - Permet de recevoir et d'émettre des suites d'éléments binaires
 - Détecte la transmission par une autre station,
 - Pendant que la station n'émet pas : écoute porteuse
 - Pendant que la station émet : détection de collision

Collisions CSMA

- Plusieurs stations peuvent accéder simultanément au support. (

 Multiple Access)
 - ⇔ Chaque station peut:
 - Ecouter et détecter le signal sur le réseau.
 - ⇔ Carrier Sense.
- Les collisions sont elles évitées ?

Collision Exemple

100

Collision détection

Exemple

Collisions Détection

- Réseau probabiliste
- Émetteur :
 - Émet au minimum après 9.6µs
 - Écoute le signal "détection de collision" pendant
 51.2 µs (64 octets) à partir du début d'émission
 - S'arrête d'émettre quand il détecte une collision
- Récepteur :
 - réception d'une trame < 72 octets => collision

Collisions

En envoi de trame

- Couche MAC transmet la suite de bits à la couche physique
 - Pendant le début de la transmission (Slot Time = 512 bits), elle teste le signal "détection de collision" que lui fournit la couche physique
 - S'il y a collision, la station commence par <u>renforcer</u> cette collision en envoyant un flot de 4 octets (jam) pour prévenir toutes les machines du réseau

Collisions : En réception de trame

- Si la trame est de taille erronée :
 - Longueur minimale trame correcte : 72 octets
 - Longueur maximale trame erronée : 64 octets
- Donc toutes trames reçues de longueur < 72 octets est rejetée

Collisions

Ré-émission

- La station attend = R x 51,2 μs = R x "Slot Time"
- R entier, 0 < R < 2^K avec K = min (n,10)
 - n = nombre de ré-émissions <u>déjà</u> faites (modulo 10)
- Elle émet à nouveau, <u>15 ré-émissions maximum</u>
- Si la 15ième ré-émission échoue, la couche physique retourne le statut "Trop d'erreurs de collision" à la couche directement supérieure
- Exemples de valeur de R :
 - 1) 0 ou 1
 - 2) 0.1.2.3
 - 3) 0.1.2.3.4.5.6.7
 -

Différences IEEE802.3/ Ethernet (1)

- Ethernet Version 1: DIX (Blue Book) 1980
 - 10 Mb/s, 1024 stations, champ "type" dans la trame
 - segment coaxial : 500 m, entre 2 stations : 2
 répéteurs maximum (soit 1500 mètres)
- Ethernet Version 2: 1982
 - SQE test, mode moniteur optionnel (voir IEEE 802.3)

Différences IEEE802.3/Ethernet (2)

- IEEE 802.3 (1985)
 - Câbles (couleur grise) de transceiver à 4 ou 5 paires (gris)
 - Champ "longueur de données" à la place de "type"
 - Entre 2 stations: 4 répéteurs maximum (2500 mètres)
 - SQE (Signal Quality Error) test (vérification interne du circuit de détection de collision (sur AUI))
 - Fonction jabber
 - Transceiver contrôle la durée d'émission de la station
 - Arrête l'émission continue d'une machine entre 20 ms et 150 ms
 - Mode moniteur (écoute seule)

Différences IEEE802.3/Ethernet (2)

- Ethernet : Pas de couche LLC
 - Padding non supprimable par MAC (taille données inconnue)
 - Niveau 3 possède un champ (IP : longueur)
- Plus de problème pour utiliser IEEE802.3 et Ethernet :
 - Les stations parlent entre elles.
 - Si problème, regarder le SQE test qui peut être enlevé sur certains transceivers.

Différences IEEE802.3/ Ethernet (3)

- Champ "type" des trames Ethernet
 - 2 octets représentés en hexadécimal
 - Champs types connus (protocole de niveau 3 utilisé)

• 0800 IF

• 0806 ARP

6000 à 6009 DEC (6004 LAT)
 8019 DOMAIN Apollo

• 8035 RARP

- Champ "taille" dans la trame IEEE802.3
 - Problème de compatibilité
 - Mais tous les numéros de protocole sont supérieurs à la longueur maximale de la zone de données d'une trame (1500)
 - Une station reconnaît les trames Ethernet et IEEE802.3

Conclusion

- Ethernet/IEEE 802.3 fonctionne très bien
- C'est le protocole de réseau local de loin le plus répandu (80% environ)
- Il y a tous les éléments nécessaires (mécano)
- Les problèmes qui restent sont connus
 - Sécurité, confidentialité et priorité
 - Le travail n'est plus sur Ethernet mais sur les protocoles et les applications des couches supérieures