# Pandas & Matolotlib



# Agenda

- Read data file
- Data selection
- Grouping
- Group funciton

### Read Data File

- import pandas as pd
- pd.read\_table("File Path", names=[...], index\_col=..., header = ..., sep=...)

1 help(pd.read\_table)

Help on function read\_table in module pandas.io.parsers:

read\_table(filepath\_or\_buffer, sep='\t', delimiter=None, header='infer', names=None, index\_col=None, usecols=None, squeeze=Fa lse, prefix=None, mangle\_dupe\_cols=True, dtype=None, engine=None, converters=None, true\_values=None, false\_values=None, skipi nitialspace=False, skiprows=None, nrows=None, na\_values=None, keep\_default\_na=True, na\_filter=True, verbose=False, skip\_blank \_lines=True, parse\_dates=False, infer\_datetime\_format=False, keep\_date\_col=False, date\_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, esca pechar=None, comment=None, encoding=None, dialect=None, tupleize\_cols=None, error\_bad\_lines=True, warn\_bad\_lines=True, skipfo oter=0, doublequote=True, delim\_whitespace=False, low\_memory=True, memory\_map=False, float\_precision=None)



### Read Data File - File Path

- C:\...\Desktop\lab8\test.ipynb
- C:\...\Desktop\lab8\Dataset\xxx.txt
- C:\...\Desktop\lab8\Dataset\yyy.csv
- C:\...\Desktop\lab8\zzz.csv
- pd.read\_table("File Path")
- "Dataset/xxx.txt" or "./Dataset/xxx.txt"
- "Dataset/yyy.csv" or "./Dataset/yyy.csv"
- "zzz.csv" or "./zzz.csv"



### Read Data File - Header

- The default value of header is "infer"
- Here is the description:

header: int or list of ints, default 'infer' Row number(s) to use as the column names, and the start of the data.

Default behavior is to infer the column names:

if no names are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header=None``.

Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip\_blank\_lines=True``, so header=0 denotes the first line of data rather than the first line of the file.

```
country, year, population
2 Afghanistan, 1952, 8425333
3 Afghanistan, 1957, 9240934
4 Afghanistan, 1962, 10267083
5 Afghanistan, 1967, 11537966
6 Afghanistan, 1972, 13079460
7 Afghanistan, 1977, 14880372
8 Afghanistan, 1982, 12881816
9 Afghanistan, 1987, 13867957
```



### Read Data File - Names

```
1 0,5.1,3.5,1.4,0.2,0
2 1,4.9,3.0,1.4,0.2,0
3 2,4.7,3.2,1.3,0.2,0
4 3,4.6,3.1,1.5,0.2,0
5 4,5.0,3.6,1.4,0.2,0
6 5,5.4,3.9,1.7,0.4,0
7 6,4.6,3.4,1.4,0.3,0
8 7,5.0,3.4,1.5,0.2,0
```

What if the dataset includes column title and you want to rename it?

```
country, year, population
Afghanistan, 1952, 8425333
Afghanistan, 1957, 9240934
Afghanistan, 1962, 10267083
Afghanistan, 1967, 11537966
Afghanistan, 1972, 13079460
Afghanistan, 1977, 14880372
Afghanistan, 1982, 12881816
Afghanistan, 1987, 13867957
```



### Read Data File - index\_col

|   | index | sepal_length | sepal_width | petal_length | petal_width | target_names |
|---|-------|--------------|-------------|--------------|-------------|--------------|
| 0 | 0     | 5.1          | 3.5         | 1.4          | 0.2         | 0            |
| 1 | 1     | 4.9          | 3.0         | 1.4          | 0.2         | 0            |
| 2 | 2     | 4.7          | 3.2         | 1.3          | 0.2         | 0            |
| - |       |              |             |              |             | -            |

- Try this:





# Try yourself 1

- Read the provided data file
- Assign the column names:
   "index", "sepal\_length", "sepal\_width", "petal\_length", "petal\_width", "target\_names"



### Data Selection

• df[5:8]

| 1    | data[5:8]    |             |              |             |              |
|------|--------------|-------------|--------------|-------------|--------------|
|      | sepal_length | sepal_width | petal_length | petal_width | target_names |
| inde | x            |             |              |             |              |
|      | 5 5.4        | 3.9         | 1.7          | 0.4         | 0            |
|      | <b>6</b> 4.6 | 3.4         | 1.4          | 0.3         | 0            |
|      | 7 5.0        | 3.4         | 1.5          | 0.2         | 0            |

• df[5:8][["sepal\_length", "sepal\_width"]]

index

sepal\_length sepal\_width

| 5 | 5.4 | 3.9 |
|---|-----|-----|
| 6 | 4.6 | 3.4 |
| 7 | 5.0 | 3.4 |

**Dataframe** 



### Data Selection

• df[5:8][["sepal\_length"]]

```
1 data[5:8][["sepal_length"]]
```

#### sepal\_length

| index |     |
|-------|-----|
| 5     | 5.4 |
| 6     | 4.6 |
| 7     | 5.0 |

**Dataframe** 

• df[5:8]["sepal\_length"]

```
1 data[5:8]["sepal_length"]

index
5   5.4
6   4.6
7   5.0
Name: sepal_length, dtype: float64  Series
```



### Data Selection - iloc / loc

• df.iloc[4:8][["col1", "col2"]]

data.iloc[4:8][["petal\_length","petal\_width"]]

#### petal\_length petal\_width

| index |     |     |
|-------|-----|-----|
| 4     | 1.4 | 0.2 |
| 5     | 1.7 | 0.4 |
| 6     | 1.4 | 0.3 |
| 7     | 1.5 | 0.2 |

• df.loc[4:8, ["col1", "col2"]]

data.loc[4:8,["petal\_length","petal\_width"]]

#### petal\_length petal\_width

| index |     |     |
|-------|-----|-----|
| 4     | 1.4 | 0.2 |
| 5     | 1.7 | 0.4 |
| 6     | 1.4 | 0.3 |
| 7     | 1.5 | 0.2 |
| 8     | 1.4 | 0.2 |
|       |     |     |



# Data Selection - Filtering

• df[ df["sepal\_length"] > 5]

```
1 data[ data["sepal_length"] > 5]
```

|       | sepal_length | sepal_width | petal_length | petal_width | target_names |
|-------|--------------|-------------|--------------|-------------|--------------|
| index |              |             |              |             |              |
| 0     | 5.1          | 3.5         | 1.4          | 0.2         | 0            |
| 5     | 5.4          | 3.9         | 1.7          | 0.4         | 0            |
| 10    | 5.4          | 3.7         | 1.5          | 0.2         | 0            |
| 14    | 5.8          | 4.0         | 1.2          | 0.2         | 0            |
| 15    | 5.7          | 4.4         | 1.5          | 0.4         | 0            |
| 16    | 5.4          | 3.9         | 1.3          | 0.4         | 0            |
| 17    | 5.1          | 3.5         | 1.4          | 0.3         | 0            |

```
1 data["sepal_length"] > 5
```

```
index

0 True

1 False

2 False

3 False

4 False

5 True

6 False

7 False

8 False

9 False

10 True
```



# Try yourself 2

- 1. Display the dataframe where index 51 to 100.
- 2. Display the data from index 51- 100, and sepal\_length > 6

|       | sepal_length | sepal_width | petal_length | petal_width | target_names |
|-------|--------------|-------------|--------------|-------------|--------------|
| index |              |             |              |             |              |
| 51    | 6.4          | 3.2         | 4.5          | 1.5         | 1            |
| 52    | 6.9          | 3.1         | 4.9          | 1.5         | 1            |
| 54    | 6.5          | 2.8         | 4.6          | 1.5         | 1            |
| 56    | 6.3          | 3.3         | 4.7          | 1.6         | 1            |
| 58    | 6.6          | 2.9         | 4.6          | 1.3         | 1            |
| 63    | 6.1          | 2.9         | 4.7          | 1.4         | 1            |
| 65    | 6.7          | 3.1         | 4.4          | 1.4         | 1            |
| 68    | 6.2          | 2.2         | 4.5          | 1.5         | 1            |
| 71    | 6.1          | 2.8         | 4.0          | 1.3         | 1            |
| 72    | 6.3          | 2.5         | 4.9          | 1.5         | 1            |
| 73    | 6.1          | 2.8         | 4.7          | 1.2         | 1            |
| 74    | 6.4          | 2.9         | 4.3          | 1.3         | 1            |
| 75    | 6.6          | 3.0         | 4.4          | 1.4         | 1            |
| 76    | 6.8          | 2.8         | 4.8          | 1.4         | 1            |
| 77    | 6.7          | 3.0         | 5.0          | 1.7         | 1            |
| 86    | 6.7          | 3.1         | 4.7          | 1.5         | 1            |
| 87    | 6.3          | 2.3         | 4.4          | 1.3         | 1            |
| 91    | 6.1          | 3.0         | 4.6          | 1.4         | 1            |
| 97    | 6.2          | 2.9         | 4.3          | 1.3         | 1            |



# Data Selection - Multiple Condition

The important part is the round bracket

```
data[(data["sepal_width"]>3.2) & (data["sepal_width"] < 3.5)]</pre>
       sepal length sepal width petal length petal width target names
index
   6
                4.6
                             3.4
                                          1.4
                                                       0.3
                5.0
                             3.4
                                          1.5
                                                       0.2
   7
                            3.4
  11
                4.8
                                          1.6
                                                       0.2
                5.4
                            3.4
                                          1.7
                                                       0.2
  20
                                                                       0
  23
                5.1
                            3.3
                                          1.7
                                                       0.5
                                                                       0
  24
                4.8
                             3.4
                                          1.9
                                                       0.2
                                                                       0
  26
                5.0
                             3.4
                                          1.6
                                                       0.4
                                                                       0
```



# Grouping

https://pandas.pydata.org/pandas-docs/stable/api.html#groupby

| 1   data.groupby("target_names").mean() |              |             |              |             |  |  |
|-----------------------------------------|--------------|-------------|--------------|-------------|--|--|
|                                         | sepal_length | sepal_width | petal_length | petal_width |  |  |
| target_names                            | ;            |             |              |             |  |  |
| 0                                       | 5.006        | 3.418       | 1.464        | 0.244       |  |  |
| 1                                       | 5.936        | 2.770       | 4.260        | 1.326       |  |  |
| 2                                       | 6.588        | 2.974       | 5.552        | 2.026       |  |  |



# Try yourself 3

• 1. Display the dataframe where:

```
"sepal_width" > 3.2; and "petal_length" > 5
```

• 2. Display the dataframe contain only sepal\_width where for each group (target\_names) Hint: get\_group(X)