

In the Claims:

Claim 10 has been amended as follows:

10. (AMENDED) A method of detecting a threshold voltage implantation reticle option layer in an integrated circuit device comprising:

measuring the current through a first MOS transistor
5 in an integrated circuit device by forcing a test voltage
on the drain and the gate wherein said gate and said drain
of said first MOS transistor are connected together,
wherein the source of said first MOS transistor is
connected to a reference voltage, and wherein said first
10 MOS transistor has a first threshold voltage implantation
but not a threshold voltage implantation reticle option
layer;

measuring the current through a second MOS transistor
in said integrated circuit device by forcing same said test
15 voltage on the drain and the gate wherein said gate and
said drain of said second MOS transistor are connected
together, wherein the source of said second MOS transistor
is connected to a reference voltage, and wherein said
second MOS transistor has both said first threshold voltage

20 implantation and said threshold voltage implantation
reticle option layer; and

comparing said current through said first MOS
transistor and said current through said second MOS
transistor to detect the presence of said threshold voltage
25 implantation reticle option layer in said integrated
circuit device.

Claim 15 has been amended as follows:

15. (AMENDED) A method of detecting a threshold voltage
implantation reticle option layer in an integrated circuit
device comprising:

12 selecting a first NMOS transistor in an integrated
5 circuit device in a first test mode to couple the voltage
at the drain and the gate of said first NMOS transistor to
an output pin of said integrated circuit device wherein
said gate and said drain of said first NMOS transistor are
connected together, wherein the source of said first NMOS
10 transistor is connected to ground, and wherein said first
NMOS transistor has a first threshold voltage implantation
but not a threshold voltage implantation reticle option
layer;

measuring said voltage at said output pin in said
15 first test mode when an internal test voltage is connected
to said drain and said gate of said first NMOS transistor
through a first internal standard resistance;

selecting a second NMOS transistor in said integrated
circuit device in a second test mode to couple the voltage
20 at the drain and the gate of said second NMOS transistor to
said output pin of said integrated circuit device wherein
said gate and said drain of said second NMOS transistor are
connected together, wherein the source of said NMOS
transistor is connected to ground, and wherein
25 said second NMOS transistor has both said first threshold
voltage implantation and said threshold voltage
implantation reticle option layer;

measuring said voltage at said output pin in said
second test mode when said internal test voltage is
30 connected to said drain and said gate of said second NMOS
transistor through a second internal standard resistance;
and

comparing said voltage at said output pin in said
first test mode with said voltage at said output pin in
35 said second test mode to detect the presence of said

12 threshold voltage implantation reticle option layer in said integrated circuit device.

Claim 20 has been amended as follows:

20. (AMENDED) A method of detecting a threshold voltage implantation reticle option layer in an integrated circuit device comprising:

selecting a first PMOS transistor in an integrated circuit device in a first test mode to couple the voltage at the drain and the gate of said first PMOS transistor to an output pin of said integrated circuit device wherein said gate and said drain of said first PMOS transistor are connected together, wherein the source of said first PMOS transistor is connected to an internal standard voltage, and wherein said first PMOS transistor has the standard threshold voltage implantation but not the threshold voltage implantation reticle option layer;

measuring said voltage at said output pin in said first test mode when said drain and said gate of said first PMOS transistor are connected to ground through a first internal standard resistance;

selecting a second PMOS transistor in said integrated

63

circuit device in a second test mode to couple the voltage
20 at the drain and the gate of said second PMOS transistor to
said output pin of said integrated circuit device wherein
said gate and said drain of said second PMOS transistor are
connected together, wherein the source of said second PMOS
transistor is connected to said internal standard voltage,
25 and wherein said second PMOS transistor has both said
standard threshold voltage implantation and said threshold
voltage implantation reticle option layer;

measuring said voltage at said output pin in said
second test mode when said drain and said gate of said
30 second PMOS transistor are connected to said ground through
a second internal standard resistance; and

comparing said voltage at said output pin in said
first test mode with said voltage at said output pin in
said second test mode to detect the presence of said
35 threshold voltage implantation reticle option layer in said
integrated circuit device.