计算机组成原理

浮点运算

王浩宇,教授

haoyuwang@hust.edu.cn

https://howiepku.github.io/

本节内容

- 浮点数加减运算
- 浮点数乘除运算*

浮点数加减运算

- ■设有两个浮点数X = M_x×2^{Ex} 和 Y = M_y×2^{Ey}, 且E_x> E_v
- ■若要求X±Y的结果S,则
 - \blacksquare S = X \pm Y = M_S \times 2^ES
 - 其中 , $E_S = E_x$, $M_S = Mx \pm (My SHR (E_x E_y))$
- ■浮点数加减运算的步骤
 - ■零操作数检查 一个操作数为0,则不必运算,节省运算时间
 - 两操作数对阶 **使小数点位置对齐,为加减运算做准备**
 - 尾数相加减 **以双符号位的补码形式进行加减法**操作
 - ■结果的规格化
 - ■结果的舍入处理
 - ■结果的溢出判断

浮点数加减运算——两操作数对阶

■对阶的原则

增大阶码, 尾数右移

- ■以较大的阶码为标准, 调整阶码较小的数据;
 - 避免阶码较大的浮点数的尾数左移,导致最高有效数位丢失;

■具体操作

- ■求阶差△E = E_X E_Y
- ■调整阶码较小的数据
 - 若△E >0,则My右移△E位,结果的阶码为Ex
 - 若△E <0,则Mx右移 | △E | 位,结果的阶码为Ex
- ■例 X——E_x=0 001, M_x=0.101; Y——E_y=0 011, 尾数M_y=0.111
 - ■阶差△E = E_x E_y = 0 001-0 011 = 10 < 0
 - ■X尾数M_x右移2位, M_x=0.001 01

浮点数加减运算——结果的规格化处理

- ■两尾数加减的结果有两种情况
 - ■尾数溢出 → 两符号位为01或10 → 右规
 - 尾数右移1位, 阶码加1
 - ■尾数为非规格化数据 → 补码表示的符号位 与最高数值位相同 → 左规
 - 尾数左移1位, 阶码减1, 直至数值位最高位与符号位相反。
- ■同上例,对阶后E=E_Y=0 011,尾数M_X=0.001 (01),M_Y=0.111
 - ■尾数求和 $M_S = M_X + M_Y = 00.001 \ 01 + 00.111 = 01.000 \ 01$
 - ■两符号位相反,应进行右规1位的操作
 - $IIIM_S = 00.100 (001)$, $E_S = 011 + 1 = 0.100$

浮点数加减运算——结果的舍入处理

- ■在对阶或右规操作时,会使加数或结果的尾数低若干位移出, 影响精度,常用两种舍入处理方法
 - ■方法1: 0 舍1 入法
 - •保留右移时的移出位,若最高位为1,则尾数加1;否则舍去
 - ■特点:精度较高,但需要记录所有的移出位
 - ■方法2:恒置1法
 - 若之前步骤有右移操作,则直接将结果的最低位置1
 - ▶特点:精度较0舍1入法较低,但应用简单
- ■同上例, 结果的尾数 $M_S = 00.100 001$
 - ■0 舍 1 入法: M_s = 00.100
 - 恒置 1 法: M_s = 00.101

浮点数加减运算——结果的溢出判断

- 尾数溢出
 - 在规格化处理时,通过右规完成;
- 阶码溢出
 - 上溢(结果绝对值太大)——置上溢标志,结束;
 - 下溢(结果绝对值太小)——置机器零;
 - 正常——运算结束;
- 同上例, 运算结果的阶码E_s= 011+1= 0 100
 - 未溢出!

[例]设 $x = 2^{010} \times 0.11011011$, $y = 2^{100} \times (-0.10101100)$, 求x + y

- 设浮点数的阶码用双符号位,尾数用单符号位的 补码表示
 - [X]_澤=00 010, 0.11011011
 - [Y]_浮=00 100, 1.01010100
- ①求阶差并对阶
 - $\triangle E = E_X E_Y = [E_X]_{\frac{1}{1}} + [-E_Y]_{\frac{1}{1}}$ $= 00 \ 010 + 11 \ 100 = 11 \ 110$
 - 则浮点数X,应使M_X右移2位,E_X加2,[X]_浮=00 100, 0.00110110(11), E_s=00 100

△E= -2 <0 则E_Y为结果阶码 修改浮点数X

$$\begin{array}{c} 0.00110110(11) \\ + 1.01010100 \\ \hline 0.110001010(11) \end{array}$$

②尾数求和:

 $M_S = 1.10001010(11)$

[例]设 $x = 2^{010} \times 0.11011011$, $y = 2^{100} \times (-0.10101100)$, 求x + y

■ 和的规格化处理

 $M_S = 1.10001010(11)$

- 结果尾数的符号位与最高数值位相同,应左规1位
- \iiint M_S =1.00010101(10), E_S =00 100-1= 00 011。

■ 舍入处理

■ 若采用0舍1入法 M_s=1.00010110

■ 结果溢出判断

- 阶码符号位为00,和不溢出
- 最终结果S = X+Y = 00 011, 1. 00010110 = 2⁰¹¹×(-0.11101010)

课堂练习

已知: $x = -0.1000101 \times 2^{-111}$ $y = +0.0001010 \times 2^{-100}$

- ①用补码运算求 x + y =? 并判断是否溢出?
- ②用补码运算求 x y =? 并判断是否溢出?

假设两数均以补码表示,且采用双符号位,先将它们变为规格化浮点数,则它们的浮点表示分别为

$$[x]_{\text{p}}=11\ 001, \quad 11.0111011$$

 $[y]_{\text{p}}=11\ 100, \quad 00.0001010=11\ 001, \quad 00.1010000$

已知[x]_浮=11 001,11.0111011,[y]_浮=11 001,00.1010000[,]求x+y

<1> 求阶差并对阶

 $E \times = E y$,即 $\triangle E \to 0$,阶码相等,无需对阶

<2> 尾数求和

Ms= 00.0 0 0 1 0 1 1

〈3〉规格化处理

尾数运算结果的符号位与最高数值位同值,执行左规处理 Ms=00.1011000,Es=10110

〈4〉舍入处理

没有丢失位, 不必进行舍入

<5> 判溢出

阶码符号位为10,发生下溢,故需置机器0

已知[x]_浮=11 001,11.0111011,[y]_浮= 11 001,00.1010000[,]求 x — y

<1> 求阶差并对阶

 $E \times = E y$,即 $\triangle E \to 0$,阶码相等,无需对阶

<2> 尾数求差

$$[-M_y]_{\dot{\uparrow}\dot{\uparrow}} = 11.0110000$$

Ms= 10.1 1 0 1 0 1 1

+ 11.0 1 1 1 0 1 1 + 11.0 1 1 0 0 0 0

10.1 1 0 1 0 1 1

<3> 规格化处理

两位符号位不同,应执行右规1位的处理, Ms=11.0110101(1), Es=11 010

0舍1入法

〈4〉舍入处理

丢失位高位为1,但结果为负数,故该位真值为0,应舍去

<5> 判溢出

阶码符号位为11,无溢出,故结果为:

 $x - y = -0.1001011 \times 2^{-6}$

■ 设有两个浮点数 x 和 y:

$$x = 2^{E \times M_x}, y = 2^{E y} \cdot M_y$$

 $x \times y = 2^{(E \times + E y)} \cdot (M_x \times M_y)$
 $x \div y = 2^{(E \times - E y)} \cdot (M_x \div M_y)$

- 乘除运算分为四步
 - 0操作数检查
 - 阶码加减操作
 - 尾数乘除操作
 - 结果规格化和舍入处理

- 浮点数的阶码运算(移码的运算规则)
 - 将阶码运算变为移码运算

$$[X]_{8}=2^{n}+x$$
 $2^{n}>x \ge -2^{n}$
=> $[X]_{8}+[Y]_{8}=2^{n}+X+2^{n}+Y=2^{n}+(2^{n}+X+Y)=2^{n}+[X+Y]_{8}$

可以证明:

$$[X+Y]_{8} = [X]_{8} + [Y]_{8} + 2^{n} = [X]_{8} + [Y]_{1} \pmod{2^{n+1}}$$

= $[Y]_{8} + [X]_{1} \pmod{2^{n+1}}$

$$[X-Y]_{8} = [X]_{8} + [-Y]_{1} = [-Y]_{8} + [X]_{1} \pmod{2^{n+1}}$$

■ 溢出问题

- 乘法下溢的情况
 - 求阶码和时已经下溢(负阶码)
 - 乘积左规时阶码减1而造成下溢
- 乘法上溢的情况
 - 求阶码和时已经上溢(正阶码)
 - 乘积右规时阶码加1而造成上溢

- 移码采用双符号位,为了对溢出进行判断
 - 规定移码的第二个符号位, 即最高符号位恒用 0 参加运算, 则溢出条件是结果的最高符号位为1

0 1	为正	00	为负
1 0	上溢	11	下溢

例: x = +011, y = +110, 求[x + y]₈ 和 [x - y]₈,并判断是否溢出。

$$[x]_8 = 01011, [y]_{N} = 00110, [-y]_{N} = 11010$$

 $[x+y]_8 = [x]_8 + [y]_N = 10001, 结果上溢$

$$[x-y]_8 = [x]_8 + [-y]_4 = 00$$
 101, 结果正确,为一3

■ 浮点数的溢出

- <mark>阶码上溢</mark>——超过阶码可能表示的最大值的正指数值,一般将其认为是 $+\infty$ 和 $-\infty$
- 阶码下溢——超过阶码可能表示的最小值的负指数值,一般将其认为是0
- 尾数上溢──两个同符号尾数相加产生最高位向上的进位,将尾数右移, 阶码增1来重新对齐
- <mark>尾数下溢</mark>——在将尾数右移时,尾数的最低有效位从尾数域右端流出, 要进行舍入处理

例: 设有浮点数 $x = 2^{-5} \times 0.0110011$, $y = 2^{3} \times (-0.1110010)$, 阶码用 4位移码表示, 尾数(含符号位)用8位补码表示。求[$x \times y$]_浮。要求 用补码完成尾数乘法运算, 运算结果尾数保留高8位(含符号位), 并用 尾数低位字长值处理舍入操作。

```
解: 移码采用双符号位, 尾数补码采用单符号位, 则有
   [M \times ]_{\lambda h} = 0.0110011, [M y ]_{\lambda h} = 1.0001110,
   [E y]_{8} = 01 011,
   [E \ y]_{\lambda h} = 00\ 011
   [E \times]_{8} = 00011,
   [x]_{\cancel{2}} = 00011, 0.0110011;
   [y]_{\text{p}} = 01 \ 011, 1.0001110
(1) 判断操作是否为"0", 求阶码和
   [E \times +E \, y]_{8} = [E \times ]_{8} + [E \, y]_{4}
   =00 011+00 011=00 110, 值为移码形式-2。
(2) 尾数乘法运算可采用补码阵列乘法器实现, 即有
   [M \times ]_{\lambda h} \times [M y ]_{\lambda h}
   =[0.0110011]_{\dot{k}} \times [1.0001110]_{\dot{k}}
   =[1.1010010,1001010]_{\frac{1}{2}}
```

(3) 规格化处理

乘积的尾数符号位与最高数值位符号相同,不是规格化的数,需要左规,阶码变为00 101(-3),

尾数变为 1.0100101,0010100。

(4) 舍入处理

尾数为负数,取尾数高位字长,按舍入规则,舍去低位字长,故尾数为

1.0100101

最终相乘结果为 $[x \times y]_{\beta} = 00 \ 101, 1.0100101$

其真值为 $x \times y = 2^{-3} \times (-0.1011011)$

- 尾数处理: 有两种方法(截尾法、舍入法)
 - 截断
 - 舍入(尾数用原码表示时)
 - 只要尾数最低为1或者移出位中有1数值位, 使最低位置1
 - 0舍1入
 - 舍入(尾数用补码表示时)
 - 丢失的位全为0,不必舍入
 - 丢失的最高位为0,以后各位不全为0时;或者最高为1,以后各位 全为0时,则舍去丢失位上的值
 - 丢失的最高位为1,以后各位不全为0时,则在尾数的最低位入1的 修正操作

舍入处理的补充与解释

■ 舍入处理

- 对于原码,采用0舍1入法时,不论其值是正数或负数,"舍"使得数的绝对值变小,"入"使得数的绝对值变大
- 对于补码,采用0舍1入法时,若丢失的位不全是0,对正数来说,"舍"、"入"的结果与原码正好相同;对负数来说,"舍"、"入"的结果与原码分析正好相反,即"舍"使绝对值变大,"入"使绝对值变小。

X_[补] = 1.0111<mark>1000</mark> 真值: -0.1000<mark>1000</mark>

补码直接0舍1入:

X[补] = 1.10000000 真值: -0.10000000 绝对值变小

先转化为原码再0舍1入:

1.10001000-> 1.10010000 真值: -0.10010000 绝对值增大

舍入处理:解释和补充

- 为了使原码、补码舍入处理后的结果相同,对负数的补码可采用 如下规则进行舍入处理:
 - 当丢失的各位均为0时,不必舍入
 - 当丢失的各位数中的最高位为0时,且以下各位不全为0;或者丢失的各位数中的最高位为1,且以下各位均为0时,则舍去被丢失的各位
 - 当丢失的各位数中的最高位为1,且以下各位又不全为0时,则在保留尾数的最末位加1修正
 - ■如何理解?

舍入处理:解释和补充

原码舍

■ X _[补] 舍入前	原码	X _[补] 舍入后	对应的真值
1.01110000	-0.10010000	1.0111 (不舍	不入) -0.1001
1.0111 <mark>1000</mark>	-0.1000 <mark>1000</mark>	1.0111 (舍)	-0.1001
1.01110101	-0.10001011	1.0111 (舍)	-0.1001
1.0111 <mark>1100</mark>	-0.10000100	1.1000 (入)	-0.1000

X_[补] 舍入后的值 与其转换为原码之后舍入后的 值 所对应的真值应完全相同!

■ 设[x_1]_h=11.01100000,[x_2]_h=11.01100001,[x_3]_h=11.01101000,[x_4]_h=11.01111001,求执行只保留小数点后4位有效数字的舍入操作值

$$[x_1]_{\stackrel{}{\uparrow}}=11.0110$$
 (不舍不入)
 $[x_2]_{\stackrel{}{\uparrow}}=11.0110$ (舍)
 $[x_3]_{\stackrel{}{\uparrow}}=11.0110$ (舍)
 $[x_4]_{\stackrel{}{\downarrow}}=11.1000$ (入)

关于乘法溢出判定问题:

■ 求阶码和后判下溢可能出现的问题

```
例:已知:A=-1×2<sup>-128</sup>,B=-1×2<sup>-1</sup>,求A×B=?

[A]<sub>补</sub>=11 0000000, 11.00···0

[B]<sub>补</sub>=11 1111111, 11.00···0
```

- 两数阶码之和为10 1111111(-129), 尾数之积为01.00⋯0(+1)
- 结果需右规,即阶码加1,最后阶码为11 0000000 (−128),尾数为00.10···0。无溢出
- 若在求阶码之和后判溢出,就会误认为下溢(阶码两符号位为10表示下溢),错误地扩大溢出范围。因此,应该在规格化时判下溢

■ 在规格化后判下溢可能出现的问题

```
例:已知:A=0.5×2<sup>-128</sup>,B=0.5×2<sup>-128</sup>,求A×B=?

[A]<sub>补</sub>=11 0000000, 00.10···0

[B]<sub>补</sub>=11 0000000, 00.10···0
```

- 再数阶码之和为10 0000000 (-256), 尾数之积为00.01...0(注意此时阶码下溢)
- 左规后,积的尾数变成00.1...0,而修改后的阶码变成:10 0000000+11 1111111(-1)=01 1111111 (上溢)
- ♣ 若在规格化过程中,即在求积的阶码时判溢出,就可能把本来的阶下溢错判为阶上溢

■ 解决办法:

- 在规格化后判下溢可能出现的问题 解决办法: 在规格化时判下溢,加入一些条件,即阶码寄存器的最高位(R_{ES})参与控制
 - 设求阶码和后,阶码寄存器的内容为:

 $R_{ES} \ R_{E0} \ . \quad R_{E1} R_{E2} R_{E3} R_{E4} R_{E5} R_{E6} R_{E7}$

■ 左规时, 阶码加法器的输出为

 $\Sigma_{\rm ES}\Sigma_{\rm E0}$. $\Sigma_{\rm E1}\Sigma_{\rm E2}\Sigma_{\rm E3}\Sigma_{\rm E4}\Sigma_{\rm E5}\Sigma_{\rm E6}\Sigma_{\rm E7}$

- 当 R_{ES} =1且 $\Sigma_{ES} \neq \Sigma_{E0}$ 时下溢,即下溢条件为: $R_{ES} = (\Sigma_{ES} \oplus \Sigma_{E0})$
- 这样在规格化时判下溢,不会扩大溢出范围,也不会错判成上溢
- 阶码下溢处理 乘积为0

■ 规格化后判上溢

```
例: 已知: A=0.5×2<sup>+127</sup>, B=0.5×2<sup>+1</sup>, 求A×B=?

[A]<sub>补</sub>=00 11111111, 00.10···0

[B]<sub>补</sub>=00 0000001, 00.10···0
```

- 两数阶码之和为01 0000000(+128), 尾数之积为00.01...0。
- 求阶码之和后,积的阶码为01 0000000,此时判断为上溢
- 结果左规后,乘积的阶码减1后又被修正为01 0000000+11 1111111=00 1111111, 刚好不上溢

■ 规格化后判上溢

```
例: 已知: A=-1×2<sup>+127</sup>, B=-1× 2<sup>+127</sup>, 求A×B=?
[A]<sub>补</sub>=00 1111111, 11.00···0
[B]<sub>补</sub>=00 1111111, 11.00···0
```

- 两数阶码之和为01 1111110(+254), 尾数之积为01.00···0(+1)
- 结果需右规,即阶码加1,最后阶码为01 1111111 (+255),尾数为00.10…0。
- 若在求阶码之和后判溢出,就会判为上溢。在规格化时判上溢,仍保持上溢,不会错判成下溢
- 在规格化之后判上溢,并不会出现误判,将上溢判成下溢