Транспортная задача ПМ, 3 курс, 2018 г. Лабораторная работа 2.

1. Баланс лесосырья в матричной транспортной задаче. После национализации природных ресурсов и производственных средств их переработки, возникла следующая задача.

В лесопромышленном регионе, к примеру РК, функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, t_j — нормативы расхода лесосырья на выработку единицу продукции, w_j — затраты производства единицы продукции и d_i — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Построить математическую модель поиска наибольшего значения дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции в форме транспортной задачи, составить программу решения полученной задачи.

2. Мы можем все! Нет границам производственных мощностей! В лесопромышленном комплексе (ЛПК) региона функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i и B_i — нижняя и верхняя границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, t_j — нормативы расхода лесосырья на единицу продукции v_j — затраты на производство единицы продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Считая, что объемы переработки лесосырья для каждого предприятя ЛПК не ограничены, построить математическую модель поиска наибольшего значения дохода ЛПК региона с учетом затрат на заготовку транспортировку и переработку лесопродукции, составить программу решения полученной задачи.

3. Неправильная задача. В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья без ограничения объема заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, t_j — нормативы расхода лесосырья на единицу продукции v_j — затраты производства единицы продукции, d_i и D_i — нижняя и верхняя границы объемов выработки продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Построить математическую модель поиска наибольшего значения дохода региона с учетом затрат на заготовку транспортировку и переработку лесопродукции. Составить программу решения полученной задачи. Что послужило основой названия задачи? 4. Не совсем линейные затраты заготовки. В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), размещенных в различных населенных пунктах и условно производящих некоторую однородную продукцию (к примеру, пиломатериалы, бумагу или товарную целлюлозу). Будем считать, что для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m, t_j$ — нормативы расхода лесосырья на единицу продукции v_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Пусть известны c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..m$ — пункт размещения ЛПП. Затраты каждого ЛЗП $i \in 1..m$ на заготовку продукции зависят от объема, они составляют r_i на единицу объема лесосырья, при условии, что этот объем не превосходит b_i и R_i , если объем заготовки не превосходит верхнюю границу заготовки $B_i > b_i > 0$.

Построить математическую модель поиска наибольшего значения дохода региона с учетом затрат на заготовку транспортировку и переработку лесопродукции в форме транспортной задачи, составить программу решения полученной задачи.

5. Привередливый потребитель. В лесопромышленном регионе, к примеру РК, функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, w_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП. Кроме того, имеются определенные предпочтения потребителей по отношению к поставщикам продукции, что выражается в форме зависимости t_{ij} — нормативов расхода лесосырья на выработку единицу продукции от индекса поставщика $i \in 1..m$.

Построить математическую модель поиска наибольшего значения дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции в форме задачи линейного программирования, составить программу решения полученной задачи.

6. Двухэтапная транспортная задача. Где перерабатывать? В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n- лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (к примеру, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_q , $1 \le q \le k$. Для каждого ЛЗП $i \in 1..m$ заданы r_i- условные затраты заготовки единицы лесосырья и b_i- верхние границы объемов заготовки. Для каждого ЛПП заданы s_j- доходы от продажи единицы продукции предприятия $j \in 1..m, w_j-$ затраты производства единицы продукции. t_j- нормативы расхода лесосырья на выработку единицу продукции и Будем считать, что нормативы расхода лесосырья не зависят от индекса предприятия и составляют t единиц лесосырья на единицу продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП и C_{ij} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме транспортной задачи, составить программу решения полученной задачи.

7. Двухэтапная транспортная задача. Ограниченные мощности переработки. В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (к примеру, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_q , $1 \le q \le k$. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, t_j — нормативы расхода лесосырья на выработку единицу продукции и w_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП и C_{ij} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме транспортной задачи, составить программу решения полученной задачи.

8. Двухэтапная транспортная задача. Ограниченные мощности переработки. Усложним предшествующую задачу, введением нижней границы выработки продукции по ЛПП.

В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (к примеру, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_q , $1 \le q \le k$. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m$, t_j — нормативы расхода лесосырья на выработку единицу продукции и w_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства d_j и D_j — нижняя и верхняя границы объемов выработки продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП и C_{ij} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме задачи линейного программирования. Получится ли транспортная задача? Составить программу решения полученной задачи.

9. Двухпродуктовая транспортная задача. Сплошная заготовка. В лесопромышленном регионе функционируют m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП). Каждое ЛЗП ведет заготовку лесосырья, следуя установленной сплошной технологии рубки, при этом $\alpha_1 \geq 0$ — доля лиственной и $\alpha_2 \geq 0$ — доля хвойной древесины ($\alpha_1 + \alpha_2 = 1$) от объема заготовки. Условно назовем эти видды древесины 1 и 2 видами лесосырья. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы d_{1j} d_{2j} — потребность в лесосырье 1 и 2 видов.

Считая, что c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП не зависят от вида сырья, Построить математическую модель минимизации зарат на перевозку всех видов лесосырья для обеспечения потребителей в форме задачи линейного программирования. Получится ли транспортная задача? Составить программу решения полученной задачи.

10. Двухпродуктовая транспортная задача. Ограничение потоков. В лесопромышленном регионе m лесосозаготовительных предприятий (ЛЗП) и n — лесоперерабатывающих (ЛПП). Каждое ЛЗП ведет заготовку двух видов лесосырья, к примеру, лиственной и хвойной древесины. Пусть каждого ЛЗП $i \in 1..m$ заданы r_{1i} — условные затраты заготовки единицы лесосырья первого вида и r_{2i} — второго, b_{1i} b_{1i} — верхние границы объемов заготовки соответственно. Для каждого ЛПП введем d_{1j} d_{2j} — потребность в лесосырье 1 и 2 видов.

Пусть c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП не зависят от вида сырья.

Построить математическую модель минимизации зарат на перевозку всех видов лесосырья для обеспечения потребителей в форме транспортной задачи, при условии, что объемы перевозки по всем видам продукции в сумме ограничнеы значением f_{ij} . Составить программу решения полученной задачи.

11. Транспортная задача по критерию времени. Подобные задачи возникают в критической ситуации, например, в случае военной угрозы. Пусть имеется m пунктов размещения некоторого однородного продукта, например, тактических ракет с ядерными боеголовками с запасами b_i ($i \in 1..m$) и n потребителей, в данном случае транспортно раздельно размещенных стартовых площадок, которым необходимо d_i ($j \in 1..n$) единиц продукта.

Известно t_{ij} — минимальное время перемещения любого количества продукта из пункта $i \in 1..m$ в пункт $j \in 1..n$. Расчитать план наискорейшего перемещения всего объема продукта.

Построить математическую модель этой задачи. Получится ли задача линейного программироания? Составить программу решения полученной задачи.

12. Транспортно-производственная сетевая задача — 1. В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесосозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). Имеется граф $G = \langle V, E \rangle$ транспортных связей пунктов региона, для вершин которого заданы мощности b_i , для дуг $u \in E$ цены c_u перевозки единицы продукции. Мощности пунктов различаются знаком, объем рубки пункта производства лесосырья $b_i < 0$, потребления ЛПП $b_i \ge 0$.

Кроме того, для каждого ЛЗП заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесоырья, составить программу решения полученной задачи.

13. Транспортно-производственная задача — 2. В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесосозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). ЛПП, используя заготовленное лесосырье, производят некоторую однородную взаимозаменимую продукцию: целлюлозу или пиломатериалы и пр. Будем считать, что нормативы расхода лесосырья не зависят от номера предприятия и составляют t единиц лесосырья на единицу продукции. Имеется граф $G = \langle V, E \rangle$ транспортных связей пунктов региона, для вершин которого заданы мощности b_i , для дуг $u \in E$ цены c_u перевозки любого лесосырья. Мощности пунктов различаются знаком, объем рубки пункта производства лесосырья $b_i < 0$, потребления ЛПП $b_i \ge 0$.

Пусть для каждого ЛЗП заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы w_j — затраты производства единицы продукции и b_i — верхние границы объемов производства.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесоырья, составить программу решения полученной задачи в предположении, что всем предприятиям в целом необходимо произвести Q единиц продукции.

14. Многопродуктовая транспортная сетевая задача. В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесосозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). ЛПП, используя заготовленное лесосырье, производят различную продукцию для изготовления которой требуется леосырье различное видов $q \in 1, k$ (балансы, пиловочник, хвойное или лиственное сырье и пр.). Имеется граф $G = \langle V, E \rangle$ транспортных связей пунктов региона, для вершин которого заданы мощности b_{qi} — производства лесосырья различного вида, для дуг $u \in E$ цены c_u перевозки единицы (любого вида) лесосырья и d_u — верхние границы возможной перевозки лесосырья по дуге $u \in V$. Мощности пунктов различаются знаком, объем рубки пункта производства лесосырья $b_{qi} < 0$, объем потребления ЛПП $b_{qi} \ge 0$.

Построить математическую модель поиска наименьших затрат на транспортировку лесоырья, составить программу решения полученной задачи.

15. Многопродуктовая транспортно-производственная сетевая задача. Случай пропорциональности заготовки. В некоторых пунктах $i \in V$ лесопромышленного региона расположены лесосозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП), которые осуществляют рубку древесины k видов (балансы, пиловочник, хвойное или лиственное сырье и пр.). Лесосырье в количествах $b_{qi} \geq 0$ ($1 \leq q \leq k$) требуется переработчикам для производства продукции.

ЛЗП ведут заготовку лесосырья, следуя технологии сплошной рубки, при этом $\alpha_{iq} \geq 0$ — доля лесосырья вида q (балансов, пиловочника, хвойной или лиственной древесины и пр.) в общем объеме рубки, ограниченном сверху значением b_i — верхней границей объемов заготовки. Очевидно, $\sum_{q=1}^k \alpha_{iq} = 1$ для каждого пункта заготовки. Для каждого ЛЗП $i \in V$ установим r_i — условные затраты заготовки единицы лесосырья.

ЛПП региона, используя заготовленное лесосырье, производят различную продукцию для изготовления которой требуется леосырье различное видов $q \in 1, k$ Имеется граф $G = \langle V, E \rangle$ транспортных связей пунктов региона, для вершин которого заданы мощности b_{qi} — производства лесосырья различного вида, для дуг $u \in E$ цены c_u перевозки единицы (любого вида) лесосырья и d_u — верхние границы возможного объема производства. Мощности пунктов различаются знаком, объем рубки пункта производства лесосырья $b_{qi} < 0$, потребления ЛПП $b_{qi} \geq 0$.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесоырья, составить программу решения полученной задачи в предположении, что всем предприятиям в целом необходимо произвести Q единиц продукции. Будет ли полученная задача транспортной? Задачей линейного программирования?