

MS31007: Materials Science

Chapter 3 (Part-IV): Crystal Structure

Crystal Structure: Solid State Materials

- Lattice structures of common chemical elements.
 Concept of Bravais lattice, definition and examples.
 - Primitive vectors of Bravais lattice. Primitive/Conventional unit cell.
- Coordination number.
- Examples of common crystal structures.
 - ☐ Body-centered cubic lattice.
 - ☐ Face-centered cubic lattice.
 - ☐ Crystal systems
 - ☐ Lattice planes and Miller indices.
- Ceramic Crystal Structures
- Determination of Lattice
 Spacing: X-ray Diffraction

Ceramic crystal structures

Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry
2	<0.155 linear manner	
3	0.155-0.225 Equilateral triangle	
4	0.225-0.414 Tetrahedron	
6	0.414-0.732 Octahedron	
8	0.732-1.0	nation number is 12

Coordination number $\sim r_{\rm c}/r_{\rm A}$.

For a specific coordination number, there is a critical or minimum *r*C/*r*A ratio for which this cation—anion contact is established

Ionic radius tends to increase as the number of nearest-neighbor ions of opposite charge increases.

Charge on an ion will influence its radius.

- the radii for Fe²⁺ and Fe³⁺ are 0.077 and 0.069 nm,
 - Contrasted to the radius of an iron atom—0.124 nm
- ionic size deceases when electrons are added to the ion

For a radius ratio greater than unity, the coordination number is 12.

Ceramic **AX – Type** crystal structures

AX – Type crystal structures

- There are equal numbers of cations and anions (A -cation and X the anion)
- There are several different crystal structures for AX compounds;

1. Sodium Chloride (NaCl) or Rock Salt type

Na⁺

Coordination number is 6 for both cations and anions

- Two interpenetrating FCC lattices
- NaCl, MgO, MnS, LiF, and FeO

Ceramic **AX – Type** crystal structures

2. Cesium Chloride Structure

Coordination number is 8 for both ion types

- CsCl, CsBr

This is *not* a BCC crystal structure because ions of two different kinds are involved.

CsCl Application includes **Nuclear medicine and radiography**, preparation of electrically conducting <u>glasses</u> and screens of cathode ray tubes. In conjunction with rare gases CsCl is used in <u>excimer lamps</u> and <u>excimer lasers</u>.

Ceramic **AX – Type** crystal structures

3. Zinc Blende Structure

- Coordination number is 4
- all ions are tetrahedrally coordinated
- ZnS, ZnTe, SiC, AgI, GaAs, GaSb, InAs
- Atomic bonding is highly covalent

Ceramic A_mX_p – Type Crystal Structures

If the charges on the cations and anions are not the same; a compound can exist with the chemical formula $A_m X_p$, where m and/or $p \ne 1$.

A_m**X**_p – Type Crystal Structures

Fluorite structure (CaF2)

- Calcium ions are positioned at the centers of cubes, with fluorine ions at the corners.
- The chemical formula shows that there are only half as many Ca²⁺ ions as F⁻ ions
- The ionic radius ratio $r_{\rm C}/r_{\rm A}$ for CaF₂ is about 0.8
- coordination number of 8.

ZrO₂ (cubic), UO₂, PuO₂, and ThO₂

A unit cell for the fluorite (CaF₂) crystal structure

Ceramic A_mB_nX_p – Type Crystal Structures

Compounds having more than one type of cation; represented by A and B

A_m**B**_n**Xp** – **Type Crystal Structures**

Perovskite structure

- Barium titanate (BaTiO₃), having both Ba²⁺ and Ti⁴⁺ cations, falls into this classification. This material has a *perovskite crystal structure*
- Ba²⁺ ions are situated at all eight corners of the cube, and a single Ti⁴⁺ is at the cube center, with O²⁻ ions located at the center of each of the six faces.

Ba²⁺

Example: BaTiO₃, SrZrO₃, SrSnO₃

Summary of Some Common Ceramic Crystal Structures

Structure Name	Structure Type	Anion Packing	Coordination Number		
			Cation	Anion	Examples
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CsCl
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂
Perovskite	ABX_3	FCC	12 (A) 6 (B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃
Spinel	AB_2X_4	FCC	4 (A) 6 (B)	4	MgAl ₂ O ₄ , FeAl ₂ O ₄

Silicate Ceramics

Silicates are materials composed primarily of silicon and oxygen; the two most abundant elements in Earth's crust; consequently, the bulk of soils, rocks, clays, and sand come under the silicate classification

A silicon-oxygen (SiO₄ 4-) Tetrahedron

Various silicate structures arise from the different ways in which the SiO₄⁴⁻ units can be combined into one-, two-, and three dimensional arrangements.

-4 charge is associated with every SiO₄⁴⁻ tetrahedron because each of the four O atoms requires an extra electron to achieve a stable electronic structure.

Silica, silicon dioxide (SiO₂)

There are three primary polymorphic crystalline forms of silica:

Cristobalite, Quartz, tridymite

Material is electrically neutral

Unit cell of cristobalite

Silicates Ceramics

For the various silicate minerals, one, two, or three of the corner oxygen atoms of the SiO_4^{4-} tetrahedra are shared by other tetrahedra to form some rather complex structures.

Simple Silicates forsterite (Mg₂SiO₄), Akermanite (Ca₂MgSi₂O₇)

Positively charged cations such as Ca²⁺, Mg²⁺, and Al³⁺ serve two roles:

First, they compensate the negative charges from the SiO₄⁴⁻ units so that charge neutrality is achieved;

second, these cations ionically bond the SiO₄⁴⁻ tetrahedra together.

Five silicate ion structures formed from SiO₄⁴-tetrahedra

Layered Silicates

Two-dimensional silicate sheet structure (Si₂O₅)²⁻.

Electroneutrality is ordinarily established by a second planar sheet structure having an excess of cations, which bond to these unbonded oxygen atoms from the Si₂O₅ sheet

 $Al_2Si_2O_5(OH)_4$ china clay

Micas [KAI₃Si₃O₁₀(OH)₂]

NONCRYSTALLINE SOLIDS

Non-crystalline solids lack a systematic and regular arrangement of atoms over relatively large atomic distances. Sometimes such materials are also called **amorphous** (meaning literally "without form") or supercooled liquids, inasmuch as their atomic structure resembles that of a liquid.

Two-dimensional schemes of the structure of (a) crystalline silicon dioxide and (b) noncrystalline silicon dioxide.

- Silica/SiO₂ in the noncrystalline state is called *fused silica*, or *vitreous silica*
- Other oxides (e.g., B2O3 and GeO2) may also form glassy structures

The common inorganic glasses that are used for containers, windows, and so on are silica glasses to which have been added other oxides such as CaO and Na₂O.

Sodium Silicate Glasses

Schematic representation of ion positions in a sodium–silicate glass.

Electromagnetic Radiation Spectrum

X-ray Diffraction

X-ray diffraction is a method of determining the structure of a crystal from its diffraction pattern. X-ray diffraction techniques are based on the elastic scattering of x-rays from structures that have long range order

- ☐ Max von Laue was awarded the 1914 Nobel Prize in Physics for his discovery of the diffraction of X-rays by crystals.
- \Box He theorized that if X-rays were waves, the wavelengths must be extremely small (on the order of 10^{-10} meters)

X-Rays

Early experimental tubes like those used by Roentgen and others to investigate the nature of light.

- The famous radiograph made by Roentgen on 22 December 1895, and sent to physicist Franz Exner in Vienna.
- This is traditionally known as "the first X-ray picture" and "the radiograph of Mrs. Roentgen's hand."

Superposition of Waves

Constructive interference

Destructive interference

Small difference in phase

Bragg's Law

In 1915, William Henry Bragg and William Lawrence Bragg were awarded the Nobel Prize.

They discovered that diffraction of X-rays by solids could be treated as reflection from evenly spaced planes if monochromatic x-rays were used.

Bragg's law: Structural Analysis

Constructive interference of the scattered rays 1' and 2' occurs also at an angle θ to the planes if the path length difference between 1-P-1' and 2-Q-2' (i.e., SQ+QT) is equal to a whole number, n, of wavelengths.

Path difference should satisfy $n\lambda$ for constructive interference :

$$n\lambda = \overline{SQ} + \overline{QT}$$

where
$$n$$
 is an integer, the order of reflection

- $\ \square$ is the wavelength of the X-radiation d is the interplanar spacing
- $\ \square$ θ is the diffraction angle

$$n\lambda = d_{hkl}\sin\theta + d_{hkl}\sin\theta$$
$$= 2d_{hkl}\sin\theta$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$n\lambda = 2d\sin\theta$$

Bragg's law, is a necessary but not sufficient condition for diffraction by real crystals

Diffraction Techniques

Two perovskites: SrTiO₃ and CaTiO₃

 $a_{STO} = 3.905 \text{ Å}$

 $a_{CTO} = 3.795 \text{ Å}$

Differences:

- ☐ Peak position d-spacing.
- ☐ Peak intensity atom type

Reflection rules

Specific sets of crystallographic planes that do not give rise to diffracted beams depend on crystal structure.

- For SC, all sets of crystallographic planes are present
- For the BCC crystal structure, h + k + l must be even if diffraction is to occur,
- For FCC, h, k, and I must all be either odd or even

Crystal Structure	Reflections Present	Reflection Indices for First Six Planes
BCC	(h + k + l) even	110, 200, 211, 220, 310, 222
FCC	h, k, and l either all odd or all even	111, 200, 220, 311, 222, 400
Simple cubic	All	100, 110, 111, 200, 210, 211

Interpretation of X-Ray Data from unknown sample

$$n\lambda = 2d_{hkl}\sin\theta$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$\sin^2 \theta = \frac{\lambda^2 (h^2 + k^2 + 1^2)}{4a^2}$$

* For BCC structure, the first two sets of principal diffracting planes are {110} and {200}. XRD data can be used to determine crystal structure of metal with cubic crystal structures.

$$\frac{\sin^2 \theta_A}{\sin^2 \theta_B} = \frac{h_A^2 + k_A^2 + l_A^2}{h_B^2 + k_B^2 + l_B^2}$$

$$\frac{\sin^2 \theta_A}{\sin^2 \theta_B} = \frac{1^2 + 1^2 + 0^2}{2^2 + 0^2 + 0^2} = 0.5$$

$$\begin{array}{c}
\text{For FCC} \\
sin^2 \theta_A \\
sin^2 \theta_B
\end{array} = 0.75$$

If the crystal structure of the unknown metal is BCC, the ratio of the $\sin^2\theta$ that correspond to the first two principal diffracting planes will be 0.5

How to get Crystallographic information from single atomic layer?

Bulk layered Materials (Transition Metal Dichalcogenides (TMD), MoS2, WS2

Difficult to obtain information Related to crystal structure!

MoSe₂–WSe₂ lateral Heterostructure: Interface Study

P. K. Sahoo et al. Nature 2018

Electron Microscope (Wavelength ~ pm)

Honeycomb-like atomic arrangement: Monolayer film

2D sheets of MX₂ display the **1H-phase** with the **hexagonal D_{3h} point group symmetry**. The atomic-resolution Z-contrast images consist of a **honeycomb-like atomic arrangement**

MoSe₂–WSe₂ lateral Heterostructure: Coherent Interface

MoSe₂-WSe₂ on holy carbon Grid

P. Sahoo et al. Nature 2018
P. Sahoo et al. ACS Nano 2019

Fourier transform (FT): singlecrystalline structure, suggesting both interfaces result from an epitaxial lateral growth

In plane heterostructure: monolayers of MoSe₂–WSe₂

Summary

- 1. Understand how crystal have particular shape and size
- 2. Identify crystal structures
- 3. Assign crystallographic planes and directions
- 4. Crystal structures of metals and Ceramic
- 5. Using X-ray to identify crystal structure of unknown samples

Spinels

The **spinels** have the general chemical formula AB_2X_4 .

Octahedral site

