STATISTICĂ - LABORATOR 5 (partea I) METODA INTERVALELOR DE ÎNCREDERE

Fie caracteristica X, a cărei lege de probabilitate depinde de parametrul necunoscut $\theta \in \mathbb{R}$. Se consideră o selecție repetată de volum n. Fie X_1, \ldots, X_n variabilele de selecție. Se definesc următoarele funcții de selecție (statistici):

• media de selecţie (mean):

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{1}$$

• dispersia de selecţie (var):

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
 (2)

• abaterea standard de selecție (std):

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 (3)

Fie numărul $\alpha \in (0,1)$ numit **probabilitate de risc**.

 $1 - \alpha$ se numește probabilitate de încredere.

Definiție. Se numește **interval de încredere** pentru parametrul θ , corespunzător probabilității de încredere $1 - \alpha$, intervalul aleator

$$(\widehat{\theta}_1, \widehat{\theta}_2) = (\widehat{\theta}_1(X_1, \dots, X_n), \widehat{\theta}_2(X_1, \dots, X_n)),$$

cu proprietatea că

$$P\left(\theta \in \left(\widehat{\theta}_1, \widehat{\theta}_2\right)\right) = 1 - \alpha. \tag{4}$$

Interval de încredere pentru medie când dispersia este cunoscută

Fie caracteristica $X \sim N(m, \sigma)$, cu $\underline{m = E(X)}$ necunoscut și $\sigma = \sqrt{Var(X)}$ cunoscut. Statistica care se utilizează este :

$$Z = \frac{\overline{X} - m}{\frac{\sigma}{\sqrt{n}}},$$

care urmează legea normală N(0,1).

Intervalul de încredere pentru media teoretică m este:

$$(\widehat{m}_1, \widehat{m}_2) = \left(\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
 (5)

S-a notat cu $z_{1-\frac{\alpha}{2}}$ cuantila de ordin $1-\frac{\alpha}{2}$ pentru legea $N\left(0,1\right).$

Cuantila $z_{1-\frac{\alpha}{2}}$ verifică relația:

$$\Phi\left(z_{1-\frac{\alpha}{2}}\right) = 1 - \frac{\alpha}{2} \quad \text{sau, echivalent,} \quad z_{1-\frac{\alpha}{2}} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right),$$
(6)

unde Φ este funcția de repartiție a legii normale N(0,1).

Pentru calculul cuantilei $z_{1-\frac{\alpha}{2}}$ se folosește funcția Matlab <u>norminv</u>.

Observație: Pentru $n \geq 30$, din teorema limită centrală avem că rezultatele obținute pot fi aplicate pentru o caracteristică X ce urmează o lege de probabilitate oarecare.

Interval de încredere pentru medie când dispersia este necunoscută

Fie caracteristica $X \sim N\left(m,\sigma\right)$, cu m=E(X) necunoscut și $\sigma=\sqrt{Var(X)}$ necunoscut.

Deoarece abaterea standard σ e necunoscută, se utilizează abaterea standard de selecție:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Se construiește statistica:

$$T = \frac{\overline{X} - m}{\frac{s}{\sqrt{n}}},$$

care urmează legea T(n-1).

Intervalul de încredere pentru media teoretică m este:

$$(\widehat{m}_1, \widehat{m}_2) = \left(\overline{X} - t_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}, \ \overline{X} + t_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}\right)$$
 (7)

S-a notat cu $t_{1-\frac{\alpha}{2}}$ cuantila de ordin $1-\frac{\alpha}{2}$ a legii T(n-1).

Cuantila $t_{1-\frac{\alpha}{2}}$ verifică relația:

$$F_{n-1}(t_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}, \quad \text{adică} \quad t_{1-\frac{\alpha}{2}} = F_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right),$$
 (8)

unde F_{n-1} este funcția de repartiție a legii T(n-1).

Pentru calculul cuantilei $t_{1-\frac{\alpha}{2}}$ se folosește funcția Matlab <u>tinv</u>.

Observație: Pentru $n \geq 30$, rezultatele obținute pot fi aplicate pentru o caracteristică X ce urmează o lege de probabilitate oarecare.

Interval de încredere pentru dispersia legii normale

Fie caracteristica $X \sim N(m, \sigma)$, cu $\sigma = \sqrt{Var(X)} > 0$ necunoscut.

Se utilizează statistica:

$$V = \frac{(n-1) s^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2,$$

care urmează legea $\chi^2(n-1)$.

Intervalul de încredere pentru dispersia teoretică $\sigma^2 = Var(X)$ este:

$$(d_1, d_2) = \left(\frac{(n-1)s^2}{h_{1-\frac{\alpha}{2}}}, \frac{(n-1)s^2}{h_{\frac{\alpha}{2}}}\right)$$
(9)

S-au notat cu $h_{\frac{\alpha}{2}}$ şi $h_{1-\frac{\alpha}{2}}$ cuantilele de ordin $\frac{\alpha}{2}$ respectiv $1-\frac{\alpha}{2}$ pentru legea $\chi^2(n-1)$. Cuantilele verifică relațiile:

$$F_{n-1}\left(h_{\frac{\alpha}{2}}\right) = \frac{\alpha}{2} \qquad \text{si} \qquad F_{n-1}\left(h_{1-\frac{\alpha}{2}}\right) = 1 - \frac{\alpha}{2} \tag{10}$$

adică

$$h_{\frac{\alpha}{2}} = F_{n-1}^{-1} \left(\frac{\alpha}{2}\right)$$
 şi $h_{1-\frac{\alpha}{2}} = F_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right)$ (11)

unde F_{n-1} este funcția de repartiție a legii $\chi^2(n-1)$.

Pentru calculul cuantilelor $h_{\frac{\alpha}{2}}$ și $h_{1-\frac{\alpha}{2}}$ se folosește funcția Matlab <u>chi2inv</u>.

Intervalul de încredere pentru abaterea standard $\sigma = \sqrt{Var(X)}$ este:

$$\left(\sqrt{d_1}, \sqrt{d_2}\right) = \left(\sqrt{\frac{(n-1)s^2}{h_{1-\frac{\alpha}{2}}}} , \sqrt{\frac{(n-1)s^2}{h_{\frac{\alpha}{2}}}}\right)$$
 (12)