Problem §1 Let v = (2 + 2i, -1 + i).

- (a) Compute $\frac{1}{2} \cdot v$.
- (b) Compute $(3i) \cdot v$.
- (c) Compute $(-1+i) \cdot v$.

Solution:

- (a) $\frac{1}{2} \cdot v = (1+i, -\frac{1}{2} + \frac{1}{2}i).$
- (b) (3i)v = (-6 + 6i, -3 3i).
- (c) $(-1+i)v = ((-1+i)(2+2i), (-1+i)^2) = (-2-2i+2i-2, 1-2i-1) = (-4, -2i).$

Problem §2 For each of the following statements, write down its negation, then assert whether the original statement or the negation is true. Finally, prove your assertion.

- (a) There is some $\alpha \in \mathbb{C}$ such that $\alpha \cdot (1+i, 1-i) = (1,i)$.
- (b) For all $s \in \mathbb{C}$, there exists $t, u \in C$ such that (1, s) = t(u, -i).
- (c) In any field \mathbb{F} and given any $a, b \in \mathbb{F}$ such that $a \neq 0$, there is some $x \in \mathbb{F}$ such that ax = b.
- (d) For every $a,b\in\mathbb{Q}$ not both 0, there exist $c,d\in\mathbb{Q}$ such that the following equation holds true in \mathbb{R} :

$$\left(a + b\sqrt{3}\right)\left(c + d\sqrt{3}\right) = 1.$$

Solution:

(a) Negation: For all $\alpha \in \mathbb{C}$, $\alpha \cdot (1+i, 1-i) \neq (1, i)$. The **negation** is true.

Proof. Let $\alpha \in \mathbb{C}$. Then

$$\alpha + \alpha i = 1$$

 $\alpha - \alpha i = i.$

Plugging the second equation into the first equation, we get

$$\alpha + \alpha^{2}i + \alpha^{2} = 1$$
$$(\alpha^{2} + \alpha) + \alpha^{2}i = 1 + 0i.$$

From this, we observe that $\alpha^2 = 0$, and so $\alpha = 0$ as well. Then $\alpha^2 + \alpha = 0 \neq 1$, and so the negation is true. \Box

(b) Negation: There exists an $s \in \mathbb{C}$ such that for any $t, u \in \mathbb{C}, (1, s) \neq t \cdot (u, -i)$. The **negation** is true.

Proof. Let s=0. We observe that s=0=-ti, which holds true only when t=0; thus t=0 as well. Then $1 \neq t \cdot u = 0$.

(c) Negation: There exists a field \mathbb{F} and some $a, b \in \mathbb{F}, a \neq 0$ such that for any $x \in \mathbb{F}$, $ax \neq b$. The **original statement** is true.

1

Proof. Observe that

$$ax = b$$

$$a^{-1}ax = a^{-1}b$$

$$x = a^{-1}b.$$

By definition of a field, multiplication is closed; and since $a^{-1}, b \in \mathbb{F}$, $a^{-1}b \in \mathbb{F}$, and we choose $x = a^{-1}b$. \square

(d) Negation: There exists some $a, b \in \mathbb{Q}$, not both zero, such that for any $c, d \in \mathbb{Q}$,

$$(a+b\sqrt{3})(c+d\sqrt{3}) \neq 1.$$

The **original statement** is true.

Proof. Let $c = \frac{a}{a^2 - 3b^2}$, $d = -\frac{b}{a^2 - 3b^2}$. Then

$$(a+b\sqrt{3})\left(\frac{a}{a^2-3b^2} - \frac{b}{a^2-3b^2}\sqrt{3}\right)$$

$$= \frac{a^2}{a^2-3b^2} - \frac{3b^2}{a^2-3b^2}$$

$$= \frac{a^2-3b^2}{a^2-3b^2}$$
= 1

(We can do the final step, as we know that $a^2 - 3b^2 \neq 0$. If it were 0, then

$$a^2 - 3b^2 = 0$$
$$a^2 = 3b^2$$
$$a = b\sqrt{3}.$$

which is not possible since $a \in \mathbb{Q}$.) \square