

ESTRUTURA DE ÁLGEBRA DE BOOLE

- ▶ Vamos nos lembrar das *fbfs* da lógica proposicional e associar a elas certo tipo de função.
- ightharpoonup Suponha que uma fbf proposicional P tenha n letras de proposição.
- ▶ Então, cada linha da tabela-verdade da fbf associa um valor, V ou F, a uma n-upla de valores V/F.
- A tabela-verdade inteira define uma função $f: \{V, F\}^n \to \{V, F\}$.
- ▶ As funções associadas a tautologias são da forma $\{V,F\}^n \to \{V\}$, enquanto as associadas a contradições são da forma $\{V,F\}^n \to \{F\}$.

Por exemplo, a função $f:\{V,F\}^2 \to \{V,F\}$ para a
fbf $A \vee B'$ é dada pela tabela verdade ao lado.

	$\operatorname{Aqui} f(V, F)$	= V e f(F, V)	F) = F .
--	-------------------------------	---------------	------------

A	B	B'	$A \vee B'$
V	V	F	V
V	F	V	V
F	V	F	F
F	F	V	V

ESTRUTURA DE ÁLGEBRA DE BOOLE

Vamos relembrar as equivalências tautológicas, em que ∨ e ∧ denotam denotam a disjunção e a conjunção, respectivamente, A' denota a negação da proposição A, 0 denota qualquer contradição e 1 denota qualquer tautologia:

1a. $A \lor B = B \lor A$	1b. $A \wedge B = B \wedge A$	(comutatividade)
$2a. (A \lor B) \lor C = A \lor (B \lor C)$	2b. $(A \wedge B) \wedge C = A \wedge (B \wedge C)$	(associatividade)
$3a. A \lor (B \land C) = (A \lor B) \land (A \lor C)$	3b. $A \wedge (B \vee C) = (A \wedge B) \wedge (A \wedge C)$	(distributividade)
4a. $A \lor 0 = A$	4b. $A \land 1 = A$	(existência de elemen-
5a. $A \lor A' = 1$	5b. $A \wedge A' = 0$	tos neutros) (propriedades dos complementares)

▶ Mudando de contexto, já estudamos identidades básicas envolvendo conjuntos, onde encontramos a lista de identidades a seguir, em que \cup e \cap denotam a união e a interseção de conjuntos, respectivamente, A' é o complementar do conjunto A e \varnothing é o conjunto vazio.

ESTRUTURA DE ÁLGEBRA DE BOOLE

1a. $A \cup B = B \cup A$	1b. $A \cap B = B \cap A$	(comutatividade)
$2a. (A \cup B) \cup C = A \cup (B \cup C)$	2b. $(A \cap B) \cap C = A \cap (B \cap C)$	(associatividade)
3a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	3b. $A \cap (B \cup C) = (A \cap B) \cap (A \cap C)$	(distributividade)
$4a.\ A\cup\varnothing=A$	4b. $A \cap S = A$	(existência de elementos neutros)
5a. $A \cup A' = S$	5b. $A \cap A' = \emptyset$	(propriedades dos complementares)

- Essas duas listas de propriedades são inteiramente análogas: a disjunção de proposições e a união de conjuntos parecem ter o mesmo papel em seus respectivos ambientes; o mesmo ocorre com a conjunção de proposições e a interseção de conjuntos.
- ▶ Uma contradição parece corresponder ao conjunto vazio e uma tautologia, ao conjunto universo *S*.
- Que conclusão podemos tirar dessa semelhança?

- Parece que encontramos dois exemplos diferentes—lógica proposicional e teoria dos conjuntos que têm propriedades comuns.
- Uma das especialidades do pensamento científico é a busca de padrões ou semelhanças entre diversos fenômenos observados.
- Serão essas semelhanças manifestações de um mesmo princípio geral subjacente?
- Princípios matemáticos são modelos ou generalizações que têm como objetivo capturar propriedades que podem ser comuns a exemplos ou manifestações diferentes.
- Esses princípios são expressos, algumas vezes, como estruturas matemáticas—conjuntos abstratos de objetos, junto com operações sobre esses objetos, ou relações entre eles, que obedecem a certas regras.

- Parece razoável abstrair as propriedades em comum (equivalências tautológicas e identidades envolvendo conjuntos) para fbfs proposicionais e teoria dos conjuntos.
- ▶ Definiremos em breve, portanto, uma estrutura matemática chamada de **álgebra de Boole** que incorpora essas propriedades.
- Vamos caracterizar formalmente as semelhanças entre a lógica proposicional e a teoria dos conjuntos.
- Em cada caso, estamos falando sobre elementos de um conjunto: um conjunto de *fbfs* ou um conjunto de subconjuntos de um conjunto *S*.
- Em cada caso temos duas operações binárias e uma operação unária que age nos elementos do conjunto: disjunção/conjunção/negação ou união/interseção/complementação.
- \blacktriangleright Em cada caso, existem dois elementos diferenciados no conjunto: 0/1 ou \varnothing/S .

▶ Finalmente, são válidas 10 propriedades em cada caso. Sempre que todas essas características estiverem presentes, dizemos que temos uma álgebra de Boole.

Álgebra de Boole

Uma álgebra de Boole é um conjunto B no qual estão definidas duas operações binárias, + e \cdot , e uma operação unária, \prime , e que contém dois elementos distintos, 0 e 1, tais que as seguintes propriedades são válidas, quaisquer que sejam $x,y,z\in B$:

1a. $x + y = y + x$	1b. $x \cdot y = y \cdot x$	(comutatividade)
2a. $(x + y) + z = x + (y \cdot z)$	2b. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(associatividade)
$3a. x + (y \cdot z) = (x + y) \cdot (x + z)$	3b. $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$	(distributividade)
4a. $x + 0 = x$	4b. $x \cdot 1 = x$	(existência de elementos
5a. $x + x' = 1$	$5b. \ x \cdot x' = 0$	neutros) (propriedades dos complementares)

- ▶ O que é, então, a estrutura de álgebra de Boole? É uma formalização que generaliza, ou modela, os dois casos que consideramos.
- ▶ Vamos denotar uma álgebra de Boole por $[B, +, \cdot, ', 0, 1]$.

Exemplo

Seja $B = \{0, 1\}$ (o conjunto formado pelos inteiros 0 e 1) e defina operações binárias $+ e \cdot em B$ por x + y = max(x, y) e $x \cdot y = min(x y)$. Podemos ilustrar essas operações de $+ e \cdot pelas$ tabelas a seguir.

+	0	1			0	1
0	0	1)	0	0
1	1	1	1	1	0	1

Exemplo (continuação)

Pode-se definir uma operação unária (') por meio de uma tabela, como a seguir.

′	
0	1
1	0

Assim, 0' = 1 e 1' = 0. Então, $[B, +, \cdot, ', 0, 1]$ é uma álgebra de Boole. Podemos provar as 10 propriedades verificando todos os casos possíveis. Por exemplo, para a propriedade 2b, a associatividade de \cdot , temos que

$$(0\cdot 0)\cdot 0=0\cdot (0\cdot 0)=0$$

$$(1 \cdot 0) \cdot 0 = 1 \cdot (0 \cdot 0) = 0$$

$$(0\cdot 0)\cdot 1=0\cdot (0\cdot 1)=0$$

$$(1\cdot 0)\cdot 1=1\cdot (0\cdot 1)=0$$

$$(0\cdot 1)\cdot 0=0\cdot (1\cdot 0)=0$$

$$(1\cdot 1)\cdot 0=1\cdot (1\cdot 0)=0$$

$$(0\cdot 1)\cdot 1=0\cdot (1\cdot 1)=0$$

$$(1\cdot 1)\cdot 1=1\cdot (1\cdot 1)=1$$

- Existem muitas outras propriedades que são válidas em qualquer álgebra de Boole.
- Podemos provar essas propriedades adicionais usando as propriedades dadas na definição.

Exemplo

A idempotência da soma

$$x + x = x$$

é válida em qualquer álgebra de Boole, pois

$$x + x = (x + x) \cdot 1$$

$$= (x + x) \cdot (x + x')$$

$$= x + (x \cdot x')$$

$$= x + 0$$

$$= x$$

$$(4b)$$

$$(5a)$$

$$(3a)$$

$$(5b)$$

$$= x$$

$$(4a)$$

- ▶ Embora a aritmética usual dos inteiros tenha muitas das propriedades de uma álgebra de Boole, a idempotência da soma deve convencê-lo de que os inteiros não formam uma álgebra de Boole.
- A propriedade x + x = x não é válida para os inteiros com a soma usual, a não ser que x seja nulo.
- No exemplo anterior, usamos a propriedade (5a) para substituir 1 por x + x'.
- ▶ As propriedades de álgebra de Boole são identidades, e a expressão em um dos lados do sinal de igual pode ser substituída pela do outro lado.
- As propriedades (ou regras) de álgebras de Boole são como as regras de equivalência em lógica; para se aplicar a regra, sua situação tem que ser idêntica à expressão na regra.

▶ Por exemplo, podemos substituir

$$(y \cdot z) + x$$
 por $x + (y \cdot z)$

usando a propriedade (1a), pois $(y \cdot z) + x$ é idêntica à expressão do lado direito do sinal de igual, com y representando o elemento $y \cdot z$ da álgebra de Boole, e $x + (y \cdot z)$ é idêntica à expressão do lado esquerdo do sinal de igual, com a mesma interpretação para y.

► Não podemos afirmar que

$$x + (y \cdot z) = (x \cdot y) + (x \cdot z)$$

usando a propriedade (3a) ou a (3b), pois misturamos as duas propriedades. E não podemos, formalmente, substituir

$$(y \cdot z) + x$$
 por $(y+x) \cdot (z+x)$

e dizer que estamos usando a propriedade (3a), pois a soma na propriedade (3a) está à esquerda da multiplicação.

► Temos que argumentar da seguinte forma:

$$(y \cdot z) + x = x + (y \cdot z)$$
 (1a)
= $(x + y) \cdot (x + z)$ (3a)
= $(y + x) \cdot (z + x)$ (1a duas vezes)

No entanto, usaremos a associatividade implicitamente muitas vezes, escrevendo

$$x + y + z$$

sem parênteses.

- Cada propriedade na definição de álgebra de Boole tem a sua propriedade dual como parte da definição, em que a dual é obtida permutando-se + com ⋅ e 1 com 0.
- Por exemplo, x + 0 = x é dual de $x \cdot 1 = x$. Portanto, cada vez que uma nova propriedade P de uma álgebra de Boole for demonstrada, cada passo na demonstração poderá ser substituído por seu dual.

- Se x for um elemento de uma álgebra de Boole B, o elemento x' será chamado de complementar de x (pegando emprestada a terminologia de conjuntos).
- O complementar de *x* satisfaz

$$x + x' = 1 \qquad \text{e} \qquad x \cdot x' = 0$$

O teorema a seguir resume este fato.

Teorema sobre a unicidade do complementar

Dado um elemento x em uma álgebra de Boole, se existir um elemento x_1 tal que

$$x + x_1 = 1$$
 e $x \cdot x_1 = 0$

então $x_1 = x'$.

- ► Em 1938, o matemático americano Claude Shannon percebeu o paralelo entre lógica proposicional e lógica de circuitos, e compreendeu que álgebras de Boole poderiam ter um papel importante na sistematização desse novo ramo da eletrônica.
- ▶ Vamos imaginar que **descargas elétricas** conduzidas ao longo de fios são de dois tipos, alta ou baixa, que representaremos por 1 e 0, respectivamente.
- As flutuações de voltagem dentro de cada tipo são ignoradas, de modo que estamos colocando uma máscara discreta (binária, de fato) em um fenômeno analógico.
- Vamos supor, também, que os interruptores são colocados de modo que um sinal de 1 faz com que o interruptor feche e um sinal de 0 faz com que ele abra.

- ▶ Vamos agora **combinar** dois desses interruptores, controlados pelos fios x_1 e x_2 , em paralelo.
- ➤ Se um dos fios (ou ambos) carregar um valor 1, um dos interruptores (ou ambos) ficará fechado e a voltagem na saída será 1.
- No entanto, valores de $x_1 = 0$ e $x_2 = 0$ fazem com que ambos os interruptores sejam abertos, quebrando o circuito, de modo que o nível de voltagem na saída será 0.

x_1	x_2	Saída
1	1	1
1	0	1
0	1	1
0	0	0

- A tabela ao lado resume o comportamento do circuito.
- ➤ Substituindo 1 por V e 0 por F na tabela, obtém-se a tabelaverdade para o **conectivo lógico da disjunção**.
- ► A disjunção é um exemplo da operação + de uma álgebra de Boole no contexto de lógica proposicional.
- ▶ Podemos, então, considerar o circuito de maneira mais abstrata como um dispositivo eletrônico que implementa a operação booleana +.
- ▶ Analogamente, a conjunção e a negação são exemplos das operações booleanas · e ′, respectivamente, no contexto das proposições lógicas.
- ▶ Outros dispositivos efetuam essas operações booleanas. Interruptores em série, por exemplo, serviriam para implementar a operação ·; ambos os interruptores teriam que estar fechados ($x_1 = 1$ e $x_2 = 1$) para se obter uma saída de 1.
- ➤ Vamos ignorar, entretanto, os detalhes de implementação de tais dispositivos.

- ▶ A **porta lógica OU** se comporta como a operação booleana +; a **porta lógica E** representa a operação booleana ·; O inversor (negação) corresponde à operação booleana unária ′.
- Devido à associatividade das operações + e ⋅, as portas lógicas OU e E podem ter mais de duas entradas.

Funções Booleana

Uma função booleana é uma função f tal que $f: \{0,1\}^n \to \{0,1\}$ para algum inteiro $n \ge 1$.

A notação $\{0,1\}^n$ representa o conjunto de todas as n-uplas formadas por 0 e 1. Uma função booleana, então, associa um valor 0 ou 1 a cada uma dessas n-uplas.

- A tabela-verdade para a operação booleana + descreve uma função booleana f com n=2.
- O domínio $\operatorname{de} f \in \{(1,1), (1,0), (0,1), (0,0)\} \text{ } \operatorname{e} f(1,1) = 1, f(1,0) = 1, f(0,1) = 1 \text{ } \operatorname{e} f(0,0) = 0.$
- Analogamente, a operação booleana \cdot descreve uma função booleana diferente com n=2, e a operação booleana ' descreve uma função booleana com n=1.

Exemplo

A expressão booleana $x_1x_2' + x_3$ define a função booleana que pode ser representada pela tabelaverdade abaixo.

x_1	x_2	x_3	$x_1x_2' + x_3$
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

CIRCUITOS E EXPRESSÕES

- Está na hora de ver como essas ideias de portas lógicas, expressões booleanas e funções booleanas estão relacionadas.
- ► Combinando as **portas lógicas E, OU e inversores**, podemos construir um **circuito lógico** que representa uma **expressão booleana** dada e produz a mesma **função booleana** que essa expressão.
- ightharpoonup Por exemplo, o circuito lógico para a expressão booleana $x_1x_2' + x_3$ está ilustrado na figura abaixo.

CIRCUITOS E EXPRESSÕES

Exercícios

1) Dado o circuito lógico da figura abaixo, forneça a sua expressão booleana associada.

- 2) Desenhe o circuito lógico associado às expressões booleanas:
 - (a) $Y = (A \cdot B)' + (A' + C)'$
 - (b) $Y = A \cdot B \cdot C + A \cdot B' \cdot C + A' \cdot B$