

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Los 4 primeros ejercicios se puntuarán sobre un máximo de 2,25 puntos, y el quinto ejercicio sobre un máximo de 1 punto. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. **Deben figurar explícitamente las operaciones no triviales**, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- a) Sea $M = \begin{pmatrix} 1 & 2 \\ 3 & a \end{pmatrix}$. Estudiar, en función del parámetro a, cuando M posee inversa.

(0,5 puntos)

b) Siendo
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$$
, calcular A^2 y A^{-1} .

(1,75 puntos)

E2.- a) Consideremos los puntos P(-1, -4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R. (1,25 puntos)

b) Calcular α para que el punto $S(3, \alpha, 2)$, pertenezca al plano $\pi \equiv x + y - 2z + 5 = 0$.

(1 punto)

E3.- a) Dada la función $f(x) = \begin{cases} x, & \text{si } x < 0 \\ x^2 + ax, & \text{si } x \ge 0 \end{cases}$, calcular a para que f sea derivable en

$$x = 0.$$
 (1 punto)

b) Hallar a, b y c para que la función $f(x) = ax^2 + b \operatorname{sen} x + c$ verifique f(0) = 0,

$$f'(0) = 1 \text{ y } f''(0) = 2.$$
 (1,25 puntos)

E4.- a) Calcular
$$\lim_{x\to 0} \frac{e^{x}-e^{(x^2)}}{x}$$
. (1 punto)

b) Hallar el área de la región del plano comprendida entre las gráficas de las funciones

$$f(x) = -x^2$$
, $g(x) = x^2 - 2$. (1,25 puntos)

E5.- De una bolsa con 2 bolas blancas, 2 negras y 2 amarillas se extraen dos sin devolución (es decir, una vez extraída una bola no se vuelve a poner en la bolsa). Calcular la probabilidad de que las dos sean blancas. (1 punto)

OPCIÓN B

E1.- a) Discutir según los valores del parámetro m el sistema de ecuaciones lineales $\begin{cases} mx + y + z = 1 \\ x + y + 2z = 1 \end{cases}$ (1,25 puntos)

- **b)** Resolverlo para m = 1. (1 punto)
- **E2.- a)** Calcular la ecuación de la recta que pasa por el punto P(2,3,4) y es perpendicular al plano $\pi \equiv x + y + 2z + 4 = 0$. (1,25 puntos)
- **b**) Calcular a para que las rectas $r \equiv x 1 = y 2 = \frac{z 2}{2}$, $s \equiv \frac{x 1}{a} = \frac{y 2}{2} = \frac{z 2}{3}$ sean perpendiculares. (1 punto)
- E3.- Consideremos la función $f(x) = \frac{x^2+1}{x^2+2}$. Calcular el dominio, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos. Esbozar su gráfica. (2,25 puntos)

E4.- a) Calcular
$$\lim_{x\to 0} \frac{xe^x - \sin x}{x^2}$$
. (1,25 puntos)

- **b)** Calcular $\int ln(x)dx$. (1 punto)
- E5.- Se tiran al aire, simultáneamente, un dado (con forma cúbica) y una moneda. Teniendo en cuenta que los sucesos son independientes. ¿Cuál es la probabilidad de que en el dado salga un 5 y de que en la moneda salga cara? (1 punto)