$D=\{f,h,k\}$

1

Universidade Federal de Santa Catarina Centro Tecnológico - Depto de Informática e Estatística

INE5403-Fundamentos de Matemática Discreta para a Computação Prof. Daniel S. Freitas

Cap. 1 - Fundamentos Gerais

- 1.1) Conjuntos e Sub-conjuntos
- 1.2) Següências e somas

1.1) CONJUNTOS:

- (Kolman5-seção 1.2-exs. 1-4) .Para os próximos 4 exercícios, considere: U={a,b,c,d,e,f,g,h,k} A={a,b,c,g} B={d,e,f,g} C={a,c,f}
- 1) Compute: a) $A \cup B$ b) $B \cup C$ c) $A \cap C$ d) $B \cap D$ e) A B f) \overline{A} g) $A \oplus B$ h) $A \oplus C$
- 2) Compute: a) $A \cup D$ b) $B \cup D$ c) $C \cap D$ d) $A \cap D$ e) $B \cdot C$ f) $C \cdot B$ g) \overline{B} h) $C \oplus D$
- 3) Compute: a) $A \cup B \cup C$ b) $A \cap B \cap C$ c) $A \cap (B \cup C)$ d) $(A \cup B) \cap C$ e) $\overline{A \cup B}$ f) $\overline{A \cap B}$
- 4) Compute: a) $A \cup \emptyset$ b) $A \cap U$ c) $B \cup B$ d) $C \cap \emptyset$ e) $\overline{C \cup D}$ f) $\overline{C \cap D}$
- (Kolman5-seção 1.2-exs. 5-8) . Para os próximos 4 exercícios, considere: $U=\{1,2,3,4,5,6,7,8,9\}$ $A=\{1,2,4,6,8\}$ $B=\{2,4,5,9\}$ $C=\{x \mid x \text{ é um inteiro positivo e } x^2 \leq 16\}$ $D=\{7,8\}$
- 5) Compute: a) $A \cup B$ b) $A \cup C$ c) $A \cap C$ d) $C \cap D$ e) A B f) B A g) \overline{A} h) $A \oplus B$
- 6) Compute: a) $A \cup D$ b) $B \cup C$ c) $A \cap D$ d) $B \cap C$ e) $C \cdot D$ f) \overline{C} g) $C \oplus D$ h) $B \oplus C$
- 7) Compute: a) $A \cup B \cup C$ b) $B \cup C \cup D$ c) $A \cap B \cap C$ d) $B \cap C \cap D$ e) $A \cup A$ f) $A \cap \overline{A}$
- 8) Compute: a) $\overline{A \cup B}$ b) $\overline{A \cap B}$ c) $A \cap (B \cup C)$ d) $(A \cup B) \cap D$ e) $A \cup \overline{A}$ f) $A \cap (\overline{C} \cup D)$
- (Kolman5-seção 1.2-exs. 9-10) . Para os próximos 2 exercícios, considere: U={a,b,c,d,e,f,g,h} A={a,c,f,g} B={a,e} C={b,h}
- 9) Compute: a) \overline{A} b) \overline{B} c) $\overline{A \cup B}$ d) $\overline{A \cap B}$ e) \overline{U} f) A-B
- $10) \ \, \text{Compute:} \ \ \, \text{a)} \ \, \overline{A} \cap \overline{B} \qquad \text{b)} \ \, \overline{B} \cup \overline{C} \qquad \text{c)} \ \, \overline{A \cup A} \qquad \text{d)} \ \, \overline{C \cap C} \qquad \text{e)} \ \, \text{A} \oplus \text{B} \qquad \text{f)} \ \, \text{B} \oplus \text{C}$
- (Kolman5-seção 1.2-ex. 11) . Para o exercício a seguir, considere:
 U=conjunto de todos os números reais A={x | x é uma solução de x²-1=0} B=[-1,4]
- 11) Compute: a) \overline{A} b) \overline{B} c) $\overline{A \cup B}$ d) $\overline{A \cap B}$
- (Kolman5-seção 1.2-exs. 12-13] . Os 2 exercícios a seguir referem-se à seguinte figura:

- 12) Responda com V ou F:
 - a) $y \in A \cap B$ b) $x \in B \cup C$ c) $w \in B \cap C$ d) $u \notin C$
- 13) Responda com V ou F:
 - a) $x \in A \cap B \cap C$ b) $y \in A \cup B \cup C$ c) $z \in A \cap C$ d) $v \in B \cap C$

14) (Kolman5-seção 1.2-ex. 14) Expresse a região sombreada mostrada na figura abaixo em termos e uniões e intersecções dos conjuntos A, B e C (várias respostas são possíveis).

- 15) (Kolman5-seção 1.2-ex. 15) Sejam A, B e C conjuntos finitos com |A|=6, |B|=8, |C|=6, $|A \cup B \cup C|=11$, $|A \cap B|=3$, $|A \cap C|=2$ e $|B \cap C|=5$. Encontre $|A \cap B \cap C|$.
- 16) (Kolman5-seção 1.3-exs. 16a,17a,18a) Verifique o teorema da inclusão e exclusão ("Se A e B são conjuntos finitos, então |A∪B|=|A|+|B|-|A∩B|") para os seguintes conjuntos:
 - a) $A=\{1,2,3,4\}, B=\{2,3,5,6,8\}$
 - b) $A=\{a,b,c,d,e,f\}, B=\{a,c,f,g,h,i,r\}$
 - c) $A=\{x \mid x \text{ \'e um inteiro positivo } < 8\}$, $B=\{x \mid x \text{ \'e um inteiro tal que } 2 \le x \le 5\}$
- 17) (Kolman5-seção 1.2-ex. 19) Se A e B são conjuntos disjuntos tais que $|A \cup B| = |A|$, o que podemos dizer sobre B?
- 18) (Kolman5-seção 1.2-exs. 20,21,22) Verifique o teorema da inclusão e exclusão para 3 conjuntos ("Se A, B e C são conjuntos finitos, então $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$ ") para os seguintes conjuntos:
 - a) $A=\{a,b,c,d,e\}, B=\{d,e,f,g,h,i,k\}, C=\{a,c,d,e,k,r,s,t\}$
 - b) $A=\{1,2,3,4,5,6\}, B=\{2,4,7,8,9\}, C=\{1,2,4,7,10,12\}$
 - c) A={x| x é um inteiro positivo < 8}, B={x| x é um inteiro tal que $2 \le x \le 4$ }, C={x| x é um inteiro tal que $x^2 < 16$ }
- 19) (Kolman5-seção 1.2-ex. 31) Prove que $A \cap B \subseteq A$.