Algebra: Chapter 0 Exercises

Chapter 3, Section 5 Modules over a ring

David Melendez

September 8, 2018

Problem 5.5. Let R be a commutative ring, viewed as an R-module over itself, and let M be an R-module. Prove that $\operatorname{Hom}_{R-\operatorname{\mathbf{Mod}}}(R,M)\cong M$ as R-modules.

Solution. Let $\varphi: M \to \operatorname{Hom}_{R-\operatorname{\mathbf{Mod}}}(R,M)$ be the function defined by

$$\varphi(m)(r) = rm.$$

Then note that

$$\varphi(m+n)(r) = r(m+n)$$

$$= rm + rn$$

$$= \varphi(m)(r) + \varphi(n)(r)$$

$$= (\varphi(m) + \varphi(n))(r),$$

and

$$\varphi(sm)(r) = r(sm)$$

$$= (rs)m$$

$$= (sr)m$$

$$= s(rm)$$

$$= s\varphi(m)(r)$$

$$= (s\varphi(m))(r),$$

and so φ is an $R - \mathbf{Mod}$ homomorphism. Additionally, we have:

$$\varphi(m)(r+s) = (r+s)m$$

$$= rm + sm$$

$$= \varphi(m)(r) + \varphi(n)(r)$$

and

$$\varphi(m)(rs) = (rs)m$$

$$= r(sm)$$

$$= r\varphi(m)(s),$$

and so $\varphi(m)$ is an $R-\mathbf{Mod}$ homomorphism for all $m \in M$.

Now, to prove that φ is injective, note that if $\varphi(m) = 0$, then $m = 1_R m = \varphi(m)(1) = 0$, and so φ is injective. For surjectivity, we need the following insight: For all $m \in M$ and $r \in R$, we have

$$\varphi(m)(r) = \varphi(m)(r \cdot 1_R)$$
$$= r\varphi(m)(1_R),$$

and so if $\psi \in \operatorname{Hom}_{R-\operatorname{Mod}}(R, M)$, then we have, for all $r \in R$,

$$\psi(r) = r\psi(1_R)$$

= $\varphi(\psi(1_R)(r);$

thus, ψ is in the image of φ and φ is surjective. Therefore, ψ is an isomorphism and the modules are isomorphic as desired.

Problem 5.6. Let G be an abelian group. Prove that if G has a structure of \mathbb{Q} -vector space, then it has only one such structure. (Hint: First prove that every element of G has necessarily infinite order. Alternative hint: The unique ring homomorphism $\mathbb{Z} \to \mathbb{Q}$ is an epimorphism.)

Solution. Let G be an abelian group. A \mathbb{Q} -vector space structure on G is precisely a ring homomorphism $\sigma: G \to \operatorname{Hom}_{\mathbf{Ab}}(G)$. Let σ_1, σ_2 , then, be two of these ring homomorphisms. Note that σ_1 and σ_2 agree on the integers, as if we view \mathbb{Q} and $\operatorname{Hom}_{\mathbf{Ab}}(G)$ as \mathbb{Z} -modules, we then have, for all $n \in \mathbb{Z}$,

$$\varphi_1(n) = \varphi_1(n \cdot 1)$$

$$= n \cdot \varphi_1(1)$$

$$= n \cdot id$$

$$= n \cdot \varphi_2(1)$$

$$= \varphi_2(n \cdot 1)$$

$$= \varphi_2(n).$$

Thus, if $\iota : \mathbb{Z} \to \mathbb{Q}$ is the unique ring homomorphism $\mathbb{Z} \to \mathbb{Q}$, i.e. the inclusion, we have $\sigma_1 \iota = \sigma_2 \iota$. Since ι is a ring epimorphism, this then implies that $\sigma_1 = \sigma_2$, and so there is only one \mathbb{Q} -vector space structure on \mathbb{G} , as desired.

Problem 5.7. Let K be a field, and let $k \subseteq K$ be a subfield of K. Show that K is a vector space over k (and in fact a k-algebra) in a natural way. In this situation, we say that K is an *extension* of k.

Solution. Note that the inclusion $\sigma: k \to \operatorname{Hom}_{\mathbf{Ab}}(K)$ is a ring homomorphism, and thus a natural k-vector space structure on K. This σ also gives us a k-algebra structure on K since the center of K is K itself, and so im $\sigma \subseteq Z(K)$.

More explicitly, the "scalar" multiplication κx for $\kappa \in k$ and $x \in K$ is just multiplication within the field K, and the k-algebra structure on K also consists of multiplication as defined in the field K.

Problem 5.8. What is the initial object of the category *R*-Alg?

j++j