SCRIBE

Instructors: Purushottam Kar, Neeraj Misra

Authors: Gurpreet Singh Date: Decemenber 1, 2017

Equality and Inequalities in Distributions

Equality in Distribution

Definition 6.1. Two random variables X and Y are said to have the same distribution $(X \stackrel{d}{=} Y)$ if they have the same C.D.F. i.e. $F_X(x) = F_Y(x) \,\forall x \in \mathbb{R}$

Result 6.1.1. Let X and Y be two random variables with p.m.f / p.d.f f_X and f_Y respectively. Then

- (i) $f_X(x) = f_Y(x), \ \forall x \in \mathbb{R} \iff X \stackrel{d}{=} Y$
- (ii) for some h > 0, $M_X(t) = M_u(t)$, $\forall t \in (-h, h) \implies X \stackrel{d}{=} Y$
- (iii) $X \stackrel{d}{=} Y \implies h(X) \stackrel{d}{=} h(Y)$ for any function $h: \mathbb{R} \to \mathbb{R}$

Definition 6.2 (Symmetric Distribution). A random variable X is said to have a symmetric distribution about a point $\mu \in \mathbb{R}$ if $X - \mu \stackrel{d}{=} \mu - X$

Result 6.2.1. Let X be a random variable with p.m.f / p.d.f f_X and CDF F_X . Then for some $\mu \in \mathbb{R}$

- (i) If $f_X(x-\mu) = f_X(\mu-x)$, $\forall x \in \mathbb{R}$, then the distribution of X is symmetric about μ
- (ii) Distribution of X is symmetric about μ iff $\forall x \in \mathbb{R}, F_X(\mu + x) + F_X((\mu x)^-) = 1$
- (iii) If distribution of X is symmetric about μ and $\mathbb{E}[X]$ exists, then $\mathbb{E}[X] = \mu$
- (iv) If distribution of X is symmetric about μ , then $F_X(\mu^-) \leq \frac{1}{2} \leq F_X(\mu)$ (Equality holds if F_X is continuous)
- (v) If distribution of X is symmetric about μ , then $\mathbb{E}\left[\left(X-\mu\right)^{2m-1}\right]=0$ where $m\in\{1,2\ldots\}$ provided the moments exist

Inequalities

Definition 6.3. A function $\phi:(a,b)\to\mathbb{R}$, where $a,b\in\mathbb{R}$ is said to be

- (i) **convex** if $\phi(\alpha x + (1 \alpha)y) \le \alpha \phi(x) + (1 \alpha)\phi(y)$
- (ii) **concave** if $\phi(\alpha x + (1 \alpha)y) \ge \alpha \phi(x) + (1 \alpha)\phi(y)$

We use the concept of convexity (concavity) to derive some inqualities for prabability distributions.

Result 6.3.1. If a function $\phi:(a,b)\to\mathbb{R}$ is a convex (concave) function and is differentiable on (a,b), then ϕ' is increasing (decreasing) on (a, b).

A popular inequality derived using the nature of functions is Jensen Inequality

Result 6.3.2 (Jensen Inequality). Let X be a random variable with support $S_X \subseteq (a,b)$ and let $\phi:(a,b)\to\infty$ be a function, where $a, b \in \mathbb{R}$. Then

1. if ϕ is a *convex* function,

$$\mathbb{E}\left[\phi(X)\right] \geq \phi(\mathbb{E}\left[X\right])$$

2. if ϕ is a *concave* function,

$$\mathbb{E}\left[\phi(X)\right] \leq \phi(\mathbb{E}\left[X\right])$$

Concentration (Tail) Bounds

Concentration inequalities provide bounds on how a random variable deviates from some value.

The base of many of the inequalities or bounds derived in probability theory is based on the following inequality.

Theorem 6.1. Let $g: \mathbb{R} \to [0, \infty)$ be a non-negative function such that $\mathbb{E}[g(X)] < \infty$. Then, for any c > 0,

$$\mathbb{P}\left[g(X) > c\right] \le \frac{\mathbb{E}\left[g(X)\right]}{c}$$

Proof. (For absolutely continuous case) Let $A = \{x \in \mathbb{R} \mid g(x) > c\}$. Then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$= \int_{A} g(x) f_X(x) dx + \int_{A^c} g(x) f_X(x) dx$$

$$\geq \int_{A} g(x) f_X(x) dx$$

$$\geq c \int_{A} f_X(x) dx$$

$$= c \cdot \mathbb{P}[g(X) > c]$$

Hence, we can say

$$\mathbb{P}[g(X) > c] \le \frac{\mathbb{E}[g(X)]}{c}$$

Exercise 6.1. Prove the above theorem for the discrete case

Corollary 6.2. Let r, c > 0, then if $\mathbb{E}[|X|^r]$ exists

$$\mathbb{P}[|X| > c] \leq \frac{\mathbb{E}[|X|^r]}{c^r}$$

We can now discuss various inequalities and bounds for random variables

1. Markov Inequality

Suppose that $\mathbb{E}[|X|]$ exists, then

$$\mathbb{P}[|X| > c] \leq \frac{\mathbb{E}[|X|]}{c}$$

2. Chebychev Inequality

Let X be a random variable with finite mean $\mu = \mathbb{E}[X]$ and finite variance $\sigma^2 = \text{Var}(X)$. Then for any $\epsilon > 0$

$$\mathbb{P}[|X - \mu| > \epsilon \sigma] \le \frac{1}{\epsilon^2}$$

3. Chernoff's Bound

Suppose we have N independent and identical random variables $\{X_n\}_{n\in[N]}$ such that $\forall\,n\in[N]$, $X_n\in\{0,1\}$ and $\mathbb{E}\left[\,X_n\,\right]=p$. Then for every $\epsilon\in(0,1)$

$$\mathbb{P}\left[\overline{X} > (1+\epsilon) \cdot p\right] \leq \exp\left(\frac{-N\epsilon^2 p}{3}\right)$$

$$\mathbb{P}\left[\overline{X} < (1-\epsilon) \cdot p\right] \leq \exp\left(\frac{-N\epsilon^2 p}{2}\right)$$

$$\implies \mathbb{P}\left[\left|\overline{X} - \mathbb{E}\left[X\right]\right| < \epsilon \cdot \mathbb{E}\left[X\right]\right] \leq 2\exp\left(\frac{-N\epsilon^2 \cdot \mathbb{E}\left[X\right]}{3}\right)$$

Proof. We aim to shift the problem to a form so that we can apply Markov's Inequality. Therefore

$$\begin{split} \mathbb{P}\left[\overline{X} < (1-\epsilon) \cdot \mathbb{E}\left[X\right]\right] &= \mathbb{P}\left[-s \cdot \overline{X} > -s \cdot (1-\epsilon) \cdot \mathbb{E}\left[X\right]\right] & [s > 0 \text{ is a scale parameter}] \\ &= \mathbb{P}\left[\exp\left(-s \cdot \overline{X}\right) > \exp\left(-s \cdot (1-\epsilon) \cdot \mathbb{E}\left[X\right]\right)\right] \\ &\leq \frac{\mathbb{E}\left[\exp\left(-s \cdot \overline{X}\right)\right]}{\exp\left(-s \cdot (1-\epsilon) \cdot \mathbb{E}\left[X\right]\right)} & [\text{Using Markovs' Inequality}] \\ &= \frac{\prod_{n \in [N]} \mathbb{E}\left[\exp\left(-\frac{s}{n} \cdot X_n\right)\right]}{\exp\left(-s \cdot (1-\epsilon) \cdot \mathbb{E}\left[X\right]\right)} \\ &= \left[\frac{1+p(e^{-t}-1)}{\exp\left(-t \cdot (1-\epsilon)p\right)}\right]^{N} & \left[t = \frac{s}{N} \text{ and } \mathbb{E}\left[X\right] = p\right] \\ &\leq \exp\left(Np(e^{-t}-1) + Npt \cdot (1-\epsilon)\right) \end{split}$$

Since we need to find the closest bound, we set the differential with respect to t as 0. Hence $t = -\ln(1 - \epsilon)$. Therefore

$$\mathbb{P}\left[\overline{X} < (1-\epsilon)\mathbb{E}\left[X\right]\right] \leq \exp\left[-Np\left(\epsilon + \ln\left(1-\epsilon\right)\left(1-\epsilon\right)\right)\right]$$

$$= \exp\left[-Np\left(\frac{\epsilon^2}{2} - (\dots)\right)\right] \qquad \text{[Using Taylor's Expansion for } \ln\left(1+x\right)\text{]}$$

$$\leq \exp\left(\frac{-N\epsilon^2 \cdot \mathbb{E}\left[X\right]}{2}\right)$$

Exercise 6.2. For the Chernoff's Bound discussed earlier,

- (i) prove the second inequality in i.e. $\mathbb{P}\left[\overline{X} > (1+\epsilon)\mathbb{E}\left[X\right]\right] \leq \exp\left(\frac{-n\epsilon^2\mathbb{E}\left[X\right]}{3}\right)$
- (ii) find out the term for the Chernoff's Bound if $\{X_n\}$ are independent Rademacher Variables *i.e.* $X_n \in \{-1,1\}$

We can also find a lower bound to the Chernoff's inequalities (Anti-Concentration Bound)

Theorem 6.3 (Lower Bounds for Sampling Algorithms — Canetti, Goldriech). For the same set of random variables as in Chernoff's Bound, we can show that

$$\mathbb{P}\left[\left|\overline{X} - \mathbb{E}\left[X\right]\right|\right] \geq \frac{1}{8e\pi} \exp\left(-4\epsilon^2 n \mathbb{E}\left[X\right]^2\right)$$