

Introduction 2

Teacher: Dr. Zhuo SU (苏卓)

E-mail: suzhuo3@mail.sysu.edu.cn

School of Data and Computer Science

Hardware revolution

- Moore's Law: every 12-18 months, computer power improves by factor of 2 in price / performance as size shrinks
- Newest CPUs are 64-bit with 2, 4, 6, 8, even up to 18 cores
- Intel Skylake consumer processor with 4 cores, 8 threads, and a fully featured graphics chip built in to the processor
- Significant advances in commodity graphics chips every 6 months vs. several years for general purpose CPUs
 - NVIDIA GeForce GTX Titan X... 3072 cores, 12GB memory, and 7 teraflops of processing power in a single chip

- Graphic subsystems
 - Offloads graphics processing from CPU to chip designed for doing graphics operations quickly
 - NVidia GeForce™, AMD Radeon™, and Intel HD and Iris Pro Graphics
 - GPUs originally designed to handle special-purpose graphics computations
 - Increasingly, GPUs used to parallelize other types of computation (known as GPGPU, or General-Purpose Computing on the Graphics Processing Unit)

- High-end PCs with hot graphics cards (nVidia GeForce™, AMD Radeon™)
 have supplanted graphics workstations
- Such PCs are clustered together over high speed buses or LANs to provide "scalable graphics" to drive tiled PowerWalls, Caves, etc.
- Also build GPU-clusters as number crunchers, e.g., protein folding, weather prediction
- Now accessible to consumers via technologies like NVIDIA's
 SLI (Scalable Link Interface) bridge

You can put multiple GPUs together in your computer using SLI.

Input Devices

- Mouse, tablet & stylus, multi-touch, force feedback, and other game controllers (e.g., Wii), scanner, digital camera (images, computer vision), etc.
- Body as interaction device (e.g. Kinect)

Xbox Kinect

Leap Motion

Nimble UX

- Many form factors
 - Smartphones/laptops/desktops/tablets
 - Smart watches
 - Head-mounted displays (HMDs)
 - 3D immersive virtual reality spaces

Android Phones

Tablets

Microsoft's first Surface

Apple Watch

Android Wear

Brown's old Cave

Microsoft Hololens

Oculus Rift

Google Cardboard

- Software Improvements
 - Algorithms and data structures
 - Modeling of materials
 - Rendering of natural phenomena
 - "Acceleration data structures" for ray tracing and other renderers
 - Parallelization
 - Most operations are embarrassingly parallel: changing value of one pixel is often independent of other pixels
 - Distributed and Cloud computing
 - Send operations into 'cloud', get back results, don't care how
 - Rendering even available as internet service!

- The 1950's
 - In 1950, the first visual display unit is designed for MIT's Whirlwind I Computer(旋风一号)

• In 1958, CalComp developed 565 drum plotter (滚筒绘图仪)

• In 1958, Gerber Company developed the first flat plotter (平板绘图仪)

- The 1950's
 - In the late of 1950's, The whirlwind team became assimilated into the creation of SAGE air defense system (semiautomatic ground environment)
 - Emerge of interactive computer graphics

• The 1960's

- Spacewar (stylized "Spacewar! 星际飞行") is one of the earliest digital computer video games. It is a two-player game, with each player taking control of a starship and attempting to destroy the other.
- Steve Russell, MIT for PDP-1

• The 1960's

 Sketchpad (aka Robot Draftsman) was a revolutionary computer program written by Ivan Sutherland in 1963 in the course of his PhD thesis, for which he received the Turing Award in 1988.

• The 1960's

- The Magnavox Odyssey (奥德赛) is the first commercial home video game console.
- The Odyssey was designed by Ralph H. Baer, assisted by engineers
 William Harrison and William Rusch. They began around 1966 and had a working prototype finished by 1968.

- The 1960's(CAD)
 - Professor Coons, the concept of "CAD" (Computer Aided Design) in 1958, Coons surface in 1964
 - In the late 1960's, a French engineer Pierre Bezier creates Bezier curves and Bezier surfaces that are now used in most CAD and computer graphics systems
 - UNISUR system for Car design in Renault
 - ACM Coons' award in 1985
 - Bezier and de Casteljau
 - Bezier and Forrest

• The 1970's

- E E 4 2 1 F T
- Fast development of Rasterizing Graphics
 - The concept of scan conversion(扫描转化), clipping (裁减) and surface hidden removal (消隐) and the corresponding algorithms.

Standardization

- In 1974, ACM SIGGRAPH formed the Graphics Standard Committee.
 - Core Graphics System (核心图形系统).
- ISO published CGI (Computer Graphics Interface), CGM, (Computer Graphics Metafile), GKS(Graphics Kernel system), PHIGS (Programmer's Hierarchical Interactive Graphics Standard).

- The 1970's (Rendering)
 - In 1970, Bouknight proposed the first lighting reflection model (flat shading)
 - In 1971, Gourand proposed "diffuse reflection + interpolation", which is called as Gourand shading
 - In 1975, Phong proposed a local lighting model **Phong shading**. (one of the most important and influential lighting model).

- The 1980's (Ray tracing 光线跟踪 and Radiosity 辐射度方法)
 - In 1980, Whitted proposed a ray tracing model, include light reflection (反射) and transmission (透射) effects.
 - A Milestone of CG.
 - Graphics Hardware

Silicon Graphics® Octane2™

Graphics workstations such as these have been replaced with commodity hardware (CPU + GPU), e.g., MaxBuilts + Nvidia cards

- The 1990's...
- Geometric Modeling:
 - Meshes,
 - Subdivision,
 - Implicit Surface,
 - Procedural,
 - Multi-resolution
- Rendering:
 - Volume Rendering,
 - Image-Based rendering,
 - Point-Based Rendering

• ...

- The 2000's...
 - 3D Scan Technology
 - Graphics Hardware
 - GPU Parallel Computing

Theoretical GFLOP/s

• Microsoft Kinects

• 3D Printing

• 3D Printing

• Leap Motion

• Virtual Reality - Cyberith Virtualizer

- Movies
 - animation
 - special effects

- Movies
 - performance capture

- Geography
 - Geometric Registration Technique / Digital Earth & Digital City

Computer games

- images
 - advertising
 - design
 - art

• UI Design

• Training & simulation

Medical Imaging

• CAD-CAM & Design

• CAD-CAM & Design

Why Study Computer Graphics?

- Wide Range of Applications
- Huge Market
 - Game
 - Movie
 - Education
- It is fun: create visually appealing results
- Fond of Science and Technology
- Opens doors to lots of job opportunities

Computer Graphics is Funny

- Interdisciplinary
 - mathematics, physics, computer, art...
- Understand the Law of Real World
 - illumination, motion
- You can 'see' what are your imaginary
- Virtual results may deceive your eyes
- Apply their knowledge to industry application

How to Study CG?

- Curiosity
 - Strong curiosity to unknown world
 - Desire and pursuit to technology
- Creative
 - constantly thinking and trying
- Practice
 - Master kinds of technical ability during practice

What is the class about?

- Fundamental Algorithm of Computer Graphics
- 3D Geometry Processing
- Photorealistic Rendering
- OpenGL
- C++
- Hot Topic of Computer Graphics

- This is a programming class(OpenGL).
 - It is about algorithms that are created computer graphics images.
- Learning by doing!

We will **not** learn how to use animation or rendering **software** to create animations.

Our goal is to learn the basics that are necessary to develop such software.

Prerequisites

Good programming is very essential

- Good working knowledge of C++ is assumed.
- The programming load is high.

Math

- Elementary geometry and linear algebra
- Differential equation
- The numerical method and calculated
- Statistics

How much Math?

- Lots of simple linear algebra
 - Get it right, it will help you a lot!
- Some more advanced concepts
 - Homogeneous coordinates
 - Quaternions for interpolating rotations/orientations
 - Ordinary differential equations (ODEs) and their numerical solution
 - •

Optional Textbook

E. Angel, Interactive Computer Graphics — A top-down approach using OpenGL™, 6th ed.,
 2011. (国内有影印版)

计算机图形学(第4版)

"Computer Graphics with OpenGL, Fourth Edition"

OpenGL 编程指南 (原书第8版) "OpenGL Programming Guide"

Course Assessment

- Project Assignments
 - OpenGL Programming (20%)
 - Graphics Developments (20%)
- Final Examination in 18th Week (40%)
- Homework (10%)
- Attendance (10%)

Course Mailbox

- Lecture Slides
 - cgcourse_sysu@qq.com
 - Password: cgcourse2016

- Homework submission
 - cgcourse_homework@qq.com

Further Reading

Journals (International)

ACM Transactions on Graphics

IEEE Transactions on Graphics and Visualization

Computer Graphics Forum

Computer Aided Geometric Design

Computer-aided Design

The Visual Computer

Graphical Models

Computer & Graphics

Computer Graphics & Applications

Journals (Domestic)

软件学报

计算机学报

计算机辅助设计与图形学学报

中国图象图形学报

Proceedings

Siggraph

Siggraph Asia

Eurographics

Pacific Graphics

Symposium on Geometry Processing

Shape Modeling International

Chinagraph

....

Lots of CG papers can be found here:

http://kesen.realtimerendering.com/

ACM SIGGRAPH

- Full: "the Special Interest Group on Computer Graphics and Interactive Techniques"
 - In 1967, professor van Dam at Brown Unversity and Sam Masta of IBM Corporation co-founded SIGGRAPH
 - In 1974, the first SIGGRAPH annual conference was held in University of Colorado (科罗拉多大学)
 - http://www.siggraph.org