## madrid\_2003

In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear\_model import LinearRegression,LogisticRegression,Lasso,Ridg
from sklearn.model\_selection import train\_test\_split

In [2]: df=pd.read\_csv(r"C:\Users\user\Downloads\csvs\_per\_year\csvs\_per\_year\madrid\_200
df

#### Out[2]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2      | NOx        | OXY  | O_3       | PM      |
|--------|----------------------------|------|------|------|------|------|-----------|------------|------|-----------|---------|
| 0      | 2003-<br>03-01<br>01:00:00 | NaN  | 1.72 | NaN  | NaN  | NaN  | 73.900002 | 316.299988 | NaN  | 10.550000 | 55.2099 |
| 1      | 2003-<br>03-01<br>01:00:00 | NaN  | 1.45 | NaN  | NaN  | 0.26 | 72.110001 | 250.000000 | 0.73 | 6.720000  | 52.3899 |
| 2      | 2003-<br>03-01<br>01:00:00 | NaN  | 1.57 | NaN  | NaN  | NaN  | 80.559998 | 224.199997 | NaN  | 21.049999 | 63.2400 |
| 3      | 2003-<br>03-01<br>01:00:00 | NaN  | 2.45 | NaN  | NaN  | NaN  | 78.370003 | 450.399994 | NaN  | 4.220000  | 67.8399 |
| 4      | 2003-<br>03-01<br>01:00:00 | NaN  | 3.26 | NaN  | NaN  | NaN  | 96.250000 | 479.100006 | NaN  | 8.460000  | 95.7799 |
|        |                            |      |      |      |      |      |           |            |      |           |         |
| 243979 | 2003-<br>10-01<br>00:00:00 | 0.20 | 0.16 | 2.01 | 3.17 | 0.02 | 31.799999 | 32.299999  | 1.68 | 34.049999 | 7.3800  |
| 243980 | 2003-<br>10-01<br>00:00:00 | 0.32 | 0.08 | 0.36 | 0.72 | NaN  | 10.450000 | 14.760000  | 1.00 | 34.610001 | 7.4000  |
| 243981 | 2003-<br>10-01<br>00:00:00 | NaN  | NaN  | NaN  | NaN  | 0.07 | 34.639999 | 50.810001  | NaN  | 32.160000 | 16.8300 |
| 243982 | 2003-<br>10-01<br>00:00:00 | NaN  | NaN  | NaN  | NaN  | 0.07 | 32.580002 | 41.020000  | NaN  | NaN       | 13.5700 |
| 243983 | 2003-<br>10-01<br>00:00:00 | 1.00 | 0.29 | 2.15 | 6.41 | 0.07 | 37.150002 | 56.849998  | 2.28 | 21.480000 | 12.3500 |

243984 rows × 16 columns

#### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 243984 entries, 0 to 243983
Data columns (total 16 columns):

| #    | Column    | Non-Null Count    | Dtype     |
|------|-----------|-------------------|-----------|
|      |           |                   |           |
| 0    | date      | 243984 non-null   | object    |
| 1    | BEN       | 69745 non-null    | float64   |
| 2    | CO        | 225340 non-null   | float64   |
| 3    | EBE       | 61244 non-null    | float64   |
| 4    | MXY       | 42045 non-null    | float64   |
| 5    | NMHC      | 111951 non-null   | float64   |
| 6    | NO_2      | 242625 non-null   | float64   |
| 7    | NOx       | 242629 non-null   | float64   |
| 8    | OXY       | 42072 non-null    | float64   |
| 9    | 0_3       | 234131 non-null   | float64   |
| 10   | PM10      | 240896 non-null   | float64   |
| 11   | PXY       | 42063 non-null    | float64   |
| 12   | S0_2      | 242729 non-null   | float64   |
| 13   | TCH       | 111991 non-null   | float64   |
| 14   | TOL       | 69439 non-null    | float64   |
| 15   | station   | 243984 non-null   | int64     |
| dtyp | es: float | 54(14), int64(1), | object(1) |

memory usage: 29.8+ MB

In [4]: df1=df.dropna()
 df1

### Out[4]:

|        | date                       | BEN  | со   | EBE   | MXY   | NMHC | NO_2      | NOx        | OXY   | 0_3       | F     |
|--------|----------------------------|------|------|-------|-------|------|-----------|------------|-------|-----------|-------|
| 5      | 2003-<br>03-01<br>01:00:00 | 8.41 | 1.94 | 9.83  | 21.49 | 0.45 | 90.300003 | 384.899994 | 9.48  | 9.950000  | 95.15 |
| 23     | 2003-<br>03-01<br>01:00:00 | 3.46 | 1.27 | 3.43  | 7.08  | 0.18 | 54.250000 | 173.300003 | 3.37  | 6.540000  | 53.00 |
| 27     | 2003-<br>03-01<br>01:00:00 | 6.39 | 1.79 | 5.75  | 10.88 | 0.33 | 75.459999 | 281.100006 | 3.68  | 6.690000  | 63.84 |
| 33     | 2003-<br>03-01<br>02:00:00 | 7.42 | 1.47 | 10.63 | 24.73 | 0.35 | 83.309998 | 277.200012 | 11.00 | 9.900000  | 58.88 |
| 51     | 2003-<br>03-01<br>02:00:00 | 3.62 | 1.29 | 3.20  | 7.08  | 0.19 | 42.209999 | 166.300003 | 3.41  | 6.380000  | 47.59 |
|        |                            |      |      |       |       |      |           |            |       |           |       |
| 243955 | 2003-<br>09-30<br>23:00:00 | 1.75 | 0.41 | 3.07  | 9.38  | 0.09 | 46.290001 | 77.709999  | 3.11  | 18.280001 | 7.52  |
| 243957 | 2003-<br>10-01<br>00:00:00 | 2.35 | 0.60 | 3.88  | 10.86 | 0.11 | 61.240002 | 133.100006 | 0.89  | 10.900000 | 10.24 |
| 243961 | 2003-<br>10-01<br>00:00:00 | 2.97 | 0.82 | 4.53  | 10.88 | 0.05 | 36.529999 | 131.300003 | 5.52  | 12.940000 | 25.68 |
| 243979 | 2003-<br>10-01<br>00:00:00 | 0.20 | 0.16 | 2.01  | 3.17  | 0.02 | 31.799999 | 32.299999  | 1.68  | 34.049999 | 7.38  |
| 243983 | 2003-<br>10-01<br>00:00:00 | 1.00 | 0.29 | 2.15  | 6.41  | 0.07 | 37.150002 | 56.849998  | 2.28  | 21.480000 | 12.35 |

33010 rows × 16 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
Out[6]: <AxesSubplot:>
                                                        -1.0
            BEN
             CO
                                                        - 0.8
            EBE
            MXY
                                                         0.6
           NMHC
           NO<sub>2</sub>
                                                         0.4
            NŌx
            OXY
                                                         0.2
            03
           PM10
                                                         0.0
            PXY
            SO 2
            TĊH
             TOL
          station
                In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
Out[7]: [<matplotlib.lines.Line2D at 0x1d3355fe9d0>]
          100
           80
           60
           40
           20
            0
                                 40
                        20
                                          60
                                                  80
In [8]: data=df[["EBE","PXY"]]
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
In [10]: x=df1.drop(["EBE"],axis=1)
         y=df1["EBE"]
```

x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.3)

### **LINEAR**

```
In [11]: li=LinearRegression()
          li.fit(x_train,y_train)
Out[11]: LinearRegression()
In [12]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x1d33628b460>
           30
           25
           20
           15
           10
           5
                               20
                                       30
                                               40
                       10
                                                        50
In [13]: lis=li.score(x_test,y_test)
In [14]: |df1["TCH"].value_counts()
Out[14]: 1.30
                  1344
          1.31
                  1342
          1.32
                  1281
         1.27
                  1279
          1.29
                  1262
                  . . .
          3.50
                     1
          3.87
                     1
          3.21
                     1
          3.14
                     1
          1.01
          Name: TCH, Length: 243, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 21614
          2.0
                 11396
          Name: TCH, dtype: int64
In [16]: # Lasso
```

```
In [17]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[17]: Lasso(alpha=5)

In [18]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1d336dded30>



In [19]: las=la.score(x\_test,y\_test)

# **RIDGE**

```
In [20]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[20]: Ridge(alpha=1)

```
In [21]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x1d3355dd7f0>



In [22]: rrs=rr.score(x\_test,y\_test)

## **ElasticNet**

```
In [23]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[23]: ElasticNet()

```
In [24]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[24]: <matplotlib.collections.PathCollection at 0x1d336e787c0>



```
In [25]: ens=en.score(x_test,y_test)
In [26]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.9058532823453943
Out[26]: 0.9183044295499866
         LOGISTIC
In [27]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[27]: Low
                 21614
         High
                 11396
         Name: TCH, dtype: int64
In [28]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [29]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[29]: LogisticRegression()
In [30]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[30]: <matplotlib.collections.PathCollection at 0x1d336007df0>
          Low
                                                      High
              Low
In [31]: los=lo.score(x_test,y_test)
```

### **Random Forest**

```
In [32]: | from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [33]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [34]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [35]: |rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[35]: RandomForestClassifier()
In [36]: parameter={
              'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [37]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accur
         grid search.fit(x train,y train)
Out[37]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [38]: rfcs=grid_search.best_score_
In [39]: rfc_best=grid_search.best_estimator_
```

```
In [40]: from sklearn.tree import plot tree
                            plt.figure(figsize=(80,40))
                            plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"
                              Text(1155.8571428571427, 155.3142857142857, 'gini = 0.477\nsamples = 47\nv
                            alue = [31, 48] \setminus nclass = No'),
                              Text(1275.4285714285713, 465.9428571428573, 'PXY <= 7.68\ngini = 0.202\nsa
                            mples = 20\nvalue = [4, 31]\nclass = No'),
                               Text(1235.5714285714284, 155.3142857142857, 'gini = 0.0\nsamples = 8\nvalu
                            e = [0, 16] \setminus nclass = No'),
                               Text(1315.2857142857142, 155.3142857142857, 'gini = 0.332\nsamples = 12\nv
                            alue = [4, 15]\nclass = No'),
                               Text(1514.5714285714284, 776.5714285714287, 'TOL <= 8.135\ngini = 0.275\ns
                            amples = 942\nvalue = [247, 1251]\nclass = No'),
                              Text(1434.8571428571427, 465.9428571428573, 'NO_2 <= 60.92 \n = 0.409 \n
                            samples = 249\nvalue = [110, 274]\nclass = No'),
                               Text(1395.0, 155.3142857142857, 'gini = 0.225\nsamples = 76\nvalue = [16,
                            108 \mid \text{No'}),
                              Text(1474.7142857142856, 155.3142857142857, 'gini = 0.462\nsamples = 173\n
                            value = [94, 166]\nclass = No'),
                              Text(1594.2857142857142, 465.9428571428573, 'NMHC <= 0.165 \neq 0.216 \neq
                            samples = 693\nvalue = [137, 977]\nclass = No'),
                               Text(1554.4285714285713, 155.3142857142857, 'gini = 0.454\nsamples = 175\n
                            Value - [07 192]\nclass - No'\
In [41]: print("Linear:",lis)
                            print("Lasso:",las)
                            print("Ridge:",rrs)
                            print("ElasticNet:",ens)
                            print("Logistic:",los)
                            print("Random Forest:",rfcs)
```

Linear: 0.9058641997341937 Lasso: 0.777591570715501 Ridge: 0.9058532823453943 ElasticNet: 0.904694103254376 Logistic: 0.6520246389982833 Random Forest: 0.8822866253548514

### **Best Model is Random Forest**

madrid\_2004

In [42]: df2=pd.read\_csv(r"C:\Users\user\Downloads\csvs\_per\_year\csvs\_per\_year\madrid\_20
df2

### Out[42]:

|        | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2       | NOx        | ОХҮ  | 0_3       | PI     |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|--------|
| 0      | 2004-<br>08-01<br>01:00:00 | NaN  | 0.66 | NaN  | NaN  | NaN  | 89.550003  | 118.900002 | NaN  | 40.020000 | 39.990 |
| 1      | 2004-<br>08-01<br>01:00:00 | 2.66 | 0.54 | 2.99 | 6.08 | 0.18 | 51.799999  | 53.860001  | 3.28 | 51.689999 | 22.950 |
| 2      | 2004-<br>08-01<br>01:00:00 | NaN  | 1.02 | NaN  | NaN  | NaN  | 93.389999  | 138.600006 | NaN  | 20.860001 | 49.480 |
| 3      | 2004-<br>08-01<br>01:00:00 | NaN  | 0.53 | NaN  | NaN  | NaN  | 87.290001  | 105.000000 | NaN  | 36.730000 | 31.070 |
| 4      | 2004-<br>08-01<br>01:00:00 | NaN  | 0.17 | NaN  | NaN  | NaN  | 34.910000  | 35.349998  | NaN  | 86.269997 | 54.080 |
|        |                            |      |      |      |      |      |            |            |      |           |        |
| 245491 | 2004-<br>06-01<br>00:00:00 | 0.75 | 0.21 | 0.85 | 1.55 | 0.07 | 59.580002  | 64.389999  | 0.66 | 33.029999 | 30.900 |
| 245492 | 2004-<br>06-01<br>00:00:00 | 2.49 | 0.75 | 2.44 | 4.57 | NaN  | 97.139999  | 146.899994 | 2.34 | 7.740000  | 37.689 |
| 245493 | 2004-<br>06-01<br>00:00:00 | NaN  | NaN  | NaN  | NaN  | 0.13 | 102.699997 | 132.600006 | NaN  | 17.809999 | 22.840 |
| 245494 | 2004-<br>06-01<br>00:00:00 | NaN  | NaN  | NaN  | NaN  | 0.09 | 82.599998  | 102.599998 | NaN  | NaN       | 45.630 |
| 245495 | 2004-<br>06-01<br>00:00:00 | 3.01 | 0.67 | 2.78 | 5.12 | 0.20 | 92.550003  | 141.000000 | 2.60 | 11.460000 | 24.389 |

245496 rows × 17 columns

#### In [43]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 245496 entries, 0 to 245495
Data columns (total 17 columns):

| #    | Column    | Non-Null Count    | Dtype     |
|------|-----------|-------------------|-----------|
|      |           |                   |           |
| 0    | date      | 245496 non-null   | object    |
| 1    | BEN       | 65158 non-null    | float64   |
| 2    | CO        | 226043 non-null   | float64   |
| 3    | EBE       | 56781 non-null    | float64   |
| 4    | MXY       | 39867 non-null    | float64   |
| 5    | NMHC      | 107630 non-null   | float64   |
| 6    | NO_2      | 243280 non-null   | float64   |
| 7    | NOx       | 243283 non-null   | float64   |
| 8    | OXY       | 39882 non-null    | float64   |
| 9    | 0_3       | 233811 non-null   | float64   |
| 10   | PM10      | 234655 non-null   | float64   |
| 11   | PM25      | 58145 non-null    | float64   |
| 12   | PXY       | 39891 non-null    | float64   |
| 13   | S0_2      | 243402 non-null   | float64   |
| 14   | TCH       | 107650 non-null   | float64   |
| 15   | TOL       | 64914 non-null    | float64   |
| 16   | station   | 245496 non-null   | int64     |
| dtyp | es: float | 64(15), int64(1), | object(1) |

memory usage: 31.8+ MB

In [44]: df3=df2.dropna()
df3

#### Out[44]:

|        | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2       | NOx        | ОХҮ  | 0_3       | PI     |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|--------|
| 5      | 2004-<br>08-01<br>01:00:00 | 3.24 | 0.63 | 5.55 | 9.72 | 0.06 | 103.800003 | 144.800003 | 5.04 | 32.480000 | 59.110 |
| 22     | 2004-<br>08-01<br>01:00:00 | 0.55 | 0.36 | 0.54 | 0.86 | 0.07 | 31.980000  | 32.799999  | 0.50 | 79.040001 | 43.549 |
| 26     | 2004-<br>08-01<br>01:00:00 | 1.80 | 0.46 | 2.28 | 4.62 | 0.21 | 62.259998  | 75.470001  | 2.47 | 54.419998 | 46.630 |
| 32     | 2004-<br>08-01<br>02:00:00 | 1.94 | 0.67 | 3.14 | 4.91 | 0.06 | 113.500000 | 165.800003 | 2.56 | 26.980000 | 86.930 |
| 49     | 2004-<br>08-01<br>02:00:00 | 0.29 | 0.30 | 0.47 | 0.76 | 0.07 | 33.919998  | 34.840000  | 0.46 | 75.570000 | 48.959 |
|        |                            |      |      |      |      |      |            |            |      |           |        |
| 245463 | 2004-<br>05-31<br>23:00:00 | 0.62 | 0.08 | 0.54 | 0.70 | 0.04 | 44.360001  | 45.450001  | 0.42 | 43.419998 | 19.290 |
| 245467 | 2004-<br>05-31<br>23:00:00 | 2.39 | 0.67 | 2.49 | 3.92 | 0.20 | 89.809998  | 132.800003 | 2.09 | 14.740000 | 31.809 |
| 245473 | 2004-<br>06-01<br>00:00:00 | 3.72 | 1.12 | 4.33 | 8.79 | 0.24 | 113.900002 | 253.600006 | 4.51 | 9.380000  | 21.219 |
| 245491 | 2004-<br>06-01<br>00:00:00 | 0.75 | 0.21 | 0.85 | 1.55 | 0.07 | 59.580002  | 64.389999  | 0.66 | 33.029999 | 30.900 |
| 245495 | 2004-<br>06-01<br>00:00:00 | 3.01 | 0.67 | 2.78 | 5.12 | 0.20 | 92.550003  | 141.000000 | 2.60 | 11.460000 | 24.389 |

19397 rows × 17 columns

In [45]: df3=df3.drop(["date"],axis=1)

```
In [46]: sns.heatmap(df3.corr())
```

#### Out[46]: <AxesSubplot:>



```
In [47]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

#### Linear

```
In [48]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[48]: LinearRegression()

```
In [49]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[49]: <matplotlib.collections.PathCollection at 0x1d336d1c310>



```
In [50]: lis=li.score(x_test,y_test)
In [51]: df3["TCH"].value_counts()
Out[51]: 1.34
                  740
         1.33
                 714
         1.35
                 708
         1.37
                 688
         1.36
                 679
         2.95
                   1
         3.65
                   1
         3.59
                   1
         2.58
                   1
         3.86
         Name: TCH, Length: 191, dtype: int64
In [52]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[52]: 1.0
                11861
         2.0
                 7536
         Name: TCH, dtype: int64
         Lasso
In [53]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
Out[53]: Lasso(alpha=5)
In [54]: prediction1=la.predict(x_test)
         plt.scatter(y_test,prediction1)
Out[54]: <matplotlib.collections.PathCollection at 0x1d336d41fd0>
          3.25
```



3

Ś

ź

1.25

```
In [55]: las=la.score(x_test,y_test)
```

# Ridge

```
In [56]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

```
Out[56]: Ridge(alpha=1)
```

```
In [57]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[57]: <matplotlib.collections.PathCollection at 0x1d336f304c0>



```
In [58]: rrs=rr.score(x_test,y_test)
```

### **ElasticNet**

```
In [59]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[59]: ElasticNet()

```
In [60]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[60]: <matplotlib.collections.PathCollection at 0x1d336f80fd0>
          5
          3
          2
In [61]: ens=en.score(x_test,y_test)
In [62]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.6079595072031811
Out[62]: 0.5818228410220392
         Logistic
In [63]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[63]: Low
                 11861
         High
                  7536
         Name: TCH, dtype: int64
In [64]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [65]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
```

Out[65]: LogisticRegression()

```
In [66]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
Out[66]: <matplotlib.collections.PathCollection at 0x1d336a96ca0>
```

```
Low - • • • High
```

```
In [67]: los=lo.score(x_test,y_test)
```

### **Random Forest**

```
In [68]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [69]: g1={"TCH":{"Low":1.0,"High":2.0}}
    df3=df3.replace(g1)

In [70]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [71]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)

Out[71]: RandomForestClassifier()

In [72]: parameter={
    'max_depth':[1,2,4,5,6],
    'min_samples_leaf':[5,10,15,20,25],
    'n_estimators':[10,20,30,40,50]
}
```

```
In [73]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur
                                            grid_search.fit(x_train,y_train)
Out[73]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                                         param_grid={'max_depth': [1, 2, 4, 5, 6],
                                                                                                                                                                  'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                                                                 'n estimators': [10, 20, 30, 40, 50]},
                                                                                                         scoring='accuracy')
In [74]: rfcs=grid search.best score
In [75]: rfc best=grid search.best estimator
In [76]: from sklearn.tree import plot tree
                                            plt.figure(figsize=(80,40))
                                            plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',
                                         [Text(2269.200000000003, 2019.0857142857144, 'NMHC <= 0.155\ngini = 0.475
                                            \nsamples = 8525\nvalue = [8293, 5284]\nclass = Yes'),
                                               Text(1190.4, 1708.457142857143, 'TOL <= 9.185\ngini = 0.228\nsamples = 547
                                            4\nvalue = [7583, 1147]\nclass = Yes'),
                                                Text(595.2, 1397.8285714285716, 'CO <= 0.605\ngini = 0.153\nsamples = 4712
                                            \nvalue = [6872, 624] \setminus class = Yes'),
                                                Text(297.6, 1087.2, 'NO_2 <= 45.965 \setminus i = 0.114 \setminus s = 4150 \setminus i =
                                            [6224, 401]\nclass = Yes'),
                                               Text(148.8, 776.5714285714287, '0_3 <= 16.285\ngini = 0.049\nsamples = 284
                                            3\nvalue = [4415, 114]\nclass = Yes'),
                                                Text(74.4, 465.9428571428573, 'TOL <= 5.57\ngini = 0.326\nsamples = 108\nv
                                            alue = [124, 32]\nclass = Yes'),
                                                Text(37.2, 155.3142857142857, 'gini = 0.172\nsamples = 66\nvalue = [86, 9]
                                            \nclass = Yes'),
                                               Text(111.6000000000001, 155.3142857142857, 'gini = 0.47\nsamples = 42\nva
                                            lue = [38, 23]\nclass = Yes'),
                                                Text(223.2000000000000, 465.9428571428573, '0 3 <= 34.145 \cdot ngini = 0.037 \cdot 
                                            samples = 2735\nvalue = [4291, 82]\nclass = Yes'),
                                               Text(186.0, 155.3142857142857, 'gini = 0.136\nsamples = 317\nvalue = [469,
```

```
In [77]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.6080992534261667 Lasso: 0.4783072218444412 Ridge: 0.6079595072031811 ElasticNet: 0.501905323414281 Logistic: 0.6082474226804123 Random Forest: 0.8954112049779301

```
In [ ]:
```