Prediction of Free Surface Water Plume as a Barrier to Sea-skimming Aerodynamic Missiles: Underwater Explosion Bubble Dynamics

My-Ha D.1, Lim K.M.1, Khoo B.C.1, Willcox K.2

¹ National University of Singapore, ² Massachusetts Institute of Technology

Outlines

- Problem of water barrier formation
- Simulation of bubble and free surface interaction
- Proper Orthogonal Decomposition (POD)
- Water barrier simulation
- Numerical results
- Conclusions

Problem of water barrier formation

Motivation

- A set of bubbles are created under the water surface
- The free surface is pushed up due to the evolution of the bubbles to create a water plume
- The resultant water plume will act as an effective barrier. It interferes with flying object skimming just above the free surface

Water barrier by underwater explosions

Mathematical formulation

- Bubble consists of vapor of surrounding fluid and noncondensing gas
- Non-condensing gas is assumed ideal
- Fluid in the domain Ω is inviscid, incompressible and irrotational
- Potential flow satisfies Laplace equation

$$\nabla^2 \Phi = 0$$

Mathematical formulation

Integral representation

$$c(x)\Phi(x) = \int_{\Omega} \frac{\partial \Phi(y)}{\partial \mathbf{n}} G(y, x) - \Phi(y) \frac{\partial G(y, x)}{\partial \mathbf{n}} dS$$

Green's function:

$$G(y,x) = \frac{1}{|x-y|}$$

Axisymmetrical formulation as in Wang et al.

$$\mathbf{G}\frac{\partial\Phi}{\partial\mathbf{n}} = \mathbf{H}\Phi$$

Governing equations

Kinematic and dynamic boundary conditions

$$\begin{split} \frac{dx}{dt} &= \nabla \Phi \\ \frac{d\Phi}{dt} &= \frac{1}{2} \left| \nabla \Phi \right|^2 + \delta^2 (z - \gamma) - \varepsilon \left\| \frac{V_0}{V} \right\|^2 + 1 \\ \frac{d\Phi}{dt} &= \frac{1}{2} \left| \nabla \Phi \right|^2 + \delta^2 z \end{split} \qquad \partial \Omega \in \mathcal{S} \end{split}$$

 Solving these equations gives the position and the velocity potential of the nodes on the boundary

Bubble and free surface interaction

Evolution of bubble and free surface profile for

$$\gamma = -1.25$$
, $\epsilon = 100$, $\delta = 0.3$

Linear superposition

Linear superposition of free surfaces formed by two bubbles at distance dr=2.0

$$y = \frac{h}{R_m} = -1.25$$

$$\varepsilon = \frac{P_{b,0}}{P_{ref}} = 100$$

$$\delta = \sqrt{\frac{\rho g R_m}{P_{ref}}} = 0.3$$

Proper Orthogonal Decomposition (POD)

Introduction

- POD is also known as
 - Principle Component Analysis (PCA)
 - Singular Value Decomposition (SVD)
 - Karhunen-Loève Decomposition (KLD)
- POD has been applied to a wide range of disciplines such as image processing, signal analysis, process identification and oceanography

Proper Orthogonal Decomposition (POD)

Basic POD formulation

- Given a set of snapshots which are solutions of the system at different instants, in time
- The basis $\varphi_j(x)_{j=1}^{\infty}$ are chosen to minimize the truncation error due to the construction of the snapshots using M basis functions

$$\max_{\Psi} \frac{\left\langle \left| (u, \psi) \right|^{2} \right\rangle}{\left(\psi, \psi \right)} = \frac{\left\langle \left| (u, \varphi) \right|^{2} \right\rangle}{\left(\varphi, \varphi \right)}$$

An approximation is given by

$$u(x) \approx \sum_{j=1}^{q} a_j \varphi_j(x) \qquad q \leq M \& q << N$$

Given a number of modes, POD basis is optimal for constructing a solution

Method of snapshots

The POD basis vectors can be calculated as

$$\varphi_{j}(x) = \sum_{i=1}^{M} b_{i}^{j} u_{i}(x)$$

$$j = 1, ..., M$$

• The vector $m{b}^j$ satisfies the modified eigenproblem

$$\mathbf{R}b = \lambda b$$
 where $\mathbf{R}_{ij} = \frac{1}{M}(u_i, u_j)$

- Size of R is MxM where M is the number of snapshots
 - M is much smaller than N
 - N x N eigenproblem is reduced to M x M problem

Parametric POD

- Snapshots u^{η_i} are taken corresponding to the parameter value η_i i=1,...M
- Basic POD is applied on the set of snapsho $\{u^{\eta_i}\}_{i=1}^M$ to obtain the orthonormal $\{u^{\eta_i}\}_{i=1}^M$
- POD coefficient $a_j^{\eta_i} = (\varphi_j, u^{\eta_i})$
- POD coefficient a_j^η for intermediate value not in the sample obtained by interpolation a_i^η
- The prediction of u^η corresponding to the parameter $\psi_{\overline{q}}$ lue is given by

$$u^{\eta} \approx \sum_{j=1}^{q} a_{j}^{\eta} \varphi_{j}$$
 $u(\varepsilon, \gamma, x) \approx \sum_{j=1}^{q} a_{j}(\varepsilon, \gamma) \varphi_{j}(x)$

Water barrier simulation

Geometric feature

The problem is considered as an optimization problem that minimizes the difference between constructed surface S and desired one S^0

Water barrier simulation

Optimization formulation

- N₀ bubbles are created
- Free surface S is approximated by linear superposition of Sk,

$$k = 1,...,N$$

- Free surface S^k corresponding to the bubble located at lateral position r_0^k , depth γ^k with strength ϵ^k is calculated using parametric POD
- Lateral distance between two bubbles is $dr \ge 2.0$
- Strength and depth of the bubbles must be in the ranges of interest

Offline Phase

Collecting snapshots

- Run the described simulation code to collect snapshots
- The snapshot is the free surface shape at the time of maximum height
- The ensemble contains 312 snapshots corresponding to 39 values of initial depth in the range [-1.25, -5.05] with interval step of 0.1, and 8 values of strength in the range [100, 800] with interval step of 100

Online Phase

Optimization formulation

BP:
$$\min_{\substack{r_0^k, \epsilon^k, \gamma^k \\ k = 1, ..., N_0}} \sum_{i=1}^{M_0} \left[(S - S^0)_i \right]^2$$
s.t.
$$S = \sum_{k=1}^{N_0} (\bar{\phi}^k + \sum_{j=1}^q a_j^k \phi_j^k)$$

$$\bar{\phi}^k = \bar{\phi}(r_0^k) \qquad k = 1, ..., N_0$$

$$\phi_j^k = \phi_j(r_0^k) \qquad k = 1, ..., N_0; j = 1, ..., q$$

$$a_j^k = a_j(\epsilon^k, \gamma^k) \qquad k = 1, ..., N_0; j = 1, ..., q$$

$$|r_0^{k_1} - r_0^{k_2}| \ge dr \qquad k_1 \ne k_2; k_1, k_2 = 1, ..., N_0$$

$$\epsilon_{min} \le \epsilon^k \le \epsilon_{max} \qquad k = 1, ..., N_0$$

$$\gamma_{min} \le \gamma^k \le \gamma_{max} \qquad k = 1, ..., N_0$$

Online Phase

Two-stage formulation

- BP involves highly nonlinear representations of the mean of snapshots, POD modes and the interpolation function of POD coefficient
- BP is difficult to solve exactly in a reasonable time even with small number of bubbles involved
- The problem is reformulated as two-stage formulation using the POD feature that the approximated surface is dependent on the depth and strength only through the POD coefficient

Stage 1: Determine bubble positions

BPS1:
$$\min_{\substack{r_0^k, a_j^k \\ k = 1, ..., N_0 \\ j = 1, ..., q}} \sum_{i=1}^{M_0} \left[(S - S^0)_i \right]^2$$

s.t.
$$S = \sum_{k=1}^{N_0} (\bar{\phi}^k + \sum_{j=1}^q a_j^k \phi_j^k)$$

$$\bar{\phi}^k = \bar{\phi}(r_0^k)$$

$$\phi_j^k = \phi_j(r_0^k)$$

$$|r_0^{k_1} - r_0^{k_2}| \ge \mathrm{d}r$$

$$a_j^{min} \leq a_j^k \leq a_j^{max}$$

$$k=1,\ldots,N_0$$

$$k=1,\ldots,N_0; j=1,\ldots,q$$

$$k_1 \neq k_2; k_1, k_2 = 1, \dots, N_0$$

$$a_j^{min} \le a_j^k \le a_j^{max}$$
 $k = 1, \dots, N_0; j = 1, \dots, q$

Two methods:

- (i) Greedy algorithm
- (ii) Approximate Function (AF) algorithm

Stage 1: Greedy algorithm

- i. Try all possible placement points
- ii. Calculate the resultant free surfaces corresponding to each possible placement points
- iii. Choose the point that minimizes the cost function
- iv. Repeat process for next bubble

Stage 1: Approximate function (AF) algorithm

 The mean and the first POD mode are approximate by exponential functions in the form of

$$f(r) = C_1 e^{-C_2 r^2}$$

• The coefficients C_1 , C_2 are obtained by solving the problem

E1:
$$\min_{C_1, C_2} ||(f - f^0)_i||^2$$

s.t. $f(r) = C_1 e^{-C_2 r^2}$

Approximate functions

Approximate exponential functions (blue) compare quite well with exact vectors (red).

Online Phase

Second-stage problem

- Let $\{r_0^k\}_{k=1}^{N_0}$ and $\{(a^*)_j^k\}_{k,j=1}^{N_0,q}$ be the solution of Stage 1
- Stage 2 involves minimizing of a piecewise function and this is given by the global minimum of the solutions of its piecewise function elements.

Stage 2:
$$\min_{\varepsilon^{k}, \ y^{k}} \sum_{j=1}^{q} \left[\left(a^{*} \right)_{j}^{k} - a_{j} \right]^{2}$$
s.t.
$$a_{j} \left(\varepsilon^{k}, \gamma^{k} \right) = a_{j}^{st} \left(\varepsilon^{k}, \gamma^{k} \right)$$

$$\varepsilon_{t} \leq \varepsilon^{k} \leq \varepsilon_{t+1}$$

$$\gamma_{s} \leq \gamma^{k} \leq \gamma_{s+1}$$

$$s = 1, ..., n-1; t = 1, ..., m-1;$$

$$j = 1 ... q$$

 The bubble problem is fully solved when the lateral position, the depth and the strength of the bubbles are determined.

2D water barrier

2D water barrier

2D water barrier

2D water barrier

2D water barrier

Computation time for 2D problems

TABLE I COMPUTATION TIME FOR 2D PROBLEMS

No. of Bubbles	COMPUTATION TIME
5 bubbles	14.0s
6 bubbles	16.0s
7 bubbles	20.0s
8 bubbles	25.0s
_Full simulation of 1 bubble	60.0s

Computation time for solving two-dimensional optimization problem in the domain of [0,14], 141 grid points (grid size 0.1) using AF algorithm. Solution is obtained by running a LOQO program on ε Intel Xeon 2.8GHz processor, RAM 2.0Gb

Computation time increases fairly linearly with no. bubbles

3D water barrier

Desired surface

3D water barrier

Constructed free surface corresponding to 6 bubbles

3D water barrier

Parameters for 6 bubbles

3D water barrier

Constructed free surface corresponding to 8 bubbles

3D water barrier

Parameters for 8 bubbles

3D water barrier

Constructed free surface corresponding to 10 bubbles

3D water barrier

Parameters for 10 bubbles

3D water barrier

Computation time for 3D problems

TABLE II COMPUTATION TIME FOR 3D PROBLEMS

NO. BUBBLES	COMPUTATION TIME
6 bubbles	24.0s
8 bubbles	32.0s
10 bubbles	50.0s
12 bubbles	83.0s
14 bubbles	170.6s
Full simulation of 1 bubble (1717 nodes)	280s

Computation time for solving three-dimensional optimization problems with different numbers of bubbles in a domain of $[0\ 8]x[0\ 8]$ grid 17x17 using AF algorithm. Solution is obtained by running a LOQO program on a Intel Xeon 2.8GHz processor, RAM 2.0Gb

AF algorithm is still efficient for reasonable size problems

Conclusions

- The problem of water barrier formation can be posed as an optimization problem coupled with underwater gas bubbles and free air-water interface
- POD with linear interpolation in parametric space is an excellent tool for constructing a reduced-order model
- Solution algorithm is very efficient for 2D problems and reasonable size 3D problems
- The optimization problem may has many local minima. A robust procedure for finding initial guess may result in a better final solution