SIS AUDITORNE

datum / date 4. 5. 2007.

y"(t) + a, y'(t) + az y(t) = bou "(t) + b, u'(t) + b, u(t) |

 $y'(t) - y'(0-) + a_1y(t) - a_1y(0-) + a_2 \int_0^t y(t) dt$ = $b_0 u'(t) + b_1 u(t) + b_2 \int_0^t u(t) dt$ | \int_0^t

 $\int_{0}^{t} y'(t) dt - y'(0) \int_{0}^{t} dt + a_{0} \int_{0}^{t} y(t) dt - a_{0}y(0) \int_{0}^{t} dt \\
+ a_{2} \int_{0}^{t} \int_{0}^{t} y(\lambda) d\lambda dt = b_{0} \int_{0}^{t} u'(t) dt + b_{0} \int_{0}^{t} u(t) dt + \\
+ b_{2} \int_{0}^{t} \int_{0}^{t} u(\lambda) d\lambda dt$

uvrshimbo t=0+ (So-y'(x)d2 = y(0) - y(0))

 $y(0t) - y(0t) - y'(0t) = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1$

y(0+) - y(0) = bo u(0+)

y'(t)-y'(0-)+a, y(t)-a, y(0-)=bou'(t)+bou(t)+b2 So-u(v)d2 y'(0+)-y'(0-)+a, y(0+)-a, y(0-)=bou'(0+)+bou(0+)

	datum / date				
y(0+) - y(0-) =	$60u(0+) = 0$ (jer $0^{-}) = -1$	je hoef.	nz 2 der.	u(+) = 0)	
-> y(0+) = y(0-) = -1		, T		
y'(0+) - y'(0-) +	1 as y(0+) - 2, y(0+) 1-) = 1+1=2	= bost	407 + bolk	((0+)	
y(0+)-y'(0-)=	1			***	
y'(0+=1+y'(0	1)=1+1=2				
4+(t) = C, e-t+C	2 te-t + 2 cost) - 2	sin (t)	-de	civiramo	1
y'+(t) = - Cie-t +	2te-t+ 200st)- 2 Cze-t-Czte-+	$z\sin(t)-z$	cas(t) um	shimo poč	. vijete
4(+)(0) = -1 = C	ナラシ (===				
y (0+) = 2 = - C,	+C2-1====+C2-==	2=2		*	
			smo koeficji	ente ta l	iom. Meserie
	C2=1				
1. (1) 3 -t	1to-t 1 1 000 f) - 1	141	111		

 $y_{+}(t) = -\frac{3}{2}e^{-t} + te^{-t} + \frac{1}{2}\cos(t) - \frac{1}{2}\sin(t) - total_{ni} \quad od_{iv}$ $mijedi \neq a \quad t \geq 0$

Poč. Uyjeti: $y'(0^-) = 1$ $y(0^-) = -1$

La mirni sustav

$$y_{0}(t) = C_{0}e^{-t} + C_{2}te^{-t}$$
 $y(0^{+}) = y(0^{-}) + b_{0}tt(0^{+}) - noma poole pa je gato skrižano$
 $y'(0^{+}) - y'(0^{-}) + a_{2}y(0^{+}) - a_{3}y(0^{-}) = b_{0}u'(0^{+}) + b_{1}u(0^{+})$
 $y'(0^{+}) = y'(0^{-})$

$$y'(t) = -C_1 e^{-t} + C_2 e^{-t} - C_2 t e^{-t}$$

$$y'(0^{\dagger}) = -1 = C_1$$

$$y'(0^{\dagger}) = 1 = -C_1 + C_2 \rightarrow C_2 = 0$$

$$y_0(t) = -e^{-t}$$

$$y_{m}(t) = C_{n}e^{-t} + C_{2}te^{-t} + \frac{1}{2}\cos t - \frac{1}{2}\sin t$$

$$y(0^{-}) = y'(0^{-}) = 0$$

$$y(0^{+}) - y(0^{-}) + bout(0^{+}) = 0$$

$$y'(0^{+}) - y'(0^{-}) + a_{1}y(0^{+}) - a_{1}y(0^{-}) = bout(0^{+}) + b_{1}u(0^{+})$$

$$y'(0^{+}) = b_{1}u(0^{+}) = 1 \cdot 1 = 1$$

$$y'm(t) = -C_1e^{-t} + C_2e^{-t} - C_2te^{-t} - \frac{1}{2}sint - \frac{1}{2}cost$$

$$y'm(0^{\dagger}) = 0 - C_1 + \frac{1}{2} \Rightarrow C_1 = -\frac{1}{2}$$

$$y'm(0^{\dagger}) = 1 = -C_1 + C_2 - \frac{1}{2}$$

$$1 = \frac{1}{2}+C_2 - \frac{1}{2} \Rightarrow C_2 = 1$$

$$y'mt = 0 - \frac{1}{2}e^{-t} + te^{-t} + \frac{1}{2}cost - \frac{1}{2}sint$$

$$y_{+}(t) = -e^{-t} - \frac{1}{2}e^{-t} + te^{-t} + \frac{1}{2}cost - \frac{1}{2}sint$$

= $-\frac{3}{2}e^{-t} + te^{-t} + \frac{1}{2}cost - \frac{1}{2}sint$

datum / da	ite	

$$u(t) = f(t)$$

$$A(D)y(t) = B(D) \cdot u(t)$$

$$h(t)$$
 - impulsing odeiv
 $h(t) = Ao f(t) + \sum_{j=1}^{\infty} C_j e^{sjt}$

$$\left(D^{N}+a_{1}D^{N-1}+\cdots+a_{N}\right)h_{A}(t)=d(t)$$

$$\begin{bmatrix}
\dot{\chi}_1(t) \\
\dot{\chi}_2(t)
\end{bmatrix} = \begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix} \begin{bmatrix}
\chi_1(t) \\
\chi_2(t)
\end{bmatrix} + \begin{bmatrix}
b_{10} \\
b_{20}
\end{bmatrix} \chi_1(t)$$

$$y(t) = [C_n C_1] \begin{bmatrix} x_n(t) \\ x_n(t) \end{bmatrix} + du(t)$$

$$y''(t) = b_0 u(t) - a_1 y'(t) - a_2 y(t)$$

$$\dot{x}_{2}(t) = y''(t)$$
 $x_{2}(t) = y'(t) = \dot{x}_{1}(t)$
 $x_{1}(t) = y(t)$

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -0 & 1 \\ -a_2 & -a_4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \end{bmatrix} \cdot \mu(t)$$

$$\dot{x}_{2}(t) = b_{0} u(t) - a_{1} y'(t) - a_{2} y(t) = b_{0} u(t) - a_{1} x_{2}(t) + a_{2} x_{1}(t)$$

$$\chi_n(t) = \chi_2(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Rad	datum / date
	$\frac{1}{2} \int \frac{1}{2} \left[\frac{1}{2} u(t) \right] dt$
y(t) = [1 0] [x,(t)] xn(t)]	Qutt)
$\frac{\chi_1(t) = \chi_1 e^{st}}{\chi_2(t) = \chi_1 e^{st}} => \lambda$	$K_1(t) = sK_1e^{st}$ $K_2(t) = sK_2e^{st}$
$\frac{sK_1e^{st} = K_2e^{st}}{sK_1e^{st} = 3K_1e^{st} - 2K_2e^{st}}$	$s^{t} + 4u(t)/e^{st}$
$sK_1 = K_2$ $sK_2 = 3K_1 - 2K_2$ $s^2K_1 = 3K_1 - 2sK_1 \mid : K_1$	V. 70
s2+2s-3=0 =>	
$x_{1}t = K_{1}e^{t} + K_{1}e^{-3t}$ $x_{2}t = K_{2}e^{t} + K_{2}e^{-3t}$	$\begin{array}{c} x_1(0^-) = 1 \\ x_2(0^-) = 0 \\ x_1(0^-) = 0 \end{array}$
$x_{1}(0) = K_{11} + K_{12} = 1$ $\dot{x}_{1}(t) = K_{11}e^{t} - 3K_{12}e^{-3t}$ $\dot{x}_{1}(0) = K_{11} - 3K_{12} = 0$	$\dot{\chi}_2(o^2) = 0$
$X_2(0^-) = K_{11} + K_{11} = 0$ $X_2(t) = K_{11}e^t - 3K_{11}e^t$,-3t
$(x_1(0^-) = K_{21} - 3K_{22} = 0$	$x_i(t) = \frac{3}{4}e^t + \frac{1}{4}e^{-3t}$
$K_{12} = 3K_{12} = \frac{3}{4}$ $3K_{12} + K_{11} = \frac{1}{4}$ $K_{12} = \frac{1}{4}$	$\chi_{2}(t)=0$

datum / date _____

$$S^{2} + \alpha_{1} S + \alpha_{2} = 0$$

$$S_{1,2} = \frac{-\alpha_{1} \pm \sqrt{\alpha_{1} - 4}}{2} = \frac{-2\delta w_{n} \pm \sqrt{4}S^{2}w^{2} + 4\omega^{2}}{2}$$

$$= -\delta \omega_{n} \pm \omega_{n} - \delta^{2} - 1 = S_{1,2}$$

$$a_{1} = 2\delta \omega_{n}$$

$$a_{2} = \omega_{n}^{2}$$

$$b_{0} = A\omega^{2}$$

$$G = 1 \implies S_{1,2} = -\omega_m \pm \omega_m F_0$$

$$KRIT. PRIGUSEN$$

$$G = 0 \implies S_{1,2} = \emptyset \pm j \omega_m$$

$$NEPRIGUSEN SUSTAV$$

$$G > 1 \implies S_{1,2} = -G \omega_m \pm \omega_m G^2 - 1$$

$$NADKRITICHO PRIGUSEN SUSTAV$$

$$G < 1 \implies S_{1,2} = -G \omega_m \pm j \omega_m \sqrt{1 - g^2}$$

$$PODKRITICNO PRIGUSEN SUSTAV$$

$$y''(t) + 0.2y'(t) + 0.16y(t) = 0$$

 $a_1 = \omega_m^2 = 0.16$

Wn = 0.4

$$a_1 = 2 \int \omega_m = 0.2$$

 $\int = \frac{0.2}{0.8} = \frac{1}{4} = 0.25$

5 +0.25 + 0.16 = 0

$$\cos \omega t = \frac{e^{j\omega t} + e^{j\omega t}}{2}$$

$$\sin \omega t = \frac{e^{j\omega t} - e^{j\omega t}}{2j}$$