Name:	
J#:	Dr. Clontz
Date:	

Version 1

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Mark:

$$\begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \\ -2 \end{bmatrix}, \text{ and } \begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \text{ span } \mathbb{R}^4.$$

Standard V4.	Mark:

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \P_2

Name:	
J#:	Dr. Clontz
Date:	

Version 2

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:			
Determine if the vectors	$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix},$	$\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and	$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \text{ span } \mathbb{R}^4.$

	Mark:
Standard V4.	

Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Name:	
J#:	Dr. Clontz
Date:	

Version 3

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:		
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}$	$3 \mid , \mid 3 \mid , \text{ and } \mid$	$\begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix} \text{ span } \mathbb{R}^4.$

	Mark:
Standard V4.	

Let W be the set of all 2 by 2 matrices which are not invertible. Determine if W is a subspace of $M_{2,2}$.

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \P_2

Name:	
J#:	Dr. Clontz
Date:	

Version 4

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the vectors
$$\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

	Mark:
Standard V4.	

Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \P_2

Name:	
J#:	Dr. Clontz
Date:	

Version 5

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Mark:
$$\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}, \begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}, \text{ and } \begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix} \text{ span } \mathbb{R}^3.$$

Standard V4.	Mark:

Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Mark:
$$\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}, \begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}, \text{ and } \begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix} \text{ span } \mathbb{R}^3.$$

$$\begin{array}{|c|c|c|} \hline \textbf{Standard V4.} & & & \\ \hline \\ \text{Determine if} \left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \;\middle|\; x,y,z \in \mathbb{R} \right\} \text{ a subspace of } \mathbb{R}^4. \\ \hline \end{array}$$

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \P_2