Math. - CC 1 - Correction

EXERCICE I

Résoudre les systèmes suivants (pour le second, on discutera en fonction des valeurs du paramètre m):

$$\begin{cases} x+y+2z = 3\\ x+2y+z = 1\\ 2x+y+z = 0 \end{cases} S = \{(-1, 0, 2)\}$$

$$\left\{\begin{array}{ll} x-y+z=m\\ x+my-z=1\\ x-y-z=1 \end{array}\right. \quad \left\{\begin{array}{ll} \mathrm{Si}\ m\neq -1, & S=\left\{\left(\frac{m+1}{2};0;\frac{m-1}{2}\right)\right\}\\ \mathrm{Si}\ m=-1, & S=\left\{(x;x;-1),x\in\mathbb{R}\right\} \end{array}\right.$$

EXERCICE II

Résoudre dans \mathbb{R} les équations et inéquations suivantes :

Le domaine de validité de cette équation est $D_v = [1; +\infty[$

$$\sqrt{x-1} = 2 - x \Leftrightarrow \left(\left(x - 1 = 4 - 4x + x^2 \right) \land \left(x \in [1;2] \right) \right) \Leftrightarrow x = \frac{5 - \sqrt{5}}{2} \quad \text{d'où } S = \left\{ \frac{5 - \sqrt{5}}{2} \right\}$$

- **2.** |1-x|+|x|=1 (*)
 - \Rightarrow Si $x \le 0$, $(*) \Leftrightarrow 1 x x = 1 \Leftrightarrow x = 0$
 - \Rightarrow Si $x \in [0,1], (*) \Leftrightarrow 1-x+x=1 \Leftrightarrow 1=1$ Ce qui est toujours vrai
 - \Rightarrow Si $x \ge 1$, $(*) \Leftrightarrow x 1 + x = 1 \Leftrightarrow x = 1$

Finalement, S = [0; 1]

3.
$$-1 \le \frac{3x-2}{5-3x} \le 1$$
 (*)

Le domaine de validité de cette équation est $D_v = \mathbb{R} \setminus \left\{ \frac{5}{3} \right\}$ et pour $x \in D_v$, on a :

Le domaine de validité de cette equation est
$$D_v = \mathbb{R} \setminus \left\{ \frac{3}{3} \right\}$$
 et pour $x \in D_v$, on a :
$$(*) \Leftrightarrow \left| \frac{3x - 2}{5 - 3x} \right| \le 1 \Leftrightarrow \left(\frac{3x - 2}{5 - 3x} \right)^2 - 1 \le 0 \Leftrightarrow \underbrace{\frac{(3x - 2)^2 - (5 - 3x)^2}{(5 - 3x)^3}}_{>0} \Leftrightarrow (3x - 2 + 5 - 3x)(3x - 2 - 5 + 3x) \le 0$$

$$\Leftrightarrow 6x - 7 \le 0$$
 d'où $S = \left[-\infty; \frac{7}{6} \right]$

4. $\frac{1}{x+1} \le \sqrt{1-x}$ (*)

Le domaine de validité de cette inéquation est $D_v =]-\infty; -1[\cup]-1;1]$ \rightarrow Si 1+x<0, l'inégalité est toujours vérifiée.

$$Arr Si \ 1 + x > 0, \quad (*) \Leftrightarrow \frac{1}{(1+x)^2} \le 1 - x \Leftrightarrow \frac{1 - (1-x)(1+x)^2}{\underbrace{(1+x)^2}_{>0}} \le 0 \Leftrightarrow x(x^2 + x - 1) \le 0$$

<u>Un tableau de signes</u>, avec la contrainte x > -1 donne $x \in \left[0; \frac{-1 + \sqrt{5}}{2}\right]$

Finalement, $S =]-\infty; -1[\cup \left| 0; \frac{-1+\sqrt{5}}{2} \right|$

5.
$$\cos(x) + \sin(x) \ge 1 \quad \Leftrightarrow \cos\left(x - \frac{\pi}{4}\right) \ge \frac{\sqrt{2}}{2} \qquad S = \bigcup_{k \in \mathbb{Z}} \left[2k\pi; \frac{\pi}{2} + 2k\pi\right]$$

6.
$$\cos(2x) + \cos(x) \ge 0 \quad \Leftrightarrow 2\cos^2(x) + \cos(x) - 1 \ge 0 \Leftrightarrow \cos(x) \in \left\lfloor \frac{1}{2}; 1 \right\rfloor \cup \{-1\}$$

$$S = \bigcup_{k \in \mathbb{Z}} \left(\left[-\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi \right] \cup \{(2k+1)\pi\} \right)$$

EXERCICE III

On pose, pour $p \in \mathbb{N}$ et $n \in \mathbb{N}^*, S_p = \sum_{i=1}^n k^p$. Le but de cet exercice est de retrouver les expressions simplifiées de S_1, S_2 et S_3 par deux méthodes. On suppose donc que l'on ne connaît pas ces formules.

1. Première méthode:

a. En remarquant que pour $k \in \mathbb{N}^*$, $(k+1)^2 - k^2 = 2k+1$, montrer que $n(n+2) = 2S_1 + n$ et en déduire S_1 , que l'on suppose connue pour la question suivante

$$\sum_{k=1}^{n} (2k+1) = \sum_{k=1}^{n} (k+1)^2 - \sum_{k=1}^{n} k^2 \underset{\text{t\'elescopage}}{=} (n+1)^2 - 1, \text{ d'où} : 2S_1 + n = n^2 + 2n \text{ et enfin}, S_1 = \frac{n(n+1)}{2}$$

b. En partant de $(k+1)^3 - k^3$, montrer que $n(n^2 + 3n + 3) = 3S_2 + 3S_1 + n$ et en déduire S_2 . $\forall k \in \mathbb{R}, (k+1)^3 - k^3 = 3k^2 + 3k + 1$; on en déduit que :

$$\sum_{k=1}^{n} (3k^2 + 3k + 1) = \sum_{k=1}^{n} (k+1)^3 - \sum_{k=1}^{n} k^3 \underset{\text{t\'elescopage}}{=} (n+1)^3 - 1, \text{ d'où} : 3S_2 + 3S_1 + n = n^3 + 3n^2 + 3n.$$

En utilisant le résultat précédent, on obtient : $S_2 = \frac{n(n+1)(2n+1)}{c}$

 ${f c.}$ Donner une méthode sur le même principe permettant le calcul de S_3 (on ne demande pas de réaliser ce

 $\forall k \in \mathbb{R}, (k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$ d'où l'on obtient : $4S_3 + 6S_2 + 4S_1 + n = (n+1)^4 - 1$.

d. Montrer que, plus généralement, pour $p \in \mathbb{N}^*$:

$$S_p = \frac{1}{p+1} \left((n+1)^{p+1} - 1 - \sum_{i=0}^{p-1} {p+1 \choose i} S_i \right)$$

La formule du binôme de Newton donne, pour tout $k \in \mathbb{R}$

$$(k+1)^{p+1} - k^{p+1} = \sum_{i=0}^{p+1} \binom{p+1}{i} k^i - k^{p+1} = \sum_{i=0}^{p} \binom{p+1}{i} k^i + \binom{p+1}{p+1} k^{p+1} - k^{p+1} = \sum_{i=0}^{p} \binom{p+1}{i} k^i$$

$$(n+1)^{p+1} - 1 = \sum_{k=1}^{n} \sum_{i=1}^{p} {p+1 \choose i} k^{i} = \sum_{i=1}^{p} \sum_{k=1}^{n} {p+1 \choose i} k^{i} = \sum_{i=1}^{p} {p+1 \choose i} \sum_{k=1}^{n} k^{i} = \sum_{i=1}^{p} {p+1 \choose i} S_{i}$$

d'où l'on a : $(n+1)^{p+1} - 1 = \sum_{i=0}^{p-1} {p+1 \choose i} S_i + {p+1 \choose p} S_p$ puis le résultat attendu, car ${p+1 \choose p} = p+1$.

2. Deuxième méthode :

i. A l'aide d'un changement d'indice, montrer que $\sum_{k=1}^{n} k = \sum_{j=1}^{n} (n+1-j)$.

On effectue le changement d'indice j = n + 1 - k

ii. En déduire que $S_1 = n(n+1) - S_1$ et retrouver ainsi l'expression de S_1 , que l'on suppose désormais connue pour la suite.

On obtient directement $S_1 = \sum_{i=1}^{n} (n+1) - S_1 = n(n+1) - S_1$, puis $S_1 = \frac{n(n+1)}{2}$

i. Démontrer que $S_2 = \sum_{i=1}^n \left(\sum_{j=1}^i i\right) = \sum_{i=1}^n \left(\sum_{j=i}^n i\right)$.

On a:
$$\sum_{i=1}^{n} \sum_{j=1}^{i} i = \sum_{i=1}^{n} i \left(\sum_{j=1}^{i} 1 \right) = \sum_{i=1}^{n} i \times i = S_2.$$

L'autre égalité s'obtient en intervertissant les sommes triangulaires telles que $1 \le j \le i \le n$.

ii. En déduire que $S_2 = \frac{1}{2} \left(n^2 (n+1) + S_1 - S_2 \right)$ et retrouver l'expression de S_2 , que l'on suppose désormais

Remarquons tout d'abord, en utilisant le résultat précédent, que pour $j \in [2, n]$:

$$\sum_{i=j}^n i = \sum_{i=1}^n i - \sum_{i=1}^{j-1} i = \frac{n(n+1)}{2} - \frac{j(j-1)}{2}$$
 et que cette égalité reste vraie pour $j=1$.

Ainsi,
$$S_2 = \sum_{j=1}^n \left(\frac{n(n+1)}{2} - \frac{j(j-1)}{2} \right) = \frac{1}{2} \left(n^2(n+1) - \sum_{j=1}^n (j^2 - j) \right) = \frac{1}{2} \left(n^2(n+1) + S_1 - S_2 \right).$$

Enfin, on obtient : $\frac{3}{2} S_2 = \frac{1}{2} \left(n^2(n+1) + \frac{n(n+1)}{2} \right)$, d'où $S_2 = \frac{n(n+1)(2n+1)}{6}$

c. i. Montrer que
$$\sum_{(i:j)\in \mathbb{I}: n\mathbb{I}^2} ij = S_1^2.$$

$$\sum_{(i;j)\in[1,n]^2} ij = \sum_{i=1}^n \sum_{j=1}^n ij = \sum_{i=1}^n i \sum_{j=1}^n j = S_1^2$$

ii. Montrer que
$$\sum_{1 \le i \le j \le n} ij = \frac{1}{2} (S_3 + S_2).$$

$$\sum_{1 \le i \le j \le n} ij = \sum_{j=1}^{n} \sum_{i=1}^{j} ij = \sum_{j=1}^{n} j \sum_{i=1}^{j} i = \sum_{j=1}^{n} j \frac{j(j+1)}{2} = \frac{1}{2} (S_3 + S_2)$$

On a :
$$\sum_{\substack{(i;j)\in \|1;n\|^2\\ \text{D'où } S_3=S_1^2.}}ij=2\sum_{1\leq i\leq j\leq n}ij-\sum_{i=1}^ni^2=2\left(\frac{1}{2}\left(S_3+S_2\right)\right)-S_2=S_3.$$

EXERCICE IV

1. On considère la fonction g définie par

$$g(x) = \frac{2x}{1 - x^2} - \ln\left|\frac{1 + x}{1 - x}\right|$$

- Déterminer le domaine de définition de g, noté $\mathscr{D}_g = \mathbb{R} \setminus \{-1, 1\}$.
- Étudier la parité de g. g est impaire.
- ${\bf c.}$ Déterminer les réels a et b tels que :

$$\forall x \in \mathcal{D}_g, \quad g(x) = \frac{a}{1-x} + \frac{b}{1+x} + \ln|1-x| - \ln|x+1|$$

$$a = 1, b = -1$$

d. Étudier les limites de g(x) aux bornes de son domaine de définition, pour x positif.

$$\forall x \in \mathscr{D}_g, \quad g(x) = \frac{1 + (1 - x)\ln|1 - x|}{1 - x} - \frac{1}{1 + x} - \ln|1 + x|.$$

En utilisant la forme de la question précédente, on obtient : $\forall x \in \mathscr{D}_g, \quad g(x) = \frac{1 + (1 - x) \ln |1 - x|}{1 - x} - \frac{1}{1 + x} - \ln |1 + x|.$ Par croissances comparées, $\lim_{x \to 1} (1 - x) \ln |1 - x| = \lim_{X \to 0} X \ln |X| = 0$ donc par sommes et quotient :

$$\lim_{x \to 1^{-}} g(x) = +\infty; \lim_{x \to 1^{+}} g(x) = -\infty$$

$$\forall x \in \mathscr{D}_g, \quad g(x) = \frac{2}{\frac{1}{x} - x} - \ln \left| \frac{\frac{1}{x} + 1}{\frac{1}{x} - 1} \right|$$
 d'où par composition, sommes et quotients : $\lim_{x \to +\infty} g(x) = 0$

Étudier les variations de g et dresser son tableau de variations complet.

D'après les théorèmes généraux, g est dérivable sur son domaine et pour tout $x \in \mathscr{D}_g$, $g'(x) = \frac{4x^2}{(1-x^2)^2} \ge 0$.

On en déduit que g est croissante sur ses intervalles de définition.

On obtient les variations complètes et l'ensemble des limites en utilisant la parité de g :

f. En déduire le signe de q(x).

x	$-\infty$	-1	0	1	$+\infty$
g(x)	+		- 0	+	_

2. On considère la fonction f définie par

$$f(x) = \frac{1}{x} \ln \left| \frac{1+x}{1-x} \right|$$

- **a.** Donner le domaine de définition de f. $\mathscr{D}_f = \mathbb{R}^* \setminus \{-1; 1\}$
- Étudier la parité de f.
- f est paire.
- c. Étudier les limites de f(x) aux bornes de son domaine de définition, pour x positif.

$$\forall x \in \mathscr{D}_f, \quad f(x) = \frac{\ln|1+x|}{x} - \frac{\ln[1-x]}{x}$$

$$\forall x \in \mathscr{D}_f, \quad f(x) = \frac{\ln|1+x|}{x} - \frac{\ln[1-x]}{x}.$$
 On a:
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \text{ et } \lim_{x \to 0} \frac{\ln(1-x)}{x} = -1 \text{ donc, par somme, } \lim_{x \to 0} f(x) = 2.$$
 De plus
$$\lim_{x \to +\infty} \frac{1+x}{1-x} = \lim_{x \to +\infty} \frac{\frac{1}{x}+1}{\frac{1}{x}-1} = -1 \text{ d'où } \lim_{x \to +\infty} f(x) = 0, \text{ par produit.}$$

De plus
$$\lim_{x \to +\infty} \frac{1+x}{1-x} = \lim_{x \to +\infty} \frac{\frac{x}{x}+1}{\frac{1}{x}-1} = -1$$
 d'où $\lim_{x \to +\infty} f(x) = 0$, par produit

Enfin, par composition et produit, $\lim_{x \to a} f(x) = +\infty$.

 \mathbf{d} . Étudier les variations de f et dresser son tableau de variations complet.

Les théorèmes généraux donnent f dérivable sur son domaine, et pour tout $x \in \mathscr{D}_f$, $f'(x) = \frac{g(x)}{x^2}$ Ainsi, d'après le signe de g(x) établi précédemment, et en utilisant la parité de f on obtient :

En déduire, en fonction du paramètre réel a, le nombre de solutions positives de l'équation

$$\ln\left|\frac{1+x}{1-x}\right| = ax$$

Remarquons tout d'abord que 0 est solution de l'équation quel que soit le réel a.

Pour $x \neq 0$, on cherche le nombre de solutions de l'équation f(x) = a. La fonction f étant continue sur son domaine de définition, le théorème des valeurs intermédiaires donne :

- \rightarrow Si $a \leq 0$, l'équation f(x) = a n'admet aucune solution;
- \rightarrow Si $0 < a \le 2$, l'équation f(x) = a admet 2 solutions, dont une positive;
- \rightarrow Si a > 2, l'équation f(x) = a admet 4 solutions, dont 2 positives.