

CoSA: Scheduling by <u>Constrained Optimization for Spatial Accelerators</u>

Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James Demmel, John Wawrzynek, Yakun Sophia Shao

Email: jennyhuang@nvidia.com Git repo: https://github.com/ucb-bar/cosa

Scheduling is a big challenge

Rapidly increasing hardware capacity

• $^{\sim}10^{13}$ possible mappings for a typical ResNet layer on a 3-level architecture

Accelerator-oriented scheduling

Key DNN accelerator properties to leverage:

Workload Regularity

Exponentially growing

algorithm complexity

Known HW
Constraints

Explicit Data Management

CoSA: a one-shot approach

Constrained
Optimization
Polly+Pluto TC
Tiramisu

- Unable to determine tiling factor sizes

CoSA - addresses key scheduling decisions

DNN scheduling formulation with CoSA

Three scheduling decisions

CoSA Evaluation

- Baselines:
- Random (best out of 5 valid schedules)
- Timeloop Hybrid (best out of 16K valid schedules)
- Platforms:
 - Timeloop Simulator

1.5x latency speedup

1.2x better energy efficiency

90x faster time-to-solution

	CoSA	Random	Timeloop Hybrid
Runtime / Layer	4.2s	4.6s (1.1x)	379.9s (90.5x)
Samples / Layer	1	20K	67M
Evaluations/ Layer	1	5	16K

Key idea: prime factor allocation

CoSA Variable X

Binary allocation var X

(Limit = 4)

CoSA Constraints

Weight Buffer
(Size = 4)

Weight Buffer (Size = 4)

CoSA Objectives

Compute-driven

Traffic-driven