I. Algebraic Integers

1. Motivation

At its most elementary, number theory is the study of integers. Few topics:

- o primes;
- o integer equations;
- o divisibility;
- o gcd; and
- o prime factorization.

The goal is to generalize these topics with *commutative algebra*.

Naive approach is to use UFD's. A problem with this is that there are many *integer-like* integral domains, such as $\mathbb{Z}\left[\sqrt{5}\right]$, that are not UFD's.

Let us do some random math and see where it goes. Consider

$$\alpha = \frac{1+\sqrt{5}}{2}.$$

Note that $\alpha \in \mathbb{Q}\left[\sqrt{5}\right]$. In fact, observe that α is the root of the polynomial x^2-x-1 , so that

$$\alpha^2 = \alpha + 1. \tag{1.1}$$

Def'n 1.1. $\mathbb{Z}[\alpha]$

Given $\alpha \in \mathbb{C}$, define

$$\mathbb{Z}\left[\alpha\right] = \left\{f(\alpha) : f \in \mathbb{Z}\left[x\right]\right\}.$$

For the specific $\alpha = \frac{1+\sqrt{5}}{2}$, observe that [1.1] tells us that we can replace any α^2 with a linear polynomial in α , so that

$$\mathbb{Z}\left[\alpha\right] = \left\{a + b\alpha : a, b \in \mathbb{Z}\right\}.$$

This simplification worked because

there is a monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

In fact, observe that $\alpha = \frac{1+\sqrt{5}}{2}$ implies that

$$(2\alpha - 1)^2 = 5,$$

which means if we have any other number congruent to 5 mod 4 in place of 5, we would still get a polynomial of the form

$$4\alpha^2 - 4\alpha - b = 0,$$

where $b \equiv 0 \mod 4$.

The last thing we note about $\mathbb{Z}[\alpha]$ is that

$$\mathbb{Z}[\alpha] = \mathbb{Z} + \mathbb{Z} \alpha.$$

In general, we want to have

$$\mathbb{Z}\left[\alpha\right] = \mathbb{Z} + \mathbb{Z} \alpha + \dots + \mathbb{Z} \alpha^{n-1}$$

which allows us to do \mathbb{Z} -module theory.

2. Algebraic Integers

Def'n 1.2. Algebraic Integer

We say $\alpha \in \mathbb{C}$ is an *algebraic integer* if and only if there exists a monic $f \in \mathbb{Z}[x]$ such that

$$f(\alpha) = 0.$$

We do not insist that f is irreducible. For instance, $7, \sqrt{5}, \frac{1+\sqrt{5}}{2}, i, 1+i, \zeta_n$ are all algebraic integers, where ζ_n is an nth root of unity.

How do we tell if an *algebraic number* $\alpha \in \mathbb{C}$ (i.e. α is a root of a not-necessarily monic polynomial over \mathbb{Z}) is an algebraic integer?

Theorem 1.1.

An algebraic number $\alpha \in \mathbb{C}$ is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} is over \mathbb{Z} .

Postponed

Corollary 1.1.1.

The only algebraic integers in \mathbb{Q} are integers.

Example 1.1. —

Consider

$$\beta = \frac{1+\sqrt{3}}{2}.$$

Then $(2\beta - 1)^2 = 3$, so that β is a root for

$$f = x^2 - x - \frac{1}{2}$$
.

But f is a monic polynomial with deg (f) = 2 and a root β of f is irrational, it follows that f is the minimal polynomial for β over \mathbb{Q} . Thus β is not an algebraic integer.

Suppose that

$$f = \sum_{j=0}^{n} a_j x^j \in \mathbb{Z}[x].$$

Then the *content* of *f* is

content
$$(f) = \gcd(a_0, \ldots, a_n)$$

and we say that

f is *primitive*
$$\iff$$
 content $(f) = 1$.

In this setting, Gauss's lemma can be stated as following.

Lemma 1.2. Gauss's Lemma

Let $f, g \in \mathbb{Z}[x]$. If f, g are primitive, then so is fg.

Proof of Theorem 1.1

(←) This direction is trivial, as any minimal polynomial is monic.

(\Longrightarrow) Let $\alpha \in \mathbb{C}$ be an algebraic integer and let $m \in \mathbb{Q}[x]$ be its minimal polynomial. Let $f \in \mathbb{Z}[x]$ be monic such that $f(\alpha) = 0$. Since m is the minimal polynomial,

$$f = mg$$

for some $g \in \mathbb{Q}[x]$.

Take $N_1, N_2 \in \mathbb{N}$ be the smallest positive integers such that $N_1m, N_2g \in \mathbb{Z}[x]$. If $p \in \mathbb{N}$ is a prime dividing all coefficients of N_1m , then $\frac{N_1}{p}m \in \mathbb{Z}[x]$. In fact, $\frac{N_1}{p} \in \mathbb{Z}$, since m is monic so that the leading coefficient of N_1m is N_1 . This leads to a contradiction, as $\frac{N_1}{p} < N_1$ violates minimality of N_1 .

Also note that f, m are monic, so that g is monic as well. Hence by following a similar argument, N_2g is primitive.

Now,

$$N_1N_2f = (N_1m)(N_2g)$$

Since f is monic, observe that the content of N_1N_2f is N_1N_2 . But N_1m , N_2g are primitive, so by Gauss's lemma, (N_1m) (N_2g) is primitive. Therefore

$$N_1N_2 = \operatorname{content}(N_1N_2f) = \operatorname{content}((N_1m)(N_2g)) = 1,$$

which means $N_1 = N_2 = 1$. Thus $m \in \mathbb{Z}[x]$.

QED

3. Ring of Integers

Example 1.2.

Let $d \in \mathbb{Z}$ be *square-free* and $d \neq 1$. That is, in the prime factorization of d, there are no multiplicities. Consider

$$K = \mathbb{Q}\left(\sqrt{d}\right) = \left\{a + b\sqrt{d} : a, b \in \mathbb{Q}\right\}.$$

Then we know that

 K/\mathbb{Q} is finite $\Longrightarrow K/\mathbb{Q}$ is algebraic.

We are going to find all algebraic integers in *K*. Let

$$\alpha = a + b\sqrt{d} \in K$$

be an algebraic integer. Consider the conjugate

$$\overline{\alpha} = a - b\sqrt{d}$$
.

Then

$$m = (x - \alpha)(x - \overline{\alpha}) = x^2 - 2ax + a^2 - db^2$$

is the minimal polynomial for α over \mathbb{Q} . By Theorem 1.1, it follows that $2a, a^2 - db^2 \in \mathbb{Z}$. Now,

$$4(a^2 - db^2) = (2a)^2 - d(2b)^2$$

but $a^2 - db^2$, $(2a)^2 \in \mathbb{Z}$, so that

$$d(2b)^2 \in \mathbb{Z}$$
.

Since d is square-free, it follows that $2b \in \mathbb{Z}$. If not, then the denominator of 2b is not 1. This means the denominator of $(2b)^2$ has a square of a prime as a factor, which contradicts the fact that d is square-free. Hence y = 2a, $\delta = 2b \in \mathbb{Z}$. This means

$$a^2 - db^2 = \left(\frac{\gamma}{2}\right)^2 - d\left(\frac{\delta}{2}\right)^2 = \frac{\gamma^2 - d\delta^2}{4} \in \mathbb{Z}.$$

It follows $y^2 - d\delta^2 \equiv 0 \mod 4$.

We have few cases.

Case 1. $d \equiv 1 \mod 4$.

It follows that

$$\gamma^2 \equiv \delta^2 \mod 4$$
.

But even numbers square to 0 mod 4 and odd numbers square to 1 mod 4. Hence

$$\gamma \equiv \delta \mod 2$$
.

It follows that α is of the form

$$\alpha = a + b\sqrt{d} = \frac{\gamma + \delta\sqrt{d}}{2}$$

for some $\gamma, \delta \in \mathbb{Z}$.

(End of Case 1)

Case 2. $d \equiv 2 \mod 4$ or $d \equiv 3 \mod 4$.

It is a routine exercise to show that

$$\gamma^2 - d\delta^2 \equiv 0 \mod 4 \iff \gamma \equiv \delta \equiv 0 \mod 2.$$

Hence

$$\alpha = \frac{\gamma}{2} + \frac{\delta}{2}\sqrt{d}$$

but γ , δ are even numbers, so that $a = \frac{\gamma}{2}$, $b = \frac{\delta}{2} \in \mathbb{Z}$ and

$$\alpha = a + b\sqrt{d}.$$

(End of Case 2)

Exercise: check these conditions are also sufficient.

The above example gives the following idea.

Given a finite extension K/\mathbb{Q} , we find all algebraic integers in K.

This motivates the following definitions.

Def'n 1.3. Number Field, Ring of Integers of a Number Field

We call a finite extension K of \mathbb{Q} a *number field*.

Given a number field *K*, we call

$$\mathcal{O}_K = \{ \alpha \in K : \alpha \text{ is an algebraic integer} \}$$

the *ring of integers* of *K*.

We are going to prive that \mathcal{O}_K is a ring.¹ To do so, we first show

$$\mathbb{A} = \{ z \in \mathbb{C} : z \text{ is an algebraic integer} \}$$

is a ring, so that

$$\mathcal{O}_K = \mathbb{A} \cap K$$

is also a ring.

Recall that, given $\alpha \in \mathbb{A}$, we have

$$\mathbb{Z}\left[\alpha\right] = \mathbb{Z} + \mathbb{Z} \alpha + \cdots + \mathbb{Z} \alpha^{n-1}.$$

This allows us to do module theory over \mathbb{Z} .

Def'n 1.4. R-module

Let R be a ring. An R-module is an abelian group (M, +) with a left R-action on M such that

- (a) 1m = m for $m \in M$;
- (b) $(r_1 + r_2) m = r_1 m + r_2 m$ for $r_1, r_2 \in R, m \in M$;
- (c) $r(m_1 + m_2) = rm_1 + rm_2$ for $r \in R, m_1, m_2 \in M$; and
- (d) $(r_1r_2) m = r_1(r_2m)$ for $r_1, r_2 \in R, m \in M$.

¹We are going to assume that every ring is unital and commutative throughout, if not stated otherwise.

Example 1.3. Examples of *R*-modules

Given a ring *R*, *R* is an *R*-module with left action

$$r \cdot m = rm$$

$$\forall r, m \in R$$
.

In fact, given any subring $S \subseteq \mathbb{R}$, R is an S-module with

$$s \cdot r = sr$$
,

$$\forall s \in S, r \in R$$
.

Similar to \mathbb{R}^n which is a \mathbb{R} -vector space, \mathbb{R}^n is an \mathbb{R} -module with

$$r\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} rx_1 \\ \vdots \\ rx_n \end{bmatrix},$$

$$\forall r \in R, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in R^n.$$

Example 1.4.

Consider $R = \mathbb{Z}$ and consider an R-module M. Then given $n \in \mathbb{N}$, $m \in M$,

$$n \cdot m = (1 + \cdots + 1) \cdot m = 1 \cdot m + \cdots + 1 \cdot m = m + \cdots + m = nm$$
.

That is, the \mathbb{Z} -module on an abelian group M does not impose any additional structure on M; a \mathbb{Z} -module is simply an abelian group.

As an exercise, we can also check that

$$(-n) \cdot m = -nm$$

for $n \in \mathbb{N}$, $m \in M$.

Def'n 1.5. R-submodule, Homomorphism of R-modules, Finitely Generated R-module

Let *R* be a ring and let *M* be an *R*-module. We say $N \subseteq M$ is an *R*-submodule of *M* if *N* is an *R*-module using the same operations as *M*.

Given *R*-modules M, N, we say $f: M \to N$ is a **homomorphism** if and only if

$$f(rm_1 + m_2) = rf(m_1) + f(m_2),$$
 $\forall r \in R, m_1, m_2 \in M.$

In case *f* is bijective, we say *f* is an *isomorphism*.

We say an *R*-module is *finitely generated* if there are $m_1, \ldots, m_n \in M$ such that

$$M = Rm_1 + \cdots + Rm_n$$
.

That is, for any $m \in M$, there exists $r_1, \ldots, r_n \in R$ such that

$$m=\sum_{j=1}^n r_j m_j.$$

In other words, finite number of elements m_1, \ldots, m_n generate M.

Observe that

 $N \subseteq M$ is an R-submodule \iff N is subgroup of M closed under R-left action.

Example 1.5.

Given a ring *R*, as an *R*-module, the only *R*-submodules are the ideals of *R*.

Def'n 1.6. Integral over R

Let R, S be integral domains, such that R is a subring of S. We say $\alpha \in S$ is *integral* over R if there is monic $f \in R[x]$ such that $f(\alpha) = 0$.

Example 1.6.

In case $R = \mathbb{Z}$, $S = \mathbb{C}$, given $\alpha \in S$,

 α is integral $\iff \alpha$ is algebraic integer.

That is, being integral over *R* is a generalization of being an algebraic integer.

Theorem 1.3.

Let R, S be integral domains where R is a subring of S and let $\alpha \in S$. Then

 α is integral over $R \iff R[\alpha] = \{f(\alpha) : f \in R[x]\}$ is a finitely generated R-module.

Proof. (\Longrightarrow) Suppose α is integral over R. Then there is a polynomial relation

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \cdots + a_{1}\alpha + a_{0} = 0$$

for some $a_0, \ldots, a_{n-1} \in R$. Rearranging for α^n ,

$$\alpha^n = -\left(a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0\right).$$

This means, given any $f \in R[x]$, every powers $\alpha^n, \alpha^{n+1}, \dots$ in $f(\alpha)$ can be replaced by lower powers of α , so that

$$f(\alpha) = g(\alpha)$$

for some $g \in R[x]$ with deg $(g) \le n - 1$. That is,

$$R[\alpha] \subseteq R + R\alpha + \cdots + R\alpha^{n-1}$$
.

But the reverse containment is trivial, so that $R[\alpha]$ is finitely generated.

(\iff) Suppose $R[\alpha]$ is finitely generated, say

$$R[\alpha] = Rf_1(\alpha) + \cdots + Rf_n(\alpha)$$

with $f_1, \ldots, f_n \in R[x]$. Take $N = \max_{1 \le j \le n} \deg(f_j)$. Then $\alpha^{N+1} \in R[x]$ as a polynomial of α , so that

$$\alpha^{N+1} = \sum_{i=1}^{n} r_{i} f_{i}(\alpha)$$

for some $r_1, \ldots, r_n \in R$.

Now consider

$$g = x^{N+1} - \sum_{i=1}^{n} r_{i} f_{i} \in R[x].$$

Then $g(\alpha) = 0$. But $\deg(x^{N+1}) = N+1 > N = \max_{1 \le j \le n} \deg(f_j)$, so that g is monic as well. Thus α is algebraic over R.

QED

The big idea for Theorem 1.3 is that

showing $\mathbb{Z}[\alpha]$ is finitely generated is often easier than finding monic $f \in \mathbb{Z}[x]$ with $f(\alpha) = 0$.

"Let's work with generators instead of polynomials" - Blake.

Theorem 1.4.

Let

$$\mathbb{A} = \{ z \in \mathbb{C} : z \text{ is an algebraic integer} \}.$$

Then \mathbb{A} is a subring of \mathbb{C} .

Proof Attempt. If we are in PMATH 348, proving something is *easy*; we simply apply the subring test. Let's see how it fails here. Let $\alpha, \beta \in \mathbb{A}$. We must show that $\alpha - \beta, \alpha\beta \in \mathbb{A}$. That is, we must show

 $\mathbb{Z}\left[\alpha-\beta\right], \mathbb{Z}\left[\alpha\beta\right]$ are finitely generated \mathbb{Z} -modules.

Since α , β are algebraic integers, write

$$\mathbb{Z}\left[\alpha\right] = \sum_{j=1}^{n} \mathbb{Z} \, \alpha_{j}, \quad \mathbb{Z}\left[\beta\right] = \sum_{j=1}^{m} \mathbb{Z} \, \beta_{j}.$$

Therefore,

$$\mathbb{Z}[\alpha, \beta] = \{ f(\alpha, \beta) : \mathbb{Z}[x, y] \}$$

is also finitely generated. In fact, it is generated by $\left\{\alpha_i\beta_j\right\}_{1\leq i\leq n, 1\leq j\leq m}$. Hence $\mathbb{Z}\left[\alpha,\beta\right]$ is finitely generated as a \mathbb{Z} -module.

We have that $\mathbb{Z}[\alpha - \beta]$, $\mathbb{Z}[\alpha\beta]$ are \mathbb{Z} -submodules of the \overline{fg} module $\mathbb{Z}[\alpha, \beta]$.

Now, if we use the intuition from linear algebra, we should be done here. Recall that subspaces of a finite-dimensional vector space are finite-dimensional. But this is not the case for modules!

Proof Failed

Example 1.7. Submodule of a Finitely Generated Module That Is Not Finitely Generated

Consider

$$R=[x_1,x_2,\ldots].$$

Then R is a finitely generated R-module (i.e. R = R1). But observe that

$$I = \langle x_1, x_2, \ldots \rangle$$

is not finitely generated.

To see this, observe that elements of R are polynomials in x_1, x_2, \ldots , which has *only finitely many indeterminates*. So having finitely many polynomials does not give enough number of indeterminates to generate I.

To resolve this issue, we consider the following definition.

Def'n 1.7. Noetherian Ring

Let *R* be a ring. We say *R* is *Noetherian* if every *R*-submodule (i.e. ideal) of *R* is finitely generated.

Example 1.8.

Observe that \mathbb{Z} is Noetherian, as it is a PID (i.e. every ideal of \mathbb{Z} is generated by *an* element).

Theorem 1.5.

Let *R* be a Noetherian ring and let *M* be a finitely generated *R*-module. Then every *R*-submodule of *M* is finitely generated.

Theorem 1.5 resolves the issue we left in Theorem 1.4, since \mathbb{Z} is Noetherian.

Let us reduce Theorem 1.5 a bit. Consider a finitely generated R-module

$$M = R\alpha_1 + \cdots + R\alpha_n$$

and an epimorphism of *R*-modules

$$f: R^n \to M$$

$$(r_1, \dots, r_n) \mapsto r_1 \alpha_1 + \dots + r_n \alpha_n$$

That is, every finitely generated R-module can be viewed as an R-submodule of R^n .

Moreover, for any *R*-submodule $N \subseteq M$,

$$f^{-1}(N) \subseteq R^n$$
.

If
$$f^{-1}(N) = R\beta_1 + \cdots + R\beta_m$$
, then

$$N = Rf(\beta_1) + \cdots + Rf(\beta_m)$$
.

Hence it remains to show that every *R*-submodule *N* of *M* satisfy $f^{-1}\left(N\right)=R\beta_{1}+\cdots+R\beta_{m}$ for some $\beta_{1},\ldots,\beta_{m}\in R$.

Proof of Theorem 1.5

We may assume $M = R^n$. If n = 1, then R is Noetherian and we are done.

Suppose that the result holds for some $n \ge 1$ and consider $M = R^{n+1}$. Consider the epimorphism

$$\pi: R^{n+1} \to R$$
$$(r_1, \dots, r_{n+1}) \mapsto r_{n+1}$$

Let N be an R-submodule of M. Consider

$$N_1 = \{(r_1, \ldots, r_{n+1}) \in N : r_{n+1} = 0\}$$

which is isomorphic to an R-submodule of R^n . Hence by inductive hypothesis, N_1 is finitely generated. Moreover,

$$N_2 = \pi(N)$$

is an *R*-submodule of *R*, so is finitely generated (by inductive hypothesis).

Say

$$N_1 = Rx_1 + \dots + Rx_p$$

$$N_2 = R\pi (y_1) + \dots + R\pi (y_q)$$

for some $x_1, \ldots, x_p, y_1, \ldots, y_q \in R$. Let $x \in N$. Then

$$\pi\left(x\right)=r_{1}\pi\left(y_{1}\right)+\cdots+r_{q}\pi\left(y_{q}\right)$$

for some $r_1, \ldots, r_q \in R$. But π is a homomorphism of R-modules, so that

$$\pi\left(x-\sum_{j=1}^q r_j y_j\right)=0.$$

This means the (n+1)th entry of $x-\sum_{j=1}^q r_j y_j$ is 0, so that $x-\sum_{j=1}^q r_j y_j \in N_1$. That is,

$$x - \sum_{i=1}^{q} r_j y_j = \sum_{k=1}^{p} s_k x_k$$

for some $s_1, \ldots, s_p \in R$.

Thus

$$x = \sum_{j=1}^{q} r_j y_j + \sum_{k=1}^{p} s_k x_k,$$

so that

$$N = \sum_{i=1}^{q} Ry_j + \sum_{k=1}^{p} Rx_k,$$

as required.

4. Additive Structure

So far, it has been very useful to consider \mathcal{O}_K as a \mathbb{Z} -module. Let us investigate this \mathbb{Z} -module as an abelian group

$$(\mathcal{O}_K,+)$$

without multiplication structure, where *K* is a number ring (i.e. $[K : \mathbb{Q}] < \infty$).

The next definition will make it clear the kind of *linear algebraic* approach we are going to take.

Def'n 1.8. **Linearly Independent** Subset of an R-module, **Basis** for an R-module, **Free** R-module Let R be a ring and let M be an R-module. Let R be a ring and let R be an R-module.

(a) Say B is *linearly independent* if and only if for all $m_1, \ldots, m_n \in B, r_1, \ldots, r_n \in R$,

$$r_1m_1+\cdots+r_nm_n=0 \implies r_1=\cdots=r_n=0.$$

(b) Say *B* spans *M* if for all $x \in M$, there are $b_1, \ldots, b_n \in B, r_1, \ldots, r_n \in R$ such that

$$x = r_1b_1 + \cdots + r_nb_n.$$

(c) Say *B* is a *basis* for *M* if *B* is linearly independent and spans *M*. In case *M* admits a basis, we call it a *free R*-module.

In case there is a basis B for M, the size of any other basis for M is |B|.

Def'n 1.9. Rank of a Free R-module

Let R be a ring and let M be a free R-module. Then the size of a basis for M is called the *rank* of M, denoted as rank (M).

Proposition 1.6.

Let *R* be a ring and let *M* be an *R*-module. Let $B \subseteq M$. Then

B is a basis \iff every $x \in M$ can be uniquely written as an R-linear combination of elements of B.

In particular,

M is free with rank $(M) = n < \infty \iff M \cong \mathbb{R}^n$ by $(r_1, \dots, r_n) \leftrightarrow r_1b_1 + \dots + r_nb_n$ for some $b_1, \dots, b_n \in M$, in which case $\{b_1, \dots, b_n\}$ is a basis for M.

Example 1.9. Free but not Finitely Generated —

Consider $R = \mathbb{Z}, M = \mathbb{Z}[x], B = \{1, x, x_2, \ldots\}$. Then M is a free module generated by B but is not finitely generated.

Example 1.10. Finitely Generated but not Free

Consider $R = \mathbb{Z}$, $M = \mathbb{Z}_2$. Then $2 \cdot 1 = 0$ but $2 \neq 0$ in R. So the only R-linearly independent subset of M is the emptyset \emptyset , so that M is fintely generated but not free.

Example 1.11. —

Consider $R = \mathbb{Z}, M = \mathbb{Z} \times \mathbb{Z}, N = \mathbb{Z} \times 2 \mathbb{Z}$. Then M is free with a basis

$$B_1 = \{(1,0),(0,1)\},\$$

so that rank (M) = 2. Also, N is free with a basis

$$B_2 = \{(1,0), (0,2)\},\$$

so that rank (N) = 2. However, observe that B_2 is an R-linearly independent subset of M with rank (M) elements!

This particular example shows that it is possible for modules of rank n to have a linearly independent subset of n elements which does not span the whole module, unlike the case in linear algebra.

We are going to present two facts without proof. Fix a PID R and a free R-module M with rank $(M) = n < \infty$.

Fact 1.7.

For an *R*-submodule $N \subseteq M$, *N* is free with rank $(N) \le n$.

Fact 1.8.

Any maximal linearly independent subset of M has n elements.

The next goal is to show that ring of integers is a free module. That is, given a number field K with $[K:\mathbb{Q}]=n$, our goal is to find an embedding (i.e. monomorphism) $\varphi:\mathcal{O}_K\to\mathbb{Z}^n$ such that $\mathrm{rank}\,(\varphi(\mathcal{O}_K))=n$.

This will tell us $\mathcal{O}_k \cong \mathbb{Z}^n$ as \mathbb{Z} -modules. In particular, $(\mathcal{O}_K, +)$ is a free module with rank n.

Def'n 1.10. Integral Basis

Given a free \mathbb{Z} -module M, a basis for M is called an *integral basis*.

We introduce two useful tools in algebraic number theory.

Def'n 1.11. Trace, Norm of an Element of a Number Field

Let *K* be a number field with $[K : \mathbb{Q}] = n < \infty$. Let $\alpha \in K$ and consider

$$T_{\alpha}: K \to K$$

 $x \mapsto \alpha x'$

which is a Q-linear operator.

(a) The *trace* of α relative to K/\mathbb{Q} , denoted as $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, is

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{tr}(T_{\alpha}).$$

(b) The *norm* of α relative to K/\mathbb{Q} , denoted as $N_{K/\mathbb{Q}}(\alpha)$, is

$$N_{K/\mathbb{O}}(\alpha) = \det(T_{\alpha})$$
.

Note that $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, $N_{K/\mathbb{Q}}(\alpha) \in \mathbb{Q}$, since T_{α} is a \mathbb{Q} -linear operator (hence the entries of any matrix representation of T_{α} are rational).

Let $\alpha \in K$. Let β be a \mathbb{Q} -basis for K and let $A = [T_{\alpha}]_{\beta}$. Consider the characteristic and minimal polynomials $f, p \in \mathbb{Q}[x]$, respectively, of A. Notice that, for $g \in \mathbb{Q}[x]$ and $v \in K$,

$$g(T_{\alpha}) v = g(\alpha) v$$

since $T_{\alpha}^m v = \alpha^m v$ for $m \in \mathbb{N} \cup \{0\}$. In particular,

$$g(\alpha) = 0 \iff g(T_{\alpha}) = 0,$$

so that *p* is the minimal polynomial for α over \mathbb{Q} . By the Cayley-Hamilton theorem, p|f. However,

$$deg(f) = [K : \mathbb{Q}] = n.$$

We consider the following particular case.

Case 1. Suppose

$$K = \mathbb{Q}(\alpha)$$
.

On the other hand, since p is the minimal polynomial of α ,

$$deg(p) = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [K : \mathbb{Q}] = n.$$

Hence p|f, deg $(f) = \deg(p)$, and f, p are monic, so that f = p.

Let $\alpha = \alpha_1, \alpha_2, \dots, \alpha_n$ be the conjugates of α (i.e. the roots of p in \mathbb{C}). But the roots of the characteristic polynomial of an operator are the eigenvalues (with multiplicity) and f = p, so that

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{tr}(T_{\alpha}) = \sum_{j=1}^{n} \alpha_{j}$$

and

$$N_{K/\mathbb{Q}}(\alpha) = \det(T_{\alpha}) = \prod_{j=1}^{n} \alpha_{j}.$$

Also note that

$$\sum_{j=1}^{n} \alpha_j = -\left[x^{n-1}\right] p$$

and

$$(-1)\left[x^{0}\right]p=\left(-1\right)^{n}p\left(0\right).$$

Recall from the field theory that the embeddings of $K = \mathbb{Q}(\alpha)$ in \mathbb{C} are exactly given by $\sigma_j(\alpha) = \alpha_j$ for $j \in \{1, \ldots, n\}$. That is,

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^{n} \alpha_{i} = \sum_{j=1}^{n} \sigma_{j}(\alpha)$$

and

$$N_{K/\mathbb{Q}}\left(lpha
ight) = \prod_{j=1}^{n} lpha_{j} = \sum_{j=1}^{n} \sigma_{j}\left(lpha
ight).$$

(End of Case 1)

Apart from Case 1, we want to compute $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, $N_{K/\mathbb{Q}}(\alpha)$ in general. To do so, we introduce the following lemma with a technical proof.

Lemma 1.9.

Suppose that *K* is a number field with $[K : \mathbb{Q}] = n$ and let $\alpha \in K$ with $[K : \mathbb{Q}(\alpha)] = m$. Consider

$$T_{\alpha}: K \to K$$

 $x \mapsto \alpha x$

Let $f \in \mathbb{Q}[x]$ be the characteristic polynomial of T_α and let $p \in \mathbb{Q}[x]$ be the minimal polynomial for α . Then

$$f = p^m$$
.

Note that we recover Case 1 when m = 1 (i.e. $K = \mathbb{Q}(\alpha)$).

Proof. Let

$$\beta = \{y_1, \dots, y_d\}$$

be a \mathbb{Q} -basis for $\mathbb{Q}(\alpha)$ and let

$$\beta' = \{z_1, \ldots, z_m\}$$

be a $\mathbb{Q}(\alpha)$ -basis for K. By the tower theorem, we have that

$$\left\{y_j z_k\right\}_{1 \le j \le d, 1 \le k \le m}$$

is a \mathbb{Q} -basis for K.

Let $A = [T_{\alpha}]_{\beta} \in \mathbb{Q}^{d \times d}$ (where we consider the restriction $T_{\alpha} : \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$). Recall from linear algebra that

$$\alpha y_j = T_{\alpha}(y_j) = (A[y_j]_{\beta})^T[y_1 \quad \cdots \quad y_d^T] = (Ae_j)^T[y_1 \quad \cdots \quad y_d^T] = \sum_{k=1}^d a_{k,i}y_k,$$

where $A = \begin{bmatrix} a_{k,i} \end{bmatrix}_{k,i=1}^d$. This implies

$$\alpha y_i z_j = \sum_{k=1}^d a_{ki} y_k z_j.$$
 [1.2]

Consider the ordered basis

$$\gamma = (y_1z_1, \ldots, y_dz_1, y_1z_2, \ldots, y_dz_2, \ldots, y_1z_m, \ldots, y_dz_m).$$

Then [1.2] gives (exercise)

$$\left[T_{lpha}
ight]_{\gamma}=egin{bmatrix}A&&&&\ &A&&&\ &A&&&\ &&\ddots&&\ &&&A\end{bmatrix}.$$

Immediately,

$$f = \det\left(xI - A\right)^m = p^m,$$

where the last equality follows from Case 1.

QED