# CS & IT ENGINE

Database Management System

Relational model & normal forms

Discussion Notes







#Q. Consider the student relation shown below with schema stud (Sname, Sage, Smail, Smarks),

## Stud

| Sname  | Sage      | Smail            | Smarks |  |
|--------|-----------|------------------|--------|--|
| Rohit  | 28        | R@pw.live        | 68_    |  |
| Kanika | 25 .      | <u>K@pw.live</u> | 75     |  |
| Pankaj | <u>25</u> | K@pw.live        | 75     |  |
| Rohit  | 28        | R@pw.live        | 88     |  |
| Anjali | 26        | A@pw.live        | 75     |  |



For the above given instance how many set of attributes of size two can determine each row uniquely?

Smaml Sage

Sname Smark

Sname Smail

Sage Smail

Smail Smarls

Smarks Sagl





#Q. Consider a relation schema R(A, B, C, D, E, F, H) with the given Functional dependency set:

$$\{A \rightarrow BC, C \rightarrow AD, DE \rightarrow F, C \rightarrow F\}$$

The attribute closure that contains all the attributes of the relation R is?

A 
$$\triangle E = \{A, E, B, C, D, F\}$$
B  $\triangle E = \{C, E, F, A, D\}$ 

AEH =  $\{A, E, B, C, D, F, M, D\}$ 
All of the above





#Q. Consider the following set of FD's:

 $\{V \rightarrow W, W \rightarrow XZ, X \rightarrow YZ\}$  for relation

R(V, W, X, Y, Z)

Then the attribute closure of YZ contains how many elements?



# [MCQ]



#Q. For the given FD set:  $\{P \to QT, Q \to SU, V \to U\}$  of a relation R(P, Q, T, S, U, V). Find the set of attributes that is Super key but not a Candidate key?





Candidate bey

Super bey





#Q. Choose the correct statement from the following.



The cardinality is defined as the number of attributes in a relation. X



Degree of the relation is the number of tuples in the relation.  $\chi$ 





Relation instance is the set of tuples of a relation at a particular instance of time.



All of the above X



#Q. Choose the correct statement from the following:

There can be many primary keys for a relation. X

There can be many alternate keys for a relation.



All the candidate keys are also super keys.



All the super keys are also the candidate keys.

minimal set of attributes that uniquely identify a tuple in a relation.

# [MCQ]



#Q. Consider the following statements:

 $S_1$ : A key in DBMS is an attribute (or a set of attributes) that helps in uniquely identifying each tuple (or row) in a relation (or table). I

S<sub>2</sub>: There should be only one-candidate key in relation, which is chosen as the primary key.



Only S<sub>1</sub> is true.



Only S<sub>2</sub> is true.



Both S<sub>1</sub> and S<sub>2</sub> are true.



Neither  $S_1$  nor  $S_2$  is true.





#Q. Consider the following statements:

 $S_1$ : Primary key has no duplicate values it has only unique values.

 $S_2$ : Primary key is not necessarily formed using a single column of the table, more than one column of the table can also be used to form a primary key of the table.  $\smile$ 

A Only  $S_1$  is true.

B Only  $S_2$  is true.

Both  $S_1 \& S_2$  are true.

D Neither  $S_1$  nor  $S_2$  are true.

# [NAT]



#Q. Assume a relation R (P, Q, R, S, T). If PR and RT are the only candidate keys of the relation R, then how many total super keys exist in relation R.

# [NAT]



#Q. Assume a relation R (P, Q, R, S, T, U, V). If PQ, RS, and TU are the only three candidate keys of relation R, then how many total super keys exist in relation R?

$$32 + 32 + 32 - (24) + 2$$
  
 $64 + 8 + 2 = 64 + 10 = 74$ 



# THANK - YOU