Математический анализ

Коченюк Анатолий

1 ноября 2020 г.

Оглавление

0.1 Введение

Преподаватель — Семёнова Ольга Львовна. Почта: о_semenova@mail.ru Литература:

- 1. Виноградов О.Л. Курс Математического анализа
- 2. Виноградов, Громов -||-
- 3. Фихтенгольц (курс)
- 4. Зорич (курс, двухтомник)
- 5. Кудрявцев (сборник задач, 1 том из трёх)
- 6. Виноградова, Олехник, Саровничий (1 том из двух)

0.2 Баллы

Практика — 70/100. Теория — 30/100 — 2-4 теста по теории (3 балла за присутствие на \sim всех лекциях.

Если меньше 18/30 баллов, то всю теорию нужно будет пересдавать. Иначе можно воспользоваться этим как баллами за экзамен.

Глава 1

Множества, отображения, ℝ

1.1 Множества

"Множество" – неопределямое слово. Синонимы: набор, совокупность, класс. Множество состоит из элементов.

$$M = \{1, 3, 7, 9\}, \ \mathbb{N}, \ \mathbb{Q}, \ \mathbb{Z}, \ \mathbb{Z}_{+} = \{0, 1, 2, 3, 4, \ldots\}, \ \mathbb{R}, \ \mathbb{R}_{+}.$$

Способы описания:

- явное описание {1,2,3}
- через некоторое свойство

```
M=\{x:P(x)\} : — читается как "таких что". Тот же смысл имеет |P(x)| обозначает какое-то свойство. M=\{x:xx — человек и x 2002 г.р.\}
```

Кванторы:

- ∀ "для любого", любой, каждый, всякий . . .
- ∃ "существует".

Пример: $\forall \varepsilon > 0 \exists \delta > 0 : \dots$

Для любого положительного эпсилон существует положительное число дельта, т.ч. . . .

Обозначения:

- 👄 равносильно
- ullet \wedge "u"
- У "или"
- ⊐ пусть

• < — допустим, рассмотрим

Замечание. Множество всех множеств не существует.

¬ – отрицание

¬∃ – не существует

 \emptyset – пустое множество

 $x \in M \iff x$ – элемент множества M

$$A \subseteq B \iff (x \in A \implies x \in B)$$

 $B\supseteq A$ — то же самое

 \forall множества M $\emptyset \subseteq M$

$$A = B \iff (x \in A \iff x \in B) \iff \begin{cases} A \subseteq B \\ B \subseteq A \end{cases}$$

A, B — множества

$$A \cup B = \{x : (x \in A \lor x \in B)\}$$

$$A\cap B=\{x:(x\in A\wedge x\in B)\}$$

$$x \in A \cap B \iff \begin{cases} x \in A \\ x \in B \end{cases}$$

$$A \setminus B = \{x : x \in A, x \notin B\}$$

$$A \subset C$$

$$A^c = X \setminus A$$
 – дополнение A в X

Определение 1. A, X_{α} – множества, $\forall \alpha \in A$

$$\{X_{\alpha}\}_{\alpha\in A}$$
 – семейство множеств

А – индексное множество

$$\bigcup_{\alpha \in A} X_{\alpha} = \{ x : \exists \alpha \in A \quad x \in X_{\alpha} \}$$

$$\bigcap_{\alpha \in A} X_{\alpha} = \{ x : \forall \alpha \in A \quad x \in x_{\alpha} \}$$

Пример. $\{(x-1,x+1)\}_{x\in(0;1)}$

$$\bigcup_{x \in (0;1)} (x-1, x+1) = (-1, 2), \bigcap_{x \in (0,1)} (x-1, x+1) = (0;1)$$

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

Определение 2 (Формула Де Моргана). $A, B \subseteq X$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$$\{A_i\}$$
 – семейство

$$(\bigcup_{i\in I} A_i)^c = \bigcap A_i^c$$

$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup A_i^c$$

Замечание. $A^{cc} = A$ – проверить-упражнение

Доказательство. $x \in \left(\bigcup_{i \in I} A_i\right)^c \iff x \notin \left(\bigcup_{i \in I} A_i\right) \iff \forall i \in Ix \notin A_i \iff \forall i \in Ix \in A_i^c \iff x \in \bigcap_{i \in I} A_i^c$

$$\left(\bigcap A_i\right)^c = \left(\bigcap A_i^{cc}\right)^c = \left(\bigcup A_i^c\right)^{cc} = \bigcup A_i$$

Определение 3 (упорядоченная пара). А, В

(a,b) – упорядоченная пара, $a \in A, b \in B$. В этой паре важен порядок.

 $\{a,b\}$ – неупорядоченная пара (двухэлементное множество), если $a \neq b$.

 ${a,a} = {a}$ (в множестве не различаются копии).

Пример: координаты точек плоскости.

$$X_1,\ldots,X_m$$
 $x_1\in X_1\ldots x_m\in X_m$ (x_1,\ldots,x_m) – упорядоченная пара

Определение 4 (Декартово произведение). $X_1 \times ... \times X_m = \{(x_1, ..., x_m) : x_k \in X_k \quad k = 1 : m \}$

$$R^m = (R)^m$$

Пример. $X = \{1, 2\}$

$$Y = \{3, 5\}$$

$$Z = \{0\}$$

$$X \times Y \times Z = \{(1,3,0), (2,3,0), (2,3,0), (2,5,0)\}$$

1.2 Отображения

Формальное определение, которое не будет использовано или потребовано нигде (в том числе на экзамене).

Определение 5. X, Y – множества

Если $R \subset X \times Y$ и $(x, y_1) \in R \lor (x, y_2) \in R \iff y_1 = y_2$, R называется отображением или графиком.

Определение 6. Отображение – это тройка (X,Y,f), где X,Y – множества, а f – некое правило, по которому каждому элементу $x\in X$ сопоставляется некоторый единственный элемент $y\in Y$.

 $f:X \to Y$ — синоним. читают "f действует из X в Y"

Х – множество определения отображения

Y – множество значений

 $\{y\in Y:\exists x\in Xf(x)=y\}\subset Y$ (т.е. Y – необязательно точное множество значений)

Пример. $x = \mathbb{R}, Y = \mathbb{R}, x \mapsto x^2$

Если y = f(x), то y называется образом элемента x при отображении f.

 $A \subseteq X$ $f(A) = \{f(x) : x \in A\}$ – образ множества A под действием f.

$$B \subseteq Y \quad f^{-1}(B) = \{x : f(x) \in B\}$$

 $f^{-1}(\{y\})$ – необязательно одноэлементное.

Упражнения:

- 1. $f(A \cup B), f(A) \cup f(B)$
- 2. $f(A \cap B), f(A) \cap f(B)$ $y \in f(A \cap B) \implies \exists x \in A \cap B : f(x) = y.x \in A, x \in B, y \in f(A), y \in f(B) \implies y \in f(A) \cap f(B)$

$$f(x) = const$$
 $f(A) \cap f(B) \neq \emptyset, f(A \cap B) = \emptyset$, если $A \cap B = \emptyset$

- 3. $f^{-1}(A \cup B), f^{-1}(A) \cup f^{-1}(B)$
- 4. $f(A \cap B), f(A) \cap f(B)$

Определение 7. Если $f: X \to Y, \ g: X_1 \to Y \ X_1 \subseteq X$ и $\forall x \in X_1 \ g(x) = f(x),$ то g называется сужением f на $X_1.$

Обозначение: $g = f \mid_{x_1}$. При этом f называется продолжением $g \in X_1$ на X.

Рис. 1.1: sinus

Пример. $f(x) = \sin x$ $f|_{[-\frac{\pi}{2}, \frac{\pi}{2}]}$

Определение 8. Если $f:X\to Y,\ g:Y\to Z,$ то $g\circ f:X\to Z.$ $g\circ f(x)=g(f(x))\ \forall x\in X.$ $g\circ f$ называется композицией f и g.

Пример. Изобразить эскизы графиков функций для всех случаев

1.
$$f(x) = \sin x, g(x) = x^2$$

2.
$$f(x) = x^2, g(x) = \sin x$$

3.
$$f(x) = g(x)$$

Построить $f^{(2)}, f^{(3)}, f^{(4)}$ без формул.

Определение 9. Функция
$$f:X\to Y$$
 называется инъекцией, если
$$\begin{cases} f(x_1)=y\\ f(x_2)=y \end{cases} \implies x_1=x_2$$

Пример. f(x) = kx + b – инъекция, $k \neq 0$

$$f(x) = \sin x$$
 – не инъекция

$$f(x)\mid_{[-\frac{\pi}{2},\frac{\pi}{2}]}$$
 – инъекция

Определение 10. $f:X\to Y$ называется сюръекцией, если $\forall y\in Y\quad \exists x\in X: f(x)=y.$

Пример. $\sin:\mathbb{R}\to\mathbb{R}$ – не сюъекция

$$\sin:\mathbb{R} \to [-1,1]$$
 – сюръекция

 $y = kx + b, k \neq 0$ — сюръекцией

Определение 11 (биективность). $f: X \to Y$ – инъекция и сюръекция $\implies f$ называется биекцией

Пример. $y = kx + b, k \neq 0$ – биекция

Определение 12. $f:X\to Y, g:Y\to X.$ g называется обратным к f отображением, если $f(x)=y\iff x=g(y).$ Обозначается: $g=f^{-1}$

Замечание. Обратимая функция должна быть биективной:

- 1. Инъективной обратная иначе не будет функцией.
- 2. Сюръективной обратная иначе не будет определена на всём Y.

Замечание. $f^{-1}(A)$ – обычно прообраз A под действием f, а не образ обратной функции (которая может не существовать).

Пример.
$$\arcsin = (\sin_{[-\frac{\pi}{2},\frac{\pi}{2}]})^{-1}$$

$$\log_a(x) = (a^x)^{-1}$$

$$\sqrt{x} = (x_2 \mid_{[0,+\infty)}, \sqrt[3]{(x)} = (x^3)^{-1}$$

10 ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

1.3 Вещественные числа

1.3.1 Аксиоматическое определение вещественных чисел

 $(\mathbb{R},+,\cdot,\leqslant)$ – множество, две операции и отношение порядка, удовлетворяющие следующим 16 аксиомам:

Аксиомы поля:

- 1. $\forall a, b \in \mathbb{R}$ a+b=b+a (коммутативность сложения)
- 2. $\forall a,b,c \in \mathbb{R} \quad (a+b)+c=a+(b+c)$ (ассоциативность сложения)
- 3. \exists нейтральный элемент 0 по сложению $\forall a \in \mathbb{R} \quad a+0=a$ (существование нейтрального элемента по сложению)
- 4. Существует обратный элемент по сложению.

$$\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : \quad a + (-a) = 0$$

- 5. $\forall a, b \in \mathbb{R}$ $a \cdot b = b \cdot a$ (коммутативность умножения)
- 6. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения)
- 7. $\exists 1 \in R \setminus \{0\}, \forall a \in \mathbb{R} \quad a \cdot 1 = a$
- 8. $\forall a \neq 0 \ \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1$
- 9. $(a+b) \cdot c = a \cdot c + b \cdot c$ (дистрибутивность)

примеры: \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\{0,1\}(1+1=0)$, остальное как обычно).

Элементарные следствия:

- $\forall a \in K$ поля, обратный по сложению единственный. Если b,b' два обратных, то b = b + (a + b') = (b + a) + b' = b'
- обратный по умножению, нейтральные все единственны.

Аксиомы порядка:

- 1. $\forall a, b \in \mathbb{R}$ $a \leq b \vee b \leq a$
- 2. $a \leqslant b, b \leqslant c \implies a \leqslant c$ (транзитивность)
- 3. $a \le b, b \le a \implies a = b$
- 4. $a \leq b, c \in \mathbb{R} \implies a + c \leq b + c$
- 5. $a \geqslant 0, b \geqslant 0$, to $a \cdot b \geqslant 0$

$$0 \cdot x + x \cdot x = (0+x) \cdot x = x \cdot x \implies 0 \cdot x = 0$$

Упражнения:

- 1. $-x = (-1) \cdot x$
- 2. $(-a)(-b) = a \cdot b$

3. $1 \ge 0$

Определение 13. Индуктивным множеством в упорядоченном поле $(K,+,\cdot,\leqslant)$ называется множество N:

1.
$$1 \in N$$

$$2. \ \forall x \in N \implies x+1 \in N$$

$$\mathbb N$$
 – наименьшее индуктивное множество.
 $\mathbb N = \bigcap_{N \text{ - индуктивное}, N \subseteq \mathbb R} N$

Замечание.
$$x > b \iff \begin{cases} x \geqslant b \\ x \neq b \end{cases}$$

Аксиома Архимеда: $\forall x, y \in R : x > 0, y > 0 \; \exists n \in \mathbb{N} : nx > y.$

Аксиома вложенных промежутков:

$$\forall \{[a_n, b_n]\}_{n \in \mathbb{N}} : \forall n \in \mathbb{N} \ [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n] \quad \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$$

В аксиоме о вложенных промежутках предполагается, что $\forall n \in \mathbb{N}, [a_n,b_n] \neq \emptyset \iff a_n \leqslant b_n$

 $[a,b]=\{x\in\mathbb{R},: a\leqslant x\leqslant b\}$ — замкнутый отрезок, промежуток, сегмент, замкнутый промежуток

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 – интервал, открытый промежуток

$$(a,b],[a,b)$$
 — полуоткрытый промежуток

< a,b> – некоторый промежуток $a\leqslant b,< a,b>\neq\emptyset$

Замечание (Расиширенная вещественная прямая). $\overline{R} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$

$$\forall a \in \mathbb{R} \quad a + (+\infty) = (+\infty) + a = +\infty$$

$$a + (-\infty) = (-\infty) + a = -\infty$$

$$(+\infty) + (+\infty) = +\infty$$

$$(-\infty) + (-\infty) = -\infty$$

$$(+\infty) + (-\infty), (-\infty) + (+\infty)$$
 – не определены

 $\forall a > 0$

$$\bullet$$
 $(+\infty) \cdot a = a \cdot (+\infty) = +\infty$

•
$$(-\infty) \cdot a = a \cdot (-\infty) = -\infty$$

•
$$\pm \infty \cdot (-1) = \mp \infty$$

•
$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty$$

12 ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

•
$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty$$

•
$$(\pm \infty) \cdot 0, 0 \cdot (\pm \infty)$$
 – не определены

 $\forall a \in \mathbb{R}$

•
$$+\infty \geqslant a \geqslant -\infty$$

$$[a, +\infty] = [a, +\infty) \cup \{+\infty\}$$

В " $+\infty$ " иногда + опускают, но подразумевают её, если рассматривается \overline{R}

1.4 Модуль

$$a\in\mathbb{R}$$
 $|a|=egin{cases} a &, ext{ecли} a\geqslant 0 \ -a &, ext{ecли} a< 0 \end{cases}$

Свойство 1.
$$b=|a|\iff \begin{cases} b\in\{a,-a\}\\b\geqslant 0 \end{cases}$$

Элементарные свойства модуля:

1.
$$\forall a \in \mathbb{R} \quad |-a| = |a|$$

2.
$$\forall a \in \mathbb{R} \quad \pm a \leqslant |a|$$

3.
$$\forall a, b \in \mathbb{R} \quad |a \cdot b| = |a| \cdot |b|$$

4.
$$\forall a \in \mathbb{R}, b \in \mathbb{R} \setminus \{0\} \quad \left(\left| \frac{a}{b} \right| \right) = \frac{|a|}{|b|}$$

5.
$$\forall a, b \in \mathbb{R}$$
 $||a| - |b|| \le |a \pm b| \le |a| + |b|$

Замечание. $a-b:=a+(-b), \quad \frac{a}{b}:=a\cdot b^{-1}, b\neq 0.$

Замечание. $a \leqslant b \quad \forall c \in \mathbb{R} \quad a+c \leqslant b+c$

$$a \leqslant b \quad b \leqslant c \implies a \leqslant c$$

$$a \leqslant b, c \leqslant d$$
 $a + c \stackrel{?}{\leqslant} b + d$

$$a+c \leqslant b+c$$
 $b+c \leqslant b+d \implies a+c \leqslant b+d$

Доказательство. $\forall a,b \in \mathbb{R} \quad ||a|-|b|| \leqslant |a\pm b| \leqslant |a|+|b|$

$$\pm a\leqslant |a|,\ \pm b\leqslant |b|$$
 $\ \pm (a+b)\leqslant |a|+|b|$ (аксиома порядка 4)

$$\implies |a+b| \leqslant |a|+|b| \implies |a-b| \leqslant |a|+|-b| = |a|+|b|$$

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$|a| - |b| \le |a - b|$$
 $|b| - |a| \le |b - a| = |a - b|$

$$||a| - |b|| = \pm (|a| - |b|) \le |a - b|$$

Замечание. $|+\infty|:=+\infty$ $|-\infty|:=+\infty$

1.5 Комплексные числа

 ${\Bbb C}$ – обозначение для множества комплексных чисел.

$$\mathbb{C} = \{(x, y) | x \in \mathbb{R}, y \in \mathbb{R}\}\$$

Удобно представлять на плоскости.

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

Замечание. \mathbb{C} – поле

Аксиомы для сложения очевидны.

$$0 = (0,0), \quad 1 = (1,0)$$

$$-(x,y) = (-x, -y)$$

$$(x,y)\cdot(1,0) = (x,y) \ \forall x,y \in \mathbb{R}$$

$$i = (0,1)$$
 $i^2 = (0,1) \cdot (0,1) = (-1,0)$

 $\mathbb{R} \leftrightarrow \{(x,0): x \in \mathbb{R}\}$ (именно такие пары, потому что так сохраняются операции)

 $F: \mathbb{R} \to \{(x,0)\}$ F сохраняет + и сохраняет \cdot .

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0)$$
 $(x_1,0) \cdot (x_2,0) = (x_1x_2 - 0,0)$

14

Оси: вещественная(х) и мнимая(у)

$$(0,y)^2 = (-y^2,0) \ \forall y \in \mathbb{R}$$

 $(x,y) = x + iy \quad i = (0,1)$ – мнимая единица. Алгебраическая форма записи комплексных чисел.

z=x+iy x – вещественная часть z, y – мнимая часть z

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

 $Rez=x, \quad Imz=y \quad$ иногда встречается rp,ip – real/imaginary part.

Замечание (Комплексное сопряжение). z = x + iy $\overline{z} = x - iy$ – отражённое от оси x, если смотреть на плоскость.

Замечание (Модуль и аргумент). $|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$

$$z\cdot\overline{z}=(x+iy)\cdot(x-iy)=x^2-(iy)^2=x^2+y^2$$

$$r = |z|$$

Аргумент – угол (ориентированный) между осью Ox и $\overset{
ightarrow}{Oz}$.

Аргументов много $Argz, z \neq 0$ – совокупность всех аргументов.

Если
$$\varphi_0 \in Arg(z)$$
, то $Argz = \{\varphi_0 + 2\pi \cdot k, k \in \mathbb{Z}\}.$

Если $\begin{cases} \varphi_0 \in Argz \\ \varphi_0 \in (-\pi,\pi] \end{cases}$, то φ_0 называется главным значением аргумента $\varphi_0 = arg(z).$

$$z=(x,y)=(r,\varphi), r$$
 – длина радиус-вектора, φ – аргумент.

 (r, φ) – полярные координаты, совмещённые с прямоугольными

Замечание.
$$r = \sqrt{x^2 + y^2}$$

$$x = r \cos \varphi$$

$$y = r \cos \varphi$$

$$x > 0$$
 $argz = arctg \frac{y}{x} = arcsin \frac{y}{\sqrt{x^2 + y^2}}$

$$y > 0$$
 $argz = \arccos \frac{x}{\sqrt{x^2 + y^2}}$

$$y < 0$$
 $argz = -\arccos\frac{x}{\sqrt{x^2 + y^2}}$

$$\begin{cases} x < 0 \\ y > 0 \end{cases} \qquad argz = \operatorname{arctg} \frac{y}{x} + \pi$$

остальное – упражнение

Изобразить кривую заданную в полярных координатах:

1.
$$r = 3$$

2.
$$r = \varphi$$
 — спираль Архимеда

3.
$$r = e^{\varphi}$$

4.
$$r = \frac{1}{\cos \varphi}$$

5.
$$r = \frac{2}{\sin \varphi}$$

6.
$$r = \frac{3}{\cos \varphi + \sin \varphi}$$

7.
$$r = 1 + \cos \varphi$$

(0,0) – полюс

 $r(\varphi) \uparrow$ – удаление от полюса

 $z=x+iy=r(\cos\varphi+i\sin\varphi)$ – в скобках точка на единичной окружности с аргументом таким же, что и у z.

Это называется тригонометрической формой записи числа.

$$-\frac{1}{2}(\cos\varphi_0,\sin\varphi_0) = \frac{1}{2} \cdot (\cos(\varphi_0 + \pi) + i\sin(\varphi_0 + \pi))$$

$$e^{i\varphi}:=\cos\varphi+i\sin\varphi\quad\varphi\in\mathbb{R}$$

 $r\cdot e^{i\varphi}$ – экспоненциальная (показательная) форма числа.

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$
 $\sin \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2i}$

Если $z_1 = r_1 \cdot e^{i\varphi_1}, z_2 = r_2 \cdot e^{i\varphi_2}$, то $z_1 \cdot z_2 = r_1 r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$ (см. курс алгебра).

$$n \in \mathbb{N}$$
 $z^n = r^n \cdot (\cos(n\varphi) + i\sin(n\varphi))$ – формула Муавра.

1.6 Дополнение к разделу "Действия над множествами"

Утверждение 1. Пусть B — множество, $\{A_i\}_{i\in I}$ — семейство множеств.

жеств.
$$B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} \left(B \cap A_i\right)$$

Доказательство.
$$x \in B \cap \left(\bigcup_{i \in I} A_i\right) \iff \begin{cases} x \in B \\ x \in \cup A_i \end{cases} \iff \begin{cases} x \in B \\ \exists i : x \in A_i \end{cases} \iff \exists i : \begin{cases} x \in B \\ x \in A_i \end{cases} \iff x \in \bigcup_{i \in I} (B \cap A_i).$$

1.7 Принцип математической индукции

 P_n - утверждение, зависящее от n

16

$$\begin{cases} P_{1}\text{--} \text{ верно} \\ P_{n} \to P_{n+1} \end{cases} \implies \forall n \in \mathbb{N} \quad P_{n} \text{---} \text{ верно}.$$

$$\{n: P_n$$
– верно $\}$ – индуктивно $\implies \mathbb{N} \subseteq \{n: P_n$ – верно $\}$

Первый шаг (проверка P_1) называется базой индукции, а второй – переходом

Пример. $2^n \geqslant n^2 \quad \forall n \geqslant 4, n \in \mathbb{N}$

$$P_4 \quad 2^4 \geqslant 4^2 \quad 16 \geqslant 16$$
 – верно

$$\square P_n$$
 – верно

$$P_{n+1}: 2^{n+1} \geqslant (n+1)^2$$

$$2^{n+1} = 2^n \cdot 2 \geqslant n^2 \cdot 2 \stackrel{?}{\geqslant} (n+1)^2 \iff \left(\frac{n+1}{n}\right)^2 \leqslant 2$$

$$\frac{n+1}{n} = 1 + \frac{1}{n} \leqslant 1 + \frac{1}{4}$$

$$\left(1 + \frac{1}{n}\right)^2 \leqslant \left(1 + \frac{1}{4}\right)^2 = \frac{25}{16} \leqslant 2$$

Определение 14. $\forall n \in \mathbb{N} \quad n! := 1 \cdot 2 \cdot \ldots \cdot n$

0! := 1 – соглашение

$$(n+k)! = n! \cdot (n+1) \cdot \ldots \cdot (n+k)$$

 $n!! = n \cdot (n-2) \cdot \dots$ (заканчивается либо 1, либо 2)

$$n$$
 – чётно, $n!! = 2 \cdot 4 \cdot \ldots \cdot n$

$$n$$
 – нечётно, $n!! = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot n$

Определение 15 (биноминальный коэффициент). $C_n^k = \frac{n!}{k!(n-k)!}$ – биномиальный коэффициент, число сочетаний из n по k

 $\binom{n}{k}$

Элементарные свойства биномиальных кэффициентов:

1.
$$C_n^k = C_n^{n-k}$$

2.
$$C_n^0 = C_n^n = 1$$

3.
$$C_n^1 = C_n^{n-1} = n$$

4.
$$C_n^k + C_n^{k-1} = C_{n+1}^k$$

$$\frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!\cdot(n-k+1)!} = \frac{n!}{k!(n+1-k)!} \cdot (n+1-k+k) = C_{n+1}^k$$

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Утверждение 2. $\forall a,b \in \mathbb{C} \quad \forall n \in \mathbb{Z}_+ \quad (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$ – бином Ньютона.

Замечание. $\sum_{k=1}^{N} a_k := a_1 + a_2 + \ldots + a_N$

$$\sum_{k=m}^{m+p} a_k := a_m + a_{m+1} + \ldots + a_{m+p}$$

$$\prod_{k=m}^{m+p} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_{m+p}$$

Замечание. $x^0:=1 \ \forall x\in\mathbb{C}$ – определили функцию

Доказательство бинома по индукции. База: n=1 $(a+b)^1=\sum_{k=0}^1 C_1^k a^k b^{1-k}=C_1^0 a^0 b^1+C_1^1 a^1 b^0=a+b$

Переход: Пусть верно для n. Докажем для n+1:

$$(a+b)^{n+1} = (a+b)^{n}(a+b) = \left(\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k}\right) \cdot (a+b) =$$

$$= \sum_{k=0}^{n} C_{n}^{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k+1} \underset{(j=k+1)}{=}$$

$$= \sum_{j=1}^{n+1} C_{n}^{j-1} a^{j} b^{n+1-j} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} \underset{k=j}{=}$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} a^{k} b^{n+1-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} =$$

$$= C_{n}^{n} a^{n+1} b^{0} + \sum_{k=1}^{n} \left(C_{n}^{k-1} a^{k} b^{n+1-k} + C_{n}^{k} a^{k} b^{n+1-k} \right) + C_{n}^{0} a^{0} b^{n+1} =$$

$$= C_{n+1}^{n+1} a^{n+1} b^{0} + \sum_{k=1}^{n} C_{n+1}^{k} a^{n+1} b^{n+1-k} + C_{n+1}^{0} a^{0} b^{n+1} = \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

что и требовалось доказать

1.8 Метрические пространства

Определение 16. Пусть X — любое множество, а $\rho: X \times X \to [0, +\infty)$.

Тогда пара (X, ρ) называется метрическим пространством, если функция φ удовлетворяет аксиомам метрики:

- 1. $\rho(x,y) = 0 \iff x = y$ (невырожденность)
- 2. $\rho(x,y) = \rho(y,x)$ (симметричность)
- 3. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z) \forall x,y,z \in X$ (неравенство треугольника)

Тогда ρ называется метрикой или расстоянием на X.

Пример. 1. (X, ρ_D) – метрическое пространство

$$\rho_D(x,y) = \begin{cases} 0 & , если = y \\ 1 & , если \neq y \end{cases}$$

2. $X = \mathbb{R}, \rho(x, y) = |x - y|$

$$x - y = a, y - z = b$$
 $\rho(x, z) = |a - b| \le |a| + |b| = \rho(x, y) + \rho(y, z)$

Обычная или Евклидова метрика

 $\stackrel{\sim}{2} \; X = \mathbb{C} \quad \rho(z,w) = |z-w|$ (аксиома 3 будет проверена позже)

 $\stackrel{\approx}{2} X = \mathbb{R}^n, x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \ \rho(x, y) = \sqrt{\sum_{k=1}^n (x_k - y_k)^2}.$

 $v=(v_1,\ldots,v_n) \quad \|v\|=\sqrt{\sum_{k=1}^n v_k^2}$ — евклидова норма вектора v.

3. $\Box (X, \rho)$ – метрическое пространство

$$\exists X_1 \subseteq X \quad \rho_1 = \rho|_{X_1 \times X_1}$$

Тогда (X_1, ρ_1) – есть метрическое пространство, а ρ_1 называется индуцированной метрикой.

4. X — множество станций метрополитена г. Санкт-Петербурга. Пусть между соседними станциями расстояние — 2 минуты. $\rho(u,v)=\min$ длин путей из u в v

 ρ — метрика

Определение 17. Открытый шар с центром в точке a радиусом R в метрическом пространстве (X, ρ) :

 $B_R(a) = \{ x \in X : \quad \rho(X, a) < R \}$

 $B_R[a] = \{ x \in X : \quad \rho(x, a) \leqslant R \}$

Пример. 1. $(0 \lor 1)$ $B_R(a) = \begin{cases} \{a\} &, \text{ если } R \leqslant 1 \\ X &, \text{ если } R > 1 \end{cases}$

- 2. (a R, a + R)
- 3. круг (без окружности)
- 4. *п*-мерный шар

в
$$\mathbb{R}^n \quad \|v\|_1 = \sum_{k=1}^n |v_k| \quad \|v\|_\infty = \max_{k=1:n} |v_k|$$

Определение 18.
$$E\subseteq \mathbb{R}, egin{cases} M\in E & & \\ \forall x\in E & M\geqslant x & \Longrightarrow M:=\max E \end{cases}$$

$$\rho(x,y) = ||x - y||$$

$$\rho_1(x,y) = ||x-y||_1 \qquad \rho_{\infty}(x,y) = ||x-y||_{\infty}$$

Упражнение: проверить, что ρ_1, ρ_{∞} – метрики, нарисовать шар в \mathbb{R}^2 относительно ρ_1, ρ_{∞} .

Определение 19. Пусть (X, ρ) – метрическое пространство. $E \subseteq X, E$ называется ограниченным, если

$$\exists a \in X, \exists R > 0: E \subseteq B_R(a)$$

Замечание. Эквивалентное определение: те же слова, но $B_R[a]$.

Определение 20. Пусть $E \subseteq \mathbb{R}$. E называется ограниченным сверху, если

$$\exists m \in \mathbb{R}: \quad \forall x \in E \quad x \leqslant m.$$

При этом такое число m называется мажорантой. Говорят: m мажорирует E

Аналогичное определение для ограниченности снизу. Соответствующее m называется минорантой.

Утверждение 3. Пусть $E \subseteq \mathbb{R}$.

$$E$$
 – ограничено $\iff egin{cases} E$ – ограничено сверху E – ограничено снизу .

Доказательство. \Longrightarrow : по условию $\exists a: E \subseteq (a-R, a+R)$.

M:=a+R– мажоранта $\implies E$ ограничено сверху. Снизу – аналогично.

$$\Longleftrightarrow : E$$
 – ограничено сверху $\Longrightarrow \exists M \in R : \forall x \in E \quad x \leqslant M.$ $\exists m \in \exists : \forall x \in E \quad x \geqslant m$
$$-x \leqslant -m \leqslant |m| \implies |x| = max\{x, -x\} \leqslant max\{|M|, |m|\} = R$$
 $\Longrightarrow x \in B_R[0]$. Т.к. это верно $\forall x \in E$, то $E \subseteq B_R[0]$

Замечание. Если $E \subseteq \mathbb{R}$, то

$$E$$
 – ограничено $\iff \exists R: \forall x \in E \mid |x| \leqslant R.$

Определение 21. $E \subseteq R, M \in E$, тогда

$$M = \max E \iff \forall x \in E \quad x \leqslant M.$$

 $\min E$ аналогично.

Утверждение 4. $\forall E \subseteq R: E$ – конечно и $E \neq \emptyset \implies \exists \max E, \min E$

Определение 22. E конечно, если $\exists m \in \mathbb{N}$ и \exists биекция $\varphi: E \to \{1,2,\ldots,n\}$

Доказательство утверждения. Индукцией по числу элементов в E.

База:
$$m = 1$$
 $E = \{x\}$ $\max E = \min E = x$

Переход: $m \to m+1$

Индукционное предположение: любое конечное множество из M элементов имеет max и min.

Пусть E содержит m+1 элементов. $E = \{x_1, \dots, x_m, x_{m+1}\} = \tilde{E} \cup \{x_{m+1}\}.$

$$M = \max\{\max \stackrel{\sim}{E}, x_{m+1}\}.$$

$$\begin{cases} M \in \widetilde{E} & \subseteq E \\ M = x_{m+1} & \in E \end{cases} \implies M \in E$$

$$\begin{cases} M \geqslant x_{m+1} \\ M \geqslant x \forall x \in \widetilde{E} \end{cases} \implies M \geqslant x \ \forall x \in E, \text{ t.o. } M = \max E$$

Следствие 1. Пусть $E \subseteq \mathbb{Z}, E$ – ограничено сверху (снизу). Тогда $\exists \max(\min) E$.

Доказательство. По условию существует $M \in R: \forall x \in E \quad x \leqslant M, \stackrel{\sim}{\sqsupset} M \geqslant M.$

$$\exists \ n \in E \quad \sphericalangle \widetilde{E} = \{x \in E : n \leqslant x \leqslant \widetilde{M}\}$$

В \tilde{E} не более $\tilde{M}-n+1$ элементов, оно конечно \implies (по утверждению) $\exists \max \tilde{E}=C$

 $\forall x \in E^x < n \lor x \geqslant n$

$$x < n \qquad n \in \tilde{E} \implies n \leqslant C \implies x \leqslant C$$

$$x\geqslant n \qquad x\in \tilde{E} \implies x\leqslant C$$

Следствие 2. Пусть $E \subseteq \mathbb{N}$ $E \neq \emptyset$. Тогда $\exists \min E$ (вытекает из следствия 1, т.к. \mathbb{N} ограничено снизу).

 $\lfloor x \rfloor$ — целая часть числа. $\lfloor x \rfloor = \max\{k \in \mathbb{Z} : l \leqslant x\}$ (Существует по следствию 1)

$$|x| \leqslant x < |x| + 1$$

$$x - 1 < |x| \leqslant x$$

Утверждение 5. \mathbb{Q} плотно в \mathbb{R} , т.е $\forall a, b \in \mathbb{R}$, $a < b \quad \exists c \in \mathbb{Q} \cap (a, b)$

Доказательство.
$$b-a>0 \Longrightarrow \frac{1}{b-a}>0$$
 $\exists N\in\mathbb{N}: N>\frac{1}{b-a}\iff b-a>\frac{1}{N}$

$$c=\frac{\lfloor Na\rfloor+1}{N}\in\mathbb{Q}$$

$$Na-1 < \lfloor Na \rfloor \leqslant Na \implies a = \frac{Na}{N} < c \leqslant \frac{Na+1}{N} = a + \frac{1}{N} < a+b-a = b$$
 $\implies c \in (a,b)$

1.9 Равномощные множества

Определение 23. Пусть A, B – множества. A равномощно B, если \exists биекция между A и B. Пишут $A \sim B$.

Пример. 1. $(a,b), a < b \sim (0,1)$ $f(x) = a + (b-a) \cdot x, x \in (0,1)$

 $\overline{1} \ \forall (a,b)$ и (c,d) равномощны

- 2. $a < b \implies (a, b) \sim [a, b) \sim [a, b]$
- 3. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim \mathbb{R}$ (tg)

Рис. 1.2: circ

Замечание. (равномощность) \sim – отношение эквивалентности.

- 1. $X \sim X$ $id(x) \equiv x$ тождественное отображение id_X
- $2. \ \, X \sim Y \implies Y \sim X$
- 3. $X \sim Y \quad Y \sim Z \implies X \sim Z$

Определение 24. Множество, равномощное №, называется счётным

Пример. • $\{1, 4, 9, 16, \ldots\}$ – счётно. $f(x) = x^2$

- $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4\}$ считаем их натуральными числами в таком порядке.
- $\{m, m+1, m+2, \ldots\}, m \in \mathbb{R} \quad \varphi(x) = m+x-1$

Теорема 1. Любое бесконечное множество содержит счётное подмножество.

Доказательство. Пусть X — бесконечное множество. $\Longrightarrow \exists a_1 \in X \ X \setminus \{a_1\} \neq \emptyset$ (Иначе $X = \{a_1\}!!!$) $\Longrightarrow \exists a_2 \in X \setminus \{a_1\} \ a_2 \neq a_1$

Так можно продолжать для любого $n. X \setminus \{a_1, \ldots, a_n\} \neq \emptyset$ (иначе X конечно) $\implies \exists a_{n+1} \in X \setminus \{a_1, \ldots, a_n\}, \quad an+1 \not\in \{a_1, \ldots, a_n\}$

 $\forall n\in\mathbb{N}\quad \varphi:n\to a_n\qquad A=\{a_n\}_{n\in\mathbb{N}}\quad \varphi$ – инъекция по построению. A – счётное

Определение 25. Если X – конечно $\vee X$ – счётно, то X называется не более чем счётным (нбчс).

Замечание (уточнение понятие конечного).

$$X$$
 конечно $\iff \begin{cases} X \sim \{1, \dots, n\} \\ X = \emptyset \end{cases}$

Теорема 2. \forall счётного E, если $X \subseteq E$, X – бсконечно, то X –счётно.

Замечание. Любое подмножество счётного не более чем счётно.

Доказательство. E – счётно по условию $E = \{x_1, x_2, x_3, x_4, x_5 ...\}$. В данном наборе есть элементы из X. Пронумеруем их в порядке возникновения в наборе (*).

Теорема 3. Произведение счётных множеств счётно. A, B – счётны $\implies A \times B$ – счётно

Доказательство. Если $A = B = \mathbb{N}$, то \mathbb{N}^2 счётно.

$$\begin{bmatrix} (1,1) & (1,2) & (1,2) & \dots \\ (2,1) & (2,2) & (2,3) & \dots \\ (3,1) & (3,2) & (3,3) & \dots \\ \vdots & \vdots & \vdots & \end{bmatrix} - \text{ нумеруем по диагоналям}.$$

 $A \times B = \{(a_K, b_j)\}_{k, j \in \mathbb{N}} \qquad l \to (k, j) \qquad = \{(k, j)_l\}_{l \in \mathbb{N}}$

Замечание. Любое конечное произведение $\underbrace{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}_m = (\mathbb{N}^m) \sim \mathbb{N}$ не

более чем счётно

Теорема 4. Объединение счётного количества счётных множеств счётно.

 $\{\{A_j\}_{j\in J}: J$ – не более чем счётно $\forall j\in J$ A_j не более чем счётно $\}$

 $\bigcup_{j\in J}A_j$ — не более чем счётно. Не умаляя общности (н.у.о.) $J=\mathbb{N}\vee J=\{1,2,\ldots,n\}$

$$J = \mathbb{N} \vee J = \{1, 2, \dots, n\}$$

Элементы A_1, A_2, \dots (счётных!) множеств можно занумеровать.

 $A_1: a_{11}, a_{12}...$

 $A_2: a_{21}, a_{22} \dots$

 $A_3: a_{31}, a_{32}...$

Перенумеруем по диагоналям лишь те, который встречаем в первый раз

1. \mathbb{Q} счётно. $\mathbb{Q} = \bigcup_{N \in \mathbb{N}} \mathbb{Q}_N \qquad \mathbb{Q}_N = \{\frac{p}{n}\}_{p \in \mathbb{Z}}$ Следствие 3.

2. $A = \{x : \exists$ полином с целыми коэффициентами $P(\cdot) : P(x) = 0\}$

$$\mathbb{P}_n = \{ p(x) = a_0 + \ldots + a_n x^n : a_0, \ldots, a_n \in \mathbb{Z} \} \quad \mathbb{P}_n \leftrightarrow \mathbb{Z}^{n+1}$$

$$A_n = \{x : \exists p \in \mathbb{P}_n : p(x) = 0\}$$
 $A = \bigcup_{n \in \mathbb{N}} A_n$

Задача 1. $\mathbb{N} \times \mathbb{N} \times \dots$ – несчётно

Теорема 5. Сегмент несчётен $(\forall a, b : a < b \quad [a, b]$ – не является счётным)

Доказательство. Доказательство от противного.

$$\Box [a,b]$$
 – счётен $\implies [a,b] = \{x_1, x_2, x_3, \ldots\}.$

 < три замкнутые "трети"
$$\Delta=b-a \qquad [a,a+\frac{\Delta}{3}],[a+\frac{\Delta}{3},a+\frac{2\Delta}{3}],[a+\frac{2\Delta}{3},b]$$

 $x_1 \not\in$ одной из третей. Эту треть назовём I_1 . Повторим действие для I_1 и x_2

$$I_2 \subseteq I_1 \subseteq I_0 x_1 \notin I_1, x_2 \notin I_2$$

$$I_n \subseteq I_{n-1} \subseteq \ldots \subseteq I_2 \qquad x_n \notin I_n$$

По аксиоме \mathbb{N}_2 16 $\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset$ $\exists x \in \bigcap_{n\in\mathbb{N}} I_n \implies c \in [a,b] \implies \exists n : c = x_n \notin I_n \implies c \notin \bigcap_{n\in\mathbb{N}} I_n !!!$

Т.о. [a,b] – несчётно

Следствие 4. несчётные: $\mathbb{R}, (a,b), \mathbb{R} \setminus \mathbb{Q}$ a < b

 $X \sim [0,1]$, то говорят, что X – мощности континуум (мощности \mathbb{C})

Задача 2. 1. $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$

2. Если
$$X$$
 – множество, то $X \not\sim 2^X$ $\qquad 2^X = \{A: A \subseteq X\}$

$$X = \emptyset \quad 2^X = \{\emptyset\}$$

$$X = \{a\} \quad 2^X = \{\emptyset, \{a\}\}$$

3. $\mathbb{N}^{\mathbb{N}} \sim [0, 1]$

Определение 26. Пусть X — любое множество. Отображение из $\mathbb N$ в X называется последовательностью в X.

Вместо $f(n), n \in \mathbb{N}$ $f: \mathbb{N} \to X$ используют $\{x_n\}_{n=1}^{\infty}$ или $(x_n)_{n=1}^{\infty}$ $n \to x_n \in X$

1.10 Предел числовой последовательности

Определение 27. Пусть $\{x_n\}_{n=1}^{\infty}$ последовательность вещественных чисел. $x_+ \in \mathbb{R}$

$$\lim_{n \to \infty} x_n := x_+ \iff \forall \varepsilon > 0 \exists N : \forall n > N \quad |x_n - x_+| < \varepsilon.$$

В метрическом пространстве (X, ρ) шар $B_R(a)$ называется также R-окрестностью точки a.

Определение 28 (Определение предела на языке окрестностей).

 $\lim_{n\to\infty}x_n=x_*\iff \forall$ окрестности Uточки $x_*\quad \exists N\in\mathbb{N}: \forall n>N\quad x_n\in U$

Пример. $x_n = \frac{1}{n} \forall n \in \mathbb{N} \ x_* = 0$

$$\forall \varepsilon > 0 \exists N : \forall n > N \quad \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon \qquad n > \frac{1}{\varepsilon} \quad N := \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$$

Замечание. Определение предела на "языке окрестностей" справедливо в случае последовательностей в метрическом пространстве.

$$x_n \to x_* \iff \forall \varepsilon > 0 \exists N : \forall n > N \quad \rho(x_n, x_*) < \varepsilon.$$

Утверждение 6. Пусть X – метрическое пространство и $c \in X$. Если $\forall n \in \mathbb{N}, x_n = c,$ то $\lim_{n \to \infty} x_n = c.$

Доказательство.
$$x_*=c \quad \forall n\in \mathbb{N} \quad \rho(x_n,x_*)=0<\varepsilon \ \forall \varepsilon>0$$
 $N=1$

Замечание. Пусть $\{x_n\}_{n=1}^{\infty}$ и $\{y_n\}_{n=1}^{\infty}$ – последовательности в метрическом пространстве X и $\exists m \in \mathbb{N}$ $x_n = y_n \ \forall n \geqslant m$. Тогда $\lim_{n \to \infty} x_n$ и $\lim_{n \to \infty} y_n$ совпадают (если существует один, то существует другой и равны при существовании).

Утверждение 7 (единственность предела). Пусть
$$(X, \rho)$$
, $\{x_n\}_{n=1}^{\infty} \subseteq X, \ y, z \in X$. Если $x_n \to y$ и $x_n \to z$, то $y = z$.

Доказательство. Если $y \neq z$, то $\rho(y,z) = \Delta > 0$ $\varepsilon = \frac{\Delta}{2}$

T.K.
$$x_n \to y, x_n \to z$$
, to $\exists N_1, N_2$:

$$\forall n > N_1 \quad \rho(x_n, y) < \varepsilon$$

$$\forall n > N_2 \quad \rho(x_n, z) < \varepsilon$$

$$\forall n \geqslant \max\{N_1, N_2\} \begin{cases} \rho(x_n, y) < \varepsilon \\ \rho(x_n, z) < \varepsilon \end{cases} \implies \Delta = \rho(y, z) \leqslant \rho(y, x_n) + \rho(x_n, z) < 2\varepsilon = \Delta \implies \Delta < \Delta !!!$$

Пример.
$$x_n = (-1)^{-1} \forall n \in \mathbb{N} \not\exists \lim_{n \to \infty} (-1)^{n-1}$$

Если бы
$$\exists x_* = \lim_{n \to \infty} (-1)^{n-1}, \text{ то для } \varepsilon = 1 \exists N$$

$$n = 2N$$
 $|(-1)^{n-1} - x_*| = |-1 - x_*| < 1$

$$n = 2N + 1$$
 $|(-1)^{n-1} - x_*| = |1 - x_*| < 1$

$$2 = |1 - (-1)| \le |1 - x_* + x_* - (-1)| \le |1 - x_*| + |x_* - (-1)| < 2$$

Определение 29. <u>Ограниченной</u> называется такая последовательность $\{x_n\}_{n=1}^{\infty}$, что ограничено множество её значений $\{x_n\}_{n\in\mathbb{N}}$.

Определение 30. В метрическом пространстве <u>сходящейся</u> последовательностью называется последовательность, у которой существует предел (в этом пространстве).

Теорема 6. Сходящаяся в метрическом пространстве последовательность ограничена.

Доказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ – сходящаяся в метрическом пространстве (X,ρ) последовательность, т.е. $\exists x^* \in X \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \in N \quad \rho(x_n,x^*) < \varepsilon$

$$\exists \varepsilon = 1, \exists N = N(\varepsilon), \text{ r.e. } \forall n > N \quad \rho(x_n, x^*) < 1$$

$$R=max\{
ho(x_1,x^*),
ho(x_2,x^*),\dots,
ho(x_N,x^*),1\}\implies \forall n\in\mathbb{N}x_n\in B_r[x^*]\implies \{x_n\}$$
 – ограничена

Теорема 7 (предельный переход в неравенствах). Пусть $\{x_n\}, \{y_n\}$ – вещественные последовательности. $x_n \to x_*, y_n \to y_*$ $x_*, y_* \in \mathbb{R}$ $\forall n$ $x_n \leqslant y_n \implies x_* \leqslant y_*$

Отметим, что из $x_n < y_n$ НЕ следует, что $x_* < y_*$.

Пример: $x_n=0, y_n=\frac{1}{n}, x_*=y_*=0,$ но при этом $x_n< y_n \forall n\in \mathbb{N}$

Доказательство. от противного. $\exists x_* > y_* \quad \varepsilon = \frac{x_* - y_*}{2}$

Т.к.
$$x_n \to x_*$$
, то $\exists N_1 \, (= N(\varepsilon)) : \forall n \in \mathbb{N}, n > N_1 \quad |x_n - x_*| < \varepsilon$

$$\exists N_2 (= N(\varepsilon)) \, \forall n > N_2 \quad |y_n - y_*| < \varepsilon$$

Если
$$N = \max\{N_1, N_2\}$$
 и $n \in \mathbb{N}$ $n > N$ \Longrightarrow
$$\begin{cases} |x_n - x_*| < \varepsilon \\ |y_n - y_*| < \varepsilon \end{cases} \Longrightarrow$$

$$\begin{cases} x_n - x_* > -\varepsilon \\ y_n - y_* > -\varepsilon \end{cases} \Longrightarrow \begin{cases} x_n > x_* - \varepsilon = x_* - \frac{x_* - y_*}{2} = \frac{x_* + y_*}{2} \\ y_n < y_* + \varepsilon = y_* - \frac{x_* - y_*}{2} = \frac{x_* + y_*}{2} \end{cases} \Longrightarrow y_n < x_n$$

Частные случаи(следствия): Пусть $\{x_n\}$ – вещественная последовательность

1.
$$\exists \ \forall n \in \mathbb{N} \quad x_n \leqslant b, b \in \mathbb{R} \ \text{и} \ \exists \lim_{n \to \infty} x_n \implies \lim_{n \to \infty} x_n \leqslant b$$

$$2. \ldots \geqslant a \ldots \implies \lim_{n \to \infty} x_n \geqslant a$$

3.
$$\exists n \in \mathbb{N}$$
 $x_n \in [a,b]$ и $\exists \lim_{n \to \infty} x_n \implies \lim_{n \to \infty} x_n \in [a,b]$

Теорема 8 (о зажатой последовательности, "Принцип двух милиционеров"). Пусть $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty}$ – вещественные последовательности, и $\forall n \in \mathbb{N} x_n \leqslant y_n \leqslant z_n$.

Если $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n=a$ (и пределы существуют), то $\exists\lim_{n\to\infty}y_n$ и $a=\lim_{n\to\infty}y_n.$

Доказательство. $\triangleleft \forall \varepsilon > 0$

T.K. $x_n \to a$, to $\exists N_1 \in \mathbb{N} : n \in \mathbb{N}, \ n \geqslant N_1 \implies |x_n - a| < \varepsilon$.

T.K. $z_n \to a$, to $\exists N_2 \in \mathbb{N} : n \in \mathbb{N}, n > N_2, |z_n - a| < \varepsilon$.

 $N = \max\{N_1, N_2\}$, тогда $n \in \mathbb{N}$ n > N.

$$\begin{cases} |x_n - a| < \varepsilon \\ |z_n - a| < \varepsilon \end{cases} \begin{cases} x_n > a - \varepsilon \\ y_n < a + \varepsilon \end{cases}$$

$$a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon \implies |y_n - a| < \varepsilon \implies y_n \to a$$

Определение 31. Пусть $\{x_n\}_{n=1}^{\infty}$ — числовая последовательность. $\{x_n\}_{n=1}^{\infty}$ называется <u>бесконечно малой</u>, если $x_n \to 0, n \to +\infty$.

Замечание. $\{x_n\}_{n=1}^{\infty} - 6.\text{м.} \iff \{|x_n|\}_{n=1}^{\infty} - 6.\text{м.}$

 $\{x_n\} - \text{б.м.} \iff \forall \varepsilon > 0 \\ \exists N = N(\varepsilon) \in \mathbb{N} : \forall n \in \mathbb{N} n > N \quad |x_n| < \varepsilon \implies |x_n| - \text{б.м.} \ (||x_n| - 0| < \varepsilon).$

Определение 32. Число N из определения предела последовательности x_n называется $\underline{\varepsilon}$ -допуском этой последовательности, $\underline{\Pi}(\varepsilon)$ – набор всех ε -допусков для данной последовательности

Пример. Найти (какой-нибудь) ε -допуск для последовательности $\sqrt{\frac{n+1}{n}}=x_n$ для $\varepsilon>0$

Доказательство. Найти
$$N\in\mathbb{N}: \forall n\in\mathbb{N}\ n>N$$

$$\left|\sqrt{\frac{n+1}{n}}-1\right|<\varepsilon$$

$$\sqrt{\frac{n+1}{n}-1}<\varepsilon\iff \frac{1}{\sqrt{n}}<\varepsilon \quad n>\frac{1}{\varepsilon^2}\quad N=\left\lfloor\frac{1}{\varepsilon^2}\right\rfloor+1$$

Определение 33. (X, K) X – множество, K – поле $(K = \mathbb{R} \lor K = \mathbb{C})$

"+" определено в X, \cdot на элемент K

 $\forall x, y \in X \quad x + y \in X \qquad \forall \alpha \in K \quad \alpha \cdot k \in X$

(X,K) называется векторным (линейным) пространством, если

- 1. $\forall x, y \in X \quad x + y = y + x$
- 2. $\forall x, y, z \in X$ (x + y) + z = z + (y + z)
- $3. \ \exists 0 \in X \quad x + 0 = x$
- 4. $\forall \alpha, \beta \in K, \forall x \in X \quad \alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$
- 5. $\forall \alpha, \beta \in K \quad \forall x \in X \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
- 6. $\forall \alpha \in K \forall x, y \in X \quad \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$
- 7. $\forall x \in X \quad 1 \cdot x = x$

Пример. 1. $X = \mathbb{R} = K$ $X = \mathbb{C} = K$ $X = \mathbb{C}, K = \mathbb{R}$

- 2. $X = \mathbb{R}^n, K + \mathbb{R}$ основной пример векторного пространства.
- 3. $X = \{f : \langle a, b \rangle \to \mathbb{R}\}, K = \mathbb{R}$ $(\alpha \cdot f)(x) = \alpha \cdot f(x) \forall \alpha \in K, \forall f \in X$ $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $0(x) :\equiv 0$

Определение 34. Пусть (X, K) – векторное пространство.

 $p:X\to [0,+\infty)$ называется нормой на X, если

- 1. $p(x) = 0 \iff x = 0$ (невырожденность)
- 2. $\forall \alpha \in K \forall x \in X \quad p(\alpha x) = |\alpha| p(x)$ (положительная однородность)
- 3. $\forall x,y \in X \quad p(x+y) \leqslant p(x) + p(y)$ (неравенство треугольника)

Функция $p:X \to [0,+\infty)$ и обладает свойствами 2, 3 называется полунормой.

Элементарные свойства полунормы:

- 1. $\forall x, y \in X \forall \alpha, \beta \in K$ $p(\alpha x + \beta y) \leq |\alpha| p(x) + |\beta| p(y)$
- 2. $\forall x \in X \quad p(-x) = p(x)$
- 3. $p(x-y) \ge |p(x) p(y)|$

$$p(x) = p(x - y + y) \leqslant p(x - y) + p(y)$$

$$p(x) - p(y) \le p(x - y) \ p(y) - p(x) \le p(y - x) = p(x - y)$$

Замечание. Норма порождает метрику. (X, p), X – векторное пространство.

$$\rho(x,y) = p(x-y) \leqslant p(x-z) + p(z-y) \leqslant \rho(x,z) + \rho(z,y)$$

Замечание. "Обычное" обозначение нормы ||x|| вместо p(x)

$$||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$$
 – евклидова норма, $x \in \mathbb{R}^n$

$$||x||_1 = \sum_{k=1}^n |x_k|$$

$$||x||_{\infty} = \max_{k=1:n} |x_k|$$

 $||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}, p \in [1, +\infty)$ – норма (проверка позже).

Пример. F(x) – строго монотонно возрастает, $F: \mathbb{R} \to \mathbb{R}$

$$\rho_F(x,y) = |F(x) - F(y)| \, \forall x, y \in \mathbb{R}$$

$$|F(x) - F(z)| = |F(x) - F(y) + F(y) + F(z)| \le |F(x) - F(y)| + |F(y) - F(z)| = \rho(x, y) + \rho(y, z)$$

" $\|x\|$ " = $\rho(x,)$ – не обязательно положительно однородна, т.е не всякая метрика порождена нормой.

Забегая вперёд: $C[a,b]=\{f$ — непрерывная на $[a,b],f:[a,b]\to\mathbb{R}\}$ $\|f\|=\max_{x\in[a,b]}\{|f(x)|\}$. Упражнение: доказать, что это норма.

Определение 35. Пусть (X, K) – векторное пространство.

 $< x,y>: X \times Y \to K, \quad <\cdot,\cdot>$ называется скалярным произведением на X, если

- $1. < x, x > \geqslant 0$ и $\forall x \in X < x, x > = 0 \iff x = 0$
- 2. $\forall x, y, z \in X \forall \alpha, \beta \in K \quad \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
- 3. $\forall x, y \in X \quad \langle x, y \rangle = \overline{\langle y, x \rangle}$

Элементарные следствия:

$$\begin{aligned} 1. & < z, \alpha x + \beta y > = \overline{\alpha} < z, x > + \overline{\beta} < z, y > \\ & \leq z, \alpha x + \beta y > = \overline{\langle \alpha x + \beta y, z \rangle} = \overline{\alpha} < x, z > + \beta < y, z > = \overline{\alpha} < x, z > + \overline{\beta} < z, y > \end{aligned}$$

2.

Утверждение 8. Если (X, K) – векторное пространство, $<\cdot, \cdot>$ – скалярное произведение, то $\forall x, y \in X \quad |< x, y>|^2 \leqslant < x, x>< y, y>$.

Доказательство. 1. $y = 0, y = 0 \cdot 0$ $\langle x, y \rangle = \langle x, 0 \cdot 0 \rangle = 0$

2.
$$y \neq 0 \implies \langle y, y \rangle \neq 0$$
 $z = \frac{\langle x, y \rangle}{\langle y, y \rangle} \in K$
 $0 \leqslant \langle x - \alpha y, x - \alpha y \rangle = \langle x, x \rangle - \overline{\alpha} \langle x, y \rangle - \alpha \langle x, y \rangle + \alpha \cdot \overline{\alpha} \langle y, y \rangle$
 $0 \leqslant \langle x, x \rangle - Re \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot \langle x, y \rangle + \frac{\langle x, y \rangle^2}{\langle y, y \rangle}$

3.
$$2Re < x, y > \cdot < x, y > - < x, y >^2 \le < x, x > < y, y >$$

Утверждение 9 (неравенство Коши-Буняковского-Шварца).

$$x = (x_1, \dots, x_n) \quad y = (y_1, \dots, y_n)$$

$$\langle x, y \rangle_2 = \sum x_k y_k$$

$$\langle x, x \rangle = ||x||_2^2$$

$$\langle y, y \rangle = \|y\|_2^2$$

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \leqslant \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$

$$\sum_{k=1}^{n} |x_k y_k| \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}$$

Теорема 9 (О связи пределов и арифметических действий в нормированных пространствах). Пусть (X,K) — нормированное векторное пространство (векторное пространство, снабжённое нормой).

 $\{x_n\}_{n=1}^\infty, \{y_n\}_{n=1}^\infty$ последовательности в X, $\{\alpha_n\}_{n=1}^\infty$ в K

$$x_n \to x, y_n \to y, x, y \in X$$
 $\alpha_n \to \alpha \in K$ Тогда

- 1. $x_n \pm y_n \to x \pm y$
- 2. $\alpha_n \cdot x_n \to \alpha x$
- 3. $||x_n|| \to ||x||$
- 4. Если $X=\mathbb{R} \vee X=\mathbb{C}, K=X, y\neq 0, \forall ny_n\neq 0,$ то $\frac{x_n}{y_n} o \frac{x}{y}$

Доказательство. 1. $x_n + y_n \to x + y$?

$$\forall \varepsilon > 0 \; \exists \varepsilon$$
-допуск для $x_n + y_n$

$$\Box N_1 \in \coprod (\frac{\varepsilon}{2}, \{x_n\})$$

$$\Box N_2 \in \coprod (\frac{\varepsilon}{2}, \{y_n\})$$

$$N = \max\{N_1, N_2\},$$
если $n \in \mathbb{N}, n > N$

$$||(x_n+y_n)-(x+y)|| \le ||x_n-x||+||y_n-y|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
, t.o. $N \in \mathcal{A}(\varepsilon, \{x_n+y_n\})$

32 ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

Для разности аналогично.

Лемма 1. Пусть $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ – числовые последовательности, $\{a_n\}$ – ограничена, $\{b_n\}$ – б.м. \Longrightarrow $\{a_nb_n\}$ – б.м.

Доказательство леммы. $\{a_n\}$ — ограничено \implies $\exists R>0: \forall n\in\mathbb{N}$ $|a_n|\leqslant R$

$$b_n$$
 – б.м. \Longrightarrow для $\forall \varepsilon > 0$ $\exists n \in \mathcal{I}\left(\frac{\varepsilon}{2}, \{b_n\}\right)$, т.е. $|b_n| < \frac{\varepsilon}{R} \ \forall n \in \mathbb{N} \ n > N$. Тогда $|a_nb_n| = |a_n||b_n| < R \cdot \frac{\varepsilon}{R} = \varepsilon \implies N \in \mathcal{I}\left(\varepsilon, \{a_nb_n\}\right) \implies a_nb_n \to 0, n \to +\infty$

Доказательство теоремы:

2.
$$\alpha_n x_n - \alpha x = \alpha_n x_n - \alpha x_n + \alpha x_n - \alpha x = (\alpha_n - \alpha) x_n + \alpha (x_n - x)$$

 $\|(\alpha_n - \alpha) \cdot x_n\| = |\alpha_n - \alpha| \|x_n\| \qquad \|\alpha(x_n - x)\| = |\alpha| \|x_n - x\|$

В каждой один из множителей ограничен, а другой бесконечно малый

$$\implies \|\alpha_n x_n - \alpha x\| - 6.\text{M.} \implies \alpha_n x_n - \alpha x \to 0 \implies \alpha_n x_n \to \alpha x$$

- 3. $|||x_n|| ||x||| \le ||x_n x|| 6.$ M.
- 4. $\frac{x_n}{y_n} \frac{x}{y} = x_n \cdot \frac{1}{y_n} \to x \cdot \frac{1}{y} \iff (2), \text{ если } \frac{1}{y_n} \to \frac{1}{y} \iff \frac{1}{y_n} \frac{1}{y} \text{б.м.}$ $\frac{y y_n}{y y_n} = (y y_n) \frac{1}{y} \frac{1}{y_n}$

$$\varepsilon = \frac{1}{2}|y| > 0 \quad \exists N \in \coprod (\varepsilon, \{y_n\}) \quad n > N \implies |y_n - y| < \varepsilon$$

$$m = \min\{|y_1|, |y_2|, \dots, |y_n|, \varepsilon\}$$
 и $m > 0$

 $\forall n \in Nn \leqslant N \lor n > N \quad |y_n| \geqslant m \lor |y_n| \geqslant |y| - |y_n - y| = 2\varepsilon - \varepsilon = \varepsilon \geqslant m \implies \left|\frac{1}{y_n}\right| \leqslant \frac{1}{m} \implies \left\{\frac{1}{y_n}\right\}$ – ограничено.

Определение 36. Пусть $\{x_n\}_{n=1}^{\infty}$ — вещественная последовательность.

$$\lim_{n \to \infty} x_n = +\infty \iff \forall M \in \mathbb{R} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n > N \quad x_n > M$$

$$\lim_{n \to \infty} x_n = -\infty \iff \forall M \in \mathbb{R} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n > N \quad x_n < M$$

$$\exists \{x_n\}_{n=1}^{\infty} \subset \mathbb{C}$$

 $\lim_{n \to \infty} x_n = \infty \iff \forall M \in \mathbb{R} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n > N \quad |x_n| > M$

Замечание. 1. $x_n \to \infty \iff |x_n| \to +\infty$

2.
$$x_n \to +\infty \lor x_n \to -\infty \implies x_n \to \infty$$
 (обратное неверно: $x_n = (-1)^n \cdot n$

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

33

Определение 37. Последовательности $x_n: x_n \to \infty$ называются бесконечно большими.

Замечание. $\{x_n\}$ – б.б. \implies неограничена (обратное неверно: $x_n = (1 + (-1)^n) \cdot n$ – неограничена и не б.б.).

Лемма 2 (О связи бесконечно больших и бесконечно малых). Пусть $\{x_n\}_{n=1}^{\infty}$ — числовая последовательность и $\forall n \in \mathbb{N}$ $x_n \neq 0$. Тогда x_n — б.б. $\iff \frac{1}{x_n}$ — б.м.

$$x_n$$
 – б.м. $\iff \frac{1}{x_n}$ – б.б.

Доказательство. x_n – 6.6. $\iff \forall M>0 \exists N\in\mathbb{N}: \forall n\in\mathbb{N} n>N \quad |x_n|>M \iff \frac{1}{x_n}<\frac{1}{M} \quad M=\frac{1}{\varepsilon}$

$$\iff \forall \varepsilon > 0 \exists \dots \left| \frac{1}{x_n} \right| < \varepsilon$$

 $\{x_k\}_{k=1}^\infty, n\in\mathbb{N}\quad \{x_k\}_{n=k}^\infty$ – хвост последовательности x_k

Если $\{x_k\}_{k=1}^{\infty}$, то последняя лемма применима к некоторому хвосту этой последовательности.

Замечание. $\overset{\wedge}{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

34

Теорема 10 (Арифметические действия над бесконечно большими). Пусть $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$ — последовательности.

Замечание. $x_n \to \pm \infty$ имеет смысл тогда и только тогда, когда $x_n \in$

- I) Если $x_n \to +\infty$, $\{y_n\}$ ограничено снизу, то $x_n + y_n \to +\infty$
- II) Если $x_n \to -\infty$, $\{y_n\}$ ограничена сверху, то $x_n + y_n \to -\infty$
- III) Если $x_n \to \infty$, $y_n \to a \in \mathbb{C}$ ограничено снизу, то $x_n + y_n \to \infty$
- IV) Если $x_n \to +\infty(-\infty)$ и $\exists \delta > 0 : y_n > \delta \ \forall n \in \mathbb{N}, \text{ то } x_n \cdot y_n \to \infty$
- V) Если $x_n \to +\infty(-\infty)$ и $\exists \delta > 0: \forall n \in \mathbb{N} \quad y_n < -\delta, \text{ то } x_n \cdot y_n \to 0$
- VI) Если $x_n \to \infty$ и $\exists \delta > 0 : \forall n \in \mathbb{N} \quad |y_n| > \delta$, то $x_n \cdot y_n \to \infty$
- VII) Если $x_n \to a \in \mathbb{C}, \quad y_n \to \infty \& \forall n \in \mathbb{N} \quad y_n \neq 0, \text{ то } \frac{x_n}{y_n} \to 0$
- VIII) Если $x_n \to a \in \overset{\wedge}{\mathbb{C}} \setminus \{0\}, \quad y_n \to 0, \text{ то } \frac{x_n}{y_n} \to \infty.$
 - IX) Если $x_n \to \infty$ и $\forall n \in \mathbb{N} \quad y_n \neq 0 \quad y_n \to a \in C,$ то $\frac{x_n}{y_n} \to \infty$

Доказательство. (III) $z_n \to \infty \iff \forall M > 0 \exists N \in \mathbb{N} : \forall n > N, n \in$ \mathbb{N} $|z_n| > M$

 $\forall M > 0$ По условию $y_n \to a \in \mathbb{C} \implies \exists C : \forall n \in \mathbb{N} \mid |y_n| \leqslant C$

T.K. $\{x_n\} \to \infty$, $\exists N' \in \mathbb{N}: x_n > M + C \forall n > N', n \in \mathbb{N}$.

$$a_n = |x_n + y_n| \geqslant |x_n| - |y_n| > M + C - C = M$$

N = N'

(V) $\forall M > 0 \exists N \in \mathbb{R} : \forall n \in \mathbb{N}, n > N \quad x_n y_n < -M$ Т.к. $x_n\to +\infty$, то для $\frac{M}{\delta}$ $\exists N'\in\mathbb{N}: \forall n>N'$ $n\in\mathbb{N}$ $x_n>\frac{M}{\delta}\Longrightarrow x_ny_n<\frac{M}{\delta}\cdot(-\delta)=-M,$ N=N'

(IX) $y_n \neq 0 \forall n \in \mathbb{N}$

1. $a \neq 0 \implies \frac{1}{y_n} \to \frac{1}{a}, \exists \delta > 0: \left| \frac{1}{y_n} \right| > \delta$ (см теорему об арифметических действиях над сх. последовательностями) $\implies \frac{x_n}{y_n} \to \infty \infty$ (по пункту VI)

 $\stackrel{\wedge}{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$

Окрестность точки ∞ в \mathbb{R} – множество вида $\{\infty\} \cup \{x \in \mathbb{R} : |x| > R\}$.

Замечание. $x_n \to a \quad a \in \stackrel{\wedge}{\mathbb{C}}, a \in \overline{\mathbb{R}}, a \in \stackrel{\wedge}{\mathbb{R}} \iff \forall$ окрестности U_a в пространстве $X \exists$ окрестность $V_{+\infty} : \forall n \in \mathbb{N} \cap V_{+\infty} \implies x_n \in U_a$ (ещё одна формулировка на языке окрестностей).

Замечание (замечание к теореме). $x_n \to \pm \infty(\infty), y_n \to \pm \infty(\infty)$ $-\frac{\infty}{\infty}, \frac{0}{0}, \infty$ $0, +\infty + (-\infty), \infty + (\infty)$ – неопределённость, т.е. нет универсального утверждения про предел.

Пример. $\frac{\infty}{\infty}$

1.
$$x_n = n = y_n \to \infty$$
 $\frac{x_n}{y_n} \to 1$

2.
$$x_n = n^2, y_n = n \to \infty$$
 $\frac{x_n}{y_n} \to \infty$

3.
$$x_n = n, y_n = n^2 \to \infty$$
 $\frac{x_n}{y_n} \to 0$

4.
$$x_{2n}=2n, x_{2n+1}=n^2$$
 $y_{2n}=x_{2n+1}, y_{2n+1}=x_{2n}$ $\not\exists \lim_{n\to\infty} \frac{x_n}{y_n}$ – упражнение.

Продолжение доказательства неравенства Коши-Буняковского-Шварца. $|\langle x,y\rangle|^2 \leqslant \langle x,x\rangle\cdot\langle y,y\rangle$ \forall скалярного произведение

Пример (Примеры скалярных произведений). $C\left([a,b]\right)=\{f:f$ непрерывна на $[a,b]\}$ $f:[a,b]\to\mathbb{R}$

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x)dx$$

$$\ell^2 = \{(x_1, x_2, \dots) : x_k \in \mathbb{C} \quad \sqrt{\sum_{k=1}^{\infty} |x_k|^2} < +\infty\} \qquad \langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$$
$$y = 0 \implies \langle x, y \rangle = \langle x, 0 \rangle = \langle x, 0 \cdot 0 \rangle = o \cdot \langle x, 0 \rangle = 0 \qquad \langle y, y \rangle = 0 \implies \text{KBIII}$$

$$y \neq 0 \implies \langle y, y \rangle > 0 \quad \lambda = \frac{\langle x, y \rangle}{\langle y, y \rangle}$$

$$0 \leqslant \langle x - \lambda y, x - \lambda y \rangle = \langle x, x \rangle - \lambda \langle y, x \rangle - \langle x, \lambda y \rangle + \langle \lambda x, \lambda y \rangle = \langle x, x \rangle - \lambda \langle y, x \rangle - \overline{\lambda} \langle x, y \rangle + \lambda \cdot \overline{\lambda} \langle y, y \rangle = \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \Longrightarrow \langle x, x \rangle \cdot \langle y, y \rangle - |\langle x, y \rangle|^2 \geqslant 0$$

Равенство в КБШ $\iff x - \lambda y = 0$ $x = \lambda y$ (x коллинеарен y)

$$|\langle x, y \rangle|^2 \leqslant \langle x, x \rangle \cdot \langle y, y \rangle$$

36

$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots y_n) \in \mathbb{R}^n$$

$$\left|\sum_{k=1}^{n} x_k y_k\right| \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2}$$

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

$$x \in \mathbb{C}^n, y \in \mathbb{C}^n \quad (|x_1|, \dots, |x_n|), (|y_1|, \dots, |y_n|)$$

$$\sum_{k=1}^n |x_k y_k| \leqslant \sqrt{\sum_{k=1}^n |x_k|^2} \sqrt{\sum_{k=1}^n |y_k|^2}$$

Утверждение 10. Пусть (X, \mathcal{K}) — векторное пространство над полем $\mathcal{K}(=\mathbb{R}, \mathbb{C})$, в котором определено скалярное произведение $\langle x, y \rangle$. Тогда $p(x) = \sqrt{\langle x, x \rangle}$ есть норма на X.

Доказательство. $p(\lambda x) = |\lambda| p(x)$ $\lambda \in \mathcal{K}$

$$\sqrt{\left\langle \lambda x,\lambda x\right\rangle }=\sqrt{\lambda\cdot\overline{\lambda}\left\langle x,x\right\rangle }=\left|\lambda\right|\cdot\sqrt{\left\langle x,x\right\rangle }$$

$$p(x+y) \leqslant p(x) + p(y)$$

$$p^2(x+y) \stackrel{?}{\leqslant} (p(x)+p(y))^2 = p^2(x)+p^2(y)+2p(x)p(y) = \langle x,x\rangle + \langle y,y\rangle + 2\sqrt{\langle x,x\rangle\,\langle y,y\rangle}$$

$$p^2(x+y) = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle$$

$$2Re\langle x,y\rangle\leqslant 2\left|\langle x,y
angle
ight|\leqslant 2\sqrt{\langle x,x
angle}\sqrt{\langle y,y
angle}$$

Неравенство КБШ через норму: $|\langle x,y\rangle| \leqslant \|x\| \cdot \|y\| \quad \|x\| = P(x)$ для любой нормы порождённой скалярным произведением.

Утверждение 11. Пусть (X,\mathcal{K}) — векторное пространство со скалярным произведениемм $\langle \cdot, \cdot \rangle$. Если $\{x_n\}, \{y_n\} \subset X$ $x,y \in X$ $x_n \to x, y_n \to y$ $n \to +\infty$, то $\langle x_n, y_n \rangle \to \langle x, y \rangle$, $n \to +\infty$.

Доказательство. $\langle x_n, y_n \rangle - \langle x, y \rangle \to 0$

$$(\langle x_n, y_n \rangle - \langle x_n, y \rangle) + (\langle x_n, y \rangle - \langle x, y \rangle) = \langle x_n, y_n - y \rangle + \langle x_n - x, y_n \rangle \to 0$$

Потому что $|\langle x_n, y_n - y \rangle| \le ||x_n|| \cdot ||y_n - y|| = \text{ orp. } \cdot (\to 0) \to 0.$ И аналогично со вторым.

1.11 Топологические свойства множеств в метрических пространствах

Определение 38. Пусть (X,ρ) — метрическое пространство. $E\subseteq X, a\in E$

a называется внутренней для $E \quad (a \in \operatorname{Int} E)$ если $\exists R > 0 : B_E(a) \subset E$.

Определение 39. Множество в метрическом пространстве называется открытым, если $E=\mathrm{Int}\,E.$

Для "Остальных" множеств верно $\operatorname{Int} E \subset E$.

Пример. 1. E = X, X = Int E, X - открыто

- 2. ∅ открыто
- 3. (0,1) открытое множество $R = \min\{1 a, a\}$

Утверждение 12. В любом метрическом пространстве открытый шар является открытым множеством.

Доказательство. \triangleleft открытый шар $B_R(a)$ в метрическом пространстве (X, ρ) .

$$\forall b \in B_R(a) \implies \rho(b, a) < r < R$$

$$\delta = R - r > 0 \quad \triangleleft B = B_{\delta}(b)$$

$$\exists c \in B \implies \rho(c, a) \leqslant \rho(c, b) + \rho(b, a) < \delta + r = R - r + r = R$$

T.o.
$$b \in Int(B_R(a)) \implies B_R(a)$$
 – открытое.

Замечание. Свойство внутренней точки (и внутренности) зависит от объемлющего пространства.

 $E \subseteq X$, $E \subseteq Y$, $Int_X E \neq Int_Y E$ (может оказаться неравным).

Пример.
$$E = [0, 1], X = \mathbb{R}, Y = E \quad Int_X[0, 1] = (0, 1), Int_E E = [0, 1]$$

Теорема 11 (свойства открытых множеств в метрических пространствах). Пусть (X, ρ) — произвольное метрическое пространство. Тогда

- (I) \emptyset, X открыты
- (II) $\forall \{O_i\}_{i \in I}$ открытых $\implies \bigcup_{i \in I} O_i$
- (III) $\forall n \in \mathbb{N} \forall \{O_1, \dots O_n\}$ открытых $\implies O_1 \cap \dots \cap O_N$ открыто

Замечание.
$$O_n = \left(-\frac{1}{n}, \frac{1}{n}\right) \cap \bigcap_{n \in \mathbb{N}} O_n = \{0\}$$
 – не открыто

Доказательство. (II)
$$\exists x \in \bigcap_{i \in I} O_i \implies \exists i \in I : x \in O_i \quad O_i$$
 – открыто $\implies x \in IntO_i \implies \exists \delta > 0 : \quad B_{\delta}(x) \subseteq O_i \implies B_{\delta}(x) \subseteq \bigcup_{i \in I} O_i \implies x \in Int\left(\bigcup_{i \in I} O_i\right) \implies \cup O_i$ – открыто.

(III)
$$\exists x \in \bigcap_{i \in I} O_i \implies \forall i = 1 : n \quad x \in O_i \implies \forall i = 1 : N \quad \exists \delta_i > 0 : B_{\delta i}(x) \subseteq O_i$$

$$\delta = \min\{\delta_1, \dots, \delta_n\} > 0 \implies B_{\delta}(x) \subseteq O_i \implies B_{\delta}(x) = \bigcap_{i=1}^N O_i \implies x \in Int \bigcap_{i=1}^N \implies \cap O_i - \text{открыто.}$$

Определение 40.

X — множество, $\Omega\subseteq 2^X$. Ω называется топологической структурой (или топологией) на X,если

- 1. $\emptyset, X \in \Omega$
- 2. $\forall \{O_i\}_{i \in I} \subseteq \Omega \implies \bigcup_{i \in I} O_i \in \Omega$
- 3. $\forall N \in \mathbb{N} \forall O_1, \dots, O_N \in \Omega \implies O_1 \cap \dots \cap O_N \in \Omega$

При этом (X,Ω) называют топологическим пространством. Элементы Ω называют открытыми множествами в X (в (X,Ω)).

Т.о. любое метрическое пространство является топологическим.

Пример. 1. X — любое множество $\Omega = \{\emptyset, X\}$ — антидискретная (не метризуемо, если состоит больше, чем из одной точки).

- 2. X любое множество, $\Omega = 2^X$ дискретная топология.
- 3. $X = \mathbb{R}, \Omega = \{\mathbb{R} \setminus A : A$ конечное множество $\}$ или $\Omega_2 = \{\mathbb{R} \setminus A : A$ не более, чем счётное множество $\}$ или $\Omega_2 = \{(a, +\infty) : a \in \mathbb{R}\}$.

Определение 41. Пусть (X,Ω) – топологическое пространство, $E\subseteq X, a\in X.$

a называется предельной для R (или точкой сгущения, $a\in E')\iff \forall$ открытого $O: a\in O \setminus \{a\}\cap E\neq \emptyset.$

"Открытая окретсность" точки a в топологическом пространстве X – это любое открытое, содержащее точку a.

 $U(a) = U \setminus \{a\}$ — проколотая окрестность точки a.

Утверждение 13. Пусть $E \subseteq X, (X, \rho)$ — метрическое пространство. $a \in E' \iff \exists \{x_n\} \subseteq E \setminus \{a\} : x_n \to a, n \to +\infty$

Доказательство. ⇐ : из определения.

$$\Longrightarrow \colon \sphericalangle B_{\frac{1}{n}}(a) \setminus \{a\} \cap E \neq \emptyset \implies \exists x_n \in (B_{\frac{1}{n}} \setminus \{a\}) \cap E \qquad \rho(x_n,a) < \frac{1}{n} \to 0, n \to +\infty \implies x_n \to a$$

Определение 42. Множество E в топологическом пространстве (X,Ω) называется замкнутым, если $E'\subseteq E$.

Пример. 1. E = (0,1] E' = [0,1]

- 2. $E = \{\frac{1}{k}\}_{k \in \mathbb{N}}, E' = \{0\}$
- 3. $E = \mathbb{R}, E' = \mathbb{R}$

Теорема 12. В любом топологическом пространстве множество открыто тогда и только тогда, когда его дополнение замкнуто.

Доказательство. Пусть (X,Ω) – топологическое пространство и $O\subseteq X$.

O – открыто. $F = X \setminus O$ F – замкнуто?.

 $\forall a \in F', a \in F?$.

40

Пусть нет, тогда $a \in O \implies (O \setminus \{a\}) \cap F = \emptyset$!!! $\implies a \in F \implies F$ — замкнуто.

Пусть F — замкнуто \implies ? $O = X \setminus F$ — открыто. Если $O = \emptyset$,то O — открыто.

Если $O \neq \emptyset$, $\langle a \in O \implies a \notin F \implies a \notin F' \implies \exists$ окрестность U точки $a: (U \setminus \{a\}) \cap F = \emptyset \implies U \cap F = \emptyset$ (т.к. $a \notin F$) $\implies U \subset O = X \setminus F \implies X \in U \subseteq O \implies x \in IntO \implies (a - \forall)O$ — открытое.

Следствие 5. 1. Пусть (X,Ω) – топологическое пространство. Тогда

- I) \emptyset, X замкнутые
- II) \forall семейства $\{F_i\}_{i\in I}$ замкнутых $\implies \bigcap\limits_{i\in I} f_i$ замкнуто
- III) $\forall N \in \mathbb{N}, \forall \{F_1, \dots, F_N\}$ замкнутых $F_1 \cup \dots \cup F_N$ замкнуто.

Определение 43. Пусть (X,Ω) – топологическое пространство и $E\subseteq X, a\in E.$

a называется изолированной точкой E,если \exists окрестность U точки $a:\ U\cap E=\overline{\{a\}}.$

Определение 44. Пусть (X,Ω) — топологическое пространство и $E\subseteq X, a\in X.$

a называется точкой прикосновения $E\,(a\in Cl\ E),$ если \forall окрестности Uточки $a\ U\cap \overline{E\neq\emptyset}.$

 $\operatorname{Cl} E$ – замыкание множества $E \subseteq \operatorname{Cl} E$.

Теорема 13 (О замыкании). Пусть $E\subseteq X, (x,\rho)$ – топологическое пространство. Тогда

- (I) Cl $E = E \cup E' = E' \cup (E \setminus E')$ последнее является множеством изолированных точек.
- (II) $\operatorname{Cl} E = \bigcap \{F : F \operatorname{замкнуто}, E \subseteq F\}$
- (III) Cl E минимальное (по включению) замкнутое, содержащее E (Если F замкнуто, и $E\subseteq F$, то Cl $E\subseteq F$)
- (IV) Если X метрическое пространство, то $x \in ClE \iff \exists \{x_n\}_{n=1}^\infty : x_n \to x.$

Доказательство. (I) $x \in \operatorname{Cl} E \iff \begin{cases} x \in E \\ x \notin E & \forall \text{ окрестности } U \text{ точки } x & \exists U \cap E \neq \emptyset \end{cases} \iff \begin{cases} x \in E \\ x \in E' & \iff x \in E \cup E' \end{cases}$

(II) $c\in\operatorname{Cl} E$

 F — замкнутое: $E\subseteq F$ \implies $x\in F$ \implies $x\in\Pi$ р.ч (правой части)

 $\sqsupset x \in \Pi$ р.ч. = F,если $x \not\in \operatorname{Cl} E \implies \exists$ окрестность Uточки $x:U \cap E = \emptyset$

 $\sphericalangle F_1=F\setminus U$ — замкнуто, $F_1\supseteq$, т.к. $E\subseteq F$ $E\cap U\neq\emptyset$, $F=F_1\cap\ldots$ $x\in F=F_1,x\not\in F_1!!!$

III F — правая часть равенства в II. F — замкнуто как пересечение и для любого замкнутого $F_1: E \subseteq F_1 \implies F \subseteq F_1$ (по определению пересечения)

$$\text{IV } ?x \in \text{Cl}\,E \iff \begin{cases} x \text{ изолированная для } E & x_n \equiv x \\ x \text{ предельная для } E & \text{тога по характеристике предельной точки} \end{cases}$$

Задача 3. 1. $\operatorname{Int} E \subseteq E$ $\operatorname{Int}(\operatorname{Int}(E)) = \operatorname{Int} E$

2.
$$(\operatorname{Int} E)^c = \operatorname{Cl}(E^c)$$

3.
$$Cl(Cl(E)) = Cl(E)$$

4.
$$Int(A \cap B) = Int(A) \cap Int(B)$$

$$Cl(A \cup B) = Cl(A) \cup Cl(B)$$

$$\operatorname{Int}(A \cup B) \neq \operatorname{Int}(A) \cup \operatorname{Int}(B)$$

$$Cl(A \cap B) = \dots$$

Замечание. Int O — наибольшее открытое множество, содержащееся в O.

Определение 45. Пусть (X,Ω) – топологическое пространство, $E\subseteq X$ $a\in X$.

a называется граничной точкой для E,если \forall окрестности Uточки a $U\cap E\neq \overline{\emptyset}$ И $U\cap (E^c)\neq \emptyset.$

 $\operatorname{Fr} E = \{x: x$ – граничная для $E\} = \partial E$

Пример. 1. $X = \mathbb{R}, E = [0,1]$ Int E = (0,1). Cl E = [0,1] Fr $R = \{0,1\}$

2.
$$X = \mathbb{R}^2$$
 $E = \{(x,0) : x \in [0,1]\}$ Int $E = \emptyset$, Cl $E = E$, Fr $E = R$.

3.
$$X = [0, 1], E = [0, 1]$$
 Int $E = E$, Cl $E = E$, Fr $E = \emptyset$

Замечание. Если (X, ρ) – метрическое пространство.

$$\Omega = \left\{ \exists$$
 семейство открытых шаров $\{B_I\}_{i \in I} : O = \bigcup_{i \in I} B_i \right\}$

$$(\forall O = \bigcup_{x \in O} B_{r(x)}(x))$$

42

Утверждение 14. $\supset (X, \rho)$ – м.п., $Y \subseteq X$ Тогда Ω_Y совпадает с топологией, порождённой индуцированной метрикой.

Доказательство. $\Omega_{\rho,Y}=\{O:\exists$ открытые шары в $Y\{B_i\}_{i\in I}:O=\bigcup_{i\in I}B_i=\bigcup(\overline{B_i}\cap Y)\}$

 $\overline{B_i}$ – шар с тем же центром и радиусом, но в X

Замечание. $Y\subseteq X$ O открыто в $Y\iff \exists \overline{O}$ открыто в $X: O=\overline{O}\cap Y$ $\Box F\subseteq Y$ F — замкнуто (в $Y)\iff \exists$ замкнутое \overline{F} в X $F=\overline{F}\cap Y$

Доказательство. F — замкнуто в $Y \iff Y \setminus F \in \Omega_Y \iff Y \setminus F = \overline{O} \cap Y,$ (где $\overline{O} \in \Omega \iff X \setminus \overline{O}$ — замкнуто)

$$F = Y \setminus (Y \setminus F) = Y \setminus (\overline{O} \cap Y) = Y \setminus \overline{O} = Y \cap (X \setminus \overline{O})$$

Пример. Примеры:

1.
$$X = \mathbb{R}^2$$
 $Y = B_1(0) \cup \{(2,0)\} \cup \{(x,y) : xy = 1, x > 0, y > 0\}$
 $B_1[0] = B_1(0)$
 $B_{\frac{1}{x}}[2] = \{(2,0)\} \cup \{(x,\frac{1}{x}) : (x-2)^2 + \frac{1}{x^2} \leqslant \frac{1}{4}\}$

2.
$$Y$$
 – график $y(x) = \sin \frac{1}{x}, x \neq 0$
 $\operatorname{Cl} E = Y \cup \{(0,y): y \in [-1,1]\}$

Замечание. Если X – метрическое пространство $E\subseteq X$

 $a \in E' \iff \forall$ открытой окрестности U точки $a \quad \stackrel{\cdot}{U} \cap E$ бесконечно

1.12 Компактность, сходимость в себе, полнота пространств

Определение 46.
$$\sqsupset(X,\Omega)$$
 – т.пр. $\sqsupset E \subseteq X, \{A_i\}_{i \in I} \subseteq X$

Если $E\subseteq\bigcup_{i\in I}A_i$, то говорят, что $\{A_i\}_{i\in I}$ образует покрытие множества E

Определение 47.
$$\sqsupset (X,\Omega)$$
 – т.п. $K\subseteq X$

K — называется <u>компактным</u> (в X), если \forall покрытия $\{O_i\}_{i\in I}$ множества K открытыми можно извлечь конечное подпокрытие: $\exists N: \exists i_1,i_2,\ldots i_n: K\subseteq O_{i_1}\cup O_{i_2}\cup\ldots\cup O_{i_n}$

Элементарные свойства компактных множеств:

Утверждение 15. Если K – компактно (в (X,Ω)) и $F\subseteq K$ и F – замкнуто, то F – компактно (в (X,Ω))

Доказательство. \vartriangleleft открытое покрытие $\{O_i\}_{i\in I}$ множества F

$$\sphericalangle O = X \setminus F$$
 – открытое $\implies \{O_i\}_{i \in I} \cup \{O\}$ – покрытие K

$$K$$
 – компакт $\implies \exists i_1, \dots, i_n : K \subseteq O_{i_1} \cup \dots \cup O_{i_n} \cup O$

$$F \subseteq O_{i_1} \cup \ldots \cup O_{i_N} \implies ($$
покрытие – \forall) F – компакт

Утверждение 16. $\sqsupset(X,\Omega)$ – топ. пр-во $K\subseteq X$. Тогда следующие утверждения равносильны

$$K$$
 комп. в X (1.1)

$$K$$
комп. в себе (комп в (K, Ω_K)). (1.2)

Доказательство.

$$1.1 \to 1.2 \ \exists \ \{G_i\}_{i \in I} \ -$$
 открытое покрытие K в $K \Longrightarrow \forall i \in I \exists$ открытое в $X \ O_i : G_i = O_i \cap K \Longrightarrow K \subseteq \bigcup_{i \in I} O_i \Longrightarrow \exists i_1, \dots, i_N : K \subseteq \bigcup_{j=1}^n O_{i_j} \Longrightarrow K \subseteq \left(\bigcup_{j=1}^N O_{i_j}\right) \cap K = \bigcup_{j=1}^N \left(O_{i_j} \cap K\right) = \bigcup_{j=1}^N G_{i_j}$, т.о. $\left\{G_{i_j}\right\}$ — конечное полнокрытие K в K

 $1.2 \to 1.1 \, \lessdot \forall$ открытое покрытие $\{O_i\}_{i \in I} \, K$ в $X. \, \sqsupset \, G_i = O_i \cap K$ – открытые в K

$$K \subseteq \bigcup_{i \in I} O_i \implies K \subseteq \left(\bigcup_{i \in I} O_i\right) \cap K = \bigcup_{i \in I} G_i$$

Т.к. K компактно в K, то $\exists i_1,\ldots,i_N: K\subseteq G_{i_1}\cup\ldots\cup g_{i_N}\Longrightarrow K\subseteq O_{i_1}\cup\ldots\cup O_{i_N}$ ($G_{i_1}\subseteq O_{i_1}\ldots$). Т.о. $\{O_{i_1},\ldots,O_{i_N}\}$ – конечное покрытие

Следствие 6. $K\subseteq Y\subseteq X$ (X,Ω) – т.п. Тогда K компактно в $Y\Longleftrightarrow K$ компактно в X

Замечание. $(0,1) = \bigcup_{n=2}^{\infty} \left(\frac{1}{n},1\right)$ – не извлекается конечное подпокрытие

Утверждение 17. \sqsupset (X, ρ) – м.п., K – компактно в X. Тогда K замкнуто и ограничено (в X)

Доказательство.
$$\exists a \in X \quad \{B_n(a)\}_{n \in \mathbb{N}} \implies K \subseteq X \subseteq \bigcup_{n \in \mathbb{N}} B_n(a)$$

Если K компактно, то $\exists n_1,\dots,n_m:K\subseteq\bigcup_{k=1}\&mB_{n_k}(a)=B_N(a),N=\max\{n_1,\dots,n_m\}$, т.е. K ограничено

$$K$$
 – замкнуто? $\iff X \setminus K$ – открыто

$$\triangleleft \forall p \in X \setminus K$$

$$\forall q \in K \quad 0 < \frac{\rho(q,p)}{2} = r_q \implies B_{r_q}(q) \cap B_{r_q}(p) = \emptyset$$

$$\rho(x,y)>\rho(p,q)-\rho(p,y)-\rho(q,x)>2r_q-r_q-r_q=0$$

$$\left\{B_{r_q}(q)\right\}_{q\in K}$$
 – открытое покрытие $K\implies (K$ – компакт) $\exists q_1,\dots,q_N:K\subseteq\bigcup_{j=1}^N B_{r_{q_j}}(q_j), r=\min\left\{r_{q_1},\dots,r_{q_N}\right\}$

$$\begin{array}{ll} B_r(p)\subseteq B_{r_{q_j}}(p) & B_r(p)\cap B_{r_{q_j}}(q_j)\neq \emptyset \quad \forall j=1:N \implies B_r(p)\cap K\neq \emptyset \implies B_r(p)\subseteq X\setminus K \end{array}$$

T.o.
$$X \setminus K$$
 – открыто

Аксиома о вложенных промежутках справедлива и для "обобщённых замкнутых промежутков" $Q=[a_1,b_1]\times\ldots\times[a_n,b_n]\subseteq\mathbb{R}^n-\overline{\text{куб}}$

$$\begin{array}{lll} Q^{(j)} \, = \, \prod_{k=1}^n [a_k^{(j)}, b_k^{(j)}] & \forall j \, \in \, \mathbb{N} \ \, \mathrm{if} \ \, \forall k \, = \, 1 \, : \, n \quad \forall j \, \in \, \mathbb{N} \quad \left[a_k^{(j+1)}, b_k^{(j+1)} \right] \, \subseteq \, \left[a_k^{(j)}, b_k^{(j)} \right] \end{array}$$

По аксиоме о вложенных промежутках $\forall k=1:n \quad \exists c_k \subseteq \bigcap_{j=1}^{\infty} [a_k^{(j)},b_k^{(j)}] \implies c=(c_1,\ldots,c_n) \in \prod_{k=1}^n [a_k^{(j)},b_k^{(j)}] \forall j \in \mathbb{N}$

Теорема 14 (Гейне-Бореля). В
$$\mathbb{R}^n$$
 любой замкнутых куб компактен $Q = [a_1, a_1 + \delta] \times [a_2, a_2 + \delta] \times \ldots \times [a_n, a_n + \delta] \quad \delta$ – длина ребра

Доказательство. От противного $\square \{O_i\}_{i\in I}$ – открытое покрытие куба Q, из которого нельзя извлечь конечного подпокрытия

 $Q_1=Q;$ делением рёбер пополам представим Qвиде объединения 2^N кубов со стороной $\frac{\delta}{2}$

Хотя бы один из них — "плохой" (т.е. не имеет конечного подпокрытия в $\{O_i\}$)ю Назовём O_2,\dots

В результате $\{Q_i\}$ – последовательность кубов

Рис. 1.3: cube

$$x,y\in\overline{O}$$
 \overline{O} – куб со стороной $\Delta\Longrightarrow\|x-y\|\leqslant\Delta\cdot\sqrt{n}$ $\Big(\|x-y\|=\sqrt{\sum_{k=1}^n(x_k-y_k)^2}=\sqrt{\sum_{k=1}^n\Delta^2}=\sqrt{n}\Delta\Big)$

По предыдущему утверждению $\exists c \in \bigcap_{j=1}^{\infty} Q_j \quad c \in \bigcup_{i \in I} O_i \implies \exists i_c : c \in O_{i_c}$

$$\{O_i\}$$
 – открыто $\implies \exists r>0: B_r(c)\subset O_{i_c}/$

Т.к.
$$\frac{\delta}{2^{j-1}} \to 0,$$
 то $\exists J: \forall j \geqslant J \quad \frac{\delta \sqrt{n}}{2^{j-1}} < r$

Тогда $y \in Q_j$, где $j \geqslant J$

$$\implies |y-c| \leqslant \frac{\delta}{2^{j-1}} \cdot \sqrt{n} < r \quad \forall j \geqslant J \implies Q_j \subseteq B_r(c) \subseteq O_{i_c} \quad \forall j \geqslant J. \ Q_j$$
 – "плохой" !!!

Теорема 15 (критерий компактности в \mathbb{R}^n). $\Box K \subseteq \mathbb{R}^n$. Тогда следующие утверждения равносильны:

I: K – замкнуто и ограничено

II: K – компактно

III: K — секвенциально компактно (из любой последовательности в K можно извлечь сходящуюся в K подпоследовательность)

Определение 48. $\supset \{x_k\}_{k=1}^{\infty}$ – последовательность в топологическом пространстве (X,Ω) .

Если $\{k_j\}_{j=1}^\infty$ – строго возрастающая последовательность натуральных чисел, то $\{x_{k_j}\}_{j=1}^\infty$ называется <u>подпоследовательностью</u> исходной последовательности

Лемма 3. Если $\{k_j\}_{j\in\mathbb{N}}\subseteq\mathbb{N}$ и строга возрастает, то $\forall j\in\mathbb{N}\quad k_j\geqslant j$

Теорема 16 (критерий компактности в \mathbb{R}^n). $\supset K \subseteq \mathbb{R}^n$. Тогда следующие утверждения равносильны:

I: K – замкнуто и ограничено

 $\Pi: K$ – компактно

III : K — секвенциально компактно (из любой последовательности в K можно извлечь сходящуюся в K подпоследовательность)

Определение 49. $\supset \{x_k\}_{k=1}^{\infty}$ – последовательность в топологическом пространстве (X,Ω) .

Если $\{k_j\}_{j=1}^{\infty}$ – строго возрастающая последовательность натуральных чисел, то $\{x_{k_j}\}_{j=1}^{\infty}$ называется <u>подпоследовательностью</u> исходной последовательности

Лемма 4. Если $\{k_j\}_{j\in\mathbb{N}}\subseteq\mathbb{N}$ и строга возрастает, то $\forall j\in\mathbb{N}\quad k_j\geqslant j$

Определение 50. $\square \{y_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ – последовательность.

 $\{y_k\}$ называется возрастающей, если $\forall k\in\mathbb{N}\quad y_{k+1}\geqslant y_k\,(\forall k,m,m\geqslant k,$ то $\psi_m\geqslant y_k)$

 $\{y_k\}$ – строго возрастает $\iff \forall k, m \in \mathbb{N} m > k \implies y_m > y_k$

Определение 51. $\square\left\{x_k\right\}_{k=1}^{\infty}$ – последовательность в т.п. $(X,\Omega), x\in X$ $x=\lim_{k\to\infty}x_k\iff \forall$ открытой окрестности U точки x $\exists N\in\mathbb{R} \forall k\in \mathbb{N}, k\geqslant N$ $x_n\in U$

 $\iff \forall$ открытой окрестности Uточки $x \quad \exists$ окрестность $V(+\infty): \forall k \in V(+\infty) \cap \mathbb{N} \quad x_k \in V$

Пример. $x_k = (-1)^k, k \in \mathbb{N}$

 $x_{2k} \equiv 1 \rightarrow 1$

 $x_{2k+1} \equiv -1 \to -1$

Утверждение 18. Если $\{x_n\}$ сходится (в (X,Ω)), то любая её подпоследовательность сходится, причём к тому же пределу.

Доказательство. $\triangleleft \forall$ подпоследовательность $\left\{x_{k_j}\right\}_{j=1}^{\infty}$ $\Box x = \lim_{k \to \infty} x_k$ \Box U, N, x – из определения предела.

Тогда $\forall j\geqslant N\implies$ по лемме $k_j\geqslant j\geqslant N\implies x_{k_j}\in U\implies x_{k_J}\to x, j\to +\infty$

Утверждение 19. $\square \{x_k\}$ – последовательность в т.п. (X,Ω)

 $\left\{x_{k_{j}}\right\}_{j=1}^{\infty} \quad \left\{x_{l_{i}}\right\}_{i=1}^{\infty}$ – подпоследовательности

 $\{x_k\}_{\mathbb{N}} = \{x_{k_j}\}_{j \in \mathbb{N}} \cup \{x_{l_i}\}_{i \in \mathbb{N}}$

48

 \sqsupset $\exists \lim_{j\to\infty} x_{k_j} = \lim_{i\to\infty} x_{l_i} = x$ Тогда $\exists \lim_{k\to\infty} x_k$ и $\lim_{k\to\infty} x_k = x$

Доказательство. Т.к. $x_{k_j} \to x$, то \forall окрестности $U \exists J = J(U): \forall j > J \quad x_{k_i} \in U$

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

Т.к.
$$x_{l_i} \to x$$
, то \forall окрестности $U \exists I = I(U) : \forall i > I \quad x_{l_i} \in U \ N = \max\{k_J, l_I\}, \forall n > N \quad x_n = \begin{cases} x_{k_j} \implies j > J \\ x_{l_i} \implies i > I \end{cases} \implies x_n \in U$

Пример. $\mathbb{Q} = \{x_k\}_{k=1}^{\infty}$ (при некоторой нумерации)

Задача 4. $\forall x \in \mathbb{R} \exists$ подпоследовательность $\{x_{k_j}\}_{j=1}^\infty: x_{k_j} \to x, j \to \infty$

Доказательство критерия компактности в пространстве \mathbb{R}^n .

II ⇒ I Утверждение ??

І \Longrightarrow II K – замкнуто и ограничено \Longrightarrow $K\subseteq B\subseteq Q$ B – шар, Q – куб \Longrightarrow по \ref{Main} K – компакт

III \Longrightarrow I K – ограничено? от противного. Если K не ограничено $\forall n \in \mathbb{N} \exists x_k \in K: \|x_k\| > k \|x_k\| \to +\infty \quad x_k \to \infty \Longrightarrow \forall$ подпоследовательность $\{x_{k_i}\} \to \infty \quad i \to \infty$

K — замкнуто, $\forall p \in K' \implies p \in K$ От противного $\exists p \in K', p \notin K \implies \exists$ последовательность $\{x_k\}_{k=1}^{\infty} \subset K: x_k \to p, k \to +\infty \implies \forall$ подпоследовательность $\{x_{k_j}\} \to \notin K, j \to \infty$!!!(III). Т.о. K — замкнуто

III \Leftarrow II $\triangleleft \forall \{x_k\}_{k=1}^{\infty} \times K$

Если $\{x_k\}_{k\in\mathbb{N}}$ – конечно, то $\exists\,\{k_j\}_{j=1}^\infty\subseteq\mathbb{N}$ – возрастающая $x_{k_j}=const\implies x_{k_j}\to x_{k_1}$

Если $\{x_k\}_{k\in\mathbb{N}}$, тогда существует предельная точка в \mathbb{R}^n для $F\implies F$. Если нет, то F – замкнуто в $\mathbb{R}^n\implies F$ – компакт $(F\subseteq K)$

 $\forall x \in F \quad x$ – изолированная точка $\exists \delta_x > 0 : B_{\delta_x}(x) \cap F = \{x\}$

 $\cup B_{\delta_x}(x) \supseteq F$, но нельзя извлечь конечное подпокрытие.

T.o.
$$\exists p \in F' \implies \forall \varepsilon > 0 \quad \overset{\circ}{B}_{\varepsilon}(p) \cap F \neq \emptyset$$

 $\varepsilon = 1 \quad \exists x_{k_1} \in B_1(p) \cap F \implies k_2 \in \overset{\circ}{B}_{y_2}(p) \cap F \setminus \{x_1, \dots, x_{k_1}\} \neq \emptyset \quad k_2 > k_1$

. . .

$$\exists x_{k_{j+1}} \in \overset{\circ}{B}_{2j}(o) \cap F \setminus \{x_1, \dots, x_{k_j}\} \neq \emptyset$$
$$\{x_{k_i}\} \subseteq F, k_i \uparrow \quad \|x_{k_i} - p\| \leqslant \frac{1}{2i} \to 0, j \to \infty$$

Следствие 7 (принцип выбора Больцано-Вейерштрасса). Из любой ограниченной последовательности в \mathbb{R}^n можно извлечь сходящуюся подпоследовательность. (последовательность содержится в некотором компакте)

Определение 52. $\supset (X, \rho)$ – м.п. $\{x_k\}_{k=1}^{\infty} \subseteq X$. $\{x_k\}_k$ называется сходящейся в себе (она же последовательность Коши, она же фундаментальная последовательность), если $\forall \varepsilon > 0 \exists N \in \mathbb{R} : \forall n, m \in \mathbb{N}, n, m \geqslant N \quad \rho(x_n, x_m) < \varepsilon$

Утверждение 20. Если $\{x_k\}_{k=1}^{\infty} \subseteq (X, \rho)$, то она сходится в себе

Доказательство. $\square \{x_k\}$ сходится $\Longrightarrow \exists x \in X : \forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n \in \mathbb{N}, n \geqslant \mathbb{N} \ \rho(x_n, x) < \frac{\varepsilon}{2}.$ Тогда $\forall n, m \geqslant \mathbb{N}, n, m \in \mathbb{N} \ \rho(x_n, x_m) \leqslant \rho(x_n, x) + \rho(x_m, x) < \frac{\varepsilon}{2} \cdot 2 = \varepsilon \Longrightarrow \{x_k\}_{k=1}^{\infty}$ сходится в себе

Лемма 5. $\exists \{x_n\}$ сходится в себе $u \subseteq (X, \rho)$

Тогда:

- 1. $\{x_n\}$ ограничена
- 2. Если существует сходящаяся подпоследовательность $\{x_{n_k}\}$, то сама последовательность $\{x_n\}$ сходится

Доказательство. $\{x_n\}$ сходится в себе \iff $\forall \varepsilon>0 \exists N\in\mathbb{R} \ \forall n,m\geqslant N,n,m\in\mathbb{N} \ \rho(x_n,x_m)<\varepsilon$

 $\sphericalangle \varepsilon = 1 \quad \exists N = N(\varepsilon)$ из определения сходимости в себе.

$$C = \max\{\rho(x_2, x_1), \rho(x_3, x_1), \dots, \rho(x_{N-1}, x_1), \rho(x_N, x_1) + 1\}$$

 $B_C[x_1]$

Теперь о втором пункте.

$$\exists x_{n_k} \to x \in X, k \to \infty \quad x_n \to x$$
?

$$\forall \varepsilon > 0 \quad \exists K : \rho\left(x_{n_k}, x\right) < \frac{\varepsilon}{2} \forall k : k \geqslant K, k \in \mathbb{N}$$

$$x_n$$
 сх. в себе, то $\exists N_1 \in \mathbb{R} : \forall n, m \in \mathbb{N} \quad n, m \geqslant N \quad \rho(x_n, x_m) < \frac{\varepsilon}{2}$

$$N = \max N_1, K$$

Если
$$n \geqslant N$$
, то $\rho(x_n, x) \leqslant \rho(x_n, x_{n_N}) + \rho(x_{n_N}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Теорема 17. 1. В произвольном метрическом пространстве любая сходящаяся последовательность фундаментальна

2. В пространствах \mathbb{R}^n сходимость последовательности равносильна её фундаментальности.

Второе утверждение – критерий Коши-Больцано

Доказательство. 1. уже доказано

- 2. Половина доказана.
 - $\exists \{x_n\}_{n=1}^{\infty}$ фундаментальна. Надо проверить, что она сходится.

Фундаментальность по лемме \implies ограниченность. По принципу выбора \implies \exists сходящаяся подпоследовательность. По лемме \implies сходимость.

Пример. X=R $F(x)=\frac{x}{1+|x|}$ x>0 и $F(x)=1-\frac{1}{1+x}$ \uparrow на $(0,+\infty)$ $ho_F(x,y)=|F(x)-F(y)|$ $ho_F(n,m)=\left|\frac{n}{1+n}-\frac{m}{1+m}\right|=\frac{|n-m|}{(1+n)(1+m)}<\varepsilon\iff N:\frac{1}{N}<\varepsilon\quad m,n>N$ $\{n\}_{n=1}^\infty$ - фундментальна или сходится в себе, но не имеет предела $F(\pm\infty)=\pm 1$ (заменили функцию её пределом)

Получаем пролжением метрики на всю $\overline{\mathbb{R}}$ Тогда $\{n\} \to +\infty$

Определение 53. Метрическое пространство (X, ρ) называется <u>полным,</u> если любая фундаментальная последовательность в нём сходится.

1.13 Супремум и инфимум. Монотонная последовательность

Определение 54. Последовательного вложенных промежутков $\{[a_n,b_n]\}_{n=1}^{\infty}$ $a_n,b_n \in \mathbb{R}$ $a_n \leqslant an+1 \leqslant b_{n+1} \leqslant b_n \forall n \in \mathbb{N}$ называется стягивающейся, если $b_n-a_n \to 0, n \to \infty$

51

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

Теорема 18. Пусть $\{[a_n,b_n]\}$ – стягивающаяся последовательность промежутков. Тогда:

1.
$$\exists ! C \in \mathbb{R} \quad \{C\} = \bigcap_{n=1}^{\infty} [a_n, b_n]$$

2.
$$a_n \to C$$
 $b_n \to C$

Доказательство. По аксиоме $16 \bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$

$$\exists c, d \in \bigcap_{n=1}^{\infty} [a_n, b_n] \implies \forall n \in \mathbb{N} \quad a_n \leqslant c \leqslant b_n \quad a_n \leqslant d \leqslant b_n \quad -b_n \leqslant -d \leqslant -a_n$$

$$a_n - b_n \to 0 \leqslant c - d \leqslant b_n - a_n \to 0 \implies c - d \to 0 \implies c = d$$

$$b_n - (b_n - a_n) = a_n \leqslant c$$

$$\leqslant c - (b_n - a_n) \to c.$$

$$\implies a_n \to C$$

$$b_n = a_n + (b_n - a_n) \to c + 0 = c$$

Упражнение:

$$C_0 = [0, 1]$$

$$C_1 = [0,1] \setminus (\frac{1}{3}, \frac{2}{3}) = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$$

$$C_2 = C_1 \setminus (\frac{1}{9}, \frac{2}{9}) \setminus (\frac{7}{9}, \frac{8}{9}), \dots$$

$$C = \bigcap_{k=0}^{\infty} C_k$$

Проверить, что C несчётно (и $C \sim [0,1]$)

 ${\cal C}$ – Канторово множества, множество Кантора

Определение 55. $\exists E \subseteq \mathbb{R} \quad M \in \overline{\mathbb{R}}$

M называется мажорантой для E,если $\forall x \in E \quad x \leqslant M$ (миноранта)

Определение 56. $E \subseteq \mathbb{R}$

$$\sup E = \begin{cases} +\infty &, \text{ если } E \text{ не ограничено сверху} \\ \min\{C: C - \text{мажоранта для } E\} &, \text{ если } E \text{ ограничено сверху} \\ -\infty &, E = \emptyset \end{cases}$$

Названия: супремум, точная верхняя граница

 $\inf E = \ldots -$ инфимум

Замечание. Если $E \neq \emptyset$, то $\exists x \in E : \inf E \leqslant x \leqslant \sup E \implies \inf E \leqslant \sup E$ (кроме случая $E = \emptyset$)

Теорема 19. в $\overline{\mathbb{R}}$ sup E, inf E существуют у всякого $E\subseteq\mathbb{R}$. Если E ограничено сверху (снизу), то sup E конечен (inf E конечен)

Замечание. $E \subseteq \mathbb{R}, R$ – огр. \Longrightarrow в $\mathbb{R} \exists \sup E, \inf E$

Доказательство.
 $\sphericalangle E \neq \emptyset$ – огр. сверху. Докажем, что $\sup E$ существует и конечен

 $\Box I = [a,b]$ – отрезок. Назовём I "хорошим", если:

- 1. $I \cap E \neq \emptyset$
- 2. $I \cap \mathcal{M} \neq \emptyset$, где \mathcal{M} множество всех мажорант E

Замечание (Критерий супремумы и инф). $\exists E \neq \emptyset \subseteq \mathbb{R}, M \in \overline{\mathbb{R}}$. Тогда $M = \sup E \iff \forall \text{ окр } U(M) \quad U(M) \cap (-\infty, M) \cap E \neq \emptyset \qquad (M, +\infty) \cap E = \emptyset$

Т.к. $E \neq \emptyset \exists x \in E$. Т.к. E – огр сверху, $\exists M \in \mathscr{M} \cap \mathbb{R}$

 $I_1 = [x, M] \neq \emptyset, I_1$ – хороший

 $\sqsupset c = \frac{x+M}{2}.$ Один из отрезков [x,c] или [c,M] – хороший

Если $[c,M] \cap E \neq \emptyset$, то [c,M] – хороший

Если
$$[c,M]\cap E=\emptyset \implies C\in \mathscr{M} \implies [x,c]$$
 – хороший

Рассмотрим хорошую половину в качестве I_2 .

Повторим действия, ...

В результате $\{I_n\}$ – последовательность стягивающихся вложенных замкнутых промежутков, потому что длинна $I_n=|I_n|=\frac{M-x}{2^{n-1}}\to 0$

Следовательно, по теореме о стягивающихся промежутках $\exists c:\bigcap_{n=1}^{\infty}I_n=\{c\}$, и $a_n\to c,b_n\to c$, где a_n,b_n – концы I_n $c=\sup E$?

 $\forall nb_n$ – мажоранта. $\forall x \in E \ x \leqslant b_n \implies x \leqslant c \implies c \in \mathcal{M} \ ? \forall \varepsilon > 0 \ (c-\varepsilon,c) \cap E \neq \emptyset$

Т.к. $|I_n| \to 0$, то $\exists N : \forall n \geqslant N : |I_n| < \varepsilon$

 $I_n \cap E \neq \emptyset \implies \exists x_n \in [a_n, b_n] \cap E \implies x_n \in [a_n, c] \cap E$

$$x > a_n = b_n - (b_n - a_n) \geqslant c - (b_n - a_n) > c - \varepsilon \implies c = \sup E$$

Замечание. Если $E \subseteq D \subseteq \mathbb{R}$, то

 $\sup E \leqslant \sup D.$

 $\inf E \geqslant \sup D$.

Определение 57. $E\subseteq \mathbb{R}$ $f:E\to \mathbb{R}$

f называется возрастающей на $E \iff \forall x_1,x_2 \in E: x_1 \leqslant x_2 \implies f(x_1) \leqslant f(x_2)$

f называется строго возрастающей на $E \iff \forall x_1,x_2 \in E: x_1 < x_2 \implies f(x_1) < f(x_2)$

Убывающие аналогично

 $\{x_n\}_{n=1}^\infty$ называется возрастающей $\iff \forall n,m\in\mathbb{N}:n\leqslant m \implies x_n\leqslant x_m$

 $\{x_n\}_{n=1}^\infty$ называется строго возрастающей $\iff \forall n,m \in \mathbb{N}: n < m \implies x_n < x_m$

Замечание. $\{x_n\}_{n=1}^\infty$ возрастает (строго возрастает) $\iff \forall n \in \mathbb{N} \ x_n \leqslant x_{n+1} \ (x_n < x_{n+1})$

Определение 58. $\{x_n\}$ – монотонная (строго монотонная) $\iff \begin{bmatrix} \{x_n\}_n \\ \{x_n\}_n \end{bmatrix}$ возрастаю:

Теорема 20. В $\overline{\mathbb{R}}$ предел любой возрастающей (убывающей) последовательности существует и равен её супремуму (инфимуму)

Замечание. Любая ограниченная монотонная вещественная последовательность сходится

 $\sup_{E} f = \sup f(E)$

54

 $\sup\{x_n\} = \sup\{x_1, x_2, \dots, x_n\}$

ГЛАВА 1. МНОЖЕСТВА, ОТОБРАЖЕНИЯ, ℝ

Доказательство. $\exists \{x_n\}_{n=1}^{\infty}$ возрастает. $\exists M = \sup\{x_n\} \in (-\infty, +\infty]$

По критерию супремума \forall окр U(M) $\exists x_{n_U} \in U(M) \cap (-\infty, M)$

Тогда $\forall n\geqslant n_U\quad x_n\geqslant x_{n_U}\quad x_n\leqslant M\implies x_n\in U(M)$ Т.о. $x_n\to M, n\to\infty$

Утверждение 21. неравенство Бернулли

$$(a+x)^n \geqslant 1 + nx \quad \forall n \in \mathbb{N} \forall x > -1.$$

Доказательство. Докажем методом мат. индукции.

База: $(1+x)^1 \ge 1+1 \cdot x$

Переход
$$n \to n+1$$
: $(1+x)^{n+1} = (1+x)^n(1+x) \geqslant (1+nx)(1+x) = 1+nx+x+nx^2 \geqslant 1+(n+1)x$

Теорема 21. $x_n = \left\{ (1 + \frac{1}{n})^n \right\}_{n=1}^{\infty}$ и $y_n = \left\{ \left(1 + \frac{1}{n} \right)^{n+1} \right\}_{n=1}^{\infty}$ сходятся.

(доказательство было на практике)

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \right)$$

 $x_n \leqslant e \leqslant y_n \forall n \in \mathbb{N}$

 $e \approx 2,71828182845...$

Утверждение 22 (формула Герона). $a,x_0>0, x_n=\frac{1}{2\left(\frac{a}{x_{n-1}}+x_{n-1}\right)} \forall n\in$

 \mathbb{N}

Тогда $x_n \to \sqrt{a}, n \to \infty$

Доказательство. $x_n = f(x_{n-1})$, где $f(x) = \frac{1}{2} \left(\frac{a}{x} + x \right) = \frac{\sqrt{a}}{2} \left(\frac{\sqrt{a}}{x} + \frac{x}{\sqrt{a}} \right)$

 $\forall t>0\quad t+\frac{1}{t}\geqslant 2$ Минимум достигается при $t=1\implies f$ имеет минимум в $x=\sqrt{a}$

 $x_{n+1} \geqslant x_n \forall n \in \mathbb{N}$

$$x_{n+1}-x_n=\frac{1}{2}\left(\frac{a}{x_n}+x_n\right)-x_n=\frac{1}{2}\frac{a-x_n^2}{x_n}<0\iff x_n>\sqrt{a}\iff x_n=f(x_{n-1}),x_{n-1}>0$$
 по индукции

$$f(x) \geqslant \sqrt{a} \forall x > 0$$

TODO: дописать 0.5 пары

1.14 Предел отображения, предел функции

Определение 59. $\Box (X,\Omega_X), (Y,\Omega_Y)$ — топологические пространства. $f:E \to Y \quad E \subseteq X, a \in E', A \in Y$ $A = \lim_a f \iff \forall \text{ окр. } U(A) \exists \text{ окр. } V(a): \quad f\left(\overset{\cdot}{V}(a) \cap E\right) \subseteq U(A)$ $\left(\iff \forall x \in \overset{\cdot}{V}(a) \cap E \implies f(x) \in U(A)\right)$

Определение 60 (по Коши). $\sqsupset (X, \rho_x), (Y, \rho_y)$ — метрические пространства. $E \subseteq X$ $a \in E'$

$$f:X\to Y$$

$$A = \lim_a f \iff \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in E : \rho_x(x,a) < \delta \implies \rho_y(f(x),A) < \varepsilon$$

Определение 61 (опр (по Коши) для функциий). $E\subseteq \mathbb{R}, a\in E', f:E\to \mathbb{R}$ $A\in \mathbb{R}$

$$A = \lim_a f \iff \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in E, 0 < |x-a| < \delta \implies |f(x) - A| < \varepsilon$$

Определение 62 (по Гейне). $\Box (X, \Omega_X), (Y, \Omega_Y)$ – топологические пространства

$$E \subseteq X, a \in R', f : E \to Y, A \in Y$$

$$\lim_a f = A \iff \forall \text{ последовательности } \{x_n\}_{n=1}^\infty \subseteq E \setminus \{a\}: x_n \to a, \text{ при } n \to \infty \implies f(x_n) \to A, n \to \infty$$

Замечание. Если $\{x_n\}_{n=1}^{\infty}$ из определения (по Гейне), то назовём $\{x_n\}_{n=1}^{\infty}$ последовательностью Гейне для f и точки a

Теорема 22. В метрических пространствах определения предела по Гейне и по Коши равносильны.

$$A = H \lim_a f \iff A = C \lim_a f$$

Доказательство.

$$\implies$$
 $\Box A = H \lim_{a} f$. От противного $A = C \lim_{a} f$

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \quad f\left(B_{\delta}(a) \cap E\right) \not\subseteq B_{\varepsilon}(A)$$

$$\exists x_{\delta} \in B_{\delta}(A) \cap E : \quad \rho(f(x_{\delta}), A) \geqslant \varepsilon$$

$$\forall n \in \mathbb{N} \quad \delta = \frac{1}{n} \quad \{x_{\frac{1}{n}}\}_{n=1}^{\infty} \subseteq E \setminus \{a\} \quad \rho\left(x_{\frac{1}{n}}, a\right) < \frac{1}{n}$$

 $x_{\frac{1}{n}} \to a$, но $\rho\left(f(x),A\right) \geqslant \varepsilon_0 \implies f\left(x_{\frac{1}{n}}\right) \not\to A, n \to \infty$, что противоречит наличию предела по Гейне !!!

Замечание. Если $(X,\Omega_x),(Y,\Omega_y)$ – топологические пространства $A\in Y$ и \exists набор окрестностей $\{V_n(a)\}_{n=1}^\infty: \forall$ окр. $V(a)\exists N: \forall n\geqslant N \quad V_n(a)\subseteq V(a),$ теоретически также верно

В случае если $f:E\to\mathbb{R}$ $E\subseteq\mathbb{R}$ $a\in E',A\in\overline{R},\widehat{\mathbb{R}},$ используется определение через окрестности.

Варианты определения через параметры:

1.
$$a=-\infty$$
 $A\in\mathbb{R}$ $f:E\subseteq\mathbb{R}\to\mathbb{R}$ E – неограниченно снизу
$$A=\lim_{-\infty}f\iff \forall \varepsilon>0 \exists M\in\mathbb{R}: \forall x< M, x\in E\implies |f(x)-A|<\varepsilon$$

2.
$$A = \infty, a = \infty \quad \infty = \lim_{\infty} f \iff \forall \mathscr{E} \in \mathbb{R} \exists M \in \mathbb{R} : \forall x \in E : |x| > M \implies |f(x)| > \mathscr{E}$$

3. ...

Задача 5. Определения по Коши и по Гейне эквивалентны и в случае $A,a\in\overline{\mathbb{R}},\widehat{e}\mathbb{R}$

$$V_n(+\infty) = (n, +\infty) \forall n \in \mathbb{N}$$

Пример. 1.
$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0}{b_m x^m + b_{m-1} x^{n-1} + \ldots + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

Теорема 23 (единственность предела). $\sqsupset(X,\Omega_X),(Y,\Omega_Y)$ – м.п. $E\subseteq X,a\in E'$

$$f: E \to Y \quad A, B \in Y \quad \begin{cases} A = \lim_{a} f \\ B = \lim_{a} f \end{cases} \implies A = B$$

Доказательство. $\triangleleft \forall$ последовательность Гейне для f и точки a $\{x_n\} \Longrightarrow$ по определению предела по Гейне $f(x_n) \to A, f(x_n) \to B, n \to \infty \Longrightarrow A = B$ (по свойствам предела последовательности)

Определение 63. $\exists f: X \to Y, X, Y - M.П. a \in E'$

f называется локально ограниченной в точке a отображения, если \exists окр. $U(a): f|_{U(a)\cap E}$ ограничено (т.к. $\exists R>0 \exists r>0 \exists B\in Y: f(B(a)\cap E)\subseteq B_r(b)$)

Теорема 24 (локальная ограниченность отображения, имеющего предел). $\exists X,Y$ – м.п. $E\subseteq X,a\in E'$ $f:E\to Y, \exists \lim_a f=A\in Y.$ Тогда f локально ограничена в точке a

Доказательство. По Коши для $\varepsilon = 1 \exists B(a): f\left(B(a) \cap E\right) \subseteq B_1(A)$ Если $a \in E \implies f\left(B(a) \cap E\right) \subseteq B_1(A) \cap B_{\rho(f(a),A)}[A] \subseteq B_R(a)$ $R = \max\{1, 2\rho(f(x), A)\}$

Теорема 25 (для функций). Если $f: E \to \mathbb{R}, a \in E' \cap \overline{\mathbb{R}}, A \in \mathbb{R}$ $A = \lim_a f$ Тогда \exists окр U(a) и $\exists c > 0: |f(x)| \leqslant C \forall x \in U(a) \cap E$

Аналогичное определение для С

Утверждение 23 (об отделённости от нуля). $\sqsupset E\subseteq \mathbb{R}(\mathbb{C}), f:E\to \mathbb{R}$ (или $\mathbb{C})$ $A=\lim_{\longrightarrow} f$

 $A \in \overline{\mathbb{R}} \setminus \{0\}$ (или $A \in \widehat{\mathbb{R}} \setminus \{0\}$ или $A \in \widehat{\mathbb{C}} \setminus \{0\}$)

Тогда \exists окр. $U(a):f(x)\neq 0 \forall x\in (a)\cap E$

Доказательство. От противного $\exists \forall$ окр. $U(a)\exists x \in U(a) \cap E$

$$f(x) = 0$$

Тогда
$$\forall \in \mathbb{N} \exists x_n \in U(a) \cap E \quad f(x_n) = 0$$

(если
$$a$$
 – конечное, $U_n=B_{y_n}(a),$ $\begin{cases} a=+\infty &, U_n=(n,+\infty)\\ a=\infty &, U_n=\{x:|x|>n\} \end{cases}$

$$x_n \to a, n \to \infty$$
 $x_n \neq a \forall n \in \mathbb{N} \implies \{x_n\}$ — последовательность Гейне $f(x_n) \to A \neq 0, n \to \infty \implies !!!$

Замечание. Кроме " $\lim_a f = A$ " используется " $\lim_{x \to a} f(x) = A$ " или " $f(x) \to A, x \to a$ "

Теорема 26 (об арифметических действиях над пределами). $\exists f,g \in X \to Y \quad (Y,\|\cdot\|)$ – нормированное пространство, (X,ρ) – метрическое пространство

$$\lambda: E \to K \quad K$$
 – поле, отвечающее Y

$$a \in E'$$
 $\exists \lim_{a} f = A$ $\lim_{a} g = B$ $A, B \in Y$

$$\exists \lim_{a} \lambda = l \in K$$

1.
$$\exists \lim_{x \to a} \lambda(x) \cdot f(x) = l \cdot A$$

2.
$$\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$$

4.
$$Y = \mathbb{R}$$
 или $\mathbb{C} \implies \lim_{x \to a} f(x) \cdot g(x) = AB$

5.
$$\exists \lim_{x \to a} ||f(x)|| = ||A||$$

Доказательство. Всё доказывается через последовательности.

Если
$$Y=\mathbb{R}^n$$
 $f:E o Y$ $E\subseteq X$ – м.п.в

$$f(x) = y = (y_1, \dots, y_n)$$

 $f_k: x o y_k \quad f_k$ – k -я координатная функция отображения f

$$A \in Y$$
 $A = (A_1, \dots, A_n)$

$$A = \lim_{x \to a} f \iff \forall l = 1 : n \quad \lim_{x \to a} f_k(a) = A_k$$

Замечание. $\{x_n\}$ – п. Гейне для f и точки $a\iff \{x_n\}$ – п. Гейне для a и $f_k \quad \forall k=1:n$

$$A=\lim_{x o a}f\iff f(x_m) o A, m o\infty$$
 Vп. Гейне $\{x_m\}_{n=1}^\infty\iff \forall k=1:n$ $f_k(x_m) o A_k, m o\infty\iff \forall k=1:n$ $A_k=\lim_{x o a}f_k(x)$

Пример.
$$f(x,y) = \begin{pmatrix} x+y \\ xy \\ x^2+y^2 \end{pmatrix}$$

$$\lim_{(2,1)} f = \begin{pmatrix} 3\\2\\5 \end{pmatrix}$$

Замечание. Теорема об арифметических действиях в случае $Y=\overline{\mathbb{R}}$ (или $\widehat{\mathbb{C}}$) выполнена, если правая часть равенства определена в Y

Теорема 27.
$$\Box$$
 $f,g:R\to\mathbb{R}$ $E\subseteq\mathbb{C},a\in E'$ \Box $\forall x\in E\setminus\{a\}$ $f(x)\leqslant g(x)$ и $\exists\lim_a f,\lim_a g\in\overline{\mathbb{R}}$ Тогда $\lim_a f\leqslant\lim_a g$

Доказательство. Если $\{x_n\}$ – п. Гейне для f и a, то и для g и a

$$\forall n \in \mathbb{N} \quad f(x_n) \leqslant g(x_n) \implies \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) \leqslant \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} g(x)$$

Теорема 28 (о сжатой функции или теорема "о трёх милиционерах").
$$\exists \, f,g,h: E \subseteq \mathbb{C} \to \mathbb{R} \quad a \in E' \quad \forall x \in E \setminus \{a\} \quad f(x) \leqslant g(x) \leqslant h(x)$$
 и $\exists \lim_a f, lim_a h$ и $\lim_a f = \lim_a h = A$
 Тогда $\exists \lim_a g$ и $\lim_a g = A$

Доказательство. (доказательство с помощью последовательностей)

Замечание. Если $f:E\subseteq X\to Y$ X,Y – м.п.

 \forall посл. Гейне $\{x_n\}$ для f и точки a

 $\exists \lim_{n \to \infty} f(x_n)$, то все такие пределы равны между собой $\left(\Longrightarrow \lim_{x \to a} f(x) \right)$

(Если $\{x_n\}_{n=1}^{\infty}$ $\{y_n\}_{n=1}^{\infty}$ – п. Гейне

$$f(x_n) \to A \quad f(y_n) \to B \quad n \to \infty$$

$$\{z_n\}_n = \{x_1, y_1, x_1, y_2, \ldots\}$$
 – п. Гейне

$$f(z_n) \to A \quad f(z_n) \to B \implies A = B$$

60

Замечание. $\Box f,g,h:E\subseteq X\to Y\quad X,Y$ – м.п. $a\in E'\cap E$

$$\exists f(x) = g(x) \forall x \in E \setminus \{a\}$$

$$\exists \text{ orp } U(a): \quad f(x) = h(x) \forall x \in U(a)$$

Тогда $\lim_a f = \lim_a g = \lim_a h$ (если существует один, то существуют два других, в случае существования равны)

Теорема 29. $f: E \to \mathbb{R}$ (или в \mathbb{C}) $a \in E'$ $E \subseteq X$ – м.п.

Следующие утверждения равносильны:

- 1. $\exists \lim_{a} f \in \mathbb{R}$ (или \mathbb{C})
- 2. $\forall \varepsilon>0$ \exists окр $U(a):\forall x_1,x_2\in \dot{U}(a)\cap E\quad |f(x_1)-f(x_2)|<\varepsilon$ критерий Коши-Больцано для функций

Доказательство.

 $1\implies 2\ \sqsupset A=\lim_a f$ – конечный предел

$$\forall \varepsilon > 0 \exists U(a) : |f(x) - A| < \frac{\varepsilon}{2} \forall x \in U'(a) \cap E$$

Тогда если
$$x_1,x_2\in \overset{\cdot}{U}(a)\implies |f(x_1)-f(x_2)|=|f(x_1)-A+A-f(x_2)|\leqslant |f(x_1)-A|+|f(x_2)-A|<\varepsilon$$

 $1 \longleftarrow 2 \lessdot \pi$ Гейне $\{x_n\}$ для f и a $x_n \to a$

$$\forall \varepsilon>0$$
 \exists окр $U(a):(2).$ Т.к. $x_n\to a,$ то $\exists N\in\mathbb{R}:\forall n\geqslant N$ $x_nn\in\dot U(a)\implies\{f(x_n)\}$ — сходится в себе

$$|f(x_n) - f(x_m)| < \varepsilon \quad n, m \geqslant N$$

$$\implies \exists \lim_{n \to \infty} f(x_n) \implies \exists \lim_a f$$
 (т.к. $\{x_n\}$ – произвольная последовательность)

1.15 Символы \sim, O, o

Определение 64. $\Box f:D_f\to\mathbb{R}\left(\mathbb{C}\right)$

$$g:D_g\to\mathbb{R}\dots$$

$$\alpha: F_{\alpha} \to \mathbb{R} \dots$$

$$D_f, D_g, D_h \subseteq \mathbb{C} \quad a \in \widehat{\mathbb{C}}, a \in \overline{\mathbb{R}} \quad \exists \text{ orp } U(a) :$$

$$\dot{U}(a) \cap D_f = \dot{U}(a) \cap D_y = \dot{U}(a) \cap D_\alpha = D.$$

$$M f(x) = \alpha(x) \cdot g(x) \forall x \in D$$

Тогда пишут:

- $f \sim h, x \to a \iff \alpha(x) \to 1, x \to a \ (f$ асимптотически равна или эквивалентна g в окрестности точки a)
- $f = O(g), x \to a \iff \alpha(x)$ локально ограничено в точке a (f равно О-большому от g)
- $f(x) = o(g(x)), x \to a \iff \alpha(x) \to 0, x \to a \ (f \ \text{равно о-малому от} \ g)$

Элементарные свойства:

1.
$$f \sim g$$
 в точке $a \implies \begin{cases} f = O\left(g\right) \\ g = O\left(f\right) \end{cases}$, $x \to a$

$$f = o(g) \implies f = O(g)$$

- 2. Асимптотическое равенство есть отношение эквивалентности:
 - $f \sim f$
 - $f \sim g \iff g \sim f$
 - $f \sim g, g \sim h \implies f \sim h$

Всё в одной точке

3.
$$f \sim g, x \to a \iff f = g + o(g), x \to a \iff g = f + o(f), x \to a$$

4. Если
$$f \to L \in \mathbb{R} \setminus \{0\}, x \to a$$
 $g(x) \equiv L \forall x \in D_f$

Тогда
$$f(x) \sim g, x \to a$$

$$f = \frac{f}{L} \cdot g \to 1 \cdot L$$

62

5. Если
$$f \sim \overline{f}, x \to a$$
, то $\lim_{x \to a} f = \lim_{x \to a} \overline{f}$

6. Если
$$f \sim \overline{f} \quad g \sim \overline{g} \implies f \cdot g \sim \overline{f} \cdot \overline{g}$$

Если $g(x)\neq 0$ в некоторой окрестности точки $a\implies \frac{f}{g}\sim \frac{\overline{f}}{\overline{g}}$ Если $f\sim \overline{f}\over g\sim \overline{g}$, $x\to a\Rightarrow f\pm g\sim \overline{f}\pm \overline{g}$

Пример. $f(x) = x + 1 \sim \overline{f} = x$

$$g(x) = -x \sim \overline{g} = g = -x$$

$$f(x) + g(x) = 1 \not\sim 0$$

 $\sin x \sim x$

$$-x \sim -x$$

 $\sin x - x \sim \frac{x^3}{2}$ – упражнение

$$x \to +\infty$$
 $\sqrt{x+1} - \sqrt{x} \sim Cx^p$ $p \in \mathbb{R}, C \in \mathbb{R}$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x}} \cdot \frac{1}{1 + \sqrt{\frac{x+1}{x}}} \sim \frac{\frac{1}{2}}{\sqrt{x}}$$

Упражнения: Исходя из $\sin x\sim x, x\to 0$ выяснить, что tg $x\sim x, \arcsin x\sim x, \arctan x\sim x, \cos x\sim 1, 1-\cos x\sim \frac{x^2}{2}$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 1 \quad f(x) = e^x \implies e^x - 1 \sim x, x \to 0 \quad t \sim \ln(1 + t), x \to 0, t \to 0$$

Достаточные условия: $\Box D_q, D_f$ как в определении O, o, \sim

 $g \neq 0$ в некоторой окрестности a

Если
$$\frac{f(x)}{g(x)} \to 1, x \to a \implies f(x) \sim g(x)$$

Если
$$\frac{f(x)}{g(x)} \to 0, x \to a \implies f(x) = o(g(x))$$

Если $\frac{f(x)}{g(x)}$ имеет конечный предел $\implies f = O(g), x \to a$

Определение 65.
$$f\asymp g, x\to a\iff \begin{cases} f=O(g)\\ g=O(f) \end{cases}$$
 $x\to a$ $(f=\Theta(g),f=\Omega(g))$

Упражнение: $f(x) = \sin x$ найти функцию, которая будет $o(\sin x)$ при $x \to +\infty$

$$x \to +\infty$$
 $x^m = O(x^n) \iff m < n$

$$x \to 0 + x^m = o(x^n) \iff m > n$$

$$x \to 0x^2 = o(x)$$
 $x^3 = o(x^2)$

Замечание. 1. o(f) + o(f) = o(f)

равенства в одну стороны f=o(g). Возможно более подходящим было бы $f\in o(g)$

(если
$$g = o(f), h = o(f) \implies f + h = o(f)$$
)

2.
$$o(Cf) = o(f) = C(o(f))$$

3.
$$O(o(f)) = o(f)$$

4.
$$o(o(f)) = o(f)$$

5.
$$O(O(f)) = O(f)$$

6.
$$O(f) \cdot O(g) = O(fg)$$

7.
$$o(f) \cdot o(g) = o(fg)$$

Замечание. $\forall p \in \mathbb{R}, p = const \quad (1+x)^p - 1 \sim px, x \to 0$

Если
$$p \in \mathbb{N}$$
 $(1+x)^p - 1 = 1 + px + \frac{p(p-1)}{2}x^2 + \ldots + x^p - 1 \sim px$

$$f(x) = (1+x)^p$$
 $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = f'(0) = p$

$$\lim_{x \to 0} \frac{\sqrt{1+3x} - \sqrt[3]{1-2x}}{\sqrt[4]{1+\frac{x}{3}} + \sqrt[5]{1+\frac{x}{2}}} = \frac{C_1}{C_2}$$

Знаменатель $\sim C_1 x$

Числитель C_2x

$$(1+x)^p - 1 \sim px \iff (1+x)^p - 1 = px + o(x)$$

$$\sqrt{1+3x}-1=\frac{3}{2}x+o(x)$$
 $\sqrt[3]{1-2x}-1=-\frac{2}{3}x+o(x)$

Числитель
$$\frac{3}{2}x + o(x) - \left(-\frac{2}{3}x + o(x)\right) = \frac{13}{6}x + o(x) \sim \frac{13}{6}$$