Modelo de Huff para Centros de Atención al Público (CAP)

Javier Horacio Pérez Ricárdez

Marzo del 2025

1 Descripción del Modelo

El modelo de Huff permite calcular la probabilidad de que una persona visite un Centro de Atención al Público (CAP) en función de su nivel de atracción. También permite estimar el número de visitantes esperados en cada CAP y determinar la mejor ubicación para un nuevo CAP.

2 Cálculos Matemáticos

2.1 Probabilidad de Visita

La probabilidad P_{ij} de que una persona de la PEA en el estado j visite un CAP i se define como:

$$P_{ij} = \frac{A_i}{\sum_{k=1}^n A_k} \tag{1}$$

donde: - A_i es el nivel de atracción del CAP i, basado en el tipo de AFORE. - $\sum_{k=1}^{n} A_k$ es la suma de todas las atracciones de los CAP en el estado.

2.2 Estimación de Visitantes

El número de visitantes estimados V_i para cada CAP i se obtiene multiplicando la probabilidad P_{ij} por la PEA del estado:

$$V_i = P_{ij} \times PEA_i \tag{2}$$

donde: - PEA_j es la población económicamente activa del estado j.

2.3 Ubicación Óptima del Nuevo CAP

La ubicación óptima de un nuevo CAP se calcula mediante la media ponderada de las coordenadas geográficas de los CAP existentes:

$$Lat_{nuevo} = \frac{\sum_{i=1}^{n} Lat_i \cdot A_i}{\sum_{i=1}^{n} A_i}$$
 (3)

$$Lon_{nuevo} = \frac{\sum_{i=1}^{n} Lon_i \cdot A_i}{\sum_{i=1}^{n} A_i}$$
 (4)

donde: - Lat_i, Lon_i son las coordenadas geográficas de cada CAP i. - A_i es la atracción del CAP i.

3 Ejemplo Numérico

Supongamos que en el estado de Aguascalientes hay 5 CAP con la siguiente información:

Nombre AFORE	Latitud	Longitud	Atracción (A)
AFORE Coppel	21.88	-102.29	3
AFORE Azteca	21.90	-102.28	3
AFORE XXI-Banorte	21.87	-102.30	2
AFORE Citibanamex	21.89	-102.27	2
AFORE Profuturo	21.86	-102.31	1

La población económicamente activa (PEA) del estado es de 500,000 personas.

3.1 Cálculo de Probabilidades

La suma total de las atracciones es:

$$\sum_{k=1}^{n} A_k = 3 + 3 + 2 + 2 + 1 = 11 \tag{5}$$

Las probabilidades de visita se calculan como:

Nombre AFORE	Atracción (A)	Probabilidad P_{ij}
AFORE Coppel	3	$\frac{3}{11} = 0.2727$
AFORE Azteca	3	$\frac{3}{11} = 0.2727$
AFORE XXI-Banorte	2	$\frac{2}{11} = 0.1818$
AFORE Citibanamex	2	$\frac{2}{11} = 0.1818$
AFORE Profuturo	1	$\frac{1}{11} = 0.0909$

3.2 Cálculo de Visitantes Estimados

Multiplicamos las probabilidades por la PEA:

Nombre AFORE	Probabilidad P_{ij}	Visitantes Estimados V_i
AFORE Coppel	0.2727	136,364
AFORE Azteca	0.2727	136,364
AFORE XXI-Banorte	0.1818	90,909
AFORE Citibanamex	0.1818	90,909
AFORE Profuturo	0.0909	45,455

3.3 Cálculo de la Nueva Ubicación

Aplicamos la media ponderada:

$$Lat_{nuevo} = \frac{(21.88 \times 3) + (21.90 \times 3) + (21.87 \times 2) + (21.89 \times 2) + (21.86 \times 1)}{11} = 21.88$$
 (6)

$$Lon_{nuevo} = \frac{(-102.29 \times 3) + (-102.28 \times 3) + (-102.30 \times 2) + (-102.27 \times 2) + (-102.31 \times 1)}{11} = -103.92$$
(7)

4 Conclusión

Con base en estos cálculos, la mejor ubicación para el nuevo CAP en Aguascalientes es aproximadamente:

Latitud: 21.88, Longitud: -102.28

Este modelo permite tomar decisiones estratégicas sobre la ubicación óptima de centros de atención al público basándose en datos reales.