CPE301 - FALL 2019

Design Assignment 3b

Student Name: Dillon Archibald

Student #: 5004439916

Student Email: Archid1@unlv.nevada.edu

Primary Github address: https://github.com/Dil-bert/Alabaster.git

Directory: DA3b/DA3B

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

```
List of Components used

1x atmega 328p

3x wires

1x LM35 Temperature sensor

1x Breadboard

1x Prototype shield
```

Block diagram with pins used in the Atmega328P

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
#define F CPU 16000000UL
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#define USART BAUDRATE 9600
#define UBRR VALUE (((F CPU/(USART BAUDRATE*16UL)))-1)
#define ADCINDEX 20
//store ADC values
uint8 t wave[ADCINDEX];
volatile uint8_t ii = 0;
volatile uint8_t flag = 0;
void InitPort();
void InitADC();
void SetADCChannel(uint8_t ADCchannel);
void StartADC(void);
void DisableADC(void);
void USARTOInit(void);
void InitTimerO(void);
int USARTOSendByte(char u8Data, FILE *stream);
void StartTimerO(void);
void StopTimer(void);
ISR(ADC_vect);
// Set Stream Pointer
FILE usartO str = FDEV SETUP STREAM(USARTOSendByte, NULL, FDEV SETUP WRITE);
int main(void) {
    // Initialize USARTO
    USARTOInit();
   // Initialize ports
    //TODO IMPLEMENT InitPort();
    InitPort();
    // Assign our stream to standard I/O streams
```

```
stdout=&usart0_str;
    // Initialize ADC
    InitADC();
    // Select ADC channel
    SetADCChannel(5);
    // Initialize timer0
    InitTimerO();
    // Start timer 0
    StartTimer0();
    // Start conversion
    StartADC();
    // Enable global interrupts
    sei();
    while (1) {
        //TODO add some sort of delay
        delay ms(1000);
        printf("ADC val[%u]=%u\r\n", ii, wave[ii]);
void InitPort() {
void InitADC() {
    // Select Vref=Avcc and set left justified result
    ADMUX = (1 << REFSO) | (1 << ADLAR);
    // Set prescaller to 32, enable auto triggering, enable ADC interrupt
    // and enable ADC
    ADCSRA |=(1<<ADPS2) | (1<<ADPS0) | (1<<ADATE) | (1<<ADIE) | (1<<ADEN);
    // Set ADC trigger source - TimerO compare match {\bf A}
    ADCSRB = (1 << ADTS1) | (1 << ADTS0);
void SetADCChannel(uint8 t ADCchannel) {
    // Select ADC channel with safety mask
    ADMUX = (ADMUX & OxFO) | (ADCchannel & OxOF);
void StartADC(void) {
    ADCSRA = (1 << ADSC);
void DisableADC(void) {
    ADCSRA &= ^{\sim} ((1<<ADEN) | (1<<ADIE));
void USARTOInit(void) {
    // Set baud rate
    UBRROH = (uint8_t) (UBRR_VALUE>>8);
    UBRROL = (uint8 t) UBRR VALUE;
    // Set frame format to 8 data bits no parity, 1 stop bit
    UCSROC = (1 << UCSZO1) | (UCSZOO);
    // Enable transmission and reception
    UCSROB = (1 << RXENO) | (1 << TXENO);
```

```
void InitTimerO(void) {
    // Set Initial Timer value
    TCNTO = 0;
    // Place TOP timer value to Output compare register
    OCROA = 99;
   // Set CTC mode
    // and make toggle PD6/OCOA pin on compare match
    TCCROA = (1 < COMOAO) | (1 < WGMO1);
int USARTOSendByte(char u8Data, FILE *stream) {
    // Wait while previous byte is completed
    while(!(UCSROA & (1<<UDREO))) {};
    // Transmit Data
    UDR0 = u8Data:
   return 0;
void StartTimerO(void) {
    // Set prescaller 8 and start timer
   TCCROB = (1 << CSO1);
void StopTimer(void) {
   TCCROB &= ~(1<<CS01);
   TIMSKO &= ^{\sim} (1<<OCIEOA);
//ADC conversion complete ISR
ISR(ADC_vect) {
    // clear timer compare match flag
    TIFRO = (1 << OCFOA);
    // Toggle pin PD2 to track the end of ADC conversion
   PIND = (1 << PD2);
    wave[ii++] = ADCH;
    if(ii == ADCINDEX) { // read 20 values?
        StopTimer():
        DisableADC();
        flag = 1;
       DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A
3.
MAIN:
    while (1) {
        delay ms(1000);
        tempOut = ((tempH << 8) | (tempL));
        tempOut = ((tempOut * 0.4883));
        printf("Temp = %.1f C\r\n", tempOut);
   }
void InitPort() {
    // Set pin C5 as an input pin
   DDRC \mid= (0<<PINC5);
    // Ensure pin C5 pull up resistor is off
   PORTC = (0 << PINC5);
```

// Turn off Digital logic on pin C5

```
DIDRO = (1 << ADC5D);
void InitADC() {
    // Select Vref=Avcc and set (left = ADLAR = 1) (right = ADLAR = 0) justified result
    ADMUX = (1 < REFSO) | (0 < ADLAR);
    // Set prescaller to 32, enable auto triggering, enable ADC interrupt
    // and enable ADC
    ADCSRA |=(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0) | (1<<ADATE) | (1<<ADEN) ;
    // Set ADC trigger source - TimerO compare match A
    ADCSRB = (1 << ADTS1) | (1 << ADTS0);
ISR(ADC_vect) {
    // clear timer compare match flag
    TIFRO = (1 << OCFOA);
    // Toggle pin PD2 to track the end of ADC conversion
   PIND = (1 << PD2);
   tempL = ADCL;
    tempH = ADCH;
    //if(ii == ADCINDEX) { // read 20 values?
          StopTimer();
    //
          DisableADC();
    //
          flag = 1;
    //}
```

4. SCHEMATICS

Use fritzing.org

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/d-bejH78b5A

8. GITHUB LINK OF THIS DA

https://github.com/Dil-bert/Alabaster/tree/master/DesignAssignments/DA3b/DA3B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

NAME OF THE STUDENT