

Fachbereich Mathematik

Navier-Stokes-Gleichungen

Vorlesung von Dr. Patrick Tolksdorf im SS17

 $\label{thm:condition} \mbox{in IAT}_{EX} \mbox{von Fabian Gabel}$ Fehlermeldungen an gabel@mathematik.tu-darmstadt.de

Inhaltsverzeichnis

1	Ana	alytische Halbgruppen und gebrochene Potenzen	2
	1.1	Analytische Halbgruppen	2
	1.2	Gebrochene Potenzen	6

Kapitel 1

Analytische Halbgruppen und gebrochene Potenzen

In diesem Kapitel geht es darum, für eine möglichst große Klasse von abgeschlossenen Operatoren $A \colon \mathrm{D}(A) \subset X \to X$, wobei X ein Banachraum über $\mathbb C$ ist, die Ausdrücke e^{tA} und A^{α} , $\alpha > 0$, $\alpha \in \mathbb R$ zu definieren und ihre Eigenschaften zu untersuchen. Hauptgedanke ist hier, dass man für bestimmte holomorphe Funktionen f die Cauchysche Integralformel

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - z} \, \mathrm{d}\lambda$$

als Definition für f(A) nimmt, indem man $(\lambda - z)^{-1}$ durch $(\lambda - A)^{-1}$ ersetzt.

Sei $I \subset \mathbb{R}$ ein Intervall, X ein Banachraum und $f \colon I \to X$ stetig. Ist I kompakt, so konvergieren die Riemann-Summen $\sum_k l(\Delta_k) f(\xi_k)$, wobei $(\Delta_k)_k$ eine endliche Partition von I bildet, $\xi_k \in \Delta_k$ und $l(\Delta_k)$ die Länge von Δ_k bezeichnet, gegen ein eindeutiges Element $x \in X$. Definiere

$$\int_I f(t) \, \mathrm{d}t \coloneqq x.$$

Ist I nicht kompakt und $t \mapsto ||f(t)||_X$ uneigentlich Riemann-integrierbar, so existiert für alle kompakten Intervalle I_k mit $I_k \subset I_{k+1} \subset I$ und $\bigcup_k I_k = I$ der eindeutige Grenzwert

$$\lim_{k \to \infty} \int_{I_k} f(t)dt =: \int_I f(t) \, \mathrm{d}t \in X$$

In allen Fällen gilt

$$\| \int_{I} f(t) dt \|_{X} \le \int_{I} \| f(t) \|_{X} dt.$$

Ist $\Gamma \subset \mathbb{C}$ eine Kurve mit stückweise stetig differenzierbarer C^1 -Parametrisierung $\gamma \colon I \to \mathbb{C}$, $I \subset \mathbb{R}$ Interval, $f \colon \Gamma \to X$ stetig, sodass $t \mapsto \|\gamma'(t)f(\gamma(t))\|_X$ (uneigentlich) Riemann-integrierbar ist, definiere

$$\int_{\Gamma} f(z) dz := \int_{I} \gamma'(t) f(\gamma(t)) dt.$$

1.1 Analytische Halbgruppen

Im Folgenden bezeichnet X immer einen Banachraum über \mathbb{C} .

Definition 1.1. Sei $A: D(A) \subset X \to X$ abgeschlossen und $\omega \in [0, \pi)$. A heist sektoriell von Winkel ω , falls $\sigma(A) \subset \overline{S_{\omega}}$, wobei

$$S_{\omega} := \begin{cases} (0, \infty), & \omega = 0\\ \{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| < \omega\}, & \omega \neq 0 \end{cases}$$

und für alle $\pi \in (\omega, \pi)$ ein c > 0 existiert, sodass für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\phi}}$ gilt, dass

$$\|\lambda(\lambda - A)^{-1}\|_{\mathcal{L}(X)} \le C_{\theta}.$$

Notation 1.2. Für R > 0 und $\theta \in (0, \pi)$ bezeichne mit $\gamma_{R,\theta}$ die kanonische Parametrisierung der Kurve, welche durch $\partial(S_{\theta} \cup B(0, R))$ gegeben ist. Weiterhin bezeichne γ_1 die Parametrisierung des Geradenstücks in der oberen Halbebene, γ_3 in der unteren und γ_2 des Kreisbogens.

Beobachtung 1.3. Ist A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2}), \theta \in (\omega, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \theta}$, so ist

$$t \mapsto \|\gamma'_{R,\theta}(t)e^{z\gamma_{R,\theta}(t)}(\gamma_{R,\theta}(t) - A)^{-1}\|_{\mathcal{L}(X)}$$

uneigentlich Riemann integrierbar: Wegen Symmetrie und Holomorphie der Resolvente auf $\mathbb{C} \setminus \overline{S_{\omega}}$ genügt es Integrierbarkeit auf γ_1 nachzuweisen. Aus der Sektorialität von A folgt zunächst

$$\int_{R}^{\infty} \| \mathrm{e}^{i\theta} \mathrm{e}^{-zt \mathrm{e}^{i\theta}} \left(t \mathrm{e}^{i\theta} - A \right)^{-1} \|_{\mathcal{L}(X)} \, \mathrm{d}t \le C_{\theta} \int_{R}^{\infty} \mathrm{e}^{-t \operatorname{Re}(z \mathrm{e}^{i\theta})} t^{-1} \, \mathrm{d}t.$$

Dieses Integral ist endlich, da

$$|\arg(ze^{i\theta})| \le |\arg(z)| + \theta < \frac{\pi}{2} - \theta + \theta = \frac{\pi}{2}$$

und damit Re $ze^{i\theta} < 0$ folgt.

Definition 1.4. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Wähle R > 0 und $\theta \in (\omega, \frac{\pi}{2} - |\arg(z)|)$. Definiere

$$e^{zA} := \frac{1}{2\pi i} \int_{\gamma_{R,A}} e^{z\lambda} (\lambda - A)^{-1} d\lambda$$

und $e^{-0A} := I$. Die Familie $(e^{zA})_{z \in S_{\frac{\pi}{2} - \omega \cup \{0\}}}$ wird beschränkte analytische Halbgruppe genannt und falls A dicht definiert ist, wird -A Erzeuger/Generator von $(e^{-zA})_{z \in S_{\frac{\pi}{n} - \omega \cup \{0\}}}$ genannt.

Lemma 1.5. Die Definition von e^{-zA} is unabhängig von der Wahl von R und θ .

Beweis. Übung.
$$\Box$$

Proposition 1.6. Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to X$ stetig und uneigentlich Riemann integrierbar, Y ein Banachraum, $T \in \mathcal{L}(X,Y)$ und $A: D(A) \subset X \to Y$ abgeschlossen.

(i) Dann ist $Tf: I \to Y$ stetiq und uneigentlich Riemann integrierbar und es gilt

$$T \int_{I} f(t) dt = \int_{I} T f(t) dt.$$

(ii) Falls $f(t) \in D(A)$ für alle $t \in I$ gilt und $Af: I \to Y$ stetig und uneigentlich Riemann-integrierbar ist, dann ist $\int_I f(t) dt \in D(A)$ und es gilt

$$A \int_{I} f(t) dt = \int_{I} Af(t) dt.$$

Beweis. Übung.

Satz 1.7. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$. Dann ist für alle $z \in S_{\frac{\pi}{2} - \omega}$ der Operator e^{-zA} in $\mathcal{L}(X)$ und erfüllt

- (i) Für alle $0 \le \phi < \frac{\pi}{2} \omega$ ist $(e^{-zA})_{z \in S_{\phi}}$ gleichmäsig beschränkt.
- (ii) $z \mapsto e^{-zA}$ ist analytisch in $S_{\frac{\pi}{2}-\omega}$.
- (iii) Für alle $z, w \in S_{\frac{\pi}{2} \omega}$ gilt $e^{-(z+w)A} = e^{-zA}e^{-\omega A}$.
- (iv) Ist A zusätzlich dicht definiert, so ist für alle $0 \le \phi < \frac{\pi}{2} \omega$ die Abbildung

$$S_{\phi} \cup \{0\} \ni z \mapsto e^{-zA} \in \mathcal{L}(X)$$

 $stark\ stetig\ in\ z=0,\ d.h.\ f\"ur\ alle\ x\in X\ gilt$

$$\lim_{\substack{z \to 0 \\ z \in S_{\phi}}} \|e^{-zA}x - x\|_{X} = 0.$$

Beweis. (i) Wähle R > 0 und $\theta \in (0, \omega)$, sodass $|\arg(ze^{\pm i\theta})| \le \phi + \theta < \frac{\pi}{2}$ für alle $z \in S_{\theta}$. Mit Beobachtung 1.3 folgt für $j \in \{1, 3\}$

$$\begin{split} \| \int_{\gamma_j} \mathrm{e}^{z\lambda} (\lambda - A)^{-1} \, \mathrm{d}\lambda \|_{\mathcal{L}(X)} &\leq C \int_R^\infty \mathrm{e}^{t \operatorname{Re}(z \mathrm{e}^{\pm i\theta})} t^{-1} \, \mathrm{d}t \leq C \int_R^\infty \mathrm{e}^{-t|z| \cos(\theta + \phi)} t^{-1} \, \mathrm{d}t \\ &= C \int_{R|z|}^\infty \mathrm{e}^{-t \cos(\phi + \theta)} t^{-1} \, \mathrm{d}t. \end{split}$$

Nach Lemma 1.5 hängt der Wert dieses Interals nicht von der Wahl von R ab. Im Folgenden wähle daher $R = \frac{1}{|z|}$. Mit dieser Wahl gilt nun für das Kurvenintegral entlang γ_2

$$\|\int_{\gamma_2} e^{z\lambda} (\lambda - A)^{-1} d\lambda\|_{\mathcal{L}(X)} \le C \int_{\theta}^{2\pi - \theta} \frac{1}{|z|} |e^{\frac{z}{|z|}} e^{i\varphi}| |z| d\varphi \le C2\pi e,$$

da $|e^z| \le e^{|z|}$. Folglich ist $e^{-zA} \in \mathcal{L}(X)$ und $(e^{-zA})_{z \in S_\phi}$ ist gleichmäßig beschränkt.

(ii) Wie in Beobachtung 1.3 zeigt man erst, dass $\lambda \mapsto \lambda e^{-z\lambda}(\lambda - A)^{-1}$ absolut integrierbar auf $\gamma_{\theta,R}$ ist. Außerdem ist für $z \in S_{\phi}$ und $h \in \mathbb{C} \setminus \{0\}$ mit $z + h \in S_{\phi}$, wobei ϕ wie in (i) gewählt sei.

$$\left[\frac{1}{h}\left(e^{-(z+h)\lambda} - e^{-z\lambda}\right) - (-\lambda e^{-z\lambda})\right](\lambda - A)^{-1} = \left[\frac{1}{h\lambda}\left(e^{-h\lambda} - 1\right) + 1\right]\lambda e^{-z\lambda}(\lambda - A)^{-1}$$

auf jedem kompakten Teilweg von $\gamma_{\theta,R}$ gleichmäßig konvergent (mit Grenzwert 0), da $e^{-z\lambda}$ holomorph und damit insbesondere stetig komplex differenzierbar ist. Weiter gilt

$$\left| \frac{1}{h\lambda} (e^{-h\lambda} - 1) + 1 \right| = \left| \sum_{k=2}^{\infty} \frac{(-h\lambda)^{n-1}}{n!} \right| \le \sum_{n=2}^{\infty} \frac{(|h| |\lambda|)^{n-1}}{n!}$$
$$\le \sum_{n=2}^{\infty} \frac{(c|z| |\lambda|)^{n-1}}{n!} = \frac{1}{c|z| |\lambda|} (e^{c|z| |\lambda|} - 1) - 1,$$

woraus wiederum

$$\left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) - 1\right) |\lambda e^{-z\lambda}| ||(\lambda - A)^{-1}||
\stackrel{(i)}{\leq} \left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) - 1\right) |\lambda| e^{-|z|\cos(\phi + \theta)|\lambda|} |\frac{C}{|\lambda|}.$$

Wähle nun $c < \cos(\phi + \theta)$. Daraus folgt die uniforme Integrierbarkeit für |h| klein, was wiederum

$$\frac{1}{h} \left(e^{-(z+h)A} - e^{-zA} \right) \to \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} \lambda e^{-z\lambda} (\lambda - A)^{-1} d\lambda, \quad \text{für } h \to 0$$

impliziert.

(iii) Sei $x \in X, x' \in X'$. Dann gilt

$$\langle \mathbf{e}^{-zA} \mathbf{e}^{-wA} x, x' \rangle = \frac{1}{2\pi i} \langle \int_{\gamma_{R_z,\theta_z}} \mathbf{e}^{-z\lambda} (\lambda - A)^{-1} \mathbf{e}^{-wA} x \, \mathrm{d}\lambda, x' \rangle$$

$$= \frac{1}{2\pi i} \int_{\gamma_{R_z,\theta_z}} \mathbf{e}^{-z\lambda} \langle (\lambda - A)^{-1} \mathbf{e}^{-wA} x, x' \rangle \, \mathrm{d}\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu} \langle (\lambda - A)^{-1} (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\lambda - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$- \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= \langle \mathbf{e}^{-(z+w)A} x, x' \rangle.$$

Hahn-Banach liefert sodann $\mathrm{e}^{-zA}\mathrm{e}^{-wA}x=\mathrm{e}^{-(z+w)A}x$ für alle $x\in X.$

(iv) Sei $z \in S_{\phi}$. Die Cauchy-Integralformel (für unbeschränkte Integrale) liefert

$$x = \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{e^{-\lambda z}}{\lambda} x \, d\lambda, \quad x \in X.$$

Damit folgt

$$e^{-zA}x - x = \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} e^{-z\lambda} ((\lambda - A)^{-1}x - \frac{x}{\lambda}) d\lambda$$
$$= \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{e^{-z\lambda}}{\lambda} (\lambda(\lambda - A)^{-1}Ax d\lambda \to \frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{1}{\lambda} (\lambda - A)^{-1}Ax d\lambda, \quad \text{für } z \to 0.$$

Und da $\|\frac{1}{\lambda}(\lambda - A)^{-1}Ax\| \le \frac{C}{|\lambda|^2}\|Ax\|_X$ folgt

$$\frac{1}{2\pi i} \int_{\gamma_{1,\theta}} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, d\lambda = \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\gamma_{1,\theta}^R} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, d\lambda,$$

wobei $\gamma^R_{1,\theta}$ die im Radius R geschlossene Schlüssellochkurve bezeichne. Der Cauchysche Integralsatz liefert

$$\frac{1}{2\pi i} \int_{\gamma_{1,\theta}^R} \frac{1}{\lambda} (\lambda - A)^{-1} Ax \, d\lambda = 0, \text{ für alle } R > 1.$$

(i) und Dichtheit von D(A) liefern nun

$$\lim_{\substack{z \to 0 \\ z \in \mathcal{S}_{\phi}}} \|\mathbf{e}^{-zA}x - x\|_{X} = 0, \quad \text{für alle } x \in X.$$

Bemerkung 1.8. Um Resultate von skalarwertigen Integralen auf banachraumwertige zu übertragen, ist es üblich mit Funktionalen zu testen, dann das skalarwertige Resultat zu benutzen und am Ende Hahn-Banach anzuwenden.

Satz 1.9. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Dann ist $Rg(e^{-zA}) \subset D(A)$ (Glättungseigenschaft) und falls $x \in D(A)$ gilt $Ae^{-zA}x = e^{-zA}Ax$. Weiterhin existiert C > 0, sodass $\sup_{t>0} \|tAe^{-tA}\|_{\mathcal{L}(X)} \leq C$.

Beweis. Sei R > 0 und $\theta \in (\omega, \frac{\pi}{2} - |\arg(z)|)$. Dann sind

$$\lambda \mapsto e^{-zA}(\lambda - A)^{-1}$$
 und $\lambda \mapsto e^{-z\lambda}A(\lambda - A)^{-1} = e^{-z\lambda}\lambda(\lambda - A)^{-1} - e^{-z\lambda}$

auf $\gamma_{R,\theta}$ integrierbar. Proposition 1.6 liefert $\operatorname{Rg}(e^{-zA}) \subset \operatorname{D}(A)$ und

$$Ae^{-zA} = \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} e^{-z\lambda} A(\lambda - A)^{-1} d\lambda.$$

Is $x\in \mathrm{D}(A)$ gilt folglich $A\mathrm{e}^{-zA}x=\mathrm{e}^{-zA}Ax$. Für die zweite Aussage sei $t>0, R=\frac{1}{t}$ und $\theta\in(w,\frac{\pi}{2})$. Dann gilt

$$\begin{split} A\mathrm{e}^{-tA} &= \frac{1}{2\pi i} \int_{\gamma_{t^{-1},\theta}} (\mathrm{e}^{-t\lambda} \lambda (\lambda - A)^{-1} - \mathrm{e}^{-z\lambda}) \, \mathrm{d}\lambda = \frac{1}{2\pi i} \int_{\gamma_{t^{-1},\theta}} (\mathrm{e}^{-t\lambda} \lambda (\lambda - A)^{-1} - \mathrm{e}^{-z\lambda}) \, \mathrm{d}\lambda \\ &= \frac{1}{2\pi i} \int_{\gamma_{t^{-1},\theta}} \lambda \mathrm{e}^{-t\lambda} (\lambda - A)^{-1} \, \mathrm{d}\lambda. \end{split}$$

Aufgrund der Sektorialität von A gilt schließlich

$$||Ae^{-tA}||_{\mathcal{L}(X)} \le C \left(\int_{t^{-1}}^{\infty} e^{-tr\cos\theta} dr + \int_{\theta}^{2\pi-\theta} t^{-1} e^{-tt^{-1}\cos\varphi} d\varphi \right)$$

$$\le C \left(\int_{1}^{\infty} t^{-1} e^{-s\cos\theta} ds + \int_{\theta}^{2\pi-\theta} t^{-1} e^{-tt^{-1}\cos\varphi} d\varphi \right).$$

1.2 Gebrochene Potenzen

In diesem Abschnitt definieren und untersuchen wir gebrochene Potenzen A^{α} .

Proposition 1.10. Sei A sektoriell vom Winkel $\omega \in [0, \pi)$ und $0 \in \rho(A)$. Dann existiert ein R > 0, sodass für alle $\theta \in (\omega, \pi)$ ein C > 0 existiert, sodass $B_R(0) \subset \rho(A)$ und für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\theta}} \cup B_R(0)$

$$||(1+|\lambda|)(\lambda-A)^{-1}||_{\mathcal{L}(X)} \le C$$

gilt.

Beweis. Übung. \Box