WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: A61K 31/16, C07D 211/66 A1

WO 98/37877

(43) International Publication Date: 3 September 1998 (03.09.98)

PCT/US98/02987 (21) International Application Number:

(22) International Filing Date:

17 February 1998 (17.02.98)

(30) Priority Data:

08/806.728

27 February 1997 (27.02.97)

US

(71) Applicant: AMERICAN CYANAMID COMPANY [US/US]; Five Giralda Farms, Madison, NJ 07940-0874 (US).

(72) Inventors: VENKATESAN, Aranapakam, Mudumbai; 97-07 63rd Road #9K, Rego Park, NY 11374 (US). GROSU, George, Theodore; 117 Prospect Place, Pearl River, NY 10965 (US). DAVIS, Jamie, Marie; 20 High Avenue, Nyack, NY 10960 (US). BAKER, Jannie, Lea; 127 Rockinchair Road, White Plains, NY 10607 (US).

(74) Agents: ALICE, Ronald, W.; American Home Products Corporation, One Campus Drive, Parsippany, NJ 07054 (US) et al.

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: N-HYDROXY-2-(ALKYL, ARYL OR HETEROARYL SULFANYL, SULFINYL OR SULFONYL)-3-SUBSTITUTED ALKYL, ARYL OR HETEROARYLAMIDES AS MATRIX METALLOPROTEINASE INHIBITORS

(57) Abstract

Matrix metalloproteinases (MMPs) are a group of enzymes implicated in that have been pathological destruction connective tissue and basement membranes. These zinc containing

(I)

endopeptidases consist of several subsets of enzymes including collagenases, stromelysins and gelatinases. TNF- α converting enzyme (TACE), a pro-inflammatory cytokine, catalyzes the formation of TNF- α from membrane bound TNF- α precursor protein. It is expected that small molecule inhibitors of MMPs and TACE therefore have the potential for treating a variety of disease states. The present invention provides low molecular weight, non-peptide inhibitors of matrix metalloproteinases (MMPs) and TNF-α converting enzyme (TACE) for the treatment of arthritis, tumor metastasis, tissue ulceration, abnormal wound healing, periodontal disease, bone disease, diabetes (insulin resistance) and HIV infection having formula (I) wherein R² and R³ form a heterocyclic ring and A is S, S(O), or S(O)₂, and R1 and R4 are defined herein.

EV 311408213 US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2	Cambao no
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

N-HYDROXY-2-(ALKYL, ARYL, OR HETEROARYL SULFANYL, SULFINYL OR SULFONYL)-3-SUBSTITUTED ALKYL, ARYL OR HETEROARYLAMIDES AS MATRIX METALLOPROTEINASE INHIBITORS

5

10

15

20

BACKGROUND OF THE INVENTION

Matrix metalloproteinases (MMPs) are a group of enzymes that have been implicated in the pathological destruction of connective tissue and basement membranes. These zinc containing endopeptidases consist of several subsets of enzymes including collagenases, stromelysins and gelatinases. Of these classes, the gelatinases have been shown to be the MMPs most intimately involved with the growth and spread of tumors. It is known that the level of expression of gelatinase is elevated in malignancies, and that gelatinase can degrade the basement membrane which leads to tumor metastasis. Angiogenesis, required for the growth of solid tumors, has also recently been shown to have a gelatinase component to its pathology. Furthermore, there is evidence to suggest that gelatinase is involved in plaque rupture associated with atherosclerosis. Other conditions mediated by MMPs are restenosis, MMPmediated osteopenias, inflammatory diseases of the central nervous system, skin aging, tumor growth, osteoarthritis, rheumatoid arthritis, septic arthritis, corneal ulceration, abnormal wound healing, bone disease, proteinuria, aneurysmal aortic disease, degenerative cartilage loss following traumatic joint injury, demyelinating diseases of the nervous system, cirrhosis of the liver, glomerular disease of the kidney, premature rupture of fetal membranes, inflammatory bowel disease, periodontal disease, age related macular degeneration, diabetic retinopathy, proliferative vitreoretinopathy, retinopathy of prematurity, ocular inflammation. keratoconus, Siogren's syndrome, myopia, ocular tumors, ocular angiogenesis/neovascularization and corneal graft rejection. For recent reviews, see: (1) Recent Advances in Matrix Metalloproteinase Inhibitor Research, R. P. Beckett, A. H. Davidson, A. H. Drummond, P. Huxley and M. Whittaker, Research Focus, Vol. 1, 16-26, (1996), (2) Curr. Opin, Ther. Patents (1994) 4(1): 7-16, (3) Curr. Medicinal Chem. (1995) 2: 743-762, (4) Exp. Opin. Ther. Patents (1995) 5(2): 1087-110, (5) Exp. Opin. Ther. Patents (1995) 5(12): 1287-1196.

TNF- α converting enzyme (TACE) catalyzes the formation of TNF- α from membrane bound TNF- α precursor protein. TNF- α is a pro-inflammatory cytokine that is now thought to have a role in rheumatoid arthritis, septic shock, graft rejection, cachexia, anorexia, inflammation, congestive heart failure, inflammatory disease of the central nervous system.

inflammatory bowel disease, insulin resistance and HIV infection in addition to its well documented antitumor properties. For example, research with anti- TNF-α antibodies and transgenic animals has demonstrated that blocking the formation of TNF-α inhibits the progression of arthritis. This observation has recently been extended to humans as well.

It is expected that small molecule inhibitors of MMPs and TACE therefore have the potential for treating a variety of disease states. While a variety of MMP and TACE inhibitors have been identified and disclosed in the literature, the vast majority of these molecules are peptidic and peptide-like compounds that one would expect to have bioavailability and pharmacokinetic problems common to such compounds that would limit their clinical effectiveness. Low molecular weight, potent, long acting, orally bioavailable inhibitors of MMPs and/or TACE are therefore highly desirable for the potential chronic treatment of the above mentioned disease states.

Recently, two references have appeared (U.S. 5,455,258 and European Patent Appl. 606,046) that disclose arylsulfonamido-substituted hydroxyamic acids. These documents cover compounds exemplified by CGS 27023A. These are the only non-peptide matrix metalloproteinase inhibitors disclosed to date.

20

25

5

10

15

CGS 27023A

Salah et al., Liebigs Ann. Chem. 195, (1973) discloses some aryl substituted thio and aryl substituted sulfonyl acetohydroxamic acid derivatives of general formula 1. These compounds were prepared to study the Mannich reaction. Subsequently, they were tested for their fungicidal activity.

Some sulfone carboxylic acids are disclosed in U.S. patent 4,933,367. Those compounds were shown to exhibit hypoglycemic activity.

SUMMARY OF THE INVENTION:

The present invention relates to novel, low molecular weight, non-peptide inhibitors of matrix metalloproteinases (MMPs) and TNF-α converting enzyme (TACE) for the treatment of arthritis, tumor metastasis, tissue ulceration, abnormal wound healing, periodontal disease, bone disease, diabetes (insulin resistance) and HIV infection.

In accordance with this invention there is provided a group of compounds of general formula I

I

wherein:

5

10

15

25

R¹ is alkyl of 1 to 18 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;

alkynyl of 3 to 18 carbon atoms having 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

aryl of 6 to 10 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

- cycloalkyl of 3 to 8 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;
- saturated or unsaturated 5 to 10 membered mono or bicyclic heterocycle containing one heteroatom selected from O, S or NR⁷, optionally substituted with one or two groups selected independently from R⁵;
- or heteroaryl-(CH₂)₀₋₆- wherein the heteroaryl group is 5 to 6 membered with one or two heteroatoms selected independently from O, S, and N and may be optionally substituted with one or two groups selected independently from R⁵;

A is -S-, -SO- or SO_2 -;

5

10

20

25

30

35

R² and R³, taken with the carbon atom to which they are attached, form a 5 to 7 membered
heterocyclic ring containing O, S or N-R⁷ optionally having one or two double bonds;

R4 is hydrogen,

- alkyl of 1 to 6 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;
- alkenyl of 3 to 18 carbon atoms having 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;
- alkynyl of 3 to 18 carbon atoms having 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;
- phenyl or naphthyl optionally substituted with one or two groups selected independently from R⁵;
- C₃ to C₈ cycloalkyl or bicycloalkyl optionally substituted with one or two groups selected independently from R⁵:
- saturated or unsaturated 5 to 10 membered mono or bicyclic heterocycle containing one heteroatom selected from O, S or NR⁷, optionally substituted with one or two groups selected independently from R⁵;
- R⁵ is H, C₇-C₁₁ aroyl, C₂-C₆ alkanoyl, C₁ to C₁₂ alkyl, C₂ to C₁₂ alkenyl, C₂-C₁₂ alkynyl, F, Cl, Br, I, CN, CHO, C₁-C₆ alkoxy, aryloxy, heteroaryloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₁-C₆ alkoxyaryl, C₁-C₆ alkoxyheteroaryl, C₁-C₆ alkylamino-C₁-C₆ alkoxy, C₁-C₂ alkylene dioxy, aryloxy-C₁-C₆ alkyl amine, C₁-C₁₂

5

10

15

20

25

30

35

perfluoro alkyl, $S(O)_n$ - C_1 - C_6 alkyl, $S(O)_n$ -aryl where n is 0, 1 or 2; OCOO C_1 - C_6 alkyl, OCOOaryl, OCONR⁶, COOH, COO C_1 - C_6 alkyl, COOaryl, CONR⁶R⁶, CONHOH, NR⁶R⁶, SO₂NR⁶R⁶, NR⁶SO₂aryl, -NR⁶CONR⁶R⁶, NHSO₂CF₃, SO₂NHheteroaryl, SO₂NHCOaryl, CONHSO₂- C_1 - C_6 alkyl, CONHSO₂aryl, NH₂, OH, aryl, heteroaryl, SO₂NHCOaryl, CONHSO₂- C_1 - C_6 alkyl, CONHSO₂aryl, NH₂, OH, aryl, heteroaryl, C_3 to C_8 cycloalkyl; or saturated or unsaturated 5 to 10 membered mono or bicyclic heterocycle containing one heteroatom selected from O, S or NR⁷, wherein C_1 - C_6 alkyl is straight or branched, heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR⁷ and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or hydroxy;

R⁶ is H, C₁ to C₁₈ alkyl optionally substituted with OH; C₃ to C₆ alkenyl, C₃ to C₆ alkynyl, C₁ to C₆ perfluoro alkyl, S(O)_n-C₁-C₆ alkyl S(O)_n aryl where n is 0, 1 or 2; or COheteroaryl, wherein heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR⁷ and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, or hydroxy;

and R⁷ is C₇–C₁₁ aroyl, C₂–C₆ alkanoyl, C₁-C₁₂ perfluoro alkyl, S(O)_n-C₁-C₆-alkyl, S(O)_n-aryl where n is 0, 1 or 2; COO-C₁-C₆-alkyl, COOaryl, CONHR⁶, CONR⁶R⁶, CONHOH, SO₂NR⁶R⁶, SO₂CF₃, SO₂NHheteroaryl, SO₂NHCOaryl, CONHSO-C₁-C₆-alkyl, CONHSO₂aryl, aryl, or heteroaryl, where aryl is

phenyl or naphthyl, optionally substituted by 1 or 2 groups selected independently from halogen, cyano, amino, nitro, C_1 – C_6 alkyl, C_1 – C_6 alkoxy, or hydroxy; and heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or N-C₁– C_6 alkyl;

alkyl of 1 to 18 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having from 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵; alkynyl of 3 to 18 carbon atoms having from 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

arylalkyl of 7 to 16 carbon atoms, wherein aryl is optionally substituted with one or two groups selected independently from R⁵;

- biphenylalkyl of 13 to 18 carbon atoms, wherein biphenyl is optionally substituted with one or two groups selected independently from R⁵:
- arylalkenyl of 8 to 16 carbon atoms, wherein aryl is optionally substituted with one or two groups selected independently from R⁵;
- cycloalkylalkyl or bicycloalkylalkyl of 4 to 12 carbon atoms, wherein the cycloalkyl or bicycloalkyl group is optionally substituted with one or two groups selected independently from R⁵;
- saturated or unsaturated mono or bicyclic heterocycle containing one heteroatom selected from O, S or N-C₁-C₆ alkyl, optionally substituted with one or two groups selected independently from R⁵; or
- R⁸R⁹N-C₁-C₆-alkoxyaryl-C₁-C₆-alkyl where R⁸ and R⁹ are independently selected from C₁-C₆ alkyl or R⁸ and R⁹ together with the interposed nitrogen forms a 5-7 membered saturated heterocyclic ring optionally containing an oxygen atom, wherein the aryl group is phenyl or naphthyl;

and the pharmaceutically acceptable salts thereof.

A more preferred aspect of the present invention is the group of compounds of general formula (Ia):

Ia

25 wherein:

30

5

10

15

R¹ is alkyl of 1 to 18 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;

alkynyl of 3 to 18 carbon atoms having 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

aryl of 6 to 10 carbon atoms, optionally substituted with one to two groups selected independently from R⁵;

cycloalkyl of 3 to 8 carbon atoms, optionally substituted with one to two groups selected independently from R⁵;

saturated or unsaturated mono or bicyclic heterocycle of from 5 to 10 members containing one heteroatom selected from O, S or NR⁷, optionally substituted with one to two groups selected independently from R⁵;

or heteroaryl-(CH₂)_{0.6}- wherein the heteroaryl group is 5 to 6 membered with one or two heteroatoms selected independently from O, S, and N and may be optionally substituted with one or two groups selected independently from R⁵;

10 A is -S-, -SO- or SO_2 -;

5

15

20

25

R² and R³, taken with the carbon atom to which they are attached, form a 5 to 7 membered heterocyclic ring containing O, S or N-R⁷ optionally having one or two double bonds;

R⁴ is hydrogen,

alkyl of 1 to 6 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;

alkynyl of 3 to 18 carbon atoms having 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

phenyl or naphthyl optionally substituted with one or two groups selected independently from R⁵;

C₃ to C₈ cycloalkyl or bicycloalkyl optionally substituted with one or two groups selected independently from R⁵:

R⁵ is H, F, Cl, Br, I, CN, CHO, C₇-C₁₁ aroyl, C₂-C₆ alkanoyl, C₁ to C₁₂ alkyl, C₂ to C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₆ alkoxy, aryloxy, heteroaryloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₁-C₆ alkoxyaryl, C₁-C₆ alkoxyheteroaryl, C₁-C₆-alkylamino-C₁-C₆ alkoxy, C₁-C₂-alkylene dioxy, aryloxy-C₁-C₆ alkyl amine, C₁-C₁₂ perfluoro alkyl, S(O)_n-C₁-C₆ alkyl, S(O)_n-aryl where n is 0, 1 or 2; OCOO-C₁-C₆ alkyl, OCOOaryl, OCONR⁶, COOH, COO-C₁-C₆ alkyl, COOaryl, CONR⁶R⁶, CONHOH, NR⁶R⁶, SO₂NR⁶R⁶, NR⁶SO₂aryl, NR⁶CONR⁶R⁶, NHSO₂CF₃, SO₂NHheteroaryl, SO₂NHCOaryl, CONHSO₂-C₁-C₆ alkyl, CONHSO₂aryl, SO₂NHCOaryl,

CONHSO₂-C₁-C₆ alkyl, CONHSO₂aryl, NH₂, OH, aryl, heteroaryl, C₃ to C₈ cycloalkyl; or saturated or unsaturated 5 to 10 membered mono or bicyclic heterocycle containing one heteroatom selected from O, S or NR⁷;

wherein heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR 7 and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected independently from halogen, cyano, amino, nitro, C_1 – C_6 alkyl, C_1 – C_6 alkoxy, or hydroxy;

10 R⁶ is H, C₁ to C₁₈ alkyl optionally substituted with OH; C₃ to C₆ alkenyl, C₃ to C₆ alkynyl, C₁ to C₆ perfluoro alkyl, S(O)_n alkyl or aryl where n is 0, 1, or 2; or COheteroaryl;

5

15

20

25

30

35

wherein heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR⁷ and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C_1 – C_6 alkyl, C_1 – C_6 alkoxy, or hydroxy;

and R^7 is C_7 – C_{11} aroyl, C_2 – C_6 alkanoyl, C_1 - C_{12} perfluoro alkyl, $S(O)_n$ -alkyl, $S(O)_n$ -aryl where n is 0, 1 or 2; COOalkyl, COOaryl, CONHR⁶, CONR⁶R⁶,

CONHOH, SO₂NR⁶R⁶,SO₂CF₃, SO₂NHheteroaryl, SO₂NHCOaryl, CONHSO₂alkyl, CONHSO₂aryl, aryl, heteroaryl; wherein C₁-C₆ alkyl is straight or

branched, heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR⁷ and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, or hydroxy;

alkyl of 1 to 18 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having from 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;

alkynyl of 3 to 18 carbon atoms having from 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

arylalkyl of 7 to 16 carbon atoms, wherein aryl is optionally substituted with one or two groups selected independently from R⁵;

biphenylalkyl of 13 to 18 carbon atoms, wherein biphenyl is optionally substituted with one or two groups selected independently from R⁵;

arylalkenyl of 8 to 16 carbon atoms, wherein aryl is optionally substituted with one or two groups selected independently from R⁵;

- cycloalkylalkyl or bicycloalkylalkyl of 4 to 12 carbon atoms, wherein cycloalkyl or bicycloalkyl is optionally substituted with one or two groups selected independently from R⁵;
- saturated or unsaturated mono or bicyclic heterocycle containing one heteroatom selected from O, S or N-C₁-C₆ alkyl, optionally substituted with one or two groups selected independently from R⁵;
- R⁸R⁹N-C₁-C₆-alkoxyaryl-C₁-C₆-alkyl where R⁸ and R⁹ are independently selected from C₁-C₆ alkyl or R⁸ and R⁹ together with the interposed nitrogen forms a 5-7 membered saturated heterocyclic ring optionally containing an oxygen atom, wherein the aryl group is phenyl or naphthyl;

and the pharmaceutically acceptable salts thereof.

15

10

5

The most preferred group of compounds are those of the following formula (Ib):

20

25

30

in which

R¹ is phenyl, naphthyl, alkyl of 1-18 carbon atoms or heteroaryl such as pyridyl, thienyl, imidazolyl or furanyl, optionally substituted with C₁-C₆ alkyl, C₁-C₆ alkoxy, C₆-C₁₀ aryloxy, heteroaryloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, halogen; or S(O)_n -C₁-C₆ alkyl C₁-C₆ alkoxyaryl or C₁-C₆ alkoxyheteroaryl;

A is -S-, -SO- or -SO₂-;

R² and R³, taken with the carbon atom to which they are attached, form a 5 to 7 membered heterocyclic ring containing O, S or N-R⁷ optionally having one or two double bonds;

R⁴ is hydrogen,

5

10

alkyl of 1 to 6 carbon atoms, optionally substituted with one or two groups selected independently from R⁵;

alkenyl of 3 to 18 carbon atoms having 1 to 3 double bonds, optionally substituted with one or two groups selected independently from R⁵;

alkynyl of 3 to 18 carbon atoms having 1 to 3 triple bonds, optionally substituted with one or two groups selected independently from R⁵;

phenyl or naphthyl optionally substituted with one or two groups selected independently from R⁵;

C₃ to C₈ cycloalkyl or bicycloalkyl optionally substituted with one or two groups selected independently from R⁵;

 R^5 is H, C_7 – C_{11} aroyl, C_2 – C_6 alkanoyl, C_1 to C_{12} alkyl, C_2 to C_{12} alkenyl, C_2 - C_{12} alkynyl, F, Cl, Br, I, CN, CHO, C1-C6 alkoxy, aryloxy, heteroaryloxy, C3-C6 15 alkenyloxy, C3-C6 alkynyloxy, C1-C6 alkylamino-C1-C6 alkoxy, C1-C2 alkylene dioxy, aryloxy- C_1 - C_6 alkyl amine, C_1 - C_{12} perfluoro alkyl, $S(O)_n$ - C_1 - C_6 alkyl, $S(O)_n$ aryl where n is 0, 1 or 2; OCOO C1-C6 alkyl, OCOOaryl, OCONR6, COOH, COO C1-C₆ alkyl, COOaryl, CONR⁶R⁶, CONHOH, NR⁶R⁶, SO₂NR⁶R⁶, NR⁶SO₂aryl, -NR6CONR6R6, NHSO2CF3, SO2NHheteroaryl, SO2NHCOaryl, CONHSO2-C1-C6 20 alkyl, CONHSO2aryl, SO2NHCOaryl, CONHSO2-C1-C6 alkyl, CONHSO2aryl, NH₂, OH, aryl, heteroaryl, C₃ to C₈ cycloalkyl; saturated or unsaturated 5 to 10 membered mono or bicyclic heterocycle containing one heteroatom selected from O, S or NR7, wherein C1-C6 alkyl is straight or branched, heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected 25 independently from O, S or NR7 and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C1-C6 alkyl, C_1 – C_6 alkoxy, or hydroxy;

R⁶ is H, C₁ to C₁₈ alkyl optionally substituted with OH; C₃ to C₆ alkenyl, C₃ to C₆ alkynyl, C₁ to C₆ perfluoro alkyl, S(O)_n alkyl or aryl where n is 0, 1 or 2; or COheteroaryl; wherein heteroaryl is a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms selected independently from O, S or NR⁷ and aryl is phenyl or naphthyl, optionally substituted by 1 or 2 groups selected from halogen, cyano, amino, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, or hydroxy;

	and R' is C_7 – C_{11} aroyl, C_2 – C_6 alkanoyl, C_1 - C_{12} perfluoro alkyl, $S(O)_n$ -alkyl, $S(O)_n$ -
	aryl where n is 0, 1 or 2; COOalkyl, COOaryl, CONHR6, CONR6R6,
	CONHOH, SO ₂ NR ⁶ R ⁶ ,SO ₂ CF ₃ , SO ₂ NHheteroaryl, SO ₂ NHCOaryl,
	CONHSO2alkyl, CONHSO2aryl, aryl, or heteroaryl; where aryl is phenyl or naphthyl,
5	optionally substituted by 1 or 2 groups selected independently from halogen,
	cyano, amino, nitro, C ₁ -C ₆ alkyl, C ₁ -C ₆ alkoxy, or hydroxy; and heteroaryl is
	a 5-10 membered mono or bicyclic heteroaryl group having 1 to 3 heteroatoms
	selected independently from O, S or N-C ₁ -C ₆ alkyl;
	alkyl of 1 to 18 carbon atoms, optionally substituted with one or two groups selected
10	independently from R ⁵ ;
	alkenyl of 3 to 18 carbon atoms having from 1 to 3 double bonds, optionally
	substituted with one or two groups selected independently from R5;
	alkynyl of 3 to 18 carbon atoms having from 1 to 3 triple bonds, optionally
	substituted with one or two groups selected independently from R5;
15	arylalkyl of 7 to 16 carbon atoms, optionally substituted with one or two groups
	selected independently from R ⁵ ;
	biphenylalkyl of 13 to 18 carbon atoms, optionally substituted with one or two groups
	selected independently from R ⁵ ;
	arylalkenyl of 8 to 16 carbon atoms, optionally substituted with one or two groups
20	selected independently from R ⁵ ;
	cycloalkylalkyl or bicycloalkylalkyl of 4 to 12 carbon atoms, optionally substituted
	with one or two groups selected independently from R ⁵ ;
	saturated or unsaturated mono or bicyclic heterocycle containing one heteroatom
	selected from O, S or NR-C ₁ -C ₆ alkyl, optionally substituted with one or two
25	groups selected independently from R ⁵ ;
	R ⁸ R ⁹ N-C ₁ -C ₆ -alkoxyaryl-C ₁ -C ₆ -alkyl where R ⁸ and R ⁹ are independently selected
	from C ₁ -C ₆ alkyl or R ⁸ and R ⁹ together with the interposed nitrogen forms a
	5-7 membered saturated heterocyclic ring optionally containing an oxygen atom,
	wherein the aryl group is phenyl or naphthyl;
30	
	and the pharmaceutically acceptable salts thereof

35

The most preferred matrix metalloproteinase and TACE inhibiting compounds of this invention are:

1-benzyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide,

4-(4-methoxy-benzenesulfonyl)-1-(3-methoxy-benzyl)-piperidine-4-carboxylic acid hydroxyamide, 1-(3,4-dichlorobenzyl) -4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxamide, 4-(4-methoxy-benzenesulfonyl)-1-(4-methylbenzyl)-piperidine-4-carboxylic acid 5 hydroxamide, 4-(4-methoxy-benzene-sulfonyl)-1-napthalene-2-yl-methylpiperidine-4-carboxylic acid hydroxamide, 1-biphenyl-4-ylmethyl-4-(4-methoxy-benzenesulfonyl)piperidine-4-carboxylic acid 10 hydroxamide, 4-(4-methoxy-benzene-sulfonyl)-1-(3-methyl-but-2-enyl)piperidine-4-carboxylic acid hydroxamide, 1-(4-bromo-benzyl)-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 4-(4-methoxy-benzenesulfonyl)-1-(3-phenyl-propyl)-piperidine-4-carboxylic acid 15 hydroxyamide, 1-tert-butyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 1-butyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 1-cyclooctyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid 20 hydroxyamide, 1-ethyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 1-isopropyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide. 1-methyl-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 25 1-benzyl-4-(4-butoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 1-(4-fluoro-benzyl)-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamide, 1-(4-fluoro-benzyl)-4-(4-butoxy-benzenesulfonyl)-piperidine-4-carboxylic acid 30 hydroxyamide, 4-(4-methoxy-benzelosulfonyl)-1-(4-methoxy-benzyl)-piperidine-4-carboxylic acid hydroxyamide, 4-(4-methoxy-benzenesulfonyl)-1-[2-(4-methoxyphenyl)-ethyl]-piperidine-4-carboxylic acid hydroxyamide, 35 4-(4-methoxy-benzenesulfonyl)-1-(2-phenyl-ethyl)-piperidine-4-carboxylic acid

hydroxyamide,

4-(4-n-butoxy-benzenesulfonyl)-1-(4-methoxy-benzyl)-piperidine-4-carboxylic acid hydroxyamide,

- 4-(4-methoxy-benzenesulfonyl)-1-(3-phenoxy-propyl)-piperidine-4-carboxylic acid hydroxyamide,
- 4-(4-n-butoxy-benzenesulfonyl)-1-(3-phenoxy-propyl)-piperidine-4-carboxylic acid hydroxyamide,

5

10

15

20

25

30

35

- 4-(4-methoxy-benzenesulfonyl)-1-(2-phenoxy-ethyl)-piperidine-4-carboxylic acid hydroxyamide,
- 4-(4-n-butoxy-benzenesulfonyl)-1-(2-phenoxy-ethyl)-piperidine-4-carboxylic acid hydroxyamide,
- 4-(4-methoxy-benzenesulfonyl)-1-[4-(2-piperidin-1-yl-ethoxy)-benzyl]-piperidine-4-carboxylic acid hydroxyamide,

It is understood that the definition of the compounds of formulas I, Ia and Ib, when R¹, R², R³ and R⁴ contains asymmetric carbons, encompass all possible stereoisomers and mixtures thereof which posses the activity discussed below. In particular, it encompasses racemic modifications and any optical isomers which possesses the indicated activity. Optical isomers may be obtained in pure form by standard separation techniques. Where not stated otherwise, the term "alkyl" refers to a straight or branched C₁–C₆ alkyl group and aryl is phenyl or naphthyl. The pharmaceutically acceptable salts are those derived from pharmaceutically acceptable organic and inorganic acids such as lactic, citric, acetic, tartaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, and similarly known acceptable acids.

The present invention accordingly provides a pharmaceutical composition which comprises a compound of this invention in combination or association with a pharmaceutically acceptable carrier. In particular, the present invention provides a pharmaceutical composition which comprises an effective amount of compound of this invention and a pharmaceutically acceptable carrier.

The compositions are preferably adapted for oral administration. However, they may be adapted for other modes of administration, for example, parenteral administration for patients.

In order to obtain consistency of administration, it is preferred that a composition of the invention is in the form of a unit dose. Suitable unit dose forms include tablets, capsules, and powders in sachets or vials. Such unit dose forms may contain from 0.1 to 100 mg of a compound of the invention. The compounds of the present invention can be administered orally at a dose range of about 0.01 to 100 mg per kg. Such composition may be administered from 1 to 6 times a day, more usually from 1 to 4 times a day.

The compositions of the invention may be formulated with conventional excipients, such as fillers, a disintegrating agent, a binder, a lubricant, a flavoring agent, and the like. They are formulated in conventional manner.

Also according to the present invention, there are provided processes for producing the compounds of the present invention.

PROCESS OF THE INVENTION.

10

15

20

5

The compounds of the present invention may be prepared according to one of the general processes out lined below.

The appropriately substituted mercaptan derivative was alkylated using either substituted (Scheme I) or unsubstituted (Scheme 2) α-bromo acetic acid ester derivative in refluxing acetone using K₂CO₃ as base. The sulphide derivative thus obtained was oxidized using m-chloroperbenzoic acid in CH₂Cl₂ or by using Oxone in methanol/ water. The sulfone obtained from the above mentioned process can be either further alkylated using variety of alkyl halides to obtain the disubstituted derivative or it can be hydrolyzed using NaOH/ MeOH at room temp. However instead of using the ethyl ester, if the tertiary butyl ester is present, the hydrolysis can be carried out with TFA/CH₂Cl₂ at room temperature. Subsiquently, the carboxylic acid obtained was converted to the hydroxamic acid derivative by reaction with oxalyl chloride/ DMX (catalytic) and hydroxyl amine/ triethyl amine.

SCHEME 1

SYNTHESIS:

- a. K₂CO₃/ Acetone/ Reflux; b. m-Chloroperbenzoic acid;
- c. K₂CO₃/18-Crown-6/R₃Br/Acetone/Reflux/
- d. NaOH/ MeOH/ THF/ RT
- e. (COCl)₂/CH₂Cl₂/Et₃N/NH₂OH·HCl.

SCHEME 2

SYNTHESIS:

- a. K₂CO₃/ Acetone/ Reflux; b. m-Chloroper benzoic acid;
- c. K₂CO₃/18-Crown-6/R₂Br/Acetone/Reflux/
- d. R₃Br/10 N NaOH/ BzN(Et)3/ CH₂Cl₂/ RT
- e. NaOH/ MeOH/ THF/ RT
- f. (COCl)₂/CH₂Cl₂/Et₃N/NH₂OH.HCl.

As outlined in Scheme 3, the sulfide derivative can be further alkylated using lithium bis(trimethyl silyl)amide in THF at 0° C. The alkylated or mono substituted compound was hydrolyzed and converted to the hydroxamic acid derivative. The sulfinyl derivatives were prepared by oxidizing the sulfide hydroxamic acid derivatives with H_2O_2 in MeOH solution.

SCHEME - 3

SYNTHESIS:

a. K₂CO₃/ Acetone/ Reflux; b. R₃Br/ HMDS/ THF;

c. NaOH/ MeOH/ THF/ RT

d. (COCl)₂/CH₂Cl₂/Et₃N/NH₂OH.HCl.

e. MeOH/ H_2O_2/RT

The corresponding 1-substituted-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid hydroxyamides were prepared starting from diethanolamine and appropriately substituted alkyl or aryl halides (Scheme 4). The N-substituted diethanol amine derivatives were converted to the dichloro compounds using thionyl chloride. The corresponding dichlorides were reacted with substituted sulfonyl acetic acid ethyl ester derivatives in the presence of K₂CO₃/18-Crown-6 in boiling acetone. 1-substituted-4-(4-methoxy-benzenesulfonyl)-piperidine-4-carboxylic acid ethyl esters thus obtained were converted to the hydroxy amide as outlined in Scheme 4. Alternatively these classes of compounds and other hetrocycles can be prepared as indicated in Scheme 5 and 6.

SCHEME 4

- a. K₂CO₃/RBr/ Acetone/ Reflux
- b. SOCl₂/ CH₂Cl₂

5

- c. R¹SO₂CH₂COOEt/ K₂CO₃/ 18-Crown-6/ Acetone/ Reflux
- d. NaOH/ THF/ MeOH/ RT
- e. (COCl)₂/NH₂OH. HCl/ Et₃N

SCHEME 5

Y = N or CH

a. RBr/ R^1 SH/ CHCl 3 / Reflux; b. Oxone/ MeOH; e. (COCl) $_2$ /NH $_2$ OH. HCl/Et $_3$ N

SCHEME 6

$$SO_2R^1$$
 a SO_2R^1 b SO_2R^1 COOH b $R-N, S, O$ $R-N, S, O$

a. LiN(TMS) $_2$ / THF/ 0 °C/ CO $_2$; b. (COCl) $_2$ / NH $_2$ OH. HCl/ Et $_3$ N

Alternatively, Schemes 7 to 11 show methods for the preparation of hydroxamic acid compounds using a solid phase support (P).

Scheme 7

$$P \xrightarrow{NH_2} a \xrightarrow{P} O \xrightarrow{NH_2} b \xrightarrow{R^2} b \xrightarrow{P} O \xrightarrow{N} \stackrel{R^2}{\downarrow} CI)$$

$$P \xrightarrow{Q} O \xrightarrow{N} \stackrel{R^2}{\downarrow} C \xrightarrow{P} O \xrightarrow{N} \stackrel{R^2}{\downarrow} \stackrel{R^2}{\downarrow} CI$$

$$P \xrightarrow{Q} O \xrightarrow{N} \stackrel{R^2}{\downarrow} \stackrel$$

Reagents and Conditions: a) 2-Halo acid (3.0 eq.); 1-hydroxybenzotriazole hydrate (HOBt, 6.0 eq.); 1,3-diisopropylcarbodiimide (DIC, 4.0 eq.); DMF, 25°C; 2-16 hours. b) Thiol (5.0 eq.); sodium iodide (5.0 eq.); 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 3.0 eq.); THF; 25°C; 12-16 hours. c) 70% tert-butylhydroperoxide (40 eq.); benzenesulfonic acid (2.0 eq.); DCM; 25°C; 12-24 hours. d) mCPBA (5.0 eq.); DCM; 25°C; 12-24 hours. e) TFA: DCM (1:1); 25°C; 1 hour.

The 4-O-methylhydroxylamine-phenoxymethyl-copoly(styrene-1%-divinylbenzene)-resin (hydroxylamine resin) may be coupled with a 2-halo acid to give the hydroxamate ester resin. The coupling reaction may be carried out in the presence of carbodiimide, such as DIC, in an inert solvent such as DMF at room temperature. The halogen group may be displaced with a thiol in the presence of a base, such as DBU, in an inert solvent such as THF at room temperature. The sulfide may be oxidized to the sulfoxide by reaction with an oxidizing agent such as tert-butylhydroperoxide in the presence of an acid catalyst such as benzenesulfonic acid, in an inert solvent such as DCM at room temperature. Alternatively, the sulfide may be oxidized to the sulfone by reaction with an oxidizing agent such as meta-chloroperoxybenzoic

15

20

acid, in an inert solvent such as DCM at room temperature. The sulfide, sulfoxide, or sulfone may be treated with and acid, such as trifluoroacetic acid, in and inert solvent such as DCM to liberate the free hydroxamic acid.

Scheme 8 shows a method of preparing hydroxamic acids having alkoxy groups attached to the aromatic ring.

Reagents and Conditions: a) 2-Halo acid (3.0 eq.); 1-hydroxybenzotriazole hydrate (HOBt, 6.0 eq.); 1,3-diisopropylcarbodiimide (DIC, 4.0 eq.); DMF, 25°C; 2-16 hours. b) 4-Fluorobenzenethiol (5.0 eq.); sodium iodide (5.0 eq.); 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 3.0 eq.); THF; 25°C; 12-16 hours. c) Alcohol (15.0 eq.); sodium hydride (15.0 eq.); DMF; 80°C; 15 hours. d) 70% tert-butylhydroperoxide (40 eq.); benzenesulfonic acid (2.0 eq.); DCM; 25°C; 12-24 hours. e) mCPBA (5.0 eq.); DCM; 25°C; 12-24 hours. f) TFA: DCM (1:1); 25°C; 1 hour.

10

15