A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

8 1.1.2. Calcium-Activated Potassium (K) channels (CaKC)

Calcium-Activated Potassium (K) channels (CaKC)		Ref
		[5–7]
$I^{\prime\prime M-N}_{K,X_{CaKC}} = n^{\prime\prime M-N}_{X_{CaKC}} g_{X_{CaKC}} f_o^{K,X_{CaKC}} A \left(V_m^{M-N} - V_{K,rev}^{M-N} \right)$	(5)	
where X denotes SK or IK or BK		
$f_o^{K,CaKC} = \frac{1}{1 + \left(\frac{K_{Ca}^{CaKC}}{[Ca]_{i(c)}}\right)^{\eta_{CaKC}}}$	(6)	
$I''_{K,X_{CaKC}}^{M,N} = n''_{X_{CaKC}} P_{K,X_{CaKC}}^{M-N} \frac{z_K^2 F^2 V_m^{M-N}}{RT} \frac{[K]_M - [K]_N exp \frac{-z_K F V_m^{M-N}}{RT}}{1 - exp \frac{-z_K F V_m^{M-N}}{RT}}$	(7)	[8]
where X denotes IK or BK .		
		[4]
$i_{K,BK_{CaKC}}^{M-N} = g_{BK_{CaKC}} f_o^{BK_{CaKC}} \left(V_m^{M-N} - V_{K,rev}^{M-N} \right)$	(8)	
$f_o^{BK_{CaKC}} = C_f f_f^{BK_{CaKC}} + C_s f_s^{BK_{CaKC}}$	(9)	
$rac{df_f^{BK_{CaKC}}}{dt} = rac{ar{f}_f^{BK_{CaKC}} - f_f^{BK_{CaKC}}}{ au_{f_f}^{BK_{CaKC}}}$	(10)	
$rac{df_s^{BK_{CaKC}}}{dt} = rac{ar{f}_s^{BK_{CaKC}} - f_s^{BK_{CaKC}}}{ au_{f_s}^{BK_{CaKC}}}$	(11)	
$\bar{f}^{BK_{CaKC}} = \frac{1.0}{1.0 + exp[\frac{-(V_m^{M-N} - V_{1/2,BK_{CaKC}}^{M-N})}{k_{CaKC}}]}$	(12)	
$\bar{f}_f^{BK_{CaKC}} = \bar{f}_s^{BK_{CaKC}} - \bar{f}^{BK_{CaKC}}$	(13)	
$V_{1/2,BK_{CaKC}} = A \log[Ca]_i + B$	(14)	

Table 2: The corresponding equations describing the ionic current transported via Calcium-Activated Potassium (K) channels (CaKC) across the cell membrane