COMP 2711 Discrete Mathematical Tools for CS 2014 Fall Semester – Assignment # 7

Distributed: 13 November 2014 – Due: 5pm, 20 November 2014 Solutions

At the top of your solution, please write your (i) name, (ii) student ID #, (iii) email address and (iv) tutorial section.

Problem 1: Use a truth table to prove the DeMorgan's law that states $\neg(p \land q) = \neg p \lor \neg q$.

SOLUTION: Use a double truth table.

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
Τ	Т	Т	F	F	F	F
Τ	F	F	Т	F	Τ	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

The columns under $\neg(p \land q)$ and $\neg p \lor \neg q$ are identical, so the two statements are equivalent.

Problem 2: Which of the following statements (in which Z^+ stands for the positive integers and Z stands for all integers) is true and which is false? Don't forget to explain why.

- a) $\forall z \in Z^+ (z^2 + 5z + 10 > 17)$
- b) $\forall z \in Z \ (z^2 z > 0)$
- c) $\exists z \in Z^{+}(z-z^{2}>0)$
- d) $\exists z \in Z (z^2 z = 6)$

SOLUTION: a) False, because $1^2 + 5 \cdot 1 + 10 = 16$.

- b) There are many different ways of proving this. One way is to consider the following cases:
 - 1. z < 0: true, because $z^2 z \ge 0 \Leftrightarrow z^2 \ge z$. The LHS is positive, the RHS is negative.
 - 2. z = 0: true by substitution $(0^2 0 \ge 0)$.
 - 3. z > 0: true, because $z^2 z \ge 0 \Leftrightarrow z^2 \ge z$, so we get $z \ge 1$ which holds in this case.
- c) False. To prove that it is false we want to prove its negation

$$\neg \exists z \in Z^+ (z^2 - z > 0). \tag{1}$$

Equivalently, we want to prove

$$\forall z \in Z^+ (z^2 - z \not> 0) \tag{2}$$

We can re-write it as follows.

$$\forall z \in Z^+ (z - z^2 \le 0). \tag{3}$$

But, multiplying the inequality in (??) by -1 gives us $(z^2 - z \ge 0)$, which was already proved in part (b) (for an even bigger universe).

d) True, because $(-2)^2 - (-2) = 6$.

Problem 3: Show that the statements $s \Rightarrow t$ and $\neg s \lor t$ are equivalent using a truth table.

SOLUTION: Give the truth table for $s \Rightarrow t$ and $\neg s \lor t$, and compare them. They are the same.

s	t	$s \Rightarrow t$	$\neg s \lor t$
Τ	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Problem 4: (Distributive "Laws")

- (a) Is $w \wedge (u \oplus v)$ equivalent to $(w \wedge u) \oplus (w \wedge v)$?
- (b) Is $w \vee (u \oplus v)$ equivalent to $(w \vee u) \oplus (w \vee v)$?

SOLUTION: (a) \wedge distributes over \oplus . Compare the truth tables of $w \wedge (u \oplus v)$ and $(w \wedge u) \oplus (w \wedge v)$.

w	u	v	$w \wedge u$	$w \wedge v$	$(w \wedge u) \oplus (w \wedge v)$	$(u \oplus v)$	$w \wedge (u \oplus v)$
Τ	Т	Т	Т	Т	F	F	F
Т	Т	F	Т	F	Т	Т	Т
Τ	F	Т	F	Т	Т	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	F	F	F	F	F
F	Т	F	F	F	F	Т	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

(b) \vee doesn't distribute over \oplus . Try w=T, u=T, and v=T, where T stands for a statement that is always true, to get the value of $w \vee (u \oplus v)$ and $(w \vee u) \oplus (w \vee v)$.

$$T \vee (T \oplus T) = T \neq F = (T \vee T) \oplus (T \vee T).$$

Problem 5: (a) Construct a contrapositive proof that for all real numbers x, if $x^2 - 2x \neq 3$ then $x \neq 3$.

(b) Construct a proof by contradiction that for all real numbers x, if $x^2 - 2x \neq 3$ then $x \neq 3$.

Solution: Note that these are *possible* solutions, not the *only* solutions.

Even though both parts are proving the same thing, they are asking you to use different proof techniques. Essentially, they are both asking for a proof of " $p(x) \Rightarrow q(x)$ " where

$$p(x) = "x^2 - 2x \neq 3".$$

 $q(x) = "x \neq 3".$

A correct solution to (a) must prove this by proving the *contrapositive* " $\neg q(x) \Rightarrow \neg p(x)$ ". A correct solution to (b) proves " $p(x) \Rightarrow q(x)$ " by assuming p(x) and assuming $\neg q(x)$ and showing that this implies the correctness of both r(x) and $\neg r(x)$ for some statement r(x) (a contradiction).

(a) " $\neg q(x) \Rightarrow \neg p(x)$ " is the **contrapositive** of " $p(x) \Rightarrow q(x)$ ". " $p(x) \Rightarrow q(x)$ " is actually equivalent to " $\neg q(x) \Rightarrow \neg p(x)$ ".

Suppose that x = 3 ($\neg q(x)$). Then $x^2 - 2x = 9 - 6 = 3$ ($\neg p(x)$). Thus, if x = 3, then $x^2 - 2x = 3$ ($\neg q(x) \Rightarrow \neg p(x)$). By contrapositive inference, if $x^2 - 2x \neq 3$, then $x \neq 3$ ($p(x) \Rightarrow q(x)$).

(b) If by assuming p(x) and $\neg q(x)$, we can derive both r(x) and $\neg r(x)$ for some statement r(x), we may conclude $p(x) \Rightarrow q(x)$.

Suppose that $x^2 - 2x \neq 3$ (p(x)). Suppose as well that x = 3 $(\neg q(x))$. Then $x^2 - 2x = 9 - 6 = 3$ $(\neg p(x))$, which is a contradiction (r(x) = p(x)). Therefore, if $x^2 - 2x \neq 3$, then $x \neq 3$ $(p(x) \Rightarrow q(x))$.