Deloitte.

Flight Delay Analysis

By: Reece Boyce

Business Problem

Increased Expense for Crew, Fuel, and Maintenance

- Delayed flights cause more expenses for relocating staff
- Fuel expenses increase due to idle time

Cost of Delays on the Industry

- Estimated cost of \$8 billion per year for the industry*
- Estimated cost of \$17 billion per year for passengers*

Decreased Customer Satisfaction

- Airlines depend on repeat customers and word of mouth
- Competition is fierce in the industry, airlines that experience delays frequently lose business.

Customers Do Not Like Uncertainty

• Delayed flights cause stress and anxiety for travelling, especially for those customers traveling with connecting flights

^{*}According to 2010 study commissioned by the Federal Aviation Administration

Data Gathering

Full Dataset:

- Source: US DOT Bureau of Transportation Domestic Flight Data
- Includes Data from 2009 2019
- +4 million flights per year (40 million in total)

Selected Data:

- Top domestic carriers that travel nationwide
- Top 10 airports by volume
- 472,000+ data points used in analysis
- 2019 data used in analysis

Variables:

- Year
- Month
- Day of the Week
- Carrier
- Flight Number
- Departure/ Arrival times
- Origin
- Destination
- Departure time
- Time to Taxi out/in
- Wheels on/off
- Distance

Model Selection

	Computational Needs	Advantages
Logistic Regression	 Training time: 1.92 seconds Prediction time: 0.01 seconds 	 Less tuning needed, easier to perform on large datasets.
Random Forest	 Training time: 41.26 Seconds Prediction time: 0.77 Seconds 	 Can handle missing values. Performs better with more explanatory variables.
XGboost	 Training Time: 17.05 Seconds Prediction Time: 0.32 Seconds 	 Less randomization than RF More parameters than other two methods

Modeling

Logistic Regression

True Delays: 47,840

True Delays Predicted: 30,498

Precision Score: 0.672

Recall Score: 0.637

Accuracy Score: 0.658

F1 Score: 0.654

True Delays: 47,840
True Delays Predicted: 33,064

Precision Score: 0.757

Recall Score: 0.691

Accuracy Score: 0.731

F1 Score: 0.723

Random Forest

True Delays:47,840
True Delays Predicted: 31,717

Recommendations and Way Forward

Re-run model at high traffic airport hubs and their respective top destinations.