Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction

- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set
 - Much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Complex data analysis may take a very long time to run on the complete data set
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms; Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression
 - Histograms, clustering, sampling
 - Data compression

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

Density and distance between points (which is critical to clustering and outlier analysis) becomes less meaningful

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- **Principal Component Analysis**

Wavelet Transformation

- Discrete wavelet transform (DWT)
 - For linear signal processing and multi-resolution analysis
- Compressed approximation
 - Store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to $S_{\wedge} =$ $[2^{3}/_{4}, -1^{1}/_{4}, 1/_{2}, 0, 0, -1, -1, 0]$
- Compression:
 - many small detail coefficients can be replaced by 0's
 - only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	$[0,\ -1,\ -1,\ 0]$
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2}rac{3}{4}]$	$[-1\frac{1}{4}]$

Haar Wavelet Coefficients

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- Original data are projected onto a much smaller space
 - Resulting in dimensionality reduction

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find $k \le n$ orthogonal vectors (principal components) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - The principal components are sorted in order of decreasing "significance" or strength
 - The size of the data can be reduced by eliminating the weak components, i.e., those with low strength
 - Using the strong principal components, it is possible to reconstruct a good approximation of the original data
- Works for numeric data only

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Purchase price of a product and the amount of sales tax paid
- *Irrelevant* attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model
 - estimate model parameters
 - store only the parameters
 - discard the data (except possible outliers)
- Non-parametric methods
 - Do not assume any models
 - Major families: histograms, clustering, and sampling

Regression Analysis

- Regression analysis
 - Modeling numerical data consisting of values of a dependent variable (response variable) and of one or more independent variables
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly, the best fit is evaluated by using the *least squares method*
 - But, other criteria have also been used
- Used for *prediction* (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Parametric Data Reduction: Regression

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a dependent variable Y to be modeled as a linear function of two or more independent variables

Regression Analysis

- Linear regression: Y = w X + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of Y_1 , Y_2 , ..., X_1 , X_2 ,
- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Linear function involving more than one independent variables
 - Solved by SAS, SPSS, and S-Plus
- Nonlinear regression: $Y = b_0 + b_1 X + b_2 X^2$
 - Many nonlinear functions can be transformed into the above
 - By setting $X_1 = X$ and $X_2 = X^2$

Histogram Analysis

- Divide data into buckets and store count (or sum / average) for each bucket
- Partitioning rules:
 - Equal-width
 - Equal bucket range
 - Equal-frequency (or equal-depth)
 - Equal depth for buckets

Clustering

- Partition data set into clusters based on similarity
- Then, store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
 - Cluster analysis will be studied in depth in Chapter 10

Sampling

- Sampling: obtaining a small set of samples s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition proportionally
 - Approximately the same percentage of the data
- Used to handle skewed data

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Stratified Sample

Data Reduction 3: Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless
- Audio/video compression
 - Typically lossy compression, with progressive refinement
- Time sequence
 - Typically short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization

Summary

Data Transformation

- Maps the entire set of values of a given attribute to a new set of replacement values
 - Each old value needs to be identified with one of the new values
- Methods
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- **Ex.** Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: divide the range of a continuous attribute into intervals
 - Labels are assigned to intervals to replace actual data values
 - Effect of discretization
 - Data size is reduced
 - Similar values become identical
 - Used for further analysis, e.g., classification

Simple Discretization: Binning

- Divides the range into N intervals of equal size: uniform grid
- if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
- The most straightforward
- Problems
 - Outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels (Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization