대중 교통 데이터

공공데이터 분석

대중교통 데이터 내려받기

- 대중교통 데이터: t-money
 - https://pay.tmoney.co.kr/ncs/pct/ugd/ReadUgdMainGd.dev
 - 이용안내 화면 > 대중교통 통계자료 선택 > 2023년 12월 교통카드 통계자료

subway.xls 로 저장

교통카드 통계자료

- 내용: 4개의 탭으로 구성
 - 버스정류장별 이용현황
 - 지하철 노선별 역별 이용현황
 - 지하철 유무임별 이용현황
 - 지하철 시간대별 이용현황
- csv 파일로 저장
 - [지하철 유무임별 이용현황] 탭 선택
 - 다른 이름으로 저장
 - 파일 형식: CSV UTF-8(쉼표로 분리)
 - 파일 이름: subwayfee.csv

CSV 파일 데이터 정리: 자리수 콤마 제거

- 맨 오른쪽에 있는 작업일시 컬럼 제거
- CSV 파일에서 숫자에 포함된 자리수 콤마(,) 제거
 - 컬럼 선택 후 > 숫자로 변경
 - 셀 서식: 1000 단위 구분 기호(,) 사용 해제

대중교통 데이터 읽어오기

■ 데이터 헤더

사용 월	호선명	역ID	지하철역	유임승차	유임하차	무임승차	무임하차
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

```
import csv

f = open('subwayfee.csv', encoding = 'utf-8-sig')
data = csv.reader(f)
header = next(data)
print(header)
i = 1
for row in data:
    print(row)
    if i > 5:
        break
    i += 1
f.close()
```

```
['사용월', '호선명', '역ID', '지하철역', '유임승차', '유임하차', '무임승차', '무임하차']
['23.Dec', '1호선', '150', '서울역', '1442704', '1404121', '211843', '203808']
['23.Dec', '1호선', '151', '시청', '696784', '684254', '99882', '98107']
['23.Dec', '1호선', '152', '종각', '1010849', '985165', '162696', '152064']
['23.Dec', '1호선', '153', '종로3가', '488467', '450427', '310689', '286850']
['23.Dec', '1호선', '154', '종로5가', '483866', '476917', '246504', '239266']
['23.Dec', '1호선', '155', '동대문', '236114', '228110', '128542', '127639']
```

전체 탑승 인원 대비 유임 승차 비율이 가장 높은 역은?

- 유임 승차 대 무임 승차 비율 (rate) 계산
 - rate = 유임 승차 인원 무임 승차 인원

사용 월	호선명	역ID	지하철역	유임승차	유임하차	무임승차	무임하차
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

```
import csv
                                                                           <day2 subwayfee 02.py>
f = open('subwayfee.csv', encoding='utf-8-sig')
data = csv.reader(f)
header = next(data)
max rate =0
rate = 0
for row in data:
                                                                    row[6]의 값이 0인
    for i in range(4, 8):
                                                                   역이 존재하는지 확인
        row[i] = int(row[i]) # 4, 5, 6, 7 컬럼 값을 정수로 변환
   rate = row[4] / row[6]
                           # [6]컬럼의 값이 0인 행 확인 용도
   if rate > max rate:
       max rate = rate
                                   Traceback (most recent call last):
print(max_rate)
                                     File "day2_subwayfee_02.py", line 11, in <module>
                                      rate = row[4] / row[6]
f.close()
                                   ZeroDivisionError: division by zero
```

무임승차 인원이 0인 역 찾기 #1

```
import csv
                                                                                <day2 subwayfee 03.py>
f = open('subwayfee.csv', encoding='utf-8-sig')
data = csv.reader(f)
                                                                     지하철역
                                                                            유임승차
                                                                                  유임하차
                                                                                        무임승차
                                                   사용 월
                                                         호선명
                                                                역ID
                                                                                               무임하차
header = next(data)
                                                          [1]
                                                                             [4]
                                                                                   [5]
                                                                                                [7]
rate = 0
for row in data:
   for i in range(4, 8):
        row[i] = int(row[i]) # 4, 5, 6, 7 컬럼 값을 정수로 변환
   rate = row[4] / (row[4] + row[6])
                                                                           유임 승차 인원
   if row[6] == 0: # 무임승차 인원[6]이 없는 역 출력
                                                            rate = 전체 탑승인원(유임승차+무임승차)
       print(row)
f.close()
['23.Dec', '일산선', '1949', '지축', 8, 0, 0, 0]
['23.Dec', '경의선', '1295', '김포공항', 1, 0, 0, 0]
['23.Dec', '6호선', '2649', '신내', 10, 0, 0, 0]
['23.Dec', '7호선', '2755', '춘의', 1, 0, 0, 0]
['23.Dec', '7호선', '2756', '신중동', 1, 0, 0, 0]
['23.Dec', '7호선', '2760', '굴포천', 1, 0, 0, 0]
```

최대 무임 승차 비율 확인

```
import csv
                                                                              <day2 subwayfee 04.py>
f = open('subwayfee.csv', encoding='utf-8-sig')
data = csv.reader(f)
header = next(data)
                                                                    지하철역
                                                 사용 월
                                                        호선명
                                                               역ID
                                                                          유임승차
                                                                                유임하차
                                                                                      무임승차
                                                                                            무임하차
max rate = 0
                                                   [0]
                                                         [1]
                                                                                              [7]
                                                               [2]
                                                                     [3]
                                                                           [4]
                                                                                  [5]
                                                                                        [6]
for row in data:
    for i in range(4, 8):
        row[i] = int(row[i]) # 4, 5, 6, 7 컬럼 값을 정수로 변환
    if row[6] != 0:
       # 무임 승차 (%) = (무임 승차 수 x 100) / (유임 승차 수 + 무임 승차 수)
       rate = (row[6] * 100) / (row[4] + row[6])
       if rate > max rate:
           max rate = rate
           print(row, round(rate, 2), '%')
f.close()
```

```
['23.Dec', '1호선', '150', '서울역', 1442704, 1404121, 211843, 203808] 12.8 % ['23.Dec', '1호선', '152', '종각', 1010849, 985165, 162696, 152064] 13.86 % ['23.Dec', '1호선', '153', '종로3가', 488467, 450427, 310689, 286850] 38.88 % ['23.Dec', '1호선', '157', '제기동', 231358, 219338, 256218, 272510] 52.55 % ['23.Dec', '경원선', '1916', '소요산', 22856, 19642, 40555, 37554] 63.96 % ['23.Dec', '경원선', '1919', '연천', 10626, 10601, 20838, 21191] 66.23 %
```

최대 무임 승차 비율을 찾아가는 과정

최대 유임 승차 인원이 있는 역은? #1

- 10만명이 넘게 승·하차 하는 역에서 유임 승차 비율이 제일 높은 역은?
 - 유임승차비율 = 유임승차인원 / 전체승차인원(유임+무임)
 - 유동 인구가 많은 지하철 역중에서 비교

사용 월	호선명	역ID	지하철역	유임승차	유임하차	무임승차	무임하차
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

호선명: 1호선, 역이름: 서울역, 전체 인원: 1,654,547명, 유임승차인원: 1,442,704명, 유임승차 비율: 87.2%

호선명: 1호선, 역이름: 시청, 전체 인원: 796,666명, 유임승차인원: 696,784명, 유임승차 비율: 87.46% 호선명: 2호선, 역이름: 시청, 전체 인원: 759,285명, 유임승차인원: 697,558명, 유임승차 비율: 91.87%

호선명: 2호선, 역이름: 을지로입구, 전체 인원: 1,519,444명, 유임승차인원: 1,399,572명, 유임승차 비율: 92.11%

호선명: 2호선, 역이름: 한양대, 전체 인원: 306,248명, 유임승차인원: 292,705명, 유임승차 비율: 95.58%

호선명: 공항철도 1호선, 역이름: 홍대입구, 전체 인원: 464,662명, 유임승차인원: 444,277명, 유임승차 비율: 95.61%

호선명: 공항철도 1호선, 역이름: 홍대입구, 전체 인원: 464,662명, 유임승차인원: 444,277명, 유임승차 비율: 95.61%

최대 유임 승차 인원이 있는 역은? #2

```
import csv
                                                                                  <day2 subwayfee 05.pv>
f = open('subwayfee.csv', encoding='utf-8-sig')
data = csv.reader(f)
                                                    사용 월
                                                            호선명
                                                                    역ID
                                                                          지하철역
                                                                                 유임승차
                                                                                        유임하차
                                                                                               무임승차
                                                                                                      무임하차
next(data)
                                                      [0]
                                                                                  [4]
                                                                                         [5]
                                                                                                 [6]
                                                             [1]
                                                                    [2]
                                                                           [3]
                                                                                                        [7]
max rate = 0
\max row = []
max_total_num = 0
for row in data:
    for i in range(4,8):
        row[i] = int(row[i])
    total_count = row[4] + row[6] # 유임승차수 + 무임승차수
    if (row[6] !=0) and (total_count >100000):
        rate = row[4] / total_count
       if rate > max rate :
           max rate = rate
           \max row = row
           max total num = total count
print()
print(f"호선명: {max_row[1]}, 역이름: {max_row[3]}, 전체 인원: {max_total_num:,}명, "
     f"유임승차인원: {max_row[4]:,}명, 유임승차 비율: {round(max_rate * 100, 2):,}%")
f.close()
```

실습: 유임 승차 비율이 50% 이하인 역

- ■서울 지하철 노선에서 유임 승차 비율이 50% 이하이고
- ■총 승차 인원이 10,000명 이상을 모두 출력
- 유임 승차 비율이 가장 낮은 역의 비율을 파이 차트로 표시하시오.

```
['사용월', '호선명', '역ID', '지하철역', '유임승차', '유임승차', '무임승차', '무임승차', '무임하차']
['23.Dec', '1호선', '157', '제기동', 231358, '219338', 256218, '272510'] 0.47
['23.Dec', '1호선', '159', '동묘앞', 144443, '150931', 146515, '148571'] 0.5
['23.Dec', '경원선', '1916', '소요산', 22856, '19642', 40555, '37554'] 0.36
['23.Dec', '경원선', '1919', '연천', 10626, '10601', 20838, '21191'] 0.34
['23.Dec', '중앙선', '1218', '원덕', 4951, '4673', 5471, '5273'] 0.48

유임 승차 비율이 가장 낮은 역: 연천
전체 인원:31,464명, 유임승차인원:10,626명, 유임승차비율:33.8%
```

유임승차

33.8%

66.2%

무임승차

무임승차

실습: 유임 승차 비율이 50% 이하인 역

```
import csv
                                      <day2 subwayfee 06.py>
import matplotlib.pyplot as plt
import platform
f = open('subwayfee.csv', encoding='utf-8-sig')
data = csv.reader(f)
header = next(data)
print(header)
min rate = 100
min row = []
min total count = 0
for row in data:
                                      유임승차, 무임 승차
   for i in [4,6]:
                                        데이터만 가져옴
       row[i] = int(row[i])
   total_count = row[4] + row[6]
   # 무임승차 인원이 없고, 총 승차인원이 1만명 이상
   if (row[6] != 0) and (total count >= 10000):
       rate = row[4] / total count
       if rate <= 0.5:
           print(row, round(rate, 2))
           if rate < min rate:</pre>
               min rate = rate
               min row = row
               min total count = total count
```

```
f.close()
print()
print(f'유임 승차 비율이 가장 낮은 역: {min_row[3]}')
print(f'전체 인원:{min_total_count:,}명, '
     f'유임승차인원:{min_row[4]:,}명,
      f'유임승차비율:{round(min rate*100, 1)}%')
if platform.system() == 'Windows':
    plt.rc('font', family='Malgun Gothic')
else:
    plt.rc('font', family='AppleGothic')
plt.title(min_row[3] + "역 유,무임 승차 비율")
label = ['유임승차', '무임승차']
values = \lceil \min row \lceil 4 \rceil, \min row \lceil 6 \rceil \rceil
plt.pie(values, labels=label, autopct='%.1f%%')
plt.legend(loc=2)
plt.show()
```

승·하차 인원이 가장 많은 역은?

■모든 역의 유임 승차, 유임 하차, 무임 승차, 무임 하차 인원 분석

<day2_subwayfee_07.py>

```
import csv
max = [0] * 4 # [0]: 최대 유임승차,[1]: 최대 유임하차, [2]: 최대 무임승차, [3]: 최대 무임하차
max station = \lceil ' \mid \rceil * 4
label = ['유임승차', '유임하차', '무임승차', '무임하차']
# with 구문: 자동으로 파일을 close()시킴
with open('subwayfee.csv', encoding='utf-8-sig') as f:
                                                                                 max[0]
                                                                                        max[1]
                                                                                              max[2]
                                                                                                    max[3]
   data = csv.reader(f)
   next(data)
                                                                                 유임승차
                                                                                       유임하차
                                                        사용 월
                                                                                              무임승차
                                                               호선명
                                                                      역ID
                                                                           지하철역
                                                                                                    무임하차
   for row in data:
                                                                [1]
                                                                      [2]
                                                                             [3]
       for i in range(4, 8):
           row[i] = int(row[i])
          if row[i] > max[i-4]: # 원본데이터의 컬럼 (인덱스-4) -> max리스트의 인덱스
              \max[i-4] = row[i]
              max station[i-4] = row[3] + ' ' + row[1] # '역이름 지하철노선' 추가
for i in range(4):
   print(f'{label[i]}: {max station[i]} {max[i]:,}'')
유임승차: 잠실(송파구청) 2호선 2,407,622명
유임하차: 잠실(송파구청) 2호선 2,389,008명
무임승차: 종로3가 1호선 310,689명
무임하차: 영등포 경부선 307,586명
```

전체 지하철역 승·하차 인원 분석 및 저장

- ■파일 저장: savefig('파일 이름', dpi)
 - 총 616개 지하철역의 승·하차 정보가 파일로 저장됨

전체 지하철 역 파이차트 분석

```
import csv
                                                                                      <day2 subwayfee 08.py>
import matplotlib.pyplot as plt
import platform
label = ['유임승차', '유임하차', '무임승차', '무임하차']
color list = ['#ff9999', '#ffc000', '#8fd9b6', '#d395d0'] # 파이 차트 컬러 값
pic count = 0
with open('subwayfee.csv', encoding='utf-8-sig') as f:
   data = csv.reader(f)
   next(data)
   if(platform.system() == 'Windows'):
       plt.rc('font', family='Malgun Gothic')
   else:
                                                                             지하철역
                                                                                                 무임승차
                                                          사용 월
                                                                 호선명
                                                                        역ID
                                                                                    유임승차
                                                                                           유임하차
                                                                                                        무임하차
       plt.rc('font', family='AppleGothic')
                                                                  [1]
                                                                         [2]
   for row in data:
       for i in range(4, 8):
           row[i] = int(row[i])
                                                            4개 항목에 대한 파이 차트 작성
       print(row)
       plt.figure(dpi=100) # 저장할 그림파일의 dpi 설정
       plt.title(row[3] + ' ' + row[1])
       plt.pie(row[4:8], labels=label, colors=color_list, autopct = '%.1f\%', shadow=True)
       plt.savefig('img/' + row[3] + ' ' + row[1] + '.png')
       plt.close() # 파일 닫기
                                                               img/지하철역이름 + 호선번호.png
       pic count += 1
                                     10개 역의
       if pic count >= 10:
                                 파이차트만 저장함
           break
```

지하철 시간대별 데이터 시각화

- 지하철 시간대별 데이터 활용
 - 출근 시간대 사람들이 가장 많이 타고 내리는 역은 어디일까?
 - 지하철 시간대별로 가장 많은 사람이 승·하차 하는 역은 어디일까?
- [지하철 시간대별 이용현황] 데이터
 - subwaytime.csv 파일로 저장 CSV UTF-8 파일 형식으로 저장
 - 데이터에 있는 1000자리 콤마를 제거
 데이터 속성: 숫자
 - 마지막 '작업일시' 컬럼 제거

지하철 시간대별 자료

- ■데이터 내용 (총 지하철 역의 시간대별 승·하차 인원수)
 - 승차시간: 교통카드를 찍고 들어오는 시각
 - 환승 인원은 확인 할 수 없음
 - 두 줄의 헤더 정보를 포함하고 있음

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	 [50]	[51]
사용 월	호선 명	역ID	지하철역	04:00	~04:59:59	05:00~05:59:59		06:00~06:59:59		 03:00~0	3:59:59
				승차	하차	승차	하차	승차	하차	승차	하차
23.Dec	1호선	1	서울역	700	35	7812	8436	12190	50415	0	0

사용월 호선명 역ID 지하철역 04:00:00~04:59:59 05:00:00~05:59:59 06:00:00~06:59:59 07:00:00~07:59:59 08:00:00~08:59:59 09:00:00~06	P Q R
23.Dec 1호선 0150 서울역 700 35 7812 8436 12190 50415 37075 105313 68020 218007 6721 23.Dec 1호선 0151 시청 73 1 2208 4356 3731 21903 7341 63969 9896 182565 1315 23.Dec 1호선 0152 중각 167 1 4280 4932 4329 25201 6459 98556 10114 244858 1283	09:59:59 10:00:00~10:59:59
23.Dec 1호선 0151 시청 73 1 2208 4356 3731 21903 7341 63969 9896 182565 1315 23.Dec 1호선 0152 종각 167 1 4280 4932 4329 25201 6459 98556 10114 244858 1283	하차 승차 하차
23.Dec 1호선 0152 종각 167 1 4280 4932 4329 25201 6459 98556 10114 244858 1283	18 160369 65860 8664
	54 92045 16154 4646
	34 148416 18502 6660
23.Dec 1호선 🚺 70153 종로3가 230 16 4174 2538 3621 11378 5454 23309 8475 61562 1294	40 61089 19368 5457
23.Dec 1호선 0154 종로5가 40 2 1862 3023 3027 14468 5753 38726 9099 90539 1358	85 64668 22511 5765
23.Dec 1호선 0155 동대문 876 24 11117 2085 8840 5685 14001 9896 19766 17228 1913	31 20927 17494 2292
23.Dec 1호선 0156 신설동 416 30 8628 1943 9192 8105 19443 20328 29568 51992 2070	02 31823 18772 2143
23.Dec 1호선 0157 제기동 398 5 4926 2045 7896 8073 19163 18337 30564 33073 2251	14 30452 23631 3340
23.Dec 1호선 0158 청량리(서울시 988 51 10364 2548 16198 11446 42147 16179 53214 34154 3534	44 33452 31854 3678
23.Dec 1호선 0159 동묘앞 186 2 2785 956 3330 4326 7069 7749 11703 18470 1019	99 15954 11962 1984

데이터 정수 변환

- map()함수
 - 리스트의 요소를 지정된 함수로 처리함
 - map 객체를 리턴

[1, 4, 9, 16] [1, 2, 3, 4]

- map(function, iterable)
 - 첫 번째 인자: 데이터에 적용할 **함수 이름 입력**
 - 두 번째 인자: 그 함수를 적용할 **데이터 입력**

```
def fun_square(x):
    return x**2

a = [1, 2, 3, 4]
a = list(map(fun_square, a)) # 각 숫자의 제곱
print(a)

data = ['1', '2', '3', '4']
data = list(map(int, data)) # int() 함수를 이용하여 문자열(data)을 정수로 변환
print(data)
```

시간대별 지하철 이용 인원 수

■ 새벽 4시 지하철 승차 전체 인원

<day2_subwaytime_01.py>

```
import csv
                                                     [1]
                                                         [2]
                                                                      [5]
                                                                  04:00~04:59:59
                                                                           05:00~05:59:59
                                                                                   06:00~06:59:59
                                                                                              03:00~03:59:59
result = []
                                                                                   승차
                                                                                                  하차
                                                                      하차
                                                                          승차
                                                                              하차
                                                     1호선
total_number = 0
with open('subwaytime.csv') as f:
    data = csv.reader(f)
    next(data) # 2줄의 헤더 정보를 건너뜀
    next(data)
                                             row[4:]: 인덱스 4부터 끝까지
    for row in data:
        row[4:] = map(int, row[4:]) # 문자열을 숫자로 변경
        total number += row[4]
        result.append(row[4])
print(f'총 지하철 역의 수: {len(result)}')
print(f'새벽 4시 승차인원: {total_number:,}')
총 지하철 역의 수: 621
새벽 4시 승차인원: 133,185
```

새벽4시 지하철 이용 인원 수 (그래프)

```
import csv
                                                                                         <day2 subwaytime 02.py>
import matplotlib.pyplot as plt
import koreanize matplotlib
with open('subwaytime.csv') as f:
   data = csv.reader(f)
   next(data) # 2줄의 헤더 정보 건너뜀
   next(data)
   result = []
   total number = 0
                                                                                                   새벽 4시 지하철 승차인원 현황
   \max num = -1
   max station = ''
                                                                                   10000
   for row in data:
                                                                                    8000
       row[4:] = map(int, row[4:])
       total_number += row[4]
                                                                                    6000
       result.append(row[4])
                                                                                    4000
       if row[4] > max num:
           max_num = row[4]
                                                                                    2000
           \max \text{ station} = \text{row}[3]
print('새벽 4시 승차 인원수: {0:,}'.format(total_number))
                                                                                                         300
print('최대 승차역: {0}, 인원수:{1:,}'.format(max_station, max_num))
result.sort() # 오름 차순으로 정렬 result.sort(reverse=True)
plt.figure(dpi=100)
plt.bar(range(len(result)), result)
plt.title('새벽 4시 지하철 승차인원 현황')
                                                                        새벽 4시 승차 인원수: 133,185
plt.show()
                                                                        최대 승차역: 구로, 인원수:10,986
```

출근 시간대 지하철 이용 현황 #1

- ■출근 시간대(7~9시까지) 모든 역의 승차 인원을 계산하고 내림차순으로 10개 역의 승차 인원을 막대 그래프로 출력 하시오.
 - 7시, 8시, 9시 승차: index=10, 12, 14

최대 승차 인원역: 신림(2호선) 576,994

출근 시간대 지하철 이용 현황 #2

<day2_subwaytime_03.py>

```
import csv
import matplotlib.pyplot as plt
import koreanize matplotlib
with open('subwaytime.csv') as f:
   data = csv.reader(f)
   next(data) # 2줄의 헤더 정보 건너뜀
   next(data)
   result = []
   total number = 0
   \max num = -1
   max station = ''
                                        row[10], [12], [14]:
                                       오전 7시, 8시, 9시 승차
   for row in data:
       row[4:] = map(int, row[4:])
       row_sum = sum(row[10:15:2]) # index 10, 12, 14
       \#row_sum = row[10] + row[12] + row[14]
       result.append(row sum)
       if row_sum > max_num:
           \max num = row sum
           max station = row[3] + '(' + row[1] + ')'
print(f'최대 승차 인원역: {max_station} {max_num:,}')
result.sort(reverse=True)
```

```
# 1행, 2열의 그래프 그리기
plt.figure(figsize=(10, 4))
ax1 = plt.subplot(1, 2, 1) # (행의 수, 열의 수, 인덱스)
plt.title('10개 역의 승차 인원수', size=12)
plt.bar(range(10), result[0:10])
plt.ylabel('승차인원수')
                                        sharey: y축 label
ax2 = plt.subplot(1, 2, 2, sharey=ax1)
                                             공유
plt.title('전체 역의 승차 인원수', size=12)
plt.bar(range(len(result)), result)
plt.suptitle('출근시간대 승차 인원 현황\n', size=20)
plt.tight layout()
plt.show()
                          suptitle():
                      subplot들의 전체 부모
                            타이틀
```

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8] [9]			[50]	[51]
사용 월	호선 명	역ID	역 이 름	04:00~	04:59:59	05:00~0	05:59:59	06:00~06:59:59			03:00~0	3:59:59
				승차	하차	승차	하차	승차	승차 하차		승차	하차
21.Apr	1호선	1	서울역	746	16	9151	6038	11560	33958		0	0

시간대별 가장 많이 승차하는 역 정보 분석

- ■시간대: 새벽 4시 ~ 다음날 새벽2시
 - 총 23개의 데이터
 - 새벽 3시는 지하철 운행 안함

[4시 구로]: 10,986 [5시 부천]: 36,908 [6시 신림]: 64,151 「7시 신림]: 168,672 [8시 신림]: 250,796 [9시 신림]: 157,526 [10시 신림]: 94,494 [11시 잠실(송파구청)]: 92,035 [12시 잠실(송파구청)]: 103,606 [13시 잠실(송파구청)]: 116,176 [14시 잠실(송파구청)]: 135,787 [15시 잠실(송파구청)]: 166,370 [16시 잠실(송파구청)]: 195,705 [17시 강남]: 246,610 [18시 삼성(무역센터)]: 298,236 [19시 강남]: 200,483 [20시 잠실(송파구청)]: 209,945 [21시 홍대입구]: 216,017 [22시 홍대입구]: 212,376 [23시 홍대입구]: 110,986 [0시 강남]: 16,352 [1시 종각]: 1,638 [2시 시청]: 13

시간대별 가장 많이 승차하는 역 정보 분석 #1

```
import csv
                                                                                                       <day2 subwaytime 04.py>
import matplotlib.pyplot as plt
import platform
import koreanize matplotlib
                                                                                                        [4]
                                                                                                                               [9]
                                                                                                                                           [51]
                                                                                                            [5]
                                                                                                                 [6]
                                                                                                                      [7]
                                                                                                                           [8]
                                                                                                                                      [50]
                                                                                          호선
명
                                                                                                   역 이
름
                                                                                               역ID
                                                                                                       04:00~04:59:59
                                                                                                                05:00~05:59:59
                                                                                                                          06:00~06:59:59
                                                                                                                                     03:00~03:59:59
with open('subwaytime.csv') as f:
                                                                                                                               하차
                                                                                                        승차
                                                                                                            하차
                                                                                                                     하차
                                                                                                                          승차
                                                                                                                                           하차
                                                                                                                 승차
                                                                                                                                      승차
    data = csv.reader(f)
                                                                                      21.Apr 1호선
                                                                                                   서울역
                                                                                                       746
                                                                                                                 9151
                                                                                                                     6038
                                                                                                                          11560 33958
    next(data)
    next(data)
    max = [0] * 23 # 새벽 3시는 지하철 운행 안함
    max station = \lceil '' \rceil * 23
    xtick list = []
    for i in range(4, 27):
                                            x축의 tick을 4, 5, 6, ... 23, 0, 1, 2시로
        n = i \% 24
                                                    표시하기 위함 (24 % 24=0)
        xtick list.append(str(n))
    for row in data:
         row[4:] = map(int, row[4:])
        for j in range(23):
             a = row[i * 2 + 4] # j=0: data[0 * 2 + 4]의 값을 max[0]에 저장하기 위함
            if a > max[i]:
                 max[i] = a
                 max station[j] = xtick list[j] + '시:' + row[3] # 4人/: 구로
    for i in range(len(max)):
        print(f'[{max station[i]}]: {max[i]:,}')
                                                                                                                                       24
```

시간대별 가장 많이 승차하는 역 정보 분석 #2

```
if(platform.system() == 'Windows'):
   plt.rc('font', family = 'Malgun Gothic')
else:
   plt.rc('font', family = 'AppleGothic')

plt.figure(figsize=(10, 10))
   plt.title('시간대별 최대 승차역 정보')
   plt.bar(range(23), max)
   plt.xticks(range(23), labels=max_station, rotation=80)
   plt.tight_layout()
   plt.show()
```

모든 지하철역에서 시간대별 승하차 인원 #1

- ■시간대별 전체 지하철역의 승차, 하차 인원 분포
 - 전체 역의 시간대별 승차, 하차 인원 누적 계산
 - y축: 1e7 (1 x 10⁷), 천 만명 단위

모든 지하철역에서 시간대별 승하차 인원 #2

<day2_subwaytime_05.py>

```
import csv
import matplotlib.pyplot as plt
import koreanize matplotlib
with open('subwaytime.csv') as f:
   data = csv.reader(f)
   next(data)
   next(data)
   subway in = [0] * 24 # 승차 인원 저장 리스트
   subway_out = [0] *24 # 하차 인원 저장 리스트
   for row in data:
       row[4:] = map(int, row[4:])
       for i in range(24):
           subway in[i] += row[4+i*2]
           subway out[i] += row[5+i*2]
   if(platform.system() == 'Windows'):
       plt.rc('font', family='Malgun Gothic')
   else:
       plt.rc('font', family='AppleGothic')
```

```
xtick_list = []
for i in range(4, 28):
   n = i \% 24
   xtick_list.append(str(n))
plt.figure(dpi=100)
plt.title('지하철 시간대별 승하차 인원 추이', size=16)
plt.grid(linestyle=':') # 그리드 라인 표시
plt.plot(subway in, label='승차')
plt.plot(subway out, label='하차')
plt.legend()
plt.xticks(range(24), labels=xtick_list)
plt.xlabel('시간')
plt.ylabel('인원 (천만명)')
plt.show()
```

lambda와 operator를 사용한 dictionary 정렬

■ lambda를 사용한 정렬

```
import operator
names = {'Mary':10999, 'Sams':2111, 'Aimy':9778, 'Tom':20245, 'Michale':27115, 'Bob':5887, 'Kelly':7855}
# Key를 기준으로 정렬 (기본: 오름차순)
print("[lambda] dict 정렬: key 기준 오름차순")
                                                            x[0]: key 기준
res = sorted(names.items(), key=(lambda x: x[0]))
print(res)
print()
# Value를 기준으로 정렬, 내림차순: reverse=True
print("[lambda] dict정렬: value 기준, 내림차순")
                                                                      x[1]: value 기준
res = sorted(names.items(), key=(lambda x: x[1]), reverse=True)
print(res)
[lambda] dict 정렬: key 기준 오름차순
[('Aimy', 9778), ('Bob', 5887), ('Kelly', 7855), ('Mary', 10999), ('Michale', 27115), ('Sams', 2111), ('Tom', 20245)]
[lambda] dict 정렬: value 기준, 내림차순
[('Michale', 27115), ('Tom', 20245), ('Mary', 10999), ('Aimy', 9778), ('Kelly', 7855), ('Bob', 5887), ('Sams', 2111)]
```

lambda와 operator를 사용한 Dictionary 정렬

- operator 모듈
 - 파이썬 내장 연산자에 대한 많은 함수들을 포함
 add(), lt(), le(), itemgetter(), attrgetter() 등

```
import operator
names = {'Mary':10999, 'Sams':2111, 'Aimy':9778, 'Tom':20245, 'Michale':27115, 'Bob':5887, 'Kelly':7855}
# kev를 기준으로 정렬 (오름차순)
sorted x = sorted(names.items(), key=operator.itemgetter(0))
print("[operator] dict정렬: key 기준, 오름차순")
print(sorted x)
print()
# value를 기준으로 정렬 (내림차순)
sorted x = sorted(names.items(), key=operator.itemgetter(1), reverse=True)
print("[operator] dict정렬: value 기준, 내림차순")
print(sorted_x)
[operator] dict 정렬: key 기준, 오름차순
[('Aimy', 9778), ('Bob', 5887), ('Kelly', 7855), ('Mary', 10999), ('Michale', 27115), ('Sams', 2111), ('Tom', 20245)]
[operator] dict 정렬: value 기준, 내림차순
[('Michale', 27115), ('Tom', 20245), ('Mary', 10999), ('Aimy', 9778), ('Kelly', 7855), ('Bob', 5887), ('Sams', 2111)]
```

Excel 파일 열기

- *xlrd 라이브러리 설치
 - Excel 파일 포맷(xls 또는 xlsx)을 읽기 위한 패키지

conda install xlrd

- Pandas에서 엑셀 파일 읽기
 - pd.read_excel('파일이름', sheet_name='엑셀시트이름', header=[0,1])
- 출퇴근 시간대 이용 현황

<day2_subwaytime_excel_01.py>

import pandas as pd # 지하철 시간대별 이용현황

df = pd.read_excel('subway.xls', sheet_name='지하철 시간대별 이용현황', header=[0, 1])
df.head()

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	 [50]	[51]
사용 월	호선 명	역ID	역 이 름	04:00~04:59:59		05:00~05:59:59		06:00~06:59:59		 03:00~0	3:59:59
				승차	하차	승차	하차	승차	하차	승차	하차
21.Apr	1호선	1	서울역	746	16	9151	6038	11560	33958	0	0

header[0]

header[1]

	사용월	호선명	역ID	지하철역	04:00:00~0	4:59:59	05:00:00~	05:59:59	06:00:00-	-06:59:59		23:00:00~23:59:59	00:00:00~0	00:59:59
	Unnamed: 0_level_1	Unnamed: 1_level_1	Unnamed: 2_level_1	Unnamed: 3_level_1	승차	하차	승차	하차	승차	하차	•••	하차	승차	하차
0	2023-12	1호선	150	서울역	700	35	7,812	8,436	12,190	50,415		15,733	3,170	4,088
1	2023-12	1호선	151	시청	73	1	2,208	4,356	3,731	21,903		5,965	4,290	1,523
2	2023-12	1호선	152	종각	167	1	4,280	4,932	4,329	25,201		5,317	2,621	1,402
3	2023-12	1호선	153	종로3가	230	16	4,174	2,538	3,621	11,378		7,655	7,239	2,844

• 모든 컬럼 내용 확인

```
df.columns
          MultiIndex([(
                               '사용월', 'Unnamed: 0_level_1'),
                               '호선명', 'Unnamed: 1 level 1'),
                              '역ID', 'Unnamed: 2_level_1'),
                              '지하철역', 'Unnamed: 3_level_1'),
                   ('04:00:00~04:59:59',
                                                 '승차'),
                   ('04:00:00~04:59:59',
                                                '하차'),
                   ('05:00:00~05:59:59',
                                                 '승차'),
                                                 '하차'),
                   ('05:00:00~05:59:59',
• 특정 컬럼 데이터 가져오기: 호선명
  - MultiIndex의 경우, 튜플 형식으로 접근
     ▶ df[('첫 번째 행', '두번째 행')]
```

```
      df[('호선명', 'Unnamed: 1_level_1')]

      0
      1호선

      1
      1호선

      2
      1호선

      3
      1호선

      4
      1호선

      ...
      610

      611
      신림선

      620
      신림선
```

• 특정 컬럼 데이터 가져오기: 지하철역

```
    df[('지하철역', 'Unnamed: 3_level_1')]

    0
    서울역

    1
    시청

    2
    종각

    3
    종로3가

    4
    종로5가
```

- DataFrame에서 여러 컬럼 선택
 - iloc[row_index, col_index] (iloc: integer location)
 - -iloc[:,[1,3,10,12,14]]: 모든 행과 1,3,10,12,14 열 선택

```
commute_time_df = df.iloc[:, [1, 3, 10, 12, 14]]
commute_time_df.head()
```

	호선명	시하절역	07:00:00~07:59:59	08:00:00~08:59:59	09:00:00~09:59:59
	Unnamed: 1_level_1	Unnamed: 3_level_1	승차	승차	승차
0	1호선	서울역	37,075	68,020	67,218
1	1호선	시청	7,341	9,896	13,154
2	1호선	종각	6,459	10,114	12,834
3	1호선	종로3가	5,454	8,475	12,940
4	1호선	종로5가	5,753	9,099	13,585

• 모든 컬럼의 데이터 타입 확인

```
      호선명
      Unnamed: 1_level_1
      object

      지하철역
      Unnamed: 3_level_1
      object

      07:00:00~07:59:59
      승차
      object

      08:00:00~08:59:59
      승차
      object

      09:00:00~09:59:59
      승차
      object

      object
      cobject
      cobject

      object
      object
      object

      object
      object
      object
```

- 천 단위 콤마 제거
 - apply(lambda x : x.replace(',', '')

```
commute_time_df[('07:00:00~07:59:59', '승차')] = commute_time_df[('07:00:00~07:59:59', '승차')].apply(lambda x : x.replace(',',''))

commute_time_df[('08:00:00~08:59:59', '승차')] = commute_time_df[('08:00:00~08:59:59', '승차')].apply(lambda x : x.replace(',',''))

commute_time_df[('09:00:00~09:59:59', '승차')] = commute_time_df[('09:00:00~09:59:59', '승차')].apply(lambda x : x.replace(',',''))

commute_time_df[('09:00:00~09:59:59', '승차')] = commute_time_df[('09:00:00~09:59:59', '승차')].apply(lambda x : x.replace(',',''))

commute_time_df
```

	호선병	시하설억	07:00:00~07:59:59	08:00:00~08:59:59	09:00:00~09:59:59
	Unnamed: 1_level_1	Unnamed: 3_level_1	승차	승차	승차
0	1호선	서울역	38148	66885	57091
1	1호선	시청	7195	9565	11529
2	1호선	종각	6369	10271	12959
3	1호선	종로3가	5176	8742	13883

- 데이터 타입 변경: object에서 int64로 변경
 - df.astype({'컬럼명': '변경타입'})

```
commute_time_df = commute_time_df.astype({('07:00:00~07:59:59', '승차'):'int64'})
    commute time df = commute time df.astype({('08:00:00~08:59:59', '승차'):'int64'})
    commute_time_df = commute_time_df.astype({('09:00:00~09:59:59', '승차'):'int64'})
    commute time df.dtypes
    호선명
                   Unnamed: 1 level 1
                                   object
    지하철역
                    Unnamed: 3_level_1
                                    object
    07:00:00~07:59:59 승차
                                   int64
    08:00:00~08:59:59 승차
                                   int64
    09:00:00~09:59:59 승차
                                   int64
    dtype: object
                                                                                     172313
• 각 행(지하철 역)의 승차 인원 수 합 계산
                                                                                      30391
                                                                                      29407
  - 행(row)의 합: df.sum(axis=1)
                                                                                      26869
                                                                                      28437
  - 열(column)의 합: df.sum(axis=0)
                                                                                      . . .
                                                                                616
                                                                                      42803
                                                                                      14506
     row sum df = commute time df.sum(axis=1, numeric only=True)
                                                                               617
                                                                               618
                                                                                      43910
     passenger_number_list = row_sum_df.to_list()
                                                                               619
                                                                                      96672
                                                                                      14947
     row_sum_df
                                                                               620
```

Length: 621, dtype: int64

- 최대값 및 최대값 인덱스 찾기
 - 최대 승차 수를 가지는 지하철 역 찾기
 - 최대값 계산: df.max(axis=0)
 - 최대값 인덱스: df.idxmax()

```
max_number = row_sum_df.max(axis=0) # 해당 열에서 최대값 찿기
max_number
```

576994

출근 시간대 최대 승차 인원역: 2호선 신림 576,994명

• bar-chart 그리기

```
import matplotlib.pyplot as plt

passenger_number_list.sort(reverse=True)
plt.figure(dpi=100)
plt.bar(range(len(passenger_number_list)), passenger_number_list)
plt.show()
```


Questions?