2020 자율주행차 표준화 동향 및 표준화 활동(성과) 개요

본 발표자료는 "2020년 표준기반 R&D 로드맵" 자료에 기반합니다 참여해 주신 전문가분들께 감사드립니다

자세한 내용은 로드맵 책자에서 확인하실수 있습니다

서 론

자율주행차 표준

Automated Vehicle Standardization Scope

Standardization vs Technology

ISO/SAE NP PAS 22736: Taxonomy and Definitions for ADS

Standardization Network

국제표준(ISO,IEC,ITU), 지역표준(유럽표준위원회CEN..), 국가표준, 단체표준, 사내표준 공적표준(de jure standard) vs 사실상표준(de facto standard)

^{*} AVSC(Automated Vehicle Safety Consortium)

표준 연계 자율주행차 국내외 정책현황

V2X 통신 국제 동향 자율차 국제표준 정부 정책 자율차 산업화 정책 정부 과제 자율차 R&D 사업 자율차 표준화 전략 표기력 사업 표준 정책 KS 정책

표준 이슈 사항

2019년

`19.4/EU C-ITS : DSRC 표준 `19.7/EU 5G-V2X / DSRC

미 SAE 주도 AVSC 결성 ISO PWI 23516 AV TEST

과기부(5G+), 국토부(자율주행산업협의회)

AI 기반 자율주행 컴퓨팅 사업 (표준: 자율주행융합기술표준화) 171억/3년(산업부, 과기부)

자율차 표준화 포럼 1차년도 S-Dialogue (한독 표준협력) (한미, 한아세안등 시도)

자율차 안전 및 DSS 표준제안

2020년

- 5G 3GPP Rel. 16 완료(NR_V2X) V2X 표준 포함
- 자율주행차 테스트 시나리오 표준 부각
- 자율차 안전/보안 : SOTIF, OTA, CS, 제어권전환등

- V2X 통신방식 결정 이슈 고조
- `20년 레벨3 자율주행 상용화(안전기준 법령, 7월)

- 🗽 자율주행기술개발혁신사업(1조/7년) -> `21년 시작
- 생태계(표준 : 글로벌 자율차 표준역량 강화사업)
- 산업부등 4개 부처 공동
- 자율차 표준화 전략 로드맵 작성 진행 (국제표준: `23년 25개 목표, KS 전략 수립)
- 인간공학 : 드라이버 모니터링 시스템 요구사항(1건)
- 차량제어 : MRM, 자율차 보행자 충돌보호(2건)
- 사고영상 DB 구축 (기반구축 1건) SBS 컨소시엄
- UNECE 표준 연계 연구(연구용역 1건) 안전 이슈
- KS 부합화 추진계획(초안):
- COSD(29건), 표기력(21건) 기반 추진 및 제정 진행

코로나19

- KS 고유제정에 대한 이슈 부각 (단체표준-KS-ISO, 기술기준 사이의 연관성 강화)
- 표준과 연계한 자율차 정책 정책 및 산업 연계 협의

자율차 표준화 동향: ISO

자율주행차 표준과 관련된 일부 사례

• ISO TC22 SC31 표준화 개요

WG 2 : 차량 진단 프로토콜

 UDS(Unified Diagnosis Service, 통합 진단 서비스): 자동차 ECU에 대한 진단 서비스를 제공하기 위한 것 (ISO 14429 ..)

WG 3 & WG 9 : 차량 네트워크 및 센서 인터페이스

- 차량내 네트워크 CAN, FlexRay, MOST, Ethernet 기술의 표준화를 진행
- 자율차의 센서 융합을 위한 카메라, 라이다, 초음파센서등의 논리적 I/F 표준화 (메시지, 데이터 포맷등)

WG 6 & WG 10 : Extended Vehicle

- ExVe는 자동차 제조사가 운영하는 텔레매틱스 서버에서 차종별로 특화되어 있는 데이터 통신을 일반화 하기 위한 것임
- WG10에서는 Time Critical 응용 서비스 제공에 관한 표준화 진행

자료 : 윤현정 분과장(자율차 표준화 포럼)

ExVe (Extended Vehicle) Standard (WG6)

- ExVe is IS developed by Automotive sector which encompass the vehicle and its off-board servers.
- It is open to ecosystem, but its interface and defined by the vehicle manufacturer based on ISO standard.
- It provides a secure access to the vehicle's data

Published Standards

- Series ISO 20077 " Road Vehicle – Extended Vehicle(Exve) Methodology

Part-1: General Information (2017-12)

Part-2: Methodology for designing the ExVe

- Series 20078 " Road Vehicle - Extended Vehicle WEB Service "

Part-1: Content (2019-2), Part-2: Access (2019-2)

Part-3: Security (2019-4), TR Part-4: Control (2019-4)

- ISO 20080 "Road Vehicle – Information for remote diagnostic support General Requirment, Definition and Use Case (2019-3) "

표준화 사례: Extended Vehicle

Overview of entities (ISO 20078)

Resource: Technical R.(Number of axles, vehicle color etc), Personal R., Anonymous R (Traffic sign recognition),

Pseudonymized R. (component suppliers)

Container: a selection of resources

ISO CD 23150: Sensor Data Interface - 센서 데이터 논리적 I/F 표준

• ISO TC39 표준화 개요

인간 공학 기술 : 운전 제어권 분야

- 자율주행 환경에서 인적 오류 탐색 및 운전자/탑승자를 포함한 차량 외부상황 파악하여, 위험경고 및 제어권 전환을 통해 안전 운전을 지원하는 분야
- Naturalistic Driving을 통해 운전자의 부적절한 행위, 상태, 활동에 대해 정의 자율주행 모드(수동 vs 자동) 연관 인지성능에 미치는 영향, 운전자 모니터링등
- 자율주행 상황에서의 제어권 전환준비 상태 측정 및 인지능력 표준화등 추진

자료 : 강혜은 수석 (자율차 표준화 포럼)

인간공학 표준화 개요

- Methods for evaluating other road user behavior in the presence of AV external communication (ISO AWI TR 23720)
- Ergonomic design guidance for external visual communication from Automated vehicles to other road users (ISO AWI TR 23735)

- (신규 논의) Driver Monitoring and System Interventions
- Contents:
 - Driver monitoring for Level 3 , Driver Monitoring for Level 2
 - System Interventions

ISO TR 23049 : 2018

Level 4, 5

ISO / TC 22 SC39 WG8 ISO TR 23049 : 2018

Road Vehicle – Ergonomics aspects of external visual communication from Automated vehicles to other road users

Virginia Tech

Solid, center white light

Vehicle is driving autonomously

Two white light

Vehicle is about to yield to a full stop

Rapidly blinking white light

Vehicle is beginning to accelerate from a stop

ISO TR 21959-1:2018, ISO TR 21959-2:2020

Level 3, 4

ISO TR 21959: Human Performance and state in the context of Automated Driving

"This Technical Report focuses on system-initiated and human-initiated transitions from a higher level to a lower level of automated driving. Human factors and system factors that may influence takeover performance are included "

Ex 1: Transition process model for system-initiated transitions from automated to manual driving

ISO TC204 WG 14 표준화 개요

(자율주행 시스템)

직선구간 자율주행(PADS), 자동차선변경(PALS), 자동주차(PAPS)
 자동발렛파킹(AVPS), 군집주행, 저속자율주행셔틀(LSAD), 레벨3 자율주행(MCS)
 자율주행긴급안전 시스템(MRM), 자율주행정의등

(능동 안전 경고 및 제어 시스템)

- 자율주행 레벨 0 (경고), 레벨 1(종방향, 횡방향 자동제어)등 능동안전 시스템
- (경고) 차선이탈 경고, 전방차량 추돌, 곡선구간 속도경고등
- (제어) 차간거리 자동제어(ACC), 차선 유지보도(LKAS), 주차지원(APS)등

(통합 안전 시스템)

- V2X 통신에 기반한 안전 경고 및 제어 시스템
- V2X 탑재형 ACC(CACC), 전방차량 급제동(EEBL), 교차로 안전경고(VVICW)등

자료 : 유시복 센터장(자율차 표준화 포럼)

TC 204 WG 14 표준화 진행 예

CALC : Collision Avoidance in-lane Lateral Control system RBDPS : Road Boundry Departure Prevention System

BDCMS : Bicyclist detection and collision mitigation system

PADS: Partially Automated in-lane Driving system PALS: Partially Automated Lane Change System

LSAD: Low Speed Automated Driving system limited ODD

표준화 사례: CACC

ISO Standard: ACC, CACC (Requirments, Performance Evaluation Test method)

Functional ACC Elements

Functional CACC Elements

- 1: Forward Vehicles Data Sensed by Active Sensing
- 2: Surrounding Vehicles Data Received by DSRC: Requirment
- 3: Host Vehicel Data
- 4: Set Speed, Time Gap, and other standard message
- 5: Set Speed, Time Gap

표준화 사례: CACC

• 정밀 지도 표준화 개요

(표준화 개요)

- 지리정보 데이터 공급자 간의 데이터 교환방법
- 고속 검색을 위한 소형 저장소와 이에 대한 접근방법을 정의하는 API 표준
- 정밀지도 관련 기능요구사항, 이종 데이터베이스간 위치정보 교환 방법
- 자율주행시스템에 활용되는 정적/동적 데이터 모델
- 차로 수준의 위치 참조 방법
- ITS 응용간 지리 객체정보 교환 방법

(동적맵(Dynamic Map) 표준화)

- 데이터 교환 : GDF 5.0을 확장하는 GDF 5.1(DIS 20524) 진행
- API
- 데이터 모델(데이터 유형, 특성, 구조등): AWI 22726-1 표준화 진행

자료 : 양인철 연구위원 (자율차 표준화 포럼)

ITS Database Technolog for ADS

ISO 17572: Location Referencing

- ISO 17572-2:2018 : 마스터 DB 사용법 (Pre-coded location referencs)

- ISO 17572-3:2015 : 동적 위치 참조방법 (Dynamic location references)

- ISO 17572-4:2020 : 차로수준 동적위치 참조 방법(Lane-level location referencing)

ISO 19297-1: 2019 - Shareable Geospatial DBs

ISO AWI TS 22726 Dynamic data and map data spec. for CAV app.(LDM Logic Model)

ISO 14825 : Geographic Data File , 차량 네비기반

ISO 20524-1:2020 - GDF 5.1 Part1, 정밀지도기반

DIS 20524-2: GDF 5.1 Part2

TS 20452 : Logical Model for PSF (2007)

Local Dynamic Map(LDM)

ISO/TR 17424:2015 : LDM Type, Status of LDM, Architecture, Implementation ISO 18750:2018 : Functionality, General characteristics of LDM Data object (ESTI(유럽전기통신표준회) LDM 표준 : EN 302 895)

ITS Station (Vehicle) **ITS Station** (Centre) ITS Station ITS **Applications** Local Dynamic **ITS Station** Map (LDM) (Roadside) In-Station Sensors Relationship between LDM and information source

[지도정보 유형분류]

표준화 사례: ISO 22726

An example of typical systems and environment

Road Model: Comparison of th road model

	Traditional Road Network	Extended Road Network	Road Belt Network	Lane Belt Network
Standard	20452	14296	22726-1	22726-1
Main Purpose	Navigation	Navigation / C-ITS	Automated Driving	Automated Driving
Layer structure	multiple	multiple	single	single
	Link(Road element)	Road element	Road belt element	
Network Component		Lane(partly)		Lane Belt Element
	Node(Junction)	Intersection	Intersection Belt	Lane Belt Joint
		ICP		
	Condition	Traffic Restriction	Road Traffic Restriction	Lane Traffic Restriction
Shape	Line / Point	Line / Point	Belt	Belt / Line

45

ISO TC22 SC32

• 전장시스템 기능안전 및 사이버보안

(표준화 개요)

- TC 22 SC 32 : 자동차 전기 전자 부품 및 시스템에 대한 표준 진행
- WG 8 : Functional Safety , SOTIF
- WG 11 : Cybersecurity
- WG 12: OTA (Software Update)

(주요 진행 표준)

- ISO CD 21448: Safety of The Intended Functionality
- ISO DIS 21434 : Cybersecurity Engineering
- ISO AWI 24089 : Software Update Engineering

[차량안전 실패 사례]

• 다카타 에어백 사태

- 2009년 : 미국에서 혼다 어코드 운전자, 에어백 이상 폭발로 사망 리콜급증

- 2013년 : 혼다 대량 리콜. 도요타, 닛산, 마쓰다, BMW 리콜

2014년 : 뉴욕타임즈 (다카타-혼다 2004년 에어백 결함 은폐 보도)

미국 NHTSA 진상조사. 미소비자 집단소송. 미 상하원 청문회

- 2015년 : 다카다 잘못 첫 시인 (결함원인 질산암모늄)

- 2017년 : 미법원 벌금+보상금 총 10억달러 자불 명령

- 결과 : 20명 사망. 전세계 1억대 리콜, 리콜비용(13조원), 다카타 도산

- 도요타 차량 급발진 사태
- 2007년 ~ 2009년 도요타 차량에서 급발진 의심, 운전자 사망사고 발생
- 2010년 : 미국 NHTSA 문제차량 리콜조치
- 2010년 : 도요타 사장 미 하원 청문회 조사 참석 및 사과 성명 발표
- 도요타 주요 차종애 대해 전세계 총 1200만대 이상 리콜 (`09년 ~ ~10년 24억달러 이상 비용 발생)
- 미국내 약 400건 소송중 338건 합의, 총 16억달러 배상
- 미정부와 형사처분 유예 최종합의(`14) -> 1.2억달러 벌금
- 도요타는 리콜/배상/벌금등 총 5조원 이상 직접 피해 발생

• 자동차 전장 품질

CMM: Capability Maturity Model Integration (수산업계 SW 개발절차 평가기준)

A-SPICE: Automotive SW Process Improvement Capability determination (자동차 전용 SW 개발절차 평가기준

• 시스템 안전성 평가: SOTIF

29

자료 : 현대자동차

^{*} Triggering Event : 고장은 아니지만 시스템 한계, 운전자 오조작에 의한 위험 유발 요인

기능안전 정의

- 자동차 기능안전 정의
 - 과거 품질표준의 보증범위는 자동차 개발과정에서 발생하는 문제로 인한 고장에 국한

30

 완성차 업체는 잠재적으로 일어날 가능성이 있는 확률과 사고 시 승객 상해 정도를 낮추어 기능안전을 확보함

자료 : 현대자동차

- 기능안전 표준(ISO 26262)
 - 차량안전 시스템 복잡성 증가에 따른 품질 확보를 위해 "자동차 전용 전장 안전 품질표준" 제정
- 차량 전장 안전성 확보를 위해 "개발에 필요한 절차/기준등을 표준화, 문서화 한 개발프로세스 "

ISO 26262 개요 및 세부사항

- 목적 : 차량 전기전자 시스템 안전 및 품질확보
- 제정 : 유럽 OEM 및 부품업체 참여, 제정(`11.11 ~)
 9개국 19개사 참여(BMW, VW, 보쉬등)
- 효과 : 유럽내 PL 소송시 면책/경감 고려중
 - State-of-the art로 인정
 - 현재까지 26262관련 PL 소송 사례 없음
- 주요 내용 :
 - 기능안전 개발 및 적용 관련 요구사항 정의
 - 총 10개 파트 구성 : Part 1 ~ 10
 - 2nd Edition : 12개 파트로 개정

1.용어: ISO 26262 용어정의

2.기능안전관리: 안전관리를 위한 운영 요구사항

제품구상 제품 개발 생산, 운영

- 3. 컨셉 단계
- 4. 제품개발-시스템 : 시스템레벨 안전설계/검증
- 7. 생산, 운영

- 기능정의
- ASIL 등급
- 안전요구사항
- 5. 제품개발 HW 생산
- .: 서마기를 11W : HW 안전설계/검증 - 폐기
- 6. 제품개발 SW : SW 안전설계/검증
- 8. 지원프로세스: 안전요구사항 문서화, SW 개발 툴 기준
- 9. ASIL 및 안전분석 : 안전등급 및 안전분석 가이드
- 10. 가이드라인: ISO 26262 적용 가이드라인(HW 고장분석등)
- 11. 차량용 반도체
- 12. Motor Cycle

• 기능안전 추진사항 : 차량안전 위험도 정량화

주요 안전 정장시스템에 대한 ASIL 등급화를 통해, 차량 위험도 기반 체계적 전장 품질관리 체계 정립

- ISO/SAE 21434 How did this begin ?
- SAE issued Best Practice document
 - J3061 " Cybersecurity Guidebook for Cyber-Physical Vehicle System "
 - Issued January 14, 2016
- Sept. 2016 : Partnership Standards Development Organization(PSDO)
 - Announce cooperation agreement between ISO and SAE in two areas (Road Vehicle, ITS)
- ISO/SAE 21434: The first standard to be created under new agreement
 - 2016. 10. 5 : New Project approved (ISO Home Page)
- Cybersecurity activities/processes for all phase of vehicle lifecycle
 - Design and Engineering
 - Production, Operation by customer
 - Maintenance and Service
 - Decommissioning

Cyber Security

- ISO / TC 22 SC32 WG11 : Cyber Security
 - Current Project: ISO/SAE 21434 (" Road Vehicle Cybersecurity engineering")
- Challenge of Security in Automotive

- enisa: European Union Agency for Network and Information Security
- ECS: European Cyber Security Organization

OTA 2018년 6월7일, TC22 SC32 회의(부산 벡스코)

- ISO AWI 24089 Road Vehicle Software update engineering
- OTA 규격 제안
 - 제안국 : 일본
 - Scope of standard
 - 1. End-to-End process requirement : Concept development Production use in the market end of life
 - 2. End-to-End product requirement
 - 3. Wired and wireless use case

• C-ITS 중심의 표준화

(C-ITS 통신, WG16)

- ITS에 사용되는 통신 시스템 표준을 개발
- 물리계층은 개발하지 않으며, ITS 기능, 프로토콜, 인터페이스 규격등 표준개발
- 대표 사례 : ISO 21215 (ITS-M5) IEEE802.11p + IEEE 1609 = WAVE

(C-ITS, Cooperative ITS, WG18)

- C-ITS는 ISO/TR 17465-1에 정의 되어 있음
 - 도로교통의 안전성, 지속성, 효율성을 증대키 위해 ITS 시스템 및 ITS 스테이션과 ITS 어플리케이션간의 상호통신 및 정보교환등을 통하여 협력을 지향하는 시스템
- 표준범위: ITS station, ITS 서비스, ITS 어플리케이션, In-Vehicel Information

CALM: Communication Access for Land Mobile

- The aim of CALM is to provide wide area communication to support ITS app.
- The CALM concept is providing continuous communication. : V2V, V2I, I2I
- CALM standards are supporting various communication media. (2G, 3G, WiFi ... WAVE, LTE, 5G)
- CALM is actually a related set of protocols, procedures and management processes.
 - Supporting IP and Non-IP service.
 - CALM Fast: Safety service between car based on Non-IP, single and multi HOP

Standardization of communications for ITS

- CALM Architecture (ISO 21217)
 - Specifying the reference architecture for ITS station in CALM system
 - CALM system consists of 4 subsystems : RSU, OBU, Personal Device, Central System
 - Subsystem include an ITS station
- ITS station feature various communication format, 16 communication classes.
 - By multihop comm. / IPv6, non-IP / Handover / Internet connection
- CALM ITS Station Management (ISO 24102)
- CALM Media (ISO 21218 , ISO 21215, ISO 21214) : 2G, 3G, IR.....
- CALM Network (ISO 21210)
- CALM non-IP networking (ISO 29281)
- Application management (ISO 24101-1)

Standardization of communications for ITS

- WAVE , in US
 - In US, Use of the 5.9 GHz band for ITS was formally granted in 1999
 - The WAVE protocol was issued as IEEE802.11p in 2010 (Draft from 2005)
 - Message set was issued from SAE in 2006 (Revised in 2009, 2015, 2016)
 - The WAVE MAC, WSMP was issued as IEEE 1609.4, IEEE1609.3 in 2007
- Also the basis of a European standard for vehicular communication known as ETSI ITS-G5

Standardization of communications for ITS

• 3GPP(5G): 표준화 선도

	2016	2017		20	18	2019	2020
3GPP	3GPP Rel. 14 V2X Phase 1 (LTE_V2X) LTE V2X 서비스 지	원	3GPP Rel. 15 V2X Phase 2 (LTE_eV2X)	Ju G V2X 서	ne 3GPP Rel V2X Phas (NR_V2X) 비스 지원	e 3	C.

	LTE V2X	5G V2X (LTE_eV2x, NR_V2X)
최대 지연 시간	100ms, 20ms(특정이벤트) 1000ms(3GPP망 경유시)	3 ~ 100 ms
메시지 크기	50 ~ 300 Bytes (주기성) 1200 Bytes (이벤트성)	300 ~ 12,000 Bytes (이벤트성)
최대 차량 속도	250 km/h (절대속도) 500 Km/h (상대속도)	250 km/h (절대속도) 500 Km/h (상대속도)
최소 유효 서비스	20 ~ 320 미터	50 ~ 1000 미터

5G - USE CASE

www.5GAA.ORG

• Harmonizing : C- ITS 통신 표준화

^{*} IEEE WAVE Short Message Protocol (WSMP), the ISO Fast Networking & Transport Layer Protocol (FNTP).

ISO TC204 WG17 – Nomadic Device vs ADS

Nomadic Devices in ITS System

• 자율차 표준화 활동 방향

- 자율주행차 표준화 포럼 : 포럼 중심의 전문가 유입 활성화 및 국제표준 제안 협의
- (2020년) 실질적인 2차년도 포럼진행 (시스템에 의한 신규 표준 도출 및 협의 환경 구축)

- 자율주행차 표준화 포럼 : 총회 및 국제 컨퍼런스 개최 : 2019. 11. 26
- 국제 표준화 추진 현황 및 전략, 자율차 표준 및 기술 국제 동향 발표

- 한-독 표준 협력 대화 (자율주행차 분야) : `19. 11. 28 ~ `19. 11. 29
- 국내 표준 현황 및 독일 현황 발표 및 토의, 양국 국제표준 협력방안 협의
 - 국내 제안 분야 : Electronic Display for Vehicle Application Accident Data Recorder for Autonomous Vehicle Ergonomics DMS(Driver monitoring system)

- 자율주행차 표준화 세미나 : 2019. 7. 11 COEX
- 자율주행차 분야별 전문가 세미나 실시

• R&D 연계 표준화 추진 - 예타 사업 중심으로 전개, 기업협력 기반 마련

정부 과제 주관 기관 연계

- 정부과제 주관 기관 : 표준 협력
- 개발 기술의 표준 연계의 필요성 교류

(2020년 ~) 정부과제

■ 범부처 주력 사업: 자율차 예타사업

- 사업목표 : `27년 융합형 레벨4 자율주행 상용화

- 사업명 : 자율주행 기술개발 혁신사업

- 사업기간 : 2021년 ~ 2027년

- 예산 : 1조 974억

- 사업형태 : 범부처(산업부, 과기부,국토부,경찰청)

- 사업분야 : 총 5개분야

차량융합, ICT 융합, 도로교통융합, 서비스, 생태계

- (표준화)

글로벌 역량확보를 위한 자율주행 핵심국제표준 및 특허선도기술 연구

• 자율 주행차 표준화 로드맵 기획을 통한 신규 제안 도출 - 신규 도출안의 추진 실효성 강화

			2021	#		2023년
데 이 터	자 제 표 전	신규제안	●센서융합 처리를 위한 센서-융 유닛간 인터페이스 ②ExVe 기반 자율주행 지능학습데이 수집 플랫폼 표준	⑥ 자율차 AI 에이전트 평기	· 시스템	
인 간 공 학	국 제 표 준	신규제안	운전자모니터링 평가지표(Lv3) ④ 운전자모니터링 평가지표(Lv4) ⑤ 전장용 Display 요구사항	☞ 주행의도 표시 정보(컨턴	<u>!</u> 츠) 표준	

				2021년		2023년
정 밀 지 도	국 제 표 준	신규제안	① Lv4 대응 동적 데이터 표 ②Lv4 대응 정밀맵 교환기 :		Lv4 대응 동적위치 참조 표 온라인 전자정밀지도 갱신 ⑤전자정밀지도 데이터 품	표준 신 기술

• 신규 국제표준 제안 도출 추진

	2018	2019	2020		2021	2022	2023	2024
클라우드 데이터 서비스 (ExVe)	표준 회의 참여	ᅧ 활동				위한 센서-융합 유닛? 자율주행 지능학습 데		>
차량 제어	EEBL , MRM	제안 활동			V2X/맵 기 전방위 통합	반 경로생성 및 속도저 합위험도 판단 및 긴급	어 기술 조향,제동 협조제어	기술
정밀 지도	Shareable Ge	ospatial Databas	ses 제안 활동		CV 및 CA\ 온라인 정	/ 서비스를 위한 데이E 밀전자지도 부분 갱신	러 모델 (정적/동적 <i>·</i> 기술	사양)
기능안전 , SOTIF	표준 회의 참여	ᅧ 활동				ail Operation을 위한 시스템 고성능/고안전		<u>-</u> 테
사이버 보안	UNECE등과 연	!계하여 활동 중 			자율주행 (Cybersecurity engine	ering guide	
인간공학	표준회의 참여	활동	>		제어권 전략	한 정보제공 방법 및 절	i차	
차량통신 및 C-ITS	E-UTRAN	D2D comm. 제약	안 활동	<u> </u>		위한 인프라 통합기술 I 전송 V2X 통신 기술		

자율주행차 표준화 : 상용화 – 서비스 연계, KS 전략등

자율주행차 표준화 : 안전 규제 연계

UNECE WP 29. GRVA : 자율주행 및 커넥티드 작업 그룹
 국제 안전기준 가이드라인 작업

- FRAV (Functional Requirments for automated & autonomous Vehicles) 자율주행차 기능요구사항
- FW (Framework documenton automated & autonomous Vehicles) 자율주행차 프레임웍 문서
- VMAD (Validation Method for Automated Driving(=New Assessment/Test Method) 검증 방법
- DSSAD (Data Storage System for AD)
- CEL (Complex Electronic Vehicle control system)
- ACSF (Automatically Commanded Steering Functions)

감사합니다

자율주행차 표준화 포럼

Automated Vehicle Standardization Forum

포럼소개

회원사

행사안내

위원회 활동

알림마당

