

STR73xFxx

ARM7TDMI™ 32-bit MCU with Flash, 3x CAN, 4 UARTs, 20 timers, ADC, 12 comm. interfaces

Features

■ Core

- ARM7TDMI 32-bit RISC CPU
- 32 MIPS @ 36 MHz

Memories

- Up to 256 Kbytes Flash program memory (10,000 cycles endurance, data retention 20 years @ 85° C)
- 16 Kbytes RAM

■ Clock, reset and supply management

- 4.5 5.5 V application supply and I/Os
- Embedded 1.8 V regulator for core supply
- Embedded oscillator running from external
 4-8 MHz crystal or ceramic resonator
- Up to 36 MHz CPU frequency with internal PLL
- 32 kHz or 2 MHz internal RC oscillator, software configurable for fast startup and backup clock
- Real-time clock for clock-calendar function
- Wake-up timer driven by internal RC for wake-up from STOP mode
- 5 power saving modes: SLOW, WFI, LPWFI, STOP and HALT modes

■ Nested interrupt controller

- Fast interrupt handling with multiple vectors
- 64 maskable IRQs with 64 vectors and 16 priority levels
- 2 maskable FIQ sources
- 16 external interrupts, up to 32 wake-up lines

■ Up to 112 I/O ports

- 72/112 multifunctional bidirectional I/Os

DMA

4 DMA controllers with 4 channels each

■ Timers

- 16-bit watchdog timer (WDG)
- 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes
- 6 16-bit PWM modules (PWM)
- 3 16-bit timebase timers with 8-bit prescalers

■ 12 communications interfaces

- 2 I²C interfaces
- 4 UART asynchronous serial interfaces
- 3 BSPI synchronous serial interfaces
- Up to 3 CAN interfaces (2.0B Active)

■ 10-bit A/D converter

- 12/16 channels
- Conversion time: min. 3 µs, range: 0 to 5V

■ Development tools support

- JTAG interface

Table 1. Device summary

Reference	Part number
STR73xFxx	STR730FZ1, STR730FZ2, STR731FV0, STR731FV1, STR731FV2, STR735FZ1, STR735FZ2, STR736FV0, STR736FV1, STR736FV2

Contents STR73xFxx

Contents

1	Scop	ре		4
	1.1	Descri	ption	4
2	Ove	rview .		5
	2.1	On-ch	ip peripherals	6
3	Bloc	k diagr	am	8
	3.1	Relate	ed documentation	10
	3.2	Pin de	scription	11
		3.2.1	STR730F/STR735F (TQFP144)	
		3.2.2	STR730F/STR735F (LFBGA144)	
		3.2.3	STR731F/STR736F (TQFP100)	
	3.3	Memo	ry mapping	20
4	Elec	trical pa	arameters	21
	4.1	Param	eter conditions	21
		4.1.1	Minimum and maximum values	21
		4.1.2	Typical values	21
		4.1.3	Typical curves	21
		4.1.4	Loading capacitor	
		4.1.5	Pin input voltage	21
	4.2	Absolu	ute maximum ratings	22
	4.3	Opera	ting conditions	24
		4.3.1	Supply current characteristics	25
		4.3.2	Clock and timing characteristics	
		4.3.3	Memory characteristics	34
		4.3.4	EMC characteristics	35
		4.3.5	I/O port pin characteristics	38
		4.3.6	10-bit ADC characteristics	43
5	Pack	age ch	aracteristics	46
	5.1	Packa	ge mechanical data	46
	5.2	Therm	al characteristics	48
			_	

STR73xFxx	Contents

6	Order codes	49
7	Known limitations	50
	7.1 Low power wait for interrupt mode	50
	7.2 PLL free running mode at high temperature	50
8	Revision history	51

Scope STR73xFxx

1 Scope

This datasheet provides the STR73x ordering information, mechanical and electrical device characteristics.

For complete information on the STR73xF microcontroller memory, registers and peripherals. please refer to the STR73x reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash programming reference manual.

For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference manual.

1.1 Description

ARM core with embedded Flash & RAM

STR73xF family combines the high performance ARM7TDMI[™] CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage Flash memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software.

Extensive tools support

STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs.

The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available.

For more information, please refer to ST MCU site http://www.st.com/mcu

Figure 1 shows the general block diagram of the device family.

STR73xFxx Overview

2 Overview

Table 2. Product overview

Features	STR7	30FZx	STR7	35FZx	S	TR731F\	/x	STR736FVx					
Flash memory - bytes	128K	256K	128K	256K	64K	128K	256K	64K	128K	256K			
RAM - bytes		16	K		16 K								
Peripheral functions			rs, 112 l/ ines, 16 /	,	6 TIM timers, 72 I/Os, 18 wake-up lines, 12 ADC channels								
CAN peripherals	3	3	()		3		0					
Operating voltage					4.5 to 5.5 V								
Operating temperature				-40 to	+85°C/-	40 to +10	05° C						
Packages			44 20 x 2 144 10 x	-	T =TQFP100 14x14								

Package choice: reduced pin-count TQFP100 or feature-rich 144-pin TQFP or LFBGA

The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package.

The family includes versions with and without CAN.

High speed Flash memory

The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz.

The STR7 embedded Flash memory can be programmed using in-circuit programming or in-application programming.

The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years @ 85° C.

IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running.

ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board.

The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

- Sector write protection
- Flash debug protection (locks JTAG access)

Flexible power management

To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application.

Overview STR73xFxx

Flexible clock control

Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers.

Voltage regulators

The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode.

Low voltage detectors

The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF.

Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.

2.1 On-chip peripherals

CAN interfaces

The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736.

DMA

4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity.

16-bit timers (TIM)

Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph).

PWM modules (PWM)

The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor.

Timebase timers (TB)

The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations.

Real-time clock (RTC)

The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or

STR73xFxx Overview

clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator.

UARTs

The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625 Kbaud.

Buffered serial peripheral interfaces (BSPI)

Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 6 Mb/s in master mode and up to 4.5 Mb/s in slave mode (@36 MHz system clock).

I²C interfaces

The two I^2C Interfaces provide multi-master and slave functions, support normal and fast I^2C mode (400 kHz) and 7 or 10-bit addressing modes.

A/D converter

The 10-bit analog to digital converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is $3 \mu s$.

Watchdog

The 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset.

I/O ports

Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or alternate function.

External interrupts and wake-up lines

16 external interrupts lines are available for application use. In addition, up to 32 external Wake-up lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode.

3 Block diagram

Figure 1. STR730F/STR735F block diagram

STR73xFxx Block diagram

Figure 2. STR731F/STR736 block diagram

Ly/

3.1 Related documentation

Available from www.arm.com:

ARM7TDMI technical reference manual

Available from http://www.st.com:

STR73x reference manual (RM0001)

STR7 Flash programming reference manual

STR73x software library user manual

For a list of related application notes refer to http://www.st.com.

STR73xFxx Block diagram

3.2 Pin description

3.2.1 STR730F/STR735F (TQFP144)

Figure 3. STR730F/STR735F pin configuration (top view)

3.2.2 STR730F/STR735F (LFBGA144)

Table 3. STR730F/STR735F LFBGA ball connections

Ball	Name	Ball	Name	Ball	Name	Ball	Name
A1	P0.0 / OCMPB2	B1	P0.4 / OCMPA5	C1	P0.5 / OCMPB5	D1	V _{SS}
A2	P6.10 / WUP8	B2	P0.1 / OCMPA2	C2	P0.2 / ICAPA2	D2	V_{DD}
А3	P6.9 / TDO0	В3	P6.15 / WUP9	C3	P0.3 / ICAPB2	D3	P0.6 / ICAPA5
A4	P6.12 / MOSI0	B4	P6.13 / SCKO / WUP11	C4	P6.14 / SSO	D4	P0.7 /ICAPB5
A5	P6.6 / WUP6	B5	P6.7 / WUP7	C5	P6.8 / RDI0 / WUP10	D5	P6.11 / MISO0
A6	V ₁₈	В6	P6.2 / WUP2 / RDI3	C6	P6.3 / WUP3	D6	P6.4 / WUP4 /TDO3
A7	P5.15 / INT13	В7	P5.14 / INT12	C7	V_{SS}	D7	VDD
A8	P5.8 / INT6	В8	P5.9 / INT7	C8	P5.10 / INT8 / RDI2	D8	P5.12 / INT10
A9	P5.2 / OCMPA9	В9	P5.3 / OCMPB9	C9	P5.4 / SS2	D9	P5.5 / SCK2 / WUP23
A10	P5.7 / MISO2	B10	P5.0 / MOSI1	C10	P5.1 / MISO1	D10	P4.13 / ICAPB9
A11	P5.6 / MOSI2	B11	P4.15 / SCK1 / WUP22	C11	P4.14 / SS1	D11	P4.12 / ICAPA9 / WUP21
A12	P5.11 / TDO2 / INT9	B12	P4.8 / OCMPA8	C12	P4.7 / SDA1	D12	P4.11 / OCMPB8
E1	P0.8 / OCMPA6	F1	V_{DD}	G1	V_{SS}	H1	V_{DD}
E2	P0.9 / OCMPB6	F2	P0.13 / ICAPB3	G2	P1.2 / ICAPB4	H2	P1.8 / OCMPA0 / INTO
E3	P0.10 / OCMPA7	F3	P0.14 / OCMPB3	G3	P1.3 / ICAPA4	НЗ	P1.9 / OCMPB0 / INT1
E4	P0.11 / OCMPB7	F4	P0.15 / OCMPA3	G4	V_{SS}	H4	P1.10 / ICAPB0 / WUP28
E5	P0.12 / ICAPA3	F5	P1.0 / OCMPA4	G5	P1.5	H5	XTAL2
E6	P6.5 / WUP5	F6	P1.1 / OCMPB4	G6	P2.11 / WUP17	H6	P2.10 / WUP16
E7	P6.0 / WUP0	F7	P6.1 / WUP1	G7	P4.0 / ICAPA7 / WUP24	H7	P2.15 / SDA 0
E8	P5.13 / INT11	F8	P4.4 / CAN2TX ¹⁾	G8	VDD	H8	JTMS
E9	P4.10 / ICAPA6 / WUP20	F9	P4.3 / ICAPB8 / WUP27	G9	VSS	Н9	VSS
E10	P4.9 / ICAPB6	F10	P4.2 / ICAPA8 / WUP26	G10	JTDO	H10	VDD
E11	P4.6 / SCL1 / WUP19	F11	P4.1 / ICAPB7 / WUP25	G11	JTCK	H11	P3.15 / AIN15 / INT5
E12	P4.5 / WUP18 / CAN2RX ¹⁾	F12	JTDI	G12	nJTRST	H12	P3.14 / AIN14 / INT4
J1	P1.4	K1	P1.6 / OCMPB1	L1	P1.7 / OCMPA1	M1	P1.14 / CAN0RX ¹⁾ / WUP12
J2	P1.11 / ICAPA0 / WUP29	K2	P1.13 / ICAPB1 / WUP31	L2	P1.15 / CAN0TX ¹⁾	M2	P2.4 / PWM2
J3	P1.12 / ICAPA1 / WUP30	КЗ	P2.1 / CAN1RX ¹⁾ / WUP13	L3	P2.0 / PWM0	МЗ	P2.5 / PWM3
J4	P2.7 / PWM5	K4	P2.6 / PWM4	L4	P2.3 / PWM1	M4	P2.2 / CAN1TX ¹⁾
J5	V_{DD}	K5	M1	L5	RSTIN	M5	MO
J6	P2.9 / RDI1 / WUP14	K6	P2.8 / TDO1	L6	V_{SS}	M6	V_{SS}
J7	P2.14 / SCL 0 / WUP15	K7	P2.13 / INT15	L7	P2.12 / INT14	M7	XTAL1
J8	P3.1 / AIN1	K8	P3.0 / AIN0	L8	VBIAS	M8	TST
J9	P3.13 / AIN13 / INT3	K9	P3.4 / AIN4	L9	P3.3 / AIN3	M9	P3.2 / AIN2
J10	P3.12 / AIN12 / INT2	K10	V_{DDA}	L10	P3.5 / AIN5	M10	V _{SS}
J11	P3.9 / AIN9	K11	V _{SSA}	L11	_11 P3.7 / AIN7		V_{DD}
J12	P3.8 / AIN8	K12	P3.11 / AIN11	L12	P3.10 / AIN10	M12	P3.6 / AIN6

Note: CAN alternate functions not available on STR735F.

STR73xFxx Block diagram

3.2.3 STR731F/STR736F (TQFP100)

Figure 4. STR731F/STR736F pin configuration (top view)

Legend / Abbreviations for Table 4:

Type: I = input, O = output, S = supply, HiZ = high impedance,

In/Output level: $T_T = TTL \ 0.8 \ V / 2 \ V$ with input trigger

 C_T = CMOS $0.3V_{DD}/0.7V_{DD}$ with input trigger

Port and control configuration:

Input: $pu/pd = with internal 100 k\Omega$ weak pull-up or pull down

Output: OD = open drain (logic level)

PP = push-pull

Interrupts:

INTx = external interrupt line
WUPx = wake-up interrupt line

The reset state (during and just after the reset) of the I/O ports is input floating (Input tristate TTL mode). To avoid excess power consumption, unused I/O ports must be tied to ground.

Table 4. STR73xF pin description

	Pin n°	ı				Inp	ut	Ou	tpu	t		
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	QΟ	dd	Main function (after reset)	Alternate function
1	A1	1	P0.0/OCMPB2	I/O	T _T			2mA	Х	Х	Port 0.0	TIM2: output compare B output
2	B2	2	P0.1/OCMPA2	0	T_T			2mA	Χ	X	Port 0.1	TIM2: output compare A output
3	C2	3	P0.2/ICAPA2	0	T_T			2mA	Χ	X	Port 0.2	TIM2: input capture A input
4	СЗ	4	P0.3/ICAPB2	I/O	T_T			2mA	Χ	Х	Port 0.3	TIM2: input capture B input
5	D1		V_{SS}	S							Ground	
6	D2		V_{DD}	S							Supply vo	Itage (5 V)
7	B1	5	P0.4/OCMPA5	I/O	T _T			2mA	Χ	Х	Port 0.4	TIM5: output compare A output
8	C1	6	P0.5/OCMPB5	I/O	T _T			2mA	Χ	Χ	Port 0.5	TIM5: output compare B output
9	D3	7	P0.6/ICAPA5	I/O	T _T			2mA	Χ	Х	Port 0.6	TIM5: input capture A input
10	D4		P0.7/ICAPB5	I/O	T _T			2mA	Χ	Х	Port 0.7	TIM5: input capture B input
11	E1		P0.8/OCMPA6	I/O	T _T			2mA	Χ	Χ	Port 0.8	TIM6: output compare A output
12	E2		P0.9/OCMPB6	I/O	T _T			2mA	Χ	Х	Port 0.9	TIM6: output compare B output
13	E3		P0.10/OCMPA7	I/O	T _T			2mA	Χ	Χ	Port 0.10	TIM7: output compare A output
14	E4		P0.11/OCMPB 7	I/O	T _T			2mA	Х	Х	Port 0.11	TIM7: output compare B output
15	F1	8	V_{DD}	S							Supply vo	Itage (5 V)
16	G1	9	V _{SS}	S							Ground	
17	E5	10	P0.12/ICAPA3	I/O	T _T			2mA	Χ	Х	Port 0.12	TIM3: input capture A input
18	F2	11	P0.13/ICAPB3	I/O	T _T		_	2mA	Χ	Х	Port 0.13	TIM3: input capture B input

STR73xFxx Block diagram

Table 4. STR73xF pin description

Iable	Pin n°		I H/3XF pin des	уср		Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	OD	ЬР	Main function (after reset)	Alternate function	
19	F3	12	P0.14/OCMPB 3	I/O	T _T			2mA	Χ	X	Port 0.14	TIM3: output compare B output	
20	F4	13	P0.15/OCMPA3	I/O	T _T			2mA	Χ	Х	Port 0.15	TIM3: output compare A output	
21	F5	14	P1.0/OCMPA4	I/O	T _T			2mA	Χ	Х	Port 1.0	TIM4: output compare A output	
22	F6	15	P1.1/OCMPB4	I/O	T _T			2mA	Χ	Х	Port 1.1	TIM4: output compare B output	
23	G2	16	P1.2/ICAPB4	I/O	T _T			2mA	Χ	Χ	Port 1.2	TIM4: input capture B input	
24	G3	17	P1.3/ICAPA4	I/O	T _T			2mA	Χ	Х	Port 1.3	TIM4: input capture A input	
25	G4		V _{SS}	S							Ground		
26	H1		V_{DD}	S							Supply vo	ltage (5 V)	
27	J1		P1.4	I/O	T _T			2mA	Χ	Х	Port 1.4		
28	G5		P1.5	I/O	T _T			2mA	Χ	Х	Port 1.5		
29	K1	18	P1.6/OCMPB1	I/O	T _T			2mA	Χ	Х	Port 1.6	TIM1: output compare B output	
30	L1	19	P1.7/OCMPA1	I/O	T _T			2mA	Χ	Х	Port 1.7	TIM1: output compare A output	
31	H2	20	P1.8/OCMPA0	I/O	T _T		INT0	2mA	Χ	Х	Port 1.8	TIM0: output compare A output	
32	НЗ	21	P1.9/OCMPB0	I/O	T _T		INT1	2mA	Χ	Х	Port 1.9	TIM0: output compare B output	
33	H4	22	P1.10/ICAPB0	I/O	T _T		WUP28	2mA	Χ	Х	Port 1.10	TIM0: input capture B input	
34	J2	23	P1.11/ICAPA0	I/O	T _T		WUP29	2mA	Χ	Χ	Port 1.11	TIM0: input capture A input	
35	J3	24	P1.12/ICAPA1	I/O	T _T		WUP30	2mA	Χ	Χ	Port 1.12	TIM1: input capture A input	
36	K2	25	P1.13/ICAPB1	I/O	T _T		WUP31	2mA	Χ	Χ	Port 1.13	TIM1: input capture B input	
37	M1	26	P1.14/CAN0RX	I/O	T _T		WUP12	2mA	Χ	Х	Port 1.14	CAN0: receive data input	
38	L2	27	P1.15/CAN0TX	I/O	T _T			2mA	Χ	Х	Port 1.15	CAN0: transmit data output	
39	L3	28	P2.0/PWM0	I/O	T _T			2mA	Χ	Х	Port 2.0	PWM0: PWM output	
40	КЗ	29	P2.1/CAN1RX	I/O	T _T		WUP13	2mA	Χ	Х	Port 2.1	CAN1: receive data input	
41	M4	30	P2.2/CAN1TX	I/O	T _T			2mA	Χ	Χ	Port 2.2	CAN1: transmit data output	
42	L4	31	P2.3/PWM1	I/O	T _T			2mA	Χ	Х	Port 2.3	PWM1: PWM output	
43	M2	32	P2.4/PWM2	I/O	T _T			2mA	Χ	Х	Port 2.4	PWM2: PWM output	
44	МЗ		P2.5/PWM3	I/O	T _T			2mA	Χ	Х	Port 2.5	PWM3: PWM output	
45	K4		P2.6/PWM4	I/O	T _T			2mA	Χ	Х	Port 2.6	PWM4: PWM output	
46	J4		P2.7/PWM5	I/O	T _T			2mA	Х	Х	Port 2.7	PWM5: PWM output	
47	M5	33	M0	I	T _T	pd					BOOT: mode selection 0 input		
48	L5	34	RSTIN	1	C _T	pu					Reset input		
49	K5	35	M1	I	T _T	pd					BOOT: m	ode selection 1 input	

Table 4. STR73xF pin description

labi	Pin n°		in/oxi piii des	•		Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	ОО	ЬР	Main function (after reset)	Alternate	function
50	J5	36	V_{DD}	S							Supply vo	ltage (5 V)	
51	M6	37	V _{SS}	S							Ground		
52	M7	38	XTAL1	1								amplifier circuit in ock generator inp	•
53	H5	39	XTAL2	0							Oscillator	amplifier circuit o	output.
54	L6	40	V _{SS}	S							Ground		
55	K6	41	P2.8/TDO1/CA N2RX	I/O	T _T			2mA	X	X	Port 2.8	UART1: transmit data output	CAN2: receive data input (TQFP100 only)
56	J6	42	P2.9/RDI1/CAN 2TX	I/O	T _T		WUP14	2mA	X	X	Port 2.9	UART1: receive data input	CAN2: transmit data output (TQFP100 only)
57	H6		P2.10	I/O	T _T		WUP16	2mA	Х	Х	Port 2.10		
58	G6		P2.11	0	T _T		WUP17	2mA	X	X	Port 2.11		
59	L7		P2.12	1/0	T _T		INT14	2mA	Χ	Χ	Port 2.12		
60	K7		P2.13	I/O	T _T		INT15	2mA	Χ	Χ	Port 2.13		
61	J7	43	P2.14/SCL0	I/O	T _T		WUP15	2mA	Χ	Χ	Port 2.14	I2C0: serial cloc	k
62	H7	44	P2.15/SDA0	I/O	T _T			2mA	Х	Χ	Port 2.15	I2C0: serial data	ì
63	M8	45	Test	I		pd					Reserved	pin. Must be tied	I to ground
64	L8	46	V _{BIAS}	S							external r	C oscillator bias. esistor has to be hen a 32 kHZ RC r is used.	connected to
65	M10	47	V _{SS}	S							Ground		
66	M11	48	V_{DD}	S							Supply vo	ltage (5 V)	
67	K8		P3.0/AIN0	I/O	T _T			2mA	Χ	Χ	Port 3.0	ADC: analog inp	out 0
68	J8		P3.1/AIN1	I/O	T _T			2mA	Χ	Χ	Port 3.1	ADC: analog inp	out 1
69	M9		P3.2/AIN2	I/O	T _T			2mA	Х	Х	Port 3.2	ADC: analog inp	out 2
70	L9		P3.3/AIN3	I/O	T _T			2mA	Х	Х	Port 3.3	ADC: analog inp	out 3
71	K9	49	P3.4/AIN4	I/O	T _T			2mA	Х	Х	Port 3.4 ADC: analog input 4 (AIN0 in TQFP100)		
72	L10	50	P3.5/AIN5	1/0	T _T			2mA	X	X	Port 3.5	ADC: Analog inp (AIN1 in TQFP1	

STR73xFxx **Block diagram**

Table 4. STR73xF pin description

labi	Pin n°		I H/3XF pin des			Inp	out	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	QO	PP	Main function (after reset)	Alternate function	
73	M12	51	P3.6/AIN6	I/O	T _T			2mA	Х	Х	Port 3.6	ADC: analog input 6 (AIN2 in TQFP100)	
74	L11	52	P3.7/AIN7	I/O	T _T			2mA	Х	х	Port 3.7	ADC: analog input 7 (AIN3 in TQFP100)	
75	K11	53	V_{SSA}	S							Reference	e ground for A/D converter	
76	K10	54	V_{DDA}	S							Reference	e voltage for A/D converter	
77	J12	55	P3.8/AIN8	I/O	T _T			2mA	Х	х	Port 3.8	ADC: analog input 8 (AIN4 in TQFP100)	
78	J11	56	P3.9/AIN9	I/O	T _T			2mA	Х	х	Port 3.9	ADC: analog input 9 (AIN5 in TQFP100)	
79	L12	57	P3.10/AIN10	I/O	T _T			2mA	Х	х	Port 3.10	ADC: analog input 10 (AIN6 in TQFP100)	
80	K12	58	P3.11/AIN11	I/O	T _T			2mA	Х	х	Port 3.11	ADC: analog input 11 (AIN7 in TQFP100)	
81	J10	59	P3.12/AIN12	I/O	T _T		INT2	2mA	Х	Х	Port 3.12	ADC: analog input 12 (AIN8 in TQFP100)	
82	J9	60	P3.13/AIN13	I/O	T _T		INT3	2mA	Х	Х	Port 3.13	ADC: analog input 13 (AIN9 in TQFP100)	
83	H12	61	P3.14/AIN14	I/O	T _T		INT4	2mA	Х	Х	Port 3.14	ADC: analog input 14 (AIN10 in TQFP100)	
84	H11	62	P3.15/AIN15	I/O	T _T		INT5	2mA	Х	х	Port 3.15	ADC: analog input 15 (AIN11 in TQFP100)	
85	H10	63	V_{DD}	S							Supply vo	Itage (5 V)	
86	H9	64	V _{SS}	S							Ground		
87	G12	65	JTRST	I	T _T	pu						JTAG reset Input	
88	F12	66	JTDI	I	T _T	pu						JTAG data input	
89	H8	67	JTMS	I	T _T	pu						JTAG mode selection Input	
90	G11	68	JTCK	I	T _T	pd						JTAG clock Input	
91	G10	69	JTDO	0				4mA				JTAG data output. Note: Reset state = HiZ	
92	G9	70	V _{SS}	S								Ground	
93	G8	71	V_{DD}	S							Supply voltage (5 V)		
94	G7		P4.0/ICAPA7	I/O	T _T		WUP24	2mA	Х	Х	Port 4.0 TIM7: input capture A input		
95	F11		P4.1/ICAPB7	I/O	T _T		WUP25	2mA	Х	Х	Port 4.1 TIM7: input capture B input		
96	F10		P4.2/ICAPA8	I/O	T _T		WUP26	2mA	Χ	Х	Port 4.2	TIM8: input capture A input	

Table 4. STR73xF pin description

	Pin n°					Inp	ut	Ou	tpu	t			
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	QO	PP	Main function (after reset)	Alternate	function
97	F9		P4.3/ICAPB8	I/O	T _T		WUP27	2mA	Χ	Χ	Port 4.3	TIM8: input capt	ure B input
98	F8		P4.4/CAN2TX	I/O	T _T			2mA	Χ	Χ	Port 4.4	CAN2: transmit	data output
99	E12		P4.5/CAN2RX	I/O	T _T		WUP18	2mA	Х	Χ	Port 4.5	CAN2: receive d	ata input
100	E11	72	P4.6/SCL1	I/O	T_T		WUP19	2mA	Χ	Χ	Port 4.6	I2C1: serial cloc	k
101	C12	73	P4.7/SDA1	I/O	T _T			2mA	Х	Χ	Port 4.7	I2C1: serial data	l
102	B12		P4.8/OCMPA8	I/O	T _T			2mA	Х	Χ	Port 4.8	TIM8: output cor	mpare A output
103	E10		P4.9/ICAPB6	I/O	T _T			2mA	Χ	Х	Port 4.9	TIM6: input capt	ure B input
104	E9	74	P4.10/ICAPA6/I CAPB5	I/O	T _T		WUP20	2mA	Х	Х	Port 4.10	TIM6: input capture A input (144-pin pkg only)	TIM5: input capture B input (TQFP100 only)
105	D12		P4.11/OCMPB 8	I/O	T _T			2mA	X	Х	Port 4.11	TIM8: output cor	mpare B output
106	D11		P4.12/ICAPA9	I/O	T_T		WUP21	2mA	Χ	X	Port 4.12	TIM9: input capt	ure A input
107	D10		P4.13/ICAPB9	I/O	T _T			2mA	Х	Χ	Port 4.13	TIM9: input capt	ure B input
108	C11	75	P4.14/SS1	I/O	T _T			2mA	Χ	Χ	Port 4.14	BSPI1: slave se	ect
109	B11	76	P4.15/SCK1	I/O	T _T		WUP22	2mA	Χ	Χ	Port 4.15	BSPI1: serial clo	ock
110	B10	77	P5.0/MOSI1	I/O	T_T			2mA	X	Х	Port 5.0	BSPI1: master of input	output/slave
111	C10	78	P5.1/MISO1	I/O	T _T			2mA	X	Х	Port 5.1	BSPI1: master in output	nput/Slave
112	A9		P5.2/OCMPA9	I/O	T _T			2mA	Χ	Х	Port 5.2	TIM9: output cor	mpare A output
113	В9		P5.3/OCMPB9	I/O	T_T			2mA	Χ	X	Port 5.3	TIM9: output cor	mpare B output
114	С9	79	P5.4/ SS 2/PWM 3	I/O	T _T			2mA	X	X	Port 5.4	BSPI2: slave select	PWM3: PWM output (TQFP100 only)
115	D9	80	P5.5/SCK2	I/O	T _T		WUP23	2mA	X	Х	Port 5.5	BSPI2: serial clo	ock
116	A11	81	P5.6/MOSI2	I/O	T _T			2mA	Х	Х	Port 5.6	BSPI2: master of input	output/slave
117	A10	82	P5.7/MISO2	I/O	T _T			2mA	Х	Х	Port 5.7	BSPI2: master in output	nput/slave
118	A8	83	P5.8/PWM4	I/O	T _T		INT6	2mA	Х	Х	Port 5.8	PWM4: PWM ou only)	tput (TQFP100

STR73xFxx **Block diagram**

Table 4. STR73xF pin description

ı	Pin n°					Inp	ut	Ou	tpu	t	B. G. C.	
TQFP144	LFBGA144	TQFP100	Pin name	Туре	Input Level	pd/nd	interrupt	Capability	QO	PP	Main function (after reset)	Alternate function
119	B8	84	P5.9/PWM5	I/O	T _T		INT7	2mA	Х	Х	Port 5.9	PWM5: PWM output (TQFP100 only)
120	C8	85	P5.10/RDI2	I/O	T _T		INT8	2mA	Х	Х	Port 5.10	UART2: receive data input
121	A12	86	P5.11/TDO2	I/O	T _T		INT9	2mA	Х	Х	Port 5.11	UART2: transmit data output
122	D8	87	P5.12	I/O	T _T		INT10	2mA	Х	Х	Port 5.12	
123	E8		P5.13	I/O	T _T		INT11	2mA	Χ	Х	Port 5.13	
124	В7		P5.14	I/O	T _T		INT12	2mA	Χ	Х	Port 5.14	
125	Α7		P5.15	I/O	T _T		INT13	2mA	Х	Х	Port 5.15	
126	A6	88	V ₁₈	s						1.8 V decoupling pin: a decoupling capacitor (recommended value: 100 nF) must be connected between this pin and nearest Vss pin.		
127	C7	89	V _{SS}	S								Ground
128	D7	90	V _{DD}	S								Supply voltage (5 V)
129	E7	91	P6.0	I/O	T _T		WUP0	8mA	Х	Х	Port 6.0	
130	F7		P6.1	I/O	T _T		WUP1	2mA	Х	Х	Port 6.1	
131	В6	92	P6.2/RDI3	I/O	T _T		WUP2	2mA	Х	Х	Port 6.2	UART3: receive data input
132	C6		P6.3	I/O	T _T		WUP3	2mA	Х	Х	Port 6.3	
133	D6	93	P6.4/TDO3	I/O	T _T		WUP4	2mA	Х	Х	Port 6.4	UART3: transmit data output
134	E6		P6.5	I/O	T _T		WUP5	2mA	Х	Х	Port 6.5	
135	A5	94	P6.6	I/O	T _T		WUP6	2mA	Х	Х	Port 6.6	
136	B5		P6.7	I/O	T _T		WUP7	2mA	Х	Х	Port 6.7	
137	C5	95	P6.8/RDI0	I/O	T _T		WUP10	2mA	Х	Х	Port 6.8	UART0: receive data input
138	А3	96	P6.9/TDO0	I/O	T _T			2mA	Х	Х	Port 6.9	UART0: transmit data output
139	A2		P6.10	I/O	T _T		WUP8	2mA	Х	Х	Port 6.10	
140	D5	97	P6.11/MISO0	I/O	T _T			2mA	Х	х	Port 6.11	BSPI0: master input/slave output
141	A4	98	P6.12/MOSI0	I/O	T _T			2mA	X	х	Port 6.12	BSPI0: master output/slave input
142	В4	99	P6.13/SCK0	I/O	T _T		WUP11	2mA	Х	Х	Port 6.13	BSPI0: serial clock
143	C4	100	P6.14/SS0	I/O	T _T			2mA	Х	Х	Port 6.14	BSPI0: slave select
144	ВЗ		P6.15	I/O	T _T		WUP9	2mA	Х	Х	Port 6.15	

3.3 Memory mapping

Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature

Most reserved memory spaces (gray shaded areas in *Figure 5*) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions.

Figure 5. **Memory map** Addressable memory space APB memory space 4 Gbytes 32 Kbytes APB TO ARM7 BRIDGE 32K 1K 0xFFFF 800 0xFFFF FC00 ADC 1 K 0xFFFF F800 0xFFFF F7FF 7 1K 0xFFFF F400 0xFFFF F3FF DMA 0-3 1K Flash memory space 0xE000 0000 0xDFFF FFF 0xFFFF F000 0xFFFF EFFF 64K/128/256 Kbytes 1K 0xFFFF EC00 0x8010 DFF TIM 3 1K System Memory 0xFFFF E800 0xFFFF E7FF 6 TIM 2 1K Flash registers 20B 0xFFFF E400 0xFFFF E3FF BSPI 2 1K 0xC000 0000 0xBFFF FFF 0xFFFF E000 BSPI 1 1K 0xFFFF DC00 BSPI 0 1K 0xFFFF D800 0xFFFF D7FF 5 GP I/O 0-6 1K 0xFFFF D400 0xFFFF D3FF PWM 0-5 1K 16K RAM 0xA000 0000 0x9FFF FFFI 0xFFFF D000 CAN 2⁽⁴⁾ 1K 0xFFFF CC00 0xFFFF CBFF CAN 1⁽⁴⁾ 1K 0xFFFF C800 4 CAN 0⁽⁴⁾ 1K 0xFFFF C400 0xFFFF C3FF 0x8010 001 APB BRIDGE 1 REGS 1K Flash 64K/128K/256K 0x8000 0000 0x7FFF FFFF 0xFFFF C000 reserved 1K 0xFFFF BC00 WAKEUP 1K 0xFFFF B800 3 reserved 1K 0xFFFF B400 0xFFFF B3FF 0x6000 03F 1K PRCCU 0×8003 FFF 0xFFFF B000 0xFFFF AFFF 0x6000 0000 0x5FFF FFFF TIM 1 1K B0F7⁽²⁾ 64K 0xFFFF AC00 TIM 0 1K 2 0x8003 000 WAKEUPTIM 1K 0xFFFF A400 0xFFFF A3FF 0×4000 003 1K B0F6⁽²⁾ 64K CONFIG. REGS 64B 0x4000 0000 0x3FFF FFFI UART O 1K 0xFFFF 9C0 0xFFFF 9BF 1K TB 0-2 1 0xFFFF 9800 0xFFFF 97FF B0F5⁽³⁾ 64K reserved 1K 0xFFFF 9400 0xFFFF 93FF 0x8001 000 0x8000 FFF reserved 1K NATIVE ARBITER 0x2000 0000 0x1FFF FFF 0xFFFF 9000 0xFFFF 8FFF B0F4 reserved 1K 32K 0xFFFF 8C00 I²C 1 1K 8K B0F3 0xFFFF 8800 0xFFFF 87FF 0 8K I²C 0 1K 8K 0xFFFF 8400 0xFFFF 83FF B0F1 APB BRIDGE 0 REGS 0x0010 001 64K/128K/256K (1) Flash aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 access to gray shaded area will return an ABORT (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731 Drawing not to scale

4 Electrical parameters

4.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

4.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25^\circ$ C and $T_A=T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

4.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25^{\circ}$ C and $V_{DD}=5$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

4.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

4.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.

4.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 7*.

Figure 6. Pin loading conditions

Figure 7. Pin input voltage

STR7 PIN

STR7 PIN

STR7 PIN

4.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} - V _{SS}	External 5 V Supply voltage	-0.3	6.0	V
V _{SSA}	Reference ground for A/D converter	V _{SS}	V _{SS}	٧
V _{DDA} - V _{SSA}	Reference voltage for A/D converter -0.3 V _{DD} +0.3		٧	
V _{IN}	Input voltage on any pin	e on any pin -0.3		V
IΔV _{DDx} I	Variations between different 5 V power pins	-	0.3	mV
IV _{SSX} - V _{SS} I	Variations between all the different ground pins	-	0.3	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	see : Absolute n		
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	(electrical sensit		

Table 6. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power lines (source) 1)	100	
I _{VSS}	Total current out of V _{SS} ground lines (sink) 1)	100	
	Output current sunk by any I/O and control pin	10	mA
IIO	Output current source by any I/O and control pin	10	mA
I _{INJ(PIN)} ^{2) & 3)}	Injected current on any other pin 4) &5)	±10	
ΣI _{INJ(PIN)} ²⁾	Total injected current (sum of all I/O and control pins) 4)	±75	

All 5 V power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external 5 V supply

5.) In 144-pin devices, only +10 mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed).

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

^{3.} Negative injection disturbs the analog performance of the device. See note in Section 4.3.6: 10-bit ADC characteristics on page 43.

^{4.} When several inputs are submitted to a current injection, the maximum $\mathfrak{L}_{\mathsf{INJ}(\mathsf{PIN})}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $\mathfrak{L}_{\mathsf{INJ}(\mathsf{PIN})}$ maximum current injection on four I/O port pins of the device.

Table 7. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-55 to +150	°C
TJ	Maximum junction temperature (see Section 5 page 48)	.2: Thermal characte	ristics on

Electrical parameters STR73xFxx

4.3 Operating conditions

Subject to general operating conditions for $V_{\mbox{\scriptsize DD}},$ and $T_{\mbox{\scriptsize A}}.$

Table 8. General operating conditions

Symbol	Symbol Parameter Conditions		Min	Max	Unit
f _{MCLK}	Internal CPU and system clock frequency	Accessing SRAM or Flash (zero wait state Flash access up to 36 MHz)	0	36	MHz
V _{DD}	Standard Operating Voltage		4.5	5.5	V
V _{DDA}	Operating analog reference voltage with respect to ground		4.5	V _{DD} +0.1	V
T _A	Ambient temperature range	6 partnumber suffix 7 partnumber suffix	-40 -40	85 105	°C

Table 9. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions		Тур	Max	Unit
t _{VDD}	V _{DD} rise time rate	Subject to general operating conditions for T_A .		20	-	ms/V

4.3.1 Supply current characteristics

The current consumption is measured as described in Figure 6 and Figure 7.

Total current consumption

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if explicitly mentioned.

Subject to general operating conditions for V_{DD}, and T_A.

Table 10. Total current consumption

Symbol	Parameter	Conditions	Typ 1)	Max ²⁾	Unit
		Formula, f _{MCLK} in MHz, RAM execution	7 + 1.9 f _{MCLK}		mA
	RUN mode ³⁾	f _{MCLK} = 36 MHz, RAM execution	76		mA
I _{DD}		f _{MCLK} = 36 MHz, Flash execution	86		mA
	WFI mode	f _{OSC} = 4 MHz, f _{MCLK} = f _{OSC} /16 = 250 kHz Main voltage regulator ON, LP voltage regulator = 2 mA, RTC and WDG on, other modules off.	6.7	8	mA
	LPWFI mode	$\begin{split} &f_{RC} = \text{high frequency (CMU_RCCTL= 0x8)}, \\ &f_{MCLK} = f_{RC}/16, \\ &LP \text{ voltage regulator = 2 mA,} \\ &\text{other modules off.} \end{split}$	220	350	μΑ
		f _{OSC} = 4 MHz, RC oscillator on f _{RC} = high frequency (CMU_RCCTL= 0x0) LP voltage regulator = 6 mA, RTC and WUT ON, other modules off. Internal wake-up possible.	500	700	
	STOP mode	f _{RC} = high frequency (CMU_RCCTL= 0xF), LP voltage regulator = 2mA. WUT ON, other modules off. Internal wake-up possible.	150	220	μΑ
		LP voltage regulator = 2 mA, WIU on, Other modules off, external wake-up.	50	140	
	HALT mode	LP voltage regulator = 2 mA.	50	140	μΑ

- 1. Typical data are based on T_A =25° C, V_{DD} =5 V
- 2. Data based on characterization results, tested in production at V_{DD} max. and $T_A = 25^{\circ}$ C.
- 3. I/O in static configuration (not toggling). RUN mode is almost **independent of temperature**. On the contrary RUN mode current is **highly dependent on the application**. The I_{DDRUN} value can be significantly reduced by the application in the following ways: switch-off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch the most frequently-used functions from RAM and use low power mode when possible.

Electrical parameters STR73xFxx

Figure 8. STOP I_{DD} vs. VDD

Figure 9. HALT I_{DD} vs. V_{DD}

Figure 10. WFI I_{DD} vs. V_{DD}

Figure 11. LPWFI I_{DD} vs. V_{DD}

Typical application current consumption

Table 11. Typical consumption in Run mode at 25°C and 85°C

Conditions	•	f _{MCLK} (MHz)	f _{ADC} (MHz)	Typical I _{DD} (mA)
		10		20
	Code executing in RAM	20	10	29
V _{DD} = 5.5 V, RC oscillator off, PLL on, RTC enabled, 1 Timer		36	9	42
(TIM) running, and ADC running in scan mode.	Code executing in	10	10	22
running in scan mode.		20	10	32
		36	9	48

Table 12. Typical consumption in Run and low power modes at 25°C

Mode	Conditions	f _{MCLK}	Typical I _{DD}
RUN	All parinharals on DAM execution	36 MHz	76 mA
HUN	All peripherals on, RAM execution	24 MHz	56 mA
WFI	Main voltage regulator on, Flash on, EIC on, WIU on,	36 MHz	33 mA
VVFI	GPIOs on.	24 MHz	31 mA
	PLL off, main voltage regulator on	4 MHz	11 mA
	CLOCK2/16, main voltage regulator on	250 kHz	8 mA
SLOW	CLOCK2/16, main voltage regulator off	250 kHz	3 mA
	RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off	29 kHz	2.5 mA
LPWFI	CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode.	250 kHz	528 µA
	Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA	-	378 μΑ
STOP	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA	-	83 μΑ
310P	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA	-	64 μΑ
	Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA	-	44 µA
HALT	RTC off, LP voltage regulator = 2 mA	-	44 µA

Electrical parameters STR73xFxx

On-chip peripherals

Table 13. Peripheral current consumption at T_A= 25°C

Symbol	Parameter	Conditions	Тур	Unit
lan (no)	RC (backup oscillator) supply current	High frequency	120	μΑ
I _{DD(RC)}	no (backup oscillator) supply current	Low frequency	60	μΑ
I _{DD(TIM)}	TIM timer supply current 1)		350	μΑ
I _{DD(BSPI)}	BSPI supply current 1)		1.1	mA
I _{DD(UART)}	UART supply current 1)		850	μΑ
I _{DD(I2C)}	I2C supply current 1)	f _{MCLK} =36 MHz	430	μΑ
I _{DD(ADC)}	ADC supply current when converting ²⁾		5	mA
I _{DD(EIC)}	EIC supply current		2.88	mA
I _{DD(CAN)}	CAN supply current ¹⁾		2.95	mA
I _{DD(GPIO)}	GPIO supply current		150	μA
I _{DD(TB)}	TB supply current	IMOLK 90 IIII I	250	μΑ
I _{DD(PWM)}	PWM supply current		240	μΑ
I _{DD(RTC)}	RTC supply current		370	μΑ
I _{DD(DMA)}	DMA supply current		2.5	mA
I _{DD(ARB)}	Native arbiter supply current	-	180	μΑ
I _{DD(AHB)}	AHB arbiter supply current		570	μΑ
I _{DD(WUT)}	WUT supply current		300	μΑ
I _{DD(WIU)}	WIU supply current		460	μΑ

Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption.

^{2.} Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

4.3.2 Clock and timing characteristics

Crystal / ceramic resonator oscillator

The STR73xF can operate with a crystal oscillator or resonator clock source. *Figure 12* describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator.

Figure 12. Crystal oscillator and resonator

Note: 1 XTAL2 must not be used to directly drive external circuits.

2 For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle.

57

Electrical parameters STR73xFxx

Main oscillator characteristics

 V_{DD} = 5 V \pm 10%, T_{A} = -40° C to $T_{Amax},$ unless otherwise specified.

Table 14. Main oscillator characteristics

Cumhal	Davameter	Conditions	Value		Unit		
Symbol	Parameter	Conditions	Min	Тур	Max	Oill	
fosc	Oscillator frequency		4		8	MHz	
9 _m	Oscillator transconductance		1.5		4.2	mA/V	
V _{OSC} ¹⁾	Oscillation amplitude	$f_{OSC} = 4 \text{ MHz}, T_A = 25^{\circ} \text{ C}$	-	2.4	-	V	
Vosc 7	Oscillation amplitude	$f_{OSC} = 8 \text{ MHz}, T_A = 25^{\circ} \text{ C}$		1		\ \ \	
V _{AV} ¹⁾	Oscillator operating point	Sine wave middle, T _A = 25° C	-	0.77	-	٧	
		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 4 \text{ MHz}$, $T_{A} = -40^{\circ} \text{ C}$	-	-	12	ms	
		External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 4 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	5.5	-	ms	
+. 1)		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 6 \text{ MHz}$, $T_A = -40^{\circ} \text{ C}$	-	-	8	ms	
t _{STUP} 1)	Oscillator start-up time	External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 6 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	3.3	-	ms	
		External crystal, $V_{DD} = 5.5 \text{ V}$, $f_{OSC} = 8 \text{ MHz}$, $T_A = -40^{\circ} \text{ C}$	-	-	7	ms	
		External crystal, $V_{DD} = 5.0 \text{ V}$, $f_{OSC} = 8 \text{ MHz}$, $T_A = 25^{\circ} \text{ C}$	-	2.7	-	ms	

Table 14. Main oscillator characteristics (continued)

0	D-manustar.	0-			Value		11!4
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
			$C_1^{(3)} = C_2^{(4)} = 10 \text{ pF}$	150	555	-	
		f _{OSC} = 4 MHz	$C_1 = C_2 = 20 \text{ pF}$	490	1035	ı	
		$Cp^{2)} = 10 pF$	$C_1 = C_2 = 30 \text{ pF}$	490	1030	i	
			$C_1 = C_2 = 40 \text{ pF}$	380	850	ı	
			$C_1 = C_2 = 10 \text{ pF}$	160	470	i	
		f _{OSC} = 5 MHz	$C_1 = C_2 = 20 \text{ pF}$	415	800	ı	
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	340	735	ı	
			$C_1 = C_2 = 40 \text{ pF}$	260	580	i	
		f _{OSC} = 6 MHz Cp = 10 pF	$C_1 = C_2 = 10 \text{ pF}$	160	415	-	
R _F ¹⁾	Feedback resistor		$C_1 = C_2 = 20 \text{ pF}$	325	640	-	Ω
I I F			$C_1 = C_2 = 30 \text{ pF}$	250	550	-	22
			$C_1 = C_2 = 40 \text{ pF}$	180	420	-	
			$C_1 = C_2 = 10 \text{ pF}$	160	375	-	
		f _{OSC} = 7 MHz	$C_1 = C_2 = 20 \text{ pF}$	260	525	-	
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	185	420	-	
			$C_1 = C_2 = 40 \text{ pF}$	135	315	-	
			$C_1 = C_2 = 10 \text{ pF}$	155	340	-	
		f _{OSC} = 8 MHz	$C_1 = C_2 = 20 \text{ pF}$	210	435	-	
		Cp = 10 pF	$C_1 = C_2 = 30 \text{ pF}$	145	335	-	
			$C_1 = C_2 = 40 \text{ pF}$	100	245	-	

- 1. Min and max values are guaranteed by characterization, not tested in production.
- C_P represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the
 external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and
 XTAL2 track.
- 3. C₁ represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance).
- 4. C₂ represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (C_L) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance).

577

Electrical parameters STR73xFxx

RC/backup oscillator characteristics

 V_{DD} = 5V ± 10%, T_{A} = -40°C to $T_{Amax},$ unless otherwise specified.

Table 15. RC oscillator characteristics

Symbol	Parameter	Conditions	Value			Unit
Symbol	Parameter	Conditions	Min	Тур	Max	Oiiit
f	RC frequency	High frequency mode 1)		2.35		MHz
f _{RC}	no nequency	Low frequency mode ¹⁾		29		kHz
f	CHF RC high frequency	CMU_RCCTL = 0x0	3			MHz
† _{RCHF}		CMU_RCCTL = 0xF			2.3	MHz
f	DO I am fra management	CMU_RCCTL = 0x0	35			kHz
f _{RCLF}	RC low frequency	CMU_RCCTL = 0xF			30	kHz
f _{RCHFS} ²⁾	RC high frequency stability	Fixed CMU_RCCTL			10	%
f _{RCLFS} ²⁾	RC low frequency stability	Fixed CMU_RCCTL			23	%
t _{RCSTUP}	RC start-up time	Stable V_{DD} , $f_{RC} = 2.35 \text{ MHz}$, $T_A = 25^{\circ}\text{C}$		2.35		μs

¹⁾ CMU_RCCTL = 0x8

²⁾ RC frequency shift versus average value (%)

PLL electrical characteristics

 V_{DD} = 5 V \pm 10%, T_{A} = -40° C to T_{Amax} , unless otherwise specified

Table 16. PLL characteristics

Symbol	Parameter	Conditions	Value			Unit	
Syllibol	Parameter	Conditions	Min	Тур	Max	O.III	
f _{PLLIN} ⁽¹⁾	PLL reference clock	FREF_RANGE = '0' FREF_RANGE = '1'	1.5 3.0		3.0 5.0	MHz	
f _{PLLOUT}	PLL output clock	MX = "00" MX = "01" MX = "10" MX = "11"	20 x f _{PLLIN} 12 x f _{PLLIN} 28 x f _{PLLIN} 16 x f _{PLLIN}		MHz		
f _{MCLK}	System clock	DX = 17	f _{PLLOUT} /DX 36		36	MHz	
f _{FREE} (2)	PLL free running frequency	FREF_RANGE = '0', MX0 = '1' FREF_RANGE = '0', MX0 = '0' FREF_RANGE = '1', MX0 = '1' FREF_RANGE = '1', MX0 = '0'		120 240 240 480		kHz	
t _{LOCK} (3)	PLL lock time	Stable oscillator (f _{PLLIN} = 4 MHz), stable V _{DD}	100 300		300	μS	
Δt _{PKJIT}	PLL jitter (pk to pk)	f _{PLLIN} = 4 MHz (pulse generator)			1.5	ns	

^{1.} $\,$ $f_{\mbox{\scriptsize PLLIN}}$ is obtained from $f_{\mbox{\scriptsize OSC}}$ directly or through an optional divider by 2.

Table 17. Low-power mode wake-up timing

Symbol	Parameter	Conditions	Тур	Unit
twuhalt	Wake-up from HALT mode		200	μs
+	Wake up from STOP mode	RC high frequency in STOP mode	180	μs
twustop	Wake-up from STOP mode	RC low frequency in STOP mode	234	μs
t _{WULPWFI} 1)		Main voltage regulator on RC oscillator off $f_{OSC} = 4 \text{ MHz, } f_{MCLK} = f_{OSC}/16$ RAM or FLASH execution	27	μs
	Wake-up from LPWFI mode	Main voltage regulator on RC oscillator = high frequency Flash execution	46	μs
		Main voltage regulator on RC oscillator = low frequency Flash execution	3.6	ms

^{1.} Flash memory programmed to enter Power Down mode during LPWFI.

577

^{2.} Typical data are based on $T_A=25^{\circ}C$, $V_{DD}=5V$

^{3.} Max value is guaranteed by characterization, not tested in production.

Electrical parameters STR73xFxx

4.3.3 Memory characteristics

Flash memory

Table 18. Flash memory characteristics

Cumbal	Parameter	Took Conditions	Value			Unit
Symbol	Parameter	Test Conditions	Min	Тур	Max ¹⁾	Unit
t _{WP}	Word program (32-bit)			35	80	μS
t _{DWP}	Double word program(64-bit)			64	150	μS
t _{BP64}	Bank program (64 K)	Double word program		0.5	1.25	s
t _{BP128}	Bank program (128 K)	Double word program		1	2.5	s
t _{BP256}	Bank program (256 K)	Double word program		2	4.9	s
t _{SE8}	Sector erase (8 K)	Not preprogrammed Preprogrammed ²⁾		0.6 0.5	0.9 0.8	s
t _{SE32}	Sector erase (32 K)	Not preprogrammed Preprogrammed ²⁾		1.1 0.8	2 1.8	s
t _{SE64}	Sector erase (64 K)	Not preprogrammed preprogrammed ²⁾		1.7 1.3	3.7 3.3	S
t _{RPD} ³⁾	Recovery from power-down				20	μS
t _{PSL} 3)	Program suspend latency				10	μS
t _{ESL} 3)	Erase suspend latency				30	μS
t _{ESR} 3)	Erase suspend rate	Min. time from erase resume to next erase suspend		20	20	ms
t _{SP} ³⁾	Set protection			40	170	μs
t _{FPW} 3)	First word program			1		ms
N _{END}	Endurance		10			kcycles
t _{RET}	Data retention	T _A = 85° C	20			Years

^{1.} $T_A = -45^{\circ}$ C after 0 cycles, Guaranteed by characterization, not tested in production.

^{2.} All bits programmed to 0.

^{3.} Guaranteed by design, not tested in production.

4.3.4 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Table 19. EMS data

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5 V, T_A =+25° C, f_{MCLK} =36 MHz conforms to IEC 1000-4-2	4A
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} =5 V, T _A =+25° C, f _{MCLK} =36 MHz conforms to IEC 1000-4-4	4A

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Table 20. EMI data

Symbol	Parameter	Conditions	Monitored frequency band	Max [f _{OSC4M}	Unit	
			nequency band	6/36 MHz	8/8 MHz	
S _{EMI}	Peak level	V _{DD} =5.0V, T _A =+25°C, All packages	0.1 MHz to 30 MHz	23	30	
			30 MHz to 130 MHz	37	34	dΒμV
			130 MHz to 1 GHz	20	7	
			SAE EMI Level	4	3.5	-

Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and machine model. This test conforms to the JESD22-A114A/A115A standard.

Table 21. ESD Absolute Maximum ratings

Symbol	Ratings	Conditions	Maximum value ¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)		2000	
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	T _A =+25° C	200	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)		750 on corner pins, 500 on others	

Notes:

1. Data based on characterization results, not tested in production.

Static and dynamic latch-up

• LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each

- sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
- DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Table 22. Electrical sensitivities

Symbol	Parameter	Conditions	Class ¹⁾
LU	Static latch-up class	T _A =+25°C T _A =+85°C T _A =+105°C	A A A
DLU	Dynamic latch-up class	V_{DD} = 5.5 V, f_{OSC4M} = 4 MHz, f_{MCLK} = 32 MHz, T_A = +25° C	Α

Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

Electrical parameters STR73xFxx

4.3.5 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 23. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage 1)	TTL ports			0.8	V
V _{IH}	Input high level voltage 1)	TTL ports	2.0			V
I _{INJ(PIN)}	Injected current on any I/O pin				±10	mA
ΣI _{INJ(PIN)} 2)	Total injected current (sum of all I/O and control pins)				±75	mA
I _{lkg}	Input leakage current 3)	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μΑ
I _S	Static current consumption ⁴⁾	Floating input mode		200		μΑ
R _{PU}	Weak pull-up equivalent resistor ⁵⁾	V _{IN} =V _{SS}	55	120	220	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁵⁾	V _{IN} =V _{DD}	55	120	220	kΩ
C _{IO}	I/O pin capacitance			5		pF

^{1.} Data based on characterization results, not tested in production.

When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise refer to I_{INJ(PIN)} specification. A positive injection is induced by V_{IN}>V₃₃ while a negative injection is induced by V_{IN}<V_{SS}. Refer to Section 4.2 on page 22 for more details.

^{3.} Leakage could be higher than max. if negative current is injected on adjacent pins.

^{4.} Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Data based on design simulation and/or technology characteristics, not tested in production.

The R_{PU} pull-up and R_{PD} pull-down equivalent resistor are based on a resistive transistor (corresponding I_{PU} and I_{PD} current characteristics described in *Figure 19*).

Output driving current

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 24. Output driving current

I/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
Standard	V _{OL} 1)	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} =+2 mA		0.4	
Stariuaru	V _{OH} ²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	I _{IO} =-2 mA	V _{DD} -0.8		
Med. Current	V _{OL} 1)	Output low level voltage for an I/O pin	I _{IO} =+6 mA		0.4	٧
(JTDO)	V _{OH} ²⁾	Output high level voltage for an I/O pin	I _{IO} =-6 mA	V _{DD} -0.8		
High Current	V _{OL} 1)	Output low level voltage for an I/O pin	I _{IO} =+8 mA		0.4	
P6.0	V _{OH} ²⁾	Output high level voltage for an I/O pin	I _{IO} =-8 mA	V _{DD} -0.8		

^{1.} The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

Figure 13. V_{OH} standard ports vs I_{OH} @ V_{DD} 5V Figure 14. V_{OL} standard ports vs I_{OL} @ V_{DD} 5 V T_A -45° C

577

^{2.} The I_{IQ} current sourced must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IQ} (I/O ports and control pins) must not exceed IV_{DD}.

Electrical parameters STR73xFxx

Figure 15. V_{OH} JTDO pin vs I_{OL} @ V_{DD} 5 V

Figure 16. V_{OL} JTDO pin vs I_{OL} @ V_{DD} 5 V

Figure 17. V_{OH} P6.0 pin vs I_{OL} @ V_{DD} 5 V

Figure 18. V_{OL} P6.0 pin vs I_{OL} @ V_{DD} 5 V

NRSTIN pin

The NRSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as R_{PU} (see : *General characteristics on page 38*)

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Table 25. Reset pin characteristics

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRSTIN)}	NRSTIN Input low level voltage 1)				0.3 V _{DD}	V
V _{IH(NRSTIN)}	NRSTIN Input high level voltage 1)		0.7 V _{DD}			V
V _{hys(NRSTIN)}	NRSTIN Schmitt trigger voltage hysteresis ²⁾			800		mV
V _{F(RSTINn)}	NRSTIN Input filtered pulse ³⁾				500	ns
V _{NF(RSTINn)}	NRSTIN Input not filtered pulse ³⁾		2			μs
V _{RP(RSTINn)}	NRSTIN removal after Power-up ³⁾		100			μs

- 1. Data based on characterization results, not tested in production.
- 2. Hysteresis voltage between Schmitt trigger switching levels.
- 3. Data guaranteed by design, not tested in production.

Figure 19. Recommended NRSTIN pin protection¹⁾

- 1. The R_{PU} pull-up equivalent resistor is based on a resistive transistor.
- 2. The reset network protects the device against parasitic resets.
- 3. The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in *Table 25*. Otherwise the reset will not be taken into account internally.

Electrical parameters STR73xFxx

Figure 20. NRSTIN R_{PU} vs. V_{DD}

4.3.6 10-bit ADC characteristics

Subject to general operating conditions for V_{DDA} , f_{MCLK} , and T_A unless otherwise specified.

Table 26. ADC characteristics

Symbol	Parameter	Conditions	Min	Typ 1)	Max	Unit
f _{ADC}			0.4		10	MHz
V _{AIN}	Conversion voltage range 2)		V_{SSA}		V_{DDA}	V
I _{lkg}	Negative input leakage current on analog pins	V _{IN} <v<sub>SS, I_{IN} < 400 μA on adjacent analog pin</v<sub>		5	6	μА
C _{ADC}	Internal sample and hold capacitor				3.5	pF
t _{CAL} ²⁾	Calibration time	f _{ADC} = 10 MHz		μs		
CAL	Cambration time	ADC 10 III I	5802			1/f _{ADC}
t _S ³⁾	Sampling time	f _{ADC} = 10 MHz	1		14	μs
			3			μs
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 10 MHz	30 (10 f +20 for approxi	succes	•	1/f _{ADC}
Lano	Running mode	Normal mode			5	mA
I _{ADC}	Power-down mode				1	μА

^{1.} Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$ and $V_{DDA}-V_{SS}=5.0V$. They are given only as design guidelines and are not tested.

577

^{2.} Calibration is recommended once after each power-up.

^{3.} During the sample time the input capacitance C_{AIN} (6.8 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within $t_{\rm S}$. After the end of the sample time $t_{\rm S}$, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock $t_{\rm S}$ depend on programming.

Table 27.	ADC accuracy with f_{MCLK} = 20 MHz, f_{ADC} =10 MHz, R_{AIN} < 10 k Ω RAIN,
	V _{DDA} =5 V. This assumes that the ADC is calibrated ²⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
IE _T I	Total unadjusted error 1)		1.0	2.0	
IE _O I	Offset error 1)		0.15	1.0	
IE _G I	Gain error 1)		0.97	1.1	LSB
IE _D I	Differential linearity error ¹⁾		0.7	1.0	
IE _L I	Integral linearity error 1)		0.76	1.5	

- 1. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in Section 4.3.5.
 Any positive injection current within the limits specified for I_{INJ(PIN)} and \(\mathcal{D}_{INJ(PIN)}\) in Section 4.3.5 does not affect the ADC accuracy.
- 2. Calibration is needed once after each power-up.

Figure 21. ADC accuracy characteristics

Figure 22. Typical application with ADC

Analog power supply and reference pins

The V_{DDA} and V_{SSA} pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB design quidelines).

General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see Figure 23).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 23. Power supply filtering

5/

5 Package characteristics

5.1 Package mechanical data

Figure 24. 100-pin thin quad flat package

Figure 25. 144-pin thin quad flat package

SEATING Plane Ç inches1) mm Dim. Min Тур Max Min Тур Max Α 1.21 1.70 0.0476 0.0669 Ş **A**1 0.21 0.0083 1.085 0.0427 **A2** E1 b 0.35 0.40 0.45 | 0.0138 | 0.0157 | 0.0177 10.15 0.3878 0.3937 0.3996 D 9.85 10.00 D1 0.3465 10.00 10.15 0.3878 0.3937 0.3996 Е 9.85 E1 8.80 0.3465 е 0.80 0.0315 F 0.60 0.0236 ddd 0.10 0.0039 0.15 0.0059 fff 0.08 0.0031 Number of Pins N ¹Values in inches are converted from mm and rounded to 4 decimal digits. □

Figure 26. 144-ball low profile fine pitch ball grid array package

Figure 27. Recommended PCB design rules (0.80/0.75mm pitch BGA)

5.2 Thermal characteristics

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using the following equation:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JA}) \tag{1}$$

Where:

- T_A is the ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D is the sum of P_{INT} and $P_{I/O}$ ($P_D = P_{INT} + P_{I/O}$),
- P_{INT} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the chip internal power,
- P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant if the device is configured to drive continuously external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_D = K / (T_J + 273^{\circ}C)$$
 (2)

Therefore (solving equations 1 and 2):

$$K = P_D x (T_A + 273^{\circ}C) + \Theta_{JA} x P_D^2$$
 (3)

Where:

– K is a constant for the particular part, which may be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations (1) and (2) iteratively for any value of T_A

Table 28. Thermal characteristics

Symbol	Description	Package	Value (typical)	Unit
		LFBGA144	50	
Θ_{JA}	Thermal resistance junction-ambient	TQFP144	40	°C/W
		TQFP100	40	

STR73xFxx Order codes

6 Order codes

Table 29. Order codes

Partnumber	Flash Kbytes	Package	RAM Kbytes	TIM timers	6x PWM module	CAN periph	A/D chan.	Wake-up lines	I/O ports	Temp. range									
STR730FZ1T6	128	TQFP144																	
STR730FZ2T6	256	20x20				3													
STR730FZ1H6	128	LFBGA144				3													
STR730FZ2H6	256	10x10		10			16	32	112										
STR735FZ1T6	128	TQFP144		10			10	32	112										
STR735FZ2T6	256	20x20				0													
STR735FZ1H6	128	LFBGA144	16		1	0				-40 to									
STR735FZ2H6	256	10x10	16		'					+85°C									
STR731FV0T6	64																		
STR731FV1T6	128	TQFP100 14x14				3													
STR731FV2T6	256		6										6			12	18	72	
STR736FV0T6	64	TQFP100			12	10	72												
STR736FV1T6	128			0															
STR736FV2T6	256																		
STR730FZ1T7	128	TQFP144																	
STR730FZ2T7	256	20x20			3														
STR730FZ1H7	128	LFBGA144				3													
STR730FZ2H7	256	10x10		10			16	32	112										
STR735FZ1T7	128	TQFP144		10			10	32	112										
STR735FZ2T7	256	20x20																	
STR735FZ1H7	128	LFBGA144	16		1	0				-40 to									
STR735FZ2H7	256	10x10	10		'					+105°C									
STR731FV0T7	64																		
STR731FV1T7	128	TQFP100 14x14				3													
STR731FV2T7	256			6			12	10	72										
STR736FV0T7	64	64	12	18	12														
STR736FV1T7	128	TQFP100 14x14				0													
STR736FV2T7	256																		

577

Known limitations STR73xFxx

7 Known limitations

7.1 Low power wait for interrupt mode

When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into low power mode or power down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is '0', Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry.

Workaround

There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter power down mode (bit PWD = '1').

7.2 PLL free running mode at high temperature

When the STR73x device is operated and an ambient temperature (T_A) of more than 55° C and the main system clock (f_{MCLK}) is sourced by the PLL in free running mode, the device may not work properly.

Workaround

At high temperature (more than 55° C), it is recommended to use the internal RC oscillator as a backup clock source rather than the PLL free running mode.

STR73xFxx Revision history

8 Revision history

Table 30. Document revision history

Date	Revision	Description of changes
19-Sep-2005	1	First release
02-Nov-2005	2	Removed Table 8 power consumption in LP modes Updated PLL frequency in Section 1.1 and Table 12
08-Mar-2006	3	Section 3.4: Preliminary power consumption data updated Section 3.5: DC electrical characteristics updated Section 7: Known limitations added
04-Jun-2006	4	Section 4: Electrical parameters updated Section 7: Known limitations updated Added temperature range -40°C to 85°C in Section 6: Order codes
19-Jun-2006	5	Changed Flash data retention to 20 years at 85°C in <i>Table 18 on page 34</i> .
08-Sep-2006	6	Changed Table 24: Output driving current on page 39 Added Figure 14: VOL standard ports vs IOL @ VDD 5 V thru Figure 18: VOL P6.0 pin vs IOL @ VDD 5 V on page 40. Added Figure 20: NRSTIN RPU vs. VDD
08-Jun-2008	7	Inch values rounded to 4 decimal digits in Section 5.1: Package mechanical data Modified BSPI speed in Section 2.1: On-chip peripherals

51/52

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

