离散数学第四次作业

作业提交方式: 2022 年 12 月 17 前将电子版作业上传到 bb 系统

一. (2分) 证明:

- 1. 每棵树都是一个二分图。
- 2. 如果一棵树存在完备匹配,那么这个完备匹配是唯一的。

答:

- 1. 树没有圈,因此没有奇圈,是二分图。
- 2. 考虑每个叶子结点,如果存在完备匹配,由于叶子结点只有一个邻居,那么和他和他匹配的只能是他的邻居,删掉所有叶子结点和他的邻居后得到一个森林,同理可以继续上述操作。因此如果存在完备匹配,我们可以**唯**一的构造出这个匹配,言之有理即可。方法二:若有两个相异的完备匹配 M_1 与 M_2 ,考虑 $M_1 \oplus M_2$ 中每个顶的次数都是 0 或者 2,又因为 M_1 与 M_2 不同,所以不会都是 0,顶点次数都是 2 的图有圈,与树矛盾。

二. (3 %) 我们首先定义一个图 G 的**覆盖**:

设 G 是一个图, C 是其顶点集合的子集, 即 $C \subseteq V(G)$, 若 G 中任意一条边都有一个端点属于 C, 则称 C 是 G 的一个覆盖。若 C 是 G 的覆盖, 但 C 的任何真子集都不是 G 的覆盖, 则称 C 是 G 的极小覆盖。若 C^* 是 G 的覆盖, 且不存在 G 的覆盖 C, 使得 $|C| < |C^*|$, 则称 C^* 是 G 的最上覆盖, 且称 $|C^*|$ 是 G 的覆盖数, 记作 $\beta(G)$ 。

设 G 是顶点集合划分为 X 与 Y 的二分图, $V(G) = X \cup Y, X \cap Y = \emptyset$, 证明如下结论:

- 1. G 的每个极小覆盖可以表示为 $S \cup N(X S), S \subset X$, 其中 N(S) 表示 S 的邻居集合。
- 2. $\beta(G) = |X| \max_{S \subset X} (|S| |N(S)|)_{\circ}$
- 3. $\beta(G) = |X|$, 当且仅当任给 $S \subseteq X$, 都有 $|N(S)| \ge |S|$ 。

答:

- 1. 任取一个极小覆盖 C,显然 C 可以表示为 $(X\cap C)\cup (Y\cap C)$ 只需证明 $N(X-(X\cap C))=(Y\cap C)$ (细节略)。注意这里要证的只是每个极小覆盖能表示为 $S\cup N(X-S),S\subset X$,而不是每个这样的点集都是极小覆盖。
- $2. \ \beta(G) = \min_{S \subset X} |S \cup N(X S)| = \min_{S \subset X} |X S \cup N(S)| = \min_{S \subset X} |X| |S| + |N(S)| = |X| \max_{S \subset X} (|S| |N(S)|)_{\circ}$
- 3. 由上一问可得 $\beta(G) = |X| \Leftrightarrow \max_{S \subset X} (|S| |N(S)|) = 0$,也就是任给 $S \subseteq X$,都有 $|N(S)| \ge |S|$,当 $S = \emptyset$ 时,显然有 |S| |N(S)| = 0, $\max_{S \subset X} (|S| |N(S)|)$ 能取到 0。

三. (1 分) 假设 f 是网络 N = (G, s, t, c) 上的流函数。证明:

$$\sum_{v \in V} f(s,v) = \sum_{v \in V} f(v,t)$$

答: 首先回顾一下符号的定义。

定义 9 网络 N=(G,s,t,c) 上的流函数为 $f:V(G)\times V(G)\to \mathbf{R}$, 要求满足:

- 任给 $u,v \in V(G)$, 都有 $c(u,v) \geqslant f(u,v)$;
- 斜对称, f(u,v) = -f(v,u);
- 任给 $u \in V(G) \{s,t\}$, 都有 $\sum_{v \in V(G)} f(u,v) = 0$

由于斜对称, 我们有

$$\sum_{u \in V} \sum_{v \in V} f(u, v) = 0$$

再由于第三条性质, 我们有

$$\sum_{u \in V(G) - \{s,t\}} \sum_{v \in V} f(u,v) = 0$$

相减可以得到

$$\sum_{v \in V} f(s, v) + f(t, v) = 0$$

再由于斜对称就可以得到

$$\sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

四. (2分) 有向图 G 如图所示

- 1. 在图中模拟 ford-fulkerson 算法求出网络的最大流,要求给出过程。
- 2. 如果边权重表示流函数下界,即 $f(u,v) \ge c(u,v)$,求网络的最小流。

答:

1. 计算过程如下,最大流为6.

2. 由于汇入 t 的两条边流量之和至少是 16,因此最小流大于等于 16,我们可以构造如下流函数 使得流量恰好为 16,因此最小流等于 16。

- 五. (2分) 对于有向图 G=(V,E), 我们可以定义**强连通分量图** $G^{SCC}=(V^{SCC},E^{SCC})$, 假设 G 有强连通分量 C_1,\ldots,C_k , 那么 $V^{SCC}=\{v_1,\ldots,v_k\}$, V^{SCC} 中的点 v_i 对应 G 中强连通分量 C_i , $(v_i,v_j)\in E^{SCC}$ 当且仅当存在 $u,v\in V$ 使得 $(u,v)\in E,u\in C_i,v\in C_j$ 。
 - 1. 证明: 分量图 G^{SCC} 是一个有向无环图。
 - 2. 定义 $G^T = (V, E^T)$, 这里 $E^T = \{(u, v) : (v, u) \in E\}$ 。证明: $((G^T)^{SCC})^T = G^{SCC}$

答:

- 1. 由定义可得显然 G^{SCC} 有向,若 G^{SCC} 有环,我们取环上两点 v_i, v_j ,显然会存在一条 v_i 到 v_j 的路径,也存在一条 v_j 到 v_i 的路径,这说明他们对应的 C_i, C_j 强连通,这与强连通分量的定义相矛盾(所有强连通的点会在同一个强连通分量里)。
- 2. 首先,将 G 中所有边反向,G 的强连通分量不变,显然若 v_i, v_j 在 G 中强连通,那么 v_i, v_j 在 G^T 中强连通,又有 $(G^T)^T = G$,因此 v_i, v_j 在 G^T 中强连通等价于 v_i, v_j 在 G 中强连通,所以强连通分量不变,也就是 $V((G^T)^{SCC}) = V(G^{SCC})$ 。 其次, $(v_i, v_j) \in E(G^{SCC}) \Leftrightarrow \exists u \in C_i, v \in C_j, (u, v) \in E(G)$,在 G^T 中我们有 $u \in C_i, v \in C_j, (v, u) \in E(G^T) \Rightarrow (v_j, v_i) \in E((G^T)^{SCC})$,反方向同理,也就是说 $(v_i, v_j) \in E(G^{SCC}) \Leftrightarrow (v_j, v_i) \in E((G^T)^{SCC})$ 也就是 $E((G^T)^{SCC})^T = E(G^{SCC})$ 综上,我们有 $V((G^T)^{SCC}) = V(G^{SCC})$, $E((G^T)^{SCC})^T = E(G^{SCC})$,也就是 $E((G^T)^{SCC})^T = E(G^{SCC})^T = E(G^{$