wine-reviews-analysis

2021年3月28日

- 1 数据挖掘作业一
- 1.1 姓名: 余晓学号: 3220200998
- 1.2 数据集: wine-reviews

```
[1]: # 导入必要的包
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from scipy import stats
from collections import Counter
from math import isnan
import math
```

1.3 查看数据集并对数据集进行了解

/kaggle/input/wine-reviews/winemag-data_first150k.csv /kaggle/input/wine-reviews/winemag-data-130k-v2.json

```
[3]: # 读取数据集
    path = '/kaggle/input/wine-reviews/'
    data = pd.read_csv(path+'winemag-data_first150k.csv',index_col=0)
    data.head()#默认展示前五行数据
    #数据集的含义
    # 列名-----含义
    # country 葡萄酒来自的国家
    # description 描述葡萄酒的味道、气味、外观、感觉等
    # designation 酿酒厂内的葡萄园, 酿造葡萄酒的葡萄来自葡萄园
    # points Wine Enthusiast 对葡萄酒的评分为 1-100
                一瓶葡萄酒的成本
    # price
               葡萄酒来自的产地
    # province
    # region_1 葡萄酒来自的产地
    # region_2 葡萄酒来自的产地
    # variety
               用于酿造葡萄酒的葡萄种类
                生产葡萄酒的酿酒厂
    # winery
[3]:
      country
                                               description \
    0
          US This tremendous 100% varietal wine hails from ...
    1
       Spain Ripe aromas of fig, blackberry and cassis are ...
    2
          US Mac Watson honors the memory of a wine once ma...
          US This spent 20 months in 30% new French oak, an...
    3
     France This is the top wine from La Bégude, named aft...
                             designation points price
                                                           province \
    0
                       Martha's Vineyard
                                            96 235.0
                                                         California
    1
      Carodorum Selección Especial Reserva
                                            96 110.0 Northern Spain
    2
             Special Selected Late Harvest
                                            96
                                                90.0
                                                         California
    3
                                Reserve
                                            96
                                                65.0
                                                             Oregon
    4
                              La Brûlade
                                            95
                                                66.0
                                                           Provence
                                                  variety \
               region_1
                               region_2
    0
            Napa Valley
                                   Napa Cabernet Sauvignon
                                             Tinta de Toro
    1
                  Toro
                                    NaN
```

```
2 Knights Valley Sonoma Sauvignon Blanc
3 Willamette Valley Willamette Valley Pinot Noir
4 Bandol NaN Provence red blend
```

winery

0 Heitz

1 Bodega Carmen Rodríguez

2 Macauley

3 Ponzi

4 Domaine de la Bégude

[4]: data.dtypes # 每列数据的数据类型

[4]: country object description object designation object points int64 price float64 province object region_1 object region_2 object variety object object winery dtype: object

[5]: data.shape # 数据集的大小

[5]: (150930, 10)

2 数据分析要求

2.1 数据可视化和摘要

2.1.1 数据摘要

(1) 标称属性,给出每个可能聚会的频数

```
[6]: # 由上面对数据集各列进行分析得知,该数据集的标称属性有'country','designation','province','region_1','region_2',
#'variety','winery' 七个标称属性
# 下面给出每个属性取值的频数
#(1)country
pd.value_counts(data['country'])
```

[6]:	US	62397
	Italy	23478
	France	21098
	Spain	8268
	Chile	5816
	Argentina	5631
	Portugal	5322
	Australia	4957
	New Zealand	3320
	Austria	3057
	Germany	2452
	South Africa	2258
	Greece	884
	Israel	630
	Hungary	231
	Canada	196
	Romania	139
	Slovenia	94
	Uruguay	92
	Croatia	89
	Bulgaria	77
	Moldova	71
	Mexico	63
	Turkey	52
	Georgia	43
	Lebanon	37
	Cyprus	31
	Brazil	25
	Macedonia	16

Serbia	14
Morocco	12
England	9
Luxembourg	9
Lithuania	8
India	8
Czech Republic	6
Ukraine	5
Bosnia and Herzegovina	4
South Korea	4
Switzerland	4
China	3
Slovakia	3
Egypt	3
Japan	2
Albania	2
Montenegro	2
Tunisia	2
US-France	1
Name: country, dtype: int64	

[7]: #(2) designation

pd.value_counts(data['designation'])

[7]:	Reserve	2752
	Reserva	1810
	Estate	1571
	Barrel sample	1326
	Riserva	754
		•••
	Bourriquot	1
	Shiraz-Mourvèdre-Viognier	1
	Sierra Legend Estate	1
	Grenache-Shiraz	1
	Brauneberger Juffer Auslese Goldkapsel	1
	Name: designation, Length: 30621, dtype:	int64

```
[8]: #(3) province
      pd.value_counts(data['province'])
 [8]: California
                                                 44508
                                                  9750
      Washington
      Tuscany
                                                  7281
      Bordeaux
                                                  6111
      Northern Spain
                                                  4892
     Langenlois
                                                     1
      Vino da Tavola della Svizzera Italiana
                                                     1
      San Clemente
                                                     1
      Martinborough Terrace
                                                     1
      Dolenjska
                                                     1
      Name: province, Length: 455, dtype: int64
 [9]: #(4)region_1
      pd.value_counts(data['region_1'])
 [9]: Napa Valley
                                                    6209
      Columbia Valley (WA)
                                                    4975
      Mendoza
                                                    3586
      Russian River Valley
                                                    3571
      California
                                                    3462
      Catalanesca del Monte Somma
                                                        1
      Mazoyeres-Chambertin
                                                        1
      Mâcon-Mancey
                                                        1
      Monterey County-Napa County-Sonoma County
                                                        1
                                                        1
      Arlanza
      Name: region_1, Length: 1236, dtype: int64
[10]: #(5)region_2
      pd.value_counts(data['region_2'])
[10]: Central Coast
                                  13057
                                  11258
      Sonoma
      Columbia Valley
                                   9157
```

	Napa	8801	
	California Other	3516	
	Willamette Valley	3181	
	Mendocino/Lake Counties	2389	
	Sierra Foothills	1660	
	Napa-Sonoma	1645	
	Finger Lakes	1510	
	Central Valley	1115	
	Long Island	771	
	Southern Oregon	662	
	Oregon Other	661	
	North Coast	632	
	Washington Other	593	
	South Coast	198	
	New York Other	147	
	Name: region_2, dtype: int64		
[11]:	#(6) alami atal		
[II].			
	pd.value_counts(data['vario	ety'])	
[11]:	Chardonnay	14482	
	Pinot Noir	14291	
	Cabernet Sauvignon	12800	
	Red Blend	10062	
	Bordeaux-style Red Blend	7347	
	Grenache Gris	1	
	Malvoisie	1	
	Syrah-Carignan	1	
	Mandilaria	1	
	Karasakiz	1	
	Name: variety, Length: 632	, dtype: int64	
[12]:	#(7)winery		
_	pd.value_counts(data['wine:	ry'])	
	-	•	

```
[12]: Williams Selyem
                              374
     Testarossa
                              274
     DFJ Vinhos
                              258
     Chateau Ste. Michelle
                              225
     Columbia Crest
                              217
     Tre Anelli
                                1
     Viña del Sopié
                                1
     Château le Chêne
                                1
     Neckenmarkt
                                1
     Patrice Moreux
                                1
     Name: winery, Length: 14810, dtype: int64
     (2) 数值属性,给出5数概括及缺失值的个数
[13]: # 这里的数值属性包括 points 和 price
      # 用 describe 函数对数据的 5 数进行概括
     digital_data = ['points','price']
     data[digital_data].describe()
[13]:
                   points
                                   price
            150930.000000
                          137235.000000
     count
     mean
                87.888418
                               33.131482
                 3.222392
                               36.322536
     std
                80.000000
                                4.000000
     min
     25%
                86.000000
                               16.000000
     50%
                88.000000
                               24.000000
     75%
                90.000000
                               40.000000
               100.000000
                             2300.000000
     max
[14]: # 给出 points 和 price 缺失值个数
     print("The Null num of 'points' is:",data['points'].isnull().sum())
     The Null num of 'points' is: 0
[15]: print("The Null num of 'price' is:",data['price'].isnull().sum())
```

The Null num of 'price' is: 13695

2.1.2 数据可视化

(1) 绘制 points 的直方图、盒图、qq 图(此处只针对数值类型的数据)

```
[16]: # coding=utf-8
plt.figure(figsize = (10,10))

# 直方图
plt.subplot(2,2,1)
plt.title("points hist")
data['points'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数

# 盒图
plt.subplot(2,2,2)
plt.title("points box")
data['points'].plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(2,2,3)
stats.probplot(data['points'],dist="norm",plot=plt)
plt.show()
```



```
[17]: # 绘制 price 的直方图、盒图、qq 图 plt.figure(figsize = (10,10))

# 直方图 plt.subplot(2,2,1) plt.title("price hist") data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数 # 盒图
```

```
plt.subplot(2,2,2)
plt.title("price box")
data['price'].plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(2,2,3)
stats.probplot(data['price'],dist="norm",plot=plt)

# 去除缺失值再绘制 q-q 图
plt.subplot(2,2,4)
pricewithooutnulldata = pd.DataFrame(data['price'])
pricewithooutnulldata = pricewithooutnulldata.dropna()
stats.probplot(data['price'],dist="norm",plot=plt)

plt.show()
```


2.1.3 由上图可以得出结论:

1.points 属性分布符合正态分布,但不是完全正态分布

2.price 属性分布不符合正态分布

3 数据缺失处理

```
[18]: # 绘制表格查看数据缺失值并检验四种方案填充后是否还有缺失值

def missing_data(datatodel):
    missing_num = datatodel.isnull().sum()
    missing_percent = missing_num/datatodel.shape[0]*100
    concat_data = pd.
    →concat([missing_num,missing_percent],axis=1,keys=['missing_num','missing_percent'])
    concat_data['Types'] = datatodel.dtypes
    return concat_data
```

由上表可以看出,数值型数据 price 存在缺失值

标称型数据 country, designation, province, region 1, region 2 存在缺失值

这里缺失的原因可能是由于未完全记录、遗漏或无法获取

3.1 方案一缺失值剔除

```
[19]: del_null_data = data.copy(deep=True)
    del_null_data = del_null_data.dropna()
```

[20]: missing_data(del_null_data)

[20]:	missing_num	missing_percent	Types
country	0	0.0	object
description	0	0.0	object
designation	0	0.0	object
points	0	0.0	int64
price	0	0.0	float64
province	0	0.0	object
region_1	0	0.0	object
region_2	0	0.0	object
variety	0	0.0	object
winery	0	0.0	object

```
[21]: # 可视化对比新旧数据 plt.figure(figsize = (10,10))
```

```
# 直方图
plt.subplot(3,2,1)
plt.title("price hist")
data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
# 直方图
plt.subplot(3,2,2)
plt.title("new price hist")
del_null_data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
# 盒图
plt.subplot(3,2,3)
plt.title("price box")
data['price'].plot(kind='box',notch=True,grid=True)
# 盒图
plt.subplot(3,2,4)
plt.title("new price box")
del_null_data['price'].plot(kind='box',notch=True,grid=True)
#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['price'],dist="norm",plot=plt)
plt.subplot(3,2,6)
stats.probplot(del_null_data['price'],dist="norm",plot=plt)
plt.show()
```


[22]: del_null_data[['price']].describe() # 缺失部分剔除后数据的 5 数概况

[22]:		price
	count	39241.000000
	mean	37.546316
	std	26.716547
	min	4.000000
	25%	22.000000
	50%	32.000000
	75%	45.000000

3.2 用最高频率值来填补缺失值

```
[23]: # 用最高频率来填补缺失值--此处使用深拷贝,否则会改变原值
fill_data_with_most_frequency = data.copy(deep=True)
# 对 price 进行最高频率值填补缺失值
word_counts = Counter(fill_data_with_most_frequency['price'])
top = word_counts.most_common(1)[0][0]
fill_data_with_most_frequency['price'] = fill_data_with_most_frequency['price'].

→fillna(top)
```

[24]: missing_data(fill_data_with_most_frequency)

```
[24]:
                   missing_num missing_percent
                                                     Types
      country
                              5
                                        0.003313
                                                    object
                              0
                                        0.000000
                                                    object
      description
                          45735
      designation
                                       30.302127
                                                    object
                                                     int64
                              0
                                        0.000000
      points
      price
                              0
                                        0.000000 float64
                              5
                                        0.003313
                                                    object
      province
      region_1
                          25060
                                       16.603724
                                                    object
      region_2
                          89977
                                       59.615053
                                                    object
                                        0.000000
                                                    object
      variety
                              0
      winery
                              0
                                        0.000000
                                                    object
```

```
[25]: # 可视化对比新旧数据
```

```
plt.figure(figsize = (10,10))

# 直方图
plt.subplot(3,2,1)
plt.title("price hist")
data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数

# 直方图
plt.subplot(3,2,2)
```

```
plt.title("new price hist")
fill_data_with_most_frequency['price'].hist(alpha=0.5,bins=15) #alpha 透明度,
bins 竖条数
# 盒图
plt.subplot(3,2,3)
plt.title("price box")
data['price'].plot(kind='box',notch=True,grid=True)
# 盒图
plt.subplot(3,2,4)
plt.title("new price box")
fill_data_with_most_frequency['price'].plot(kind='box',notch=True,grid=True)
#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['price'],dist="norm",plot=plt)
plt.subplot(3,2,6)
stats.probplot(fill_data_with_most_frequency['price'],dist="norm",plot=plt)
plt.show()
```


[26]: # 对填充后的新数据进行描述 fill_data_with_most_frequency[['price']].describe()

```
[26]: price
count 150930.000000
mean 31.939966
std 34.840211
min 4.000000
25% 16.000000
50% 22.000000
```

```
75% 38.000000
max 2300.000000
```

3.3 通过属性的相关关系来填补缺失值

```
[27]: # 查看相关的属性关系
     data.corr()
[27]:
               points
                         price
     points 1.000000 0.459863
     price
             0.459863 1.000000
[28]: # 通过属性的相关关系来填补缺失值
     target_data = data['price'].copy(deep=True)
     source_data = data['points'].copy(deep=True)
     flag1 = target_data.isnull().values
     flag2 = source_data.isnull().values
     i=0
     for _,value in target_data.iteritems():
         if(flag1[i] == True) and (flag2[i] == False):
             target_data[i] = 104 - source_data[i]
         i=i+1
[29]: # 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("price hist")
     data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new price hist")
```

```
target_data.hist(alpha=0.5,bins=15) #alpha 透明度, bins 坚条数

# 盒图
plt.subplot(3,2,3)
plt.title("price box")
data['price'].plot(kind='box',notch=True,grid=True)

# 盒图
plt.subplot(3,2,4)
plt.title("new price box")
target_data.plot(kind='box',notch=True,grid=True)

#q-q 图
plt.subplot(3,2,5)
stats.probplot(data['price'],dist="norm",plot=plt)

plt.subplot(3,2,6)
stats.probplot(target_data,dist="norm",plot=plt)

plt.show()
```


[30]: target_data.describe()

[30]:	count	150930.00000
	mean	31.49576
	std	35.03242
	min	4.00000
	25%	15.00000
	50%	22.00000
	75%	38.00000
	max	2300.00000

Name: price, dtype: float64

3.4 通过对象的相似性填补缺失值

```
[31]: numeric_attr = ['price', 'points']
     # 查找两个对象间的相似性
     # 如果通过暴力法求解耗时耗力
     # 所以选择通过二分法查找的方法进行相似性选择
     def find_dis_value(dataset, pos, numeric_attr):
         def dis_objs(tar_obj_index, sou_obj_index):
             tar_obj = dataset.iloc[tar_obj_index]
             sou_obj = dataset.iloc[sou_obj_index]
             dis_value = 0
             for column in tar_obj.index:
                 if column == 'points':
                     if (not math.isnan(tar_obj[column])) and (not math.
      →isnan(sou_obj[column])):
                         dis_value += sou_obj[column] - tar_obj[column]
                     else:
                         dis value += 9998
             return dis_value
         mindis = 9999
         result_pos = -1
         leftindex = 0;
         rightindex = dataset.shape[0]-1
         #二分查找返回最近距离的一个 result_pos
         while leftindex<=rightindex:</pre>
             midindex = int((leftindex+rightindex)/2)
             tmpdis = dis_objs(pos,midindex)
             if(tmpdis>0):
                 rightindex = midindex-1
             elif(tmpdis == 0):
                 result_pos = midindex
```

```
break;
        else:
           leftindex = midindex+1
        if(tmpdis<mindis):</pre>
           result_pos = midindex
   return result_pos
# 通过数据对象之间的相似性来填补缺失值
numical_datasets = pd.DataFrame(data[numeric_attr].copy(deep=True))
# 对 numical_datasets 排序
numical_datasets.sort_values("points",inplace=True)
data_price = numical_datasets['price'].copy(deep=True)
print('空数据数量为:',data_price.isnull().sum())
length = numical_datasets.shape[0]
count=1;
for i in range(length):
    if math.isnan(numical_datasets['price'].iloc[i]):
         print(' 当前处理第 '+str(count)+" 个")
#
         print(i,numical_datasets.iloc[i])
       result_pos = find_dis_value(numical_datasets, i, numeric_attr)
         print(result_pos,numical_datasets.iloc[result_pos])
       data_price.iloc[i] = data_price.iloc[result_pos]
         print(i,data_price.iloc[i])
       count+=1
```

空数据数量为: 13695

```
[32]: print(data_price.isnull().sum())
```

0

```
[33]: # 可视化对比新旧数据
     plt.figure(figsize = (10,10))
     # 直方图
     plt.subplot(3,2,1)
     plt.title("price hist")
     data['price'].hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 直方图
     plt.subplot(3,2,2)
     plt.title("new price hist")
     data_price.hist(alpha=0.5,bins=15) #alpha 透明度, bins 竖条数
     # 盒图
     plt.subplot(3,2,3)
     plt.title("price box")
     data['price'].plot(kind='box',notch=True,grid=True)
     # 盒图
     plt.subplot(3,2,4)
     plt.title("new price box")
     data_price.plot(kind='box',notch=True,grid=True)
     #q-q 图
     plt.subplot(3,2,5)
     stats.probplot(data['price'],dist="norm",plot=plt)
     plt.subplot(3,2,6)
     stats.probplot(data_price,dist="norm",plot=plt)
     plt.show()
```


[34]: data_price.describe() ##通过数据对象之间的相似性来填补后数据的 5数概况

[34]:	count	150930.000000
	mean	34.107434
	std	36.281767
	min	4.000000
	25%	16.000000
	50%	25.000000
	75%	42.000000
	max	2300.000000

Name: price, dtype: float64