### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11126429 A

(43) Date of publication of application: 11.05.99

(51) Int. CI

G11B 20/10 G11B 7/00

(21) Application number: 09290013

(22) Date of filing: 22.10.97

(71) Applicant:

**RICOH CO LTD** 

(72) Inventor:

**MOTOHASHI ATSUSHI** 

#### (54) OPTICAL DISK DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To read only user data in each fixed length packet and to continuously store them in the buffer by starting data reading from the starting position of the user data block in the fixed length packet and completing the data reading processing immediately after reading the last block.

SOLUTION: In continuously reading plural fixed length packets on an optical disk, the starting position of the user data block in the fixed length packet is found, starting the data reading of the user data block from that starting position, completing the data reading processing immediately after reading the last block, fouding the starting position of the user data block in the next fixed length packet, and starting the data reading of the user data block from that starting position. Thus, since only the user data is continuously read without reading a link block, line block and line out block, speeding-up is possible for reading.

COPYRIGHT: (C)1999,JPO

## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

## (11)特許出願公開番号

# 特開平11-126429

(43)公開日 平成11年(1999)5月11日

(51) Int.Cl.<sup>6</sup>

識別記号

FI

G11B 20/10 7/00 3 1 1

G11B 20/10 7/00

311 K

審査請求 未請求 請求項の数3 〇L (全 9 頁)

(21)出願番号

特願平9-290013

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(22)出願日 平成9年(1997)10月22日

(72)発明者 本橋 敦

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理士 大澤 敬

## (54) 【発明の名称】 光ディスク装置

### (57)【要約】

【課題】 光ディスクのトラックに書き込まれた複数のパケットのデータを読み込む際には、ユーザデータの内容とは無関係なリンク用ブロックをも読み込んで読み込み時間が無駄になることが避けられなかった。

【解決手段】 複数の固定長パケットの読み込み時に、 1つのパケットのユーザデータブロックから読み込みを 開始し、その最終ブロック読み込み直後に読み込み処理 を終了させ、次のパケットのユーザデータブロックの先 頭から読み込みを開始する。



#### 【特許請求の範囲】

【請求項1】 データ書き込み可能な光ディスク上のトラックを複数の固定長パケットに分割して書き込んだデータをバッファに読み込んで上位装置へ転送する光ディスク装置において、

前記光ディスク上の複数の固定長パケットを連続して読み込むとき、固定長パケット内のユーザデータブロックの開始位置を求め、その開始位置からユーザデータブロックのデータ読み込みを開始し、そのユーザデータブロックの最終ブロックを読み込んだ直後にデータ読み込み処理を終了し、次の固定長パケット内のユーザデータブロックの開始位置を求め、その開始位置からユーザデータブロックのデータ読み込みを開始するデータ読込制御手段を設けたことを特徴とする光ディスク装置。

【請求項2】 請求項1記載の光ディスク装置において、

前記ユーザデータブロックを読み込んだとき、該ユーザデータブロックの先頭ブロックの開始位置を記憶し、そのユーザデータブロックの読み込みを途中で中断したとき、その読み込みを中断したブロックの開始位置を記憶 20 し、前記固定長パケットのサイズと前記先頭ブロックの開始位置とに基づいて未読み込みを中断したブロックの開始位置とに基づいて未読み込みのブロック数を求め、前記ユーザデータブロックからの読み込みの再開が可能になったとき、前記読み込みを中断したブロックの開始位置から読み込みを再開し、前記未読み込みの残りブロック数に基づいて読み込み中のユーザデータブロックの最終ブロックの位置を求める手段を、前記データ読込制御手段に設けたことを特徴とする光ディスク装置。

【請求項3】 請求項1記載の光ディスク装置において、

前記データ読込制御手段に、前記最終ブロックを読み込んだ後に前記バッファの空き容量を求め、その空き容量が予め設定した容量よりも少ないとき、前記データ読み込み処理を終了した後、前記光ディスクの内周側へ所定グルーヴだけデータ読み込み位置をステップジャンプさせる手段を設けたことを特徴とする光ディスク装置。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、CD-ROM、CD-R、CD-RW、及びDVD-RAM等のデータ書き込み可能な光ディスク上のトラックを複数の固定長パケットに分割して書き込んだデータを読み込む光ディスク装置に関する。

[0002]

【従来の技術】従来、CD-Rディスク等のデータ追記 可能な光ディスクや、CD-RWディスク等のデータ書 き換え可能な光ディスクにデータを書き込むとき、光デ ィスクのトラック上にユーザデータを連続して書き込ま ず、トラックを固定ブロック長の複数のパケット(以下 50 「固定長パケット」と称する)に分割してデータを書き込む固定長パケットライト方式を採用した光ディスク装置(例えば、特開平7-141660号公報参照)があった。

【0003】この固定長パケットライト方式では、一連のユーザデータを複数のパケットのユーザデータブロックに分割して記録し、各パケット内には各パケットを繋げるためのリンク用ブロックとして、ユーザデータブロックの前に1ブロックのリンクブロック(LINKブロック)と4ブロックのランインブロック(RUN-INブロック)を、後に2ブロックのランアウトブロック(RUN-OUTブロック)をそれぞれ付加している。

[0004]

【発明が解決しようとする課題】しかし、上述のような 光ディスク装置によって光ディスク上に固定長パケット ライト方式で記録されたデータを読み込む場合、パケット内の全データを読み取ってバッファに格納すると、ユーザデータのみを抜き出してホスト装置へ転送しなければならず、データ転送速度の遅延を招くという問題が有った。また、固定長パケットライト方式では、ユーザデータブロックのみにアドレスを振っているので、ユーザデータブロックのみをバッファに格納しないと、アドレスがずれてしまうという不具合がある。さらに、リンクブロックはパケットの繋ぎ目なので読むことができないから、読み込みエラーの発生を招き、データ読み取り処理が滞ってしまう。

【0005】この発明は上記の点に鑑みてなされたものであり、データ書き込み可能な光ディスク上の複数の固定長パケットを連続して読み込むとき、各固定長パケット内のユーザデータのみを読み取ってバッファ内に連続して格納できるようにすることを目的とする。

[0006]

【課題を解決するための手段】この発明は上記の目的を達成するため、データ書き込み可能な光ディスク上のトラックを複数の固定長パケットに分割して書き込んだデータをバッファに読み込んで上位装置へ転送する光ディスク装置において、上記光ディスク上の複数の固定長パケットを連続して読み込むとき、固定長パケット内のユーザデータブロックのデータ読み込みを開始し、そのユーザデータブロックの最終ブロックを読み込んだ直後にデータ読み込み処理を終了し、次の固定長パケット内のユーザデータブロックの開始位置を求め、その開始位置からユーザデータブロックのデータ読み込みを開始するデータ読込制御手段を設けたものである。

【0007】さらに、ユーザデータブロックを読み込んだときに、そのユーザデータブロックの先頭ブロックの開始位置を記憶し、そのユーザデータブロックの読み込みを途中で中断したとき、その読み込みを中断したブロックの開始位置を記憶し、上記固定長パケットのサイズ

30

3.

と上記先頭ブロックの開始位置と上記読み込みを中断したブロックの開始位置とに基づいて未読み込みのブロック数を求め、上記ユーザデータブロックからの読み込みの再開が可能になったとき、前記読み込みを中断したブロックの開始位置から読み込みを再開し、前記未読み込みの残りブロック数に基づいて読み込み中のユーザデータブロックの最終ブロックの位置を求める手段を、前記データ読込制御手段に設けるとよい。

【0008】さらに、上記データ読込制御手段に、上記最終ブロックを読み込んだ後に上記バッファの空き容量を求め、その空き容量が予め設定した容量よりも少ないとき、上記データ読み込み処理を終了した後、上記光ディスクの内周側へ所定グルーヴだけデータ読み込み位置をステップジャンプさせる手段を設けるとよい。

【0009】この発明の請求項1の光ディスク装置は、上記のような構成により、複数の固定長パケットを読み込むとき、各固定長パケットのユーザデータブロックのデータのみを読み取ってバッファに格納するので、バッファ内にユーザデータのみを連続して格納することができ、光ディスクに記録されたデータから必要なユーザデータのみを無駄な時間をかけることなく読み込むことができ、固定長パケットライト方式のリンク用パケット分のアドレスのずれも影響無く読み込み処理を行なうことができる。

【0010】さらに、この発明の請求項2の光ディスク装置は、ユーザデータの読み込み時にバッファ溢れなどのエラーによって途中で読み込み処理が中断しても、読み込み開始時に記憶したユーザデータブロックの先頭ブロック位置と、読み込みを中断したブロックの開始位置とに基づいて残りブロック数を求め、その残りブロック数に基づいて最終ブロックの位置を特定できるので、データ読み込み再開のときに引き続いてユーザデータのみを連続的に読み込むことができる。

【0011】さらに、この発明の請求項3の光ディスク 装置は、ユーザデータブロックの最終ブロックのデータ を読み込んだ後、バッファ領域の空き容量に十分な余裕 がないときには、データの読み込み処理の終了後にデータの読み込み位置を光ディスクの内周側へ所定グルーヴ だけ移動させ、次の固定長パケットのユーザデータブロックの読み込み開始位置までの到達時間を遅延させることにより、バッファ溢れによるデータ読み込み中断と、それに伴う読み込み時間のロスを回避することができる。

#### [0012]

【発明の実施の形態】以下、この発明の実施の形態を図面に基づいて具体的に説明する。図2は、この発明の実施の形態である光ディスク装置の構成を示すブロック図である。この構成は、第1から第3の実施の形態において共通であり、各実施形態の動作は後述するドライブコントローラ7の動作によって特徴付けられる。

【0013】この光ディスク装置は、CD-RW等の螺旋状にピット列と呼ばれるデータ信号を記録してある円盤状の光ディスクの、そのピット列からブロックと呼ばれるデータ単位を読み取る装置である。

【0014】この光ディスク装置は、図2に示すように、CD-RW等の光ディスク1を回転させるモータ2と、このモータ2を制御する回転制御部3と、半導体レーザを搭載して光ディスク1の記録領域にレーザ光Lを照射するピックアップ4と、そのピックアップ4の動作を制御するアクチュエータ制御部5を備えている。

【0015】また、ピックアップ4によって読み取ったデータの信号及び光ディスク1の記録領域に書き込むデータの信号を送受する信号制御部6と、ドライブ装置全体の制御を行なうドライブコントローラ7と、ドライブコントローラ7がデータ格納などの一次記憶領域として使用するバッファ8と、ピックアップ4のレーザーを駆動するレーザー駆動回路9と、上位装置17とコマンド、データなどの送受心を行なうための外部インタフェース10を備えている。ここで上位装置とは、ドライブ装置を制御するパソコンなどを表わしている。

【0016】ドライブコントローラ7は外部インタフェース10を介して上位装置17に接続されており、光ディスク1から読み取ったデータを上位装置17へ送出し、書き込み可能な光ディスク1にデータを書き込む際は、書き込むデータを上位装置17から受け取る処理も行なう。

【0017】そして、光ディスク1をモータ2によって回転させながらピックアップ4をその光ディスク1の半径方向に移動させ、ピックアップ4の半導体レーザからレーザ光Lを光ディスク1の記録面上の記録領域に照射させてデータの記録又は再生を行なう。

【0018】この光ディスク装置は、ドライブコントローラ7の制御によってデータの記録時には、光ディスク1の記録領域にピックアップ4から記録パワーでレーザ光Lを照射し、光ディスク1上に各種データを記録する。また、ドライブコントローラ7の制御によってデータの再生時には、光ディスク1の記録領域にピックアップ4によって再生パワーでレーザ光Lを照射し、その反射光に基づいて記録領域に記録されているデータを再生40 する。

【0019】そして、この光ディスク装置では、ドライブコントローラ7の制御によって光ディスク1上の各トラックに対する、固定長パケットライト方式によるデータ再生処理を行なう。

【0020】すなわちドライブコントローラ7が、この発明に保わる機能を実現し、データ書き込み可能な光ディスク上の複数の固定長パケットを連続して読み込むとき、固定長パケット内のユーザデータブロックの開始位置を求め、その開始位置からユーザデータブロックのデクの表の表の表の表の表のステータでロックの最

終ブロックを読み込んだ直後にデータ読み込み処理を終 了し、次の固定長パケット内のユーザデータブロックの 開始位置を求め、その開始位置からユーザデータブロッ クのデータ読み込みを開始するデータ読込制御手段の機 能を果たす。その詳しい内容は各動作の説明とともに後 述する。

【0021】図3は、図2に示した光ディスク装置にお ける固定長パケットライト方式によるトラック及びパケ ットのフォーマットの説明図である。固定長パケットラ イト方式は、書き換え可能な光ディスク1の記録領域に 10 複数のトラックを形成し、各トラック内を複数のパケッ トに分割し、1トラック内の各パケットのユーザデータ ブロック数を同数に固定し、各パケット毎にデータを一 括して記録する方式である。

【0022】したがって、図3に示すように、固定長パ ケットライト方式では、光ディスク1の記録領域では、 1つのトラック11内の各パケット12のパケット長 (パケットサイズ) を同じにし、各パケット12内のユ ーザデータブロック数を同数にするフォーマットであ

【0023】パケット12は、一つ以上の再生可能なユ ーザデータブロック15と、ユーザデータブロックの前 に設けた1つのリンクブロック (Link Bloc k) 13と4つのランインブロック (Run-In B lock) 14とからなる5つのリンク用ブロックと、 ユーザデータブロック15の後に設けた2つのランアウ トプロック (Run-Out Block) 16からな る2つのリンク用ブロックとを備えている。

【0024】上記リンク用ブロックは、光ディスク1の トラックのパケット12のユーザデータブロック15に 30 データを記録する際、パケット12同士を繋げるために 必要なブロックである。

【0025】固定長パケットによる記録と可変長パケッ トによる記録のアドレスの割り振り方の違いを、図4を 用いて説明する。可変長パケットによる記録では、リン クブロック13、ランインブロック14、ランアウトブ ロック16にはアドレスを割り当てる。これに対して、 固定長パケットによる記録では、リンクブロック13, ランインブロック14, ランアウトブロック16にはア ドレスを割り当てない。したがって、読み込み時にはこ れらのブロックを読まないようにする必要がある。

【0026】次に、この光ディスク装置におけるデータ 再生処理動作を説明する。ドライブコントローラ7は、 上記光ディスク1上の複数の固定長パケットを連続して 読み込むとき、固定長パケット内のユーザデータブロッ クの開始位置を求め、その開始位置からユーザデータブ ロックのデータ読み込みを開始し、そのユーザデータブ ロックの最終ブロックを読み込んだ直後にデータ読み込 み処理を終了し、次の固定長パケット内のユーザデータ ブロックの開始位置を求め、その開始位置からユーザデ 50 み込んだ後に上記バッファの空き容量を求め、その空き

ータブロックのデータ読み込みを開始する。

【0027】次に、図1のフロー図を用いてさらに詳述 する。まず光ディスクより、トラックの読みだしを始め る際には、ステップ(図中に「S」で示す) 1 で先頭パ ケット内のユーザデータブロックの開始位置を計算す る。そしてS2でユーザデータブロックのデータ読み込 みを開始する。S3でユーザデータブロックの読み込み が終了するまでデータ読み込みを繰り返し、ユーザデー タブロックの読み込みが終了したら、S4でトラックの 読み込みが終了したか否かを判定する。ここでトラック の読み込みが終了していたら、データ読み込みを完了し て処理を終える。

【0028】まだトラックが続いていたら、次のパケッ トのユーザデータブロックの開始位置をS5で計算す る。この計算結果を元にS6で次のユーザデータブロッ クを読み込み始め、S3でユーザデータブロックの終了 と判定されるまでデータ読み込み操作を繰り返す。この S5における次のパケットのユーザデータブロックの先 頭アドレスは、前のユーザデータブロックの最終アドレ ス + ランアウトブロック数(2) +リンクブロッ ク数(1) + ランインブロック数(4)となる。

【0029】このようにして、この光ディスク装置は、 トラック再生時に複数のパケットからデータを読み込む とき、リンクブロック、ランインブロック、ランアウト ブロックを読み込まずにユーザデータのみを連続して読 み込むので、ユーザデータのみ連続的にバッファに格納 することができ、読み込みが高速化し、固定長パケット ライト方式のリンク用ブロックのアドレスが割り当てら れないことによる、アドレスのずれも気にせずに読み込 むことができる。

【0030】次に、この発明の光ディスク装置の他の実 施形態を説明する。この実施形態における装置構成は上 述した図2の装置構成と同じであるが、ドライブコント ローラ7の機能が若干異なり、トラック再生時に、ユー ザデータブロックを読み込んだとき、そのユーザデータ ブロックの先頭ブロックの開始位置を記憶し、そのユー ザデータブロックの読み込みを途中で中断したとき、そ の読み込みを中断したブロックの開始位置を記憶し、固 定長パケットのサイズと先頭ブロックの開始位置と読み 込みを中断したブロックの開始位置とに基づいて未読み 込みのブロック数を求め、ユーザデータブロックからの 読み込みの再開が可能になったとき、読み込みを中断し たプロックの開始位置から読み込みを再開し、未読み込 みの残りブロック数に基づいて読み込み中のユーザデー タプロックの最終ブロックの位置を求める手段の機能も 果たす。

【0031】次に、この場合のデータ再生処理動作を説 明する。ドライブコントローラ7は、上述したドライブ コントローラ?の動作に加えて、上記最終ブロックを読

容量が予め設定した容量よりも少ないとき、上記データ 読み込み処理を終了した後、上記光ディスクの内周側へ 所定グルーヴだけデータ読み込み位置をステップジャン プさせる。

【0032】さらに、図5のフロー図を用いて詳述する。まず光ディスクより、トラックの読み込みを始める際には、S11で先頭パケット内のユーザデータブロックの開始位置を計算し、パケットの開始位置を記憶する。そしてS12でユーザデータブロックのデータ読み込みを開始する。

【0033】バッファに空きがあり、ユーザデータブロックの読み込みが終了するまでは、読み込み動作を行なう。S13で読み込み中にバッファに空きがなくなった場合には、S14の読み込み中断処理を行ない、さらにS15で中断したブロックの開始位置を記憶する。そして、S16ですでに記憶してあるユーザデータブロックの開始位置と読み込みを中断した位置より、未読み込みブロックの数を計算する。S17で、バッファの中のデータを上位装置17へ転送してバッファに空きができてから、中断したブロックの開始位置より読み込みを再開する。

【0034】なお、上記S18, S19のパケットのユーザデータの最終ブロックを読み込む際の動作は、図1のS2, S3の動作と同様にユーザデータブロックの読み込みを行なうので、詳しい説明は省く。

【0035】このようにして、ユーザデータの読み込み時にバッファ溢れなどのエラーによって途中で読み込み処理が中断しても、読み込み開始時に記憶したユーザデータブロックの先頭ブロック位置と、読み込みを中断したブロックの開始位置とに基づいて残りブロック数を求め、その残りブロック数に基づいて最終ブロックの位置を特定できるので、データ読み込み再開のときに引き続いてユーザデータのみを連続的に読み込むことができる。

【0036】次に、この発明の光ディスク装置のさらに他の実施形態について説明する。この実施形態の光ディスクの装置構成は上述した装置構成と同じであるが、ドライブコントローラ7の機能が上述のものとは若干異なる

【0037】すなわち、トラック再生時、上記最終プロ 40 マットの説明図である。 ックを読み込んだ後に上記バッファの空き容量を求め、 【図4】固定長パケット その空き容量が予め設定した容量よりも少ないとき、上 イト方式によるアドレス 記データ読み込み処理を終了した後、上記光ディスクの である。 内周側へ所定グルーヴだけデータ読み込み位置をステッ 【図5】この発明の他の プジャンプさせる手段の機能も果たす。 けるデータ再生処理を表

【0038】次に、この場合のデータ再生時の処理を図6のフロー図を用いて説明する。トラックの読み込みを開始すると、S21でユーザデータブロックの開始位置を計算し、S22でユーザデータブロックの読み込みを開始する。そして、S23で1つのパケットのユーザデ

ータブロックの読み込みが終了するまで読み込み動作を 繰り返す。

【0039】S23でパケットのユーザデータブロックの読み込みが終了したと判定されると、S24でトラックの読み込みが終了したか否か判定する。まだトラックが続いているのなら、S25でバッファの空きサイズをチェックし、バッファの空きサイズが所定ブロック数以下であったとき、S26で1グルーヴ内周側にステップジャンプする。そして、S27で次のパケットのユーザデータブロックの先頭アドレスを計算し、S28から次のパケットのユーザデータブロックの読み込みを開始する。

【0040】なお、上述の処理ではS26で1グルーヴ 内周側にステップジャンプしたが、このグルーヴ幅は光 ディスク装置の回転速度に応じてバッファ容量が所定量 以上になるまでの時間を稼ぐことができる最適な幅に設 定するとよい。

【0041】このようにして、ユーザデータブロックの 最終ブロックのデータを読み込んだ後、バッファ領域の 空き容量に十分な余裕がないときには、データの読み込 み処理の終了後にデータの読み込み位置を光ディスクの 内周側へ所定グルーヴだけ移動させ、次の固定長パケッ トのユーザデータブロックの読み込み開始位置までの到 達時間を遅延させることにより、バッファ溢れによるデ ータ読み込み中断と、それに伴う読み込み時間のロスを 回避することができる。

## [0042]

【発明の効果】以上説明したように、この発明の光ディスク装置によれば、データ書き込み可能な光ディスク上の複数の固定長パケットを連続して読み込むとき、各固定長パケット内のユーザデータのみを読み取ってバッファ内に連続して格納することができる。

#### 【図面の簡単な説明】

【図1】図2に示した光ディスク装置におけるデータ再 生処理を示すフローチャートである。

【図2】この発明の一実施形態の光ディスク装置の構成 を示すブロック図である。

【図3】図2に示した光ディスク装置における固定長パケットライト方式によるトラック及びパケットのフォーマットの説明図である

【図4】固定長パケットライト方式と可変長パケットライト方式によるアドレスの振り分け方の差を示す説明図である。

【図5】この発明の他の実施形態の光ディスク装置におけるデータ再生処理を示すフローチャートである。

【図6】この発明のさらに他の実施形態の光ディスク装置におけるデータ再生処理を示すフローチャートである

#### 【符号の説明】

50 1:光ディスク 2:スピンドルモータ(モータ)

11:トラック

16:ランアウトブロック

10

12:パケット

9

3:光ピックアップ 4:粗動モータ

5:回転制御系 6:粗動モータ制御系 13:リンクブロック 14:ランインブロック

7:光ピックアップ制御系 8:信号処理系 15:ユーザデータブロック

9:ドライブコントローラ

10:外部インタフェース

【図1】



[図3]

12 12 12 11

14 14 14 14

13 15 15 15 15 16 16

【図2】



【図4】









【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第4区分

【発行日】平成13年4月13日(2001.4.13)

【公開番号】特開平11-126429

【公開日】平成11年5月11日(1999.5.11)

【年通号数】公開特許公報11-1265

【出願番号】特願平9-290013

【国際特許分類第7版】

G11B 20/10 311

7/00

[FI]

G11B 20/10 311

7/00 K

#### 【手続補正書】

【提出日】平成11年12月13日 (1999.12. 13)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項3

【補正方法】変更

【補正内容】

【請求項3】 請求項1記載の光ディスク装置において、

前記データ読込制御手段に、前記最終ブロックを読み込んだ後に前記バッファの空き容量を求め、その空き容量が予め設定した容量よりも少ないとき、前記データ読み込み処理を終了した後、前記光ディスクの内周側へ<u>所定グルーヴだけステップジャンプさせる手段</u>を設けたことを特徴とする光ディスク装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】さらに、上記データ読込制御手段に、上記最終ブロックを読み込んだ後に上記バッファの空き容量を求め、その空き容量が予め設定した容量よりも少ないとき、上記データ読み込み処理を終了した後、上記光ディスクの内周側へ<u>所定グルーヴだけステップジャンプさせる手段を設けるとよい。</u>

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【0028】まだトラックが続いていたら、次のパケットのユーザデータブロックの開始位置をS5で計算する。この計算結果を元にS6で次のユーザデータブロックを読み込み始め、S3でユーザデータブロックの終了と判定されるまでデータ読み込み操作を繰り返す。このS5における次のパケットのユーザデータブロックの先頭アドレスは、前のユーザデータブロックの最終アドレス+ランアウトブロック数(2)+リンクブロック数

(1) +ランインブロック数(4)となる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0037

【補正方法】変更

【補正内容】

【0037】すなわち、トラック再生時、上記最終ブロックを読み込んだ後に上記バッファの空き容量を求め、その空き容量が予め設定した容量よりも少ないとき、上記データ読み込み処理を終了した後、上記光ディスクの内周側へ<u>所定グルーヴだけステップジャンプさせる手段</u>の機能も果たす。