VNUHCM - University of Science fit@hcmus

CSC10004 – Data Structures and Algorithms

Session 04 Sorting Algorithms

Instructors:

Dr. Lê Thanh Tùng

Content

- Bubble Sort
- Insertion Sort
- Selection Sort
- 4 Heap Sort

fit@hcmus

Sorting Algorithm

What is Sorting?

fit@hcmus

Sorting is a process organizes a collection of data into ascending/descending order

What is Sorting?

fit@hcmus

Sort key: data item which determines order

	Name	Age	Score
0	Peter	18	7
1	Riff	15	6
2	John	17	8
3	Michel	18	7
4	Sheli	17	5

The sort key can be chosen as

- Name: arrange student
- Age: focus on age
- Score: consider the result

Classification of sorting algorithms

- Memory usage: in-place sort / not in-place sort
 - In-place (algorithm): sorts the data without using any additional memory.
- By stability: maintain the relative order of the records with equal keys
- Comparison: utilize comparison or not?
- Adaptability: whether the pre-sorted-ness of the input affects the running time or not
- Data Location: Internal or external
 - Internal: data fits in memory
 - External: data must reside on secondary storage
- We will analyze only internal sorting algorithms

Classification of sorting algorithms

Sorting algorithms

- Sorting also has indirect uses. An initial sort of the data can significantly enhance the performance of an algorithm.
- Majority of programming projects use a sort somewhere, and in many cases, the sorting cost determines the running time.
- A comparison-based sorting algorithm makes ordering decisions only based on comparisons.

fit@hcmus

Bubble Sort

fit@hcmus

Main idea: compares two adjacent elements and swaps them until they are in the intended order

5 > 1, swap

5 < 12, ok

$$5 > -5$$
, swap

$$5 < 12$$
, ok

- Step 1: Compare and Swap
 - If ith and (i+1)th elements are in the incorrect positions, swap them

- Step 2: Remaining Iteration
 - Repeat Step 1
 - Until sorted list or len(list) – 1 times

```
bubbleSort(array)
  for i <- 1 to indexOfLastUnsortedElement-1
    if leftElement > rightElement
      swap leftElement and rightElement
end bubbleSort
```

fit@hcmus

```
BUBBLE-SORT(A, n)
//Input: An array A[0..n - 1] of orderable elements
//Output: Array A[0..n - 1] sorted in nondecreasing order
1 for i \leftarrow 0 to n - 2 do
     for j \leftarrow 0 to n - 2 - i do
         if | A[j+1] < A[j]
               swap A[j+1] and A[j]
```

What is the best and worst case of Bubble Sort

Basic operation

What is the order of growth function of Bubble Sort ?

fit@hcmus

Insertion Sort

fit@hcmus

 Main idea: Insertion sort works similarly as we sort cards in our hand in a card game

- The first element in the array is assumed to be sorted.
- Try to sort the unsorted element second card

For example, we consider the following array

- Consider the first "unsorted" element 5
 - Find the place to put the unsorted one

- The first two elements are sorted
- Placed the key element just behind the element smaller than it

fit@hcmus

Shift the array to right to find the suitable position to put key

element

What is the best case of insertion sort

```
void insertionSort(int array[], int size) {
  for (int step = 1; step < size; step++) {</pre>
    int key = array[step];
    int j = step - 1;
    // Compare key with each element on the left of it
    // until an element smaller than it is found.
    while (key < array[j] && j >= 0) {
        array[j + 1] = array[j];
        --j;
    array[j + 1] = key;
```

What is the worst case of insertion sort

```
void insertionSort(int array[], int size) {
  for (int step = 1; step < size; step++) {</pre>
    int key = array[step];
    int j = step - 1;
    // Compare key with each element on the left of it
    // until an element smaller than it is found.
    while (key < array[j] && j >= 0) {
        array[j + 1] = array[j];
        --j;
    array[j + 1] = key;
```

fit@hcmus

Shell Sort

- Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position ahead
- The idea of ShellSort is to allow the exchange of far items
- In Shell sort, we make the array h-sorted for a large value of h. We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h'th element are sorted

fit@hcmus

 However, the Shell Sort also depends on the interval length, which is often chosen by Knuth's increments:

fit@hcmus

Selection Sort

- Sort naturally the same as in real-life:
 - The list is divided into two sub-lists, sorted and unsorted, which are divided by an imaginary wall.
 - Find the smallest element from the unsorted sub-list and move to the correct position (swap it with the element at the beginning of the unsorted data.)
 - After each selection and swapping, increase the number of sorted elements and decrease the number of unsorted ones.
 - Loop those steps until the unsorted list has only 1 element.

fit@hcmus

Step 1: find the minimum value of the list

Step 2: min val is placed in the front of the unsorted list

Step 3: repeatedly step 1-2 for the unsorted parts

Which operation should be used for analysis?

How many operations are there with size of the problem n?

Best case? Worst case?

```
SELECTION-SORT(A, n)
//Input: An array A[0..n - 1] of orderable elements
//Output: Array A[0..n - 1] sorted in nondecreasing order
1 for i \leftarrow 0 to n - 2 do
2 min \leftarrow i
     for j \leftarrow i + 1 to n - 1 do
          if A[j] < A[min]-</pre>
               min \leftarrow j
     swap A[i] and A[min]
6
                                  Basic operation
```

- In general, we compare keys and move items (or exchange items) in a sorting algorithm (which uses key comparisons).
- To analyze a sorting algorithm, we should count the number of key comparisons and the number of moves.
- Ignoring other operations does not affect our result.
- The outer for loop executes n-1 times. We invoke swap function once at each iteration.
 - Total Swaps: n-1
 - Total Moves: 3*(n-1) (Each swap has three moves)

fit@hcmus

■ The inner for loop executes the size of the unsorted part minus 1 (from 1 to n-1), and in each iteration we make one key comparison.

Number of key comparisons = $1+2+...+n-1 = \frac{n*(n-1)}{2}$

Selection Sort

 The best case, the worst case, and the average case of the selection sort algorithm are same.

Order of the algorithm: O(n²)

Selection Sort

 If sorting a very large array, selection sort algorithm probably too inefficient to use.

What is the advantage of this algorithm?

 If sorting a very large array, selection sort algorithm probably too inefficient to use.

What is the advantage of this algorithm?

- Since selection sort is an in-place sorting algorithm, it does not require additional storage
- •

- The behavior of the selection sort algorithm does not depend on the initial organization of data.
- Although the selection sort algorithm requires O(n²) key comparisons, it only requires O(n) moves.
- A selection sort could be a good choice if data moves are costly but key comparisons are not costly (short keys, long records).

fit@hcmus

Heap Sort

Heap Structure

fit@hcmus

- Definition (array-based representation):
 - Heap is a collection of n elements $(a_0, a_1, ... a_{n-1})$ in which every element (at position i) in the first half is greater than or equal to the elements at position 2i+1 and 2i+2.
 - (if $2i+2 \ge n$, just $a_i \ge a_{2i+1}$ satisfied).
- i.e., for every $i (0 \le i \le n/2 1)$

$$a_i \ge a_{2i+1}$$
 and $a_i \ge a_{2i+2}$

 Heap in above definition is called max-heap. (We also have min-heap structure).

Heap Structure

- Examples:
 - A max-heap: 9, 5, 6, 4, 5, 2, 3, 3
 - A min-heap: 8, 15, 10, 20, 17, 12, 18, 21, 20
- Give some more examples of:
 - A max-heap with 11 elements
 - A min-heap with 7 elements
- Where is the largest element in max-heap?

Heap Structure

- Property:
 - The first element of the max-heap is always the largest.

- Input: An array a [], n elements
- Output: A heap a [], n elements

```
• Step 1. Start from the middle of the array Initialize index = n/2 - 1
```

heapRebuild (pos, A, n)

- Step 1. Initialize k = pos, v = A[k], isHeap = false
- Step 2.

```
while !isHeap and 2*k+1 < n do
     j = 2*k + 1 //first element
     if j < n - 1 //has enough 2 elements
        if A[j] < A[j + 1] then j = j + 1
        //position of the larger between A[2*k+1] and A[2*k+2]
     if A[k] \ge A[j] then is Heap = true
     else
        swap between A[k] and A[j]
     k = \dot{j}
```

Heap Construction - An Example

fit@hcmus

Construct a heap from the following list:

Heap Construction - An Example

fit@hcmus

Construct a heap from the following list:

$$5 - 8 - 6 - 9 - 0 - 2 - 1 - 3 - 4$$
 (a3 \rightarrow x, a2 \rightarrow a6)
 $5 - 9 - 6 - 8 - 0 - 2 - 1 - 3 - 4$ (a1 \rightarrow a3, a3 \rightarrow x)
 $9 - 5 - 6 - 8 - 0 - 2 - 1 - 3 - 4$ (a0 \rightarrow a1)
 $9 - 8 - 6 - 5 - 0 - 2 - 1 - 3 - 4$ (a1 \rightarrow a3, a3 \rightarrow x)

- An interesting sorting algorithm discovered by J.W.J. Williams (in 1964).
- Idea is same as Selection Sort.
- It has two stages:
 - Stage 1: (heap construction). Construct a heap for a given array.
 - Stage 2: (maximum deletion). Apply the maximum key deletion n-1 times to the remaining heap
 - Exchange the first and the last element of the heap.
 - Decrease the heap size by 1.
 - Rebuild the heap at the first position.

```
HeapSort(a[], n)
  heapConstruct(a, n);
  r = n - 1;
  while (r > 0)
    swap(a[0], a[r]);
    heapRebuild(0, a, r); //heapConstruct(a, r);
    r = r - 1;
```

- An interesting sorting algorithm discovered by J.W.J. Williams (in 1964).
- Idea is same as Selection Sort.
- It has two stages:
 - Stage 1: (heap construction). Construct a heap for a given array.
 - Stage 2: (maximum deletion). Apply the maximum key deletion n-1 times to the remaining heap
 - Exchange the first and the last element of the heap.
 - Decrease the heap size by 1.
 - Rebuild the heap at the first position.

fit@hcmus

Illustrate heap sort to get 3rd max element in the below array:

After heap construction, we have max heap: 9 - 8 - 6 - 5 - 0 - 2 - 1 - 3 - 4

$$4 - 8 - 6 - 5 - 0 - 2 - 1 - 3 - 9$$
 (a0 \rightarrow a8)

$$8-4-6-5-0-2-1-3-9$$
 (a0 \rightarrow a1)

$$8 - 5 - 6 - 4 - 0 - 2 - 1 - 3 - 9$$
 (a1 \rightarrow a3, a3 \rightarrow x)

$$3 - 5 - 6 - 4 - 0 - 2 - 1 - 8 - 9$$
 (a0 \rightarrow a7)

$$6 - 5 - 3 - 4 - 0 - 2 - 1 - 8 - 9$$
 (a0 \rightarrow a2, a2 \rightarrow x)

$$1 - 5 - 3 - 4 - 0 - 2 - 6 - 8 - 9$$
 (a0 \rightarrow a6)

$$5 - 1 - 3 - 4 - 0 - 2 - 6 - 8 - 9$$
 (a0 \rightarrow a1)

$$5-4-3-1-0-2-6-8-9$$
 (a1 \rightarrow a3)

$$2-4-3-1-0-5-6-8-9$$
 (a0 \rightarrow a5)

fit@hcmus

Best case, Worst case, Average case are the same.

• The order of this algorithm: $O(nlog_2n)$

- 1. The heap construction stage: O(n)
- 2. The second stage: the number of key comparisons C(n) needed for eliminating the root keys from the heaps of diminishing sizes from n to 2, we have:

$$C(n) \le 2\lfloor \log_2(n-1)\rfloor + 2\lfloor \log_2(n-2)\rfloor + \dots + 2\lfloor \log_2 1\rfloor \le 2\sum_{i=1}^{n-1} \log_2 i$$

$$\leq 2\sum_{i=1}^{n-1}\log_2(n-1) = 2(n-1)\log_2(n-1) \leq 2n\log_2 n. \in O(n\log_2 n)$$

3. For both stages, we get: $O(n) + O(n \log_2 n) = O(n \log_2 n)$

- Advantages:
 - The algorithm is also highly consistent with very low memory usage.
 - In-place sort: does not require extra storage

- Disadvantages:
 - unstable
 - expensive
 - not very efficient when working with highly complex data.

Exercise

fit@hcmus

Utilize Heap Sort to arrange the following array

4, 1, 3, 14, 16, 9, 10

THANK YOU for YOUR ATTENTION