离散数学

第2讲

莫克耶夫・徳米特里・鲍里索维奇

集合与关系

3

多重集合

多重集合是一个元素集合,其中每个元素可以出现多次。

 $\{a, a, b, c, c, c\}$ - 一个由集合 $\{a, b, c\}$ 中元素组成的多重集合;

 $\{a, b, b, b, c, c\}$ – 另一个多重集合。

从一个元素可以构建无限多的多重集合:

{1}, {1, 1}, {1, 1, 1}, ...

4

如果满足以下条件, 我们称 (a,b) 为有序对:

$$\forall a, b, c, d : [(a, b) = (c, d)] \leftrightarrow [a = c \land b = d]$$
.

$$(a,b)=(b,a)\leftrightarrow a=b$$

长度为n的序列(元组):

$$(a_1,a_2,a_3,...,a_n) = \left(\left(...\left((a_1,a_2),a_3\right),...\right),a_n\right)$$
.

换句话说、序列可以称为按某种顺序排列的元素集合。

5

序列 vs 集合

1. 序列中元素的顺序很重要:

$$(1,2,3) \neq (2,3,1)$$
 , $\{1,2,3\} = \{2,3,1\}$.

2. 同一个元素可以在序列中出现多次。

$$(1,2,1) \neq (2,1,1)$$
, $\{0,1,1\} = \{1,2,1\} = \{1,2\}$

6

两个集合 A 和 B 的直积(笛卡尔积)是所有对 (a,b) 的集合,其中 $a \in A$, $b \in B$ 。

$$A\times B=\{(a,b):a\in A,b\in B\}$$

 $\forall A: A \times \emptyset = \emptyset \times A = \emptyset$

n 个集合 $A_1, A_2, ..., A_n$ 的笛卡尔积:

 $A_1 imes A_2 imes ... imes A_n = \{(x_1, x_2, ..., x_n) : x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n\}$,

 $A \times A = A^2$ – 集合 A 的笛卡尔平方。

 $A \times A \times A = A^3$ - 集合 A 的笛卡尔立方。

依此类推。

7

笛卡尔 (René Descartes, 1596-1650) -

法国哲学家、数学家、力学家、物理学家和生理学家,

解析几何和现代代数符号的创始人。

哲学中激进怀疑方法的作者,

物理学中机械论的倡导者,反射学的先驱。

以他的名字命名的直角坐标系是他发明的。

8

示例

•
$$A=\{a,b,c\}$$
 , $B=\{0,1\}$,

$$A \times B = \{(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)\};$$

$$A^2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\};$$

$$B^3 = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}\;.$$

•
$$A = \{1, 2, ..., 31\}$$
, $B = \{-\exists, \exists\exists, ..., +\exists\exists\}$

 $A \times B$ - "9月10日"类型的日期集合

二元关系

11

设 A 和 B 是集合。 A 和 B 之间的二元关系是 $A\times B$ 的任何子集 $R\subseteq A\times B$ 。 如果 $R\subseteq A^2$,则称 R 为集合 A 上的关系。

- 关系作为集合: $(a,b) \in R$
- 关系作为陈述(谓词):

aRb - " a 与 b 具有关系 R "

12

示例

• *A*: 人的集合,

B: 国家的集合,

A 和 B 之间的关系 R:

xRy 表示 x 曾到过国家 y 。

• *A*: 某公司员工的集合,

A 上的关系 R:

xRy 表示 x 是 y 的上级。

• A: 社交网络账户的集合,

A 上的关系 R:

xRy 表示 x 和 y 互相关注。

13

更多示例

• 相等是任何集合 A 上的关系

 $id_A = \{(x,x): x \in A\}$

 $x=y \Leftrightarrow (x,y) \in id_A$

• < $\mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R} \cup \mathbb$

数字2与数字5具有<关系,

但5与2不具有这种关系。

设 L 是平面上所有直线的集合。

- $L \perp h \neq l_1 \parallel l_2 \Leftrightarrow l_1 \neq l_2 \neq l_1 \neq l_2$;
- L 上的关系 \times : $l_1 \times l_2 \Leftrightarrow l_1 \ni l_2$ 相交。

更多示例

如果 A 是集合,那么

- 可以在 A 和 2^A 之间定义关系 \in ;
- \subset $\not\in$ 2^A 上的关系。

整数集 Z 上的整除关系定义如下:

x 整除 y, 如果 $\exists k \in \mathbb{Z} : x \cdot k = y$ 。

这个关系表示为: x|y 或 y:x 。

15

表格表示

有限集合之间的关系可以用矩阵(矩形表格)表示。

设R是集合 $A = \{a_1, a_2, ..., a_k\}$ 和 $B = \{b_1, b_2, ..., b_n\}$ 之间的关系。

那么这个关系的矩阵 $M=(m_{i,j})$ 的大小为 k imes n 。

$$m_{i,j} = egin{cases} 1, 如果(a_i, b_j) \in R \ 0, 如果(a_i, b_j)
otin R \end{cases}$$

16

$$B = \{ \bigcirc, \bigcirc, \bigcirc \}.$$

设 $A = \{\Box, \triangle, \circ, \diamond\}$,

 $B = \{ \mathfrak{T}, \mathfrak{F}, \mathfrak{F} \}$ 。

考虑以下关系 $R \subseteq A \times B$:

xRy 表示颜色 y 出现在 x 中。

17

为方便起见,我们用字母表示对象和颜色:

$$A = \{c, T, o, a\}$$
,

$$B = \{\kappa, \kappa, 3\}$$
 .

那么关系 R 可以这样表示:

 $R = \{(\mathtt{c}, \mathtt{k}), (\mathtt{c}, \mathtt{k}), (\mathtt{c}, \mathtt{3}), (\mathtt{t}, \mathtt{k}), (\mathtt{t}, \mathtt{k}), (\mathtt{0}, \mathtt{3}), (\mathtt{a}, \mathtt{3}), (\mathtt{a}, \mathtt{k})\}$

或这样:

		К	ж	3
	С	1	1	1
$M = \frac{1}{2}$	Т	1	1	0
	О	0	0	1
	a	1	0	1

18

另一个示例:

集合 $A = \{1, 2, 3, 4, 6, 8\}$ 上的整除关系矩阵:

		1	2	3	4	6	8	
	1	1	1	1	1	1	1	
	2	0	1	0	1	1	1	
M =	3	0	0	1	0	1	0	
	4	0	0	0	1	0	1	
	6	0	0	0	0	1	0	
	8	0	0	0	0	0	1	

19

图形表示

关系图提供了关系的可视化表示。它的构建方法如下。

设R是集合A和B之间的关系。

集合 $A \cup B$ 的元素用圆圈或其他图形表示。这些图形称为图的顶点。如果 xRy ,则从 x 到 y 画一个箭头:

这些箭头称为图的边。

20

示例:

集合 $A = \{1, 2, 3, 4, 6, 8\}$ 上的整除关系图:

21

关系的运算

1. 由于关系是(对)的集合,因此可以对关系应用任何集合运算。

22

示例

$$A = \{a,b,c\}$$

$$B=\{0,1\}$$

$$R_1 = \{(a,0), (a,1), (b,1), (c,1)\}$$

$$R_2 = \{(a,0), (b,0), (c,1)\}$$

$$R_1 \cup R_2 = \{(a,0), (a,1), (b,0), (b,1), (c,1)\}$$

$$R_1\cap R_2=\{(a,0),(c,1)\}$$

$$A = \{a,b,c\}$$

$$R_1 = \{(a,a), (b,a), (b,b), (b,c)\}$$

$$R_2 = \{(a,a), (a,b), (b,c), (c,a)\}$$

$$R_1 \cup R_2 = \{(a,a), (a,b), (b,a), (b,b), (b,c), (c,a)\}$$

$$R_1 \cap R_2 = \{(a,a),(b,c)\}$$

$$A=\{a,b,c\}$$

$$B=\{0,1,2\}$$

$$R = \{(a,0), (a,1), (b,0), (b,2), (c,1), (c,2)\}$$

$$\overline{R} = \{(a,2), (b,1), (c,0)\}$$

$$A = \{a,b,c,d\}$$

$$R = \{(a,a), (a,b), (b,b), (b,d), (c,b), (d,a), (d,b), (d,c)\}$$

$$\overline{R} = \{(a,c), (a,d), (b,a), (b,c), (c,a), (c,c), (c,d), (d,d)\}$$

26

1. 设 $R\subseteq A imes B$ 。

逆关系 $R^{-1} \subseteq B \times A$ 定义如下:

$$R^{-1} = \{(x,y): (y,x) \in R\}$$
 ,

示例:

27 如果 R 是 A 上的关系,那么 R^{-1} 也是 A 上的关系:

28

1. 设 $R\subseteq A imes B$, $Q\subseteq B imes C$ 。

复合关系 $Q \circ R \subseteq A \times C$ 定义如下:

 $Q\circ R=\{(x,z):\exists y\in B((x,y)\in R\wedge (y,z)\in Q)\}$ 。

示例:

单集上关系的性质

设R是集合A上的关系。

1. 如果 $\forall x : xRx$,则 R 是自反的。

在自反关系的图中,每个顶点都有一个自环:

示例:

$$=$$
, \leq , \vdots , $|$, \subseteq

30

1.1. 如果 $\forall x: (x\cancel{R}x)$,则关系 R 是反自反的(非自反的)。

在反自反关系的图中,没有任何顶点有自环:

示例:

 \neq , < , \perp , \subsetneq

31

2. 如果 $\forall x, y : xRy \rightarrow yRx$,则关系 R 是对称的。

在对称关系的图中可能出现以下情况:

或这样:

或这样:

而这样是不可能的:

示例:

$$= \text{, } \neq \text{, } \parallel \text{, } \perp$$

32

3. 如果 $\forall x,y:(xRy\wedge yRx)\to x=y$,则关系 R 是反对称的。 换句话说,如果 xRy 且 $x\neq y$,则 $(y\cancel{R}x)$ 。

在反对称关系的图中可能出现以下情况:

或这样:

或这样:

或这样:

而这样是不可能的:

示例:

$$=0, \ \neq 0, \ <0, \ \leq0, \ \vdots, \ |0, \ \subseteq0, \ \subsetneq 0$$

33

4. 如果 $\forall x,y,z:(xRy\wedge yRz) o xRz$,则关系 R 是传递的。

在传递关系的图中:

如果有两条边构成一个链,

那么也必须有第三条边

示例:

 $= 0, \ \neq 0, \ < 0, \ \leq 0, \ \parallel 0, \ \vdots, \ \mid 0, \ \subseteq 0, \ \subsetneq$