Name: VEN THON ID: e20191250 Group: I3-GIC-C

Assignment 13 theory information

- 1. What is an algorithm?
 - ➤ Is a step by step procedure for calculations or for solving a problem.
 - ➤ An algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function
- 2. What are advantages of algorithm?
 - > There are:
 - Used for calculation
 - data processing,
 - and automated reasoning
- 3. what are properties of algorithm?
 - Input from a specified set
 - Output from a specified set(solution)
 - Definition of every step in the computation
 - Correctness of output for every possible input
 - Finiteness of the number of calculation step
 - Effectiveness of each calculation step, and
 - Generality for a class of problems
- 4. What are different between liner search and binary search algorithm?
 - ➤ A liner search algorithm, that is, an algorithm that linearly search a sequence for a particular element.
 - Example: liner_search(x:integer; $a_1,...,a_n$: integers)

 i:=1

 while(i $\leq n \ abd \ x \neq a_i$)

 i:=i+1

 if i \leq n then location :=i

 else location :=0

 <<location is the subscript of the term that equals x, or is zero if x is not found>>
 - ➤ Binary search algorithm iteratively restricts the relevant search interval until it closes in on the position of the element to be located.
 - Example: binary_search(x:integer; a₁,...,a_n: integers)
 i:=1{i is left endpoint of search interccal}
 j:=n{j is left endpoint of search interccal}
 while(i<j)
 begin
 m:=[(i+j)/2]
 if x>a_m then i:=m+1
 else j:=m
 end
 if x=a₁then location :=i
 else location :=0

<<<location is the subscript of the term that equals x, or is zero if x is not found>>

- 5. Which one do you think is the best algorithm? Why?
 I think a binary search algorithm is the best algorithm. Because it is related to sequence with the odered and it have function with center element and search interval.
- 6. What is algorithm complexity? Give an example of it?
 - ➤ In general, we are not so much interested in the time and space complexity for small inputs.
 - ➤ Algorithmic complexity is concerned about how fast or slow particular algorithm performs.
 - Example: *let us assume two algorithms A and B that solve the same class of problems.

The time complexity of A is 5,000n, the one for B is $[1.1^n]$ for an input with n elements.

- ➤ For n=10, A requires 50,000 steps, but B only 3, so B seems to be superior to A.
- 7. What is a growth of functions? Give an example of it?
 - ➤ The growth of a function is determined by the highest order term: if you add a bunch of terms, the function grows about as fast as the largest term (for large enough input values).
 - > Example:
 - Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.
 - For x > 1 we have:

$$*x^{2} + 2x + 1 \le x^{2} + 2x^{2} + x^{2}$$

$$*\Rightarrow x^{2} + 2x + 1 \le 4x^{2}$$

• Therefore, for C = 4 and k = 1: $f(x) \le Cx^2$ whenever x > k. * \Rightarrow f(x) is $O(x^2)$