

N-Channel Enhancement Mode Field Effect Transistor

SOT-23

Product Summary

• V _{DS}	60V
• I _D	0.6A
 R_{DS(ON)}(at V_{GS}=10V) 	<1.5Ω
 R_{DS(ON)}(at V_{GS}=4.5V) 	<1.8Ω
 R_{DS(ON)}(at V_{GS}=2.5V) 	<3.7Ω
 R_{DS(ON)}(at V_{GS}=1.8V) 	<8.5Ω
 Gate-Source ESD Rating 	Up to 2KV (HBM

General Description

- Trench Power MV MOSFET technology
- Voltage controlled small signal switch
- Low input Capacitance
- Fast Switching Speed
- Moisture Sensitivity Level 1
- Epoxy Meets UL 94 V-0 Flammability Rating
- Halogen Free

Applications

- Battery operated systems
- Solid-state relays
- Direct logic-level interface: TTL/CMOS

■ Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-source Voltage		V _{DS}	60	V	
Gate-source Voltage		V _{GS}	±20	V	
Drain Current	T _A =25°C		0.6	А	
	T _A =100°C	l _D	0.38		
Pulsed Drain Current ^A		I _{DM}	1.5	А	
Total Dawer Dissipation B	T _A =25°C	P _D	0.8	10/	
Total Power Dissipation ^B	T _A =100°C	PD	0.3	W	
Junction and Storage Temperature Range		T _J ,T _{STG}	-55∼+150	°C	

■Thermal resistance

Parameter	Symbol	Тур	Max	Units	
Thermal Resistance Junction-to-Ambient ^C	Steady-State	$R_{ heta JA}$	120	150	°C/W

■ Ordering Information (Example)

Ordering information (Example)								
PREFERED P/N	PACKING CODE	Marking	MINIMUM PACKAGE(pcs)	INNER BOX QUANTITY(pcs)	OUTER CARTON QUANTITY(pcs)	DELIVERY MODE		
BSS138KJ	F2	ВК	3000	30000	120000	7" reel		

BSS138KJ

■ Electrical Characteristics (T_J=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units	
Static Parameter							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =250μA	60	-	-	V	
		V _{DS} =60V, V _{GS} =0V	60V, V _{GS} =0V 1		1		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V, Tj=150°C	-	-	100	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} = ±20V, V _{DS} =0V	-	-	±10	μΑ	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$	0.5	1.1	1.5	V	
		V _{GS} =10V, I _D =0.6A	-	1.1	1.5		
Otatia Paria Occurso Oc. Pariatesas		V _{GS} =4.5V, I _D =0.2A	-	1.25	1.8	0	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =0.1A	-	2.65	3.7	Ω	
		V _{GS} =1.8V, I _D =0.01A	-	5.6	8.5		
Diode Forward Voltage	V _{SD}	I _S =0.6A, V _{GS} =0V	-	0.9	1.3	V	
Gate resistance	R_{G}	f=1MHz, Open drain	-	70	-	Ω	
Maximum Body-Diode Continuous Current	Is		-	-	0.6	Α	
Dynamic Parameters							
Input Capacitance	C _{iss}		-	25	-		
Output Capacitance	C _{oss}	V _{DS} =30V, V _{GS} =0V, f=1MHz	-	7	-	pF	
Reverse Transfer Capacitance	C _{rss}		-	3	-		
Switching Parameters							
Total Gate Charge	Q_g		-	1.4	-		
Gate-Source Charge	Q_{gs}	V _{GS} =10V, V _{DS} =30V, I _D =1A	-	0.5	-	nC	
Gate-Drain Charge	Q_{gd}		-	0.2	-		
Reverse Recovery Charge	Q _{rr}	1.44.27/1.4004/	-	4	-	nC	
Reverse Recovery Time	t _{rr}	I _F =1A, di/dt=100A/us	-	13	-	ns	
Turn-on Delay Time	t _{D(on)}		-	4	-		
Turn-on Rise Time	t _r	V _{GS} =10V, V _{DD} =30V, I _D =1A	-	19	-	_	
Turn-off Delay Time	t _{D(off)}	R _{GEN} =2.3Ω	-	9	-	ns	
Turn-off fall Time	t _f		-	25	-		

 $[\]label{eq:A.Repetitive rating} A. \ \ \mbox{Repetitive rating; pulse width limited by max. junction temperature.}$

B. $P_{\rm d}$ is based on max. junction temperature, using junction-case thermal resistance.

C. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in the still air environment with T_A =25°C. The maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

■Typical Electrical and Thermal Characteristics Diagrams

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge

Figure 5. On-Resistance vs Gate to Source Voltage

Figure 6. Normalized On-Resistance

Figure 7. RDS(on) VS Drain Current

Figure 8. Forward characteristics of reverse diode

Figure 9. Normalized breakdown voltage

Figure 10. Normalized Threshold voltage

Figure 11. Current dissipation

Figure 12. Power dissipation

Figure 14. Safe Operation Area

■ Test Circuits & Waveforms

Figure A. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure B. Gate Charge Test Circuit & Waveform

Figure C. Resistive Switching Test Circuit & Waveform

Figure D. Diode Recovery Test Circuit & Waveform

■ SOT-23 Package information

SUGGESTED SOLDER PAD LAYOUT

DIMENSIONS					
SYMBOL	INC	HES	Millimeter		
SIMPUL	MIN.	MAX.	MIN.	MAX.	
Α	0.035	0.045	0.900	1.150	
A1	0.000	0.004	0.000	0.100	
A2	0.035	0.041	0.900	1.050	
k	0.012	0.020	0.300	0.500	
U	0.004	0.008	0.100	0.200	
D	0.110	0.118	2.800	3.000	
E	0.047	0.055	1.200	1.400	
E1	0.089	0.100	2.250	2.550	
е	0.037	7TYP	0.950TYP		
e1	0.071	0.079	1.800	2.000	
L	0.022REF		0.550REF		
L1	0.012	0.020	0.300	0.500	
θ	0.	8°	0°	8°	

- NOTE: 1.PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- 2.TOLERANCE 0.1mm UNLESS OTHERWISE SPECIFIED.
 3.THE PAD LAYOUT IS FOR REFERENCE PURPOSES ONLY.

BSS138KJ

Disclaimer

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http://www.21yangjie.com, or consult your nearest Yangjie's sales office for further assistance.