ΘΕΜΑ 4

Ένας δορυφόρος έχει μάζα m=5.000Kg και περιστρέφεται γύρω από την Γη σε κυκλική τροχιά και σε απόσταση $h=3R_\Gamma$ από την επιφάνεια της Γης. Η ακτίνα της Γης είναι $R_\Gamma=6.400km$ και η επιτάχυνση της βαρύτητας στην επιφάνειά της είναι $g_0=10\frac{m}{s^2}$. Θεωρώντας την αντίσταση του αέρα αμελητέα, και την βαρυτική δυναμική ενέργεια σε πολύ μεγάλη απόσταση ίση με μηδέν, να βρεθούν:

4.1. το μέτρο της έντασης του βαρυτικού πεδίου της Γης στο ύψος που βρίσκεται η τροχιά του δορυφόρου.

Μονάδες 5

4.2. το μέτρο της ταχύτητας περιστροφής του δορυφόρου καθώς και το χρονικό διάστημα στο οποίο ολοκληρώνει μία περιστροφή .

Μονάδες 6

4.3. το μέτρο της μεταβολής της ορμής του δορυφόρου σε χρονικό διάστημα μισής περιόδου.

Μονάδες 6

4.4. Με την βοήθεια ενσωματωμένων προωθητικών πυραύλων, ο δορυφόρος διπλασιάζει το μέτρο της ταχύτητάς του. Να αποδείξετε ότι ο δορυφόρος θα φύγει για πάντα από την βαρυτική έλξη της Γης και να βρεθεί η τελική του ταχύτητα.

Μονάδες 8