CLAIMS

What is claimed is:

1	1.	A method for forming a write head having an air bearing surface (ABS),
2		comprising:
3		forming a flux shaping layer;
4		forming a pole tip layer on the shaping layer, the shaping layer being for focusing
5		flux to the pole tip layer;
6		forming a mask layer above the pole tip layer, the mask layer being more resistant
7		to milling than the pole tip layer;
8		forming a layer of resist above the mask layer;
9		patterning the resist, the patterned resist defining about a maximum width of the
10		pole tip in a direction parallel to the ABS of the head;
11		removing portions of the mask layer not covered by the patterned resist;
12		milling for shaping a pole tip from the pole tip layer;
13		depositing a layer of dielectric material above the pole tip and flux shaping layer,
14		wherein the layer of dielectric material extends about adjacent to the mask
15		layer;
16		depositing a stop layer over the dielectric material, the stop layer abutting the
17		mask layer;
18		polishing for forming a substantially planar upper surface consisting of the mask
19		layer and stop layer;

HIT1P022/HSJ9-2003-0129US1

20		forming a gap layer above the pole tip to a desired thickness; and
21		forming a trailing shield above the gap layer.
1	2.	A method as recited in claim 1, wherein the pole tip layer is laminated.
1	3.	A method as recited in claim 1, wherein the portions of the mask layer not
2		covered by the patterned resist are removed by reactive ion etching.
1	4.	A method as recited in claim 1, wherein the mask layer is formed of a material
2		selected from a group consisting of carbon, a silicon nitrate, a tantalum oxide, a
3		silicon oxide, and durimide.
1	5.	A method as recited in claim 1, wherein the mask layer is formed of a material
2		selected from a group consisting of Si ₃ N ₄ , Ta ₂ O ₅ , SiO ₂ , and durimide.
1	6.	A method as recited in claim 1, wherein the mask layer is formed of carbon
2		formed by filtered cathodic arc (FCA) deposition.
1	7.	A method as recited in claim 1, wherein the mask layer is a multilayer structure
1	8.	A method as recited in claim 7, wherein the mask layer comprises at least one

2

layer of carbon and at least one layer of durimide.

- 1 9. A method as recited in claim 1, wherein the pole tip layer is shaped to taper
- 2 together towards the shaping layer along a plane perpendicular to the ABS.
- 1 10. A method as recited in claim 1, further comprising removing the mask layer prior
- 2 to forming the gap layer, and forming dishing in the pole tip.
- 1 11. A method as recited in claim 10, wherein the mask layer is removed by additional
- 2 polishing.
- 1 12. A method as recited in claim 10, wherein the mask layer is removed by etching.
- 1 13. A method as recited in claim 10, wherein the dishing is formed by etching.
- 1 14. A method as recited in claim 1, wherein the polishing is chemical mechanical
- 2 polishing with a slurry selective to the dielectric material.
- 1 15. A method as recited in claim 1, further comprising forming a coil structure behind
- 2 the trailing shield with respect to the ABS.
- 1 16. A method as recited in claim 1, further comprising forming a return pole above
- 2 the trailing shield.
- 1 17. A method as recited in claim 1, wherein the head is a perpendicular head.

HIT1P022/HSJ9-2003-0129US1

1	18.	A method for forming a write head having an air bearing surface (ABS),
2		comprising:
3		forming a flux shaping layer;
4		forming a pole tip layer on the shaping layer, a mask layer being formed above
5	•	the pole tip layer;
6		shaping a tapered pole tip from the pole tip layer;
7		depositing a layer of dielectric material above the pole tip and flux shaping layer,
8		wherein the layer of dielectric material extends about adjacent to the mask
9		layer;
0		depositing a stop layer over the dielectric material, the stop layer abutting the
1		mask layer;
12		polishing for forming a substantially planar upper surface consisting of the mask
13		layer and stop layer; and
14		forming a gap layer above the pole tip to a desired thickness.
1	19.	A method as recited in claim 18, wherein the pole tip layer is laminated.
1	20.	A method as recited in claim 18, wherein the portions of the mask layer not
2		covered by the patterned resist are removed by reactive ion etching.

- 1 21. A method as recited in claim 18, wherein the mask layer is formed of a material selected from a group consisting of carbon, a silicon nitrate, a tantalum oxide, a silicon oxide, and durimide.
- A method as recited in claim 21, wherein the mask layer is a multilayer structure formed of at least two of the materials selected from the group consisting of carbon, a silicon nitrate, a tantalum oxide, a silicon oxide, and durimide.
- 1 23. A method as recited in claim 18, further comprising removing the mask layer 2 prior to forming the gap layer, and forming dishing in the pole tip.
- 1 24. A method as recited in claim 23, wherein the mask layer is removed by overpolishing.
- 1 25. A method as recited in claim 23, wherein the mask layer is removed by etching.
- 1 26. A method as recited in claim 23, wherein the dishing is formed by etching.
- 1 27. A method as recited in claim 18, wherein the polishing is chemical mechanical polishing with a slurry selective to the dielectric material.

1	28.	A method as recited in claim 18, further comprising forming a trailing shield
2		above the gap layer and forming a coil structure behind the trailing shield with
3		respect to the ABS.
1	29.	A method as recited in claim 18, further comprising forming a trailing shield
2		above the gap layer and forming a return pole above the trailing shield.
1	30.	A method as recited in claim 18, wherein the head is a perpendicular head.
1	31.	A method for forming a write head having an air bearing surface (ABS),
2		comprising:
3		forming a flux shaping layer;
4		forming a pole tip layer on the shaping layer, a mask layer being formed above
5		the pole tip layer;
6		shaping a tapered pole tip from the pole tip layer;
7		depositing a layer of dielectric material above the pole tip and flux shaping layer,
8		wherein the layer of dielectric material extends about adjacent to the mask
9		layer;
10		depositing a stop layer over the dielectric material, the stop layer abutting the
11		mask layer;
12		polishing for forming a substantially planar upper surface consisting of the mask
13		layer and stop layer;
14		removing the mask layer;

HIT1P022/HSJ9-2003-0129US1

15		forming dishing in the pole tip;
16		forming a gap layer above the pole tip to a desired thickness; and
17		forming a trailing shield above the gap layer.
1	32.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head having:
4		a reading portion for reading from the magnetic media; and
5		a writing portion for writing to the magnetic media, the writing portion
6		having been formed according to the method of claim 1;
7		a slider for supporting the head; and
8		a control unit coupled to the head for controlling operation of the head.
1	33.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head having:
4		a reading portion for reading from the magnetic media; and
5		a writing portion for writing to the magnetic media, the writing portion
6		having been formed according to the method of claim 16;
7		a slider for supporting the head; and
8		a control unit coupled to the head for controlling operation of the head.

HIT1P022/HSJ9-2003-0129US1

1

34.

A magnetic storage system, comprising:

2	magnetic media;
3	at least one head having:
4	a reading portion for reading from the magnetic media; and
5	a writing portion for writing to the magnetic media, the writing portion
6	having been formed according to the method of claim 31;
7	a slider for supporting the head; and
8	a control unit coupled to the head for controlling operation of the head.