Rappresentazioni

mercoledì 16 marzo 2022

15.47

Decimale: 0->9 Binario: 0-1

Esadecimale: 0->15 (F)

Conv. Base -> 10:

Numero posizione * base ^ posizione

Es.

$$1001_2 = 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 0 * 2^0 = 9$$

Conv. 10 -> Qualsiasi base:

Continue divisioni, Es. $12_{10} \rightarrow (1100)_2$

12/2=6 - 0

6/2= 3 - 0

3/2= 1 - 1

1/2= 0 - 1

Negativi

3 metodi:

- Modulo-Segno -> 1 bit per il segno /-> Inverto i bit
- Complemento a 1 -> Si fa il complemento del binario se negativo
- Complemento a 2 -> Complemento a 1 + 1 -> Usiamo questo

Es.

-7	0111	1000	1001
Decimale	Binario	Complemento 1	Complemento 2

Pro tip

Per convertire binario->decimale velocemente Prendi l'ultimo bit, negativo, e somma gli altri Positivi.

Pro tip: Per trasformare binario-decimale

velocemente 0.101 (O altri numeri)

Devi fare: $2^{-1} * 1 + 2^{-2} * 0 + 2^{-3} * 1$

= .5 + .125 = .625

Overflow: Andiamo oltre i nostri bit

1001

-2^4*1+2^0=-8+1=7

Virgola

Fissa -> Si usa l'ultimo bit per la virgola Es. $5.125_{10} \rightarrow 101.001$

- Mobile -> Si utilizza un espressione scientifica -> $2.99*10^8$ e non $299*10^6$

Es. 65 -> 6.5

Binario 6.5-> 0110.1

Dobbiamo portare la virgola verso lo 0, il nostro segno, quindi 2^3

0.1101*2^3

Trasformiamo 3 -> 11

Aggiungiamo i vari bit per completare il nostro IIE

0-110100000-000011

| \-> II nostro esponente 3

| \-> II nostro valore 6.5

\-> Segno

Per il contrario: Prima prendiamo la nostra mantissa, la si trasforma in binario

000011 -> 3

Poi, si fa uno shift a sinistra a seconda di quel numero

01101000 -> 110.1

E infine si trasforma quel numero

110.1 -> 6.5

Precisione	Singola	Doppia	Estrema
Bit	32 bit	64 bit	80 bit

\->	MSB 1bit	Exp 8bit	Mantissa 23bit	
	MSB 1bit	Exp 11bit	Mantissa 52bit	
			\-> Virgola	
		\-> Manti	issa -> Dopo virg	ol
	\-> Most si	ignificant bi	t -> Segno	

Per rappresentare l'alfabeto si utilizza la tabella ascii, oppure unicode Che dà a ogni simbolo/carattere/codice importante un id