Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	

M2 PLS. Coq: des preuves et des nombres

Micaela Mayero

Université Paris 13, LIPN UMR 7030-LCR team http://www-lipn.univ-paris13.fr/~mayero

28 novembre 2014

1/20

3/20

Coq: des preuves et des nombres

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	

Problématique

- savoir compter
- savoir prouver
- quels nombres?
- pour quoi faire?

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	

Problématique

Compter Prouver

Les entiers

Les entiers naturels Les entiers relatifs

Les nombres réels

Remarques

Les nombres flottants

Autres directions

Conclusion

2/20

Coq: des preuves et des nombres

Problématique • •	Les entiers 0 00	Les nombres réels 000 0	Les nombres flottants	Autres directions	Conclusion
Compter					

Qu'est ce que compter?

Cog: des preuves et des nombres

Compter: "Faire des calculs"

Calcul : "Opération destinée à déterminer le résultat d'une combinaison de nombres"

4/20

Les enfants savent compter, les ordinateurs aussi...

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
•0	0	000	000	00	
Prouver					

Qu'est ce que prouver?

Prouver : "conclure logiquement à partir de propositions posées comme prémisses."

Les grands enfants savent prouver, les ordinateurs pas vraiment...

Pourquoi?: résultat vs conclusion

5/20

Coq: des preuves et des nombres

Problématique Les	s entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
•		000	000	00	
00 00)	0			

Les entiers naturels

Quels entiers?

- entiers binaires : codage machine, signés, non signés, complément à 2,...
- ▶ entiers de Peano : 0 | S n
 Inductive nat : Set := 0 : nat | S : nat -> nat

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
o o ●	0	000	000	00	
В					

Exemple concret

► Pas d'associativité dans le calcul :

```
(1003 + -1000) + 7.501 = 10.5010000000000012

1003 + (-1000 + 7.501) = 10.500999999999764
```

▶ Mais on la veut dans les preuves.

6/20

Coq: des preuves et des nombres

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	
00	•0	0			

Et dans les prouveurs?

- ▶ entiers binaires : PVS, Coq, ...
- ▶ entiers de Peano : HOL, Coq, ...
- ► entiers relatifs dans Cog :

```
Inductive Z : Set :=
    | ZO : Z
    | Zpos : positive -> Z
    | Zneg : positive -> Z.

Inductive positive : Set :=
    | xI : positive -> positive
    | x0 : positive -> positive
    | xH : positive.
```

Problématique		es nombres réels 00	Les nombres flottants	Autres directions	Conclusion
Les entiers relatifs					
lecture <-	×H=1 (bit de	poids fort) ×0=	0 xI=1		
Coq < Cho Zpos (xI	eck 5. (x0 xH))	(101)			
Coq < Ch					
Zpos (xO	(xI xH))	(110)			
Coq < Cho Zpos (xI	eck 7. (xI xH))	(111)			
Coq < Ch	eck 8.				
Zpos (xO	(x0 (x0 xH))) (1000)			
Coq < Ch		\ (1001)			
Zpos (XI	(x0 (x0 xH))) (1001)			
Coq < Cho Zpos (x0	eck 10. (xI (x0 xH))) (1010)			
Coq < Ch	eck 11.				

9/20

Cog: des preuves et des nombres

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	
00	00	0			

Et dans les prouveurs?

Zpos (xI (xI (x0 xH))) (1011)

- ▶ axiomatisation intuitionniste : Coq, ...
- ▶ axiomatisation classique : Coq, PVS, Lego, ...
- ▶ construction classique : HOL, HOL-Light, ...
- ► les réels de la bibliothèque standard de Coq : Corps ordonné archimédien complet

Parameter R : Set. Parameter RO R1: R.

Parameter Rplus Rmult: R \rightarrow R \rightarrow R.

Parameter Ropp Rinv : R -> R.

Parameter Rlt : R -> R -> Prop.

Parameter up : R -> Z.

roblématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
	0	•00	000	00	

Quels réels?

- axiomatisation/construction
- ► Cauchy, Cantor, coupure de Dedekind
- classique/intuitionniste
- ▶ 1er ordre/2d ordre

10/20

Coq: des preuves et des nombres

```
Axiom Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1.

Axiom Rmult_assoc : forall r1 r2 r3:R, r1 * r2 * r3 = r1 * (r2 * r3).

Axiom Rinv_l : forall r:R, r <> 0 -> / r * r = 1.

Axiom R1_neq_R0 : 1 <> 0.

Axiom total_order_T : forall r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

Axiom Rlt_asym : forall r1 r2:R, r1 < r2 -> ~ r2 < r1.

Axiom archimed : forall r:R, IZR (up r) > r /\ IZR (up r) - r <= 1.

Definition is_upper_bound (E:R -> Prop) (m:R) := forall x:R, E x -> x <= m.

Definition is_lub (E:R -> Prop) := exists m : R, is_upper_bound E m.

Definition is_lub (E:R -> Prop) (m:R) :=

is_upper_bound E m /\ (forall b:R, is_upper_bound E b -> m <= b).

Axiom

completeness :

forall E:R -> Prop,

bound E -> (exists x : R, E x) -> { m:R | is_lub E m }.
```


Remarques

- ▶ 17 axiomes
- L'inverse et la division (fonctions totales)
- ► L'ordre total
- ► La complétude (2d ordre)
- Attention aux axiomes!

13/20

Coq: des preuves et des nombres

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	0•0	00	

La norme IEEE 754 (1985, 2008)

Précision	Codage	Signe	Exposant	Mantisse	Valeur
Simple	32 bits	1 bit	8 bits	23 bits	$(-1)^{S}\times M\times 2^{(E-127)}$
Double	64 bits	1 bit	11 bits	52 bits	$(-1)^S \times M \times 2^{(E-1023)}$
D.étendue	80 bits	1 bit	15 bits	64 bits	$(-1)^{S} \times M \times 2^{(E-16383)}$

Example : -15, 25 = 0xC1740000

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	•00	00	

Quels flottants?

- norme
- étendus
- ► axiomatisation/construction

14/20

16/20

```
Coq: des preuves et des nombres
```

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	

Et dans les prouveurs?

- ▶ dans Coq, HOL-Light, ...
- ▶ les flottants dans Coq :

```
Variable radix : Z.
```

Hypothesis radixMoreThanOne : (1 < radix)%Z.</pre>

```
Record float : Set := Float {Fnum : Z; Fexp : Z}.
Definition FtoR (x : float) :=
    (Fnum x * powerRZ (IZR radix) (Fexp x))%R.
```

Arithmétique réelle exacte

- L'arithmétique réelle exacte consiste à représenter un nombre réel par une fonction qui en donne une approximation rationnelle aussi précise que souhaitée.
- L'avantage majeur est la "décidabilité " de l'égalité (à un nombre de décimales près).
- L'inconvénient majeur est la forte complexité temporelle (structures de données et algorithmes).

17/20

Coq: des preuves e	et des nombres	,
--------------------	----------------	---

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	

- théorie des nombres
- analyse
- algèbre
- arithmétique
- ► correction et complétude d'une théorie

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	0•	

Plusieurs arithmétiques réelles exactes

- ▶ Représentation par des nombres P-adics, fractions continues
- ▶ MPFR, Constructive Reals Calculator (Hans Boehm), · · ·

```
Test : ln(e^{ln(e^{-36}+\pi)} - \pi)

#let pi = 4.0 *. atan 1.0;;

#log(exp(log(exp(-36.)+.pi))-.pi);;

- : float = -34.6573590279972663

#log(exp(log(exp(-37.)+.pi))-.pi);;

- : float = neg_infinity
```

18/20

Coq: des preuves et des nombres

Problématique	Les entiers	Les nombres réels	Les nombres flottants	Autres directions	Conclusion
0	0	000	000	00	
00	00	0			

Lapalissade

Bien avoir en tête quels sont les objectifs pour définir et utiliser les "bons nombres"...

19/20