Suppose you are tracking an airplane and at each time step you observe a noisy version of its coordinates. Does it make sense to add atent variables in this model?
Yes, it makes sense to add pilot's mood as a latent variable here.
Un-selected is correct
Yes, it makes sense to add exact coordinates (without noise) as latent variables here.
Correct $x=t+\epsilon,$
where x - noisy observation of coordinates, t - exact coordinates(latent variable) and ϵ is some noise.
No, we should not use latent variables here since there is no way to meaningfully introduce them.
Un-selected is correct
No, we should not use latent variables here since coordinates at the next time step can be computed as the mean of previous coordinates.
Un-selected is correct
1/1 points
o.
Select real-world problems which can be modeled using Gaussian Mixture Model (GMM)
Amount of time till the next bus arrival
Un-selected is correct
Rainfall measurement within 4 different seasons
Correct For each season rainfall measurement can be modeled using Gaussian distribution.

	Height distribution of people of different ethnicities
Corr For e	rect ach ethnicity we can model height using Gaussian distribution.
	Blood type distribution of people of different ethnicities
Un-s	selected is correct
4.	1/1 points
Choose	reasonable criteriums for stopping EM iterations
	Constraints of the original optimization problem (e.g. the prior probability weights in GMM should be non-negative and sum up to one) become satisfied
Un-s	selected is correct
	Log-likelihood lower bound stabilized (changed less than the predefines epsilon in the last iteration)
Corr	rect
	Log-likelihood lower bound reached the predefined constant value
Un-s	selected is correct
	Parameter values stabilized (changed less than the predefines epsilon in the last iteration)
Corr	rect

~	1/1 points
5.	
Select	correct statements about Probabilistic Principle Component Analysis (PPCA)
	PPCA can be computationally more efficient than naive version of its deterministic analog (PCA)
	rect ise Probabilistic PCA video
	PPCA can be used to visialize multidimensional data
•	
	rect ise Probabilistic PCA video
	PPCA is a linear dimensionality reduction
_	
	rect ise Probabilistic PCA video
	After training the model we can sample new data from the resulting distribution
	rect ise Probabilistic PCA video
J 1	