Chapter 11

Minimum Spanning Tree Recitation.

11.1 The Spanning Tree Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is a subset of edges in E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weighted graph with weight function $w:E\to\mathbb{R}$. We extend the weight function to subsets of E by defining the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree (MST) of G is the spanning tree of G that has the minimal weight according to w. Note that in general, there might be more than one MST for G.

Definition 11.1.2. Let $U \subset V$. We define the cut associated with U as the set of outer edges of U, namely all the edges $(u,v) \in E$ such that $u \in U$ and $v \notin U$. We use the notation $X = (U, \bar{U})$ to represent the cut. We say that $E' \subset E$ respects the cut if $E' \cap X = \emptyset$.

Lemma 11.1.1 (The Cut-Lemma). Let T be an MST of G. Consider a forest $F \subset T$ and a cut X that respects X (i.e. $F \cap X = \emptyset$). Then $F \cup \arg\min_e w(e)$ is also contained in some MST. Note that it does not necessarily have to be the same tree T.

Proof. If $e \in T$, then $F \cup \{e\} \subset T$ and we are done. Otherwise, consider the second case where $e \notin T$. This means that $T \cup \{e\}$ has |V| edges and therefore must have a cycle. Let $\Gamma = T \cup \{e\}$ and let x and y be the endpoints of e (namely e = (x, y)). Denote the subset of vertices defining the cut X by U. Without loss of generality, let's assume $x \in U$ and $y \in \overline{U}$.

Since T is connected, there is a path $x \rightsquigarrow y$ in T, denote it by \mathcal{P} . Additionally, because $e \notin T$, we have that $e \notin \mathcal{P}$. This means that there must be another edge in \mathcal{P} connecting a vertex in U to a vertex in \bar{U}^1 . Let e' be that edge, we have:

- 1. Both $e', e \in X$ So $w(e) \leq w(e')$.
- 2. $e \cup \mathcal{P}$ is a cycle in Γ .

¹Otherwise, walking along \mathcal{P} cannot take one out of U, leading to a contradiction as \mathcal{P} leads to y.

By using the fact that subtracting an edge from a cycle doesn't harm connectivity (see Claim 11.2.1), we can conclude that $\Gamma/\{e'\}$ is connected. Since it has |V|-1 edges, it must be a spanning tree. On the other hand, by:

$$w\left(\Gamma/\{e'\}\right) = w\left(T\right) + \underbrace{w(e) - w(e')}_{\leq 0} \leq w\left(T\right)$$

So $\Gamma/\{e'\}$ is an MST.

11.2 Kruskal Algorithm.

This algorithm constructs the MST iteratively by holding a forest F contained in the MST and then looking for the minimal edge in a cut that it respects. It is important to note that since F has no cycles, any edge $e \subset E$ that does not create a cycle in F must belong to a cut X that is respected by F. By ensuring that the edges are examined in increasing weight order, we can determine that the first edge that does not create a cycle is also the one with the minimum weight among them. Therefore, according to Lemma 11.1.1, we can conclude that the forest obtained by adding e into F is contained in the MST, and we can continue with it.

```
Result: Returns MST of given G = (V, E, w)
1 sorts the E according to w
2 define F_0 = \emptyset and i \leftarrow 0
3 for e \in E in sorted order do
4 | if F_i \cup \{e\} has no cycle then
5 | F_{i+1} \leftarrow F_i \cup \{e\}
6 | i \leftarrow i+1
7 | end
8 end
9 return F_i
```

Algorithm 1: Kruskal alg.

Claim 11.2.1. Let G be a connected graph containing a cycle C. Then the subtraction of any an edge in C gives a connected graph.

Proof. Assume, by contradiction, that a graph $G' = G/\{e\}$, where $e \in C$, is not connected. This means that there are two vertices u and v that have a path between them in G, but no such path exists in G'. Denote this path by \mathcal{P} and observe that $e \in \mathcal{P}$, otherwise, \mathcal{P} would also be a path from u to v in G'.

Denote the ends of e by (x, y) = e. Also, denote C by $\langle x_0, x_1, ... x_i, x, y, y_0, ..., y_j \rangle$, where $y_j = x_0$ and there is an inequality for any other pair of vertices (we used the cycle definition). Then, there is a path $x \rightsquigarrow y$ in C, defined by

$$\langle x_i, x_{i-1}, ..., x_1, x_0, y_{i-1}, y_{i-2}, ..., y_0, y \rangle$$

We denote this path by \mathcal{P}' . By replacing e in \mathcal{P} with \mathcal{P}' , we obtain a path $u \leadsto x \leadsto^{\mathcal{P}'} y \leadsto v$, which is a path between u and v that does not contain e. This contradicts the assumption that there is no path between u and v in G'.