Prof. Frank Helbert Borsato

- Pode-se dizer que a Teoria dos Conjuntos é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918).
- A noção de conjunto não é suscetível de definição precisa a partir de noções mais simples, ou seja, é uma noção primitiva.
- É de fundamental importância para várias áreas da ciência da computação:
 - Banco de Dados
 - Linguagens Formais

1. Conjunto – Notação: Letras Maiúsculas

- Um conjunto é uma coleção bem definida de entidades ou objetos (chamados de membros ou elementos do conjunto), considerados globalmente e que pode ser identificada.
 - Ou, "coleção não-ordenada de objetos".

Obs.: muitas vezes, todos os objetos em um conjunto gozam de uma mesma propriedade.

- Exemplos:
 - Conjunto de livros na biblioteca da UTFPR
 - Conjunto dos números naturais (conj. infinito)
 - Conjunto de dinossauros vivos (conj. vazio, {}, Ø)
 - Conjunto L de dois elementos, um dos quais é o conjunto das vogais e outro é o conjunto das consoantes.

2. Elemento – Notação: letras minúsculas

- Os objetos que constituem um conjunto denominam-se elementos do conjunto.
- Exemplos:
- Paulo é um elemento do conjunto de Mourãoenses.
- 1 é um elemento do conjunto dos Números Naturais.
- -2 é elemento do conjunto solução da equação $x^2 4 = 0$.
- {a, e, i, o, u} é elemento do conjunto formado pelo conjunto das vogais e pelo conjunto das consoantes.

3. Pertinência − Notação: ∈

- Qualquer objeto que seja elemento de um conjunto é dito pertencer aquele conjunto, ou ainda, o elemento x possui o predicado P.
- Se o elemento x não pertence ao conjunto, denotase por ∉ que também pode ser equivalente a dizer que x não está no conjunto, ou ainda que x não possui o predicado P.

4. Conjunto Universo – Notação: U

- Chama-se Conjunto Universo ou simplesmente
 Universo de uma Teoria a todos os entes que são
 considerados como elementos nesta Teoria.
 - Exemplo: em geometria o Universo é o conjunto de todos os pontos.

- Características dos Conjuntos
- A ordem em que os elementos são listados em um conjunto é irrelevante: $\{3, 2, 1\} = \{1, 2, 3\}$.
- A repetição dos elementos em um conjunto é irrelevante: $\{1, 1, 1, 3, 2, 2\} = \{1, 2, 3\}$.
- Maneiras de Descrever um Conjunto
- − De maneira explícita: A={água, terra, fogo, ar}
- Indicando um padrão: (normalmente para conjuntos infinitos) $P=\{2, 4, 6, 8, ...\}$

- Maneiras de Descrever um Conjunto
- Por recursão:
 - 1. $2 \in S$
 - 2. Se $n \in S$, então $(n+2) \in S$
- Através de uma propriedade que os elementos do conjunto tenham em comum: (usa-se um predicado P(x) para denotar a propriedade P referente a uma variável x)
- $\bullet S = \{x \mid P(x)\}\$

- Maneiras de Descrever um Conjunto
- Exemplos:
 - \bullet A = $\{x \mid x \text{ \'e um inteiro e } 3 < x < 7\}$
 - $S = \{x \mid x \text{ \'e solução para } x^2 4 = 0\}$

- Maneiras de Descrever um Conjunto
- Através de um Diagrama de Venn
 - Com o intuito de facilitar o entendimento de certas definições e demonstrações é útil a representação de um conjunto por um recinto plano delimitado por uma linha fechada qualquer não entrelaçada.
 - Os elementos do conjunto são os pontos internos ao recinto, enquanto os elementos que não pertencem ao conjunto são pontos externos ao recinto.

- Conjuntos Especiais
- -N: conjunto dos números naturais: $\{0, 1, 2, 3, ...\}$
- Z: conjunto dos números inteiros: {..., -2, -1, 0, 1, 2, ...}
- Z*: conjunto dos números inteiros exceto zero {...,
 -3, -2, -1, 1, 2, 3, ...}
- Q: conjunto dos números racionais: $\{x \mid x=n/m, m, m \in \mathbb{Z} \text{ e } m \neq 0\}$
- R: conjunto dos números reais: {x | x é um número real}

- Igualdade de Conjuntos
- Dois conjuntos A e B são iguais quando todo
 elemento de A pertence também a B e,
 reciprocamente, todo elemento de B pertencer a A.
- -A=B sse $(\forall x(x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A))$
- Desigualdade de Conjuntos
- Se existe elemento de A que não pertence a B ou existe elemento de B que não pertence a A, então dizse que A não é igual a B.
- $-A\neq B$ sse $(\exists x(x\in A \land x\notin B) \lor (x\notin A \land x\in B))$

- Subconjuntos(⊂)
- O conjunto A é dito um subconjunto de B se e somente se todo elemento de A é também um elemento de B.
- $-A \subset B \text{ sse } \forall x (x \in A \rightarrow x \in B)$
- Diz-se que A está contido em B.
- Se A não está contido em B, escreve-se A⊄B.
- Subconjunto Próprio (Ç)
- Se A é um subconjunto de B, mas queremos enfatizar que A≠B, escrevemos A⊊B

- Subconjunto Próprio ()
- Se A é um subconjunto de B, mas queremos enfatizar que A≠B, escrevemos A⊊B
- Para mostrar que $A \subsetneq B$, devemos mostrar primeiramente que $A \subset B$ e depois apresentar um elemento $x \in B$ tal que $x \not\in A$.

Todo conjunto é um subconjunto de si mesmo. (Diversão: prove!)

O conjunto Ø é um subconjunto de qualquer conjunto (Diversão: prove!)

- 1. Provar as propriedades:
- a) Reflexiva da igualdade: A=A
- b) Simétrica da igualdade: A=B ⇔ B=A
- c) Transitiva da igualdade: $(A=B) \land (B=C) \Rightarrow A=C$
- d) Reflexiva da inclusão: ACA
- e) Transitiva da inclusão: $(A \subset B) \land (B \subset C) \Rightarrow A \subset C$

$$\forall x(x \in A \to x \in B) \land \forall x(x \in B \to x \in C) :: \forall x(x \in A \to x \in C)$$

$$\forall x(A(x) \to B(x)) \land \forall x(B(x) \to C(x)) :: \forall x(A(x) \to C(x))$$

Prova:

1.
$$\forall x(A(x) \rightarrow B(x))$$

2.
$$\forall x (B(x) \rightarrow C(x))$$

3.
$$A(a) \rightarrow B(a)$$

4.
$$B(a) \rightarrow C(a)$$

5.
$$A(a) \rightarrow C(a)$$
 3,4 SH

$$6. \quad \forall x (A(x) \to C(x)) \nearrow$$

Conjunto Potência:

- Dado qualquer conjunto A, sabemos que o conjunto vazio e o conjunto A são ambos subconjuntos de A.
- Podemos definir TODOS os subconjuntos de A da seguinte forma:

Para um conjunto A, o conjunto formado por todos os subconjuntos de A é chamado de Conjunto Potência de A.

- É denotado por 2^A , ou P(A), ou ainda $\rho(A)$
- Se A tem n elementos, P(A) tem 2ⁿ elementos.

$$A = \{1, 2\}$$

Conjunto potência = Conjunto das partes

Outra forma de enunciar:

"Para cada conjunto, existe um conjunto de conjuntos que consiste de todos os subconjuntos do conjunto dado."

Para diversão!

1. Exiba entre chaves os elementos de cada um dos seguintes conjuntos.

$$A = \{x \in \mathbb{N} \mid x < 5\}$$

$$B = \{x \in \mathbb{Z} \mid x^2 \le 25\}$$

$$C = \{x \in \mathbb{Q} \mid 10x^2 + 3x - 1 = 0\}$$

$$D = \{x \in \mathbb{R} \mid x^3 + 1 = 0\}$$

$$E = \{x \in \mathbb{R}_+ \mid 4x^2 - 4x - 1 = 0\}$$

- 2. Decida, dentre os seguintes conjuntos, quais são subconjuntos de quais:
 - (a) $A = \{ \text{todos os números reais satisfazendo } x^2 8x + 12 = 0 \}$
 - (b) $B = \{2, 4, 6\}$
 - (c) $C = \{2, 4, 6, 8, \dots\}$
 - (d) $D = \{6\}$
- 3. Liste todos os subconjuntos do conjunto $\{-1, 0, 1\}$.
- 4. Demonstre que $[(A \subset B) \land (B \subset A)] \Leftrightarrow (A = B)$ [Nota: Freqüentemente, em matemática, o melhor meio de demonstrar que A = B é mostrar que $A \subset B$ e $B \subset A$.]

A=Ø

5. Demonstre que $(A \subset \emptyset) \Rightarrow (A = \emptyset)$.

1)
$$\Delta = \{ sc \in \mathbb{N} \mid sc < 5 \}$$

$$A = \{0, 1, 2, 3, 4\}$$

$$10 c^{2} + 3c - 1 = 0$$

$$c = \{-\frac{1}{3}, \frac{1}{5}\}$$

$$c = -\frac{1}{3} c^{1} = \frac{1}{5}$$

$$x^{3}+1=0$$

$$x'=x''=5c'''=-1$$

$$50^{1} = 10^{1}$$
 $50^{1} = 10^{1}$

$$A = \emptyset$$

$$B = \{2, 4, 6\}$$

$$C = \{2, 4, 6, 8, ...\}$$

$$(A c \phi) \Rightarrow (A = \phi)$$

$$(A c \phi) \Rightarrow (A c \phi \land \phi c A)$$

$$\forall x (x \in A \Rightarrow x \in \phi) \Rightarrow \forall x (x \in A \Rightarrow x \in \phi) \land$$

$$(x \in A \Rightarrow x \in \phi) \Rightarrow (x \in \phi \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

$$(x \in A \land x \notin \phi) \Rightarrow (x \in A \Rightarrow x \in A)$$

- 6. Em cada um dos seguintes itens, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre-a. Se for falsa, mostre-o através de um exemplo (um tal exemplo, mostrando que uma proposição é falsa, é chamado um contra-exemplo).
 - (a) Se $x \in A$ e $A \in B$ então $x \in B$.
 - (b) Se $A \subset B$ e $B \in C$ então $A \in C$.
 - (c) Se $A \not\subset B$ e $B \subset C$ então $A \not\subset C$.
 - (d) Se $A \not\subset B$ e $B \not\subset C$ então $A \not\subset C$.
 - (e) Se $x \in A$ e $A \not\subset B$ então $x \not\in B$.
 - (f) Se $A \subset B$ e $x \notin B$ então $x \notin A$.
- 7. Demonstre que
 - (a) $[(A \subsetneq B) \land (B \subset C)] \Rightarrow (A \subsetneq C)$
 - (b) $[(A \subset B) \land (B \subsetneq C)] \Rightarrow (A \subsetneq C)$
- 8. Dê um exemplo de um conjunto cujos elementos são também conjuntos.

6)
$$\sqrt{x} \in A \land A \in B \longrightarrow x \in B$$

$$A = \{x\}$$

$$B = \{(x)\}$$

$$A = \{a\}$$

$$B = \{a,b\}$$

$$C = \{\{a,b\}\}$$

$$\Delta = \{1, 3\}$$

) A & B N B K C -> A & C A= { 2,3} B={1,2} C={2,3}

9)
$$x \in A \land A \notin B \rightarrow x \notin B$$

$$A = \{x, 2\}$$

$$B = \{x\}$$

A & B Me = 3x (xEAAx EB)

F) ACBAGEB -> Q & A VX(XEA - XEB) 194B - 94A

União e interseção

• Na aritmética, podemos somar, multiplicar, ou subtrair dois números quaisquer. Na teoria dos conjuntos, há três operações - união, interseção, e complementação - respectivamente análogas as operações de adição, multiplicação, e subtração de números.

União e interseção

• UNIÃO

Se A e B são conjuntos, a união de A e B, denotada por A U B, é o conjunto que contém aqueles elementos que estão em A, ou em B, ou em ambos:

$$A \cup B = \{x \in A \lor x \in B\}$$
ou
$$x \in A \cup B \text{ sse } x \in A \lor x \in B$$

• INTERSEÇÃO

Se A e B são conjuntos, a interseção de A e B, denotada por A ∩ B, é o conjunto que contém aqueles elementos que estão em A e em B ao mesmo tempo:

$$A \cap B = \{x \in A \land x \in B\}$$
ou
$$\{x \in A \mid x \in B\}$$
Se $A \cap B = \emptyset$, dizemos que $A \in B$ são disjuntos.

- Propriedades
- Elementos Neutro
 - $\bullet \ \ A \cup \emptyset = A$
 - $A \cap U = A$
- Idempotência
 - $A \cap A = A$
 - \bullet A \cup A = A
- Comutatividade:
 - A U B = B U A
 - $A \cap B = B \cap A$

Propriedades

- Associatividade:
 - $A \cup (B \cup C) = (A \cup B) \cup C$
 - $A \cap (B \cap C) = (A \cap B) \cap C$

- Distributividade:
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- Prova da Associatividade da União:
 - $A \cup (B \cup C) = (A \cup B) \cup C$

Prova da Associatividade da União:

•
$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$x \in A \cup (B \cup C) \Leftrightarrow (x \in A) \vee (x \in B \cup C) \qquad \text{Def. de } \cup \\ \Leftrightarrow (x \in A) \vee [(x \in B) \vee (x \in C)] \qquad \text{Def. de } \cup \\ \Leftrightarrow [(x \in A) \vee (x \in B)] \vee (x \in C) \qquad \text{Assoc. para } \vee \\ \Leftrightarrow (x \in A \cup B) \vee (x \in C) \qquad \text{Def. de } \cup \\ \Leftrightarrow x \in (A \cup B) \cup C \qquad \text{Def. de } \cup$$

- Prova da Distributividade:
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova da Distributividade:

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$x \in A \cap (B \cup C) \Leftrightarrow (x \in A) \land (x \in B \cup C) \qquad \text{Def. de } \cap \\ \Leftrightarrow (x \in A) \land [(x \in B) \lor (x \in C)] \qquad \text{Def. de } \cup \\ \Leftrightarrow [(x \in A) \land (x \in B)] \lor [(x \in A) \land (x \in C)] \qquad \text{Lei Dist. da lógica} \\ \Leftrightarrow (x \in A \cap B) \lor (x \in A \cap C) \qquad \text{Def. de } \cap \\ \Leftrightarrow x \in (A \cap B) \cup (A \cap C) \qquad \text{Def. de } \cup$$

• Para diversão extrema:

Demonstre que $A \subset B \Leftrightarrow A \cup B = B$.

Demonstre que $A \subset B \Leftrightarrow A \cap B = A$.

Demonstre que

- (a) $A \subset C$ e $B \subset C$ implica $A \cup B \subset C$.
- (b) $A \subset B$ e $A \subset C$ implica $A \subset B \cap C$.

Demonstre que $(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subset A$.

Demonstre que se $A \subset B$ então $\wp(A) \subset \wp(B)$.

Demonstre que $A \cup B = A \cap B \Leftrightarrow A = B$.

Demonstre que se $A \subset B$, então $A \cup C \subset B \cup C$ e $A \cap C \subset B \cap C$, para qualquer conjunto C.

Demonstre que se $A \subset C$ e $B \subset D$ então $A \cup B \subset C \cup D$.

Demonstre que se $A \subset B$, então $A \cup C \subset B \cup C$ e $A \cap C \subset B \cap C$, para qualquer conjunto C.

Demonstre que se $A \subset C$ e $B \subset D$ então $A \cup B \subset C \cup D$.

DIFERENÇA

- Se A e B são conjuntos, a diferença de A e B, denotada por A - B, é o conjunto que contém aqueles elementos que estão em A mas não estão em B:

$$A - B = \{x \in A \land x \notin B\}$$

$$Ou$$

$$\{x \in A \mid x \notin B\}$$

COMPLEMENTO

- Se U é o conjunto Universo, U – A é chamado de complemento de A e é denotado por ou A':

$$\hat{A} = A' = \sim A = U - A = (x \in U \land x \notin A)$$

Propriedades:

- (a) (A')' = A.
- (b) $\emptyset' = U \ e \ U' = \emptyset$.
- (c) $A \cap A' = \emptyset$ $e A \cup A' = U$.
- (d) $A \subset B$ se e somente se $B' \subset A'$

• COMPLEMENTO

Demonstre que $A - B = A \cap B'$.

COMPLEMENTO

Demonstre que $A - B = A \cap B'$.

Solução.

$$x \in A \cap B' \equiv (x \in A) \land (x \in U - B)$$
 Def. de \cap , Def. de '
 $\equiv (x \in A) \land [(x \in U) \land (x \notin B)]$ Def.
 $\equiv (x \in A \cap U) \land (x \notin B)]$ Assoc. de \wedge , Def. de \cap
 $\equiv (x \in A) \land (x \notin B)$ A $\cap U = A$
 $\Leftrightarrow x \in (A - B)$ Def.

Portanto, pela Definição $A \cap B' = A - B$.

- Teorema de De Morgan
- Para quaisquer dois conjuntos A e B,
- a) $(A \cup B)' = A' \cap B'$
- b) $(A \cap B)' = A' \cup B'$

Prova de a)

```
x \in (A \cup B)' \equiv \sim [x \in A \cup B] Def. de '
\equiv \sim [(x \in A) \lor (x \in B)] Def. de \cup
\equiv \sim (x \in A) \land \sim (x \in B) Def. de '
\equiv (x \in A') \land (x \in B') Def. de '
\equiv x \in (A' \cap B') Def. de \cap
```

Portanto, pela Definição $(A \cup B)' = A' \cap B'$.

• Para diversão:

Sejam A, B, e C três conjuntos quaisquer. Decida se o conjunto $A \cap (B - C)$ é o mesmo que $(A \cap B)$ - $(A \cap C)$.

• Para diversão:

Sejam A, B, e C três conjuntos quaisquer. Decida se o conjunto $A \cap (B - C)$ é o mesmo que $(A \cap B) - (A \cap C)$.

```
(A \cap B) - (A \cap C) = (A \cap B) \cap (A \cap C)'
= (A \cap B) \cap (A' \cup C') \qquad \text{Teor. de De M.}_{\perp}
= (A \cap B \cap A') \cup (A \cap B \cap C') \qquad \text{Dist.}
= (A \cap A' \cap B) \cup (A \cap B \cap C') \qquad \text{Com.}
= \emptyset \cup [A \cap (B \cap C')] \qquad \qquad A \cap A' = \emptyset
= A \cap (B - C)
```

Portanto, demonstramos que $A \cap (B - C) = (A \cap B) - (A \cap C)$.

• Resolver os exercícios do livro Fundamentos Matemáticos para Ciência da Computação

```
Exercícios 3.1 -> página 113 do livro
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 31, 32, 33, 34, 39,
67, 73, 74
```

• Um conjunto sucessor é denotado por A+ e definido como sendo o conjunto $A+=A \cup \{A\}$

- Exemplo: O conjunto vazio e seus conjuntos sucessores:

$$\emptyset$$
+, $(\emptyset$ +)+, $((\emptyset$ +)+)+, ...

Que são:

$$\emptyset$$
, $\{\emptyset\}$, $\{\emptyset\{\emptyset\}\}$, $\{\emptyset\{\emptyset\}\{\emptyset\{\emptyset\}\}\}$...

$$0 = \lambda_{0} \neq 0$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}$$

3-20(2)

- Dois conjuntos A e B são ditos equipotentes (ou equivalentes, ou possuindo a mesma cardinalidade), e denotados por A ~ B, se e somente se existir uma correspondência de um-para-um entre os elementos de A e os elementos de B.
- Exemplo:

- Exemplo: Mostre que os números naturais N e os números naturais pares P tem a mesma cardinalidade.
 - Para cada elemento x de N, corresponderá o elemento 2x dos números pares. Assim, podemos estabelecer a correspondência de um-para-um entre os dois conjuntos e portanto N ~ P.

Note entretanto que $P \subsetneq N$.

P={2x | x E IN}

(P) 4 IN 2x+1

F: IN -> P P~IN

1N é infinito!

- Qualquer conjunto equivalente ao conjunto dos números naturais é chamado de enumerável.

Para casa:

Mostre que o conjunto dos números racionais positivos é enumerável.

Qt = {P | PEIN, GEINTS

Um conjunto A é dito finito se ele tem n elementos distintos onde $n \in \mathbb{N}$. O número n chama-se número cardinal de A e escreve-se:

$$n(A) = n$$
 ou $\int |A| = n$

Exemplo: Seja o conjunto dos inteiros positivos ímpares menores que 9.

$$|A|=4$$

- Diz-se que um conjunto é infinito se ele for equivalente a um subconjunto próprio (dele mesmo).

- Diz-se que um conjunto é infinito se ele for equivalente a um subconjunto próprio.

Dedekind, em 1888, definiu da seguinte maneira:

Um conjunto X é infinito quando possui um subconjunto próprio Y, tal que existe uma correspondência um-a-um entre X e Y. Um conjunto é finito se não for infinito.

Uma parte é tão numerosa quanto o todo. ← polêmica

- Qualquer conjunto equivalente ao conjunto dos números naturais é chamado de enumerável.

- A cardinalidade de um conjunto infinito e enumerável é denotada pelo símbolo (aleph zero).

Todo conjunto finito ou enumerável é chamado de contável.

Ser contável não significa que podemos dizer o número total de elementos no conjunto, mas que podemos dizer "Eis o primeiro elemento", "Eis o segundo"...

 O conjunto dos números reais é infinito, porém, não pode se estabelecer uma correspondência de umpara-um com o conjunto dos números naturais e, portanto, ele é não-enumerável.

 Definição: Um conjunto que seja infinito e nãoenumerável é chamado incomensurável.

Princípio da adição:

— Princípio da multiplicação:

Definição: Se A e B são conjuntos finitos, então |AxB|=|A|.|B|, ou estendendo:

 $|A1 \times A2 \times A3 \times ... \times An| = |A1| \times |A2| \times ... \times |An|$

JAUB = 1A1+1B

- Produto cartesiano

- O produto cartesiano de dois conjuntos é o conjunto de todos os pares ordenados dos elementos do primeiro conjunto que pode-se formar com os elementos do segundo conjunto.
- Supondo-se A e B serem conjuntos de um Universo U. O Produto Cartesiano de A e B é denotado por AxB e definido por:

$$AxB = \{(x,y) \mid (x \in A \land y \in B)\}$$

$$A \times B = \{(1,2), (3,3), (3,1), (2,3)\}$$

Princípio da Inclusão e da Exclusão

Se A e B são conjuntos finitos, então

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Se A, B e C são conjuntos finitos, então $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B| \cap C$

1

[AUB] = [AI+1B] - [ANB] [AUBUC] = |A| + |BUC| - [An (BUC)] = |A|+ |B|+ |C|- |Bnc|- |(Anb) U(Ang) = |A| + |b| + |C| - |Bn C| - |Anb| + |Anc| - |Anbn C| = |A|+ |B|+ |C|- |Bnc|- |Anb|- |Anc|+ |AnBnc|

$$|AUDUCUD| = |AI+|B|+|C|+|D|$$

$$-|ADB|-|ADC|-|ADD|-|DDC|-|BDD|-|CDD|$$

$$+|ADBDC|+|ADDD|+|DDCDD|+|ADCDD|$$

$$-|ADDCDD|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B| \cap C$$

Para diversão:

Uma quitanda vende apenas brócolis, cenoura e batata. Em um dia, a quitanda atendeu 208 pessoas. Se 114 compraram brócolis, 152 compraram cenouras e 19 compraram batatas, 64 compraram brócolis e cenouras, 12 cenouras e batatas e 8 brócolis e batatas. Determine se alguém comprou os 3 produtos simultaneamente.

d) 1 CUF In é conjunto

e) {1} CTV 0) TFPV

$$P = \{1,3,\pi,4.1,5,10\} \qquad S = \{\{1,3,3,5,10\}\}$$

$$T = \{1,3,\pi\} \qquad U = \{\{1,3,\pi\},12\}$$

$$V = \{1,3,\pi\}$$

$$V = \{1,3,\pi\}$$

$$V = \{1,3,\pi\}$$

)) TCUF m)TCR

K) TEUV

2 4 8 14 2 2+2