

Álgebra Linear

Transformações Lineares

Profa. Elba O. Bravo Asenjo eoba@uenf.br

Referências Bibliográficas

Núcleo e Imagem de uma Transformação Linear

Exemplo. Dada a transformação linear T(x, y, z) = (x + 2y - z, y + 2z, x + 3y + z) em \mathbb{R}^3

- (a) Verificar que Nuc(T) é uma reta que passa pela origem;
- (b) Determinar as equações paramétricas da reta obtida em (a);
- (c) Verificar que Im T é um plano que passa pela origem;
- (d) Determinar as equações paramétricas do plano obtido em (c).

Solução

```
(a) Pela definição \text{Nuc}(T) = \{ (x, y, z) \in \mathbb{R}^3; \ T(x, y, z) = 0 \}; \text{ ou seja, } (x + 2y - z, y + 2z, x + 3y + z) = (0, 0, 0) Isto é, (x, y, z) \in \text{Nuc}(T) quando (x, y, z) é solução do sistema linear x + 2y - z = 0 y + 2z = 0 x + 3y + z = 0
```

Resolvendo o sistema acima, obtemos x = 5z e y = -2z, com $z \in \mathbb{R}$. Assim,

$$Nuc(T) = \{ (5z, -2z, z); z \in \mathbb{R} \}$$

Como Nuc(T) é um subespaço de \mathbb{R}^3 e sua dimensão é 1, Nuc(T) é uma reta que passa pela origem.

(b) Seja z = t, então

$$x = 5t$$

 $y = -2t$, $t \in \mathbb{R}$
 $z = t$

são as equações paramétricas da reta que passa pela origem

- (c) Como dim Nuc(T) = 1, segue do Teorema do Núcleo e da Imagem que dim Im T = 2. Portanto, Im T é um plano que passa pela origem.
- (d) Ora,

Im
$$T = G(T(1,0,0), T(0,1,0), T(0,0,1))$$
 pelo Teorema 1.
= $G((1,0,1), (2,1,3), (-1,2,1))$
= $G((1,0,1), (2,1,3))$

já que
$$(-1, 2, 1) = -5 (1, 0, 1) + 2 (2, 1, 3)$$
. Portanto,
$$\operatorname{Im} T = \pi (0, v_1, v_2),$$
 onde $v_1 = (1, 0, 1)$ e $v_2 = (2, 1, 3)$. Assim,
$$x = m + 2n$$

$$y = n, \qquad m, n \in \mathbb{R}$$

$$z = m + 3n$$

são as equações paramétricas procuradas.

Observação. Seja W um subespaço vetorial de \mathbb{R}^3 , então dim W ≤ 3 .

Temos a seguinte classificação dos subespaços W de \mathbb{R}^3 .

aspecto algébrico

aspecto geométrico

$$\dim W = 0 \qquad \longleftrightarrow \qquad$$

$$W = \{ (0, 0, 0) \}$$
 (origem do espaço)

$$\dim W = 1 \longleftrightarrow$$

$$\dim W = 2$$
 \leftarrow

$$\dim W = 3$$

$$\longleftrightarrow$$

$$W = \mathbb{R}^3$$

Matriz de uma Transformação Linear

Sejam $T: V \to W$ uma transformação linear, A uma base de V e B uma vase de W.

Sem prejuízo da generalização, consideremos o caso em que dim V = 2 e dim W = 3.

Sejam $A = \{v_1, v_2\}$ e $B = \{w_1, w_2, w_3\}$ bases de V e W, respectivamente.

Então,

$$[T(v)]_B = [T]_B^A [v]_A$$
 (1)

Sendo a matriz

denominada matriz de T em relação às bases A e B

Observações:

- 1) A matriz $\begin{bmatrix} T \end{bmatrix}_{B}^{A}$ é de ordem 3 x 2 quando dim V = 2 e dim W = 3.
- 2) As colunas da matriz [T] A vetores da base A em relação à base B; isto é:

são as componentes (ou coordenadas) das imagens dos

De um modo geral, para $T: V \to W$ linear, se dim V = n e dim W = m, $A = \{v_1, v_2, ..., v_n\}$ e $B = \{w_1, w_2, ..., w_m\}$ são bases de V e W, respectivamente, teremos que $[T]_B^A$ é uma matriz de ordem $m \times n$, onde cada coluna é formada pelas

Componentes (ou coordenadas) das imagens dos vetores de A em relação à base B:

3) Como se vê, a matriz [T] A depende das bases A e B consideradas, isto é, a cada dupla de bases corresponde uma particular matriz. Assim, uma transformação linear poderá ter uma infinidade de matrizes para representá-la. No entanto, fixadas as bases, a matriz é única.

Matriz de uma Transformação Linear - Exemplos

Exemplo 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (2x - y + z, 3x + y - 2z), linear. Considere as bases $A = \{v_1, v_2, v_3\}$, com $v_1 = (1,1,1)$, $v_2 = (0,1,1)$, $v_3 = (0,0,1)$ e $B = \{w_1, w_2\}$, sendo $w_1 = (2, 1)$ e $w_2 = (5, 3)$.

a) Determinar [T]^A_B

b) Se v = (3, -4, 2) (coordenadas em relação à base canônica de \mathbb{R}^3), calcular $[T(v)]_B$

usando a matriz encontrada.

Solução

a) A matriz é de ordem 2x3

$$[T]_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$T(v_{1})_{B} T(v_{2})_{B} T(v_{3})_{B}$$

$$T(v_1) = T(1, 1, 1) = (2, 2) = a_{11}(2, 1) + a_{21}(5, 3)$$

$$\begin{cases} 2a_{11} + 5a_{21} = 2 & & \\ a_{11} + 3a_{21} = 2 & & \\ & a_{21} = 2 & & \end{cases}$$

$$T(v_2) = T(0, 1, 1) = (0, -1) = a_{12}(2, 1) + a_{22}(5, 3)$$

$$\begin{cases} 2a_{12} + 5a_{22} = 0 \\ a_{12} + 3a_{22} = -1 \end{cases} \qquad \begin{cases} a_{12} = 5 \\ a_{22} = -2 \end{cases}$$

$$T(v_3) = T(0, 0, 1) = (1, -2) = a_{13}(2, 1) + a_{23}(5, 3)$$

$$\begin{cases} 2a_{13} + 5a_{23} = 1 \\ a_{13} + 3a_{23} = -2 \end{cases} \qquad \begin{cases} a_{13} = 13 \\ a_{23} = -5 \end{cases}$$

Logo

$$[T]_{B}^{A} = \begin{bmatrix} -4 & 5 & 13 \\ & & \\ 2 & -2 & -5 \end{bmatrix}$$

b) Sabe-se que

$$[T(v)]_B = [T]_B^A [v]_A$$

Como v está expresso com componentes (coordenadas) na base canônica, isto é,

$$v = (3, -4, 2) = 3(1, 0, 0) - 4(0, 1, 0) + 2(0, 0, 1)$$

teremos que, primeiramente expressá-lo na base A. Seja $[v]_A = (a, b, c)$, isto é,

$$(3, -4, 2) = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

ou

$$a = 3$$
 $a + b = -4$
 $a + b + c = 2$

Sistema cuja solução é a = 3, b = -7 e c = 6, ou seja, $[v]_A = (3, -7, 6)$. Portanto:

$$[T(v)]_{B} = \begin{bmatrix} -4 & 5 & 13 \\ & & \\ 2 & -2 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -7 \\ 6 \end{bmatrix}$$

Isto é

$$[T(v)]_B = \begin{bmatrix} 31 \\ -10 \end{bmatrix}$$

O vetor coordenada de T(v) na base canônica é:

$$T(v) = 31(2,1) - 10(5,3)$$

 $T(v) = (12,1)$

Naturalmente T(v) = (12, 1) também seria obtido por meio da lei que define a transformação T, considerando v = (3, -4, 2), isto é,

$$T(3, -4, 2) = (12, 1)$$

Exemplo 2. Considere-se a mesma transformação linear do Exemplo 1. Sejam as bases $A = \{(1,1,1), (0,1,1), (0,0,1)\}$ (a mesma) e $B = \{(1,0), (0,1)\}$ canônica.

- a) Determinar [T]^A_B
- a) Se v = (3, -4, 2), calcular $T(v)_B$ utilizando a matriz encontrada.

Solução

a)
$$T(1, 1, 1) = (2, 2) = 2(1, 0) + 2(0, 1)$$

$$T(0, 1, 1) = (0, -1) = 0(1, 0) - 1(0, 1)$$

$$T(0, 0, 1) = (1, -2) = 1(1, 0) - 2(0, 1)$$

Então:

$$[T]_{B}^{A} = \begin{bmatrix} 2 & 0 & 1 \\ & & \\ 2 & -1 & -2 \end{bmatrix}$$

b) Como $[v]_A = (3, -7, 6)$ (pelo item (b) do Exemplo 1), temos:

$$[T(v)]_{B} = \begin{bmatrix} 2 & 0 & 1 \\ & & \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -7 \\ 6 \end{bmatrix}$$

Isto é,

$$[T(v)]_{B} = \begin{bmatrix} 12\\ 1 \end{bmatrix}$$

Exemplo 3. Seja ainda a mesma transformação linear do Exemplo 1.

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (2x - y + z, 3x + y - 2z)$

Sejam as bases canônicas do \mathbb{R}^3 e \mathbb{R}^2 :

$$A = \{(1,0,0), (0,1,0), (0,0,1)\}\ e\ B = \{(1,0), (0,1)\}$$

- a) Determinar [T]^A_B
- b) Se v = (3, -4, 2), calcular $T(v)_B$ utilizando a matriz encontrada.

Solução

a)

$$T(1,0,0) = (2,3) = 2(1,0) + 3(0,1)$$

$$T(0, 1, 0) = (-1, 1) = -1(1, 0) + 1(0, 1)$$

$$T(0,0,1) = (1,-2) = 1(1,0) - 2(0,1)$$

Então:

$$[T]_{B}^{A} = \begin{bmatrix} 2 & -1 & 1 \\ & & \\ 3 & 1 & -2 \end{bmatrix}$$

b) Como $[v]_A = (3, -4, 2)$, pois A é a base canônica, temos:

$$\begin{bmatrix} \mathbf{T}(\mathbf{v}) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$$

Isto é,

$$[T(v)]_{B} = \begin{bmatrix} 12\\\\1 \end{bmatrix}$$

Observação. No caso de serem A e B bases canônicas, representa-se a matriz simplesmente por [T], que é chamada *matriz canônica* de T. Então, tem-se: T(v) = [T][v]

Em se tratando da matriz canônica, essa poderá ser escrita diretamente, como mostram os exemplos:

1)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x, y) = (3x - 2y, 4x + y, x)$

$$\begin{bmatrix} 3 & -2 \\ 4 & 1 \\ 1 & 0 \end{bmatrix}$$

2) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x, -y)

$$[T] = \begin{bmatrix} 1 & 0 \\ \\ 0 & -1 \end{bmatrix}$$

3) $T: \mathbb{R}^3 \to \mathbb{R}$, T(x, y, z) = 4x - y

$$[T] = [4 -1 0]$$

Por outro lado, quando é dada uma matriz de uma transformação linear T sem que haja referência às bases, essa deve ser entendida como a *matriz canônica* da T. Por exemplo a matriz:

define a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = \begin{bmatrix} 2 & 3 & 4 \\ & & \\ 1 & -2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (2x + 3y + 4z, x - 2y)$

Operações com Transformações Lineares

1. Adição

Sejam $T_1:V\to W$ e $T_2:V\to W$ transformações lineares. Chama-se *soma* das transformações lineares T_1 e T_2 , à transformação linear

$$T_1 + T_2 : V \rightarrow W$$

$$v \mapsto (T_1 + T_2)(v) = T_1(v) + T_2(v), \quad \forall v \in V$$

Se A e B são bases de V e W, respectivamente, demonstra-se que

$$[T_1 + T_2]_B^A = [T_1]_B^A + [T_2]_B^A$$

Multiplicação por Escalar

2. Multiplicação por Escalar

Sejam $T: V \to W$ uma transformação linear e $\alpha \in \mathbb{R}$. Chama-se *produto* de T pelo escalar α à transformação linear

$$\alpha T: V \to W$$

 $v \mapsto (\alpha T)(v) = \alpha T(v), \forall v \in V$

Se A e B são bases de V e W, respectivamente, demonstra-se que:

$$[\alpha T]_{B}^{A} = \alpha [T]_{B}^{A}$$

Transformações Lineares - Composição

3. Composição

Sejam $T_1: V \to W$ e $T_2: W \to U$ transformações lineares. Chama-se aplicação composta de T_1 com T_2 , e se representa por $T_2 \circ T_1$ à transformação linear:

$$T_2 \circ T_1 \colon V \to U$$

 $v \mapsto (T_2 \circ T_1)(v) = T_2(T_1(v)), \quad \forall v \in V$

Se A, B e C são bases de V, W e U, respectivamente, demonstra-se que:

$$[T_2 \circ T_1]_C^A = [T_2]_C^B \times [T_1]_B^A$$

Operações com Transformações Lineares - Exemplos

Exemplo 1. Sejam $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ transformações lineares definidas por:

$$T_1(x, y) = (x + 2y, 2x - y, x)$$
 e $T_2(x, y) = (-x, y, x + y)$. Determinar:

- a) $T_1 + T_2$
- **b)** $3T_1 2T_2$
- c) a matriz canônica de $3T_1 2T_2$ e mostrar que $[3T_1 2T_2] = 3[T_1] 2[T_2]$

Solução

a)
$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y, x) + (-x, y, x + y) = (2y, 2x, 2x + y)$$

b)
$$(3T_1 - 2T_2)(x, y) = (3T_1)(x, y) - (2T_2)(x, y) = 3T_1(x, y) - 2T_2(x, y) = 3(x + 2y, 2x - y, x) - 2(-x, y, x + y) = (5x + 6y, 6x - 5y, x - 2y)$$

c)

$$[3T_1 - 2T_2] = \begin{bmatrix} 5 & 6 \\ 6 & -5 \\ 1 & -2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 0 \end{bmatrix} - 2 \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = 3 [T_1] - 2 [T_2]$$

Exemplo 2. Sejam S e T operadores lineares no \mathbb{R}^2 definidos por S(x, y) = (2x, y) e T(x, y) = (x, x - y).

Determinar:

 \mathbf{a}) $S \circ T$

 \mathbf{c}) $S \circ S$

b) $T \circ S$

d) To T

Solução

a) $(S \circ T)(x, y) = S(T(x, y)) = S(x, x-y) = (2x, x-y)$ Observemos que:

$$[S \circ T] = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = [S][T]$$

b) $(T \circ S)(x, y) = T(S(x, y)) = T(2x, y) = (2x, 2x - y)$ Observemos que:

$$S \circ T \neq T \circ S$$

e esse fato geralmente ocorre.

c)
$$(S \circ S)(x, y) = S(S(x, y)) = S(2x, y) = (4x, y)$$

d)
$$(T \circ T)(x, y) = T(T(x, y)) = T(x, x - y) = (x, y)$$

As transformações $S \circ S$ e $T \circ T$ são também representadas por S^2 e T^2 .

n-ésima potência de T

Sejam $T: V \to V$ uma transformação linear e $n \in \mathbb{N}$. Definimos a n-ésima potencia de T, denotando-a por T^n , como a função $T^n: V \to V$ dada por

$$T^1 = T$$
 e $T^n = T \circ T \circ ... \circ T$ (n vezes), se $n \ge 2$.

 T^n é uma transformação linear.

Definimos também T^0 como a função identidade em V, ou seja, $T^0 = I_V$

Se $T: V \to V$ é um isomorfismo, a transformação linear $T^{-n}: V \to V$ é definida por

$$T^{-n} = (T^{-1})^n$$

<u>Teorema</u>. Sejam T e T' transformações lineares de V em W e sejam S e S' transformações lineares de W em U. Então:

(i)
$$S \circ (T + T') = S \circ T + S \circ T'$$

(ii)
$$(S + S') \circ T = S \circ T + S' \circ T$$

(iii)
$$k(S \circ T) = (kS) \circ T = S \circ (kT)$$
, onde $k \in \mathbb{R}$

Transformação Linear Inversa

Sejam $T: V \to W$ uma transformação linear bijetiva. Logo existe a função inversa $T^{-1}: W \to V$ de T. A função T^{-1} é também uma transformação linear.

De fato:

Consideremos w_1 e w_2 em W e a em \mathbb{R} . Como T é bijetiva, existem únicos vetores v_1 e v_2 em V tais que $T(v_1) = w_1$ e $T(v_2) = w_2$. Portanto,

$$T^{-1}(w_1 + a w_2) = T^{-1}(T(v_1) + a T(v_2))$$

= $T^{-1}(T(v_1 + a v_2))$
= $v_1 + a v_2$
= $T^{-1}(w_1) + a T^{-1}(w_2)$

Observação. Uma transformação linear bijetiva é chamada isomorfismo.

Transformação Linear Inversa

Teorema 1. Seja $T: V \to W$ um isomorfismo, onde V e W são espaços vetoriais de dimensão finita. Se α é uma base de V e β é uma base de W, então

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Corolário. Seja $T: V \to W$ uma transformação linear, onde V e W são espaços vetoriais de mesma dimensão finita. Sejam α e β bases de V e W, respectivamente. Temos que

T é invertível se, e somente se, a matriz $[T]^{\alpha}_{\beta}$ é invertível.

Transformação Linear Inversa - Exemplo

Exemplo 1. Seja
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 a transformação linear dada por $T(x, y) = (4x - 3y, -2x + 2y)$

Verificar que T é invertível e determinar T^{-1} Para verificar que T é invertível basta verificar que T é injetiva, isto é, verificar que Nuc(T) = { (0,0) }; ou ainda, podemos calcular $[T]^{\alpha}_{\alpha}$, onde α é uma base qualquer de \mathbb{R}^2 , e usar o corolário anterior. Vamos optar pelo segundo método. Seja α a base canônica de \mathbb{R}^2 , então,

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}$$

A matriz acima é invertível e a sua inversa é a matriz $\begin{bmatrix} 1 & 3/2 \\ 1 & 2 \end{bmatrix}$

Portanto, devido ao Teorema 1, temos que

$$[T^{-1}]^{\alpha}_{\alpha} = ([T]^{\alpha}_{\alpha})^{-1} = \begin{bmatrix} 1 & 3/2 \\ 1 & 2 \end{bmatrix}$$

Logo a transformação linear T^{-1} é dada por (usando a fórmula (1) da Def. de matriz de uma transf. linear):

$$[T^{-1}(x, y)]_{\alpha} = [T^{-1}]_{\alpha}^{\alpha} [(x,y)]_{\alpha} = \begin{bmatrix} 1 & 3/2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 3/2y \\ x + 2y \end{bmatrix}$$

O que fornece

$$T^{-1}(x, y) = (x + 3/2 y, x + 2y)$$

Propriedades dos Operadores Inversíveis

Seja $T: V \rightarrow V$ um operador linear.

- I) Se T é inversível e T^{-1} é a sua inversa, então; $T \circ T^{-1} = T^{-1} \circ T = I$ (identidade)
- II) T é inversível se, e somente se, $Nuc(T) = \{0\}$
- III) Se T é inversível, T transforma base em base, isto é, se B é uma base de V, T(B) também é base de V.
- IV) Se T é inversível e B uma base de V, então $T^{-1}: V \to V$ é linear e $[T^{-1}]_B = ([T]_B)^{-1}$

isto é, a matriz do operador linear inverso numa certa base B é a inversa da matriz do operador T nessa mesma base.

Na prática, a base B será normalmente considerada como canônica. Logo, de forma mais simples:

$$[T^{-1}] = [T]^{-1}$$

e, portanto:

$$[T][T^{-1}] = [T \circ T^{-1}] = [I]$$

Como consequência temos: T é inversível se, e somente se, $det[T] \neq 0$.

Exemplo 2. Seja o operador linear em \mathbb{R}^2 definido por T(x, y) = (x - 2y, -2x + 3y)

- a) Mostrar que T é inversível.
- b) Encontrar uma regra para T^{-1} como a que define T.

<u>Solução</u>

a) A matriz canônica de T é $[T] = \begin{bmatrix} 1 & -2 \\ -2 & 3 \end{bmatrix}$

Como det $[T] = -1 \neq 0$, Té inversível.

b)
$$[T^{-1}] = [T]^{-1} = \begin{bmatrix} 1 & -2 \\ -2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & -2 \\ -2 & -1 \end{bmatrix}$$

Logo:

$$[T^{-1}(x, y)] = [T^{-1}] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3x - 2y \\ -2x - y \end{bmatrix}$$

Ou:

$$T^{-1}(x, y) = (-3x - 2y, -2x - y).$$