

Exercise 3D

Question 14:

$$x - 2y - 3 = 0$$

$$3x + ky - 1 = 0$$

These equations are of the form of

$$a_1 \times + b_1 y + c_1 = 0$$
, $a_2 \times + b_2 y + c_2 = 0$
where, $a_1 = 1$, $b_1 = -2$, $c_1 = -3$
 $a_2 = 3$, $b_2 = k$, $c_2 = -1$

for unique solution

Thus,
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

Now, $\frac{1}{3} \neq \frac{-2}{k}$, $k \neq -6$

Thus, for all real value of k other than -6, the given system of equations will have a unique solution

Question 15:

$$kx + 3y - (k - 3) = 0$$

$$12x + ky - k = 0$$

These equations are of the form

$$a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$
where $a_1 = k$, $b_1 = 3$, $c_1 = -(k - 3)$
 $a_2 = 12$, $b_2 = k$, $c_2 - k$

For unique solution, we have

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\frac{k}{12} \neq \frac{3}{k}$$
⇒ $k^2 \neq 36$ ⇒ $k \neq \pm 6$

Thus, for all real value of k other than, the given system of equations will have a unique solution

Question 16:

$$4x - 5y - k = 0$$
, $2x - 3y - 12 = 0$

These equations are of the form

$$a_1x + b_1x + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$
where, $a_1 = 4$, $b_1 = -5$, $c_1 = -k$

$$a_2 = 2$$
, $b_2 = -3$, $c_2 = -12$

For unique solution, we must have

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\frac{4}{2} \neq \frac{-5}{-3}$$

$$2 \neq \frac{5}{3} \Rightarrow 6 \neq 5$$

Thus, for all real value of k the given system of equations will have a unique solution

********* END *******