MATH 435 ASSIGNMENT 1

ARNOLD JIADONG YU

1. Chapter 2 Groups Homework

1.1. Which of the following sets are closed under the given operation?

a. {0, 4, 8, 12} addition mod 16

b. {0, 4, 8, 12} addition mod 15

c. {1, 4, 7, 13} multiplication mod 15

d. $\{1, 4, 5, 7\}$ multiplication mod 9 proof:

a. Let S be the set $\{0, 4, 8, 12\}$.

S_{16}	0	4	8	12
0	0	4	8	12
4	4	8	12	0
8	8	12	0	4
12	12	0	4	8

It is closed by Cayley table.

b. Let S be the set $\{0, 4, 8, 12\}$.

S_{15}	0	4	8	12
0	0	4	8	12
4	4	8	12	1
8	8	12	1	5
12	12	1	5	9

It is not closed by Cayley table because $1, 5, 9 \notin \{0, 4, 8, 12\}$. c. Let S be the set $\{1, 4, 7, 13\}$.

S_{15}	1	4	7	13
1	1	4	7	13
4	4	1	13	7
7	7	13	1	1
13	13	7	1	4
	1	1		

It is closed by Cayley table.

d. Let S be the set $\{1, 4, 5, 7\}$.

It is not closed by Cayley table because $2, 8 \notin \{1, 4, 5, 7\}$.

1.2. Find the inverse of the element $\begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$ in $GL(2, \mathbb{Z}_{11})$.

proof: Let matrix A be $\begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$. $\det(A) = 10 - 18 = -8 \neq 0$, therefore A has an inverse denoted A^{-1} . Let us try normal matrix A in $GL(2, \mathbb{R})$, then

$$A^{-1} = \frac{1}{-8} \begin{bmatrix} 5 & -6 \\ -3 & 2 \end{bmatrix}$$

Moreover $-8 \mod 11 = 3 \mod 11$, what to find A^{-1} in Z_{11} when $AA^{-1} \mod 11 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since operation in Z_{11} is multiplication and dividing -8 is same as multiple inverse of 3 in Z_{11} . By Cayley table, the inverse of 3 in Z_{11} is 4. That is

$$A^{-1} = 4 \begin{bmatrix} 5 & -6 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 20 & -24 \\ -12 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 9 \\ 10 & 8 \end{bmatrix}$$
 in Z_{11}

Check:

$$AA^{-1} = \begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 9 & 9 \\ 10 & 8 \end{bmatrix} = \begin{bmatrix} 78 & 66 \\ 77 & 67 \end{bmatrix} \mod 11 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hence the inverse element is $\begin{bmatrix} 9 & 9 \\ 10 & 8 \end{bmatrix}$ in $GL(2, \mathbb{Z}_{11})$

1.3. *. Suppose that in the definition of a group G, the condition that there exists an element e with property ae = ea = a for all a in G is replaced by ae = a for all a in G. Show that ea = a for all a in G. (Thus, a one-sided identity is a two-sided identity.) proof: By inverse definition of a group G. $\forall a \in G, \exists a^{-1} \in G$, s.t.

proof: By inverse definition of a group G. $\forall a \in G, \exists a^{-1} \in G, \text{ s.t. } aa^{-1} = a^{-1}a = e$. Therefore,

$$aa^{-1} = e \Rightarrow (aa^{-1})a = ea \Rightarrow a(a^{-1}a) = ea \Rightarrow ae = ea \Rightarrow ea = a$$
 by associativity.

- 2. Chapter 3 Finite Groups; Subgroups Homework
- **2.1.** Let S be a subset of a group and let H be the intersection of all subgroups of G that contain S.
- a. Prove that $\langle S \rangle = H$.
- b*. If S is nonempty, prove that $\langle S \rangle = \{s_1^{n_1} s_2^{n_2} ... s_m^{n_m} | m \geq 1, s_i \in S, n_i \in Z\}$. (The s_i terms need not be distinct.)

proof: a. (\Rightarrow) . WTS, $\langle S \rangle \subseteq H$. Let H be the intersection of all subgroups of G that contain S, let K be an arbitrary subgroup of G contain S, then

$$H = \bigcap_{\forall K \le G \text{ s.t. } S \subseteq K} K$$

Since K is a group itself and $S \subseteq K$, by definition $\langle S \rangle \leq K$. Since H is the intersection of all those K and $\langle S \rangle$ is subgroup of all those K, then $\langle S \rangle \subseteq H$.

- (⇐) WTS: $H \subseteq < S >$. Let $h \in H$, then h is in the intersection of all those K contain S. That is $h \in K$ for $\forall K \leq G$ s.t. $S \subseteq K$. By definition, < S > is the smallest subgroup of G contain S. That is < S > is one of the K. Hence $h \in < S >$, this implies $H \subseteq < S >$. Therefore, < S >= H.
- 3. Chapter 7 Cosets and Lagrange's Theorem Homework
- **3.1.** *Let \mathbb{C}^* be the group of nonzero complex numbers under multiplication and let $H = \{a + bi \in \mathbb{C}^* | a^2 + b^2 = 1\}$. Give a geometric description of the coset (3+4i)H. Give a geometric description of the coset (c+di)H.

proof: By the definition of H, the geometric description of H is a circle with radius 1 center at origin on the complex plane. The geometric description of coset (3+4i)H is a circle with radius 5 center at origin on the complex plane. The geometric description of coset (c+di)H is a circle with radius $\sqrt{c^2+d^2}$ center at origin on the complex plane.

3.2. Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If |K| = 42 and |G| = 420, what are the possible orders of |H|?

proof: Let |H| = a, then 42 < a < 420. Moreover by Lagrange's Theorem, 42|a and a|420. Since 420/42 = 10, and factors of 10 are 1, 2, 5, 10. So the possible a could be 84, 210.

3.3. Suppose that H is a subgroup of S_4 and that H contains (12) and (234). Prove $H = S_4$.

proof: Let H be a subgroup of S_4 , then $H \leq S_4$. Moreover H contains (12) and (234), |(12)| = 2 and |(234)| = 3. (234)(12) = (3142) and

 $|(3142|=4,\ (12)(234)=(2341)\ \text{and}\ |(2341)|=4.$ That is 2,3,4 divides |H| and |H| divides |S| by Lagrange's Theorem. |H|=12 or 24. Moreover, $\#H\geq 2+3+4+4=13$. Hence $\#H=24=\#S_4$. With $H\leq S_4$, implies $H=S_4$.