Math 122 Assignment 4

Dryden Bryson

October 5th 2024

Question 1:

a)

Basis

We prove that the statement is true for the base case where n = 1:

LHS RHS
$$(1+x)^1$$
 $1+(1)x$ $1+x$ $1+x$

We can see that LHS = RHS thus the inequality holds for the base case.

Inductive Hypothesis

We assume that the inequality holds for all values of $n \ge 1$:

$$(1+x)^n \ge 1 + nx$$

Inductive Step

We have that:

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

 $\geq (1+x)(1+nx)$ From the inductive hypothesis
 $\geq 1+(n+1)x+nx^2$

Thus so far we have that:

$$(1+x)^{n+1} > 1 + (n+1)x + nx^2$$

And since $x^2 \ge 0$ we know $nx^2 \ge 0$ We have that:

$$1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

Since we previously established that $(1+x)^{n+1} \ge 1 + (n+1)x + nx^2$ we have that:

$$(1+x)^{n+1} \ge 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

And consequentialy:

$$(1+x)^{n+1} \ge 1 + (n+1)x$$

Conclusion

We have shown that $(1+x)^n \ge 1 + nx$ for all $n \ge 1$. Which completes the proof \square

b)

We will start by making the following substitutions:

$$y = \frac{1}{2}(1+x)$$
 $1-y = \frac{1}{2}(1-x)$ $y^n = \frac{1}{2^n}(1+x)^n$ $(1-y)^m = \frac{1}{2^m}(1-x^m)$

Then we can substitue them into the equality:

$$\frac{2^n y^n}{n} + \frac{2^m (1-y)^m}{m} \ge \frac{1}{n} + \frac{1}{m}$$

$$\frac{2^n \frac{1}{2^n} (1+x)^n}{n} + \frac{2^m \frac{1}{2^m} (1-x^m)}{m} \ge \frac{1}{n} + \frac{1}{m}$$

$$\frac{(1+x)^n}{n} + \frac{(1-x^m)}{m} \ge \frac{1}{n} + \frac{1}{m}$$

Now that we have the re-written inequality we can prove it using the information form part (a), we have:

$$(1+x)^n \ge 1 + nx$$
 $(1-x)^m \ge 1 - mx$

Then we divide them both by n and m respectively:

$$\frac{(1+x)^n}{n} \ge \frac{1}{n} + x \qquad \frac{(1-x)^m}{m} \ge \frac{1}{m} - x$$

And then we combine them:

$$\frac{(1+x)^n}{n} + \frac{(1-x)^m}{m} \ge \frac{1}{n} + \cancel{x} \frac{1}{m} \cancel{x}$$

Finally we have:

$$\frac{(1+x)^n}{n} + \frac{(1-x)^m}{m} \ge \frac{1}{n} + \frac{1}{m}$$

Which completes the proof \Box

Question 2:

We begin by checking small values of n:

$$n = 1$$
:

$$(1+1)! = 2! = 2$$
 and $(1+3)^3 = 4^3 = 64$

Here 2 < 64 thus the inequality does not hold.

$$n=2$$

$$(2+1)! = 3! = 6$$
 and $(2+3)^3 = 5^3 = 125$

Here 6 < 125 thus the inequality does not hold.

$$n = 3$$

$$(3+1)! = 4! = 24$$
 and $(3+3)^3 = 6^3 = 216$

Here 24 < 216 thus the inequality does not hold.

$$n=4$$
:

$$(4+1)! = 5! = 120$$
 and $(4+3)^7 = 4^3 = 343$

Here 120 < 343 thus the inequality does not hold.

$$n = 5$$

$$(5+1)! = 6! = 720$$
 and $(5+3)^3 = 8^3 = 512$

Here 720 > 512 thus the inequality is satisfied.

Now it suffices to prove that for all $n \geq 5$ that

$$(n+1)! \ge (n+3)^3$$

We will proceed by applying induction on n

Basis

The basis has already been proved above, the equality holds for n=5

Inductive Hypothesis

We assume that the following is true for all $n \geq 5$

$$(n+1)! \ge (n+3)^3$$

Inductive Step

We want to show that the inequality holds for all values of n+1 where $n \geq 5$:

$$\begin{array}{cccc} ((n+1)+1)! & \geq & ((n+1)+3)^3 \\ (n+2)! & \geq & (n+4)^3 \\ (n+2)(n+1)! & \geq & (n+4)^3 \\ (n+2)(n+3)^3 & \geq & (n+4)^3 \end{array}$$

From the inductive hypothesis

We can see that if we expanded the LHS of the equality it would have a leading term of n^4 and the RHS would have a leading term of n^3 thus we can say that the equality is satisifed for n + 1

Conclusion

We have shown that $(n+1)! \ge (n+3)^3$ is true for all $n \ge 5$ which completes the proof \square

Question 3:

We prove the definition by applying induciton on n

Base Case

We prove that the relation is true for n=1

$$egin{array}{lll} {f LHS} & {f RHS} \ f_1^2 & f_1 f_2 \ 1^2 & 1 \cdot 1 \ 1 & 1 \end{array}$$

We can see that the LHS = RHS thus the definition holds for the base case of n=1

Inductive Hypothesis

We assume that the definition:

$$f_1^2 + f_2^2 + \dots + f_k^2 = f_k f_{k+1}$$

holds for all values of $n \ge 1$

Inductive Step

We need to prove that the statement holds for n + 1, we start with the LHS:

$$\begin{split} f_1^2 + f_2^2 + \dots + f_k^2 + f_{k+1}^2 \\ &= f_k f_{k+1} + f_{k+1}^2 \text{ From the inductive hypothesis} \\ &= f_{k+1} (f_k + f_{k+1}) \\ &= f_{k+1} (f_{k+2}) \text{ From the definition of the fibbonaci sequance} \end{split}$$

We have shown that the definition holds by using the inductive hypothesis and the definition of the fibbonaci sequence.

Conclusion

We have shown that the definition:

$$f_1^2 + f_2^2 + \dots + f_k^2 = f_k f_{k+1}$$

is true for all values of $n \ge 1$

Question 4:

a)

To prove that:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

We apply induction on n

Basis:

We prove that the formula holds for n=1

LHS RHS
$$\frac{1}{1\cdot 2}$$
 $\frac{1}{(1)+1}$ $\frac{1}{2}$

We see that the LHS = RHS thus the formula holds for the base case

Inductive Hypothesis

We assume that for any $n \ge 1$ that:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

Inductive Step:

We show that the formula is true for n+1 or that:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n+1}{n+2}$$

We start with the LHS:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n}{n+1} + \frac{1}{(n+1) \cdot (n+2)}$$
 From the inductive hypothesis
$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2}$$

We have shown that:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} + \frac{1}{(n+1)\cdot (n+2)} = \frac{n+1}{n+2}$$

Conclusion

We have now shown that for all values of $n \ge 1$ that:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

b)

i)

Let us first compute the first few values:

1.
$$t_0 = 1$$

2.
$$t_1 = 1$$

3.
$$t_2 = t_1 - \frac{t_0}{2} = 1 - \frac{1}{2} = \frac{1}{2}$$

4.
$$t_3 = t_2 - \frac{t_1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

5.
$$t_4 = t_3 - \frac{t_2}{4} = \frac{1}{6} - \frac{1/2}{4} = \frac{1}{6} - \frac{1}{8} = \frac{1}{24}$$

Based on the pattern web observed, we conjecture that:

$$t_n = \frac{1}{n!}$$

For $n \ge 0$

ii)

We will prove the formula by applying induction on n

Base Cases

For n = 0

$$t_0 = 1 = \frac{1}{0!}$$

For n=1

$$t_1 = 1 = \frac{1}{1!}$$

Which both match our formula thus the formula holds for the base cases of n=0 and n=1

Inductive Hypothesis

We assume that for all $n \geq 2$ that:

$$t_n = \frac{1}{n!}$$
 and $t_{n-1} = \frac{1}{(n-1)!}$

Inductive Step

We aim to show that the formula holds for n+1 or that:

$$t_{n+1} = \frac{1}{(n+1)!}$$

We start with the given recursive definition

$$t_{n+1} = t_n - \frac{t_{n-1}}{n+1}$$

Then we make substitutions from the inductive hypothesis

$$\begin{array}{rcl} t_n - \frac{t_{n-1}}{n+1} & = & \frac{1}{n!} - \frac{\frac{1}{(n-1)!}}{\frac{n+1}{n+1}} \\ & = & \frac{1}{n!} - \frac{1}{n+1} \frac{1}{(n-1)!} \\ & = & \frac{1}{n(n-1)!} - \frac{1}{(n+1)(n-1)!} \\ & = & \frac{(n+1)}{n(n-1)!(n+1)} - \frac{n}{n(n+1)(n-1)!} \\ & = & \frac{n+1-n}{n(n-1)!(n+1)} \\ & = & \frac{1}{n!(n+1)} \\ & = & \frac{1}{(n+1)!} \end{array}$$

Thus we have shown that $t_{n+1} = \frac{1}{(n+1)!}$ using the recursive definition and the inductive hypothesis

Conclusion

We have shown that for all $n \geq 0$ that:

$$t_{n+1} = \frac{1}{(n+1)!}$$

Question 5:

a)

Since k! is the product of all positive integers from 1 to k, k! is divisible by each integer d in $\{2, 3, ..., k\}$ because each d is a factor of k!.

If we consider k! - 1 Since k! is divisible by d it leaves a remained of 0 when divided by any d thus, k! - 1 will leave a remainder of -1, since the convention is not to use negative numbers as a remainder the remainder will be d - 1

b)

If we have k=p a prime number and examine p!-1, by part a p!-1 is not divisible by and integer d in $\{2,3,\ldots,p\}$. Since p!-1 is an integer greater than 1, it must have a prime factor, for example we say it has a prime factor q, since it is not divisible by any integer in d we know q is not in d and must thus be larger than p. By definition q is prime since we declared it was a prime factor of p!-1

c)

Suppose for contradition that there is a largest prime number, call it p. According to part (b), for any prime p, there exsts a prime q > p. This contradictions the assumption that p is the largest prime, because part (b) guarantees the existence of a prime number larger than p

d)

Since part c shows that there is no largest prime number, it follows that the primes do not stop at any finite value. For any prime p, there will always be a prime number larger than p, thus the sequence of primes continues infinitely.