

Continuous Assessment Test I - Sentember 2023

Programme	: B. Tech (ECE/ECM)	Semester	T.	FS 2023-24
Course	Analog Circuits	Code	÷	BECE206L
		Slot	b	E1+TE1
Faculty	Dr SANGEETHA R G, Dr ANANIAH DURAI S, Dr SUKRITI, Dr SATHYA SREE J, Dr BINDU B	Class Nbr.	1	CH2023240100340 CH2023240100343 CH2023240100345 CH2023240100571 CH2023240100572
Time	: 90 Minutes	Max. Marks	1	50

Answer ALL the questions

Q.No.	Sub. Sec.	Questions	Mark
1.		For the circuit shown in Fig. 1, let $R_1 = 50 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $R_E = 0.5 \text{ k}\Omega$, $V_{CE} = 12 \text{ V}$, $V_{BE(m)} = 0.7 \text{ V}$, and $\beta = 120$. Determine the quiescent currents and voltages and mid-band voltage gain. Explain the load line characteristics and the significance of Q point. Vector R_1 R_2 R_3 R_4 R_6 R_6	
2		Consider the circuit shown in Fig. 2 with transistor parameters $V_{BE (no)} = 0.7 \text{ V}, \beta = 100$ and $\lambda = 0$. Let $R_1 = 50 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $R_B = 0.5 \text{ k}\Omega$, $R_S = 0.1 \text{ k}\Omega$ and $R_L = 5 \text{ k}\Omega$; (a) Draw the small signal equivalent circuit (b) Calculate the mid-band voltage gain (c) Calculate the lower cut-off frequencies if $C_S = 5 \text{ \mu}F$ and $C_L = 5 \text{ p}F$	10

For the circuit shown in Fig. 3, the transistor parameters are $K_n = 0.5 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, $\lambda = 0$, $C_{2p} = 1 \text{ pF}$, and $C_{2p} = 0.1 \text{ pF}$. The circuit parameters are $V_{DD} = 10 \text{ V}$, $R_1 = 10 \text{ k}\Omega$, $R_1 = 23 \text{ k}\Omega$, $R_2 = 166 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, $R_3 = 0.5 \text{ k}\Omega$, and $R_1 = 20 \text{ k}\Omega$. Determine;

- (a) Mid-band voltage gain
- (b) Miller capacitance with suitable derivations
- (c) Frequency asymptotes

Explain the working of the MOSFET Class B complementary push-pull power amplifier Derive the expression for the power efficiency.

Calculate the actual efficiency of a class-A power amplifier shown in Fig. 4. The circuit parameters are $V_{00} = 12 \text{ V}$ and $R_D = 4 \text{ k}\Omega$, and the transistor parameters are: $K_n = 1 \text{ mA/V}^2$, $V_{TN} = 1 \text{ V}$, and $\lambda = 0$. Assume $V_{DS} = 5 \text{ V}$.

Total 50

10
