MSDS 596 Regression & Time Series

Fall 2018

Homework 2

Due: Tues 10/02/18 @ 6:40pm

rutgers.instructure.com/courses/17597

Problem 1. Let $X = (X_1, X_2, ..., X_n)$ be a n dimensional random vector with covariance matrix Σ_X . Let A be a $m \times n$ matrix, and define Y = AX. Show that the covariance matrix of Y is

$$Cov(Y) = A\Sigma_X A'$$
.

Problem 2. Let $X = (X_1, X_2)$ be bivariate normal with mean zero and covariance matrix $\Sigma = (\sigma_{ij})$.

- (a) Write $X_2 = \alpha X_1 + Z$, where $Cov(Z, X_1) = 0$. Provide an explicit formula for α in terms of σ_{ij} .
- (b) Explain why Z is normally distributed and independent of X_1 . What is the variance of Z?
- (c) Since Z is independent of X_1 , conditional on $X_1 = x$ we have $X_2 = \alpha x + Z$. Derive the conditional mean and variance of X_2 given $X_1 = x$, without referring to the formula given in class.

Problem 3. Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} N\left(\mu, \sigma^2\right)$. That is to say, $\mathbf{X} = (X_1, \ldots, X_n)' \sim N\left(\mu, \sigma^2 \mathbf{I}_n\right)$. We estimate σ^2 with the sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

Let $\mathbf{1}_n \in \mathbb{R}^n$ denote the vector of 1's, and $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n$. Recall what you've learned about P from the last homework.

(a) Show that

$$(n-1) s^2 = X' P X.$$

- (b) Find $\mathbb{E}(s^2)$.
- (c) Find $Var(s^2)$.
- (d) Find the distribution of $\frac{(n-1)s^2}{\sigma^2}$.
- (e) Argue that s^2 and \bar{X} are independent.

Problem 4. (*Two-sided one-sample Z-test*). Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N\left(\mu, \sigma^2\right)$ where σ^2 is known. We want to test $H_0: \mu = 1$ versus $H_1: \mu \neq 1$. Consider the following quantity

$$Z := \frac{\sqrt{n}}{\sigma} \left(\bar{X} - \mu \right).$$

- (a) Show that *Z* is a pivotal quantity, and find its probability distribution.
- (b) Construct a test statistic T(X) based on the above pivotal quantity, and write down the form of the rejection region for this test in terms of a critical value c.
- (c) Write down the power function for this test.
- (d) Setting the test size at α , find an expression for the critical value c.
- (e) Suppose n = 9, $\sigma^2 = 1$, and the observed $\bar{x} = 1.75$. What's the p-value for this test? Would you reject the null hypothesis at level 5%? What about 1%?

Problem 5. Using the teengamb dataset from the last homework, fit a model with expenditure on gambling (gamble) as the response, and all remaining variables as predictors.

- (a) Which variables are significant at the 5% level? Give the respective confidence intervals for their associated coefficients.
- (b) What interpretation should be given to the coefficient for sex?
- (c) Fit a model with just income as a predictor. Compare it to the full model using an F-test.
- (d) State the null hypothesis of the above F-test as an assertion involving the regression coefficients from the full model.

Problem 6. The following is the R output of a simple linear regression analysis. Figure out the three entries indicated by "???". Show your work in detail.