REDUCTION OF SURFACE INTEGRAL TO LINE INTEGRAL

15.4: Stoke's Theorem and anothern't thing release out one with the till

Statement: Let S be a piecewise smooth open surface bounded by a piecewise smooth simple curve C. If $\mathbf{f}(x, y, z)$ be a continuous vector function which has continuous first partial derivative in a

region of space which contains S, then $\oint \mathbf{f} \cdot d\mathbf{r} = \iint \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, d\mathbf{S}$ where n is the unit normal vector at any point of S and C is traversed in positive direction.

Direction of C is positive if an observer walking on the boundary of S in this direction with its head pointing in the direction of outward normal n to S has the surface on the left.

We may put the statement of Stoke's theorem in words as under:

The line integral of the tangential component of a vector f taken around a simple closed curve C is equal to the surface integral of normal component of curl of f taken over Shaving Cas its boundary.

5.5. Stoke's Theorem in Cartesian Form

(a) Cartesian form of Stoke's theorem in plane

Choose system of coordinate axes such that the plane of the surface is in xy plane and normal to the surface S lies along the z axis. Normal vector is constant in this case.

 $\mathbf{f} = f_1 \, \mathbf{i} + f_2 \, \mathbf{j} + f_3 \, \mathbf{k}$ Suppose

$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = \oint_{C} \mathbf{f} \cdot \frac{d\mathbf{r}}{ds} ds = \oint_{C} \mathbf{f} \cdot \mathbf{t} ds \qquad \left(\frac{s \sqrt{s}}{s} - \frac{s \sqrt{s}}{s} \right) = \mathbf{r} \cdot \mathbf{1} + \mathbf{r} \cdot \mathbf{r}$$

where $\mathbf{t} = \frac{d\mathbf{r}}{ds}$ is unit vector tangent to C. $\sin z + \sin z + \sin z = \sin z + \sin z + \sin z = \sin z = \sin z + \sin z = \sin z = \sin z + \sin z = \sin$

$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = \oint_{C} (f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}) \cdot \left(\mathbf{i} \frac{dx}{ds} + \mathbf{j} \frac{dy}{ds} + \mathbf{k} \frac{dz}{ds} \right) \cdot ds *$$

$$= \oint_{C} \left(f_1 \frac{dx}{ds} + f_2 \frac{dy}{ds} + f_3 \frac{dz}{ds} \right) ds$$

But tangent at any point lies in the xy plane, so
$$\frac{dz}{ds} = 0$$

$$\oint_C \mathbf{f} \cdot d\mathbf{r} = \oint_C \left(f_1 \frac{dx}{ds} + f_2 \frac{dy}{ds} \right) ds$$
...(1)

Now,
$$\iint_{S} \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, dS = \iint_{S} \operatorname{curl} \mathbf{f} \cdot \mathbf{k} \, dS$$
 [Here normal is along z axis]
$$= \iint_{S} \left(\frac{\partial f_{2}}{\partial x} - \frac{\partial f_{1}}{\partial y} \right) dx \, dy$$
 ...(2)

Using (1) and (2), Stoke's theorem is

$$\oint_{C} (f_1 dx + f_2 dy) = \iint_{S} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy.$$

Note: This form of Stoke's theorem is also known as Green's theorem in plane.

(b) Cartesian form of Stoke's theorem in space

Suppose $\mathbf{f} = f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}$ and \mathbf{n} is a outward drawn normal vector of S making angle α , β γ with positive direction of axes. As an abrow of managed stables in accordance of the year all

elemits a bound to nested
$$\mathbf{n} = \cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k}$$
 witnessed this largest entire entry

Shaving C as its boundary.

Shaving C as its boundary.

Shaving C as its boundary.

Soke's Theorem in Castesian Form

(a) Cartesian form of Stoke's theorem in p
$$f_3$$
 f_3 f_4 f_5 f_5 f_6 f_6 f_6 f_7 f_8 f_8

 $\operatorname{curl} \mathbf{f} = \left[\left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \mathbf{k} \right] \text{ is said } \mathbf{Z} \text{ so thus add } \mathbf{g}$

$$\operatorname{curl} \mathbf{f} \cdot \mathbf{n} = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) \cos \alpha + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right) \cos \beta + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \cos \gamma \qquad \dots (1)$$

Also

$$\mathbf{f} \cdot d\mathbf{r} = (f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}) \cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k})$$

$$\mathbf{f} \cdot d\mathbf{r} = f_1 dx + f_2 dy + f_3 dz$$

or

$$\mathbf{f} \cdot d\mathbf{r} = f_1 dx + f_2 dy + f_3 dz$$

Then Stoke's theorem is $(x_1, x_2, \dots, x_n) = (x_n, x_n) + (x_n, x_n) + (x_n, x_n) = (x_n, x_n) = (x_n, x_n) + (x_n, x_n)$

$$\oint_{S} (f_1 dx + f_2 dy + f_3 dz) = \iint_{S} \left[\left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \right) \cos \alpha + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \right) \cos \beta + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \cos \gamma \right] dS.$$

Example 1. Show that $\oint_{C} \mathbf{r} \cdot d\mathbf{r} = 0$.

Solution. By Stoke's theorem,

Mow,
$$\oint_{C} \mathbf{r} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{r} \cdot \mathbf{n} \, d\mathbf{S} \quad \text{and } \mathbf{r} \cdot \mathbf{n} \, d\mathbf{S} \quad \text{wo M}$$

$$= 0. \quad \text{(if a shift)}$$

$$= (if a shift) \quad \text{(if a curl } \mathbf{r} = \mathbf{0})$$

Example 2. Show that $\oint_C \phi \nabla \phi \cdot d\mathbf{r} = 0$, C being a closed curve.

Solution. By Stoke's theorem,

$$\oint \phi \nabla \phi \cdot d\mathbf{r} = \iint \operatorname{curl}(\phi \nabla \phi) \cdot \mathbf{n} \, dS$$

$$= \iint [\phi \operatorname{curl} \nabla \phi + \nabla \phi \times \nabla \phi] \cdot \mathbf{n} \, dS$$

$$= \iint_{S} [\phi \operatorname{curl} \nabla \phi + \nabla \phi \times \nabla \phi] \cdot \mathbf{n} \, dS$$

$$= \iint_{S} 0 \cdot \mathbf{n} \, dS$$

$$= 0 \cdot [\because curl \, \nabla \phi = 0 \, and \, \nabla \phi \times \nabla \phi = 0]$$

Example 3. Show that $\oint_C \phi \nabla \psi \cdot d\mathbf{r} = -\oint_C \psi \nabla \phi \cdot d\mathbf{r}$.

Solution.

$$\oint_{C} \nabla (\phi \psi) \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} (\nabla \phi \psi) \cdot \mathbf{n} \, dS$$

$$\oint_{C} \nabla (\phi \psi) \cdot d\mathbf{r} = 0$$

...(1) [:: $curl\ grad\ \phi \psi = 0$]

We know that $\nabla(\phi\psi) = \phi \nabla \psi + \psi \nabla \phi$ Putting this value in (1), we have

$$\oint_{C} (\phi \nabla \psi + \psi \nabla \phi) \cdot d\mathbf{r} = 0$$

$$\oint_{C} \phi \nabla \psi \cdot d\mathbf{r} = - \oint_{C} \psi \nabla \phi \cdot d\mathbf{r}$$

Example 5. Verify Stoke's theorem for the function $\mathbf{f} = (x^2 + y^2) \mathbf{i} - 2xy \mathbf{j}$ taken round the rectangle bounded by $x = \pm a$, y = 0, y = b.

Solution. Given
$$\mathbf{f} = (x^2 + y^2) \mathbf{i} - 2xy \mathbf{j}$$

$$\therefore \qquad \mathbf{f} \cdot d\mathbf{r} = [(x^2 + y^2) \mathbf{i} - 2xy \mathbf{j}] \cdot (dx \mathbf{i} + dy \mathbf{j})$$

$$= (x^2 + y^2) dx - 2xy dy$$

$$\Rightarrow \mathbf{f} \cdot d\mathbf{r} = \oint_{\mathbf{C}} (x^2 + y^2) dx - 2xy dy$$

$$= \int_{\mathbf{DA}} [(x^2 + y^2) dx - 2xy dy] + \int_{\mathbf{AB}} [(x^2 + y^2) dx - 2xy dy]$$

$$\Rightarrow \int_{\mathbf{DA}} [(x^2 + y^2) dx - 2xy dy] + \int_{\mathbf{CD}} [(x^2 + y^2) dx - 2xy dy]$$

$$\Rightarrow \int_{\mathbf{DA}} [(x^2 + y^2) dx - 2xy dy] + \int_{\mathbf{CD}} [(x^2 + y^2) dx - 2xy dy]$$

$$\Rightarrow \int_{\mathbf{DA}} [(x^2 + y^2) dx - 2xy dy] + \int_{\mathbf{CD}} [(x^2 + y^2) dx - 2xy dy]$$

$$\Rightarrow \int_{\mathbf{DA}} [(x^2 + y^2) dx - 2xy dy] = \int_{$$

On AB:
$$y=0$$
, $\therefore dy=0$

$$\int_{AB} [(x^2 + y^2) dx - 2xy dy] = \int_{AB} x^2 dx = \int_{a}^{a} x^2 dx = 2 \int_{0}^{a} x^2 dx = \frac{2}{3} a^3$$

On BC:
$$x = a$$
, $\therefore dx = 0$

$$\int_{BC} [(x^2 + y^2) dx - 2xy dy] = \int_{BC} -2ay dy = \int_{0}^{b} (-2ay) dy = -ab^2$$

On CD:
$$y = b$$
, $\therefore dy = 0$

$$\int_{CD} [(x^2 + y^2) dx - 2xy dy] = \int_{CD} (x^2 + b^2) dx = \int_{a}^{-a} (x^2 + b^2) dx$$

$$= \left[\frac{x^3}{3} + b^2 x \right]_{a}^{-a} = -2 \left(\frac{a^3}{3} + b^2 a \right)$$

Substituting these values in (1), we get a monosh suchois and strained at element

$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = -ab^{2} + \frac{2}{3}a^{3} - ab^{2} - 2\left(\frac{a^{3}}{3} + b^{2}a\right)$$

$$= -4ab^{2}$$

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \end{vmatrix}$$

Now

$$\operatorname{curl} \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + y^2 & -2xy & 0 \end{vmatrix}$$
$$= 0 \mathbf{i} + 0 \mathbf{j} + (-2y - 2y) \mathbf{k} = -4y \mathbf{k}$$

$$\iint_{S} \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, dS = \iint_{S} (-4y \, \mathbf{k}) \cdot \mathbf{k} \, dS$$

$$= \int_{0}^{b} \int_{x=-a}^{a} -4y \, dy \, dx$$

$$= -4ab^{2}$$

[On simplification] ...(3)

Hence from (2) and (3), theorem is verified.

Example 6. Evaluate by Stoke's theorem $\oint_C (e^x dx + 2y dy - dz)$, where C is the curve $x^2 + y^2 = 4$, z = 2.

Solution.
$$\oint_{C} (e^{x} dx + 2y dy - dz) = \oint_{C} (e^{x} \mathbf{i} + 2y \mathbf{j} + (-1) \mathbf{k}) \cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k})$$

$$= \oint_{C} \mathbf{f} \cdot d\mathbf{r}, \text{ where } \mathbf{f} = e^{x} \mathbf{i} + 2y \mathbf{j} - \mathbf{k}$$
Now
$$\operatorname{curl} \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^{x} & 2y & -1 \end{vmatrix}$$

 $\oint_{C} (e^{x} dx + 2y dy - dz) = \oint_{C} \mathbf{f} \cdot d\mathbf{r}$ $= \iint_{S} \operatorname{curl} \mathbf{f} \cdot \mathbf{n} dS = 0. \qquad [\because \operatorname{curl} \mathbf{f} = 0]$

 $=(0-0)\mathbf{i}+(0-0)\mathbf{j}+(0-0)\mathbf{k}=0$

Example 7. Evaluate by Stoke's theorem $\oint_C (yz dx + xz dy + xy dz)$, where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

Solution.
$$\oint_C (yz \, dx + xz \, dy + xy \, dz) = \oint_C (yz \, \mathbf{i} + xz \, \mathbf{j} + xy \, \mathbf{k}) \cdot (dx \, \mathbf{i} + dy \, \mathbf{j} + dz \, \mathbf{k})$$
$$= \oint_C \mathbf{f} \cdot d\mathbf{r}, \text{ where } \mathbf{f} = yz \, \mathbf{i} + xz \, \mathbf{j} + xy \, \mathbf{k}$$

::

$$\operatorname{curl} \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & zx & xy \end{vmatrix}$$

$$\iint_{C} \mathbf{f} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, dS = 0.$$
 [:: curl $\mathbf{f} = 0$]

Example 8. Evaluate $\oint \mathbf{f} \cdot d\mathbf{r}$ by Stoke's theorem, where $\mathbf{f} = y^2 \mathbf{i} + x^2 \mathbf{j} - (x+z) \mathbf{k}$ and C is the

Solution. Here curl
$$\mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & x^2 - (x+z) \end{vmatrix}$$

$$= (0-0)\mathbf{i} + (0+1)\mathbf{j} + (2x-2y)\mathbf{k}$$

$$= \mathbf{j} + 2(x-y)\mathbf{k}$$

$$0 \quad \mathbf{K}$$

$$(0,0,0)$$

$$Fig. 5.4$$

Here triangle is in the xy plane as z co-ordinate of each vertex of the triangle is zero.

$$n = k$$

curl
$$\mathbf{f} \cdot \mathbf{n} = [\mathbf{j} + 2(x - y) \mathbf{k}] \cdot \mathbf{k} = 2(x - y)$$

By Stoke's theorem,
$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = \iint_{S} (\operatorname{curl} \mathbf{f} \cdot \mathbf{n}) dS$$

as a delice we do not mesocal shows in more robes.

$$= \iint_{S} 2(x-y) \, dy \, dx$$

Note here the equation of OB is y = x, thus for S, x varies from 0 to 1 and y from 0 to x.

$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = \int_{0}^{1} \int_{y=0}^{y=x} 2(x-y) \, dy \, dx$$

$$= \int_{0}^{1} 2\left(xy - \frac{y^{2}}{2}\right)_{0}^{x} dx$$

$$= \int_{0}^{1} 2\left(xy - \frac{y^{2}}{2}\right)_{0}^{x} dx$$

$$= \int_{0}^{1} 2\left(x^{2} - \frac{y^{2}}{2}\right)_{0}^{x} dx$$

$$= \int_{0}^{1} 2\left(x^{2} - \frac{x^{2}}{2}\right) dx = \int_{0}^{1} x^{2} dx = \frac{1}{3}.$$
(i) The solution of the content of the cont