Smoke & Ventilation Simulation using the CHPC

CSIR Centre for High Performance Computing
National Conference December 2019
Birchwood Conference Centre
Johannesburg

Presented by:
Greenplan Consultants
Kenneth Allen

Contents

- Part 1: Project background / context
- Part 2: Key model and software details
- Part 3: CHPC-related experience
 - Accessing the CHPC
 - Running simulations
 - Accessing results
 - Scaling, speed, etc.

I. Project Background

Greenplan: building thermal and fluid dynamics

This project:

- Smoke clearance & ventilation study
- Approx. 27 000 m² basement / parking area
- Ventilation fans, impulse fans, fire/smoke source
- Computational fluid dynamics (CFD)
- Software used:
 - > Fire Dynamics Simulator (FDS) transient
 - ➤ OpenFoam steady-state (not CHPC)

II. Model & Domain size (i)

Height: ≈ 0.1 km

II. Model & Domain size (ii)

View below ground (layers above ghosted) – transient model

Greenplan Consultants

II. Model Components (i)

Nozzle speed: 25-30 m/s

Nozzle dimensions:

≈ 90 mm high

≈ 900 mm wide

Jet fan / impulse fan – transient model

II. Model Components (ii)

4 MW_{th} fire with and without smoke/soot visualisation – transient model

II. Transient Simulation Overview

- RAM requirement: ≈ 100-150 GB
- Nodes used: 10-15
- Cores used: 240-360
- Simulated time goal: 2 minutes
- Multiple wind conditions and fan layouts
- Total cells: max of 70-80 million

II. FDS Particulars (I)

- FDS: LES or DNS transient simulations
- LES & DNS computationally intensive!
- Customised for fire/smoke simulation
- Very flexible (fans, ducts, control, etc.)
- Can use OpenMP threads
- Can run in parallel (MPI)
- NB: first MPI process does all output/file writing
- Input geometry and boundaries created with

II. FDS Particulars (II)

Challenges with FDS:

- ➤ Rectilinear grid mesh manually specified
- Rasterised objects to fit grid
- ➤ Multiple meshes required to run in parallel at least one mesh per MPI process
- ➤One large grid built up from smaller meshes
- > Manual mesh construction not necessarily balanced
- Can't remove cells embedded in solid walls etc.

Whole grid

10

Individual					
mesh					

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

III. Accessing Results

- Data quantity per full simulation (100-200 GB)
- Initially from an LTE office network
 - ➤ Too costly to download
 - ➤ Too slow
- Collected most data via hard drive
 - ➤ Worked well except for some incompatibility with Linux & Windows not recognising the drive
- Later had access to uncapped fibre ideal!
- Some issues with download speed from CHPC
 - ➤ May 2019: ≈ 10 kB/s (exceptional circumstances)
 - ➤ Generally achieved 100-500 kB/s per file

reenplan Consultants

11

III. Results – Sample (i)

Visibility just after fire ignition:

III. Results – Sample (ii)

• Visibility after 110 s:

IV. Scaling & Speed (i)

Initial CHPC tests by C. Crosby with 5.7 million cells

Ideal cell distribution per mesh; no jet fan

IV. Scaling & Speed (ii)

- Western half of basement model A:
 - ≥15 nodes / 360 cores (approx. 10⁵ cells/MPI)
 - ➤ Varying simulation speed same model:

Run 1: 0-40 s

Run 2: 40-80 s

Run 3: 80-120 s

Avg: 5.7 s/hr

Model with

wind:

Avg 3.8 s/hr

... But there is possibly more to it than just these factors

IV. Scaling & Speed (iii)

• Run 1 – CPU time division

IV. Scaling & Speed (iv)

IV. Scaling & Speed (v)

• Run 3 – CPU time division

IV. Scaling & Speed (vi)

- Later simulations similar tendency with nodes
- What is the cause? Don't know
- One possibility ghost processes (confirmed once)
- Second possibility CHPC architecture?
 - ➤8 nodes grouped together
 - ➤ Interconnection between groups of 8 nodes
 - ➤ Bottleneck due to blocking ratio (1 to 3)
 - ▶i.e. when you run outside a group of 8 nodes?
 - ➤ PBS assigns nodes automatically (not user) so no control

IV. Scaling & Speed (vii)

- Last model experimented:
 - Fewer nodes limited to 10
 - \triangleright Higher total cell count ($\approx 7 \times 10^7$)
 - \triangleright Higher cell per mesh/core ($\approx 3 \times 10^5$)
 - ≥3 consecutive runs (avg 2.3 s/hour walltime)
- No node outliers only individual cores
- Not enough testing to draw a conclusion

IV. Scaling & Speed (viii)

- OpenMP versus MPI: which is more effective?
- Our experience –
- OpenMP set to 2 and 12 MPI per node:
 - Little better than 24 MPI with half the no. of nodes (!)
- OpenMP set to 1 and 12 MPI per node:
 - ➤ Also poor performance (relatively)
- OpenMP set to 1 and 24 MPI per node:
 - ➤ Generally best performance
- Trends not thoroughly tested but recommend MPI only with full use of node

21

V. Conclusion

- CHPC essential for this type of work
- No compatibility issues with FDS
- System in general worked very well
- Scope for exploring the outlier node effect
- Computational cost good value for money
- Highly competent support

Please feel free to contact us with any queries:

www.greenplan.co.za

www.greenplan.co.za

info@greenplan.co.za

