LC029 정보검색

Information Retrieval

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).

Information Retrieval Model

- Boolean Retrieval Model
- Vector Space Model

- Boolean Retrieval
- The Term Vocabulary and Postings Lists
- Dictionaries and Tolerant Retrieval
- Index Construction
- Index Compression

Boolean Retrieval

Index

0-1 loss, **101**, 269

Autoencoder, 4, 345, 493

Absolute value rectification, 187

Automatic speech recognition, 446

Accuracy, 411

Back-propagation, 197

Activation function, 166

Back-propagation through time,

Active constraint, 91

374

AdaGrad, 299

Backprop, see back-propagation

ADALINE, see adaptive linear element

Bag of words, 458

Adam, 301, 413

Bagging, 249

Adaptive linear element, 14, 22, 23

Batch normalization, 260, 413

- The Term Vocabulary and Postings Lists
- Dictionaries and Tolerant Retrieval
- Index Construction
- Index Compression

- Boolean Retrieval
- The Term Vocabulary and Postings Lists
 - Tokenization
 - Stop Words
 - Normalization
- Dictionaries and Tolerant Retrieval
- Index Construction
- Index Compression

Tokenization

Stop Words

- Most frequent words considered insignificant
- Significantly reduces the size of index

Normalization

query

USA

document

In U.S.A. bla bla ...

car

Best **SUV** in the world bla bla ...

- Boolean Retrieval
- The Term Vocabulary and Postings Lists
- Dictionaries and Tolerant Retrieval
 - Dictionary Structures
 - Wild-card queries
 - Spelling correction
- Index Construction
- Index Compression

Dictionary Structures

- How do we store a dictionary in memory efficiently, so that we could quickly look up elements at query processing time?
 - Hash table
 - Tree

Wild-card queries

- When you are uncertain of the spelling Sydney vs. Sidney ? → S*dney
- When you are aware that the term has variants of spelling

```
color vs. colour \rightarrow colo*r
```

 When you want documents containing variants of a term

computation, computing, computer, computational, ...

→ comput*

Spelling correction

- Correcting documents being indexed
- Correcting user queries to retrieve "right" answers

- Boolean Retrieval
- The Term Vocabulary and Postings Lists
- Dictionaries and Tolerant Retrieval
- Index Construction
 - Sort-based Index Construction
 - Scalable Index Construction
 - BSBI: Blocked Sort-Based Indexing
 - SPIMI: Single-Pass In-Memory Indexing
 - Distributed Indexing
- Index Compression

Index Construction

symbol	statistic	value
N	documents	800,000
L _{ave}	average number of tokens / doc	200
M	number of terms	400,000
	average number of bytes / token (including spaces/punctuation)	6
	average number of bytes / token (without spaces/punctuation)	4.5
	average number of bytes / term	7.5
	number of non-positional postings	

- Boolean Retrieval
- The Term Vocabulary and Postings Lists
- Dictionaries and Tolerant Retrieval
- Index Construction
- Index Compression
 - Dictionary Compression
 - Postings Compression
 - Huffman Code

- Why Vector Space Model?
 - Problems with Boolean Search
 - Documents either match or don't
 - Ranking the results is impossible
- How can we rank the documents in the collection with respect to a query?
 - Assign a score, say in [0, 1], to each document
 - This score measures how well document and query match

Documents as Vectors

Query as a Vector

```
< 1, 0, 1, 0, 0, 0, 0 >
```

 Compute similarity to the query and then rank documents according to their similarity score

- How to get the weight of each term in a document?
 - Term Frequency
 - Term frequency is used to compute query-document match score
 - Document Frequency
 - Rare terms are more informative than frequent terms
 - tf-idf Weight
 - Best known weight scheme in information retrieval
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection

How to get the similarity score

How to get the similarity score

Cosine similarity

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- The following two notions are equivalent
 - Rank documents in <u>increasing</u> order of the angle between query and document
 - Rank documents in <u>decreasing</u> order of cos(q, d)

- Scoring, Term Weighting and the Vector Space Model
- Computing Scores in a Complete Search System
 - Efficient Cosine Ranking
 - Inexact top K document retrieval

More on Information Retrieval

- Evaluation in Information Retrieval
- Relevance Feedback and Query Expansion

Relevance Feedback: Example 1

Relevance Feedback: Example 2

Query: New space satellite applications

retrieved documents

relevance feedback

- 1. 0.539, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
- 2. 0.533, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
- 3. 0.528, 04/04/90, Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
- 4. 0.526, 09/09/91, A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget

Improved results

- 1. 0.513, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
- 2. 0.500, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
- 3. 0.493, 08/07/89, When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own
- 4. 0.493, 07/31/89, NASA Uses 'Warm' Superconductors For Fast Circuit

Relevance Feedback: Example 2

Expanded query after relevance feedback

2.074	new	15.12	space
30.82	satellite	5.660	application
5.991	nasa	5.196	eos
4.196	launch	3.972	aster
3.516	instrument	3.446	arianespace
3.004	bundespost	2.806	SS
2.790	rocket	2.053	scientist
2.003	broadcast	1.172	earth
0.836	oil	0.646	measure

Query: New space satellite applications

More on Information Retrieval

- Web Search Basics
- Web Crawling and Indexes
- Link Analysis

Link Analysis

- Query Processing
 - Retrieve all pages satisfying the query
 - Order retrieved documents by their link popularity

- Problem : Link Spam
 - Set up multiple web pages pointing to a target web page