Zeitschrift für anorganische und allgemeine Chemie

© Johann Ambrosius Barth 1996

Ag^{2+} in trigonal-bipyramidaler Umgebung: Neue Fluoride mit zweiwertigem Silber: $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II}=Cd$, Ca, Hg; $M^{IV}=Zr$, Hf)

O. Graudejus und B. G. Müller

Gießen, Institut für Anorganische und Analytische Chemie I der Justus-Liebig-Universität

Bei der Redaktion eingegangen am 7. Februar 1996.

Inhaltsübersicht. Erstmals dargestellt und anhand von Einkristallen röntgenographisch untersucht wurden die intensiv grünen Verbindungen $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II}=Cd$, Ca, Hg; $M^{IV}=Zr$, Hf). Sie kristallisieren alle in der Raumgruppe $P6_3/m-C_{6b}^2$ (Nr. 176) mit

```
a = 1052,0(2) \text{ pm}, c = 828,6(2) \text{ pm } (AgCd_3Zr_3F_{20}),
```

```
\begin{array}{l} a=1048,0(2)\ pm,\ c=832,6(3)\ pm\ (AgCd_3Hf_3F_{20}),\\ a=1059,4(2)\ pm,\ c=841,0(3)\ pm\ (AgCa_3Zr_3F_{20}),\\ a=1053,7(2)\ pm,\ c=830,6(3)\ pm\ (AgCa_3Hf_3F_{20}),\\ a=1058,9(3)\ pm,\ c=832,6(4)\ pm\ (AgHg_3Zr_3F_{20}),\\ a=1056,9(2)\ pm,\ c=833,0(3)\ pm\ (AgHg_3Hf_3F_{20}),\ Z=2. \end{array}
```

Ag^{2+} in Trigonal-Bipyramidal Surrounding New Fluorides with Divalent Silver $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II} = Cd$, Ca, Hg; $M^{IV} = Zr$, Hf)

Abstract. The intensively green compounds $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II}=Cd$, Ca, Hg; $M^{IV}=Zr$, Hf) have been obtained for the first time as single crystals and investigated by X-ray methods. They crystallize in space group $P6_3/m-C_{60}^2$ (Nr. 176) with

```
a = 1052.0(2) \text{ pm}, c = 828.6(2) \text{ pm} (AgCd_3Zr_3F_{20}),

a = 1048.0(2) \text{ pm}, c = 822.6(3) \text{ pm} (AgCd_3F_E)
```

```
a = 1048.0(2) \text{ pm}, c = 832.6(3) \text{ pm} (AgCd_3Hf_3F_{20}),

a = 1059.4(2) \text{ pm}, c = 841.0(3) \text{ pm} (AgCa_3Zr_3F_{20}),
```

```
a = 1053.7(2) \text{ pm}, c = 830.6(3) \text{ pm} (AgCa<sub>3</sub>Hf<sub>3</sub>F<sub>20</sub>), 
 <math>a = 1058.9(3) \text{ pm}, c = 832.6(4) \text{ pm} (AgHg<sub>3</sub>Zr<sub>3</sub>F<sub>20</sub>), 
 <math>a = 1056.9(2) \text{ pm}, c = 833.0(3) \text{ pm} (AgHg<sub>3</sub>Hf<sub>3</sub>F<sub>20</sub>), Z = 2.
```

Keywords: Silver(II)-fluorozirconates and -hafnates; Single Crystal Structure

1 Einleitung

In den intensiv blauvioletten Verbindungen $Ag_3M_2F_{14}$ (M = Zr, Hf) [1] liegen zwei kristallographisch verschiedene Sorten Silber ($\triangleq Ag^{II}Ag_2^{II}M_2F_{14}$) vor: Ag(1) ist stark verzerrt oktaedrisch (Jahn-Teller-Effekt; d⁹-System) koordiniert, um Ag(2) hingegen sind $4F^-$ annähernd quadratisch planar angeordnet, vier wesentlich weiter entfernte ergänzen zur hexagonalen Bipyramide.

Ag(1) kann man gezielt durch Cu^{2+} , Mg^{2+} , Ni^{2+} und Zn^{2+} substituieren und erhält Derivate $M^{II}Ag_2M_2^{IV}F_{14}$ ($M^{II}=Cu$, Mg, Ni, Zn; $M^{IV}=Zr$, Hf). Nach Guinier-Pulveraufnahmen sind alle isotyp zu $Ag_3Hf_2F_{14}$ und ebenso wie dieses intensiv **blauviolett**.

Es schien daher plausibel, auch Ag(2), dann allerdings durch größere Kationen wie Ca^{2+} , Cd^{2+} oder Hg^{2+} , zu ersetzen, um Fluoride "Ag $M_2^{II}M_2^{IV}F_{14}$ " ($M^{II}=Ca$, Cd, Hg; $M^{IV}=Zr$, Hf) zu erhalten. Ansätze entsprechender Gemenge führten zu intensiv **grünen** Proben, deren Guinier-Pulveraufnahmen jedoch deutlich linienärmer als

die der oben erwähnten monoklinen Verbindungen sind. Nach der Strukturbestimmung anhand von Einkristallen stellte sich allerdings heraus, daß es sich hierbei um Vertreter des neuen Typs $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II}=Ca$, Cd, Hg; $M^{IV}=Zr$, Hf) handelte, die dann gezielt auch phasenrein erhalten wurden.

2 Darstellung der Proben

Ag₂CO₃ (Merck), CdSO₄ · 8/3 H₂O (Merck, bzw. HgCl₂, Merck, >99.5% bzw. CaCl₂ · 2 H₂O, Merck, >99%) und ZrOCl₂ · 8 H₂O bzw. HfF₄ (Fluka, >99% bzw. Heraeus, 99.9%) wurden im Molverhältnis 1 : 6 : 6 eingewogen und innig verrieben. Das Gemenge wurde dann in einem Korundschiffchen (Degussit/Degussa) mit einem F₂/N₂-Gemisch (1 : 10) zunächst ein bis zwei Tage bei 150 °C "anfluoriert" und die Temperatur anschließend stufenweise bis auf 500 °C erhöht. Während der Aufheizperiode wurde die Probe im Achatmörser mehrfach homogenisiert. Nach 4–5 Tagen erhielt man auf diese Weise mikrokristallines AgM¹¹₃M¹²₃F₂₀ (M¹¹ = Cd, Ca, Hg; M^{1V} = Zr, Hf).

Zur Züchtung von Einkristallen wurde ein Teil der Probe in ein (unter F_2 passiviertes) Mg-Schiffchen überführt (dies ist notwendig, da Korund bei Temperaturen oberhalb von $500\,^{\circ}\mathrm{C}$ bereits merklich von F_2 angegriffen wird) und bei $580-600\,^{\circ}\mathrm{C}$ getempert. Die stark zusammensinternde Probe wurde dabei wiederholt verrieben und mit mikrokristallinem Material "aufgefüllt". Während der Reaktion wurde sorgfältig darauf geachtet, daß der Fluorstrom nicht unterbrochen wurde, da dies eine sofortige Zersetzung der Probe zur Folge gehabt hätte.

Da die Züchtung von Einkristallen von Ag^{II}-Verbindungen generell außerordentlich schwierig und sehr zeitaufwendig ist, wurden lediglich AgCd₃Zr₃F₂₀, AgCd₃Hf₃F₂₀ und AgCa₃Zr₃F₂₀ in Form von Einkristallen dargestellt, die anderen nur in mikrokristalliner Form. Die mikrokristallinen Proben sind extrem hydrolyseempfindlich, etwas beständiger sind die unregelmäßig geformten Einkristalle.

3 Röntgenographische Untersuchungen

Mehrere Kristalle der jeweiligen Verbindung wurden unter einem Mikroskop mit Polarisationsaufsatz ausgesucht. Als Sperrflüssigkeit diente dabei ein durch mehrstündiges Kochen über

Tabelle 1 Kristallographische Daten von AgCd₃Zr₃F₂₀

Tabelle 1 Kristanographische Da	Hell Voll AgCd ₃ Zl ₃ F ₂₀
Kristallsystem	hexagonal
Raumgruppe	$P6_3/m$; C_{6h}^2 (Nr. 176)
Gitterkonstanten	
1) Guinier Simon Daten	a = 1052,0(2) pm
	c = 828,6(2) pm
2) Stoe-IPDS	a = 1052(2) pm
,	c = 833(1) pm
Röntgenographische Dichte	4,59 g/cm ³
Zahl der Formeleinheiten	
pro Elementarzelle	2
F (000)	982
Molares Volumen	
(röntgenographisch)	239,12 cm ³ /mol
Kristallform, -farbe	unregelmäßig, grün
Diffraktometer	Stoe-IPDS
Linearer Absorptions-	
koeffizient μ (Mo- $K\bar{\alpha}$)	72 cm ⁻¹
Strahlung	Mo- $K\bar{\alpha}$; $\lambda = 71,073$ pm
Korrektur der Intensitäten	Polarisations- und
	Lorentzkorrektur
Meßbereich	$10^{\circ} \le 2\theta \le 25^{\circ}$
Anzahl der gemessenen	7116, hieraus durch
I _o (hkl)	Mittelung
Anzahl der symmetrie-	
unabhängigen Io(hkl)	675
Interner R-Wert, R _m	5,69%
Lösungsverfahren	Direkte Methoden und
_	Differenzfouriersynthese
Nicht berücksichtigte	
Reflexe I _o (hkl)	keine
Anzahl der freien Parameter	52
Absorptionskorrektur	keine
Gütefaktor	$WR(F^2) = 13,8\%$
	R(F) = 5.9%
	$(F_o > 4\sigma(F_o) = 5,4\%)$
Max. und min. Rest-	
elektronendichte [e ⁻ /Å ³]	4,79/-1,96

 P_2O_5 und anschließender Destillation getrocknetes, mit F_2 behandeltes Perfluoralkan (C_8F_{18} , Bayer AG). Der nach Weissenberg-Schwenkaufnahmen jeweils beste Kristall wurde zur Datensammlung auf einem Stoe-IPDS herangezogen.

Aus Präzessionsaufnahmen (hk0, hk1) bzw. der Darstellung des Reziproken Gitters aus den Datensätzen [2] erhielt man die Auslöschungsbedingung (00l) nur mit 1 = 2n. Zusammen mit der beobachteten niederen Lauesymmetrie deutete dies auf die Raumgruppen P63 und P63/m hin. Strukturrechnungen führten dann in P63/m zu einem sinnvollen Ergebnis, in niedersymmetrischen bzw. azentrischen Raumgruppen (z. B. P6, P63) wurden schlechtere Ergebnisse (R-Werte, anisotrope Temperaturfaktoren) erzielt.

Der Datensatz von $AgCa_3Zr_3F_{20}$ wurde noch auf dem Philips PW-1100 gesammelt, die Ergebnisse werden hier sowohl wegen der relativ schlechten Qualität des Kristalls wie auch der Meßdaten nicht gesondert aufgeführt — sie bestätigen aber dennoch den Strukturtyp.

Die Positionen der Metallatome wurden mit Hilfe Direkter Methoden (Shell-X86) [3] bestimmt, die Fluor-Lagen anschließend durch Differenzfouriersynthesen (Shell-X 93) [4].

Tabelle 2 Kristallographische Daten von AgCd₃Hf₃F₂₀

Kristallsystem	hexagonal
Raumgruppe	$P6_3/m$; C_{6h}^2 (Nr. 176)
Gitterkonstanten	
1) Guinier Simon Daten	a = 1048,0(2) pm
	c = 832,6(3) pm
2) Stoe-IPDS	a = 1050,9(6) pm
	c = 833,4(5) pm
Röntgenographische Dichte	5,71 g/cm ³
Zahl der Formeleinheiten	
pro Elementarzelle	2
F (000)	1174
Molares Volumen	
(röntgenographisch)	238,45 cm ³ /mol
Kristallform, -farbe	unregelmäßig, grün
Diffraktometer	Stoe-IPDS
Linearer Absorptions-	
koeffizient μ (Mo-K α)	254,9 cm ⁻¹
Strahlung	Mo- $K\bar{\alpha}$; $\lambda = 71,073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentz-
	korrektur
Meßbereich	$10^{\circ} \le 2\theta \le 25^{\circ}$
Anzahl der gemessenen	5816, hieraus durch
I _o (hkl)	Mittelung
Anzahl der symmetrieun-	
abhängigen I _o (hkl)	670
Interner R-Wert, R _m	8,93%
Lösungsverfahren	Direkte Methoden und
-	Differenzfouriersynthese
Nicht berücksichtigte	
Reflexe I _o (hkl)	keine
Anzahl der freien Parameter	52
Absorptionskorrektur	numerisch; Beschreibung der
	Kristallgestalt mit Hilfe des
	Programms HABITUS [5]
Gütefaktor	$WR(F^2) = 12,7\%$
	R(F) = 6.9%
	$(F_o > 4\sigma(F_o) = 6.4\%)$
Max. und min. Rest-	
elektronendichte [e ⁻ /Å ³]	1,60/-2,15

Tabelle 3 Lageparameter und 'anisotrope Temperaturfaktoren' (Ų) von AgCd₃Zr₃F₂₀; Standardabweichungen zweite Zeile

Atom	1 Lage	x/a	y/b	z/c	U11	U_{22}	U_{33}	U_{23}	U ₁₃	U ₁₂
Ag	2a	0	0	1/4	0,0172 0,0005	0,0172 0,0005	0,0200 0,0007	0	0	0,0086 0,0003
Cd	6 h	0,72743 0,00008	0,1618 0,0001	1/4	0,0181 0,0004	0,0187 0,0004	0,0190 0,0005	0	0	0,0111 0,0003
Zr	6 h	0,13759 0,00008	0,4158 0,0001	1/4	0,0111 0,0005	0,0122 0,0005	0,0164 0,0006	0	0	0,0054 0,0003
F 1	2 d	2/3	1/3	1/4	0,019 0,003	0,019 0,003	0,079 0,008	0	0	0,009 0,002
F2	6 h	0,9409 0,0007	0,4143 0,0007	1/4	0,020 0,003	0,029 0,003	0,072 0,005	0	0	0,017 0,003
F3	6 h	0,3659 0,0006	0,5500 0,0007	1/4	0,015 0,003	0,021 0,003	0,084 0,005	0	0	0,003 0,002
F4	12 i	0,1456 0,0005	0,4252 0,0004	0,0115 0,0007	0,050 0,005	0,045 0,005	0,019 0,005	0,004 0,002	0,004 0,003	0,024 0,003
F5	6 h	0,2257 0,0006	0,2797 0,0007	1/4	0,022 0,003	0,026 0,003	0,060 0,005	0	0	0,017 0,003
F6	2 b	0	0	0	0,040 0,005	0,040 0,005	0,024 0,006	0	0	0,020 0,003
F7	6 h	0,9645 0,0006	0,1997 0,0005	1/4	0,015 0,003	0,012 0,003	0,063 0,005	0	0	0,004 0,002

Der ,anisotrope Temperaturfaktor' hat die Form: $T_{anis} = \exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + \dots + 2U_{12}hka^*b^*)]$

Tabelle 4 Lageparameter und 'anisotrope Temperaturfaktoren' (Ų) von AgCd₃Hf₃F₂₀; Standardabweichungen zweite Zeile

Atom	Lage	x/a	y/b	z/c	Uıı	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag	2a	0	0	1/4	0,0179 0,0006	0,0179 0,0006	0,021 0,001	0	0	0,0089 0,0003
Cd	6h	0,7282 0,0002	0,1624 0,0002	1/4	0,0165 0,0005	0,0164 0,0005	0,0150 0,0007	0	0	0,0095 0,0004
Hf	6 h	0,13782 0,00006	0,41573 0,00007	1/4	0,0128 0,0004	0,0130 0,0004	0,0159 0,0004	0	0	0,0062 0,0003
F1	2 d	2/3	1/3	1/4	0,009 0,004	0,009 0,004	0,09 0,02	0	0	0,005 0,002
F2	6h	0,941 0,002	0,415 0,002	1/4	0,015 0,004	0,027 0,005	0,052 0,007	0	0	0,014 0,004
F3	6 h	0,3665 0,0008	0,5505 0,0009	1/4	0,006 0,004	0,012 0,004	0,070 0,008	0	0	0,000 0,003
F4	12 i	0,1457 0,0009	0,4246 0,0008	0,0109 0,0007	0,059 0,008	0,057 0,007	0,010 0,005	-0,005 $0,004$	-0,005 $0,004$	0,030 0,005
F5	6 h	0,2257 0,0006	0,2797 0,0007	1/4	0,022 0,004	0,019 0,004	0,048 0,006	0	0	0,016 0,004
F6	2 b	0	0	0	0,052 0,008	0,052 0,008	0,03 0,02	0	0	0,026 0,004
F 7	6 h	0,9645 0,0006	0,2000 0,0005	1/4	0,010 0,004	0,011 0,004	0,079 0,009	0	0	0,000 0,003

Der ,anisotrope Temperaturfaktor' hat die Form: $T_{anis} = \exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Tabelle 5 AgCd₃Zr₃F₂₀, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C. N.) und Abstände innerhalb der Koordinationspolyeder

F(1)F(2)F(3) F(4) 0/00/0Ag 0/0 0/0Cd1/3 2/2 0/0 2/1 219,5 232,8 247,7 217,2 Zr 0/0 1/1 2/2 2/1 206,1 209,1 209,5 197,8 C.N. 3 3 2 2 3,0 2,8 2,0 2,0 **ECoN** b) 9.0 9.2 9.5 8.4 a) 142,0 138,2 128,7 126,5 **MEFIR** b) 133,4 132,4 128,1 145,9 **ECON MEFIR** F(5)F(6) F(7) C.N. a) a) b) b) 3/1 2/2 3/1 8 5,9 5,1 86,6 84,6 Ag 270,4 207,2 231,0 6,3 Cd1/1 0,0 7 6,9 89,4 1/1 91,2 223,4 232,0 Zr 0,0 7 7,0 6,5 1/1 1/1 70,6 70,0 205,8 208,4 C.N. 3 2 a) nur gegensinnig geladene

Die Einkristalldaten stimmen mit den anhand von Guinier-Pulveraufnahmen abgeleiteten Gitterkonstanten gut überein, vgl. Tabelle 1 und 2. Von allen Verbindungen wurden Guinier-Simon-Pulveraufnahmen angefertigt und isotyp zu AgCd₃Hf₃F₂₀ indiziert, vgl. Tab. 11 und 12. Die Reflexintensitäten (I_o) wurden visuell geschätzt. Alle Struktur- und Abstandsrechnungen wurden mit den aus *Pulverdaten* erhaltenen Gitterkonstanten durchgeführt.

4 Strukturbeschreibung (Beispiel AgCd₃Zr₃F₂₀)

Primärstruktur

2,2

8,3

135,6

^a) ECoN

b)

a)

b)

MEFIR

2,0

9,3

132,4 147,2 134,5

123,1 141,3

3,0

8,9

Nachbarn werden berück-

Startwert $R(F^-) = 133 \text{ pm}$

kürzester Abstand d_{F-F} =

b) alle Nachbarn werden be-

sichtigt

rücksichtigt

239,1 pm

Wie in AgAg₂ZrF₁₄ ist Zr und auch Cd — es liegt kristallographisch jeweils nur eine Sorte Zr und Cd vor — hier pentagonal-bipyramidal von Fluor umgeben: Für Zr⁴⁺ ein durchaus übliches, für Cd²⁺ jedoch ein seltenes Koordinationspolyeder. F(4) bildet in beiden Fällen Spitze und Fuß der Pyramide (Abb. 1).

Tabelle 6 AgCd₃Hf₃F₂₀, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C. N.) und Abstände innerhalb der Koordinationspolyeder

					porjed				
	F(:	1)	F(2)		F(:	3)	F(4)	
Ag	0/	0/0			0/	0	0/0		
Cd	1/	3	_ 2/2		0/	O	2/	- '1	
-	218			246,5	-		217		
Hf	0/		1/1	210,5	2/	2	2/	-	
	_		205,9	2	208,3	208,7	199		
C.N.	3		3		2		2	ı	
a)	3,		2,9		2,0		2,		
ECoN	J,	U	2,7		۷,	U	۷,	U	
b)	9,	1	8,5		9,	2	9,	6	
a)	128	3,0	141,1		137		127		
MEFIR									
b)	132	2,7	132,0	1	127	',5	147	7,2	
	F(5)	F(6)	F(7)	C.N.	ECO1	N b)	MEF	IR b)	
Ag	3/1 269,3	2/2 208.2	3/1 230,5	8	6,0	5,2	87,7	85,6	
Cd	1/1		1/1	7	6,9	6,3	91,0	89,1	
	222,8	_	230,5						
Hf	1/1	0,0	1/1	7	7,0	6,5	70,7	70,1	
	204,8	_	207,5						
C.N.	3	2	3	a) nı	ır gege	nsinnig	gelade	ne	
a)	2,2	2,0	3,0		ıbarn v				
ECoN					le Nac				
b)	8,4	9,4	9,0	rück	sichtigt	:			
a)	134,9	123,1	140,0	Start	wert R	$(\mathbf{F}^{-}) =$	133 pr	n	
MEFIR				kürz	ester A	.bstand			

Im Gegensatz hierzu wird Silber — es liegt ebenfalls kristallographisch nur eine Sorte Ag vor — trigonal-bipyramidal von fünf F^- koordiniert, eine ungewöhnliche und bislang mit F^- als Liganden nicht beobachtete Anordnung. Drei F^- in der Äquatorebene (über den Kanten des Koordinationspolyeders) mit allerdings wesentlich größeren Abständen (d(Ag—F(7)) = 231,0 pm (3×) und d(Ag—F(5)) = 270,4 pm (3×)) ergänzen zur hexagonalen Bipyramide (Abb. 1).

131,8 147,7 133,9 $d_{F-F} = 242,9 \text{ pm}$

Sekundärstruktur

b)

Alle Koordinationspolyeder sind über äquatoriale F-kanten-bzw. eckenverknüpft und bilden so identische Schichten parallel (001), die über apicale F- die dreidimensionale Struktur aufbauen. Innerhalb einer solchen Schicht bilden drei kantenverknüpfte [CdF₇]-Baugruppen, zentriert über F(1), sowie drei eckenverknüpfte [ZrF₇]-Einheiten mit F(3) als "Brücke" Polyedertripel

Tabelle 7 AgCa₃Zr₃F₂₀, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C. N.) und Abstände innerhalb der Koordinationspolyeder

	F(1)	F(2)	F(3)	F(4)
Ag	0/0	0/0	0/0	0/0
	_		_	_
Ca	1/3	2/2	0/0	2/1
	225,3	235,3 254,8	_	222,4
Zr	0/0	1/1	2/2	2/1
	_	206,1	210,3 211,8	198,7
C.N.	3	3	2	2
a)	3,0	2,8	2,0	2,0
EĆoN			•	
b)	8,9	8,3	9,2	9,1
a)	130,1	141,2	139,4	127,1
MÉFIR	,	•	,	
b)	135,9	132,9	128,7	146,2

	F(5)	F(6)	F(7)	C.N.	ECC	N	MEF	IR
					a)	b)	a)	b)
Ag	3/1	2/2	3/1	8	5,8	5,2	88,2	86,3
	270,1	210,3	228,6					
Ca	1/1	0,0	1/1	7	6,8	6,3	95,7	93,7
	225,2	_	236,1					
Zr	1/1	0,0	1/1	7	7,0	6,5	71,1	70,5
	203,3	_	209,4					
C.N.	3	2	3	a) n	ur geg	ensinnig	g gelade	ne
a)	2,2	2,0	3,0	Nac	chbarn	werden	berücks	sichtigt
ECoN				b) a	ille Na	achbarn	werde	n be-
b)	7,8	8,7	8,7	rüc	ksichtig	gt		
a)	132,8	123,7	140,1	Sta	rtwert]	$R(F^-) =$	= 133 pr	n
MEFIR				kür	zester 1	Abstanc	l	
b)	130,4	146,8	135,0	d_{F-1}	$_{\rm F} = 237$	7,1 pm		

 $\begin{tabular}{lll} \textbf{Tabelle 8} & MAPLE-Werte & von & AgCd_3Zr_3F_{20}; & Angaben & in kcal/mol \\ \end{tabular}$

Atom	n	binär	ternär	Δ	n · ⊿
Ag	1	454,0	498,1	-44,1	-44,1
Cd	3	465,9	486,1	-20,2	-60,6
Zr	3	1752,1	1672,4	79,7	239,1
F1	1	126,3	113,8	12,5	12,5
F2	3	149,0	142,8	6,2	18,6
F3	3	142,8	172,9	-30,1	-90,3
F4	6	143,2	151,6	-8,4	-50,4
F5	3	125,3	138,6	-13,3	-39,9
F6	1	126,3	102,7	23,6	23,6
F 7	3	125,3	140,9	-15,6	-46,8
		$\Sigma = 9847$	$\Sigma = 9885$		$\Sigma = -38,3$ $\delta = 0,39\%$

 $\begin{tabular}{lll} \textbf{Tabelle 9} & MAPLE-Werte & von & AgCd_3Hf_3F_{20}; & Angaben & in kcal/mol \\ \end{tabular}$

Atom	n	binär	ternär	Δ	n · ⊿
Ag	1	454,0	496,8	-42,8	-42,8
Cd	3	465,9	487,3	-21,4	-64,2
Hf	3	1767,2	1672,2	95,0	285,0
F1	1	126,3	114,4	11,9	11,9
F2	3	147,3	143,2	4,1	12,3
F3	3	148,8	174,5	-25,7	-77,1
F4	6	144,3	149,5	-5,2	-31,2
F5	3	125,3	139,9	-14,6	-43,8
F6	1	126,3	102,0	24,3	24,3
F7	3	125,3	142,5	-17,2	-51,6
		$\Sigma = 9912$	$\Sigma = 9889$		$\Sigma = -22,8$ $\delta = 0,23\%$

Tabelle 10 MAPLE-Werte von AgCa₃Zr₃F₂₀; Angaben in kcal/mol

Atom	n	binär	ternär	Δ	n·⊿
Ag	1	454,0	496,2	-42,2	-42,2
Ca	3	459,6	474,7	-15,1	-45,3
Zr	3	1752,1	1669,0	83,1	249,3
F1	1	126,3	108,5	17,8	17,8
F2	3	149,0	142,4	6,6	19,8
F3	3	142,8	169,2	-26,4	-79,2
F4	6	143,2	149,9	-6,7	-40,2
F5	3	123,6	143,0	-19,4	-58,2
F6	1	126,3	100,5	25,8	25,8
F7	3	123,6	142,0	-18,4	-55,2

$$\Sigma = 9818$$
 $\Sigma = 9826$ $\Sigma = -7.6$ $\delta = -0.08\%$

Tabelle 11 Gitterkonstanten der Verbindungen $AgM_3^{II}M_3^{IV}F_{20}$ ($M^{II}=Cd, Ca, Hg; M^{IV}=Zr, Hf$); berechnet aus Pulverdaten (Cu- K_{α_i} , $\lambda=154,051$ pm)

Verbindung	a/pm	c/pm
AgCd ₃ Zr ₃ F ₂₀	1052,0	828,6
$AgCd_3Hf_3F_{20}$	1048,0	832,6
$AgCa_3Zr_3F_{20}$	1059,4	841,0
AgCa ₃ Hf ₃ F ₂₀	1053,7	830,6
$AgHg_3Zr_3F_{20}$	1058,9	832,6
$AgHg_3Hf_3F_{20}$	1056,9	833,0

Tabelle 12 Auswertung einer Pulveraufnahme von $AgCd_3Zr_3F_{20}$ (Cu- K_{α_1} , $\lambda=154{,}051$ pm) (repräsentativ für alle Verbindungen $AgM_3^{11}M_3^{10}F_{20}$)

h —	k	1	$10^3 \cdot \sin^2 \theta_{\rm c}$	$10^3 \cdot \sin^2 \theta_{\rm o}$	I_{c}	Io
1	0	1	15.79	15.94	0.2	0.5
0	0	2	34.56	34.63	7.2	8
2	1	0	50.04	50.07	10.0	10
2	1	2	84.60	84.65	3.9	5
3	1	1	101.56	101.57	0.3	1
0	0	4	138.25	138.22	1.9	3
3	2	1	144.45	144.46	0.3	1
4	1	0	150.11	150.03	3.8	6

 $Abb.\,1\quad AgCd_3Zr_3F_{20},\ Koordinationspolyeder\ um\ Ag^{2+},\ Cd^{2+}$ und Zr^{4+}

(Abb. 2). Die [AgF₅]- bzw., in dieser Beschreibung, besser [AgF₈]-Bipyramiden sind voneinander isoliert. Sie komplettieren alternierend über F(5) und F(7) abwechselnd über gemeinsame Kanten mit den [CdF₇]- bzw. [ZrF₇]-Baueinheiten die Schicht (Abb. 3 und 4).

Abb. 2 AgCd₃Zr₃F₂₀, Cd- und Zr-Dreiereinheit

Abb. 3 AgCd $_3$ Zr $_3$ F $_{20}$, Verknüpfung der [AgF $_8$]-Polyeder mit den [CdF $_7$]- und [ZrF $_7$]-Baugruppen

Tertiärstruktur

Die $[Cd_3F_{16}]$ - bzw. $[Zr_3F_{18}]$ -Polyedertripel werden ebenfalls transständig über F(4) so miteinander verknüpft, daß jeweils eine $[Cd_3F_{16}]$ -Gruppe über bzw. unter einem $[Zr_3F_{18}]$ -Tripel liegt, d. h., jede zweite Schicht ist um 180° gedreht gegenüber der ersten angeordnet. Dem entspricht dann die Schichtfolge ABAB... (Abb. 5). Bemerkenswert

Abb. 4 AgCd₃Zr₃F₂₀, Verknüpfung der [AgF₈]-, [ZrF₇]- und [CdF₇]-Baugruppen innerhalb einer Kationenschicht (00l)

Abb. 5 AgCd $_3$ Zr $_3$ F $_{20}$, Verknüpfung der Kationenschichten längs [001]

lang sind dabei die Abstände d_{F-F} innerhalb der nur F^- enthaltenden "Zwischenschichten" mit z. B. $d_{F(4)-F(4)}=394~\text{pm}$ bzw. $d_{F(4)-F(6)}=394~\text{pm}$.

5 Der Madelunganteil der Gitterenergie, MAPLE

Die Übereinstimmung der MAPLE-Werte von $AgCd_3Zr_3F_{20}$, $AgCd_3Hf_3F_{20}$ und $AgCa_3Zr_3F_{20}$ mit der Summe der binären Fluoride ist in allen Fällen gut, vgl. Tab. 8-10.

6 Magnetische Messungen

An mikrokristallinen Proben von $AgCd_3Zr_3F_{20}$ und $AgCd_3Hf_3F_{20}$ wurden magnetische Messungen durchgeführt.

Im Temperaturbereich von 22-300 K erfolgten die Messungen an der institutseigenen Faraday-Waage, unterhalb von 10 K an einem SQUID-Magnetometer (Institut für Anorganische Chemie der Universität Hannover). Die geringe Einwaage zusammen mit der relativ großen Masse des Köchers bedingen hohe diamagnetische Anteile,

was zusammen mit dem relativ geringen magnetischen Moment von Ag^{2^+} ($\mu=1,73~\mu_B$ für den Spin-only Fall) dazu führt, daß die am SQUID-Magnetometer gesammelten Daten für λ_{mol} vor allem oberhalb von 150 K relativ ungenau werden. Für die Darstellung von $1/\kappa_{mol}$ gegen T über einen größeren Temperaturbereich (zwischen 22 und 300 K) werden daher im folgenden die mit der Faraday-Waage, für Temperaturen bis 10 K die mit dem SQUID gemessenen Daten wiedergegeben (Abb. 6–7).

Abb. 6 AgCd₃M₃¹VF₂₀ (M¹V = Zr, Hf), reziproke Suszeptibilität in Abhängigkeit von der Temperatur (22 K \leq T \leq 300 K) AgCd₃Zr₃F₂₀: $\theta_{\text{ber.}} = -1.1156$ K, $\mu_{\text{eff}}^{\text{eff}} = 1,23$ BM AgCd₃Hf₃F₂₀: $\theta_{\text{ber.}} = -19.197$ K, $\mu_{\text{eff}}^{\text{eff}} = 1,26$ BM

Die Proben sind unterhalb 3 K antiferromagnetisch $(T_N = 2,7 \text{ K})$. Die antiferromagnetische Wechselwirkung läßt sich auf die linearen, eckenverknüpften $_{\infty}^{1}[AgF_8]$ -Polyederketten durch Superaustausch zurückführen.

Abb. 7 AgCd₃M₃^vF₂₀ (M^{IV} = Zr, Hf), reziproke Suszeptibilität in Abhängigkeit von der Temperatur (2 K \leq T \leq 10 K)

7 Schlußbemerkung

Unter gleichen Bedingungen erhält man im System $AgF_2/ZrF_4/MF_2$ (M = Sr, Ba) leuchtend blaue Verbindungen der (vermutlichen) Zusammensetzung $AgSr_3Zr_4F_{24}$ bzw. $AgBa_3Zr_4F_{24}$. Diese kristallisieren tetragonal mit a = 1062 pm, c = 748 pm, Z = 2 ($AgSr_3Zr_4F_{24}$). Über deren Struktur wird nach Abschluß der Untersuchungen an anderer Stelle berichtet. Naheliegende Versuche, Ag^{2+} in $AgCd_3Zr_3F_{20}$ durch z. B. Cu^{2+} zu ersetzen, blieben bislang erfolglos.

Herrn G. Koch danken wir für die freundliche Unterstützung bei der Datensammlung am IPDS, Herrn Dr. G. Bock für die Unterstützung bei den röntgenographischen Untersuchungen, Frau M. Wolf bzw. Frau A. Becker (Arbeitskreis Prof. Urland) für die Durchführung der magnetischen Untersuchungen an der Faraday-Waage bzw. am SQUID-Magnetometer. Unser Dank gilt ferner der DFG, dem Fond der Chemischen Industrie und Prof. Dr. Dr. hc. mult. emer. R. Hoppe für Unterstützung mit Sach- und Personalmitteln.

Literatur

- [1] B. G. Müller, Z. anorg. allg. Chem. 553 (1987) 196
- [2] F. Schrötter, M. Serafin, Programm zur Darstellung des Reziproken Gitters anhand des Datensatzes, Gießen 1991
- [3] G. M. Sheldrick, SHEL-X 86, Program for Crystal Structure Determination, Göttingen 1986
- [4] G. M. Sheldrick, SHEL-X 93, Program for Crystal Structure Refinement, Göttingen 1993
- [5] W. Herrendorf, HABITUS, Programm zur Optimierung der Kristallgestalt für die numerische Absorptionskorrektur, Dissertation Karlsruhe 1993

Korrespondenzadresse:

Prof. Dr. B. G. Müller Institut für Anorganische und Analytische Chemie Heinrich-Buff Ring 58 D-35392 Gießen