Cyclistic Case Study Jun21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for June 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jun21 <- read_csv("C:/Users/theby/Documents/202106-divvy-tripdata.csv")</pre>
```

```
## Rows: 729595 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Jun21)
 colnames(Jun21)
     [1] "ride id"
                                "rideable_type"
                                                      "started at"
     [4] "ended at"
                                "start station name" "start station id"
    [7] "end_station_name"
                                "end_station_id"
                                                      "start_lat"
 ## [10] "start_lng"
                                "end_lat"
                                                      "end_lng"
 ## [13] "member_casual"
 nrow(Jun21)
 ## [1] 729595
 dim(Jun21)
 ## [1] 729595
                    13
 head(Jun21)
 ## # A tibble: 6 × 13
 ##
      ride id
                      ridea…¹ started at
                                                    ended at
                                                                         start...2 start...3
 ##
                      <chr>
                              <dttm>
                                                    <dttm>
                                                                                  <chr>
 ## 1 99FEC93BA843F... electr.. 2021-06-13 14:31:28 2021-06-13 14:34:11 <NA>
                                                                                  <NA>
 ## 2 06048DCFC8520... electr... 2021-06-04 11:18:02 2021-06-04 11:24:19 <NA>
                                                                                  <NA>
 ## 3 9598066F68045... electr... 2021-06-04 09:49:35 2021-06-04 09:55:34 <NA>
                                                                                  <NA>
 ## 4 B03C0FE48C412... electr... 2021-06-03 19:56:05 2021-06-03 20:21:55 <NA>
                                                                                  <NA>
 ## 5 B9EEA89F8FEE7... electr... 2021-06-04 14:05:51 2021-06-04 14:09:59 <NA>
                                                                                  <NA>
 ## 6 62B943CEAAA42... electr... 2021-06-03 19:32:01 2021-06-03 19:38:46 <NA>
                                                                                  <NA>
      ... with 7 more variables: end station name <chr>>, end station id <chr>>,
```

```
tail(Jun21)
```

#

#

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
##
                             <dttm>
                                                   <dttm>
                     <chr>
                                                                        <chr> <chr>
## 1 547E5403EE677... electr... 2021-06-12 15:31:50 2021-06-12 16:38:22 Wells .
## 2 CB282292CCFCE... electr... 2021-06-14 00:17:31 2021-06-14 00:56:46 Wells ... SL-011
## 3 47BD346FAFB9B... classi... 2021-06-30 17:35:10 2021-06-30 17:43:20 Clark ... 13303
## 4 52467C23D17C6... classi... 2021-06-13 19:24:30 2021-06-13 19:34:11 Indian... TA1307...
## 5 7DF6D74420D7D... electr... 2021-06-08 15:44:28 2021-06-08 16:15:01 Clark ... 13303
## 6 0C01F8BA99E51... electr.. 2021-06-03 16:18:38 2021-06-03 16:47:49 Clark ... 13303
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,

2start_station_name, 3start_station_id

member casual <chr>, and abbreviated variable names ¹rideable type,

```
summary(Jun21)
```

```
##
      ride id
                      rideable_type
                                           started at
   Length: 729595
                      Length: 729595
                                         Min. :2021-06-01 00:00:38.00
##
                      Class :character
                                         1st Qu.:2021-06-08 16:03:57.00
##
   Class :character
##
   Mode :character Mode :character
                                         Median :2021-06-14 19:46:47.00
##
                                         Mean :2021-06-15 09:48:47.76
##
                                         3rd Qu.:2021-06-21 19:10:47.00
##
                                         Max. :2021-06-30 23:59:59.00
##
##
      ended at
                                    start station name start station id
##
   Min. :2021-06-01 00:06:22.00
                                    Length:729595
                                                      Length: 729595
   1st Ou.:2021-06-08 16:23:54.00
                                                      Class :character
##
                                    Class :character
##
   Median :2021-06-14 20:13:55.00
                                    Mode :character
                                                     Mode :character
##
         :2021-06-15 10:14:52.60
##
   3rd Qu.:2021-06-21 19:31:59.00
##
   Max. :2021-07-13 22:51:35.00
##
##
   end station name
                      end station id
                                           start_lat
                                                          start_lng
                                         Min. :41.64
                                                        Min. :-87.78
##
   Length: 729595
                      Length: 729595
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                        1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                        Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.64
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                         Max. :42.07 Max. :-87.52
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.51
                   Min. :-87.86
                                    Length: 729595
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
                  Median :-87.64
##
   Mean :41.90
                   Mean :-87.64
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.08
                  Max. :-87.49
##
   NA's
         :717
                   NA's
                         :717
```

str(Jun21)

```
## spc tbl [729,595 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                       : chr [1:729595] "99FEC93BA843FB20" "06048DCFC8520CAF" "9598066F68045DF2" "B03C0FE48C4122
##
  $ ride_id
14"
##
  $ rideable type
                       : chr [1:729595] "electric bike" "electric bike" "electric bike" ...
                      : POSIXct[1:729595], format: "2021-06-13 14:31:28" "2021-06-04 11:18:02" ...
  $ started at
                       : POSIXct[1:729595], format: "2021-06-13 14:34:11" "2021-06-04 11:24:19" ...
## $ ended_at
   $ start_station_name: chr [1:729595] NA NA NA NA ...
##
##
   \ start_station_id \ : chr [1:729595] NA NA NA NA ...
   ##
                       : chr [1:729595] NA NA NA NA ...
##
   $ end station id
##
                      : num [1:729595] 41.8 41.8 41.8 41.8 41.8 ...
   $ start lat
                      : num [1:729595] -87.6 -87.6 -87.6 -87.6 -87.6 ...
##
   $ start lng
##
   $ end lat
                      : num [1:729595] 41.8 41.8 41.8 41.8 ...
##
                       : num [1:729595] -87.6 -87.6 -87.6 -87.6 -87.6 ...
   $ end lna
##
    $ member casual
                       : chr [1:729595] "member" "member" "member" ...
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
    . .
##
         rideable_type = col_character(),
        started_at = col_datetime(format = ""),
##
     . .
##
         ended at = col datetime(format = ""),
     . .
##
         start_station_name = col_character(),
     . .
##
         start_station_id = col_character(),
     . .
##
         end station name = col character(),
     . .
##
         end_station_id = col_character(),
     . .
##
         start_lat = col_double(),
##
     . .
         start_lng = col_double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
    . .
         member_casual = col_character()
    ..)
   - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day of week, and ride length in seconds.

```
Jun21$date <- as.Date(Jun21$started_at)
Jun21$month <- format(as.Date(Jun21$date), "%m")
Jun21$day <- format(as.Date(Jun21$date), "%d")
Jun21$year <- format(as.Date(Jun21$date), "%Y")
Jun21$pday_of_week <- format(as.Date(Jun21$date), "%A")
Jun21$ride_length <- difftime(Jun21$ended_at,Jun21$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Jun21$ride_length)
```

[1] FALSE

Recheck ride_length data type.

```
Jun21$ride_length <- as.numeric(as.character(Jun21$ride_length))
is.numeric(Jun21$ride_length)</pre>
```

[1] TRUE

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Jun21 <- na.omit(Jun21)</pre>
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Jun21 <- subset(Jun21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride length less than 1 minute.

```
Jun21 <- subset (Jun21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Jun21$ride_length)
```

[1] 1579.515

median(Jun21\$ride_length)

[1] 823

max(Jun21\$ride_length)

[1] 3356649

min(Jun21\$ride_length)

[1] 2

Run a statistical summary of the ride_length.

```
summary(Jun21$ride_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 468 823 1580 1474 3356649
```

Compare the members and casual users

```
aggregate(Jun21$ride_length ~ Jun21$member_casual, FUN = mean)
```

```
aggregate(Jun21$ride_length ~ Jun21$member_casual, FUN = median)
```

```
aggregate(Jun21$ride length ~ Jun21$member casual, FUN = max)
```

```
## Jun21$member_casual Jun21$ride_length
## 1 casual 3356649
## 2 member 89738
```

```
aggregate(Jun21$ride_length ~ Jun21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Jun21$ride_length ~ Jun21$member_casual + Jun21$day_of_week, FUN = mean)
```

```
##
      Jun21$member_casual Jun21$day_of_week Jun21$ride_length
## 1
                    casual
                                       Friday
## 2
                    member
                                       Friday
                                                       836.0469
## 3
                                      Monday
                                                       1882.0437
                    casual
## 4
                                                       787.0015
                    member
                                      Monday
## 5
                    casual
                                     Saturday
                                                      2586.1439
## 6
                                     Saturday
                    member
                                                       926.7381
## 7
                    casual
                                       Sunday
                                                       2577.6737
## 8
                    member
                                       Sunday
                                                       964.7070
## 9
                                     Thursday
                                                      2183.2040
                    casual
## 10
                    member
                                     Thursday
                                                       815.6144
                                     Tuesday
## 11
                                                      2072.9446
## 12
                    member
                                     Tuesday
                                                       822.4277
## 13
                                    Wednesday
                                                       2171.3531
                    casual
## 14
                    member
                                    Wednesday
                                                        814.0626
```

Sort the days of the week in order.

```
Jun21$day_of_week <- ordered(Jun21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Jun21$ride_length ~ Jun21$member_casual + Jun21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Jun21$member casual Jun21$day of week Jun21$ride length
##
## 1
                                                     2577.6737
                  casual
                                     Sunday
## 2
                  member
                                                      964.7070
                                     Sunday
## 3
                  casual
                                     Monday
                                                     1882.0437
## 4
                  member
                                     Monday
                                                      787.0015
## 5
                                                     2072.9446
                   casual
                                    Tuesday
## 6
                  member
                                    Tuesday
                                                      822.4277
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member_casual weekday number_of_rides average_duration
##
                     <int>
                                      <int>
## 1 casual
                                      58814
                                                       2578.
                         1
                                      28105
                                                       1882.
## 2 casual
                         2
## 3 casual
                         3
                                      38654
                                                       2073.
## 4 casual
                         4
                                      39115
                                                       2171.
## 5 casual
                         5
                                      33129
                                                       2183.
## 6 casual
                                      43088
                                                       2264.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Jun21$member_casual)
```

```
##
## casual member
## 304166 304528
```

```
table(Jun21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 433721 51715 123258
```

```
table(Jun21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 96975 65523 91052 94656 75047 83339 102102
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Jun21$day_of_week,Jun21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
                        casual 58814
## 1
          Sunday
## 2
          Monday
                        casual 28105
## 3
         Tuesday
                        casual 38654
## 4
       Wednesday
                        casual 39115
## 5
        Thursday
                        casual 33129
                        casual 43088
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Jun21$rideable_type,Jun21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                             Freq
## 1 classic_bike casual 187405
## 2
     docked bike
                      casual 51715
## 3 electric bike
                     casual 65046
## 4 classic bike
                    member 246316
## 5 docked_bike
                    member
                                 0
## 6 electric_bike
                     member 58212
```

Plot for bike user vs bike type.

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Jun21, "Jun21.csv")