The Graph Minor Theorem

Aaron Tharsius

Advisor: Dr. Bogdan Oporowski Department of Mathematics Louisiana State University

April 9, 2019

Graphs

Graphs (Vertices)

Graphs (Edges)

Edge Deletion

Vertex Deletion

Edge Contraction

Minor Relation

2 is a minor of 1

3 is a minor of 1 and 2

Planar Graphs

Planar Graphs

Planar Graphs

Kuratowski's Theorem

Theorem: Kuratowski (Wagner's Variation)

A graph is embeddable in the plane if it does not have K_5 or $K_{3,3}$ as minors.

Petersen Graph

Petersen Graph

Petersen Graph

Question: Does a Kuratowski-like theorem exist for other surfaces?

Theorem (Archdeacon)

The class of graphs embeddable on the projective plane has 35 forbidden minors.

Corollary to Theorem

It is possible to check if a graph is embeddable on the projective plane by testing for a finite list of forbidden minors.

Aaron Tharsius April 9, 2019

Torus (Chambers and Myrvold)

Statement

The class of graphs embeddable on the projective plane has at least 16,629 forbidden minors.

Problem

Is the list of forbidden minors finite?

April 9, 2019 The Graph Minor Theorem Aaron Tharsius

The Graph Minor Theorem

The Graph Minor Theorem (Robertson, Seymour)

A class of graphs closed under minors has a finite list of forbidden minors.

Classes of Graphs Closed Under Minors

- Graphs embeddable on orientable surfaces.
- Graphs embeddable on non-orientable surfaces.
- Graphs that are outerplanar.
- Graphs linklessly and knotlessly embeddable in Euclidean space.
- Graphs that are apex outerplanar. (Ding, Dziobiak)
- And many more...

Classes of Graphs Closed Under Minors

- Graphs embeddable on orientable surfaces.
- Graphs embeddable on non-orientable surfaces.
- Graphs that are outerplanar.
- Graphs linklessly and knotlessly embeddable in Euclidean space.
- Graphs that are apex outerplanar. (Ding, Dziobiak)
- And many more...

Thank You!