

Ricardo Antonio Ruiz Cardozo

PGM522 – ANÁLISE DE EXPERIMENTOS EM GENÉTICA E MELHORAMENTO DE PLANTAS

1ª LISTA DE EXERCÍCIOS

Distribuição Normal e Estimação de parâmetros

- 1) Seja Z uma variável normal padronizada [$Z \sim N(0,1)$]. Determine as seguintes probabilidades e as represente em gráficos:
 - a) $P(Z \ge 1.8) = 0.0359$

Distribuição Normal Padronizada

b) $P(-1.4 \le Z \le -0.45) = 0.246$

Distribuição Normal Padronizada

c) $P(Z \le 0.45) = 0.674$

Distribuição Normal Padronizada

d)
$$P(Z \le -0.3) = 0.382$$

e) $P(-0.7 \le Z \le 0.6) = 0.484$

Distribuição Normal Padronizada

- 2) Encontre os valores de z da distribuição N(0,1), tais que:
 - a) $P(Z > z) = 0.9798 \rightarrow z = -2.049636$

- b) $P(Z < z) = 0.063 \rightarrow z = -1.530068$
- c) $P(1 < Z < z) = 0.10 \rightarrow z = 1.566163$
- d) $P(-1.5 < Z < z) = 0.30 \rightarrow z = -0.3403215$
- 3) Foi realizado um estudo sobre a altura de plantas de trigo em Latossolo Vermelho do Cerrado com adubação fosfatada. Observou-se que este caráter se distribui normalmente com média 1,70 m e variância de 400 cm². Calcule a probabilidade da altura (X) de uma planta sorteada desse estudo esteja de acordo com os seguintes eventos:
 - a) X > 1,90 m; \rightarrow Probabilidade (Prob.) = 0.1586553; o 15.87% de probabilidade que uma planta seja maior a 1.90 m
 - b) 1,90 < X < 2,10 m; \rightarrow Prob. = 0.1359051; o 13.59% de probabilidade que uma planta esteja entre 1.90 e 2.10 m
 - c) X < 1,50 m; \rightarrow Prob. = 0.1586553; o 15.87% de probabilidade que uma planta seja menor que 1.50 m
 - d) A partir de que altura (m) se encontra 30% das plantas mais altas?
 - $P(Z > z) = 0.3 \rightarrow A$ partir da altura X = 1.80488 m se encontram o 30% das plantas mais altas.
 - e) A partir de que altura (m) se encontra 40% das plantas mais baixas?
 - $P(Z > z) = 0.3 \rightarrow A$ partir da altura X = 1.649331 m se encontram o 40% das plantas mais baixas.
- f) Suponha que as plantas de trigo apresentem a seguinte classificação:
 Classe E − 10% mais baixas → P (Z <= z) = 0.1; a altura do 10% das plantas mais baixas é até 1.44369 m
- Classe D 30% seguintes à classe E \rightarrow P (Z <= z) = 0.4; a classe D com o 40% das plantas, são plantas com altura até 1.649331 m.
- Classe C -15% seguintes à classe D \rightarrow P (Z <= z) = 0.55; a classe C com o 55% das plantas, são plantas com altura até 1.725132 m
- Classe B -25% seguintes à classe C \rightarrow P (Z <=z) = 0.8; a classe B com o 80% das plantas, são plantas com altura até 1.868324 m
- Classe A -20% mais altas \rightarrow P (Z >z) = 0.2; a classe A com o 20% das plantas restantes, são plantas com altura maior de 1.868324 m

Com base nesta classificação, determine os limites de altura das plantas de cada classe.

- 4) Em um estudo quanto à produção de grãos (kg/parcela) de uma amostra de linhagens de feijão, observou-se que a produtividade é uma variável normalmente distribuída com média μ =9,8 (kg/parcela) e desvio padrão σ =3,5 (kg/parcela). Num programa de melhoramento, entre outras características, uma cultivar deve satisfazer a condição 7,0 < x < 15,0 kg/parcela. Nessas condições, tendo-se 169 linhagens de feijão, pergunta-se:
 - a) Qual a proporção de linhagens que deverá ser aceita?

O 71,9% das linhagens deverão ser aceitas

Normal Distribution

P(7 kg/parcela < Y < 15 kg/parcela) = 0.719

- b) Qual o número esperado de linhagens que continuará participando do programa de melhoramento?
 - Número Linhagens = 169 linhagens $* 0.719 \approx 122$ linhagens
- c) Qual o número esperado de linhagens cuja produção por parcela é superior a 14,0 kg?

•
$$P\left(y > 14.0 \frac{kg}{parcela}\right) \simeq 0.1150697 \Rightarrow$$

• Núm. linhagens = 169 * 0.1150697 = 19.44

- $\simeq 20$ linhagens superiores a 14 kg
- Suponha que as medidas dos grãos de pólen de *Euterpe oleracea* (açaizeiro) em vista equatorial, em μm, seja uma variável normalmente distribuída (Dados adaptados da dissertação de Oliveira, 2011). Assume-se que o comprimento do colpo tenha média 96,60 μm e desvio padrão de 12,00 μm, e que a largura do colpo tenha média 1,23 μm e desvio padrão de 0,30 μm. Qual a probabilidade de sortear um grão de pólen com:
 - a) comprimento do colpo maior que 97,20 μm e largura do colpo menor que 1,19 μm?
 - $P(comprimento > 97.20 \,\mu m) * P(largura < 1.19 \,\mu m) = 0.4800612 * 0.4469649 \approx 0.2146$

Há uma probabilidade do 21,46% de ter grãos com comprimento maior que 97,20 μm e largura do colpo menor que 1,19 μm.

- b) comprimento do colpo menor que 95,60 μm ou largura do colpo maior que 1,26 μm?
 - $P(comprimento < 95.60 \,\mu m) + P(largura > 1.26 \,\mu m) = 0.4667932 + 0.4601722 \approx 0.9269654$

Há uma probabilidade do 92,70% de ter grãos com comprimento menor que 95,60 μ m ou largura do colpo maior que 1,26 μ m.

6) Os dados a seguir referem-se à produção de grãos, em g/planta, obtidos numa amostra de 20 plantas de feijão da geração F₂ do cruzamento das cultivares Flor de Maio e Carioca.

1,38	4,14	6,23	12,13	17,12
3,65	4,54	6,79	12,56	19,68
3,72	5,64	8,21	13,19	21,26
3,87	5,67	9,79	15,60	24,57

Calcule:

- a) $\sum_{i=1}^{n} X_i = 199.74 \text{ g/planta}$
- b) $\sum_{i=1}^{n} X_i^2 = 2852.213 \text{ g}^2/\text{planta}$
- c) Média amostral: $\bar{X} = \frac{\sum X_i}{n} = 9.987$ g/planta
- d) Soma dos desvios em relação à média: $\sum_{i=1}^{n} (X_i \bar{X}) = 0$ g/planta
- e) Calcule a soma de quadrados de desvios em relação à média: $\sum_{i=1}^{n} (X_i \bar{X})^2 = 857.4096 \text{ (g/planta)}^2$
- f) Variância amostral: $S^2 = \frac{1}{n-1} \left[\sum_{i=1}^n X_i^2 \frac{(\sum X_i)^2}{n} \right] = 45.12682 (g/planta)^2$

- g) Desvio padrão amostral: $S = \sqrt{\frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 \frac{(\sum X_i)^2}{n} \right]} = 6.71765 \text{ g/planta}$
- h) Somar aos dados da amostra a constante k (k=10) e calcular novamente a média amostral, a variância amostral, o desvio padrão amostral e o coeficiente de variação para o novo conjunto de dados. Compare os resultados obtidos com os da amostra original.

Estimador	Original	Somando a	
		constante $k = 10$	
Média Amostral (g/planta)	9,987	19,987	
Variância Amostral (g²/planta)	45,127	45,127	
Desvio Padrão (g/planta)	6,718	6,718	
Coeficiente de variação (%)	67, 263	33,610	

Pode se observar que ao somar a constante k o único valor que mudou foi a média, sendo maior, fazendo que o coeficiente de variação seja menor que os dados originais

i) Multiplicar os dados da amostra por uma constante k (considerar k=10) e calcular novamente a média amostral, a variância amostral, o desvio padrão amostral e o coeficiente de variação para o novo conjunto de dados. Compare os resultados obtidos com os da amostra original.

Estimador	Original	Somando a	
		constante k = 10	
Média Amostral (g/planta)	9,987	99,87	
Variância Amostral (g²/planta)	45,127	4512,682	
Desvio Padrão (g/planta)	6,718	67,176	
Coeficiente de variação (%)	67, 263	67,263	

j)

Pode se observar que ao multiplicar a constante k os valores da média, variância e desvio padrão mudaram, mas mantem o coeficiente de variação

- k) Qual é a diferença entre parâmetro, estimador e estimativa?
- **Parâmetro** é uma característica da população, e podem ser utilizados vários estimadores para medir essa característica.
 - Estimador, é a metodologia ou uma estatística utilizada para estimar determinado parâmetro, como por exemplo, média, mediana, moda.
- Estimativa é referente a uma aproximação do parâmetro de uma população através de dados coletados de amostras dessa população. Entre outras palavras é um valor obtido a partir de um estimador, que pode se aproximar ao parâmetro.
- 7) A partir dos dados a seguir da circunferência à altura do peito (cm) de 30 árvores de candeia de uma população, determine:

***************************************	a população, acti			
20,00	9,20	12,00	14,40	12,50
5,80	10,80	15,70	21,50	13,20
12,80	14,80	15,80	22,20	11,20
8,70	12,00	20,60	17,50	8,80
19,00	15,40	18,50	13,30	13,80
19,30	17,60	23,20	8,20	11,40

a) Calcule o intervalo de confiança da média a 95% de probabilidade. Intérprete.

$$IC[\mu; (1-\alpha)\%]: \left[\bar{x} - t_{(\alpha/2;n-1)}\sqrt{S^2/n}; \bar{x} + t_{(\alpha/2;n-1)}\sqrt{S^2/n}\right]$$

Limite inferior (2.5%)	Limite Superior (97.5%)
12.9421 cm	16,3379 cm

Os valores do intervalo de confiança da média indicam que o 95% dos valores da média amostral podem se encontrar em esse intervalo, sabendo que a média foi de 14,64 cm

b) Calcule o intervalo de confiança da variância a 95% de probabilidade. Intérprete.

$$IC[\sigma^2; (1-\alpha)\%]: \left[\frac{(n-1)S^2}{X_{(\alpha/2;n-1)}^2}; \frac{(n-1)S^2}{X_{(1-\alpha/2;n-1)}^2}\right]$$

Limite inferior (2.5%)	Limite Superior (97.5%)
13.11378 cm ²	37.36457 cm ²

É esperado que em 95% dos casos de uma **n** amostras a variância esteja dentro desse intervalo, sabendo que a variância foi de 20,68 cm²

c) Qual é o significado do nível de confiança?

O nível de confiança significa que se sortearmos uma quantidade de valores aleatórios de dados, de acordo com uma média e o desvio padrão amostral, é esperado que os valores fiquem dentro de um intervalo de confiança estipulado pelo rigor do pesquisador ou pessoa. A exemplo, a um nível de confiança de 95%, se sorteamos 100 valores aleatórios é esperado que 95 destes valores fiquem dentro do intervalo de confiança. Pelo tanto pode determinar a probabilidade de aceitar uma hipótese corretamente.

d) Represente os dados num histograma.

Circunferência à altura do peito

e) Verifique a normalidade dos dados pelo método do "Q – Q plot". Calcule o coeficiente de correlação associado conforme Johnson e Wichern (1998) e faça a inferência a 5% de probabilidade.

O coeficiente de correlação foi de **0,9917**, pelo tanto, os dados têm distribuição normal.

$$rQ = 0,9917379$$

$$rQ(n = 30; 0.05) = 0.964$$

De acordo com o teste Q-Q plot sob um nível de significância de 5%, os dados estão em normalidade, pois a correlação calculada 0,9917 é maior que a correlação tabelada 0,964.

f) Verifique a normalidade dos dados pelo teste de Shapiro-Wilk a 5% de probabilidade.

Shapiro-Wilk normality test		
W = 0.97786	p-value = 0,7664	

Sob o nível de 5% de significância no teste de Shapiro-Wilk, os dados possuem se encontram com uma distribuição normal, pois o p-value é maior que o $\alpha = 5\%$.

- g) Qual importância de se verificar a normalidade dos dados?
 - É importante para verificar se a distribuição de probabilidade de um conjunto de dados possui uma distribuição normal. Sendo essa um pressuposto para poder utilizar diferentes testes estatísticos de maneira adequadas.
- 8) Em um estudo quanto à produção, em t/ha, de variedades de batata, tomaram-se os seguintes valores:

9,2	15,4	23,1	27,0	18,0	24,6	24,2	20,0	9,2	12,3
21,1	12,7	18,0	29,9	21,1	11,0	10,1	26,4	25,7	17,1
22,6	20,0	13,4	11,9	24,2	26,4	18,2	24,0	25,1	28,0

Usando o programa R, pede-se:

a) Verifique a normalidade dos dados pelo procedimento Q-Q plot e pelo teste de Shapiro-Wilk a 5% de probabilidade.

$$rQ(n = 30; 0.05) = 0.964$$

De acordo com o teste Q-Q plot sob um nível de significância de 5%, os dados estão em normalidade, pois a correlação calculada 0,975 é maior que a correlação tabelada 0,964.

Shapiro-Wilk normality test			
W = 0.94012	p-value = 0,09166		

Sob o nível de 5% de significância no teste de Shapiro-Wilk, os dados estão com a distribuição normal, pois o p-value é maior que o $\alpha = 5\%$.

- b) Determine o intervalo para a média da produção com um grau de confiança de 99%. Interprete o resultado.
 - Média=19,6633 t/ha
 - Variância = $38,417575 (t/ha)^2$
 - Erro padrão (SE mean) = 1,131630 t/ha
 - t = 17.376, df (graus de liberdade) = 29, p-value < 2.2e-16

IC[*X*; 0,99%]: [16,54413; 22,78254]

Limite inferior	Limite Superior	
16.5441 t/ha	22.7825 t/ha	

Ao nível de 99% de confiança estima-se que a média da produção de batata está entre o intervalo de 16,54 e 22,78. A média foi de 19,66 t/ha encontrando-se no intervalo de confiança de 99%

c) Determine o intervalo de confiança de 99% para a variância da produção. Interprete o resultado.

IC[qui; 0,99%]: [21,28779; 84,90946]

Limite inferior (0.5%)	Limite Superior (99.5%)
21,2878	84,9095

Nesses resultados, ao nível de 99% de confiança estima-se que a variância populacional da produção de batata está entre o intervalo de 21,29 e 84,91. A variância é de 38,42 encontrando-se nesse intervalo

d) Caso tivesse escolhido um nível de significância de 5%, qual seria a implicação na amplitude do intervalo confiança dos parâmetros.

Intervalo de confiança de 95% para a média

Limite inferior	Limite Superior
17.348891	21.977776

Intervalo de confiança de 95% para a variância

Limite inferior (2.5%)	Limite Superior (97.5%)
24,36688	69,42760

Ao nível de 95% de confiança os intervalos se estreitam mais em relação aos intervalos obtidos sob o nível de 99% de confiança.