

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Компьютерные системы и сети

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.04.01 Информатика** и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/05 Современные интеллектуальные программно-аппаратные комплексы

ОТЧЕТ

по домашнему заданию N_2 2

Название	Модели предсказания					
Дисциплина	Методы маши	нного обучения				
Студент гр. ИУ	76-21M			А. А. Куценко		
· · · · · ·		(Подпись, дата)	_	(И.О.Фамилия)		
Преподаватель				С. Ю. Папулин		
		(Подпись, дата)		(И.О.Фамилия)		

Домашнее задание 2. Модели предсказания

Куценко А. А (ftruf357ft@gmail.com)

Подключение стилей оформления

Содержание

- Вэризит
- Задача 1. Реализация собственных классов и функций (4 балла)
- Задача 2. Классификация и кросс-валидация (2 балла)
- Задача 3. Классификация текстовых документов (4 балла)

Цель работы

Приобрести опыт решения практических задач по машинному обучению, таких как анализ и визуализация исходных данных, обучение, выбор и оценка качества моделей предсказания, посредством языка программирования Python.

При выполнении работы решаются следующие задачи:

- реализация собственных классов, совместимых с библиотекой sklearn;
- оценка влияния регуляризации в моделях предсказания;
- преобразование исходных данных посредством транформаторов sklearn;
- использование отложенной выборки и кросс-валидации;
- выбор гиперпараметров и интерпретация кривых обучения;
- оценка качества моделей предсказания;
- выявление преимуществ и недостатков методов предсказания в зависимости от поставленной задачи.

Вариант

```
In [2]: surname = "Куценко" # Ваша фамилия

alph = 'aбвгдеёжзийклмнопрстуфхцчшцыывэюя'

w = [4, 42, 21, 21, 55, 1, 44, 26, 18, 3, 38, 26, 18, 12, 3, 49, 45,

7, 42, 9, 4, 3, 36, 33, 31, 29, 5, 4, 4, 19, 21, 27, 33]

d = dict(zip(alph, w))

variant = sum([d[el] for el in surname.lower()]) % 40 + 1

print("Задание № 2. Вариант: ", variant % 2 + 1)

print("Задание № 3. Вариант: ", variant % 3 + 1)

Задание № 2. Вариант: 2

Задание № 3. Вариант: 3
```

Задача 1. Реализация собственных классов и функций (4 балла)

Условие

Замечание. 1) Нельзя пользоваться готовыми реализациями sklearn; 2) чтобы избежать случая с вырожденной матрицей при оценке параметров добавьте незначительную регуляризацию по умолчанию или используйте lstsq из пакета numpy или др. способ: 3) используйте random state=0

- 1. Реализуйте класс, предназначенный для оценки параметров линейной регрессии с регуляризацией совместимый с sklearn . Передаваемые параметры: 1) коэффициент регуляризации (alpha). Использовать метод наименьших квадратов с регуляризацией;
- 2. Реализуйте класс для стандартизации признаков в виде трансформации, совместимый с sklearn . Передаваемые параметры: 1) has_bias (содержит ли матрица вектор единиц), 2) apply_mean (производить ли центровку)
- 3. Реализуйте функции для расчета MSE и R^2 при отложенной выборке (run_holdout) и кросс-валидации (run_cross_val). Для кросс-валидации используйте **только** класс KFold . Выходными значениями должны быть MSE и R^2 для обучающей и тестовой частей.

Шаблон кода:

4. Используя класс Pipeline , выполнить обучение линейной регрессии с предварительной стандартизацией с коэффициентом регуляризации равным θ и 0.01 . Выведите значения параметров обученной модели. Выведите значения MSE и R^2 , полученные посредством функций run_holdout и run_cross_val . Отобразите график предсказание (\hat{y}) - действительное значение (y) для разных коэффициентов регуляризации для обучающего и текстового множества.

Использовать следующие параметры:

- train_size=0.75,
- n_splits=4,
- shuffle=True,

• random_state=0

Замечание: при формировании исходных данных использовался полином 16 степени одномерных данных.

Выполнение

```
In [3]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
```

1. Нужно реализовать класс линейной регрессии с регуляризацией и использованием метода МНК. Поскольку реализуемый класс - это estimator, то нужно отнаследоваться от BaseEstimator, а также отнаследоваться от базового для всех регрессоров класса RegressorMixin

Поскольку в задании не указан тип, будем использовать L2 регуляризацию

```
In [4]: class CustomRidge(BaseEstimator, RegressorMixin):
    epsilon = le-10

def __init__(self, alpha=10e-4):
    self.alpha = alpha

# ИЗбегаем сингулярной матрицы, если коэффициент регуляризации близок или равен нулю
    if self.alpha = self.epsilon:
        self.alpha = self.epsilon

def fit(self, X, y):
        X, y = check_X_y(X, y)
        self.n_freatures_in_ = X.shape[1]

        X_ = np.c_[np.ones(X.shape[0]), X]

        E = np.eye(X_.shape[1])

# не осуществляем регуляризацию для свободного параметра coef_[0]
        E[0, 0] = 0
        self.coef_ = np.linalg.inv(X_.T @ X_ + self.alpha * E) @ X_.T @ y
        return self

def predict(self, X):
        check_is_fitted(self, 'coef_')
        X = check_array(X)
        X_ = np.c_[np.ones(X.shape[0]), X]
        return X_ @ self.coef_
```

Пояснение к формуле для коэффициентов

Модель линейной регрессии:

$$h(x) = heta^T x = heta_0 + heta_1 x_1 + \dots + heta_p x_p$$

Функция потерь для линейной регрессии с L2 регуляризацией:

$$L(\theta) = \sum_{i=1}^{n} \big(y_i - h(x_i)\big)^2 + \alpha \sum_{j=1}^{p} \theta_j^2 = \sum_{i=1}^{n} \left[y_i - \big(\theta_0 + \theta_1 x_{i_1} + \dots + \theta_p x_{i_p}\big)\right]^2 + \alpha \sum_{j=1}^{p} \theta_j^2$$

Постановка задачи заключается в минимизации функции потерь:

$$\hat{\theta} = \operatorname*{argmin}_{\theta} L(\theta)$$

В методе МНК минимум функции L(heta) осуществляется поиском экстремума функции, то есть к приравниванию частных производных к нулю и решению СЛАУ.

Частная производная $L(\theta)$ по координате θ_j :

$$\begin{split} \frac{\partial L(\theta)}{\partial \theta_j} &= \frac{\partial}{\partial \theta_j} \Bigg[\sum_{i=1}^n \big(y_i - h(x_i) \big)^2 + \alpha \sum_{k=1}^p \theta_k^2 \Bigg] = \\ &= \frac{\partial}{\partial \theta_j} \sum_{i=1}^n \Big[y_i - \big(\theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_p x_{ip} \big) \Big]^2 + \alpha \frac{\partial}{\partial \theta_j} \Big(\theta_0^2 + \theta_1^2 + \dots + \theta_j^2 + \dots \theta_k^2 \Big) = \\ &= \sum_{i=1}^n -2 x_{ij} \big[y_i - \big(\theta_0 + \theta_1 x_{i_1} + \theta_2 x_{i2} + \dots + \theta_p x_{ip} \big) \big] + 2 \alpha \theta_j \end{split}$$

В матричной форме получим:

$$abla L(heta) = -2X^T(y-X heta) + 2lpha heta$$

Приравниваем к нулю:

$$-2X^{T}(y - X\theta) = -2\alpha\theta\tag{1}$$

$$X^{T}(y - X\theta) = \alpha\theta \tag{2}$$

$$X^T X \theta + \alpha \theta = X^T y \tag{3}$$

$$X^{T}X\theta + \alpha E\theta = X^{T}y \tag{4}$$

$$(X^TX + \alpha E)\theta = X^Ty \tag{5}$$

 $\theta = (X^T X + \alpha E)^{-1} X^T y , \qquad (6)$

где E - единичная матрица, $lpha\geqslant 0$

Проверка на совместимость с sklearn

In [5]: %pip install threadpoolctl==3.1.0

```
Requirement already satisfied: threadpoolctl==3.1.0 in /opt/conda/lib/python3.11/site-packages (3.1.0)
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
          Note: you may need to restart the kernel to use updated packages.
In [6]: from sklearn.utils.estimator_checks import check_estimator
from sklearn.base import is_regressor
In [7]: check_estimator(estimator=CustomRidge())
In [8]: # Note: Based on _estimator_type
    is_regressor(CustomRidge())
Out[8]: True
            Реализуем функцию train_test_split, функционально аналогичную варианту из sklearn
In [9]: from decimal import Decimal, getcontext
            import math
            def check array lengths(*arrays):
                  if not arrays:
raise ValueError("Пустой список массивов")
                  first_length = len(arrays[0])
                  for i, arr in enumerate(arrays):
    if len(arr) != first_length:
        raise ValueError(f"Массив {i} имеет длину {len(arr)}, ожидалось получить массив длины {first_length}")
                  return first length
            \label{lem:def_get_train_test_separation_boundaries(test\_size=None, train\_size=None): \\
                 # переданы оба значения

if None not in (train_size, test_size):
    test_size = Decimal(test_size)
                       train_size = Decimal(train_size)
                       if train size + test size != 1:
                             raise ValueError(f"Ошибка: train_size + test_size = {train_size + test_size}. Ожидалось 1.0")
                  else:
                       # не передано ни одно значение
if train_size is None and test_size is None:
    train_size = 0.25
                             test_size = Decimal(1) - Decimal(train_size)
                       else:
                              .
# передано какое-то из двух значений
                            if train_size is not None:
    train_size = Decimal(train_size)
    test_size = 1 - train_size
                             if test_size is not None:
    test_size = Decimal(test_size)
    train_size = 1 - test_size
                  return (float(train_size), float(test_size))
            \label{lem:custom_train_test_split} \textbf{def} \ \ \text{custom\_train\_test\_split} (\textbf{*arrays}, \ \text{test\_size=None}, \ \text{train\_size=None}, \ \text{random\_state=None}, \ \text{shuffle=True}):
                  arr_length = check_array_lengths(*arrays)
                  train_portion, test_portion = get_train_test_separation_boundaries(test_size, train_size)
                  train_elems_count = math.trunc(train_portion * arr_length)
                 if train_elems_count == 0:
    raise ValueError(f"Ошибка: количество элементов для train равно 0")
elif train_elems_count == arr_length:
                       raise ValueError(f"Ошибка: количество элементов для test равно 0")
                  indexes = np.array([i for i in range(0, arr_length)])
                        rng = np.random.default rng(seed=random state)
                        rng.shuffle(indexes)
                 for array in arrays:
    if array.ndim == 1:
                             result.append(array[indexes[:train_elems_count]])
result.append(array[indexes[train_elems_count:]])
                       if array.ndim == 2:
    result.append(array[indexes[:train_elems_count], :])
                             result.append(array[indexes[train_elems_count:], :])
            Проверим поведение CustomRidge сэталонной реализацией Ridge из sklearn
```

In [10]: TEST_REGULARIZATION = 0.1

```
from scipy import stats
from sklearn.linear_model import Ridge
```

```
def regression dataset(n=100):
                     regression_daraset(n=100):
"""Генерация исходных данных"""
x = stats.uniform.rvs(size=n, loc=0, scale=6, random_state=0)
                     f = lambda x: 0.3 + 2*x
y = stats.norm.rvs(size=n, loc=0, scale=0.3, random_state=0) + f(x)
                     return (x, y, f)
       # Инициализация исходных данных
       x, y, f = regression_dataset()
       # Представление признака х в матричной форме
       X_= x.reshape(-1, 1)
       # Формирование обучающего и тестового подмножеств
       X\_train, \ X\_test, \ y\_train, \ y\_test = custom\_train\_test\_split(X\_, \ y, \ test\_size=0.3, \ random\_state=200) 
       ridge = Ridge(alpha=TEST REGULARIZATION, fit intercept=True)
        ridge.fit(X_train, y_train)
      # Параметры обученной модели
print("Параметры для Ridge модели:")
print("\tw{} = {}".format(0, ridge.intercept_))
      print(\text{\text{km}} = \frac{1}{3}\text{.init(\text{km}} = 
      custom_ridge = CustomRidge(alpha=TEST_REGULARIZATION)
custom_ridge.fit(X_train, y_train)
      # Параметры обученной модели print("\nПараметры для CustomRidge модели:")
      for indx, coef in enumerate(custom_ridge.coef_):
    print("\tw{} = {}".format(indx+1, coef))
print(f"Test score = {custom_ridge.score(X_test, y_test)}")
Параметры для Ridge модели:
                            w0 = 0.32747575219383496
w1 = 1.9894625695363992
 Test score = 0.9946556230177561
Параметры для CustomRidge модели:

w1 = 0.32747575219382574

w2 = 1.9894625695364014
 Test score = 0.994655623017756
```

Как видим, обе реализации выдали приблизительно одинаковые параметры

2. Нужно реализовать класс-трансформер, совместимый с sklearn. Для этого нужно отнаследоваться от классов BaseEstimator, TransformerMixin

$$x_s = \frac{x - \overline{x}}{e}$$

```
In [12]: class CustomStandardScaller(BaseEstimator, TransformerMixin):
                      def __init__(self, has_bias=False, apply_mean=True):
                             self.has_bias = has_bias
self.apply_mean = apply_mean
                            X = check_array(X) # или другой check
self.n_features_in_ = X.shape[1]
self.mean_ = np.mean(X, axis=0, dtype=float)
self.var_ = np.var(X, axis=0, dtype=float)
return self
                      def fit(self, X, y=None):
                      def transform(self, X):
    check_is_fitted(self, ['mean_', 'var_'])
                             X = check\_array(X)
                             \begin{tabular}{ll} if $X.$shape[1] != self.n_features_in_: \\ raise $ValueError(f"Dimension_mismatch. Expected {self.n_features_in_} features, got {$X.$shape[1]}")$ \\ \end{tabular} 
                             # Избегаем деления на ноль
                             vars = np.copy(self.var_)
vars[vars == 0] = 1
                            if self.has_bias:
   ones_column = X[:, 0].reshape(-1, 1)
   other_columns = X[:, 1:]
   result = (other_columns - int(self.apply_mean) * self.mean_[1:]) / np.sqrt(vars[1:])
   return np.hstack([ones_column, result])
                             return (X - int(self.apply_mean) * self.mean_) / np.sqrt(vars)
```

Проверка на совместимость с sklearn

```
In [13]: check_estimator(CustomStandardScaller())
```

Сравним поведение с StandardScaller из sklearn

```
In [14]: from sklearn.preprocessing import StandardScaler
         N = 100
         n = N // 20
         x, y, f = regression_dataset(N)
         # Сделаем больше столбцов
```

```
x for scaler = x.reshape(-1, n)
                 scaler = StandardScaler()
                scaler_data = scaler.fit_transform(x_for_scaler)
print(f"Матожидания: {scaler.mean_}")
                 print(f"Отклонения: {scaler.var_}")
                 print(scaler_data[:5])
                 custom_scaler = CustomStandardScaller(has_bias=False, apply_mean=True)
                custom_scaler_data = custom_scaler.fit_transform(x_for_scaler)
print(f"\nMaroжидания: {custom_scaler.mean_}")
print(f"Отклонения: {custom_scaler.var_}")
                 print(custom scaler data[:5])
                print('\nРазность между трансформерами:')
                 scaler_data - custom_scaler_data
             Матожидания: [2.68932584 2.89323492 2.88091148 3.49850031 2.22184263]
Отклонения: [2.71149376 1.87346466 4.03454043 2.70120176 2.79760696]
[[ 0.36653266 1.02130098 0.36625646 -0.13945638 0.19136986]
[ 0.7202688 -0.19558905 1.22956596 1.38937023 0.04711602]
[ 1.25163824 0.20466519 0.26254682 1.2504033 -1.07355081]
[ -1.31572286 -2.02515678 1.05286776 0.71214875 1.79255146]
[ 1.93262817 1.3893863 -0.05577735 0.7208097 -0.90409644]]
              Матожидания: [2.68932584 2.89323492 2.88091148 3.49850031 2.22184263]

      Отклонения:
      [2.71149376
      1.87346466
      4.03454043
      2.70120176
      2.79760696]

      [[ 0.36653266
      1.02130098
      0.36625646
      -0.13945638
      0.19136986]

      [ 0.7202688
      -0.19558905
      1.22956596
      1.38937023
      0.04711602]

                Разность между трансформерами:
Out[14]: array([[0., 0., 0., 0., 0.],
                              [0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
                              [0., 0., 0., 0., 0.],
                              [0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
                             [0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
                              [0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
                              [0., 0., 0., 0., 0.]])
                Как видим, результаты обоих трансформеров совпали
```

3. Реализуем функции для подсчета MSE и R^2 на обучающей и тестовой выборке для варианта с отложенной выборкой (holdout) и с кросс-валидацией KFold

```
In [15]: from sklearn.model_selection import KFold
         from sklearn.base import clone
In [16]: TEST = 'TEST'
TRAIN = 'TRAIN'
def run_holdout(model, X, y, train_size, random_state=None):
    X_train, X_test, y_train, y_test = custom_train_test_split(X, y, train_size=train_size, random_state=random_state)
              # Используем функцию только для оценки качества модели, но не для обучения переданной через параметры модели model
             model = clone(model)
             model.fit(X_train, y_train)
             return {
                 'R2': calculate_r2(y_test, model.predict(X_test))
                 TRAIN: {
                      .w: {
'MSE': calculate_mse(y_train, model.predict(X_train)),
'R2': calculate_r2(y_train, model.predict(X_train))
         def run_cross_val(model, X, y, n_splits, shuffle, random_state):
                 TEST: np.full(n_splits, np.inf),
TRAIN: np.full(n_splits, np.inf)
              r2s = {
                 TEST: np.full(n_splits, np.inf),
TRAIN: np.full(n_splits, np.inf)
```

```
In [18]: from sklearn.pipeline import Pipeline

In [19]: ALPHAS = [0, 0.01]
TRAIN_SIZE = 0.75
SPLITS = 4
SHUFFLE = True
RANDOM_STATE = 0

Проверяем наличие датасета локально, если его нет, то скачиваем

In [20]: %bash cat << 'EOF' > /tmp/download_dataset_file.sh
download_dataset_file() {
```

```
In [20]: %*Dash
    cat << 'EOF' > /tmp/download_dataset_file.sh

download_dataset_file() {
    # Messages from utils in stderr are not an erros
    exec 2-&1

    local dataset_path="$1"
    local filename="$2"
    local link="$3"

    echo "Let's check the availability of the dataset locally"

    if [ ! -f ${dataset_path}/${filename} ]; then
        mkdir -p ${dataset_path}
        pushd ${dataset_path}

        pushd ${dataset_path}

        echo "Dataset file is missing. Downloading..."

        curl --progress-bar -Ls "${link}" -o ${filename}
        popd
        else
        echo "Dataset file exist. I'm skipping the download"
        fi
    }

    EOF
```

```
In [21]: %bash
source /tmp/download_dataset_file.sh
dataset_path="../data/A2_PM_dataset"
regularization_file="regularization.csv"
link="https://raw.githubusercontent.com/MLMethods/Assignments/refs/heads/master/data/A2_Model_Selection/regularization.csv"
download_dataset_file "${dataset_path}" "${regularization_file}" "${link}"
```

Let's check the availability of the dataset locally
Dataset file exist. I'm skipping the download

In [22]: FILE PATH = "../data/A2 PM dataset/regularization.csv"

```
In [23]: df = pd.read_csv(FILE_PATH, sep=",")
         df.head(5)
Out[23]:
                           X2
                                    ХЗ
                                               Х4
                                                          X5
                                                                      Х6
                                                                                   X7
                                                                                                X8
                                                                                                             Х9
                                                                                                                        X10
                                                                                                                                     X11
                                                                                                                                                               X13
         0 3.856603 14.873388 57.360757 221.217682 853.148822 3290.256492 1.268921e+04 4.893726e+04 1.887316e+05 7.278629e+05 2.807078e+06 1.082579e+07 4.175077e+07
         1 0.103760 0.010766 0.001117 0.000116 0.000012
                                                                0.000001 1.294799e-07 1.343480e-08 1.393992e-09 1.446402e-10 1.500783e-11 1.557209e-12 1.615756e-13
         2 3.168241 10.037752 31.80202 100.756468 319.220791 1011.368453 3.204259e+03 1.015187e+04 3.216356e+04 1.019019e+05 3.228498e+05 1.022866e+06 3.240687e+06
         3 3.744019 14.017681 52.482471 196.495391 735.682558 2754.409777 1.031256e+04 3.861044e+04 1.445582e+05 5.412288e+05 2.026371e+06 7.586773e+06 2.840503e+07
         4 2.492535 6.212731 15.485450 38.598027 96.206935 239.799159 5.977078e+02 1.489808e+03 3.713398e+03 9.255774e+03 2.307034e+04 5.750364e+04 1.433298e+05
```

```
In [24]: X = df.loc[:, df.columns != 'Y'].to_numpy()
y = df['Y'].to_numpy()
plt.figure("1", figsize=[10, 6])
```

```
plt.subplot(1,1,1)
plt.title("График исходных данных")
plt.scatter(X(:, 0], y, color="slategrey")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid(True)
plt.show()
```



```
In [25]: scores = {}
pipelines = {}
               X\_train, \ X\_test, \ y\_train, \ y\_test = custom\_train\_test\_split(X, \ y, \ train\_size=TRAIN\_SIZE, \ random\_state=RANDOM\_STATE)
               for alpha in ALPHAS:
                     scores[alpha] = {}
                     pipelines[alpha] = Pipeline([
                             ("standardizer", CustomStandardScaller(has_bias=False, apply_mean=True)), ("linear_model", CustomRidge(alpha=alpha))
                     pipe = pipelines[alpha]
pipe.fit(X_train, y_train)
                     print("Коэффициент регуляризации:\n\ta =", alpha)
print("Параметры модели:")
                     for indx, coef in enumerate(pipe.named_steps["linear_model"].coef_):
    print(f"\tw{indx} = {coef}")
                     scores[alpha]['HOLDOUT'] = run_holdout(pipe, X, y, train_size=TRAIN_SIZE, random_state=RANDOM_STATE)
scores[alpha]['CROSSVAL'] = run_cross_val(pipe, X, y, n_splits=SPLITS, shuffle=SHUFFLE, random_state=RANDOM_STATE)
                     for validation_type in ['HOLDOUT', 'CROSSVAL']:
    print("\nMerpuxu при ", end='')
    if validation_type == 'HOLDOUT':
        print("отложенной выборке (holdout)")
                            else:
                                   print("кросс-валидации KFold")
                             for set_type in [TRAIN, TEST]:
                                   print(f"\t{set_type} MSE = {scores[alpha][validation_type][set_type]['MSE']}")
print(f"\t{set_type} R2 = {scores[alpha][validation_type][set_type]['R2']}")
                     if alpha != ALPHAS[-1]:
    print('\n\n')
```

```
Коэффициент регуляризации: a \; = \; 0 Параметры модели:
                                    w0 = 9.444296175528054
w1 = 3.7874687525570443
                                    W1 = 3.76740673233704443

W2 = -73.74723349273854

W3 = 652.5943016575236

W4 = -3056.170226549623

W5 = 7896.792834387104

W6 = -10455.907589668692

W7 = 3403.4949918964144
                                     w8 = 6667.880609684114
w9 = -3202.469066546199
                                    w9 = -3202.469066546199
w10 = -5912.272478082326
w11 = 1072.407052858083
w12 = 5304.08066172826
w13 = 589.8287865939227
                                     w14 = -4312.196516992471
w15 = 1045.7877940277137
                                     w16 = 375.9338520260145
                  Метрики при отложенной выборке (holdout)
                                     TRAIN MSE = 0.21628402809930625
TRAIN R2 = 0.7061940056277007
TEST MSE = 0.24089228695805867
                                     TEST R2 = 0.6456458975871935
                 Метрики при кросс-валидации KFold
TRAIN MSE = 0.21628085397121016
TRAIN R2 = 0.7002818145862557
TEST MSE = 0.24059181909404576
                                     TEST R2 = 0.6647199278843495
                 Коэффициент регуляризации:
a = 0.01
                  Параметры модели:
                                    модели:
w0 = 9.444296175528624
w1 = 0.9829399475603691
                                     w2 = -2.961744941711617
                                     w3 = -1.5220130846219302
w4 = 0.9567178177495431
                                     w5 = 1.8283315674288918
w6 = 1.3539463916811953
w7 = 0.4364238306101005
                                     w8 = -0.30065909704800164
w9 = -0.6223487128136715
                                    w9 = -0.0223487128136715
w10 = -0.55613125756812167
w11 = -0.25365509725202784
w12 = 0.10364339723685217
w13 = 0.35531968991077373
w14 = 0.3824942305821059
w15 = 0.11092238707244735
                                     w16 = -0.4945048685155995
                  Метрики при отложенной выборке (holdout)
                                    TRAIN MSE = 0.22070449496763514
TRAIN MSE = 0.7001891254927568
TEST MSE = 0.24861927728229327
TEST R2 = 0.6342794451562225
                 Метрики при кросс-валидации KFold
TRAIN MSE = 0.22348777464320543
TRAIN R2 = 0.6903145941352636
TEST MSE = 0.23650799139323447
TEST R2 = 0.6706063150781365
In [26]: # Посмотрим, какого вида получились функции при разном коэффициенте регуляризации plt.figure("1", figsize=[10, 6])
                      plt.subplot(1,1,1)
                      plt.scatter(X[:, 0], y, color="slategrey", label="исходные данные")
plt.scatter(X[:, 0], pipelines[0].predict(X), color="red", label="$y_{pred} \\text{ при } \\alpha=0$")
plt.scatter(X[:, 0], pipelines[0.01].predict(X), color="green", label="$y_{pred} \\text{ при } \\alpha=0.01$")
                      plt.xlabel("X")
plt.ylabel("Y")
plt.legend()
                      plt.grid(True)
```



```
In [27]:
    def plot_prediction_vs_true(title, y_train_true, y_train_pred, y_test_true, y_test_pred):
        plt.figure("17", figsize=[12, 8])
        plt.suptitle(f"{title}", fontsize=14)

        plt.subplot(2,2,1)
        plt.stitle("Train)
        plt.scatter(y_train_pred, y_train_true, color="slategrey")
        ylim = plt.gac().get_ylim()
        plt.plot(ylim, ylim, '--', color="grey")
        plt.xlim(ylim)
        plt.xlabel("sy\hat{y}\s")
        plt.xlabel("s\hat{y}\s")
        plt.ylabel("sy\hat{y}\s")
        plt.ylabel("sy\hat{y}\s")
        plt.subplot(2,2,2)
        plt.title("Test")
        plt.sectre(y_test_pred, y_test_true, color="slategrey")
        ylim = plt.gac().get_ylim()
        plt.plt(ylim, ylim, '--', color="grey")
        plt.xlim(ylim)
        plt.xlim(yl
```

In [28]: for alpha in ALPHAS:
 plot_prediction_vs_true(f"\$\\alpha={alpha}\$", y_train, pipelines[alpha].predict(X_train), y_test, pipelines[alpha].predict(X_test))

Задача 2. Классификация и кросс-валидация (2 балла)

Условие

Замечание:

- Используйте класс логистической регрессии из sklearn со следующими параметрами:
 - penaltv='l2'
 - fit_intercept=True
 - max_iter=100
 - C=1e5
 - solver='liblinear'
 - random_state=12345
- Разбейте исходные данные на обучающее и тестовое подмножества в соотношении 70 на 30 , random_state=0
- Для выбора гиперпараметров используйте два подхода: 1) с отложенной выборкой, 2) с кросс-валидацией
- Для кросс-валидации использовать функцию cross_validate из sklearn
- Параметры разбиения для выбора гиперпараметров используйте те, что в п.4 задачи 1

Дано множество наблюдений (см. набор данных к заданию), классификатор - логистическая регрессия. Найти степень полинома с минимальной ошибкой на проверочном подмножестве. Для лучшего случая рассчитать ошибку на тестовом подмножестве. В качестве метрики использовать долю правильных классификаций. Сделать заключение о влиянии степени полинома на качество предсказания.

Построить:

- диаграмму разброса исходных данных
- зависимость доли правильных классификаций от степени полинома для обучающего и проверочного подмножеств (две кривые на одном графике)
- результат классификации для наилучшего случая (степень полинома) для обучающего и тестового подмножеств с указанием границы принятия решения

Выполнение

Проверяем наличие датасета локально, если его нет, то скачиваем

```
In [29]: %bash
    source /tmp/download_dataset_file.sh

    dataset_path="../data/A2_PM_dataset"
    classification_file="Cl_A5_V2.csv"
    link="https://raw.githubusercontent.com/MLMethods/Assignments/refs/heads/master/data/A2_Model_Selection/Cl_A5_V2.csv"
    download_dataset_file "${dataset_path}" "${classification_file}" "${link}"

    Let's check the availability of the dataset locally Dataset file exist. I'm skipping the download

In [30]: FILE_PATH = "../data/A2_PM_dataset/Cl_A5_V2.csv"

In [31]: df = pd.read_csv(FILE_PATH, sep=",")
    df
```

```
Out[31]:
                           X1
                                       X2 Y
                0 5.712051 4.420663 0
             1 4.658783 6.312037 1
                2 4.211528 4.934160 0
               3 5.440266 5.688972 0
                4 5.109973 7.006561 1
              495 4.782801 5.331527 0
             496 3.469108 5.801888 1
              497 6.357797 4.195166 1
             498 5.261725 4.757229 0
             499 5.393892 4.049974 0
            500 rows × 3 columns
In [32]: X = df.loc[:, df.columns != 'Y'].to_numpy()
y = df['Y'].to_numpy()
In [33]: # Определение количества наблюдений каждого класса
labels, counts = np.unique(y, return_counts=True)
print("Labels:", labels)
print("Counts:", counts)
           Counts: [250 250]
             Как видим, исходный датасет содержит два предиктора (X_1 и X_2) и одну целевую переменную (y).
             Всего по y выделено два класса, причем элементы обоих классов представлены равномерно
In [34]: # График
             # / рафик
y_one_indx = np.argwhere(y == 1).flatten()
y_zero_indx = np.argwhere(y == 0).flatten()
plt.title("Диаграмма разброса исходных данных")
plt.scatter(X[y_zero_indx][:,0], X[y_zero_indx][:,1], color="blue", label="$y_{true} = 05")
plt.scatter(X[y_one_indx][:,0], X[y_one_indx][:,1], color="red", label="$y_{true} = 15")
nlt_vlabal("ev_le")
             plt.xlabel("$x_1$")
plt.ylabel("$x_2$")
             plt.grid(True)
plt.legend()
             plt.show()
                                 Диаграмма разброса исходных данных
               8
                                                                                                y_{true} = 0
                                                                                                y_{true} = 1
               6
               5
            Ş
               3
In [35]: from sklearn.linear_model import LogisticRegression
              from sklearn.preprocessing import PolynomialFeatures
             \begin{tabular}{ll} from $$sklearn.metrics import accuracy score \\ from $$sklearn.model_selection import (train_test_split, cross_validate)$ \end{tabular}
             from matplotlib import cm
from matplotlib.colors import ListedColormap
In [36]: %pip install prettytable
            Requirement already satisfied: prettytable in /opt/conda/lib/python3.11/site-packages (3.16.0)
           WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
           Note: you may need to restart the kernel to use updated packages.
In [37]: from prettytable import PrettyTable
In [38]: C MAX_ITER
                                        = 1e5
= 100
                                       = 0.3
             TEST SIZE
```

```
HOLDOUT TRAIN SIZE = 0.75
               DEGREES
                                            = [i for i in range(1, 17)]
In [39]: # Разделяем данные на обучающее и тестовое множества
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=0)
               kf = KFold(n_splits=SPLITS, shuffle=True, random_state=0)
               # Точности при отложенной выборке и кросс-валидации
               'TRAIN': np.full(len(DEGREES), 0.0),
'VALID': np.full(len(DEGREES), 0.0)
               max_iter=MAX_ITER,
C=C, solver="liblinear",
random_state=12345))
               ])
               # Массив с количеством признаков на входе регрессора из пайплайна n_{\text{features}} = \text{np.full(len(DEGREES), 0)}
               for index, degree in enumerate(DEGREES):
                      pipeline.named_steps["transformation"].degree = degree
                        : Обучение с отложенной выборкой
                     ** Objection Computed Baselphon **
Xx_train, Xx_validate, yy_train, yy_validate = train_test_split(
    X_train, y_train,
    train_size=HOLDOUT_TRAIN_SIZE,
                             random_state=0)
                     \label{eq:pipeline.fit} \begin{split} & pipeline.fit(Xx\_train, \ yy\_train) \\ & n\_features[index] \ = \ pipeline.named\_steps['regressor'].n\_features\_in\_ \end{split}
                     accuracies['HOLDOUT']['TRAIN'][index] = pipeline.score(Xx_train, yy_train)
accuracies['HOLDOUT']['VALID'][index] = pipeline.score(Xx_validate, yy_validate)
                      # Обучение с кросс-валилацией KFold
                      scores = cross_validate(pipeline,
                                                          X_train, y_train, cv=kf,
scoring=["accuracy"],
return_train_score=True)
                     accuracies['CROSSVAL']['TRAIN'][index] = scores['train_accuracy'].mean()
accuracies['CROSSVAL']['VALID'][index] = scores['test_accuracy'].mean()
               # Выведем статистику по всем степеням полинома
               # выведем Claruting по всем Степеням полинома table = PrettyTable() table.title = 'Точность (ассигасу) в зависимости от степени полинома' table.title = 'Точность (ассигасу) в зависимости от степени полинома' table.field_names = ['Степень полинома', 'Отложенная выборка', 'Кросс-валидация KFold', 'Количество предикторов у регрессора'] table.align = 'c'
               for index, degree in enumerate(DEGREES):
                      table add row([
                            degree, accuracies['HOLDOUT']['VALID'][index],
accuracies['CROSSVAL']['VALID'][index],
                            n_features[index]
               print("Количество данных для обучения (примерно):")
print("\t0тложенная выборка: ", len(X_train) * HOLDOUT_TRAIN_SIZE )
print("\tKpocc-валидация KFold: ", len(X_train) * (kf.n_splits - 1) / kf.n_splits, end='\n\n')
               table
             Количество данных для обучения (примерно):
Отложенная выборка: 262.5
Кросс-валидация KFold: 262.5
```

file:///home/alexander/Programming/ML/MY/mlassignments/reports/src/A2_IU21_Kutsenko_2_3.html

Точность (accuracy) в зависимости от степени полинома Out[39]:

Степень полинома	Отложенная выборка	Кросс-валидация KFold	Количество предикторов у регрессора
1	0.48863636363636365	0.5859130094043887	3
2	1.0	0.9942855276907001	6
3	1.0	0.9914119644723093	10
4	1.0	0.9942855276907001	15
5	1.0	0.9942855276907001	21
6	1.0	0.9856974921630094	28
7	1.0	0.9799830198537094	36
8	0.9886363636363636	0.977076802507837	45
9	0.9886363636363636	0.9799503657262278	55
10	0.9886363636363636	0.9656478578892372	66
11	0.9318181818181818	0.9170585161964473	78
12	0.9318181818181818	0.8827390282131661	91
13	0.9318181818181818	0.8855799373040752	105
14	0.9318181818181818	0.8798001567398119	120
15	0.9090909090909091	0.8741509926854754	136
16	0.9318181818181818	0.8598158307210032	153

```
In [40]: plt.figure("17", figsize=[12, 8]) plt.suptitle("Accuracy depending on polynomial degree")
                    for i, set_type in enumerate(['HOLDOUT', 'CROSSVAL']):  \texttt{plt.subplot}(2,2,i+1) 
                             plt.siub[lot(2,1,+1)
plt.pltitle(f"{set_type}")
plt.plot(DEGREES, [accuracies[set_type]['TRAIN'][index] for index in range(len(DEGREES))], "o-", label="Train")
plt.plot(DEGREES, [accuracies[set_type]['VALID'][index] for index in range(len(DEGREES))], "o-", label="Val")
plt.xlabel("Polynomial degree")
plt.ylabel("Accuracy")
                             plt.legend()
plt.grid(True)
                    plt.tight_layout()
plt.show()
```

Accuracy depending on polynomial degree


```
In [41]: best_degree = {}
                 for validation_type in ['HOLDOUT', 'CROSSVAL']:
                       validation_type in ('HOLDOUI', 'CROSSVAL'):
# Находим максимальное значение точности из всех степеней полинома
# Если максимальное значение встречается на нескольких степенях - берем наименьшую
max = accuracies[validation_type]['VALID'].max()
best_degree[validation_type] = DEGREES[np.argwhere(accuracies[validation_type]['VALID'] == max ).min()]
                       print("Степень полинома с минимальной ошибкой при ", end='')
if validation_type == 'HOLDOUT':
    print("отложенной выборке: ", end='')
                       else:
print("кросс-валидации KFold: ", end='')
                        print(best_degree[validation_type])
                if best_degree['HOLDOUT'] == best_degree['CROSSVAL']:
   print("\пСтепени полинома совпали при обоих подходах")
                else:
                       print("\nСтепени полинома при отложенной выборке и кросс-валидации различны")
```

Степень полинома с минимальной ошибкой при отложенной выборке: 2 Степень полинома с минимальной ошибкой при кросс-валидации KFold: 2

Степени полинома совпали при обоих подходах

```
In [42]: # Повторно обучим модель с лучшим гиперпараметром
pipeline.named_steps["transformation"].degree = best_degree['CROSSVAL']
               pipeline.fit(X_train, y_train)
               print("Ошибка на тестовом множестве:", 1 - pipeline.score(X_test, y_test))
In [43]: from sklearn.inspection import DecisionBoundaryDisplay
In [44]: fig, axes = plt.subplots(1, 2, figsize=[10,4])
               disp = DecisionBoundaryDisplay.from estimator(
                     pipeline, X,
grid_resolution=1000,
xlabel="X1",
                      ylabel="X2"
                      cman="coolwarm'
                      response_method="predict_proba",
                      alpha=0.5.
                      ax=axes[0]
               y_train__pred = pipeline.predict(X_train)
               y_test__pred = pipeline.predict(X_test)
               axes[0].set title("Train")
               axes[0].set_xlabel("$x_1$" axes[0].set_ylabel("$x_2$"
               axes[0].set_ylabel("$x_2$")
sc_train = axes[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train_pred, cmap="coolwarm", s=4, label="true")
axes[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train_pred, cmap="coolwarm", edgecolor="k", label="pred")
axes[0].legend()
# fig.colorbar(sc_train, cmap="coolwarm")
axes[0].acatter(X_train, cmap="coolwarm")
               axes[0].grid(True)
               disp.plot(ax=axes[1], alpha=0.5, cmap="coolwarm")
               axes[1].set_title("Test")
axes[1].set_xlabel("$x_1$")
axes[1].set_ylabel("$x_2$")
axes[1].set_ylabel("$x_2$")
sc_test = axes[1].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap="coolwarm", s=4, label="true")
axes[1].scatter(X_test[:, 0], X_test[:, 1], c=y_test__pred, cmap="coolwarm", edgecolor="k", label="pred")
axes[1].anand()
               axes[1].legend()
               # fig.colorbar(sc_test, cmap="coolwarm")
axes[1].grid(True)
               fig.tight_layout()
               plt.show()
```


Вывод

Для имеющегося набора данных и выбранной модели (логистической регрессии) полином 1-ой степени дает плохое качество предсказания (точность около $\,$ 0.59 при кросс-валидации KFold). Это связано с нелинейной зависимостью между предикторами X_1, X_2 и выходной переменной y.

Повышение степени полинома (до 2-6) увеличивает точность предсказания практически до 1.0, однако с большим повышением степени полинома качество предсказания падает (падение особенно заметно при переходе от 10 степени к 11 и выше).

Возможные причины ухудшения качества предсказания:

- Излишнаяя гибкость модели, которая приводит к ее переобучению
- Большое количество параметров (предикторов) при небольшом объеме данных для обучения: выше было выведено количество предикторов у модели логистической регрессии в пайплайне, а также выведен объем данных для обучения модели. Видно, что при высоких степенях полинома количество признаков приближается к числу наблюдений (например, для полинома степени 16 это 153 параметра при 262 наблюдениях), что делает модель более зависимой от входных данных и ухудшает ее обучающую способность

Задача 3. Классификация текстовых документов (4 балла)

Условие

Для **3 варианта** набор рецензий на фильмы (reviews), файл data/reviews.tsv

Замечание:

- Для всех объектов/методов/моделей random_state = 123
- Для выбора гиперпараметров можно использовать стандартные утилиты sklearn
- 1. Загрузите исходные данные
- 2. Разбейте исходные данные на обучающее (train, 80%) и тестовое подмножества (test, 20%)
- 3. Используя стратифицированную кросс-валидацию k-folds (k=4) для обучающего множество с метрикой Balanced-Accuracy , найдите лучшие гиперпараметры для следующих классификаторов:
 - К-ближайших соседей: количество соседей (n) из диапазона пр. arange (1, 150, 20);
 - Логистическая регрессия: параметр регуляризации (C) из диапазона np.logspace(-2, 10, 8, base=10);
 - Наивный Байес: сглаживающий параметр модели Бернулли (lpha) из диапазона np.logspace (-4, 1, 8, base=10);
 - Наивный Байес: сглаживающий параметр полиномиальной модели (lpha) из диапазона np.logspace(-4, 1, 8, base=10)
- 4. Отобразите кривые (параметры модели)-(Balanced-Accuracy) при обучении и проверке для каждой классификатора (две кривые на одном графике для каждого классификатора)
- 5. Если необходимо, выбранные модели обучите на всём обучающем подмножестве (train) и протестируйте на тестовом (test) по Balanced-Accuracy, R, P, F1. Определите время обучения и предсказания.
- 6. Выполните пункты 3-5 для n-gram=1, n-gram=2 и n-gram=(1,2)
- 7. Выведите в виде таблицы итоговые данные по всем методам для лучших моделей (метод, n-gram, значение параметра модели, время обучения, время предсказания, метрики (Balanced-Accuracy, R, P, F1))
- 8. Сделайте выводы по полученным результатам (преимущества и недостатки методов)

Выполнение

```
In [45]:

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import BernoulliNB

from sklearn.naive_bayes import MultinomialNB

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

from sklearn.model_selection import (GridSearchCV, StratifiedKFold)
```

Проверяем наличие датасета локально, если его нет, то скачиваем

```
In [46]: %bash

source /tmp/download_dataset_file.sh

dataset_path="../data/A2_PM_dataset"
classification_file="reviews.tsv"
link="https://raw.githubusercontent.com/MLMethods/Assignments/7d189c5bafec625e0d2a1779d482f7ed7a492c21/data/A3_Text_Classification/reviews.tsv"

download_dataset_file "${dataset_path}" "${classification_file}" "${link}"

Let's check the availability of the dataset locally
```

```
In [47]: FILE_PATH = ".../data/A2_PM_dataset/reviews.tsv"
In [48]: df = pd.read_csv(FILE_PATH, sep='\t', header=None, names=['grade', 'review'])
df
```

it[48]:		grade	review
	0	0	unless bob crane is someone of particular inte
	1	1	finds a way to tell a simple story , perhaps t
	2	0	ill-considered , unholy hokum .
	3	0	nijinsky says , 'i know how to suffer' and if
	4	1	the auteur's ear for the way fears and slights
	10657	0	it's mildly sentimental , unabashedly consumer
	10658	0	so verbally flatfooted and so emotionally pred
	10659	0	alternative medicine obviously has its merits
	10660	0	a by-the-numbers patient/doctor pic that cover
	10661	0	according to the script , grant and bullock's

Dataset file exist. I'm skipping the download

10662 rows × 2 columns

```
In [49]: X = df.loc[:, df.columns == 'review']
y = df['grade'].to_numpy()

In [50]: # Определение количества наблюдений каждого класса
labels, counts = np.unique(y, return_counts=True)
```

```
print("Labels:", labels)
print("Counts:", counts)
           Labels: [0 1]
           Counts: [5331 5331]
             Как видим, датасет содержит два класса наблюдений 0 и 1, представленные в одинаковой пропорции
In [51]: RANDOM_STATE = 123
                              = 4
= [(1,1), (2,2), (1,2)]
             NGRAMS
            # Разделяем данные на обучающее и тестовое множества
X_train, X_test, y_train, y_test = train_test_split(X['review'], y, train_size=0.8, random_state=RANDOM_STATE)
             {\sf skf = StratifiedKFold(n\_splits = SPLITS, \ shuffle = } {\sf True, \ random\_state = RANDOM\_STATE)}
In [53]: def get best model params and metrics(model,
                                                                X_train, y_train,
cv, params=None, scoring='balanced_accuracy'):
                  Ищем лучший гиперпараметр для модели model с помощью GridSearchCV
                  ищем лучшил гипериоров. Р — Возвращегся:
- значение лучшего параметра из переданной сетки params
                       - средние значения для метрики scoring для обучающего и проверочного множества
                  scores = {}
                  model = clone(model)
                  \label{eq:model_grid} $$ model\_grid = GridSearchCV(model, params, cv=cv, return\_train\_score=True, scoring=scoring, n\_jobs=-1) $$ model\_grid.fit(X\_train, y\_train) $$
                  results = model_grid.cv_results_
for validation_type in ['train', 'test']:
# GridSearchCV возвращает для каждого сплита массив метрик для каждого значения параметра
                       # Соберем все сплиты в двумерный питру массив: по строкам - сплиты, по столбцам - уникальное значение параметра и
# выдадим среднее по столбцам (каждому параметру)
                        splits metrics = np.array(
                            [results[f'split{split_index}_{validation_type}_score'] for split_index in range(cv.n_splits)]
                       if validation_type == 'train':
    scores('TRAIN'] = np.mean(splits_metrics, axis=0)
elif validation_type == 'test':
    scores['VALID'] = np.mean(splits_metrics, axis=0)
                  return model_grid.best_params_, scores
In [54]: def plot_train_val_metric(X, y_train, y_valid, logscale=False, title=None, ylabel="Balanced-Accuracy", xlabel=None):
    plt.figure("17", figsize=[6, 4])
                  if title is not None
                       plt.suptitle(title)
                  plt.subplot(1,1,1)
                  plt.plot(X, y_train, "o-", label="Train")
plt.plot(X, y_valid, "o-", label="Val")
                  if xlabel is not None:
                       plt.xlabel(xlabel)
                  else:
                       plt.xlabel("Hyperparameter degree")
                  plt.ylabel(ylabel)
                  if logscale:
    plt.xscale("log")
                  plt.legend()
                  plt.grid(True)
                  plt.tight_layout()
In [55]: def get_model_fit_predict_time_from_pipeline(pipeline, X_train, y_train, X_test):
                  Оценка времени обучения и предсказания модели из pipeline
                  if len(pipeline) == 0:
                       raise ValueError("Пустой пайплайн")
                  pipe = clone(pipeline)
                  time_fit, time_predict = 0.0, 0.0
X_train_transformed = X_train.copy()
X_test_trainsformed = X_test.copy()
                  # Обучаем все трансформеры и преобразуем исходный набор значений for step_name, transformer in pipe.steps[:-1]:
                        X train_transformed = transformer.fit_transform(X_train_transformed)
X_test_trainsformed = transformer.transform(X_test_trainsformed)
                  # Оцениваем время обучения и предсказания модели
                  _, model = pipe.steps[-1]
time_fit = %timeit -o model.fit(X_train_transformed, y_train)
                  time_predict = %timeit -o model.predict(X_test_trainsformed)
                  return time_fit, time_predict
```

К-ближайших соседей

table_rows = []

```
In [58]: def do_supervise_and_plot_metrics(pipe,
                                                                            X_train, y_train,
X_test, y_test, cv,
params, param_name,
                                                                            model_name, x_label, use_log_scale=False):
                       Функция для каждого ngram range из NGRAM:
                              1. Находит лучший гиперпараметр и метрики при нем
2. Обучает модель на всем обучающем множестве с найденным гиперпараметром
                              3. Для обученной модели выводит:
- время обучения и время предсказания
                              - время обучения и время предсказания
- метрики по Balanced-accuracy, Recall, Precision, F1
- добавляет строку с необходимыми значениями в массив строк table_rows
4. Строит графики зависимости метрики для обучающего и проверочного множеств от
                                    значения гиперпараметра
                       \quad \textbf{for} \  \, \texttt{index}, \  \, \texttt{ngram} \  \, \overset{\textbf{in}}{\textbf{in}} \  \, \texttt{enumerate(NGRAMS):}
                              paramgrid_name = [key for key in params][0]
                              pipe.named_steps['vectorizer'].ngram_range = ngram
                              best_params, scores = get_best_model_params_and_metrics(
                                     y_train,
# cv=skf,
                                     cv=cv,
                                      params=params
                              best_param_pos = np.argwhere(
                                      params[paramgrid_name] == best_params[paramgrid_name]
                              ).flatten()[0]
                              best_score = {
   'TRAIN': scores['TRAIN'][best_param_pos],
   'VALID': scores['VALID'][best_param_pos]
                             # Обучим на всем обучающем множестве с лучшим гиперпараметром setattr(pipe.named_steps['classifier'], param_name, best_params[paramgrid_name]) # pipe.named_steps['classifier'].n_neighbors = best_params[param_name] pipe.fit(X_train, y_train)
                              y_test_predicted = pipe.predict(X_test)
                               # Оценка времени обучения
                               \label{fit_time} fit\_time, \ predict\_time = \ get\_model\_fit\_predict\_time\_from\_pipeline(pipe, \ X\_train, \ y\_train, \ X\_test)
                               balanced_accuracy = balanced_accuracy_score(y_test, y_test_predicted)
                               recall = recall_score(y_test, y_test_predicted)
precision = precision_score(y_test, y_test_predicted)
                               f1 = f1_score(y_test, y_test_predicted)
                              print(f"ngram_range: {ngram}")
                              print(| Inglamp_range. (runtamp |
print(| Inglamp_range. (runtamp |
print(f"\t{best_params[paramgrid_name]}")
print(f"\tTRFAIN BALANCED-ACCURACY: {best_score['TRAIN']}")
print(f"\tTRAIN BALANCED-ACCURACY: {best_score['VALID']}")
                              print("\nВремя обучения:\n\t", fit_time.average)
print("\nВремя предсказания:\n\t", predict_time.average)
                               print("\nMетрики на подмножестве test:")
                              print("\mmerрики на подмножестве
print("\tBalanced-Accuracy: ", ba
print("\tRecall: ", recall)
print("\tPrecision: ", precision)
print("\tF1: ", f1)
                                                                                 ", balanced_accuracy)
                               table_rows.append([
                                      model name
                                     round(best_params[paramgrid_name],5),
round(fit_time.average,5), round(predict_time.average,5),
round(balanced_accuracy,5), round(recall,5), round(precision,5), round(f1,5)
                              1)
                              plot train val metric(
                                     params[paramgrid_name],
scores['TRAIN'], scores['VALID'],
title=f"{model_name} (ngram_range = {ngram})",
                                      xlabel=x label,
```

```
logscale=use_log_scale
   knn_params = {
           classifier__n_neighbors": np.arange(1, 150, 20)
   knn_pipe = Pipeline([
    ("vectorizer", TfidfVectorizer()),
    ("classifier", KNeighborsClassifier())
   {\tt do\_supervise\_and\_plot\_metrics(knn\_pipe,}
                                                   X_train, y_train,
                                                   X_test, y_test, cv=skf,
                                                   params=knn_params,
param_name="n_neighbors",
model_name="KNeighborsClassifier",
                                                   x_label="n_neighbors",
use_log_scale=False)
429 \mu s ± 1.18 \mu s per loop (mean ± std. dev. of 7 runs, 1,000 loops each) 881 ms ± 47.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ngram_range: (1, 1)
Лучший параметр:
81
Метрики при лучшем параметре:
             TRAIN BALANCED-ACCURACY: 0.7567147112171754
VALID BALANCED-ACCURACY: 0.7395993432533201
Время обучения:
               0.00042864167671424573
Время предсказания:
0.8806247768570756
Метрики на подмножестве test:
Balanced-Accuracy: 0.7547568180619296
Recall: 0.7893258426966292
Precision: 0.7388255915863278
Fl: 0.7632412856496151
                      KNeighborsClassifier (ngram_range = (1, 1))
     1.00
                                                                                                       Train
                                                                                                        Val
     0.95
     0.90
     0.85
     0.80
0.75
     0.70
     0.65
                              20
                                            40
                                                                                    100
                                                                                                  120
                                                                                                                140
                                                          60
                                                                       80
                                                          n_neighbors
417 \mu s ± 1.22 \mu s per loop (mean ± std. dev. of 7 runs, 1,000 loops each) 551 m s ± 33.3 m s per loop (mean ± std. dev. of 7 runs, 1 loop each) ngram\_range: (2, 2)
Лучший параметр:
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 0.6906321147633039
             VALID BALANCED-ACCURACY: 0.6507937695410912
Время обучения:
0.00041739876785725627
Время предсказания:
               0.5509524921427718
Метрики на подмножестве test:
Balanced-Accuracy: 0.6580854038086195
Recall: 0.42602906254681647
Precision: 0.79545454545454545
F1: 0.5548780487804877
```

KNeighborsClassifier (ngram_range = (2, 2))


```
509 \mu s ± 548 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each) 1.65 s ± 26.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ngram_range: (1, 2) Лучший параметр: 81
```

Метрики при лучшем параметре: TRAIN BALANCED-ACCURACY: 0.7556553439531024 VALID BALANCED-ACCURACY: 0.7320905831004391

Время обучения: 0.0005093142335715259

Время предсказания: 1.6529307668571553

Метрики на подмножестве test: Balanced-Accuracy: 0.7590256897188373 Recall: 0.7584269662921348 Precision: 0.759499061913696 Fl: 0.7591377694470479

$KNeighborsClassifier (ngram_range = (1, 2))$

Логистическая регрессия

```
126 ms \pm 2.89 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each) 60 \mu s \pm 1 \mu s per loop (mean \pm std. dev. of 7 runs, 10,000 loops each) ngram_range: (1, 1)
Лучший параметр:
26.826957952797247
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 0.9983973623725455
VALID BALANCED-ACCURACY: 0.7533134655106681
Время обучения:
0.12557497867143996
Время предсказания:
               6.001702407141108e-05
Метрики на подмножестве test:
             nd пиµмножестве test:
Balanced-Accuracy: 0.7679234583531149
Recall: 0.7743445692883895
Precision: 0.7650323774283071
Fl: 0.7696603071195905
                        LogisticRegression (ngram_range = (1, 1))
     1.00
                 → Train
                  - Val
     0.95
 Balanced-Accuracy
     0.85
     0.80
     0.75
     0.70
                                         10<sup>1</sup>
                                                                                          10<sup>7</sup>
                                                                                                           10<sup>9</sup>
73.8 ms \pm 3.27 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each)
48 \mus ± 218 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each) ngram_range: (2, 2)
Лучший параметр:
              26.826957952797247
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 0.9997654295195053
VALID BALANCED-ACCURACY: 0.6989062054488875
Время обучения:
               0.07380452711429045
Время предсказания:
               4.799727394286362e-05
Метрики на подмножестве test:
             на подмножестве test:
Balanced-Accuracy: 0.7149324787677375
Recall: 0.7312734082397003
Precision: 0.7087114337568058
F1: 0.719815668202765
                        LogisticRegression (ngram_range = (2, 2))
     1.00
     0.95
Balanced-Accuracy
0.80
0.75
                                                                                                          Train
                                                                                                       → Val
     0.75
     0.70
                       10-1
                                         10<sup>1</sup>
                                                                                          10<sup>7</sup>
                                                                                                           10<sup>9</sup>
```

```
295 ms \pm 20.4 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each) 78.5 \mus \pm 523 ns per loop (mean \pm std. dev. of 7 runs, 10,000 loops each) ngram_range: (1, 2)
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 1.0
VALID BALANCED-ACCURACY: 0.7694970033460808
Время обучения:
0.29507594545714577
Время предсказания:
                7.853521492857648e-05
Метрики на подмножестве test:
             na подмножестве теst:
Balanced-Accuracy: 0.7950902041462257
Recall: 0.8192883895131086
Precision: 0.7819481680071493
Fl: 0.800182898948331
                         LogisticRegression (ngram_range = (1, 2))
     1.00
                 → Train
                   - Val
     0.95
 Balanced-Accuracy
     0.90
     0.85
     0.80
     0.75
     0.70
                        10^{-1}
                                           10<sup>1</sup>
                                                                             10<sup>5</sup>
                                                                                              10<sup>7</sup>
                                                                                                               10<sup>9</sup>
```

Наивный Байес (модель Бернулли)

BernoulliNB ($ngram_range = (1, 1)$)

2.21 ms \pm 8.41 μ s per loop (mean \pm std. dev. of 7 runs, 100 loops each) 1.49 ms \pm 3.83 μ s per loop (mean \pm std. dev. of 7 runs, 1,000 loops each) ngram_range: (2, 2) μ 0.3727593720314942

Метрики при лучшем параметре: TRAIN BALANCED-ACCURACY: 0.9988662956116395 VALID BALANCED-ACCURACY: 0.7059372355826528

Время обучения:

0.0022086055228568774

Время предсказания:

0.0014870191959998921

Метрики на подмножестве test: Balanced-Accuracy: 0.7177625679168644 Recall: 0.7219101123595506 Precision: 0.716542750929368 F1: 0.7192164179104478

BernoulliNB (ngram_range = (2, 2))

 $2.81~ms~\pm~28.5~\mu s$ per loop (mean \pm std. dev. of 7 runs, 100 loops each) $1.84~ms~\pm~4.9~\mu s$ per loop (mean \pm std. dev. of 7 runs, 1,000 loops each) ngram_range: (1, 2)

Лучший параметр: 1.9306977288832496

Метрики при лучшем параметре: при лучшем параметре: TRAIN BALANCED-ACCURACY: 0.9920650590399636 VALID BALANCED-ACCURACY: 0.7761691017838603

Время обучения:

0.0028099932757140776

Время предсказания: 0.0018415816561428073

Метрики на подмножестве test:
 Balanced-Accuracy: 0.7918486574879992
 Recall: 0.7874531835265992
 Precision: 0.7948960302457467
 F1: 0.7911571025399812

BernoulliNB ($ngram_range = (1, 2)$)

Наивный Байес (полиномиальная модель)

```
In [62]: polynom_params = {
    "classifier_alpha": np.logspace(-4, 1, 8, base=10)
             polynom_pipe = Pipeline([
    ("vectorizer", TfidfVectorizer()),
    ("classifier", MultinomialNB())
             1)
             params=polynom_params,
                                                         param_name="alpha",
model_name="MultinomialNB",
x_label="$\\alpha$",
use_log_scale=True)
```

1.32 ms ± 3.49 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) 152 µs ± 496 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each) ngram_range: (1, 1) Лучший параметр: 0.3727593720314942 Метрики при лучшем параметре: TRAIN BALANCED-ACCURACY: 0.9581785809264514 VALID BALANCED-ACCURACY: 0.7733583610413677

Время обучения: 0.0013154220594287834

Время предсказания: 0.00015219363864284137

Метрики на подмножестве test: Balanced-Accuracy: 0.7763794376747376 Recall: 0.7705992509363296 Precision: 0.7800947867298578 F1: 0.7753179463024022

$MultinomialNB (ngram_range = (1, 1))$


```
1.92 ms \pm 33 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
375 \mu s \pm 4.34 \mu s per loop (mean \pm std. dev. of 7 runs, 1,000 loops each) ngram_range: (2, 2)
Лучший параметр:
0.3727593720314942
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 0.9996090328976723
VALID BALANCED-ACCURACY: 0.7113285938740489
Время обучения:
0.0019203245442856443
Время предсказания:
              0.0003754184731428073
Метрики на подмножестве test:
           na подмножестве теят:
Balanced-Accuracy: 0.7285475022419159
Recall: 0.7312734082397003
Precision: 0.727865796831314
F1: 0.7295656235404016
                         MultinomialNB (ngram_range = (2, 2))
    1.00
     0.95
Balanced-Accuracy
                                                                                                   - Train
                                                                                                - Val
     0.75
     0.70
                                10^{-3}
                                                  10^{-2}
                                                                                       10<sup>0</sup>
                                                                                                        10<sup>1</sup>
2.34 ms \pm 28.5 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
486 \mu s ± 3.28 \mu s per loop (mean ± std. dev. of 7 runs, 1,000 loops each) ngram_range: (1, 2)
Лучший параметр:
             0.3727593720314942
Метрики при лучшем параметре:
TRAIN BALANCED-ACCURACY: 0.9987491203530473
VALID BALANCED-ACCURACY: 0.7792182125837439
              0.0023357395571435647
Время предсказания:
              0.00048632610185723026
Метрики на подмножестве test:
            на подмножестве теst:
Balanced-Accuracy: 0.8021561956005697
Recall: 0.802434456928839
Precision: 0.802434456928839
F1: 0.802434456928839
                         MultinomialNB (ngram_range = (1, 2))
     1.00
     0.95
Balanced-Accuracy
                                                                                                Train
                                                                                                 - Val
     0.75
              10^{-4}
                               10^{-3}
                                                  10^{-2}
                                                                    10^{-1}
                                                                                       100
                                                                                                        10<sup>1</sup>
  Итоговая таблица
```

```
In [63]: table = PrettyTable()
           table.field_names = [
                'Название модели'.
                 Значение параметра модели',
                'Время обучения',
'Время предсказания',
                'Balanced-Accuracy'
```

```
l
table.align = 'c'
table.add_rows(table_rows)
table
```

Out[63]:

Название модели	N_gram	Значение параметра модели	Время обучения	Время предсказания	Balanced-Accuracy	R	P	F1
KNeighborsClassifier	(1, 1)	81	0.00043	0.88062	0.75476	0.78933	0.73883	0.76324
KNeighborsClassifier	(2, 2)	41	0.00042	0.55095	0.65809	0.42603	0.79545	0.55488
KNeighborsClassifier	(1, 2)	81	0.00051	1.65293	0.75903	0.75843	0.75985	0.75914
LogisticRegression	(1, 1)	26.82696	0.12557	6e-05	0.76792	0.77434	0.76503	0.76966
LogisticRegression	(2, 2)	26.82696	0.0738	5e-05	0.71493	0.73127	0.70871	0.71982
LogisticRegression	(1, 2)	10000000000.0	0.29508	8e-05	0.79509	0.81929	0.78195	0.80018
BernoulliNB	(1, 1)	1.9307	0.00158	0.00046	0.78294	0.77809	0.78619	0.78212
BernoulliNB	(2, 2)	0.37276	0.00221	0.00149	0.71776	0.72191	0.71654	0.71922
BernoulliNB	(1, 2)	1.9307	0.00281	0.00184	0.79185	0.78745	0.7949	0.79116
MultinomialNB	(1, 1)	0.37276	0.00132	0.00015	0.77638	0.7706	0.78009	0.77532
MultinomialNB	(2, 2)	0.37276	0.00192	0.00038	0.72855	0.73127	0.72787	0.72957
MultinomialNB	(1, 2)	0.37276	0.00234	0.00049	0.80216	0.80243	0.80243	0.80243

Выводы по моделям

KNeighborsClassifier (kNN)

Поскольку алгоритм kNN не предполагает как такового обучения, время "обучения" при любых N_gram практически одинаково, однако время предсказания очень велико ввиду особенностей модели (оно на несколько порядков больше, чем у остальных моделей) и зависит от размера данных (чем размер больше, тем больше время предсказания).

По Balanced-Accuracy модель kNN показала худшие результаты в сравнении с другими моделями. Показатель Precision для значений N_gram=1, (1,2) около 0.74, то есть из всех предсказанных моделью положительных результатов (класс 1) действительно положительными оказались 74%: этот показатель немного ниже, чем у других моделей при таких же N_gram. То же можно сказать про показатель Recall (доля всех найденных положительных результатов).

При N_gram=(2,2) модель показала худший результат по взвешенному показателю F1 из всех моделей.

LogisticRegression

Время обучения логистической регрессии оказалось самым большим среди рассматриваемых моделей, время предсказания сопоставимо с моделями наивного Байеса (но немного больше у модели регрессии).

По Balanced-Accuracy модель оказалась лучше kNN (особенно при N_gram=(2,2)) и немного уступает байесовым классификаторам. По полноте (Recall) модель примерно на 3-4% лучше 'kNN' (и намного лучше при N_gram=(2,2), немного лучше модели Бернулли (при N_gram=(2,2)) существенно лучше). Данный показатель при N_gram=(1,2) является лучшим среди всех моделей. По показателю точности (Precision) модель показала схожие или немного хуже значения с байесовскими классификаторами и лучше kNN (кроме N_gram=(2,2)).

Байесовские классификаторы

По времени обучения BernoulliNB примерно в два раза медленнее MultinomialNB, при этом обе модели по данному показателю на два порядка быстрее логистической регрессии. По времени предсказания полиномиальная модель на порядок быстрее модели Бернулли и обе модели уступают только логистической регрессии.

По Balanced-Accuracy модели показали схожие результаты, которые лучше логистической регрессии и kNN.

Оба байесовских классификатора показали лучшие результаты при N_gram=(1,2), которые оказались лучшими среди всех моделей. Однако по взвешенной оценке F1 полиномиальная модель оказалась немного лучше модели Бернулли (0.80243 у MultinomialNB против 0.79116 у BernoulliNB).

Итог

Модель MultinomialNB при N_gram=(1,2) дала лучший результат среди всех представленных моделей как по метрикам, так и по времени предсказания (время обучения быстрее только у kNN). Модель, которая показала худшие результаты в этом сравнении - kNN

In []: