

Chapter 8

NP and Computational Intractability

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Linear Programming
- Reductions.

Ex.

- O(n log n) interval scheduling.
- O(n log n) closest points.
- $O(n^2)$ edit distance.

Algorithm design anti-patterns.

- NP-completeness.
- Undecidability.

 $O(n^k)$ algorithm unlikely.

No algorithm possible.

8.1 Polynomial-Time Reductions

Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

Primality testing

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.

Yes	Probably no		
Shortest path	Longest path		
Matching	3D-matching		
Min cut	Max cut		
2-SAT	3-SAT		
Planar 4-color	Planar 3-color		
Bipartite vertex cover	Vertex cover		

Factoring

Polynomial-Time Reduction

Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to algorithm that solves problem Y.

Notation. $X \leq_P Y$.

Remarks.

We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.

Polynomial-Time Reduction

Common way to establish polynomial time reduction from X to Y

- 1. Convert the instance I of problem X into an instance I' for problem Y in polynomial-time on the size of I $\$
- 2. Obtain a solution S' for I' through a call to an algorithm that solves problem Y.
- 3. Convert the solution S' of instance I' into a solution S of instance I in polynomial-time on the size of I

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$.

up to cost of reduction

Reduction By Simple Equivalence

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size \geq 6? Yes.

Ex. Is there an independent set of size \geq 7? No.

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size \leq 4? Yes.

Ex. Is there a vertex cover of size \leq 3? No.

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set iff V-S is a vertex cover.

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set iff V - S is a vertex cover.

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow u \notin S or v \notin S \Rightarrow u \in V S or v \in V S.
- Thus, V S covers (u, v).

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.

Pf. We show S is an independent set iff V - S is a vertex cover.

```
\Rightarrow
```

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent ⇒ $u \notin S$ or $v \notin S$ ⇒ $u \in V S$ or $v \in V S$.
- Thus, V S covers (u, v).

\leftarrow

- Let V S be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since V S is a vertex cover.
- $_{ iny }$ Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. ullet

Independent Set to Vertex Cover

Solving INDEPENDENT SET using VERTEX COVER

- 1. Transform the instance (G,k) for Independent Set into the instance (G,n-k) for Vertex Cover
- 2. Call VC algorithm to solve (G,n-k)
- 3. If the algorithm answer YES for VC then answer YES for Independent Set. Otherwise, answer NO.

Reduction from Special Case to General Case

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Set Cover

SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

Ex:

```
U = \{1, 2, 3, 4, 5, 6, 7\}
k = 2
S_1 = \{3, 7\} \qquad S_4 = \{2, 4\}
S_2 = \{3, 4, 5, 6\} \qquad S_5 = \{5\}
S_3 = \{1\} \qquad S_6 = \{1, 2, 6, 7\}
```

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER $\leq P$ SET-COVER.

Pf. Given a VERTEX-COVER instance (G, k), we construct a SET-COVER instance with one-to-one correspondence between solutions

Construction.

Create SET-COVER instance:

$$k = k$$
, $U = E$, $S_v = \{e \in E : e \text{ incident to } v\}$

Set-cover of size $\leq k$ iff vertex cover of size $\leq k$.

SET COVER $U = \{1, 2, 3, 4, 5, 6, 7\}$ k = 2 $S_a = \{3, 7\}$ $S_b = \{2, 4\}$ $S_c = \{3, 4, 5, 6\}$ $S_d = \{5\}$ $S_e = \{1\}$ $S_f = \{1, 2, 6, 7\}$

8.2 Reductions via "Gadgets"

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction via "gadgets."

Satisfiability

3-CNF: A formula on boolean variables of the form "AND's of [OR's of three variables or their complements]"

3-SAT Problem: Given a 3-CNF, is there a setting of the variables that makes the formula TRUE? (i.e. is the formula satisfiable?)

Ex:
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3)$$

Yes: x_1 = true, x_2 = true x_3 = false.

Claim. $3-SAT \leq_P INDEPENDENT-SET$.

Pf. Given an instance Φ of 3-SAT with k clauses, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

$$\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4)$$

Claim. $3-SAT \leq_P INDEPENDENT-SET$.

Pf. Given an instance Φ of 3-SAT with k clauses, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

G

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- \square Set these literals to true. \longleftarrow and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

$$k = 3$$

G

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- \square Set these literals to true. \longleftarrow and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf

Suppose the formula has a satisfying assignment

Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

G

Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv_P VERTEX-COVER.
- Special case to general case: VERTEX-COVER ≤ P SET-COVER.
- Encoding with gadgets: 3-SAT ≤ p INDEPENDENT-SET.

Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$. Pf idea. Compose the two algorithms.

Ex: $3-SAT \le P$ INDEPENDENT-SET $\le P$ VERTEX-COVER $\le P$ SET-COVER.

Self-Reducibility

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find vertex cover of minimum cardinality.

Clear: decision version ≤ p search version

Self-reducibility. Search problem $\leq P$ decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k* of min vertex cover.
- Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k^* 1$.
 - any vertex in any min vertex cover will have this property
- Include v in the vertex cover.
- Recursively find a min vertex cover in $G \{v\}$.

delete v and all incident edges

Exercise

Exercise: Reduce the Max-flow problem to the Min-cost flow problem

Add edge from sink to source with negative cost and infinite capacity (put cost 0 on all other edges), all demands/supply equal to 0

8.3 Definition of NP

Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: A(s) = yes iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where $p(\cdot)$ is some polynomial.

length of s

PRIMES: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37,\}$ Algorithm. [Agrawal-Kayal-Saxena, 2002] $p(|s|) = |s|^8$.

INDEPENDENT SET:

X = { family of graph with an independent set of size at least k} Algorithm. A polynomial algorithm is not known

Definition of P

P. Decision problems for which there is a poly-time algorithm.

The decision version of most problems we saw on the course are in P

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

NP

NP (informal). Problems that can be certified in poly-time

Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def. Algorithm C(s, t) is a certifier for problem X if for every string s, $s \in X$ iff there exists a string t such that C(s, t) = yes.

"certificate" or "witness"

NP. Decision problems for which there exists a poly-time certifier.

C(s, t) is a poly-time algorithm and $|t| \le p(|s|)$ for some polynomial $p(\cdot)$.

Remark. NP stands for nondeterministic polynomial-time.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ , is there a satisfying assignment?

Certificate.

Certifier.

Ex.
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

instance s

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

certificate t

Conclusion. SAT is in NP.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ , is there a satisfying assignment? Certificate. An assignment of truth values to the n boolean variables. Certifier. Check that each clause in Φ has at least one true literal.

Ex.
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

instance s

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

certificate t

Conclusion. SAT is in NP.

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate.

Certifier.

Conclusion. HAM-CYCLE is in NP.

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

Certifiers and Certificates: COMPOSITE

COMPOSITE. Is x a composite number?

Certificate. Two factors of x larger than 1.

Certifier. Verify if the two number are larger than 1 and if their product is \boldsymbol{x}

Conclusion, COMPOSITE is in NP.

Certifiers and Certificates: Non-Hamiltonian

Non-Hamiltonian. Is the graph G non-Hamiltonian?

Certificate.

It is believed that this problem is not in NP

Certifiers and Certificates: Non-Hamiltonian

Non-Hamiltonian. Is the graph G non-Hamiltonian?

Certificate. ???

It is believed that this problem is not in NP

Certifiers and Certificates: PRIMES

PRIME. Is x a prime number?

Certificate. empty

Certifier. AKS primality algorithm that runs in polynomial time

Conclusion, PRIMES is in NP.

The same reasoning allows us to conclude that $P \subseteq NP$ (that is, every problem with a polynomial-time algorithm can be certified in polynomial time)

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm.
- EXP. Decision problems for which there is an exponential-time algorithm.
- NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP \subseteq EXP$.

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel] (is finding the solution as easy as checking the solution?)

Clay \$1 million prize.

would break RSA cryptography (and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...

If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

Progress on P vs NP?

Some ways of proving P!=NP do not work:

- Relativization [Baker, Gill, Solovay '75]
- Natural Proofs [Rudich, Razborov '97]
- Algebrization [Aaronson, Wigderson '08]

Some ways of proving P=NP do not work:

Extended formulations [Yannakakis '91, Fiorini et al. '12, Rothvoss '14]

Maybe cannot be proved using standard math (i.e. independent of ZFC)

 If P!=NP, some independence proofs would not work [Ben-David, Halevi '92]

8.4 NP-Completeness

NP-Complete

"Hardest" NP problems

NP-complete. Problem Y is NP-complete if is it in NP and for every problem X in NP, $X \leq_p Y$.

Not clear they exist, could have harder and harder problems in NP

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff P = NP.

Pf. \leftarrow If P = NP then Y can be solved in poly-time since Y is in NP.

Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time. This implies NP \subseteq P.
- We already know $P \subseteq NP$. Thus P = NP.

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973] Pf. (sketch)

Any algorithm that takes a fixed number n of bits as input and produces a yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof; fixing the number of bits is important, and reflects basic distinction between algorithms and circuits

- Consider some problem X in NP. It has a poly-time certifier C(s, t). To determine whether s is in X, need to know if there exists a certificate t of length p(|s|) such that C(s, t) = yes
- View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first |s| bits are hard-coded with s
 - remaining p(|s|) bits represent bits of t
- Circuit K is satisfiable iff there is certificate t for which C(s, t) = yes.

Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

hard-coded inputs (graph description)

n inputs (nodes in independent set)

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_p Y$. (so Y is as hard as the hardest NP problems)

NP-Completeness

Observation. All problems below are NP-complete and polynomially reduce to one another!

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

- If a problem is NP-complete, do not try to find a polynomial time algorithm
 - (would solve all NP problems, many of which very smart people worked on for a long time)

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

Approaches to cope with NP-Completeness

- Approximation Algorithms:
- Exact Methods:
 - Branch and Bound, Integer Programming
- Heuristics:
 - Local Search, Simulated annealing, Genetic Algorithms
- Beyond worst-case analysis

•

Cursos Futuros

- Otimização Combinatória
 - Programação Linear
 - Algoritmos Aleatorizados
 - Algoritmos de Aproximação

Programação Inteira

Heurísticas/ Meta-Heurísticas