PROBLEMA DI CAUCHY DI ORDINE 1

$$\begin{cases} \int \frac{1}{g(y)} dy = \int f(x) dx \\ y(x) = n \end{cases}$$

1. Separa le due funzioni g(y), f(x) scrivendole $\int \frac{1}{g(y)} dy = \int f(x) dx$. Se l'equazione è omogenea devo cercare la soluzione g(y) = 0

<u>NOTA</u>: se mi trovassi un problema non omogeneo (y(x) = n, n! = 0) con x e y non separabili nella forma $y'(x) + a(x) \cdot y(x) = b(x)$, devo moltiplicare tutti i membri per un fattore integrante, ovvero per e^{Ax} dove Ax è un'antiderivata di ax.

- 2. Risolvi gli integrali inserendo dalla parte di x la costante c NOTA: se dovesse capitarti una funzione $\ln|y|$... |devi rimuovere il logaritmo elevando tutto alle e da entrambi i lati. Devi quindi prendere la parte di destra e metterla TUTTA come esponente di e. fatto questo puoi separare la parte con la e introducendo una variabile e0 che moltiplicherà e0 elevato all'integrale di e1 f(e2)
- 3. Applico la condizione y(x) = n all'equazione appena ottenuta, calcolando per quale k la condizione è vera. Infine riscrivo la soluzione del problema inserendo nell'EDO ottenuta il valore di k.
- 4. Scrivo l'intervallo di definizione massimo ricordando che deve contenere la *x* del problema e che deve essere un intervallo singolo (non un insieme di intervalli).

EDO OMOGENEE DI SECONDO ORDINE E PROBLEMA DI CAUCHY

- 1. Ricavo dall'equazione data i parametri *a*, *b*, *c* e li uso per scrivere una nuova equazione di grado minore.
- 2. Guardo il Δ :
 - a. $\Delta > 0$: la soluzione sarà nella forma $c_1 * e^{r_1 x} + c_2 * e^{r_2 x}$
 - b. Δ = 0: la soluzione sarà nella forma $c_1 * e^{rx} + c_2 * x * e^{rx}$
 - c. Δ < 0: ho due radici distinte, irrazionali nella forma $\alpha \pm \beta i$; la soluzione sarà nella forma $c_1 * e^{\alpha x} \cos(\beta x) + c_2 * e^{\alpha x} \sin(\beta x)$
- 3. Derivo l'equazione generale appena trovata
- 4. Sostituisco il parametro y'(x) = n che ho nel problema di Cauchy e mettendolo a sitema con y(x) = m ottengo i valori di c_1 e c_2

EDO NON OMOGENEE DI SECONDO ORDINE E PROBLEMA DI CAUCHY

- 1. Ricavo dall'equazione data i parametri *b*, *c* e li uso per scrivere una nuova equazione di grado minore.
- 2. Guardo il Δ :
 - a. $\Delta > 0$: la soluzione sarà nella forma $c_1 * e^{r_1 x} + c_2 * e^{r_2 x}$
 - b. $\Delta = 0$: la soluzione sarà nella forma $c_1 * e^{rx} + c_2 * x * e^{rx}$
 - c. Δ < 0: ho due radici distinte, irrazionali nella forma $\alpha \pm \beta i$; la soluzione sarà nella forma $c_1 * e^{\alpha x} \cos(\beta x) + c_2 * e^{\alpha x} \sin(\beta x)$
- 3. Scrivo quindi la formula della omogenea, $y_0(x)=c_1y_1(x)+c_2y_2(x)$ inserendo al posto di $y_1(x)$ e $y_2(x)$ i valori associati al Δ
- 4. Cerco la soluzione particolare , $y_p(x)=c_1(x)y_1(x)+c_2(x)y_2(x)$ risolvendo il sistema $\begin{cases} c_1'y_1(x)+c_2'y_2(x)=0\\ c_1'y_1'(x)+c_2'y_2'(x)=f(x) \end{cases}$
- 5. Inserisco c_1 e c_2 nella formula di $y_p(x)$

- 6. Sommo la $y_p(x)$ con $y_o(x)$
- 7. Impongo le condizioni iniziali di Cauchy

INTORNI E APPARTENENZA

$$P \in \mathbf{R}^{n}, r > 0 \in \mathbf{R} \to U_{r}(P) = \{X \in \mathbf{R}^{n}: ||X - P|| < r\}$$

Dato un punto P, devo trovare un raggio r che mi crei un intorno $U_r(P)$ tale che la distanza tra P e X sia minore di questo raggio, ovvero P sia contenuto nello stesso spazio di piano rappresentato dall'equazione che contiene anche X.

$$P \in \text{Int}(S) \text{ se } \exists \ U_r(P) \subseteq S$$

 $P \in \text{Est}(S) \text{ se } \exists \ U_r(P) \subseteq \mathbf{R^n} \setminus S$
 $P \in \text{Fr}(S) \text{ se } \forall \ U_r(P) \rightarrow \ U_r(P) \cap S \neq \emptyset \text{ e } U_r(P) \cap (\mathbf{R^n} \setminus S) \neq \emptyset$

Un punto di accumulazione è un punto P appartenente a S dove un suo intorno contiene almeno un altro punto.

LUNGHEZZA DI UNA CURVA

$$\begin{split} \gamma \colon & [a,b] \to \mathbf{R}^2 \\ t &\to (t_1,t_2) \\ & lunghezza(\gamma) = \int_a^b & \|\gamma'(t)\| \end{split}$$

Derivo t_1, t_2 . Sostituisco i valori a e b nell'equazioni t_1 e t_2 (sostituisco a coppie) e applico la formula della

norma:
$$\|\vec{L}\| = \sqrt{(t_1)'^2 + ... + (t_n)'^2}$$

PARAMETRIZZAZIONE DELLA RETTA

$$r(t) = P + t * \gamma'(P)$$

oppure

$$r(t) = f'_{x}(x_0, y_0)(x - x_0) + f'_{y}(x_0, y_0)(y - y_0)$$

Data questa formula sostituisco i parametri

FORMULE PER LE CONICHE

ELLISSE:
$$\frac{(x-x_c)^2}{a^2} + \frac{(y-y_c)^2}{b^2} = 1$$

$$V_1 = (x_c + a, y_c) \middle| V_3 = (x_c, y_c + b)$$

$$V_2 = (x_c - a, y_c) \middle| V_4 = (x_c, y_c - b)$$

Se a = b allora ho una circonferenza

IPERBOLE:
$$\frac{(x-x_c)^2}{a^2} - \frac{(y-y_c)^2}{b^2} = 1$$

$$V_1 = (x_c + a, y_c) \qquad V_2 = (x_c - a, y_c)$$

$$A_1 = \frac{b}{a}(x - x_c) + y_c \qquad A_2 = -\frac{b}{a}(x - x_c) + y_c$$

$$VARIAZIONE: \frac{(x-x_c)^2}{a^2} - \frac{(y-y_c)^2}{b^2} = -1$$

LIMITI

Dimostrare che un limite esiste:

- 1. Devo dimostrare che $|f(x,y)-l| \le h(x,y)$ e che $\lim_{(x,y)\to(x_0,y_0)} h(x,y)=0$ con $\lim_{(x,y)\to(x_0,y_0)} f(x,y)=l$
- 2. Teorema del confronto

LIMITI CON COORDINATE POLARI

3. Dato il limite $\lim_{(x,y)\to(x_p,y_p)} f(x,y)$ sostituidoi tutte le $x \cos x = x_p + \rho \cos \theta$ e le $y \cos y = y_p + \rho \sin \theta$

Classificazione dei punti stazionari – criterio dei minori

- 1. Calcolare f'x(x, y)
- 2. Calcolare f'y(x, y)
- 3. Porre le funzioni uguali a 0 e calcolare i punti (risolvere il sistema)
- 4. Calcolare la matrice Hessiana:
 - a. Calcolare f''xx(x, y)
 - b. Calcolare f''xy(x, y) che è uguale a f''yx(x, y)
 - c. Calcolare f''yy(x, y)
- 5. Inserire il tutto nella matrice $Hf = \begin{cases} f''xx(x,y) & f''xy(x,y) \\ f''yx(x,y) & f''yy(x,y) \end{cases}$
- 6. Inserire i valori di x e y nella matrice
- 7. Valutare la matrice Hessiana applicata ad un punto
 - a. Se det(Hf(P)) > 0 e f''xx(x, y) > 0 allora P è un minimo
 - b. Se det(Hf(P)) > 0 e f''xx(x, y) < 0 allora P è un massimo
 - c. Se det(Hf(P)) < 0 allora P è un punto di sella

Classificazione dei punti stazionari – moltiplicatori di Lagrange

- 1. Testare il gradiente
- 2. Calcolare g'x(x, y)
- 3. Calcolare g'y(x, y)
- 4. Valutare $\nabla(g(x, y)) = (g'x(x, y), g'y(x, y))$ e verificare che sia \neq (0,0) nel punto (0,0) (sostituisco i valori nel punto del gradiente) o che non appartenga al dominio
- 5. Ricavare la funzione Lagrangiana $L = f(x, y) \lambda(g(x, y))$
- 6. Ottenere un sistema di derivate parziali e risolverlo stando attento a valutare tutte le soluzioni per ottenere dei punti
 - a. Calcolare $L'x(x, y, \lambda)$
 - b. Calcolare $L'y(x, y, \lambda)$
 - c. Calcolare $L'\lambda(x, y, \lambda)$
- 7. Valutare la matrice Hessiana Orlata nei punti

$$0 g'x(x,y) g'y(x,y)$$

a.
$$B_{L(x,y,\lambda)} = g'x(x,y)$$
 $L''xx(x,y)$ $L''xy(x,y)$ $g'y(x,y)$ $L''yx(x,y)$ $L''yy(x,y)$

- b. Se il $det(B_{L(x,y,\lambda)}) > 0$ il punto è un massimo locale
- c. Se il $det(B_{L(x,y,\lambda)}) < 0$ il punto è un minimo locale

Iperpiano tangente

- 1. Calcolare le derivate parziali
 - a. Calcolare $\alpha = f'x(x, y, z)$
 - b. Calcolare b = f'y(x, y, z)
 - c. Calcolare c = f'y(x, y, z)
- 2. Sostituire nella formula a(x xp) + b(y yp) + c(z zp)

Piano tangente

- 1. Calcolare le derivate parziali
 - a. Calcolare $\alpha = f'x(x, y, z)$
 - b. Calcolare b = f'y(x, y, z)
 - c. Calcolare c = f'y(x, y, z)
- 2. Applicare la formula z f'x(xp, yp) = f'x(xp, yp)(x xp) + f'x(xp, yp)(y yp)

Coordinate sferiche:

Usate quando l'equazione ha una forma del tipo: $x^2 + y^2 + z^2$

$$\begin{cases} x = \rho \cos(\theta) \sin(\varphi) & \rho \in [0, +\infty) \\ y = \rho \sin(\theta) \sin(\varphi) & \theta \in [0, 2\pi] \\ z = \rho \cos(\varphi) & \varphi \in [0, \pi] \end{cases}$$

RICORDA IL DETERMINANTE DELLA JACOBIANA: $\rho^2 \sin(\varphi)$

Coordinate cilindriche:

$$\{ x = \rho \cos(\theta) \ y = \rho \sin(\theta) \ z = z \ \rho \in [0, r] \ \theta \in [0, 2\pi]$$

$$\begin{cases} x = \rho \cos(\theta) & z \ \rho \in [0, r] \\ y = \rho \sin(\theta) & \theta \in [0, 2\pi] \end{cases}$$

RICORDA IL DETERMINANTE DELLA JACOBIANA: ho

Campo conservativo

- 1. Verificare la condizione delle derivate incrociate
 - a. (F1)'y(x, y) = (F2)'x(x, y) con F1 e F2 i punti x e y dati
- 2. Calcolare il potenziale
 - a. Calcolare $\int F1 dx$ per trovare una soluzione U(x) + c(y)
 - b. Calcolare [F2 dy per trovare una soluzione U(y) + d(x)
 - c. Porre U(x) + c(y) = U(y) + d(x)
 - d. Prendere dei valori di d(x) e c(y) che soddisfino l'equazione

Integrale di linea lungo la curva

Tabella dei valori di sen e cos

Valutazione sull'insieme M

- 1. Ottenere un sistema di derivate parziali e risolverlo stando attento a valutare tutte le soluzioni per ottenere dei punti
 - a. Calcolare $L'x(x, y, \lambda)$
 - b. Calcolare $L'y(x, y, \lambda)$
 - c. Calcolare $L'\lambda(x, y, \lambda)$
- 2. Sostituire i punti trovati dal sistema nella g(x) e trovare il valore massimo e minimo

funzioni goniometriche					
$\lim_{x \to 0} \frac{sen x}{x} = 1$	$\lim_{x \to 0} \frac{tg}{x} = 1$				
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$\lim_{x \to 0} \frac{arcsen \ x}{x} = 1$				
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{arctg \ x}{x} = 1$				
$\lim_{x \to 0} \frac{sen \ mx}{sen \ nx} = \frac{m}{n}$	$\lim_{x \to 1} \frac{\left(arc\cos x\right)^2}{1 - x} = 2$				
funzioni esponenziali e logaritmiche					
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$				
$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$				
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$				
$\lim_{x \to 0} \frac{\left(1+x\right)^k - 1}{x} = k$	$\lim_{x \to \infty} \frac{x^n}{a^x} = 0 \qquad (a > 1)$				
$\lim_{x\to\infty}\frac{a^n}{n!}=0$	$\lim_{x \to \infty} \frac{1}{1+a^x} = \begin{cases} 1 & \text{se } a < 1 \\ \frac{1}{2} & \text{se } a = 1 \\ 0 & \text{se } a > 1 \end{cases}$				

α (°)	α (rad)	sen α	cos $lpha$
0°	0	0	1
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90°	$\frac{\pi}{2}$	1	0
180°	π	0	-1