Sistemas Digitais - Combinacionais e Sequenciais

Eletronica Digital - Expressões Booleanas

NOTA #1 A + B (OU) A * B (E)

NOT gate

• AND gate

Α	В	A * B
0	0	0

Α	В	A * B
0	1	0
1	0	0
1	1	1

OR gate

Α	В	A * B
0	0	0
0	1	1
1	0	1
1	1	1

• XOR gate

Α	В	A * B
0	0	0
0	1	1

Α	В	A * B
1	0	1
1	1	0

NAND gate

Α	В	A * B
0	0	1
0	1	1
1	0	1
1	1	0

Identidades

• Comutatividade:

$$A + B = B + A$$

• Associatividade:

$$(A+B)+C=A+(B+C)$$

• Distributividade

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

• De Morgan

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B}=\overline{A}\cdot\overline{B}$$

• Expressões Auxiliares

Mapa de Karnaugh

Karnaugh Map, Wikipedia

Vídeo sobre o Mapa de Karnaugh

Prática

Para essa prática, foram usados três circuitos integrados, o *SN7402*, *SN7404* e o *SN7408*, para montar, a partir do vídeo abaixo, um circuito de um display de 2 bits.

Vídeo sobre a prática do display de 7 segmentos

Abaixo, o circuito final:

Contador Combinacional

A estrutura anterior funciona, porém funciona apenas para dois bits, e sua escalabilidade não é muito efetiva, dependendo de um grande espaço para alocar mais bits.

Para solucionar isso, existe um circuito integrado, o **TC4511BP**, que acumula todo o circuito acima em um único chip, com entradas para até 4 bits. Abaixo, o circuito foi feito com esse circuito

Contador Sequencial

555

O 555 funciona a base de dois comparadores. Ele começa o carregamento de um capacitor por dois resistores, até chegar em um ponto que, ao ser colocado em um comparador, faz com que o 555 mude o ponto de comparação para o segundo comparador, que então é novamente carregado, seguindo o mesmo processo. Esse carregamento e descarregamento sucessivo pelos dois comparadores gera esse comportamento oscilatório.

Uma das configurações do 555 é a configuração astável:

O pinout de um 555 é:

Abaixo, um circuito montado com 555 em configuração astável:

