Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 23: Functional Dependencies and Normalization Normalization and Normal Forms (Chapter 14.3-14.4, Elmasri-Navathe 7ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Περιεχόμενο Διάλεξης

- Κανονικοποιήση (Normalization) και Κανονικές Μορφές (Normal Forms)
- Ορισμοί: Πρωτεύων Γνώρισμα (Prime Attribute), Μερική/Ολική Συναρτησιακή Εξάρτηση (Partial/Full FD)
- Κανονικές Μορφές
 - Πρώτη Κανονική Μορφή (1NF)
 - Δεύτερη Κανονική Μορφή (2NF)
 - Τρίτη Κανονική Μορφή (3NF)

Εισαγωγή: Κανονικοποιήση (Normalization)

- Κανονικοποιήση (Normalization):
 - Η διαδικασία διάσπασης των σχέσεων μιας βάσης για να ελαχιστοποιηθεί η Επανάληψη Δεδομένων.
 - Η επανάληψη είναι η πηγή ανωμαλιών ενημερώσεων
 - Η διάσπαση γίνεται βάσει των FDs + Κλειδιών.
- Η συναρτησιακή εξάρτηση TOWN → ZIP στο ακόλουθο σχήμα προκαλεί την επανάληψη δεδομένων (redundancy)
 - Π.χ., οι διευθύνσεις στην ίδια περιοχή έχουν το ίδιο κώδικα (zip)

SSN	Name	Town	Zip	
1234	Joe	Stony Brook	11790	Redundancy
4321	Mary	Stony Brook	11790	
5454	Tom	Stony Brook	11790	

Εισαγωγή: Κανονικές Μορφές (Normal Forms, NF)

- Κανονικές Μορφές (Normal forms, NF):
 - Είναι συνθήκες οι οποίες **επικυρώνουν (certify)** τον **Βαθμό Χρηστότητας (Goodness Degree)** ενός Σχεσιακού Σχήματος.
 - Οι συνθήκες ορίζονται με χρήση των κλειδιών και των συναρτησιακών εξαρτήσεων FDs.
- Η Κανονική Μορφή (NF) μιας Σχέσης αναφέρεται στη ψηλότερη δυνατή NF που είναι εφικτή για ένα σχήμα:
 1NF ⊇ 2NF ⊇ 3NF ⊇ BCNF ⊇ 4NF ⊇ 5NF
 - Το 4NF και 5NF δεν είναι διαδεδομένα στη πράξη και δεν μελετηθούν ενώ οι 3NF ή BCNF είναι η επιδιωκόμενη μορφή.
- Εάν οι FDs ΔΕΝ μπορούν να εντοπιστούν εύκολα τότε η Κανονικοποιήση γίνεται πρακτικά δύσκολη διαδικασία. ₂₃₋₄ EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

Ορισμοί: Πρωτεύων Γνώρισμα (Definitions: Prime Attribute)

- Είχαμε αναφέρει ότι εάν ένα σχήμα έχει περισσότερα από ένα κλειδί τότε κάθε κλειδί ονομάζεται εναλλακτικό κλειδί (candidate key)
 - Ένα από αυτά είναι το πρωτεύων κλειδί (primary key)
 και τα υπόλοιπα τα δευτερεύοντα (secondary keys).
 - Π.χ., (SSN, PNO, SID, Name) ή (SSN, PNO, SID, Name)
- Πρωτεύων Γνώρισμα (Prime ή Key Attribute): Γνώρισμα το οποίο είναι μέλος ενός Candidate key
 - Π.χ., πιο πάνω το **PNO** ή **SSN** ή **SID**
- Μη-Πρωτεύων Γνώρισμα (Non-prime ή Non-Key): Γνώρισμα το οποίο ΔΕΝ είναι μέλος κανενός Candidate key
 - Π.χ., πιο πάνω το **Name**

Ορισμοί: Ολική/Μερική FD (Definitions: Full/Partial FD)

- Ολική Συναρτησιακή Εξάρτηση (Full FD): Μια
 FD Y → Z όπου το Z εξαρτάται πλήρως από το Y.
 - Δηλαδή εάν αφαιρεθεί οποιοδήποτε γνώρισμα από το Υ (δηλ., απλοποίηση του Υ) τότε η FD ΔΕΝ ισχύει πια.
 - Π.χ., {SSN, PNUMBER} → HOURS, διότι εάν απλοποιηθεί το {SSN, PNumber} τότε δεν ισχύει SSN→HOURS ούτε και το PNUMBER → HOURS
- Μερική Συναρτησιακή Εξάρτηση (Partial FD):
 Μια εξάρτηση Υ → Ζ που ΔΕΝ είναι Ολική
 - Δηλαδή μπορεί να αφαιρεθεί κάποιο γνώρισμα από το
 Υ και να συνεχίσει να ισχύει το FD.
 - Π.χ., {SSN, PNUMBER} → ENAME είναι μερική FD διότι εάν αφαιρεθεί το Pnumber τότε συνεχίζει να ισχύει το SSN → ENAME Ορισμός Χρησιμεύει στο 2NF

Ορισμοί: Μεταβατική **FD** (Definitions: Transitive FD)

- Μεταβατική Συναρτησιακή Εξάρτηση (Transitive FD): Μια FD X→Z η οποία μπορεί να εξαχθεί από τις FDs X→Y και Y→Z
- Παραδείγματα:
 - SSN→LetterGrade είναι Μεταβατική FD
 - Διότι SSN→NumGrade και NumGrade→LetterGrade
 - SSN → DMGRSSN είναι Μεταβατική FD
 - Διότι SSN→DNUMBER and DNUMBER -> DMGRSSN
 - SSN→EName ΔΕΝ είναι Μεταβατική (ισχύει εξ'όρισμου)
 - Διότι δεν υπάρχει σύνολο non-key γνωρισμάτων X* τέτοιο ώστε SSN→X and X→ EName
 - * Εάν **X** είναι πρωτεύων γνώρισμα (π.χ., X=SID) τότε η μετάβαση της μορφής SSN→SID, SID→ENAME δεν ισχύει.

Ορισμός Χρησιμεύει στο 3NF

Πρώτη Κανονική Μορφή (1NF: First Normal Form)

- Άτυπος Ορισμός 1NF: Κανένα Γνώρισμα ΔΕΝ είναι πλειότιμο (multivalue)* γνώρισμα.
- Παράδειγμα ∉ 1NF

* ούτε σύνθετο (composite) γνώρισμα, μόνο ατομικές τιμές!

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	98765432	{Stafford}
Headquarters	1	888665555	(Houston)

Παράδειγμα ∈ 1NF

DEPARTMENT						
Dname	Dnumber	Dmgr_ssn	Dlocation			
Research	5	333445555	Bellaire			
Research	5	333445555	Sugarland			
Research	5	333445555	Houston			
Administration	4	987654321	Stafford			
Headquarters	1	888665555	Houston			

Λογική Διάσπασης σε 1NF: Μετάτρεψε κάθε πλειότιμο σε νέα πλειάδα.

23-8

Πρώτη Κανονική Μορφή (1NF: First Normal Form)

Επισημάνσεις για 1NF

 Πίνακες που δεν είναι σε 1NF δεν είναι καν στο σχεσιακό σχήμα (στο οποίο κάθε γνώρισμα πρέπει να είναι ατομική τιμή).

Το 1NF αναφέρεται κυρίως για ιστορικούς λόγους
 (δηλαδή ως το πρώτο βήμα των ισχυρότερων κανονικών μορφών 3NF και BCNF που χρησιμοποιούνται στην

πράξη).

Πρόβλημα με 1NF

Συνεχίζουμε να έχουμεπλεονασμό πληροφορίας(π.χ., δες Dname, DMgr_ssn)

DEPARTMENT				
Dname	Dnumber	Dmgr_ssn	Dlocation	
Research	5	333445555	Bellaire	
Research 5		333445555	Sugarland	
Research	5	333445555	Houston	
Administration	4	987654321	Stafford	
Headquarters	1	888665555	Houston	

Δεύτερη Κανονική Μορφή (2NF: Second Normal Form)

• Άτυπος Ορισμός 2NF: Κανένα Γνώρισμα ΔΕΝ εξαρτάται μερικώς (partial dependence) από οποιοδήποτε κλειδί (είτε είναι πρωτεύων ή δευτερεύων*)

• Παράδειγμα ∉ 2NF

- Γιατί οι Non-2NF σχέσεις έχουν πρόβλημα;
 - Γιατί οι μερικές εξαρτήσεις (δηλ., FD2 και FD3) δημιουργούν
 πλεονασμό δεδομένων (redundancy), π.χ.,

Redundancy από FD2

<u>SSN</u>	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
1	1	3	Costas	Sensors	Nicosia
1	2	4	Costas	Web ←	Limassol
2	2	5	Christos	Web	Limassol

Redundancy από FD3

^{*}Σημείωση: Το Κεφάλαιο 10.4 δίνει ορισμούς με χρήση και των δυο ειδών

Δεύτερη Κανονική Μορφή (2NF: Second Normal Form)

- Ας ορίσουμε την 2NF κάπως πιο τυπικά.
- Ορισμός 2NF: Μια σχέση R είναι σε 2NF εάν κάθε μη-πρωτεύων γνώρισμα (non-prime attribute) στο R είναι ολικά συναρτησιακά εξαρτώμενο από το πρωτεύων κλειδί.
- Παράδειγμα **∉ 2NF**

Δεύτερη Κανονική Μορφή (Λογική Διάσπασης σε 2NF)

Λογική Διάσπασης σε 2NF: Για κάθε μερική FD που παραβιάζει την **2NF** (δηλ., $X \rightarrow Y$, όπου X partial key), δημιούργησε μια νέα σχέση $R(X \rightarrow Y)$, διατηρώντας στην αρχική σχέση το X.

Τρίτη Κανονική Μορφή (3NF: Third Normal Form)

• Άτυπος Ορισμός 3NF: Κανένα Μη-Πρωτεύων Γνώρισμα ΔΕΝ εξαρτάται μεταβατικά (transitive dependence) από οποιοδήποτε κλειδί (είτε είναι πρωτεύων ή δευτερεύων*)

Παράδειγμα ∉ 3NF

- Γιατί οι Non-3NF σχέσεις έχουν πρόβλημα;
 - Γιατί και πάλι παραμένει πλεονασμός (redundancy), π.χ.,

Property_id	County_name	Lot#	Area	Price	Tax_rate	
1	Nicosia	1	Α	100	15%	Redundancy.
2	Limassol	6	С	120	10%	7
3	Nicosia	90	F	130	15%	

*Σημείωση: Το Κεφάλαιο 10.4 δίνει ορισμούς με χρήση και των δυο ειδών. Επίσης όταν το τελικό αναφερόμενο (π.χ., Tax_rate) ειναι PRIME τοτε ειναι 3NF

Τρίτη Κανονική Μορφή (Λογική Διάσπασης σε 3NF)

Λογική Διάσπασης σε 3NF: Για κάθε FD που παραβιάζει την 3NF (δηλ., X→Y, Y→Z, όπου Y non-key), δημιούργησε δυο σχέσεις R1(X→Y), R2(Y→Z), τοποθετώντας στην R1 ως ξένο κλειδί το Y.

Σύνοψη Κανονικών Μορφών (Όπως θα πρέπει να τα θυμάστε...)

- Πρώτη Κανονική Μορφή (1NF)
 - Δεν υπάρχουν Πλειότιμα (Multivalues)
 - Διαφορετικά Διατυπωμένο: Όλα τα γνωρίσματα εξαρτώνται από το κλειδί.
- Δεύτερη Κανονική Μορφή (2NF): επιπλέον 1NF:
 - Δεν υπάρχουν Μερικές (Partial) Εξαρτήσεις
 - Διαφορετικά Διατυπωμένο: Όλα τα γνωρίσματα εξαρτώνται από Ολόκληρο το κλειδί.
- Τρίτη Κανονική Μορφή (3NF): επιπλέον 2NF:
 - Δεν υπάρχουν Μεταβατικές (Transitive) Εξαρτήσεις από non-keys σε non-keys.

Παράδειγμα Κανονικοποιήσης σε 3NF

Παράδειγμα Κανονικοποιήσης σε 3NF

Από προηγούμενη διαφάνεια (∈ 2NF)

Παράδειγμα Κανονικοποιήσης σε 3NF

Η Αναδρομική Εκτέλεση της Κανονικοποιήσης

(Από πάνω προς τα κάτω)

