

Topic 1: SCC.131 Module introduction

Course Aims

- To understand the fundamentals of digital systems:
 - Understanding hardware, from fundamental concepts and components to whole computer systems.
 - Understand how hardware and software interact.
 - Understanding how to program and debug at software levels that are "close to the machine".
- This is an introductory module,
 - You might have seen some bits before (e.g. A-level, etc.)
 - It is crucial that you attend lecture slots and labs!
- Reduced participation is corelated with reduced performance.

What is common between the two CPUs?

ARM Cortex-M die

Von Neuman Architecture

What is Computer Architecture?

- Architecture: The science of putting together building materials to produce aesthetically pleasing buildings.
 - Material: bricks, glass, concrete ...
 - Buildings: house, office, school ...
 - Constraints: size, time, cost, health...

- Computer Architecture: The science of creating computers, by putting together hardware components.
 - Hardware components: circuits, gates, chips ...
 - Computers: desktop, server, mobile phone ...
 - Constraints: performance, energy, cost ...

Module organization

Week 20-25 (Dr. Dempster): Systems Programming

Week 13-19 (Dr. Rotsos): ARM Assembly

Week 6-12 (Dr. Chatzigeorgiou): Microbit

Week 1-6 (Prof. Ni): Computer Architecture

- Assembly & C
- Advanced C
- Networking Sockets
- Assembly programming
- Memory
- Interrupts / IO
- Debugging intro
- Physical computing
- Compilation
- Number systems
- Circuit and logic
- Computer Architecture Theory/ISA

Computer Architecture

Instruction Set Architecture


```
Source code file -
           hello.c, hello.cpp
 Cpreprocessor
           Preprocessed code
             file - hello.i
   C Compiler
             Assembly code
             file - hello.s
    Assembler
            Object code file
                                              Relocation object code
                - hello.o
                                                   information
Linker link editor
                                              Other objects file/modules
                                                Library files
            Executable code -
            hello, hello.exe
```

```
int main() {
            uBit.init();
            const uint8 t heart[] = { 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, }; // a cute heart image
            i(10, 5, heart);
            uBit.display.animate(i, 1000, 1);
.syntax unified
    .global func
    .text
    .thumb_func
func:
@ Two parameters are in registers r0 and r1
    adds r0, r0, r1
                       @ Add r0 and r1, result in r0
@ Result is now in register r0
@ -----
    bx lr
                   @ Return to the caller
```

How is this course taught (1)

	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	
Mon																			
Tue																	SCC.131/L01/01 Lecture FAR - Faraday LT 1-10, 11-20, 21-25		
Wed											SCC.131/L01 Lecture	/02 MAN - Mngt School LT15 WPA016 , 11-20, 21-25							
Thu													SCC.131/L02 Lecture B	2/01 LM - Bowland Main LT 1-10		2/02 LM - Bowland Main LT 1-10			
Fri						-													

How is this course taught (2)

Module: SCCx1A: SCC Lab Block A [1]

Weeks:

	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00	17:30
Mon					SCCx1A/P01/0 Practical	02		SAT -	Science & Tec	hnology B070 1-10					SCCx1A/P01 Practical	1/08		SAT -	Science & Tec	nnology B074 1-10
MOII					SCCx1A/P01/0 Practical	01		SAT -	Science & Tec	hnology B080 1-10					SCCx1A/P01 Practical	1/07		SAT -	Science & Tec	nnology B070 1-10
Tue					SCCx1A/P01/0 Practical	06	_	SAT -	Science & Tec	hnology B070 1-10		/10		SAT -	Science & Tec	chnology B074 1-10				
Tue					SCCx1A/P01/0 Practical	05		SAT -	Science & Tec	hnology B076 1-10		/11		SAT -	Science & Tec	chnology B076 1-10				
Wed					SCCx1A/P01/0 Practical	04		SAT -	Science & Tec	hnology B080 1-10										
Wed					SCCx1A/P01/0 Practical	03		SAT -	Science & Tec	hnology B074 1-10										
Thu					SCCx1A/P01/0 Practical	09		SAT -	Science & Tec	hnology B074 1-10										
Fri																				

Practical Requirements

- 1. Computer Architecture
 - Pen and paper exercises and quizzes.
- 2. Embedded Systems
 - C code for microbit.
 - https://scc-source.lancs.ac.uk/scc.Y1/scc.131/microbit-v2-samples
- 3. Assembly
 - ARM M0 assembly on microbit.
- 4. Systems Programming
 - Linux and libc examples on x86.
 - Lab machines/VMs.

Teaching team

Prof. Qiang Ni

Dr Ioannis Chatzigeogriou

Dr Charalampos (Haris) Rotsos

Dr Paul Dempster

How is this course assessed

- Exam/Coursework split: 70%/30%
- Coursework:
 - Architecture Quiz: Week 5 (5%)
 - Architecture + Embedded Systems: Week 10 (5%)
 - Assembly + Debugging Quiz: Week 15 (5%)
 - Assembly: Week 20 (5%)
 - Programming project: Week 23 (10%)
- Exams: Week 28-30 (Online, moodle)
- Use your time wisely.
- Coursework is submitted online and checked for plagiarism.

Practical Organization

- Assignments are released on Moodle over the weekend of each week.
 - https://modules.lancaster.ac.uk/course/view.php?id=41307
- You are expected to spend some time before the start of the lab.
- Bring pen and paper in the first term.
- Your lab machine will have pre-installed all the tools required to complete a task.
- Use your lab time efficiently:
 - Take advantage of TAs and academics and ask questions.
 - If you finish early, ask us to give you more tasks.

What is Plagiarism?

- Passing off someone else's work as your own, including:
 - Submitting (e.g.) code that someone else wrote
 - Paying for someone else to do it for you
 - Working on a piece of non-group work together as a group, and submitting it as individual work
 - Sharing of code that you then possibly adapt
- If you give someone else your work, you can also be called in for plagiarism
- Coursework submitted online is checked for plagiarism automatically
- If you use github/scc-source.lancs.ac.uk repos these need to be private (still plagiarism)

What We Expect from You

- Integrity (no plagiarism, no faking results) and effort (active learning):
 - Come to lectures
 - Go to labs (these are compulsory!)
 - Use our/the world's resources effectively
 - Take notes
 - Read around the subject/try things for yourself
 - Ask us questions in lectures and labs
 - Take notes (again, because the slides are not enough when you try to revise, really...!)
 - Plan your time and coursework carefully
 - Please avoid contacting TAs out of hours; Use labs to get help.

What You can Expect from Us

- We'll do our best
 - To make all our lecture notes/videos available on moodle
 - To personally check the labs are running smoothly and the TAs are offering support
 - To arrange extra support if you've already tried the normal routes (book, web, forum, TAs)
 - FAST sessions every day
 - One-to-one bookable sessions on moodle page
 - To offer prompt feedback on coursework

How do I get help?

With the coursework ...

- Use the labs that's what they are there for!
- Join a FAST session
- Ask the TAs: they are coursework experts
- Use the forum on Moodle
- Please avoid contacting TAs out of hours

With the course ...

- Use the forum on Moodle (no code sharing), use Google or ask the TAs
- Look at the course textbooks (see next slide)
- Contact the lecturers

Course Textbooks (1)

https://eu.alma.exlibrisgroup.com/leganto/readinglist/lists/87115698
 570001221

Computer Architecture, Hennessy, Patterson Good book that has added information for most topics discussed in the course.

Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers, Beuchat, Depraz, Kashani, Guerrieri
Good book from the ARM academy explaing the architecture of the ARM M0

Course Textbooks (2)

https://eu.alma.exlibrisgroup.com/leganto/readinglist/lists/87115698
 570001221

ARM assembly language: fundamentals and techniques, Hohl All around cover of ARM assembly

Dive into Systems, Matthews, Newhall, Webb Open-source book provide a top-down cover of several SCC.131 topics https://diveintosystems.org/book/

Conclusions

Introduction to module

Module Plan

Lab details

Assessment

Next Sessions

Architecture Introduction