Vector Laplace-Runge-Lenz

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

16 de septiembre de 2024

Agenda

- El problema de Kepler y el vector A
- Sección
- Sección
- 4 Sección
- Sección
- Sección

• La trayectoria del problema de Kepler con el potencial central V(r)=-k/r y la fuerza gravitacional $\mathbf{f}(r)=f(r)\hat{\mathbf{r}}$, con $f(r)=-k/r^2$, es una sección cónica, $\frac{q}{r}=1+e\cos\theta$, donde $q=L^2/\mu k$, y $e=\sqrt{1+\frac{2EL^2}{\mu k^2}}$.

3/8

- La trayectoria del problema de Kepler con el potencial central V(r)=-k/r y la fuerza gravitacional $\mathbf{f}(r)=f(r)\mathbf{\hat{r}}$, con $f(r)=-k/r^2$, es una sección cónica, $\frac{q}{r}=1+e\cos\theta$, donde $q=L^2/\mu k$, y $e=\sqrt{1+\frac{2EL^2}{\mu k^2}}$.
- Podemos definir $\mathbf{r} \cdot \mathbf{A} = rA \cos \theta = L^2 \mu kr$, con $A \equiv \mu ke = \text{cte}$.

- La trayectoria del problema de Kepler con el potencial central V(r)=-k/r y la fuerza gravitacional $\mathbf{f}(r)=f(r)\hat{\mathbf{r}}$, con $f(r)=-k/r^2$, es una sección cónica, $\frac{q}{r}=1+e\cos\theta$, donde $q=L^2/\mu k$, y $e=\sqrt{1+\frac{2EL^2}{\mu k^2}}$.
- Podemos definir $\mathbf{r} \cdot \mathbf{A} = rA \cos \theta = L^2 \mu kr$, con $A \equiv \mu ke = \text{cte}$.
- **A** es un vector de magnitud es constante y dirección debe estar en la dirección del perihelio. Si la dirección está en el eje x, $\mathbf{A} = \mu ke\hat{\mathbf{i}}$.

3/8

- La trayectoria del problema de Kepler con el potencial central V(r)=-k/r y la fuerza gravitacional $\mathbf{f}(r)=f(r)\mathbf{\hat{r}}$, con $f(r)=-k/r^2$, es una sección cónica, $\frac{q}{r}=1+e\cos\theta$, donde $q=L^2/\mu k$, y $e=\sqrt{1+\frac{2EL^2}{\mu k^2}}$.
- Podemos definir $\mathbf{r} \cdot \mathbf{A} = rA \cos \theta = L^2 \mu kr$, con $A \equiv \mu ke = \text{cte}$.
- **A** es un vector de magnitud es constante y dirección debe estar en la dirección del perihelio. Si la dirección está en el eje x, $\mathbf{A} = \mu ke\hat{\mathbf{i}}$.

• Como $L^2 = \mathbf{L} \cdot \mathbf{L} = \mathbf{L} \cdot (\mathbf{r} \times \mathbf{p}) = \mathbf{r} \cdot (\mathbf{p} \times \mathbf{I}) \Rightarrow \mathbf{r} \cdot \mathbf{A} = \mathbf{r} \cdot [(\mathbf{p} \times \mathbf{L}) - \mu k \hat{\mathbf{r}}]$

- La trayectoria del problema de Kepler con el potencial central V(r)=-k/r y la fuerza gravitacional $\mathbf{f}(r)=f(r)\mathbf{\hat{r}}$, con $f(r)=-k/r^2$, es una sección cónica, $\frac{q}{r}=1+e\cos\theta$, donde $q=L^2/\mu k$, y $e=\sqrt{1+\frac{2EL^2}{\mu k^2}}$.
- Podemos definir $\mathbf{r} \cdot \mathbf{A} = rA \cos \theta = L^2 \mu kr$, con $A \equiv \mu ke = \text{cte}$.
- **A** es un vector de magnitud es constante y dirección debe estar en la dirección del perihelio. Si la dirección está en el eje x, $\mathbf{A} = \mu ke\hat{\mathbf{i}}$.

- Como $L^2 = \mathbf{L} \cdot \mathbf{L} = \mathbf{L} \cdot (\mathbf{r} \times \mathbf{p}) = \mathbf{r} \cdot (\mathbf{p} \times \mathbf{I}) \Rightarrow \mathbf{r} \cdot \mathbf{A} = \mathbf{r} \cdot [(\mathbf{p} \times \mathbf{L}) \mu k \hat{\mathbf{r}}]$
- Donde $\mathbf{A} \equiv \mathbf{p} \times \mathbf{L} \mu k \hat{\mathbf{r}}$ y también $\mathbf{A} \cdot \mathbf{L} = \mathbf{0}$

A es cantidad conservada

• Consideremos $\frac{d\mathbf{A}}{dt} = \frac{d}{dt}(\mathbf{p} \times \mathbf{I}) - \mu k \frac{d\hat{\mathbf{r}}}{dt}$

