(b) $\frac{1}{27}\cos(x+2y) + xe^x$

None of these

(d) None of these

 $[10 \times 3 = 30]$

Group - B

If $f(x) = \begin{cases} 1, & -1 \le x < 0 \\ -2, & 0 < x \le 1 \end{cases}$ and f is expanded in a Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos\left(\frac{n\pi x}{1}\right) + b_n \sin\left(\frac{n\pi x}{1}\right)]$, then a_0, a_3

11. The particular integral of the differential equation $(D^3 - 3DD'^2 - 2D'^3)z = \cos(x + 2y) - e^y(3 + 2x)$ is

B.Tech. 3rd Semester End-Term Examination – 2021

Name of Subject: Engineering Mathematics-III/Mathematics - III

Subject Code: UME03C12/UEE03C13/C16/UCS03B02/C10/ UEI03C13/UPE03C14/UCH03C17/UBE03C15/UCE03C14/ UEC03B07/UCS03C01

Full Marks: 50 Submit the answer script PDF in this email: nita.ma.cse.a@gmail.com

Time: 2 hours Symbols used here have their usual meanings

(a) $\frac{1}{27}\sin(x+2y) + xe^y$

(c) $\frac{1}{27}\sin(x+2y) - x^2e^x$

(c) 17, 14, 0.6

Group - A Choose the correct answer from the following: $[10 \times 2 = 20]$ Choose the correct answer from the following: The particular integral of the differential equation $(D^3 - 4D^2D' + 5DD'^2 - 2D'^3)z = e^{y+2x}$ is $\frac{x}{2}e^{y+2x}$ (d) None of these If $f(x) = x^2 - 2, -2 \le x \le 2$, then a_n is Let $u(x,y) = f(xe^y) + g(y^2cosy)$, where f and g are infinitely differentiable functions. Then the partial differential of minimum order satisfied by \boldsymbol{u} is $\mathbf{(b)} \quad \mathbf{u}_{xy} + x\mathbf{u}_{xx} = x\mathbf{u}_x$ $u_{xy} + xu_{xx} = u_x$ $u_{xy} - xu_{xx} = u_x$ (d) None of these A rod of 30 cm length has its ends P and Q kept 20°C and 80°C respectively until steady state condition has been prevailed. The temperature at each end point is suddenly reduced to 0°C and kept so. The conditions for solving the equation will be u(0,t) = 0 = u(30,t) and $u(x,0) = 20 + (\frac{60}{10})x$ (b) u(0,t) = 0 = u(30,t) and $u(x,0) = 20 + (\frac{60}{30})x$ $u_t(0,t) = 0 = u_t(30,t)$ and $u(x,0) = 20 + (\frac{60}{10})x$ (d) None of these If $f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ 0, & \frac{1}{2} < x < 1 \end{cases}$, then b_1 in half range sine series is equal to (a) $1/\pi$ If $X \sim N(30, 5^2)$, then the value of $P(26 \le X \le 40)$ is: 0.7653 (b) 0.5 0.9659 (d) None of these The lines of regression in a bivariate distribution are: X + 9Y = 7 and $Y + 4X = \frac{49}{3}$. Then the correlation coefficient between X and Y is (a) $\frac{1}{6}$ (d) None of these If X follows a Poisson distribution such that P(X = 1) = 2P(X = 2), then the value of P(X = 0) is (a) e^{-1} (b) 1 (d) 0 Let the probability density function of a random variable X is: $f(x) = A \sin \frac{\pi x}{\pi}$, $0 \le x \le 5$. Then the median value of X is $^{\pi}/_{10}$ $^{\pi}/_{20}$ A random variable **X** can assume only positive integral value **n** with a probability proportional to $\frac{1}{3^n}$, then E(X) is (d) 2

12.	and b_3 are (in this order)												
	(a) $(0, 0, -\frac{2}{\pi})$						$(-1,0,-\frac{2}{\pi})$						
	2					(d)	None of these						
13.	The general integral of the partial differential equation $(2xy - 1)p + (z - 2x^2)q = 2(x - yz)$ is												
10.	(a) $x^2 + y^2 + z = \varphi(xz + y), \varphi$ being an arbitrary						·		ω heinσ an	arhitrary			
	function						$x^2 - y^2 + z = \varphi(xz + y), \varphi$ being an arbitrary function						
	(c)	function					$x^2 - y^2 - z =$ function						
14.	The pa will be		ial equation	derived from the	ne equation $F($	x - y -	$z, \frac{x^2 - y^2}{z^2} \Big) = 0 \mathbf{b}$	y eliminating	the arbitrary f	unction F ,			
	(a)		-yz)p + (x	$(x^2 - y^2 - zx)q$	=z(x-y)	(b)	$(x^2+y^2+y^2)$	$z)p + (x^2 - y)$	$(z^2 - zx)q = z$	z(x-y)			
	(c)	$(x^2-y^2-$	+yz)p+(x	$(x^2 - y^2 + zx)q$	= z(x - y)	(d)	None of these	,					
15.	The co	mplete integr	al of the equ	nation $q^2 = z^2$	$p^2(1-p^2)$ wil	ll be							
	(a) $(a^2z^2+1)^{1/2}=ax+a^2y+b$						$(a^2 - z^2)^{1/2} = ax + a^2y + b$						
	(c) $(a^2z^2-1)^{1/2} = ax + a^2y + b$						None of these						
16.	The incidence of occupational disease in an industry is such that the workers have a 20% chance of suffering from it. Then the probability that out of six workers chosen at random, four or more will suffer from the disease is												
	(a)		out of six we	orkers chosen at	random, four c		$\frac{51}{3125}$	the disease is					
	11143						/ 3125 None of these						
18	It is known that the probability that an item produced by a certain machine will be defective is 0.01. Then the prob												
17.	that random sample of 100 items selected at random from the total output will contain not more than one defective item is:												
		$\frac{1}{e}$				(b)	, C						
		$^{2}/_{e}$				(d)	None of these						
18.	The value of p in a binomial distribution with $n = 6$ and $9 P(X = 4) = P(X = 2)$ is given by												
		p=-1/2					$p=\frac{1}{4}$						
10	. ,	p=1				(d)	p = 0						
19.		the following				_	_						
	X		1	3	4	5			8	10			
	Y		2	6	8	10	0 1	4	16	20			
			orrelation b	oetween X and	Yis	(1)	0						
	(a)	1				(b)	0 No						
	(c)	0.9	ribution 220	r(V) = 0 Deg	raccion linac or	(d)	None of these $10Y = -66, 40$		211. then the	volues of			
20.		E(Y), r(X, Y)			icosion inics al	C 0A —	101 — -00,40	UA — 101 — 1	LIT, MEH ME	values 01			
	(a)	17, 14, -0.6				(b)	13, 17, 0.6						
		4= 44.0 -											

2	2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0359
	0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
	0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
	0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
	8.0	0.2881	0.2910	0.2939	0.2969	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
	0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	0.3621
	1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
	1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
	2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
	2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
	2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
	2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
	2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
	2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
	3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
	3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
	3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
	3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
	3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998

National Institute of Technology, Agartala Department of Mathematics

Name of the Examination: End Sem examination Date: 06/12/2021

Subject Name: Engineering Mathematics III Subject Code: UCS 03 C16

Name of the Student: Aditya Kiran Pal

Enrollment no: 200(5119 Registration no: 2012709

Branch Name: Computer Science & Engincering Section: A

Semester: 3rd Sem Total pages:

Anowerscript:

Group	A	Group B			
Question no.	Option	Question no.	Option		
<u>1</u>	(A)	u	(A)		
	<i>(</i> a)	12	(B)		
2	(()	13	(A)		
3	(B)	14	(A)		
4		15	(0)		
5	$\frac{2}{\pi}$ (B)	16	(c)		
6	6)	and the second s	(c)		
7	(B)	17	(B)		
8	(A)	1.8	A CONTRACT OF THE PARTY OF THE		
9	(B)	19	(A)		
10	(c)	20	(B)		

Group A:

$$P_{*}I := \frac{1}{f(a_{1}b_{1})} e^{y+2x}$$

$$= \frac{1}{8-16-10} = \frac{1}{2} e^{y+2x} := f(a_{1}b_{1}) = 0$$

a=2, b=1

$$= x e^{\gamma+2\lambda} \quad (Ans) \quad Option \quad @$$

$$an = \frac{2}{4} \int_{-2}^{2} (x^{2} - z) \cos \left(\frac{2\pi n x}{4}\right) dx$$

$$= \frac{1}{2} \left[\int_{-2}^{2} x^{2} \cos \left(\frac{n\pi x}{2}\right) dx - 2 \int_{-2}^{2} \cos \left(\frac{n\pi x}{2}\right) dx \right]$$

$$=\frac{1}{2}\left[\frac{\pi n}{\pi n}\sin(\frac{\pi nx}{2})-\frac{2\pi 2}{n\pi}\sin(\frac{\pi nx}{2})dx\right]^{2}-\frac{2\pi 2}{n\pi}\left[\sin(\frac{n\pi x}{2})\right]^{2}$$

$$= \frac{1}{2} \int_{-5}^{2} \frac{\sqrt{\pi}}{\sqrt{5}} \left\{ 0 \right\} \left\{ + \frac{1}{5} \left[\frac{\pi \nu}{x_5 5} \operatorname{Gu} \left(\frac{\nu \pi}{x} \right) - \frac{\nu \pi}{4} \left(x \left(\frac{\nu \pi}{5} \right) \cos \left(\frac{\nu \pi}{x} \right) \right) \right\} \right\}$$

$$= 0 + \frac{1}{2} \left[\frac{2}{\pi \pi} x^2 \sin \left(\frac{n \pi x}{2} \right) + \frac{8x}{8x} \cos \left(\frac{n \pi x}{2} \right) + \frac{8}{8x} \sin \left(\frac{n \pi x}{2} \right) \right]^2$$

$$= \frac{5}{1} \left[\frac{v_5 \mu_5}{8 \times 5} (1)^{+} \frac{v_5 \mu_5}{8 \times 5} \cos (v \mu) \right]$$

$$= \frac{1}{16} \left(\frac{v_5 \mu_5}{\sqrt{8} \times 8} \right) = \frac{v_5 \mu_5}{16} \left(-1 \right)_{\text{N}} \quad \text{obtion (P)}$$

9.8. 4
$$U(x,y) = f(e^{x}) + g(y^{2}\cos y)$$
 $Ux = \frac{\partial U}{\partial x} = e^{y}$. $f(xe^{y})$
 $U_{xy} = \frac{\partial^{2}U}{\partial y \partial x} = \frac{\partial}{\partial y}(\frac{\partial U}{\partial x}) \cdot \frac{\partial}{\partial y}(e^{y}) \cdot \frac{\partial}{\partial y}(e^{y}) \cdot xe^{y} + e^{y} f(xe^{y})$
 $= e^{y}$. $f(xe^{y}) \cdot xe^{y} + e^{y} f(xe^{y})$
 $U_{xy} = \frac{\partial^{2}U}{\partial x^{2}} = e^{y} f(xe^{y}) \cdot e^{y}$
 $U_{xy} = xU_{xy} = U_{x} \text{ Option (c)}$
9.5. $f(x) = \frac{1}{2} (x + 2)$
 $\lim_{x \to 0} \frac{1}{2} \int_{0}^{1} \frac{\partial U}{\partial x} = \frac{1}{2} \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} + e^{y} f(xe^{y}) \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} + e^{y} f(xe^{y}) \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial x} \cdot xe^{y} \cdot dx$
 $= 2 \int_{0}^{1} \frac{\partial U}{\partial$

0.6. For
$$x=26$$
, $Z=\frac{16-30}{5}$, $-4=-0.8$

For $x=40=-0.8$ $Z=\frac{40-30}{5}$ $Z=\frac{40-30}{5}$

2.7.
$$x \circ n Y$$
, $Y + 4X = \frac{4q}{3}$

-7. $4X = \frac{4q}{3} - Y$

-7. $X = \frac{4q}{12} - \frac{Y}{4}$

bxy = $-\frac{1}{4}$

Y on X, $X + qY = 7$
 $Y = \frac{7}{q} - \frac{X}{q}$

by $X = -\frac{1}{q}$
 $Y = \frac{7}{q} - \frac{X}{q}$

Correlation coefficient between X and Y is = 1 option (B)

0.8.
$$P(x: \mu) = \frac{e^{-\mu}\mu^{2}}{x^{1}}$$

Given, $P(x=0) = P(x=1) = k$
 $\frac{e^{-\mu}\mu^{0}}{0!} = \frac{e^{-\mu}\mu^{1}}{1!} = 2$ $e^{-\mu} = e^{-\mu}\mu$
 $P(x=0) = \frac{e^{-\mu}\mu^{0}}{0!} = e^{-\mu} = e^{-1} = \frac{1}{e}$ Option (A)

Q.9.
$$A \int_{0}^{5} \sin\left(\frac{\pi x}{5}\right) dx = 1$$

$$A \int_{0}^{5} \cos\left(\frac{\pi x}{5}\right) dx = 1$$

der m be the median.

$$\int_{0}^{m} A \sin \left(\frac{\pi x}{3}\right) dx = \frac{1}{2}$$

$$-\frac{\pi}{10} \times \frac{3}{\pi} \left[\cos \left(\frac{\pi}{3} \right) \right]_{0}^{m} = \frac{1}{2}$$

$$\frac{7}{3} \quad \cos \frac{\pi m}{8} - 1 = -1$$

$$\cos \left(\frac{\pi m}{8}\right) = 0 \quad \Rightarrow \quad \frac{\pi m}{8} = \frac{\pi}{2}$$

$$\Rightarrow \quad m = \frac{5}{2} \quad \text{Option (B)}$$

10.
$$x$$
 1 2 3 4 5 $P(x=x) \frac{1}{3} \frac{1}{3^2} \frac{1}{3^3}$

$$6 = 10\frac{1}{3} + \frac{2}{32} + \frac{3}{33} + \cdots$$

$$\frac{9}{3} = 1.32 + \frac{2}{33}$$

$$\frac{2}{8}S = \frac{1}{3} + \frac{1}{3}z + \frac{1}{3}z + \dots$$

$$\frac{2}{3}6 = \frac{1}{1-\frac{1}{3}} = 1 = \frac{2}{3}6 = \frac{1}{2} = 1 = \frac{3}{4}$$

6.116
$$(D^{5} - CDD^{12} - 20^{13}) Z = COS(172\gamma) - e^{\gamma} (3+2\chi)$$

PT: $(D^{5} - 30D^{12} - 2D^{13})$ $(COS(172\gamma) - e^{\gamma} (3+2\chi))$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} (3+2\chi)\right)\right)$
 $= \frac{1}{(D+D^{12}(D-2D^{1})} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma) - e^{\gamma} \left(COS(172\gamma) + e^{\gamma} \left(COS(172\gamma)$

$$D_{3} = \frac{1}{1} \int_{0}^{1} f(x) \sin (3\pi x) dx$$

$$= -\left[\cos (3\pi x)\right]_{-1}^{3} - 2\left[-\cos (3\pi x)\right]_{3}^{1}$$

$$= \left[-\frac{1}{3\pi} - \left(\frac{1}{3\pi}\right)\right] - 2\left[\frac{1}{3\pi} + \frac{1}{3\pi}\right]$$

$$D_{3} = -\frac{2}{3\pi} - \frac{4}{3\pi} = -\frac{2}{77}$$

$$D_{3} = -\frac{2}{3\pi} - \frac{4}{3\pi} = -\frac{2}{77}$$

$$D_{4} = -\frac{2}{3\pi} - \frac{4}{3\pi} = -\frac{2}{77}$$

$$D_{5} = \frac{1}{3\pi} - \left(\frac{1}{3\pi}\right) - 2\left[\frac{1}{3\pi} + \frac{1}{3\pi}\right]$$

$$D_{5} = \frac{1}{3\pi} - \left(\frac{1}{3\pi}\right) - 2\left[\frac{1}{3\pi} + \frac{1}{3\pi}\right]$$

$$D_{6} = -\frac{2}{3\pi} - \frac{4}{3\pi} = -\frac{2}{77}$$

$$D_{7} = \frac{4}{3\pi} - \frac{2}{3\pi} = -\frac{2}{77}$$

$$D_{7} = \frac{4}{3\pi} - \frac{4}{3\pi} = -\frac{2}{3\pi}$$

Option (A)

16. Probability of catching discase =
$$\frac{20}{100} = \frac{1}{5}$$

Wet, probability of success = $p = \frac{1}{5}$

If so failure $(q) = 1 - \frac{1}{5} = \frac{4}{6}$

Given in= 6.

$$= \frac{1}{56} = \frac{1}{5} = \frac$$

Dollar
$$F(x-y+z)$$
, $\frac{\chi^2-y^2}{z^2}$ = 0, $\frac{\partial u}{\partial x} = -1$; $\frac{\partial u}{\partial z} = -1$; $\frac{$

$$0 = \left| \begin{array}{cc} \frac{\partial U}{\partial Z} & \frac{\partial U}{\partial N} \\ \frac{\partial V}{\partial Z} & \frac{\partial V}{\partial N} \end{array} \right| = \left| \begin{array}{c} -1 \\ -2(n2-y^2) \\ \hline Z^3 \end{array} \right| \cdot \frac{2n}{Z^2} = \frac{-2n}{Z^2} + \frac{2(n^2-y^2)}{Z^3}$$

$$R = \begin{vmatrix} \frac{30}{2x} & \frac{30}{2x} \\ \frac{30}{2x} & \frac{30}{2x} \end{vmatrix} = \frac{2x}{2x} = \frac{2x}{2x} = \frac{2x}{2x}$$

The soln is
$$PP + \partial g = R$$

$$= \left\{ \frac{2}{73} (x^2 + y^2) - \frac{2y}{2^2} \right\} P + \left\{ \frac{-2x}{72} + \frac{2(x^2 + y^2)}{2^3} \right\} Q = \frac{-2y}{72} + \frac{2x}{72}$$

$$= \left\{ (x^2 + y^2) - \frac{2y}{2^2} \right\} P + \left\{ \frac{-2x}{72} + \frac{2(x^2 + y^2)}{72} \right\} Q = \frac{-2x}{72} + \frac{2x}{72}$$

$$9^2 = z^2 p^2 (1-p^2)$$

 $f(p_1 q_1 z)$

$$p^{2} + 0$$
, $p^{2} = 1 - \alpha^{2}$ -> $p = \pm \sqrt{1 - \alpha^{2}}$

$$P(x;\mu) = \frac{e^{-\mu\mu x}}{x!}$$

us the mean no. of successes that occur in a specified region

x: The adval no. of successes that occus

$$\mu = 100 \times 0.01 = 1 \quad P(x; |w) = P(x = 0; 1) + P(x = 1; 1)$$

$$= P(x; 1) = \frac{e^{-1} 1^{\circ}}{0!} + \frac{e^{-1} x 1^{\circ}}{1!}$$

$$= e^{-1} 1 e^{-1} - \frac{2}{e} \quad Option (c)$$

0.18.
$$n=6$$
, $q * p(x=4) = p(x=2)$

$$-1$$
 $P(x=z) = 6(z p^2(1-p)4$

$$- 3p^2(1-p) = p(1-p)^2$$

Group 8:
0.19.
$$X$$
 Y Z X^2 Y^2 XY
1 2 1 4 2
3 6 9 36 18
4 8 16 64 32
5 10 25 100 50
7 14 49 196 98
8 16 64 256 128
10 20 100 400 200
 $ZX = 38$ $ZY = 76$ $ZX^2 = 264$ $ZY^2 = 1056$ $ZXY = 528$
 $X = ZXY - ZXZY$
 $ZXY - ZXZY$
 $ZYZ - (ZY)^2$
 $ZYZ - (ZY)^2$
 $ZYZ - (ZY)^2$
 $ZYZ - (ZY)^2$
 $ZZYZ - (ZY)^2$

$$= \frac{528 - 412.57}{(264 - 206.28)(1056 - 825.14)}$$

$$= \frac{115.43}{\sqrt{57.72 \times 230.86}}$$

$$= \frac{115.43}{7.59 \times 15.1940} = 1.009 \approx 1$$

Option (a) 1.

0.20. Von
$$(x) = 9$$

 $8x - 10y = -66$, $40x - 13y = 214$
 $x = \frac{10y - 66}{3}$ $x = \frac{18y + 214}{4}$
 $x = \frac{10y - 66}{3} = \frac{18y + 214}{4}$
 $y = 17$ $x = \frac{170 - 66}{3} = 18$
 $x = 17$ $x = 170 - 66$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$
 $x = 18$ $x = 18$ $x = 18$

(b) 13, 13, 0.6