# Real-Time Rendering Architectures

Mike Houston, AMD



# Part 1: throughput processing

Three key concepts behind how modern GPU processing cores run code

- Knowing these concepts will help you:
  - 1. Understand space of GPU core (and throughput CPU core) designs
  - 2. Optimize shaders/compute kernels
  - 3. Establish intuition: what workloads might benefit from the design of these architectures?



### What's in a GPU?

A GPU is a heterogeneous chip multi-processor (highly tuned for graphics)





### A diffuse reflectance shader

```
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
  float3 kd;
  kd = myTex.Sample(mySamp, uv);
  kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
  return float4(kd, 1.0);
```

Shader programming model:

Fragments are processed independently, but there is no explicit parallel programming



# Compile shader

1 unshaded fragment input record

```
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
  float3 kd;
  kd = myTex.Sample(mySamp, uv);
  kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
  return float4(kd, 1.0);
```



1 shaded fragment output record



















































```
<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```







# "CPU-style" cores





# Slimming down





# Two cores (two fragments in parallel)

#### fragment 1





<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)











# Four cores (four fragments in parallel)













# Sixteen cores (sixteen fragments in parallel)





16 cores = 16 simultaneous instruction streams

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

### Instruction stream sharing



But ... many fragments should be able to share an instruction stream!

```
<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```



# Recall: simple processing core





### Add ALUs



#### Idea #2:

Amortize cost/complexity of managing an instruction stream across many ALUs

# SIMD processing



# Modifying the shader





Original compiled shader:

Processes one fragment using scalar ops on scalar registers



# Modifying the shader





New compiled shader:

Processes eight fragments using vector ops on vector registers



# Modifying the shader









### 128 fragments in parallel









, 16 simultaneous instruction streams

Beyond Programmable Shading Course, ACM SIGGRAPH 2011







```
<unconditional</pre>
 shader code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```







Time (clocks) ALU 1 ALU 2 . . . . . . ALU 8 TITI ΙFΙ TIFI l F I  $\times$   $\times$   $\times$ × × × × × × ×× Not all ALUs do useful work!

Worst case: 1/8 peak performance

```
<unconditional
 shader code>
if (x > 0) {
    y = pow(x, exp);
    v *= Ks;
    refl = y + Ka;
  else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```





```
<unconditional</pre>
  shader code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
  else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
shader code>
```



### Clarification

### SIMD processing does not imply SIMD instructions

- Option 1: explicit vector instructions
  - x86 SSE, AVX, Intel Larrabee
- Option 2: scalar instructions, implicit HW vectorization
  - HW determines instruction stream sharing across ALUs (amount of sharing hidden from software)
  - NVIDIA GeForce ("SIMT" warps), ATI Radeon architectures ("wavefronts")







In practice: 16 to 64 fragments share an instruction stream.



# Stalls!

Stalls occur when a core cannot run the next instruction because of a dependency on a previous operation.

Texture access latency = 100's to 1000's of cycles

We've removed the fancy caches and logic that helps avoid stalls.



### But we have LOTS of independent fragments.

#### Idea #3:

Interleave processing of many fragments on a single core to avoid stalls caused by high latency operations.







Frag 1 ... 8 Frag 9 ... 16 Frag 17 ... 24 Frag 25 ... 32 Time (clocks) Fetch/ Decode ALU 1 ALU 2 ALU 3 ALU







# Throughput!

GGRAPH2011



# Storing contexts





### Eighteen small contexts

(maximal latency hiding)





#### Twelve medium contexts





# Four large contexts

(low latency hiding ability)





#### Clarification

Interleaving between contexts can be managed by hardware or software (or both!)

- NVIDIA / ATI Radeon GPUs
  - HW schedules / manages all contexts (lots of them)
  - Special on-chip storage holds fragment state
- Intel Larrabee
  - HW manages four x86 (big) contexts at fine granularity
  - SW scheduling interleaves many groups of fragments on each HW context
  - L1-L2 cache holds fragment state (as determined by SW)



## Example chip

16 cores

8 mul-add ALUs per core (128 total)

16 simultaneous instruction streams

64 concurrent (but interleaved) instruction streams

512 concurrent fragments

= 256 GFLOPs (@ 1GHz)





## Summary: three key ideas

- 1. Use many "slimmed down cores" to run in parallel
- 2. Pack cores full of ALUs (by sharing instruction stream across groups of fragments)
  - Option 1: Explicit SIMD vector instructions
  - Option 2: Implicit sharing managed by hardware

- 3. Avoid latency stalls by interleaving execution of many groups of fragments
  - When one group stalls, work on another group



# Part 2: Putting the three ideas into practice: A closer look at real GPUs

NVIDIA GeForce GTX 580 ATI Radeon™ HD 6970



#### Disclaimer

 The following slides describe "a reasonable way to think" about the architecture of commercial GPUs

Many factors play a role in actual chip performance



## NVIDIA GeForce GTX 580 (Fermi)

- NVIDIA-speak:
  - 512 stream processors ("CUDA cores")
  - "SIMT execution"



- Generic speak:
  - -16 cores
  - -2 groups of 16 SIMD functional units per core



#### NVIDIA GeForce GTX 580 "core"





- Groups of 32 [fragments/vertices/CUDA threads] share an instruction stream
- Up to 48 groups are simultaneously interleaved
- Up to 1536 individual contexts can be stored

Source: Fermi Compute Architecture Whitepaper CUDA Programming Guide 3.1, Appendix G



#### NVIDIA GeForce GTX 580 "core"





- The core contains 32 functional units
- Two groups are selected each clock (decode, fetch, and execute two instruction streams in parallel)

Source: Fermi Compute Architecture Whitepaper CUDA Programming Guide 3.1, Appendix G



#### NVIDIA GeForce GTX 580 "SM"





- The SM contains 32 CUDA cores
- Two warps are selected each clock (decode, fetch, and execute two warps in parallel)
- Up to 48 warps are interleaved, totaling 1536 CUDA threads

Source: Fermi Compute Architecture Whitepaper CUDA Programming Guide 3.1, Appendix G



#### NVIDIA GeForce GTX 580



There are 16 of these things on the GTX 580:

That's 24,500 fragments! Or 24,500 OpenCL work-items!



# ATI Radeon<sup>TM</sup> HD 6970 (Cayman)

- AMD-speak:
  - -1536 stream processors

- Generic speak:
  - -24 cores
  - -16 "beefy" SIMD functional units per core
  - -4 multiply-adds per functional unit (VLIW processing)





#### ATI Radeon<sup>TM</sup> HD 6970 "core"



Groups of 64 [fragments/vertices/etc.] share instruction stream

Four clocks to execute an instruction for all fragments in a group



SIMD function unit,control shared across 16 units(Up to 4 MUL-ADDs per clock)



# ATI Radeon<sup>TM</sup> HD 6970 "SIMD-engine"



Groups of 64 [fragments/vertices/OpenCL work items] are in a "wavefront".

Four clocks to execute an instruction for an entire wavefront



stream processor,control shared across 16 units(Up to 4 MUL-ADDs per clock)



#### ATI Radeon<sup>TM</sup> HD 6970



There are 24 of these "cores" on the 6970: that's about 32,000 fragments!



#### The talk thus far: processing data

# Part 3: moving data to processors



# Recall: "CPU-style" core





# "CPU-style" memory hierarchy



**GGRAPH**2011

L3 cache (8 MB) shared across cores



CPU cores run efficiently when data is resident in cache (caches reduce latency, provide high bandwidth)

# Throughput core (GPU-style)



More ALUs, no large traditional cache hierarchy: Need high-bandwidth connection to memory



#### Bandwidth is a critical resource

- –A high-end GPU (e.g. Radeon™ HD 6970) has...
  - Over twenty times (2.7 TFLOPS) the compute performance of quad-core
     CPU
  - No large cache hierarchy to absorb memory requests

- -GPU memory system is designed for throughput
  - Wide bus (150 GB/sec)
  - Repack/reorder/interleave memory requests to maximize use of memory bus
  - Still, this is only six times the bandwidth available to CPU



# Bandwidth thought experiment

Task: element-wise multiply two long vectors A and B

- 1.Load input A[i]
- 2.Load input B[i]
- 3.Load input C[i]
- 4. Compute  $A[i] \times B[i] + C[i]$
- 5.Store result into D[i]

Four memory operations (16 bytes) for every MUL-ADD

Radeon HD 6970 can do 1536 MUL-ADDS per clock

Need ~20 TB/sec of bandwidth to keep functional units busy

Less than 1% efficiency... but 6x faster than CPU!



#### Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for GPU-compute application developers.



# Reducing bandwidth requirements

- Request data less often (instead, do more math)
  - -"arithmetic intensity"
- Fetch data from memory less often (share/reuse data across fragments
  - -on-chip communication or storage



## Reducing bandwidth requirements

- Two examples of on-chip storage
  - Texture caches
  - OpenCL "local memory" (CUDA shared memory)

Texture data

Texture caches:

Capture reuse across fragments, not temporal reuse within a single shader program



## Modern GPU memory hierarchy



On-chip storage takes load off memory system. Many developers calling for more cache-like storage (particularly GPU-compute applications)



## Don't forget about offload cost...

- PCle bandwidth/latency
  - -8GB/s each direction in practice
  - -Attempt to pipeline/multi-buffer uploads and downloads
- Dispatch latency
  - -O(10) usec to dispatch from CPU to the GPU
  - -This means offload cost is O(10M) instructions



## Heterogeneous cores to the rescue?

- Tighter integration of CPU and GPU style cores
  - -Reduce offload cost
  - -Reduce memory copies/transfers
  - -Power management
- Industry shifting rapidly in this direction
  - AMD Fusion™ APUs
  - Intel SandyBridge
  - **—** ...

- Nvidia Tegra 2
- Apple A4 and A5
- Qualcomm Snapdragon
- TI OMAP

**—** ...



## AMD A-Series APU ("Llano")







## Others – GPUs not compute capable, yet



Intel Sandy Bridge



Nvidia Tegra 2

