Eine Woche, ein Beispiel 79 Steenrod algebra

The Steenrod algebra has been studied for decades. As usual, I make no claim to originality.

For calculating the Steenrod algebra in compute, you can get it from this link: https://math.berkeley.edu/~kruckman/adem/

The original article by José Adem: The Iteration of the Steenrod Squares in Algebraic Topology https://www.pnas.org/doi/10.1073/pnas.38.8.720

The survey talk(recommend):

http://www.math.uni-bonn.de/people/daniel/2022/algtop/Steenrod_Squares.pdf

A combinatorial method for computing Steenrod squares: https://www.sciencedirect.com/science/article/pii/S0022404999000067

Chinese collections on Steenrod algebra: https://www.zhihu.com/question/265308226

- 1. binomial coefficient mod p 2. Adem relations
- 1. binomial coefficient mod p

$\overline{}$	_																														-	_
(mth) N	1	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	Ιţ	16	17	18	19	20	김	22	23	24	25	26	27	28	29	30	31
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
3	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
4	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
5	1	0	1	Ô	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0
6	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0
7	1	0	0	0	0	0	0	0	1	0	0	0	0	0		0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
8	1	1	1	1	1	1	1	1	0					0		0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
9	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
10	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	٥
11	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
12	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
13	1	0	1	0	0	0	0	0	0	0	0	0	0	0		0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	_	0
14	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	١٥
15	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	0	0	0	٥	0	v	0	٥	0	٥	0	n	0	n	0	0
17	1	1	Ţ	0	1	1	O T	0	1	1	1	0	1	1	ο Τ	0	0	0	٥	0	0	0	^	0	0	Λ	0	0	^	0	0	0
(8	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	0	0	0	1	0	0	٥	1	0	0	0	1	0	0	n	0	0	0	0	0	a	0	0	0	a	0	0	0	٥	0	0
19	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	^	0	0	0	0	0	^	0	•	0
20	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	a	0	0	0	n	0	٥	0	a	0	0	0	0	•	0
2	1	1	0	0	0	0	0	-	1	1	_	0	-	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	1 -	-	U	•	U	J	U	J	-	-	U	•	O	J	U	·	O	U	U	U	U	U	U	•	U	-	0	•	U	•		-

period

 $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$

We conclude from table (or Chu-Vandermonde identity) the following practical formula:

Prop. Let $a = \sum_{n \geq 0} a_n z^n$, $b = \sum_{n \geq 0} b_n z^n$, $a_n, b_n \in \{0,1\}$. We get $\binom{a+b}{a} \equiv 0 \mod 2 \iff \exists n \in \mathbb{N}_{\geq 0} \text{ s.t. } a_n = b_n = 1$

Rmk. Similarly, one can show.

for $a = \sum_{n \geq 0} a_n p^n$, $b = \sum_{n \geq 0} b_n p^n$, $a_n, b_n \in \{0, 1, ..., p-1\}$, $\binom{a+b}{a} \equiv \prod_{n \geq 0} \binom{a_n + b_n}{a_n} \mod p$

Rmk. It is possible to define $\binom{a+b}{a} \in \mathbb{F}_p$ for $a,b \in \mathbb{Z}[\frac{1}{p}]$.
One may want to:

One may want to:

O Verify if the usual formulas in

https://en.wikipedia.org/wiki/Binomial_coefficient work;

@ Find a combinatorical explanation of it.