ЛЕКЦИЯ 2. ОТНОШЕНИЯ

В математике и других областях есть много понятий, описывающих соотношения между объектами, например:

- $x < y, x \le y, x > y, x \ge y$
- p:q,p|q
- $A \subset B, A \subset B, a \in A$
- равновеликие фигуры в геометрии;
- класс A потомок класса B в программировании;
- человек X знаком с человеком Y .

Как формализовать понятие отношения?

ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ

О п р е д е л е н и е . $\ \ \,$ Декартовым произведением множеств $\ \ \,$ А и $\ \ \,$ В называется множество упорядоченных пар

$$A \times B = \{(a,b) \mid a \in A \& b \in B\}.$$

Если A = B, то говорят о декартовом квадрате A^2 . Можно рассматривать декартово произведение N множеств.

Примеры:

- 1. $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ декартова плоскость
- 2. {a,b,c,d,e,f,g,h} x {1,2,3,4,5,6,7,8} шахматная доска

Tеорема. $|A \times B| = |A| \cdot |B|$.

БИНАРНЫЕ ОТНОШЕНИЯ

О п р е д е л е н и е . Бинарное отношение - любое подмножество декартова произведения $R \subset A \times B$

Обозначения $(a,b) \in R$ часто пишут aRb.

Если A = B, то говорят, что отношение задано *на множестве* A.

Примеры:

- 1. $<,>,\leq,\geq$ отношения на R, Q, Z, N.
- 2. Делимость отношение на Z.
- 3. Принадлежность отношение между универсумом и его булеаном .
- 4. Включение отношение на булеане.
- 5. Равновеликость отношение на множестве измеримых фигур.

ОПЕРАЦИИ НАД ОТНОШЕНИЯМИ

Поскольку отношение — это *множество* пар, то над отношениями определены все операции, которые определены над множествами (объединение, пересечение, дополнение, разность, симметрическая разность).

Но есть две новые: обратное отношение и композиция отношений.

ОБРАТНОЕ ОТНОШЕНИЕ

Определение. Отношение $R^{-1} \subset B \times A$ называется *обратным* к $R \subset A \times B$, если

$$bR^{-1}a \Leftrightarrow aRb$$

Примеры:

- 1. Обратным к a < b будет a > b
- 2. Обратным к a:b будет $a \mid b$
- 3. Обратным к $A \subset B$ будет $A \supset B$
- 4. Обратным к S(A)=S(B) будет оно само

композиция отношений

Определение. *Композицией* отношений $R_1 \subset A \times B$ и $R_2 \subset B \times C$ называется такое отношение $R = R_1 \circ R_2 \subset A \times C$, что

$$aRc \Leftrightarrow (\exists b \in B : aR_1b \& bR_2c)$$

Примеры:

- 1. Пусть R «меньше» на множестве действительных чисел. Тогда $R \circ R = R$.
- 2. Пусть R «меньше» на множестве натуральных чисел. Тогда $R \circ R$ «меньше хотя бы на 2»

СТЕПЕНЬ ОТНОШЕНИЯ

О пределение. Пусть отношение R определено на A . C отношения R называется $R^n = R \circ ... \circ R$ - композиция с собой n раз.

СПОСОБЫ ЗАДАНИЯ ОТНОШЕНИЙ

- перечисление пар
- характеристический предикат
- ориентированный граф
- булева матрица

ПЕРЕЧИСЛЕНИЕ ПАР

Простейший способ задать отношение – перечислить все входящие в него пары элементов.

Пример. $A = \{a, b, c, d, e\}$.

 $R = \{(a,b),(b,c),(c,d),(d,c)\}$

ХАРАКТЕРИСТИЧЕСКИЙ ПРЕДИКАТ

Пример. $A = \mathbb{N}$.

 $R = \{(a,b) \mid a+b:3\}$

ГРАФ ОТНОШЕНИЯ

О п р е д е л е н и е . *Графом отношения* называется ориентированный граф, вершинами которого являются элементы множества A . Если aRb, то проводим ребро (стрелку) из а в b.

Теорема (об операциях над графами отношений). Операции над отношениями можно выразить через операции с их графами:

- обратное отношение перенаправление всех стрелок;
- k-я степень отношения граф путей длины k.

Доказательство. Для обратного отношения – очевидно.

Для степени докажем по индукции:

$$aRb \Leftrightarrow (a \to b)$$
 - база индукции $aR^2b \Leftrightarrow (\exists x : aRx \& xRb) \Leftrightarrow (\exists x : a \to x \to b)$ $aR^{k+1}b = a(R^k \circ R)b \Leftrightarrow (\exists x : aR^k x \& xRb) \Leftrightarrow (\exists x : a \to ... \to x \to b)$

матрица отношения

О п р е д е л е н и е . Перенумеруем все элементы множества А. Матрицей отношения R называется булева матрица из 0 и 1 (или true и false) следующего вида:

$$r_{ij} = \begin{cases} 1, (a_i, a_j) \in R \\ 0, (a_i, a_j) \in R, \end{cases}$$

К булевым матрицам применяют операции поэлементного «или», «и», «не».

Определим также умножение таких матриц по правилу:

$$c_{ij} = \bigvee_{k=1}^{n} (a_{ik}b_{kj})$$

Теорема (об *операциях над матрицами отношений*). Операции над отношениями можно выразить через операции с их матрицами:

- обратное отношение транспонирование матрицы;
- композиция отношений умножение матриц;
- к-я степень отношения возведение матрицы в степень к.

Доказательство. Для обратного отношения – очевидно.

Пусть теперь $T = R \circ S$. Тогда:

$$iTj \Leftrightarrow (\exists k : iRk \& kSj)$$
.

Рассмотрим матрицу M=RS . Имеем: $t_{ij}=\bigvee_{k=1}^n(r_{ik}s_{kj})$. Получаем, что

$$t_{ij} = 1 \Leftrightarrow (\exists k : r_{ik} = 1 \& s_{kj} = 1) \Leftrightarrow (\exists k : iRk \& kSj).$$

То есть, $iTj \Leftrightarrow t_{ii} = 1$ - что и требовалось доказать.

Для степени получаем как для частного случая композиции.

СВОЙСТВА ОТНОШЕНИЙ

Пусть $R \subset A^2$. Тогда отношение R называется

рефлексивным, если $\forall a \in A \ (aRa);$ антирефлексивным, если $\forall a \in A \ (\neg aRa);$ симметричным, если $\forall a, b \in A \ (aRb \Longrightarrow bRa);$ антисимметричным, если $\forall a, b \in A \ (aRb \& bRa \Longrightarrow a = b);$ транзитивным, если $\forall a, b, c \in A \ (aRb \& bRc \Longrightarrow aRc);$ линейным, если $\forall a, b \in A \ (a = b \lor aRb \lor bRa).$

Примеры:

	реф.	а-рефл.	симм.	а-симм.	транз.	полн.
<	-	+	-	+	+	+
≤	+	-	-	+	+	+
\subseteq	+	-	-	+	+	-
равновеликие	+	-	+	-	+	-

Свойства отношений на графах:

- рефлексивность: есть все петли;
- антирефлексивность: нет ни одной петли;
- симметричность: все стрелки двойные (т.е. граф неориентированный);
- антисимметричность: нет двойных стрелок (петли возможны);
- транзитивность: если есть какой-то путь из а в b, то есть и ребро (a,b); если есть двойная стрелка, то есть две петли;
- линейность (полнота): если убрать стрелки, то получится полный граф.

Свойства отношений на матрицах:

- рефлексивность: на диагонали все 1;
- антирефлексивность: на диагонали все 0;
- симметричность: матрица симметричная (на диагонали что угодно)
- антисимметричность: $A[i, j] + A[j, i] \le 1$ (на диагонали что угодно)
- транзитивность: $R^2 \le R$ (поэлементно) см. теорему ниже;
- линейность (полнота): A[i, j] + A[j, i] > 0 (на диагонали что угодно)

Теорема (*о транзитивном отношении*). R транзитивно $\iff R^2 \le R$ поэлементно. Доказательство.

R транзитивно \Leftrightarrow $(aRb \& bRc \Rightarrow aRc) \Leftrightarrow (aR^2c \Rightarrow aRc) \Leftrightarrow (R^2 \subseteq R)$

Но матрица отношения R^2 - это квадрат матрицы отношения R . Всё доказано.