

UNSUPERVISED DISCOVERY OF AN EXTENDED PHONEME SET IN L2 ENGLISH SPEECH FOR MISPRONUNCIATION DETECTION AND DIAGNOSIS

Shaoguang Mao^{1,2}, Xu Li¹, Kun Li¹, Zhiyong Wu^{1,2,*}, Xunying Liu¹, Helen Meng^{1,2}

² Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

¹Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University

Activation

PPGs from

INTRODUCTION

> Problem Statement

- Detect mispronunciations in second language (L2) speech and provide diagnostic feedback
- Existing approaches mainly target categorical phonetic errors based on native (L1) phoneme set and cannot handle noncategorical errors appropriately
- Goal: Discover Extended Phoneme Set in L2 speech (L2-EPS), covering both categorical and non-categorical phoneme units

> Proposed Approach

- Phonetic Posterior-Grams (PPGs) to represent L2 English acoustic-phonetic space
- Unsupervised clustering of L2 speech frames Rea with PPG features to uncover potential Tradit phoneme patterns
- Analyze clusters and label as categorical/noncategorical phonemes

Word	n	0	r	th	
Canonical Text	n	ao	r	th	
al Pronunciation	n_l	ao	r	th]
ditional Annotation	n	ao	r	th	Detect
occult 1		20	r	th	

Recognition Result 1 | Recognition Result 2 n ao r th

Group 2

APPROACH

Phonetic state

posterior-grams

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

• • • Phoneme48

Hidden Layers

> Acoustic-Phonemic Model (APM) Generating Phonetic Posterior-Grams (PPGs)

- Acoustic features (x_t) : Mel-frequency (x_t) cepstral coefficients
- Phonemic features (q_t^{Dict}) : 7 canonical phones (3 before, 1 current and 3 after)
- Phonetic state posteriorgrams: vectors of posterior probabilities of each phonetic unit, used for clustering

> Analysis of Clusters

- Group clusters based on mapping with L1 phonemes
- An L1 phoneme maps to a cluster if proportion of speech frames labeled with the Phoneme $P(N_p)$ and also classified into Cluster $i(N_{pi})$ exceeds threshold δ (set at 90%), i.e.

- Analyze clusters by centroids
- * Focus on each cluster centroid as the representative average PPG
- Categorical phoneme clusters: cluster centroids have only one peak which appears at the related L1 phoneme bit
- Non-categorical phoneme clusters: cluster centroids may have multiple peaks appearing at different L1 phoneme bits
- non-categorical phoneme clusters, label them with m phonemes, where the top m peaks appear

	Description	Requirement				
		Only one				
Group 1	Categorical Phoneme Clusters	categorical				
	Phoneme Clusters	phoneme maps to				
		this cluster				
Group 2		More than one				
	Mixed Categorical Phonemes Clusters	categorical				
	Phonemes Clusters	phoneme maps to				
		this cluster				
Group 3	Candidate Non-categorical Phoneme Clusters	Clusters not in Group 1 or Group 2				

EXPERIMENTS

> Corpus

- L1 corpus : TIMIT (about 4 hours)
- L2 corpus : CU-CHLOE (Chinese University-Chinese Learners of English)
- *L2 English speech uttered by 100 Cantonese speakers (CHLOE-C) (about 12 hours) *30% speaker audios are labeled by skilled linguists with categorical phonemes

> Setup

- k value in k-means: from 70 to 120 with step-length being 10
- $\blacksquare n$ -best filtering : n = 3

Network configuration:

g 10		iayers	iayer	tun
	APM&DNN	5	2048	ta
	LSTM	2	512	ta

Clustering Setups and Evaluation

- Frame-level features for clustering:
- MFCC; State-level PPGs (derived from DNN, LSTM and APM);
- * Phoneme-level PPGs (derived from DNN, LSTM and APM).

Davies Bouldin Index (DBI)	
$DBI \equiv \frac{1}{N} \sum_{i=1}^{N} max_{j \neq i} \frac{S_i + S_j}{d_{i,j}}$	

$S_i - 1 \sum_{i=1}^{N} S_i + S_j$	Features	MFCC	State– based	Phoneme- based	State– based	Phoneme– based	State– based	Phoneme— based
$DBI \equiv \frac{1}{N} \sum_{i=1}^{N} max_{j\neq i} \frac{S_i + S_j}{d}$	k = 70	2.17	1.87	1.62	1.77	1.61	1.53	1.34
$N \longrightarrow u_{i \ i}$	k = 80	2.19	1.91	1.57	1.76	1.59	1.57	1.33
$i=1$ $1 \leftarrow \cdots \qquad \cdots \qquad \cdots \qquad \cdots$	k = 90	2.17	1.94	1.60	1.77	1.61	1.49	1.28
$S_i = \frac{1}{ C_i } \left(\sum_{X \in C_i} X - Z_i \right), d_{ij} = Z_i - Z_j $	k = 100	2.16	1.86	1.58	1.84	1.55	1.35	1.26
$ c_i $	k = 110	2.19	1.92	1.56	1.74	1.51	1.49	1.29
	<i>k</i> = 120	2.18	1.93	1.55	1.67	1.50	1.60	1.43

DNN

LSTM

No. of units per

PERCEPTUAL TESTS

- For each non-categorical phoneme comparison, 30 audio files randomly played
- ❖ Non-categorical cluster → 10 audio files
- \bullet Related categorical Cluster 1 and 2 \rightarrow 10 audio files for each
- ✓ 1) More similar to P_1

- ✓ 2) More similar to P_2
- ✓ 3) Equal similarity to P_1 and P_2
- ✓ 4) Not similar to either P_1 or P_2

CONCLUSION

- Propose a framework to discover L2 Extended Phoneme Set
- Improve coverage of pronunciation patterns in L2 speech
- To be incorporated with existing MDD approaches for better performance

ACKNOWLEDGEMENT

This project is partially supported by a grant from the HKSAR RGC General Research Fund (project no. 14207315) and a seed grant of the Microsoft Collaborative Research Project.

- , $A \in R^{48 \times 144}$, $v_{s} \in R^{144}$, $v_{p} \in R^{48}$ Perform n-best filtering on the phoneme-based PPG
- K-means clustering with random initialization