Déterminer le rayon de convergence d'une série entière

Quand on ne sait pas!

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières à coefficients et de la variable z complexes.

■ (Rayon de convergence)

On appelle rayon de convergence de la série entière $\sum a_n z^n$ la quantité R définie par :

$$R = \sup \{r \ge 0, \ (a_n z^n)_{n \in \mathbb{N}} \text{ est born\'ee} \}$$

Le rayon de convergence R est un réel positif, ou bien $+\infty$.

■ (Autres caractérisations du rayon de convergence)

$$\begin{split} R &= \sup \left\{ r \geq 0, \; \sum a_n z^n \; \text{CVA}^{\; (*)} \right\} \\ &= \sup \left\{ r \geq 0, \; (a_n z^n)_{n \in \mathbb{N}} \; \text{tend vers} \; 0 \right\} \end{split}$$

(*) où CVA et DVG signifient respectivement « converge absolument » et « diverge grossièrement ».

$$\left[\begin{array}{c} \sum a_n z^n \ \mathrm{DVG}^{\ (*)} \\ (a_n z^n)_{n \in \mathbb{N}} \ \mathrm{ne} \ \mathrm{tend} \ \mathrm{pas} \ \mathrm{vers} \ 0 \\ (a_n z^n)_{n \in \mathbb{N}} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{born\acute{e}e} \end{array}\right]$$

- (**Propriété**) Les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont même rayon de convergence.
- **■** (Relations de comparaison)

On note R_a et R_b les rayons de convergence respectifs des séries $\sum a_n z^n$ et $\sum b_n z^n$.

$$ightharpoonup$$
 Si $|a_n| \underset{+\infty}{\sim} |b_n|$, alors : $R_a = R_b$.

$$ightharpoonup$$
 Si $a_n = \mathop{\rm O}_{+\infty}(b_n)$, alors : $R_a \ge R_b$.

- (Règle de d'Alembert) Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^\mathbb{N}$ qui ne s'annule pas à partir d'un certain rang. On suppose que $\left|\frac{u_{n+1}}{u_n}\right| \underset{n \to +\infty}{\longrightarrow} \ell \in \mathbb{R}^+ \cup \{+\infty\}.$
 - ightharpoonup Si $\ell < 1$, alors la série $\sum u_n$ converge absolument.
 - ightharpoonup Si $\ell > 1$, alors la série $\sum u_n$ diverge grossièrement.

Que faire?

- Pour déterminer le rayon de convergence R de la série entière $\sum a_n z^n$, on peut utiliser une ou plusieurs des méthodes suivantes :
 - Méthode 1 : on utilise la définition ou une des caractérisations pour encadrer R.
 - on cherche un réel positif r_1 tel que pour tout z vérifiant $|z| < r_1$, la série $\sum a_n z^n$ converge absolument (resp. la suite $(a_n z^n)_{n \in \mathbb{N}}$ est bornée ou tend vers 0). On obtient alors une minoration de $R: R \geq r_1$.
 - on cherche un réel positif r_2 tel que pour un z de module r_2 , la série $\sum a_n z^n$ diverge grossièrement (resp. la suite $(a_n z^n)_{n \in \mathbb{N}}$ n'est pas bornée ou ne tend pas vers 0). On obtient alors une majoration de $R: R \leq r_2$.

EXEMPLE 1 La série entière $\sum z^n$ a pour rayon de convergence R=1. En effet, pour tout z tel que |z| < 1, la suite $(z^n)_{n \in \mathbb{N}}$ tend vers 0, d'où $R \ge 1$. Et pour z = 1, la suite $(z^n)_{n \in \mathbb{N}}$ ne tend pas vers 0, d'où $R \le 1$. Ainsi R = 1.

Méthode 2 : la multiplication du terme général par une puissance de n ne modifie pas le rayon de convergence de la série entière.

EXEMPLE 2 $\sum_{n>1} \frac{z^n}{n^2}$, $\sum z^n$ et $\sum n^3 z^n$ ont même rayon de convergence R=1.

▶ **Méthode 3 :** on utilise les relations de comparaison.

EXEMPLE 3 La série entière $\sum n^{(-1)^n} z^n$ a pour rayon de convergence R=1.

En effet, pour tout $n \in \mathbb{N}^*$, on a l'encadrement suivant : $1/n \le n^{(-1)^n} \le n$. Or les séries entières $\sum nz^n$ et $\sum \frac{z^n}{n}$ ont pour rayon de convergence 1, ce qui permet d'en déduire respectivement que $R \ge 1$ et $R \le 1$. Ainsi, R = 1. **EXEMPLE 4** La série entière $\sum (n^3 - 2n^2 + 1)z^n$ a pour rayon de convergence R = 1.

En effet, sachant que $|n^3-2n^2+1| \underset{+\infty}{\sim} n^3$, la série entière $\sum (n^3-2n^2+1)z^n$ a même rayon de convergence que la série entière $\sum n^3 z^n$, à savoir R=1.

Méthode 4 : on applique la règle de d'Alembert à la série numérique $\sum a_n z^n$ pour

un z non nul fixé. **EXEMPLE 5** Le rayon de convergence de la série entière $\sum \frac{z^{2n}}{3^n}$ est $R = \sqrt{3}$. En effet, calculons pour tout $z \neq 0$:

$$\left| \frac{\frac{z^{2(n+1)}}{3^{n+1}}}{\frac{z^{2n}}{3^n}} \right| = \left| \frac{z^2}{3} \right| \xrightarrow[n \to +\infty]{} \frac{|z|^2}{3}$$

- Si $|z|<\sqrt{3}$, alors $\frac{|z|^2}{3}<1$ et $\sum \frac{z^{2n}}{3^n}$ converge absolument. Donc $R\geq \sqrt{3}$.
- Si $|z| > \sqrt{3}$, alors $\frac{|z|^2}{3} > 1$ et $\sum \frac{z^{2n}}{3^n}$ diverge grossièrement. Donc $R \le \sqrt{3}$.

Ainsi, le rayon de convergence vaut bien $R = \sqrt{3}$.

Conseils

■ Pour déterminer des rayons de convergence avec efficacité, il est utile de connaître ceux des séries entières de référence, rappelés dans la Fiche 28.

Exemple traité

Déterminer le rayon de convergence R des séries entières suivantes :

$$1 \quad \sum n^3 z^n$$

$$\sum_{n>1} (\ln n) z^n$$

SOLUTION

- 1 La série $\sum n^3 z^n$ a même rayon de convergence que la série $\sum z^n$, à savoir R=1.
- 2 Comme $(\ln n)_{n\geq 1}$ ne tend pas vers $0, \sum \ln n$ diverge grossièrement. Donc $R\leq 1$. De plus, pour tout $z\in\mathbb{C}$ tel que |z|<1, la suite $((\ln n)z^n)_{n\geq 1}$ tend vers 0 par croissances comparées. Donc $R \geq 1$.
- Ainsi, le rayon de convergence recherché vaut R=1. Sachant que $\lim_{n\to +\infty} \operatorname{Arctan} n = \frac{\pi}{2}$, on a l'équivalent suivant :

$$\left| \frac{\operatorname{Arctan} n}{n^2} \right| \underset{n \to +\infty}{\sim} \frac{\pi}{2n^2}$$

Donc la série $\sum \frac{\arctan n}{n^2} z^n$ a même rayon de convergence que la série $\sum \frac{z^n}{n^2}$, qui a même rayon de convergence que la série $\sum z^n$, à savoir R=1.

On a l'équivalent suivant :

$$\left| \frac{\sinh n}{n} \right| \underset{+\infty}{\sim} \frac{\mathrm{e}^n}{n}$$

Donc la série $\sum \frac{\sinh n}{n} z^n$ a même rayon de convergence que la série $\sum \frac{\mathrm{e}^n}{n} z^n$, que l'on va déterminer grâce à la règle de d'Alembert. Calculons pour $z \neq 0$:

$$\left|\frac{\frac{\mathrm{e}^{n+1}}{n+1}z^{n+1}}{\frac{\mathrm{e}^n}{n}z^n}\right| = \left|\frac{n\mathrm{e}}{n+1}z\right| \underset{n \to +\infty}{\longrightarrow} \mathrm{e}|z|$$

- Si $|z| < \frac{1}{\mathrm{e}}$, alors $\mathrm{e}|z| < 1$ et $\sum \frac{\sinh n}{n} z^n$ converge absolument. Donc $R \ge \frac{1}{\mathrm{e}}$.

 Si $|z| > \frac{1}{\mathrm{e}}$, alors $\mathrm{e}|z| > 1$ et $\sum \frac{\sinh n}{n} z^n$ diverge grossièrement. Donc $R \le \frac{1}{\mathrm{e}}$.

Ainsi, le rayon de convergence recherché vaut $R = \frac{1}{2}$.

Exercices

EXERCICE 27.1

Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n>1} n^2(\ln n)z^n$$

1
$$\sum_{n\geq 1} n^2 (\ln n) z^n$$
 3 $\sum_{n\geq 1} \ln \left(1 + \sin \frac{1}{n}\right) z^n$ 5 $\sum \left(\prod_{k=0}^n \frac{1}{(2k+1)}\right) z^n$ 2 $\sum n! z^n$ 6 $\sum_{n\geq 1} \left(\sum_{k=1}^n \frac{1}{k}\right) z^n$

$$\sum n!z^n$$

EXERCICE 27.2

Déterminer le rayon de convergence R de la série entière $\sum_{n\geq 1} a_n z^n$, où a_n désigne :

- 1 le nombre de diviseurs de n pour tout entier $n \ge 1$,
- le terme général d'une suite périodique quelconque.

EXERCICE 27.3

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0.

Montrer que la série $\sum \frac{a_n}{n!} z^n$ a un rayon de convergence infini.

Pour vous aider à démarrer

EXERCICE 27.2

- Tout entier $n \ge 1$ a un nombre de diviseurs compris entre 1 et n.
- Toute suite périodique est bornée. Il convient cependant de traiter le cas de la suite nulle à part.

......

Considérer un réel $r \in]0, R[$, puis majorer la quantité $|a_n z^n|$ par le terme général d'une série absolument convergente pour tout $z \in \mathbb{C}$.

.....

Solutions des exercices

EXERCICE 27.1

- Par la méthode 2, les séries entières $\sum n^2 (\ln n) z^n$ et $\sum (\ln n) z^n$ ont même rayon de convergence.
 - La question 2 de la rubrique Exemple traité permet alors de conclure que R=1.
- Pour tout $z \in \mathbb{C}^*$, la suite $(n!z^n)_{n \in \mathbb{N}}$ ne tend pas vers 0. Ainsi, R = 0.
- 3 On a les équivalents suivants :

$$\left|\ln\left(1+\sin\frac{1}{n}\right)\right|\underset{+\infty}{\sim}\sin\frac{1}{n}\underset{+\infty}{\sim}\frac{1}{n}$$

Donc la série entière $\sum \ln \left(1+\sin\frac{1}{n}\right)z^n$ a même rayon de convergence que la série entière $\sum \frac{z^n}{n}$, qui a même rayon de convergence que la série $\sum z^n$, à savoir R=1.

4 On a l'équivalent suivant :

$$|3+4ni| = \sqrt{3^2 + (4n)^2} \sim_{+\infty} 4n$$

Donc la série entière $\sum (3+4ni)z^n$ a même rayon de convergence que la série entière $\sum nz^n$, qui a même rayon de convergence que la série entière $\sum z^n$, à savoir R=1.

5 Calculons pour tout $z \neq 0$:

$$\left| \frac{\left(\prod_{k=0}^{n+1} \frac{1}{(2k+1)} \right) z^{n+1}}{\left(\prod_{k=0}^{n} \frac{1}{(2k+1)} \right) z^{n}} \right| = \frac{|z|}{2n+3} \xrightarrow[n \to +\infty]{} 0 < 1$$

Donc, par la règle de d'Alembert, la série entière $\sum \left(\prod_{k=0}^n \frac{1}{(2k+1)}\right) z^n$ converge absolument pour tout $z \in \mathbb{C}$. Ainsi, le rayon de convergence recherché vaut $R = +\infty$.

6 On a l'équivalent suivant :

$$\sum_{k=1}^{n} \frac{1}{k} \underset{+\infty}{\sim} \ln n$$

Donc la série entière $\sum_{n\geq 1} \left(\sum_{k=1}^n \frac{1}{k}\right) z^n$ a même rayon de convergence que la série entière $\sum_{n\geq 1} (\ln n) z^n$, à savoir R=1 (cf le **2** de la rubrique *Exemple traité*).

EXERCICE 27.2

Tout entier $n \ge 1$ a un nombre de diviseurs compris entre 1 et n, autrement dit :

$$\forall n \in \mathbb{N}^*, \ 1 \le a_n \le n$$

Or les séries $\sum z^n$ et $\sum nz^n$ ont pour rayon de convergence 1, ce qui permet d'en déduire respectivement que $R \leq 1$ et $R \geq 1$.

Ainsi, la série $\sum a_n z^n$, où a_n désigne le nombre de diviseurs de n, a pour rayon de convergence R=1.

- 2 On effectue la disjonction de cas suivante :
 - Si la suite $(a_n)_{n>1}$ est nulle, alors $R=+\infty$.
 - Sinon, la suite $(a_n)_{n\geq 1}$ n'est pas nulle, et étant périodique, ne tend pas vers 0.

Donc la série $\sum a_n$ diverge grossièrement, d'où $R \leq 1$.

Par ailleurs, étant périodique, $(a_n)_{n\geq 1}$ est bornée par une constante M>0 et :

$$\forall n \in \mathbb{N}^*, |a_n z^n| \le M|z^n|$$

Or la série $\sum z^n$ a pour rayon de convergence 1, donc $R \ge 1$. Finalement, R = 1.

Ainsi, la série $\sum a_n z^n$, où a_n est le terme général d'une suite périodique, a pour rayon de convergence $R=+\infty$ si la suite est nulle, ou R=1 sinon.

EXERCICE 27.3

Soit $r \in]0, R[$. Sachant que R désigne le rayon de convergence de la série entière $\sum a_n z^n$, il vient alors :

$$\exists M \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \ |a_n r^n| \leq M$$

Soit $z \in \mathbb{C}$. On en déduit alors :

$$\forall n \in \mathbb{N}, \left| \frac{a_n}{n!} z^n \right| = |a_n r^n| \times \left| \frac{(z/r)^n}{n!} \right| \le M \times \left| \frac{(z/r)^n}{n!} \right|$$

Or la série exponentielle $\sum \frac{(z/r)^n}{n!}$ converge absolument pour tout $z \in \mathbb{C}$, donc par comparaison par majoration, il vient que la série $\sum \frac{a_n}{n!} z^n$ converge aussi absolument pour tout $z \in \mathbb{C}$. Ainsi, la série $\sum \frac{a_n}{n!} z^n$ a un rayon de convergence infini.