Grundbegriffe der Informatik Einheit 13: Quantitative Aspekte von Algorithmen

Prof. Dr. Tanja Schultz

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2012/2013

Überblick

Ressourcenverbrauch bei Berechnungen

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkiil

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmen Ineinander geschachtelte Schleifen

Überblick 2/73

Überblick

Ressourcenverbrauch bei Berechnungen

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstu

Eine furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Zählen arithmetischer Operationen

Einheit über Graphalgorithmen:

- Zählen elementarer arithmetischer Operationen
 - für Addition von $n \times n$ -Matrizen: n^2
 - für Multiplikation von $n \times n$ -Matrizen $2n^3 n^2$
 - für Berechnung der Wegematrix $n^5 \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$
 - oder weniger . . .
- ▶ Idee: Das hat was mit der Laufzeit der Algorithmen zu tun.

Ressourcen für Rechnungen

- ► Laufzeit/Rechenzeit
- Speicherplatzbedarf
 - insbesondere für "Zwischenergebnisse"
- das sind sogenannte Komplexitätsmaße
 - ▶ im Sinne von *computational complexity*
 - ▶ tauchen an vielen Stellen wieder auf
 - es gibt auch noch andere . . .

In dieser Einheit

- wichtiges Handwerkszeug zum
 - ▶ Reden über und
 - Ausrechnen von
 - z. B. Laufzeiten
- ▶ insbesondere: "kontrollierte Ungenauigkeiten"
 - "Groß-O": stammt von Bachmann (oder früher), von Landau bekannt gemacht
 - \triangleright Ω , Θ : von Knuth zumindest verbreitet
- nicht genau,
 - weil man nicht will
 - weil man nicht kann

ein Beispiel kommt gleich ...

Beispiel Insertionsort

```
public class InsertionSort {
  public static void sort(long[] a) {
     for (int i \leftarrow 1; i < a.length; i + +) {
        insert(a, i);
  private static void insert(long[] a, int idx) {
     int i \leftarrow idx:
     /\!\!/ Tausche a[idx] nach links bis es einsortiert ist
     while (i > 0 \land a[i-1] > a[i]) {
        # Feldelemente a[i-1] und a[i] vertauschen
        a[i-1] \leftrightarrow a[i];
        i--;
```

Beispiel Insertionsort (2)

Wie oft wird die while-Schleife in der Methode insert ausgeführt?

- ▶ hängt von der Problemgröße n = a.length ab
- aber nicht nur davon, sondern
- auch von der konkreten Probleminstanz
 - Wenn Array a anfangs an sortiert: while-Schleife wird überhaupt nicht ausgeführt.
 - ▶ Wenn Array a anfangs in entgegengesetzter Richtung sortiert: Schleifenrumpf wird $\sum_{i=1}^{n-1} i = n(n-1)/2$ mal ausgeführt.

- ▶ für jede Probleminstanz einzeln:
 - präzise aber oft unpraktikabel
- gröber: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - ▶ oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - ▶ mit dem "Hinweis", dass es auch besser sein kann . . .

- ► für jede Probleminstanz einzeln:
 - präzise aber oft unpraktikabel
- gröber: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - ► oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ► für jede Probleminstanz einzeln:
 - präzise aber oft unpraktikabel
- gröber: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ► für jede Probleminstanz einzeln:
 - präzise aber oft unpraktikabel
- gröber: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

Was ist wichtig

Das sollten Sie mitnehmen:

- Bedarf an
 - Rechenzeit und
 - Speicherplatzbedarf

wichtige Komplexitätsmaße

- Meist will/kann man nur die Abhängigkeit von der Problemgröße quantifizieren
 - üblicherweise den schlimmsten Fall (worst case)
 - gelegentlich einen mittleren Fall (average case)

Das sollten Sie üben:

Abschätzen/ausrechnen wie oft ein Programmstück,
 z. B. ein Schleifenrumpf, durchlaufen wird.

Ressourcenverbrauch bei Berechnungen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktioner Laufzeit von Teile-und-Herrsche-Algorithmen

- Man will nicht.
 - ► Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen.

Man kann nicht.

- Dummheit
- Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
- Ungenauigkeiten bei der Formulierung des Algorithmus
 - unabhängig von Programmiersprache
- ► Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingunger welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus
 unabhängig von Programmiersprache
- ► Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus
 - unabhängig von Programmiersprache
- Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus
 - unabhängig von Programmiersprache
- Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

Wie ungenau wollen wir über Funktionen reden?

- ▶ Ignorieren konstanter Faktoren
 - Motivation: Geschwindigkeitssteigerungen bei Prozessoren irrelevant
- ▶ nur obere (bzw. untere) Schranken
 - ▶ Motivation: können nur schlechtesten Fall analysieren

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Zu Notation und Redeweise

- ► Notation:
 - $ightharpoonup \mathbb{R}_+$: Menge der positiven reellen Zahlen (ohne 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}_+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- ► Redeweisen:
 - asymptotisches Wachstum oder
 - größenordnungsmäßiges Wachstum von Funktionen
- ▶ Definition:
 - Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst asymptotisch genauso schnell wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$
.

▶ schreibe $f \times g$ oder $f(n) \times g(n)$

Zu Notation und Redeweise

- ► Notation:
 - $ightharpoonup \mathbb{R}_+$: Menge der positiven reellen Zahlen (ohne 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}_+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Redeweisen:
 - asymptotisches Wachstum oder
 - ► größenordnungsmäßiges Wachstum von Funktionen
- ▶ Definition:
 - ▶ Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst asymptotisch genauso schnell wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$
.

▶ schreibe $f \times g$ oder $f(n) \times g(n)$

Zu Notation und Redeweise

- ► Notation:
 - $ightharpoonup \mathbb{R}_+$: Menge der positiven reellen Zahlen (ohne 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}_+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Redeweisen:
 - asymptotisches Wachstum oder
 - ► größenordnungsmäßiges Wachstum von Funktionen
- Definition:
 - ► Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst asymptotisch genauso schnell wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$
.

▶ schreibe $f \approx g$ oder $f(n) \approx g(n)$

Erläuterungen zur Definition von $f \approx g$ (1)

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$

Erläuterungen zur Definition von $f \approx g$ (2)

$$\exists c,c' \in \mathbb{R}_+: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: cf(n) \leq g(n) \leq c'f(n)$$

Beispiel

- $f(n) = 3n^2$ und $g(n) = 10^{-2}n^2$.
- ▶ Behauptung: $f(n) \approx g(n)$

▶
$$cf(n) \le g(n)$$
: für $c = 10^{-3}$ und $n_0 = 0$ gilt

$$\forall n \ge n_0 : cf(n) = 10^{-3} \cdot 3n^2 \le 10^{-2}n^2 = g(n)$$

• $g(n) \le c' f(n)$ gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \ge n_0 : g(n) = 10^{-2} n^2 \le 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenrege

Für alle $f:\mathbb{N}_0 \to \mathbb{R}_0^+$ gilt

$$\forall a, b \in \mathbb{R}_+ : af(n) \times bf(n)$$

Beispiel

- $f(n) = 3n^2$ und $g(n) = 10^{-2}n^2$.
- ▶ Behauptung: $f(n) \approx g(n)$
 - $cf(n) \le g(n)$: für $c = 10^{-3}$ und $n_0 = 0$ gilt

$$\forall n \ge n_0 : cf(n) = 10^{-3} \cdot 3n^2 \le 10^{-2}n^2 = g(n)$$

▶ $g(n) \le c'f(n)$ gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \geq n_0 : g(n) = 10^{-2} n^2 \leq 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenrege

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt

$$\forall a, b \in \mathbb{R}_+ : af(n) \times bf(n)$$

Beispiel

- $f(n) = 3n^2$ und $g(n) = 10^{-2}n^2$.
- ▶ Behauptung: $f(n) \approx g(n)$
 - $cf(n) \le g(n)$: für $c = 10^{-3}$ und $n_0 = 0$ gilt

$$\forall n \geq n_0 : cf(n) = 10^{-3} \cdot 3n^2 \leq 10^{-2}n^2 = g(n)$$

• $g(n) \le c' f(n)$ gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \geq n_0 : g(n) = 10^{-2} n^2 \leq 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenregel

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$\forall a, b \in \mathbb{R}_+ : af(n) \asymp bf(n)$$

Beispiel (2)

- $f(n) = n^3 + 5n^2$ und $g(n) = 3n^3 n$
- ▶ Behauptung $f(n) \approx g(n)$
 - einerseits ist für $n \ge 0$ offensichtlich

$$f(n) = n^3 + 5n^2$$

$$\leq n^3 + 5n^3$$

$$= 6n^3$$

$$= 9n^3 - 3n^3$$

$$\leq 9n^3 - 3n$$

$$= 3(3n^3 - n) = 3g(n)$$
also
$$\frac{1}{3}f(n) \leq g(n)$$

Andererseits ist

$$g(n) = 3n^3 - n \le 3n^3 \le 3(n^3 + 5n^2) = 3f(n)$$

Beispiel (2)

- $f(n) = n^3 + 5n^2$ und $g(n) = 3n^3 n$
- ▶ Behauptung $f(n) \approx g(n)$
 - einerseits ist für $n \ge 0$ offensichtlich

$$f(n) = n^3 + 5n^2$$

$$\leq n^3 + 5n^3$$

$$= 6n^3$$

$$= 9n^3 - 3n^3$$

$$\leq 9n^3 - 3n$$

$$= 3(3n^3 - n) = 3g(n)$$
also
$$\frac{1}{3}f(n) \leq g(n)$$

Andererseits ist

$$g(n) = 3n^3 - n \le 3n^3 \le 3(n^3 + 5n^2) = 3f(n)$$

"Nichtbeispiele" für symp (1)

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - ▶ insbesondere müsste sonst $g(n) \le c' f(n)$ gelten (für . . .)
 - ▶ für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$
 - ▶ Das müste also für ein $c' \in \mathbb{R}_+$ ab einem n_0 für alle n gelten
 - Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

"Nichtbeispiele" für symp (1)

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - ▶ insbesondere müsste sonst $g(n) \le c' f(n)$ gelten (für . . .)
 - für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$
 - ▶ Das müste also für ein $c' \in \mathbb{R}_+$ ab einem n_0 für alle n gelten
 - ▶ Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

"Nichtbeispiele" für symp (1)

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - ▶ insbesondere müsste sonst $g(n) \le c' f(n)$ gelten (für . . .)
 - für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$
 - ▶ Das müste also für ein $c' \in \mathbb{R}_+$ ab einem n_0 für alle n gelten.
 - Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

"Nichtbeispiele" für \asymp (1)

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- Begründung:
 - ▶ insbesondere müsste sonst $g(n) \le c' f(n)$ gelten (für . . .)
 - für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$
 - ▶ Das müste also für ein $c' \in \mathbb{R}_+$ ab einem n_0 für alle n gelten.
 - ▶ Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

"Nichtbeispiele" für \approx (2)

- ▶ betrachte $f(n) = n^2$ und $g(n) = 2^n$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - für $f \times g$ müsste insbesondere $g(n)/f(n) \le c'$ gelten (für . . .)
 - Aber $2^n/n^2$ kann durch keine Konstante beschränkt werden:
 - einfache Grenzwertbetrachtung, oder
 - **b** betrachte die $n_i = 2^{i+2}$ und zeige durch Induktion:

$$\forall i \in \mathbb{N}_0 : 2^{n_i} \geq 4^i n_i^2$$

$\ddot{\mathsf{A}}\mathsf{quivalenzrelation} symp$

- ► Zeichen ≍ erinnert an das Gleichheitszeichen.
- ▶ Das ist Absicht: Relation × hat wichtige Eigenschaften:

Lemma

Die Relation \asymp ist eine Äquivalenzrelation.

Zur Erinnerung: Eine Äquivalenzrelation ist per definitionem

- reflexiv,
- symmetrisch,
- transitiv.

- ► Reflexitvität: $f \approx f$ denn für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \bowtie g$, dann auch $g \bowtie f$ Wenn für Konstanten $c, c' \in \mathbb{R}_+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c'

$$d'g(n) \le f(n) \le dg(n)$$
.

- ► Reflexitvität: $f \approx f$ denn für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}_+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \le f(n) \le dg(n)$$
.

- ► Reflexitvität: $f \approx f$ denn für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}_+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \le f(n) \le dg(n)$$
.

- ► Reflexitvität: $f \approx f$ denn für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}_+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \le f(n) \le dg(n) .$$

Aquivalenzrelation \approx : Beweis (2)

► Transitivität: wenn $f \times g$ und $g \times h$, dann $f \times h$. gelte für Konstanten $c, c' \in \mathbb{R}_+$ und alle $n \geq n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$

und für Konstanten $d,d'\in\mathbb{R}_+$ und alle $n\geq n_1$

$$dg(n) \leq h(n) \leq d'g(n)$$
.

Dann gilt für alle $n \ge \max(n_0, n_1)$

$$dcf(n) \le dg(n) \le h(n) \le d'g(n) \le d'c'f(n)$$
,

wobei auch die Konstanten dc und d'c' wieder positiv sind.

Groß-Θ

- ▶ $\Theta(f)$: Menge aller Funktionen, die zu einer gegebenen Funktion f(n) im Sinne von \asymp äquivalent sind
- Also:

$$\Theta(f(n)) = \{g(n) \mid f(n) \approx g(n)\}
= \{g(n) \mid \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 :
cf(n) \le g(n) \le c'f(n)\}$$

einfache Rechenregel für Θ

Rechenregel

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ und alle Konstanten $a, b \in \mathbb{R}_+$ gilt:

$$\Theta\left(af(n)\right) = \Theta\left(bf(n)\right) .$$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Eine furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Obere und untere Schranken

- Manchmal kennt man eine Funktion nicht mal bis auf einen konstanten Faktor, sondern nur obere (oder/und untere) Schranken.
 - ► Erinnerung: Anzahl Schleifendurchläufe bei Insertionsort
- Definition:
- gelegentlich auch

$$g \leq f$$
 falls $g \in O(f)$
 $g \succeq f$ falls $g \in \Omega(f)$

- Redeweise
 - ▶ g wächst asymptotisch höchstens so schnell wie f (falls $g \leq f$)
 - g wächst asymptotisch mindestens so schnell wie f (falls $g \succeq f$)

Beispiel (1)

- ► Es sei $g(n) = 10^{90} n^7$ und $f(n) = 10^{-90} n^8$
- ▶ Behauptung: $g(n) \in O(f(n))$
- Begründung:
 - wähle $c = 10^{180}$ und $n_0 = 0$
 - ▶ dann für alle $n \ge 0$: $10^{90} n^7 \le c \cdot 10^{-90} n^8$.
- ▶ Man sieht: In O (·) usw. können *große* Konstanten stecken.
- ▶ Deswegen: Ob z. B. Algorithmus mit Laufzeit in O (n⁸) in der Praxis wirklich tauglich ist, hängt durchaus von der Konstante c bei der oberen Schranke cn⁸ ab.
 - $c = 10^{-90}$ dürfte okay sein,
 - $c = 10^{90}$ vermutlich nicht.

Beispiel (1)

- ► Es sei $g(n) = 10^{90} n^7$ und $f(n) = 10^{-90} n^8$
- ▶ Behauptung: $g(n) \in O(f(n))$
- Begründung:
 - wähle $c = 10^{180}$ und $n_0 = 0$
 - ▶ dann für alle $n \ge 0$: $10^{90} n^7 \le c \cdot 10^{-90} n^8$.
- ▶ Man sieht: In O (·) usw. können *große* Konstanten stecken.
- ▶ Deswegen: Ob z. B. Algorithmus mit Laufzeit in O (n⁸) in der Praxis wirklich tauglich ist, hängt durchaus von der Konstante c bei der oberen Schranke cn⁸ ab.
 - $ightharpoonup c = 10^{-90}$ dürfte okay sein,
 - $c = 10^{90}$ vermutlich nicht.

Beispiel (2)

- ▶ Was ist O (1)?
- ▶ Definition: alle Funktionen g(n), für die es $c \in \mathbb{R}_+$ und $n_0 \in \mathbb{N}_0$ gibt, so dass für alle $n \ge n_0$ gilt:

$$g(n) \le c \cdot 1 = c$$

- alle Funktionen, die durch eine Konstante beschränkbar sind
 - Dazu gehören etwa alle konstanten Funktionen,
 - ▶ aber auch Funktionen wie 3 + sin(n)
 (So etwas habe ich aber noch nie eine Rolle spielen sehen.)

Beispiel (3)

- ▶ vorne: Quotient n^2/n nicht für alle hinreichend großen n durch eine Konstante beschränkbar
- ▶ Also gilt *nicht* $n^2 \leq n$.
- ▶ Andererseits gilt $n \leq n^2$.
- ▶ Die Relation \leq ist also *nicht* symmetrisch.
- ▶ Allgemein für positive reelle Konstanten 0 < a < b:

$$n^{a} \preceq n^{b} \qquad \text{aber} \qquad n^{b} \not \preceq n^{a}$$
 also
$$n^{a} \in \mathcal{O}\left(n^{b}\right) \qquad \text{aber} \qquad n^{b} \notin \mathcal{O}\left(n^{a}\right)$$
 also
$$n^{b} \in \Omega\left(n^{a}\right) \qquad \text{aber} \qquad n^{a} \notin \Omega\left(n^{b}\right)$$

Beispiel (4)

- ▶ vorne: Quotient 2ⁿ/n² nicht für alle hinreichend großen n durch eine Konstante beschränkbar
- ▶ Also gilt *nicht* $2^n \leq n^2$.
- ▶ Andererseits gilt $n^2 \leq 2^n$.
- ▶ Allgemein für reelle Konstanten a und b, beide echt größer 1:

also
$$n^a \preceq b^n \qquad \text{aber} \qquad b^n \not \preceq n^a$$
 also
$$n^a \in \mathrm{O}\left(b^n\right) \qquad \text{aber} \qquad b^n \notin \mathrm{O}\left(n^a\right)$$
 also
$$b^n \in \Omega\left(n^a\right) \qquad \text{aber} \qquad n^a \notin \Omega\left(b^n\right)$$

Einfache Beobachtungen

▶ in der Ungleichung $g(n) \le cf(n)$ die Konstante auf die andere Seite bringen (hatten wir schon) liefert

Rechenregel

Für alle Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$g(n) \in O(f(n)) \Longleftrightarrow f(n) \in \Omega(g(n)), \text{ also } g \leq f \Longleftrightarrow f \succeq g$$

▶ Man kann auch zeigen:

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$
 also
$$g \approx f \Longleftrightarrow g \leq f \land g \succeq f$$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Eine furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer

Für die Lektüre leider unverzichtbar

- sehr unschöne Variante der O-Notation, aber weit verbreitet
- Man schreibt

$$g(n) = O(f(n))$$
 statt $g(n) \in O(f(n))$, $g(n) = O(f(n))$ statt $g(n) \in O(f(n))$, $g(n) = O(f(n))$ statt $g(n) \in O(f(n))$.

- Ausdrücke auf der linken Seite sind keine Gleichungen!
- Lassen Sie daher bitte immer große Vorsicht walten:
 - ▶ Es ist falsch, aus $g(n) = O(f_1(n))$ und $g(n) = O(f_2(n))$ zu folgern, dass $O(f_1(n)) = O(f_2(n))$ ist.
 - ▶ Es ist falsch, aus $g_1(n) = O(f(n))$ und $g_2(n) = O(f(n))$ zu folgern, dass $g_1(n) = g_2(n)$ ist.

Für die Lektüre leider unverzichtbar

- sehr unschöne Variante der O-Notation, aber weit verbreitet
- Man schreibt

$$g(n) = O(f(n))$$
 statt $g(n) \in O(f(n))$,
 $g(n) = \Theta(f(n))$ statt $g(n) \in \Theta(f(n))$,
 $g(n) = \Omega(f(n))$ statt $g(n) \in \Omega(f(n))$.

- Ausdrücke auf der linken Seite sind keine Gleichungen!
- Lassen Sie daher bitte immer große Vorsicht walten:
 - ► Es ist falsch, aus $g(n) = O(f_1(n))$ und $g(n) = O(f_2(n))$ zu folgern, dass $O(f_1(n)) = O(f_2(n))$ ist.
 - ▶ Es ist falsch, aus $g_1(n) = O(f(n))$ und $g_2(n) = O(f(n))$ zu folgern, dass $g_1(n) = g_2(n)$ ist.

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmen Ineinander geschachtelte Schleifen

Eine nützliche Rechenregel

- ▶ Ist $g_1 \leq f_1$ und $g_2 \leq f_2$, dann ist auch $g_1 + g_2 \leq f_1 + f_2$.
- ▶ Ist umgekehrt $g \leq f_1 + f_2$, dann kann man g in der Form $g = g_1 + g_2$ schreiben mit $g_1 \leq f_1$ und $g_2 \leq f_2$.

Das schreiben wir auch so:

Lemma

Für alle Funktionen $f_1, f_2 : \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$O(f_1) + O(f_2) = O(f_1 + f_2)$$

Das Pluszeichen auf der linken Seite bedarf der Erläuterung ...

Groß-O-Notation Rec

Komplexoperationen

▶ Sind M_1 und M_2 Mengen von Elementen, die man addieren bzw. multiplizieren kann, dann sei

$$M_1 + M_2 = \{g_1 + g_2 \mid g_1 \in M_1 \land g_2 \in M_2\}$$

 $M_1 \cdot M_2 = \{g_1 \cdot g_2 \mid g_1 \in M_1 \land g_2 \in M_2\}$

Das ist nichts Neues: Definition des Produkts formaler Sprachen passt genau in dieses Schema.

Komplexoperationen (2)

- ▶ Wenn eine der Mengen M_i einelementig ist, lässt man manchmal die Mengenklammern darum weg.
- Beispiele
 - ▶ mit Zahlenmengen

statt
$$\{3\} \cdot \mathbb{N}_0 + \{1\}$$
 kürzer $3\mathbb{N}_0 + 1$

▶ mit Funktionenmengen

statt
$$\{n^3\} + O(n^2)$$
 kürzer $n^3 + O(n^2)$

Beweis des Lemmas

beide Inklusionen getrennt beweisen:

und

wenn für alle
$$n \ge n_{01}$$
 gilt: $g_1(n) \le c_1 f_1(n)$ und wenn für alle $n \ge n_{02}$ gilt: $g_2(n) \le c_2 f_2(n)$, dann gilt für $n \ge n_0 = \max(n_{01}, n_{02})$ und $c = \max(c_1, c_2)$:
$$g_1(n) + g_2(n) \le c_1 f_1(n) + c_2 f_2(n)$$
$$\le c f_1(n) + c f_2(n)$$
$$= c (f_1(n) + f_2(n))$$

": "schwieriger", weil man g_1 und g_2 finden muss. Definiere

$$g_1(n) = egin{cases} g(n) & ext{falls } g(n) \leq cf_1(n) \ cf_1(n) & ext{falls } g(n) > cf_1(n) \ g_2(n) = g(n) - g_1(n) \end{cases}$$

Der Rest ist einfache Rechnung.

Weitere Regeln

Rechenregel

Wenn $g_1 \leq f_1$ ist, und wenn $g_1 \approx g_2$ und $f_1 \approx f_2$, dann gilt auch $g_2 \leq f_2$.

Rechenregel

Wenn $g \leq f$ ist, also $g \in O(f)$, dann ist auch $O(g) \subseteq O(f)$ und O(g + f) = O(f).

Was ist wichtig

Das sollten Sie mitnehmen:

- ▶ Definitionen von O(f), $\Theta(f)$, $\Omega(f)$
- ▶ Definitionen von \leq , \leq , \succeq

Das sollten Sie üben:

- ▶ Anschauung für O(f), $\Theta(f)$, $\Omega(f)$
- ▶ rechnen mit O(f), $\Theta(f)$, $\Omega(f)$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Multiplikation von 2×2 -Matrizen

- ► Anzahl Multiplikationen: $N_{mult}(2) = 2^2 \cdot 2 = 8$
- Anzahl Additionen: $N_{add}(2) = 2^2 \cdot (2-1) = 4$.

Multiplikation von $n \times n$ -Matrizen

- n sei gerade
- Verwendung von Blockmatrizen:

- ▶ alle Blöcke haben Größe $n/2 \times n/2$
- 8 Multiplikationen von Blockmatrizen und
 - 4 Additionen von Blockmatrizen.
- Anzahl elementarer Operationen
 - $ightharpoonup N_{mult}(n) = 8 \cdot N_{mult}(n/2)$ und
 - $N_{add}(n) = 8 \cdot N_{add}(n/2) + 4 \cdot (n/2)^2 = 8 \cdot N_{add}(n/2) + n^2.$

Multiplikation von $2^k \times 2^k$ -Matrizen

- ▶ Fälle $n \neq 2^k$ kann man mit mehr Aufwand analog behandeln.
- ▶ aus $N_{mult}(n) = 8 \cdot N_{mult}(n/2)$ folgt (Induktion)

$$N_{mult}(2^k) = 8 \cdot N_{mult}(2^{k-1}) = 8 \cdot 8 \cdot N_{mult}(2^{k-2}) = \cdots$$

= $8^k \cdot N_{mult}(1)$
= $8^k = (2^3)^k = (2^k)^3 = n^3$

► Aus $N_{add}(n) = 8 \cdot N_{add}(n/2) + n^2$ folgt

$$N_{add}(2^{k}) = 8 \cdot N_{add}(2^{k-1}) + 4^{k}$$

$$= 8 \cdot 8 \cdot N_{add}(2^{k-2}) + 8 \cdot 4^{k-1} + 4^{k} = \cdots$$

$$= 8 \cdot 8 \cdot N_{add}(2^{k-2}) + 2 \cdot 4^{k} + 4^{k} = \cdots$$

$$= 8^{k} N_{add}(2^{0}) + (2^{k-1} + \cdots + 1) \cdot 4^{k} =$$

$$= 2^{k} \cdot 4^{k} \cdot 0 + (2^{k} - 1) \cdot 4^{k} =$$

$$= 2^{k} \cdot 4^{k} - 4^{k} = n^{3} - n^{2}$$

Nichts neues

- ▶ Das wussten wir doch schon:
 - $ightharpoonup N_{mult}(n) = n^3$
 - $N_{add}(n) = 2n^3 n^2$
- ▶ und?

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer Ineinander geschachtelte Schleifen

Die Idee von Strassen

$$\begin{array}{c|cccc} & B_{11} & B_{12} \\ & B_{21} & B_{22} \\ \hline A_{11} & A_{12} & C_{11} & C_{12} \\ A_{21} & A_{22} & C_{21} & C_{22} \\ \end{array}$$

Die Einträge C_{ij} des Matrixproduktes ergeben sich auch wie folgt:

$$C_{11} = M_1 + M_4 - M_5 + M_7 \qquad C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4 \qquad C_{22} = M_1 - M_2 + M_3 + M_6$$
wobei $M_1 = (A_{11} + A_{22})(B_{11} + B_{22}) \qquad M_2 = (A_{21} + A_{22})B_{11}$

$$M_3 = A_{11}(B_{12} - B_{22}) \qquad M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22} \qquad M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

Die Idee von Strassen (2)

$$C_{11} = M_1 + M_4 - M_5 + M_7$$
 $C_{12} = M_3 + M_5$ $C_{21} = M_2 + M_4$ $C_{22} = M_1 - M_2 + M_3 + M_6$ wobei $M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$ $M_2 = (A_{21} + A_{22})B_{11}$ $M_3 = A_{11}(B_{12} - B_{22})$ $M_4 = A_{22}(B_{21} - B_{11})$ $M_5 = (A_{11} + A_{12})B_{22}$ $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$ $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$

- ▶ 18 Additionen statt 4
- 7 Multiplikationen statt 8

Die Idee von Strassen (3)

- ▶ 18 Additionen statt 4
- 7 Multiplikationen statt 8
- ▶ ja und?

Die Idee von Strassen (3)

- 18 Additionen statt 4
- ▶ 7 Multiplikationen statt 8
- ▶ ja und?
- ganze Block*matrizen*: Additionen sind *viel* "billiger" als Multiplikationen

Aufwandsabschätzung für den Algorithmus von Strassen

- Anzahl elementarer Operationen:
 - $N_{mult}(n) = 7 \cdot N_{mult}(n/2)$
 - $N_{add}(n) = 7 \cdot N_{add}(n/2) + 18 \cdot (n/2)^2 = 7 \cdot N_{add}(n/2) + 4.5 \cdot n^2$
- Für den Fall $n = 2^k$ ergibt sich:

$$N_{mult}(2^{k}) = 7 \cdot N_{mult}(2^{k-1}) = 7 \cdot 7 \cdot N_{mult}(2^{k-2}) = \cdots$$

$$= 7^{k} \cdot N_{mult}(1)$$

$$= 7^{k} = (2^{\log_{2} 7})^{k} = (2^{k})^{\log_{2} 7} \approx n^{2.807 \dots}$$

- ▶ Analog: $N_{add}(n) \in \Theta(n^{\log_2 7})$.
- Gesamtzahl elementarer Operationen ist also in

$$\Theta(n^{\log_2 7}) + \Theta(n^{\log_2 7}) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.807...})$$

das ist besser als n^3

Noch schneller?

- ▶ Ja: Algorithmus von Coppersmith und Winograd: $O(n^{2.376...})$
 - ▶ 2011 von Virginia Williams optimiert zu O (n².3727)
 - ▶ der konstante Faktor ist *groß*
- unklar: Reichen $O(n^2)$ Operationen?

Teile und herrsche

- ▶ Man teilt die Probleminstanz in kleinere Teile auf
 - mehr oder weniger viele
- Man bearbeitet die Teile rekursiv nach dem gleichen Verfahren.
- Man benutzt die Teilergebnisse, um das Resultat für die ursprüngliche Eingabe zu berechnen.
- engl. divide and conquer

Was ist wichtig

Das sollten Sie mitnehmen:

- bei algorithmischen Problemen kann man überraschende Dinge tun
- Teile und Herrsche
- Rekursionsformel f
 ür Absch
 ätzung von (z. B.) Laufzeiten

Das sollten Sie üben:

- ▶ in dieser Vorlesung: rechnen mit $O(\cdot)$, $\Theta(\cdot)$, $\Omega(\cdot)$
 - ▶ spätestens in kommenden Semestern: rekursive Algorithmen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen Laufzeit von Teile-und-Herrsche-Algorithmen

Ineinander geschachtelte Schleifen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen Laufzeit von Teile-und-Herrsche-Algorithmen

Ineinander geschachtelte Schleifen

- ▶ in manchen Fällen:
 - ▶ Problem der Größe n wird in konstante Anzahl a von Teilprobleme gleicher Größe n/b zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - ightharpoonup Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ► Abschätzung (z. B.) der Laufzeit *T*(*n*) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ightharpoonup |n/b| oder [n/b]
 - ▶ oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in manchen Fällen:
 - ightharpoonup Problem der Größe n wird in konstante Anzahl a von Teilprobleme gleicher Größe n/b zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - \triangleright Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- Abschätzung (z. B.) der Laufzeit T(n) liefert
 Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ightharpoonup |n/b| oder [n/b]
 - ▶ oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in manchen Fällen:
 - ightharpoonup Problem der Größe n wird in konstante Anzahl a von Teilprobleme gleicher Größe n/b zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - \triangleright Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ▶ Abschätzung (z. B.) der Laufzeit T(n) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ▶ $\lfloor n/b \rfloor$ oder $\lceil n/b \rceil$
 - oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in manchen Fällen:
 - ▶ Problem der Größe *n* wird in konstante Anzahl *a* von Teilprobleme gleicher Größe *n/b* zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - ightharpoonup Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ► Abschätzung (z. B.) der Laufzeit *T*(*n*) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ▶ $\lfloor n/b \rfloor$ oder $\lceil n/b \rceil$
 - oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

Mastertheorem

Drei Kochrezepte, in denen f(n) und $\log_b a$ eine Rolle spielen:

- Fall 1: Wenn $f(n) \in O(n^{(\log_b a) \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T(n) \in \Theta(n^{\log_b a})$.
- Fall 2: Wenn $f(n) \in \Theta\left(n^{\log_b a}\right)$ ist, dann ist $T(n) \in \Theta\left(n^{\log_b a} \log n\right)$.
- Fall 3: Wenn $f(n) \in \Omega\left(n^{(\log_b a)+\varepsilon}\right)$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta\left(f(n)\right)$.

Achtung: Diese Fallunterscheidung ist nicht vollständig!

Beispiel Matrixmultiplikation

- ▶ "Problemgröße" n: die Zeilen- bzw. Spaltenzahl
- Schulmethode
 - ▶ a = 8 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2
 - $\log_b a = \log_2 8 = 3$
 - ▶ zusätzlicher Aufwand: 4 kleine Matrixadditionen, also $f(n) = 4 \cdot n^2/4 = n^2$
 - $f(n) \in O(n^{3-\varepsilon})$ (z. B. für $\varepsilon = 1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^3)$
- Algorithmus von Strassen
 - ► *a* = 7 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2

 - ▶ zusätzlicher Aufwand: 18 kleine Matrixadditionen, also $f(n) = 18 \cdot n^2/4 \in \Theta(n^2)$
 - $f(n) \in O(n^{\log_b a \varepsilon}) = O(n^{\log_2 7 \varepsilon})$ (z. B. für $\varepsilon = 0.1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^{\log_2 7}) = \Theta(n^{2.807...})$

Beispiel Matrixmultiplikation

- ▶ "Problemgröße" n: die Zeilen- bzw. Spaltenzahl
- Schulmethode
 - ▶ a = 8 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2
 - $\log_b a = \log_2 8 = 3$
 - ▶ zusätzlicher Aufwand: 4 kleine Matrixadditionen, also $f(n) = 4 \cdot n^2/4 = n^2$
 - $f(n) \in O(n^{3-\varepsilon})$ (z. B. für $\varepsilon = 1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^3)$
- Algorithmus von Strassen
 - ▶ a = 7 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2

 - ▶ zusätzlicher Aufwand: 18 kleine Matrixadditionen, also $f(n) = 18 \cdot n^2/4 \in \Theta(n^2)$
 - $f(n) \in O(n^{\log_b a \varepsilon}) = O(n^{\log_2 7 \varepsilon})$ (z. B. für $\varepsilon = 0.1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^{\log_2 7}) = \Theta(n^{2.807...})$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Eine furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Asymptotisches Verhalten "implizit" definierter Funktionen

Laufzeit von Teile-und-Herrsche-Algorithmer

Ineinander geschachtelte Schleifen

Weitere Anwendung des Mastertheorems

```
x \leftarrow n; \langle Eingabewert \ n \in \mathbb{N}_0 \rangle

i \leftarrow 0;

while x \geq 2 do

i + +;

x \leftarrow x div 2;

od

\langle Ausgabewert \ i \rangle
```

Weitere Anwendung des Mastertheorems

```
x \leftarrow n; \langle Eingabewert \ n \in \mathbb{N}_0 \rangle

i \leftarrow 0;

while x \geq 2 do

i + +;

x \leftarrow x div 2;

od

\langle Ausgabewert \ i \rangle
```

- ▶ Welchen Wert hat am Ende *i*?
- ▶ Wieviele Schleifendurchläufe D(n) werden insgesamt gemacht?

Weitere Anwendung des Mastertheorems

```
x \leftarrow n; \langle Eingabewert \ n \in \mathbb{N}_0 \rangle

i \leftarrow 0;

while x \geq 2 do

i + +;

x \leftarrow x div 2;

od

\langle Ausgabewert \ i \rangle
```

- wie man sieht: $D(n) = \begin{cases} 0 & \text{falls } n \leq 1 \\ 1 + D(n/2) & \text{sonst} \end{cases}$
- Mastertheorem:
 - a = 1, b = 2, f(n) = 1
 - ▶ $\log_h a = 0$, also Fall 2: $f(n) \in \Theta(n^0)$
 - ▶ also $D(n) \in \Theta(\log n)$

Hier ist das Mastertheorem nicht anwendbar

$$x \leftarrow n$$
; $\langle Eingabewert \ n \in \mathbb{N}_0 \rangle$
 $i \leftarrow 0$;
while $x \geq 2$ **do**
 $i + +$;
 $x \leftarrow x - 2$;
od
 $\langle Ausgabewert \ i \rangle$

► Anzahl Schleifendurchläufe

$$D(n) = \begin{cases} 0 & \text{falls } n \le 1\\ 1 + D(n-2) & \text{sonst} \end{cases}$$

Kochrezept nicht anwendbar

Hier ist das Mastertheorem nicht anwendbar

$$x \leftarrow n$$
; $\langle Eingabewert \ n \in \mathbb{N}_0 \rangle$
 $i \leftarrow 0$;
while $x \geq 2$ **do**
 $i + +$;
 $x \leftarrow x - 2$;
od
 $\langle Ausgabewert \ i \rangle$

Anzahl Schleifendurchläufe

$$D(n) = egin{cases} 0 & \text{falls } n \leq 1 \\ 1 + D(n-2) & \text{sonst} \end{cases}$$

Kochrezept nicht anwendbar

Einfache for-Schleifen

$$D \leftarrow 0;$$

for $i \leftarrow 0$ to $n-1$ do
 $S[i] \leftarrow V_1[i] + V_2[i]$
 $D++;$
od

Anzahl Schleifendurchläufe offensichtlich: D(n) = n

Einfache for-Schleifen

$$D \leftarrow 0;$$
 for $i \leftarrow 0$ to $n-1$ do $S[i] \leftarrow V_1[i] + V_2[i]$ $D++;$ od

Anzahl Schleifendurchläufe offensichtlich: D(n) = n

```
\begin{array}{lll} D \leftarrow 0; \\ \textbf{for} & i \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ & E \leftarrow 0; \\ \textbf{for} & j \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ & & C[i,j] \leftarrow A[i,j] + B[i,j] \\ & & E++; \\ \textbf{od} & & D \leftarrow D+E; \\ \textbf{od} & & & & & & & & & & & \end{array}
```

- Anzahl Durchläufe
 - ▶ innerer Schleifenrumpf: E(i, n) = n
 - ▶ insgesamt $D(n) = \sum_{i=0}^{n-1} E(i, n) = \sum_{i=0}^{n-1} n = n^2$

$$\begin{array}{lll} D \leftarrow 0; \\ \textbf{for} & i \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ & E \leftarrow 0; \\ \textbf{for} & j \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ & & C[i,j] \leftarrow A[i,j] + B[i,j] \\ & & E++; \\ \textbf{od} & & D \leftarrow D+E; \\ \textbf{od} & & & & & & & & & & & \end{array}$$

- Anzahl Durchläufe
 - innerer Schleifenrumpf: E(i, n) = n
 - insgesamt $D(n) = \sum_{i=0}^{n-1} E(i, n) = \sum_{i=0}^{n-1} n = n^2$

```
\begin{array}{lll} D \leftarrow 0; \\ \textbf{for} & i \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ E \leftarrow 0; \\ \textbf{for} & j \leftarrow 0 & \textbf{to} & i & \textbf{do} \\ & C[i,j] \leftarrow A[i,j] + B[i,j] \\ & E++; \\ \textbf{od} \\ & D \leftarrow D+E; \\ \textbf{od} \end{array}
```

- Anzahl Durchläufe
 - ▶ innerer Schleifenrumpf: E(i, n) = i + 1
 - insgesamt

$$D(n) = \sum_{i=0}^{n-1} E(i, n) = \sum_{i=0}^{n-1} i + 1 = \frac{n(n+1)}{2} \in \Theta(n^2)$$

$$\begin{array}{lll} D \leftarrow 0; \\ \textbf{for} & i \leftarrow 0 & \textbf{to} & n-1 & \textbf{do} \\ & E \leftarrow 0; \\ & \textbf{for} & j \leftarrow 0 & \textbf{to} & i & \textbf{do} \\ & & C[i,j] \leftarrow A[i,j] + B[i,j] \\ & E + +; \\ & \textbf{od} \\ & D \leftarrow D + E; \\ \textbf{od} \end{array}$$

- Anzahl Durchläufe
 - innerer Schleifenrumpf: E(i, n) = i + 1
 - insgesamt

$$D(n) = \sum_{i=0}^{n-1} E(i, n) = \sum_{i=0}^{n-1} i + 1 = \frac{n(n+1)}{2} \in \Theta(n^2)$$

Rechenzeiten

"Wie großen Einfluss" hat die Rechenzeitschranke?

T(n)	n					
	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$\log_2(n)$	3.32 ns	6.64 ns	9.97 ns	13.29 ns	16.61 ns	19.93 ns
\sqrt{n}	3.16 ns	10.00 ns	$31.62\mathrm{ns}$	100.00 ns	316.23 ns	1.00 μs
n	10.00 ns	100.00 ns	$1.00\mu s$	$10.00\mu s$	100.00 μs	1.00 ms
$n \cdot \log_2(n)$	33.22 ns	664.39 ns	9.97 μs	132.88 µs	$1.66\mathrm{ms}$	19.93 ms
n^2	100.00 ns	$10.00\mu s$	$1.00\mathrm{ms}$	$100.00\mathrm{ms}$	10.00 s	0.27 h
n ³	1.00 µs	$1.00\mathrm{ms}$	$1.00\mathrm{s}$	0.27 h	11.57 d	31.71 a
1.01^{n}	1.10 ns	2.70 ns	20.96 μs			
1.1^{n}	2.59 ns	$13.78\mu s$				
2 ⁿ	1.02 µs					
n ⁿ	10 s					

Rechenzeiten

Rechenzeiten (2)

Was ist wichtig

Das sollten Sie mitnehmen:

- Mastertheorem: Kochrezepte zum Nachschlagen des asymptotischen Wachstums nach einem einfachen Rezept rekursiv definierter Funktionen
- ▶ ineinandergeschachtelte Schleifen

Das sollten Sie üben:

- Mastertheorem anwenden
- Schleifen "auseinander nehmen"

Zusammenfassung

- Komplexitätsmaße
 - Laufzeitbedarf
 - Speicherplatzbedarf
- Abschätzung asymptotischen Wachstums bis auf konstante Faktoren
 - ▶ nach oben mit O (·)
 - ▶ nach oben und unten mit $\Theta(\cdot)$
 - ▶ nach unten mit Ω(·)
- algorithmisches Prinzip
 - ► Teile und Herrsche (divide and conquer)
 - am Beispiel Matrixmultiplikation
- Mastertheorem