# **Sherlock and Cost**



#### 

Array A contains the elements,  $A_1, A_2, ..., A_N$ . And array B contains the elements,  $B_1, B_2, ..., B_N$ . There is a relationship between  $A_i$  and  $B_i$ ,  $\forall 1 \le i \le N$ , i.e., any element  $A_i$  lies between  $A_i$  and  $A_i$ .

Let the cost S of an array A be defined as:

$$S=\sum_{i=2}^N |A_i-A_{i-1}|$$

You have to print the largest possible value of *S*.

## **Input Format**

The first line contains, T, the number of test cases. Each test case contains an integer, N, in first line. The second line of each test case contains N integers that denote the array B.

#### **Constraints**

 $1 \le T \le 20$  $1 \le N \le 10^5$  $1 \le B_i \le 100$ 

## **Output Format**

For each test case, print the required answer in one line.

#### **Sample Input**

1 5 10 1 10 1 10

## **Sample Output**

36

# **Explanation**

The maximum value occurs when  $A_1=A_3=A_5=10$  and  $A_2=A_4=1$ .