Searching for Subspace Trails and Truncated Differentials

March 5th, 2018

Horst Görtz Institute for IT Security Ruhr-Universität Bochum

Gregor Leander, Cihangir Teczan, and Friedrich Wiemer

RUB

Structural Attacks

Invariant Subspaces

Invariant Subspaces [Lea+11] (Crypto 2011)

Let *U* be a subspace of \mathbb{F}_2^n , and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U+a \xrightarrow{F} U+b$, if

$$\exists a: \exists b: F(U+a) = U+b$$

Main Idea

Structural Attacks

Subspace Trail Cryptanalysis

Subspace Trail Cryptanalysis [GRR16] (Last Year's FSE)

Let U, V be subspaces of \mathbb{F}_2^n , and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U \stackrel{F}{\to} V$, if

$$\forall a: \exists b: F(U+a) \subseteq V+b$$

We restrict ourselves to essential subspace trails.

Main Idea

The Problem

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

1

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are 2^n possibilities.

Can't we just activate a single S-box and check to what this leads us?

1

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are 2^n possibilities.

Can't we just activate a single S-box and check to what this leads us?

The short answer is: No!¹

¹The long answer is this talk.

Outline

Outline

- 1 Motivation
- 2 Intuition
- 3 Algorithm

Subspace Complement

If *U* is a subspace of \mathbb{F}_2^n , we denote by U^{\perp} it's *complement*:

$$U^{\perp} := \left\{ u \in \mathbb{F}_2^n \mid \forall x \in U : \langle x, u \rangle = 0 \right\}$$

Derivative

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We denote the *derivative of F in direction u* by

$$\Delta_u(F)(x) := F(x) + F(x+u)$$

Linear Structure

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then (α, u) is called a *linear structure*, if

$$\exists c \in \mathbb{F}_2 : \forall x \in \mathbb{F}_2^n : \langle \alpha, \Delta_u(F)(x) \rangle = c$$

Lemma

Let $U \stackrel{F}{\rightarrow} V$ be a subspace trail. Then

$$\forall u \in U : \operatorname{Im}(\Delta_u(F)) \subseteq V.$$

Proof

Let $U \stackrel{F}{\rightarrow} V$, then for every $u \in U$

$$x \in U+x \xrightarrow{F} F(x) \in V+b,$$

 $x+u \in U+x \xrightarrow{F} F(x+u) \in V+b,$

implying
$$F(x) + F(x + u) \in V$$
.

Approach to the Algorithm

SPN Structure

Easy parts

- Given a starting subspace, computing the trail is easy.
- The effect of the linear layer *P* to a subspace *U* is clear:

$$U \stackrel{P}{\rightarrow} P(U)$$

How to reduce the number of starting points?

Two possibilities, depending on the S-box S.

Observation

For an S-box S and $U \xrightarrow{S} V$, because of the above lemma,

$$\forall x, \forall u \in U : \Delta_u(F)(x) \in V$$

$$\Rightarrow \forall \alpha \in V^{\perp} : \forall x, \forall u \in U : \langle \alpha, \Delta_u(F)(x) \rangle = 0.$$

Thus, V^{\perp} consists of the linear structures of S.

Theorem

Let $F: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ be an S-box layer that applies k S-boxes with no non-trivial linear structures in parallel. Then every essential subspace trail $U \overset{F}{\to} V$ is of the form

$$U=V=U_1\times\cdots\times U_k,$$

where $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

Possibility I Algorithm

Algorithm

Simply activate single S-boxes.

The problem with S-boxes that have linear structures

Observation

If $U_1 \stackrel{F}{\to} U_2$ is a subspace, so is $V_1 \stackrel{F}{\to} V_2$:

$$\begin{array}{ccc} U_1 & \stackrel{F}{\longrightarrow} & U_2 \\ & & & & & & & & \\ & & & & & & & & \\ V_1 & \stackrel{F}{\longrightarrow} & V_2 & & & & \\ \end{array}$$