FCS Week 10 Lecture Note

Notebook: Fundamentals of Computer Science

Created: 2021-04-13 10:30 AM Updated: 2021-05-01 12:18 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

Regular Languages: Part 2

Course: BSc Computer Science

Class: CM1025 Fundamentals of Computer

Science[Lecture]

Date: May 01, 2021

Essential Question:

What is a regular expression and/or language?

Questions/Cues:

- What are closure properties?
- What are non-regular languages?
- What is pumping lemma?
- How do we prove a language is non-regular using the pumping lemma?

What we know

- A language is regular if it can be accepted by a finite automaton
- A language is regular if it can be accepted by a regular expression
- Every finite language is regular

Another way?

- · Break it into smaller regular languages
- Then build it up again using the closure properties.

Closure Properties

- Theorem: If L_1 and L_2 are regular languages on alphabet Σ , then the following languages are also regular:
 - $U-L_1$. This means Σ^*-L_1 or the complement of L_1
 - $L_1 \cup L_2$. This means the union of L_1 and L_2
 - $L_1 \cap L_2$. This means the intersection of L_1 and L_2
 - L_1L_2 . This means the product of L_1 and L_2
 - L_1^* . This means the Kleene star of L_1 .

Examples of non-regular language

- $L = \{a^n b^n | n \in \mathbb{N}\}$
- $L = \{xx | x \in \{a, b\}^*\}$
- $L = \{a^{n!} | n \in \mathbb{N}\}$
- $L = \{xx^R | x \in \{a, b\}^*\}$
- $L = \{a^{n^2} | n \in \mathbb{N}\}$
- $L = \{a^n | n \in \mathbb{N}, n \text{ is a prime number}\}$

Using closure properties – intersection

- Prove $L = \{x \in \{a, b\}^* | \#a \text{ in } x = \#b \text{ in } x\}$ is not regular
- $L = \{ab, aabb, abab, abba, baab, ...\}$
- Proof: Let's assume L is regular
- We know $L' = \{x \in a^*b^*\}$ is regular
- We know if L and L' are regular so is $L \cap L'$
- $L \cap L' = \{a^n b^n | n \in \mathbb{N}\}$
- · Contradiction!

Using closure properties – complement

- Prove $\ \ L = \{a^i b^j \mid i, j \in \mathbb{N}, i \neq j\}$ is not regular
- $L = \{abb, abbb, abbb, aab, aabbb, ...\}$
- Proof: Let us assume L is regular so is $\neg L$
- We know $\neg L = \{ a^n b^n \} \cup \text{non-bitonic is regular}$
- We know $L' = \{x \in a^*b^*\}$ is regular
- We know if $\neg L$ and L' are regular so is $\neg L \cap L'$.
- $\neg L \cap L' = \{a^n b^n | n \in \mathbb{N}\}\$
- · Contradiction!

Proving a language is not regular

- 11
- 00
- 101
- No repeating states
- 1011- **A**BDC**A**
- 110010- **ABCDAB**D
- Repeating states

If length of the input ≥ number of states, then there are repeating states

Pumping Lemma

If L is a regular language, then there is a number p (the pumping length) where, if s is any string in L of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- for each $i \ge 0$, $xy^iz \in L$
- |y| > 0 and
- $|xy| \leq p$.

What does it mean?

- If the language is finite, it is regular
- We choose p to be the number of states in the FA representing L
- If $|s| \ge p$, s must have a repeated state (Pigeonhole Principle)

Prove $L = \{a^n b^n | n \in \mathbb{N}\}$ is not regular

- Assume L is regular. Let p be the pumping length.
- Let $s = a^p b^p$, |s| > p
- Pumping Lemma: s = xyz
- For any i, $xy^iz \in L$. Let us try i=2
- · Cases:
 - 1) y is only a's. xyyz will have more a's than b's.
 - 2) y is only b's. xyyz will have more b's than a's.
 - 3) y has a's and b's. xyyz will have a's and b's jumbled up.

Contradiction! L is not regular

Example: $L = \{xx | x \in \{a, b\}^*\}$

- Assume *L* is regular. Let p be the pumping length.
- Let $s = a^p b a^p b$, |s| > p
- Pumping Lemma: s = xyz
- For any i, $xy^iz \in L$. Let's try i=2
- The third condition: $|xy| \le p$
- So $y = a^q$, $q \le p$
- $xyyz = a^{p+q}ba^pb \notin L$
- $xyyz \notin L$

Contradiction! L is not regular

Summary

In this week, we learned about the pumping lemma.