MATHS 7107 Data Taming Practical 10

Classification models

Preliminaries

- Set up a project in RStudio
- Now load the packages
 - tidyverse
 - tidymodels
 - palmerpenguins
 - harrypotter (which we will use for colouring our graphs)
- Then load the dataset penguins.

Source: easy-peasy.ai

1 Part 1

First we will start by looking at how to measure a model using yardstick. We will fit a regression model, and also a classification model to the penguins dataset and then have a look at assessing them.

1.1 What are we modelling?

First let's look at the data that we are going to model. First a linear model.

Question:

1. Make a scatterplot of body_mass_g against bill_length_mm. Does it look like there is a linear relationship?

Second, we'll fit a logistic model for the categorical response variable **sex** against **body_mass_g**. But in order to make a scatterplot, we'll need to recode the **sex** variable to integers. We expect males to be heavier, so we'll make them a 1 and the females a 0. The code to do this is a bit annoying, but let's get on with it.

```
p1<-mutate(penguins,
           sex01=as.integer(as.character((
             fct recode(penguins$sex, `0`="female", `1`="male"))
           .after=bill_length_mm)
p1
## # A tibble: 344 x 9
      species island
                        bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
##
##
      <fct>
              <fct>
                                 <dbl>
                                                <dbl>
                                                                  <int>
                                                                              <int>
## 1 Adelie Torgersen
                                  39.1
                                                 18.7
                                                                    181
                                                                               3750
## 2 Adelie Torgersen
                                  39.5
                                                 17.4
                                                                    186
                                                                               3800
## 3 Adelie Torgersen
                                  40.3
                                                 18
                                                                    195
                                                                               3250
## 4 Adelie Torgersen
                                                 NA
                                                                     NA
                                  NA
                                                                                 NA
## 5 Adelie Torgersen
                                  36.7
                                                 19.3
                                                                    193
                                                                               3450
                                                 20.6
                                                                    190
## 6 Adelie Torgersen
                                  39.3
                                                                               3650
## 7 Adelie Torgersen
                                  38.9
                                                 17.8
                                                                    181
                                                                               3625
## 8 Adelie
                                  39.2
                                                 19.6
                                                                    195
                                                                               4675
             Torgersen
## 9 Adelie Torgersen
                                  34.1
                                                 18.1
                                                                    193
                                                                               3475
                                                 20.2
                                                                    190
## 10 Adelie Torgersen
                                  42
                                                                               4250
## # i 334 more rows
## # i 3 more variables: sex <fct>, year <int>, sex01 <int>
```

Question:

2. Make a scatterplot of body_mass_g against sex01. Does it look like we may be able to predict sex with body mass?

1.2 Create the models

```
lm1<-lm(flipper_length_mm ~ body_mass_g, penguins)
summary(lm1)</pre>
```

```
##
## Call:
## lm(formula = flipper_length_mm ~ body_mass_g, data = penguins)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
                               5.1166 16.6392
## -23.7626 -4.9138
                      0.9891
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.367e+02 1.997e+00
                                     68.47
                                              <2e-16 ***
## body_mass_g 1.528e-02 4.668e-04
                                     32.72
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.913 on 340 degrees of freedom
     (2 observations deleted due to missingness)
## Multiple R-squared: 0.759, Adjusted R-squared: 0.7583
## F-statistic: 1071 on 1 and 340 DF, p-value: < 2.2e-16
```

```
logreg_spec <- logistic_reg( mode = "classification" )</pre>
logreg1 <- logreg_spec %>%
  set_engine( "glm" ) %>%
  fit( sex ~ body_mass_g, data = penguins )
summary(logreg1$fit)
##
## Call:
## stats::glm(formula = sex ~ body_mass_g, family = stats::binomial,
##
       data = data)
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -5.1625416 0.7243906 -7.127 1.03e-12 ***
## body_mass_g 0.0012398 0.0001727
                                       7.177 7.10e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 461.61 on 332 degrees of freedom
## Residual deviance: 396.64 on 331 degrees of freedom
     (11 observations deleted due to missingness)
##
## AIC: 400.64
## Number of Fisher Scoring iterations: 4
```

Questions:

- 3. For model 1, what is the response variable and what are the predictors?
- 4. For model 2, what is the response variable and what are the predictors?

1.3 Getting predictions

For yardstick, we will need predicted values, we obtain that using the **predict()** function. Here I will add a variety of predictions to the original dataset.

First we run this bit of code to make sure that we have the right tibble to put into our bin_cols() command:

```
rename(as_tibble(predict(lm1, penguins)),.pred_reg=value)
```

```
## # A tibble: 344 x 1
##
      .pred_reg
##
           <dbl>
##
   1
            194.
##
   2
            195.
   3
##
            186.
##
    4
            NA
##
   5
            189.
##
   6
            192.
            192.
##
   7
```

```
## 8 208.
## 9 190.
## 10 202.
## # i 334 more rows
```

Yes, this looks good, and so we're ready to put all our predictions into a single tibble. (The predict() function automatically produces a tibble for the classification model, so we don't have to do that ourselves.)

```
penguins_pred <-
  penguins %>%
  bind_cols(
    rename(as_tibble(predict(lm1, penguins)),.pred_reg=value),
    predict(logreg1, penguins),
    predict(logreg1, penguins,
            type = "prob"),
  )
select(penguins_pred,sex, flipper_length_mm, .pred_reg, .pred_class, .pred_female, .pred_male)
## # A tibble: 344 x 6
##
             flipper_length_mm .pred_reg .pred_class .pred_female .pred_male
      sex
##
      <fct>
                          <int>
                                    <dbl> <fct>
                                                               <dbl>
                                                                          <dbl>
                                     194. female
    1 male
                                                               0.626
                                                                          0.374
##
                            181
    2 female
                            186
                                     195. female
                                                               0.611
                                                                          0.389
##
                                                               0.756
##
   3 female
                            195
                                     186. female
                                                                          0.244
##
   4 <NA>
                            NA
                                      NA <NA>
                                                              NA
                                                                         NA
                                      189. female
                                                               0.708
                                                                          0.292
##
   5 female
                            193
##
   6 male
                            190
                                     192. female
                                                               0.654
                                                                          0.346
##
   7 female
                            181
                                     192. female
                                                               0.661
                                                                          0.339
##
   8 male
                            195
                                     208. male
                                                               0.347
                                                                          0.653
## 9 <NA>
                            193
                                     190. female
                                                               0.701
                                                                          0.299
## 10 <NA>
                            190
                                     202. male
                                                               0.473
                                                                          0.527
## # i 334 more rows
```

Questions:

- 5. What is the predicted flipper length for the first penguin?
- 6. What is the predicted probability of being male for the first penguin?

1.4 Quantitative metrics

```
penguins_pred %>% metrics(.pred_reg, truth=flipper_length_mm)
```

```
## # A tibble: 3 x 3
##
     .metric .estimator .estimate
##
     <chr>
                             <dbl>
             <chr>>
## 1 rmse
             standard
                             6.89
                             0.759
## 2 rsq
             standard
## 3 mae
             standard
                             5.61
```

Question:

7. What is the Root Mean Squared Error for our predictions?

1.5 Categorical metrics

For most of the metrics, we will use the hard classification for the categorical variable as given by <code>.pred_class</code>. We can get the confusion matrix:

```
penguins_pred %>%
  conf_mat(
    .pred_class,
    truth = sex
)

## Truth
## Prediction female male
## female 109 74
## male 56 94
```

Question:

8. How many of the females were incorrectly predicted as male?

We can get the sensitivity as follows:

Question:

9. What is the specificity and accuracy?

We can plot the ROC curve using ${\tt autoplot()}$

```
penguins_pred %>%
  roc_curve(
    .pred_female,
    truth = sex
) %>%
  autoplot()
```


Question:

10. What is the AUC for our classification model?

2 Part 2

Now we are going to split the data into a training set and a testing set.

- We will "train" the model on the training set
- And then we will "test" the model on the testing set.

Before you go on, answer this question:

Do you expect the metrics will be better or worse than in Part 1?

2.1 Load and split the data

Back to the penguins — why would you not? First we are going to split our dataset into test data (to save for the very end) and training data.

```
set.seed(2021)
penguin_split <- initial_split(penguins)
penguin_split</pre>
```

```
## <Training/Testing/Total>
## <258/86/344>
```

```
penguins_train <- training(penguin_split)
penguins_test <- testing(penguin_split)</pre>
```

Question:

11. How many penguins are in the test dataset?

2.2 Fit the model to the training set

Now we go through the same procedure of fitting models, only this time to the training set:

```
# training regression model
lm_train<-lm(flipper_length_mm ~ body_mass_g, penguins_train)</pre>
summary(lm_train)
##
## Call:
## lm(formula = flipper_length_mm ~ body_mass_g, data = penguins_train)
## Residuals:
                      Median
                  1Q
                                    3Q
## -23.5884 -4.8446
                       0.9238
                                5.3456 14.2796
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.364e+02 2.234e+00
                                      61.03
                                              <2e-16 ***
## body_mass_g 1.532e-02 5.194e-04
                                      29.49
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.738 on 255 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.7733, Adjusted R-squared: 0.7724
## F-statistic: 869.7 on 1 and 255 DF, p-value: < 2.2e-16
# training classification model
logreg_train <- logreg_spec %>%
  set_engine( "glm" ) %>%
 fit( sex ~ body_mass_g, data = penguins_train )
summary(logreg_train$fit)
##
## Call:
## stats::glm(formula = sex ~ body_mass_g, family = stats::binomial,
##
       data = data)
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.2344569 0.8284602 -6.318 2.64e-10 ***
## body_mass_g 0.0012289 0.0001952 6.295 3.08e-10 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 350.54 on 252 degrees of freedom
## Residual deviance: 300.90 on 251 degrees of freedom
## (5 observations deleted due to missingness)
## AIC: 304.9
##
## Number of Fisher Scoring iterations: 4
```

2.3 Predict on the test set

```
## # A tibble: 86 x 12
##
      species island
                        bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
##
      <fct>
              <fct>
                                 <dbl>
                                               <dbl>
                                                                  <int>
                                                                              <int>
                                  39.5
## 1 Adelie Torgersen
                                                17.4
                                                                    186
                                                                               3800
## 2 Adelie Torgersen
                                  40.3
                                                18
                                                                    195
                                                                               3250
## 3 Adelie Torgersen
                                  NA
                                                NA
                                                                     NA
                                                                                 NA
## 4 Adelie Torgersen
                                  42
                                                20.2
                                                                    190
                                                                               4250
                                  37.8
## 5 Adelie Torgersen
                                                17.1
                                                                    186
                                                                               3300
## 6 Adelie Torgersen
                                  37.8
                                                17.3
                                                                    180
                                                                               3700
## 7 Adelie
                                  42.5
                                                20.7
                                                                    197
                                                                               4500
             Torgersen
## 8 Adelie Biscoe
                                  37.8
                                                18.3
                                                                    174
                                                                               3400
## 9 Adelie Biscoe
                                  38.8
                                                17.2
                                                                    180
                                                                               3800
## 10 Adelie Dream
                                  37.2
                                                18.1
                                                                    178
                                                                               3900
## # i 76 more rows
## # i 6 more variables: sex <fct>, year <int>, .pred_reg <dbl>,
       .pred class <fct>, .pred female <dbl>, .pred male <dbl>
```

2.4 Evaluate the models

Questions:

- 12. Now we'll let you repeat the calculations in Part 1 for the metrics for our predictions on the testing set.
- 13. So which predictions were better: in Part 1 or Part 2?
- 14. Why?