Spécification du protocole asservissement - stratégie

1. Avant propos

Chaque bloc représente un octet de la trame de données. Une trame de n+1 octets est représentée comme suit :

Octet 1	Octet 2	Octet 3	Octet 4	Octet 5		Octet n	OcC
			! !		<u>.</u>		

L'octet de contrôle est calculé a partir du «xor» («ou exclusif») de chaque octet. Il est placé dans le dernier octet de chaque trame.

Dans l'exemple précédent :

OcC = Octet 1 xor Octet 2 xor Octet 3 xor Octet 4 xor Octet 5 xor ... xor ... xor Octet n

Dans le cas où la trame ne contient que 2 octets, l'octet de contrôle est une duplication du premier octet. Par exemple :

2. Obtenir l'état courant du robot

Stratégie → asservissement

Stratégie ← asservissement

3. Asservissement

3.1. Asservissement en position

Stratégie → asservissement

Type [1]	X	x	Υ	у	OcC
-------------	---	---	---	---	-----

3.2. Asservissement en rotation

Stratégie → asservissement

3.3. Asservissement en vitesse

Stratégie → asservissement

4. Arrêt et reprise du déplacement du robot

4.1. Pause

4.2. Reprise

Stratégie → asservissement

5. Réinitialisation des ordres

Stratégie → asservissement

6. Recalage sur bordure

6.1. Recalage à gauche

Stratégie → asservissement

6.2. Recalage à droite

Stratégie → asservissement

7. Recalage manuel

7.1. Recalage de la position sur X

Stratégie → asservissement

|--|

7.2. Recalage de la position sur Y

Stratégie → asservissement

Type [10]	у	OcC
--------------	---	-----