Dummit & Foote Ch. 3.1: Quotient Groups and Homomorphisms

Scott Donaldson

Aug. - Sep. 2023

Let G and H be groups.

1. (8/21/23)

Let $\varphi: G \to H$ be a homomorphism and let $E \leq H$. Prove that $\varphi^{-1}(E) \leq G$ (i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If $E \subseteq H$ prove that $\varphi^{-1}(E) \subseteq G$. Deduce that $\ker \varphi \subseteq G$.

Proof. Let $x, y \in \varphi^{-1}(E) \subseteq G$. Suppose that $\varphi(x) = a, \varphi(y) = b, a, b \in E \leq H$. Since φ is a homomorphism, we have $\varphi(y^{-1}) = \varphi(y)^{-1} = b^{-1}$. Then:

$$\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1}) = \varphi(x)\varphi(y)^{-1} = ab^{-1} \in E,$$

which implies that $xy^{-1} \in \varphi^{-1}(E)$. It follows that, by the subgroup criterion, $\varphi^{-1}(E) \leq G$.

2. (8/23/23)

Let $\varphi: G \to H$ be a homomorphism of groups with kernel K and let $a, b \in \varphi(G)$. Let $X \in G/K$ be the fiber above a and Y be the fiber above b, i.e., $X = \varphi^{-1}(a), Y = \varphi^{-1}(b)$. Fix an element $x \in X$ (so $\varphi(x) = a$). Prove that if XY = Z in the quotient group G/K and z is any member of Z, then there is some $y \in Y$ such that xy = z.

Proof. We know that, for any $x \in X, y \in Y$, $\varphi(x) = a$ and $\varphi(y) = b$. Since φ is a homomorphism, it follows that $\varphi(xy) = \varphi(x)\varphi(y) = ab$, and so the image of any element of XY = Z under φ is $ab \in H$.

Next, consider the element $x^{-1}z \in G$, as well as its image under φ . Since φ is a homomorphism, we have $\varphi(x^{-1}) = \varphi(x)^{-1}$. So $\varphi(x^{-1}z) = \varphi(x^{-1})\varphi(z) = \varphi(x)^{-1}\varphi(z) = a^{-1}ab = b$. The set Y consists of all elements of G whose image under φ is b, and so we must have $x^{-1}z \in Y$.

Now if we fix some element $x \in X$, then for any $z \in Z$, we have $x^{-1}z \in Y$ such that its product with x is z: $xx^{-1}z = z$.

3. (8/23/23)

Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give an example of a non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

Proof. Because A is abelian, all subgroups of A are normal, so A/B is well-defined for every $B \leq A$.

Let $C, D \in A/B$ with C = cB and D = dB for some $c, d \in A$. Then:

$$CD = (cB)(dB) = (cd)B = (dc)B = (dB)(cB) = DC,$$

which implies that A/B is abelian.

Now if we let G be the dihedral group D_8 , then G is non-abelian. Let N be the cyclic subgroup generated by $r:\{1,r,r^2,r^3\}$. The only coset of N is sN; together these two sets cover G. Then $G/N=\{N,sN\}$. There is only one group of order 2 up to isomorphism, and it is abelian. Thus G/N is abelian. \square