Permit Number 27935

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
4	TG Boiler (5) (6)	voc	1.86	6.23
		NO _x	0.86	3.77
		со	1.72	7.53
		РМ	0.16	0.70
		PM ₁₀	0.16	0.70
		PM _{2.5}	0.16	0.70
		SO ₂	0.01	0.05
		NH₃	0.01	0.19
5	Cleaver Brooks Boiler (6)	voc	2.25	7.82
		NOx	3.46	15.14
		со	4.39	19.24
		РМ	0.29	1.28
		PM ₁₀	0.29	1.28
		PM _{2.5}	0.29	1.28
		SO ₂	0.03	0.13
		NH ₃	0.04	0.19
6	Superior Boiler	voc	0.16	0.71
		NOx	2.94	12.90
		СО	2.47	10.83
		РМ	0.22	0.98
		PM ₁₀	0.22	0.98
		PM _{2.5}	0.22	0.98
		SO ₂	0.02	0.08
7	Phenol Storage Tanks	voc	0.59	0.19

9	Methanol Storage Tank	voc	0.67	0.59
14	Urea Silo Vent 1 (Reactor A Baghouse)	РМ	0.06	0.26
	(Nedetol A Bagnouse)	PM ₁₀	0.06	0.26
		PM _{2.5}	0.06	0.26
15	Urea Silo Vent 2 (Reactor C Baghouse)	РМ	0.30	1.31
	(Madeiol & Baginadeo)	PM ₁₀	0.30	1.31
		PM _{2.5}	0.30	1.31
21	Resin Storage Tanks Vents	VOC	2.90	0.50
PM_FUG	Fugitive Particulate Matter (7)	РМ	3.25	1.75
	Watter (1)	PM ₁₀	3.25	1.75
		PM _{2.5}	0.23	0.13
FORM_FUG	Formaldehyde Plant Fugitives (7)	VOC	0.14	0.61
FM_CT	Formaldehyde Cooling Tower Vent	РМ	2.40	4.38
	Tower vent	PM ₁₀	1.69	3.09
		PM _{2.5}	0.01	0.02
RES_FUG	Fugitive Emissions from Resin Loading	voc	2.23	3.98
	and Equipment Components (7)	Methanol	1.47	1.27
	Components (1)	Formaldehyde	0.08	0.12
22	MEA Storage Tank	voc	0.25	0.04
23	TEA Storage Tank (Wax)	VOC	< 0.01	< 0.01
25	Distillate Tank #2 (Green Tank)	VOC	0.16	0.01
26	Wash Water Tank (Reactor A)	VOC	0.95	0.08
27	MEA-Based Triazine Storage Tanks	VOC	8.01	0.78
TT-1	MEA-Based Triazine Storage Tanks	voc	8.01	0.78
LOADING	Triazine Loading	voc	1.00	0.45
TRIAZ-FUG	Fugitive emissions from Triazines (7)	VOC	0.88	0.32

		NH ₃	< 0.01	< 0.01
SURF-FUG	Surfynol Fugitives (7)	voc	0.13	0.06
WW-LOAD	Loading of Products to Tank Trucks	voc	0.20	0.04
FUG	Scale Inhibitor and MEA Tank Fugitives (7)	voc	0.01	0.03
MF_LOAD_FUG	MF Resin Loading Fugitives (7)	voc	< 0.01	0.01
28	MEA Storage Tank	voc	0.33	0.06
31	Scale Inhibitor Tank	voc	< 0.01	< 0.01
32	PF Boilout Tank	voc	0.38	< 0.01
33	Wax Wash Water Tank	voc	< 0.01	< 0.01
34	Intermediate H197 Tank	voc	0.57	0.01
35	Melamine Addition System Baghouse	РМ	1.65	0.91
		PM ₁₀	1.65	0.91
		PM _{2.5}	1.65	0.91
TDIST	Triazine Distillate Tank	voc	0.21	< 0.01
T-102	Seal Water Tank (Rx-A)	voc	0.08	0.04
T-201	Seal Water Tank (Rx-C)	voc	0.01	0.02
DRUM TOTES	Fugitive VOCs from Drums and Totes	VOC	0.01	0.01
BLTK-1	Triazine Blend Tank 1	voc	0.20	0.01
BLTK-2	Triazine Blend Tank 2	voc	0.20	0.01
T-101A	Seal Water Tank (Rx-B)	voc	0.85	0.48
All Emission Points at the Site	All Sources at the Site	Individual HAP		<10.00
		Total HAP's		<25.00

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

 volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 total oxides of nitrogen (3) VOC

 NO_x

- sulfur dioxide SO_2

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

NH₃ - ammonia

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of

Federal Regulations Part 63, Subpart C

(4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

(5) Emissions resulting from waste stream routed to EPN-5 for control in the event that EPN-4 is not operational.

(6) VOC emissions include routine VOC emissions resulting from combustion of fuel and from waste stream routed to boiler.

(7) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Date: December 23, 2021