Devoir Maison - Mécanique du point matériel

Consignes:

- déposer votre travail numérisé en PDF sur moodle avant le 22 mai 2022 à minuit.
- chaque réponse doit être précédée du **raisonnement** qui la justifie avec des phrases. Un résultat sans justification ne sera pas corrigé. Penser notamment à préciser les systèmes étudiés et référentiels quand cela est nécessaire.
- les résultats doivent être **encadrés** proprement.
- les résulats doivent être homogènes.
- utiliser des couleurs (schéma, encadrement des résultats, etc) mais pas le rouge réservé aux professeurs.

Exercice 1: Mouvement d'un anneau sur une piste circulaire

On considère le dispositif de la figure ci-après, où un anneau assimilable à un point matériel M de masse m se déplace solidairement à une piste fixe formée de deux parties circulaires (1) et (2) de rayons R_1 et R_2 avec $R_2 > R_1$ et de centres C_1 et C_2 , dans un plan vertical. La verticale est ascendante, avec pour origine l'altitude du point B.

On repère la position de l'anneau par un angle θ pris à partir de C_1 pour son mouvement sur la partie (1), et à partir de C_2 pour son mouvement sur la partie (2). Sur la partie (1), θ varie entre $-\pi/2$ et π . Sur la partie (2), θ varie entre π et $5\pi/2$.

On note g l'intensité du champ de pesanteur terrestre. Dans tout le problème, on suppose que le mouvement de l'anneau s'effectue sans frottement.

On suppose dans un premier temps que le mouvement de l'anneau s'effectue sur la partie (1) du dispositif. Lorsque l'anneau est au point $E(\theta = 0)$, il a une vitesse angulaire positive $\dot{\theta}_E > 0$.

- 1. En appliquant le théorème de l'énergie cinétique, exprimer $\dot{\theta}^2$ à un instant quelconque en fonction de $\dot{\theta}_E$, R_1, g et θ .
- 2. Exprimer l'énergie potentielle de pesanteur E_{pg} de l'anneau M en supposant $E_{pg}(B) = 0$ au point $B(\theta = \pi)$. On distinguera les cas $-\pi/2 < \theta < \pi$ et $\pi < \theta < 5\pi/2$.
- 3. Tracer l'allure de E_{pq} en fonction de θ . Préciser les points correspondants sur le graphe de E_{pq} .
- 4. Déduire graphiquement de la question précédente les positions angulaires d'équilibre de l'anneau en précisant leur stabilité.

5. Vérifier l'existence et la nature de ces trois positions d'équilibre par le calcul.

L'anneau étant initialement en $A(\theta = -\pi/2)$, il est lancé avec une vitesse v_0 sur le support fixe.

- 6. À quelle condition sur la vitesse v_0, g et R_1 l'anneau peut-il atteindre le point F?
- 7. Cette condition étant remplie, donner l'expression de sa vitesse v_F en $F(\theta = 2\pi)$, en fonction des données du problème.
- 8. La condition de la question 6) étant toujours remplie, y a-t-il une condition supplémentaire sur v_0 pour que l'anneau sorte de la piste en $S(\theta = 5\pi/2)$? Déterminer v_S .

On lâche M sans vitesse initiale en une position proche de F.

- 9. En dérivant l'énergie mécanique de M par rapport au temps, déterminer l'équation du mouvement pour de petits angles autour de la position F. Donner l'expression de la période des oscillations.
- 10. Que deviennent ces oscillations en prenant en compte des forces de frottement?

$Exercice \ 2 : Satellite \ g\'{e}ostation naire$

On étudie dans le référentiel géocentrique R_G , supposé galiléen, le mouvement des satellites (artificiels) de la Terre. Ce référentiel R_G est associé à un repère d'origine O, le centre de la Terre, et d'axes orientés dans la direction de trois étoiles éloignées fixes. Dans R_G , la Terre tourne autour de son axe avec une vitesse angulaire constante et une période de révolution notées respectivement Ω et T.

On considère un satellite artificiel réduit à un point matériel M de masse m en orbite circulaire de rayon r autour de la Terre. On admet que tout satellite artificiel en orbite circulaire autour de la Terre a nécessairement une trajectoire plane contenant le centre O de la Terre. Les frottements dûs à l'atmosphère sur le satellite sont négligés. M_T et R_T désignent respectivement les masse et rayon de la Terre. La constante de gravitation universelle est notée \mathcal{G} .

Données:

 $T = 86164 \; \mathrm{s} \, ; \, M_T = 5.98.10^{24} \; \mathrm{kg} \, ; \, R_T = 6370 \; \mathrm{km} \, ; \, \mathfrak{G} = 6.67.10^{-11} \; \mathrm{N.m^2.kg^{-2}}.$

- 1. Démontrer que le mouvement du satellite autour de la Terre est uniforme et exprimer littéralement sa vitesse v_0 . On exprimera d'abord v_0 en fonction de \mathcal{G} , M_T et r, puis en fonction de g_0 , R_T et r, où g_0 désigne l'intensité du champ de pesanteur à la surface de la Terre.
- 2. Calculer numériquement la vitesse v_0 de la station spatiale internationale (ISS) en orbite circulaire à l'altitude h = 330 km au-dessus de la Terre.

L'origine de l'énergie potentielle gravitationnelle est choisie nulle à l'infini.

- 3. Après avoir jusitifié qu'elle se conserve, exprimer l'énergie mécanique E_m du satellite autour de la Terre en fonction de \mathfrak{G} , M_T , r et m.
- 4. Quel est l'effet des forces de frottements de l'atmosphère sur le rayon de la trajectoire et sur la vitesse du satellite?
- 5. Exprimer l'énergie mécanique E_{m0} du satellite immobile à la surface de la Terre en un point de latitude λ en fonction de \mathfrak{G}, M_T , m, R_T , λ et de la période T de rotation de la Terre autour de l'axe Sud-Nord.
- 6. Expliquer pourquoi les satellites sont préférentiellement lancés depuis les régions de basse latitude, comme Kourou en Guyane française (de latitude $\lambda = 5^{\circ}$ Nord). Sont-ils lancés plutôt vers l'Est ou vers l'Ouest?

Un satellite artificiel de la Terre est **géostationnaire** s'il est immobile dans le référentiel terrestre. Son orbite est alors circulaire et il survole constamment le même point de la surface de la Terre.

- 7. Peut-on placer un satellite géostationnaire en orbite en dehors du plan de l'équateur?
- 8. Calculer l'altitude h_G (ou distance au sol), la vitesse v_G et l'énergie mécanique E_{mG} du satellite géostationnaire Telecom de masse $m_s = 1, 0$ t. Tous les satellites géostationnaires doivent-ils avoir la même masse?
- 9. Comparer les termes E_{mG} , E_{cG} et E_{pG} d'un satellite géostationnaire avec les termes correspondants E_{m0} , E_{c0} et E_{p0} du satellite immobile à la surface de la Terre dans le plan de l'équateur.