

Application No.: 09/742,686

Atty Docket: 3COM 3354-1

ok
 to
 Enter
 After
 Final
 Amendment
 JP

In the Claims:

The following is a list of claims pending in this application and their current status. This list replaces all prior versions and listings.

1. (Currently amended) A method of determining an optimum bit load per subchannel in a multicarrier system with forward error correction, comprising:

computing one or more values of a number of bit positions b of a quadrature-amplitude-modulation symbol, based on one or more values of a number of symbols in [[the]] an information field K , and one or more values of a number of control code symbols per discrete-multi-tone symbol z , to provide one or more determined values of b , in accordance with the following relationship:

$$\begin{aligned} & 1 - \left(1 - W(s, z, K) \varepsilon_s^{\frac{1}{0.5 \cdot sz + 1}} \right)^{1/\alpha} \\ &= \omega(b(\gamma_{\text{eff}}, s, z)) \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / \left(2^{b(\gamma_{\text{eff}}, s, z)+1} - 2 \right) \right), \\ & \times \left[2 - \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / \left(2^{b(\gamma_{\text{eff}}, s, z)+1} - 2 \right) \right) \right] \end{aligned}$$

$$W(s, z, K) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$\omega(b) = \frac{4}{2b + 3},$$

$$\Gamma(x) = (x-1)!, \text{ and}$$

$$b(\gamma_{\text{eff}}, s, z) = \frac{\alpha}{sn_{\text{eff}}} (K + \rho s + sz)$$

s represents a number of discrete-multi-tone symbols in a frame, ε_s represents a symbol error rate, α represents the size of a code symbol, ρ represents a framing mode index, $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b -sized quadrature-