nofu – A Lightweight No-Reference Pixel Based Video Quality Model for Gaming Content.

Steve Göring, Rakesh Rao Ramachandra Rao, Alexander Raake;

Audiovisual Technology Group, Technische Universität Ilmenau, Germany; Email: [steve.goering, rakesh-rao.ramachandra-rao, alexander.raake]@tu-ilmenau.de

June 6, 2019

TECHNISCHE UNIVERSITÄT
ILMENAU

Motivation – Gaming Streams

- ▶ beside classical video streams → gaming content:
 - o e.g. Youtube Gaming, Twitch, ...
- ightharpoonup gaming videos ightarrow
 - o additional requirements /properties: Zadtootaghaj et al. [9]
 - o live streaming, low delay, low stalling,
 - high video quality, cgi content, streaming technology
- ▶ focus on video quality of gaming streams

 \rightarrow gaming qoe and gaming video quality

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, ...
- ▶ objective full-reference metrics: good results: *Barman et al.* [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

 \rightarrow nofu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - interaction: delay, . . .
- ▶ objective full-reference metrics: good results: *Barman et al.* [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

 \rightarrow notu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, . . .
- ▶ objective full-reference metrics: good results: *Barman et al.* [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

 \rightarrow notu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, . . .
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - tast, accurate, no-reference quality estimation

ightarrow nofu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, . . .
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

ightarrow nofu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - o fast, accurate, no-reference quality estimation

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, . . .
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - o fast, accurate, no-reference quality estimation

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - o video quality factors: content (cgi), encoding (fast),
 - o interaction: delay, . . .
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - o fast, accurate, no-reference quality estimation
- \rightarrow nofu

► features:

- si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- ∘ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g=[1,2,3]: mean $_g$, std $_g$
 - $\circ \to \mathsf{duration}$ independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline

ightarrow Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline

ightarrow Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \to \mathsf{duration}$ independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline
- **\$48**

ightarrow Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ► speedup: 360p center crop of input video
- temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ
 ightarrow ext{duration}$ independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
 - additional no-ref model: brisque+niqe features, similar pipeline
 - → Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ► speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \to \mathsf{duration}$ independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
 - ▶ additional no-ref model: brisque+niqe features, similar pipeline

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ► speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline
 - → Evaluation and used Dataset

- ► features:
 - ∘ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ► speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \ \to \text{duration independent 108 values per sequence}$
- ► ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline
 - ightarrow Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF
 - additional no-ref model: brisque+niqe features, similar pipeline

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF
 - ▶ additional no-ref model: brisque+niqe features, similar pipeline
 - → Evaluation and used Dataset

- ► features:
 - o si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
 - \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - o first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF
 - additional no-ref model: brisque+niqe features, similar pipeline
 - → Evaluation and used Dataset

Evaluation - Dataset

- ► GamingVideoSET: *Barman et al.* [4]:
 - o 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold
 - o (1) based on VMAF, (2) based on subjective scores
 - → MOS prediction

Evaluation - Dataset

- ► GamingVideoSET: *Barman et al.* [4]:
 - o 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - o (1) based on VMAF, (2) based on subjective scores
 - → MOS prediction

Evaluation - Dataset

- ► GamingVideoSET: *Barman et al.* [4]:
 - o 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - (1) based on VMAF, (2) based on subjective scores
 - → MOS prediction

Evaluation – Dataset

- ► GamingVideoSET: *Barman et al.* [4]:
 - o 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - o (1) based on VMAF, (2) based on subjective scores
 - → MOS prediction

Evaluation – Dataset

- ► GamingVideoSET: *Barman et al.* [4]:
 - o 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - o (1) based on VMAF, (2) based on subjective scores
 - \rightarrow MOS prediction

Evaluation – MOS prediction

pearson (P), spearman (S), kendall (K) and RMSE

- ▶ nofu > brisque+niqe > vmaf > ssim
- ► source video fold evaluation: nofu > brisque+niqe
 - → Conclusion

Evaluation – MOS prediction

pearson (P), spearman (S), kendall (K) and RMSE

- ▶ nofu > brisque+niqe > vmaf > ssim
- ► source video fold evaluation: nofu > brisque+niqe

→ Conclusion

Evaluation – MOS prediction

P:0.89; S:0.9; K:0.73; RMSE:0.44

pearson (P), spearman (S), kendall (K) and RMSE

brisqueNige

- ▶ nofu > brisque+niqe > vmaf > ssim
- ▶ source video fold evaluation: nofu > brisque+nige
 - \rightarrow Conclusion

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - o machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - o machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqee
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o **features**: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - \circ $\,$ **nofu** outperforms other no-ref models + $\,$ VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o **features**: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - o machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - o machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ \ \, \textbf{nofu} \,\, \text{outperforms other no-ref models} \, + \, \text{VMAF}$
 - per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqee

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o **features**: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ \ \, \textbf{nofu} \,\, \text{outperforms other no-ref models} \, + \, \text{VMAF}$
 - o per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
- **9**

use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o **features**: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - \circ **nofu** outperforms other no-ref models + VMAF
 - o per source fold: promising results
- open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - o machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - o per source fold: promising results
- open and next steps:
 - o include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - o features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - \circ per source fold: promising results
- open and next steps:
 - o include delay/latency, bitstream features, combine **nofu**+brisque+niqe
 - use features/approach for different tasks

Thank you for your attention

..... are there any questions?

References I

- [1] Nabajeet Barman and Maria G Martini. "H. 264/MPEG-AVC, H. 265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming". In: *Quality of Multimedia Experience (QoMEX), 2017 Ninth International Conference on.* IEEE. IEEE, 2017, pp. 1–6.
- [2] Nabajeet Barman et al. "A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos". In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE. 2018, pp. 1–6.
- [3] Nabajeet Barman et al. "An evaluation of video quality assessment metrics for passive gaming video streaming". In: *Proceedings of the 23rd Packet Video Workshop*. ACM. 2018, pp. 7–12.
- [4] Nabajeet Barman et al. "GamingVideoSET: a dataset for gaming video streaming applications". In: 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames). IEEE. 2018, pp. 1–6.

References II

- [5] Steve Göring et al. "Analyze And Predict the Perceptibility of UHD Video Contents". In: *Electronic Imaging, Human Vision Electronic Imaging* (2019).
- [6] ITU-T. Subjective video quality assessment methods for multimedia applications. Serie P: Telephone Transmission Quality, Telephone Installations, Local Line Networks. Vol. Recommendation ITU-T P.910. International Telecommunication Union. Geneva, 2008.
- [7] Ioannis Katsavounidis, Anne Aaron, and David Ronca. "Native resolution detection of video sequences". In: *Annual Technical Conference and Exhibition, SMPTE 2015.* SMPTE. 2015, pp. 1–20.
- [8] Sebastodes Möller, Steven Schmidt, and Saman Zadtootaghaj. "New ITU-T Standards for Gaming QoE Evaluation and Management". In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE. 2018, pp. 1–6.

References III

[9] Saman Zadtootaghaj et al. "A classification of video games based on game characteristics linked to video coding complexity". In: 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames). IEEE. 2018, pp. 1–6.

