Université de Lomé Faculté des Sciences Département de Physique

TD SUR LES RAPPELS MATHEMATIQUES

EXERCICE 1

On considère le champ vectoriel $\overrightarrow{A} = (3x^2 + 6y)\overrightarrow{e}_x - 14yz\overrightarrow{e}_y + 20xz^2\overrightarrow{e}_z$

Ce champ est-il un gradient?

EXERCICE 2

On considère le champ vectoriel : $\vec{V} = (3x - 2y)\vec{e}_x + (3z - 2x)\vec{e}_y + 3y\vec{e}_z$

Ce champ est-il un gradient ? Si oui déterminer la fonction scalaire φ dont il dérive par la relation

$$\overrightarrow{V} = \overrightarrow{grad} \, \varphi$$

EXERCICE 3

On considère le champ vectoriel : $\overrightarrow{V} = (2x - y)\overrightarrow{e}_x + (2y - x)\overrightarrow{e}_y + 4z\overrightarrow{e}_z$

Calculer la circulation de \overrightarrow{V} entre les points (0, 0, 0) et (1, 1, 1) le long des chemins suivants :

- a) le segment de droite joignant ces deux points,
- b) les segments de droite allant de (0,0,0) à (1,0,0) puis de (1,0,0) à (1,1,0) et de (1,1,0) jusqu'à (1,1,1).

Ce champ vectoriel est-il un gradient?

EXERCICE 4

Considérons le champ de vecteur : $\overrightarrow{V} = (3x^2 + 2)\overrightarrow{e}_x + (3x^2 + 5y + z^2)\overrightarrow{e}_y + 2z^2\overrightarrow{e}_z$

- a) Calcule le rotationnel de \overrightarrow{V}
- b) Calcule la divergence de \overrightarrow{V}
- c) Calcule le laplacien de \overrightarrow{V}
- d) Calcule la divergence du rotationnel de \overrightarrow{V}
- e) Montre que $\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{V}) = \overrightarrow{grad}(\overrightarrow{div}\overrightarrow{V}) \Delta \overrightarrow{V}$

EXERCICE 5

Montrer que les champs suivants dérivent d'un potentiel scalaire, et déterminer tous les potentiels scalaires dont ils dérivent

a)
$$F(x,y,z)=(2xy+z^3; x^2; 3xz^2)$$

b)
$$G(x,y)=(\frac{-y}{(x-y)^2};\frac{x}{(x-y)^2})$$

EXERCICE 6

Soit la fonction $f(x; y; z) = 3x^2y + 7e^{3y} - 9\cos(z)$

- a) Calcule le laplacien de f
- b) Montre que $\Delta f = div(\overrightarrow{grad}(f))$

EXERCICE 7

Soit le champ vectoriel : $\overrightarrow{F(M)} = \frac{\overrightarrow{OM}}{OM}$ avec $\overrightarrow{OM} = r\overrightarrow{e}_r$

Calculer la circulation de $\overrightarrow{F(M)}$ le long de :

- a) la spirale logarithmique d'équation polaire : $r = ae^{k\theta}$, entre $\theta 1$ et $\theta 2$
- b) la cardioïde : $r = a(1 + \cos \theta)$, entre 0 et π

EXERCICE 8

On considère le champ vectoriel suivant : $\overrightarrow{V} = 3x^2y\overrightarrow{e}_x - (5y)\overrightarrow{e}_y + 2z^2\overrightarrow{e}_z$ et les surfaces du cube (voir figure)

Calculer le flux du champ de vecteur à travers les surfaces du cube délimitées par :

b)
$$x = 0$$

$$f) z=0$$

Déterminer le vecteur normal à chacune des surfaces.

Figure 2

EXERCICE 9

Soit le champ vectoriel $\overrightarrow{V} = \begin{pmatrix} x^2 + 2zt + y \\ -(3x^2 + y) \\ -4zx \end{pmatrix}$

Calculer le flux du champ vectoriel à travers la surface totale de

l'hémisphère S (figure 2) délimité par $z = \sqrt{a^2 - y^2 - x^2}$ et z = 0

(utiliser la formule du flux directement et celle du théorème de la divergence ou Théorème de Green-Ostrogradsky.)

EXERCICE 10

Soit la fonction scalaire $f(x) = \frac{2x-1}{\sqrt{x^2-x}}$

Calculer la valeur moyenne de f puis détermine sa valeur efficace sur l'intervalle $\left[2,3\right]$

EXERCICE 11

Calculez le gradient des fonctions suivantes :

a)
$$f(x) = x^2 + y^3 + z^4$$

$$f(x) = x^2 y^3 z^4$$

c)
$$f(x) = e^x sinylnz$$

EXERCICE 12

Calculer la divergence des fonctions vectorielles suivantes

a)
$$\vec{V} = x^2 \vec{e}_x + 3xz^2 \vec{e}_y - 2xz \vec{e}_z$$

b)
$$\vec{V} = xy\vec{e}_x + 2yz\vec{e}_y + 3xz\vec{e}_z$$

c)
$$\vec{V} = y^2 \vec{e}_x + (2xy + z^2) \vec{e}_y + 2yz \vec{e}_z$$

EXERCICE 13

Calculer le laplacien des fonctions suivantes :

a)
$$f(x, y, z) = x^2 + 2xy + 3z + 4$$

b)
$$f(x, y, z) = \sin x \sin y \sin z$$

c)
$$f(x, y, z) = e^{-5x} \sin(4y) \cos(3z)$$

EXERCICE 14

On considère le cube de la Fig. 1. Déterminez le flux ϕ du champ de vecteur $\vec{V}=2xz\vec{e}_x+(x+2)\vec{e}_y+y(z^2-3)\vec{e}_z$ au travers de la surface du cube. (On orientera la surface vers l'*extérieur* du cube).

EXERCICE 15

a) Calculez la divergence de la fonction suivante exprimée en coordonnées sphériques :

$$\vec{V} = r cos\theta \vec{r} + r sin\theta \vec{\theta} + r sin\theta cos\phi \vec{\phi}$$

(b) Vérifiez le théorème de Green–Ostrogradski pour cette fonction, en utilisant pour volume l'hémisphère de la figure ci-contre.

EXERCICE 16

(a) Calculez la divergence de la fonction

$$\vec{V} = r(2 + sin^2\theta)\vec{e}_r + r\sin\theta\cos\theta\,\vec{e}_\theta + rz\vec{e}_z$$

en coordonnées cylindriques.

- (b) Vérifiez le théorème de la divergence pour cette fonction, en utilisant le quart de cylindre de la figure ci-contre.
- (c) Calculez le rotationnel de \vec{V} .

