Introduction to Logistics & Supply Chain Management: Key Concepts

Agenda

- Push vs. Pull Systems
- Segmentation Strategies
 - Products
 - Supply Chains
- Handling Uncertainty

Push vs. Pull Processes

You can learn almost everything about logistics from a sandwich shop

Make to Order Make to Stock Engineer to Order

How many different sandwiches can be made?

Sandwich = Bread + Protein + Spread + Topping 18 6 10 20

21,600 Unique Sandwiches!

By Jimmy John's Franchise, LLC http://upload.wikimedia.org/wikipedia/commons/e/e3/Jimmy_John_employees_having_fun_making_sandwiches.jpg
By U.S. Department of Agriculture (20111012-FNCS-LSC-0242) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons
http://upload.wikimedia.org/wikipedia/commons/0/06/20111012-FNCS-LSC-0242 - Flickr - USDAgov.jpg

Pull vs Push Processes

- Push
 - Execution is performed in <u>anticipation</u> of an order
 - Demand is forecasted
 - Proactive process based on projected need/demand
- Pull
 - Execution is performed in <u>response</u> to an order
 - Demand is actual and known with certainty
 - Reactive process based on actual need/demand
- Push / Pull Boundary
 - Point where push processes are separated from pull processes

Story of Three Sandwiches

By U.S. Department of Agriculture (20111012-FNCS-LSC-0195) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wik http://commons.wikimedia.org/wiki/File%3A20111012-FNCS-LSC-0195 - Flickr - USDAgov.jpg

By pdphoto.org (pdphoto.org) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File%3ASandwich.jpg
"Dagwood" by EncycloPetey - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia.org/wiki/File:Dagwood.JPG#mediaviewer/File:Dagwood.JPG

Push vs Pull Processes

- What about pure systems?
 - Pure push leads to higher inventory levels and potential spoilage / imbalance but faster cycle time
 - Pure pull very rare
- Mixed systems are common Where is the Push-Pull Point?
 - Push undifferentiated, raw product or components
 - Pull finished product
- Benefits of mixed systems
 - Allows for efficient mass customization (Postponement)
 - Allows for pooling of products aggregating demand
- Key Principles
 - Maximize external variety with minimal internal variety
 - Keep in-process inventory as "Raw as Possible" (RAP)

Segmentation

Supply Chain Segmentation

- In reality . . .
 - Firms operate multiple supply chains
 - There is no such thing as a one-size-fits-all supply chain
 - Firms segment in order to match the right method to the right product/customer/supplier combination
 - Firms can segment products, customers, suppliers, etc.
- Segmentation only makes sense if you do something different in how you buy, make, move, store or sell!

- Purchasing / Procurement
- Forecasting / Demand Planning
- Inventory Planning
- Inventory Control

- Warehousing / Materials Handling
- Order Management
- Transportation Management
- Customer Service

How should I treat these products differently?

Supply Chain Segmentation

- How many segments? (Rules of thumb)
 - Homogenous- within the segment should be similar
 - Heterogeneous- across segments should be very different
 - Critical Mass should be big enough to make it worthwhile
 - Pragmatic dimensions should be useful and communicable

How can I segment my customers or suppliers?

Lead time Service Level

Purchase History Order Size/Volume

Geography Demographic

Sales Trends Channel Segmentation

Strategic Importance

- How can I segment my products?
 - Physical characteristics (value, size, density, etc.)
 - Demand characteristics (sales volume, volatility, sales duration, etc.)

Lesson: Key concepts

Supply characteristics (availability, location, reliability, etc.)

Distribution of SKUs

Product Segmentation

- Local Grocery Store
 - ~20,000 SKUs
 - Categories: Dry, Frozen, & Perishables
- Analysis of Dry Goods (~8,000 SKUs)
 - 1.156 M SKUs sold in 1 year
 - Number of units sold per SKU
 - Mean 144
 - Median 72
 - Mode 0
 - Std Dev 355
- Biggest Sellers?
- Biggest Sales Day?

Top Sellers

- EVAPORATED MILK 12 OZ
- BATHROOM TISSUE
- BOTTLED WATER 1 GALLON
- 4. MAC'N CHEESE
- CANNED WHITE TUNA

How are products distributed in terms of sales volume? Uniform? Normal? Other?

Lesson: Key concepts

Kerslake, Christopher (2005) A Method for Analyzing the Delivery Frequency From a Distribution Center to a Retail Grocery Store, MIT Masters Thesis
"Faced products on a supermarket shelf" by Amnesiac86 - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File: Faced_products_on_a_supermarket_shelf. JPG#mediaviewer/File: Faced_products_on_a_supermarket_shelf. JPG#mediaviewer/File:

Potential Product Distributions

This is an example of the Power Law, $y=ax^k$ Why is this important? Is this distribution unique?

Example: Distribution of Traffic on Lanes

Full Truckload movements between Postal Codes in US 5 million shipments on ~400k lanes

Power Law (y=ax^k)

- Exceptionally common in physical and social systems
 - Severity of hurricanes and earthquakes
 - Income within a population (Pareto's Law)
 - Visits to websites (Nielsen's Law) & blogs
 - Frequency of words in any language (Zipf's Law)
 - Frequency of digits within tables (Benford's Law)
 - Frequency of authors citations in literature (Lotka's Law)
 - Animals' metabolic rates with respect to mass (Kleiber's Law)
 - Profitability of customers & products
 - Distribution of volume on traffic lanes
 - Questions from students in a class

The *important few* versus the *trivial many*

Fundamental Insight

Lesson: Key concepts

Distribution of many phenomena across a population follow a Power Law relationship

ABC Analysis

- Class A Items the important few
 - Very few high impact items are included
 - Require the most managerial attention and review
 - Expect many exceptions to be made
- Class B Items the middleshare
 - Many moderate impact items (sometimes most)
 - Automated control w/ management by exception
 - Rules can be used for A (but usually too many exceptions)
- Class C Items the trivial many
 - Many if not most of the items that make up minor impact
 - Control systems should be as simple as possible
 - Reduce wasted management time and attention
 - Group into common regions, suppliers, end users

Remember – these are arbitrary classifications

 $c_i \qquad \quad D_i \qquad \quad c_i D_i$

	•	Annual	Annual \$	
Part ID	Price	Demand	Value	
5497J	\$ 2.25	260	\$	585.00
3K62	\$ 2.85	43	\$	122.55
88450	\$ 1.50	21	\$	31.50
P001	\$ 0.77	388	\$	298.76
2M993	\$ 4.45	612	\$	2,723.40
3HHT8	\$ 6.10	220	\$	1,342.00
56M4	\$ 3.10	110	\$	341.00
89KE	\$ 1.32	786	\$	1,037.52
4503	\$ 12.80	14	\$	179.20
55K2	\$ 24.99	334	\$	8,346.66
978SD3	\$ 7.75	24	\$	186.00
78HJQ2	\$ 0.68	77	\$	52.36
23LK	\$ 0.25	56	\$	14.00
990RT	\$ 3.89	89	\$	346.21
58JH4	\$ 7.70	675	\$	5,197.50
2340P	\$ 6.22	66	\$	410.52
3784	\$ 0.85	148	\$	125.80
38JQ2	\$ 0.77	690	\$	531.30
56TT7	\$ 1.23	52	\$	63.96
7UJS2	\$ 4.05	12	\$	48.60
		4,677	\$ 2	21,983.84

- Identify the SKUs that management should spend time on
- 2. Prioritize SKUs by their value to firm
- 3. Create logical groupings
- 4. Adjust as needed

Example:

- Sample of 20 SKUs
- Total of 4,677 units
- Total ~\$22k

 c_i D_i c_iD_i Σc_iD_i

		Annual	Δ	nnual \$	Cum \$	Pct Ann
Part ID	Price	Demand		Value	Value	\$ Value
55K2	\$ 24.99	334	\$	8,347	\$ 8,347	38%
58JH4	\$ 7.70	675	\$	5,198	\$ 13,544	62%
2M993	\$ 4.45	612	\$	2,723	\$ 16,268	74%
3HHT8	\$ 6.10	220	\$	1,342	\$ 17,610	80%
89KE	\$ 1.32	786	\$	1,038	\$ 18,647	85%
5497J	\$ 2.25	260	\$	585	\$ 19,232	87%
38JQ2	\$ 0.77	690	\$	531	\$ 19,763	90%
2340P	\$ 6.22	66	\$	411	\$ 20,174	92%
990RT	\$ 3.89	89	\$	346	\$ 20,520	93%
56M4	\$ 3.10	110	\$	341	\$ 20,861	95%
P001	\$ 0.77	388	\$	299	\$ 21,160	96%
978SD3	\$ 7.75	24	\$	186	\$ 21,346	97%
4503	\$ 12.80	14	\$	179	\$ 21,525	98%
3784	\$ 0.85	148	\$	126	\$ 21,651	98%
3K62	\$ 2.85	43	\$	123	\$ 21,773	99%
56TT7	\$ 1.23	52	\$	64	\$ 21,837	99%
78HJQ2	\$ 0.68	77	\$	52	\$ 21,890	100%
7UJS2	\$ 4.05	12	\$	49	\$ 21,938	100%
88450	\$ 1.50	21	\$	32	\$ 21,970	100%
23LK	\$ 0.25	56	\$	14	\$ 21,984	100%
		4,677	\$	21,984		

Lesson: Key concepts

A Items: 80% of Value 20% of SKUs

B Items: 15% of Value 30% of SKUs

C Items: 5% of Value 50% of SKUs

Segmentation: Other Methods

- Volatile: Sophisticated techniques; frequent reviews
- Stable: Less sophisticated techniques; less frequent reviews
- Unimportant: Unsophisticated techniques; infrequent reviews

Segmenting Supply Chains

Segmentation: Innovative vs. Functional

	SOUP	
	Functional	Innovative
Demand	Predictable	Unpredictable
Life Cycle	Long > 2 yrs	Short <1 yr
Margin	5% to 20%	20% to 60%
Variety	Low (10-20)	High
Error at Production	~10%	~40-100%
Avg Stockout Rates	1% to 2%	10% to 40%
Forced Mark down	0%	10% - 25%
Lead time for MTO	6 mon to 1 yr	1 day to 2 wks
Supply Chain Objective	Efficiency	Match Supply & Demand

Source: Fisher, M. (1997) "What Is the Right Supply Chain for Your Product?," Harvard Business Review. Adapted from Sheffi (2010) ESD.260 Course Notes

By Balougador (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], http://commons.wikimedia.org/wiki/File%3ACampbellsMc

By 彭家杰 (Own work) [GPL (http://www.gnu.org/licenses/gpl.html), GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/3.0/)],

http://commons.wikimedia.org/wiki/File%3ASmart_phone.jpg

Decision variables for SC Design:
(One option is chosen from each column)

	Fast / High Cost	Intermediate Design	Slow/Low Cost
Manufacturing Location	On shore (e.g., US/Europe)	Near shore (e.g., Mexico/ Romania)	Off shore (e.g., China, Vietnam)
International Shipping	Air Freight	Rail/Truck	Ocean
Final Assembly Location	On Shore	Near Shore	Off Shore
Order Fulfillment Location	On Shore (Factory/DC)	Near Shore (Factory/DC)	Off Shore (Factory/DC)
Inventory Stocking Model	Build to Stock	Configure to Order	Build to Order

Source: Olavsun, Lee, & DeNyse (2010) "A Portfolio Approach to Supply Chain Design," Supply Chain Management Review. Adapted from Sheffi (2010) ESD.260 Course Notes

Original Inkjet SC:

	Fast / High Cost	Intermediate Design	Slow/Low Cost
Manufacturing Location	On shore (e.g., US/Europe)		
International Shipping		Rail/Truck	
Final Assembly Location	On Shore		
Order Fulfillment Location	On Shore (Factory/DC)		
Inventory Stocking Model	Build to Stock		

Source: Olavsun, Lee, & DeNyse (2010) "A Portfolio Approach to Supply Chain Design," Supply Chain Management Review. Adapted from Sheffi (2010) ESD.260 Course Notes "Hp500-1" by Oguenther - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Hp500-1.png# mediaviewer/F

Lesson: Key concepts

27

Postponement Inkjet SC:

	Fast / High Cost	Intermediate Design	Slow/Low Cost
Manufacturing Location			Off shore (e.g., China, Vietnam)
International Shipping			Ocean
Final Assembly Location	On Shore		
Order Fulfillment Location	On Shore (Factory/DC)		
Inventory Stocking Model		Configure to Order	

Source: Olavsun, Lee, & DeNyse (2010) "A Portfolio Approachto Supply Chain Design," Supply Chain Management Review. Adapted from Sheffi (2010) ESD.260 Course Notes "Hp-deskjet-895cxi". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - <a href="http://commons.wikimedia.org/wiki/File:Hp-deskjet-895cxi.jpg#mediaviewer/File:Hp-deskjet-89

Cost Competition Inkjet:

	Fast / High Cost	Intermediate Design	Slow/Low Cost
Manufacturing Location			Off shore (e.g., China, Vietnam)
International Shipping			Ocean
Final Assembly Location			Off Shore
Order Fulfillment Location	On Shore (Factory/DC)		
Inventory Stocking Model	Build to Stock		

Source: Olavsun, Lee, & DeNyse (2010) "A Portfolio Approachto Supply Chain Design," Supply Chain Management Review. Adapted from Sheffi (2010) ESD.260 Course Notes "MFHP1600" by LupisSM - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 - http://commons.wikimedia.org/wiki/File:MFHP1600. JPG# mediaviewer/File:MFHP1600. JPG# mediaviewer/File:MFHP1600.

Handling Uncertainty

Variability & Uncertainty

- Occurs in all aspects of supply chains
- Managing to the "mean" or "average" is rarely sufficient
- Handled by assuming a probability distribution
 - Normal Distribution $\sim N(\mu, \sigma)$
 - Continuous $(-\infty < x < +\infty)$ and Symmetric
 - Most commonly used for good or worse
 - Log-normal Distribution $\sim \Lambda(\mu^*, \sigma^*)$
 - Continuous $(0 < x < +\infty)$ and Skewed right
 - Less common but good for supply chains
 - Poisson Distribution ~P(λ)
 - Discrete (integers ≥0)
 - Commonly used for low valued distributions

Normal Distribution

- Normal $\sim N(\mu, \sigma)$
 - Spreadsheets
 - NORMINV(probability, μ , σ) = μ +k σ_x
 - NORMDIST $(x,\mu,\sigma,1) = P[x < \mu + k\sigma_x]$
- Unit Normal $\sim N(0,1)$
 - Transformation: $k = (x-\mu)/\sigma_x$
 - Spreadsheets
 - NORMSINV(probability) =k
 - NORMSDIST(k) =P[u<k]
 - Standard Unit Normal Tables
 - Look up k or P[u<k]
- Confidence Intervals
 - $\mu \pm \sigma$ 68.3%
 - $\mu \pm 2\sigma$ 95.5%
 - $\mu \pm 3\sigma$ 99.7%

Lesson: Key concepts

 u_0

Poisson Distribution

- Poisson $\sim P(\lambda)$
 - Probability of x events occurring w/in a time period
 - Mean = Variance = λ
- In Spreadsheets:
 - $p(x_0) = POISSON(x_0, \lambda, 0)$

$$p[x_0] = \text{Prob}[x = x_0] = \frac{e^{-\lambda} \lambda^{x_0}}{x_0!}$$
 for $x_0 = 0, 1, 2, ...$

$$p(x_0) = POISSON(x_0, \lambda, 0)$$

$$F(x_0) = POISSON(x_0, \lambda, 1)$$

$$F[x_0] = Prob[x \le x_0] = \sum_{x=0}^{x_0} \frac{e^{-\lambda} \lambda^x}{x!}$$

Poisson Tables (partial)

- Columns: λ
- Rows: $F(x_0)$

F(x)	0.75	1.00	
0	0.47237	0.36788	(
1	0.82664	0.73576	(
2	0.95949	0.91970	(
3	0.99271	0.98101	(
4	0.99894	0.99634	(
5	0.99987	0.99941	(
6	0.99999	0.99992	(
7	1.00000	0.99999	(
•	4 00000	4 00000	

Key Points from Lesson

Key Points from Lesson

- Push vs. Pull Systems
 - Push proactive based on forecast demand
 - Pull reactive based on actual demand
- Benefits of Mixed Systems
 - Maximize external variety with minimal internal variety
 - Keep in-process inventory as "Raw as Possible" (RAP)
 - Postponement & Aggregated Demand
- Segmentation Strategies
 - Segment for a purpose (functional vs. innovative)
 - Product segmentation (ABC) good starting point

- Handling Uncertainty
 - Normal Distribution
 - Poisson Distribution

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

"Jack Russell tilting her head" by Writ Keeper - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 http://commons.wikimedia.org/wiki/File:Jack_Russell_tilting_her_head.jpg

