Aufgabe 1

(a) Geben Sie einen deterministischen endlichen Automaten (DEA) mit minimaler Anzahl an Zuständen an, der dieselbe Sprache akzeptiert wie folgender deterministischer endlicher Automat. Dokumentieren Sie Ihr Vorgehen geeignet.

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Aj5aei652

Minimierungstabelle (Table filling)

— Der Minimierungs-Algorithmus (auch Table-Filling-Algorithmus genannt) trägt in seinem Verlauf eine Markierung in alle diejenigen Zellen der Tabelle ein, die zueinander nicht äquivalente Zustände bezeichnen. Die Markierung " x_n " in einer Tabellenzelle (i,j) bedeutet dabei, dass das Zustandspaar (i,j) in der k-ten Iteration des Algorithmus markiert wurde und die Zustände i und j somit zueinander (k-1)-äquivalent, aber nicht k-äquivalent und somit insbesondere nicht äquivalent sind. Bleibt eine Zelle bis zum Ende unmarkiert, sind die entsprechenden Zustände zueinander äquivalent. —

z_0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_1	<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_2	<i>x</i> ₃	x_4	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_3		<i>x</i> ₃	<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø	Ø
z_4	<i>x</i> ₃	x_4		<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø
z_5	<i>x</i> ₃	x_4		<i>x</i> ₃		Ø	Ø	Ø	Ø
z_6	x_2	x_2	x_2	x_2	x_2	x_2	Ø	Ø	Ø
z ₇	x_2	x_2	x_2	x_2	x_2	x_2	x_2	Ø	Ø
z_8	x_1	x_1	x_1	x_1	x_1	x_1	x_1	x_1	Ø
	z_0	z_1	z_2	z_3	z_4	z_5	z_6	<i>z</i> ₇	z_8

- x_1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- x_2 Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- x_3 In weiteren Iterationen markierte Zustände.
- *x*₄ ...

Übergangstabelle

Zustandspaar	0	1
(z_0, z_1)	(z_2, z_5)	$(z_1, z_7) x_3 x_3$
(z_0, z_2)	(z_2,z_3)	$(z_1, z_7) x_3$
(z_0, z_3)	(z_2, z_5)	(z_1, z_1)
(z_0, z_4)	(z_2, z_3)	$(z_1, z_7) x_3$
(z_0, z_5)	(z_2, z_0)	$(z_1, z_7) x_3$
(z_0, z_6)	(z_2, z_8)	$(z_1, z_4) x_2$
(z_0, z_7)	(z_2, z_6)	$(z_1, z_8) x_2$
(z_1, z_2)	(z_5, z_3)	$(z_7, z_7) x_4$
(z_1, z_3)	(z_5,z_5)	$(z_7, z_1) x_3$
(z_1, z_4)	(z_5,z_3)	$(z_7, z_7) x_4$
(z_1, z_5)	(z_5, z_0)	$(z_7, z_7) x_4$
(z_1, z_6)	(z_5, z_8)	$(z_7, z_4) x_2$
(z_1, z_7)	(z_5, z_6)	$(z_7, z_8) x_2$
(z_2,z_3)	(z_3, z_5)	$(z_7, z_1) x_3$
(z_2, z_4)	(z_3,z_3)	(z_7,z_7)
(z_2, z_5)	(z_3, z_0)	(z_7,z_7)
(z_2, z_6)	(z_3, z_8)	$(z_7, z_4) x_2$
(z_2, z_7)	(z_3, z_6)	$(z_7, z_8) x_2$
(z_3, z_4)	(z_5,z_3)	$(z_1, z_7) x_3$
(z_3, z_5)	(z_5, z_0)	$(z_1, z_7) x_3$
(z_3, z_6)	(z_5, z_8)	$(z_1, z_4) x_2$
(z_3, z_7)	(z_5, z_6)	$(z_1, z_8) x_2$
(z_4, z_5)	(z_3, z_0)	(z_7,z_7)
(z_4, z_6)	(z_3, z_8)	$(z_7, z_4) x_2$
(z_4, z_7)	(z_3, z_6)	$(z_7, z_8) x_2$
(z_5, z_6)	(z_0, z_8)	$(z_7, z_4) x_2$
(z_5, z_7)	(z_0, z_6)	$(z_7, z_8) x_2$
(z_6, z_7)	(z_8, z_6)	$(z_4, z_8) x_2$

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Aro484bz2

- (b) Beweisen oder widerlegen Sie für folgende Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$, dass sie regulär sind.
 - (i) $L_1 = \{ a^i c u b^j v a c^k | u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \}$

Die Sprache L_1 ist regulär. Nachweis durch regulären Ausdruck:

$$a^*c(a|b)^*b^*(a|b)^*ac^*$$

(ii) $L_2 = \{ a^i c u b^j v a c^k \mid u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \text{ mit } k = i + j \}$

Die Sprache L_2 ist nicht regulär. Widerlegung durch das Pumping-Lemma.

TODO

(c) Sei L eine reguläre Sprache über dem Alphabet Σ . Für ein festes Element $a \in \Sigma$ betrachten wir die Sprache $L_a = \{aw \mid w \in \Sigma^*, wa \in L\}$. Zeigen Sie, dass L_a regulär ist.

Die regulären Sprachen sind unter dem Komplement abgeschlossen.