

Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo Campus COLATINA

PROGRAMAÇÃO II - SISTEMAS DE INFORMAÇÃO

Lista de exercícios 7 – Matrizes

Prof. Jean Eduardo Glazar

1. Crie um programa que leia do teclado uma matriz 3x3 de inteiros, leia também um número inteiro que será utilizado para multiplicar a diagonal principal da matriz, imprima a matriz original na tela e em seguida imprima também a matriz resultante da multiplicação. Crie uma função para cada operação: ler matriz, ler número, multiplicar diagonal e imprimir matriz.

Exemplo: Se o usuário entrar com a matriz: e o multiplicador: 2, o resultado seria:

1 4 2	2 4 2	2
2 6 3	2 12 3	3
8 5 7	8 5 1	4

2. Fazer um programa que tenha duas matrizes 100x100 de números inteiros. Faça uma função para preencher uma matriz com números aleatórios entre 1 e 100. Chame essa função duas vezes, uma para cada matriz. Em seguida ler um inteiro **m** que servirá para multiplicar os elementos de cada uma das matrizes. Após fazer a multiplicação, o programa deve somar os elementos de mesma posição de cada matriz e guardar em uma terceira matriz. No final, imprima todas as três matrizes. É necessário apenas uma função imprimir. Chama-la três vezes. Seu programa precisará de cinco funções: preencher uma matriz com números aleatórios, ler o inteiro **m**, multiplicar uma matriz por **m**, somar os elementos, imprimir uma matriz.

Exemplo: Se as matrizes fossem 3x3 com os valores abaixo:

2	3	1	4	8	1
8	9	10	1	7	15
3	1	3	6	2	7

se m = 3, após a multiplicação as matrizes ficariam:

6	9	3	12	24	3
24	27	30	3	21	45
9	3	9	18	6	21

Imprimindo a soma dos elementos de mesma posição teríamos:

18 33 6 27 48 75 27 9 30

3. Leia uma matriz 1000x2000 de caracteres, imprimindo em seguida o número de linhas que só tenham o caractere 'x' na matriz.

Exemplo: Supondo a matriz 5x3 abaixo:

а	f	*	Teríamos 2 linhas que só têm 'x'.
Χ	Х	Χ	
Х	Х	2	
q	&	р	
Χ	Х	Х	

Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo Campus COLATINA

4. Considere *n* cidades numeradas de **1** a *n* que estão interligadas por uma série de estradas de mão única. As ligações entre as cidades são representadas pelos elementos de uma matriz quadrada *L* (*n* x *n*), cujos elementos *Lij* assumem o valor **1** ou **0**, conforme exista ou não estrada direta que saia da cidade *i* e chegue à cidade *j*. Assim, os elementos da linha *i* indicam as estradas que saem da cidade *i*, e os elementos da coluna *j* indicam as estradas que chegam à cidade *j*.

$$L = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Por convenção Lij = 1, para todo i = j. A figura mostra um exemplo para n = 4.

- a) Dado k, determinar quantas estradas saem e quantas chegam à cidade k. Fazer uma função que receba a matriz e o número k.
- **b)** A qual das cidades chega o maior número de estradas?
- c) Relacionar, se existirem (uma função para cada operação):
 - i) As cidades isoladas, isto é, as que não têm ligação com nenhuma outra;
 - ii) As cidades das quais não há saída, apesar de haver entrada;
 - iii) As cidades das quais há saída sem haver entrada.