

Thermal Management for S-NUCA Many-Cores via Synchronous Thread Rotations

Research Background (S-NUCA Architecture + Task Rotations)

NoC Router

☐ Logically shared but physically distributed cache + Inherent Heterogeneity(Cache latency is non-uniform) ☐ Higher power density + Dark silicon ☐ Thread rotations can balance the hot and cold core temperatures Requires intricate DTM to Core unlock performance Every L1-D L1-I potential 0.5ms LLC Bank

Motivational Example

☐ Thread rotations penalty *vs* DVFS-based penalty

(a) Fixed Peak Frequency (b) Thermally Safe Frequency provided by *TSP* [11]

(c) Synchronous Thread Rotation at Peak Frequency

	Benchmark	Threads	DTM method	Execute at	Peak temp(°C)	Exec time(ms)	Penalty(%)
Case (a)	blackscholes	1 master, 1 slave	No	Core 5,10	80.03	67.97	-
Case (b)	blackscholes	1 master, 1 slave	TSP	Core 5,10	67.94	84.49	19.55
Case (c)	blackscholes	1 master, 1 slave	Thread rotations	Core 5,6,9,10	69.32	74.47	8.72

Case (c) is 10.83% faster than Case (b)

Thread rotations penalty < DVFS-based penalty

One-shot Peak Temperature Calculation

☐ Thread rotations periodically exhibit a recurring peak temperature pattern

☐ Theoretically calculate the peak temperature

heat transfer properties

Hot-potato Scheduling

☐ Thermal and architecture-aware *synchronous* thread rotations

- ☐ Thermal dissipation condition Ring1 < Ring2 < Ring3
- ☐ Access cache latency Ring1 < Ring2 < Ring3

Evaluation

- ☐ Simulated open systems using HotSniper
- ☐ The arrival time of threads follows Poisson distribution

Yixian

Shen

Pathania

Pimentel

Email: y.shen@uva.nl

Sobhan

Niknam