Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №7

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Конвейеризация вычислений

Задание 3

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	4
3.	Скрипт	4
4.	Решение 1	5
	4.1. Директивы	5
	4.2. Синтез	
	4.3. C/RTL моделирование	
5 .	Решение 2	8
	5.1. Директивы	8
	5.2. Синтез	
	5.3. C/RTL моделирование	
6.	Решение 3	12
	6.1. Директивы	12
	6.2. Синтез	
	6.3. C/RTL моделирование	
7.	Вывол	16

1. Задание

- 1. Создать проект lab7 3
- 2. Микросхема: ха7а12tcsg325-1q
- 3. Создать функцию на основе приведенного ниже слайда.

```
void foo_top (in1, in2, *out1_data...) {
    accum=0;
    ...
    L1:for(i=1;i<N;i++) {
        accum = accum + in1 + in2;
    }
    *out1_data = accum;
}</pre>
```

- 4. Создать тест lab7 3 test.с для проверки функций выше.
 - осуществить моделирование (с выводом результатов в консоль)
- 5. Сделать свой solution (для варианта без конвейеризации, с конвейеризацией, с конвейеризацией и rewind)
 - задать: clock period 10; clock uncertainty 0.1
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary
 - * utilization estimates=>summary
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Осуществить C|RTL моделирование (для каждого варианта задания директивы)
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - * Отобразить два цикла обработки на одном экране
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- 6. Выволы
 - Привести обобщенную таблицу зависимости utilization и performance от каждого варианта: без конвейеризации, с конвейеризацией, с конвейеризацией и rewind.
 - Объяснить отличие процедур обращения к элементам массива для каждого случая

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
void lab7_3 (int in1, int in2, int *out_data) {
   int i;
   static int acc = 0;

L1: for(i = 0; i < 20; i++) {
      acc = acc + in1 + in2;
   }
   *out_data = acc;
}</pre>
```

Рис. 2.1. Исходный код устройства

```
#include <stdio.h>
2
3
  int main() {
4
5
    int in1 = 5;
6
    int in2 = 8;
7
8
    int out = 0; int *o_p = &out;
9
    int exp out = 260;
10
11
    lab7_3(in1, in2, o_p);
12
13
    printf("Out\_\%d\_=\_Exp\_\%d \setminus n", out, exp out);
    if (out != exp_out) {
14
                             —ERROR——\n");
      fprintf(stdout, "-
15
      \mathbf{return} \ \ -1;
16
17
    } else {
      18
19
      return 0;
20
21 }
```

Рис. 2.2. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab7 3
  add files lab7 3.c
3 set_top lab7_3
  add_files -tb lab7_3_test.c
6
  set solutions [list 1 2 3]
7
  foreach sol $solutions {
8
     open_solution solution $sol -reset
9
10
     set part \{xa7a12tcsg325-1q\}
     create clock -period 10ns
11
12
     set clock uncertainty 0.1
13
     if \{\$sol = 2\} \{
14
         {\tt set\_directive\_pipeline~"lab7\_3/L1"}
15
16
     if \{\$sol == 3\} {
17
18
       set_directive_pipeline -rewind "lab7_3/L1"
19
20
     csim design
21
22
     csynth\_design
23
     cosim_design -trace_level all
24
25
26
  exit
```

Рис. 3.1. Скрипт

4. Решение 1

4.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 4.1. Директивы

4.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	2.702	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
21	21	21	21	none

Рис. 4.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	104
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	24
Register	-	-	71	-
Total	0	0	71	128
Available	40	40	16000	8000
Utilization (%)	0	0	~0	1

Рис. 4.3. Utilization estimates

Рис. 4.4. Performance profile

nterface										
⊡ Summary										
RTL Ports	Dir	Bits	Pr	otoc	ol	Source (Obje	ct	СТ	/ре
ap_clk	in	1	ap_	ctrl	hs		ab7_	3	return	value
ap_rst	in	1	ap_	ctrl	hs	I	ab7_	3	return	value
ap_start	in	1	ap_	ctrl	hs		ab7_	3	return	value
ap_done	out	1	ap_	ctrl	hs		ab7_	3	return	value
ap_idle	out	1	ap_	ctrl	hs	I	ab7_	3	return	value
ap_ready	out	1	ap_	ctrl	hs		ab7_	3	return	value
in1	in	32	a	p_nc	ne		in	1		scalar
in2	in	32	a	p_nc	ne		in	2		scalar
out_data	out	32		ap_	vld	out	_dat	a	р	ointer
out_data_ap_vld	out	1		ap_	vld	out	_dat	a	р	ointer

Рис. 4.5. Interface estimates

По списку сигналов в проекте видно, что для заданного порта установлен протокол ар_bus. Также видно, что для этого протокола требуются дополнительные сигналы.

Рис. 4.6. Scheduler viewer

	Resource\Control Step	C0	C1
1	⊡I/O Ports		
2	in2	read	
3	inl	read	
4	out_data		write
5	⊡Expressions		
6	tmpl_fu_67	+	
7	i_phi_fu_55		phi_mux
8	i_1_fu_79		+
9	tmp_1_fu_85		+
10	exitcond_fu_73		icmp

Рис. 4.7. Resource viewer

4.3. С/RTL моделирование

Рис. 4.8. Временная диаграмма

По временной диаграмме видно, что latency составляет 21 такт, а II - 22 такта.

5. Решение 2

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 5.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	104
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	30
Register	-	-	72	-
Total	0	0	72	134
Available	40	40	16000	8000
Utilization (%)	0	0	~0	1

Рис. 5.3. Utilization estimates

 $\mbox{Puc.}$ 5.4. Performance profile

Interface

□ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	lab7_3	return value
ap_rst	in	1	ap_ctrl_hs	lab7_3	return value
ap_start	in	1	ap_ctrl_hs	lab7_3	return value
ap_done	out	1	ap_ctrl_hs	lab7_3	return value
ap_idle	out	1	ap_ctrl_hs	lab7_3	return value
ap_ready	out	1	ap_ctrl_hs	lab7_3	return value
in1	in	32	ap_none	in1	scalar
in2	in	32	ap_none	in2	scalar
out_data	out	32	ap_vld	out_data	pointer
out_data_ap_vld	out	1	ap_vld	out_data	pointer

Рис. 5.5. Interface estimates

По списку сигналов в проекте видно, что для заданного порта установлен протокол ар_bus. Также видно, что для этого протокола требуются дополнительные сигналы.

Рис. 5.6. Scheduler viewer

	Resource\Control Step	C0	C1	C2
1	⊡I/O Ports			
2	inl	read		
3	in2	read		
4	out_data			write
5	-Expressions			
6	tmpl_fu_81	+		
7	i_1_fu_93		+	
8	tmp_1_fu_99		+	
9	i_phi_fu_69		phi_mux	
10	exitcond_fu_87		icmp	

Рис. 5.7. Resource viewer

5.3. C/RTL моделирование

Рис. 5.8. Временная диаграмма

По временной диаграмме видно, что latency составляет 22 такта, а II -23 такта.

6. Решение 3

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

▼ ● lab7_3
 ● in1
 ● in2
 ● out_data
 ☒ acc
 ▼ ※ L1
 % HLS PIPELINE rewind

Рис. 6.1. Директивы

6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 10.00 6.169 0.10 Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
19	20	19	20	none

Рис. 6.2. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18	C DSP	48E	FF	LUT
DSP	-	-		-	-
Expression	-	-		0	90
FIFO	-	-		-	-
Instance	-	-		-	-
Memory	-	-		-	-
Multiplexer	-	-		-	54
Register	-	-		104	-
Total	(0	0	104	144
Available	4	0	40	16000	8000
Utilization (%)	(0	0	~0	1

Рис. 6.3. Utilization estimates

Рис. 6.4. Performance profile

Interface

∃ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	lab7_3	return value
ap_rst	in	1	ap_ctrl_hs	lab7_3	return value
ap_start	in	1	ap_ctrl_hs	lab7_3	return value
ap_done	out	1	ap_ctrl_hs	lab7_3	return value
ap_idle	out	1	ap_ctrl_hs	lab7_3	return value
ap_ready	out	1	ap_ctrl_hs	lab7_3	return value
in1	in	32	ap_none	in1	scalar
in2	in	32	ap_none	in2	scalar
out_data	out	32	ap_vld	out_data	pointer
out_data_ap_vld	out	1	ap_vld	out_data	pointer

Рис. 6.5. Interface estimates

По списку сигналов в проекте видно, что для заданного порта установлен протокол ар_bus. Также видно, что для этого протокола требуются дополнительные сигналы.

Operation\Control Step	0	1	
<pre> ▼ L1 do_init(phi_mux) in12_rewind(phi_mux) in23_rewind(phi_mux) i1(phi_mux) in2_read(read) in1_read(read) in12_phi(phi_mux) in23_phi(phi_mux) acc_load(read) tmp1(+) tmp_1(+) node_30(write) i(+) exitcond(icmp) node_37(write) node_38(return) </pre>			

Рис. 6.6. Scheduler viewer

	Resource\Control Step	C0	C1
1	⊡I/O Ports	- 00	
2	in2		read
3	inl		read
4	out_data		write
5	-Expressions		
6	tmp_1_fu_164		+
7	i_fu_177		+
8	tmp1_fu_158		+
9	in23_phi_phi_fu_145		phi_mux
10	il_phi_fu_118		phi_mux
11	in23_rewind_phi_fu_104		phi_mux
12	in12_rewind_phi_fu_90		phi_mux
13	in12_phi_phi_fu_132		phi_mux
14	do_init_phi_fu_75		phi_mux
15	exitcond_fu_183		icmp
16	StgValue_32_fu_189		return

Рис. 6.7. Resource viewer

6.3. C/RTL моделирование

Рис. 6.8. Временная диаграмма

По временной диаграмме видно, что latency составляет 20 тактов, а II-21 такт.

7. Вывод

Ниже приведены сравнения производительности и использования ресурсов, в зависимости от решения.

Performance Estimates

□ Timing (ns)

Clock		solution_1	solution_2	solution_3
ap_clk	Target	10.00	10.00	10.00
	Estimated	2.702	2.702	6.169

□ Latency (clock cycles)

		solution_1	solution_2	solution_3
Latency	min	21	22	19
	max	21	22	20
Interval	min	21	22	19
	max	21	22	20

Рис. 7.1. Сравнение производительности

Utilization	Estimate	es	
	solution_1	solution_2	solution_3
BRAM_18K	0	0	0
DSP48E	0	0	0
FF	71	72	104
LUT	128	134	144

Рис. 7.2. Сравнение используемых ресурсов

Также можно сказать, что во всех решения реализация доступа к элементам массива не отличается.