Exercícios propostos para análise nas ferramentas MATLAB, MATHEMATICA e PHYTON.

Cláudio Lopes*

Correspondente: claudio.lopes.603@hotmail.c

UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal *Este trabalho foi desenvolvido no âmbito da Unidade Curricular de Seminário IV do curso de Licenciatura em Engenhaira Mecânica, leccionado na Universidade Trás-os-Montes e Alto Douro (UTAD).

Resumo

Neste relatório estarão presentes 3 exercícios para serem analisados em 3 novas ferramentas que estão a ser lecionadas na UC de Seminário IV.

Keywords: Mecânica Aplicada II; Matlab; Mathematica; Python; Cinemática da Partícula; Referencial de Frenet-Serret; Engenharia; Análise Matemática III

Índice

a.ee		
1	Introdução	1
2	MATLAB - 1º Exercício	2
3	Mathematica - $2^{\underline{o}}$ Exercicio	3
4	Phyton - 3º Exercicio	3

1 Introdução

Este pequeno relatório tem por base a apresentação dos 3 exercícios que serão analisados nesta Unidade Curricular usando como ferramentas computacionais os softwares "MATLAB", "MATHEMATICA"e "PHYTON". De entres os exercícios propostos, dois pertencem à Unidade Curricular de Mecânica Aplica II, que faz referência à cinemática da partícula e ao movimento relativo, já o outro e ultimo problema pertence à UC de Análise Matemática III, que trata da análise de equações diferenciais de ordem 1 e superiores a 1, sendo neste caso o problema em análise de ordem 1.

2 MATLAB - 1º Exercício

Como referido, o presente exercício trata a parte de Cinemática da Partícula, pertencente à UC de Mecânica Aplicada II e trata o seguinte:

A posição de um ponto P do bordo de uma roda que rola sobre uma recta (eixo Ox) é determinada pelas seguintes equações:

$$\begin{cases} x(t) = R[\theta - \sin\theta] \\ y(t) = R[1 - \cos\theta] \end{cases}$$
 (1)

onde R é o raio da roda e ω é uma constante positiva.

- a) Esboce a imagem da trajetória de P.
- b) Determine a velocidade e aceleração de P.
- c) Obtenha as componentes naturais da aceleração de P e o raio de curvatura da imagem da trajetória.
- d) Identifique os instantes em que a velocidade de P é nula. Determine a aceleração de P nesses instantes e a distância percorrida pelo centro da roda entre eles.
- e) Determine os intervalos de tempo em que o movimento de P é acelerado e os intervalos de tempo em que é retardado.

Neste exercício existe um formulário que deve ser usado, e que se encontra de seguida:

1. CINEMÁTICA DA PARTÍCULA

Referencial de Frenet: $\vec{e}_t = \vec{v}/v$, $\vec{e}_n = \vec{e}_b \wedge \vec{e}_t$ e $\vec{e}_b = \vec{v} \wedge \vec{a}/||\vec{v} \wedge \vec{a}||$

$$\begin{array}{l} \textbf{F\'ormulas de Frenet-Serret:} \begin{cases} d\vec{e}_t/dt = v \kappa \ \vec{e}_n \\ d\vec{e}_n/dt = -v \kappa \ \vec{e}_t + v \tau \ \vec{e}_b \\ d\vec{e}_b/dt = -v \tau \ \vec{e}_n \end{cases}$$

Vetor de Darboux: $\vec{\delta} = \tau \vec{e}_t + \kappa \vec{e}_b$

Velocidade angular do referencial de Frenet-Serret: $\vec{\omega} = v \, \vec{\delta}$

Curvatura e torção:
$$\kappa = \frac{\|\vec{v} \wedge \vec{a}\|}{v^3}$$
 e $\tau = \frac{(\vec{v} \wedge \vec{a}) \cdot d\vec{a}/dt}{\|\vec{v} \wedge \vec{a}\|^2}$

Componentes naturais da aceleração:
$$\vec{a} = \frac{dv}{dt}\vec{e}_t + \frac{v^2}{\rho}\vec{e}_n$$

Figura 1: Formulário 1

3 Mathematica - 2º Exercicio

O presente exercício trata a parte de Movimento Relativo, pertencente também à UC de Mecânica Aplicada II e trata o seguinte:

Na Fig. (2) representa-se um ponto A que se desloca sobre um arco de circunferência de raio R, o qual roda uniformemente em torno do eixo vertical S_1 com velocidade angular ω . A posição do ponto A no referencial S1 é definida pelo ângulo θ .

Figura 2: Movimento do corpo A.

- a) Exprima $\vec{v}^{A/1}$ e $\vec{a}^{A/1}$ em função de θ , no referencial de Frenet-Serret.
- b) Escreva, em S_1 , a velocidade de transporte, a aceleração de transporte e a aceleração de Coriolis do ponto A.
- c) Determine $\vec{v}^{A/0}$ e $\vec{a}^{A/0}$ expressos no referencial S_1 , através dos teoremas da velocidade relativa e de Coriolis.
- d) Determinar $\vec{v}^{A/0}$ e $\vec{a}^{A/0}$, expressos no referencial S_1 , diretamente a partir das componentes de \vec{OA} no referencial S_1 .

4 Phyton - 3º Exercicio

O terceiro e ultimo exercício, será um problema da UC de Análise Matemática III, que se trata uma Equação diferencial ordinária de primeira ordem, que é o seguinte:

Problemas de aquecimento e arrefecimento Lei do arrefecimento de Newton: A velocidade de arrefecimento de um corpo, num ambiente de temperatura constante, Tm, é proporcional à diferença entre a sua temperatura em cada instante, T, e a temperatura do meio ambiente:

$$\dot{T} = K(T - T_m) \tag{2}$$

Questão: Um objecto metálico à temperatura de 100 °C, é mergulhado em água. Ao fim de cinco minutos a temperatura do objecto é de 31 °C, sabendo que a água é mantida a 30 °C.