

# **Kinetic Theory**

# Ideal Gas Equations and Vander Waals Relation

- 1. The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is:
  (2022)
  - a. 5.6 m<sup>3</sup>
- b.  $5.6 \times 10^6 \text{ m}^3$
- c.  $5.6 \times 10^3 \text{ m}^3$
- d.  $5.6 \times 10^{-3} \text{ m}^3$
- **2.** A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27° C.

Its density is :  $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$ 

(2020)

- a.  $0.2 \text{ kg/m}^3$
- b.  $0.1 \text{ kg/m}^3$
- c.  $0.02 \text{ kg/m}^3$
- d.  $0.5 \text{ kg/m}^3$
- 3. An ideal gas equation can be written as  $P = \frac{\rho RT}{M_0}$  where  $\rho$

and M<sub>0</sub> are respectively,

(2020-Covid)

- a. Number density, molar mass
- b. Mass density, molar mass
- c. Number density, mass of the gas
- d. Mass density, mass of the gas
- **4.** Increase in temperature of a gas filled in a container would lead to: (2019)
  - a. Increase in its mass
  - b. Increase in its kinetic energy
  - c. Decrease in its pressure
  - d. Decrease in intermolecular distance
- 5. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas? (2016 II)
  - a. P/(kTV)
- b. mkT
- c. P/(kT)
- d. Pm/(kT)
- **6.** Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is:

  (2015 Re)
  - a. 1/2

b. 2/3

c. 3/4

d. 2

7. In the given (V-T) diagram, what is the relation between pressures P, and P,? (2013)



- a. Cannot be predicted
- b.  $P_2 = P$
- c.  $P_2 > P_1$
- d.  $P_2 < P_1$

### **Speed of Gas Molecules**

**8.** Match Column-I and Column-II and choose the correct match from the given choices. (2021)

#### Column-I

#### Column-II

- (A) Root mean square speed of gas molecules
- (P)  $\frac{1}{3}$ nm $\overline{v}^2$
- (B) Pressure exerted by ideal
- (Q)  $\sqrt{\frac{3RT}{M}}$
- (C) Average kinetic energy of a molecule
- (R)  $\frac{5}{2}$ RT
- (D) Total internal energy of 1 mole of a diatomic gas
- (S)  $\frac{3}{2}k_BT$
- a. (A) (Q), (B) (R), (C) (S), (D) (P)
- b. (A) (Q), (B) (P), (C) (S), (D) (R)
- c. (A) (R), (B) (Q), (C) (P), (D) (S)
- d. (A) (R), (B) (P), (C) (S), (D) (Q)
- 9. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere ? (Given: Mass of oxygen molecule (m) =  $2.76 \times 10^{-26}$  kg, Boltzmann's constant  $k_B = 1.38 \times 10^{-23}$  JK<sup>-1</sup>) (2018)
  - a. 5.016 ×10<sup>4</sup> K
  - b. 8.360 ×104 K
  - c. 2.508 ×10<sup>4</sup> K
  - d. 1.254 ×104 K

- 10. The molecules of a given mass of a gas have r.m.s velocity of 200 ms<sup>-1</sup> at 27°C and  $1.0 \times 10^5$  Nm<sup>-2</sup> pressure. When the temperature and pressure of the gas are respectively, 127°C and  $0.05 \times 10^5 \,\mathrm{Nm^{-2}}$ , the r.m.s. velocity of its molecules in ms<sup>-1</sup> is: (2016 - I)
  - a.  $100\sqrt{2}$
- b.  $\frac{400}{\sqrt{3}}$
- c.  $\frac{100\sqrt{2}}{2}$

## Variation of Pressure with **Depth and Pascal's Law**

- 11. The average thermal energy for a mono-atomic gas is :  $(k_{\rm p})$  is Boltzmann constant and T is absolute temperature)
  - a.  $\frac{3}{2} k_{\rm B} T$
- c.  $\frac{7}{2}$  k<sub>B</sub>T
- d.  $\frac{1}{2}$  k<sub>B</sub>T
- 12. A gas mixture consists of 2 moles of O, and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is: (2017-Delhi)
  - a. 15 RT
- b. 9 RT
- c. 11 RT
- d. 4 RT
- 13. The molar specific heats of an ideal gas at constant pressure and volume are denoted by  $C_p$  and  $C_v$  respectively. If  $\gamma = \frac{C_p}{C}$ and R is the universal gas constant, then C<sub>v</sub> is equal to:
  - a. yR

- c.  $\frac{R}{(\gamma-1)}$
- d.  $\frac{(\gamma-1)}{R}$

# Specific and Molar Heat Capacity of Gases

- 14. One mole of an ideal monoatomic gas undergoes a process described by the equation  $PV^3 = \text{constant}$ . The heat capacity of the gas during this process is: (2016 - II)
  - a. 2 R

c.  $\frac{3}{2}$ R

d.  $\frac{5}{3}$ R

- 15. The ratio of the specific heats  $\frac{C_p}{C} = \gamma$  in terms of degrees of freedom (n) is given by: (2015)
  - a.  $\left(1+\frac{n}{2}\right)$
- b.  $\left(1+\frac{2}{n}\right)$
- c.  $\left(1+\frac{n}{2}\right)$
- d.  $\left(1+\frac{1}{n}\right)$
- 16. 4.0 g of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is 5.0 JK<sup>-1</sup> mol<sup>-1</sup>. If the speed of sound in this gas at NTP is 952 ms<sup>-1</sup>, then the heat capacity at constant pressure is (Take gas constant R = 8.3 J/mol K): (2015 Re)
  - a. 8.5 J/K mol
- b. 8.0 J/K mol
- c. 7.5 J/K mol
- d. 7.0 J/K mol
- 17. The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from T<sub>1</sub> K to T<sub>2</sub> K is: (2013)
  - a.  $\frac{3}{4}N_Ak_B\left(\frac{T_2}{T_1}\right)$
  - b.  $\frac{3}{8}N_{A}k_{B}(T_{2}-T_{1})$
  - c.  $\frac{3}{2}N_{A}k_{B}(T_{2}-T_{1})$
  - d.  $\frac{3}{4}N_{A}k_{B}(T_{2}-T_{1})$

# Mean Free Path

- 18. The mean free path for a gas, with molecular diameter and number density n can be expressed as: (2020)
  - a.  $\frac{1}{\sqrt{2} n\pi d^2}$
- b.  $\frac{1}{\sqrt{2} n^2 \pi d^2}$

- 19. The mean free path  $\ell$  for a gas molecule depends upon diameter, d of the molecule as: (2020-Covid)
  - a.  $\ell \propto d$
- b.  $\ell \propto d^2$
- c.  $\ell \propto \frac{1}{1}$
- d.  $\ell \propto \frac{1}{1^2}$
- 20. The mean free path of molecules of a gas, (radius r) is inversely proportional to: (2014)
  - a. r<sup>3</sup>

b. r<sup>-2</sup>

c. r

d.  $\sqrt{r}$ 



# Answer Key

| 1  | 2  | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|----|----|----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| a  | a  | b  | b | d | c | d | b | b | b  | a  | c  | c  | b  | b  | b  | b  |
| 18 | 19 | 20 |   |   |   |   |   |   |    |    |    |    |    |    |    |    |
| a  | d  | b  |   |   |   |   |   |   |    |    |    |    |    |    |    |    |

