Semaine n° 10: du 18 novembre au 22 novembre

Lundi 18 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 6.3 : Partie entière ; partie dense de \mathbb{R} , densité de \mathbb{Q} et de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} ; valeur approchée, approximations décimales d'un réel.
 - Partie 6.4: Intervalles de \mathbb{R} ; caractérisation des intervalles.
- \bullet Cours à préparer : Chapitre XI Entiers relatifs et arithmétique de $\mathbb Z$
 - Partie 1 : Divisibilité; relation de congruence modulo n; division euclidienne.
- Exercices à corriger en classe
 - Feuille d'exercices nº 10 : exercice 6.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices n° 10 : exercices 1, 3, 4, 5, 6.

Mardi 19 novembre

- ullet Cours à préparer : Chapitre XI Entiers relatifs et arithmétique de $\mathbb Z$
 - Partie 2.1 : PGCD de deux entiers ; algorithme d'Euclide ; relations de Bézout.
- Exercices à corriger en classe
 - Feuille d'exercices nº 10 : exercices 7 et 8.

Jeudi 21 novembre

- ullet Cours à préparer : Chapitre XI Entiers relatifs et arithmétique de $\mathbb Z$
 - Partie 2.2 : PGCD d'une famille finie d'entiers.
 - Partie 2.3: Nombres premiers entre eux; théorème de Bézout; lemme de Gauss.
 - Partie 2.4: PPCM de deux entiers relatifs.
- Exercices à corriger en classe
 - Feuille d'exercices nº 10 : exercices 10 et 11.

Vendredi 22 novembre

- \bullet Cours à préparer : Chapitre XI Entiers relatifs et arithmétique de $\mathbb Z$
 - Partie 3 : Nombres premiers; décomposition en produit de nombres premiers; valuation padique, propriétés; petit théorème de Fermat.

Échauffements

Mardi 19 novembre

• Calculer l'intégrale

$$I = \int_{\frac{3\pi}{2}}^{2\pi} \frac{\cos t}{1 + 2\sin t + 2\sin^2 t} \, \mathrm{d}t$$

• Cocher toutes les assertions vraies : Soit E, F deux ensembles, et $f: E \to F$. Soit $A \subset E$ et $B \subset F$. Alors, pour tout élément x,

 $\square \ x \in f(A)$ ssi il existe $y \in A$ tel que $y = f^{-1}(x)$;

 $\square \ x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que $x = f^{-1}(y)$;

 $\Box x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que f(x) = y;

 $\Box x \in f^{-1}(B) \text{ ssi } f(x) \in B;$

 $\square \ x \in f(B)$ ssi il existe $y \in B$ tel que f(y) = x.

Jeudi 21 novembre

• Soit $n \in \mathbb{N}^*$, calculer $S = \sum_{k=1}^n \frac{1}{2^k} \cos\left(\frac{k\pi}{3}\right)$

• Cocher toutes les assertions vraies :

 \square Tout ensemble de \mathbb{N} admet un minimum.

 \square Tout ensemble non vide de \mathbb{N} admet un minimum.

 \square Tout ensemble non vide de \mathbb{N} admet un maximum.

 \square Tout ensemble non vide de \mathbb{Z} admet un minimum.

 \square Tout ensemble non vide et minoré de \mathbb{Z} admet un minimum.

 \square Tout ensemble non vide et majoré de $\mathbb Z$ admet un maximum.

Vendredi 22 novembre

• Cocher toutes les assertions vraies .

Soit $a, b \in \mathbb{R}$, $A = \begin{pmatrix} a & 1 & b \\ 0 & a & 2 \\ 0 & 0 & a \end{pmatrix}$ et N = A - aI, où $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

 \square $N^k = 0$, pour tout entier k > 3.

 \square On ne peut pas appliquer la formule du binôme pour le calcul de A^n .

□ Pour tout entier $n \ge 2$, $A^n = a^n I + na^{n-1}N + \frac{n(n-1)}{2}a^{n-2}N^2$. □ Pour tout entier $n \ge 2$, $A^n = \begin{pmatrix} a^n & na^{n-1} & na^{n-1}b + n(n-1)a^{n-2} \\ 0 & a^n & 2na^{n-1} \\ 0 & 0 & a^n \end{pmatrix}$.

• Cocher toutes les assertions vraies : Soit a, b, c, $d \in \mathbb{Z}^*$. A

 \square s'il existe u et v entiers tels que au + bv = 4 alors $\operatorname{pgcd}(a, b) = 4$.

 \square si 7a - 9b = 1 alors a et b sont premiers entre eux.

 \square si a divise b et b divise c et c divise a, alors |a| = |b|.

 $\square \ll a$ et b premiers entre eux » équivaut à « ppcm(a,b) = |ab| ».

 \square si a divise c et b divise d, alors ab divise cd.

 \square si 9 divise ab et si 9 ne divise pas a, alors 9 divise b.

 \square si a divise b ou a divise c, alors a divise bc.

 $\square \ll a \text{ divise } b \gg \text{ équivaut à } \ll \text{ppcm}(a, b) = |b| \gg.$

 \square si a divise b, alors a n'est pas premier avec b.

 \square si a n'est pas premier avec b, alors a divise b ou b divise a.

2