Anexo

Luis Miguel Domínguez Pérez 7/2/2021

Figura 1:

Análisis de gráficos de densidad y boxplot de las variables cuantitativas iniciales.

```
par(mfrow=c(1,2))
for(i in (colnames(Filter(is.numeric, datos)))) {
  dens <- density(na.omit(datos[[i]]))
  plot(dens, main = paste("Densidad para ", i), col = "steelblue")
    polygon(dens, col = "steelblue")
  box <- boxplot(datos[i], main = paste("Boxplot para ", i), col = "Orange")
}</pre>
```


Densidad para Desc.Rn

Boxplot para Desc.Rn

Densidad para Pres

N = 8611 Bandwidth = 1.616

Boxplot para Pres

Densidad para Temp

Boxplot para Temp

Densidad para HR

N = 8610 Bandwidth = 1.276

Boxplot para HR

Densidad para HS

Density 0.00 0.0

Boxplot para HS

Densidad para Isolar

N = 8620 Bandwidth = 1.366

Boxplot para Isolar

Densidad para Vviento

Density 0.00 0.0

Boxplot para Vviento

Densidad para Temp.Su

Boxplot para Temp.Su

Densidad para Lluvia

Boxplot para Lluvia

N = 8627 Bandwidth = 0.04108

Figura 2.

Datos imputados vs variable semana.

```
par(mfrow=c(3,2))

xyplot (imputation, Rn~semana, pch = 19, cex = 0.7, main = "Rn vs Semana")
```

Rn vs Semana


```
xyplot (imputation, Desc.Rn~semana, pch = 19, cex = 0.7, main = "Desc.Rn vs Semana")
```

Desc.Rn vs Semana

xyplot (imputation, Pres~semana, pch = 19, cex = 0.7, main = "Pres vs Semana")

Pres vs Semana

xyplot (imputation, Temp~semana, pch = 19, cex = 0.7, main = "Temp vs Semana")

Temp vs Semana

xyplot (imputation, HR~semana, pch = 19, cex = 0.7, main = "HR vs Semana")

HR vs Semana

xyplot (imputation, HS~semana, pch = 19, cex = 0.7, main = "HS vs Semana")

HS vs Semana

xyplot (imputation, Isolar~semana, pch = 19, cex = 0.7, main = "Isolar vs Semana")

Isolar vs Semana

xyplot (imputation, Vviento~semana, pch = 19, cex = 0.7, main = "Vviento vs Semana")

Vviento vs Semana

xyplot (imputation, Temp.Su~semana, pch = 19, cex = 0.7, main = "Temp vs Semana")

Temp vs Semana

xyplot (imputation, Lluvia~semana, pch = 19, cex = 0.7, main = "Lluvia vs Semana")

Lluvia vs Semana

Figura 3.

Datos imputados vs variable hora.

```
xyplot (imputation, Rn~hora, pch = 19, cex = 0.7, main = "Rn vs hora")
```


xyplot (imputation, Desc.Rn~hora, pch = 19, cex = 0.7, main = "Desc.Rn vs hora")

Desc.Rn vs hora

xyplot (imputation, Pres~hora, pch = 19, cex = 0.7, main = "Pres vs hora")

Pres vs hora

xyplot (imputation, Temp~hora, pch = 19, cex = 0.7, main = "Temp vs hora")

Temp vs hora

xyplot (imputation, HR~hora, pch = 19, cex = 0.7, main = "HR vs hora")

HR vs hora

xyplot (imputation, HS~hora, pch = 19, cex = 0.7, main = "HS vs hora")

HS vs hora

xyplot (imputation, Isolar~hora, pch = 19, cex = 0.7, main = "Isolar vs hora")

Isolar vs hora

xyplot (imputation, Vviento~hora, pch = 19, cex = 0.7, main = "Vviento vs hora")

Vviento vs hora

xyplot (imputation, Temp.Su~hora, pch = 19, cex = 0.7, main = "Temp vs hora")

Temp vs hora

xyplot (imputation, Lluvia~hora, pch = 19, cex = 0.7, main = "Lluvia vs hora")

Lluvia vs hora

Figura 4.

Diagramas de dispersión para las variables cuantitativas predictoras y la target cuantitiva "TD".

Figura 5.

Gráficos de rejilla para evaluar los mejores puntos de corte:

hist_targetbinaria(predict(modeloDefinitivo_bin, newdata=data_test,type="response"),data_test\$targetBin,"probabilidad")


```
#sensEspCorte(modeloDefinitivo_bin,data_test,"targetBin",0.5,"1")
#sensEspCorte(modeloDefinitivo_bin,data_test,"targetBin",0.75,"1")

## generamos una rejilla de puntos de corte
posiblesCortes<-seq(0,1,0.01)

rejilla<-data.frame(t(rbind(posiblesCortes,sapply(posiblesCortes,function(x) sensEspCorte(modeloDefinitivo_b in,data_test,"targetBin",x,"1")))))

rejilla$Youden<-rejilla$Sensitivity+rejilla$Specificity-1
plot(rejilla$posiblesCortes,rejilla$Youden)</pre>
```



```
rejilla$posiblesCortes[which.max(rejilla$Youden)]
## [1] 0.3
rejilla$posiblesCortes[which.max(rejilla$Accuracy)]
## [1] 0.31
sensEspCorte(modeloDefinitivo_bin,data_test,"targetBin",0.3,"1")
        Accuracy
                    Sensitivity
                                   Specificity Pos Pred Value Neg Pred Value
       0.9360366
                                     0.9332177
                                                  0.8796875
##
                      0.9414716
                                                                 0.9684968
sensEspCorte(modeloDefinitivo_bin,data_test,"targetBin",0.31,"1")
                    Sensitivity
##
        Accuracy
                                   Specificity Pos Pred Value Neg Pred Value
##
       0.9366077
                      0.9381271
                                     0.9358196
                                                    0.8834646
```