Gizlilik Politikaları

Yrd. Doç. Dr. Özgü Can

Gizlilik Politikasının Amaçları

- Gizlilik politikası, aynı zamanda bilgi akışı (information flow) politikası olarak da adlandırılmaktadır.
- Bilgiyi yetkilendirilmemiş erişimlerden korumaktadır.
- Verinin yetkilendirilmemiş değişimi (integrity) ise ikincildir.

Gizlilik Politikasının Amaçları

- ÖR: Askeriyede bir bölüğün yola çıkış tarihi gizli tutulmalıdır.
 - Tarih değişirse;
 - Sistemde ve kağıt üstündeki değişiklikler sonradan gerçekleştirilebilir.

Gizlilik Politikasının Amaçları

- Hükümetler;
 - Vatandaşların mahremiyetini korumalı
 - Kişisel bilgilerinin gizliliğini garantilemeli
- Gelir vergisi
- TC kimlik no

Belirli dokümanların ve bilginin dağıtımı sınırlandırılmalıdır.

Politikalar bu ihtiyaçları sağlamalıdır.

- BLP
 - David Elliott Bell ve Leonard J. LaPadula tarafından geliştirilmiştir.
- Askeri ve hükümetsel tarzda bir sınıflandırmadır.
- Diğer modellerin ve bilgisayar güvenliği teknolojilerinin geliştirilmesinde etkili olmuştur.
- Formel bir durum geçiş (state transition) modelidir.

• Bilgi erişim yetkisi kümesinin *linear (total)* ordering ile sınıflandırılmasıdır.

 Bu yetki kümeleri, duyarlılık düzeyini (sensitivity level) temsil etmektedir.

Linear Ordering

- Bir R (ör. ≤) ilişkisi S kümesinde, aşağıdaki üç durumu sağlıyorsa bu ilişkinin doğrusal sıralama (linear ordering) olduğu söylenebilir:
 - Bütün a ∈ S için eğer aRa ise(Yansıma-Reflexivity)/(Bütünlük/Tümlük-Totality)
 - Eğer aRb ve bRa ise, bütün a, b ∈ S için a = b ise(Antisimetri-Antisymmetry)
 - Bütün a, b, c ∈ S için eğer aRb ve bRc den aRc ise
 (Geçişlilik-Transitivity)

Linear Ordering

- *S* = {1, 2, 3} kümesinde *R* (≤) ilişkisi
- $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - $-1 \le 1$, $1 \le 2$ ve $2 \le 3$
 - $(1, 1) \in R \text{ ve } (1, 2) \in R \text{ ve } (2, 3) \in R$
 - $-3 \le 2$ yazılamaz:
 - (3, 2) ∉ R

Bilgi erişim yetkisi yükseldikçe, bilginin duyarlılığı da artmaktadır.

Gizliliğin sağlanması ihtiyacı da artmaktadır.

• BLP'de:

- Öznenin güvenlik erişim yetkisi (security clearance)

Nesnenin güvenlik sınıflandırması (security classification)

vardır.

Amaç:

Güvenlik sınıflandırması özneden daha yüksek olan nesnelere okuma erişimi önlenmektedir.

- Güvenlik etiketleri (security labels) çok duyarlı (most sensitive) ve az duyarlı (least sensitive) aralığında sınıflandırılmaktadır.
- Bell-LaPadula modelinde, güvenliğin (security) ve korunmanın (protection) açık bir ayrımı yoktur.

 Veri gizliliğine ve sınıflandırılmış bilgiye erişimin denetimine odaklanmaktadır.

- Bell-LaPadula, erişim denetim modellerinden MAC ve DAC'i birleştirmektedir.
- Model:
 - 2 MAC kuralı
 - Simple security property
 - *-Property (star property)
 - 1 DAC kuralı
 - Discretionary security property

tanımlar.

Discretionary Security Property

Erişim denetim matrisi (access control matrix)
kullanılarak,
kullanıcının kim olduğuna ve
neye erişmek istediğine göre
erişim izni verilmektedir.

Simple Security Property - Tanım

- $L(S) = I_s$
 - S öznesinin güvenlik erişim yetkisi (security clearance)
- L(O) = I_o
 - O nesnesinin güvenlik sınıflandırması
- Bütün güvenlik sınıflandırmaları l_i, i = 0,..., k

S öznesi **O** nesnesini sadece ve sadece

O üzerinde okuma hakkına sahip ve $I_o \le I_s$ ise okuyabilir.

Simple Security Property

Belirli bir güvenlik düzeyindeki özne, daha yukarıda ki güvenlik düzeyinde bulunan nesneyi okuyamaz. [No Read Up]

Güvenlik Düzeyi	Özne	Nesne
TOP SECRET (TS)	Bob	Personel Dosyaları
SECRET (S)	Alice	Elektronik Mail Dosyaları
CONFIDENTIAL (C)	Bruce	Etkinlik Log Dosyaları
UNCLASSIFIED(UC)	Sally	Telefon Listeleri Dosyası

- Bob, bütün dosyaları okuyabilir.
- Bob ve Alice, Etkinlik Log Dosyalarını okuyabilir.
- Bruce, Personel ve Elektronik Mail Dosyalarını okuyamaz.
- Sally, sadece Telefon Listelerini okuyabilir.

Güvenlik Düzeyi	Özne	Nesne
TOP SECRET (TS)	Bob	Personel Dosyaları
SECRET (S)	Alice	Elektronik Mail Dosyaları
CONFIDENTIAL (C)	Bruce	Etkinlik Log Dosyaları
UNCLASSIFIED(UC)	Sally	Telefon Listeleri Dosyası

- Bob, personel dosyalarının kopyasını etkinlik log dosyasına kopyalarsa → Bruce personel dosyalarını okuyabilir.
 - Bruce, daha yüksek güvenlik düzeyindeki dosyaları okuyabilecektir.

*-Property

S öznesi O nesnesine,
 sadece ve sadece
 Ö öznesine yazma hakkına sahip ve I_s ≤ I_o olduğunda yazabilir.

Belirli bir güvenlik seviyesindeki özne, daha alt güvenlik seviyesindeki nesneye yazamaz. [No Write Down]

Güvenlik Düzeyi	Özne	Nesne
TOP SECRET (TS)	Bob	Personel Dosyaları
SECRET (S)	Alice	Elektronik Mail Dosyaları
CONFIDENTIAL (C)	Bruce	Etkinlik Log Dosyaları
UNCLASSIFIED(UC)	Sally	Telefon Listeleri Dosyası

• Bob (TS), personel dosyalarının kopyasını etkinlik log dosyasına (C) kopyalayamaz.

Kişinin güvenlik sınıflandırmasında daha alt seviyede bulunan dosyaya yazması neden istenmemektedir?

Güvenli bir sistem,

"simple security condition" ve

"*-property" yi sağlar.

Basic Security Theorem - Tanım

- Σ: Başlangıç durumu σ₀ olan güvenli bir sistem
 ve
- T: Durum değişim kümesi olsun.

Eğer, ∀t ∈T,

"simple security condition" ve "*-property" özelliklerini koruyorsa,

bütün **o**_i durumları güvenlidir.

- Model, her bir güvenlik sınıfına kategoriler kümesi eklenerek genişletilebilir.
- Her bir kategori bir bilgiyi ifade eder.
- Birden fazla kategoriye* yerleştirilen nesne, o kategorilerin bilgilerine sahiptir.
- Kategoriler "need to know" prensibinden meydana gelmektedir.

"Need-to-know" Prensibi

Öznenin işlevlerini gerçekleştirmesi için, nesneyi okuması gerekmiyorsa, özne nesneyi okumamalıdır.

- Kategoriler kümesi = {A, B, C}
- Kişinin erişebileceği kategoriler kümesi:
 - Ø, {A}, {B}, {C}, {A, B}, {A,C},
 {B, C}, {A, B, C}
- Kategori kümesi ⊆ (alt küme) için *linear ordering*'i sağlamaktadır.

- Bob; (SECRET, {B}) ve
 Alice; (TOP SECRET, {A, C})
 seviyeleri için erişim
 yetkisine sahiptirler.
- Bir doküman (CONFIDENTIAL, {B}) olarak sınıflandırılabilir.

NOT:

Öznelerin, güvenlik seviyesine ait erişim yetkisi vardır. Nesneler, bir güvenlik seviyesindedir.

- Güvenlik seviyeleri erişimi değiştirmektedir.
- Kategoriler, "need to know" prensibinde çalıştıkları için ;
 - {A,C} kategorisine erişim hakkı olan kişinin, {B} kategorisine erişim hakkına ihtiyacı olmayabilir.
 - Bu nedenle → Öznenin güvenlik erişim yetkisi, nesnenin güvenlik sınıflandırmasından yüksek olsa bile okuma izni yoktur.

Dom (Dominates) - Tanım

Eğer L`≤ L ve C`≤ C ise, (L, C) güvenlik seviyesi (L`, C`) güvenlik seviyesini baskılar (dominates).

(L, C) dom (L`, C`) yanlış ise (L, C) ¬dom (L`, C`)'dur.

Ornek

- Bob; (SECRET, {A, B})Bob dom DokA güvenlik seviyesinde erişim yetkisine sahiptir.
- DokA; (CONFIDENTIAL, {A})
- DokB; (SECRET, {B, C})
- DokC; (SECRET, {B}) sınıflandırmalarına sahiptir.

- CONFIDENTIAL ≤ SECRET $\{A\} \subseteq \{A, B\}$
- Bob ¬dom DokB $\{A, B\} \nsubseteq \{B, C\}$
- **Bob dom DokC** SECRET ≤ SECRET $\{B\} \subseteq \{A, B\}$

Simple Security Condition - Tanım

S öznesi O nesnesini
sadece ve sadece
O nesnesini okuma hakkına sahip ve S dom O ise
okuyabilir.

Örnek

- Bob; (SECRET, {A, B})
- Alice; (SECRET, {A, B, C})
 güvenlik seviyesinde erişim
 yetkilerine sahiptir.
- DokA; (CONFIDENTIAL, {A})
- DokB; (SECRET, {B, C})
 sınıflandırmalarına sahiptir.

- Bob dom DokA
 CONFIDENTIAL ≤ SECRET
 {A} ⊆ {A, B}
- Bob ¬dom DokB
 {A, B} ⊈ {B, C}

*-Property - Tanım

S öznesi O nesnesine,
sadece ve sadece
O nesnesine yazma hakkına sahip ve O dom S ise
yazabilir.

Örnek

- Bob; (SECRET, {A, B})
- Alice; (SECRET, {A, B, C})
 güvenlik seviyesinde erişim
 yetkilerine sahiptir.
- DokA; (CONFIDENTIAL, {A})
- DokB; (SECRET, {B, C})
 sınıflandırmalarına sahiptir.

- Bob dom DokA
 CONFIDENTIAL ≤ SECRET
 {A} ⊆ {A, B}
- DokA ¬dom Alice
 SECRET ≰ CONFIDENTIAL
 {A, B, C} ⊈ {A}

Örnek

- Albay; (SECRET, {A, B})
- Binbaşı; (SECRET, {B})
- Albay, binbaşıya mesaj göndermek isterse, bu mesaj;
 - En fazla (SECRET, {B}) seviyesinde olmalıdır.

*-Property özelliğini ihlal etmektedir.

- Özne, max. güvenlik seviyesine ve mevcut güvenlik seviyesine sahip olabilir.
- Max. güvenlik seviyesi, mevcut güvenlik seviyesini baskılamalıdır (dominates).
- Özne, diğer varlıklar ile mesajlaşabilmek için, güvenlik seviyesini max.'dan daha aşağı güvenlik seviyesine düşürebilir.

Örnek

- Albay; (SECRET, {A, B})
- Binbaşı; (SECRET, {B})
- Albay, binbaşıya mesaj göndermek isterse;
 - Güvenlik seviyesini (SECRET, {B})'ye düşürebilir.

(SECRET, {A, B}) dom (SECRET, {B})