NetSpend 2022 - Analyzing Internet Costs Worldwide through EDA

About the Dataset:

The dataset contains information regarding internet prices in almost all countries, encompassing the following columns:

- Country Code: A unique code assigned to each country.
- Country: The name of the country under consideration.
- Population: The total population of the country.
- Continental Region: The specific continental region to which the country belongs.
- No. of Internet Plans: The count of different internet plans available in the country.
- Average Price of 1GB (USD): The mean cost of 1 gigabyte of internet data, denominated in USD.
- Cheapest 1GB for 30 Days (USD): The price of the least expensive 1 gigabyte internet plan for a duration of 30 days, in USD.
- Most Expensive 1GB (USD): The cost of the most high-priced 1 gigabyte internet plan, stated in USD.
- Average Price of 1GB (USD at the Start of 2020): The average expense of 1 gigabyte of internet data at the commencement of 2020, in USD.
- Average Price of 1GB (USD at the Start of 2021): The average cost of 1 gigabyte of internet data at the outset of 2021, in USD.

Objective:

The main objective of this project is to perform an in-depth Exploratory Data Analysis (EDA) on the provided dataset. The EDA process involves a comprehensive analysis of the data to draw insights, recognize patterns, and detect trends in internet costs across the globe. The analysis will facilitate the understanding of

relationships between different variables and grant valuable insights into the divergence of internet expenses among various countries. Visualizations, summary statistics, and diverse data exploration techniques will be employed to extract significant knowledge from the dataset.

Furthermore, the historical evolution of internet access in India, along with its integration into the populace, adds context to the global analysis. This context could potentially enrich the interpretation of the observed global trends within the dataset

Imports

In [1]:

```
import warnings
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import missingno as msno
# data visualization
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.style as style
%matplotlib inline
import plotly.express as px
import plotly.io as pio
# prepare styles and colors for plots
style.use("fivethirtyeight")
colors = ["#d4ccb4", "#219ebc", "#008376", "#48314a", "#d46d6e"]
plaette = sns.color_palette(colors)
sns.palplot(sns.color_palette(colors))
plt.show()
style.use("Solarize_Light2")
# ignore warnings
warnings.filterwarnings('ignore')
```



```
/kaggle/input/1-gb-internet-price/worldwide internet users - users.csv
/kaggle/input/1-gb-internet-price/worldwide internet speed in 2022 - avg
speed.csv
/kaggle/input/1-gb-internet-price/all_csv sorted.csv
/kaggle/input/1-gb-internet-price/worldwide internet prices in 2022 - IN 2
022.csv
```

!pip install missingno

```
Requirement already satisfied: missingno in /opt/conda/lib/python3.7/site-
packages (0.4.2)
Requirement already satisfied: seaborn in /opt/conda/lib/python3.7/site-pa
ckages (from missingno) (0.11.2)
Requirement already satisfied: matplotlib in /opt/conda/lib/python3.7/site
-packages (from missingno) (3.5.2)
Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-pack
ages (from missingno) (1.21.6)
Requirement already satisfied: scipy in /opt/conda/lib/python3.7/site-pack
ages (from missingno) (1.7.3)
Requirement already satisfied: pyparsing>=2.2.1 in /opt/conda/lib/python3.
7/site-packages (from matplotlib->missingno) (3.0.9)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python
3.7/site-packages (from matplotlib->missingno) (1.4.3)
Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/pyth
on3.7/site-packages (from matplotlib->missingno) (2.8.2)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.7/si
te-packages (from matplotlib->missingno) (0.11.0)
Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.7/s
ite-packages (from matplotlib->missingno) (9.1.1)
Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.
7/site-packages (from matplotlib->missingno) (21.3)
Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python
3.7/site-packages (from matplotlib->missingno) (4.33.3)
Requirement already satisfied: pandas>=0.23 in /opt/conda/lib/python3.7/si
te-packages (from seaborn->missingno) (1.3.5)
Requirement already satisfied: typing-extensions in /opt/conda/lib/python
3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->missingno) (4.1.1)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.7/si
te-packages (from pandas>=0.23->seaborn->missingno) (2022.1)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.7/site-p
ackages (from python-dateutil>=2.7->matplotlib->missingno) (1.16.0)
WARNING: Running pip as the 'root' user can result in broken permissions a
nd conflicting behaviour with the system package manager. It is recommende
d to use a virtual environment instead: https://pip.pypa.io/warnings/venv
(https://pip.pypa.io/warnings/venv)
```

1. Data Collection [S

In [3]:

df = pd.read_csv('../input/1-gb-internet-price/worldwide internet prices in 2022 - IN 202
df

Out[3]:

						Cheapest	Most	Ave pric
Country code		Name	Continental region	NO. OF Internet	Average price of 1GB (USD)	1GB for 30 days	expensive 1GB	(US
			-	Plans	, ,	(USD)	(USD)	sta 2
0	IL	Israel	NEAR EAST	27.0	\$0.05	\$0.02	\$20.95	\$
1	KG	Kyrgyzstan	CIS (FORMER USSR)	20.0	\$0.15	\$0.10	\$7.08	\$
2	FJ	Fiji	OCEANIA	18.0	\$0.19	\$0.05	\$0.85	\$
3	IT	Italy	WESTERN EUROPE	29.0	\$0.27	\$0.09	\$3.54	\$
4	SD	Sudan	SUB- SAHARAN AFRICA	33.0	\$0.27	\$0.03	\$0.92	\$
237	VA	Vatican City (Holy See)	Europe	NaN	NO PROVIDERS	NaN	NaN	
238	VE	Venezuela	SOUTH AMERICA	NaN	HYPERINFLATION	NaN	NaN	
239	WF	Wallis and Futuna	OCEANIA	NaN	NO PROVIDERS	NaN	NaN	
240	CD	Congo (Democratic Republic of)	SUB- SAHARAN AFRICA	NaN	Prices listed in non-convertible 'units'	NaN	NaN	
241	ZW	Zimbabwe	SUB- SAHARAN AFRICA	NaN	UNRELIABLE EXCHANGE RATES	NaN	NaN	

242 rows × 9 columns

1.1 Data Info

In [4]:

df.info()					
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 242 entries, 0 to 241</class></pre>					
Data columns (total 9 columns): # Column	Non-Null Count	Dty			
pe					
0 Country code	241 non-null	obj			
ect 1 Name	242 non-null	obj			
ect					
2 Continental region	242 non-null	obj			
ect 3 NO. OF Internet Plans	230 non-null	flo			
at64					
4 Average price of 1GB (USD)	242 non-null	obj			
ect 5 Cheapest 1GB for 30 days (USD)	230 non-null	obj			
ect					
6 Most expensive 1GB (USD) ect	230 non-null	obj			
7 Average price of 1GB (USD at the start of 2021)	230 non-null	obj			
ect	222				
8 Average price of 1GB (USD - at start of 2020)	230 non-null	obj			
ect					
dtypes: float64(1), object(8)					
memory usage: 17.1+ KB					

1.2 Data Type 🛑 🔾 🔵

In [5]:

df.dtypes

Out[5]:

Country code	object	
Name	object	
Continental region	object	
NO. OF Internet Plans	float64	
Average price of 1GB (USD)	object	
Cheapest 1GB for 30 days (USD)		
Most expensive 1GB (USD)		
Average price of 1GB (USD at the start of 2021)	object	
Average price of 1GB (USD - at start of 2020)	object	
dtype: object		

1.3 Data Describe

In [6]:

df.describe()

Out[6]:

NO. OF Internet Plans

count	230.000000
mean	26.730435
std	16.468216
min	1.000000
25%	15.000000
50%	22.000000
75%	36.000000
max	60.000000

2. Data Cleaning 🖋

Data cleaning refers to the process of removing unwanted variables and values from your dataset and getting rid of any irregularities in it. Such anomalies can disproportionately skew the data and hence adversely affect the results. Some steps that can be done to clean data are:

- · Removing missing values
- Outliers
- · Unnecessary rows/ columns.

2.1 Missing Values 🚫

In [7]:

df.isnull().sum()

Out[7]:

Country code	1
Name	0
Continental region	0
NO. OF Internet Plans	12
Average price of 1GB (USD)	0
Cheapest 1GB for 30 days (USD)	12
Most expensive 1GB (USD)	12
Average price of 1GB (USD at the start of 2021)	12
Average price of 1GB (USD - at start of 2020)	12
dtype: int64	

In [8]:

```
plt.figure(figsize = (24, 5))
axz = plt.subplot(1,2,2)
msno.bar(df, ax = axz, fontsize = 12)
```

Out[8]:

<AxesSubplot:>

There is several columns have null values, so we will drop these rows from our data set

In [9]:

```
df.dropna(inplace=True)
```

In [10]:

```
df.isnull().sum()
```

Out[10]:

Country code	0
Name	0
Continental region	0
NO. OF Internet Plans	0
Average price of 1GB (USD)	0
Cheapest 1GB for 30 days (USD)	0
Most expensive 1GB (USD)	0
Average price of 1GB (USD at the start of 2021)	0
Average price of 1GB (USD - at start of 2020)	0
dtype: int64	

Let's try removing the '\$' and ',' using regular expression to remove the non-numeric characters from the string

In [11]:

```
# get all rows contains digits
df=df[df['Average price of 1GB (USD at the start of 2021)'].str.startswith('$')]
df=df[df['Average price of 1GB (USD - at start of 2020)'].str.startswith('$')]
```

In [12]:

```
df['Average price of 1GB (USD)'] = df['Average price of 1GB (USD)'].replace({'\$': '', ',
df['Cheapest 1GB for 30 days (USD)'] = df['Cheapest 1GB for 30 days (USD)'].replace({'\$'
df['Most expensive 1GB (USD)'] = df['Most expensive 1GB (USD)'].replace({'\$': '', ',': '
df['Average price of 1GB (USD at the start of 2021)'] = df['Average price of 1GB (USD at the start of 2020)'] = df['Average price of 1GB (USD at the start of 2020)'] = df['Average price of 1GB (USD at the start of 2020)']
```

In [13]:

```
df.columns
```

Out[13]:

3. Visualization.

3.1 Univariate Analysis

In Univariate Analysis, you analyze data of just one variable. A variable in your dataset refers to a single feature/ column. You can do this either with graphical or non-graphical means by finding specific mathematical values in the data.

3.1.1 Most expensive 1GB (USD)

In [14]:

```
sns.histplot(data=df, x="Most expensive 1GB (USD)", kde=True, color=plaette[4])
```

Out[14]:

<AxesSubplot:xlabel='Most expensive 1GB (USD)', ylabel='Count'>

3.1.2 NO. OF Internet Plans

In [15]:

```
sns.histplot(data=df, x="NO. OF Internet Plans ", kde=True, color=plaette[1])
```

Out[15]:

<AxesSubplot:xlabel='NO. OF Internet Plans ', ylabel='Count'>

3.1.3 Cheapest 1GB for 30 days (USD)

In [16]:

```
sns.histplot(data=df, x="Cheapest 1GB for 30 days (USD)", kde=True, color=plaette[2])
```

Out[16]:

<AxesSubplot:xlabel='Cheapest 1GB for 30 days (USD)', ylabel='Count'>

3.1.4 Average price of 1GB (USD at the start of 2021)

In [17]:

```
sns.histplot(data=df, x="Average price of 1GB (USD at the start of 2021)", kde=True,
```

Out[17]:

<AxesSubplot:xlabel='Average price of 1GB (USD at the start of 2021)', yl
abel='Count'>

3.2 Bivariate Analysis

3.2.1 Average price of 1GB (USD at the start of 2021) and Average price of 1GB (USD – at start of 2020)

In [18]:

```
plt.figure(figsize=(15, 12))

plt.subplot(2, 2, 1)

g = sns.lineplot(data=df[['Average price of 1GB (USD at the start of 2021)','Average price g.set_xticklabels(g.get_xticklabels(), rotation=90);

plt.subplot(2, 2, 2)
plt.barh(df['Continental region'].value_counts().index, df['Continental region'].value_couplt.title("The Continental Region")
plt.tight_layout()
```


3.2.2 Most expensive 1GB by Continental region

In [19]:

```
most_exp = df.groupby(['Continental region'])['Most expensive 1GB (USD)'].mean().reset_ir
g = sns.barplot(x="Continental region", y="Most expensive 1GB (USD)", data=most_exp,palet
g.set_xticklabels(g.get_xticklabels(), rotation=90)
g.set_title('Most expensive 1GB by Continental region', pad=20)
```

Out[19]:

Text(0.5, 1.0, 'Most expensive 1GB by Continental region')

3.2.3 Cheapest 1GB for 30 days (USD) by Continental region

In [20]:

```
most_exp = df.groupby(['Continental region'])['Cheapest 1GB for 30 days (USD)'].mean().re
g = sns.barplot(x="Continental region", y="Cheapest 1GB for 30 days (USD)", data=most_exp
g.set_xticklabels(g.get_xticklabels(), rotation=90)
g.set_title('Cheapest 1GB for 30 days (USD) by Continental region', pad=20)
```

Out[20]:

Text(0.5, 1.0, 'Cheapest 1GB for 30 days (USD) by Continental region')

3.2.4 Most expensive 1GB by Country

In [21]:

```
max_exp = df.groupby(['Name'])['Most expensive 1GB (USD)'].max().reset_index().sort_value
g = sns.barplot(x="Name", y="Most expensive 1GB (USD)", data=max_exp[:10],palette=plaette
g.set_xticklabels(g.get_xticklabels(), rotation=90)
g.set_title('Top 10 Country - Most expensive 1GB Country', pad=20)
```

Out[21]:

Text(0.5, 1.0, 'Top 10 Country - Most expensive 1GB Country')

3.2.5 NO. OF Internet Plans and Average price of 1GB (USD)

In [22]:

```
sns.relplot(x="NO. OF Internet Plans ", y="Average price of 1GB (USD)", data=df);
◆
```


4. Geospatial Analysis using Plotly 🗫

In [23]:

```
fig = px.choropleth(df, locations='Name', locationmode='country names',scope='world',colo
fig
```

```
In [24]:
```

```
fig = px.choropleth(df, locations='Name', locationmode='country names',scope='world',colc
fig
```