1 Review

 $T \in \text{Hom}(V, V)$ is unitary/orthogonal if

- ||Tx|| = ||x||
- $\langle Tx, Ty \rangle = \langle x, y \rangle$
- $TT^* = T^*T = I$
- T sends an orthonormal basis to an orthonormal basis.

Definition 1.1. For $A, B \in M_{n \times n}(\mathbb{F})$, A and B are called unitarily/orthogonally equivalent if there exists Q unitary/orthogonalsuch that $A = Q^{-1}BQ$.

Remark 1.2. If β is an orthonormal basis, then T is unitary/orthogonal if and only if $[T]_{\beta}$ is unitary/orthogonal.

Remark 1.3. If β, β' are orthonormal bases, then the change-of-basis matrix $[I]^{\beta'}_{\beta}$ is unitary/orthogonal.

e.g. If β is a standard basis, which is orthonormal, then $[I]_{\beta}^{\beta'}$ is unitary/orthogonal, since colums are an orthonormal basis of \mathbb{F}^n . Thus, if β, β' are orthonormal bases, then $[T]_{\beta}$, $[T]_{\beta'}$ are unitarily/orthogonally equivalent.

Lemma 1.4

Let $T \in \text{Hom}(V, V)$. If T has an eigenvalue λ , then T^* has an eigenvalue $\overline{\lambda}$.

Theorem 1.5

If the characteristic polynomial of T splits, then there exists an orthonormal basis β such that $[T]_{\beta}$ is upper-triangular.

Proof.

We proceed by induction on $\dim V$.

If n = 1, then the change-of-basis matrix is one by one, and hence upper-triangular.

If n > 1, assume the claim holds for n - 1.

Since the characteristic polynomial f(t) of T splits, then T has an eigenvalue, say $\lambda \in \mathbb{F}$.

Then by Lemma 1.4, T^* has an eigenvalue $\overline{\lambda}$, say $T^*v = \overline{\lambda}v$, with ||v|| = 1.

Thus, $W = \operatorname{span} v$ is T^* -invariant, and thus W^{\perp} is T-invariant, with $\dim W^{\perp} = n - 1$.

By Theorem 5.21, the characteristic polynomial of $T_{W^{\perp}}$ divides f(t), so $f_{W^{\perp}}(t)$ splits.

By inductive hypothesis, hdece exits an orthonormal basis γ of W^{\perp} such that $[T_{W^{\perp}}]_{\gamma}$ is upper-triangular. Therefore, $\beta = \gamma \cup \{v\}$ is an orthonormal basis of V.

Since $[T_{W^{\perp}}]_{\gamma}$ is upper-triangular, then $[T]_{\gamma}$ is upper-triangular.

Corollary 1.6

If $A \in M_{n \times n}(\mathbb{F})$ and the characteristic polynomial of A splits, then Ais unitarily/orthogonally equivalent to an upper-triangular matrix.

2 Orthogonal Projections and The Spectral Theorem

Let V be a finite-dimensional inner product space.

Suppose $W \subset V$. Thus, $V = W \oplus W^{\perp}$, and thus we can define a linear map, called an orthogonal projection onto W, $P_W \in \text{Hom}(V, V)$ by $P_W(w + w^{\perp}) = w$.

Theorem 2.1 a) im
$$P_W = W$$
, ker $P_W = W^{\perp}$.

b)
$$P_W^2 = P_W \text{ and } P_W^* = P_W$$

Proof.

We prove (b).

By definition, $P'(w+w^{\perp}) = P_W P_W(w+w^{\perp}) = P_w w = w$.

To check that $P_W^* = P_W$, observe the following, for $v, w \in W$:

$$\langle P_W(w+w^{\perp}), v+v^{\perp} \rangle = \langle w, v+v^{\perp} \rangle = \langle w, v \rangle$$
 (1)

$$\langle w + w^{\perp}, P_W(v + v^{\perp}) \rangle = \langle w + w^{\perp}, v \rangle = \langle w, v \rangle$$
 (2)

Theorem 2.2 (6.24)

Suppose $T \in \text{Hom}(V, V)$. Then T is an orthogonal projection if and only if $T^2 = T$ and $T^* = T$.

Proof.

We have proved the first direction in Theorem 2.1.

Suppose now $T^2 = T$ and $T^* = T$.

Let $W = \operatorname{im}(T)$. We want to show that $T = P_W$.

Since $\operatorname{im}(T^*)^{\perp} = \ker T$, then $W^{\perp} = \ker(T)$.

Since $T = T^*$, im $T^* = \operatorname{im} T$.

Therefore, $V = \ker T \oplus \operatorname{im} T$.

Fix $v \in V$. Since $V = \ker T \oplus \operatorname{im} T$, there exists $w \in \operatorname{im} T$, $w' \in \ker T$ such that v = w + w'.

Then Tv = T(w + w') = Tw + Tw', and since $w' \in \ker T$, Tv = Tw.

Note that x = Tx + (x - Tx). Observe that $Tx = T^2x + T(x - Tx)$, and since $T = T^2$, then $x - Tx \in \ker T$. Therefore, $w + w' - Tw - Tw' = w - Tw + w' \in \ker T$, which means that $w - Tw \in \ker T$. But $w - Tw \in \operatorname{im} T$, because $\operatorname{im} T$ is T-invariant, while $V = \operatorname{im} T \oplus \ker T$, and thus w - Tw = 0.

Hence, Tv = Tw = w, and hence T is an orthogonal projection.