

Recitations 15

[Definitions used today]

- players, actions, action profiles, consequences
- game on consequences, game in normal form
- lotteries: simple and compound
- vNM axioms: weak order, continuity, monotonicity, reduction, substitution

Question 1

Suppose [WO, I] hold. Let $\mathcal{L} \equiv \Delta(C)$ and $C = \{c_1, \ldots, c_m\}$. Show that:

$$\forall_{F \in \mathcal{L}} \quad \delta_{c^1} \succeq F \succeq \delta_{c^m}$$

where δ_{c^i} gives probability 1 to the consequence i

Question 2 [von Neumann-Morgenstern]

- 1. (existence) \succeq on \mathcal{L} satisfies WO, Cty, I if and only if there exists a linear $u:\mathcal{G}\to\mathbb{R}$ that represents \succeq
- 2. (uniqueness) If u, v are linear representations of \succeq , then $\exists A > 0, B \in \mathbb{R}$ such that $u(\cdot) = Av(\cdot) + B$

Show \Rightarrow part of existence.

Question 3 [234 III.1 Fall 2016 majors]

Consider a preference order \succeq , and assume that it satisfies the von Neumann-Morgenstern (vNM) axioms. Let, for any two lotteries L and M, and any $\alpha \in [0,1], (L,\alpha,M)$ be the compound lottery that gives the lottery L with probability α and the lottery M with probability $1-\alpha$

- a) State what a vNM representation is, and then state the vNM axioms in the form you prefer: the axioms you state must characterize preferences with the vNM representation.
- b) Prove that \succeq satisfies the Sure Thing Principle (STP), namely that for any lotteries L, M, N and R and any $\alpha \in [0, 1]$

$$(L, \alpha, M) \succ (N, \alpha, M)$$
 if and only if $(L, \alpha, R) \succ (N, \alpha, R)$

If you assume the STP among your axioms, then prove that your axioms imply that the preference order has a vNM representation.

c) Suppose that L > M; prove that for any $\alpha \in (0,1]$

$$(L, \alpha, M) \succ M$$

d) Prove that if u and v are two linear utility functions representing \succeq , then u is a positive affine transformation of v

Question 4 [Marschak Machina Triangle]

Consider a set C of three consequences 1,2,3 and a set of lotteries over C.

- Draw a 2D diagram that represents a three dimensional simplex.
- Draw two simple lotteries L_1 and L_2 . Consider a compound lottery $L_3 = (L_1, p; L_2, 1 p)$. How to represent it on the diagram?
- Suppose preferences are given by a Bernoulli function $u: C \to \mathbb{R}$. Write an equation for an indifference curve. Show that indifference curves are parallel. Draw some indifference curves on the diagram.

2 - Recitations 15

Question 5 The weighted utility model represents preferences \succsim over lotteries in the MM triangle given above as

follows:

$$(p_1, p_3) \succ (p'_1, p'_3) \iff \sum_{i=1}^{3} \frac{v_i p_i}{\sum_{j=1}^{3} v_j p_j} u_i > \sum_{i=1}^{3} \frac{v_i p_i}{\sum_{j=1}^{3} v_j p_j} u_i$$

where $u_i = u(i), u : \mathbb{R} \to \mathbb{R}$ is a strictly increasing utility function, v_i are strictly positive weights and $p_2 = 1 - p_1 - p_3$

- a) Write down the formula for an indifference curve implied by these preferences, i.e. the set of lotteries indifferent to each other (an equivalence class)
- b) Show that any equivalence class for these preferences is convex, i.e. if E denotes some equivalence class of these preference, then if $P,Q \in E$, then $\alpha P + (1-\alpha)Q \in E$, where $\alpha \in (0,1)$. Another word for this property is betweenness.
- c) Show that in general these preferences may not satisfy independence: $P \succ Q \Longrightarrow \alpha P + (1-\alpha)R \succ \alpha Q + (1-\alpha)R$, for $\alpha \in (0,1)$
- d) Show that betweenness is implied by independence.
- e) Suppose that $(0.2,0.8) \prec (0,0)$ and $(0.8,0.2) \succ (0.75,0)$. Can this model accommodate such a pattern? If yes, specify values of u_i and v_i that may do the job.