

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Alcuni problemi combinatorici (Gennaio 2006)

Alcuni problemi interessanti

Problema 1: Le torri

Problema 2: A una festa di laurea

Problema 3: La rete telematica

Problema 4: Il Grande Fratello

Problema 5: Produzione del vetro

Problema 6: Arredamento

Problema 1 (Le torri)

Qual è il massimo numero di torri che è possibile disporre su una scacchiera senza che esse si diano scacco reciproco?

Due torri si danno scacco se si trovano sulla medesima riga o colonna.

Grafo intersezione righe-colonne

- U = insieme degli archi del grafo G
- \Im = famiglia degli insiemi di archi che toccano ogni vertice del grafo G non più di una volta (matching)
- c = funzione che associa a ogni arco del grafo G un costo pari a 1

Il problema, della forma

$$\max_{X \in \mathfrak{I}} c(X)$$

consiste nel trovare all'interno di G un matching di peso massimo.

Problema 2 (A una festa di laurea)

n ragazzi e m ragazze si incontrano a una festa di laurea.

Ciascuno di loro dà mentalmente un punteggio p da 0 a 10 alle persone di sesso diverso dal proprio in base all'attrazione provata (0 = attrazione minima, 10 = attrazione massima).

Supponiamo di definire l'attrazione reciproca di una coppia come il prodotto dei punteggi che ciascun membro della coppia assegna al partner.

Qual è l'abbinamento "ideale" che massimizza l'attrazione reciproca totale?

Voti dei ragazzi alle ragazze		Anna	Bianca	Cecilia	Daniela
	Alberto	5	2	4	9
	Boris	4	3	6	8
	Carlo	7	5	2	3
	Davide	2	8	2	7

Voti delle ai	ragazze ragazzi	Alberto	Boris	Carlo	Davide
	Anna	2	9	2	3
	Bianca	0	8	1	5
	Cecilia	7	2	3	3
·	Daniela	1	1	2	7

- U = insieme degli archi del grafo G
- \mathfrak{I} = famiglia degli insiemi di archi che toccano ogni vertice del grafo G esattamente una volta (matching perfetti)
- c = funzione che associa a ogni arco del grafo G un costo pari al prodotto dei punteggi dei vertici corrispondenti

Il problema, della forma

$$\max_{X \in \mathfrak{I}} c(X)$$

consiste nel trovare all'interno di *G* un matching perfetto di peso massimo.

Problema 3 (La rete telematica)

Per monitorare una rete telematica si vuole individuare un insieme di nodi che tocchino tutti i link della rete.

Qual è il più piccolo insieme che verifica questa proprietà?

Si può associare in modo naturale un vertice di un grafo a ogni nodo della rete.

Vertici adiacenti = nodi collegati da un link.

- U = insieme degli vertici del grafo G
- \Im = famiglia degli insiemi di vertici che toccano ogni arco del grafo G almeno una volta (node-cover, $U \in \Im$)
- c = funzione che associa a ogni nodo del grafo G un peso pari a 1

Il problema, della forma

$$\min_{X \in \mathfrak{I}} c(X)$$

consiste nel trovare all'interno di *G* un node-cover di peso minimo.

Problema 4 (Il Grande Fratello)

Si vuole dotare un museo di un sistema di televisione a circuito chiuso che consenta la sorveglianza in assenza di personale.

Sapendo che una telecamera posta all'incrocio di due corridoi è in grado, con opportune rotazioni, di sorvegliarli entrambi, qual è il minimo numero di telecamere necessarie?

Si può associare ogni corridoio rettilineo a un vertice di un grafo.

Vertici adiacenti = corridoi che si intersecano.

Si può associare ogni corridoio rettilineo a un vertice di un grafo.

Vertici adiacenti = corridoi che si intersecano.

Si può associare ogni corridoio rettilineo a un vertice di un grafo.

Vertici adiacenti = corridoi che si intersecano.

U = insieme degli archi del grafo G

 \mathfrak{I} = famiglia degli insiemi di archi che coprono tutti i vertici del grafo G (edge-cover)

c = funzione che associa costo pari a 1 a ogni arco del grafo G

Il problema, della forma

$$\min_{X \in \mathfrak{I}} c(X)$$

consiste nel trovare all'interno di G un edge-cover di peso minimo.

Si osservi che siccome i corridoi orizzontali (verticali) non si intersecano tra di loro, i vertici sono partizionati in due insiemi stabili, e quindi G è bipartito.

In astratto il problema può essere definito su un grafo qualsiasi.

Problema 5 (Produzione del vetro)

Problema 5 (Produzione del vetro)

Obiettivo: produrre i pezzi nei quantitativi richiesti minimizzando l'area

totale delle lastre utilizzate

<u>Ipotesi</u>: per semplicità, tutti i pezzi dello stesso tipo vengono tagliati

da lastre di una medesima dimensione

Problema 5 (Produzione del vetro)

Obiettivo: produrre i pezzi nei quantitativi richiesti minimizzando l'area

totale delle lastre utilizzate

<u>Ipotesi</u>: per semplicità, tutti i pezzi dello stesso tipo vengono tagliati

da lastre di una medesima dimensione

domanda	<i>d</i> ₁	611	d _i	d_m
	pz. 1	pz. 2	pz. <i>i</i>	pz. <i>m</i>
lastra 1		2295		
lastra 2	 	2040		
lastra <i>k</i>				
lastra <i>n</i>	 			

Obiettivo: produrre i pezzi nei quantitativi richiesti minimizzando l'area

totale delle lastre utilizzate

<u>Ipotesi</u>: per semplicità, tutti i pezzi dello stesso tipo vengono tagliati

da lastre di una medesima dimensione

domanda	<i>d</i> ₁	611	d _i	d _m
	pz. 1	pz. 2	pz. <i>i</i>	pz. <i>m</i>
lastra 1		2295		
lastra 2		2040		
lastra k				
lastra n				

<u>Problema</u>: in un grafo bipartito completo $G = (P \cup L, P \times L)$, trovare un

assegnamento di P a L avente peso minimo

Problema 6 (Arredamento)

Il signor Rossi ha evidenti problemi nel sistemare i soprammobili nelle tre librerie del suo studio. Egli, infatti, deve inserire in ciascuno dei 27 scomparti: 9 statue, 9 cornici e 9 vasi. In ogni ripiano e in ogni colonna delle tre librerie ci devono essere tutti e tre i diversi oggetti, ma nessun oggetto deve occupare la stessa posizione in due diverse librerie.

Qual è l'unica disposizione possibile, senza spostare i tre oggetti in esse già sistemati? (La soluzione è a pag. 46)

Possiamo associare a ogni scomparto della libreria un nodo di un grafo simmetrico. Due vertici del grafo saranno adiacenti

se e solo se gli scomparti ad essi corrispondenti

- 1) si trovano sulla stessa riga, o
- 2) si trovano sulla stessa colonna, oppure
- 3) hanno la medesima posizione

A questo punto diciamo che un nodo di colore rosso corrisponde a una *statua*, uno giallo a un *soprammobile* e uno blu a una *cornice*