Mouvement brownien

Exercice 1 (Quizz). Soit $B = \{B_t\}_{t \ge 0}$ un processus gaussien à trajectoires continues, tel que $B_t \sim \mathcal{N}(0,t)$ pour tout $t \ge 0$. Peut-on conclure que B est un mouvement brownien?

Exercice 2 (Transformations). Soit $\{B_t\}_{t\geq 0}$ un mouvement brownien et a>0.

- 1. Montrer que $\{-B_t\}_{t>0}$ est un mouvement brownien.
- 2. Montrer que $\{B_{a+t}-B_a\}_{t\geq 0}$ est un mouvement brownien indépendant de $\{B_t\}_{0\leq t\leq a}$.
- 3. Montrer que $\left\{\frac{B_{at}}{\sqrt{a}}\right\}_{t>0}$ est un mouvement brownien.
- 4. Montrer que $\left\{(1+t)B_{\frac{t}{1+t}}-tB_1\right\}_{t\geq 0}$ est un mouvement brownien.
- 5. Montrer que $(t+1)B_{\frac{1}{1+t}}-B_1$ est un mouvement brownien.
- 6. Montrer que $\left\{tB_{\frac{1}{t}}1_{(t>0)}\right\}_{t\geq0}$ est un mouvement brownien.

Indication : On pourra dans un premier temps montrer qu'il suffit de contrôler la covariance entre deux temps (ou la variance d'un incrément) et la continuité.

Exercice 3 (Principe de réflexion). Soit $\{B_t\}_{t\geq 0}$ un mouvement brownien, et soit t>0. On pose

$$S_t := \sup_{0 \le s \le t} B_s.$$

1. Soit a > 0 et b < a. À l'aide de la propriété de Markov forte, établir l'identité

$$\mathbb{P}\left(S_{t} > a, B_{t} < b\right) = \mathbb{P}\left(B_{t} > 2a - b\right).$$

- 2. En déduire que le couple (S_t, B_t) admet une densité que l'on explicitera.
- 3. Montrer que S_t a même loi que $|B_t|$.
- 4. Montrer que $T_a = \inf\{t \ge 0 \colon B_t = a\}$ a même loi que $(a/B_1)^2$, puis en déduire sa densité.

Exercice 4 (Intégrale d'un processus gaussien). Soit $X = \{X_t\}_{t \ge 0}$ un processus gaussien à trajectoires continues. Montrer que le processus $Y = \{Y_t\}_{t \ge 0}$ défini par

$$Y_t(\omega) := \int_0^t X_u(\omega) du$$

est encore un processus gaussien dont on précisera les fonctions de moyenne et de covariance, en fonction de celles de X. Qu'obtient-on dans le cas où X est un mouvement brownien?

Exercice 5 (Brownien fractionnaire). Soit $\mathfrak{h} \in]0,1[$ et soit $B^{\mathfrak{h}} = \{B^{\mathfrak{h}}_t\}_{t\geq 0}$ un processus gaussien centré à trajectoires continues dont la fonction de covariance est donnée par

$$K(s,t) = \frac{t^{2\mathfrak{h}} + s^{2\mathfrak{h}} - |t - s|^{2\mathfrak{h}}}{2}.$$

On admettra l'existence d'un tel processus. L'indice h est appelé indice de Hurst.

- 1. Montrer que $\{c^{-\mathfrak{h}}B_{ct}^{\mathfrak{h}}\}$ a la même loi que $B^{\mathfrak{h}}$.
- 2. Montrer que pour tout s, $\{B_{s+t}^{\mathfrak{h}} B_{s}^{\mathfrak{h}}\}_{t>0}$ a la même loi que $B^{\mathfrak{h}}$.

3. $B^{\mathfrak{h}}$ vérifie-t-il la propriété de Markov?

Exercice 6 (Pont brownien). Un pont brownien est un processus gaussien $\{Z_t\}_{0 \le t \le 1}$ centré, à trajectoires continues et de fonction de covariance $\Gamma(s,t) = s \wedge t - st$.

- 1. Vérifier que la loi d'un pont brownien est invariante par retournement du temps : si $\{Z_t\}_{0 \le t \le 1}$ est un pont brownien, alors $\{Z_{1-t}\}_{0 \le t \le 1}$ aussi.
- 2. Soit $\{Z_t\}_{0 \le t \le 1}$ un pont brownien. Que dire du processus $\{(1+t)Z_{\frac{t}{1+t}}\}_{t>0}$?
- 3. Soit $B = \{B_t\}_{t \ge 0}$ un mouvement brownien. Pour $0 \le t \le 1$ on pose $Z_t := B_t tB_1$. Montrer que $Z = \{Z_t\}_{0 \le t \le 1}$ est un pont brownien indépendant de B_1 .
- 4. On note $\mathscr C$ l'espace des fonctions continues de [0,1] dans $\mathbb R$, muni de la norme $\|\cdot\|_{\infty}$. Montrer que pour toute fonction continue bornée $G\colon \mathscr C\to \mathbb R$,

$$\mathbb{E}\left[G(B)\big||B_1| \le \varepsilon\right] \xrightarrow{\varepsilon \to 0} \mathbb{E}[G(Z)].$$

Exercice 7 (Mouvement brownien multi-dimensionnel). Un processus $\{B_t = (B_t^1, \dots, B_t^d)\}_{t \geq 0}$ à valeurs dans \mathbb{R}^d est appelé mouvement brownien d-dimensionnel si ses coordonnées $\{B_t^1\}_{t \geq 0}, \dots, \{B_t^d\}_{t \geq 0}$ sont des mouvements browniens indépendants. Vérifier que si $\{B_t\}_{t \geq 0}$ est un mouvement brownien d-dimensionnel alors $\{UB_t\}_{t \geq 0}$ aussi, pour toute matrice $U \in \mathcal{O}(d, \mathbb{R})$.

Exercice 8 (Loi du tout ou rien de Blumenthal). Soit $\{B_t\}_{t\geq 0}$ un mouvement brownien et soit $\{\mathscr{F}_t\}_{t\geq 0}$ sa filtration naturelle. On pose

$$\mathscr{F}_{0+} := \bigcap_{t>0} \mathscr{F}_t.$$

- 1. Soit $\varepsilon > 0$. Montrer que \mathscr{F}_{0+} est indépendante de la tribu $\mathscr{G}_{\varepsilon} := \sigma(B_t B_{\varepsilon}, t \geq \varepsilon)$.
- 2. En déduire que \mathscr{F}_{0+} est indépendante de $\sigma\left(\bigcup_{\varepsilon>0}\mathscr{G}_{\varepsilon}\right)$.
- 3. Conclure que \mathscr{F}_{0+} est triviale : pour tout $A \in \mathscr{F}_{0+}$, on a $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$.

Exercice 9 On pose $\tau = \inf\{t > 0 : B_t > 0\}$.

- 1. Montrer que $\tau = 0$ presque sûrement.
- 2. En déduire que $\inf\{t>0: B_t=0\}=0$ presque sûrement.
- 3. En déduire que presque sûrement, $\{t > 0 : B_t = 0\}$ n'est pas borné.

Exercice 10 (Propriétés trajectorielles). Soit $\{B_t\}_{t>0}$ un mouvement brownien. Montrer que presque sûrement,

- 1. pour tout $\varepsilon > 0$, $\sup_{0 < t < \varepsilon} B_t > 0$ et $\inf_{0 \le t \le \varepsilon} B_t < 0$;
- 2. $\sup_{t\geq 0} B_t = +\infty$ et $\inf_{t\geq 0} B_t = -\infty$;
- 3. pour tout $a \in \mathbb{R}$, $T_a := \inf\{t \ge 0 \colon B_t = a\}$ est fini;
- 4. la fonction $t \mapsto B_t$ n'est monotone sur aucun intervalle non-trivial.
- 5. la fonction $t \mapsto B_t$ n'est pas dérivable à droite en 0.

Exercice 11 (*) Montrer que $\mathbb{E}\left[\exp\left(-\frac{1}{2}\int_0^1 B_s^2\mathrm{d}s\right)\right] = \left(\prod_{\ell=1}^{\infty}\left(1+\frac{4}{(2\ell-1)^2\pi^2}\right)\right)^{-1/2}$. *Indice : B est limite uniforme de fonctions connues.*

Exercice 12 Montrer que $\int_0^1 \frac{B_s}{s} ds$ est bien défini presque sûrement.

Exercice 13 (Non-dérivabilité). Le but de cet exercice est de montrer que presque-sûrement, le mouvement brownien n'est dérivable à droite en aucun point $t \ge 0$.

- 1. Peut-on se restreindre aux points $t \in [0,1)$? Et au point t = 0?
- 2. Soit $f:[0,\infty)\to\mathbb{R}$ et $M\geq 0$. On suppose qu'il existe $t\in[0,1)$ tels que

$$\sup_{0 < h < 1} \frac{|f(t+h) - f(t)|}{h} \le M.$$

Montrer que pour tout $n \ge 2$, il existe $1 \le k \le 2^n$ tel que pour tout $1 \le i \le 2^n - 1$,

$$\left| f\left(\frac{k+i}{2^n}\right) - f\left(\frac{k+i-1}{2^n}\right) \right| \le \frac{(2i+1)M}{2^n}.$$

3. Majorer la probabilité d'un tel événement sous la loi du mouvement brownien, et conclure.

Exercice 14 (**) Soit $(B_t)_{t\geq 0}$ un mouvement brownien en dimension d=2, c'est-à-dire un processus dont les coordonnées $B^{(1)}, B^{(2)}$ sont des mouvements browniens indépendants. On s'intéresse à l'aire de la courbe décrite par B, c'est-à-dire à la variable aléatoire

$$\mathscr{A} = \text{Leb}(\{B_s : s \ge 0\})$$

où Leb est la mesure de Lebesgue en dimension 2. L'objectif est de montrer que $\mathscr{A} = 0$ presque sûrement ¹. Pour simplifier les notations, on introduit aussi les variables aléatoires

$$\mathscr{A}_j = \text{Leb}(\{B_s : s \in [j, j+1[\}).$$

- 1. Montrer que $\{\mathscr{A}_0>r\}\subset\{\exists s\in[0,1],|B_s|_\infty>\sqrt{r}\}$. En déduire que $\mathbb{P}(\mathscr{A}_0>r)\leq 4e^{-r/8}$, puis que les \mathscr{A}_j sont intégrables.
- 2. Montrer que $\{B_s: s \in [0,1]\} \cap \{B_s: s \in [2,3]\}$ est de mesure de Lebesgue nulle \mathbb{P} -presque sûrement.
- 3. On pose $\gamma = B_2 B_1$. Montrer que γ est indépendante des deux processus $X = (B_s)_{s \in [0,1]}$ et de $Y = (B_{2+s} \gamma)_{s \in [2,3]}$. Quelle est la loi de ces deux processus?
- 4. On pose $\mathcal{R}(x) = \text{Leb}(X[0,1] \cap (x + Y[0,1]))$.
 - (a) Vérifier que la famille de variables aléatoires $(\mathscr{R}(x))_{x\in\mathbb{R}^2}$ est indépendante de γ .
 - (b) Montrer que $\mathbb{E}[\mathcal{R}(\gamma)] = 0$.
 - (c) En utilisant la loi de γ , montrer que \mathbb{P} -presque sûrement,

Leb
$$({x \in \mathbb{R}^2 : \mathcal{R}(x) > 0}) = 0.$$

5. En déduire qu'on ne peut pas avoir simultanément $\mathscr{A}_0=0$ et $\mathscr{A}_2=0$, puis que $\mathscr{A}=0$ \mathbb{P} -presque sûrement. Conclure.

Exercice 15 (« le mouvement brownien ne passe par aucun point », **)

1. En utilisant le résultat de l'exercice précédent, montrer que, pour tout $y \in \mathbb{R}^2$,

$$\int_{x \in \mathbb{R}^2} \mathbb{P}(x - y \in B[0, 1]) = 0.$$

- 2. En déduire que $\mathbb{P}(y \in x + B[0,1]) = 0$ pour presque tout x.
- 3. Montrer que

$$\lim_{\varepsilon \to 0} \mathbb{E}_x[\mathbb{P}_{B(\varepsilon)}(y \in B[0, 1 - \varepsilon])] = \mathbb{P}(y \in x + B[0, 1]).$$

4. Conclure.