

3 Phase Power

- Common method of AC power transmission
- Used for heavy loads and is more economical
- Constant power transfer to a balanced linear load.
- Can transmit 3 times as much power using just 1.5 times as many wires

Need for the Balancing of Loads

- Minimize energy loss
- Neural current = eddy current losses in the upstream transformer
- Ensure equal voltage magnitude and phase at the load side

Simulations

Load Balancing Software

Inputs: Equipment Specifications

Output: Load Balancing Schema

```
single ph array = sorted(single ph array, key=itemgetter(1), reverse=True)
# Assign each equipment of single phase array either to R/Y/B phase depending on the existing loads
for i in range(0, len(single ph array)):
    sum r = sum(r ph power) # Maintain Counter for current phase load
   sum y = sum(y ph power)  # Maintain Counter for current phase load
   sum b = sum(b ph power)  # Maintain Counter for current phase load
   if sum r < sum y:
       if sum r < sum b:
           r array.append(single ph array[i])
           r ph power.append(single ph array[i][1])
                                                        Resistive Single
           b array.append(single ph array[i])
                                                        Phase Loads Algo
           b ph power.append(single ph array[i][1])
   elif (sum y < sum b):
       y array.append(single ph array[i])
       y ph power.append(single ph array[i][1])
       b array.append(single ph array[i])
       b ph power.append(single ph array[i][1])
```


Version - 4

Version - 5

- Addition of inductive and capacitive loads.
- Current is not in phase with the voltage
- Exactly what do we minimize?

Minimize Difference in |z|?

Minimize Difference in |z|?

Let's by to make the magnitude of through each phase equal. urrent $\Rightarrow V = V = V$ $|Z_1| = |Z_2| = |Z_3|$ =7 |Z1 = |Z2 = |Z3 This will give up the fastest algorithm of first dinding 121 of each device and then arrange them in developing order and divide

Minimize the Neutral Current?

Minimize the Neutral Current?

Try to make Z1 = Z2 = Z3

Define a loss function: f(Z1, Z2, Z3) = |Z1-Z2| + |Z2-Z3|

Find Z1, Z2 and Z3 for which f is minimum

Need to try all 3^N combinations

3!to be precise

Questions ??

Thank You!