Systematic Design for a Successive Approximation ADC

Mootaz M. ALLAM

M.Sc- Cairo University - Egypt

Supervisors
Prof. Amr Badawi
Dr. Mohamed Dessouky

Outline

- Background
- Principles of Operation
- System and Circuit Design
- Case Study
 - Simulations
 - Layout Generation
 - Performance Evaluation
- Conclusion
- Perspectives

The Successive Approximation ADC « The Return»

Moderate Resolution

Low Power

Minimum Active blocs

Reconfigurable

- Emerging new Applications
 - MEMS Sensor Interface:

Resolution: 7-8 bits, BW=50kHz [Scott 2003]

Multi-standards RF receiver

Resolution: 8 bits, BW = 20 MHz [Montaudon 2008]

Ultra Wide Band (wireless UWB):

Resolution: 5-6 bits, BW=300MHz [Chen 2006]

Figure of Merit

Objectives

- Develop a systematic design method for successive approximation ADC from system to layout level .
- Develop a general simulation environment with different levels of abstraction and programmed performance analysis.
- Emphasis on analog design automation and reuse techniques:
 - Automatic sizing
 - Layout generation
- Optimizing Layout for best matching

Principle of Operation

$$Vin = b_1 \frac{V_{REF}}{2} + b_2 \frac{V_{REF}}{4} + b_3 \frac{V_{REF}}{8} + b_4 \frac{V_{REF}}{16}$$

Outline

- Background
- Principles of Operation
- System and Circuit Design
- Case Study
 - Simulations
 - Layout Generation
 - Performance Evaluation
- Conclusion
- Perspectives

Single Ended SAR-ADC.

Sampling Mode

Inversion Mode

Charge redistribution mode (MSB)

Charge redistribution mode (MSB-1)

Mode Redistribution de la charge (MSB-2)

$$Vin = b_1 \frac{V_{REF}}{2} + b_2 \frac{V_{REF}}{4} + b_3 \frac{V_{REF}}{8} + b_4 \frac{V_{REF}}{16}$$

Mode Redistribution de la charge (LSB)

$$Vin = b_1 \frac{V_{REF}}{2} + b_2 \frac{V_{REF}}{4} + b_3 \frac{V_{REF}}{8} + b_4 \frac{V_{REF}}{16}$$

Problem

Selecting $V_{REF} = V_{dd}$ To increase the dynamic range

Possible Solution: Switched *charge-pump* [scotto3] or *Bootstrap* [dessouky01]

Possible solutions - Leakage

Bootstrap Switch

Charge pump Switch

Since sometimes VDAC value=1.5 VDD While VG1 = 0 when M1 is ON, VGD,M1 exceeds VDD

Possible solutions - Reliability

Possible solutions - Circuitry

Bootstrap [dessouky01]

Modified Shielding Bootstrap

Differential SAR-ADC

Triple Reference

Differential SAR-ADC

Operation - Summary

Single Ended Double reference	Differential Triple reference
	2 times the numbers of capacitors6 times the numbers of switches
Special Switch (charge-pump - bootstrap)	No need for special switch
	Differential architectures advantages: - Suppressing even harmonics - Common mode rejection - Offset removal
Lower power consumption	Better performance at high frequencies

Outline

- Background
- Principles of Operation
- System and Circuit Design
- Case Study
 - Simulations
 - Layout Generation
 - Performance Evaluation
- Conclusion
- Perspectives

Capacitor array design issues - Noise

1- Thermal noise $\left[\frac{kT}{C_{TOT}}\right]$, due to Sampling

C_{Unit} increases, thermal noise decreases

Capacitor array design issues - Mismatch

- 2 Capacitor Mismatch (Introduced in fabrication)
 - Affects Generated comparison levels of the capacitve DAC

 C_{Unit} increases, mismatch effect decreases

Capacitor array design issues - $f_{Sampling}$

3- Sampling Frequency

$$t_{sampling} \approx \frac{T_{Clock}}{2} >> \tau$$
 For an accurate sampling

 C_{Unit} decreases, bandwidth increases

Switches

1) Switches selection

- NMOS to switch Vgnd and Vcm
- PMOS to switch Vdd
- CMOS to switch Vin
- Bootstrap to force deep off-state of critical switches

2) Sizing switches (compromise)

- Increasing W/L reduces Rswitch and so τ , on the account of increasing switch parasites.
- In the used DAC, this will be of minor importance if operating in low frequency because the switches are all connected to the bottom plates

Comparator Circuit

Comparator - Operation phases

Comparator - Design tradeoff

SAR algorithm - Implementation

LFSR: Linear Feedback Shift Register

	DAC outputs								С
О	О	0	О	О	0	О	О	0	X
1	1	0	О	О	О	О	О	0	a8
2	a8	1	О	О	О	О	О	0	a7
3	a8	a7	1	О	0	О	О	0	a6
4	a8	a7	a6	1	0	О	О	0	a5
5	a8	a7	a6	a5	1	О	О	0	a4
6	a8	a7	a6	a5	a4	1	О	0	a3
7	a8	a7	a6	a5	a4	аз	1	0	a2
8	a8	a7	a6	a5	a4	аз	a2	1	a1

Systematic design for SA-ADC

Outline

- Background
- Principles of Operation
- System and Circuit Design
- Case Study
 - Simulations
 - Layout Generation
 - Performance Evaluation
- Conclusion
- Perspectives

Case Study

Case Study

- Differential Architecture
- Resolution: 8bit
- BW: 50 KHz
- F_{clock}: 1MHz
- Technology: 0.13u ST, MIM Capacitors

Verification

- VHDL AMS used for verification with simulation
- Different levels of abstraction (Behavioral, gates, transistor, ...)
- Mixed blocs simulation (Analog / Digital)

Multiple abstractions

Verification Environment

Transiant - Single Ended - Output

Vdd 1.2V

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

Transiant - Differential - Output

Vdd 1.2V

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

Transistor level simulations

Transiant - Differential - DACs

Vdd 1.2V

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

Transiant - Differential - Comparator

Full conversion: Differential DACs output – Comparator output

Transistor level simulations

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

Transient - SAR control

Control block turning ON and OFF DAC switches [case of 0 input]
VHDL Description

Transient - Full Scale Ramp

Full Scale Slow ramp excitation

Zoom - in

Static Performance - Transistor Level

Static performance Evaluation in (LSB): DNL and INL [16 sample / bin]

Dynamic Performance - Ideal Models

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

Dynamic Performance - Mixed Models

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

4096 point FFT

(c)

(d)

Dynamic Performance - Transistor Level

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Dynamic Performance

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Dynamic Performance

Vdd 1.2V

Fclk 1MHz

Vinp-p 1.2V

Mismatch analysis

Vdd 1.2**V**

Fin 1.4KHz

Fclk 1MHz

Vinp-p 1.2V

C_u	Variance σ			Ideal		
	0.01	0.02	0.05	0.1	0.2	
10fF	47.36	46.40	43.22	39.10	35.6	47.44
20fF	47.2	47.09	44.99	42.08	35.77	47.44
30fF	43.89	44.6	40.19	39.02	32.7	47.44

Layout generation for SA-ADC

Layout - Comparator - Floorplan

Layout - Comparator - Generated

Layout - Differential DACs - Floorplan

Common centroid placement for 16 capacitor

```
how many capacitors? 16
routing? 1
enter values
1 1 1 1 2 2 4 4 8 8 16 16 32 32 64 64
use rectangles?(1=yes)1
enter unit capacitor side length:
1
enter length:
16
sum:256
                                                                             11
16
          16
                   15
                             15
                                       15
                                                15
                                                          16
                                                                    11
                                                                                       16
                                                                                                 15
                                                                                                          15
                                                                                                                    15
                                                                                                                              15
                                                                                                                                        16
                                                                                                                                                 16
16
          16
                   16
                             16
                                       11
                                                14
                                                          13
                                                                    12
                                                                             12
                                                                                       13
                                                                                                 14
                                                                                                           11
                                                                                                                    16
                                                                                                                              16
                                                                                                                                        16
                                                                                                                                                 16
15
                             15
                                       16
                                                15
                                                          13
                                                                                       13
                                                                                                 15
                                                                                                                                                 15
          16
                   14
                                                                    16
                                                                             16
                                                                                                           16
                                                                                                                    15
                                                                                                                              14
                                                                                                                                        16
15
                                                                                                                                                 15
          16
                   15
                             12
                                       14
                                                15
                                                          13
                                                                    16
                                                                              16
                                                                                       13
                                                                                                 15
                                                                                                           14
                                                                                                                    12
                                                                                                                              15
                                                                                                                                        16
                                                                                                                                                 15
15
                                                15
          11
                   16
                             14
                                       14
                                                          14
                                                                    13
                                                                             13
                                                                                       14
                                                                                                 15
                                                                                                           14
                                                                                                                    14
                                                                                                                              16
                                                                                                                                        11
                                                                    12
15
          14
                   15
                             15
                                       15
                                                9
                                                          10
                                                                             12
                                                                                       9
                                                                                                 10
                                                                                                          15
                                                                                                                    15
                                                                                                                              15
                                                                                                                                        14
                                                                                                                                                 15
16
          13
                   13
                             13
                                       14
                                                10
                                                          8
                                                                    5
                                                                              6
                                                                                                 9
                                                                                                          14
                                                                                                                    13
                                                                                                                              13
                                                                                                                                        13
                                                                                                                                                 16
11
          12
                   16
                             16
                                       13
                                                                    2
                                                                              3
                                                                                                 10
                                                                                                           13
                                                                                                                    16
                                                                                                                              16
                                                                                                                                        12
                                                                                                                                                 11
11
          12
                                       13
                                                10
                                                                             1
                                                                                       7
                                                                                                 9
                                                                                                          13
                                                                                                                    16
                                                                                                                              16
                                                                                                                                        12
                                                                                                                                                 11
                   16
                             16
                                                                    4
          13
                   13
                                                9
                                                                                                 10
16
                             13
                                       14
                                                                                                           14
                                                                                                                    13
                                                                                                                              13
                                                                                                                                        13
                                                                                                                                                 16
15
                                                                             12
          14
                   15
                             15
                                       15
                                                10
                                                                    12
                                                                                       10
                                                                                                 9
                                                                                                          15
                                                                                                                    15
                                                                                                                              15
                                                                                                                                        14
                                                                                                                                                 15
15
          11
                   16
                             14
                                       14
                                                15
                                                          14
                                                                    13
                                                                             13
                                                                                       14
                                                                                                 15
                                                                                                          14
                                                                                                                    14
                                                                                                                              16
                                                                                                                                        11
                                                                                                                                                 15
                   15
                                                15
                                                                                                                                                 15
15
          16
                             12
                                       14
                                                          13
                                                                    16
                                                                             16
                                                                                       13
                                                                                                 15
                                                                                                           14
                                                                                                                    12
                                                                                                                              15
                                                                                                                                        16
15
          16
                   14
                             15
                                       16
                                                15
                                                          13
                                                                    16
                                                                             16
                                                                                       13
                                                                                                 15
                                                                                                           16
                                                                                                                    15
                                                                                                                              14
                                                                                                                                        16
                                                                                                                                                 15
16
          16
                   16
                             16
                                                14
                                                          13
                                                                    12
                                                                             12
                                                                                       13
                                                                                                                    16
                                                                                                                              16
                                       11
                                                                                                 14
                                                                                                           11
                                                                                                                                        16
                                                                                                                                                 16
16
          16
                   15
                             15
                                       15
                                                15
                                                          16
                                                                    11
                                                                             11
                                                                                       16
                                                                                                 15
                                                                                                          15
                                                                                                                    15
                                                                                                                              15
                                                                                                                                        16
                                                                                                                                                 16
```

Layout - Differential DACs - Generated

Layout 1 - 256 Cu – Placed and Routed – Area 1.26 x 0.26 mm² and Huge routing parasitics

Layout - Differential DACs - Manual

Layout 2 - 256 C_u - Placed and Routed - 2/3 less routing parasitics

Area 0.1056 mm²

Performance

	[Hongo ₇]	This work*	[scotto3]
Technology	o.18 μm	0.13 μm	0.25 μm
Supply	o.83 V	1.2 V	1.0 V
Input range	Rail to Rail	Rail to Rail	Rail to Rail
Sampling rate	111 KHz	111 KHz	100 KHz
Unit Cap.	24 fF	3ofF	12f
Power (Analog)	1.16 μW	0.72µW	2.2 μW
Area	0.062 mm2	0.122 mm2	0.053 mm2
SNDR@BW	47.40 dB	46.2dB	43.8 dB
Architecture	Single Ended	Differential	Single Ended
FOM	65 fJ/bit	64fJ/bit	2163 fJ/bit

Outline

- Background
- Principles of Operation
- System and Circuit Design
- Case Study
 - Simulations
 - Layout Generation
 - Performance Evaluation
- Conclusion
- Perspectives

Summary and Conclusion

- Systematic design methodology for SA-ADC from system to layout.
- General simulation environment
 - Different abstraction levels.
 - Different verification tests.
- Emphasis on analog design automation and reuse
- Optimizing Layout for best component matching
- Verification with case study for WSN specs

Perspectives

- Targeting high frequency specs (>500 Msample/S)
 - Redundant system error correction code [Kuttner02]
 - Digital calibration [Promitzer01]
 - Asynchronous operation [Chen06]
 - Time interleaving [Chen06]
- Full Automation
 - Sizing procedure with layout parasitics awareness
 - Layout generation for the full ADC

Thank You