MODULE 26 - How We Learn and Classical Conditioning

TWODOLL 20 - 110W	We Learn and Classical Conditioning
How Do We Learn?	 Learning is the process of acquiring new and relatively enduring information or behaviors Learning to expect significant events = classical conditioning Learning to repeat acts that bring rewards and avoid ones that don't = operant conditioning Learning new things by watching others = cognitive learning Learned associations often operate subtly and feed habitual behaviors Things become habits after around 66 days We habituate to something when we decrease our response to a stimulus after repeated exposure to it complex animals associate their own behavior with its outcomes By linking two close events, animals exhibit associative learning in two forms classical conditioning: associating two stimuli to anticipate events operant conditioning: associating a response and its consequence A stimulus is an event or situation that evokes a response Through cognitive learning, we acquire information that guides our behavior
Classical Conditioning	 Ivan Pavlov laid the foundation for John B. Watson's ideas (Watson: psychology should be an objective science based on observable behavior) Watson created behaviorism, the view that psychology should be objective and study behavior They both didn't like "mentalistic" concepts Pavlov's dog experiment demonstrated how a neutral stimulus (no response before conditioning) can be associated with an unconditioned response (an unlearned, naturally occurring response) by being paired with the unconditioned stimulus which initially elicited the UR. The unconditioned response now becomes a conditioned response and the neutral stimulus now becomes the conditioned stimulus Acquisition is the initial learning of the stimulus-response relationship Conditioning helps an animal survive and reproduce Through higher-order conditioning, a new NS can become a CS by being associated with a previous CS tens to be weaker than first-order conditioning Extinction is the diminishing of a CS when the CS is no longer followed by a US (tone is no longer followed by food, etc) or when a response is no longer reinforced in operant conditioning Spontaneous recovery is the recovery of an extinguished CR after a pause Generalization is the tendency to respond to stimuli similar to the CS Discrimination is a learned ability to distinguish between a CS and other irrelevant stimuli

MODULE 27 - Operant Conditioning

Operant	-	In operant conditioning, organisms associate their own actions with	ı
Conditioning		consequences	l

	- behavior that operates on the environment is called <i>operant</i> behavior
Skinner's Experiments	 B.F. Skinner elaborated on Edward L. Thorndike's law of effect: rewarded behavior is likely to recur he designed an operant chamber which showed how animals respond to reinforcement: an event that strengthens a preceding response Shaping is guiding actions towards a desired behavior Using successive approximations, you reward responses that are ever-closer to the final desired behavior In operant conditioning, the discriminative stimulus elicits a response after association with response Positive reinforcement strengthens a response by presenting a pleasurable stimulus ater it Negative reinforcement strengthens a response by reducing something negative Primary reinforcers are innately reinforcing stimuli that satisfy biological needs Conditioned reinforces gain their reinforcement by association with a primary reinforcer (light associated with a food) With continuous reinforcement learning occurs rapidly but so does extinction With partial reinforcement (responses are sometimes reinforced) learning is slower, but resistance to extinction is greater With fixed-ratio schedules behavior is reinforced after a set number of responses – animals pause briefly after a reinforcer, then return to a high rate of responding With variable-ratio schedules behavior is reinforced after an unpredictable number of responses – produces a high rate of response With fixed-interval schedules, the response is reinforced after a fixed time period – produces a choppy stop-start pattern With variable-interval schedules, the response is reinforced after a varying time period – produces slow, steady responding In general, ratio is better than interval, but variable is better than fixed

MODULE 28 - Operant Conditioning's Applications, and Comparison to Classical Conditioning

Applications of Operant Conditioning	 At School Computer-assisted learning helped realize Skinner's goal of individually paced instruction with immediate feedback In Sports The key to shaping athletic performance is rewarding small
--	--

	successes and gradually increasing the challenge - The accidental timing of rewards can produce superstitious behaviors - At Work - Reinforcers influence productivity by rewarding specific, achievable behaviors, not vaguely defined "merit" - Reinforcement should be immediate, but not necessarily material or lavish
	 At Home Parents can learn from operant conditioning When children obey because they are frightened, it reinforces a parents' angry behavior, but when parents cave to whining it reinforces a child's bratty behavior It's good to affirm good behavior in children - explain misbehaviors and give a time-out For Self-Improvement To build self-control, you should reinforce your own desired behavior State your goal in measurable terms Announce your goal Monitor how often you engage in your desired behavior Reinforce the desired behavior Reduce rewards gradually
Contrasting Classical and Operant Conditioning	 Through classical Pavlovian conditioning, we associate different stimuli we don't control, and respond automatically Through operant conditioning, we associate our own behaviors that act on our environment to produce rewarding or punishing stimuli with their consequences

MODULE 29 - Biology, Cognition and Learning

Biological Constraints on Conditioning	 A species' predispositions prepare it to learn the associations that enhance its survivals John Garcia and Robert Koelling challenged Greogry Kimble's idea that all associations can be learned equally well Proved that the US didn't immediately have to follow the CS for conditioning to occur Early findings on taste aversion Conditioning is speedier, stronger and more durable when the CS is ecologically relevant - for example, similar to stimuli associated with sexual activity We most easily learn and retain behaviors that reflect our biological predispositions In the instinctive drift animals revert to their biologically predisposed patterns
Cognition's Influence on Conditioning	 Robert Rescola and Alan Wagner showed that animals can learn the predictability of an event The more predictable the association, the stronger the conditioned response Awareness of the CS-US association can weaken a response

- Tolman and Honzik showed that rats develop a cognitive map, a mental representation of a maze
 - Exploring rats experienced latent learning, which became apparent only when they had an incentive to demonstrate it
- We can perceive a solution in a sudden flash of **insight**
- Excessive rewards can destroy **intrinsic motivation**, the desire to perform a bavor effectively for its own sake
 - the overuse of bribes, leading people to see their actions as externally controlled, is called *overjustification*
- Extrinsic motivation is behaving in certain ways to gain external rewards or avoid punishment)

Learning and Personal Control

- We need to learn to **cope** with problems by alleviating stress
- With **problem-focused coping** we address stressors directly
 - used when we feel a sense of control over ourselves and over a situation
- With emotion-focused coping we search for stress relief by seeking out support and comfort
 - it can be maladaptive because we can ignore or put off a problem
- Problem-focused coping can be more effective and promote long-term health and satisfaction
- Feeling helpless and oppressed can lead to a state of passive resignation called learned helplessness where we feel we have no control and can become depressed
- Perceived loss of control can predict health problems by provoking an outpouring of stress hormones
- The **external locus of control** is the perception that chance or outside forces determine our fate
- The internal locus of control is the perception that we control out own destiny
- More Americans now embrace the external locus of control, which may be associated with increased rates of depression and other psychological disorders
- Self-control is the ability to control impulses and delay short-term gratification for longer-term rewards
 - predicts better adjustment, better grades, and social success
 - requires attention and energy and our capability for self control can be improved by exercising it, almost like a muscle

MODULE 30 - Learning by Observation

Mirrors and Imitation in the Brain

- Cognition is a factor in **observational learning**, in which higher animals learn without direct experience
- We learn behavior by observing and imitating others, a process called modeling
- Albert Bandura's Bobo Doll experiment demonstrates that by watching a model, we experience *vicarious reinforcement* or *vicarious punishment*
- We're especially likely to learn from those similar to us, or people we think are admirable or successful
- Mirror neurons provide a neural basis for imitation and observational learning - they fire when performing actions or watching others do those actions

	 Imitation is widespread in other species, and it is pervasive in humans Our brains support empathy and imitation, making emotions contagious Theory of Mind is the ability of a child's brain to enable empathy and infer another's mental state Brain activity underlies our intensely social nature
Applications of Observational Learning	 Prosocial modeling can have prosocial effects that are constructive Models are most effective when their actions and words are consistent Observational learning can have antisocial effects