CMT2300A 发射匹配指南

简介

CMT2300 芯片内部集成高效率的 20dBm Class-E 结构 PA,本应用文档将介绍如何对这个 Class-E 结构 PA 进行匹配

通常,要实现一个高质量的匹配要能达到一下几个要点:

- (1) 实现设计的输出功率
- (2) 消耗最小的电流,即效率最大化
- (3) 能满足用户当地安规的需求,如 ETSI、FCC、ARIB等
- (4) 输出功率对天线阻抗的变化不敏感
- (5) 尽量用最少的元器件,成本最优化

本文档涵盖的产品型号如下表所示。

表 1. 本文档涵盖的产品型号

产品型号	工作频率	调制方式	主要功能	配置方式	封装
CMT2300A	140 - 1020 MHz	(G)FSK/OOK	收发一体	寄存器	QFN16

目录

1.	Class-E 开关型 PA 描述	. 3
2.	Class-E PA 匹配步骤	. 3
	选择一个合适的 Choke 电感(扼流电感)	
2.2	根据输出功率计算最佳的负载阻抗 Z-Load	. 4
	选择合适的串联谐振电容 C0, 并根据选择的 C0, 计算 L0	
2.4	根据最佳负载电阻 Z-Load 计算 L 型匹配的元器件值 Lx 和 Cx	. 5
	文档变更记录	
	联系方式	

1. Class-E 开关型 PA 描述

对于传统类型功率放大器,无论是A类,B类,C类,匹配都相对比较简单:使负载阻抗和PA输出阻抗共轭匹配。

Class-E 功率放大器完全不同于传统类型的放大器,它属于开关类功率放大器。它的核心设计思路是,通过改变开关漏端的电压和电流的波形,使得在开关闭合时刻没有 V-I 交叠,从而实现高效率的功率放大器。

Class-E PA 的基本结构如图 1. 所示,L0-C0 串联谐振在工作载波频率,Cshunt 储存能量在开关断开期间,它们和电感 Lx 以及负载电阻 Rload 构成一个衰减的负载网络。在开关瞬变过程中,储存于 Cshunt, C0,L0 中的能量供给负载电阻 Rload, 它是负载网络中的阻尼电阻,它的大小对开关漏极电压波形的影响极大。

Class-E PA 的高效率是通过实现开关漏端波形 V-I 无交叠来实现的,因此选择合适的负载电阻 Rload 很关键。当负载电阻 Rload 过大时,谐振回路的电流较小,对电容 Cshunt 充电形成的电压也较小,当它和电源 VDD 对电容 Cshunt 充电的电压叠加后,在开关由截止转换到导通的瞬间,电容 Cshunt 上的电压不为零,必须在开关导通期间内,通过开关放电。不仅造成能量浪费,还会产生大的尖峰电流。当负载电阻 Rload 过小时,谐振回路中的电流较大,对电容 Cshunt 充电形成的电压也较大,当它和电源电源 VDD 对电容 Cshunt 充电的电压叠加后,在开关由截止转换到导通的瞬间,电容 Cshunt 上的电压摆动到零以下的负值,这个反向电压会产生反向电流,因电压电流同时存在,造成开关管功耗增大。

图 1. 基本开关 PA 电路拓扑图

2. Class-E PA 匹配步骤

上节简单介绍了 Class-E PA 的核心思想和工作原理,在这里省略详细的推导过程(读者可以在互联网上搜索 Class E 工作原理的详细内容),重点把怎么匹配 PA 的步骤摘要如下:

- (1) 选择一个合适的 Choke 电感 (扼流电感)
- (2) 根据输出功率计算最佳的负载阻抗 Z-Load
- (3) 选择合适的串联谐振电容 CO (如 figure1 所示)
- (4) 根据选择的 C0, 计算 L0
- (5) 根据最佳负载电阻 Z-Load 计算 L 型匹配的元器件值 Lx 和 Cx;
- (6) 设计一个T型低通滤波器

图 2. Rant 与 Zload 阻抗匹配转换

下面我们讲详细介绍每一步如何实现。

2.1 选择一个合适的 Choke 电感 (扼流电感)

这个电感又叫取能电感,对高频呈现越高阻越好,但由于现实中大感值的电感 Q 值低,自谐振频率也低,所以这个电感也不能越大越好。根据经验,这个电感值可以在不同的频率进行如下选择:

频率	电感值	
315 MHz	270 or 330 nH	
433.92 MHz	180 or 220 nH	
868 MHz	100 nH	
915 MHz	100 nH	

2.2 根据输出功率计算最佳的负载阻抗 Z-Load

这里先引用几个由 Class-E 理论推导出来的公式:

$$P_{AC_out} = \frac{2V_{DD}^{2}}{(1 + \frac{\pi^{2}}{4}) \cdot R} = \pi \cdot \omega c \cdot V_{DD}^{2} \qquad \omega c = \frac{2}{\pi \cdot (1 + \frac{\pi^{2}}{4}) \cdot R} = \frac{1}{5.4466 \cdot R} \qquad X = R \cdot \tan(\psi) = 1.1525 \cdot R$$

由公式可知,PA的输出功率与三个参数有关: 1) 电源电压 ; 2) PA 输出电容 Cshunt; 3)工作频率。 如图 2 所示,这个最佳的负载阻抗 Z-Load = R+jX,式中的 R 就是我们前面提到的最佳负载电阻。 它与 PA 的输出功率,输出电容紧密相关。在 CMT2300的设计中,PA 的输出电容大约为 3pF。下面我们列出在不同的频率,输出 20dBm 时的最佳负载阻抗 Z-Load。

频率	最佳负载阻抗(Z-Load)
315 MHz	3 0.9+ j 3 5.6 Ω
433.92 MHz	22.4 + j25.9 Ω
868 MHz	11.2 + j12.9 Ω
915 MHz	10.6 + j12.2 Ω

2.3 选择合适的串联谐振电容 CO, 并根据选择的 CO, 计算 LO

这里结合第3和4步骤一起说明,就是要求CO和LO工作在串联谐振上,这样的话就会有无数个值的组合,怎么选择?大的元器件值,自谐振频率低,小的元器件值,对寄生参数较敏感,不要选特别大和特别小的元器件值就可以了。如果希望谐波小,就选择大电感,小电容;如果希望电流小,效率高就选择小电感,大电容。

2.4 根据最佳负载电阻 Z-Load 计算 L 型匹配的元器件值 Lx 和 Cx

如果知道天线的负载阻抗,而且阻抗比 **z-Load** 大,一个 L 型匹配就能直接搞定;但是 L 型匹配受转换阻抗比的限制,元器件的值不能灵活选择,谐波抑制也不够。所以不推荐将最佳负载电阻直接匹配到天线的方案。我们可以引入一个中间过渡的阻抗 Rmid(可以为大于最佳负载阻抗的任意值),后级再接一个 T 型滤波器将 Rmid 匹配到天线负载。

下面我们就以 50Ω 天线为例,如 figure 2所示。

图 3. Rant 与 Rmid 阻抗匹配转换

如图 3 所示,我们定义图中 A 点(红色标注的地方)为一个中间过渡的阻抗 Rmid,显然 A 点的阻抗需要比最佳负载阻电阻 Z-Load 大。通常考虑到后级的 T 滤波器能使用合适的标称元器件值,根据计算 A 点的阻抗转换到如下值会比较合适,现举例如下:

频率	最佳负载阻抗	Rmid 阻值	
315 MHz 30.9+ j35.6 Ω		70	
433.92 MHz	22.4 + j25.9 Ω	50	
868 MHz	11.2 + j12.9 Ω	50	
915 MHz	10.6 + j12.2 Ω	50	

将上表中最佳负载阻抗共轭匹配到 Rmid 阻值,能得到 Lx 和 Cx 的值,如图 3 所示,显然 L0 和 Lx 可以合并为一个电感,所以如果我们把最佳负载电阻 Z-Load 转换到上面例举的 A 点阻抗,就能相应得到如下的值:

频率	C0	L0 + Lx	Сх
315 MHz	12 pF	47 nH	12 pF
433.92 MHz	15 pF	27 nH	9.1 pF
868 MHz	9.1 pF	10 nH	6.8 pF
915 MHz	8.2 pF	10nH	6.2 pF

当然也可以转换 A 点阻抗到其它的阻抗值,那么相应的元器件值就需要改变。Rmid 和 CO, LO 都可以灵活选择,原则是计算得到的元器件值最接近一个合适的标称值。另外要注意的是根据应用电路板的不同,要考虑 PA 输出端对地的寄生电容,这个寄生电容可以归总到 Cshut 里面,在我们的应用示例板中约为 3pF,但具体到其他电路板中,这个值也许会有变化,那么 PA 最佳负载相应的会有稍微改变。但计算和匹配方法是不变的。

2.5 设计一个 T 型低通滤波器

T 型低通滤波器不仅起到抑制高次谐波的作用,同时需要把 A 点的阻抗转换匹配到天线阻抗。注意不要把 T 型低通滤波器的 Q 值设计的太高就可以了。Q 值高,谐波抑制好,但会对天线阻抗的变化比较敏感,同时效率会下降。

3. 文档变更记录

文档变更记录

版本号	章节	变更描述	日期
0.1	所有	初始版本	2022/12/07

4. 联系方式

深圳市华普微电子股份有限公司

中国广东省深圳市南山区西丽街道万科云城三期 8A 栋 30 层

邮编: 518052

电话: +86 - 755 - 82973805

销售: <u>sales@hoperf.com</u>

网址: <u>www.hoperf.cn</u>

版权所有 © 深圳市华普徽电子股份有限公司,保留一切权利

深圳华普微电子股份有限公司(以下简称:"HOPERF")保留随时更改、更正、增强、修改 HOPERF 产品和/或本文档的权利,恕不另行通知。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。由于产品版本升级或其他原因,本文档内容会不定期进行更新。HOPERF 的产品不建议应用于生命相关的设备和系统,在使用该器件中因为设备或系统运转失灵而导致的损失,HOPERF 不承担任何责任。

HOPERF商标和其他 HOPERF 商标为深圳华普徽电子股份有限公司的商标,本文档提及的其他所有商标或注册商标,由各自的所有人拥有。