به نام خدا

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

آزمایشگاه معماری کامپیوتر

آزمایش دوم: ضرب کننده ممیز ثابت

اطلاعات تيم										
شماره دانشجویی	نام اعضا									
911.9409	متين داغياني									
9.1111.4	بردیا محمدی									
911114	محمدجواد هزاره									

فهرست مطالب

۲	ش ش															ىايش	آزه	ھ	1																		
٣																								;	دار	ہ ر	زی	ساز	دەد	پیاه	ي و	حي	طوا.	ل و	راحإ	مر	۲
٣			•	•	•													•		Ç	ت	إس	، ر	ت	ىم	4 بد	، ب	نده	دها	ت	شيف	ٰ ،	اژوا	ما	١.	۲	
۵	•																				ب	چې	- (ت	ىم	4 بد	ه ب	نده	ده	ت	شيف	ٰ ،	اژوا	ما	۲.	۲	
۶	•																•							•	•			4	ند	ع کن	جما	ے .	اژوا	م	٣.	۲	
٧										•				•	•	•	•		•			•	•	•	•		•		•	R	ΕG	ן כ	اژوا	ما	۴.	۲	
4																																	ام	مدا	ىت،	قس	۳

۱ هدف آزمایش

در این آزمایش هدف پیادهسازی مدار ضربکننده دو عدد باینری ممیز ثابت بود. از آنجایی که ضرب دو عدد ممیز ثابت تفاوتی با ضرب دو عدد عادی ندارد و صرفا کافیست مکان ممیز را در انتها لحاظ کنیم، طراحی یک مدار ضرب کننده چهاربیتی خواستهی ما را برآورده میکند.

برای ضرب دو عدد باینری نیز از الگوریتم Add & Shift استفاده شده است که یک الگوریتم ترتیبی است. در این الگوریتم در هر مرحله با بررسی کردن بیت اول ضربکننده، تصمیم گرفته می شود که ضرب شونده را به حاصل اضافه کنیم یا خیر. سپس ضربکننده را یک واحد به سمت راست شیفت داده تا بیت بعدی آن مورد بررسی قرار گیرد، هم چنین ضرب شونده نیز یک واحد به سمت چپ شیفت داده می شود چرا که مرتبه ی بیتی که قرار است در آن ضرب شود، یک واحد افزایش پیدا کرده است.

بنابراین برای طراحی مدار نیاز به ماژولهای شیفت دهنده به سمت چپ، شیفت دهنده به سمت راست و یک جمع کننده هشت بیتی نیاز بوده که جزئیات طراحی این ماژولها در بخش بعدی آمده است. در شکل ۱ نیز نمای کلی مدار طراحی شده آمده است که سیگنالهای ورودی آن، شامل ضرب کننده و ضرب شونده به ترتیب با q و p نشان داده شده اند. سیگنال ورودی t برای شروع کار مدار آمده است و خروجی در هشت بیت t نمایش داده شده که با یک شدن سیگنال end خروجی مدار آماده شده است.

شکل ۱: نمای کلی مدار ضربکننده

۲ مراحل طراحی و پیادهسازی مدار

همانطور که در بخش قبل گفته شد، مدار مورد نظر از سه ماژول اصلی شیفت دهنده به سمت راست، شیفت دهنده به سمت و REG ماژول شیفت دهنده به سمت چپ و جمع کننده هشت بیتی تشکیل شده است. همچنین ماژول REG ماژول کمکی بوده و برای جلوگیری از شلوغ شدن نمای اصلی مدار اضافه شده است. در ادامه به بررسی طراحی هر یک از این ماژول ها می پردازیم:

۱.۲ ماژول شیفت دهنده به سمت راست

همانطور که گفته شد این مدار برای شیفت دادن ضربکننده در هر مرحله مورد استفاده قرار میگیرد. ورودیها و خروجیهای آن را در شکل ۲ میتوان دید.

شكل ٢: ورودىها و خروجيهاى ما ژول شيفت دهنده به سمت راست

طراحی داخلی این ماژول نیز به کمک فلیپفلاپهای نوع D صورت گرفته که خروجی هر یک به فلیپفلاپ قبلی داده شده تا عملیات شیفت به راست با آمدن کلاک صورت بگیرد. همچنین سیگنال start به ورودی LOAD ماژول داده شده تا در صورت یک شدن این سیگنال، رجیسترها ریست شوند و مقدار صفر در آنها قرار بگیرد. داده ی ورودی نیز با استفاده از ترای استیت بافر به ورودی رجیسترها متصل شده تا در صورت یک بودن سیگنال LOAD، مقدار ورودی در خروجی ظاهر شود یا به عبارتی داده ی ورودی در رجیسترها بارگذاری شود. طراحی داخلی این ماژول را در شکل ۳ می توان مشاهده کرد.

شكل ٣: طراحي داخلي ما رول شيفت دهنده به سمت راست

ممانطور که در الگوریتم Add & Shift توضیح داده شد، از بیت اول مقدار شیفت داده شده ک فربکننده برای این منظور که ضرب شونده را به حاصل اضافه کنیم یا خیر استفاده می شود، بنابراین بیت اول خروجی این ماژول را با بیت های ضرب شونده And می کنیم تا خواسته ی ما برآورده شود.

شکل ۴: تصمیمگیری برای اضافه کردن ضربشونده

۲.۲ ماژول شیفتدهنده به سمت چپ

از این ماژول برای شیفت دادن ضربشونده به سمت چپ استفاده می شود. رابط این ماژول را در شکل ۵ می توان دید.

شكل ۵: ما ژول شيفت دهنده به سمت چپ

در طراحی داخلی این مدار نیز از فلیپفلاپهای نوع D استفاده شده که مشابه ماژول قبلی خروجی هر فلیپفلاپ به ورودی فلیپفلاپ بعدی متصل شده تا عملیت شیفت به چپ صورت بگیرد. به طور مشابه سیگنال totalpha به ورودی totalpha مدار متصل خواهد شد. با یک شدن این سیگنال مقدار ورودی در خروجی بارگذاری می شود. طراحی داخلی این ماژول را نیز می توان در شکل ۶ مشاهده کرد.

شكل ۶: طراحي داخلي ماژول شيفتدهنده به سمت چپ

⊳ از آنجایی که شیفت به سمت چپ با اضافه شدن صفر به سمت راست عدد به وجود میآید، میتوان

با صفر شدن همهی بیتهای مقدار حاصل از شیفت، به این موضوع پی برد که آیا الگوریتم به پایان رسیده است یا خیر. بنابراین از همین موضوع برای مشخص کردن سیگنال خروحی end استفاده شده است. مدار این قسمت در شکل ۷ آورده شده است.

شكل ٧: مشخص كردن مقدار سيگنال خروجي end

۳.۲ ماژول جمع کننده

این ماژول وظیفه جمع کردن مقدار حاصل تا این لحظه، با ضربشونده را داراست. در واقع مقدار ضربشونده در سیگالهای a_i به این ماژول میرسد که این سیگنالها همان a_i شده بیتهای ضربشونده با بیت اول ضربکننده هستند. رابط این ماژول در شکل آمده است.

شكل ٨: ما ژول جمع كننده

طراحی داخلی این جمعکننده نیز با استفاده از هشت Full Adder صورت گرفته که طراحی داخلی این ماژول و ماژول Full Adder را در شکل ۹ میتوان دید.

(ب) طراحی داخلی ماژول Full Adder

(آ) طراحی داخلی ماژول جمعکننده

شكل ٩: طراحي داخلي Adder و FullAdder

۴.۲ ماژول REG

همانطور که گفته شد این ماژول به عنوان رجیستر برای نگهداری مقدار حاصل ضرب در هر مرحله استفاده می شود. خروجی های این ماژول به ماژول جمع کننده داده شده تا مقدار حاصل ضرب آپدیت شود. ورودی و خروجی های این ماژول در شکل ۱۰ آورده شده است.

شكل ۱۰: ماژول REG

در مدار داخلی آن نیز از هشت فلیپفلاپ نوع $\mathbb D$ استفاده شده است که طراحی آن را در شکل ۱۱ میتوان دید.

شكل ۱۱: طراحي داخلي ماژول REG

۳ تست مدار

برای تست کارکرد مدار نیز چند نمونه ورودی داده شده و حاصل ضرب آنها توسط مدار محاسبه شده است. نمونهای از تستها را در شکلهای زیر میتوان دید.

 $7 \times 5 = 35:$ ۱۲ شکل

 $15 \times 15 = 225$:۱۳ شکل

 $7 \times 0 = 0$:۱۴ شکل

 $15 \times 1 = 15:$ شکل شکل