

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA

DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA

Professor: Alceu André Badin

Disciplina: Eletrônica I

Exercícios - Lista VI - Amplificadores operacionais

1) O circuito abaixo usa um amplificador operacional que é ideal, exceto por ter um ganho finito A. As medições indicam $v_0 = 4,0$ V quando $v_1 = 1,0$ V. Qual é o ganho A do amplificador operacional?

 Supondo amplificadores operacionais ideais, encontre o ganho de tensão vo/vi e a resistência de entrada Rin de cada um dos circuitos:

3) Você recebe um amplificador operacional ideal e três resistores de 10 kΩ. Usando combinações de resistores em série e paralelo, quantas topologias diferentes de circuito amplificador inversor são possíveis? Qual é a maior magnitude de ganho de tensão disponível (não infinita)? Qual é a menor magnitude de ganho disponível (diferente de zero)? Quais são as resistências de entrada nesses dois casos? 4) O circuito abaixo mostra um amplificador operacional que é ideal, exceto por ter um ganho finito em malha aberta, e é usado para realizar um amplificador inversor cujo ganho tem uma magnitude nominal $G = R_2/R_1$.

Para compensar a redução de ganho devido ao A finito, um resistor R_c é desviado através de R_1 . Mostre que a compensação perfeita é obtida quando R_c é selecionado de acordo com

$$\frac{R_c}{R_1} = \frac{A - G}{1 + G}$$

5) Para o circuito abaixo, determine o ganho v_o/v_i :

- O circuito abaixo utiliza um amplificador operacional ideal.
 - a) Encontre I_1 , I_2 , I_3 , I_L e V_x .
 - b) Se V_O não deve ser inferior a -13 V, encontre o valor máximo permitido para RL.
 - c) Se R_L varia na faixa de 100 a 1kΩ, qual é a variação correspondente em I_L e em V_O?

- 7) Projete um circuito de amplificador operacional para fornecer uma saída $v_0 = -[2v_1 + (v_2/2)]$. Escolha valores de resistores acima de $2k\Omega$.
- Determine a expressão para o ganho de tensão, vO/vI, do circuito seguinte:

- 9) Para o circuito seguinte, suponha um amplificador operacional ideal, determine :
- a) v_0 em termos das tensões de entrada v_1 e v_2 .
- b) Encontre vo para

 $v_1 = 10\sin(2\pi \times 60t) - 0.1\sin(2\pi \times 1000t)V$ e

 $v_2 = 10\sin(2\pi \times 60t) + 0.1\sin(2\pi \times 1000t)V$,

10) O circuito abaixo utiliza um potenciômetro de 10 kΩ para realizar um amplificador de ganho ajustável. Obtenha a expressão para o ganho em função do ajuste do potenciômetro x. Qual é a faixa de ganhos obtidos? Mostre como adicionar um resistor fixo de modo que a faixa de ganho possa ser de 1 a 11 V/V. Qual deve ser o valor do resistor?

11) Para o circuito seguinte, expresse *v*₀ como uma função de v₁ e v₂. Qual é a resistência de entrada vista apenas por v₁? Somente pela v₂? Por uma fonte conectada entre os dois terminais de entrada?

12) Para o circuito seguinte determine o ganho vo/vi.

13) Determine a tensão de saída para o circuito segunite:

14) Determine a tensão Vo do circuito abaixo.

15) O circuito mostrado abaixo, destina-se a fornecer tensão para cargas flutuantes (aquelas para as quais ambos os terminais não estão aterrados), enquanto faz o maior uso possível da fonte de alimentação disponível.

Supondo amplificadores operacionais ideais, esboce as formas de onda de tensão nos nós B e C para uma onda senoidal de 1 V pico a pico aplicada em A. Esboce também v_O .

- (b) Qual é o ganho de tensão v_0/v_1 ?
- (c) Supondo que os amplificadores operacionais operem com fontes de alimentação de $\pm 15~V$ e que sua saída sature a ± 14 , qual é a maior saída de onda senoidal que pode ser acomodada? Especifique seus valores pico a pico.