Universidad San Francisco de Quito

Data Mining

Proyecto 02

1) Resumen

Construir un data pipeline que ingesta TODOS los archivos Parquet de 2015–2025 del dataset NYC TLC Trip Record Data (Yellow y Green), aterriza en Snowflake (esquema raw/bronze), estandariza/depura en silver, y modela hechos y dimensiones en gold usando dbt (ejecutado desde Mage). Deben practicar clustering en Snowflake y operar credenciales mediante secrets con una cuenta de servicio de menor privilegio.

Referencias del dataset y diccionarios de datos: NYC TLC (página oficial y data dictionaries): https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

2) Objetivos de aprendizaje

- 1. Ingerir datos **Parquet** a gran escala (histórico 2015–2025) y aterrizarlos en **Snowflake** con orquestación de **Mage**.
- 2. Implementar **arquitectura de medallas** (bronze/silver/gold) con **dbt**: estandarización, limpieza y **modelo en estrella**.
- 3. Aplicar **clustering** en tablas grandes de Snowflake y evaluar su impacto mediante **pruning** y **Query Profile**.
- Operar secretos y cuentas de servicio con permisos mínimos para ingesta y transformaciones.
- 5. Entregar documentación, tests y métricas que garanticen calidad y reproducibilidad.

3) Alcance y restricciones

Fuente: NYC TLC Trip Record Data (enlace oficial). Ingerir todos los meses
 2015–2025 disponibles en Parquet de Yellow y Green). NYC.gov

- **Formato**: **únicamente Parquet**. No convertir otros formatos. Si algún mes carece de Parquet, **documentar explícitamente** la ausencia en el README (tabla de cobertura).
- Destino: Snowflake, esquema raw (bronze), silver (curated) y gold (marts).
- Orquestación: Mage (pipelines para backfill masivo y cargas por mes/lote).
- Transformaciones: dbt ejecutado desde Mage. Mage Al
- Clustering: definir y medir clustering keys en al menos 1 hecho grande de gold.
 Snowflake Docs
- Seguridad: secretos + cuenta de servicio de menor privilegio.

4) Requisitos técnicos

- Cuenta en **Snowflake** con **almacén** (warehouse) para cargas y transformaciones.
- Mage en Docker con integración dbt. Mage Al
- Acceso a los archivos Parquet.
- Conocimientos básicos de dbt, modelado dimensional y data lakehouse

5) Arquitectura esperada (alto nivel)

- Capa bronce (raw) en Snowflake: tablas que reflejan el origen (sin transformar) + metadatos de ingesta (run_id, ventana temporal, lote/mes).
- Capa silver: estandarización, limpieza, tipificación, unificación de esquemas Yellow/Green, enriquecimiento con Taxi Zones.
- Capa gold: modelo en estrella:
 - Hechos: viajes (granularidad: 1 fila = 1 viaje)
 - Dimensiones: fecha, zona, proveedor, ratecode, payment type, etc.
- Orquestación: Mage coordina ingesta y dbt run/build (bronze→silver→gold). Mage Al
- Clustering: aplicar cluster keys en el hecho principal y comparar perfiles de consulta antes/después. <u>Snowflake Docs</u>

6) Seguridad y acceso (obligatorio)

- **Secrets**: **todas** las credenciales (Snowflake account, user, password/keys, role, warehouse, database, schema) deben residir en **Mage Secrets**, **no** en el repo.
- Cuenta de servicio en Snowflake:
 - Crear usuario técnico + rol dedicado con privilegios mínimos: USAGE en warehouse, database, schema

- Prohibido usar cuentas personales con permisos amplios.
- Evidencia: capturas con nombres de secretos/roles (valores ocultos) y resumen de privilegios.

7) Conocer el dataset (antes de modelar)

- Yellow/Green: campos típicos incluyen pickup/dropoff datetime, ubicaciones (Taxi Zone IDs), distancia, tarifa itemizada, pasajeros, método de pago, RatecodeID, etc. Usen los data dictionaries oficiales para alinear tipos/semántica. NYC.gov
- **Taxi Zone Lookup**: tabla de referencia de zonas y boroughs (para enriquecer dimensiones de ubicación).
- Granularidad objetivo (gold): 1 fila = 1 viaje.

8) Ingesta con Mage → Snowflake (Parquet 2015–2025)

Sin código, pasos que deben implementar y evidenciar:

- 1. **Estrategia de cobertura**: construir una **matriz de meses** 2015–2025 (Yellow/Green) que indique disponibilidad **Parquet** y **estado de carga** (pendiente/ok/fallida).
- 2. Pipeline de backfill (Mage):
 - Chunking mensual (por año/mes) para controlar volumen y reintentos.
 - Metadatos por lote (run id, fechas, tamaño/archivos).
 - o **Idempotencia**: reejecutar un mes **no** debe duplicar datos en bronce.
- 3. Carga a bronze (raw) en Snowflake:
 - Tablas de origen (Yellow y Green) y tabla de Taxi Zones.
 - Guardar metadatos de ingesta (run id, ingest ts, fuente, año/mes, conteos).
- Validaciones de cobertura: conteos por mes y por servicio (Yellow/Green); tabla de auditoría con resultados.

Nota: si algún mes **no** existe en Parquet, **no** lo conviertan: marquen **brecha** y sigan. La página oficial describe la naturaleza del dataset y sus campos clave.

9) Transformaciones con dbt (medallion)

Bronze \rightarrow **Silver** \rightarrow **Gold** (ejecutado desde Mage). Conceptos de medallas: **mejorar calidad/estructura por capas**. <u>Databricks</u>

- Bronze (raw): reflejo del origen, tipos crudos, sin lógicas de negocio.
- Silver (stg/core):
 - Estandarizar tipos/zonas horarias; normalizar nombres/valores (p. ej., payment_type legible).
 - Reglas de calidad mínimas (nulos, rangos de fechas, distancias/tiempos no negativos; outliers razonables).
 - Unificar Yellow y Green en un esquema común (añadir columna service_type = 'yellow'/'green').
 - o Enriquecer con **Taxi Zones** (PULocationID/DOLocationID → zona, borough).
- Gold (marts): modelo en estrella
 - Hecho principal: fct_trips (1 fila = 1 viaje).
 - Dimensiones conformadas (compartidas): dim_date, dim_zone, dim_vendor, dim_rate_code, dim_payment_type, dim_service_type, dim_trip_type.
 - Relaciones en el hecho (ejemplo):
 - dim_date → pickup_date_sk, dropoff_date_sk
 - dim_time → pickup_time_sk, dropoff_time_sk
 - dim_zone → pu_zone_sk (pickup), do_zone_sk (dropoff)
 - Etc

Clustering ejemplo en Snowflake (tabla de hechos): CLUSTER BY (pickup_date_sk, etc); evaluar también por dropoff_date_sk según consultas.

10) Clustering en Snowflake (práctica obligatoria)

- 1. Seleccionar tabla objetivo: el hecho fct_trips (gold), por su volumen.
- 2. Elegir clustering key(s) en función de patrones de consulta: típicamente por fecha/hora de pickup y/o PULocationID (y, si aplica, service_type).
- 3. Medir antes/después:
 - o Capturar Query Profile (tiempo, particiones leídas, pruning) antes de clusterizar.
 - Aplicar cluster key(s); si habilitan auto-clustering, documentar.
 - Re-ejecutar consultas representativas y comparar métricas (tiempo, micro-partitions escaneadas).
- 4. **Conclusión**: justificar si el clustering aporta, y qué llaves elegirían a largo plazo (evitando sobreclusterizar).
 - Conceptos de micro-partitions, pruning y cluster keys en Snowflake.

Tip: diferenciar **clustering** de **Search Optimization Service** (SOS) para búsquedas ultra selectivas; aquí el foco es clustering.

11) Calidad y documentación

- Tests (dbt): unicidad de llaves naturales, not_null en campos clave,
 accepted_values (p. ej., payment_type) y relaciones PU/DO con zonas válidas.
- Diccionario de datos: describir columnas finales en gold y su origen (lineage).
- Auditoría de cargas: tabla/reporte con conteos por mes/servicio y % de filas descartadas por reglas de calidad (si descartaron).

12) Entregables (GitHub)

- 1. **README** completo con:
 - Descripción y diagrama de arquitectura (bronze/silver/gold) y orquestación en Mage.
 - Cobertura de meses 2015–2025 (matriz por servicio) y estado de carga (Parquet).
 - Estrategia de pipeline de backfill mensual e idempotencia.
 - Gestión de secretos (nombres y propósito) y cuenta de servicio / rol (permisos mínimos).
 - Diseño de silver (reglas de limpieza/estandarización) y gold (hechos/dimensiones).
 - Clustering: llaves elegidas, métricas antes/después, conclusiones.
 - o **Pruebas** (qué validan y cómo interpretar resultados).
 - Troubleshooting (archivos faltantes, fallas de carga, límites, costos).
- 2. Docker Compose donde esta el contenedor de orquestación
 - Proyecto de Mage versionado (pipelines de ingesta y de transformaciones con dbt). Mage Al
 - Proyecto dbt con capas bronce/silver/gold, documentación y tests.
- 3. Evidencias (capturas):
 - Secrets/roles (valores ocultos), matriz de cobertura, ejecuciones en Mage, lineage dbt, Query Profiles de clustering (antes/después).
- 4. **Notebook con respuestas a 5 preguntas de negocio** (ver Sección 14) basadas **exclusivamente** en la capa gold (indicando tablas y medidas usadas).

13) Rúbrica de evaluación (100 pts)

- Ingesta Parquet 2015–2025 (25 pts): cobertura clara (Yellow/Green), idempotencia, metadatos por lote y auditoría de conteos.
- Arquitectura de medallas (25 pts): bronze fiel al origen, silver estandarizado y enriquecido, gold en estrella (hechos/dimensiones).
- Clustering en Snowflake (20 pts): selección de keys justificada, comparación antes/después, análisis de pruning. <u>Snowflake Docs</u>
- Seguridad y operación (15 pts): secrets + cuenta de servicio con mínimo privilegio; documentación; orquestación en Mage.
- Calidad y documentación (15 pts): tests dbt, diccionario de datos, README claro, evidencias completas.

14) 10 preguntas de negocio (capa gold, obligatorias)

- Demanda por zona y mes: ¿cuáles son las 10 zonas con más viajes por mes? (PU y DO por separado).
- 2. Ingresos y propinas: ¿cómo varían los ingresos totales y el tip % por borough y mes?
- Velocidad y congestión: promedio de mph por franja horaria y borough (viajes diurnos vs. nocturnos).
- 4. **Duración del viaje**: percentiles (p50/p90) de duración por **PULocationID** (pickup)
- 5. **Elasticidad temporal**: distribución de viajes por **día de semana** y **hora**; ¿cuáles son las horas pico?

Todas deben resolverse sobre **gold** indicando **hechos/dimensiones** y **métricas con SQL**. Crear un notebook de **data_analysis.ipynb**, donde se conectan a la capa gold de Snowflake y ahí hacen las queries para responder cada pregunta.

15) Checklist de aceptación (copiar al README y marcar)

Cargados todos los meses 2015–2025 (Parquet) de Yellow y Green; matriz de
cobertura en README. <u>NYC.gov</u>
Mage orquesta backfill mensual con idempotencia y metadatos por lote.
Bronze (raw) refleja fielmente el origen; Silver unifica/escaliza; Gold en estrella con
fct_trips y dimensiones clave.
Clustering aplicado a fct_trips con evidencia antes/después (Query Profile,
pruning). Snowflake Docs

Secrets y cuenta de servicio con permisos mínimos (evidencias sin exponer valores).
Tests dbt (not_null, unique, accepted_values, relationships) pasan; docs y lineage
generados.
Notebook con respuestas a las 5 preguntas de negocio desde gold.