Analysis and Visualisation of Complex Agro-Environmental Data

Lesson 06

- Non-parametric hypothesis testing
- Outlier analysis
- Data transformation

SECRET INST

Topics for the final project

Lesson #6

- 1. Non-parametric hypothesis testing
- 2. Outlier analysis
- 3. Data transformation
- 4. Topics for the final project

Lesson #6

- 1. Non-parametric hypothesis testing
- 2. Outlier analysis
- 3. Data transformation
- 4. Topics for the final project

Randomization or permutation tests

Based on resampling or reshuffling the original data many times to generate sample distributions.

p-value = proportion of test
statistics > original value

Randomization or permutation tests

Particularly useful when:

- The distribution is unknown
- A random sampling is not possible (e.g. data opportunistically collected)
- Other assumptions such as *iid* observations are questionable (e.g. temporal trends and spatial patterns).

Tests based on differences between sample distributions

Kolmogorov-Smirnov test

Based on diferences in the **Empirical Cumulative Probability Function** (ECDF) of two samples (one can be a reference distribution such as the normal distribution – one-sample normality test)

- 1. Compute K_i (absolute difference)
- 2. K_{max} will be the test statistic (follows a Kolmogorov distribution)
- 3. K_{max} > critical K_{df} (table) => H_0 (no diferences) is rejected

Rank-based tests

Man-whitney U test (simplest case with no ties)

 H_0 – There is no difference in the central tendency between groups

	<u>Gender</u>	<u>Vaue</u>		Gender	<u>Value</u>		Gender	Rank
	Female	157.522	order	Male	90.502	rank	Male	1
	Female	201.909		Male	95.289		Male	2
	Female	123.791		Male	99.811		Male	3
	Female	101.078		Female	101.078		Female	4
$n_1 = 8$	Female	106.1		Male	101.951		Male	5
	Female	271.097		Female	106.1		Female	6
	Female	211.835		Male	106.1		Male	7
	Female	186.874		Female	123.791		Female	8
	[—] Male	106.1		Female	157.522		Female	9
	Male	90.502		Female	186.874		Female	10
	Male	193.807		Male	191.076		Male	11
<i>n</i> ₂ = 7	Male	95.289		Male	193.807		Male	12
2	Male	101.951		Female	201.909		Female	13
	Male	191.076		Female	211.835		Female	14
	_ Male	99.811		Female	271.097		Female	15

Rank sum:

$$T_1 = 4+6+8+9+10+13+14+15 = 79$$

 $T_2 = 1+2+3+5+7+11+12 = 41$

Test statistics *U*:

$$U_1 = n_1 \cdot n_2 + \frac{n_1 \cdot (n_1 + 1)}{2} - T_1 = 13$$

$$U_2 = n_1 \cdot n_2 + \frac{n_2 \cdot (n_2 + 1)}{2} - T_2 = 43$$

 $Mann-Whitney\ U=min\ (U1,\ U2)=13$

Expected value:
$$\mu_U = \frac{n_1 \cdot n_2}{4} = 10.5$$

- A p-value is then obtained for each U and degrees-of-freedom.
- Large sample sizes => z-value can be used

Rank-based tests

Wilcoxon signed-rank test (simplest case with no tied ranks)

 H_0 – There is no difference in the central tendency between groups

	Time 1	Time 2	
Ind 1	157.522	106.1	
Ind 2	201.909	90.502	
Ind 3	123.791	193.807	
Ind 4	101.078	95.289	
Ind 5	101.951	106.1	
Ind 6	191.076	271.097	

Diff.	Rank	Sign
51.422	3	+
111.407	6	+
-70.016	4	-
5.789	2	+
-4.149	1	-
-80.021	5	-

Rank sum:

$$T_{(+)} = 3+6+2 = 11$$

 $T_{(-)} = 4+1+5 = 10$

Test statistics:

$$W = min(T_{(+)}, T_{(-)}) = 9$$

Expected value of W: $\mu_W = \frac{n \cdot (n+1)}{4} = 10.5$

- A p-value is then obtained for each U and degrees-of-freedom.
- Large sample sizes => z-value can be used

Rank-based tests – multiple samples

Kruskal-Wallis test

- The non-parametric version of one-way ANOVA
- Assesses whether samples belong to the same distribution (tests diferences in the medians).

Friedman test

the non-parametric alternative to the one-way
 ANOVA with repeated measures (ex. over time)

Post-oc or multiple comparisons tests

A common post-hoc test is the **Dunn's test**

Sum of the square sum of ranks per group
$$\chi^2 = \frac{12}{N \cdot k \cdot (k+1)} \cdot \sum_{k=1}^{\infty} R^2 - 3 \cdot N \cdot (k+1)$$
 Sample size Number of repetitions

NOTE: In any case, parametric tests should be preferably used over rank-based tests except when **distributions are weird** (and transformations do not help) or **outliers** are present.

Tests with categorical variables

Pearson's chi-square test – two categorical variables and large samples

 determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table:

$$\chi^2 = \sum_{i=1}^n \frac{(Oi - Ei)^2}{E_i}$$

 O_i – Observed values

 E_i – Expected values

i – position in the contingency table

• H_0 : the two categorical variables are independent

Hypothesis testing in Python

Null Hypothesis	Distributions	SciPy Functions for Test
The population mean has a given value.	Normal distribution (stats.norm), or Student's t distribution (stats.t)	stats.ttest_1samp
The means of two random variables are equal (independent or paired samples).	Student's t distribution (stats.t)	stats.ttest_ind, stats.ttest_rel
The medians of two random variables are equal (independent or paired samples).	Wilcoxon distribution	stats.mannwhitneyu wilcoxon
The distribution of two random variables are equal.	Kolmogorov-Smirnov distribution	stats.kstest
Categorical data occur with given frequency (sum of squared normally distributed variables).	χ2 distribution (stats.chi2)	stats.chisquare
Two categorical variables are independent.	χ2 distribution (stats.chi2)	stats.chi2_contingency
two or more variables have equal variance in samples	F distribution (stats.f)	stats.barlett, stats.levene
Two or more groups have the same population mean (ANOVA).	F distribution	stats.f_oneway, stats.kruskal
Two variables are not correlated.	Beta distribution (stats.beta, stasts.mstats.betai)	stats.pearsonr, stats.spearmanr

Hypothesis_testing_Non_parametric.ipynb

Lesson #6

- 1. Non-parametric hypothesis testing
- 2. Outlier analysis
- 3. Data transformation
- 4. Topics for the final project

= **outlier detection** = **anomaly detection** (time series): a family of analytical and graphical tools to detect outliers - important step of data mining

Outliers

- A data value that appears to deviate markedly from other members of the sample in which it occurs (Grubbs, 1969).
- Impacts on summary statistics, pattern detection and confirmatory analysis
- May be caused by:
 - ✓ Natural variability (e.g. extreme events)
 - ✓ Human error
 - ✓ Faulty equipment
 - ✓ Poor sampling

Univariate outliers Outliers

Multivariate outliers

Outliers not detected by univariate plots

3 types of outliers

Type 1: Global outliers (also called "point anomalies")

Extreme values at any context

Type 2: Contextual (or conditional) outliers

Extreme values that depend on a particular context

Type 3: Collective outliers

A set of values that induce an anomaly (only) in combination

Dealing with outliers

Rule: outliers must be dealt with **only if they are shown to have a significant impact** in the data analysis or model performance.

After detecting outliers, there are four main methods of dealing with them:

- Removing from the dataset
- Reducing the weights of detected outliers
- Changing the values of outliers
 - ✓ Winsorisation replacing them with the nearest non-outlier values.
 - ✓ Imputation replacing by estimates based on the data (e.g. median, mean, etc)
- Using more robust estimation techniques (e.g. M-estimation for regression).

Detecting outliers

Check github: https://github.com/isa-ulisboa/greends-avcad-2025/tree/main/examples

Outlier_analysis.ipynb

Lesson #6

- 1. Non-parametric hypothesis testing
- 2. Outlier analysis
- 3. Data transformation
- 4. Topics for the final project

Data transformation (sensu lato)

Data transformation (sensu lato) involves performing different kinds of operations to prepare data to be analyzed, such as:

- 1. Manipulate the form of the data (data wrangling)
- 2. Variable standardization and normalization
- 3. Variable transformation
- 4. Engineer features in the data

For some of these operations (e.g. 2 and 3), a previous exploratory data analysis must be carried out on the data to assess the necessity and kind of transformation to be carried out.

1. Manipulate the form of the data (data wrangling)

Reshape a data set to make it ready to be analyzed. Examples are:

- Reordering/selecting rows
- Renaming/selecting columns
- Handling missing values
- Transpose data
- Removing duplicate values
- Stack/unstack data
- Pivoting data

2. Variable standardization and normalization

When the analysis needs the data to have similar units, it is a way of rescaling variables to a common scale without changing the distribution. Examples are:

 Data standardization - involves centering and scaling variables, respectively, to Mean=0 and SD=1:

$$X_{stand} = \frac{x_i - \bar{x}}{s}$$

Normalization - involves for example rescaling variables to values between 0 and 1.

$$X_{norm} = \frac{x_i - min(x)}{max(x) - min(x)}$$

3. Variable transformation (strict sense)

Modify the values of a variable to fulfill certain statistical assumptions, e.g., normality, homogeneity, linearity, ... In this case the distribution of the data is changed

Examples are:

• Logarithmic, square root, cube root, ... transformations

• Box-Cox transformation:
$$\omega = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda} & when \lambda \neq 0 \\ \log(Y) & when \lambda = 0 \end{cases}$$

=> involves estimating λ (if λ =1 then Y is already normally distributed)

Arcsin transformation – for proportions

4. Engineer features in the data

Generate new variables based on existing ones. Examples are:

- Aggregate values for each category of a factor, using functions such as the sum, mean, maximum, ...
- Generate new variables by applying a given function (e.g. sum) to a set of columns in a data table e.g. generate a community species richness variable from presence/absence data of single species.

Some working examples on:

https://github.com/isa-ulisboa/greends-avcad-2025/tree/main/examples

Transformation.ipynb

Lesson #6

- 1. Non-parametric hypothesis testing
- 2. Outlier analysis
- 3. Data transformation
- 4. Topics for the final project

Goal: tell a coherent story from a complex agro-environmental dataset

Steps:

- 1. Questions/hypothesis definition
- 2. Preparation of datasets, through database queries and data wrangling
- 3. Summary statistics
- 4. Exploratory data analysis
- 5. Inferential statistics
- 6. Final visualisation product and storytelling

Assessment:

- 1. A live presentation of your story, a poster, or a 1-page interactive dashboard
- 2. A short written report, including the code as an Appendix.

Groups

2-3 students maximum

Databases:

- INE database
- Other databases of student's interest
- National Forestry Inventory

Report

Should include the following chapters:

- 1. Introduction Short introduction to the topic, ending with questions/working hypothesis to be addressed and objective (2 pages max.)
- 2. Database description Short descriptive statistics of the database/tables (2 pages max.)
- **3. Exploratory data analysis** This will be the most important chapter, where you will try to tell a coherent history by means of numerical outputs and visualizations (10 pages max.)
- **4. Discussion/Conclusions** a short discussion/main take home messages/conclusions of the work (2 pages max.).
- 5. References
- 6. ANNEX Python code.

INE database

Spatial resolution: civil parishes

Types of variables:

- Education education levels of agricultural populations
- Workforce Volume of agricultural labour force (AWU) and Type of labour force
- Production (value per área and total)
- Livestock (number of holdings per species)
- Grasslands (area and number of holdings)
- Temporary crops (area and number of holdings)
- Permanent cultures (area and number of holdings)

National Forestry Inventory

Catographic data on abundance, state and condition of national forest resources.

Structure of the INE database

Possible topics

- 1. Farmland socio-economic analysis: geographical patterns and temporal trends
- 2. Analysis of livestock activities: geographical patterns and temporal trends
- 3. Analysis of agricultural activities: geographical patterns and temporal trends
- 4. Relationship between socio-economic variables and livestock activities
- 5. Relationship between socio-economic variables and agriculture activities
- 6. Spatial and temporal analysis of forest resources changes (e.g. differences between NUT II or III regions and across years: 1995, 2005, 2010, 2015).

Exercise 6

- 1. Using the EFIplus_medit.zip dataset, test if the frequency of sites with presence and absence of *Salmo trutta fario* (Brown Trout) are independent from the country. Please state which is/are the null hypothesis of your test(s). You may try to produce an alluvial plot.
- 2. Run the non-parametric equivalent of the test you used in exercise 5.3 and compare with the ANOVA test (5.2: Test whether there are differences in the mean elevation in the upstream catchment (Elevation_mean_catch) among the eight most sampled catchments. For which pairs of catchments are these differences significant? Please state which is/are the null hypothesis of your test(s)).
- 3. Using the winequality_red.csv file in the examples folder of the github repository, test which wine parameters discriminate the best between wine quality scores categorized into two classes using value 5 as the threshold value (quality>5="good" and quality<5="bad").