Tugas 3 Pemebelajaran Mesin

Nama : Simiao Salvador da Gama

NIM : 1301163617

Kelas : IF-40-12

1. Kelebihan K-Means Clustering:

- Mudah dilakukan saat pengimpelementasian dan di jalankan.
- Waktu yang di butuhkan untuk melakukan pembelajaran relatif lebih cepat.
- Sangat fleksibel, adaptasi yang mudah untuk di lakukan
- Sangat umum penggunaannya.
- Menggunakan prinsip yang sederhana dapat di jelaskan dalam non-statistik.

Kekurangan K-Means Clustering:

- Sulit memprediksi Nilai-K.
- K-Means tidak bisa berfungsi dengan baik dalam global cluster.
- Partisi awal yang berbeda dapat menghasilkan cluster akhir yang berbeda.
- ■K-Means tidak bisa bekerja dengan baik dengan cluster (dalam data asli) dengan ukuran berbeda dalam densitas yang berbeda.

Contoh kasus : Lakukan clustering pada kumpulan data berikut

i	1	2
A	1	4
В	2	3
С	3	4
D	2	3
Е	2	1

Dalam hal ini saya memilih k=2 dan memilih centroid secara acak yaitu A dan D. Lakukan perhitungan suatu data dengan centroid, yaitu dengan rumus sebagai berikut : $d(\mathbf{p},\mathbf{q}) = \sqrt{(\mathbf{q}_1-\mathbf{p}_1)^2 + (\mathbf{q}_2-\mathbf{p}_2)^2 +(\mathbf{q}_n-\mathbf{p}_n)^2 }$

Maka terdapat tabel sebagai berikut ini serta dengan clusternya(kelompoknya)

i	1	2	Cluster
A	0	1,414213562	1
В	1,414213562	0	2
С	2	2,828427125	1
D	1,414213562	0	2
Е	3,16227766	2	2

Pilih kembali centroid untuk masing-masing cluster ,yaitu mean (rata-rata) nilai data dari setiap cluster yang sama . Lakukan penghitungan lagi dengan centroid yang baru.

Kesimpulan: Jadi seperti kita sudah melihat dalam permasalahan ini bahwa **kelebihan** K-Means clustering adalah mudah sekali bagi kita untuk melakukan pengimplementasian dan sangat sederhana; **kelemahannya** adalah sulit untuk memprediksi nilai k dan tidak akan bisa di implementasikan (dicluster) apabila ukuran data asli tidak sama dengan data densitas.

2. **Agglomerative hierarchical clustering** adalah sebuah metode clustering yang bertujuan untuk mengelompokkan objek objek sesuai dengan karakteristik yang dimilikinya, dimana dimulai dengan objek-objek individual sampai objek-objek tersebut bergabung menjadi suatu cluster yang tunggal.

Contoh Soal : Terdapat sebuah data dengan ukuran matriks 6x6 dimana kita diminta untuk mengelompokan sesuai dengan algoritma agglomerative hierarchial clustering :

Dist	Α	В	C	D	E	F	
A (0.00	0.71	5.66	3.61	4.24	3.20	n
В	0.71	0.00	4.95	2.92	3.54	2.50	
c)	5.66	4.95	0.00	2.24	1.41	2.50	
D)	3.61	2.92	2.24	0.00	1.00	0.50	1
E	4.24	3.54	1.41	1.00	0.00	1.12	
F	3.20	2.50	2.50	0.50	1.12	0.00	

Ambil jarak terdekat (single linkage) dan digabungin. Terdapat D,F jadi kita gabungin. Dist A B C D,F E

Terdapat A,B dengan jarak terdekat. Ambil itu dan gabungin.

Dist	A,B	С	(D, F)	E
A,B	0	?	?	?
С	?	0	2.24	1.41
(D, F)	?	2.24	0	1.00
E	?	1.41	1.00	0

Terdapat jarak E dengan D,F yang terdekat jadi gabungkan.

Dist		(A,B)	C	(D, F), E
(A,B)		0.00	4.95	2.50
C	1	4.95	0.00	1.41
D, F), E	l	2.50	1.41	0.00

Terdapat jarak E dengan D,F,E yang terdekat , jadi gabungkan

Gambar hierarki sesuai dengan pengelompokan

Gambar dendogram sesuai dengan pengelompokan dan bobot yang dimiliki

3. - Langkah 1 : Dalam permasalahan ini saya ambil label untuk dijadikan kelas , adalah : $y = data \ train \ kolom1 / data \ train \ kolom2$. Seteleh itu ambil ceil nya dimana terdapat empat label kelas (1,2,3,4)

Untuk dimensi arkitektur SOM saya ambil 25x25.

- Langkah 2 : Setting dan inisialisasi parameter atau variabel variabel yang dibutuhkan : ukuran lebar untuk winning neuron = 15
 - waktu konstan untuk topologi neighbourhood = iteration/log(5)
 - waktu awal learning rate = 1
 - Total iterasi = 150
 - Waktu konstan untuk learning rate = Total iterasi
- Langkah 3: Fungsi fungsi yang dibutuhkan dalam algoritma ini:
 - *findBestMatch*: Fungsi ini akan mencari best matched vector(winning neuron) sesuai dengan input image.
 - *-computeNeighbourhood*: Fungsi ini akan menghitung jarak lateral(lateral distance) antara neurons i dan winning neurons.
 - *randInitializeWeights*: Fungsi ini akan menginisialisai bobot(weight) vector pada tiap neuron secara acak antara 0 dan 1.
 - *updateWeight* : Fungsi ini akan mengupdate semua neuron tergantung jarak antara winning neuron dan neuron lain
 - plotData: fungsi untuk memplotting data.
- Langkah 4 : Inisialisasi bobot untuk tiap neuron secara acak (0 atau 1)

 Dalam perulangan di main program :
 - Mencari winning neuron yang paling cocok berdasarkan eucliden distance yang terkecil antara input dan masing masing neuron.
 - Hitung lateral distance antara winning neuron dan setiap neurong.
 - Update bobot neuron
 - Plot data self organizing map denga kelas yang sudah ditentukan.

Hasil 150 iterasi dengan dimensi 10 x 10

Hasil 150 iterasi dengan dimensi 25 x 25

Kesimpulan : Semakin besar dimensinya dan data trainnya maka pattern pengenalan neuron akan sangat bagus/baik. Untuk cluster yang paling optimum dalam hal ini ialah cluster 1 (dengan warna kuning) karena ukuran kumpulannya yang besar serta banyaknya kelompok yaitu 8 kelompok di antara 15 kelompok clustering.