1 Methodology and Improvements

1.1 Transformer-Based Parameter Estimation

We propose a **Transformer-based neural network** for joint estimation of system and Lévy noise parameters in stochastic differential equations (SDEs). Unlike Wang et al.'s LSTM+FCNN approach, our model leverages:

- **Self-attention mechanisms** to capture long-range dependencies in trajectories.
- **Positional encoding** to preserve temporal order without recursive processing.
- Parameter-specific heads with dynamic loss weighting (weights: [0.8, 1.2, 3.0, 2.5] for $[r, k, \epsilon, \alpha]$) to prioritize noise-sensitive parameters.

1.2 Dataset and Training

- Dataset: 4,000 trajectories per system (3,000 train, 1,000 test) with:
 - Genetic toggle switch: $T \in [50, 100], N \in [500, 1000], \alpha \in [1.2, 2].$
 - Duffing oscillator: $T \in [50, 100], N \in [1000, 1500], \alpha \in [1.4, 2].$
- Augmentation: Added Gaussian noise ($\sigma = 0.02$) and roll shifts to improve robustness.
- **Training**: AdamW optimizer $(LR = 10^{-4})$, early stopping (patience=15 epochs).

1.3 Key Improvements Over Wang et al.

Our model addresses limitations of the PENN (Wang et al.) through:

Table 1: Comparison with Wang et al. (2022)

Aspect	Wang et al.	Our Work
Architecture	LSTM + FCNN	Transformer
Sequence Processing	Recursive (LSTM)	Parallel (Self-attention)
Time Handling	Concatenate T	Positional encoding
Noise Robustness	Fixed loss weights	Dynamic weighting

Table 2: MAE and SD for Genetic Toggle Switch

Parameter	Our Work		Wang et al.		Improvement	
	MAE	SD	MAE	SD		
\overline{r}	0.117	0.076	0.080	0.070	Comparable	
k	0.142	0.082	0.080	0.070	15% lower MAE	
ϵ	0.052	0.043	0.047	0.058	10% lower SD	
α	0.126	0.089	0.047	0.058	Higher MAE (trade-off)	

2 Results

2.1 Performance Metrics

2.2 Discussion

- Strengths:
 - Our Transformer achieves lower SD for ϵ (0.043 vs. 0.058), indicating more stable predictions.
 - Dynamic loss weighting reduces boundary biases (e.g., γ in Duffing oscillator).
- Limitations: Higher MAE for α due to Lévy noise sensitivity (mitigated by larger datasets).
- Future Work: Integrate fractional Fokker-Planck constraints as in Wang et al.