Assignment #10 Solutions

due Friday, November 8th, 2019

1 The objective function $z = (4000 - 80p)(p - 10) - 25000 = -80p^2 + 4800p - 65000$, then we can take the derivative of z over p and set it to zero, namely,

$$\frac{\partial z}{\partial p} = -160p + 4800 = 0$$

Then we have $p^* = 30$, the optimal volume $v^* = 1,600$ and the optimal profit $z^* = 7000$.

2

(a) Using the excel solver, we can derive $x_1^* = 15.45$ and $x_2^* = 12.27$. And the optimal profit is 382.72.

1 Riverwood Paneling Com	pany					
2						
3 Variables:						
4 Colonial Paneling (x1)	15.454545					
5 Western Paneling (x2)	12.272727					
6						
7 Profit:	382.72727					
8						
9 Constraints	x1	x2	Used	Constraint	Allowed	
10 Labor	1	2	40	=		40

(b) From the sensitivity report, we can see that the Lagrange Multiplier is 0.27. It reflects the approximate change in the objective function resulting from a unit change in the quantity (right-hand-side) value of the constraint equation. For this problem, if the quantity of labor hours is increased from 40 to 41 hours, the value of Z will increase by \$0.27—from \$382.73 to \$383.

1	Microsoft Excel 16.28 Sensitivity Report							
2	Worksheet: [hw10.xlsx]Q2 (a)							
3	Report Created: 11/5/19 1:20:37 AM							
4								
5								
6	6 Variable Cells							
7			Final	Reduced				
8	Cell	Name	Value	Gradient				
	Cell	Name	value	Gradient				
9	\$B\$4	Colonial Paneling (x1)	15.45454532	0				
9 10								
_	\$B\$4	Colonial Paneling (x1)	15.45454532	0				
10	\$B\$4	Colonial Paneling (x1) Western Paneling (x2)	15.45454532	0				
10 11	\$B\$4 \$B\$5	Colonial Paneling (x1) Western Paneling (x2)	15.45454532	0				
10 11 12	\$B\$4 \$B\$5	Colonial Paneling (x1) Western Paneling (x2)	15.45454532 12.27272734	0				

3 Let (x, y) be the coordinate of the new distribution center. Data: Let (x_i, y_i) be the coordinate of supplier i, i = A,B,C,D.

 t_i be the annual number of truckloads from supplier i, i = A,B,C,D.

The distance between supplier i and new distribution center is $d_i = sqrt(x_i - x)^2 + (y_i - y)^2$. Hence, the objective function is

$$\min \sum_{i \in \{A,B,C,D\}} d_i t_i$$

Using Excel solver, the location for the new distribution center is (x, y) = (178.17, 483.18) with total transportation = 68, 171.95 miles.

1 Burger Doodle restaurant					
2					
3 Variables: new distribution of	3 Variables: new distribution center				
4 x	178.17307				
5 y	483.18067				
6					
7 Total Distance	68171.951				
8					
					total distance (supplier ->
9 supplier	x	у	distance	Annual Truckloads	distribution center)
10 A	200	200	284.02061	65	18461.33979
11 B	100	500	79.961987	120	9595.438399
12 <i>C</i>	250	600	137.13447	90	12342.10217
13 D	500	300	370.30761	75	27773.07105

4 Let x_i be the proportion of money invest in stock i, i = 1,...,4.

Data: r_i be the annual return of stock i, i = 1,...,4.

 ρ_{ij} is the correlation between stock i and stock j, where i = 1,...,4 and j = 1,...,4.

 σ_i is the variance of stock i, i = 1,...,4

$$\min \sum_{i=1}^{4} \sum_{j=1}^{4} \rho_{i} j \sigma_{i} \sigma_{j} x_{i} x_{j}$$

$$s.t. \sum_{i=1}^{4} r_{i} x_{i} \ge 0.12$$

$$\sum_{i=1}^{4} x_{i} = 1$$

$$x_{i} \ge 0, i = 1, ..., 4$$

Using the excel solver, we get the optimal solution $(x_1, x_2, x_3, x_4) = (0.025, 0, 0.615, 0.359)$ and the minimum portfolio variance = 0.0361, total return = 0.12

1 Investment portfoli	0				
2					
3 Variables					
4 x1	0.02537561				
5 x2	0				
6 x3	0.61522538				
7 x4	0.359399				
8					
9 Correlation matrix:				Return:	Variance:
10 1	0.9	0.7	0.3	0.18	0.112
11 0.9	1	0.8	0.4	0.12	0.061
12 0.7	0.8	1	0.2	0.1	0.045
13 0.3	0.4	0.2	1	0.15	0.088
14					
15 Computing the cova	15 Computing the covariance matrix (Si				
	0.07439032	0.04969507	0.02978322		
17 0.074390322	0.061	0.0419142	0.02930665		
0.04969507	0.0419142	0.045	0.01258571		
19 0.029783217	0.02930665	0.01258571	0.088		
20					
Computing the portfolio variance:		:			
22 x'*Sigma*x =	0.03613206				
23					
24 Portfolio variance:	0.03613206				
25 Portfolio return:	0.12	>=	0.12		
26 Sum of variables:	1	=	1		