Helping Humans and Agents Avoid Undesirable Consequences with Models of Intervention

Sachini Weerawardhana

Dissertation Defense Advisor: Prof. Darrell Whitley

October 4, 2021

Agenda

- **▶** Introduction
- Motivational study from cyber-security
- Intervention models
 - Intervention by recognizing actions that enable multiple undesirable consequences
 - Intervention as planning
 - Human-aware Intervention
- Intervention recovery model
 - ► The Interactive Human-aware Intervention

The Intervention Problem

- ► A human user (or an agent) is doing something online that may have an undesirable outcome that it can not recognize
- ► Two sub-problems:
 - Intervention Recognition: Identify what the user is doing is "bad"
 - ▶ Intervention Recovery: Help the user decide what to do next
- Use automated planning as a framework to model and understand:
 - ► Human user behavior in cyber-security
 - Problem solving in the Rush Hour puzzle

Why is Intervention Important?

- The actor is working in an unfamiliar environment
- Examples:
 - Learning to use a new software application
 - ▶ Use a computer having hidden security vulnerabilities
- Intervention is a utility for online assistive agents

The Intervention Framework

Thesis Outline

The Intervention Problem Dimensions

Undesirable States: Cyber-security Domain

Undesirable States: The Rush Hour Domain

(a) Initial game state

(b) End game state

The Gap in Existing Work

- ► The goal/plan recognition problem
 - ► The intervening agent can infer the goal/plan of the actor using the observations as evidence
 - May not work if the actor's likely goals are too similar
- We use machine learning to learn the differences between safe and unsafe plan suffixes.
- ▶ The Intervention Problem:
 - Online
 - Actors may have different views of the domain
 - Intervene on time but allow the actor to pursue his own goal
 - Intervention recovery

Research Questions

- ▶ 1: What are the salient characteristics for deciding when to intervene?
 - ► the actor's goals are known (Rush Hour)
 - the actor's goals are not known (Cyber-security)
- **▶** 2: How to help task continuation following intervention?
 - ▶ Probe the search space and inform the actor about the probes
- ▶ 3: How to design tools to study intervention with human user participation?
 - ▶ Planning Domain Definition Language (PDDL) models for the two domains
 - Software tools to study human users in-situ.

Agenda

- Introduction
- ► Motivational study from cyber-security
- Intervention models
 - Intervention by recognizing actions that enable multiple undesirable consequences
 - Intervention as planning
 - Human-aware Intervention
- Intervention recovery model
 - ► The Interactive Human-aware Intervention

Home Computer User Behavior in Questionable Security Situations - A Motivational Study

Objectives:

- To capture actions taken by users when asked to perform tasks that provided "opportunities" to trigger security vulnerabilities
- ► To assess consistency in users answers and actions.

Contributions:

- Cyber-security planning domain model for home computer security vulnerabilities
- Software framework to support home computer user security/privacy studies

Key Findings

- Usage patterns
 - ▶ 9+ years of experience (66%)
 - ► Owned multiple devices (82%)
 - ► 67% found it challenging to identify harmful actions and take safety steps
- Using software
 - Users incorrectly assess self-efficacy for antivirus software installation
 - Users correctly assess self-efficacy for choosing legitimate software
- ► Twitter/Email safety
 - Users incorrectly assess self-efficacy for recognizing phishing attempts on Twitter/email
 - Users incorrectly assess self-efficacy for identifying malicious attachments

Key Findings

- Recognizing system cues for safety
 - Web page content helps users select safe software to download
 - HTTPS/padlock icon helps users recognize safe web pages to download software
 - HTTPS/padlock icon does not help users recognize phishing links on Twitter
 - HTTPS/padlock icon does not help users recognize phishing links while using email

Designing Intervention for Cyber-security Domain

- ► Home computer users might not think about the post-conditions of actions while performing common tasks
- ► Home computer users might not perceive preconditions that exist in the state (e.g., padlock icons/HTTPS)
- Intervention solution needs to address:
 - Users do not complete tasks methodically (e.g., repeated actions, skips) ⇒ noise in observations
 - Intervention must be decided as and when observations become available ⇒ online operation
 - Need to evaluate proximity to an exploit regardless of the user's goal ⇒ user's desirable goal is unknown

Agenda

- Introduction
- Motivational study from cyber-security
- **▶** Intervention models
 - ► Intervention by recognizing actions that enable multiple undesirable consequences
 - Intervention as planning
 - Human-aware Intervention
- Intervention recovery model
 - ► The Interactive Human-aware Intervention

Intervention by Recognizing Actions That Enable Multiple Undesirable Consequences

- Need to identify an action that causes the most damage and least interferes with the user's needs
- Contribution:
 - Undesirable Consequences Recognition Function
 - Domain-independent metrics to measure the importance of an observed action towards contributing to multiple undesirable states

Intervention Problem Dimensions

Salient Characteristics for Deciding to Intervene

- Certainty (C)
 - How many plans contained the action over the number of sampled plans
 - ▶ Highlight frequently occurring actions in plans as important
- ► Timeliness (T)
 - Maximum normalized steps remaining in the sampled plans
 - Quantifies how soon the undesirable state may occur
- Desirability (D)
 - Number of times the action appears in the sampled plans over the sum of actions in the sampled plans
 - Separate common harmless actions that further the user's actual goal from harmful actions to be avoided
 - Negative metric

Undesirable Consequences Recognition Function

▶ Critical Trigger Action is an observed action that maximizes V(a):

$$V(a) = \alpha_1 * Certainty(a|\Pi_U) + \alpha_2 * Timeliness(a|\Pi_U) - \alpha_3 * Desirability(a|\Pi_U)$$

- ▶ a candidate action from the sampled undesirable plans plans
- $ightharpoonup \Pi_U$ sampled undesirable plans
- $(\alpha_1, \alpha_2, \alpha_3)$ metric weight assignments

Experiments

- Planning domain from the home computer cyber-security study
- Four benchmark planning domains (Blocks words, navigator, ipc-grid+, logistics)
- ► Four undesirable states for each domain
- Observation traces of actions
 - Activity logs (n=61) captured during the human subject study
 - Synthetic traces generated with controlled levels of noise and missing actions for benchmark domains
- Metric weights
 - ▶ 7 classes of discrete weight assignments for the three metrics
 - (1,0,0), (0,1,0), (0,0,1), (.33,.33,.33), (.5,.5,0), (.5,0,.5), (0,.5,.5)

Key Findings - Cyber-security Domain

- ► For each decision cycle, the selected critical trigger action is correct if it is in a ground truth undesirable plan
 - ► Mean accuracy = 59.53% (SD=30.79) across the 7 metric weight assignment classes
- Effect of metric weights on accuracy is significant $(F = 40866, p \ll 0)$
- ► Highest accuracy (mean=95.59%,SD=2.13) for two classes
 - ► Equal weights for C, T, D
 - Equal weights for C, T ignoring D
- Dominant metrics: Certainty and Timeliness

Key Findings - Benchmark Synthetic Domains

Percentage of extraneous actions not flagged as critical

- Metric weights significantly influence ignoring extraneous actions
 - Dominant metrics: Certainty, Desirability

- Percentage of ground truth undesirable actions flagged as critical
- ► Low rates indicate that other factors in addition to the three metrics may influence flagging undesirable actions
- Metric weights significantly influence flagging undesirable actions
 - Dominant metrics: Timeliness

Agenda

- Introduction
- Motivational study from cyber-security
- **▶** Intervention models
 - Intervention by recognizing actions that enable multiple undesirable consequences
 - ► Intervention as planning
 - Human-aware Intervention
- Intervention recovery model
 - ► The Interactive Human-aware Intervention

Intervention as Planning

- Combines machine learning and automated planning
- Solution is based on plan suffix analysis
- Identify different characteristics between solutions obtained from an automated planner that contain undesirable actions and solutions that do not
- Hidden effects in the environment
 - a competitor using a hidden object to subvert the actor's goal
 - a pothole the actor can not see

Intervention as Planning: Problem Dimensions

Learning to Intervene

- ► Two feature sets:
 - Metrics from The Intervention Graph
 - Plan distance measures from the sampled plans
- Use the feature sets to train classifiers to recognize actions that should be flagged for intervention
 - Naive Bayes, K-nearest neighbor, Decision tree, Logistic regression

The Intervention Graph

▶ Produce the intervention graph from current state (root) to G_1 (BAD) and G_0 (TAD) (leaves)

Intervention Graph Features

- ▶ **Risk** Posterior probability of reaching G_1 , when the user is trying to reach G_0
- ▶ **Desirability** Posterior probability of reaching G_0 , without passing G_1
- ▶ **Distance to** G_0 Mean number of edges between the root of the tree and G_0 , which doesn't pass through G_1
- ▶ **Distance to** G_1 Mean number of edges between the root of the tree and G_1
- ▶ Active attack landmarks% From the total number of predicates that must be true in any valid solution to the planning problem $\langle M, G_1 \rangle$, how many are true in the current state?

Plan Distance Measures From Sampled Plans

- ► Instead of computing exact distances and probabilities compute an estimated proximity to G₀ and G₁
- ▶ Use an automated planner to find two sets of solutions for $\langle M, G_0 \rangle$ and $\langle M, G_1 \rangle$
- ► Compute a **reference plan** = {observations + π_* }
- ▶ Compute the plan distances between the **reference plan** and the plans in $\langle M, G_0 \rangle$ and $\langle M, G_1 \rangle$

Classifier Performance

Reporting
$$F-score = \frac{TP}{TP+1/2(FP+FN)}$$

Matthews Correlation Coefficient (MCC)

	Logistic Regression						K-Nearest					
Domain	Test Set 1		Test Set 2		Test Set 3		Test Set 1		Test Set 2		Test Set 3	
	F-score	MCC	F-score	MCC	F-score	MCC	F-score	MCC	F-score	MCC	F-score	MCC
Intervention Graph Method												
Blocks-1	1	1	1	1	1	1	1	1	1	1	1	1
Blocks-2	1	1	1	1	1	1	1	1	1	1	1	1
EasyIPC	.88	.87	.88	.87	.86	.86	1	1	1	1	1	1
Ferry	1	1	1	1	1	1	1	1	1	1	1	1
Navigator	1	1	1	1	.99	.99	1	1	.96	.96	.99	.99
Plan Space Sampling Method												
Blocks-1	.25	.33	.25	.33	.25	.33	1	1	1	1	1	1
Blocks-2	1	1	1	1	1	1	1	1	1	1	1	1
EasyIPC	.64	.63	.46	.44	.67	.66	.05	04	.04	03	.05	02
Ferry	.31	.32	.23	.22	1	1	.33	.40	.13	.15	.81	.82
Navigator	.60	.59	.98	.94	.97	.97	.61	.65	1	1	1	1

Intervention Using Existing Goal Recognition Algorithms

RG (LAMA) - Probabilistic goal recognition using a satisificing planner

Domain	Test S	et 1	Test S	et 2	Test Set 3		
Domain	F-score	MCC	F-score	MCC	F-score	Мсс	
Blocks-1	.38	.45	.43	.49	.40	.47	
Blocks-2	1	1	.9	.9	1	1	
EasyIPC	.13	.05	.21	.17	.23	.19	
Ferry	.17	.18	.22	.23	.15	.17	

Agenda

- Introduction
- Motivational study from cyber-security
- ► Intervention models
 - Intervention by recognizing actions that enable multiple undesirable consequences
 - Intervention as planning
 - ► Human-aware Intervention
- Intervention recovery model
 - ► The Interactive Human-aware Intervention

Human-aware Intervention

- ► The actor is a human user. We cannot approximate plan suffixes using automated planners
- Observe how human users solve Rush Hour puzzles
- ▶ What did the users who did not move the forbidden vehicle do differently than those who moved the forbidden vehicle?

Human-aware Intervention - Problem Dimensions

Human-aware Intervention - Behavior Study

- ► In Web-based puzzle simulator app, subjects solve one randomly assigned Rush Hour puzzle.
- Subjects are told the puzzle has one forbidden vehicle that need not be moved
- ▶ No alerts if the forbidden vehicle is moved
- Post-study survey of demographics and puzzle solving habits
- ▶ 136 university students from different departments

Key Findings

- ► Huge enthusiasm for puzzle solving tasks (78%)
- ▶ 49% moved the forbidden vehicle
- Behavior patterns in unsafe solutions
 - Moving the same car back and forth in succession (do/undo)
 - Making moves that clears space around the forbidden vehicle
 - Lengthy solution: statistically significant positive correlation between the solution length and the number of times the forbidden vehicle was moved

Learning Human-aware Intervention

- Game state based features
 - number of times a move increased the number of cars blocking the goal car's path
 - number of times a move freed up empty spaces around the forbidden vehicle
 - number of times the number of empty spaces around the forbidden vehicle blockers increased
 - mean number of empty spaces around the goal and forbidden car blockers
- User action based features
 - number of moves in the user's solution
 - difference of number of moves to the cost optimal solution
 - number of vehicles moved
 - number of times a move was immediately undone

Classifier Performance

- Intervention accuracy while offering three levels of freedom $k = \{1, 2, 3\}$
- ▶ 70-30 split for training and test sets
- Classifiers trained with 10-fold cross validation

Classifier	k = 1			k = 2			k = 3		
	Precision	Recall	F-score	Precision	Recall	F-score	Precision	Recall	F-score
Decision Tree	0.70	0.90	0.89	0.80	0.95	0.87	0.89	0.81	0.85
KNN	0.89	0.76	0.82	0.86	0.86	0.86	0.95	0.90	0.93
Logistic Regression	0.91	0.95	0.93	0.87	1	0.93	0.91	0.95	0.93
Naive Bayes	0.73	0.90	0.81	0.74	0.86	0.83	0.68	0.90	0.78

► Predict intervention using the Probabilistic Plan Recognition Algorithm (Ramirez and Geffener, 2010)

Goal Priors	k = 1			k = 2			k = 3		
Goal Friors	Precision	Recall	F-score	Precision	Recall	F-score	Precision	Recall	F-score
Uniform	0.67	0.56	0.61	0.67	0.56	0.61	0.56	0.67	0.61
$P(\mathbf{u}) = 2 \times P(\mathbf{d})$	0.69	0.61	0.65	0.69	0.61	0.65	0.69	0.61	0.65
$P(d) = 2 \times P(u)$	0.67	0.56	0.61	0.67	0.56	0.61	0.67	0.56	0.67

Summary

- ► Introduced a family of Intervention Problems
 - ► Intervention for a single actor (planning agent)
 - Intervention for an actor in the presence of a competitor (planning agents)
 - Human-Aware Intervention for a single actor (human user)
- Solutions
 - ▶ If the actor is a planning agent Plan Suffix Analysis
 - ▶ If the actor is a human user Observed History Analysis
- Proposed learning based intervention outperforms existing plan recognition algorithms

Agenda

- Introduction
- Motivational study from cyber-security
- Intervention models
 - Intervention by recognizing actions that enable multiple undesirable consequences
 - Intervention as planning
 - Human-aware Intervention
- ► Intervention recovery model
 - ► The Interactive Human-aware Intervention

Interactive Human-aware Intervention

- ▶ Study intervention recovery in a Rush Hour planning task
- ► The intervening agent helps the user modify the current trajectory of the plan by providing the hints about the search space of the planning problem.
- ► Hints:
 - ► The minimum remaining number of moves
 - ► The next best move
 - ▶ The vehicles that must be moved
 - Restart puzzle

Gap in Existing Work

- ▶ Improving human-agent collaborations with explanations
- When the intervening agent (has knowledge advantage) does something the human user does not expect, Explainable AI has been used to enable transparency.
- Explain the surprise using different modalities
 - plan visualization techniques to help human users understand the solution produced by an automated planner
 - question answer dialog ("why did you do A?", "why not B?")
- ► Hints are designed to help the user uncover information about the Rush Hour planning problem

Interactive Human-aware Intervention - Behavior Study

- ▶ In Web-based puzzle simulator app, human subjects solve one randomly assigned Rush Hour puzzle assisted by the Human-aware Intervention agent
- ► Participants were randomly assigned to also watch a help video to learn how to avoid the forbidden vehicle
- Subjects are told the puzzle has one forbidden vehicle and the puzzle can be solved without it
- ▶ When forbidden vehicle is moved subjects see an alert message
- Post-study survey of demographics and hint helpfulness rating
- ▶ 135 university students from different departments

Key Findings

- Statistically significant positive correlation between the solution length and the number of times the forbidden vehicle was moved
- Most requested hint : Show the Next Best Move
 - ► Slow/medium/fast solvers
 - ► Three puzzle classes C, E, M

Hint Request Distribution

Figure: Percentage split for hints for each request number

Qualitative Evaluation

Table: H1: Show the minimum remaining number of moves, H2: Show the next best move, H3: Show the vehicles that must be moved, H4: restart puzzle

			Mean (std. dev.) helpfulness rating					
Туре	Puzzle ID	Count	H1	H2	H3	H4		
С	P2	6	1.5 (2.5)	4.3 (2.6)	3.8 (2.3)	2.0 (2.3)		
	P4	11	1.3 (2.1)	2.3 (2.1)	1.5 (2.2)	0.8 (1.7)		
_	P6	3	2.0 (1.2)	3.3 (2.6)	1.7 (2.9)	0		
	P8	1	0	3.0	3.0	1.0		
	P1	4	1.5 (1.3)	4.3 (1.0)	3.8 (1.9)	2.0 (2.2)		
	P3	13	1.3 (1.6)	2.3 (2.2)	1.5 (1.7)	0.8 (0.9)		
E	P5	13	1.4 (1.3)	2.2 (1.9)	2.2 (2.0)	1.8 (1.9)		
	P9	7	0.9 (1.2)	1.7 (2.2)	1.1 (1.7)	1.3 (2.0)		
	P10	8	0.9 (1.0)	2.8 (2.3)	1.6 (1.5)	2.8 (2.1)		
	P7	6	2.0 (2.1)	3.5 (2.1)	2.5 (1.9)	1.8 (1.3)		
М	P11	3	2.0 (2.6)	3.3 (2.9)	2.0 (2.6)	3.3 (2.9)		
	P12	1	1.0	5.0	5.0	1.0		
	P13	11	1.2 (1.8)	1.7 (1.8)	0.9 (1.4)	0.9 (1.6)		

Quantitative Evaluation

Evaluation Metrics

- 1. The number of moves in the human user's solution
- 2. The difference from the cost optimal solution
- 3. The latest time a fact landmark is eventually achieved (landmark achievement)
- 4. The number of times a fact landmark is lost and regained (landmark regain)

Evaluation Questions

- 1. Does the Interactive Human-aware Intervention have an effect on the solution length? (Metric 1)
- 2. Does the Interactive Human-aware Intervention help move the user closer to the optimal solution? (Metric 2, 3, 4)
- 3. Does seeing a help video affect the solution length? (Metric 1)

Effect on Solution Length - Metric 1

► Solution length difference between the condition (Y) and the control (N) groups is not statistically significant

Moving the User's Solution Closer to the Optimal Solution - Metric 2

➤ Solution length difference to the cost optimal solution between the condition (Y) and the control (N) groups is not statistically significant

Moving the User's Solution Closer to the Optimal Solution - Metric 3

➤ The latest times until the landmarks are achieved between the condition (Y) and the control (N) groups is not statistically significant

Moving the User's Solution Closer to the Optimal Solution - Metric 4

► The number of times landmarks are lost and regained between the condition (Y) and the control (N) groups is not statistically significant

Effect of Using Different Types of Help on Solution Length

- Four help categories
 - participant watched the video and used the Interactive Human-aware Intervention (YY)
 - watched the help video but did not use the Interactive Human-aware Intervention (YN)
 - participant did not watch the help video but used the Interactive Human-aware Intervention (NY)
 - participant used neither type of help (NN)
- Mean number of moves between different help types is statistically significant

Planning Task	Number of Moves							
	median (mean)							
Type	YY	YN	NY	NN				
С	78 (112)	15 (27)	54 (70)	26 (25)				
Е	57 (62)	33 (35)	50 (56)	34 (38)				
М	41 (55)	29 (32)	32 (36)	26 (28)				

Summary

- Qualitatively human users prefer the "Show the next best move" hint
- Quantitatively the use of Human-aware Intervention did not statistically significantly change the solution length, the difference to the optimal, landmark achievement time and landmark regain
- Use of different help types significantly affect the solution length
- Need to strike a balance between revealing too much information (i.e., complete solution) and too little information (i.e., next best move) about the planning problem.

Concluding Remarks

Contributions:

- Intervention is viewed as two sub processes
 - ► Intervention Recognition (proposed 3 solutions)
 - ► Intervention Recovery (proposed 1 solution)
- Solutions combine automated planning and machine learning
- Evaluated on synthetic domains and realistic data from human subject studies

Future Work:

- Explore different models of the actors' environment
- Domain abstraction techniques to support intervention recovery
- Ensuring longevity of interactive intervention models