Week 2 Tutorial Exercise

Semester 1, 2025

- 1. If you are at all interested in LaTeX, which you probably should be, give the Week 1 Exercise a whirl.
- 2. (a) Consider the model $y = x\beta + u$ where the observed variables y and x, and the unobserved disturbance u are all n-vectors. Show that the OLS estimator for β is

$$\hat{\beta} = \frac{x'y}{x'x}.\tag{1}$$

(b) Suppose that, in (1), $y \sim N(0, I_n)$ and that y and x are statistically independent. Then, show that

$$\alpha = \frac{x'y}{(x'x)^{1/2}} \sim N(0, 1)$$

and that α is independent of x.

- (c) Further suppose that $x \sim N(0, I_n)$. Since $\hat{\beta} = \alpha/(x'x)^{1/2}$, where $\alpha \sim N(0, 1)$ and is independent of x, and since $x'x \sim \chi_n^2$, deduce that $n^{1/2}\hat{\beta} \sim t_n$.
- 3. Suppose that $X = [X_1, X_2, X_3]' \sim N(\mu, \Sigma)$. If

$$\Sigma = \begin{bmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & 0 \\ \rho^2 & 0 & 1 \end{bmatrix}$$

show that the conditional distribution of $[X_1, X_2]'$ given X_3 has mean vector

$$[\mu_1 + \rho^2(x_3 - \mu_3), \mu_2]'$$

and covariance matrix

$$\begin{bmatrix} 1 - \rho^4 & \rho \\ \rho & 1 \end{bmatrix}.$$

4. If X_1 , X_2 , and X_3 are iid. $N(\mu, \Sigma)$ p-vectors, and if $Y_1 = X_1 + X_2$, $Y_2 = X_2 + X_3$, and $Y_3 = X_1 + X_3$, then obtain

1

- (a) the conditional distribution of Y_1 given Y_2 ; and
- (b) the conditional distribution of Y_1 given Y_2 and Y_3 .

Hint: In lectures you were given a formula for K^{-1} , the inverse of a partitioned matrix K, where

$$K = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

The formula that was given is very general and works even when B and C are not square. All it required was that A was non-singular. However, when B and C are also non-singular there is considerable simplification available. In our case there is even greater simplification arising from the facts that (i) A = D and B = C, and (ii) that $A = \alpha B$ for some scalar constant α . Hence, we need the inverse of a matrix of the form

$$K = \begin{bmatrix} \alpha B & B \\ B & \alpha B \end{bmatrix},$$

with B non-singular. Now, it must be the case that $KK^{-1} = I$. If we partition K^{-1} conformably with K then we can write

$$K^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

say, and so $KK^{-1} = I$ implies a set of 4 equations in 4 unknowns (E, F, G, H):

$$\alpha BE + BG = I,$$
 $\alpha BF + BH = 0,$
 $BE + \alpha BG = 0,$ $BF + \alpha BH = I,$

From the zero equations we see that

$$H = -\alpha F,$$
 $E = -\alpha G,$

which we can substitute back into the identity equations to obtain

$$-\alpha^2 BG + BG = I \implies (1 - \alpha^2)BG = I \implies G = (1 - \alpha^2)^{-1}B^{-1},$$

$$BF - \alpha^2 BF = I \implies (1 - \alpha^2)BF = I \implies F = (1 - \alpha^2)^{-1}B^{-1}.$$

We can substitute these expressions for G and H into those for E and F above to obtain

$$K^{-1} = \begin{bmatrix} -\frac{\alpha}{1-\alpha^2}B^{-1} & \frac{1}{1-\alpha^2}B^{-1} \\ \frac{1}{1-\alpha^2}B^{-1} & -\frac{\alpha}{1-\alpha^2}B^{-1} \end{bmatrix}$$

Note that K^{-1} retains the symmetry of K and, like K, all four partitions of K^{-1} are also non-singular.

5. R offers two commands qqplot for the construction of quantile-quantile plots: qqnorm and qqplot. Quantile-quantile plots, or Q-Q plots, as they are known, are a graphical device often used for comparing the quantiles of an empirical distribution with those of a theoretical distribution. Construct Q-Q plots comparing the following distributions against a t distribution with 5 degrees of freedom: N(0,1), t_{20} , t_{10} , t_{5} , t_{2} , and t_{1} . Describe the patterns that you observe and the lessons that you can take from the exercise.