Procesos de Generación Aleatoria de Grafos

Miguel Raggi

ENES Morelia

20 de febrero de 2018

Índice:

Introducción

- 2 Modelos sencillos de Erdős-Renyi
 - Umbrales

3 Modelos Crecientes

Índice:

1 Introducción

- 2 Modelos sencillos de Erdős-Renyi
 - Umbrales

3 Modelos Crecientes

Modelos

- Ahora vamos a intentar atacar la siguiente pregunta: Tenemos una red que obtuvimos del mundo real y nos preguntamos cómo se "formó".
- Es decir, queremos tratar de entender qué procesos influyeron en su formación.
- Es un arte, porque no podemos estar seguros.
- Pero por ejemplo, si vemos una gráfica así, no pensaríamos que se formó completamente aleatoriamente:

Para empezar a entender esto, debemos ver cómo tienden a ser las gráficas completamente aleatorias.

Índice:

1 Introducción

- 2 Modelos sencillos de Erdős-Renyi
 - Umbrales

3 Modelos Crecientes

Formación Erdős-Renyi

Definición

El modelo de Erdős-Renyi de formación de una red tiene dos parámetros: n, el número de vértices, y p, la probabilidad de cada arista de "estar".

- Cada arista está con probabilidad de p, independientemente de las demás aristas.
- Como si lanzáramos una moneda (que tiene probabilidad p de salir sol) por cada arista y si sale sol, ponemos la arista.

■ En promedio, ¿cuántas aristas hay?

■ En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- lacktriangle El número de aristas sigue una distribución binomial con probabilidad p y número M=

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) =$$

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M=\binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = {M \choose k} p^k (1-p)^{M-k}$$

■ ¿Cuál es la varianza del número de aristas?

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = {M \choose k} p^k (1-p)^{M-k}$$

lacktriangle ¿Cuál es la varianza del número de aristas? Mp(1-p)

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- ¿Cuál es la varianza del número de aristas? Mp(1-p)
- Entonces podemos comparar una red dada con la red que generaría ese mismo número de aristas (despejando p) y después comparar propiedades de la red aleatoria contra propiedades de la red que tienes.

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- ¿Cuál es la varianza del número de aristas? Mp(1-p)
- Entonces podemos comparar una red dada con la red que generaría ese mismo número de aristas (despejando p) y después comparar propiedades de la red aleatoria contra propiedades de la red que tienes.
- Por ejemplo, ¿cuántos triángulos tiene (en promedio) el modelo ER?

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M = \binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- ¿Cuál es la varianza del número de aristas? Mp(1-p)
- Entonces podemos comparar una red dada con la red que generaría ese mismo número de aristas (despejando p) y después comparar propiedades de la red aleatoria contra propiedades de la red que tienes.
- Por ejemplo, ¿cuántos triángulos tiene (en promedio) el modelo ER? Pues $p^3\binom{n}{3}$.

- En promedio, ¿cuántas aristas hay? Pues $p\binom{n}{2}$.
- El número de aristas sigue una distribución binomial con probabilidad p y número $M=\binom{n}{2}$.
- lacktriangle Así que la probabilidad de tener exactamente k aristas es de

$$P(|E(G)| = k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- ¿Cuál es la varianza del número de aristas? Mp(1-p)
- Entonces podemos comparar una red dada con la red que generaría ese mismo número de aristas (despejando p) y después comparar propiedades de la red aleatoria contra propiedades de la red que tienes.
- Por ejemplo, ¿cuántos triángulos tiene (en promedio) el modelo ER? Pues $p^3\binom{n}{2}$.
- Si tu red tiene bastantes más triángulos que eso (o bastante menos), probablemente hay algo "raro".

Definición

Dada una propiedad (de grafos) Q tal que Q(G) es verdadero implica que Q(G+ una arista) también es verdadero,

Definición

Dada una propiedad (de grafos) Q tal que Q(G) es verdadero implica que Q(G+ una arista) también es verdadero, un umbral para Q es un número u=u(n) tal que para todo U>u

$$\lim_{n \to \infty} P(Q(ER(n, U))) \to 1$$

pero no es cierto para U < u.

Definición

Dada una propiedad (de grafos) Q tal que Q(G) es verdadero implica que Q(G+ una arista) también es verdadero, un umbral para Q es un número u=u(n) tal que para todo U>u

$$\lim_{n \to \infty} P(Q(ER(n, U))) \to 1$$

pero no es cierto para U < u.

lacktriangle En palabras, un umbral U es la mínima probabilidad que necesitas para que la probabilidad de que ocurra cierta cosa sea alta.

Veamos en sage ejemplos de esto con n=50:

■ Si $p \approx \frac{1}{n^2}$, el grafo comienza a tener aristas.

Veamos en sage ejemplos de esto con n = 50:

- Si $p \approx \frac{1}{n^2}$, el grafo comienza a tener aristas.
- Si $p \approx \frac{1}{n^{3/2}}$, el grafo comienza a tener una componente con al menos 3 aristas.

Veamos en sage ejemplos de esto con n = 50:

- Si $p \approx \frac{1}{n^2}$, el grafo comienza a tener aristas.
- Si $p \approx \frac{1}{n^{3/2}}$, el grafo comienza a tener una componente con al menos 3 aristas.
- Si $p \approx \frac{1}{n}$, ya tiene ciclos, y tendrá una componente gigante.

Veamos en sage ejemplos de esto con n = 50:

- Si $p \approx \frac{1}{n^2}$, el grafo comienza a tener aristas.
- Si $p \approx \frac{1}{n^{3/2}}$, el grafo comienza a tener una componente con al menos 3 aristas.
- Si $p \approx \frac{1}{n}$, ya tiene ciclos, y tendrá una componente gigante.
- Si $p \approx \frac{\ln(n)}{n}$, ya será conexa.

Histogramas grados

■ ¿Cómo es la distribución de grados en este modelo?

Histogramas grados

- ¿Cómo es la distribución de grados en este modelo?
- Pues es binomial. Es decir, la probabilidad de que un vértice tenga grado k es $\binom{n}{k}p^k(1-p)^{n-k}$

Histogramas grados

- ¿Cómo es la distribución de grados en este modelo?
- Pues es binomial. Es decir, la probabilidad de que un vértice tenga grado k es $\binom{n}{k} p^k (1-p)^{n-k}$
- Por ejemplo:

Claro, hay otros modelos de ER, que no estudiaremos a fondo:

Claro, hay otros modelos de ER, que no estudiaremos a fondo:

■ Un grafo aleatorio bipartito

Claro, hay otros modelos de ER, que no estudiaremos a fondo:

- Un grafo aleatorio bipartito
- lacktriangle En general, dado un grafo H, puedes escoger un subgrafo aleatorio tomando cada arista con probabilidad p.

Claro, hay otros modelos de ER, que no estudiaremos a fondo:

- Un grafo aleatorio bipartito
- En general, dado un grafo H, puedes escoger un subgrafo aleatorio tomando cada arista con probabilidad p.
- lacktriangle Un grafo aleatorio de n vértices y un número fijo de aristas.

lacktriangle P: ¿Cómo generamos un grafo aleatorio con exactamente m aristas?

- P: ¿Cómo generamos un grafo aleatorio con exactamente m aristas?
- lacktriangle R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m.

- $lackbox{P: } \cline{Como}$ generamos un grafo aleatorio con exactamente m aristas?
- R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m. Si m es grande, tomamos la lista de todas las aristas y las vamos escogiendo y quitando de una por una.
- lacktriangle Programar: Erdős-Renyi y Erdős-Renyi con exactamente m aristas.
- P: ¿Cómo generamos un árbol aleatorio?

- lacktriangle P: ¿Cómo generamos un grafo aleatorio con exactamente m aristas?
- R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m. Si m es grande, tomamos la lista de todas las aristas y las vamos escogiendo y quitando de una por una.
- lacktriangle Programar: Erdős-Renyi y Erdős-Renyi con exactamente m aristas.
- P: ¿Cómo generamos un árbol aleatorio?
- R: Empieza con un vértice y ve agregando vértices de uno por uno, conectando exactamente con otro vértice.

Para ahorita

- $lackbox{P: } \cline{Como}$ generamos un grafo aleatorio con exactamente m aristas?
- R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m. Si m es grande, tomamos la lista de todas las aristas y las vamos escogiendo y quitando de una por una.
- lacktriangle Programar: Erdős-Renyi y Erdős-Renyi con exactamente m aristas.
- P: ¿Cómo generamos un árbol aleatorio?
- R: Empieza con un vértice y ve agregando vértices de uno por uno, conectando exactamente con otro vértice.
- ¡Hay que programar esto!

Para ahorita

- lacktriangle P: ¿Cómo generamos un grafo aleatorio con exactamente m aristas?
- R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m. Si m es grande, tomamos la lista de todas las aristas y las vamos escogiendo y quitando de una por una.
- lacktriangle Programar: Erdős-Renyi y Erdős-Renyi con exactamente m aristas.
- P: ¿Cómo generamos un árbol aleatorio?
- R: Empieza con un vértice y ve agregando vértices de uno por uno, conectando exactamente con otro vértice.
- ¡Hay que programar esto!
- P*: ¿Cómo produzco árboles binarios?

Para ahorita

- lacktriangle P: ¿Cómo generamos un grafo aleatorio con exactamente m aristas?
- R: Depende: si m es chico, ponemos aristas aleatorias hasta juntar m. Si m es grande, tomamos la lista de todas las aristas y las vamos escogiendo y quitando de una por una.
- $lue{}$ Programar: Erdős-Renyi y Erdős-Renyi con exactamente m aristas.
- P: ¿Cómo generamos un árbol aleatorio?
- R: Empieza con un vértice y ve agregando vértices de uno por uno, conectando exactamente con otro vértice.
- ¡Hay que programar esto!
- P*: ¿Cómo produzco árboles binarios?
- R: Tarea!

Definición

Dado un grafo G, su clustering global cl(G) es su proporción de triángulos formados entre triángulos posibles.

Definición

Dado un grafo G, su clustering global cl(G) es su proporción de triángulos formados entre triángulos posibles. Es decir,

$$cl(G) = \frac{3\# \ de \triangle}{\# \ de \wedge}$$

Definición

Dado un grafo G, su clustering global cl(G) es su proporción de triángulos formados entre triángulos posibles. Es decir,

$$cl(G) = \frac{3\# \ de \triangle}{\# \ de \wedge}$$

■ El 3 es porque cada \triangle tiene 3 \wedge 's.

Definición

Dado un grafo G, su clustering global cl(G) es su proporción de triángulos formados entre triángulos posibles. Es decir,

$$cl(G) = \frac{3\# \ de \triangle}{\# \ de \wedge}$$

- El 3 es porque cada \triangle tiene 3 \wedge 's.
- Si los grados de los vértices son $d_1, d_2, ..., d_n$, entonces

$$\#$$
 de \land 's $=$ $\begin{pmatrix} d_1 \\ 2 \end{pmatrix} + \begin{pmatrix} d_2 \\ 2 \end{pmatrix} + ... + \begin{pmatrix} d_n \\ 2 \end{pmatrix}$

¿Cuánto vale el clustering en los siguientes grafos?

 $\blacksquare K_n$:

¿Cuánto vale el clustering en los siguientes grafos?

 $\blacksquare K_n$: 1

- $\blacksquare K_n$: 1
- \blacksquare C_n :

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$:

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$: 0

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$: 0
- \blacksquare K_4 -arista:

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$: 0
- \blacksquare K_4 -arista: 6/8

- $\blacksquare K_n$: 1
- lacksquare C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$: 0
- K_4 -arista: 6/8

- $\blacksquare K_n$: 1
- C_n : 0 si $n \neq 3$, 1 si n = 3
- $K_{n,m}$: 0
- \blacksquare K_4 -arista: 6/8

- $\blacksquare K_n$: 1
- C_n : 0 si $n \neq 3$, 1 si n = 3
- $\blacksquare K_{n,m}$: 0
- \blacksquare K_4 -arista: 6/8

- •: 12/15
- En promedio, en ER(n, p): p

Definición

Dado un grafo G y un vértice v tal que $\delta(v) \geq 2$. Su Clustering local cl(G,v) es la proporción de sus parejas de vecinos que forman triángulo.

Definición

Dado un grafo G y un vértice v tal que $\delta(v) \geq 2$. Su Clustering local cl(G,v) es la proporción de sus parejas de vecinos que forman triángulo. Es decir,

$$cl(G,v) = \frac{\# \text{ aristas } x - y \text{ con } x,y \text{ vecinos de } v}{\binom{\delta(v)}{2}}$$

¿Cuánto vale el clustering local en los siguientes grafos?

 \blacksquare K_4 -arista:

¿Cuánto vale el clustering local en los siguientes grafos?

• K_4 -arista: 1 para 2 de ellos y 2/3 para los otros dos.

¿Cuánto vale el clustering local en los siguientes grafos?

• K_4 -arista: 1 para 2 de ellos y 2/3 para los otros dos.

- ullet: 1 y 1/2 para pares, impares respectivamente.
- En promedio, en ER(n, p):

¿Cuánto vale el clustering local en los siguientes grafos?

• K_4 -arista: 1 para 2 de ellos y 2/3 para los otros dos.

- \bullet : 1 y 1/2 para pares, impares respectivamente.
- En promedio, en ER(n,p): p

¿Cómo se relacionan el clustering global y el local?

- Pues el clustering global es un promedio pesado del local de los vértices, donde el peso de un vértice v es $\binom{\delta(v)}{2}$
- Lo cual quiere decir que

$$\min_v(cl(G,v)) \leq cl(G) \leq \max_v(cl(G,v))$$

■ También se habla del clustering average, que es simplemente el promedio normal del clustering de los vértices.

Índice:

1 Introducción

- 2 Modelos sencillos de Erdős-Renyi
 - Umbrales

3 Modelos Crecientes

Introducción

■ Vimos que muchas veces tendía a haber distribuciones de vértices más "extremas" que en ER.

Introducción

- Vimos que muchas veces tendía a haber distribuciones de vértices más "extremas" que en ER.
- A continuación veremos varios modelos que producen distribuciones así, o que producen más triángulos, etc.

Otro modelo:

lacktriangle Comenzamos poniendo los vértices de uno por uno. Comenzamos con k vértices y sin aristas.

- Comenzamos poniendo los vértices de uno por uno. Comenzamos con k vértices y sin aristas.
- Después, cada vértice nuevo lo unimos con otros k, escogidos aleatoriamente.

- Comenzamos poniendo los vértices de uno por uno. Comenzamos con k vértices y sin aristas.
- Después, cada vértice nuevo lo unimos con otros k, escogidos aleatoriamente.
- Eso lo que nos da es que los vértices más "nuevos" tendrán menos aristas, y los más "viejos" tendrán más aristas.

- Comenzamos poniendo los vértices de uno por uno. Comenzamos con k vértices y sin aristas.
- Después, cada vértice nuevo lo unimos con otros k, escogidos aleatoriamente.
- Eso lo que nos da es que los vértices más "nuevos" tendrán menos aristas, y los más "viejos" tendrán más aristas.
- $lue{}$ ¿Cuántas aristas tendrá un vértice que nació en tiempo m>k, en promedio, después de n pasos?

- Comenzamos poniendo los vértices de uno por uno. Comenzamos con k vértices y sin aristas.
- Después, cada vértice nuevo lo unimos con otros k, escogidos aleatoriamente.
- Eso lo que nos da es que los vértices más "nuevos" tendrán menos aristas, y los más "viejos" tendrán más aristas.
- $lue{}$ ¿Cuántas aristas tendrá un vértice que nació en tiempo m>k, en promedio, después de n pasos?

$$k + \frac{k}{m} + \frac{k}{m+1} + \frac{k}{m+2} + \dots + \frac{k}{m} \approx k(1 + \ln(n/m))$$

Histogramas

Ahora haremos lo siguiente: Al agregar un vértice, en vez de escoger aleatoriamente los puntos, le daremos preferencia a los puntos con grado muy alto:

- Ahora haremos lo siguiente: Al agregar un vértice, en vez de escoger aleatoriamente los puntos, le daremos preferencia a los puntos con grado muy alto:
- lacktriangle Es decir, la probabilidad de formar una liga con un vértice v será proporcional al grado de v.

- Ahora haremos lo siguiente: Al agregar un vértice, en vez de escoger aleatoriamente los puntos, le daremos preferencia a los puntos con grado muy alto:
- lacktriangle Es decir, la probabilidad de formar una liga con un vértice v será proporcional al grado de v.
- En total, en un tiempo n hay $\approx kn$ aristas (pues cada vértice nuevo agrega k aristas)

- Ahora haremos lo siguiente: Al agregar un vértice, en vez de escoger aleatoriamente los puntos, le daremos preferencia a los puntos con grado muy alto:
- lacktriangle Es decir, la probabilidad de formar una liga con un vértice v será proporcional al grado de v.
- En total, en un tiempo n hay $\approx kn$ aristas (pues cada vértice nuevo agrega k aristas)
- Así que la probabilidad de formar una arista con un vértice de grado d es $\frac{d}{2kn}$.

■ Ahora haremos lo siguiente: Cada nuevo nodo se une a k otros nodos, y después se une a un amigo aleatorio de cada uno de los nuevos nodos que se unió.

- Ahora haremos lo siguiente: Cada nuevo nodo se une a k otros nodos, y después se une a un amigo aleatorio de cada uno de los nuevos nodos que se unió.
- Es decir, es probable que te hagas amigo de tus amigos.

- Ahora haremos lo siguiente: Cada nuevo nodo se une a k otros nodos, y después se une a un amigo aleatorio de cada uno de los nuevos nodos que se unió.
- Es decir, es probable que te hagas amigo de tus amigos.
- Podemos ponerle varios parámetros, como la probabilidad de unirte a cada amigo, o incluso unirte a amigos de amigos de amigos.

- Ahora haremos lo siguiente: Cada nuevo nodo se une a k otros nodos, y después se une a un amigo aleatorio de cada uno de los nuevos nodos que se unió.
- Es decir, es probable que te hagas amigo de tus amigos.
- Podemos ponerle varios parámetros, como la probabilidad de unirte a cada amigo, o incluso unirte a amigos de amigos de amigos.
- Se vuelve muy complicado el análisis teórico, pero se pueden hacer simulaciones.

- Ahora haremos lo siguiente: Cada nuevo nodo se une a k otros nodos, y después se une a un amigo aleatorio de cada uno de los nuevos nodos que se unió.
- Es decir, es probable que te hagas amigo de tus amigos.
- Podemos ponerle varios parámetros, como la probabilidad de unirte a cada amigo, o incluso unirte a amigos de amigos de amigos.
- Se vuelve muy complicado el análisis teórico, pero se pueden hacer simulaciones.
- Hay muchos modelos más que se forman nodo por nodo en base a lo que ya se formó: Walter-Strogatz, Jackson-Rogers, etc.