

CHAPTER – 3

LINEAR EQUATIONS IN TWO VARIABLES

An equation of the form ax + by + c = 0, where a, b and c are real numbers, such that a and b are not both zero, is called a linear equation in two variables.

Important points to Note:

S.no	Points		
1	A linear equation in two variable has infinite solutions		
2	The graph of every linear equation in two variable is a straight line		
3	x = 0 is the equation of the y-axis and $y = 0$ is the equation of the x-axis		
4	The graph x=a is a line parallel to y -axis.		
5	The graph y=b is a line parallel to x -axis		
6	An equation of the type $y = mx$ represents a line passing through the origin.		
7	Every point on the graph of a linear equation in two variables is a solution of the linear		
	equation. Moreover, every solution of the linear equation is a point on the graph		

S.no	Type of equation	Mathematical representation	Solutions
1	Linear equation in one Variable	ax+b=0 ,a≠0 a and b are real number	One solution
2	Linear equation in two Variable	ax+by+c=0 , a≠0 and b≠0 a, b and c are real number	Infinite solution possible
3	Linear equation in three Variable	ax+by+cz+d=0 , a≠0 ,b≠0 and c≠0	Infinite solution possible
		a, b, c, d are real number	

Simultaneous pair of linear equation:

A pair of linear equation in two variables

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

Graphically it is represented by two straight lines on Cartesian plane.

Simultaneous pair of	Condition	Graphical	Algebraic
Linear equation		representation	interpretation
$a_1x+b_1y+c_1=0$ $a_2x+b_2y+c_2=0$	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting lines. The intersecting point coordinate is the only	One unique solution only.
Example		solution	
x-4y+14=0			
3x+2y-14=0			
$a_1x+b_1y+c_1=0$ $a_2x+b_2y+c_2=0$	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincident lines. The any coordinate on the line is the solution.	Infinite solution.
Francis			
Example 2x+4y=16			
3x+6y=24			
a ₁ x+b ₁ y+c ₁ =0	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Parallel Lines	No solution
a ₂ x+b ₂ y+c ₂ =0 Example			
2x+4y=6			
4x+8y=18			

The graphical solution can be obtained by drawing the lines on the Cartesian plane.

Algebraic Solution of system of Linear equation:

S.no	Type of method	Working of method
1	Method of elimination by substitution	1) Suppose the equation are
		$a_1x+b_1y+c_1=0$
		$a_2x + b_2y + c_2 = 0$
		2) Find the value of variable of either x or y in other variable term in first equation
		Substitute the value of that variable in second equation
		4) Now this is a linear equation in one variable. Find the value of the variable
		5) Substitute this value in first equation and get the second variable
2	Method of elimination by	1) Suppose the equation are
	equating the coefficients	$a_1x+b_1y+c_1=0$
		$a_2x+b_2y+c_2=0$
		2) Find the LCM of a ₁ and a ₂ .Let it k.
		3) Multiple the first equation by the value k/a ₁
		4) Multiple the first equation by the value k/a ₂
		4) Subtract the equation obtained. This way one variable will be eliminated and we can solve to get the value of variable y
		5) Substitute this value in first equation and get the second variable
3	Cross Multiplication method	1) Suppose the equation are
		$a_1x+b_1y+c_1=0$
		$a_2x + b_2y + c_2 = 0$
		2) This can be written as
		$\frac{x}{b_1 c_1} = \frac{-y}{a_1 c_1} = \frac{1}{a_1 b_1}$ $b_2 c_2 a_2 c_2 a_2 b_2$
		3) This can be written as

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{-y}{a_1c_2 - a_2c_1} = \frac{1}{a_1b_2 - a_2b_1}$$

4) Value of x and y can be find using the

x => first and last expression

y=> second and last expression