LM386

Low Voltage Audio Power Amplifier

General Description

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.

The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

Features

- Battery operation
- Minimum external parts
- Wide supply voltage range: 4V-12V or 5V-18V
- Low quiescent current drain: 4mA
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion: 0.2% ($A_V = 20$, $V_S = 6V$, $R_L = 8\Omega$, $P_O = 125$ mW, f = 1kHz)
- Available in 8 pin MSOP package

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagrams

Small Outline, Molded Mini Small Outline, and Dual-In-Line Packages

Top View
Order Number LM386M-1,
LM386MM-1, LM386N-1,
LM386N-3 or LM386N-4
See NS Package Number
M08A, MUA08A or N08E

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (LM386N-1, -3, LM386M-1) 15V Supply Voltage (LM386N-4) 22V

Package Dissipation (Note 3) (LM386N) 1.25W (LM386M) 0.73W (LM386MM-1) 0.595W

Input Voltage ±0.4V Storage Temperature -65°C to +150°C Operating Temperature 0°C to +70°C +150°C Junction Temperature

Soldering (10 sec) +260°C Small Outline Package (SOIC and MSOP) Vapor Phase (60 sec) +215°C +220°C Infrared (15 sec)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Thermal Resistance

Dual-In-Line Package

 θ_{JC} (DIP) 37°C/W 107°C/W θ_{JA} (DIP) θ_{IC} (SO Package) 35°C/W 172°C/W θ_{JA} (SO Package) θ_{JA} (MSOP) 210°C/W θ_{JC} (MSOP) 56°C/W

Electrical Characteristics (Notes 1, 2)

 $T_A = 25^{\circ}C$

Soldering Information

Parameter	Conditions	Min	Тур	Max	Units
Operating Supply Voltage (V _S)					
LM386N-1, -3, LM386M-1, LM386MM-1		4		12	V
LM386N-4		5		18	V
Quiescent Current (I _Q)	$V_{S} = 6V, V_{IN} = 0$		4	8	mA
Output Power (P _{OUT})					
LM386N-1, LM386M-1, LM386MM-1	$V_{S} = 6V, R_{L} = 8\Omega, THD = 10\%$	250	325		mW
LM386N-3	$V_{S} = 9V, R_{L} = 8\Omega, THD = 10\%$	500	700		mW
LM386N-4	$V_{S} = 16V, R_{L} = 32\Omega, THD = 10\%$	700	1000		mW
Voltage Gain (A _V)	V _S = 6V, f = 1 kHz		26		dB
	10 μF from Pin 1 to 8		46		dB
Bandwidth (BW)	V _S = 6V, Pins 1 and 8 Open		300		kHz
Total Harmonic Distortion (THD)	$V_{S} = 6V, R_{L} = 8\Omega, P_{OUT} = 125 \text{ mW}$		0.2		%
	f = 1 kHz, Pins 1 and 8 Open				
Power Supply Rejection Ratio (PSRR)	$V_S = 6V$, $f = 1$ kHz, $C_{BYPASS} = 10 \mu F$		50		dB
	Pins 1 and 8 Open, Referred to Output				
Input Resistance (R _{IN})			50		kΩ
Input Bias Current (I _{BIAS})	V _S = 6V, Pins 2 and 3 Open		250		nA

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and 1) a thermal resistance of 107°C/W junction to ambient for the dual-in-line package and 2) a thermal resistance of 170°C/W for the small outline package.

www.national.com 2

Typical Applications

Amplifier with Gain = 20 Minimum Parts

Amplifier with Gain = 200

Amplifier with Gain = 50

Low Distortion Power Wienbridge Oscillator

Amplifier with Bass Boost

Square Wave Oscillator

DS006976-9

5 www.national.com

Typical Applications (Continued)

Frequency Response with Bass Boost

AM Radio Power Amplifier

Note 4: Twist Supply lead and supply ground very tightly.

Note 5: Twist speaker lead and ground very tightly.

Note 6: Ferrite bead in Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 7: R1C1 band limits input signals.

Note 8: All components must be spaced very closely to IC.