UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

KEMMY BUSINESS SCHOOL

Department of Economics

Repeat Examination

ACADEMIC YEAR:	2008/09
MODULE CODE:	EC4307
DURATION OF EXAMINATION:	2.5 hours
MODULE TITLE:	ECONOMETRICS
PERCENTAGE OF TOTAL MARKS:	100%
LECTURER:	Declan Dineen
EXTERNAL EXAMINER:	Dr Lisa De Propris
Instructions to Candidate	is:
 Answer 3 (THREE) questions or 	nly out of the 6 (SIX) questions on this exam paper.
Answer at least ONE question fi	rom SECTION A and at least ONE question from SECTION
В.	
 Put your answers to Section A a 	and Section B in SEPARATE ANSWER BOOKS.
 All answers should be concise a 	and relevant.
All questions carry equal marks	s. Marks awarded for individual parts of each question are
indicated on the paper.	
All rough work to be handed up	with the exam paper.
 Non-programmable calculators 	are permitted.
STUDENT NAME:	
STUDENT NAME:	
ID NUMBER:	
Course of Study:	

SECTION A

A1. Consider the following model used to estimate how a hamburger chain's weekly revenue tr depends on price p, and advertising expenditure a

$$tr_t = \beta_1 + \beta_2 p_t + \beta_3 a_t + \varepsilon_t$$

where price p is measured in Euro while total revenue tr and advertising expenditure a are measured in Euro (000s).

The least squares output from estimating this equation appears in TABLE 1.0 below.

TABLE 1.0

Dependent v	ariable:	tr		
Number of o	bservations:	52		
Variable	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	104.7855	6.482719	16.16382	0.0000
Price	-6.641930	3.191193	?	0.0427
Advert	2.984299	0.166936	17.87689	0.0000
R-squared		?		
Adjusted R-s	squared	0.861660		
$\sum (Y_t - \overline{Y})^2$		13581.35		
,	red residuals (F	RSS) 1805.168		

- (a) Interpret the estimates $\hat{\beta}_2$ and $\hat{\beta}_3$. Are the signs on these coefficients what you would expect from a theory or logical point of view? (10%)
- (b) Calculate the estimated error variance $\hat{\sigma}_{\varepsilon}^2$ and standard error. (10%)
- (c) Calculate the R^2 . (10%)
- (d) Calculate the *t*-statistic for $\hat{\beta}_2$ and using the test of significance approach (*t*-test), without using the reported *p*-value, explain how you would test the null hypothesis that $\beta_2 = 0$. (10%)
- (e) Interpret the p-value = 0.0427 given above, and say how this can be used to test for significance (i.e. to test the null hypothesis that $\beta_2 = 0$). (10%)
- (f) Calculate a 95% confidence interval for the true population parameter β_3 . What does the interval tell you (i.e. in what are you 95% confident)? (15%)

- (g) Test the joint hypothesis that $\beta_2 = 0$ and $\beta_3 = 0$ (that is, $\beta_2 = \beta_3 = 0$) using the *F*-test at the 5 per cent level of significance. (15%)
- (h) Decompose the total sum of squares (TSS) of the dependent variable in a regression into its two components: the explained sum of squares (ESS) and the residual sum of squares (RSS). You may use a diagram to illustrate.

(20%)

A2. (a) Explain the difference between a "linear model" and a "nonlinear" regression model.

With reference to the above, determine which of the following are linear or nonlinear regression models and, if nonlinear, say how the model can be transformed (to satisfy the classical linear regression model assumptions)

$$Y = \beta_1 + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$

$$Y = \beta_1 X \beta_2 + e^{\varepsilon}$$

$$\log(Y) = \beta_1 + \beta_2 X + \varepsilon$$
(15%)

Given the two-variable regression model

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

- (b) Briefly, describe the classical linear regression model assumptions underlying the OLS estimation technique. Use well-labelled diagrams to support your answer where appropriate. (20%)
- (c) Derive the least-squares normal equations for β_1 and β_2 and proceed to derive the estimator for β_2 . (40%)
- (d) Describe the Gauss-Markov theorem and prove that the estimator for β_2 is linear and unbiased. (25%)
- A3. (a) What is heteroscedasticity? Illustrate with the aid of a diagram(s)

 Discuss the consequences of heteroscedasticity for estimation and hypothesis testing using OLS estimates. (30%)
 - (b) A scatter plot of the estimated squared residuals on the fitted values from a regression line is shown in FIGURE 1.0 below. Explain what the researcher hoped to achieve with this scatter plot. What does FIGURE 1.0 show?

Describe the White's test method which can be used to detect the presence of heteroscedasticity. (30%)

FIGURE 1.0

Scatter plot of RESSQ on FIT 1000 800 600 400 200 100 150 200 250 300 350 400 FIT

where

RESSQ denotes the residual squared $\hat{\varepsilon}_t^2$ and *FIT* denotes the fitted values from the regression line.

- (c) Describe the GLS/ WLS method of correcting for heteroscedasticity when σ_i^2
- (d) Suppose we fit the model

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where

is known.

 $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

GNP_t = Gross National Product

Abbreviated *Microfit* output from estimating this relation, based on quarterly data for 1972Q1-1989Q4 (72 observations), appears below:

(20%)

D	iagnostic Tests	
*********	*****	********
* Test Statistics	*	F Version
*******	*****	*******
*	*	
* A: Serial Correlation	* F(4, 65)	= 111.9423[.000]
*	*	
* B: Functional Form	* F(1, 68)	= 53.1390[.000]
*	*	
* C: Heteroscedasticity	* F(1, 70)	=65.4813[.000]
********		******

- A: Lagrange multiplier test of residual serial correlation
- B: Ramsey's RESET test using the square of the fitted values
- C: Based on the regression of squared residuals on squared fitted values

Briefly, what is meant by "specification error"?

Using the *Microfit* output provided, does the RESET (regression specification error test) F value suggest that the model is mis-specified? (20%)

SECTION B

B1. Suppose we posit the following demand for money relation

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

 GNP_t = Gross National Product

Based on quarterly data for 1972Q1-1989Q4, the following results in TABLE 2.0 were obtained:

TABLE 2.0

******	*******	Ordinary	Least Squ	ares Esti	mation ********	******
Dependent variants 72 observations		mation fro	m 1972Q	1 to 1989	Q4 *********	*******
Regressor	Coefficie	nt	Standard	Error	T-Ratio[Prob]	
INPT	-27.9858		6.8392		-4.0920[.000]	
GNP	.19020		.0032369	•	58.7617[.000]	
1	-3.6733		.83807		-4.3831[.000]	
********	******	*******	******	******	*********	******
R-Squared		.98135		R-Bar-S	quared	.98081
S.E. of Regressi	ion	11.3900		F-stat. F	(2, 69)	1815.7[.000]
Mean of Depen	dent Variable	239.4806	I	S.D. of I	Dependent Variable	82.2268
Residual Sum o	f Squares	8951.5		Equation	Log-likelihood	-275.7885
Akaike Info. Cr	iterion	-278.788	5	-	Bayesian Criterion	-282.2035
DW-statistic		.14432			•	
*********	*******	******	******	*****	******	*******

Diagnostic Tests

*	Test Statistics	*	F Version
****	********	*****	**************
*		*	
* A: S	Serial Correlation	* F(4	(65) = 111.9423[.000]
*		* `	
* B: I	Functional Form	* F(1	68 = 53.1390[.000]
*		*	
* C: I	leteroscedasticity	* F(1	(70) = 65.4813[.000]
	******	******	**********

- A: Lagrange multiplier test of residual serial correlation
- B: Ramsey's RESET test using the square of the fitted values
- C: Based on the regression of squared residuals on squared fitted values

Plotting the estimated residuals from this regression on their values lagged one time period gives FIGURE 2.0:

FIGURE 2.0

(a) What is autocorrelation?

How would you distinguish between "pure" autocorrelation and apparent autocorrelation resulting from specification error?

Discuss the consequences of "pure" autocorrelation for estimation and hypothesis testing using OLS estimates. (30%)

(b) Derive the Durbin-Watson test statistic and describe how it is used to test for autocorrelation.

What are the weaknesses of this test?

(25%)

- (c) What does FIGURE 2.0 show? Based on the results given in TABLE 2.0, conduct a formal test for autocorrelation in this model. Does the outcome of this test support the evidence from FIGURE 2.0? (20%)
- (d) In the presence of "pure" autocorrelation, describe the Cochrane-Orcutt method for estimating the autocorrelation coefficient ρ . (25%)

B2. Explain/ discuss the following:

(a) In intuitive terms, what is the difference between stationary and non-stationary time series processes?

What is a "stationary stochastic process?"

(20%)

- (b) The autocorrelation function (ACF). The general characteristics of the correlogram for stationary and non-stationary processes. (15%)
- (c) The Dickey-Fuller (DF) and Augmented DF tests. (25%)
- (d) The meaning of a series being "integrated of order 1", that is I(1). The concept of cointegration and ONE test of whether two time series are cointegrated.

 (25%)

(e) A regression between two non-stationary variables can produce spurious results. If the variables are nonstationary, and not cointegrated, is there any relationship that can be estimated (mention any problems with your approach here)?

(15%)

B3. (a) What is meant by multicollinearity?

Suppose you want to fit the model

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

using a sample for which $X_{3i} = a + b X_{2i}$ for all i,

can you estimate the three unknowns $\hat{\beta}_1$, $\hat{\beta}_2$ and $\hat{\beta}_3$? Why or why not? (15%)

- (b) Discuss the consequences of multicollinearity for OLS estimation. (20%)
- (c) Describe the auxiliary regression method which can be used to detect for the presence of multicollinearity. (15%)
- (d) "A high degree of multicollinearity may have an adverse effect on regression results, but this is by no means inevitable."

Discuss this statement. (20%)

- (e) When faced with severe multicollinearity, one remedial measure might be to drop one of the collinear variables.
 - Are there any problems that might be encountered in dropping a variable from the model? (20%)
- (f) Other than dropping a variable, describe any other possible remedial measure for the multicollinearity problem. (10%)

0.05

TABLE 0.2
Percentage points of the *t* distribution

Example Pr(c > 2.086) = 0.025

for df = 20

 $Pr(\epsilon > 1.725) = 0.05$ $Pr(|\epsilon| > 1.725) = 0.10$

				·			
12.	0.25	0.10	0.05	0.025	0.01	0.005	0.001
at /	0.50	0.20	0.10	0.05	0.02	0.010	0.002
1	1.000	1.078	6.314	12.706	31.821	63.657	318.31
2	0.816	1.886	2.920	4.303	6.965	9.925	22,327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2,776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1783	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4,144
H	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2,624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2,110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.378	3.610
19	0.688	1.325	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.S28	2.845	3.552
21	0.686	1.323	1.721	2.080	2518	2.831	3.527
22	0.686	1.321	1.717	2.074	2,508	2.519	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1718	1.711	2.064	2.492	2.797	3.467
ಶ	0.684	1.316	1.708	2.060	2.485	2.787	3.450
25	0.684	1.315	1.706	2.056	2,479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2,771	3.421
28	0.683	1.313	1.70L	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2423	2.704	3.307
60	0.679	1.296	1.671	2,000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.158	2617	3.160
	0.674	1.282	1.645	1.960	2.326	2.576	3.090

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability is the area in both tails.

Source: From S. S. Peerson and H. O. Hartley, eds., Biometrike Tables for Statisticians, vol. 1, 3d ed., table 12, Cambridge University From, New York, 1966. Reproduced by permission of the editors and trustees of Biometrike.

TABLE D.3

Upper percentage points of the F distribution

Example

Pr (F > 1.59) = 0.25

Pr(F > 2.42) = 0.10 for df $N_1 = 10$

Pr (F > 3 14) = 0.05 and N₂ = 9

Pr(F > 5.26) = 0.01

df for denom-		df for numerator N ₀												
Instor N ₃	Pr	1	2	3	4	5	6	7	•	•	10	11	12	
	.25	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32	9.36	9.41	
ı	.10	39.9	49.5	53.6	55.8	57.2	58.2	58.9	59.4	59.9	60.2	60.5	60.7	
	.05	161	200	216	225	530	234	237	239	241	242	243	244	
	.25	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38	3.39	3.39	
2	.10	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.40	9.41	
	.05	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	
	.01	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	
	.25	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44	2.45	2.49	
3	.10	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.22	
	.05	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	
	.01	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	27.1	
	.25	1.61	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08	2.08	7.00	
4	.10	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.91	3.90	
	.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	
	.01	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.4	
	.25	1.69	1.65	1.88	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	
5	.10	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.28	3.27	
	.05	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.71	4.68	
	.01	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.3	10.1	9.96	9.81	
	.25	1.62	1.76	1.78	1.79	1.79	1.78	1.78	1.78	1.77	1.77	1.77	1.71	
6	.10	3.78	3.46	3.29	3.16	3.11	3.05	3.01	2.98	2.96	2.94	2.92	2.90	
	.05	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	
	.01	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	1.11	
	.25	1.57	1.70	1.72	1.72	1.71	1.71	1.70	1.70	1.69	1.69	1.69	1.61	
7	.10	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.68	2.67	
	.05	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.51	
	.01	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.54	6.47	
	.25	1.54	1.66	1.67	1.66	1.66	1.65	1.64	1.64	1.63	1.63	1.63	1.61	
8	.10	3.46	3.11	2.92	2.61	2.73	2.67	2.62	2.59	2.56	2.54	2.52	2.50	
	.05	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.21	
	.01	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.61	5.73	5.67	
_	.25	1.51	1.62	1.63	1.63	1.62	1.61	1.60	1.60	1.59	1.59	1.58	1.30	
9	.10	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.40	2.31	
	.05	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.01	
	.01	10.6	8.02	6.99	6.42	6.06	5.50	5.61	5.47	5.35	5.26	5.18	5.11	

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 18, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.

					df for s	weerel	or N ₁						di for denom
15	20	24	30	40 '	30	60	100	120	200	500	-	Pr	Instor N ₂
9.49	9.58	9.63	9.67	9.71	9.74	9.76	9.78	9.80	9.82	9.84	9.85	.25	
61.2	61.7	62.0	62.3	62.5	62.7	62.8	63.0	63.1	63.2	63.3	63.3	.10	1
246	248	249	250	251	252	252	253	253	254	254	254	.05	
3.41	3.43	3.43	3.44	3.45	3.45	3.46	3.47	3.47	3.48	3.48	3.48	.25	
9.42	9.44	9.45	9.46	9.47	9.47	9.47	9.48	9.48	9.49	9.49	9.49	.10	2
19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	.05	
29.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	.01	
2.46	2.46	2.46	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	.25	
5.20	5.18	5.18	5.17	5.16	5.15	5.15	5.14	5.14	5.14	5.14	5.13	.10	3
8.70	8.66	8.64	8.62	8.59	0.58	8.57	8.55	8.55	8.54	8.53	8.53	.05	
6.9	26.7	26.6	26.5	26.4	26.4	26.3	26.2	26.2	26.2	26.1	26.1	.01	
2.08	2.05	2.08	2.08	2.08	2.08	2.08	2.06	2.08	2.08	2.08	2.08	.25	
3.87	3.84	3.63	3.82	3.60	3.80	3.79	3.78	3.78	3.77	3.76	3.76	.10	4
5.86	5.80	5.77	5.75	5.72	5.70	5.69	5.66	5.60	5.65	5.64	5.63	.05	
14.2	14.0	13.9	13.8	13.7	13.7	13.7	13.6	13.6	13.5	13.5	13.5	.01	ł
1.89	1.68	1.88	1.68	1.88	1.68	1.87	1.87	1.07	1.87	1.87	1.87	.25	l
3.24	3.21	3.19	3.17	3.16	3.13	3.14	3.13	3.12	3.12	3.11	3.10	.10	5
4.62	4.56	4.53	4.50	4.46	4,44	4.43	4.41	4.40	4.39	4.37	4.36	.05	l
9.72	9.55	9.47	9.38	9.29	9.24	9.20	9.13	9.11	9.08	9.04	9.02	.01	l
1.76	1.76	1.75	1.75	1.75	1.75	1.74	1.74	1.74	1.74	1.74	1.74	.25	Ì
2.87	2.84	2.82	2.80	2.78	2.77	2.76	2.75	2.74	2.73	2.73	2.72	.10	6
3.94	3.87	3.84	3.01	3.77	3.75	3.74	3.71	3.70	3.69	3.68	3.67	.05	ļ
7.56	7.40	7.31	7.23	7.14	7.09	7.06	6.99	6.97	6.93	6.90	6.88	.01	ľ
1.68	1.67	1.67	1.66	1.66	1.66	1.65	1.65	1.65	1.65	1.65	1.65	.25	ľ
2.63	2.59	2.58	2.56	2.54	2.52	2.51	2.50	2.49	2.48	2.48	2.47	.10	7
3.51	3.44	3.41	3.38	3.34	3.32	3.30	3.27	3.27	3.25	3.24	3.23	.05	
6.31	6.16	6.07	5.99	5.91	5.86	5.82	5.75	5.74	5.70	3.67	5.65	.01	
1.62	1.61	1.60	1.60	1.59	1.59	1.59	1.58	1.58	1.58	1.58	1.58	.25	i
2.46	2.42	2.40	2.38	2.36	2.35	2.34	2.32	2.32	2.31	2.30	2.29	.10	
3.22	3.15	3.12	3.08	3.04	2.02	3.01	2.97	2.97	2.93	2.94	2.93	.05	
5.52	5.36	5.28	5.20	5.12	5.07	5.03	4.96	4.95	4.91	4.88	4.86	.01	
1.57	1.56	1.56	1.55	1.55	1.54	1.54	1.53	1.53	1.53	1.53	1.53	.25	1
2.34	2.30	2.28	2.25	2.23	2.22	2.21	2.19	2.18	2.17	2.17	2.16	.10	9
3.01	2.94	2.90	2.86	2.83	2.80	2.79	2.76	2.75	2.73	2.72	2.71	.05	I
4.96	4.81	4.73	4.65	4.57	4.52	4.48	4.42	4.40	4.36	4.33	4.31	.01	1

TABLE D.3
Upper percentage points of the F distribution (continued)

di for denom-						di for 1	umera	tor N ₁					
Instor N ₁	Pr	1	2	3	4	5	6	7	•	•	10	11	12
	.25	1.49	1.60	1.60	1.59	1.59	1.58	1.57	1.56	1.56	1.55	1.55	1.54
10	.10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.30	2.28
	.03	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91
	.01	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.05	4.77	4.71
	.25	1.47	1.58	1.58	1.57	1.56	1.55	1.54	1.53	1.53	1.52	1.52	1.51
11	.10	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.23	2.21
	.05	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79
	.01	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	4.40
	.25	1.46	1.56	1.56	1.55	1.54	1.53	1.52	1.51	1.51	1.50	1.50	1.49
12	.10	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19	2.17	2.15
	.05	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.60	2.75	2.72	2.69
	.01	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	4.16
	.25	1.45	1.55	1.55	1.53	1.52	1.51	1.50	1.49	1.49	1.48	1.47	1.47
13	.10	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14	2.12	2.10
	.05	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60
	.01	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	4.02	3.96
	.25	1.44	1.53	1.53	1.52	1.51	1.50	1.49	1.48	1.47	1.46	1.46	1.45
14	.10	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10	2.08	2.05
	.05	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53
	.01	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.86	3.80
	.25	1.43	1.52	1.52	1.51	1.49	1.48	1.47	1.46	1.46	1.45	1.44	1.44
15	.10	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.04	2.02
	.05	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48
	.01	8.68	6.36	5.42	4.69	4.56	4.32	4.14	4.00	3.69	3.60	3.73	3.67
	.25	1.42	1.51	1.51	1.50	1.48	1.47	1.46	1.45	1.44	1.44	1.44	1.43
16	.10	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	2.01	1.99
	.05	4.49	3.63	3.24	3.01	2.65	2.74	2.66	2.59	2.54	2.49	2.46	2.42
	.01	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.62	3.55
	.25	1.42	1.51	1.50	1.49	1.47	1.46	1.45	1.44	1.43	1.43	1.42	1.40
17	.10	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.98	1.96
	.05	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38
	.01	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.52	3.46
	.25	1.41	1.50	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.42	1.41	1.40
18	.10	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.96	1.93
	.05	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34
	.01	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.43	3.37
	.25	1.41	1.49	1.49	1.47	1.46	1.44	1.43	1.42	1.41	1.41	1.40	1.40
19	.10	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.94	1.91
	.05	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31
	.01	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.36	3.30
	.25	1.40	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.41	1.40	1.39	1.39
20	.10	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.92	1.89
	.05	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.2
	.01	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	3.2

				•	ii for nu	merato	r N ₁						di for denon
13	20	24	30	40	50	60	100	120	200	500	-	Pr	Inator N ₁
.53	1.52	1.52	1.51	1.51	1.50	1.50	1.49	1.49	1.49	1.48	1.48	.25	
1.24	2.20	2.18	2.16	2.13	2.12	2.11	2.09	2.08	2.07	2.06	2.06	.10	10
.85	2.77	2.74	2.70	2.66	2.64	2.62	2.59	2.58	2.56	2.55	2.54	.05	
.56	4.41	4.33	4.25	4.17	4.12	4.08	4.01	4.00	3.96	3.93	3.91	.01	
.50	1.49	1.49	1.48	1.47	1.47	1.47	1.46	1.46	1.46	1.45	1.45	.25	
.17	2.12	2.10	2.08	2.05	2.04	2.03	2.00	2.00	1.99	1.98	1.97	.10	11
.72	2.65	2.61	2.57	2.53	2.51	2.49	2.46	2.45	2.43	2.42	2.40	.05	
.25	4.10	4.02	3.94	3.86	3.81	3.78	3.71	3.69	3.66	3.62	3.60	.01	
.48	1.47	1.46	1.45	1.45	1.44	1.44	1.43	1.43	1.43	1.42	1.42	.25	
.10	2.06	2.04	2.01	1.99	1.97	1.96	1.94	1.93	1.92	1.91	1.90	.10	12
.62	2.54	2.51	2.47	2.43	2.40	2.38	2.35	2.34	2.32	2.31	2.30	.05	
.01	3.86	3.78	3.70	3.62	3.57	3.54	3.47	3.45	3.41	3.38	3.36	.01	
.46	1.45	1.44	1.43	1.42	1.42	1.42	1.41	1.41	1.40	1.40	1.40	.25	
.03	2.01	1.98	1.96	1.93	1.92	1.90	1.88	1.88	1.86	1.85	1.85	.10	13
.53	2.46	2.42	2.38	2.34	2.31	2.30	2.26	2.25	2.23	2.22	2.21	.05	
.62	3.66	3.59	3.51	3.43	3.38	3.34	3.27	3.25	3.22	3.19	3.17	.01	
.44	1.43	1.42	1.41	1.41	1.40	1.40	1.39	1.39	1.39	1.38	1.38	.25	
.01	1.96	1.94	1.91	1.69	1.87	1.86	1.83	1.83	1.82	1.80	1.80	.10	14
	2.39	2.35	2.31	2.27	2.24	2.22	2.19	2.18	2.16	2.14	2.13	.05	
1.46 1.66	3.51	3.43	3.35	3.27	3.22	3.18	3.11	3.09	. 3.06	3.03	3.00	.01	
1.43	1.41	1.41	1.40	1.39	1.39	1.38	1.38	1.37	1.37	1.36	1.36	.25	
.97	1.92	1.90	1.87	1.85	1.63	1.82	1.79	1.79	1.77	1.76	1.76	.10	15
1.40	2.33	2.29	2.25	2.20	2.18	2.16	2.12	2.11	2.10	2.08	2.07	.03	
1.52	3.37	3.29	3.21	3.13	3.08	3.05	2.98	2.96	2.92	2.89	2.87	.01	
1.41	5.40	1.39	1.38	1.37	1.37	1.36	1.36	1.35	1.35	1.34	1.34	.25	
.94	1.89	1.87	1.84	1.81	1.79	1.78	1.76	1.75	1.74	1.73	1.72	.10	16
2.35	2.28	2.24	2.19	2.15	2.12	2.11	2.07	2.06	2.04	2.02	2.01	.65	
1.33 3.41	3.26	3.18	3.10	3.02	2.97	2.93	2.86	2.84	2.81	2.78	2.75	.01	•
1.40	1.39	1.38	1.37	1.36	1.35	1.35	1.34	1.34	1.34	1.33	1.33	.25	1
1.91	1.86	1.84	1.81	1.78	1.76	1.75	1.73	1.72	1.71	1.69	1.69	.10	17
		2.19	2.15	2.10	2.08	2.06	2.02	2.01	1.99	1.97	1.96	.05	
2.31 3.31	2.23 3.16	3.08	3.00	2.92	2.87	2.83	2.76	2.75	2.71	2.68	2.65	.01	
1.39	1.38	1.37	1.36	1.35	1.34	41.34	1.33	1.33	1.32	1.32	1.32	.25	
1.89	1.84	1.81	1.78	1.75	1.74	1.72	1.70	1.69	1.68	1.67	1.66	.10	1 18
2.27	2.19	2.15	2.11	2.06	2.04	2.02	1.98	1.97	1.95	1.93	1.92	.05	'`
3.23	3.08	3.00	2.92	2.84	2.78	2.75	2.68	2.66	2.62	2.59	2.57	.01	İ
	1.37	1.36	1.35	1.34	1.33	1.33	1.32	1.32	1.31	1.31	1.30	.25	1
1.38	1.81	1.79	1.76	1.73	1.71	1.70	1.67	1.67	1.65	1.64	1.63	.10	19
1.86					2.00	1.98	1.94	1.93	1.91	1.89	1.88	.05	Ι ΄΄
2.23 3.15	2.16 3.00	2.11 2.92	2.07 2.84	2.03 2.76	2.71	2.67	2.60	2.58	2.55	2.51	2.49	.01	1
1.37	1.36	1.35	1.34	1.33	1.33	1.32	1.31	1.31	1.30	1.30	1.29	.25	1
	1.79	1.35	1.74	1.71	1.69	1.68	1.65	1.64	1.63	1.62	1.61	.10	20
1.84		-		1.71		1.95	1.91	1.90	1.88	1.86	1.84		1 -
2.20	2.12	2.08	2.04		1.97 2.64	2.61	2.54	2.52	2.48	2.44	2.42		1
3.09	2.94	2.86	2.78	2.69	8.04	2.01	2.39	4.38	4.70		a. 75	٠.	1

TABLE D.3

Upper percentage points of the F distribution (continued)

di for denom- inator	_						đ	for nun	perator	N ₁				
N)	1	r 1		,	3	4	5		7		, ,	10	- 11	12
22	.21	•			.47	1.4	5 1.4	4 1.4	2 1.4	1 1.4	10 1.3			
••	.10		_		.35	2.2								
	.01		-		.05	2.8			5 2.4					
	1 "	• • • • • • • • • • • • • • • • • • • •		72 4	82	4.3	3.9	9 37	6 3,5	9 3.4				
	.25			47	46	1.44	1.4	3 1.4				_		3.17
24	.10				33	2.19								1.36
	.05			40 3	01	2.71								1.83
	.01	7.1	2 5.	61 4.	72	4.22								2.16
	.25	1.3		46 I.						3.3	6 J.2	3.17	3.09	3.03
26	.10	2.9			45	1.44				1.36	1.31	7 1.37	1.36	1.35
	.05	4.2		- •.	31 98	2.17				1.9			1.84	1.81
	.01	7.7		_	54	2.74	2.59				2.21		2.18	2.15
	i			-	94	4.14	3.62	3.59	3.42	3.29) J.18	3.09	3.02	2.96
28	.25	1.30				1.43	1.41	1.40	1.39	1.38				
40	.10	2.89				2.16	2.06						1.35	1.34
	.05	4.20				2.71	2.56	2.45	****			• • • •	1.81	1.79
	1 .01	7.64	5.4	5 4.9	17	4.07	3.75	3.53	3.36	3.23			2.15	2.12
	.25	1.38	1.4	5 1.4		1.42					2.16	3.03	2.96	2.90
30	.10	2.81				2.14	1.41 2.05	1.39	1.38	1.37	1.36	1.35	1.35	1.34
	.05	4.17			-	2.69	2.53	1.98	1.93	1.88	1.65	1.82	1.79	1.77
	.01	7.56				4.02	3.70	2.42	7.33	2.27	2.21	2.16	2.13	2.09
	۱					1.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
40	.25 .10	1.36		• • • •		1.40	1.39	1.37	1.36	1.35	1.34	1.33		
~	.05	2.84	2.4			2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.32	1.31
	.03	4.08 7.31	3.2		_	1.61	2.45	2.34	2.25	2.18	2.12	2.08	1.73 2.04	1.71
		7.31	5.1	4.3	1 3	.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	2.00
	.25	1.35	1.4	1.4		.38	1.37	1.35				2.00	2.73	2.66
60	.10	2.79	2.39			.04	1.93	1.55	1.33	1.32	1.31	1.30	1.29	1.29
	.05	4.00	3.15	2.70		.53	2.37	2.25	1.82 2.17	1.77	1.74	1.71	1.68	1.66
- (.01	7.08	4.98	4.13		.65	3.34	3.12	2.95	2.10	2.04	1.99	1.95	1.92
- 1	.25	1.34	1.45	1.39					6.73	2.82	2.72	2.63	2.56	2.50
120	.10	2.75	2.35			.37	1.35	1.33	1.31	1.30	1.29	1.28	1.27	1.26
i	.05	3.92	3.07		-	.99 .45	1.90	1.82	1.77	1.72	1.68	1.65	1.62	1.60
- 1	.01	6.85	4.79			.43 .48	2.29	2.17	2.09	2.02	1.96	1.91	1.87	1.63
ı	.25						3.17	2.96	2.79	2.66	2.56	2.47		2.34
100	.10	1.33	1.39	1.38	I.	36	1.34	1.32	1.31	1.29	1.28			
		2.73 3.89	2.33	2.11		97	1.88	1.60	1.75	1.70	1.66	1.27 1.63		1.25
		6.76	3.04	2.65		42	2.26	2.14	2.06	1.98	1.93	1.88		1.57
			4.71	3.88	3.	41	3.11	2.89	2.73	2.60	2.50	4		1.80
_ 1		1.32	1.39	1.37	1.:	35	1.33	1.31					74	2.27
•		2.71	2.30	2.08	1.9	-	1.85	1.77	1.29 1.72	1.28	1.27			1.24
- 1		3.84	3.00	2.60	2.		2.21	2.10	2.01	1.67	1.63			.55
	.01	5.63	4.61	3.78	3.3		3.02	2.80	2.64	1.94	1.88			.75
					_				0-	2.51	2.41	2.32	2.25 2	.18

					di lor e	UMETE	tor N _I						di for denor
15	20	24	30	40	50	60	100	120	200	500	•	Pr	fnator N ₂
.36	1.34	1.33	1.32	1.31	1.31	1.30	1.30	1.30	1.29	1.29	1.28	.25	
.61	1.76	1.73	1.70	1.67	1.65	1.64	1.61	1.60	1.59	1.58	1.57	.10	22
1.15	2.07	2.03	1.98	1.94	1.91	1.59	1.85	1.84	1.82	1.80	1.78	.05	}
.98	2.83	2.75	2.67	2.58	2.53	2.50	2.42	2.40	2.36	2.33	2.31	.01	ł
.35	1.33	1.32	1.31	1.30	1.29	1.29	1.28	1.28	1.27	1.27	1.26	.25	Ī
.78	1.73	1.70	1.67	1.64	1.62	1.61	1.58	1.57	1.56	1.54	1.53	.10	24
2.11	2.03	1.98	1.94	1.89	1.86	1.84	1.80	1.79	1.77	1.75	1.73	.05	1
2.89	2.74	2.66	2.58	2.49	2.44	2.40	2.33	2.31	2.27	2.24	2.21	.01	l
1.34	1.32	1.31	1.30	1.29	1.28	1.25	1.26	1.26	1.26	1.25	1.25	.25	l
1.76	1.71	1.68	1.65	1.61	1.59	1.58	1.55	1.54	1.53	1.51	1.50	.10	26
1.07	1.99	1.95	1.90	1.65	1.82	1.60	1.76	1.75	1.73	1.71	1.69	.05	Ī
2.61	2.66	2.58	2.50	2.42	2.36	2.33	2.25	2.23	2.19	2.16	2.13	.01	1
1.33	1.31	1.30	1.29	1.28	1.27	1.27	1.26	1.25	1.25	1.24	1.24	.25	i
1.74	1.69	1.66	1.63	1.59	1.57	1.56	1.53	1.52	1.50	1.49	1.48	.10	28
2.04	1.96	1.91	1.87	1.82	1.79	1.77	1.73	1.71	1.69	1.67	1.65	.05	i
2.75	2.60	2.52	2.44	2.35	2.30	2.26	2.19	2.17	2.13	2.09	2.06	.01	l
1.32	1.30	1.29	1.28	1.27	1.26	1.26	1.25	1.24	1.24	1.23	1.23	.25	l.
1.72	1.67	1.64	1.61	1.57	1.55	1.54	1.51	1.50	1.48	1.47	1.46	.10	30
2.01	1.93	1.89	1.84	1.79	1.76	1.74	1.70	1.68	1.66	1.64	1.62	.05	ł
1.70	2.55	2.47	2.39	2.30	2.25	2.21	2.13	2.11	2.07	2.03	2.01	.01	1
1.30	1.28	1.26	1.25	1.24	1.23	1.22	1.21	1.21	1.20	1.19	1.19	.25]
1.66	1.61	1.57	1.54	1.51	1.48	1.47	1.43	1.42	1.41	1.39	1.38	.10	40
1.92	1.84	1.79	1.74	1.69	1.66	1.64	1.59	1.58	1.55	1.53	1.51	.05	l
2.52	2.37	2.29	2.20	2.11	2.06	2.02	1.94	1.92	1.87	1.83	1.80	.01	ļ
1.27	1.25	1.24	1.22	1.21	1.20	1.19	1.17	1.17	1.16	1.15	1.15	.25]
1.60	1.54	1.51	1.48	1.44	1.41	1.40	1.36	1.35	1.33	1.31	1.29	.10	60
1.84	1.75	1.70	1.65	1.59	1.56	1.53	1.48	1.47	1.44	1.41	1.39	.05	
2.35	2.20	2.12	2.03	1.94	1.88	1.84	1.75	1.73	1.68	1.63	1.60	.01	1
1.24	1,22	1.21	1.19	1.18	1.17	1.16	1.14	1.13	1.12	1.11	1.10	.25	l
1.55	1.48	1.45	1.41	1.37	1.34	1.32	1.27	1.26	1.24	1.21	1.19	.10	120
1.75	1.66	1.61	1.55	1.50	1.46	1.43	1.37	1.35	1.32	1.28	1.25	.05	i
1.19	2.03	1.95	1.86	1.76	1.70	1.66	1.56	1.53	1.48	1.42	1.38	.01	ļ
1.23	1.21	1.20	1.18	1.16	1.14	1.12	1.11	1.10	1.09	1.08	1.06	.25	l
1.52	1.46	1.42	1.38	1.34	1.31	1.20	1.24	1.22	1.20	1.17	1.14	.10	300
1.72	1.62	1.57	1.52	1.46	1.41	1.39	1.32	1.29	1.26	1.22	1.19	.03	1
2.13	1.97	1.89	1.79	1.69	1.63	1.58	1.48	1.44	1.39	1.33	1.28	.01)
1.22	1.19	1.18	1.16	1.14	1.13	1.12	1.09	1.08	1.07	1.04	1.00	.25	Ì
1.49	1.42	1.38	1.34	1.30	1.26	1.24	1.18	1.17	1.13	1.08	1.00	.10	•
1.67	1.57	1.52	1.46	1.39	1.35	1.32	1.24	1.22	1.17	1.11	1.00	.03	1
2.04	1.88	1.79	1.70	1.59	1.52	1.47	1.36	1.32	1.25	1.15	1.00	.01	•

TABLE D.5a Durbin-Watson d statistic: Significance points of d_L and d_U at 0.05 level of significance

	k' :	- 1	1		k' = 3 k			' = 4 k'		- 5	k' = 6		k' = 7		k' = 8		k' = 9		k' = 10	
Ħ	d _L	dv	dL	ďυ	d _L	dv	d _L	dυ	d _L	₫υ	dL	dv	dL	du	dL	du	d _L	đ _U	d _L	dų
6	0.610	1.400	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	-	-	_
7	0.700	1.356	0.467	1.896	-		_	-	-	_	_	_	_	_	_	_	_	-	_	-
_		1.332		1.777		2.287	_	_	-	_	_	_	_	_	_	_	_	_	_	-
9	0.824				0.455		0.296	2.588	 0.242	2.822	_	_	_	_	_	_	_	_		_
0		1.320			0.525			2.414	0.243		0.203	3.005	_	_	_	_	_	_	_	_
1		1.324	0.658		0.595				0.379			2.832	0.171	3.149	_	_	_	_	_	_
2	0.971		0.812	1.3/9	0.038 n 716	1.007	0.514	2.177	0.445	2.390		-	0.230	2.985	0.147	3.266	_	_	_	_
3		1.340	0.905	1.302	0.713	1.010	0.574	2 030	0.505	2.296		-	0.286		0.200	3.111	0.127	3.360		
4		1.350	0.946						0.562				0.343		0.251		0.175	3.216	0.111	3.4
5	1.077	1.371	0.982	1.539		1.728							0.398		0.304	2.860	0.222			
6 7		1.381		1.536									0.451							
8	1.158	1.391		1.535		1.696	0.820	1.872	0.710	2.060	0.603	2.257	0.502	2.461	0.407	2.667	0.321	2.873		3.0
9	1.180	1.401		1.536									0.549						0.290	
0	1.201	1.411	1.100	1.537		1.676							0.595			2.521		2.704		
!1	1.221	1.420	1.125	1.538		1.669			0.829	1.964	0.732	2.124	0.637	2.290	0.547	2.460	0.461	2.633	0.380	2.8
2	1.239	1.429					0.958	1.797	0.863	1.940	0.769	2.090	0.677	2.246	0.588	2.407	0.504	2.571	0.424	2.7
3		1.437	1.168	1.543		1.660	0.986	1.785	0.895	1.920	0.804	2.061	0.715	2.208	0.628	2.360	0.545	2.514	0.465	2.6
4	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.035	0.751	2.174	0.666	2.318	0.584	2.464	0.506	2.6
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038		0.953				0.784				0.621			
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992	0.816	2.117	0.735	2.246	0.657	2.379	0.581	2.5
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974	0.845	2.093	0.767	2.216	0.691	2.342	0.616	2.4
28	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028		0.951		0.874				0.723			
29	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050				0.900				0.753			
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998		0.926					2.251		
31	1.363	1.496	1.297			1.650			1.090		1.020		0.950	2.018					0.741	
32	1.373	1.502	1.309	1.574	1.244	1.650							0.972				0.836			
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193		1.127			1.900		1.991	0.927	2.085			0.795	
34	1.393	1.514	1.333	1.580	1.271	1.652	1.208		1.144		1.080	1.891		1.979	0.950	2.069			0.821	
35	1.402	1.519	1.343	1.584	1.283				1.160		1.097	1.884		1.967	0.971	2.054			0.845	-
36	1.411	1.525	1.354	1.587					1.175		1.114			1.957		2.041		2.127		
37	1.419	1.530	1.364	1.590					1.190			1.870			1.011		0.951			
38	1.427	1.535	1.373	1.594		1.656			1.204					1.939	1.029	2.017		2.098		
39	1.435	1.540							1.218					1.932						
40	••••	1.544			1.338				1.230					1.924				2.022		
45	1.475		1.430												1.139 1.201			1.986		
50									1.335		1.291								1.170	
55								1.724			1.372							1.939		_
60				1.652					1.438									1.923		
65 	1.567	1.629	1.536	1.662		1.696	1.471						1.401					1.910		
70 	1.583	1.641	1.554	1.0/2	1.545	1./03	1.474	1.733	1.707 1 / 1.27	1770	1 AS2	1 201	1.428	1,934	1,100	1,867				
/5	1.598	1.052	1.5/1	1.000	1.343	1./09	1.313	1.737	1 507	1.772	1,480	1,801	1.453	1,831	1,425	1.861	1,397	1.893	1.369	1.
٥Ü	1.611	1.002	1.250	1.000	1.300	1./13	1 EEC.	1.747	1 575	1.774	1,500	1.801	1.474	1,829	1.44R	1.857	1.422	1.886	1.396	ı.
ۆة مە	1.624	1.0/1	1.000	1.090	1.3/3	1.74	1.330	1.751	1 547	1.776	1.518	1.801	1.494	1.827	1.469	1.854	1,445	1.881	1.420	ı.
9U	1.035	1.0/9	1.012	1.703	1.J67	1.740	1.300	1.759	1.557	1.772	1.535	1.802	1.512	1.827	1.489	1.852	1.465	1.877	1.442	I.
ソゴ	1.045	1.007	1.023	1.709	1.002	. 1.732 1 774	1.577	1.759	1.571	1.780	1.550	1.803	1.528	1.826	1.506	1.850	1.484	1.874	1.462	1.
UU UU	1.034	1.094	1.034	1./13	1.013	1.730	1.572	1.722	1.665	1.802	1.651	1.817	1.637	1.832	1.622	1.847	1.608	1.862	1.594	1.
Įυ	1.120	1.740	1.700	1.700	, 1,093			1.000		1000	1707	1 021	1.697	1 941	1 494	1.857	1 675	1 863	1 665	

	k' - 11		k' = 12		k' = 13		k' = 14		k' = 15		k' = 16		k' = 17		k' = 18		k' = 19		k' = 20	
	dį	ďυ	dL	d _U	dL	dv	dL	d _U	d _L	ďυ	d _L	d _U	d_L	d _U	d _L	d _U	dL	ď	dL	du
16	0.098	3.503	_	_	_	_	_	_	_		_	_	_	_		_	_	_	_	
			0.087		-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
18	0.177	3.265	0.123	3.441	0.078	3.603	-	_	_	_	_	_	_	-	_	_	_	_	_	_
	0.220				0.111			3.642	_	_	-	-	_	-	_	_	_	_	_	-
		3.063			0.145					3.676	_	-	_	-	-	_	-	_	-	_
									0.091			3.705	_	_	-	-	-	-	_	_
									0.120				0.052		-	_	_	-	-	-
	0.391								0.153							3.753	-	_	_	-
									0.186							3.678		3.773	_	_
									0.221							3.604			0.041	
		2.649							0.256							3.531				3.724
									0.291											
	0.612								0.325							3.392			0.104	
									0.359 0.392										0.129	
									0.392										0.156	
									0.423										0.183	
									0.488							3.100			0.211	
									0.518										0.239	
									0.547											
	0.808								0.575										0.293	
									0.602										0.351	
	0.854								0.628											
	0.875								0.653										0.404	
40	0.896	2.228							0.678										0.430	
45	0.988								0.788							2.659			0.553	
50	1.064	2.103							0.882										0.660	
55	1.129	2.062							0.961											
60	1.184								1.029											
65	1.231								1.088											2.419
70	1.272	1.986	1.239	2.026	1.206	2.066	1.172	2.106	1.139	2.148	1.105	2.189	1.072	2.232	1.038	2.275	1.005	2.318	0.971	2.362
75	1.308	1:370	1.277	2.006	1.247	2.043	1.215	2.080	1.184	2.118	1.153	2.156	1.121	2.195	1.090	2.235	1.058	2.275	1.027	2.315
80	1.340	1.957	1.311	1.991	1.283	2.024	1.253	2.059	1.224	2.093	1.195	2.129	1.165	2.165	1.136	2.201			1.076	
85	1.369	1.946	1.342	1.977	1.315	2.009	1.287	2.040	1.260	2.073	1.232	2.105	1.205	2.139	1.177	2.172	1.149	2.206	1.121	2.241
90	1.395	1.937	1.369	1.966	1.344	1.995	1.318	2.025	1.292	2.055	1.266	2.085	1.240	2.116	1.213	2.148	1.187	2.179	1.160	2.211
95	1.418	1.929	1.394	1.956	1.370	1.984	1.345	2.012	1.321	2.040	1.296	2.068	1.271	2.097	1.247	2.126	1.222	2.156	1.197	2.186
100	1.439	1.923	1.416	1.948	1.393	1.974	1.371	2.000	1.347	2.026	1.324	2.053	1.301	2.080	1.277	2.108	1.253	2.135	1.229	2.164
		1.892			1.550				1.519								-		1.443	
200	1.654	1.885	1.643	1.896	1.632	1.908	1.621	1.919	1.610	1.931	1.599	1.943	1.588	1.955	1.576	1.967	1.565	1.979	1.554	1.991

Source: This table is an extension of the original Durbin-Watson table and is reproduced from N. E. Savin and K. J. White, "The Durbin-Watson Test for Serial Correlation with Extreme Small Samples or Many Regressors," *Econometrica*, vol. 45, November 1977, pp. 1989–96 and as corrected by R. W. Farebrother, *Econometrica*, vol. 48, September 1980, p. 1554. Reprinted by permission of the Econometric Society.

Note: n = number of observations, k' = number of explanatory variables excluding the constant term.

Example. If n = 40 and k' = 4, $d_L = 1.285$ and $d_U = 1.721$. If a computed d value is less than 1.285, there is evidence of positive first-order serial correlation; if it is greater than 1.721, there is no evidence of positive first-order serial correlation; but if d lies between the lower and the upper limit, there is inconclusive evidence regarding the presence or absence of positive first-order serial correlation.