Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{3} \cdot \left(1 - \frac{2}{5}\right) + \frac{4}{5} = \frac{1}{3} \cdot \frac{3}{5} + \frac{4}{5} =$	3p
	$=\frac{1}{5}+\frac{4}{5}=1$	2p
2.	f(1)=1	2p
	$f(3) = 5 \Rightarrow f(1) \cdot f(3) = 1 \cdot 5 = 5$	3 p
3.	$5x-6=2^2 \Rightarrow 5x-6=4$	3 p
	x=2, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, multiplii de 25 sunt numerele 25, 50 și 75, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{90} = \frac{1}{30}$	1p
5.	O(0,0) este mijlocul segmentului BC	2p
	AO=4	3 p
6.	$\sin^2 x + \left(\frac{1}{4}\right)^2 = 1 \Leftrightarrow \sin^2 x = \frac{15}{16}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{\sqrt{15}}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 4 & -3 \\ 2 & 1 \end{vmatrix} = 4 \cdot 1 - (-3) \cdot 2 =$	3p
	=4+6=10	2p
b)	$B(5) = \begin{pmatrix} 5 & 1 \\ -1 & 5 \end{pmatrix} $ şi $B(-1) = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} $ $\Rightarrow 2B(5) + B(-1) = \begin{pmatrix} 9 & 3 \\ -3 & 9 \end{pmatrix} =$	3p
	$=3\begin{pmatrix}3&1\\-1&3\end{pmatrix}=3B(3)$	2 p
c)	$A \cdot B(x) - B(4x) = \begin{pmatrix} 4x + 3 & 4 - 3x \\ 2x - 1 & 2 + x \end{pmatrix} - \begin{pmatrix} 4x & 1 \\ -1 & 4x \end{pmatrix} = \begin{pmatrix} 3 & 3 - 3x \\ 2x & 2 - 3x \end{pmatrix}, \text{ pentru orice număr întreg}$	3p
	x, deci det $(A \cdot B(x) - B(4x)) = 6x^2 - 15x + 6$, pentru orice număr întreg x	
	$6x^2 - 15x + 6 = 0$ şi, cum x este număr întreg, obținem $x = 2$	2 p

Probă scrisă la matematică *M_tehnologic*

Varianta 1

Barem de evaluare și de notare

2.a)	$2*4 = 2(4-2) + 4(2-2) = 2 \cdot 2 + 4 \cdot 0 =$	3p
	=4+0=4	2 p
b)	x * x = x(x-2) + x(x-2) = 2x(x-2), pentru orice număr real x	3p
	2x(x-2) = 0, de unde obținem $x = 0$ sau $x = 2$	2p
c)	x*1 = -2, deci $(x*1)*(x+1) = (-2)*(x+1) = -6x - 2$, pentru orice număr real x	3p
	-6x-2=4, de unde obţinem $x=-1$	2 p

SUBIECTUL al III-lea

(30 de puncte)

SUDI	SUBIECTUL al III-lea (30 de)	
1.a)	$f'(x) = \frac{2' \cdot (2x^2 + 1) - 2 \cdot (2x^2 + 1)'}{(2x^2 + 1)^2} =$	3p
	$= \frac{-2 \cdot 4x}{\left(2x^2 + 1\right)^2} = \frac{-8x}{\left(2x^2 + 1\right)^2}, \ x \in \mathbb{R}$	2p
b)	f(0) = 2, f'(0) = 0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 2$	3 p
c)	$\lim_{x \to +\infty} \left(x f(x) \ln x \right) = \lim_{x \to +\infty} \left(\frac{2x \ln x}{2x^2 + 1} \right) = \lim_{x \to +\infty} \left(\frac{2 \ln x + 2}{4x} \right) =$	3p
	$=\lim_{x\to+\infty}\frac{1}{2x}=0$	2 p
2.a)	$\int_{1}^{2} (f(x) - x^{3} - 1) dx = \int_{1}^{2} 6x dx = 3x^{2} \Big _{1}^{2} =$	3р
	=12-3=9	2p
b)	$\int_{0}^{1} \frac{x^{2}}{f(x) - 6x} dx = \int_{0}^{1} \frac{x^{2}}{x^{3} + 1} dx = \frac{1}{3} \int_{0}^{1} \frac{(x^{3} + 1)'}{x^{3} + 1} dx = \frac{1}{3} \ln(x^{3} + 1) \Big _{0}^{1} =$	3p
	$= \frac{1}{3} \ln 2 - \frac{1}{3} \ln 1 = \frac{1}{3} \ln 2$	2 p
c)	$\int_{0}^{1} f(\sqrt{x}) dx = \int_{0}^{1} (x\sqrt{x} + 6\sqrt{x} + 1) dx = \left(\frac{2x^{2}\sqrt{x}}{5} + 6 \cdot \frac{2x\sqrt{x}}{3} + x\right) \Big _{0}^{1} = \frac{27}{5}$	3р
	$\frac{a^3}{5} = \frac{27}{5}$, de unde obţinem $a = 3$	2p