rental analysis

May 24, 2021

1 San Francisco Housing Cost Analysis

In this assignment, you will perform fundamental analysis for the San Francisco housing market to allow potential real estate investors to choose rental investment properties.

```
[1]: # imports
  import panel as pn
  pn.extension('plotly')
  import plotly.express as px
  from panel.interact import interact
  import pandas as pd
  import hvplot.pandas
  import matplotlib.pyplot as plt
  import numpy as np
  import os
  from pathlib import Path
  from dotenv import load_dotenv

import warnings
  warnings.filterwarnings('ignore')
  import numpy as np
```

Bad key "text.kerning_factor" on line 4 in C:\Users\chakravartiraghavan\anaconda3\envs\pyvizenv\lib\site-packages\matplotlib\mpl-data\stylelib_classic_test_patch.mplstyle. You probably need to get an updated matplotlibrc file from http://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template or from the matplotlib source distribution

```
[2]: #pn.extension()
[3]: # Read the Mapbox API key
    load_dotenv()
    map_box_api = os.getenv("mapbox")
[4]: #print(map_box_api) # check Mapbox Api key but dont leave it in code
```

1.1 Load Data

```
[5]: # Read the census data into a Pandas DataFrame
file_path = Path("Data/sfo_neighborhoods_census_data.csv")
sfo_data = pd.read_csv(file_path, index_col="year")
print(sfo_data.head())
print('len = ',len(sfo_data))
```

	neighborhood	sale_price_sqr_foot	housing_units	<pre>gross_rent</pre>
year				
2010	Alamo Square	291.182945	372560	1239
2010	Anza Vista	267.932583	372560	1239
2010	Bayview	170.098665	372560	1239
2010	Buena Vista Park	347.394919	372560	1239
2010	Central Richmond	319.027623	372560	1239
len = 397				

1.2 Housing Units Per Year

In this section, you will calculate the number of housing units per year and visualize the results as a bar chart using the Pandas plot function.

Hint: Use the Pandas groupby function.

Optional challenge: Use the min, max, and std to scale the y limits of the chart.

```
# Calculate the mean number of housing units per year (hint: use groupby)
# YOUR CODE HERE!
sfo_housing_units_mean = sfo_data.groupby('year')['housing_units'].mean()
print('Mean')
print(sfo_housing_units_mean)
sfo_housing_units_min = sfo_data.groupby('year')['housing_units'].min()
print('Min')
print(sfo_housing_units_min)
sfo_housing_units_max = sfo_data.groupby('year')['housing_units'].max()
sfo_housing_units_std = sfo_data.groupby('year')['housing_units'].std()
print('STD')
print(sfo_housing_units_std)
```

```
Mean
year
        372560
2010
2011
        374507
2012
        376454
2013
        378401
2014
        380348
2015
        382295
        384242
2016
Name: housing_units, dtype: int64
```

```
Min
    year
    2010
            372560
    2011
            374507
    2012
            376454
    2013
            378401
    2014
            380348
    2015
            382295
    2016
            384242
    Name: housing_units, dtype: int64
    STD
    year
    2010
            0.0
            0.0
    2011
    2012
            0.0
    2013
            0.0
    2014
            0.0
            0.0
    2015
    2016
            0.0
    Name: housing units, dtype: float64
[7]: # Save the dataframe as a csv file
     # YOUR CODE HERE!
     sfo housing units mean.to csv(r'DATA/sfo housing units mean.csv')
[8]: # Use the Pandas plot function to plot the average housing units per year.
     # Note: You will need to manually adjust the y limit of the chart using the min_{f U}
     →and max values from above.
     # YOUR CODE HERE!
     mean_plot = sfo_housing_units_mean.hvplot.bar(ylim=(365000,387500)).
     ⇔opts(yformatter="%.0f", title='SFO Housing Units Mean')
     #sfo housing units mean.hvplot.bar()
     # Optional Challenge: Use the min, max, and std to scale the y limits of the
     \hookrightarrow chart
     # YOUR CODE HERE!
     std_plot = sfo_housing_units_std.hvplot.bar(ylim=(365000,387500)).
     →opts(yformatter="%.0f", title='SFO Housing Units STD')
     min_plot = sfo_housing_units_min.hvplot.bar(ylim=(365000,387500)).
     →opts(yformatter="%.0f", title='SFO Housing Units MIN')
     max_plot = sfo_housing_units_max.hvplot.bar(ylim=(365000,387500)).
      →opts(yformatter="%.0f", title='SFO Housing Units MAX')
     mean_plot + std_plot + min_plot + max_plot
[8]: :Layout
        .Bars.Housing_units.I
                                         [year]
                                                  (housing_units)
                                 :Bars
        .Bars.Housing_units.II :Bars
                                         [year]
                                                  (housing_units)
```

```
.Bars.Housing_units.III :Bars [year] (housing_units)
.Bars.Housing_units.IV :Bars [year] (housing_units)
```

data is same for each year for the Housing Units so mean, max, min are the same. and STD is 0

1.3 Average Housing Costs in San Francisco Per Year

In this section, you will calculate the average monthly rent and the average price per square foot for each year. An investor may wish to better understand the sales price of the rental property over time. For example, a customer will want to know if they should expect an increase or decrease in the property value over time so they can determine how long to hold the rental property. Plot the results as two line charts.

Optional challenge: Plot each line chart in a different color.

Housing costs Mean

```
sale_price_sqr_foot gross_rent
year
2010
               369.344353
                                   1239
2011
               341.903429
                                  1530
2012
               399.389968
                                  2324
               483.600304
2013
                                  2971
2014
               556.277273
                                   3528
2015
               632.540352
                                  3739
2016
               697.643709
                                  4390
```

```
[10]: # Create two line charts, one to plot the average sale price per square foot⊔

→ and another for average montly rent

sfo_housing_sale_mean_plot_hv = sfo_housing_costs_mean['sale_price_sqr_foot'].

→ hvplot.line().opts( title='SFO Housing Average Price per sqr ft - HV Line⊔

→ plot', color = "m")

#sfo_housing_sale_mean_plot = sfo_housing_costs_mean['sale_price_sqr_foot'].

→ plot.line( title='SFO Housing Average Price per sqr ft - Line plot')

# Line chart for average sale price per square foot

# YOUR CODE HERE!
```


sale_price_sqr_foot gross_rent year 2010 369.344353 1239 2011 341.903429 1530 2012 399.389968 2324 2013 483.600304 2971 2014 556.277273 3528 2015 632.540352 3739 697.643709 4390 2016

SFO Housing Average Price per sqr ft - Line plot


```
[14]: sfo_housing_rent_mean_plot_hv # also printing hvplot
[14]: :Curve [year] (gross_rent)
```

1.4 Average Prices by Neighborhood

In this section, you will use hyplot to create two interactive visulizations of average prices with a dropdown selector for the neighborhood. The first visualization will be a line plot showing the trend of average price per square foot over time for each neighborhood. The second will be a line plot showing the trend of average monthly rent over time for each neighborhood.

Hint: It will be easier to create a new DataFrame from grouping the data and calculating the

mean prices for each year and neighborhood

```
[15]: # Group by year and neighborhood and then create a new dataframe of the mean
       \rightarrow values
      # YOUR CODE HERE!
      #print(sfo_data.head())
      sfo_nb_housing_costs = sfo_data[['neighborhood', 'sale_price_sqr_foot']]
      #print(sfo_nb_housing_costs)
      #sfo_nb_housing_costs = sfo_nb_housing_costs.groupby(['neighborhood'])
      #sfo_nb_housing_costs.head()
      sfo_nb_housing_costs_mean = sfo_nb_housing_costs.groupby(['neighborhood', __
      #print(sfo nb housing costs mean.tail())
      sfo_nb_housing_costs_mean.reset_index()
      #yb = sfo_nb_housing_costs_mean.loc['Yerba Beuna':]
      #yb.reset_index()
      sfo_nb_housing_rents = sfo_data[['neighborhood', 'gross_rent']]
      sfo_nb_housing_rents_mean = sfo_nb_housing_rents.groupby(['neighborhood',_

    'year']).mean()
      sfo_nb_housing_rents_mean.reset_index()
```

```
[15]:
                     neighborhood year gross_rent
                     Alamo Square
                                   2010
      0
                                               1239
                     Alamo Square
      1
                                   2011
                                               1530
      2
                     Alamo Square 2012
                                               2324
      3
                     Alamo Square 2013
                                               2971
      4
                     Alamo Square 2014
                                               3528
      5
                     Alamo Square
                                   2015
                                               3739
      6
                     Alamo Square 2016
                                               4390
      7
                       Anza Vista 2010
                                               1239
      8
                       Anza Vista 2012
                                               2324
      9
                       Anza Vista 2013
                                               2971
      10
                       Anza Vista 2014
                                               3528
      11
                       Anza Vista 2015
                                               3739
      12
                       Anza Vista 2016
                                               4390
      13
                          Bayview 2010
                                               1239
                          Bayview 2011
      14
                                               1530
      15
                          Bayview 2012
                                               2324
      16
                          Bayview
                                   2013
                                               2971
      17
                          Bayview
                                               3528
                                   2014
      18
                  Bayview Heights 2015
                                               3739
      19
                  Bernal Heights
                                   2011
                                               1530
      20
                  Bernal Heights
                                   2012
                                               2324
      21
                  Bernal Heights
                                   2013
                                               2971
      22
                  Bernal Heights
                                   2014
                                               3528
```

23	Bernal Heights	2015	3739
24	Bernal Heights	2016	4390
25	Buena Vista Park	2010	1239
26	Buena Vista Park	2011	1530
27	Buena Vista Park	2012	2324
28	Buena Vista Park	2013	2971
29	Buena Vista Park	2015	3739
	•••	•••	•••
367	Van Ness/ Civic Center	2011	1530
368	Van Ness/ Civic Center	2012	2324
369	Van Ness/ Civic Center	2013	2971
370	Van Ness/ Civic Center	2014	3528
371	Van Ness/ Civic Center	2015	3739
372	Van Ness/ Civic Center	2016	4390
373	Visitacion Valley	2013	2971
374	Visitacion Valley	2014	3528
375	Visitacion Valley	2015	3739
376	Visitacion Valley	2016	4390
377	West Portal	2010	1239
378	West Portal	2012	2324
379	West Portal	2013	2971
380	West Portal	2014	3528
381	Western Addition	2010	1239
382	Western Addition	2011	1530
383	Western Addition	2012	2324
384	Western Addition	2013	2971
385	Western Addition	2014	3528
386	Western Addition	2015	3739
387	Westwood Highlands	2011	1530
388	Westwood Highlands	2013	2971
389	Westwood Park	2014	3528
390	Westwood Park	2016	4390
391	Yerba Buena	2010	1239
392	Yerba Buena	2011	1530
393	Yerba Buena	2012	2324
394	Yerba Buena	2013	2971
395	Yerba Buena	2014	3528
396	Yerba Buena	2015	3739

[397 rows x 3 columns]

```
[17]: # Use huplot to create an interactive line chart of the average price per sq ft.
      # The plot should have a dropdown selector for the neighborhood
      # YOUR CODE HERE!
      def nb_sale(neighborhood):
           sfo_nb_housing_costs_mean = sfo_data.
       → groupby(['neighborhood'])['sale_price_sqr_foot'].mean()
          sloc = sfo_nb_housing_costs_mean.loc[neighborhood]
           sfo_nb_housing_sale_mean_plot_hv = sloc.hvplot.line(x='year',_
       \rightarrow y='sale_price_sqr_foot').opts( title='SFO NB Housing Average Price_per_sqr_1
       \rightarrow ft - HV \ Line \ plot', \ color = "m")
          sfo_nb_housing_sale_mean_plot_hv = sloc.hvplot.line(x='year',_
       →y='sale_price_sqr_foot').opts( title='SFO NB Housing Average Price per sqr_

→ft - HV Line plot', color = "m")
          \#sfo\_nb\_housing\_sale\_mean\_plot\_hv = sfo\_nb\_housing\_costs\_mean.hvplot.
       →line(x='year', y='sale_price_sqr_foot').opts( title='SFO NB Housing Average_
       \hookrightarrowPrice per sqr ft - HV Line plot', color = "m")
          return sfo_nb_housing_sale_mean_plot_hv
      \#sfo\_nb\_housinq\_sale\_mean\_plot\_hv = sfo\_nb\_housinq\_costs\_mean.hvplot.line().
       →opts( title='SFO Housing Average Price per sqr ft per Neighborhood- HV Line_
       \rightarrow plot', color = "m")
      #sfo_nb_housing_sale_mean_plot_hv
      #interact(nb_sale, neighborhood=sfo_data['neighborhood'])
      layout_sale = interact(nb_sale, neighborhood=sfo_data['neighborhood'])
      pn.Column('**SFO Housing**', pn.Row(layout sale[1], layout sale[0]))
      #x="year", y="sale_price_sqr_foot", c="neighborhood"
[17]: Column
          [0] Markdown(str)
          [1] Row
              [0] Row
                   [0] HoloViews(Curve, name='interactive02810')
                   [0] Select(name='neighborhood', options=['Alamo Square', ...],
      value='Alamo Square')
 []:
[18]: # Use huplot to create an interactive line chart of the average monthly rent.
      # The plot should have a dropdown selector for the neighborhood
      # YOUR CODE HERE!
      def nb_rent(neighborhood):
           sfo_nb_housing_costs_mean = sfo_data.
       → groupby(['neighborhood'])['sale_price_sqr_foot'].mean()
          sloc = sfo_nb_housing_rents_mean.loc[neighborhood]
```

```
sfo_nb_housing_rents_mean_plot_hv = sloc.hvplot.line(x='year', □

→y='gross_rent').opts( title='SFO NB Housing Average Rent per sqr ft - HV

→Line plot', color = "m")

return sfo_nb_housing_rents_mean_plot_hv

layout_rent = interact(nb_rent, neighborhood=sfo_data['neighborhood'])

pn.Column('**SFO Housing**', pn.Row(layout_rent[1], layout_rent[0]))
```

```
[18]: Column
        [0] Markdown(str)
        [1] Row
        [0] Row
        [0] HoloViews(Curve, name='interactive03039')
        [1] Column
        [0] Select(name='neighborhood', options=['Alamo Square', ...],
        value='Alamo Square')
```

1.5 The Top 10 Most Expensive Neighborhoods

In this section, you will need to calculate the mean sale price per square foot for each neighborhood and then sort the values to obtain the top 10 most expensive neighborhoods on average. Plot the results as a bar chart.

```
[20]: # Plotting the data from the top 10 expensive neighborhoods
# YOUR CODE HERE!
sfo_data_exp_sale.hvplot.bar(rot=90, height=400, title='Top 10 most expensive
→neighborhoods')
```

```
[20]: :Bars [neighborhood] (sale_price_sqr_foot)
```

1.6 Comparing cost to purchase versus rental income

In this section, you will use hvplot to create an interactive visualization with a dropdown selector for the neighborhood. This visualization will feature a side-by-side comparison of average price per square foot versus average montly rent by year.

Hint: Use the hyplot parameter, groupby, to create a dropdown selector for the neighborhood.

```
[21]: # Fetch the previously generated DataFrame that was grouped by year and
      \rightarrowneighborhood
      # YOUR CODE HERE!
      sfo_data_mean = sfo_data.groupby(['neighborhood', 'year']).mean()
      sfo_data_mean = sfo_data_mean.reset_index()
      sfo_data_exp10_reset = sfo_data_exp10.reset_index()
      #print(sfo_data_exp10_reset.head())
[22]: #top10_compare.reset_index
      sfo_data_mean = sfo_data_mean[sfo_data_mean["neighborhood"].
       →isin(sfo_data_exp10_reset["neighborhood"])]
[23]: # Plotting the data from the top 10 expensive neighborhoods
      # YOUR CODE HERE!
      print(sfo_data_mean.head())
      \#sfo\_data\_mean.hvplot(x='year', y='housing\_units').opts(title='SFO NB Housing\_units').opts(
      \rightarrow Average Price per sqr ft - HV Line plot', color = "m")
      #sfo_data_mean.hvplot.bar(x='year', y='housing_units')
      \#sfo\_data\_mean.hvplot(x='year', y=['sale\_price\_sqr\_foot', 'gross\_rent'],
      →value_label ='housing_units', groupby('neighborhood'))
      sfo_data_mean.hvplot.bar(x='year', y=['sale_price_sqr_foot', 'gross_rent'],__
       ⇒groupby='neighborhood', rot=90, height=400, title='Compare costs to purchase_
      \#top10 compare.hvplot.bar(x='year', y=['sale price sqr foot', 'qross_rent'],
       → groupby='neighborhood')
      #value_label ='housing_units'
        neighborhood year
                           sale_price_sqr_foot housing_units
                                                                 gross_rent
     52
          Cow Hollow 2010
                                     569.379968
                                                         372560
                                                                       1239
     53
          Cow Hollow 2011
                                      390.595653
                                                         374507
                                                                       1530
     54
          Cow Hollow 2012
                                     644.818307
                                                         376454
                                                                       2324
          Cow Hollow 2013
                                     707.402809
                                                         378401
     55
                                                                       2971
          Cow Hollow 2014
                                     691.865411
                                                         380348
     56
                                                                       3528
[23]: :DynamicMap
                    [neighborhood]
                 [year, Variable]
         :Bars
                                   (value)
```

1.7 Neighborhood Map

In this section, you will read in neighborhoods location data and build an interactive map with the average house value per neighborhood. Use a scatter_mapbox from Plotly express to create the

visualization. Remember, you will need your Mapbox API key for this.

1.7.1 Load Location Data

Lon

```
neighborhood
Alamo Square 37.791012 -122.402100
Anza Vista 37.779598 -122.443451
Bayview 37.734670 -122.401060
Bayview Heights 37.728740 -122.410980
Bernal Heights 37.728630 -122.443050
len = 73
```

Lat

```
[25]: nb_coord_data.head()
```

```
[25]: Lat Lon neighborhood
Alamo Square 37.791012 -122.402100
Anza Vista 37.779598 -122.443451
Bayview 37.734670 -122.401060
Bayview Heights 37.728740 -122.410980
Bernal Heights 37.728630 -122.443050
```

1.7.2 Data Preparation

You will need to join the location data with the mean values per neighborhood.

- 1. Calculate the mean values for each neighborhood.
- 2. Join the average values with the neighborhood locations.

```
[26]: # Calculate the mean values for each neighborhood
# YOUR CODE HERE!
print(sfo_data_exp.head())
```

```
sale_price_sqr_foot housing_units gross_rent neighborhood Alamo Square 366.020712 378401.0 2817.285714
```

```
      Anza Vista
      373.382198
      379050.0
      3031.833333

      Bayview
      204.588623
      376454.0
      2318.400000

      Bayview Heights
      590.792839
      382295.0
      3739.000000

      Bernal Heights
      576.746488
      379374.5
      3080.333333
```

```
[27]: # Join the average values with the neighborhood locations
# YOUR CODE HERE!

combined_df = pd.concat([sfo_data_exp, nb_coord_data], axis="columns", □

→join="inner")

combined_df.head()

combined_df.reset_index(inplace=True)
```

1.7.3 Mapbox Visualization

Plot the average values per neighborhood using a Plotly express scatter mapbox visualization.

```
[28]: # Set the mapbox access token
      # YOUR CODE HERE!
      px.set_mapbox_access_token(map_box_api)
      # Create a scatter mapbox to analyze neighborhood info
      # YOUR CODE HERE!
      map_plot = px.scatter_mapbox(
          combined_df,
          lat="Lat",
          lon="Lon",
          size="sale_price_sqr_foot",
          color="gross_rent",
          zoom=10,
          text='neighborhood'
      #pane = pn.pane.Plotly(plot)
      #pane
      map_plot.show()
```


1.8 Cost Analysis - Optional Challenge

In this section, you will use Plotly express to create visualizations that investors can use to interactively filter and explore various factors related to the house value of the San Francisco's neighborhoods.

1.8.1 Create a DataFrame showing the most expensive neighborhoods in San Francisco by year

	neighborhood	sale_price_sqr_foot	housing_units	<pre>gross_rent</pre>
0	Union Square District	903.993258	377427.50	2555.166667
1	Merced Heights	788.844818	380348.00	3414.000000
2	Miraloma Park	779.810842	375967.25	2155.250000
3	Pacific Heights	689.555817	378401.00	2817.285714
4	Westwood Park	687.087575	382295.00	3959.000000

		neighborhood sale_pri	.ce_sqr_foot housing	_units	gross_rent
year					
201	0	Alamo Square	291.182945	372560	1239
2010 Anza Vista			267.932583	372560	1239
201	0	Bayview	170.098665	372560	1239
201	0 Bue	na Vista Park	347.394919	372560	1239
201	0 Cen	tral Richmond	319.027623	372560	1239
	year	neighborhood	sale_price_sqr_foot	housi	ng_units \
0	2010	Cow Hollow	569.379968		372560
1	2010	Miraloma Park	680.608729)	372560
2	2010	Pacific Heights	496.516014	:	372560
3	2010	Potrero Hill	491.450004	:	372560
4	2010	Presidio Heights	549.417931	•	372560
5	2010	South Beach	1037.099789)	372560
6	2010	Telegraph Hill	524.793509)	372560
7	2010	Union Square District	569.193448	3	372560
8	2011	Cow Hollow	390.595653	}	374507
9	2011	Miraloma Park	414.676065	•	374507
10	2011	Pacific Heights	509.021480)	374507
11	2011	Potrero Hill	503.138505	•	374507
12	2011	Presidio Heights	493.814917	•	374507
13	2011	South Beach	388.644337	•	374507
14	2011	Telegraph Hill	483.405773	}	374507
15	2011	Union Square District	302.123253	3	374507
16	2012	Cow Hollow	644.818307	•	376454
17	2012	Merced Heights	421.141245	;	376454
18	2012	Miraloma Park	756.192373	3	376454
19	2012	Pacific Heights	586.218215)	376454
20	2012	Potrero Hill	466.647840)	376454
21	2012	Presidio Heights	426.608592		376454
22	2012	Telegraph Hill	465.802122	?	376454
23	2012	Union Square District	445.196788		376454
24	2013	Cow Hollow	707.402809		378401
25	2013	Pacific Heights	503.899261		378401
26	2013	Potrero Hill	598.704795		378401
27	2013	Presidio Heights	512.840248		378401
28	2013	Telegraph Hill	653.311617		378401
29	2013	Union Square District	1290.472107		378401
30	2014	Cow Hollow	691.865411		380348
31	2014	Merced Heights	528.726541		380348
32	2014	Miraloma Park	1267.766203		380348
33	2014	Pacific Heights	824.658694		380348
34	2014	Potrero Hill	1045.201546		380348
35	2014	Presidio Heights	603.450997		380348
36	2014	South Beach	524.629312		380348
37	2014	Telegraph Hill	708.193032		380348
38	2014	Union Square District	558.271119		380348
39	2014	Westwood Park	742.979723	3	380348

40	2015	Cow Hollow	598.620541	382295
41	2015	Pacific Heights	910.187690	382295
42	2015	Potrero Hill	821.300990	382295
43	2015	Presidio Heights	NaN	382295
44	2015	Telegraph Hill	996.990220	382295
45	2015	Union Square District	2258.702832	382295
46	2016	Cow Hollow	1059.065602	384242
47	2016	Merced Heights	1416.666667	384242
48	2016	Pacific Heights	996.389364	384242
49	2016	Potrero Hill	707.651609	384242
50	2016	Presidio Heights	1465.968586	384242
51	2016	Telegraph Hill	903.049771	384242
52	2016	Westwood Park	631.195426	384242

```
33
           3528
34
           3528
35
           3528
36
           3528
37
           3528
38
           3528
39
           3528
40
           3739
41
           3739
42
           3739
43
           3739
44
           3739
45
           3739
46
           4390
47
           4390
48
           4390
49
           4390
50
           4390
51
           4390
52
           4390
```

1.8.2 Create a parallel coordinates plot and parallel categories plot of most expensive neighborhoods in San Francisco per year


```
[31]: # Parallel Coordinates Plot
# YOUR CODE HERE!
px.parallel_coordinates(sfo_data_exp10_reset, color='sale_price_sqr_foot')
```


1.8.3 Create a sunburst chart to conduct a costs analysis of most expensive neighborhoods in San Francisco per year

[]: