VR 实验设置

为了在 VR 中看到三维的虚拟物体,我们先假设空间中存在该物体,然后在左右屏幕上分别显示左右视角下"拍摄"的该物体的影像,通过左右眼融合形成立体视觉。立体视觉中的深度感来源于特征点在左右影像的视差。理论上,特征点从空间左边系转换到像点坐标系如图 1 所示。物体特征点在左右相片的像点坐标(x_{l} ,y),(x_{R} ,y)计算公式为:

$$\frac{x_L}{X + \frac{I}{2}} = \frac{x_R}{X - \frac{I}{2}} = \frac{V}{D}$$

$$\frac{y}{Y} = \frac{V}{D}$$

图 1 空间坐标转换为像点坐标

根据该转换公式,可以先设计好三维虚拟场景中物体的尺寸和位置,然后转换成左右屏幕的影像。为了研究 VR 设备中, JND 与 luminance adaptation、spatial (contrast) masking、retina eccentricity、visual depth 之间的关系,我们将实验分为两组:luminance adaptation、contrast masking。

(1) Contrast masking

Contrast masking 实验当中, jnd 和 background luminance (*bg*)、contrast (*eh*)、retina eccentricity (*e*)、visual depth (*d*)相关,由于已经有了 SJND,实验中设置 bg 不变。实验场景设置如图 2 所示。十字丝和背景显示在一个平面上,该平面和观察者的距离 D 固定为 1,平面的灰度值 bg 固定为 128;噪声随机出现在圆的边缘上,根据 e 调整圆的半

径, 圆和背景的深度差 d。由于 $\lim_{x\to 0} \tan^{-1} x = x$, 而且人眼的舒适区视差范围为 $\left(-1^{\circ}, 1^{\circ}\right)$,

$$\left| \frac{I}{D-d} - \frac{I}{D} \right| \le \frac{\pi}{180}$$

眼距 l=6.3cm,当十字丝到人眼的距离为 1m 时,-38.3cm $\leq d \leq 21.7$ cm。

图 2 Contrast masking 实验物理空间示意图

实验时 e 取(10, 20, 30, 40), eh 取(0, 20, 40, 60), d 取(0.8, 0.9, 1.0, 1.1, 1.2), 共 4*4*5=80 次观察实验。

(2) Luminance adaptation

Luminance adaptation 实验当中 jnd 和 background luminance (bg)、retina eccentricity (e)、visual depth (d)相关。实验时去掉用于形成 contrast 的圆,但是噪声平面必须要有一定的纹理才能双眼融合形成深度感,因此在噪声平面加入一个固定大小的矩形当做纹理,噪声分布在该矩形内部。VR 眼睛的示意图如图 3。其他参数的设置和 Contrast 实验一致。实验时 e 取(10, 20, 30, 40),bg 取(20, 90, 170, 240),d 取(0.8, 0.9, 1.0, 1.1, 1.2),共 4*4*5=80 次观察实验

图 3. Bg 实验 VR 场景示意图

实验结果

前期共 4 个人参加实验,每个人分别做一组 bg 实验和一组 eh 实验,共观察 160 次,将 4 个人的观测结果取均值可以得到表 1、2 中的结果。

表1bg 实验结果

lum	fov	dep	jnd												
20	10	0.8	7.5	90	10	0.8	9	160	10	0.8	10.8	230	10	8.0	13.5
20	10	0.9	6.25	90	10	0.9	10.3	160	10	0.9	14	230	10	0.9	16.5
20	10	1	9.75	90	10	1	10	160	10	1	14.3	230	10	1	22.8
20	10	1.1	7	90	10	1.1	8.75	160	10	1.1	15	230	10	1.1	18
20	10	1.2	10.3	90	10	1.2	11	160	10	1.2	14.3	230	10	1.2	21.3
20	20	0.8	11.3	90	20	0.8	9	160	20	0.8	13.5	230	20	8.0	18.3
20	20	0.9	9	90	20	0.9	6.75	160	20	0.9	14	230	20	0.9	20.8
20	20	1	10.3	90	20	1	11.8	160	20	1	14	230	20	1	21.5
20	20	1.1	11	90	20	1.1	11.5	160	20	1.1	14.5	230	20	1.1	27.8
20	20	1.2	14	90	20	1.2	9.75	160	20	1.2	16.8	230	20	1.2	22.5
20	30	0.8	12.5	90	30	0.8	16.3	160	30	0.8	17.3	230	30	8.0	28.3
20	30	0.9	13	90	30	0.9	12.5	160	30	0.9	15.8	230	30	0.9	20.3
20	30	1	14.8	90	30	1	16.8	160	30	1	18.8	230	30	1	25.5
20	30	1.1	14	90	30	1.1	14.3	160	30	1.1	20.3	230	30	1.1	23
20	30	1.2	23.5	90	30	1.2	17	160	30	1.2	17.3	230	30	1.2	26
20	40	0.8	18.8	90	40	0.8	13.8	160	40	0.8	18.8	230	40	8.0	20.5
20	40	0.9	17	90	40	0.9	14.3	160	40	0.9	19.8	230	40	0.9	24.3
20	40	1	19.5	90	40	1	13	160	40	1	18.3	230	40	1	24.5
20	40	1.1	26	90	40	1.1	17.8	160	40	1.1	21.5	230	40	1.1	26
20	40	1.2	21.8	90	40	1.2	16	160	40	1.2	20	230	40	1.2	35.3

表 2 eh 实验结果

eh	fov	dep	jnd												
0	10	8.0	11.5	20	10	8.0	10	40	10	8.0	13.5	60	10	8.0	12.5
0	10	0.9	12.5	20	10	0.9	12.3	40	10	0.9	13.5	60	10	0.9	13.8
0	10	1	11.8	20	10	1	11.8	40	10	1	11.8	60	10	1	13.3
0	10	1.1	13.8	20	10	1.1	14.3	40	10	1.1	17.3	60	10	1.1	15
0	10	1.2	15.5	20	10	1.2	19	40	10	1.2	18.5	60	10	1.2	23.8
0	20	8.0	9.5	20	20	8.0	8.5	40	20	8.0	9.5	60	20	8.0	9.25
0	20	0.9	11.5	20	20	0.9	10.5	40	20	0.9	10.5	60	20	0.9	11.5
0	20	1	12	20	20	1	13.3	40	20	1	12.8	60	20	1	12.3
0	20	1.1	13.5	20	20	1.1	11.5	40	20	1.1	13	60	20	1.1	15.3
0	20	1.2	13.3	20	20	1.2	13.3	40	20	1.2	14.8	60	20	1.2	15.5
0	30	0.8	9.5	20	30	8.0	8	40	30	8.0	10.3	60	30	8.0	9.25
0	30	0.9	11	20	30	0.9	9	40	30	0.9	8.75	60	30	0.9	9
0	30	1	11.8	20	30	1	10.5	40	30	1	10.8	60	30	1	12.8
0	30	1.1	15	20	30	1.1	12	40	30	1.1	14.8	60	30	1.1	12.8
0	30	1.2	15.3	20	30	1.2	13.8	40	30	1.2	15.5	60	30	1.2	15.3
0	40	8.0	9.75	20	40	8.0	8.75	40	40	8.0	10.5	60	40	8.0	10
0	40	0.9	9.5	20	40	0.9	14.3	40	40	0.9	10.3	60	40	0.9	12.8
0	40	1	10.5	20	40	1	10.8	40	40	1	11.8	60	40	1	11.3
0	40	1.1	13.5	20	40	1.1	10.8	40	40	1.1	13.3	60	40	1.1	18.5
0	40	1.2	15.8	20	40	1.2	13.8	40	40	1.2	11	60	40	1.2	18.5

绘图进一步显示 JND 与不同变量之间的关系。由于每个实验中 JND 都至少与三个变量相关,这样的四维数据无法用三维曲面拟合。为了探索 VR 中 JND 与这些变量尤其是深度的关系,通过求平均的方式消除一个维度的变量,例如为了观察 bg 实验中 JND 与 e 和 d 两个变量之间的关系,我们把 fov、dep 相同,lum 不同的观测值的 JND 求平均,以达到消除 lum 纬度的目的。然后依次绘图。可以初步判断,VR 眼镜实验中,当注视点的深度值固定时,空间中的点与观察者距离越远,JND 值越大,但是不同被试在同一 Depth 的实验结果分布方差较大。在 bg 试验中,JND 与 bg、e 的关系基本符合 2D JND 实验中的规律:bg 在最暗和最亮的部分 JND 越大、e 越大 JND 越大;在 eh 实验中,JND 与 eh、e 的关系都不是特别明显,可能与初步实验流程不是很仔细,为了节约时间未严格采用"阶梯法"进行实验有关,后续进一步实验看是否有所改善。

图 4 bg 实验中 JND 与 bg、d 的关系

图 5 bg 实验中 JND 与 e、d 的关系

图 6 bg 实验中 JND 与 bg、e 之间的关系

图 7 eh 实验中 JND 与 eh、d 之间的关系

图 8 eh 实验中 JND 与 e、d 之间的关系

图 9 eh 实验中 JND 与 e、eh 的关系