DEI ARTAMENTO DE CADEIRAS GERAIS

Experiência Laboratorial Nº 5 – **Pêndulo Simples e Movimento Harmónico**

Unidade curricular: Física I Ano: 2023 1º Semestre

Objectivos:

- 1. Estudar o movimento de um pêndulo simples;
- 2. Determinar a dependência entre o período T de oscilação e o seu comprimento L;
- 3. Medir o período das oscilações com diferentes massas;
- 4. Verificar factores que influenciam no período do pêndulo;
- 5. Determinar a aceleração de gravidade local.

Resumo teórico

Qualquer movimento que se repete em intervalos de tempo iguais constitui um movimento periódico. O movimento periódico de uma partícula pode sempre ser expresso em função de senos e cossenos, motivo pelo qual ele é também denominado movimento harmônico. Se a partícula em movimento periódico se move para diante e para trás na mesma trajetória, seu movimento é chamado oscilatório ou vibratório. A forma mais simples de oscilação, é o **movimento harmônico simples (MHS)**, é o movimento que ocorre quando numa trajetória retilínea, uma partícula oscila periodicamente em torno de uma *posição de equilíbrio* sob a ação deuma *força restauradora*, sempre orientada para a posição de equilíbrio e deintensidade proporcional à distância da partícula à posição de equilíbrio. Exemplos comuns deste tipo de movimento são o de um corpo preso a uma mola ou o de um pêndulo simples, como se mostra na **Figura 1**.

Figura 1. Oscilador de mola

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Portanto, em um sistema massa-mola, o período depende da massa presa à mola e da constante elástica da mola k.

O pêndulo simples é um corpo ideal que consiste de uma massa (m) puntiforme suspensa por um fio leve e inextensível de comprimento L. Quando afastado de sua posição de equilíbrio $(\theta = \theta_0)$, na **Figura 2**) e largado, o pêndulo oscilará em um plano vertical sob a ação da gravidade. O movimento é periódico e oscilatório. O tempo necessário para uma oscilação completa é chamado período (T).

Existem vários pêndulos estudados por físicos, já que estes o descrevem como um objecto de fácil previsão de movimentos e que possibilitou inúmeros avanços tecnológicos, alguns deles são os pêndulos físicos, de torção, matemático e outros. Mas o modelo mais simples, e que tem maior utilização é o *Pêndulo Simples*, apresentado na **Figura 2**.

Figura 2: Pêndulo simples

$$T=2\pi\sqrt{\frac{L}{g}}$$

Equipamento ou Material Necessário

- 1. Tripé universal;
- 2. Massas:
- 3. Cronómetro:
- 4. Fio de comprimento inextensível;
- 5. Pêndulo.

Procedimentos experimentais

- Regular o comprimento L₁ do pêndulo para 50 cm (Lembre-se de que o comprimento do pêndulo deve ser medido desde o início do fio até o centro do corpo de massa m). Posicionar o pêndulo à 10 cm da posição de equilíbrio e solte-o. Medir o tempo, t, que o pêndulo leva para fazer 10 oscilações completas e anotar na Tabela 1. Faça isso cinco vezes.
- 2. Repetir o procedimento para $L_2 = 80 \ cm$ e $L_3 = 100 \ cm$. Fazer cinco vezes cada medida e anotar na **Tabela 1.**

Comprimento do pêndulo L (m)	Números de medidas	Número de oscilações completas	Tempo t(s)	t _{médio}	Período T(s)	T _{médio}	ΔT_{medio}	T ² médio (s ²)	f(Hz)
0,50	1 2 3	10		 - 		 - 			
	4 5								
0,80	2 3								
	5	10							
1.00	2 3	10							
1,00	5			-		-			

- 3. Calcular o t_{médio} para cada comprimento do pêndulo;
- 4. Completar a **Tabela 1**., calculando os valores de $T = \frac{t}{10}$, do desvio médio do períodos, e de $T_{\text{médio}}$;
- 5. Utilizando a equação $T=2\pi\sqrt{\frac{L}{g}}$, calcule a aceleração da gravidade local média, $g_{\text{média}}$, em (m/s^2) para cada comprimento do pêndulo. Determinar o desvio $\Delta g_{\text{média}}$ do experimental;
- 6. Expressar o resultado final como $g = (g \pm \Delta g) m/s^2$. O comprimento do pêndulo influência no valor da aceleração da gravidade?
- 7. Construir o gráfico $(T \times L)$ e explicar;
- 8. Deslocar o pêndulo para 5, 10, 15, 20 *e* 25 do ponto de equilíbrio e para cada caso registar o tempo gasto em 5 oscilações completas com o comprimento de 1,0 *metro* e preencher a **Tabela 2**.

Deslocamento A (cm)	Número s de medidas	N° de oscilações completas	t(s)	t _{médio}	Período T(s)	T _{médio} (s)	$\begin{array}{c} \Delta T_{me} \\ \text{dio} \end{array}$	f(Hz
5	1							
	2	5						
	3							
10	1							
	2	5						
	3							
15	1							
	2	5						
	3]						
20	1							
	2	5]		1		
	3	1]		1		
25	1							

2				
3			ļ	

- 9. Construir o gráfico de $(T \times A)$, considerar os valores médios de cada período. A amplitude do pêndulo influencia no valor do período do pêndulo?
- 10. Mantendo o comprimento de $L=1,0\ metros$, trocar a massa por uma maior, determinar o tempo que o pêndulo leva a completar 5 oscilações e preencha a **Tabela 3**.

n°	Massa do pêndulo	Tempo de 5 oscilações	Período (s)	f (Hz)
1				
2				
3				

- 11. Qual a ralação entre o período do pêndulo e a massa;
- 12. Calcular os erros e tirar conclusões

Bibliografia

- 1. Alonso e Finn, "Fisica", Addison-Wesley, 1999, Espanha;
- 2. D. Halliday e R. Resnick, "Fundamentos de Física", Volume 1, livros Técnicos e Ciêntíficos editora, 1991, RJ, Brasil;
- 3. Frederic J. Keller e outros, Física, Volume 1, Editora Afiliada, Brasil.