NoSQL Research Project

Zip Code Wllmington Data Cohort 2.2

Presented by Keerthi Balla & Tom Lafferty

NoSQL 30,000 foot view

- Stands for "Not Only SQL" or "Non Relational"
- Do away with relationships, schema-less.
 - Does not require fixed table schema nor the concept of joins.
- Every item stands on its own.

→ Term coined in 1998, although these types of databases have been used since the 1960's.

Relational vs NoSQL

- Data consistency
- Harder to scale
 - Can scale vertically, not horizontally
- Resource intensive
- At some point, won't be able to handle the load.

- "Eventually consistent"
- Easier to scale
 - Can scale vertically and horizontally
- Partitions are different servers (horizontal)
- Primary key is converted to Hash value
 - Keyspace -> Each partition (server) is assigned a range within the keyspace range
 - How it knows where to store the data, and where to find the data.
 - Can only be retrieved by the primary key
- Partitions are mirrored to other servers to prevent loss from hardware failure
 - May cause data to not be immediately returned.
 - Eventually consistent, it will be returned after milliseconds.

RDBMS – Relational Database Management System

- Relation a 2D table that has the following features:
 - Name
 - Attributes
 - Tuples
- Issues:
 - Scalability When the dataset is too big e.g. Big Data
 - Distribution Not designed to be distributed
 - Horizontal Scaling
 - Different approaches: Master-slave and Sharding

Brief History

- Non-relational DBMSs are not new
- But NoSQL represents a new incarnation
 - •Due to massively scalable Internet applications
 - ·Based on distributed and parallel computing
- Development
 - •Three major papers were the seeds of the NoSQL movement BigTable(Google), Dynamo (Amazon) [Distributed key-value data store & Eventual Consistency], CAP Theorem
 - Starts with Google
 - •First research paper published in 2003
 - •Continues also thanks to Lucene's developers/Apache (Hadoop) and Amazon (Dynamo)
 - •Then a lot of products and interests came from Facebook, Netflix, Yahoo, eBay, Hulu, IBM, and many more

NoSQL types

- Document based [MongoDB, CouchDB]
- •Key Value pair based [Redis, Couchbase Server]
- Column based [HBase]
- Graph based [Neo4j]

Relational database vs noSQL(document based) database

Col1	Col2	Col3	Col4
Data	Data	Data	Data
Data	Data	Data	Data
Data	Data	Data	Data

Document Based

- •The database stores and retrieves documents, stored in the value part of the loosely structured sets of key-value pairs. e.g., XML, JSON etc.
- •Self-describing, hierarchical tree data structures consisting of maps, collections and scalar values. Addressed in the db via a unique key
- •The database offers an API or query language that retrieves documents based on their contents.
- •Used for content management systems, blogging platforms, web analytics, real-time analytics, e-commerce applications.
- •Avoided for systems that need complex transactions spanning multiple operations or queries against varying aggregate structures.
- •Example: MongoDB, Couch DB, Lotus Notes, Orient DB, Raven DB

Key Value Pair Based

Key Value Pair Based

- •Dictionaries contain a collection of records. Simplest of the four
- •Store data as maps: Hashmaps or associative arrays. Provide efficient average running time algorithm for accessing data
- •Records are stored and retrieved using a key that uniquely identifies the records and is used to quickly find the data within the database
- •Used for storing session information, user profiles, preferences, shopping cart data etc.
- •Avoided when we need to query data having relationships between entities.
- •Example: Redis, CouchbaseDB, Oracle NoSQL database, Riak, Apache Cassandra, Amazon Dynamo, Voldemort

Column Based

Sales					
Product	Customer	Date	Sale		
Beer	Thomas	2011-11-25	2 GBP		
Beer	Thomas	2011-11-25	2 GBP		
Vodka	Thomas	2011-11-25	10 GBP		
Whiskey	Christian	2011-11-25	5 GBP		
Whiskey	Christian	2011-11-25	5 GBP		
Vodka	Alexei	2011-11-25	10 GBP		
Vodka	Alexei	2011-11-25	10 GBP		

Product		
₽	Value	
1	Beer	
2	Beer	
3	Vodka	
4	Whiskey	
5	Whiskey	
6	Vodka	
7	Vodka	

Customer		
ID	Customer	
1	Thomas	
2	Thomas	
3	Thomas	
4	Christian	
5	Christian	
6	Alexei	
7	Alexei	

Column Based

- Data is efficiently stored in a column-oriented way.
- •Columns are grouped in column-families. Data isn't stored in a single table but in column families.
- •Identified by "row-key". Ordered and sorted based on row-key
- Used for content management systems, blogging platforms, log aggregation
- •Avoided for systems that are in early development, changing query patterns.
- •Example: Hbase, Cassandra, Hypertable, Amazon DynamoDB, Google's Bigtable

Graph Based

Graph Based

- •Graph-oriented: Stored as an edge, a node or an attribute. Both nodes and edges can be labelled. Labels can used to narrow searches.
- •Store entities and relationships between these entities as nodes and edges of a graph respectively.
- •Traversing the relationships is very fast as relationship between nodes is not calculated at query time but is actually persisted as a relationship.
- •Used for connected data, such as social networks, spatial data, routing information for goods and supply.
- •Example: Neo4J, Infinite Graph, Orient DB, Flock DB

Apps and Use Cases

- Apple has reported they have a NoSQL database of over 75,000 servers, the largest known NoSQL database.
- During Amazon Prime Day in 2019, Their NoSQL database peaked at 45 million requests per second.

- → Cloud providers, because scalability
 - DynamoDB, BigTable, CosmosDB
- → Self-hosted
 - Cassandra, Scylla, CouchDB, MongoDB

