Exercício 1

Resolva, em \mathbb{R} , cada uma das sequintes inequações:

a)
$$x^{3} > x^{2}$$
 C.A.
$$x^{3} > x^{2}$$

$$\Leftrightarrow x^{3} - x^{2} > 0$$

$$\Leftrightarrow x^{2} (x - 1) > 0$$

$$\Leftrightarrow x > 0 \lor x > 1$$

$$C.S =]1, +\infty[$$

b)
$$x^{3} + x^{2} - 2x > 0$$
 C.A.
$$x^{3} + x^{2} - 2x = 0$$

$$\Leftrightarrow x (x^{2} + x - 2) = 0$$

$$\Leftrightarrow x = 0 \lor x = 1 \lor x = -2$$

$$C.S =]-2, 0[\ \cup \]1. + \infty[$$

x	$-\infty$	-2		0		1	+∞
x	_	_	_	0	+	+	+
$x^2 + x - 2$	+	0	_	_	_	0	+
$(x)\left(x^2+x-2\right)$	_	0	+	0	_	0	+
		Crescente				Cres	cente

c)
$$(x-1) (4-x^2) (x^2 - 4x + 6) \le 0$$
 C.A.
$$(x-1) (4-x^2) (x^2 - 4x + 6) = 0$$

$$\Leftrightarrow x = 1 \lor x = 2 \lor x = -2 \lor x \in \emptyset$$

$$C.S = [-2, 1] \cup [2, +\infty[$$

x	-∞	-2		1		2	+∞
x-1	_	_	_	0	+	+	+
$4-x^2$	_	0	+	+	+	0	_
$x^2 - 4x + 6$	+	+	+	+	+	+	+
$(x-1)(4-x^2)(x^2-4x+6)$	+	0	_	0	+	0	_

Decrescente

Decrescente

Exercício 2

Considere a função polinomial definida em \mathbb{R} por $f(x) = x^3 - x^2 - 4x + 4$.

a)

Usando a regra de Ruffini, mostre que $x^3-x^2-4x+4=(x-2)\left(x^2+x-2\right)$, para todo $x\in\mathbb{R}$.

b)

Determine os zeros de f.

$$(x-2)(x^2+x-2)=0$$

$$\Leftrightarrow x = 2 \lor x = -2 \lor x = 1$$

b)

Determine o conjunto de números reais que verificam a condição f(x) < 0.

$$(x-2)(x^2+x-2)<0$$

$$C.S =]-\infty, -2[\cup]1, 2[$$

x	$-\infty$	-2		1		2	+∞
x-2	_	_	_	_	_	0	+
$x^2 + x - 2$	+	0	_	0	+	+	+
$(x-2)\left(x^2+x-2\right)$	_	0	+	0	_	0	+

Decrescente

Decrescente

Exercício 3

Considere o polinómio $p(x) = x^4 - 2x^3 - 2x^2 - 2x - 3$.

a)

Mostre que p(x) é divisível por (x+1)(x-3).

$$(x+1)(x^3-3x^2+x-3)$$

$$(x+1)(x-3)(x^2+1)$$

b)

Resolva, em \mathbb{R} , a inequação p(x) > 0.

$$(x+1)(x-3)(x^2+1) > 0$$

$$(x+1)(x-3)(x^2+1) = 0$$

$$\Leftrightarrow x = -1 \lor x = 3 \lor x \in \emptyset$$

$$C.S =]-\infty, -1[\ \cup \]3, +\infty[$$

x	$-\infty$	-1		3	+∞
x + 1	_	0	+	+	+
x-3	_	_	_	0	+
$x^2 + 1$	+	+	+	+	+
$(x+1)(x-3)(x^2+1)$	+	0	_	0	+

Decrescente

Decrescente