Semester I 2015-2016 EEL 711/ELL 711 Minor Test II

Answer all questions (Marks: Q.1: 24, Q.2: 16)

Full Marks: 40

1. A real-valued Gaussian random vector $\underline{X} = [X_1 \ X_2 \ X_3]^T$ has a $\mathcal{N}(\underline{\mu}, \underline{K})$ distribution, such

$$\underline{\mu} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}, \quad \underline{K}^{-1} = \frac{1}{(1 - \rho^2)} \begin{bmatrix} 1 & -\rho & 0 \\ -\rho & (1 + \rho^2) & -\rho \\ 0 & -\rho & 1 \end{bmatrix}, \quad \det\left(\underline{K}^{-1}\right) = \frac{1}{(1 - \rho^2)^2}, \quad -1 < \rho < 1.$$

Let $Y_i = X_i - 4$, i = 1, 2, 3. If the joint p.d.f. of Y_1, Y_2, Y_3 is given by

$$f_{Y_1,Y_2,Y_3}(y_1,y_2,y_3) = \frac{1}{C} \exp\left\{-\frac{\left[y_1^2 + (1+\rho^2)y_2^2 + y_3^2 + 8 + A(y_1y_2 + y_2y_3) + B(y_1 - y_3)\right]}{2(1-\rho^2)}\right\},\,$$

[6]

then find A, B, C.

(b) Find \underline{K} . [4]

(c) Let $V_1 = 3X_1 - 6$, $V_2 = 2X_2 - 8$, $V_3 = X_3 - 6$, and $\rho = \sqrt{0.6}$.

$$\begin{array}{c}
\text{ Calculate } \mathbf{E} \left\{ \begin{bmatrix} V_1 \\ V_3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_3 \end{bmatrix}^T \right\} \text{ and } \mathbf{E} \left[V_1^2 V_2 V_3 \right].
\end{array}$$

 \ddot{U} . Let $U_1 = a_{11}V_1$, $U_2 = a_{21}V_1 + a_{22}V_3$, such that $a_{11}, a_{22} > 0$, and U_1 and U_2 are i.i.d. $\mathcal{N}(0,1)$ random variables. Calculate a_{11}, a_{21}, a_{22} . [8]

2. A communication receiver with 2 antennas receives a complex-valued transmitted signal sample $e^{j\phi}$, where $\phi \in [-\pi, \pi)$, through in-phase and quadrature channels. In the in-phase and quadrature channels, the 2×1 received signal vectors are \underline{X} and \underline{Y} , such that

$$\underline{Z} = \underline{X} + \underline{\jmath}\underline{Y} = e^{\underline{\jmath}\phi}(\underline{G} + \underline{\jmath}\underline{H}) + \underline{N}_{Z}$$

where $\underline{G}, \underline{H}$ are random channel gains and \underline{N}_Z is the additive noise, such that

$$\underline{G}, \underline{H} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Omega \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right), \quad \mathbf{E}\left[\underline{G}\underline{H}^T\right] = \Omega \begin{bmatrix} 0 & -\rho \\ 1 - \rho & 0 \end{bmatrix},$$

$$\underline{N}_Z \sim \mathcal{C}\mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, 2\sigma^2\underline{I}_2 \right), \quad \Omega, \sigma > 0, \quad 0 < \rho < 1,$$

and \underline{N}_Z is independent of \underline{G} and \underline{H} .

Find \underline{K}_{Z} , the covariance matrix of \underline{Z} . [4]

For what value of ρ is \underline{Z} circular? [4]

(c) Let $\underline{U} = [U_1 \ U_2]^T = \underline{X} + \underline{Y}$, $\underline{V} = [V_1 \ V_2]^T = \underline{X} - \underline{Y}$, and $\underline{W} = [W_1 \ W_2]^T = \underline{U} + \underline{\jmath}\underline{V}$. For the value of ρ in (b), find the c.f.s $\Psi_{W_1,W_2}(\underline{\jmath}\nu_1,\underline{\jmath}\nu_2)$ and $\Psi_{U_1,V_2}(\underline{\jmath}\omega_1,\underline{\jmath}\omega_2)$. [4+4]