Fitting a Regression Model on 'thyroid' data using R

Data description

- The package 'mclust' in R contains a dataset named 'thyroid' which has 215 observations and 6 variables
- Variables TSH, T3, T4, DTSH, RT3U and Diagnosis
- TSH Secretion of Thyroid Stimulating Hormone in a person (quantitative)
- **T3** Amount of 'Triiodothyronine' hormone in a person (quantitative)
- **T4** Amount of 'Thyroxine' hormone in a person (quantitative)
- **DTSH** Maximal absolute difference of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone as compared to the basal value (quantitative)
- RT3U A blood test performed as a part of evaluation of thyroid function of a person (quantitative)
- Diagnosis A person's secretion level of 'thyroid' hormone which are 'Hypothyroidism', 'Normal' and 'Hyperthyroidism' (categorical/qualitative)

Question from the dataset

- Secretion of Thyroid Stimulating Hormone in a person is dependent on another two important thyroid hormone (Triiodothyronine and Thyroxine) in human body.
- How is the secretion of Thyroid Stimulating Hormone associated with the other independent variables?
- Also, how does the two most important independent variables T3 and T4 are associated with TSH?

Findings from Running a Linear Regression Model

• (Intercept) T3 T4 DTSH RT3U 10.16710334 -0.10634921 -0.25665564 0.08185691 0.01934854

Diagnosis(Normal) Diagnosis(Hyper) -8.65123900 -6.02693064

- Only the 'Normal' and 'Hyper' category from variable 'Diagnosis' are significant (after F-test, p-value is 1.787e-11)
- The main factors (T3, T4) causing secretion of TSH are not significant
- 45.85% of total variation of 'TSH' are explained by the explanatory variables
- AIC value is 1272.075

What happens if we remove the effect of 'Diagnosis' from the data?

- (Intercept) **T4** T3 **DTSH** RT3U 0.13557211 -0.39922535 0.47572447 0.28110852 0.04108708
- One of the most important factors 'T4' is significant and the 'DTSH' variable has significant effect on secreting TSH in human body (after F-test, p-value is 2.5e-11)
- 31.31% of total variation of 'TSH' are explained by the explanatory variables
- AIC is 1319.236
- The model is no better compared to the previous one
- There could be a quadratic effect of a variable on response

Fitting a Linear Regression Model with a Quadratic Effect of an Explanatory Variable we are interested

• Taking the square of variable 'T3' and adding the variable in the first model

```
• (Intercept) T3 I(T3^2) T4 DTSH
9.29203649 -2.09795684 0.21577626 -0.21658509 0.09819652
RT3U Diagnosis(Normal) Diagnosis(Hyper)
0.03786722 -7.47929005 -4.12340248
```

- The variables we are interested in 'T3' is significant and has a quadratic effect in the model (after F-test, p-value is 0.0121)
- Surprisingly, 47.48% of total variation is explained by this model
- AIC value is 1267.519 (lowest among the 3 models)

What happens if we transform the response variable?

Let's make the response variable as 'log(TSH)'

```
• (Intercept) T3 T4 DTSH RT3U

1.265034568 0.008258517 -0.012768191 0.018345368 0.004640523

Diagnosis(Normal) Diagnosis(Hyper)

-1.517019063 -1.655956542
```

- We cannot conclude that 'T3' and 'T4' are associated with 'TSH'
- But 63.57% of total variation is explained by the explanatory variables in this model

Model Selection

• As we are interested in the most important factors ('T3' and 'T4') for the secretion of 'TSH' in human body, the final model based on 'AIC' criteria is –

 $\mathsf{TSH} = 9.290 - \mathbf{2.098T3} + \mathbf{0.216T3} \mathbf{73^2} - 0.216\mathsf{T4} + 0.098\mathsf{DTSH} + 0.038\mathsf{RT3U} - \mathbf{7.489Diag(Normal)} \\ - 4.123\mathsf{Diag(Hyper)}$

Checking Outliers and High Leverage Points

 After t-test, we found 3 outliers in the data –

•	Data Point	TSH Leve	
	195	56.4	
	204	32.6	
	208	41.0	

High Leverage Points (111 151 154
156 157 159 167 170 172 175 177 179
187 188 189 193 196 199 201 210 213 215)

Checking Influential Points

• After calculating Cook's distance, we found no influential points in the dataset

• Output from R - "named integer(0)"

Fitting a Robust Regression Model

- As there exists outliers and high leverage points, a robust regression model could give us another set of robust estimates along with confidence intervals –
- Least Absolute Deviation regression output –

	coefficients	lower bd	upper bd
(Intercept)	8.28645	6.95726	10.80928
Т3	-0.27032	- 0.44077	-0.00495
I(T3^2)	0.02531	0.00454	0.04587
T4	-0.00716	-0.03581	0.02989
DTSH	0.05551	0.01380	0.07858
RT3U	0.00396	-0.00608	0.00796
Diag(Normal)	-7.19148	-10.97760	-3.99431
Diag(Hyper)	-6.94718	-8.95336	-6.18947

Results from Least Absolute Deviation Regression

- All the explanatory variables' coefficients are lying within the lower bound and upper bound range.
- The variables we're interested in 'T3' and 'T4' are significant and are associated with 'TSH'
- Secretion of 'Triiodothyronine' and 'Thyroxine' are associated with secretion of 'Thyroid Stimulating Hormone' in human body

Fitting Ridge or Lasso Regression?

• Sample size is not greater than the number of explanatory variables, it's not wise to fit a Lasso or Ridge regression

Exhaustive Search

 After exhaustive searching to find which variables are best to run the regression model and taking the BIC criteria, we found 2 variables and the coefficients are –

(Intercept) DiagnosisNormal DiagnosisHyper 12.92000 -11.60333 -11.94571

Both are categories of the variable 'Diagnosis'

Thank You