(三) 成果主要研究内容

润"层次性育人靶向,助力高素质人才培养。

1. 目标共定

联合办学委员会围绕"教育链、产业链、创新链、人才链"四链融合导向,共同制定人才培养方案和核心课程教学目标。《药学前沿》要求涵盖专业与产业认知、思政与职业素养、实践与国际视野内容(图 1),达成"认知习得-学以致用-价值浸

图1 课程整体设计

2. 团队共组

通过校企"双聘双用"机制,构建起涵盖研发、生产、临床、注册、流通等药品全生命周期的结构化教学团队。汇聚双方高层次人才、教学名师、企业专家、骨干教师、青年教师等,形成产教融合、领域广泛、学科交叉、能力互补的育人团队。学校教师通过课程深入企业、参与项目、促进成果转化,符合职业发展需求;企业将"课程共建"等产教融合工作纳入考核与晋升评价体系,激励企业专家角色从"友情客串"转变

为"主角担当",团队实现从"物理相加"到"化学相融",形成双向吸引与奔赴的稳定合作格局。

3. 方案共商

(1) 思政引领

以"健康中国"使命和"医药职业道德"为核心,融入社会主义核心价值观及"力行、克难、守正、创新"等行业精神元素,高校和企业同要求,涵盖线上线下、课堂项目等全场域,研发案例强调"创新报国",实践项目突出"质量关乎生命",实现知识、能力与价值塑造的有机统一(图2)。

序号	教学模块	教学专题	思政元素融入课程情况
1	药物合成 前沿	❖ 新药设计与合成❖ AI 辅助药物设计❖ 药物合成工艺优化	D 通过临床试验设计,引导学生帮助学生树立"敢于攻坚克难"的精神品质 凸显我国技术突破的"守正"路径,强化学生科技自立自强的责任感 通过药物合成工艺优化,强化安全意识和环保理念
2	药物评价 前沿	❖ 抗肿瘤药物❖ 精准医学	D 通过临床试验设计,引导学生关注 社会需求和患者福祉 D 增加"新药研发伦理"讨论,强调科 研伦理和社会责任,培养学生创新 精神
3	药物分析 前沿	❖ 药物体内分析❖ 代谢组学❖ 逆向药物研发思路	D 培养学生的创新精神和严谨作风 强调数据科学在药物研发中的应 用,提升学生的科学素养和信息化能力 培养学生的市场意识和社会责任感
4	药物递送 前沿	◆ 智能释药技术◆ 释药系统创新	D 融入"力行"精神,强调技术转化中跨学科协作的实践路径,培养学生的团队协作能力和综合素质 通过案例分析,增强理论研究的能力,引导学生关注精准医疗的发展趋势和社会价值
5	生物制药 前沿	◆ 基因治疗和细胞 疗法◆ 合成生物学	D 生物制药直接关系国民健康、公共 卫生安全和国家战略安全,树立学 生从"卡脖子"到"自主可控"的使命 担当 D 培养学生严谨求实的实验态度、攻 坚克难的坚韧意志、追求真理的批 判思维以及原始创新的突破精神
6	绿叶制药 产业前沿	❖ 产业项目❖ 平台实践	D 展示产教融合在新药研发中的重要作用,强化"研制老百姓用得起的创新药"的理念;引导学生关注国家医药产业发展的战略需求; D 通过长效缓释制剂的开发,培养学生的工程思维和产业化意识。

图2 思政元素融入课程代表性内容

(2) 双语授课

综合考虑药学前沿知识掌握的需要,课程采用双语授课,除学术前沿讲座 PPT 之外,还引入 FDA/NMPA 新药批件、国际顶尖论文及"微球制剂国际化注册"等案例作为英语教学资源,

帮助学生融入国际学术语境,同步提升专业素养、文献阅读与国际交流能力(图3)。

图3 英文授课PPT节选

(3) 线上课程

针对学缘结构差异,设立"药学综合知识"线上专题。学生通过视频自学,结合弹题测验、章节和期末测试巩固自查,并在讨论区开展师生互动答疑,形成"学习-检验-讨论-内化"完整线上学习闭环。平台自动跟踪学习进度与反馈,生成学情画像,支持教师识别共性难点与个体差异,为线下精准教学和

分层辅导提供依据。线上课程运行五年,累计 438 名学生参与, 互动超 8000 人次(图 4)。

图 4 线上学习数据统计

(4) 线下课程

① 学术前沿

课程设置药物合成、药物评价、药物分析、药物递送和生物制药专题,选取学科领域内前沿理论更新、技术突破、药品全生命周期动态发展、全球医药产业形式变化等内容,构建"基础-前沿-产业"贯通的课程体系(以两个学年为例,图5、6)。

专题	授课教师	授课主题	动态调整
药物合成沿	毕 毅	How to Become a Pharmaceutical Graduate Student	
	芦 静 (双师型教师)	Applications of Computer-Aided Drug Design in Drug Research and Development	
	祝艳平	R&D Progress of Small Molecule Inhibitors for Novel Targets, such as the Emergence and Impact of TYK2 Inhibitor Sotyktu	2023 年, TYK2 抑制剂 Sotyktu 获批用于治疗银屑病。 因此, 动态调整该授课内容。
	殷齐坤	Advances in Chemical Biology: Decoding Nucleic Acid-Protein Interactions	
	于 昕 (双师型教师)	Pharmacological Mechanisms of Antipsychotic-Induced Metabolic Syndrome and Strategies for Individualized Prevention and Treatment	
	王天	The Prophylaxis and Treatment for Intracerebral Hemorrhage	
药物 分析 前沿	王 琳 (双师型教师)	You are What You Eat: Co- metabolism Between Host and Gut Glora	
	赵 妍	Machine Learning-Driven Data Analysis: Advancing Predictive Modeling in Biomedicine	
药物 递沿	张蓬	Clinical Application and Potential of Novel Drug Delivery Systems, Focusing on the New Breakthrough of Ocular Bispecific Antibody Vabysmo Injection	2023 年,眼部双特 异性抗体法瑞西单 抗获批上市。因 此,动态调整该授 课内容。
	王爱萍 (双师型教师)	Intelligent Drug Delivery Systems: AI-Enabled Precision Medicine and Responsive Nanotechnology	
生物具制治	赵燕燕 (双师型教师)	Molecular Design Strategies of Bispecific Antibodies (BsAb) and Clinical Translation Difficulties in Solid Tumor Therapy	
	杜广营 (双师型教师)	Overseas Approval of the First Domestic CAR-T Cell Therapy and New Opportunities for Industry Development	2022 年,首款国产 CAR-T 细胞疗法在 海外获批。因此, 动态调整该授课内 容。

图5 2022-2023学年线下学术前沿内容

专题	授课教师	授课主题	动态调整
药合 前	毕 毅	How to Become a Pharmaceutical Graduate Student	
	芦 静 (双师型教师)	Application of AI-driven Drug Design in Novel Target Discovery and Drug Optimization	
	祝艳平	R&D Progress of Small Molecule Inhibitors for Novel Targets, such as the Emergence and Impact of TYK2 Inhibitor Sotyktu	
药 评 前	殷齐坤	Advances in Chemical Biology: Decoding Nucleic Acid-Protein Interactions	
	于 昕 (双师型教师)	Pharmacological Mechanisms of Antipsychotic-Induced Metabolic Syndrome and Strategies for Individualized Prevention and Treatment	
	张竹红	Achievements of Re-evaluation on Drug Efficacy and Safety Based on Real-World Data (Introduction to FDA governance, organization and responsibilities)	2024 年,FDA 发布 了真实世界证据在 新药研发和审评中 的应用新指南。因 此,动态调整该授 课内容。
药物 分析 前沿	王 琳 (双师型教师)	Innovation of Analytical Methods and Improvement of Quality Control System to Address the Complex Structure of Innovative Drugs	2024年,国家卫健 委发布了药品临床 综合评价质量控制 指南。因此,动态 调整该授课内容。
	赵 妍	Machine Learning-Driven Data Analysis: Advancing Predictive Modeling in Biomedicine	
药物 递 前沿	刘沙	R&D and Clinical Transformation Trend of High-Efficiency and Low- Toxicity Drug Delivery Systems Driven by Nanotechnology	2024年,纳米技术 推动的高效低毒制 剂研发取得重大进 展。因此,动态调 整该授课内容。
	王爱萍 (双师型教师)	Intelligent Drug Delivery Systems: AI-Enabled Precision Medicine and Responsive Nanotechnology	
生物制药 前沿	赵燕燕 (双师型教师)	Molecular Design Strategies of Bispecific Antibodies (BsAb) and Clinical Translation Difficulties in Solid Tumor Therapy	
	杜广营 (双师型教师)	Overseas Approval of the First Domestic CAR-T Cell Therapy and New Opportunities for Industry Development	

②产业前沿

企业项目全部源自自身"卡脖子"问题,直接作为课程项目提供给研究生进行实战,覆盖生产工艺优化、临床数据分析、药物稳定性及新机制发现等药品生命全周期。通过"校企共研"模式,学生在校企双方导师指导下运用理论知识解决实际问题,全面提升技术创新、成果转化及跨学科应用能力,实现学用结合。

(5) 专业拓展

通过组织北京大学和清华大学专家进行的"两校名师讲堂"、国内外高校和科研院所高层次专家进行的"三元名家论坛"进一步拓展研究生学术前沿视野。依据企业项目进展和研究生学术兴趣,可将课程项目链接至专业实践和毕业论文课题研究的培养环节,更进一步推进项目实施,深入培养解决产业复杂问题的能力。

(6) 动态调整

每年课程开设前,团队根据当年药学学术前沿动态、产业发展更新、国内外上市新药等变化,讨论更新学术前沿和产业前沿板块对应的部分内容,使得课程内容始终满足"前沿"要求(变化内容举例,图5、6)。

4. 场域共享

绿叶制药"先进药物递释系统"全国重点实验室、研发中心、生产基地,烟台大学"分子药理和药物评价"教育部重点实验室、卓越工程师学院、现代产业学院等平台,全部融合共享用于开展情景化、项目化实践教学(图7)。学生通过实地参

观了解药品全生命周期流程,通过专题讲解理解核心技术与价值,通过实际操作掌握高端仪器应用,并通过协同攻关产业化关键问题,拓展实践深度与广度。绿叶制药2020年获批"全国药学专业学位研究生培养示范基地"和"山东省产教融合研究生联合培养示范基地",获得高度评价和认可。

图7 绿叶制药情景式项目化实践教学

5. 案例共建

高校教师和企业教师共同讨论精选国内外药物发展史上经典案例,提供行业标杆;将绿叶制药真实项目提炼为核心教学案例,再现研发关键决策、技术难点与解决方案;由项目负责人或实操人亲身讲授,确保教学内容与产业前沿同步,有效支撑复杂工程能力培养。针对案例中的关键争议或技术瓶颈,组织分论证,通过研讨深化理解,培养技术沟通、团队协作与批判性思维。开展PBL项目式学习,引导学生以小组完成"具有产业化前景的创新制剂方案"等综合任务,全面锻炼创新整合与项目执行能力。"基于QbD的石杉碱甲缓释微球处方工艺开发"和"药品晶型研究与质量控制"入选全国药学专业学位教

学案例库(图8)。

企业案例及 实践项目	授课人	内容	授课人职务
	张雪梅	Innovations in CNS Drug Development: Case Study of RYKINDO®	微球制剂平台总监
绿叶制药	邢立娟	cGMP-Compliant Production of Microsphere Products	制造部高级总监
新药研发典型案例	韩 英	Navigating Regulatory Challenges: Lessons Learned from International Approvals	临床研究中心 质控部经理
	由春娜	The Pathway to Dual Submissions of Innovative Formulations in China and the U.S.	法规与注册部 副总裁
hore and all his Man	张雪梅	研发中心实验室 (药化、制剂、分析、药理)实践	微球制剂平台总监
绿叶制药 研发平台	范艳丽	新制剂中试制剂车间 (注射剂、固体制剂) 实践	制造部总监
	孙丽芳	知识产权部实践	知识产权部副总裁
实践	彭芳	药品中美双报实践	法规与注册部高级 经理
	郭树仁	创新一类新药的临床研究实践	临床医学部副总裁

图 8 企业实践和案例

6. 项目共研

依托绿叶制药全国重点实验室、研发中心、示范基地等平台,在企业"真场景"中,教师学生共同参与企业"真项目"。从靶点发现、制剂开发到工艺优化、质量控制等药品全生命周期关键环节,企业将当前面临的"卡脖子"技术问题转化为课程实战项目,师生共同运用所学专业知识分析并尝试解决"真难题",研究成果直接应用于企业,加速项目推进。师生共同参与的微球制剂产业化、创新化合物筛选、临床前药效评价等项目,不仅有效提升了学生的创新能力和解决复杂产业问题能力,也为企业多个一类、二类新药的研发与上市提供了关键技术支撑,真正实现了"研以致用、学研互促"的深度融合。