Finding High Value Canola Farmland

Agricultural Insights from Saskatchewan and Manitoba

By Clinton Boyda Oct 2023

Canola prices, Alberta

\$ per metric tonne (includes rapeseed)

Agricultural Insights

Objective:

Leverage Canola public stock price to calculate the value from yield data.

Value = Crop Yield x Stock Price

Scope:

- 397 Rural Municipalities (RM)
- Year 2010-2022 from SK and MB

Problem Statement

Let's go shopping for the best Canola Valued Farmland!

- Where is the Top 10 Canola Yield RM locations?
- Where is the Top 10 Canola Valued RM locations?
- Are there any trends or discrepancies between yield and value?

Data Collection & Preprocessing

- Crop Yield Data for 397 RM's from Provincial Data Sources
- Geospatial Data found for 478 RMs but 4 still missing from Yield list
- Canola Future Stock Price from Investing.com limited to 2010-2022
- Transformed Yield to Bushels, Cleaned GIS RM names,
 Converted \$ per Bushel
- Scaled Yield and Value for GIS Comparison as % Diff

Quality of our Yield and Value Data

Correlation Matrix shows several positive correlations

Relationship between Canola Crop Yields and Stock Price Over Time

Explore Choropleth Maps by RM and Year for Canola Crop Yields

Canola Yield in 2010

Canola Yield in 2013

Canola Yield in 2016

Canola Yield in 2019

Canola Yield in 2022

Canola Yield in 2011

Canola Yield in 2014

Canola Yield in 2017

Canola Yield in 2020

Canola Yield in 2012

Canola Yield in 2015

Canola Yield in 2018

Canola Yield in 2021

Explore Choropleth Maps by RM and Year for Canola Crop Values

Canola Value in 2010

Canola Value in 2013

Canola Value in 2016

Canola Value in 2019

Canola Value in 2022

Canola Value in 2011

Canola Value in 2014

Canola Value in 2017

Canola Value in 2020

Canola Value in 2012

Canola Value in 2015

Canola Value in 2018

Canola Value in 2021

Percentage Difference of Value vs Yield over Time Analysis

	min	max	std mean		median	count	
Year							
2010	64.7	110.6	4.999063	69.533073	68.3	384	
2011	49.9	70.2	2.496016	52.665183	51.8	382	
2012	39.7	49.9	1.311535	41.697668	41.4	386	
2013	49.1	56.2	0.848976	50.414323	50.3	384	
2014	92.7	137.3	4.116000	97.850914	97.2	383	
2015	77.7	94.7	1.975660	81.105469	80.6	384	
2016	73.8	90.2	1.354939	75.827105	75.7	380	
2017	64.5	151.4	7.323034	68.511719	66.9	384	
2018	67.0	187.9	6.481849	69.755352	68.8	383	
2019	85.2	131.4	3.412380	88.137337	87.3	383	
2020	69.4	85.0	1.996041	71.592167	71.0	383	
2021	-2.4	-0.4	0.238938	-2.233159	-2.3	383	
2022	-4.8	0.0	0.244949	-4.787500	-4.8	384	

- Range: Lowest in 2021 (-2-0.4%) to Highest in 2014 (93-137%) and 2018 (67-188%) indicates significant fluctuations
- STD: Greatest variability 2014 & 2018, also Best aka highest Mean vs 21/22
- Mean~Median mostly similar suggesting not heavily skewed except '21 & '22 where yield was lower than its value
- 2017 stands out as highest STD, explore?

Percentage Difference of Value vs Yield over Time

Canola Scaled % Diff in 2010

Canola Scaled % Diff in 2013

Canola Scaled % Diff in 2016

Canola Scaled % Diff in 2019

Canola Scaled % Diff in 2022

Canola Scaled % Diff in 2011

Canola Scaled % Diff in 2014

Canola Scaled % Diff in 2017

Highest STD Canola Scaled % Diff in 2020

Canola Scaled % Diff in 2012

Canola Scaled % Diff in 2015

Canola Scaled % Diff in 2018

Canola Scaled % Diff in 2021

LOW

Histographs of % Difference between Value and Yield

Interactive Python

Choropleth of Selectable Column / Scheme / k

Column? diff_percent_yield_value

Width: 10

Height: 8

Scheme:

k: automatic

V

- Details on 3 negative RMs (for future analysis?):
- For RM 46, the Canola yield had a mean of 16.79 with a standard deviation of 11.77, while the Value had a mean of 224.02 with a standard deviation of 113.11. The Canola was scaled to 0.00, and the Value was scaled to 0.04. The Diff %is -100.00, indicating a decrease.
- For RM REYNOLDS, the Canola yield had a mean of 36.55 with a standard deviation of 11.19, while the Value had a mean of 629.82 with a standard deviation of 313.03. The Canola was scaled to 0.71, and the Value was scaled to 1.00. The Diff %is -29.20, indicating a decrease.
- For RM STUARTBURN, the Canola yield had a mean of 29.34 with a standard deviation of 13.38, while the Value had a mean of 490.84 with a standard deviation of 377.04. The Canola was scaled to 0.45, and the Value was scaled to 0.67. The Diff %is -32.80, indicating a decrease.

- 100

- 75

- 50

25

. 0

-25

-50

- -75

Top 10 Interactive Map

Canola RM's by YIELD

	271	44.572	9.911	566.433	191.948	2
HILLSBURG-ROB	LIN-SHELL RIVER	44.524	8.866	561.917	171.380	3
	LOUISE	44.277	6.704	554.761	111.715	4
SWA	AN VALLEY WEST	43.854	10.263	553.334	170.970	5
44.5 44.7	ROLAND	43.576	9.880	542.053	155.549	6
Manitoba	303	43.518	9.632	550.628	177.417	7
1 1 1 E	439	43.382	9.244	535.141	109.814	8
7	MONTCALM	43.030	6.444	544.912	141.354	9

42.760

Canola_mean

44.687

RHINELAND

DUFFERIN

Canola_std

7.208

8.629

Value_mean

564.825

535.205

Value_std

148.398

143.565

10

Top 10 Interactive Map

Canola RM's by VALUE

RM	Canola_mean	Canola_std	Value_mean	Value_std	Rank
REYNOLDS	36.552	11.190	629.820	313.026	1
271	44.572	9.911	566.433	191.948	2
RHINELAND	44.687	7.208	564.825	148.398	3
HILLSBURG-ROBLIN-SHELL RIVER	44.524	8.866	561.917	171.380	4
LOUISE	44.277	6.704	554.761	111.715	5
SWAN VALLEY WEST	43.854	10.263	553.334	170.970	6
Manitoba 303	43.518	9.632	550.628	177.417	7
MONTCALM	43.030	6.444	544.912	141.354	8

43.576

42.515

9.880

8.314

542.053

540.992

155.549

179.664

10

ROLAND

493

0.0

Number of Clusters (k)

Using Elbow Method: Selecting k=2 and k=4

K-Means Clustering with k=2

K-Means Clustering with k=2

K-Means Clustering of k=2 and k=4

	k2 (0)	k2 (1)	k4 (0)	k4 (1)	k4 (2)	k4 (3)
Metrics						
Count	3472.00	1511	1219	1388	2118	258.00
Min Value	37.09	475.85	-2.774809	0.257726	-0.636971	1.80
Max Value	475.56	1102.97	-0.637957	1.786917	0.257093	4.73
Mean Value	363.19	587.21186	-1.102101	0.685314	-0.168007	2.90
Median Value	375.65	534.16	-1.000625	0.598634	-0.149166	2.86
Std Dev Value	79.34	130.702346	0.390807	0.352736	0.257825	0.69
Skewness	-0.80	1.713088	-1.27524	1.078801	-0.137471	0.29
Kurtosis	0.35	2.10047	1.435909	0.544665	-1.158503	-0.69
Silhouette Score	0.52					0.52

Overall, both k=2 and k=4 offer valuable but different perspectives on the data segmentation. The choice between them may depend on the specific needs of further analysis or domain-specific interpretation.

Results

- ► Interactive Python Widget
- ► HTML Interactive Files for Exploration
- Visualizations:
 - Geospatial Choropleths
 - ► Time Series Line Charts
 - Comparative Histographs
- Provide in-depth Canola yield vs value

Conclusions

- After Identifying the Yearly trends a Percentage Difference was used to highlight which years showed variability.
- Trends found in Canola over time
- Correlation was demonstrated between Yield and Value
- Next Steps?
 - Explore more regional specific pricing for value calculations vs public stock price.
 - Consider other correlations including real estate prices and even municipal tax rates.