

XRv9k on AWS High Availability (HA) Solution

Akshat Sharma, TME May 2021

AWS Underlay 5G Deployment with vRouters

vRouter HA deployments

vRouter HA In Single AZ

CISCO

vRouter HA Across Two AZ

Why don't we just use HSRP?

Problems using HSRP on AWS

- AWS as an underlay imposes some limitations on the redundancy design
- AWS underlay blocks multicast/broadcast packets
- HSRP/VRRP hellos are sent to multicast addresses – blocked
- Further HSRP depends on the use of gratuitous ARP packets that are dropped as well.
- Active/Standby Selection and Failover Notifications therefore require some tricks on the vRouter and AWS level to accomplish sub-second failovers

AWS vRouter HA Redundancy Design Principles

Components of the Redundancy Design

- Regular BFD session (Single-hop BFD for single AZ or Multi-Hop for Diff AZ with local routing in VPC)
- BFDoGRE session (Single-Hop over GRE for both AZ deployments)

adiada CISCO

Process on vRouter to Listen to BFD events, and trigger actions

- On-box Process listens to BFD events
- Maintains Active/Standby State in relation to the Peer
- Calls AWS API to relevant action

AWS API Interface to affect

1

Peering Connection and protocol to Select Active/Standby

2

Process on vRouter to Listen to BFD events, and trigger actions

IOS-XR SL-API to Setup BFD and Monitor it

IOS-XR: API-Driven, Layered SW Architecture

Service Layer API Architecture

CLI, Yang Models, Streaming Telemetry

Manageability Layer

Service Layer API

Network Infrastructure Layer (Service Layer)

Service-Layer APIs bypass SysDB giving higher performance

Max Performance with OnBox SL-API BFD-HA App

- XRv9000 Container Based AppHosting
 - cisco

- Using Xrv9000 Application-hosting capabilities, an SL-API BFD client will be spun up in a Docker container on the vRouter itself.
- BFD sessions are normally associated with a Routing Protocol "Client" like BGP, OSPF, ISIS etc.
- 3) With Service-layer API- "Service-Layer" acts as client for BFD allowing us to add/modify BFD sessions directly WITHOUT ANY IOS-XR CONFIG. BFD session state is transient/ephemeral - tied to the client.
- 4) Real-time BFD events are then received over gRPC, allowing the SLAPI client to react to Peer-router unreachable/down events

Peering Connection and protocol to Select Active/Standby

Process on vRouter to Listen to BFD events, and trigger actions

Deploying the OnBox BFD-HA App

BFD-HA App Deployment Model: Single AZ, Single-Hop BFD

BFD-HA App Deployment Model: Different AZ

BFD-HA App Deployment Model: using BFDoGRE (Future)

AWS EC2 Networking API to affect failover at the underlay

Triggering Failover

Single AZ: BFD HA App detects BFD event and triggers Secondary IP reassignment

Different AZ: BFD HA App detects BFD event and triggers Route-Table change

BFD Sessions – where do they run?

BFD session 1:

- Running over the Private-HA subnet
- Useful to detect complete failure of the active router
- Cannot be used to detect flap/failure of the Ingress interface on Active (without router failure)
- Any failover measurements with this session (using intf shut/no-shut) =

Time taken for AWS underlay to switch traffic when secondary IP is updated.

BFD session 2:

- Running over the Ingress Subnet (where secondary-IPs are assigned)
- Useful to detect complete failure of the active router
- Also useful to detect ingress interface failure.
- Any failover measurements with this session (using intf shut/no-shut) =

Time taken for BFD Event to be received by App

Time taken for App to invoke AWS API via endpoint service

Time taken for AWS underlay to switch traffic when secondary IP is updated.

Accessing AWS API from onBox HA App

Using AWS private-link (Interface Endpoint Service)

- Private Interface Endpoint Service is created so that routers can access EC2 API without internet access
- The endpoint URL utilized by the router HA App is obtained from the interface endpoint Service configuration
- Sample boto3 resource creation for interface endpoint service:

```
resource = boto3.resource(
    service name='ec2',
   endpoint url='https://vpce-0786bfdf8aad8840c-
vacmlrog-us-west-2a.ec2.us-west-2.vpce.amazonaws.com',
    aws_access_key_id=ACCESS_KEY,
    aws_secret_access_key=SECRET_KEY,
    aws session token=SESSION TOKEN,
    region name=REGION NAME
```


Using AWS private-link (Interface Endpoint Service)

Authentication:

- IAM role attached to router instances.
- App downloads the temporary credentials using metadata URLs

```
headers = {
    'X-aws-ec2-metadata-token': response.text,
response = requests.get('http://169.254.169.254/latest/meta-
data/iam/security-credentials/ec2access', headers=headers)
ACCESS KEY=response.json()["AccessKeyId"]
SECRET KEY=response.ison()["SecretAccessKev"]
SESSION TOKEN=response.json()["Token"]
```


Additional Considerations

- The BFD-HA app will accept input parameters associated with the API call (for eg. instance-id for secondary IP change in AWS OR route-table ID for next-hop change)
- The BFD-HA App will also accept configuration (in JSON format) to specify the priority of each router in the HA setup
- Pre-emption might be undesirable so the system will not automatically revert to prevent additional data-loss during such a revert
- An API will be provided for the BFD-HA app to trigger a revert if needed.

Initial Test Results using Python HA App

est Results:								
	Iteration	HA trigger Interface (shutdown)	Packet Size (bytes)	Python SLAPI-AWS client (Draft)			Ping Interval	Failover Time
				BFD event (BFD configured with interval=50ms and multiplier=3) (ms)	AWS EC2 call completion (ms)	Packet Loss (Packets)	(ms)	(ms)
		Private HA Interface	64	152	597	75	10	750
	1	TenGigE0/0/0/1	800	99	549	8	10	80
		Private HA Interface	64	147	519	14	10	140
	2	TenGigE0/0/0/1	800	130	700	22	10	220
	3	Private HA Interface	64	152	545	58	10	580
		TenGigE0/0/0/1	800	177	587	40	10	400
		Private HA Interface	64	128	571	45	10	450
	4	TenGigE0/0/0/1	800	137	620	34	10	340
		0-1,-1,-1	000	157	020	51	10	540
	5	Private HA Interface	64	146	667	14	10	140
	5	TenGigE0/0/0/1	800	174	788	50	10	500
		Private HA Interface	64	119	550	16	10	160
	6	TenGigE0/0/0/1	800	117	598	60	10	600
			Average>	139.8333333	607.5833333	36.33333333		363.3333333
	7	Downstream (standby IP associated)	64	171	627	98	10	980
	,	TenGigE0/0/0/2	800	105	653	98	10	980
	8	Downstream (standby IP associated)	64	143	633	117	10	1170
		TenGigE0/0/0/2	800	109	620	132	10	1320
		Downstream (standby IP associated)	64	120	544	117	10	1170
	9		04	120	544	117	10	1170
		TenGigE0/0/0/2	800	156	674	89	10	890
	10	Downstream (standby IP associated)	64	168	634	73	10	730
	10	TenGigE0/0/0/2	800	143	632	72	10	720
			000	143	032	72	10	720
		Downstream						
	- 11	(standby IP associated)	64	161	572	113	10	1130
		TenGig0/0/0/2	800	125	491	60	10	600
		Dawnstream						
	12	Downstream (standby IP associated)	64	118	594	64	10	640
		TenGig0/0/0/2	800	118	605	96	10	960
			000	220	005	50	20	500
			Average>	136.4166667	606.5833333	94.08333333		940.833333

BFD Events are detected by App in about 139ms (TimeA)

Call to AWS API via private endpoint service takes about 600ms (TimeB)

Time taken by AWS underlay to failover traffic (post API call): Approx 350ms (TimeC) – very volatile.

Average HA failover time (Measured via PING traffic drop: average 940ms

HA failover time comes out to be approximately TimeA+TimeB+TimeC

cisco