

Année 2018-2019 Logique mathématique Durée: 02 h

Examen 1

- 1. Donner la définition par induction du nombre d'occurrences de constantes dans une formule.
- 2. Soit σ une substitution. Donner la définition par induction de $F\sigma$ l'application de la substitution σ sur la formule F.
- 3. Démontrer par induction la propriété de substitution suivante: Soit A une formule, v une assignation et σ une substitution.

On a: $[A\sigma]_v = [A]_w$ où pour toute variable $x, w(x) = [\sigma(x)]_v$.

$$\mathbf{F} = (\mathbf{x} \lor \mathbf{y} \Rightarrow \mathbf{z} \lor \mathbf{w}) \Rightarrow (\mathbf{x} \Rightarrow \mathbf{z}) \lor (\mathbf{y} \Rightarrow \mathbf{w}).$$

- 1. Donner la forme complètement parenthésée de F.
- 2. Donner l'arbre de structure de F.
- 3. Transformer la formule F en une somme de monômes(FND).
- 4. La formule F est-elle satisfaisable? La formule F est-elle valide? Justifier.

Soient Γ et Δ deux ensembles de formules et A, B et C des formules. Montrer ou infirmer les assertions suivantes :

- 1. Si $\Gamma \cup \Delta \models C$ alors $\Gamma \models C$ ou $\Delta \models C$.
- 2. Si $\Gamma \vDash A$ et $\Delta \vDash B$ et $\vDash (A \land B) \Rightarrow C$ alors $\Gamma \cup \Delta \vDash C$.

1. Transformer $\neg F$ en forme normale conjonctive où

$$\mathbf{F} = (\mathbf{x} \Rightarrow \neg (\mathbf{y} \wedge \mathbf{z})) \wedge (\mathbf{w} \Rightarrow \mathbf{x} \vee \neg \mathbf{z}) \Rightarrow \mathbf{w} \wedge \mathbf{z} \Rightarrow \mathbf{x} \wedge \neg \mathbf{y}$$

Attention: Vous n'avez pas le droit de distribuer le produit par rapport à la somme.

2. En utilisant l'arbre sémantique, étudier la validité de F.

- 3. En utilisant la résolution retrouver le résultat sur la validité de F.
- **Exercice** 5. [3 pts] On rappelle que le système $\{\neg, \land, \lor\}$ est complet. On définit les connecteurs ternaires * et α par

$$*(x, y, z) \equiv x\bar{y} + \bar{z} \ et \ \alpha(x, y, z) \equiv x\bar{y} + z.$$

- 1. Le système $\{\alpha\}$ est-il complet? Montrer le.
- 2. Le système {*} est-il complet? Montrer le.

Exercice [6]. [3 pts] Considérer le problème de coloriage d'un graphe appelé PCG et décrit comme suit : Instance : un graphe G = (S, A) et un entier k positif. S et A représentent respectivement l'ensemble des sommets et l'ensemble des arêtes du graphe. n est le nombre de sommets et m, le nombre d'arêtes. Question : Peut-on colorier les sommets de G avec k couleurs différentes telles que deux sommets adjacents ne doivent pas avoir la même couleur ?

Formaliser en calcul propositionnel le problème des k couleurs.

Bon courage

Le barème est donné à titre indicatif