МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Экстремальное число графа $\mathbf{G}(\mathbf{X},\mathbf{U})$ – оценка решения некоторой оптимизационной задачи для данного графа (максимума или минимума целевой функции задачи).

Перечень основных экстремальных чисел графа

No	Оптимизационная задача на графах	Экстремальное число графа	Обозначение
1	Поиск максимального числа независимых циклов в графе	Цикломатическое число	$\sigma(G)$
2	Поиск наибольшего пустого подграфа в графе	Число внутренней устойчивости	$lpha_0(G)$
3	Поиск наибольшего полного подграфа в графе	Кликовое число	$oldsymbol{arphi}(G)$
4	Минимальная раскраска графа	Хроматическое число	$\chi(G)$
5	Минимальное вершинное покрытие графа	Число внешней устойчивости	$oldsymbol{eta}_0(G)$
6	Поиск в графе максимального количества независимых ребер	Число паросочетания	$lpha_1(G)$
7	Минимальное реберное покрытие графа	Число реберного покрытия	$oldsymbol{eta}_1(G)$

- Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Цикломатическое число графа $\sigma(G)$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k=1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Пусть задан обыкновенный n, m- граф G(X,U) .

Цикломатическое число графа $\sigma(G)$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k=1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Удалим из него все вершины вместе с инцидентными им ребрами:

$$orall x\in X: oldsymbol{
ho}(x)=1$$
 (для неографа), $oldsymbol{
ho}^+(x)=1$ и (или) $oldsymbol{
ho}^-(x)=1$ (для орграфа).

Цикломатическое число графа $\sigma(G)$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k = 1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Получим новый n^*, m^*- граф $G^*(X^*, U^*)$, причем $\sigma(G)=\sigma(G^*)$, т.к. удаленные ребра не входят ни в один цикл n,m- графаG(X,U).

Цикломатическое число графа $\sigma(\mathbf{G})$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k=1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Затем построим в графе $G^*(X^*,U^*)$ его остовное дерево – $n^*,(n^*-1)$ —граф T^* .

Цикломатическое число графа $\sigma(\mathbf{G})$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k=1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Известно, что $\sigma(T^*)=0$. Поэтому каждое ребро графа G^* , не вошедшее в T^* , образует в нем простой цикл (свойство деревьев №4). Причем эти циклы являются независимыми (наличие одного ребра, входящего только в этот цикл).

Цикломатическое число графа $\sigma(\mathbf{G})$ указывает на количество ребер, которое надо удалить из графа, чтобы получить его остовное дерево (остовный лес).

$$\sigma(G) = m - n + k$$

Для связного графа: k=1

Теорема об основном свойстве цикломатического числа графа.

Цикломатическое число графа $\sigma(G)$ определяет максимальное количество независимых циклов в нем.

Доказательство теоремы

Известно, что $\sigma(T^*)=0$. Поэтому каждое ребро графа G^* , не вошедшее в T^* , образует в нем простой цикл (свойство деревьев №4). Причем эти циклы являются независимыми (наличие одного ребра, входящего только в этот цикл).

- ✓ Понятие экстремального числа графа
- Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Число внутренней устойчивости (= число независимости, = число неплотности) графа $lpha_0(\mathbf{G})$ — это максимальное количество вершин в графе, не смежных между собой. $lpha_0(G)=[1,n]$, причем $lpha_0(G)=1$ для полного графа, а $lpha_0(G)=n$ для пустого графа.

Внутренне устойчивым множеством (ВУМ) в графе G(X,U) называется такое подмножество вершин $F\subseteq X$, для которого выполняется следующее свойство внутренней устойчивости $-\forall x\in F: F\cap \Gamma(x)=\emptyset$. Каждое ВУМ порождает в графе G(X,U) пустой подграф.

Максимальное ВУМ – это такое ВУМ, которое нельзя увеличить по мощности за счет других вершин графа без нарушения свойства внутренней устойчивости.

Наибольшее ВУМ – это максимальное ВУМ с наибольшим количеством вершин графа G(X,U); количество вершин в таком ВУМ и определяет $lpha_0(G)$.

№	Максимальное ВУМ
1	$\{x_1, x_3, x_6\}$
2	$\{x_2, x_4, x_5\}$
3	$\{x_1, x_4, x_5, x_6\}$

$$\alpha_0(G) = 4$$

Оценка верхней границы $lpha_0(G)$ для связного остовного графа определяется как:

$$\alpha_0(G) \leq \frac{1}{2} + \sqrt{(n - \frac{1}{2})^2 - 2m}$$

$$\frac{1}{2} + \sqrt{(6 - \frac{1}{2})^2 - 10} = \frac{1}{2} + \sqrt{20,25} \approx 5$$

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Кликовое число (=число зависимости, = число плотности) графа $\varphi(\mathbf{G})$ – это максимальное количество вершин в графе, смежных между собой.

$$arphi(G)=[1,n]$$
, причем $arphi(G)=1$ для пустого графа, а $arphi(G)=n$ для полного графа.

Клика – это максимальный полный подграф (МПП) в графе, т.е. такой полный подграф (ПП), который нельзя расширить за счет других вершин графа без нарушения его полноты.

Наибольший полный подграф (НПП) – это клика графа с наибольшим количеством вершин; количество вершин в НПП и определяет $\phi(G)$.

№	Клика
1	$\{x_3,x_4,x_5\}$
2	$\{x_1, x_2, x_3, x_5\}$

$$\varphi(G) = 4$$

Графом-дополнением скелетного графа ${f G}({f X},{f U})$ называется новый граф $G_1(X,U_1)$, в котором $U_1=U_nackslash U$, где U_n – множество ребер полного графа, построенного на вершинах этого графа.

Для решения задачи поиска наибольшего полного подграфа в графе могут использоваться те же методы, что и для решения задачи поиска наибольших пустых подграфов в графе. Для этого необходимо, например, в методе Магу-Вейсмана в качестве исходных данных использовать граф-дополнение. Тогда пустые подграфы в графе-дополнении будут являться полными подграфами исходного графа.

Графом-дополнением скелетного графа ${f G}({f X},{f U})$ называется новый граф $G_1(X,U_1)$, в котором $U_1=U_nackslash U$, где U_n – множество ребер полного графа, построенного на вершинах этого графа.

Для решения задачи поиска наибольшего полного подграфа в графе могут использоваться те же методы, что и для решения задачи поиска наибольших пустых подграфов в графе. Для этого необходимо, например, в методе Магу-Вейсмана в качестве исходных данных использовать граф-дополнение. Тогда пустые подграфы в графе-дополнении будут являться полными подграфами исходного графа.

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе

Уроматическое число графа

- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Хроматическое число графа $\chi(\mathbf{G})$ — это минимальное количество цветов для вершинной раскраски графа.

Вершинная раскраска графа – это операция, в результате выполнения которой любые две смежные вершины в графе раскрашиваются в разные цвета.

 $\chi(G)=[1,n]$, причем $\chi(G)=1$ для пустого графа, а $\chi(G)=n$ для полного графа.

$$\chi(G) = 3$$

Примечание.

- 1. Для раскраски вершин полного графа требуется n цветов, поэтому $\chi(G)=\rho(x)+1$, где $\rho(x)-$ локальная степень любой вершины полного графа. Тогда для любого связного графа $-\chi(G)\leq \rho^*(x)+1$, где $\rho^*(x)=\max_{i=1}^n \rho(x_i)$.
- 2. Т.к. вершины МВУМ можно раскрасить одним цветом, то между $\chi(G)$ и $\alpha_0(G)$ существует следующая связь: $\chi(G) \, \cdot \, \alpha_0(G) \geq n$. Пусть $|F_i| = n_i$ количество вершин в МВУМ, $i = \overline{1, \chi(G)}$. Очевидно, что $n_i \leq \alpha_0(G)$. Тогда $\chi(G) \, \cdot \, \alpha_0(G) > n$.

$$\alpha_0(G) = 4 \Rightarrow \chi(G) \ge \frac{6}{4}$$
 $\chi(G) = 2$

3. Любое дерево можно раскрасить двумя цветами, поэтому дерево называют бихроматическим графом.

Примечание.

- 1. Для раскраски вершин полного графа требуется n цветов, поэтому $\chi(G)=\rho(x)+1$, где $\rho(x)-$ локальная степень любой вершины полного графа. Тогда для любого связного графа $-\chi(G)\leq \rho^*(x)+1$, где $\rho^*(x)=\max_{i=1}^n \rho(x_i)$.
- 2. Т.к. вершины МВУМ можно раскрасить одним цветом, то между $\chi(G)$ и $\alpha_0(G)$ существует следующая связь: $\chi(G) \, \cdot \, \alpha_0(G) \geq n$. Пусть $|F_i| = n_i$ количество вершин в МВУМ, $i = \overline{1, \chi(G)}$. Очевидно, что $n_i \leq \alpha_0(G)$. Тогда $\chi(G) \, \cdot \, \alpha_0(G) > n$.

$$\alpha_0(G) = 4 \Rightarrow \chi(G) \ge \frac{6}{4}$$
 $\chi(G) = 2$

3. Любое дерево можно раскрасить двумя цветами, поэтому дерево называют бихроматическим графом.

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе

Уроматическое число графа

- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

Число внешней устойчивости (= число вершинного покрытия, = число опоры) графа $eta_0(\mathbf{G})$

– это минимальное количество вершин, образами которых являются все остальные вершины этого графа.

Примечание.

- 1. Графы, содержащие изолированные вершины, не имеют вершинного покрытия.
- 2. Если в графе G(X,U) $\exists x \in X : \rho(x) = n-1$, то $\beta_0(G) = 1$.

Внешне устойчивым множеством (=опорой) графа называется такое множество вершин $R \subseteq X$ со следующим свойством внешней устойчивости $R \cup \Gamma(R) = X$, где $\Gamma(R) = \bigcup_{\forall x \in R} \Gamma(x)$.

Минимальная опора – это такая опора в графе, которую нельзя уменьшить по мощности без нарушения свойства внешней устойчивости.

Наименьшая опора – это минимальная опора в графе с наименьшим количеством вершин; количество вершин в наименьшей опоре и определяет $\beta_0(G)$.

$$\{x_1,x_4\}$$
– наименьшая опора $eta_0(G)=2$

x	$\Gamma(x)$ – образы вершины x
x_1	$\{x_2, x_3, x_5\}$
x_2	$\{x_4\}$
<i>x</i> ₃	$\{x_4\}$
<i>x</i> ₄	$\{x_6\}$
<i>x</i> ₅	$\{x_2\}$
<i>x</i> ₆	$\{x_1\}$

Внешне устойчивым множеством (=опорой) графа называется такое множество вершин $R \subseteq X$ со следующим свойством внешней устойчивости $R \cup \Gamma(R) = X$, где $\Gamma(R) = \bigcup_{\forall x \in R} \Gamma(x)$.

Минимальная опора – это такая опора в графе, которую нельзя уменьшить по мощности без нарушения свойства внешней устойчивости.

Наименьшая опора – это минимальная опора в графе с наименьшим количеством вершин; количество вершин в наименьшей опоре и определяет $\beta_0(G)$.

$$\{x_1,x_4\}$$
– наименьшая опора $eta_0(G)=2$

х	$\Gamma(x)$ – образы вершины x
x_1	$\{x_2, x_3, x_5\}$
x_2	$\{x_4\}$
<i>x</i> ₃	$\{x_4\}$
<i>x</i> ₄	$\{x_6\}$
<i>x</i> ₅	$\{x_2\}$
<i>x</i> ₆	$\{x_1\}$

Наименьшее число клик для вершинного покрытия графа определяет число кликового покрытия $eta_{m{arphi}}(G)$, причем $eta_{m{arphi}}(G) \geq eta_0(G)$.

$$\beta_0(G) = 1$$
 ({ x_3 } и { x_5 } – наименьшие опоры)

$$eta_{m{\phi}}(G)=2\quad (\{x_1,x_2,x_3,x_5\}\, \mathsf{u}\, \{x_3,x_4,x_5\}\,\mathsf{-}\, \mathsf{к}$$
лики для покрытия вершин графа)

Наименьшее число клик для вершинного покрытия графа определяет число кликового покрытия $eta_{m{arphi}}(G)$, причем $eta_{m{arphi}}(G) \geq eta_0(G)$.

$$\beta_0(G) = 1$$
 ({ x_3 } и { x_5 } – наименьшие опоры)

$$eta_{m{\phi}}(G)=2\quad (\{x_1,x_2,x_3,x_5\}\, \mathsf{u}\, \{x_3,x_4,x_5\}\,\mathsf{-}\, \mathsf{к}$$
лики для покрытия вершин графа)

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- Число паросочетания графа
- ✓ Число реберного покрытия графа

Число паросочетания (= число независимости ребер) графа $lpha_1(\mathbf{G})$ — это максимальное количество несмежных между собой ребер графа. Число паросочетания орграфа $lpha_1(G)$ определяется в графе, в котором дуги заменены на ребра. В связном графе $lpha_1(G) \leq [rac{n}{2}]$.

Паросочетание – это любое подмножество ребер графа, не смежных между собой.

Максимальное паросочетание — это паросочетание в графе, которое нельзя расширить за счет других ребер графа без нарушения свойства независимости ребер в данном паросочетании.

Наибольшее паросочетание – это максимальное паросочетание с наибольшим количеством ребер; количество ребер в наибольшем паросочетании и определяет $\alpha_1(G)$.

Пример.

No	Максимальное паросочетание
1	$\{u_1, u_3, u_5, u_7\}$
2	$\{u_1,u_4,u_6\}$
3	$\{u_2,u_5,u_7\}$
4	$\{u_1,u_4,u_7\}$

Наибольшее паросочетание в данном графе $\,G - \{u_1,u_3,u_5,u_7\},\; lpha_1(G) = 4.$

Пример.

No	Максимальное паросочетание
1	$\{u_1, u_3, u_5, u_7\}$
2	$\{u_1,u_4,u_6\}$
3	$\{u_2,u_5,u_7\}$
4	$\{u_1,u_4,u_7\}$

Наибольшее паросочетание в данном графе $\,G - \{u_1,u_3,u_5,u_7\},\; lpha_1(G) = 4.$

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- Число паросочетания графа
- ✓ Число реберного покрытия графа

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- Число реберного покрытия графа

Число реберного покрытия графа $eta_1({f G})$ – это минимальное количество ребер для покрытия всех вершин графа. Графы с изолированными вершинами не имеют реберного покрытия. В связном n, m- графе $\left\lceil \frac{n}{2} \right\rceil \leq \beta_1(G) \leq m$

$$n = 7, m = 6$$
$$\beta_1(G) = 6$$

$$\beta_1(G) = 6$$

Реберное покрытие графа — это любое подмножество ребер графа, которое покрывает все вершины этого графа (каждая вершина графа инцидентна хотя бы одному ребру из этого подмножества).

Минимальное реберное покрытие графа – это такое реберное покрытие графа, которое нельзя уменьшить по количеству ребер без нарушения свойства вершинного покрытия ребрами данного графа.

Наименьшее реберное покрытие графа – это минимальное реберное покрытие графа с наименьшим количеством ребер; количество ребер в таком покрытии и определяет $\beta_1(G)$.

Наименьшее реберное покрытие в данном графе $G - \{u_1, u_3, u_5, u_7\}, \ \beta_1(G) = 4.$

Реберное покрытие графа — это любое подмножество ребер графа, которое покрывает все вершины этого графа (каждая вершина графа инцидентна хотя бы одному ребру из этого подмножества).

Минимальное реберное покрытие графа – это такое реберное покрытие графа, которое нельзя уменьшить по количеству ребер без нарушения свойства вершинного покрытия ребрами данного графа.

Наименьшее реберное покрытие графа – это минимальное реберное покрытие графа с наименьшим количеством ребер; количество ребер в таком покрытии и определяет $\beta_1(G)$.

Наименьшее реберное покрытие в данном графе $G - \{u_1, u_3, u_5, u_7\}, \ \beta_1(G) = 4.$

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- Число реберного покрытия графа

МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие экстремального числа графа
- ✓ Цикломатическое число графа
- ✓ Число внутренней устойчивости графа
- ✓ Алгоритмы поиска наибольших пустых подграфов в графе
- ✓ Кликовое число графа, понятие графа-дополнения
- ✓ Алгоритмы поиска наибольших полных подграфов в графе
- ✓ Хроматическое число графа
- ✓ Алгоритмы минимальной раскраски графа
- ✓ Число внешней устойчивости графа
- ✓ Число паросочетания графа
- ✓ Число реберного покрытия графа

