Justificación de las aproximación del coeficiente de atenuación en las distintas regiones

José Ramón Gisbert Valls

23 de marzo de 2010

Resumen

Para entender el por qué de las diferentes aproximaciones que se proporcionan en la tesis de Miguel Ángel García Izquierdo y J. Rose.

En primer lugar debe sustituirse la longitud de onda por un factor 1/k que multiplica una longitud de onda inicial o básica λ_0 , $\lambda = \lambda_0/k$. La longitud de onda inicial es una constante arbitraria. El diámetro del transductor puede darse en relación con λ_0 y una segunda constante l, $D = \lambda_0/l$. Por tanto, y recordando $c = \lambda f$ y $\omega = 2\pi f$, para la región de Rayleigh puede escribirse:

$$\alpha_s(\omega) = s_1 D^3 \omega^4 = s_1 \left(\frac{\lambda_0}{l}\right)^3 \left(2\pi \frac{ck}{\lambda_0}\right)^4 = \frac{16\pi^4 c^4 s_1}{\lambda_0} \cdot \frac{k^4}{l^3} = \mathcal{C} \cdot \frac{k^4}{l^3}$$
(1)

Donde $\mathcal C$ es una constante que depende del medio y de la longitud de onda inicial elegida.

El factor k aumenta con la frecuencia y, tal y como se ha mencionado en el primer párrafo, l es una constante que a bajas frecuencias suele ser muy superior a k. Para aquellas frecuencias en las que $k \simeq l$ puede reescribirse (1) de forma que quede únicamente en función de k.

$$\alpha_s(\omega) = \mathcal{C} \cdot m \cdot k \simeq \mathcal{C} \cdot k \tag{2}$$

Que como puede observarse es muy semejante a la forma propuesta para la región de difusión. Sustituyendo s_1 por s_2 y \mathcal{C} por \mathcal{D} se tiene:

$$\alpha_s(\omega) = s_2 D\omega = 2\pi c s_2 \frac{k}{l} = \mathcal{D} \cdot \frac{k}{l} = \mathcal{D} \cdot m \cdot k \simeq \mathcal{D} \cdot k$$
 (3)

Para terminar, en la última región o región de difusión $\lambda < D$, o lo que es lo mismo, l < k. En el límite el coeficiente de atenuación sería infinito, sin embargo, se proporciona una constante.

$$\alpha_s(\omega) = \frac{s_3}{D} = \frac{ls_3}{\lambda_0} \tag{4}$$

Una suposición más, comparando las constantes $\mathcal C$ y $\mathcal D$ se llega a la siguiente conclusión.

$$C = \mathcal{D}; \quad \frac{16\pi^4 c^4}{\lambda_0} s_1 = 2\pi c s_2; \qquad \longrightarrow \qquad s_2 = s_1 \frac{8\pi^3 c^3}{\lambda_0}$$
 (5)