Math 217 – Midterm 2 Winter 2018 Solutions

Name:	Section:
Tidille:	Decidii

Question	Points	Score
1	12	
2	15	
3	12	
4	15	
5	12	
6	12	
7	12	
8	10	
Total:	100	

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) An isomorphism from the vector space V to the vector space W

Solution: An *isomorphism* from the vector space V to the vector space W is a bijective linear transformation from V to W.

(b) The matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal

Solution: The matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I_n$.

(c) A least-squares solution of the system of linear equations $A\vec{x} = \vec{b}$

Solution: For A an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$, the vector $\vec{x}^* \in \mathbb{R}^n$ is a *least-squares solution* of the system of linear equations $A\vec{x} = \vec{b}$ if $||A\vec{x}^* - \vec{b}|| \le ||A\vec{x} - \vec{b}||$ for all $\vec{x} \in \mathbb{R}^n$.

(d) The norm (or magnitude, or length) of the vector \vec{v} in the inner product space $(V, \langle \cdot, \cdot \rangle)$

Solution: The *norm* of the vector \vec{v} in the inner product space $(V, \langle \cdot, \cdot \rangle)$ is the scalar $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$.

- 2. State whether each statement is True or False and provide a short proof of your claim.
 - (a) (3 points) For any matrix $A \in \mathbb{R}^{m \times n}$, if the columns of A form an orthonormal list of vectors in \mathbb{R}^m , then $AA^T = I_m$, where I_m is the $m \times m$ identity matrix.

Solution: False.

Any orthogonal projection onto a lower-dimensional subspace would be a counterexample.

For example let
$$A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, then $AA^T = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq I_2$.

(b) (3 points) If A is an invertible 2018×2018 matrix, then $\det(-A) = -\det(A)$.

Solution: False.

In fact $det(-A) = (-1)^{2018} det(A)$ by multilinearity of determinants.

For example let $A = I_{2018}$, then $\det(-I_{2018}) = 1$, while $-\det(I_{2018}) = -1$.

(c) (3 points) For every orthonormal basis \mathcal{B} of \mathbb{R}^n , $|\det(S_{\mathcal{E}\to\mathcal{B}})| = 1$, where \mathcal{E} is the standard basis of \mathbb{R}^n and $S_{\mathcal{E}\to\mathcal{B}}$ is the change-of-coordinates matrix from \mathcal{E} to \mathcal{B} .

Solution: True.

Since \mathcal{B} is an orthonormal basis, the change-of-coordinates matrix $S_{\mathcal{E}\to\mathcal{B}}$ is orthogonal. You may quote this result directly, otherwise you may prove this by observing that $S_{\mathcal{E}\to\mathcal{B}}^{-1} = S_{\mathcal{B}\to\mathcal{E}} = \begin{bmatrix} \vec{b}_1 & \dots & |\vec{b}_n & | \end{bmatrix}$ which has orthonormal columns, together with the fact that the inverse of an orthogonal matrix is also orthogonal.

Therefore $|\det(S_{\mathcal{E}\to\mathcal{B}})|=1$ since the determinant of any orthogonal matrix is equal to ± 1 .

(Problem 2, Continued).

(d) (3 points) For any matrix $A \in \mathbb{R}^{m \times n}$, if the columns of A are linearly independent, then there is an $n \times m$ matrix B such that $BA = I_n$, where I_n is the $n \times n$ identity matrix.

Solution: True.

Here are two proofs using chapter 5 material:

(i) Since A has linearly independent columns, we may apply the QR factorization to write A = QR where Q has orthonormal columns and R is upper-triangular with positive diagonal entries, in particular R is invert-

Letting
$$B = R^{-1}Q^T$$
, we see that $BA = R^{-1}\underbrace{Q^TQ}_{=I_n}R = R^{-1}R = I_n$.

(ii) Since A has linearly independent columns, $\ker(A) = \ker(A^T A) = \{\vec{0}\}\$, but $A^T A$ is a square matrix (of size $n \times n$) with zero kernel, hence $A^T A$ is invertible.

Letting
$$B = (A^T A)^{-1} A^T$$
, we see that $BA = (A^T A)^{-1} A^T A = I_n$.

Here is another proof without using chapter 5 material:

(iii) Since A has linearly independent columns, each column of A (or its reducedrow echelon form) contains a pivot, in particular its reduced-row echelon form is equal to $\left[\frac{I_{n\times n}}{O_{(m-n)\times n}}\right] = EA$, where $I_{n\times n}$ denotes the $n\times n$ identity matrix, $O_{k\times n}$ denotes the $k\times n$ matrix where all the entries are equal to zero, and E is the matrix representing the elementary row operations. Letting $B = \begin{bmatrix} I_{n \times n} & O_{(m-n) \times n} \end{bmatrix} E$, we see that

$$BA = \left[I_{n \times n} \mid O_{(m-n) \times n} \right] EA = \left[I_{n \times n} \mid O_{(m-n) \times n} \right] \left[\frac{I_{n \times n}}{O_{(m-n) \times n}} \right] = I_n.$$

(e) (3 points) For any vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$,

$$\det \begin{bmatrix} | & | \\ \vec{u} - \vec{v} & \vec{v} - \vec{w} \end{bmatrix} = \det \begin{bmatrix} | & | \\ \vec{u} & \vec{v} \end{bmatrix} - \det \begin{bmatrix} | & | \\ \vec{v} & \vec{w} \end{bmatrix}.$$

Solution: False.

In fact

$$\underline{\det \left[\begin{array}{c|c} \vec{u} - \vec{v} \mid \vec{v} - \vec{w} \end{array} \right] = \det \left[\begin{array}{c|c} \vec{u} \mid \vec{v} \end{array} \right] - \det \left[\begin{array}{c|c} \vec{u} \mid \vec{w} \end{array} \right] - \underbrace{\det \left[\begin{array}{c|c} \vec{v} \mid \vec{v} \end{array} \right]}_{=0} + \det \left[\begin{array}{c|c} \vec{v} \mid \vec{w} \end{array} \right]}_{=0}$$

by standard properties of determinants (multilinearity and alternating), which is not equal to det $\left[\begin{array}{c|c} \vec{u} & \vec{v} \end{array}\right] - \det\left[\begin{array}{c|c} \vec{v} & \vec{w} \end{array}\right]$ in general.

For example let $\vec{u} = \vec{e_1}$, $\vec{v} = \vec{0}$, $\vec{w} = \vec{e_2}$, then

$$\det \begin{bmatrix} \vec{u} - \vec{v} \mid \vec{v} - \vec{w} \end{bmatrix} = \det \begin{bmatrix} \vec{e_1} \mid -\vec{e_2} \end{bmatrix} = -1,$$
$$\det \begin{bmatrix} \vec{u} \mid \vec{v} \end{bmatrix} = \det \begin{bmatrix} \vec{e_1} \mid \vec{0} \end{bmatrix} = 0,$$
$$\det \begin{bmatrix} \vec{v} \mid \vec{w} \end{bmatrix} = \det \begin{bmatrix} \vec{0} \mid \vec{e_2} \end{bmatrix} = 0.$$

3. Let $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$. The rule

$$\langle \vec{x}, \vec{y} \rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = \vec{x}^{\top} \begin{bmatrix} 8 & -6 \\ -6 & 5 \end{bmatrix} \vec{y} = 8x_1y_1 - 6(x_1y_2 + x_2y_1) + 5x_2y_2$$

defines an inner product on \mathbb{R}^2 . (You may assume this without proof).

(a) (4 points) Compute the length of \vec{v} with respect to $\langle \cdot, \cdot \rangle$.

Solution: For
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
,
$$\|\vec{v}\|^2 = \langle \vec{v}, \vec{v} \rangle = \underbrace{\begin{bmatrix} 1 & 2 \end{bmatrix}}_{\vec{v}^{\top}} \begin{bmatrix} 8 & -6 \\ -6 & 5 \end{bmatrix} \underbrace{\begin{bmatrix} 1 \\ 2 \end{bmatrix}}_{\vec{v}} = \begin{bmatrix} -4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 4$$
. Thus its length is
$$\|\vec{v}\| = 2$$
.

(b) (4 points) Find a nonzero vector $\vec{w} \in \mathbb{R}^2$ that is orthogonal (relative to $\langle \cdot, \cdot \rangle$) to \vec{v} .

Solution: A nonzero vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ is orthogonal to \vec{v} with respect to the given inner product if and only if $\langle \vec{v}, \vec{x} \rangle = 0$. Then $8x_1 - 6(x_2 + 2x_1) + 10x_2 = 0$ gives $-4x_1 + 4x_2 = 0$, that is $x_1 = x_2$.

Any vector $\vec{x} = \begin{bmatrix} a \\ a \end{bmatrix}$ for $a \neq 0$ is orthogonal to \vec{v} (e.g. let $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.)

(c) (4 points) Find a basis \mathcal{B} of \mathbb{R}^2 that is orthonormal with respect to $\langle \cdot, \cdot \rangle$.

Solution: Using part (b), we already have two vectors $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ that are orthogonal to each other. To get an orthonormal basis we just need to normalize them.

By part (a), we know $\|\vec{v}\| = 2$, therefore $\vec{u}_1 = \frac{\vec{v}}{\|\vec{v}\|} = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$.

 $\|\vec{w}\| = \sqrt{\langle \vec{w}, \vec{w} \rangle} \sqrt{8 - 6(1+1) + 5} = 1$, that is $\vec{u}_2 = \frac{\vec{w}}{\|\vec{w}\|} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

An orthonormal basis is $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$.

- 4. Let $\mathcal{E} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$ and $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$, so that \mathcal{E} and \mathcal{B} are ordered bases of the vector space V of 2×2 upper-triangular matrices.
 - (a) (3 points) Find an ordered basis \mathcal{C} of V such that $S_{\mathcal{C} \to \mathcal{E}} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$.

Solution: Let c_1, c_2, c_3 denote the basis elements of \mathcal{C} . Then we want $[c_i]_{\mathcal{E}}$ to be the *i*-th column of $S_{\mathcal{S}\to\mathcal{E}}$. So $c_1=1\begin{bmatrix}1&0\\0&0\end{bmatrix}+2\begin{bmatrix}0&1\\0&0\end{bmatrix}+3\begin{bmatrix}0&0\\0&1\end{bmatrix}=\begin{bmatrix}1&2\\0&3\end{bmatrix}$. Similarly, $c_2=\begin{bmatrix}0&1\\0&2\end{bmatrix}$ and $c_3=\begin{bmatrix}0&0\\0&1\end{bmatrix}$. Thus, $\mathcal{C}=\begin{pmatrix}\begin{bmatrix}1&2\\0&3\end{bmatrix},\begin{bmatrix}0&1\\0&2\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}$

(b) (3 points) Find the \mathcal{B} -coordinates $[A]_{\mathcal{B}}$ of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Solution: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. So $[A]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

(c) (5 points) Find the \mathcal{B} -matrix $[T]_{\mathcal{B}}$ of the linear transformation $T: V \to V$, where T is defined so that for each $A \in V$, $T(A) = \begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix} A$.

Solution: $T\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + 2\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $T\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = \begin{bmatrix} -1 & -2 \\ 0 & -3 \end{bmatrix} = -2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 1\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - 2\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} = -1\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$ So $[T]_{\mathcal{B}} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 2 & -2 & -1 \end{bmatrix}.$

(d) (4 points) Find det(T), where T is the linear transformation from part (c).

Solution:

$$\det(T) = \det\left(\begin{bmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 2 & -2 & -1 \end{bmatrix}\right) = -1\det\left(\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}\right)$$
$$= -1(1-4) = 3.$$

- 5. Let A be an $m \times n$ matrix with linearly independent columns, let A = QR be the QR-factorization of A, and let $\vec{b} \in \mathbb{R}^m$.
 - (a) (3 points) Write the normal equation of the linear system $A\vec{x} = \vec{b}$.

Solution: The normal equation is $A^{T}A\vec{x} = A^{T}\vec{b}$.

(b) (6 points) Show that the vector $\vec{x}^* = R^{-1}Q^{\top}\vec{b}$ is a least-squares solution of the linear system $A\vec{x} = \vec{b}$.

Solution: We show that the vector $\vec{x}^* = R^{-1}Q^{\top}\vec{b}$ is a solution of the normal equation in part(a):

$$A^{\top} A (R^{-1} Q^{\top} \vec{b}) = (QR)^{\top} (QR) (R^{-1} Q^{\top} \vec{b}) = R^{\top} Q^{\top} Q (RR^{-1}) Q^{\top} \vec{b} = R^{\top} (Q^{\top} Q) Q^{\top} \vec{b}$$
$$= R^{\top} Q^{\top} \vec{b} = A^{\top} \vec{b}$$

where we have used the fact that $Q^{\top}Q = I_n$ since columns of Q form an orthonormal set of vectors.

Alternatively we can show that $\vec{x}^* = R^{-1}Q^{\top}\vec{b}$ is a solution of the equation $A\vec{x} = \operatorname{proj}_{\operatorname{im}(A)}\vec{b}$. Since QQ^{\top} is the matrix of orthogonal projection onto $\operatorname{im}(A)$, $A(R^{-1}Q^{\top}\vec{b}) = Q(RR^{-1})Q^{\top}\vec{b} = (QQ^{\top})\vec{b} = \operatorname{proj}_{\operatorname{im}(A)}\vec{b}$.

(c) (3 points) Is $R^{-1}Q^{\top}\vec{b}$ the unique least-squares solution of the linear system $A\vec{x} = \vec{b}$? Explain.

Solution: Yes, $R^{-1}Q^{\top}\vec{b}$ the *unique* least-squares solution of the linear system $A\vec{x} = \vec{b}$. Since A has linearly independent columns, $\ker(A^{\top}A) = \ker(A) = \{\vec{0}\}$. Therefore, $A^{\top}A$ is invertible and the normal equation yields a unique least-squares solution.

6. Let \mathcal{P}_2 be the vector space of polynomials of degree at most 2 in the variable t, and consider \mathcal{P}_2 as an inner product space with inner product

$$\langle p,q\rangle = p(0)q(0) + p'(0)q'(0) + \frac{1}{2}p''(0)q''(0).$$

Also let f(t) = 1 + t and $g(t) = 2 - t^2$ be polynomials in \mathcal{P}_2 , and let $W = \operatorname{span}(f, g)$ be the subspace of \mathcal{P}_2 spanned by f and g.

(a) (6 points) Find a basis of W that is orthonormal with respect to $\langle \cdot, \cdot \rangle$.

Solution: We apply the Gram-Schmidt algorithm to the basis (f, g) of W. To facilitate computations, note that for all $p(t) = a_0 + a_1t + a_2t^2$ and $q(t) = b_0 + b_1t + b_2t^2$ in \mathcal{P}_2 , we have

$$\langle p,q\rangle = \langle a_0 + a_1t + a_2t^2, b_0 + b_1t + b_2t^2\rangle = a_0b_0 + a_1b_1 + 2a_2b_2.$$

The vector

$$g^{\perp} = g - \frac{\langle g, f \rangle}{\langle f, f \rangle} f = g - \frac{2}{2} f = (2 - t^2) - (1 + t) = 1 - t - t^2$$

is orthogonal to f. Normalizing f and g^{\perp} , we obtain the orthonormal basis

$$\left(\frac{f}{\|f\|}, \frac{g^{\perp}}{\|g^{\perp}\|}\right) \ = \ \left(\frac{1+t}{\|1+t\|}, \frac{1-t-t^2}{\|1-t-t^2\|}\right) \ = \ \left(\frac{1+t}{\sqrt{2}}, \frac{1-t-t^2}{2}\right)$$

of W.

(b) (6 points) Let $\operatorname{proj}_W : \mathcal{P}_2 \to \mathcal{P}_2$ be the orthogonal projection onto W in \mathcal{P}_2 . Find a polynomial $h \in \mathcal{P}_2$ such that $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the \mathcal{B} -matrix of proj_W , where \mathcal{B} is the ordered basis of \mathcal{P}_2 given by $\mathcal{B} = (f, g, h)$.

Solution: The matrix of proj_W with respect to the basis $\mathcal{B} = (f, g, h)$ will have the given form if and only if h is a nonzero vector in W^{\perp} , so we need $\langle f, h \rangle = \langle g, h \rangle = 0$. Writing $h(t) = a + bt + ct^2$, this leads to the equations

$$0 = \langle f, h \rangle = \langle 1 + t, a + bt + ct^2 \rangle = a + b$$

$$0 = \langle g, h \rangle = \langle 2 - t^2, a + bt + ct^2 \rangle = 2a - 2c.$$

Solving this linear system for a, b, and c, we find that c = a = -b, so we can take, for instance,

$$h(t) = 1 - t + t^2.$$

7. (a) (5 points) Prove that for every $n \times n$ matrix A, if $A^{\top}A = AA^{\top}$ then $||Ax|| = ||A^{\top}x||$ for all $x \in \mathbb{R}^n$. (Here length is defined with respect to the dot product on \mathbb{R}^n).

Solution: Suppose that A is an $n \times n$ matrix such that $A^{\top}A = AA^{\top}$. Then for any $x \in \mathbb{R}^n$,

$$||Ax||^2 = (Ax) \cdot (Ax)$$

$$= (Ax)^{\top} Ax$$

$$= x^{\top} A^{\top} Ax$$

$$= x^{\top} A A^{\top} x$$

$$= (A^{\top} x)^{\top} A^{\top} x$$

$$= (A^{\top} x) \cdot (A^{\top} x)$$

$$= ||A^{\top} x||^2$$

and thus $||Ax|| = ||A^{\mathsf{T}}x||$.

(b) (7 points) Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space, and let $T: V \to V$ be a linear transformation. Prove that if $\langle T(v), w \rangle = \langle v, T(w) \rangle$ for all $v, w \in V$, then $\ker(T) = (\operatorname{im}(T))^{\perp}$.

Solution: Suppose that $(V, \langle \cdot, \cdot \rangle)$ is an inner product space and $T: V \to V$ is a linear transformation such that $\langle T(v), w \rangle = \langle v, T(w) \rangle$ for any $v, w \in V$. We will show that $\ker(T) \subseteq (\operatorname{im}(T))^{\perp}$ and that $(\operatorname{im}(T))^{\perp} \subseteq \ker(T)$, which together implies $\ker(T) = (\operatorname{im}(T))^{\perp}$.

Let $x \in \ker(T)$, which means that T(x) = 0. Then for any $y \in \operatorname{im}(T)$ there exists $w \in V$ with T(w) = y and hence

$$\langle x, y \rangle = \langle x, T(w) \rangle = \langle T(x), w \rangle = \langle 0, w \rangle = 0.$$

This implies that $x \in (\operatorname{im}(T))^{\perp}$. Thus, $\ker(T) \subseteq (\operatorname{im}(T))^{\perp}$.

Now let $x \in (\operatorname{im}(T))^{\perp}$. Then for any $y \in V$,

$$\langle T(x), y \rangle = \langle x, T(y) \rangle = 0.$$

In particular, when y = T(x), we have $\langle T(x), T(x) \rangle = 0$. Since the inner product is positive definite, this implies that T(x) = 0; i.e. $x \in \ker(T)$. Thus, $(\operatorname{im}(T))^{\perp} \subseteq \ker(T)$.

8. (10 points) Let $n \in \mathbb{N}$, let V be a subspace of \mathbb{R}^n , and let $P : \mathbb{R}^n \to \mathbb{R}^n$ be the orthogonal projection onto V. Prove that for any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, $P \circ T = T \circ P$ if and only if $T[V] \subseteq V$ and $T[V^{\perp}] \subseteq V^{\perp}$.

(Recall that, by definition, $T[X] = \{T(x) : x \in X\}$ for any subset $X \subseteq \mathbb{R}^n$).

Solution:

 (\Rightarrow) Suppose that $P \circ T = T \circ P$.

To prove that $T[V] \subseteq V$, let $\vec{y} \in T[V]$. This means that $\vec{y} = T(\vec{x})$ for some $\vec{x} \in V$. Then we will have that $P(\vec{x}) = \vec{x}$, and hence

$$P(\vec{y}) = P(T(\vec{x})) = (P \circ T)(\vec{x}) = (T \circ P)(\vec{x}) = T(P(\vec{x})) = T(\vec{x}) = \vec{y}.$$

Thus $P(\vec{y}) = \vec{y}$, and this means that $\vec{y} \in V$. Therefore $T[V] \subseteq V$.

Now, to prove that $T[V^{\perp}] \subseteq V^{\perp}$, let $\vec{y} \in T[V^{\perp}]$. This means that $\vec{y} = T(\vec{x})$ for some $\vec{x} \in V^{\perp}$. Then we will have that $P(\vec{x}) = \vec{0}$, and hence

$$P(\vec{y}) = P(T(\vec{x})) = (P \circ T)(\vec{x}) = (T \circ P)(\vec{x}) = T(P(\vec{x})) = T(\vec{0}) = \vec{0}.$$

Thus $P(\vec{y}) = \vec{0}$, meaning that $\vec{y} \in \ker(P) = V^{\perp}$. Therefore $T[V^{\perp}] \subseteq V^{\perp}$.

(\Leftarrow) Assume that $T[V] \subseteq V$ and $T[V^{\perp}] \subseteq V^{\perp}$. Let $\vec{x} \in \mathbb{R}^n$ be arbitrary. Then $\vec{x} = \vec{v} + \vec{w}$ for some $\vec{v} \in V$ and $\vec{w} \in V^{\perp}$; note that $P(\vec{x}) = \vec{v}$. Our assumptions imply that $T(\vec{v}) \in V$ and $T(\vec{w}) \in V^{\perp}$, and therefore $P(T(\vec{v})) = T(\vec{v})$ and $P(T(\vec{w})) = \vec{0}$. We therefore have that

$$(P \circ T)(\vec{x}) = P(T(\vec{x})) = P(T(\vec{v} + \vec{w})) = P(T(\vec{v})) + P(T(\vec{w})) = T(\vec{v}) + \vec{0} = T(\vec{v}),$$

and, on the other hand,

$$(T\circ P)(\vec{x})=T(P(\vec{x}))=T(P(\vec{v}+\vec{w}))=T(\vec{v}).$$

Putting together these two equations we obtain that

$$(T \circ P)(\vec{x}) = T(\vec{x}) = (P \circ T)(\vec{x}).$$

Since this holds for every $\vec{x} \in \mathbb{R}^n$, we can conclude that $P \circ T = T \circ P$, and the proof is complete.