Ασκηση 12

ΗΥ225-Οργανωση Υπολογιστων

csd4569-Χρηστος Παπασταμος

Ασκηση 12.4

•	V.Arddr	V	Prot	D	R	P. Addr
ĺ	00	0				0
	01	0				1
ĺ	02	0				2
	03	0				3
	04	0				4
	•••					•••
	FF	0				F

Το index του πινακα μεταφρασης προερχεται απο τα 8MS bits της διευθυνσης

Απο τηνθεση αυτη του πινακα διαβαζουμε την αντιστοιχη φυσικη διευθυνση της σελιδας ετσι ωστε να βρουμε τα data στην φυσικη μνημη

TableRegister

Για να συνθεσουμε την φυσικη διευθυνση, κραταμε τα 12LS bits (τα οποια ειναι το offset του byte μεσα στην λεξη) και αντικαθιστουμε τα 8MS με τα αντιστοιχα 4MS bits της φυσικης διευθυνσης (συμφωνα με το Page table)

β)

V.Addr	V	Prot	D	R	P.Addr
00	0				
01	1	r-x	0	0	4
02	0	r-x			Disk
	0	r-x			Disk
09	0	r-x			Disk
0A	1	rw-	1	0	F
ОВ	0				
•••	0				
BF	0				
C0	1	rw-	1	0	9
C1	1	r	0	0	0
C2	0	rw-			Disk
C3	0	rw-			Disk
C4	0				
•••	0				
FD	0				
FE	1	rw-	1	0	D
FF	1	rw-	0	0	1

01038 (fetch)	Fetch απο την φυσικη διευθυνση 4038
OBOF4 (read)	Read απο unallocated εικονικη σελιδα (τερματισμος προγραμματος)
C001C (write)	Write στην φυσικη διευθυνση 901C
0292C (fetch)	Fetch απο σελιδα που βρισκεται στον δισκο (αναμονη για μεταφορα στην φ. μνημη)
00000 (read)	Read απο την παρανομη εικονικη διευθυνση 00000 (τερματισμος προγραμματος)
99F88 (read)	Read απο unallocated εικονικη σελιδα (τερματισμος προγραμματος)
FE5D8 (write)	Write στην φυσικη διευθυνση D5D8
FF100 (fetch)	Fetch απο διευθυνση χωρις δικαιωμα execute (τερματισμος προγταμματος)
C20CC (write)	Write σε σελιδα που βρισκεται στον δισκο (αναμονη για μεταφορα στην φ. μνημη)
CD0CC (write)	Write σε unallocated εικονικη σελιδα (τερματισμος προγραμματος)
C0444 (read)	Read απο την φυσικη διευθυνση 9444
01FF4 (fetch)	Fetch απο την φυσικη διευθυνση 4FF4
C1FFC (write)	Write σε διευθυνση χωρις δικαιωμα write (τερματιμος προγραμματος)
008E4 (write)	Read απο την παρανομη εικονικη διευθυνση 008E4 (τερματισμος προγραμματος)
C7700 (read)	Read απο unallocated εικονικη σελιδα (τερματισμος προγραμματος)
01E40 (write)	Write σε διευθυνση χωρις δικαιωμα write (τερματιμος προγραμματος)

<u>Ασκηση 12.5</u>

LEVEL 1 TABLE

Table 0

αβγ)

L1 V. Address	٧	L2 V. Adress
0	1	Table 0
1	0	-
2	0	-
3	0	-
4	0	-
5	0	-
6	0	-
7	0	-
8	0	-
9	0	-
Α	0	-
В	0	-
С	1	Table C
D	0	-
E	0	-
F	1	Table F

L2 V. Addr	٧	Prot	D	R	P.Addr
0	0				
1	1	r-x	0	0	4
2	0	r-x			Disk
3	0	r-x			Disk
4	0	r-x			Disk
5	0	r-x			Disk
6	0	r-x			Disk
7	0	r-x			Disk
8	0	r-x			Disk
9	0	r-x			Disk
Α	1	rw-	1	0	F
В	0				
С	0				
D	0				
E	0				
F	0				

Table C

L2 V. Addr	٧	Prot	D	R	P.Addr
0	1	rw-	1	0	9
1	1	r	0	0	0
2	0	rw-			Disk
3	0	rw-			Disk
4	0				
5	0				
6	0				
7	0				
8	0				
9	0				
Α	0				
В	0				
С	0				
D	0				
E	0				
F	0				

Table F

L2 V. Addr	٧	Prot	D	R	P.Addr
0	0				
1	0				
2	0				
3	0				
4	0				
5	0				
6	0				
7	0				
8	0				
9	0				
Α	0				
В	0				
С	0				
D	0				
E	1	rw-	1	0	D
F	1	rw-	0	0	1

δ) Στην ασκηση **12.4(β)** το translation table χρησημοποιουσε **256 θεσεις μνημης**. Αντιθετως το translation table του ερωτηματως **αβγ)** χρησημοποιει **64 θεσεις μνημης**

Ασκηση 12.6

64-bit address

- -τα 4MS μαυρα bits δεν χρησημοποιουνται
- -τα 10 κοκκινα bits δεν χρησημοποιουνται
- -τα 12 μπλε bits χαρακτηριζουν το πρωτο επιπεδο
- -τα 12 μωβ bits χαρακτηριζουν το δευτερο επιπεδο
- -τα 12 μωβ bits χαρακτηριζουν το τριτο επιπεδο
- -τα 14 πρασσινα χαρακτηριζουν το πρωτο bite μεσα στην σελιδα

L1 V. Address	V	L2 V. Address
000 _{hex}	0	
XXX	1	XXX _{hex}
FFF	0	

	L2 V. Address	V	L2 V. Address
	000 _{hex}	0	
	•••		
>	XXX	1	XXX
	FFF	0	

L3 V. Address	V	Prot	P. Address
000 _{hex}	0	-	
XXX	1	rwx	XXX
FFF	0		

Ασκηση 12.7

- α) Το ΤΒL θα πρεπει να εχει τα εξης πεδια:
 - -8bits Virtual address
 - -8bits PID
 - -1bit Dirty page
 - -3bit Page protection
 - -4bit Physical address

n	١.
I٦	١
μ	,

V. Address	PID	Prot	D	P. Address
03	3B	r-x	0	0
03	В4	rw-	0	1
03	3C	r-x	0	0
FF	3B	rw-	0	2
FF	3C	rw-	0	3
C2	A2	-W-	1	4
E3	A3	r	0	4

γ) Οι διεργασιες 3B και 3C εχουν κοινη φυσικη μνημη μονο στον κωδικα του προγραμματος, οπου καμια απο τις δυο δεν εχει δικαιωμα να γραψει σε αυτην την σελιδα (Prot:r-x). Οσο για τα δεδομενα (data) των δυο διεργασιων, ειναι σε διαφορετικες θεσεις φυσικης μνημης οποτε δεν εχουν δικαιωμα να αλληλεπιδρασουν (με κανεναν τροπο) η μια με τα data της αλλης. Με αυτον τον τροπο εξασσφαλιζεται η επιθυμητη προστασια για διεργασιες με διαφορετικο PID