Semaine 5 - Uniforme continuité, lipschitzianité, comparaison de fonctions

Valentin De Bortoli
email: valentin.debortoli@gmail.com

1 Uniforme continuité et borne affine

Soit f une fonction uniformément continue de I dans \mathbb{R} avec I un intervalle de \mathbb{R}_+ .

- 1 Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\forall x \in I, |f(x)| \leq \alpha |x| + \beta$. Traduire cette propriété graphiquement.
- 2 Supposons maintenant que I est borné. Montrer que f l'est aussi.

2 Uniforme continuité et limite

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} .

1 On suppose que f admet des limites finies en $+\infty$ et $-\infty$. Que peut-on en déduire sur f?

Remarque: on pensera à effectuer un dessin pour clarifier la situation.

3 Ensemble de k-lipschitzianité

Soit f une fonction k-lipschitzienne avec $k \in \mathbb{R}_+$. Soit A, l'ensemble des constantes de k-lipschitzianité valides pour f, c'est-à-dire : $A = \{k \in \mathbb{R}_+, \ \forall (x,y) \in I^2 | f(x) - f(y) | \leq k | x - y | \}$.

1 Montrer que A est de la forme $[B, +\infty[$ avec $B \in \mathbb{R}_+$.

4 Théorème de Picard

Soit f une fonction de \mathbb{R} dans \mathbb{R} , k-lipschitzienne avec k < 1. On dit alors f est contractante. On admet que si $(x_n)_{n \in \mathbb{N}}$ est une suite réelle qui vérifie : $\forall \epsilon \in \mathbb{R}_+^*$, $\exists N_0 \in \mathbb{N} \mid \forall (n,p) \in \mathbb{N}, \ n \geq N_0 \Rightarrow |x_{n+p} - x_n| \leq \epsilon$ (on dit que $(x_n)_{n \in \mathbb{N}}$ est une suite de Cauchy) alors $(x_n)_{n \in \mathbb{N}}$ admet une limite dans \mathbb{R} .

- 1 Montrer que la suite définie par $x_0 \in \mathbb{R}$ et $x_{n+1} = f(x_n)$ est de Cauchy.
- **2** En déduire que f admet un point fixe.

Remarque : ce théorème est très utilisé dans de nombreux domaines des mathématiques (calcul différentiel, analyse fonctionnelle...). Vous étudierez l'année prochaine plus en détail les suites de Cauchy.

Remarque: le concept de suite de Cauchy est fondamental. Il intervient notamment dans une des constructions possibles du corps des réels. $\mathbb R$ est alors défini comme l'ensemble des suites de Cauchy de $\mathbb Q$ quotienté par la relation d'équivalence " $(u_n)_{n\in\mathbb N}$ et $(v_n)_{n\in\mathbb N}$ sont semblables si et seulement si $\lim_{n\to+\infty}|u_n-v_n|=0$ ". On dit alors que $\mathbb R$ est le complété de $\mathbb Q$. Un autre choix de distance sur $\mathbb Q$ amène d'autres corps que celui des réels, les corps de nombres p-adiques (Hensel, 1897). Ces corps ont des propriétés étonnantes (tout triangle y est isocèle...) et de nombreuses applications en théorie des nombres ou pour la résolution d'équations diophantiennes.

5 Limite et uniforme continuité

Soit f une fonction uniformément continue de $\mathbb R$ dans $\mathbb R$.

1 On suppose que $\forall x \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} f(nx) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$.

6 Produit et équivalent

1 Montrer que $x \mapsto \ln(x) \ln(1-x)$ admet une limite en 1⁻ et la calculer.

7 Fonction décroissante et équivalent

Soit f une fonction décroissante qui de \mathbb{R} dans \mathbb{R} . On suppose que $f(x) + f(x+1) \underset{x \to +\infty}{\sim} \frac{1}{x}$.

- 1 Montrer que f admet une limite et la calculer.
- **2** Donner un équivalent de f.

8 Calcul de limites (1)

- 1 Montrer que $x\mapsto \frac{x^{\ln(x)}}{\ln(x)}$ admet une limite en $+\infty$ et la calculer.
- **2** Montrer que $x \mapsto \left(\frac{x}{\ln(x)}\right)^{\frac{\ln(x)}{x}}$ admet une limite en $+\infty$ et la calculer.
- 3 Montrer que $x\mapsto \frac{\ln(x+\sqrt{x^2+1})}{\ln(x)}$ admet une limite en $+\infty$ et la calculer.

9 Calcul de limites (2)

- 1 Montrer que $x \mapsto (x+1)e^x xe^{x+1}$ admet une limite en $+\infty$ et la calculer.
- 2 Montrer que $x \mapsto (x+1)\ln(x) x\ln(x+1)$ admet une limite en $+\infty$ et la calculer.

10 Quelques considérations sur l'exponentielle

- 1 Montrer que $\forall (n,x) \in \mathbb{N} \times \mathbb{R}_+, \ (1 + \frac{x}{n})^n \le e^x$.
- **2** Montrer que $\lim_{n\to+\infty} (1+\frac{x}{n})^n = e^x$.

11 Logarithme, exponentielle et équivalent

Soit $a \in I$ et f et g deux fonctions de I dans \mathbb{R}_+^* .

- 1 Donner des conditions nécessaires et suffisantes pour que $e^f \underset{a}{\sim} e^g$ et $\ln(f) \underset{a}{\sim} \ln(g)$.
- **2** Trouver f et g, deux fonctions de I dans \mathbb{R}_+^* , telles que ces deux fonctions soit équivalentes en a mais que leurs compositions à gauche par l'exponentielle ne soient pas équivalentes. Même question pour la composition par le logarithme.
 - **3** Calculer un équivalent de $x \mapsto \ln(\cos(x))$ en $\frac{\pi}{2}$.