Matematica e Latex Composizione di formule matematiche

F. Fasolato, G. Zecchin, G. Santi, A. Bari

AA 2018-2019

Outline

- 1. Introduzione
- 2. Esempi
- 3. Riferimenti a equazioni
- 4. Apici, pedici, sommatoria, produttoria ...
- 5. Limiti, derivate e integrali
- 6. Simboli logici
- 7. Operatori
- 8. Funzioni e insiemi
- 9. Enunciati
- 10. Enunciato di Murphy
- 11. Ulteriori comandi . . .

In LaTeX esistono due pacchetti diversi, i quali forniscono svariate estensioni per il miglioramento della struttura informativa e della stampa di documenti che contengono formule matematiche:

Pacchetto amsmath

- Pacchetto amsmath
- Pacchetto amssymb

- Pacchetto amsmath
- Pacchetto amssymb
- \usepackage {amsmath, amssymb}

- Pacchetto amsmath
- Pacchetto amssymb
- \usepackage {amsmath, amssymb}
- Formule "in linea" $a^2 + b^2 = c^2$

- Pacchetto amsmath
- Pacchetto amssymb
- \usepackage {amsmath, amssymb}
- Formule "in linea" $a^2 + b^2 = c^2$
- Formule "in display"

$$e^{i\pi} + 1 = 0 \tag{1}$$

Esempi

Vediamo il codice . . . Formula **in linea**:

Esempio: Teorema di Pitagora

```
a^2 + b^2 = c^2 \% formula in linea
```

Formula in display (\begin {equation} non mette la numerazione)

Esempio: Identità di Eulero

- 1 \begin{equation}
- e^{i\pi}+1=0 %formula in display
- 3 \end{equation}

Riferimenti a equazioni

Esempio: Identità di Eulero

```
1 \begin{equation}
2  \label{eqn:eulero}
3  e^{i\pi}+1=0
4 \end{equation}
5  Nella formula numero ~\eqref{eqn:eulero}
6  possiamo osservare che \dots
```

$$e^{i\pi} + 1 = 0 \tag{2}$$

Nella formula numero (2) possiamo osservare che ... Il comando \eqref è definito nel pacchetto amsmath

• Esponenti: a^2

• Esponenti: a^2

• Pedici: *a*₁

- Esponenti: a^2
- Pedici: a₁
- Apici: a*

- Esponenti: a^2
- Pedici: *a*₁
- Apici: a*
- Sommatoria: $\sum_{i=1}^{n} a_i$

- Esponenti: a^2
- Pedici: *a*₁
- Apici: a*
- Sommatoria: $\sum_{i=1}^{n} a_i$
- Produttoria: $\prod_{i=1}^{n} a_i$

- Esponenti: a^2
- Pedici: *a*₁
- Apici: a*
- Sommatoria: $\sum_{i=1}^{n} a_i$
- Produttoria: $\prod_{i=1}^{n} a_i$
- Frazione: $\frac{x+1}{x+2}$

- Esponenti: a^2
- Pedici: a₁
- Apici: a*
- Sommatoria: $\sum_{i=1}^{n} a_i$
- Produttoria: $\prod_{i=1}^{n} a_i$
- Frazione: $\frac{x+1}{x+2}$
- Radice quadrata: $\sqrt{a^2 + b^2}$

Codice esempi

Esempio: Soluzioni

```
1  $a^2, a_1, a^{*}$
2  % esponente, pedice ed apice
3
4  $\sum_{i=1}^n a_i, \prod_{i=1}^n a_i$
5  % sommatoria e produttoria
6
7  $\frac{x + 1}{x + 2}, \sqrt{a^2 + b^2}$
8  % frazione e radice
```

• Limiti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$

- Limiti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- Derivate: $y = x^2, y' = 2x$

- Limiti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- Derivate: $y = x^2, y' = 2x$
- Integrali: $\int \frac{1}{x} dx = \log|x| + c$

- Limiti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- Derivate: $y = x^2, y' = 2x$
- Integrali: $\int \frac{1}{x} dx = \log|x| + c$
- Operazioni tra insiemi: $\subset, \supset, \cup, \cap, \in, \notin, \setminus, \emptyset$

- Limiti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- Derivate: $y = x^2, y' = 2x$
- Integrali: $\int \frac{1}{x} dx = \log|x| + c$
- Operazioni tra insiemi: $\subset, \supset, \cup, \cap, \in, \notin, \setminus, \emptyset$
- **Nota 1**: ricordate l'underscore in lim_{x \to 0}
- Nota 2: per il modulo, usate \lvert o \rvert (ma esistono pacchetti in cui è già definito)

Codice esempi

Esempio: Soluzioni

```
1 \lim_{x \to 0} \frac{\sin x}{x} = 1 %limite
2
3 y = x^2, y' = 2x %derivata
4
5 \int \frac{1}{x}\,dx = \log \lvert x \rvert + c %integrale
6
7 \subset, \supset, \cup, \cap, \in, \notin,
8 \setminus, \emptyset %operazioni tra insiemi
```

Simboli logici

Esercizio

Scrivere la prima legge di De Morgan: $A \wedge B \iff \neg(\neg A \vee \neg B)$

Operatori

\min	\max	\inf	\sup
\gcd	\arg	\sin	\cos
\tan	\cot	\sec	\csc
\arcsin	\arccos	\log	\ln

Esercizio

Scrivere le seguenti formule: $\sup\{x\in\mathbb{N}:0\leq x\leq 1\}$, $\sin(\log x)$, $\min_{x\in A}f(x)$

Funzioni e insiemi

Definizione di funzione Si usano i comandi \colon (per i due punti), \to e \mapsto

Esempio: Funzione identità

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x$

Gli insiemi principali:

$$\mathbb{N} \rightarrow \mathbb{Z} \mathbb{Z}$$

 $\mathbb{Q} \rightarrow \mathbb{Q}$
 $\mathbb{Q} \rightarrow \mathbb{R}$

Definizioni, Teoremi, Corollari

Un enunciato in Latex ha bisogno di:

- un tipo/stile (ad esempio definizioni e teoremi)
- un nome (Definizione o Teorema)
- un titolo

Il comando \newtheorem {nome dell'enunciato} {titolo} [sezione] per definire enunciati va dichiarato nel preambolo.

Stile degli enunciati

Il comando \theoremstyle {} può accettare come argomenti:

- 1 plain per teoremi, lemmi, corollari, proposizioni, leggi . . .
- **2 definition** per definizioni, esempi, condizioni . . .
- 3 remark per osservazioni e annotazioni . . .

Enunciato di Murphy

Teorema di Murphy

Se qualcosa può andar male, lo farà

Corollario Murphy

Preoccuparsi è inutile

Proof.

Esperienze di vita

Esempio

Esempio: Esempio di utilizzo

```
%nel preambolo
    \theoremstyle{plain}
    \newtheorem{teoremaMurphy}{Teorema di Murphy}
3
    \newtheorem{corollarioMurphy}{Corollario Murphy}
    "nel documento
    \begin{teoremaMurphy} Se qualcosa può andar male,
    lo farà \end{teoremaMurphy}
9
10
    \begin{corollarioMurphy} Preoccuparsi è
    inutile \end{corollarioMurphy}
11
12
    \begin{proof} Esperienze di vita \end{proof}
13
    %ambiente proof predefinito
14
```

Ulteriori comandi ...

Matrici & vettori:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Parentesi grandi:

$$\left(1+\frac{1}{n}\right)^n$$

Comandi Specifici

In casi specifici conviene cercare quali simboli fanno al vostro caso in base alle necessità . . .