Diego Escobedo May 2, 2020

6.046 Problem Set 8

Collaborators: Mikael Nida

Problem 1

(A) We want to find:

$$\frac{\partial f_{A,b}}{\partial x_1} = \frac{\partial}{\partial x_1} \frac{1}{2} x^T (A^T A) x - \frac{\partial}{\partial x_1} b^T A x \qquad \text{Apply product rule}$$

$$\frac{\partial f_{A,b}}{\partial x_1} = \frac{1}{2} (\frac{\partial}{\partial x_1} x^T) (A^T A) x + \frac{1}{2} x^T (A^T A) (\frac{\partial}{\partial x_1} x) - b^T A (\frac{\partial}{\partial x_1} x) \qquad \text{Eliminate the empty terms}$$

$$\frac{\partial f_{A,b}}{\partial x_1} = \frac{1}{2} (1 \ 0) \left(\begin{pmatrix} 2 \ 0 \ 0 \end{pmatrix} \right) \left(\begin{pmatrix} x_1 \ x_2 \end{pmatrix} + \frac{1}{2} (x_1 \ x_2) \left(\begin{pmatrix} 2 \ 0 \ 0 \end{pmatrix} \right) \left(\begin{pmatrix} 1 \ 0 \end{pmatrix} \right) - (1 \ 3) \left(\begin{pmatrix} 1 \ -1 \ 2 \end{pmatrix} \right) \left(\begin{pmatrix} 1 \ 0 \end{pmatrix} \right)$$

$$\frac{\partial f_{A,b}}{\partial x_1} = x_1 + x_1 + 2$$

$$\frac{\partial f_{A,b}}{\partial x_1} = 2x_1 + 2$$

And then, for the second one:

$$\frac{\partial f_{A,b}}{\partial x_2} = \frac{\partial}{\partial x_2} \frac{1}{2} x^T (A^T A) x - \frac{\partial}{\partial x_2} b^T A x$$
 Apply product rule
$$\frac{\partial f_{A,b}}{\partial x_2} = \frac{1}{2} (\frac{\partial}{\partial x_2} x^T) (A^T A) x + \frac{1}{2} x^T (A^T A) (\frac{\partial}{\partial x_2} x) - b^T A (\frac{\partial}{\partial x_2} x)$$
 Eliminate the empty terms
$$\frac{\partial f_{A,b}}{\partial x_2} = \frac{1}{2} {}^{(0\ 1)} \left({}^2_{0\ 8} \right) \left({}^{x_1}_{x_2} \right) + \frac{1}{2} {}^{(x_1\ x_2)} \left({}^2_{0\ 8} \right) \left({}^0_1 \right) - {}^{(1\ 3)} \left({}^{-1}_{-1\ 2} \right) \left({}^0_1 \right)$$

$$\frac{\partial f_{A,b}}{\partial x_2} = 4x_2 + 4x_2 - 8$$

$$\frac{\partial f_{A,b}}{\partial x_2} = 8x_2 - 8$$

- (B) To be a critical point, we have to show that both the derivatives are equal to 0. If we set $2x_1 + 2 = 0$, we see that $x_1 = -1$ is the only solution, and if we set $8x_2 8 = 0$, we see that $x_2 = 1$ is the only solution. So, we see that any critical point must have $x_2 = 1$ and $x_1 = -1$.
- (C) The first step here is to find the Hessian. The Hessian here can be given by $\begin{bmatrix} \frac{\partial f_{A,b}}{\partial x_1 x_1} & \frac{\partial f_{A,b}}{\partial x_1 x_2} \\ \frac{\partial f_{A,b}}{\partial x_2 x_1} & \frac{\partial f_{A,b}}{\partial x_2 x_2} \end{bmatrix}$

Diego Escobedo 6.046 Problem 8

which is numerically $\begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$. Thus we need to find the largest α such that $x^T \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} x \geq \alpha$ is true for all x. We are told that x is a unit norm matrix. It is fairly easy to see that since the hessian is diagonal with one value larger than the other, we can simply take the unit norm as a vector with just a single one to try to minimize this quantity. Using $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, we get that $f_{A,b}$ is α strongly convex where $\alpha = 2$. By a similar argument, we can see that it is β smooth where $\beta = 8$.

(D) We know teh formula or convergence given α strong convexity and β smoothness is $O(\frac{\beta}{\alpha}log\frac{f(x_0)-f(x^*)}{\epsilon})$. In this case, since α,β are constants, and we know the optimal solution from linear algebra $x^* = \binom{-1}{1}$, and thus $f_{A,b}(x^*) = -5$, we get that this gradient descent will converge in $O(log\frac{f(x_0)+5}{\epsilon})$.

Problem 2

Sorry I been swamped recently and struggling w some issues :(