## **General Disclaimer**

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
  of the material. However, it is the best reproduction available from the original
  submission.

Produced by the NASA Center for Aerospace Information (CASI)

# Summary Status of the Space Acceleration Measurement System (SAMS) — September 1993

Richard DeLombard Lewis Research Center Cleveland, Ohio

Prepared for the Microgravity Measurements Group Number 11 sponsored by NASA George C. Marshall Space Flight Center Huntsville, Alabama, September 24, 1993



# TABLE OF CONTENTS

| SUMMARY                                           | 1 |
|---------------------------------------------------|---|
| 1.0 INTRODUCTION                                  | 1 |
| 1.1 Need for General Purpose Accelerometer        | 1 |
| 1.2 Development of SAMS Flight Units              | 2 |
| 1.3 Acronyms                                      | 2 |
| 2.0 SAMS FLIGHT OPERATIONS AND RESULTS            | 2 |
| 2.1 Missions and Experiments                      | 3 |
| 2.2 Carriers                                      | 4 |
| 2.3 Data Quantity                                 | 5 |
| 2.4 Utilization of Data                           | 5 |
| 2.5 Carrier Characterization                      | 6 |
| 2.6 Supported Science                             | 6 |
| 3.0 FUTURE ACTIVITIES                             | 6 |
| 3.1 Future Missions                               | 6 |
| 3.2 Data Dissemination                            | 7 |
| 3.3 OARE Operations                               | 7 |
| 3.4 Microgravity Measurement and Analysis Project | 7 |
| 4.0 CONCLUDING REMARKS                            | 7 |
| 5.0 REFERENCES                                    | 7 |
| 6.0 BIBLIOGRAPHY                                  | 8 |
| 7.0 TABLES                                        | 9 |

# SUMMARY STATUS OF THE SPACE ACCELERATION MEASUREMENT SYSTEM (SAMS) – SEPTEMBER 1993

Richard DeLombard
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

#### SUMMARY

The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the first Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module.

This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described.

Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

## 1.0 INTRODUCTION

## 1.1 Need for General Purpose Accelerometer

The mission of NASA's microgravity science program is to utilize the unique characteristics of the space environment, primarily the near absence of accelerations, to expand our knowledge of physics, chemistry, materials and fluid sciences, and biotechnology; to understand the role of gravity in materials processing; and, where possible, to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility.

Environmental factors (e.g., temperature, pressure, acceleration level) are typically measured during microgravity science missions to characterize the conditions to which the experiments are exposed. In the past, many science experiments, which were particularly sensitive to acceleration levels, had incorporated an accelerometer within the experiment package. The need for a general purpose acceleration measurement system arose from those numerous special purpose accelerometers. A general purpose system was desired which could be utilized as a standard to measure the microgravity environment for many diverse experiments in different locations on the Orbiter. Such a system should also be capable of multiple flights and configurations for the support of different experiments on successive missions.

The SAMS project was conceived in 1986 to develop such a general purpose instrument to measure low-levels of acceleration at experiment locations on the space shuttle Orbiter. The SAMS project was assigned to NASA Lewis Research Center (LeRC) by the NASA Headquarters Office of Space Science and Applications, Microgravity Science and Applications Division (MSAD). The primary experiments to be supported are those funded by the MSAD, although other experiments are occasionally supported through arrangements with MSAD.

## 1.2 Development of SAMS Flight Units

Four general purpose "middeck-style" SAMS units were fabricated in-house at LeRC by 1990. This style of unit is capable of operation in the shuttle middeck, Spacelab module single and double racks, Spacelab module center aisle, and in the Spacehab module. The first unit was delivered to NASA Kennedy Space Center (KSC) on March 26, 1990, for integration into the first Spacelab Life Sciences (SLS-1) mission (STS-40).

Two specialized "cargo bay-style" SAMS units were fabricated in-house at LeRC by late 1991. This style of unit is capable of operation in the shuttle cargo bay on a Mission Peculiar Experiment Support Structure (MPESS). These two units were delivered to KSC in April 1992 for integration into the first United States Microgravity Payload (USMP-1) mission (STS-52). These units were made expressly for the USMP-series of missions. These two styles of SAMS units are described in reference 1.

Each of the SAMS units may be connected to three remote triaxial sensor heads by umbilical cables. The response of each of these sensor heads may be individually set to one of six low-pass frequencies. This provides the capability to tailor the sensor head response to the needs of the science experiment being supported.

## 1.3 Acronyms

| ACAP   | Acceleration Characterization and Analysis Project |  |  |
|--------|----------------------------------------------------|--|--|
| BIMDA  | Bio-Serve /ITA Materials Dispersion Apparatus      |  |  |
| CD-ROM | Compact Disk Read Only Memory                      |  |  |
| CCE    | Crustal Crowth Frances                             |  |  |

CGF Crystal Growth Furnace
FMPT First Materials Processing Test
IML International Microgravity Laboratory
KSC NASA Kennedy Space Center

Lerc NASA Lewis Research Center
LPE Lambda Point Experiment

MEPHISTO Matérial pour l'Etude des Phénoménes Intéressant la Solidification sur Terre et en Orbite

MMAP Microgravity Measurement and Analysis Project
MPESS Mission Peculiar Experiment Support Structure
MSAD Microgravity Science and Applications Division

MSFC NASA Marshall Space Flight Center

NASDA National Space Development Agency of Japan OARE Orbital Acceleration Research Experiment

PCG Protein Crystal Growth
PI Principal Investigator

SAMS Space Acceleration Measurement System

SH Spacehab SL-J Spacelab J

SLS Spacelab Life Sciences
SMSP Shuttle-Mir Science Program

SSCE Solid Surface Combustion Experiment
USML United States Microgravity Laboratory
USMP United State Microgravity Payload

## 2.0 SAMS FLIGHT OPERATIONS AND RESULTS

The SAMS units have flown on seven shuttle science missions to date with a wide range of carriers and sensor head frequency responses. The accumulated data continues to provide insight into the microgravity environment experienced on-board the shuttle. The data continues to be used in the analysis of science data from a variety of experiments on the past missions. Efforts are also on-going in planning modifications to future missions for such

areas as crew exercise methods and vehicle structural investigations. These are using past SAMS data and will be acquiring new data from the future flights.

## 2.1 Missions and Experiments

Table I lists the various missions which have included a SAMS unit along with the pertinent characteristics of the mission and the SAMS unit. These missions have ranged from missions with intensive science operations (e.g., USML-1) to missions involving satellite launches with a few science experiments on-board (e.g., STS-43). Typically, for primary microgravity science missions, the shuttle flies in a favorable attitude with a minimum number of attitude changes which may disturb the experiments. This results in a fairly "quiet" mission with relatively little disturbance to the microgravity environment. For other missions, the "quiet" microgravity environment may be maintained for a short period of time, but other segments of the missions may be subject to high levels of acceleration as other activities are conducted.

The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight and to investigate the consequences of the body's adaptation to microgravity and readjustment to 1-g (ref. 2). The Solid Surface Combustion Experiment (SSCE) flew on this mission, one in a series of eight SSCE flights. The SAMS unit A measured the acceleration environment on the SSCE apparatus for the SSCE principal investigator (PI) and also acquired data to enable a study of the transmission of accelerations through the Spacelab module structure. SLS-1 was launched on June 5, 1991, and operated for 9 days with SAMS recording for 168 hours, resulting in 0.37 gigabytes of data.

The Protein Crystal Growth (PCG) and the Bio-Serve /ITA Materials Dispersion Apparatus (BIMDA) flew on the STS-43 mission along with a re-flight of SSCE and the SAMS unit E. The acceleration environment was measured on a locker door between PCG and BIMDA to support the PI's associated with those experiments. The acceleration environment was measured directly on the SSCE apparatus to support the PI associated with SSCE. A sensor head was also located on the crew exercise treadmill to measure the effects of this device on the microgravity environment. STS-43 was launched on August 2, 1991, and operated on-orbit for 9 days with SAMS recording data for 186.5 hours, resulting in 2.70 gigabytes of data.

The first International Microgravity Laboratory (IML-1), the first United States Microgravity Laboratory (USML-1), and the Spacelab J (SL-J) missions were dedicated Spacelab microgravity science missions. Each had a multitude of experiments which were operated during the course of the mission.

The IML-1 mission is the first in a series of shuttle flights dedicated to fundamental materials and life sciences research. As part of this series of missions, scientists from around the world have developed experiments that crew members operated inside the Spacelab module (ref. 3). For IML-1, the primary experiments supported by SAMS were those operated in the Fluid Experiment System and the Vapor Crystal Growth System apparatus. Sensor heads were also located near the Microgravity Vestibular Investigations rotating chair. The sensor heads were arranged to allow the vibrations generated by the chair to be compared with the vibration levels experienced in the rack. This data will contribute to the study of acceleration transfer through the vehicle structure. IML-1 was launched on January 22, 1992, and operated on-orbit for 8 days with SAMS recording data for 162.5 hours, resulting in 4.63 gigabytes of data.

The USML-series of missions is one part of a science and technology program that will open NASA's next great era of discovery. This new era is certain to revolutionize the way we think about space and our world as dramatically as did the Apollo lunar missions. USML-1 flew in orbit for 14 days, providing great opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In addition, the missions will provide much of the experience in performing research in space and in the design of instruments needed for space station operations and the programs to follow in the 21st century (ref. 4).

For USML-1, the primary experiments supported by SAMS were the Surface Tension Driven Convection Experiment, the Crystal Growth Furnace (CGF) and a multitude of experiments operated within the glovebox.

USML-1 was launched on June 25, 1992, with SAMS recording data for 294 hours, resulting in 1.36 gigabytes of data.

Spacelab J was a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using the Spacelab module, forty-three experiments — thirty-four sponsored by NASDA and nine sponsored by NASA — were performed in the areas of microgravity materials and life sciences (ref. 5). The SAMS sensor heads were mounted within the First Materials Processing Test (FMPT) equipment supplied by NASDA. There were multiple experiments operated within the FMPT equipment, both materials science and life science experiments. SL-J was launched on August 18, 1992, and operated on-orbit for 12 days with SAMS recording data for 169 hours, resulting in 2.44 gigabytes of data.

STS-52 and STS-57 missions were shared missions which included microgravity science experiments as primary payloads as well as other primary payloads.

Six days of STS-52 were flown in a "quiet" mode and attitude for the USMP-1 microgravity science to be conducted. The remainder of the mission was occupied with other activities, such as a satellite launch and experiments involving remote manipulator arm operations. The microgravity science experiments on USMP-1 were the Lambda Point Experiment (LPE) and the Matérial pour l'Etude des Phénoménes Intéressant la Solidification sur Terre et en Orbite (MEPHISTO). The MEPHISTO apparatus was supplied by the French Centre National d'Etudes Spatiales. During this mission, the SAMS units sent some data via shuttle downlink to the Payload Operations Control Center at the NASA Marshall Space Flight Center (MSFC). The remainder of the data was recorded on optical disks. The downlinked data allowed near-real-time decisions to be made by the PI's based on the microgravity environment. USMP-1 was launched on October 22, 1992, and operated on-orbit for 10 days with SAMS acquiring data for 228 hours, resulting in 2.97 gigabytes of data.

A major objective of the STS-57 mission was devoted to the capture and return to Earth of the European Retrievable Carrier which had been launched 1 year earlier. The maiden flight of the Spacehab module (SH-1) was the other primary payload on STS-57. There were a variety of commercial and NASA experiments carried inside the Spacehab module. One SAMS sensor head was mounted on the Environmental Control Life Support System Flight Experiment on the starboard side of the forward bulkhead. Another sensor head was mounted to the module structure on the port side of that bulkhead. The third sensor head was mounted to the door of a stowage locker toward the center of that bulkhead. STS-57 was launched on June 21, 1992, and operated on-orbit for 10 days with SAMS recording data for 162 hours, resulting in 3.38 gigabytes of data.

More detailed information on these missions and experiments may be obtained by consulting various reports and descriptive literature produced for each mission.

#### 2.2 Carriers

The SAMS "middeck-style" units were originally designed to be mounted in the middeck of the shuttle by occupying one of the stowage locker locations. Many missions have included microgravity payloads in the middeck.

The Spacelab module was designed as a space laboratory to be installed in the cargo bay of the shuttle and accessed via a tunnel from the middeck. Typically, the module is mounted toward the rear of the cargo bay and envelops the vehicle center of mass while on-orbit. By design, the "middeck-style" SAMS unit can also be mounted in the Shuttle Middeck Experiment racks developed for the Spacelab module. Also, as part of the SAMS design, different components may be used to mount the SAMS unit to the center aisle floor of the Spacelab module.

The Spacehab module was expressly designed to accommodate experiments and lockers from the shuttle middeck. The "middeck-style" SAMS units mount directly in the module. The Spacehab module is mounted toward the forward end of the shuttle cargo bay and is also accessed via a tunnel from the middeck.

The MPESS carriers are truss structures designed to carry equipment in the shuttle cargo bay. The carriers attach to the Orbiter cargo bay sills and keel and may be mounted in nearly any location along the cargo bay. The MPESS carriers utilized by the USMP-series of missions incorporate subsystem equipment to supply power, thermal control, and data services to the experiments.

## 2.3 Data Quantity

There are several different ways in which to describe the quantity of data acquired by SAMS on the various missions. One way is for the characterization of the shuttle microgravity environment. This environment has now been measured by a common instrument to an extent not accomplished before. The SAMS data allows comparison of environments for different missions as done in reference 6. This will also allow predictions to be made about the environment of future missions and will contribute to the understanding of environments to be expected on space stations. To this end, SAMS has gathered data for an accumulated total of 68 days of on-orbit shuttle operations. This includes approximately 55 days of microgravity conditions.

Another way of describing the data quantity is the total time that the data represents. Since the three sensor heads are measuring different local environments, the total quantity of data acquired is significant for characterizing the local environment of various locations within the Spacelab module (for example). To this end, SAMS data represents 214 days of data from triaxial sensor heads.

Another way of describing the data quantity is the sheer number of data points measured during SAMS operations. This is indicative of the amount of data storage required to store the data or through which to search to find characteristics, trends, or other significant facets of the environment. To this end, SAMS data represents over four million samples of acceleration data. After data processing, this represents 17.9 gigabytes of acceleration data stored on computer disks.

For ease of access, the processed mission data has been put on compact disk read only memory (CD-ROM). This convenient form of data dissemination has been utilized for its de-facto standard across many computer platforms and the data capacity of each disk. There have been twenty-three CD-ROM's prepared at the present time for five of the first seven missions.

## 2.4 Utilization of Data

For the first six SAMS missions, the Acceleration Characterization and Analysis Project (ACAP) at MSFC has analyzed the mission data. Summary reports have been prepared by ACAP to assist users in understanding the vast amount of data. ACAP has also prepared special analyses on occasion for characterizing certain aspects of shuttle and experiment operations.

Correlation of acceleration data with the results from the science experiments will lead to a better understanding of the science. This also leads to a better understanding of the microgravity environment requirements of the experiment. Some of the reports and papers prepared with SAMS data are listed in the bibliography. Examples of these analyses are given below.

SAMS data was utilized in near-real-time during the USMP-1 mission by the LPE and MEPHISTO experiment teams to ascertain the microgravity environment and the effect of it on their experiment operation and data.

The SAMS data from the USML-1 mission has been extensively reviewed by ACAP for the PI's associated with the CGF. The low frequency characteristics of the environment have been studied as they relate to the CFG experiments.

Correlation of the thruster firing data with the SAMS acceleration data and observed events on glovebox combustion flames has been accomplished.

SAMS data has been used to examine the signature vibration patterns of the Ku-band communications antenna, crew activity, satellite launches, remote manipulator system operations, experiment-generated vibrations, and the Life Sciences Laboratory Equipment refrigerator/freezer.

Some of the SAMS data has been utilized to better understand the isolation of crew exercise equipment so that this necessary activity will have a minimal effect on the microgravity environment.

## 2.5 Carrier Characterization

One objective of the SAMS data acquisition program is to enable characterization of the various microgravity science experiment carriers and locations within the carriers. For the missions with SAMS units on-board, the coverage of carriers by frequency response measurements is shown in table II. Covering the ranges of frequency response for the various carriers will facilitate the prediction of environment for future experiments.

## 2.6 Supported Science

The various types of science that have been supported by the SAMS measurements are combustion, fluids, materials, fundamental, and life science disciplines. Some of the experiments have indicated a strong need for direct measurement of the acceleration environment within the experiment. In these cases, the SAMS sensor head has been mounted within or on the experiment apparatus. This enhances the correlation of the acceleration data with the science data. The various science experiments supported by SAMS are listed in table III. Other science experiments on these missions utilize the SAMS data even though they do not have a sensor head directly mounted to the experiment.

#### 3.0 FUTURE ACTIVITIES

#### 3.1 Future Missions

The SAMS units will continue to support the future microgravity shuttle science missions, such as the USML, IML and USMP series of missions. The SAMS project is also participating in the Shuttle-Mir Science Program (SMSP) and will install a SAMS unit on the Mir space station in early 1994. Another type of SAMS unit is currently under development to support the science experiments to be flown on the international space station.

The future missions for SAMS are listed in table IV with the current scheduled launch date and the primary science experiments being supported.

A standard SAMS unit is being modified, along with shipping containers, procedures, launch containers, etc., to facilitate the launch of SAMS on a Progress vehicle to the space station Mir. The SAMS sensor heads will be used to measure the acceleration environment in various locations throughout Mir and will support some of the experiments planned for the SMSP. It is expected that SAMS will remain operational on Mir for approximately 15 months with the possibility that operations may continue for several years.

A new SAMS unit is under development that will take advantage of the services and opportunities presented by the international space station. This new SAMS unit will not require dedicated cables from the sensor heads to the SAMS unit and will have enhanced data processing capabilities. Master control of the SAMS unit and the sensor heads will be accomplished by the SAMS project. Control of sensor head and data processing characteristics will be accomplished by the PI's at their operations center in near-real-time. Display of SAMS data by downlink will be made at the PI's operations center.

#### 3.2 Data Dissemination

In the very near future, the processed SAMS data will be available from a file server connected to the Internet. This will simplify both data access by the PI's and data dissemination by SAMS. Eventually, the summary reports prepared for each mission will be available in a multi-media format on the file server.

For SAMS on the international space station, some of the data will be available to PI's in near-real-time via downlink. The remainder of the data will be recorded for later downlink or return of storage media via shuttle resupply missions. Processed data will then be available on CD-ROM and/or file server format.

## 3.3 OARE Operations

Under a different NASA project, the Orbital Acceleration Research Experiment (OARE) was designed and flown to measure the aerodynamic drag on the Orbiter vehicle during orbital flight. The sensors used in this accelerometer are more sensitive than the sensors used in SAMS and OARE was designed specifically to measure the very low frequency accelerations in the quasi-steady regime. This accelerometer has operated on STS-40 and STS-50. In late 1993, MSAD will acquire the flight equipment and ground equipment infrastructure of the OARE project. The OARE will be flown on the shuttle Columbia in concert with the SAMS units to support the science experiments (table III). This data will continue to be useful for aerodynamic analyses for the Orbiter vehicle.

## 3.4 Microgravity Measurement and Analysis Project

A consolidation of the SAMS project and the ACAP project was initiated in mid-1993 which resulted in the Microgravity Measurement and Analysis Project (MMAP) at LeRC. The MMAP will expand the roles of the previous projects to better serve the PI's needs for microgravity data, analysis, and interpretation.

## 4.0 CONCLUDING REMARKS

Over a 2 year period, the SAMS instrument has acquired a vast amount of data which supports the efforts of a variety of activities. The SAMS data is being applied to the analysis of the microgravity science data for which the device was originally intended. The SAMS units will continue to be flown in support of future missions, carriers, and experiments.

The SAMS data contains a vast amount of information from which analyses and studies may be performed, such as prediction of future mission environments, recommended carriers, recommended shuttle attitudes, effects of vibration isolation systems, etc.

In the near future, comparisons may be made between the microgravity environment of the shuttle and the Mir space station. In the not-so-distant future, a similar comparison may be made between the shuttle, Mir, and the international space station.

## 5.0 REFERENCES

- 1. DeLombard, R.; Finley, B.D.; and Baugher, C.R.: Development of and Flight Results From the Space Acceleration Measurement System (SAMS), AIAA Paper 92-0354 (NASA TM-105652).
- 2. Spacelab Life Sciences 1, brochure number NP-120, NASA Lyndon B. Johnson Space Center.

- 3. First International Microgravity Laboratory, brochure, NASA Marshall Space Flight Center.
- 4. The First United States Microgravity Laboratory, brochure, NASA Marshall Space Flight Center.
- 5. Spacelab J, brochure, NASA Marshall Space Flight Center.
- Baugher, C.R.; Martin, G.L.; and DeLombard, R.: Low-Frequency Vibration Environment for Five Shuttle Missions, AIAA 93-0832 (NASA TM-106059).

#### 6.0 BIBLIOGRAPHY

- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): Early Summary Report of Mission Acceleration Measurements from STS-40, project report, February 28, 1992.
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): Sensor Report for STS-40 & STS-43, project report, February 28, 1992.
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): Summary Report of Mission Acceleration Measurements from STS-47, project report, March 31, 1993.
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): STS-50 Sensor Report, project report, May 11, 1993 (draft).
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): STS-47 Sensor Report, project report, May 21, 1993 (draft).
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): STS-42 Sensor Report, project report, May 28, 1993.
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): Early Summary Report of Mission Acceleration Measurements from STS-42, June 1992 (draft).
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): STS-50 Summary Report of Mission Acceleration Measurements, project report, June 18, 1993.
- Baugher, C.R. and Henderson, F.H. (Teledyne Brown Engineering): STS-52 Mission Acceleration Measurements, Summary and Sensor Report, project report, August 2, 1993 (draft).
- Baugher, C.R.; Martin, G.L.; and DeLombard, R.: Review of Shuttle Vibration Environment, AIAA 93-0832.
- Baugher, C.R.; Martin, G.L.; and DeLombard, R.: Low-Frequency Vibration Environment for Five Shuttle Missions, AIAA 93-0832 (NASA TM-106059, 1993).
- DeLombard, R.: Science Objectives of the Early Space Acceleration Measurement System Missions, NASA CP-10094, pp. 345-355, May 1992.
- DeLombard, R.: Proposed Ground-Based Control of Accelerometer on Space Station Freedom, NASA TM-105960, 1993.
- DeLombard, R. and Finley, B.D.: Space Acceleration Measurement System Description and Operation on the First Spacelab Life Sciences Mission, NASA TM-105301, 1991.

- DeLombard, R. and Finley, B.D.: and Baugher, C.R.: Development of and Flight Results from the Space Acceleration Measurement System (SAMS), AIAA 92-0354 (NASA TM-105652, 1992).
- Foster, William M. II: Thermal Verification Testing of Commercial Printed-Circuit Boards for Spaceflight, NASA TM-105261, 1992.
- Martin, G.L; Baugher, C.R.; and DeLombard, R.: Vibration Environment: Acceleration Mapping Strategy and Microgravity Requirements for Spacelab and Space Station, IAF 90-350, 1990.
- Rogers, M.J.B.; Baugher, C.R.; and DeLombard, R., et al.: Low Gravity Environment On-Board Columbia During STS-40, AIAA 93-0833, 1993.
- Thomas, J.E. and Peters, R.B., Finley, B.D.: Space Acceleration Measurement System Triaxial Sensor Head Error Budget, NASA TM-105300, 1993.

TABLE I.—MISSIONS SUPPORTED BY SAMS

| Mission | Microgravity payload category | Microgravity<br>carrier | SAMS unit | Frequency<br>responses |
|---------|-------------------------------|-------------------------|-----------|------------------------|
| SLS-1   | Primary                       | Spacelab module         | Α         | 5, 5, 5                |
| STS-43  | Secondary                     | Shuttle middeck         | E         | 50, 50, 2.5            |
| IML-1   | Primary                       | Spacelab module         | D         | 100, 100, 2.5          |
| USML-1  | Primary                       | Spacelab module         | С         | 25, 5, 2.5             |
| SL-J    | Primary                       | Spacelab module         | E         | 50, 50, 2.5            |
| USMP-1  | Primary                       | MPESS                   | F<br>G    | 25, 10<br>100, 100     |
| SH-1    | Primary                       | Spacehab module         | Α         | 100, 50, 5             |

TABLE II.—FREQUENCY COVERAGE OF CARRIERS BY SAMS MEASUREMENTS

| Carrier         | Sensor head frequency response, Hz |                 |        |        |        |        |
|-----------------|------------------------------------|-----------------|--------|--------|--------|--------|
|                 | 2.5                                | 5               | 10     | 25     | 50     | 100    |
| Middeck         | STS-43                             |                 |        |        | STS-43 |        |
| Spacelab module | IML-1,<br>USML-1,<br>SL-J          | SLS-1<br>USML-1 |        | USML-1 | SL-J   | IMIL-1 |
| MPESS           | ,                                  |                 | USMP-1 | USMP-1 |        | USMP-1 |
| Spacehab module |                                    | SH-1            | ·      |        | SH-1   | SH-1   |

TABLE III.—SCIENCE EXPERIMENTS SUPPORTED BY SAMS

| Science category | Mission                                                         | Experiment                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combustion       | SLS-1<br>STS-43                                                 | Solid surface combustion experiment Solid surface combustion experiment                                                                                                                                              |
| Fluids           | IML-1<br>USML-1<br>USML-1                                       | Fluid experiment system experiments Glovebox experiments Surface tension driven convection experiment                                                                                                                |
| Materials        | STS-43<br>STS-43<br>IML-1<br>USML-1<br>USML-1<br>SL-J<br>USMP-1 | Protein crystal growth Bio-serve / ITA materials dispersion apparatus Vapor crystal growth system experiments Crystal growth furnace Glovebox eperiments First materials processing test — material science MEPHISTO |
| Fundamental      | IML-1<br>USMP-1                                                 | Critical point facility Lambda point experiment                                                                                                                                                                      |
| Life             | SLS-1<br>USML-1<br>SL-J<br>SL-J<br>SH-1                         | Crew activity Isolated crew exercise ergometer First materials processing test — life science Frog embryology experiment Environmental control life support system flight experiment                                 |

TABLE IV.—FUTURE MICROGRAVITY SCIENCE MISSIONS FOR SAMS AND OARE

| Mission                    | Accelerometer | Launch date | Experiments                                                                                                                |
|----------------------------|---------------|-------------|----------------------------------------------------------------------------------------------------------------------------|
| SH-2                       | SAMS          | 1/20/94     | General carrier measurements                                                                                               |
| USMP-2                     | SAMS, OARE    | 2/24/94     | Advanced automated directional solidification furnace                                                                      |
|                            |               |             | MEPHISTO                                                                                                                   |
|                            |               |             | Critical fluid light scattering experiment                                                                                 |
|                            |               |             | Isothermal dendritic growth experiment                                                                                     |
| IML-2                      | SAMS, OARE    | 6/23/94     | Bubble drop particle unit                                                                                                  |
|                            |               |             | Critical point facility                                                                                                    |
|                            | ·             |             | Electromagnetic containerless processing facility                                                                          |
| Shuttle-                   | SAMS          | 3/94        | Carrier characterization                                                                                                   |
| Mir<br>Science             |               |             | Protein crystal growth                                                                                                     |
| Program                    |               |             | Material furnace                                                                                                           |
| Middeck<br>missions        | SAMS          | 2 per year  | Various middeck microgravity experiments                                                                                   |
| USML-2                     | SAMS, OARE    | 9/95        | Surface tension driven convection experiment                                                                               |
|                            |               |             | Crystal growth furnace                                                                                                     |
|                            |               |             | Glovebox experiments                                                                                                       |
|                            |               |             | Mechanics of granular materials                                                                                            |
| USMP-3                     | SAMS          | 10/95       | Advanced automated directional solidfication furnace                                                                       |
|                            |               |             | MEPHISTO                                                                                                                   |
|                            |               |             | Gravity probe — B                                                                                                          |
| Interational space station | SAMS          | 6/97        | Various station facility-class experiments,<br>such as space station furnace facility,<br>combustion module, fluids module |