חשבון אינפיניטסימלי חורף 2016-2017

תרגיל בית מס' 2

'חלק א

שאלה 1

 $f(x,y)=\sqrt{|xy|}$ א) הראו כי הפונקציה $f:\mathbb{R}^2 o\mathbb{R}$ המוגדרת על ידי (0,0). אינה גזירה ב־(0,0).

ב) אז היא היא $|f(x)| \leq ||x||^2$ מקיימת $f:\mathbb{R}^n \to \mathbb{R}$ היא היא היא ב-0.

שאלה 2

 $x,x_1,x_2\in\mathbb{R}^n$ פונקציה $f:\mathbb{R}^n imes\mathbb{R}^n\to\mathbb{R}^p$ הינה ביליניארית אם ל־ $f:\mathbb{R}^n imes\mathbb{R}^n$ פתקיים $a\in\mathbb{R}^n$, f(ax,y)=af(x,y)=f(x,ay) (i $f(x_1+x_2,y)=f(x_1,y)+f(x_2,y)$ (ii $f(x,y_1+y_2)=f(x,y_1)+f(x,y_2)$ (iii .lim $_{(h,k)\to 0}$ $\frac{|f(h,k)|}{|(h,k)|}=0$ א) הראו כי אם f הינה בילינארית אז $f(x,y_1+y_2)=f(x,y_1)$

כאן הסימון $|\cdot|$ משמש לתיאור נורמה כללית על המרחבים המתאימים, מבלי להתייחס להגדרה הספציפית של הנורמה (שהרי כולן שקולות).

בה $\mathbb{R}^n imes \mathbb{R}^m$ ב הוכיחו (a,b) ו Df(a,b)(x,y) = f(a,y) + f(x,b) בה מחושבת הנגזרת).

שאלה 3

 $f:\mathbb{R}^2 o\mathbb{R}^3$ ריינה $f:\mathbb{R}^2 o\mathbb{R}^3$ רי $g:\mathbb{R}^2 o\mathbb{R}^2$ מוגדרות על ידי: $g(x,y)=(2ye^{2x},xe^y)$ $f(x,y)=(3x-y^2,2x+y,xy+y^3)$ א) הראו כי בסביבה של g (0,1) מעתיקה חח"ע ועל סביבה של $D(f\circ g^{-1})$ בנקודה (2,0).

שאלה 4

בהרצאה ראיתם כי אם $f:A\to\mathbb{R}^n$ הינה ממחלקה $f:A\to\mathbb{R}^n$ וחח"ע על A וכך ש־Df(x) אינה סינגולרית לכל A אי הקבוצה A אי הקבוצה A וודאו ב־A ההונקציה ההוכחה ההפכית A הינה ממחלקה A הינה ממחלקה A הינה ממחלקה A הינה ממחלקה A כאשר A אי A הינה ממחלקה A ממחלקה A כאשר A הינה ממחלקה A ממחלקה A ממחלקה A כאשר A הינה ממחלקה A הינה מחלקה A מחלקה A הינה מחלקה A כאשר A הינה מחלקה A הינה מחלק A הינה מחלק הינה A הינה מחלק הינה A הינה מחלך A הינה A

שאלה 5

א) הראו כי אם הנגזרת של פונקציה $f:\mathbb{R} \to \mathbb{R}$ הינה ממש בכל אם הראו כי אם הפונקציה חח"ע.

א) הוכיחו/הפריכו: אם כל האיברים של מטריצת הנגזרת הינם חיוביים ממש, אזי הפונקציה היא חד־חד ערכית

חלק ב'

שאלה 6

תהא A קבוצה פתוחה ב- \mathbb{R}^{k+n} . תהא \mathbb{R}^n ו- $f:A\to\mathbb{R}^n$ והעם A נרשמת נכתוב f בצורה f(x,y) כאשר f(x,y) ו-f(x,y) והא f(x,y) בצורה $g:B\to\mathbb{R}^n$ נניח כי ישנה פונקציה f(x,g(x))=0 נניח כי ישנה f(x,g(x))=0 על קבוצה פתוחה f(x,g(x))=0 וממחלקה f(x,g(x))=0 בי f(x,g(x))=0 הפיכה לכל f(x,g(x))=0 הוכיחו כי אז לכל f(x,g(x))=0 מתקיים: f(x,g(x))=0 f(x,g(x))=0 f(x,g(x))=0 f(x,g(x))=0

שאלה 7

f(2,-1)=-1 ממחלקה $f:\mathbb{R}^2 o\mathbb{R}$ ונניח כי מגדיר (נגדיר f(2,-1)=f(2,-1)

 $G(x, y, u) = f(x, y) + u^2$

וכן

 $.H(x, y, u) = ux + 3y^3 + u^3$

.(x,y,u)=(2,-1,1) קיים פתרון קH(x,y,u)=0ור G(x,y,u)=0למשוואות למשוואות

 C^1 מבטיחים כי קיימות פונקציות ממחלקה א) אלו תנאים על Df מבטיחים כי $\mathcal{D}(f)$

המשוואות שתי המשוואות על המקיימות על המוגדרות על המשוואות וו
סu=h(y)וכן וכך x=g(y)הנ"ל, וכך ש
דg(-1)=1וכן וכך של הנ"ל, וכך של הנ"ל, וכך של המשוואות

ב) מצאו $Df(2,-1)=[1\ -3]$ שי ובהנחה שי קודם, סעיף קודם, הנחות סעיף ב) וכן h'(-1) וכן g'(-1)

שאלה 8

יהא $1 \geq n$ מספר שלם. נניח כי $\mathbb{R} \to \mathbb{R}$ (כאשר i,j=1... מספר שלם. נניח כי i,j=1... לכל i,j=1... נניח גם כי פונקציות גזירות, ונניח כי i,j=1... הינן הפונקציות הפותרות את המשוואות i,j=1... הינן הפונקציות הפותרות את המשוואות i,j=1... הינן i,j=1... i,j=1... i,j=1... הראו כי הפונקציות i,j=1... הינן גזירות ומצאו i,j=1...

9 שאלה

Df(a) וכן ל־f(a)=0 נניח כי נניח ממחלקה $f:\mathbb{R}^{k+n}\to\mathbb{R}^n$ תהא דרגה n הראו כי אם c נקודה ב־n קרובה מספיק ל־0, אז למשוואה f(x)=c יש פתרון.

שאלה 10

 $.ax^2+bx+c=0$ ונסמן ב־ x_1,x_2 את פתרונות המשוואה ש־ $b^2-4ac>0$ א) נניח אי נניח אי נניח התלוי ב־ a,b,c,ϵ התלוי ב- a,b,c

משוואה איז הפתרונות כולם |c-c'|, |b-b'|, |a-a'|כולם כולם כולם כולם כול|c-c'|, |b-b'|, |a-a'|המתאימה, מקיימים כוליימים כוליימים כוליימים המתאימה, מקיימים כוליימים כולימים כוליימים כולימים כוליימים כוליימים כוליימים כולימים כולימים כוליימים כולימים כ

ב) עם שורשים פשוטים על סעיף א' עבור המשוואה מחיזרו (ב מיזרו על א' עבור המשוואה ' $a_n x^n + \ldots + a_1 x + a_0 = 0$ (לא להיבהל אם יוצא מעט "מלוכלך")

ג) תארו במילים ובצורה לא פורמלית מה קורה כאשר מתקרבים לאפסים המרובים.