Quantum Computation (Group 550)

Exam 1 (Second part)

Date: September 11 2025

Instructions: In this part, you must write and test Python code inside a Jupyter notebook. Submit the notebook as part of your exam. Each problem must include:

- 1. Your Python code (well-documented).
- 2. The output of the code execution.
- 3. A short explanation (1–2 sentences) of what the result shows.
- 4. Goal: 100 (pts)

1. Eigenvalues of Pauli Matrices. (20)

Write a Python program that:

- (a) Defines the three Pauli matrices $\sigma_x, \sigma_y, \sigma_z$.
- (b) Uses numpy.linalg.eig (or equivalent) to compute their eigenvalues and eigenvectors.
- (c) Prints the results in a readable way.

Task: Verify that the eigenvalues are ± 1 .

2. Gram-Schmidt Orthonormalization. (30 pts)

- (a) Write a Python function that performs the Gram-Schmidt process on a set of input vectors.
- (b) Test your function with:
 - Two vectors in \mathbb{C}^2 .
 - Three vectors in \mathbb{C}^3 .
- (c) Print the resulting orthonormal basis.

Task: Verify that the resulting vectors are orthonormal (check inner products).

3. Idempotence of Pauli Matrices. (30 pts)

- (a) Write a Python script that checks whether a matrix A satisfies $A^2 = I$.
- (b) Apply it to each Pauli matrix.
- (c) Print the results with an explanation.

Task: Confirm whether Pauli matrices are idempotent (i.e., test if $A^2 = A$ or $A^2 = I$).

4. Normal Operators. (30 pts)

A matrix A is called **normal** if it commutes with its adjoint:

$$AA^{\dagger} = A^{\dagger}A.$$

(a) Write a Python function that checks whether a given matrix is normal.

- (b) Test your function with:
 - A Hermitian matrix (e.g., \$\begin{bmatrix} 2 & i \ -i & 3 \end{bmatrix}\$).
 A unitary matrix (e.g., one of the Pauli matrices).
- (c) Print and explain the results.

Task: Verify that Hermitian and unitary operators are normal, but not all matrices are.