Supplementary materials

Stochastic simulation algorithm of beta-amyloid aggregation in Alzheimer Disease

Network Modeling and Simulation course report

Carlo Aleotti, Anastasia Santo e Rayan Slatni

Jan 2024

Figure 1: The evolution of amyloid beta aggregations for M1, M2, M3 and M4. Rate constants $(k_0 \neq ... \neq k_{53})$, $k_0 = 0.00001$, $k_2 = k_0/2$,....Condition 1 M1 = 10000 and Condition 2 M2 = 5000, and the other populations M2, ..., M8 = 1

Figure 2: The evolution of amyloid beta aggregations for M5, M6, M7 and M8. Rate constants $(k_0 \neq ... \neq k_{53})$, $k_0 = 0.00001$, $k_2 = k_0/2$,....Condition 1 M1 = 10000 and Condition 2 M2 = 5000, and the other populations M2, ..., M8 = 1

Function Name	Calls	Total Time (s) 🕯	Self Time* (s)	Total Time Plot (dark band = self time)
modelwithoutfragmentation	1	46.602	0.637	
MonteCarloSimulation	2	44.515	0.071	
GillespieAlgorithm	200	44.329	25.212	
randsample	754845	16.146	4.692	
RandStream.RandStream>RandStream.getGlobalStream	754845	5.958	0.829	
RandStream.RandStream>localGetSetGlobalStream	754845	5.128	5.128	
histcounts	754845	3.172	2.195	
exprnd	754845	2.970	2.970	
RandStream.rand	754845	2.325	2.325	

Figure 3: Profiling of the Monte Carlo-Gillespie algorithm using aggregation.

Function Name	Calls	Total Time (s)	Self Time* (s)	Total Time Plot (dark band = self time)
modelwithoutfragmentation	1	46.948	0.709	
MonteCarloSimulation	2	44.814	0.070	
NextReactionMethod	200	44.629	25.033	
randsample	754906	16.584	4.894	
RandStream.RandStream>RandStream.getGlobalStream	754906	6.060	0.839	
RandStream.RandStream>localGetSetGlobalStream	754906	5.221	5.221	
histcounts	754906	3.292	2.273	
<u>exprnd</u>	754906	3.012	3.012	
RandStream.rand	754906	2.337	2.337	

Figure 4: Profiling of the FRM algorithm using aggregation.

Figure 5: The evolution of amyloid beta aggregations and fragmentation for M3. Rate constants $(k_0 \neq \ldots \neq k_{53})$, $k_0 = 0.00001$, $k_2 = k_0/2$,....Condition 1 M1 = 10000 and Condition 2 M2 = 5000, and the other populations $M2, \ldots, M8 = 1$

Figure 6: he evolution of amyloid beta aggregations and fragmentation for M3. Rate constants $(k_0 \neq \ldots \neq k_{53})$, $k_0 = 0.00001$, $k_2 = k_0/2, \ldots$ Condition 1 M1 = 10000 and Condition 2 M2 = 5000, and the other populations $M2, \ldots, M8 = 1$

	r-2.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00 7
	2.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
	-1.00	-1.00	1.00	0.00	0.00	0.00	0.00	0.00
	1.00	1.00	-1.00	0.00	0.00	0.00	0.00	0.00
	-1.00	0.00	-1.00	1.00	0.00	0.00	0.00	0.00
	1.00	0.00	1.00	-1.00	0.00	0.00	0.00	0.00
	0.00	-2.00	0.00	1.00	0.00	0.00	0.00	0.00
	0.00	2.00	0.00	-1.00	0.00	0.00	0.00	0.00
	-1.00	0.00	0.00	-1.00	1.00	0.00	0.00	0.00
	1.00	0.00	0.00	1.00	-1.00	0.00	0.00	0.00
	-1.00	-2.00	0.00	0.00	1.00	0.00	0.00	0.00
	1.00	2.00	0.00	0.00	-1.00	0.00	0.00	0.00
	0.00	-1.00	-1.00	0.00	1.00	0.00	0.00	0.00
	0.00	1.00	1.00	0.00	-1.00	0.00	0.00	0.00
	-1.00	0.00	0.00	0.00	-1.00	1.00	0.00	0.00
	1.00	0.00	0.00	0.00	1.00	-1.00	0.00	0.00
	0.00	-1.00	0.00	-1.00	0.00	1.00	0.00	0.00
	0.00	1.00	0.00	1.00	0.00	-1.00	0.00	0.00
	0.00	0.00	-2.00	0.00	0.00	1.00	0.00	0.00
	0.00	0.00	2.00	0.00	0.00	-1.00	0.00	0.00
	-2.00	-2.00	0.00	0.00	0.00	1.00		0.00
	2.00	2.00	0.00	0.00	0.00	-1.00	0.00	0.00
	-1.00	0.00	0.00	0.00	0.00	-1.00	1.00	0.00
	1.00	0.00	0.00	0.00	0.00	1.00	-1.00	0.00
	0.00	-1.00	0.00	0.00	-1.00		1.00	0.00
	0.00			0.00		0.00		
	-1.00	1.00 0.00	0.00	0.00	1.00 0.00	0.00	-1.00 1.00	0.00
$S_b =$	1.00		-2.00					
_	0.00	0.00	$\frac{2.00}{-1.00}$	$0.00 \\ -1.00$	0.00	0.00	-1.00 1.00	0.00
	0.00	0.00				0.00		
	-1.00	0.00	1.00	1.00	0.00	0.00	-1.00 1.00	0.00
		-3.00	0.00	0.00	0.00	0.00		0.00
	$1.00 \\ -1.00$	3.00 0.00		0.00	0.00	0.00	-1.00 -1.00	1.00
		0.00	0.00	0.00	0.00	0.00		
	1.00		0.00	0.00	0.00		1.00	-1.00
	0.00	-1.00	0.00	0.00	0.00	-1.00	0.00	1.00
	0.00	1.00	0.00	0.00	0.00	1.00	0.00	-1.00
	0.00	0.00	-1.00	0.00	-1.00	0.00	0.00	1.00
	0.00	0.00	1.00	0.00	1.00	0.00	0.00	-1.00
	0.00	0.00	0.00	-2.00	0.00	0.00	0.00	1.00
	0.00	0.00	0.00	2.00	0.00	0.00	0.00	-1.00
	-1.00	-1.00	0.00	0.00	-1.00	0.00	0.00	1.00
	1.00	1.00	0.00	0.00	1.00	0.00	0.00	-1.00
	-1.00	0.00	-1.00	-1.00	0.00	0.00	0.00	1.00
	1.00	0.00	1.00	1.00	0.00	0.00	0.00	-1.00
	0.00	-2.00	0.00	-1.00	0.00	0.00	0.00	1.00
	0.00	2.00	0.00	1.00	0.00	0.00	0.00	-1.00
	0.00	-1.00	-2.00	0.00	0.00	0.00	0.00	1.00
	0.00	1.00	2.00	0.00	0.00	0.00	0.00	-1.00
	-2.00	0.00	-2.00	0.00	0.00	0.00	0.00	1.00
	2.00	0.00	2.00	0.00	0.00	0.00	0.00	-1.00
	0.00	-4.00	0.00	0.00	0.00	0.00	0.00	1.00
	0.00	4.00	0.00	0.00	0.00	0.00	0.00	-1.00
	-2.00	-1.00	0.00	-1.00	0.00	0.00	0.00	1.00
-	2.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00 J

Figure 8: Stechiomatrix with fragmentation