Fingerübungen

Thema: Ungleichungen. Alle Variablen sind beliebige reelle Zahlen und stets $\varepsilon > 0$.

1. Schreiben Sie die Betragsungleichung als Ungleichung ohne Beträge und mittels Intervallen auf. Beispiel: $|x| < 1 \iff -1 < x < 1 \iff x \in (-1, 1)$.

a)
$$|x-3| < \varepsilon$$

d)
$$||x| - 5| < 1$$

b)
$$|x + 10| \le 30$$

e)
$$||x+1|+3|>2$$

c)
$$|x - a| \ge \varepsilon$$

2. Setzen Sie alle gültigen Implikationspfeile zwischen den beiden Aussagen¹ über $x \in \mathbb{R}$.

Beispiel: x < 2 ? x < 3. Es gilt $x < 2 \Rightarrow x < 3$, da 2 < 3, aber $x < 2 \not\leftarrow x < 3$: Gegenbeispiel x = 2, 5.

a)
$$x > 0$$
 ? $x^2 > 0$

d)
$$x > a - 1$$
 ? $(x - a)^2 > 1$

b)
$$-3 \le x < 4$$
 ? $|x| \le 4$

e)
$$||x| - |y|| < \varepsilon$$
 ? $|x - y| < \varepsilon$

c)
$$x < \varepsilon$$
? $x < \varepsilon^2$ (hierbei sei $\varepsilon < 1$)

c)
$$x < \varepsilon$$
? $x < \varepsilon^2$ (hierbei sei $\varepsilon < 1$) f) $(|x-1| < \varepsilon) \wedge (|x+1| < \varepsilon)$? $|x| < \varepsilon$

3. Ermitteln Sie eine Konstante C > 0 (falls existiert), sodass folgende Ungleichungen wahr sind. Beweisen Sie auch gegebenenfalls ihre Nichtexistenz!

a)
$$\frac{1}{n-1} \le C\frac{1}{n}$$
 für alle $n \in \mathbb{N}, n \ge 2$.

b)
$$\frac{n+3}{n^2} \le C \frac{1}{n}$$
 für alle $n \in \mathbb{N}$.

c)
$$\frac{1}{2^{n-1}} > C\frac{1}{2^n}$$
 für alle $n \in \mathbb{N}$.

d)
$$\sqrt{n-1} > C\sqrt{n}$$
 für alle $n \in \mathbb{N}, n \ge 2$.

e)
$$n! < Cn^2$$
 für alle $n \in \mathbb{N}$.

f)
$$n < C\sqrt{n}$$
 für alle $n \in \mathbb{N}$.

g)
$$ab \le C(a^2 + b^2)$$
 für alle $a, b \in \mathbb{R}$.

h)
$$\sqrt[n]{n-1} > C\sqrt[n]{n}$$
 für alle $n \in \mathbb{N}, n \ge 2$.

4. Finden Sie alle reellen Lösungen der Ungleichungen:

a)
$$x + 4 \le 2 - 3x$$

d)
$$(x+2)^2 \le 4x$$

b)
$$\frac{x+1}{x+2} \ge \frac{1}{2}$$

e)
$$x^4 \ge 2x^2 - 4$$

c)
$$x^2 < 10$$

f)
$$x^2 + 3x + 2 > 0$$

Anleitung für quadratische Ungleichungen, d.h. solche, die sich in die Form $x^2 + px + q > 0$ (oder < 0 etc.) bringen lassen: Bestimme erst die Lösungen x_1, x_2 der Gleichung $x^2 + px + q = 0$. Dann ist $x^2 + px + q = (x - x_1)(x - x_2)$. Dies ist genau dann positiv, wenn beide Faktoren positiv oder beide negativ sind, usw.

Genauer Aussageformen. Im Beispiel ist also zu prüfen, ob die Aussagen $\forall x \in \mathbb{R} : x < 2 \Rightarrow x < 3$ bzw. $\forall x \in \mathbb{R} : x < 2 \Leftarrow x < 3 \text{ wahr sind.}$