Modele Linowe

Lista 1

- 1. Korzystając z funkcji rnorm w R wygeneruj 1000 wektorów losowych z rozkładu dwuwymiarowego normalnego $\mathcal{N}(0,I_{2\times 2})$ i zaznacz je na płaszczyźnie.
- 2. Wyznacz przekształcenia liniowe, które przekształcają wyżej otrzymaną chmurę punktów w chmurę z rozkładu $\mathcal{N}(\mu, \Sigma)$, gdzie

$$\mu = (4, 2), \qquad \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

dla $\rho \in \{0.5, -0.5, 0.9, -0.9\}$. Narysuj chmury punktów po takich przekształceniach. W jaki sposób kształt chmury zależy od ρ ?

(+0.5pkt) Wyznacz osie symetrii chmur.

Uwaga: Użyj opcji asp=1 w poleceniu plot, aby zachować te same skale na osiach Ox i Oy.

3. Wyznacz przekształcenia liniowe, które przekształcają chmurę punktów z zadania 1 w chmurę z rozkładu $\mathcal{N}(\mu, \Sigma)$, gdzie

$$\mu = (4, 2), \qquad \Sigma = \begin{pmatrix} \sigma^2 & 0 \\ 0 & 1 \end{pmatrix}$$

dla $\sigma \in \{3,4\}$. Narysuj chmury punktów po takich przekształceniach. W jaki sposób kształt chmury zależy od σ ?

- 4. a) Korzystając z funkcji rnorm w R wygeneruj 1000 wektorów losowych z rozkładu wielowymiarowego normalnego $\mathcal{N}(0, I_{100\times100})$. Uzyskane dane zapisz w macierzy $X_{1000\times100}$, której wiersze zawierają kolejne wygenerowane wektory losowe.
 - b) Wyznacz macierz A tak, aby macierz $\tilde{X} = XA$ zawierała 1000 wektorów z rozkładu wielowymiarowego normalnego $\mathcal{N}(0, \Sigma_{100 \times 100})$, gdzie $\Sigma(i, i) = 1$ i $\Sigma(i, j) = 0.9$ dla $i \neq j$.
 - c) Zweryfikuj wyniki
 - wyliczając średnią współrzędnych,
 - rysując histogram prókowych wariancji współrzędnych,
 - rysując histogram próbkowych kowariancji między różnymi współrzędnymi wektorów, zapisanych w macierzy \tilde{X} .

(+0.5pkt) Napisz własną funkcję która implementuje rozkład Choleckiego.

Lab1_2023 1