

MÁQUINAS DE VECTORES DE SOPORTE (SVM)

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 33) 18.MAYO.2022

Introducido por F. Rosenblatt (1958), en Psychological Review Vol. **65**(6).

 (\mathbb{X}, \mathbf{y}) conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times d}$. Codificamos las categorías $y_i \in \{-1, 1\}$.

Buscamos clasificadores lineales de la forma

$$\widehat{y}(\mathbf{x}) = \operatorname{sign}(g(\mathbf{x})) = \operatorname{sign}(w_{o} + \mathbf{w}^{T}\mathbf{x}),$$

con $w_0 \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^d$.

Obs:

- La frontera de decisión es una curva de nivel de $g(\mathbf{x})$.
- w indica la dirección (es el vector normal al hiperplano separante).
- wo indica la curva de nivel a elegir.

Ejemplo: En \mathbb{R}^2 , $\mathbf{w} \in \mathbb{R}^2$ marca la linea verde (dirección normal al plano). La línea roja marca la frontera. Las curvas de nivel de $G(\mathbf{x})$ son paralelas a la línea roja.

¿Cómo hallar w_0 y **w** óptimos? Vamos a definir una función de costo $C(w_0, \mathbf{w})$ (medida del desempeño), y vamos al minimizar dicha función.

Supongamos por ahora que los datos son linealmente separables.

• Primer intento: tomar el error empírico

$$C(w_{o}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \big[\operatorname{sign}(g(\mathbf{x}_{i})) \neq y_{i} \big].$$

Problema: C no es siempre derivable en w_0 , \mathbf{w} ; y el gradiente muchas veces no es informativo.

¿Cómo construir funciones de costo más informativas?

Tomemos ℓ el hiperplano de decisión, nos gustaría incluir en la función de costo un término que mida la distancia $d(\mathbf{x}, \ell)$ entre cada punto \mathbf{x} (mal clasificado) y ℓ .

Sea \mathbf{x}_{ℓ} la proyección ortogonal de \mathbf{x} a ℓ . Entonces

$$\mathbf{x} = \mathbf{x}_{\ell} + d \frac{\mathbf{w}}{||\mathbf{w}||}, \text{ con } d = d(\mathbf{x}, \ell) = |\mathbf{w}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_{\ell})|.$$

Multiplicando ambos lados por \mathbf{w}^T , y sumando w_0 , resulta

$$g(\mathbf{x}) = w_{o} + \mathbf{w}^{\mathsf{T}}\mathbf{x} = w_{o} + \mathbf{w}^{\mathsf{T}}\mathbf{x}_{\ell} + d\frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{||\mathbf{w}||} = g(\mathbf{x}_{\ell}) + d||\mathbf{w}|| = d||\mathbf{w}||.$$

De ahí que
$$d=rac{g(\mathbf{x})}{||\mathbf{w}||}$$
 y $d(\mathbf{x},\ell)=rac{|g(\mathbf{x})|}{||\mathbf{w}||}$.

• Segundo intento: Por construcción, observe que \mathbf{x}_i está mal clasificado si $g(\mathbf{x}_i)$ y_i < o. Con base en esto, proponemos

$$C(\mathbf{w}_{o}, \mathbf{w}) = \sum_{i: g(\mathbf{x}_{i}) y_{i} < o} \frac{|g(\mathbf{x}_{i})|}{||\mathbf{w}||} = -\sum_{i: g(\mathbf{x}_{i}) y_{i} < o} \frac{g(\mathbf{x}_{i}) y_{i}}{||\mathbf{w}||}$$

Ahora,
$$C(w_0, \mathbf{w}) = -\sum_{i:g(\mathbf{x}_i)y_i < o} \frac{g(\mathbf{x}_i)y_i}{||\mathbf{w}||} y ||\mathbf{w}||C(w_0, \mathbf{w}) = -\sum_{i:g(\mathbf{x}_i)y_i < o} g(\mathbf{x}_i)y_i$$

tienen el mismo mínimo. Preferimos trabajar con

$$C_n(\mathbf{w}_0, \mathbf{w}) = -\sum_{i: q(\mathbf{x}_i) \, \mathbf{y}_i < \mathbf{0}} g(\mathbf{x}_i) \, \mathbf{y}_i.$$

Haciendo el mapeo de \mathbb{R}^d a \mathbb{R}^{d+1} , dado por $\mathbf{x} \to (1, \mathbf{x})$, y escribiendo $\mathbf{w} = (w_0, \dots, w_d) \in \mathbb{R}^{d+1}$, tenemos

$$C_n(\mathbf{w}) = -\sum_{i:g(\mathbf{x}_i)y_i < o} (\mathbf{x}_i^T \mathbf{w}) y_i, \quad \nabla_{\mathbf{w}} C_n(\mathbf{w}) = -\sum_{i:g(\mathbf{x}_i)y_i < o} y_i \mathbf{x}_i.$$

Tenemos el siguiente Algoritmo: (Perceptrón, gradiente *online*)

- 1.) Inicio: Elegir $\alpha > 0$, $\mathbf{w}^{(0)} \in \mathbb{R}^{d+1}$ arbitrario.
- 2.) Repetir para k = 0, 1, 2, ... (hasta cierto criterio de paro):
 - Para cada dato mal clasificado \mathbf{x}_i hacer

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \alpha \nabla_{\mathbf{w}} C_n(\mathbf{x}_i) = \mathbf{w}^{(k)} + \alpha y_i \, \mathbf{x}_i.$$

Obs!

- Si los datos son linealmente separables, habrá convergencia en tiempo finito.
- Cuidado con los mínimos locales de $C_n(\mathbf{w})$!
- https://lecture-demo.ira.uka.de/neural-network-demo/ ?preset=Rosenblatt%20Perceptron

El modelo perceptrón y el modelo de clasificación logística son similares: ambos usan un gradiente en la dirección de \mathbf{w} , sin embargo la regresión logística pondera el gradiente mediante la función sigmoide σ .

Otros clasificadores lineales

Algunos modelos lineales resuelven el problema de clasificación como si fuera regresión:

- regresión logística.
- Se puede demostrar que LDA (análisis discriminante lineal) resuelve un problema de regresión (y también un optimal scoring problem) como:

$$\operatorname{argmin}_{\mathbf{w}} \sum_{i} (\vartheta(\mathbf{y}_{i}) - \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})^{2},$$

donde

$$\vartheta(y) = \begin{cases} -\frac{n}{n_-}, & \text{si } y = -1; \\ \frac{n}{n_+}, & \text{si } y = +1. \end{cases}$$

 n_- y n_+ el número de observaciones negativas y positivas, resp.

Consideremos la siguiente situación: Aplicamos nuestro clasificador lineal $\widehat{y}(\mathbf{x}) = \text{sign}(w_0 + \mathbf{w}^T \mathbf{x})$

a un conjunto linealmente separable. Obtenemos varias soluciones (azul, rojo, verde).

Tenemos C(rojo) = o, C(azul) = o, C(verde) = o. Hemos evaluado igual cada una de las soluciones. ¿Cuál es mejor?

Máquinas de vectores de soporte:

Support vector machines (SVM). Introducidas por Vladimir Vapnik, 1970s (Papers en 1992, 1995a, 1995b).

Definición

El **margen** de un clasificador lineal es la menor distancia entre una observación \mathbf{x}_i y la frontera de decisión ℓ .

Idea: buscar clasificador lineal con margen máximo

$$\operatorname{argmax}_{\mathbf{w}} C(\mathbf{w}), \quad \text{sujeto a } \frac{g(\mathbf{x}_i) y_i}{||\mathbf{w}||} \geq C, \ \forall i.$$

Definición

Los **vectores de soporte** son las observaciones \mathbf{x}_i que están a una distancia mínima (igual al margen) de la frontera de decisión.

En 2D si los datos son continuos, hay dos situaciones típicas:

(a) 2 vectores de soporte, el margen es $\frac{1}{2}$ (distancia entre ellos); (b) 3 vectores de soporte. En \mathbb{R}^2 , si hay 4 vectores de soportes o más habrá colinealidad.

Si cambiamos $g(\cdot)$ por $cg(\cdot)$; c>0, el clasificador $\widehat{y}(\mathbf{x})$ no cambia. Podemos suponer que g en los puntos más cercanos a la frontera de decisión toma valor 1 ó -1. En ese caso, el margen es $\gamma=C=\frac{1}{||\mathbf{w}||}$, $\mathbf{w}\in\mathbb{R}^d$.

Entonces, el problema de optimización a resolver

$$\operatorname{argmax}_{w_0,\mathbf{w}} C$$
, sujeto a $\frac{g(\mathbf{x}_i) y_i}{||\mathbf{w}||} \geq C, \forall i$.

se convierte en

$$\operatorname{argmax}_{w_0,\mathbf{w}} \frac{1}{||\mathbf{w}||}, \quad \text{sujeto a } g(\mathbf{x}_i) \, y_i \geq 1, orall i,$$

o equivalentemente

$$\operatorname{argmin}_{w_0,\mathbf{w}} ||\mathbf{w}||^2$$
, sujeto a $g(\mathbf{x}_i) y_i \geq 1, \forall i$,

Así, la formulación primal de las SVMs es

$$\operatorname{argmax}_{w_0,\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w}, \quad \text{sujeto a } y_i(w_0 + \mathbf{w}^T \mathbf{x}_i) \geq 1, \ \forall i.$$

Observe que este es un problema de programación cuadrática (problema de opmimización con función objetivo cuadrática y restricciones lineales).

En la práctica, en lugar de resolver el problema primal, se resuelve el problema dual (ver Bishop, o Hastie, Tibshirani, Friedmann):

$$\operatorname{argmin}_{\alpha} \frac{1}{2} \alpha^T Q \alpha - \mathbf{1}^T \alpha$$
, sujeto a $\mathbf{y}^T \alpha \ge 0$, $\mathbf{y} \ge 0$, (2)

donde $Q = (Q_{ij})$, $q_{ij} = y_i \mathbf{x}_i^T \mathbf{x}_i y_j$.

Supongamos ahora que los datos no son linealmente separables.

Antes se exigía $\frac{g(\mathbf{x}_i) y_i}{||\mathbf{w}||} \geq C$, $\forall i$. En lugar de eso, se introducen ahora variables $\varepsilon_i \geq 0$, y se cambia lo anterior por

$$\frac{g(\mathbf{x}_i)y_i}{||\mathbf{w}||} \geq C(1-\varepsilon_i), \ \forall i.$$

Al mismo tiempo se castigan cada $\varepsilon_i \neq 0$, incluyéndolos en la función de costo, con un factor de penalización $\gamma > 0$. El problema a resolver resulta

$$\operatorname{argmax}_{w_0,\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \gamma \sum_i \varepsilon_i, \quad \text{sujeto a } y_i (w_0 + \mathbf{w}^T \mathbf{x}_i) \ge 1 - \varepsilon_i, \ \forall i.$$
 (3)

Interpretación de (3)

- ε_i es la distancia mínima que hay que trasladar \mathbf{x}_i para que esté al lado correcto de la frontera de decisión, y al menos a una distancia de $\frac{1}{\|\mathbf{x}\|\|\mathbf{w}\|}$.
- Si $g(\mathbf{x}_i) y_i < 0$ ó $0 < g(\mathbf{x}_i) y_i < 1$, tomamos ε_i tal que $g(\mathbf{x}_i) y_i = 1 \varepsilon_i$.
- Si $g(\mathbf{x}_i)$ $y_i \ge 1$, tomamos $\varepsilon_i = 0$.

Se puede mostrar que la solución es de la forma $g(\mathbf{x}) = \sum_i \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle + w_o$, donde sólo algunas α_i son diferentes de o: aquellas que corresponden a observaciones con $\varepsilon_i \neq o$ (los llamados vectores de soporte).

Hasta ahora trabajamos con un clasificador lineal $\hat{y}(\mathbf{x}) = \text{sign}(w_0 + \mathbf{w}^T \mathbf{x})$. ¿Qué hacer si tenemos siguientes datos?

Ejemplos de datos no linealmente separables.

http://playground.tensorflow.org/

Recordemos el **truco del kernel** (*kernel trick*): mapeamos los datos a un espacio de mayor dimension, donde esperamos que sean linealmente separables.

Idea: transformar (implícitamente) los datos: $\mathbf{x} \to \Phi(\mathbf{x})$.

Antes:
$$g(\mathbf{x}) = \sum_{i} \alpha_{i} \langle \mathbf{x}, \mathbf{x}_{i} \rangle + w_{o}$$
 Ahora: $g(\mathbf{x}) = \sum_{i} \alpha_{i} \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}_{i}) \rangle + w_{o}$.

Si definimos un kernel $K_{\Phi}(\mathbf{u}, \mathbf{v}) := \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle$, entonces

$$g(\mathbf{x}) = \sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + w_{o}.$$

Ejemplos:

- kernel polinomial $K_{\Phi}(\mathbf{x}, \mathbf{y}) = (1 + \langle \mathbf{x}, \mathbf{y} \rangle)^{p}$.
- kernel base radial gaussiano $K_{\Phi}(\mathbf{x}, \mathbf{y}) = e^{-||\mathbf{x} \mathbf{y}||^2/\sigma^2}$.
- Otros: lineal, sigmoide, otras RBFs, ...

Un kernel polinomial de grado 2 puede separar los datos.

Un kernel RBF puede separar los datos en espiral.

