Variable Measurement

PSY 4433

Jonathan A. Pedroza, PhD

Cal Poly Pomona

2022-02-02

Agenda

- Variable Measurements
- Measurement Modalities
- Other Aspects of Measurement

Measurement Scales

- Scales of measurement is the procedure of classifying individuals into categories*
 - categorical variables are those that can be put into groups/categories/conditions
 - continuous variables are those that provide a unique value for each participant; can have a decimal

Categorical Measurements

Binary variables

there are only two categories (sex)

Nominal variables

- categorize into groups; categories are not ordered (race/ethnicity groups)
- can be binary and nominal

Ordinal variables

- ordered categories
- categories indicate rank order (race order)

Continuous Variables

Interval variables

- equal intervals on the variable represent equal differences in measurement
- zero is not an absolute zero

Ratio variables

- similar to interval
- true zero (zero is the smallest number)

Examples

- Are the following examples categorical (nominal/ordinal) or continuous(interval, ratio)
- Money
- Grades
- Temperature
- Time spent online

Examples

- Money
 - Cash
 - Bank Account(s)
- Grades
 - o (A, B, C, D, F)
 - Exact Grades
 - Grade Brackets (100%-90%, 89%-80%, 79%-70%, etc.)
- Temperature
 - Fahrenheit
 - Celcius
 - Kelvin
- Time spent online
 - Hours/Minutes
 - Self-report

Dealing with Equivocal Measurements

- We deal with numbers in weird ways sometimes
 - Likert Scale 1 (Strongly Agree) 5 (Strongly Disagree)
 - Is this nominal? Ordinal? Interval?
- JP Note/Book: If using a single variable, then treat it on a nominal/ordinal scale
 - Unless, there are 10 or more categories (1-10 scale) then you can treat it as an interval scale

Measurement Modalities

- Different types of modalities when collecting data
 - o for this class, we will primarily be focused on self-reported data

Self-Report

- common measurement modality in social sciences
 - **self report** is when participants report their own answers for surveys/questionnaires/forms/etc.
- advantage is that it is the most direct way of collecting data
 - offers good face validity
 - o participants may answer differently to show a better image of themselves

Physiological

- physiological measures collect data from physiological manifestations of a construct
 - stress --> increased heart rate or sweat (galvanic skin response[GSR])
 - cognitive processing --> frontal lobe of brain (fMRI)
- commons measures
 - GSR
 - fMRI/MRI (functional tasks/still images of the brain)
 - PET (brain function/cancer)
 - EEG (sleep studies)
- advantage is that these measures are objective

Physiological

- disadvantage is that these require training, equipment
 - can also have subjective interpretation parts
 - parts of the brain --> what it means
- are they actually measuring the construct
 - sweating may not be from the experiment manipulation
 - o could be from being connected to a weird device

Behavioral

- **behavioral** measures can be both based on observation or through more structured manners to test the construct
 - behavioral test to measure smartphone use by seeing how many times participants unlock their phone
 - measuring disruptive behavior in a classroom
- are they actually measuring the core construct or are they situational
 - are they compulsive in constantly unlocking their phones
 - are disruptive kids always disruptive or just having a bad day
- best to measure a cluster of behaviors rather than one sole indicator

Other Aspects of Measurement

- other than knowing how to measure your study/experiment constructs, you'll want to know
 - do you need more than one measure of each construct
 - will there be enough variation in each measure
 - o how can you avoid unwanted noise in your data

Multiple Measures

- if you wanted to test validity of a measure
 - you would use at least two measures of the same construct
- a better alternative would be to collect data on a measure through different modalities
 - the measures may not behave in the same way
 - statistics with both measures
 can result in different findings

Sensitivity & Range Effects

- if you expect small effects in your study, then you should have a measure that is **sensitive** enough to detect that effect
- one specific sensitivity issue is when scores group together because the task is either too hard or too easy
 - Ex: giving a spelling test, with grade school words
 - if your experiment is to help promote study tips, it could be useful but you won't see a difference
- when there is no room for improvement/change, there is a range effect

Range Effects

- there are two instances of range effects
 - ceiling effects, which are when participants are already scoring high and cannot score any higher
 - floor effects, which are when participants are scoring too low and there is no way to score lower
- this is a difficult concept because unless you test this beforehand, you won't really know how easy or hard your task is
- JP Note: I gave a high school rated math exam and experienced a floor effect from CPP students from all grade levels

Artifacts: Experimenter Bias & Participant Reactivity

- **artifacts** are external factors (not part of the experiment) that can influence your experiment
 - Ex: explaining the point of the study and someone walks into the study setting
- **experimenter bias** is when someone administering the study/experiment has some sort of effect on participants' responses/answers
 - could be part of the study (manipulating how you administer experiment materials) or an artifact
 - could be done intentionally or unintentionally
- Examples from the book:
 - tone of voice
 - facial expressions
 - body language

Experimenter Bias

- one way to limit bias is to standardize the experiment
 - have a script
- "Blind" Experiments
 - single-blind experiments are when those administering experiments do not know the design of the study
 - double-blind experiments are better because both administers and participants do not know the design of the study
- experiments where participants do not know the

Demand Characteristics

- because we are using human participants, sometimes participants try to act accordingly to a study and behave in their best manner
- **demand characteristics** are cues of the study that suggest to participants what the purpose(s)/hypothesis(es) are
 - influence participants to react a certain way
- participant **reactivity** is when participants modify their behavior because they know they are being watched or know what is being measured
 - often a problem in a controlled **laboratory** setting
 - **field** research allows a more natural environment

Different Roles

good subject role

 know the purpose/hypothesis and want to help the researcher by supporting the hypothesis

• negativistic subject role

know the purpose/hypothesis and want to act contrary to the hypothesis

• apprehensive subject role

try to answer in a way that is socially desirable, instead of truthfully

faithful subject role

- follow instructions and avoid trying to find the purpose/hypothesis
- either know how science works and don't want to disrupt the study OR they don't care and want compensation (SONA credits or \$)

Different Roles

Selecting Measurement Procedure

- think about how you should measure each construct
 - validity & reliability
 - feasibility
 - what is the field doing/using?
 - if creating something, how will you test to make sure there are no range effects?