TERMODINÂMICA CLÁSSICA PROMEC – UFRGS

Prof. Dr. Andrés Armando Mendiburu Zevallos TRABALHO DE APLICAÇÃO DA TEORIA

1. INSTRUÇÕES GERAIS

Os problemas propostos devem ser desenvolvidos em grupo, existe um problema para cada capítulo abordado pela disciplina.

Cada grupo deverá selecionar uma equação de estado cúbica, até o dia 21/03/2022. Não podem ser selecionadas as seguintes equações de estado:

- Equação de estado de Van der Walls
- Equação de estado de Peng Robinson

As seguintes equações são boas alternativas:

- Redlich Kwong
- Soave Redlich Kwong
- Outras equações de estado cúbicas também podem ser escolhidas
 [O grupo que escolher uma equação diferente às Equações acima ganha 1 ponto acima da nota atribuída em cada relatório]

Dica: Acessar o artigo científico "*The State of the cubic equations of state*" disponível na seção de Artigos Seletos do Moodle da disciplina.

Os grupos informarão a equação selecionada ao professor enviando um arquivo word, contendo os nomes dos integrantes do grupo, o nome e expressão matemática completa da equação de estado. E-mail para envio: andresmendiburu@ufrgs.br

Referência principal da disciplina:

Thermodynamics and na Introduction to Thermostatistics – Herbert B. Callen

2. OBJETIVO

Aplicar os conceitos da Termodinâmica Clássica a problemas seletos, com o intuito de reforçar o entendimento da teoria e desenvolver competências para trabalhar com sistemas representados por equações de estado cúbicas e com sistemas complexos.

3. MÉTODO DE AVALIAÇÃO

O Trabalho de Aplicação da Teoria será avaliado através dos seguintes eventos de avaliação:

Relatório escrito 1 (RE1): É um relatório apresentando as soluções aos problemas propostos na primeira parte do trabalho. As soluções devem ser apresentadas com comentários e explicações referentes ao procedimento aplicado.

Apresentação oral 1 (AO1): É uma apresentação de problemas seletos do RE1 do grupo, com duração de 30 minutos (+/- 3 minutos), realizada em grupo de forma síncrona/remota. Cada membro do grupo deve obrigatoriamente apresentar. A plateia e o professor poderão realizar perguntas aos membros do grupo.

Relatório escrito 2 (RE2): É um relatório apresentando as soluções aos problemas propostos na segunda parte do trabalho. As soluções devem ser apresentadas com comentários e explicações referentes ao procedimento aplicado.

Apresentação oral 2 (AO2): É uma apresentação de problemas seletos do RE2 do grupo, com duração de 30 minutos (+/- 2 minutos), realizada em grupo de forma síncrona/remota. Cada membro do grupo deve obrigatoriamente apresentar. A plateia e o professor poderão realizar perguntas aos membros do grupo.

Cálculo da média da atividade:

Cada etapa da atividade terá uma nota, identificada como AP1 e AP2, respectivamente.

$$AP1 = (RE1+AO1) / 2;$$
 $AP2 = (RE2+AO2) / 2$

4. PRIMEIRA PARTE DO TRABALHO

Na primeira parte do trabalho procura-se aplicar os conceitos desenvolvidos nos capítulos 2 ao 5 da referência principal da disciplina.

4.1. Aplicação para o capítulo 2: Utilizar a equação de estado escolhida pelo grupo

Resolva o Problema Proposto 2.7.2 da referência principal da disciplina. Logo, mantenha as equações que relacionam a energia interna com a temperatura e adote a Equação de Estado Cúbica, escolhida pelo grupo, para relacionar P, T, N e V. Modifique os dados de entrada de forma que tenha um processo com alta pressão e compare novamente os resultados.

4.2. Aplicação para o capítulo 3: Utilizar a equação de estado escolhida pelo grupo

Obter expressões para o coeficiente de expansão térmica (α) e a compressibilidade isotérmica (κ_T). Logo, adote um fluído para o qual valores experimentais de α e κ_T estejam disponíveis e compare com valores calculados com as expressões obtidas a partir da equação de estado cúbica, escolhida pelo grupo.

4.3. Aplicação para o capítulo 4

Para o Ciclo Termodinâmicos assignado ao grupo, considere que o sistema auxiliar é um gás perfeito monoatómico, e aplicando a teoria desenvolvida na disciplina resolva os seguintes itens:

- a) Determinar expressões para a transferência de calor, trabalho realizado e variação de entropia para cada etapa do ciclo.
- b) Assumir os valores numéricos que considere necessários e calcule a transferência de calor e trabalho em cada etapa do ciclo, assim como o trabalho total do ciclo e a eficiência do ciclo.

Ciclo de Diesel (Grupo 1); Ciclo Stirling (Grupo 2); Ciclo Brayton (Grupo 3); Ciclo Otto (Grupo 4); Ciclo Atkinson (Grupo 5).

Dica: Os Ciclos são apresentados no Capítulo 10 do livro "Fundamentals of Thermodynamics", 8th ed., Borgnakke and Sonntag (2013).

4.4. Aplicação para o capítulo 5

Para este problema, o grupo deve acessar o artigo "A Fundamental Equation of State for Ethanol", disponível na seção de "Artigos Seletos" do Moodle da disciplina. Realizar as seguintes tarefas:

- a) Explique de forma geral o procedimento adotado pelos autores do artigo para obter a equação fundamental na formulação do Potencial de Hemlholtz.
- b) Explique como a equação obtida pode ser relacionada com a teoria desenvolvida na disciplina. As variáveis independentes são as mesmas que aquelas apresentadas por H. Callen para o Potencial de Helmholtz? Caso negativo, podemos adaptar a formulação dada?
- c) Explique como aplicaria a transformação de Legendre para obter os outros potenciais termodinâmicos, considerando a equação fundamental dada no artigo.

Tarefa opcional, valendo 02 pontos na Prova 01

d) Aplique a transformação de Legendre para pelo menos um dos outros potenciais Termodinâmicos a partir da equação fundamental dada no artigo.

4.5. Data de entrega e de apresentação

- Data de entrega do relatório escrito: 18/04/2022 (Início da aula).
- Data de apresentação oral em sala de aula: 18/04/2022
- [Data modificadas]

5. SEGUNDA PARTE DO TRABALHO

Na segunda parte do trabalho procura-se aplicar a equação de estado selecionada aos conceitos desenvolvidos nos capítulos 6 ao 9 da referência principal da disciplina.

5.1. Aplicação para o capítulo 6: Utilizar a equação de estado escolhida pelo grupo

Neste problema buscamos obter uma expressão para o coeficiente de Joule – Thomson e também procuramos entender como se calcula este coeficiente a partir de tabelas Termodinâmicas:

- a) Obter o coeficiente de Joule Thompson utilizando a equação de estado adotada pelo grupo. Desenvolva a expressão matemática até onde seja possível.
- b) Adotar um fluído para o qual existam dados experimentais, logo, calcule valores numéricos do coeficiente com a expressão desenvolvida e compare com os dados experimentais.

Dica:

- É necessário ter uma noção sobre as Relações de Maxwell, que serão tratadas no Capítulo 7 da referência principal da disciplina.
- Ver os exemplos 6.2-3 e 6.2-5 nas páginas 213 e 216, respectivamente, da quinta edição do livro: "Chemical, Biochemical and Engineering Thermodynamics", cujo autor é Stanley I. Sandler.

5.2. Aplicação para o capítulo 7: Utilizar a equação de estado escolhida pelo grupo

Utilizando a equação de estado selecionada pelo grupo realize as seguintes tarefas:

- a) Obter expressões para as variações de entalpia (ΔH), entropia (ΔS) e energia interna (ΔU) do sistema representado pela equação de estado.
- b) Analisar um processo termodinâmico simples, adotando valores numéricos e aplicando as expressões matemáticas obtidas acima.

Dica:

 Ver a seção 6.4 entre as páginas 220 e 245, da quinta edição do livro: "Chemical, Biochemical and Engineering Thermodynamics", cujo autor é Stanley I. Sandler.

5.3. Aplicação para o capítulo 8

Desenvolver as seguintes tarefas a partir da Equação Fundamental na formulação do Potencial de Helmholtz, obtida para o etanol, no artigo "A Fundamental Equation of State for Ethanol", disponível na seção de "Artigos Seletos" do Moodle da disciplina:

- a) Obter expressões matemáticas para as condições de estabilidade em termos do Potencial de Hemlholtz.
- b) Tentar delimitar regiões de estabilidade.

5.4. Aplicação para o capítulo 9: Utilizar a equação de estado escolhida pelo grupo

Utilizando a equação de estado adotada pelo grupo, realizar as seguintes tarefas:

- a) Plotar as curvas *p* vs *v* e *v* vs *p*, considerando temperatura constante, e adotando diferentes valores constantes da temperatura (teremos várias curvas para T constante).
- b) Desenvolver uma expressão matemática para a relação dada na Eq. (9.17) da referência principal da disciplina.
- c) Plotar uma curva μ vs p e analisar o que está sendo observado.

Tarefa opcional, valendo 02 pontos na Prova 02

e) Explique o que é a fugacidade e obtenha uma expressão matemática para a fugacidade utilizando a equação de estado adotada pelo grupo.

Dica:

Ver a seções 7.3 e 7.4 entre as páginas 300 e 322, da quinta edição do livro:
 "Chemical, Biochemical and Engineering Thermodynamics", cujo autor é Stanley I. Sandler.

5.5. Data de entrega e de apresentação

- Data de entrega do relatório escrito: 18/05/2022 (antes do final da aula).
- Data de apresentação oral em sala de aula: 18/05/2022 e 23/05/2022.