

INNOVATION. AUTOMATION. ANALYTICS

PROJECT ON

HAND WRITTEN IMAGE PREDICTION

Done by: Sravya Degala Narender G

Contents

- Introduction
- Normalization and Greyscale
- Data Preprocessing
- Analysis
- Comparison Of Algorithms
- Model Size Table
- Model Latency Table
- Conclusion

Image Classification Introduction

- Classification between the objects is easy task for humans but it has proved to be a complex problem for machines.
- Image Classification System consists of database that contains predefined patterns that compares with detected object to classify in to proper category.

Normalization And Greyscale

- In <u>image processing</u>, Linear
 Normalization is a process that changes the range of <u>pixel</u> intensity values.
- The purpose of Normalization is to bring an image to range that is normal to sense.
- Non-Linear Normalization used when there is no linear relationship between old image and New_image. Example Normalization follows a sigmoid function.

- In <u>Image processing</u>, **Greyscale images** are one in which each pixel value represent only amount of light. The color info is removed.
- **Black-White image** is purely made of black(0) and white color(1). The values of pixel in this image either 0 or 1.
- Greyscale image is made of shades of gray. Shades of gray means values of pixels are in the range from 0 to 1. So 0 represent dark black color, 0.1 represent less dark than 0(dark black) and 1 represent white color.

Image Preprocessing

- Image preprocessing is a crucial step in machine learning, where the raw image data is transformed and prepared for analysis by algorithms.
- Preprocessing helps enhance data quality, handle noise, and standardize the input, leading to improved model performance.
- Flattening is a fundamental preprocessing technique for image data, especially when using certain machine learning algorithms.
- Images are typically represented as 2d arrays (height x width)of pixel values, with each pixel corresponding specific location in the image.
- Flattening converts this 2D array into a 1D array by arranging the pixel values sequentially.
- Numpy ravel() is used for flatten technique which takes multi-dimentional array as input and returns 1D array.

Analysis

- we can observe that Alphabet 'O' has more than 55,000 handwritten images.
- Alphabet 'S' has more than 45,000 Hand written images.
 These two alphabets have more images than the all other images.
- 'F' and 'I' alphabets have around 1150 handwritten images.
- These alphabet images are less in count.

Comparison of Algorithm

Machine Learning Algorithm	Accuracy Score	Accuracy of the Models KNN Classifier - 95
Logistic Regression	87	Logistic Classifier -
KNN Classifier	95	
Decision Tree Classifier(CART)	95	DecisionTreeClassifier - 95
Random Forest Classifier	95	RandomForestClassifier - 95 0 20 40 60 80

• We can observe that KNN, Decision Tree and Random Forest algorithms are giving more accuracy than Logistic Regression.

Model Size

- Comparative all Models, logistic_classifier is the lightest model.
- But it is giving less accuracy than the three models.
 If we want go with light weigh and high accuracy, dt_classifier is the best model.

Machine Learning Algorithm	Model Name	Size
Logistic Regression	logistic_classifier	170kb
Decision Tree Classifier(CART)	knn_classifier	8,677kb
KNN Classifier	dt_classifier	11,17,737kb
Random Forest Classifier	rf_classifier	17,12,047kb

Model Production Time

- Comparative all Models, logistic_classifier has less latency to predict but at the same time accuracy is low.
- knn_classifier is taking much prediction time comparative all the three models even though the accuracy is good.
- dt_classifier has less latency with high accuracy.
- rf_classifier also has less latency with high accuracy. But not less than dt_classifier.

Machine Learning Algorithm	Model Name	Prediction Time
Logistic Regression	logistic_classifier	Less than a second
Decision Tree(CART)	knn_classifier	Less than a second
KNN	dt_classifier	Average time is 10 seconds
Random Forest	rf_classifier	Less than a second

Streamlit Web Page

This interface gives a user an option to select handwritten alphabet by clicking "Browse files" button.

Logistic Regression Model Prediction

- When a user selects an alphabet by default Logistic Regression model will be selected and gives it's prediction.
- As We already discussed, that though logistic regression model has less latency it's accuracy it gives less accuracy than the other three models.

Decision Tree Model Prediction

- When user selects Decision Tree from dropdown, It's prediction will be displayed on the screen for same alphabet.
- Though Logistic Regression gives wrong prediction, Decision tree gives correct prediction for "J" and "N" as it has higher accuracy than that.

KNN Model Prediction

- When a user selects KNN model from the drop down it 's prediction will be displayed on the screen for the same alphabet.
- Though KNN model has 95% accuracy it gives wrong prediction for letter "N".

Random Forest Model Prediction

- When user selects Random Forest from dropdown, It's prediction will be displayed on the screen for same alphabet.
- Though Random forest model has little latency in prediction,it gives correct prediction for "J" and "N" as it has higher accuracy than that.

Conclusion

- Logistic classifier is lighter model than remaining three model but it has less accuracy than the three.
- Knn classifier is not lighter and also it's prediction time is also higher than remaining all.
- rf_classifier is not lighter but it's prediction is correct.
- Comparing All models I will conclude that dt_classifier is the best model with higher accuracy and light also comparative random forest.

