16

EF 3 2019 MATEMATNKA

Под редакцией И.В.Яшенко

Р. К. Гордин

2019

16 Профильный ГЕОМЕТРИЯ. ПЛАНИМЕТРИЯ

ФГОС

МАТЕМАТИКА

Р. К. Гордин

ЕГЭ 2019. МатематикаГеометрия. Планиметрия

Задача 16 (профильный уровень)

Под редакцией И. В. Ященко

Издание соответствует новому Федеральному государственному образовательному стандарту (ФГОС)

Москва Издательство МЦНМО 2019 УДК 373:51 ББК 22.1я72 Г68

Гордин Р. К.

Г68

ЕГЭ 2019. Математика. Геометрия. Планиметрия. Задача 16 (профильный уровень) / Под ред. И. В. Ященко. — М.: МЦНМО, 2019. — 272 с.

ISBN 978-5-4439-1326-1

Пособия по математике серии «ЕГЭ 2019. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче Единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 16 профильного уровня.

На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по планиметрии.

Пособие предназначено для учащихся старшей школы, учителей математики, родителей.

Издание соответствует новому Федеральному государственному образовательному стандарту (ФГОС).

ББК 22.1я72

Приказом № 729 Министерства образования и науки Российской Федерации Московский центр непрерывного математического образования включён в перечень организаций, осуществляющих издание учебных пособий, допущенных к использованию в образовательном процессе.

Предисловие

Это учебное пособие предназначено для подготовки к решению задачи 16 ЕГЭ по математике на профильном уровне.

Предполагается, что школьник освоил школьный курс планиметрии с оценкой не ниже 4. Перед работой с этим задачником необходимо повторить основные определения и теоремы из школьного учебника. Это также полезно делать и в процессе работы с книгой.

Пособие начинается с диагностической работы. В ней 15 задач на различные темы. Если в течение двух-трёх часов вы решите не менее половины задач этой работы, то можно приступать к работе с основными разделами задачника. Если же большинство задач окажется вам не по силам, то, скорее всего, за оставшееся до экзамена время вам не удастся достигнуть уровня, необходимого для успешного решения задачи 16. В этом случае разумнее использовать это время для подготовки к другим задачам ЕГЭ по математике.

По какому принципу устроены разделы задачника? Прежде всего рассматриваются геометрические конфигурации, наиболее часто встречающиеся в задачах школьного курса: касающиеся окружности, пересекающиеся окружности, вписанные и описанные окружности треугольника и четырёхугольника и т. д., способы нахождения различных элементов геометрических фигур — медиан, высот, биссектрис треугольника, радиусов вписанных и описанных окружностей и т. д., а также некоторые методы решения геометрических задач — метод площадей, метод вспомогательной окружности, удвоение медианы и т. п.

Каждый из 15 разделов начинается с разбора соответствующей задачи диагностической работы (если вы решили эту задачу не тем способом, который приводится нами, это тоже хорошо: главное, что задача решена правильно). Затем формулируются некоторые утверждения, помогающие решить задачи данного раздела. Во многих случаях это факты, которые не рассматриваются в школьных учебниках в качестве основных, но часто содержатся после соответствующих глав учебника в качестве задач. После этого приводятся примеры решения задач с использованием этих фактов.

Раздел заканчивается списком задач для самостоятельного решения. Первая часть списка — подготовительные задачи — состоит из относительно простых задач, решаемых в два-три хода. Вторая часть — тренировочные задачи — состоит из более сложных задач, уровень которых, за исключением задач со звёздочкой, примерно

соответствует уровню задачи 16. Задачи со звёздочкой выше этого уровня. В третьей части (задачи на доказательство и вычисление) собраны задачи, формат и уровень которых согласован с демоверсией экзамена на профильном уровне в 2019 г. В эту часть каждая задача входит в двух вариантах (например, задачи 3.31.1 и 3.31.2). Решив по 6—7 таких задач, вы можете приступать к диагностическим работам, расположенным в конце пособия. В каждой работе 6 задач. Работа рассчитана примерно на 2 часа. Если за это время вы решаете не менее пяти задач — это отличный результат. Если менее четырёх, рекомендуем ещё порешать тренировочные задачи, а после этого возвратиться к диагностическим работам.

Напомним, что задача считается решённой, если найдены все её решения и даны обоснования всех использованных утверждений. Разумеется, при этом можно ссылаться на теоремы из школьного учебника.

Ко всем задачам даются ответы, а к некоторым наиболее трудным—и указания.

В приложении 1 приводятся избранные задачи тренировочных и экзаменационных работ с решениями. Тут же даны аналогичные задачи, но с ответами, чтобы вы могли проверить себя.

В приложении 2 собраны различные интересные и полезные факты элементарной геометрии. Их можно использовать при решении задач на экзамене, но при этом если они не входят в школьный учебник, то в экзаменационной работе необходимо привести их доказательства.

Диагностическая работа

- **1.** В прямоугольном треугольнике *ABC* гипотенуза *AB* равна c и $\angle ABC = \alpha$. Найдите все медианы в этом треугольнике.
- **2.** В треугольнике ABC проведена медиана BM. Известно, что $\frac{\sin \angle ABM}{\sin \angle CBM} = \frac{1}{2}$. Найдите отношение $\frac{BC}{AB}$.
- **3.** В выпуклом четырёхугольнике *ABCD* отрезки, соединяющие середины противоположных сторон, пересекаются под углом 60° , а их длины относятся как 1:3. Чему равна меньшая диагональ четырёхугольника *ABCD*, если бо́льшая равна $\sqrt{39}$?
- **4.** Найдите площадь трапеции с основаниями 18 и 13 и боковыми сторонами 3 и 4.
- **5.** Стороны треугольника равны 3 и 6, а угол между ними равен 60° . Найдите биссектрису треугольника, проведённую из вершины этого угла.
- **6.** Точки M и N середины сторон соответственно BC и CD параллелограмма ABCD. Отрезки AM и BN пересекаются в точке O. Найдите отношение $\frac{MO}{OA}$.
- **7.** В треугольнике *ABC* медиана *AD* и биссектриса *BE* перпендикулярны и пересекаются в точке F. Известно, что площадь треугольника *DEF* равна 5. Найдите площадь треугольника *ABC*.
- **8.** Из точки M, лежащей вне окружности с центром O и радиусом R, проведены касательные MA и MB (A и B точки касания). Прямые OA и MB пересекаются в точке C. Найдите OC, если известно, что отрезок OM делится окружностью пополам.
- **9.** Окружности с центрами O_1 и O_2 касаются внешним образом в точке C. Прямая касается этих окружностей в различных точках A и B соответственно. Найдите угол AO_2B , если известно, что $\operatorname{tg} \angle ABC = \frac{1}{2}$.
- **10.** На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
- **11.** Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13, 24 и расстояние между центрами этих окружностей.

- **12.** На продолжении диаметра AB окружности отложен отрезок BC, равный диаметру. Прямая, проходящая через точку C, касается окружности в точке M. Найдите площадь треугольника ACM, если радиус окружности равен R.
- 13. Окружность S_1 проходит через центр окружности S_2 и пересекает её в точках A и B. Хорда AC окружности S_1 касается окружности S_2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7. Найдите градусные меры дуг, на которые окружность S_2 делится окружностью S_1 .
- **14.** На стороне *AB* треугольника *ABC* отмечена точка *D*, причём $\angle BCD = \angle BAC$. Известно, что BC = a, AC = b, AB = c. Найдите *CD*.
- **15.** Углы при вершинах A и C треугольника ABC равны 45° и 60° соответственно; AM, BN и CK высоты треугольника. Найдите отношение $\frac{MN}{KN}$.

§ 1. Медиана прямоугольного треугольника

Решение задачи 1 из диагностической работы

1. В прямоугольном треугольнике *ABC* гипотенуза *AB* равна c и $\angle ABC = \alpha$. Найдите все медианы в этом треугольнике.

Omeem:
$$\frac{c}{2}$$
, $\frac{c}{2} \cdot \sqrt{1 + 3\cos^2 \alpha}$, $\frac{c}{2} \cdot \sqrt{1 + 3\sin^2 \alpha}$.

Р е ш е н и е. Поскольку медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы, медиана CM равна $\frac{c}{2}$.

Пусть K — середина BC. Тогда $CK = \frac{1}{2}BC = \frac{1}{2}AB\cos\alpha = \frac{1}{2}c\cos\alpha$. По теореме Пифагора из прямоугольного треугольника ACK находим, что

$$AK = \sqrt{AC^2 + CK^2} = \sqrt{(AB\sin\alpha)^2 + \left(\frac{1}{2}AB\cos\alpha\right)^2} = \\ = \frac{c}{2}\sqrt{4\sin^2\alpha + \cos^2\alpha} = \frac{c}{2}\sqrt{4\sin^2\alpha + 1 - \sin^2\alpha} = \frac{c}{2}\sqrt{1 + 3\sin^2\alpha}.$$
 Аналогично находим медиану BN .

* * *

Теорема. Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Доказательство. Пусть ABC — прямоугольный треугольник с прямым углом при вершине C. Обозначим $\angle BAC = \alpha$, $\angle ABC = \beta$. Тогда $\alpha + \beta = 90^{\circ}$.

От луча CA в полуплоскость, содержащую точку B, отложим угол ACE, равный α . Тогда луч CE проходит между сторонами угла ACB, так как $\alpha = \angle ACE < \angle ACB = 90^\circ$. Поэтому сторона CE этого угла пересекает гипотенузу AB в некоторой точке M.

Треугольник AMC равнобедренный, поскольку $\angle ACM = \angle CAM$, значит, CM = AM. С другой стороны, треугольник BMC также равнобедренный, поскольку

$$\angle BCM = 90^{\circ} - \angle ACM = 90^{\circ} - \alpha = \beta = \angle CBM.$$

Значит, CM = BM. Следовательно, M — середина гипотенузы AB, т. е. CM — медиана треугольника ABC и $CM = \frac{1}{2}AB$, что и требовалось доказать.

Теорема (обратная). Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.

Рассмотрим несколько примеров применения доказанного выше свойства медианы прямоугольного треугольника, проведённой из вершины прямого угла.

Пример 1. Найдите гипотенузу прямоугольного треугольника с острым углом 15°, если известно, что высота треугольника, опущенная на гипотенузу, равна 1.

Ответ: 1.

Р е ш е н и е. Пусть CH — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C, $\angle A=15^\circ$. Проведём медиану CM. Тогда $\angle CMH$ — внешний угол равнобедренного треугольника AMC, поэтому $\angle CMH=30^\circ$. Из прямоугольного тре-

угольника CMH находим, что $\mathit{CM} = 2\mathit{CH} = 2$. Следовательно, $\mathit{AB} = 2\mathit{CM} = 4$.

Пример 2. Через основание биссектрисы AD равнобедренного треугольника ABC с вершиной B проведён перпендикуляр к этой биссектрисе, пересекающий прямую AC в точке E. Найдите отрезок AE, если известно, что CD = 4.

Ответ: 8.

Р е ш е н и е. Отметим середину M отрезка AE. Отрезок DM — медиана прямоугольного треугольника ADE, проведённая из вершины прямого угла, поэтому AM = DM = ME.

Обозначим $\angle BAC = \angle BCA = \alpha$. По теореме о внешнем угле треугольника

$$\angle DME = \angle DAC + \angle ADM = \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha = \angle DCM,$$

значит, треугольник *CDM* равнобедренный. Следовательно, AE = 2DM = 2DC = 8.

Подготовительные задачи

- **1.1.** Гипотенуза прямоугольного треугольника равна 4. Найдите радиус описанной окружности.
- **1.2.** Медиана, проведённая к гипотенузе прямоугольного треугольника, равна m и делит прямой угол в отношении 1:2. Найдите стороны треугольника.
- **1.3.** Медиана прямоугольного треугольника, проведённая к гипотенузе, разбивает его на два треугольника с периметрами 8 и 9. Найдите стороны треугольника.
- **1.4.** В треугольнике ABC к стороне AC проведены высота BK и медиана MB, причём AM = BM. Найдите косинус угла KBM, если AB = 1, BC = 2.
- **1.5.** Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу в отношении 1:3. Найдите острые углы треугольника.
- **1.6.** Точка D середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.
- **1.7.** В прямоугольном треугольнике ABC из вершины прямого угла C проведены биссектриса CL и медиана CM. Найдите площадь треугольника ABC, если LM = a, CM = b.

- **1.8.** Вне прямоугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если катеты равны 1 и 4.
- **1.9.** Высота прямоугольного треугольника, проведённая из вершины прямого угла, равна a и образует угол α с медианой, проведённой из той же вершины. Найдите катеты треугольника.

Тренировочные задачи

- **1.10.** Медиана прямоугольного треугольника, проведённая к гипотенузе, разбивает его на два треугольника с периметрами m и n. Найдите стороны треугольника.
- **1.11.** В прямоугольном треугольнике ABC ($\angle C = 90^{\circ}$) проведены высота CD и медиана CE. Площади треугольников ABC и CDE равны соответственно 10 и 3. Найдите AB.
- **1.12.** В прямоугольном треугольнике ABC катеты AB и AC равны 4 и 3 соответственно. Точка D делит гипотенузу BC пополам. Найдите расстояние между центрами окружностей, вписанных в треугольники ADC и ABD.
- **1.13.** Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 30°. Найдите расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник делится медианой, проведённой из вершины прямого угла.
- **1.14.** В четырёхугольнике *ABCD* диагонали *AC* и *BD* перпендикулярны и пересекаются в точке *P*. Отрезок, соединяющий вершину *C* с серединой *M* отрезка *AD*, равен $\frac{5}{4}$, AP = 1. Расстояние от точки *P* до отрезка *BC* равно $\frac{1}{2}$. Найдите *AD*, если известно, что вокруг четырёхугольника *ABCD* можно описать окружность.
- **1.15.** Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60° . Найдите основания и меньшую боковую сторону трапеции.
- **1.16.** Средняя линия трапеции равна 4, углы при одном из оснований равны 40° и 50° . Найдите основания трапеции, если отрезок, соединяющий середины оснований, равен 1.

- **1.17.** Диагонали трапеции перпендикулярны. Одна из них равна 6. Отрезок, соединяющий середины оснований, равен 4,5. Найдите площадь трапеции.
- **1.18.** Прямая, параллельная гипотенузе AB прямоугольного треугольника ABC, пересекает катет AC в точке D, а катет BC в точке E, причём DE = 2, а BE = 1. На гипотенузе взята такая точка F, что BF = 1. Известно также, что $\angle FCB$ = α . Найдите площадь треугольника ABC.
- **1.19.** Гипотенуза AB прямоугольного треугольника ABC является хордой окружности радиуса 10. Вершина C лежит на диаметре окружности, который параллелен гипотенузе. Угол CAB равен 75° . Найдите площадь треугольника ABC.
- **1.20.** Гипотенуза KM прямоугольного треугольника KMP является хордой окружности радиуса $\sqrt{7}$. Вершина P находится на диаметре, который параллелен гипотенузе. Расстояние от центра окружности до гипотенузы равно $\sqrt{3}$. Найдите острые углы треугольника KMP.
- **1.21.** В треугольнике *ABC* известно, что AB = c, AC = b (b > c), AD биссектриса. Через точку D проведена прямая, перпендикулярная AD и пересекающая AC в точке E. Найдите AE.
- **1.22.** Точка E лежит на стороне AC равностороннего треугольника ABC; точка K середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD.
- **1.23.** В трапеции *ABCD* точка K середина основания AB, M середина основания CD. Найдите площадь трапеции, если известно, что DK биссектриса угла D, BM биссектриса угла B, наибольший из углов при основании AB равен 60° , а периметр трапеции равен 30.
- **1.24***. В треугольнике ABC известны углы: $\angle A = 45^{\circ}$, $\angle B = 15^{\circ}$. На продолжении стороны AC за точку C взята точка M, причём CM = 2AC. Найдите угол AMB.
- **1.25*** В треугольнике ABC известно, что AB = AC и угол BAC тупой. Пусть BD биссектриса треугольника ABC, M основание перпендикуляра, опущенного из точки A на сторону BC, E основание перпендикуляра, опущенного из точки D на сторону BC. Через точку D проведён также перпендикуляр к BD до пересечения со стороной BC в точке F. Известно, что ME = FC = a. Найдите площадь треугольника ABC.
- **1.26*** Острый угол при вершине A ромба ABCD равен 40° . Через вершину A и середину M стороны CD проведена прямая, на которую опущен перпендикуляр BH из вершины B. Найдите угол AHD.

Задачи на доказательство и вычисление

- **1.27.1.** В трапеции *ABCD* с основаниями *AD* и *BC* известно, что $AB = BC = CD = \frac{1}{2}AD$.
 - а) Докажите, что $AC \perp CD$.
 - б) Найдите углы трапеции.
- **1.27.2.** Диагональ равнобедренной трапеции перпендикулярна боковой стороне, а угол при основании трапеции равен 120° .
- а) Докажите, что одно из оснований трапеции вдвое больше другого.
 - б) Найдите стороны трапеции, если её диагональ равна $2\sqrt{3}$.
- **1.28.1.** Точка M середина гипотенузы AB прямоугольного треугольника ABC с углом 30° при вершине A. Окружность, вписанная в треугольник BMC, касается его сторон BC и BM в точках P и Q.
 - а) Докажите, что $PQ \parallel CM$.
 - б) Найдите PQ, если AB = 8.
- **1.28.2.** Точка E середина гипотенузы ML прямоугольного треугольника KLM с углом 30° при вершине M. Окружность, вписанная в треугольник KME, касается катета MK в точке A, а окружность, вписанная в треугольник KLE, касается катета KL в точке B.
 - а) Докажите, что KE = AB.
- б) В каком отношении точка касания большей из этих окружностей делит гипотенузу?
- **1.29.1.** На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M середина гипотенузы AB, H точка пересечения прямых CM и DK.
 - а) Докажите, что $CM \perp DK$.
 - б) Найдите МН, если катеты треугольника АВС равны 30 и 40.
- **1.29.2.** На катетах KL и ML прямоугольного треугольника KLM вне треугольника построены квадраты ABKL и CDLM, LP высота треугольника ADL.
- а) Докажите, что прямая PL проходит через середину E гипотенузы KM.
 - б) Найдите ЕР, если катеты треугольника КLM равны 10 и 24.
- **1.30.1.** Из вершины C тупого угла треугольника ABC проведена высота CH. Точку H соединили C серединами M и N сторон AC и BC.
- а) Докажите, что в четырёхугольник CMHN можно вписать окружность.
- б) Найдите её радиус, если сумма сторон AC и BC равна 20, а площадь треугольника ABC равна 24.

- **1.30.2.** Точка P основание высоты BP равнобедренного треугольника ABC, опущенной на боковую сторону AC. Точки E и F середины основания BC и боковой стороны AB соответственно.
- а) Докажите, что в четырёхугольник BEPF можно вписать окружность.
 - б) Найдите её радиус, если BC = 12 и AB = AC = 10.
- **1.31.1.** Точка E расположена вне квадрата ABCD с центром O, причём треугольник BEC прямоугольный ($\angle E = 90^\circ$) и неравнобедренный. Точка M середина стороны BC.
 - а) Докажите, что треугольник ОМЕ равнобедренный.
- б) Прямая EO пересекает сторону AD квадрата в точке K. Найдите отношение AK:KD, если $\angle CBE = 30^\circ$.
- **1.31.2.** Точка A расположена вне квадрата KLMN с центром O, причём треугольник KAN прямоугольный ($\angle A = 90^\circ$) и AK = 2AN. Точка B середина стороны KN.
 - а) Докажите, что $BM \parallel AN$.
- б) Прямая AO пересекает сторону ML квадрата в точке P. Найдите отношение LP:PM.
- **1.32.1.** Две стороны треугольника равны 1 и 5, площадь треугольника равна 2. Медиана, проведённая к его третьей стороне, меньше её половины.
 - а) Докажите, что треугольник тупоугольный.
- б) Найдите радиус окружности, описанной около этого треугольника.
- **1.32.2.** Две стороны треугольника равны 6 и 5, площадь треугольника равна 9. Медиана, проведённая к его третьей стороне, больше её половины.
 - а) Докажите, что треугольник остроугольный.
 - б) Найдите его наибольшую высоту.
- **1.33.1.** Высоты AA_1 и BB_1 остроугольного треугольника ABC пересекаются в точке H. Точки M и N середины отрезков AB и CH соответственно.
 - а) Докажите, что треугольники $A_1 M B_1$ и $A_1 N B_1$ равнобедренные.
- б) Найдите площадь четырёхугольника A_1MB_1N , если $A_1B_1=6$ и MN=4.
- **1.33.2.** Продолжения высот PP_1 и QQ_1 треугольника PQR с тупым углом при вершине R пересекаются в точке H. Точки A и B середины отрезков PQ и RH соответственно.
 - а) Докажите, что $P_1Q_1 \perp AB$.

- б) Найдите диагонали четырёхугольника AP_1BQ_1 , если PQ=10, RH=6 и AM=3BM, где M точка пересечения диагоналей.
- **1.34.1.** Дан треугольник *ABC*. Точки M_1, M_2, M_3 середины сторон *AB*, *BC* и *AC*, а точки H_1, H_2, H_3 основания высот, лежащие на тех же сторонах.
- а) Докажите, что из отрезков H_1M_2 , H_2M_3 и H_3M_1 можно построить треугольник.
- б) Найдите его периметр, если периметр треугольника ABC равен a.
- **1.34.2.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M, причём $BB_1 \perp CC_1$.
- а) Докажите, что из отрезков A_1M , A_1B_1 и A_1C_1 можно построить треугольник.
 - б) Найдите площадь этого треугольника, если $BB_1 = 18$ и $CC_1 = 9$.
- **1.35.1.** Высота AH и медиана AM треугольника ABC делят угол BAC треугольника ABC на три равные части, причём точка H лежит между B и M. Из точки M опущен перпендикуляр MK на сторону AC.
 - а) Докажите, что MK = BH.
 - б) Найдите углы треугольника АВС.
- **1.35.2.** Из вершины прямого угла C прямоугольного треугольника ABC проведены высота CH, медиана CM и биссектриса CL, причём $\angle HCM = \angle BCH + \angle ACM$.
 - а) Докажите, что $\angle ABC = 3 \angle BAC$.
 - б) Найдите отношение *HL*: *LM*.
- **1.36.1.** Медианы AM и BN треугольника ABC перпендикулярны и пересекаются в точке P.
 - а) Докажите, что CP = AB.
 - б) Найдите площадь треугольника ABC, если AC = 3 и BC = 4.
- **1.36.2.** Медианы LP и MQ треугольника KLM перпендикулярны и пересекаются в точке G.
 - а) Докажите, что отрезок PQ равен медиане GE треугольника LGM.
 - б) Найдите PQ, если KL = 22 и KM = 31.

§ 2. Удвоение медианы

Решение задачи 2 из диагностической работы

2. В треугольнике ABC проведена медиана BM. Известно, что $\frac{\sin \angle ABM}{\sin \angle CBM} = \frac{1}{2}$. Найдите отношение $\frac{BC}{AB}$.

Ответ:
$$\frac{1}{2}$$
.

Р е ш е н и е. На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Диагонали AC и BD четырёхугольника ABCD делятся точкой пересечения M пополам, значит, ABCD — параллелограмм. Поэтому

◁

$$AD = BC$$
 и $\angle ADB = \angle CBM$.

По теореме синусов из треугольника *ABD* находим, что

$$\frac{AD}{AB} = \frac{\sin \angle ABD}{\sin \angle ADB} = \frac{\sin \angle ABM}{\sin \angle CBM} = \frac{1}{2}.$$

Следовательно,
$$\frac{BC}{AB} = \frac{AD}{AB} = \frac{1}{2}$$
.

* * *

Во многих случаях для решения задачи удобно применить такое дополнительное построение, мы будем называть его удвоением медианы.

На продолжении медианы AM треугольника ABC за точку M отложим отрезок MD, равный AM. Тогда диагонали AD и BC четырёхугольника ABDC точкой пересечения M делятся пополам, значит, ABDC — параллелограмм. Далее применяем свойства параллелограмма.

Пример 1. Найдите площадь треугольника, если две его стороны равны 1 и $\sqrt{15}$, а медиана, проведённая к третьей, равна 2.

Ответ:
$$\frac{\sqrt{15}}{2}$$
.

Р е ш е н и е. Пусть AM — медиана треугольника ABC, AM=2, $AB=\sqrt{15}$, AC=1. На продолжении медианы AM за точку M отложим отрезок MD, равный AM. Тогда ABDC — параллелограмм, поэтому BD=AC=1.

Треугольник ABD прямоугольный, так как $AD^2 = AB^2 + BD^2$. Следовательно,

$$S_{\Delta ABC} = S_{\Delta ABD} = \frac{\sqrt{15}}{2}.$$

Пример 2. Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $\frac{1}{2}\sqrt{2a^2+2b^2-c^2}$.

Доказательство. Пусть AB = c, BC = a, AC = b— стороны треугольника ABC; CM = m— медиана треугольника.

На продолжении медианы CM за точку M отложим отрезок MD, равный CM. Тогда ACBD — параллелограмм. Поэтому

$$CD^2 + AB^2 = 2(AC^2 + BC^2)$$
, или $4m^2 + c^2 = 2(a^2 + b^2)$.

Отсюда находим, что

$$m^2 = \frac{1}{4}(2a^2 + 2b^2 - c^2).$$

Пример 3. Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.

Ответ: $\frac{3}{4}S$.

Р е ш е н и е. Пусть M — точка пересечения медиан треугольника ABC, A_1 , B_1 , C_1 — середины сторон BC, AC и AB соответственно, S — площадь треугольника ABC, S' — площадь треугольника, составленного из медиан треугольника ABC.

На продолжении медианы MA_1 треугольника BMC за точку A_1 отложим отрезок A_1D , равный MA_1 . Медианы треугольника делятся их точкой пересечения в отношении 2:1, считая от вершины, поэтому $MD=2A_1M=AM=\frac{2}{3}AA_1$. Четырёхугольник MBDC — параллелограмм, поэтому $CD=BM=\frac{2}{3}BB_1$. Кроме того, $CM=\frac{2}{3}CC_1$.

Таким образом, треугольник, составленный из медиан треугольника ABC, подобен треугольнику MDC, причём коэффициент подобия равен $\frac{3}{2}$, значит, $S'=\frac{9}{4}S_{\Delta MDC}$.

Известно, что медианы разбивают треугольник на шесть равновеликих треугольников, поэтому

$$S_{\Delta A_1 MC} = rac{1}{6}S$$
, a $S_{\Delta MDC} = 2S_{\Delta A_1 MC} = rac{1}{3}S$.

Следовательно,

$$S' = \frac{9}{4} S_{\Delta MDC} = \frac{9}{4} \cdot \frac{1}{3} S = \frac{3}{4} S.$$

Пример 4. Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2. Найдите площадь трапеции.

Ответ: 6.

Р е ш е н и е. Пусть M и K — середины оснований BC и AD трапеции ABCD, AC=3, BD=5. Через вершину C меньшего основания BC проведём прямую, параллельную диагонали BD, до пересечения с прямой AD в точке P и прямую, параллельную MK, до пересечения с прямой AD в точке Q. Тогда

$$AQ = AK + KQ = AK + MC = \frac{1}{2}AD + \frac{1}{2}BC =$$

= $\frac{1}{2}(AD + BC) = \frac{1}{2}(AD + DP) = \frac{1}{2}AP$,

поэтому CQ — медиана треугольника ACP. Теперь известно, что

$$CQ = MK = 2$$
, $AC = 3$, $CP = BD = 5$, $S_{ABCD} = S_{\triangle ACP}$.

На продолжении медианы CQ за точку Q отложим отрезок QF, равный CQ. Стороны треугольника CFP равны:

$$CF = 2CQ = 4$$
, $CP = BD = 5$, $FP = AC = 3$.

Этот треугольник прямоугольный ($CP^2 = CF^2 + PF^2$), поэтому

$$S_{\Delta CFP} = \frac{1}{2} \cdot CF \cdot PF = 6.$$

Следовательно,

$$S_{ABCD} = S_{\Delta ACP} = S_{\Delta CFP} = 6.$$

(Кстати, отрезок MK проходит через точку пересечения диагоналей трапеции, но это нам не понадобилось.)

Подготовительные задачи

- **2.1.** Медиана AM треугольника ABC равна m и образует со сторонами AB и AC углы α и β соответственно. Найдите эти стороны.
- **2.2.** В треугольнике *ABC* известно, что *BD* медиана, $BD = AB \cdot \frac{\sqrt{3}}{4}$, а ∠*DBC* = 90°. Найдите угол *ABD*.
- **2.3.** Найдите площадь треугольника, если две его стороны равны 27 и 29, а медиана, проведённая к третьей, равна 26.
- **2.4.** Стороны треугольника равны 11, 13 и 12. Найдите медиану, проведённую к большей стороне.
- **2.5.** В треугольнике две стороны равны 11 и 23, а медиана, проведённая к третьей, равна 10. Найдите третью сторону.
- **2.6.** В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.
- **2.7.** Основание равнобедренного треугольника равно $4\sqrt{2}$, а медиана, проведённая к боковой стороне, равна 5. Найдите боковые стороны.
- **2.8.** В треугольнике *ABC* известны стороны AB = 2 и AC = 4 и медиана $AM = \sqrt{7}$. Найдите угол *BAC*.
- **2.9.** В треугольнике *ABC* отрезок *AD* медиана, AD = m, AB = a, AC = b. Найдите угол *BAC*.

Тренировочные задачи

- **2.10.** Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей, равна 5. Найдите площадь треугольника.
- **2.11.** Найдите площадь треугольника, медианы которого равны 3, 4 и 5.
- **2.12.** Найдите площадь треугольника, медианы которого равны 10, 10 и 16.
- **2.13.** Найдите площадь треугольника, медианы которого равны 12, 15 и 21.
- **2.14.** Медиана AD и высота CE равнобедренного треугольника ABC (AB = BC) пересекаются в точке P. Найдите площадь треугольника ABC, если CP = 5, PE = 2.
- **2.15.** Медиана *AM* и биссектриса *CD* прямоугольного треугольника *ABC* ($\angle B = 90^{\circ}$) пересекаются в точке *O*. Найдите площадь треугольника *ABC*, если CO = 9, OD = 5.

2.16* Внутри прямоугольного треугольника ABC с прямым углом при вершине C отмечена точка O, причём OA = OB = b. Известно также, что CD — высота треугольника ABC, точка E — середина отрезка OC, DE = a. Найдите CE.

Задачи на доказательство и вычисление

- **2.17.1.** Медиана AM треугольника ABC продолжена за точку M на расстояние MD = AM.
 - а) Докажите, что CD = AB.
- б) Найдите площадь треугольника ABC, если AB=10, AC=12, AM=5.
- **2.17.2.** Медиана CK треугольника ABC продолжена за точку K на расстояние KM = CK.
 - а) Докажите, что $AM \parallel BC$.
- б) Найдите площадь треугольника ABC, если AC=10, BC=24, CK=13.
- **2.18.1.** В треугольнике ABC высота BD равна 6, медиана CE равна 5, расстояние от точки пересечения отрезков BD и CE до стороны AC равно 1.
 - а) Докажите, что CD:AD=1:4.
 - б) Найдите площадь треугольника АЕС.
- **2.18.2.** В треугольнике ABC высота AH равна 30, медиана BM равна 25, расстояние от точки пересечения отрезков BM и AH до стороны BC равно 6.
 - а) Докажите, что BH : CH = 1 : 3.
 - б) Найдите площадь треугольника АМВ.
- **2.19.1.** Дан треугольник *ABC* со сторонами AB = 3, $AC = \sqrt{73}$ и медианой AM = 4.
 - а) Докажите, что медиана АМ перпендикулярна стороне АВ.
- б) Найдите высоту треугольника ABC, проведённую из вершины A.
- **2.19.2.** Дан треугольник *ABC* со сторонами AB = 14, BC = 8 и медианой BM = 9.
 - а) Докажите, что треугольник АВС равнобедренный.
 - б) Найдите высоту треугольника ABC, проведённую из вершины B.
- **2.20.1.** На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M середина стороны AB.
 - а) Докажите, что $CM = \frac{1}{2}DK$.

- б) Найдите расстояния от точки M до центров квадратов, если AC = 6, BC = 10 и $\angle ACB = 30^{\circ}$.
- **2.20.2.** На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка L середина отрезка DK.
 - а) Докажите, что $CL = \frac{1}{2}AB$.
- б) Найдите расстояние между центрами квадратов, если $AC = 2\sqrt{2}$, $BC = 3\sqrt{6}$ и $\angle ACB = 60^{\circ}$.
- **2.21.1.** В трапеции ABCD основания BC и AD относятся как 1:2. Пусть K середина диагонали AC. Прямая DK пересекает сторону AB в точке L.
 - а) Докажите, что AL = 2BL.
- б) Найдите площадь четырёхугольника BCKL, если площадь трапеции ABCD равна 9.
- **2.21.2.** В трапеции ABCD основания BC и AD относятся как 1:3. Пусть M середина боковой стороны CD. Прямая AM пересекает диагональ BD в точке P.
 - а) Докажите, что BP:PD=4:3.
- б) Найдите площадь четырёхугольника BCMP, если площадь трапеции ABCD равна 56.
- **2.22.1.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.
 - а) Докажите, что треугольник АВС прямоугольный.
 - б) Найдите сумму квадратов медиан AA_1 и CC_1 , если AC = 30.
- **2.22.2.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Известно, что $AC = 6MB_1$.
 - а) Докажите, что треугольник АВС прямоугольный.
 - б) Найдите сумму квадратов медиан AA_1 и CC_1 , если AC = 12.
- **2.23.1.** Медиана *AM* и высота *CH* равнобедренного треугольника *ABC* (AB = BC) пересекаются в точке *K*. Известно, что CK = 5, KH = 1.
 - а) Докажите, что AH : BH = 1 : 4.
 - б) Найдите площадь треугольника АВС.
- **2.23.2.** Медиана GA и высота HB остроугольного равнобедренного треугольника FGH (FG = FH) пересекаются в точке C. Известно, что FG = 20, CH = 10.
 - а) Докажите, что tg $\angle AGF = \frac{CH}{FG}$.
 - б) Найдите площадь треугольника *FGH*.

- **2.24.1.** В треугольнике ABC биссектриса BE и медиана AD перпендикулярны.
 - а) Докажите, что CE = 2AE.
 - б) Найдите стороны треугольника ABC, если BE = AD = 8.
 - **2.24.2.** В треугольнике ABC сторона AB вдвое больше стороны AC.
 - а) Докажите, что медиана СМ перпендикулярна биссектрисе АК.
 - б) Найдите сторону BC, если AC = 5, AK = 4.

§ 3. Параллелограмм. Средняя линия треугольника

Решение задачи 3 из диагностической работы

3. В выпуклом четырёхугольнике *ABCD* отрезки, соединяющие середины противоположных сторон, пересекаются под углом 60° , а их длины относятся как 1:3. Чему равна меньшая диагональ четырёхугольника *ABCD*, если бо́льшая равна $\sqrt{39}$?

Ответ: $\sqrt{21}$.

Решение. Середины сторон любого четырёхугольника являются вершинами параллелограмма, стороны которого параллельны диагоналям четырёхугольника и соответственно равны их полови-

нам. Обозначим через x и 3x половины диагоналей параллелограмма. Поскольку угол между ними равен 60° , то по теореме косинусов квадраты сторон параллелограмма равны

$$x^2 + 9x^2 - 3x^2 = 7x^2$$
, $x^2 + 9x^2 + 3x^2 = 13x^2$.

Поскольку бо́льшая диагональ четырёхугольника равна $\sqrt{39}$, бо́льшая сторона параллелограмма равна $\frac{\sqrt{39}}{2}$, т. е. $13x^2=\frac{39}{4}$, откуда $x=\frac{\sqrt{3}}{2}$. Тогда меньшая сторона параллелограмма равна $x\sqrt{7}=\frac{\sqrt{21}}{2}$. Следовательно, меньшая диагональ данного четырёхугольника равна $\sqrt{21}$.

* * *

Для решения задач этого раздела нужно знать свойства и признаки параллелограмма, теорему о средней линии треугольника, теорему о медианах треугольника (медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины треугольника), а также следующие важные факты.

Теорема. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть AC и BD — диагонали параллелограмма ABCD. По теореме косинусов из треугольников ABD и ACD находим, что

$$BD^2 = AB^2 + AD^2 - 2AB \cdot AD \cos \angle BAD$$
,

$$AC^{2} = AD^{2} + CD^{2} - 2AD \cdot CD \cos \angle ADC =$$

$$= AD^{2} + CD^{2} - 2AD \cdot CD \cos(180^{\circ} - \angle BAD) =$$

$$= AD^{2} + CD^{2} + 2AD \cdot CD \cos \angle BAD.$$

Следовательно,

$$BD^2 + AC^2 = 2 \cdot AB^2 + 2 \cdot AD^2.$$

П

Теорема доказана.

Теорема. Середины сторон любого четырёхугольника являются вершинами параллелограмма.

Доказательство. Пусть M, N, K, L—середины сторон соответственно AB, BC, CD, AD четырёхугольника ABCD. Поскольку MN—средняя линия треугольника ABC, то $MN=\frac{1}{2}AC$ и $MN\parallel AC$. Аналогично докажем, что $KL=\frac{1}{2}AC$ и $KL\parallel AC$. Значит, MN=KL и

 $MN \parallel KL$. Следовательно, четырёхугольник MNKL — параллелограмм. Теорема доказана.

Пример 1. В выпуклом четырёхугольнике отрезки, соединяющие середины противоположных сторон, равны соответственно a и b и пересекаются под углом 60° . Найдите диагонали четырёхугольника.

Omsem:
$$\sqrt{a^2 + b^2 + ab}$$
, $\sqrt{a^2 + b^2 - ab}$.

Р е ш е н и е. Середины сторон любого четырёхугольника являются вершинами параллелограмма. В данном случае диагонали параллелограмма равны a и b, а угол между ними равен 60° .

Стороны параллелограмма найдём по теореме косинусов:

$$\frac{1}{2}\sqrt{a^2+b^2+ab}$$
, $\frac{1}{2}\sqrt{a^2+b^2-ab}$.

Следовательно, диагонали данного четырехугольника равны

$$\sqrt{a^2+b^2+ab}$$
 и $\sqrt{a^2+b^2-ab}$.

Пример 2. В выпуклом четырёхугольнике ABCD длина отрезка, соединяющего середины сторон AB и CD, равна 1. Прямые BC и AD перпендикулярны. Найдите длину отрезка, соединяющего середины диагоналей AC и BD.

Ответ: 1.

Решение. Пусть M и N— середины сторон соответственно AB и CD четырёхугольника ABCD, а P и Q— середины его диагоналей (соответственно AC и BD). Тогда MP— средняя линия треугольника ABC, а QN— средняя линия треугольника DBC. Поэтому $MP = \frac{1}{2}BC = QN$, $MP \parallel BC \parallel QN$.

Значит, четырёхугольник *MPNQ* — параллелограмм. Его соседние стороны *MP* и *MQ* соответственно параллельны прямым *BC* и *AD*,

поэтому $MP \perp MQ$. Следовательно, четырёхугольник MPNQ — прямоугольник. Диагонали прямоугольника равны, поэтому PQ = MN = 1.

Пример 3. Вершины одного параллелограмма лежат по одной на сторонах другого. Докажите, что центры параллелограммов совпадают.

Доказательство. Пусть вершины K, L, M и N параллелограмма KLMN лежат соответственно на сторонах AB, BC, CD и AD параллелограмма ABCD, а диагональ LN первого параллелограмма пересекается с диагональю AC второго в точке O.

Треугольники CLM и ANK равны по стороне и прилежащим к ней углам, поэтому CL = AN. Тогда треугольники COL и AON также равны по стороне и прилежащим к ней углам, значит, CO = AO и LO = ON. Таким образом, точка O — общая середина диагонали LN параллелограмма KLMN и диагонали AC параллелограмма ABCD, т. е. O — общий центр этих параллелограммов, что и требовалось доказать.

Подготовительные задачи

- **3.1.** Расстояние между серединами взаимно перпендикулярных хорд AC и BC некоторой окружности равно 10. Найдите диаметр окружности.
- **3.2.** Диагональ параллелограмма делит его угол на части в 30° и 45° . Найдите отношение сторон параллелограмма.
- **3.3.** Вершины M и N квадрата KLMN лежат на гипотенузе AB прямоугольного треугольника ABC (N между B и M), а вершины K и L на катетах BC и AC соответственно. Известно, что AM=a и BN=b. Найдите площадь квадрата.
- **3.4.** Сторона *BC* параллелограмма *ABCD* вдвое больше стороны *AB*. Биссектрисы углов *A* и *B* пересекают прямую *CD* в точках *M* и *N*, причём MN = 12. Найдите стороны параллелограмма.

- **3.5.** Найдите расстояние от центра ромба до его стороны, если острый угол ромба равен 30° , а сторона равна 4.
- **3.6.** В четырёхугольнике *ABCD* известны углы: $\angle DAB = 90^{\circ}$, $\angle DBC = 90^{\circ}$. Кроме того, DB = a, DC = b. Найдите расстояние между центрами двух окружностей, одна из которых проходит через точки D, A, B, а другая через точки B, C, D.
- **3.7.** На сторонах AB и CD прямоугольника ABCD взяты точки K и M так, что AKCM ромб. Диагональ AC образует со стороной AB угол 30° . Найдите сторону ромба, если наибольшая сторона прямоугольника ABCD равна 3.

Тренировочные задачи

- **3.8.** В треугольник, две из трёх сторон которого равны 9 и 15, вписан параллелограмм так, что одна из его сторон, равная 6, лежит на третьей стороне треугольника, а диагонали параллелограмма параллельны двум данным сторонам треугольника. Найдите другую сторону параллелограмма и третью сторону треугольника.
- **3.9.** Стороны параллелограмма равны a и b ($a \neq b$). Найдите диагонали четырёхугольника, образованного пересечениями биссектрис углов параллелограмма.
- **3.10.** Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, взаимно перпендикулярны и равны 2 и 7. Найдите площадь четырёхугольника.
- **3.11.** Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, равны между собой. Найдите площадь четырёхугольника, если его диагонали равны 8 и 12.
- **3.12.** Дан выпуклый четырёхугольник, диагонали которого перпендикулярны и равны a и b. Найдите площадь четырёхугольника c вершинами в серединах сторон данного.
- **3.13.** Диагонали трапеции взаимно перпендикулярны, а средняя линия равна 5. Найдите отрезок, соединяющий середины оснований.
- **3.14.** Диагонали выпуклого четырёхугольника равны a и b, а отрезки, соединяющие середины противоположных сторон, равны между собой. Найдите площадь четырёхугольника.
- **3.15.** Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45° . Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.

- **3.16.** В четырёхугольнике *ABCD* диагонали *AC* и *BD* относятся как 1:4, а угол между ними равен 60° . Чему равен больший из отрезков, соединяющих середины противоположных сторон четырёхугольника *ABCD*, если меньший равен $\sqrt{26}$?
- **3.17.** Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через вершину B и середину стороны BC. Найдите углы параллелограмма.
- **3.18.** Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C. Известно, что периметр треугольника ABC равен 10. Найдите PM.
- **3.19.** Прямая имеет с параллелограммом ABCD единственную общую точку B. Вершины A и C удалены от этой прямой на расстояния, равные a и b. На какое расстояние удалена от этой прямой вершина D?
- **3.20.** Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника. Найдите расстояние от вершины прямого угла треугольника до центра квадрата, если катеты треугольника равны a и b.
- **3.21.** В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC. Найдите угол, образованный продолжениями сторон AB и CD.
- **3.22.** Дан параллелограмм со сторонами 1 и 2 и острым углом 60° . На двух его противоположных сторонах как на основаниях построены вне параллелограмма равнобедренные треугольники с углами 120° при вершинах. Найдите расстояние между этими вершинами.
- **3.23.** Четырёхугольник *ABCD*, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.
- **3.24*** Точки M, K, N и L середины сторон соответственно AB, BC, CD и DE пятиугольника ABCDE, P и Q середины отрезков MN и KL соответственно. Известно, что PQ = 1. Найдите сторону AE.

Задачи на доказательство и вычисление

- **3.25.1.** Четырёхугольник *ABCD* вписан в окружность с центром O. Диагонали четырёхугольника перпендикулярны, пересекаются в точке P, отличной от O, и не проходят через точку O. Точки M и N середины диагоналей AC и BD соответственно.
 - а) Докажите, что прямая OP проходит через середину отрезка MN.

- б) Найдите площадь четырёхугольника OMPN, если AC = BD, а MN = 10.
- **3.25.2.** Четырёхугольник ABCD вписан в окружность с центром O. Диагонали четырёхугольника равны и перпендикулярны, пересекаются в точке P, отличной от O, и не проходят через точку O. Точки M и N середины диагоналей AC и BD соответственно.
 - а) Докажите, что четырёхугольник ОМР квадрат.
- б) Найдите площадь этого квадрата, если радиус окружности равен 13 и AC = BD = 24.
 - **3.26.1.** Дан четырёхугольник *ABCD*.
- а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.
- б) Найдите площадь четырёхугольника *ABCD*, если $LM = 3\sqrt{3}$, $KM = 6\sqrt{3}$, $\angle KML = 60^{\circ}$.
 - **3.26.2.** Дан четырёхугольник *ABCD*.
- а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.
- б) Найдите площадь четырёхугольника *ABCD*, если KL = 6, $KM = 4\sqrt{3}$, $\angle MKL = 30^{\circ}$.
- **3.27.1.** В параллелограмме лежат две окружности, касающиеся друг друга и трёх сторон параллелограмма каждая.
- а) Докажите, что одна из сторон параллелограмма видна из центра одной из окружностей под прямым углом.
- б) Найдите площадь параллелограмма, если радиус одной из окружностей равен 2, а один из отрезков стороны параллелограмма от вершины до точки касания с одной из окружностей равен 4.
- **3.27.2.** В параллелограмме *ABCD*, одна из сторон которого вдвое больше другой, лежат две окружности, касающиеся друг друга и трёх сторон параллелограмма каждая.
- а) Докажите, что прямая, проходящая через вершину A параллелограмма и центр ближайшей к ней окружности, делит пополам сторону BC.
 - б) Найдите площадь параллелограмма, если $AC = 4\sqrt{5}$.
- **3.28.1.** Отрезок, соединяющий вершину A ромба ABCD с серединой стороны BC, равен стороне ромба.
- а) Докажите, что высота ромба, проведённая из вершины C, делит сторону AD на отрезки, один из которых втрое больше другого.
 - б) Найдите диагональ AC ромба, если сторона ромба равна $\sqrt{6}$.

- **3.28.2.** Диагонали параллелограмм ABCD пересекаются в точке O.
- а) Докажите, что прямая, проходящая через вершину B и середину отрезка OC, делит сторону CD на отрезки, один из которых вдвое больше другого.
- б) Пусть ABCD ромб с диагоналями BD=18, AC=48. Найдите длину отрезка этой прямой, заключённого внутри ромба.
- **3.29.1.** Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через точку пересечения диагоналей параллелограмма.
 - а) Докажите, что АВСО ромб.
- б) Эта окружность пересекает сторону AB в точке M, причём AM: MB = 2:1. Найдите диагональ AC, если $AD = \sqrt{6}$.
- **3.29.2.** На стороне AD ромба ABCD как на диаметре построена окружность.
- а) Докажите, что она проходит через точку пересечения диагоналей ромба.
- б) Эта окружность пересекает сторону AB в середине M. Найдите CM, если $AD = 2\sqrt{7}$.
- **3.30.1.** В треугольнике ABC проведены биссектрисы AA_1 и CC_1 , точки K и M основания перпендикуляров, опущенных из точки B на прямые AA_1 и CC_1 .
 - а) Докажите, что $MK \parallel AC$.
- б) Найдите площадь треугольника KBM, если AC=10, BC=6, AB=8.
- **3.30.2.** В треугольнике *ABC* с углом 120° при вершине *A* проведены биссектрисы BB_1 и CC_1 , *P* и Q основания перпендикуляров, опущенных из точки *A* на прямые BB_1 и CC_1 .
 - а) Докажите, что $\angle PAQ = 30^{\circ}$.
- б) Найдите площадь части треугольника ABC, заключённой между лучами AP и AQ, если AP=6, AQ=8.
- **3.31.1.** В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона HF лежит на отрезке BC, а вершина E на отрезке AB.
 - а) Докажите, что FH = 2DH.
 - б) Найдите площадь прямоугольника DEFH, если AB = 4.
- **3.31.2.** В равнобедренном прямоугольном треугольнике ABC с прямым углом при вершине B проведена биссектриса AK. В треугольник

ABC вписан прямоугольник KLMN так, что сторона MN лежит на отрезке AC, а вершина L — на отрезке AB.

- а) Докажите, что $MN = \sqrt{2KN}$.
- б) Найдите площадь прямоугольника KLMN, если AB = 1.
- **3.32.1.** Дан параллелограмм ABCD. Окружности, вписанные в треугольники ABD и BDC, касаются диагонали BD в точках M и N соответственно. Окружности, вписанные в треугольники ABC и ADC, касаются диагонали AC в точках K и L соответственно.
 - а) Докажите, что MKNL прямоугольник.
- б) Найдите площадь этого прямоугольника, если известно, что BC-AB=4, а угол между диагоналями параллелограмма ABCD равен 30° .
- **3.32.2.** Дан прямоугольник ABCD. Окружности, вписанные в треугольники ABD и BDC, касаются диагонали BD в точках M и N соответственно. Окружности, вписанные в треугольники ABC и ADC, касаются диагонали AC в точках K и L соответственно.
 - а) Докажите, что MKNL прямоугольник, подобный исходному.
- б) Найдите коэффициент подобия, если косинус угла между диагоналями исходного прямоугольника равен $\frac{7}{25}$.

§ 4. Трапеция

Решение задачи 4 из диагностической работы

4. Найдите площадь трапеции с основаниями 18 и 13 и боковыми сторонами 3 и 4.

Ответ: 37,2.

Р е ш е н и е. Через вершину C меньшего основания BC трапеции ABCD (BC=13, AD=18, AB=4, CD=3) проведём прямую, параллельную боковой стороне AB, до пересечения с основанием AD в точке K. Тогда CK=AB=4, DK=AD-AK=AD-BC=18-13=5, CD=3.

Треугольник *КСD* прямоугольный, так как $KD^2 = CD^2 + CK^2$. Его высота, опущенная на гипотенузу, равна $\frac{3\cdot 4}{5} = \frac{12}{5}$. Следовательно,

$$S_{ABCD} = \frac{18+13}{2} \cdot \frac{12}{5} = 37,2.$$

* * *

При решении задач на трапецию во многих случаях полезны дополнительные построения, связанные с параллельным переносом боковой стороны или диагонали.

Пример 1. Найдите площадь трапеции, диагонали которой равны 7 и 8, а основания — 3 и 6.

Ответ: $12\sqrt{5}$.

Р е ш е н и е. Через вершину C меньшего основания BC трапеции ABCD (BC=3, AD=6, BD=8, AC=7) проведём прямую, параллель-

ную диагонали BD, до пересечения с прямой AD в точке K. Найдём стороны треугольника ACK:

$$AC = 7$$
, $CK = BD = 8$, $AK = AD + DK = AD + BC = 6 + 3 = 9$.

По формуле Герона

$$S_{\triangle ACK} = \sqrt{12 \cdot 5 \cdot 4 \cdot 3} = 6 \cdot 2\sqrt{5} = 12\sqrt{5},$$

а так как треугольники CDK и ABC равновелики, получаем

$$S_{ABCD} = S_{\Delta ACK} = 12\sqrt{5}.$$

* * *

При решении задач, связанных с равнобедренной трапецией, кроме общеизвестных свойств и признаков (углы при основании равны, диагонали равны и образуют равные углы с основанием и т. д.) иногда полезно применить следующее свойство: проекция боковой стороны равнобедренной трапеции на основание равна полуразности оснований, а проекция диагонали — полусумме.

Пример 2. Трапеция *ABCD* с основаниями *AD* и *BC* (*AD* > *BC*) вписана в окружность с центром *O*. Известно, что $\sin \angle AOB = \frac{3}{5}$, а средняя линия трапеции равна a. Найдите высоту трапеции.

Ответ: За или $\frac{1}{3}$ а.

Р е ш е н и е. Трапеция *ABCD* вписана в окружность, поэтому она равнобедренная. Обозначим $\angle AOB = \alpha$. Поскольку *AOB* — центральный угол окружности, а *ADB* — вписанный,

$$\angle ADB = \frac{1}{2} \angle AOB = \frac{\alpha}{2}.$$

Пусть BH — высота трапеции. Тогда $DH = \frac{AD + BC}{2}$, т. е. катет DH прямоугольного треугольника BHD равен средней линии трапеции. Следовательно, BH = DH tg $\frac{\alpha}{2} = a$ tg $\frac{\alpha}{2}$.

По условию задачи $\sin \alpha = \frac{3}{5}$, поэтому

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$$

или

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{4}{5}.$$

Тогда

$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{\frac{3}{5}}{1 + \frac{4}{5}} = \frac{1}{3}$$

или

$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{\frac{3}{5}}{1 - \frac{4}{5}} = 3.$$

Следовательно, $BD = a \operatorname{tg} \frac{\alpha}{2} = \frac{1}{3} a$ или BD = 3a.

Отметим ещё одно важное свойство трапеции.

Иногда эту теорему называют замечательным свойством трапеции.

◁

Теорема. Точка пересечения диагоналей любой трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.

Доказательство. Пусть диагонали AC и BD трапеции ABCD пересекаются в точке P, а продолжения боковых сторон AB и CD — в точке Q.

Через середину M основания BC и точку P проведём прямую. Пусть она пересекает основание AD в точке N. Тогда треугольник BMP подобен треугольнику DNP, а треугольник CMP — треугольнику ANP, причём в обоих случаях коэффициент подобия равен $\frac{MP}{PN}$. Значит, $\frac{BM}{DN} = \frac{MP}{PN} = \frac{CM}{AN}$, а так как BM = CM, то $DN = \frac{BM \cdot AN}{CM} = AN$, т. е. N — середина основания AD. Следовательно, отрезок, соединяющий середины оснований трапеции, проходит через точку пересечения диагоналей.

Аналогично докажем, что прямая, проведённая через середины оснований трапеции, проходит через точку пересечения Q продолжений боковых сторон. Следовательно, точки P, Q и середины оснований трапеции лежат на одной прямой, что и требовалось доказать.

Подготовительные задачи

- **4.1.** Найдите площадь трапеции, параллельные стороны которой равны 16 и 44, а непараллельные 17 и 25.
- **4.2.** Найдите площадь трапеции с основаниями 11 и 4 и диагоналями 9 и 12.
- **4.3.** В равнобедренной трапеции основания равны 40 и 24, а её диагонали взаимно перпендикулярны. Найдите площадь трапеции.
- **4.4.** Диагонали равнобедренной трапеции перпендикулярны. Найдите площадь трапеции, если её средняя линия равна 5.
- **4.5.** Трапеция с основаниями 14 и 40 вписана в окружность радиуса 25. Найдите высоту трапеции.

- **4.6.** Диагональ равнобедренной трапеции равна 10 и образует угол 60° с основанием трапеции. Найдите среднюю линию трапеции.
- **4.7.** Окружность с центром O вписана в трапецию с боковой стороной AB. Найдите угол AOB.
- **4.8.** Меньшая боковая сторона прямоугольной трапеции равна 3, а бо́льшая образует угол 30° с одним из оснований. Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.
- **4.9.** Основания трапеции равны 1 и 6, а диагонали 3 и 5. Под каким углом видны основания из точки пересечения диагоналей?
- **4.10.** Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции.
- **4.11.** Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45°. Найдите площадь трапеции.

Тренировочные задачи

- **4.12.** В трапеции ABCD углы A и D при основании AD соответственно равны 60° и 90° . Точка N лежит на основании BC, причём BN:BC=2:3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB:BC.
- **4.13.** Площадь равнобедренной трапеции, описанной около окружности, равна S. Найдите среднюю линию трапеции, если острый угол при её основании равен α .
- **4.14.** Окружность, вписанная в трапецию, касается одной из боковых сторон в точке, делящей её на отрезки, равные a и b. Найдите радиус окружности.
- **4.15.** В прямоугольную трапецию вписана окружность радиуса R. Найдите стороны трапеции, если её меньшее основание равно $\frac{4}{3}R$.
- **4.16.** Боковая сторона равнобедренной трапеции равна a, средняя линия равна b, а углы при большем основании равны 30° . Найдите радиус окружности, описанной около трапеции.
- **4.17.** Основания трапеции равны 4 и 16. Найдите радиусы окружностей, вписанной в трапецию и описанной около неё, если известно, что эти окружности существуют.
- **4.18.** Окружность вписана в равнобедренную трапецию с основаниями *а* и *b*. Найдите диагональ трапеции.

- **4.19.** Известно, что высота трапеции равна 15, а диагонали трапеции равны 17 и 113. Чему равна площадь трапеции?
- **4.20.** Боковые стороны трапеции лежат на перпендикулярных прямых. Найдите площадь четырёхугольника с вершинами в серединах диагоналей и серединах оснований трапеции, если её боковые стороны равны a и b.
- **4.21.** Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.
- **4.22.** Трапеция с высотой h вписана в окружность. Боковая сторона трапеции видна из центра окружности под углом 120° . Найдите среднюю линию трапеции.
- **4.23.** Площадь равнобедренной трапеции равна $\sqrt{3}$. Угол между диагональю и основанием на 20° больше угла между диагональю и боковой стороной. Найдите острый угол трапеции, если её диагональ равна 2.
- **4.24.** Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании. Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.
- **4.25.** Четырёхугольник *ABCD* вписан в окружность с центром O, $\angle BOA = \angle COD = 60^\circ$. Перпендикуляр BK, опущенный из вершины B на сторону AD, равен 6; BC в три раза меньше AD. Найдите площадь треугольника COD.
- **4.26.** Дана трапеция ABCD с основаниями $AD=3\sqrt{39}$ и $BC=\sqrt{39}$. Кроме того, дано, что угол BAD равен 30°, а угол ADC равен 60°. Через точку D проходит прямая, делящая трапецию на две равновеликие фигуры. Найдите длину отрезка этой прямой, находящегося внутри трапеции.
- **4.27.** Отрезок, соединяющий середины оснований трапеции, равен 3. Углы при большем основании трапеции равны 30° и 60° . Найдите высоту трапеции.
- **4.28.** В трапеции *ABCD* известны боковые стороны AB = 27, CD = 28, основание BC = 5 и $\cos \angle BCD = -\frac{2}{7}$. Найдите диагональ AC.
- **4.29.** Основание AB трапеции ABCD вдвое больше основания CD и вдвое больше боковой стороны AD. Диагональ AC равна a, а боковая сторона BC равна b. Найдите площадь трапеции.
- **4.30.** Трапеция ABCD разделена прямой, параллельной её основаниям AD и BC, на две равновеликие трапеции. Найдите отрезок этой

- прямой, заключённый между боковыми сторонами, если основания трапеции равны a и b.
- **4.31.** В трапеции ABCD ($AD \parallel BC$) угол ADB в два раза меньше угла ACB. Известно, что BC = AC = 5 и AD = 6. Найдите площадь трапеции.
- **4.32.** Дана трапеция *ABCD*, диагонали *AC* и *BD* которой пересекаются под прямым углом, а продолжения боковых сторон *AB* и *DC* пересекаются в точке K под углом 30°. Известно, что $\angle BAC = \angle CDB$, а площадь трапеции равна S. Найдите площадь треугольника AKD.
- **4.33.** Окружность, построенная на основании AD трапеции ABCD как на диаметре, проходит через середины боковых сторон AB и CD трапеции и касается основания BC. Найдите углы трапеции.
- **4.34.** Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.
- **4.35.** Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.
- **4.36*** Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение высоты трапеции к радиусу описанной окружности равно $\sqrt{\frac{2}{3}}$. Найдите углы трапеции.
- **4.37*** На боковых сторонах AB и CD трапеции ABCD взяты точки P и Q соответственно, причём AP:PB=2:3. Отрезок PQ разбивает трапецию на части, одна из которых по площади втрое больше другой. Найдите отношение CQ:QD, если AD=2BC.
- **4.38*** Около окружности описана трапеция ABCD, боковая сторона AB перпендикулярна основаниям, M точка пересечения диагоналей трапеции. Площадь треугольника CMD равна S. Найдите радиус окружности.

Задачи на доказательство и вычисление

- **4.39.1.** Окружность с центром O вписана в равнобедренную трапецию ABCD с боковой стороной AB.
 - а) Докажите, что треугольник АОВ прямоугольный.
- б) Найдите площадь трапеции, если радиус окружности равен 2, а точка касания делит боковую сторону трапеции в отношении 1:4.

- **4.39.2.** Окружность с центром O вписана в равнобедренную трапецию ABCD с боковой стороной AB. Прямые AO и BC пересекаются в точке E.
 - а) Докажите, что *O* середина *AE*.
 - б) Найдите радиус окружности, если AB = 30, $BO = 3\sqrt{10}$.
- **4.40.1.** Через вершину B трапеции ABCD с основаниями AD и BC проведена прямая, параллельная диагонали AC. Пусть эта прямая пересекается с продолжением основания AD в точке E.
 - а) Докажите, что треугольник DBE равновелик трапеции ABCD.
- б) Найдите площадь трапеции, диагонали которой равны 10 и 24, а средняя линия равна 13.
- **4.40.2.** Через вершину B трапеции ABCD с основаниями AD и BC проведена прямая, параллельная диагонали AC. Пусть эта прямая пересекается с продолжением основания AD в точке E.
- а) Докажите, что медиана BK треугольника DBE равна отрезку, соединяющему середины оснований трапеции.
- б) Найдите площадь трапеции, если её диагонали равны 16 и 30, а отрезок, соединяющий середины оснований, равен 17.
 - **4.41.1.** Боковая сторона *CD* трапеции *ABCD* равна основанию *AD*.
 - а) Докажите, что *CA* биссектриса угла *BCD*.
- б) Прямая, проходящая через вершину C перпендикулярно CD, пересекает боковую сторону AB в точке M. Найдите отношение BM:AM, если AD=CD=2BC и $\angle ADC=60^\circ$.
- **4.41.2.** Диагональ AC трапеции ABCD с основаниями BC и AD является биссектрисой угла BCD.
 - а) Докажите, что AD = CD.
- б) Прямая, проходящая через вершину D перпендикулярно AC, пересекает боковую сторону AB в точке M. Найдите отношение BM:AM, если AD=2BC.
- **4.42.1.** Прямая, параллельная основаниям BC и AD трапеции ABCD, пересекает боковые стороны AB и CD в точках M и N соответственно, а диагонали AC и BD в точках K и L соответственно, причём точка K лежит между M и L.
 - а) Докажите, что MK = NL.
 - б) Найдите MN, если BC = a, AD = b и MK : KL : LN = 1 : 2 : 1.
- **4.42.2.** Прямая, параллельная основаниям BC и AD трапеции ABCD, пересекает боковые стороны AB и CD в точках M и N соответственно, а диагонали AC и BD в точках K и L соответственно, причём точка K лежит между M и L.
 - а) Докажите, что ML = KN.
 - б) Найдите MN, если BC = 2, AD = 3 и MK : KL : LN = 3 : 1 : 3.

- **4.43.1.** В равнобедренную трапецию ABCD с основаниями AD и BC вписана окружность, CH высота трапеции.
- а) Докажите, что центр окружности, вписанной в трапецию, лежит на отрезке BH.
- б) Найдите диагональ AC, если средняя линия трапеции равна $2\sqrt{7}$, а $\angle AOD=120^\circ$, где O центр окружности, вписанной в трапецию, а AD большее основание.
- **4.43.2.** В равнобедренную трапецию ABCD с основаниями AD и BC вписана окружность с центром O, CH высота трапеции.
 - а) Докажите, что треугольник АВН равнобедренный.
- б) Найдите площадь треугольника ACH, если боковая сторона трапеции равна 2, $\angle BOC = 60^{\circ}$, а BC меньшее основание.
- **4.44.1.** Точки L и N середины оснований BC и AD трапеции ABCD соответственно, а точки K и M середины диагоналей AC и BD соответственно. Известно, что KM = LN.
- а) Докажите, что сумма углов при одном из оснований трапеции равна 90° .
- б) Найдите высоту трапеции, если площадь четырёхугольника KLMN равна 12, а разность оснований трапеции равна 10.
- **4.44.2.** Точки L и N середины оснований соответственно BC и AD трапеции ABCD, а точки K и M середины диагоналей AC и BD соответственно. Известно, что прямые AB и CD перпендикулярны.
 - а) Докажите, что LN = KM.
- б) Найдите высоту трапеции, если площадь четырёхугольника *KLMN* равна 60, а разность оснований трапеции равна 26.
- **4.45.1.** Окружность, проходящая через вершины A, B и C трапеции ABCD с основаниями AD и BC, вторично пересекает прямую AD в точке M.
 - а) Докажите, что AC = BM.
 - б) Найдите AC, если AD = 16, $CD = 8\sqrt{3}$ и $\angle AMB = 60^{\circ}$.
- **4.45.2.** Окружность, проходящая через вершины K, P, M трапеции KPMH с основаниями MP и KH, вторично пересекает прямую KH в точке E.
 - а) Докажите, что ME = KP.
 - б) Найдите *KH*, если $MH = 7\sqrt{2}$, PE = 14 и $\angle PEK = 45^{\circ}$.
- **4.46.1.** Дана трапеция, в которую можно вписать окружность и около которой можно описать окружность.
- а) Докажите, что проекция диагонали этой трапеции на большее основание равна боковой стороне.

- б) Найдите расстояние между центрами вписанной и описанной окружностей, если основания трапеции равны 3 и 27.
- **4.46.2.** Дана трапеция, в которую можно вписать окружность и около которой можно описать окружность.
- а) Докажите, что проекция диагонали этой трапеции на большее основание равна полусумме оснований.
- б) Найдите расстояние между центрами вписанной и описанной окружностей, если диагональ трапеции равна $\sqrt{41}$, а большее основание равно 8.
- **4.47.1.** Диагональ *BD* трапеции *ABCD* ($AD \parallel BC$) разбивает её на два равнобедренных треугольника с основаниями *AD* и *DC*.
 - а) Докажите, что луч *AC* биссектриса угла *BAD*.
- б) Найдите CD, если известны диагонали трапеции: BD = 5 и AC = 8.
- **4.47.2.** В трапеции *ABCD* (*AD* \parallel *BC*) угол *ADB* в два раза меньше угла *ACB* и *BC* = *AC*.
 - а) Докажите, что точки A, B и D лежат на окружности с центром C.
 - б) Найдите площадь трапеции, если BC = 5 и AD = 6.
- **4.48.1.** Окружность с центром O_1 вписана в прямоугольную трапецию ABCD с прямым углом при вершине A. Окружность с центром O_2 касается большей боковой стороны CD и продолжений оснований трапеции.
 - а) Докажите, что O_1CO_2D прямоугольник.
- б) Найдите площадь этого прямоугольника, если точка касания M вписанной в трапецию окружности делит меньшее основание на отрезки BM=6 и CM=4.
- **4.48.2.** Окружность с центром O_1 вписана в равнобедренную трапецию *ABCD* с основаниями *BC* и *AD*. Окружность с центром O_2 касается боковой стороны *CD* и продолжений оснований трапеции.
 - а) Докажите, что O_1CO_2D прямоугольник.
 - б) Найдите площадь этого прямоугольника, если BC = 6 и AD = 24.
- **4.49.1.** В окружность вписаны две трапеции. Основания и боковые стороны одной из них соответственно параллельны основаниям и боковым сторонам другой.
- a) Докажите, что диагонали одной трапеции равны диагоналям другой.
- б) Найдите отношение площадей этих трапеций, если известно, что боковая сторона одной из них равна радиусу окружности, а боковая сторона другой в два раза меньше.

- **4.49.2.** Дана трапеция ABCD с основаниями AD и BC. Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Известно, что площади треугольников AMO и CNO равны.
 - а) Докажите, что $CM \parallel AN$.
 - б) Найдите MN, если AD = a и BC = b.

§ 5. Как находить высоты и биссектрисы треугольника?

Решение задачи 5 из диагностической работы

5. Две стороны треугольника равны 3 и 6, а угол между ними равен 60° . Найдите биссектрису треугольника, проведённую из вершины этого угла.

Ответ: $2\sqrt{3}$.

Р е ш е н и е. Пусть AD — биссектриса треугольника ABC, в котором AB = 6, AC = 3, ∠BAC = 60°.

Первый способ. Обозначим AD = x. Тогда

$$S_{\Delta ABC} = \frac{1}{2} \cdot AB \cdot AC \cdot \sin 60^{\circ} = \frac{1}{2} \cdot 6 \cdot 3 \cdot \frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{2}.$$

С другой стороны,

$$\begin{split} S_{\Delta ABC} &= S_{\Delta ABD} + S_{\Delta ACD} = \frac{1}{2}AB \cdot AD \cdot \sin 30^\circ + \frac{1}{2}AC \cdot AD \cdot \sin 30^\circ = \\ &= \frac{1}{2} \cdot 6 \cdot x \cdot \frac{1}{2} + \frac{1}{2} \cdot 3 \cdot x \cdot \frac{1}{2} = \frac{9}{4}x. \end{split}$$

Из уравнения
$$\frac{9}{4}x = \frac{9\sqrt{3}}{2}$$
 находим, что $x = 2\sqrt{3}$.

Второй способ. Заметим, что треугольник ABC прямоугольный. Тогда треугольник ACD также прямоугольный, причём $\angle CAD = 30^{\circ}$. Следовательно,

$$AD = AC : \cos \angle CAD = 3 : \cos 30^{\circ} = 2\sqrt{3}.$$

* * *

Высоту прямоугольного треугольника, проведённую из вершины прямого угла, удобно находить так: вычислить двумя способами площадь треугольника — как половину произведения катетов и как по-

ловину произведения гипотенузы на искомую высоту — и затем из полученного равенства выразить эту высоту. Таким образом, высота прямоугольного треугольника, проведённая из вершины прямого угла, равна произведению катетов, делённому на гипотенузу.

Биссектрису треугольника также можно находить, вычисляя разными способами площадь треугольника.

Пример 1. Катеты прямоугольного треугольника равны 15 и 8. Найдите высоту, опущенную на гипотенузу.

Ответ: $\frac{120}{17}$.

Решение. Гипотенуза треугольника равна

◁

$$\sqrt{15^2 + 8^2} = 17.$$

Следовательно, искомая высота равна $\frac{15 \cdot 8}{17} = \frac{120}{17}$.

Высоту равнобедренного треугольника, опущенную на боковую сторону, также удобно вычислять с помощью площадей.

Пример 2. Дан треугольник со сторонами a, b и b. Найдите высоту, опущенную на сторону, равную b.

Ответ:
$$\frac{a\sqrt{4b^2-a^2}}{2b}.$$

Р е ш е н и е. Пусть d — искомая высота, h — высота, опущенная на основание данного равнобедренного треугольника. Тогда

$$h = \sqrt{b^2 - \left(\frac{a}{2}\right)^2} = \frac{\sqrt{4b^2 - a^2}}{2}.$$

С одной стороны, площадь треугольника равна $\frac{1}{2}ah$, с другой — $\frac{1}{2}bd$. Из равенства ah=bd находим, что

$$d = \frac{ah}{b} = \frac{a\sqrt{4b^2 - a^2}}{2} : b = \frac{a\sqrt{4b^2 - a^2}}{2b}.$$

Тот же метод (метод площадей) можно применить и для произвольного треугольника.

Пример 3. Дан треугольник со сторонами 13, 14, 15. Найдите высоту, проведённую к большей стороне.

Ответ:
$$\frac{56}{5}$$
.

Р е ш е н и е. *Первый способ*. Пусть AH — указанная высота треугольника ABC со сторонами BC=15, AC=14, AB=13. По формуле Герона

$$S_{\Delta ABC} = \sqrt{21(21-13)(21-14)(21-15)} = \sqrt{21\cdot 8\cdot 7\cdot 6} = 7\cdot 3\cdot 4 = 84.$$

С другой стороны, $S_{\Delta ABC} = \frac{1}{2}BC \cdot AH$, откуда находим, что

$$AH = \frac{2S_{\Delta ABC}}{BC} = \frac{2 \cdot 84}{15} = \frac{56}{5}.$$

Эту задачу можно решить также с помощью теоремы Пифагора.

Второй способ. Поскольку BC — наибольшая сторона треугольника ABC, то точка H лежит на стороне BC. Обозначим BH = x. Тогда CH = BC - BH = 15 - x. В прямоугольных треугольниках AHB и AHC имеем

$$AH^2 = AB^2 - BH^2 = 169 - x^2$$
 $AH^2 = AC^2 - CH^2 = 196 - (15 - x)^2$.

Из уравнения $169 - x^2 = 196 - (15 - x)^2$ находим, что $x = \frac{33}{5}$. Следовательно,

$$AH = \sqrt{AB^2 - BH^2} = \sqrt{13^2 - \left(\frac{33}{5}\right)^2} = \sqrt{\frac{65^2 - 33^2}{25}} =$$
$$= \sqrt{\frac{32 \cdot 98}{25}} = \frac{4 \cdot 7 \cdot 2}{5} = \frac{56}{5}. \quad \triangleleft$$

Можно решить эту задачу, применяя теорему косинусов.

Третий способ. Пусть AH — указанная высота треугольника ABC со сторонами BC = 15, AC = 14, AB = 13. По теореме косинусов

$$\cos \angle ABC = \frac{225 + 169 - 196}{2 \cdot 15 \cdot 13} = \frac{33}{65},$$

а из прямоугольного треугольника АВН находим, что

$$AH = AB \sin \angle ABC = 13\sqrt{1 - \left(\frac{33}{65}\right)^2} = \frac{56}{5}.$$

Для вычисления биссектрисы также можно использовать метод площадей.

Пример 4. Стороны треугольника равны a и b, а угол между ними равен γ . Найдите биссектрису треугольника, проведённую из вершины этого угла.

Oтвет:
$$\frac{2ab\cos\frac{\gamma}{2}}{a+b}$$
.

Р е ш е н и е. Пусть S — площадь данного треугольника, S_1 и S_2 — площади треугольников, на которые указанная биссектриса, равная l, разбивает данный треугольник.

Тогда
$$S = S_1 + S_2$$
, или

$$\frac{1}{2}ab\sin\gamma = \frac{1}{2}al\sin\frac{\gamma}{2} + \frac{1}{2}bl\sin\frac{\gamma}{2},$$

или
$$ab\sin\frac{\gamma}{2}\cos\frac{\gamma}{2} = \frac{1}{2}(a+b)l\sin\frac{\gamma}{2}.$$

Поскольку
$$\sin \frac{\gamma}{2}$$
 отличен от нуля, $l = \frac{2ab\cos\frac{\gamma}{2}}{a+b}$.

Иногда удобно применить теорему косинусов и свойство биссектрисы треугольника: биссектриса треугольника разбивает его сторону на отрезки, пропорциональные двум другим сторонам.

Пример 5. Вычислите биссектрису треугольника ABC, проведённую из вершины A, если BC = 18, AC = 15, AB = 12.

Ответ: 10.

Р е ш е н и е. Пусть AK — биссектриса треугольника ABC. Тогда

$$\frac{CK}{BK} = \frac{AC}{AB} = \frac{15}{12} = \frac{5}{4}.$$

Поэтому
$$BK = \frac{4}{9}BC = \frac{4}{9} \cdot 18 = 8.$$

По теореме косинусов из треугольника ABC находим, что

$$\cos \angle B = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{144 + 324 - 225}{2 \cdot 12 \cdot 18} = \frac{9}{16}$$

Следовательно,

$$AK^2 = AB^2 + BK^2 - 2AB \cdot BK \cos \angle B = 144 + 64 - 108 = 100, \quad AK = 10.$$

◁

Эту же задачу можно решить, используя формулу для квадрата биссектрисы.

Утверждение. Квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.

Д о к а з а т е л ь с т в о. Пусть M — точка пересечения продолжения биссектрисы AK треугольника ABC с описанной около этого треугольника окружностью. Тогда треугольник ACK подобен треугольнику AMB по двум углам. Поэтому

$$\frac{AK}{AB} = \frac{AC}{AM}$$
, или $AK(AK + KM) = AB \cdot AC$, $AK^2 + AK \cdot KM = AB \cdot AC$.

Следовательно,

$$AK^2 = AB \cdot AC - AK \cdot KM = AB \cdot AC - BK \cdot KC$$

 $(AK \cdot KM = BK \cdot KC)$ по теореме о произведениях отрезков пересекающихся хорд), что и требовалось доказать.

Вернёмся к примеру 5. Пусть уже найден отрезок BK. Тогда CK = BC - BK = 18 - 8 = 10. По формуле для квадрата биссектрисы треугольника находим, что

$$AK^2 = AB \cdot AC - BK \cdot CK = 12 \cdot 15 - 8 \cdot 10 = 180 - 80 = 100.$$
 Следовательно, $AK = 10$.

Подготовительные задачи

5.1. Катет и гипотенуза прямоугольного треугольника равны 12 и 20 соответственно. Найдите высоту, проведённую из вершины прямого угла.

- **5.2.** Найдите высоту прямоугольного треугольника, опущенную на гипотенузу, если известно, что основание этой высоты делит гипотенузу на отрезки, равные 1 и 4.
- **5.3.** Высота равнобедренного треугольника, опущенная на боковую сторону, разбивает её на отрезки, равные 2 и 1, считая от вершины треугольника. Найдите эту высоту.
- **5.4.** Стороны треугольника равны 10, 17 и 21. Найдите высоту треугольника, проведённую из вершины наибольшего угла.
- **5.5.** В треугольнике *ABC* известно, что AB = a, AC = b, $\angle BAC = 120^\circ$. Найдите биссектрису *AM*.
- **5.6.** Катеты прямоугольного треугольника равны a и b. Найдите биссектрису треугольника, проведённую из вершины прямого угла.
- **5.7.** В треугольнике *ABC* известно, что AB = 8, AC = 6, $\angle BAC = 60^{\circ}$. Найдите биссектрису *AM*.
- **5.8.** Найдите высоту трапеции, боковые стороны которой равны 6 и 8, а основания равны 4 и 14.

Тренировочные задачи

- **5.9.** Найдите высоты треугольника, если его площадь равна S, а углы равны α , β и γ .
- **5.10.** Расстояния от точки M, лежащей внутри треугольника ABC, до его сторон AC и BC соответственно равны 2 и 4. Найдите расстояние от точки M до прямой AB, если AB = 10, BC = 17, AC = 21.
- **5.11.** К окружности радиуса 7 проведены две касательные из одной точки, удалённой от центра на расстояние, равное 25. Найдите расстояние между точками касания.
- **5.12.** Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.
- **5.13.** На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K. Найдите площадь треугольника CKB, если катет BC равен a, а катет AC равен b.
- **5.14.** На высоте CD, опущенной из вершины C прямоугольного треугольника ABC на гипотенузу AB, как на диаметре построена окружность, которая пересекает катет AC в точке E, а катет BC

- в точке F. Найдите площадь четырёхугольника CFDE, если катет AC равен b, а катет BC равен a.
- **5.15.** В равнобедренном треугольнике основание и боковая сторона равны соответственно 5 и 20. Найдите биссектрису треугольника, проведённую из вершины угла при основании.
- **5.16.** В равнобедренном треугольнике *BCD* с основанием *BD* проведена биссектриса *BE*. Известно, что CE = c и DE = d. Найдите *BE*.
- **5.17.** В треугольнике ABC на стороне AC как на диаметре построена окружность, которая пересекает сторону AB в точке M, а сторону BC в точке N. Известно, что AC = 2, AB = 3, AM : MB = 2 : 3. Найдите AN.
- **5.18.** В прямоугольном треугольнике *ABC* проведена биссектриса *CD* из вершины прямого угла *C*. Известно, что AD = m, BD = n. Найдите высоту, опущенную из вершины *C*.
- **5.19.** В треугольнике *ABC* угол *C* равен 60° , а биссектриса *CD* равна $5\sqrt{3}$. Стороны *AC* и *BC* относятся как 5:2. Найдите тангенс угла *A* и сторону *BC*.
- **5.20.** В треугольнике ABC на сторонах AB и BC отмечены точки M и N соответственно, причём BM = BN. Через точку M проведена прямая, перпендикулярная BC, а через точку N прямая, перпендикулярная AB. Эти прямые пересекаются в точке O. Продолжение отрезка BO пересекает сторону AC в точке P и делит её на отрезки AP = 5 и PC = 4. Найдите BP, если известно, что BC = 6.
- **5.21.** Окружность касается сторон AB и BC треугольника ABC в точках D и E соответственно. Найдите высоту треугольника ABC, опущенную из вершины A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.
- **5.22.** В треугольнике *ABC* проведены биссектрисы *AE* и *CD*. Найдите длины отрезков *CD*, *CE*, *DE* и расстояние между центрами окружностей, вписанной в треугольник *ABC* и описанной около треугольника *ABC*, если AC = 2, BC = 4, $\angle ACB = \arccos \frac{11}{16}$.
- **5.23.** В треугольнике *ABC* отношение стороны *BC* к стороне *AC* равно 3, а $\angle ACB = \alpha$. Из вершины *C* проведены два луча, делящие угол *ACB* на три равные части. Найдите отношение отрезков этих лучей, заключённых внутри треугольника *ABC*.
- **5.24.** Биссектриса *CD* угла *ACB* при основании *BC* равнобедренного треугольника *ABC* делит сторону *AB* так, что AD = BC. Найдите биссектрису *CD* и площадь треугольника *ABC*, если BC = 2.

5.25*. В треугольнике *KLM* проведена биссектриса *KP*. Окружность, вписанная в треугольник *KLP*, касается стороны *KL* в точке Q, причём LQ=a. На сторонах *KL* и *LM* выбраны точки E и R соответственно так, что прямая ER проходит через центр окружности, вписанной в треугольник *KLM*. Найдите длину биссектрисы KP, если известно, что EL+LR=b, а отношение площадей треугольников KLP и ELR равно α .

Задачи на доказательство и вычисление

- **5.26.1.** В прямоугольном треугольнике ABC из вершины прямого угла C проведены медиана CM и высота CH.
- а) Докажите, что биссектриса CL треугольника ABC является также биссектрисой треугольника CMH.
 - б) Найдите CL, если CM = 10, CH = 6.
- **5.26.2.** В прямоугольном треугольнике KLM из вершины прямого угла K проведены высота KA, медиана KB и биссектриса KC.
- а) Докажите, что угол BKC равен полуразности острых углов треугольника KLM.
 - б) Найдите *LM*, если KA = 12, $KC = 4\sqrt{10}$.
- **5.27.1.** Дана трапеция ABCD. Биссектриса угла BAD пересекает продолжение основания BC в точке K.
 - а) Докажите, что треугольник АВК равнобедренный.
- б) Найдите биссектрису BM треугольника ABK, если AD=10, BC=2, AB=CD=5.
- **5.27.2.** Дан треугольник ABC, в котором AB = 2AC, AK его биссектриса. Прямая, проходящая через точку B параллельно AC, пересекается с прямой AK в точке M.
 - а) Докажите, что треугольник АВМ равнобедренный.
 - б) Найдите KM, если AB = 4, AC = 2 и BC = 3.
 - **5.28.1.** Медианы треугольника ABC пересекаются в точке M.
 - а) Докажите, что треугольники АМВ, АМС и ВМС равновелики.
- б) Известно, что треугольник ABC прямоугольный, а точка M удалена от катетов на расстояния 3 и 4. Найдите расстояние от этой точки до гипотенузы.
- **5.28.2.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M.
- а) Докажите, что четырёхугольник AB_1MC_1 равновелик треугольнику BMC.

- б) Известно, что треугольник ABC прямоугольный, а точка M удалена от гипотенузы и от одного из катетов на расстояния 6 и 10 соответственно. Найдите расстояние от этой точки до второго катета.
- **5.29.1.** Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30° . Точка E лежит вне прямоугольника, причём $\angle BEC = 120^{\circ}$.
 - а) Докажите, что $\angle CBE = \angle COE$.
- б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если BE = 40 и CE = 24.
- **5.29.2.** Диагональ AC прямоугольника ABCD с центром O образует со стороной BC угол 30° . Вне прямоугольника построен треугольник BKC с углом 60° при вершине K.
 - а) Докажите, что КО биссектриса угла ВКС.
- б) Найдите длину отрезка прямой KO, заключённого внутри прямоугольника ABCD, если BC=3 и CK=2BK.
- **5.30.1.** Окружность, построенная на биссектрисе BL равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке P. Боковая сторона треугольника вдвое больше его основания.
 - а) Докажите, что BP = 5CP.
- б) Пусть указанная окружность пересекает сторону AB в точке M. Найдите BL, если $ML = \frac{\sqrt{15}}{2}$.
- **5.30.2.** Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке K.
 - а) Докажите, что BK = 3CK.
- б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 18 и BN = 17.
 - **5.31.1.** Дан треугольник *ABC* со сторонами AB = 4, BC = 6 и AC = 8.
- а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне *BC*.
- б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.
- **5.31.2.** Дан треугольник ABC со сторонами AC=6, AB=10 и BC=14.
- а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне AB.
 - б) Найдите расстояние от вершины ${\it C}$ до этой прямой.

- **5.32.1.** Высоты, проведённые из вершин A, B и C треугольника ABC, равны 20, 15 и 12 соответственно.
 - а) Докажите, что треугольник прямоугольный.
- б) Найдите длину биссектрисы треугольника, проведённой из вершины C.
- **5.32.2.** Высоты, проведённые из вершин A, B и C треугольника ABC, равны $\frac{6}{\sqrt{5}}$, 3 и 6 соответственно.
 - а) Докажите, что треугольник прямоугольный.
- б) Найдите длину биссектрисы треугольника, проведённой из вершины A.
- **5.33.1.** В треугольнике ABC высота CH, биссектриса CL и медиана CM делят угол ACB на четыре равных угла.
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Найдите длины высоты CH, биссектрисы CL и медианы CM, если радиус окружности, описанной около треугольника ABC, равен R.
- **5.33.2.** В треугольнике KLM ($KL \neq ML$) биссектриса LA делит пополам угол между высотой LB и медианой LC.
 - а) Докажите, что треугольник КLM прямоугольный.
- б) Найдите длины медианы LC, высоты LB и биссектрисы LA, если KL=6 и LM=8.

§ 6. Отношение отрезков

Решение задачи 6 из диагностической работы

6. Точки M и N — середины сторон соответственно BC и CD параллелограмма ABCD. Отрезки AM и BN пересекаются в точке O. Найдите отношение $\frac{MO}{OA}$.

Ответ: $\frac{1}{4}$.

Р е ш е н и е. Пусть продолжения отрезков BN и AD пересекаются в точке E. Обозначим BM = CM = a. Тогда AD = BC = 2a.

Треугольник DNE равен треугольнику CNB по стороне и прилежащим к ней углам, поэтому DE = BC = 2a. Значит,

$$AE = AD + DE = 2a + 2a = 4a.$$

Треугольник ВОМ подобен треугольнику ЕОА, следовательно,

$$\frac{MO}{OA} = \frac{BM}{AE} = \frac{a}{4a} = \frac{1}{4}.$$

* * *

Большинство задач этого раздела решаются либо с помощью теоремы о пропорциональных отрезках (обобщённой теоремы Фалеса), либо с помощью дополнительного построения, которое приводит к двум парам подобных треугольников. Рассмотрим это построение, решив следующую задачу.

Пример 1. Дан треугольник ABC. На продолжении стороны AC за точку C взята точка N, причём AC = 2CN. Точка M находится на стороне BC, причём BM : MC = 1 : 3. В каком отношении прямая MN делит сторону AB?

Ответ: 1:9, считая от точки B.

Р е ш е н и е $\,$ 1. Через точку B проведём прямую, параллельную AC. Пусть прямая MN пересекает её в точке T, а прямую AB — в точке K.

Обозначим AC=a. Тогда $CN=\frac{1}{2}a$, $AN=\frac{3}{2}a$. Из подобия треугольников TBM и NCM (коэффициент подобия равен $\frac{1}{3}$) находим, что

$$TB = \frac{1}{3}CN = \frac{1}{6}a,$$

а из подобия треугольников ТВК и NAK —

$$\frac{BK}{AK} = \frac{TB}{AN} = \frac{1}{6}a : \left(\frac{3}{2}a\right) = \frac{1}{9}.$$

Р е ш е н и е 2. Через точку C проведём прямую, параллельную MN. Пусть эта прямая и прямая MN пересекают сторону AB в точках P и K соответственно. Положим AP=6t. Тогда по теореме о пропор-

циональных отрезках $\frac{KP}{AP} = \frac{CN}{AC} = \frac{1}{2}$, поэтому $KP = \frac{1}{2}AP = 3t$, а так как $\frac{BK}{KP} = \frac{BM}{MC} = \frac{1}{3}$, то $BK = \frac{1}{3}KP = t$. Следовательно,

$$\frac{BK}{KA} = \frac{BK}{KP + AP} = \frac{t}{3t + 6t} = \frac{1}{9}.$$

Пример 1 можно легко решить с помощью теоремы Менелая, но эта теорема не входит в обязательную школьную программу. Заметим, что теорему Менелая можно доказать, используя те же рассуждения, что и при решении разобранной выше задачи.

◁

Пример 2. На сторонах AB и BC треугольника ABC расположены точки M и N соответственно, причём AM: MB = 3:5, BN: NC = 1:4. Прямые CM и AN пересекаются в точке O. Найдите отношения OA: ON и OM: OC.

Ответ: 3:4; 3:32.

Р е ш е н и е. *Первый способ*. Через точку A проведём прямую, параллельную BC. Пусть T — точка её пересечения с прямой MC. Положим BN = a, CN = 4a.

Из подобия треугольников AMT и BMC (коэффициент $\frac{3}{5}$) находим, что

$$AT = \frac{3}{5}BC = \frac{3}{5}(BN + NC) = \frac{3}{5}(a + 4a) = 3a,$$

а из подобия треугольников AOT и NOC получаем

$$\frac{OA}{ON} = \frac{AT}{CN} = \frac{3a}{4a} = \frac{3}{4}.$$

Аналогично находим, что $\frac{OM}{OC} = \frac{3}{32}$.

Второй способ. Через точку N проведём прямую, параллельную CM. Пусть эта прямая пересекает сторону AB в точке P. Положим BP=b. Тогда по теореме о пропорциональных отрезках $\frac{BP}{PM}=\frac{BN}{NC}=\frac{1}{4}$, поэтому

$$PM = 4BP = 4b$$
, $BM = BP + PM = 5b$,

а так как $\frac{BM}{MA} = \frac{5}{3}$, то MA = 3b. Следовательно,

$$\frac{OA}{ON} = \frac{MA}{PM} = \frac{3b}{4b} = \frac{3}{4}.$$

Аналогично находим, что $\frac{OM}{OC} = \frac{3}{32}$.

◁

Иногда при решении задач на отношение отрезков удобно применить метод площадей.

Пример 3. На сторонах *AB*, *BC* и *AC* треугольника *ABC* взяты соответственно точки *M*, *N* и *K* так, что AM:MB=2:3, AK:KC=2:1, BN:NC=1:2. В каком отношении прямая *MK* делит отрезок *AN*?

Ответ: 6:7, считая от точки А.

Р е ш е н и е. Пусть Р — точка пересечения прямой MK с отрезком AN. Обозначим $\frac{AP}{AN}=x$ и $S_{\Delta ABC}=S$. Тогда

$$\begin{split} S_{\Delta ABN} &= \frac{BN}{BC} \cdot S = \frac{1}{3}S, \quad S_{\Delta ACN} = \frac{CN}{BC} \cdot S = \frac{2}{3}S, \\ S_{\Delta AMP} &= \frac{AM}{AB} \cdot \frac{AP}{AN} \cdot S_{\Delta ABN} = \frac{2}{5} \cdot x \cdot \frac{1}{3} \cdot S = \frac{2}{15}xS, \\ S_{\Delta AKP} &= \frac{AK}{AC} \cdot \frac{AP}{AN} \cdot S_{\Delta ACN} = \frac{2}{3} \cdot x \cdot \frac{2}{3} \cdot S = \frac{4}{9}xS, \\ S_{\Delta AMK} &= \frac{AM}{AB} \cdot \frac{AK}{AC} \cdot S = \frac{2}{5} \cdot \frac{2}{3} \cdot S = \frac{4}{15}S. \end{split}$$

Поскольку $S_{\Delta AMK} = S_{\Delta AMP} + S_{\Delta AKP}$, то

$$\frac{2}{15}xS + \frac{4}{9}xS = \frac{4}{15}S.$$

Отсюда находим, что $x = \frac{6}{13}$. Следовательно, $\frac{AP}{PN} = \frac{6}{7}$.

Пример 4. Длины сторон треугольника различны и образуют арифметическую прогрессию. Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна одной из сторон треугольника.

Доказательство. Если числа образуют арифметическую прогрессию, то одно из них есть среднее арифметическое двух других. Пусть O — центр вписанной окружности (точка пересечения биссектрис) треугольника ABC, в котором AC = b, BC = a, $AB = \frac{a+b}{2}$.

Тогда, поскольку CQ — биссектриса треугольника ABC, получаем $\frac{BQ}{AQ} = \frac{BC}{AC} = \frac{a}{b}$, значит, $BQ = \frac{a}{2}$ и $AQ = \frac{b}{2}$, а так как BO — биссектриса треугольника BCQ, то $\frac{CO}{OQ} = a : \frac{a}{2} = 2$.

С другой стороны, если K — середина стороны AB, а M — точка пересечения медиан треугольника ABC, то $\frac{CM}{MK} = 2$. Поэтому $\frac{CO}{OQ} = \frac{CM}{MK}$, значит, $OM \parallel AB$, что и требовалось доказать.

Подготовительные задачи

- **6.1.** На медиане AM треугольника ABC взята точка K, причём AK:KM=1:3. Найдите отношение, в котором прямая, проходящая через точку K параллельно стороне AC, делит сторону BC.
- **6.2.** Дан треугольник *ABC*. На продолжении стороны *AC* за точку *C* взята точка N, причём CN = AC; точка K середина стороны *AB*. В каком отношении прямая KN делит сторону BC?
- **6.3.** На стороне *BC* треугольника *ABC* и на продолжении стороны *AB* за вершину *B* расположены точки *M* и *K* соответственно, причём BM:MC=4:5 и BK:AB=1:5. Прямая *KM* пересекает сторону *AC* в точке *N*. Найдите отношение *CN*: *AN*.
- **6.4.** На сторонах AB и AC треугольника ABC расположены точки K и L, причём AK: KB = 4:7 и AL: LC = 3:2. Прямая KL пересекает продолжение стороны BC в точке M. Найдите отношение CM:BC.
- **6.5.** На сторонах AB и BC параллелограмма ABCD расположены точки N и M соответственно, причём AN:NB=3:2, BM:MC=2:5. Прямые AM и DN пересекаются в точке O. Найдите отношения OM:OA и ON:OD.

- **6.6.** На сторонах AB и AC треугольника ABC расположены точки N и M соответственно, причём AN:NB=3:2, AM:MC=4:5. Прямые BM и CN пересекаются в точке O. Найдите отношения OM:OB и ON:OC.
- **6.7.** В равнобедренном треугольнике ABC (AB = BC) на стороне BC взята точка D так, что BD : DC = 1 : 4. В каком отношении прямая AD делит высоту BE треугольника ABC, считая от вершины B?
- **6.8.** На медиане AA_1 треугольника ABC взята точка M, причём $AM: MA_1 = 1:3$. В каком отношении прямая BM делит сторону AC?
- **6.9.** Точки A_1 и C_1 расположены на сторонах BC и AB треугольника ABC. Отрезки AA_1 и CC_1 пересекаются в точке M. В каком отношении прямая BM делит сторону AC, если $AC_1: C_1B = 2:3$ и $BA_1: A_1C = 1:2$?
- **6.10.** В треугольнике *ABC* известно, что AB = c, BC = a, AC = b. В каком отношении центр вписанной окружности треугольника делит биссектрису *CD*?

Тренировочные задачи

- **6.11.** На стороне PQ треугольника PQR взята точка N, а на стороне PR точка L, причём NQ = LR. Точка пересечения отрезков QL и NR делит отрезок QL в отношении m:n, считая от точки Q. Найдите отношение PN:PR.
- **6.12.** В треугольнике *ABC* биссектриса *AD* делит сторону *BC* в отношении BD:DC=2:1. В каком отношении медиана *CE* делит эту биссектрису?
- **6.13.** На сторонах AB, BC и AC треугольника ABC взяты соответственно точки K, L и M, причём AK: KB = 2:3, BL: LC = 1:2, CM: MA = 3:1. В каком отношении отрезок KL делит отрезок BM?
- **6.14.** В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK=2:3, а на стороне AC взята точка L, делящая AC в отношении AL:LC=5:3. Точка Q пересечения прямых CK и BL отстоит от прямой AB на расстояние 1,5. Найдите сторону AB.
- **6.15.** В треугольнике ABC на основании AC взяты точки P и Q так, что AP < AQ. Прямые BP и BQ делят медиану AM на три равные части. Известно, что PQ = 3. Найдите AC.
- **6.16.** Дан треугольник *ABC*. Известно, что AB = 4, AC = 2 и BC = 3. Биссектриса угла *BAC* пересекает сторону *BC* в точке *K*. Прямая, про-

ходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.

- **6.17.** Около окружности описана равнобедренная трапеция ABCD. Боковые стороны AB и CD касаются окружности в точках M и N, K середина AD. В каком отношении прямая BK делит отрезок MN?
- **6.18.** Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD в точке N. Отрезки MN и AC пересекаются в точке P, причём NP:PM=2. Найдите отношение AD:BC.
- **6.19.** Во вписанном четырёхугольнике *ABCD* известны отношения AB:DC=1:2 и BD:AC=2:3. Найдите DA:BC.
- **6.20.** В треугольнике *ABC* проведена высота *AD*. Прямые, одна из которых содержит медиану *BK*, а вторая биссектрису *BE*, делят эту высоту на три равных отрезка. Известно, что AB = 4. Найдите сторону *AC*.
- **6.21*** При каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?
- **6.22***. В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
- а) В каком отношении прямая LN делит сторону AB, а прямая MK сторону BC?
 - б) Найдите отношение MN : KL, если LM : KN = 3 : 7.
- **6.23*** Из точки A проведены к окружности две касательные (M и N точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN в точке P. Известно, что AB:BC=2:3. Найдите AP:PC.

Задачи на доказательство и вычисление

- **6.24.1.** В параллелограмме *ABCD* точка M середина стороны AD, P точка пересечения отрезка BM с диагональю AC.
 - а) Докажите, что прямая DP проходит через середину стороны AB.
- б) Биссектриса угла *BAC* пересекает отрезок *BM* в точке Q. Найдите отношение PM:BQ, если AB:AC=1:3.

- **6.24.2.** В параллелограмме ABCD точка P середина стороны AB, M точка пересечения отрезка DP с диагональю AC, а N точка пересечения отрезка CP с диагональю BD.
 - а) Докажите, что $MN \parallel CD$.
- б) Биссектриса угла ADP пересекает диагональ AC в точке Q. Найдите отношение AQ:QM, если AD:DP=1:3.
- **6.25.1.** На катете *BC* прямоугольного треугольника *ABC* с прямым углом при вершине *C* и с углом 30° при вершине *A* вне треугольника построен равносторонний треугольник *BCD*. Прямая *AD* пересекает сторону *BC* в точке *K*.
 - а) Докажите, что CK : KB = 1 : 2.
- б) Прямая, проходящая через точку K перпендикулярно CD, пересекает гипотенузу AB в точке M. Найдите отношение AM:MB.
- **6.25.2.** На гипотенузе AB прямоугольного треугольника ABC с углом 30° при вершине B вне треугольника построен равносторонний треугольник ABD. Прямая CD пересекает гипотенузу AB в точке K.
 - а) Докажите, что AK : KB = 1 : 2.
- б) Прямая, проходящая через точку K перпендикулярно AD, пересекает катет BC в точке M. Найдите отношение CM:MB.
- **6.26.1.** Биссектриса AD треугольника ABC делит его медиану BM пополам.
- а) Докажите, что площадь треугольника ACD вдвое больше площади треугольника ABD.
 - б) В каком отношении медиана BM делит биссектрису AD?
- **6.26.2.** Точка M лежит на стороне BC треугольника ABC, причём CM: MB = 1: 2. Биссектриса CK перпендикулярна прямой AM.
- а) Докажите, что площадь треугольника ACK втрое меньше площади треугольника BCK.
 - б) В каком отношении прямая АМ делит биссектрису СК?
- **6.27.1.** На основаниях AD и BC трапеции ABCD отмечены точки M и N соответственно, а на боковых сторонах AB и CD точки K и L соответственно. При этом DM:AM=CN:BN=BK:AK=CL:LD=1:2.
 - а) Докажите, что четырёхугольник *KMLN* трапеция.
- б) Известно, что AD = 3BC. В каком отношении диагональ BD трапеции ABCD делит боковые стороны трапеции KMLN?
- **6.27.2.** На основаниях KN и LM трапеции KLMN отмечены точки A и B соответственно, а на боковых сторонах KL и MN точки C и D соответственно. При этом KA:AN=KC:CL=LB:BM=ND:DM=1:3.
 - а) Докажите, что четырёхугольник ACBD трапеция.

- б) Известно, что KN = 2LM. В каком отношении диагональ LN трапеции KLMN делит боковые стороны трапеции ACBD?
- **6.28.1.** На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N, причём M середина AD, а BN:NC=1:3.
- а) Докажите, что прямые AN и AC делят отрезок BM на три равные части.
- б) Найдите площадь четырёхугольника, образованного пересечениями прямых AN, AC, BD и BC, если площадь параллелограмма ABCD равна 40.
- **6.28.2.** Точки M и N середины сторон соответственно AB и CD параллелограмма ABCD.
- а) Докажите, что прямые DM и BN делят диагональ AC на три равные части.
- б) Найдите площадь четырёхугольника, образованного пересечениями прямых BD, BN, AC и CD, если площадь параллелограмма ABCD равна 36.
- **6.29.1.** Через точку пересечения O диагоналей трапеции проведена прямая, параллельная основанию и пересекающая боковые стороны в точках M и N.
 - а) Докажите, что O середина отрезка MN.
- б) Найдите основания, если одно из них втрое больше другого, а MN = 6.
- **6.29.2.** Через точку пересечения O диагоналей трапеции ABCD проведена прямая, параллельная основаниям AD и BC и пересекающая боковые стороны в точках M и N.
- а) Докажите, что прямая, проходящая через вершину C и середину основания AD, делит отрезок MN в отношении 1:3.
- б) Найдите основания, если одно из них вдвое больше другого, а MN = 16.
- **6.30.1.** Точка пересечения биссектрис углов при большем основании трапеции лежит на меньшем основании.
- а) Докажите, что меньшее основание равно сумме боковых сторон.
- б) Найдите углы трапеции, если отношение оснований трапеции равно 3:2, а отношение боковых сторон равно 5:3.
- **6.30.2.** Биссектриса угла C трапеции ABCD пересекает основание AD в точке M.
- а) Докажите, что биссектриса угла D проходит через середину отрезка CM.

- б) Найдите отношение BC:AD, если $AD \perp AB$, AM:MD=1:2, AB:CD=4:5.
- **6.31.1.** Вневписанная окружность равнобедренного треугольника касается его боковой стороны.
- а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание.
- б) Известно, что радиус этой окружности в пять раз больше радиуса вписанной окружности треугольника. В каком отношении точка касания вписанной окружности с боковой стороной треугольника делит эту сторону?
- **6.31.2.** Пусть O_1 центр вписанной окружности равнобедренного треугольника ABC, а O_2 центр вневписанной окружности, касающейся основания BC.
- а) Докажите, что расстояние от середины отрезка O_1O_2 до точки C вдвое меньше O_1O_2 .
- б) Известно, что радиус первой окружности в пять раз меньше радиуса второй. В каком отношении точка касания первой окружности с боковой стороной треугольника делит эту сторону?
- **6.32.1.** Дана трапеция *ABCD* с основаниями *AD* и *BC*. Биссектриса угла *ADC* проходит через середину боковой стороны *AB*.
- а) Докажите, что сумма оснований трапеции равна боковой стороне ${\it CD}$.
 - б) Найдите площадь трапеции ABCD, если AB = 8, BC = 2 и CD = 10.
- **6.32.2.** Дана трапеция ABCD с основаниями AD и BC. Биссектриса угла BAD проходит через середину основания BC.
 - а) Докажите, что основание BC вдвое больше боковой стороны \underline{AB} .
- б) Найдите площадь трапеции *ABCD*, если AB = 4, $CD = 4\sqrt{3}$ и $/BAD = 60^{\circ}$.
- **6.33.1.** В треугольнике *ABC* точка *D* делит сторону *AB* пополам, а точка *E* лежит на стороне *BC*, причём отрезок *BE* в 3 раза меньше стороны *BC*. Отрезки *AE* и *CD* пересекаются в точке *O*, AE = 5, OC = 4.
 - а) Докажите, что CD = AE.
 - б) Найдите сторону AB, если $\angle AOC = 120^{\circ}$.
- **6.33.2.** В треугольнике *ABC* точки *M* и *K* лежат на сторонах *BC* и *AC* соответственно, причём отрезок *BM* в 4 раза меньше стороны *BC*. Прямые *BK* и *AM* пересекаются в точке O середине BK, CK = 4, OM = 2.
 - а) Докажите, что треугольник АМС равнобедренный.
 - б) Найдите BK, если $\angle OAC = 60^{\circ}$.

- **6.34.1.** На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.
 - а) Докажите, что треугольник DCL равнобедренный.
- б) Известно, что $\cos \angle ABC = \frac{1}{3}$. В каком отношении прямая *DL* делит сторону *AB*?
- **6.34.2.** На отрезке *CD* взята точка *B*. Биссектриса *CK* треугольника *ABC* с основанием *BC* является боковой стороной равнобедренного треугольника *CKD* с основанием *CD*, а BK = BD.
 - а) Докажите, что треугольник АВС равнобедренный.
- б) Известно, что $\angle BAC = 2 \arcsin \frac{1}{8}$. В каком отношении прямая *DK* делит сторону *AC*?

§7. Отношение площадей

Решение задачи 7 из диагностической работы

7. В треугольнике ABC медиана AD и биссектриса BE перпендикулярны и пересекаются в точке F. Известно, что площадь треугольника DEF равна 5. Найдите площадь треугольника ABC.

Ответ: 60.

Р е ш е н и е. Треугольник ABD равнобедренный, так как его биссектриса BF является высотой. Поэтому

$$AF = FD \implies S_{\triangle AFF} = S_{\triangle DFF} = 5.$$

Кроме того, BC = 2BD = 2AB. Тогда по свойству биссектрисы треугольника

$$\frac{EC}{AE} = \frac{BC}{AB} = 2.$$

Следовательно,

$$S_{\Delta DEC} = 2S_{\Delta ADE} = 4S_{\Delta DEF} = 20, \quad S_{\Delta ADC} = 30.$$

Значит, $S_{\Delta ABC} = 2S_{\Delta ADC} = 60$.

* *

◁

При решении большинства задач этого раздела применяются два простых утверждения:

- 1) если точка M лежит на стороне BC треугольника ABC, то площади треугольников AMB и AMC пропорциональны отрезкам BM и CM, т. е. $\frac{S_{\triangle AMB}}{S_{\triangle AMC}} = \frac{BM}{CM}$;
- 2) если прямая пересекает стороны AB и AC треугольника ABC (или их продолжения) в точках P и Q соответственно, то

$$\frac{S_{\Delta APQ}}{S_{\Delta APC}} = \frac{AP}{AB} \cdot \frac{AQ}{AC}.$$

Первое из этих утверждений вытекает непосредственно из формулы площади треугольника по стороне и опущенной не неё высоте: у треугольников AMB и AMC одна и та же высота, опущенная из общей вершины A.

Второе утверждение можно легко вывести из формулы площади треугольника по двум сторонам и углу между ними: у треугольников APQ и ABC углы при общей вершине A либо равны, либо в сумме составляют 180° .

Напомним также, что отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Пример 1. Докажите, что медианы треугольника разбивают его на шесть равновеликих треугольников.

Доказательство. Пусть M — точка пересечения медиан AA_1 , BB_1 , CC_1 треугольника ABC. Тогда

$$S_{\Delta B_1 MC} = \frac{1}{3} S_{\Delta B_1 BC} = \frac{1}{3} \cdot \left(\frac{1}{2} S_{\Delta ABC}\right) = \frac{1}{6} \cdot S_{\Delta ABC}.$$

Аналогично для остальных пяти треугольников. Таким образом, площадь каждого из шести треугольников равна шестой части площади исходного треугольника. \Box

Пример 2. Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Ответ: $\frac{5}{12}$.

Решение. Из подобия треугольников ВОМ и DOA находим, что

$$\frac{BO}{OD} = \frac{BM}{AD} = \frac{1}{2}.$$

Поэтому
$$\frac{BO}{BD}=\frac{1}{3}$$
, а так как $\frac{BM}{BC}=\frac{1}{2}$, то
$$S_{\Delta BOM}=\frac{BO}{BD}\cdot\frac{BM}{BC}\cdot S_{\Delta BCD}=\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{12}.$$

Следовательно,

$$S_{OMCD} = S_{\Delta BCD} - S_{\Delta BOM} = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}.$$

Пример 3. Диагонали разбивают выпуклый четырёхугольник на треугольники с площадями S_1 , S_2 , S_3 и S_4 (S_1 и S_3 — площади треугольников, прилежащих к противоположным сторонам четырёхугольника). Докажите, что $S_1S_3 = S_2S_4$.

Доказательство. Пусть диагонали выпуклого четырёхугольника ABCD пересекаются в точке O,

$$S_{\Delta AOB} = S_1$$
, $S_{\Delta BOC} = S_2$, $S_{\Delta COD} = S_3$, $S_{\Delta AOD} = S_4$.

Тогда
$$\frac{S_1}{S_2}=\frac{AO}{OC}$$
 и $\frac{S_4}{S_3}=\frac{AO}{OC}$, поэтому $\frac{S_1}{S_2}=\frac{S_4}{S_3}$. Следовательно, $S_1S_3==S_2S_4$.

Подготовительные задачи

7.1. Найдите площадь треугольника, вершины которого — середины сторон треугольника площади 4.

- **7.2.** Точки M и N расположены на стороне BC треугольника ABC, а точка K на стороне AC, причём BM:MN:NC=1:1:2 и CK:AK=1:4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.
 - **7.3.** На стороне AB треугольника ABC взяты точки M и N, причём

$$AM:MN:NB=2:2:1,$$

а на стороне AC — точка K, причём AK:KC=1:2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.

- **7.4.** Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне BC. Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 1.
- **7.5.** На сторонах AB, BC и AC треугольника ABC взяты точки C_1 , A_1 и B_1 соответственно, причём

$$\frac{AC_1}{C_1B} = \frac{BA_1}{A_1C} = \frac{CB_1}{B_1A} = \frac{1}{2}.$$

Найдите площадь треугольника $A_1B_1C_1$, если площадь треугольника ABC равна 1.

- **7.6.** Сторона треугольника равна 36. Прямая, параллельная этой стороне, делит площадь треугольника пополам. Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.
- **7.7.** Из середины основания треугольника площади *S* проведены прямые, параллельные боковым сторонам. Найдите площадь полученного таким образом параллелограмма.

Тренировочные задачи

- **7.8.** Из точки на основании треугольника проведены прямые, параллельные боковым сторонам. Они разбивают треугольник на параллелограмм и два треугольника с площадями S_1 и S_2 . Найдите площадь параллелограмма.
- **7.9.** В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение площадей треугольников AFD и ABC, если

$$AB : AC : BC = 21 : 28 : 20.$$

7.10. Треугольник и вписанный в него ромб имеют общий угол. Стороны треугольника, заключающие этот угол, относятся как m:n. Найдите отношение площади ромба к площади треугольника.

- **7.11.** Две прямые, параллельные основаниям трапеции, делят каждую из боковых сторон на три равные части. Вся трапеция разделена ими на три части. Найдите площадь средней части, если площади крайних равны S_1 и S_2 .
- **7.12.** Четырёхугольник разделён диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.
- **7.13.** Площади треугольников, образованных отрезками диагоналей трапеции и её основаниями, равны S_1 и S_2 . Найдите площадь трапеции.
- **7.14.** Площадь трапеции *ABCD* равна 30. Точка P середина боковой стороны *AB*. Точка R на стороне *CD* выбрана так, что 2CD = 3RD. Прямые AR и PD пересекаются в точке Q. Найдите площадь треугольника APQ, если AD = 2BC.
- **7.15.** Дан выпуклый четырёхугольник площади S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.
- **7.16.** Дан выпуклый четырёхугольник площади *S*. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
- **7.17.** В трапеции ABCD ($BC \parallel AD$) диагонали пересекаются в точке M, BC = b, AD = a. Найдите отношение площади треугольника ABM к площади трапеции ABCD.
- **7.18.** В равнобедренном треугольнике ABC боковые стороны BC и AC в два раза больше основания AB. Биссектрисы углов при основании пересекаются в точке M. Какую часть треугольника ABC составляет площадь треугольника AMB?
- **7.19.** В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
- **7.20.** В прямоугольном треугольнике синус меньшего угла равен $\frac{1}{3}$. Перпендикулярно гипотенузе проведена прямая, разбивающая треугольник на две равновеликие части. В каком отношении эта прямая делит гипотенузу?
- **7.21.** На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на три равновеликие части. Найдите MN, если BD = d.

- **7.22.** В треугольнике ABC угол A равен 45° , а угол C острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся как 1:8. Найдите углы треугольника ABC.
- **7.23.** В треугольнике *ABC* из точки *E* стороны *BC* проведена прямая, параллельная высоте *BD* и пересекающая сторону *AC* в точке *F*. Отрезок *EF* делит треугольник *ABC* на две равновеликие фигуры. Найдите *EF*, если BD=6, $\frac{AD}{DC}=\frac{2}{7}$.
- **7.24.** Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых треугольники с площадями S_1 , S_2 , S_3 . Найдите площадь данного треугольника.
- **7.25.** В равнобедренном треугольнике ABC (AB = BC) проведена биссектриса AD. Площади треугольников ABD и ADC равны соответственно S_1 и S_2 . Найдите AC.
- **7.26.** Диагонали выпуклого четырёхугольника *ABCD* пересекаются в точке E. Известно, что площадь каждого из треугольников *ABE* и *DCE* равна 1, площадь всего четырёхугольника не превосходит 4, AD = 3. Найдите сторону BC.
- **7.27.** Из точки P, расположенной внутри остроугольного треугольника ABC, опущены перпендикуляры на его стороны. Длины сторон и опущенных на них перпендикуляров соответственно равны a и k, b и m, c и n. Найдите отношение площади треугольника ABC к площади треугольника, вершинами которого служат основания перпендикуляров.
- **7.28.** Из точки P, расположенной внутри остроугольного треугольника ABC, опущены перпендикуляры на стороны AB, BC и CA. Перпендикуляры соответственно равны l, m, n. Вычислите площадь треугольника ABC, если углы BAC, ABC и ACB соответственно равны α , β и γ .
- **7.29.** Дан параллелограмм ABCD. Прямая, проходящая через вершину C, пересекает прямые AB и AD в точках K и L. Площади треугольников KBC и CDL равны p и q. Найдите площадь параллелограмма ABCD.
- **7.30.** На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD=3:2. Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB, если AB:CD=3:2.

- **7.31.** На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C_1 , B_1 и A_1 так, что треугольник $A_1B_1C_1$ правильный. Отрезок BB_1 пересекает сторону C_1A_1 в точке O, причём $\frac{BO}{OB_1}=k$. Найдите отношение площади треугольника ABC к площади треугольника $A_1B_1C_1$.
- **7.32.** На сторонах AB, BC и AC треугольника ABC взяты соответственно точки C_1 , A_1 и B_1 , причём $\frac{AC_1}{C_1B} = \frac{BA_1}{A_1C} = \frac{CB_1}{B_1A} = \frac{2}{1}$. Найдите площадь треугольника, вершины которого попарные пересечения отрезков AA_1 , BB_1 , CC_1 , если площадь треугольника ABC равна 1.

Задачи на доказательство и вычисление

- **7.33.1.** На каждой стороне равностороннего треугольника взято по точке. Стороны треугольника с вершинами в этих точках соответственно перпендикулярны сторонам исходного треугольника.
- а) Докажите, что треугольник с вершинами в этих точках также равносторонний.
- б) Найдите отношение площади этого треугольника к площади исходного.
- **7.33.2.** На каждой стороне равностороннего треугольника взято по точке, причём треугольник с вершинами в этих точках также равносторонний.
- а) Докажите, что эти точки делят стороны исходного треугольника в одном и том же отношении.
- б) Найдите это отношение, если отношение площади полученного треугольника к площади исходного равно $\frac{7}{16}$.
- **7.34.1.** Точки B_1 и C_1 лежат на сторонах соответственно AC и AB треугольника ABC, причём $AB_1:B_1C=AC_1:C_1B$. Прямые BB_1 и CC_1 пересекаются в точке O.
 - а) Докажите, что прямая АО делит пополам сторону ВС.
- б) Найдите отношение площади четырёхугольника AB_1OC_1 к площади треугольника ABC, если $AB_1:B_1C=AC_1:C_1B=1:2$.
- **7.34.2.** Точки A_1 и B_1 лежат на сторонах соответственно BC и AC треугольника ABC. Прямые AA_1 и BB_1 пересекаются в точке O, причём $AO:OA_1=BO:OB_1$.
 - а) Докажите, что прямая CO проходит через середину отрезка A_1B_1 .
- б) Найдите отношение площади четырёхугольника CA_1OB_1 к площади треугольника ABC, если $AO:OA_1=BO:OB_1=4$.

- **7.35.1.** На стороне *BC* треугольника *ABC* как на диаметре построена окружность, пересекающая отрезок *AB* в точке *D*. При этом $\angle ABC = \angle ACD$.
- а) Докажите, что прямая CD разбивает треугольник ABC на два подобных треугольника.
- б) Найдите отношение площадей этих подобных треугольников, если AC = 15, BC = 20.
- **7.35.2.** На стороне *AB* треугольника *ABC* как на диаметре построена окружность, пересекающая отрезок *AC* в точке *P*. При этом $\angle ABP = \angle ACB$.
- а) Докажите, что прямая BP разбивает треугольник ABC на два подобных треугольника.
- б) Найдите отношение площадей этих подобных треугольников, если $tg \angle BAC = 2$.
- **7.36.1.** На диагонали *BD* параллелограмма *ABCD* отмечены точки P и Q, причём BP = PQ = QD.
- а) Докажите, что прямые AP и AQ проходят через середины M и N сторон BC и CD соответственно.
- б) Найдите отношение площади пятиугольника CMPQN к площади параллелограмма ABCD.
- **7.36.2.** На диагонали AC параллелограмма ABCD отмечены точки M и N, причём AM:MN:NC=1:2:1. Прямые DM и DN пересекают стороны AB и BC в точках E и F соответственно.
 - а) Докажите, что $\mathit{EF} \parallel \mathit{AC}$.
- б) Найдите отношение площади пятиугольника BEMNF к площади параллелограмма ABCD.
- **7.37.1.** На сторонах AB, BC, CD и AD параллелограмма ABCD отмечены точки K, L, M и N соответственно, причём $\frac{AK}{KB} = \frac{BL}{LC} = \frac{CM}{MD} = \frac{DN}{NA}$.
- а) Докажите, что четырёхугольник KLMN параллелограмм, а его центр совпадает с центром параллелограмма ABCD .
- б) Найдите отношение площадей параллелограммов KLMN и ABCD, если AK:KB=2.
- **7.37.2.** Через точку пересечения диагоналей параллелограмма ABCD проведена прямая, пересекающая стороны AB и CD в точках K и M соответственно, и прямая, пересекающая стороны BC и AD в точках L и N соответственно.
 - а) Докажите, что четырёхугольник КLMN параллелограмм.
- б) Найдите отношение площадей параллелограммов KLMN и ABCD, если BK:AK=2:1, BL:LC=2:3.

- **7.38.1.** Вершины ромба расположены (по одной) на сторонах параллелограмма.
 - а) Докажите, что центры ромба и параллелограмма совпадают.
- б) Найдите отношение площадей ромба и параллелограмма, если стороны ромба параллельны диагоналям параллелограмма, а диагонали параллелограмма относятся как 2:3.
- **7.38.2.** Вершины параллелограмма расположены (по одной) на сторонах ромба.
- а) Докажите, что четырёхугольник с вершинами в точках пересечения сторон параллелограмма с диагоналями ромба также является ромбом.
- б) Найдите отношение площади этого ромба к площади исходного, если вершины параллелограмма делят стороны исходного ромба в отношении 1:2 (в направлении по часовой стрелке).
 - 7.39.1. Около окружности описана равнобедренная трапеция.
- а) Докажите, что её диагональ проходит через середину отрезка, концы которого точки касания окружности с боковыми сторонами трапеции.
- б) Найдите отношение оснований трапеции, если площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет $\frac{3}{8}$ площади трапеции.
- **7.39.2.** Около окружности с центром O описана трапеция ABCD с основаниями AD и BC.
 - а) Докажите, что $\angle BOC + \angle AOD = 180^{\circ}$.
- б) Найдите отношение оснований трапеции, если AB = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет $\frac{8}{25}$ площади трапеции ABCD.
- **7.40.1.** Окружность с центром O вписана в равнобедренную трапецию ABCD с основаниями AD > BC.
 - а) Докажите, что прямая ВО делит площадь трапеции пополам.
- б) Пусть M и N точки касания окружности с боковыми сторонами трапеции. В каком отношении прямая MN делит площадь трапеции, если AD = 2BC?
- **7.40.2.** Окружность с центром O вписана в равнобедренную трапецию ABCD с основаниями AD > BC. Прямые AO и BC пересекаются в точке P, а прямые BO и AD в точке Q.
- а) Докажите, что прямая PQ касается вписанной окружности трапеции ABCD.

- б) Пусть M точка касания окружности с боковой стороной CD трапеции. В каком отношении прямая AM делит площадь трапеции, если AD = 3BC?
- **7.41.1.** Диагонали *AC* и *BD* четырёхугольника *ABCD* пересекаются в точке *O*. Треугольники *AOB* и *COD* равновелики.
 - а) Докажите, что $BC \parallel AD$.
- б) Найдите площади треугольников, на которые диагонали разбивают четырёхугольник ABCD, если его площадь равна 27, BC=8, AD=16.
- **7.41.2.** Диагонали *AC* и *BD* выпуклого четырёхугольника *ABCD* пересекаются в точке *O*. Известно, что $S^2_{\Delta AOB} = S_{\Delta BOC} \cdot S_{\Delta AOD}$.
 - а) Докажите, что $BC \parallel AD$.
- б) Найдите отношение $\frac{BC}{AD}$, если площадь треугольника COD составляет $\frac{6}{25}$ площади четырёхугольника ABCD, а BC < AD.
- **7.42.1.** Вершины A и D четырёхугольника ABCD соединены c серединой M стороны BC, а вершины B и C c серединой N стороны AD.
- а) Докажите, что если середины отрезков *AM*, *DM*, *BN*, *CN* не лежат на одной прямой, то четырёхугольник с вершинами в этих серединах параллелограмм.
- б) Найдите площадь этого параллелограмма, если AD=6, BC=8, а угол между прямыми BC и AD равен 30° .
- **7.42.2.** Вершины A и D четырёхугольника ABCD соединены c серединой M стороны BC, а вершины B и C c серединой N стороны AD. Точки E, F, G, H середины отрезков AM, CN, DM, BN соответственно.
- а) Докажите, что прямые EG, FH и MN пересекаются в одной точке.
- б) Найдите стороны четырёхугольника *EFGH*, если BC = 20, AD = 48 и $BC \perp AD$.
- **7.43.1.** Диагонали выпуклого четырёхугольника *ABCD* пересекаются в точке *P*. В треугольники *APB*, *BPC*, *CPD* и *APD* вписаны окружности с центрами O_1 , O_2 , O_3 и O_4 соответственно.
 - а) Докажите, что прямые O_1O_3 и O_2O_4 перпендикулярны.
- б) Пусть прямая O_1O_3 пересекает стороны AB и CD в точках M и N соответственно. Найдите отношение площадей треугольников CPN и DPN, если около четырёхугольника ABCD можно описать окружность и AM: MB = 1: 2.

- **7.43.2.** Диагонали выпуклого четырёхугольника *ABCD* пересекаются в точке M. В треугольники *AMB*, *BMC*, *CMD* и *AMD* вписаны окружности с центрами O_1 , O_2 , O_3 и O_4 соответственно.
- а) Докажите, что площадь четырёхугольника $O_1O_2O_3O_4$ равна $\frac{1}{2}O_1O_3\cdot O_2O_4.$
- б) Пусть прямая O_2O_4 пересекает стороны BC и AD в точках P и Q соответственно. Найдите отношение AQ:QD, если известно, что около четырёхугольника ABCD можно описать окружность, а отношение площадей треугольников CMP и BMP равно 3:2.

§ 8. Касательная к окружности

Решение задачи 8 из диагностической работы

8. Из точки M, лежащей вне окружности с центром O и радиусом R, проведены касательные MA и MB (A и B — точки касания). Прямые OA и MB пересекаются в точке C. Найдите OC, если известно, что отрезок OM делится окружностью пополам.

Ответ: 2R.

Р е ш е н и е. Пусть K — точка пересечения окружности с отрезком OM. Тогда OM = 2OK = 2R.

В прямоугольном треугольнике *OAM* катет *OA* вдвое меньше гипотенузы *OM*, значит, $\angle AMO = 30^\circ$, а так как MO — биссектриса угла *AMC*, то $\angle AMC = 60^\circ$. Из прямоугольного треугольника *MAC* находим, что $\angle ACM = 30^\circ$, значит, треугольник *MOC* равнобедренный. Следовательно, OC = OM = 2R.

* * *

В школьных учебниках встречаются два разных определения касательной к окружности. Первое: прямая называется касательной

к окружности, если прямая и окружность имеют единственную общую точку. Второе: прямая называется касательной к окружности, если она проходит через точку, лежащую на окружности, и перпендикулярна радиусу, проведённому в эту точку.

Эти определения равносильны, т. е. если некоторая прямая касается окружности по одному из этих определений, то она касается окружности и по второму. Докажем это.

Утверждение. Пусть прямая имеет с окружностью единственную общую точку. Тогда прямая перпендикулярна радиусу окружности, проведённому в эту точку.

 \mathcal{A} о к а з а т е л ь с т в о. Пусть прямая l имеет с окружностью единственную общую точку M. Допустим, что радиус OM окружности, проведённый в эту точку, не перпендикулярен прямой l. Тогда опустим перпендикуляр OH из центра окружности на прямую l и на продолжении отрезка MH за точку H отложим отрезок HM_1 , равный MH. Треугольник MOM_1 равнобедренный, так как его высота OH является медианой. Значит, $OM_1 = OM$, т. е. точка M_1 , не совпадающая с точкой M, также лежит и на окружности, и на прямой l. А это противоречит тому, что M — единственная общая точка прямой l и окружности. Следовательно, $OM \perp l$. Что и требовалось доказать.

Утверждение. Пусть теперь прямая проходит через точку M, лежащую на окружности, и перпендикулярна радиусу OM, проведённому в эту точку. Тогда M— единственная общая точка прямой l и окружности.

Доказательство. Предположим, что это не так, т.е. что есть ещё хотя бы одна отличная от M общая точка M_1 прямой l и окружности. Тогда $OM_1=OM$, т.е. треугольник MOM_1 равнобедренный, что невозможно, поскольку один из углов при его основании равен 90° . Следовательно, M — единственная общая точка прямой l и окружности, что и требовалось доказать.

Равносильность определений доказана.

* * *

При решении задач, связанных с касательной, чаще всего используются следующие простейшие свойства касательной.

Если из точки M, не лежащей на окружности с центром O, проведены к окружности две касательные MA и MB (A и B — точки касания), то:

- 1) MA = MB;
- 2) МО биссектриса угла АМВ;

3) прямая МО перпендикулярна отрезку АВ и делит его пополам.

Пример 1. Угол при вершине A треугольника ABC равен 120° . Окружность радиуса R касается стороны BC и продолжений сторон AB и AC. Найдите периметр треугольника ABC.

Ответ:
$$\frac{2R\sqrt{3}}{3}$$
.

Р е ш е н и е. Пусть О — центр окружности, D, E и F — точки касания с прямыми AB, BC и AC соответственно, 2p — периметр треугольника ABC. Тогда AD = AF, BE = BD и CE = CF. Поэтому

$$2p = AB + BC + AC = AB + (BE + EC) + AC =$$

= $(AB + BE) + (EC + AC) = (AB + BD) + (CF + AC) = AD + AF = 2AD.$

Поскольку луч AO — биссектриса угла DAC, то $\angle DAO = 60^\circ$. Из прямоугольного треугольника ADO находим, что AD = OD ctg $60^\circ = \frac{R\sqrt{3}}{3}$. Следовательно, $2p = 2AD = \frac{2R\sqrt{3}}{3}$.

Пример 2. Даны окружности радиусов r и R (R > r). Расстояние между их центрами равно a (a > R + r). Найдите отрезки общих касательных, заключённые между точками касания.

Ответ:
$$\sqrt{a^2 - (R+r)^2}$$
, $\sqrt{a^2 - (R-r)^2}$.

Р е ш е н и е. Пусть O_1 и O_2 — центры окружностей радиусов r и R, A и B — соответственные точки касания окружностей с общей внешней касательной, C и D — с общей внутренней.

Пусть P — основание перпендикуляра, опущенного из O_1 на O_2B . Из прямоугольного треугольника O_1PO_2 находим, что

$$O_1 P = \sqrt{O_1 O_2^2 - O_2 P^2} = \sqrt{a^2 - (R - r)^2}.$$

Пусть Q — основание перпендикуляра, опущенного из O_1 на продолжение O_2D . Из прямоугольного треугольника O_1QO_2 находим, что

$$O_1Q = \sqrt{O_1O_2^2 - O_2Q^2} = \sqrt{a^2 - (R+r)^2}.$$

Следовательно,

$$AB = O_1 P = \sqrt{a^2 - (R - r)^2}, \quad CD = O_1 Q = \sqrt{a^2 - (R + r)^2}.$$

Подготовительные задачи

- **8.1.** В окружности проведён диаметр AB. Прямая, проходящая через точку A, пересекает в точке C касательную к окружности, проведённую через точку B. Отрезок AC делится окружностью пополам. Найдите угол BAC.
- **8.2.** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **8.3.** В большей из двух концентрических окружностей (имеющих общий центр) проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус каждой из окружностей, если ширина образовавшегося кольца равна 8.
- **8.4.** Две прямые, проходящие через точку M, лежащую вне окружности с центром O, касаются окружности в точках A и B. Отрезок OM делится окружностью пополам. В каком отношении отрезок OM делится прямой AB?
- **8.5.** Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.
- **8.6.** Прямая, проходящая через точку M, удалённую от центра окружности радиуса 10 на расстояние, равное 26, касается окружности в точке A. Найдите AM.
- **8.7.** Окружности радиусов R и r (R > r) касаются некоторой прямой. Линия центров пересекает эту прямую под углом 30° . Найдите расстояние между центрами окружностей.
- **8.8.** Из точки M проведены касательные MA и MB к окружности (A и B точки касания). Найдите радиус окружности, если $\angle AMB = \alpha$ и AB = a.
- **8.9.** Окружность с центром O касается двух параллельных прямых. Проведена касательная к окружности, пересекающая эти прямые в точках A и B. Найдите угол AOB.
- **8.10.** На окружности радиуса r выбраны три точки таким образом, что окружность оказалась разделённой на три дуги, градусные меры которых относятся как 3:4:5. В точках деления к окружности проведены касательные. Найдите площадь треугольника, образованного этими касательными.
- **8.11.** Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.

8.12. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

Тренировочные задачи

- **8.13.** Из точки M, лежащей вне окружности радиуса 1, проведены к окружности две взаимно перпендикулярные касательные MA и MB. Между точками касания A и B на меньшей дуге AB взята произвольная точка C, и через неё проведена третья касательная KL, образующая с касательными MA и MB треугольник KLM. Найдите периметр этого треугольника.
- **8.14.** На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника. Найдите радиус окружности, если высота, опущенная на основание треугольника, равна 3.
- **8.15.** Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины общих касательных к этим окружностям.
- **8.16.** Две окружности радиусов 4 и 3 с центрами в точках O_1 и O_2 касаются некоторой прямой в точках M_1 и M_2 соответственно и лежат по разные стороны от этой прямой. Отношение отрезков O_1O_2 и M_1M_2 равно $\frac{2}{\sqrt{3}}$. Найдите O_1O_2 .
- **8.17.** Две окружности радиусов 12 и 7 с центрами в точках O_1 и O_2 касаются некоторой прямой в точках M_1 и M_2 соответственно и лежат по одну сторону от этой прямой. Отношение отрезков M_1M_2 и O_1O_2 равно $\frac{2\sqrt{5}}{5}$. Найдите M_1M_2 .
- **8.18.** В прямоугольном треугольнике ABC катет AC равен 16 и катет BC равен 12. Построена окружность с центром B и радиусом BC, и к ней проведена касательная, параллельная гипотенузе. Катет BC продолжен до пересечения с проведённой касательной. Определите, на какое расстояние продолжен катет.
- **8.19.** В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно *а*. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.

- **8.20.** В треугольнике *ABC* известно, что BC = a, $\angle A = \alpha$, $\angle B = \beta$. Найдите радиус окружности, касающейся стороны *AC* в точке *A* и касающейся стороны *BC*.
- **8.21.** Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне. Найдите радиус окружности.
- **8.22.** Найдите длину хорды, если дан радиус r окружности и расстояние a от одного конца хорды до касательной, проведённой через другой её конец.
- **8.23.** Один из смежных углов с вершиной A вдвое больше другого. В эти углы вписаны окружности с центрами O_1 и O_2 . Найдите углы треугольника O_1AO_2 , если отношение радиусов окружностей равно $\sqrt{3}$.
- **8.24.** В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны. В каком отношении она делит большее основание трапеции?
- **8.25.** В окружности радиуса 4 проведены хорда AB и диаметр AK, образующий с хордой угол $\frac{\pi}{8}$. В точке B проведена касательная к окружности, пересекающая продолжение диаметра AK в точке C. Найдите медиану AM треугольника ABC.
- **8.26.** На прямой, проходящей через центр O окружности радиуса 12, взяты точки A и B, причём OA = 15, AB = 5 и точка A лежит между O и B. Из точек A и B проведены касательные к окружности, точки касания которых лежат по одну сторону от прямой OB. Найдите площадь треугольника ABC, где C точка пересечения этих касательных.
- **8.27.** В угол с вершиной A, равный 60° , вписана окружность с центром O. К этой окружности проведена касательная, пересекающая стороны угла в точках B и C. Отрезок BC пересекается с отрезком AO в точке M. Найдите радиус окружности, вписанной в треугольник ABC, если AM:MO=2:3 и BC=7.
- **8.28.** Через точку A окружности радиуса 10 проведены две взаимно перпендикулярные хорды AB и AC. Вычислите радиус окружности, касающейся данной окружности и построенных хорд, если AB = 16.

Задачи на доказательство и вычисление

- **8.29.1.** Общие внутренние касательные к двум окружностям перпендикулярны. Одна из них касается окружностей в точках A и C, вторая в точках B и D (точки A и B лежат на одной окружности).
 - а) Докажите, что отрезок АС равен сумме радиусов окружностей.
 - б) Найдите площадь четырёхугольника ABCD, если AB = 6, CD = 8.
- **8.29.2.** Общие внутренние касательные к двум окружностям пересекаются в точке O. Одна из них касается окружностей в точках E и G, вторая в точках F и H (точки F и G лежат на одной окружности), а $\angle FOG = 60^{\circ}$.
 - а) Докажите, что FH = EH + FG.
 - б) Найдите площадь четырёхугольника EFGH, если FG = 5, EH = 3.
- **8.30.1.** Окружность с центром O, вписанная в треугольник ABC, касается сторон AB и BC в точках P и Q соответственно.
- а) Докажите, что в четырёхугольник BPOQ можно вписать окружность.
- б) Найдите угол ABC, если радиус этой окружности вдвое меньше радиуса вписанной окружности треугольника ABC.
- **8.30.2.** Окружность с центром O, вписанная в треугольник ABC, касается сторон AB и BC в точках P и Q соответственно.
- а) Докажите, что около четырёхугольника *BPOQ* можно описать окружность.
- б) Найдите угол ABC, если радиус этой окружности равен радиусу вписанной окружности треугольника ABC.
- **8.31.1.** Хорда AB окружности параллельна касательной, проходящей через точку C, лежащую на окружности.
 - а) Докажите, что треугольник АВС равнобедренный.
- б) Найдите радиус окружности, если расстояние между касательной и прямой AB равно 1 и $\angle ACB = 150^{\circ}$.
- **8.31.2.** Хорда AB окружности параллельна касательной, проходящей через точку C, лежащую на окружности. Прямая, проходящая через точку C и центр окружности, вторично пересекает окружность в точке D.
 - а) Докажите, что треугольник ABD равнобедренный.
- б) Известно, что $\angle ADB = 150^{\circ}$. В каком отношении хорда AB делит диаметр CD?
- **8.32.1.** В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая l касается этой окружности и параллельна

прямой AC. Расстояние от точки B до прямой l равно радиусу окружности.

- а) Докажите, что треугольник АВС равносторонний.
- б) Найдите расстояние между точками, в которых данная окружность касается сторон AB и BC, если радиус окружности равен 3.
- **8.32.2.** В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая касается этой окружности, параллельна прямой AC и пересекает стороны AB и BC в точках P и Q. Окружность касается стороны AB в точке M.
- а) Докажите, что периметр треугольника BPQ вдвое больше отрезка BM.
- б) Найдите периметр треугольника ABC, если радиус окружности равен 3, а расстояние от центра окружности до вершины B равно 5.
- **8.33.1.** Через центр O окружности, вписанной в треугольник ABC, провели прямую MN параллельно стороне AB (M лежит на BC, N лежит на AC).
- а) Докажите, что площади треугольников AON и BOM пропорциональны отрезкам AN и BM.
- б) Найдите периметр четырёхугольника ABMN, если AB = 5, MN = 3.
- **8.33.2.** Через центр O окружности, вписанной в треугольник KLM, провели прямую AB параллельно стороне LM (A лежит на KL, B лежит на KM).
- а) Докажите, что площади треугольников AOK и BOK пропорциональны отрезкам AL и BM.
- б) Найдите периметр четырёхугольника ABML, если его площадь составляет $\frac{7}{16}$ площади треугольника KLM, а разность периметров треугольников KLM и AKB равна 24.
- **8.34.1.** Около окружности описана равнобедренная трапеция *ABCD*; E и K точки касания этой окружности с боковыми сторонами AD и BC соответственно.
 - а) Докажите, что $EK \parallel AB$.
- б) Найдите площадь трапеции ABKE, если радиус окружности равен R, а $\angle BAD = 60^{\circ}$.
- **8.34.2.** Около окружности описана равнобедренная трапеция ABCD; E и F точки касания этой окружности с боковыми сторонами AB и CD соответственно.
 - а) Докажите, что BE: AE = CF: DF.
 - б) Найдите площадь трапеции BCFE, если BC = 2, AD = 18.

- **8.35.1.** Окружность с центром O касается боковой стороны AB равнобедренного треугольника ABC, продолжения боковой стороны AC и продолжения основания BC в точке N. Точка M середина основания BC.
 - а) Докажите, что AN = OM.
- б) Найдите OM, если стороны треугольника ABC равны 10, 10 и 12.
- **8.35.2.** Окружность с центром O касается боковой стороны AB равнобедренного треугольника ABC, продолжения боковой стороны AC и продолжения основания BC в точке N. Точка M середина основания BC.
 - а) Докажите, что MN = AC.
 - б) Найдите ОС, если стороны треугольника АВС равны 5, 5 и 8.
- **8.36.1.** Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке M. Окружность с центром O_1 касается стороны BC в точке N, а также касается продолжений сторон AC и AB.
- а) Докажите, что около четырёхугольника $BOCO_1$ можно описать окружность.
- б) Найдите площади четырёхугольников $BOCO_1$ и $NOMO_1$, если AC=6, BC=8, AB=10.
- **8.36.2.** Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке M. Окружность с центром O_1 касается стороны BC в точке N, а также касается продолжений сторон AC и AB.
 - а) Докажите, что BN = CM.
 - б) Найдите OO_1 , если AC = 10, BC = 24, AB = 26.
- **8.37.1.** Сторона *CD* прямоугольника *ABCD* касается некоторой окружности в точке M. Продолжение стороны *AD* последовательно пересекает окружность в точках P и Q, прямая BC касается окружности, а точка Q лежит на прямой BM.
 - а) Докажите, что $\angle DMP = \angle CBM$.
 - б) Известно, что CM = 5 и CD = 8. Найдите сторону AD.
- **8.37.2.** Сторона MN прямоугольника KLMN касается некоторой окружности в точке A. Продолжение стороны KN последовательно пересекает окружность в точках B и C, прямая LM касается окружности, а точка C лежит на прямой AL.
 - а) Докажите, что треугольники ABN и LAM подобны.
 - б) Известно, что AM = 13 и KL = 25. Найдите сторону KN.
- **8.38.1.** Точки M и N середины сторон соответственно AB и AC треугольника ABC. Прямая, проходящая через вершину A, пересекает

отрезки MN и BC в точках K и L соответственно, причём в четырёхугольник BMKL можно вписать окружность.

- а) Докажите, что периметр треугольника AMK вдвое больше отрезка BL.
 - б) Найдите AL, если AB = 12, BC = 16, AC = 20.
- **8.38.2.** Точки M и N середины сторон соответственно AB и AC треугольника ABC. Прямая, проходящая через вершину A, пересекает отрезки MN и BC в точках K и L соответственно, причём в четырёхугольник BMKL можно вписать окружность.
- а) Докажите, что периметр треугольника ABL в четыре раза больше отрезка BL.
 - б) Найдите этот периметр, если AB = 20, AC = 34, BC = 42.

§ 9. Касающиеся окружности

Решение задачи 9 из диагностической работы

9. Окружности с центрами O_1 и O_2 касаются внешним образом в точке C. Прямая касается этих окружностей в различных точках A и B соответственно. Найдите угол AO_2B , если известно, что $\operatorname{tg} \angle ABC = \frac{1}{2}$.

Ответ: 45°.

Р е ш е н и е. Пусть M — точка пересечения отрезка AB с общей касательной к данным окружностям, проведённой через их точку касания C. Тогда MA = MC = MB, значит, $\angle ACB = 90^{\circ}$.

Опустим перпендикуляр O_2H из центра O_2 второй окружности на её хорду BC. Тогда H — середина BC. Из условия задачи следует, что $AC = \frac{1}{2}BC = BH$, а так как $\angle BO_2H = 90^\circ - \angle O_2BH = \angle ABC$, то прямо-угольные треугольники BO_2H и ABC равны по катету и противолежащему острому углу. Значит, $O_2B = AB$. Следовательно, $\angle AO_2B = \angle BAO_2 = 45^\circ$.

* * *

В разных учебниках приводятся разные формулировки определения касающихся окружностей:

- 1) говорят, что две окружности касаются, если они имеют единственную общую точку;
- 2) говорят, что две различные окружности касаются, если они имеют общую точку и общую касательную, проведённую в этой точке.

Эти определения равносильны: если окружности касаются по первому определению, то они касаются и по второму, и наоборот.

Говорят, что окружности касаются внешним образом (касаются извне), если их центры лежат по разные стороны от общей касательной. Если же центры касающихся окружностей лежат по одну сторону от общей касательной, то говорят, что окружности касаются внутренним образом (касаются изнутри).

Самое важное свойство касающихся окружностей — линия их центров (т. е. прямая, проведённая через центры окружностей) проходит через точку касания. Этот факт при решении задач на касающиеся окружности, как правило, используется в первую очередь.

Если в условии задачи не указано, каким образом касаются окружности, то необходимо рассматривать и случай внешнего, и случай внутреннего касания.

Пример 1. Две окружности радиуса r касаются большей окружности радиуса R — одна изнутри, другая извне, причём градусная мера дуги между точками касания равна 60° . Найдите расстояние между центрами меньших окружностей.

Ответ:
$$\sqrt{R^2+3r^2}$$
.

Р е ш е н и е. Пусть окружности радиуса r с центрами O_1 и O_2 касаются окружности радиуса R с центром O соответственно внутренним и внешним образом, причём r < R. Поскольку линия центров двух касающихся окружностей проходит через точку их касания, $OO_1 = R - r$ и $OO_2 = R + r$. Кроме того, $\angle O_1 OO_2 = 60^\circ$. По теореме косинусов из треугольника $O_1 OO_2$ находим, что

$$\begin{split} O_1O_2^2 &= (R+r)^2 + (R-r)^2 - 2(R+r)(R-r)\cos 60^\circ = \\ &= (R+r)^2 + (R-r)^2 - (R^2-r^2) = R^2 + 3r^2. \end{split}$$

◁

Следовательно,
$$O_1O_2 = \sqrt{R^2 + 3r^2}$$
.

Пример 2. Окружности различных радиусов r и R с центрами O_1 и O_2 соответственно касаются внешним образом в точке K. Прямая касается этих окружностей в различных точках A и B, а вторая прямая — в точках D и C соответственно.

- 1) Найдите AB и отрезок MN общей касательной окружностей, проходящей через точку их касания, заключённый между общими внешними касательными AB и CD.
 - 2) Докажите, что $\angle AKB = \angle O_1 MO_2 = 90^{\circ}$.
- 3) Докажите, что ABCD описанная трапеция, и найдите её высоту.

Ответ: 1)
$$2\sqrt{rR}$$
; 3) $\frac{4rR}{r+R}$.

Р е ш е н и е. Для определённости предположим, что r < R.

1) Точка K лежит на отрезке O_1O_2 , поскольку окружности касаются внешним образом. Поэтому $O_1O_2=O_1K+KO_2=r+R$. Из точки O_1 опустим перпендикуляр O_1F на радиус O_2B второй окружности. Тогда, так как $O_2B\perp AB$ (как радиус, проведённый в точку касания с прямой AB), $O_1F\parallel AB$. Кроме того, прямые O_1A и O_2B параллельны, так как обе они перпендикулярны касательной AB. Следовательно,

четырёхугольник O_1ABF — прямоугольник. Точка F лежит на отрезке O_2B , поэтому

$$O_2F = O_2B - BF = O_2B - O_1A = R - r.$$

По теореме Пифагора из прямоугольного треугольника O_1FO_2 находим, что

$$O_1 F = \sqrt{O_1 O_2^2 - O_2 F^2} = \sqrt{(r+R)^2 - (R-r)^2} = 2\sqrt{rR}.$$

Следовательно, $AB = O_1 F = 2\sqrt{rR}$.

Отрезки касательных, проведённых к окружности из одной точки, равны, поэтому MK = MB и MK = MA. Значит,

$$NM = 2MK = AB = 2\sqrt{rR}$$
.

2) Поскольку MO_1 и MO_2 — биссектрисы смежных углов AMK и BMK, угол O_1MO_2 прямой.

Поскольку MA = MK = MB, медиана KM треугольника AKB равна половине стороны AB. Следовательно, $\angle AKB = 90^{\circ}$.

3) Пусть прямые AB и CD пересекаются в точке O. Тогда OA = OD, OB = OC, поэтому $CD = AB = 2\sqrt{rR}$.

Точки O_1 и O_2 лежат на биссектрисе угла AOD. Биссектриса равнобедренного треугольника AOD является его высотой, поэтому $AD \perp O_1O_2$ и $BC \perp O_1O_2$, значит, $AD \parallel BC$ и ABCD — равнобедренная трапеция. Отрезок MN — её средняя линия, поэтому

$$AD + BC = 2MN = 2AB = AB + CD$$
.

Следовательно, в трапецию АВСО можно вписать окружность.

Пусть AP — высота этой трапеции. Прямоугольные треугольники APB и O_1FO_2 подобны, поэтому $\frac{AP}{O_1F}=\frac{AB}{O_1O_2}$, откуда находим, что

$$AP = \frac{O_1 F \cdot AB}{O_1 O_2} = \frac{2\sqrt{rR} \cdot 2\sqrt{rR}}{r+R} = \frac{4rR}{r+R}.$$

Подготовительные задачи

- **9.1.** Три равные окружности радиуса R касаются друг друга внешним образом. Найдите стороны и углы треугольника, вершинами которого служат точки касания.
- **9.2.** Две равные окружности касаются изнутри третьей и касаются между собой. Соединив три центра, получим треугольник с периметром, равным 18. Найдите радиус большей окружности.
- **9.3.** Три окружности радиусов 6, 7 и 8 попарно касаются друг друга внешним образом. Найдите площадь треугольника с вершинами в центрах этих окружностей.
- **9.4.** Окружности радиусов 8 и 3 касаются внутренним образом. Из центра большей окружности проведена касательная к меньшей окружности. Найдите расстояние от точки касания до центра большей окружности.
- **9.5.** Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно. Найдите радиус r, если AB = 12, R = 8.
- **9.6.** Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается изнутри третьей окружности радиуса R в точках A и B соответственно. Найдите радиус R, если AB = 11, r = 5.
- **9.7.** Дана окружность радиуса *R*. Четыре окружности равных радиусов касаются данной внешним образом, и каждая из этих четырёх окружностей касается двух других. Найдите радиусы этих четырёх окружностей.
- **9.8.** Три окружности разных радиусов попарно касаются друг друга внешним образом. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы большей и средней равны 6 и 4.
- **9.9.** На прямой, проходящей через центр O окружности радиуса R, взята точка A на расстоянии a от центра. Найдите радиус второй окружности, которая касается прямой OA в точке A, а также касается данной окружности.
- **9.10.** Даны окружности радиусов 1 и 3 с общим центром O. Третья окружность касается их обеих. Найдите угол между касательными к третьей окружности, проведёнными из точки O.
- **9.11.** В угол, равный 60° , вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен r. Найдите радиус большей окружности.

- **9.12.** Две окружности касаются друг друга внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен 60° , касаются меньшей окружности. Найдите отношение радиусов окружностей.
- **9.13.** В равносторонний треугольник вписана окружность. Этой окружности и двух сторон треугольника касается меньшая окружность. Найдите сторону треугольника, если радиус малой окружности равен r.
- **9.14.** В круговой сектор с центральным углом 120° вписана окружность. Найдите её радиус, если радиус данной окружности равен R.
- **9.15.** Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.

Тренировочные задачи

- **9.16.** Окружность радиуса 2 касается внешним образом другой окружности в точке A. Общая касательная к обеим окружностям, проведённая через точку A, пересекается с другой их общей касательной в точке B. Найдите радиус второй окружности, если AB = 4.
- **9.17.** Две окружности касаются друг друга внешним образом в точке C. Радиусы окружностей равны 2 и 7. Общая касательная к обеим окружностям, проведённая через точку C, пересекается с другой их общей касательной в точке D. Найдите расстояние от центра меньшей окружности до точки D.
- **9.18.** Окружность радиуса r касается некоторой прямой в точке M. На этой прямой по разные стороны от M взяты точки A и B, причём MA = MB = a. Найдите радиус окружности, проходящей через точки A и B и касающейся данной окружности.
- **9.19.** Одна окружность описана около равностороннего треугольника ABC, а вторая вписана в угол A и касается первой окружности. Найдите отношение радиусов окружностей.
- **9.20.** В окружность вписан равнобедренный треугольник с основанием a и углом при основании α . Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности.

- **9.21.** Две окружности с центрами O_1 , O_2 и радиусами 32, пересекаясь, делят отрезок O_1O_2 на три равные части. Найдите радиус окружности, которая касается изнутри обеих окружностей и касается отрезка O_1O_2 .
- **9.22.** Две окружности радиусов R и r касаются сторон данного угла и друг друга. Найдите радиус третьей окружности, касающейся сторон того же угла, центр которой находится в точке касания окружностей между собой.
- **9.23.** В треугольнике ABC сторона BC равна a, радиус вписанной окружности равен r. Найдите радиусы двух равных окружностей, касающихся друг друга, если одна из них касается сторон BC и BA, а другая сторон BC и CA.
- **9.24.** Две окружности радиусов 5 и 3 касаются внутренним образом. Хорда большей окружности касается меньшей окружности и делится точкой касания в отношении 3:1. Найдите длину этой хорды.
- **9.25.** Две окружности, радиусы которых относятся как $9-4\sqrt{3}$ к 1, касаются друг друга внутренним образом. В большей окружности проведены две равные хорды, касающиеся меньшей окружности. Одна из этих хорд перпендикулярна отрезку, соединяющему центры окружностей, а другая нет. Найдите угол между этими хордами.
- **9.26.** Две окружности касаются внутренним образом. Прямая, проходящая через центр большей окружности, пересекает её в точках A и D, а меньшую окружность в точках B и C. Найдите отношение радиусов окружностей, если AB:BC:CD=3:7:2.
- **9.27.** Две окружности касаются внутренним образом. Прямая, проходящая через центр меньшей окружности, пересекает бо́льшую окружность в точках A и D, а меньшую в точках B и C. Найдите отношение радиусов окружностей, если AB:BC:CD=2:4:3.
- **9.28.** Две окружности радиусов R и r (R > r) касаются внешним образом в точке C. К ним проведена общая внешняя касательная AB, где A и B точки касания. Найдите стороны треугольника ABC.
- **9.29.** Две окружности радиусов R и r (R > r) касаются внешним образом. Прямая касается этих окружностей в различных точках A и B. Найдите радиус окружности, касающейся обеих данных окружностей и прямой AB.
- **9.30.** Две окружности касаются внешним образом в точке C. Общая внешняя касательная касается первой окружности в точке A, а второй в точке B. Прямая AC пересекает вторую окружность в точке D, отличной от C. Найдите BC, если AC = 9, CD = 4.

- **9.31.** Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.
- **9.32.** Три окружности радиусов 1, 2 и 3 касаются друг друга внешним образом. Найдите радиус окружности, проходящей через точки касания этих окружностей.
- **9.33.** Две окружности радиусов 5 и 4 касаются внешним образом. Прямая, касающаяся меньшей окружности в точке A, пересекает бо́льшую в точках B и C, причём AB = BC. Найдите AC.
- **9.34.** Точка B середина отрезка AC, причём AC = 6. Проведены три окружности радиуса 1 с центрами A, B и C. Найдите радиус четвёртой окружности, касающейся всех трёх данных.
- **9.35.** Точка B середина отрезка AC, причём AC = 6. Проведены три окружности радиуса 5 с центрами A, B и C. Найдите радиус четвёртой окружности, касающейся всех трёх данных.
- **9.36.** Дана окружность с центром в точке O и радиусом 2. Из конца отрезка OA, пересекающегося с окружностью в точке M, проведена касательная AK к окружности, $\angle OAK = 60^\circ$. Найдите радиус окружности, вписанной в угол OAK и касающейся данной окружности внешним образом.
- **9.37.** В круге с центром O хорда AB пересекает радиус OC в точке D, причём $\angle CDA = 120^{\circ}$. Найдите радиус окружности, вписанной в угол ADC и касающейся дуги AC, если OC = 2, $OD = \sqrt{3}$.
- **9.38.** Окружности радиусов r и R касаются друг друга внутренним образом. Найдите сторону равностороннего треугольника, у которого одна вершина находится в точке касания данных окружностей, а две другие лежат на разных данных окружностях.
- **9.39.** Радиусы окружностей S_1 и S_2 , касающихся в точке A, равны R и r соответственно (R > r). Прямая, проходящая через точку B, лежащую на окружности S_1 , касается окружности S_2 в точке C. Найдите BC, если AB = a.
- **9.40.** Отношение радиусов окружностей S_1 и S_2 , касающихся в точке B, равно k (k>1). Из точки A, лежащей на окружности S_1 , проведена прямая, касающаяся окружности S_2 в точке C. Найдите AC, если известно, что хорда, высекаемая окружностью S_2 на прямой AB, равна b.
- **9.41.** Окружность радиуса 1 касается окружности радиуса 3 в точке *С*. Прямая, проходящая через точку *С*, пересекает окружность

- меньшего радиуса в точке A, а большего радиуса в точке B. Найдите AC, если $AB = 2\sqrt{5}$.
- **9.42.** Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B, пересекает окружность меньшего радиуса в точке A, а окружность большего радиуса в точке C. Найдите BC, если $AC = 3\sqrt{2}$.
- **9.43.** В угол вписано несколько окружностей, радиусы которых возрастают. Каждая следующая окружность касается предыдущей окружности. Найдите сумму длин второй и третьей окружностей, если радиус первой окружности равен 1, а площадь круга, ограниченного четвёртой окружностью, равна 64π .
- **9.44.** На отрезке AB, равном 2R, как на диаметре построена окружность. Вторая окружность того же радиуса, что и первая, имеет центр в точке A. Третья окружность касается первой окружности внутренним образом, второй окружности внешним образом, а также касается отрезка AB. Найдите радиус третьей окружности.
- **9.45.** В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны CD. Первая окружность касается сторон CD, а вторая окружность касается сторон CD, а вторая окружность касается сторон CD. Найдите CD.
- **9.46.** В прямоугольном секторе AOB из точки B как из центра проведена дуга OC (C точка пересечения этой дуги с дугой AB) радиуса BO. Окружность S_1 касается дуги AB, дуги OC и прямой OA, причём точки касания различны, а окружность S_2 касается дуги AB, прямой OA и окружности S_1 (точки касания также попарно различны). Найдите отношение радиуса окружности S_1 к радиусу окружности S_2 .
- **9.47*** На отрезке AC взята точка B, и на отрезках AB, BC, CA как на диаметрах построены полуокружности S_1 , S_2 , S_3 по одну сторону от AC. Найдите радиус окружности, касающейся всех трёх полуокружностей, если известно, что её центр удален от прямой AC на расстояние a.
- **9.48*** Две окружности радиусов r и R (r < R) касаются друг друга внешним образом. Прямая касается этих окружностей в точках M и N. В точках A и B окружности касаются внешним образом третьей окружности. Прямые AB и MN пересекаются в точке C. Из точки C проведена касательная к третьей окружности (D точка касания). Найдите CD.

Задачи на доказательство и вычисление

- **9.49.1.** Окружность с центром O и окружность вдвое меньшего радиуса касаются внутренним образом в точке A. Хорда AB большей окружности пересекает меньшую окружность в точке M.
 - а) Докажите, что M середина AB.
- б) Луч OM пересекает большую окружность в точке P. Найдите расстояние от центра большей окружности до хорды AP, если радиус большей окружности равен 13, а OM = 5.
- **9.49.2.** Окружность с центром O и окружность вдвое меньшего радиуса касаются внутренним образом в точке E. Диаметр PQ большей окружности пересекает меньшую окружность в точке H, отличной от O. Луч EH пересекает большую окружность в точке F.
 - а) Докажите, что H середина EF.
- б) Найдите расстояния от точки O до хорд EP и EQ, если радиус большей окружности равен 169, а OH = 119.
- **9.50.1.** Окружности с центрами O_1 и O_2 касаются внешним образом в точке C. К окружностям проведены общая внешняя касательная и общая внутренняя касательная. Эти касательные пересекаются в точке D.
 - а) Докажите, что треугольник O_1DO_2 прямоугольный.
 - б) Найдите радиусы окружностей, если $DO_1 = \sqrt{5}$ и $DO_2 = 2\sqrt{5}$.
- **9.50.2.** Окружности с центрами O_1 и O_2 касаются внешним образом в точке C. К окружностям проведена общая внешняя касательная AB (A и B точки касания).
 - а) Докажите, что треугольник АВС прямоугольный.
 - б) Найдите радиусы окружностей, если AC = 10 и BC = 24.
- **9.51.1.** Окружности с центрами O_1 и O_2 касаются в точке A внешним образом. Прямая, проходящая через точку A, вторично пересекает первую окружность в точке B, а вторую в точке C.
 - а) Докажите, что $O_2C \parallel O_1B$.
- б) Найдите площадь треугольника BCO_2 , если радиусы первой и второй окружностей равны 5 и 8 соответственно, а $\angle ABO_1 = 15^\circ$.
- **9.51.2.** Окружности с центрами O_1 и O_2 касаются в точке A внутренним образом. Прямая, проходящая через точку A, вторично пересекает первую окружность в точке B, а вторую в точке C.
 - а) Докажите, что $O_2C \parallel O_1B$.
- б) Найдите площадь треугольника BCO_2 , если радиусы окружностей равны 3 и 5 соответственно, а $\angle ABO_1 = 15^\circ$.

- **9.52.1.** В треугольник *ABC* помещены две касающиеся окружности с центрами O_1 и O_2 , причём первая из них касается сторон *AB* и *AC*, а вторая сторон *AB* и *BC*.
- а) Докажите, что прямые AO_1 и BO_2 пересекаются в центре окружности, вписанной в треугольник ABC.
- б) Найдите радиусы окружностей, если они равны, а AB = AC = 10 и BC = 12.
- **9.52.2.** В треугольник ABC помещены две касающиеся окружности с центрами O_1 и O_2 , причём первая из них касается сторон AB и BC, а вторая сторон AC и BC. Прямые BO_1 и CO_2 пересекаются в точке O.
 - а) Докажите, что $\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$.
- б) Найдите радиусы окружностей, если они равны, а AB = AC = 115 и BC = 184.
- **9.53.1.** Окружности с центрами O_1 и O_2 касаются внешним образом; прямая касается первой окружности в точке A, а второй в точке B. Известно, что точка M пересечения диагоналей четырёхугольника O_1ABO_2 лежит на первой окружности.
 - а) Докажите, что треугольник MBO_2 равнобедренный.
 - б) Найдите отношение радиусов окружностей.
- **9.53.2.** Окружности с центрами O_1 и O_2 касаются внешним образом; прямая касается первой окружности в точке A, а второй в точке B. Известно, что радиус первой окружности вдвое меньше радиуса второй.
 - а) Докажите, что треугольник BO_1O_2 равнобедренный.
- б) Пусть M точка пересечения отрезка O_1B с первой окружностью. Найдите площадь треугольника O_1MO_2 , если площадь треугольника AMB равна 10.
- **9.54.1.** В полуокружности расположены две окружности, касающиеся друг друга, полуокружности и её диаметра.
- а) Докажите, что периметр треугольника с вершинами в центрах окружностей и полуокружности равен диаметру полуокружности.
- б) Известно, что радиус полуокружности равен 8, а радиус одной из окружностей равен 4. Найдите радиус другой.
- **9.54.2.** В полуокружности с диаметром MN расположены окружности с центрами O_1 и O_2 , касающиеся друг друга, полуокружности в точках A и B соответственно, а также прямой MN.
 - а) Докажите, что прямые O_1A и O_2B пересекаются на прямой MN.
- б) Известно, что радиусы окружностей равны 12 и 6. Найдите радиус полуокружности.

- **9.55.1.** Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
- а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
- б) Найдите радиус третьей окружности, если радиусы первых двух равны 6 и 2.
- **9.55.2.** В окружности проведены два диаметра. В каждый из двух соседних получившихся секторов вписана окружность.
- а) Докажите, что треугольник с вершинами в центрах трёх окружностей прямоугольный.
- б) Найдите отношение радиусов двух меньших окружностей, если угол между диаметрами равен 60° .
- **9.56.1.** В равнобедренной трапеции ABCD с основаниями AD и BC расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Пусть P и Q точки касания окружностей с боковой стороной AB, а общая касательная окружностей, проходящая через их точку касания, пересекает боковые стороны в точках M и N.
 - а) Докажите, что MN = PQ.
 - б) Найдите площадь трапеции ABCD, если AD = 18 и BC = 2.
- **9.56.2.** В равнобедренной трапеции *KLMN* с основаниями *LM* и *KN* расположены две окружности с центрами O_1 и O_2 , каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Пусть общая касательная окружностей, проходящая через их точку касания, пересекает боковые стороны в точках A и B.
 - а) Докажите, что $\angle O_1 A O_2 = 90^\circ$.
- б) Найдите площадь трапеции *KLMN*, если $AB = 4\sqrt{2}$, а радиус одной окружности вдвое больше радиуса другой.
- **9.57.1.** В прямоугольном треугольнике ABC с прямым углом C известны стороны: AC=15, BC=8. Окружность радиуса 2,5 с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.
- а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{4}$ длины катета AC.
 - б) Найдите радиус второй окружности.
- **9.57.2.** В прямоугольном треугольнике *ABC* с прямым углом *C* известны стороны: AC = 12, BC = 5. Окружность радиуса 0,5 с центром *O* на стороне *BC* проходит через вершину *C*. Вторая окружность каса-

ется катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.

- а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{5}$ длины катета AC.
 - б) Найдите радиус второй окружности.

§ 10. Пересекающиеся окружности

Решение задачи 10 из диагностической работы

10. На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.

Ответ: $\frac{12}{5}$.

Решение. Пусть CD— общая хорда окружностей, построенных на катетах AC=3 и BC=4 прямоугольного треугольника ABC как на диаметрах. Тогда $\angle ADC=\angle BDC=90^\circ$ как вписанные углы, опирающиеся на диаметр. Значит, точ-

ка D лежит на гипотенузе AB, а CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла.

По теореме Пифагора $AB = \sqrt{9 + 16} = 5$, а поскольку

$$S_{\Delta ABC} = rac{1}{2}AC \cdot BC$$
 и $S_{\Delta ABC} = rac{1}{2}AB \cdot CD$,

получаем $\frac{1}{2}AC \cdot BC = \frac{1}{2}AB \cdot CD$, откуда находим, что

$$CD = \frac{AC \cdot BC}{AB} = \frac{3 \cdot 4}{5} = \frac{12}{5}.$$

* * *

Докажем важнейшее свойство пересекающихся окружностей.

Утверждение. Линия центров пересекающихся окружностей перпендикулярна их общей хорде и делит её пополам.

Доказательство. Пусть AB — общая хорда пересекающихся окружностей с центрами O_1 и O_2 . Точки O_1 и O_2 равноудалены от

концов отрезка AB, поэтому O_1O_2 — серединный перпендикуляр к отрезку AB, что и требовалось доказать.

Пример 1. Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами.

Ответ: 14 или 4.

Р е ш е н и е. Пусть окружность радиуса 13 с центром O_1 и окружность радиуса 15 с центром O_2 пересекаются в точках A и B. Тогда $O_1O_2 \perp AB$ и прямая O_1O_2 проходит через середину M отрезка AB.

Из прямоугольных треугольников AMO_1 и AMO_2 по теореме Пифагора находим, что

$$MO_1 = \sqrt{13^2 - 12^2} = 5$$
, $MO_2 = \sqrt{15^2 - 12^2} = 9$.

Если точки O_1 и O_2 лежат по разные стороны от прямой AB (рис. 1), то

$$O_1O_2 = MO_1 + MO_2 = 5 + 9 = 14.$$

Если же точки O_1 и O_2 лежат по одну сторону от прямой AB (рис. 2), то

$$O_1O_2 = MO_2 - MO_1 = 9 - 5 = 4.$$

Пример 2. Две окружности пересекаются в точках A и B. В каждой из этих окружностей проведены хорды AC и AD, причём хорда одной окружности касается другой окружности. Найдите AB, если CB = a, DB = b.

Ответ: \sqrt{ab} .

Р е ш е н и е. Из теоремы об угле между касательной и хордой следует, что

$$\angle BAC = \angle BDA$$
, $\angle BAD = \angle BCA$,

поэтому треугольники *ABC* и *DBA* подобны по двум углам. Следовательно,

$$\frac{AB}{BD} = \frac{BC}{AB}$$
,

откуда находим, что

$$AB^2 = BC \cdot BD = ab, \quad AB = \sqrt{ab}.$$

Подготовительные задачи

- **10.1.** Прямая, проходящая через общую точку A двух окружностей, вторично пересекает эти окружности в точках B и C. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.
- **10.2.** Окружности с центрами O_1 и O_2 пересекаются в точках A и B. Известно, что $\angle AO_1B=90^\circ$, $\angle AO_2B=60^\circ$, $O_1O_2=a$. Найдите радиусы окружностей.
- **10.3.** Отрезок, соединяющий центры двух пересекающихся окружностей, делится их общей хордой на отрезки, равные 5 и 2. Найдите общую хорду, если известно, что радиус одной окружности вдвое больше радиуса другой.
- **10.4.** Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.
- **10.5.** Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите расстояние между центрами окружностей, если BC = a и BD = b.

10.6. В треугольнике ABC на наибольшей стороне BC, равной b, выбирается точка M. Найдите наименьшее расстояние между центрами окружностей, описанных около треугольников BAM и ACM.

Тренировочные задачи

- **10.7.** Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD=8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.
- **10.8.** Дан ромб ABCD. Радиусы окружностей, описанных около треугольников ABC и BCD, равны 1 и 2. Найдите расстояние между центрами этих окружностей.
- **10.9.** Две окружности радиусов $\sqrt{5}$ и $\sqrt{2}$ пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что AB = AC (точка B не совпадает с C). Найдите AB.
- **10.10.** Первая из двух окружностей проходит через центр второй и пересекает её в точках A и B. Касательная к первой окружности, проходящая через точку A, делит вторую окружность на дуги, градусные меры которых относятся как $m:n\ (m< n)$. В каком отношении вторая окружность делит первую?
- **10.11.** Через общую точку C двух равных окружностей проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что AB = a. Найдите MN.
- **10.12.** В параллелограмме *ABCD* известны стороны AB = a, BC = b и угол $\angle BAD = \alpha$. Найдите расстояние между центрами окружностей, описанных около треугольников *BCD* и *DAB*.
- **10.13.** Две окружности пересекаются в точках A и K. Их центры расположены по разные стороны от прямой, содержащей отрезок AK. Точки B и C лежат на разных окружностях. Прямая, содержащая отрезок AB, касается одной окружности в точке A. Прямая, содержащая отрезок AC, касается другой окружности также в точке A. Длина отрезка BK равна A, длина отрезка ABC

 $\frac{1}{\sqrt{15}}$. Найдите площадь треугольника *ABC*.

Задачи на доказательство и вычисление

- **10.14.1.** Дан треугольник ABC с наибольшим углом при вершине A. Окружности, построенные на сторонах AB и AC как на диаметрах, пересекаются в точке D, отличной от A.
 - а) Докажите, что точка D лежит на прямой BC.
 - б) Найдите угол *BAC*, если $\angle ACB = 30^{\circ}$, а DB : DC = 1 : 3.
- **10.14.2.** Окружности, построенные на сторонах AB и BC треугольника ABC с тупым углом при вершине A как на диаметрах, пересекаются в точке P, отличной от B.
 - а) Докажите, что точка P лежит на прямой AC.
 - б) Найдите угол *ABC*, если $\angle ACB = 30^{\circ}$, а *AP* : *CP* = 1 : 3.
- **10.15.1.** Окружность с центром O вписана в угол, равный 60° . Окружность большего радиуса с центром O_1 также вписана в этот угол и проходит через точку O.
- а) Докажите, что радиус второй окружности вдвое больше радиуса первой.
- б) Найдите длину общей хорды этих окружностей, если радиус первой окружности равен $2\sqrt{15}$.
- **10.15.2.** Окружность с центром O вписана в угол, равный $2 \arcsin \frac{2}{3}$. Окружность большего радиуса с центром O_1 также вписана в этот угол и проходит через точку O.
- а) Докажите, что радиус второй окружности втрое больше радиуса первой.
- б) Найдите длину общей хорды этих окружностей, если радиус первой окружности равен 3.
- **10.16.1.** Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую в точке C.
 - а) Докажите, что четырёхугольник ABCD параллелограмм.
- б) Найдите отношение BP : PC, если радиус первой окружности вдвое больше радиуса второй.
- **10.16.2.** Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, вторично пересекает эти окружности в точках C и D, причём точка A лежит между C и D, а хорды AC и AD пропорциональны радиусам своих окружностей.
- а) Докажите, что биссектрисы углов ADB и ACB пересекаются на отрезке AB.

- б) Найдите AB, если радиус одной окружности вдвое больше радиуса другой, а хорды AC и BC меньшей окружности равны 3 и 5 соответственно.
- **10.17.1.** Окружности с центрами O_1 и O_2 разных радиусов пересекаются в точках A и B. Хорда AC большей окружности пересекает меньшую окружность в точке M и делится этой точкой пополам.
- а) Докажите, что проекция отрезка O_1O_2 на прямую AC в четыре раза меньше AC.
 - б) Найдите O_1O_2 , если радиусы окружностей равны 5 и 17, а AC=16.
- **10.17.2.** Окружности с центрами O_1 и O_2 разных радиусов пересекаются в точках P и Q. Хорда PM большей окружности пересекает меньшую окружность в точке K, причём MK = 2PK.
- а) Докажите, что проекция отрезка ${\cal O}_1{\cal O}_2$ на прямую PM в три раза меньше PM .
- б) Найдите O_1O_2 , если радиусы окружностей равны 13 и 25, а PM = 30.
- **10.18.1.** На диагоналях трапеции как на диаметрах построены окружности.
- а) Докажите, что их общая хорда перпендикулярна основаниям трапеции.
- б) Найдите длину этой хорды, если основания трапеции равны 1 и 11, а диагонали 6 и 8.
- **10.18.2.** На диагоналях трапеции как на диаметрах построены окружности.
- а) Докажите, что общая хорда этих окружностей делится пополам средней линией трапеции.
- б) Найдите основания трапеции, если её диагонали перпендикулярны, равны 10 и 24, а расстояние между центрами окружностей равно 1.
- **10.19.1.** Две равные окружности с центрами O_1 и O_2 пересекаются в точках M и N. Лучи O_1M и O_1N вторично пересекают окружность с центром O_2 в точках A и B соответственно, причём M середина O_1A .
 - а) Докажите, что точки A, B и O_2 лежат на одной прямой.
- б) Окружности пересекают отрезок O_1O_2 в точках C и D. Найдите отношение отрезка CD к радиусу окружностей.
- **10.19.2.** Даны две равные окружности с центрами O_1 и O_2 , пересекающиеся в точках P и Q. Отрезок O_1O_2 делится этими окружностями на три равные части. Лучи O_1P и O_1Q вторично пересекают окружность с центром O_2 в точках C и D соответственно.

- а) Докажите, что отрезок O_1P в четыре раза больше отрезка CP.
- б) В каком отношении отрезок O_1O_2 делится прямой CD?
- **10.20.1.** Дана трапеция с основаниями AD и BC. Окружности, построенные на боковых сторонах AB и CD как на диаметрах, пересекаются в точках M и N.
 - а) Докажите, что $MN \perp AD$.
- б) Найдите MN, если боковые стороны трапеции равны 12 и 16, а сумма проекций диагоналей на большее основание равна 20.
- **10.20.2.** Дана трапеция KLMN с основаниями KN и LM. Окружности, построенные на боковых сторонах KL и MN как на диаметрах, пересекаются в точках A и B.
- а) Докажите, что средняя линия трапеции лежит на серединном перпендикуляре к отрезку AB.
- б) Найдите *AB*, если боковые стороны трапеции равны 26 и 28, а средняя линия трапеции равна 15.
- **10.21.1.** Отрезок AB диаметр окружности с центром O. Вторая окружность с центром в точке B пересекается с первой окружностью в точках C и D. Касательная, проведённая в точке C к первой окружности, вторично пересекает вторую окружность в точке P.
 - а) Докажите, что треугольники АОС и СВР подобны.
 - б) Найдите AP, если BC = 15 и PC = 24.
- **10.21.2.** Отрезок KL диаметр окружности с центром O. Вторая окружность с центром в точке L пересекается с первой окружностью в точках P и Q. Касательная, проведённая в точке P к первой окружности, вторично пересекает вторую окружность в точке M.
 - а) Докажите, что треугольники КОР и PLM подобны.
 - б) Найдите площадь треугольника KPM, если KP = 10 и PL = 5.
- **10.22.1.** Точка M середина гипотенузы AB прямоугольного треугольника ABC. Около треугольников ACM и BCM описаны окружности с центрами O_1 и O_2 соответственно.
 - а) Докажите, что треугольник O_1MO_2 прямоугольный.
- б) Найдите расстояние между центрами окружностей, если AC = 72, BC = 96.
- **10.22.2.** Точка M середина катета BC прямоугольного треугольника ABC с прямым углом при вершине C. Около треугольников ACM и ABM описаны окружности с центрами O_1 и O_2 соответственно, P середина отрезка BM.
 - а) Докажите, что $\angle PO_2O_1 = \angle AMC$.
- б) Найдите расстояние между центрами окружностей, если $AC = 2\sqrt{2}$, $BC = 4\sqrt{2}$.

§ 11. Окружности, связанные с треугольником и четырёхугольником

Решение задачи 11 из диагностической работы

11. Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13, 24 и расстояние между центрами этих окружностей.

Ответ: 16,9; 2,4; 14,3.

Р е ш е н и е. Пусть CD — высота равнобедренного треугольника ABC со сторонами AC=BC=13 и AB=24, O — центр его описанной окружности радиуса R, Q — центр вписанной окружности радиуса r. Из прямоугольного треугольника ACD находим, что

$$CD = \sqrt{AC^2 - AD^2} = \sqrt{13^2 - 12^2} = 5$$
, $\sin \angle CAD = \frac{CD}{AC} = \frac{5}{13}$.

По теореме синусов

$$R = \frac{BC}{2\sin \angle BAC} = \frac{13}{2 \cdot \frac{5}{13}} = 16,9.$$

Радиус окружности, вписанной в треугольник, равен площади треугольника, делённой на его полупериметр, поэтому

$$r = \frac{S_{\triangle ABC}}{AC + AD} = \frac{AD \cdot CD}{AC + AD} = \frac{12 \cdot 5}{13 + 12} = 2,4.$$

Заметим, что угол CAD меньше 45°, так как его тангенс меньше 1 (tg $\angle CAD = \frac{CD}{AC} = \frac{5}{12} < 1$), значит, угол BCA тупой, поэтому точки O и Q

лежат по разные стороны от прямой АВ. Следовательно,

$$OQ = OC - CQ = OC - (CD - QD) = R - (CD - r) =$$

= 16,9 - (5 - 2,4) = 14,3. \triangleleft

* * *

В этом разделе мы рассмотрим методы нахождения радиусов описанной, вписанной и вневписанных окружностей треугольника, а также задачи, связанные с вписанными и описанными четырёхугольниками.

Известно, что около каждого треугольника можно описать окружность, и притом только одну. Центр описанной окружности треугольника — точка пересечения серединных перпендикуляров к его сторонам. Центр окружности, описанной около прямоугольного треугольника, — середина гипотенузы, центр окружности остроугольного треугольника расположен внутри треугольника, центр описанной окружности тупоугольного треугольника — вне треугольника. Во многих случаях радиус R описанной окружности треугольника удобно находить с помощью теоремы синусов: $R = \frac{a}{2\sin \alpha}$, где a — сторона треугольника, а α — угол, противолежащий этой стороне.

Пример 1. Найдите радиус окружности, описанной около треугольника со сторонами a, b и b.

Oтвет:
$$\frac{b^2}{\sqrt{4b^2-a^2}}.$$

Р е ш е н и е. *Первый способ*. Пусть D — середина основания BC равнобедренного треугольника ABC со сторонами AB = AC = b и BC = a. Из прямоугольного треугольника ADB находим, что

$$\cos \angle ABD = \frac{BD}{AB} = \frac{a}{2b}.$$

Тогда

$$\sin \angle ABC = \sin \angle ABD = \sqrt{1 - \cos^2 \angle ABD} = \sqrt{1 - \frac{a^2}{4b^2}}.$$

Следовательно, если R — радиус окружности, описанной около треугольника ABC, то

$$R = \frac{AC}{2\sin\angle ABC} = \frac{b}{2\sqrt{1 - \frac{a^2}{4b^2}}} = \frac{b^2}{\sqrt{4b^2 - a^2}}.$$

Второй способ. Продолжим высоту AD до пересечения с описанной окружностью треугольника ABC в точке E. Тогда AE — диаметр окружности, $\angle ABE = 90^\circ$, а BD — высота прямоугольного треугольника ABE, проведённая из вершины прямого угла, поэтому $BD^2 = AD \cdot DE$, или

$$\frac{a^{2}}{4} = \sqrt{b^{2} - \frac{a^{2}}{4}} \left(2R - \sqrt{b^{2} - \frac{a^{2}}{4}} \right).$$

Из этого уравнения находим, что $R = \frac{b^2}{\sqrt{4b^2 - a^2}}$.

Пример 2. Найдите радиус окружности, описанной около треугольника со сторонами 13, 14, 15.

Ответ: $\frac{65}{8}$.

Р е ш е н и е. Пусть α — угол, противолежащий стороне, равной 15. Тогда из теоремы косинусов получаем

$$\cos \alpha = \frac{169 + 196 - 225}{2 \cdot 13 \cdot 14} = \frac{5}{13}.$$

Следовательно, если R — радиус окружности, описанной около данного треугольника, то

$$R = \frac{15}{2\sin\alpha} = \frac{15}{2\sqrt{1 - \left(\frac{5}{13}\right)^2}} = \frac{15}{2 \cdot \frac{12}{13}} = \frac{65}{8}.$$

⊲

14

15

Известно также, что в любой треугольник можно вписать окружность, и притом только одну. Биссектрисы треугольника пересекаются в одной точке. Эта точка равноудалена от сторон треугольника, поэтому она и есть центр вписанной окружности треугольника.

Биссектрисы двух внешних и третьего внутреннего углов треугольника также пересекаются в одной точке. Эта точка равноудалена от сторон этих углов, поэтому она является центром окружности, касающейся одной стороны треугольника и продолжений двух других его сторон, т. е. центром вневписанной окружности треугольника. У каждого треугольника есть три вневписанных окружности.

Докажем два важных факта, связанных с вписанной и вневписанной окружностями треугольника.

Утверждение 1. Если вписанная окружность касается стороны AB треугольника ABC в точке M, то AM = p - a, где p — полупериметр треугольника ABC, а a = BC.

Д о к а з а т е л ь с т в о. Обозначим AC = b, AB = c. Пусть K и L— точки касания вписанной окружности со сторонами AC и BC соответственно. Тогда

$$a = BC = BL + LC = BM + CK =$$

= $(AB - AM) + (AC - AK) =$
= $(c - AM) + (b - AM) = b + c - 2AM$,

откуда
$$AM = \frac{b+c-a}{2} = p-a$$
.

Утверждение 2. Если окружность касается стороны BC треугольника ABC, продолжения стороны AB в точке N и продолжения стороны AC, то AN = p, где p — полупериметр треугольника.

Д о к а з а т е л ь с т в о. Обозначим BC=a, AC=b, AB=c. Пусть окружность касается стороны BC в точке P, а продолжения стороны AC- в точке Q. Тогда

$$2p = AB + BC + AC = AB + (BP + CP) + AC =$$
 $= AB + (BN + CQ) + AC =$
 $= (AB + BN) + (CQ + AC) = AN + AQ = 2AN,$
откуда $AN = p$.

* * *

При вычислении радиусов вписанной и вневписанной окружностей полезны также следующие формулы для площади треугольника.

Утверждение. Если p — полупериметр треугольника, r — радиус его вписанной окружности, а r_a — радиус вневписанной окружности,

касающейся стороны, равной а, то

$$S = pr, (1)$$

$$S = (p - a)r_a. (2)$$

Доказательство формулы (1) излагается в учебниках. Докажем формулу (2).

Доказательство. Обозначим BC = a, AC = b, AB = c. Пусть O_{a} — центр вневписанной окружности треугольника *ABC*, касающейся стороны BC, P, N и Q — точки касания этой окружности со стороной ВС и продолжениями сторон АВ и АС соответственно. Тогда

$$\begin{split} S &= S_{\Delta ABC} = S_{\Delta AO_aB} + S_{\Delta AO_aC} - S_{\Delta BO_aC} = \\ &= \frac{1}{2}AB \cdot O_aN + \frac{1}{2}AC \cdot O_aQ - \frac{1}{2}BC \cdot O_aP = \\ &= \frac{1}{2}cr_a + \frac{1}{2}br_a - \frac{1}{2}ar_a = \\ &= \frac{c+b-a}{2} \cdot r_a = (p-a)r_a. \quad \Box \end{split}$$

N Рассмотрим на примерах несколько способов нахождения радиусов вписанных и вневписанных

окружностей треугольника. Пример 3. Стороны треугольника равны 10, 10, 12. Найдите радиусы вписанной и вневписанных окружностей.

Ответ: 3; 12; 8; 8.

P е ш е н и е. Пусть r — радиус вписанной окружности треугольника ABC (AC = BC = 10, AB = 12), r_c , r_b и r_a — радиусы вневписанных окружностей, касающихся сторон AB, AC и BC соответственно, O_c , O_b и O_a — их центры, S — площадь треугольника ABC, p — его полупериметр.

Первый способ. Воспользуемся известной формулой S = pr. Поскольку высота СК треугольника ABC равна 8, то S = 48. Следовательно,

$$r = \frac{S}{p} = \frac{48}{16} = 3.$$

Если окружность с центром O_c касается продолжения стороны BCв точке M, то из подобия треугольников CMO_c и CKB находим, что

$$r_c = O_c M = BK \cdot \frac{CM}{CK} = BK \cdot \frac{BC + BM}{CK} = BK \cdot \frac{BC + BK}{CK} = 6 \cdot \frac{16}{8} = 12.$$

Пусть окружность с центром O_a касается продолжения стороны AB в точке F, а продолжения стороны AC — в точке E. Поскольку CO_a — биссектриса угла BCE, а CK — биссектриса его смежного угла ACB, то $\angle O_aCK = 90^\circ$. Поэтому O_aCKF — прямоугольник. Следовательно,

$$r_b = r_a = O_a F = CK = 8.$$

Второй способ (вычисление радиусов вневписанных окружностей). Применим формулу $r_a = \frac{S}{p-a}$. В нашем случае

$$r_c = \frac{S}{p-c} = \frac{48}{16-12} = 12, \quad r_b = r_a = \frac{S}{p-a} = \frac{48}{16-10} = 8.$$

Третий способ (вычисление r и r_c). Поскольку AO — биссектриса треугольника AKC, то

$$\frac{OK}{OC} = \frac{AK}{AC} = \frac{6}{10} = \frac{3}{5},$$

а так как OK = r, получаем

$$r = OK = \frac{3}{8}CK = \frac{3}{8} \cdot 8 = 3.$$

Поскольку AO_c — биссектриса внешнего угла треугольника AKC, то

$$\frac{O_c K}{O_c C} = \frac{AK}{AC} = \frac{6}{10} = \frac{3}{5},$$

а так как $O_c K = r_c$, то

$$r_c = O_c K = \frac{3}{2}CK = \frac{3}{2} \cdot 8 = 12.$$

* * *

Напомним некоторые утверждения, относящиеся к вписанных и описанным четырёхугольникам.

Теорема 1. Для того чтобы около четырёхугольника можно было описать окружность, необходимо и достаточно, чтобы сумма его двух противоположных углов была равна 180°.

Теорема 2. Для того чтобы в выпуклый четырёхугольник можно было вписать окружность, необходимо и достаточно, чтобы суммы его противоположных сторон были равны.

Пример 4. Около четырёхугольника *ABCD* можно описать окружность. Известно, что AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.

Ответ:
$$\sqrt{\frac{299}{11}}$$
.

Р е ш е н и е. Обозначим $\angle ABC = \alpha$. Тогда

$$AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cos \alpha = AD^2 + CD^2 - 2AD \cdot CD \cos(180^\circ - \alpha),$$

или

$$9 + 16 - 2 \cdot 3 \cdot 4 \cos \alpha = 4 + 25 + 2 \cdot 2 \cdot 5 \cos \alpha$$
.

Из этого уравнения находим, что $\cos \alpha = -\frac{1}{11}$. Следовательно,

$$AC^2 = 9 + 16 + 2 \cdot 3 \cdot 4 \cdot \frac{1}{11} = \frac{299}{11}.$$

Пример 5. Периметр равнобедренной трапеции, описанной около окружности, равен 2p. Найдите проекцию диагонали трапеции на большее основание.

Ответ: $\frac{1}{2}p$.

Решение. Проекция диагонали равнобедренной трапеции на большее основание равна полусумме оснований, а так как трапеция описанная, то сумма оснований равна сумме боко-

вых сторон. Следовательно, сумма оснований равна полупериметру трапеции, а полусумма оснований — четверти периметра, т. е. $\frac{1}{2}p$. \triangleleft

Подготовительные задачи

- **11.1.** Боковая сторона равнобедренного треугольника равна 2, угол при вершине равен 120° . Найдите диаметр описанной окружности.
- **11.2.** Под каким углом видна из точек окружности хорда, равная радиусу?
- **11.3.** В равнобедренном треугольнике ABC (AB = BC) проведена высота CD. Угол BAC равен α . Радиус окружности, проходящей через точки A, C и D, равен R. Найдите площадь треугольника ABC.
- **11.4.** Катеты прямоугольного треугольника равны a и b, а гипотенуза равна c. Найдите радиус вписанной окружности.
- **11.5.** Дан треугольник со сторонами 3, 4 и 5. Найдите радиусы его описанной, вписанной и вневписанных окружностей.

- **11.6.** Дан треугольник со сторонами 13, 13 и 10. Найдите радиусы его описанной, вписанной и вневписанных окружностей.
- **11.7.** Дан треугольник со сторонами 13, 14 и 15. Найдите радиусы его описанной, вписанной и вневписанных окружностей.
- **11.8.** В равнобедренный треугольник с основанием, равным a, вписана окружность, и к ней проведены три касательные так, что они отсекают от данного треугольника три маленьких треугольника, сумма периметров которых равна b. Найдите боковую сторону данного треугольника.
- **11.9.** Проекция боковой стороны равнобедренной трапеции на большее основание равна a, средняя линия трапеции равна b, а острый угол при основании равен 45° . Найдите радиус окружности, описанной около трапеции.
- **11.10.** Основания равнобедренной трапеции равны 9 и 21, а высота равна 8. Найдите радиус окружности, описанной около трапеции.

Тренировочные задачи

- **11.11.** Трапеция ABCD с основаниями BC=2 и AD=10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т. е. расположен он внутри трапеции, или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.
- **11.12.** В прямоугольном треугольнике отношение радиуса вписанной окружности к радиусу описанной окружности равно $\frac{2}{5}$. Найдите острые углы треугольника.
- **11.13.** В прямоугольный треугольник ABC с углом A, равным 30° , вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.
- **11.14.** В треугольнике PQR угол QRP равен 60° . Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR.
- **11.15.** Равносторонний треугольник ABC со стороной 3 вписан в окружность. Точка D лежит на окружности, причём хорда AD равна $\sqrt{3}$. Найдите хорды BD и CD.

- **11.16.** Пусть O центр окружности, описанной около треугольника ABC, $\angle AOC = 60^\circ$. Найдите угол AMC, где M центр окружности, вписанной в треугольник ABC.
- **11.17.** В треугольнике *ABC* известно, что AC = b, $\angle ABC = \alpha$. Найдите радиус окружности, проходящей через центр вписанного в треугольник *ABC* круга и вершины *A* и *C*.
- **11.18.** В окружности проведены две хорды AB = a и AC = b. Длина дуги AC, не содержащей точки B, вдвое больше длины дуги AB, не содержащей точки C. Найдите радиус окружности.
- **11.19.** Из точки M на окружности проведены три хорды: MN=1, MP=6, MQ=2. При этом углы NMP и PMQ равны. Найдите радиус окружности.
- **11.20.** Через вершины A и B треугольника ABC проходит окружность радиуса r, пересекающая сторону BC в точке D. Найдите радиус окружности, проходящей через точки A, D и C, если AB = c и AC = b.
- **11.21.** Центр описанной окружности треугольника симметричен его центру вписанной окружности относительно одной из сторон. Найдите углы треугольника.
- **11.22.** Угол при основании равнобедренного треугольника равен φ . Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.
- **11.23.** В треугольнике ABC с периметром 2p сторона AC равна a, острый угол ABC равен α . Вписанная в треугольник ABC окружность с центром O касается стороны BC в точке K. Найдите площадь треугольника BOK.
- **11.24.** В треугольнике ABC с периметром 2p острый угол BAC равен α . Окружность с центром в точке O касается стороны BC и продолжений сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.
- **11.25.** В треугольник вписана окружность радиуса 4. Одна из сторон треугольника разделена точкой касания на части, равные 6 и 8. Найдите две другие стороны треугольника.
- **11.26.** Прямоугольный треугольник ABC разделён высотой CD, проведённой к гипотенузе, на два треугольника: BCD и ACD. Радиусы окружностей, вписанных в эти треугольники, равны 4 и 3 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.
- **11.27.** К окружности, вписанной в треугольник со сторонами 6, 10 и 12, проведена касательная, пересекающая две бо́льшие стороны. Найдите периметр отсечённого треугольника.

- **11.28.** Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120° . Найдите площадь треугольника.
- **11.29.** Пусть CD медиана треугольника ABC. Окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD в точках M и N. Найдите MN, если AC BC = 2.
- **11.30.** На основании AB равнобедренного треугольника ABC взята точка D, причём BD-AD=4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
- **11.31.** В четырёхугольнике MNPQ расположены две непересекающиеся окружности так, что одна из них касается сторон MN, NP, PQ, а другая сторон MN, MQ, PQ. Точки B и A лежат соответственно на сторонах MN и PQ, причём отрезок AB касается обеих окружностей. Найдите длину стороны MQ, если NP = b и периметр четырёхугольника BAQM больше периметра четырёхугольника ABNP на величину 2p.
- **11.32.** Около окружности радиуса *R* описан параллелограмм. Площадь четырёхугольника с вершинами в точках касания окружности и параллелограмма равна *S*. Найдите стороны параллелограмма.
- **11.33.** В четырёхугольнике *ABCD* сторона *AB* равна стороне *BC*, диагональ *AC* равна стороне *CD*, а $\angle ACB = \angle ACD$. Радиусы окружностей, вписанных в треугольники *ACB* и *ACD*, относятся как 3:4. Найдите отношение площадей этих треугольников.
- **11.34.** Периметр треугольника ABC равен 8. В треугольник вписана окружность, и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.
- **11.35.** Радиус вписанной в треугольник *ABC* окружности равен $\sqrt{3}-1$. Угол *BAC* равен 60°, а радиус окружности, касающейся стороны *BC* и продолжений сторон *AB* и *AC*, равен $\sqrt{3}+1$. Найдите углы *ABC* и *ACB*.
- **11.36.** В параллелограмме *ABCD* острый угол *BAD* равен α . Пусть O_1 , O_2 , O_3 , O_4 центры окружностей, описанных около треугольников *DAB*, *DAC*, *DBC*, *ABC* соответственно. Найдите отношение площади четырёхугольника $O_1O_2O_3O_4$ к площади параллелограмма *ABCD*.
- **11.37.** Около треугольника *ABC* описана окружность. Медиана *AD* продолжена до пересечения с этой окружностью в точке *E*. Известно, что AB + AD = DE, $\angle BAD = 60^{\circ}$, AE = 6. Найдите площадь треугольника *ABC*.

- **11.38.** В четырёхугольник *ABCD* можно вписать и вокруг него можно описать окружность. Диагонали этого четырёхугольника взаимно перпендикулярны. Найдите его площадь, если радиус описанной окружности равен R и AB = 2BC.
- **11.39.** Радиус окружности, описанной около остроугольного треугольника ABC, равен 1. Известно, что на этой окружности лежит центр другой окружности, проходящей через вершины A, C и точку пересечения высот треугольника ABC. Найдите AC.
- **11.40.** Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция вписанной окружности на гипотенузу?

Задачи на доказательство и вычисление

- **11.41.1.** Сторона BC треугольника ABC равна 48. Около треугольника описана окружность радиуса 25. Известно, что радиус OA делит сторону BC на два равных отрезка.
 - а) Докажите, что треугольник АВС равнобедренный.
 - б) Найдите его боковые стороны.
- **11.41.2.** Около треугольника KLM описана окружность с центром O. Диаметр KP пересекает сторону LM в её середине Q, лежащей между точками O и P.
 - а) Докажите, что треугольник КLM равнобедренный.
 - б) Найдите радиус окружности, если PQ = 18 и KM = 40.
 - **11.42.1.** Дан треугольник со сторонами 25, 25 и 48.
 - а) Докажите, что он тупоугольный.
- б) Найдите расстояние между центрами его вписанной и описанной окружностей.
 - 11.42.2. Дан треугольник со сторонами 13, 13 и 10.
 - а) Докажите, что он остроугольный.
- б) Найдите расстояние между центрами его вписанной и описанной окружностей.
- **11.43.1.** Трапеция с основаниями 1 и 3 такова, что в неё можно вписать окружность и около неё можно описать окружность.
- а) Докажите, что центр описанной около трапеции окружности расположен внутри трапеции.
 - б) Найдите площадь круга, описанного около трапеции.

- **11.43.2.** Трапеция, одно основание которой в 5 раз больше другого, такова, что в неё можно вписать окружность и вокруг неё можно описать окружность.
- а) Докажите, что центр описанной около трапеции окружности расположен вне трапеции.
- б) Найдите радиус окружности, описанной около трапеции, если меньшее основание равно $\sqrt{70}$.
- **11.44.1.** В параллелограмме ABCD с углом A, равным 60° , проведена биссектриса угла B, пересекающая сторону CD в точке M.
 - а) Докажите, что треугольник ВСМ равносторонний.
- б) В треугольник BCM вписана окружность радиуса $\sqrt{7}$. Другая окружность вписана в трапецию ABMD. Найдите расстояние между центрами этих окружностей.
- **11.44.2.** В треугольник ABC вписана окружность. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон.
- а) Докажите, что расстояние между точками касания этих окружностей с прямой AB равно длине стороны BC.
- б) Найдите расстояние между центрами окружностей, если $\angle ACB = 90^{\circ}$, $\angle BAC = 30^{\circ}$, а радиус меньшей окружности равен $\sqrt{2}$.
- **11.45.1.** Длины сторон AB, AD, BC и CD выпуклого четырёхугольника ABCD в указанном порядке образуют арифметическую прогрессию.
- а) Докажите, что в этот четырёхугольник можно вписать окружность.
- б) Найдите радиус этой окружности, если AB = 6, AD = 8, BC = 10, CD = 12 и BD = BC.
- **11.45.2.** Окружность, вписанная в четырёхугольник ABCD, делит стороны AD и CD точками касания в одном и том же отношении, считая от вершины D.
 - а) Докажите, что диагонали четырёхугольника перпендикулярны.
- б) Известно, что около четырёхугольника можно описать окружность, AD=56 и BD=70. Найдите радиус окружности, вписанной в четырёхугольник.
- **11.46.1.** В треугольник *ABC* вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD = R.
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если R=5 и CD=15.

- **11.46.2.** В треугольник *ABC* вписана окружность радиуса R, касающаяся стороны *AC* в точке M, причём AM = 2R и CM = 3R.
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Найдите расстояние между центрами его вписанной и описанной окружностей, если $R\!=\!2$.
- **11.47.1.** Дан выпуклый четырёхугольник *ABCD* со сторонами AB = 3, BC = CD = 5, AD = 8 и диагональю AC = 7.
 - а) Докажите, что около него можно описать окружность.
 - б) Найдите диагональ *BD*.
- **11.47.2.** Дан выпуклый четырёхугольник *ABCD* со сторонами *AB* = = 7, BC = 25, AD = CD = 15 и диагональю AC = 24.
 - а) Докажите, что около него можно описать окружность.
 - б) Найдите диагональ ВD.
- **11.48.1.** Сторона *AC* треугольника *ABC* больше стороны *AB*. Вписанная в треугольник окружность касается стороны *BC* в точке M, а вневписанная в точке N.
 - а) Докажите, что MN = AC AB.
- б) Найдите расстояние между центрами окружностей, если сумма их радиусов равна 24, а MN = 10.
- **11.48.2.** Окружность, вписанная в треугольник KLM, касается его стороны KM в точке A, а вневписанная окружность касается продолжения стороны KM за вершину M в точке B.
 - а) Докажите, что AB = LM.
- б) Найдите расстояние между центрами окружностей, если разность их радиусов равна 6, а LM=8.
- **11.49.1.** Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке K.
 - а) Докажите, что отрезок BK втрое больше отрезка CK.
- б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK=18 и BN=17.
- **11.49.2.** Окружность, построенная на биссектрисе BL равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке P. Боковая сторона треугольника вдвое больше его основания.
 - а) Докажите, что отрезок BP в пять раз больше отрезка CP.
- б) Пусть указанная окружность пересекает сторону AB в точке M. Найдите BL, если $ML=\frac{\sqrt{15}}{2}.$

- **11.50.1.** Диагонали AC и BD выпуклого четырёхугольника ABCD перпендикулярны.
 - а) Докажите, что $AB^2 + CD^2 = BC^2 + AD^2$.
- б) Известно, что в этот четырёхугольник можно вписать окружность. Найдите её радиус, если BC = 8, CD = 12, $\angle BAD = 150^{\circ}$.
- **11.50.2.** Площадь четырёхугольника *ABCD* равна половине произведения его диагоналей.
 - а) Докажите, что диагнали четырёхугольника перпендикулярны.
- б) В четырёхугольник ABCD можно вписать и вокруг него можно описать окружность. Найдите его площадь, если радиус описанной окружности равен 5 и AB = 2BC.
 - **11.51.1.** Стороны треугольника относятся как 2:3:3.
- а) Докажите, что точки касания вписанной и вневписанной окружностей треугольника делят его бо́льшую сторону на три равных отрезка.
 - б) Найдите отношение радиусов этих окружностей.
- **11.51.2.** Точки касания вписанной и вневписанной окружностей прямоугольного треугольника делят гипотенузу на три равных отрезка.
- а) Докажите, что разность радиусов этих окружностей равна гипотенузе.
- б) Найдите произведение радиусов окружностей, если гипотенуза равна 3.
- **11.52.1.** К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
- а) Докажите, что периметр треугольника AMN равен стороне квадрата.
- б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM:MB=1:3?
- **11.52.2.** Угол при вершине A ромба ABCD равен 60° . Прямая касается окружности, вписанной в ромб, в точке T и пересекает стороны AB и AD в точках M и N соответственно.
 - а) Докажите, что периметры треугольников *AMT* и *ANT* равны.
- б) Прямые MN и CD пересекаются в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AN:ND=2:1?

§ 12. Пропорциональные отрезки в окружности

Решение задачи 12 из диагностической работы

12. На продолжении диаметра AB окружности отложен отрезок BC, равный диаметру. Прямая, проходящая через точку C, касается окружности в точке M. Найдите площадь треугольника ACM, если радиус окружности равен R.

Ответ: $\frac{4}{3}R^2\sqrt{2}$.

Р е ш е н и е. Пусть O — центр окружности. Тогда $OM \perp CM$. В прямоугольном треугольнике OMC известно, что OM = R и OC = OB + BC = R + 2R = 3R. Тогда

$$CM = \sqrt{OC^2 - OM^2} = \sqrt{9R^2 - R^2} = 2R\sqrt{2}, \quad \sin \angle OCM = \frac{OM}{OC} = \frac{R}{3R} = \frac{1}{3}.$$

Следовательно,

$$S_{\Delta ACM} = \frac{1}{2}AC \cdot CM \cdot \sin \angle ACM = \frac{1}{2} \cdot 4R \cdot 2R\sqrt{2} \cdot \frac{1}{3} = \frac{4}{3}R^2\sqrt{2}. \quad \triangleleft$$

Этот раздел посвящен теореме о произведении отрезков пересекающихся хорд окружности, теореме о касательной и секущей, а также важному следствию из этих теорем.

Теорема. Произведения отрезков пересекающихся хорд окружности равны, т. е. если хорды AB и CD окружности пересекаются в точке M, то $AM \cdot MB = CM \cdot MD$.

Теорема (о касательной и секущей). Если из точки, лежащей вне окружности, проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной, т. е. если точка M расположена вне окружности, прямая, проходящая через точку M, касается окружности в точке C, а вторая прямая, проходящая через точку M, пересекает окружность в точках A и B, то $MC^2 = MA \cdot MB$.

Следствие. Для данной точки M, данной окружности и любой прямой, проходящей через точку M и пересекающей окружность в точках A и B, произведение $MA \cdot MB$ одно и то же.

Пример 1. Расстояние от точки P до центра окружности радиуса 11 равно 7. Через точку P проведена хорда, равная 18. Найдите отрезки, на которые делится хорда точкой P.

Ответ: 12 и 6.

Решение. Пусть O — центр окружности, AB — данная хорда. Проведём диаметр CD, содержащий точку P (P между O и D). Обозначим PB = x. Тогда

$$AP = 18 - x$$
, $DP = OD - OP = 11 - 7 = 4$;
 $PC = OP + OC = 7 + 11 = 18$.

Из теоремы о пересекающихся хордах получаем $AP \cdot PB = PD \cdot PC$, или $(18-x)x = 4 \cdot 18$. Из этого уравнения находим, что x = 12 или x = 6.

Пример 2. Из точки A, лежащей вне окружности, проведены к окружности касательная и секущая. Расстояние от точки A до точки касания равно 16, а расстояние от точки A до одной из точек пересечения секущей с окружностью равно 32. Найдите радиус окружности, если расстояние от её центра до секущей равно 5.

Ответ: 13.

Р е ш е н и е. Пусть секущая пересекает окружность в точках B и C, а M — точка касания. Тогда AM = 16, AC = 32, AB + BC = 32. По теореме о касательной и секущей $AM^2 = AC \cdot AB$, или $16^2 = 32(32 - BC)$. Отсюда находим, что BC = 24.

Пусть K — проекция центра O данной окружности на хорду BC. Радиус окружности находим по теореме Пифагора из прямоугольного треугольника OKB: $R = OB = \sqrt{OK^2 + BK^2} = \sqrt{25 + 144} = 13$.

Пример 3. Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

Доказательство. Пусть A и B — точки пересечения двух окружностей, MN — общая касательная (M и N — точки касания), K — точка пересечения прямых AB и MN (A лежит между K и B).

Тогда $MK^2 = KB \cdot KA$ и $NK^2 = KB \cdot KA$. Следовательно, MK = NK.

Подготовительные задачи

- **12.1.** Точка M внутри окружности делит хорду этой окружности на отрезки, равные a и b. Через точку M проведена хорда AB, делящаяся точкой M пополам. Найдите AB.
- **12.2.** Диагонали вписанного четырёхугольника *ABCD* пересекаются в точке K. Известно, что AB = a, BK = b, AK = c, CD = d. Найдите AC.
- **12.3.** Из точки, расположенной вне окружности на расстоянии $\sqrt{7}$ от центра, проведена секущая, внутренняя часть которой вдвое меньше внешней и равна радиусу окружности. Найдите радиус окружности.
- **12.4.** Через точку M проведены две прямые. Одна из них касается некоторой окружности в точке A, а вторая пересекает эту окружность в точках B и C, причём BC = 7 и BM = 9. Найдите AM.
- **12.5.** Из точки A проведены два луча, пересекающие данную окружность: один в точках B и C, другой в точках D и E. Известно, что AB=7, BC=7, AD=10. Найдите DE.
- **12.6.** Точка M удалена от центра окружности радиуса R на расстояние d. Прямая, проходящая через точку M, пересекает окружность в точках A и B. Найдите произведение $AM \cdot BM$.
- **12.7.** В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E. Найдите хорду, соединяющую точки, в которых окружность пересекается с прямой AE.
- **12.8.** В прямоугольном треугольнике ABC угол A прямой, катет AB равен a, радиус вписанной окружности равен r. Вписанная окружность касается катета AC в точке D. Найдите хорду, соединяющую точки пересечения окружности с прямой BD.
- **12.9.** На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b. Найдите основание треугольника.
- **12.10.** В окружности с центром O проведены хорды AB и CD, пересекающиеся в точке M, причём AM=4, MB=1, CM=2. Найдите угол OMC.

Тренировочные задачи

12.11. В окружность вписан четырёхугольник *ABCD*, причём *AB* является диаметром окружности. Диагонали *AC* и *BD* пересекаются в точке M. Известно, что BC=3, $CM=\frac{3}{4}$, а площадь треугольника *ABC* втрое больше площади треугольника *ACD*. Найдите *AM*.

- **12.12.** Через вершины B и C треугольника ABC проведена окружность, которая пересекает сторону AB в точке K, а сторону AC в точке E. Найдите AE, зная, что AK = KB = a, $\angle BCK = \alpha$, $\angle CBE = \beta$.
- **12.13.** Окружность, построенная на стороне AC треугольника ABC как на диаметре, проходит через середину стороны BC и пересекает в точке D продолжение стороны AB за точку A, причём $AD=\frac{2}{3}AB$. Найдите площадь треугольника ABC, если AC=1.
- **12.14.** Каждая из боковых сторон AB и BC равнобедренного треугольника ABC разделена на три равные части, и через четыре точки деления на этих сторонах проведена окружность, высекающая на основании AC хорду DE. Найдите отношение площадей треугольников ABC и BDE, если AB = BC = 3 и AC = 4.
- **12.15.** Окружность, диаметр которой равен $\sqrt{10}$, проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB=1. Найдите сторону BC.
- **12.16.** Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1, PQ=2. Найдите площадь прямоугольника MNPQ, если диаметр окружности равен $\sqrt{5}$.
- **12.17.** Точки A, B, C, D последовательные вершины прямоугольника. Окружность проходит через вершины A и B и касается стороны CD. Через вершину D проведена прямая, которая касается той же окружности в точке E, а затем пересекает продолжение стороны AB в точке K. Найдите площадь трапеции BCDK, если известно, что AB = 10 и KE: KA = 3:2.
- **12.18.** Найдите радиус окружности, которая высекает на обеих сторонах угла, равного α , хорды, равные a, если известно, что расстояние между ближайшими концами этих хорд равно b.
- **12.19.** Сторона квадрата ABCD равна 1 и является хордой некоторой окружности, причём остальные стороны квадрата лежат вне этой окружности. Касательная CK, проведённая из вершины C к этой же окружности, равна 2. Найдите диаметр окружности.
- **12.20.** В прямоугольном треугольнике *ABC* с катетами AB = 3 и BC = 4 через середины сторон *AB* и *AC* проведена окружность, касающаяся катета *BC*. Найдите длину отрезка гипотенузы *AC*, который лежит внутри этой окружности.
- **12.21.** В треугольнике *ABC* сторона *BC* равна 4, а медиана, проведённая к этой стороне, равна 3. Найдите длину общей хорды двух

- окружностей, каждая из которых проходит через точку A и касается BC, причём одна касается BC в точке B, а вторая в точке C.
- **12.22.** Окружность, проходящая через вершины B, C и D параллелограмма ABCD, касается прямой AD и пересекает прямую AB в точках B и E. Найдите AE, если AD = 4 и CE = 5.
- **12.23.** Из точки A, находящейся на расстоянии 5 от центра окружности радиуса 3, проведены две секущие AKC и ALB, угол между которыми равен 30° (K, C, L, B точки пересечения секущих с окружностью). Найдите площадь треугольника AKL, если площадь треугольника ABC равна 10.
- **12.24.** На прямой расположены точки A, B, C и D, следующие друг за другом в указанном порядке. Известно, что BC = 3, AB = 2CD. Через точки A и C проведена некоторая окружность, а через точки B и D другая. Их общая хорда пересекает отрезок BC в точке K. Найдите BK.
- **12.25.** В равнобедренном треугольнике ABC (AB = AC) проведены биссектрисы AD, BE, CF. Найдите BC, если известно, что AC = 1, а вершина A лежит на окружности, проходящей через точки D, E и F.
- **12.26.** Окружность касается сторон AB и AD прямоугольника ABCD и проходит через вершину C. Сторону DC она пересекает в точке N. Найдите площадь трапеции ABND, если AB = 9 и AD = 8.
- **12.27.** На одной из сторон угла, равного α (α < 90°), с вершиной в точке O взяты точки A и B, причём OA = a, OB = b. Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.
- **12.28.** На катете AC прямоугольного треугольника ABC как на диаметре построена окружность. Она пересекает гипотенузу AB в точке E. На стороне BC взята точка G так, что отрезок AG пересекает окружность в точке F, причём отрезки EF и AC параллельны, BG = 2CG и $AC = 2\sqrt{3}$. Найдите GF.
- **12.29.** В параллелограмме ABCD угол BCD равен 150° , а сторона AD равна 8. Найдите радиус окружности, касающейся прямой CD и проходящей через вершину A, а также пересекающей сторону AD на расстоянии 2 от точки D.
- **12.30.** Окружность и прямая касаются в точке M. Из точек A и B этой окружности опущены перпендикуляры на прямую, равные a и b соответственно. Найдите расстояние от точки M до прямой AB.
- **12.31.** Окружность, вписанная в треугольник ABC, делит медиану BM на три равные части. Найдите отношение BC: CA: AB.

- **12.32.** Две окружности радиусов R и r пересекаются в точках A и B и касаются прямой в точках C и D соответственно; N точка пересечения прямых AB и CD (B между A и N). Найдите:
 - 1) радиус окружности, описанной около треугольника АСД;
- 2) отношение высот треугольников NAC и NAD , опущенных из вершины N.
- **12.33*** Равнобедренная трапеция с основаниями AD и BC (AD > BC) описана около окружности, которая касается стороны CD в точке M. Отрезок AM пересекает окружность в точке N. Найдите отношение AD к BC, если AN:NM=k.
- **12.34*** В трапеции ABCD с основаниями AD и BC угол A равен 45°, угол D равен 60°. На диагоналях трапеции как на диаметрах построены окружности, пересекающиеся в точках M и N. Хорда MN пересекает основание AD в точке E. Найдите отношение AE: ED.

Задачи на доказательство и вычисление

- **12.35.1.** Точка M середина гипотенузы AB прямоугольного треугольника ABC. На отрезке CM как на диаметре построена окружность.
 - а) Докажите, что она проходит через середины катетов.
- б) AP и BQ касательные к этой окружности (P и Q точки касания). Найдите отношение AP: BQ, если $tg \angle ABC = 2$.
- **12.35.2.** Точка M середина катета AC прямоугольного треугольника ABC. На отрезке BM как на диаметре построена окружность, пересекающая гипотенузу AB в точке E, отличной от B. Касательная, проведённая к окружности из точки A, параллельна BM и пересекает в точке D продолжение катета BC за вершину B.
 - а) Докажите, что $\angle ACE = \angle BAD$.
 - б) Найдите острые углы треугольника АВС.
- **12.36.1.** В прямоугольном треугольнике ABC с гипотенузой AB проведены медианы AM и BN. Около четырёхугольника ABMN можно описать окружность.
 - а) Докажите, что треугольник АВС равнобедренный.
- б) Найдите радиус окружности, описанной около четырёхугольни- ка ABMN, если $AB=4\sqrt{5}$.
- **12.36.2.** В прямоугольном треугольнике ABC через середины гипотенузы AB и катета AC проведена окружность, касающаяся катета BC в точке K.
 - а) Докажите, что BK = 3CK.

- б) Найдите отрезок гипотенузы, который лежит внутри этой окружности, если AB = 50 и BC = 40.
- **12.37.1.** Отрезок CD биссектриса треугольника ABC. Окружность, проходящая через точки C и D, касается стороны AB и пересекает стороны AC и BC в точках M и N соответственно.
 - а) Докажите, что $MN \parallel AB$.
 - б) Найдите MN, если AD = 2, BD = 4 и AM = 1.
- **12.37.2.** Отрезок CD биссектриса треугольника ABC. Окружность, проходящая через точки C и D, касается стороны AB и пересекает стороны AC и BC в точках M и N соответственно.
 - а) Докажите, что $\angle ADM = \angle BDN$.
 - б) Найдите AB, если AM = 1, CM = 3 и BN = 2.
- **12.38.1.** Из точки A проведены секущая и касательная к окружности радиуса R. Пусть B точка касания, а D и C точки пересечения секущей с окружностью, причём точка D лежит между A и C. Известно, что BD биссектриса угла B треугольника ABC и её длина равна R.
 - а) Докажите, что треугольник АВС прямоугольный.
 - б) Найдите расстояние от точки А до центра окружности.
- **12.38.2.** Из точки A проведены касательная и перпендикулярная ей секущая к окружности радиуса R с центром O. Пусть B точка касания, а D и C точки пересечения секущей с окружностью, причём D середина AC.
 - а) Докажите, что $AD = \frac{2}{3}R$.
 - б) Найдите площадь четырёхугольника АВОС.
- **12.39.1.** Около треугольника ABC описана окружность. Касательная к окружности, проходящая через точку B, пересекает прямую AC в точке M.
 - а) Докажите, что треугольники АМВ и ВМС подобны.
 - б) Найдите отношение AM : MC, если AB : BC = 3 : 2.
- **12.39.2.** Около треугольника *KLM* описана окружность. Касательная к окружности, проходящая через точку M, пересекает прямую KL в точке P.
 - а) Докажите, что $\angle PKM = \angle PML$.
 - б) Найдите отношение PK: KL, если MK: ML = 3:4.
- **12.40.1.** Окружность, проходящая через вершины A, B и C прямоугольной трапеции ABCD с прямыми углами при вершинах A и B,

пересекает отрезки AD и CD соответственно в точках M и N, причём AM:AD=CN:CD=1:3.

- а) Докажите, что CD = AD.
- б) Найдите площадь трапеции, если радиус окружности равен 3.
- **12.40.2.** Окружность, проходящая через вершины A, C и D прямоугольной трапеции ABCD с основаниями AD и BC, пересекает меньшую боковую сторону AB в точке P и касается прямой BC. Известно, что AD = CD.
 - а) Докажите, что СР биссектриса угла АСВ.
 - б) В каком отношении прямая DP делит площадь трапеции?
- **12.41.1.** Основание и боковая сторона равнобедренного треугольника равны 26 и 38 соответственно.
- а) Докажите, что средняя линия треугольника, параллельная основанию, пересекает окружность, вписанную в треугольник.
- б) Найдите длину отрезка этой средней линии, заключённого внутри окружности.
- **12.41.2.** Основание равнобедренного треугольника равно 20, угол при вершине равен $2 \arctan \frac{5}{12}$.
- а) Докажите, что средняя линия треугольника, параллельная основанию, пересекает окружность, вписанную в треугольник.
- б) Найдите длину отрезка этой средней линии, заключённого внутри окружности.
- **12.42.1.** Пусть CQ биссектриса треугольника ABC. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D.
 - а) Докажите, что треугольник CDQ равнобедренный.
 - б) Найдите *CD*, если BQ = a и AQ = b (a > b).
- **12.42.2.** Касательная к описанной окружности треугольника KLM, проходящая через точку K, пересекает прямую LM в точке N. На стороне LM взята точка A, причём NK = NA.
 - а) Докажите, что *KA* биссектриса треугольника *KLM*.
 - б) Найдите LM, если KN=8 и KM=2KL.
- **12.43.1.** Хорды AD, BE и CF окружности делят друг друга на три равные части.
 - а) Докажите, что эти хорды равны.
- б) Найдите площадь шестиугольника *ABCDEF*, если точки *A*, *B*, *C*, *D*, *E* и *F* последовательно расположены на окружности, а радиус окружности равен $2\sqrt{21}$.

- **12.43.2.** Хорды *AD*, *BE* и *CF* окружности делят друг друга на три части, причём внутренний отрезок каждой хорды вдвое больше каждого из внешних.
 - а) Докажите, что эти хорды равны.
- б) Найдите площадь шестиугольника *ABCDEF*, если точки *A*, *B*, *C*, *D*, *E* и *F* последовательно расположены на окружности, а радиус окружности равен $\sqrt{26}$.
- **12.44.1.** Четырёхугольник ABCD с перпендикулярными диагоналями AC и BD вписан в окружность.
- а) Докажите, что прямая, проходящая через точку пересечения диагоналей четырёхугольника перпендикулярно стороне BC, делит пополам сторону AD.
- б) Найдите стороны четырёхугольника *ABCD*, если известно, что AC = 84, BD = 77, а диаметр окружности равен 85.
- **12.44.2.** Во вписанном четырёхугольнике ABCD стороны BC и CD равны. Диагонали четырёхугольника пересекаются в точке K.
 - а) Докажите, что $AC \cdot CK = BC^2$.
- б) Найдите площадь четырёхугольника *ABCD*, если известно, что AC = 8 и $\angle BAD = 150^{\circ}$.

§ 13. Углы, связанные с окружностью. Метод вспомогательной окружности

Решение задачи 13 из диагностической работы

13. Окружность S_1 проходит через центр окружности S_2 и пересекает её в точках A и B. Хорда AC окружности S_1 касается окружности S_2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7. Найдите градусные меры дуг, на которые окружность S_2 делится окружностью S_1 .

Ответ: 150° и 210°.

Р е ш е н и е. Пусть O_1 и O_2 — центры окружностей S_1 и S_2 соответственно. Тогда

$$\angle AO_1C = 360^{\circ} \cdot \frac{5}{5+7} = 150^{\circ}.$$

Поскольку $\angle O_2AC=90^\circ$ (радиус, проведённый в точку касания, перпендикулярен касательной), отрезок O_2C — диаметр окружности S_1 , поэтому

Тогда градусная мера дуги окружности S_2 , заключённой между сторонами угла AO_2C , равна 75°, а градусная мера дуги AB окружности S_2 , содержащейся внутри окружности S_1 , равна 150°. Следовательно, дополнительная к ней дуга окружности S_2 равна 360° — 150° = 210°. \triangleleft

* * *

Напомним, что угловая величина дуги — это угловая величина соответствующего этой дуге центрального угла.

Вписанный угол равен половине угловой величины соответствующего центрального угла (дуги). Отсюда следует, что вписанные углы, опирающиеся на одну и ту же дугу, равны, т. е. если точки A и B лежат на окружности по одну сторону от прямой, содержащей хорду CD, то $\angle CAD = \angle CBD$. Если же точки A и B лежат по разные стороны от прямой CD, то $\angle CAD + \angle CBD = 180^\circ$.

Угол между касательной и хордой равен половине угловой величины дуги, заключённой между ними, т. е. если прямая касается окружности в точке A, точка B лежит на этой прямой, а точка C — на окружности, причём все три точки различны, то угловая величина угла BAC равна половине угловой величины дуги AC, заключённой внутри угла BAC.

Пример 1. Докажите, что угол между пересекающимися хордами равен полусумме угловых величин противоположных дуг, высекаемых на окружности этими хордами, т. е. если хорды AB и CD пересекаются в точке M, лежащей внутри окружности, то угловая величина каждого из углов AMC и BMD равна полусумме угловых величин дуг AC и BD, заключённых внутри этих углов.

П

Д о к а з а т е л ь с т в о. Пусть угловые величины дуг AC и BD, заключённых внутри углов AMC и BMD, равны α и β соответственно. По теореме о внешнем угле треугольника

$$\angle AMC = \angle MBC + \angle MCB = \angle ABC + \angle DCB = \frac{\alpha}{2} + \frac{\beta}{2} = \frac{\alpha + \beta}{2},$$

что и требовалось доказать.

Пример 2. Докажите, что угол между секущими, проведёнными к окружности из точки, лежащей вне окружности, равен полуразности

угловых величин дуг, содержащихся внутри этого угла, т. е. если точка M лежит вне окружности, одна прямая, проходящая через эту точку, пересекает окружность последовательно в точках A и B, а вторая прямая, проходящая через точку M, — в точках C и D, то угловая величина угла BMD равна полуразности угловых величин дуг BD и AC, заключённых внутри этого угла.

Доказательство. Пусть угловые величины дуг AC и BD, заключённых внутри углов AMC и BMD, равны α и β соответственно $(\alpha < \beta)$.

По теореме о внешнем угле треугольника

$$\angle BMD = \angle AMC = \angle BCD - \angle MBC = \angle BCD - \angle ABC = \frac{\beta}{2} - \frac{\alpha}{2} = \frac{\beta - \alpha}{2}.$$

Пример 3. Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке E; AD — биссектриса треугольника ABC. Докажите, что AE = ED.

Доказательство. Пусть точка E лежит на продолжении стороны BC за точку B. Применив теорему об угле между касательной и хордой и теорему о внешнем угле треугольника, получим, что

$$\angle EAD = \angle EAB + \angle BAD = \angle ACB + \angle DAC = \angle EDA.$$

Значит, треугольник ADE является равнобедренным, следовательно, AE = ED.

Пример 4. В круге провели три хорды AB, BC, CD и отметили их середины M, N и K соответственно. Известно, что $\angle BMN = \alpha$. Найдите $\angle NKC$.

Ответ: α или $180^{\circ} - \alpha$.

Р е ш е н и е. Пусть точки A и D лежат по одну сторону от прямой BC. Поскольку KN и MN — средние линии треугольников BCD и CBA, то $KN \parallel BD$ и $MN \parallel AC$. Поэтому

$$\angle NKC = \angle BDC = \angle BAC = \angle BMN = \alpha$$
.

Пусть точки A и D лежат по разные стороны от прямой BC. Поскольку KN и MN — средние линии треугольников BCD и CBA, то $KN \parallel BD$ и $MN \parallel AC$. Поэтому

$$\angle BMN = \angle BAC$$
, $\angle NKC = \angle BDC$.

Значит,

$$\angle BMN + \angle NKC = \angle BAC + \angle BDC = 180^{\circ}$$
.

Следовательно,

$$\angle NKC = 180^{\circ} - \angle BMN = 180^{\circ} - \alpha.$$

* * *

Если при размышлении над задачей удаётся заметить, что какието четыре точки лежат на одной окружности, то дальнейшие рассуждения сводятся к известным свойствам углов, связанных с окружностью. Этот метод обычно называют методом вспомогательной окружности.

Отметим наиболее известные условия, при которых четыре точки лежат на одной окружности.

1) Можно указать точку, равноудалённую от рассматриваемых точек A, B, C и D.

- 2) Из точек A и B отрезок CD виден под прямым углом.
- 3) Из точек A и B, лежащих по одну сторону от прямой CD, отрезок CD виден под одним и тем же углом.
- 4) Точки A и B лежат по разные стороны от прямой CD, и при этом сумма углов CAD и CBD равна 180° .
- 5) Точки A и B лежат на одной стороне неразвёрнутого угла с вершиной O, точки C и D на другой, и при этом $OA \cdot OB = OC \cdot OD$.
- 6) Отрезки *AB* и *CD* пересекаются в точке *O*, и при этом $OA \cdot OB = OC \cdot OD$.

Пример 5. Известно, что BM и CN — высоты треугольника ABC, при этом MN=10 и BC=26. Найдите расстояние между серединами отрезков MN и BC.

Ответ: 12.

Р е ш е н и е. Пусть P и Q — середины отрезков BC и MN соответственно. Из точек M и N отрезок BC виден под прямым углом, значит, эти точки лежат на окружности с диаметром BC. Точка P — центр окружности, а Q — середина хорды MN, поэтому $PQ \perp MN$.

Из прямоугольного треугольника *PQM* находим, что

$$PQ = \sqrt{PM^2 - QM^2} = \sqrt{13^2 - 5^2} = 12.$$

Пример 6. Основание CD, диагональ BD и боковая сторона AD трапеции ABCD равны p. Боковая сторона BC равна q. Найдите диагональ AC.

Ответ: $\sqrt{4p^2-q^2}$.

Р е ш е н и е. Окружность с центром в точке D и радиусом p проходит через точки A, B и C. Если CC_1 — диаметр окружности, то $ABCC_1$ — равнобедренная трапеция, $AC_1 = BC = q$.

Поскольку $\angle CAC_1 = 90^\circ$ (точка A лежит на окружности с диаметром CC_1),

$$AC^2 = CC_1^2 - AC_1^2 = 4p^2 - q^2.$$

◁

Следовательно, $AC = \sqrt{4p^2 - q^2}$.

Подготовительные задачи

- **13.1.** Окружность касается сторон угла с вершиной A в точках B и C. Найдите градусные меры дуг, на которые окружность делится точками B и C, если $\angle BAC = 70^\circ$.
- **13.2.** Пусть AB и AC равные хорды, MAN касательная, градусная мера дуги BC, не содержащей точки A, равна 200° . Найдите углы MAB и NAC.
- **13.3.** Треугольник *ABC* равнобедренный. Радиус *OA* описанного круга образует с основанием *AC* угол *OAC*, равный 20° . Найдите угол *BAC*.
- **13.4.** Окружность описана около равностороннего треугольника ABC. На дуге BC, не содержащей точку A, расположена точка M, делящая градусную меру этой дуги в отношении 1:2. Найдите углы треугольника AMB.
- **13.5.** Точки A, B, C и D последовательно расположены на окружности. Известно, что градусные меры меньших дуг AB, BC, CD и AD относятся как 1:3:5:6. Найдите углы четырёхугольника ABCD.
- **13.6.** Окружность проходит через вершины A и C треугольника ABC, пересекая сторону AB в точке E и сторону BC в точке F. Угол

- *AEC* в 5 раз больше угла *BAF*, а угол *ABC* равен 72°. Найдите радиус окружности, если AC = 6.
- **13.7.** Из точки P, расположенной внутри острого угла с вершиной A, опущены перпендикуляры PC и PB на стороны угла. Известно, что $\angle CBP = 25^{\circ}$. Найдите угол CAP.
- **13.8.** В окружность вписан прямоугольник *ABCD*, сторона *AB* которого равна a. Из конца K диаметра KP, параллельного стороне AB, сторона BC видна под углом β . Найдите радиус окружности.
- **13.9.** В выпуклом четырёхугольнике *ABCD* известно, что $\angle BCD = 80^{\circ}$, $\angle ACB = 50^{\circ}$ и $\angle ABD = 30^{\circ}$. Найдите угол *ADB*.
- **13.10.** В выпуклом четырёхугольнике *ABCD* известно, что $\angle ACB = 25^{\circ}$, $\angle ACD = 40^{\circ}$ и $\angle BAD = 115^{\circ}$. Найдите угол *ADB*.
 - **13.11.** В выпуклом четырёхугольнике *ABCD* известно, что

$$\angle ABC = 116^{\circ}$$
, $\angle ADC = 64^{\circ}$, $\angle CAB = 35^{\circ}$ и $\angle CAD = 52^{\circ}$.

Найдите угол между диагоналями, опирающийся на сторону АВ.

13.12. В выпуклом четырёхугольнике *ABCD* известно, что

$$\angle ABD = \angle ACD = 45^{\circ}, \quad \angle BAC = 30^{\circ}, \quad BC = 1.$$

Найдите AD.

13.13. Во вписанном четырёхугольнике *ABCD* известны углы:

$$\angle DAB = \alpha$$
, $\angle ABC = \beta$, $\angle BKC = \gamma$,

где K — точка пересечения диагоналей. Найдите угол ACD.

Тренировочные задачи

- **13.14.** Около треугольника *ABC*, в котором BC = a, $\angle B = \alpha$, $\angle C = \beta$, описана окружность. Биссектриса угла *A* пересекает эту окружность в точке *K*. Найдите *AK*.
- **13.15.** Треугольники *ABC* и *ADC* имеют общую сторону *AC*; стороны *AD* и *BC* пересекаются в точке *M*. Углы *B* и *D* равны по 40°. Расстояние между вершинами *D* и *B* равно стороне *AB*, $\angle AMC = 70^\circ$. Найдите углы треугольников *ABC* и *ADC*.
- **13.16.** Внутри угла с вершиной O взята некоторая точка M. Луч OM образует со сторонами угла углы, один из которого больше другого на 10° ; A и B проекции точки M на стороны угла. Найдите угол между прямыми AB и OM.

- **13.17.** Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых A, B и C. Найдите углы треугольника ABC.
- **13.18.** В остроугольном треугольнике *ABC* из основания *D* высоты *BD* опущены перпендикуляры *DM* и *DN* на стороны *AB* и *BC*. Известно, что MN = a, BD = b. Найдите угол *ABC*.
- **13.19.** Хорда делит окружность на дуги, градусные меры которых относятся как 11:16. Найдите угол между касательными, проведёнными через концы этой хорды.
- **13.20.** Расстояние между центрами непересекающихся окружностей равно *а*. Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности, и найдите её радиус.
- **13.21.** В треугольнике *ABC* проведены биссектрисы *AD* и *BE*, пересекающиеся в точке *O*. Известно, что OE = 1, а вершина *C* лежит на окружности, проходящей через точки *E*, *D* и *O*. Найдите стороны и углы треугольника *EDO*.
- **13.22.** В треугольнике ABC угол B прямой, величина угла A равна $\alpha \neq 45^\circ$, точка D середина гипотенузы. Точка C_1 симметрична точке C относительно прямой BD. Найдите угол AC_1B .
- **13.23.** На стороне AB треугольника ABC во внешнюю сторону построен равносторонний треугольник. Найдите расстояние между его центром и вершиной C, если AB=c и $\angle C=120^\circ$.
- **13.24.** В четырёхугольнике *ABCD* углы *B* и *D* прямые. Диагональ *AC* образует со стороной *AB* острый угол 40° , а со стороной *AD* угол 30° . Найдите острый угол между диагоналями *AC* и *BD*.
- **13.25.** В прямоугольном треугольнике ABC угол при вершине A равен 60° , O середина гипотенузы AB, P центр вписанной окружности. Найдите угол POC.
- **13.26.** В параллелограмме *ABCD* острый угол равен α . Окружность радиуса r проходит через вершины A, B, C и пересекает прямые AD и CD в точках M и N. Найдите площадь треугольника BMN.
- **13.27.** Окружность, проходящая через вершины A, B и C параллелограмма ABCD, пересекает прямые AD и CD в точках M и N соответственно. Точка M удалена от вершин B, C и D на расстояния 4, 3 и 2 соответственно. Найдите MN.
- **13.28.** В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая,

проходящая через точку E и перпендикулярная к BC, пересекает сторону AD в точке M. Докажите, что EM — медиана треугольника AED, и найдите её длину, если AB = 7, CE = 3, $\angle ADB = \alpha$.

- **13.29.** Дан треугольник ABC. Из вершины A проведена медиана AM, а из вершины B медиана BP. Известно, что угол APB равен углу BMA. Косинус угла ACB равен 0,8 и BP = 1. Найдите площадь треугольника ABC.
- **13.30.** В треугольнике *ABC* угол *ABC* равен α , угол *BCA* равен 2α . Окружность, проходящая через точки *A*, *C* и центр описанной около треугольника *ABC* окружности, пересекает сторону *AB* в точке *M*. Найдите отношение *AM* к *AB*.
- **13.31.** Точка E лежит на продолжении стороны AC равностороннего треугольника ABC за точку C. Точка K середина отрезка CE. Прямая, проходящая через точку A перпендикулярно AB, и прямая, проходящая через точку E перпендикулярно BC, пересекаются в точке D. Найдите углы треугольника BKD.
- **13.32.** Вне правильного треугольника ABC, но внутри угла BAC взята точка M так, что угол CMA равен 30° и угол BMA равен α . Найдите угол ABM.
- **13.33.** В трапеции $MNPQ~(MQ \parallel NP)$ угол NQM в два раза меньше угла MPN. Известно, что

$$NP = MP = \frac{13}{2}, \quad MQ = 12.$$

Найдите площадь трапеции.

- **13.34.** Дан угол, равный α . На его биссектрисе взята точка K; P и M проекции K на стороны угла. На отрезке PM взята точка A, причём KA = a. Прямая, проходящая через A перпендикулярно KA, пересекает стороны угла в точках B и C. Найдите площадь треугольника BKC.
- **13.35.** На биссектрисе угла с вершиной L взята точка A. Точки K и M основания перпендикуляров, опущенных из точки A на стороны угла. На отрезке KM взята точка P (KP < PM), и через неё перпендикулярно отрезку AP проведена прямая, пересекающая прямую KL в точке Q (K между Q и L), а прямую ML в точке S. Известно, что $\angle KLM = \alpha$, KM = a, QS = b. Найдите QK.
- **13.36.** В выпуклом четырёхугольнике *ABCD* проведены диагонали *AC* и *BD*. Известно, что AD = 2, $\angle ABD = \angle ACD = 90^{\circ}$, а расстояние между центрами окружностей, вписанных в треугольники *ABD* и *ACD*, равно $\sqrt{2}$. Найдите *BC*.

- **13.37*** В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает прямую AC в точке M, а перпендикуляр, проходящий через середину стороны AC, пересекает прямую AB в точке N. Известно, что MN = BC и прямая MN перпендикулярна прямой BC. Найдите углы треугольника ABC.
- **13.38*** В равносторонний треугольник *ABC* вписана полуокружность с центром *O* на стороне *AB*. Некоторая касательная к полуокружности пересекает стороны *BC* и *AC* в точках *M* и *N* соответственно, а прямая, проходящая через точки касания сторон *BC* и *AC* с полуокружностью, пересекает отрезки *OM* и *ON* соответственно в точках *P* и *Q*. Найдите *PQ*, если MN = 2.

Задачи на доказательство и вычисление

- **13.39.1.** В окружность вписан четырёхугольник с тремя равными сторонами.
- а) Докажите, что в этом четырёхугольнике есть параллельные стороны.
- б) Найдите диагонали четырёхугольника, если радиус окружности равен 25, а каждая из трёх равных сторон четырёхугольника равна 30.
- **13.39.2.** В окружность вписана трапеция. Боковая сторона трапеции видна из центра окружности под прямым углом.
 - а) Докажите, что высота трапеции равна её средней линии.
- б) Найдите площадь трапеции, если радиус окружности равен 5, а тангенс угла при большем основании равен 3.
- **13.40.1.** Дан выпуклый четырёхугольник *ABCD*. Известно, что $\cos \angle ABC = -\cos \angle ADC$.
 - а) Докажите, что этот четырёхугольник вписанный.
- б) Найдите радиус окружности, описанной около четырёхугольника, если $\angle ACB = 30^\circ$, BC = 6, а высоты треугольников ABD и CBD, проведённые из вершины B, равны.
- **13.40.2.** Дан выпуклый четырёхугольник *ABCD*. Известно, что $\cos \angle ABD = \cos \angle ACD$.
 - а) Докажите, что этот четырёхугольник вписанный.
- б) Найдите площадь четырёхугольника, если $\angle ACB = 30^{\circ}$, BD = 8, AD = 6, а диагональ BD проходит через середину диагонали AC.
 - 13.41.1. Диагонали трапеции перпендикулярны боковым сторонам.
 - а) Докажите, что трапеция равнобедренная.
 - б) Найдите площадь трапеции, если её основания равны 10 и 26.

- **13.41.2.** Дана трапеция *ABCD* с основаниями *AD* и *BC*, $\angle ABD = \angle ACD$.
 - а) Докажите, что трапеция равнобедренная.
 - б) Найдите площадь трапеции, если AD = 7 и BC = 5, а $\angle ACD = 60^{\circ}$.
- **13.42.1.** Дан параллелограмм ABCD. Прямая CD касается окружности, описанной около треугольника ABD.
- а) Докажите, что диагональ BD равна одной из сторон параллелограмма.
- б) Найдите площадь параллелограмма ABCD, если BD=2 и $\angle BCD==45^{\circ}$.
- **13.42.2.** Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN касательные к окружности, описанной около треугольника KLN.
 - а) Докажите, что треугольники LMN и KLN подобны.
- б) Найдите площадь треугольника KLN, если KN=3, а $\angle LMN=120^{\circ}$.
- **13.43.1.** Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E.
 - а) Докажите, что четырёхугольник АСЕД вписанный.
 - б) Найдите AE, если AB = 10, AC = 16, AD = 15.
- **13.43.2.** Две окружности пересекаются в точках P и Q. Через точку Q проведена прямая, пересекающая окружности в точках K и M, лежащих по разные стороны от прямой PQ. Касательные к этим окружностям в точках K и M пересекаются в точке N.
 - а) Докажите, что $\angle PKM = \angle PNM$.
 - б) Найдите PK, если PQ = 12, PM = 9, PN = 15.
- **13.44.1.** В остроугольном треугольнике ABC из вершин A и C опущены высоты AP и CQ на стороны BC и AB.
 - а) Докажите, что $\angle BPQ = \angle BAC$.
- б) Известно, что площадь треугольника ABC равна 96, площадь четырёхугольника AQPC равна 72, а радиус окружности, описанной около треугольника ABC, равен $\frac{16}{\sqrt{3}}$. Найдите PQ.
- **13.44.2.** В остроугольном треугольнике KLM на стороны KM и KL опущены высоты LE и MF.
 - а) Докажите, что $\angle LEF = \angle LMF$.
- б) Найдите площадь четырёхугольника EFLM, если LM=6, площадь треугольника EKF равна 1, а радиус окружности, описанной около треугольника KLM, равен $\frac{9\sqrt{2}}{4}$.

- **13.45.1.** В треугольнике *ABC* известно, что $\angle BAC = 60^\circ$, $\angle ABC = 45^\circ$. Продолжения высот треугольника *ABC* пересекают описанную около него окружность в точках M, N, P.
 - а) Докажите, что треугольник MNP прямоугольный.
 - б) Найдите площадь треугольника MNP, если BC = 12.
- **13.45.2.** Прямые, содержащие высоты треугольника *ABC*, проведённые из вершин *A*, *B* и *C*, вторично пересекают описанную около него окружность в точках *M*, *N*, *P* соответственно, $\angle BAC = 120^{\circ}$, $\angle ABC = 45^{\circ}$.
 - а) Докажите, что $AM \perp AP$.
 - б) Найдите MB, если AC = 4.
- **13.46.1.** В прямоугольный треугольник вписан квадрат так, что две его вершины лежат на гипотенузе, а две другие на катетах.
- а) Докажите, что центр квадрата лежит на биссектрисе прямого угла треугольника.
- б) Радиус окружности, описанной около треугольника, относится к стороне квадрата как 13:6. Найдите углы треугольника.
- **13.46.2.** На гипотенузе прямоугольного треугольника как на стороне построен квадрат вне треугольника.
- а) Докажите, что центр квадрата и центр окружности, вписанной в треугольник, лежат на прямой, проходящей через вершину прямого угла треугольника.
- б) Найдите расстояние от центра квадрата до центра окружности, вписанной в треугольник, если радиус этой окружности равен 2, а сторона квадрата равна 10.
- **13.47.1.** Окружность с центром O, вписанная в треугольник ABC, касается сторон AB и AC в точках M и N соответственно, AH высота треугольника. Прямые MN и BC пересекаются в точке K.
 - а) Докажите, что $\angle MKB = \angle OAH$.
- б) Найдите AK, если $\angle ABC = 77^{\circ}$, $\angle ACB = 17^{\circ}$, а отрезок, соединяющий точку H с серединой MN, равен 8.
 - **13.47.2.** В треугольнике KLM сторона KM больше стороны KL.
- а) Докажите, что угол между высотой и биссектрисой, проведёнными из вершины K, равен полуразности углов L и M.
- б) Окружность, вписанная в треугольник KLM, касается сторон KL и KM в точках A и B соответственно, KH высота треугольника. Прямые AB и LM пересекаются в точке C. Найдите расстояние между точкой H и серединой отрезка AB, если $\angle KLM = 72^{\circ}$, $\angle KML = 12^{\circ}$, CK = 24.

§ 14. Вспомогательные подобные треугольники

Решение задачи 14 из диагностической работы

14. На стороне *AB* треугольника *ABC* отмечена точка *D*, причём $\angle BCD = \angle BAC$. Известно, что BC = a, AC = b, AB = c. Найдите *CD*.

Ответ: $\frac{ab}{c}$.

В некоторых, часто непростых, задачах ключевая идея состоит в отыскании пары подобных треугольников. Как правило, в одном из треугольников этой пары либо есть два известных отрезка, либо их легко найти, а в другом — один известный отрезок. Из соответствующей пропорции находят нужный отрезок.

Пример 1. В трапеции *ABCD* меньшая диагональ *BD* перпендикулярна основаниям *AD* и *BC*, а сумма острых углов при вершинах *A* и *C* равна 90°. Известно, что AD = a, BC = b. Найдите боковые стороны трапеции.

Ответ:
$$\sqrt{a(a+b)}$$
, $\sqrt{b(a+b)}$.

Решение. Каждый из углов BCD и ABD в сумме с углом A составляет 90° , поэтому $\angle BCD = \angle ABD$, значит, треугольники ABD и DCB подобны по двум углам. Тогда $\frac{BC}{BD} = \frac{BD}{AD}$.

Отсюда находим, что $BD = \sqrt{BC \cdot AD} = \sqrt{ab}$. Следовательно,

$$CD = \sqrt{BC^2 + BD^2} = \sqrt{b^2 + ab} = \sqrt{b(a+b)},$$

 $AB = \sqrt{BD^2 + AD^2} = \sqrt{a^2 + ab} = \sqrt{a(a+b)},$

◁

Пример 2. К окружностям радиусов r и R (r < R), касающимся внешним образом, проведены общие внешние касательные. Одна из них касается первой окружности в точке A, а второй — в точке B. Касательные пересекаются в точке O. Найдите OA.

Ответ:
$$\frac{2r\sqrt{rR}}{R-r}$$
.

Р е ш е н и е. Из центра O_1 первой окружности опустим перпендикуляр O_1F на радиус O_2B второй окружности. Тогда

$$O_1F = \sqrt{O_1O_2^2 - O_2F^2} = \sqrt{(r+R)^2 - (R-r)^2} = 2\sqrt{rR}.$$

Прямоугольные треугольники OAO_1 и O_1FO_2 подобны, поэтому

$$rac{O_1 A}{O\!A} = rac{O_2 F}{O_1 F},$$
 или $rac{r}{O\!A} = rac{R-r}{2\sqrt{rR}}.$

Следовательно, $OA = \frac{2r\sqrt{rR}}{R-r}$.

Пример 3. Из точки M, лежащей вне окружности, проведены к этой окружности две касательные. Расстояния от точки C, лежащей

 \triangleleft

на окружности, до касательных равны a и b. Найдите расстояние от точки C до прямой AB, где A и B — точки касания.

Ответ: \sqrt{ab} .

Р е ш е н и е. Пусть P, Q, N — основания перпендикуляров, опущенных из точки C на прямые MA, MB, AB соответственно. Докажем, что треугольник PCN подобен треугольнику NCQ.

Действительно, отрезок AC виден из точек P и N под прямым углом. Значит, точки P и N лежат на окружности с диаметром AC.

Аналогично точки N и Q лежат на окружности с диаметром BC. Поэтому $\angle CPN = \angle CAN = \angle CAB$, а из теоремы об угле между касательной и хордой следует, что $\angle CAB = \angle CBQ = \angle CNQ$, значит, $\angle CPN = \angle CNQ$. Аналогично $\angle CNP = \angle CQN$.

Значит, треугольники PCN и NCQ подобны по двум углам. Тогда $\frac{CN}{CQ}=\frac{CP}{CN}$, поэтому $CN^2=CP\cdot CQ=ab$. Следовательно, $CN=\sqrt{ab}$.

Подготовительные задачи

14.1. Боковая сторона треугольника разделена на пять равных частей; через точки деления проведены прямые, параллельные основа-

- нию. Найдите отрезки этих прямых, заключённые между боковыми сторонами, если основание равно 20.
- **14.2.** Точка M расположена на боковой стороне AB трапеции ABCD, причём AM:BM=2:1. Прямая, проходящая через точку M параллельно основаниям AD и BC, пересекает боковую сторону CD в точке N. Найдите MN, если AD=18, BC=6.
- **14.3.** На боковых сторонах AB и CD трапеции ABCD отмечены точки M и N соответственно, причём $\frac{AM}{MB} = \frac{DN}{NC} = \frac{3}{2}$. Найдите MN, если BC = a и AD = b.
- **14.4.** На диагоналях AC и BD трапеции ABCD с основаниями AD и BC взяты соответственно точки M и N, причём AM:MC=DN:NB==1:4. Найдите MN, если AD=a, BC=b (a>b).
- **14.5.** В прямоугольный треугольник с катетами 6 и 8 вписан квадрат, имеющий с треугольником общий прямой угол. Найдите сторону квадрата.
- **14.6.** В прямоугольном треугольнике ABC катет AB равен 21, а катет BC равен 28. Окружность, центр O которой лежит на гипотенузе AC, касается обоих катетов. Найдите радиус окружности.
- **14.7.** Точка M лежит на боковой стороне AC равнобедренного треугольника ABC с основанием BC, причём BM = BC. Найдите MC, если BC = 1 и AB = 2.
- **14.8.** Точка D лежит на стороне AC треугольника ABC, причём $\angle ABD = \angle BCA$. Найдите отрезки AD и DC, если AB = 2 и AC = 4.
- **14.9.** Диагонали выпуклого четырёхугольника ABCD равны 12 и 18 и пересекаются в точке O. Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Тренировочные задачи

- **14.10.** В круге проведены две хорды AB и CD, пересекающиеся в точке M; K точка пересечения биссектрисы угла BMD с хордой BD. Найдите отрезки BK и KD, если BD = 3, а площади треугольников CMB и AMD относятся как 1:4.
- **14.11.** В прямоугольной трапеции основания равны 17 и 25, а бо́льшая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.

- **14.12.** В трапеции ABCD даны основания AD=12 и BC=8. На продолжении стороны BC отложен отрезок CM=2,4. В каком отношении прямая AM делит площадь трапеции ABCD?
- **14.13.** Через точку пересечения диагоналей трапеции проведена прямая, параллельная основаниям. Найдите длину отрезка этой прямой, заключённого внутри трапеции, если основания трапеции равны *a* и *b*.
- **14.14.** В угол вписаны касающиеся внешним образом окружности радиусов r и R (r < R). Первая из них касается сторон угла в точках A и B. Найдите AB.
- **14.15.** Основания трапеции равны a и b. Прямая, параллельная основаниям, разбивает трапецию на две трапеции, площади которых относятся как 2:3. Найдите длину отрезка этой прямой, заключённого внутри трапеции.
- **14.16.** Около окружности описана равнобедренная трапеция. Боковая сторона трапеции равна 4, отрезок, соединяющий точки касания боковых сторон с окружностью, равен 1. Найдите диаметр окружности.
- **14.17.** В некоторый угол вписана окружность радиуса 5. Хорда, соединяющая точки касания, равна 8. К окружности проведены две касательные, параллельные хорде. Найдите стороны полученной трапеции.
- **14.18.** Расстояние от центра O окружности, описанной около треугольника ABC, до стороны BC равно 1. Найдите расстояние от точки пересечения высот до вершины A.
- **14.19.** Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD = 2 и $\sin \angle ACD \cdot \sin \angle BCD = \frac{1}{3}$. Найдите расстояние от точки D до хорды AB.
- **14.20.** В трапеции *ABCD* даны основания AB = a и CD = b (a < b). Окружность, проходящая через вершины A, B и C, касается стороны AD. Найдите диагональ AC.
- **14.21.** Точка пересечения медиан треугольника ABC, вершина A и середины сторон AB и AC лежат на одной окружности. Найдите медиану, проведённую из вершины A, если BC = a.
- **14.22.** Из вершины тупого угла A треугольника ABC опущена высота AD. Проведена окружность с центром в точке D и радиусом, равным AD. Она пересекает стороны треугольника AB и AC в точках M

- и N соответственно. Найдите сторону AC, если известно, что AB=c, AM=m и AN=n.
- **14.23.** В треугольнике ABC угол C тупой, D точка пересечения прямой DB, перпендикулярной к AB, и прямой DC, перпендикулярной к AC. Высота треугольника ADC, проведённая из вершины C, пересекает AB в точке M. Известно, что AM = a, MB = b. Найдите AC.
- **14.24.** Через центр окружности, описанной около треугольника ABC, проведены прямые, перпендикулярные сторонам AC и BC. Эти прямые пересекают высоту CH треугольника или её продолжение в точках P и Q. Известно, что CP = p, CQ = q. Найдите радиус окружности, описанной около треугольника ABC.
- **14.25.** Через центр O окружности, описанной около остроугольного треугольника ABC, проведена прямая, перпендикулярная BO и пересекающая отрезок AB в точке P и продолжение отрезка BC за точку C в точке Q. Найдите BP, если известно, что AB = c, BC = a и BQ = p.
- **14.26.** Четырёхугольник *ABCD* вписан в окружность. Диагональ *AC* является биссектрисой угла *BAD* и пересекается с диагональю *BD* в точке K. Найдите KC, если BC = 4, а AK = 6.
- **14.27.** Продолжение медианы треугольника ABC, проведённой из вершины A, пересекает описанную около треугольника ABC окружность в точке D. Найдите BC, если AC = DC = 1.
- **14.28.** Радиус окружности, описанной около треугольника KLM, равен R. Через вершину L проведена прямая, перпендикулярная стороне KM. Эту прямую пересекают в точках A и B серединные перпендикуляры к сторонам KL и LM соответственно. Известно, что AL = a. Найдите BL.
- **14.29.** В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что MP = p, MQ = q. Найдите MN.
- **14.30.** В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Около треугольника ECB описана окружность, а касательная к этой окружности, проведённая в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF = a, AD = b. Найдите EF.
- **14.31*** Боковая сторона AB трапеции ABCD перпендикулярна основаниям AD и BC. Прямая, перпендикулярная стороне CD, пересекает

- сторону AB в точке M, а сторону CD в точке N. Известно также, что MC = a, BN = b, а расстояние от точки D до прямой MC равно c. Найдите расстояние от точки A до прямой BN.
- **14.32***. В треугольник ABC со сторонами AB=6, BC=5, AC=7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH треугольника ABC в точке M. Найдите площадь треугольника DMC.
- **14.33*** Две окружности касаются друг друга внутренним образом в точке A. Хорда BC большей окружности касается меньшей в точке D. Прямая AD вторично пересекает бо́льшую окружность в точке M. Найдите MB, если MA = a, MD = b.
- **14.34*** Пятиугольник *ABCDE* вписан в окружность. Расстояния от точки A до прямых BC, DC и DE равны соответственно a, b и c. Найдите расстояние от вершины A до прямой BE.

Задачи на доказательство и вычисление

- **14.35.1.** Две стороны треугольника равны 6 и 12, косинус угла между ними равен $\frac{1}{4}$. В треугольник вписан ромб, имеющий с треугольником общий угол, заключённый между данными сторонами (вершина ромба, противоположная вершине этого угла, лежит на третьей стороне треугольника).
 - а) Докажите, что данный треугольник равнобедренный.
 - б) Найдите сторону ромба.
- **14.35.2.** Две стороны треугольника равны 25 и 30, косинус угла между ними равен $\frac{3}{5}$.
 - а) Докажите, что треугольник равнобедренный.
- б) Найдите сторону квадрата, две вершины которого лежат на основании треугольника, а две другие на боковых сторонах.
- **14.36.1.** Первая окружность, вписанная в равнобедренный треугольник ABC, касается боковой стороны AB в точке P, а основания BC в точке M. Вторая окружность, касающаяся основания BC и продолжений боковых сторон, касается прямой AB в точке Q.
 - а) Докажите, что треугольник РМQ прямоугольный.
- б) Найдите радиус второй окружности, если высота треугольника, проведённая из вершины A, равна 45, а точка P делит боковую сторону AB в отношении 9:8, считая от вершины A.

- **14.36.2.** Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML в точке A. Вторая окружность с центром O_1 касается основания ML и продолжений боковых сторон.
 - а) Докажите, что треугольник OLO₁ прямоугольный.
- б) Найдите радиус второй окружности, если радиус первой равен 6 и AK = 16.
- **14.37.1.** Высота CH, проведённая из вершины прямого угла прямоугольного треугольника ABC, пересекает биссектрису AD в точке K.
 - а) Докажите, что $\frac{AH}{KH} = \frac{AC}{CD}$.
 - б) Найдите острые углы треугольника *ABC*, если $\frac{AK}{KD} = 1 + \sqrt{2}$.
- **14.37.2.** Высота PH прямоугольного треугольника PQR, проведённая к гипотенузе, пересекает биссектрису QM в точке N.
 - а) Докажите, что $\frac{PM}{NH} = \frac{PQ}{QH}$.
 - б) Найдите острые углы треугольника, если $\frac{QN}{MN} = 3 + 2\sqrt{3}$.
- **14.38.1.** Диагонали вписанного в окружность четырёхугольника ABCD пересекаются в точке M, а AB = BC.
 - а) Докажите, что треугольник ВМС подобен треугольнику ВСD.
- б) Найдите радиус окружности, описанной около треугольника BCM, если радиус исходной окружности равен R, AB = BC = a, BD = m.
- **14.38.2.** Четырёхугольник MNPQ вписан в окружность. Диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S.
- а) Докажите, что прямая PS отсекает от треугольника PNQ подобный ему треугольник.
 - б) Найдите NS, если PQ = 12, SQ = 9.
- **14.39.1.** Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.
 - а) Докажите, что $KT \parallel DE$.
 - б) Найдите угол BAD, если AD = 6 и KT = 3.
- **14.39.2.** Из вершины прямого угла прямоугольного треугольника *ABC* проведена медиана *CM*. Окружность, вписанная в треугольник *AMC*, касается его сторон *AM* и *MC* в точках P и Q.
 - а) Докажите, что $PQ \parallel AC$.
 - б) Найдите угол *ABC*, если AB = 8, PQ = 2.

- **14.40.1.** Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AE = AC.
 - а) Докажите, что BD = BE.
 - б) Известно, что BE: CE = 2:3. Найдите отношение DE: AE.
- **14.40.2.** Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AC = EC.
 - а) Докажите, что BD = DE.
 - б) Известно, что AE:DE=2:1. Найдите отношение BE:CE.
- **14.41.1.** На основаниях *AD* и *BC* трапеции *ABCD* построены квадраты *ADEF* и *BCGH*, расположенные вне трапеции.
- а) Докажите, что прямая FG проходит через точку пересечения диагоналей трапеции.
- б) Прямая, проходящая через центры квадратов, пересекает основание BC в точке M. Найдите BM, если BC = 20, $AC \perp BD$ и BD : AC = 3:2.
- **14.41.2.** На основаниях AD и BC трапеции ABCD построены вне трапеции прямоугольные треугольники BPC и DQA с прямыми углами при вершинах P и Q и равными углами при вершинах B и D.
- а) Докажите, что прямая PQ проходит через точку пересечения диагоналей трапеции.
- б) Прямая PQ пересекает основание BC в точке M. Найдите BM, если диагонали трапеции равны и перпендикулярны, BC = 12 и $\angle PBC =$ $= \angle QDA =$ arctg 2.
- **14.42.1.** Четырёхугольник *ABCD* вписан в окружность. Точка X лежит на его стороне *AD*, причём $BX \parallel CD$ и $CX \parallel BA$.
- а) Докажите, что прямые BX и CX разбивают четырёхугольник ABCD на три подобных треугольника.
 - б) Найдите *BC*, если $AX = \frac{3}{2}$ и DX = 6.
- **14.42.2.** Четырёхугольник *КLMN* вписан в окружность. Точка P лежит на его стороне KL, причём $PM \parallel KN$ и $PN \parallel LM$.
- а) Докажите, что прямые PM и PN разбивают четырёхугольник KLMN на три подобных треугольника.
 - б) Найдите KP и LP, если MN = 6 и KL = 13.
- **14.43.1.** Окружность, вписанная в равнобедренную трапецию ABCD, касается боковых сторон AB и CD в точках M и N соответственно. Отрезок AN пересекает окружность в точке K, а луч MK пересекает основание AD в точке L.
 - а) Докажите, что треугольник AKL подобен треугольнику MAL.
 - б) Найдите отношение AL:LD.

- **14.43.2.** Окружность, вписанная в равнобедренную трапецию KLMN, касается боковых сторон KL и MN в точках P и Q соответственно. Отрезок KQ пересекает окружность в точке A, а луч PA пересекает основание KN в точке B.
 - а) Докажите, что треугольник АКВ подобен треугольнику КРВ.
 - б) Найдите отношение оснований трапеции, если PQ: KB = 8:3.
- **14.44.1.** На стороне AB и диагонали AC квадрата ABCD отмечены точки M и N соответственно, причём AM:MB=1:4 и AN:NC=3:2.
 - а) Докажите, что точки A, M, N и D лежат на одной окружности.
- б) Найдите расстояние от точки пересечения диагоналей четырёхугольника AMND до прямой MN, если сторона квадрата равна 30.
- **14.44.2.** На сторонах KL и KN квадрата KLMN отмечены точки A и B соответственно, причём KA:AL=NB:BK=1:3.
- а) Докажите, что точки A, K, B и центр O квадрата лежат на одной окружности.
- б) Найдите расстояние от точки пересечения диагоналей четырёхугольника *AOBK* до прямой *OA*, если сторона квадрата равна 16.

§ 15. Некоторые свойства высот и точки их пересечения

Решение задачи 15 из диагностической работы

15. Углы при вершинах A и C треугольника ABC равны 45° и 60° соответственно; AM, BN и CK — высоты треугольника. Найдите отношение $\frac{MN}{KN}$.

Ответ: $\frac{\sqrt{3}}{2}$.

Р е ш е н $\ddot{\rm u}$ е. Из прямоугольных треугольников *BNC* и *AMC* находим, что

$$CN = BC \cos 60^{\circ} = \frac{1}{2}BC$$
, $CM = AC \cos 60^{\circ} = \frac{1}{2}AC$,

поэтому

$$\frac{CN}{CM} = \frac{\frac{1}{2}BC}{\frac{1}{2}AC} = \frac{BC}{AC}.$$

Значит, треугольник *CMN* подобен треугольнику *CAB* по двум сторонам и углу между ними (угол *C* общий), причём коэффициент подобия равен $\frac{CM}{AC} = \frac{1}{2}$. Следовательно, $MN = \frac{1}{2}AB$.

Аналогично получим, что треугольник \overline{AKN} подобен треугольнику ACB, причём коэффициент подобия равен $\frac{\sqrt{2}}{2}$. Значит, $KN = \frac{\sqrt{2}}{2}BC$. По теореме синусов

$$\frac{AB}{BC} = \frac{\sin 60^{\circ}}{\sin 45^{\circ}} = \frac{\sqrt{3}}{2} : \frac{\sqrt{2}}{2} = \frac{\sqrt{3}}{\sqrt{2}}.$$

Следовательно,

$$\frac{MN}{KN} = \frac{\frac{1}{2}AB}{\frac{\sqrt{2}}{2}BC} = \frac{\sqrt{2}}{2} \cdot \frac{AB}{BC} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3}}{2}.$$

* * *

Известно, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Отсюда можно вывести, что прямые, на которых лежат высоты треугольника, также пересекаются в одной точке. Это можно сделать так. Через вершины данного треугольника провёдем прямые, параллельные противолежащим сторонам. Рассмотрим треугольник с вершинами в точках пересечения проведённых прямых. Высоты исходного треугольника лежат на серединных перпендикулярах построенного. Поэтому содержащие их прямые пересекаются в одной точке.

Отметим некоторые важные свойства высот и точки их пересечения — ортоцентра треугольника (AA_1 , BB_1 и CC_1 — высоты непрямоугольного треугольника ABC, H — ортоцентр треугольника):

- 1) точки $B,\,C,\,B_1$ и C_1 лежат на одной окружности, причём BC её диаметр;
 - 2) треугольник ABB_1 подобен треугольнику ACC_1 ;
 - 3) $\angle AB_1C_1 = \angle ABC$;
- 4) треугольник AB_1C_1 подобен треугольнику ABC, причём коэффициент подобия равен $|\cos \angle A|$;
- 5) расстояние от точки H до вершины треугольника вдвое больше расстояния от центра O описанной окружности до стороны, противоположной этой вершине;
 - 6) $\angle BAH = \angle CAO$;
 - 7) $OA \perp B_1C_1$;
- 8) точки, симметричные ортоцентру H относительно сторон треугольника, лежат на описанной окружности треугольника.

Докажем эти свойства для остроугольного треугольника. С некоторыми несущественными изменениями это доказательство годится и для тупоугольного.

Д о к а з а т е л ь с т в о. Рассмотрим остроугольный треугольник ABC. Из точек B_1 и C_1 сторона BC видна под прямым углом, значит, эти точки лежат на окружности с диаметром BC.

Прямоугольные треугольники ABB_1 и ACC_1 подобны по двум углам.

Противоположные углы CBC_1 и CB_1C_1 вписанного четырёхугольника BC_1B_1C в сумме составляют 180° , поэтому

$$\angle ABC = \angle C_1BC = 180^{\circ} - \angle CB_1C_1 = \angle AB_1C_1.$$

Треугольник AB_1C_1 подобен треугольнику ABC по двум углам. Пусть k — коэффициент подобия. Тогда

$$k = \frac{AC_1}{AC} = \cos \angle BAB_1 = \cos \angle BAC$$

 $(AC_1$ и AC — соответствующие стороны подобных треугольников AB_1C_1 и ABC, так как они лежат против равных углов, а $\frac{AC_1}{AC}$ — отношение прилежащего к углу CAC_1 катета к гипотенузе в прямоугольном треугольнике ACC_1).

Перпендикуляры OM и ON, опущенные из центра O описанной окружности на стороны BC и AC соответственно, проходят через середины этих сторон. Тогда MN — средняя линия треугольника ABC.

Значит, $MN \parallel AB$ и $MN = \frac{1}{2}AB$, а так как $OM \perp BC$ и $AH \perp BC$, то $OM \parallel AH$. Аналогично $ON \parallel BH$. Треугольник AHB подобен треугольнику MON по двум углам, причём коэффициент подобия $\frac{AB}{MN}$ равен 2. Следовательно, AH = 2OM.

Пусть лучи AA_1 и AO пересекают описанную окружность в точках P и Q соответственно. Тогда $\angle APQ = 90^\circ$, поскольку точка P лежит на окружности с диаметром AQ. Хорды PQ и BC параллельны, так как они перпендикулярны одной и той же прямой AP, значит, заключённые между ними дуги CQ и BP равны. Тогда равны и опирающиеся на эти дуги вписанные углы CAQ и BAP. Следовательно, $\angle BAH = \angle CAO$.

На касательной к описанной окружности треугольника ABC, проведённой через точку A, отметим такую точку K, что точки K и B лежат по разные стороны от прямой AC. Из теоремы об угле между касательной и хордой следует, что $\angle KAC = \angle ABC$. По ранее доказанному $\angle ABC = \angle AB_1C_1$, значит, $\angle KAC = \angle AB_1C_1$. Следовательно, $AK \parallel B_1C_1$, а поскольку $OA \perp AK$, получаем $OA \perp B_1C_1$.

Заметим, что $\angle BHC = \angle B_1HC_1 = 180^\circ - \angle BAC$. Пусть P_1 — точка, симметричная ортоцентру H относительно прямой BC. Тогда $\angle BP_1C = \angle BHC$, поэтому $\angle BP_1C = \angle BHC = 180^\circ - \angle BAC$. Значит, четырёхугольник ABP_1C вписанный. Тогда точка P_1 лежит на описанной окружности треугольника ABC, а значит, совпадает с точкой P, что и требовалось доказать.

Пример 1. В остроугольном треугольнике *ABC* из вершин *A* и *C* опущены высоты *AP* и *CQ* на стороны *BC* и *AB*. Известно, что площадь треугольника *ABC* равна 18, площадь треугольника *BPQ* равна 2, а $PQ = 2\sqrt{2}$. Найдите радиус окружности, описанной около треугольника *ABC*.

Ответ: $\frac{9}{2}$.

Р е ш е н и е. Треугольники *BPQ* и *BAC* подобны по двум углам. Поскольку отношение их площадей равно $\frac{2}{18} = \frac{1}{9}$, то коэффициент подобия равен $\frac{1}{3}$. Значит, $AC = 3PQ = 6\sqrt{2}$.

С другой стороны, коэффициент подобия равен $\frac{BP}{AB} = \cos \angle B$. Поэтому $\cos \angle B = \frac{1}{3}$. Тогда $\sin \angle B = \frac{2\sqrt{2}}{3}$. Если R — радиус описанной окружности треугольника ABC, то по теореме синусов

$$R = \frac{AC}{2\sin \angle B} = 6\sqrt{2} : \left(2 \cdot \frac{2\sqrt{2}}{3}\right) = \frac{9}{2}.$$

Пример 2. Отрезки, соединяющие основания высот остроугольного треугольника, образуют прямоугольный треугольник с гипотенузой, равной 10. Найдите радиус окружности, описанной около исходного треугольника.

Ответ: 10.

Р е ш е н и е. Пусть H — точка пересечения высот AA_1 , BB_1 , CC_1 треугольника ABC, $\angle A_1C_1B_1=90^\circ$, $A_1B_1=10$; A_2 , B_2 , C_2 — точки пересечения продолжений высот соответственно AA_1 , BB_1 , CC_1 с окружностью, описанной около треугольника ABC.

Тогда A_1 , B_1 , C_1 — середины отрезков HA_2 , HB_2 , HC_2 . Значит, A_1B_1 , B_1C_1 , A_1C_1 — средние линии треугольников A_2HB_2 , B_2HC_2 , A_2HC_2 , поэтому стороны треугольника $A_2B_2C_2$ соответственно параллельны сторонам треугольника $A_1B_1C_1$, причём $A_2B_2=2A_1B_1$, $A_2C_2=2A_1C_1$, $B_2C_2=2B_1C_1$. Следовательно, треугольник $A_2B_2C_2$ также прямоугольный, а его гипотенуза A_2B_2 вдвое больше A_1B_1 , т. е. равна 20. Следовательно, радиус окружности, описанной около треугольника $A_2B_2C_2$ (а значит, и около треугольника ABC), равен 10.

Пример 3. В остроугольном треугольнике *ABC* проведены высоты *AM* и *CN*, *O* — центр описанной около треугольника *ABC* окружности. Известно, что $\angle ABC = \beta$, а площадь четырёхугольника *NOMB* равна *S*. Найдите *AC*.

Ответ: $2\sqrt{S \operatorname{tg} \beta}$.

Р е ш е н и е. Пусть OB = R — радиус описанной окружности треугольника ABC. Тогда $OB \perp MN$ и $OB = R = \frac{AC}{2\sin\beta}$.

<1

Следовательно,

$$S = \frac{1}{2}MN \cdot OB = \frac{1}{2}AC\cos\beta \cdot \frac{AC}{2\sin\beta} = \frac{1}{4}AC^2 \operatorname{ctg}\beta.$$

Отсюда находим, что $AC = 2\sqrt{S \lg \beta}$.

Подготовительные задачи

- **15.1.** Сторона треугольника равна $\sqrt{2}$, углы, прилежащие к ней, равны 75° и 60°. Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.
- **15.2.** На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая стороны AB и AC в точках M и N соответственно. Найдите площадь треугольника AMN, если площадь треугольника ABC равна S, а угол BAC равен α .
- **15.3.** Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого.
- **15.4.** Отрезок AB диаметр окружности, а точка C лежит вне окружности. Отрезки AC и BC пересекаются с окружностью в точках D и M соответственно. Найдите угол CBD, если площади треугольников DCM и ABC относятся как 1:4.
- **15.5.** В треугольнике *ABC* на средней линии *DE*, параллельной *AB*, как на диаметре построена окружность, пересекающая стороны *AC* и *BC* в точках M и N. Найдите MN, если BC = a, AC = b, AB = c.
- **15.6.** В треугольнике *ABC* известно, что AB=c, BC=a, $\angle ABC=120^\circ$. Найдите расстояние между основаниями высот, проведённых из вершин *A* и *C*.
- **15.7.** В треугольнике *ABC* проведены высоты *AD* и *CE*. Найдите *AC*, если BC=a, AB=b, $\frac{DE}{AC}=k$.
- **15.8.** Высоты BM и CN остроугольного неравнобедренного треугольника ABC пересекаются в точке H. Сторону BC продолжили до пересечения с прямой MN в точке K. Сколько пар подобных треугольников при этом получилось?

Тренировочные задачи

- **15.9.** В остроугольном треугольнике *ABC* с углом *C*, равным 30° , высоты пересекаются в точке *M*. Найдите площадь треугольника *AMB*, если расстояния от центра окружности, описанной около треугольника *ABC*, до сторон *BC* и *AC* соответственно равны $\sqrt{2}$ и $\frac{\sqrt{3}}{3}$.
- **15.10.** В треугольнике *ABC* проведены высоты *BM* и *CN*, O центр вписанной окружности. Известно, что BC = 24, MN = 12. Найдите радиус окружности, описанной около треугольника *BOC*.
- **15.11.** Высоты треугольника ABC пересекаются в точке H. Известно, что отрезок CH равен радиусу окружности, описанной около треугольника. Найдите угол ACB.
- **15.12.** Высоты треугольника *ABC* пересекаются в точке H. Известно, что CH = AB. Найдите угол ACB.
- **15.13.** В треугольнике *ABC* известно, что AB = 2, AC = 5, BC = 6. Найдите расстояние от вершины *B* до точки пересечения высот.
- **15.14.** На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника пополам и образует с прямой AB угол 15° . Найдите углы треугольника ABC.
- **15.15.** В остроугольном треугольнике *ABC* проведены высоты *CM* и *AN*. Известно, что AC=2, а площадь круга, описанного около треугольника *MBN*, равна $\frac{\pi}{3}$. Найдите угол между высотой *CM* и стороной *BC*.
- **15.16.** В остроугольном треугольнике *ABC* из вершин *A* и *C* на стороны *BC* и *AB* опущены высоты *AP* и *CQ*. Найдите сторону *AC*, если известно, что периметр треугольника *ABC* равен 15, периметр треугольника *BPQ* равен 9, а радиус окружности, описанной около треугольника *BPQ*, равен $\frac{9}{5}$.
- **15.17.** Отрезки, соединяющие основания высот остроугольного треугольника, равны 5, 12 и 13. Найдите радиус описанной около треугольника окружности.
- **15.18.** Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.
- **15.19.** Продолжения высот *AM* и *CN* остроугольного треугольника *ABC* пересекают описанную около него окружность в точках *P* и *Q*. Найдите радиус описанной окружности, если AC = a, $PQ = \frac{6a}{5}$.

- **15.20.** В остроугольном треугольнике PQR (PQ > QR) проведены высоты PT и RS; QN диаметр окружности, описанной около треугольника PQR. Известно, что острый угол между высотами PT и RS равен α , PR = a. Найдите площадь четырёхугольника NSQT.
- **15.21***. В треугольнике ABC проведены высота AH, равная h, медиана AM, равная m, и биссектриса AN. Точка N середина отрезка MH. Найдите расстояние от вершины A до точки пересечения высот треугольника ABC.

Задачи на доказательство и вычисление

- **15.22.1.** В треугольнике ABC с тупым углом при вершине A проведены высоты BM и CN.
 - а) Докажите, что $\angle ANM = \angle ACB$.
- б) Найдите радиусы окружностей, описанных около треугольников BNC и AMN, если $\cos \angle BAC = -\frac{1}{3}$, а радиус окружности, описанной около треугольника ABC, равен 6.
- **15.22.2.** Высоты AP и CQ остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что tg $\angle ABC = \frac{AC}{BH}$.
- б) Радиусы окружностей, описанных около треугольников PBQ и APC, равны 6 и 8 соответственно. Найдите радиус окружности, описанной около треугольника ABC.
- **15.23.1.** Точки D и E середины сторон соответственно AC и BC треугольника ABC. На отрезке DE как на диаметре построена окружность, пересекающая продолжения сторон AC и BC в точках M и N соответственно.
- а) Докажите, что биссектрисы углов MEN и NDM пересекаются на этой окружности.
 - б) Найдите MN, если AB = 14, BC = 10, AC = 6.
- **15.23.2.** Точки P и Q середины сторон соответственно AB и AC остроугольного треугольника ABC. На отрезке AQ как на диаметре построена окружность, пересекающая отрезок AP в его середине M.
 - а) Докажите, что треугольник АВС равнобедренный.
- б) Пусть N точка пересечения построенной окружности с отрезком PQ, E точка пересечения прямых MN и BC, AH высота треугольника ABC. Найдите ME, если PH = 4.

- **15.24.1.** В остроугольном треугольнике ABC проведены высоты AD и CE, H точка пересечения высот.
 - а) Докажите, что точки B, D, H и E лежат на одной окружности.
- б) Известно, что радиус этой окружности равен $\frac{1}{\sqrt{3}}$ и AC = 2. Найдите угол между высотой CE и стороной BC.
- **15.24.2.** В треугольнике *ABC* проведены две высоты *BM* и *CN*, причём AM:CM=2:3 и $\cos\angle BAC=\frac{2}{\sqrt{5}}$.
 - а) Докажите, что угол АВС тупой.
 - б) Найдите отношение площадей треугольников ВМN и АВС.
- **15.25.1.** Высота AA_1 остроугольного треугольника ABC продолжена до пересечения с описанной окружностью в точке P, H точка пересечения высот, O центр описанной окружности.
 - а) Докажите, что A_1 середина отрезка HP.
- б) Найдите OH, если AH=3, $A_1H=2$, а радиус окружности равен 4.
- **15.25.2.** Высота MM_1 остроугольного треугольника KLM продолжена до пересечения с описанной окружностью в точке $A,\ H$ точка пересечения высот, O центр описанной окружности.
 - а) Докажите, что треугольник АКН равнобедренный.
 - б) Найдите радиус окружности, если $AM_1 = 2$, MH = 7, OH = 6.
- **15.26.1.** Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC с углом 45° при вершине C.
 - а) Докажите, что треугольник $A_1B_1C_1$ прямоугольный.
- б) Найдите отношение, в котором высота AA_1 делит отрезок B_1C_1 , если $BC = 2B_1C_1$.
- **15.26.2.** Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC, $AA_1 = BA_1$.
 - а) Докажите, что треугольник $A_1B_1C_1$ прямоугольный.
- б) Найдите отношение, в котором высота CC_1 делит отрезок A_1B_1 , если $\operatorname{tg} \angle ACB = 2$.
- **15.27.1.** Пусть AA_1 , BB_1 и CC_1 высоты треугольника ABC, O центр его описанной окружности.
 - а) Докажите, что $OA \perp B_1C_1$.
- б) Найдите площадь треугольника ABC, если $A_1B_1 = 21$, $A_1C_1 = 17$, $B_1C_1 = 10$.
- **15.27.2.** Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC.
 - а) Докажите, что $\angle AA_1B_1 = \angle AA_1C_1$.

- б) Известно, что $A_1B_1=26,\,B_1C_1=28,\,A_1C_1=30.$ Найдите площадь треугольника ABC.
- **15.28.1.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle BB_1C_1 = \angle BAH$.
- б) Найдите расстояние от центра описанной окружности треугольника *ABC* до стороны *BC*, если $B_1C_1 = 12$ и $\angle BAC = 60^\circ$.
- **15.28.2.** В остроугольном треугольнике *ABC* проведены высоты BB_1 и CC_1 . Прямые B_1C_1 и *BC* пересекаются в точке P.
 - а) Докажите, что треугольники PBC_1 и PB_1C подобны.
- б) Найдите расстояние от вершины A до точки пересечения высот треугольника ABC, если $BP = BB_1$, $\angle ABC = 80^\circ$, $BC = 2\sqrt{3}$, а точка B лежит между C и P.

- **1.** Около треугольника со сторонами 6, 8 и 10 описана окружность S. Найдите максимальный радиус окружности, касающейся меньшей стороны треугольника в её середине и окружности S.
- **2.** Дан треугольник со сторонами AB = BC = 17, AC = 30. Найдите общую хорду окружностей с диаметрами AB и AC.
- **3.** В выпуклом четырёхугольнике *ABCD* известно, что $\angle CBD = 58^{\circ}$, $\angle ABD = 44^{\circ}$, $\angle ADC = 78^{\circ}$. Найдите угол *CAD*.
- **4.** Окружность касается сторон AB и AD прямоугольника ABCD и пересекает сторону DC в единственной точке F, а сторону BC в единственной точке E. Найдите площадь трапеции AFCB, если AB = 32, AD = 40 и BE = 1.
- **5.** В треугольнике ABC проведены высоты AA_1 , BB_1 и CC_1 . Известно, что $\angle BAC=120^\circ$ и $AA_1=6$. Найдите высоту AP треугольника AB_1C_1 .
- **6.** Центр окружности, вписанной в четырёхугольник, лежит на его диагонали, равной 5. Известно, что периметр четырёхугольника равен 14, а площадь равна 12. Найдите вторую диагональ и стороны четырёхугольника.

- **1.** Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей стороне, равна 5. Найдите третью сторону и площадь треугольника.
- **2.** Окружности с центрами O_1 и O_2 касаются внешним образом. Кроме того, обе эти окружности касаются внутренним образом окружности радиуса R с центром O. Найдите периметр треугольника OO_1O_2 .
- **3.** Точки D и E расположены на стороне AC треугольника ABC. Прямые BD и BE разбивают медиану AM треугольника ABC на три равных отрезка. Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.
- **4.** Сторона AB правильного шестиугольника ABCDEF равна $\sqrt{3}$ и является хордой некоторой окружности, причём остальные стороны шестиугольника лежат вне этой окружности. Прямая, проходящая через вершину C, касается окружности в точке M. Известно, что CM = 3. Найдите диаметр окружности.
- **5.** Центр окружности радиуса 6, касающейся сторон AB, BC и CD равнобедренной трапеции ABCD, лежит на её большем основании AD. Основание BC равно 4. Найдите расстояние между точками, в которых окружность касается боковых сторон AB и CD этой трапеции.
- **6.** Углы при вершинах A и B треугольника ABC равны 75° и 45° соответственно, AA_1 и BB_1 высоты треугольника. Касательная в точке C к окружности, описанной около треугольника A_1B_1C , пересекается с прямой AA_1 в точке K. Известно, что CK = a. Найдите радиус окружности, описанной около треугольника ABC.

- **1.** Медиана и высота прямоугольного треугольника, проведённые из вершины прямого угла, равны 5 и 4. Найдите катеты.
- **2.** Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R соответственно.
- **3.** В треугольник ABC со сторонами AB=18 и BC=12 вписан параллелограмм BKLM, причём точки K, L и M лежат на сторонах AB, AC и BC соответственно. Известно, что площадь параллелограмма составляет $\frac{4}{9}$ площади треугольника ABC. Найдите стороны параллелограмма.
- **4.** Около прямоугольного треугольника ABC описана окружность. Расстояния от концов A и B гипотенузы AB до прямой, касающейся окружности в точке C, равны a и b соответственно. Найдите катеты AC и BC.
- **5.** В прямоугольном треугольнике ABC с прямым углом при вершине C сторона CA равна 4. На катете BC взята точка D, причём CD=1. Окружность радиуса $\frac{\sqrt{5}}{2}$ проходит через точки C и D и касается в точке C окружности, описанной около треугольника ABC. Найдите площадь треугольника ABC.
- **6.** На сторонах прямоугольного треугольника с катетами a и b построены квадраты, лежащие вне треугольника. Найдите площадь треугольника с вершинами в центрах квадратов.

- **1.** На сторонах AB, BC и AC треугольника ABC, площадь которого равна 75, расположены точки M, N и K соответственно. Известно, что M середина AB, площадь треугольника BMN равна 15, а площадь треугольника AMK равна 25. Найдите площадь треугольника CNK.
- **2.** Окружность S с центром в вершине прямого угла прямоугольного треугольника касается окружности, вписанной в этот треугольник. Найдите радиус окружности S, если известно, что катеты треугольника равны 5 и 12.
- **3.** Катеты прямоугольного треугольника равны 3 и 4. Найдите площадь треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника.
- **4.** Через середину боковой стороны равнобедренного треугольника со сторонами 12, 18, 18 проведена прямая, разбивающая треугольник на части, площади которых относятся как 1:2. Найдите длину отрезка этой прямой, заключённого внутри треугольника.
- **5.** Окружность с центром O, вписанная в треугольник ABC, касается его сторон AB и AC в точках M и N. Окружность с центром Q вписана в треугольник AMN. Найдите OQ, если AB = 13, BC = 15 и AC = 14.
- **6.** Биссектрисы внутренних углов треугольника продолжены до пересечения с описанной около треугольника окружностью. В результате попарного соединения этих точек получился новый треугольник. Известно, что углы исходного треугольника равны 30°, 60° и 90°, а его площадь равна 2. Найдите площадь нового треугольника.

- **1.** На катете *BC* прямоугольного треугольника *ABC* как на диаметре построена окружность, пересекающая гипотенузу *AB* в точке *D*, причём AD:BD=1:3. Высота, опущенная из вершины *C* прямого угла на гипотенузу, равна 3. Найдите катет *BC*.
- **2.** Диагональ равнобедренной трапеции делит её тупой угол пополам. Меньшее основание трапеции равно 3, периметр равен 42. Найдите площадь трапеции.
- **3.** Окружности радиусов r и R касаются внешним образом в точке K. Прямая касается этих окружностей в различных точках A и B. Найдите площадь треугольника AKB.
- **4.** Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.
- **5.** Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N также делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?
- **6.** Площадь ромба ABCD равна 2. В треугольник ABD вписана окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Известно, что площадь треугольника KLB равна $\frac{1}{3}$. Найдите косинус угла BAD.

- **1.** Найдите радиус окружности, касающейся двух концентрических (имеющих один и тот же центр) окружностей радиусов 3 и 5.
- **2.** Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a. Найдите среднюю линию трапеции.
- **3.** Точка D делит основание BC равнобедренного треугольника ABC на два отрезка, один из которых на 4 больше другого. Найдите расстояние между точками, в которых вписанные окружности треугольников ABD и ACD касаются отрезка AD.
- **4.** Диагонали AC и BD вписанного в окружность четырёхугольника ABCD пересекаются в точке Q под прямым углом. Прямые AB и CD пересекаются в точке P. Известно, что BC = 5, AD = 10, BQ = 3. Найдите AP.
- **5.** Прямая, параллельная стороне AB треугольника ABC, касается его вписанной окружности. Отрезок этой прямой, заключённый внутри треугольника, равен 2,4. Найдите сторону AB, если известно, что периметр треугольника ABC равен 20.
- **6.** Дан равнобедренный треугольник ABC с основанием AC. Окружность радиуса R с центром в точке O проходит через точки A и B и пересекает прямую BC в точке M, отличной от B и C. Найдите расстояние от точки O до центра окружности, описанной около треугольника ACM.

- **1.** Дан прямой угол с вершиной D. Окружность касается одной его стороны в точке E и пересекает вторую сторону в точках A и B (A лежит между B и D). В окружности проведён диаметр AC.
 - а) Докажите, что отрезок BC вдвое больше отрезка DE.
- б) Найдите расстояние от точки E до прямой AC, если AD=2 и AB=6.
- **2.** Окружность с диаметром AB пересекается с окружностью с центром B в точках M и N.
- а) Докажите, что если окружности равны, то диаметр первой из них, проходящий через точку N, делит пополам хорду AM.
- б) Пусть радиус первой окружности вдвое больше радиуса второй. В каком отношении диаметр первой окружности, проходящий через точку N, делит хорду AM?
- **3.** На сторонах AB и AC треугольника ABC отмечены точки C_1 и B_1 соответственно. Оказалось, что $BC_1 = CB_1 = BC$.
- а) Докажите, что точки $B,\,C$ и середины отрезков BB_1 и CC_1 лежат на одной окружности.
- б) Найдите косинус угла между прямыми BB_1 и CC_1 , если BC=3, AB=4, AC=5.
- **4.** На катете BC прямоугольного треугольника ABC с прямым углом при вершине C построен вне треугольника квадрат BCDE с центром O, CK биссектриса треугольника ABC.
 - а) Докажите, что прямая AO проходит через середину отрезка CK.
- б) Пусть прямая AO пересекает отрезок BC в точке N. Найдите площадь треугольника BKN, если AC = 30 и BC = 15.
- **5.** Дан треугольник *ABC* со сторонами AB = 3, AC = 5, BC = 7. На его стороне *BC* построен вне треугольника равносторонний треугольник *BCD*.
- а) Докажите, что около четырёхугольника ABDC можно описать окружность.
- б) Найдите расстояние от центра этой окружности до точки пересечения диагоналей четырёхугольника *ABDC*.
- **6.** Окружность, вписанная в треугольник ABC, касается сторон BC и AC в точках M и N соответственно, P и Q середины сторон AB и AC соответственно. Прямые MN и PQ пересекаются в точке D.
 - а) Докажите, что треугольник DQN равнобедренный.
 - б) Найдите площадь треугольника BPD, если AB = 12 и $\angle ABC = 30^{\circ}$.

- **1.** Точки M и N лежат на сторонах соответственно AC и AB треугольника ABC, причём AM:MC=1:2 и AN:NB=3:2.
 - а) Докажите, что прямая CN проходит через середину отрезка BM.
- б) Найдите расстояние от вершины A до точки пересечения прямых CN и BM, если AB = AC = 9, а CN биссектриса треугольника ABC.
- **2.** На катете *BC* прямоугольного треугольника *ABC* с прямым углом *C* и с углом 30° при вершине *A* вне треугольника построен ромб *BCDE* с углом 120° при вершине *E*. Прямая *AE* пересекает сторону *BC* в точке *K*.
 - а) Докажите, что CK : KB = 1 : 2.
- б) Прямая CD пересекает отрезок AB в точке M. Найдите отношение AM:MB.
- **3.** Дан остроугольный треугольник ABC. Биссектриса внутреннего угла при вершине B пересекает биссектрису внешнего угла при вершине C в точке M, а биссектриса внутреннего угла при вершине C пересекает биссектрису внешнего угла при вершине B в точке D.
 - а) Докажите, что $\angle BMN = \frac{1}{2} \angle ACB$.
 - б) Найдите BM, если AB = AC = 10, BC = 12.
- **4.** Вершины A, B и C ромба ABCD лежат на окружности, а вершина D на хорде AE. Луч CD пересекает окружность в точке F.
- а) Докажите, что D центр окружности, вписанной в треугольник BEF.
- б) Найдите AE, если радиус исходной окружности равен $41\frac{2}{3}$, а бо́льшая диагональ AC ромба равна 80.
- **5.** Окружность касается стороны AB прямоугольника ABCD в точке M, пересекает меньшую сторону AD в точках P и Q (P лежит между A и Q), касается стороны CD и пересекает отрезок CM в точке N, причём $MQ \perp CM$.
 - а) Докажите, что MN = MP.
 - б) Найдите отрезок BN, если AP = PQ = 1.
- **6.** а) Докажите, что диагональ правильного пятиугольника параллельна одной из его сторон.
- б) Что больше: 0,3 или косинус угла между диагональю *CE* правильного пятиугольника *ABCDE* и его стороной *AE*? (Ответ должен быть обоснован.)

- **1.** Окружности с центрами O_1 и O_2 внешним образом касаются друг друга, а внутренним образом окружности с центром O.
- а) Докажите, что периметр треугольника O_1OO_2 вдвое больше радиуса третьей окружности.
- б) Пусть A и B точки, в которых окружности с центрами O_1 и O_2 касаются окружности с центром O, а радиусы окружностей равны соответственно 1, 2 и 5. Найдите длину отрезка AB.
- **2.** В треугольнике ABC провели высоту BH. Из точки H на стороны AB и BC опустили перпендикуляры HK и HM.
 - а) Докажите, что треугольник МВК подобен треугольнику АВС.
- б) Найдите отношение, в котором отрезок MK делит площадь треугольника ABC, если BH=2, а радиус описанной окружности треугольника ABC равен 3.
- **3.** В трапеции ABCD точка E середина основания AD, точка K середина боковой стороны AB. Отрезки CE и DK пересекаются в точке O.
- а) Докажите, что четырёхугольник AKOE и треугольник COD равновелики.
- б) Найдите, какую часть от площади трапеции составляет площадь каждой из указанных фигур, если BC=3, AD=4.
- **4.** Две окружности вписаны в один угол, первая касается одной стороны угла в точке A, вторая касается другой стороны в точке B.
- а) Докажите, что на отрезке AB окружности высекают равные хорды.
- б) Найдите косинус угла, если одна из окружностей в 2 раза больше другой и треть отрезка *AB* находится вне данных окружностей.
- **5.** В выпуклом четырёхугольнике *ABCD* известно, что AB = 7, BC = 24, CD = 15, AD = 20 и AC = 25.
 - а) Докажите, что четырёхугольник АВСО вписанный.
 - б) Найдите косинус угла между его диагоналями.
- **6.** В треугольнике *ABC* проведена биссектриса *AM*. Прямая, проходящая через вершину *B* перпендикулярно *AM*, пересекает сторону *AC* в точке *N*; AB = 6, BC = 5, AC = 9.
 - а) Докажите, что биссектриса угла C делит отрезок MN пополам.
- б) Пусть P точка пересечения биссектрис треугольника ABC. Найдите отношение AP:PN.

- **1.** На гипотенузе KL равнобедренного прямоугольного треугольника KLM вне треугольника построен квадрат KLPQ. Прямая MP пересекает гипотенузу KL в точке N.
 - а) Докажите, что KN: NL = 2:1.
- б) Прямая, проходящая через точку N перпендикулярно MP, пересекает отрезок QK в точке R. Найдите KR, если QK = 1.
- **2.** Биссектриса угла *BAC* пересекает сторону *BC* треугольника *ABC* в точке K, а окружность, описанную около него, в точке M.
- а) Отрезок CK разбивает треугольник ACM на два треугольника. Докажите, что один из них подобен треугольнику ACM.
- б) Найдите радиус окружности, описанной около треугольника KMC, если известно, что AC = 4, BC = 5, AB = 6.
- **3.** Дан ромб ABCD с острым углом при вершине A. В точке B проведена касательная к окружности, описанной около треугольника ABD. Эта касательная пересекает сторону CD в точке K.
 - а) Докажите, что треугольник *BDK* равнобедренный.
- б) Найдите отношение площади треугольника *BDK* к площади ромба, если известно, что $\cos\angle BAD = \frac{3}{4}$.
- **4.** Окружность с центром O, вписанная в трапецию ABCD, касается меньшего основания BC в точке N, а боковой стороны AB в точке M.
 - а) Докажите, что $MN \parallel OA$.
- б) Найдите площадь треугольника *BOC*, если известно, что MA = 25, MB = 4 и CD = 52.
- **5.** К двум равным непересекающимся окружностям проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B. Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E.
- а) Докажите, что периметр треугольника *CDE* вдвое больше расстояния между центрами окружностей.
- б) Найдите DE, если известно, что радиусы окружностей равны 6, расстояние между их центрами равно 20, а AC = 8.
- **6.** Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.
- а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.

б) Найдите расстояние от вершины прямого угла трапеции до центра второй окружности, если известно, что точка касания первой окружности делит бо́льшую боковую сторону трапеции на отрезки, равные 2 и 8.

- **1.** Противоположные стороны AD и BC четырёхугольника ABCD параллельны. Через вершины B и D проведены параллельные прямые, пересекающие диагональ AC в точках M и N соответственно. Оказалось, что AM = MN = NC.
 - а) Докажите, что АВСО параллелограмм.
- б) Найдите отношение площади четырёхугольника BMDN к площади параллелограмма ABCD.
 - 2. В параллелограмм вписана окружность.
 - а) Докажите, что этот параллелограмм ромб.
- б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 4 и 1. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.
- **3.** Диагональ AC разбивает трапецию ABCD с основаниями AD > BC на два подобных треугольника.
 - а) Докажите, что $\angle ABC = \angle ACD$.
- б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что BC=32, AD=50 и $\cos \angle CAD=\frac{4}{5}$.
- **4.** Окружность с центром O, вписанная в треугольник ABC, касается его сторон AB, AC и BC в точках C_1 , B_1 и A_1 соответственно. Пусть Q точка пересечения этой окружности и биссектрисы угла A, лежащая внутри треугольника AB_1C_1 .
 - а) Докажите, что C_1Q биссектриса угла AC_1B_1 .
- б) Найдите расстояние от точки O до центра окружности, вписанной в треугольник AB_1C_1 , если BC = 15, AB = 13, AC = 14.
- **5.** Отрезок, соединяющий середины M и N оснований соответственно BC и AD трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.
 - а) Докажите, что трапеция АВСО равнобедренная.
- б) Известно, что радиус этих окружностей равен 2, а меньшее основание BC исходной трапеции равно 6. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.
- **6.** Пятиугольник ABCDE вписан в окружность. Из вершины A опущены перпендикуляры AF, AH, AP и AQ на прямые DE, BE, CD и BC соответственно.
 - а) Докажите, что $\angle FAH = \angle PAQ$.
 - б) Найдите AH, если AF = a, AP = b и AQ = c.

- **1.** В трапецию ABCD с основаниями AD > BC можно вписать окружность. Биссектрисы углов при вершинах B и C пересекают основание AD в точках M и N соответственно.
- а) Докажите, что четырёхугольник ABCN равновелик треугольнику ABM.
- б) Точка касания окружности, вписанной в трапецию ABCD, делит её основание BC в отношении 2:1, считая от вершины B, $\angle ABC = 90^\circ$. В каком отношении прямая CN делит площадь трапеции?
- **2.** На отрезке AB взята точка C. На отрезках AB и BC как на диаметрах построены окружности. Прямая, проходящая через точку A, касается меньшей окружности в точке K, а прямая, проходящая через точку C перпендикулярно AB, пересекает бо́льшую окружность в точке M.
 - а) Докажите, что AM = AK.
- б) Пусть луч AK пересекает большую окружность в точке P. Найдите BP, если AC=13 и BC=6.
- **3.** Диагональ BD параллелограмма ABCD перпендикулярна стороне AB, M середина стороны AD, прямые BM и CD пересекаются в точке K. В треугольники ABM и BCK вписаны окружности с центрами O_1 и O_2 соответственно.
 - а) Докажите, что $MO_1 \parallel BD$.
- б) Найдите площадь четырёхугольника BO_1MO_2 , если AB=6 и AD=10.
- **4.** Дана прямоугольная трапеция ABCD с основаниями BC и AD. Окружность с центром O, построенная на большей стороне CD как на диаметре, касается боковой стороны AB в точке P и второй раз пересекает основание AD в точке H.
 - а) Докажите, что $\angle CDP = \angle HCP$.
 - б) Найдите отношение AH:DH, если $\angle ADC = 60^{\circ}$.
- **5.** На стороне AB и диагонали AC квадрата ABCD отмечены точки M и N соответственно, причём AM:MB=1:4 и AN:NC=3:2.
 - а) Докажите, что точки A, M, N и D лежат на одной окружности.
- б) Найдите расстояние от точки пересечения диагоналей четырёхугольника *AMND* до прямой *MN*, если сторона квадрата равна 30.
- **6.** Четырёхугольник *ABCD* вписан в окружность, причём сторона *CD* диаметр этой окружности. Продолжение перпендикуляра *AH*

к диагонали BD пересекает сторону CD в точке E, а окружность — в точке F, причём H — середина AE.

- а) Докажите, что четырёхугольник ВСFE параллелограмм.
- б) Найдите площадь четырёхугольника ABCD, если известно, что AB=5 и AH=4.

Приложение 1. Избранные задачи тренировочных и экзаменационных работ

- **1.** Точка O центр окружности, описанной около остроугольного треугольника ABC. На продолжении отрезка AO за точку O отмечена точка K. Известно, что $\angle BAC + \angle AKC = 90^{\circ}$.
 - а) Докажите, что четырёхугольник ОВКС вписанный.
- б) Найдите радиус окружности, описанной около четырёхугольника OBKC, если известно также, что $\cos \angle BAC = \frac{3}{5}$ и BC = 48.

Решение. а) Обозначим $\angle BAC = \alpha$ (рис. 1). Тогда

$$\angle OKC = \angle AKC = 90^{\circ} - \alpha.$$

Поскольку BOC — центральный угол окружности, описанной около остроугольного треугольника ABC, а угол BAC вписанный, получаем, что $\angle BOC = 2\alpha$. Из равнобедренного треугольника BOC находим, что $\angle OBC = 90^{\circ} - \alpha$.

Из точек B и K, лежащих по одну сторону от прямой OC, отрезок OC виден под одним и тем же углом $90^{\circ} - \alpha$. Значит, точки O, B, K и C лежат на одной окружности. Следовательно, четырёхугольник OBKC вписанный.

Рис. 1

б) Поскольку $\cos \alpha = \frac{3}{5}$, получаем, что $\sin \alpha = \frac{4}{5}$, а так как OC — радиус окружности, описанной около треугольника ABC, по теореме синусов находим

$$OC = \frac{BC}{2\sin \angle BAC} = \frac{48}{2\sin \alpha} = \frac{24}{\frac{4}{5}} = 30.$$

Пусть R — искомый радиус описанной окружности четырёхугольника OBKC. Применяя теорему синусов к треугольнику OCK, находим, что

$$R = \frac{OC}{2\sin\angle OKC} = \frac{OC}{2\sin(90^\circ - \alpha)} = \frac{OC}{2\cos\alpha} = \frac{30}{2 \cdot \frac{3}{5}} = 25.$$

Ответ: 25.

- **2.** Около остроугольного треугольника *ABC* описана окружность с центром *O*. На продолжении отрезка *AO* за точку *O* отмечена точка *K* так, что $\angle BAC + \angle AKC = 90^{\circ}$.
 - а) Докажите, что $\angle OBK + \angle OCK = 180^{\circ}$.
- б) Найдите радиус окружности, описанной около четырёхугольника OBKC, если $\cos \angle BAC = \frac{5}{13}$, а BC = 120.

Ответ: 84,5.

- **3.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle AHB_1 = \angle ACB$.
 - б) Найдите BC, если AH = 21 и $\angle BAC = 30^{\circ}$.

Р е ш е н и е. а) Высоты треугольника пересекаются в одной точке, поэтому точка H лежит на высоте, проведённой из вершины A (рис. 2). Значит, $AH \perp CB$, а так как $HB_1 \perp CA$, получаем, что углы AHB_1 и ACB равны как острые углы с соответственно перпендикулярными сторонами.

Рис. 2

б) Из точек B_1 и C_1 отрезок AH виден под прямым углом, значит, эти точки лежат на окружности с диаметром AH. По теореме синусов

$$B_1C_1 = AH\sin \angle B_1AC_1 = 21\sin 30^\circ = \frac{21}{2}.$$

Треугольник AB_1C_1 подобен треугольнику ABC с коэффициентом $\cos\angle BAC=\cos 30^\circ=\frac{\sqrt{3}}{2}$. Следовательно,

$$BC = \frac{B_1 C_1}{\cos \angle BAC} = \frac{2B_1 C_1}{\sqrt{3}} = \frac{21}{\sqrt{3}} = 7\sqrt{3}.$$

Ответ: $7\sqrt{3}$.

- **4.** В остроугольном треугольнике ABC провели высоту BH. Из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.
 - а) Докажите, что треугольник МВК подобен треугольнику АВС.
- б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH=2, а радиус окружности, описанной около треугольника ABC, равен 4.

Ответ: 1:15.

- **5.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Точки A_2 , B_2 и C_2 середины отрезков MA, MB и MC соответственно.
- а) Докажите, что площадь шестиугольника $A_1B_2C_1A_2B_1C_2$ вдвое меньше площади треугольника ABC.
- б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 8 и AC = 10.

Р е ш е н и е. а) Обозначим $S_{\Delta ABC}=S$. Тогда площадь каждого из треугольников, на которые медианы разбивают треугольник ABC, равна $\frac{1}{6}S$. Заметим, что C_1A_2 — медиана треугольника AC_1M (рис. 3), поэтому

 $S_{\Delta A_2 MC_1} = \frac{1}{2} S_{\Delta AMC_1} = \frac{1}{2} \cdot \frac{1}{6} S_{\Delta ABC} = \frac{1}{12} S.$

Аналогично для остальных пяти треугольников, составляющих шестиугольник $A_1B_2C_1A_2B_1C_2$. Следовательно, площадь этого шестиугольника равна $6\cdot\frac{1}{12}S=\frac{1}{2}S$.

б) Обозначим BC = a, AC = b, AB = c. По формуле для квадрата медианы находим, что

$$AA_1^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2), \quad BB_1^2 = \frac{1}{4}(2a^2 + 2c^2 - b^2),$$

 $CC_1^2 = \frac{1}{4}(2a^2 + 2b^2 - c^2).$

Медианы треугольника делятся их точкой пересечения в отношении 2:1, считая от вершины, поэтому

$$AM = \frac{2}{3}AA_1$$
, $BM = \frac{2}{3}BB_1$, $CM = \frac{2}{3}CC_1$.

Рис. 3

Стороны A_2B_1 и A_1B_2 — средние линии треугольников AMC и BMC, поэтому $A_2B_1=A_1B_2=\frac{1}{2}CM$,

$$A_2B_1^2 = A_1B_2^2 = \frac{1}{4}CM^2 = \frac{1}{4} \cdot \frac{4}{9}CC_1 = \frac{1}{36}(2a^2 + 2b^2 - c^2).$$

Аналогично

$$C_2A_1^2 = C_1A_2^2 = \frac{1}{36}(2a^2 + 2c^2 - b^2), \quad B_2C_1^2 = B_1C_2^2 = \frac{1}{36}(2b^2 + 2c^2 - a^2).$$

Следовательно, сумма квадратов всех сторон шестиугольника равна

$$2A_{2}B_{1}^{2} + 2C_{2}A_{1}^{2} + 2B_{2}C_{1}^{2} =$$

$$= \frac{1}{18}(2a^{2} + 2b^{2} - c^{2} + 2a^{2} + 2c^{2} - b^{2} + 2b^{2} + 2c^{2} - a^{2}) =$$

$$= \frac{1}{18}(3a^{2} + 3b^{2} + 3c^{2}) = \frac{1}{6}(a^{2} + b^{2} + c^{2}) = \frac{1}{6}(64 + 100 + 16) = \frac{180}{6} = 30. \quad \triangleleft$$

$$Omsem: 30.$$

- **6.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Точки A_2 , B_2 и C_2 середины отрезков MA, MB и MC соответственно.
- а) Докажите, что площадь шестиугольника $A_1B_2C_1A_2B_1C_2$ вдвое меньше площади треугольника ABC.
- б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 7 и AC = 8.

Ответ: $\frac{43}{2}$.

7. Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Пря-

мая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

- а) Докажите, что прямые AD и BC параллельны.
- б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Р е ш е н и е. а) Обозначим центры окружностей O_1 и O_2 соответственно (рис. 4). Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых к окружности из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, прямоугольный. Вписанный угол AKD прямой, поэтому он опирается на диаметр AD. Значит, $AD \perp AB$. Аналогично $BC \perp AB$. Следовательно, прямые AD и BC параллельны.

Рис. 4

б) Пусть радиусы окружностей с центрами O_1 и O_2 равны 4 и 1 соответственно. Линия центров касающихся окружностей проходит через точку касания, поэтому

$$O_1O_2 = O_1K + KO_2 = 4 + 1 = 5.$$

Опустим перпендикуляр O_2H из центра второй окружности на диаметр AD первой. Из прямоугольного треугольника O_2HO_1 находим, что

$$O_2H = \sqrt{O_1O_2^2 - O_1H^2} = \sqrt{(1+4)^2 - (4-1)^2} = \sqrt{25-9} = 4,$$

а так как ABO_2H — прямоугольник, получаем, что $AB = O_2H = 4$. Тогда

$$S_{\triangle ABC} = \frac{1}{2}AB \cdot BC = \frac{1}{2} \cdot 4 \cdot 2 = 4.$$

Треугольники *AKD* и *BKC* подобны, поэтому $\frac{AK}{KC} = \frac{AD}{BC} = 4$. Значит, $\frac{AK}{AC} = \frac{4}{5}$. Следовательно,

$$S_{\Delta AKB} = \frac{AK}{AC} S_{\Delta ABC} = \frac{4}{5} \cdot 4 = 3,2.$$

Ответ: 3,2.

- **8.** Окружности с центрами O_1 и O_2 касаются внешним образом в точке C. К окружностям проведена общая внешняя касательная AB (A и B точки касания).
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Найдите радиусы окружностей, если известно, что AC = 10 и BC = 24.

Ответ: $\frac{65}{12}$, $\frac{156}{5}$.

- **9.** В выпуклом четырёхугольнике *ABCD* известно, что AB = 7, BC = 24, CD = 15, AD = 20 и AC = 25.
 - а) Докажите, что четырёхугольник АВСО вписанный.
 - б) Найдите косинус угла между его диагоналями.

Решение. а) Поскольку

$$AC^2 = 25^2 = 7^2 + 24^2 = AB^2 + BC^2$$
 и $AC^2 = 25^2 = 15^2 + 20^2 = CD^2 + AD^2$,

треугольники ABC и ACD прямоугольные с прямыми углами при вершинах B и D (рис. 5). Из точек B и D отрезок AC виден под прямым

Рис. 5

углом, значит, эти точки лежат на окружности с диаметром *AC*. Следовательно, четырёхугольник *ABCD* вписанный.

б) Обозначим $\angle CAD = \alpha$, $\angle ACB = \gamma$. Вписанные углы ADB и ACB опираются на одну и ту же дугу, поэтому $\angle ADB = \angle ACB = \gamma$. Из прямоугольных треугольников ACD и ABC находим, что

$$\cos \alpha = \frac{AD}{AC} = \frac{20}{25} = \frac{4}{5}, \quad \sin \alpha = \frac{3}{5}, \quad \cos \gamma = \frac{BC}{AC} = \frac{24}{25}, \quad \sin \gamma = \frac{7}{25}.$$

Пусть диагонали AC и BD четырёхугольника ABCD пересекаются в точке P. По теореме о внешнем угле треугольника

$$\angle CPD = \angle PAD + \angle ADP = \alpha + \gamma$$
,

следовательно,

$$\cos \angle CPD = \cos(\alpha + \gamma) = \cos\alpha\cos\gamma - \sin\alpha\sin\gamma = \frac{4}{5} \cdot \frac{24}{25} - \frac{3}{5} \cdot \frac{7}{25} = \frac{3}{5}. \ \, \triangleleft$$

Ответ: $\frac{3}{5}$.

- **10.** В выпуклом четырёхугольнике *ABCD* известно, что AB=2, BC=21, CD=18, AD=11 и $AC=\sqrt{445}$.
 - а) Докажите, что четырёхугольник АВСО вписанный.
 - б) Найдите угол между его диагоналями.

Ombem: $arccos \frac{39}{89}$.

- **11.** На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
 - а) Докажите, что точки A, B, K и E лежат на одной окружности.
 - б) Найдите радиус этой окружности, если AB = 12, CH = 5.

Р е ш е н и е. *Первый способ*. а) Предположим для определённости, что точка E лежит на катете BC, а точка K — на катете AC (рис. 6). Обозначим $\angle BAC = \alpha$. Тогда

$$\angle HKE = \angle HCE = \angle BAC = \alpha,$$

 $\angle AKE = \angle AKH + \angle HKE = 90^{\circ} + \alpha,$

а так как $\angle ABC = 90^{\circ} - \alpha$, получаем, что

$$\angle AKE + \angle ABE = \angle AKE + \angle ABC = 90^{\circ} + \alpha + 90^{\circ} - \alpha = 180^{\circ}.$$

Значит, четырёхугольник ABEK вписанный. Следовательно, точки A, B, K и E лежат на одной окружности, что и требовалось доказать.

б) Обозначим BC = a, AC = b, AB = c, CH = h. Тогда $\sin \alpha = \frac{a}{c}$.

Поскольку $\angle CEK = \angle CHK = \alpha$, прямоугольный треугольник *ECK* подобен прямоугольному треугольнику *ACB* по двум углам. Поэтому

Рис. 6

 $\frac{CK}{BC} = \frac{KE}{AB}$, а так как CKHE — прямоугольник, имеем KE = CH, значит,

$$CK = \frac{KE \cdot BC}{AB} = \frac{CH \cdot BC}{AB} = \frac{ah}{c},$$

$$BK = \sqrt{CK^2 + BC^2} = \sqrt{\frac{a^2h^2}{c^2} + a^2} = \frac{a\sqrt{h^2 + c^2}}{c}.$$

Пусть R — радиус окружности, описанной около четырёхугольника ABEK. По теореме синусов из треугольника ABK находим, что

$$R = \frac{BK}{2\sin \angle BAK} = \frac{\frac{a\sqrt{h^2 + c^2}}{c}}{2\cdot \frac{a}{c}} = \frac{\sqrt{h^2 + c^2}}{2} = \frac{\sqrt{5^2 + 12^2}}{2} = \frac{13}{2}.$$

Второй способ. б) Пусть P, Q и M— середины сторон соответственно AK, BE и AB четырёхугольника ABEK (рис. 7). Центр O

Рис. 7

окружности радиуса R, описанной около четырёхугольника ABEK, есть точка пересечения серединных перпендикуляров к сторонам AK, BE и AB этого четырёхугольника.

Пусть L и N — точки пересечения отрезков OP и OQ с гипотенузой AB. Тогда PL и QN — средние линии треугольников AKH и BEH, значит, L и N — середины отрезков AH и BH. Поэтому

$$LN = LH + HN = \frac{1}{2}AH + \frac{1}{2}BH = \frac{1}{2}AB = 6.$$

Следовательно, прямоугольный треугольник *NLO* подобен прямоугольному треугольнику *ABC* с коэффициентом $\frac{1}{2}$. Тогда высота *OM* треугольника *NLO* вдвое меньше высоты *CH* треугольника *ABC*, т. е. $OM = \frac{5}{2}$.

Из прямоугольного треугольника АОМ находим, что

$$R = \sqrt{AM^2 + OM^2} = \sqrt{36 + \frac{25}{4}} = \frac{13}{2}.$$

Ответ: $\frac{13}{2}$.

- **12.** На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
 - а) Докажите, что точки А, В, К и Е лежат на одной окружности.
 - б) Найдите радиус этой окружности, если AB = 24, CH = 7. *Ответ*: $\frac{25}{2}$.
- **13.** На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.
- а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.
- б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60°.

Р е ш е н и е. Первый способ. а) Возьмём на диагонали AC параллелограмма ABCD точку O, отличную от середины AC, и проведём через неё перпендикуляры NL и KM к сторонам параллелограмма (рис. 8). Прямоугольные треугольники CKO и AMO подобны. Точно так же подобны треугольники CNO и ALO. Имеем OK:OM=OC:OA=ON:OL. Отсюда следует подобие треугольников ONK и OLM. Тогда накрест лежащие углы OML и OKN равны, а поэтому прямые NK и ML параллельны. Следовательно, четырёхугольник KLMN — параллелограмм или трапеция.

Рис. 8

Докажем, что это трапеция. Если KLMN — параллелограмм, то ON = OL. В этом случае OC = OA, т. е. O — середина AC. Противоречие. Значит, KLMN — трапеция.

б) Пусть площадь параллелограмма равна S, а его острый угол равен α . Угол между диагоналями NL и KM трапеции KLMN равен углу между перпендикулярными диагоналям прямыми BC и CD, т. е. этот угол равен α . Поэтому площадь трапеции равна

$$\frac{1}{2}NL \cdot KM \sin \alpha = \frac{1}{2} \cdot \frac{S}{AB} \cdot \frac{S}{AD} \sin \alpha = \frac{S \cdot AD \cdot AB \sin^2 \alpha}{2AD \cdot AB} = \frac{S \sin^2 \alpha}{2}.$$

Подставляя $\alpha = 60^{\circ}$ и S = 16, получаем, что площадь трапеции равна

$$\frac{16\sin^2 60^{\circ}}{2} = \frac{16 \cdot 3}{8} = 6.$$

Второй способ. а) Из точек M и L отрезок AO виден под прямым углом (рис. 9), значит, эти точки лежат на окружности с диаметром OA. Вписанные в эту окружность углы LMO и LAO опираются на одну и ту же дугу, поэтому $\angle LMO = \angle LAO$.

Рис. 9

Аналогично докажем, что $\angle NCO = \angle NKO$, а так как $\angle NCO = \angle LAO$, получаем, что $\angle NKO = \angle LMO$. Следовательно, $NK \parallel ML$.

Если KLMN — параллелограмм, то ON = OL и OC = OA, значит, O — середина AC. Противоречие. Следовательно, KLMN — трапеция.

Ответ: 6.

- **14.** Из точки M, лежащей на диагонали параллелограмма ABCD, опустили перпендикуляры MK, MP, ML и MQ на стороны AB, BC, CD и AD (или их продолжения) соответственно.
 - а) Докажите, что треугольники *КМР* и *LMQ* равновелики.
- б) Найдите площадь параллелограмма, если один из его углов равен 30° , а площадь четырёхугольника *KPLQ* равна 5.

Ответ: 40.

- **15.** К двум равным непересекающимся окружностям проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B. Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE другой.
- а) Докажите, что периметр треугольника *CDE* вдвое больше расстояния между центрами окружностей.
- б) Найдите DE, если известно, что радиусы окружностей равны 6, расстояние между их центрами равно 20, а AC = 8.

Р е ш е н и е. а) Пусть O_1 и O_2 — центры окружностей радиуса R; касательная, проведённая из точки C к окружности с центром O_1 , и луч CO_1 пересекают вторую прямую в точках D и D_1 соответственно

Рис. 10

(рис. 10); касательная, проведённая из точки C к окружности с центром O_2 , и луч CO_2 пересекают вторую прямую в точках E и E_1 соответственно.

Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому $\angle DCD_1 = \angle ACD_1 = \angle CD_1D$, треугольник CDD_1 равнобедренный, $CD = DD_1$. Аналогично $CE = EE_1$. Следовательно, периметр P треугольника CDE равен сумме длин отрезков DD_1 , DE и EE_1 , $T. e. <math>P = D_1E_1$.

Кроме того, биссектриса DO_1 равнобедренного треугольника CDD_1 является его медианой, значит, O_1 — середина CD_1 . Аналогично O_2 — середина CE_1 , значит, O_1O_2 — средняя линия треугольника CD_1E_1 . Следовательно, $P=D_1E_1=2OO_1$, что и требовалось доказать.

б) Пусть окружность с центром O_1 касается отрезка CD в точке K, а прямой DE — в точке M; окружность с центром O_2 касается отрезка CE в точке L, а прямой DE — в точке N. Тогда O_1K — высота прямоугольного треугольника CO_1D , проведённая из вершины прямого угла, поэтому

$$DM = DK = \frac{O_1 K^2}{CK} = \frac{R^2}{AC} = \frac{36}{8} = \frac{9}{2},$$

а так как

$$CL = CB = AB - AC = 20 - 8 = 12$$
,

аналогично получаем $EN = EL = \frac{36}{12} = 3$. Поскольку ABNM — прямоугольник, MN = AB = 20, следовательно,

$$DE = MN - DM - EN = AB - DM - EN = 20 - \frac{9}{2} - 3 = \frac{25}{2}.$$

Ответ: 12,5.

- **16.** К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B. Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE другой.
- а) Докажите, что периметр треугольника *CDE* вдвое больше расстояния между центрами окружностей.
- б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC = 8.

Ответ: 12,375.

- **17.** В треугольнике *ABC* проведена биссектриса *AM*. Прямая, проходящая через вершину *B* перпендикулярно *AM*, пересекает сторону *AC* в точке N; AB = 6, BC = 5, AC = 9.
 - а) Докажите, что биссектриса угла C делит отрезок MN пополам.
- б) Пусть P точка пересечения биссектрис треугольника ABC. Найдите отношение AP:PN.

Решение. а) По теореме о биссектрисе треугольника

$$\frac{BM}{MC} = \frac{AB}{AC} = \frac{6}{9} = \frac{2}{3},$$

а так как BC = 5, получаем, что BM = 2 и CM = 3 (рис. 11).

В треугольнике BAN биссектриса угла BAN перпендикулярна стороне BN, значит, этот треугольник равнобедренный. Поэтому AN = AB = 6, а

$$CN = AC - AN = 9 - 6 = 3 = CM$$
.

В равнобедренном треугольнике CMN биссектриса, проведённая из вершины C, является медианой, следовательно, она делит основание MN пополам.

б) СР — биссектриса треугольника АСМ, поэтому

$$\frac{AP}{PM} = \frac{AC}{CM} = \frac{9}{3} = 3.$$

Прямая CP — серединный перпендикуляр к отрезку MN, поэтому PN = PM. Следовательно,

$$\frac{AP}{PN} = \frac{AP}{PM} = 3.$$

Ответ: 3.

- **18.** Биссектриса угла A треугольника ABC пересекает сторону BC в точке K, а окружность, описанную около треугольника ABC, в точке M.
 - а) Докажите, что треугольник ВМС равнобедренный.
- б) Найдите радиус окружности, описанной около треугольника KMC, если известно, что AC = 4, BC = 5, AB = 6.

Р е ш е н и е. а) Вписанные углы BAM и BCM опираются на одну и ту же дугу, поэтому $\angle BCM = \angle BAM$ (рис. 12). Аналогично $\angle CBM = \angle CAM$, а так как $\angle BAM = \angle CAM$, получаем, что $\angle BCM = \angle CBM$. Следовательно, треугольник BCM равнобедренный.

б) По теореме о биссектрисе треугольника

$$\frac{BK}{CK} = \frac{AB}{AC} = \frac{6}{4} = \frac{3}{2},$$

а так как BK + CK = BC = 5, получаем, что BK = 3 и CK = 2.

Обозначим $\angle ABC = \beta$. Вписанные углы *AMC* и *ABC* опираются на одну и ту же дугу, поэтому

$$\angle KMC = \angle AMC = \angle ABC = \beta$$
.

Рис. 12

Рис. 11

По теореме косинусов

$$\cos \beta = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{36 + 25 - 16}{2 \cdot 6 \cdot 5} = \frac{3}{4}.$$

Значит, $\sin \beta = \frac{\sqrt{7}}{4}$.

Пусть R — радиус окружности, описанной около треугольника KMC. По теореме синусов

$$R = \frac{CK}{2\sin\angle KMC} = \frac{2}{2\sin\beta} = \frac{4}{\sqrt{7}}.$$

Ответ: $\frac{4}{\sqrt{7}}$.

- **19.** Биссектриса угла A треугольника ABC пересекает сторону BC в точке K, а окружность, описанную около треугольника ABC, в точке M.
 - а) Докажите, что треугольник ВМС равнобедренный.
- б) Найдите радиус окружности, описанной около треугольника KMC, если известно, что AC=10, BC=11 и AB=12.

Ответ:
$$\frac{20\sqrt{39}}{39}$$
.

- **20.** Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M.
 - а) Докажите, что $KM \parallel BC$.
- б) Пусть L точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.

Р е ш е н и е. а) Пусть O — центр большей окружности. Линия центров касающихся окружностей проходит через точку касания, поэтому OA — диаметр меньшей окружности (рис. 13).

Пусть хорды AB и AC пересекают меньшую окружность в точках K и M соответственно. Точка K лежит на окружности с диаметром OA, значит, $\angle AKO = 90^\circ$, а так как перпендикуляр, опущенный из центра окружности на хорду, делит её пополам, то K — середина AB. Аналогично M — середина AC, поэтому KM — средняя линия треугольника ABC. Следовательно, $KM \parallel BC$.

Рис. 13

б) Опустим перпендикуляр OH на хорду BC. Тогда H — середина BC. Из прямоугольного треугольника OHB находим, что

$$OH = \sqrt{OB^2 - BH^2} = \sqrt{100 - 64} = 6.$$

Пусть Q — центр меньшей окружности. Тогда $QP \parallel OH$. Опустим перпендикуляр QF из центра меньшей окружности на OH. Тогда

$$OF = OH - FH = OH - QP = 6 - 5 = 1,$$

 $PH^2 = QF^2 = QO^2 - OF^2 = 25 - 1 = 24,$
 $OP^2 = OH^2 + PH^2 = 36 + 24 = 60,$

а так как $\angle APO = 90^{\circ}$, то из прямоугольного треугольника APO находим, что

$$AP = \sqrt{OA^2 - OP^2} = \sqrt{100 - 60} = 2\sqrt{10}.$$

Отрезок KM — средняя линия треугольника ABC, поэтому L — середина AP. Следовательно,

$$AL = \frac{1}{2}AP = \sqrt{10}.$$

Ответ: $\sqrt{10}$.

- **21.** Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L.
 - а) Докажите, что CN : CM = LB : LA.
- б) Найдите MN, если LB: LA = 2: 3, а радиус малой окружности равен $\sqrt{23}$.

Ответ: $\frac{115}{6}$.

- **22.** Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D.
 - а) Докажите, что $AD \parallel MC$.
 - б) Найдите площадь треугольника DBC, если AK = 3 и MK = 12.

Р е ш е н и е. а) Точки M и D лежат на окружностях с диаметрами BC и AB соответственно, поэтому $\angle BMC = \angle BDA = 90^\circ$. Прямые AD и MC перпендикулярны одной и той же прямой MD, следовательно, $AD \parallel MC$ (рис. 14).

Рис. 14

б) Пусть O — центр окружности с диаметром BC. Тогда $OM \perp AM$, а так как $BK \perp AM$, то $OM \parallel BK$. Обозначим BK = x. Треугольник AMO подобен треугольнику AKB с коэффициентом 5, поэтому OB = OM = 5x.

Опустим перпендикуляр BP из точки B на прямую OM. Так как четырёхугольник BKMP — прямоугольник, то

$$BP = KM = 12$$
, $OP = OM - MP = OM - BK = 5x - x = 4x$.

По теореме Пифагора $OB^2 = BP^2 + OP^2$, или $25x^2 = 144 + 16x^2$. Отсюда находим x = 4.

Поскольку $AD \parallel MC$, то

$$S_{\Delta DBC} = S_{\Delta MDC} - S_{\Delta MBC} = S_{\Delta MAC} - S_{\Delta MBC} = S_{\Delta ABM}.$$

Значит, треугольники DBC и ABM равновелики. Следовательно,

$$S_{\Delta DBC} = S_{\Delta ABM} = \frac{1}{2}AM \cdot BK = \frac{1}{2} \cdot 15x = \frac{1}{2} \cdot 15 \cdot 4 = 30.$$

Ответ: 30.

- **23.** На отрезке AC взята точка B. Построены две окружности: ω_1 с диаметром AB и ω_2 с диаметром BC. Прямая, проходящая через точку A, касается окружности ω_2 в точке M и пересекает ω_1 в точке K, отличной от A. D точка пересечения прямой MB и окружности ω_1 , отличная от B.
 - а) Докажите, что $CM \parallel AD$.
 - б) Найдите площадь треугольника *DBC*, если AK = 5 и KM = 25.

Oтвет: $\frac{375}{\sqrt{11}}$.

- **24.** Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
- а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD пересекаются на стороне AD.
- б) Пусть N точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что MB:MC=1:3, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 18.

Р е ш е н и е. а) Пусть K — середина отрезка AM. Треугольник AMB равнобедренный, поэтому отрезок BK является в нём медианой, биссектрисой и высотой (рис. 15). Поскольку прямые DM и AM перпендикулярны, прямая KB содержит среднюю линию треугольника AMD, то есть проходит через середину стороны AD. Аналогично

биссектриса угла MCD тоже проходит через середину стороны AD. Следовательно, биссектрисы углов B и C четырёхугольника ABCD пересекаются на стороне AD.

Рис. 15

б) Пусть прямые AM и BN пересекаются в точке K, а прямые DM и CN — в точке L. Тогда четырёхугольник KMLN — прямоугольник. Площадь треугольника AMB равна

$$S_{\Delta ABM} = BK \cdot KM = \frac{BM}{CM} \cdot NK \cdot KM = \frac{1}{3}S_{KMLN} = 6.$$

Аналогично $S_{\Delta DCM} = 54$. Площадь треугольника DMA равна

$$S_{\Delta DMA} = \frac{1}{2}AM \cdot DM = 2KM \cdot LM = 2S_{KMLN} = 36.$$

Тогда

$$S_{ABCD} = S_{\Delta DMA} + S_{\Delta AMB} + S_{\Delta DMC} = 36 + 6 + 54 = 96.$$

Ответ: 96.

- **25.** Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C вершины равнобедренных треугольников с основаниями AM и DM соответственно, а $MA \perp MD$.
- а) Докажите, что четырёхугольник ABCD трапеция или параллелограмм.
- б) Найдите площадь треугольника AMD, если BM:MC=1:2, а площадь четырёхугольника ABCD равна 36.

Ответ: 16.

- **26.** Диагонали *AC* и *BD* четырёхугольника *ABCD*, вписанного в окружность, пересекаются в точке *P*, причём BC = CD.
 - а) Докажите, что AB:BC=AP:PD.

б) Найдите площадь треугольника COD, где O — центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 5, а BC = 5 $\sqrt{2}$.

Р е ш е н и е. а) Вписанные углы *BAC* и *DAC* опираются на равные хорды, поэтому они равны (рис. 16). Вписанные углы *ADB* и *ACB* опираются на одну и ту же дугу, поэтому $\angle ADP = \angle ADB = \angle ACB$. Значит, треугольники *ADP* и *ACB* подобны по двум углам. Следовательно, AB:BC=AP:PD.

б) Точки A и C лежат на окружности с диаметром BD, значит, треугольники ABD и BCD прямоугольные (рис. 17). Кроме того, по условию треугольник BCD равнобедренный, поэтому $BD = BC\sqrt{2} = 10$. Катет AB прямоугольного треугольника ABD равен половине гипотенузы BD, поэтому $\angle ADB = 30^\circ$, $\angle ABD = 60^\circ$. Центр окружности, вписанной в треугольник, — точка пересечения его биссектрис, поэтому точка O лежит на биссектрисе AC угла BAD и на биссектрисе угла ADB. Тогда

 $\angle ACD = \angle ABD = 60^\circ$, $\angle ODC = \angle ODB + \angle BDC = 15^\circ + 45^\circ = 60^\circ$. Значит, треугольник COD равносторонний, причём $CD = BC = 5\sqrt{2}$.

Ответ: $\frac{25\sqrt{3}}{2}$.

- **27.** Диагонали *AC* и *BD* четырёхугольника *ABCD*, вписанного в окружность, пересекаются в точке P, причём BC = CD.
 - а) Докажите, что AB : BC = AP : PD.

б) Пусть BD — диаметр окружности, N — её центр, $AB = \frac{1}{2}BD$, а O — центр окружности, вписанной в треугольник ABD. Найдите отношение площадей треугольников ADN и COD.

Ответ: 1:2.

- **28.** Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.
 - а) Докажите, что прямые MN и BO параллельны.
- б) Найдите площадь четырёхугольника BOMN, если CN=4 и AM:MC=1:3.

Р е ш е н и е. а) Поскольку прямые AC и BC перпендикулярны, прямая BC — касательная к окружности (рис. 18). По свойству касательных, проведённых к окружности из одной точки, прямая BO перпендикулярна прямой CN. Точка N лежит на окружности с диаметром CM, поэтому $\angle CNM = 90^\circ$. Прямые BO и MN перпендикулярны одной и той же прямой CN, следовательно, они параллельны.

б) Пусть AM = 2x, MC = 6x. Тогда OC = 3x, OA = 5x, AC = 8x. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому BO — биссектриса треугольника ABC. По свойству биссектрисы

$$\frac{BC}{AB} = \frac{OC}{OA} = \frac{3x}{5x} = \frac{3}{5}.$$

Пусть AB = 5a, BC = 3a. Тогда по теореме Пифагора

$$AC = \sqrt{25a^2 - 9a^2} = 4a$$

поэтому a = 2x. Следовательно, BC = 6x.

Рис. 18

Пусть отрезки BO и CN пересекаются в точке P. Тогда P — середина CN, а OP — средняя линия треугольника CNM. Поскольку $\angle CMN = \angle COB$, прямоугольные треугольники CNM и COB подобны, поэтому

$$MN = \frac{CN \cdot CO}{BC} = \frac{4 \cdot 3x}{6x} = 2$$
, $OP = \frac{1}{2}MN = 1$.

Из прямоугольного треугольника BNO находим, что

$$BP = \frac{NP^2}{OP} = \frac{4}{1} = 4$$
, $BO = BP + OP = 4 + 1 = 5$.

По формуле площади трапеции

$$S_{BOMN} = \frac{BO + MN}{2} \cdot NP = \frac{5+2}{2} \cdot 2 = 7.$$

Ответ: 7.

- **29.** Дана равнобедренная трапеция ABCD с основаниями BC < AD. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD в точке P и второй раз пересекает основание AD в точке H, точка Q середина CD.
 - а) Докажите, что четырёхугольник DQOH параллелограмм.
 - б) Найдите AD, если $\angle BAD = 75^{\circ}$ и BC = 1. *Ответ*: 3.
- **30.** В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая боковых сторон, меньшего основания BC и первой окружности.
- а) Прямая, проходящая через центры окружностей, пересекает основание AD в точке P. Докажите, что $\frac{AP}{PD}=\sin D$.
- б) Найдите площадь трапеции, если радиусы окружностей равны $\frac{4}{3}$ и $\frac{1}{3}$.

Р е ш е н и е. а) Пусть продолжения боковых сторон трапеции пересекаются в точке Q. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому точка Q, центры данных окружностей и точка P лежат на одной прямой, причём QP — биссектриса прямоугольного треугольника AQD (рис. 19). Следовательно, по свойству биссектрисы треугольника

$$\frac{AP}{PD} = \frac{QA}{OD} = \sin D.$$

б) Пусть окружность с центром O_1 радиуса $R = \frac{4}{3}$ касается боковой стороны AB в точке E, а основания AD — в точке M; окружность ра-

Рис. 19

диуса $r = \frac{1}{3}$ с центром O_2 касается боковой стороны AB в точке F, а основания BC — в точке N.

Опустим перпендикуляр O_2H из центра меньшей окружности на радиус большей, проведённый в точку E. Тогда

$$O_1H = O_1E - HE = O_1E - O_2F = R - r = \frac{4}{3} - \frac{1}{3} = 1,$$

а так как линия центров касающихся окружностей проходит через их точку касания, то

$$O_1O_2 = R + r = \frac{4}{3} + \frac{1}{3} = \frac{5}{3}.$$

Значит,

$$EF = O_2H = \sqrt{O_1O_2^2 - O_1H^2} = \sqrt{\frac{25}{9} - 1} = \frac{4}{3}.$$

Обозначим $\angle AQP = \angle HO_2O_1 = \alpha$. Тогда

$$tg \alpha = \frac{O_1 H}{O_2 H} = \frac{3}{4},$$

 $\angle BQC = 2\alpha$, $\angle BCD = 90^{\circ} + 2\alpha$, $\angle O_2CN = \frac{1}{2} \angle BCD = 45^{\circ} + \alpha$.

Из прямоугольного треугольника O_2CN находим, что

$$NC = O_2 N \operatorname{ctg}(45^\circ + \alpha) = O_2 N \operatorname{tg}(45^\circ - \alpha) = \frac{1}{3} \cdot \frac{1 - \operatorname{tg} \alpha}{1 + \operatorname{tg} \alpha} = \frac{1}{3} \cdot \frac{1 - \frac{2}{4}}{1 + \frac{2}{4}} = \frac{1}{21}.$$

Следовательно,

$$BC = BN + NC = \frac{1}{3} + \frac{1}{21} = \frac{8}{21}.$$

Аналогично

$$\angle O_1 DM = 45^\circ - \alpha$$

$$MD = O_1 M \operatorname{ctg}(45^{\circ} - \alpha) = O_1 M \operatorname{tg}(45^{\circ} + \alpha) = \frac{4}{3} \cdot \frac{1 + \operatorname{tg} \alpha}{1 - \operatorname{tg} \alpha} = \frac{4}{3} \cdot \frac{1 + \frac{3}{4}}{1 - \frac{3}{4}} = \frac{28}{3},$$
$$AD = AM + MD = \frac{4}{3} + \frac{28}{3} = \frac{32}{3},$$

а так как

$$AB = AE + EF + FB = R + O_2H + r = \frac{4}{3} + \frac{4}{3} + \frac{1}{3} = 3,$$

то

$$S_{ABCD} = \frac{1}{2}(AD + BC) \cdot AB = \frac{1}{2}\left(\frac{32}{3} + \frac{8}{21}\right) \cdot 3 = \frac{116}{7}.$$

Ответ: $\frac{116}{7}$.

- **31.** В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая боковых сторон, меньшего основания BC и первой окружности.
- а) Докажите, что точка касания окружностей равноудалена от прямых AB и CD.
- б) Найдите меньшее основание трапеции, если AD=28, а радиус большей окружности равен $\frac{7}{2}$.

Ответ: 1.

- **32.** Точка O центр окружности, описанной около остроугольного треугольника ABC, I центр вписанной в него окружности, H точка пересечения высот. Известно, что $\angle BAC = \angle OBC + \angle OCB$.
- а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.
 - б) Найдите угол при вершине I треугольника OIH, если $\angle ABC = 55^{\circ}$.

Решение. а) Обозначим $\angle A = \alpha$. Тогда

$$\angle BOC = 2\alpha$$
, $\angle OBC + \angle OCB = \alpha$,

а так как сумма углов треугольника *BOC* равна 180° , то $2\alpha + \alpha = 180^{\circ}$, откуда $\alpha = 60^{\circ}$, $\angle BOC = 120^{\circ}$ (рис. 20).

Точка I — центр вписанной окружности треугольника ABC, поэтому BI и CI — биссектрисы его углов. Значит,

$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + 30^{\circ} = 120^{\circ},$$

Рис. 20

а так как H — точка пересечения высот треугольника ABC, то

$$\angle BHC = 180^{\circ} - \angle A = 180^{\circ} - 60^{\circ} = 120^{\circ}.$$

Таким образом, из точек O, I и H сторона BC видна под одним и тем же углом 120° и все эти точки находятся по одну сторону от прямой BC, следовательно, точки B, C, O, I и H лежат на одной окружности — окружности, описанной около треугольника BOC.

б) Пусть BB_1 — высота треугольника ABC. Тогда

$$\angle ABH = \angle ABB_1 = 90^{\circ} - \angle BAB_1 = 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

Углы при основании BC равнобедренного треугольника BOC равны по 30° , поэтому

$$\angle ABO = \angle ABC - \angle OBC = 55^{\circ} - 30^{\circ} = 25^{\circ}.$$

Следовательно,

$$\angle OBH = \angle ABH - \angle ABO = 30^{\circ} - 25^{\circ} = 5^{\circ}$$

а так как четырёхугольник ВОІН вписанный, то

$$\angle OIH = 180^{\circ} - \angle OBH = 180^{\circ} - 5^{\circ} = 175^{\circ}.$$

Ответ: 175°.

33. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр его вписанной окружности, H — точка пересечения высот. Известно, что $\angle A = \angle OBC + \angle OCB$.

- а) Докажите, что точки I и H лежат на окружности, описанной около треугольника BOC.
 - б) Найдите углы треугольника OIH, если $\angle ABC = 75^{\circ}$.

Ответ: 165°, 7,5°, 7,5°.

- **34.** В трапеции ABCD боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH. Перпендикуляр, восставленный к той же стороне в точке C, пересекает сторону AB в точке E.
 - а) Докажите, что $BH \parallel ED$.
 - б) Найдите отношение BH : ED, если $\angle ADC = 60^{\circ}$.

Р е ш е н и е. а) Из точек B и H отрезок AC виден под прямым углом, значит, эти точки лежат на окружности с диаметром AC. Вписанные в эту окружность углы BHC и BAC опираются на одну и ту же дугу, поэтому $\angle BHC = \angle BAC$ (рис. 21).

Из точек A и C отрезок DE виден под прямым углом, значит, эти точки лежат на окружности с диаметром DE. Вписанные в эту окружность углы CAE и CDE опираются на одну и ту же дугу, поэтому $\angle BAC = \angle CAE = \angle CDE$. Значит, $\angle BHC = \angle CDE$.

Соответственные углы BHC и EDC при прямых BH, ED и секущей CD равны, следовательно, эти прямые параллельны.

Рис. 21

Рис. 22

6) Пусть прямые *AB* и *CD* пересекаются в точке *P* (рис. 22). Тогда $/PEC = /BCP = /ADC = 60^{\circ}$.

Обозначим BC = a. Тогда

$$PB = BC \operatorname{tg} 60^{\circ} = a\sqrt{3}, \quad BE = BC \operatorname{ctg} 60^{\circ} = \frac{a}{\sqrt{3}}.$$

Значит,

$$PE = PB + BE = a\sqrt{3} + \frac{a}{\sqrt{3}} = \frac{4a\sqrt{3}}{3}.$$

Треугольник PBH подобен треугольнику PED, следовательно,

$$\frac{BH}{ED} = \frac{PB}{PE} = \frac{a\sqrt{3}}{\frac{4a\sqrt{3}}{3}} = \frac{3}{4} = 0.75.$$

Ответ: 0,75.

- **35.** В трапеции ABCD боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH. Перпендикуляр, восставленный к той же стороне в точке C, пересекает сторону AB в точке E.
 - а) Докажите, что $BH \parallel ED$.
 - б) Найдите отношение BH:ED, если $\angle BCD = 135^{\circ}$.

Ответ: 0,5.

- **36.** В трапеции ABCD точка E середина основания AD, точка M середина боковой стороны AB. Отрезки CE и DM пересекаются в точке O.
- а) Докажите, что площади четырёхугольника AMOE и треугольника COD равны.
- б) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника AMOE, если BC = 3, AD = 4.

Р е ш е н и е. а) Пусть высота трапеции равна h. Тогда высота треугольника AMD равна $\frac{h}{2}$ (рис. 23). Значит,

$$\begin{split} S_{\Delta CED} &= \frac{1}{2}DE \cdot h = \frac{1}{4}AD \cdot h, \\ S_{\Delta AMD} &= \frac{1}{2}AD \cdot \frac{h}{2} = \frac{1}{4}AD \cdot h. \end{split}$$

Рис. 23

Следовательно, треугольники CED и AMD равновелики, а так как треугольник DOE — их общая часть, то четырёхугольник AMOE и треугольник COD также равновелики.

б) Пусть прямые DM и BC пересекаются в точке K (рис. 24). Треугольники BMK и AMD равны по стороне и двум прилежащим к ней углам, поэтому

$$BK = AD = 4$$
, $CK = BC + BK = 3 + 4 = 7$.

Треугольник COK подобен треугольнику EOD, поэтому $\frac{CO}{OE} = \frac{CK}{DE} = \frac{7}{2}$.

Рис. 24

Пусть площадь трапеции равна S. Тогда

$$S = \frac{AD + BC}{2} \cdot h = \frac{7}{2}h, \quad S_{\Delta CED} = \frac{1}{2}DE \cdot h = h,$$

значит, $S_{\Delta CED}=rac{2}{7}S$, а так как $rac{CO}{OE}=rac{7}{2}$, то $CO=rac{7}{9}CE$. Следовательно,

$$S_{AMOE} = S_{\Delta COD} = \frac{7}{9}S_{\Delta CED} = \frac{7}{9} \cdot \frac{2}{7}S = \frac{2}{9}S.$$

Ответ: $\frac{2}{9}$.

- **37.** В остроугольном треугольнике ABC провели высоты AK и CM, а из точек M и K опустили перпендикуляры ME и KH на прямые AK и CM соответственно.
 - а) Докажите, что прямые ЕН и АС параллельны.
 - б) Найдите отношение EH:AC, если $\angle ABC = 30^{\circ}$.

Р е ш е н и е. а) Из точек M и K отрезок AC виден под прямым углом, значит, эти точки лежат на окружности с диаметром AC. Вписанные в эту окружность углы ACM и AKM опираются на одну и ту же дугу, поэтому

$$\angle ACM = \angle AKM$$
.

Из точек E и H отрезок MK виден под прямым углом, значит, эти точки лежат на окружности с диаметром MK (рис. 25). Вписанные в

Рис. 25

эту окружность углы MHE и MKE опираются на одну и ту же дугу, поэтому

$$\angle EHM = \angle EKM = \angle AKM$$
.

Значит, $\angle EHM = \angle ACM$. Следовательно, $EH \parallel AC$.

б) Треугольник BKM подобен треугольнику BAC по двум углам, причём коэффициент подобия равен

$$\frac{BK}{AB} = \cos \angle ABC = \cos 30^\circ = \frac{\sqrt{3}}{2}.$$

Значит,

$$MK = AC \cdot \frac{\sqrt{3}}{2} = \frac{AC\sqrt{3}}{2}.$$

Пусть F — точка пересечения высот треугольника ABC. Тогда

$$\angle EFM = \angle AFM = 90^{\circ} - \angle BAK = \angle ABC = 30^{\circ}.$$

Треугольник EFH подобен треугольнику MFK по двум углам, причём коэффициент подобия равен

$$\frac{EF}{MF} = \cos \angle EFM = \cos 30^{\circ} = \frac{\sqrt{3}}{2}.$$

Значит,

$$EH = \frac{MK\sqrt{3}}{2} = \frac{3}{4}AC.$$

Следовательно, $\frac{EH}{AC} = \frac{3}{4}$.

Ответ: 3:4.

◁

- **38.** Один из двух отрезков, соединяющих середины противоположных сторон четырёхугольника, делит его площадь пополам, а другой в отношении 11:17.
 - а) Докажите, что данный четырёхугольник трапеция.
 - б) Найдите отношение оснований этой трапеции.

Р е ш е н и е. а) Пусть M и N— середины сторон соответственно AD и BC четырёхугольника ABCD, причём отрезок MN делит площадь четырёхугольника пополам. Отрезок NM— медиана треугольника AND, поэтому $S_{\Lambda ANM} = S_{\Lambda DNM}$. Тогда

$$S_{\Delta ABN} = S_{ABNM} - S_{\Delta ANM} = S_{CDMN} - S_{\Delta DNM} = S_{\Delta DCN}.$$

Треугольники ABN и DCN с равными сторонами BN и CN равновелики, значит, их высоты AP и DQ, опущенные на эти стороны, равны. Следовательно, $BC \parallel AD$, т. е. четырёхугольник ABCD — трапеция или параллелограмм (рис. 26).

Рис. 26

Пусть K и L — середины сторон AB и CD соответственно. Предположим, что $AB \parallel CD$. Тогда отрезок KL разбивает параллелограмм на две равновеликие части, что противоречит условию задачи. Таким образом, четырёхугольник ABCD — трапеция с основаниями AD и BC.

б) Пусть высота трапеции равна $h,\ BC=a,\ AD=b,\ a < b.$ Тогда $KL=\frac{a+b}{2},$ так как KL — средняя линия трапеции. Поэтому

$$S_{BCLK} = \frac{a + \frac{a+b}{2}}{2} \cdot \frac{h}{2} = \frac{(3a+b)h}{8}, \quad S_{AKLD} = \frac{b + \frac{a+b}{2}}{2} \cdot \frac{h}{2} = \frac{(a+3b)h}{8},$$

а так как $\frac{S_{BCLK}}{S_{AKLD}} = \frac{11}{17}$, то $\frac{3a+b}{a+3b} = \frac{11}{17}$. Отсюда находим, что $\frac{a}{b} = \frac{2}{5}$.

- **39.** Угол *B* треугольника *ABC* равен 60° , $AB \neq BC$. Окружность, вписанная в треугольник, касается его стороны *AC* в точке *M*.
- а) Докажите, что отрезок BM меньше трёх радиусов этой окружности.
- б) Найдите синус угла BMC, если BM в 2,5 раза больше радиуса окружности.

Р е ш е н и е. а) Пусть r — радиус вписанной окружности треугольника ABC, O — её центр, P — точка касания со стороной BC. Поскольку BO — биссектриса угла ABC, угол OBP равен 30° (рис. 27). Из прямоугольного треугольника BOP находим, что BO = 2OP = 2r. Точка O не лежит на отрезке BM, так как $AB \neq BC$. Применив неравенство треугольника к треугольнику BOM, получим, что

$$BM < BO + OM = 2r + r = 3r$$
.

Рис. 27

б) Предположим, что AM > MC (рис. 28). Тогда $\angle BMC = \angle OMC - \angle OMB = 90^{\circ} - \angle OMB$.

Рис. 28

По теореме косинусов

 $\sin \angle BMC = \sin(90^{\circ} - \angle OMB) = \cos \angle OMB =$

$$=\frac{OM^2+BM^2-OB^2}{2OM\cdot BM}=\frac{r^2+\frac{25}{4}r^2-4r^2}{2\cdot r\cdot \frac{5}{2}r}=\frac{13}{20}=0,65.$$

◁

Если же AM < MC, аналогично получим тот же результат. *Ответ*: 0,65.

40. Квадрат ABCD вписан в окружность. Хорда MK этой окружности проходит через середины сторон BC и CD.

- а) Докажите, что треугольник АМК равносторонний.
- б) Найдите площадь этого треугольника, если сторона квадрата равна 1.

Р е ш е н и е. а) Пусть O— центр окружности, а прямая MK пересекает стороны BC и CD квадрата в точках P и Q соответственно. Отрезок PQ— средняя линия треугольника BCD, поэтому $MK \parallel BD$, а так как $OC \perp BD$, то $MK \perp OC$. Кроме того, точка H пересечения OC и MK— середина отрезков OC и PQ, а так как диаметр, перпендикулярный хорде, делит её пополам, то H— середина хорды MK. Значит, AH— высота и медиана треугольника AMK, поэтому треугольник AMK равнобедренный, AM = AK (рис. 29).

Рис. 29

Поскольку AO:OH=2:1, то O — точка пересечения его медиан. Пусть прямая MO пересекает сторону AK в точке F. Тогда F — середина AK, а так как O — центр описанной окружности треугольника AMK, то содержащая точку O прямая MF — серединный перпендикуляр к стороне AK. Значит, MA=MK. Следовательно, равнобедренный треугольник AMK — равносторонний.

б) Обозначим AM = AK = MK = x. Тогда $AH = \frac{x\sqrt{3}}{2}$. С другой стороны, так как O — центр треугольника AMK, то

$$AH = \frac{3}{2}OA = \frac{3}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{4}.$$

Из равенства $\frac{x\sqrt{3}}{2} = \frac{3\sqrt{2}}{4}$ находим, что $x = \frac{\sqrt{6}}{2}$. Следовательно,

$$S_{\Delta AMK} = \frac{1}{2}MK \cdot AH = \frac{1}{2} \cdot \frac{\sqrt{6}}{2} \cdot \frac{3\sqrt{2}}{4} = \frac{3\sqrt{3}}{8}.$$

Ответ: $\frac{3\sqrt{3}}{8}$.

- **41.** Квадрат ABCD вписан в окружность. Хорда CE пересекает диагональ BD в точке K.
 - а) Докажите, что произведение $CK \cdot CE$ равно площади квадрата.
 - б) Найдите отношение CK : KE, если $\angle ECD = 15^{\circ}$.

P е ш е н и е. а) Вписанные углы *CED* и *CAD* опираются на одну и ту же дугу, поэтому (см. рис. 30)

$$\angle CED = \angle CAD = \angle CDK = 45^{\circ}$$
.

Треугольник *CDK* подобен треугольнику *CED* по двум углам, поэтому $\frac{CD}{CF} = \frac{CK}{CD}$. Следовательно,

$$CE \cdot CK = CD^2 = S_{ABCD}$$
.

Рис. 30

Рис. 31

б) Пусть O — центр окружности, а её радиус равен R. Точка E лежит на окружности с диаметром AC, значит, $\angle AEC = 90^\circ$ (рис. 31), а поскольку

$$\angle ACE = \angle ACD - \angle ECD = 45^{\circ} - 15^{\circ} = 30^{\circ},$$

из прямоугольного треугольника АСЕ находим, что

$$CE = AC \cos 30^{\circ} = 2R \cdot \frac{\sqrt{3}}{2} = R\sqrt{3}.$$

Из прямоугольного треугольника СОК находим также, что

$$CK = \frac{OC}{\cos 30^{\circ}} = \frac{R}{\frac{\sqrt{3}}{2}} = \frac{2R}{\sqrt{3}}.$$

Значит,

$$\frac{CK}{CE} = \frac{\frac{2R}{\sqrt{3}}}{R\sqrt{3}} = \frac{2}{3}.$$

Следовательно, CK : KE = 2 : 1.

Ответ: 2:1.

- **42.** Точка M середина гипотенузы AB прямоугольного треугольника ABC. Серединный перпендикуляр к гипотенузе пересекает катет BC в точке N.
 - а) Докажите, что $\angle CAN = \angle CMN$.
- б) Найдите отношение радиусов окружностей, описанных около треугольников *ANB* и *CBM*, если $\operatorname{tg} \angle BAC = \frac{4}{3}$.

Р е ш е н и е. а) Из точек C и M отрезок AN виден под прямым углом, значит, эти точки лежат на окружности с диаметром AN. Вписанные в эту окружность углы CAN и CMN опираются на одну и ту же дугу, следовательно, $\angle CAN = \angle CMN$ (см. рис. 32).

Рис. 32

◁

Рис. 33

6) Положим BC = 4x и AC = 3x. Тогда по теореме Пифагора AB = 5x. Поскольку CM — медиана прямоугольного треугольника, проведённая из вершины прямого угла, $CM = \frac{1}{2}AB = BM$, а так как точка N лежит на серединном перпендикуляре к отрезку AB, то AN = BN. Треугольники ANB и CBM равнобедренные с общим углом B при основаниях, значит, $\angle ANB = \angle BMC$ (см. рис. 33).

Пусть R_1 и R_2 — радиусы описанных окружностей треугольников *ANB* и *CBM* соответственно. По теореме синусов

$$R_1 = \frac{AB}{2\sin\angle ANB} = \frac{5x}{2\sin\angle ANB},$$

$$R_2 = \frac{BC}{2\sin\angle BMC} = \frac{4x}{2\sin\angle BMC}.$$

Следовательно,

$$\frac{R_1}{R_2} = \frac{\frac{5x}{2\sin \angle ANB}}{\frac{4x}{2\sin \angle BMC}} = \frac{5}{4}.$$

Ответ: $\frac{5}{4}$.

- **43.** В треугольнике *ABC* точки A_1 , B_1 и C_1 середины сторон BC, AC и AB соответственно, AH высота, $\angle BAC = 60^\circ$, $\angle BCA = 45^\circ$.
 - а) Докажите, что точки $A_1, B_1, \underline{C}_1$ и H лежат на одной окружности.
 - б) Найдите A_1H , если $BC = 2\sqrt{3}$.

Р е ш е н и е. а) Отрезки A_1C_1 и A_1B_1 — средние линии треугольника ABC, поэтому

$$A_1C_1 \parallel AB_1$$
, $A_1B_1 \parallel AC_1$.

Значит, $AB_1A_1C_1$ — параллелограмм (см. рис. 34). Следовательно, $\angle B_1A_1C_1 = \angle B_1AC_1$.

Рис. 34

Отрезок B_1C_1 — средняя линия треугольника ABC, поэтому $B_1C_1\|BC$ и $B_1C_1\perp AH$. По теореме Фалеса прямая B_1C_1 проходит через середину высоты AH, значит, углы B_1HC_1 и B_1AC_1 симметричны относительно прямой B_1C_1 , а следовательно, они равны.

Таким образом, из точек A_1 и H, лежащих по одну сторону от прямой B_1C_1 , отрезок B_1C_1 виден под одним и тем же углом. Следовательно, точки A_1 , B_1 , C_1 и H лежат на одной окружности.

Рис. 35

б) Пусть R — радиус этой окружности (см. рис. 35). По теореме синусов

$$R = \frac{B_1 C_1}{2 \sin \angle B_1 A_1 C_1} = \frac{\sqrt{3}}{2 \sin 60^{\circ}} = 1.$$

Из симметрии

$$\angle HB_1C_1 = \angle AB_1C_1 = \angle ACB = 45^\circ.$$

Тогда

$$\angle A_1B_1H = \angle A_1B_1C_1 - \angle HB_1C_1 = 75^{\circ} - 45^{\circ} = 30^{\circ}.$$

Следовательно, по теореме синусов

$$A_1H = 2R\sin \angle A_1B_1H = 2R\sin 30^\circ = 2\cdot 1\cdot \frac{1}{2} = 1.$$

Ответ: 1.

- **44.** Точка E середина боковой стороны CD трапеции ABCD. На стороне AB отмечена точка K так, что $CK \parallel AE$. Отрезки CK и BE пересекаются в точке O.
 - а) Докажите, что CO = KO.
- б) Найдите отношение оснований BC и AD, если площадь треугольника BCK составляет $\frac{9}{64}$ площади трапеции.

Р е ш е н и е. а) Пусть прямые AE и BC пересекаются в точке F. Треугольники FEC и AED равны по стороне (CE = DE) и двум прилежащим к ней углам. Значит, AE = EF, т. е. BE — медиана треугольника

ABF, а так как $CK \parallel AF$, то BO — медиана треугольника KBC, т. е. O — середина отрезка KC (см. рис. 36).

б) Обозначим AD=a, BC=b. Из равенства треугольников FEC и AED следует, что треугольник ABF равновелик трапеции ABCD (см. рис. 37). Значит, площадь треугольника KBC составляет $\frac{9}{64}$ площади подобного ему треугольника ABF. Тогда коэффициент подобия равен $\frac{3}{8}$, т. е.

$$\frac{3}{8} = \frac{BC}{BF} = \frac{BC}{BC + CF} = \frac{b}{b+a},$$

откуда $\frac{1}{1+\frac{a}{b}}=\frac{3}{8}$. Из этого равенства находим, что $\frac{a}{b}=\frac{5}{3}$.

- **45.** Дана прямоугольная трапеция ABCD с прямым углом при вершине A. Окружность, построенная на большем основании AD как на диаметре, проходит через вершину C и пересекает меньшее основание BC в точке M.
 - а) Докажите, что $\angle BAM = \angle CAD$.
- б) Диагонали трапеции пересекаются в точке O. Найдите площадь треугольника AOB, если $AB = \sqrt{10}$, а M середина BC.

Р е ш е н и е. а) Поскольку AD — диаметр окружности и $AD \perp AB$, то AB — касательная к окружности. Из теоремы об угле между касательной и хордой следует, что $\angle BAM = \angle ADM$. Трапеция AMCD вписана в окружность, поэтому она равнобедренная и её диагонали образуют равные углы с основаниями. Значит, $\angle ADM = \angle CAD$. Следовательно, $\angle BAM = \angle CAD$ (см. рис. 38).

б) По теореме о касательной и секущей $AB^2 = BM \cdot BC$, или $10 = 2BM^2$, откуда $BM = \sqrt{5}$ (см. рис. 39). Тогда

$$BC = 2BM = 2\sqrt{5}, \quad CD = AM = \sqrt{AB^2 + BM^2} = \sqrt{10 + 5} = \sqrt{15},$$

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{10 + 20} = \sqrt{30}.$$

Рис. 38

Рис. 39

Точка C лежит на окружности с диаметром AD, поэтому $\angle ACD = 90^{\circ}$. По теореме Пифагора

$$AD = \sqrt{AC^2 + CD^2} = \sqrt{30 + 15} = \sqrt{45} = 3\sqrt{5}.$$

Значит,

$$\frac{BC}{AD} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}.$$

Следовательно,

$$S_{\Delta AOB} = \frac{BO}{BD} S_{\Delta ABD} = \frac{2}{5} \cdot \frac{1}{2} AD \cdot AB = \frac{1}{5} \cdot 3\sqrt{5} \cdot \sqrt{10} = 3\sqrt{2}.$$

Ответ: $3\sqrt{2}$.

- **46.** Окружности с центрами O_1 и O_2 пересекаются в точках A и B, причём точки O_1 и O_2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой же окружности пересекают вторую окружность в точках D и E соответственно.
- а) Докажите, что треугольник CBD подобен треугольнику, вершины которого центры окружностей и точка A.
- б) Найдите AD, если $\angle DAE = \angle BAC$, радиус второй окружности втрое больше радиуса первой и AB = 3.

Р е ш е н и е. а) Поскольку $\angle ABE=90^\circ$, отрезок AE — диаметр окружности с центром O_2 . Значит, точка O_2 — середина стороны AE треугольника CAE, а отрезок O_1O_2 — средняя линия этого треугольника, поэтому

$$\angle AO_2O_1 = \angle AEC$$
, $\angle AO_1O_2 = \angle ACE = \angle DCB$,

а так как вписанные во вторую окружность углы ADB и AEB опираются на одну и ту же дугу, то

$$\angle AO_2O_1 = \angle AEC = \angle AEB = \angle ADB = \angle CDB$$
.

Следовательно, треугольники *CBD* и O_1AO_2 подобны по двум углам (см. рис. 40).

б) Заметим, что

$$\angle BAD = \angle BAE + \angle DAE = \angle BAE + \angle BAC = \angle EAC$$
,

а так как

$$\angle BDA = \angle BEA = \angle CEA$$
,

то треугольник *ABD* подобен треугольнику *ACE* по двум углам (см. рис. 41). Значит, $\frac{AD}{AB} = \frac{AE}{AC} = 3$. Следовательно, AD = 3AB = 9. \triangleleft *Ответ*: 9.

- 47. Дана трапеция. Сумма оснований равна 13, диагонали 5 и 12.
- а) Докажите, что диагонали перпендикулярны.
- б) Найдите высоту трапеции.

Р е ш е н и е. а) Пусть ABCD — трапеция с диагоналями AC = 5, BD = 12 и суммой оснований AD + BC = 13. Через вершину B проведём прямую, параллельную AC (см. рис. 42). Пусть K — точка её

Рис. 42

пересечения с прямой AD. Тогда ACBK — параллелограмм, поэтому BK = AC = 5, AK = BC, а угол между диагоналями трапеции равен углу DBK. Треугольник DBK прямоугольный с прямым углом DBK, так как

$$DK^2 = (AK + AD)^2 = 13^2 = 5^2 + 12^2 = KB^2 + BD^2.$$

Следовательно, угол между диагоналями трапеции *ABCD* равен 90°.

Рис. 43

б) Пусть BH — высота трапеции. Тогда BH — высота прямоугольного треугольника DBK, опущенная на гипотенузу (см. рис. 43). Следовательно,

$$BH = \frac{BK \cdot BD}{AD} = \frac{5 \cdot 12}{13} = \frac{60}{13}.$$

◁

Ответ: $\frac{60}{13}$.

48. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от O. Лучи AO и AM пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку .

- а) Докажите, что прямые PQ и BC параллельны.
- б) Известно, что $\sin \angle AOC = \frac{\sqrt{15}}{4}$. Прямые *PC* и *AQ* пересекаются в точке *K*. Найдите отношение *QK* : *KA*.

Решение. а) Линия центров касающихся окружностей проходит через точку их касания, поэтому точка O лежит на диаметре AP большей окружности, а OA — диаметр меньшей окружности (см. рис. 44).

Точка M лежит на окружности с диаметром OA, поэтому $\angle AMO = 90^\circ$. Значит, $OM \perp AQ$. Точка Q лежит на окружности с диаметром AP, значит, $PQ \perp AQ$. Прямые OM и PQ перпендикулярны одной и той же прямой AQ, значит, $PQ \parallel OM$. Следовательно, $PQ \parallel BC$.

б) Обозначим $\angle AOC = \alpha$. Заметим, $\alpha < 90^{\circ}$. Тогда

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{4}.$$

Дуги окружности, заключённые между параллельными хордами, равны, поэтому

$$\angle CPQ = \frac{1}{2} \cup CQ = \frac{1}{2} \cup BP = \frac{1}{2} \angle BOP = \frac{1}{2} \angle AOC = \angle APC$$

 $(\cup CQ$ и $\cup BP$ — градусные меры дуг CQ и BP, не содержащих точек B и C соответственно). Значит, луч PC — биссектриса угла APQ, а PK — биссектриса прямоугольного треугольника APQ (см. рис. 45). Следовательно,

$$\frac{QK}{AK} = \frac{PQ}{AP} = \cos \angle APQ = \cos \alpha = \frac{1}{4}.$$

Ответ: 1:4.

- **49.** В трапеции ABCD основание AD в два раза больше основания BC. Внутри трапеции взяли точку M так, что углы ABM и DCM прямые.
 - а) Докажите, что AM = DM.
- б) Найдите угол BAD, если угол ADC равен 55° , а расстояние от точки M до прямой AD равно стороне BC.

Р е ш е н и е. а) Пусть N — середина основания AD. Поскольку $AN = DN = \frac{1}{2}AD = BC$ и $BC \parallel AD$, четырёхугольники ABCN и BCDN — параллелограммы. Значит, $CN \parallel AB$ и $BN \parallel CD$. Тогда высоты треугольника BNC, проведённые из его вершин B и C, лежат на прямых BM и

CM соответственно, а M — ортоцентр треугольника BNC (см. рис. 46). Следовательно, третья высота треугольника BNC лежит на прямой MN, т. е. $MN \perp BC$.

Прямые AD и BC параллельны, поэтому $MN \perp AD$. Тогда медиана MN треугольника AMD является его высотой, значит, этот треугольник равнобедренный. Следовательно, AM = DM.

б) Пусть O — центр окружности, описанной около треугольника BNC, K — середина стороны BC (см. рис. 47). Тогда $OK \perp BC$. Поскольку M — ортоцентр треугольника, то отрезок OK вдвое меньше MN, значит,

$$OK = \frac{1}{2}MN = \frac{1}{2}BC = BK.$$

Следовательно, $\angle OCB = \angle OBC = 45^{\circ}$.

Обозначим $\angle OCN = \alpha$. Треугольники CON и BON равнобедренные, а противоположные углы CBN и CDN параллелограмма BCDN равны, поэтому

$$\angle CNO = \alpha$$
, $\angle BNO = \angle NBO = \angle NBC - \angle OBC =$
= $\angle CDN - \angle OBC = 55^{\circ} - 45^{\circ} = 10^{\circ}$.

Сумма углов треугольника BCN равна 180° :

$$55^{\circ} + (45^{\circ} + \alpha) + (10^{\circ} + \alpha) = 180^{\circ}.$$

Отсюда находим, что $\alpha = 35^{\circ}$, а так как ABCN — параллелограмм, то

$$\angle BAD = \angle BAN = \angle BCN = 45^{\circ} + \alpha = 45^{\circ} + 35^{\circ} = 80^{\circ}.$$

Ответ: 80°.

50. Окружность, вписанная в трапецию *ABCD*, касается её боковых сторон *AB* и *CD* в точках *M* и *N* соответственно. При этом AM = 8MB и DN = 2CN.

- а) Докажите, что AD = 4BC.
- б) Найдите MN, если радиус окружности равен $\sqrt{6}$.

Решение. а) Пусть O — центр окружности, r — радиус, K и L — точки касания окружности с основаниями BC и AD соответственно. Положим BM = x, AM = 8x, CN = y, DN = 2y. Поскольку CO и DO — биссектрисы углов C и D трапеции, треугольник COD прямоугольный, а ON — его высота, проведённая из вершины прямого угла (см. рис. 48). Значит, $CN \cdot DN = ON^2$, или $2y^2 = r^2$. Аналогично из прямоугольного треугольника AOB получаем, что $8x^2 = r^2$. Тогда $2y^2 = 8x^2$, y = 2x,

$$AD = AL + DL = AM + DN = 8x + 2y = 8x + 4x = 12x,$$

 $BC = BK + KC = BM + CN = x + y = x + 2x = 3x.$

Следовательно, AD = 4BC.

Рис. 48

6) Пусть прямые AB и CD пересекаются в точке P. Треугольник BPC подобен треугольнику APD с коэффициентом $\frac{BC}{AD}=\frac{1}{4}$, поэтому $\frac{PC}{PD}=\frac{1}{4}$. Тогда $PC=\frac{1}{3}CD=y=2x$. Аналогично находим, что $BP=\frac{1}{3}AB=3x$, а так как BC=3x, то треугольник BPC равнобедренный (см. рис. 49).

Пусть $\angle APD = \alpha$. Тогда

$$\cos \alpha = \frac{\frac{1}{2}PC}{BP} = \frac{x}{3x} = \frac{1}{3},$$

а так как PN = PM = 3x + x = 4x, то по теореме косинусов

$$MN = \sqrt{PM^2 + PN^2 - 2PM \cdot PN \cos \alpha} = \sqrt{16x^2 + 16x^2 - 2 \cdot 4x \cdot 4x \cdot \frac{1}{3}} = \frac{8x}{\sqrt{3}}.$$

Рис. 49

Из равенства

$$8x \cdot x = AM \cdot MB = OM^2 = r^2 = 6$$

находим, что $x = \frac{\sqrt{3}}{2}$. Следовательно,

$$MN = \frac{8x}{\sqrt{3}} = 4.$$

Ответ: 4.

- **51.** Окружность, вписанная в трапецию *ABCD*, касается её боковых сторон *AB* и *CD* в точках *M* и *N* соответственно. При этом AM = 6BM и 2DN = 3CN.
 - а) Докажите, что AD = 3BC.
 - б) Найдите MN, если радиус окружности равен $\sqrt{105}$. *Ответ*: 18.
- **52.** Точка E середина боковой стороны CD трапеции ABCD. На стороне AB отмечена точка K так, что $CK \parallel AE$. Отрезки CK и BE пересекаются в точке O.
 - а) Докажите, что CO = KO.
- б) Найдите отношение оснований BC и AD, если площадь треугольника BCK составляет $\frac{16}{81}$ площади трапеции.

Р е ш е н и е. а) Пусть прямые AE и BC пересекаются в точке F. Треугольники FEC и AED равны по стороне (CE=DE) и двум прилежащим к ней углам. Значит, AE=EF, т. е. BE — медиана треугольника ABF, а так как $CK \parallel AF$, то BO — медиана треугольника KBC, т. е. O — середина отрезка KC (см. рис. 50).

◁

Рис. 50

Рис. 51

б) Обозначим AD=a, BC=b. Из равенства треугольников FEC и AED следует, что треугольник ABF равновелик трапеции ABCD (см. рис. 51). Значит, площадь треугольника KBC составляет $\frac{16}{81}$ площади подобного ему треугольника ABF. Тогда коэффициент подобия равен $\frac{4}{0}$, т. е.

$$\frac{4}{9} = \frac{BC}{BF} = \frac{BC}{BC + CF} = \frac{b}{b+a}.$$

Из этого равенства находим, что $\frac{b}{a} = \frac{4}{5}$. *Ответ*: 4:5.

- **53.** Точка O центр окружности, вписанной в треугольник ABC, в котором AC < BC. Точка B_1 симметрична точке B относительно прямой OC.
 - а) Докажите, что точки A, B, O и B_1 лежат на одной окружности.
- б) Найдите площадь четырёхугольника $AOBB_1$, если AB = 10, AC = 6, BC = 8.

Р е ш е н и е. а) Центр окружности, вписанной в треугольник, — точка пересечения его биссектрис, поэтому луч CO — биссектриса угла ACB. Значит, точка B_1 , симметричная точке B относительно прямой CO, лежит на луче CA, а так как $CB_1 = CB > AC$, то B_1 лежит на продолжении стороны CA за точку A, причём $CB_1 = CB$ (см. рис. 52).

Треугольники OB_1C и OBC равны по двум сторонам и углу между ними, поэтому

$$\angle OB_1A = \angle OB_1C = \angle OBC = \angle OBA.$$

Из точек B и B_1 , лежащих по одну сторону от прямой OA, отрезок OA виден под одним и тем же углом, следовательно, точки A, B, O и B_1 лежат на одной окружности.

Рис. 52 Рис. 53

б) Поскольку $AB^2 = AC^2 + BC^2$, треугольник ABC прямоугольный с прямым углом при вершине C (см. рис. 53), значит,

$$S_{\triangle ABC} = \frac{1}{2}AC \cdot BC = \frac{1}{2} \cdot 6 \cdot 8 = 24.$$

Пусть r — радиус окружности, вписанной в треугольник ABC. Полупериметр p треугольника ABC равен 12, поэтому

$$r = \frac{S_{\Delta ABC}}{p} = \frac{24}{12} = 2.$$

Тогда

$$\begin{split} S_{\Delta AOC} &= \frac{1}{2}AC \cdot r = \frac{1}{2} \cdot 6 \cdot 2 = 6, \\ S_{\Delta BOC} &= \frac{1}{2}BC \cdot r = \frac{1}{2} \cdot 8 \cdot 2 = 8. \end{split}$$

Следовательно,

$$S_{AOBB_1} = S_{\Delta B_1BC} - S_{\Delta AOC} - S_{\Delta BOC} = \frac{1}{2} \cdot 8 \cdot 8 - 6 - 8 = 32 - 14 = 18.$$
 \triangleleft *Ombern*: 18.

- **54.** Точка O центр окружности, вписанной в треугольник ABC, в котором AC > BC. Точка B_1 симметрична точке B относительно прямой OC.
 - а) Докажите, что точки $A,\,B,\,O$ и B_1 лежат на одной окружности.
- б) Найдите площадь четырёхугольника $ABOB_1$, если AB=10, AC=8, BC=6.

Ответ: 12.

55. Точки A_1 , B_1 , C_1 — середины сторон соответственно BC, AC, AB треугольника ABC. Углы треугольника при вершинах A и C равны 120° и 15° соответственно, AH — высота треугольника.

- а) Докажите, что $\angle A_1C_1B_1=\angle A_1HB_1$. б) Найдите A_1H , если $BC=8\sqrt{3}$.

Решение. а) По теореме о средней линии треугольника имеем $B_1C_1\parallel BC$ и $A_1B_1=rac{1}{2}AB$. Кроме того, отрезок HC_1 — медиана прямо-угольного треугольника AHB, проведённая из вершины прямого угла, поэтому $HC_1 = \frac{1}{2}AB = A_1B_1$ (см. рис. 54). Значит, $A_1HC_1B_1$ — равнобедренная трапеция с основаниями A_1H и B_1C_1 . Около неё можно описать окружность. Вписанные в эту окружность углы $A_1C_1B_1$ и $A_1 H B_1$ опираются на одну и ту же дугу, следовательно, они равны.

Рис. 54

б) Пусть O — центр окружности радиуса R, описанной около треугольника *ABC*. Поскольку $\angle BAC > 90^{\circ}$, точки *A* и *O* лежат по разные стороны от прямой BC (см. рис. 55). По теореме синусов

$$R = \frac{BC}{2\sin 120^{\circ}} = \frac{8\sqrt{3}}{2 \cdot \frac{\sqrt{3}}{2}} = 8.$$

Рис. 55

Центральный угол AOB вдвое больше вписанного угла ACB, т. е. $\angle AOB = 30^{\circ}$. Тогда углы *OBA* и *OAB* при основании равнобедренного треугольника AOB равны по 75° , а так как $\angle BAH = \angle ABH = 45^{\circ}$, то

$$\angle OAH = \angle OAB - \angle HAB = 75^{\circ} - 45^{\circ} = 30^{\circ}.$$

Пусть OF — перпендикуляр, опущенный из центра окружности на прямую AH. Катет прямоугольного треугольника AFO, лежащий против угла 30° , равен половине гипотенузы, следовательно,

$$A_1H = OF = \frac{1}{2}OA = \frac{1}{2}R = 4.$$

Ответ: 4.

- **56.** Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM пересекают большую окружность в точках P и Q.
 - а) Докажите, что $PQ \parallel BC$.
- б) Известно, что угол AOC равен 60° . В каком отношении прямая PC делит отрезок AQ?

P е ш е н и е. а) Линия центров касающихся окружностей проходит через точку их касания, поэтому точка O лежит на диаметре AP большей окружности, а OA — диаметр меньшей окружности.

Пусть точки P и Q лежат на прямых AO и AM соответственно. Точка M лежит на окружности с диаметром OA, поэтому $\angle AMO = 90^\circ$. Значит, $OM \perp AQ$. Точка Q лежит на окружности с диаметром AP, значит, $PQ \perp AQ$ (см. рис. 56). Прямые OM и PQ перпендикулярны одной и той же прямой AQ, значит, $PQ \parallel OM$. Следовательно, $PQ \parallel BC$.

б) Дуги окружности, заключённые между параллельными хордами, равны, поэтому

$$\angle CPQ = \frac{1}{2} \cup CQ = \frac{1}{2} \cup BP = \frac{1}{2} \angle BOP = \frac{1}{2} \angle AOC = 30^{\circ}$$

($\cup CQ$ и $\cup BP$ — градусные меры дуг CQ и BP, не содержащих точек B и C соответственно), а так как $\angle APQ = \angle AOC = 60^\circ$, то луч PC — биссектриса угла APQ (см. рис. 57).

Пусть K — точка пересечения AQ и PC. Тогда PK — биссектриса прямоугольного треугольника APQ. Следовательно,

$$\frac{QK}{AK} = \frac{PQ}{AP} = \cos \angle APQ = \cos \angle AOC = \cos 60^{\circ} = \frac{1}{2}.$$

Ответ: 1:2.

- **57.** Точка M середина гипотенузы AB прямоугольного треугольника ABC. Серединный перпендикуляр к гипотенузе пересекает катет BC в точке N.
 - а) Докажите, что $\angle CAN = \angle CMN$.
- б) Найдите отношение радиусов окружностей, описанных около треугольников *ANB* и *CBM*, если $\operatorname{tg} \angle BAC = \frac{12}{5}$.

Р е ш е н и е. а) Из точек C и M отрезок AN виден под прямым углом, значит, эти точки лежат на окружности с диаметром AN (см. рис. 58). Вписанные в эту окружность углы CAN и CMN опираются на одну и ту же дугу, следовательно, они равны.

б) Вписанные углы MCN и MAN также опираются на одну дугу, поэтому

$$\angle BAN = \angle MAN = \angle MCN = \angle MCB$$
,

а так как CM — медиана прямоугольного треугольника ABC, проведённая из вершины прямого угла, то $\angle MCB = \angle MBC$ (см. рис. 59). Таким образом,

$$\angle MBC = \angle BCM = \angle BAN$$
.

Равнобедренные треугольники *ANB* и *CNB* подобны по двум углам, причём коэффициент подобия равен отношению их оснований, т. е. $k = \frac{AB}{BC} = \frac{1}{\sin / BAC}$. Поскольку

$$\frac{1}{\sin \angle BAC} = \sqrt{1 + \operatorname{ctg}^2 \angle BAC} = \sqrt{1 + \left(\frac{5}{12}\right)^2} = \frac{13}{12},$$

а отношение радиусов описанных окружностей подобных треугольников равно коэффициенту подобия, то

$$\frac{R_{\triangle ANB}}{R_{\triangle CBM}} = k = \frac{1}{\sin \angle BAC} = \frac{13}{12}.$$

Ответ: $\frac{13}{12}$.

- **58.** Две окружности с центрами O_1 и O_2 и радиусами 3 и 4 пересекаются в точках A и B, причём точки O_1 и O_2 лежат по разные стороны от прямой AB. Через точку A проведена прямая, вторично пересекающая эти окружности в точках M и K, причём точка A лежит между точками M и K.
 - а) Докажите, что треугольники MBK и O_1AO_2 подобны.
- б) Найдите расстояние от точки B до прямой MK, если MK = 7, а $O_1O_2 = 5$.

Р е ш е н и е. а) Пусть точка M лежит на меньшей окружности с центром O_1 . Вписанный в эту окружность угол AMB вдвое меньше центрального угла AO_1B , а значит, равен углу AO_1O_2 . Аналогично, $\angle AKB = \angle AO_2O_1$ (см. рис. 60). Следовательно, треугольники MBK и O_1AO_2 подобны по двум углам.

Рис. 60

б) Линия центров пересекающихся окружностей перпендикулярна их общей хорде и делит её пополам, поэтому отрезок *AB* вдвое больше

Рис. 61

высоты AH треугольника AO_1O_2 (см. рис. 61). Этот треугольник прямоугольный, так как

$$O_1A^2 + O_2A^2 = 3^2 + 4^2 = 5^2 = O_1O_2^2$$
.

Значит,

$$AH = \frac{O_1 A \cdot O_2 A}{O_1 O_2} = \frac{3 \cdot 4}{5} = \frac{12}{5}.$$

Расстояние от точки B до прямой MK равно высоте BP треугольника MBK. Коэффициент подобия треугольников MBK и O_1AO_2 равен $\frac{MK}{O_1O_2}=\frac{7}{5}$, а отрезок BP при этом подобии соответствует отрезку AH. Следовательно,

$$BP = \frac{7}{5}AH = \frac{7}{5} \cdot \frac{12}{5} = \frac{84}{25}.$$

Ответ: $\frac{84}{25}$.

- **59.** Дана прямоугольная трапеция ABCD с прямым углом при вершине A. Окружность, построенная на большем основании AD как на диаметре, проходит через вершину C и пересекает меньшее основание BC в точке M.
 - а) Докажите, что $\angle BAM = \angle CAD$.
- б) Диагонали трапеции пересекаются в точке O. Найдите площадь треугольника AOB, если AB=6, а BC=4BM.

Р е ш е н и е. а) Поскольку AD — диаметр окружности и $AD \perp AB$, то AB — касательная к окружности. Из теоремы об угле между касательной и хордой следует, что $\angle BAM = \angle ADM$. Трапеция AMCD вписана в окружность, поэтому она равнобедренная, и её диагонали образу-

ют равные углы с основаниями (см. рис. 62). Значит, $\angle ADM = \angle CAD$. Следовательно, $\angle BAM = \angle CAD$.

б) По теореме о касательной и секущей $AB^2 = BM \cdot BC$, или $36 = 4BM^2$, откуда BM = 3. Тогда

$$BC = 4BM = 12$$
, $CD = AM = \sqrt{AB^2 + BM^2} = \sqrt{36 + 9} = 3\sqrt{5}$,
 $AC = \sqrt{AB^2 + BC^2} = \sqrt{36 + 144} = 6\sqrt{5}$.

Точка C лежит на окружности с диаметром AD, поэтому $\angle ACD = 90^{\circ}$ (см. рис. 63). По теореме Пифагора

$$AD = \sqrt{AC^2 + CD^2} = \sqrt{180 + 45} = \sqrt{225} = 15.$$

Значит,

$$\frac{BC}{AD} = \frac{12}{15} = \frac{4}{5}.$$

Следовательно,

$$S_{\Delta AOB} = \frac{BO}{BD} S_{\Delta ABD} = \frac{4}{9} \cdot \frac{1}{2} AD \cdot AB = \frac{2}{9} \cdot 15 \cdot 6 = 20.$$

Примечание. Есть другой способ: найти высоту OH треугольника AOB из подобия треугольников AHO и ABC, а затем площадь треугольника AOB.

Ответ: 20.

60. Окружность с центром O, вписанная в треугольник ABC, касается его сторон BC, AB и AC в точках K, L и M соответственно. Прямая KM вторично пересекает в точке P окружность радиуса AM с центром A.

- а) Докажите, что $AP \parallel BC$.
- б) Пусть Q точка пересечения прямых KM и AB, а T такая точка на отрезке PQ, что $\angle OAT = 45^\circ$. Найдите QT, если $\angle ABC = 90^\circ$, AM = 3, CM = 2.

Решение. а) Поскольку CK = CM и AP = AM, треугольники MCK и PAM равнобедренные, причём $\angle CMK = \angle AMP$ — углы при их основаниях MK и MP. Значит, $\angle MKC = \angle MPA$ (см. рис. 64). Следовательно, $AP \parallel BC$.

Рис. 64 Рис. 65

б) Обозначим BK = BL = x. Тогда

$$CK = CM = 2$$
, $AL = AM = 3$, $BC = 2 + x$, $AB = 3 + x$.

По теореме Пифагора

$$AC^2 = BC^2 + AB^2$$
, или $25 = (2+x)^2 + (3+x)^2$,

откуда x = 1. Значит, BC = 3, AB = 4.

Поскольку BC = AP = 3 и $BC \parallel AP$, четырёхугольник ABCP — прямоугольник, значит, CP = AB = 4 (см. рис. 65).

Треугольник AMQ подобен треугольнику CMP с коэффициентом $\frac{AM}{MC}=\frac{3}{2}$, поэтому

$$AQ = \frac{3}{2}CP = \frac{3}{2} \cdot 4 = 6.$$

Обозначим $\angle BAC = \alpha$. Тогда

$$\angle MAO = \frac{\alpha}{2}, \quad \angle MAT = 45^{\circ} - \frac{\alpha}{2},$$
$$\angle PAT = 90^{\circ} - \angle QAT = 90^{\circ} - \left(45^{\circ} + \frac{\alpha}{2}\right) = 45^{\circ} - \frac{\alpha}{2},$$

поэтому AT — биссектриса, а значит, и высота равнобедренного треугольника MAP.

В прямоугольном треугольнике ATQ известно, что

$$AQ = 6$$
, $\operatorname{tg} \angle AQT = \operatorname{tg} \angle AQP = \frac{AP}{AO} = \frac{3}{6} = \frac{1}{2}$.

Тогда $\cos \angle AQT = \frac{2}{\sqrt{5}}$. Следовательно,

$$QT = AQ\cos\angle AQT = 6 \cdot \frac{2}{\sqrt{5}} = \frac{12}{\sqrt{5}}.$$

Ответ: $\frac{12}{\sqrt{5}}$.

- **61.** Четырёхугольник ABCD вписан в окружность. Диаметр CC_1 перпендикулярен стороне AD и пересекает её в точке M, а диаметр DD_1 перпендикулярен стороне AB и пересекает её в точке N.
- а) Пусть AA_1 также диаметр окружности. Докажите, что $\angle DNM = = \angle BA_1D_1$.
- б) Найдите углы четырёхугольника ABCD, если угол CDB вдвое меньше угла ADB.

Р е ш е н и е. а) Диаметр, перпендикулярный хорде, делит её пополам. Значит, M и N — середины сторон AD и AB соответственно. Отрезок MN — средняя линия треугольника BAD, поэтому $MN \parallel BD$. Тогда

$$\angle BDD_1 = \angle BDN = \angle DNM$$
.

Вписанные углы BA_1D_1 и BDD_1 опираются на одну и ту же дугу, поэтому $\angle BA_1D_1 = \angle BDD_1$ (см. рис. 66). Следовательно, $\angle DNM = \angle BA_1D_1$.

Рис. 66

б) Треугольники *ADB* и *ACD* равнобедренные, значит, их высоты *DN* и *CM* являются биссектрисами. Обозначим $\angle ADD_1 = \angle BDD_1 = \alpha$.

Рис. 67

Тогда (см. рис. 67)

$$\angle CDB = \frac{1}{2} \angle ADB = \angle ADD_1 = \alpha,$$

$$\angle CAD = \angle ADC = 3\alpha, \quad \angle ACD = 180^{\circ} - 6\alpha, \quad \angle ACB = \angle ADB = 2\alpha,$$

$$\angle BCD = \angle ACB + \angle ACD = 2\alpha + 180^{\circ} - 6\alpha = 180^{\circ} - 4\alpha,$$

$$\angle BAD = \angle ABD = 90^{\circ} - \angle BDD_1 = 90^{\circ} - \alpha,$$

Сумма противоположных углов вписанного четырёхугольника равна 180°, поэтому $\angle BAD + \angle BCD = 180^\circ$, или

$$(90^{\circ} - \alpha) + (180^{\circ} - 4\alpha) = 180^{\circ} \iff 5\alpha = 90^{\circ} \iff \alpha = 18^{\circ}.$$

Следовательно,

$$\angle ADC = 3\alpha = 54^{\circ}$$
, $\angle ABC = 180^{\circ} - \angle ADC = 180^{\circ} - 54^{\circ} = 126^{\circ}$, $\angle BAD = 90^{\circ} - \alpha = 90^{\circ} - 18^{\circ} = 72^{\circ}$, $\angle BCD = 180^{\circ} - 72^{\circ} = 108^{\circ}$. \triangleleft *Omsem*: 72° , 126° , 108° , 54° .

- **62.** Окружность с центром O, расположенным внутри прямоугольной трапеции ABCD, проходит через вершины B и C большей боковой стороны и касается боковой стороны AD в точке T.
 - а) Докажите, что угол ВОС вдвое больше угла ВТС.
- б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.

Р е ш е н и е. а) Точки O и T расположены по одну сторону от прямой BC, поэтому центральный угол, соответствующий вписанному углу BTC, — это угол BOC (см. рис. 68). Следовательно, $\angle BOC = 2\angle BTC$.

б) Пусть продолжения боковых сторон трапеции пересекаются в точке P, а H — основание перпендикуляра, опущенного из точки T на боковую сторону BC. Обозначим $\angle DPC = \alpha$ (см. рис. 69). Из прямоугольных треугольников PDC, PHT и PAB получаем, что

$$\sin \alpha = \frac{CD}{PC}$$
, $\sin \alpha = \frac{TH}{PT}$, $\sin \alpha = \frac{AB}{PB}$.

Значит, $\frac{CD}{PC}=\frac{TH}{PT}$ и $\frac{AB}{PB}=\frac{TH}{PT}$. Перемножив эти два равенства, получим, что

$$\frac{TH^2}{PT^2} = \frac{CD \cdot AB}{PC \cdot PB},$$

а так как по теореме о касательной и секущей $PT^2 = PC \cdot PB$, то

$$TH^2 = CD \cdot AB = 4 \cdot 9 = 36.$$

◁

Следовательно, TH = 6.

Ответ: 6.

- **63.** В выпуклом четырёхугольнике *ABCD* известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.
- а) Докажите, что вокруг этого четырёхугольника можно описать окружность.
 - б) Найдите *BD*.

Р е ш е н и е. а) По теореме косинусов из треугольников ABC и ADC находим, что

$$\cos \angle ABC = \frac{BA^2 + BC^2 - AC^2}{2BA \cdot BC} = \frac{9 + 25 - 49}{2 \cdot 3 \cdot 5} = -\frac{1}{2},$$
$$\cos \angle ADC = \frac{DA^2 + DC^2 - AC^2}{2DA \cdot DC} = \frac{64 + 25 - 49}{2 \cdot 5 \cdot 8} = \frac{1}{2}.$$

Значит, $\angle ABC = 120^\circ$ и $\angle ADD = 60^\circ$ (см. рис. 70). Сумма противоположных углов *ABC* и *ADC* четырёхугольника *ABCD* равна 180° , следовательно, вокруг него можно описать окружность.

б) $Первый \ cnocoб$. Пусть диагонали AC и BD пересекаются в точке K. Вписанные углы BAC и DAC опираются на равные хорды, значит,

$$\angle CBK = \angle CBD = \angle DAC = \angle BAC$$
.

Тогда треугольники *BKC* и *ABC* подобны по двум углам (угол при вершине C — общий), поэтому $\frac{BK}{AB} = \frac{BC}{AC}$. Отсюда находим, что

$$BK = \frac{AB \cdot BC}{AC} = \frac{3 \cdot 5}{7} = \frac{15}{7}.$$

Аналогично, из подобия треугольников *DKC* и *ADC* находим, что $DK = \frac{40}{7}$ (см. рис. 71). Следовательно,

$$BD = BK + DK = \frac{15}{7} + \frac{40}{7} = \frac{55}{7}.$$

Второй способ. Обозначим $\angle BAC = \angle DAC = \alpha$. По теореме косинусов из треугольника ADC находим, что

$$\cos \alpha = \frac{49 + 64 - 25}{2 \cdot 7 \cdot 8} = \frac{11}{14}.$$

Тогда

$$\cos \angle BAD = \cos 2\alpha = 2\cos^2 \alpha - 1 = 2 \cdot \frac{121}{196} - 1 = \frac{121}{98} - 1 = \frac{23}{98}.$$

Следовательно,

$$BD = \sqrt{BC^2 + CD^2 + 2BC \cdot CD \cos \angle BAD} =$$

$$= \sqrt{25 + 25 + 2 \cdot 5 \cdot 5 \cdot \frac{23}{98}} = 5\sqrt{2 + \frac{23}{49}} = 5\sqrt{\frac{121}{49}} = \frac{55}{7}.$$

Третий способ. По теореме Птолемея для вписанного четырёхугольника *ABCD* получаем, что

$$AB \cdot CD + BC \cdot AD = AC \cdot BD$$
, или $3 \cdot 5 + 5 \cdot 8 = 7BD$,

откуда
$$BD = \frac{55}{7}$$
.

Ответ: $\frac{55}{7}$.

- **64.** Высоты треугольника *ABC* с тупым углом *ABC* пересекаются в точке H. Угол *AHC* равен 60° .
 - а) Докажите, что угол ABC равен 120° .
 - б) Найдите BH, если AB = 6, BC = 10.

Р е ш е н и е. а) Пусть AA_1 и CC_1 — высоты треугольника ABC. Поскольку угол ABC тупой, точка H пересечения прямых AA_1 и CC_1 лежит вне треугольника ABC. При этом точки B и H лежат по одну сторону от прямой AC (см. рис. 72).

Рис. 72

В четырёхугольнике BA_1HC_1 углы при вершинах A_1 и C_1 равны по 90° , значит, сумма двух других углов этого четырёхугольника равна 180° . Следовательно,

$$\angle ABC = \angle A_1BC_1 = 180^{\circ} - \angle AHC = 180^{\circ} - 60^{\circ} = 120^{\circ}.$$

6) Пусть O — центр окружности, описанной около треугольника ABC, M — середина стороны AC. Известно, что BH = 2OM. (Действительно, если N — середина стороны BC, то MN — серединя линия треугольника ABC, значит, $MN \parallel AB$. Прямая ON — серединный перпендикуляр к стороне BC, а так как $AH \perp BC$, то $ON \parallel AH$. Прямые OM и BH также параллельны, т. е. обе они перпендикулярны прямой AC. Значит, стороны треугольника ABH соответственно параллельны сторонам треугольника NMO. Эти треугольники подобны с коэффициентом 2, так как AB = 2MN. Следовательно, BH = 2OM.)

Рис. 73

Поскольку угол ABC тупой, точки H и O лежат по разные стороны от прямой AC. Градусная мера дуги AC, не содержащей точки B, вдвое больше градусной меры вписанного угла ABC, т. е. равна 240° . Тогда градусная мера дуги ABC равна 120° . Значит, соответствующий этой дуге центральный угол AOC также равен 120° (см. рис. 73).

По теореме косинусов

$$AC = \sqrt{BA^2 + BC^2 - 2BA \cdot BC \cos 120^\circ} = \sqrt{36 + 100 + 6 \cdot 10} = \sqrt{196} = 14.$$

Из прямоугольного треугольника ОМС находим, что

$$OM = CM \operatorname{ctg} \angle COM = 7 \operatorname{ctg} 60^{\circ} = \frac{7}{\sqrt{3}}.$$

Следовательно,

$$BH = 2OM = \frac{14}{\sqrt{3}}.$$

Ответ: $\frac{14}{\sqrt{3}}$.

- **65.** Окружность проходит через вершины A, B и D параллелограмма ABCD, пересекает сторону BC в точках B и M, и пересекает продолжение стороны CD за точку D в точке N.
 - а) Докажите, что отрезки AM и AN равны.
- б) Найдите отношение длин отрезков *CD* и *DN*, если AB:BC=1:3, а $\cos \angle BAD=0$,4.

Р е ш е н и е. а) Трапеция ABMD вписана в окружность, значит, она равнобокая. Диагонали равнобокой трапеции равны, поэтому AM = BD. Трапеция ABDN вписана в окружность, значит, она также равнобокая, поэтому BD = AN (см. рис. 74). Следовательно, AM = AN.

6) Обозначим CD = AB = x, DN = y. Тогда AD = BC = 3x. Рассмотрим равнобокую трапецию ABDN с основаниями AB = x, DN = y и диагоналями BN = AD = 3x. Через точку N проведём прямую, параллельную AD. Пусть P — точка пересечения этой прямой с продолжением отрезка AB (см. рис. 75). Рассмотрим треугольник BNP со сторонами BP = x + y, BN = AD = NP = 3x, и углом BPN, равным углу BAD. По теореме косинусов

$$BN^2 = BP^2 + NP^2 - 2 \cdot BP \cdot NP \cos \angle BPN$$
,

или

$$9x^2 = (x+y)^2 + 9x^2 - 2(x+y) \cdot 3x \cdot \frac{2}{5}, \quad 5y^2 - 2xy - 7x^2 = 0,$$

откуда $y = \frac{7}{5}x$. Следовательно,

$$\frac{CD}{DN} = \frac{x}{y} = \frac{x}{\frac{7}{5}x} = \frac{5}{7}.$$

Ответ: 5:7.

- **66.** Окружность проходит через вершины A, B и C параллелограмма ABCD, а также через точки E и K, которые лежат на продолжениях сторон AD и CD за вершину D соответственно.
 - а) Докажите, что BE = BK.
 - б) Найдите отношение $\frac{AC}{KE}$, если ∠BAD = 30°.

Р е ш е н и е. а) Трапеция ABCE вписана в окружность, значит, она равнобокая. Диагонали равнобокой трапеции равны, поэтому BE = AC. Трапеция ABCK вписана в окружность, значит, она также равнобокая, поэтому AC = BK (см. рис. 76). Следовательно, BE = BK.

Рис. 76

б) Треугольники ADC и KDE подобны по двум углам (см. рис. 77), поэтому $\frac{AC}{KE} = \frac{AD}{DK}$.

Рис. 77

Четырёхугольник АВСК вписан в окружность, значит,

$$\angle AKD = \angle AKC = 180^{\circ} - \angle ABC = \angle BAD = 30^{\circ}.$$

Вписанные углы КАЕ и КСЕ опираются на одну и ту же дугу, поэтому

$$\angle KAD = \angle KAE = \angle KCE = \angle BCE - \angle BCD =$$

= $\angle ABC - \angle BAE = 150^{\circ} - 30^{\circ} = 120^{\circ}$.

Применив теорему синусов к треугольнику *ADK*, получим, что

$$\frac{AD}{DK} = \frac{\sin \angle AKD}{\sin \angle KAD} = \frac{\sin 30^{\circ}}{\sin 120^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.$$

Ответ: $\frac{1}{\sqrt{3}}$.

- **67.** Окружность проходит через вершины A, B и D параллелограмма ABCD. Эта окружность пересекает BC в точке E, а CD в точке K.
 - а) Докажите, что отрезки АЕ и АК равны.
 - б) Найдите AD, если известно, что EC=48, DK=20, а $\cos \angle BAD$ =0,4. *Ответ*: 50.
- **68.** Окружность с центром O_1 касается оснований BC и AD и боковой стороны AB трапеции ABCD. Окружность с центром O_2 касается сторон BC, CD и AD. Известно, что AB = 10, BC = 9, CD = 30, AD = 39.
- а) Докажите, что прямая O_1O_2 параллельна основаниям трапеции ABCD.
 - б) Найдите O_1O_2 .

Р е ш е н и е. а) Пусть окружности с центрами O_1 и O_2 касаются прямой BC в точках P_1 и P_2 соответственно, а прямой AD — в точках Q_1 и Q_2 соответственно. Тогда точки O_1 и O_2 — середины противоположных сторон P_1Q_1 и P_2Q_2 прямоугольника $P_1P_2Q_2Q_1$. Значит, $O_1O_2 \parallel P_1P_2$ (см. рис. 78). Следовательно, $O_1O_2 \parallel BC \parallel AD$.

Рис. 78

б) Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому CO_2 и DO_2 — биссектрисы углов при боковой стороне CD трапеции ABCD.

Пусть прямая CO_2 пересекает основание AD в точке K (см. рис. 79). Тогда

$$\angle CKD = \angle BCK = \angle DCK$$
,

поэтому треугольник CDK равнобедренный, DC = DK. Значит, его биссектриса DO_2 является высотой и медианой. При этом

$$AK = AD - DK = AD - CD = 39 - 30 = 9 = BC$$

значит, ABCK — параллелограмм, поэтому $CK \parallel AB$ и CK = AB = 10.

Рис. 79

Пусть N — точка касания с боковой стороной CD окружности с центром O_2 . Тогда O_2N — высота прямоугольного треугольника CO_2D , проведённая из вершины прямого угла. В этом треугольнике известно, что $O_2C=\frac{1}{2}CK=5$ и CD=30. Значит,

$$CP_2 = CN = \frac{O_2C^2}{CD} = \frac{25}{30} = \frac{5}{6}.$$

Пусть радиус окружностей равен r. Тогда

$$r = O_2 N = \sqrt{CN \cdot DN} = \sqrt{\frac{5}{6} \cdot \left(30 - \frac{5}{6}\right)} = \frac{5\sqrt{35}}{6}.$$

Пусть M — точка касания первой окружности со стороной AB. Обозначим $BP_1 = BM = x$. Тогда $AQ_1 = AM = 10 - x$. Угол BAD острый, так как он равен углу CKD при основании равнобедренного треугольника, поэтому x = BM < AM = 10 - x, т. е. x < 5.

Радиус $O_1 M$ — высота прямоугольного треугольника $AO_1 B$, проведённая из вершины прямого угла. Значит, $BM \cdot AM = O_1 M^2 = r^2$, или

 $x(10-x)=\frac{25\cdot 35}{36}$. Из этого уравнения и условия x<5 находим, что $x=\frac{25}{6}$. Следовательно,

$$O_1O_2 = P_1P_2 = BC - (BP_1 + CP_2) = 9 - \left(\frac{25}{6} + \frac{5}{6}\right) = 9 - 5 = 4.$$

Ответ: 4.

- **69.** Окружность с центром O_1 касается оснований BC и AD и боковой стороны AB трапеции ABCD. Окружность с центром O_2 касается сторон BC, CD и AD. Известно, что AB = 30, BC = 24, CD = 50, AD = 74.
- а) Докажите, что прямая ${\cal O}_1{\cal O}_2$ параллельна основаниям трапеции ABCD .
 - б) Найдите O_1O_2 .

Ответ: 9.

- **70.** Четырёхугольник вписан в окружность радиуса R = 8. Известно, что AB = BC = CD = 12.
 - а) Докажите, что прямые BC и AD параллельны.
 - б) Найдите AD.

Р е ш е н и е. а) Вписанные углы *CAD* и *ACB* опираются на равные хорды *CD* и *AB*, поэтому $\angle ACB = \angle CAD$ (см. рис. 80). Следовательно, *BC* \parallel *AD*.

Рис. 80

Рис. 81

б) Обозначим $\angle CAD = \angle BAC = \alpha$. Треугольник ACD вписан в окружность радиуса R (см. рис. 81). По теореме синусов

$$\sin \alpha = \frac{CD}{2R} = \frac{12}{16} = \frac{3}{4}.$$

Тогда

$$\cos \angle ADC = \cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2 \cdot \frac{9}{16} = -\frac{1}{8} < 0.$$

Значит, углы при основании AD равнобокой трапеции ABCD — тупые.

Пусть AH — высота трапеции. Тогда точка H лежит на отрезке BC. Из прямоугольного треугольника AHB находим, что

$$BH = AB\cos(180^{\circ} - 2\alpha) = -12\cos 2\alpha = -12 \cdot \left(-\frac{1}{8}\right) = \frac{3}{2}.$$

С другой стороны,

$$CH = \frac{BC - AD}{2} = \frac{12 - AD}{2}.$$

Из уравнения $\frac{12-AD}{2} = \frac{3}{2}$ находим, что AD = 9.

- **71.** В трапеции ABCD с основаниями BC и AD углы ABD и ACD прямые.
 - а) Докажите, что AB = CD.
 - б) Найдите AD, если AB = 2, BC = 7.

Р е ш е н и е. а) Из точек B и C, лежащих по одну сторону от прямой AD, отрезок AD виден под прямым углом, значит, эти точки лежат на окружности с диаметром AD (см. рис. 82). Трапеция ABCD вписана в окружность, поэтому она равнобокая. Следовательно, AB = CD.

Рис. 82

Рис. 83

◁

б) Обозначим AD = x. Пусть BH — высота трапеции (см. рис. 83). Тогда

$$AH = \frac{AD - BC}{2} = \frac{x - 7}{2},$$

а так как BH — высота прямоугольного треугольника ABD, проведённая из вершины прямого угла, то

$$AB^2 = AH \cdot AD$$
, или $4 = \frac{x-7}{2} \cdot x$.

Из этого уравнения находим, что x = 8. *Ответ*: 8.

- **72.** Окружность с центром O высекает на всех сторонах трапеции ABCD равные хорды.
- а) Докажите, что биссектрисы всех углов трапеции пересекаются одной точке.
- б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK = 15, KL = 6, LB = 5.

Р е ш е н и е. а) Равные хорды равноудалены от центра окружности, поэтому точка O равноудалена от всех сторон трапеции. Следовательно, O — точка пересечения биссектрис всех углов трапеции (см. рис. 84), т. е. эти биссектрисы пересекаются в точке O.

Рис. 84

Рис. 85

б) Пусть T — основание перпендикуляра, опущенного из точки O на боковую сторону AB. Тогда T — середина хорды KL. Треугольник AOB прямоугольный, так как лучи AO и BO — биссектрисы углов, сумма которых равна 180° (см. рис. 85). Значит, OT — высота прямоугольного треугольника, проведённая из вершины прямого угла, поэтому

$$OT = \sqrt{AT \cdot BT} = \sqrt{(AK + KT)(TL + LB)} = \sqrt{(15 + 3)(3 + 5)} = 12.$$

Расстояния от точки O до оснований трапеции также равны 12, следовательно, высота трапеции равна 24. \triangleleft

Ответ: 24.

- **73.** Окружность с центром O высекает на всех сторонах трапеции ABCD равные хорды.
- а) Докажите, что биссектрисы всех углов трапеции пересекаются одной точке.
- б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK = 16, KL = 8, LB = 1.

Ответ: 20.

- **74.** На боковых сторонах *AB* и *AC* равнобедренного треугольника *ABC* отложены равные отрезки *AP* и *CQ* соответственно.
- а) Докажите, что средняя линия треугольника, параллельная его основанию, проходит через середину отрезка PQ.
- б) Найдите длину отрезка прямой PQ, заключённого внутри описанной окружности треугольника ABC, если $AB = AC = BC = 3\sqrt{2}$, $CQ = AP = \sqrt{2}$.

Р е ш е н и е. а) Пусть D и E — середины сторон AB и AC соответственно. Через точку Q проведём прямую, параллельную AB. Пусть эта прямая пересекает прямую DE в точке F, а прямые PQ и DE пересекаются в точке K (см. рис. 86).

Треугольник EQF равнобедренный, поэтому FQ = QE = DP. Значит, треугольники QKF и PKD равны по стороне и двум прилежащим к ней углам. Следовательно, KQ = KP, т. е. середина K отрезка PQ лежит на средней линии DE.

Рис. 87

б) Пусть O — центр окружности радиуса R, описанной около равностороннего треугольника ABC, прямая PQ пересекает эту окружность в точках M и N, точка H — проекция точки O на хорду MN. Тогда H — середина искомого отрезка MN. Точка D — середина стороны AB равностороннего треугольника ABC, поэтому CD — высота треугольника ABC (см. рис. 87). Тогда

$$R = \frac{2}{3}CD = \frac{2}{3} \cdot \frac{3\sqrt{2} \cdot \sqrt{3}}{2} = \sqrt{6},$$

а так как

$$\frac{AP}{AD} = \frac{\sqrt{2}}{\frac{3}{2}\sqrt{2}} = \frac{2}{3} = \frac{AQ}{AC},$$

то $PQ \parallel CD$. Тогда OHPD — прямоугольник, значит,

$$OH = DP = AD - AP = \frac{3}{2}\sqrt{2} - \sqrt{2} = \frac{\sqrt{2}}{2}.$$

Из прямоугольного треугольника ОНМ находим, что

$$MH = \sqrt{OM^2 - OH^2} = \sqrt{R^2 - OH^2} = \sqrt{6 - \frac{1}{2}} = \sqrt{\frac{11}{2}}.$$

Следовательно,

$$MN = 2MH = 2\sqrt{\frac{11}{2}} = \sqrt{22}.$$

Ответ: $\sqrt{22}$.

75. Точка O — центр окружности, описанной около остроугольного треугольника ABC, а BH — высота этого треугольника.

- а) Докажите, что углы АВН и СВО равны.
- б) Найдите BH, если AB = 16, BC = 18, BH = BO.

Р е ш е н и е. а) Пусть OM — перпендикуляр, опущенный из центра окружности на сторону BC. Тогда M — середина основания BC равнобедренного треугольника BOC. Поскольку треугольник ABC остроугольный, центр O его описаннной окружности лежит внутри треугольника. Значит, BOC — центральный угол, соответствующий вписанному углу BAC, поэтому (см. рис. 88)

$$\angle BAC = \frac{1}{2} \angle BOC = \angle BOM.$$

Два угла прямоугольного треугольника AHB соответственно равны двум углам прямоугольного треугольника BMO, значит, третьи углы этих треугольников также равны, т. е.

$$\angle ABH = \angle MBO = \angle CBO$$
.

Рис. 89

б) Обозначим BH = BO = R. Прямоугольные треугольники AHB и BMO подобны по двум углам (см. рис. 89), поэтому $\frac{BH}{AB} = \frac{BM}{BO}$, или $\frac{R}{16} = \frac{9}{R}$. Отсюда находим, что

$$R^2 = 9 \cdot 16 = 144 = 12^2$$
.

Следовательно, BH = R = 12. *Ответ*: 12.

◁

Приложение 2. Список полезных фактов

- 1. а) Биссектрисы смежных углов перпендикулярны.
- б) Биссектрисы внутренних односторонних углов при двух параллельных прямых и секущей перпендикулярны.
- **2.** а) Если биссектрисы, проведённые из вершин *B* и *C* треугольника *ABC*, пересекаются в точке *O*, то $\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$.
- б) Если биссектрисы внешних углов при вершинах B и C треугольника ABC пересекаются в точке Q, то $\angle BQC = 90^{\circ} \frac{1}{2} \angle A$.
- **3.** а) Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.
- б) Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.
- **4.** a) Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
- б) Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.
- **5.** Проекция боковой стороны равнобедренной трапеции на основание равна полуразности оснований, а проекция диагонали полусумме оснований.
 - 6. Свойства окружности.
 - а) Диаметр, перпендикулярный хорде, делит её пополам.
- б) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
- в) Серединный перпендикуляр к хорде проходит через центр окружности.
- г) Равные хорды удалены от центра окружности на равные расстояния.
- д) Хорды окружности, удалённые от центра на равные расстояния, равны.
- e) Окружность симметрична относительно центра и относительно любого своего диаметра.
- ж) Дуги окружности, заключённые между параллельными хордами, равны.
- 7. а) Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом ($\angle AMB = 90^{\circ}$), есть окружность с диаметром AB без точек A и B.

- б) Геометрическое место точек M, из которых отрезок AB виден под острым углом ($\angle AMB < 90^\circ$), есть внешность круга с диаметром AB без точек прямой AB.
- в) Геометрическое место точек M, из которых отрезок AB виден под тупым углом ($\angle AMB > 90^\circ$), есть внутренность круга с диаметром AB без точек отрезка AB.
- г) Геометрическое место точек, из которых отрезок AB виден под данным углом, есть две дуги равных окружностей с общей хордой AB, лежащие по разные стороны от прямой AB, без точек A и B.
- **8.** а) Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде и делит её пополам.
- б) Линия центров двух касающихся окружностей проходит через точку касания.
- **9.** а) Радиус окружности, вписанной в прямоугольный треугольник с катетами a,b и гипотенузой c, равен $\frac{a+b-c}{2}$.
- б) Если M точка касания со стороной AC окружности, вписанной в треугольник ABC, то AM=p-BC, где p полупериметр треугольника.
- в) Если окружность касается стороны BC треугольника ABC и продолжений сторон AB и AC, то расстояние от вершины A до точки касания окружности с прямой AB равно полупериметру треугольника ABC.
- г) Если окружность, вписанная в треугольник *ABC*, касается сторон *AB*, *BC* и *AC* соответственно в точках *K*, *L* и *M*, а $\angle BAC = \alpha$, то $\angle KLM = 90^{\circ} \frac{\alpha}{2}$.
- д) Если прямые, проходящие через точку A, касаются окружности S в точках B и C, то центр вписанной окружности треугольника ABC лежит на окружности S.
- е) Если расстояние между центрами окружностей радиусов r и R равно a и a > R + r, то отрезки общих внешних и общих внутренних касательных, заключённые между точками касания, равны соответственно

 $\sqrt{a^2 - (R-r)^2}$ и $\sqrt{a^2 - (R+r)^2}$.

10. Если окружности радиусов r и R с центрами O_1 и O_2 касаются внешним образом в точке K, а прямая касается этих окружностей в различных точках A и B и пересекается с общей касательной, проходящей через точку K, в точке C, то $\angle AKB = 90^\circ$ и $\angle O_1CO_2 = 90^\circ$, а отрезок AB общей внешней касательной окружностей равен отрезку общей внутренней касательной, заключённому между общими внешними. Оба эти отрезка равны $2\sqrt{Rr}$.

- **11.** а) Угол между касательной и хордой, проведённой через точку касания, равен половине угловой величины дуги, заключённой между ними.
- б) Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами.
- в) Угол между двумя секущими равен полуразности дуг, высекаемых секущими на окружности.
- **12.** а) Если прямая, проходящая через точку A и центр O вписанной окружности треугольника ABC, вторично пересекает описанную окружность этого треугольника в точке M, то треугольники BOM и COM равнобедренные.
- б) Формула Эйлера. Если O_1 , O_2 центры вписанной и описанной окружностей треугольника ABC, а r и R радиусы этих окружностей, то $O_1O_2=\sqrt{R^2-2rR}$.
- **13.** а) Если четырёхугольник можно вписать в окружность, то сумма его противоположных углов равна 180°.
- б) Если сумма противоположных углов четырёхугольника равна 180° , то около него можно описать окружность.
- **14.** а) Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.
- б) Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.
- **15.** а) Если в трапецию можно вписать окружность, то боковая сторона трапеции видна из центра окружности под прямым углом.
- б) Если окружность вписана в равнобедренную трапецию, то боковая сторона трапеции равна её средней линии.
- в) Если в трапецию можно вписать окружность, то радиус окружности есть среднее пропорциональное (среднее геометрическое) отрезков, на которые точка касания делит боковую сторону.
- **16.** а) Замечательное свойство трапеции. Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.
- б) Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается её диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны.
- в) Если через точку пересечения диагоналей трапеции с основаниями a и b проведена прямая, параллельная основаниям, то отрезок этой прямой, заключённый между боковыми сторонами трапеции, равен $\frac{2ab}{a+b}$.

- г) Если трапеция разделена прямой, параллельной её основаниям, равным a и b, на две равновеликие трапеции, то отрезок этой прямой, заключённый между боковыми сторонами, равен $\sqrt{\frac{a^2+b^2}{2}}$.
- д) Если трапеция разделена прямой, параллельной е \ddot{e} основаниям, равным a и b, на две подобные трапеции, то отрезок этой прямой, заключённый между боковыми сторонами, равен \sqrt{ab} .
- **17.** а) Если BB_1 и CC_1 высоты треугольника ABC, то треугольник AB_1C_1 подобен треугольнику ABC, причём коэффициент подобия равен $|\cos \angle A|$.
- б) Если H точка пересечения высот треугольника ABC, а O центр его описанной окружности, то отрезок AH вдвое больше расстояния от точки O до середины стороны BC.
- в) Точки O, H и точка M пересечения медиан треугольника ABC лежат на одной прямой (npямая Эйлера), причём точка M лежит на отрезке OH и OM: MH=1:2.
- г) Если BB_1 и CC_1 высоты треугольника ABC, а O центр описанной окружности, то $OA \perp B_1C_1$.
- д) Точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых AB, AC и BC, лежат на описанной окружности треугольника ABC.
- е) Точки, симметричные точке пересечения высот треугольника ABC относительно середин его сторон, лежат на описанной окружности треугольника ABC.
- ж) Если AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC, то биссектрисы треугольника $A_1B_1C_1$ (ортотреугольника треугольника ABC) лежат на прямых AA_1 , BB_1 и CC_1 . Если же треугольник ABC тупоугольный, то на этих прямых лежат биссектрисы двух внешних и третьего внутреннего углов треугольника $A_1B_1C_1$.
- **18.** а) Произведения отрезков пересекающихся хорд окружности равны.
- б) Теорема о касательной и секущей и следствие из неё. Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.

Произведение всей секущей на её внешнюю часть для данной точки и данной окружности постоянно.

- в) Прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
- г) Общие хорды (или их продолжения) трёх попарно пересекающихся окружностей проходят через одну точку либо параллельны.

- **19.** Средние пропорциональные в прямоугольном треугольнике. Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное (среднее геометрическое) проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на гипотенузу.
- **20.** а) Следствие из теоремы косинусов. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
- б) Формула для медианы треугольника. Если m_c медиана треугольника, проведённая к стороне c, то $m_c=\frac{1}{2}\sqrt{2a^2+2b^2-c^2}$, где a и b остальные стороны треугольника.
- **21.** Формулы для биссектрисы треугольника. Если a и b стороны треугольника, γ угол между ними, l биссектриса треугольника, проведённая из вершины этого угла, а a' и b' отрезки, на которые биссектриса делит третью сторону треугольника, то

$$l = \frac{2ab\cos\frac{\gamma}{2}}{a+b}, \quad l^2 = ab - a'b'.$$

22. Формулы для площади треугольника. Если a, b и c — стороны треугольника, α , β и γ — противолежащие им углы, h_a , h_b и h_c — высоты, проведённые из вершин этих углов, p — полупериметр треугольника, R — радиус описанной окружности, r, r_a , r_b и r_c — радиусы вписанной и вневписанных окружностей, касающихся сторон a, b и c соответственно, а S — площадь треугольника, то

$$S=rac{1}{2}ah_a, \quad S=rac{1}{2}ab\sin\gamma, \quad S=rac{abc}{4R}, \quad S=pr, \quad S=(p-a)r_a,$$
 $S=\sqrt{p(p-a)(p-b)(p-c)}$ (формула Герона), $S=2R^2\sin\alpha\sin\beta\sin\gamma, \quad S=rac{a^2\sin\beta\sin\gamma}{2\sin(\beta+\gamma)}, \quad S=rac{h_bh_c}{2\sin\alpha}, \quad S=\sqrt{rr_ar_br_c}.$

- $2\sin(\beta+\gamma)$, $3\sin(\beta+\gamma)$, $3\cos(\beta+\gamma)$, $3\cos(\alpha)$, $3\cos($
- лями равна половине произведения диагоналей.
- б) Площадь любого четырёхугольника равна половине произведения диагоналей на синус угла между ними.
 - 24. а) Медиана разбивает треугольник на два равновеликих.
 - б) Три медианы разбивают треугольник на шесть равновеликих.
- в) Если площадь треугольника равна S, то площадь треугольника, составленного из его медиан, равна $\frac{3}{4}S$.
- г) Если точка D лежит на стороне BC треугольника ABC или на её продолжении, то $\frac{S_{\triangle ADB}}{S_{\triangle ADC}} = \frac{BD}{DC}$.

- д) Если точки P и Q лежат на сторонах AB и AC или на их продолжениях, то $\frac{S_{\triangle APQ}}{S_{\triangle ABC}} = \frac{AP}{AB} \cdot \frac{AQ}{AC}.$
- **25.** а) Середины сторон любого четырёхугольника являются вершинами параллелограмма, причём площадь параллелограмма вдвое меньше площади четырёхугольника.
- б) Середины двух противоположных сторон любого четырёхугольника и середины его диагоналей либо являются вершинами параллелограмма, либо лежат на одной прямой.
- **26.** Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.
- **27.** Если диагонали AC и BD четырёхугольника ABCD, вписанного в окружность радиуса R с центром O, пересекаются в точке P и перпендикулярны, то
 - а) расстояние от точки O до стороны AB вдвое меньше стороны CD;
 - б) медиана РМ треугольника АРД перпендикулярна стороне ВС;
 - B) $AB^2 + CD^2 + AD^2 + BC^2 = 8R^2$, $PA^2 + PB^2 + PC^2 + PD^2 = 4R^2$;
- г) площадь четырёхугольника ABCD равна $\frac{1}{2}(AB \cdot CD + BC \cdot AD)$, причём для любого другого четырёхугольника ABCD с теми же сторонами площадь меньше, чем $\frac{1}{2}(AB \cdot CD + BC \cdot AD)$.
- **28.** Две окружности касаются внутренним образом в точке M. Если AB хорда большей окружности, касающаяся меньшей окружности в точке T, то MT биссектриса угла AMB.
- **29.** Если вписанная окружность касается сторон AB и AC треугольника ABC в точках M и N, а P точка пересечения прямой MN с биссектрисой угла B, то $\angle BPC = 90^{\circ}$.
- **30.** Окружность Аполлония. Геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m:n $(m \neq n)$, есть окружность.
- **31.** *Теорема Птолемея*. Сумма произведений противоположных сторон вписанного четырёхугольника равна произведению его диагоналей.
- **32.** *Теорема Менелая*. Дан треугольник *ABC*. Некоторая прямая пересекает его стороны *AB*, *BC* и *AC* (или их продолжения) в точках C_1 , A_1 , B_1 соответственно. Тогда

$$\frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} \cdot \frac{AC_1}{C_1B} = 1.$$

33. *Теорема Чевы*. Пусть точки A_1 , B_1 и C_1 принадлежат сторонам (или их продолжениям) соответственно BC, AC и AB треугольника ABC. Прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке или параллельны тогда и только тогда, когда

$$\frac{AB_1}{B_1C} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = 1.$$

Литература

- 1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия. Учебник для общеобразовательных учреждений. М.: Просвещение, 2009.
- 2. Гордин Р. К. Геометрия. Планиметрия. 7—9 классы. М.: МЦНМО, 2014.
- 3. *Гордин Р. К.* Избранные задачи школьной геометрии. Базовый и профильный уровни. М.: МЦНМО, 2015.
- 4. Погорелов А. В. Геометрия 7—9. М.: Просвещение, 2009.
- 5. Прасолов В. В. Задачи по планиметрии. М.: МЦНМО, 2007.
- 6. Сборник задач по математике для поступающих в вузы / Под ред. М. И. Сканави. М.: ОНИКС 21 век, АЛЬЯНС-В, 2000.
- 7. *Сергеев И. Н.* Математика. Задачи с ответами и решениями: Пособие для поступающих в вузы. М.: КДУ, 2004.
- 8. Смирнов В. А., Смирнова И. М. Геометрия 7—9. М.: Мнемозина, 2009.
- 9. *Смирнов В. А.*, *Смирнова И. М.* Геометрия 10—11. Учебник для общеобразовательных учреждений. М.: Мнемозина, 2009.
- 10. Ткачук В. В. Математика абитуриенту. М.: МЦНМО, 2011.
- 11. Шарыгин И. Ф. Факультативный курс по математике. Решение задач. М.: Просвещение, 1989.
- 12. *Шарыгин И.Ф.* Задачи по геометрии. Планиметрия. М.: Наука, 1986. (Библиотечка «Квант»; вып. 17).
- 13. Информационно-поисковая система «Задачи по геометрии»: [Электронный ресурс]. URL: http://zadachi.mccme.ru

Ответы и указания

Диагностическая работа

1. $\frac{c}{2}$, $\frac{c}{2} \cdot \sqrt{1+3\cos^2\alpha}$, $\frac{c}{2} \cdot \sqrt{1+3\sin^2\alpha}$. 2. $\frac{1}{2}$. 3. $\sqrt{21}$. 4. 37,2. 5. $2\sqrt{3}$. 6. $\frac{1}{4}$. 7. 60. 8. 2*R*. 9. 45°. 10. $\frac{12}{5}$. 11. 16,9; 2,4; 14,3. 12. $\frac{4}{3}R^2\sqrt{2}$. 13. 150° и 210°. 14. $\frac{ab}{c}$. 15. $\frac{\sqrt{3}}{2}$.

§ 1. Медиана прямоугольного треугольника

Подготовительные задачи

1.1. 2. 1.2.
$$2m$$
, m , $m\sqrt{3}$. 1.3. 3; 4; 5. 1.4. $\frac{4}{5}$. 1.5. 30° , 60° . 1.6. 30° , 60° . 1.7. $\frac{b^2(b^2-a^2)}{a^2+b^2}$. 1.8. $\frac{4}{\sqrt{17}}$. 1.9. $\frac{a\sqrt{2(1\pm\sin\alpha)}}{\cos\alpha} = \frac{a}{\sin\left(45^{\circ}\pm\frac{\alpha}{2}\right)}$.

Тренировочные задачи

1.10. $\sqrt{2mn} - m$, $\sqrt{2mn} - n$, $n + m - \sqrt{2mn}$. **1.11.** $5\sqrt{2}$. **1.12.** $\frac{5\sqrt{13}}{12}$. **1.13.** $2\sqrt{\frac{22-12\sqrt{3}}{2}}$. **1.14.** $\frac{3\sqrt{6}-2}{4}$. Указание. Пусть H — основание перпендикуляра, опущенного из точки P на сторону BC. Тогда точки M. Pи H лежат на одной прямой, а треугольник PHC подобен треугольнику APD. 1.15. 8; 2; 3. У к а з а н и е. Если сумма углов при основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен полуразности оснований. **1.16.** 5; 3. **1.17.** $9\sqrt{5}$. **1.18.** $\frac{1}{2}(1+2\cos 2\alpha)^2 \operatorname{tg} 2\alpha$. Указание. Пусть M — середина DE. Тогда BEMF — ромб, а CF — биссектриса угла MCE. 1.19. 40. У казание. Опустите перпендикуляр из центра окружности на хорду AB и соедините его основание с точкой C. **1.20.** 30° , 60° . **1.21.** $\frac{2bc}{b+c}$. У к а з а н и е. Соедините точку D с серединой отрезка AE. **1.22.** 90°, 30°, 60°. У к а з а н и е. Точки В, С, D, К и точка пересечения прямых АВ и DE лежат на окружности с диаметром BD. **1.23.** $15\sqrt{3}$. **1.24**. 75° . У к а з а н и е. Пусть K — середина CM, а O — основание перпендикуляра, опущенного из точки M на BC. Тогда $\angle AOK = 90^\circ$, а O — центр описанной окружности треугольника *AMB*. **1.25**: $\frac{25\sqrt{7}}{12}a^2$. Указание. Пусть T — середина *BF*. Тогда DT = DC. **1.26**: 110°. Указание. Пусть прямые *AM* и *BC* пересекаются в точке P. Тогда C — середина BP и HC = BC = CD.

Задачи на доказательство и вычисление

1.27.1. 60°, 60°, 120°, 120°. **1.27.2.** 2, 2, 4, **1.28.1.** 2. **1.28.2.** 1:3, считая от точки L. **1.29.1.** 49. **1.29.2.** $\frac{289}{13}$. **1.30.1.** 1,2. **1.30.2.** $\frac{24}{11}$. **1.31.1.** $\sqrt{3}$:3.

1.31.2. 1:2. **1.32.1.** $\frac{5\sqrt{2}}{2}$. **1.32.2.** $\frac{18}{\sqrt{13}}$. **1.33.1.** 12. **1.33.2.** $4\sqrt{2}$, $2\sqrt{7}$. **1.34.1.** $\frac{a}{2}$. **1.34.2.** 27. **1.35.1.** 30°, 60°, 90°. **1.35.2.** $\frac{\sqrt{2}}{2}$. **1.36.1.** $\sqrt{11}$. **1.36.2.** 8,5.

§ 2. Удвоение медианы

Подготовительные задачи

2.1.
$$\frac{2m\sin\beta}{\sin(\alpha+\beta)}$$
, $\frac{2m\sin\alpha}{\sin(\alpha+\beta)}$. **2.2.** 30°. **2.3.** 270. **2.4.** $\frac{19}{2}$. **2.5.** 30. **2.6.** $\sqrt{10}$. **2.7.** 6. **2.8.** 60°. **2.9.** $\arccos\frac{4m^2-a^2-b^2}{2ab}$.

Тренировочные задачи

2.10. 48. **2.11.** 8. У к а з а н и е. См. пример 3. **2.12.** 64. **2.13.** $48\sqrt{6}$. **2.14.** $\frac{245}{8}$. **2.15.** $\frac{1323}{20}$. **2.16:** $\frac{1}{2}\sqrt{2b^2-4a^2}$. У к а з а н и е. Суммы квадратов расстояний от любой точки до противоположных вершин прямоугольника равны между собой. Пусть M — середина AB, а K — проекция точки E на AB. Тогда M — центр прямоугольника ACBF, K — середина DM, OF = 2EM = 2ED.

Задачи на доказательство и вычисление

2.17.1. 48. **2.17.2.** 120. **2.18.1.** 10. **2.18.2.** 240. **2.19.1.** 2,4. **2.19.2.** $\frac{24\sqrt{5}}{7}$. **2.20.1.** 7, 7. **2.20.2.** 7. **2.21.1.** 2. **2.21.2.** 11. **2.22.1.** 1125. **2.22.2.** 180. **2.23.1.** 30. **2.23.2.** 120. **2.24.1.** $2\sqrt{13}$, $4\sqrt{13}$, $6\sqrt{5}$. **2.24.2.** $3\sqrt{17}$.

§ 3. Параллелограмм. Средняя линия треугольника

Подготовительные задачи

3.1. 20. **3.2.**
$$\sqrt{2}$$
. **3.3.** ab . **3.4.** 4; 8; 4; 8. **3.5.** 1. **3.6.** $\frac{\sqrt{b^2 - a^2}}{2}$. **3.7.** 2.

Тренировочные задачи

3.8.
$$4\sqrt{2}$$
, 18. 3.9. $|a-b|$. 3.10. 14. 3.11. 48. 3.12. $\frac{ab}{4}$. 3.13. 5. 3.14. $\frac{ab}{2}$. 3.15. $\frac{1}{2}\sqrt{c^2+d^2\pm cd\sqrt{2}}$. 3.16. $\sqrt{42}$. 3.17. 60°, 120°. 3.18. 5. 3.19. $a+b$. 3.20. $\frac{a+b}{\sqrt{2}}$. У к а з а н и е. Опишите около указанного квадрата ещё один квадрат со стороной $a+b$, проведя через вершины данного квадрата, отличные от вершин треугольника, две прямые, перпендикулярные прямым, содержащим катеты треугольника. Центр полученного квадрата совпадает с центром данного. 3.21. 90°. У к а з а н и е. Пусть K , L , M и N — середины отрезков AD , AC , BC и BD соответственно. Тогда $KLMN$ — прямоугольник. 3.22. $\sqrt{\frac{13}{3}}$ или $\sqrt{\frac{19}{3}}$. У к а з а н и е. Отрезок, соединяющий вершины дан-

ных равнобедренных треугольников, проходит через центр параллелограмма.

3.23. 4. У к а з а н и е. Пусть DD_1 — диаметр окружности. Тогда расстояние от центра окружности до хорды AB равно расстоянию от центра окружности до хорды CD_1 , равной AB. **3.24*** 4. У к а з а н и е. Пусть F — середина AD. Тогда MKNF — параллелограмм, PQ — средняя линия треугольника KFL, а FL — средняя линия треугольника ADE.

Задачи на доказательство и вычисление

3.25.1. 50. **3.25.2.** 25. **3.26.1.** $54\sqrt{3}$. **3.26.2.** $24\sqrt{3}$. **3.27.1.** 36. **3.27.2.** 32. **3.28.1.** 3. **3.28.2.** 20. **3.29.1.** $2\sqrt{5}$. **3.29.2.** 7. **3.30.1.** 2,4. **3.30.2.** 48. **3.31.1.** $12(2-\sqrt{3})$. **3.31.2.** $3\sqrt{2}-4$. **3.32.1.** 4. **3.32.2.** $\frac{1}{5}$.

§ 4. Трапеция

Подготовительные задачи

4.1. 450. **4.2.** 54. **4.3.** 1024. **4.4.** 25. **4.5.** 39 или 9. **4.6.** 5. **4.7.** 90°. **4.8.** 9. **4.9.** 120°. **4.10.** $\frac{a-b}{2}$. **4.11.** $\frac{a^2-b^2}{4}$.

Тренировочные задачи

4.12. 4 : 3. 4.13.
$$\sqrt{\frac{S}{\sin \alpha}}$$
. 4.14. \sqrt{ab} . 4.15. $\frac{10}{3}R$, 4R, 2R. 4.16. $\sqrt{b^2 + \frac{a^2}{4}}$. 4.17. 4; $\frac{5\sqrt{41}}{4}$. 4.18. $\frac{1}{2}\sqrt{a^2+6ab+b^2}$. 4.19. 900 или 780. 4.20. $\frac{ab}{4}$. 4.21. 8 $\sqrt{5}$, 4 $\sqrt{5}$. 4.22. $\frac{h}{\sqrt{3}}$. 4.23. 40° или 80°. 4.24. 14; 12,5; 29,4; 16,9. 4.25. $\frac{63\sqrt{3}}{4}$. 4.26. 13. 4.27. $\frac{3\sqrt{3}}{2}$. У к а з а н и е. Если сумма углов при основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен полуразности оснований. 4.28. 28 или $2\sqrt{181}$. 4.29. $\frac{3}{4}ab$. 4.30. $\sqrt{\frac{a^2+b^2}{2}}$. 4.31. 22. У к а з а н и е. Точка D лежит на окружности с центром C , проходящей через точки A и B . 4.32. $\frac{3}{2}S$ или $\frac{1}{2}S$. 4.33. 75°, 75°, 105°, 105°. У к а з а н и е. Рассмотрите треугольник с вершинами в центре окружности, в середине боковой стороны и в середине радиуса, проведённого в точку касания окружности с основанием BC . 4.34. 30°, 30°, 150°, 150°. 4.35. $\frac{1}{2}\sqrt{m^2+n^2}$. У к а з а н и е. Точки A , B и D лежат на окружности с центром C . Если DK — диаметр этой окружности, то $BK = AD$ и $\angle DBK = 90$ °. 4.36°, 45°, 135°. У к а з а н и е. Боковая сторона данной трапеции равна проекции диагонали на большее основание. 4.37°, 3 : 29. 4.38°, \sqrt{S} . У к а з а н и е. Точка M лежит на прямой, проходящей через точки касания окружности с основаниями трапеции. Эта прямая содержит O — центр окружности, поэтому $S_{\Delta CMD} = S_{\Delta AMB} = S_{AOB}$.

Задачи на доказательство и вычисление

4.39.1. 20. **4.39.2.** 9. **4.40.1.** 120. **4.40.2.** 240. **4.41.1.** 1 : 2. **4.41.2.** 1 : 2. **4.42.1.** $\frac{4ab}{3a+b}$. **4.42.2.** $\frac{42}{17}$. **4.43.1.** 7. **4.43.2.** $\sqrt{3}$. **4.44.1.** 4,8. **4.44.2.** $\frac{120}{13}$. **4.45.1.** 8. **4.45.2.** $7\sqrt{2}$. **4.46.1.** 10. **4.46.2.** $\frac{15}{9}$. **4.47.1.** 6. **4.47.2.** 22. **4.48.1.** 78. **4.48.2.** 90. **4.49.1.** 4: $\sqrt{5}$. **4.49.2.** \sqrt{ab} .

§ 5. Как находить высоты и биссектрисы треугольника?

Подготовительные задачи

5.1. 9,6. **5.2.** 2. **5.3.** $\sqrt{5}$. **5.4.** 8. **5.5.** $\frac{ab}{a+b}$. **5.6.** $\frac{ab\sqrt{2}}{a+b}$. **5.7.** $\frac{24\sqrt{3}}{7}$. **5.8.** 4.8.

Тренировочные задачи

5.9.
$$\frac{\sqrt{2S\sin\alpha\sin\beta\sin\gamma}}{\sin\alpha}$$
; $\frac{\sqrt{2S\sin\alpha\sin\beta\sin\gamma}}{\sin\beta}$; $\frac{\sqrt{2S\sin\alpha\sin\beta\sin\gamma}}{\sin\gamma}$. 5.10. $\frac{29}{5}$. 5.11. 13,44. 5.12. 75. 5.13. $\frac{a^3b}{2(a^2+b^2)}$. 5.14. $\frac{a^3b^3}{(a^2+b^2)^2}$. 5.15. 6.

5.11. 13,44. **5.12.** 75. **5.13.**
$$\frac{a^{ab}}{2(a^2+b^2)}$$
. **5.14.** $\frac{a^{ab}}{(a^2+b^2)^2}$. **5.15.** 6.

5.16.
$$d\sqrt{2+\frac{d}{c}}$$
. **5.17.** $\frac{24}{\sqrt{145}}$. **5.18.** $\frac{mn(m+n)}{m^2+n^2}$. **5.19.** $\frac{\sqrt{3}}{4}$; 7. **5.20.** 5.

5.21. $\frac{4\sqrt{6}}{5}$. У к а з а н и е. Треугольник *ABC* равнобедренный. **5.22.** $CD = \sqrt{6}$,

$$CE = \frac{8}{5}, DE = \frac{\sqrt{34}}{5}, \rho = 2\sqrt{\frac{2}{5}}. \quad \textbf{5.23.} \quad \frac{2\cos\frac{\alpha}{3} + 3}{6\cos\frac{\alpha}{3} + 1}. \quad \textbf{5.24.} \ 2; S = \lg 72^\circ = \sqrt{5 + 2\sqrt{5}}.$$

У к а з а н и е. Пусть прямая, проведённая через точку D параллельно BC, пересекает сторону AC в точке E. Треугольники ADE и CBD равны по двум сторонам и углу между ними. **5.25*** $\alpha b - 2a$. Указание. Если r радиус окружности, вписанной в треугольник *KLM*, то $S_{\triangle KLP} = \frac{1}{2}(KL + LP)r$, $S_{\triangle ELR} = \frac{1}{2}(EL + LR)r$.

Задачи на доказательство и вычисление

5.26.1. $3\sqrt{5}$. **5.26.2.** 30. **5.27.1.** $\frac{\sqrt{10}}{2}$. **5.27.2.** $2\sqrt{6}$. **5.28.1.** 2,4. **5.28.2.** 7,5. **5.29.1.** 113. **5.29.2.** 2. **5.30.1.** $\sqrt{10}$. **5.30.2.** 18. **5.31.1.** $2\sqrt{6}$. **5.31.2.** $2\sqrt{3}$. **5.32.1.** $\frac{60\sqrt{2}}{7}$. **5.32.2.** $2\sqrt{2}$. **5.33.1.** $\frac{R\sqrt{2}}{2}$, $R\sqrt{2-\sqrt{2}}$, R. **5.33.2.** 5, $\frac{24}{5}$, $\frac{24\sqrt{2}}{7}$.

§ 6. Отношение отрезков

Подготовительные задачи

6.1. 1:7, считая от точки C. **6.2.** 2:1, считая от точки B. **6.3.** 5:24. **6.4.** 8:13. **6.5.** 20:21; 6:35. **6.6.** 5:6; 8:25. **6.7.** 1:2. **6.8.** 1:6, считая от точки A. **6.9.** 1:3, считая от точки A. **6.10.** $\frac{a+b}{c}$.

Тренировочные задачи

6.11. n:m. **6.12.** 3:1, считая от вершины A. **6.13.** 1:1. **6.14.** 4. **6.15.** 10. **6.16.** $2\sqrt{6}$. **6.17.** 1:3. **6.18.** 3:1. **6.19.** 1:4. **6.20.** $\sqrt{13}$. **6.21** 1:2. **6.22** a) 1:1,5:9;6) 5:21. **6.23** 4:3. Указание. Пусть D и E—середины хорд MN и BC соответственно, O—центр окружности. Тогда $AP \cdot AE = AD \cdot AO = AM^2 = AB \cdot AC$.

Задачи на доказательство и вычисление

6.24.1. 1:1. **6.24.2.** 1:2. **6.25.1.** 5:1. **6.25.2.** 5:4. **6.26.1.** 3:1, считая от вершины A. **6.26.2.** 2:1, считая от вершины C. **6.27.1.** 2:3. **6.27.2.** 1:6. **6.28.1.** 9. **6.28.2.** 6. **6.29.1.** 4 и 12. **6.29.2.** 12 и 24. **6.30.1.** 90°, 90°, arcsin $\frac{3}{5}$, 180° — arcsin $\frac{3}{5}$. **6.30.2.** 3:5. **6.31.1.** 1:3. **6.31.2.** 1:2, считая от вершины A. **6.32.1.** 40. **6.32.2.** $24\sqrt{3}$. **6.33.1.** $2\sqrt{7}$. **6.33.2.** $4\sqrt{3}$. **6.34.1.** 9:16. **6.34.2.** 16:9, считая от вершины A.

§ 7. Отношение площадей

Подготовительные задачи

7.1. 1. 7.2.
$$\frac{13}{20}$$
. 7.3. $\frac{2}{15}$. 7.4. $\frac{1}{3}$. 7.5. $\frac{1}{3}$. 7.6. $18\sqrt{2}$. 7.7. $\frac{S}{2}$.

Тренировочные задачи

7.8. $2\sqrt{S_1S_2}$. 7.9. $\frac{1}{4}$. 7.10. $\frac{2mn}{(m+n)^2}$. 7.11. $\frac{S_1+S_2}{2}$. 7.12. 120.

7.13.
$$(\sqrt{S}_1 + \sqrt{S}_2)^2$$
. 7.14. $\frac{10}{3}$. 7.15. $\frac{S}{2}$. 7.16. 2S. 7.17. $\frac{ab}{(a+b)^2}$. 7.18. $\frac{1}{5}$. 7.19. $\frac{b(3a+b)S}{2(a+b)(2a+b)}$. 7.20. 2:1. 7.21. $\frac{1}{3}d$. 7.22. 45°, 90°, 45°. 7.23. $9\sqrt{\frac{2}{7}}$. 7.24. $(\sqrt{S}_1 + \sqrt{S}_2 + \sqrt{S}_3)^2$. 7.25. $\frac{2\sqrt{S_2(S_1+S_2)}}{\sqrt[4]{4S_1^2 - S_2^2}}$. 7.26. 3. 7.27. $\frac{abc}{kmc + nma + knb}$. 7.28. $\frac{(l\sin\gamma + m\sin\alpha + n\sin\beta)^2}{2\sin\alpha\sin\beta\sin\gamma}$. 7.29. $2\sqrt{pq}$. 7.30. 13:23. 7.31. 1 + 3k. 7.32. $\frac{1}{7}$.

Задачи на доказательство и вычисление

7.33.1. 1:3. **7.33.2.** 1:3. **7.34.1.** 1:6. **7.34.2.** 1:10. **7.35.1.** 9:16. **7.35.2.** 1:4. **7.36.1.** 1:3. **7.36.2.** 5:12. **7.37.1.** 5:9. **7.37.2.** 8:15. **7.38.1.** 12:25. **7.38.2.** 25:81. **7.39.1.** 3. **7.39.2.** 4. **7.40.1.** 7:20. **7.40.2.** 7:9. **7.41.1.** 3, 12, 6, 6. **7.41.2.** 2:3. **7.42.1.** 3. **7.42.2.** 13, 13, 13, 13. **7.43.1.** 2:1. **7.43.2.** 2:3.

§ 8. Касательная к окружности

Подготовительные задачи

8.1. 45°. **8.2.** 80°. **8.3.** 12 и 20. **8.4.** 1 : 3, считая от точки *O*. **8.5.** 9. **8.6.** 24. **8.7.** 2(r+R) или 2(R-r). **8.8.** $\frac{a}{2\cos\frac{\alpha}{2}}$. **8.9.** 90°. **8.10.** $r^2(2\sqrt{3}+3)$.

8.11. $\frac{a+b}{2}$. **8.12.** 8 и 15.

Тренировочные задачи

8.13. 2. 8.14. $\frac{20}{3}$. 8.15. 48 и 30. 8.16. 14. 8.17. 10. 8.18. 15 или 3. 8.19. $\frac{4a}{7}$, $\frac{5a}{7}$. 8.20. $\frac{a\sin\beta}{\sin\alpha}$ ctg $\frac{\alpha+\beta}{2}$. 8.21. $\frac{120}{17}$. 8.22. $\sqrt{2ar}$. 8.23. 90°, 45°, 45° или 90°, агсtg 3, агссtg 3. 8.24. $\sin2\alpha$. 8.25. $2\sqrt{9+6\sqrt{2}}$. У к а 3 а н и е. Если O — центр окружности, то прямоугольный треугольник OBC — равнобедренный. 8.26. $\frac{150}{7}$. 8.27. $\frac{7}{3\sqrt{3}}$. У к а 3 а н и е. Если данная окружность касается прямых BC и AB в точках P и Q соответственно, а AH — высота треугольника ABC, то $\frac{AH}{OP} = \frac{AM}{OM} = \frac{2}{3}$, а полупериметр треугольника ABC равен отрезку AQ. 8.28. 8. У к а 3 а н и е. Опустите перпендикуляры из центров окружностей на хорду AB.

Задачи на доказательство и вычисление

8.29.1. 49. 8.29.2. $16\sqrt{3}$. 8.30.1. 90° . 8.30.2. 60° . 8.31.1. $2(2+\sqrt{3})$. 8.31.2. $(2-\sqrt{3}):(2+\sqrt{3})=7-4\sqrt{3}$. 8.32.1. $3\sqrt{3}$. 8.32.2. 32. 8.33.1. 11. 8.33.2. 60. 8.34.1. $\frac{9R^2\sqrt{3}}{4}$. 8.34.2. $\frac{42}{25}$. 8.35.1. $2\sqrt{41}$. 8.35.2. $3\sqrt{10}$. 8.36.1. 32 и 16. 8.36.2. $8\sqrt{13}$. 8.37.1. 15. 8.37.2. 19,5. 8.38.1. 15. 8.38.2. 48.

§ 9. Касающиеся окружности

Подготовительные задачи

9.1. R, 60° , 60° , 60° . **9.2. 9. 9.3.** 84. **9.4.** 4. **9.5.** 24. **9.6.** 55. **9.7.** $R(\sqrt{2}+1)$. **9.8.** 2. **9.9.** $\frac{|R^2-a^2|}{2R}$. **9.10.** 60° . **9.11.** 3r. **9.12.** 1:3. **9.13.** $6r\sqrt{3}$. **9.14.** $R(2\sqrt{3}-3)$. **9.15.** $\frac{a+b}{2}$.

Тренировочные задачи

9.16. 8. 9.17.
$$3\sqrt{2}$$
. 9.18. $\frac{a^2+4r^2}{4r}$. 9.19. $3:2$ или $1:2$. 9.20. $\frac{a}{4}$ tg α , $\frac{a}{4}$ ctg α . 9.21. 7. 9.22. $\frac{2rR}{r+R}$. 9.23. $\frac{ar}{2r+a}$. 9.24. 8. 9.25. 30° . 9.26. $3:2$. 9.27. 3. 9.28. $2\sqrt{Rr}$, $2r\sqrt{\frac{R}{R+r}}$, $2R\sqrt{\frac{r}{R+r}}$. 9.29. $\frac{Rr}{(\sqrt{R}\pm\sqrt{r})^2}$. 9.30. 6. 9.31. $\frac{15}{4}$; $\frac{20}{3}$. 9.32. 1. 9.33. 12. 9.34. $\frac{9}{4}$ или $\frac{9}{2}$. 9.35. $\frac{9}{20}$ или $\frac{9}{10}$. 9.36. $2\pm\frac{4}{3}\sqrt{2}$.

9.37.
$$2\sqrt{21}$$
 — 9 или $3+2\sqrt{3}$. 9.38. $\frac{rR\sqrt{3}}{\sqrt{r^2-rR+R^2}}$. 9.39. $a\sqrt{1\pm\frac{r}{R}}$.

9.40.
$$b\sqrt{k^2\pm k}$$
. 9.41. $\frac{\sqrt{5}}{2}$. 9.42. $2\sqrt{2}$. 9.43. 12π . 9.44. $\frac{R\sqrt{3}}{4}$. 9.45. $2r\sqrt{5}$.

9.46.
$$\frac{4(2\pm\sqrt{3})}{3}$$
. **9.47** $\frac{a}{2}$. Указание. Примените формулу Герона.

9.48* $\frac{2rR}{R-r}$. У к а з а н и е. Точка пересечения прямых *AB* и *MN* лежит на прямой, проходящей через центры первых двух окружностей.

Задачи на доказательство и вычисление

9.49.1.
$$3\sqrt{13}$$
. 9.49.2. 156, 65. 9.50.1. 1 и 4. 9.50.2. $\frac{65}{12}$, $\frac{156}{5}$. 9.51.1. 26. 9.51.2. 2,5. 9.52.1. $\frac{15}{8}$. 9.52.2. 23. 9.53.1. 1 : 2. 9.53.2. 10. 9.54.1. 2. 9.54.2. 24. 9.55.1. 3. 9.55.2. $\frac{3+2\sqrt{3}}{9}$. 9.56.1. $80\sqrt{3}$. 9.56.2. $60\sqrt{2}$. 9.57.1. 2,5. 9.57.2. 2.

§ 10. Пересекающиеся окружности

Подготовительные задачи

10.1. 24. **10.2.**
$$\frac{a\sqrt{2}}{\sqrt{3}+1}$$
, $\frac{2a}{\sqrt{3}+1}$ или $\frac{a\sqrt{2}}{\sqrt{3}-1}$, $\frac{2a}{\sqrt{3}-1}$. **10.3.** $2\sqrt{3}$. **10.4.** a . **10.5.** $\frac{a+b}{2}$ или $\frac{|a-b|}{2}$. **10.6.** $\frac{b}{2}$.

Тренировочные задачи

10.7.
$$\frac{384}{25}$$
. 10.8. $\frac{3\sqrt{5}}{5}$. 10.9. $\frac{6}{\sqrt{5}}$. 10.10. $\frac{n-m}{2m}$. 10.11. $a\cos\alpha$. 10.12. $|\cot\alpha|\sqrt{a^2+b^2-2ab\cos\alpha}$. 10.13. $\frac{5+\sqrt{15}}{4}$.

Задачи на доказательство и вычисление

10.14.1. 90°. **10.14.2.** 30°. **10.15.1.** 15. **10.15.2.** $\sqrt{35}$. **10.16.1.** 2. **10.16.2.** $4\sqrt{2}$. **10.17.1.** $2\sqrt{85}$. **10.17.2.** $2\sqrt{281}$. **10.18.1.** 4,8. **10.18.2.** 14 μ 12. **10.19.1.** $2-\sqrt{3}$. **10.19.2.** 3 : 5. **10.20.1.** 9,6. **10.20.2.** 22,4. **10.21.1.** $4\sqrt{97}$. **10.21.2.** 40. **10.22.1.** 62,5. **10.22.2.** 4.

§11. Окружности, связанные с треугольником и четырёхугольником

Подготовительные задачи

11.1. 4. **11.2.** 30° или 150°. **11.3.**
$$R^2 \operatorname{tg} \alpha$$
. **11.4.** $\frac{a+b-c}{2}$. **11.5.** $\frac{5}{2}$, 1, 6, 3, 2. **11.6.** $\frac{169}{24}$, $\frac{10}{3}$, $\frac{15}{2}$, 12, 12. **11.7.** $\frac{65}{8}$, 4, $\frac{21}{2}$, 12, 14. **11.8.** $\frac{b-a}{2}$. **11.9.** $\sqrt{\frac{a^2+b^2}{2}}$. **11.10.** $\frac{85}{9}$.

Тренировочные задачи

11.11. BHe;
$$\frac{3\sqrt{14}}{5}$$
. **11.12.** $\arctan \frac{3}{4}$, $\arctan \frac{3}{4}$. **11.13.** $2R\sqrt{2}$. **11.14.** $\sqrt{3}$.

11.15.
$$\sqrt{3}$$
, $2\sqrt{3}$ или $2\sqrt{3}$, $\sqrt{3}$. **11.16.** 165° или 105°. **11.17.** $\frac{b}{2\cos\frac{\alpha}{2}}$.

11.18.
$$\frac{a^2}{\sqrt{4a^2-b^2}}$$
. **11.19.** $2\sqrt{\frac{34}{15}}$. **11.20.** $\frac{br}{c}$. **11.21.** 36° , 36° , 108° .

11.22. tg
$$\frac{\varphi}{2}\sin 2\varphi$$
. **11.23.** $\frac{1}{2}(p-a)^2$ tg $\frac{\alpha}{2}$. **11.24.** $\frac{1}{2}p(p-a)$ tg $\frac{\alpha}{2}$. **11.25.** 13 и 15.

11.26. 5. **11.27.** 16. **11.28.**
$$4\sqrt{3}$$
. **11.29.** 1. **11.30.** 2. **11.31.** $b+p$. **11.32.** $\frac{4R^3}{S}$.

11.33. 9:14. **11.34.** 2. **11.35.** 30°, 90°. **11.36.** $\operatorname{ctg}^2 \alpha$. **11.37.** $\frac{9\sqrt{3}}{4}$. **11.38.** $\frac{8}{5}R^2$. **11.39.** $\sqrt{3}$. **11.40.** 45°.

Задачи на доказательство и вычисление

11.41.1. 30. 11.41.2. 25. 11.42.1.
$$\frac{575}{14}$$
. 11.42.2. $\frac{13}{8}$. 11.43.1. $\frac{7\pi}{3}$. 11.43.2. 21. 11.44.1. 7. 11.44.2. 4. 11.45.1. 4. 11.45.2. 24. 11.46.1. 40. 11.46.2. $\sqrt{5}$. 11.47.1. $\frac{55}{7}$. 11.47.2. 20. 11.48.1. 26. 11.48.2. 10. 11.49.1. 18. 11.49.2. $\sqrt{10}$. 11.50.1. 2,4. 11.50.2. 40. 11.51.1. 1:4. 11.51.2. 2. 11.52.1. 1:3, считая от *B*. 11.52.2. 1:9, считая от *B*.

§ 12. Пропорциональные отрезки в окружности

Подготовительные задачи

12.1.
$$2\sqrt{ab}$$
. **12.2.** $\frac{ac+bd}{a}$. **12.3.** 1. **12.4.** 12 или $3\sqrt{2}$. **12.5.** 0,2. **12.6.** $|R^2-d^2|$. **12.7.** $\frac{2a}{\sqrt{5}}$. **12.8.** $\frac{2ar}{\sqrt{r^2+a^2}}$. **12.9.** $\sqrt{2a(a+b)}$ или $\sqrt{2b(a+b)}$. **12.10.** 90°.

Тренировочные задачи

12.11.
$$\frac{17}{4}$$
. **12.12.** $\frac{a}{2\sin\alpha} \left(\sqrt{\sin^2\beta + 8\sin^2\alpha} - \sin\beta \right)$. **12.13.** $\frac{\sqrt{5}}{6}$. **12.14.** $\sqrt{2}$.

12.15.
$$\frac{3}{2}(\sqrt{5}\pm 1)$$
. **12.16.** $\sqrt{5}\pm 1$. **12.17.** 210. **12.18.** $\frac{\sqrt{a^2+b^2+2ab\sin\frac{\alpha}{2}}}{2\cos\frac{\alpha}{2}}$.

12.19.
$$\sqrt{10}$$
. **12.20.** $\frac{11}{10}$. **12.21.** $\frac{5}{3}$. **12.22.** $\frac{16}{5}$. **12.23.** $\frac{8}{5}$. **12.24.** 2.

12.25.
$$\frac{\sqrt{17}-1}{2}$$
. **12.26.** 40. **12.27.** $\frac{a+b-2\sqrt{ab}\cos\alpha}{2\sin\alpha}$. **12.28.** 1. **12.29.** $2(5\pm2\sqrt{3})$.

12.30.
$$\sqrt{ab}$$
. **12.31.** 5:10:13. **12.32.** \sqrt{rR} , $\sqrt{\frac{r}{R}}$. **12.33*** $8k-1$. **12.34*** $\sqrt{3}$.

Задачи на доказательство и вычисление

12.37.2. 6. **12.38.1.**
$$\frac{R\sqrt{7}}{2}$$
. **12.38.2.** $\frac{7R^2\sqrt{2}}{9}$. **12.39.1.** 9:4. **12.39.2.** 9:7.

12.40.1. $12\sqrt{5}$. **12.40.2.** 4:5. **12.41.1.** 5. **12.41.2.** 8. **12.42.1.** $\frac{ab}{a-b}$. **12.42.2.** 12. **12.43.1.** $117\sqrt{3}$. **12.43.2.** $33\sqrt{3}$. **12.44.1.** 40, 68, 75, 51. **12.44.2.** 16.

§ 13. Углы, связанные с окружностью. Метод вспомогательной окружности

Подготовительные задачи

13.1. 110° и 250°. **13.2.** $\angle MAB = \angle NAC = 40^\circ$ или $\angle MAB = \angle NAC = 140^\circ$. **13.3.** 35° или 55°. **13.4.** 40°, 80°, 60° или 60°, 20°, 100°. **13.5.** 96°, 132°, 84°, 48°. **13.6.** 3. **13.7.** 25°. **13.8.** $\frac{a}{2|\cos\beta|}$. **13.9.** 50°. **13.10.** 25°. **13.11.** 81°. **13.12.** $\sqrt{2}$. **13.13.** $\frac{\beta+\gamma-\alpha}{2}$.

Тренировочные задачи

13.14. $\frac{a\cos\frac{\beta-\alpha}{2}}{\sin(\beta+\alpha)}$. **13.15.** $\angle BAC = 110^{\circ}$, $\angle BCA = 30^{\circ}$, $\angle DCA = 60^{\circ}$, $\angle DAC = 80^{\circ}$. **13.16.** 80°. **13.17.** 30°, 40°, 110°. **13.18.** $\arcsin \frac{a}{b}$. **13.19.** $\frac{5}{27}\pi$. **13.20.** $\frac{a}{2}$. **13.21.** 1; 1; $\sqrt{3}$; 120°; 30°; 30°. **13.22.** 90° + α , если $\alpha \le 45$ °; 90° - α , если $\alpha > 45^{\circ}$. 13.23. $\frac{c\sqrt{3}}{3}$. 13.24. 80° . 13.25. 15° . 13.26. $2r^{2}\sin^{2}\alpha\sin2\alpha$. 13.27. $\frac{8}{3}$. 13.28. $\frac{\sqrt{49-9\operatorname{tg}^{2}\alpha}}{2\sin\alpha}$. 13.29. $\frac{2}{3}$. 13.30. $\frac{1}{4\cos^{2}\alpha}$. 13.31. 90° , 60° , 30° . **13.32.** $180^{\circ} - 2\alpha$. У к а з а н и е. Точка *M* лежит на окружности с центром *B*, проходящей через точки A и C. 13.33. $\frac{185}{8}$. У к а з а н и е. Точка Q лежит на окружности с центром P, проходящей через точки M и N. 13.34. $a^2 \operatorname{ctg} \frac{\alpha}{2}$. Указание. BK = CK. 13.35. $\frac{\sqrt{b^2 - a^2}}{2\cos\frac{\alpha}{a}}$. 13.36. $\sqrt{3}$. Указание. Из центров O_1 и O_2 окружностей, вписанных в треугольники ABD и ACD, отрезок AD виден под одним и тем же углом. Центр окружности, проходящей через точки O_1 , O_2 , A и D, лежит на описанной окружности четырёхугольника ABCD. 13.37* $\angle A=60^{\circ}$, $\angle B=15^{\circ}$, $\angle C=105^{\circ}$ или $\angle A=60^{\circ}$, $\angle B=105^{\circ}$, $\angle C=15^{\circ}$. У к а з а н и е. Рассмотрите два случая: угол B тупой или острый. Точки M, N и середины сторон AB и AC лежат на одной окружности. 13.38 * 1. У к а з а н и е. Пусть D — точка касания полуокружности со стороной BC. Из точек D и O отрезок QM виден под одним и тем же углом, MQ — высота треугольника MON, $PQ = \frac{1}{2}MN$.

Задачи на доказательство и вычисление

13.39.1. 48. **13.39.2.** 45. **13.40.1.** 6. **13.40.2.** 24. **13.41.1.** 216. **13.41.2.** $18\sqrt{3}$. **13.42.1.** 4. **13.42.2.** $\frac{3\sqrt{3}}{4}$. **13.43.1.** 24. **13.43.2.** 20. **13.44.1.** 8. **13.44.2.** 8. **13.45.1.** $24\sqrt{3}$. **13.45.2.** 4. **13.46.1.** $\arctan 3$, $\arctan \frac{1}{3}$. **13.46.2.** $5\sqrt{2}$. **13.47.1.** 16. **13.47.2.** 12.

§ 14. Вспомогательные подобные треугольники

Подготовительные задачи

14.1. 4, 8, 12, 16. **14.2.** 10. **14.3.** $\frac{3a+2b}{5}$. **14.4.** $\frac{4a-b}{5}$. **14.5.** $\frac{24}{7}$. **14.6.** 12. **14.7.** $\frac{1}{2}$. **14.8.** 1 \bowtie 3. **14.9.** 4, 6, 4, 6.

Тренировочные задачи

14.10. 1 и 2. 14.11. 35. 14.12. 1 : 1. 14.13. $\frac{2ab}{a+b}$. 14.14. $\frac{4r\sqrt{rR}}{R+r}$. 14.15. $\sqrt{\frac{3a^2+2b^2}{5}}$ или $\sqrt{\frac{2a^2+3b^2}{5}}$. 14.16. 2. 14.17. 5, 20, $\frac{25}{2}$, $\frac{25}{2}$. 14.18. 2. 14.19. $\frac{2\sqrt{3}}{3}$. 14.20. \sqrt{ab} . 14.21. $\frac{a\sqrt{3}}{2}$. 14.22. $\frac{mc}{n}$. 14.23. $\sqrt{a(a+b)}$. 14.24. \sqrt{pq} . 14.25. $\frac{ap}{c}$. 14.26. 2. 14.27. $\sqrt{2}$. 14.28. $\frac{R^2}{a}$. 14.29. \sqrt{pq} . 14.30. $\sqrt{a(a-b)}$. У к а з а н и е. Треугольники *AEF* и *EDF* подобны. 14.31: $\frac{bc}{a}$. У к а з а н и е. Пусть *AK* и *DL* — высоты треугольников *ABN* и *DCM*. С помощью метода вспомогательной окружности докажите подобие этих треугольников. 14.32: $\frac{3\sqrt{6}}{2}$. У к а з а н и е. Точка M — середина высоты BH. 14.33: \sqrt{ab} . У к а з а н и е. AM — биссектриса угла BAC, треугольники ABM и BDM подобны. 14.34: $\frac{ac}{b}$. У к а з а н и е. Пусть точки K, L, M и N — основания перпендикуляров, опущенных из вершины A на прямые BC, DC, DE и BE соответственно. Треугольники AKL и ANM подобны.

Задачи на доказательство и вычисление

14.35.1. 4. **14.35.2.** 12. **14.36.1.** 40. **14.36.2.** 24. **14.37.1.** 45°, 45°. **14.37.2.** 30°, 60°. **14.38.1.** $\frac{aR}{m}$. **14.38.2.** 7. **14.39.1.** 60°. **14.39.2.** 30°. **14.40.1.** 1:3. **14.40.2.** 2:3. **14.41.1.** 12. **14.41.2.** 4. **14.42.1.** 3. **14.42.2.** 9 м 4. **14.43.1.** 1:3. **14.43.2.** 1:2. **14.44.1.** $\sqrt{13}$. **14.44.2.** $\sqrt{5}$.

§ 15. Некоторые свойства высот и точки их пересечения

Подготовительные задачи

15.1. 1. **15.2.**
$$S\cos^2\alpha$$
. **15.3.** 60° , 40° , 80° . **15.4.** 30° . **15.5.** $\frac{c(a^2+b^2-c^2)}{4ab}$. **15.6.** $\frac{1}{2}\sqrt{a^2+c^2+ac}$. **15.7.** $\sqrt{a^2+b^2\pm 2abk}$. **15.8.** 10.

Тренировочные задачи

15.9. $\frac{\sqrt{6}}{3}$. **15.10.** $8\sqrt{3}$ или 24. **15.11.** 60° или 120° . **15.12.** 45° или 135° . **15.13.** $\frac{25}{\sqrt{39}}$. **15.14.** 45° , 75° , 60° . **15.15.** 30° . **15.16.** $\frac{24}{5}$. **15.17.** 13. У к а з а - н и е. Продлите высоты треугольника до пересечения с описанной окружностью. Получится треугольник, подобный данному с коэффициентом 2.

15.18. 340. **15.19.** $\frac{5a}{8}$. У к а з а н и е. Пусть H — точка пересечения высот треугольника ABC. Тогда M — середина HP, N — середина HQ, а треугольник BMN подобен треугольнику BAC с коэффициентом $\cos \angle B$. **15.20.** $\frac{1}{2}a^2\operatorname{ctg} \alpha$.

У к а з а н и е. $QN \perp ST$. **15.21:** $\frac{m^2 - h^2}{2h}$. У к а з а н и е. Пусть F — точка пересечения высот, O — центр описанной окружности треугольника ABC, N_1 — точка пересечения с этой окружностью продолжения биссектрисы AN. Тогда AF = 2OM, N — середина AN_1 , а треугольник ONN_1 прямоугольный.

Задачи на доказательство и вычисление

15.22.1. $4\sqrt{2}$, 2. **15.22.2.** 10. **15.23.1.** 3,5. **15.23.2.** 6. **15.24.1.** 30°. **15.24.2.** $\frac{2}{5}$. **15.25.1.** 2. **15.25.2.** 8. **15.26.1.** 2:1, считая от точки B_1 . **15.26.2.** 3:5, считая от точки B_1 . **15.27.1.** 510. **15.27.2.** 1365. **15.28.1.** $4\sqrt{3}$. **15.28.2.** 6.

Диагностическая работа 1

1.
$$\frac{1}{2}$$
 или $\frac{9}{2}$. **2.** $\frac{240}{17}$. **3.** 58° . **4.** 1180. **5.** 3. **6.** $\frac{24}{5}$; 3; 4; 3; 4.

Диагностическая работа 2

1.
$$2\sqrt{97}$$
, 48. **2.** 2*R*. **3.** 0,3. **4.** $2\sqrt{3}$. **5.** $\frac{36}{5}$. **6.** *a*.

Диагностическая работа 3

1.
$$2\sqrt{5}$$
, $4\sqrt{5}$. **2.** $2(r \cot \frac{\alpha}{2} + 2R \sin \alpha)$. **3.** 8, 6 или 4, 12. **4.** $\sqrt{a(a+b)}$, $\sqrt{b(a+b)}$. **5.** 4. **6.** $\frac{(a+b)^2}{4}$.

Диагностическая работа 4

1. 15. **2.**
$$2(\sqrt{2}\pm 1)$$
. **3.** $\frac{6}{5}$. **4.** $\sqrt{97}$ или $\sqrt{57}$. **5.** 4. **6.** $1+\sqrt{3}$.

Диагностическая работа 5

1. 6. **2.** 96. **3.**
$$\frac{2rR\sqrt{rR}}{r+R}$$
. **4.** $\frac{2}{3}$. **5.** $\frac{1}{3}$ или $\frac{9}{11}$. **6.** $\frac{1}{3}$.

Диагностическая работа 6

1. 1 или 4. **2.**
$$\frac{a}{2}$$
. **3.** 2. **4.** $\frac{20\sqrt{5}}{3}$. **5.** 6 или 4. **6.** R .

Диагностическая работа 7

1. 4. **2.** 4:7. **3.** $\frac{1}{\sqrt{10}}$. **4.** 45. **5.** $\frac{7\sqrt{57}}{24}$. **6.** 9.

Диагностическая работа 8

1. $\sqrt{33}$. **2.** 1:1. **3.** $8\sqrt{5}$. **4.** 78. **5.** 3. **6.** $\frac{\sqrt{5}-1}{4} > 0,3$.

Диагностическая работа 9

1. $5\sqrt{\frac{2}{3}}$. **2.** 1:8. **3.** $\frac{2}{9}$. **4.** $\frac{7}{8}$. **5.** $\frac{3}{5}$. **6.** 3.

Диагностическая работа 10

1. $\frac{2}{9}$. **2.** $\frac{4\sqrt{7}}{7}$. **3.** $\frac{1}{4}$. **4.** 30. **5.** 12,5. **6.** $2\sqrt{53}$.

Диагностическая работа 11

1. 1:3. **2.** 6,4. **3.** $3\sqrt{73}$. **4.** 4. 5. $3-\sqrt{5}$. **6.** $\frac{ac}{b}$.

Диагностическая работа 12

1. 5:4. **2.** $\frac{57}{16}$. **3.** 11,25. **4.** 1:2. **5.** $\sqrt{13}$. **6.** 67,5.

Содержание

Предисловие	3
Диагностическая работа	5
§ 1. Медиана прямоугольного треугольника	7
§ 2. Удвоение медианы	15
§ 3. Параллелограмм. Средняя линия треугольника	23
§ 4. Трапеция	32
§ 5. Как находить высоты и биссектрисы треугольника?	43
§ 6. Отношение отрезков	53
§ 7. Отношение площадей	64
§ 8. Касательная к окружности	75
§ 9. Касающиеся окружности	86
§ 10. Пересекающиеся окружности	99
§ 11. Окружности, связанные с треугольником и четырёхугольником	106
§ 12. Пропорциональные отрезки в окружности	121
§ 13. Углы, связанные с окружностью. Метод вспомогательной	
окружности	131
§ 14. Вспомогательные подобные треугольники	143
§ 15. Некоторые свойства высот и точки их пересечения	153
Диагностическая работа 1	164
Диагностическая работа 2	165
Диагностическая работа 3	166
Диагностическая работа 4	167
Диагностическая работа 5	168
Диагностическая работа 6	169
Диагностическая работа 7	170
Диагностическая работа 8	171
Диагностическая работа 9	172
Диагностическая работа 10	173
Диагностическая работа 11	175
Диагностическая работа 12	176
Приложение 1. Избранные задачи тренировочных и экзаменационных ра	
бот	178
Приложение 2. Список полезных фактов	246
Литература	253
Ответы и указания	254

Учебно-методическое пособие

Рафаил Калманович Гордин

ЕГЭ 2019. Математика. Геометрия. Планиметрия. Задача 16 (профильный уровень)

Под редакцией И.В.Ященко

Подписано в печать 09.08.2018 г. Формат $60 \times 90 \, {}^1\!\!/_{16}$. Бумага офсетная. Печать офсетная. Печ. л. 17. Тираж 3000 экз. Заказ N^2

Издательство Московского центра непрерывного математического образования. 119002, Москва, Большой Власьевский пер., д. 11. Тел. (499) 241–08–04

Отпечатано с электронных носителей издательства.

派

ОАО «Тверской полиграфический комбинат». 170024, г. Тверь, пр-т Ленина, 5.

Телефон: (4822) 44-52-03, 44-50-34. Телефон/факс: (4822) 44-42-15. Home page: www.tverpk.ru Email: sales@tverpk.ru

Книги издательства МЦНМО можно приобрести в магазине «Математическая книга», Большой Власьевский пер., д. 11. Тел. (495) 745–80–31. E-mail: biblio@mccme.ru