Escola Secundária de Francisco Franco Matemática A – 11.º ano

Funções reais de variável real

OPERAÇÕES COM FUNÇÕES

Dadas as funções $f:D_f \to \mathbb{R}$ e $g:D_g \to \mathbb{R}$, tem-se as funções:

Soma de f com g	Diferença de f com g	Produto de f com g
$f + g : D_f \cap D_g \to \mathbb{R}$ tal que	$f - g : D_f \cap D_g \to \mathbb{R}$ tal que	$f \times g : D_f \cap D_g \to \mathbb{R}$ tal que
(f+g)(x) = f(x) + g(x)	(f-g)(x) = f(x) - g(x)	$(f \times g)(x) = f(x) \times g(x)$
Quociente de f com g	Produto de f pelo escalar $\alpha \in \mathbb{R}$	Potência de expoente $r \operatorname{de} f, r \in \mathbb{Q}$
$\frac{f}{g}: D_{\frac{f}{g}} \to \mathbb{R}$ onde		$f^r: D_{f^r} \to \mathbb{R}$ tal que
8	$\alpha f: D_f \to \mathbb{R}$ tal que	$f^{r}(x) = [f(x)]^{r}$
$D_{\underline{f}} = D_f \cap D_g \cap \left\{ x \in D_g : g(x) \neq 0 \right\}$	$(\alpha f)(x) = \alpha f(x)$	Nota: D_{f^r} é o conjunto dos números reais
e tal que $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$		para os quais $[f(x)]^r$ tem significado.

Exercício resolvido 1

Considera as funções f e g definidas, respetivamente, por $f(x) = \sqrt{x-5}$ e $g(x) = \frac{x+1}{6-x}$

- 1.1. Calcula, se existir:
 - **1.1.1.** (f+g)(9);
 - **1.1.2.** $(f \times g)(6)$;
 - **1.1.3.** (3 *f*)(41);
 - **1.1.4.** $g^{\frac{1}{3}}(7)$.
- **1.2.** Determina o domínio das funções f + g, f g, $f \times g$ e $\frac{g}{f}$.

1.1.1.
$$(f+g)(9) = f(9) + g(9) = \sqrt{9-5} + \frac{9+1}{6-9} = 2 - \frac{10}{3} = \boxed{-\frac{4}{3}}$$

- **1.1.2.** $(f \times g)(6) = f(6) \times g(6) \rightarrow \underline{\text{não existe}} \text{ (pois } 6 \notin D_g)$
- **1.1.3.** $(3f)(41) = 3f(41) = 3\sqrt{41-5} = 3 \times 6 = \boxed{18}$
- **1.1.4.** $g^{\frac{1}{3}}(7) = \left(\frac{7+1}{6-7}\right)^{\frac{1}{3}} = \sqrt[3]{-8} = \boxed{-2}$
- **1.2.** $D_f = [5, +\infty[$ e $D_g = \mathbb{R} \setminus \{6\}, \log D_{f+g} = D_{f-g} = D_{f \times g} = \boxed{[5, +\infty[\setminus \{6\}]]}$

Dado que 5 é um zero de f, vem que $D_{g/f} = [5,+\infty[\setminus \{6\}]]$

Exercício resolvido 2

Dadas as funções afins definidas por f(x) = 5x - 3 e g(x) = 1 - 3x, determina a de modo que (f - g)(a) = 3.

Resolução

 $(48x^2+22x+2)/(2x-5)$

$$(f-g)(a) = 3 \Leftrightarrow f(a) + g(a) = 3 \Leftrightarrow 5a - 3 - (1 - 3a) = 3$$
$$\Leftrightarrow 8a - 4 = 3 \Leftrightarrow a = \boxed{\frac{7}{8}}$$

Mais exercícios:

Exercício proposto 1

Considera, no referencial o.n. xOy a seguir, os gráficos de duas funções, f e g.

1.1. Indica o domínio das funções:

1.1.1. *f* ; **1.1.2.** g; **1.1.3.** f + g;

1.1.4. fg; **1.1.5.** $\frac{g}{f}$; **1.1.6.** $\frac{f}{g}$.

1.2. Calcula, se existir:

1.2.1. (f-g)(-3); **1.2.2.** (fg)(1);

1.2.3. $\frac{f}{g}(-1)$; **1.2.4.** $\frac{g}{f}(-1)$;

1.2.5. os zeros de fg e de f - g.

Exercício proposto 2

Considera as funções definidas por f(x) = 6x + 2 e $g(x) = \frac{2x-5}{8x+1}$.

- 2.1. Calcula o domínio e indica uma expressão analítica das funções $fg e \frac{f}{g}$.
- **2.2.** Calcula o domínio de f-2g, $\frac{g}{f}$, $f^{\frac{1}{3}}, f^{\frac{1}{2}} e g^{\frac{1}{2}}.$

2.2. $\mathbb{R}\setminus\{-1/8\}$; $\mathbb{R}\setminus\{-1/8,-1/3\}$; \mathbb{R} ; $[-1/3,+\infty[$; $]-\infty,5/2]\setminus\{-1/8\}$.

2.1. $\mathbb{R}\setminus\{-1/8\}$ e $(12x^2-26x-10)/(8x+1)$; $\mathbb{R}\setminus\{-1/8;5/2\}$ e

O professor: Roberto Oliveira