

University of Engineering & Management, Kolkata

Odd Semester Term- II Examination, October-November, 2021

Programme Name: B.Tech in Computer Science Semester: 3rd

Paper Name: Data Structure & Algorithms

Paper Code: PCC CS301

Full Marks: 100 Time: 3 hours

Group A (20 marks)

Answer the following questions. Each question is of 2 marks.

Q. No. 1.

- (i) Convert into post-fix expression: A+B*C/D
- (ii) Mention what is the difference between Linear Array and Linked List?
- (iii) State the difference between singly and doubly linked lists?
- (iv) When a queue can be considered as full?
- (v) What is the utility of learning postfix expression?
- (vi) Explain the significance of height of a search tree.
- (vii) Differentiate between BST & B-Tree.
- (viii) Define thread.
- (ix) What is the requirement of a good hashing function?
- (x) What do you mean by stable sorting? How does it differ from unstable sorting?

Group B (30 marks)

Answer the following questions. Each question is of 5 marks.

- **Q. No. 2.** "Evaluate the following postfix expression using stack-
 - 5, 6, 2, +,*,12,4,/,-"
- Q. No. 3. Construct a binary search tree with the following numbers: 4, 6, 2, 8, 3, 23, 12, 8,
 - 10, 11. Then delete the smallest number and root of the tree in sequence.

Q. No. 4. Derive the average case time complexity of quick sort.

Q. No. 5.

A. "Consider a linear queue in which FRONT=1 & REAR=5. Elements at present moment-A, B, C, D, E. Now perform the following. Show all steps. Add F (b) Delete two letters(c) Add G (d) Add H (e) Delete four letters (f) Add I. "

or

B. Explain tail recursion. Write a recursive C function to find factorial of a number.

Q. No. 6.

A. Construct a heap (max) tree with the following inputs: 1,3,4,6,3,8,9,12,14,2.

or

B. Construct a expression tree for the given expression and then evaluate that from the tree itself.

Expression: A + B / C * D - E (Consider all values are Fibonacci numbers)

Q. No. 7.

A. What is hashing? Give example. Write two different types of hash functions.

or

B. What is the difference between open addressing and chaining as collision resolution techniques in hashing?

Group C (50 marks)

Answer the following questions. Each question is of 10 marks.

- **Q. No. 8.** Explain algorithms for PUSH(), POP(), PEEK() and DISPLAY() operations in a stack using single linked lists.
- **Q. No. 9.** Construct a B Tree of order 5 with the given set of numbers: 11, 7, 21, 18, 8, 27, 39, 36, 42, 54, 45, 72, 4, 90, 63, 81, 89. Then perform the following deletions in sequence: delete 27, 4 and 45.

Q. No. 10.

A. Explain the merge sort algorithm. Analyze why it runs faster than bubble sort in most of the cases.

or

B. Compare and contrast among the different time complexities of linear search, binary search and interpolation search techniques.

Q. No. 11.

A. Write down a C program to delete a node from the beginning and end of a doubly linked list.

or

B. "Convert the following infix expressions to postfix expression using stack:

a.
$$(A - B) + C * D / E - C$$

b.
$$((A - B) + D / ((E + F) * G))$$

Q. No. 12.

A. Calculate Huffman code for the letters used in the given string: "Espresso express". Also calculate the percentage of space that can be saved if we use Huffman coding to store the string.

 \mathbf{or}

B. There is a flight route which covers all the metro cities, namely D, K, C, M. (Take the cities in a clockwise fashion). To save the fuel they need optimized route between every two cities. Direct distance between D & K is 8 unit, K & C is 12 unit, C & M is 6 unit, M & D is 10 unit, M & K is 14 unit, D & C is 9 unit. Please help the operator using suitable algorithm.