Выполнили: Скворцов Иван, Никулина Евгения, Кордзахия Натела, Татаринов Артем (БЭК-181)

Используемые пакеты

```
begin
using Pkg
Pkg.add("DataFrames")
Pkg.add("CSV")
Pkg.add("Plots")
end
```

```
begin
using Dates
using CSV
using DataFrames
using Plots
end
```

Вводные слова

В данном обзоре функционала Julia мы будем использовать две таблицы, содержащие обезличенные данные одной известной сети магазинов одежды.

Таблица transactions_footfall содержит данные по количеству посетителей и транзакций в магазинах сети.

Таблица events содержит количество кликов (событий) в приложении, которое продавцыконсультанты используют для работы с клиентами.

Целью нашей работы станет исследование зависимости между **частотой использования приложения** и **конверсией** (отношением кол-ва транзакций к общему числу клиентов).

Подгрузка датасетов

Данные хранятся в формате csv. Для их корректной подгрузки мы задаем формат дат (переменная dftm), а также тип первого столбца — String, поскольку ID магазина является категориальной переменной.

transactions_footfall =		store_id	date	transactions	footfall
	1	"2174"	2020-11-01	14.0	366.0
	2	"2174"	2020-11-02	14.0	missing
	3	"2174"	2020-11-03	14.0	252.0
	4	"2174"	2020-11-04	14.0	420.0
	5	"2174"	2020-11-05	7.0	255.0
	6	"2174"	2020-11-06	7.0	213.0
	7	"2174"	2020-11-07	14.0	369.0
	8	"2174"	2020-11-08	21.0	372.0
	9	"2174"	2020-11-09	7.0	147.0
	10	"2174"	2020-11-10	14.0	207.0
	mo	re			

^{*} transactions_footfall = CSV.read("transactions_footfall.csv", DataFrame, types=Dict(1=>String), dateformat=dfmt) # объект Dict в аргументе types задает желательные форматы столбцов

2204 "7570" 2020_11_70 50

usage = CSV.read("usage.csv", DataFrame, types=Dict(1=>String), dateformat=dfmt)

	store_id	date	events
1	"3048"	2020-11-01	214
2	"3048"	2020-11-02	116
3	"3048"	2020-11-03	97
4	"3048"	2020-11-04	207
5	"3048"	2020-11-05	285
6	"3048"	2020-11-06	220
7	"3048"	2020-11-07	334
8	"3048"	2020-11-08	156
9	"3048"	2020-11-09	171
10	"3048"	2020-11-10	97

Первичное исследование данных

При помощи функции describe выясняем, что имеющиеся данные захватывают период с 1 по 30 ноября 2020 года.

	variable	mean	min	median	max	nmissing	eltype
1	:store_id	nothing	"2011"	nothing	"4981"	0	String
2	:date	nothing	2020-11-01	nothing	2020-11-30	0	Date
3	:transactions	16.0706	0.0	14.0	91.0	0	Float64
4	:footfall	294.125	0.0	237.0	1635.0	32	Union{Missing, Fl

describe(transactions_footfall)

	variable	mean	min	median	max	nmissing	eltype
1	:store_id	nothing	"2027"	nothing	"4981"	0	String
2	:date	nothing	2020-11-01	nothing	2020-11-30	0	Date
3	:events	134.333	2	102.0	970	0	Int64

describe(usage)

При этом данные по пользованию приложением есть не для всех магазинов: скорее всего, в некоторых из них оно не использовалось вовсе. Это дает нам возможность посмотреть на работу различных типов объединения данных: *left join, right join* и *inner join*.

93

length(unique(transactions_footfall.store_id))

77

• length(unique(usage.store_id))

При помощи операций над множествами мы можем выяснить, насколько полными будут данные после их объединения. Для этого зададим множества значений столбца store_id в для обоих датасетов:

```
Set{String} with 77 elements:
   "3852"
   "2394"
```

```
"3196"
"2362"
"2452"
"3757"
"2678"
"4715"
"2987"
"2732"
"4095"
"4549"
"2423"
:
begin
      stores_in_tf = Set(transactions_footfall.store_id)
      stores_in_ug = Set(usage.store_id)
 end
```

В частности, для 76 из 77 магазинов, использовавших приложение в ноябре, имеются данные по трафику и транзакциям:

```
Set{String} with 76 elements:
    "4601"
    "2614"
    "3922"
    "4619"
    "4606"
    "2732"
    "2666"
    "4057"
    "2922"
    "4071"
    "2064"
    "2736"
    "3745"
    :
    intersect(stores_in_tf, stores_in_ug)
```

17 магазинов не использовали приложение, но обслуживали посетителей:

```
Set{String} with 17 elements:
    "2011"
    "2083"
    "3630"
    "4254"
    "4359"
    "3591"
    "4560"
    "2979"
    "2596"
    "4222"
    "44003"
    "33311"
    "33160"
    :
    setdiff(stores_in_tf, stores_in_ug)
```

Опять же, у 1 магазина из использовавших приложение нет данных по числу посетителей (возможно, он не работал, а приложение использовалось для внутренних процессов).

```
Set{String} with 1 element:
  "4659"
 setdiff(stores_in_ug, stores_in_tf)
```

Можем вывести данные по пользованию для этого магазина. Видим, что приложение использовалось всего четыре дня.

	store_id	date	events
1	"4659"	2020-11-01	19
2	"4659"	2020-11-02	4
3	"4659"	2020-11-03	5
4	"4659"	2020-11-12	2

```
usage[usage[!, "store_id"] .== "4659", :]
```

Наконец, в целом две имеющиеся таблицы покрывают 94 магазина сети:

```
Set{String} with 94 elements:
  "4601"
  "2614"
  "3922"
  "4619"
  "4606"
  "3630"
  "2732"
  "2666"
  "4222"
  "4057"
  "2922"
  "4071"
  "2064"
 union(stores_in_ug, stores_in_tf)
```

Объединение таблиц (join)

Объединение таблиц обычно понимается в смысле join'ов в том виде, в каком они представлены в языке SQL. Ниже представлено схематическое представление четырех основных типов объединений. В этом разделе мы разберем каждый из них на базе функционала Julia DataFrames.

Синтаксис

Объединение таблиц в Julia производится при помощи набора функций, полный перечень которых представлен в **документации**. Разберем общую логику их синтаксиса.

Функции вида *join(df1, df2, on = ...) принимают три обязательных аргумента: левая (первая) таблица, правая (вторая) таблица и столбцы-индексы (key columns).

Основная сложность может возникнуть при задании столбцов-индексов. Разберем основные случаи, которые встречаются при работе с реальными данными:

- Названия столбцов-индексов совпадают в обеих таблицах.
 - ∘ Один индекс: on = :idx_col_name
 - Несколько индексов: on = [:idx_col_name1, :idx_col_name2, ...]
- Названия столбцов-индексов **не совпадают** в обеих таблицах. В таком случае нужно задать соответствие между названиями столбцов в датасетах:
 - Первый способ, кортежи: on = [(:idx_1_df1, :idx_1_df2), (:idx_2_df1, :idx_2_df2), ...]
 - Второй способ, словари: on = [:idx_1_df1 => :idx_1_df2, :idx_2_df1 => :idx_2_df2, ...]

Иногда бывает необходимо проверить, являются ли сочетания индексов уникальными в каждом из датасетов (например, убедиться, что в таблице встречается лишь одно значение переменной

для пары store_id-date). В таком случае используется дополнительный аргумент функции *join — validate, принимающий кортеж из двух логических значений true/false. Первое значение отвечает за проверку уникальности в левом датасете, второе значение — за проверку уникальности в правом датасете. Если будут обнаружены повторяющиеся индексы, функция выдаст ошибку типа

ERROR: ArgumentError: Merge key(s) are not unique in both df1 and df2. First duplicate in df1 at 3. First duplicate in df2 at 3

Inner join

Этот тип объединения подразумевает, что в итоговый датасет включаются только те наблюдения, индексы которых содержатся в обеих таблицах. В нашем случае мы имеем дело с двойным индексом: нам необходимо объединять данные по столбцам store_id и date одновременно.

• =	store_id	date	events	transactions	footfall
1	"3048"	2020-11-01	214	7.0	99.0
2	"3048"	2020-11-02	116	14.0	126.0
3	"3048"	2020-11-03	97	14.0	156.0
4	"3048"	2020-11-04	207	14.0	144.0
5	"3048"	2020-11-05	285	7.0	123.0
6	"3048"	2020-11-06	220	14.0	147.0
7	"3048"	2020-11-07	334	14.0	153.0
8	"3048"	2020-11-08	156	7.0	90.0
9	"3048"	2020-11-09	171	21.0	132.0
10	"3048"	2020-11-10	97	21.0	147.0
mo	re				
2206	"7570"	2020_11_70	ΕΩ	7 0	۵ <i>۱</i> ۵

Исходя из нашего знания данных, полученного в предыдущем разделе, мы ожидаем, что inner join позволит получить объединенный датасет для **76 магазинов**, у которых имеются данные и по пользованию, и по посетителям. Проверим, что это действительно так:

```
Set{String} with 76 elements:
```

[&]quot;3852"

¹¹²²⁰¹¹

[&]quot;3196"

^{11 276 21}

localhost:1234/edit?id=5a39cc90-6a19-11eb-3e31-198791cb0312

```
08.02.2021
```

```
"2452"
"3757"
"2678"
"4715"
"2987"
"2732"
"4095"
"4549"
"2423"
:
```

• Set(inner.store_id)

Full join

Этот тип объединения сохранит все индексы, которые имеются в двух таблицах. При этом недостающие данные будут заполнены пустыми значениями. В Julia соответствующая функция называется outerjoin (не путать с настоящим outer join, сохраняющим только наблюдения, индексы которых встречаются лишь в одном из датасетов!)

ll =	store_id	date	events	transactions	footfall
1	"3048"	2020-11-01	214	7.0	99.0
2	"3048"	2020-11-02	116	14.0	126.0
3	"3048"	2020-11-03	97	14.0	156.0
4	"3048"	2020-11-04	207	14.0	144.0
5	"3048"	2020-11-05	285	7.0	123.0
6	"3048"	2020-11-06	220	14.0	147.0
7	"3048"	2020-11-07	334	14.0	153.0
8	"3048"	2020-11-08	156	7.0	90.0
9	"3048"	2020-11-09	171	21.0	132.0
10	"3048"	2020-11-10	97	21.0	147.0
	more				
full = outerjoin(us		:tions_footfa		7 n [:store_id, :d	201 0 date])

Как и следовало ожидать, полученный датасет включает данные по 94 магазинам:

```
Set{String} with 94 elements:
   "3852"
   "2394"
   "3196"
   "2362"
   "2452"
   "3757"
```

```
"2678"
"4715"
"2011"
"2987"
"2732"
"2083"
"4095"
```

Set(full.store_id)

Left join

Этот тип объединения сохранит все индексы, которые содержатся в левой (первой) таблице.

Недостающие данные из правой таблицы будут заполнены пустыми значениями.

```
left =
                            store id
                                                   events transactions
                                                                          footfall
                                         date
                       1
                            "3048"
                                      2020-11-01
                                                   214
                                                            7.0
                                                                          99.0
                            "3048"
                                                            14.0
                                      2020-11-02
                                                   116
                                                                          126.0
                       2
                            "3048"
                                                   97
                                      2020-11-03
                                                            14.0
                                                                          156.0
                       3
                            "3048"
                                      2020-11-04
                                                   207
                                                            14.0
                                                                          144.0
                            "3048"
                                                            7.0
                                      2020-11-05
                                                   285
                                                                          123.0
                       5
                            "3048"
                                      2020-11-06
                                                   220
                                                            14.0
                                                                          147.0
                            "3048"
                                      2020-11-07
                                                   334
                                                            14.0
                                                                          153.0
                            "3048"
                                      2020-11-08
                                                   156
                                                            7.0
                                                                          90.0
                       8
                            "3048"
                                      2020-11-09
                                                   171
                                                            21.0
                                                                          132.0
                       9
                            "3048"
                                                   97
                                                            21.0
                      10
                                      2020-11-10
                                                                          147.0
                        more
                     2202 "7570"
                                      2020-11-30 50
 • left = leftjoin(usage, transactions_footfall, on = [:store_id, :date])
```

Разумеется, полученная таблица содержит данные по 77 магазинам:

```
Set{String} with 77 elements:
"3852"
"2394"
"3196"
"2362"
"2452"
"3757"
"2678"
"4715"
"2987"
"2732"
"4095"
```

```
"4549"
"2423"
:
```

• Set(left.store_id)

Right join

Этот тип объединения сохранит все индексы, которые содержатся в правой (второй) таблице. Недостающие данные из левой таблицы будут заполнены пустыми значениями.

right =		store_id	date	events	transactions	footfall
		"2174"	2020-11-01	44	14.0	366.0
	2	"2174"	2020-11-02	19	14.0	missing
	3	"2174"	2020-11-03	27	14.0	252.0
	4	"2174"	2020-11-04	78	14.0	420.0
	5	"2174"	2020-11-05	120	7.0	255.0
	6	"2174"	2020-11-06	41	7.0	213.0
	7	"2174"	2020-11-07	21	14.0	369.0
	8	"2174"	2020-11-08	112	21.0	372.0
	9	"2174"	2020-11-09	13	7.0	147.0
	10	"2174"	2020-11-10	9	14.0	207.0
	mo	re				
∘ right = rightjo	2002	"ZQQQ"	2020_11_2/			201 0

Полученная таблица содержит данные по 93 магазинам:

```
Set{String} with 93 elements:
"3852"
"2394"
"3196"
"2362"
"2452"
"3757"
"2678"
"4715"
"2011"
"2987"
"2732"
"2083"
"4095"
:
```

• Set(right.store_id)

Поскольку left и right объединения относительны, right join также можно сделать, поменяв порядок таблиц внутри функции leftjoin.

right_alternative =		store_id	date	transactions	footfall	events
	1	"2174"	2020-11-01	14.0	366.0	44
	2	"2174"	2020-11-02	14.0	missing	19
	3	"2174"	2020-11-03	14.0	252.0	27
	4	"2174"	2020-11-04	14.0	420.0	78
	5	"2174"	2020-11-05	7.0	255.0	120
	6	"2174"	2020-11-06	7.0	213.0	41
	7	"2174"	2020-11-07	14.0	369.0	21
	8	"2174"	2020-11-08	21.0	372.0	112
	9	"2174"	2020-11-09	7.0	147.0	13
	10	"2174"	2020-11-10	14.0	207.0	9
	mo	re				
<pre>• right_alternative = l Set{String} with 93 elem "3852" "2394" "3196" "2362" "2452" "3757" "2678" "4715" "2011"</pre>	-	(transacti	ons_footfall	, usage, on =	[:store_:	id, :date]
"2987" "2732" "2083" "4095" : Set(right_alternative	.store_	id)				

Более подробную информацию об объединениях таблиц в Julia DataFrames можно найти здесь.

Конкатенация таблиц

Конкатенация таблицы - это простое склеивание вдоль одной из осей. Ниже мы рассмотрим конкатенацию по горизонтали - hcat() и по вертикали - vcat(). Обе функции происходят от базовой функции cat(..., dims = (m,n)), которую удобно использовать, если надо объединить

таблицы с тремя и более измерениями. Для тех, кто знаком с питоном - эта фунция полностью аналогична pd.concat()

По вертикали

Конкатенация по вертикали позволяет объединить два датасета, если у них совпадает количество столбцов (в нашем примере три), при этом количество строк для объединения может быть любым:

a =

	store_id	date	events
1	"3048"	2020-11-01	214
2	"3048"	2020-11-02	116
3	"3048"	2020-11-03	97
4	"3048"	2020-11-04	207

• a = usage[1:4, :]

b =

	store_id	date	events
1	"3048"	2020-11-05	285
2	"3048"	2020-11-06	220
3	"3048"	2020-11-07	334
4	"3048"	2020-11-08	156

• b = usage[5:8, :]

v_conc =

store_id

date

events

	store_id	date	events
1	"3048"	2020-11-01	214
2	"3048"	2020-11-02	116
3	"3048"	2020-11-03	97
4	"3048"	2020-11-04	207
5	"3048"	2020-11-05	285
6	"3048"	2020-11-06	220
7	"3048"	2020-11-07	334
8	"3048"	2020-11-08	156

```
v_conc = vcat(a,b)
```

По горизонтали

Конкатенация по горизонтали позволяет объединить два датасета, если у них совпадает количество строк. При этом количество столбцов для объединения может быть любым:

c =		store_id
	1	"3048"
	2	"3048"
	3	"3048"
	4	"3048"
	5	"3048"
	6	"3048"
	7	"3048"
	8	"3048"
	9	"3048"
	10	"3048"
	mc	ore
F 4.1	2201	"7570"
<pre>c = usage[:, 1:1]</pre>		

d =

	date	events
1	2020-11-01	214
2	2020-11-02	116
3	2020-11-03	97
4	2020-11-04	207
5	2020-11-05	285
6	2020-11-06	220
7	2020-11-07	334
8	2020-11-08	156
9	2020-11-09	171
10	2020-11-10	97

more

• d = usage[:, 2:3]

conc =		store_id	date	events
	1	"3048"	2020-11-01	214
	2	"3048"	2020-11-02	116
	3	"3048"	2020-11-03	97
	4	"3048"	2020-11-04	207
	5	"3048"	2020-11-05	285
	6	"3048"	2020-11-06	220
	7	"3048"	2020-11-07	334
	8	"3048"	2020-11-08	156
	9	"3048"	2020-11-09	171
	10	"3048"	2020-11-10	97
	mo	re		
	2201	"7570"	2020_11_70	50

В **документации** можно подробнее прочитать о конкатенации в Julia.

Корреляционный анализ

Применяя полученные знания об объединении таблиц, выясним характер взаимосвязи между частотой использования приложения и конверсией.

Поскольку для этого нам нужны наиболее полные данные, будем использовать inner join для создания рабочего датасета:

1						
data =		store_id	date	events	transactions	footfall
	1	"3048"	2020-11-01	214	7.0	99.0
	2	"3048"	2020-11-01	116	14.0	126.0
	3	"3048"	2020-11-03	97	14.0	156.0
	4	"3048"	2020-11-04	207	14.0	144.0
	5	"3048"	2020-11-05	285	7.0	123.0
	6	"3048"	2020-11-06	220	14.0	147.0
	7	"3048"	2020-11-07	334	14.0	153.0
	8	"3048"	2020-11-08	156	7.0	90.0
	9	"3048"	2020-11-09	171	21.0	132.0
	10	"3048"	2020-11-10	97	21.0	147.0
	mo	re				
	2206	11222011	2020_11_70		7.0	Q/ n
data = innerjoin	ı(usage	e, transaci	tions_footfal	.l, on =	<pre>[:store_id, :</pre>	date])

Исключим наблюдения с пропущенными значениями (они встречаются только в столбце footfall):

	store_id	date	events	transactions	footfall
1	"3048"	2020-11-01	214	7.0	99.0
2	"3048"	2020-11-02	116	14.0	126.0
3	"3048"	2020-11-03	97	14.0	156.0
4	"3048"	2020-11-04	207	14.0	144.0
5	"3048"	2020-11-05	285	7.0	123.0
6	"3048"	2020-11-06	220	14.0	147.0
7	"3048"	2020-11-07	334	14.0	153.0
8	"3048"	2020-11-08	156	7.0	90.0
9	"3048"	2020-11-09	171	21.0	132.0

store_id date events transactions footfall

```
dropmissing!(data)
```

Исключим наблюдения с нулевым количеством посетителей или транзакций: скорее всего, в такие дни магазин не работал.

	store_id	date	events	transactions	footfall
1	"3048"	2020-11-01	214	7.0	99.0
2	"3048"	2020-11-02	116	14.0	126.0
3	"3048"	2020-11-03	97	14.0	156.0
4	"3048"	2020-11-04	207	14.0	144.0
5	"3048"	2020-11-05	285	7.0	123.0
6	"3048"	2020-11-06	220	14.0	147.0
7	"3048"	2020-11-07	334	14.0	153.0
8	"3048"	2020-11-08	156	7.0	90.0
9	"3048"	2020-11-09	171	21.0	132.0
10	"3048"	2020-11-10	97	21.0	147.0
mo	re				

```
begin
filter!(row -> row.footfall != 0, data)
filter!(row -> row.transactions != 0, data)
end
```

Зададим новые переменные: conversion (конверсия) и CPP (clicks per person, число кликов в приложении на посетителя).

Float64[2.16162, 0.920635, 0.621795, 1.4375, 2.31707, 1.4966, 2.18301, 1.73333, 1.29

```
    begin
    data[!, "conversion"] = data.transactions ./ data.footfall
    data[!, "CPP"] = data.events ./ data.footfall
    end
```

	store_id	date	events	transactions	footfall	conversion	СРР
1	"3048"	2020-11-01	214	7.0	99.0	0.0707071	2.16162

	store_id	date	events	transactions	footfall	conversion	СРР
2	"3048"	2020-11-02	116	14.0	126.0	0.111111	0.920635
3	"3048"	2020-11-03	97	14.0	156.0	0.0897436	0.621795
4	"3048"	2020-11-04	207	14.0	144.0	0.0972222	1.4375
5	"3048"	2020-11-05	285	7.0	123.0	0.0569106	2.31707
6	"3048"	2020-11-06	220	14.0	147.0	0.0952381	1.4966
7	"3048"	2020-11-07	334	14.0	153.0	0.0915033	2.18301
8	"3048"	2020-11-08	156	7.0	90.0	0.0777778	1.73333
data	11704011	0000 44 00	474	04 0	470.0	0.450004	4 00545

Отфильтруем наблюдения, руководствуясь тем, что конверсия не может превышать 1, а число кликов на посетителя вряд ли превысит 25.

data_clean =

	store_id	date	events	transactions	footfall	conversion	СРР
1	"3048"	2020-11-01	214	7.0	99.0	0.0707071	2.16162
2	"3048"	2020-11-02	116	14.0	126.0	0.111111	0.920635
3	"3048"	2020-11-03	97	14.0	156.0	0.0897436	0.621795
4	"3048"	2020-11-04	207	14.0	144.0	0.0972222	1.4375
5	"3048"	2020-11-05	285	7.0	123.0	0.0569106	2.31707
6	"3048"	2020-11-06	220	14.0	147.0	0.0952381	1.4966
7	"3048"	2020-11-07	334	14.0	153.0	0.0915033	2.18301
8	"3048"	2020-11-08	156	7.0	90.0	0.0777778	1.73333
9	"3048"	2020-11-09	171	21.0	132.0	0.159091	1.29545
10	"3048"	2020-11-10	97	21.0	147.0	0.142857	0.659864
mo	re						

data_clean = data[(data[!, "conversion"] .< 1) .& (data[!, "CPP"] .< 10), :]</pre>


```
• plot(data_clean.CPP, data_clean.conversion, seriestype = :scatter, title = "Clicks-
per-person vs. Conversion", dpi = 400, yformatter = y -> string(Int64(floor(y * 100)),
"%"), smooth = true, label = "", xlabel = "Clicks-per-person", ylabel = "Conversion")
```

Clicks-per-person

Можно заметить, что наблюдается положительная зависимость между интенсивностью пользования приложением и конверсией! Круто!

Гетероскедастичность – это отдельный разговор:)