Esercizio 1: Spazio di indirizzamento, pagine e frame

Data una memoria di 64 KByte:

- 1. Determinare lo spazio di indirizzamento in bit.
- 2. Supponendo che 4 bit siano dedicati all'offset nella pagina:
 - Calcolare la dimensione di ciascuna pagina.
 - · Calcolare il numero di pagine nel sistema.
- 3. Supponendo che 8 bit siano dedicati all'offset nella pagina:
 - Calcolare la dimensione di ciascuna pagina.
 - · Calcolare il numero di pagine nel sistema.
- 4. Determinare, in ciascun caso, la dimensione dei frame fisici corrispondenti.

Suggerimenti per la risoluzione

Passaggi per svolgere l'esercizio:

1. Spazio di indirizzamento: calcolato come il numero totale di byte indirizzabili:

Spazio di indirizzamento (in bit) =
$$log_2$$
(Memoria totale in byte)

Per una memoria di 64 KB, calcolare il numero di bit necessari.

2. **Dimensione di una pagina**: ogni pagina contiene 2^n byte, dove n è il numero di bit dedicati all'offset:

Dimensione pagina =
$$2^n$$
 byte.

3. Numero di pagine: si calcola dividendo la memoria totale per la dimensione di ciascuna pagina:

$$\mbox{Numero di pagine} = \frac{\mbox{Memoria totale}}{\mbox{Dimensione pagina}}.$$

Oppure, si calcola ragionando sullo spazio di indirizzamento. Il numero delle pagine è dato da:

$$2^{(m-n)}$$

dove m è lo spazio di indirizzamento e 2^n è la dimensione della pagina.

4. Dimensione dei frame fisici: i frame fisici corrispondono alla dimensione delle pagine:

 $Dimensione \ frame \ fisico = Dimensione \ pagina.$

Esercizio 2:

Si ha uno spazio di indirizzamento di 24 bit e pagine di 1024 byte.

Domande:

- 1. Calcolare il numero di pagine.
- 2. Determinare la dimensione totale della memoria.

Esercizio 3

Data la seguente figura,

0 a 1 b	0
2 c 3 d 4 e	4 i
5 f	4 i j
6 g 7 h 1 6	k
8 i 2 1	8 m
9 j 10 k	n
	p
12 m 13 n	12
14 o	
15p	16
logical memory	10
	20 a
	b c
	d
	24 e f
	g
	h
	physical memory

determinare, per gli elementi d, m e f

^{1.}il frame in cui sono memorizzati nella memoria principale

^{2.} l'indirizzo fisico

^{3.} supponendo che il frame 5 inizi all'indirizzo 81.920, il frame 6 all'indirizzo 98.304, il frame 1 all'indirizzo 0 e il frame 2 all'indirizzo 16.384, determinare i nuovi indirizzi fisici per gli elementi d, m e f