

Inspirar para Transformar

# Instrumentação e Medição

Aula 4



# Feedback da atividade com resistor de 2,4 ohms (60 min)





$$V_0 = 3 \text{ V}$$

$$R_1 = 500 \Omega$$

$$R_2 = 5,1 \Omega$$
Trimpot  $1k\Omega$ 

$$R_{x} = R_{v} \left( \frac{R_{2}}{R_{1}} \right)$$
incertezas



Z = A + B Z = A - B

$$\alpha_z = \sqrt{\alpha_A^2 + \alpha_B^2}$$

$$Z = A \cdot B$$

$$Z = \frac{A}{B}$$

$$\frac{\alpha_z}{Z} = \sqrt{\left(\frac{\alpha_A}{A}\right)^2 + \left(\frac{\alpha_B}{B}\right)^2}$$

$$Z = A^n$$

$$\left| \frac{\alpha_z}{Z} \right| = \left| n \left( \frac{\alpha_A}{A} \right) \right|$$

$$Z = kA$$

$$\alpha_z = |k| \alpha_A$$
 ou  $\left| \frac{\alpha_z}{Z} \right| = \left| \frac{\alpha_A}{A} \right|$ 

$$Z = k \frac{A}{B}$$

$$Z = k \frac{A}{B} \qquad \frac{\alpha_z}{Z} = \sqrt{\left(\frac{\alpha_A}{A}\right)^2 + \left(\frac{\alpha_B}{B}\right)^2}$$



| n      | Rv / Ω | n      | Rv/Ω  |
|--------|--------|--------|-------|
| 1      | 250    | 1      | 244,0 |
| 2      | 250    | 2      | 244,0 |
| 3      | 250    | 3      | 244,4 |
| 4      | 250    | 4      | 244,7 |
| 5      | 250    | 5      | 244,1 |
| 6      | 246    | 6      | 243,6 |
| 7      | 245    | 7      | 243,8 |
| 8      | 245    | 8      | 243,3 |
| 9      | 244    | 9      | 243,7 |
| 10     | 245    | 10     | 243,7 |
| Média  | 247    | Média  | 243,9 |
| Desvio | 2      | Desvio | 0,4   |



Inspirar para Transformar

Medimos a resistência do trimpot. Precisamos calcular Rx, que é a resistência do "resistor de 2,4 ohms"

$$R_{\text{v,médio}} = 247\Omega$$
 $\sigma R_{\text{v}} = 2\Omega$ 
 $\sigma R_{\text{v}} = 2\Omega$ 

Para a ponte balanceada, com os valores de R<sub>1</sub> e R<sub>2</sub> medidos com multímetro:

$$R_1 = 496,2 \pm 5\Omega$$

$$R_2 = 5.1 \pm 0.1 \Omega$$

$$R_{x} = R_{v} \left( \frac{R_{2}}{R_{1}} \right)$$



$$R_{X} = \frac{R_{V}}{97,294...}$$



Inspirar para Transformar

$$R_{\rm X} = \frac{R_{\rm V}}{97,294...} = \frac{247}{97,294...} = 2,53869...$$

**Onde truncamos?** 

Qual é a incerteza associada a Rx?



#### Vamos propagar incertezas

Incerteza no cálculo de: 
$$\left(\frac{R_2}{R}\right)$$
  $R_1 = 496,2 \pm 5\Omega$   $R_2 = 5,1 \pm 0,1 \Omega$ 

$$\frac{\alpha_z}{Z} = \sqrt{\left(\frac{5}{496}\right)^2 + \left(\frac{0,1}{5,1}\right)^2} \Rightarrow \frac{\alpha_z}{Z} = 0,04049...$$

$$R_{v,m\'edio} = 247 \ \Omega$$
  $\alpha_{Rv} = 0.6 \ \Omega$ 



#### Vamos propagar incertezas

Incerteza no cálculo de: 
$$R_X = R_V \left(\frac{R_2}{R}\right)$$
  $R_{v,médio} = 247 \Omega$   $\alpha_{Rv} = 0.6 \Omega$   $\frac{\alpha_z}{Z} = 0.04$ 

$$\frac{\alpha_{Rx}}{R_x} = \sqrt{\left(\frac{0.6}{247}\right)^2 + \left(0.04\right)^2} \Rightarrow \frac{\alpha_{Rx}}{R_x} = 0.04007...$$

$$\alpha_{Rx} = 0.04081 \times 2.53869 = 0.1017...\Omega$$

$$\therefore \alpha_{Rx} = 0.1\Omega$$

### Propagação de incertezas



Inspirar para Transformar

$$R_{\rm X} = \frac{R_{\rm V}}{97,294...} = \frac{247}{97,294...} = 2,53869...$$

#### **Onde truncamos?**

#### Qual é a incerteza associada a Rx?

$$R_{\rm X}=2,5\pm0,1\Omega$$