Modello concettuale dei dati e Disegno Logico di un Database

Modello concettuale dei dati

Progettare una base di dati significa definirne struttura, caratteristiche e contenuto.

Uso di opportune metodologie.

Modello concettuale dei dati <u>Domande</u>

- 1) Cosa c'è? (Oggetti)
- 2) Come si collegano o si parlano?
- 3) Quanti tra loro?
- 4) Cosa identifica gli "oggetti"?
- 5) Quali informazioni utili non principali?

Modello concettuale dei dati (2) <u>Definizioni o Costrutti</u>

ENTITA': insieme di oggetti simili.

Dati dello stesso tipo o con caratteristiche simili, raccolti insieme. Statici e Dinamici

RELAZIONE: collegamento logico tra due o più entità.

Modello concettuale dei dati (3) <u>Definizioni o Costrutti</u>

1,n

CARDINALITA': assegnazione di dimensionamento tra entità. Numero min e max di possibili collegamenti tra due entità tramite una relazione.

CHIAVE: campo o campi identificativi di una entità o relazione

ATTRIBUTI : campi informativi e <u>non</u> identificativi di una entità o relazione.

GENERALIZZAZIONE: legame logico tra una entità più generale (padre) e le entità figlie.

L. Vigliano- All rights reserved

Disegno logico di un database

Disegno logico di un DB

• Scegliamo lo schema

Entity-Relationship

BIBLIOTECA DELLA FACOLTA' DI SCIENZE

L.Vigliano- All rights reserved

Sistema Gestione Ambulatoriale

L. Vigliano- All rights reserved

Quando uno schema concettuale è ben fatto ?

- Qualità da possedere :
 - Completezza
 - Correttezza
 - Leggibilità
 - Minimalità o Non Ridondanza

Disegno fisico di un database

Disegno fisico di un DB

E la chiave di B diventa attributo di A

Disegno fisico di un DB (2)

Esempio:

Se cancello un' occorrenza di LIBRI non succede nulla Se cancello un' occorrenza di ARGOMENTO devo cancellare tutte le occorrenze di LIBRI che puntano a ARGOMENTO

BIBLIOTECA DELLA FACOLTA' DI SCIENZE

L. Vigliano- All rights reserved

Disegno fisico di un DB (3)

• La TABELLA è solo una rappresentazione possibile della relazione

Disegno fisico di un DB (4) Generalizzazioni

Le generalizzazioni non possono essere rappresentate a livello fisico.

- Si usa uno dei seguenti metodi:
 - accorpamento delle figlie nel padre
 - accorpamento del padre nelle figlie
 - sostituzione della generalizzazione con relazioni

DATABASE ARTICOLI

AR

Titolo	Rivista	Data
Teoria della programmazione	IEEE-Review	2000-04-21
Le catene di Markov	Computer Science	2000-04-21
Macchine e Teoria	Le Scienze	2000-04-28
MySQL	Le Scienze	2000-04-28
I Quanti	IEEE-Review	2000-04-28
Database	Computer Science	2000-04-29

ARAU (relazione AR – AU)

`	
Titolo	Autore
Teoria della programmazione	Moscarini
Le catene di Markov	Calzolari
Macchine e Teoria	Gambosi
MySQL	Vigliano
I Quanti	Berretti
Database	Moscarini
Macchine e Teoria	Vigliano

AU

Autore	Qu alif	Citt a	Data	Di p	Sal
Moscarini	A	Roma	1996-05-03	10	3000
Calzolari	R	Bresci a	1998-12-01	20	2500
Gambosi	О	Roma	2000-11-01	30	3000
Vigliano	D	Roma	2001-03-01	10	1500
Berretti	R	Roma	2002-10-15	20	2000

L.Vigliano- All rights reserved

Rivista	Co sto	Editore
Computer Science	30	BIT
Le Scienze	15	BIT
IEEE-Review	45	BOH Press

 \mathbf{QU}

RI

Qua lif	Descriz
A	associato
О	ordinario
R	ricercatore
D	dottorando

DATABASE ARTICOLI Segue....

DIP

Dipnnum	Nome	Sede
10	Matematica	Sogene
20	Fisica	INFN
30	Informatica	Sogene
40	Specialistica	Nestor

Disegno fisico di un DB (5) Vincoli e dipendenze

- Un database (e lo schema che lo rappresenta) deve rispettare certi vincoli e garantire determinate caratteristiche
- Non ridondanza i dati non devono essere ripetuti se non necessario
- Congruenza e consistenza

Efficacia delle modifiche sui dati in modo da non avere differenti risposte (valori)

Disegno fisico di un DB (6) Vincoli e dipendenze

- Sicurezza efficacia delle modifiche concorrenti sui dati. Deve simulare la sequenzialità
- Integrità
 - Vincoli di appartenenza
 - Vincoli di dominio
 - Dipendenze funzionali (vedi forme normali)

Forme normali

Forme normali e dipendenze funzionali

• Il processo di normalizzazione forza a chiedersi quali sono le dipendenze funzionali (cosa dipende da cosa)

• permette di costruire un DB corretto e ben definito

Dipendenza Funzionale

Una dipendenza funzionale tra attributi Y di una certa relazione R e attributi Z si ha quando, ad es., gli attributi Z dipendono funzionalmente dagli Y, cioè Y determina i valori di Z. Y→Z

Esempio:

```
Impiegato → stipendio
Progetto → costo progetto
```

Forme normali e dipendenze funzionali (2)

• Un DB corretto e ben definito non deve avere :

- Anomalie di inserimento
- Anomalie di cancellazione
- Anomalie di aggiornamento

Forme Normali

 Criterio di scelta tra gli schemi che vogliono rappresentare la realtà. (Criterio di ottimalità)

• Si dice che uno schema è 1^a, 2^a, 3^a, Boyce-Codd, 4^a forma normale (1NF, 2NF, 3NF, BCNF, 4NF) se verifica particolari proprietà

1^a Forma Normale

• Uno schema di relazione R(X) con X insieme di attributi, è in 1NF se ogni attributo appartenente ad X è un attributo semplice.

• Un attributo è un attributo semplice se il suo valore è unico e indivisibile in una ennupla

Se fosse..... tabella ESAMI

Matricola	Esame
00123	Analisi I 23 Picardello 12/10/05
• • • • •	

Soluzione in <u>1NF</u>

Matricola	Esame	Voto	Professore	Data
00123	Analisi I	23	Picardello	12/10/05
• • • • • •	• • • • • •	• • • •	• • • • • • •	• • • • •

2^a Forma Normale

• Uno schema di relazione R(X) è in 2NF se è in 1NF e se ogni attributo non primo (non facente parte della chiave) di R(X) dipende funzionalmente e completamente da ogni chiave di R(X).

Se la tabella AR fosse in questo modo

key

Titolo	Autore	Rivista	Editore	Costo
I quanti	Berretti	IEEE-Rev	Boh-Press	45
• • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	••

Soluzione in 2NF

AR

Titolo	Autore	Rivista
I quanti	Berretti	IEEE-Rev
• • • • • • •	• • • • • • •	• • • • • • •

RI

Rivista	Editore	Costo
IEEE-Rev	Boh-Press	45
• • • • • • •	• • • • • •	••

3^a Forma Normale

Uno schema di relazione R(X) è in 3NF se è in 2NF e se ogni attributo non primo di R
(X) è dipendente in modo non transitivo da ogni chiave di R(X).

Se la tabella LIBRI_BIBLIOTECA fosse

key

N.inv.	Titolo	Argom	Biblio.	Resp.
1224	Database	Inform.	Scienze	Di Cicco
1734	Molecole	Medic.	Biomedica	Mazzitelli

Soluzione in 2NF

N.inv.	Titolo	Argom
1224	Database	Inform.
1734	Molecole	Medic.

Argom	Biblio.	Resp.
Inform.	Scienze	Di Cicco
Medic.	Biomedica	Mazzitel

Se la tabella LIBRI_BIBLIOTECA fosse

N.inv.	Titolo	Argom
1224	Database	Inform.
1734	Molecole	Medic.

Argom	Biblio.	Resp.
Inform.	Scienze	Di Cicco
Medic.	Biomedica	Mazzitell

idem

Soluzione in 3NF

Argom	Biblio.
Inform.	Scienze
Medic.	Biomedica

Biblio.	Resp.
Scienze	Di Cicco
Biomedica	Mazzitelli

Boyce-Codd Forma Normale

 Uno schema di relazione R(X) è in BCNF se è in 1NF e se per ogni dipendenza Y→A, con A non in Y, Y contiene una chiave per R(X). (Y è superchiave).

ORARIO LEZIONI in 3NF

Se R(X) è in BCNF

R(X) è in 3NF

4^a Forma Normale

• Uno schema di relazione R(U) è in 4NF se è in 1NF e se, per ogni dipendenza multivalore X → Y, con Y non vuoto o sottoinsieme di X, X∪Y non contenente tutti gli attributi di R(U), X contiene una chiave per R(U) (X è superchiave).

Esempio di 3NF e non applicabilità della BCNF

Docente	Qualifica	Cattedra
Moscarini	Associato	Basi di dati
Moscarini	Ordinario	Inf. teorica
Gambosi	Ordinario	Reti
Gambosi	Ricercatore	Programmaz.

in BCNF

perdita di informazioni

Docente	Qualifica
Moscarini	Associato
Moscarini	Ordinario
Gambosi	Ordinario
Gambosi	Ricercatorevig

	Docente	Cattedra
	Moscarini	Basi di dati
	Moscarini	Inf. teorica
	Gambosi	Reti
liano- All rig	hGambosi	Programmaz.