$x=q_1q_2\dots q_n$, q prime quanta and all distinct $y=p_1p_2\dots p_m$, prime quanta and all distinct Now for every prime quantum q | x | i = 1, S,...n) q

has a common factor with y or does not. Also if \mathbf{q} does have a common factor with y then \mathbf{q}_i is similar to one and only one of $\mathbf{p}_i \mid y$ (Def. 3). Now select out of $\mathbf{q}_i \cdot \mathbf{q}_s \cdot \ldots \cdot \mathbf{q}_n$ all those $\mathbf{p}_i \cdot \mathbf{p}_s \cdot \ldots \cdot \mathbf{q}_n$ all those $\mathbf{p}_i \cdot \mathbf{p}_s \cdot \ldots \cdot \mathbf{p}_s$ such that $(\mathbf{q}_i', y) \neq 1$. Similarly select out of $\mathbf{p}_i \cdot \mathbf{p}_s \cdot \ldots \cdot \mathbf{p}_m$ all those $\mathbf{p}_i', \mathbf{p}_s', \ldots, \mathbf{p}_s'$ such that $\mathbf{p}_i', \mathbf{p}_i', \ldots, \mathbf{p}_s'$ such that $\mathbf{p}_i', \mathbf{p}_i', \ldots, \mathbf{p}_s'$ such that $\mathbf{p}_i', \mathbf{p}_i', \ldots, \mathbf{p}_s'$ such that above assertion $\mathbf{r} = \mathbf{s}$ and $\mathbf{p}_i', \mathbf{p}_i', \mathbf{p$

Let $d_i = (p_i', q_i')$ where $d_i = p_i'$ if $p_i' | q_i'$ and $d_i = q_i'$ if $q_i' | p_i' | q_i'$ obviously as p_i' and q_i' are similar in pairs, d_i' exists for each i = 1, 2, ..., r. And it is easy to see that in each case d_i' is the HOF of p_i', q_i' .

Let $d = d_1d_8...d_r$; that d is a common factor of x and y is obvious. To prove that d is the highest common factor d. Of x and y divides d. In d is a product of prime quanta that d is a product of prime quanta that d and d is and d. That is each d is similar to one of $d_1, d_2, ...d_r$ and d. That is each d is similar to one of $d_1, d_2, ...d_r$ and so divides it, and it is easy to see that d and that d is the highest common factor.

Remark. A Many notions in the classical theory of Unique Factorization are taken as granted; for example we hardly need to state the fact that if in a UFD, x is a non unit factor of y then there exists a positive integer n such that $x^n y$. If on the other hand we need to stress this fact we content ourselves by saying that a UFD is atomic. In case of content ourselves by saying that a UFD is atomic. In case of

natton: