Семинар 29.

Семинары: Погорелова П.В.

1. В задаче используются данные (Mroz, 1975). Пуассоновская регрессия для моделирования количества детей в семье:

$$P(Nkids = y_i) = \exp^{\lambda_i} \frac{\lambda_i^{y_i}}{y_i!},$$

где $\lambda_i = exp(\beta_1 + \beta_2 AGE_i + \beta_3 AGE_i^2 + \beta_4 WE_i + \beta_5 INCOME_i),$

у — количество детей в семье,

AGE — возраст женщины (в годах),

AGE2 — квадрат возраста женщины,

WE — образование женщины (в годах),

INCOME — доход семьи в \$10000.

Ниже в таблице приведены результаты оценивания методом максимального правдоподобия.

Dependent Number of Iteration Log likel Number of Restricte	parameters d log likelihod	NKIDS 753 7 -1083.397 5 od -1279.522	+		
		Standard Error			
AGE AGE2 WE INCOME	.49624655 00686403 03430021 .01193400	1.14268278 .05663388 .00069963 .01448182 .02569902	8.762 -9.811 -2.369 .464	.0000 .0000 .0179 .6424	1874.54847 12.2868526 2.30805950
Matrix Cov.	Mat. has 5 row 2	vs and 5 columns 3	4		5
1 1.3057206373 2 06373 .00321 3 .000783948059D- 4 00319 .3794861D- 5 .0028400012		L3948059D-04 D-04 .4894781D-0 D-043460068D-0	.3794863 06346000 06 .000	.3794861D-0400 63460068D-06 .1216 .0002100	

- (a) Оцените эффект увеличения возраста на 1 год на среднее (expected) количество детей.
- (b) Покажите, что выборочное среднее оценок $\hat{\lambda_i}$ равно выборочному среднему y_i .
- (c) Протестируйте на 5% уровне значимости гипотезу о совместной незначимости всех регрессоров $AGE, AGE^2, WE, INCOME$ при помощи теста отношения правдоподобия (LR-тест).
- (d) Укажите ограничения Пуассоновской регрессии. Какие модели Вы можете предложить для преодоления этих ограничений.

2. Набор данных *crime.dta* содержит данные по арестам в течение 1986 года по 2725 мужчин, родившимся в Калифорнии в 1960 или 1961 гг. Каждый из мужчин в выборке был арестован по крайней мере однажды до 1986 г. Вопрос: что объясняет, что мужчина снова был арестован в течение 1986 г. (сколько раз, и т.д.). Имеются следующие данные:

Семинары: Погорелова П.В.

narr86 — количество арестов в 1986 г.

pcnv — доля предыдущих арестов, приведших к осуждению (прокси для неотвратимости наказания)

avgsen — среднее время срока заключения по предыдущим случаям осуждения (в месяцах) (прокси для суровости наказания)

tottime — общее время, проведенное в тюрьме после достижения возраста 18 лет (в месяцах)

ptime 86 — число месяцев в тюрьме во время 1986 г. (не может быть арестован, пока в тюрьме)

qemp86 — количество кварталов, в которых имел работу, в течение 1986 г. (возможности на рынке труда)

inc86 — легальный доход в 1986 г., \$100

durat — длительность последнего периода безработицы (в месяцах)

black = 1, если афроамериканец

hispan = 1, если латиноамериканец

born60 = 1, если родился в 1960 г.

crime86 = 1, если был арестован хотя бы однажды в 1986 г. (genr crime 86 = narr86 > 0)

Количество арестов моделируется с помощью пуассоновской регрессии: результаты оценивания которой представлены ниже:

Dependent Variable: NARR86								
Method: ML/QML - Poisson Count (Quadratic hill climbing)								
Variable	Coefficient	Std. Error	z-Statistic	Prob.				
С	-0.616217	0.063618	-9.686227	0.0000				
PCNV	-0.401797	0.084783	-4.739146	0.0000				
AVGSEN	0.005603	0.007437	0.753388	0.4512				
PTIME86	-0.093507	0.020314	-4.603135	0.0000				
QEMP86	-0.037305	0.028907	-1.290529	0.1969				
INC86	-0.008127	0.001037	-7.833997	0.0000				
BLACK	0.661036	0.073871	8.948584	0.0000				
HISPAN	0.501855	0.073884	6.792448	0.0000				
R-squared	0.075108	Mean dependent var		0.404404				
Adjusted R-squared	0.072725	S.D. dependent var		0.859077				
S.E. of regression	0.827249	Akaike info criterion		1.657495				
Sum squared resid	1859.353	Schwarz criterion		1.674846				
Log likelihood	-2250.337	Hannan–Quinn criter.		1.663767				
Restr. log likelihood	-2441.921	Avg. log likelihood		-0.825812				
LR statistic (7 df)	383.1683	LR index (Pseudo-R2)		0.078456				
Probability(LR stat)	0.000000							

(а) С помощью модели пуассоновской регрессии оцените вероятность быть

- Семинары: Погорелова П.В.
- неарестованным (P_0) для мужчины со следующими характеристиками: avgsen=0, inc86=50, pcnv=0.1, ptime86=0, qemp86=3, black=1.
- (b) Для мужчины из пункта (a) рассчитайте предельный эффект от дохода в 1986 года для вероятности быть неарестованным.
- (с) Проинтерпретируйте результаты оценивания модели.