Объяснение методологических обоснований LSH

Введение

Locality-Sensitive Hashing (LSH) представляет собой вероятностный метод приближённого поиска ближайших соседей (Approximate Nearest Neighbor, ANN) в высокоразмерных пространствах. В отличие от классических хеш-функций, минимизирующих коллизии, LSH целенаправленно максимизирует вероятность коллизии для семантически близких объектов. Ключевая идея заключается в проекции данных в пространство меньшей размерности с сохранением свойств локальности: близкие объекты с высокой вероятностью попадают в один и тот же "bucket".

Современные исследования предлагают инновационные подходы к оптимизации LSH, которые существенно расширяют возможности традиционного LSH, решая ключевые проблемы вычислительной сложности и эффективности поиска.

Теоретические основы LSH

Формальное определение и базовые принципы

Формально, семейство хеш-функций \mathcal{H} называется (r, cr, p_1, p_2) -чувствительным для метрики d, если для любых двух точек p и q выполняются условия:

- 1. Если $d(p,q) \le r$, то $\Pr[h(p) = h(q)] \ge p_1$,
- 2. Если $d(p,q) \ge cr$, то $\Pr[h(p) = h(q)] \le p_2$,

где
$$c > 1$$
, а $p_1 > p_2$ [1].

Для усиления вероятностных свойств используются конструкции AND и OR:

- AND-construction: Комбинация k независимых хеш-функций усиливает строгость попадания в bucket $(p'=p_1^k)$
- OR-construction: Использование L независимых хеш-таблиц увеличивает вероятность попадания хотя бы в один bucket $(p' = 1 (1 p_1)^L)$

На практике теоретическая вероятность коллизии $P_{\mathbf{h}_k^\ell}(r)$ часто интерпретируется как ожидаемая полнота (recall rate). Хотя $P_{\mathbf{h}_k^\ell}(r)$ является математическим ожиданием, эмпирические исследования показывают, что для большинства реальных datasets фактическая

полнота оказывается близка к теоретическому ожиданию при условии корректного выбора параметров k и ℓ и достаточного размера данных [1]. Это объясняется тем, что дисперсия полноты оказывается крайне мала благодаря агрегации множества независимых хеш-функций и действию закона больших чисел.

Вероятностные гарантии и регулирование ошибки

LSH предоставляет строгие вероятностные гарантии для качества поиска. Для найденного кандидата x можно оценить вероятность того, что он является истинным с-приближенным соседом:

$$P[\text{success}] \ge 1 - (1 - p_1^k)^L$$

Вероятность ложноположительного срабатывания (далекая точка попала в бакет) не превышает:

$$P[\text{false positive}] \leq p_2^k \cdot L$$

Параметры LSH позволяют явно регулировать точность и вероятность ошибки:

- Ширина бакета (w): Увеличивая w, снижаем вероятность коллизии для всех точек, но увеличиваем точность
- Число sampled dimensions (m): Увеличение m снижает дисперсию оценки расстояния, улучшая точность
- Число хеш-функций (k): Увеличение k снижает p_1 и p_2 , делая фильтрацию жестче
- Число хеш-таблиц (L): Увеличение L повышает вероятность нахождения истинного соседа, но увеличивает память и время

Поддержка различных метрик расстояния

LSH поддерживает различные метрики расстояния при условии выбора соответствующих LSH-семейств:

Метрики и соответствующие LSH-семейства

• **Евклидово расстояние**: Используется р-стабильное распределение (распределение Гаусса). Вероятность коллизии вычисляется как:

$$p(r) = \int_0^w \frac{1}{r} \exp\left(-\frac{t^2}{2r^2}\right) \left(1 - \frac{t}{w}\right) dt$$

• **Расстояние Хэмминга**: Используется LSH-семейство на основе битовых операций. Вероятность коллизии определяется долей совпадающих бит:

$$p(r) = 1 - \frac{r}{d}$$

где d — размерность пространства.

• **Косинусное расстояние**: Применяются гиперплоскостные LSH-функции ($sign(\langle r, x \rangle)$). Вероятность коллизии зависит от угла между векторами:

$$p(r) = 1 - \frac{\arccos(\text{cosine_sim})}{\pi}$$

Сравнительная характеристика метрик

Метрика	LSH-семейство	Вероятность коллизии	Оптимальные сценарии
Евклидово	р-стабильное распре- деление	$p(r) = \int_0^w \frac{1}{r} \exp\left(-\frac{t^2}{2r^2}\right) \left(1 - \frac{t}{w}\right) dt$	Общие данные, изображения,
Расстояние Хэмминга	Битовые хэши	$p(r) = 1 - \frac{r}{d}$	векторы Тексты, катего- риальные дан-
Косинусное	Гиперплоскостное	$p(r) = 1 - \frac{\arccos(\text{cosine_sim})}{\pi}$	ные, хэши Тексты, реко- мендации, NLP

Таблица 1: Характеристики LSH для разных метрик расстояния

1 Методологические улучшения

1.1 Ускорение вычислений: FastLSH

Классические реализации LSH для евклидова пространства (E2LSH) требуют вычисления скалярных произведений полномерных векторов, что приводит к сложности O(n) на одну хеш-функцию. Метод FastLSH сочетает случайное проецирование и случайную выборку признаков (random sampling). Вместо полного n-мерного вектора для каждого хеша случайно выбирается подмножество из m координат ($m \ll n$), к которому применяется стандартная LSH-функция. Это сокращает вычислительную сложность до O(m).

Формально, модифицированная хеш-функция приобретает вид:

$$h_{\tilde{a},\tilde{b}}(v) = \left| \frac{\tilde{a}^T S(v) + \tilde{b}}{\tilde{w}} \right|$$

где $S(\cdot)$ — оператор случайной выборки m координат из исходного вектора $v, \, \tilde{a} \in \mathbb{R}^m$ — случайный вектор проекции, $\tilde{b} \sim U[0, \tilde{w}]$ — случайное смещение.

Теоретически показано, что при $m \to \infty$ распределение расстояний в sampled-пространстве сходится к исходному. При конечных m расхождения моментов распределения незначительны, что сохраняет LSH-свойства. Эксперименты подтверждают, что даже при m=30 (при

исходной размерности в сотни/тысячи) качество поиска практически не ухудшается, а скорость возрастает в десятки раз.

1.2 Оптимизация поиска: roLSH

Другое направление оптимизации — сокращение дорогостоящих обращений к данным (I/O operations). Метод roLSH предлагает две стратегии:

roLSH-samp: На этапе индексации выполняется сэмплирование тестовых запросов для определения статистики оптимальных радиусов поиска. Это позволяет начинать поиск не с минимального радиуса, а с предварительно оцененного значения.

roLSH-NN: NN используется для предсказания оптимального радиуса поиска для конкретного запроса на основе его хешей. Это позволяет для каждого запроса стартовать с радиуса, близкого к оптимальному, минимизируя последующие расширения.

Оба метода значительно сокращают количество обращений к диску — основной проблемы в вычислениях.

1.3 Multi-Probe LSH

Multi-Probe LSH расширяет идею roLSH путем многозондового поиска в соседних корзинах. Алгоритм не ограничивается одной корзиной, а исследует несколько соседних корзин, что позволяет значительно сократить количество необходимых хэш-таблиц (до 5-8 раз) без потери точности.

1.4 Entropy-Based LSH

Entropy-Based LSH динамически адаптирует параметры хэширования на основе энтропии распределения данных. Это позволяет улучшить точность поиска в условиях неоднородного распределения данных.

2 Сравнительная характеристика современных алгоритмов LSH

3 Теоретические основы современных улучшений

3.1 Вероятностные гарантии FastLSH

Вероятность коллизии для FastLSH выражается как:

$$p(s,\sigma) = \int_0^{\tilde{w}} f_{|\tilde{s}X|}(t)(1 - \frac{t}{\tilde{w}})dt$$

Алгоритм	Основное но-	Преимущества	Недостатки	Сценарии
	вовведение			применения
FastLSH	Случайная	Снижение	Требует на-	Высокоразмерные
	выборка при-	сложности до	стройки m	данные
	знаков	O(m)		
roLSH	Адаптивный	Сокращение	Зависимость	Большие
	радиус поиска	I/O операций	от качества	datasets
			сэмплирования	
Multi-	Многозондовый	Сокращение	Усложнение ре-	Высокоточные
Probe LSH	поиск	хэш-таблиц	ализации	приложения
Entropy-	Адаптация к	Высокая точ-	Вычислительная	Неоднородные
Based LSH	энтропии дан-	ность	сложность	данные
	ных			
C2LSH	Подсчет колли-	Уменьшение	Ограниченная	Общие случаи
	зий	хэш-функций	применимость	
QALSH	Учет особенно-	Оптимизация	Зависимость от	Рекомендательные
	стей запроса	под запрос	качества запро-	системы
			ca	
I-LSH	Оптимизация	Эффективность	Высокое время	Внешняя па-
	I/O операций	в внешней па-	обработки	dткм
		ИТКМ		

Таблица 2: Сравнение современных алгоритмов LSH

где $s=\|v-u\|_2$ — евклидово расстояние между векторами, σ — стандартное отклонение распределения расстояний по компонентам, $f_{|\tilde{s}X|}(t)$ — плотность распределения модуля произведения $\tilde{s}X$.

3.2 Адаптивное расширение радиуса в roLSH

Вместо экспоненциального расширения (1, 2, 4, 8...), roLSH использует линейное или ступенчатое расширение на основе предсказанного радиуса:

$$R_{\text{new}} = \begin{cases} R_{\text{init}} + 2^x & 0 \le x \le \log_2 R_{\text{init}} \\ 2^x & x > \log_2 R_{\text{init}} \end{cases}$$

Это значительно сокращает количество случайных обращений к диску (random disk ${\rm I/O}$), которые являются основным узким местом при работе с внешней памятью.

Ограничения и дальнейшие направления

Несмотря на эффективность, LSH имеет ряд ограничений:

• Зависимость от параметров: Производительность сильно зависит от выбора параметров (k, L, w и др.), которые часто подбираются эмпирически.

- **Чувствительность к** данным: Эффективность может снижаться на данных со специфическими распределениями или аномалиями.
- Вычислительная сложность: Хотя LSH сокращает общее число сравнений, стоимость построения индекса может быть высокой для очень больших datasets.

Заключение

Locality-Sensitive Hashing является мощным инструментом для приближённого поиска ближайших соседей в высокоразмерных пространствах. Его методологическая основа сочетает вероятностные гарантии с практической эффективностью. Теоретически обоснованная вероятность коллизии находит подтверждение в реальных приложениях благодаря эффекту больших данных и тщательному подбору параметров.

Современные улучшения LSH, такие как FastLSH и roLSH, делают ключевые ограничения классических схем, делая LSH ещё более производительными и практичным. Поддержка различных метрик расстояния и возможность явного регулирования точности делают LSH универсальным инструментом для решения задач поиска похожих объектов в больших массивах данных.

Список литературы

- [1] Lu, K., Wang, H., Xiao, Y., Song, H. Why locality sensitive hashing works: A practical perspective // Information Processing Letters. 2018. T. 136. C. 49-58.
- [2] Tan, Z., Wang, H., Xu, B., Luo, M., Du, M. Fast Locality Sensitive Hashing with Theoretical Guarantee // arXiv preprint arXiv:2309.15479v1. 2020.
- [3] Jafari, O., Nagarkar, P., Montano, J. Improving Locality Sensitive Hashing by Efficiently Finding Projected Nearest Neighbors // arXiv preprint arXiv:2006.11284v1. 2020.