Examen E1 (temas 2 y 3)

- · Duración del examen: 1:15 horas
- · La solución de cada ejercicio se debe escribir en el espacio reservado en el mismo enunciado
- No se puede utilizar: calculadora, móbil, apuntes.
- · La solución del examen se publicará en Atenea el 5 de Octubre y las notas el 15 de Octubre

Pregunta 1: (1.5 puntos). Cada casilla errónea -0.5.

Cada fila de la tabla contiene la representación digital en un sistema convencional del mismo número natural en distintas bases: 1) base 2 con un vector de 8 bits, 2) base 16 con un vector de 2 dígitos hexadecimales, 3) el valor decimal x_{II} . Complete las casillas vacías.

Xb (binario)	Xh (hexa)	Xd (decimal)	
10011001	99	153	
01100100	64	100	
11011100	DC	220	

Pregunta 2: (2 puntos). Fila errònea -0.5.

Deduzca el número de bits necesarios (n) para representar en binario los siguientes valores:

x _u	n	rango
33	6	$0 \le x_u < 2^6$
1000	10	$0 \le x_u < 2^{10}$
2 ²⁰	21	$0 \le x_u < 2^{21}$
15 ²	8	$0 \le x_u < 2^8$

Pregunta 3: (1 punto: 0.5 cada apartado). Apartado erróneo -0.5

Un sistema combinacional tiene un vector de entrada de 16 bits $X = x_{15},..., x_0$ y un vector de salida de n bits $W = w_{n-1},...,w_0$. El vector de salida W codifica en binario la posición del bit más significativo cuyo valor es 1. Por ejemplo, si X = 0011000111110101, entonces W representa en binario la posición 13. Suponga que el vector X tiene al menos un bit con valor 1.

a) Especifique el tamaño mínimo de la ROM para sintetizar el circuito (número de palabras y longitud de la palabra).

número de palabras 2¹⁶ bits por palabra 4

b) Indique en decimal la dirección de la palabra de la ROM cuyo contenido es irrelevante.

dirección 0

Pregunta 4: (1.5 puntos: a) 0.7, b) 0.8)

La figura muestra el esquema de un circuito combinacional. El retardo de propagación Tp de cada puerta XOR-2 es 20 ut.

a) Deduzca los caminos críticos y el retardo de propagación del circuito.

Error -0.4 (cada caja)

b) El retardo del circuito se puede reducir si aplicamos la propiedad asociativa de la función xor $a \oplus b \oplus c \oplus d = (a \oplus b) \oplus (c \oplus d)$ para obtener la salida w_0 . Utilizando únicamente puertas XOR-2, dibuje el subcircuito en forma de árbol que calcula la salida w_0 . Indique el retardo de propagación del circuito equivalente propuesto.

Error circuito -0.5, retardo -0.3

Pregunta 5: (2 puntos: 1 punto cada apartado). Error fila TV, crono. o retardo -0.5

- a) Deduzca la tabla de verdad del circuito de la figura.
- b) Los retardos de propagación de los elementos del circuito son: NOT 1 ut; AND-2 2 ut; OR-2 2 ut; MUX-2-1 3 ut. Suponga que antes del instante t=8 las entradas del circuito son x=0, y=0, z=1 y que el resto de señales del circuito son estables. Suponga que en el instante t=8 las entradas x e y cambian a x=1, y=1. Complete el cronograma de la figura e indique el retardo de propagación.

retardo 1 + 2 + 3 + 1 = 7 ut

Pregunta 6: (2 puntos: a) 0.4, b) 0.8, c) 0.8).

Se quiere completar el diseño de un circuito combinacional con entradas x_3 , x_2 , x_1 , x_0 y salidas w_3 , w_2 , w_1 , w_0 . La figura de la derecha muestra la tabla de verdad. Se han obtenido las funciones lógicas de las salidas w_3 , w_2 y w_0 , que son las siguientes:

$$\mathbf{w}_3 \ = \ \mathbf{x}_3 \qquad \qquad \mathbf{w}_2 \ = \ \mathbf{x}_3 \oplus \mathbf{x}_2 \qquad \mathbf{w}_0 \ = \ \mathbf{x}_1 \oplus \mathbf{x}_0$$

a) Exprese la salida w_1 como suma de minterms. Utilice la nomenclatura m_i para indicar el minterm i (0 <= i <= 15). Error -0.4

$$W_1$$
 $m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$

x ₃	x ₂	x ₁	x_0	w_3	w_2	w_1	w_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

0

1

b) Aplicando el método de Karnaugh, deduzca la expresión mínima de la salida w₁. Indique las agrupaciones de 1.

		x_1x_0			
		00	01	11	10
	00	0	0	1	1
x3x2	01	1	1	0	0
×	11	1	1	0	0
	10	0	0	1	1

Error grupo o expresión -0.3

c) La figura muestra el esquema del circuito sintetizado con 3 decodificadores (Dec-2-4) y 3 puertas OR. Complete el diseño añadiendo: 1) las conexiones de entrada de los decodificadores, 2) las conexiones entre las salidas de los decodificadores y las puertas OR. Para ello, exprese primero w_2 y w_0 en forma

w ₂	$\overline{x_3} \cdot \overline{x_2} + \overline{x_3} \cdot x_2$
w_0	$x_1^- x_0^- + x_1^- x_0$

de suma de productos mínimos. Error función o circuito -0.4