

Fluidos + Transmisión de Calor

- Fluidos:
 - Reynolds
 - Magnitudes FisicoQuimicas
- Calor:
 - Factores de importancia
 - Métodologias

FLUIDOS

Número de Reynolds

•
$$Re = \frac{v*D*\rho}{\mu} \begin{cases} \rho = densidad \\ \mu = visc.dinámica \\ v = vel \end{cases}$$

- $\vartheta = \frac{\mu}{\rho} \rightarrow visc.cinematica$
- Laminar vs turbulento
- ¿Importante?

Laminar Flow

Turbulent Flow

Capa límite del fluido

Introducción rapidilla;)

- Conceptos importantes
 - Radiación
 - Conducción
 - Convección

Radiación

- Es la Energía que emite un cuerpo por el hecho de estar caliente
- Ley de Stefan-Boltzmann

•
$$P = e\sigma A(T^4 - T_O^4)$$

Conducción

- Transmisión de calor por contacto entre dos sólidos
- Ley de Fourier

•
$$Q = \frac{k \cdot A \cdot \Delta T}{e}$$

- K constante característica del material
- A área de intercambio
- E espesor

Conductividades

Conductividades térmicas de diversos materiales en W/(K·m)

Material	λ	Material	λ	Material	λ
Acero	47-58	Corcho	0,03-0,04	Mercurio	83,7
Agua	0,58	Estaño	64,0	Mica	0,35
Aire	0,02	Fibra de vidrio	0,03-0,07	Níquel	52,3
Alcohol	0,16	Glicerina	0,29	Oro	308,2
Alpaca	29,1	Hierro	80,2	Parafina	0,21
Aluminio	237	Ladrillo	0,80	Plata	406,1-418,7
Amianto	0,04	Ladrillo refractario	0,47-1,05	Plomo	35,0
Bronce	116-186	Latón	81-116	Vidrio	0,6-1,0
Zinc	106-140	Litio	301,2	Cobre	372,1-385,2
Madera	0,13	Tierra húmeda	0,8	Diamante	2300
Titanio	21,9				

Difusividad térmica y capacidad calorífica

- Concepto que indica la velocidad de cambio, y flujo de temperaturas hasta que alcanza el equilibrio térmico
 - $\alpha = \frac{k}{\rho \cdot C_p}$
- ¿Qué es Cp?

Convección

- Transmisión sólido líquido
- Ley de enfriamiento de Newton
 - $Q = hA\Delta T$
- ¿Despejar h?
 - Números fundamentales

Números fundamentales

- Reynolds
- Prandtl (Relación entre las capas límites)

•
$$Pr = \frac{\mu \cdot Cp}{K_{TF}}$$

Nusselt

•
$$Nu = a \cdot Re^n \cdot Pr^m = \frac{h \cdot D}{K_{TF}}$$

Table & Correlation equations for turbulent now of base num.

Authors	Correlation	Range	Remarks $n = 0.4$ —heating $n = 0.3$ —cooling	
Dittus and Boelter [50]	$\overline{Nu} = 0.23 Re^{0.8} Pr^n$	$Re > 10^4$ 0.7 < $Pr < 100$		
Krauβold [51]	$\overline{Nu} = 0.032 Re^{0.8} Pr^n \left(\frac{L}{D}\right)^{-0.054}$ $Re > 10^4$		n = 0.37—heating $n = 0.3$ —cooling	
Sieder and Tate [52]	$\overline{Nu} = 0.027 Re^{4/5} Pr^{1/3} \left(\frac{\mu_f}{\mu_w}\right)^{0.14}$ $Re > 10^4$ $0.7 < Pr < 16,700$		$T_w = \text{const.}$	
Mikhejev [53]	$\overline{Nu} = 0.021 Re^{0.8} Pr_f^{0.43} \left(\frac{p_{r_f}}{p_{r_w}}\right)^{0.25} \varepsilon_L$	$10^4 < Re < 5 \times 10^6$ $0.6 < Pr < 2500$	$\varepsilon_L = f(L/D, Re)$	
Petukhov [54]	$\overline{Nu} = \frac{(f/8)RePr}{1.07 + 12.7(f/8)^{\frac{1}{2}} \left(Pr^{\frac{2}{3}} - 1\right)}$	$10^4 < Re < 5 \times 10^6$ $0.5 < Pr < 2000$	$f = (1.82lnRe - 1.64)^{-2}$	
Notter and Sleicher [55]	$ \frac{\overline{Nu}}{\overline{Nu}} = 4.8 + 0.0156 Pe^{0.85} Pr^{0.08} \overline{Nu} = 6.3 + 0.0167 Pe^{0.85} Pr^{0.08} $	$10^4 < Re < 10^6$ $0.004 < Pr < 0.1$	$T_w = \text{const.}$ $q_w = \text{const.}$	
Churchill and Ozoe [56]	$N_{II} = 0.338/PT^{-1} Re^{-1}$		$q_w = \text{const.}$	
Hausen [57]	$Nu = 0.0235 \left[1 + \left(\frac{d}{L} \right)^{2/3} \right]$ $[Re^{0.8} - 230] Pr_f^{0.3} \left(\frac{\mu_f}{\mu_w} \right)^{0.14}$	$2300 < Re < 2 \times 10^{6}$ $1.5 < Pr < 500$ $d/L < 1$		
Gnieliński [58]	eliński [58] $\overline{Nu} = \frac{(f/8)(Re - 1000)Pr}{1 + 12.7(f/8)^{0.5}(Pr^{\frac{2}{3}} - 1)} \qquad 3 \times 10^{3}$ 0.5		$f = (0.79 lnRe - 1.64)^{-2}$	
Kutateladze [59] $\overline{Nu} = 1.61 \left(Pe_{\overline{L}}^D \right)^{1/3}$		Pe > 12 d/L < 12		

Capa límite de transferencia de calor

ANÁLISIS DE LA CAPA LÍMITE TÉRMICA

FLUJO LAMINAR PARALELO A UNA SUPERFICIE PLANA ISOTÉRMICA

Suposiciones

- * Estado estable.
- \star Es una placa plana tiene una longitud L en la dirección x y es de infinita extensión en la dirección z.
- ★ El fluido llega en flujo laminar de forma paralela a la superficie con velocidad U_{∞} y temperatura T_{∞} uniformes.
- \star La velocidad y la temperatura varían en las direcciones x y y, pero no varían en la dirección z.
- ★ Los efectos de la gravedad son despreciables y no hay gradientes de presión.
- ★ No hay generación de calor ni disipación viscosa.
- ★ El fluido es newtoniano incompresible de propiedades constantes (ρ, μ, c_p, y, k) .

Metodologías para el análisis

- Ecuación fundamental
- Correlaciones del Número de Nusselt
- Número de Unidades de Transferencia de calor

Ecuación fundamental

•
$$Q_1 = h_1 \cdot A_{TQ1} \cdot \Delta T_1$$

•
$$Q_2 = \frac{K_{TM}}{e} \cdot A_{TQ2} \cdot \Delta T_2$$

•
$$Q_3 = h_3 \cdot A_{TQ3} \cdot \Delta T_3$$

• En condiciones generales

•
$$\Delta T = \Delta T_1 + \Delta T_2 + \Delta T_3$$

•
$$Q_1 = Q_2 = Q_3 = Q$$

Ecuación fundamental

• Se concluye entonces que

•
$$\Delta T = Q \cdot \left(\frac{1}{h_1 \cdot A_{TQ1}} + \frac{e}{K_{TM} \cdot A_{TQ2}} + \frac{1}{h_2 \cdot A_{TQ}}\right)$$

• El espesor de aluminio es de unos 0,16mm y su constante es 237 W/(m.K) por lo que la resistencia es despreciable

Ecuación fundamental

- Concepto de temperatura media logarítmica
 - En el intercambiador hay una variación interna de temperatura.

•
$$\Delta T_{ML} = \frac{(T_{c,1} - T_{f,2}) - (T_{c,2} - T_{f,1})}{\ln(\frac{T_{c,1} - T_{f,2}}{T_{c,2} - T_{f,1}})}$$

• Acabando:

•
$$Q = m_f \cdot C_p \cdot \Delta T_f = U \cdot A_{TQ} \cdot \Delta T_{ML}$$

Correlaciones empíricas

- Escoger la correlación de Nusselt (ej Dittus-Boetler)
- $Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.4} = \frac{h \cdot D}{K_{TF}}$

NTU

• Contemplamos la variación de entalpía (calor)

•
$$Q_f = m_f \cdot C_{p,f} \cdot \Delta T_f$$

•
$$Q_c = m_c \cdot C_{p,c} \cdot \Delta T_c$$

$$NTU = \frac{U \cdot A_{TQ}}{m \cdot C_p}$$

$$\partial q = U \cdot (T_c - T_f) \cdot \partial A = m_c \cdot Cp_c \cdot \partial T_c = m_f \cdot Cp_f \cdot \partial T_f \rightarrow$$

$$\int_{T_{c,i}}^{T_{c,o}} \frac{-\partial T_c}{T_c - T_f} = NTU_c = \frac{U}{m_c \cdot Cp_c} \cdot \int_{A=0}^{A} \partial A = \frac{U \cdot A_{TQ}}{m_c \cdot Cp_c}$$

$$\int\limits_{T_{f,i}}^{T_{f,o}} \frac{-\partial T_f}{T_c - T_f} = NTU_f = \frac{U}{m_f \cdot Cp_f} \cdot \int\limits_{A=0}^{A} \partial A = \frac{U \cdot A_{TQ}}{m_f \cdot Cp_f}$$