Nomenklatur

Subskript:					
	$ \eta $ $ \lambda $ $ 0 $ $ s $ $ i \rightarrow j $	wellenzahlenspezifisch wellenlängenspezifisch einfallende Strahlung Schwarzkörper Von Objekt i auf Objekt j			
Superskrip	t:				
	<i>11 111</i> ●	flächenbezogen volumenbezogen zeitliche Ableitung (Wärmestrom, Massenstrom, Enthalpiestrom etc.)			
Schwarzkö	rper:				
	λ ν σ c E $F(\lambda)$ h $\dot{q}_{s,\lambda}^{"}$	Wellenlänge der Strahlung Frequenz der Strahlung Stefan-Boltzmann-Konstante Lichtgeschwindigkeit Energie eines Photons Strahlungsanteil Plancksche Konstante spektrale Strahlungsdichte Schwarzkörper	[m] [s ⁻¹] [W/(m ² K ⁴)] [m/s] [J] [-] [Js] [W/(m ² m)]		
Reale Objekte:					
	α ε ρ τ	Absorptionsgrad Emissionsgrad Reflexionsgrad Transmissionsgrad Betrachtungswinkel	[-] [-] [-] [-] [rad]		
Einstrahlzahlen:					
	$egin{array}{l} \phi_{ij} & & & \ arOmega & & \ arOmega & & \ arL & & \ \dot{Q}_{i ightarrow j} & & \end{array}$	Einstrahlzahl / Sichtfaktor i auf j Raumwinkel Strahlungsdichte Strahlung von Fläche i auf j	[-] [rad] [W/m²] [W]		

V 01: Schwarzkörperstrahlung

Lernziele:

- Verständnis des Welle-Teilchen Dualismus
- Schwarzer Körper: Beschreibung der spektralen Strahlungsintensität nach Planck
- Lösungsansatz zur Integration des Planckschen Verteilungsgesetzes
- Nutzung des Stefan-Boltzmann-Gesetzes
- Verknüpfung von Temperatur und Lage des Maximums der spektralen Strahlungsintensität

Verständnisfragen:

- ☐ Was ist ein schwarzer Körper?
- ☐ Welche Annahmen gelten für die Berechnung von schwarzen Körpern?
- ☐ Mit welchem Gesetz kann die Wellenlänge bei dem Intensitätsmaximum eines schwarzen Körpers bestimmt werden?
- ☐ Über welchen Ansatz wurde die Stefan-Boltzmann-Konstante ermittelt?
- \square Wie kann die Strahlungsintensität in einem bestimmten Wellenlängenbereich $\lambda_1 \lambda_2$ berechnet werden?

V 02: Strahlung realer Objekte

Lernziele:

- ➤ Definition und Bedeutung von Emission-, Absorption-, Transmission- und Reflexionsgrad verstehen
- Verhalten realer K\u00f6rper im Vergleich zu idealen K\u00f6rpern (grau oder schwarz) verstehen
- Interpretation der Winkelabhängigkeit von realen Körpern

Verständnisfragen:

- ☐ In welche Anteile wird Strahlung, die auf einen Körper trifft, aufgeteilt (*realer Körper*)?
- ☐ Worin unterscheiden sich ein schwarzer, grauer und realer Körper (wellenlängenspezifisch & winkelspezifisch)?

V 03: Kirchhoffsches Gesetz

Lernziele:

- Erlernen des Zusammenhangs zwischen Absorptionsgrad und Emissionsgrad
- ightharpoonup Wissen unter welchen Bedingungen das Kirchhoffsche Gesetz " $\varepsilon=lpha$ " (wellenlängenunabhängig) Gültigkeit besitzt

Verständnisfragen:

- Wann kann davon ausgegangen werden, dass sowohl α(λ) = ε(λ) als auch α = ε gilt?
 Auf welchen Strahlungsanteil bezieht sich der Emissionsgrad und auf welchen der Absorptionsgrad?
- \square Wenn $\alpha(\lambda) = \varepsilon(\lambda)$ gilt, ist dann der absorbierte und emittierte Wärmestrom immer identisch? Unter welchen Bedingungen werden sie identisch?

V 04: Einstrahlzahlen

Lernziele:

- Verständnis von abgestrahlter zu ankommender Strahlung
- Berechnung der von einer Fläche ausgehenden Strahlungsverteilung mit Hilfe einer umliegenden Halbkugel
- Sichtfaktor zwischen zwei beliebigen Flächen definieren

Verständnisfragen:

- ☐ Welche Größen setzt eine Einstrahlzahl ins Verhältnis?
- ☐ Gilt die Berechnung des Strahlungsaustauschs durch Verwendung von Sichtfaktoren, auch wenn die Körper richtungsabhängig strahlen?
- ☐ Wovon sind Einstrahlzahlen im Allgemeinen abhängig?

V 05: Rechenregeln der Einstrahlzahlen

Lernziele:

- Erlernen der Summenregel zur Berechnung von Einstrahlzahlen
- Erlernen der Reziprozitätsbeziehung zur Berechnung von Einstrahlzahlen
- Vermögen, Symmetriebedingungen geschickt zu nutzen
- Vermögen, Hilfsebenen geschickt zu nutzen

	_
Verständnis	fraaen:
VCISCUITATIIS	magen.

	Welche	Regeln	existieren	für	die	Berechnung	von	Einstrah	Izahle	'n
--	--------	--------	------------	-----	-----	------------	-----	----------	--------	----

	Bei welchen	Körperformen	muss $\phi_{i,i}$	berücksichtigt	werden?
--	-------------	--------------	-------------------	----------------	---------

HO 01: Einstrahlzahl

Lernziele:

➤ Üben der Berechnung von Einstrahlzahlen an einfachen 2- und 3-dimensionalen Geometrien

V 06: Flächenhelligkeiten

Lernziele:

- Flächenhelligkeiten und deren Bedeutung verstehen
- Erlernen und üben, Flächenhelligkeiten von Körpern und Körpersystemen zu formulieren

Verständnisfragen:

- ☐ Wie kann man Flächenhelligkeiten physikalisch deuten?
- ☐ Welche Prinzipien sollten beim Aufstellen von Flächenhelligkeiten beachtet werden?

V 07: Energiebilanz

Lernziele:

- Grundsätzliche Elemente einer Energiebilanz formulieren und Energiebilanz aufstellen
- Fähigkeit, Energiebilanzen um einen Körper aufzustellen
- Unterschied zwischen innerer und äußerer Energiebilanz verstehen

Verständnisfragen:

- ☐ Welche Ereignisse führen zu einer zeitlichen Änderung der thermischen Energie im Bilanzraum?
- ☐ Welche Terme finden bei der äußeren Energiebilanz zusätzlich Berücksichtigung?
- ☐ Bei welchen Anwendungen ist eine innere bzw. äußere Energiebilanz sinnvoller anzuwenden?
- ☐ Wie lassen sich innere und äußere Energiebilanz ineinander überführen?

HQ 02: Flächenhelligkeiten

Lernziele:

Trainieren der Fähigkeit, Flächenhelligkeiten aufzustellen.

V 08: Beispiel: Strahlungsaustausch zwischen zwei grauen Platten

Lernziele:

- Verständnis der Berechnung des Strahlungsaustauschs zwischen zwei Flächen mittels Strahlungsverfolgung (Achtung, nicht sinnvoll)
- Fähigkeit, den Strahlungsaustausch mit Hilfe der Flächenhelligkeiten zu beschreiben (Methode der Wahl)

Verständnisfragen:

- ☐ In welchem Fall ist die Strahlverfolgung eine sinnvolle Methode zur Berechnung?
- ☐ Warum ist die Verwendung von Flächenhelligkeiten die elegantere Methode zur Berechnung des Strahlungsaustauschs?

VÜ 01: Aufgabe 1.1 aus dem Übungsskript "Sonnenkollektor"

Lernziele:

Erläuterung der Äquivalenz zwischen der inneren und äußeren Energiebilanz

Verständnisfragen:

- ☐ Was trägt zur inneren und was zur äußeren Energiebilanz bei?
- ☐ Wie lässt sich eine innere in eine äußere Energiebilanz überführen?
- ☐ Wie wird wellenlängenabhängige Strahlung in einer Energiebilanz berücksichtigt?

V 09: Beispiel: Schutzschirm

Lernziele:

Erkenntnis über die Strahlungsbeeinflussung durch die Verwendung eines Schutzschirms zwischen zwei parallelen Platten

Verständnisfragen:

☐ Warum reduziert sich der Strahlungsaustausch trotz eines Schwarzkörpers als Schutzschirm?

Institute of Heat and Mass Transfer, RWTH Aachen University Prof. Dr.-Ing. Reinhold Kneer & Dr. Dr. Wilko Rohlfs

Was passiert, wenn die drei Platten identische Strahlungseigenschaften aufweisen
$(\varepsilon_1 = \varepsilon_2 = \varepsilon_s)$?

VÜ 02: Aufgabe 1.4 aus Übungsskript "keilförmiger Spalt" & alte Klausuraufgabe "Freilandschwein"

Lernziele:

- ➤ Korrektes Aufstellen von Flächenhelligkeiten
- Erlernen des Zusammenhangs zwischen innerer Energiebilanz, äußerer Energiebilanz und Flächenhelligkeiten
- ➤ Korrektes Aufstellen von Einstrahlzahlen/Sichtfaktoren

Verständnisfragen:

☐ Warum weist ein grauer und adiabater Körper im stationären Zustand "schwarz Körper Eigenschaften" auf?

V 10: Beispiel: Strahlungsaustausch zwischen zwei sich umschließenden grauen Körpern

Lernziele:

> Erlernen des Berechnungsschemas von Strahlungsaufgaben am Beispiel von umschlossenen Körpern

Verständnisfragen:

- ☐ Welche Faktoren können zu einem größeren Strahlungsaustausch bei sich umschließenden grauen Körpern beitragen?
- ☐ Welche Grenzfälle existieren und was ist deren Bedeutung?

V 11: Dreikörperproblem

Lernziele:

Erlernen des Berechnungsschemas von Strahlungsaufgaben am Beispiel eines Dreikörperproblems

Verständnisfragen:

☐ Wenn mehrere Körper am Strahlungsaustausch beteiligt sind, lassen sich dann bestimmte Körper zusammenfassen? In welchem Fall dürfen Körper zusammengefasst werden?

VÜ 03: Variation der Aufgabe 1.9 Übungsskript "Deckenheizung" & alte Klausuraufgabe "Sonnenstrahlung"

Inr	710	α
Lerr	1/12	М.

ightharpoonup Korrektes verwenden des Strahlungsanteils $F(\lambda)$ in einem bestimmten Wellenlängenbereich Verständnisfragen: \qed Wie können Flächenhelligkeiten in einer Energiebilanz verwendet werden?

V 12: Zusammenfassung: Kochrezept Strahlungsaufgaben

Lernziele:

Fähigkeit, das Berechnungsschemas zur Lösung von Strahlungsproblemen anzuwenden

Verständnisfragen:

☐ Was sind die wichtigsten Punkte, die vor der Berechnung von Strahlungsaufgaben geklärt werden müssen?

