

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US

Sheet: 2 of 58

Docket No.: 42P14037D

Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruban Kanapathias: 112:1

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 3 of 58

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruban Kanapathippillai Docket No.: 42P14037D Express Mail No.: EV323393564US Sheet: 5 of 58 203 €532 531 DATE TYPE 556 MXZ AND ALIGNER 502 552 MUX 514A . SXA MUCHPLEERME SYA 554 550 5044 MVX SIL COMPRESSER 551 506 553 MUX 520A ADDER A1 51QA MVX 5208 ADDER . A a 1 561 570B Stase MVX 522 ACCUM REGIO MUX 520C

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 6 of 58

FIG. 66

20-bit ISA 40-bit extended 20-bit serial

FIG. 68

Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

(714) 557-3800

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 7 of 58

A 6-bit specifier is used in DSP extended instructions to access memory and register operands.

5 M/B	4 3 2 1 0		
ro l	0 ac-page	ereg	
0	1 gpr. r0-r15	GPB	
	ptr : (r0) to (r15) off	Mem[ptr[0-15]] ptr[0-15] += offset1/offset2	Always postupdate

This allows access to data memory, ereg and GPR

Bit 5 = 1: Use rX (X: 0-7) register to obtain effective memory address and post-modify the ptr field by one of two possible offsets specified in rX registers. dmem[ptr], ptr = ptr + offset1, if off = 0

ptr = ptr + offset2, if off = 1

Bit 5 = 0: Access ac-page or GPR

6-bit operand speci. A:

If Bit-4 is set to 0, then bits 3:0 control access to the general-purpose register file (r0-15) or to execution unit registers.

GPR	GPR Intr page	ac-page	ac intr page	ereg-Shadow DSP
R0	R0	AO	A0_i	AO
R1	R1	A1	A1_i	A1
R2	R2	T	T	T
R3	R3	TR	TR	TR
R4	R4			
R5	R5			
R6	R6			
R7	R7			
R8	R8			SX1
R9	R9			SX1s
R10	R10			SX2
R11	R11			SX2s
R12	R12_i			SY1
R13	R13_i			SY1s
R14	R14_i			SY2
R15	R15_i			SY2s
			LJ	
	<u> </u>	T6 6		
•	Γ	16.6		

For shadow DSP instructions, the 3-bit specifier for operands is defined as follows:

2	1	0		2	1	0	
0	0	0	A0	0	0	0	A0
0	0	1	A1	0	0	1	A1
0	1	0	T	Ō	1	0	T
0	1	1	TR	0	1	1	TR
1	0	0	SX1	1	0	0	SY1 -
1	0	1	SX1s	1	0	1	SY1s;
1	1	0	SX2	1	1	0	SY2
T	1	1	SX2s	1	1	1	SY2s
EF	REG	1	•	EF.	EG	2	•

FIG. 6E

Only the shadow DSP instructions can see the above modified page of execution unit registers.

4-bit operand specifier:

Memory operands: (rX) specifies an access out of the data memory to the execution unit for the function that needs to be performed. The address for the access is specified in the rX register in the general register file that hold the 14-bit pointer (16K of addressing) to memory, 5-bit signed offset or a 3-bit unsigned offset that can post-modify the address. In addition each pointer is typed for efficient SIMD processing and includes a permute control for rearranging data elements of a vector on the fly. The "podi" core can deal with 4-element 16-bit real vectors or complex data directly. This ability to manipulate memory data directly reduces the instruction width greatly and allows efficient signal processing.

(rX): Memory Address Registers

31 30 29 28 27	26	25 24 23 2	2 21 20 1	9 18	17	16 15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
type cb	х	permute	off1: (0-7) of	to: (-16 to 1	5)					P	tr: p	ointe	31					

FIG. 60

5-bit operand specifier:

The 5-bit specifier includes the 4-bit specifier for general data operands and the special purpose registers. It is used in RISC instructions.

4	3	2	1	0
0	sp	or: s	0-s	15
1	9	or: r	0-1	15

	SPR	Intr page	
	SPR	SPR intr page	
0			3
1		fu-ctl_l	4
-	a-type	a-type_I	. 1
2		ps-ctl	7
3	t-type	t-type	1
4	pl-cti	pl-cti	1
5	cb-ctl	cb-ctl	1
6	shuffle	shuffle	1
7	io-ptr	io-ptr	1
8	status	status_I	1
9	loop-ctl	loop-ctl	1
10	per	pcr	stack(8)
11	reserved	reserved	1
12	reserved	reserved	1
13	reserved	reserved	1
14	reserved	reserved	1
oic	ters are recet to all		J

NOTE: All SPR registers are reset to all zeros at power on reset except for the PCR register.

FIG. 6F

Blakely, Sokoloff, Taylor & Zafman LLP

Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US

Docket No.: 42P14037D

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Sheet: 9 of 58

Docket No.: 42P14037D

DSP Instructions Control and specifier Extensions 39 38 37 36 38 34 33 32 31 30 29 28 77 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 PS 5 0 Prod Pt Sat Syl Prod USSS0 SADA about 0 0 da = (sx*sa) + sa da = (sx*sa) + sy ta = (3x*3y) - sa ta = (5x*3a) - sy de = min(sx*sy,sa) de = min(sx*sa,sy) 101 PS # V/S SA DA SAD-ext 0 SA DA abd 0 0 0 of at at at x x V/S And Fp bcd Gx Fp 0 Pred Pt Sal Sy U Sub-op 0 0 0 Nop 0 0 1 Add 0 1 0 Add Ca = 5x + 5y + 5a Ca = 5x + 5y; 5a × 5x - 5y; 0 1 1 Must 1 0 0 Must 1 1 0 1 Miss go = (2x + 3y) * se gs = -(ax + 3y) * 39 gs = -(ax + 3y) * 39 gs = -(ax + 3y) * 39 um 1 1 0 PS XA 0 Pred Pt Sat Syl b-ct Ga Sub-en 0 SA DA abd 0 0 U Fp Feed U da = ext(xx,xx) + x da = end(sx,sa) - sy exn(sa,da) ? 1 = sx, tr = 0 Pred PL PctQ Syl Pctl 0 areg rest 0 0 Type/offset/permute extensions 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Shedow DSP

1 1 0 Pt 0 x x x Frd x x x x 0 SADA 1 1 1

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Op PL op SA oreg1 DA oreg2 1 SADA Sub-op

FIG. 6H

FIG. 6I

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Sheet: 10 of 58

Docket No.: 42P14037D

Control Instructions

	-																	
	19	18 17	16	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
9007709	1	Pred	0	0	0		X.			5	Y	_		F	īz—		1.	0
max min	L	Pred	0	O	0	F	X			F	Y		Γ	F	ž		XN	1
Shift	L	Pred	0	9	7		X			Ū	4	_	_	F	īZ		U11	£ζ
Logic	Ц.	Pred	0	L.	٥		X.			F	Y			F	vŽ		8	. 81
Mux	L	Pred	0	!	-		X.	_			Υ	_		F	īZ.	_	Pø	0
mov	L	Pred	0	1	-		X.		_	C	Z		Fort	Dzi	0	0	0	,
addi	1	Pred	0	1	1		34			ı	7	_	1	1	ī	0	0	7
mov2erg	1	Pred	0	1	1		ux_			nà.	er	स्य	90	NE	0/3	1	0	1
Lom	L	Pred	0	Ľ	1		ŧχ		_		21		ட		ZZ		1	1
Set4bas	L.	Pred	٠.	0	٥	UM			L		2		Rzt	_	U	14		0
Set2bits	ļ.	Pred	1	٥	٥	Ula					Z.		Pzt		42	0	0	-
Setbit	1	Pred	1	0	0	1714	POS		<u> </u>	F	2		Pert	ហា	יוט	ī	0	1
Movi	1	Pred	11	0	٥	L		s	28					F	īZ		1	1
June Church	1	Pred	1	0	_				SIS			_		0	P	be	0	0
Call	1	Pred	2	0	_				579					1	P	100	0	0
Loop	L	Pred	1	0	-		ما:	NT.			U	نانك	ize		VI2	Ls	0	1
Jmpi	ļĻ.	Pred	1	0	~		XX.		X	X	¥	٦		0	P	be	1	٥
C≥ 5	1	Post 1	1	ᅆ	_		u		*	1	-	*	-	1	P	wd.	1	0
Loopi	L	Pred	1	0	1		X.				U	يا با	άζe		UI2	ادا :	1	1
Test	1	Pred	1	1	0		X.			F	7		\Box	PZ		=, -	<,>	0
Testhir	1	Pred	1	1	٥		XX_		L		UIS			P	'Z_	В	0	1
Алар, огр	Ľ	Des.d	1	1	0	Pa		L,	Pb			+	L_	PZ		84	Ŀ	-
bead	Ļ	Pred	1	1	1		X.	_	_		12			Ext	_	0	0	٥
Store	1	Pred	1	1	-	_	NZ_	_	<u> </u>		X		L_	Ext		ī	0	٥
eLoad eStore	Ļ	Pred	1	1	1		4X		_		Z_	_	1	7	1	0	0	٥
Extended	ĮĻ,	Pred	1	1-	1	^	Q _		ட		X		Ŀ	1	<u> </u>	7	0	٥
	1	Pred	Ľ	11	1	L				ins :		<u>6</u>	_				5	٩
Logic2	1	Pred	1	1	2		X.		<u> </u>		/RZ	_	Pixt	Py		41.	0	-
mo v.erg Crb	Ľ	Pred	!	!	1	unit		3	L		<u>z</u>		90		A.	0	1	-
Parity	H	Pred	Ľ	1	1		X -	<u>.</u>	┡.		2_	_	2	0	0	1	1	-
Stra	H	Pred	;	ŀ	1		ux .	_	_	PZ		ΟŒ	<u> </u>	1	0	1		1
Abs	H	Pred	H	1	1		Q_	_	<u> </u>		<u> </u>		,	1	٥	1	1	1
Neg	H	Pred	H	H	-		<u> </u>		<u> </u>		2		0	۰	1	1	ш	_
Div-step	H	Pred	÷	+	÷		XX XX		<u> </u>		2		0	1	_	1	\mathbf{L}	-
Herserved	È	1100							۱		Z		1	0	-	1	1	-
Bostowed	E	Pred		÷	24		<u> </u>								à		12	1
Beturn	H	Pred	7	Ť	-	Pred			S.				2	T.	1		-1	7
Zero-ac	H	Pred	H	+	H	_	1	•	0	Ľ	0	브	!	7	1	1	1	1
BSync	H	Pred	+	H	÷		: J		10	7	0	1	!	-	1	1	1	1
S ei	H	Pred	H	÷	÷	- Uka		0	-	_		Ľ	1	-	1	1	!	,
Nop	H	Pred	 	÷	H	ULS	_	+	1	+	1	!	1	1	1	1	1	1
	Ŀ		<u>'</u>	٠.				Ľ.	Ц.	டு	1		<u> </u>	1	1	1	டுப	1

<8ir1, Bits9-6> = UIS (Shift Amount)

Bit 5: 0=one areg, 1=broadcast all four; Bit4: 0=16-bit, 1=32-bit

<843, 84s13-10> = UI5 :POS

FI6.6J

Extended Control

	Sits 1	3:2 of upper half	700	201		_	1																	
	13 12 11 10		3	4	3	2	19	18	17	16	135	14	13	T 12	111	10	9 8 7	6	īs	77	ı j	-	1	Τō
InserVExtract	PX	PZ	0	0	0	0	ō		1	ō					RΛ		OffsetU/5		ť		ngth:			tŏ
Inseré	UH: length	RZ	0	10	ō		Ιò	-	_	_	16.			_		1	RY				₹٧		×	
Share	RX	RZ	ŏ	6	ö	ö	6	-5	120	0	P21			ius	silior 1 1	-	Shift: UIS			m10	IPA	-	FP	r
			_					_	1.27	Ľ	1.30			100		ሳስ		_	۳	1 4	1.00			
Rotate	RX	RZ	10	0	0	0	0	Ξ	×	0	×	×	1	×	Ŀ		Shift UIS		1	E	PVL		×	
jmp, call	Ur	TJ/C	o	0	-	_	-				-	_			10	'n			_			_		
deop	US4: Outer LC	UH; inner LC	ŏ	0	-	P	0		ext	P	P		_				Ull			<u> </u>		_		r =
doopi	FOX	RY	ō	ő	H	H	10	-	exi								inner Lsize							
TTA, BE	FEX	RY	0	1	0	0	10	Ţ	brat	1					1.7			100			173			
add/sub	POX	RY	0	1	0	0	0	×	¥	0	ō				7		RZ	_			172		7	H
		800 576 B. S.		7.	Ċ	#	0	1	· z	±0.	51	1	15		5		400	150	100		藷	-	-	3
logicp Testi	PX BX	D PZ	0	1	0	0	0	Ä	1 2	0	1	T/F	1/1	1//	14	84	PY		E		~	-	×	
Movi	HAL FRE	PZ PZ	0	Ľ	0	1	0	۰	_	0	L.	_					bren16							_
loadi	Туре	RZ	ř	H	۲.	۰	0	١÷	1	0	0	o	_			_	वित्तवार्ध							
storei	Туре	RX	ŏ	i	H	H	ö	÷	H	₩	1 6	۲	⊢			_		n)4	_	—				_
loadi	PLX	RZ	ō	1	Ť	Ť	6	7	Î	10		n,	10	1	Type			1114		110		—		—
storet	MZ_	PIX	0	-	*	-	0	×	×	0	1	łχ	Ť		Type					110		_		
Addi/subi mini.maxii	- RX	PZ ·	1	0	‡	9	0	n	370	9			_) (cremé						_	_
andi.ori	RX RX	RZ RZ	1	-	Š	L!	٥	-	3															
		ı nı	Ľ	<u>.</u>	8	HL	0		1.2	Lo.	L	_)16 mem≰							

Fit Sign/Zen

R = PC relative

Bit 15 is continuation of inner I C

andp, orp, andorp, orandp: pz = (px relop py) relop pv)

FIG. 6K

DIAKEIY, SOKOIOFF, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Docket No.: 42P14037D
Sheet: 11-of 58

1 1 1 1 1 1 1 1 1 1
19 16 17 19 15 15 15 15 15 15 15

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 13 of 58

Vipeline Controller 304

Figura 8B

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Sheet: 14 of 58

Docket No.: 42P14037D

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US. Docket No.: 42P14037D

Sheet: 15 of 58

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

SP

CANFIGURATION

Sheet: 17 of 58

56. 12 A

8 X

1X16R

1 X 32 R

1×40 R

16 BITS. SXM 552A-552B or SYM 5 56A=556B 1 x16

(X16

2/x16

2.11×16

3. 1×16

tIG. 12C

Blakely, Sokoloff, Taylor & Zafman LLP

Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Sheet: 19 of 58

FIG. 12E

Blakely, Sokoloff, Taylor & Zafman LLP

Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Docket No.: 42P14037D

ETHOD AND APPARATUS FOR POWER REDUCTION IN A SIGNAL PROCESSOR INTEGRATED CIRCUIT Docket No.: 42P14037D 1st Named Inventor:

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 23 of 58

Operand 1 Data Type:

 $N_1 \times S_1 R$

Operand 2 Data Type:

 $N_2 \times S_2 R$

Type Matching R:

Max $(N_1 \text{ or } N_2)$ x Max $(S_1 \text{ or } S_2)$ R

Fig. 13A

Operand 1 Data Type:

 $N_1 \times S_1 C$

Operand 2 Data Type:

 $N_2 \times S_2 C$

Type Matching C:

 $Max (N_1 or N_2) x Max (S_1 or S_2) C$

Fig. 13B

Operand 1 Data Type:

 $N_1 \times S_1 R$

Operand 2 Data Type:

 $N_2 \times S_2 C$

Type Matching R+C:

Max $(N_1 \text{ or } N_2)$ x Max $(S_1 \text{ or } S_2)$ C

Fig. 13C

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US Sheet: 24 of 58

Docket No.: 42P14037D

	1x16	2x16	1x16	4x16	2x16	1x32	2x32	1x32	4x32	2x32	1x40	2x40	1x40	4x40	2x40
	real	real	cmpx	real	cmpx	real	real	стрх	real	cmpx	real	real	cmpx	teal	cmpx
1x16	1 unit	2 unit	2 unit	4 unit	4 unit	2 unit	4 unit	4 unit		1	10.47	7007	- VIII-	icui	Ciripa
real	L		-		13.5								ļ	1	
2x16	2	2 unit													
real	unit					ļ	İ				1				ĺ
1x16	2 unit		4 unit												
cmpx						j	1								
4x16	4 unit			4 unit											
real	ļ					į	l								
2x16	4 unit														
cmpx	l					}	l								
1x32	2 unit									†					
real	l						1			ļ		i			
2x32	4 unit														
real							ļ								
1x32	4 บกกั														
cmpx					l					İ					
4x32	1	1	j												
real															
2x32	Į	}	ļ)	l	ļ	ļ]					
cmpx											·				
1x40					l	ļ]					
real	<u> </u>														
2x40			1			j]					
real	├ ──	<u> </u>													
1x40					l										
cmpx			<u> </u>		L		L								
4x40	1		1	1	1	ł	}								
real					<u> </u>	 	L			L					
2x40	1	1	1		l		•								
стрх	1		ŀ	l	l	1	1		i		}		}		l

FIG. 14

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037E

Sheet: 25 of 58

Docket No.: 42P14037D

	1x16	2x16	1x16	4x16	2x16	1x32	2x32	1x32	4x32	2x32	1x40	2x40	1x40	4x40	2x40
	real	real	cmpx	real	стрх	real	real	стрх	real	cmpx	real	real	стрх	real	cmpx
1x16	1 unit	2 unit		4 unit		1 unit	4 unit		4 unit		1 unit	2 unit		4 unit	- W11.PX
real													1		
2x16	2 unit	2 unit				2 unit	2 unit					2 unit			
real	- WIII								l			!			
1x16	1														
cmpx						l l	_				1				
4x16	Yunt			L# unit		4 unit			4 unit					4 unit	
real	-quait									·					
2x16			İ												
стрх									ĺ			1	ĺ		
1x32	Luni+	a unit				1 unit	2 unit		4 unit		1 unit	2 unit		4 unit	
real	LOUIT	9 MULT		4 unit				· _	l	1	}	}			
2x32	l						2 unit					2 unit			<u> </u>
real	4 unit	2 unit				2 unit			L	İ		ļ	1		
1x32	1			[
cmpx	ļ								<u> </u>			Ì.	į	(
4x32						l			4 unit		4 unit			4 unit	
real	4 unit			Hunit		Yunit									
2x32	1			})]	1					
cmpx	ļ				ļ		<u> </u>	L							l
1x40	Junit				[L .		1	1.	ĺ	1 unit				
real	1 divi			ļ	ļ	lunit		ļ	Hunit	<u> </u>		L			
2x40 real	2 unit	۸		ł	ł	3	1	l	l	ł		2 unit			
	S (UL)	Ø (1701			<u> </u>	<i>dunit</i>	dunit		<u> </u>		<u> </u>	·			
1x40])	1)	l))	}	l]	
4x40	 	 		 	 			<u> </u>	 	 	 		ļ		L
real	Hunit		Yunit			YUNIT		1	Hunit				1	4 unit	•
2x40	1,0,,,,	<u> </u>	I LUDY)	 	 -	נוטחנ		 -	1 nui)	 	 	<u> </u>	ļ		L
cmpx	1		1	l	ì			1	1	l	ł	ł	l	-	l

Blakely, Sokoloff, Taylor & Zafman LLP

(714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US

Sheet: 26 of 58

Docket No.: 42P14037D

													· · · · · · · · · · · · · · · · · · ·		
	1x16	2x16	1x16	4x16	2x16	1x32	2x32	1x32	4x32	2x32	1x40	2x40	1x40	4x40	2x40
<u>.</u> .	real	real	cmpx	real	cmpx	real	real	cmpx	real	cmpx	real	real	cmpx	real	cmpx
1x16	1 unit	2 unit	2 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit	4 unit
reat			1	i											
2x16	اء دا	2 unit	1	l		2 unit	2 unit	1			j	2 unit			
real	Linux										l				
1x16	١,	1	2 unit	ļ		1	. 1	2 unit			2 unit		2 unit		
стрх	Dunit]												
4x16	1	1 1		1 unit	_	4 unit			4 บกit					4 unit	
real	Yunit		·												
2x16	Ι				4 unit					4 unit					4 unit
стрх	Hunit	4	·.												
1x32	l .	1 1				1 unit	2 unit	2 unit	4 unit		1 unit	2 unit	2 unit	4 unit	
real	Hunit	Dunit													
2x32							2 unit					2 unit			
real	Dunit	Junit				Junit							ļ		
1x32	1							2 unit			2 unit		2 unit		
стрх	Dunit		Junit			Juni									
4x32									4 unit		4 unit			4 unit	
real	Hunit	1 1		4unit		4 unit			 						
2x32	Ι									4 unit					4 unit
cmpx	Hunit	r i			t.wH			1	l						
1x40	T										1 unit	2 unit		4 unit	
real	lunit	1	Junit	ł i	1	lunit		Junit	14unt	}					İ
2x40	0	Δ.				1					4	2 unit			
real	Dunit	dunit			l	2unit	Dunit	l			Junt		ļ	ł	1
1x40	1	l .				1		b.					2 unit		l
стрх	Dunit		Dunit		İ	Junit	ĺ	Quait	1	[[1	1
4x40	T ₁								T .		11			4 unit	
real	Hunit	1	1	Hunit		Hunit			4 unit		Hunt				l
2x40	11									.1	l		T T		4 unit
cmpx	Tunit	i	1	1	4 _{unit}	1		l	1	Hunit	1		1	1	1

FIG. 15 B

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

(714) 557-3800 Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Docket No.: 42P14037D Express Mail No.: EV323393564US

Sheet: 28 of 58

Data Type: $N \times S(R/C)$

FIG. 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 type cb permute off1: (0-7) off0: (-16 to 15) ptr: pointer	(rX): M	1em	огу	Ad	dre	 ess	Ŕ	eg	ist	ers																			-						٠.			/	8	0
type cb permute off1: (0-7) off0: (-18 to 15) ptr: pointer	31 30 29	28	_	26	_	<u> </u>	٠.	_	2	2 2	_		1	9	18	1	7]	16	15	1	4	13	12	Ι	11	10	9	8	Ľ	7	6	Ľ	5	4	3	Ι	2	1	I	1
The second secon	type		(20)				ut	•		16	11	<u> : (</u> '	0-7	21	<u></u>	no:	<u>:</u>	16	10 1	<u>5)</u>	Ť	<u></u>		=		,	 n: .	!	otr:	×	DIN	er		i= 1.54				وودا مد د د		إل

FIG. /8

```
DATA TYPE/801
            0000: 1x16 real
            0001: 2x16 real
            0010: 1x16 complex
            0011: 4x16 real
            0100: 1x32 real
            0101: 2x32 real
            0110: 1x32 complex
            0111: 2X16 complex
            1000: 4x32 real
            1001: 2x32 complex
            1010: 1x40 real
            1011: 2x40 real
            1100: 1x40 complex
            1101: 4x40 real (only for local add unit operations)
            1110: 2x40 complex (only for local add unit operations)
            1111: Reserved
```

FIG. /9

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037D
Sheet: 29 of 58

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 30 of 58

FIG. 21

X'= SX10, SX11, SX12, SX13]eg. [xo, x1, X2, x3] x"=[sx20, sx21, sx22, sx23]e.g. [x4, x5, x6, x7 Where SXab: 5=Source; a=delay; b= SP unit number(e.g. 583,51 581, 510; or termen u3, u2, u1, u0,

> y'=[Sy10, Sy11, Sy12, Sy13] y"=[Syzo, Syzi, Syzz, Syzz]

where Syng: S= Source; x=delay; b= SP unit number (e.g. SP3, ST2, SP. SPO; or termed us, u1, u0)

FIG. 22A

shuffle

Shuffle Control Register

ı	21 30	20 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3 2	10			
I		υ2	111	u0	บ3	υ2	u1	uО	บ3	υ2	บ1	น0	u 3	u2	U1	UO			
	SY2S					SY	18		Ţ	SX	25		SX1S						

Units are connected to their nearest neighbors for shuffling the sources using the following bit diagram:

10

Unit N+1, $SX1 = \chi'$ (right) Unit N+1, $SX2 = \chi''$ (right) Unit N-1, $SX1 = \chi'$ (right) Unit N-1, $SX1 = \chi''$ (reft) Unit N-1, $SX2 = \chi''$ (reft)

For example to shift the sources to the left by one:

3	2]	0	From
2 .	1	0	3	Into

The bits should be 10101010 (\$AA)

FI (2,22C

FIG 22B

SP2 502C 533 64 2309C Main Control 13070 Main Register Zy 40 23110 Resisterzyi 64 Delayed Mala Control Shadow Shuffle Myx Control 2315 SHY 2 23130 552C Docket No.: 42P14037D

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US Sheet: 34 of 58

FIG. 23B

Blakely, Sokoloff, Taylor & Zafman LLP Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor:

 $V_{\underline{k}_{1},\ell}$

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US Sheet: 36 of 58

Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT 1st Named Inventor: Ruham Kanasan Internation in Named Inventor: Ruham Kanasan Internatio

 $X_1 = SX_{12}, SX_{22}$ $X_3 = SX_{13}, SX_{23}$ X1= SX11, SX21

lakely, Sokoloff, Taylor & Zafman LLP ittle: METHOD AND APPARATUS FOR POWER REDUCTION IN A

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US Sheet: 38 of 58

FIG. 25

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US Docket No.: 42P14037D

Sheet: 40 of 58

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 42 of 58

F5G. 28

			Physical	
ADO DESS WA	Logical BITS	ASSUME PRITS/WORD	BITS	PHYSTRAL (WORDS)
	64x => MAX-5/2X	,	XAM	MAX/8
	~> M4x-1024x		Mex-512 K	MAX/8 - 64X
	MAX -1536K	MOM BLOCK GN	MAX -1024 V	MAX/8 -128K
•	MAX-2048K	1 A4 = 10 C	MAY-1536K	MAX/8 -1924
MAX/8 - 320W	€> MAX-2560X		MAX - 2048 K	<> MAX/8 -256K
Ø		•	•	ø
•	ø	€	•	•
ø	6	•	Legaritation of the control of the c	ø
449K	======================================	_	4096K ES	512K
3844	<>> 3072K	Mem BlockDz	3584K &5	4482
320K	2560K	Mem Block CZ		
÷ 663 a	_	MEM BLOCK BZ	3072K <=	384K
5.26 K	2048K		2560K <= 5	320K
192k	1536K	Mem BLOCKA 2	2048K	256K
(MK-1)	(1536K)	/ Mytony Block Sy	(RO48K-1)	•
•	Ť,	MEM BLOCK CI	1536K	•
158K	<>> 1024K	MEMBLOCK BITES	1024K C	£28K
64×	€> SIZK	Mem BLOCK AT	512K	64K
ok	e ok	MEM BOCK HI	OK <>	oK

FIG. 29

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037D

Sheet: 44 of 58

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Sheet: 45 of 58 Docket No.: 42P14037D 2704 NN. FILL NN +2/11-NN D -2716AR +2717AR 4887 BETWEDS COMPANDO 108 ANA 200g

27.19AA -2119MN rt D СЭ <u>ر</u> د LOO ALAA 64 10 X N 7 VOB (3 てコク I DBOOL JMB WY 2or4 な 3406 + Ø C CASE TO + 50 0 271844 -37118NW 643tasb 1000 A 822 ে PATA HN さ 3402A WS HE Blakely, Sokoloff, Taylor & Zafman LLP
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Sheet: 46 of 58 かく DBIN ુ (૧ X My CLACA CLAEN CL3EN ひょると CEUSTER AGRESS AGRESS 3404 - CSO NO > CLACSA 0 12 08B 270 H MOME

FIG. SOB

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REQUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

Docket No.: 42P14037D

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US

Sheet: 49 of 58

			Sheet	t: 49 of	58					
	& _	RWLN	1			RWLE	RWL3	RWL 2	AWLI	
3604 X	FFF	v	•	•	止	17	ÜL O	07	PW BCH	
			•	,	•	<u>m</u>	9	9 p	0	RWBC3
	٠			•	•	<u>a</u>	1 5	A O	0	RWBGZ
35	-		8		Vo	J -	+	O U	70	RWBCI
SIMEL ROOKESS		3602	C			7 Z 10NN		VCC 1-16		
Seavene #						81	13	SE 0	2 0	すると
vř			•	b	•	₩.	7	6	ለ 0	「ことはんら
			•	•	0	6		60	- 0	LWBC2
	36041		•	•.	.es	<u>~</u>	0	80	0	LWBC1 L

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US Sheet: 50 of 58

Docket No.: 42P14037D

OFFISET PHYSTAL ADONESS SPACE A GERMER'S WIEW M 0 3 HARDWARE -0 \leq 00 とよ

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037D
Sheet: 51 of 58 LB STANT RODUEDS 308 350 3604R DECOOSE SELECT OLUMN 78 SAR/DAVR Course B 5 WORD (WBSTS <u>ل</u>ا 78 BESH Memor RWL(N-1) REGEL BWL 2 BWLN RWLY 0000 (78 START ADDRESS J ECON ER 36.02 Seavence V PETS /DRVR と明る LEFT SAR 7 MEMOR ARRA) 1-N1(N-1 西耳 X PT-3 スレター アミア DATA BUS N Brons 37061 74098 ROW 707

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037D

Sheet: 52 of 58

75/N

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Docket No.: 42P14037D Sheet: 53 of 58 3805C 24045 きるの公 3904c Ne Co 300th Row Decobar DEWOORR ROWDECORR 3 START RADRESS Row 7 3 305 W.L.2 رَ ≥ 3 Seguence H 3908N 3903N Memory Andry Sooti

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800 Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A

DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai Express Mail No.: EV323393564US

Docket No.: 42P14037D

Sheet: 54 of 58

IG. 40

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Docket No.: 42P1403XD Sheet: 55 of 58 600h 1008 4310 4000 SELF TIME अहात इम्हण MBCN אפרא SPOLC SPOLC 77814 81818 81818 रं नद्यंत AJEINE AJEINE אפרו 1789-4008 Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US Docket No.: 42P14037D

Blakely, Sokoloff, Taylor & Zafman LLP (714) 557-3800
Title: METHOD AND APPARATUS FOR POWER REDUCTION IN A
DIGITAL SIGNAL PROCESSOR INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Express Mail No.: EV323393564US
Sheet: 57 of 58
Docket No.: 42P14037D 4/05N ,1892

