공개강의 제목

2019 / 06 / 25 정 윤 주

안동대학교 SW중심대학 교육의 설계

전공자 SW교육 설계

· SW중심대학

4차 산업혁명 이후 글로벌 소프트웨어 개발 핵심 인재의 양성

비전공자 SW교육 설계

· SW중심대학

전공별 특성에 맞는 다양한 프로그래밍언어를 교육

: 창의적 사고와 코딩을 통하여 "창의적·실제적" 문제 해결 역량 강화를 목표

인문 예술	생명	사범	사회	자연 체육	창의 (인문)	공과
App inventor						С
Entry						Javascript
Arduino						
		Python				
		R				
		SQL				
				IoT (Sensor based	d coding)	

지역민들을 위한 SW 교육 설계

· SW 중심대학

· SW중심대학

1. 공공 데이터 가져오기 https://www.data.go.kr/

파일데이터 1건을 찾았습니다.

· SW중심대학

1. 공공 데이터 가져오기

CSV 고속도로_상습정체구간(2015년11월	CSV 고속도로_노선별 월 변동계수(2015년
▲ 멀티다운로드	▲ 멀티다운로드
CSV 고속도로_노선별 요일 변동계수(2015	CSV 고속도로_지정차로제지정현황(2015년)
♣ 다운로드 ○ 상세정보 ● 오류신고	♣ 다운로드 ○ 상세정보 ● 오류신고
CSV 고속도로_교통사고통계(2015년11월	CSV 고속도로 시공간 분산지수(2016년)
♣ 다운로드 ◎ 상세정보 ● 오류신고	♣ 다운로드 ◎ 상세정보 ● 오류신고
"고속도로교통사고형	황 csv" 라는 이름으로 저장

· SW중심대학

2. 데이터 파일 읽기

```
import pandas as pd
import matplotlib.pyplot as plt

#df = pd.read_csv('고속도로교통사고현황.csv')

df = pd.read_csv('고속도로교통사고현황.csv', encoding='CP949')

df
```

	연도	사고	사망	부상
0	2000	3910	569	2845
1	2001	3638	456	2331
2	2002	3957	421	2115
3	2003	3585	348	1843
4	2004	3242	300	1555
5	2005	2880	249	1170
6	2006	2583	284	1131
7	2007	2550	283	1114
8	2008	2449	265	955
9	2009	2374	248	1031
10	2010	2368	353	983
11	2011	2640	265	1731
12	2012	2600	343	1619
13	2013	2496	264	1253
14	2014	2395	253	1148

· SW중심대학

3. 데이터의 일부를 이용하여 시각화하기

```
df1=df.loc[:,['연도','사망', '부상']]
ax=df1.plot(kind='line', x='연도')
ax.set_xlabel('Year')
ax.legend(['Dead', 'Injury'])
plt.show()
```


파이썬을 이용한 머신러닝

· SW중심대학

1. 머신러닝을 이용한 교통 사고수 예측

```
*test.py - C:/JYJ/ML_test01/test.py (3.6.5)*
                                                                                              X
                                                                                          File Edit Format Run Options Window Help
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pvplot as plt
df = pd.read csv('고속도로교통사고현황.csv', encoding='CP949')
list1 = df.values.tolist()
ar = np.array(list1)
xData = ar[:, 0]-2000
yData = ar[:. 1]
W = tf.Variable(tf.random_uniform([1], -100, 100))
b = tf.Variable(tf.random_uniform([1], -100, 100))
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
H = W * X + b
cost = tf.reduce mean(tf.square(H-Y))
a = tf.Variable(0.01)
optimizer = tf.train.GradientDescentOptimizer(a)
train = optimizer.minimize(cost)
```


파이썬을 이용한 머신러닝

1. 머신러닝을 이용한 교통 사고수 예측

```
*test.py - C:/JYJ/ML_test01/test.py (3.6.5)*
                                                                                                     ×
                                                                                                 File Edit Format Run Options Window
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(5001):
    sess.run(train, feed_dict={X:xData, Y:yData})
if i % 500 == 0:
         print(i, sess.run(cost, feed dict={X:xData, Y:yData}), sess.run(W), sess.run(b))
print(sess.run(H. feed dict={X:[16]}))
hY = sess.run([(W * x + b) for x in xData])
plt.plot(xData, yData)
plt.plot(xData, hY, 'red')
plt.show()
```


파이썬을 이용한 머신러닝

2. 실험 결과와 시각화

다음 시간 목표:

머신러닝을 이용한 연도별 교통사고수 예측 프로그램을 분석하여 완벽히 이해하기

다음 시간에 만나요~~~~

