0.1 其他

例题 **0.1** 设 $f:[0,1] \to (0,+\infty)$ 是连续递增函数, 记 $s = \frac{\int_0^1 x f(x) dx}{\int_0^1 f(x) dx}$. 证明

$$\int_0^s f(x) dx \leqslant \int_s^1 f(x) dx \leqslant \frac{s}{1-s} \int_0^s f(x) dx.$$

笔记 看到函数复合积分就联想 Jensen 不等式 (积分形式), 不过 Jensen 不等式 (积分形式) 考试中不能直接使用. 因此仍需要利用函数的凸性相关不等式进行证明.

证明 令 $F(t) = \int_0^t f(x) dx$, 则 F'(t) = f(t) 连续递增, 故 F 是下凸的. 显然 $s \in [0,1]$, 于是

$$F(x) \geqslant F(s) + F'(s)(x - s) = F(s) + f(s)(x - s), \quad \forall x \in [0, 1].$$

从而

$$\int_{0}^{1} F(x)f(x) dx \ge \int_{0}^{1} \left[F(s)f(x) + f(s)f(x)(x - s) \right] dx$$

$$= F(s) \int_{0}^{1} f(x) dx + f(s) \int_{0}^{1} \left[xf(x) - sf(x) \right] dx$$

$$= F(s) \int_{0}^{1} f(x) dx + f(s) \left[\int_{0}^{1} xf(x) dx - \frac{\int_{0}^{1} xf(x) dx}{\int_{0}^{1} f(x) dx} \int_{0}^{1} f(x) dx \right]$$

$$= F(s) \int_{0}^{1} f(x) dx.$$

又注意到

$$\int_0^1 F(x)f(x) \, \mathrm{d}x = \int_0^1 F(x) \, \mathrm{d}F(x) = \frac{1}{2} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2.$$

故

$$\frac{1}{2} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2 \geqslant F(s) \int_0^1 f(x) \, \mathrm{d}x \implies \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x \geqslant F(s) = \int_0^s f(x) \, \mathrm{d}x$$

$$\implies \int_0^s f(x) \, \mathrm{d}x + \int_s^1 f(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x \geqslant 2 \int_0^s f(x) \, \mathrm{d}x$$

$$\implies \int_0^s f(x) \, \mathrm{d}x \leqslant \int_s^1 f(x) \, \mathrm{d}x.$$

由分部积分可得

$$s = \frac{\int_0^1 x f(x) dx}{\int_0^1 f(x) dx} = \frac{\int_0^1 x dF(x)}{F(1)} = 1 - \frac{\int_0^1 F(x) dx}{F(1)},$$

即 $\int_0^1 F(x) dx = (1 - s)F(1)$. 又由 F 的下凸性可知

$$F(x) \leqslant \begin{cases} \frac{F(1) - F(s)}{1 - s} (x - s) + F(s), & x \in [s, 1] \\ \frac{F(s) - F(0)}{s} x + F(0), & x \in [0, s] \end{cases}$$

于是

$$(1-s)F(1) = \int_0^1 F(x) \, \mathrm{d}x \le \int_0^s \left[\frac{F(1) - F(s)}{1-s} (x-s) + F(s) \right] \, \mathrm{d}x + \int_s^1 \left[\frac{F(s) - F(0)}{s} x + F(0) \right] \, \mathrm{d}x$$
$$= \frac{1}{2} F(s) + \frac{1-s}{2} F(1).$$

因此

$$\frac{1-s}{2}F(1) \leqslant \frac{1}{2}F(s) \implies F(1) \leqslant \frac{1}{1-s}F(s),$$

故

$$\int_{s}^{1} f(x) \, \mathrm{d}x = F(1) - F(s) \leqslant \left(\frac{1}{1 - s} - 1\right) F(s) = \frac{s}{1 - s} F(s) = \frac{s}{1 - s} \int_{0}^{s} f(x) \, \mathrm{d}x.$$

例题 0.2 求最小实数 C, 使得对一切满足 $\int_0^1 |f(x)| dx = 1$ 的连续函数 f, 都有

$$\int_0^1 |f(\sqrt{x})| \mathrm{d}x \leqslant C.$$

注 这类证明最佳系数的问题, 我们一般只需要找一个函数列, 是其达到逼近取等即可

本题将要找的函数列需要满足其积分值集中在 x = 1 处, 联想到 Laplace 方法章节具有类似性质的被积函数 (即指数部分是 n 的函数), 类似进行构造函数列即可.

证明 显然有

$$\int_0^1 |f(\sqrt{x})| \, \mathrm{d}x = 2 \int_0^1 t |f(t)| \, \mathrm{d}t \le 2 \int_0^1 |f(t)| \, \mathrm{d}t = 2.$$

令 $f_n(t) = (n+1)t^n$, 则 $\int_0^1 f_n(t) dt = 1$. 于是

$$\int_0^1 |f_n(\sqrt{x})| \, \mathrm{d}x = 2 \int_0^1 t|f(t)| \, \mathrm{d}t = 2 \int_0^1 t(n+1)t^n \, \mathrm{d}t = 2(n+1) \int_0^1 t^{n+1} \, \mathrm{d}t = \frac{2(n+1)}{n+2} \to 2, n \to \infty.$$

因此若 C < 2, 都存在 $N \in \mathbb{N}$, 使得 $\int_0^1 |f_N(\sqrt{x})| \, \mathrm{d}x > C$. 故 C = 2 就是最佳上界.

例题 **0.3** 设 $f \in C[0,1]$ 使得 $\int_0^1 x^k f(x) dx = 1, k = 0, 1, 2, \dots, n-1$. 证明

$$\int_0^1 |f(x)|^2 \mathrm{d}x \geqslant n^2.$$

证明 设 $a=(a_0,a_1,\cdots,a_{n-1})^T\in\mathbb{R}^n\setminus\{0\}$. 由 Cauchy 不等式及条件可知

$$\int_0^1 |f(x)|^2 dx \int_0^1 (a_0 + a_1 x + \dots + a_{n-1} x^{n-1})^2 dx \geqslant \left[\int_0^1 f(x) (a_0 + a_1 x + \dots + a_{n-1} x^{n-1}) dx \right]^2$$

$$= (a_0 + a_1 + \dots + a_{n-1})^2 = \left(\sum_{j=0}^{n-1} a_j \right)^2.$$

注意到

$$\int_0^1 (a_0 + a_1 x + \dots + a_{n-1} x^{n-1})^2 dx = \int_0^1 \left(\sum_{j=0}^{n-1} a_j x^j \right)^2 dx = \int_0^1 \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} a_j a_i x^{i+j} dx$$
$$= \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} a_j a_i \int_0^1 x^{i+j} dx = \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{a_j a_i}{i+j+1}.$$

因此

$$\int_0^1 |f(x)|^2 dx \geqslant \frac{\left(\sum_{j=0}^{n-1} a_j\right)^2}{\sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{a_j a_i}{i+j+1}} = \frac{a^T J a}{a^T H a},$$

其中
$$J = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 , $H = \left(\frac{1}{i+j+1}\right)_{n \times n}$.于是我们只需求 $\sup_{a \neq 0} \frac{a^T J a}{a^T H a}$.设 λ 为 $\frac{a^T J a}{a^T H a}$ 的一个大于 0

的上界, 由例题 8.16(3) 可知 H 正定, 则

$$\lambda$$
为 $\frac{a^T Ja}{a^T Ha}$ 的一个上界 $\iff \lambda \geqslant \frac{a^T Ja}{a^T Ha}$, $\forall a \in \mathbb{R}^n$ $\iff a^T Ja \leqslant \lambda a^T Ha$, $\forall a \in \mathbb{R}^n$ $\iff a^T (\lambda H - J)a \geqslant 0$, $\forall a \in \mathbb{R}^n$ $\iff \lambda H - J$ 半正定.

因此 $\sup_{a\neq 0} \frac{a^T J a}{a^T H a} = \min\{\lambda \mid \lambda H - J \text{半正定}\} = \inf\{\lambda \mid \lambda H - J \text{半正定}\}.$ 设 H_k, J_k 分别为 H, J 的 k 阶顺序主子阵, 再根 据打洞原理及例题 2.42(1)可得

$$\begin{aligned} |\lambda H_k - J_k| &= |H_k| |\lambda I_k - H_k^{-1} J_k| = |H_k| |\lambda I_k - H_k^{-1} \mathbf{1}_k \mathbf{1}_k^T| \\ &= \lambda^{k-1} |H_k| (\lambda - \mathbf{1}_k^T H_k^{-1} \mathbf{1}_k). \end{aligned}$$

其中 $\mathbf{1}_{k}^{T} = (1, 1, \dots, 1)_{1 \times k}$. 由 H 正定可知 $|H_{k}| > 0$, 又因为 $\lambda > 0$, 所以再由引理 6.3可得

$$|\lambda H_k - J_k| > 0 \iff \lambda > \mathbf{1}_k^T H_k^{-1} \mathbf{1}_k \stackrel{\text{supplessed}}{=\!=\!=\!=} n^2.$$

因此对 $\forall \lambda > n^2$, 都有 $\lambda H - J$ 的顺序主子式都大于 0, 故此时 $\lambda H - J$ 正定. 于是对 $\forall a \in \mathbb{R}^n \setminus \{0\}$, 固定 a, 都有

$$a^{T}(\lambda H - J)a > 0, \forall \lambda > n^{2}.$$

$$a^T(n^2H - J)a \geqslant 0.$$

故 n^2H-J 半正定. 因此 $n^2=\inf\{\lambda\mid \lambda H-J$ 半正定 $\}=\sup_{a\neq 0}\frac{a^TJa}{a^THa}$. 结论得证.

例题 0.4 设 A, B 都是 n 级实对称矩阵, 若 B 正定, 证明

$$\max_{\alpha \in \mathbb{R}^n \setminus \{0\}} \frac{\alpha^T A \alpha}{\alpha^T B \alpha} = \lambda_{\max}(AB^{-1}).$$

证明

设 $\alpha > 0, g \in C^1(\mathbb{R})$. 存在 $a \in \mathbb{R}$ 使得 $g(a) = \min g(x)$, 如果

$$|g'(x) - g'(y)| \leqslant M|x - y|^{\alpha}, \forall x, y \in \mathbb{R},\tag{1}$$

证明

$$|g'(x)|^{\alpha+1} \le \left(\frac{\alpha+1}{\alpha}\right)^{\alpha} [g(x) - g(a)]^{\alpha} M, \forall x \in \mathbb{R}.$$
 (2)

证明 不妨设 g(a) = 0, 否则用 g(x) - g(a) 代替 g(x). 当 M = 0, 则不等式(2)显然成立. 当 $M \neq 0$ 可以不妨设 M = 1. 现在对非负函数 g, 现在我们正式开始我们的证明, 当 $g'(x_0) = 0$, 不等式(2)显然成立. 当 $g'(x_0) > 0$, 则利 用(1)有

$$g(x_0) \ge g(x_0) - g(h) = \int_h^{x_0} g'(t) dt$$

$$\ge \int_h^{x_0} [g'(x_0) - |t - x_0|^{\alpha}] dt$$

$$= g'(x_0)(x_0 - h) - \frac{(x_0 - h)^{\alpha + 1}}{\alpha + 1},$$

取 $h = x_0 - |g'(x_0)|^{\frac{1}{\alpha}}$, 就得到了 $g(x_0) > \frac{\alpha}{\alpha+1} |g'(x_0)|^{1+\frac{1}{\alpha}}$, 即不等式(2)成立. 类似的考虑 $g'(x_0) < 0$ 可得(2).

当 $g'(x_0) < 0$, 则利用(1)有

$$g(x_0) \geqslant -g(h) + g(x_0) = -\int_{x_0}^h g'(t) dt$$

$$\geqslant -\int_{x_0}^h [g'(x_0) + |t - x_0|^{\alpha}] dt$$

$$= -g'(x_0)(h - x_0) - \frac{(h - x_0)^{\alpha + 1}}{\alpha + 1},$$

取 $h = x_0 + |g'(x_0)|^{\frac{1}{\alpha}}$, 就得到了 $g(x_0) > \frac{\alpha}{\alpha + 1} |g'(x_0)|^{1 + \frac{1}{\alpha}}$, 即不等式(2)成立.

命题 0.1 (Heisenberg(海森堡) 不等式)

设 $f \in C^1(\mathbb{R})$, 证明不等式

$$\left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^2 \leqslant 4 \int_{\mathbb{R}} x^2 |f(x)|^2 dx \cdot \int_{\mathbb{R}} |f'(x)|^2 dx. \tag{3}$$

注 直观上,直接 Cauchy 不等式,我们有

$$\left(\int_{\mathbb{R}}|f(x)|^2\mathrm{d}x\right)^2 \xrightarrow{\text{ β in \mathbb{R}}} 4\left(\int_{\mathbb{R}}xf(x)f'(x)\mathrm{d}x\right)^2 \leqslant 4\int_{\mathbb{R}}x^2|f(x)|^2\mathrm{d}x \cdot \int_{\mathbb{R}}|f'(x)|^2\mathrm{d}x.$$

但是上述**分部积分**部分需要零边界条件 (即需要 $\lim_{\substack{x\to\infty\\ x\to\infty}} x|f(x)|^2=0$ 上式才成立). 但是其实专业数学知识告诉我们在 \mathbb{R} 上只要可积其实就可以分部积分的. 且看我们两种操作.

证明 Method 1 专业技术: 对一般的 $f \in C^1(\mathbb{R})$, 假定

$$4\int_{\mathbb{R}} x^2 |f(x)|^2 \mathrm{d}x \cdot \int_{\mathbb{R}} |f'(x)|^2 \mathrm{d}x < \infty.$$

取紧化序列 $h_n, n \in \mathbb{N}$, 则对每一个 $n \in \mathbb{N}$, 都有

$$\left(\int_{\mathbb{R}} |h_n(x)f(x)|^2 dx\right)^2 \le 4 \int_{\mathbb{R}} x^2 |h_n(x)f(x)|^2 dx \cdot \int_{\mathbb{R}} |(h_n f)'(x)|^2 dx$$

$$= 4 \int_{\mathbb{R}} x^2 |h_n(x)f(x)|^2 dx \cdot \int_{\mathbb{R}} |h'_n(x)f(x) + h_n(x)f'(x)|^2 dx.$$

右边让 $n \to +\infty$, 就有

$$\lim_{n\to\infty}\left[4\int_{\mathbb{R}}x^2|h_n(x)f(x)|^2\mathrm{d}x\cdot\int_{\mathbb{R}}|h_n'(x)f(x)+h_n(x)f'(x)|^2\mathrm{d}x\right]=\left[4\int_{\mathbb{R}}x^2|f(x)|^2\mathrm{d}x\cdot\int_{\mathbb{R}}|f'(x)|^2\mathrm{d}x\right].$$

但是左边暂时不知道是否有 $\left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^2 < \infty$, 因此不能直接换序. 但是Fatou 引理告诉我们

$$\left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^2 = \left(\int_{\mathbb{R}} \lim_{n \to \infty} |h_n(x)f(x)|^2 dx\right)^2 \leqslant \lim_{n \to \infty} \left(\int_{\mathbb{R}} |h_n(x)f(x)|^2 dx\right)^2$$
$$\leqslant 4 \int_{\mathbb{R}} x^2 |f(x)|^2 dx \cdot \int_{\mathbb{R}} |f'(x)|^2 dx,$$

从而不等式(3)成立.

Method 2 正常方法: 对一般的 $f \in C^1(\mathbb{R})$, 假定

$$4\int_{\mathbb{R}} x^2 |f(x)|^2 \mathrm{d}x \cdot \int_{\mathbb{R}} |f'(x)|^2 \mathrm{d}x < \infty.$$

从分部积分需要看到, 我们只需证明

$$\lim_{x \to \infty} x |f(x)|^2 = 0.$$

我们以正无穷为例. 注意到

$$\infty > \sqrt{\int_{x}^{\infty} y^{2} f^{2}(y) dy} \cdot \int_{x}^{\infty} |f'(y)|^{2} dy \overset{\text{Cauchy } \pi \text{ f. f. }}{\geqslant} \int_{x}^{\infty} y |f'(y) f(y)| dy \geqslant x \int_{x}^{\infty} |f'(y) f(y)| dy, \tag{4}$$

于是
$$\int_x^\infty f(y)f'(y)\mathrm{d}y = \lim_{y \to +\infty} \frac{1}{2}|f(y)|^2 - \frac{1}{2}|f(x)|^2$$
 收敛. 因此 $\lim_{y \to +\infty} \frac{1}{2}|f(y)|^2$ 存在. 注意 $\int_{\mathbb{R}} x^2|f(x)|^2\mathrm{d}x < \infty$, 因此由

积分收敛必有子列趋于 0 可知, 存在 $x_n \to \infty$, 使得 $\lim_{n \to \infty} x_n |f(x_n)| = 0$, 于是再结合 $\lim_{y \to +\infty} \frac{1}{2} |f(y)|^2$ 存在可得

$$\lim_{n \to \infty} f(x_n) = 0 \Rightarrow \lim_{y \to +\infty} f(y) = 0.$$

现在继续用(4), 我们知道

$$\sqrt{\int_{x}^{\infty} y^{2} f^{2}(y) \mathrm{d}y \cdot \int_{x}^{\infty} |f'(y)|^{2} \mathrm{d}y} \geqslant x \int_{x}^{\infty} f'(y) f(y) \mathrm{d}y = \frac{x}{2} |f(x)|^{2},$$

令 $x \to +\infty$,由 Cauchy 收敛准则即得 $\sqrt{\int_x^\infty y^2 f^2(y) \mathrm{d}y} \cdot \int_x^\infty |f'(y)|^2 \mathrm{d}y \to 0$,从而 $\lim_{x \to +\infty} x |f(x)|^2 = 0$,这就完成了证明. 于是由分部积分和 Cauchy 不等式可知,对 $f \in C^\infty(\mathbb{R})$,我们有

$$\left(\int_{\mathbb{R}}|f(x)|^2\mathrm{d}x\right)^2\xrightarrow{\underline{\mathcal{D}}\oplus\mathbb{R}\mathcal{D}}4\left(\int_{\mathbb{R}}xf(x)f'(x)\mathrm{d}x\right)^2\leqslant 4\int_{\mathbb{R}}x^2|f(x)|^2\mathrm{d}x\cdot\int_{\mathbb{R}}|f'(x)|^2\mathrm{d}x,$$

即不等式(3)成立.

例题 **0.5** 设 $f:[0,+\infty)\to(0,1)$ 是内闭 Riemman 可积函数, 若 $\int_0^{+\infty}f(x)\mathrm{d}x$ 与 $\int_0^{+\infty}xf(x)\mathrm{d}x$ 均收敛, 证明

$$\left(\int_0^{+\infty} f(x) \mathrm{d}x\right)^2 < 2 \int_0^{+\infty} x f(x) \mathrm{d}x. \tag{5}$$

证明 记 $a = \int_0^\infty f(x) dx > 0$, 待定 s > 0, 则不等式(5)等价于

$$\int_0^\infty x f(x) dx = \int_0^s x f(x) dx + \int_s^\infty x f(x) dx > \frac{a^2}{2}.$$

于是

$$\int_0^s x f(x) dx + s \int_s^\infty f(x) dx \ge \frac{a^2}{2} \Longleftrightarrow \int_0^s x f(x) dx + s \left(a - \int_0^s f(x) dx \right) \ge \frac{a^2}{2}$$

$$\iff \frac{a^2}{2} - sa + s \int_0^s f(x) dx - \int_0^s x f(x) dx \le 0 \Longleftrightarrow \frac{a^2}{2} - sa + \int_0^s (s - x) f(x) dx \le 0.$$

利用 f < 1, 取 s = a, 则我们有

$$\frac{a^2}{2} - sa + \int_0^s (s - x)f(x)dx = -\frac{a^2}{2} + \int_0^a (a - x)f(x)dx < -\frac{a^2}{2} + \int_0^a (a - x)dx = 0.$$

从而

$$\int_0^a x f(x) dx + a \int_a^\infty f(x) dx > \frac{a^2}{2}$$

成立. 因此

$$\int_0^\infty x f(x) \mathrm{d}x = \int_0^a x f(x) \mathrm{d}x + \int_a^\infty x f(x) \mathrm{d}x \geqslant \int_0^a x f(x) \mathrm{d}x + a \int_a^\infty f(x) \mathrm{d}x > \frac{a^2}{2}.$$

这就证明了不等式(5).

命题 0.2

设 f 是 [0,1] 上的单调函数. 求证: 对任意实数 a 有

$$\int_{0}^{1} |f(x) - a| \, \mathrm{d}x \geqslant \int_{0}^{1} \left| f(x) - f\left(\frac{1}{2}\right) \right| \, \mathrm{d}x. \tag{6}$$

证明 不妨设 f 是单调递增函数. 注意到 $\frac{1}{2}$ 是积分区间的中点, 将式 (6) 右端的积分从 $\frac{1}{2}$ 处分成两部分来处理.

$$\int_{0}^{1} \left| f(x) - f\left(\frac{1}{2}\right) \right| dx = \int_{0}^{\frac{1}{2}} \left(f\left(\frac{1}{2}\right) - f(x) \right) dx + \int_{\frac{1}{2}}^{1} \left(f(x) - f\left(\frac{1}{2}\right) \right) dx$$
$$= \int_{0}^{\frac{1}{2}} (-f(x)) dx + \int_{\frac{1}{2}}^{1} f(x) dx$$

$$= \int_0^{\frac{1}{2}} (a - f(x)) dx + \int_{\frac{1}{2}}^1 (f(x) - a) dx$$

$$\leq \int_0^{\frac{1}{2}} |a - f(x)| dx + \int_{\frac{1}{2}}^1 |f(x) - a| dx$$

$$= \int_0^1 |f(x) - a| dx.$$

故式 (6) 成立.

例题 0.6 若 [a,b] 上的可积函数列 $\{f_n\}$ 在 [a,b] 上一致收敛于函数 f,则 f 在 [a,b] 上可积.

证明 由已知条件,对任意正数 ε ,存在正整数 k 使得

$$|f_k(x) - f(x)| < \frac{\varepsilon}{4(b-a)}, \quad x \in [a,b].$$

因为 $f_k \in R([a,b])$, 所以存在 [a,b] 的一个分割

$$T: a = x_0 < x_1 < \cdots < x_n = b$$

使得

$$\sum_{j=1}^{n} \omega_j(f_k)(x_j - x_{j-1}) < \frac{\varepsilon}{2},$$

这里 $\omega_i(f_k)$ 是 f_k 在区间 $[x_{i-1},x_i]$ 上的振幅.因为

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$$

 $\le \frac{\varepsilon}{2(b-a)} + |f_k(x) - f_k(y)|,$

所以

$$\omega_j(f) \leqslant \frac{\varepsilon}{2(b-a)} + \omega_j(f_k).$$

于是

$$\sum_{j=1}^{n} \omega_{j}(f) \left(x_{j} - x_{j-1} \right) \leqslant \frac{\varepsilon}{2} + \sum_{j=1}^{n} \omega_{j} \left(f_{k} \right) \left(x_{j} - x_{j-1} \right) < \varepsilon.$$

故 f 在 [a,b] 上可积.

例题 **0.7** 设 f 在 [a,b] 上非负可积. 求证: 数列 $I_n = \left(\frac{1}{b-a} \int_a^b f^n(x) dx\right)^{\frac{1}{n}}$ 是单调递增的.

注 当 f 是连续函数时,可以进一步证明 $\lim_{n\to+\infty}I_n=\max_{x\in[a,b]}f(x)$ (见例题??). 证明 要比较 I_n 与 I_{n+1} 的大小,就要比较 f^n 的积分与 f^{n+1} 之间的关系. 这可以利用 Hölder 不等式:

$$\int_{a}^{b} f^{n}(x) dx = \int_{a}^{b} 1 \cdot f^{n}(x) dx$$

$$\leq \left(\int_{a}^{b} 1^{n+1} dx \right)^{\frac{1}{n+1}} \left(\int_{a}^{b} (f^{n}(x))^{\frac{n+1}{n}} dx \right)^{\frac{n}{n+1}}$$

$$= (b-a)^{\frac{1}{n+1}} \left(\int_{a}^{b} f^{n+1}(x) dx \right)^{\frac{n}{n+1}},$$

即

$$\left(\frac{1}{b-a}\int_a^b f^n(x)\mathrm{d}x\right)^{\frac{1}{n}} \leqslant \left(\frac{1}{b-a}\int_a^b f^{n+1}(x)\mathrm{d}x\right)^{\frac{1}{n+1}}.$$

故 $\{I_n\}$ 是单调递增数列.

例题 **0.8** 设 f 在 [a,b] 上连续可导, 且 f(a) = 0. 求证: 对 $p \ge 1$ 有

$$\int_{a}^{b} |f(x)|^{p} dx \leq \frac{1}{p} \int_{a}^{b} \left[(b-a)^{p} - (x-a)^{p} \right] |f'(x)|^{p} dx.$$

证明 为了建立 $|f|^p$ 的积分与 $|f'|^p$ 的积分之间的关系, 先建立 |f| 与 |f'| 的积分的关系. 根据 Newton-Leibniz 公式, 有

$$f(x) = f(x) - f(a) = \int_{a}^{x} f'(t)dt, \quad x \in [a, b].$$

所以对于p > 1应用 Hölder 积分不等式,可得

$$|f(x)| = \left| \int_a^x f'(t) dt \right| \le \left(\int_a^x 1^q dt \right)^{\frac{1}{q}} \left(\int_a^x |f'(t)|^p dt \right)^{\frac{1}{p}}$$
$$= (x - a)^{\frac{1}{q}} \left(\int_a^x |f'(t)|^p dt \right)^{\frac{1}{p}}.$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$. 因而

$$|f(x)|^p \le (x-a)^{p-1} \int_a^x |f'(t)|^p dt, \quad x \in [a,b].$$

注意到上式对p=1 也是成立的. 上式两边在[a,b] 上积分, 可得

$$\int_a^b |f(x)|^p \mathrm{d}x \leqslant \int_a^b (x-a)^{p-1} \left(\int_a^x |f'(t)|^p \mathrm{d}t \right) \mathrm{d}x.$$

$$\int_{a}^{b} |f(x)|^{p} dx \leq \frac{1}{p} (x - a)^{p} \int_{a}^{x} |f'(t)|^{p} dt \Big|_{a}^{b} - \frac{1}{p} \int_{a}^{b} (x - a)^{p} |f'(x)|^{p} dx$$

$$= \frac{1}{p} (b - a)^{p} \int_{a}^{b} |f'(t)|^{p} dt - \frac{1}{p} \int_{a}^{b} (x - a)^{p} |f'(x)|^{p} dx$$

$$= \frac{1}{p} \int_{a}^{b} \left[(b - a)^{p} - (x - a)^{p} \right] |f'(x)|^{p} dx.$$

例题 0.9 设 f 是 [0,a] 上的连续函数, 且存在正常数 M,c 使得

$$|f(x)| \leqslant M + c \int_0^x |f(t)| \mathrm{d}t,$$

求证: $|f(x)| \leq Me^{cx} \ (\forall x \in [0, a]).$

证明 证明注意对于包含变上限积分的不等式常可以转化为微分的不等式. 令

$$F(x) = \int_0^x |f(t)| \mathrm{d}t,$$

则条件中的不等式就是

$$F'(x) \leqslant M + cF(x)$$
.

令

$$G(x) = F(x)e^{-cx} + \frac{M}{c}e^{-cx},$$

则有

$$G'(x) = F'(t)e^{-cx} - cF(x)e^{-cx} - Me^{-cx}$$

$$= |f(x)|e^{-cx} - cF(x)e^{-cx} - Me^{-cx}$$

$$\leq (M + cF(x))e^{-cx} - cF(x)e^{-cx} - Me^{-cx} = 0.$$

这说明
$$G$$
 在 $[0,a]$ 上单调递减. 因为 $G(0)=\frac{M}{c}$,所以 $G\leqslant\frac{M}{c}$. 因而
$$F(x)+\frac{M}{c}\leqslant\frac{M}{c}\mathrm{e}^{cx}.$$

再结合条件可得 $|f(x)| \leq M + cF(x) \leq Me^{cx}$.

例题 0.10 设 f 在区间 [0,1] 上连续且对任意 $x,y \in [0,1]$, 有

$$x f(y) + y f(x) \leq 1$$
.

求证: $\int_0^1 f(x) dx \le \frac{\pi}{4}$. 证明 结论中出现 π 且条件中要求 $x, y \in [0,1]$. 因此将条件中的 x, y 分别换成 $\sin t$ 和 $\cos t$, 有

$$f(\cos t)\sin t + f(\sin t)\cos t \le 1, \quad t \in \left[0, \frac{\pi}{2}\right].$$

将此式在 $\left[0,\frac{\pi}{2}\right]$ 上积分,得

$$\int_0^{\frac{\pi}{2}} f(\cos t) \sin t dt + \int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{2}.$$

由对称性可知上式左端的两个积分相等. 因而

$$\int_0^{\frac{\pi}{2}} f(\sin t) \cos t \mathrm{d}t \leqslant \frac{\pi}{4}.$$

作变换 $\sin t = x$ 即得 $\int_0^1 f(x) dx \leqslant \frac{\pi}{4}$.

例题 0.11 设 f 在区间 [0,1] 上连续且对任意 $x,y \in [0,1]$, 有

$$xf(y) + yf(x) \le 1.$$

求证: $\int_0^1 f(x) dx \leq \frac{\pi}{4}$.

 $\frac{\pi}{4}$ 是最佳的, 这只要取 $f(x) = \sqrt{1-x^2}$ 即可验证. 证明 结论中出现 π 且条件中要求 $x, y \in [0,1]$. 因此将条件中的 x, y 分别换成 $\sin t$ 和 $\cos t$, 有

$$f(\cos t)\sin t + f(\sin t)\cos t \le 1, \quad t \in \left[0, \frac{\pi}{2}\right].$$

将此式在 $\left[0,\frac{\pi}{2}\right]$ 上积分,得

$$\int_0^{\frac{\pi}{2}} f(\cos t) \sin t dt + \int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{2}.$$

由区间再现恒等式可知上式左端的两个积分相等. 因而

$$\int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{4}.$$

作变换 $\sin t = x$ 即得 $\int_0^1 f(x) dx \leqslant \frac{\pi}{4}$.

例题 **0.12** 设 f 在区间 [0,1] 上有可积的导函数且满足 f(0) = 0, f(1) = 1. 求证: 对任意 $a \ge 0$ 有

$$\int_0^1 |af(x) + f'(x)| \mathrm{d}x \geqslant 1.$$

证明 因为 $e^{-ax} \ge e^{-a}$ ($0 \le x \le 1$), 所以

$$\int_0^1 |af(x) + f'(x)| dx = \int_0^1 |(e^{ax} f(x))' e^{-ax}| dx \ge e^{-a} \int_0^1 |(e^{ax} f(x))'| dx$$
$$\ge e^{-a} \left| \int_0^1 (e^{ax} f(x))' dx \right| = e^{-a} |e^a f(1) - f(0)| = 1.$$

例题 0.13 设 f 在 [0,2] 上可导且 $|f'| \leq 1, f(0) = f(2) = 1$. 求证:

$$1 \leqslant \int_0^2 f(x) \, \mathrm{d}x \leqslant 3$$

证明 由 Taylor 中值定理可知, 存在 $\xi_1 \in [0,1], \xi_2 \in [1,2]$, 使得

$$f(x) = 1 + f'(\xi_1)x, \forall x \in [0, 1].$$

$$f(x) = 1 + f'(\xi_2)(x - 2), \forall x \in [1, 2].$$

于是

$$\int_0^2 f(x) dx = \int_0^1 f(x) dx + \int_1^2 f(x) dx$$

$$= \int_0^1 [1 + f'(\xi_1)x] dx + \int_1^2 [1 + f'(\xi_2)(x - 2)] dx$$

$$= 2 + \frac{f'(\xi_1)}{2} - \frac{1}{2} f'(\xi_2).$$

由 |f'| ≤ 1 可知

$$1 = 2 - \frac{1}{2} - \frac{1}{2} \leqslant 2 + \frac{f'(\xi_1)}{2} - \frac{1}{2}f'(\xi_2) \leqslant 2 + \frac{1}{2} + \frac{1}{2} = 3.$$

故

$$1 \leqslant \int_0^2 f(x) \mathrm{d}x \leqslant 3.$$

例题 **0.14** 设 f 在区间 [0,1] 上连续可导, 且 f(0) = f(1) = 0. 求证:

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \leqslant \frac{1}{12} \int_0^1 \left(f'(x)\right)^2 \, \mathrm{d}x$$

且等号成立当且仅当 f(x) = Ax(1-x), 其中 A 是常数.

笔记 对于在两个端点取零值的连续可导函数,可以考虑 (ax+b)f'(x) 的积分,并利用分部积分公式得到一些结果. 证明 设 t 是任意常数,有

$$\int_0^1 (x+t)f'(x)\mathrm{d}x = (x+t)f(x)\Big|_0^1 - \int_0^1 f(x)\mathrm{d}x = -\int_0^1 f(x)\mathrm{d}x.$$

于是利用 Cauchy 积分不等式,可得

$$\left(\int_{0}^{1} f(x) dx\right)^{2} = \left(\int_{0}^{1} (x+t)f'(x) dx\right)^{2}$$

$$\leq \int_{0}^{1} (x+t)^{2} dx \int_{0}^{1} (f'(x))^{2} dx$$

$$= \left(\frac{1}{3} + t + t^{2}\right) \int_{0}^{1} (f'(x))^{2} dx.$$

取 $t = -\frac{1}{2}$,即得所证不等式. 当所证不等式成为等式时, 上面所用的 Cauchy 不等式应为等式. 因此, 存在常数 C 使得 $f'(x) = C\left(x - \frac{1}{2}\right)$. 注意到 f(0) = f(1) = 0,可得 f(x) = Ax(1-x),这里 A 为任意常数.

例题 0.15 设 f,g 是区间 [0,1] 上的连续函数, 使得对 [0,1] 上任意满足 $\varphi(0)=\varphi(1)=0$ 的连续可导函数 φ 有

$$\int_0^1 \left[f(x)\varphi'(x) + g(x)\varphi(x) \right] dx = 0$$

求证:f 可导,且 f' = g.

证明 设

$$c = \int_0^1 f(t)dt - \int_0^1 g(t)dt + \int_0^1 tg(t)dt$$

考察函数

$$G(x) = \int_0^x g(t) dt + c$$

显然 G 可导且 G'(x) = g(x), $G(1) = \int_0^1 g(t)dt + c$. 只需证明 f = G. 令

$$\varphi(x) = \int_0^x \left[f(t) - G(t) \right] dt$$

则 φ 可导, 且 $\varphi(0) = 0$,

$$\varphi(1) = \int_0^1 f(t)dt - \int_0^1 G(t)dt$$

$$= \int_0^1 f(t)dt - \left[tG(t) \Big|_0^1 - \int_0^1 tg(t)dt \right]$$

$$= \int_0^1 f(t)dt - G(1) + \int_0^1 tg(t)dt$$

$$= \int_0^1 f(t)dt - \int_0^1 g(t)dt - c + \int_0^1 tg(t)dt$$

$$= 0$$

根据条件有

$$\int_0^1 \left[f(x)\varphi'(x) + g(x)\varphi(x) \right] dx = 0$$

因为

$$\int_0^1 g(x)\varphi(x)\mathrm{d}x = G(x)\varphi(x)\Big|_0^1 - \int_0^1 G(x)\varphi'(x)\mathrm{d}x = -\int_0^1 G(x)\varphi'(x)\mathrm{d}x$$

所以

$$\int_0^1 \left[f(x) - G(x) \right] \varphi'(x) dx = 0$$

注意到 $\varphi' = f - G$. 我们有

$$\int_0^1 \left[f(x) - G(x) \right]^2 \mathrm{d}x = 0$$

于是 f = G.

命题 0.3

设 f 是区间 [a,b] 上的严格单调递减连续函数, f(a) = b, f(b) = a, g 是 f 的反函数. 求证:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx.$$

特别地, 对 p > 0, q > 0 取 $f(x) = (1 - x^q)^{\frac{1}{p}}, g(x) = (1 - x^p)^{\frac{1}{q}}$, 可得

$$\int_0^1 (1 - x^p)^{\frac{1}{q}} dx = \int_0^1 (1 - x^q)^{\frac{1}{p}} dx.$$

证明 因为可以用在 a,b 分别插值于 f(a), f(b) 的严格单调递减的多项式 (也可以用 Bernstein 多项式) 在 [a,b] 上一致逼近 f(x), 所以只需对 f 是连续可微函数的情况证明.

作变换 x = f(t), 有

$$\int_{a}^{b} g(x) dx = \int_{b}^{a} g(f(t))f'(t) dt = \int_{b}^{a} tf'(t) dt$$
$$= tf(t)\Big|_{b}^{a} - \int_{b}^{a} f(t) dt = \int_{a}^{b} f(t) dt$$

故所证等式成立.

例题 0.16 设 f 是区间 [a,b] 上的连续可微函数. 求证:

$$\max_{a \leqslant x \leqslant b} f(x) \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x + \int_a^b |f'(x)| \, \mathrm{d}x.$$

证明 由于有限闭区间上连续函数可取到最大值,可设 $\max_{a\leqslant x\leqslant b}f(x)=f(y)$. 因此对任意 $x\in[a,b]$,有

$$\max_{a \leqslant x \leqslant b} f(x) - f(x) = f(y) - f(x) = \int_{x}^{y} f'(t) dt \leqslant \int_{a}^{b} |f'(t)| dt$$

关于x在[a,b]上积分,即得

$$(b-a)\max_{a\leqslant x\leqslant b} f(x) - \int_a^b f(x) \,\mathrm{d}x \leqslant (b-a) \int_a^b |f'(t)| \,\mathrm{d}t.$$

两边除以b-a即得所证.

例题 **0.17** 设 $\alpha \in \left[0, \frac{1}{2}\right], f \in C^1[0, 1]$ 且满足 f(1) = 0. 求证:

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx\right)^2 \le \frac{4}{3 - 4\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx.$$

证明 设 $\alpha \in [0,1)$ 且 $\alpha \neq \frac{1}{2}$. 根据 Newton-Leibniz 公式和 Cauchy 不等式, 对 $x \in [0,1]$ 有

$$f^{2}(x) = \left(\int_{x}^{1} f'(t) dt\right)^{2} = \left(\int_{x}^{1} t^{-\alpha} \cdot t^{\alpha} f'(t) dt\right)^{2}$$

$$\leq \int_{x}^{1} t^{-2\alpha} dt \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt = \frac{1}{1 - 2\alpha} (1 - x^{1 - 2\alpha}) \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt$$

因此,由分部积分得

$$\int_{0}^{1} f^{2}(x) dx \leq \frac{1}{1 - 2\alpha} \int_{0}^{1} (1 - x^{1 - 2\alpha}) \left(\int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt \right) dx$$

$$= \frac{1}{1 - 2\alpha} \left[\left(x - \frac{x^{2 - 2\alpha}}{2 - 2\alpha} \right) \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt \right|_{0}^{1}$$

$$+ \int_{0}^{1} \left(x - \frac{x^{2 - 2\alpha}}{2 - 2\alpha} \right) x^{2\alpha} |f'(x)|^{2} dx \right]$$

即

$$\int_0^1 f^2(x) \, \mathrm{d}x \le \frac{1}{1 - 2\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 \, \mathrm{d}x - \frac{1}{(1 - 2\alpha)(2 - 2\alpha)} \int_0^1 x^2 |f'(x)|^2 \, \mathrm{d}x. \tag{7}$$

另一方面,有

$$\int_0^1 |f(x)| \, \mathrm{d}x = \int_0^1 \left| \int_1^x f'(t) \, \mathrm{d}t \right| \, \mathrm{d}x \le \int_0^1 \left(\int_x^1 |f'(t)| \, \mathrm{d}t \right) \, \mathrm{d}x$$
$$= x \left(\int_x^1 |f'(t)| \, \mathrm{d}t \right) \Big|_0^1 + \int_0^1 x |f'(x)| \, \mathrm{d}x$$

因此

$$\int_{0}^{1} |f(x)| \, \mathrm{d}x \leqslant \int_{0}^{1} x |f'(x)| \, \mathrm{d}x. \tag{8}$$

再由 Cauchy 不等式,有

$$\left(\int_{0}^{1} |f(x)| \, \mathrm{d}x\right)^{2} \le \left(\int_{0}^{1} x^{\frac{1-2\alpha}{2}} \cdot x^{\frac{2\alpha+1}{2}} |f'(x)| \, \mathrm{d}x\right)^{2}$$

$$\le \left(\int_{0}^{1} x^{1-2\alpha} \, \mathrm{d}x\right) \left(\int_{0}^{1} x^{2\alpha+1} |f'(x)|^{2} \, \mathrm{d}x\right)$$

$$= \frac{1}{2-2\alpha} \int_{0}^{1} x^{2\alpha+1} |f'(x)|^{2} \, \mathrm{d}x$$

结合式 (7), 可得

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx \right)^2 \leqslant \frac{1}{(2\alpha - 1)(2 - 2\alpha)} \int_0^1 x^2 |f'(x)|^2 dx - \frac{3 - 4\alpha}{(2\alpha - 1)(2 - 2\alpha)} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx \quad (9)$$

$$\text{ £ } \bot \vec{x} + \mathbf{R} \ \alpha = \frac{3}{4}, \ \mathbb{R}^3$$

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx\right)^2 \le 4 \int_0^1 x^2 |f'(x)|^2 dx.$$
 (10)

对 $\alpha \in \left[0, \frac{1}{2}\right)$, 将式 (9) 两边乘以 $4(1-2\alpha)(2-2\alpha)$ 再与式 (10) 相加可得

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx \right)^2 \le \frac{4}{3 - 4\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx.$$

例题 0.18 设 f 在 [0,1] 上非负且连续可导. 求证:

$$\left| \int_0^1 f^3(x) \, \mathrm{d}x - f^2(0) \int_0^1 f(x) \, \mathrm{d}x \right| \le \max_{0 \le x \le 1} |f'(x)| \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2$$

证明 记 $M = \max_{0 \le x \le 1} |f'(x)|$, 则有

$$-Mf(x) \leqslant f(x)f'(x) \leqslant Mf(x), \quad \forall x \in [0,1]$$

因此

$$-M \int_0^x f(t) \, dt \leqslant \frac{1}{2} f^2(x) - \frac{1}{2} f^2(0) \leqslant M \int_0^x f(t) \, dt, \quad \forall x \in [0, 1]$$

上式两边乘以f得

$$-Mf(x) \int_0^x f(t) \, \mathrm{d}t \leqslant \frac{1}{2} f^3(x) - \frac{1}{2} f^2(0) f(x) \leqslant Mf(x) \int_0^x f(t) \, \mathrm{d}t, \quad \forall x \in [0, 1]$$

将上式关于变量x在[0,1]上积分,得

$$-M\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \leqslant \int_0^1 f^3(x) \, \mathrm{d}x - f^2(0) \int_0^1 f(x) \, \mathrm{d}x \leqslant M\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2$$

结论得证.

例题 0.19 设 f 在 [0,1] 上非负单调递增连续函数, $0 < \alpha < \beta < 1$. 求证:

$$\int_0^1 f(x) \, \mathrm{d}x \geqslant \frac{1 - \alpha}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) \, \mathrm{d}x$$

并且 $\frac{1-\alpha}{\beta-\alpha}$ 不能换为更大的数.

注 当函数具有单调性时, 小区间上的积分与整体区间上的积分可比较大小.

证明 根据积分中值定理,存在 $\xi \in (\alpha, \beta)$ 使得

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x = f(\xi)(\beta - \alpha)$$

因而由 f 的递增性, 有

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x \leqslant (\beta - \alpha) f(\beta)$$

于是

$$\int_{0}^{1} f(x) dx = \int_{0}^{\alpha} f(x) dx + \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(x) dx$$

$$\geqslant \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(x) dx \geqslant \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(\beta) dx$$

$$= \int_{\alpha}^{\beta} f(x) dx + (1 - \beta) f(\beta) \geqslant \int_{\alpha}^{\beta} f(x) dx + \frac{1 - \beta}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx$$

$$= \frac{1 - \alpha}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx.$$

取正整数 n 使得 $\alpha + \frac{1}{n} < \beta$. 构造函数

$$f_n(x) = \begin{cases} 0, & 0 \leqslant x \leqslant \alpha, \\ n(x - \alpha), & \alpha < x \leqslant \alpha + \frac{1}{n}, \\ 1, & \alpha + \frac{1}{n} < x \leqslant 1. \end{cases}$$

显然这是一个连续函数,且

$$\int_{0}^{1} f_{n}(x) dx = 1 - \alpha - \frac{1}{2n}, \quad \int_{\alpha}^{\beta} f_{n}(x) dx = \beta - \alpha - \frac{1}{2n}.$$

因而

$$\lim_{n \to +\infty} \frac{\int_0^1 f_n(x) \, \mathrm{d}x}{\int_{\alpha}^{\beta} f_n(x) \, \mathrm{d}x} = \frac{1 - \alpha}{\beta - \alpha}$$

故题中 $\frac{1-\alpha}{\beta-\alpha}$ 不能换成更大的数.

例题 0.20 设函数 f 在 [0,1] 上连续的二阶导函数, f(0) = f(1) = 0, $f'(1) = \frac{a}{2}$. 求证:

$$\int_0^1 x (f''(x))^2 \, \mathrm{d}x \geqslant \frac{a^2}{2}$$

并求上式成为等式的 f.

证明 根据分部积分,Newton-Leibniz 公式和题设条件,有

$$0 \le \int_0^1 x(f''(x) - a)^2 dx = \int_0^1 x(f''(x))^2 dx - 2a \int_0^1 xf''(x) dx + a^2 \int_0^1 x dx$$

$$= \int_0^1 x(f''(x))^2 dx - 2a \left(xf'(x)\Big|_0^1 - \int_0^1 f'(x) dx\right) + \frac{a^2}{2}$$

$$= \int_0^1 x(f''(x))^2 dx - 2a \left(f'(1) - f(1) + f(0)\right) + \frac{a^2}{2}$$

$$= \int_0^1 x(f''(x))^2 dx - \frac{a^2}{2}$$

所以

$$\int_0^1 x (f''(x))^2 \, \mathrm{d}x \geqslant \frac{a^2}{2}$$

等式成立时,有

$$f''(x) = a$$

即
$$f(x) = \frac{1}{2}ax^2 + bx + c$$
. 因为 $f(0) = f(1) = 0, f'(1) = \frac{a}{2}$, 所以 $c = 0, b = -\frac{a}{2}$. 因此
$$f(x) = \frac{1}{2}ax(x-1).$$

例题 0.21 设 n 是正整数, 且 m > 2. 求证:

$$\int_0^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^m dt \leqslant \left(\frac{m \cdot n^{m-2}}{8(m-2)} - \frac{1}{4(m-2)} \right) \pi^2.$$

 $\frac{\mathbf{i}}{\mathbf{j}}$ 当利用积分的可加性把区间 [a,b] 上的积分分为区间 [a,c] 和区间 [c,b] 上的积分之和时,为了得到较好的估计,可以根据情况选择适当的 c.

证明 用数学归纳法容易证明 $|\sin nt| \le n \sin t, t \in \left[0, \frac{\pi}{2}\right]$. 另外又有

$$|\sin nt| \le 1$$
, $\sin t \ge \frac{2t}{\pi}$, $t \in \left[0, \frac{\pi}{2}\right]$.

设 $a \in \left(0, \frac{\pi}{2}\right)$. 则有

$$\int_{0}^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^{m} dt = \int_{0}^{a} t \left(\frac{\sin nt}{\sin t} \right)^{m} dt + \int_{a}^{\pi/2} t \left(\frac{\sin nt}{\sin t} \right)^{m} dt$$

$$\leq \int_{0}^{a} t n^{m} dt + \int_{a}^{\pi/2} t \left(\frac{1}{2t/\pi} \right)^{m} dt$$

$$= \frac{1}{2} n^{m} a^{2} + \frac{1}{m-2} \left(\frac{\pi}{2} \right)^{m} \left(\frac{1}{a^{m-2}} - \frac{1}{(\pi/2)^{m-2}} \right).$$

易知函数 $g(a) = \frac{1}{2} n^m a^2 + \frac{1}{m-2} \left(\frac{\pi}{2}\right)^m \frac{1}{a^{m-2}} \, \, \exists \, \, a = \frac{\pi}{2n} \, \,$ 时取最小值. 于是将上面的 a 换成 $\frac{\pi}{2n}$ 可得 $\int_0^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^m \, \mathrm{d}t \leqslant \left(\frac{m \cdot n^{m-2}}{8(m-2)} - \frac{1}{4(m-2)} \right) \pi^2.$

例题 0.22 设 $n \ge 1$ 是自然数. 求证:

 $\frac{1}{\pi} \int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n} + \frac{1}{2} \ln n.$

证明 注意到

$$\int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} dt = \int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} dt + \int_{\pi/2n}^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} dt.$$

因为当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\sin x > \frac{2x}{\pi}$,所以

$$\int_{\pi/2n}^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \int_{\pi/2n}^{\pi/2} \frac{1}{2t/\pi} \, \mathrm{d}t = \frac{\pi}{2} \ln n.$$

另一方面.

$$\int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} dt = \int_0^{\pi/(2n+1)} \frac{\sin(2n+1)t}{\sin t} dt - \int_{\pi/(2n+1)}^{\pi/2n} \frac{\sin(2n+1)t}{\sin t} dt.$$

用数学归纳法容易证明当 $t \in \left[0, \frac{\pi}{2}\right]$ 时, 有 $|\sin nt| \le n \sin t$. 因此

$$\int_0^{\pi/(2n+1)} \frac{\sin(2n+1)t}{\sin t} dt = \int_0^{\pi/(2n+1)} \left(\frac{\sin 2nt \cos t}{\sin t} + \cos 2nt \right) dt = \int_0^{\pi/(2n+1)} \frac{\sin 2nt \cos t}{\sin t} dt + \frac{1}{2n} \sin \frac{2n\pi}{2n+1}$$

$$= \int_0^{\pi/(2n+1)} 2n \cos t dt + \frac{1}{2n} \sin \frac{2n\pi}{2n+1} < 2n \sin \frac{\pi}{2n+1} + \frac{1}{2n} \sin \frac{2n\pi}{2n+1}$$

$$= \left(2n + \frac{1}{2n} \right) \sin \frac{\pi}{2n+1},$$

$$-\int_{\pi/(2n+1)}^{\pi/2n} \frac{\sin{(2n+1)t}}{\sin{t}} dt = -\int_{\pi/(2n+1)}^{\pi/2n} \left(\frac{\sin{2nt}\cos{t}}{\sin{t}} + \cos{2nt}\right) dt < -\int_{\pi/(2n+1)}^{\pi/2n} \cos{2nt} dt = \frac{1}{2n}\sin{\frac{\pi}{2n+1}}.$$

因此

$$\int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \left(2n + \frac{1}{n}\right) \sin \frac{\pi}{2n+1} < \left(2n + \frac{1}{n}\right) \frac{\pi}{2n+1} = \frac{2n^2 + 1}{2n^2 + n} \pi.$$

于是

$$\int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n}\pi + \frac{\pi}{2} \ln n.$$

两边同时除以π得:

$$\frac{1}{\pi} \int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n} + \frac{1}{2} \ln n.$$

例题 0.23 设 $f \neq 0$, 在 [a,b] 上可微, f(a) = f(b) = 0. 求证: 至少存在一点 $c \in [a,b]$ 使

$$|f'(c)| > \frac{4}{(b-a)^2} \int_a^b |f(x)| \, \mathrm{d}x. \tag{11}$$

14

 $\overline{\text{ti}}$ 明 记上式右端为 M. 假设对一切 $c \in [a,b]$ 有 $|f'(c)| \leq M$, 下面推出矛盾. 首先根据微分中值定理, 对于 $x \in B$ $\left[a, \frac{a+b}{2}\right]$ 存在 $\xi \in (a,x)$, 使

$$f(x) = f(x) - f(a) = f'(\xi)(x - a),$$

由假设,有

$$|f(x)| \le M(x-a), \quad x \in \left[a, \frac{a+b}{2}\right],$$
 (12)

因而

$$\int_{a}^{\frac{a+b}{2}} |f(x)| \, \mathrm{d}x \le \frac{1}{2} \left(\frac{b-a}{2}\right)^2 M. \tag{13}$$

再根据微分中值定理, 对于 $x \in \left[\frac{a+b}{2}, b\right]$, 存在 $\eta \in (x,b)$, 使得

$$f(x) = f(x) - f(b) = f'(\eta)(x - b),$$

由假设,有

$$|f(x)| \le M(b-x), \quad x \in \left[\frac{a+b}{2}, b\right],$$
 (14)

因而

$$\int_{\underline{a+b}}^{b} |f(x)| \, \mathrm{d}x \leqslant \frac{1}{2} \left(\frac{b-a}{2}\right)^2 M. \tag{15}$$

将式 (13) 与式 (15) 相加可得

$$\int_a^b |f(x)| \, \mathrm{d}x \leqslant \left(\frac{b-a}{2}\right)^2 M = \int_a^b |f(x)| \, \mathrm{d}x.$$

这说明式 (13) 与式 (15) 必须是等式, 因而式 (12) 与式 (14) 必须成为等式. 于是

$$f^{2}(x) = \begin{cases} M^{2}(x-a)^{2}, & x \in \left[a, \frac{a+b}{2}\right], \\ M^{2}(b-x)^{2}, & x \in \left(\frac{a+b}{2}, b\right], \end{cases}$$

此分段函数在 $x = \frac{a+b}{2}$ 不可导, 这与 f 在 [a,b] 可导矛盾! 例题 0.24 设 f 是区间 [0,1] 上的下凸函数. 求证: 对一切 $t \in [0,1]$, 有

$$t(1-t)f(t) \le (1-t)^2 \int_0^t f(x) \, \mathrm{d}x + t^2 \int_t^1 f(x) \, \mathrm{d}x.$$

注 从本题结论知: 当 ƒ 是区间 [0,1] 上的下凸函数时, 有

$$\int_0^1 t(1-t)f(t) dt \leqslant \frac{1}{3} \int_0^1 \left[t^3 + (1-t) \right]^3 f(x) dt.$$

因为

$$\int_{0}^{1} t (1-t) f(t) dt \leq \int_{0}^{1} (1-t)^{2} \left(\int_{0}^{t} f(x) dx \right) dt + \int_{0}^{1} t^{2} \left(\int_{t}^{1} f(x) dx \right) dt$$

$$= -\frac{1}{3} \int_{0}^{1} \left(\int_{0}^{t} f(x) dx \right) d(1-t)^{3} + \frac{1}{3} \int_{0}^{1} \left(\int_{t}^{1} f(x) dx \right) dt^{3}$$

$$\xrightarrow{\text{sign}(x)} \frac{1}{3} \int_{0}^{1} (1-t)^{3} f(x) dt + \frac{1}{3} \int_{0}^{1} t^{3} f(t) dt$$

$$= \frac{1}{3} \int_{0}^{1} \left[t^{3} + (1-t) \right]^{3} f(x) dt.$$

笔记 构造思路: 待定 a = a(t,x), b = b(t,x), 使得 t = ta + (1-t)b. 由 f 是下凸函数可知 $f(t) \le t f(a) + (1 - t) f(b), \forall t \in (0, 1).$

并且上式两边对 x 在 [0,1] 上积分, 得

$$t \int_{0}^{1} f(a) dx + (1 - t) \int_{0}^{1} f(b) dx = \frac{t}{1 - t} \int_{t}^{1} f(x) dx + \frac{1 - t}{t} \int_{0}^{t} f(x) dx$$

$$\implies \int_{0}^{1} f(b) dx = \frac{1}{t} \int_{0}^{t} f(x) dx = \int_{0}^{1} f(tx) dx$$

$$\implies b = tx, t = ta + (1 - t) b$$

$$\implies a = t - tx + t^{2}x = t(1 - x + tx).$$

证明 对于 t = 0 和 t = 1 所证不等式是显然的. 设 $t \in (0,1)$, 由定理**??**可知, 下凸函数在 t 点是连续的, 所以 f 在 [0,1] 上可积. 对于 $x \in [0,1]$, 有 t = (1-t)(tx) + t(1-x+tx). 因此根据下凸函数的定义, 得

$$f(t) \leqslant (1-t)f(tx) + tf(1-x+tx).$$

上式对变量x在[0,1]上积分,得

$$f(t) \le (1 - t) \int_0^1 f(tx) \, dx + t \int_0^1 f(1 - x + tx) \, dx$$
$$= \frac{1 - t}{t} \int_0^t f(x) \, dx + \frac{t}{1 - t} \int_t^1 f(x) \, dx.$$

命题 0.4

设 f 在区间 [0,a) 上有二阶连续导数,满足 f(0)=f'(0)=0 且 f''(x)>0 (0< x < a). 求证: 对任意 $x \in (0,a)$,有

$$\int_0^x \sqrt{1 + (f'(t))^2} \, \mathrm{d}t < x + \frac{f(x)f'(x)}{\sqrt{1 + (f'(x))^2} + 1}.$$
 (16)

 $\dot{\mathbf{z}}$ 式 (16) 左端是弧长计算公式, 不等式 (16) 的几何意义是: 光滑下凸曲线段的起点 A 和终点 B 处的切线在曲线凸出的一侧相交于 C 点, 则直线段 AC 与 BC 的长度之和大于这条曲线段的长度.

证明 将式 (16) 右端第一项 x 移到左端, 有

$$\int_0^x \left(\sqrt{1 + (f'(t))^2} - 1 \right) dt = \int_0^x \frac{f'(t)}{\sqrt{1 + (f'(t))^2} + 1} \cdot f'(t) dt.$$

因为 f'(t) 和 $\frac{t}{\sqrt{1+t^2}+1}$ 都是单调递增函数, 所以 $\frac{f'(t)}{\sqrt{1+(f'(t))^2}+1}$ 是单调递增函数. 因此

$$\int_0^x \left(\sqrt{1 + (f'(t))^2} - 1 \right) \, \mathrm{d}t < \frac{f'(x)}{\sqrt{1 + (f'(x))^2} + 1} \cdot \int_0^x f'(t) \, \mathrm{d}t = \frac{f(x)f'(x)}{\sqrt{1 + (f'(x))^2} + 1}.$$

例题 0.25 f 是区间 [0,1] 上的正连续函数, $k \ge 1$. 求证:

$$\int_0^1 \frac{1}{1+f(x)} \, \mathrm{d}x \int_0^1 f(x) \, \mathrm{d}x \le \int_0^1 \frac{f^{k+1}(x)}{1+f(x)} \, \mathrm{d}x \int_0^1 \frac{1}{f^k(x)} \, \mathrm{d}x,\tag{17}$$

并讨论等号成立的条件,

证明 当 $k \ge 1$ 时, 函数 $\frac{t^k}{1+t}$ 和 t^{k+1} 都是单调递增的. 因此对于任意 $x,y \in [0,1]$, 有

$$\frac{1}{f^k(x)f^k(y)} \left(\frac{f^k(x)}{1 + f(x)} - \frac{f^k(y)}{1 + f(y)} \right) \left(f^{k+1}(x) - f^{k+1}(y) \right) \geqslant 0, \tag{18}$$

即

$$\frac{f(x)}{1+f(y)} + \frac{f(y)}{1+f(x)} \leq \frac{f^{k+1}(x)}{1+f(x)} \cdot \frac{1}{f^k(y)} + \frac{f^{k+1}(y)}{1+f(y)} \cdot \frac{1}{f^k(x)}.$$

在上式两端分别关于变量 x, y 在区间 [0,1] 上积分, 即得所证.

要使式 (17) 成为等式, 必须式 (18) 成为等式. 因此对任意 $x, y \in [0, 1]$, 有 f(x) = f(y), 即 f 在 [0, 1] 上为常数.

例题 0.26 设 $b \ge a + 2$. 函数 f 在 [a, b] 上为正连续函数, 且

$$\int_a^b \frac{1}{1 + f(x)} \, \mathrm{d}x = 1.$$

求证:

$$\int_{a}^{b} \frac{f(x)}{b - a - 1 + f^{2}(x)} \, \mathrm{d}x \leqslant 1. \tag{19}$$

并求式(19)成为等式的条件.

证明 令 $g(x) = \frac{b-a}{1+f(x)}$, 则 g 在 [a,b] 上连续且 $\int_a^b g(x) dx = b-a$. 从 g 的定义可得 $f(x) = \frac{b-a-g(x)}{g(x)}$. 因此

$$\frac{f(x)}{b-a-1+f^2(x)} = \frac{\frac{b-a-g(x)}{g(x)}}{b-a-1+\left(\frac{b-a-g(x)}{g(x)}\right)^2} = \frac{1}{b-a} \cdot \frac{g(x)(b-a-g(x))}{g^2(x)-2g(x)+b-a}$$

$$= \frac{1}{b-a} \left[-1 + \frac{(b-a-2)g(x)+b-a}{(g(x)-1)^2+b-a-1} \right] \leqslant \frac{1}{b-a} \left[-1 + \frac{(b-a-2)g(x)+b-a}{b-a-1} \right]$$

$$= \frac{1}{b-a} \cdot \frac{(b-a-2)g(x)+1}{b-a-1},$$

故

$$\int_{a}^{b} \frac{f(x)}{b-a-1+f^{2}(x)} dx \le \int_{a}^{b} \frac{1}{b-a} \cdot \frac{(b-a-2)g(x)+1}{b-a-1} dx$$

$$= \frac{1}{b-a} \cdot \frac{(b-a-2)(b-a)+b-a}{b-a-1} = 1.$$

等号成立当且仅当 g(x) = 1, 即 f(x) = b - a - 1 时成立

例题 0.27 设 f 是 $(-\infty, +\infty)$ 上连续函数, 且在 $(-\infty, a] \cup [b, +\infty)$ 上等于零. 又设

$$\varphi(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt \quad (h > 0).$$

求证:

$$\int_{a}^{b} |\varphi(x)| \, \mathrm{d}x \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

证明 作变换 u = t - x, 得

$$\int_{x-h}^{x+h} |f(t)| \, \mathrm{d}t = \int_{-h}^{h} |f(u+x)| \, \mathrm{d}u.$$

因此

$$\int_{a}^{b} \int_{-b}^{h} |f(u+x)| \, \mathrm{d}u \, \mathrm{d}x = \int_{-b}^{h} \int_{a}^{b} |f(u+x)| \, \mathrm{d}x \, \mathrm{d}u.$$

作变换v = u + x,得

$$\int_{a}^{b} |f(u+x)| \, \mathrm{d}x = \int_{a+u}^{b+u} |f(v)| \, \mathrm{d}v = \begin{cases} \int_{a+u}^{b} |f(v)| \, \mathrm{d}v, & u \ge 0, \\ \int_{a}^{b+u} |f(v)| \, \mathrm{d}v, & u < 0 \end{cases} \leqslant \int_{a}^{b} |f(v)| \, \mathrm{d}v.$$

由此可知

$$\int_{a}^{b} |\varphi(x)| \, \mathrm{d}x = \int_{a}^{b} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(t) \, \mathrm{d}t \right| \, \mathrm{d}x \leqslant \frac{1}{2h} \int_{a}^{b} \int_{x-h}^{x+h} |f(t)| \, \mathrm{d}t \, \mathrm{d}x$$

$$= \frac{1}{2h} \int_{a}^{b} \int_{-h}^{h} |f(u+x)| \, \mathrm{d}u \, \mathrm{d}x = \frac{1}{2h} \int_{-h}^{h} \int_{a}^{b} |f(u+x)| \, \mathrm{d}x \, \mathrm{d}u$$

$$\leqslant \frac{1}{2h} \int_{-h}^{h} \int_{a}^{b} |f(v)| \, \mathrm{d}v \, \mathrm{d}u = \int_{a}^{b} |f(v)| \, \mathrm{d}v.$$

例题 0.28 设 f 在区间 $[1,+\infty)$ 上连续并满足

$$x \int_{1}^{x} f(t) dt = (x+1) \int_{1}^{x} t f(t) dt.$$
 (20)

求 f.

解 假设 f 是满足条件的连续函数,则对式 (20) 两边求导得

$$\int_{1}^{x} f(t) dt = \int_{1}^{x} t f(t) dt + x^{2} f(x).$$
 (21)

由此可知, f(1) = 0, 且当 $x \ge 1$ 时, f 可导. 对式 (21) 两边求导得

$$f(x) = x f(x) + 2x f(x) + x^2 f'(x),$$

即

$$f'(x) = \frac{1 - 3x}{x^2} f(x), \quad x \ge 1.$$
 (22)

所以

$$|f'(x)| \le 2|f(x)|. \tag{23}$$

令 $g(x) = e^{-4x} f^2(x)$, 则有

$$g'(x) = 2e^{-4x} \left(f(x)f'(x) - 2f^2(x) \right).$$

结合式(23) 可知 $g' \le 0$, 这说明 g 单调递减. 因为 g(1) = 0, 所以 $g \le 0$. 但从 g 的定义知 $g \ge 0$. 于是 g = 0, 从而 f = 0.

实际上, 由(22)可解得 $f(x) = Ce^{\int_1^x \frac{1-3t}{t^2} dt} = Ce^{1-\frac{1}{x}-3\ln x}$, 再将 f(1) = 0 代入得 C = 0. 故 $f \equiv 0$. 总之, 原方程 (20) 的解只有 $f \equiv 0$.

例题 0.29 设 f 在任意有限区间上可积, 且对任意 x 及任意 $a \neq 0$ 满足

$$\frac{1}{2a} \int_{x-a}^{x+a} f(t) \, \mathrm{d}t = f(x).$$

试求函数 f.

解 易知线性函数满足上面的式子. 下面证明满足上式的函数必是线性函数. 由条件知, 对任意 x 和 a, 有

$$\int_{x-a}^{x+a} f(t) \, \mathrm{d}t = 2af(x).$$

因此

$$2af(x+y) = \int_{x+y-a}^{x+y+a} f(t) dt = \int_{y+x-a}^{y+a-x} f(t) dt + \int_{y+a-x}^{x+y+a} f(t) dt = 2(a-x)f(y) + 2xf(y+a).$$

取 a = 1, v = 0 就得

$$f(x) = (f(1) - f(0))x + f(0),$$

即 f 是线性函数.

例题 0.30 设 f 是 \mathbb{R} 上有下界的连续函数. 若存在常数 $a \in (0,1]$ 使得

$$f(x) - a \int_{x}^{x+1} f(t) dt$$

为常数,则 f 无穷可微且它的任意阶导函数都是非负的.

证明 不妨设 $m = \inf_{x \in \mathbb{R}} f(x) = 0$ (不然将 f 换为 f - m 之后再证明). 此时 $f \ge 0$. 记

$$A = f(x) - a \int_{x}^{x+1} f(t) dt,$$
 (24)

则 $f \ge A$. 因此, $A \le 0$. 由式 (24) 知 f 无穷可微, 且

$$f'(x) = a f(x+1) - a f(x). (25)$$

记 $a_1 = a$, 则

$$f'(x) + a_1 f(x) \ge 0.$$

假设存在 $a_n > 0$ 使得

$$f'(x) + a_n f(x) \ge 0. \tag{26}$$

则 $(e^{a_n x} f(x))' \ge 0$. 这说明函数 $e^{a_n x} f(x)$ 是递增的. 由式 (24) 可得

$$f(x) \le a \int_{x}^{x+1} f(t) dt = a \int_{x}^{x+1} e^{a_n t} f(t) e^{-a_n t} dt$$

$$\le a e^{a_n (x+1)} f(x+1) \int_{x}^{x+1} e^{-a_n t} dt$$

$$= \frac{e^{a_n} - 1}{a_n} a f(x+1)$$

$$= \frac{e^{a_n} - 1}{a_n} (f'(x) + a f(x)).$$

由此可得

$$f'(x) + a_{n+1}f(x) \ge 0, (27)$$

其中

$$a_{n+1} = a - \frac{a_n}{e^{a_n} - 1}.$$

若 $a_{n+1} \le 0$,则由 (27) 得 $f' \ge 0$. 若 $a_{n+1} > 0$,则接着可构造 a_{n+2} . 若 $\{a_n\}$ 均为正的,则 $\{a_n\}$ 为递减正数列,设其极限为 $r \ge 0$. 若 r > 0,则从上式得 $r = a - \frac{r}{e^r - 1}$,即 $a = \frac{re^r}{e^r - 1} > 1$. 这与条件不符,因此必有 r = 0. 在式 (26) 中令 $n \to +\infty$,即得对一切 x 有 $f'(x) \ge 0$. 注意到

$$f^{(n)}(x) - a \int_{x}^{x+1} f^{(n)}(t) dt = 0, \quad n = 1, 2, \dots,$$

因而将前面的 f 换为 f', 可以得到 $f''(x) \ge 0$, 依次可以证明 $f^{(n)}(x) \ge 0$.

例题 **0.31** 求所有连续函数 $f: \mathbb{R} \to \mathbb{R}$ 使得对任意 $x \in \mathbb{R}$ 和任意正整数 n, 有

$$n^{2} \int_{x}^{x+\frac{1}{n}} f(t) dt = nf(x) + \frac{1}{2}.$$

 \mathbf{H} 设 f 是要求的一个连续函数,则 f 是可导的且

$$n\left[f\left(x+\frac{1}{n}\right)-f(x)\right]=f'(x). \tag{28}$$

由此知 f 二阶可导, 且

$$n\left[f'\left(x+\frac{1}{n}\right)-f'(x)\right]=f''(x). \tag{29}$$

将 (28) 中的 n 换成 2n, 得

$$2n\left[f\left(x+\frac{1}{2n}\right)-f(x)\right]=f'(x). \tag{30}$$

将上式中的x换成 $x + \frac{1}{2n}$ 得

$$2n\left[f\left(x+\frac{1}{n}\right)-f\left(x+\frac{1}{2n}\right)\right]=f'\left(x+\frac{1}{2n}\right). \tag{31}$$

将式(28)两边乘以2再减去式(30)两边、得

$$2n\left[f\left(x+\frac{1}{n}\right)-f\left(x+\frac{1}{2n}\right)\right]=f'(x). \tag{32}$$

从式 (31) 和式 (32) 得

$$f'(x) = f'\left(x + \frac{1}{2n}\right), \quad \forall n \in \mathbb{Z}^+, \forall x \in \mathbb{R}.$$

由(29)式可知 f''=0. 因而存在常数 a,b 使得 f(x)=ax+b. 代入题设条件可得 a=1. 于是 f(x)=x+b, 这里 b 是

任意常数.

例题 0.32 设 $f \in C[-1,1]$ 且对任意整数 n 满足

$$\int_0^1 f(\sin(nx)) \, \mathrm{d}x = 0. \tag{33}$$

求证: 对任意 $x \in [-1, 1]$ 有 f(x) = 0.

证明 在式 (33) 中取 n = 0, 可得 f(0) = 0. 对任意非零整数 n, 将式 (33) 中的积分作变换 t = nx 可得

$$\int_0^n f(\sin t) \, \mathrm{d}t = 0.$$

令

$$F(x) = \int_{x}^{x+1} f(\sin t) \, \mathrm{d}t,$$

则 F 可导, 且 F(n) = 0. 对整数 k 有

$$F(x + 2k\pi) = \int_{x+2k\pi}^{x+2k\pi+1} f(\sin t) dt = \int_{x}^{x+1} f(\sin(t + 2k\pi)) dt$$
$$= \int_{x}^{x+1} f(\sin t) dt = F(x).$$

因而 $F(n+2k\pi) = F(n) = 0$. 这说明 F 在集合 $A = \{n+2k\pi \mid n, k \in \mathbb{Z}\}$ 上取值为 0. 由于集合 A 在 \mathbb{R} 上是稠密的,由 F 的连续性可知 F(x) = 0 $(x \in \mathbb{R})$. 于是

$$F'(x) = f(\sin(x+1)) - f(\sin x) = 0.$$

这说明 $f(\sin x)$ 是以 1 和 2π 为周期的连续函数. 仍由集合 A 的稠密性可知 $f(\sin x)$ 是常数. 因此 f 在 [-1,1] 上是常数. 故 f(x) = f(0) = 0.

例题 **0.33** 设 f 是 [0, 2 π] 上可导的凸函数, f' 有界, 试证

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, \mathrm{d}x \ge 0.$$

证明 因为 f 是可导的凸函数, 所以 f' 是单调递增的函数. 由 f' 的单调有界性, 知 f' 在 $[0,2\pi]$ 上可积. 根据分部积分公式, 得

$$\pi a_n = \int_0^{2\pi} f(x) \cos nx \, dx = f(x) \frac{\sin nx}{n} \Big|_0^{2\pi} - \frac{1}{n} \int_0^{2\pi} f'(x) \sin nx \, dx$$

$$= -\frac{1}{n} \int_0^{2\pi} f'(x) \sin nx \, dx = -\frac{1}{n} \sum_{k=1}^{2n} \int_{(k-1)\pi/n}^{k\pi/n} f'(x) \sin nx \, dx$$

$$= -\frac{1}{n} \sum_{k=1}^{2n} \int_0^{\frac{\pi}{n}} f' \left(x + \frac{(k-1)\pi}{n} \right) \sin \left((k-1)\pi + x \right) dx$$

$$= -\frac{1}{n} \sum_{k=1}^{2n} \int_0^{\frac{\pi}{n}} f' \left(x + \frac{(k-1)\pi}{n} \right) (-1)^{k-1} \sin x \, dx$$

$$= -\frac{1}{n} \int_0^{\frac{\pi}{n}} \sum_{k=1}^{2n} (-1)^{k-1} f' \left(x + \frac{(k-1)\pi}{n} \right) \sin x \, dx$$

$$= -\frac{1}{n} \int_0^{\frac{\pi}{n}} \sum_{k=1}^{n} \left(f' \left(x + \frac{(2k-2)\pi}{n} \right) - f' \left(x + \frac{(2k-1)\pi}{n} \right) \right) \sin x \, dx.$$

注意到 f' 是单调递增的, 即知 $a_n \ge 0$.

例题 **0.34** 设 f 在 [0,1] 上连续可微, f(0) = 0. 求证:

$$\int_{0}^{1} \frac{f^{2}(x)}{x^{2}} dx \le 4 \int_{0}^{1} (f'(x))^{2} dx,$$
(34)

且右边的系数 4 是最佳的.

证明 证法一:因为

$$f'(x) = x^{\frac{1}{2}} \left(x^{-\frac{1}{2}} f(x) \right)' + \frac{f(x)}{2x},$$

所以

$$\left(f'(x)\right)^2 = \left[x^{\frac{1}{2}}\left(x^{-\frac{1}{2}}f(x)\right)'\right]^2 + \left(x^{-\frac{1}{2}}f(x)\right)\left(x^{-\frac{1}{2}}f(x)\right)' + \frac{f^2(x)}{4x^2} \geqslant \left(x^{-\frac{1}{2}}f(x)\right)\left(x^{-\frac{1}{2}}f(x)\right)' + \frac{f^2(x)}{4x^2}.$$

因而

$$\int_0^1 (f'(x))^2 dx \geqslant \frac{1}{2} f^2(1) + \int_0^1 \frac{f^2(x)}{4x^2} dx \geqslant \int_0^1 \frac{f^2(x)}{4x^2} dx,$$

即所证不等式 (34) 成立.

若存在常数 $c \in (0,4)$ 使得

$$\int_0^1 \frac{f^2(x)}{x^2} dx \le c \int_0^1 (f'(x))^2 dx$$
 (35)

对任意满足条件的 f 成立,则对 $\delta \in (0,1)$ 取

$$f(x) = \begin{cases} \sqrt{x}, & x \in [\delta, 1], \\ \frac{3}{2\sqrt{\delta}}x - \frac{1}{2\delta^{\frac{3}{2}}}x^2, & x \in [0, \delta). \end{cases}$$

此时,有

$$\int_0^1 \frac{f^2(x)}{x^2} dx = \int_0^\delta \left(\frac{3}{2\sqrt{\delta}} - \frac{1}{2\delta^{\frac{3}{2}}} x \right)^2 dx + \int_\delta^1 \frac{1}{x} dx$$

$$= \int_0^\delta \left(\frac{9}{4\delta} - \frac{3x}{2\delta^2} + \frac{x^2}{4\delta^3} \right) dx + \int_\delta^1 \frac{1}{x} dx$$

$$= \frac{19}{12} + \int_\delta^1 \frac{1}{x} dx,$$

$$\int_{0}^{1} (f'(x))^{2} dx = \int_{0}^{\delta} \left(\frac{3}{2\sqrt{\delta}} - \frac{1}{\delta^{\frac{3}{2}}} x \right)^{2} dx + \int_{\delta}^{1} \left(\frac{1}{2\sqrt{x}} \right)^{2} dx$$

$$= \int_{0}^{\delta} \left(\frac{9}{4\delta} - \frac{3x}{\delta^{2}} + \frac{x^{2}}{\delta^{3}} \right) dx + \frac{1}{4} \int_{\delta}^{1} \frac{1}{x} dx$$

$$= \frac{13}{12} + \frac{1}{4} \int_{\delta}^{1} \frac{1}{x} dx.$$

因此式(35)导致

$$\left(1 - \frac{c}{4}\right) \int_{s}^{1} \frac{1}{x} dx \leqslant \frac{13}{12}c - \frac{19}{12}.$$

此式当 δ 充分小时是不成立的. 这个矛盾说明 4 是最佳的.

证法二: 利用 Minkowski 不等式, 可得

$$\left(\int_{0}^{1} \frac{|f(x)|^{2}}{x^{2}} dx\right)^{\frac{1}{2}} = \left[\int_{0}^{1} \left(\int_{0}^{1} f'(xt) dt\right)^{2} dx\right]^{\frac{1}{2}}$$

$$\leqslant \int_{0}^{1} \left(\int_{0}^{1} |f'(xt)|^{2} dx\right)^{\frac{1}{2}} dt \xrightarrow{\frac{1}{2}} \int_{0}^{1} \left(\frac{\int_{0}^{t} |f'(x)|^{2} dx}{t}\right)^{\frac{1}{2}} dt$$

$$\leqslant \left(\int_{0}^{1} |f'(x)|^{2} dx\right)^{\frac{1}{2}} \int_{0}^{1} \frac{1}{\sqrt{t}} dt = 2\left(\int_{0}^{1} |f'(x)|^{2} dx\right)^{\frac{1}{2}}.$$

从上式推导可以看出,对于不恒为零的f,严格不等号成立.

为说明相关常数不可改进, 任取 $\varepsilon \in (0,1)$, 考察不恒为零的 $\bar{f} \in C[\varepsilon,1]$ 使得

$$\frac{\int_{\varepsilon}^{1} \frac{|\bar{f}(x)|^{2}}{x^{2}} dx}{\int_{0}^{1} |\bar{f}'(x)|^{2} dx} = \lambda \equiv \sup_{\substack{f \in C[\varepsilon, 1] \\ f \neq 0}} \frac{\int_{\varepsilon}^{1} \frac{|f(x)|^{2}}{x^{2}} dx}{\int_{\varepsilon}^{1} |f'(x)|^{2} dx}.$$

这样的 \bar{f} 的存在性一般需要用泛函分析. 这里只作形式推导. 任取 $\varphi \in C^1_c(\varepsilon, 1)$, 则

$$0 = \frac{\mathrm{d}}{\mathrm{d}s} \frac{\int_{\varepsilon}^{1} \frac{|\bar{f}(x) + s\varphi(x)|^{2}}{x^{2}} \mathrm{d}x}{\int_{\varepsilon}^{1} |\bar{f}'(x) + s\varphi'(x)|^{2} \mathrm{d}x} \bigg|_{s=0}$$

$$= \frac{2\lambda}{\int_{\varepsilon}^{1} |\bar{f}'(x)|^{2} \mathrm{d}x} \left(\frac{1}{\lambda} \int_{\varepsilon}^{1} \frac{\bar{f}(x)\varphi(x)}{x^{2}} \mathrm{d}x - \int_{\varepsilon}^{1} \bar{f}'(x)\varphi'(x) \mathrm{d}x \right)$$

$$= \frac{2\lambda}{\int_{\varepsilon}^{1} |\bar{f}'(x)|^{2} \mathrm{d}x} \int_{\varepsilon}^{1} \left(\bar{f}''(x) + \frac{1}{\lambda} \frac{\bar{f}(x)}{(x+\varepsilon)^{2}} \right) \varphi(x) \mathrm{d}x.$$

因此,尝试寻找 \bar{f} 满足

$$\bar{f}''(x) + \frac{1}{\lambda} \frac{\bar{f}(x)}{x^2} = 0, \quad x \in [\varepsilon, 1].$$

若取 $\alpha \in (0,1)$, 则 $\bar{f}(x) = x^{\alpha}$ 满足上述方程. 对应的 $\lambda = \frac{1}{\alpha(1-\alpha)}$, 为使得 λ 最大, 取 $\alpha = \frac{1}{2}$. 以上讨论启发我们考虑

$$f_{\varepsilon}' = \begin{cases} \frac{1}{2\sqrt{\varepsilon}}, & x \in [0, \varepsilon], \\ \frac{1}{2\sqrt{x}}, & x \in (\varepsilon, 1]. \end{cases}$$

则

$$f_{\varepsilon} = \begin{cases} \frac{x}{2\sqrt{\varepsilon}}, & x \in [0, \varepsilon], \\ \sqrt{x} - \frac{\sqrt{\varepsilon}}{2}, & x \in (\varepsilon, 1]. \end{cases}$$

直接计算得到

$$\lim_{\varepsilon \to 0^+} \frac{\int_0^1 \frac{|f_{\varepsilon}(x)|^2}{x^2} dx}{\int_0^1 |f_{\varepsilon}'(x)|^2 dx} = \lim_{\varepsilon \to 0^+} \frac{2\sqrt{\varepsilon} - \frac{\varepsilon}{4} - \ln \varepsilon - \frac{3}{2}}{\frac{1}{4} - \frac{\ln \varepsilon}{4}} = 4.$$

这就表明不等式中的常数 4 是最佳的.

例题 **0.35** 设 $f,g:[a,b]\to(0,+\infty)$ 都是连续函数, 且 $f\neq g,\int_a^b f(x)\mathrm{d}x=\int_a^b g(x)\mathrm{d}x$. 定义数列

$$I_n = \int_a^b \frac{f^{n+1}(x)}{g^n(x)} dx, \quad n = 0, 1, \dots$$

求证: $\{I_n\}$ 严格单调递增, 且 $\lim_{n\to+\infty}I_n=+\infty$.

证明 由 Cauchy 不等式, 得

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{f(x)}{\sqrt{g(x)}} \cdot \sqrt{g(x)} dx \leqslant \left(\int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} g(x) dx \right)^{\frac{1}{2}}$$
$$= \left(\int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f(x) dx \right)^{\frac{1}{2}}$$

故

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx$$

即 $I_0 \leq I_1$,等号成立当且仅当存在常数 c 使得 $\frac{f(x)}{\sqrt{g(x)}} = c\sqrt{g(x)}$,即 f(x) = cg(x). 再由条件 $\int_a^b f(x) dx = \int_a^b g(x) dx$ 可得 c = 1. 这与 $f \neq g$ 矛盾, 故 $I_0 < I_1$.

假设 $I_0 < I_1 < \cdots < I_n$, 根据 Hölder 不等式, 有

$$I_n = \int_a^b \frac{f^{n+1}(x)}{e^{\frac{(n+1)^2}{n+2}}(x)} \cdot g^{\frac{(n+1)^2}{n+2}-n}(x) dx$$

П

$$\leqslant \left(\int_{a}^{b} \left(\frac{f^{n+1}(x)}{g^{\frac{(n+1)^{2}}{n+2}}(x)} \right)^{\frac{n+2}{n+1}} dx \right)^{\frac{n+1}{n+2}} \left(\int_{a}^{b} \left(g^{\frac{(n+1)^{2}}{n+2} - n}(x) \right)^{n+2} dx \right)^{\frac{1}{n+2}} \\
= I_{n+1}^{\frac{n+1}{n+2}} \cdot I_{0}^{\frac{1}{n+2}} < I_{n+1}^{\frac{n+2}{n+2}} \cdot I_{n}^{\frac{1}{n+2}}$$

因而 $I_n < I_{n+1}$, 这样, 根据数学归纳法原理, 就证明了 $\{I_n\}$ 严格单调递增.

若对任意 $x \in (a,b)$, 有 $g(x) \ge f(x)$, 则 $g(x) - f(x) \ge 0$. 根据条件 g(x) - f(x) 连续且满足 $\int_a^b (g(x) - f(x)) dx = 0$, 这可推出 f = g, 与条件矛盾! 因此必存在 $x_0 \in (a,b)$ 使得 $f(x_0) > g(x_0)$, 因而存在正数 $\delta < \min\{x_0 - a, b - x_0\}$ 使得

$$f(x) > g(x), \quad x \in [x_0 - \delta, x_0 + \delta]$$

记 $m = \min_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x)}{g(x)}, 则 m > 1, 因此$

$$I_n \geqslant \int_{x_0 - \delta}^{x_0 + \delta} \left(\frac{f(x)}{g(x)}\right)^n f(x) dx \geqslant m^n \int_{x_0 - \delta}^{x_0 + \delta} f(x) dx$$

 $\diamondsuit n \to +\infty \not\in \lim_{n \to +\infty} I_n = +\infty.$

例题 0.36 设 $f: \mathbb{R} \to \mathbb{R}$ 连续, 定义 $g(x) = f(x) \int_0^x f(t) dt \ (x \in \mathbb{R})$. 如果 $g \in \mathbb{R}$ 上的递减函数, 求证: $f \equiv 0$.

证明 记 $F(x) = \int_0^x f(t) dt$, 则 F 可导且 F' = f. 由条件知

$$(F^2(x))' = 2F'(x)F(x) = 2g(x)$$

是单调递减函数. 注意到 F(0)=0. 有 $(F^2(x))'\leqslant 0$ (x>0), $(F^2(x))'\geqslant 0$ (x<0). 这说明 $F^2(x)$ 当 $x\geqslant 0$ 时单调递减, 当 $x\leqslant 0$ 时单调递增. 因此 F^2 的最大值为 $F^2(0)=0$. 但显然 $F^2\geqslant 0$. 故 F=0, 于是 f=F'=0.

例题 0.37 设 $f \in C[0,1]$. 如果对任意 $x \in [0,1]$ 有

$$\int_0^x f(t) \, \mathrm{d}t \geqslant f(x) \geqslant 0,$$

求证: $f(x) \equiv 0$.

证明 记 $F(x) = \int_0^x f(t) dt$. 则 F 可导且 F' = f. 由条件知 $F(x) \ge F'(x)$. 因此 $(e^x F(x))' \le 0$, 即 $e^x F(x)$ 单调递减. 由 F(0) = 0, 得 $F(x) \le 0$. 但由条件 $F(x) \ge f(x) \ge 0$, 故 F(x) = 0, 于是 f(x) = F'(x) = 0.

命题 0.5

设 $g(x) \in C^2[0,1]$ 是递增的下凸函数, 则有

$$\inf_{\substack{f \in C[0,1],\\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 \mathrm{d}x = \int_0^1 |g'(x)|^2 \mathrm{d}x,\tag{36}$$

$$\inf_{\substack{f \in C[0,1],\\ \int_{x}^{1} f(y) dy \geqslant g(1) - g(x)}} \int_{0}^{1} |f(x)|^{2} dx = \int_{0}^{1} |g'(x)|^{2} dx.$$
(37)

\$

笔记 这题的下确界 inf 可以改成最小值 min, 因为可取到等号.

证明 我们令

$$F(x) = \int_{x}^{1} f(y) dy + g(x),$$

则 $F(x^2) \geqslant F(x), \forall x \in [0,1]$, 因此由 F 连续性, 就有

$$F(x) \geqslant F\left(x^{\frac{1}{2}}\right) \geqslant F\left(x^{\frac{1}{4}}\right) \geqslant \cdots \geqslant \lim_{n \to \infty} F\left(x^{\frac{1}{2^n}}\right) = F(1), \forall x \in (0, 1],$$

于是我们有 $F(x) \ge F(1), \forall x \in [0, 1],$ 现在就有

$$\int_{x}^{1} f(y) dy \ge g(1) - g(x), \forall x \in [0, 1],$$

因此

$$\left\{ \int_{0}^{1} |f(x)|^{2} \, \mathrm{d}x : f \in C\left[0,1\right], \int_{x^{2}}^{x} f(y) \, \mathrm{d}y \geqslant g\left(x\right) - g\left(x^{2}\right) \right\} \subset \left\{ \int_{0}^{1} |f(x)|^{2} \, \mathrm{d}x : f \in C\left[0,1\right], \int_{x^{2}}^{1} f(y) \, \mathrm{d}y \geqslant g\left(1\right) - g\left(x^{2}\right) \right\}.$$

故

$$\inf_{\substack{f \in C[0,1], \\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1], \\ \int_x^1 f(y) \mathrm{d}y \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 \mathrm{d}x.$$

取 f(y) = g'(y), 可以知道(36)(37)式等号都成立. 从下

$$\int_0^1 |g'(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1], \\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1], \\ \int_x^1 f(y) \mathrm{d}y \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 \mathrm{d}x.$$

故只须证明

$$\inf_{\substack{f \in C[0,1], \\ \int_x^1 f(y) \mathrm{d}y \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \int_0^1 |g'(x)|^2 \mathrm{d}x$$

$$\iff \forall \forall f \in C[0,1] \ \mathbb{E} \int_x^1 f(y) \, \mathrm{d}y \geqslant g(1) - g(x), \ \text{and} \ \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \int_0^1 |g'(x)|^2 \mathrm{d}x.$$

于是设 $f \in C[0,1]$ 且 $\int_{-1}^{1} f(y) dy$, 由 Cauchy 不等式得

$$\int_{0}^{1} |g'(x)|^{2} dx \int_{0}^{1} |f(x)|^{2} dx \ge \left(\int_{0}^{1} f(x)g'(x) dx \right)^{2} = \left(\int_{0}^{1} g'(x) d \int_{x}^{1} f(y) dy \right)^{2}$$

$$= \left(-g'(0) \int_{0}^{1} f(y) dy - \int_{0}^{1} \left(\int_{x}^{1} f(y) dy \right) g''(x) dx \right)^{2}$$

$$= \left(g'(0) \int_{0}^{1} f(y) dy + \int_{0}^{1} \left(\int_{x}^{1} f(y) dy \right) g''(x) dx \right)^{2}$$

$$\ge \left(g'(0) \int_{0}^{1} f(y) dy + \int_{0}^{1} (g(1) - g(x))g''(x) dx \right)^{2}$$

$$= \left(g'(0) \int_{0}^{1} f(y) dy - g'(0)(g(1) - g(0)) + \int_{0}^{1} |g'(x)|^{2} dx \right)^{2}$$

$$\ge \left(\int_{0}^{1} |g'(x)|^{2} dx \right)^{2}$$

因此 $\int_0^1 |f(x)|^2 dx \ge \int_0^1 |g'(x)|^2 dx$. 这样我们就完成了证明.

题 **0.38** 设函数
$$f(x)$$
 在 $[0,1]$ 上连续, 满足对任意 $x \in [0,1]$, 都有 $1.$ $\int_{x^2}^x f(t) dt \ge \frac{x^2 - x^4}{2}$. 证明: $\int_0^1 f^2(x) dx \ge \frac{1}{10}$.

2.
$$\int_{x^2}^{x} f(t)dt \ge \frac{x^3 - x^6}{2}$$
. 证明: $\int_{0}^{1} f^2(x)dx \ge \frac{9}{20}$.

证明

1. 证法一:由命题 0.5可得

$$\inf_{\substack{f(x) \in C[0,1], \\ \int_{x^2}^x f(y) dy \geqslant \frac{x^2 - x^4}{2} - 0}} \int_0^1 |f(x)|^2 dx = \inf_{\substack{f(x) \in C[0,1], \\ \int_x^1 f(y) dy \geqslant \frac{1 - x^2}{2} - 0}} \int_0^1 |f(x)|^2 dx = \frac{1}{3}$$

证法二:注意到

$$\int_0^1 \left(\sqrt{t} - t \right) f(t) dt = \int_0^1 \left(\int_t^{\sqrt{t}} f(t) dx \right) dt = \int_0^1 \left(\int_{x^2}^x f(t) dt \right) dx \geqslant \int_0^1 \frac{x^2 - x^4}{2} dx = \frac{1}{15}.$$

从而待定a > 0,

$$0 \leqslant \int_0^1 \left[af(x) - \left(\sqrt{t} - t \right) \right]^2 dx$$

$$= a^2 \int_0^1 f^2(x) dx - 2a \int_0^1 \left(\sqrt{t} - t \right) f(t) dt + \int_0^1 \left(\sqrt{t} - t \right)^2 dt$$

$$\leqslant a^2 \int_0^1 f^2(x) dx - \frac{2}{15} a + \frac{1}{30}.$$

于是

$$\int_0^1 f^2(x) \mathrm{d}x \geqslant \frac{2}{15a} - \frac{1}{30a^2}.$$

当 a=2 时,上式右边取到最大值 $\frac{2}{15}$. 故

$$\int_0^1 f^2(x) \mathrm{d}x \geqslant \frac{2}{15} > \frac{1}{10}.$$

证法三:条件可得,对 $\forall a \in (0,1)$,都有

$$\int_{a^{2^n}}^a f(t) dt = \sum_{k=1}^n \int_{a^{2^k}}^{a^{2^{k-1}}} f(t) dt \geqslant \sum_{k=1}^n \frac{a^{2^k} - a^{2^{k+1}}}{2} = \frac{a^2 - a^{2^{n+1}}}{2}.$$

于是

$$\int_0^a f(t)dt = \lim_{n \to \infty} \int_{a^{2^n}}^a f(t)dt \geqslant \frac{a^2}{2}.$$

进而

$$\int_{0}^{1} f(t)dt = \lim_{a \to 1^{-}} \int_{0}^{a} f(t)dt \geqslant \frac{1}{2}.$$

故由 Cauchy 不等式可得

$$\int_0^1 f^2(x) dx \ge \left(\int_0^1 f(t) dt \right)^2 \ge \frac{1}{4} > \frac{1}{10}.$$

2. 由命题 0.5可得

$$\inf_{\substack{f(x) \in C[0,1], \\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant \frac{x^3 - x^6}{2} - 0}} \int_0^1 |f(x)|^2 \mathrm{d}x = \inf_{\substack{f(x) \in C[0,1], \\ \int_x^1 f(y) \mathrm{d}y \geqslant \frac{1 - x^3}{2} - 0}} \int_0^1 |f(x)|^2 \mathrm{d}x = \frac{9}{20}$$