Homework Set #7

Problem 1

Consider a sequence of random variables $X_1, X_2, ..., X_i, ...,$ for example denoting the monthly profits of a supermarket chain. Suppose that $X_i \sim (m, \sigma^2)$ for all i and that the correlation coefficient between X_i and X_j , ρ_{ij} , depends only on the time lag |i-j| as

$$\rho_{ij} = 0.8^{|i-j|}$$

Using conditional SM analysis, calculate and plot, as a function of $k \ge 1$, the variances of $(X_{i+k}|X_i)$ and $(X_{i+k}|X_{i,1})$. Comment on the results.

Problem 2

X is an unknown quantity, say the compressive strength of a concrete column, with mean value m and variance σ^2 . Several indirect measurements of X, in the form $Z_i = X + \varepsilon_i$ for i = 1, ..., n, are made through a nondestructive technique.

Under the assumption that the ε_i are iid measurement errors with zero mean and common variance σ_{ε}^2 , use conditional SM analysis to find the variance of $(X|Z_1,...,Z_n)$. Plot this conditional variance against n for $\sigma^2=1$ and σ_{ε}^2 either 1 or 0.2.

Useful result on the inverse of covariance matrices with a special "equicorrelated" structure. The inverse of an $n \times n$ matrix \underline{A} of the type:

is:

$$\underline{A}^{-1} = \frac{1}{\sigma^2 (1-\rho)[1+(n-1)\rho]} \begin{bmatrix} [1+(n-2)\rho] & & & \\ & -\rho & & \\ & & -\rho & & \\ & & & [1+(n-2)\rho] \end{bmatrix}$$