Probabilistic Context Free Grammars

Overview

- Probabilistic Context-Free Grammars (PCFGs)
- ► The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

DERIVATION

S

NP VP

DT NN VP

the NN VP

the dog VP

the dog Vi

the dog laughs

RULES USED

 $S \rightarrow NP VP$

 $\mathsf{NP} \to \mathsf{DT} \; \mathsf{NN}$

 $\mathsf{DT} \to \mathsf{the}$

 $\mathsf{NN} \to \mathsf{dog}$

 $\mathsf{VP} \to \mathsf{Vi}$

 $\mathsf{Vi} \to \mathsf{laughs}$

PROBABILITY

1.0

0.3

1.0

0.1

0.4

0.5

Properties of PCFGs

 Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.

Properties of PCFGs

- Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.
- ightharpoonup The most likely parse tree for a sentence s is

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Data for Parsing Experiments: Treebanks

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Deriving a PCFG from a Treebank

- Given a set of example trees (a treebank), the underlying
 CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

▶ If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

Parsing with a PCFG

- ▶ Given a PCFG and a sentence s, define $\mathcal{T}(s)$ to be the set of trees with s as the yield.
- ightharpoonup Given a PCFG and a sentence s, how do we find

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ightharpoonup R is a set of rules which take one of two forms:
 - $lacksquare X o Y_1 Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $ightharpoonup S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

ightharpoonup Given a PCFG and a sentence s, how do we find

$$\max_{t \in \mathcal{T}(s)} p(t)$$

Notation:

n= number of words in the sentence $w_i=i$ 'th word in the sentence N= the set of non-terminals in the grammar S= the start symbol in the grammar

► Define a dynamic programming table

 $\pi[i,j,X]=\max \max \text{ maximum probability of a constituent with non-terminal }X$ spanning words $i\ldots j$ inclusive

▶ Our goal is to calculate $\max_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

A Dynamic Programming Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \to w_i) = 0$ if $X \to w_i$ is not in the grammar)

▶ Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $X \in N$,

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

The Full Dynamic Programming Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- ▶ For $l = 1 \dots (n-1)$
 - ▶ For $i = 1 \dots (n l)$
 - Set j = i + l
 - ightharpoonup For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

and

$$bp(i,j,X) = \arg\max_{\substack{X \to YZ \in R, \\ s \in \{i,\dots(i-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

What's the run time Complexity?

An example: before binarization...

After binarization...

Unary rules: alchemy in the land of treebanks

Treebank: empties and unaries

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY(words, grammar) returns [most_probable_parse,prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
     else
        score[i][i+1][A] = 0
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 \&\& A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```

The CKY algorithm (1960/1965) ... extended to unaries

```
for span = 2 to \#(words)
  for begin = 0 to \#(words) - span
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if prob > score[begin][end][A]
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
    //handle unaries
    boolean added = true
   while added
      added = false
      for A, B in nonterms
        prob = P(A->B)*score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```

CKY Parsing

A worked example

The grammar: Binary, Unaries, no epsilons,

$S \rightarrow NP VP$	0.9	$N \rightarrow people$	0.5
$S \rightarrow VP$	0.1	$N \rightarrow fish$	0.2
$VP \rightarrow V NP$	0.5	IN -7 J1311	0.2
$VP \to V$	0.1	$N \rightarrow tanks$	0.2
$VP \rightarrow V @VP_V$	0.3	$N \rightarrow rods$	0.1
$VP \rightarrow VPP$	0.1		
$@VP_V \to NP\;PP$	1.0	$V \rightarrow people$	0.1
$NP \rightarrow NP NP$	0.1	$V \rightarrow fish$	0.6
$NP \rightarrow NP PP$	0.2	$V \rightarrow tanks$	U 3
$NP \rightarrow N$	0.7	v — turks	0.5
$PP \rightarrow P NP$	1.0	$P \rightarrow with$	1.0

0.	fish	1 people	2	fish	3	tanks	4
1	score[0][1]	score[0][2]		score[0][3]		score[0][4]	
2		score[1][2]		score[1][3]		score[1][4]	
3				score[2][3]		score[2][4]	
4						score[3][4]	

		•	fish	1	people	2	fish	3	tanks	4
$S \rightarrow NP VP$	0.9	0			· · ·					
$S \rightarrow VP$	0.1									
$VP \rightarrow V NP$	0.5									
$VP \rightarrow V$	0.1									
$VP \rightarrow V @VP_V$	0.3	1								
$VP \rightarrow VPP$	0.1	_								
$@VP_V \rightarrow NPPP$	1.0									
$NP \rightarrow NP NP$	0.1									
$NP \rightarrow NP PP$	0.2									
$NP \rightarrow N$	0.7	2								
$PP \rightarrow P NP$	1.0									
N o people	0.5									
N → fish	0.2	3								
N o tanks	0.2	3								
$N \rightarrow rods$	0.1									
$V \rightarrow people$	0.1									
$V \rightarrow fish$	0.6									
$V \rightarrow tanks$	0.3	4								
$P \rightarrow with$	1.0									

C NDVD	0.0	fish	1 people	2 fish	3 tanks 4
$S \rightarrow NP VP$	0.9	$0 \longrightarrow \text{fish } 0.2$			
$S \rightarrow VP$	0.1	$V \rightarrow \text{fish } 0.2$			
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$			
$VP \rightarrow V$	0.1	$VP \rightarrow V 0.06$			
$VP \rightarrow V @VP_V$	0.3	$1 S \rightarrow VP 0.006$			
$VP \rightarrow VPP$	0.1		$N \rightarrow \text{people 0.5}$		
$@VP_V \rightarrow NPPP$	1.0		$V \rightarrow \text{people 0.1}$		
$NP \rightarrow NP NP$	0.1		$NP \rightarrow N 0.35$		
$NP \rightarrow NP PP$	0.2	_	$VP \rightarrow V 0.01$		
$NP \rightarrow N$	0.7	2	$S \rightarrow VP \ 0.001$		
$PP \rightarrow P NP$	1.0			$N \rightarrow \text{fish } 0.2$	
				$V \rightarrow \text{fish } 0.6$ NP \rightarrow N 0.14	
$N \rightarrow people$	0.5			$VP \rightarrow V 0.06$	
$N \rightarrow fish$	0.2	// handle unaries		$S \rightarrow VP 0.006$	
N o tanks	0.2	boolean added = true while added			N → tanks 0.2
$N \rightarrow rods$	0.1	added = false			$V \rightarrow tanks 0.3$
$V \rightarrow people$	0.1	for A, B in nonterms if score[i][i+1][B] > 0 && A->E	3 in grammar		$NP \rightarrow N \ 0.14$
$V \rightarrow f$ ish	0.6	prob = P(A->B)*score[i][i+1 if(prob > score[i][i+1][A])][B]		$VP \rightarrow V 0.03$
$V \rightarrow tanks$	0.3	score[i][i+1][A] = prob			$S \rightarrow VP 0.003$
$P \rightarrow with$	1.0	back[i][i+1][A] = B added = true			

		fish	1 people	2 fish	3 tanks 4
$S \rightarrow NP VP$	0.9	0	$NP \rightarrow NP NP$		
$S \rightarrow VP$	0.1	$N \rightarrow \text{fish } 0.2$ V $\rightarrow \text{fish } 0.6$	0.0049		
$VP \rightarrow V NP$	0.5	$V \rightarrow 11SH 0.6$ NP \rightarrow N 0.14	$VP \rightarrow V NP$		
$VP \rightarrow V$	0.1	$VP \rightarrow V 0.06$	0.105		
$VP \rightarrow V @VP_V$	0.3	1 > VP 0.006	$S \rightarrow NP VP$ 0.00126		
$VP \rightarrow VPP$	0.1		$N \rightarrow \text{people 0.5}$	$NP \rightarrow NP NP$	
$@VP_V \rightarrow NPPP$	1.0		$V \rightarrow \text{people 0.1}$	0.0049	
$NP \rightarrow NP NP$	0.1		$NP \rightarrow N \ 0.35$	$VP \rightarrow V NP$ 0.007	
$NP \rightarrow NP PP$	0.2		$VP \rightarrow V 0.01$	$S \rightarrow NP VP$	
$NP \rightarrow N$	0.7	2	$S \rightarrow VP 0.001$	0.0189	
$PP \rightarrow P NP$	1.0			$N \rightarrow \text{fish } 0.2$	$ \begin{array}{c} NP \to NP \ NP \\ 0.00196 \end{array} $
N o people N o fish	0.5 0.2	3		$V \rightarrow fish 0.6$ $NP \rightarrow N 0.14$ $VP \rightarrow V 0.06$ $S \rightarrow VP 0.006$	$VP \rightarrow V NP$ 0.042 $S \rightarrow NP VP$ 0.00378
N o tanks	0.2				N → tanks 0.2
$N \rightarrow rods$	0.1	prob=score[begin][split][B]*score[sit] if (prob > score[begin][end][A])	split][end][C]*P(A->BC)		V → tanks 0.3
$V \rightarrow people$	0.1	score[begin]end][A] = prob			$NP \rightarrow N \ 0.14$
$V \rightarrow fish$	0.6	back[begin][end][A] = new Tripl	e(split,B,C)		$VP \rightarrow V 0.03$
V → tanks	0.3	4			$S \rightarrow VP 0.003$
$ extsf{P} o extsf{with}$	1.0				

		0	fish	1 ped	ople	2	fish	3	tanks	4
$S \rightarrow NP VP$	0.9	0	 → fish 0.2	$NP \rightarrow NP NI$	n					
$S \rightarrow VP$	0.1		\rightarrow fish 0.6	0.00						
$VP \rightarrow V NP$	0.5		$P \rightarrow N 0.14$	$VP \rightarrow V NP$						
$VP \rightarrow V$	0.1		$P \rightarrow V 0.06$	0.10)5					
$VP \rightarrow V @VP_V$	0.3	1 S -	→ VP 0.006	$S \rightarrow VP$ 0.01	.05					
$VP \rightarrow VPP$	0.1			$N \rightarrow peop$	le 0.5	$NP \rightarrow$	NP NP			
$@VP_V \rightarrow NPPP$	1.0			$V \rightarrow peopl$	le 0.1		0.0049			
$NP \rightarrow NP NP$	0.1			$NP \rightarrow N 0.$		$ VP \rightarrow$	V NP 0.007			
$NP o NP \; PP$	0.2	2		$VP \rightarrow V 0.01$ S $\rightarrow VP 0.001$	$S \rightarrow N$					
$NP \rightarrow N$	0.7	2		$3 \rightarrow VP U.U$	VF 0.001		0.0189			
$PP \rightarrow P NP$	1.0						fish 0.2 fish 0.6		$NP \rightarrow NP NP$ 0.00196	
N o people N o fish	0.5 0.2	a b	/handle unaries ooolean added = true			NP —	N 0.14 N 0.06 VP 0.006		$/P \rightarrow V NP$ 0.042 $6 \rightarrow VP$ 0.0042	
N o tanks	0.2	_	vhile added added = false					N	$N \rightarrow tanks 0.2$	
$N \rightarrow rods$	0.1		for A, B in nonterms	:					$/ \rightarrow \text{tanks 0.1}$	
$V \rightarrow people$	0.1		prob = P(A->B)*score[being prob > score[begin][en					L	$NP \rightarrow N \ 0.14$	
$V \rightarrow f$ ish	0.6		score[begin][end][A] =	•					$/P \rightarrow V 0.03$	
V → tanks	0.3	4	back[begin][end][A] = E added = true)				S	$S \rightarrow VP \ 0.003$	
$P \rightarrow with$	1.0									

		fish	1 people	2 fish	3 tanks 4
$S \rightarrow NP VP$ $S \rightarrow VP$ $VP \rightarrow V NP$ $VP \rightarrow V$ $VP \rightarrow V @VP_V$	0.9 0.1 0.5 0.1 0.3	0 $N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.105 $S \rightarrow VP$ 0.0105	$NP \rightarrow NP NP$ 0.0000686 $VP \rightarrow V NP$ 0.00147 $S \rightarrow NP VP$ 0.000882	
$VP \rightarrow V PP$ $@VP_V \rightarrow NP PP$ $NP \rightarrow NP NP$ $NP \rightarrow NP PP$ $NP \rightarrow N$	0.1 1.0 0.1 0.2 0.7	2	$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$ $NP \rightarrow N \ 0.35$ $VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.007 $S \rightarrow NP VP$ 0.0189	
$PP \rightarrow P NP$ $N \rightarrow people$ $N \rightarrow fish$	1.0 0.5 0.2	3		$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow VP$ 0.0042
$N \rightarrow tanks$ $N \rightarrow rods$ $V \rightarrow people$ $V \rightarrow fish$ $V \rightarrow tanks$ $P \rightarrow with$	0.2 0.1 0.1 0.6 0.3 1.0	if prob > sore[be		P(A->BC)	$N \rightarrow tanks 0.2$ $V \rightarrow tanks 0.1$ $NP \rightarrow N 0.14$ $VP \rightarrow V 0.03$ $S \rightarrow VP 0.003$

		fish	1 people	2 fish	3 tanks 4
$S \rightarrow NP VP$ $S \rightarrow VP$ $VP \rightarrow V NP$ $VP \rightarrow V$ $VP \rightarrow V @VP_V$ $VP \rightarrow V PP$	0.9 0.1 0.5 0.1 0.3 0.1	0 $N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.105 $S \rightarrow VP$ 0.0105 $N \rightarrow people 0.5$	$NP \rightarrow NP NP$ 0.0000686 $VP \rightarrow V NP$ 0.00147 $S \rightarrow NP VP$ 0.000882 $NP \rightarrow NP NP$	NP → NP NP
$@VP_V \rightarrow NPPP$ $NP \rightarrow NPNP$ $NP \rightarrow NPPP$ $NP \rightarrow N$ $PP \rightarrow PNP$	1.0 0.1 0.2 0.7 1.0	2	$V \rightarrow \text{people 0.1}$ $NP \rightarrow N 0.35$ $VP \rightarrow V 0.01$ $S \rightarrow VP 0.001$	0.0049 $VP \rightarrow V NP$ 0.007 $S \rightarrow NP VP$ 0.0189 $N \rightarrow fish 0.2$	0.0000686 $VP \rightarrow V NP$ 0.000098 $S \rightarrow NP VP$ 0.01323 $NP \rightarrow NP NP$
$N \rightarrow people$ $N \rightarrow fish$	0.5 0.2	3		$V \rightarrow fish 0.6$ $NP \rightarrow N 0.14$ $VP \rightarrow V 0.06$ $S \rightarrow VP 0.006$	0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow VP$ 0.0042
$N \rightarrow tanks$ $N \rightarrow rods$ $V \rightarrow people$ $V \rightarrow fish$ $V \rightarrow tanks$ $P \rightarrow with$	0.2 0.1 0.1 0.6 0.3 1.0	if prob > score[be score[begin]end	ms i][split][B]*score[split][end][C]*P(gin][end][A]	A->BC)	N \rightarrow tanks 0.2 V \rightarrow tanks 0.1 NP \rightarrow N 0.14 VP \rightarrow V 0.03 S \rightarrow VP 0.003

C \ ND VD	0.0	0	fish	1	people	2	fish	3	tanks	4
$S \rightarrow NP VP$	0.9		→ fish 0.2	NP -	→ NP NP	NP →	NP NP	NP	\rightarrow NP NP	
$S \rightarrow VP$	0.1		\rightarrow fish 0.6		0.0049		0.0000686		0.0000009604	
$VP \rightarrow V NP$	0.5		$P \rightarrow N \ 0.14$	VP -	\rightarrow V NP	$VP \rightarrow$		VP	\rightarrow V NP	
$VP \rightarrow V$	0.1		→ V 0.06	, c	0.105	C . A	0.00147		0.00002058	
$VP \rightarrow V @VP_V$	0.3	1 S -	→ VP 0.006	$ S \rightarrow$	0.0105	$S \rightarrow N$	0.000882	5 -	→ NP VP 0.00018522	
$VP \rightarrow VPP$	0.1			N -	→ people 0.5	$NP \rightarrow$	NP NP	NP	\rightarrow NP NP	
$@VP_V \rightarrow NPPP$	1.0				→ people 0.1		0.0049		0.0000686	
NP o NP NP	0.1			NP	\rightarrow N 0.35	$VP \rightarrow$	V NP 0.007	VP	\rightarrow V NP 0.000098	
$NP \rightarrow NP PP$	0.2				→ V 0.01	$S \rightarrow N$		s –	→ NP VP	
$NP \rightarrow N$	0.7	2		S —	→ VP 0.001		0.0189		0.01323	
$PP \rightarrow P NP$	1.0						fish 0.2	NP	\rightarrow NP NP 0.00196	
N o people	0.5					NP —	fish 0.6 → N 0.14 → V 0.06	VP	$\rightarrow V NP$ 0.042	
$N \rightarrow fish$	0.2						VP 0.006	S —	→ VP	
$N \rightarrow tanks$	0.2	3	or split = begin+1 to	 end-1			V1 0.000	N	0.0042 → tanks 0.2	
$N \rightarrow rods$	0.1		for A,B,C in nonter	rms	core[split][end][C]*P	P(A->BC)			\rightarrow tanks 0.2 \rightarrow tanks 0.1	
$V \rightarrow people$	0.1		if prob > score[b	egin][end][A]	(/			\rightarrow N 0.14	
$V \rightarrow f$ ish	0.6		score[begin]er back[begin][en		Triple(split,B,C)				\rightarrow V 0.03	
V → tanks	0.3	4	23.2[209][01					S -	→ VP 0.003	
$P \rightarrow with$	1.0		Call buildTree(s	core, back) to	get the best parse					

Constituency Parser Evaluation

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

Summary

- ► PCFGs augments CFGs by including a probability for each rule in the grammar.
- ► The probability for a parse tree is the product of probabilities for the rules in the tree
- ► To build a PCFG-parsed parser:
 - 1. Learn a PCFG from a treebank
 - 2. Given a test data sentence, use the CKY algorithm to compute the highest probability tree for the sentence under the PCFG

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1
- Robust but not so accurate
 - Usually admit everything, but with low probability
 - A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model