CSC343 Worksheet 12 Solution

July 2, 2020

1. • Keys

- {id of molecule}
- {x position, y position, z position}
- Functional Dependencies
 - 1. id of molecule \rightarrow x position, y position, z position, x velocity, y velocity, z velocity
 - 2. x position, y position, z position \rightarrow id of molecule, x velocity, y velocity, z velocity

Notes:

- Function Dependencies
 - Functional Dependency is a relationship between two attributes typically between the key and other non-key attributes within a table.

Example:

 $SIN \rightarrow Name$, Address, Birthdate

Example 2:

 $ISBN \rightarrow Title$

- Key of Relations
 - One or more attributes $\{A_1, A_2, ..., A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes of the relation
 - 2. No proper subset of $\{A_1, A_2, ... A_n\}$ functionally determines all other attributes of R

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

i. {title, year, starName } form a key for the relation Movies1

- ii. { year, starName } is not a key. Same star can be in multiple movies per year
- Superkeys
 - * Means a a set of attributes that contains a key
 - * Don't need to be minimal

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

- · { title, year, starName } is a key and superkey
- { title, year, starName, title, year, length} is a superkey

References:

- 1) OpenTextBC, Chapter 11 Functional Dependencies, link
- 2. a) 1. $AB \rightarrow C$
 - 2. $AB \rightarrow D$
 - 3. $C \rightarrow A$
 - 4. $C \rightarrow B$
 - 5. $D \rightarrow B$
 - 6. $D \rightarrow C$
 - 7. $C \rightarrow D$
 - 8. $D \rightarrow A$

Second Attempt:

 $\{A,B\}^+=\{A,B,C,D\}$, so the following non-trivial FDs follows: $AB\to C$ and $AB\to D$.

 $\{C\}^+ = \{D,A\}$, so the following non-trivial FDs follows $C \to D$ and $C \to A$.

 $\{D\}^+ = \{A\}$, so the following non-trivial FDs follows: $D \to A$.

Notes:

- The Splitting / Combining Rule
 - Combining Rule

*
$$A_1, A_2, \dots, A_n \to B_i \text{ for } i = 1, 2, ..., m$$

to
 $A_1, A_2, \dots A_n \to B_1, B_2, \dots B_m$

Example:

Given

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName it's combined form is

title year \rightarrow length genre studio Name

- Splitting Rule

* $A_{1}, A_{2}, \cdots A_{n} \to B_{1}, B_{2}, \cdots B_{m}$ to $A_{1}, A_{2}, \cdots, A_{n} \to B_{i} \text{ for } i = 1, 2, ..., m$

Example:

Given

title year \rightarrow length

It's splitted form is

 $title \rightarrow length$ year $\rightarrow length$

- Trivial Functional Dependencies
 - A functional dependency $FD: X \to Y$ is **trivial** if Y is a subset of X

Exmaple:

title year \rightarrow title

Example 2:

 $title \rightarrow title$

- Non-trivial Functional Dependencies
 - is a case where some but not all of the attributes on the R.H.S of an FD are also on L.H.S

Example:

title year \rightarrow title movieLength

- Can be simplified using **tirivial-dependency rule**
 - * The FD $A_1A_2\cdots A_n\to B_1B_2\cdots B_m$ is equivalent to $A_1A_2\cdots A_n\to C_1C_2\cdots C_k$

where C's are all those B's that are not in A's.

Figure 3.3: The trivial-dependency rule

- Computing the Clousre of Attributes
 - Closure of attribute set $\{X\}$ is denoted as $\{X\}^+$.
 - The closure means a given set of attributes A satisfying FD, are a sets of all attributes B such that $A \to B$

Example:

Given attributes A, B, C, D, E, F and FDs $AB \to C, BC \to AD, D \to E$ and $CF \to B$, What is the closure of $\{A, B\}$ or $\{A, B\}^+$

- 1. Start with $\{A, B\}$.
- 2. Split $BC \to AD$
 - * We have $BC \to A$ and BCtoD
 - * Since A is in $\{A, B\}$, this is not included
 - * Since D is not in $\{A, B\}$, this IS included

So, we have $\{A, B, D\}$

- 3. Since C in $AB \to C$ is NOT in $\{A, B, C, D\}$, C is included and we have $\{A, B, C, D\}$
- 4. Since A in $BC \to A$ is in $\{A, B, C, D\}$, this is skipped
- 5. Since E is not in $D \to E$, E is included and we have $\{A, B, C, D, E\}$ as our solution
- Why the Closure Algorithm Works
- Transitive Rule
 - Definition

If
$$A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$$
 and $B_1B_2 \cdots B_m \to C_1C_2 \cdots C_k$ hold in relation $R, A_1A_2 \cdots A_n \to C_1C_2 \cdots C_k$ also holds in R .

Example:

Given

title year \rightarrow studioName studioName \rightarrow studioAddr

Transitive rule says the above is equal to the following

title year \rightarrow studioAddr

- Inference Rules
 - Is allso called Armstrong's Axioms
 - Has 3 axioms
 - 1. Reflexivity

* If
$$\{B_1, B_2, ..., B_n\} \subseteq \{A_1, A_2, ..., A_n\}$$
 then $A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$

- * also called **trivial FDs**
- 2. Augmentation

* If
$$A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$$

then $A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \to B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k$

- * $C_1C_2\cdots C_k$ are any set of attributes
- 3. Transitivity

* If
$$A_1A_2\cdots A_n \to B_1B_2\cdots B_m$$
 and $B_1B_2\cdots B_m \to C_1C_2\cdots C_k$
then $A_1A_1\cdots A_n \to C_1C_2\cdots C_k$

b) A, B is the only key of R.

Notes:

- Key of Attributes
 - **Definition:** A set of attributes $\{A_1, A_2, \cdots, A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes

- 2. No proper subset of $\{A_1, A_2, ..., A_n\}$ functionally determines all other attributes of R.
- c) The superkeys that are not keys are: $\{A, B, C\}$, $\{A, B, D\}$, $\{A, B, C, D\}$
- 3. i) a) $\{A\}^+=\{A,B,C,D\}$, so we have $A\to A,\,A\to B,\,A\to C,\,A\to D$ $\{B\}^+=\{C,D\}, \text{ so we have }B\to C \text{ and }B\to D$
 - b) $\{A\}$ is the key of S.
 - c) The super keys that are not keys are:

$${A, B}, {A, C}, {A, D}, {A, B, C}, {A, B, D}, {A, B, C, D}$$

- ii) a) $\{A\}^+ = \{A\}$, so this FD is trivial.
 - $\{B\}^+ = \{B\}$, so this FD is trivial.
 - $\{C\}^+ = \{C\}$, so this FD is trivial.
 - $\{D\}^+ = \{D\}$, so this FD is trivial.
 - $\{A,B\}^+ = \{A,B,C,D\}$, so we have $AB \to A$, $AB \to B$, $AB \to C$, $AB \to D$
 - $\{A,C\}^+ = \{A,C\}$, so we have $AC \to A$, $AC \to C$
 - $\{A,D\}^+=\{A,D,B\}$, so we have $AD\to A$, $AD\to D$, $AD\to B$
 - $\{B,C\}^+=\{B,C,D,A\}$, so we have $BC\to A,\,BC\to B,\,BC\to C,\,BC\to D$
 - $\{D,C\}^+=\{D,C,A,B\}$, so we have $DC\to D$, $DC\to C$, $DC\to A$, $DC\to B$
 - $\{A,B,C\}^+=\{A,B,C,D\}$, so we have $ABC\to A$, $ABC\to B$, $ABC\to C$, $ABC\to D$
 - $\{B,C,D\}^+=\{B,C,D,A\}$, so we have $BCD\to A,\ BCD\to B,\ BCD\to C,\ BCD\to D$
 - $\{C,D,A\}^+=\{C,D,A,B\}$, so we have $CDA\to A$, $CDA\to B$, $CDA\to C$, $CDA\to D$
 - $\{D,A,B\}^+=\{D,A,B,C\}$, so we have $DAB\to A,\ DAB\to B,\ DAB\to C,\ DAB\to D$
 - $\{D,A,B\}^+=\{D,A,B,C\},$ so we have $DAB\to A,\ DAB\to B,\ DAB\to C,\ DAB\to D$
 - ${A, B, C, D}^+ = {A, B, C, D}$, so this FD is trivial.

- b) $\{A, B\}, \{A, C\}, \{B, C\}, \{D, C\}$ are the keys of T.
- c) The super keys that are not keys are:

$${A,B,C}, {A,B,D}, {B,C,D}, {A,D,C}, {A,B,D}, {A,B,C,D}$$

iii) a)
$$\{A\}^+=\{A,B,C,D\},$$
 so we have $A\to C,\,A\to D$

$$\{B\}^+ = \{A, B, C, D\}$$
, so we have $B \to A, B \to D$

$$\{C\}^+=\{A,B,C,D\},$$
 so we have $C\to A,\,C\to B$

$$\{D\}^+ = \{A, B, C, D\}$$
, so we have $D \to B$, $D \to C$

$$\{A,B\}^+ = \{A,B,C,D\}$$
, so we have $AB \to C$, $AB \to D$

$$\{B,C\}^+ = \{A,B,C,D\}$$
, so we have $BC \to A,\,BC \to D$

$$\{B,D\}^+ = \{A,B,C,D\}$$
, so we have $BD \to A,\,BD \to C$

$$\{C,D\}^+ = \{A,B,C,D\}$$
, so we have $CD \to A,CD \to B$

$$\{C,D\}^+ = \{A,B,C,D\}$$
, so we have $CD \to A,\,CD \to B$

$$\{A, B, C\}^+ = \{A, B, C, D\}$$
, so we have $ABC \to D$

$$\{B,C,D\}^+=\{A,B,C,D\}$$
, so we have $BCD\to A$

$$\{C, D, A\}^+ = \{A, B, C, D\}$$
, so we have $CDA \rightarrow B$

$$\{D,A,B\}^+=\{A,B,C,D\},$$
 so we have $DAB\to C$

Correct Solution:

$$\{A\}^+ = \{A, B, C, D\}$$
, so we have $A \to C$, $A \to D$

$$\{B\}^+ = \{A, B, C, D\}$$
, so we have $B \to A, B \to D$

$$\{C\}^+ = \{A, B, C, D\}$$
, so we have $C \to A, C \to B$

$$\{D\}^+ = \{A,B,C,D\}$$
, so we have $D \to B,\, D \to C$

$$\{A,B\}^+ = \{A,B,C,D\}$$
, so we have $AB \to C$, $AB \to D$

$$\{A,C\}^+=\{A,B,C,D\},$$
 so we have $AC\to B,\,AC\to D$

$$\{A,D\}^+ = \{A,B,C,D\}$$
, so we have $AD \to B$, $AD \to C$

$$\{B,C\}^+ = \{A,B,C,D\}$$
, so we have $BC \to A,\,BC \to D$

$$\{B,D\}^+ = \{A,B,C,D\}$$
, so we have $BD \to A$, $BD \to C$

$$\{C,D\}^+=\{A,B,C,D\}$$
, so we have $CD\to A$, $CD\to B$ $\{A,B,C\}^+=\{A,B,C,D\}$, so we have $ABC\to D$ $\{B,C,D\}^+=\{A,B,C,D\}$, so we have $BCD\to A$ $\{C,D,A\}^+=\{A,B,C,D\}$, so we have $CDA\to B$ $\{D,A,B\}^+=\{A,B,C,D\}$, so we have $DAB\to C$

- b) $\{A\}, \{B\}, \{C\}, \{D\}$ are the keys of U.
- c) The super keys that are not keys are:

$$\{A,B\},\{A,C\},\{A,D\},\{B,C\},\ \{B,D\},\{C,D\},\ \{A,B,C\},\ \{B,C,D\},\ \{C,D,A\},\{D,A,B\}.\ \{A,B,C,D\}$$

4. a) We need to show the closure of attributes $\{A_1, A_2, \dots, A_n, C\}$ in $FD\ A_1, A_2, \dots, A_n, C \to B$ is $\{A_1, A_2, \dots, A_n, C, B\}$, that is $\{A_1, A_2, \dots, A_n, C\}^+ = \{A_1, A_2, \dots, A_n, C, B\}$

Since we know $\{A_1, A_2, \dots, A_n\}$ functionally determines B, we can conclude B can be added to $\{A_1, A_2, \dots, A_n, C\}$.

Thus, it follows from above that $\{A_1, A_2, \dots, A_n, C\}^+ = \{A_1, A_2, \dots, A_n, C, B\}$.

b) Let $A_1A_2\cdots A_n\to B$ is FD. That is, $\{A_1A_2\cdots A_n\}^+=\{A_1A_2\cdots A_n,B\}$

We need to show $A_1A_2\cdots A_nC\to BC$ follows. That is, $\{A_1,A_2,\cdots,A_n,C\}^+=\{A_1,A_2,\cdots,A_n,C,B\}$

It follows from the combine and split rule that $A_1A_2\cdots A_nC\to BC$ can be splitted into $A_1A_2\cdots A_nC\to B$ and $A_1A_2\cdots A_nC\to C$.

So, we need to show $A_1A_2\cdots A_nC\to B$ and $A_1A_2\cdots ,A_nC\to C$ follows from the given.

We will do so in parts.

1. Part 1 (Showing $A_1A_2\cdots A_nC\to B$):

Here, we need to show $A_1A_2\cdots A_nC\to B$ follows.

And indeed, this follows from the work of *augmenting left sides*. That is the solution to previous problem.

2. Part 2 (Showing $A_1A_2\cdots A_nC\to C$):

Here, we need to show $A_1A_2\cdots A_nC\to C$ follows.

The definition of trivial FD tells us $A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$ holds when $\{B_1, B_2, \cdots, B_m\} \subseteq \{A_1, A_2, \cdots, A_n\}$

Since $\{C\} \subseteq \{A_1, A_2 \cdots, A_n, C\}$, we can conclude this FD follows trivially.

c) Let $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ and $C_1C_2\cdots C_k \to D$, where B are each among the C's.

We need to show $A_1A_2\cdots A_nE_1E_2\cdots E_j\to D$ follows, where the E's are all of those C's not found among the B's.

The transitive rule tells us if $A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$ and $B_1B_2 \cdots B_m \to C_1C_2 \cdots C_k$, then $A_1A_2 \cdots A_n \to C_1C_2 \cdots C_k$ also holds in R.

Since we know $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ and $C_1C_2\cdots C_k \to D$ where B's are each among the C's, we can conclude from the transitive rule that $A_1A_2\cdots A_n \to D$.

Then using **augmenting left sides** to all C's not found among the B's on $A_1A_2 \cdots A_n \to D$, we can conclude $A_1A_2 \cdots A_nE_1E_2 \cdots E_j \to D$ follows.

d) Assume FD's $A_1A_2\cdots A_n\to B_1B_2\cdots B_m$ and $C_1C_2\ldots C_k\to D_1D_2\cdots D_i$ holds.

We need to show FD $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_mD_1D_2\cdots D_k$ follows.

Using the split / combine rule, we can conclude showing $A_1A_2 \cdots A_nC_1C_2 \cdots C_k \rightarrow B_1B_2 \cdots B_mD_1D_2 \cdots D_k$ is the same as showing $A_1A_2 \cdots A_nC_1C_2 \cdots C_k \rightarrow B_1B_2 \cdots B_m$ and $A_1A_2 \cdots A_nC_1C_2 \cdots C_k \rightarrow D_1D_2 \cdots D_k$

So, we will prove the two, in parts

1. Part 1 (Showing $A_1A_2\cdots A_nC_1C_2\cdots C_k \to B_1B_2\cdots B_m$)

Here, we need to show $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_m$.

The header of problem tells us $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ holds.

Then by using **Augmenting Left Sides** rule to all Cs not found among the As, $A_1A_2\cdots A_nC_1C_2\cdots C_k \to B_1B_2\cdots B_m$ follows.

2. Part 2 (Showing $A_1A_2 \cdots A_nC_1C_2 \cdots C_k \rightarrow D_1D_2 \cdots D_k$ follows)

Here, we need to show $A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \rightarrow D_1 D_2 \cdots D_k$.

The header of problem tells us $C_1C_2\cdots C_k \to D_1D_2\cdots D_k$ holds.

Then by using **Augmenting Left Sides** rule to all As not found among the Cs, $A_1A_2\cdots A_nC_1C_2\cdots C_k \to D_1D_2\cdots D_k$ follows.

- 5. a) An example is
 - A being movieID and
 - B being movie length.
 - b) An example is
 - A being movieID
 - B being movieTitle
 - C being movieLength
 - c) An example is
 - A being movieTitle
 - B being year
 - C being length
- 6. Assume a relation has no attribute that is functionally determined by all the other attributes.

And, assume for the sake of contradiction that there is a relation with non-trivial FD $X \to Y$.

Then, it follows from the definition of non-trivial functional dependency that $Y \neq \subseteq X$.

Then, we can conclude the attributes in Y is functionally determined by other attributes in X.

But this contradicts the assumption that no attribute is functionally determined by all other attributes.

7. Let X and Y be sets of attributes. Assume $X \subseteq Y$.

I need to show $X^+ \subseteq Y^+$.

I will do so in cases

1. Case 1 (X = Y):

Assume X = Y.

I need to show $X^+ \subseteq Y^+$ follows.

The header tells us X = Y.

Using this fact, $X^+ = Y^+$ is true.

Then it follows from above that $X^+ \subseteq Y^+$ is also true.

2. Case 2 $(X \subset Y)$

Assume $X \subset Y$.

I need to show $X^+ \subseteq Y^+$ follows.

Since the attributes in X is in Y, we can conclude the attributes in X^+ is also in Y^+ .

And, since Y has attributes not in X, we can conclude Y^+ may contain attributes not in X^+ .

Thus, we can conclude $X^+ \subseteq Y^+$.

8. 1. Only one solution will be included for now:)

The following

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $AB \rightarrow C$
- 7. $AC \rightarrow B$
- 8. $BC \rightarrow A$
- 9. $A \rightarrow BC$
- 10. $A \rightarrow A$

can be simplified to

- 1. $A \to C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- $4. C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \to C$ B removed from here!!
- 7. $AC \rightarrow B$
- 8. $BC \rightarrow A$
- 9. $A \rightarrow BC$
- 10. $A \rightarrow A$

since **augmenting left sides** rule tells us $AB \to C$ can be attained by adding B to L.H.S of $A \to C$.

Then, the following

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow C$
- 7. $AC \rightarrow B$
- 8. $BC \rightarrow A$
- 9. $A \rightarrow BC$
- 10. $A \rightarrow A$

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow BC$
- 9. $A \rightarrow A$

by removing redundant $A \to C$.

Then, the following

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow BC$
- 9. $A \rightarrow A$

can be simplified to

- 1. $A \rightarrow C$
- $2. \ B \to A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$

- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \to B$ Splitted from $A \to BC$
- 9. $A \to C$ Splitted from $A \to BC$
- 10. $A \rightarrow A$

by using **splitting rule** on $A \to BC$.

Then, the following

- 1. $A \to C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow B$
- 9. $A \rightarrow C$
- 10. $A \rightarrow A$

can be simplified to

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow B$
- 9. $A \rightarrow A$

by removing redundant $A \to C$.

Then, the following

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- $4. \ C \to A$
- 5. $C \rightarrow B$
- 6. $AC \rightarrow B$
- 7. $BC \rightarrow A$

- 8. $A \rightarrow B$
- 9. $A \rightarrow A$

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$ C removed here!!
- 7. $BC \rightarrow A$
- 8. $A \rightarrow B$
- 9. $A \rightarrow A$

since **augmenting left sides** tells us $AC \to B$ can be attained by adding C to $A \to B$.

Then, the following

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow B$
- 9. $A \rightarrow A$

can be simplified to

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow A$

by removing redundant $A \to B$.

Then, the following

1. $A \rightarrow C$

- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $BC \rightarrow A$
- 8. $A \rightarrow A$

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $BC \rightarrow A$

since $A \to A$ can be attained by using **transitivity** rule on $A \to C$ and $C \to A$.

Then, the following

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $BC \rightarrow A$

can be simplified to

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $B \rightarrow A C$ removed here!!

since **augmenting let sides** rule tells us $BC \to A$ can be attained by adding C to L.H.S of $B \to A$.

Then, the following

1. $A \rightarrow C$

- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$
- 7. $B \rightarrow A$

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$

by removing redundant $B \to A$.

Then, the following

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $B \rightarrow C$
- 4. $C \rightarrow A$
- 5. $C \rightarrow B$
- 6. $A \rightarrow B$

can be simplified to

- 1. $A \rightarrow C$
- $2. \ B \to A$
- 3. $C \rightarrow A$
- 4. $C \rightarrow B$
- 5. $A \rightarrow B$

since **transitivity** rule tells us $B \to C$ can be attained by using $B \to A$ and $A \to C$.

Then, the following

- 1. $A \rightarrow C$
- 2. $B \rightarrow A$
- 3. $C \rightarrow A$
- 4. $C \rightarrow B$
- 5. $A \rightarrow B$

can be simplified to

- 1. $A \rightarrow C$
- $2. B \rightarrow A$
- 3. $C \to A$
- 4. $C \rightarrow B$

since **transitivity** rule tells us $A \to B$ can be attained by using $A \to C$ and $C \to B$.

Rough Works:

- 1. Add attributes from A^+ to L.H.S of $A_1A_2\cdots A_n \to A^+$.
- 2. Show that the R.H.S is still A^+ .

Notes:

- Closure (Definition)
 - Suppose $A = \{A_1, A_2, ..., A_n\}$ is a set of attributes of R and S is a set of FD'.

The closure of A under the set S, denoted by A^+ , is the set of attributes B such that any relation that satisfies all the FD's in S is also satisfies $A_1A_2 \cdots A_n \to A^+$.

- In other words $A_1 \cdots A_n \to A^+$ follows from the FD's of S.
- I wish the definition is a little more clear :(

9. Notes:

- Basis
 - Is the set of FD's that represent the full set of FD's of a relation
- Finding minal bases for FD's
 - A minimal basis for a relation satisfies three conditions
 - 1. All the FD's in B have singleton right sides.
 - 2. If any FD is removed from B, the result is no longer a basis
 - 3. If for any FD in B we remove on or more attributes from the left side of F, the result is no longer a basis
 - Steps
 - 1. Get rid of redundant attributes

*

- 2. Get rid of redundant dependencies
- Example

The following

- 1. $A \rightarrow B$
- 2. $ABCD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACDF \rightarrow E$
- 6. $ACDF \rightarrow G$

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$ B removed here!!
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACDF \rightarrow E$
- 6. $ACDF \rightarrow G$

since by **augmentation rule**, $A \to B$ can be re-written as $ACD \to BCD$. And by **trivial rule**, $ACD \to BCD$ can be re-written as $ACB \to ABCD$, which then can be used to get E from $ABCD \to E$.

Second, the following

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACDF \rightarrow E$
- 6. $ACDF \rightarrow G$

can be simplified to

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACD \rightarrow E$ F Removed here!!
- 6. $ACDF \rightarrow G$

since **augmenting left side** rule tells us $ACDF \rightarrow E$ can be attained by adding F to ACD in $ACD \rightarrow E$.

Then, the following

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$

- 4. $EF \rightarrow H$
- 5. $ACD \rightarrow E$
- 6. $ACDF \rightarrow G$

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACDF \rightarrow G$

by removing redundant $ACD \rightarrow E$.

Then, the following

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$
- 5. $ACD \rightarrow E$
- 6. $ACDF \rightarrow G$

can be simplified to

- 1. $A \rightarrow B$
- 2. $ACD \rightarrow E$
- 3. $EF \rightarrow G$
- 4. $EF \rightarrow H$

since **augmentation** rule tells us $ACDF \to G$ can be re-written to get $ACDF \to EF$ and then use **transtivity rule** on $EF \to G$ to get $ACDF \to G$.

10. a) **Notes:**

- Projecting Functional Dependency
 - Remember that π is equivalent to SQL's SELECT of columns
 - Answers the question to "given a relation R and a set of FD's S, what FD's hold if we project R by $R_1 = \Pi_L(R)$?
 - The new set S'
 - 1. Follows from S
 - 2. Involves only attributes of R_1

- Algorithm for Projecting a set of Functional Dependencies
 - Inputs and Outputs
 - * Input
 - · **R:** The original relation
 - **R1:** The projection of R
 - \cdot S: The set of FD's that hold in R
 - * Output
 - **T:** The set of FD's that hold in R_1
 - Steps
 - 1. Initialize $T = \{\}$.
 - 2. Construct a set of all subsets of attributes of R_1 called X
 - 3. Compute X_i^+ for all members of X under S.
 - * X_i^+ may consist of attributes that are not in R1
 - 4. Add to T all nontirival FD's $X \to A$ such that A is both in X_i^+ and an attributes of R_1
 - 5. Now, T is a basis for the FD's that hold in R1 but may not be a minimal basis. Modify T as follows.
 - a) If there is an FD in F in T that follows from the other FD's in T, remove F
 - b) Let $Y \to B$ be an FD in T, with at least two attributes in Y. Remove one attribute from Y and call it Z. If $Z \to B$ follows from the FD's in T, then replace $Z \to B$ with $Y \to B$.
 - Example

Consider R(A, B, C, D) has FD's $A \to B$, $B \to C$, and $C \to D$. $R_1(A, C, D)$ is a projection of R. Find FD's for R_1

*