

Métricas de avaliação I: R2 - Teoria

≡ Ciclo	Ciclo 03: Aprendizado supervisionado - Regressão
# Aula	21
Created	@January 24, 2023 9:35 AM
☑ Done	✓
☑ Ready	✓

Objetivo da Aula:

Ш	A reta de regressao
	Os tipos de erros da regressão
	Os coeficientes de determinação
	R2 na prática
	Resumo
П	Próxima aula

Conteúdo:

▼ 1. A reta de regressão

- 1. Reta sem comportamento (média)
- 2. Reta com comportamento (Regressão)

▼ 2. Os tipos de erros da regressão

▼ 2.1 SSR

O erro SSR é o erro da entre a reta de regressão estimada, conseguida através dos ajuste aos dados, e a reta média que representa a reta conseguida através da média dos pontos. Esse erro, em inglês, é chamado de "Regression Sum of Square".

$$SSR = \sum_{i=1}^n \left(\hat{y}_i - ar{y}
ight)^2$$

▼ 2.2 SSE

O erro SSE é o erro entre os pontos do conjunto de dados e a reta de regressão estimada. Ela quantifica quanto os dados variam em torno da reta de regressão estimada (modelo). Esse, em inglês, é chamado de "Error Sum of Squares".

$$SSE = \sum_{i=1}^n (y_i - \hat{y})^2$$

▼ 2.3 SSTO

O erro SSTO é o erro entre os pontos do conjunto de dados e a reta média. Ela quantifica quanto os dados variam em torno da reta média. Esse, em inglês, é chamado de "Total Sum of Squares".

$$SSTO = \sum_{i=1}^n (y_i - ar{y})^2$$

▼ 2.4 O coeficiente de determinação

O coeficiente de determinação, conhecido como R2, pode ser calculado pela combinação dos erros da regressão.

$$R^2 = 1 - \frac{SSE}{SSTO}$$

▼ 3. O coeficiente de determinação

O R quadrado mede a quantidade de variação em uma variável resposta ou variável alvo, que pode ser explicado pelas variável independentes.

Em outras palavras, o R quadrado indica o quanto eu consigo explicar o fenômeno observado, representado pela variável resposta, a partir das características coletas da observação do fenômeno.

O valor do R2 varia de 0 a 1, sendo que 0 significa que o modelo (conjunto de variáveis e suas relações) não explica nada da variação na variável alvo, enquanto que o valor igual a 1 significa que o modelo explica toda a variação.

▼ 3.1 Característica do R2

- 1. R2 é uma proporção que varia de 0 a 1.
- 2. Se o R2 é igual a 1, todos os pontos de dados estão perfeitamente em cima da reta de regressão. Os preditores do fenômeno explicam TODA a variação do alvo.
- 3. Se o R2 é igual a 0, significa que a reta de regressão estimada é perfeitamente horizontal. Os preditores do fenômeno explicam ZERO a variação do alvo.

▼ 3.2 Interpretação do R2

Imagine que o valor do R2 é de 57%. Podemos interpretar esse valor de duas formas:

- 1. 57% da variação da variável alvo y é reduzida, levando em consideração o preditor x.
- 2. 57% da variação da variável alvo y é "explicada pela variação do preditor x".

Cuidado com a interpretação 2: Correlação não é Causalidade.

▼ 4. Resumo

- Na análise de regressão, podemos calcular 3 tipos de erros: SSR, SSE e SSTO
- 2. O R quadrado mede a quantidade de variação em uma variável resposta, que pode ser explicado pelas variável características.

▼ 5. Próxima aula

Métricas de avaliação I: R2 - Prática