Final Project

PREDICTING NBA RESULTS

GOALS

- > Use BALLDONTLIE API data to build a machine learning model that will predict the outcome of NBA games.
- Complete Data Cleaning, Eda and Feature Engineering to select best prediction model
- 2 best ways to predict basketball game results:
 - > Traditional team statistics
 - **Advanced team statistics**

- NBA National Basketball Association: professional basketball league in North America. The league is composed of 30 teams (29 in the USA and 1 in Canada).
- The regular season runs from Oct to Apr with each team playing 82 games.
- Another area where NBA data became important is betting industry.
- The average annual spend per capita on NBA betting is \$111.49.

HYPOTESIS

- Possible outcomes before working with the data:
 - Teams that play at home are more to win the match
 - > Teams that usually have higher scores will more likely to win
 - Advanced teams statistics will provide higher accuracy

WORKFLOW

EXPLORATORY DATA ANALYSIS

- > Key findings:
 - Teams are more likely to win at home
 - > Visitor have less changes to win

EXPLORATORY DATA ANALYSIS

Home Win % by season:

2017: 59%

2018: 59%

2019: 55%

> 2020: 56%

2021: 53%

▶ I also compared the data to previous years and looks like 20-30 years ago this % was higher: 1988: 67%, 1998: 62%

POINTS SCORED

- Home teams tend to score more points per game
- Visitor Teams score less when playing away per game

FEATURE ENGINEERING

- For Feature Engineering we used over 20 different feature per team based on the traditional basketball statistics
- **Examples are: Steals, Assists, Free Throws, Total Points scored and more**
- Average from the previous 25 games to predict how the team will play in the future game

Name	Description
Rk	Rank
G	Games
MP	Minutes Played
FG	Field Goals
FGA	Field Goal Attempts
FG%	Field Goal Percentage
3P	3-Point Field Goals
3PA	3-Point Field Goal Attempts
3P%	3-Point Field Goal Percentage
2P	2-Point Field Goals
2PA	2-point Field Goal Attempts
2P%	2-Point Field Goal Percentage

FT	Free Throws
FTA	Free Throw Attempts
FT%	Free Throw Percentage
ORB	Offensive Rebounds
DRB	Defensive Rebounds
TRB	Total Rebounds
AST	Assists
STL	Steals
BLK	Blocks
TOV	Turnovers
PF	Personal Fouls
PTS	Points

MODELING

- > Traditional team statistics:
 - **Logistic Regression 65%**
 - Naive Bayes 63%
 - **XGBoost 59%**

- **Advanced team statistics:**
 - **Logistic Regression 67%**
 - Naive Bayes 64%
 - > XGBoost 61%

Advanced team statistics - the scores are 2-3% higher than when we use traditional statistics

CONCLUSION

- **Consideration for future:**
 - Analyze ELO feature: measure relative strength of a player compared to other players
 - > Test and analyze betting data for NBA games

THANK YOU

