Total No. of printed pages = 4

COL	-	01			1 4
CSE	-	×I	2	PF	14
	4	\cdot	. •		_

Roll No. of candidate		

2021

B.Tech. 5th Semester End-Term Examination

Program Elective — I

COMPUTER GRAPHICS

(New Regulation)

(w.e.f. 2017-18)

(New Syllabus)

(w.e.f. 2018-19)

Full Marks -70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

	· ·		
1.	Answer the following: (MCQ/Fill	l in the	blanks) $ (10 \times 1 = 10) $
	(i) If (x, y) is a point inside th	e clippi	ng window then it's code according to the
	Cohen-Sutherland algorithm		
4	×(a) 0000	(b)	0001
	(c) 1000	(d)	1100
*	(ii) In the polygon inside test,	if the w	inding number of a point is zero then the
	point lies ———— the p	oolygon.	
ri.	(a) Inside	(b)	Outside
	(c) On	(d)	As vertex of
	(iii) Sutherland-Hodgeman algo	orithm i	s used for
	(a) Line clipping	(b)	point clipping
	(e) polygon clipping	(d)	
	(iv) The property that Bezier cu	urves do	not have but B-splines have is
	(a) Local control	(b)	Variation diminishing property
	(c) Axis independence	(d)	Global control
		× .	Turn over

	(v)	Control points are used to control
		(a) shape (b) edges
		(c) values (d) iterations
	(vi)	The blending functions of Bezier curves are
		a) Splines (b) Berstien polynomials
		c) Lagramgian polynomials (d) Newton polynomials
	(vii	An orthographic projection in which the direction of the projection is no parallel to any of the three principal axes is called
		a) Cavalier projection (b) Perspective projection
		c) Oblique projection (d) Axonometric projection
	(vii	Axonometric projection is
		a) an orthographic projection
		b) a perspective projection
		c) an oblique projection
		d) a multiview projection
:	(ix)	512×512 raster requires — its in a bit plane.
		a) 2^{12} 2^{18}
*		(d) 2^8
	(x)	n Bresenham's circle generation algorithm, if (x, y) is the current pixel osition then the y-value of the next pixel position is
-		y or y+1 (b) $y alone$
) $y+1 \text{ or } y-1$ (d) $y \text{ or } y-1$
2 .	(a)	onsider a line whose end points are (2,3) and (6,18). Using Bresenham's gorithm draw the line.
3.	(b)	ind the 2-dimensional transformation matrix that represents rotation of an eject by 30° about the origin. What are the new coordinates of the point (2,-4) after rotation? Explain Boundary fill algorithm. (6+3=9)
ઝ . ા	(a)	ifferentiate between Random scan and Raster scan devices. (5)
	(b)	xplain the mid point circle drawing algorithm.
		rove that two scaling transformations are commutative. i.e. S_1 $S_2 = S_2S_1$. (5+5=10)

of the curve.

Let R be the rectangular window whose left lower hand corner is at L(-3,2). 4. and upper right hand corner is at R(3,8). Use Cohen-Sutherland algorithm

Explain 2D viewing pipeline? (p)

> Show that transformation matrix for a reflection about y = -x is equivalent to reflection relative to the y axis followed by a counter clockwise rotation by (4+4=8)90°.

Define Bezier curve. Explain properties of Bezier curve?

Construct enough points on the Bezier curve whose control points are $P_0(4,2), P_1(6,3), P_2(8,4)$ and $P_3(10,6)$ to draw an accurate sketch. (5+5=10)

Describe Gouraud shading.

(5)

Explain depth buffer algorithm. Design animation sequences. (5+5=10)6. (a)

Define CMY color model. (b)

3 MY TO MATERIAL TOTAL T

CSE 1815 PE 14

- 7. (a) Consider rectangular parallelopiped which is 2 distance on z-axis and 4 distance on x axis and 2 distance on y-axis. What is the effect of scaling when scaling factor $S_x = 1/4$, $S_y = 1/6$ and $S_z = 1/2$? (6)
 - (b) The unit cube is projected onto xy plane. Draw the projected image using the standard perspective transformation with d=1, where d is distance from the view plane.

What is projection and describe different types of projection.

(5+4=9)