Exo Wims

Floryan JOURDAN

16 octobre 2023

- **Ex. 1** Soit E un sous-espace vectoriel de \mathbb{R}^{30} défini par un système linéaire de 20 équations. Alors dim(E) est égale à
- **Ex. 2** Soit E un sous-espace vectoriel de \mathbb{R}^{38} engendré par 20 vecteurs. Alors dim(E) est égale à
- **Ex. 3** Soit E un sous-espace vectoriel de \mathbb{R}^{37} défini par un système linéaire de 7 équations. Alors dim(E) est égale à
- **Ex. 4** Soit E un sous espace vectoriel de \mathbb{R}^{47} défini par un système linéaire de 3 équations indépendantes. Alors dim(E) est égale à
- **Answer (Ex. 4)** en fait on considère le sous-espace vectoriel $E = \{(x_1, ..., x_{47}) \mid L_1(x) = 0,, L_3(x) = 0\}$, on peut voir E comme le noyau d'une application linéaire de $\mathcal{L}(\mathbb{R}^{47}, \mathbb{R}^3)$, on applique donc le théorème du rang pour connaître la dimension du noyau, notons f cette application : $dim(E) = dim(Ker(f)) = dim(\mathbb{R}^{47}) dim(\mathbb{R}^3) = 47 3 = 44$.
- **Ex. 5** Soit E un sous-espace vectoriel de \mathbb{R}^{23} engendré par 12 vecteurs non proportionnels. ALors dim(E) est égale à
- Answer (Ex. 5) E est engendré par 12 vecteurs non proportionnels, i.e deux à deux, donc ils peuvent être linéairements dépendants tous ensemble, la dimension est donc au plus 12.
- **Ex. 6** Soit E un sous-espace vectoriel de \mathbb{R}^{27} défini par un système linéaire de 13 équations différentes. Alors dim(E) est égale à
- **Ex.** 7 Soit (e_1, e_2, e_3) une base de \mathbb{R}^3 . Les composantes d'un vecteur dans cette base sont notées (x, y, z). On considère le plan P d'équation 5x+2y=0 et la droite D engendrée par le vecteur $2e_2-e_1$.

Décomposez le vecteur $w=e_1-5e_2+3e_3$ comme somme d'un vecteur u de P et d'un vecteur v de D.