ALTERNATIVE OPTIMAL SOLUTIONS

Max
$$Z = 30 x_1 + 50 x_2$$

s.t
 $3 x_1 + 5 x_2 \le 150$
 $x_2 \le 20$
 $8 x_1 + 5 x_2 \le 300$
 $x_1, x_2 \ge 0$

 $x_1=50/3$, $x_2=20$ Optimal Solution $x_1=30$, $x_2=12$ Alternative Optima

Standard Form

$$Z - 30 x_1 - 50 x_2 = 0$$

$$3 x_1 + 5 x_2 + x_3 = 150$$

 $x_2 + x_4 = 20$
 $8 x_1 + 5 x_2 + x_5 = 300$

$$BV(x_3,x_4,x_5)=150,20,300$$
 $NBV(x_1,x_2)=0$

Initial Tableau

BASIS	X ₁	X ₂	X ₃	X 4	X ₅	RHS	RATIO
X ₃	3	5	1	0	0	150	30
$\mathbf{X_4}$	0	1<<	0	1	0	20	20<<
X ₅	8	5	0	0	1	300	60
Z	-30	-50<	0	0	0	0	

Entering Variable : x₂

Leaving Variable : x₄

The first tableau

BASIS	x ₁	X ₂	X ₃	X 4	X 5	RHS	RATIO
\mathbf{x}_3	3<<	0	1	-5	0	50	16.66<
\mathbf{x}_2	0	1	0	1	0	20	
X 5	8	0	0	-5	1	200	25
Z	-30	0	0	50	0	1000	

Entering Variable : x_1 Leaving Variable : x_3

The second tableau (Optimal tableau)

 $X_1=50/3$, $X_2=20$ $Z_{MAX}=1500$ optimal solution

RULE:

When using simplex method we can recognize alternative optima Z_j equals zero for one or more of the non-basic variables in the final simplex tableau.

$\underline{X_4}$ non-basic variable and has zero coefficient in $\underline{Z_i}$ for the final tableau.

BASIS	x ₁	X ₂	X ₃	X ₄	X 5	RHS	RATIO
$\mathbf{x_1}$	1	0	-5/25	0	5/25	30	
\mathbf{x}_2	0	1	8/25	0	-3/25	12	
X ₄	0	0	-8/25	1	3/25	8	
Z	0	0	10	0	0	1500	

 $X_1=30$ $X_2=12$ $Z_{MAX}=1500$ alternative optimal solution

EXAMPLE

Two investments with varying cash flows (in thousands of dollars) are available as shown in the Table.

CASH FLOW (IN THOUSANDS AT TIME)

	0	1	2	3
INVESTMENT-1	-\$6	-\$5	\$7	\$9
INVESTMENT-2	-\$8	-\$3	\$9	\$7

- At time 0, \$10000 is available for investment, and
- At time 1, \$7000 is available for investment.

Assuming that r = 0.10 (We call r the annual interest rate), set up an LINEAR PPROGRAMMING whose solution maximizes the NET PRESENT VALUE (NPV) obtained from these investments.

• Assume that any fraction of an investment may be purchased.

NPV of investment 1

$$-6 - 5/1.1 + 7/(1.1)^2 + 9/(1.1)^3 = $2.00$$

NPV of investment2

$$-8 - 3/1.1 + 9/(1.1)^2 + 7/(1.1)^3 = $1.97$$

Let

 $x_1 = Fraction of investment 1 that is undertaken and$

 x_2 = Fraction of investment 2 that is undertaken.

If we measure NPV in thousands of dollars we wish to solve the following LP.

Max
$$Z = 2x_1 + 1.97 x_2$$

s.t
 $6x_1 + 8 x_2 \le 10$
 $5x_1 + 3 x_2 \le 7$
 $x_1 \le 1$
 $x_2 \le 1$
All variables ≥ 0

$$-Z = -2x_1 - 1.97x_2$$

 $Z - 2x_1 - 1.97x_2 = 0$

$$NBV(x_1,x_2)=0$$
 $BV(x_2, x_4, x_5, x_6)=10,7,1,1$

SIMPLEX TABLEAU

BASIS	x ₁	X ₂	X ₃	X ₄	X ₅	X ₆	RHS	RATIO
X ₃	6	8	1	0	0	0	10	1.6667
\mathbf{X}_4	5	3	0	1	0	0	7	1.4
X ₅	1<	0	0	0	1	0	1	1
\mathbf{x}_{6}	0	1	0	0	0	1	1	∞
Z	-2 <	-1.97	0	0	0	0	0	
X ₃	0	8<	1	0	-6	0	4	0.5
X ₄	0	3	0	1	-5	0	2	0.6667
\mathbf{x}_1	1	0	0	0	1	0	1	∞
X ₆	0	1	0	0	0	1	1	1
\mathbf{Z}	0	-1.97 <	0	0	2	0	2	
\mathbf{X}_2	0	1	0.125	0	-0.75	0	0.5	
X ₄	0	0	-0.375	1	-2.75	0	0.5	
\mathbf{x}_1	1	0	0	0	1	0	1	
X ₆	0	0	-0.125	0	0.75	1	0.5	
Z	0	0	0.2463	0	0.5275	0	2.985	

 $x_1=1$ $x_2=0.5$ $x_3=0.0$ $x_4=0.5$ $x_5=0.0$ $x_6=0.5$ $Z_{MAX}=2.985$

NO ALTERNATIVE OPTIMA