Q 1:

leaseNo	bannerID	placeNo	startDate	finishDate
10003	B017706	78	01/09/2010	30/06/2011
10259	B017706	88	01/09/2011	30/06/2012
10364	B013399	89	01/09/2011	30/06/2012
10566	B012124	102	01/09/2011	30/06/2012
11067	B034511	88	01/09/2012	30/06/2013
11169	B013399	78	01/09/2012	30/06/2013

flatNo	flat Address
F56	34 High Street, Paisley
F78	111 Storrie Road, Paisley
F79	120 Lady Lane, Paisley

bannerID	fName	IName
B017706	Jane	Watt
B013399	Tom	Jones
B012124	Karen	Black
B034511	Steven	Smith

placeNo	flatNo
78	F56
88	F78
89	F78
102	F79

Q. 2

- a. $\rho_{\text{R}} (\text{myCount})$ $_{\text{COUNT propertyNo}}$ ($\sigma_{\text{rent} \, > \, 350}$ (PropertyForRent))
- $\text{b.} \; (\Pi_{\text{clientNo, propertyNo}}(\text{Viewing})) \; \div \; (\Pi_{\text{propertyNo}}(\sigma_{\text{rooms} \; = \; 3}(\text{PropertyForRent})))$
- c. $(\Pi_{\text{clientNo, fName, IName}}(\text{Client})) \bowtie _{\text{Client.clientNo}} = \text{Viewing.clientNo} (\Pi_{\text{clientNo, propertyNo, comment}}(\text{Viewing}))$
- d. $\Pi_{\text{city}}(\text{Branch}) \cup \Pi_{\text{city}}(\text{PropertyForRent})$
- $_{\mathrm{e.}}$ Π_{city} (Branch) Π_{city} (PropertyForRent)

Q. 3

Q. 4:

Cycles in graph implies that deadlock exists.

```
Q 5:
Below are the 15 possible schedules, and the type of each schedule:
S 1: R 1 (X); W 1 (X); R 1 (Y); W 1 (Y); R 2 (X); W 2 (X); serial (and hence also serializable)
S 2: R 2 (X); R 1 (X); W 2 (X); W 1 (X); R 1 (Y); W 1 (Y); not (conflict) serializable
S 3: R 1 (X); W 1 (X); R 1 (Y); R 2 (X); W 1 (Y); W 2 (X); (conflict) serializable
S 4: R 2 (X); R 1 (X); W 1 (X); R 1 (Y); W 1 (Y); W 2 (X); not (conflict) serializable
S 5: R 1 (X); W 1 (X); R 1 (Y); R 2 (X); W 2 (X); W 1 (Y); (conflict) serializable
S 6: R 1 (X); W 1 (X); R 2 (X); R 1 (Y); W 2 (X); W 1 (Y); (conflict) serializable
S 7: R 2 (X); R 1 (X); W 1 (X); R 1 (Y); W 2 (X); W 1 (Y); not (conflict) serializable
S 8: R 1 (X); W 1 (X); R 2 (X); W 2 (X); R 1 (Y); W 1 (Y); (conflict) serializable
S 9: R 1 (X); R 2 (X); W 1 (X); R 1 (Y); W 1 (Y); W 2 (X); not (conflict) serializable
S 10 : R 1 (X); R 2 (X); W 1 (X); R 1 (Y); W 2 (X); W 1 (Y); not (conflict) serializable
S 11 : R 1 (X); R 2 (X); W 1 (X); W 2 (X); R 1 (Y); W 1 (Y); not (conflict) serializable
S 12 : R 1 (X); W 1 (X); R 2 (X); R 1 (Y); W 1 (Y); W 2 (X); (conflict) serializable
S 13: R 1 (X); R 2 (X); W 2 (X); W 1 (X); R 1 (Y); W 1 (Y); not (conflict) serializable
S 14: R 2 (X); R 1 (X); W 1 (X); W 2 (X); R 1 (Y); W 1 (Y); not (conflict) serializable
S 15: R 2 (X); W 2 (X); R 1 (X); W 1 (X); R 1 (Y); W 1 (Y); serial (and hence also serializable)
Q 6:
        SELECT COUNT(*)
        FROM
                 Animals
                 Type = ``dog','
        WHERE
                 DateAdmitted = ''18/04/2000',
        AND
    a.
        SELECT
                    Name
       FROM
                    Adopter
        WHERE
                   NOT EXISTS
                    (SELECT *
                   FROM
                                Animals A1
```

WHERE

b.

NOT EXISTS

```
(SELECT *
                      Adoption, Animals A2
              FROM
              WHERE
                      AnimalID = A2.ID
                      A2. Type = A1. Type
              AND
              AND
                      Adoption.SIN = Adopter.SIN)
           Type, COUNT(*)
   SELECT
            Animals, Adoption
   FROM
           AdoptDate = ''14/06/1999''
   WHERE
   AND
            Animals.ID = Adoption.AnimalID
   GROUP BY Type;
   SELECT DISTINCT Type
           Animals
   FROM
   WHERE
           NOT EXISTS
           (SELECT *
           \mathbf{FROM}
                    Adoption
           WHERE
                    Adoption.AnimalID = Animals.ID)
d.
   SELECT Name, Address
   FROM
            Adopter, Adoption
            Adopter.SIN = Adoption.SIN
   WHERE
   GROUP BY Adoption . SIN
e. HAVING COUNT(SIN) > 1;
```