sea $K: C([0,1]) \to C([0,1])$ dada por $(Kf)(x) = \int_0^1 k(x, y) f(y) \, dy.$ Probar que K es lineal y continua. Acotar su norma. Redunt que le (x, y) rea continua para pada integrada Vanner que K(f(x)) = Sk (x,y) f(y) dy a hual para ero se dels amples (K (f (x) + g (x)) = K (f (x)) + K (g (x)) (b) $K(\lambda f(x)) = \lambda K(f(x))$ hulahdal ontigral B K(\(\beta f(x)\) = \(\left(x,y) \(\left(x)\right) \dy = \lambda \) \(\left(x,y) \(\frac{1}{2}\right) \dy = \lambda \) \(\left(x) \right) \(\left(x) \right) \dim \text{\fin} \\ \left(x) \right) \\ \(\left(x) \right) \dim \text{\fin} \\ \left(x) \right) \\ \(\left(x) \right) \dim \(\left(x) \right) \dim \text{\fin} \\ \left(x) \right) \\ \left(x) \\ \\ \left(x) \right) \\ \\ \left(x) \\ \\ \left(x) \right) \\ \\ \left(x) \\ \left(x) \\ \left(x) \\ \\ \left(Resta pular que er continua, proland usar cualquis inetodo, tratuna actando $QVQ \|Xf\alpha\|_{Q} \leq c \|f\alpha\|_{Q}$ mae | K f (x) | \(\int \text{main f (x)} \) ke (0,1)

11. Consideremos en C([0,1]) la norma infinito. Fijada $k:[0,1]\times[0,1]\to\mathbb{R}$ continua,

Vlan	a lo	Olfina	€ (ava t	G 3	ZSE	/ f-	gla <	5-7		Kallac	\mathcal{E}	
	"	1		•			'	۵			J		