NumPy

- Jake VanderPlas. 2016. Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media, Inc.
- Chapter 2 Introduction to NumPy
- https://github.com/jakevdp/PythonDataScienceHandbook

NumPy provides:

- Memory-efficient N-dimensional arrays with fast, vectorized operations.
- Mathematical functions for linear algebra, statistics, random number generation, etc.
- Element-wise operations between arrays of different but compatible shapes (broadcasting).
- Advanced array indexing
- Foundation for many other scientific Python libraries (SciPy, Pandas, Matplotlib, Scikit-learn)

```
In [1]: import numpy as np
np.__version__

Out[1]: '1.26.4'

In [2]: # type TAB to get the numpy namespace
#np.
```

Data Types

NumPy provides an alternative implementation for numerical arrays, improving the performance of datadriven computation compared to standard Python built-in lists.

Python Integers vs C Integers

- Python int s are *complex* objects (written in C)
 - Dynamically-typed language
 - Almost infinite integer arithmetic precision

```
struct _longobject {
    long ob_refcnt;  # reference count
    PyTypeObject *ob_type;  # type of the variable
    size_t ob_size;  # size of the following data members
    long ob_digit[1];  # integer value encoded into a long array
};
```

• C language integers (char, short, int, long, long...) are simple references to a position in memory whose bytes encode an integer value.

Python Lists vs NumPy Arrays

- Python list s are complex objects (much more than int s)
 - list s are heterogeneous
 - Different object types are different sizes
 - list s contain an array with <u>references</u> to each object
 - Contain a pointer to a block of pointers, each of which points to a Python object

- Standard Numpy arrays are homogeneus.
 - Contain a single pointer to one contiguous block of data.

NumPy Arrays

Creating Arrays from Python Lists

Nested lists result in multi-dimensional arrays

[10, 11, 12, 13], [20, 21, 22, 23]])

Out[6]: array([[0, 1, 2, 3],

In [6]: np.array([[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]])

- np.array(some_list) → create an (homogeneous) array
- np.array(some_list, dtype=<data type>) → create an array of a given type

```
In [3]: np.array([1, 4, 2, 5, 3])
Out[3]: array([1, 4, 2, 5, 3])
In [4]: np.array([1, 4, 2, 5, 3], dtype='float32')
Out[4]: array([1, 4., 2., 5., 3.], dtype=float32)

If types do not match, NumPy will upcast if possible:
In [5]: np.array([1, 4, 2, 5.9, 3])
Out[5]: array([1, 4, 2, 5.9, 3.])
```

NumPy Standard Data Types

when constructing an array, the data type (dtype) argument can be specified using:

- string → dtype='float32'
- NumPy object → dtype=np.float32

```
In [7]: np.array([1, 4, 2, 5, 3], dtype='float32')
Out[7]: array([1., 4., 2., 5., 3.], dtype=float32)
In [8]: np.array([1, 4, 2, 5, 3], dtype=np.float32)
Out[8]: array([1., 4., 2., 5., 3.], dtype=float32)
```

Data type	Description
bool_	Boolean (True or False) stored as a byte
int_	Default integer type (same as C long; normally either int64 or int32)
intc	Identical to C int (normally int32 or int64)
intp	Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8	Byte (-128 to 127)
int16	Integer (-32768 to 32767)
int32	Integer (-2147483648 to 2147483647)
int64	Integer (-9223372036854775808 to 9223372036854775807)
uint8	Unsigned integer (0 to 255)
uint16	Unsigned integer (0 to 65535)
uint32	Unsigned integer (0 to 4294967295)
uint64	Unsigned integer (0 to 18446744073709551615)
float_	Shorthand for float64.
float16	Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32	Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64	Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_	Shorthand for complex128.
complex64	Complex number, represented by two 32-bit floats
complex128	Complex number, represented by two 64-bit floats

Creating Arrays from Scratch

Default values of dtype (most of times):

- Integers → int64
- Reals (floating point) → float64

```
In [9]: np.zeros(10)
Out[9]: array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [10]: np.zeros(10, dtype='int64')
Out[10]: array([0, 0, 0, 0, 0, 0, 0, 0, 0])
In [11]: np.zeros(10, dtype='float32')
Out[11]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
In [12]: np.zeros(10, dtype='int32')
Out[12]: array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
           • np.eye(3) → a 3x3 identity matrix
In [13]: np.eye(3)
Out[13]: array([[1., 0., 0.],
                 [0., 1., 0.],
                 [0., 0., 1.]])
           • np.ones((3,5)) \rightarrow a 3x5 array filled with ones
In [14]: np.ones((3,5))
Out[14]: array([[1., 1., 1., 1., 1.],
                 [1., 1., 1., 1., 1.]
                 [1., 1., 1., 1., 1.]])
           • np.full((3,5), 1.8) \rightarrow a 3x5 array filled with 1.8
In [15]: np.full((3,5), 1.8)
```

• np.zeros(10) → a length-10 array filled with zeros

```
Out[15]: array([[1.8, 1.8, 1.8, 1.8, 1.8],
                 [1.8, 1.8, 1.8, 1.8, 1.8],
                 [1.8, 1.8, 1.8, 1.8, 1.8]
             np.empty((3,5)) \rightarrow an <u>uninitialized</u> 3x5 array
In [16]: np.empty((3,5))
Out[16]: array([[1.8, 1.8, 1.8, 1.8, 1.8],
                 [1.8, 1.8, 1.8, 1.8, 1.8],
                 [1.8, 1.8, 1.8, 1.8, 1.8]
             np.random.random((3,5)) \rightarrow a 3x5 array of uniformly distributed random values in the half-
              open interval [0,1)
In [17]: np.random.random((3,5))
Out[17]: array([[0.65670543, 0.57132617, 0.42537737, 0.13466252, 0.27499705],
                 [0.74141699, 0.96083837, 0.02748632, 0.0656205, 0.65098017],
                 [0.39079266, 0.83119892, 0.00312721, 0.41106754, 0.8986904 ]])

    np.random.seed(int) → sets a seed for random number generation (provides reproducibility)

In [18]: np.random.seed(43)
          np.random.random((3,5))
Out[18]: array([[0.11505457, 0.60906654, 0.13339096, 0.24058962, 0.32713906],
                 [0.85913749, 0.66609021, 0.54116221, 0.02901382, 0.7337483],
                 [0.39495002, 0.80204712, 0.25442113, 0.05688494, 0.86664864]])
             np.random.normal(10, 2, (3,5)) \rightarrow a 3x5 array of normally distributed random values with
              \mu=10 and \sigma=2
In [19]: np.random.normal(10, 2, (3, 5))
Out[19]: array([[ 9.06239973, 7.247008 , 8.96229899, 9.54920845, 10.41643253],
                 [10.40961276, 9.83619328, 10.67376611, 9.85909104, 11.18066954],
                 [ 8.80587096, 10.48544469, 9.38402231, 11.21093121, 7.00980231]])
```

np.random.randint(-7, 3, (3, 5)) \rightarrow a 3x5 array of random integers in the half-open interval

[-7, 3)

• np.arange(4, 20, 2) \rightarrow an array filled with a linear sequence in the range [4,20) and step 2

```
In [21]: np.arange(4, 20, 2)
Out[21]: array([ 4, 6, 8, 10, 12, 14, 16, 18])
```

• np.linspace(1, 7, 5) \rightarrow an array of five values evenly spaced in the range [1, 7]

```
In [22]: np.linspace(1, 7, 5)
Out[22]: array([1. , 2.5, 4. , 5.5, 7. ])
```

More on NumPy Arrays

- Array dimensions
- Array attributes
- Array indexing
- Array slicing
- Reshaping of arrays
- Array concatenation and splitting

Array dimensions

NumPy arrays can have any number of dimensions:

- 0-dimensional arrays → scalars or rank-0 tensor
- 1-dimensional arrays → **vectors** or **rank-1 tensor**
- 2-dimensional arrays → matrices or rank-2 tensor
- 3-dimensional arrays → **tensors** or **rank-3 tensor**
- ..
- N-dimensional arrays → tensors or rank-N tensor

```
In [23]: np.random.randint(1,10,(2,2,2,3,6))
```

```
Out[23]: array([[[[[4, 7, 8, 5, 6, 4],
                    [6, 4, 9, 4, 6, 2],
                    [7, 1, 1, 8, 2, 4]],
                   [[2, 6, 9, 1, 4, 7],
                    [5, 7, 8, 5, 6, 9],
                    [5, 8, 5, 3, 7, 8]]],
                  [[[9, 9, 2, 9, 6, 6],
                    [9, 7, 9, 4, 5, 3],
                    [4, 2, 5, 3, 3, 2]],
                   [[5, 6, 6, 1, 4, 5],
                    [8, 2, 3, 8, 4, 2],
                    [2, 4, 7, 6, 9, 1]]]],
                 [[[[6, 1, 9, 7, 8, 9],
                    [9, 8, 2, 5, 2, 7],
                    [4, 1, 2, 8, 9, 4]],
                   [[3, 1, 4, 3, 1, 3],
                    [7, 8, 5, 5, 7, 1],
                    [5, 7, 1, 5, 7, 4]]],
                  [[[7, 8, 9, 2, 5, 6],
                    [2, 9, 1, 3, 3, 8],
                    [7, 6, 1, 5, 1, 9]],
                   [[9, 2, 9, 2, 7, 1],
                    [3, 2, 6, 1, 6, 6],
                    [9, 4, 3, 1, 6, 6]]]])
```

Array attributes

Given a NumPy array x:

- x.ndim → number of dimensions
- $x.shape \rightarrow a \text{ tuple of size } x.ndim \text{ containing the size of each dimension}$
- x.size → total size of the array
- x.dtype → data type of the array

```
In [24]: x = np.random.rand(3, 4)
    print(x)
    print(f'{x.ndim=} {x.shape=} {x.size=} {x.dtype=}')

[[0.9973726    0.48601552   0.32129159   0.973439  ]
    [0.99871854   0.4452131   0.0447457   0.44706112]
    [0.7101748   0.62607133   0.67064977   0.97191886]]
    x.ndim=2   x.shape=(3, 4)   x.size=12   x.dtype=dtype('float64')
```

Array indexing

One dimensional arrays are indexed as Python lists:

```
In [25]: x = np.arange(100,110)
x[3]
```

Out[25]: 103

Negative indexes are valid as with Python lists:

```
In [26]: x[-1],x[-10]
Out[26]: (109, 100)
```

Multi-dimensional arrays are indexed with a comma-separated tuple of indices

```
In [27]: x = np.random.rand(3,4)
    print(x)
    print(x[0,3], x[-1,0])

[[0.66197124 0.0914502  0.58973101 0.21158101]
    [0.79507563 0.35030598 0.50243648 0.70353915]
    [0.17162768 0.60105944 0.16003461 0.8265784 ]]
    0.21158100640626754 0.17162767591793848
```

Values can be modified using any of the above index notation.

```
In [28]: x = np.arange(10)
    print(x)
    x[-1] = 20
    print(x)

[0 1 2 3 4 5 6 7 8 9]
    [ 0 1 2 3 4 5 6 7 8 20]
```

NumPy arrays have fixed types. If you set a float value to an element of an int array, the value is truncated.

```
In [29]: print(x)
    x[-1] = 17.321
    print(x)

[ 0 1 2 3 4 5 6 7 8 20]
    [ 0 1 2 3 4 5 6 7 8 17]
```

Array slicing

NumPy slicing syntax follows that of the standard Python list

- x[start:stop:step]
- If omitted, default values apply:
 - start=0
 - stop=size_of_dimension
 - step=1

```
In [30]: x = np.arange(10)
    print(f'{x[:5]=}')
    print(f'{x[5:]=}')
    print(f'{x[4:7]=}')
    print(f'{x[::2]=}')
    print(f'{x[::-1]=}')
    print(f'{x[5::-2]=}')
```

```
x[:5]=array([0, 1, 2, 3, 4])
        x[5:]=array([5, 6, 7, 8, 9])
        x[4:7]=array([4, 5, 6])
        x[::2]=array([0, 2, 4, 6, 8])
        x[::-1]=array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
        x[5::-2]=array([5, 3, 1])
In [31]: x = np.random.rand(3,5)
         print(f'{x=}')
         print(f'{x[1,:]=}')
         print(f'{x[1]=}') # equivalent
         print(f'{x[:,1]=}')
         print(f'{x[:2,3:]=}')
         print(f'{x[0,::-1]=}')
         print(f'{x[::-1,1]=}')
        x=array([[0.33270163, 0.54669719, 0.8307106, 0.96906706, 0.32753498],
               [0.08837382, 0.96348912, 0.98930344, 0.91907709, 0.85048569],
               [0.49369274, 0.46861656, 0.55895281, 0.1069022 , 0.89873709]])
        x[1,:]=array([0.08837382, 0.96348912, 0.98930344, 0.91907709, 0.85048569])
        x[1]=array([0.08837382, 0.96348912, 0.98930344, 0.91907709, 0.85048569])
        x[:,1]=array([0.54669719, 0.96348912, 0.46861656])
        x[:2,3:]=array([[0.96906706, 0.32753498],
               [0.91907709, 0.85048569]])
        x[0,::-1]=array([0.32753498, 0.96906706, 0.8307106, 0.54669719, 0.33270163])
        x[::-1,1]=array([0.46861656, 0.96348912, 0.54669719])
         Unlike Python list slices, array slices return views rather than copies:
```

```
In [32]: x = np.random.rand(3,5)
         print(f'{x=}')
         y = x[1,::2]
         print(f'{y=}')
         print('-'*40)
         y[0] = 0
         print(f'{y=}')
         print(f'{x=}')
        x=array([[0.61514721, 0.99204581, 0.6925764, 0.35473485, 0.17346336],
               [0.04616806, 0.32678971, 0.35579443, 0.47938721, 0.65897812],
               [0.08594221, 0.29644561, 0.20342314, 0.65215974, 0.57715637]])
        y=array([0.04616806, 0.35579443, 0.65897812])
        y=array([0.
                           , 0.35579443, 0.65897812])
        x=array([[0.61514721, 0.99204581, 0.6925764, 0.35473485, 0.17346336],
                          , 0.32678971, 0.35579443, 0.47938721, 0.65897812],
               [0.08594221, 0.29644561, 0.20342314, 0.65215974, 0.57715637]])
         Explicit copies of arrays or subarrays (slices) can be created: x.copy()
```

```
In [33]: x = np.random.rand(3,5)
print(f'{x=}')
y = x[1,::2].copy()
print(f'{y=}')
print('-'*40)
y[0] = 0
print(f'{y=}')
print(f'{x=}')
```

Reshaping of arrays

- reshape(a, newshape) → a reshaped **view** of an array
- a.reshape(newshape) → a reshaped **view** of an array

```
In [34]: np.reshape(np.arange(10), (2, 5))
Out[34]: array([[0, 1, 2, 3, 4],
                [5, 6, 7, 8, 9]])
         np.arange(10).reshape((2, 5))
In [35]:
Out[35]: array([[0, 1, 2, 3, 4],
                [5, 6, 7, 8, 9]])
In [36]: a = np.arange(10)
         b = a.reshape((2,5))
         c = b.reshape((1,10))
         b[0,0] = -8
         print(f'{a=}\n{b=}\n{c=}')
        a=array([-8, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        b=array([[-8, 1, 2, 3, 4],
              [ 5, 6, 7, 8, 9]])
        c=array([[-8, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
         np.newaxis, when used in Array slicing adds a new dimension (does a reshape):
```

Array concatenation and splitting

Array concatenation → combine multiple arrays into one

```
np.concatenate , np.vstack and np.hstack
```

- Array **splitting** → split a single array into multiple arrays
 - np.split , np.vsplit and np.hsplit
- concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
 - (a1, a2, ...) \rightarrow array sequence
 - axis → the axis along which the arrays will be joined
 - arrays must have the dimension corresponding to axis
 - arrays must have the same shape, except in the dimension corresponding to axis

```
In [38]: a = np.arange(0,4)
         b = np.arange(4,8)
         c = np.arange(8,12)
         d = np.concatenate((a,b,c))
         print(f'{a=} n{b=} n{c=} n{d=}')
       a=array([0, 1, 2, 3])
       b=array([4, 5, 6, 7])
       c=array([ 8, 9, 10, 11])
        d=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [39]: # ERROR: arrays a,b and c does not have dimension 1
         #np.concatenate((a,b,c), axis=1)
In [40]: a2,b2,c2 = a[newaxis,:],b[newaxis,:],c[newaxis,:]
         print(f'{a2=}\n{b2=}\n{c2=}')
       a2=array([[0, 1, 2, 3]])
       b2=array([[4, 5, 6, 7]])
       c2=array([[ 8, 9, 10, 11]])
In [41]: np.concatenate((a2,b2,c2))
Out[41]: array([[ 0, 1, 2, 3],
               [4, 5, 6, 7],
                [8, 9, 10, 11]])
In [42]: np.concatenate((a2,b2,c2), axis=0)
Out[42]: array([[ 0, 1, 2, 3],
                [4, 5, 6, 7],
                [8, 9, 10, 11]])
In [43]: np.concatenate((a2,b2,c2), axis=1)
Out[43]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

    vstack and hstack - 2 (or more) dimensional arrays

              ■ vstack((a1, a2, ...)) == concatenate((a1, a2, ...), axis=0)
```

hstack((a1, a2, ...)) == concatenate((a1, a2, ...), axis=1)

```
In [44]: a = np.arange(0,8).reshape((2,4))
         b = np.arange(8,16).reshape((2,4))
         c = np.hstack((a,b))
         d = np.concatenate((a,b), axis=1)
         e = np.vstack((a,b))
         f = np.concatenate((a,b), axis=0)
         print(f'{a=}\n{b=}\n{c=}\n{d=}\n{f=}')
        a=array([[0, 1, 2, 3],
               [4, 5, 6, 7]]
        b=array([[ 8, 9, 10, 11],
               [12, 13, 14, 15]])
        c=array([[ 0, 1, 2, 3, 8, 9, 10, 11],
               [4, 5, 6, 7, 12, 13, 14, 15]])
        d=array([[ 0, 1, 2, 3, 8, 9, 10, 11],
               [ 4, 5, 6, 7, 12, 13, 14, 15]])
        e=array([[ 0, 1, 2, 3],
               [4, 5, 6, 7],
               [8, 9, 10, 11],
               [12, 13, 14, 15]])
        f=array([[ 0, 1, 2, 3],
               [4, 5, 6, 7],
               [8, 9, 10, 11],
               [12, 13, 14, 15]])

    vstack and hstack - 1 dimensional arrays

               vstack((a1, a2, ...)) == concatenate((a1[newaxis,:], a2[newaxis,:], ...))
               ■ hstack((a1, a2, ...)) == concatenate((a1, a2, ...))
In [45]: a = np.arange(0,4)
         b = np.arange(4,8)
         c = np.hstack((a,b))
         d = np.concatenate((a,b))
         e = np.vstack((a,b))
         f = np.concatenate((a[newaxis,:],b[newaxis,:]))
         print(f'{a=}\n{b=}\n{c=}\n{d=}\n{f=}')
        a=array([0, 1, 2, 3])
        b=array([4, 5, 6, 7])
        c=array([0, 1, 2, 3, 4, 5, 6, 7])
        d=array([0, 1, 2, 3, 4, 5, 6, 7])
        e=array([[0, 1, 2, 3],
               [4, 5, 6, 7]])
        f=array([[0, 1, 2, 3],
               [4, 5, 6, 7]]
           split(a, split points, axis=0)
               \blacksquare a \rightarrow the array to split
               split points
                  \circ N (int) \rightarrow array is divided into N equal arrays (or fails)
                  o integer seg → split indexes (points)
               axis → the axis along which to split
```

```
In [46]: a = np.arange(42).reshape((6,7))
    upper,center,lower = np.split(a,3)
    print(f'{a=}\n{upper=}\n{center=}\n{lower=}')
```

```
a=array([[ 0, 1, 2, 3, 4, 5, 6],
               [7, 8, 9, 10, 11, 12, 13],
               [14, 15, 16, 17, 18, 19, 20],
               [21, 22, 23, 24, 25, 26, 27],
               [28, 29, 30, 31, 32, 33, 34],
               [35, 36, 37, 38, 39, 40, 41]])
        upper=array([[ 0, 1, 2, 3, 4, 5, 6],
               [ 7, 8, 9, 10, 11, 12, 13]])
        center=array([[14, 15, 16, 17, 18, 19, 20],
               [21, 22, 23, 24, 25, 26, 27]])
        lower=array([[28, 29, 30, 31, 32, 33, 34],
               [35, 36, 37, 38, 39, 40, 41]])
In [47]: a = np.arange(42).reshape((6,7))
         # ERROR: array split does not result in an equal division
         #upper,lower = np.split(a,2,axis=1)
In [48]:
         a = np.arange(36).reshape((6,6))
         upper,center,lower = np.split(a,(1,3))
         print(f'{a=}\n{upper=}\n{center=}\n{lower=}')
        a=array([[ 0, 1, 2, 3, 4, 5],
               [6, 7, 8, 9, 10, 11],
               [12, 13, 14, 15, 16, 17],
               [18, 19, 20, 21, 22, 23],
               [24, 25, 26, 27, 28, 29],
               [30, 31, 32, 33, 34, 35]])
        upper=array([[0, 1, 2, 3, 4, 5]])
        center=array([[ 6, 7, 8, 9, 10, 11],
               [12, 13, 14, 15, 16, 17]])
        lower=array([[18, 19, 20, 21, 22, 23],
               [24, 25, 26, 27, 28, 29],
               [30, 31, 32, 33, 34, 35]])
In [49]: a = np.arange(0,14).reshape((2,7))
         left,center,right = np.split(a,(1,3), axis=1)
         print(f'{a=}\n{left=}\n{center=}\n{right=}')
        a=array([[ 0, 1, 2, 3, 4, 5, 6],
               [ 7, 8, 9, 10, 11, 12, 13]])
        left=array([[0],
               [7]])
        center=array([[1, 2],
               [8, 9]])
        right=array([[ 3, 4, 5, 6],
               [10, 11, 12, 13]])

    vsplit and hsplit - 2 (or more) dimensional arrays

              vsplit(a,ii) == split(a, ii, axis=0)
              hsplit(a,ii) == split(a, ii, axis=1)
            hsplit - 1 dimensional arrays
              hsplit(a,ii) == split(a, ii)
In [50]:
         a = np.arange(16).reshape((4,4))
         b,c = np.vsplit(a,2)
         d,e = np.split(a,2, axis=0)
```

 $print(f'{a=}\n{b=}\n{c=}\n{d=}\n{e=}')$

```
a=array([[ 0, 1, 2, 3],
              [4, 5, 6, 7],
               [ 8, 9, 10, 11],
              [12, 13, 14, 15]])
       b=array([[0, 1, 2, 3],
              [4, 5, 6, 7]])
       c=array([[ 8, 9, 10, 11],
               [12, 13, 14, 15]])
       d=array([[0, 1, 2, 3],
              [4, 5, 6, 7]])
       e=array([[ 8, 9, 10, 11],
              [12, 13, 14, 15]])
         a = np.arange(16).reshape((4,4))
In [51]:
         b,c = np.hsplit(a,2)
         d,e = np.split(a,2, axis=1)
         print(f'{a=}\n{b=}\n{c=}\n{d=}\n{e=}')
       a=array([[ 0, 1, 2, 3],
              [4, 5, 6, 7],
              [8, 9, 10, 11],
              [12, 13, 14, 15]])
       b=array([[ 0, 1],
              [4, 5],
              [8, 9],
              [12, 13]])
       c=array([[ 2, 3],
               [6, 7],
              [10, 11],
              [14, 15]])
       d=array([[ 0, 1],
               [4, 5],
               [8, 9],
              [12, 13]])
       e=array([[ 2, 3],
               [6, 7],
              [10, 11],
              [14, 15]])
In [52]: a = np.arange(16)
         b,c = np.hsplit(a,2)
         d,e = np.split(a,2)
         print(f'{a=}\n{b=}\n{c=}\n{d=}\n{e=}')
       a=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
       b=array([0, 1, 2, 3, 4, 5, 6, 7])
        c=array([ 8, 9, 10, 11, 12, 13, 14, 15])
       d=array([0, 1, 2, 3, 4, 5, 6, 7])
       e=array([ 8, 9, 10, 11, 12, 13, 14, 15])
```

UFuncs - Universal Functions

Function designed to perform element-wise operations on arrays. Main features:

- **Speed and Efficiency**: Instead of looping over arrays to perform the *same* computation on each element, use single highly optimized functions.
- **Broadcasting**: support for different but *compatible* shape arrays.
- Type casting: support for different data types

Arithmetic operations

```
In [53]: x = np.arange(8)
         print(" x = ", x)
         print("x + 5 = ", x + 5)
         print(" x - 5 = ", x - 5)
         print(" -x =", -x)
         print(" x * 2 = ", x * 2)
         print(" x / 2 = ", x / 2)
         print("x // 2 = ", x // 2)
         print(" x % 2 = ", x % 2)
         print("x ** 2 =", x ** 2)
             x = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7]
         x + 5 = [5 6 7 8 9 10 11 12]
         x - 5 = [-5 -4 -3 -2 -1 \ 0 \ 1 \ 2]
           -x = [0 -1 -2 -3 -4 -5 -6 -7]
         x * 2 = [0 2 4 6 8 10 12 14]
        x / 2 = [0. 0.5 1. 1.5 2. 2.5 3. 3.5]
       x // 2 = [0 0 1 1 2 2 3 3]
        x \% 2 = [0 1 0 1 0 1 0 1]
        x ** 2 = [0 1 4 9 16 25 36 49]
```

Each arithmetic operator is in fact a wrapper around an specific function built into NumPy

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
-	np.subtract	Subtraction (e.g., 3 - 2 = 1)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., 2 * 3 = 6)
/	np.divide	Division (e.g., 3 / 2 = 1.5)
//	np.floor_divide	Floor division (e.g., 3 // 2 = 1)
**	np.power	Exponentiation (e.g., 2 ** 3 = 8)
%	np.mod	Modulus/remainder (e.g., 9 % 4 = 1)

Trigonometric functions

```
In [54]: theta = np.linspace(0, np.pi, 3)
         print(f'{x=}')
         print(f'{np.sin(theta)=}')
         print(f'{np.cos(theta)=}')
         print(f'{np.tan(theta)=}')
         x = [-1, 0, 1]
         print(f'{np.arcsin(x)=}')
         print(f'{np.arccos(x)=}')
         print(f'{np.arctan(x)=}')
       x=array([0, 1, 2, 3, 4, 5, 6, 7])
        np.sin(theta)=array([0.0000000e+00, 1.0000000e+00, 1.2246468e-16])
       np.cos(theta)=array([ 1.000000e+00, 6.123234e-17, -1.000000e+00])
       np.tan(theta)=array([ 0.00000000e+00, 1.63312394e+16, -1.22464680e-16])
       np.arcsin(x)=array([-1.57079633, 0. , 1.57079633])
       np.arccos(x)=array([3.14159265, 1.57079633, 0.
                                                            1)
       np.arctan(x)=array([-0.78539816, 0. , 0.78539816])
```

More mathematical functions

```
abs() , np.absolute() or np.abs()
In [55]: x = np.array([-2, -1, 0, 1, 2])
         print(f'{abs(x)=}')
         print(f'{np.absolute(x)=}')
         print(f'{np.abs(x)=}')
        abs(x)=array([2, 1, 0, 1, 2])
        np.absolute(x)=array([2, 1, 0, 1, 2])
        np.abs(x)=array([2, 1, 0, 1, 2])
          np.exp() , np.exp2() and np.power()
In [56]: x = np.arange(3)
         print(" x = ", x)
         print(" e^x = ", np.exp(x))
         print(" 2^x =", np.exp2(x))
         print("3^x =", np.power(3, x)) # keeps int dtype
         print("3.14^x = ", np.power(3.14, x))
            x = [0 \ 1 \ 2]
          e^x = [1. 2.71828183 7.3890561 ]
          2^x = [1. 2. 4.]
        3^x = [1 \ 3 \ 9]
        3.14^x = [1. 3.14 9.8596]
          • np.log() , np.log2() and np.log10()
In [57]:
         x = np.array([1,2,np.e,10])
         print(" x = ", x)
         print("log2(x) = ", np.log2(x))
         print(" log(x) = ", np.log(x))
         print("log10(x) =", np.log10(x))
              x = [1. 2.
                                           2.71828183 10.
                                                                  1
       \log 2(x) = [0. 1. 1.44269504 3.32192809]

\log (x) = [0. 0.69314718 1. 2.30258509]

\log 10(x) = [0. 0.30103 0.43429448 1. ]
          np.sqrt()
In [58]: x = np.linspace(0,100,5)
         print(" x = ", x)
         print("sqrt(x) =", np.sqrt(x))
             x = [0. 25. 50. 75. 100.]
        sqrt(x) = [0.
                        5. 7.07106781 8.66025404 10.
                                                                             ]
```

• np.round()

Aggregations Functions

- Takes an array and returns a single scalar (or smaller array)
- sum, median, max, min, ...
- np.sum(a) or a.sum()
- **DO NOT** use built-in sum function

- np.min(a) or a.min() and np.max(a) or a.max()
- **DO NOT** use built-in min or max functions

```
In [62]: x = np.random.rand(100000)
    min(x) == np.min(x) == x.min()

Out[62]: True

In [63]: #%timeit min(x)
    #%timeit np.min(x)
    #%timeit x.min()
```

More aggregations functions

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.mean np.std np.var	np.nanmean np.nanstd np.nanvar	Compute mean of elements Compute standard deviation Compute variance

Function Name	NaN-safe Version	Description
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

Multi dimensional aggregates

- By default, the aggregate over the entire array.
- An additional argument (axis) specifying the axe along which the aggregate is computed

Broadcasting

The ability to apply binary ufuncs (e.g., addition, subtraction, multiplication, etc.) on arrays of different sizes.

```
In [65]: a = np.arange(10)
         b = a[::-1]
         print(f'{ a = }')
         print(f'{ b = }')
         print(f'{a+b = }')
         print(f'{a+3 = }') # broadcasting
          a = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
          b = array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
        a+b = array([9, 9, 9, 9, 9, 9, 9, 9, 9])
       a+3 = array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
In [66]: a = np.array([10,20,30,40,50])
         a2 = a.reshape((1,5))
         b = np.arange(10).reshape(2,5)
         c = np.array([[-1],[-10]])
         print(f'{ a = } {a2 = }')
         print(f'{    b = }')
         print(f'{      c = }')
         print(f'{ a+a = }')
```

Broadcasting - A visual example

print(f'{ a+3 = }') # broadcasting
print(f'{ a+b = }') # broadcasting

Broadcasting Rules

Given two arrays $\, {f x} \,$ and $\, {f y} \,$ with dimensions (d_1^x, \ldots, d_n^x) and (d_1^y, \ldots, d_m^y)

- 1. if $n \neq m$, the shape of the one with fewer dimensions is padded with *ones* on its left side.
 - $ullet n < m
 ightarrow (1_1, \ldots, 1_{m-n}, d_1^x, \ldots, d_n^x)$
 - $\bullet \quad n>m \to (1_1,\ldots,1_{n-m},d_1^y,\ldots,d_m^y)$
 - After the padding, shapes of ${\sf x}$ and ${\sf y}$ are (d_1^x,\ldots,d_k^x) and (d_1^y,\ldots,d_k^y) , where $k=\max(n,m)$
- 2. If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched (replicated) to match the other shape.

- ullet After the stretching, $orall i \; d^x_i = 1 \iff d^y_i = 1$
- 3. If in any dimension the sizes disagree ($\exists i \ where \ d_i^x
 eq d_i^y$), an error is raised
 - ullet If no error is raised, shape of ${\sf x}$ and ${\sf y}$ is (d_1,\ldots,d_k)
- 4. All dimensions match, and shape of result is (d_1,\ldots,d_k)

Example 1

```
In [67]: M = np.ones((2, 3))
a = np.arange(3)
```

- M.shape == (2, 3)
- a.shape == (3,)
- Rule1: pad (increase number of dimensions)
 - M.shape \rightarrow (2, 3)
 - a.shape \rightarrow (1, 3)
- Rule2: stretch ($1 \rightarrow j$)
 - M.shape \rightarrow (2, 3)
 - a.shape \rightarrow (2, 3)
- Rule3: check dimensions → OK

Example 2

```
In [69]: a = np.arange(3).reshape((3, 1))
b = np.arange(3)
```

- M.shape == (3, 1)
- a.shape == (3,)
- Rule1: pad (increase number of dimensions)
 - M.shape → (3, 1)
 - a.shape → (1, 3)
- Rule2: stretch ($1 \rightarrow j$)
 - M.shape \rightarrow (3, 3)
 - a.shape \rightarrow (3, 3)
- Rule3: check dimensions → OK

Example 3

```
In [71]: M = np.ones((3, 2))
a = np.arange(3)
```

• M.shape == (3, 2)

```
• a.shape == (3,)
```

• Rule1: pad (increase number of dimensions)

```
■ M. shape \rightarrow (3, 2)

■ a. shape \rightarrow (1, 3)
```

• Rule2: stretch ($1 \rightarrow j$)

■ M.shape → (3, 3)

■ a.shape \rightarrow (3, 3)

• Rule3: check dimensions → **ERROR**

```
In [72]: # ERROR: could not broadcast
#M + a
```

Booleans and Masking

- Comparison operators/ufuncs obtain element wise booleans that result in boolean arrays
- Boolean arrays (masks) can be used to do selective computations on arrays.
- Highly optimized vectorized operations

Each comparison operator is in fact a wrapper around an specific function built into NumPy

Operator	Equivalent ufunc
>	np.greater
<	np.less
>=	np.greater_equal
<=	np.less_equal
==	np.equal
! =	np.not_equal

Python's bitwise logic operators (& , \mid , $^{\wedge}$, and $^{\sim}$)

• Element-wise boolean operations (similar to arithmetic operators)

Each logic operator is in fact a wrapper around an specific function built into NumPy:

Operator	Equivalent ufunc
&	np.bitwise_and
1	np.bitwise_or
^	np.bitwise_xor
~	np.bitwise_not

- np.any(a) or a.any() \rightarrow aggregated True | False
- np.all(a) or a.all() → aggregated True | False
- axis parameter → aggregation along a particular axe

```
In [75]: x = np.arange(10).reshape((2,5))
         print(f'{x=}')
         print(f'{x>7=}')
         print(f'{np.any(x>7)=}')
         print(f'{(x>7).any()=}')
         print(f'{np.all(x>7)=}')
         print(f'{(x>7).all()=}')
         print(f'{np.any(x>7, axis=0)=}')
         print(f'{np.any(x>7, axis=1)=}')
        x=array([[0, 1, 2, 3, 4],
               [5, 6, 7, 8, 9]])
        x>7=array([[False, False, False, False, False],
               [False, False, True, True]])
        np.any(x>7)=True
        (x>7).any()=True
        np.all(x>7)=False
        (x>7).all()=False
        np.any(x>7, axis=0)=array([False, False, False, True, True])
        np.any(x>7, axis=1)=array([False, True])
```

Boolean arrays can be summed

- True==1 , False==0
- np.sum(a) or a.sum() → aggregated True | False
- axis parameter → aggregation along a particular axe
- **DO NOT** use built-in sum function

```
In [76]: x = np.arange(10).reshape((2,5))
    print(f'{x=}')
    print(f'{x>7=}')
    print(f'{np.sum(x>7)=}')
    print(f'{(x>7).sum()=}')
    print(f'{np.sum(x>7, axis=0)=}')
    print(f'{np.sum(x>7, axis=1)=}')
```

Fancy Indexing

- Use arrays of indices to access multiple array elements
- Returns a **copy** of the data (vs slicing view)

```
In [77]: a = np.random.randint(100,size=(10,))
    ii1 = [1, 8, 3, 5]
    ii2 = np.array([1, 8, 3, 5])
    print(f'{ a = }')
    print(f'{a[ii1] = }')
    print(f'{a[ii2] = }')

        a = array([90, 57, 33, 63, 92, 93, 16, 29, 59, 51])
        a[ii1] = array([57, 59, 63, 93])
        a[ii2] = array([57, 59, 63, 93])
```

Fancy indexing can be used with multi-dimensional arrays

- Use arrays of indices to access multiple array elements
- Sequential selection: returns 1-dimensional array

```
In [78]: a = np.arange(15).reshape((3,5))
    ii = [1, 0, 2, 2]
    jj = [1, 4, 3, 2]
    print(f'{ a = }')
    print(f'{a[ii,jj] = }')

    a = array([[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]])
    a[ii,jj] = array([ 6,  4, 13, 12])
```

Fancy indexing can be combined with simple indexes

• kind of index broadcasting

```
In [79]: a = np.arange(16).reshape((4,4))
    ii = [1, 3, 2]
    print(f'{ a = }')
    print(f'{a[1,ii] = }')
    print(f'{a[ii,2] = }')

a = array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9,  10,  11],
        [ 12,  13,  14,  15]])
    a[1,ii] = array([5,  7,  6])
    a[ii,2] = array([ 6,  14,  10])
```

Subarrays can be obtained

- Providing only first dimension fancy indexing → rows
- Combining with slicing → columns

```
In [80]: a = np.arange(15).reshape((3,5))
    ii = [2, 0]
    jj = [1, 4, 3]
    print(f'{ a = }')
    print(f'{a[ii] = }')
    print(f'{a[:,jj] = }')

    a = array([[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]])
    a[ii] = array([[10, 11, 12, 13, 14],
        [ 0,  1,  2,  3,  4]])
    a[:,jj] = array([[ 1,  4,  3],
        [ 6,  9,  8],
        [11, 14, 13]])
```