Notes

Maksim Levental

December 10, 2019

Contents

1 Differential Geometry

1	Differential Geometry			1	Contents			
	1.1	1 Directional Derivative		1				
	1.2	Deriva	tions	2	1.1	Direct	tional Derivative	1
	1.3			2	1.2	Derivations		2
	1.4	4 Dual Space		2	1.3	Vector	r Fields	2
	1.5			3	1.4	Dual Space		2
		1.5.1			1.5			3
		1.5.2	Differential k -forms	$\frac{3}{4}$		1.5.1	Differential of a Function	3
		1.5.3	Differential Forms as Multilinear	_		1.5.2	Differential k -forms	4
		2.0.0	Functions on Vector Fields	5		1.5.3	Differential Forms as Multilinear	
		1.5.4	Exterior Derivative	5			Functions on Vector Fields	5
		1.5.5	Closed and Exact Forms	5		1.5.4	Exterior Derivative	5
		1.5.6	Applications to Vector Calculus	5		1.5.5	Closed and Exact Forms	5
		1.5.7	Convention on Subscripts and Su-	0		1.5.6	Applications to Vector Calculus	5
		1.0.1	perscripts	6		1.5.7	Convention on Subscripts and Su-	
	1.6	Manife	olds	7			perscripts	6
	1.0	1.6.1 Compatible Charts		7	1.6	Manif	folds	
		1.6.2	Smooth Manifolds	7		1.6.1	Compatible Charts	
		1.6.2 $1.6.3$	Examples of Smooth Manifolds	8		1.6.2	Smooth Manifolds	
		1.6.4	Smooths Maps on a Manifold	8		1.6.3	Examples of Smooth Manifolds	
		1.6.5	Partial Derivatives	9		1.6.4	Smooths Maps on a Manifold	
	1 7					1.6.5	Partial Derivatives	
	1.7	8		10	1.7		ent Space	
		1.7.1	The Tangent Space at a Point	11	1.1	1.7.1	The Tangent Space at a Point	
		1.7.2	The Differential of a Map	11				
						1.7.2	The Differential of a Map	11

1.1 Directional Derivative

Elements of the tangent space $T_p(\mathbb{R}^n)$ anchored at a point $p = (p^1, \dots, p^n) \in \mathbb{R}^n$ can be visualized as arrows emanating from p. These arrows are called tangent vectors and represented by column vectors:

$$\boldsymbol{v} = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \tag{1}$$

The line through a point p with direction \boldsymbol{v} has parameterization

$$c(t) = \left(p^1 + tv^1, \dots, p^n + tv^n\right) \tag{2}$$

If $f \in C^{\infty}$ in a neighborhood of p and v is a tangent vector at p, the directional derivative of f in the direction of v at p is defined

$$D_{\mathbf{v}}f = \lim_{t \to 0} \left. \frac{f(c(t)) - f(p)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(c(t)) \right|_{t=0}$$
 (3)

By the chain rule

$$D_{v}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \Big|_{p} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \Big|_{t=0}$$
$$= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \Big|_{t=0} \frac{\partial f}{\partial x^{i}} \Big|_{p}$$
$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \Big|_{p}$$

The directional derivative operator at p is defined

$$D_{\mathbf{v}} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

The association $v \mapsto D_v$ offers a way to isomorphically identify tangent vectors with operators on functions. The following makes this rigorous.

1.2 Derivations

For each tangent vector v at a point $p \in \mathbb{R}^n$, the directional derivative at p gives a map of vector spaces

$$D_{\boldsymbol{v}} \colon C_p^{\infty} \to \mathbb{R}$$

 $D_{\boldsymbol{v}}$ is a linear map that satisfies the *Leibniz rule*

$$D_{\mathbf{v}}(fg) = (D_{\mathbf{v}}f)g(p) + f(p)(D_{\mathbf{v}}g) \tag{9}$$

because the partial derivative satisfy the product rule. In general, any linear map $L\colon C_p^\infty\to\mathbb{R}$ that satisfies the Leibniz rule is called a *derivation* at p. Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$. This set is also a real vector space.

So far we know directional derivatives $D_{\boldsymbol{v}}$ at p are derivations at p. Thus, there is a map

$$\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$\boldsymbol{v} \mapsto D_{\boldsymbol{v}}$$

Theorem 1.1

The linear map ϕ is an isomorphism of vector spaces.

The implication is that we may identify tangent vectors at p with derivations at p (by way of directional derivatives against germs). Under this isomorphism $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$, the standard basis $\{e_1, \ldots, e_n\}$ for $T_p(\mathbb{R}^n)$ maps to

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_{p}, \dots, \frac{\partial}{\partial x^n} \bigg|_{p} \right\} \tag{10}$$

Therefore from now on we write a tangent vector as

$$v = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{11}$$

The point being that, while not as geometrically intuitive as arrows, $\mathcal{D}_p(\mathbb{R}^n)$ generalizes to manifolds.

1.3 Vector Fields

(5)

(6)

(7)

A vector field X on an open $U \subset \mathbb{R}^n$ is function that assigns to $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Notice, carefully, that the vector field assigns at each point a vector in the tangent space anchored at that point. Using the tangent basis (eqn. (10))

$$X \colon p \mapsto \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p}$$
 (12)

Note that both the coefficients **and** the partial derivatives are evaluated at p. Having said that, we often omit p in the specification of a vector field when it clear from context.

Example 1.1. On $\mathbb{R}^n - \{\mathbf{0}\}$, let p = (x, y). Then

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}^T$$

See figure ??

In general we can identify vector fields with parameterized column vectors

$$X = \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p} \leftrightarrow \begin{bmatrix} a^{1}(p) \\ \vdots \\ a^{n}(p) \end{bmatrix}$$
 (13)

1.4 Dual Space

The dual space V^{\wedge} of V is the set of all real-valued linear functions on V i.e. all $f \colon V \to \mathbb{R}$. Elements of V^{\wedge} are called *covectors*.

Assume V is finite dimensional and let $\{e_1, \ldots, e_n\}$ be a basis V. Recall that $e_i := \partial_{x_i}$. Then $X = \sum a^i \partial_{x_i}$ for all $X \in T_p$. Let $\alpha^i \colon V \to \mathbb{R}$ be the linear function that picks out the ith coordinate of a **vector**, i.e. $\alpha^i(X) = a^i(p)$. Note that

$$\alpha^{i}(\partial_{i}) = \alpha^{i}(1 \cdot \partial_{i}) \tag{14}$$

$$= \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \tag{15}$$

$$=\delta_j^i \tag{16}$$

Note that position of indices is important – upper indices are for covectors.

Proposition 1.1

 $\{\alpha^i\}$ form a basis for V^{\wedge} .

Proof. We first prove that $\{\alpha^i\}$ span V^{\wedge} . If $f \in V^{\wedge}$ and $X = \sum a^i \partial_{x_i} \in V$, then

$$f(X) = \sum a^i f(\partial_{x_i}) \tag{17}$$

$$= \sum \alpha^i(X) f(\partial_{x_i}) \tag{18}$$

$$= \sum f(\partial_{x_i})\alpha^i(X) \tag{19}$$

which shows that any f can be expanded as a linear sum of α^i . To show linear independence, suppose $\sum c_i \alpha^i = 0$ with at least one c_i non-zero. Applying this to an arbitrary ∂_{x_i} gives

$$0 = \left(\sum_{i} c_{i} \alpha^{i}\right) (\partial_{x_{i}}) = \sum_{i} c_{i} \alpha^{i} (\partial_{x_{i}}) = \sum_{i} c_{i} \delta_{j}^{i} = c_{j}$$
(20)

which is a contradiction. Hence α^i are linearly independent. \Box

This basis $\{\alpha^i\}$ for V^{\wedge} is said to be *dual* to the basis $\{\partial_{x_i}\}$ for V.

Example 1.2. Coordinate functions With respect to a basis $\{\partial_{x_i}\}$ for V, every $X \in V$ can be written uniquely as a linear combination $X = \sum a^i \partial_{x_i}$ with $a^i \in \mathbb{R}$. Let $\{\alpha^i\}$ be the dual basis (i.e. the basis for V^{\wedge}). Then

$$\alpha^{i}(X) = \alpha^{i} \left(\sum_{j} a^{j} \partial_{x_{j}} \right)$$

$$= \sum_{j} a^{j} \alpha^{i} (\partial_{x_{j}})$$

$$= \sum_{j} a^{j} \delta_{j}^{i}$$

$$= a^{i}$$

Thus, the dual basis $\{\alpha^i\}$ to $\{\partial_{x_i}\}$ is the set of coordinate functions. The sense here is that since tangent vectors are directional derivatives (i.e. operators on functions) and the dual space is a mapping from those operators to \mathbb{R} , then a mapping from operators to scalars means hitting an operator with a function (or vice-versa). And the coordinate functions are constant with respect to each other coordinate (and hence partials wrt them are naturally zero).

1.5 Differential Forms on \mathbb{R}^n

A differential k-form assigns a k-covector from the dual space at each point p. The wedge product (alternation of tensor product) of differential forms is defined pointwise (as the wedge product of multi-covectors). Differential forms exist on an open set (why?) there is a notion of differentiation (called exterior derivative). Exterior derivative is coordinate independent and intrinsic to a manifold; it is the abstraction of gradient, curl, divergence to arbitrary manifolds. Differential forms extend Grassmann's

exterior algebra (graded algebra of multi-covectors) from the tangent space at a point globally, i.e. to the entire manifold (how? bundles?).

1.5.1 Differential of a Function

Definition 1.1: Cotangent Space

The cotangent space to \mathbb{R}^n at p, denoted $T_p^*(\mathbb{R}^n)$, is defined to be the dual space $(T_p(\mathbb{R}^n))^{\vee}$ of the tangent space $T_p(\mathbb{R}^n)$.

Thus, an element of the cotangent space $T_p^*(\mathbb{R}^n)$ is a **covector of linear functional on tangent space**.

Definition 1.2: Differential 1-form

A covector field or a differential 1-form on an open subset U of \mathbb{R}^n is a function ω that assigns at each point p in U a covector $\omega_p \in T_p^*(\mathbb{R}^n)$

$$\omega \colon U \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$$

$$p \mapsto \omega_p \in T_p^*(\mathbb{R}^n)$$
(21)

We call a differential 1-form a 1-form for short.

Definition 1.3: Differential

From any C^{∞} function $f: U \to \mathbb{R}$, we can construct the 1-form $\mathrm{d} f$, called the differential of f, as follows: for $p \in U$ and $X_p \in T_p(U)$

$$(\mathrm{d}f)_p(X_p) := X_p f \tag{22}$$

In words the differential of f is the application of X_p to f or the directional derivative of f in the direction of the tangent vector defined by the coefficients of X_p .

Let x^1, \ldots, x^n be the standard coordinates on \mathbb{R} , $\{(\mathrm{d} x^1)_p, \ldots, (\mathrm{d} x^n)_p\}$ their differentials defined

$$(\mathrm{d}x^i)_p(X_p) \coloneqq (X_p)(x^i)$$

and

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

be the standard basis for $T_p(\mathbb{R}^n)$.

Proposition 1.2

 $\{(\mathrm{d}x^1)_p,\ldots,(\mathrm{d}x^n)_p\}$ is the basis for $T_p^*(\mathbb{R}^n)$ dual to the coordinate basis for $T_p(\mathbb{R}^n)$.

Proof. By definition,

$$(\mathrm{d}x^i)_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = \frac{\partial x^i}{\partial x^j} \Big|_p = \delta^i_j$$

If ω is a 1-form on $U \in \mathbb{R}^n$ then by proposition (1.2), at each point $p \in U$

$$\omega_p = \sum a_i(p)(dx^i)_p$$

Note the lower index on $a_i(p)$ as opposed to the upper index on $X_p = \sum a^i(p) \partial_{x_i} \big|_p$. If $x \coloneqq x^1, y \coloneqq x^2, z \coloneqq x^3$, then $\mathrm{d} x, \mathrm{d} y, \mathrm{d} z$.

Proposition 1.3: df in terms of coordinates

If $f: U \to \mathbb{R}$, then

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i \tag{23}$$

Proof.

$$(\mathrm{d}f)_p = \sum a_i(p)(\mathrm{d}x^i)_p$$

for some real numbers $a_i(p)$ depending on p. Thus

$$df\left(\frac{\partial}{\partial x^{j}}\right) = \sum_{i} a_{i} dx^{i} \left(\frac{\partial}{\partial x^{j}}\right)$$
$$= \sum_{i} a_{i} \delta_{j}^{i} = a_{j}$$
(24)

On the other hand, by the definition of the differential

$$\mathrm{d}f = \left(\frac{\partial}{\partial x^j}\right) = \frac{\partial f}{\partial x^j} \tag{25}$$

Therefore

$$a_j = \frac{\partial f}{\partial x^j} \tag{26}$$

and hence

$$(\mathrm{d}f)_p = \frac{\partial f}{\partial x^i} \bigg|_p (\mathrm{d}x^i)_p$$

1.5.2 Differential k-forms

Definition 1.4: Differential k-forms

More generally, a differential form ω of degree k is a function that at each point assigns an alternating k-linear function on $T_p(\mathbb{R}^n)$, i.e. $\omega_p \in A^k(T_p(\mathbb{R}^n))$.

A basis for $A^k(T_n(\mathbb{R}^n))$ is

$$(\mathrm{d}x^I)_p := (\mathrm{d}x^{i_1})_p \wedge \dots \wedge (\mathrm{d}x^{i_k})_p \tag{27}$$

where $1 \le i_1 < \cdots < i_k \le n$.

What is the nuance here?

Therefore, at each point $p \in U$, ω_p is a linear combination

$$\omega_p = \sum_I a_I(p) (\mathrm{d}x^I)_p$$

$$1 \le i_1 < \dots < i_k \le n$$
(28)

and a k-form ω on open U is a linear combination

$$\omega = \sum_{I} a_{I} \, \mathrm{d}x^{I} \tag{29}$$

with function coefficients $a_I \colon U \to \mathbb{R}$. We say that a k-form ω is C^∞ on U if all of the coefficients a_I are C^∞ functions on U. Denote $\Omega^k(U)$ the vector space of k-forms on U. A 0-form on U assigns to each point p an element of $A^0(T_p(\mathbb{R}^n)) := \mathbb{R}$; thus, a 0-form on U is a constant function. Note there are no nonzero differential forms of degree > n on U since if $\deg \mathrm{d} x^I > n$ then at least two of the component 1-forms of dx^I must be the same and therefore $dx^I = 0$.

Definition 1.5: Wedge product of forms

The wedge product of a k-form ω and ℓ -form τ is defined pointwise

$$(\omega \wedge \tau)_p := \omega_p \wedge \tau_p$$

$$\omega \wedge \tau = \sum_{I,J} (a_I b_J) \, \mathrm{d} x^I \wedge \mathrm{d} x^J$$
 (30)

where $I \cap J = \emptyset$.

Hence the wedge product is bilinear

$$\wedge \colon \Omega^k(U) \times \Omega^\ell \to \Omega^{k+\ell}(U) \tag{31}$$

The wedge product of forms is also anticommutative and associate (owing to the associativity and anticommutativity of the wedge product on multi-covectors) as therefore induces a graded algebra on $\Omega(U) := \bigoplus_k \Omega^k(U)$.

Example 1.3. In the case of

$$\wedge \colon \Omega^0(U) \times \Omega^\ell(U) \to \Omega^\ell$$

we have the pointwise multiplication of a C^{∞} function and a C^{∞} ℓ -form

$$(f \wedge \omega)_p = f(p) \wedge \omega_p = f(p)\omega_p$$

Let x, y, z be the coordinates on \mathbb{R}^3 . Then, the 1-forms are

$$f dx + q dy + h dz$$

the 2-forms are

$$f dy \wedge dz + g dx \wedge dz + h dx \wedge dy$$

and the 3-forms are

$$f dx \wedge dy \wedge dz$$

1.5.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is a 1-form and X is a vector field then

$$\omega(X)|_{p} := \omega_{p}(X_{p})$$

$$\omega = \sum a_{i} dx^{i} \quad X = \sum b^{i} \frac{\partial}{\partial x^{j}}$$

$$\omega(X) = \left(\sum a_{i} dx^{i}\right) \left(\sum b^{j} \frac{\partial}{\partial x^{j}}\right)$$

$$= \sum a_{i} b^{i}$$
(32)

1.5.4 Exterior Derivative

Definition 1.6: Exterior Derivative

The exterior derivative of a function $f \in C^{\infty}(U)$ is defined to be its differential df

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i$$

For $k \geq 1$, if $\omega = \sum_{I} a_{I} dx^{I}$ is a k-form, then

$$d\omega := \sum_{I} da_{I} \wedge dx^{I}$$

$$= \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \right) \wedge dx^{I}$$
(33)

Example 1.4. Let ω be the 1-form f dx + g dy on R^2 . Then

$$d\omega = df \wedge dx + dg \wedge dy$$

$$= \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) \wedge dx$$

$$+ \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy\right) \wedge dy$$

$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$
(36)

where we use that $dx \wedge dy = -dy \wedge dx$ and $dx \wedge dx = 0$.

Definition 1.7: Antiderivation

et $A = \bigoplus_k A^k$ be a graded algebra over a field K. An antiderivation of the graded algebra A is a k-linear map $D: A \to A$ such that for $a \in A^k, b \in A^\ell$

$$D(ab) = (Da)b + (-1)^{k}aDb$$
 (37)

If there is an integer m such that D sends A^k to A^{k+m} for all k, then the antiderivation is of degree m

Proposition 1.4: Properties of exterior differentiation

1. exterior differentiation is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

2.
$$d^2 = 0$$

Proposition 1.5: Characterization of the exterior derivative

The properties of proposition (1.4) completely characterize exterior differentiation.

1.5.5 Closed and Exact Forms

A k-form ω is a closed form if $d\omega = 0$. ω is an exact form if there is a k-1-form τ such that $\omega = d\tau$. Since $d(d\tau) = 0$, every exact form is closed.

Example 1.5. A closed 1-form on the punctured plane Define ω on the manifold $\mathbb{R}^2 - \{0\}$ by

$$\omega(x,y) = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

To show that ω is closed we take the exterior derivative using example (36):

$$d\omega = \left(\frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{y^2 - x^2}{(x^2 + y^2)^2}\right) dx \wedge dy$$

$$= 0$$
(38)

Definition 1.8: Differential Complex

A collection of vector spaces $\{V^0, V^1, \dots\}$ with linear maps $d_k : V^k \to V^{k+1}$ such that $d_{k+1} \circ d_k = 0$ is called a differential complex or a cochain complex. For any open subset $U \subset \mathbb{R}^3$, the exterior derivative makes the vector space $\Omega^*(U)$ of C^{∞} forms on U into a cochain complex, called the de Rham complex of U:

$$0 \to \Omega^0(U) \xrightarrow{\mathrm{d}} \Omega^1(U) \xrightarrow{\mathrm{d}} \Omega^2(U) \xrightarrow{\mathrm{d}} \cdots$$

The closed forms are the elements of the kernel of d and the exact forms are the elements of the image of d.

1.5.6 Applications to Vector Calculus

Recall the three operators grad, curl, div $(\nabla, \nabla \times, \nabla \cdot)$ on scalar fields and vector fields (i.e. scalar valued functions

and vector valued functions) over \mathbb{R}^3 :

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}$$

$$\nabla \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \\ -\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) \\ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{bmatrix}$$

$$\nabla \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Note we can identity 1-forms with vector fields:

$$P dx + Q dy + R dz \longleftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

Similarly 2-forms on \mathbb{R}^3

$$P \, \mathrm{d}x \wedge \mathrm{d}y + Q \, \mathrm{d}z \wedge \mathrm{d}x + R \, \mathrm{d}x \wedge \mathrm{d}y \longleftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

and 3-forms on U can be identified with functions U

$$f dx \wedge dy \wedge dz \longleftrightarrow f$$

In terms of these identifications the exterior derivative of 0-form f is the 1-form df or ∇f :

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \longleftrightarrow \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \nabla f$$

the exterior derivative of a vector field $\begin{bmatrix} P \ Q \ R \end{bmatrix}^T$ (i.e. 1form) is the 2-form $\nabla \times [P Q R]^T$

$$d(P dx + Q dy + R dz) =$$

$$+ \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dy \wedge dz$$

$$- \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) dz \wedge dx$$

$$+ \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

$$\longleftrightarrow$$

$$[40]$$

 $\nabla \times \begin{bmatrix} P \\ Q \\ P \end{bmatrix}$

and the exterior derivative of a 2-form is

$$d(P dx \wedge dy + Q dz \wedge dx + R dx \wedge dy) =$$

$$\left(\frac{\partial P}{\partial x} dx + \frac{\partial Q}{\partial y} dy + \frac{\partial R}{\partial z} dz\right) dx \wedge dy \wedge dz$$

$$\longleftrightarrow \nabla \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

Thus, the exterior derivatives on 0-forms (functions) is the grad operator, on 1-forms is the curl operator, and on 2forms is the divergence operator.

$$\Omega^{0}(U) \xrightarrow{\mathrm{d}} \Omega^{1}(U) \xrightarrow{\mathrm{d}} \Omega^{2}(U) \xrightarrow{\mathrm{d}} \Omega^{3}(U)
\cong \downarrow \qquad \cong \downarrow \qquad \cong \downarrow \qquad \cong \downarrow
C^{\infty}(U) \xrightarrow{\nabla} \mathfrak{X}(U) \xrightarrow{\nabla} \mathfrak{X}(U) \xrightarrow{\nabla} C^{\infty}(U)$$

where $\mathfrak{X}(U)$ is the Lie algebra of C^{∞} vector fields on

Proposition 1.6: grad, curl, div properties

- 1. $\nabla \times \nabla f = 0$ 2. $\nabla \cdot (\nabla \times [P Q R]^T) = 0$
- 3. On \mathbb{R}^3 , a vector field **F** is the gradient of some scalar function iff $\nabla \times \mathbf{F} = 0$

Properties (1,2) express that $d^2 = 0$ Property (3) expresses the fact that a 1-form on \mathbb{R}^3 is exact iff it is closed; it need not be true on a region other than \mathbb{R}^3 . It turns out that whether proposition (3) is true depends on the topology of U. One measure of the failure of a closed k-form to be exact is the quotient vector space

$$H^{k}(U) := \frac{\{\text{closed } k\text{-forms on } U\}}{\{\text{exact } k\text{-forms on } U\}}$$
(42)

called the kth de Rham cohomology of U. The generalization of proposition (3) to any differential on \mathbb{R}^n is called the Poincare lemma: for k > 1, every closed k-form on \mathbb{R}^n is exact. This is equivalent to the vanishing of the kth de Rham cohomology $H^k(\mathbb{R}^n)$ for $k \geq 1$.

1.5.7Convention on Subscripts and Superscripts

Vector fields e_1, e_2, \dots have subscripts and differential forms $\omega^1, \omega^2, \ldots$ have superscripts. Coordinate functions x^1, x^2, \ldots , being 0-forms, have superscripts. Their differentials dx^i should also. Coordinate vector fields $\frac{\partial}{\partial x^i}$ are considered to have subscripts because the index is in the denominator. Coefficient functions have subscripts or subscripts depending on whether they're coefficients functions for vector fields or forms. This allows for "conservation of indices": if $X = \sum a^i \partial_{x^i}$ and $\omega = \sum b_j dx^j$ then

$$\omega(X) = \left(\sum b_j \, \mathrm{d}x^j\right) \left(\sum a^i \frac{\partial}{\partial x^i}\right) = \sum b_i a^i$$

(41)

1.6 Manifolds

Definition 1.9: Locally Euclidean

A topological space M is locally Euclidean of dimension n if for every $p \in M$ there exists a neighborhood U such that there is a homeomorphism¹ ϕ from U onto an opensubset of \mathbb{R}^n . The pair $(U, \phi \colon U \to \mathbb{R}^n)$ is called a chart, with U being the coordinate neighborhood and ϕ the coordinate system.

Definition 1.10: Topological Manifold

A topological manifold is a Hausdorff², second countable³, locally Euclidean space.

1.6.1 Compatible Charts

Suppose $(U, \phi \colon U \to \mathbb{R}^n)$ and $(V, \psi \colon V \to \mathbb{R}^n)$ are two charts of a topological manifold; since $U \cap V$ is open and ϕ is a homeomorphism onto an open subset, the image $\phi(U \cap V)$ is also an open subset (similarly $\psi(U \cap V)$).

Definition 1.11: Charts

Two charts $(U, \phi \colon U \to \mathbb{R}^n)$ and $(V, \psi \colon V \to \mathbb{R}^n)$ of a topological manifold are C^{∞} -compatible if the two composed maps

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$$

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$
(43)

See figure ??. These two maps $\phi \circ \psi^{-1}$ and $\psi \circ \phi^{-1}$ are called the *transition functions* between the charts;

$$\phi \circ \psi^{-1} \colon \mathbb{R}^n \to U \cap V \to \mathbb{R}^n$$

$$\psi \circ \phi^{-1} \colon \mathbb{R}^n \to U \cap V \to \mathbb{R}^n$$
(44)

Definition 1.12: Atlas

A C^{∞} atlas on a topological manifold M is a collection $\mathfrak{U} := \{(U_i, \phi_i)\}$ of pairwise C^{∞} -compatible charts that $cover\ M$, i.e. such that $M = \bigcup_i U_i$.

Example 1.6. A C^{∞} atlas on a circle The unit circle S^1 in the complex plane $\mathbb C$ maybe described as

$$\{e^{\mathbf{i}} \in \mathbb{C} | 0 \le t \le 2\pi\}$$

Let U_1, U_2 be

$$U_1 := \{ e^{it} \in \mathbb{C} | -\pi < t < \pi \}$$

$$U_2 := \{ e^{it} \in \mathbb{C} | 0 < t < 2\pi \}$$

$$(45)$$

and define

$$\phi_1(e^{it}) = t - \pi < t < \pi$$

$$\phi_2(e^{it}) = t \quad 0 < t < 2\pi$$
(46)

See figure ??. Both ϕ_1, ϕ_2 are homemorphisms onto their respective images; thus, U_1, ϕ_1 and U_2, ϕ_2 are charts on S^1 . The intersection $U_1 \cap U_2$ consists of two disjoint connected components

$$A := \{ e^{it} \in \mathbb{C} | -\pi < t < 0 \}$$

$$B := \{ e^{it} \in \mathbb{C} | 0 < t < \pi \}$$

$$(47)$$

with

$$\phi_1(U_1 \cap U_2) = \phi_1(A \sqcup B) = \phi_1(A) \sqcup \phi_2(B) = (-\pi, 0) \sqcup (0, \pi)$$

$$\phi_2(U_1 \cap U_2) = \phi_1(B \sqcup A) = \phi_1(B) \sqcup \phi_2(A) = (0, \pi) \sqcup (\pi, 2\pi)$$
(48)

where \sqcup means disjoint union. The transition function

$$\left(\phi_2 \circ \phi_1^{-1}\right)(t) = \begin{cases} t + 2\pi & \text{for } t \in (-\pi, 0) \\ t & \text{for } t \in (0, \pi) \end{cases}$$

and similarly

$$\left(\phi_1 \circ \phi_2^{-1}\right)(t) = \begin{cases} t & \text{for } t \in (0, \pi) \\ t - 2\pi & \text{for } t \in (\pi, 2\pi) \end{cases}$$

Therefore, since the transition functions are C^{∞} , the charts are C^{∞} compatible and form an atlas on S^1 .

Although compatibility is reflexive and symmetric it is not transitive because we don't know anything about mutual intersections. On the otherhand

Lemma 1.1

Let $\{(U_i, \phi_i)\}$ be an atlas for a topological manifold. If two other charts (not in the atlas) $(V, \psi), (U, \phi)$ are both compatible with the atlas (i.e. with all charts in the atlas), then they are mutually compatible.

1.6.2 Smooth Manifolds

An atlas \mathfrak{M} on a topological manifold is said to be maximal if it is not strictly contained in another atlas.

¹A homeomorphism is a continuous function between topological spaces that has a continuous inverse function.

 $^{^2}$ A Hausdorff space, separated space space is a topological space where for any two distinct points there exists a neighbourhood of each which is disjoint from the neighbourhood of the other.

 $^{^3}$ A topological space T is second-countable if there exists some countable collection $\mathcal{U} = \{U_i\}_{i=1}^{\infty}$ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal{U} .

Definition 1.13: Smooth Manifold

A smooth C^{∞} manifold is a topological manifold M together with a maximal atlas. The maximal atlas is called a differentiable structure on M. M is said to have dimension n if all of its connected components have dimension n. A 1-dimensional manifold is called a curve, a 2-dimensional manifold is called a surface, and an n-dimensional manifold is called an n-manifold.

In the context of manifolds, we denote the standard coordinates on \mathbb{R}^n by r^1,\ldots,r^n . If (U,ϕ) is a chart of a manifold, we let $x^i=r^i\circ\phi$ be the ith component of ϕ and write $\phi=(x^1,\ldots,x^n)$. Thus, $x^i(p):=(r^i\circ\phi)(p)$ is a point in \mathbb{R}^n . The functions x^i are called the local coordinates on U. The sense here is that x^i tell you where you are on the manifold in a standardized way, given some intrinsic description of where you are on the manifold. Think of how lat/lon tell you where you are on the globe given some intrinsic identification of where you are on the globe. This understanding gives sense to the words chart and atlas. Abusing notation, sometimes (x^1,\ldots,x^n) (sans p) stands for both the coordinates on U or for a point in \mathbb{R}^n .

1.6.3 Examples of Smooth Manifolds

Example 1.7. Graph of a Smooth Function For a subset $A \subset \mathbb{R}^n$ and a function $f \colon A \to \mathbb{R}^m$ the graph of f is defined

$$\Gamma(f) = \{(x, f(x)) \in A \times \mathbb{R}^m\}$$

If U is an open subset \mathbb{R}^n and $f: U \to \mathbb{R}^n$ is C^{∞} , then the two maps

$$\phi \colon \Gamma(f) \to U \quad (x, f(x)) \mapsto x$$

$$(1, f) \colon \to \Gamma(f) \quad x \mapsto (x, f(x))$$

constitute a homemorphism. Hence, $\Gamma(f)$ has an atlas with a single $(\Gamma(f),\phi)$ and is therefore a C^∞ manifold.

Example 1.8. General Linear group Let $\mathbb{R}^{m \times n}$ be the vector space of all $m \times n$ matrices. Since $\mathbb{R}^{m \times n}$ is isomorphic to \mathbb{R}^{mn} , we give it the topology of \mathbb{R}^{mn} . The general linear group $GL(n,\mathbb{R})$ is defined

$$GL(n,\mathbb{R}) := \{ A \in \mathbb{R}^{n \times n} | \det(A) \neq 0 \}$$
$$= \det^{-1}(\mathbb{R} - \{0\})$$
(49)

Since the determinant function $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous, $\mathrm{GL}(n,\mathbb{R})$ is an open subset of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ is therefore a manifold.

Example 1.9. Unit circle in the xy-plane Take S^1 as the unit circle in the real plane \mathbb{R}^2 defined by $x^2 + y^2 = 1$. We can cover S^1 by four open sets: the upper and lower semicircles U_1, U_2 and the left and right semicircles U_3, U_4 (see figure ??). On U_1, U_2 the coordinate function x is a homeomorphism onto the open interval (-1, 1) on the

x-axis. Thus, $\phi_i(x,y) \coloneqq x$. Similarly, on U_3, U_4, y is a homeomorphism onto the open interval (-1,1) on the y-axis, and so $\phi_i(x,y) \coloneqq y$. You can check that on $U_i \cap U_j$, the transition function $\phi_j \circ \phi_i^{-1}$ is C^{∞} . For example, on $U_1 \cap U_3$

$$(\phi_3 \circ \phi_1^{-1})(x) = \phi_3(x, \sqrt{1-x^2}) = \sqrt{1-x^2}$$

while on $U_2 \cap U_4$

$$(\phi_4 \circ \phi_2^{-1})(x) = \phi_4(x, -\sqrt{1-x^2}) = -\sqrt{1-x^2}$$

Thus, $\{(U_i, \phi_i)\}_{i=1}^4$ is a C^{∞} atlas on S^1 .

Proposition 1.7: An atlas for a product manifold

If $\{(U_i, \phi_i)\}$ and $\{(V_i, \psi_i)\}$ are C^{∞} at lases for the manifolds M, N of dimensions, respectively, then the collection

$$\{(U_i \times V_j, (\phi_i, \phi_j)) : U_i \times V_j \to \mathbb{R}^m \times \mathbb{R}^n\}$$
 (50)

is a C^{∞} atlas on $M \times N$. Therefore $M \times N$ is a C^{∞} manifold of dimension m + n.

There *n*-dimensional torus $S^1 \times \cdots \times S^1$ is a manifold.

1.6.4 Smooths Maps on a Manifold

Definition 1.14: Smooth at a point to \mathbb{R}

Let M be a smooth manifold of dimension n. A function $f: M \to \mathbb{R}$ is said to be C^{∞} or smooth a point p in M if there is a chart (U, ϕ) containing p such that $f \circ \phi^{-1}$, a function defined on the open subset $\phi(U) \subset \mathbb{R}^n$, is C^{∞} at $\phi(p)$. To summarize f is C^{∞} if

$$f \circ \phi^{-1} \colon \phi(U) \to \mathbb{R}$$

See figure ??.

Definition 1.15: Pullback

Let $F: N \to M$ be a map and h a function M. The pullback of h by F, denoted F^*h , is the composite function $h \circ F$.

Thus, a function f on M is C^{∞} on a chart (U, ϕ) iff $(\phi^{-1})^* f \equiv f \circ \phi^{-1}$ is C^{∞} on $\phi(U)$.

Definition 1.16: Smooth at a point

Let M, N be manifolds of dimension m, n. A continuous map $F: N \to M$ is C^{∞} at a point $p \in N$ if there are charts $(V, \psi), (U, \phi)$ about $F(p) \in M$ and $p \in N$ such that $\psi \circ F \psi \phi^{-1}$ is C^{∞} at $\phi(p)$. To summarize F is C^{∞} if

$$\psi \circ F \circ \phi^{-1} \colon \phi(F^{-1}(V) \cap U) \subset \mathbb{R}^n \to \mathbb{R}^m$$

See figure ??.

Proposition 1.8: Composition of C^{∞} maps

If $F: N \to M$ and $G: M \to P$ are both C^{∞} maps of manifolds, then the composite $G \circ F: N \to P$ is C^{∞} .

Definition 1.17: Diffeomorphism

A diffeomorphism of manifolds is a bjiective C^{∞} map $F: N \to M$ whose inverse F^{-1} is also C^{∞} .

Proposition 1.9

If (U, ϕ) is a chart on a manifold M of dimension n, then the coordinate map $\phi \colon U \to \phi(U)$ is a diffeomorphism.

Definition 1.18: Lie group

A Lie group is a C^{∞} manifold G having a group structure such that the multiplication map

$$\mu \colon G \times G \to G$$

and the inverse map

$$\iota \colon G \to G \quad \iota(x) \coloneqq x^{-1}$$

are both C^{∞} . Similarly, a topological group is a topological space having a group structure such that multiplication and inverse maps are both continuous.

Example 1.10. Recall the definition of $GL(n, \mathbb{R})$. As an open subset of $\mathbb{R}^{n \times n}$, it is a manifold. Since the (i, j)-entry of the product of two matrices A, B in $GL(n, \mathbb{R})$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

is a polynomial in the coordinates of A and B. Therefore matrix multiplication

$$\mu \colon \operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$$

is a C^{∞} map. Furthermore, by Cramer's rule

$$(A^{-1})_{ij} = \frac{(-1)^{i+j}}{\det A}((j,i) - \text{minor of } A)$$

which is a C^{∞} function of the a_{ij} s provided det $A \neq 0$. Therefore, $GL(n, \mathbb{R})$ is a Lie group.

1.6.5 Partial Derivatives

Let (U, ϕ) be a chart and f a C^{∞} function on the manifold. As a function into \mathbb{R}^n , ϕ has n components x^1, \ldots, x^n . Therefore, if r^1, \ldots, r^n are the standard coordinates on \mathbb{R}^n , then

$$x^i = r^i \circ \phi$$

What this means is ϕ maps to some point $(\phi^1(p),\ldots,\phi^n(p))$ in R^n . The projection to the *i*th standard coordinate on \mathbb{R}^n is $r^i \circ \phi$, i.e. just pick out the component of $(\phi^1(p),\ldots,\phi^n(p))$. This direct path from U to the *i*th standard coordinate of \mathbb{R}^n is called a local coordinate for U (since it's only valid in a small neighborhood of p). Then the collection (x^1,\ldots,x^n) are the local coordinates on U (but don't forget that the coordinates map from $U \to \mathbb{R}^n$).

Definition 1.19: Partial derivative

For $p \in U$, we define the partial derivative $\frac{\partial f}{\partial x^i}$ of f with respect to x^i at p

$$\frac{\partial}{\partial x^{i}} \Big|_{p} f \coloneqq \frac{\partial f}{\partial x^{i}} \Big|_{p}
\coloneqq \frac{\partial (f \circ \phi^{-1})}{\partial r^{i}} \Big|_{\phi(p)}
\coloneqq \frac{\partial}{\partial r^{i}} \Big|_{\phi(p)} (f \circ \phi^{-1})$$
(51)

Thus, as functions on $\phi(U)$ (and in terms of the local coordinates on U)

$$\frac{\partial f}{\partial x^i} \circ \phi^{-1} = \frac{\partial f \circ \phi^{-1}}{\partial r^i} \tag{52}$$

and therefore the partial derivative $\partial f/\partial x^i$ is C^{∞} on U because its pullback

$$(\phi^{-1})^* \frac{\partial f}{\partial x^i}$$

is C^{∞} .

Proposition 1.10: Partial derivatives are dual

Suppose U, x^1, \ldots, x^n (with local coordinates x^1, \ldots, x^n) is a chart on a manifold. Then $\partial x^i/\partial x^j = \delta^i_i$.

Proof. At a point $p \in U$, by the above definition of $\partial/\partial x^j\big|_p$

$$\frac{\partial x^{i}}{\partial x^{j}}\Big|_{p} = \frac{\partial x^{i} \circ \phi^{-1}}{\partial r^{j}}\Big|_{\phi(p)}$$

$$= \frac{\partial (r^{i} \circ \phi \circ \phi^{-1})}{\partial r^{j}}\Big|_{\phi(p)}$$

$$= \frac{\partial r^{i}}{\partial r^{j}}\Big|_{\phi(p)} = \delta^{i}_{j}$$
(53)

Definition 1.20: Jacobian

Let $F \colon N \to M$ be a smooth map, and let $(U, \phi) \equiv (U, x^1, \dots, x^n)$ and $(V, \psi) \equiv (U, y^1, \dots, y^n)$ be charts on N, M respectively such that $F(U) \subset V$. Denote by

$$(F_i := y^i \circ F \equiv r^i \circ \psi \circ F) \colon U \to \mathbb{R}$$

the *i*th component of F in the chart V, ψ . Then the matrix $\left[\frac{\partial F^i}{\partial x^j}\right]$ is called the *Jacobian matrix of* F relative to the charts U, ϕ and (V, ψ) .

A diffeomorphism $F\colon U\to F(U)\subset\mathbb{R}^n$ may be thought of as coordinate system on U. We say that a C^∞ map $F\colon N\to M$ is locally invertible or a local diffeomorphism at $p\in N$ if p has a neighborhood U on which F is a diffeomorphism. Given n smooth functions F^1,\ldots,F^n in a neighborhood of p one would like to know whether they form a coordinate system. This is equivalent to whether $F=(F^1,\ldots,F^n)$ is a local diffeomorphism at p.

Theorem 1.2: Inverse function theorem \mathbb{R}^n

Let $F: W \to \mathbb{R}^n$ be a C^{∞} map defined on an open subset $W \subset \mathbb{R}^n$. For any point $p \in W$, the map F is locally invertible iff the determinant of the Jacobian

$$\det\left[\frac{\partial F^i}{\partial r^j}\bigg|_p\right]$$

is not zero.

Theorem 1.3: Inverse function theorem for manifolds

Let $F \colon N \to M$ be a C^{∞} map between manifolds of the same dimension, and $p \in N$. Suppose for some charts $(U, \phi) = (U, x^1, \dots, x^n)$, $(V, \psi) = (U, y^1, \dots, y^n)$ about p and F(p) respectively and $F(U) \subset V$. Set $F^i = y^i \circ F$. Then F is locally invertible at p iff

$$\det \left[\frac{\partial F^i}{\partial x^j} \Big|_p \right]$$

is not zero.

Corollary 1.1

Let N be a manifold of dimension n. A set of smooth functions F^1, \ldots, F^n defined on a coordinate neighborhood U, x^1, \ldots, x^n of a point $p \in N$ forms a coordinate system about p iff the Jacobian determinant

$$\det \left[\frac{\partial F^i}{\partial x^j} \bigg|_p \right]$$

is not zero.

1.7 Tangent Space

The tangent space to a manifold at a point is the vector space of derivations (germs/directional derivatives) at the point. A smooth map of manifolds induces a linear map, called its differential, of tangent spaces at corresponding points. In local coordinates, the differential is represented by the Jacobian. In this sense, the differential of a map is the generalization of the derivative between Euclidean spaces.

A basic theme in manifold theory is linearization, according to which a manifold can be approximated by its tangent space and a smooth map can be approximated by the differential of that map. The differential further categorizes maps as either immersions or submersions (depending on whether the differential is injective or surjective).

The collection of tangent spaces to a manifold can be given the structure of a *vector bundle*; it is thus called the *tangent bundle*. Vector fields, which manifest themselves in the physical world as velocity, force, electricity, and magnetism, maybe viewed as sections of the tangent bundle.

1.7.1 The Tangent Space at a Point

Definition 1.21: Tangent vector

The germ of a C^{∞} function $p \in M$ to be an equivalence class of C^{∞} functions defined in a neighborhood of $p \in M$, with equivalence defined as agreement on a (possibly smaller) neighborhood of p. The set of germs of C^{∞} real-valued functions is denoted $C_p^{\infty}(M)$. Addition and multiplication of functions induces a ring structure on $C_p^{\infty}(M)$; with scalar multiplication by real numbers $C_p^{\infty}(M)$ becomes an algebra over \mathbb{R} . A derivation at a point in M is a linear map $D: C_p^{\infty}(M) \to \mathbb{R}$ such that

$$D(fg) = (Df)g + f(p)Dg$$

A tangent vector at a point p is a derivation at p.

Given a coordinate neighborhood $(U, \phi) = (U, x^1, \dots, x^n)$ and (r^1, \dots, r^n) the standard coordinates on \mathbb{R}^n and

$$x^i = r^i \circ \phi \colon U \to \mathbb{R}$$

If f is a smooth function in a neighborhood of p

$$\left. \frac{\partial}{\partial x^i} \right|_p f = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1})$$

The partial derivatives satisfy the derivation property and therefore qualify as tangent vectors.

1.7.2 The Differential of a Map

Let $F: N \to M$ be a C^{∞} map between two manifolds. At each point $p \in N$, the map F induces a linear map of tangent spaces, called its differential at p

$$F_*: T_pN \to T_{F(p)}M$$

defined as follows: if $X_p \in T_pN$, then $F_*(X_p)$ is the tangent vector in $T_{F(p)}M$ according to

$$(F_*(X_n))f = X_n(f \circ F)$$

for $f \in C^{\infty}_{F(p)}(M)$ a germ (or representative of the germ). Vectors pushforward through F.

Example 1.11. Differential of a map between Euclidean spaces Suppose $F: \mathbb{R}^n \to \mathbb{R}^m$ is smooth and $p \in \mathbb{R}^n$. Let x^1, \ldots, x^n be coordinates on \mathbb{R}^n and y^1, \ldots, y^m be coordinates on \mathbb{R}^m . Then

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

form a basis for the tangent space $T_n(\mathbb{R}^n)$ and

$$\left\{ \frac{\partial}{\partial y^1} \bigg|_{F(p)}, \dots, \frac{\partial}{\partial y^m} \bigg|_{F(p)} \right\}$$

form a basis for the tangent space $T_{F(p)}(\mathbb{R}^m)$. The linear map

$$F_*: T_p(\mathbb{R}^n) \to T_{F(p)}(\mathbb{R}^m)$$

(the differential of F) is described by a matrix $\begin{bmatrix} a_j^i \end{bmatrix}$ relative to these two bases:

$$F_*\left(\frac{\partial}{\partial x^j}\Big|_p\right) = \sum_k a_j^k \frac{\partial}{\partial y^k}\Big|_{F(p)}$$

Let $F^i = y^{\circ} F$ be the *i*th component of F; we can find a^i_j by evaluating the right-hand side and left-hand side on y^i

RHS =
$$\sum_{k} a_{j}^{k} \frac{\partial}{\partial y^{k}} \Big|_{F(p)} y^{i} = \sum_{k} a_{j}^{k} \delta_{k}^{i} = a_{j}^{i}$$

LHS = $F_{*} \left(\frac{\partial}{\partial x^{j}} \Big|_{p} \right) y^{i} = \frac{\partial}{\partial x^{j}} \Big|_{p} (y^{i} \circ F) = \frac{\partial F^{i}}{\partial x^{j}} \Big|_{p}$ (54)

where we've used the fact that $F^i = y^i \circ F$. Thus, F_* relative to the bases is the Jacobian

$$\left\lceil \frac{\partial F^i}{\partial x^j} \right|_p$$

and hence the differential generalizes the derivative of a map between Euclidean spaces (because in this instance the Jacobian is the derivative and in abstract manifolds we use the same F_*). Note this means

 $F_* \iff \text{Jacobian} \iff \text{differential} \iff \text{pushforward}$

Index

```
C^{\infty}-compatible, 7
1-form, 3
antiderivation of the graded algebra, 5
atlas, 7
chart, 7
closed form, 5
cochain complex, 5
coordinate neighborhood, 7
coordinate system, 7
cotangent space, 3
covector field, 3
covectors, 2
curve, 8
de Rham cohomolgy, 6
de Rham complex of U, 5
derivation, 2
diffeomorphism, 9
differentiable structure, 8
differential, 3
differential 1-form, 3
differential at p, 11
differential complex, 5
differential form \omega of degree k, 4
directional derivative, 1
dual space, 2
exact form, 5
general linear group GL(n, \mathbb{R}), 8
graph of f, 8
Hausdorff, 7
homeomorphism, 7
isomorphically, 2
Jacobian matrix of F, 10
Leibniz rule, 2
Lie algebra, 6
Lie group, 9
local coordinates on U, 8
local diffeomorphism, 10
locally Euclidean of dimension n, 7
locally invertible, 10
maximal, 7
partial derivative \frac{\partial f}{\partial x^i} of f with respect to x^i at p, 9
Poincare lemma, 6
pullback, 8
pushforward, 11
second countable, 7
```

```
smooth C^{\infty} manifold, 8
smooth a point p, 8
surface, 8
tangent bundle, 10
tangent space, 1
tangent vectors, 1
topological group, 9
topological manifold, 7
transition functions, 7
vector bundle, 10
vector field, 2
wedge product of a k-form \omega and \ell-form \tau, 4
```