Self-Test 2

MD is tangent to the circle.

- 1. If $\widehat{mBD} = 80$, then $m \angle A = ?$
- 2. If $m \angle ADM = 75$, then $\widehat{mAD} = \frac{?}{}$.
- 3. If $\widehat{mBD} = 80$ and $m \angle 1 = 81$, then $\widehat{mAC} = \frac{?}{}$
- **4.** If AN = 12, BN = 6, and CN = 8, then $DN = \frac{?}{}$.

5. \overline{AB} , \overline{AC} , and \overline{DE} are tangents. Find the values of x and y.

\overline{PE} and \overline{PF} are secants and \overline{PJ} is a tangent.

- **6.** If $\widehat{mEF} = 100$ and $\widehat{mGH} = 30$, then $m \angle FPE = \frac{?}{}$.
- 7. If PG = 4, PE = 15, and PH = 6, then $PF = \frac{?}{}$.
- **8.** If PH = 8 and HF = 10, then $PJ = \frac{?}{}$.

Application

Distance to the Horizon

If you look out over the surface of the Earth from a position at P, directly above point B on the surface, you see the horizon wherever your line of sight is tangent to the surface of the Earth. If the surface around B is smooth (say you are on the ocean on a calm day), the horizon will be a circle, and the higher your lookout is, the farther away this horizon circle will be.

You can use Theorem 9-13 to derive a formula that tells how far you can see from any given height. The diagram at the right shows a section through the Earth containing P, H, and O, the center of the Earth. \overline{PH} is tangent to circle O at H. \overline{PA} is a secant passing through the center O. Theorem 9-13 says that:

$$(PH)^2 = PA \cdot PB$$

