### **Computer Vision**

(Winter term 25/26)

UD 033 536 Bachelorstudium; **Artificial Intelligence**, UD 066 991 Masterstudium; **JDP Applied Image and Signal Processing**, UD 066 645 Masterstudium; **Data Science**, etc.)

#### **Roland Kwitt**

Department of Artificial Intelligence and Human Interfaces
University of Salzburg, Austria

# Schedule for today

- Logistics
- Resources
- What is computer vision?
- Some typical computer vision problems

## Logistics

- E-Mail: Roland [dot] Kwitt [at] plus [dot] ac [dot] at
- Course material: available online at <a href="http://rkwitt.org">http://rkwitt.org</a> (→ Teaching)

## Logistics

### Grading

1 final exam at the end of the course (see course website for details)

### Resources

**PyTorch** (most recent version v2.8)

https://pytorch.org/

scikit-learn (Python)

http://scikit-learn.org/stable/

scikit-image (Python)

http://scikit-image.org

last time I checked, they are pre-installed when running Google Collab.

### Resources

### "Deep Learning"

Goodfellow, Bengio, Courville
<a href="http://www.deeplearningbook.org/">http://www.deeplearningbook.org/</a>

Please check the course website for updates on relevant research papers.

### Resources

We will mostly be talking about "modern" approaches to computer vision, using (deep) neural networks.

However, I still do want to mention a "classic" vision book which is definitely worth reading.

"Computer Vision: Algorithms and Applications"

R., Szeliski, 2010

http://szeliski.org/Book/







Courtesy of Szeliski

(Luiz Gomez Photos)

The human visual system (HVS) is remarkably good at so many tasks, e.g.,

- detecting people & object's
- perceiving translucency, shape, color (see figure on the left),
- counting people & vehicles (see middle figure)
- recognizing scenes, etc.

#### Remarkable fact:

A substantial fraction of the macaque's total cortical area is devoted to vision (approx. 15% according to [Hubel, "Eye, Brain and Vision"])

We want to build systems for automatic understanding of images/videos.

This includes, but is not limited to,

- 1) inferring properties of the 3D world (measurement)
- 2) enabling recognition of objects, people, scenes, etc. (perception)
- 3) mining, searching and interacting with visual data (search / organization)



**Bio-Imaging** 



Surveillance



**Medical Imaging** 



Google

**Autonomous Cars** 



Mapping



**Robotics** 

### Overview of the field

#### Conferences

#### **Computer Vision**

- Computer Vision and Pattern Recognition (CVPR)
- International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)
- British Machine Vision Conference (BMVC)

#### **Machine learning**

- Neural Information Processing Systems (NIPS)
- International Conference on Machine Learning (ICML)
- International Conference on Learning Representations (ICLR)

### Overview of the field

Some metrics: check out Google scholar on that, <a href="here">here!</a>

### Recognition



→ "Saiga antilope"

**Task**: Label an image by its **class membership**, e.g., the class would be "Saiga antilope" in the example above.

### **Segmentation**





**Task**: Label **each pixel** of an image by its class membership, e.g., "Human" vs. "Sheep" vs. Background in the example.

#### **Detection**



**Task**: Locate and label objects. E.g., each object is (1) marked by a bounding box (i.e., coordinates) and (2) assigned a class/object label.

Image source: Kirillov et al., "Panoptic Segmentation", In: CVPR '19

### **Panoptic Segmentation**





**Semantic** segmentation



**Instance** segmentation



**Panoptic** segmentation

Goal: Unify semantic segmentation and instance segmentation.

### Image-to-Image translation



Arial → Map



BW → Color





Label map → Image

### Text-to-Image Generation:



Prompt (ChatGpt 4o): "Create an image of an extremely angry bird."



**Prompt** (ChatGpt 4o): "A photo of a Persian cat wearing sunglasses and a red shirt skateboarding on a beach."

# Some interesting resources

Browse D. H. Hubel's online book (Nobel prize winner, 1981) <a href="http://hubel.med.harvard.edu/book/bcontex.htm">http://hubel.med.harvard.edu/book/bcontex.htm</a>

Read one of his and Torsten Wiesel's seminal papers, e.g.,

### Receptive Fields and Functional Architecture of Monkey Striate Cortex,

D. H. Hubel and T. N. Wiesel

J. Physiol., 1968

http://www.ncbi.nlm.nih.gov/pubmed/4966457)