Homework 6

- 1. Consider the linear model $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ for i = 1, 2, 3, 4. Before you collect the four data points, you have freedom to choose x_1, x_2, x_3, x_4 and then observe y_1, y_2, y_3, y_4 . Suppose you can only choose x_1, x_2, x_3, x_4 in the range [-1, 1]. How would you choose x_1, x_2, x_3, x_4 so that the accuracy of the MLE/LSE of β_1 is the best?
- 2. We have derived the formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$ by setting the derivatives to zeros and solving the linear equations. Show that $\hat{\beta} = (X^T X)^{-1} X^T y$ leads to the same formula when p = 2.
- 3. We have derived the means, variances and covariance of $\hat{\beta}_0$ and $\hat{\beta}_1$ using straightforward calculations. Show that $\hat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1})$ leads to the same formulas.
- 4. Consider $y \sim N(X\beta, \sigma^2 I_n)$. Use $\sigma_c^2 = c \|y X\hat{\beta}\|^2$ to estimate σ^2 , where $\hat{\beta}$ is the LSE. We know that $\frac{\|y X\hat{\beta}\|^2}{\sigma^2} \sim \chi_{n-p}^2$.
 - (a) What c leads to an unbiased estimator?
 - (b) What c gives you the MLE?
 - (c) Find the c that minimizes $\mathbb{E}(\hat{\sigma}_c^2 \sigma^2)^2$.
 - (d) Use the fact $\frac{\|y-X\hat{\beta}\|^2}{\sigma^2} \sim \chi^2_{n-p}$ to build a confidence interval of σ^2 .
- 5. Consider $y \sim N(X\beta, \sigma^2 I_n)$. For a new data point $x^* = (1, x_1^*, x_2^*, ..., x_{p-1}^*)^T$, we can predict its response by $(x^*)^T \hat{\beta}$, where $\hat{\beta}$ is the MLE.
 - (a) Find the distribution of $(x^*)^T \hat{\beta}$.
 - (b) Construct a confidence interval of $(x^*)^T \beta$ using t-distribution.
- 6. (Pythagorean Identity.) Review and prove the following lists of Pythagorean identities:
 - (a) For any random variable $\hat{\theta}$ and any number θ , $\mathbb{E}(\hat{\theta} \theta)^2 = \text{var}(\hat{\theta}) + (\mathbb{E}\hat{\theta} \theta)^2$.
 - (b) For any real numbers $x_1, ..., x_n, \theta, \sum_{i=1}^n (x_i \theta)^2 = \sum_{i=1}^n (x_i \bar{x})^2 + n(\bar{x} \theta)^2$.
 - (c) For any vectors $X_1, ..., X_n, \theta$, $\sum_{i=1}^n ||X_i \theta||^2 = \sum_{i=1}^n ||X_i \bar{X}||^2 + n||\bar{X} \theta||^2$.
 - (d) For any full rank $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^{n \times 1}$ and $\mathbb{R}^{p \times 1}$, $\|y X\beta\|^2 = \|y X\hat{\beta}\|^2 + \|X\hat{\beta} X\beta\|^2$, where $\hat{\beta} = (X^T X)^{-1} X^T y$.
 - (e) Can you explain the common phenomenon?