Some Practical Examples

Present Value given a Series of Annuities

Because of your promotions, you make \$200,000 per year when you're 65. Now you want to withdraw \$200,000 per year ("A") until you've, well, passed on.

What does your retirement fund need to be in order to withdraw \$200,000 per year until...

Assume you invest in a fund that returns 8%/yr, and you plan on living until 90 (N=25).

$$PV = A \left[\frac{(1+i)^{N} - 1}{i(1+i)^{N}} \right]$$

PV = \$2,134,960

What happens in year 26?

Uniform Series Present Value

Ex. A = \$200,000, interest rate = 8%, N = 25 years.

Use Excel's PV function once again...

3	А	В	С	D	Е	F				
1	TVM with Ex	cel								
2	Present Va	lue Calculations								
3										
4	FV =	\$0	this is value of our investment at time = N							
5	PMT =	-\$200,000	this is our A, at the end of each period							
6	RATE =	8%	this is our	i						
7	NPER =	25	this is our	N						
8										
9	PV =	\$2,134,955	PV(rate, nper, pmt, fv, type)							
10			=PV(B6,B7,							
11										

Loan Repayments

You decide to buy a new EV for \$45,000. You pay \$5,000 as a down-payment and borrow the rest, with the loan being a 5-year loan at a nominal interest of 6% compounded monthly. What is your monthly payment?

This is how you calculate monthly payments for a loan!

$$A = PV \left[\frac{i (1+i)^N}{(1+i)^N - 1} \right]$$

What are the terms for this equation?

$$PV = $40,000$$
 $N = (12 \times 5) = 60$
 $i = (6\% / 12) = 0.5\%$

Loan Repayments

You decide to buy a new EV for \$45,000. You pay \$5,000 as a down-payment and borrow the rest. What is your monthly payment? The loan is a 5-year loan at a nominal interest rate of 6% compounded monthly.

	А	В	С	D	Е				
1	Paying Off My Electric Vehicle								
2									
3									
4	PV =	\$40,000	this is your initial loan value						
5	FV =	\$0	your final value after paying off the loan						
6	RATE =	0.50%	this is the interest rate per period (month)						
7	NPER =	60	this is the number of payment periods						
8									
9	PMT =	-\$773.31	PMT(rate, nper, pv, fv, type)						
10			=PMT(B6,E	37,B4,B5)					

Different ways of buying stuff...

You're thinking of buying a new EV that costs \$28,650. You can do it one of three ways

Option 1: Pay cash that you have sitting around.

Option 2: Debt-financing: pay \$3650 down, then finance the rest over 36 months at 1.9%, compounded monthly.

Option 3: Lease the car: pay something up-front, monthly payments, and turn it in at the end.

Electric Vehicle \$28,650

Which is the least costly option?

We'll consider the "lowest monthly payment" and "lowest overall cost".

Option 1: this is easy, you pay \$28,650 and you're done.

Option 2: Debt-financing: pay \$3650 down, then finance the rest over 36 months at 1.9%, compounded monthly.

$$A = PV \left[\frac{i (1+i)^{N}}{(1+i)^{N} - 1} \right]$$

The interest rate per period: 1.9% / 12 = 0.1583% (0.001583)

The total # of periods (payments): $12 \times 3 = 36$

$$A = \$25,000 \left[\frac{0.001583 (1 + 0.001583)^{36}}{(1 + 0.001583)^{36} - 1} \right]$$

$$A = \$25,000 \left[\frac{0.00168}{0.0586} \right]$$

$$A = $25,000 [.02860]$$

$$A = $714.97 \text{ per month}$$

What did you pay in total?

Total Cost = $$3650 + (36 \times $716.72)$

Total Cost = \$29,452.05

Option 2: Debt-financing: pay \$3650 down, then finance the rest over 36 months at 1.9%, compounded monthly.

$$A = P \left[\frac{i (1+i)^{N}}{(1+i)^{N} - 1} \right]$$

\mathbb{Z}	Α	В	С	D	Е	F			
1	Financing My	y Car							
2	Loan Amt:	\$25,000	Let's check to make sur						
3	APR:	1.9%		we did that right					
4									
5	PV =	\$25,000	this is your initial loan value						
6	FV =	\$0	your final value after paying off the loan						
7	RATE =	0.16%	this is the interest rate per period (month)						
8	NPER =	36	this is the number of payment periods						
9									
10	PMT =	-\$714.97	PMT(rate, nper, pv, fv, type)						
11			=PMT(B6,B7,B4,B5)						
12									

Option 3: You lease the car: \$950 due at signing, monthly payments = \$302. Residual value = \$21,000.

Ok, this isn't too complicated...

What did you pay in total?

Total Cost = $$950 + (36 \times $302)$

Total Cost = \$11,822

Seems like leasing is a much less expensive option.

But aren't we missing something?

Option 3: You lease the car: \$950 due at signing, monthly payments = \$302. Residual value = \$21,000.

At the end of the lease, you have to:

- 1) turn the car in
- 2) buy it for the residual value of \$21,000

You love your new EV, and decide to buy it with cash.

Now what did you pay in total?

Total Cost = $$950 + (36 \times $302) + $21,000$

Total Cost = \$32,822

You're thinking of buying n EV that costs \$28,650. You can do it one of three ways

Option 1: Pay cash that you have sitting around.

Option 2: Debt-financing: pay \$3650 down, then finance the rest over 36 months at 1.9%, compounded monthly.

Option 3: Lease the car: pay something up-front, monthly payments, and turn it in at the end.

Electric Vehicle \$28,650 Option 1: Buying the car = \$28,650

Option 2: Financing the car = \$29,452

Option 3: Leasing the car = \$32,822

So paying cash is really the cheapest option, and leasing is the most expensive.

One last example...

You're thinking of buying a nice condo that costs \$500,000.

You have two options: You need to pay 20% as a down-payment = \$100,000

Option 1: Finance it for 30 years at 2.5% per year, compounded monthly

Option 2: Finance it for 15 years at 2.125% per year, compounded monthly

7	А	В	С	D	Е	F	G
1	Financing My C	ondo					
2	Loan Amt:	\$400,000					
3							
4	Term:	30	years		15	years	
5	APR:	2.5%	per year		2.125%	per year	
6	PV =	\$400,000			PV =	\$400,000	
7	FV =	\$0			FV =	\$0	
8	RATE =	0.21%			RATE =	0.18%	
9	NPER =	360			NPER =	180	
10							
11	PMT =	-\$1,580	per month		PMT =	-\$2,597.12	
12							
13	Total Cost:	-\$568,974			Total Cost:	-\$467,482	
14	Principal Paid:	-\$400,000			Principal Paid:	-\$400,000	
15	Interest Paid:	-\$168,974			Interest Paid:	-\$67,482	
16							

Over the life of the loan, the 30-year loan will cost you almost \$100,000 more than the 15-year loan.

That's the trade-off for paying \$1000 less per month.

One last example...

You're thinking of buying a nice condo that costs \$500,000.

You have two options: You need to pay 20% as a down-payment = \$100,000

Option 1: Finance it for 30 years at 5% per year, compounded monthly

Option 2: Finance it for 15 years at 4% per year, compounded monthly

	А	В	С	D	E	F	G
1	Financing My Condo						
2	Loan Amt:	\$400,000					
3							
4	Term:	30	years		15	years	
5	APR:	5.0%	per year		4.000%	per year	
6	PV =	\$400,000			PV =	\$400,000	
7	FV =	\$0			FV =	\$0	
8	RATE =	0.42%			RATE =	0.33%	
9	NPER =	360			NPER =	180	
10							
11	PMT =	-\$2,147	per month		PMT =	-\$2,958.75	
12							
13	Total Cost:	-\$773,023			Total Cost:	-\$532,575	
14	Principal Paid:	-\$400,000			Principal Paid:	-\$400,000	
15	Interest Paid:	-\$373,023			Interest Paid:	-\$132,575	
16							

Over the life of the loan, the 30-year loan will cost you almost \$250,000 more than the 15-year loan.

Key Point Here: the cheapest monthly solution is rarely the cheapest solution overall!

Next Time...

Project Valuation Techniques

Credits & References

Slide 1: Accounting report and financial statement on desk by Leonid, Adobe Stock.

Slide 2: Grim Reaper Image Source, https://www.publicdomainpictures.net/pictures/310000/nahled/sensemann.png (accessed May 9, 2022).

Slide 6 and 11: Electric Car in Charging Station Isolated by nerthuz, Adobe Stock (299554135.jpeg).

Slide 15: Concept of NPV - Net Present Value by Elnur, Adobe Stock (402998660.jpeg).