Evolutionary model summary Wendy Yang

Goal

The goal of this rotation project is to explore if we can observe any polymorphism in a two-loci evolutionary model with cyclic selection and phenotypic memory.

Model description

Notations

A/a – locus that controls mean variation. A and a are advantageous in different environment.

B/b – locus that controls variance. B – variable phenotype, b - fixed phenotype

Parameters

 S_{mid} – mean selective advantage of the alleles

var – variance of phenotype with the same genotype

r – recombination rate

m – mutation rate

N – population size (Assume N is fixed)

p – phenotypic memory

Mutation

Initially I randomly introduced one mutation to locus a or locus b.

For each time step, I have a probability (mutation rate m * population size N) of introducing one mutation at the other locus.

Once mutations happen at both loci, no further mutations are allowed during the simulation.

<u>Selection</u>

The fitness of four alleles in this model is summarized in the table below:

	Environment 1	Environment 2
ab	1 - S _{mid}	$1 + s_{mid}$
аВ	$\{1 - s_{mid} - var, 1 - s_{mid} + var\}$	$\{1 + s_{mid} - var, 1 + s_{mid} + var\}$
Ab	$1 + s_{mid}$	1 - S _{mid}
AB	$\{1 + s_{mid} - var, 1 + s_{mid} + var\}$	$\{1 - s_{mid} - var, 1 - s_{mid} + var\}$

Recombination

Coefficient of linkage disequilibrium $D = f_{ab}f_{AB} - f_{aB}f_{Ab}$

$$f_{ab} \leq f_{ab} - D * r$$

$$f_{aB} < -f_{aB} + D * r$$

$$f_{Ab} <- f_{Ab} + D * r$$

 $f_{AB} <- f_{AB} - D * r$

Reproduction

To account for the effect of genetic drift, sample the next generation by multinomial distribution.

Results

Polymorphism is observed given cyclic selection and phenotypic memory

N = 100000, num_allele = 4, num_steps = 100000, mutation_rate = 1e-5, recomb_rate = 0.5 period = 15, s mid = 0.4, p = 0.8, var = 0.3

Polymorphism is highly dependent on phenotypic memory

We cannot get any polymorphism at locus b when phenotypic memory is too high or too low. When p is low, b (fixed phenotype) will be dominant. When p is high, B (variable phenotype) will be dominant.

Plot for phenotypic memory vs cumulative heterozygosity

