Yale

Document Graph Representation Learning: A Topic Modeling Perspective

Delvin Ce Zhang

Yale University

Textual Documents are Ubiquitous

- Ubiquity of unstructured textual documents
 - Unstructured, noisy, dynamic, multi-lingual, ...

Today was a great day for your restaurant. There was a huge buffet with important guests. It seems that your team coped perfectly, after all, the customers left satisfied. Now it only remains to wash the dishes and prepare for the next day. Previously, the sheer amount of dirty dishes would have caused problems.

But not now, now you have Sun Eco extra power dishwasher tablets. They save time and money, because you only need one tablet (one pack contains 175 pieces). Moreover, do not worry about having to clean the machine after - as the tablet and it's plastic wrap dissolve completely during the washing process.

After use, all that remains is to admire the result: all the dirt on the dishes, including soot on the pans, oil, grease and food residues will simply disappear. You will be left with just sparklingly clean dishes without marks and stains. Even pre-rinsing is not required, which saves water and reduces company expenses. In addition, the composition does not include phosphates, so there are no harmful substances or tastes left on the dishes

Use a secret weapon against massive loads of dirty dishes!

News articles

Academic papers

Product descriptions

Document Graph

- Documents are also interconnected in a graph structure Document Graph
 - Academic citation graph, news article hyperlink graph, product contextual graph...
 - Consisting of a corpus of documents \mathcal{D} , and graph structure \mathcal{E} .

How to Process Document Graph

Existing works

	Pros	Cons
Graph Neural Networks (GNNs)	Capture vertex attribute and graph structure	No language representations or linguistic semantics
Large Language Models (LLMs)	Learn contextualized document representation	No document graph structure
Topic Models (TMs)	Infer topic representation for documents	No document graph structure

How to Process Document Graph

- This tutorial Document Graph Representation Learning
 - Infer document embeddings that preserve **both** i) contextualized semantics contained in rich text documents, **and** ii) graph connectivity across documents.

Overview of Topic Modeling

 Topic Models (TMs) assume a small number of latent topics to generate document content.

Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter

Delvin Ce Zhang¹ and Hady W. Lauw²

¹Yale University, ²Singapore Management University

IEEE Transactions on Knowledge Discovery and Data Engineering (TKDE-23)

Overall framework: generate both input document and its neighbors.

(a) Existing topic models

(b) Our proposed idea

(c) Simplified diagram

• 1. GNN encoding

$$\mathbf{h}_i = GNN(i, N(i))$$

• 2. Dirichlet sampling

$$\alpha_i = \max(10^{-12}, \text{softplus}(\mathbf{h}_i))$$

$$\mathbf{z}_i \sim \mathrm{Dir}(\boldsymbol{lpha}_i)$$

 $\mathbf{z}_i \sim \mathrm{Dir}(\boldsymbol{\alpha}_i)$ \mathbf{z}_i is K-dimensional document representation

• 3. Dirichlet reparameterization

$$z_{i,k} \sim \Gamma(\alpha_{i,k})$$
 Gamma distribution

$$\mathbf{z}_i = \left[rac{z_{i,k}}{\sum_{k'=1}^K z_{i,k'}}, ..., rac{z_{i,K}}{\sum_{k'=1}^K z_{i,k'}}
ight] \sim \mathrm{Dir}(oldsymbol{lpha}_i)$$

• 4. Neighbor generation with Optimal Transport

$$\min \sum_{j \in \mathcal{N}(i)} a_{ij} d_{\mathbf{C}}(\mathbf{z}_i, \mathbf{d}_j)$$

Optimal Transport distance

4. Neighbor generation with Optimal Transport

$$\min \sum_{j \in \mathcal{N}(i)} a_{ij} d_{\mathbf{C}}(\mathbf{z}_i, \mathbf{d}_j)$$

Optimal Transport distance

• 5. Design of Optimal Transport

$$\tilde{\mathbf{Z}}_D$$
 0.5
 0.1
 0.8
 0.2

Transport Probability P

 \mathbf{d}_{G} [0.9 0.5 0.2 0.4 0.2]

Trainable topic embedding

11

Datasets

Name	#Documents	#Links	Vocabulary	#Labels
DS	1,703	3,234	3,134	9
ML	3,087	8,573	3,040	7
PL	2,597	7,754	3,106	9
Aminer	42,564	40,269	4,094	10
Web	445,657	565,502	10,015	N.A.

Text classification

	Model	Micro F1 score			
	Model	DS	ML	PL	Aminer
Topic Models	ProdLDA	51.4 ± 1.1	67.0 ± 0.6	51.8 ± 0.6	40.5 ± 0.0
	DVAE	54.7 ± 2.2	68.9 ± 0.6	55.7 ± 1.3	66.1 ± 0.5
	ETM	42.2 ± 2.4	53.9 ± 1.8	45.0 ± 2.1	53.2 ± 0.7
	Adjacent-Encoder	58.8 ± 1.2	72.8 ± 0.6	60.0 ± 1.7	59.5 ± 0.2
Graph	LANTM	56.8 ± 2.4	71.8 ± 1.0	62.6 ± 1.3	N.A.
Embedding 1	VGAE	39.8 ± 2.0	56.6 ± 1.7	47.6 ± 3.4	64.7 ± 0.5
	PGCL	62.9 ± 1.2	74.9 ± 1.2	64.7 ± 1.1	69.7 ± 0.4
Our model {	DBN D ² BN	66.2±1.4 65.8±1.6	78.4±0.8 81.1 ± 1.2	67.3±0.5 71.3 ± 0.7	71.2±0.4 72.3 ± 0.3

Hyperbolic Graph Topic Modeling Network with Continuously Updated Topic Tree

Delvin Ce Zhang¹, Rex Ying¹, and Hady W. Lauw²

¹Yale University, ²Singapore Management University

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-23)

Motivation

• Hierarchical topics ${\cal D}$

- Some articles report global COVID situation, while others focus on specific event.
- \rightarrow Text hierarchy \mathcal{D}

• Hierarchical edges ${\cal E}$

- A breaking news article is traced by following articles reporting subsequent events.
- \rightarrow Graph hierarchy \mathcal{E}

(b) Graph hierarchy

Introduction to Hyperbolic Space

Introduction to Hyperbolic Space

- Hyperbolic Graph Encoder (for graph hierarchy ${\cal E}$)
- 1. Given a graph $\{\mathcal{D}, \mathcal{E}\}$, we construct a two-layer graph for documents and words.

- Hyperbolic Graph Encoder (for graph hierarchy \mathcal{E})
- 2. Intra-layer encoding
 - A. Hyperbolic linear transformation

$$\tilde{\mathbf{z}}_d^{\prime(l)} = \exp_{\mathbf{0}}^c(\mathbf{W}^{(l)} \log_{\mathbf{0}}^c(\mathbf{z}_d^{(l-1)}))$$

• B. Hyperbolic neighbor attention

$$a_{ij} = \operatorname{softmax} \left(\sigma \left(\boldsymbol{\beta}^{(l) \top} [\log_{\mathbf{0}}^{c} (\tilde{\mathbf{z}}_{d_i}^{(l)}) || \log_{\mathbf{0}}^{c} (\tilde{\mathbf{z}}_{d_j}^{(l)})] \right) \right) \text{ where } d_j \in \mathcal{N}(i)$$

• C. Hyperbolic aggregation

$$\mathbf{z}_{d_i}^{(l)} = f_{\text{act}}^{c,c'} \left(\exp_{\mathbf{0}}^c \left(\frac{1}{2} \left(\log_{\mathbf{0}}^c (\tilde{\mathbf{z}}_{d_i}^{(l)}) + \sum_{d_i \in \mathcal{N}(i)} a_{ij} \log_{\mathbf{0}}^c (\tilde{\mathbf{z}}_{d_j}^{(l)}) \right) \right) \right)$$

• Summarizing above three steps, we have

$$\mathbf{z_{intra}} = HGNN(d, N_{intra}(d))$$

- Hyperbolic Graph Encoder (for graph hierarchy \mathcal{E})
- 3. Cross-layer encoding

$$\mathbf{z}_{cross} = HGNN(d, N_{cross}(d))$$

• 4. Hyperbolic mean pooling

$$z_d = \exp\left(\frac{1}{2} \times (\log(\mathbf{z_{intra}}) + \log(\mathbf{z_{cross}}))\right)$$

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 1. Initialize a latent topic tree

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 1. Initialize a latent topic tree
- 2. For doc d, evaluate path distribution

$$p(k_1 \to k_2 \to k_6) = p(k_6|k_2)p(k_2|k_1)p(k_1)$$

$$p(k_2|k_1) = \frac{\left(1 + \text{dist}(z_d, t_{k_2})\right)^{-1}}{\sum_{k'=k_2,k_3,k_4} \left(1 + \text{dist}(z_d, t_{k'})\right)^{-1}}$$

3. Evaluate level distribution

$$p(\text{level } s) = \frac{(1 + h(s)^2)^{-1}}{\sum_{s'=1,2,3} (1 + h(s')^2)^{-1}} \quad \text{where} \quad h(s)^2 = \min \left\{ \text{dist}(z_d, t_{k_s})^2 \middle| k_s \in \text{level } s \right\}$$

$$h(s)^2 = \min \left\{ \operatorname{dist}(z_d, t_{k_s})^2 \middle| k_s \in \text{level } s \right\}$$

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 4. Topic distribution

$$p(k_2) = p(s = 2) \times (p(\text{path 1}) + p(\text{path 2}) + p(\text{path 3}))$$

 $\theta_d = [p(k_1), p(k_2), ..., p(k_9)]$

• 5. Decoding with cross-entropy loss $\hat{d} = \operatorname{softmax}(\beta \theta_d)$

Datasets

Name	#Documents	#Links	Vocabulary	#Labels
ML	3,087	8,573	2,885	7
PL	2,597	7,754	3,106	9
COVID	1,500	5,706	5,083	5
Aminer	114,741	265,345	10,018	10
Web	445,657	565,502	10,015	N.A.

Text classification

Link prediction

Limitations and Future Work

- Designing LLM-based models for document graph representation learning;
- Explainability: which subset of topics are informative for predictions.

Yale

Thank You

Delvin Ce Zhang

Yale University