D Sketch fire level curves for each of the fallowing functions. Also for a-d sketch the portion of the graph of the function lying in the first extent; include in your sketch the traces of the graph in the 3 wo admixt planes, if prostible.

(a) 1-x-y (b) \(\sqrt{x^2+y^2} \) (c) x^2+y^2 (d) 1-x^2-y^2 (d) x^2-y^2

② Calculate the first partial derivatives of each of the following functions:

(a) $w = n^3y - 3ny^2 + 2y^2$ (b) $z = \frac{n}{y}$ (c) $\sin(3z + 2y)$ (d) e^{n^2y}

@ z=2 ln (2x+y) (b) xx-2yx3

3 Verify that fay = byn for each of the following:

(a) $x^m y^n$ $(m, n \in \mathbb{Z}_+)$

0 ws (2 +y)

(1) \frac{n}{n+y} (1) \frac{f(n)}{g(y)} \tag{for any differentiable f and g.

(4) By using fing = fyx, let for what value of the formal constant a, there exists a function f (n,y) for which first = arey + By, ty = n+6 my, and then using this value, find such a function by inspertion.

B lyine the equation of the trangent plane to each of this surfaces at the point indicated.

(a) $z = \alpha y^2$, (1, 4, 1) (b) $w = y^2/\alpha$ (1, 2, 4)

6. Find the equation of the torrent plane to the cone $3 = \sqrt{x^2 + y^2}$ at the point $P_0: (x_0, y_0, y_0)$ on the cone.

7. First the differential:

(a)
$$w = \ln (\pi y z)$$
; (b) $w = \pi^3 y^2 z$; (c) $z = \frac{x - y}{x + y}$; (d) $w = \sin^{-1} \frac{u}{t}$

[use $\sqrt{t^2 - u^2}$]

8. The following equations define we implicitly as a function of the other variables. Find do in terms of all the variables by taking the differential of both sides and soloniz algebraically for dw.

(a)
$$\frac{1}{w} = \frac{1}{t} + \frac{1}{u} + \frac{1}{v}$$
; (b) $u + 2v + 3w = 10$.

9. In earth of these, a function f, a a point P and a vestor A are given.

Calculate the gradient of f at the point, and the directional derivative $\frac{\partial f}{\partial s}|_{\mathcal{U}}$ at the point in the direction u of the given vector A.

(a)
$$n^3 + 2y^5$$
; (1,1); $\tau - y^2$
(b) $w = \frac{ny}{x}$; (2, -1, 1); $i + 2y^2 - 2k$

(
$$3 = x \text{ Amy} + y \text{ with } 1$$
, $(0, \frac{\pi}{2})$, $-3i + 4j$

Find its tangent plane at the green point.

(a) $xy^3z^3=12$, (3,2,1)

- (1,1,1)
- (the cone x'+y'-z'=0, (x0, y0, y0)
- 11. Find the for the composite function f(x(t), y(t), z(t)) in two ways:
 - (i) use chain and, then express your answer in terms of t by using x=x(t) etc
- (ii) express the composite function f in terms of t and differentials.
- (n=t, y=t^v, 3=t³)
- (w=ln(u+v), u=2cost, v=2smt
- 12. a Let $\mathbf{w} = f\left(\frac{\mathbf{y}}{n}\right)$. Show that \mathbf{w} ratio fies the PDE $\mathbf{x} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} = 0$
- (b) $W = f(x^2 y^2) \longrightarrow y \frac{\partial w}{\partial x} + x \frac{\partial w}{\partial y} = 0$
- (1) $w = f(ax + by) \longrightarrow b \frac{\partial w}{\partial x} a \frac{\partial w}{\partial y} = 0$
- 13. That the points) on these surfaces which are closest to the origin
 - @ my 3 = 1
 - Hint: It is essient to minimise the square of the distance, wither B ~-43=1 than the distance at self.