Alfio Quarteroni Riccardo Sacco Fausto Saleri

Numerical Mathematics

Second Edition

With 135 Figures and 45 Tables

Contents

Pa	rt I G	etting Started	
1	Fou	ndations of Matrix Analysis	3
	1.1	Vector Spaces	3
	1.2	Matrices	5
	1.3	Operations with Matrices	6
		1.3.1 Inverse of a Matrix	7
		1.3.2 Matrices and Linear Mappings	8
		1.3.3 Operations with Block-Partitioned Matrices	9
	1.4	Trace and Determinant of a Matrix	10
	1.5	Rank and Kernel of a Matrix	11
	1.6	Special Matrices	12
		1.6.1 Block Diagonal Matrices	12
		1.6.2 Trapezoidal and Triangular Matrices	12
		1.6.3 Banded Matrices	13
	1.7	Eigenvalues and Eigenvectors	13
	1.8	Similarity Transformations	15
	1.9	The Singular Value Decomposition (SVD)	17
	1.10	Scalar Product and Norms in Vector Spaces	18
	1.11	Matrix Norms	22
		1.11.1 Relation between Norms and the Spectral Radius	
		of a Matrix	25
		1.11.2 Sequences and Series of Matrices	26
	1.12	Positive Definite, Diagonally Dominant and M-matrices	27
	1.13	Exercises	30
2	Prin	ciples of Numerical Mathematics	33
	2.1	Well-posedness and Condition Number of a Problem	
	2.2	Stability of Numerical Methods	37
		2.2.1 Relations between Stability and Convergence	40
	2.3	A priori and a posteriori Analysis	42

X	Contents
x	Lonrents

	2.42.52.6	Sources of Error in Computational Models 43 Machine Representation of Numbers 45 2.5.1 The Positional System 46 2.5.2 The Floating-point Number System 46 2.5.3 Distribution of Floating-point Numbers 49 2.5.4 IEC/IEEE Arithmetic 49 2.5.5 Rounding of a Real Number in its Machine Representation 50 2.5.6 Machine Floating-point Operations 52 Exercises 54	5 5 6 9 9
 Part	II N	umerical Linear Algebra	
		ct Methods for the Solution of Linear Systems 59	_ Ω
J	3.1	Stability Analysis of Linear Systems	
	0.1	3.1.1 The Condition Number of a Matrix	
		3.1.2 Forward a priori Analysis	
		3.1.3 Backward a priori Analysis	
		3.1.4 A posteriori Analysis	
	3.2	Solution of Triangular Systems	
	0.2	3.2.1 Implementation of Substitution Methods 6	
		3.2.2 Rounding Error Analysis	
		3.2.3 Inverse of a Triangular Matrix	
	3.3	The Gaussian Elimination Method (GEM) and LU	
		Factorization	0
		3.3.1 GEM as a Factorization Method 73	3
		3.3.2 The Effect of Rounding Errors	8
		3.3.3 Implementation of LU Factorization	8
		3.3.4 Compact Forms of Factorization 80	0
	3.4	Other Types of Factorization 83	1
		3.4.1 LDM^T Factorization	1
		3.4.2 Symmetric and Positive Definite Matrices: The	
		Cholesky Factorization	2
		3.4.3 Rectangular Matrices: The QR Factorization 84	4
	3.5	Pivoting 8	7
	3.6	Computing the Inverse of a Matrix 9	1
	3.7	Banded Systems	
		3.7.1 Tridiagonal Matrices	3
		3.7.2 Implementation Issues 94	
	3.8	Block Systems 9	
		3.8.1 Block LU Factorization 9	
		3.8.2 Inverse of a Block-partitioned Matrix 9	
	0.0	3.8.3 Block Tridiagonal Systems	
	3.9	Sparse Matrices	9

		Contents XI
		3.9.1 The Cuthill-McKee Algorithm
		3.9.2 Decomposition into Substructures
		3.9.3 Nested Dissection
	3.10	Accuracy of the Solution Achieved Using GEM106
	3.11	An Approximate Computation of $K(A)$
	3.12	Improving the Accuracy of GEM112
		3.12.1 Scaling112
		3.12.2 Iterative Refinement
	3.13	Undetermined Systems
	3.14	Applications
		3.14.1 Nodal Analysis of a Structured Frame117
		3.14.2 Regularization of a Triangular Grid
	3.15	Exercises
4	Itera	ative Methods for Solving Linear Systems125
	4.1	On the Convergence of Iterative Methods125
	4.2	Linear Iterative Methods
		4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods 128
		4.2.2 Convergence Results for Jacobi and Gauss-Seidel
		Methods
		4.2.3 Convergence Results for the Relaxation Method 132
		4.2.4 A priori Forward Analysis
		4.2.5 Block Matrices
		4.2.6 Symmetric Form of the Gauss-Seidel and SOR
		Methods
		4.2.7 Implementation Issues
	4.3	Stationary and Nonstationary Iterative Methods
		4.3.1 Convergence Analysis of the Richardson Method 139
		4.3.2 Preconditioning Matrices
		4.3.3 The Gradient Method
		4.3.4 The Conjugate Gradient Method
		4.3.5 The Preconditioned Conjugate Gradient Method 158 4.3.6 The Alternating-Direction Method
	4.4	Methods Based on Krylov Subspace Iterations
	4.4	4.4.1 The Arnoldi Method for Linear Systems
		4.4.2 The GMRES Method
		4.4.3 The Lanczos Method for Symmetric Systems 168
	4.5	The Lanczos Method for Unsymmetric Systems170
	4.6	Stopping Criteria
	-	4.6.1 A Stopping Test Based on the Increment
		4.6.2 A Stopping Test Based on the Residual
	4.7	Applications
		4.7.1 Analysis of an Electric Network
		4.7.2 Finite Difference Analysis of Beam Bending178
	1Ω	Exercises 190

XII	Contents
XII	Contents

5	Appr		ion of Eigenvalues and Eigenvectors 183
	5.1		rical Location of the Eigenvalues
	5.2	Stabilit	y and Conditioning Analysis186
		5.2.1	A priori Estimates
		5.2.2	A posteriori Estimates
	5.3	The Po	wer Method192
		5.3.1	Approximation of the Eigenvalue of Largest
			Module
		5.3.2	Inverse Iteration
		5.3.3	Implementation Issues
	5.4	The QI	R Iteration
	5.5	The Ba	sic QR Iteration
	5.6	The QI	R Method for Matrices in Hessenberg Form 203
		5.6.1	Householder and Givens Transformation Matrices 203
		5.6.2	Reducing a Matrix in Hessenberg Form207
		5.6.3	QR Factorization of a Matrix in Hessenberg Form 209
		5.6.4	The Basic QR Iteration Starting from Upper
			Hessenberg Form
		5.6.5	Implementation of Transformation Matrices212
	5.7	The Q	R Iteration with Shifting Techniques
		5.7.1	The QR Method with Single Shift
		5.7.2	The QR Method with Double Shift
	5.8	Compu	ating the Eigenvectors and the SVD of a Matrix 220
		5.8.1	The Hessenberg Inverse Iteration
		5.8.2	Computing the Eigenvectors from the Schur Form
			of a Matrix
		5.8.3	Approximate Computation of the SVD of a
			Matrix
	5.9	The G	eneralized Eigenvalue Problem
		5.9.1	Computing the Generalized Real Schur Form 224
		5.9.2	Generalized Real Schur Form of Symmetric-Definite
			Pencils
	5.10	Metho	ds for Eigenvalues of Symmetric Matrices
		5.10.1	The Jacobi Method
		5.10.2	The Method of Sturm Sequences
	5.11	anczos Method233	
	5.12	Applic	eations
		5.12.1	Analysis of the Buckling of a Beam
		5.12.2	Free Dynamic Vibration of a Bridge
	5.13	Exerci	ises

Part	Ш	Around	Functions and Functionals	
6	Roc	otfinding	for Nonlinear Equations	247
	6.1		ioning of a Nonlinear Equation	
	6.2		netric Approach to Rootfinding	
		6.2.1	The Bisection Method	
		6.2.2	The Methods of Chord, Secant and Regula Falsi	
			and Newton's Method	253
		6.2.3	The Dekker-Brent Method	
	6.3	Fixed-r	point Iterations for Nonlinear Equations	260
		6.3.1	Convergence Results for Some Fixed-point Methods	
	6.4	Zeros o	f Algebraic Equations	
	0.1	6.4.1	The Horner Method and Deflation	
		6.4.2	The Newton-Horner Method	
		6.4.3	The Muller Method	
	6.5		ng Criteria	
	6.6		ocessing Techniques for Iterative Methods	
	0.0	6.6.1	Aitken's Acceleration	
		6.6.2	Techniques for Multiple Roots	
	6.7		ations	
	0	6.7.1	Analysis of the State Equation for a Real Gas	
		6.7.2	Analysis of a Nonlinear Electrical Circuit	
	6.8		es	
7	No	olinear S	systems and Numerical Optimization	285
•	7.1		n of Systems of Nonlinear Equations	
	•••	7.1.1	Newton's Method and Its Variants	
		7.1.2	Modified Newton's Methods	
		7.1.3	Quasi-Newton Methods	
		7.1.4	Secant-like Methods	
		7.1.5	Fixed-point Methods	
	7.2		strained Optimization	
	•••	7.2.1	Direct Search Methods	
		7.2.2	Descent Methods	
		7.2.3	Line Search Techniques	
		7.2.4	Descent Methods for Quadratic Functions	
		7.2.5	Newton-like Methods for Function Minimization	
		7.2.6	Quasi-Newton Methods	
		7.2.7	Secant-like methods	
	7.3		ained Optimization	
	1.0	7.3.1	Kuhn-Tucker Necessary Conditions for Nonlinear	
		1.0.1	Programming	318
		7.3.2	The Penalty Method	

XIV	Contents

		7.3.3 The Method of Lagrange Multipliers	
	7.4	Applications	
		7.4.1 Solution of a Nonlinear System Arising from	
		Semiconductor Device Simulation	
		7.4.2 Nonlinear Regularization of a Discretization Grid328	
	7.5	Exercises	
8	Poly	omial Interpolation333	
o	8.1	Polynomial Interpolation	
	0.1	8.1.1 The Interpolation Error	
		8.1.2 Drawbacks of Polynomial Interpolation on Equally	
		Spaced Nodes and Runge's Counterexample 336	
		8.1.3 Stability of Polynomial Interpolation	
	8.2	Newton Form of the Interpolating Polynomial	
	0.2	8.2.1 Some Properties of Newton Divided Differences 341	
		8.2.2 The Interpolation Error Using Divided Differences 343	
	8.3	Barycentric Lagrange Interpolation	
	8.4	Piecewise Lagrange Interpolation	
	8.5	Hermite-Birkoff Interpolation	
	8.6	Extension to the Two-Dimensional Case	
		8.6.1 Polynomial Interpolation	
		8.6.2 Piecewise Polynomial Interpolation	
	8.7	Approximation by Splines	
		8.7.1 Interpolatory Cubic Splines	
		8.7.2 B-splines	
	8.8	Splines in Parametric Form	
		8.8.1 Bézier Curves and Parametric B-splines	
	8.9	Applications	
		8.9.1 Finite Element Analysis of a Clamped Beam 370	
		8.9.2 Geometric Reconstruction Based on Computer	
		Tomographies	
	8.10	Exercises	
9	Nun	erical Integration	
	9.1	Quadrature Formulae	
	9.2	Interpolatory Quadratures	
		9.2.1 The Midpoint or Rectangle Formula	
		9.2.2 The Trapezoidal Formula	
		9.2.3 The Cavalieri-Simpson Formula	
	9.3	Newton-Cotes Formulae	
	9.4	Composite Newton-Cotes Formulae	
	9.5	Hermite Quadrature Formulae394	
	9.6	Richardson Extrapolation	
	<u> </u>	9.6.1 Romberg Integration	
	9.7	Automatic Integration	

			Contents	XV
		9.7.1	Nonadaptive Integration Algorithms	400
		9.7.2	Adaptive Integration Algorithms	
	9.8	Singula	ar Integrals	
		9.8.1	Integrals of Functions with Finite Jump	-
			Discontinuities	406
		9.8.2	Integrals of Infinite Functions	407
		9.8.3	Integrals over Unbounded Intervals	409
	9.9		imensional Numerical Integration	
		9.9.1	The Method of Reduction Formula	
		9.9.2	Two-Dimensional Composite Quadratures	
		9.9.3	Monte Carlo Methods for Numerical Integration	
	9.10		ations	
		9.10.1	Computation of an Ellipsoid Surface	417
		9.10.2	Computation of the Wind Action on a	44.0
	0.11	T	Sailboat Mast	
	9.11	Exercis	ses	421
ar	t IV I	[ransfo	rms, Differentiation and Problem Discretizat	ion
.0			Polynomials in Approximation Theory	
	10.1		cimation of Functions by Generalized Fourier Series	
		10.1.1	v	
	100	$\frac{10.1.2}{2}$	v	
	10.2		an Integration and Interpolation	
	10.3	-	shev Integration and Interpolation	
	$10.4 \\ 10.5$	-	re Integration and Interpolation	
	10.5 10.6		an Integration over Unbounded Intervals ms for the Implementation of Gaussian	438
	10.0	_	atures	430
	10.7		simation of a Function in the Least-Squares Sense	
	10.1		Discrete Least-Squares Approximation	
	10.8		olynomial of Best Approximation	
	10.9		Trigonometric Polynomials	
	2010		The Gibbs Phenomenon	
		10.9.2	The Fast Fourier Transform	450
	10.10		cimation of Function Derivatives	
			Classical Finite Difference Methods	
			Compact Finite Differences	
			Pseudo-Spectral Derivative	
	10.11	Transfo	orms and Their Applications	460
		10.11.1	The Fourier Transform	460
			(Physical) Linear Systems and Fourier Transform.	
		10.11.3	(Physical) Linear Systems and Fourier Transform. The Laplace Transform	465

XVI	Contents

	10.12		$ m velet\ Transform\ \dots 468$	
		10.12.1	The Continuous Wavelet Transform	
		10.12.2	Discrete and Orthonormal Wavelets	
	10.13	Applica	$tions \dots 472$	
		10.13.1	Numerical Computation of Blackbody Radiation 472	
		10.13.2	Numerical Solution of Schrödinger Equation 474	:
	10.14		es	
11	Num	erical S	colution of Ordinary Differential Equations 479	į
	11.1		uchy Problem	
	11.2	One-Ste	ep Numerical Methods	:
	11.3		s of One-Step Methods483	
		11.3.1	The Zero-Stability	
		11.3.2	Convergence Analysis	
		11.3.3	The Absolute Stability	
	11.4	Differen	ace Equations	
	11.5		ep Methods	
		11.5.1	Adams Methods500	
		11.5.2	BDF Methods502	2
	11.6	Analysi	s of Multistep Methods502	
		11.6.1	Consistency	
		11.6.2	The Root Conditions	Į
		11.6.3	Stability and Convergence Analysis for Multistep	
			Methods 505	5
		11.6.4	Absolute Stability of Multistep Methods 509	}
	11.7	Predict	or-Corrector Methods511	L
	11.8	Runge-	Kutta (RK) Methods	3
		11.8.1	Derivation of an Explicit RK Method521	L
		11.8.2	Stepsize Adaptivity for RK Methods 521	L
		11.8.3	Implicit RK Methods	3
		11.8.4	Regions of Absolute Stability for RK Methods 525	5
	11.9	System	s of ODEs526	3
	11.10) Stiff Pi	${ m roblems}$	3
	11.11	l Applica	${f ations}$	0
			Analysis of the Motion of a Frictionless Pendulum 531	
		11.11.2	Compliance of Arterial Walls532	2
	11.15	2 Exercis	ses	6
12	$\mathbf{T}\mathbf{w}$		Boundary Value Problems	
	12.1	A Mod	lel Problem539	9
	12.2	Finite	Difference Approximation	1
,		12.2.1	Stability Analysis by the Energy Method 549	
		12.2.2	Convergence Analysis	
		12.2.3	Finite Differences for Two-Point Boundary Value	
			Problems with Variable Coefficients54	8

				Contents	XVII
1:	2.3	The Sp	ectral Collocation Method		550
1:	2.4		lerkin Method		
		12.4.1	Integral Formulation of Boundary Value	Problems	552
		12.4.2	A Quick Introduction to Distributions		554
		12.4.3	Formulation and Properties of the Gale	erkin	
			Method		555
		12.4.4	Analysis of the Galerkin Method		556
		12.4.5	The Finite Element Method		558
		12.4.6	Implementation Issues		
		12.4.7	Spectral Methods		566
1:	2.5	Advect	ion-Diffusion Equations		
		12.5.1	Galerkin Finite Element Approximation		569
		12.5.2	The Relationship between Finite Eleme	nts and	
			Finite Differences; the Numerical Viscos		
		12.5.3	Stabilized Finite Element Methods		
	2.6	-	${f k}$ Glance at the Two-Dimensional Case $$.		
1:	2.7		tions		
		12.7.1	Lubrication of a Slider		583
		12.7.2	Vertical Distribution of Spore Concentration		
			Wide Regions		
1:	2.8	Exercis	es	• • • • • • • • •	586
13 P	Paral	bolic a	nd Hyperbolic Initial Boundary Va	lue	
					589
13	3.1	The He	at Equation		589
13	3.2		Difference Approximation of the Heat Eq		
13	3.3		Element Approximation of the Heat Equa		
			Stability Analysis of the θ -Method		
13	3.4	Space-7	Time Finite Element Methods for the H	eat	
		Equation	on		601
13	3.5	Hyperb	olic Equations: A Scalar Transport Prob	lem	604
13	3.6	System	s of Linear Hyperbolic Equations		607
		13.6.1	The Wave Equation		608
13	3.7	The Fi	nite Difference Method for Hyperbolic Eq	uations	609
		13.7.1	Discretization of the Scalar Equation		610
13	3.8	Analysi	s of Finite Difference Methods		611
		13.8.1	Consistency		612
		13.8.2	Stability		
		13.8.3	The CFL Condition		
		13.8.4	Von Neumann Stability Analysis		
13	3.9		tion and Dispersion		
		13.9.1	Equivalent Equations		
13	3.10		Element Approximation of Hyperbolic Eq	•	624
		13.10.1	Space Discretization with Continuous a		
			Discontinuous Finite Elements		625

XVIII Contents

13.10.2 Time Discretization	627
13.11 Applications	630
13.11.1 Heat Conduction in a Bar	630
13.11.2 A Hyperbolic Model for Blood Flow Interaction	
with Arterial Walls	630
13.12 Exercises	632
References	635
Index of MATLAB Programs	645
Index	649