Optimization methods

Summer School 2015 - Angers

Laetitia JOURDAN

Positionning

- * Bioinformatics
- * The creation and development of advanced information and computational techniques for solving problems in biology

- * Combinatorial optimization
- * Solve instances of problems that are believed to be hard in general, by exploring the usually-large solution space of these instances

Definition combinatorial Optimization

* Wikipedia

* Combinatorial optimization is a topic in theoretical computer science and applied mathematics that consists of finding the least-cost solution to a mathematical problem in which each solution is associated with a numerical cost.

Combinatorial problem

- * Model: different elements to be defined
 - * Solutions
 - * How to characterize a solution?
 - * How to define feasible solutions?
 - * Objective function
 - * What is the criterion to optimize (cost, duration...)?
 - * Is there only one criterion?

Classical problems

- Assignment problem
- * Closure problem
- * Constraint satisfaction problem
- * Cutting stock problem
- * Integer programming
- Knapsack problem
- * Minimum spanning tree
- Nurse scheduling problem
- * Vehicle routing problem
- * Vehicle rescheduling problem
- * Weapon target assignment problem

The traveling salesman problem

- NP-hard problem
 - * No efficient (polynomial) algorithm
- * Simple resolution: Exhaustive enumeration of all solutions If N cities → (N-1)! Possibilities

```
    Ex: 5 cities → 12 possibilities 6 μsec
    10 cities → 181 440 possibilities 0,09 sec
    20 cities → 60 × 1015 964 years
```

* Let's suppose a computer requires 1/2 microsecond to evaluate a tour.

Need efficient combinatorial optimization methods

Combinatorial optimization methods

Metaheuristics

* Wikipedia

- In computer science, metaheuristic designates a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
- * Metaheuristics make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions.
- * However, metaheuristics do not guarantee an optimal solution is ever found.
- Many metaheuristics implement some form of stochastic optimization.

* Classical metaheuristics:

* Descent method, Tabu search, Simulated Annealing, Genetic Algorithms

The Concept of Metaheuristic Algorithms

- * Metaheuristics comes from greek words
 - * Meta: beyond means higher level
 - * Heuriskein (heuristics) means to find. (Glover, 1986)
- * cleverness of Metaheuristics will come from two complementary notions:
 - diversification: exploration of the search space
 - * intensification: exploitation of the accumulated search experience
- * To solve an optimization problem we need to define three elements:
 - * a search space
 - * an objective function
 - * a neighborhood

Encoding

- TSP problem with n towns: permutation of numbers, from 1, ..., n. 1number=1town.
 - * Size of the search space= n!
 - * TSP symetrical: n! / 2
 - * Same start/end: (n-1)! / 2

1 5 2 4 3 7 6

Evaluation

* Quality of the solution = length of the tour

Descent method

- * Hill climbing
- * Gradient method
- * Neighborhood notion
 - * Small modification
 - * Local search
- Landscape representation
- * From an initial solution
 - * Look for a best neighbor
 - * Move to this neighbor
 - * When no better neighbor → local optimum

Neighbors

Descent method

Descent method

- * Hill climbing
- * Gradient method
- * Neighborhood notion
 - * Small modification
 - * Local search
- * Landscape representation
- * From an initial solution
 - * Look for a best neighbor
 - * Move to this neighbor
 - * When no better neighbor → local optimum

Minimization problem

Local search and neighbors

- * Should we make a thorough search and examine all
- neighbors?
 - * no: less computation, best first search
 - * yes: more computation,
- * what to do if there are several neighbors of same quality? (Parallelization)

Background - OR Local optimum

- * Hill climbing
- * Gradient method
- * Neighborhood notion
 - * Small modification
 - * Local search
- * Landscape representation
- * From an initial solution
 - * Look for a best neighbor
 - * Move to this neighbor
 - * When no better neighbor → local optimum

Minimization problem

How to escape

- accept neighbors of same quality
- accept neighbors of lower quality (SA)
- * start search from new configuration
- * Iterated Local search
 - perturbation of current configuration followed by LS
- * change the neighborhood (VNS)
- * change the objective function

Minimization problem

Tabu search [Glover, 1986]

- * From an initial solution
 - * Look for a best neighbor
 - * Move to this neighbor
 - * When no better neighbor
 - * May degrade the solution
 - * Interdiction to come back to recently visited solution (tabu solutions)
 - * Parameters:
 - * Tabu move
 - * Size of the Tabu list (short term memory)

Simulated annealing [Kirkpatrick, 1983]

- Name inspired from annealing in metallurgy
- * From an initial solution
 - Look for a neighbor
 - * If better solution
 - * Move to this neighbor
 - * If not
 - Accept to move to this neigbhor according to a probability that depends on a temperature T
 - * Parameters:
 - * Management of temperature T

Evolutionary algorithms

- * Apply principles of Darwin and Lamark to resolution of problems in computer science:
 - * evolution is based on competition and selection
 - * that leads to survival of the fittests,
 - * transmission of acquired characters to descendants
 - * mutation of genes
- * Main approaches
 - * Evolutionary Programming
 - * Evolution Strategy
 - Genetic Algorithms (GA)

Genetic algorithm [Holland, 1975]

- Population based (set of solutions)
- Inspired by natural evolution
 - Inheritance
 - Selection
 - Mutation ...
- Global improvement
- Components
 - (gene, chromosome) **Encoding technique**
 - Initialization procedure (creation)
 - **Evaluation function** (environment)
 - Selection of parents (reproduction)
 - Genetic operators (mutation, recombination)
 - Parameter settings (practice and art)

Simple GA

```
initialize population;
evaluate population;
while TerminationCriteriaNotSatisfied
{
    select parents for reproduction;
    perform recombination and mutation;
    evaluate population;
    Maintain population
}
```


Evaluation

* 1 Individual = a solution = a chromosome = genotype

0

* 1 individual quality = phenotype = fitness

gene

* Evaluation = problem dependent

Selection

* a proportion of the existing population is selected to breed a new generation.

GA Parent Selection - Roulette Wheel

Roulette Wheel Selection

- * Sum the fitnesses of all the population members, TF
- * Generate a random number, m, between o and TF
- * Return the first population member whose fitness added to the preceding population members is greater than or equal to m

GA Parent Selection - Tournament

* Select k individuals at random. The individual with the highest evaluation becomes the parent. Repeat to find a second parent

GA - Mutation

- * Local modification (as neighbor)
- * Causes movement in the search space (local or global)
- * Restores lost information to the population

GA – maintain population

* Deletion

- * Delete-All: Deletes all the members of the current population and replaces them with the same number of chromosomes that have just been created
- * Steady-State: Deletes n old members and replaces them with n new members; n is a parameter But do you delete the worst individuals, pick them at random or delete the chromosomes that you used as parents?
- * Steady-State-No-Duplicates: Same as steady-state but checks that no duplicate chromosomes are added to the population. This adds to the computational overhead but can mean that more of the search space is explored

Crossover/recombination

- * combine two or more individuals to get one or a set of children
- * is a critical feature of genetic algorithms:
 - * It greatly accelerates search early in evolution of a population
 - * It leads to effective combination of schemata (subsolutions on different chromosomes)

Crossover/recombination

Other paradigms

- * ANTS based metaheuristics (ACO): behavior of ants seeking a path between their colony and a source of food
- * PSO based metaheuristics (particle swarm, birds, fishes)
- * Bees: mimics the food foraging behaviour of swarms of honey bees
- * Firefly Algorithm: attractiveness is proportional to the light intensity seen by adjacent fireflies
- * Cuckoo Search: based on the brood parasitism of some cuckoo species
- Monkey Search: inspired by the behavior of a monkey climbing trees looking for food
- * Harmony Search: inspired by the improvisation process of musicians

Background - OR Multi-objective optimisation:

Motivations

- * Many real world problems are multi-objective by nature
- * Objectives may be in conflict
- * Not always possible to construct a single criterion

Background - OR

Multi-objective Main concepts

*Multi-objective Optimization Problem (MOP):

(MOP) =
$$\begin{cases} \min (\text{or max}) f(x) = (f_1(x), f_2(x), ..., f_n(x)) \\ \text{Subject to } x \in X \end{cases}$$

- * $n \ge 2$ objective functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$
- * $x \in X$ is a decision vector $(x_1, x_2, ..., x_k)$
- * X is the set of feasible solutions in the decision space
- * Z is the set of feasible points in the objective space

Dealing with multiple objectives

- **Definitions:**
 - * z E Z dominates z' E Z iff $\forall i \in [1..n], zi \leq zi' \text{ and } \exists j \in [1..n], zj < zi'$ zj'.
 - * z E Z is a non-dominated vector if there does not exist another z' E Z such that z' dominates z.
 - * The Pareto frontier is the set of all non-dominated points.
 - * The efficient set is the set of all efficient solution.

- non-dominated point
- dominated point

objective space

Difficulties of MOP

- * Definition of the optimality: partial order relation, final choice depend on the decision
- * Number of Pareto solutions grows with the problem size and the number of criteria
- * For non convex MOP, solutions are not all located on the domain boundary but also in the convex hull → difficulty to find them.
- Performance assessment is difficult
 (comparisons of methods = comparisons of sets of solutions)

Population based algorithms are well fitted to solve Multi-objective problems

Issues in EMO [Ziztler'02]

Non-dominated Sorting GA (NSGA-II) [Deb et al. 2002]

* Initialization of population P

- Pareto based
- * Fitness assignment non-dominated sorting
 - * Population divided into fronts
 - * Fitness (x) = index of the front x belongs to
- *** Diversity** preservation ⇔ crowding distance.
- *** Selection** ⇔ Binary tournament
- * Recombination and mutation operators
- * Replacement N worst individuals are removed

Indicator-Based EA (IBEA) [Zitzler et al. 2004]

Indicator based

- * Initialization of population P
- * Fitness assignment quality indicator Qi:
 - * Fitness (x) = Qi(x, P(x))
- * Diversity preservation ⇔ none
- * Selection ⇔ binary tournament
- Recombination and mutation operators
- * Replacement ⇔ remove the worst individual and update fitness values until |P| = N
- * Elitism ⇔ Archive A of potentially efficient solutions

Performance assessment

Issues: quality measures, statistical testing, benchmark problems, visualization, ...

Popular approach: unary quality measures

- Assign each outcome a real number
- Outcomes are compared by comparing the corresponding values

Conclusion

- * In general, there is no method always better than the others on all types of problems, it depends on the problem instance (No Free Lunch).
- * Metaheuristics are not problem-specific
- * the basic concepts of metaheuristics permits an abstract level description
- * Adapted to bioinformatics
 - * Adapted to discover near optimal solutions
 - * Can cope with difficult problems with black box evaluation