

Markov Chains

Sarah Filippi
Department of Statistics
http://www.stats.ox.ac.uk/~filippi

TA: Patrick Gemmel

With grateful acknowledgements to Prof. Yee Whye Teh's slides from 2013–14.

My use of statistics

- I work on a range of topics in computational statistics focused on understanding biological processes and their relation to disease.
- Using Bayesian statistics and stochastic models.
- I did a PhD in reinforcement learning, a field at the intersection of statistics, machine learning and artificial intelligence.

Schedule

- 09:30-10:30 Lecture: Introduction to Markov chains
- 10:30-12:00 Practical
- 12:00-13:00 Lunch
- 13:00-14:00 Lecture: Continuous Markov Chain
- 14:00-15:30 Practical

Practicals

- Some mathematical derivations.
- Some programming in:
 - R
 - MATLAB
- Probably not possible to do all practicals; pick and choose.
- Package available at

http://www.stats.ox.ac.uk/~filippi/teaching.html

Markov Chains

Sequential Processes

- Sequence of random variables X_0 , X_1 , X_2 , X_3 ,...
- Not iid (independently and identically distributed).
- Examples:
 - X_i = Rain or shine on day i.
 - X_i = Nucleotide base at position i.
 - X_i = State of system at time i.
- Joint probability can be factorized using Bayes' Theorem:

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2 \dots)$$

$$= \mathbb{P}(X_0 = x_0) \mathbb{P}(X_1 = x_1 | X_0 = x_0) \mathbb{P}(X_2 = x_2 | X_0 = x_0, X_1 = x_1) \dots$$

Markov Assumption

• Markov Assumption: each X_i only depends on the previous X_{i-1} .

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2 \dots)
= \mathbb{P}(X_0 = x_0) \mathbb{P}(X_1 = x_1 | X_0 = x_0) \mathbb{P}(X_2 = x_2 | X_0 = x_0, X_1 = x_1) \dots
= \mathbb{P}(X_0 = x_0) \mathbb{P}(X_1 = x_1 | X_0 = x_0) \mathbb{P}(X_2 = x_2 | X_1 = x_1) \dots$$

- Future is independent of the past, given the present.
- Process "has no memory".

Higher order Markov chains:

$$\mathbb{P}(X_t = x_t | X_0 = x_0, \dots, X_{t-1} = x_{t-1})$$

$$= \mathbb{P}(X_t = x_t | X_{t-k} = x_{t-k}, \dots, X_{t-1} = x_{t-1})$$

Random Pub Crawl

Jukes-Cantor DNA Evolution

	$\rightarrow A$	$\rightarrow G$	$\rightarrow C$	$\rightarrow T$
\overline{A}	$1-3\epsilon$	ϵ	ϵ	ϵ
G	$1 - 3\epsilon$ ϵ	$1 - 3\epsilon$	ϵ	ϵ
C	ϵ	ϵ	$1-3\epsilon$	ϵ
T		ϵ	ϵ	$1-3\epsilon$

- Mutation process operates independently at each position.
- Small total probability 3**ɛ** of a mutation happening at each generation.

Random Walk on **Z**

- Start at 0.
- Move up or down with probability 1/2.

Parameterization

• Initial distribution:

$$\mathbb{P}(X_0 = i) = \lambda_i$$

• Transition probability matrix:

$$\mathbb{P}(X_t = j | X_{t-1} = i) = T_{ij}$$

- Homogeneous Markov chains (transition probabilities do not depend on the time step)
- Inhomogeneous Markov chains transitions do depend on time step.

Transition probability matrix

- Transition probability matrix *T* has to have:
 - non-negative entries
 - rows that sum to 1
- Any such matrix is a transition probability matrix.

State Transition Diagrams

Simulating Random Pub Crawl (*)

- Write a programme to simulate from the random pub crawl. (From the "home" state allow probability 1/2 of going back to the Royal Oak).
- Starting from the Home state, run your programme 1000 times, each time simulating a Markov chain of length 100.
- Each simulation should be a random sequence of values $(s_1, s_2, s_3, ..., s_{100})$ where each s_i is a pub.
- Collect statistics of the number of times each state is visited at each time step t = 1...100.
- How do the statistics defer if you started at Magdelen Arms?
- Does the distribution over states visited at step t converge for large t?
- Approximately how long does it take for the chain to "forget" whether it started at Home or at Magdelen Arms?

Useful Properties of Markov Chains

Chapman-Kolmogorov Equations

• We can calculate multi-step transition probabilities recursively:

$$\mathbb{P}(X_{t+2} = j | X_t = i) = \sum_{k} \mathbb{P}(X_{t+2} = j | X_{t+1} = k) \mathbb{P}(X_{t+1} = k | X_t = i)$$

$$= \sum_{k} T_{ik} T_{kj}$$

$$= (T^2)_{ij}$$

• Similarly:

$$P_{ij}^{(m)} := \mathbb{P}(X_{t+m} = j | X_t = i)$$

$$= \sum_{k} \mathbb{P}(X_{t+m} = j | X_{t+1} = k) \mathbb{P}(X_{t+1} = k | X_t = i)$$

$$= \sum_{k} P_{ik}^{(m-1)} T_{kj}$$

$$= (T^m)_{ij}$$

Marginal Distributions

• Similarly we can calculate the marginal probabilities of each *X_i* recursively:

$$P_i^{(t)} := \mathbb{P}(X_t = i)$$

$$= \sum_k \mathbb{P}(X_{t-1} = k) \mathbb{P}(X_t = i | X_{t-1} = k)$$

$$= \sum_k P_k^{(t-1)} T_{ki}$$

$$= (\lambda T^t)_i$$

• where we take λ to be a row vector describing the initial probability distributions.

Communicating Classes

Periodicity

• Period of i:

 $gcd\{n : \mathbb{P}(\text{returning to } i \text{ from } i \text{ in } n \text{ steps}) > 0\}$

- If a chain is irreducible, then all states have the same period.
- If the period is 1, then we say the chain is aperiodic.

Recurrence and Transience

- If we start at state i, what is the chance that we will return to i?
- Two possibilities:

<u>Case 1:</u>

$$\mathbb{P}(\exists t > 0 : X_t = i | X_0 = i) = p < 1$$

- Total number of times we will encounter *i* in all future will be finite.
- State *i* is **transient**.

<u>Case 2:</u>

$$\mathbb{P}(\exists t > 0 : X_t = i | X_0 = i) = 1$$

- We will return to *i* infinitely often.
- State *i* is **recurrent**.
- A state *i* is recurrent if and only if $\sum_{t} P_{ii}^{(t)} = \infty$

Random Walk on **Z**

- Start at 0.
- Move up or down with probability 1/2.

- 10 -10 -20 -30 -40 -50 0 2000 4000 6000 8000 10000 12000
- It equals 0 if there are exactly t +1's, and t -1's.
- This probability is

$$P_{00}^{(2t)} = \frac{(2t)!}{t!t!} \left(\frac{1}{2}\right)^{2t} \approx \frac{1}{\sqrt{\pi}\sqrt{t}}$$

using Stirling's Formula:

$$n! \approx \sqrt{2\pi} n^{n+1/2} e^{-n}$$

• This sums to infinity over t, so chain is recurrent.

Positive Recurrence and Null Recurrence

- Recurrence:
 - Chain will revisit a state infinitely often.
 - From state *i* we will return to *i* after a (random) finite number of steps.
- But the expected number of steps can be infinite!
 - This is called null recurrence.
- If expected number of steps is finite, this is called positive recurrent.
- Example: random walk on **Z**.

Communicating Classes

• Find the communicating classes and determine whether each class is open or closed, and the periodicity of the closed classes.

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1/4 & 1/4 & 1/4 & 1/4 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/4 & 0 & 3/4 & 0 \\ 0 & 0 & 1/3 & 0 & 2/3 \\ 1/4 & 1/2 & 0 & 1/4 & 0 \\ 1/3 & 0 & 1/3 & 0 & 1/3 \end{pmatrix}$$

Convergence of Markov Chains

Do Markov Chains Forget?

- A Markov chain on {0,1,2,...,100}.
- At each step: move up or down by 1 at random, except at boundaries.
- Start at 0 and at 100.

Do Markov Chains Forget?

Stationary Distribution

• If a Markov chain "forgets" then for any two initial distributions/ probability vectors λ and γ ,

$$\lambda T^n \approx \gamma T^n$$
 for large n

• In particular, there is a distribution/probability vector π such that

$$\lambda T^n \to \pi \quad \text{as } n \to \infty$$

• Taking $\lambda = \pi$, we see that

$$\pi T = \pi$$

- Such a distribution is called a stationary or equilibrium distribution.
 - When do Markov chains have stationary distributions?
 - When are stationary distributions unique?

Convergence Theorems

- A positive recurrent Markov chain *T* has a stationary distribution.
- If T is irreducible and has a stationary distribution, then it is unique and

$$\pi_i = \frac{1}{m_i}$$

where m_i is the mean return time of state i.

• If T is irreducible, aperiodic and has stationary distribution π then

$$\mathbb{P}(X_n = i) \to \pi_i \quad \text{as } n \to \infty$$

• (Ergodic Theorem): If T is irreducible with stationary distribution π then

$$\frac{\#\{t \le n : X_t = i\}}{n} \to \pi_i \quad \text{as } n \to \infty$$

Stationarity and Reversibility

 Global balance: at a stationary distribution, the flow of probability mass into and out of each state has to be balanced:

$$\sum_{i=1}^{K} \pi_i T_{ij} = \pi_j = \sum_{k=1}^{K} \pi_j T_{jk}$$

 Detailed balance: the flow of probability mass between each pair of states is balanced:

$$\pi_i T_{ij} = \pi_j T_{ji}$$

- A Markov chain satisfying detailed balance is called reversible. Reversing the dynamics leads to the same chain.
- Detailed balance can be used to check that a distribution is the stationary distribution of a irreducible, periodic, reversible Markov chain.

Eigenvalue Decomposition

• The stationary distribution is a left eigenvector of T, with eigenvalue 1.

$$\pi T = \pi$$

- All eigenvalues of T have length ≤ 1. (Some eigenvalues can be complex valued).
- If there is another eigenvector with eigenvalue 1, then stationary distribution is not unique.

Random Walk

- Show that a random walk on a connected graph is reversible, and has stationary distribution π with π_i proportional to deg(i), the number of edges connected to i.
- What is the probability the drinker is at home at Monday 9am if he started the pub crawl on Friday?

Stationary Distributions

 Solve for the (possibly not unique) stationary distribution(s) of the following Markov chains.

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1/4 & 1/4 & 1/4 & 1/4 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/4 & 0 & 3/4 & 0 \\ 0 & 0 & 1/3 & 0 & 2/3 \\ 1/4 & 1/2 & 0 & 1/4 & 0 \\ 1/3 & 0 & 1/3 & 0 & 1/3 \end{pmatrix}$$

Estimating Markov Chains

Maximum Likelihood Estimation

- Observe a sequence x_0 , x_1 , x_2 , x_3 ,... x_t .
- Likelihood of the sequence under the Markov chain model is:

$$\mathcal{L}(\lambda, T) = \lambda_{x_0} \prod_{s=1}^{t} T_{x_{s-1}x_s} = \lambda_{x_0} \prod_{i=1}^{K} \prod_{j=1}^{K} T_{ij}^{N_{ij}}$$

where N_{ij} is the number of observed transitions $i \rightarrow j$.

• We can solve for the maximum likelihood estimator:

$$T_{ij} = \frac{N_{ij}}{\sum_{k=1}^{K} N_{ik}}$$

Markov Model of English Text (*)

- Download a large piece of English text, say "War and Peace" from Project Gutenberg.
- We will model the text as a sequence of characters.
- Write a programme to compute the ML estimate for the transition probability matrix.
- You can use the file markov_text.R or markov_text.m to help convert from text to the sequence of states needed. There are *K* = 96 states and the two functions are text2states and states2text.
- Generate a string of length 200 using your ML estimate.
- Does it look sensible?

Continuous-Time Markov Chains

Jukes-Cantor DNA Evolution

- Probability of mutation is $O(\varepsilon)$ per generation.
- mutations will appear at rate of once every O(1/ε) generations.
- Measuring time in units of 1/ε leads to a continuous-time Markov chain.
- In each time step of length ε , total probability of a mutation is 3ε .

$$P = \begin{pmatrix} 1 - 3\epsilon & \epsilon & \epsilon & \epsilon \\ \epsilon & 1 - 3\epsilon & \epsilon & \epsilon \\ \epsilon & \epsilon & 1 - 3\epsilon & \epsilon \\ \epsilon & \epsilon & \epsilon & 1 - 3\epsilon \end{pmatrix} = I + \epsilon \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix}$$

Continuous-time Markov Chains

- A collection of random variables $(X_t)_{t\geq 0}$.
- An initial distribution λ and a transition rate matrix R.
- Suppose $X_t = i$. Then in the next ε time,

$$\mathbb{P}(X_{t+\epsilon} = j | X_t = i) = I_{ij} + \epsilon R_{ij}$$

- Rows of R sum to 0.
- Off-diagonal entries are non-negative.
- On-diagonal entries are negative of sum of off-diagonal ones.

$$\begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix}$$

Lotka-Volterra Process (Predator-Prey)

 A continuous-time Markov chain over N², number of predators and preys in an ecosystem.

$$R(\{x,y\} \to \{x+1,y\}) = \alpha x$$
 $R(\{x,y\} \to \{x-1,y\}) = \beta xy$ $R(\{x,y\} \to \{x,y+1\}) = \delta xy$ $R(\{x,y\} \to \{x,y-1\}) = \gamma y$

Gillespie's Algorithm

- Start by sampling X_0 from initial distribution λ .
- When in state i, wait in state for an amount of time distributed as $\operatorname{Exp}(|R_{ii}|)$
- At end of waiting time, transition to a different state $j \neq i$ with probability $(R_{i1}, R_{ii+1}, 0, R_{ii+1}, R_{ii})$

$$\frac{(R_{i1}, \dots, R_{ij-1}, 0, R_{ij+1}, \dots, R_{iK})}{|R_{ii}|}$$

Chapman-Kolmogorov Equations

- Denote P(t) the transition probability matrix over time interval t.
- Transition probabilities can be computed using matrix exponentiation:

$$P(t)_{ij} := \mathbb{P}(X_t = j | X_0 = i)$$

$$= \mathbb{P}(X_{tn\frac{1}{n}} = j | X_0 = i)$$

$$\approx ((I + \frac{1}{n}R)^{tn})_{ij} \to \exp(tR)_{ij}$$

Composition of transition probability matrices:

$$P(t+s) = \exp((t+s)R) = \exp(tR)\exp(sR) = P(t)P(s)$$

Forward/backward equations:

$$P(t+\epsilon) = P(t)(I+\epsilon R)$$

$$\frac{\partial P(t)}{\partial t} \approx \frac{P(t+\epsilon) - P(t)}{\epsilon} \to P(t)R = RP(t)$$

Convergence to Stationary Distribution

- Suppose we have an
 - irreducible,
 - aperiodic and
 - positive recurrent

continuous-time Markov chain with rate matrix R.

• Then it has a unique stationary distribution π which it converges to:

$$\mathbb{P}(X_t = i) \to \pi_i \quad \text{as } t \to \infty$$

$$\frac{1}{T} \int_0^T \mathbf{1}(X_t = i) \to \pi_i \quad \text{as } t \to \infty$$

Reversibility and Detailed Balance

- If a Markov chain with rate matrix R has reached its stationary distribution π , then flow of probability mass into and out of states is balanced.
- Global balance:

$$\sum_{i=1}^{K} \pi_i R_{ij} = 0 = \sum_{k=1}^{K} \pi_j R_{jk}$$

$$\sum_{i \neq j} \pi_i R_{ij} = \pi_j |R_{jj}| = \sum_{k \neq j} \pi_j R_{jk}$$

Detailed balance for reversible chains:

$$\pi_i R_{ij} = \pi_j R_{ji}$$

Kimura 80 Model

• Rate matrix:

 Distinguish between transitions A↔G (purine) and C↔T (pyrimidine) and transversions.

• Practical: show that the stationary distribution of K80 model is uniform over {A,G,C,T}.

Felsenstein 81 Model

• Rate matrix:

• Practical: Find the stationary distribution of the F81 model.

Predator-Prey Model (*)

• Use Gillespie's algorithm to simulate from the predator-prey model:

$$R(\{x,y\} \to \{x+1,y\}) = \alpha x$$
 $R(\{x,y\} \to \{x-1,y\}) = \beta xy$ $R(\{x,y\} \to \{x,y+1\}) = \delta xy$ $R(\{x,y\} \to \{x,y-1\}) = \gamma y$

- You can represent the continuous-time trajectory using a sequence of pairs (t_0,s_0) , (t_1,s_1) ,... (t_A,s_A) , where
 - $t_0 = 0$, s_0 is the initial state at time 0,
 - each subsequent pair (t_a, s_a) is the next state and the time the chain jumps to the state.
- How is the dynamics of the model affected by the parameters α , β , γ , δ ?

Summary

- Definition of Markov Chains
- Properties of Markov Chains
 - Communication classes
 - Recurrence and Transience
 - Periodicity
- Convergence of Markov Chains: Stationary Distribution
- Estimation of Markov Chains
- Continuous Time Markov Chains