Лабораторная работа 1.3.1.

ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА

Попова Софья Б04-401

October 2024

Цель работы

Экспериментально получить зависимость между напряжением и деформацией (закон Гука) для простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба.

Часть 1: Определение модуля Юнга на основе исследования деформаций растяжения проволоки.

Оборудование

Прибор Лермантова, проволока из исследуемого материала, лазер закрепленный на шкале, набор грузов, микрометр, двухметровая линейка.

Теоретическая часть

Связь между удлиннением проволоки Δl и силой P, вызывающей это удлинение, выражается законом Γ ука:

$$\frac{P}{S} = E \frac{\Delta l}{l} \tag{1}$$

где l - начальная длина проволоки, S - ее сечение, E - константа, характеризующая упругие свойства материала (модуль Юнга).

Проволока слабо растяжима, следовательно справедлива оценка $\Delta l \ll r$, где r - длина рычага. С учетом этого, угол наклона зеркальца к горизонтали можно найти как $\alpha = \frac{\Delta l}{r}$. С другой стороны, $\alpha = \frac{n}{2h}$, где n - показания шкалы, h - расстояние от шкалы до зеркальца. Таким образом, удлинение проволоки можно выразить как:

$$\Delta l = n \frac{r}{2h} \tag{2}$$

Экспериментальная часть

1.

Расстояние до зеркала: $h = 150, 5 \pm 0, 5$ см $(= 1, 505 \pm 0, 005$ м)

Длина рычага: r = 13мм (= 0,013м)

2.

Диаметр проволоки: d = 0,73мм (= 0,00078м)

Сечение $S \approx 0.42$ мм $^2 (= 4.2 \cdot 10^{-7}$ м $^2)$

3.

Длина проволоки: $l=178\pm 1$ см (= $1,78\pm 0,01$ м)

4.

Максимальная величина нагрузки: $\sigma S = 90 \cdot 0.42 = 37,8$ кг

30% от максимальной величины = 11,34кг

Это меньше макссимальной массы, которую можно получить всеми грузами, значит в ходе эксперимента масса не выйдет за пределы области, где удлинение проволоки пропорционально ее

натяжению. Это подтвердилось в ходе экспериментальной проверки (остаточные деформации не наблюдались).

5.

Расчет Δl производим по формуле (2), а погрешность измерения Δl оцениваем по формуле:

$$\varepsilon_{\Delta l} = \sqrt{(\frac{\sigma_n}{n})^2 + (\frac{\sigma_r}{r})^2 + (\frac{\sigma_h}{h})^2}$$

где
$$\frac{\sigma_n}{n}<1\%,\,r$$
 - дано, $\frac{\sigma_h}{h}=\frac{0.5}{1,505}<1\%$. Значит $\varepsilon_{\Delta l}<1\%$ Из (1): $E=\frac{Pl}{S\Delta l}=\frac{lg}{S}\cdot\frac{m}{\Delta l}=\frac{124600000}{3}\cdot\frac{m}{\Delta l}$

Количество грузов	Macca грузов m , г	Значение шкалы n , см	Δn , cm	Δl , cm
0	478,7	23,9	-	-
1	724,4	$25,\!4$	1,5	$6.5 \cdot 10^{-3}$
2	969,6	26,6	1,2	$5,2\cdot10^{-3}$
3	1215,2	27,9	1,3	$5,6\cdot10^{-3}$
4	1460,7	29,4	1,5	$6,5\cdot10^{-3}$
5	1706,2	$30,\!4$	1	$4,3\cdot10^{-3}$
6	1952,3	31,9	1,5	$6,5\cdot10^{-3}$
7	2198	$33,\!1$	1,2	$5,2\cdot10^{-3}$
8	2443,6	34,3	1,2	$5,2\cdot10^{-3}$
9	2689,7	$35,\!5$	1,2	$5,2\cdot10^{-3}$
10	2935,5	36,6	1,1	$4.8 \cdot 10^{-3}$
9	2689,7	$35,\!5$	1,1	$4.8 \cdot 10^{-3}$
8	2443,6	34,3	1,2	$5,2\cdot10^{-3}$
7	2198	33	1,3	$5,6\cdot10^{-3}$
6	1952,3	31,7	1,3	$5,6\cdot10^{-3}$
5	1706,2	30,3	1,4	6.10^{-3}
4	1460,7	28,7	1,6	$6,9 \cdot 10^{-3}$
3	1215,2	27,8	0,9	$3,9\cdot10^{-3}$
2	969,6	26,5	1,3	$5,6\cdot10^{-3}$
1	724,4	25,3	1,2	$5,6\cdot10^{-3}$
0	478,7	23,8	1,5	$6,5\cdot10^{-3}$

6.

Зависимость Δl от m изображена на графиках (рис. 1 и рис. 2) Из полученного графика модуль Юнга определяется по формуле:

$$E = \frac{\Delta m}{\Delta l} \cdot \frac{lg}{S} = k \cdot \frac{lg}{S}$$

 $E = 1.875 \cdot 10^{11} \Pi a$

$$\sigma_E = \sqrt{\left(\frac{\sigma k}{k}\right)^2 + \left(\frac{\sigma S}{S}\right)^2 + \left(\frac{\sigma l}{l}\right)^2}$$

$$\sigma_E = \sqrt{(\frac{0.01}{1.78})^2} \approx 0.006 (< 1\%)$$

Вывод

Полученное значение модуля Юнга (187,5 ГПа) отличается от табличного значения модуля Юнга
лдя стали и железа (200 ГПа) на $\frac{200-187,5}{200}=0,0625$ 6,25%

Рис. 1: Возрастающ. нагрузка

Рис. 2: Убывающ. нагрузка

Часть 2: Определение модуля Юнга по измерениям изгиба балки.

Оборудование

Стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых балок, грузы, линейка, штангенциркуль.

Теоретическая часть

Модуль Юнга материала стержня E связан с величиной прогиба y_{max} как:

$$E = \frac{Pl^3}{4ab^3 y_{max}} \tag{3}$$

где P - нагрузка на стержень, l - расстояние между точками опоры, a - ширина балки, b - толщина балки.

Экспериментальная часть

1

Расстояние $AA' = 50 \pm 0.5$ см

2.

Металлическая балка:

Ширина $= 2,05 \pm 0.05$ см | Толщина $= 0,4 \pm 0.05$ см

Деревянная балка:

Ширина $= 1,9 \pm 0.05$ см | Толщина $= 1 \pm 0.05$ см

3.

Результаты измерений изгиба металлической балки зафиксированны в таблице 1.

4.

При смещениии призмы от точки, принятой за середину балки, изменение λ не наблюдалось.

5.

Результаты измерений изгиба перевернутой металлической балки зафиксированны в таблице 2. λ увеличилась, что может говорить о меньшем сопротивлении изгибу в этом направлении у балки.

6.

Результаты измерений изгиба деревянной балки зафиксированны в таблицах 3 и 4.

7.

По данным из таблиц построими графики зависимости λ от веса для повышения и понижения нагрузки. По наклону графиков определяем средние значения модуля Юнга по формуле (3) и погрешность по формуле:

$$\sigma_E = \sqrt{3(\frac{\sigma l}{l})^2 + (\frac{\sigma_{P/\lambda}}{P/\lambda})^2 + (\frac{\sigma a}{a})^2 + 3(\frac{\sigma b}{b})^2}$$

Металлическая балка		
	Значение	σ
P/λ	$9226,1{ m H/m}$	100
E	$2,2\cdot 10^{11}\mathrm{H/m}$	0,61
Деревянная балка		
	Значение	σ
P/λ	$7502,6{ m H/m}$	100
E	$1,23\cdot 10^{11}\mathrm{H/m}$	0,39

Вывод

Полученные значения модуля Юнга для стали ($E=2,2\cdot 10^{11}\Pi a$) и дерева ($E=1,23\cdot 10^{11}\Pi a$) близки к табличным значениям (для стали: $E\approx 2\cdot 10^{11}$, для дерева E лежит в пределах 11-15 ГПа в зависимасоти от породы)

Таблицы и графики

Количество грузов	Macca грузов m , г	λ , mm
0	105,1	0
1	587,6	0,36
2	1065,8	0,98
3	1533,7	1,65
4	2035	2,29
5	2538,1	3,00
6	3041,4	3,68
7	3508,1	4,29
8	4012,6	4,96
9	4474,4	5,64
10	4985,4	6, 36
9	4474,4	5,77
8	4012,6	5, 19
7	3508,1	4,43
6	3041,4	3,80
5	2538,1	3, 10
4	2035	2,41
3	1533,7	1,72
2	1065,8	1,08
1	587,6	0,48
0	105,1	0

Таблица 1: Металлическая балка. Измерение 1

Количество грузов	Macca грузов m , г	λ , mm
0	105,1	0
1	587,6	0.67
2	1090,7	1.35
3	1568,9	2.00
4	2036,8	2.60
5	2538,1	3.33
6	3041,4	4.01
7	3508,1	4.61
8	4012,6	5.32
9	4474,4	6.00
10	4985,4	6.80
9	4474,4	6.04
8	4012,6	5.50
7	3508,1	4.82
6	3041,4	4.17
5	2538,1	3.50
4	2036,8	2.80
3	1568,9	2.16
2	1090,7	1.53
1	587,6	0.82
0	105,1	0.13

Таблица 2: Металлическая балка. Измерение 2

Количество грузов	Macca грузов m , г	λ , mm
0	105,1	0
1	587,6	0.54
2	1090,7	1.32
3	1558,6	1.96
4	2025,3	2.70
5	2487,1	3.44
6	2998,7	4.24
7	3502,6	5.02
8	4005,9	5.78
9	4484,1	6.58
10	4985,4	7.19
9	4484,1	6.43
8	4005,9	5.73
7	3502,6	4.96
6	2998,7	4.23
5	2487,1	3.43
4	2025,3	2.71
3	1558,6	2.08
2	1090,7	1.32
1	587,6	0.55
0	105,1	0

Таблица 3: Деревянная балка. Измерение 1

Количество грузов	Macca грузов m , г	λ , mm
0	105,1	0
1	587,6	0.69
2	1054,3	1.42
3	1557,4	2.15
4	2019,2	2.90
5	2487,1	3.60
6	2998,1	4.39
7	3501,4	5.17
8	4005,9	5.95
9	4484,1	6.67
10	4985,4	7.43
9	4484,1	6.90
8	4005,9	6.12
7	3501,4	5.33
6	2998,1	4.54
5	2487,1	3.74
4	2019,2	3.03
3	1557,4	2.32
2	1054,3	1.55
1	587,6	0.84
0	105,1	0.07

Таблица 4: Деревянная балка. Измерение 2

Рис. 3: Металлическая балка. Измерение 1. Повышение нагрузки.

Рис. 4: Металлическая балка. Измерение 1. Понижение нагрузки.

Рис. 5: Металлическая балка. Измерение 2. Повышение нагрузки.

Рис. 6: Металлическая балка. Измерение 2. Понижение нагрузки.

Рис. 7: Деревянная балка. Измерение 1. Повышение нагрузки.

Рис. 8: Деревянная балка. Измерение 1. Понижение нагрузки.

Рис. 9: Деревянная балка. Измерение 2. Повышение нагрузки.

Рис. 10: Деревянная балка. Измерение 2. Понижение нагрузки.