CMIP6 Model Documentation

Institute:CNRM-CERFACSModel:CNRM-ESM2-1Topic:ocnBgchem

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Tracers	11

1 Key Properties

Ocean Biogeochemistry key properties

1.1.1 Top level properties

Ocean Biogeochemistry key properties

1.1.1.1 Name *

Name of ocnbgchem model code

Pelagic Interaction Scheme for Carbon and Ecosystem Studies model volume 2 version trace gases (PISCESv2-gas)

1.1.1.2 Keywords *

Keywords associated with ocnbgchem model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of ocnbgchem model.

Pelagic Interaction Scheme for Carbon and Ecosystem Studies model volume 2 version trace gases (PISCESv2-gas) derives from PISCESv2 as described in Aumont et al. (2015). PISCESv2gas simulates the cycling of carbon, oxygen, and of the major nutrients determining phytoplankton growth (phosphate, nitrate, ammonium, iron and silicic acid). PISCESv2-gas also simulates dimethylsulfide (DMS) and nitrous oxide (N2O) tracers (see Berthet et al. 2019). The carbon chemistry of the model is based on the Ocean Carbon Model Intercomparison Project (OMIP) protocol and the parametrization proposed by Wanninkhof (2014) is used to compute air-sea gas exchange of CO2, O2, DMS and N2O. PISCES includes a simple representation of the marine ecosystem with two phytoplankton size classes, representing nanophytoplankton and diatoms, as well as two zooplankton size classes, representing microzooplankton and mesozooplankton. Phytoplankton growth is limited by the availability of nutrients, temperature, and light. There are three non-living components of organic carbon in the model: semi-labile dissolved organic carbon (DOC), with a lifetime of several weeks to years, as well as large and small detrital particles, which are fuelled by mortality, aggregation, fecal pellet production and grazing. Biogenic silica and calcite particles are also included Nutrients and/or carbon are supplied to the ocean from three different sources: atmospheric deposition, rivers and sediment mobilization. These sources are explicitly included and vary in time apart the iron input of sediment. Atmospheric deposition of Fe, P and Si has been estimated from the INCA model and the one of N is coming from the Input4MIPS database. Riverine inputs are interactive in CNRM-ESM2-1 because the litter and soil carbon leaching in SURFEXv8.0 (see Section 2.4 for further details), is routed as dissolved organic carbon in CTRIP and supplied to the oceans as organic carbon by rivers in PISCESv2-gas. Since only the routing of dissolved organic carbon (DOC) is bounded in CNRM-ESM2-1, the supply of the other nutrients has been parameterized using the global average ratios of nitrogen-to-DOC (0.72), phosphorus-to-DOC (0.59), silicon-to-DOC (0.15) from Mayorga et al. (2010) and the global average ratios of DIC-to-DOC (1.48) and Alk-to-DOC (1.11) from Ludwig et al. (1996). River discharge of carbon and nutrients is taken from GlobalNews in NEMO standalone mode. Iron input from sediment mobilization has been parameterized as in Aumont et al. (2015). Nutrients and/or carbon are supplied to the ocean from three different sources: atmospheric deposition, rivers and sediment mobilization. These sources are explicitly included but do not vary in time apart from a climatological seasonal cycle for the atmospheric input. Atmospheric deposition (Fe, N, P and Si) has been estimated from the INCA model (Aumont et al, 2008). River discharge of carbon and nutrients is taken from Ludwig et al (1996). Iron input from sediment mobilization has been parameterized as in Aumont and Bopp (2006). PISCES is used here not only to compute air-sea

fluxes of carbon, but also to compute the effect of a biophysical coupling: the chlorophyll concentration produced by the biological component retroacts on the ocean heat budget by modulating the absorption of light as well as the oceanic heating rate (see Lengaigne et al (2007) for a detailed description).

1.1.1.4 Model Type *				
Type of oc	cean biogeochemistry model			
	Geochemical - No living compartments			
	NPZD - No plankton types			
\boxtimes	PFT - Several plankton types			
	Other - please specify:			
1.1.1.5	Elemental Stoichiometry *			
Describe e	elemental stoichiometry (fixed, variable, mix of the two)			
	Fixed - Fixed stoichiometry			
	Variable - Variable stoichiometry			
\bowtie	Mix of both - Both fixed and mixed stoichiometry			

1.1.1.6 Elemental Stoichiometry Details *

Describe which elements have fixed/variable stoichiometry

C, N, P fixed. Fe, Si variable.

1.1.1.7 Prognostic Variables *

List of all prognostic tracer variables in the ocean biogeochemistry component

Dissolved inorganic carbon, Total alkalinity, dissolved oxygen, Calcite, Phosphate, Small particulate organic carbone, silicate, Nanophytoplankton, Microzooplankton, Semi-labile dissolved organic carbon, Diatoms, Mesozooplankton, Silicon content of the diatoms, Dissolved iron, Iron in the big particles, Big particulate organic carbone, Iron in the small particles, Iron content of the diatoms, Sinking biogenic silica, Iron content of the nanophytoplankton, Chlorophyll of the nanophytoplankton, Chlorophyll of the diatoms, Nitrate, Ammonium

1.1.1.8 Diagnostic Variables *

List of all diagnotic tracer variables in the ocean biogeochemistry component (derived from prognostic variables

Enter COMMA SEPARATED list:

1.1.1.9 **Damping**

 $Describe\ any\ tracer\ damping\ used\ (such\ as\ artificial\ correction\ or\ relaxation\ to\ climatology, \ldots)$

 $Annual\ relaxation\ to\ annual\ global\ mean\ of\ alkalinity,\ Nitrate,\ Phosphorous,\ Silicate.$

1.1.2 Passive Tracers Transport

Time stepping method for passive tracers transport in ocean biogeochemistry

1.1.2.1	Method *
Time step	oping framework for passive tracers
\boxtimes	Use ocean model transport time step
	Use specific time step
1.1.2.2	Timestep If Not From Ocean
Time step	o for passive tracers (if different from ocean)
Ente	r INTEGER value:
1.1.3 I	Biology Sources Sinks
Time st	epping framework for biology sources and sinks in ocean biogeochemistry
1.1.3.1	Method *
Time step	oping framework for biology sources and sinks
\boxtimes	Use ocean model transport time step
	Use specific time step
1.1.3.2	Timestep If Not From Ocean
Time step	o for biology sources and sinks (if different from ocean)
Ente	r INTEGER value:
$1.2.1 \mathrm{T}$	Transport Scheme
	rt scheme in ocean biogeochemistry
1.2.1.1	Type *
Type of to	ransport scheme
	Offline
\boxtimes	Online
1.2.1.2	Scheme *
Transport	scheme used
	Use that of ocean model
	Other - please specify:

1	2	1	3	Πca	D	iff	oron	+ 4	പ	heme
1	. Z.	ъ.)	USE			eren		7(:1	пенне

 $Decribe\ transport\ scheme\ if\ different\ than\ that\ of\ ocean\ model$

 $\label{eq:MUSCL} \mbox{ advection scheme.}$

1.3.1 Boundary Forcing

Properties of biogeochemistry boundary forcing

1.3.1.1 Atı	mospheric Deposition *
$Describe\ how$	atmospheric deposition is modeled
Fre	om file (climatology)
Fre	om file (interannual variations)
☐ Fro	om Atmospheric Chemistry model
1.3.1.2 Riv	ver Input *
$Describe\ how$	river input is modeled
Fre	om file (climatology)
Fre	om file (interannual variations)
Fre	om Land Surface model
List which see	diments From Boundary Conditions diments are specificed from boundary condition on from sediments.
1.3.1.4 Sec	liments From Explicit Model
List which see	liments are speficied from explicit sediment model
Enter Co	OMMA SEPARATED list:
	s Exchange of gas exchange in ocean biogeochemistry
1.4.1.1 CO	22 Exchange Present *
Is CO2 gas es	xchange modeled?
☐ True	e False

1.4.1.2 CO ₂ Exchange Type	9
Describe CO2 gas exchange	
OMIP protocol	
Other - please specify:	
1.4.1.3 O2 Exchange Preser	ıt *
Is O2 gas exchange modeled?	
True False	
1.4.1.4 O2 Exchange Type	
Describe O2 gas exchange	
OMIP protocol	
Other - please specify:	
1.4.1.5 DMS Exchange Pres	sent *
Is DMS gas exchange modeled?	
☐ True ☐ False	
1.4.1.6 DMS Exchange Typ	e
Specify DMS gas exchange scheme ty	pe
Wanninkof2014	
1.4.1.7 N2 Exchange Preser	nt *
Is N2 gas exchange modeled?	
True False	
1.4.1.8 N2 Exchange Type	
Specify N2 gas exchange scheme type	2
Enter TEXT:	
1.4.1.9 N2O Exchange Pres	ent *
Is N2O gas exchange modeled?	
☐ True ☐ False	

Specify N2O gas exchange scheme type
Wanninkof2014
1.4.1.11 CFC11 Exchange Present * Is CFC11 gas exchange modeled ?
☐ True ☐ False
1.4.1.12 CFC11 Exchange Type Specify CFC11 gas exchange scheme type Following OMIP protocol.
1.4.1.13 CFC12 Exchange Present * Is CFC12 gas exchange modeled ? True
1.4.1.14 CFC12 Exchange Type Specify CFC12 gas exchange scheme type Following OMIP protocol.
1.4.1.15 SF6 Exchange Present * Is SF6 gas exchange modeled ? True False
1.4.1.16 SF6 Exchange Type Specify SF6 gas exchange scheme type Following OMIP protocol.
1.4.1.17 13CO2 Exchange Present * Is 13CO2 gas exchange modeled? True False
1.4.1.18 13CO2 Exchange Type Specify 13CO2 gas exchange scheme type Enter TEXT:

1.4.1.10 N2O Exchange Type

1.4.1.10.1.4CO2.E. I
1.4.1.19 14CO2 Exchange Present *
Is 14CO2 gas exchange modeled ?
☐ True ☐ False
1.4.1.20 14CO2 Exchange Type
Specify 14CO2 gas exchange scheme type
Enter TEXT:
1.4.1.21 Other Gases
Specify any other gas exchange
Enter TEXT:
1.5.1 Carbon Chemistry
Properties of carbon chemistry biogeochemistry
1.5.1.1 Type *
Describe how carbon chemistry is modeled
☐ OMIP protocol
Other protocol
1.5.1.2 Ph Scale
If NOT OMIP protocol, describe pH scale.
Select SINGLE option:
Sea water
Free
Other - please specify:
1.5.1.3 Constants If Not OMIP
If NOT OMIP protocol, list carbon chemistry constants.
Enter COMMA SEPARATED list:
1.6.1 Tuning Applied

ion raming applied

 $Tuning\ methodology\ for\ ocean\ biogeochemistry\ component$

1.6.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.6.1.2 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.6.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.6.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Tracers

Ocean biogeochemistry tracers

2.1.1 Top level properties

 $Ocean\ biogeochemistry\ tracers$

2.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ tracers\ in\ ocnbgchem\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ ocean\ biogeochemistry\ tracers\ in\ ocnbgchem\ model.$

Enter TEXT:

2.1.1.3	Sulfur	Cycle P	resent *
Is sulfur	cycle mod	deled?	
	True		False

2.1.1.4 Nutrients Present *

 $List\ nutrient\ species\ present\ in\ ocean\ biogeochemistry\ model$

\boxtimes	Nitrogen (N)
\boxtimes	Phosphorous (P)
\boxtimes	Silicon (S)
\boxtimes	Iron (Fe)
	Other - please specify

2.1.1.5 Nitrous Species If N

If nitrogen present, list nitrous species.

\boxtimes	Nitrates (NO3)
\boxtimes	Amonium (NH4)
	Other - please specify:

2.1.1.6	Nitrous Processes If N
$If \ nitroge$	n present, list nitrous processes.
\boxtimes	Dentrification
\boxtimes	N fixation
	Other - please specify:
2.2.1]	Ecosystem
Ecosyste	em properties in ocean biogeochemistry
2.2.1.1	Upper Trophic Levels Definition *
Describe	how upper trophic levels are defined in model (e.g. based on size)
Impl	icit.
2.2.1.2	Upper Trophic Levels Treatment *
Describe	how upper trophic levels are treated in model
Quad	dratic closure term assuming infinite food web length.
2.2.2	Phytoplankton
Phytople	ankton properties in ocean biogeochemistry
2.2.2.1	Type *
Type of p	hytoplankton
	None
	Generic
	PFT including size based (specify both below) - Plankton functional type including size based
	Size based only (specify below)
\boxtimes	PFT only (specify below)
2.2.2.2	Pft
Phytoplan	nkton functional types (PFT) (if applicable)
\boxtimes	Diatoms
	Nfixers
	Calcifiers
	Other - please specify:

2.2.2.3	Size Classes
Phytoplan	akton size classes (if applicable)
	Microphytoplankton
\boxtimes	Nanophytoplankton
	Picophytoplankton
	Other - please specify:
$2.2.3 \ 7$	Zooplankton
Zooplani	kton properties in ocean biogeochemistry
2.2.3.1	Type *
Type of ze	poplankton
	None
	Generic
\boxtimes	Size based (specify below)
	Other - please specify:
2.2.3.2	Size Classes
Zooplankt	on size classes (if applicable)
\boxtimes	Microzooplankton
\boxtimes	Mesozooplankton
	Other - please specify:
2.3.1 I	Disolved Organic Matter
Disolved	organic matter properties in ocean biogeochemistry
2.3.1.1	Bacteria Present *
Is there be	acteria representation ?
	True False
2.3.1.2	Lability *
Describe	treatment of lability in dissolved organic matter
	None
	Labile - Less than a few days

\boxtimes	Semi-labile - Few days to a few years	
	Refractory - Over a few years	
	Other - please specify:	
2.4.1 H	Particules	
Particul	ate carbon properties in ocean biogeochemistry	
2.4.1.1	Method *	
How is pa	rticulate carbon represented in ocean biogeochemistry?	
	Diagnostic	
	Diagnostic (Martin profile)	
	Diagnostic (Balast)	
\boxtimes	Prognostic	
	Other - please specify:	
0.410		
	Types If Prognostic tic, type(s) of particulate matter taken into account	
∏ progress	POC	
	PIC (calcite)	
	PIC (aragonite	
	BSi	
Ш	Other - please specify:	
2.4.1.3	Size If Prognostic	
If prognos	tic, describe if a particule size spectrum is used to represent distribution of particules in water volume	
	No size spectrum used	
	Full size spectrum	
\boxtimes	Discrete size classes (specify which below)	
9 1 1 1	Sizo If Discrete	
2.4.1.4 Size If Discrete If prognostic and discrete size, describe which size classes are used		
Small (1-100 m), big (100 m - 5 mm)		

2.4.1.5	Sinking Speed If Prognostic	
If prognos	stic, method for calculation of sinking speed of particules	
	Constant	
\boxtimes	Function of particule size	
	Function of particule type (balast)	
	Other - please specify:	
	Dic Alkalinity	
DIC and	l alkalinity properties in ocean biogeochemistry	
2.5.1.1	Carbon Isotopes *	
Which car	rbon isotopes are modelled (C13, C14)?	
Selec	t MULTIPLE options:	
	C13	
	C14)	
	Abiotic Carbon *	
	carbon modelled ? True	
2.5.1.3	Alkalinity *	
How is al	kalinity modelled ?	
Select SINGLE option:		
	Prognostic	
	Diagnostic)	