# Kokkos Tutorial

H. Carter Edwards <sup>1</sup>, Christian R. Trott <sup>1</sup>, and Fernanda Foertter <sup>2</sup>

<sup>1</sup>Sandia National Laboratories

<sup>2</sup>Oak Ridge National Laboratory

GPU Tech Conf, May 8-11, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-4683 C

#### SOFTWARE FOR LAB

#### Remote Desktop Software:

- Download NoMachine now for best performance from www.nomachine.com/download
- Alternatively you may use a VNC client or the provided browser-based VNC option

#### SSH Access Software (optional):

- PuTTy for Windows can be downloaded from www.putty.org
- Alternatively you may use a provided browser-based SSH option

#### CONNECTION INSTRUCTIONS

- Navigate to nvlabs.qwiklab.com
- Login or create a new account
- Select the Instructor-Led Hands-on Labs Class
- Find the lab called Kokkos, ..., select it, click Select, and finally click Start
- After a short wait, lab instance Connection information will be shown
- Please ask Lab Assistants for help!

# Kokkos Tutorial

H. Carter Edwards <sup>1</sup>, Christian R. Trott <sup>1</sup>, and Fernanda Foertter <sup>2</sup>

GPU Tech Conf, May 8-11, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-4683 C

<sup>&</sup>lt;sup>1</sup>Sandia National Laboratories

<sup>&</sup>lt;sup>2</sup>Oak Ridge National Laboratory

#### Prerequisites for Tutorial Exercises

**Knowledge of C++**: class constructors, member variables, member functions, member operators, template arguments

#### Using NVIDIA's NVLABS

- Kokkos pre installed in \${HOME}/kokkos
- Exercises pre installed in \${HOME}/GTC2017

#### Using your own \${HOME}

- ▶ Git
- ▶ GCC 4.8.4 (or newer) *OR* Intel 14 (or newer) *OR* Clang 3.5.2 (or newer)
- ► CUDA nvcc 7.5 (or newer) AND NVIDIA compute capability 3.0 (or newer)
- clone github.com/kokkos/kokkos into \${HOME}/kokkos
- clone github.com/kokkos/kokkos-tutorials/GTC2017 into \${HOME}/GTC2017 makefiles look for \${HOME}/kokkos

#### **Understand Kokkos Programming Model Abstractions**

- What, how and why of performance portability
- Productivity and hope for future-proofing

#### Kokkos' basic capabilities covered today:

- Simple data parallel computational patterns
- Deciding where code is run and where data is placed
- Managing data access pattens for performance portability

#### Kokkos' advanced capabilities not covered today:

- Thread safety, thread scalability, and atomic operations
- Hierarchical patterns for maximizing parallelism
- Dynamic directed acyclic graph of tasks pattern
- Numerous pluggin points for extensibility

- For portability: OpenMP, OpenACC, ... or Kokkos.
- Only Kokkos obtains performant memory access patterns via architecture-aware arrays and work mapping. i.e., not just portable, performance portable.
- ▶ With Kokkos, simple things stay simple (parallel-for, etc.).
  i.e., it's no more difficult than OpenMP.
- Advanced performance-optimizing patterns are simpler with Kokkos than with native versions.
  - i.e., you're not missing out on advanced features.

#### Assume you are here because:

- Want to use GPUs (and perhaps other accelerators)
- Are familiar with data parallelism
- Have taken "cuda programming 101"
- Familiar with NVIDIA GPU architecture at a high level Aware that coalesced memory access is important
- Some familiarity with OpenMP
- Want CUDA to be easier
- Would like portability, if it doesn't hurt performance

#### Target machine:



#### Important Point: Performance Portability

#### Important Point

There's a difference between *portability* and *performance portability*.

**Example**: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

#### Important Point

There's a difference between *portability* and *performance portability*.

**Example**: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

#### Goal: write one implementation which:

- compiles and runs on multiple architectures,
- obtains performant memory access patterns across architectures,
- can leverage architecture-specific features where possible.

#### Important Point

There's a difference between *portability* and *performance portability*.

**Example**: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

#### Goal: write one implementation which:

- compiles and runs on multiple architectures,
- obtains performant memory access patterns across architectures,
- can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

# Concepts for threaded data parallelism

#### Learning objectives:

- Terminology of pattern, policy, and body.
- The data layout problem.

#### Concepts: Patterns, Policies, and Bodies

```
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

#### Terminology:

- ▶ **Pattern**: structure of the computations for, reduction, scan, task-graph, ...
- ► Execution Policy: how computations are executed static scheduling, dynamic scheduling, thread teams, ...
- Computational Body: code which performs each unit of work; e.g., the loop body
- ⇒ The **pattern** and **policy** drive the computational **body**.

What if we want to thread the loop?

```
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

What if we want to **thread** the loop?

```
#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

(Change the execution policy from "serial" to "parallel.")

What if we want to **thread** the loop?

```
#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

(Change the execution policy from "serial" to "parallel.")

OpenMP is simple for parallelizing loops on multi-core CPUs, but what if we then want to do this on **other architectures**?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

#### Option 1: OpenMP 4.0

```
#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...) private(...)
#pragma omp distribute

for (element = 0; element < numElements; ++element) {
   total = 0

#pragma omp parallel for
   for (qp = 0; qp < numQPs; ++qp)
        total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

#### Option 1: OpenMP 4.0

```
#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {
   total = 0

#pragma omp parallel for
   for (qp = 0; qp < numQPs; ++qp)
      total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

#### Option 2: OpenACC

```
#pragma acc parallel copy(...) num_gangs(...) vector_length(...)
#pragma acc loop gang vector

for (element = 0; element < numElements; ++element) {
   total = 0;
   for (qp = 0; qp < numQPs; ++qp)
      total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

A standard thread parallel programming model may give you portable parallel execution if it is supported on the target architecture.

But what about performance?

A standard thread parallel programming model may give you portable parallel execution if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation's **memory access pattern**.

#### Problem: memory access pattern

#### Problem: memory access pattern

**Memory access pattern problem:** CPU data layout reduces GPU performance by more than 10X.

**Memory access pattern problem:** CPU data layout reduces GPU performance by more than 10X.

#### Important Point

For performance the memory access pattern *must* depend on the architecture.

How does Kokkos address performance portability?

**Kokkos** is a *productive*, *portable*, *performant*, shared-memory programming model.

- ▶ is a C++ **library**, not a new language or language extension.
- supports clear, concise, thread-scalable parallel patterns.
- ▶ lets you write algorithms once and run on **many architectures** e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...
- minimizes the amount of architecture-specific implementation details users must know.
- solves the data layout problem by using multi-dimensional arrays with architecture-dependent layouts

# Data parallel patterns

#### Learning objectives:

- How computational bodies are passed to the Kokkos runtime.
- How work is mapped to cores.
- The difference between parallel\_for and parallel\_reduce.
- Start parallelizing a simple example.

### Using Kokkos for data parallel patterns (0)

#### Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
  atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

Kokkos maps work to cores

#### Using Kokkos for data parallel patterns (0)

#### Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
   atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

#### Kokkos maps work to cores

- each iteration of a computational body is a unit of work.
- an iteration index identifies a particular unit of work.
- an iteration range identifies a total amount of work.

#### Using Kokkos for data parallel patterns (0)

#### Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
  atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

Kokkos maps work to cores

- each iteration of a computational body is a unit of work.
- an iteration index identifies a particular unit of work.
- an iteration range identifies a total amount of work.

#### Important concept: Work mapping

You give an **iteration range** and **computational body** (kernel) to Kokkos, Kokkos maps iteration indices to cores and then runs the computational body on those cores.

## Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

#### Using Kokkos for data parallel patterns (2)

#### How are computational bodies given to Kokkos?

As **functors** or *function objects*, a common pattern in C++.

#### Using Kokkos for data parallel patterns (2)

#### How are computational bodies given to Kokkos?

As **functors** or *function objects*, a common pattern in C++.

Quick review, a functor is a function with data. Example:

```
struct ParallelFunctor {
    ...
    void operator()( a work assignment ) const {
        /* ... computational body ... */
    ...
};
```

# Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

#### Using Kokkos for data parallel patterns (3)

#### How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

#### Using Kokkos for data parallel patterns (3)

#### How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

#### and work items are assigned to functors one-by-one:

```
struct Functor {
  void operator()(const size_t index) const {...}
}
```

# Using Kokkos for data parallel patterns (3)

#### How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

and work items are assigned to functors one-by-one:

```
struct Functor {
  void operator()(const size_t index) const {...}
}
```

# Warning: concurrency and order

Concurrency and ordering of parallel iterations is *not* guaranteed by the Kokkos runtime.

### Using Kokkos for data parallel patterns (4)

#### How is data passed to computational bodies?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
   atomForces[atomIndex] = calculateForce(...data...);
}

struct AtomForceFunctor {
   ...
   void operator()(const size_t atomIndex) const {
      atomForces[atomIndex] = calculateForce(...data...);
   }
   ...
}</pre>
```

#### How is data passed to computational bodies?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
   atomForces[atomIndex] = calculateForce(...data...);
}

struct AtomForceFunctor {
   ...
   void operator()(const size_t atomIndex) const {
      atomForces[atomIndex] = calculateForce(...data...);
   }
   ...
}</pre>
```

How does the body access the data?

# Important concept

A parallel functor body must have access to all the data it needs through the functor's **data members**.

### Using Kokkos for data parallel patterns (5)

#### Putting it all together: the complete functor:

```
struct AtomForceFunctor {
  ForceType _atomForces;
  AtomDataType _atomData;
  void operator()(const size_t atomIndex) const {
    _atomForces[atomIndex] = calculateForce(_atomData);
  }
}
```

### Putting it all together: the complete functor:

```
struct AtomForceFunctor {
   ForceType _atomForces;
   AtomDataType _atomData;
   void operator()(const size_t atomIndex) const {
     _atomForces[atomIndex] = calculateForce(_atomData);
   }
}
```

# Q/ How would we reproduce serial execution with this functor?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
   atomForces[atomIndex] = calculateForce(data);
}</pre>
```

#### Putting it all together: the complete functor:

```
struct AtomForceFunctor {
  ForceType _atomForces;
  AtomDataType _atomData;
  void operator()(const size_t atomIndex) const {
    _atomForces[atomIndex] = calculateForce(_atomData);
```

## **Q**/ How would we **reproduce serial execution** with this functor?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){</pre>
  atomForces[atomIndex] = calculateForce(data);
```

```
AtomForceFunctor functor(atomForces, data);
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){</pre>
  functor(atomIndex):
```

#### The complete picture (using functors):

1. Defining the functor (operator+data):

```
struct AtomForceFunctor {
   ForceType _atomForces;
   AtomDataType _atomData;

AtomForceFunctor(atomForces, data):
   _atomForces(atomForces) _atomData(data) {}

void operator()(const size_t atomIndex) const {
   _atomForces[atomIndex] = calculateForce(_atomData);
   }
}
```

2. Executing in parallel with Kokkos pattern:

```
AtomForceFunctor functor(atomForces, data);
Kokkos::parallel_for(numberOfAtoms, functor);
```

# Using Kokkos for data parallel patterns (7)

# Functors are tedious $\Rightarrow$ C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
    }
);
```

# Using Kokkos for data parallel patterns (7)

# Functors are tedious $\Rightarrow$ C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
}
);
```

A lambda is not *magic*, it is the compiler **auto-generating** a **functor** for you.

# Functors are tedious $\Rightarrow$ C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
}
);
```

A lambda is not *magic*, it is the compiler **auto-generating** a **functor** for you.

# Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=]. Don't capture containers (e.g., std::vector) by value because it will copy the container's entire contents.

#### How does this compare to OpenMP?

```
for (size_t i = 0; i < N; ++i) {
    /* loop body */
}
```

```
#pragma omp parallel for
for (size_t i = 0; i < N; ++i) {
    /* loop body */
}</pre>
```

```
parallel_for(N, [=] (const size_t i) {
   /* loop body */
});
```

#### Important concept

Simple Kokkos usage is **no more conceptually difficult** than OpenMP, the annotations just go in different places.

$$y = \int_{lower}^{upper} function(x) dx$$



$$y = \int_{lower}^{upper} function(x) dx$$



```
double totalIntegral = 0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
  const double x =
    lower + (i/numberOfIntervals) * (upper - lower);
  const double thisIntervalsContribution = function(x);
  totalIntegral += thisIntervalsContribution;
}
totalIntegral *= dx;</pre>
```

$$y = \int_{lower}^{upper} function(x) dx$$



```
double totalIntegral = 0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
  const double x =
    lower + (i/numberOfIntervals) * (upper - lower);
  const double thisIntervalsContribution = function(x);
  totalIntegral += thisIntervalsContribution;
}
totalIntegral *= dx;</pre>
```

How would we parallelize it?

$$y = \int_{lower}^{upper} function(x) dx$$



How would we parallelize it?

## An (incorrect) attempt:

```
double totalIntegral = 0;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
   const double x =
     lower + (index/numberOfIntervals) * (upper - lower);
   totalIntegral += function(x);},
   );
totalIntegral *= dx;
```

First problem: compiler error; cannot increment totalIntegral (lambdas capture by value and are treated as const!)

## An (incorrect) solution to the (incorrect) attempt:

```
double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
    const double x =
       lower + (index/numberOfIntervals) * (upper - lower);
   *totalIntegralPointer += function(x);},
   );
totalIntegral *= dx;
```

# An (incorrect) solution to the (incorrect) attempt:

```
double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
    const double x =
       lower + (index/numberOfIntervals) * (upper - lower);
    *totalIntegralPointer += function(x);},
   );
totalIntegral *= dx;
```

### Second problem: race condition

| step | thread 0  | thread 1  |
|------|-----------|-----------|
| 0    | load      |           |
| 1    | increment | load      |
| 2    | write     | increment |
| 3    |           | write     |

# Scalar integration (3)

Root problem: we're using the **wrong pattern**, *for* instead of *reduction* 

# Scalar integration (3)

Root problem: we're using the **wrong pattern**, for instead of reduction

## Important concept: Reduction

Reductions combine the results contributed by parallel work.

Root problem: we're using the **wrong pattern**, for instead of reduction

#### Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with **OpenMP**?

```
double finalReducedValue = 0;
#pragma omp parallel for reduction
for (size_t i = 0; i < N; ++i) {
  finalReducedValue += ...
}</pre>
```

Root problem: we're using the **wrong pattern**, for instead of reduction

#### Important concept: Reduction

Reductions combine the results contributed by parallel work.

```
How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (size_t i = 0; i < N; ++i) {
   finalReducedValue += ...
}</pre>
```

How will we do this with Kokkos?

```
double finalReducedValue = 0;
parallel_reduce(N, functor, finalReducedValue);
```

#### **Example: Scalar integration**

```
double totalIntegral = 0;
#pragma omp parallel for reduction(+:totalIntegral)
for (size_t i = 0; i < numberOfIntervals; ++i) {
  totalIntegral += function(...);
}</pre>
```

```
double totalIntegral = 0;
parallel_reduce(numberOfIntervals,
   [=] (const size_t i, double & valueToUpdate) {
   valueToUpdate += function(...);
   },
   totalIntegral);
```

- ► The operator takes **two arguments**: a work index and a value to update.
- ► The second argument is a thread-private value that is managed by Kokkos; it is not the final reduced value.

# Scalar integration (5)

# Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

# Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time =  $\alpha + \frac{\beta * N}{P}$ 

- $ightharpoonup \alpha = {\sf dispatch overhead}$
- $\triangleright \beta = time for a unit of work$
- N = number of units of work
- ightharpoonup P = available concurrency

# Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time =  $\alpha + \frac{\beta * N}{P}$ 

- $ightharpoonup lpha = {\sf dispatch \ overhead}$
- $\triangleright \beta = \text{time for a unit of work}$
- N = number of units of work
- ightharpoonup P = available concurrency

Speedup = 
$$P \div \left(1 + \frac{\alpha * P}{\beta * N}\right)$$

- ▶ Should have  $\alpha * P \ll \beta * N$
- ightharpoonup All runtimes strive to minimize launch overhead lpha
- Find more parallelism to increase N
- ▶ Merge (fuse) parallel operations to increase  $\beta$

# Scalar integration (6)

# **Results**: illustrates simple speedup model = $P \div \left(1 + \frac{\alpha * P}{\beta * N}\right)$

#### Kokkos speedup over serial: Scalar Integration



**Exercise**: Inner product  $\langle y, A * x \rangle$ 



#### Details:

- $\triangleright$  y is Nx1, A is NxM, x is Mx1
- ▶ We'll use this exercise throughout the tutorial

The **first step** in using Kokkos is to include, initialize, and finalize:

```
#include <Kokkos_Core.hpp>
int main(int argc, char** argv) {
   /* ... do any necessary setup (e.g., initialize MPI) ... */
   Kokkos::initialize(argc, argv);
   /* ... do computations ... */
   Kokkos::finalize();
   return 0;
}
```

## (Optional) Command-line arguments:

| kokkos-threads=INT | total number of threads         |
|--------------------|---------------------------------|
| kokkos-threads=INI | (or threads within NUMA region) |
| kokkos-numa=INT    | number of NUMA regions          |
| kokkos-device=INT  | device (GPU) ID to use          |

#### Exercise #1: Inner Product, Flat Parallelism on the CPU

**Exercise**: Inner product  $\langle y, A * x \rangle$ 



- ► Location: ~/GTC2017/Exercises/01/
- Look for comments labeled with "EXERCISE"
- Need to include, initialize, and finalize Kokkos library
- Parallelize loops with parallel\_for or parallel\_reduce
- ▶ Use lambdas instead of functors for computational bodies.
- For now, this will only use the CPU.

Details:

## Compiling for CPU

```
cd ~/GTC2017/Exercises/01/Begin
# gcc using OpenMP (default) and Serial back-ends
make -j [KOKKOS_DEVICES=OpenMP, Serial]
```

## Running on CPU with OpenMP back-end

```
# Set OpenMP affinity
export OMP_NUM_THREADS=8
export GOMP_CPU_AFFINITY=0-8
# Print example command line options:
./01_Exercise.host -h
# Run with defaults on CPU
./01_Exercise.host
# Run larger problem
./01_Exercise.host -S 26
```

#### Things to try:

- Vary number of threads
- Vary problem size
- ▶ Vary number of rows (-N ...)



#### Basic capabilities we haven't covered

- Customizing parallel\_reduce data type and reduction operator
  - e.g., minimum, maximum, ...
- parallel\_scan pattern for exclusive and inclusive prefix sum
- Using tag dispatch interface to allow non-trivial functors to have multiple "operator()" functions.
  - very useful in large, complex applications

- ► **Simple** usage is similar to OpenMP, advanced features are also straightforward
- Three common data-parallel patterns are parallel\_for, parallel\_reduce, and parallel\_scan.
- A parallel computation is characterized by its pattern, policy, and body.
- User provides computational bodies as functors or lambdas which handle a single work item.

# **Views**

#### **Learning objectives:**

- ▶ Motivation behind the View abstraction.
- ► Key View concepts and template parameters.
- ► The View life cycle.

# Example: running daxpy on the GPU:

```
Lambda
```

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
});
```

```
Functor
```

```
struct Functor {
  double *_x, *_y, a;
  void operator()(const size_t i) {
    _y[i] = _a * _x[i] + _y[i];
  }
};
```

## Example: running daxpy on the GPU:

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
 }):
```

```
struct Functor {
  double *_x, *_y, a;
  void operator()(const size_t i) {
    _{y}[i] = _{a} * _{x}[i] + _{y}[i];
```

**Problem**: x and y reside in CPU memory.

## Example: running daxpy on the GPU:

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
 }):
```

```
struct Functor {
 double *_x, *_y, a;
 void operator()(const size_t i) {
   _y[i] = _a * _x[i] + _y[i];
```

**Problem**: x and y reside in CPU memory.

**Solution:** We need a way of storing data (multidimensional arrays) which can be communicated to an accelerator (GPU).

# ⇒ Views

#### View abstraction

- A lightweight C++ class with a pointer to array data and a little meta-data,
- ▶ that is *templated* on the data type (and other things).

## **High-level example** of Views for daxpy using lambda:

```
View < double *, ...> x(...), y(...);
...populate x, y...

parallel_for(N, [=] (const size_t i) {
    // Views x and y are captured by value (copy)
    y(i) = a * x(i) + y(i);
});
```

#### View abstraction

- ► A *lightweight* C++ class with a pointer to array data and a little meta-data,
- ▶ that is *templated* on the data type (and other things).

## **High-level example** of Views for daxpy using lambda:

```
View < double *, ... > x(...), y(...);
...populate x, y...

parallel_for(N, [=] (const size_t i) {
    // Views x and y are captured by value (copy)
    y(i) = a * x(i) + y(i);
});
```

#### Important point

Views are **like pointers**, so copy them in your functors.

#### View overview:

- ► **Multi-dimensional array** of 0 or more dimensions scalar (0), vector (1), matrix (2), etc.
- ▶ Number of dimensions (rank) is fixed at compile-time.
- Arrays are rectangular, not ragged.
- ➤ **Sizes of dimensions** set at compile-time or runtime. e.g., 2x20, 50x50, etc.

#### View overview:

- ► **Multi-dimensional array** of 0 or more dimensions scalar (0), vector (1), matrix (2), etc.
- ▶ Number of dimensions (rank) is fixed at compile-time.
- Arrays are rectangular, not ragged.
- ➤ **Sizes of dimensions** set at compile-time or runtime. e.g., 2x20, 50x50, etc.

## Example:

```
View < double *** > data("label", NO, N1, N2); 3 run, 0 compile
View < double ** [N2] > data("label", NO, N1); 2 run, 1 compile
View < double * [N1] [N2] > data("label", NO); 1 run, 2 compile
View < double [NO] [N1] [N2] > data("label"); 0 run, 3 compile
```

Note: runtime-sized dimensions must come first.

## **View** life cycle:

- ► Allocations only happen when *explicitly* specified. i.e., there are **no hidden allocations**.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- They behave like shared\_ptr

## **View** life cycle:

- Allocations only happen when explicitly specified. i.e., there are no hidden allocations.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- ► They behave like shared\_ptr

#### Example:

```
View < double *> a("a", N0), b("b", N0);
a = b;
View < double *> c(b);
a(0) = 1;
b(0) = 2;
c(0) = 3;
print a(0)
What gets printed?
```

## **View** life cycle:

- Allocations only happen when explicitly specified. i.e., there are no hidden allocations.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- ► They behave like shared\_ptr

#### Example:

```
View < double *> a("a", N0), b("b", N0);
a = b;
View < double *> c(b);
a(0) = 1;
b(0) = 2;
c(0) = 3;
print a(0)
What gets printed?
3.0
```

#### Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

- Location: ~/GTC2017/Exercises/02/
- Assignment: Change data storage from arrays to Views.
- Compile and run on CPU, and then on GPU with UVM

```
make -j KOKKOS_DEVICES=OpenMP # CPU-only using OpenMP
make -j KOKKOS_DEVICES=Cuda \
   KOKKOS_CUDA_OPTIONS=force_uvm,enable_lambda
# Run exercise
./02_Exercise.host -S 26
./02_Exercise.cuda -S 26
# Note the warnings, set appropriate environment variables
```

- Vary problem size: -S #
- Vary number of rows: -N #
- Vary repeats: -nrepeat #
- Compare performance of CPU vs GPU

#### Advanced features we haven't covered

- ▶ Memory space in which view's data resides; covered next.
- deep\_copy view's data; covered later.
  Note: Kokkos never hides a deep\_copy of data.
- Layout of multidimensional array; covered later.
- Memory traits; covered later.
- Subview: Generating a view that is a "slice" of other multidimensional array view; will not be covered today.

# **Execution and Memory Spaces**

#### Learning objectives:

- Heterogeneous nodes and the space abstractions.
- How to control where parallel bodies are run, execution space.
- How to control where view data resides, memory space.
- How to avoid illegal memory accesses and manage data movement.
- ▶ The need for Kokkos::initialize and finalize.
- Where to use Kokkos annotation macros for portability.

#### **Thought experiment**: Consider this code:

#### Thought experiment: Consider this code:

- ▶ Where will section 1 be run? CPU? GPU?
- Where will section 2 be run? CPU? GPU?
- How do I control where code is executed?

#### Thought experiment: Consider this code:

- ▶ Where will section 1 be run? CPU? GPU?
- Where will section 2 be run? CPU? GPU?
- How do I control where code is executed?

# **⇒** Execution spaces

#### **Execution Space**

a homogeneous set of cores and an execution mechanism (i.e., "place to run code")



Execution spaces: Serial, Threads, OpenMP, Cuda, ...

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

```
Parallel
```

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
  - ⇒ Always in the **host process**

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                       const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
  - ⇒ Always in the **host process**
- ▶ Where will Parallel code be run? CPU? GPU?
  - ⇒ The default execution space

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
  - ⇒ Always in the **host process**
- ▶ Where will Parallel code be run? CPU? GPU?
  - ⇒ The default execution space
- ▶ How do I **control** where the Parallel body is executed? Changing the default execution space (at compilation), or specifying an execution space in the **policy**.

## Changing the parallel execution space:

```
parallel_for(
  RangePolicy < ExecutionSpace > (0, numberOfIntervals),
  [=] (const size_t i) {
    /* ... body ... */
  });
```

```
parallel_for(
  numberOfIntervals, // == RangePolicy <> (0, numberOfIntervals)
[=] (const size_t i) {
    /* ... body ... */
});
```

## Changing the parallel execution space:

```
parallel_for(
  RangePolicy < ExecutionSpace > (0, numberOfIntervals),
  [=] (const size_t i) {
    /* ... body ... */
  });
```

```
parallel_for(
  numberOfIntervals, // == RangePolicy<>(0, numberOfIntervals)
  [=] (const size_t i) {
    /* ... body ... */
});
```

Requirements for enabling execution spaces:

- ► Kokkos must be **compiled** with the execution spaces enabled.
- Execution spaces must be initialized (and finalized).
- ► **Functions** must be marked with a **macro** for non-CPU spaces.
- Lambdas must be marked with a macro for non-CPU spaces.

## Kokkos function and lambda portability annotation macros:

#### Function annotation with KOKKOS\_INLINE\_FUNCTION macro

```
struct ParallelFunctor {
   KOKKOS_INLINE_FUNCTION
   double helperFunction(const size_t s) const {...}
   KOKKOS_INLINE_FUNCTION
   void operator()(const size_t index) const {
      helperFunction(index);
   }
}
// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline
#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ /* #if CPU+Cuda */
```

## Kokkos function and lambda portability annotation macros:

#### Function annotation with KOKKOS\_INLINE\_FUNCTION macro

```
struct ParallelFunctor {
   KOKKOS_INLINE_FUNCTION
   double helperFunction(const size_t s) const {...}
   KOKKOS_INLINE_FUNCTION
   void operator()(const size_t index) const {
      helperFunction(index);
   }
}
// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline
#define KOKKOS_INLINE_FUNCTION inline --device-- --host-- /* #if CPU+Cuda */
```

## Lambda annotation with KOKKOS\_LAMBDA macro (requires CUDA 8.0)

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

# **⇒ Memory Spaces**

## Memory space:

explicitly-manageable memory resource (i.e., "place to put data")



Every view stores its data in a memory space set at compile time.

Every view stores its data in a **memory space** set at compile time.

View<double\*\*\*, Memory Space> data(...);

Every view stores its data in a memory space set at compile time.

- View<double\*\*\*, Memory Space> data(...);
- Available memory spaces:

HostSpace, CudaSpace, CudaUVMSpace, ... more

Every view stores its data in a memory space set at compile time.

- View<double\*\*\*, Memory Space> data(...);
- Available memory spaces: HostSpace, CudaSpace, CudaUVMSpace, ... more
- ► Each **execution space** has a default memory space, which is used if **Space** provided is actually an execution space

Every view stores its data in a memory space set at compile time.

- View<double\*\*\*, Memory Space> data(...);
- Available memory spaces: HostSpace, CudaSpace, CudaUVMSpace, ... more
- ► Each **execution space** has a default memory space, which is used if **Space** provided is actually an execution space
- ▶ If no Space is provided, the view's data resides in the **default memory space** of the **default execution space**.

#### **Example: HostSpace**



#### **Example:** HostSpace

View < double \*\*, HostSpace > hostView (... constructor arguments...);

CPU

GPU

GPU



# **Example: CudaSpace**

View<double\*\*, CudaSpace> view(...constructor arguments...);
CPU
GPU
RAM metadata
RAM
data

## Anatomy of a kernel launch:

1. User declares views, allocating.

views are like pointers.

- User instantiates a functor with views.
- 3. User launches parallel\_something:
  - Functor is copied to the device.
  - Kernel is run.

Note: **no deep copies** of array data are performed;

```
Copy of functor on the device is released.
```

```
View < int *, Cuda > dev (...
parallel_for(N,
  [=] (int i) {
    dev(i) = ...;
  }):
```

# Execution and Memory spaces (1)

#### **Example: one view**

```
View < int*, Cuda > dev;
parallel_for(N,
    [=] (int i) {
      dev(i) = ...;
});
```





## Example: two views

```
View < int*, Cuda > dev;
View < int*, Host > host;
parallel_for(N,
    [=] (int i) {
    dev(i) = ...;
    host(i) = ...;
});
```





## Example: two views

```
View < int *, Cuda > dev;
View < int *, Host > host;
parallel_for(N,
    [=] (int i) {
    dev(i) = ...;
    host(i) = ...;
});
```





(failed) Attempt 1: View lives in CudaSpace

```
View < double *, CudaSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index);
},
    sum);
```

(failed) Attempt 1: View lives in CudaSpace

```
View < double *, Cuda Space > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file... fault
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index);
},
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index);
    },
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index); illegal access
    },
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index); illegal access
    },
    sum);
```

What's the solution?

- CudaUVMSpace
- CudaHostPinnedSpace (skipping)
- Mirroring

#### Execution and Memory spaces (5)

## CudaUVMSpace



Cuda runtime automatically handles data movement, at a **performance hit**.

# Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different memory spaces.

## Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different memory spaces.

## Mirroring schematic

```
typedef Kokkos::View<double**, Space> ViewType;
ViewType view(...);
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```



#### Mirroring pattern

1. **Create** a view's array in some memory space.

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a mirror of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

3. Populate hostView on the host (from file, etc.).

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a mirror of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- 4. **Deep copy** hostView's array to view's array.

```
Kokkos::deep_copy(view, hostView);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a mirror of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- 4. Deep copy hostView's array to view's array.
  Kokkos::deep\_copy(view, hostView);
- 5. Launch a kernel processing the view's array.

```
Kokkos::parallel_for(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (...) { use and change view });
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- 4. Deep copy hostView's array to view's array. Kokkos::deep\_copy(view, hostView);
- 5. Launch a kernel processing the view's array.

```
Kokkos::parallel_for(
RangePolicy < Space > (0, size),
KOKKOS_LAMBDA (...) { use and change view });
```

If needed, deep copy the view's updated array back to the hostView's array to write file, etc.

```
Kokkos::deep_copy(hostView, view);
```

What if the View is in HostSpace too? Does it make a copy?

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view("test", 10);
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```

- create\_mirror\_view allocates data only if the host process cannot access view's data, otherwise hostView references the same data.
- create\_mirror always allocates data.
- Reminder: Kokkos never performs a hidden deep copy.

#### Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

#### Details:

- Location: ~/GTC2017/Exercises/03/
- Add HostMirror Views and deep copy
- ▶ Make sure you use the correct view in initialization and Kernel

```
# Compile for CPU
make -j KOKKOS_DEVICES=OpenMP
# Compile for GPU (we do not need UVM anymore)
make -j KOKKOS_DEVICES=Cuda
# Run on GPU
./03_Exercise.cuda -S 26
```

#### Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- ► Change number of repeats (-nrepeat ...)
- Compare behavior of CPU vs GPU

- Data is stored in Views that are "pointers" to multi-dimensional arrays residing in memory spaces.
- Views abstract away platform-dependent allocation, (automatic) deallocation, and access.
- ▶ Heterogenous nodes have one or more memory spaces.
- Mirroring is used for performant access to views in host and device memory.
- ▶ Heterogenous nodes have one or more **execution spaces**.
- You control where parallel code is run by a template parameter on the execution policy, or by compile-time selection of the default execution space.

# Managing memory access patterns for performance portability

#### Learning objectives:

- ▶ How the View's Layout parameter controls data layout.
- How memory access patterns result from Kokkos mapping parallel work indices and layout of multidimensional array data
- Why memory access patterns and layouts have such a performance impact (caching and coalescing).
- See a concrete example of the performance of various memory configurations.

#### Example: inner product (0)

```
Kokkos::parallel_reduce(
  RangePolicy < Execution Space > (0, N),
  KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
    double thisRowsSum = 0:
    for (size_t entry = 0; entry < M; ++entry) {
      thisRowsSum += A(row, entry) * x(entry);
    valueToUpdate += y(row) * thisRowsSum;
  }, result);
```

## Example: inner product (0)

```
Kokkos::parallel_reduce(
  RangePolicy < Execution Space > (0, N),
  KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
    double thisRowsSum = 0:
    for (size_t entry = 0; entry < M; ++entry) {
      thisRowsSum += A(row, entry) * x(entry);
    valueToUpdate += y(row) * thisRowsSum;
  }, result);
```

**Driving question:** How should A be laid out in memory?

## Example: inner product (1)

Layout is the mapping of multi-index to memory:



#### Important concept: Layout

Every View has a multidimensional array Layout set at compile-time.

```
View < double ***, Layout, Space > name(...);
```

#### Important concept: Layout

Every View has a multidimensional array Layout set at compile-time.

```
View < double ***, Layout, Space > name(...);
```

- Most-common layouts are LayoutLeft and LayoutRight. LayoutLeft: left-most index is stride 1. LayoutRight: right-most index is stride 1.
- ▶ If no layout specified, default for that memory space is used.

  LayoutLeft for CudaSpace, LayoutRight for HostSpace.
- Layouts are extensible: ~50 lines
- Advanced layouts: LayoutStride, LayoutTiled, ...

#### Exercise #4: Inner Product, Flat Parallelism

#### Details:

- Location: ~/GTC2017/Exercises/04/
- ► Replace ''N'' in parallel dispatch with RangePolicy<ExecSpace>
- Add MemSpace to all Views and Layout to A
- Experiment with the combinations of ExecSpace, Layout to view performance

#### Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- Change number of repeats (-nrepeat ...)
- Compare behavior of CPU vs GPU
- Compare using UVM vs not using UVM on GPUs
- ► Check what happens if MemSpace and ExecSpace do not match.

#### Exercise #4: Inner Product, Flat Parallelism

## <y|Ax> Exercise 04 (Layout)



Why?

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

CPU threads are independent.

i.e., threads may execute at any rate.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- **CPU** threads are independent.
  - i.e., threads may execute at any rate.
- ▶ **GPU** threads are synchronized in groups (of 32).
  - i.e., threads in groups must execute instructions together.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- ► **CPU** threads are independent.
  - i.e., threads may execute at any rate.
- ▶ GPU threads are synchronized in groups (of 32).
  - i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads before any thread can move on.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- ► **CPU** threads are independent.
  - i.e., threads may execute at any rate.
- ▶ **GPU** threads are synchronized in groups (of 32).
  - i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads before any thread can move on.

So, **how many cache lines** must be fetched before threads can move on?

# Caching and coalescing (1)

## CPUs: few (independent) cores with separate caches:

| 0 1    | 0 H          | 0 H    | 0 H    |  |
|--------|--------------|--------|--------|--|
| read   | read<br>read | read   | read   |  |
| 00     | H            | NN     | ന ന    |  |
| thread | thread       | thread | thread |  |
|        |              |        |        |  |



CPUs: few (independent) cores with separate caches:





GPUs: many (synchronized) cores with a shared cache:





For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

**Caching**: if thread t's current access is at position i, thread t's next access should be at position i+1.

**Coalescing**: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

**Coalescing**: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

# Warning

Uncoalesced access in CudaSpace *greatly* reduces performance (more than 10X)

For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

**Caching**: if thread t's current access is at position i, thread t's next access should be at position i+1.

**Coalescing**: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

# Warning

Uncoalesced access in CudaSpace greatly reduces performance (more than 10X)

Note: uncoalesced *read-only, random* access in CudaSpace is okay through Kokkos const RandomAccess views (more later).

#### Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
    sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

#### Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
    sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

```
Contiguous: Strided: 0, 1, 2, ..., N/P 0, N/P, 2*N/P, ...
```

#### Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
  sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

```
Contiguous: Strided:

0, 1, 2, ..., N/P 0, N/P, 2*N/P, ...

CPU GPU

Why?
```

## Iterating for the execution space:

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

As users we don't control how indices are mapped to threads, so how do we achieve good memory access?

# Iterating for the execution space:

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

As users we don't control how indices are mapped to threads, so how do we achieve good memory access?

## Important point

Kokkos maps indices to cores in **contiguous chunks** on CPU execution spaces, and **strided** for Cuda.

### Rule of Thumb

Kokkos index mapping and default layouts provide efficient access if **iteration indices** correspond to the **first index** of array.

#### **Example:**

```
View < double ***, ...> view (...);
...
Kokkos::parallel_for( ... ,
    KOKKOS_LAMBDA (const size_t workIndex) {
    ...
    view (..., ..., workIndex ) = ...;
    view (..., workIndex , ...) = ...;
    view (workIndex , ...) = ...;
});
...
```

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *appropriately for* the architecture.

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *appropriately for the architecture*.

# Analysis: row-major (LayoutRight)



Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *appropriately for* the architecture.

# Analysis: row-major (LayoutRight)



- ► HostSpace: cached (good)
- ► CudaSpace: uncoalesced (bad)

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

# Analysis: column-major (LayoutLeft)



Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

# Analysis: column-major (LayoutLeft)



- HostSpace: uncached (bad)
- ► CudaSpace: coalesced (good)

#### Analysis: Kokkos architecture-dependent

```
View < double ***, ExecutionSpace > A(N, M);
parallel_for(RangePolicy < ExecutionSpace > (0, N),
    ... thisRowsSum += A(j, i) * x(i);
```



- ► HostSpace: cached (good)
- ► CudaSpace: coalesced (good)

# Example: inner product (5)

# <ylAx> Exercise 04 (Layout)



### Memory Access Pattern Summary

- Every View has a Layout set at compile-time through a template parameter.
- LayoutRight and LayoutLeft are most common.
- Views in HostSpace default to LayoutRight and Views in CudaSpace default to LayoutLeft.
- Layouts are extensible and flexible.
- For performance, memory access patterns must result in caching on a CPU and coalescing on a GPU.
- Kokkos maps parallel work indices and multidimensional array layout for performance portable memory access patterns.
- ► There is **nothing in** OpenMP, OpenACC, or OpenCL to manage layouts.
  - $\Rightarrow$  You'll need multiple versions of code or pay the performance penalty.

## Kokkos capabilities NOT covered today, only 2 hours

- Atomic operations and their scalability
- Multidimensional range policy (heirarchical pattern)
- Thread-team policy (hierarchical pattern) with intra-team shared memory

CUDA grid-block parallelism, but easier and portable

- Dynamic directed acyclic graph (DAG) of tasks pattern
- ▶ Plugging in customized multdimensional array data layout *e.g.*, arbitrarily strided, heirarchical tiling

- ► For **portability**: OpenMP, OpenACC, ... or Kokkos.
- Only Kokkos obtains performant memory access patterns via architecture-aware arrays and work mapping.
  - i.e., not just portable, performance portable.
- With Kokkos, simple things stay simple (parallel-for, etc.). i.e., it's no more difficult than OpenMP.
- Advanced performance-optimizing patterns are simpler with Kokkos than with native versions.
  - i.e., you're not missing out on advanced features.