

Convex Optimization

Lecture 10 - Disciplined Convex Programming and CVX

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

The Big Picture of Where We Are

what we have learned:

- basic concepts of convex sets, convex functions, convex optimization problems
- operations that preserve convexity of sets and functions
- equivalent problem formulations
- special classes of convex programs: LP, SOCP, GP, SDP
- duality, KKT conditions

what we have not learned:

how to solve convex optimization problems numerically

Disciplined Convex Programming

disciplined convex programming (DCP):

- a library of functions and sets (or atoms) with known convexity, monotonicity, etc.
- a ruleset of how to use or combine the atoms

what DCP cannot do:

- check whether the problem is convex or not
- solve arbitrary convex programs

CVX:

- a DCP software (in Matlab and Python)
- · documentation and examples online

Atoms - Sets

some constraints expressed as convex sets:

- X == semidefinite(n) means $X \in \mathbb{S}^n_+$
- [X z ; z' t] == semidefinite(n) means $\begin{bmatrix} X & z \\ z^T & t \end{bmatrix} \ge 0$
- x == nonnegative(n) means $x \in \mathbb{R}^n$, $x \ge 0$

Atoms - Convex Functions

some functions recognized by CVX:

function	meaning	attributes
norm(x,p)	$ x _p$	convex
square(x)	x^2	convex
$square_pos(x)$	$x^2 \ (x \ge 0)$	convex, nondecreasing
$sum_largest(x,k)$	$x_{[1]} + \cdots + x_{[k]}$	convex, nondecreasing
sqrt(x)	$\sqrt{x} \ (x \ge 0)$	convex, nondecreasing
$inv_pos(x)$	1/x (x > 0)	convex, nonincreasing
max(x)	$\max\{x_1,\ldots,x_n\}$	convex, nondecreasing
$quad_over_lin(x,y)$	$x^2/y \ (y > 0)$	convex, nonincr in y
$lambda_max(X)$	$\lambda_{max}(X) \ (X = X^T)$	convex

the library of atoms can be extended

DCP Ruleset - Composition

combine atoms using valid composition rules:

- a convex function of an affine function is convex
- the negative of a convex function is concave
- a convex, nondecreasing function of a convex function is convex
- a concave, nondecreasing function of a concave function is concave
-

DCP Ruleset - Limitations

the ruleset includes sufficient conditions

some functions are convex, but not recognized by CVX as convex

```
example: sqrt( sum( square( x ) ) )
```

- a concave, nondecreasing function of a convex function
- workaround: use norm(x)

```
example: square( 1 + square( x ) )
```

- a convex function of a convex function
- workaround: use square_pos(1 + square(x))