Due at the beginning of class on 11 February 2024

NAME: SOLUTIONS

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: Read §2.2 in [Rie14] and §1.5 in [Mal23].

(1) Let \mathcal{C} be a homotopical category, and let \mathcal{I} be any category. The category $\text{Fun}(\mathcal{I},\mathcal{C})$ of functors from \mathcal{I} to \mathcal{C} becomes a homotopical category with weak equivalences defined object-wise. By choosing a homotopical category \mathcal{C} and a category \mathcal{I} , show that the limit functor

lim: Fun(
$$\mathfrak{I},\mathfrak{C}$$
) $\to \mathfrak{C}$, $F \mapsto \lim F$

is not a homotopical functor.

SOLUTION: Plenty of examples. Homotopy pullbacks are not pullbacks. $S^1 \times_* S^1$ is a torus, but $S^1 \times_{D^2} S^1$ is homeomorphic to S^1 .

(2) Let \mathcal{C} be a homotopical category. Prove that for any discrete (the only morphisms are identities) category \mathcal{I} with finitely many objects, $\mathsf{ho}(\mathcal{C})^{\mathcal{I}}$ is equivalent to $\mathsf{ho}(\mathcal{C}^{\mathcal{I}})$, where $\mathcal{C}^{\mathcal{I}}$ has weak equivalences defined pointwise. Prove that finite products in $\mathsf{ho}(\mathcal{C})$ are homotopy coproducts in $\mathsf{ho}(\mathcal{C})$ are homotopy coproducts.

SOLUTION:

You need to assume that $\mathfrak I$ is finite (or maybe a model category), otherwise you get bad behavior. For example, if $\mathfrak C$ has one object and two morphisms $\mathfrak f$ and $\mathfrak g$ and you invert $\mathfrak g$. Let $\mathfrak I$ be the integers. In $\mathsf{ho}(\mathfrak C)^{\mathfrak I}$ has morphisms of the form $(\mathfrak f, \mathfrak f \mathfrak g^{-1} \mathfrak f, \mathfrak f \mathfrak g^{-1} \mathfrak f \mathfrak g^{-1} \mathfrak f, \ldots)$, but this is not a morphism in $\mathsf{ho}(\mathfrak C^{\mathfrak I})$. The problem is that there are different lengths of zigzags at different objects of $\mathfrak I$.

Let $L: \mathcal{C} \to \text{ho } \mathcal{C}$ be the localization functor. Then $L^{\mathfrak{I}}: \mathcal{C}^{\mathfrak{I}} \to (\text{ho } \mathcal{C})^{\mathfrak{I}}$ is a functor which sends weak equivalences to isomorphisms. This yields a functor $\text{ho}(\mathcal{C}^{\mathfrak{I}}) \to (\text{ho } \mathcal{C})^{\mathfrak{I}}$. By construction, this functor is bijective on objects. Further, it is faithful, for it sends a zig-zag of tuples of morphisms to the corresponding tuple of zig-zags of morphisms.

We need additional assumptions to guarantee that this functor is full. If $\mathfrak I$ is finite, then the supremum of lengths of zig-zags accuring in an $\mathfrak I$ -indexed tuple is finite, and thus arises from a zig-zag of tuples. Otherwise, if $\mathfrak C$ is a model category (or more generally has an $\mathfrak n$ -step calculus of fractions), the supremum of lengths accuring in a zig-zag of $\mathfrak I$ -indexed tuples is again finite, and thus arises from a zig-zag of tuples.

Assume this functor is full. Then, $ho(\mathfrak{C}^{\mathfrak{I}}) \to (ho\,\mathfrak{C})^{\mathfrak{I}}$ is an equivalence (even an isomorphism, although it is forbidden to acknowledge that some functors are isomorphisms).

Assume that \mathcal{C} has homotopy products and ho \mathcal{C} has products. Then, the homotopy product functor $ho(\mathcal{C}^{\mathfrak{I}}) \to ho \, \mathcal{C}$ is the right derived functor of the product $\mathcal{C}^{\mathfrak{I}} \to \mathcal{C}$. By the previous problem set, this is the adjoint of the left derived functor of the diagonal, $\mathcal{C} \to \mathcal{C}^{\mathfrak{I}}$. Since the diagonal is already homotopical, its left derived functor is again the diagonal $ho(\mathcal{C})^{\mathfrak{I}} \to ho \, \mathcal{C}$ after identifying $ho(\mathcal{C}^{\mathfrak{I}})$ and $(ho\,\mathcal{C})^{\mathfrak{I}}$. But the adjoint to this diagonal is exactly the homotopy product in ho \mathcal{C} . See also [Rie14, Remark 6.3.1 and footnote 3 therein].

- (3) A *coequalizer* is the colimit of a diagram of shape $\bullet \Rightarrow \bullet$ in a category.
 - (a) Prove that the data of the coequalizer of two parallel morphisms $A \xrightarrow{f \ g} B$ is equivalent to the data of the pushout of the diagram

$$A \stackrel{\nabla}{\longleftarrow} A \coprod A \stackrel{(f,g)}{\longrightarrow} B$$
,

where $\nabla \colon A \coprod A \to A$ is the fold map.

SOLUTION: We will show that each object has the universal property of the other. First, assume that P is a pushout in the diagram below

$$\begin{array}{ccc}
A \coprod A \xrightarrow{(f,g)} & B \\
\downarrow \nabla & & \downarrow p \\
A \xrightarrow{q} & P
\end{array}$$

First, claim that p equalizes f and g. To see this, consider the composite $p(f, g)i_1$, where $i_1: A \rightarrow A \coprod A$ is the left injection into the coproduct. We have $(f, g)i_1 = f$, and $\nabla i_1 = id_A$. Then:

$$pf = p(f, g)i_1 = q\nabla i_1 = q$$

Similarly, $(f, g)i_2 = g$ and $\nabla i_2 = id_A$, so:

$$pg = p(f, g)i_2 = q\nabla i_2 = q$$

So pf = pg. So p equalizes f and g. It remains to be seen that it is the universal morphism that does so.

Let $x: B \to X$ be any morphism such that xf = xg. Then $x(f,g)i_1 = xf = xg = x(f,g)i_2$, which is the same as $x(f,g) = xf\nabla = xg\nabla$. Then we can draw a commuting diagram

and fill it in with the dashed arrow, which shows that there is a unique morphism $P \to X$ exhibiting P as the coequalizer of f and g.

The converse is similar.

(b) Use part (a) to describe the homotopy coequalizer of two maps in the category Top of (unpointed) topological spaces¹.

SOLUTION: The homotopy coequalizer of two parallel maps f, g: $X \rightarrow Y$ is the mapping torus

$$X \times [0,1] \sqcup Y/\sim$$

where ~ identifies

$$(x,0) \sim f(x) \text{ and } (x,1) \sim g(x).$$

¹To be precise, we assume all spaces are compactly generated and weakly Hausdorff. Or equivalently, assume that all spaces are homotopy equivalent to a CW complex.

REFERENCES

- [Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.
- [Rie14] Emily Riehl. *Categorical homotopy theory*, volume 24 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2014.