Constraint satisfaction revisited

- A Constraint Satisfaction problem consists of:
 - > a set of variables
 - a set of possible values, a domain for each variable
 - ➤ A set of constraints amongst subsets of the variables (relations)
- The aim is to find a set of assignments that satisfies all constraints, or to find all such assignments.

Example: crossword puzzle

Dual Representations

Two ways to represent the crossword as a CSP

- First representation:
 - > nodes represent the positions 1 to 6
 - domains are the words
 - constraints specify that the letters on the intersections must be the same.
- **Dual representation:**
- > nodes represent the intersecting squares
 - domains are the letters
 - > constraints specify that the words must fit

Representations for image interpretation

- First representation:
 - > nodes represent the chains and regions
 - > domains are the scene objects
 - constraints correspond to the intersections and adjacency
- **Dual representation:**
 - > nodes represent the intersections
 - > domains are the intersection labels
 - constraints specify that the chains must have same marking

Arc Consistency for non-binary relations

 \triangleright Each relation $R(X_1, \ldots, X_k)$ converted into k hyperarcs:

$$\langle X_1, R(X_1, \ldots, X_k) \rangle$$

 $\langle X_k, R(X_1, \ldots, X_k) \rangle$

- \blacktriangleright Hyperarc $\langle X_i, R(X_1, \dots, X_k) \rangle$ is arc consistent if
- > for every $v_i \in domain(X_i)$
 - there exists $v_1 \in domain(X_1), ...$ $v_{i-1} \in domain(X_{i+1}), v_{i+1} \in domain(X_{i+1}) ...$ $v_k \in domain(X_k)$
 - \triangleright such that $R(X_1, \ldots, X_k)$ is true.

Variable Elimination

- ➤ Idea: eliminate the variables one-by-one passing their constraints to their neighbours
- \triangleright To eliminate a variable X_i :
 - \triangleright Join all of the relations in which X_i appears.
 - Project the join onto the other variables, forming a new relation.
 - \triangleright Remember which values of X_i are associated with the tuples of the new relation.
 - \triangleright Replace the old relations containing X_i with the new relation.

Variable elimination (cont.)

- When there is a single variable remaining, if it no values, the network was inconsistent.
- The solutions can be computed from the remembered mappings.
- The variables are eliminated according to some elimination ordering
- Different elimination odering result in different size relations being generated.

Example network

Example: arc-consistent network

Example: eliminating *C*

$r_1:C\neq E$		C	\boldsymbol{E}		$r_2:C>D$	C	D	
		3	2	_		3	2	
		3	4			4	2	
		4	2			4	3	
		4	3		'			
$: r_1 \bowtie r_2$	\boldsymbol{C}	D	\boldsymbol{E}		$r_4:\pi_{\{D,E\}}r_3$	$\mid D$	\boldsymbol{E}	
	3	2	2	-		2	2	
	3	2	4			2	3	
	4	2	2			2	4	
	4	2	3			3	2	
	4	3	2			3	3	
	4	3	3		→ new cons	ıstraint		

Resulting network after eliminating C

Stochastic local search for CSPs

- The following can be used to solve CSPs:
 - > hill climbing on the assignments.
 - > Choose the best variable then the best value.
 - Choose the best variable-value pair
 - Best: satisfies the most constraints
 - random assignments of values.
 - > random walks
- A mix works even better.

Evaluating Algorithms

- Summary statistics such as mean or median of run times are often not useful in comparing algorithms.
- The information about an algorithm performance can be determined from a runtime distribution.
- A runtime distribution specifies the proportion of the instances that have a running time less than any particular run time.