PLC-k – bevezetés

Programozható irányítóberendezések és szenzorrendszerek

KOVÁCS Gábor gkovacs@iit.bme.hu

A gyártásautomatizálás kezdetei

Jacquard-féle szövőszék(1801) – mechanikus irányítás

XIX. század vége

- Pneumatikus irányítás
 - Nagyméretű eszközök
 - Folyamatos levegőutánpótlás igénye
 - Gyakran meghibásodó mozgó alkatrészek

XX. század eleje

- Elektromechanikus irányítás
- Kulcs: relé

Relés vezérlések

- Relék: kontaktusok és tekercsek
- Bütykös időzítők és számlálók
- Dobvezérlők

Relés vezérlések

- Kisebb méret (de még így is nagy)
- Kisebb tápigény
- Kevéssé megbízható
- Huzalozott logika
- A komplex kapcsolás nehezen átlátható és javítható

A PLC születése

- 1968 A General Motors pályázatot hirdet egy olyan irányítóeszközre, ami
 - egyszerű és rekonfigurálható
 - biztonságos és megbízható
 - jobb költség-haszon mutatókkal rendelkezik az elektromechanikus vezérlőeszközöknél
 - képes ipari környezetben is működni

Az elsőszülött: Modicon 084

A büszke édesapák

- Richard "Dick" Morley
 - Modicon
 - Részt vett (többek között) az ABS és a floppy lemez fejlesztésében

- Odo Josef Struger
 - Allen-Bradley
 - Az IEC 1131-3 (IEC 61131-3)
 szabvány vezető fejlesztője

Miért PLC?

Programmable - Programozható

Logic - Logikai

Controller – Vezérlő

A PLC már nem csak logikai!

- Bájtok, szavak, lebegőpontos számábrázolás
- Időzítők és számlálók
- Aritmetikai műveletek
- Komplex számítások
- Irányítási algoritmusok (pl. PID)
- Soft computing módszerek (fuzzy irányítás)
- •

Akkor mi is a PLC?

A PLC egy ipari beágyazott számítógép.

- Ipari: robusztus és megbízható
- Beágyazott: önmagában rendelkezik minden szükséges perifériával
- Számítógép: mikroprocesszor-alapú

Hol használnak PLC-ket?

- Gyártás- és folyamatirányítás
- Vasúti rendszerek
- Forgalomirányító rendszerek
- Víz- és szennyvízkezelés
- Energiaelosztás
- ...

NanoPLC-k

- Elnevezések:
 - NanoPLC
 - PicoPLC
 - Programozható relé
 (Programmable Relay Controller)
 - Intelligens sorkapocs (Smart Relay)
- Legfeljebb 15 IO port
- Kompakt kivitel
- Akár külső eszköz nélkül is programozható
- Csak a legegyszerűbb vezérlési feladatokra

Mikro PLC-k

- Kompakt kivitel: CPU + IO-k
- Általában modulokkal bővíthető
- Valamilyen kommunikációs csatornával rendelkezik
- Akár 128 IO

Közepes PLC-k

- Moduláris kivitel
- Akár 512 IO, modulok széles választéka
- Rugalmas és sokoldalú megoldások

Nagyméretű PLC-k

- 512+ IO (akár 4096)
- Moduláris, rackrendszerű kivitel
- Komplex ipari alkalmazásokhoz

Különleges PLC-k

- Ex
 - Robbanásbiztos kivitel
 - Különleges hardvert igényel
- Fail-Safe (Safety)
 - Különleges, redundáns hardver
 - Különleges programozási módszerek

Vezető PLC-gyártók

SIEMENS

Logo! nanoPLC

- Simatic S7
 - **-** S7-1200
 - -57-300
 - -57-400

Rockwell Automation

- Az Allen-Bradley márka tulajdonosa
- MicroLogix
- CompactLogix
- ControlLogix

- Alpha nanoPLC
- FX series
- L series
- System Q

Schneider Electric

 A Modicon és Telemecanique márkák tulajdonosa

- Zelio nanoPLC
- Twido
- Modicon sorozat

OMRON ROLL Industrial Automation

- CP series
- CJ series
- CS series

- EasyRelay sorozat
- EasyControl sorozat
- XC sorozat

Egy PLC anatómiája

Hátlap

(rack / chassis / backplane)

- Kisebb típusoknál hiányozhat
- A modulok közti táp- és jelátvitelért felel
- Nem szabványosított

Tápegység

(Power supply unit – PSU)

- Megbízható, stabil tápegység
- Bemenet: hálózatról
 - 110/220VAC
 - 24VDC
- Kimenet: a PLC működéséhez szükséges feszültségszintek
 - -24V
 - -5 V
 - -3.3 V
 - **—** ...

CPU

- Processzor
- Operatív memória
- Háttértár
- Programozói interfész
 - Zárt
 - Nyitott (USB, Ethernet)
- Kommunikációs interfész
 - RS232/RS485
 - Ethernet
 - Modbus

Kommunikációs modulok

- Ethernet
- RS232/485
- Ipari hálózatok
 - DeviceNet/ControlNet
 - Modbus
 - Profibus/Profinet
 - CAN

— ...

I/O modulok

- Digitális I/O
- Analóg I/O
- Különleges modulok
 - Számlálók
 - RTD-bemenetek

— ...

A PLC-k működése

Hogyan működik egy "hagyományos" számítógép?

 Komplex operációs rendszer

Multitasking

 Nem determinisztikus működés

PLC működés

- Mik a feladatok?
 - A technológia működésének nyomon követése a bemenetekre kötött érzékelőkön keresztül
 - Döntéshozatal
 - Beavatkozás a technológia működésébe a kimeneteken keresztül
- Mik a követelmények?
 - Megbízhatóság
 - Determinisztikus működés

PLC ciklus

PLC memória

PROGRAM MEMÓRIA

ADAT MEMÓRIA

Adatmemória

RENDSZERMEMÓRIA

- Konfigurációs adatok
- Státuszinformáció
- Időzítők és számlálók
- Általános célú regiszterek
- Stack-ek

BEMENETI KÉP KIMENETI KÉP

FELHASZNÁLÓI MEMÓRIA

Egyszerű kompakt PLC-k esetén gyakran hiányzik

Bemeneti és kimeneti kép

Bemenetek olvasása

(input scan)

Programvégrehajtás

(program scan)

Kimenetek írása

(output scan)

Belső feldolgozás

(internal processing)

- Ciklusvezérlés
- Önteszt
- Kommunikáció
- Számlálók és időzítők kezelése

Ciklikus és periodikus végrehajtás

Ciklikus végrehajtás

Periodikus végrehatjás

Ciklusidő

Ciklusidő: egy PLC-ciklus teljes időszükséglete

A ciklusidő összetevői

- Bemenetek olvasásának / kimenetek írásának ideje függ
 - bemenetek / kimenetek száma
 - bemenetek / kimenetek típusa
- Programvégrehajtás ideje függ
 - PLC/CPU típus
 - utasítások száma és típusa
 - Számláló növelése: $0.05 1.2 \mu s$
 - SQRT: $0.5 8.1 \mu s$
 - Időzítőkezelés: $3 11\mu s$
- Belső feldolgozás ideje függ
 - PLC / CPU típus
 - Felhasznált komponensek (pl. kommunikációs modul)

Ciklusidő - példa

- Konfiguráció
 - S7-314 CPU (Siemens S7 sorozat)
 - 2 × SM321 32DC 24V digitális bemeneti modul
 - 2 × SM322 32DC 24V digitális kimeneti modul
- Felhasználói program
 - 1.5 ms utasítás-végrehajtási idő
- Nincs kommunikáció

Ciklusidő - példa

Bemenetek olvasása

Általános overhead

- 147 μs
- Bemeneti bájtok olvasása
- + 8 × 13.6 μs = **0.26 ms**

Programvégrehajtás

Utasítások végrehajtási ideje

1.5ms

- CPU faktor S7-314 esetén
- × 1.15
- = 1.8 ms

Kimenetek írása

- Általános overhead
- Kimeneti bájtok írása

	147	μs

- + 8 × 13.6 μs
- = 0.26 ms

Belső feldolgozás

- OS ciklusvezérlés
- Időzítőkezelés

```
1 ms
30 × 8 μs
```

0.26 ms + 1.8 ms + 0.26 ms + 1.24 ms = 3.56 ms

Ciklusidő meghatározása

- Egyszerű PLC-k
 - Az utasítások és felhasználható IO-k száma korlátozott
 - Felső korlátot jelent a ciklusidőre

- Komplex PLC-k
 - A ciklusidőt a fejlesztőkörnyezet automatikusan számítja
 - Lehetőségek a belső feldolgozás időigényének hangolására

Válaszidő

 Az az idő, amennyi egy adott stimulusra való válasz kiadásához szükséges

 "Ha megváltozik egy bemenet, mennyi idő kell ahhoz, hogy a megfelelő kimenetet átállítsuk?"

Válaszidő

Legrosszabb esetben (worst case):

Bemeneti késleltetés

- + ≈ 2 × Ciklusidő
- + Kimeneti késleltetés
- Válaszidő

 Mivel a be- és kimeneti késleltetés általában jóval rövidebb a ciklusidőnél, ezért közelíthető a ciklusidő kétszeresével

Determinisztikus működés

A ciklusidő ismert (legalább felső korlát)

 A bemeneti és kimeneti késleltetések ismertek (legalább felső korlát)

Van egy felső korlátunk a válaszidőre!

Valósidejűség

 Valósidejűnek (real-time) nevezzük azokat a rendszereket, amik egy külső hatásra véges és meghatározott időn belül válaszolnak.

A PLC-k valósidejű rendszerek

Watchdog

Hibakezelés lehet:

- Leállás, kimenetek veszélytelen állapotba, hibajelzés
- Hibakezelő rutin indítása

PLC-k működési módjai

Run és Stop mód

BEMENETEK OLVASÁSA

PROGRAM MÓDOSÍTÁS

ONLINE KAPCSOLAT A FEJLESZTŐKÖRNYEZETTEL

Leállási folyamat táp kikapcsolása esetén

- A PLC menti
 - A kontextust (application context)
 - A rendszermemóriát (teljesen vagy részben)
 - A felhasználói memóriát (teljesen vagy részben)
- Backup eszközök
 - Telepes táplálású RAM
 - EEPROM / Flash memória

PLC indítás

Hidegindítás

- Változók inicializálása kezdeti értékükre
- Program indítása az elejéről

Melegindítás

- A PLC a leállítás előtti állapotába tér vissza
- Az alkalmazás adatai visszaállításra kerülnek
- A program az elejéről indul (a ciklus leállítás pontja utáni részei kimaradnak)

