

# **GUÍA N° 5: ESTEQUIOMETRÍA**

| FACULTAD/ÁREA | CURSO           | AMBIENTE               |
|---------------|-----------------|------------------------|
| CIENCIAS      | QUÍMICA GENERAL | LABORATORIO DE QUÍMICA |
|               |                 |                        |

| ELABORADO POR | DORIS PALACIOS | APROBADO POR        | SANDRA ROMERO |
|---------------|----------------|---------------------|---------------|
| VERSIÓN       | 001            | FECHA DE APROBACIÓN | 08/08/2019    |

# 1. LOGRO GENERAL DE LA UNIDAD DE APRENDIZAJE

Al finalizar la unidad el estudiante resuelve problemas estequiométricos que involucran gases, porcentaje de pureza, reactivo limitante y rendimiento.

# 2. OBJETIVOS ESPECÍFICOS DE LA PRÁCTICA

- Confirmar los principios básicos de la estequiometria.
- Determinar la masa experimental de yoduro de plomo (Pbl<sub>2</sub>) y comparar con el valor teórico.
- Calcular el rendimiento de la reacción química.

# 3. MATERIALES Y EQUIPOS

### **MATERIALES**

- 2 Tubos de ensayo de 17 mL y 22 mL
- 1 Pinza para cápsula de porcelana
- 1 Cápsula de porcelana
- 1 Gradilla de metal
- 1 Embudo
- 1 Matraz de 125 mL
- 1 Pipeta de 5mL
- 1 Propipeta
- 1 Bagueta
- 1 Soporte universal
- 1 Aro con nuez
- 1 Rejilla de asbesto

### **EQUIPOS**

- 1 Estufa eléctrica
- 1 Balanza electrónica

### **REACTIVOS**

- Solución de nitrato de plomo Pb (NO<sub>3</sub>)<sub>2</sub> 0,1 M
- Solución de yoduro de potasio KI 0,145 M
- 1 Papel filtro
- Agua destilada

# **EQUIPO DE PROTECCIÓN PERSONAL (Cada alumno debe traer sus implementos)**

- Guardapolvo blanco
- Lentes de protección
- Guantes

### 4. PAUTAS DE SEGURIDAD

### **MANEJO DE RESIDUOS**

Una vez culminada la práctica de laboratorio, con ayuda del docente se procederá a la identificación y segregación de los residuos generados (ejemplo: residuos químicos y/o residuos sólidos) para su manejo, según se detalla a continuación:

# a. Residuos químicos:

- Verter el residuo líquido que contiene el matraz en el sistema armado que se encuentra dentro de la cabina extractora de gases o en la mesa indicada por el docente.
- Agregar agua destilada al matraz, repetir el procedimiento N°01.

### Nota:

- ✓ Usar guantes de seguridad durante este procedimiento.
- ✓ Usar la menor cantidad de agua posible.
- Doblar y colocar el papel filtro impregnado con el residuo sólido en el recipiente indicado por el docente.

# Nota:

✓ Usar guantes de seguridad durante este procedimiento.

# b. Residuos Sólidos:

- Según las indicaciones del docente se realizará la segregación de los residuos sólidos en los tachos correspondientes para su recolección.





### **RECOMENDACIONES DE SEGURIDAD**

- El uso de la estufa eléctrica se realizará bajo la supervisión del docente y/o asistente.
- Prohibido usar guantes cuando se encuentre utilizando la estufa eléctrica (durante el recojo de la cápsula de porcelana de la misma).
- En el caso se encuentre un material dañado, comunicar al asistente para evitar laceraciones y/o heridas.
- Evitar cualquier contacto con los reactivos químicos, ya sea durante la práctica o también al momento de la segregación de los residuos.
- En caso de exposición de reactivos químicos a la piel u ojos comunicar al docente y/o asistente.

### **USO DE EPP**

En esta clase de laboratorio se usarán los siguientes EPP: Guardapolvo, lentes de protección y guantes de látex

### 5. FUNDAMENTO

# **ESTEQUIOMETRÍA**

La estequiometria es el estudio de las relaciones cuantitativas entre la masa, la energía y el volumen en las reacciones químicas, esto es, la medición de las cantidades químicas relativas de los reactantes y productos a partir de una reacción química completa y balanceada, mediante la información expresada en sus fórmulas y las leyes ponderales de la Química.



**Grafica 2.** Reacciones estequiometricos

# LEY DE LA CONSERVACIÓN DE LA MATERIA (LAVOISIER)

En toda reacción química la suma de masa de los reactivos será igual a la suma de la masa de los productos obtenidos, es decir, no habrá cambio detectable en la masa.

# RENDIMIENTO DE UNA REACCIÓN:

La cantidad de producto que se suele obtener de una reacción química es siempre menor que la cantidad teórica. Esto depende de varios factores, como la pureza del reactivo y de las reacciones secundarias que puedan tener lugar. Lograr una reacción 100% eficiente es prácticamente imposible.

El porcentaje de eficiencia o de rendimiento de una reacción es la relación entre la cantidad de producto obtenida experimentalmente (en situaciones reales) y la cantidad de producto calculada de manera teórica (en situaciones ideales), expresado como un porcentaje:

$$\%Rendimiento = \frac{Masa\ Experimental}{Masa\ Te\'orica} \times 100$$

Recordar que:

Número de moles

$$n = \frac{masa(g)}{\overline{\text{PM}}(g/mol)}$$

Molaridad

$$M = \frac{n_{soluto}(mol)}{V_{soluci\'{o}n}(L)}$$

Reemplazando la fórmula del número de moles en la fórmula de la molaridad, tenemos:

$$masa(g) = \overline{PM} \times M \times V_{solución}$$

Donde:

 $\overline{PM}$ : Masa molecular en (g/mol)

M: Molaridad en (mol/L)

V<sub>solución</sub>: Volumen de la solución en (L)

# 6. PROCEDIMIENTO (DESARROLLO DE LA PRÁCTICA)

# 1. Determinación del porcentaje de rendimiento

- Pesar el papel filtro y anotar el dato para cálculos posteriores.
- En una gradilla encontrará dos tubos de ensayo.
- El primer tubo de ensayo contiene 3 mL de nitrato de plomo (Pb (NO<sub>3</sub>)<sub>2</sub>) 0,1 M.
- En el segundo tubo de ensayo deberá medir 5 mL de yoduro de potasio (KI) 0,145 M.
- Mezclar ambas soluciones, para ello verter el yoduro de potasio (KI) en el tubo de ensayo del nitrato de plomo (Pb (NO<sub>3</sub>)<sub>2</sub>) y agitar con la bagueta.
- Dejar sedimentar el precipitado durante un minuto.
- Realizar la filtración según la figura mostrada



Figura 3. Sistema de filtración

# Asegurar el papel filtrado al embudo agregando una pequeña cantidad de agua destilada para que éste se adhiera

- Realizar lavados al tubo de ensayo con agua destilada para asegurar que todo el precipitado amarillo pase al papel filtro.
- Retirar el papel filtro y colocarlo en la cápsula de porcelana. Abrir con cuidado el papel filtro y utilizando la pinza metálica llevar la cápsula dentro de la estufa eléctrica por aproximadamente 15 minutos a una temperatura de 150 °C.
- Pasado el tiempo estimado, retirar de la estufa eléctrica la cápsula de porcelana con papel filtro. Esperar a que enfríe, pesar y anotar el dato obtenido.
  - \* Para recoger la cápsula de porcelana de la estufa eléctrica llevar la pinza de metal y la rejilla de asbesto

### 7. ENTREGABLES

I. TABLA Y RESULTADOS: Complete las tablas y escriba sus cálculos en una hoja adjunta.

Tabla A. Completar la tabla de datos con sus respectivas unidades

Tabla B. Completar la tabla de datos con sus respectivas unidades.

- **II. CUESTIONARIO**
- III. CONCLUSIONES

### 8. FUENTES DE INFORMACIÓN COMPLEMENTARIA

### **LIBROS**

- Chang, R. (2010) Química, Mc Graw Hill.
- Brown, T., Lemay, E. (2014) Química la ciencia central, Reverté.
- Atkins, P. (2015) Principios de química, Editorial Médica Panamericana.
- Petrucci, H. (2011) Química general, Prentice Hal.

\_

### **DOCUMENTOS**

- Protocolo de Seguridad para los laboratorios de Química.
- Plan de Manejo de Residuos de los laboratorios de Química y Física.

# REPORTE DE LABORATORIO DE QUÍMICA GENERAL

PRÁCTICA 05: ESTEQUIOMETRÍA

PROFESOR: N° DE CLASE-SECCIÓN: FECHA: NÚMERO DE MESA:

HORARIO: INTEGRANTES:

| Apellidos y Nombres |  | Apellidos y Nombres |  |
|---------------------|--|---------------------|--|
| 1                   |  | 5                   |  |
| 2                   |  | 6                   |  |
| 3                   |  | 7                   |  |
| 4                   |  | 8                   |  |

- I. TABLA Y RESULTADOS: Complete las tablas y escriba sus cálculos en una hoja adjunta.
- Escribir la ecuación balanceada.

$$KI_{(ac)} + Pb(NO_3)_{2(ac)} \rightarrow PbI_2 \downarrow + KNO_{3(ac)}$$

Tabla A. Completar la tabla de datos con sus respectivas unidades

| DATOS                                                                           |      | RESULTADOS |
|---------------------------------------------------------------------------------|------|------------|
| $m_{ m papel\ filtro}$                                                          | (1)  |            |
| $m_{papel\ filtro+muestra\ seca}$                                               | (II) |            |
| $m_{\exp(PbI_2)} = (II) - (I)$                                                  |      |            |
| % Rendimiento = $\frac{m_{\exp(PbI_2)}}{m_{te\acute{o}rico(PbI_2)}} \times 100$ |      |            |

Tabla B. Completar la tabla de datos con sus respectivas unidades.

|   | COMPUESTOS                         | КІ | Pb(NO <sub>3</sub> ) <sub>2</sub> | Pbl <sub>2</sub> | KNO₃ |
|---|------------------------------------|----|-----------------------------------|------------------|------|
| 1 | Volumen (L)                        |    |                                   |                  |      |
| 2 | Molaridad (mol/L)                  |    |                                   |                  |      |
| 3 | Coeficiente<br>Estequiométrico     |    |                                   |                  |      |
| 4 | PM(masa molecular)                 |    |                                   |                  |      |
| 5 | Número de moles<br>iniciales (mol) |    |                                   |                  |      |
| 6 | Masa inicial (g)                   |    |                                   |                  |      |
| 7 | Reactivo limitante                 |    |                                   |                  |      |
| 8 | Número de moles<br>finales (mol)   |    |                                   |                  |      |
| 9 | Masa teórica o final<br>(g)        |    |                                   |                  |      |

# II. CUESTIONARIO 1 2

| III. | CONCLUSIONES |             |
|------|--------------|-------------|
| 1    |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              | <del></del> |
| 2    |              |             |
| 2    |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
| 3    |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |
|      |              |             |

# **HOJA DE CÁLCULOS**