基础数理统计 2023 Spring

Discrete dist.	pmf	mean	variance	mgf/moment
Discrete Uniform(n)	$\frac{1}{n}$	<u>n+1</u>	$\frac{n^2-1}{12}$	$\frac{e^t(1-e^{nt})}{n(1-e^t)} = \frac{1}{n} \sum e^{it}$
Bernoulli(p)	$p^{x}(1-p)^{1-x}$	р	p(1 - p)	$(1-p)+pe^t$
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$((1-p)+pe^t)^n$
Geometric(p)	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$
$\mathrm{Poisson}(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	λ	λ	$e^{\lambda(e^t-1)}$
Beta-binomial (n, α, β)	$\frac{\binom{n}{x}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}}{\frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)}{\Gamma(n+\alpha+\beta)}}$	$\frac{n\alpha}{\alpha+\beta}$	$\frac{n\alpha\beta}{(\alpha+\beta)^2}$	If $X P$ is Binomial (n,P) , and P is Beta (α,β) , then X is Beta-binomial (n,α,β) .

$$\begin{aligned} &(uv)' = uv' + u'v \\ &(\frac{u}{v})' = \frac{u'v - uv'}{v^2} \\ &\int uv' \, \mathrm{d}x = uv - \int u'v \, \mathrm{d}x \end{aligned} \qquad (f(g(x)))' = f'(g(x))g'(x) \\ &(a^x)' = (\ln a)a^x$$

1.概率

条件概率 P(A|B) = P(AB)/P(B)

全概率 $P(B) = \sum_{i} P(B|A_i)P(A_i)$

贝叶斯 $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_j P(B|A_j)P(A_j)}$

例蓝眼 1/4. 对于三个孩子的家庭, 如果至少有一个孩子是 蓝眼睛 (A), 至少有两个蓝眼睛 (B) 的概率为 P(B|A) = P(AB)/P(A) = P(B)/P(A) = 10/37

 $\mathbf{M}p_{1...5} = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$ 代表第 i 枚硬币出现正面的概率. 随机选取一枚硬币, 投掷直到出现正面. 求 $P(C_i \mid B_4)$, B_4 表示第 4 次首次出现正面. 由贝叶斯, $P(C_i|B_4)$ = $\frac{P(B_4|C_i)P(C_i)}{\sum_{i \in [5]} P(B_4|C_i)P(C_i)} = \frac{P(B_4|C_i)}{\sum_{i \in [5]} P(B_4|C_i)}$

2.随机变量

随机变量 $X:\Omega\mapsto\mathbb{R}$ 对每个样本赋予实值.

 $CDF F_X(x) = P(X \le x)$

PDF 1: $f_X(x) \ge 0$, 2: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$, 3: $\Leftrightarrow Z = X - Y$, $F_Z(z) = \int_{x+y \le z} f(x,y) dx dy = 1$ $P(a < X < b) = \int_a^b f_X(x) dx.$

 $F^{-1}(q) = \inf\{x : F(x) > q\}, (\max x : f(x) \le q)$

Poisson 分布: 平均 5 分钟 10 人到店, 问等待第一个顾客两分 钟以上的概率. 两分钟实际到店人数 X 服从参数为 $\lambda = 4$ 的 Poisson 分布, $P(T > 2) = P(X = 0) = e^{-4}$. 推广, 等待时 间 $F(t) = 1 - e^{-\lambda t}$, $f(t) = F'(t) = \lambda e^{-\lambda t}$, 为指数分布,

二维 正态 分布:
$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \exp\left[-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} \right] \right]$$

边际分布: $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$ 独立定义 $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$, $f_{XY}(x,y) = f_X(x)f_Y(y)$, $\text{独立 iff } \forall x,y,f(x,y) =$ $r(x)g(y), f_X(x) = r(x)/\int_{-\infty}^{\infty} r(x) dx$

条件分布
$$f_{X|Y}(x|y) = \frac{P(X=x,Y=y)}{P(Y=y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 $(\arctan x)' = \frac{1}{1+x^2}$
 $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

多项分布:
$$P(\ldots, X_k = n_k) = \frac{n!}{n_1! \ldots n_k!} p_1^{n_1} \ldots p_k^{n_k}$$
 多元 正 态 分 布: $f(x_1, \ldots, x_n) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$

随机变量的函数: 对于随机变量 X 考虑函数形式 r(x), 计算 Y = r(X) 的分布: 对每个 y 求集合 $A_y = \{x : r(x) \le y\}$; 求 CDF: $F_{r(X)}(y) = P(r(X) \le y) = P(X \in A_y) =$ $\int_{A_{ij}} f_X(x) dx$; 求 PDF: $f_Y(y) = F'_Y(y)$. 当 r 单调时, r的反函数为 $s = r^{-1}$,有 $f_Y(y) = f_X(s(y)) \left| \frac{\mathrm{d}s(y)}{\mathrm{d}y} \right|$

例 $f_X(x) = e^{-x}(x > 0)$, $F_X(x) = \int_0^x f_X(s) ds =$ $1 - e^{-x}$. $\Rightarrow Y = r(X) = \log X, A_y = \{x : x \le e^y\},$ $F_Y(y) = P(X \le e^y) = F_X(e^y) = 1 - e^{-e^y}, f_Y(y) =$ $F_{V}'(y) = e^{y}e^{-e^{y}}.$

例令 $X, Y \sim \text{Uniform}(0, 1)$ 且独立, 求 X - Y 的 PDF.

$$\begin{cases} 0 & \text{if } z \le -1 \\ \frac{(1+a)^2}{2} & \text{if } -1 < z < 0 \\ 1 - \frac{(1-a)^2}{2} & \text{if } 0 \le z < 1 \\ 1 & \text{if } z \ge 1 \end{cases} \begin{cases} f_Z(z) = \\ 1+z, & -1 < z < 0 \\ 1-z, & 0 \le z < 1 \\ 0, & \text{otherwise} \end{cases}$$

3.期望

 $\mu_X = E(X) = \int x \, dF(x) < \infty$, 称期望存在. 懒惰统计学家法则 $E(r(X)) = \int r(x)dF_X(x)$. k 阶矩 $E(X^k)$, 中心矩 $E((X-\mu)^k)$. $\sigma^2 = V(X) = E((X - \mu)^2) = E(X^2) - E(X)^2$ 样本 $\overline{X} = 1/n \sum X_i, S_n^2 = 1/(n-1) \sum (X_i - \overline{X})^2$ 定理: $E(\overline{X}_n) = \mu, V(\overline{X}_n) = \sigma^2/n, E(S_n^2) = \sigma^2$. $Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) -$ E(X)E(Y), 不相关: $Cov(X_i, X_i) = 0$, 此时两者方差可加, 但 不代表独立 (例 X = U(-1, 1), Y = |X|)

Continuous dist.	pdf	mean	variance	mgf/moment
Uniform (a, b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$ 1
$\operatorname{Exponential}(\theta)$	$\frac{1}{\theta}e^{-\frac{x}{\theta}}$	θ	θ^2	$\frac{1}{1 - \theta t}, t < \frac{1}{\theta}$
Exponential(λ)	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, t < \lambda$
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
$Gamma(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	αβ	$\alpha \beta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}, t < \frac{1}{\beta}$
Beta (α, β)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{i=0}^{k-1} \frac{\alpha + i}{\alpha + \beta + i} \right) \frac{t^k}{k!}$
Cauchy	$1/(\pi(1+x^2)), x \in \mathbb{R}$	(∞)	n/a , $F_X(x)$	$=\arctan(x)/\pi+1/2$
$\chi_p^2 = \sum_{i=1}^p Z_i^2$	$\frac{1}{2^{p/2}\Gamma(p/2)}x^{p/2-1}e^{-x/2}$	p	2p	$(1-2t)^{-p/2}, t < 1/2$

矩母函数 $M_X(t) = E(e^{tX})$. 如果 Y = aX + b, 则 $\{X_i\}$ i.i.d., μ , σ^2 存在, $\overline{X}_N = \frac{1}{n} \sum_{i=1}^n X_i$ $M_Y(t) = e^{bt} M_X(at)$. 意义: $E(X^n) = M_Y^{(n)}(0)$. 例 $X \sim \text{Exp}(\lambda), E(X) = M'_X(0) = \frac{\lambda}{(\lambda - t)^2}|_{t=0} = \frac{1}{\lambda},$ $E(X^2) = M_X^{(2)}(0) = \frac{2\lambda}{(\lambda - t)^3}|_{t=0} = \frac{2}{\lambda^2}.$

4.不等式

Markov $P(X \ge a) \le \frac{E(X)}{a}, X \ge 0, a > 0$ Chebyshev $P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$

Mill $Z \sim N(0,1), P(|Z| \ge t) \le \frac{2}{\sqrt{s}} \frac{e^{-t^2/2}}{t}$

Hoeffding:

$$\begin{split} &P\left(|X-\mu| \geq t\right) \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right) \\ &E\left(e^{\alpha X}\right) \leq \exp\left(\frac{a^2(b-a)^2}{8}\right), E\left(X\right) = 0, \alpha \in \mathbb{R} \\ &\emptyset\mid X \sim \text{Bernoulli}(n,p), \\ &P(|\overline{X}_n - p| > \epsilon) \leq 2 \exp\left(-2n\epsilon^2\right) \\ &\text{Cauchy-Schwartz } E(XY) \leq \sqrt{E(X^2)E(Y^2)} \\ &\text{Jensen } E(q(X)) \geq q(E(X)), q \text{ \mathbb{L}}^{\text{th}}. \end{split}$$

5.随机变量的收敛

 $\mathbb{R} \times X_n \xrightarrow{P} X : P(|X_n - X| \ge \varepsilon) \to 0$, as $n \to \infty$. 分布 $X_n \rightsquigarrow X: F_{X_n}(x) \to F_{X_n}(x), \forall x \in$ 连续点. 均方 $X_n \xrightarrow{qm} X : E(X_n - X)^2 \to 0.$ 均方 \rightarrow 概率 $\xrightarrow{\leftarrow \hat{\mu}_{A}}$ 分布. 依概率但不均方收敛 $X_n = \sqrt{n}I_{(0,1/n)}(U(0,1));0$ 依分布但不依概率收敛 $X \sim N(0,1), X_n = -X$ 1. $X_n + Y_n \to X + Y : (P, qm)$ 2. $X_n Y_n \to XY : (P)$ 3. $q(X_n) \rightarrow q(X) : (P, \rightsquigarrow)$ 4. (Slutzky) $X_n \rightsquigarrow X, Y_n \rightsquigarrow c: X_n + Y_n \rightsquigarrow X + c, X_n Y_n \rightsquigarrow cX.$ 注: 通常 $X_n \rightsquigarrow X$, $Y_n \rightsquigarrow Y \Rightarrow X_n + Y_n \rightsquigarrow X + Y$.

弱 LLN: $\overline{X}_n \xrightarrow{P} \mu : \lim_{n \to \infty} P(|\overline{X}_n - \mu| \le \varepsilon) = 1$ 强 LLN: $\overline{X}_n \xrightarrow{a.s.} \mu : P(\lim_{n \to \infty} |\overline{X}_n - \mu| \le \varepsilon) = 1$

CLT: $Z_n \equiv \frac{\sqrt{n}(X_n - \mu)}{\sigma} \rightsquigarrow N(0, 1)$, i.e.,

 $\lim_{n\to\infty} P(Z_n \le z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$

变形: $\overline{X}_n \approx N(\mu, \frac{\sigma^2}{n}), \sqrt{n}(\overline{X}_n - \mu) \approx N(0, \sigma^2).$

样本 $S_n^2 = (n-1)^{-1} \sum (X_i - \overline{X}_n)^2$, CLT σ 换为 S_n . Delta 方法: 求极限分布

 $Y_n \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow g(Y_n) \sim N(g(\mu), (g'(\mu))^2 \frac{\sigma^2}{n})$

6.模型、统计推断与学习

参数模型: $\mathcal{F} = \{ f(x, \theta) : \theta \in \Theta \}$, 如正态 $\theta = (\mu, \sigma)$ 非参数模型: 无法用有限参数表示, 回归/聚类/决策树等

统计量: 完全基于样本所得的量, 是样本的函数.

点估计: $\hat{\theta} = q(X_1, \dots, X_n)$. 偏差 bias $(\hat{\theta}_n) = E_{\theta}(\hat{\theta}_n) - \theta$.

无偏: bias = 0; 相合: $\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta$.

标准误差 $\operatorname{se}(\hat{\theta}_n) = \sqrt{V(\hat{\theta}_n)};$

 $MSE = E_{\theta}(\hat{\theta}_n - \theta)^2 = bias^2 + se^2$.

如果 bias $\stackrel{P}{\rightarrow}$ 0 且 se $\stackrel{P}{\rightarrow}$ 0, 则 $\hat{\theta}_n \stackrel{P}{\rightarrow} \theta$.

渐进正态性: $\frac{\hat{\theta}_n - \theta}{\text{se}} \rightsquigarrow N(0, 1)$.

置信集: 置信区间 $C_n = (a_n, b_n), P_{\theta}(\theta \in C_n) = 1 - \alpha.$ 注: 置信区间是随机区间, 意思是给定若干组样本, 每组得到的置 信区间覆盖真实参数的概率为 $1-\alpha$.

基于正态的置信区间: $\hat{\theta}_n \pm z_{\alpha/2} \operatorname{se}(\hat{\theta}_n)$.

例 $\{X_n\}$ ~ Bernoulli(p), 由 Chebyshev $P(|\overline{X}_n - p| \ge$ ϵ) $\leq 2 \exp(-2n\epsilon^2)$, $\Rightarrow \alpha = 2 \exp(-2n\epsilon) \Rightarrow \epsilon^2 =$ $\log(2/a)/(2n)$, 因此 $C_n = (\overline{X}_n - \sqrt{\log(2/a)/(2n)}, \overline{X}_n +$ $\sqrt{\log(2/a)/(2n)}$); 由渐进正态, $C_n = (\overline{X}_n$ $z_{\alpha/2}\sqrt{\overline{X}_n}(1-\overline{X}_n)/n, \overline{X}_n+z_{\alpha/2}\sqrt{\overline{X}_n}(1-\overline{X}_n)/n$

 $1.65, z_{0.025/2} = 2.24, z_{0.01/2} = 2.58, z_{0.005/2} = 2.80.$ 假设检验: $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1$. 一般把可以否定, 且可 根据其构建分布机制的命题作为原假设. 显著性水平: 小概率事件发生的概率 α ; 临界值: C, 使得 P_{θ} (拒绝 H_0 , 如 $|\overline{X} - \mu| > C$) = α .

拒绝域: W, 如 $\{(X_1,\ldots,X_n): |\overline{X}-\mu| > C\}$. 7.CDF 和统计泛函的估计 经验分布函数 $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$ 无偏, $V(\hat{F}_n(x)) = \frac{F(x)(1-F(x))}{n}, MSE \rightarrow 0, \xrightarrow{P}, F \in (0,$ 1): $\sqrt{n}(\hat{F}_n(x) - F(x)) \rightsquigarrow N(0, F(x)(1 - F(x)))$ 统计泛函: T(F) 是分布函数 F 的函数. 嵌入式估计量: $\theta_n = T(\hat{F}_n)$. 线性泛函: $T(F) = \int_{-\infty}^{+\infty} r(x) \, dF(x)$, 满足 T(aF + bG) = aT(F) + bT(G), 嵌入式估计量: $T(\hat{F}_n) = \int_{-\infty}^{+\infty} r(x) \, \mathrm{d}\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n r(X_i),$ 近似 $1-\alpha$ 置信区间为 $T(\hat{F}_n) \pm z_{\alpha/2}$ se. 例 $\hat{\mu} = \overline{X}_n$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2$. 8.Bootstrap 方法 从 \hat{F}_n 中生成 X_1^*, \ldots, X_n^* 计算统计量, 重复 B 次. 方差估计: $V_{\text{boot}} = \frac{1}{B} \sum_{h=1}^{B} (T_{nh}^* - \overline{T}^*)^2$ 正态区间法 $T_n \pm z_{\alpha/2} \sqrt{V_{\mathrm{boot}}}$,除非接近正态否则不准确. 枢轴量法: 定义 $R_n = \hat{\theta} - \theta$, $\hat{\theta}_{n,1}^*$ 为副本,

 $\theta_{\mathcal{B}}^*$ 为 β 分位数, $C_n = (2\hat{\theta}_n - \theta_{1-\alpha/2}^*, 2\hat{\theta}_n - \theta_{\alpha/2}^*)$

分位数置信区间: $(\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*)$ 9.参数推断 似然函数: $\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i, \theta)$, 对数似然函数 $\ell_n(\theta) = \log L_n(\theta)$ 极大似然估计 $\hat{\theta}_n$: 使 $L_n(\theta)$ 达到最大值的 θ 的值, 可以解方程 $\partial \ell_n(\theta)/\partial \theta = 0$ 得到. 例 1. 正态分布 $\hat{\mu} = \overline{X}, \hat{\sigma} = S$.; 2. $\{X_i\} \sim U(0, \theta)$ i.i.d., $f(x;\theta) = 1/\theta \text{ if } 0 \le x \le \theta, \mathcal{L}_n(\theta) = (1/\theta)^n \text{ if }$ $\theta \geq \max\{X_i\}, \, \exists \, \hat{\theta}_n = \max\{X_i\} \, 3. \, f(x) = \theta x^{\theta-1}$ \vec{x} $\hat{\theta}$, $\ell_n(\theta) = n \log \theta + (\theta - 1) \sum \log X_i$, 解方程 $\partial \ell_n(\theta)/\partial \theta = 0$ 得到 $\hat{\theta}_n = -\frac{n}{\sum \log X_i}$. 极大似然估计的相合性: $\hat{\theta}_n \xrightarrow{P} \theta_*$ KL 距离: D(P,Q) = $\int p(x) \log \frac{p(x)}{g(x)} dx, D(f,g) \ge 0, D(f,g) = 0 \Leftrightarrow f = g.$ 模型可识别: $\hat{\theta} \neq \phi \Rightarrow D(\theta, \phi) > 0$ 极大似然估计的同变性: $\tau = q(\theta)$, $\hat{\tau}_n = q(\hat{\theta}_n)$ Fisher $I_n(\theta) = V_{\theta}(\sum s(X_i; \theta)) = \sum V_{\theta}(s(X_i; \theta)) =$ $E(s^2(X;\theta)) = nE(s(x_i;\theta)), s(X;\theta) = \frac{\partial \log f(X;\theta)}{\partial x_i}$ 渐进正态性: \Leftrightarrow se = $\sqrt{V(\hat{\theta}_n)}$, 适当正则条件下

 $z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2).$ $z_{0.05/2} = 1.96, z_{0.1/2} = 1. \text{ se } \approx \sqrt{1/I_n(\theta)}, \frac{\hat{\theta}_n - \theta}{\text{se}} \rightsquigarrow N(0, 1),$ 2. $\hat{\text{se}} = \sqrt{1/I_n(\hat{\theta}_n)}, \frac{\hat{\theta}_n - \theta}{\hat{\sigma}_n} \rightsquigarrow N(0, 1)$ 3. $C_n = \hat{\theta}_n \pm z_{\alpha/2} \hat{\text{se}}, P_{\theta}(\theta \in C_n) \rightarrow 1 - \alpha$ 例 $N(\theta, \sigma^2)$, $f(X; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X-\theta)^2}{2\sigma^2}\right)$, 记分函数 $s(X; \theta) = \frac{\partial \log f(X; \theta)}{\partial \theta} = \frac{X-\theta}{\sigma^2}$, $I_n(\theta) =$ $nE(s^{2}(X;\theta)) = -nE_{\theta}(s'(X;\theta)) = -nE_{\theta}(-\frac{1}{z^{2}}) = \frac{n}{z^{2}},$ $\hat{se} = \sqrt{\frac{\sigma^2}{n}}$, 故 \overline{X} 近似服从 $N(\theta, \sigma^2/n)$. 极大似然估计 Delta 方法: 如果 $\tau = q(\theta), q'(\theta) \neq 0$, 则 $\frac{\hat{\tau}_n - \tau}{\hat{sp}(\hat{\tau}_n)}$ \longrightarrow N(0,1), 其中 $\hat{\tau}_n = g(\hat{\theta}_n)$, 且 $\hat{\operatorname{se}}(\hat{\tau}_n) = \sqrt{V(\hat{\tau}_n)} = |g'(\hat{\theta}_n)| \hat{\operatorname{se}}(\hat{\theta}_n).$ 例 Poisson(λ), 矩估计: $\hat{\lambda} = \overline{X}_n$, $f(X; \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}$, $\mathcal{L}_n = \prod \frac{\lambda^{X_i} e^{-\lambda}}{(X_i)!}, \ \ell_n = \sum (X_i \log \lambda - \lambda - \log(X_i)!),$ $I_n(\lambda) = nI(\lambda) = nE(s^2(X;\lambda)) = \frac{n}{\lambda}, \text{ se } = \sqrt{\frac{\lambda}{n}}, \overline{X}$ 近似服从 $N(\lambda, \lambda/n)$, $1-\alpha$ 置信区间为 $\hat{\lambda} \pm z_{\alpha/2}\sqrt{\frac{\hat{\lambda}}{n}}$. 例 $N(\theta, 1)$, $Y_i = I(X_i > 0)$, $\psi = P(Y_1 = 1)$. $\mathcal{L}_n(\theta) =$ $\prod_{1/2\pi} \frac{1}{e^{-\frac{(X_i-\theta)^2}{2}}}, \, \ell_n(\theta) = -\frac{n}{2} \log 2\pi - \frac{1}{2} \sum_{i=1}^{\infty} (X_i-\theta)^2,$ $\partial \ell_n(\theta)/\partial \theta = \sum_i (x_i - \theta)_i = 0 : \hat{\theta} = \overline{X}. I_n(\theta) =$ $nE_{\theta}(s^2(X_i;\theta)) = n$, $\hat{se}(\hat{\theta}) = \frac{1}{\sqrt{I_n(\hat{\theta})}} = \frac{1}{\sqrt{n}}$, $\psi = \Phi(\theta)$, $\hat{\psi} = \Phi(\hat{\theta}) = \Phi(\overline{X}), \hat{\operatorname{se}}(\hat{\psi}) = |\Phi'(\hat{\theta})| \hat{\operatorname{se}}(\hat{\theta}) = \phi(\hat{\theta}) \hat{\operatorname{se}}(\hat{\theta}).$ $\tilde{\psi} = 1/n \sum Y = E[\overline{Y}] \xrightarrow{P} E[Y] = \psi$, 渐进效率 $V(\tilde{\psi})/V(\hat{\psi}) = \psi(1-\psi)/\phi(\theta) = \Phi(\theta)(1-\Phi(\theta))/\phi(\theta).$ 非正态: 由 LLN $\hat{\psi} \xrightarrow{P} \Phi(\mu)$, $F_X(0) \neq 1 - \Phi(\mu)$ 都不相合. 例 $X_1 \sim \text{Binomial}(n_1, p_1), X_2 \sim \text{Binomial}(n_2, p_2), \psi =$ $p_1 - p_2$, $f(X_i; p_i) = \binom{n_i}{X_i} p_i^{X_i} (1 - p_i)^{n_i - X_i}$, $\frac{\partial}{\partial p_i} s(X_i; p_i) = \frac{X_i}{p_i} + \frac{X_i}{1-p_i} = \frac{X_i-np_i}{p_i(1-p_i)} \hat{p}_i =$ $X_i/n_i, \hat{\psi} = \hat{p}_1 - \hat{p}_2 = X_1/n_1 - X_2/n_2.$ $I(p_1, p_2) =$ $(\partial^2 \log f((X_1, X_2); \psi)/\partial p_i \partial p_j) = \begin{bmatrix} \frac{n_1}{p_1(1-p_1)} \\ 0 \end{bmatrix}$ 多参: $\theta = (\theta_1, \dots, \theta_k)^T$ Fisher 信息矩阵 $I_n(\theta) =$ $(E_{\theta}(H_{ij})),\,H_{ij}=\frac{\partial \log f(X;\theta)}{\partial \theta_i \partial \theta_j},\,J_n(\theta)=I_n^{-1}(\theta)$ 多参数 Delta 方法: $\nabla g = (\frac{\partial g}{\partial \theta_1}, \dots)^T$ 在 $\hat{\theta}_n$ 处不为 0, 令 $\hat{\tau}_n = g(\hat{\theta}_n)$, 则 $\frac{\hat{\tau}_n - \hat{\tau}}{\sqrt{\hat{\tau}_n^T J_n(\hat{\theta}_n)\hat{\tau}_n}} \rightsquigarrow N(0, 1)$, 其中 $\hat{\operatorname{se}}(\hat{\tau}_n) = \sqrt{(\nabla g|_{\theta=\hat{\theta}_n}^T) J_n(\hat{\theta}_n) (\nabla g|_{\theta=\hat{\theta}_n})}.$ 例 $X_1 ... X_n \sim N(\mu, \sigma^2)$, $\psi = g(\mu, \sigma) = \sigma/\mu$, (μ, σ^2) MLE: (\overline{X}, S^2) , $I_n(\mu, \sigma^2) = \begin{pmatrix} n/\sigma^2 & 0 \\ 0 & 2n/\sigma^2 \end{pmatrix} J_n =$ $\begin{pmatrix} \sigma^{2}/n & 0 \\ 0 & \sigma^{2}/2n \end{pmatrix}, \nabla g = (-\frac{\sigma}{u^{2}}, \frac{1}{\mu})^{T}, \hat{\operatorname{se}}(\hat{\tau}) = \frac{1}{\sqrt{n}} \sqrt{\frac{\hat{\sigma}^{4}}{\hat{\sigma}^{4}} + \frac{\hat{\sigma}^{2}}{2\hat{\sigma}^{2}}}.$

10.假设检验与 p 值 检验统计量: $T_n = T(X_1, \ldots, X_n)$, μ_0 , 检验统计量 $T_n = \sqrt{n} \frac{|\overline{X}_n - \mu_0|}{S}$ 拒绝域为 $|\overline{X} - \overline{Y}| > z_{\alpha/2}$ se, 绝域为 $|\overline{X} - \overline{Y}| > z_{\alpha/2}$ se.

拒绝域 $\mathcal{F}_{\mathbf{n}} = \{T_{\mathbf{n}} > c\}, c$ 为临界值. 第一类错误: 假阳性; 第二类错误: 假阴性. 势函数 $\beta(\theta) = P_{\theta}(X \in \mathcal{A})$, 容度 $\beta = \sup_{\theta \in \Theta_{+}} \beta(\theta)$ 容度 $\leq \alpha$ 称检验水平为 α . 简单 $\theta = \theta_0$ 复合 $\theta \geq \theta_0$ 双边 $H_0: \theta = \theta_0 \text{ vs } \dots$ 单边 $H_0: \theta \geq \theta_0 \text{ vs } \dots$ 例 $X_1 ... X_n \sim N(\mu, \sigma^2)$, 检验 $H_0 : \mu = \mu_0 \text{ vs } H_1 : \mu \neq \mu_0$ 拒绝域 $\{T_n > z_{\alpha/2}\}$, 势函数 $\beta(\mu) = P_{\mu}(T_n > z_{\alpha/2})$ 如检验 $H_0: \mu \leq 0$ vs $H_1: \mu > 0$, 拒绝域 $\mathcal{A} = \{\overline{X} > c\}$, 势函数 $\beta(\mu) = P_{\mu}(\overline{X} > c) = P(\sqrt{n} \frac{(\overline{X} - \mu)}{\sigma} > \sqrt{n} \frac{c - \mu}{\sigma}) =$ $1 - \Phi(\sqrt{n}\frac{c-\mu}{\sigma})$,检验水平 $\alpha = \sup_{\mu \le \mu_0} \beta(\mu) = 1 - \mu$ $\Phi(\sqrt{n}\frac{c-\mu_0}{\sigma})$, 设定显著性水平 α , $c=\mu_0+\frac{\sigma}{\sqrt{n}}z_{\alpha/2}$. Wald 检验: $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$, 若 $\hat{\theta}$ 渐进正态, $W = \frac{\theta - \theta_0}{\hat{\operatorname{se}}(\hat{\theta})}$, 当 $|W| > z_{\alpha/2}$ 时拒绝 H_0 . 势函数: $\beta(\theta_*) \approx 1 - \Phi(z_{\alpha/2} + \frac{\theta_0 - \theta_*}{\hat{\operatorname{se}}(\hat{\theta})}) + \Phi(-z_{\alpha/2} + \frac{\theta_0 - \theta_*}{\hat{\operatorname{se}}(\hat{\theta})})$ **例** 给定样本 $\{X_m\}$, $\{Y_n\}$, 检验均值是否相等. $H_0: \mu_X - \mu_Y = 0 \text{ vs } H_1: \mu_X - \mu_Y \neq 0,$ $V(\hat{\theta}) = V(\overline{X} - \overline{Y}) = \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}, \, \hat{\text{se}} = \sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}$ 例: 给定样本 $\{(X_n, Y_n)\}$ 检验均值是否相等. $H_0: \mu_X = \mu_Y \text{ vs } H_1: \mu_X \neq \mu_Y, \text{ 构造 } \theta = \mu_1 - \mu_2,$ 估计为 $\hat{\theta} = \overline{X} - \overline{Y}$. 方差: $V(\hat{\theta}) = \sigma^2/n$, 其中 σ 是 $X_i - Y_i$ 总体标准差, 用样本标准差估计 $\hat{se} = \sqrt{S^2/n}$, 拒 Wald 置信区间: $C = (\hat{\theta} - z_{\alpha/2}\hat{se}(\hat{\theta}), \hat{\theta} + z_{\alpha/2}\hat{se}(\hat{\theta})),$

p 值: $\inf\{\alpha: \theta_0 \in C\}$, 拒绝 H_0 的最小检验水平, 拒绝的强弱 Pearson χ^2 统计量: $X = (X_1, ..., X_k)$ 服从多项分布 $M(n, p = (p_1, \ldots, p_k)), \text{ \mathbb{A}} H_{0/1} : p? = p_0.$ 检验统计量 $\chi^2=\sum_{i=1}^k\frac{(X_i-np_{0i})^2}{np_{0i}}=\sum_{i=1}^k\frac{(X_j-E_j)^2}{E_i}.$ 在 $H_0 \ \ \ \ T \leadsto \chi^2_{k-1}$, 拒绝域为 $\{T > \chi^2_{\alpha}(k-1)\}$, p 值为 $P(\chi^2(k-1) > T)$. 置换检验: 检验分布是否相同, shuffle 看统计量分位数 似然比检验: H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \notin \Theta_0$, $\lambda =$ $2\log\left(\frac{L(\hat{\theta})}{L(\hat{\theta_0})}\right)$, $\hat{\theta_0}$ 表示限制 Θ_0 . $\lambda \rightsquigarrow \chi^2_{\dim\Theta-\dim\Theta_0}$, 拒 绝域 $\{\lambda > \chi^2_{\alpha}(\dim \Theta - \dim \Theta_0)\}$, p 值 $P(\chi^2(\dots) > \lambda)$. **例** 豌豆实验自由度为 3-0 而非 4, 因为概率和为 1. 多重假设检验: Bonferroni: α/m (Union bound). BH: 排 序后 $p_i \leq \frac{i\alpha}{mC_m}$, C_m 不独立 $\sum_{i=1}^m \frac{1}{i}$, 独立 1. 例 计算出了 $W = \left| \frac{\overline{X} - \overline{Y}}{\hat{c}_{\mathbf{p}}} \right|$, p 值: $P(|Z| > W)_{(Z \sim N(0,1))}$

例 Poisson(λ), $H_0: \lambda = \lambda_0 \text{ vs} \neq .$ $\hat{\lambda} = \sum X_n/n, V(\hat{\lambda}) =$

 λ/n , se $(\hat{\lambda}) = \sqrt{\lambda/n}$, $W = \sqrt{n} \frac{\hat{\lambda} - \lambda_0}{\sqrt{\lambda_0}}$, $\mathcal{A} = \{|W| > z_{\alpha/2}\}$

例 $N(\theta, 1), H_0: \theta = 0 \text{ vs } H_1: \theta = 1.$ 拒绝域 $\{\overline{X} > c\}, \overline{\omega}$ 著性水平 α , $\frac{\overline{X}-\theta}{\sqrt{1/n}} \sim N(0,1) \Rightarrow P\left(\frac{T(x^n)-0}{\sqrt{1/n}} > \frac{c-0}{\sqrt{1/n}}\right) =$ $1 - \Phi(c\sqrt{n}), c = \Phi^{-1}(1 - \alpha/2)/\sqrt{n}, \beta(\theta) =$ $P(\frac{T(x^n)-\theta}{\sqrt{1/n}} > \frac{c-\theta}{\sqrt{1/n}}) = 1 - \Phi((c-\theta)\sqrt{n}) H_1$ 下势 函数 $\beta(1) = 1 - \Phi((c-1)\sqrt{n})$. 例 $N(\mu, \sigma^2)$, $H_0: \mu = \mu_0 \text{ vs} \neq$. 似然比检验 $\ell_n(\mu, \sigma) =$ $-n\log\sigma - \frac{1}{2\sigma^2}\sum_i (X_i - \mu)^2 + C, \lambda = 2\ell(\hat{\mu}, \sigma) - 2\ell(\mu_0, \sigma) =$ $\frac{1}{\sigma^2} \left(n(\mu_0^2 - \hat{\mu}^2) - 2(\mu_0 - \hat{\mu}) \cdot n\hat{\mu} \right) = \frac{n(\hat{\mu} - \mu_0)^2}{\sigma^2}$, Wald $W = \sqrt{n} \frac{\hat{\mu} - \mu_0}{\sigma}, \ \lambda = \sqrt{W}. \ \text{ log } H_1 : \sigma = \sigma_0 \text{ vs } \neq,$ $\lambda = 2\ell(\mu, \hat{\sigma}) - 2\ell(\mu, \sigma_0) = 2n(\log \sigma_0 - \log \hat{\sigma}) + \frac{n(\hat{\sigma}^2 - \sigma_0^2)}{\sigma^2},$ Wald $W = \sqrt{n} \frac{\hat{\sigma} - \sigma_0}{\sqrt{1/I(\hat{\sigma})}} = \sqrt{2n} \frac{\hat{\sigma} - \sigma_0}{\hat{\sigma}}$ M Binomial(n, p), $H_0: p = p_0 \text{ vs } \neq \Rightarrow X = \sum X_i, \mathcal{L}(p) = \binom{n}{x} p^X (1 - p)$ $(p)^{n-X}$, $\ell(p) = \log \binom{n}{V} + X \log p + (n-X) \log (1-p)$, $\lambda = 2\ell \hat{p} - 2\ell p_0 = 2X(\log \hat{p} - \log p_0) + 2(n - X)(\log(1 - 2))$ $(\hat{p}) - \log(1 - p_0))$ Wald $W = \sqrt{n} \frac{\hat{p} - p_0}{\sqrt{\hat{p}(1 - \hat{p})}}$ 例 袋子摸红蓝球, H_0 : p = 0.5 vs H_1 : p = 0.7, $X_i = I(i$ 蓝) 六次抽样 $Y = \sum_{i=1}^6 X_i \sim \text{binom}(6, p)$, Y 的 pmf $f(y|p) = \binom{6}{y} p^y (1-p)^{6-y}$, 基于 H_0 和 H_1 的似然 比为 $\Lambda(y)=rac{f(y|0.7)}{f(y|0.5)}=rac{0.7^y0.3^{6-y}}{0.5^y0.5^{6-y}}=1.4^y0.3^6,$ 结果如表 $\Lambda(0) = 16 \text{ vs } \Lambda(6) = 0.136$, 因此小的 Λ 拒 绝 H_0 , 拒绝域为 $C = \{y | \Lambda(y) \le k(\alpha)\}$. 此处 k(0.016) = 0.136, k(0.11 = 0.094 + 0.016) = 0.310.简单线性回归: $Y = \beta_0 + \beta_1 X + \epsilon$, $\epsilon : E = 0$, $V = \sigma^2$, 最小二乘: 使 RSS = $\sum \hat{\epsilon}_i^2$ 最小, $E(RSS) = (n-2)\sigma^2$ $\ell_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - n\overline{xy},$

13.线性回归和 Logistic 回归

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x, \hat{\epsilon} = y_i - \hat{y}_i.$ $\ell_{XX} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - n\overline{x}^2,$ $\hat{\beta}_1 = \ell_{xy}/\ell_{xx}, \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}, \hat{\sigma}^2$ 无偏估计为 $\frac{1}{y-2}$ RSS. 若 $\epsilon_i | x_i \sim N(0, \sigma^2)$, 则 $L(\beta_0, \beta_1, \sigma^2) \propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2}\sum_i (y_i - \beta_0 - \beta_1 x_i)^2\right),$ $\ell(\beta_0, \beta_1, \sigma^2) \propto -n \log \sigma - \frac{1}{2\sigma^2} \sum (y_i - \beta_0 - \beta_1 x_i)^2.$ 正态性假设下, 最小二乘即极大似然. $\hat{\sigma}^2 = 1/n \sum \hat{\epsilon}_i^2$. $\hat{\operatorname{se}}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{\ell_{\text{cur}}}}, \hat{\operatorname{se}}(\hat{\beta}_0) = \hat{\operatorname{se}}(\hat{\beta}_1)\sqrt{\frac{1}{n}\sum x_i^2}, \text{ 适当条件}$ 下, 相合, 渐进正态 $(\frac{\beta_i - \beta_i}{\hat{\operatorname{se}}(\hat{g_i})}) \rightsquigarrow N(0,1)$, 渐进置信区间 $\hat{\beta}_i \pm z_{\alpha/2} \hat{\operatorname{se}}(\hat{\beta}_i)$, Wald 检验 $W = \hat{\beta}_1/\hat{\operatorname{se}}(\hat{\beta}_1)$. 近似预测区间: $\hat{\xi}_n^2 = \hat{\sigma}^2 \left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\ell_{xx}} \right), \hat{y}_* \pm z_{\alpha/2} \hat{\xi}_n.$

Logistic 回归: 分类问题损失函数不连续, 接一个 Sigmoid 函

数 (Logistic) $g(x) = \frac{1}{1+e^{-x}}$. 没有显式解.