Computer Vision

What is Computer Vision?

- Input: images or video
- Output: description of the world

What is Computer Vision?

- Input: images or video
- Output: description of the world
 - Many levels of description

Low-Level or "Early" Vision

 Considers local properties of an image

"There's an edge!"

Mid-Level Vision

 Grouping and segmentation

"There's an object and a background!"

High-Level Vision

"It's a chair!"

Recognition

Big Question #1: Who Cares?

- Applications of computer vision
 - In AI: vision serves as the "input stage"
 - In medicine: understanding human vision
 - In engineering: model extraction

Vision and Other Fields

Big Question #2: Does It Work?

- Situation much the same as Al:
 - Some fundamental algorithms
 - Large collection of hacks / heuristics
- Vision is hard!
 - Especially at high level, physiology unknown
 - Requires integrating many different methods
 - Requires reasoning and understanding: "Al completeness"

Computer and Human Vision

- Emulating effects of human vision
- Understanding physiology of human vision

Image Formation

- Human: lens forms image on retina, sensors (rods and cones) respond to light
- Computer: lens system forms image, sensors (CCD, CMOS) respond to light

Low-Level Vision

Low-Level Vision

- Retinal ganglion cells
- Lateral Geniculate Nucleus function unknown (visual adaptation?)
- Primary Visual Cortex
 - Simple cells: orientational sensitivity
 - Complex cells: directional sensitivity
- Further processing
 - Temporal cortex: what is the object?
 - Parietal cortex: where is the object? How do I get it?

Low-Level Vision

 Net effect: low-level human vision can be (partially) modeled as a set of multiresolution, oriented filters

Low-Level Depth Cues

- Focus
- Vergence
- Stereo
- Not as important as popularly believed

Low-Level Computer Vision

- Filters and filter banks
 - Implemented via convolution
 - Detection of edges, corners, and other local features
 - Can include multiple orientations
 - Can include multiple scales: "filter pyramids"
- Applications
 - First stage of segmentation
 - Texture recognition / classification
 - Texture synthesis

Texture Analysis / Synthesis

Multiresolution Oriented Filter Bank

Original Image

Image Pyramid

Texture Analysis / Synthesis

Original Texture

Synthesized Texture

Low-Level Computer Vision

- Optical flow
 - Detecting frame-to-frame motion
 - Local operator: looking for gradients
- Applications
 - First stage of tracking

Optical Flow

Low-Level Computer Vision

- Shape from X
 - Stereo
 - Motion
 - Shading
 - Texture foreshortening

3D Reconstruction

Tomasi+Kanade

Debevec, Taylor, Malik

Forsyth et al.

Mid-Level Vision

- Physiology unclear
- Observations by Gestalt psychologists
 - Proximity
 - Similarity
 - Common fate
 - Common region
 - Parallelism
 - Closure
 - Symmetry
 - Continuity
 - Familiar configuration

Wertheimer

Grouping Cues

Mid-Level Computer Vision

- Techniques
 - Clustering based on similarity
 - Limited work on other principles
- Applications
 - Segmentation / grouping
 - Tracking

Snakes: Active Contours

Contour Evolution for Segmenting an Artery

Histograms

Expectation Maximization (EM)

Color Segmentation

Bayesian Methods

- Prior probability
 - Expected distribution of models
- Conditional probability P(A|B)
 - Probability of observation A given model B

Bayesian Methods

- Prior probability
 - Expected distribution of models
- Conditional probability P(A|B)
 - Probability of observation A given model B
- Bayes's Rule (c. 17) $P(B|A) = P(A|B) \cdot P(B) / P(A)$
 - Probability of model B given observation A

Thomas Bayes (c. 1702-1761)

Bayesian Methods

High-Level Vision

Human mechanisms: ???

High-Level Vision

- Computational mechanisms
 - Bayesian networks
 - Templates
 - Linear subspace methods
 - Kinematic models

Template-Based Methods

Cootes et al.

Linear Subspaces

Principal Components Analysis (PCA)

PCA

Data

New Basis Vectors

Kinematic Models

Optical Flow/Feature tracking: no constraints

Layered Motion: rigid constraints

Articulated: kinematic chain constraints

Nonrigid: implicit / learned constraints

Real-world Applications

Osuna et al:

Real-world Applications

Osuna et al:

Figure 5. Results from our Face Detection system

Course Outline

- Image formation and capture
- Filtering and feature detection
- Optical flow and tracking
- Projective geometry
- Shape from X
- Segmentation and clustering
- Recognition
- Applications: 3D scanning; image-based rendering

3D Scanning

Image-Based Modeling and Rendering

