16-01=06 = C(moda) JR=Cos 3km - i Sin 3kx = Wil 0.418 Per.

0.318

单增著

0.6,8 集合及其子集

上海教育出版社》= 2

5-15 K

068

责任编辑 叶中豪

ISBN 7-5320-7482-X/G • 7638

定 价:7.20元

集合及其子集

单 導著

上海教育出版社

图书在版编目(CIP)数据

集合及其子集/单增著.一上海:上海教育出版社,2001.6

ISBN 7-5320-7482-X

I.集... II.单... III.集论 IV.0144

中国版本图书馆CIP数据核字(2001)第034491号

集合及其子集

単 導 著

上海世纪出版集团 上海 教育出版社出版发行

(上海永福路 123 号 郵政編码:200031)

各地 6 年 6 在 6 经 6 经 6 5 字数 138,000 开本 787×1092 1/32 印张 6.5 字数 138,000 2001年 7 月第 1 版 2001年 7 月第 1 次印刷

印数 1-5,150本

ISBN 7-5320-7482-X/G・7638 定价:7.20元

集论,是全部数学的基础.

数学大师 Cantor,建立了基数、序型等重要概念,将研究 从有限集推进到无限集,创立了集论这一数学分支。

近三十年来,随着组合数学的蓬勃发展,关于有限集及其子集族,又有很多的研究,得出很多重要而且优美的结果.

但是,国内至今尚未见到专门介绍集论的通俗读物,希望 这本小书能起抛砖引玉的作用.

感谢王文才先生与叶中豪先生,没有他们的鼓励与支持, 这本小书是不可能问世的,

单 墳

目 录

序

第一	章	集合	1
	1. 1	集合	1
	1. 2	从属关系	2
	1. 3	包含	4
	1.4	并与交	5
	1.5	差与补	7
	1.6	Venn 图 ·····	8
	1.7	有关集合的等式(Ⅰ)	9
	1.8	对称差	12
	1. 9	有关集合的等式(Ⅱ)	15
	1. 10	有关集合的等式(Ⅲ)	19
	1. 11	容斥原理(Ⅰ)	22
	1. 12	容斥原理([[)	26
第二	章	映射	29
	2. 1	映射	29
	2. 2	复合映射	31
	2. 3	有限集到自身的映射	32
2	2. 4	构造映射(I)······	33
	2.5	构造映射(Ⅱ)	36
	2. 6	函数方程(Ⅰ)	39

2.7	函数方程(Ⅱ)	43
2.8	链	48
2. 9	图	52
第三章	有限集的子集 ***********************************	56
3, 1	子集的个数	- 56
3, 2	两两相交的子集	57
3, 3	奇偶子集	58
3.4	另一种奇偶子集	60
3.5	Graham 的一个问题	61
3.6	三元子集族(I)	66
3. 7	三元子集族(Ⅱ)	69
3.8	Steiner 三连系 ······	73
3. 9	构造	77
3. 10	分析(I) ····································	81
3, 11	分拆(Ⅱ)	85
3. 12	覆盖	89
3. 13	Stirling 数 ······	91
3.14	$M_{(n, k, h)}$	97
第四章 🧳	各种子集族	102
4. 1	S 族	102
4. 2	链	106
4. 3	Dilworth 定理 ······	111
4.4	Littlewood-Offord 问题	113
4. 5	I 族	117
4.6		122
4.7	₺	
4.8	Milner 定理	131

4.9	上族与下族	134
4. 10	四函数定理	138
4. 11	H 族 ·······	143
4. 12	相距合理的族	149
第五章	无限集	156
5. 1	无限集	156
5.2	可数集	158
5.3	连续统的基数	162
5.4	基数的比较	164
5.5	直线上的开集与闭集	169
5.6	Cantor 的完备集 ······	172
5.7	Kuratowski 定理 ······	175
习题		183
习题解答	***************************************	188

第一章 集 合

1.1 集 合

具有某种性质的事物,它们的全体称为一个集合.这些事物称为这个集合的元素.

集合简称为集. 元素简称为元.

例如,某一学校的学生组成一个集合.某国的官员组成一个集合.地球上的老鼠组成一个集合等等.

正整数(自然数)组成一个集合,通常记为 N.

整数组成一个集合,通常记为 Z.

有理数组成一个集合,通常记为 Q.

实数组成一个集合,通常记为R

复数组成一个集合,通常记为 C.

平面上的点组成一个集合,通常称为平面点集.

集合 A 中的元素,如果有无限多个,那么 A 称为无限集;如果 A 中的元素仅有有限多个,那么 A 称为有限集.

用|A|表示 A 的元数(即元素的个数). 对于无限集, $|A| = \infty$ (无穷大).

不含任何元素的集合,称为空集.通常记为 \varnothing .显然, |A|=0是 $A=\varnothing$ 的充分必要条件.

1.2 从属关系

如果事物 a 是集合 A 的元素,那么就说"a 属于 A"或"a 在A 中",并记为

$$a \in A$$
.

如果 a 不是 A 的元素,那么就说"a 不属于 A",并记为 $a \notin A$ (也有些书上写成 $a \subset A$).

在 A 为有限集时,我们常常将 A 的元素全部列举出来,例如

$$A = \{1, 2, 3\},\$$

表示 A 是三元集(三个元素的集合),它的元素是 1, 2, 3(即 $1 \in A$, $2 \in A$, $3 \in A$). 又如

$$B = \{a, b, c, d\},\$$

表示 B 是四元集,它的元素是 a, b, c, d.

在上述记号中,花括号内写出的元素应当互不相同,即每个元素恰出现一次.至于元素出现的顺序,不必考虑.我们认为

$$\{1, 2, 3\}, \{1, 3, 2\}, \{2, 1, 3\},\$$

$$\{2, 3, 1\}, \{3, 1, 2\}, \{3, 2, 1\}$$

都是同一个集.

仅含一个元素的集称为单元素集,例如

$$\Lambda = \{5\}.$$

对于元数较多的集合或者无穷集,常常采用下面的记号. 例如

$$A = \{a \mid a$$
 为正偶数 $\}$,

表示 A 是正偶数组成的集. 又如

$$B = \{(x, y) \mid x, y 均为整数\},$$

表示 B 是平面上整点(格点)的集合.

在上述记法中,括号里写一个代表元素,在竖线后面写明 它所具有的性质.

在同时讨论几个集合时,下面的从属关系表是很有用的:

東合	a_1	a_2	<i>a</i> ₃		a_{n-1}	ап
A_{I}	1	0	1	•••	1	0
A_2	1	1	0	***	1	1
		:	:	:	:	:
A_m	1	1	1		_ 1	0

表 1, 2, 1

表的m行(最上面一行除外)表示m个集合 $A_1, A_2, \dots, A_m;$ 表的n列(最左面一列除外)表示n个元素 a_1, a_2, \dots, a_n .

若 $a_i \in A_i$ ($1 \le i \le n$, $1 \le j \le m$),则在 a_i 所在列与 A_j 所在行的交叉处写上 1. 若 $a_i \notin A_j$,则写上 0. 例如表 1. 2. 1 中,

$$a_1 \in A_1, \, a_1 \in A_2, \, ..., \, a_1 \in A_m,$$
 $a_2 \notin A_1, \, a_2 \in A_2, \, a_3 \notin A_2, \, ..., \, a_n \notin A_1.$ 还可看出

$$A_1 = \{a_1, a_3, \dots, a_{n-1}\},\$$

 $A_2 = \{a_1, a_2, \dots, a_{n-1}, a_n\},\$

$$A_n = \{a_1, a_2, a_3, \dots, a_{n-1}\}.$$

当然,也可以用行表示元素,列表示集合,这没有实质性的不同.

1.3 包 含

如果集合 A 的元素都在集合 B 中,那么 A 称为 B 的子集,并记为

读做 B 包含 A 或 A 包含于 B 中.

显然有 $A \subseteq A$, 即每个集合都是它自身的子集.

如果 $A \subseteq B$, 并且 B 中至少有一个元素不属于 A,那么称 A 为 B 的真子集,并记为

$$A \subset B$$
 ($\mathfrak{g} B \supset A$)

(也有些书上用 $A \subset B$ 表示 $A \not\in B$ 的子集,而用 $A \not\subseteq B$ 表示 $A \not\in B$ 的真子集),读做 B真包含 A 或 A 真包含于 B中. 例如

$$N \subset Z \subset Q \subset R \subset C$$
,

即自然数集是整数集的真子集,整数集是有理数集的真子集,有理数集是实数集的真子集,实数集是复数集的真子集,实数集是复数集的真子集.

如果 $A \subseteq B$ 并且 $B \subseteq A$, 那么 A 的元素都是 B 的元素, B 的元素也都是 A 的元素. 因此 A, B 是同一个集合, 即 A = B.

约定空集Ø为每一个集合的子集.

并不是任意两个集合之间都有包含关系,例如

$$A = \{1, 2\}, B = \{4, 5, 6\},\$$

则 A 不是 B 的子集, B 也不是 A 的子集.

显然,当 $A \subseteq B$, $B \subseteq C$ 时, $A \subseteq C$, 即 三 关系具有传递性.

综上所述,⊆关系具有:

- (i) 反身性,即 $A \subseteq A$;
- (ii) 传递性,即 $A \subseteq B$, $B \subseteq C$ 推出 $A \subseteq C$;
- (iii) A ⊆ B, B ⊆ A 推出 A = B.我们称这样的关系为半序关系(或偏序关系).

1.4 并 与 交

给定两个集合 A, B. 称集合

 $C = \{c \mid c | \mathbf{a} \in A$ 或 $B\}$

为 A, B 的并集(简称为并),记为 $A \cup B$. 例如,

(i) 若
$$A = \{1, 2, 3, 4\}$$
, $B = \{1, 4, 5, 6\}$, 则 $A \cup B = \{1, 2, 3, 4, 5, 6\}$.

(ii) 若 A 是猫的集合, B 是黑猫的集合, 则 $A \cup B = A$ (因为黑猫是猫). 一般地, 若

 $A \supseteq B$,

则

$$A \cup B = A$$
.

反之亦真.

(iii) 若 A 是正实数的集合, B 是负实数的集合,则 $A \cup B$ 是非零实数的集合.

显然 $A \cup B \supseteq A$, $A \cup B \supseteq B$, 并且

$$A \cup B = B \cup A$$
.

类似地,可以定义多个集合 A_1 , A_2 , ..., A_n 的并集:

例如对(iii)中的A, B,有

$$A \bigcup B \bigcup \{0\} = \mathbf{R}.$$

对于给定的两个集合 A, B, 称集合

$$C = \{c \mid c | \text{同时属于}A, B\}$$

为 A, B 的交集(简称为交),记为 $A \cap B$. 例如,

(i) 若
$$A = \{1, 2, 3, 4\}, B = \{1, 4, 5, 6\}, 则$$

 $A \cap B = \{1, 4\}.$

(ii) 若 A 是猫的集合,B 是白猫的集合,则 $A \cap B = B$. 一般地,若

$$A \supset B$$
.

则

$$A \cap B = B$$
.

反之亦真.

(iii) 若 A 是正实数的集合,B 是负实数的集合,则 $A \cap B = \emptyset$.

显然 $A \cap B \subseteq A$, $A \cap B \subseteq B$, 并且

$$A \cap B = B \cap A$$
.

交集符号可以省去,例如 $A \cap B$ 常写成 AB.

类似地,可以定义多个集合 A_1 , A_2 , ..., A_n 的交集:

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

 $= \{a \mid a$ 属于每一个 A_i , $1 \leqslant i \leqslant n\}$. 显然 $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \cup A = A \cap A = A$.

1.5 差 与 补

给定两个集合 A, B. 称集合

$$C = \{c \mid c \in A$$
 并且 $c \notin B\}$

为A减B,记为A-B.例如,

(i) 若
$$A = \{1, 2, 3, 4\}$$
, $B = \{1, 4, 5, 6\}$, 则 $A - B = \{2, 3\}$.

- (ii) 若 A 是猫的集合, B 是黑猫的集合, 则 A B 为不是 黑色的猫的集合.
- (iii) 若 A 是正实数的集合,B 是负实数的集合,则 A-B = A.

注意差不具有对称性,即一般说来 A-B与B-A是不相同的. 例如上面的三个例子,在(i)中, $B-A=\{5,6\}$. 在(ii)中, $B-A=\emptyset$. 在(iii)中, B-A=B.

为了方便,常常将一个集合作为全集合,它由一切事物(或我们所考虑的一切事物)组成.例如,考虑平面上的点集时,可以将平面点集(即平面上所有点组成的点集)作为全集.考虑实数时,可将 R 作为全集,而考虑复数时,应将 C 作为全集.

全集通常用 / 表示.

对任一集 A,称 I-A 为 A 的补集,并用 A'表示. 显然 $A \cap A' = \emptyset$, $A \cup A' = I$.

A'由不属于A 的元素组成,因此

$$(A')' = A_1$$

即补集的补集是原集. 所以 A 与 A' 互为补集. 显然 $\emptyset' = I$, $I'=\varnothing$.

由定义, $A-B=A\cap B'$.

1.6 Venn 图

利用圆(这里指圆盘)来表示集合的 Venn 图,是帮助理 解集合之间关系的直观工具.

例如,图 1.6.1 中,两个圆分别表示集合 A 与 B,阴影部 分表示 $A \cup B$. 图 1.6.2 中的阴影部分表示 $A \cap B$. 图 1.6.3,

图 1.6.2 A () B

1.6.4 中的阴影部分分别表示 A-B与B-A. 图 1.6.5 表示

图 1, 6, 3 A-B

E 1.6.4 B-A

 $A \subseteq B$. 在图 1.6.6 中,大圆表示全集 I,阴影部分是 A 的补集 A'.

将圆改为矩形也无不可,这并不影响问题的实质(谁包含谁).

1.7 有关集合的等式(1)

本节讨论一些有关集合的等式,

例1(De Morgan 公式) 对任意两个集 A, B,均有

$$(A \cup B)' = A' \cap B', \tag{1}$$

$$(A \cap B)' = A' \cup B'. \tag{2}$$

解 首先证明(1). $A \cup B$ 是在 A 或在 B 中的元素组成的集,因此 $(A \cup B)'$ 由不在 A 也不在 B 中的元素组成. 这也就是 $A' \cap B'$.

如果考虑 Venn 图,那么 $(A \cup B)'$ 与 $A' \cap B'$ 都是图 1.7.1 中的阴影部分(为方便起见,全集 I 用一矩形表示).

图 1,7,1

图 1,7,2

同样可证(2). 图 1.7.2 中的阴影部分表示(2)的左边,也表示(2)的右边.

例 2(并与交的结合律) 对任意集合 A, B, C 均有

$$A \cup (B \cup C) = (A \cup B) \cup C, \tag{3}$$

$$A \cap (B \cap C) = (A \cap B) \cap C. \tag{4}$$

解 只需注意(3)式两边均表示至少属于 A, B, C之一的那些元素组成的集合。(4)式两边均表示同时属于 A, B, C的那些元素组成的集合。

(3), (4)也不难用 Venn 图证明.

于是,证明有关集合的等式,已经有两种方法:

- (i) 考虑等式两边(或其他有关式子)的意义;
- (ii) 利用 Venn 图.

例 3(并与交的分配律) 对于任意集合 A, B, C 均有

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{5}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \tag{6}$$

解 仍可用前面所说的两种方法证明,但这里介绍第三种方法,即

(iii) 考虑两边的元素,证明左边的元素必属于右边,右边的元素也必属于左边.

反之,设 $x \in (A \cup B) \cap (A \cup C)$,则 $x \in A \cup B \perp x \in A \cup C$. 若 $x \in A$,则 $A \in A \cup (B \cap C)$. 若 $x \notin A$,则由 $x \in A \cup B \perp x \in A \cup C$ 得 $x \in B \perp x \in C$,即 $x \in B \cap C$. 从而仍有 $x \in A \cup (B \cap C)$.

于是(5)成立.

类似地可以证明(6), 但也可以由(5)得

 $A' \cup (B' \cap C') = (A' \cup B') \cap (A' \cup C')$ (5') (将(5)中 A, B, C 用 A', B', C' 代替). 然后在两边取补. 根据 De Morgan 公式

 $(A' \cup (B' \cap C'))' = (A')' \cap (B' \cap C')'$ $= A \cap (B \cup C),$

 $((A' \cup B') \cap (A' \cup C'))' = (A' \cup B')' \cup (A' \cup C')'$ $= (A \cap B) \cup (A \cap C).$

因此(6)式成立.

这就是证明有关集合的等式时,常用的第四个方法,即(iv)利用已知的有关集合的等式或公式.

从上述三个例题可以看出并与交是对偶的.即由一个有 关集合的等式,将其中并改为交,交改为并,便可产生另一个 有关集合的等式.例如(1)与(2),(3)与(4),(5)与(6)都是

互相对偶的等式,

以上的(1)~(6),都可以推广至更多的集合.例如

$$(A_1 \cup A_2 \cup \cdots \cup A_n)' = A_1' \cap A_2' \cap \cdots \cap A_n', \quad (7)$$

$$A_1 \cup A_2 \cup \cdots \cup A_n = A_1 \cup (A_2 \cup \cdots \cup A_n)$$

$$=(A_1 \cup A_2 \cup \cdots \cup A_{n-1}) \cup A_n, \tag{8}$$

 $A_1 \cup (A_2 \cap A_3 \cap \cdots \cap A_n)$

本节的结论都是常用的,应当牢记.

1.8 对 称 差

设A,B是两个集合,称

$$(A-B) \cup (B-A)$$

为 A, B 的对称 & A. 并记为 $A \triangle B$. 它由恰属于 A, B 之一的那些元素组成.

采用 Venn 图, $A \triangle B$ 可用图 1.8.1 中的阴影部分表示.

3.1.8.1 A△B

根据定义或 Venn 图,当且仅当 A = B 时, $A \triangle B = \emptyset$. 又易知 $A \triangle \emptyset = A$.

显然,对称差是可以交换的(对称性),即

$$A \triangle B = B \triangle A. \tag{1}$$

例 1(结合律) 对任意集合 A, B, C 均有

$$(A \triangle B) \triangle C = A \triangle (B \triangle C). \tag{2}$$

解 用 Venn 图, 等式两边均由图 1, 8, 2 中阴影部分表示(即恰属于 A, B, C 之一的元素所成的集合).

例 2 对任意集合 A, B 均有

$$A \triangle B = (A \cup B) - (A \cap B), \tag{3}$$

$$A\triangle B = A'\triangle B'. \tag{4}$$

解 (3)可由图 1.8.1 立即看出.

 $A\triangle B$ 是由恰属于A, B 之一的那些元素组成的集合. 同样, $A'\triangle B'$ 由恰属于A', B'之一的那些元素组成,即由属于A'而不属于B'的元素,或不属于A'而属于B'的元素组成. 换句话说, $A'\triangle B'$ 由不属于A 而属于B 的元素,或属于A 而不

属于 B 的元素组成,亦即 $A' \triangle B'$ 由恰属于 A ,B 之一的元素组成. 所以(4)成立.

例3 A, B, C是三个集合. 证明:

$$(A \triangle B) \triangle (B \triangle C) = A \triangle C. \tag{5}$$

解由(2),

 $(A\triangle B)\triangle (B\triangle C) = A\triangle (B\triangle (B\triangle C))$

- $=A\triangle((B\triangle B)\triangle C)$
- $=A \land (\emptyset \land C)$
- $=A\triangle C$.

例 4 A, B, C 是任意集合. 以下等式是否恒成立?

$$C \cap (A \triangle B) = (C \cap A) \triangle (C \cap B), \tag{6}$$

$$C \cup (A \triangle B) = (C \cup A) \triangle (C \cup B). \tag{7}$$

解 设 $x \in C \cap (A \triangle B)$,则 $x \in C \cup x \in A \triangle B$.由 $x \in A \triangle B$ 得x恰属于A,B之一.结合 $x \in C$ 得x恰属于 $C \cap A$, $C \cap B$ 之一.因而 $x \in (C \cap A) \triangle (C \cap B)$.

反之,若 $x \in (C \cap A) \triangle (C \cap B)$,则x恰属于 $C \cap A$, $C \cap B$ 之一.因而 $x \in C$ 并且x恰属于A,B之一,即 $x \in C$ $\cap (A \triangle B)$.

于是(6)成立,即○对△的分配律成立.

- (6)也可以用 Venn 图证明(我们有意采取多种证法).
- 一般说来,(7)不成立. 例如对于 C = A,

$$A \cup (A \triangle B) = A \cup B$$
 (请考虑 Venn 图),

而

 $(A \cup A) \triangle (A \cup B) = A \triangle (A \cup B) = B - A.$ 当 A 不是空集时, $A \cup B \neq B - A.$ 因此, U对△的分配律不成立.

1.9 有关集合的等式(Ⅱ)

本节再讨论一些有关集合的等式,证明所用的方法已在 1.7节中说过.

所有英文大写字母均表示集合.

例 1 证明:

$$A\triangle(A\cup B) = B\triangle(A\cap B) = B-(A\cap B), \quad (1)$$

$$A \cup B = A \triangle B \triangle (A \cap B). \tag{2}$$

解 (1)中 $A \triangle (A \cup B)$, $B \triangle (A \cap B)$, $B - (A \cap B)$ 均 为图 1.9.1 的阴影部分.

(2)的两边均为图 1,9,2 的阴影部分.

特别地, 当 $A \cap B = \emptyset$ 时, 由(2)得

$$A \cup B = A \triangle B. \tag{3}$$

例 2 证明以下关系:

$$(A-K) \cup (B-K) = (A \cup B) - K, \tag{4}$$

$$A - (B - C) = (A - B) \cup (A \cap C), \tag{5}$$

$$A - (A - B) = A \cap B, \tag{6}$$

$$(A-B)-C = (A-C)-(B-C), (7)$$

$$A - (B \cap C) = (A - B) \cup (A - C), \tag{8}$$

$$A - (B \cup C) = (A - B) \cap (A - C), \tag{9}$$

$$A - B = (A | B) - B = A - (A \cap B).$$
 (10)

解 利用补集,可将差 A - B 写成 $A \cap B'$. 在证明中采用这种形式往往更为方便.

$$(A-K) \bigcup (B-K) = (A \cap K') \bigcup (B \cap K')$$
$$= (A \cup B) \cap K' = (A \cup B) - K,$$

即(4)成立.

$$A - (B - C) = A \cap (B \cap C')' = A \cap (B' \cup C)$$
$$= (A \cap B') \cup (A \cap C) = (A - B) \cup (A \cap C),$$
即(5)成立。

$$(A-C)-(B-C) = (A \cap C') \cap (B \cap C')'$$

$$=A \cap C' \cap (B' \cup C) = A \cap ((C' \cap B') \cup (C' \cap C))$$

$$=A \cap (C' \cap B') = (A \cap C') \cap B' = (A-C)-B,$$

$$(C \cap B')$$

即(7)成立.

$$A - (B \cap C) = A \cap (B \cap C)' = A \cap (B' \cup C')$$
$$= (A \cap B') \cup (A \cap C') = (A - B) \cup (A - C),$$
即(8)成立.

- (9)的证法与(8)类似. 它与(8)对偶.
- (6), (10)可用上面的证法,也可用 Venn 图. 参看图 1,9.3, 1.9.4.

例 3 证明:

$$A - D \subseteq (A - B) \cup (B - C) \cup (C - D), \qquad (11)$$

$$A \triangle C \subseteq (A \triangle B) \cup (B \triangle C), \tag{12}$$

 $(A \cup B) \cap (B \cup C) \cap (C \cup A)$

$$= (A \cap B) \cup (B \cap C) \cup (C \cap A), \tag{13}$$

$$(A - B) \triangle B = A \bigcup B. \tag{14}$$

解 设 $x \in A - D$,则 $x \in A$, $x \notin D$. 若 $x \notin B$,则 $x \in A - B$. 若 $x \in B$, $x \notin C$,则 $x \in B - C$. 若 $x \in C$,则 $x \in C - D$. 总之, $x \in (A - B) \cup (B - C) \cup (C - D)$. 因此(11)成立.

若 $x \in A \triangle C$, 则x恰属于A, C之一, 不妨设 $x \in A$, $x \notin C$. 若 $x \notin B$, 则 $x \in A \triangle B$. 若 $x \in B$, 则 $x \in B \triangle C$. 总有 $x \in (A \triangle B) \cup (B \triangle C)$. 因此(12)成立.

若 x 至少属于 A , B , C 中的两个集,则 x 既属于 (13) 左边,也属于 (13) 右边。若 x 至多属于 A , B , C 中的一个集,例如 $x \notin A$, B ,则 $x \notin A \cap B$, $B \cap C$, $C \cap A$, 因此 $x \notin (13)$ 的右边;又 $x \notin A \cup B$, 因此 $x \notin (13)$ 的左边。所以 (13) 成立。

显然 A-B 与 B 的交为空集,利用(3)得

$$(A-B)\triangle B = (A-B) \cup B = A \cup B$$
.

即(14)成立.

证明有关集合的等式(或关系式)需灵活运用各种方法,切忌执一.

例 4 证明下列各对等价关系:

$$A \cup B = \varnothing \Leftrightarrow A = \varnothing \coprod B = \varnothing, \tag{15}$$

$$A \cup B = A - B \Leftrightarrow B = \emptyset, \tag{16}$$

$$A - B = A \cap B \Leftrightarrow A = \emptyset, \tag{17}$$

$$A \bigcup B \subseteq C \Leftrightarrow A \subseteq C \coprod B \subseteq C, \tag{18}$$

$$C \subseteq A \cap B \Leftrightarrow C \subseteq A \perp C \subseteq B, \tag{19}$$

$$A - B = B - A \Leftrightarrow A = B, \tag{20}$$

$$A \cap B = A \cup B \Leftrightarrow A = B, \tag{21}$$

$$A \subseteq B \perp C \subseteq D \Leftrightarrow (A - B) \cup (C - D) = \emptyset$$
, (22)

$$A - B = A \Leftrightarrow B - A = B, \tag{23}$$

$$A \subseteq B \cup C \Leftrightarrow A - B \subseteq C, \tag{24}$$

$$A \subseteq B \subseteq C \Leftrightarrow A \cup B = B \cap C, \tag{25}$$

$$A = B \Leftrightarrow (A - B) \cup (B - A) = \emptyset$$
, (26)

$$A - K = B - K \Leftrightarrow (A \triangle B) \subseteq K. \tag{27}$$

解 (15)~(22)都是显然的. 稍想一想(可结合 Venn 图)就可知道各对关系等价. 应当养成这种直观的洞察力,一目了然. 如果极简单的问题不能迅速解决,那么复杂的问题就难于措手. 这就是学习数学应具备的基本功.

(23)的两个关系都等价于 $A \cap B = \emptyset$.

对于(24),如果 $A \subseteq B \cup C$,那么 A 不被 B"覆盖"的部分一定被 C 覆盖,即 $A - B \subseteq C$. 反之亦然.

对于(25),如果 $A \subseteq B \subseteq C$,那么 $B \cap C \subseteq A \cup B$ 都等于 B,反之,如果 $A \cup B = B \cap C$,那么 $B \subseteq A \cup B = B \cap C \subseteq B$,从而 $A \cup B$, $B \cap C$ 都等于 B,并由此得出 $A \subseteq B$, $B \subseteq C$.

(26)的 (A-B) \cup (B-A) 即对称差 $A\triangle B$. 对称差为Ø 即没有元素恰属于 A, B 之一. 换句话说,属于 A 的元素必属于 B,属于 B 的元素也必属于 A. 因此 (26) 成立.

在 $A \triangle B \subseteq K$ 时,恰属于 A, B 之一的元素都属于 K,因此 A - K, B - K 都等于 $(A \cap B) - K$; 反之,若 A - K = B - K,则恰属于 A, B 之一的元素都在 K 中,即 $A \triangle B \subseteq K$. 所以(27)成立.

1.10 有关集合的等式(II)

本节所介绍的等式均与对称差有关.

例 1 若 $A \triangle K = B \triangle K$, 证明, A = B.

解 由 1.8 节例 1(结合律),

$$A = A \triangle \emptyset = A \triangle (K \triangle K) = (A \triangle K) \triangle K$$
$$= (B \triangle K) \triangle K = B \triangle (K \triangle K) = B \triangle \emptyset = B.$$

例 2 证明:

$$(A\triangle B)' = A'\triangle B = A\triangle B', \tag{1}$$

 $(A\triangle K) \bigcup (B\triangle K) = (A \cap B) \triangle (K \bigcup (A\triangle B)).$ (2)

解 $A \triangle B = (A - B) \cup (B - A) = (AB') \cup (BA')$, 所以由 De Morgan 公式,

$$(A \triangle B)' = (AB')' \cap (BA')' = (A' \cup B) \cap (B' \cup A)$$
$$= (A' \cup B)B' \cup (A' \cup B)A = (A'B' \cup BB') \cup (A'A \cup BA)$$
$$= A'B' \cup BA. \tag{3}$$

加

$$A' \triangle B = (A' - B) \bigcup (B - A') = A'B' \bigcup BA.$$

同样

$$A \triangle B' = A'B' \cup BA$$
.

于是(1)成立.

为了证明(2),取补集.

$$((A\triangle K) \cup (B\triangle K))' = (A\triangle K)' \cap (B\triangle K)'$$

$$=(A\triangle K')\cap (B\triangle K')$$

(利用(1))

$$= (A \cap (B \triangle K')) \triangle (K' \cap (B \triangle K')) \qquad (1.8 (6))$$

$$=AB\triangle AK'\triangle K'B\triangle K'$$

$$=AB\triangle K'(A\triangle B\triangle I)$$

$$=AB\triangle K'(A\triangle B)', \qquad ((A\triangle B)\triangle I = (A\triangle B)')$$
$$(AB\triangle (K \cup (A\triangle B)))' = AB\triangle (K \cup (A\triangle B))'$$

(利用(1))

$$=AB\triangle(K'(A\triangle B)'),$$

于是(2)成立.

为了方便,交 $A \cap B$ 简写作AB. 并约定交(在没有括号 时)比其他运算先进行,类似于数的四则运算中的乘法.

定义 $(A\triangle B)'$ 为 $A\times B$. 显然

$$A \times B = B \times A, \tag{4}$$

又由(1)及(3),

$$A \times B = A' \triangle B = A \triangle B' = A'B' \cup BA, \qquad (5)$$

从而

$$A \times B = A' \times B'. \tag{6}$$

又

$$(A \times B) \times C = (A \times B)' \triangle C = (A \triangle B) \triangle C,$$

$$A \times (B \times C) = A \triangle (B \times C)' = A \triangle (B \triangle C),$$

所以

$$(A \times B) \times C = A \times (B \times C). \tag{7}$$

证明: 例 3

$$(A \triangle B) \times C = (A \times C) \triangle B = A \triangle (B \times C), \qquad (8)$$

$$(A \times C) \triangle (B \times C) = A \triangle B. \tag{9}$$

解
$$(A\triangle B) \times C = (A\triangle B)\triangle C'$$
 (由(5))
 $=(A\triangle C')\triangle B = (A \times C)\triangle B$
 $=(A\triangle C')\triangle B = A\triangle (C'\triangle B) = A\triangle (B \times C)$,
 $(A \times C)\triangle (B \times C) = (A\triangle C')\triangle (B\triangle C')$

$$=A\triangle B$$
. (1.8例3)

例 4 证明方程组:

$$(X \cap (A \cup B) = X, \tag{10}$$

$$A \cap (B \cup X) = A,$$
 (11)
 $B \cap (A \cup X) = B,$ (12)

$$B \cap (A \cup X) = B, \tag{12}$$

$$X \cap A \cap B = \emptyset \tag{13}$$

有唯一解,并求出这唯一的 X.

由(10)得 $X \subseteq A \cup B$. 由(13), $X \cap (A \cap B) = \emptyset$.

从而 $X \subseteq A \triangle B$.

由(11), $X \supseteq A - B$. 由(12), $X \supseteq B - A$. 从而 $X \supseteq A \triangle B$.

于是, $X = A \triangle B$, 它显然满足(10)~(13).

1.11 容斥原理(])

并集 A_1 , A_2 , …, A_n 的元数满足

$$|A_1 \cup A_2 \cup \cdots \cup A_n| \le |A_1| + |A_2| + \cdots + |A_n|$$
 (1)
当且仅当 A_1, A_2, \cdots, A_n 中两两的交均为空集时等号成立.
又有

$$|A_1 \cup A_2 \cup \cdots \cup A_n| \geqslant \sum_{i=1}^n |A_i| - \sum_{1 \leqslant i \leqslant j \leqslant n} |A_i \cap A_j|$$

$$\tag{2}$$

当且仅当 A_1 , A_2 , …, A_n 中每三个的交均为空集时等号成立. 一般地,

$$|A_{1} \cup A_{2} \cup \cdots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| - \cdots$$

$$+ (-1)^{n-1} |A_{1} \cap A_{2} \cap \cdots \cap A_{n}|. \tag{3}$$

事实上,设元素 x 恰在 A_1 , A_2 , …, A_n 的 m 个中,则 x 对(3)式右边的贡献为

$$C_m^1 - C_m^2 + \dots + (-1)^{m-1} C_m^m = 1 - (1-1)^m = 1.$$

由于 C_m^k 在 $k \leq \frac{m}{2}$ 时递增,在 $k \geq \frac{m}{2}$ 时递减,如果(3)的右边 • 22 •

略去一个正项及它以后的各项,那么(3)的左边大于右边(某些元素 x 对右边的贡献非正或被略去的贡献非负). 如果(3)的右边略去一个负项及它以后的各项,那么(3)的左边小于右边.

(3) 称为容斥原理.

例1 某班学生中数、理、化优秀的分别有 30 人、28 人、25 人、数理、理化、数化两科优秀的分别有 20 人、16 人、17 人、数理化三科全优的有 10 人、问数理两科至少有一科优秀的有多少人?数理化三科至少有一科优秀的有多少人?

解 用 A_1 , A_2 , A_3 分别表示数、理、化优秀的学生组成的集合. 由题意

$$|A_1| = 30, |A_2| = 28, |A_3| = 25,$$

 $|A_1 \cap A_2| = 20, |A_2 \cap A_3| = 16, |A_3 \cap A_1| = 17,$
 $|A_1 \cap A_2 \cap A_3| = 10.$

由容斥原理,

$$|A_1 \bigcup A_2| = |A_1| + |A_2| - |A_1 \bigcap A_2| = 30 + 28 - 20 = 38$$
, 即数理两科至少有一科优秀的学生为 38 人.

同样,由容斥原理,

$$|A_1 \bigcup A_2 \bigcup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2|$$

$$-|A_2 \cap A_3| - |A_3 \cap A_1| + |A_1 \cap A_2 \cap A_3|$$

$$= 30 + 28 + 25 - 20 - 16 - 17 + 10$$

$$= 40,$$

即数理化三科至少有一科优秀的学生为 40 人.

例2 $n \ge 3$. 用数字 1, 2, 3 组成 n 位数(每个数字可以重复),其中 1, 2, 3 均至少出现一次. 求这种 n 位数的个数.

解 用数字 1, 2, 3 组成的 n 位数的集合记为 I (全集), 其中不含数字 i 的 n 位数的集合记为 A_i (i = 1, 2, 3), 则

$$|I| = 3^n, |A_1| = |A_2| = |A_3| = 2^n,$$

 $|A_i \cap A_j| = 1 \ (1 \le i < j \le 3), |A_1 \cap A_2 \cap A_3| = 0.$ 由容斥原理,

$$|(A_1 \cup A_2 \cup A_3)'| = |I| - |A_1 \cup A_2 \cup A_3|$$

= $3^n - (2^n + 2^n + 2^n - 1 - 1 - 1 + 0)$
= $3^n - 3 \times 2^n + 3$.

- **例3** 9名乘客进入4个车厢,每个车厢都不空,有多少种分配方法?
- 解 用 A_i 表示第 i 个车厢空着的分配方法的集合 $(1 \le i \le 4)$,I 表示所有分配方法的集合,则

$$|I| = 4^{9}, |A_{i}| = 3^{9} (1 \le i \le 4),$$
 $|A_{i} \cap A_{j}| = 2^{9} (1 \le i < j \le 4),$
 $|A_{i} \cap A_{j} \cap A_{k}| = 1 (1 \le i < j < k \le 4),$
 $|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}| = 0.$

由容斥原理,

$$|(A_1 \cup A_2 \cup A_3 \cup A_4)'|$$

= $4^9 - C_4^1 \times 3^9 + C_4^2 \times 2^9 - C_4^3 \times 1 + C_4^4 \times 0$
= $186 \ 480$,

即每个车厢都不空的分配方法有 186 480 种.

例 2、例 3 所用的容斥原理也可以这样表述:

设全集 I 中,不具有性质 P_i 的元素组成集合 A_i (i=1, 2, …, n),则具有性质 P_1 , P_2 , …, P_n 的元素共有

$$|I| = \sum |A_i| + \sum |A_i \cap A_j| - \sum |A_i \cap A_j \cap A_k|$$

$$+ \cdots + (-1)^n |A_1 \cap A_2 \cap \cdots \cap A_n|$$
(4)

个. 特别地,在和式中各项相等时,上述个数为

$$| I | -C_n^1 | A_1 | + C_n^2 | A_1 \cap A_2 | -C_n^3 | A_1 \cap A_2 \cap A_3 | + \dots + (-1)^n | A_1 \cap A_2 \cap \dots \cap A_n |.$$
 (5)

(4)或(5)也称为逐步淘汰原则.

例 4 从自然数数列

中依次划去 3 的倍数、4 的倍数、但其中凡是 5 的倍数均保留不划去、剩下的数中第 1 995 个是多少?

解 3, 4, 5 的最小公倍数是 60. 在 1, 2, …, 60 中, 3 的倍数有 $20\left(=\frac{60}{3}\right)$ 个, 4 的倍数有 $15\left(=\frac{60}{4}\right)$ 个, 3 与 4 的公倍数有 $5\left(=\frac{60}{3\times4}\right)$ 个, 3 与 5 的公倍数有 $4\left(=\frac{60}{3\times5}\right)$ 个, 4 与 5 的公倍数有 $3\left(=\frac{60}{4\times5}\right)$ 个, 3, 4, 5 的公倍数 1 个. 因此 1, 2, …, 60 中留下

$$60 - 20 - 15 + 5 + 4 + 3 - 1 = 36$$

个数. 同样道理, 在

60m+1,60m+2,…,60m+60 (m∈N) 中也留下 36 个数. 因为

$$1995 = 55 \times 36 + 15$$

而 1, 2, …, 60 中留下的第 15 个数是 25, 所以(6) 中留下的第 1 995 个数是

1.12 容斥原理(Ⅱ)

本节再介绍一些利用容斥原理的问题.

例1 一次会议有500名代表参加,每名代表认识的人数 > 400.证明一定能找到6名代表,每两名互相认识(本题中认识是互相的,即甲认识乙,则乙认识甲).

解 设代表 v_i 认识的人所成的集合为 A_i . 不妨设 $v_i \in A_i$. 因为

$$|A_1 \cap A_2| = |A_1| + |A_2| - |A_1 \cup A_2|$$

>400 + 400 - 500 > 0,

所以 $A_1 \cap A_2$ 不是空集. 不妨设 $v_3 \in A_1 \cap A_2$.

因为

$$|A_1 \cap A_2 \cap A_3| = |A_1 \cap A_2| + |A_3| - |(A_1 \cap A_2) \cup A_3|$$

> $(400 \times 2 - 500) + 400 - 500$
= $400 \times 3 - 500 \times 2 > 0$,

所以 $A_1 \cap A_2 \cap A_3$ 不是空集,不妨设 $v_4 \in A_1 \cap A_2 \cap A_3$. 同样,

$$|A_1 \cap A_2 \cap A_3 \cap A_4| = |A_1 \cap A_2 \cap A_3|$$

 $+ |A_4| - |(A_1 \cap A_2 \cap A_3) \cup A_4|$
 $> 400 \times 4 - 500 \times 3 > 0$

设 $v_5 \in A_1 \cap A_2 \cap A_3 \cap A_4$. 再由

 $|A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5| > 400 \times 5 - 500 \times 4 = 0,$ - 26 •

可设 $v_6 \in A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5$. 这样得到的 6 个人 v_1 , v_2 , v_3 , v_4 , v_5 , v_6 互相认识.

例 2 设 n 是正整数. 我们说集 $\{1, 2, \dots, 2n\}$ 的一个排列 $(x_1, x_2, \dots, x_{2n})$ 具有性质 P,如果在 $\{1, 2, \dots, 2n-1\}$ 中至少有一个 i,使 $|x_i - x_{i+1}| = n$ 成立. 证明具有性质 P 的排列比不具有性质 P 的排列多.

解 对于 $k = 1, 2, \dots, n$, 令 A_k 为 k 与 k+n 相邻的排列组成的集合,则

$$|A_k| = 2 \times (2n-1)!$$

(k 与 k + n 排在一起作为一个"数", 2n-1 个数有 (2n-1)!种排列. k 与 k + n 的位置可以交换,因此这样的排列共 2× (2n-1)! 种),

 $|A_k \cap A_h| = 2^2 \times (2n-2)!$ $(1 \le k < h \le n)$ (将 k 与 k + n, h 与 h + n 并在一起, 2n-2 个"数"有 (2n-2)! 种排列, k 与 k + n, h 与 h + n 可以交换, 各有 2 种可能).

由容斥原理,具有性质P的排列个数m

m 超过排列总数(2n)! 的一半,即具有性质 P 的排列多于不具有性质 P 的排列。

例 3 在正 6n+1 边形中, k 个顶点染红色, 其余顶点染

蓝色,证明具有同色顶点的等腰三角形的个数与染色方法无关.

解 设 k 个点染红色,其余点染蓝色时,顶点同为蓝色的等腰三角形个数为 a_k ,顶点同为红色的等腰三角形个数 为 b_k .

因为 $3 \mid 6n+1$,任三个顶点不构成正三角形. 以任一顶点作为等腰三角形的"尖"---两腰的公共点,有 6n+1 种方法. 其余的 6n 个顶点两两成对,每一对关于过"尖"与(正 6n+1 边形)中心的直线对称,它们与"尖"组成等腰三角形. 因此,共能构成 $(6n+1)\times 3n$ 个(以 6n+1 边形的顶点为顶点的)等腰三角形,即 $a_0 = (6n+1)\times 3n$.

 $a_0 - a_1$ 即恰有一个红点 A 时,顶点不同为蓝色的等腰三角形的个数. 其中以 A 为尖的有 3n 个,以其他点为尖(以 A 为一个顶点)的有 6n 个. 因此 $a_0 - a_1 = 9n$.

现在设 k 个点染成红色. 这时全部等腰三角形的个数即 a_0 ,以红点 A 为顶点的等腰三角形的个数是 a_0 一 a_1 . 以两个红点 A,B 为顶点的等腰三角形有 3 个. 因此,由容斥原理,

$$a_k = a_0 - C_k^1(a_0 - a_1) + C_k^2 \cdot 3 - b_k$$

即顶点同色的等腰三角形的个数为

$$a_k + b_k = a_0 - C_k^1 (a_0 - a_1) + 3C_k^2$$

= $3n(6n+1) - 9kn + \frac{3}{2}k(k-1)$.

另一种解法见习题 4.

上节的例题只需套用容斥原理,依样葫芦.本节的例题,需要根据情况,灵活运用原理,值得细细体会.

第二章 映 射

2.1 映 射

设 X, Y 为两个集合,如果对于每一个元 $x \in X$,有一个元 $y \in Y$ 与它对应,那么就说定义了一个从 X 到 Y 的映射(也称为函数),记作 $f: X \rightarrow Y$. 元 y 称为元 x 在映射 f 下的像,记作 $x \mapsto y$ 或 y = f(x). X 称为 f 的定义域.

用 f(X) 表示集合 $\{f(x) \mid x \in X\}$, 称为像集合. 显然 $f(X) \subset Y$.

如果 f(X) = Y,那么对于每一个 $y \in Y$,至少有一个 $x \in X$,使得 f(x) = y. 这时称 f 为满射或 f 是从 X 到 Y 上的映射. 对于满射,显然有 $|X| \ge |Y|$.

如果对 X 中任意两个不同的元 x_1 , x_2 , 均有 $f(x_1) \neq f(x_2)$,那么 f 称为单射. 对于单射,显然有 $|X| \leq |Y|$.

一个映射既是单射又是满射,就称为一一对应. 这时 |X| = |Y|. 并且,对每个 $y \in Y$,有唯一的 $x \in X$ 满足 f(x) = y. 令 $y \mapsto x$,就得到一个从 Y 到 X 的映射,称为 f 的逆映射(即函数 f 的反函数),记作 f^{-1} . f^{-1} 也是——对应,而且 $f^{-1}(f(x)) = x$, $f(f^{-1}(y)) = y$.

例 1 $X = \{1, 2, 3, 4\}, Y = \{0, 1\}, 映射 f; X \rightarrow Y 为$ 1, 3 $\vdash \vdash$ 1; 2, 4 $\vdash \vdash$ 0. 这是满射,不是单射.

例2 $X = \mathbf{R}, Y = \mathbf{R}, x \mapsto \sin x (x \in \mathbf{R})$ 所表示的映射 $f(\mathbf{p} \sin)$ 不是满射也不是单射.

例 3 $X = \mathbb{R}, Y = \{y \mid -1 \leq y \leq 1\}. x \mapsto \sin x$ $(x \in \mathbb{R})$ 所表示的映射是满射,不是单射.

例 4 $X = \left\{x \middle| -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right\}$, $Y = \left\{y \middle| -1 \leqslant y \leqslant 1\right\}$. 由 $x \longmapsto \sin x$ 所表示的映射是——对应. 它的逆映射(反函数)是 $y \longmapsto \arcsin y$.

当 X = Y 时,映射 $f: X \rightarrow X$ 是 X 到自身的映射.

若 $f: X \rightarrow X$ 使得对每个 $x \in X$, 均有 f(x) = x, 则称 f 为恒等映射, 记为 I_X . 在不致混淆时, 也写成 I.

若 f 不是恒等映射,则不是每个 $x \in X$ 均满足 f(x) = x. 称满足 f(x) = x 的 x 为映射 f 的不动点.

例 5 设 $X \in \mathbb{R}$ 元集, $Y \in \mathbb{R}$ 元集,求,

- (ii) 从 X 到 Y 的满射的个数.

 \mathbf{f} (i) 每个 $x \in X$ 的像可为m 个 $y \in Y$ 中的任意一个,因此从 X 到 Y 的映射共有

$$\overbrace{m \times m \times \cdots \times m}^{n \uparrow} = m^n$$

个.

(ii) 上述 m^n 个映射中, y_i 不是像的有 $(m-1)^n$ 个, y_i , y_i 不是像的有 $(m-2)^n$ 个,…… 根据容斥原理,满射的个数为

 $m^{n} - C_{m}^{1}(m-1)^{n} + C_{m}^{2}(m-2)^{n} + \dots + (-1)^{k}C_{m}^{k}(m-k)^{n} + \dots + (-1)^{m-1}C_{m}^{m-1}.$

2.2 复合映射

设 X, Y, V 为集合, $f: X \rightarrow Y$, $g: Y \rightarrow V$ 为映射,则产生一个映射 $x \longmapsto g(f(x))$,称为 f, g 的复合映射,用 $g \circ f: X \rightarrow V$ 表示.

对于 $X \rightarrow Y$ 的——对应 f , 显然有

$$f^{-1} \circ f = I_X, \quad f \circ f^{-1} = I_Y. \tag{1}$$

例1 设 $f: X \rightarrow Y$, $g: Y \rightarrow V$. 证明:

- (i) 若 $g \circ f$ 是单射,则f 是单射;
- (ii) 若 g。f 是满射,则 g 是满射.

解 (i) 若有 $f(x_i) = f(x_i)$,则

$$g(f(x_i)) = g(f(x_j)),$$

已知 $g \circ f$ 是单射, 故由上式得 $x_i = x_j$, 即 f 为单射.

(ii) 因为 $g \circ f$ 是满射,所以对任一 $v \in V$,有 $x \in X$ 使 g(f(x)) = v. 于是有 $y = f(x) \in Y$,使 g(y) = v. 从而 g 为满射.

例2 设 $f: X \rightarrow X$ 满足

$$\underbrace{f \circ f \circ \cdots \circ f}_{k \uparrow f} = I_X, \tag{2}$$

证明 f 是一一对应,

解 I_x 是满射,所以由例 I(ii)(那里的 g, f 分别为现在的 f, $\underline{f} \circ f \circ \cdots \circ f$), f 为满射.

又 l_x 是单射,所以由例 1(i)(那里的 g, f 分别为现在的 $\underline{f \cdot f \cdot \cdots \cdot f}$, f),f 为单射.

于是 f 是——对应. $f \circ f \circ f \circ f \circ \cdots \circ f$ 常简记为 $f^{(k)}$.

例3 映射 $f: X \rightarrow X$. 若对所有 $x \in X$, f(f(x)) = f(x) 成立,则称为幂等的. 设 |X| = n, 试求出幂等映射的个数.

解 设 | f(X) | = k,则 f(X) 有 C_n^* 种选择. 对于 f(X) 中任一元 x,显然有 f(x) = x. 而 X - f(X) 中的每个元,它的像有 k 种选择. 所以共有幂等映射 $\sum_{i=1}^{n} C_n^* k^{n-k}$ 个.

例 4 若 $f: X \to X$ 满足 f(f(x)) = x (所有 $x \in X$),则 f 称为对合. 设 |X| = n,求 $X \to X$ 的对合的个数.

解 设 n 个元中有j 个对x, y,满足 f(x) = y, f(y) = x;其余的满足 f(x) = x.

j=0 时,仅一种映射,即 f=I;

j>0 时,每次取两个作为一对,共取 j 对,有 $C_n^2C_{n-2}^2\cdots C_{n-2j+2}^2$ 种 取 法. 不 考 虑 j 对 的 顺 序,有 $\frac{1}{j!}C_n^2C_{n-2}^2\cdots C_{n-2j+2}^2=C_n^{2j} \cdot (2j-1)!!$ 种.

因此 f 的个数为 $1 + \sum_{j=1}^{\left[\frac{n}{2}\right]} C_n^{2j} (2j-1)!!$.

2.3 有限集到自身的映射

设 X 为有限集,映射 $f: X \rightarrow X$. 这时单射、满射、——对应三个概念是相同的. 即有

例1 (i) 若 f 为单射,则 f 为——对应;

(ii) 若f为满射,则f为——对应.

- 解 (i) 设 X 中元素为 x_1 , x_2 , …, x_n . 由于 f 为单射, $f(x_1)$, $f(x_2)$, …, $f(x_n)$ 各不相同. 因此, $f(x_1)$, $f(x_2)$, …, $f(x_n)$ 就是 X 的全部元素, f(X) = X, f 为满射.
- (ii) 设 X 中元素为 x_1 , x_2 , …, x_n . 由于 f 为满射, f(X) = X,所以 $f(x_1)$, $f(x_2)$, …, $f(x_n)$ 这 n 个元各不相同,它们就是 X 的全部元素. f 是单射.

f 既是单射又是满射,因而是---对应.

若 f, $X \rightarrow Y$, 其中 X, Y 为有限集, 并且 |X| = |Y|, 则 (i), (ii) 同样成立.

例1是很有用的.

例2 设自然数a与m互质,m>1,则对任意整数b,同余方程

$$ax \equiv b \pmod{m} \tag{1}$$

有解. 即有一个整数 x, 使 ax - b 被 m 整除.

解 考虑 mod m 的剩余类 $X = \{0, 1, 2, \dots, m-1\}$ 到自身的映射 f, 定义为

$$x \mapsto ax$$
 (所在的剩余类).

f 是单射:因为 a 与 m 互质,所以,当 $ax \equiv ax' \pmod{m}$ 即 a(x-x') 被 m 整除时,x-x' 被 m 整除,即 $x \equiv x' \pmod{m}$.

根据例 1, f 是满射. 从而对任意的整数 b, 方程(1) 有解.

2.4 构造映射(1)

许多问题需要构造一个合乎要求的映射. 例 1 是否有一个映射 $f: \mathbf{R}^{1} \to \mathbf{R}$, 满足

$$f^{(1989)}(x) = \frac{x}{x+1} \tag{1}$$

(R+表示正实数所成的集)?

解 映射
$$f(x) = \frac{1}{\frac{1}{x} + \frac{1}{1989}}$$
 满足要求. 事实上, $\frac{1}{f(x)}$

$$= \frac{1}{x} + \frac{1}{1989}, \ \frac{1}{f^{(2)}(x)} = \frac{1}{f(x)} + \frac{1}{1989} = \frac{1}{x} + \frac{2}{1989}, \dots,$$
$$\frac{1}{f^{(k)}(x)} = \frac{1}{x} + \frac{k}{1989}, \dots, \frac{1}{f^{(1989)}(x)} = \frac{1}{x} + 1.$$

例 2 是否有一个映射 $f: \mathbb{R}^+ \to \mathbb{R}$,满足

$$f^{(64)}(x) = (\sqrt{x} + 1)^2? \tag{2}$$

解 映射 $f(x) = \left(\sqrt{x} + \frac{1}{64}\right)^2$ 满足要求. 事实上, $\sqrt{f(x)}$

$$=\sqrt{x}+\frac{1}{64},\sqrt{f^{(2)}(x)}=\sqrt{f(x)}+\frac{1}{64}=\sqrt{x}+\frac{2}{64},$$
 ...,

$$\sqrt{f^{(k)}(x)} = \sqrt{x} + \frac{k}{64}, \dots, \sqrt{f^{(64)}(x)} = \sqrt{x} + 1.$$

更一般地, $f(x) = g(g^{-1}(x) + b)$ 满足

$$f^{(n)}(x) = g(g^{-1}(x) + nb), \qquad (3)$$

其中 g 是一一对应,b 为任意常数. 事实上,

$$g^{-1}(f(x)) = g^{-1}(x) + b,$$

$$g^{-1}(f^{(2)}(x)) = g^{-1}(f(x)) + b = g^{-1}(x) + 2b,$$

$$g^{-1}(f^{(n)}(x)) = g^{-1}(x) + nb.$$

例 1、例 2 分别是 $g(x) = \frac{1}{r}$, x^2 的特殊情况.

例 3 是否存在映射 $f: N \rightarrow N$, 满足

$$f(f(n)) = f(n) + n, (4)$$

$$f(1) = 2, \tag{5}$$

$$f(n+1) > f(n)? \tag{6}$$

解 常见的线性函数 f(x) = ax 若满足(4),则

$$f(f(n)) = a^2 n = an + n,$$

从而 $a = \frac{\sqrt{5}+1}{2}$. 但 $\frac{\sqrt{5}+1}{2}x$ 不是 $N \to N$ 的映射. 为保证 f 取整值,令 $f(x) = \left[\frac{\sqrt{5}+1}{2}x\right]$. 它满足(6),不满足(5),(4)(左 边比右边小 1). 因此还需适当修改. 令

$$f(x) = \left[\frac{\sqrt{5}+1}{2}x+b\right],\tag{7}$$

其中0 < b < 1是一个待定的常数. 这时

$$f(f(n)) = \left[\frac{\sqrt{5}+1}{2}f(n)+b\right] = \left[\frac{\sqrt{5}-1}{2}f(n)+b\right]+f(n)$$

$$= \left[\frac{\sqrt{5}-1}{2}\left[\frac{\sqrt{5}+1}{2}n+b\right]+b\right]+f(n)$$

$$= f(n) + n + \left[\frac{\sqrt{5} + 1}{2} b - \frac{\sqrt{5} - 1}{2} \left\{ \frac{\sqrt{5} + 1}{2} n + b \right\} \right], \tag{8}$$

其中 $\{x\} = x - [x]$ 为 x 的小数部分. 我们希望(8) 的最后一式中[] 的项为 0,即

$$0 < \frac{\sqrt{5}+1}{2}b - \frac{\sqrt{5}-1}{2} \left\{ \frac{\sqrt{5}+1}{2}n + b \right\} < 1.$$
 (9)

这只要令 $\frac{\sqrt{5}+1}{2}b=1$ 即 $b=\frac{\sqrt{5}-1}{2}$. 此时

$$f(x) = \left[\frac{\sqrt{5}+1}{2}x + \frac{\sqrt{5}-1}{2}\right]$$
 (10)

满足全部要求.

例 1~例 3 中的映射都不是唯一的.

2.5 构造映射(Ⅱ)

例1 试求出所有的映射 $f: \mathbf{R} \rightarrow \mathbf{R}$, 使得对于一切 x, $y \in \mathbf{R}$, 都有

$$f(x^2 + f(y)) = y + (f(x))^2, \tag{1}$$

解 f(x) = x 显然满足(1). 问题是有没有其他满足要求的映射.

设f满足要求,则由(1)及其中y可取一切实数得f为满射.

若
$$f(y_1) = f(y_2)$$
,则由(1)得

$$y_1 + f^2(x) = f(x^2 + f(y_1))$$

$$= f(x^2 + f(y_2)) = y_2 + f^2(x)$$
,

从而 $y_1 = y_2$. 于是 f 为单射.

在(1)中将 x 换为一x,得

$$y+f^2(-x)=f(x^2+f(y))=y+f^2(x),$$

从而

$$f^{2}(-x) = f^{2}(x),$$

 $f(-x) = f(x) \text{ if } f(-x) = -f(x).$

由于 f 是单射, 当 $x \neq 0$ 时, $f(-x) \neq f(x)$. 所以, 当 $x \neq 0$ 时, f(-x) = -f(x), 并且 f(-x), f(x) 均非 0.

由于 f 是满射,必有 f(0) = 0.

在(1)中令x = 0,得

$$f(f(y)) = y, (2)$$

因此,对任一实数 y,由(1),(2)得

 $f(x^2 + y) = f(x^2 + f(f(y))) = f(y) + f^2(x) \geqslant f(y)$, 这表明 f 是增的,即对于 $g'(=x^2 + y) > y$,恒有

$$f(y') > f(y). \tag{3}$$

若有x使f(x) > x,则由(2),(3),

$$x = f(f(x)) > f(x) > x,$$

矛盾. 所以恒有 $f(x) \leq x$. 同理 $f(x) \geq x$. 因此, f(x) = x 是唯一满足要求的映射.

例 2 构造一个整系数多项式 f(x),使得 $f: \mathbf{Q} \rightarrow \mathbf{Q}$ 是单射,而 $f: \mathbf{R} \rightarrow \mathbf{R}$ 不是单射.

解 一次多项式在 R 上是单射, 二次多项式(图象为抛物线)在 Q 上不是单射. 因此 f 至少是三次多项式.

令 $f(x) = x^3 - 2x$. 我们证明它满足要求.

若有 f(x) = f(t),即 $x^3 - 2x = t^3 - 2t$,则

$$(x-t)(x^2+xt+t^2-2)=0. (4)$$

当 $x \neq t$ 并且 $x^2 \leq \frac{8}{3}$ 时, $t = \frac{-x \pm \sqrt{8 - 3x^2}}{2}$ 使(4)成立. 因此在 R上,f 不是单射.

对于有理数 x,若 $\sqrt{8-3x^2}$ 为有理数 y,则 $8-3x^2=y^2$, 去分母得

$$8m^2 - 3n^2 = l^2. (5)$$

于是(5)有整数解 l, m, n,其中 m 不等于 0.

若 m, n 有大于 1 的公因数 d,则由(5), $d^2 | l^2$,从而 d | l.可在(5)的两边同时除以 d. 因此可设(5)中 m, n 互质

(否则用 $\frac{m}{d}$, $\frac{n}{d}$, $\frac{l}{d}$ 代替m, n, l 进行讨论).

若 3|m,则由(5),3|l,从而 3²|3n²,3|n²,3|n,与 m, n 互质矛盾.若 3 { m,则 3 { l.由(5)mod 3 得

$$2 \equiv 1 \pmod{3}$$
,

矛盾. 因此(5)没有整数解 l, m, n,其中 m 不等于 0.

这样, $\sqrt{8-3x^2}$ 不是有理数. 在 Q 上,(4)仅当 t=x 时成立. 即在 Q 上 f 为单射.

例 3 是否存在函数 $f: \mathbf{R} \rightarrow \mathbf{R}$, 使得

$$f(f(x)) = x^2 - 2 (6)$$

对所有 $x \in \mathbf{R}$ 成立?

解 考虑映射 f(2) 与 f(4) 的不动点. 由

$$x = f^{(2)}(x) = x^2 - 2$$
,

得 f⁽²⁾的不动点为 2, -1. 由

$$x=f^{(4)}(x)=f^{(2)}(f^{(2)}(x))$$
$$=(f^{(2)}(x))^2-2=(x^2-2)^2-2,$$

得 $(x^2-x-2)(x^2+x-1)=0$. 从而 $f^{(4)}$ 的不动点为

2,
$$-1$$
, $\alpha = \frac{\sqrt{5}-1}{2}$, $\beta = \frac{-\sqrt{5}-1}{2}$.

因为 $f^{(4)}(f(\alpha)) = f(f^{(4)}(\alpha)) = f(\alpha)$, 所以 $f(\alpha)$ 也是 $f^{(4)}$ 的不动点.

若 $f(\alpha) = 2$, 则 $\alpha = f^{(4)}(\alpha) = f^{(3)}(2) = f(2) = f(f(\alpha))$ = $f^{(2)}(\alpha)$. 从而 $\alpha = 2$ 或 -1, 矛盾. 因此 $f(\alpha) \neq 2$.

同理 $f(a) \neq -1$.

若 $f(\alpha) = \alpha$,则 $f^{(2)}(\alpha) = f(\alpha) = \alpha$,仍得 $\alpha \in \{2, -1\}$, \cdot 38 \cdot

矛盾.

于是
$$f(\alpha) = \beta$$
. 同理 $f(\beta) = \alpha$. 这样就有
$$f^{(2)}(\alpha) = f(\beta) = \alpha$$
,

仍得矛盾.

所求的映射不存在.

注:若限制定义域为 $\{x||x| \ge 2\}$,则 f 存在. 如

$$f(x) = 2\operatorname{ch}\left(\sqrt{2}\operatorname{ch}^{-1}\frac{\mid x\mid}{2}\right),\,$$

其中 $chx = \frac{e^x + e^{-x}}{2}$ 称为双曲余弦, ch^{-1} 是它的反函数.

2.6 函数方程(I)

求映射的问题也常称为函数方程.

函数方程形形色色,没有固定的解法.前两节已经介绍了一些例题.本节再举几个例子.

例 1 求所有函数 $f: \mathbf{R} \rightarrow \mathbf{R}$, 对任意实数 x, y, 均有 $f(x) f(y) = f(x^2 + y^2).$

$$f(x)f(y) = f(x^2 + y^2)$$
, (1)
党教函数 $f(x) = 1$ 武 $f(x) = 0$ 具数準見更定 $f(x)$

解 常数函数 f(x) = 1 或 f(x) = 0 显然满足要求. 但不知有无其他函数满足要求.

设 f 满足要求. 我们希望通过(1)(应充分利用这个条件)来确定 f.

令x = y = 0,由(1)得 $f^2(0) = f(0)$,所以f(0) = 0或1. 若f(0) = 0,则由(1)

$$f(x^2) = f(x)f(0) = 0,$$

即当 $x \ge 0$ 时, $f(x) = f((\sqrt{x})^2) = 0$. 又在(1) 中将y与x都

换成-x,得

$$f^{2}(-x) = f(2x^{2}) = f((\sqrt{2}x)^{2}) = 0,$$

所以 f(x) 为常数函数 0.

若 f(0) = 1,则 $f(x) = f(x)f(0) = f(x^2)$, 只需考虑 f 在正实数上的值, 这时

$$f(x+y) = f((\sqrt{x})^2 + (\sqrt{y})^2) = f(\sqrt{x})f(\sqrt{y}) = f(x)f(y),$$
(2)

在(2)中令y=x,得

$$f(2x) = f^2(x) = f(2x^2),$$

 $Y f(2x) = f((2x)^2) = f(4x^2),$

所以 $f(2x^2) = f(4x^2)$. 令 $2x^2 = y$,则 f(y) = f(2y) 对一切 y > 0 成立. 所以 $f^2(x) = f(2x) = f(x)$, f(x) = 0 或 1.

若有某个 y 使 f(y) = 0,则由(2),f(x+y) = 0,即对比 y 大的 x,f(x) = 0.由于

$$f\left(\frac{y}{2^k}\right) = f\left(\frac{y}{2^{k-1}}\right) = \dots = f(y) = 0,$$

所以对一切 x > 0, f(x) = 0.

从而本题的解为 f(x) = 0 或 f(x) = 1 或

$$f(x) = \begin{cases} 0, \ \text{\text{\vec{x}}} \neq 0; \\ 1, \ \text{\text{\vec{x}}} = 0. \end{cases}$$

(易知最后这个函数也满足条件.)

例 2 设函数 $f: \mathbf{R} \rightarrow \mathbf{R}$, 不恒为 0, 满足条件: 对所有 x, $y \in \mathbf{R}$,

(i)
$$f(xy) = f(x)f(y)$$
;

(ii)
$$f(x+\sqrt{2}) = f(x) + f(\sqrt{2})$$
.

求 f(x).

解 显然 f(x) = x 满足要求. 下面证明这是唯一的解. 首先,在(i)中令 x = y = 0,得

$$f(0) = f^2(0)$$

从而 f(0) = 0 或 f(0) = 1.

若 f(0) = 1, 则对任一 $y \in \mathbb{R}$,

$$f(y) = f(0)f(y) = f(0) = 1.$$

但这时 $f(x+\sqrt{2}) = f(x) = f(\sqrt{2}) = 1$, 与(ii) 矛盾. 所以 f(0) = 0.

同样,在(i)中令 x = y = 1,得

$$f(1) = f^2(1)$$
,

从而 f(1) = 1 或 f(1) = 0.

若 f(1) = 0,则对任 $-y \in \mathbb{R}$,

$$f(y) = f(1)f(y) = 0,$$

与 f(x) 不恒为 0 矛盾, 所以 f(1) = 1,

其次,我们来"改进"(ii),对任 $-y \neq 0$,

$$f(x+y) = f\left(\frac{y}{\sqrt{2}}\left(x \cdot \frac{\sqrt{2}}{y} + \sqrt{2}\right)\right)$$

$$= f\left(\frac{y}{\sqrt{2}}\right) f\left(x \cdot \frac{\sqrt{2}}{y} + \sqrt{2}\right)$$

$$= f\left(\frac{y}{\sqrt{2}}\right) \left(f\left(x \cdot \frac{\sqrt{2}}{y}\right) + f(\sqrt{2})\right)$$

$$= f\left(\frac{y}{\sqrt{2}}\right) f\left(x \cdot \frac{\sqrt{2}}{y}\right) + f\left(\frac{y}{\sqrt{2}}\right) f(\sqrt{2})$$

$$= f(x) + f(y).$$

上式对 y = 0 显然成立. 所以有

(iii)
$$f(x+y) = f(x) + f(y)$$
,

于是 f(x) + f(-x) = f(0) = 0. 从而 f(x)是奇函数,只需考虑 x > 0.

由 f(1) = 1 及(iii), 易知对 $n \in \mathbb{N}$,

$$f(n) = f(n-1) + f(1) = f(n-2) + 2f(1)$$

$$= \cdots = nf(1) = n.$$

并且对 $m, n \in \mathbb{N}$,有

$$mf\left(\frac{n}{m}\right) = \underbrace{f\left(\frac{n}{m}\right) + f\left(\frac{n}{m}\right) + \dots + f\left(\frac{n}{m}\right)}_{m\uparrow}$$

$$= f\underbrace{\left(\frac{n}{m} + \frac{n}{m} + \dots + \frac{n}{m}\right)}_{m\uparrow} = f(n) = n,$$

即

$$f\left(\frac{n}{m}\right) = \frac{n}{m}.$$

于是对一切有理数 x,恒有

$$f(x) = x, (3)$$

只要证明此式在x为无理数时也成立。

由于 $f(x^2) = f(x)f(x) = f^2(x) \ge 0$,所以当x > 0时, f(x) 非负. 当 y > 0 时,

$$f(x+y) = f(x) + f(y) \geqslant f(x),$$

即 f(x)递增.

对任一无理数 c,可以找到与 c 任意接近的有理数 r_1 , r_2 , $r_1 < c < r_2$. 由单调性,

$$r_1 = f(r_1) \leqslant f(c) \leqslant f(r_2) = r_2$$
.

因为 r_1 , r_2 可与c任意接近,所以

$$f(c) = c$$

于是 f(x) = x 对一切 x 均成立.

注:在得到(iii)后,根据 f(1) = 1 推出对一切有理数 x, (3)成立. 这种方法称为 Cauchy 方法. 但要证明(3)对一切实数成立,仅有(iii)是不够的,必须依靠单调性或连续性,而(i) 正好提供了这种性质.

2.7 函数方程(Ⅱ)

函数方程中的条件,可以有各种不同的运用,巧拙相差很大,不应满足于"解出来",还应寻求优雅的解法,仔细琢磨领悟优雅的解法.

例1 设S表示所有大于-1的实数构成的集合.确定所有的函数: $S \rightarrow S$,满足以下两个条件:

(i) 对于S内的所有x和y,

$$f(x+f(y)+xf(y)) = y+f(x)+yf(x);$$

(ii) 在区间-1 < x < 0与x > 0的每-个内, $\frac{f(x)}{x}$ 是严格递增的.

解 由(i)得

$$f(x+f(x)+xf(x)) = x+f(x)+xf(x).$$
 (1)

对固定的 x,令 x + f(x) + xf(x) = c,则上式即

$$f(c) = c. (2)$$

将 c 代入(1)并利用(2),得

$$f(2c+c^2) = 2c+c^2. (3)$$

因为 2+c > 2+(-1) = 1,所以 $2c+c^2 = c(2+c)$ 与 c 同号.

若 c > 0,则 $2c + c^2 > c$,但(2),(3) 导出

$$\frac{f(2c+c^2)}{2c+c^2} = \frac{f(c)}{c} = 1,$$

与 $\frac{f(x)}{x}$ 在x > 0 时严格递增矛盾.

若 c < 0,同样导出矛盾.

因此 c = 0. 从而对一切 $x \in S$,

$$x + f(x) + xf(x) = 0.$$

即

$$f(x) = -\frac{x}{x+1}.$$

不难验证这一函数满足要求,

这一解法巧妙地利用了 $\frac{f(x)}{x}$ 的严格递增,迅速地达到了目的.

例 2 (i) 设函数 $f: [0,1] \rightarrow [0,1]$, 严格增(减), f^{-1} 是它的反函数, 并且对所有定义域中的 x 均有

$$f(x) + f^{-1}(x) = 2x,$$
 (1)

求出 f.

(ii) f: R→R,其余条件同(i), 求出 f,

解 (i) 显然 f(x) = x 满足所有要求. 但是否仅有这一个解呢? 这唯一性需要证明.

对任一 $x_0 \in [0, 1]$,定义

$$x_n = f(x_{n-1}), n = 1, 2, \dots$$

在(1)中令 $x = x_n$,则

$$x_{n+1} + x_{n-1} = 2x_n.$$

即

$$x_{n+1} - x_n = x_n - x_{n-1} (n = 1, 2, \dots).$$

从而

$$x_n - x_{n-1} = x_{n-1} - x_{n-2} = \cdots = x_2 - x_1 = x_1 - x_0,$$

$$x_n - x_0 = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \cdots + (x_1 - x_0)$$

$$= n(x_1 - x_0).$$

因为 $x_n \in [0, 1]$,所以

$$|x_1-x_0|=\frac{1}{n}|x_n-x_0|\leqslant \frac{1}{n}.$$

由此得 $x_1 = x_0$,即 $f(x_0) = x_0$.

由 x_0 的任意性, f(x) = x.

(ii) 上面的证明不再适用,实际上,解也不唯一,容易验证,

$$f(x) = x + c$$
, c 为任意实数,

满足要求.

下面证明只有这种形式的解.

令
$$g(x) = f(x) - x$$
. 在(1)中用 $f(x)$ 代替 x 得
$$f(f(x)) = 2f(x) - x.$$
 (2)

显然当 k = 0 时,

$$f(x+kg(x)) = f(x) + kg(x).$$
(3)

假设上式对 k 成立,则

$$f(x+(k+1)g(x)) = f(f(x)+kg(x))$$

$$=f(f(x+kg(x)))$$
 (±(3))

$$=2f(x+kg(x))-(x+kg(x))$$
 (±(2))

$$=2(f(x)+kg(x))-(x+kg(x))$$
 (±(3))

$$= f(x) + (k+1)g(x).$$

于是(3)对一切非负整数 k 均成立.

(3)对于负整数 k 也成立. 事实上, $x - g(x) = f^{-1}(x)$, $f^{-1}(f^{-1}(x)) = 2f^{-1}(x) - x$, 所以由(3)可得

$$f^{-1}(x+kg(x)) = f^{-1}(f^{-1}(f(x)+kg(x)))$$

$$= 2f^{-1}(f(x)+kg(x)) - (f(x)+kg(x))$$

$$= 2(x+kg(x)) - (f(x)+kg(x))$$

$$= kg(x) + x - g(x),$$

即

$$f(x+(k-1)g(x)) = x+kg(x)$$
$$= f(x)+(k-1)g(x).$$

这表明从(3)对 k 成立可导出(3)对 k-1 也成立.

于是(3)对一切整数 k 成立.

不妨设 f(x) 递增. 用 \land 表示 \gt ,=, \lt 三者之-, \lor 表示 与 \land 方向相反的不等号. 对任意 $x_2 \gt x_1$,

$$x_{2}-x_{1} \wedge k(g(x_{1})-g(x_{2}))$$

$$\Leftrightarrow x_{2}+kg(x_{2}) \wedge x_{1}+kg(x_{1})$$

$$\Leftrightarrow f(x_{2}+kg(x_{2})) \wedge f(x_{1}+kg(x_{1}))$$

$$\Leftrightarrow f(x_{2})+kg(x_{2}) \wedge f(x_{1})+kg(x_{1})$$

$$(\pm (3))$$

$$\Leftrightarrow x_2 + (k+1)g(x_2) \wedge x_1 + (k+1)g(x_1)$$

$$\Leftrightarrow x_2 - x_1 \wedge (k+1)(g(x_1) - g(x_2)).$$

若 $g(x_1)\neq g(x_2)$,则总可选择整数 m,使

$$m(g(x_1)-g(x_2)) < 0 < x_2-x_1.$$

由上面的证明,

$$(m\pm 1)(g(x_1)-g(x_2)) < x_2-x_1.$$

 $m\pm 1$ 又可换成 $m\pm 2$, ……. 这样继续下去, 左边可变成任意大的正数, 矛盾. 所以

$$g(x) = C, C$$
 为常数.

从而

$$f(x) = x + C.$$

上面的解法固然有很高的技巧,但显得臃肿,下面的解法较为轻灵.

又解 若
$$f(x_0) = x_0 + t$$
,则 $f^{-1}(x_0 + t) = x_0$,
$$f(x_0 + t) = 2(x_0 + t) - x_0 = x_0 + 2t,$$

$$f^{-1}(x_0) = 2x_0 - (x_0 + t) = x_0 - t,$$

$$f(x_0 - t) = x_0,$$

于是有链

(a) 因为 f(x)的值限制在区间[0, 1]内,必有 t = 0 (否则存在正整数 k,使 $x_0 + kt$ 溢出区间[0, 1]), 所以 f(x) = x.

(b) 设
$$x'_0 \neq x_0$$
, $f(x'_0) = x'_0 + t'$. 又有一链

$$\cdots x'_0 - 2t' \vdash x'_0 - t' \vdash x'_0 \vdash x'_0 \vdash x'_0 + t' \vdash x'_0 + 2t' \vdash x'$$

若 $t' \neq t$,不妨设 t' > t. 当自然数 k 充分大时,

$$x'_0 + kt' - (x_0 + kt) = (x'_0 - x_0) + k(t' - t) > 0.$$

由单调性得

$$x'_0 + (k-1)t' > x_0 + (k-1)t,$$

 $x'_0 + (k-2)t' > x_0 + (k-2)t,$

 $x_0' > x_0$,

 $x_0'-ht'>x_0-ht.$

但当自然数 h 充分大时, $x'_0 - ht' < x_0 - ht$,矛盾. 因此必有 t' = t.

从而 f(x) = x + C, C 为常数.

注:(i)不需要单调性.(ii)没有单调性时,函数值可形成许多条链,不同链上 f(x) - x 的值可以不同,如

$$f(x) = \begin{cases} x, & x \in \mathbf{Q}; \\ x + C, & x \in \mathbf{R} - \mathbf{Q} \end{cases}$$

等等,均符合要求.

2.8 链

上一节例2中出现的链在构造映射时非常有用.

例 1 是否存在函数 $f: N \rightarrow N$, 使得对每一个 $n \in N$, 都有

$$f^{(1995)}(n) = 2n? \tag{1}$$

解 所述函数是存在的,而且有无穷多个.

为了作出这样的函数,任取一个奇数 j,从 j 出发可以得到一条链

$$j \longmapsto 2j \longmapsto 4j \longmapsto 8j \longmapsto \cdots. \tag{2}$$

这样的链有无穷多条($j=1,3,5,7,9,11,\cdots$). 将每 1 995 条链组成一条新链,如下图所示:

这时每一个自然数 n 恰在一条新链中出现.

令 f(n) 为与 n 在同一条新链中,n 后面的那个数,显然 f 满足要求.

由于新链组成的任意性(任 1995 条组合在一起),合乎要求的 f 有无穷多个.

解决例 1 的关键是从常见的公式法中跳出来(不能只想到线性函数或其他用公式表示的函数),考虑一般的映射,其中的对应关系可用 — 表示.

上面的(2),每一项 n 的后一项恰好是 $f^{(1995)}(n)$,所以这样的链就表示了函数 $f^{(1995)}($ 的对应关系). 同样地,新链表示函数 f,它是利用 $f^{(1995)}$ 的链作成的(虽然从定义来说,先有

f.后有 $f^{(1995)}$,但在构造时,恰恰将这个顺序反过来. 这有些像"分析法").

例2 f(n)定义在自然数集 N 上,并且

- (i) 对所有 $n \in \mathbb{N}$, f(f(n)) = 4n + 9;
- (ii) 对所有 $k \in \mathbb{N}$, $f(2^{k-1}) = 2^k + 3$.

问是否一定有 f(n) = 2n + 3?

解 f(n) = 2n + 3 显然满足(i),(ii). 但满足(i),(ii) 的函数并非只有一个. 为了说明这一点,我们构造一个满足(i),(ii)并且不同于 2n + 3 的函数.

为此,当 $3 \ln n$ 时,令 f(n) = 2n + 3. 而当 $3 \ln n$ 时,依照例 1 编链.

首先作链(链中每一项为前一项的 4 倍加 9);

$$3 \times 1 \longrightarrow 3 \times (4 \times 1 + 3) \longrightarrow 3 \times (4^2 + 15) \longrightarrow \cdots$$

设已作了 m 条链. 在这些链外还有形如 3k ($k \in \mathbb{N}$)的数 (事实上,有无穷多个被 12 整除的正整数 3k,而每条链中只有链首可能是这种数),取其中最小的 3k,作链(规律同前)

$$3k \longmapsto 3(4k+3) \longmapsto 3(16k+15) \longmapsto \cdots$$

这样,每一个被 3 整除的 n 均在且仅在一条链中出现.

将每两条链 $\{a_n\}$, $\{b_n\}$ 编成一条新链:

对每个被 3 整除的 n,令 f(n)为新链上紧接着 n 的项,则 f(f(n)) = 4n + 9.

这样就得出无穷多个合乎要求的函数 f, 而 f(n) = 2n + 50

3 并不恒成立.

每一个函数均可用链表示,所以链不仅可用于构造函数,也可用于有关函数的证明题.

例 3 求证存在 $f: N \rightarrow N$,满足

$$f^{(k)}(n) = n + a \ (n \in \mathbb{N}) \tag{4}$$

的充分必要条件是a为非负整数并且 $k \mid a$.

解 条件是充分的. 当 k | a 时,令

$$f(n) = n + \frac{a}{k}, \tag{5}$$

则

$$f^{(k)}(n) = n + \underbrace{\frac{a}{k} + \frac{a}{k} + \cdots + \frac{a}{k}}_{k \uparrow \uparrow} = n + a.$$

条件也是必要的. 由于 $f: N \to N$, 所以 a 为整数. 由于 $f^{(n)}(1) = 1 + a \in N$, 所以 a 为非负整数. 为了证明(5) 成立, 不妨设 a > 0. 首先注意 f 是单射,即对于不同的自然数 n, 函数值 f(n) 也互不相同. 事实上, 若

$$f(n_1) = f(n_2),$$

那么由(4)式

$$n_1 + a = f^{(k)}(n_1) = f^{(k)}(n_2) = n_2 + a$$

导出 $n_1 = n_2$ (这一结论亦可由 2.2 节例 1 推出,因为 $f^{(k)}(n) = n + a$ 是单射).

自然数集 N 可以分为若干条链,链中每一项 n 的后面是 f(n).

由于 f 是单射,每两条链不相交.

每条链的前皮项

$$b, f(b), f^{(2)}(b), \dots, f^{(k-1)}(b)$$

均不大于 a (若 $f^{(i)}(b) = c > a$, 则 d = c - a 满足 $f^{(i)}(d) = c$. 从而 d, f(d), …, $f^{(i)}(d) = c = f^{(i)}(b)$ 均与 $f^{(i)}(b)$ 在同一链中,并且 $f^{(i)}(b)$ 至少是链中的第 k+1 项),其余的项均大于 a(等于在它前面 k 项的那个数加 a). 因此,1,2,…, a 这 a 个数分在 b 条链中,每条恰含 b 个这样的数,所以

$$kl=a$$
,

即(5)式成立.

这种表示函数(对应)关系的链也可称为轨道,以免与第四章中集合的链混淆.

2,9 图

如果将元素用点表示,某两个元素之间存在一种关系就用一条线(段)相连,那么就得到一个反映这种关系的图.其中的线通常称为边.

例1 某地,若一个人的朋友少于 10 个,称为寡合者;若一个人的朋友都是寡合者,称为怪杰,证明怪杰的个数不大于寡合者的个数.

解 设不是怪杰的寡合者所成集为 A,不是寡合者的怪 杰所成集为 B,既是怪杰又是寡合者所成的集为 C. 又设 |A|=m, |B|=n. 要证

$$m \geqslant n$$
. (1)

将人用点表示. 若两个人是朋友,就在相应的两个点之间 连一条边. 这样得到一个图.

B的元素,因为是怪杰,所以只能与 A, C 中的元素相 • 52 •

连. 又因为C中的元素是怪杰,而B中的元素不是寡合者,所以B,C中的元素不相连. 于是B中元素只与A中元素相连.

B中每个元素至少引出 10 条边(因为他们都不是寡合者),所以 A, B 之间至少有 10n 条边.

另一方面,A中每个元素都是寡合者,所以引出的边数少于 10条,从而 A, B之间的边数不超过 10m条.

因而 $10n \leq 10m$,即(1) 成立.

注:当A,B都是空集时,(1)成为等式.

例2 对于任一自然数 k,若 k 为偶数,将它除以 2,若 k 为奇数,将它加上 1,这称为一次运算. 设恰经过 n 次运算变成 1 的数有 a_n 个,试求 a_{15} .

解 将自然数 k 用点表示. 若 k 经一次运算得到 h, 就作一条从 k 到 h 的向量. 这样得到的图称为有向图. 如图 2.9.1 所示(这个图应有无穷多个点,我们只作到第 6 层).

显然 $a_1 = 1$ (只有第 2 层的 2 恰经过一次运算变成 1), $a_2 = 1$ (只有第 3 层的 4 恰经过两次运算变成 1).

对于 $n \ge 2$,第n+1层的 a_n 个恰经过n次运算变成1的

数中,每一个奇数m,只有2m恰经过一次运算变成m;每一个偶数m,有2m与m-1两个数恰经过一次运算变成m.因此,更上一层的 a_{n+1} 个数比这一层的 a_n 个数多出的个数 $a_{n+1}-a_n$ 就是这 a_n 个数中偶数的个数.

第n+1层的偶数经一次运算变为第n层的 a_{n-1} 个数. 因此

$$a_{n+1}-a_n=a_{n-1}$$
,

即

$$a_{n+1} = a_n + a_{n+1}. (2)$$

由递推关系(2)及初始条件 $a_1 = a_2 = 1$,不难逐步推出

n
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

$$a_n$$
 1
 1
 2
 3
 5
 8
 13
 21
 34
 55
 89
 144
 233
 377
 610

注 1.序列 $\{a_n\}$ 就是著名的 Fibonacci 数列. 在项数不太大时,用递推公式计算 a_n 比用通项公式简单.

注 2:"每一个自然数都可以经过有限步运算变为 1",这 称为角谷猜测,至今未能证明.

例3 30 个足球队,每个队与同样多的队赛过,每次比赛都决出胜负(无平局). 胜的场数大于负的场数的球队至多有多少个?

解 每场比赛一胜一负,因此各队胜的场数之和恰好等于各队负的场数之和.

如果每个队胜的场数均大于负的场数,那么各队胜的场数之和大于各队负的场数之和,矛盾. 所以至多有 29 个队胜的场数大于负的场数.

我们指出 29 个队胜的场数大于负的场数是可能. 为此, · 54 ·

将这 29 个队用 29 个点表示,并记为 v_1 , v_2 , …, v_{29} . 约定 $v_{r+29} = v_r (i = 1, 2, \dots)$.

令 v_i 胜 v_{i+1} , v_{i+2} , …, v_{i+14} ($i=1,2,\dots$),则这 29 个球队每个队各胜 14 场,负 14 场. 再加入一个点 u 表示第 30 个队,它负于 v_1 , v_2 , …, v_{29} ,则 v_1 , v_2 , …, v_{29} 胜的场数均大于负的场数.

注 1:如果在胜队与负队之间作一向量,那么上面 30 个点每两个点之间均有一条向量,这样的图称为竞赛图.如果每两个点之间连一条边(而不是向量),这样的图称为完全图.参见 3.7 节例题.

注 2: 更一般地,将 30 改为 $n(\geq 2)$,则胜的场数大于负的场数的队至多为:

 $\{n-1, 苦 n 为偶数; n-2, 苦 n 为奇数.$

第三章 有限集的子集

3.1 子集的个数

从本节起,考虑集 $X = \{1, 2, \dots, n\}$ 的子集. X 的全体子集所成的族记为 P(X). P(X)也是集,它的元素是 X 的子集. 这种以集为元素的集习惯上称为族或类.

例如
$$X = \{1, 2, 3\}$$
,则

$$P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

P(X)有多少个元,即 X 共有多少个子集?

为了回答这一问题,我们考虑如何构成 X 的子集. 元素 $i(1 \le i \le n)$,可以归入这个子集,也可以不归入这个子集,即 i 有两种归属. n 个元 1, 2, \dots , n 共有

$$\underbrace{2 \times 2 \times \cdots \times 2 = 2^n}_{n^{\perp}}$$

种归属. 每一种归属产生 X 的一个子集. 不同的归属产生不同的子集,而且每一个子集均由一种归属产生. 从而

$$|P(X)| = 2^n; (1)$$

即 X 有 2" 个子集.

上面的解法也可以说成每一个从 X 到{0,1}的映射产生 一个子集 A,它由映射成 1 的那些元素组成. 不同的映射产生 • 56 • 不同的子集,每一个子集都可由这种映射产生(对于子集 A,令

$$\lambda_{A(x)} = \begin{cases} 1, \ \text{\'at} \ x \in A; \\ 0, \ \text{\'at} \ x \notin A. \end{cases} \tag{2}$$

则 $\lambda_{A(x)}$ 是 $X \rightarrow \{0, 1\}$ 的映射,而且 $\lambda_{A(x)}$ 产生子集 A). 所以子集的个数就是映射的个数. 而由于每个元均有映为 0 与映为 1 两种可能,所以映射的个数为 $2^n(2,1$ 节例 3(i) m=2 的特例),即 X 的子集的个数为 2^n .

映射(2)称为子集 A 的特征函数.

本题还有另一种解法:

X 的 k 元子集即从 n 个元中取 k 个的组合,共有 C_n 个 $(k=0,1,\cdots,n)$,因此 X 的子集共

$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$$

个. 其中包括空集 \emptyset 与X本身.

用上面的方法不难得出含 $X \mapsto k$ 个指定元素的子集共 2^{n-k} 个. 特别地,含一个指定元素(例如 n)的子集共 2^{n-1} 个.

子集族也是集. 因此可以讨论子集族 A, B 的并、交、对称差等. 子集族的子集也称为子族.

3.2 两两相交的子集

设 $A \subseteq P(X)$ 是 X 的一个子集族,即 X 的一些子集所成的集. A 中的每两个元(X 的两个子集) X_i , X_i ,具有性质

 $X_i \cap X_j \neq \emptyset$. 问 \checkmark 中至多有多少个元?

显然在 $X_i \in \mathcal{A}$ 时,它的补集 $X_i' \notin \mathcal{A}$. 因为 X_i 不同时, X_i' 不同. 所以至少有 $|\mathcal{A}|$ 个 X 的子集不属于 $|\mathcal{A}|$ 从而 $|\mathcal{A}| \leqslant |P(X)| - |\mathcal{A}|$,

$$|\mathcal{A}| \leq \frac{1}{2} |P(X)| = \frac{1}{2} \times 2^{n} = 2^{n-1}.$$

另一方面,X 的含n 的子集共 2^{n-1} 个,每两个的交非空,所以 4 中至多有 2^{n-1} 个元.

更有趣的,我们有下面的命题:

证明 因为 $|A| < 2^{m-1}$,所以必有一个 X 的子集 $A \notin A$ 并且 $A' \notin A$ 如果 A 与 A' 中每个元的交均非空,将 A 加到 A' 中. 否则 A' 中必有一个元 B,满足 $B \cap A = \emptyset$,从而 $B \subset A'$. 将 A' 加到 A' 中,由于 A' 中每个元与 B 有非空交,所以它们与 A' 有非空交.

3.3 奇 偶 子 集

设 A 是 X 的子集. 若 A 中所有数的和为奇数,则称 A 为 X 的奇子集. 若 A 中所有数的和为偶数,则称 A 为 X 的偶子集.

(i) 求X的奇子集的个数与偶子集的个数;

(ii) 求 X 的所有奇子集的元素和的和.

解 设 $A \in X$ 的奇子集. 考虑映射 f:

$$A \longmapsto A - \{1\}, 若 1 \in A;$$

 $A \longmapsto A \cup \{1\}, 若 1 \notin A.$

显然 f 是将奇子集映为偶子集的映射. f 是单射,即对不同的 A, f(A)不同.

f 是满射,即对每一个偶子集 B,都有一个 A,满足 f(A) = B. 事实上,当 $1 \in B$ 时,令 $A = B - \{1\}$; 当 $1 \notin B$ 时,令 $A = B \cup \{1\}$; 则 f(A) = B.

于是 f 是从奇子集族到偶子集族的——对应. 从而 X 的奇子集与偶子集个数相等,都等于 $\frac{1}{2} | P(X)| = \frac{1}{2} \times 2^n = 2^{n-1}$.

作为(i)的推论, X的含 1 的奇子集有 2^{n-2} $\left(=\frac{1}{2}\times 2^{n-1}\right)$ 个;不含 1 的奇子集也有 2^{n-2} 个.

X的所有子集的元素和的和是

$$2^{n-1} \times (1+2+\cdots+n) = 2^{n-2}n(n+1)$$

(因为任一元素 i 在 2^{r-1} 个子集中出现).

对应上面的映射 f,每个含 1 的奇子集 A 比偶子集 B 多一个 1,因而元素和多 1. 所有含 1 的奇子集(2^{r-2} 个)的元素和的和比所有不含 1 的偶子集的元素和的和多 2^{r-2} .

同样,所有不含 1 的奇子集的元素和的和比所有含 1 的偶子集的元素和的和少 2^{m2} .

因此,所有奇子集的元素和的和与所有偶子集的元素和的和相等,都等于

$$\frac{1}{2} \times 2^{n-2} n(n+1) = 2^{(n-3)} n(n+1).$$

3.4 另一种奇偶子集

设集合 $X = \{1, 2, \dots, n\}$. 若 X 的非空子集 A 中奇数的个数大于偶数的个数,则称 A 是奇子集. 试求:

- (1) X 的奇子集的个数;
- (2) X 的所有奇子集的元素和的总和.

解 (1) 若 n = 2k + 1 (k 为非负整数), 设 A 为 X 的子集(包括空集),则 A 与 A'中恰有一个为奇子集,从而奇子集的个数为 $\frac{1}{2} \times 2^n = 2^{n-1}$.

若 n = 2k (k 为正整数). 这时一个奇子集有 i ($1 \le i \le k$) 个奇数, j ($0 \le j < i$) 个偶数, 所以奇子集的个数

(2) 若 n=2k+1 (k 为非负整数), 含有奇数 t 的奇子集 有 $\sum_{i=0}^k C_i \sum_{j=0}^i C_i$ 个. 与(1)类似,

$$\sum_{i=0}^{k} C_{k}^{i} \sum_{j=0}^{i} C_{k}^{i} = \sum_{i=0}^{k} C_{k}^{i} \sum_{j=k-i}^{k} C_{k}^{i} = \sum_{i+j \ge k} C_{k}^{i} C_{k}^{i}$$

$$= (1+x)^{2k} + x \times x \times x + k - 1 \text{ in } \text{$$

含有偶数 s 的奇子集有 $\sum_{i=2}^{k} C_{k+1} \sum_{j=0}^{i-2} C_{k-1}^{j}$ 个,

因此,所求的和为

$$\left(2^{2k-1} + \frac{1}{2}C_{2k}^{k}\right)(1+3+5+\dots+(2k+1))$$

$$+ \left(2^{2k-1} - \frac{1}{2}C_{2k}^{k}\right)(2+4+\dots+2k)$$

$$= 2^{2k-1} \cdot \frac{(2k+1)(2k+2)}{2} + \frac{1}{2}C_{2k}^{k} \cdot (k+1)$$

$$= n(n+1) \cdot 2^{n-3} + \frac{n+1}{4}C_{n-1}^{n-1}.$$

若 n = 2k (k 为正整数). 类似地,所求和为 $n(n+1) \cdot 2^{n-3} - \frac{n}{2} \left(\frac{n}{2} + 1 \right) C_{n-1}^{\frac{n}{2}}.$

3.5 Graham 的 — 个问题

美国数学家 Graham 曾提出一个问题:

对X的一个子集族A,定义

(例如 $X = \{1, 2, 3\}$, $\mathscr{A} = \{\{1\}, \{1, 2\}, \{1, 2, 3\}\}$, 则 \mathscr{A}^* = $\{\{1\}, \varnothing, \{1, 2, 3\}, \{3\}, \{1, 3\}, \{2, 3\}\}$.)证明:

$$(\mathscr{A}^*)^* = \mathscr{A}. \tag{1}$$

这里提供三种解法.

$$f(A) = \begin{cases} 1, \, \text{若} \, A \in \mathcal{A}; \\ 0, \, \text{若} \, A \notin \mathcal{A}. \end{cases}$$

同样, \mathcal{A}^* 的特征函数 f^* 满足:

$$f^*(A) = \begin{cases} 1, \, \text{若} \, A \in \mathscr{A}^*; \\ 0, \, \text{若} \, A \notin \mathscr{A}^*. \end{cases}$$

 $=\begin{cases} 1, \text{ 若 } \checkmark \text{ 中奇数个集含 } A; \\ 0, \text{ 其他情况.} \end{cases}$

 $=\{1, 若 \mid \{B \mid B \supseteq A, f(B) = 1\} \mid$ 为奇数; 0, 其他情况.

$$=\sum_{B\supset A}f(B).$$

(这里的和应 mod 2,即和为奇数时,它就是 1,和为偶数时,它就是 0.)

(₰*)*的特征函数 f**满足:

$$f^{**}(\mathscr{A}) = \begin{cases} 1, \, \text{若} \, A \in (\mathscr{A}^*)^*; \\ 0, \, \text{若} \, A \notin (\mathscr{A}^*)^*. \end{cases}$$

根据上面所说,

$$f^{**}(A) = \sum_{B \supseteq A} f^{*}(B) = \sum_{B \supseteq A} \sum_{C \supseteq B} f(C)$$
$$= \sum_{C \supseteq A} f(C) \sum_{C \supseteq B \supseteq A} 1,$$

后一和号表示满足 $C \supseteq B \supseteq A$ 的子集 B 的个数. 容易知道这个和应为 $2^{|C|-|A|}$ (相当于 2.1 节中末段所说的 2^{r-k}). 于是

$$f^{**}(A) = \sum_{C \ni A} f(C) \cdot 2^{|C| \cdot |A|},$$

当 C = A 时, $2^{|C|-|A|}$ 为奇数(即 1); $C \neq A$ 时 $2^{|C|-|A|}$ 为偶数(即 0). 所以,

$$f^{**}(A) = f(A). \tag{2}$$

(2) 表明 ⑷与(⑷*)*的特征函数相同,因此(1)成立.

另一种与解法一实质相同的叙述见《数学竞赛研究教程》 (单增著,江苏教育出版社 1993 年出版).

解法二 利用对称差,易知

$$X = \{1\} \triangle \{2\} \triangle \cdots \triangle \{n\}, \tag{3}$$

又由 * 的定义,对任一集 A,

$$(\{A\})^* = P(A).$$
 (4)

(A 的每个子集都含于 $\{A\}$ 的唯一元素 A 中.)

$$(P(A))^* = A. (5)$$

 $(A \text{ 的子集 } C \text{ 被 } P(A) + 2^{|A|-|C|}$ 个元包含,仅在 C = A 时, $2^{|A|-|C|}$ 是奇数.)

*与 \triangle 符合"分配律",即对 X 的任意两个子集族 A, B, 有

$$(\mathscr{A} \triangle \mathscr{B})^* = \mathscr{A}^* \triangle \mathscr{B}^*. \tag{6}$$

事实上, $C \in (A \triangle B)^* ⇔ C 是 A \triangle B 中奇数个元(X 的子集)$

的子集 \Leftrightarrow C 是 \mathscr{A} 或 \mathscr{B} 之一的奇数个元的子集,但不同时是 \mathscr{A} 与 \mathscr{B} 中奇数个元的子集 \Leftrightarrow $C \in \mathscr{A}^* \triangle \mathscr{B}^*$.

现在证明(1). 设 $\mathcal{A} = \{A_1, A_2, \dots, A_k\}$,则由(3),(4),(5),(6)易得

$$\mathscr{A}^* = (\langle A_1 \rangle \triangle \langle A_2 \rangle \triangle \cdots \triangle \langle A_k \rangle)^*$$

$$= (\langle A_1 \rangle)^* \triangle (\langle A_2 \rangle)^* \triangle \cdots \triangle (\langle A_k \rangle)^*$$

$$= P(A_1) \triangle P(A_2) \triangle \cdots \triangle P(A_k),$$

$$(\mathscr{A}^*)^* = (P(A_1) \triangle P(A_2) \triangle \cdots \triangle P(A_k))^*$$

$$= (P(A_1))^* \triangle (P(A_2))^* \triangle \cdots \triangle (P(A_k))^*$$

$$= \langle A_1 \rangle \triangle \langle A_2 \rangle \triangle \cdots \triangle \langle A_k \rangle$$

$$= \langle A_1, A_2, \cdots, A_k \rangle = \mathscr{A}.$$

解法三(需知道矩阵的乘法.) 令 $N = 2^n$. 设 X 的全部子集为 A_1 , A_2 , …, A_N . 考虑一个 $N \times N$ 的矩阵(数表)F,矩阵 F 的第 i 行第 j 列的元素为 a_i ,

$$a_v = \begin{cases} 1, \text{ \textit{X}} A_i \subseteq A_j; \\ 0, \text{ 其他情况.} \end{cases}$$

对于 X 的每一个子集族 \mathcal{A} ,定义列向量 $C(\mathcal{A}) = (c_1, c_2, \dots, c_N)^T$,其中

$$c_i = \begin{cases} 1, \text{ 若 } A_i \in \mathscr{A}; \\ 0, \text{ 其他情况.} \end{cases}$$

 a^T 表示向量 a 的转置,即

$$(c_1, c_2, \cdots, c_N)^T =$$

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix}.$$

由矩阵的乘法,

$$F \times C (\mathcal{A}) = (x_1, x_2, \dots, x_N)^T$$

其中 x_i 就是 \mathcal{A} 中包含 A_i 的元数、因此

$$F \times C (\mathcal{A}) \equiv C (\mathcal{A}^*) \pmod{2}$$
.

从而

$$F^{2} \times C (\mathcal{A}) \equiv F \times C (\mathcal{A}^{*}) \equiv C ((\mathcal{A}^{*})^{*}) \pmod{2}.$$

$$(7)$$

另一方面, $F^2 = (b_a)$, 其中

$$b_{v} = \sum_{k=1}^{N} a_{k} a_{k}.$$

显然,当且仅当 $a_* = a_{kj} = 1$ 时, $a_*a_{kj} = 1$. 即当且仅当 $A_* \subseteq A_k \subseteq A_j$ 时, $a_*a_{kj} = 1$. 于是 b_* 即满足 $A_i \subseteq A_k \subseteq A_j$ 的 A_k 的个数,从而

$$b_i = egin{cases} 2^{|A_j|-|A_i|}, \stackrel{.}{lpha} A_i \subseteq A_j; \ 0, & \sharp \text{ 性情况.} \end{cases}$$
 $\triangleq egin{cases} 1, \stackrel{.}{lpha} i = j; \ 0, \stackrel{.}{lpha} i
eq j. \end{cases} \pmod{2}$

由(7)得 $C(\mathscr{A}) = C((\mathscr{A}^*)^*)$,即 $\mathscr{A} = (\mathscr{A}^*)^*$.

三种证法各有千秋,值得细细品味,其中特征函数、对称差、(0,1)矩阵(元素为0或1的矩阵)都是有用的工具.

3.6 三元子集族([)

集 $X = \{1, 2, \dots, n\}$ 的三元子集族,由 X 的全部或一些三元子集组成,在很多问题中出现.大概是因为除了二元子集族,三元子集族最为简单,而性质又极丰富.

例 1 $n(\ge 4)$ 名学生组成 n+1 个俱乐部,每个俱乐部 3 名学生,并且每两个俱乐部的成员不全相同.证明必有两个俱乐部恰有一个公共成员.

解 每个俱乐部就是一个三元子集,问题即 $X = \{1, 2, \dots, n\}$ 的 n+1 个三元子集中,必有两个恰有一个公共元. 假设没有两个子集恰有一个公共元.

n+1个子集共有 3(n+1) 个元,其中必有一个元出现的次数 $> \lceil \frac{3(n+1)}{n} \rceil = 4 ([x] 表示不小于实数 x 的最小整数,例如 [3.14] = 4. [x]称为天花板函数),即它至少属于 4 个子集.$

设 i 至少属于 4 个子集, $\{i, j, k\}$ 是这样的一个集. 另一个含 i 的集必含 j 或 k,不妨设它为 $\{i, j, l\}$.

若有一个含i的三元子集不含j,则它必为 $\{i, k, l\}$. 但这时第四个含i的三元子集不可能与 $\{i, j, k\}$, $\{i, j, l\}$, $\{i, k, l\}$ 均有两个公共元素. 所以每个含i的三元子集必含j. 由对称性,含j的三元子集也必含i.

设n+1个集中有m个含i(从而也含j),则这m个集(的并) 共有m+2个元素. 其余的n-m+1个集与这m个集无公共元素 (若有公共元素,则有两个公共元素. 从而这集含i或j). 于是由n-(m+2) = n-m-2个元组成n-m+1个三元子集.

用 n-m-2 个元与 n-m+1 个子集代替上面的 n 个元 • 66 •

与 n+1 个子集,进行同样的讨论. 依此类推,每次得出一些三元子集,个数大于并的元数. 但这一过程不能无限继续下去. 矛盾表明必有两个三元子集的交恰含一个元素.

又解 假设没有两个子集给有一个公共元.

若子集 A 与 B 有公共元(从而它们有两个公共元),则称 A, B 等价,记为 $A \sim B$.

显然 $A \sim B$, $B \sim C$ 时, $A \sim C(A, B)$ 的两个公共元中至少有一个属于 C). 于是, 我们可以利用等价关系将这些子集分类. 同一类的子集互相等价, 不同类的子集互不等价(因而没有公共元素).

由于子集数比元数多 1, 所以必有一个类中子集数比元数多.

设 $\{i, j, k\}$ 与 $\{i, j, l\}$ 是这个类中的两个子集. 若这类中第三个子集为 $\{i, k, l\}$,则这类中只能再有一个集即 $\{j, k, l\}$. 若这类中第三个子集为 $\{i, j, s\}$,则其他的集也都含i, j. 前一种情况,子集数 \leq 元数 4. 后一种情况,子集数比元数少2. 均导致矛盾.

- 例 2 求所有的自然数数对(m, n),使得集 $X = \{1, 2, \dots, n\}$ 有 m 个三元子集 A_1, A_2, \dots, A_m 满足:
- (i) X 的每一对元素(即二元子集)恰含在一个 A, $(1 \le i \le m)$ 中;
 - (ii) A_1 , A_2 , …, A_m 中每两个恰有一个公共元.

解 设 $A_1 = \{1, 2, 3\}$. n = 3, m = 1 是一个解. 若 n > 3, 则有含 1 与第四个元 4 的集 $A_2 = \{1, 4, 5\}$. 由(i),5 与 1, 2, 3, 4 均不同.

又有 $A_3 = \{2, 4, 6\}, A_4 = \{3, 4, 7\}, 6, 7$ 与以前的元素不同、

 $A_5 = \{1, 6, j\}$, 由(i), $j \neq 1, 2, 3, 4, 5, 6$, 而由(ii), $A_5 \cap A_4 \neq \emptyset$, 所以 j = 7.

若有第 8 个元素 8,则由(i)有 $A_6 = \{1, 8, t\}$,其中 $t \neq 2$, 3, 4, 5, 6, 7. 从而 $A_6 \cap A_4 = \emptyset$, 与(ii)矛盾. 所以 n = 7. 此时除上面的 A_1 , A_2 , …, A_5 外,还有 $A_6 = \{3, 5, 6\}$, $A_7 = \{2, 5, 7\}$. 于是 m = 7.

(m, n) = (1, 3), (7, 7) 满足本题要求.

又解 每个A,中有三个二元子集,所以

$$mC_3^2 = C_n^2. \tag{1}$$

每个含元素j的 A_i 中,有两个含j的二元子集.X中含j的二元子集共n-1个。由(i),它们均恰属一个 A_i ,所以有 $\frac{n-1}{2}$ 个 A_i 含j.

将 A_i 作为点,每两点之间连一条边.这样就得到一个图,它有 C_m^i 条边.由(ii), A_i 与 A_i 之间连的边可标上 A_i 与 A_i 的唯一的公共元素 j.标 j 的边恰出现 C_m^i 次.于是

$$C_m^2 = nC_{\frac{m-1}{2}}^2. (2)$$

由(1),(2)不难解得(m,n)=(1,3),(7,7).

注:例2中(m,n)=(7,7)的情况就是组合学中著名的"有限射影平面",如果将三元子集作为"直线",那么它可以用下图表示;

但第七条"直线"{2,4,6}无法在欧氏平面上画成真正的直线,颇有点遗憾。

3.7 三元子集族(Ⅱ)

本节再举一些有关三元子集族的问题.

解 考虑 X 的不包含 A 中任何元的子集. 这种子集一定存在,例如 X 的任一二元子集均是这种子集. 在这种子集中,取一个元数最多的,设它为集 M. 我们只需证明 M 的元数 m 满足

$$m \geqslant \left[\sqrt{2n}\right]. \tag{1}$$

对 X 中每个 $i \notin M$, 由 M 的最大性, A 中必有一个元 $A_i \subseteq M \bigcup \{i\}$.

因为 A_i 不包含在 M 中, 所以 $i \in A_i$. 设

$$A_i = \{i\} \bigcup B_i,$$

其中 B_i 是二元集,并且 $B_i \subseteq M$.

因为 \varnothing 中的每两个元 A_i , A_j 至多一个公共元素, 所以在 $i \neq j$ 时, $B_i \neq B_i$. 从而

$$i \mapsto B_i$$

是从X-M到M的二元子集族的单射.因此

$$n-m\leqslant C_m^2=\frac{m(m-1)}{2}.$$

从而

$$m^2+m-2n\geqslant 0$$
, $m\geqslant \frac{-1+\sqrt{8n+1}}{2}>\sqrt{2n}-1$,

即(1)成立.

例 2 设例 1 + 1 如 的元数的最大值为 f(n), 证明:

$$\frac{1}{6}(n^2 - 4n) \leqslant f(n) \leqslant \frac{1}{6}(n^2 - n). \tag{2}$$

解 先估计 f(n)的上界,即证明(2)式右边的不等式.

每个三元子集 $\{i, j, k\}$ 含有三个二元子集 $\{i, j\}$ 、 $\{j, k\}$, $\{i, k\}$.

X 的二元子集共 C_n^2 个,所以

$$3f(n) \leqslant C_n^2$$

即

$$f(n) \leqslant \frac{1}{3}C_n^2 = \frac{n^2 - n}{6}.$$

估计 f(n)的下界应当用构造法. 造出一批三元子集,个数 $\geq \frac{1}{6}n(n-4)$,每两个的交至多含一个元素.

为此,考虑所有满足条件

$$i + j + k \equiv 0 \pmod{n} \tag{3}$$

(即i+j+k被n整除)的三元子集 $\{i,j,k\}$.

如果有 i' = i, j' = j, 并且

$$i'+j'+k' \equiv i+j+k \equiv 0 \pmod{n},$$

$$k' \equiv k \pmod{n}. \tag{4}$$

当 k', $k \in \{1, 2, \dots, n\}$ 时,(4) 式就是 k' = k. 所以满足(3)的每两个(不同的)三元子集至多有一个公共元素.

现在来计算满足(3)的三元子集 $\{i, j, k\}$ 的个数 s.

首先取 i,取法有 n 种. i 取定后再取 j, $j \neq i$, 并且不满足同余方程

$$2i + j \equiv 0 \pmod{n}$$

(即当 2i < n 时, $j \neq n-2i$; 当 $2i \geqslant n$ 时, $j \neq 2n-2i$)及 $i+2j \equiv 0 \pmod{n}$

 $(p_i) \neq \frac{n-i}{2}, j \neq \frac{2n-i}{2}$. 因此 j 至少有 n-4 种选择。i, j 确定后,由(3),k 也随之确定,而且与 i, j 均不相同。所以 $s \geq \frac{1}{6}n(n-4)$. 从而(2)的另一半成立。

解 含有1的二元子集有n-1个.每个含1的三元子集包含两个含1的二元子集.因此,至少有 $\left\lceil \frac{n-1}{2} \right\rceil = 3k$ 个含1的三元子集,才能使含1的二元子集都至少被1个三元子集包含.

对含 2, 3, …, n 的二元子集作同样的讨论. 因为每个三元子集含 3 个元, 所以 \varnothing 中至少有

$$\frac{3k\times n}{3}=\frac{n^2}{6}$$

个元(X的三元子集),

另一方面,可以造出 $\frac{n^2}{6}$ 个三元子集,使得 X 的每个二元子集均至少包含在一个三元子集中,但构造较为复杂,留在 3.9 节中详细说明.

因此 ৶至少含<u>n²</u> 个元.

例4 设 $l = \frac{n^2}{6}$, $\mathscr{A} = \{A_1, A_2, \dots, A_l\}$ 是例3中所说的三元子集族, X 的每一个二元子集至少包含在一个 A, $(1 \le j \le l)$ 中. 证明 X 可以拆成 3k 个两两无公共元的二元子集 P_1 , P_2 , …, P_{3k} , 每一个 P_k 恰包含在两个 A, 中, 而 X 的其他二元子集恰含于一个 A, 中.

解 因为 $l = \frac{n^2}{6}$,所以由例 3 的推导可知含有元 i 的三元子集 A,恰好 $\frac{n}{2}$ (= 3k) 个.

每个含i的三元子集包含两个含i的二元子集, $\frac{n}{2}$ 个 A,共包含n个含i的二元子集. 含i的不同的二元子集共n-1个,每一个均至少在一个 A,中出现,所以恰有一个含i的二元子集在诸A,中共出现两次.

设 $\{i, t\}$ 出现两次. 同样,含t的二元子集中恰有一个被两个 A_i 包含,而且这个子集就是 $\{i, t\}$. 于是,X的元素两两配对,共得 3k个二元子集 P_1 , P_2 , …, P_{3k} . 每个 P_i (例如 $\{i, t\}$)恰含于两个 A_i 中,而 X 的其他二元子集均含于一个 · 72 ·

A, 中.

3.8 Steiner 三连系

如果 \mathbb{Z} 是集 $X = \{1, 2, \dots, n\}$ 的一个三元子集族,使得 X 的每个二元子集都恰好是 \mathbb{Z} 中一个元的子集,那么 \mathbb{Z} 就称 一个 n \mathbb{N} Steiner 三连 \mathbb{Z} .

下面分别列举了阶数是 3, 7, 9 的 Steiner 三连系:

$$n = 3, \{1, 2, 3\};$$

 $n = 7, \{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{4, 5, 7\},$
 $\{5, 6, 1\}, \{6, 7, 2\}, \{7, 1, 3\};$
 $n = 9, \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\},$
 $\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\},$
 $\{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\},$
 $\{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}.$

其中 7 阶 Steiner 三连系实际上就是 3.6 节例 2 所说的二阶射影平面,只是记号有所不同.如果将这里的 4,3,6,7 分别改成 3,7,4,6,那么结果就完全一样.其实 3.6 节例 2 中的图,顶点可任意地标记 1~7,所得的三连系都是同构的.

例 1 证明 Steiner 三连系存在时,

$$n \equiv 1 \not\equiv 3 \pmod{6}. \tag{1}$$

解 设 $\mathcal{A} = \{A_1, A_2, \dots, A_b\}$ 的元数为 b. 考虑 X 的 C_n^2 个二元子集. 每个二元子集恰在 A_1, A_2, \dots, A_b 的一个中出现, 共出现 C_n^2 次.

另一方面,每个 A_i ,包含 3 个二元子集, A_1 , A_2 , …, A_4 , 共包含 36 个二元子集. 所以

$$3b = C_n^2$$
,

即

$$b = \frac{n(n-1)}{6}. (2)$$

由于 6 是整数,从(2)得到

$$n \equiv 1, 3, 4, 6 \pmod{6}$$
. (3)

再考虑 X 中含 1 的二元子集. 显然这样的子集共 n-1 个. 若 A_1 , A_2 , …, A_6 中有 r 个含 1,则由于含 1 的 A_7 包含 两个含 1 的二元子集,每个二元子集恰在 A_1 , A_2 , …, A_6 的一个中出现,所以

$$2r = n - 1$$
,

即

$$r = \frac{n-1}{2}. (4)$$

(4) 表明 n 是奇数,结合(3)即得(1).

条件(1)也是充分的. Steiner 曾于 1853 年提出这一问题,1859 年为 Reiss 解决. 其实在他们之前, Kirkman 已于1847 年提出并解决了这个问题. 证法很多,限于篇幅,这里不作介绍.

例 2 如果有 n_1 阶和 n_2 阶的 Steiner 三连系 A_1 和 A_2 , 那么就有 $n_1 n_2$ 阶 Steiner 三连系.

解 设 A_1 , A_2 分别为 $X_1 = \{a_1, a_2, \dots, a_{n_1}\}$, $X_2 = \{b_1, b_2, \dots, b_{n_2}\}$ 的三元子集族. 作 $n_1 n_2$ 元集

$$X_3 = \{a_ib_i \mid 1 \le i \le n_1, 1 \le j \le n_2\},\$$

再作 X_3 的三元子集族 A_5 如下:

 $\{a_ib_r, a_jb_s, a_kb_i\} \in \mathcal{A}_3$

当且仅当

(i)
$$r = s = t$$
, $\{a_i, a_j, a_k\} \in \mathcal{A}_1$;

(ii)
$$i = j = k$$
, $\{b_r, b_i, b_i\} \in \mathcal{A}_2$;

(iii)
$$\{a_i, a_j, a_k\} \in \mathcal{A}_1, \{b_r, b_i, b_i\} \in \mathcal{A}_2$$

之一成立.

现在证明 A 是 X 的 Steiner 三连系.

设 $\{a_ib_r, a_jb_s\}$ 是 X_3 的一个二元子集. 若 i = j,则因为 $\{b_r, b_s\}$ 恰被 A_2 的一个元 $\{b_r, b_s, b_t\}$ 包含,所以 $\{a_ib_r, a_jb_s\}$ 恰被 A_3 中一个元 $\{a_ib_r, a_ib_s, a_ib_t\}$ 包含. 若 r = s,情况同上. 若 $i \neq j$, $r \neq s$,则 $\{a_i, a_j\}$ 恰被 A_1 中一个元 $\{a_i, a_j, a_k\}$ 包含, $\{b_r, b_s\}$ 恰被 A_2 中一个元 $\{b_r, b_s, b_t\}$ 包含,所以 $\{a_ib_r, a_jb_s\}$ 恰被 A_3 中一个元 $\{a_ib_r, a_jb_s, a_kb_t\}$ 包含.

下面是 Kirkman 的女生问题,非常著名.

例3 十五名女生,每天分成五组,每组三人,外出散步. 问能否在一周的七次散步中,每两名女生恰有一次在同一组? **解** 下面给出一种排法:

- -: $\{1, 2, 5\}$, $\{3, 14, 15\}$, $\{4, 6, 12\}$, $\{7, 8, 11\}$, $\{9, 10, 13\}$;
- \equiv : {1, 3, 9}, {2, 8, 15}, {4, 11, 13}, {5, 12, 14}, {6, 7, 10};
- Ξ : {1, 4, 15}, {2, 9, 11}, {3, 10, 12}, {5, 7, 13}, {6, 8, 14};
- <u>И</u>; {1, 6, 11}, {2, 7, 12}, {3, 8, 13}, {4, 9, 14}, {5, 10, 15};

五: $\{1, 8, 10\}$, $\{2, 13, 14\}$, $\{3, 4, 7\}$, $\{5, 6, 9\}$, $\{11, 12, 15\}$;

六: $\{1, 7, 14\}$, $\{2, 4, 10\}$, $\{3, 5, 11\}$, $\{6, 13, 15\}$, $\{8, 9, 12\}$;

 \mathbb{H} : {1, 12, 13}, {2, 3, 6}, {4, 5, 8}, {7, 9, 15}, {10, 11, 14}.

一个阶数 6k + 3 的 Steiner 三连系,如果它的 b = (2k+1)(3k+1) 个元可以分成 3k+1 组,每组含 2k+1 个元,并且原来集合的 6k+3 个元,在每一组的 2k+1 个三元子集中恰好各出现一次,那么这个三连系就称为 Kirkman 三连系.十五个女生问题就是构造一个 k=2 的 Kirkman 三连系.

Steiner 三连系等是区组设计中的课题,原先只是娱乐的数学,现在发现在科学试验的设计方法中有重要作用.

一个 n 元集 X,可以有很多个 Steiner 三连系. 由于 n 元集有 C_n^2 个三元子集,每个 Steiner 三连系有 $b = \frac{n(n-1)}{6}$ 个元(X 的三元子集),所以 X 至多有

$$\frac{C_n^3}{b} = n - 2$$

个两两无公共元的 Steiner 三连系. 如果恰有 n-2 个两两无公共元的 Steiner 三连系,那么就称这 n-2 个 Steiner 三连系为一个大集. 一百三十多年来许多数学家研究过大集的存在问题,直至 1983 与 1984 年,我国数学家陆家羲在连续的六篇论文中证明了对于

$$n > 7$$
, $n \equiv 1$, 3 (mod 6)

的 n 值,除六个可能的例外值,都有大集存在. 从而基本上解 · 76 ·

决了这一问题. 对六个例外值,陆家羲已有腹稿,但因心脏病猝然去世,未能完成.

3.9 构 造

很多组合问题,也就是集合与元素的配置问题,需要构造出符合要求的实例(如上节的女生问题). 这一节我们举几个构造的例题.

例1 2n个学生每天出去散步,每两人一组.如果每一对学生至多在一起散步一次.这样的散步可以持续多少天?

解 因为每个人有 2n-1个同学,所以散步至多持续 2n-1 天. 我们证明只要适当安排,确实可以持续散步 2n-1 天.

为此作图,用0,1,…,2n-1表示2n个学生,第一次散步用线表示,即图中的

$$\{0, 1\}, \{2, 2n-1\}, \{3, 2n-2\}, \dots, \{n, n+1\}.$$

然后绕O旋转,每次转过的角度为 $\frac{2\pi}{2n-1}$,这样就得到了2n-1次散步的安排(例如第 2 次散步为 $\{0,2\}$, $\{1,3\}$, $\{2n-1,4\}$,…, $\{n+2,n+1\}$).

• 77 •

n个点,每两点之间连一条边,所得的图称为完全图 K_n 、例 1 表明完全图 K_2 ,的 C_{2n}^2 条边可以分 2n-1 组,每组 n 条,而且这 n 条两两无公共(端)点.这样的一组边称为图的一个 1—因子(1 意指每个点只引出一条边,即每个元只属于一个二元子集)或一个完全匹配.

现在我们来完成 3.7 节例 3 的剩余部分.

例 2 设 n = 6k, 试构造 $X = \{1, 2, \dots, n\}$ 的一个三元子集族 $\mathscr{A} = \{A_1, A_2, \dots, A_l\}$, $l = \frac{n^2}{6}$, 使得 X 的每个二元子集均至少包含在 \mathscr{A} 的一个元中.

解 将 X 用 n 个点 1, 2, \cdots , n 表示, 形成一个完全图 K_n , 每个二元子集是 K_n 的一条边.

问题即在这图中找 $\frac{n^2}{6}$ 个三角形,"吸收"所有的边(线).

图 3.9.2

n = 6(k = 1) 的情况很简单:三角形(即三元子集) {1, 2, 3}. {1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {5, 6, 1}, {5, 6, 2},

即为所求(参见图 3.9.2 左半边).

其中 $\frac{n}{2}$ (= 3) 条边{1,2},{3,4},{5,6}出现两次,其他的边恰出现一次. 这在 3.7节例 4 中已经说过. 以下各种情况也均如此.

n=12时,首先注意图 3.9.2 右半边,根据例 1,可以分成 5 个 1—因子(下面简称为因子),每一个由三对无公共点的边(线)组成.将其中一个因子重复一次,共得 6 个因子.图 3.9.2 左半边的 6 个顶点各与一个因子搭配,一个顶点与一个因子形成 3 个三角形,共得 18 个三角形.图 3.9.2 左半边的 K_6 ,根据上一段,可分成 6 个三角形(其中三条边出现两次).这样形成的 24 个三角形即为所求.

n=18时,考虑 I,II,III三个 K_6 , II,III两个 K_6 之间有 $6\times 6=36$ 条边,可以分为 6 组(设 b_i , c_i , i=1, 2, ..., 6, 分别为 II,III 的 顶点,则第 j 组 是 $\{b_1c_{1+j}, b_2c_{2+j}, ..., b_6c_{6+j}\}$,j=0, 1, 2, 3, 4, 5, 并约定 $c_{k+6}=c_k$),每一组与 I 的一个顶点配合得到 I 36 个三角形,又根据上面所证,I,II,II 可分成 I 6 个三角形(各有 3 条边出现两次)。这些三角形满足要求,

假设对于 n = 6h < 6k, 均可分成合乎要求的三角形. 考虑 n = 6k.

若 k = 4m,考虑两个 K_{12m} : [与 []. 根据归纳假设,[可以分成三角形满足要求. 如果将 [] 看成 K_{2m} (每个顶点是一个 K_6),那么它有 2m-1 个因子,每个因子由 m 条边组成,每条边就是上面 n=18 时, [], [[两个 K_6 之间的 36 条边, [也可以看成 K_{2m} (每个顶点是一个 K_6),将它的 2m-1 个顶点与上述 2m-1 个因子搭配成 2m-1 组,多余一个顶点. 每一组与上面 n=18 时, [] 与 [], [[] 之间的边搭配的情况类似,共得

 $m \times 36$ 个三角形. I 中多余一个顶点即一个 K_6 ,将它与 II 中 $2m \cap K_6$ 的每一个搭配,搭配情况如 n = 12 的情况(I 中的 K_6 在图 3.9.2 的左边,它不必再分成三角形,因为作为 I 的一部分,业已用归纳假设分妥). 整个图形共分成

$$\frac{(6 \times 2m)^2}{6} + (2m-1) \times m \times 36 + 2m \times 18 = \frac{n^2}{6}$$

个三角形,合乎要求.

若 n = 6(4m + 2),考虑 I, I 两个图, I 是 K_{12m} , I 是 $K_{6(2m+2)}$,根据归纳假设, I 可分成三角形满足要求,将 I 看成 K_{2m+2} (每个顶点是一个 K_6),它有 2m+1 个因子。 I 也可以看成 K_{2m} ,将它的顶点与上述因子搭配,多余一个因子。 搭配成的每一组可分成三角形。 多出的一个因子即 2m 个 K_6 ,两两搭配。每一对 K_6 搭配情况和上面 n = 12 相同。

若 n = 6(4m+3),考虑 I, I 两个图, I 是 $K_{6(2m+1)}$, I 是 $K_{6(2m+2)}$. I 用归纳假设分成三角形. I 可看成 K_{2m+2} ,有 2m+1 个因子,每一个与 I 的一个顶点搭配. K_{2m+2} (即 I)的 每个顶点是 K_6 ,每一个均分成 6 个三角形(按 n=6 时的做法).

若n=6(4m+1),考虑 I, I 两个图, I 是 $K_{6(2m-1)}$, I 是 $K_{6(2m+2)}$. I 用归纳法完成分解. II 看成 K_{2m+2} ,它的因子与 I 搭配后多出两个因子。每个因子有m 条边无公共端点,第一个因子的边 $\{1,2\}$ 的两端各有一条属于第二个因子的边,不妨设一条为 $\{2,3\}$. 3 又接上第一个因子的边 $\{3,4\}$,……,依此类推。因为边共2m 条,所以上述过程不能无限继续下去,必然形成圈。圈上的边交错地属于两个因子(如图 3.9.3),因而圈为偶圈(即圈上的边数为偶数)。因为每个点在

第一因子的边为实线,第二因子的边为虚线.

图 3.9.3

一个因子中恰出现一次,所以圈上的点不与圈外的点相连.对 圈外的点进行同样讨论.我们得出:两个因子组成若干个 偶圈.

每个偶圈的顶点都是 K_6 . 对于图 3. 9. 3 中的第一个圈,按照 n=12 的情况可以将 1, 2 间的连线及 2 分成三角形(作为图 3. 9. 2 左边 K_6 的 1 暂时不动). 同样处理 2 与 3, ……,最后处理 t 与 1. 这样每个 K_6 及每两个相邻的 K_6 间连线已被分成三角形. 其他的偶图亦照此办理.

于是对一切 n = 6k 均可构造出合乎要求的三元子集 族 \mathcal{A}

注:上面的构造借助了归纳法,可称为归纳构造,在构造复杂图形(子集族)时经常采用.

3.10 分 拆(I)

如果集合 $X = A_1 \cup A_2 \cup \cdots \cup A_k$, 并且集合 A_1 , A_2 , \cdots , A_k 中每两个的交都是空集,那么 A_1 , A_2 , \cdots , A_k 称为 X 的一个分析.

例1 设 A_1 , A_2 , …, A_m ; B_1 , B_2 , …, B_m ; C_1 , C_2 , …, C_m 是集合 X 的三个分拆. 若对每组 i, j, k, 均有

$$|A_i \cap B_i| + |A_i \cap C_k| + |B_i \cap C_k| \geqslant m, \qquad (1)$$

证明 X 的元数 $n \ge \frac{m^3}{3}$,并且在 m 被 3 整除时,元数 $n = \frac{m^3}{3}$ 的集 X 有三个分拆满足题述条件.

解 在(1)左边用 $i = 1, 2, \dots, m$ 代入然后求和,得 $|B_i| + |C_k| + m |B_i \cap C_k| \ge m^2. \tag{2}$

(因为 $|A_1 \cap B_j| + |A_2 \cap B_j| + \dots + |A_m \cap B_j| = |(A_1 \cup A_2 \cup \dots \cup A_m) \cap B_j| = |X \cap B_j| = |B_j|.$)

同样,在(2)的左边用j=1,2,...,m代入并求和,得

$$n+m\mid C_k\mid+m\mid C_k\mid\geqslant m^3. \tag{3}$$

最后,在(3)的左边用 k = 1, 2, ..., m 代入并求和,得

$$mn + mn + mn \ge m^4, \tag{4}$$

即

$$n \geqslant \frac{m^3}{3}.\tag{5}$$

若 m = 3s, 考虑 m^2 个集 M_{11} , M_{12} , …, M_{mm} , 每个集 s 个元,并且两两不相交(例如 M_{11} 是 $\{1, 2, …, s\}$, M_{12} 是 $\{s+1, s+2, …, 2s\}$, …, M_{mm} 是 $\{9s^3-s+1, 9s^3-s+2, …, 9s^3\}$ 即可).

表 X 为集合

$$M_{11}, M_{12}, \dots, M_{1m};$$

 $M_{21}, M_{22}, \dots, M_{2m};$
(6)

.....

$$M_{m1}$$
, M_{m2} , ..., M_{mn} .

的并. 又令

则显然有 A_1 , A_2 , …, A_m ; B_1 , B_2 , …, B_m ; C_1 , C_2 , …, C_m 都是 X 的分拆.

注意 A_i 是对(6)中第 i 行的集合求并, B_i 是对(6)中第 i 列的集合求并,所以

$$\mid A_i \cap B_j \mid = \mid M_{ij} \mid = \frac{m}{3}.$$

同样,C_k 是对(6)中一条对角线(不同行不同列)的集合求并(如果将(6)在右面重写一遍,那么 C_k 就是从左上到右下的第 k 条对角线的集合的并),所以

$$|A_i \cap C_k| = \frac{m}{3}, \quad |B_i \cap C_k| = \frac{m}{3}.$$

下面两个问题涉及分拆的个数与分拆的链的个数.

例 2 若 n 元集 X 的分拆 A_1 , A_2 , …, A_m 中有 k_1 个一元集, k_2 个二元集, ……, k_n 个 n 元集 ($k_1+k_2+\dots+k_n=m$, $1k_1+2k_2+\dots+nk_n=n$, k_1 , k_2 , …, k_n 都是非负整数),则称这个分拆为形如 $1^{k_1} \cdot 2^{k_2} \cdot \dots \cdot n^{k_n}$ 的分拆, 求这种分拆的个数.

解 每一个形如 $1^{k_1} \cdot 2^{k_2} \cdot \cdots \cdot n^{k_n}$ 的分拆,可以将它们的元素依下法排列:

先排一元集的元素(有 k_1 ! 种排法),再排二元集的元

素,各集的顺序有 k_2 ! 种,每个集的元素有两种排法,共有 $(2!)^{k_2} \cdot k_2$! 种排法. 依此类推, k_1 个 元集有 $(j!)^{k_1} \cdot k_j$! 种排法. 共产生 $1^{k_1} \cdot k_1$! $\cdot 2^{k_2} \cdot k_2$! $\cdot \cdots \cdot (n!)^{k_n} \cdot k_n$! 个排列.

每两个不同的形如 $1^{k_1} \cdot 2^{k_2} \cdot \cdots \cdot n^{k_n}$ 的分拆,至少有一个不同的集,因此用上法产生的排列互不相同.

另一方面,对n个元的任一排列,前 k_1 个元产生 k_1 个一元集,它们后面的 $2k_2$ 个元产生 k_2 个二元集(每连续二个元组成一个集),依此类推,得出一个形如 $1^{k_1} \cdot 2^{k_2} \cdot \cdots \cdot n^{k_n}$ 的分拆,所给排列正是这个分拆用上法产生的排列.

这样,用上法恰好产生全部 n! 个排列,既无重复也无遗漏,所以 1^{k1} · 2^{k2} · ··· · n^{kn} 形的分拆共

$$\frac{n!}{1^{k_1} \cdot k_1! \cdot 2^{k_2} \cdot k_2! \cdot \cdots \cdot (n!)^{k_n} \cdot k_n!} \uparrow.$$

例 3 设 $P_m = \{A_1, A_2, \dots, A_m\}$ 是 n 元集 X 的一个分拆(即 A_1, A_2, \dots, A_m 是 X 的分拆). 将其中某个 A_i 再拆为两个集,这就产生 X 的一个分拆 P_{m+1} ,它由 m+1 个集组成. P_{m+1} 称为 P_m 的加细. 若

$$P_1, P_2, \cdots, P_n \tag{7}$$

都是n元集X的分拆,并且每一个是前一个的加细(显然这时 P_n 由n个集组成,而 P_1 仅由一个集即X组成),则称(7)为长为n的链.求长为n的链的个数.

解由 X 逐步加细可以产生长为n 的链(7). 这一过程也可以反过来:由n 个一元集组成的分析 P_n 出发,将其中两个集合并得到 P_{n-1} ,再将 P_{n-1} 中两个集合并起来得到 P_{n-2} ,…… 一般地,设已有 P_n , P_{n-1} , …, P_{k+1} . 将 P_{k+1} 任两个集合并起来得到 P_k . 由于 P_{k+1} 由 k+1 个集组成,所以 P_k 有 \cdot 84 \cdot

 C_{ij} 种. 从而长为 n 的链共

$$\prod_{k=1}^{n-1} C_{k+1}^2 = \frac{n!(n-1)!}{2^{n-1}}$$

种.

3.11 分 拆(Ⅱ)

上节关于分拆的问题,均与 n 元集 X 的元素无关(仅与元数有关).本节的问题与元素密切相关.我们限定 $X = \{1, 2, \dots, n\}$.

例1 设 A, B, C 为 X 的一个分拆, 并且从 A, B, C 中 各取一个数时, 最大的不等于另两个的和, 证明

$$|A| = |B| = |C| \tag{1}$$

不成立.

解 不妨设 $1 \in A$, $B \cup C$ 中的最小数 $b \in B$. 设 C 中的数为

$$c_1 < c_2 < \dots < c_k. \tag{2}$$

若有 $c_{i+1} - c_i = 1$, 不妨设 i 是满足这一条件的最小下标, 考虑 $c_i - b$ 与 $c_i - b + 1$ 的归属.

因为 $b \in B$, 而

$$(c_i - b) + b = c_i,$$

 $(c_i - b + 1) + b = c_{i+1},$

所以 $c_i - b$, $c_i - b + 1$ 均不属于 A.

又 $(c_i - b) + 1 = c_i - b + 1$, 所以 $c_i - b$ 与 $c_i - b + 1$ 不能分别属于 B, C, 由 i 的最小性, 差为 1 的 $c_i - b$ 与 $c_i - b + 1$

不能同属于 C,因此 $c_i - b$ 与 $c_i - b + 1$ 只能同属于 B. 但比 b 更小的 $b - 1 \in A$, $(b - 1) + (c_i - b + 1) = c_i \in C$, 与已知矛盾.

因此恒有 $c_{i+1}-c_i \ge 2$ ($i=1, 2, \dots, k-1$).

这时 $c_i - 1 \notin B$ (因为 $1 + (c_i - 1) = c_i$),所以 $c_i - 1 \in A$, $A \supseteq \{1, c_1 - 1, c_2 - 1, \dots, c_k - 1\}$,从而

$$|A| \geqslant |C| + 1 > |C|$$

即(1)不成立,

(1) 表明 $min(|A|, |B|, |C|) < \frac{n}{3}$. 更精确的结果 是下面的(3).

例 2 条件同例 1. 证明:

$$\min(|A|, |B|, |C|) \leq \frac{n}{4}.$$
 (3)

解 例 1 中已经证明恒有

$$c_{i+1}-c_i \ge 2$$
 $(i=1, 2, \dots, k-1).$

若所有 $c_{i+1}-c_i \geq 3$, 则

 $c_1-1, c_2-1, \dots, c_k-1, c_1+1, c_2+1, \dots, c_k+1$ 均不在 C 中,也均不在 B 中(因为 $1+(c_i-1)=c_i, 1+c_i=c_i+1, 1\in A, c_i\in C$). 因此上述 2k 个数及 1 均在 A 中,|A|>2k. 若 $|B|\geqslant k$,则 $|C|=k\leqslant \frac{n}{4}$. 若 |B|< k,则

以下设有 $c_{i+1} - c_i = 2$ 且 i 是满足这一条件的最小下标. 若 $b \geqslant 3$,则 2, $b-2 \in A$. 考虑 $c_i - b$ 与 $c_i - b + 2$. 因为 • 86 •

$$(c_i - b) + b = c_i,$$

 $(c_i - b + 2) + b = c_{i+1},$

所以 $c_i - b$, $c_i - b + 2$ 均不属于 A.

又 $(c_i - b) + 2 = c_i - b + 2$, $2 \in A$, 所以 $c_i - b = c_i - b + 2$ 不能分别属于 B, C. 由 i 的最小性, $c_i - b = c_i$, -b + 2 只能同属于 B. 但 $(b-2) + (c_i - b + 2) = c_i$, 矛盾.

因此 b=2. 我们先证明 < c, 的奇数 t 及 c_i-t 均在A 中.

t=1是显然的. 设对 t 结论成立, $t+2 < c_i$. 因为 $t \in A$, $2 \in B$,所以 $t+2 \notin C$. 因为 $c_i-t \in A$, $(c_i-t)+(t+2)=c_{i+1} \in C$,所以 $t+2 \notin B$. 从而 $t+2 \in A$. 因为 $(c_i-(t+2))+(t+2)=c_i \in C$,所以 $c_i-(t+2) \notin B$. 又 $(c_i-(t+2))+2=c_i-t \in A$,所以 $c_i-(t+2) \notin C$. 从而 $c_i-(t+2) \in A$. 于是上述断言成立.

若 c_i 是奇数,则根据上面所证 $c_i - 2 \in A$. 但 $(c_i - 2) + 2 = c_i \in C$,矛盾. 所以 c_i 是偶数.

我们再证明大于 c_i (不超过 n)的奇数 $c_i + t$ 均在 A 中.

t = 1 显然. 设 $c_i + t \in A$, $c_i + t + 2 < n$. 因为 $(c_i + t) + 2 = c_i + t + 2$, 所以 $c_i + t + 2 \notin C$. 又 $t + 2 < c_i + t$, 由上面所证 $t + 2 \in A$. 而 $c_i + (t + 2) = c_i + t + 2$, 所以 $c_i + t + 2 \notin B$. 从而 $c_i + t + 2 \in A$. 断言成立.

于是 $\{1, 2, \dots, n\}$ 中的奇数均在A中,从而 $|B \cup C| \le \frac{n}{2}$, $\min(|B|, |C|) \le \frac{n}{4}$. 即(3)成立.

如果 A 由 1, 2, …, 4m 中的奇数组成, B, C 从剩下的数中各取一半, 那么 A, B, C 满足要求 (n = 4m), 并且 $\min(|A|, |B|, |C|) = \frac{n}{4}$. 所以估计(3)是最佳的.

下面的例3则是构造性的,

例3 证明有无穷多个 n = 3m, 使得集合 $X = \{1, 2, \dots, n\}$ 有分拆

$$A = \{a_1, a_2, \dots, a_m\},\$$

$$B = \{b_1, b_2, \dots, b_m\},\$$

$$C = \{c_1, c_2, \dots, c_m\},\$$
(4)

满足:

$$a_i + b_i = c_i \quad (i = 1, 2, \dots, m),$$
 (5)

解 显然 $\{1, 2, 3\} = \{1\} \cup \{2\} \cup \{3\}$ 满足 1+2=3. 设对于 m 有形如(4)的 $\{1, 2, \dots, 3m\}$ 的分拆满足(5). 令

$$A_1 = 2A \cup \{1, 3, \dots, 6m+1\},$$

 $B_1 = 2B \cup \{9m+2, 9m+1, \dots, 6m+2\},$
 $C_1 = 2C \cup \{9m+3, 9m+4, \dots, 12m+3\},$

其中 2A 表示将 A 中每一个元素乘以 2 所得的集合. 不难验证 A_1 , B_1 , C_1 是 $\{1, 2, \dots, 12m+3\}$ 的分拆,而且满足相应于(5)的等式.

于是,对无穷多个自然数 n(例如 $3,3 \times 5, \dots, 3 \times (4m+1), \dots), X$ 有分拆满足(5),即命题成立.

更强的结论是例 4.

例 4 证明 $X = \{1, 2, \dots, n\}$ 有分拆(4)满足(5)的充分必要条件是 $n = 3 \times 4k$ 或 $3 \times (4k+1)$.

解 如果有分拆(4)满足(5),那么 n=3m 并且

$$1 + 2 + \dots + (3m) = \frac{(1+3m) \cdot 3m}{2} \tag{6}$$

是 C 中元素的和的 2 倍.(6)是偶数,所以

(7)也是充分条件.

当m=4k时,可排下表:

第一行自左到右由 1 排至 4k. 第二行自右到左, 排 4k+1, 4k+2, …, 6k, 间隔为 1; 然后在 4k-1, 2k-1, 1 的下方分别排 6k+1, 8k+2, 11k, 其余地方自右到左排 8k+3, 8k+4, …, 10k-1. 第三行的元素是前两行同列元素的和.

将这三行作为A,B,C即满足要求.

当 $m = 4k + 1 (k \ge 3)$ 时,可排相应的表:

1 3 5 7 ... 4k+1 4k 2k+2 2 4 ... 2k 2k+4 ... 4k-2 11k+4 6k+1 6k 6k-1 ... 4k+2 6k+3 6k+2 10k+2 10k+1 ... 9k+3 9k+2 ... 8k+5 11k+5 6k+4 6k+5 6k+6 ... 8k+3 10k+3 8k+4 10k+4 10k+5 ... 11k+3 11k+6 ... 12k+3

而当m=5,9时表如下:

1 3 4 5 2 2 3 4 5 6 1 7 9 13 9 10 6 12 23 14 22 15 21 11 10 15 12 14 11 13 25 17 26 20 27 18 24

本题与 Langford 问题密切相关,参见《对应》(王子侠,单 尊著,科技文献出版社 1989 年出版).

3.12 覆 盖

集 X 的覆盖是指 X 的一族(互不相同的非空)子集 A_1 , A_2 , …, A_k , 它们的并集 $A_1 \cup A_2 \cup \cdots \cup A_k = X$.

例 1 $X = \{1, 2, \dots, n\}$ 的覆盖共有多少个 (A_1, A_2, \dots, n)

 A_2, \dots, A_k 的顺序不予考虑)?

解 X 的非空子集共 2^n-1 个,它们共组成 $2^{2^{n-1}}$ 个子集族. 其中不含某一元素 i 的子集组成的族有 $2^{2^{n-1}-1}$ 个,不含某两个元素的子集组成的族有 $2^{2^{n-2}-1}$ 个,…… 于是由容斥原理,X 的覆盖共有

$$2^{2^{n-1}} - C_n^1 2^{2^{n-1}-1} + C_n^2 \cdot 2^{2^{n-2}-1} - \dots = \sum_{j=0}^n (-1)^j C_n^j 2^{2^{n-j}-1}$$

$$\uparrow.$$

例2 若 A_1 , A_2 , …, A_k 是 X 的覆盖,并且 X 的每一个元素恰属于 A_1 , A_2 , …, A_k 中的两个集,则称 A_1 , A_2 , …, A_k 为 X 的双覆盖. 求 k=3 的双覆盖的个数.

解 X 中每一元素属于 A_1 , A_2 , A_3 中的某两个,因而有三种可能. n 个元素的归属共有 3^n 种可能. 除去 A_1 , A_2 , A_3 中恰有一个为空集的三种情况,共有 3^n — 3 种. 由于 A_1 , A_2 , A_3 的顺序不予考虑,所以 k=3 的双覆盖共 $\frac{3^n-3}{3!}$ 个.

注:设由 k 个集组成的双覆盖有 ak 个,则

$$a_k = \frac{1}{k!} ((C_k^2)^n - ka_{k-1}).$$

例3 设 A_1 , A_2 , …, A_k 是 $X = \{1, 2, …, n\}$ 的一族子集. 若对 X 中任一对元素 i, j, 子集 A_1 , A_2 , …, A_k 中总有一个恰含 i, j 中的一个,则这族子集称为可分的. 求最小的k, 使得有一族子集 A_1 , A_2 , …, A_k , 既是覆盖又是可分的.

解 考虑 1. 2 节所说的从属关系表. 当 A_1 , A_2 , …, A_k 为覆盖时,每一列至少有一个 1. 当 A_1 , A_2 , …, A_k 为可分的时,每两列均不完全相同.

由于表有 k 行,表中每个元素为 0 或 1,所以至多可以组 • 90 •

成 2* -1 个两两不同的列,每列元素不全为 0. 于是

$$2^k-1\geqslant n$$
,

即

$$k \geqslant \lceil \log_2 n \rceil + 1. \tag{1}$$

另一方面,取 k 满足

$$2^k - 1 \geqslant n \geqslant 2^{k-1}. \tag{2}$$

作 n 个不同的、由 0 与 1 组成并且不全为 0 的、长为 k 的列 (因为 $2^k - 1 \ge n$, 这是可以办到的). 这表的 k 行所代表的 k 个集既覆盖又可分. 因此所求 k 的最小值为 $[\log_2 n] + 1$.

3.13 Stirling 数

将 n 元集 X 分拆为 k 个非空子集, 分拆的个数(不计子集的顺序) 称为第二类 Stirling 数,通常记为 $S_{(n,k)}$. 显然

$$S_{(n,1)} = 1,$$
 (1)

$$S_{(n,n)} = 1. (2)$$

(1 分拆,即 k = 1 的分拆,只有 X = X, n 分拆,只有 $X = \{1\}$ $\bigcup \{2\} \bigcup \dots \bigcup \{n\}$.) 约定 $S_{(n,0)} = 0$.

例1 证明:

(i)
$$S_{(n,2)} = 2^{n-1} - 1;$$
 (3)

(ii)
$$S_{(n, n-1)} = C_n^2$$
; (4)

(iii)
$$S_{(n+1,k)} = S_{(n,k-1)} + kS_{(n,k)};$$
 (5)

(iv)
$$S_{(n+1,k)} = \sum_{j=k-1}^{n} C_{n}^{j} S_{(j,k-1)};$$
 (6)

(v) 当 n ≥ 2 时,

$$S_{(n,1)} - 1!S_{(n,2)} + 2!S_{(n,3)} - \cdots + (-1)^{n-1}(n-1)!S_{(n,n)} = 0.$$
 (7)

解 (i) 固定 $1 \in A_1$, 其余的 n-1 个元素各有两种归属,属于 A_1 或 A_2 . 因此共有 2^{n-1} 种归属. 除去全属于 A_1 的那种,共有 $2^{n-1}-1$ 种分拆.

- (ii) 取两个元素作成二元集,有 C_n 种方法. 其余的n-2个元构成n-2个单元集(只含一个元素的集).
- (iii) n+1 元集 $\{1, 2, \dots, n+1\}$ 的 k 分拆可分为两类: 第一类有集 $\{n+1\}$,第二类没有 $\{n+1\}$.

去掉 n+1 后,第一类的分拆成为 $\{1,2,\cdots,n\}$ 的 k-1 分拆,并且 $\{1,2,\cdots,n\}$ 的每一个 k 分拆添加 $\{n+1\}$ 后成为第一类的分拆,因此第一类分拆共 $S_{(n,k-1)}$ 个.

去掉n+1后,第二类的分拆成为 $\{1,2,\cdots,n\}$ 的k分拆,并且 $\{1,2,\cdots,n\}$ 的每一个k分拆添加n+1有k种方法(n+1可放到k个子集的任一个中),添加后就成为第二类的分拆(这些分拆互不相同).因此第二类分拆共 $kS_{(n,k)}$ 个.

于是(5)成立.

(iv) 在 $\{1, 2, ..., n+1\}$ 的 k 分拆中去掉含n+1 的子集,得到 $j(k-1 \le j \le n)$ 元集的 k-1 分拆. 这些 k-1 分拆各不相同(否则原来的 k 分拆相同).

反之,从 $\{1, 2, \dots, n+1\}$ 任取j 个元素(有 C_n 种方法),得到j 元集J.J 的任一个k-1 分拆,添加集 $\{1, 2, \dots, n+1\}$ 一J 后成为 $\{1, 2, \dots, n+1\}$ 的k 分拆. 这样产生的k 分拆显然各不相同.

因此(6)成立.

(v)由(5)式,

$$\sum_{k=1}^{n+1} (-1)^{k-1} (k-1)! S_{(n+1,k)}$$

$$= \sum_{k=2}^{n+1} (-1)^{k-1} (k-1)! S_{(n,k-1)} + \sum_{k=1}^{n} (-1)^{k-1} k! S_{(n,k)}$$

$$= -\sum_{k=1}^{n} (-1)^{k-1} k! S_{(n,k)} + \sum_{k=1}^{n} (-1)^{k-1} k! S_{(n,k)}$$

$$= 0.$$

于是(7)对一切 $n \ge 2$ 成立,

n 元集的分拆的个数 $\sum_{k=1}^{n} S_{(n,k)}$ 称为 Bell 数,记为 B_n (第 n 个 Bernoulli 数也常记成 B_n ,但本书不出现 Bernoulli 数.因此没有混淆的危险). 显然 $B_1=1$. 又约定 $B_0=1$.

例 2 证明:

$$B_{n+1} = \sum_{m=0}^{n} C_n^m B_m.$$
 (8)

解由(6),

$$B_{n+1} = \sum_{k=1}^{n+1} S_{(n+1, k)}$$

$$= \sum_{k=1}^{n+1} \sum_{j=k-1}^{n} C_n^j S_{(j, k-1)}$$

$$= \sum_{j=0}^{n} C_n^j \sum_{k=1}^{j+1} S_{(j, k-1)}$$

$$= \sum_{j=0}^{n} C_n^j \sum_{k=1}^{j} S_{(j, k)}$$

$$= \sum_{k=0}^{n} C_n^j B_j.$$

我们知道 $\sum_{k=0}^{\infty} \frac{1}{k!} = e$. 因此 $B_1 = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k}{k!}$. 借助(8)及归纳法可得 $n = 0, 1, 2, \dots$ 时,

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!} \quad (\text{约定 } 0^0 = 1). \tag{9}$$

(设(9)成立,则 $B_{n+1} = \frac{1}{e} \sum_{i=0}^{n} C_n^i \sum_{k=0}^{\infty} \frac{k^i}{k!} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i=0}^{n} C_n^i k^i$

$$= \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \cdot (k+1)^n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{(k+1)^{n+1}}{(k+1)!} = \frac{1}{e} \sum_{k=1}^{\infty} \frac{k^{n+1}}{k!}.$$

例3 设非空子集 A_1 , A_2 , …, A_i 是 X 的覆盖,并且 A_1, A_2, \dots, A_k 中任意 k-1 个的并都是 X 的真子集,则称 这一覆盖为既约覆盖. 令 $I_{(n,k)}$ 表示 n 元集 X 的、由 k 个集组 成的既约覆盖的个数. 证明:

$$I_{(n,k)} = \sum_{j=k}^{n} C_n^j (2^k - k - 1)^{n-j} S_{(j,k)}; \qquad (10)$$

$$I_{(n, n-1)} = \frac{1}{2}n(2^n - n - 1);$$
 (11)

$$I_{(n,2)} = S_{(n+1,3)},$$
 (12)

对每个 $j \ge k$, 从 X 中取j 个元组成集J. J 有 $S_{G(k)}$ 个 k 分拆. 对每一个分拆 B_1 , B_2 , ..., B_k . 将 X-J 的 n-j个元分配到这 & 个集中,每个元至少属于两个集,因此,每个 元可属于某个 B., 也可不属于 B., 这有 2^t 种可能, 除去不属 于任一个 B_i 的一种及仅属于一个 B_i 的 k 种,还有 $2^k - k - 1$ 种可能. n-j 个元分配完毕,就产生 X 的由 k 个集组成的覆 盖,而且是既约覆盖(因为了的每个元只属于这&个集中的一 个), 这就得到 $\sum_{k=0}^{n} C'_{k}(2^{k}-k-1)^{n-1}S_{(j,k)}$ 个 X 的既约覆盖. 显

然它们各不相同.

反之,对X的每一个由k个子集组成的既约覆盖,设J为仅在一个子集中出现的元素所成的集,则 $|J| \ge k$,并且用上述作法便可产生这个既约覆盖,因此(10)成立,

由于 $S_{(n, n-1)} = C_n^2$, 所以由(10),

$$I_{(n, n-1)} = S_{(n, n-1)} + n(2^{n-1} - n) = \frac{n}{2}(2^n - n - 1).$$

为了求出 $I_{(n,2)}$,设 $y \notin X$. $\{y\} \cup X$ 的每个分拆 $B_1 \cup B_2 \cup B_3$ (不妨设 $y \in B_3$),对应于 X 的既约覆盖 $B_1 \cup B_3 - \{y\}$, $B_2 \cup B_3 - \{y\}$.

反之,对X的每个既约覆盖 A_1 , A_2 .令

$$A = A_1 \cap A_2$$
, $B_1 = A_1 - A$, $B_2 = A_2 - A$, $B_3 = A \cup \{\gamma\}$,

则 B_1 , B_2 , B_3 是 $\{y\} \cup X$ 的分拆.

由上述——对应得出(12)成立.

对每个自然数 n,令

$$[x]_n = x(x-1)\cdots(x-n+1). \tag{13}$$

我们有下面的(14).

例 4 证明:

$$x^{n} = \sum_{k=1}^{n} S_{(n,k)}[x]_{k}. \tag{14}$$

解 考虑从n元集X到m元集Y的映射f的个数.这里 $m \leq n$.

由 2.1 节例 5,这种映射的个数为 m".

另一方面,从m元集Y中任取k个元 y_1 , y_2 ,…, y_k 作为f的像集(有 C_m 种取法),对n元集X的任一个k分拆

 A_1, A_2, \dots, A_k ,令所有 $x \in A_i$ 的像 $f(x) = y_j(i, j = 1, 2, \dots, k)$. 这样共产生 $\sum_{k=1}^{m} C_m^k \cdot k! \cdot S_{(n,k)}$ 个互不相同的映射. 显然每个从 X 到 Y 的映射均可这样产生. 所以

$$m^{n} = \sum_{k=1}^{m} C_{m}^{k} \cdot k! \cdot S_{(n,k)} = \sum_{k=1}^{n} [m]_{k} S_{(n,k)}.$$
 (15)

(显然 k > m 时, $[m]_k = 0$.)

(15)表明(14)对于 $x = 1, 2, \dots, n$ 均成立. 由于次数不超过 n-1 的多项式 $x^n - \sum_{k=1}^n [x]_k S_{(n,k)}$ 在 $n \cap x$ 值 $(x = 1, 2, \dots, n)$ 为 0,所以恒有

$$x^n - \sum_{k=1}^n [x]_k S_{(n,k)} = 0,$$

即(14)成立.

[x], 可以展开成x 的多项式:

$$[x]_n = \sum_{k=1}^n s_{(n,k)} x^k, \qquad (16)$$

其中 $s_{(n,k)}$ 称为第一类 Stirling 数. 由 Viete 定理,从一1,一2, …,一(n-1) 中任取 n-1-k 个相乘,再将这些积相加,所得的和就是 $s_{(n,k)}$.

由于

$$[x]_{n} = \sum_{k=1}^{n} s_{(n, k)} x^{k}$$

$$= \sum_{k=1}^{n} s_{(n, k)} \sum_{m=1}^{k} [x]_{m} S_{(k, m)}$$

$$= \sum_{m=1}^{n} \left(\sum_{k=m}^{n} s_{(n, k)} S_{(k, m)} \right) [x]_{m},$$

所以比较[x],, 的系数得

$$\sum_{k=m}^{n} S_{(n,k)} S_{(k,m)} = \delta_{n,m}.$$

(其中 $\delta_{n,m}$ 当 n=m 时为 1, 当 $n\neq m$ 时为 0, 称为 Kronecker 符号.)

同样由

$$x^{n} = \sum_{k=1}^{n} S_{(n,k)}[x]_{k} = \sum_{k=1}^{n} S_{(n,k)} \sum_{m=1}^{k} s_{(k,m)} x^{m},$$

得

$$\sum_{k=m}^{n} S_{(n,k)} s_{(k,m)} = \delta_{n,m}.$$

3.14 $M_{(n, k, h)}$

设 X 是 n 元集、 A 是 X 的一些 h 元子集所成的族,并且 具有性质 $P_k(X)$, X 的任一 k 元子集 $(n \ge k \ge h \ge 1)$ 至少包含 A 中一个 h 元子集,具有这种性质的 A 中, A 的最小值记为 $M_{(n,k,h)}$.

例1 证明:

(i)
$$M_{(n,k,h)} \leqslant \frac{n}{h} M_{(n-1,k-1,h-1)};$$
 (1)

(ii)
$$M_{(n,k,h)} \geqslant \frac{n}{n-h} M_{(n-1,k,h)};$$
 (2)

(iii)
$$M_{(n,k,h)} \leqslant M_{(n-1,k-1,h-1)} + M_{(n-1,k,h)}$$
. (3)

解 (i) 设 A 具有性质 $P_k(X)$, 并且 $|A| = M_{(n,k,h)}$. 对任—元素 $x \in X$, 考虑 n-1 元集 $Y = X - \{x\}$. 设 Y

的h-1 元 子集族 \mathcal{B} 具有性质 $P_{k-1}(Y)$,并且 | \mathcal{B} | = $M_{(n-1, k-1, k-1)}$. 将 x 添到 \mathcal{B} 中每个 h-1 元子集里成为 h 元集, \mathcal{A} 中所有不含 x 的 h 元集与它们构成 h 元子集族 \mathbf{C} .

因此 $|C| \geqslant M_{(n,k,h)} = |A|$, 即

$$|\mathscr{B}| \geqslant a_x, \tag{4}$$

其中 a_x 为 \mathcal{A} 中含 x 的 h 元集的个数, 上式即

$$M_{(n-1, k-1, k-1)} \geqslant a_x.$$
 (5)

对水水和得

$$nM_{(n-1, k-1, k-1)} \geqslant \sum_{x \in X} a_x.$$
 (6)

(ii) \mathcal{A} 中不含 x 的子集构成 Y 中的 h 元子集族 \mathcal{A} . 并且 Y 的每一个 k 元子集也是 X 的 k 元子集, 应当包含 \mathcal{A} 中一个 不含 x 的 h 元子集, 即包含 \mathcal{A} 中一个 h 元子集. 所以 \mathcal{A} 具有性质 $P_k(Y)$, $|\mathcal{A}_x| \geqslant M_{(n-1,k,h)}$.

对 x 求和得

$$\sum_{x \in X} | \mathcal{A}_x | \geqslant n M_{(n-1, k, h)}. \tag{7}$$

 $\sum_{x \in X} | \mathcal{A}_x | = (n-h)M_{(n, k, h)}, 从而(7) 导出(3).$

(iii) 考虑 n-1 元集 Y. 设 Y 的 h 元子集族 $\mathscr E$ 具有性质 $P_k(Y)$, h-1 元子集族 $\mathscr B$ 具有性质 $P_{k-1}(Y)$, 并且 $|\mathscr E|=M_{(n-1,k-1)}$.

令 $X = Y \cup \{x\}$ 为 n 元集. 考虑 X 的 h 元子集族 \mathcal{A} , 它由 \mathcal{B} 中子集各添加 x(成为 h 元集) 及 \mathcal{E} 中子集组成.

对 X 的每个k 元子集S. 若 $x \notin S$, 则 \mathcal{E} 中有 h 元子集包含在 S 内. 若 $x \in S$, 则 \mathcal{B} 中有子集 $B_1 \subseteq S - \{x\}$, 即 $B_1 \cup \{x\} \subseteq S$. 所以 \mathcal{A} 具有性质 $P_k(X)$. 从而

$$M_{(n, k, h)} \leqslant |\mathcal{A}| = M_{(n-1, k, h)} + M_{(n-1, k-1, h-1)}$$

注 1:从(ii),(iii)可导出(i).

注 2:(i),(ii) 是由 n 元集 X 到 n-1 元集 Y;(iii) 则需要 先造好 n-1 元集 Y 的两个子集族,再扩充到 X.

例 2 证明:

$$M_{(n,k,h)} \geqslant \left\lceil \frac{n}{n-h} \right\lceil \frac{n-1}{n-h-1} \right\rceil \cdots \left\lceil \frac{k+1}{k-h+1} \right\rceil \cdots \right\rceil \right\rceil.$$
(8)

这里[x 表示不小于x 的最小整数,称为天花板函数.

解 显然 $M_{(k,k,h)} = 1$ (k 元集 X 的 k 元子集只有一个即 X 自身,它包含任一个 h 元子集).由(2)

$$M_{(k+1, k, k)} \geqslant \left\lceil \frac{k+1}{k-h+1} M_{(k, k, k)} \right\rceil = \left\lceil \frac{k+1}{k-h+1} \right\rceil.$$

设(8)对n-1成立,则

$$M_{(n,k,h)} \geqslant \left\lceil \frac{n}{n-h} M_{(n-1,k,h)} \right\rceil$$

$$\geqslant \left\lceil \frac{n}{n-h} \right\lceil \frac{n-1}{n-h-1} \right\lceil \cdots \left\lceil \frac{k+1}{k-h+1} \right\rceil \cdots \right\rceil \right\rceil$$

例 3 证明:

$$\frac{C_n^h}{C_k^h} \leqslant M_{(n, k, h)} \leqslant C_{n-k+h}^h. \tag{9}$$

解 设 X 的 h 元子集的族 A 具有性质 $P_k(X)$,并且 $|A| = M_{(n,k,h)}$. 将 A 中每个 h 元子集作为点,X 的每个 k 元子集也作点. 这样得到两个点集 X_1 , X_2 , $|X_1| = M_{(n,k,h)}$, $|X_2| = C_n^k$.

如果某个h元集包含在某个k元集中,就在相应的点间连一条边,这样得到一个图.图的两个部分 X_1 , X_2 之间的边数有两种算法.

一方面,每个h 元子集含于 C_{k-h}^{k-h} 个k 元集中,所以边数 = $C_{k-h}^{k-h} \cdot M_{(n,k,h)}$.

另一方面,每个 k 元集至少含 A 中一个 h 元集,所以边数至少有 $|X_2| = C_n^k$ 条边.

综合以上两方面即得

$$C_{n-h}^{k-h}M_{(n,k,h)} \geqslant C_n^k$$

(9)的上界由(3)及归纳法立即得出。

 $M_{(n,k,h)}$ 表示最少需要多少张各载有 h 个数的票,才能保证自 n 个数中一次摇出 k 个数时,至少有一张票中奖.

一般的 $M_{GLM,D}$ 的表达式仍为未知,

例4 设 $n \ge h(m+1), h \ge 1$. 证明:

$$M_{(n, n-m, h)} = m+1. (10)$$

 \mathbf{M} X的m+1个h元子集

$$\{1, 2, \dots, h\}, \{h+1, h+2, \dots, 2h\}, \dots,$$

$$\{mh+1, mh+2, \dots, (m+1)h\}$$

所成的族 A 具有性质 $P_{mm}(X)$. 事实上,对 X 的任一个 n-m 元子集S,X 恰有 m 个元不属于S,这 m 个元至多在 A 中 m 个集里出现,所以 A 中至少有一个集的元素全属于 S. 于是

$$M_{(n, n-m, h)} \leqslant |\mathcal{A}| = m+1.$$

可以证明

$$M_{(n, k, 2)} = C_n^2 - \frac{k-2}{k-1} \cdot \frac{n^2-r^2}{2} - C_r^2,$$

其中r是n除以k-1所得的余数, $0 \le r \le k-2$.

第四章 各种子集族

4.1 S 族

若集族 A中任意两个子集 A_i , A_j ($i \neq j$) 互不包含,则称 A为 S 族,

例 1 岩 n 元集 $X = \{1, 2, \dots, n\}$ 的子集族 A 是 S 族,则 A 的元数至多为 $C^{\begin{bmatrix} \frac{1}{2} \end{bmatrix}}$,即

$$\max_{\mathscr{A} \in S_{\overline{K}}} |\mathscr{A}| = C_n^{\left[\frac{n}{2}\right]}. \tag{1}$$

这是 Sperner(1905~)在 1928 年发现的定理(S 族即 Sperner 族的简称).

解 考虑 n 个元素 1, 2, …, n 的全排列,显然全排列的总数为 n!

另一方面,全排列中前 k 个元素恰好组成 A 中某个集 A_i 的,有 k!(n-k)! 个. 由于 A 是 S 族,所以这种"头"在 A 中的 全排列互不相同. 设 A 中有 f_k 个 A_i 满足 $|A_i| = k(k=1,2,\cdots,n)$,则

$$\sum_{k=1}^{n} f_k \cdot k! (n-k)! \leqslant n!. \tag{2}$$

熟知 C_n^k 在 $k = \left[\frac{n}{2}\right]$ 时最大,所以由(2)得

$$\mid \mathcal{A} \mid = \sum_{k=1}^n f_k \leqslant C_n^{\left \lceil \frac{n}{2} \right \rceil} \sum_{k=1}^n f_k \cdot \frac{k! (n-k)!}{n!} \leqslant C_n^{\left \lceil \frac{n}{2} \right \rceil}.$$

又解 设 $A = \{A_1, A_2, \dots, A_t\}$. A_1, A_2, \dots, A_t 中元数最小的为 r 元集,共 f_r 个. 添加 X 的一个元素到这些 r 元集中,使它们成为 r+1 元集. 对每个 r 元集有 n-r 种添加方法,每个 r+1 元集至多可由 r+1 个 r 元集添加而得,所以经过添加后至少产生

$$\frac{f_r \cdot (n-r)}{r+1}$$

个r+1元集.由于 $A \in S$ 族,这些r+1元集与 A_1 , A_2 , …, A_n 均不相同.

当
$$r<\left[\frac{n}{2}\right]$$
时,

$$\frac{f_r(n-r)}{r+1} > f_r,$$

所以将 A_1 , A_2 , …, A_i 中的r 元集换成添加后的r+1 元集,集合的个数即 🗷 的元数严格增加.

同样,设 A_1 , A_2 , …, A_s , 中元数最大的为 s 元集. 当 $s > \left[\frac{n}{2}\right]$ 时,从每个 s 元集删去一个元素变成 s-1 元集. 每 个 s-1 元集至多可由 n-(s-1) 个 s 元集删减一个元素而得. 每个 s 元集可产生 s 个 s-1 元集. 而

$$\frac{s}{n-(s-1)} \geqslant 1,$$

所以将 A_1 , A_2 , …, A_i 中的 s 元集换成删减而得的 s-1 元集, A_i 增加.

因此,当 A_1 , A_2 , …, A_t 均为 $\left[\frac{n}{2}\right]$ 元集时, t 最大, (1)式成立.

现在研究 | 🗷 | 何时取最大值.

从第一种解法立即得出当n为偶数时,当且仅当A由 X的全部 $\frac{n}{2}$ 元集组成,|A|取最大值 $C_n^{\left[\frac{n}{2}\right]}$.

$$l, 1, 2, \dots, m, \dots$$
 (3)

的前m+1个元组成的集 \notin \varnothing . 但既然(2)中等号成立,全排(3)的前m个元或前m+1个元所成的集在 \varnothing 中. 因此 $\{l,1,2,\cdots,m-1\}$ \in \varnothing . 这表明对 \varnothing 中任一个m 元集,将其中一个元换成其他元所得的 m 元集仍在 \varnothing 中. 经过这样的替代,易知 X 的全部m 元集均在 \varnothing 中. 因此 \varnothing 由 X 的全部m 元子集组成或者 \varnothing 不含 X 的任一个m 元子集,后者即 \varnothing 由 X 的全部m+1 元子集组成.

于是当n为奇数 2m+1 时,当且仅当 A 由 X 的全部 m 元子集组成或 A 由 X 的全部 m+1 元子集组成,|A| 取最大值 $C_{*}^{\left[\frac{n}{2}\right]}$.

Sperner 定理有众多的应用.

例2 11 个剧团中,每天有一些剧团演出,其他剧团观看 (演出的不能观看). 如果每个剧团都看过其他 10 个剧团的演 ・104・ 出,问演出至少几天?

解 设共演出 n 天,第 i 个剧团不演的天数组成集 A_i $(i = 1, 2, \dots, 11)$,则 A_1 , A_2 , \dots , A_{11} 都是 $X = \{1, 2, \dots, n\}$ 的子集.

由于每个剧团都看过其他剧团的演出,所以 A_i , A_j (1 \leq $i < j \leq$ 11) 互不包含(第 i 个剧团看第 j 个剧团演出的那一天属于 A_i 不属于 A_j). 由 Sperner 定理,

$$11 \leqslant C_n^{\left[\frac{n}{2}\right]}.\tag{4}$$

 $C_n^{\left[\frac{n}{2}\right]}$ 随 n 递增, $C_n^2 = 10$, $C_n^2 = 20$,所以 $n \ge 6$. 即至少演出 6 天.

Sperner 定理有众多的推广. 下面的例 3 属于 Bollobas (1965).

例3 若 A_1 , A_2 , …, A_m ; B_1 , B_2 , …, B_m 都是 $X = \{1, 2, …, n\}$ 的子集,当且仅当 i = j 时, $A_i \cap B_j = \emptyset$. $|A_i| = a_i$, $|B_i| = b_i (i = 1, 2, …, m)$, 则

$$\sum_{i=1}^{m} \frac{1}{C_{a_i^i+b_i}^{a_i}} \leqslant 1. \tag{5}$$

解 考虑 n! 个全排列. A_i 的元素全在 B_i 的元素前面的全排列共有

$$C_n^{a_i + b_i} \cdot a_i ! b_i ! (n - a_i - b_i) ! = \frac{n!}{C_{a_i + b_i}^{a_i}}$$
 (6)

个. 如果一个全排列中, A_i (的元素)全在 B_i (的元素)前面, A_i 也全在 B_i 前面, $i \neq j$,那么在 A_i 已经结束 B_i 尚未开始的情况中, $A_i \cap B_i = \emptyset$. 而在 A_i 结束前 B_i 已经开始的情况中, $A_i \cap B_i = \emptyset$. 均与已知矛盾. 所以每一个全排列中,至多有一个 A_i 在相应的 B_i 前面. 因此,由(6) 对 i

求和得

$$\sum_{i=1}^m \frac{n!}{C_{a_i^1+b_i}^a} \leqslant n!,$$

即(5)成立.

如果取 $B_i = A'_i$,那么 $A_i \cap B_i = \emptyset$.并且 $A_i \cap B_j \neq \emptyset$,即 $A_i \nsubseteq A_j$.这时(5)成为

$$\sum_{i=1}^m \frac{1}{C_n^{2_i}} \leqslant 1.$$

再由 $C_n^{\left[\frac{1}{2}\right]}$ 的最大性即导出 Sperner 定理.

4.2 拼

如果 X 的子集族 $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 中的子集满足 $A_1 \subset A_2 \subset \dots \subset A_t, \tag{1}$

那么 ৶称为一条(长为 t 的)链.

例1 设 A_1 , A_2 , …, A_m 为 X 的 m 条链. 每两条均不可比较,即任一条链中的成员(子集)都不是另一条链的成员的子集. 若每条链的长均为 k+1, 用 f(n,k)表示 m 的最大值. 证明:

$$f(n, k) = C_{n-k}^{\left[\frac{n-k}{2}\right]}.$$
 (2)

解 首先设 m 条链

$$A_{i0} \subset A_{i1} \subset \cdots \subset A_{it} \quad (i = 1, 2, \cdots, m)$$

满足题述条件.

在上节例 3 中取 $A_i = A_{i0}$, $B_i = A'_{ik}$, 则 $a_i = |A_{i0}|$, $b_i = n - |A_{ik}| \le n - (a_i + k)$, 因此

$$C^{a_i}_{a_i^i+b_i} \leqslant C^{a_i}_{n^i \cdot k} \leqslant C^{\left\lceil \frac{n-k}{2} \right\rceil}_{n^i \cdot k}$$
.

显然 $A_i \cap B_i \subseteq A_k \cap A'_k = \emptyset$. 若有 $i \neq j$ 使 $A_i \cap B_i = \emptyset$,则 $A_{i0} \subseteq A_{ik}$,与已知矛盾. 因此 A_i , B_i ($i = 1, 2, \dots$, m) 适合上节例 3 的条件,从而

$$m = \sum_{i=1}^{m} 1 \leqslant \sum_{i=1}^{m} \frac{C_{n-k}^{\left\lceil \frac{n-k}{2} \right\rceil}}{C_{a_{i}^{i}+b_{i}}^{a_{i}^{i}}} \leqslant C_{n-k}^{\left\lceil \frac{n-k}{2} \right\rceil}.$$

于是

$$f(n, k) \leqslant C_{n-k}^{\left[\frac{n-k}{2}\right]}$$

其次,设 M_i 为 $\{k+1, k+2, \dots, n\}$ 的 $\left[\frac{n-k}{2}\right]$ 元子集,这样的子集有 $C_{n-k}^{\left[\frac{n-k}{2}\right]}$ 个. 链

$$M_i \subset M_i \cup \{1\} \subset M_i \cup \{1, 2\} \subset \cdots$$

$$\subset M_i \cup \{1, 2, \dots, k\} (i = 1, 2, \dots, C_{n-k}^{\left[\frac{n-k}{2}\right]})$$

满足题述条件.

综上所述,(2)式成立.

当 k = 0 时,例 1 即 Sperner 定理.

如果链(1)中,

$$|A_{i+1}| = |A_i| + 1, i = 1, 2, ..., t-1,$$

并且

$$|A_1|+|A_t|=n,$$

那么链(1)称为对称链.

显然每条对称链含有一个 X 的 $\left[\frac{n}{2}\right]$ 元子集. 当 n 为偶数 2m 时,对称链(1)的长度 t 为奇数,位于中央的集 A ψ 是 m

元集. 当 n 为奇数 2m+1 时, t 是偶数, 中央的两个集 $A_{\frac{1}{2}}$, $A_{\frac{1}{2}+1}$ 分别为 m 元与 (m+1) 元集.

例2 $X = \{1, 2, \dots, n\}$ 的全体子集可分拆为 $C_n^{[\frac{n}{2}]}$ 条 互不相交的对称链(每个子集在且仅在一条链中).

解 对 n 归纳. n = 1 时结论显然成立. 设命题对 n - 1 成立,即 $\{1, 2, ..., n - 1\}$ 的全体子集可分拆为 $C_n^{[\frac{n-1}{2}]}$ 条互 不相交的对称链. 设

$$A_1 \subset A_2 \subset \cdots \subset A_t \tag{3}$$

为其中任一条,考虑链

$$A_1 \subset A_2 \subset \cdots \subset A_t \subset A_t \cup \{n\} \tag{4}$$

与

$$A_1 \bigcup \{n\} \subset A_2 \bigcup \{n\} \subset \cdots \subset A_{t-1} \bigcup \{n\}$$
 (5)
$$(3) t = 1 \text{ if } (5) \text{ \widehat{A} $\widehat$$

显然(4), (5)是 X 的对称链.

设 A 为 X 的子集. 如果 $n \notin A$, 那么 A 必恰在一条形如 (3)的链中,从而 A 也恰在一条形如 (4)的链中,同时 A 显然不在形如 (5)的链中. 如果 $n \in A$, 那么 $A - \{n\}$ 恰在一条形如 (3)的链中,在它等于 A, 时,A 恰在一条形如 (4)的链中,在它不等于 A, 时,A 恰在一条形如 (5)的链中.

于是X的全部子集被分拆为若干条互不相交的对称链,由于每条对称链中恰有一个 $\left[\frac{n}{2}\right]$ 元集,所以对称链的条数为 $C_n^{\left[\frac{n}{2}\right]}$.

显然从每一条链中至多选出一个集合组成 S 族. 所以例 2 导出 Sperner 定理.

链的概念不限于包含关系,它可以推广到任意一种偏序关系.即只要某个集合 S 的某些元素之间有关系 \rightarrow ,并且 $x \succ y$, $y \succ z$ 时, $x \succ z$ (传递性),那么 S 中就存在与(1)类似的链:

$$x_1 \succ x_2 \succ \cdots \succ x_t$$
 (6)

例如,若自然数 $a \mid b$,则称 $a \succ b$. 这就是一种偏序关系. 一个自然数 m 的因数可以按照这种偏序关系排成链 $d_1 \succ d_2 \succ \cdots \succ d_i$. 当 $d_1 d_i$ 与 m 的素因数个数(计及重数)相等,并且 d_{i+1} 比 d_i ($i=1,2,\cdots,t-1$) 恰多一个素因数时,这种链称为对称链. 例如

$$1 \succ 2 \succ 2^2 \succ 2^2 \times 3 \succ 2^2 \times 3^2 \succ 2^2 \times 3^2 \times 5$$
,
 $3 \succ 2 \times 3 \succ 2 \times 3^2 \succ 2 \times 3^2 \times 5$.

都是 $180 = 2^2 \times 3^2 \times 5$ 的对称链,

例 3 自然数 m 的全部(正)因数可以分为互不相交的对称链.

 $\mathbf{m} = p^{\alpha}$, p 为质数, α 为非负整数时, m 的因数组成一条对称链

1,
$$p$$
, p^2 , ..., $p^{\alpha-1}$, p^{α} .

设命题对质因数个数(不计重数)小于n的数 m_1 成立. 考虑 $m = m_1 p^a$, $p \nmid m_1$.

将 m1 的因数分为互不相交的对称链, 设

$$d_1, d_2, \cdots, d_h$$

是其中一条.

作表

d_1		d_2	•••	d_{k-2}	d_{h-1}	d_h
d_{1j}	b 6	$l_2 p$	•••	$d_{h-2}p$	$d_{k-1}p$	$d_h p$
$d_1 t$	o^2 d	$_{z}p^{2}$		$d_{h-2}p^2$	$d_{h-1} p^2$	$d_h p^2$
:		:	-	1	:	:
$d_1 p^a$	-1 d_2	p -1		$d_{k-2} p^{k-1}$	$d_{h-1}p^{a^{n-1}}$	$d_h p^{\sigma-1}$
$d_{1}f$	r d	2 p a		<i>d</i> _{k−2} p*	$d_{h-1} p^{r-1}$ $d_{h-1} p^{r}$	$d_h p^a$

最外层的

 $d_1, d_2, \dots, d_{h-2}, d_{h-1}, d_h, d_h p, d_h p^2, \dots, d_h p^a$ 组成 m 的对称链.

同样,从外到内,每一层的数都组成 m 的对称链.

易知 m 的每个因数都在上述形状的对称链中出现. 因此命题成立.

例 3 是 de Bruijn 等 1951 年证明的.

设 P_1 , P_2 , …, P_n 都是 n 元集 X 的分拆. 如果 P_1 仅一个集即 X, P_i 由 i 个集 A_1 , A_2 , …, A_i (A_1 $\bigcup A_2$ \bigcup … $\bigcup A_i$ = X, A_1 , A_2 , …, A_i 两两之交为 \emptyset)组成,并且 P_{i+1} 是由 P_i "加细"得到的,即将 A_1 , A_2 , …, A_i 中某一个分拆为两个集,i=0, 1, …, n-1, 那么 P_1 , P_2 , …, P_n 称为一个长为 n 的分拆铣.

 $\mathbf{M4}$ 求长为n的分拆链的个数.

解 P_n 仅一种,即 $\{1\}$, $\{2\}$,…, $\{n\}$,若已有

$$P_n, P_{n-1}, \dots, P_{k-1}$$

每一个是后一个的加细,则可将 P_{k+1} 中任两个集并为一个集产生 P_k ,因此 P_k 有 C_{k+1}^2 种可能. 从而长为 n 的分拆链共

$$\prod_{k=1}^{n-1} C_{k+1}^2 = \frac{(n-1)!n!}{2^{n-1}}$$

个.

4.3 Dilworth 定理

在上节例 2 中,链的条数恰好等于 S 族的元数的最大值. 这是下面例 1(Dilworth 定理)的特例.

例 1 集族 $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 分拆为互不相交的链时,所需用的链的最少条数 m 等于 P 中元数最多的 S 族的元数 s.

解 S 族的 s 个元是互不包含的,每条链至多含一个这样的元,所以 $m \ge s$.

为了证明 $s \ge m$, 我们对 t 进行归纳. t = 1 时结论显然. 假设命题对小于 t 的值成立. 考虑 t 元集 A.

对 \mathcal{A} 中任一元数为 s 的 S 族 \mathcal{B} , 不在 \mathcal{B} 中的元 A 必与 \mathcal{B} 中某一元 B 有包含关系(否则 A 可添加到 \mathcal{B} 中,与 s 的最大性矛盾). 将满足 $A \supset B$ 的 A 归入一族,记为 \mathcal{B} . 满足 $A \subset B$ 的 A 归入另一族,记为 \mathcal{B} . (由于 \mathcal{B} 是 S 族,不存在同时发生 $A \supset B$, $C \supset A$, 而 B, $C \in \mathcal{B}$ 的情况).

如果 31,32 都非空,令

$$\mathcal{A}_1 = \mathcal{B} \cup \mathcal{B}_1$$
, $\mathcal{A}_2 = \mathcal{B} \cup \mathcal{B}_2$,

则 $|\mathcal{A}|$, $|\mathcal{A}|$ 都小于 t. 由归纳假设, \mathcal{A} , \mathcal{A} 均可分拆为 s 条 链. 因为 \mathcal{B} 为 S 族,所以在 \mathcal{A} 中, \mathcal{B} 的元都是最小元,从而 \mathcal{A} 的 s 条链的终端正是 \mathcal{B} 的 s 个元. 同样, \mathcal{A} 的 s 条链的始端也是 \mathcal{B} 的 s 个元(作为最大元). 因此可将 \mathcal{A} 的链与 \mathcal{A} 的链逐对连接起来形成 \mathcal{A} 的链, $s \geq m$.

- - (b) 仅集族 ℱ有 s 个元. 与(a)类似, ダ可分拆为 s 条链.
- (c) \mathscr{E} , \mathscr{F} 均有 s 个元. 任取 $B \in \mathscr{F}$, 必有 $A \in \mathscr{E}$, $A \supset B$. 去掉 A, B 后,剩下的元组成 s-1 条链,添上链 $A \supset B$, 共 s 条链.

注:例1中的集族可改为任意的半序集, □改为半序关系, □

Dilworth 定理有很多应用.

例2 任意的 mm+1 个自然数中,能找出 m+1 个数,使得每一个数能整除比它大的数;或者能找出 n+1 个数,使得每一个数都不整除其他的数.

解 与上节例 3 相同,以 $a \mid b$ 作为自然数集的半序关系 $a \succ b$.

如果链的长度均不超过 m,那么由于 $\left[\frac{mn+1}{m}\right] = n+1$,所以至少有 n+1 条链. 根据 Dilworth 定理,有 n+1 个数组成 S 族,即每一个数都不整除其他的数.

例3 实数数列

$$a_1, a_2, \cdots, a_{m+1} \tag{1}$$

中一定能找出一个 m+1 项的递增的子列或能找出一个 n+1 ・ 112 ・

项的递减的子列.

解 若 $a_i \leq a_j$, i < j, 则称 $a_i \succ a_j$, 如果(1)中递增的子列至多 m 项,那么(1)至少能分为 n+1 条链. 从而有 n+1 项组成 S 族,即有一个 n+1 项的递减数列.

下面的例 4 与例 1 对偶.

m=0 时结论显然. 设命题对 m-1 成立.

A的极大元组成 S 族 B. A-B 不含长为 m 的链. 由归纳 假设,A-B 可以表成至多 m-1 个 S 族的并, 加入 B 即为 m 个 S 族.

4.4 Littlewood-Offord 问题

1943 年,Littlewood 与 Offord 提出下面的问题: 设 z_1 , z_2 , …, z_n 为模 ≥ 1 的复数,作出 2^n 个形如 $z_{i_1} + z_{i_2} + \dots + z_{i_l}$ 的和, $\{i_1, i_2, \dots, i_l\}$ 是集合 $X = \{1, 2, \dots, n\}$ 的子集(对于空集,相应的和为 0). 从这些和中最多能选出多少个,每两个的差的模 < 1?

1945 年,P. Erdös 首先解决了 z_1 , z_2 , …, z_n 为实数的情况,这就是例 1.

例1 设 x_1 , x_2 , …, x_n 为n 个绝对值不小于 1 的实数,则从 2" 个和

$$x_A = \sum_{j \in A} x_j, A \subseteq X = \{1, 2, \dots, n\}$$

中最多能选出 $C_n^{\left[\frac{n}{2}\right]}$ 个,使得每两个的差小于 1.

解 如果某个 $x_i < 0$,用 $-x_i$ 代替它,并将每个集 A 换

成集

$$B = \begin{cases} A \cup \{j\}, \text{如果} j \notin A; \\ A - \{j\}, \text{如果} j \in A. \end{cases}$$
 (1)

和 XA 换为和

$$x_B = x_A + (-x_I).$$

于是,不妨设所有 x, 均非负.

设 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 为 X 的子集族,并且当 $i \neq j$ 时,

$$|x_{A_i} - x_{A_j}| < 1.$$
 (2)

若 $A_i \subset A_j$, 那么

$$|x_{A_i} - x_{A_j}| = |x_{A_j - A_i}| \geqslant 1$$

与(2)矛盾,所以≤为S族,从而

$$t \leqslant C_{\pi}^{\left\lceil \frac{n}{2} \right\rceil}. \tag{3}$$

另一方面,当 $x_1 = x_2 = \cdots = x_n = 1$ 时,有 $C^{\left[\frac{n}{2}\right]}$ 个 A $\left(X$ 的全部 $\left[\frac{n}{2}\right]$ 元子集 $\right)$,使 $x_A = \left[\frac{n}{2}\right]$,它们的差为 0,因此 (3) 中等号成立.

现在设 x_1, x_2, \dots, x_n 是n 个模 ≥ 1 的向量(特别地,它们可以是平面向量即复数). 为了获得与例 1 类似的结果,我们先引入两个概念.

如果 X 的全体子集所成的族 P(X) 被分拆为若干个(互不相交的)族,各族的元数 $\in \{n+1, n-1, n-3, \cdots, n+1 -2\left[\frac{n}{2}\right]\}$,并且其中元数为 $n+1-2i\left(i=0, 1, \cdots, \left[\frac{n}{2}\right]\right)$ 的恰有 $C_n^i - C_n^{i-1}$ 个,我们称这样的分拆为对称分拆.

4.2 节中, P(X)被分拆为若干条对称链, 每条对称链是一个子集族. 容易验证(参见下面例 2 证明的后一半)这一分拆是对称分拆. 实际上对称分拆的定义即从例 2 延伸出来.

对称分拆中,族的个数为

$$\sum_{i=0}^{\left[\frac{n}{2}\right]} (C_n^i - C_n^{-1}) = C_n^{\left[\frac{n}{2}\right]}. \tag{4}$$

对于上面所说的向量 x_1 , x_2 , …, x_n . 如果 $X = \{1, 2, ..., n\}$ 的子集族 \mathcal{A} 中任意两个子集 A, B 满足

$$|x_A - x_B| \geqslant 1, \tag{5}$$

那么 🛭 称为稀疏的.

例 2 P(X)有一对称分拆,其中每一个族都是稀疏的.

解 证法与 4.2 节的例 2 类似,对 n 进行归纳,奠基显,然. 设命题对 n-1 成立, $\{A_1,A_2,\dots,A_t\}$ 为一个稀疏的族.

不妨设 x_n 为 x 轴上的向量. 函数 f 将一切向量 $\alpha = (x, y, z)$ 映为第一坐标 x,即 $f(\alpha) = x$.

设 $f(x_{A_1})$, $f(x_{A_2})$, …, $f(x_{A_1})$ 中 $f(x_{A_2})$ 最大(若同时有几个最大的,任取其中之一),作子集族

$$\{A_1, A_2, \cdots, A_t, A_k \cup \{n\}\}$$
 (6)

与

$$\{A_1 \cup \{n\}, \dots, A_{k-1} \cup \{n\}, A_{k+1} \cup \{n\}, \dots, A_i \cup \{n\}\}\$$

$$(7)$$

(当t = 1 时仅有(6). 当 $t \ge 2$ 时(6), (7)同时存在).

(7)显然仍是稀疏的. 对(6)中的集 $A_i(1 \leq j \leq t)$,

$$|x_{A_{k}\cup\{n\}} - x_{A_{j}}| \ge f(x_{A_{k}\cup\{n\}} - x_{A_{j}})$$

$$= f(x_{n}) + f(x_{A_{k}}) - f(x_{A_{k}})$$

$$\geqslant f(x_n) \geqslant 1$$
,

所以(6)也是稀疏的.

最后,我们证明分拆是对称分拆.

原来的族 $\{A_1, A_2, \dots, A_t\}$ 的元数 t = n-2i, 新族(6), (7)的元数分别为 n+1-2i, n-1-2i=n+1-2(i+1). 并且新族中元数为 n+1-2i 的有

$$(C_{n-1}^{i} - C_{n-1}^{i-1}) + (C_{n-1}^{i-1} - C_{n-1}^{i-2}) = C_{n}^{i} - C_{n-1}^{i-1}$$
个,所以新族是对称分拆、

本节开头所提问题的答案仍为 $C_n^{\left[\frac{d}{2}\right]}$. 因为每个稀疏族满足(5),其中只能选出一个子集 A,从而至多有 $C_n^{\left[\frac{d}{2}\right]}$ 个 A满足每两个 x_A 的差的模小于 1. 另一方面,例 1 已经表明这个值 $C_n^{\left[\frac{d}{2}\right]}$ 是能够取到的.

例 3 x_1, x_2, \dots, x_n 为模不小于 1 的向量(或复数),对任意向量(或复数)x,在 2ⁿ 个和 $x_A = \sum_{i \in A} x_i$ 中至多可选出多少个与x 的差的模小于 $\frac{1}{2}$?

解 若
$$|x_A - x| < \frac{1}{2}$$
, $|x_B - x| < \frac{1}{2}$, 则 $|x_A - x_B| < \frac{1}{2} + \frac{1}{2} = 1$.

因此至多选出 $C_{x}^{\left[\frac{\pi}{2}\right]} \wedge x_{A}$ 与x 的差的模小于 $\frac{1}{2}$.

例 4 假设同上,证明在 2^n 个和 $\sum_{i=1}^n \epsilon_i x_i (\epsilon_i = \pm 1)$ 中至多可以选出 $C_n^{\left[\frac{n}{2}\right]}$ 个与 x 的距离小于 1.

$$|x-\sum_{\mathbf{\epsilon}_i x_i}| = |x+y-\sum_{\mathbf{\epsilon}_i x_i}|$$
 $= 2\left|\frac{x+y}{2} - \sum_{\mathbf{\epsilon}_i x_i} \frac{1+\mathbf{\epsilon}_i}{2} x_i\right|.$
 $\frac{1+\mathbf{\epsilon}_i}{2} = 0$ 或 1,这就化为上题.

4.5 *I* 族

如果集 $X = \{1, 2, \dots, n\}$ 的子集族 $\mathscr{A} = \{A_1, A_2, \dots, A_n\}$ 中,每两个子集 A_i , A_j 的交 A_i , A_j A_j

例1 试求 / 族的元数的最大值.

解 I 族 $\mathscr{A} = \{A_1, A_2, \dots, A_t\}$ 的元数 t 至多为 2^{r-1} .

一方面,由于 X 的 2^n 个子集可以两两配对: A 与 A 的补集 X-A 配成一对,所以在 $t > 2^{m-1}$ 时, A_1 , A_2 ,…, A_n 中必有一个集是另一个的补集,它们的交为空集. 这表明 I 族 A 的元数 $t \leq 2^{m-1}$.

另一方面,含有 n 的子集共 2^{n-1} 个,它们组成 I 集. 所以 $\max t = 2^{n-1}$.

注 1: $\max t = 2^{n-1}$ 的情况并不仅有上述一种. 例如 n 为 奇数时,所有元数 $\geq \frac{n+1}{2}$ 的子集组成的族 \mathbb{Z} 显然是 I 族,而 且 $|\mathbb{Z}| = 2^{n-1}$. n 为偶数时,设 \mathbb{Z} 是 $\{1, 2, \cdots, n-1\}$ 的子集族, \mathbb{Z} 是 I 族, $|\mathbb{Z}| = 2^{n-2}$ 并且 \mathbb{Z} 中子集不全含一个固定元素. 作 $X = \{1, 2, \cdots, n\}$ 的子集族 \mathbb{Z} , 其中子集由 \mathbb{Z} 的子集添加 n 而得. 这时 $\mathbb{Z} \cup \mathbb{Z}$ 是 X 的 I 族, $|\mathbb{Z} \cup \mathbb{Z}| = 2^{n-1}$,而且 $\mathbb{Z} \cup \mathbb{Z}$ 中子集不全含一个固定元素.

例 2 设 $2 \le r < \frac{n}{2}$. $\mathcal{A} = \{A_1, A_2, \dots, A_t\} \$ 为 I 族,并且 $|A_i| = r \ (i = 1, 2, \dots, t)$. 求 t 的最大值.

解 显然,当 A_1 , A_2 , …, A_i , 为 X 中含有一固定元素 x 的、全部 r 元子集时,

$$t = C_{n-1}^{r-1}. (1)$$

Erdös—Ko(柯召)—Rado 证明了 C_{r-1}^{r-1} 就是 t 的最大值. 即有

定理 设 $2 \le r < \frac{n}{2}$. $\mathscr{A} = \{A_1, A_2, \dots, A_t\} \$ 为 I 族,并且 $|A_i| = r \ (i = 1, 2, \dots, t)$,则

$$t \leqslant C_{\pi,1}^{r-1}.\tag{2}$$

当且仅当 A_1 , A_2 , …, A_i 为 X 中含有一个固定元素 x 的全体集合时,(2)中等号成立。

这个定理在集族理论中极为重要,被誉为里程碑,它的证明也有多种,下面介绍 Katona 的证明,

我们知道 n 个数排在圆周上,有 (n-1)! 种排法.完全同样地,将圆周等分为 n 条弧,在各弧标上 n 个数 $1, 2, \dots, n$,也有 (n-1)! 种方法.每一种,称为 $X = \{1, 2, \dots, n\}$ 的一个圈、

Katona 的证法要点是将 A_i "嵌入"圈中.

如果 r 元子集 A, 的 r 个元素标在圈 C 的 r 条连续的弧上,那么就称这 r 条弧为 A,,并称圈 C 含子集 A,,由于 A,的 r 个 · 118 ·

元有 r! 种排列方法,不在 A_j 中的 n-r 个元有 (n-r)! 种排列方法,所以有 r!(n-r)! 个圈含有子集 $A_j(1 \leq j \leq t)$.

另一方面,如果圈 C含集 $A_1 = \{a_1, a_2, \cdots, a_r\}$,并且 $\widehat{P_1P_2}$, $\widehat{P_2P_3}$,…, $\widehat{P_rP_{r+1}}$ 上标的数分别为 a_1, a_2, \cdots, a_r $(P_1, P_2, \cdots, P_n$ 为圆周的等分点),那么 C 上其他的集 A_i 与 A_1 有公共弧. 而对每个 k $(1 \le k \le r+1)$,以 P_k 为起点的连续 r 条弧有两个 $(\mathbb{P}_kP_{k+1}, P_{k+1}P_{k+2}, \cdots, P_{k+r-1}P_{k+r})$,这两个除 P_k 外无公共点,因此其中至多有一个是某个 $A_i \in \mathcal{A}$ (每两个 A_i , $A_i \in \mathcal{A}$ 必有公共弧). 由于以 P_1 或 P_{r+1} 为起点的连续 r 条弧,只有一个是一个电集,即 A_1 所以,每一个圈 C 至多含 \mathcal{A} 中,个集

综合以上两个方面,

$$\sum_{i=1}^{t} \sum_{C \triangleq A_i} 1 = t \times r! \times (n-r)!$$

$$= \sum_{\mathbf{m}C} \sum_{A_i \triangleq TC} 1 \leqslant r \times (n-1)!, \qquad (3)$$

即

$$t \leqslant C_{\pi-1}^{r-1}. \tag{4}$$

$$P_n \qquad P_1 \qquad P_2 \qquad P_3 \qquad P_k \qquad P_{r+1} \qquad P_r \qquad P_k$$

图 4.5.1

下面研究等号成立的情况.

在定理中已经指明当 A_1 , A_2 , …, A_n 为 X 中含有一固定元素 x 的全体集合时,(2)中等号成立.

反之,设(2)中等号成立,则(3)中等号成立,从而每一圈上恰含 $r \cap A_i$.

对于圈 C,设分点为 P_1 , P_2 , …, P_n ,并且 $\widehat{P_1P_2}$, $\widehat{P_2P_3}$, …, $\widehat{P_rP_{r+1}}$ 标的数分别为 a_1 , a_2 , …, a_r , $A_i = \{a_1, a_2, \dots, a_r\}$. 根据上面所证,以 $P_k(1 \leq k \leq r)$ 为起点的连续 r 条 弧恰有一个是 《中某个子集,不妨设就是 A_k . 这时有两种情况:

- (i) 所有 A_k(1 ≤ k ≤ r) 均含有 a_r(图 4.5.2).
- (ii) 有一个 $h(1 \le h < r)$, A_h 含有 a_r 而 A_{h+1} 不含有 a_r (这时 A_{h+2} , …, A_r 均不含 a_r . 图 4.5.3).

无论哪一种情况,这 r 个集(所对应的弧)都只覆盖了圆周上 2r-1 条弧,而不是整个圆周(因为 $n \ge 2r$). 这 2r-1 条弧有一个起点(图 4.5.2 中是 P_1 ,图 4.5.3 中是 $P_{n+k-r+1}$),一个终点(图 4.5.2 中是 P_{2r} ,图 4.5.3 中是 P_{k+r}). 不失一般性,我们设起点为 P_1 , r 个属于 \varnothing 的集为

$$\{a_1, a_2, \dots, a_r\}, \{a_2, a_3, \dots, a_{r+1}\}, \dots, \{a_r, a_{r+1}, \dots, a_{2r-1}\}.$$

又设 $\widehat{P_nP_i}$ 上标的数为 b_i 则

$$B = \{b, a_1, a_2, \dots, a_{r-1}\} \notin \mathcal{A}.$$

现在证明任一含 a_r 、不含 b 的 r 元子集 A_p 属于 \mathscr{A} .

设 A_p 中有 r-s 个数 $\in \{a_1, a_2, \dots, a_r\}$. 不妨设它们是 $a_{s+1}, a_{s+2}, \dots, a_r$ (否则将 a_1, \dots, a_{r-1} 重新编号). 又设其余的 数为 $c_{r+1}, c_{r+2}, \dots, c_{r+s}$.

考虑各弧依次标上 b, a_1 , a_2 , …, a_r , c_{r+1} , c_{r+2} , …, c_{r+s} , … 的圈 C'.

由于 $A_1 = \{a_1, a_2, \dots, a_r\} \in \mathcal{A}, B = \{b, a_1, \dots, a_{r-1}\}$ $\notin \mathcal{A}$,根据上面的分析,在圈 C'上情况 2 不会出现(否则相当于 A_{k+1} 的 $B \in \mathcal{A}$),即必有情况 1 发生,

$$\{a_2, \dots, a_r, c_{r+1}\}, \{a_3, \dots, a_r, c_{r+1}, c_{r+2}\}, \dots, \{a_r, c_{r+1}, \dots, c_{2r-1}\}$$

都是 \mathcal{A} 中的子集. 特别地, $A_{\mathfrak{o}} \in \mathcal{A}$.

进一步,我们证明不含 a_r 的集 A_a 一定不属于 A.

 A_a 的补集有 $n-r \ge r+1$ 个元,如果这n-r个元中有b,将b 去掉,再去掉若干个元,成为含 a_r 的r 元集.如果这n-r个元中无b,也可以去掉若干个元,成为含 a_r 的r 元集.根据上面所证,这含 a_r 的r 元子集 $\in \mathcal{A}$. 因此 $A_a \notin \mathcal{A}$.

最后,由|A| = C 及不含 a, 的集不属于 A 得一切含 a, 的集组成 A.

因此, \varnothing 达到最大值的情况共有 n 种.

例 3 设 $n \leq 2r$, $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 为 I 族,并且 $|A_i| = r$ $(i = 1, 2, \dots, t)$. 求 t 的最大值.

解 当 n < 2r 时, X 的每两个r 元子集均相交, 所以 \mathcal{A} 可由 X 的全部r 元子集组成, $\max |\mathcal{A}| = C_n^r$.

当n=2r时,X的r元子集两两互补,因为每两个互补的集至多有一个属于 \mathscr{A} ,所以 $|\mathscr{A}| \leq \frac{1}{2}$ $C_n^r = C_{n-1}^{-1}$,即(2)仍然成立. 如果在每两个互补的r元集中取出一个组成 \mathscr{A} ,那么 $|\mathscr{A}| = \frac{1}{2}$ $C_n^r = C_{n-1}^{-1}$,并且 \mathscr{A} 中每两个子集均有公共元(因为这两个集不互补). 即 $\max |\mathscr{A}| = C_{n-1}^{-1}$,并且达到最大值的情况共有 $2^{C_{n-1}^{-1}}$ 种.

Erdös、柯召、Rado 的论文在 1938 年已基本完成,但 1961 年才发表于 Quarterly Journal, 在这篇论文中,不仅有上面的定理,而且还提了很多的问题. 这些问题已被其他数学家(Deza, Frankl, Katona 等)逐一解决,只遗留下一个,即

猜測 设 |X| = 4m, $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$, $|A_i| = 2m$ $(1 \leq i \leq t)$, $|A_i \cap A_j| \geq 2$ $(1 \leq i, j \leq t)$, 则

$$\max t = \frac{1}{2} (C_{4m}^{2m} - (C_{2n}^{n})^{2}),$$

Erdös 提供 250 英镑,奖赏解决上述猜测(证明或推翻)的人. Erdös 孤身一人,四海为家,经常提供悬奖的数学问题,但他的收入并不甚丰,悬奖通常在 10~100 美元. 250 英镑对于他,已经是一大笔钱. 这正表明 Erdös 重视这个问题,并且问题的难度甚大.

4.6 EKR 定理的推广

上节的 Erdös—柯召—Rado 定理简记为 EKR 定理,它 • 122 •

有很多推广. 例 1、例 2 去掉 $|A_i|$ 全相等的限制,例 3 去掉 $|A_i| \leq \frac{n}{2}$.

例 1 设 n 元集 X 的子集族 $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 为 I 族,并且对每个 i ($1 \le i \le t$), $|A_t| \le r \le \frac{n}{2}$. 若 \mathcal{A} 又是 S 族, 证明:

$$t \leqslant C_{n-1}^{r-1}. \tag{1}$$

解 由 4.2 例 2, X 的全体子集所成的族 P(X) 可以分拆为对称链. 因为 A 是 S 族, A_1 , A_2 , ..., A_r 属于不同的链. 将每个 A_r 用链中的 r 元集 B_r 代替 (当 A_r A_r

例2 条件同例1,证明:

$$\sum_{i=1}^{l} \frac{1}{C_{n-1}^{(A_i)-1}} \leqslant 1.$$
 (2)

解 首先注意在上节例 2 的证明中,可以得出若圈 C 含 A 中的集 A_1 ,则 C 至多含 A 中 $|A_1|$ 个子集.

在那里曾考虑和

$$\sum_{i=1}^{t} \sum_{C \triangleq A_i} 1 = \sum_{C} \sum_{A_i \triangleq \mp C} 1.$$
 (3)

现在考虑一个类似的"加权"和

$$\sum_{i=1}^{t} \frac{1}{|A_i|} \sum_{C \not\cong A_i} 1 = \sum_{C} \sum_{A_i \not\cong TC} \frac{1}{|A_i|}.$$
 (4)

由上面所说,设A,含于C且|A,|最小,则

$$\sum_{A, \exists \exists \exists C} \frac{1}{|A_i|} \leqslant \frac{1}{|A_i|} \cdot |A_i| = 1,$$

于是(4)的右边
$$\leq \sum_{c} 1 = (n-1)!$$
.

(4)的左边 =
$$\sum_{i=1}^{t} \frac{1}{|A_i|} \cdot |A_i|! \cdot (n-|A_i|)!$$

= $\sum_{i=1}^{t} \frac{(n-1)!}{C_{n-1}^{|A_i|-1}}$.

结合以上两方面即得(2).

由于 $|A_i| \le r \le \frac{n}{2}$ 时, $C_{n-1}^{(A_i)-1}$ 随 $|A_i|$ 递增.所以由(2)可得 $\sum_{i=1}^{l} \frac{1}{C_{n-1}^{(i)}} \le 1$,即(1)成立.

例 3 设 $\mathscr{A} = \{A_1, A_2, ..., A_i\}$ 是 n 元集的子集族,若 \mathscr{A} 既是 I 族又是 S 族. 证明:

$$|\mathcal{A}| \leqslant C_n^{\left[\frac{n}{2}\right]+1}. \tag{5}$$

解 首先证明一个不等式

$$\sum_{\substack{A \in \mathscr{A} \\ |A| \leqslant \frac{n}{2}}} \frac{1}{C_n^{|A|-1}} + \sum_{\substack{A \in \mathscr{A} \\ |A| > \frac{n}{2}}} \frac{1}{C_n^{|A|}} \leqslant 1.$$
 (6)

为此引进一个权函数 $f(C, A_i)$:

$$f(C, A_i) =$$

$$\begin{cases} \frac{n - |A_i| + 1}{|A_i|}, \ddot{A} \mid A_i \mid \leq \frac{n}{2}, \ddot{H}$$
且圈 $C \triangleq A_i;$
$$1, \qquad \ddot{A} \mid A_i \mid > \frac{n}{2}, \ddot{H}$$
且圈 $C \triangleq A_i;$
$$0, \qquad \ddot{A}$$
圈 $C \land A_i.$

这里圈 C 含 A; 的意义与上节例 2 相同.

$$\sum_{i=1}^{r} \sum_{C} f(C, A_i)$$

$$= \sum_{|A_{i}| \leq \frac{n}{2}} \frac{n - |A_{i}| + 1}{|A_{i}|} \sum_{C \triangleq A_{i}} 1 + \sum_{|A_{i}| > \frac{n}{2}} \sum_{C \triangleq A_{i}} 1$$

$$= \sum_{|A_{i}| \leq \frac{n}{2}} \frac{n - |A_{i}| + 1}{|A_{i}|} |A_{i}|! (n - |A_{i}|)!$$

$$+ \sum_{|A_{i}| > \frac{n}{2}} |A_{i}|! (n - |A_{i}|)!$$

$$= n! \Big(\sum_{\substack{A \in \mathcal{A} \\ |A| \leq \frac{n}{2}}} \frac{1}{C_{n}^{|A|-1}} + \sum_{\substack{A \in \mathcal{A} \\ |A| > \frac{n}{2}}} \frac{1}{C_{n}^{|A|}} \Big). \tag{7}$$

另一方面,我们可以证明对每个圈C,

$$\sum_{i=1}^{t} f(C, A_i) = \sum_{\substack{|A_i| \leq \frac{n}{2} \\ A_i \in C}} \frac{n - |A_i| + 1}{|A_i|} + \sum_{\substack{|A_i| > \frac{n}{2} \\ A_i \in C}} 1 \leq n. \quad (8)$$

事实上,不妨设圈 C 上标的数顺次为 1 , 2 , \cdots , n . 若所有 $|A_i| > \frac{n}{2}$, 因为 A是 S 族 , 所以 A 中以 i 为 "第一个元素" 的形如 $\{j,j+1,\cdots,k$ (约定 n+b=b) 的集至多只有一个. 从而含于 C 的 A_i 至多 n 个,即(8) 成立. 若有 $|A_i| \le \frac{n}{2}$. 不妨设 $A_1 = \{1,2,\cdots,r\}$ 的元数 r 最小. 这时 $A_1 = \{1,2,\cdots,r\}$ 的元数 $A_2 = \{1,2,\cdots,r\}$ 的元数 $A_3 = \{1,2,\cdots,r\}$ 的元数 $A_4 = \{1,2,\cdots,r\}$ 的元数 $A_4 = \{1,2,\cdots,r\}$ 的元素或者以 $A_4 = \{1,2,\cdots,r\}$ 为第一元素或者以 $A_4 = \{1,2,\cdots,r\}$ 为第一元素或者以 $A_4 = \{1,2,\cdots,r\}$ 为第一元素或者以 $A_4 = \{1,2,\cdots,r\}$ 为第一元素或为有,则它们应有公共元(因为 $A_4 = \{1,2,\cdots,r\}$ 为第一元素或以 $A_4 =$

$$\leq \frac{n-r+1}{r}+1=\frac{n+1}{r},$$

因此(8)式左边 $\leq \frac{n-r+1}{r} + (r-1) \times \frac{n+1}{r} = n$.

$$\sum_{C} \sum_{i=1}^{t} f(C, A_i) \leqslant n \times (n-1)! = n!.$$
 (9)

综合(7),(9)即得(6).

因为 $|A| \leqslant \frac{n}{2}$ 时, $C_n^{|A|-1} \leqslant C_n^{\left[\frac{n}{2}\right]-1} \leqslant C_n^{\left[\frac{n}{2}\right]+1}$; |A| >

 $\frac{n}{2}$ 时, $C_n^{|A|} \leqslant C_n^{\left[\frac{n}{2}\right]+1}$,所以由(6)得

$$\sum_{\mathbf{A} \in \mathcal{A}} \frac{1}{\mathbf{C}_{\sigma}^{\left[\frac{n}{2}\right]+1}} \leqslant 1,$$

即(5)成立.

例4 集族 $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 既是 S 集又是 I 集,并且每两个 A_t , A_t 的并集不是 X. 证明:

$$t \leqslant C_{n-1}^{\left[\frac{n}{2}\right]-1}. (10)$$

解 考虑 A_1 , A_2 , …, A_i 及其补集 A_1' , A_2' , …, A_i' . 因为 A_i 是 I 族,所以 $A_i \cap A_j \neq \emptyset$,从而 A_i 与 A_i' 互不包含.

因为 \mathscr{A} 是 S 族 A, 与 A, $(i \neq j)$ 互不包含 A, 从而 A'_i 与 A'_j 互不包含 $A_i \cap A'_j \neq \varnothing$.

因为 $A_i \cup A_i \neq X$, 所以 $A'_i \cap A'_j \neq \emptyset$.

将 $\{A_1, A_2, \dots, A_i, A_1', A_2', \dots, A_i'\}$ 分拆为两个集族 • 126 •

 \mathcal{B} , \mathcal{B} . \mathcal{B} 中的集元数均 $\leq \frac{n}{2}$, 并且在 $|A_i| = \frac{n}{2}$ 时, A_i . 与 A_i' 恰有一个在 \mathcal{B} 中.

根据上面所述, 38 是 I 族, 也是 S 族, 从而由例 2,

$$\sum_{B \in \mathcal{J}} \frac{1}{C_{n-1}^{|B|-1}} \leqslant 1. \tag{11}$$

(11)中的 $|B| \le \left[\frac{n}{2}\right]$, 所以 $C_{m-1}^{|B|-1} \le C_{m-1}^{\left[\frac{n}{2}\right]-1}$. 而 \mathcal{B} 中子集 恰 t 个,所以(11)导出(10).

4.7 影

设 $A \neq n$ 元集 X 的子集族,并且 A 中的子集都是 l 元子集. 集族

 $\{B, \mid B \mid = l-1 \text{ 并且 } B \in \mathbb{A} \text{ 中某个集的子集} \}$ 称为 \mathbb{A} 的影子或影,记为 $\Delta \mathbb{A}$, $\Delta \{A\}$ 简记为 ΔA .

在 4.1 节例 1 的第二个证明中实际上已经得到

$$|\Delta \mathcal{A}| \geqslant \frac{l}{n-l+1} |\mathcal{A}| \tag{1}$$

(*l* 即那里的 s). 为了得出更精确的关系,需要引进一些记号与概念.

例 1 证明对任意的自然数 t, l, 存在自然数 $a_l > a_{l-1} > \dots > a_m \ge m$, 使得

$$t = C_{a_l}^{l} + C_{a_{l-1}}^{l-1} + \dots + C_{a_m}^{m}, \qquad (2)$$

并且这种表示是唯一的.

解 t=1 时,有唯一的表示 $t=C_i(a_i=l)$.

如果t有所述的表示,那么

$$\begin{split} C_{a_{l}}^{l} &\leqslant t < C_{a_{l}}^{l} + C_{a_{l-1}}^{l-1} + \dots + C_{a_{m+1}}^{m+1} + C_{a_{m+1}}^{m} \\ &\leqslant C_{a_{l}}^{l} + C_{a_{l-1}}^{l-1} + \dots + C_{a_{m+2}}^{m+2} + C_{a_{m+2}}^{m+1} \\ &\leqslant \dots \\ &\leqslant C_{a_{l}}^{l} + C_{a_{l}}^{l-1} \\ &= C_{a_{l}+1}^{l} \,, \end{split}$$

从而 a_l 是满足 $C_t \leq t$ 的最大整数 x,被 l, t 唯一确定.

取定 a_l 为满足 $C_x^l \leq t$ 的最大整数 x 后,

$$t - C_{a_l}^l < C_{a_l+1}^l - C_{a_l}^l = C_{a_l}^{l-1}.$$

因此满足 $C_x^{-1} \leq t - C_{a_i}$ 的最大整数 $a_{i-1} < a_i$, a_{i-1} 也是唯一确定的. 依此类推,可唯一地定出 t 的表达式(2).

(2)称为 t 的 t-二项式表示.

$$S_j(A) = egin{cases} (A-\{j\}) \ igcup \{1\}, \ \exists \ j \in A, \ 1
otin A, \ (A-\{j\}) \ igcup \{1\}
otin A,
otin$$

及 ৶的位移

$$S_{j}(\mathscr{A}) = \{S_{j}(A) : A \in \mathscr{A}\}.$$

证明:

(i)
$$\Delta(S_j(\mathscr{A})) \subseteq S_j(\Delta\mathscr{A});$$
 (3)

(ii)
$$|\Delta \mathcal{A}| \geqslant |\Delta(S_{j}(\mathcal{A}))|$$
. (4)

解 设 $A \in \mathcal{A}$. 要证明 $\Delta(S_i(A)) \subseteq S_i(\Delta \mathcal{A})$.

128 •

若 $A = S_j(A)$,则对任一 $B \in \Delta(S_j(A)) = \Delta(A)$,均有 $A = B \cup \{i\}$. 由 $S_j(\Delta \mathscr{A})$ 的定义, $B = S_j(B)$ (这里 S_j 是 $\Delta \mathscr{A}$ 的位移,不是 \mathscr{A} 的位移),除非 $j \in B$, $1 \notin B$ 而且 $(B - \{j\})$ $\cup \{1\} \notin \Delta \mathscr{A}$. 但 $j \in B$, $1 \notin B$ 时, $i \neq j$. 在 i = 1 时, $(B - \{j\})$ $\cup \{1\} \in A - \{j\} \in \Delta \mathscr{A}$. 在 $i \neq 1$ 时, $j \in A$, $1 \notin A$, 由 于 $A = S_j(A)$,必有 $(A - \{j\})$ $\cup \{1\} \in \mathscr{A}$,从而仍有 $(B - \{j\})$ $\cup \{1\} \in \Delta \mathscr{A}$. 因此总有 $B = S_j(B) \in S_j(\Delta \mathscr{A})$.

若 $A \neq S_i(A)$,则 $j \in A$, $1 \notin A$, $S_i(A) = (A - \{j\}) \cup \{1\}$. 对任一 $B \in \Delta(S_i(A))$ 有 $B = (A - \{j\}) \cup \{1\} - \{i\}$, $i \in (A - \{j\}) \cup \{1\}$. 当 i = 1 时, $B = A - \{j\} = S_i(A - \{j\})$ $\in S_i(\Delta \mathscr{A})$. 当 $i \neq 1$ 时,又分两种情况: $1^\circ B \in \Delta \mathscr{A}$. 由于 $j \notin B$,显然 $B = S_i(B) \in S_i(\Delta \mathscr{A})$. $2^\circ B \notin \Delta \mathscr{A}$,即 $((A - \{i\}) - \{j\}) \cup \{1\} \notin \Delta \mathscr{A}$,此时 $B = ((A - \{i\}) - \{j\}) \cup \{1\} \in S_i(\Delta \mathscr{A})$.

因此恒有 $A \in \mathcal{A}$ 时, $\Delta(S_j(A)) \subseteq S_j(\Delta \mathcal{A})$ 、从而(3) 成立.

显然, \square 中任意两个集 A_1 , A_2 经位移后仍不相同. 所以 $|\Delta \square| = |S_1(\Delta \square)| \ge |\Delta(S_1(\square))|$.

现在可以介绍本节的主要内容.

例3 设 $\mathscr{A} = \{A_1, A_2, \dots, A_t\}$ 为 X 的 t 元子集的族, t 的 t 二项式表示为

$$t = C_{a_l}^{l} + C_{a_{l-1}}^{l-1} + \dots + C_{a_m}^{m}, \tag{5}$$

 $a_l > a_{l-1} > \cdots > a_m \geqslant m$,则

$$|\Delta \mathcal{A}| \geqslant C_{a_l}^{l+1} + C_{a_{l-1}}^{l+2} + \dots + C_{a_m}^{m-1}.$$
 (6)

这一结论称为 Kruskal-Katona 定理.

解 对 A 施行移位运算 S_i , $j = 2, 3, \dots, n$, 使含 1 的

集个数增加. 这样进行有限多次后,必有 $S_i(\mathscr{A}) = \mathscr{A}$ 对所有 $i \ge 2$ 均成立. 由例 2(3),在这过程中 $|\Delta\mathscr{A}|$ 不增. 因此不妨假设 $S_i(\mathscr{A}) = \mathscr{A}$ 对所有 $i \ge 2$ 均已成立. 令

$$\mathcal{A}_1 = \{\Lambda, \Lambda \in \mathcal{A}, 1 \notin A\},$$

 $\mathcal{A}_2 = \{A - \{1\}, A \in \mathcal{A}, 1 \in A\}.$

对任一 $B \in \Delta \mathbb{A}$,有 i > 1 使 $B \cup \{i\} \in \mathbb{A}$. 从而必有 $B \cup \{1\} \in \mathbb{A}$ (否则 $B \cup \{1\} = S_i(B \cup \{i\}) \in S_i(\mathbb{A}) = \mathbb{A}$,矛盾). 因此 $B \in \mathbb{A}$,从而

$$\mid \mathcal{A}_2 \mid \geqslant \mid \Delta \mathcal{A}_1 \mid. \tag{7}$$

当 l=1 及 l=n 时结论显然成立(前者 $\Delta \varnothing = \varnothing$, $|\Delta \varnothing|$ $= C_t^0 = 1$. 后者 t=1, $\Delta \varnothing$ 由所有 n-1 元集组成, $|\Delta \varnothing| = C_n^{n-1} = n-1$). 假设结论对 n < k 成立,并且对 n = k 且 l < k 也成立. 考虑 n = k, l = k 的情况.

若 |
$$\mathcal{A}_{2}$$
 | $< C_{a_{l}-1}^{l-1} + \cdots + C_{a_{m}-1}^{m-1}$, 则
$$| \mathcal{A}_{1} | = | \mathcal{A} | - | \mathcal{A}_{2} |$$

$$> (C_{a_{l}}^{l} - C_{a_{l}-1}^{l-1}) + \cdots + (C_{a_{m}}^{m} - C_{a_{m}-1}^{m-1})$$

$$= C_{a_{l}-1}^{l} + \cdots + C_{a_{m}-1}^{m}.$$

由归纳假设,

$$|\Delta \mathcal{A}_1| \geqslant C_{a_1-1}^{l-1} + \cdots + C_{a_m-1}^{m-1},$$

从而 $|\Delta A| > |A|$, 与(7)矛盾, 因此

$$|\mathcal{A}_{2}| \geqslant C_{a_{i}-1}^{l-1} + \dots + C_{a_{m}-1}^{m-1}.$$
 (8)

由归纳假设,

$$| \Delta \mathcal{A}_2 | \geqslant C_{a_j-1}^{l-2} + \dots + C_{a_m-1}^{m-2},$$
 (9)

(8),(9)相加得

$$|\mathcal{A}_{2}| + |\Delta \mathcal{A}_{2}| \geqslant C_{a_{1}}^{l-1} + \cdots + C_{a_{m}}^{m-1}.$$
 (10)

因为 △丞 中任一子集添加 1 后成为 △☑ 中子集,并且不同的子集添加 1 后各不相同. 这些子集与 丞 中子集(不含 1)不同. 所以

$$|\Delta \mathcal{A}| \geqslant |\mathcal{A}_2| + |\Delta \mathcal{A}_2|. \tag{11}$$

(10),(11)导出(6).

4.8 Milner 定理

若 n 元集 X 的子集族 $\mathscr{A} = \{A_1, A_2, \dots, A_t\}$ 是 S 族,并且 \mathscr{A} 中任两个集 A_i , A_j 均有 $|A_i \cap A_j| \geqslant k$, Milner 在 1968年证明了

$$|\mathcal{A}| \leqslant C_n^{\left[\frac{n+k-1}{2}\right]}. \tag{1}$$

我们分三步来证明(1),即下面的例 1~例 3.

例1 设 $X = \{1, 2, \dots, n\}$ 的子集族 $A \to I$ 族. 对 $1 < j \le n$ 及 $A \in A$,定义位移

$$S_j(A) = egin{cases} (A-\{1\}) \ igcup \{j\}, \ \hbox{$\stackrel{<}{A}$ $1 \in A$, $j \notin A$,} \ (A-\{1\}) \ igcup \{j\} \notin \mathscr{A}; \ A, \qquad$$
其他情况.

则 $S_i(\mathcal{A}) = \{S_i(A): A \in \mathcal{A}\}$ 仍为 I 族,并且

$$|\Delta \mathcal{A}| \geqslant |\Delta(S_{j}(\mathcal{A}))|. \tag{2}$$

解 $S_{r}(A)$ 实际上与上节相同,只不过将元素的标号 1 与 r 互换,因此(2)即上节的(4),无用再证.

为了证明 $S_i(\mathcal{A})$ 是 I 族,设 A_1 , $A_2 \in \mathcal{A}$, 往证 $S_i(A_1)$ \cap

 $S_{j}(A_{2}) \neq \emptyset$. 显然只需考虑 $S_{j}(A_{1}) = A_{1}$, $S_{j}(A_{2}) = (A_{2} - \{1\}) \cup \{j\}$ 的情况. 设 $a \in A_{1} \cap A_{2}$, 若 $a \neq 1$, 则 $a \in S_{j}(A_{1}) \cap S_{j}(A_{2})$. 若 a = 1, $j \in A_{1}$, 则 $j \in S_{j}(A_{1}) \cap S_{j}(A_{2})$. 若 a = 1, $j \notin A_{1}$, 则由于 $S_{j}(A_{1}) = A_{1}$, 必有 $(A_{1} - \{1\}) \cup \{j\}$ $\in \mathscr{A}$. \mathscr{A} 是 I 族, 必有 $y \in A_{2} \cap ((A_{1} - \{1\}) \cup \{j\})$. 显然 $y \neq 1$. 因为 $j \notin A_{2}$, $y \neq j$. 从而 $y \in S_{j}(A_{1}) \cap S_{j}(A_{2})$.

例2 若 $A = \{A_1, A_2, \dots, A_l\}$ 是 I 族,并且 A_1, A_2, \dots, A_l 都是 n 元集 X 的 l 元子集,则

$$|\Delta \mathcal{A}| \geqslant |\mathcal{A}|. \tag{3}$$

解 n=1时(3)显然成立. 假设(3)对 $n-1(\ge 1)$ 成立. 若 $l \ge \frac{1}{2}(n+1)$, 由 4.2节例 2,将 P(X)分解为对称链,每个 $A_i(1 \le i \le t)$ 在一条链中,这条链中有一个比 A_i 恰少一个元的集 B_i . 这些 $B_i(1 \le i \le t)$ 互不相同(在不同的链

以下设 $l \leq \frac{1}{2}n$.

中),因此(3)成立.

若 l=1,则 t=1, $|\Delta \mathcal{A}|=|\mathcal{A}|$.

若 l=2, t=1,则 $|\Delta \mathscr{A}|=2>|\mathscr{A}|$.若 l=2, $t\geq 2$, 又有两种情况:1° X 的每个元素至多属于两个 \mathscr{A} 中子集. 设 $A_1=\{a,b\},A_2=\{a,c\},$ 则由于 \mathscr{A} 是 I 族,至多还有一个 集,即 $\{b,c\}\in\mathscr{A}$. 从而 $|\Delta \mathscr{A}|=3>|\mathscr{A}|$. 2° X 的元素 $a\in$ $A_1\cap A_2\cap A_3$. 由于 \mathscr{A} 是 I 族,任一 \mathscr{A} 中的集 A, 含有 a (否 则二元集 A, 不可能与 A_1 , A_2 , A_3 均有公共元).于是 $|\Delta \mathscr{A}|=1+|\mathscr{A}|>|\mathscr{A}|$.

设 l > 2 并且将 l 换为较小的自然数时(3)成立。

对 🛭 重复施用位移 S_i (j=2,3,...,n), 使得含 1 的集 • 132 •

减少,经有限多步后,不再产生新的集. 由例 1,新的集族仍为 I 族并有不等式(2). 不妨假定 $S_i(\mathcal{A}) = \mathcal{A}, j = 2, 3, \dots, n$.

如果 1 不属于 1 中任一个集,那么 1 是 n-1 元集 $\{2,3,\dots,n\}$ 的子集族,从而 $\{3\}$ 成立。

设 1 属于 A_1 , A_2 , ... , A_n , 不属于 A_{s+1} , ... , A_l . 令 $B_i = A_n - \{1\}$, $i = 1, 2, \dots$, s. 因为 $l \leq \frac{1}{2}n$, 所以 $|A_1 \cup A_2| \leq 2l - 1 < n$. 即有 X 的元素 $j \notin A_1 \cup A_2$, 但 $S_j(A_1) = A_1$, 所以 $|A_1 - \{1\}| \cup \{j\} \in \mathcal{A}$, 即 $|B_1 \cup \{j\}| \in \mathcal{A}$. 因此 $|B_1 \cap B_2| = |(B_1 \cup \{j\}) \cap B_2| = |(B_1 \cup \{j\}) \cap A_2| > 1$. 同理 B_1 , B_2 , ... , B_s 中每两个的交非空. 因此 $\mathcal{B} = \{B_1$, B_2 , ... , B_s 是 I 族 ,由关于 I 的归纳假设

$$|\Delta \mathcal{B}| \geqslant |\mathcal{B}|. \tag{4}$$

 $\{2, 3, \dots, n\}$ 的子集族 $\mathcal{C} = \{A_{s+1}, A_{s+2}, \dots, A_{s}\}$ 也是 I族,因此由关于 n 的归纳假设

$$|\Delta\mathscr{C}| \ge |\mathscr{C}|. \tag{5}$$

由(4),(5)得

 $|\Delta \mathcal{A}| \geqslant |\Delta \mathcal{B}| + |\Delta \mathcal{C}| \geqslant |\mathcal{B}| + |\mathcal{C}| = |\mathcal{A}|.$

例 2 是 Katona 1964 年发现的定理.

例3 证明(1)式成立.

解 记 $l = \left[\frac{n+k+1}{2}\right]$. 若 A 中所有 A_i 满足 $|A_i| = l$, (1) 显然成立. 若 A 中有元数 < l 的集, 不妨设 A_1 , A_2 , ..., A_s 的元数最少, 均为 h 元集, h < l. 考虑集族

 $\mathcal{B} = \{B: B \ni X \text{ 的 } h+1 \text{ 元子集并且至少包含一个 } A_i$, $1 \leq i \leq s\}$.

显然 $\mathcal{B} \cup \{A_{+1}, \dots, A_{\ell}\}$ 仍为 S 族 \mathcal{A} 并且其中任两个集的交集至少有 k 个元.

由于 $|A_1 \cap A_2| \geqslant k$,所以 $|A_1 \cup A_2| \leqslant 2h - k$, $|A_1' \cap A_2'| \geqslant n-2h+k \geqslant n-2l+k+2 \geqslant 1$. 从而 A_1' , A_2' ,…, A_3' 是 I 族. 由例 2,

$$|\Delta(\{A_1', A_2', \dots, A_s'\})| \ge |\{A_1', A_2', \dots, A_s'\}| = s.$$
(6)

而 $\Delta(\{A_1', A_2', \dots, A_s'\})$ 正好是 \mathcal{B} 中各集的补集所成的族. 因此(6)表明 $|\mathcal{B}| \geqslant s$.

对族 $\mathcal{B} \cup \{A_{i+1}, \dots, A_i\}$ 进行同样处理,直至每个集的元数都 $\geq l$. 在这过程中 $|\mathcal{A}|$ 不减. 因此可设 \mathcal{A} 中每个集的元数 $\geq l$.

例 3 中的 \mathscr{B} 称为 $\mathscr{A} = \{A_1, A_2, \dots, A_n\}$ 的荫. 荫与影是一对对偶的概念,它在 4.1 节例 1 的第二个解法中业已出现过.

4.9 上族与下族

设 $A \neq X$ 的集族. 若 $A \neq A$ 具有性质:

$$A \in \mathcal{A}, B \subset A \Leftrightarrow B \in \mathcal{A}, \tag{1}$$

则称 以为下族,类似地,若 从具有性质,

则称 ⋊ 为上族.

显然 ⋈为上(下)族,当且仅当

$$\mathscr{A}' = \{A' : A \in \mathscr{A}\} \tag{3}$$

为下(上)族.

例 1 若 \mathcal{U} 是 n 元集 X 的上族, \mathcal{D} 是 X 的下族, 则

$$|\mathcal{U}| \cdot |\mathcal{D}| \geqslant 2^n |\mathcal{U} \cap \mathcal{D}|. \tag{4}$$

解 当 n=1 时, % 只有两种可能, 即

$$\{\{1\}\}$$
或 $\{\{1\},\emptyset\}$.

②也仅有两种可能,即

$$\{\emptyset\}$$
或 $\{\{1\},\emptyset\}$.

不难验证(4)均成立.

假设将 n 换成 n-1 时, (4) 成立. 考虑 n 的情况.

将集族 % 分拆为集族 % ,% ,其中 % 由 % 中含 n 的那 些集组成 % 由 % 中不含 n 的集组成. 由于 % 是上族 % 所以

$$|\mathcal{U}_1| \geqslant |\mathcal{U}_2|. \tag{5}$$

(% 中每个集增添 n 后成为 % 中的集.)

同样,将 \mathfrak{D} 分拆为 \mathfrak{D}_1 , \mathfrak{D}_2 ,其中 \mathfrak{D}_1 中的集含 \mathfrak{n} , \mathfrak{D}_2 中的集不含 \mathfrak{n} ,由于 \mathfrak{D} 为下族,所以

$$\mid \mathcal{Y}_2 \mid \geqslant \mid \mathcal{T}_1 \mid. \tag{6}$$

由(5),(6)及归纳假设

 $|\mathcal{U}| \cdot |\mathcal{D}| = (|\mathcal{U}_1| + |\mathcal{U}_2|)(|\mathcal{D}_1| + |\mathcal{D}_2|)$

- $= | \mathcal{U}_1 | \cdot | \mathcal{D}_1 | + | \mathcal{U}_2 | \cdot | \mathcal{D}_2 | + | \mathcal{U}_1 | \cdot | \mathcal{D}_1 | + | \mathcal{U}_2 | \cdot | \mathcal{D}_2 |$ $+ (| \mathcal{U}_1 | | \mathcal{U}_2 |) (| \mathcal{D}_2 | | \mathcal{D}_1 |)$

$$\geqslant 2(\mid \mathcal{U}_1 \mid \cdot \mid \mathcal{D}_1 \mid + \mid \mathcal{U}_2 \mid \cdot \mid \mathcal{D}_2 \mid)$$

$$\geqslant 2(2^{n-1} \mid \mathcal{U}_1 \cap \mathcal{Q}_1 \mid +2^{n-1} \mid \mathcal{U}_2 \cap \mathcal{Q}_2 \mid)$$

 $=2" \mid \mathcal{U} \cap \mathcal{D} \mid$.

(4) 称为 Kleitman 引理. 1966 年创办的杂志 Journal of Combinatorial Theory,在第一期上刊登了 Kleitman 的这个结果. 这个引理应用极多. 由它引出了一系列的结论.

例 2 若 \mathcal{Q} , \mathcal{A} 都是 n 元集 X 的下族,则

$$|\mathcal{D}| \cdot |\mathcal{A}| \leqslant 2^n |\mathcal{A} \cap \mathcal{D}|. \tag{7}$$

解 令 $\mathcal{U} = P(X) - \mathcal{A}$, 则 \mathcal{U} 为上族. 事实上,设 $A \in \mathcal{U}$, 而 $B \supseteq A$, 则在 $B \notin \mathcal{U}$ 时, $B \in \mathcal{A}$, 从而 $A \in \mathcal{T}$ 族 \mathcal{A} , 与 $A \in \mathcal{U}$ 矛盾. 所以 $B \in \mathcal{U}$, \mathcal{U} 为上族.

由例 1,

$$|\mathcal{U}| \cdot |\mathcal{D}| \geqslant 2^n |\mathcal{U} \cap \mathcal{D}|$$

即

$$(2^n - |\mathscr{A}|) \cdot |\mathscr{D}| \geqslant 2^n (|\mathscr{D}| - |\mathscr{A} \cap \mathscr{D}|),$$

从而(7)成立.

类似地,若观,多都是上族,则

$$|\mathcal{U}| \cdot |\mathcal{B}| \leqslant 2^n |\mathcal{U} \cap \mathcal{B}|. \tag{8}$$

例 3 若 \mathbb{Z} 是 I 族,并且 \mathbb{Z} 中任两个元 A, B 的并集不等于 X. 证明:

$$\mid \mathcal{A} \mid \leqslant 2^{n-2}. \tag{9}$$

解令

 $\mathcal{U} = \{B: B \supseteq \mathcal{A} \text{ 中某个集 } A\},$ $\mathcal{Q} = \{B: B \subseteq \mathcal{A} \text{ 中某个集 } A\},$

则 \mathcal{U} 为上族, \mathcal{Q} 为下族, $\mathcal{U} \cap \mathcal{Q} = \mathcal{A}$. 由例 1,

$$|\mathcal{U}| \cdot |\mathcal{D}| \geqslant 2^n \cdot |\mathcal{A}|. \tag{10}$$

因为 A是 I 族,所以 Q 也是 I 族,从而由 4.5 节例 1,

$$\mid \mathcal{U} \mid \leqslant 2^{n-1}. \tag{11}$$

又 \mathfrak{D} 中任意两个元素的并集不是X,因此,由习题9,

$$\mid \mathcal{D} \mid \leqslant 2^{r-1}. \tag{12}$$

由(10),(11),(12)得(9).

例 4 若 \mathcal{A}_1 , \mathcal{A}_2 , ..., \mathcal{A}_n 均为 I 族,则

$$|\bigcup \mathcal{A}_i| \leqslant 2^n - 2^{n-k}. \tag{13}$$

解 k=1 的情况即 4.5 节例 1. 假设(13)在 k 换为 k-1 时成立,考虑 k 的情况.

由 4.5 节例 1 的注 2,可设 | 🍕 | = 2**1. 令

$$\mathcal{D} = \{A: A \notin \mathcal{A}_k\},\,$$

则 ② 是下族并且 | ② | = 2"-1.

 $\mathcal{B} = \bigcup_{k=1}^{k-1} \mathcal{A}_k$ 如果不是上族,那么有集 $B, B \supseteq A, A \in \mathcal{B}_k$ 因而有 $\mathcal{A}_m(1 \le m \le k-1)$ 含 A,将 B 加到 \mathcal{A}_m 中, \mathcal{A}_m 仍为 I 族. 通过这样的添加,直至 \mathcal{B} 成为上族.

于是,由例1及归纳假设,

$$|\bigcup_{i=1}^{k} \mathcal{A}_{i}| = |\mathcal{B} \bigcup \mathcal{A}_{k}| \leqslant |\mathcal{B} \cap \mathcal{D}| + |\mathcal{A}_{k}|$$

$$\leqslant \frac{1}{2^{n}} |\mathcal{B}| \cdot |\mathcal{D}| + 2^{n-1}$$

$$\leq \frac{1}{2^n} \cdot (2^n - 2^{n-(k-1)}) \cdot 2^{n-1} + 2^{n-1}$$

$$= 2^n - 2^{n-k}.$$

(13)中的上界是最佳的. 令 \mathcal{A} 由含元素 i 并且不含 1, 2, …, i-1 的那些集组成,则 $|\mathcal{A}_i| = 2$ " ' $(1 \leq i \leq k)$.

$$|\bigcup_{i=1}^k \mathscr{A}_i| = \sum_{i=1}^k 2^{n-i} = 2^n - 2^{n-k}.$$

4.10 四函数定理

上节 Kleitman 引理(例 1)导出一系列结果,以 1978 年 Ahlswede 与 Daykin 的四函数定理为顶峰,本节将介绍这一定理.

设 \mathcal{A} , \mathcal{B} 为 X 的子集族,定义

$$\mathscr{A} \vee \mathscr{B} = \{ E, E = A \cup B, A \in \mathscr{A}, B \in \mathscr{B} \}, \tag{1}$$

$$\mathscr{A} \wedge \mathscr{B} = \{E: E = A \cap B, A \in \mathscr{A}, B \in \mathscr{B}\}. \tag{2}$$

例1 证明:

(i) 若 ⋈, ℬ 为上族,则

$$\mathscr{A} \vee \mathscr{B} = \mathscr{A} \cap \mathscr{B}; \tag{3}$$

(ii) 若 A, B 为下族,则

$$\mathcal{A} \wedge \mathcal{B} = \mathcal{A} \cap \mathcal{B}. \tag{4}$$

解 (i) 设集 $E \in \mathcal{A} \vee \mathcal{B}$,则 $E = A \cup B$, $A \in \mathcal{A}$, $B \in \mathcal{B}$. 由于 \mathcal{A} 为上族,所以 $E \in \mathcal{A}$, $E \in \mathcal{B}$, 从而 $E \in \mathcal{A} \cap \mathcal{B}$.

反之,设 $E \in \mathcal{A} \cap \mathcal{B}$,则 $E = E \cup E$, $E \in \mathcal{A}$, $E \in \mathcal{B}$, 所以 $E \in \mathcal{A} \vee \mathcal{B}$.

因此(3)成立.

(ii)的证明与(i)类似.

例 2 (四函数定理) 若 α , β , γ , δ 是四个定义在P(X) 上的非负函数,对任意 A, $B \subseteq X$, 满足

$$\alpha(A)\beta(B) \leqslant \gamma(A \cup B)\delta(A \cap B), \tag{5}$$

则对 X 的任意两个子集族 A, B,

$$\alpha(\mathcal{A})\beta(\mathcal{B}) \leqslant \gamma(\mathcal{A} \vee \mathcal{B})\delta(\mathcal{A} \wedge \mathcal{B}), \tag{6}$$

其中

$$\alpha(\mathscr{A}) = \sum_{A \in \mathscr{A}} \alpha(A), \qquad (7)$$

β(B), γ(A V B), δ(A V B) 与此类似.

 \mathbf{M} 对 X 的元数 n 进行归纳.

n = 1 时,(5) 成为

$$\alpha(\emptyset)\beta(\emptyset) \leqslant \gamma(\emptyset)\delta(\emptyset),$$

$$\alpha(\emptyset)\beta(X) \leqslant \gamma(X)\delta(\emptyset),$$

$$\alpha(X)\beta(\emptyset) \leqslant \gamma(X)\delta(\emptyset),$$

$$\alpha(X)\beta(X) \leqslant \gamma(X)\delta(X).$$
(8)

若 \mathscr{A} 或 \mathscr{B} 仅有一个元,则(6)显然成立:例如 $\mathscr{A} = \{\emptyset\}$, $\mathscr{B} = \{\emptyset, X\}$,则(6)式成为

 $\alpha(\emptyset)(\beta(\emptyset) + \beta(X)) \leq (\gamma(\emptyset) + \gamma(X))\delta(\emptyset),$

即(8)的前两个式子之和、

若
$$\mathscr{A} = \mathscr{B} = \{ \varnothing, X \}, \text{则}(6)$$
式成为
$$(\alpha(\varnothing) + \alpha(X))(\beta(\varnothing) + \beta(X))$$
 $\leq (\gamma(\varnothing) + \gamma(X))(\delta(\varnothing) + \delta(X)).$ (9)

当 $\delta(\emptyset) = 0$ 时,由(8)的前面三式,(9)的左边为

 $\alpha(X)\beta(X)$,因而由(8)的第四式,(9)成立,当 $\gamma(X)=0$ 时,情况类似.设 $\delta(\emptyset)$ 与 $\gamma(X)$ 均不为0,则 $\gamma(\emptyset) \geqslant \frac{\alpha(\emptyset)\beta(\emptyset)}{\delta(\emptyset)}$,

$$\delta(X) \geqslant \frac{\alpha(X)\beta(X)}{\gamma(X)},$$

$$(\gamma(\emptyset) + \gamma(X))(\delta(\emptyset) + \delta(X))$$

$$-(\alpha(\emptyset) + \alpha(X))(\beta(\emptyset) + \beta(X))$$

$$\geqslant \left(\frac{\alpha(\emptyset)\beta(\emptyset)}{\delta(\emptyset)} + \gamma(X)\right) \left(\delta(\emptyset) + \frac{\alpha(X)\beta(X)}{\gamma(X)}\right)$$

$$-(\alpha(\emptyset) + \alpha(X))(\beta(\emptyset) + \beta(X))$$

$$= \gamma(X)\delta(\emptyset) + \frac{\alpha(\emptyset)\alpha(X)\beta(\emptyset)\beta(X)}{\delta(\emptyset)\gamma(X)}$$

$$-\alpha(\emptyset)\beta(X) - \alpha(X)\beta(\emptyset)$$

$$= \frac{1}{\delta(\emptyset)\gamma(X)}(\gamma(X)\delta(\emptyset))$$

$$-\alpha(\emptyset)\beta(X))(\delta(\emptyset)\gamma(X) - \alpha(X)\beta(\emptyset))$$

$$\geqslant 0 ((8) 的第二、三式),$$

即(9)成立.

假设结论对 n-1 元集成立. 考虑 n 元集 $X = Y \cup W$, 其中 $Y = \{1, 2, \dots, n-1\}$, $W = \{n\}$.

对每一个集 $A \subseteq X$,令

$$A = A_1 \cup A_2$$
, $A_1 = A \cap Y$, $A_2 = A \cap W$.

又对任一集 $C \in P(Y)$ (即 $C \subseteq Y$), 定义函数

$$\alpha_1(C) = \sum_{\substack{A \in \mathcal{A} \\ A_1 = C}} \alpha(A),$$

则

$$\alpha(\mathcal{A}) = \sum_{A \in \mathcal{A}} \alpha(A) = \sum_{C \in P(Y)} \sum_{\substack{A \in \mathcal{A} \\ A_1 = C}} \alpha(A)$$
$$= \sum_{C \in P(Y)} \alpha_1(C) = \alpha_1(P(Y)).$$

类似地可以定义 β_1 , γ_1 , δ_1 ,并且得到

$$eta(\mathscr{B}) = eta_1(P(Y)),$$
 $\gamma(\mathscr{A} \lor \mathscr{B}) = \gamma_1(P(Y)),$
 $\delta(\mathscr{A} \land \mathscr{B}) = \delta_1(P(Y)).$

若对所有 C, $D \in P(Y)$,

$$\alpha_1(C)\beta_1(D) \leqslant \gamma_1(C \cup D)\delta_1(C \cap D), \tag{10}$$

则由归纳假设,

$$\alpha(\mathscr{A})\beta(\mathscr{B}) = \alpha_1(P(Y))\beta_1(P(Y))$$

$$\leq \gamma_1(P(Y))\beta_1(P(Y)) = \gamma(\mathscr{A} \vee \mathscr{B})\delta(\mathscr{A} \wedge \mathscr{B}).$$

因此只需证明(10)。

固定 C, D. 对集 $R \in P(W)$ (即 $R \subseteq W$) 定义

$$a_2(R) = \begin{cases} a(R \cup C), \quad \angle A \in \mathcal{A}; \\ 0, \quad \angle A. \end{cases}$$

$$eta_2(R) = \left\{ egin{array}{ll} eta(R igcup D), \ \hbox{ \vec{E} $R igcup D \in \mathscr{B}$;} \ 0, \ \hbox{ \vec{E} \vec{E} \vec{E}.} \end{array}
ight.$$

$$\gamma_2(R) = \begin{cases} \gamma(R \cup (C \cup D)), \stackrel{\cdot}{A}R \cup (C \cup D) \in A \lor B, \\ 0, & \text{其他.} \end{cases}$$

$$\delta_2(R) = \begin{cases} \delta(R \cup (C \cap D)), \text{ 若 } R \cup (C \cap D) \in \mathscr{A} \land \mathscr{B}; \\ 0, \quad \text{其他.} \end{cases}$$

则

$$a_1(C) = \sum_{\substack{A \in \mathscr{A} \\ A_1 = C}} a(A) = \sum_{\substack{R \subseteq W \\ A_2 = R}} \sum_{\substack{A \in \mathscr{A} \\ A_2 = R}} a(A)$$

$$= \sum_{\substack{K \subseteq W \\ M_2 = R}} a_2(R) = a_2(P(W)),$$

同样

$$\beta_1(D) = \beta_2(P(W)), \ \gamma_1(C \cup D) = \gamma_2(P(W)),$$

$$\delta_1(C \cap D) = \delta_2(P(W)).$$

若对所有 $R, Q \in P(W)$, 均有

$$\alpha_2(R)\beta_2(Q) \leqslant \gamma_2(R \cup Q)\delta_2(R \cap Q),$$
 (11)

则由 n=1 时的结论,

$$\alpha_1(C)\beta_1(D) = \alpha_2(P(\mathbf{W}))\beta_2(P(\mathbf{W}))$$

 $\leq \gamma_2(P(\mathbf{W}))\delta_2(P(\mathbf{W})) = \gamma_1(C \cup D)\delta_1(C \cap D),$

即(10)成立.

最后,我们证明(11)成立. 若 $\alpha_2(R)\beta_2(Q) = 0$, (11)显然成立. 设 $\alpha_2(R)\beta_2(Q) \neq 0$, 则

$$R \cup C \in \mathcal{A}, \ Q \cup D \in \mathcal{B},$$

$$\alpha_2(R)\beta_2(Q) = \alpha(R \cup C)\beta(Q \cup D),$$

并且

$$(R \cup Q) \cup (C \cup D) = (R \cup C) \cup (Q \cup D) \in \mathcal{A} \vee \mathcal{B},$$

$$(R \cap Q) \cup (C \cap D) = (R \cup C) \cap (Q \cup D) \in \mathcal{A} \wedge \mathcal{B}.$$

$$\gamma_2(R \cup Q)\delta_2(R \cap Q)$$

 $= \gamma((R \cup C) \cup (Q \cup D))\delta((R \cup C) \cap (Q \cup D)).$

于是由(5)得(11) $(A = R \cup C, B = Q \cup D)$.

四函数定理有众多的应用.

142 •

例 3 若 \mathcal{A} , \mathcal{B} 为 X 的集,则

$$|\mathcal{A}| \cdot |\mathcal{B}| \leq |\mathcal{A} \vee \mathcal{B}| \cdot |\mathcal{A} \wedge \mathcal{B}|. \tag{12}$$

解 在例 2 中取 $\alpha = \beta = \gamma = \delta = 1$ 即得.

例 4 试用四函数定理证明 Kleitman 引理(4.9 节例 1).

解 令 $\mathscr{A} = \mathscr{U} \cap \mathscr{D}$, $\mathscr{B} = P(X)$. $\mathscr{A} \vee \mathscr{B}$ 中任一元可表为 $A \cup B$, $A \in \mathscr{A}$, $B \in \mathscr{B}$. 因为 $A \in \mathscr{U}$. 而 \mathscr{U} 为上族,所以 $A \cup B \in \mathscr{U}$. 从而 $\mathscr{A} \vee \mathscr{B} \subseteq \mathscr{U}$. $\mathscr{A} \wedge \mathscr{B}$ 中任一元可表为 $A \cap B$, $A \in \mathscr{A}$, $B \in \mathscr{B}$. 因为 $A \in \mathscr{D}$, 而 \mathscr{D} 为下族,所以 $A \cap B \in \mathscr{D}$. 从而 $A \wedge \mathscr{B} \subseteq \mathscr{D}$.

由(12),

$$2^{n} \mid \mathscr{U} \cap \mathscr{D} \mid = \mid \mathscr{A} \mid \bullet \mid \mathscr{B} \mid$$

$$\leq \mid \mathscr{A} \vee \mathscr{B} \mid \bullet \mid \mathscr{A} \wedge \mathscr{B} \mid \leq \mid \mathscr{U} \mid \bullet \mid \mathscr{D} \mid.$$

例 5 令 $\mathscr{A}-\mathscr{B}=\{A-B:A\in\mathscr{A},\ B\in\mathscr{B}\}$. 证明对任—集族 \mathscr{A} ,

$$|\mathcal{A} - \mathcal{A}| \geqslant |\mathcal{A}|. \tag{13}$$

解令
$$\mathscr{A}' = \{A' : A \in \mathscr{A}\}.$$
由(12),
$$|\mathscr{A}| \cdot |\mathscr{B}| = |\mathscr{A}| \cdot |\mathscr{B}'|$$
$$\leqslant |\mathscr{A} \vee \mathscr{B}'| \cdot |\mathscr{A} \wedge \mathscr{B}'|$$
$$= |\mathscr{A} \vee \mathscr{B}')' | \cdot |\mathscr{A} \wedge \mathscr{B}'|$$
$$= |\mathscr{A}' \wedge \mathscr{B}| \cdot |\mathscr{A} \wedge \mathscr{B}'|$$
$$= |\mathscr{B} - \mathscr{A}| \cdot |\mathscr{A} - \mathscr{B}|.$$

取 $\mathcal{B} = \mathcal{A}$,得 $|\mathcal{A}|^2 \leqslant |\mathcal{A} - \mathcal{A}|^2$,即(13)成立.

4.11 H 族

Helly 定理是众所周知的:在平面上的 n 个凸集,如果每

三个均有公共点,那么这 n 个凸集必有公共点(例如参看拙著《覆盖》,上海教育出版社 1983 年出版). 换句话说,如果这 n 个凸集没有公共点,那么其中必有三个凸集没有公共点.

H族(Helly族)的定义即由此而来.

设 \mathscr{A} 是 X 的子集族. 如果对于 \mathscr{A} 的任一个子族 $\mathscr{B} = \{B_1, B_2, \dots, B_r\} \subseteq \mathscr{A}$, 当

$$\bigcap_{B\in\mathscr{D}} B = B_1 \cap B_2 \cap \cdots \cap B_s = \varnothing \tag{1}$$

时,均可从 B_1 , B_2 , …, B_n 中取出至多 k 个,它们的交为空集,那么 🗷 就称为 H_k 族.

 H_1 族中,所有非空子集的交必须非空(否则由(1)导出 B_1 , B_2 , …, B_n , 中至少有一个为空集). 反之,交非空的一些非空子集组成 H_1 族,将空集添加进去也还是 H 族.

 H_2 族也常简称为 H 族. 在这种族中,如果每两个非空子集均有公共元,那么族中所有非空子集也有公共元. 数轴上的闭区间所成的族就是 H_2 族.

平面上的凸集所成的族是 H。族.

显然,当 $k \ge |\mathcal{A}|$ 时, \mathcal{A} 是 H_k 族. 又由定义易知:

- (i) H, 族的子集—定是 H, 族;
- (ii) H_{k-1} 族一定是 H_k 族. 但 H_k 族不一定是 H_{k-1} 族. 如果 \mathcal{A} 是 H_k 族而不是 H_{k-1} 族,那么 \mathcal{A} 中有 k 个集 A_1 , A_2 , …, A_k , 满足

$$A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset. \tag{2}$$

但 A_1 , A_2 , …, A_k 中任意 k-1 个的交都不是空集;

(iii) 设 $\mathcal{A} = \{A_1, A_2, ..., A_t\}$ 是 H_k 族,那么

 $\mathscr{B} = \{A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_s} \mid 1 \leqslant i_1 < i_2 < \cdots < i_s \leqslant t\}$

也是 H_k 族(若 \mathcal{B} 中子集 B_1 , B_2 , …, B_u 的交为空集,则由于

每个 B_i 为若干个 $A \in \mathcal{A}$ 的交,所以必有若干个 A 的交为空集,不妨设 A_1 , A_2 , ... , A_v 的交为空集,并且每个 A_i ($1 \leq i \leq v$) 至少包含一个 B_{i_i} ($1 \leq j_i \leq u$). 因为 \mathcal{A} 是 H_k 族,在 A_i ($1 \leq i \leq v$) 中有 $l \leq k$ 个的交为空集,含于这 $l \wedge A_i$ 中的相应的 B_{i_i} (其中可能有相等的),个数 $\leq l \leq k$,而且交为空集).

为了讨论 H 族的最大元数,我们需要一点准备,即下面的例 1,它本身也是很有趣的.

例1 设 A_1 , A_2 , …, A_i ; B_1 , B_2 , …, B_i 都是 n 元集 X 的子集,满足:

- (i) $\Lambda_i \cap B_i = \emptyset$ ($i = 1, 2, \dots, t$);
- (ii) 当 $i \neq j$ 时, A_i 不是 $A_j \cup B_j$ 的子集 $(i, j = 1, 2, \dots, t)$.

设 $|A_i| = a_i$, $|B_i| = b_i$,

$$w(i) = w(a_i, b_i, n) = \frac{1}{C_{n-b_i}^{a_{i-b_i}}},$$
 (3)

则

$$\sum_{i=1}^{l} \boldsymbol{w}(i) \leqslant 1. \tag{4}$$

当且仅当 $B_1 = B_2 = \cdots = B_t = B$, A_1 , A_2 , \cdots , A_t 为 X - B 的全部 a 元子集 $(1 \le a \le n - |B|)$ 时, (4) 中等号成立.

解 对 n 进行归纳. n=1 时 t=1, $\Lambda_1=X$, $B_1=\emptyset$, 结论显然. 设结论对 n-1 成立,考虑 n 元集 X 的情形.

不妨设 $A_i \cup B_i \neq X$ (否则由(ii)得 t = 1,结论显然), $i = 1, 2, \dots, t$. 因而 $a_i + b_i \leq n$ ($1 \leq i \leq t$).

$$I_{i} = \{i \mid 1 \leqslant i \leqslant t, A_{i} \subseteq X_{i}\}.$$

又对 $i \in I_i$,令

$$B_{\dot{v}} = B_i \cap X_j, \ b_{\dot{v}} = |B_{\dot{v}}|,$$

$$w_{j(i)} = w(a_i, b_{\dot{v}}, n-1) = \frac{1}{C_{n-1-b_{\dot{v}}}^{a_i}}.$$

对 n-1 元集 X_i 及其子集 A_i , B_{ij} , $(i \in I_j)$, 由归纳假设,

$$\sum_{i \in I_j} w_{j(i)} \leqslant 1, \quad j = 1, 2, \dots, n.$$
 (5)

含 A_i 的 X_j 共 $n - a_i$ 个,其中含 B_i 的 X_j 共 $n - a_i - b_i$ 个,不含 B_i 的 X_j 共 b_i 个. 对不含在 X_j 中的 B_i , $b_{ij} = |B_{ij}|$ $= b_i - 1$, $w_{j(i)} = \frac{1}{C_{k-b}^2}$. 因此对固定 i,

$$\sum_{i \in I_{j}} w_{j(i)} = (n - a_{i} - b_{i}) \times \frac{1}{C_{n-1-b_{i}}^{a_{i}}} + b_{i} \times \frac{1}{C_{n-b_{i}}^{a_{i}}}$$

$$= (n - b_{i}) \times \frac{1}{C_{n-b_{i}}^{a_{i}}} + b_{i} \times \frac{1}{C_{n-b_{i}}^{a_{i}}} = n w(i).$$
(6)

综合(5),(6)得

$$n = \sum_{j=1}^{n} 1 \geqslant \sum_{j=1}^{n} \sum_{i \in I_{j}} w_{j(i)} = \sum_{i=1}^{t} \sum_{i \in I_{j}} w_{j(i)} = n \sum_{i=1}^{t} w(i),$$

即(4)成立.

若(4)中等号成立,则(5)中等号成立,可由归纳假设得出等号成立的条件,参见习题 31.

注 1:条件(ii)隐含 A; 均不是空集.

注 2: 当 $a_1 = a_2 = \cdots = a_t = a$, $b_1 = b_2 = \cdots = b_t = b$ 时, (4) 成为 $t \leq C_{n-b}^a$.

称 r+1 元集的全部(r+1 个)r 元子集所成的族为 $K^{(r+1)}$.

例 2 设子集族 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 中, 每个集 A_i 的元数 $\leq r$, 则 \mathscr{A} 为 H_r 族的充分必要条件是 \mathscr{A} 不含 $K^{(r+1)}$.

解 若 \mathscr{A} 含有 $K^{(r+1)}$, $K^{(r+1)}$ 中各子集的并集为 $\{1, 2, \dots, r+1\}$, 则 $K^{(r+1)}$ 由 $B_i = \{1, 2, \dots, r+1\} - \{i\}$ $(i = 1, 2, \dots, r+1)$ 这 r+1 个子集组成. B_1 不含 $1, B_2$ 不含 $2, \dots, B_{r+1}$ 不含 r+1,因此 $B_1 \cap B_2 \cap \dots \cap B_{r+1} = \varnothing$. 但任意 r 个子集的交 $B_1 \cap \dots \cap B_{r+1} \cap B_{r+1} \cap \dots \cap B_{r+1} = \{i\} \neq \varnothing$. 所以 \mathscr{A} 不是 H_r 族.

反之,设 \mathcal{A} 不是 H_r 族. 因为 \mathcal{A} 是 H_n 族,所以必存在 k $\geqslant r$,使 \mathcal{A} 为 H_{k+1} 族,但不是 H_k 族. 因此 \mathcal{A} 中必存在 A_1 , A_2 ,…, A_{k+1} 它们的交为空集,但它们中每 k 个的交非空. 设 $x_i \in \bigcap_{1 \le j \le k+1} A_j$,则 $x_i \notin A_i$. 因此 x_1 , x_2 , …, x_{k+1} 互不相同,

 $|A_{r}| \geqslant k \geqslant r$,但已知 $|A_{r}| \leqslant r$,所以 $|A_{r}| = k = r$. A_{1} , A_{2} ,…, A_{r+1} 构成族 $K^{(r+1)}$,即 A 必含 $K^{(r+1)}$.

从上面的证明顺便得到对任意 $k \ge r+1$,A一定是 H_k 族.

例 3 若 k < r, $\mathscr{A} = \{A_1, A_2, \dots, A_t\}$ 是 H_k 族,并且 A_i 都是 r 元集 $(1 \le i \le t)$,则

$$t \leqslant C_{n-1}^{r-1}. \tag{7}$$

当且仅当 A 由含某一元素 $x \in X$ 的所有 r 元子集组成时,等 式成立.

解 考虑集族

③ = ⟨B: |B|=r-1,并且B=A; ∩ A;, 1≤i<j≤t⟩.
由前面的(iii), (i), 3是 H, 族. 再由(ii), 3也是 H_{r-1}
・ 147・

族,因此 \mathscr{G} 不含 $K^{(r)}$. 每个 A_i 是 r 元集,它必有一个 r-1 元子集 C_i \notin \mathscr{G} (因为 \mathscr{G} 不含 $K^{(r)}$). C_i 不含于任一 A_i ($i \neq i$) (否则 $C_i = A_i \cap A_i$, $C_i \in \mathscr{G}$).

对 C_1 , C_2 , ..., C_t 及 $A_1 - C_1$, $A_2 - C_2$, ..., $A_t - C_t$, 应用例 1 的注 2 ($a = |C_1| = \cdots = |C_t| = r - 1$, $b = |A_1 - C_1| = \cdots = |A_t - C_t| = 1$) 得

$$t \leq C_{r-1}^{r-1}$$
.

等号成立导出 $A_1 - C_1 = A_2 - C_2 = \cdots = A_t - C_t = \{x\}$, 即 A_1 , A_2 , …, A_t 是含某一元素 $x \in X$ 的全体 r 元子集.

因此,若 $A = \{A_1, A_2, \dots, A_i\}$ 是 r 元子集所成的族,并且是 H_k 族. 则当 k < r 时,t 的最大值为 C_n^{-1} . 当 k > r+1 时,t 的最大值为 C_n^{-1} , 即 A 可由全体 r 元子集组成(参见例 2 最后的一句话). k = r 时,尚无精确的结论.但下面的例 4 讨论了 A 中子集的元数为 r 或 r+1 的情况.

例4 若 $\mathcal{A} = \{A_1, A_2, \dots, A_t\}$ 为 H_r 族,并且 $|A_i| = r$ 或r+1 ($1 \le i \le t$),则

$$t \leqslant C_n$$
. (8)

解 将 \mathcal{A} 分为两个部分, $\mathcal{A}_1 = \{A_1, A_2, \dots, A_s\}$, $\mathcal{A}_2 = \{A_{s+1}, \dots, A_t\}$. 其中 $|A_1| = \dots = |A_s| = r+1$, $|A_{s+1}| = \dots = |A_t| = r$. 与例 3 类似,令

 $\mathcal{B} = \{B: \mid B \mid = r, B = A_i \cap A_j, 1 \leqslant i < j \leqslant s\}.$

因为 A为 H, 族,由前面的(iii),(i), B U A 也是 H, 族. 于是由例 2, B U A 不含 $K^{(r+1)}$. 每个 A_i ($1 \le i \le s$) 必有一个 r 元子集 $C_i \notin B$ U A. C_i 不是 A_j ($1 \le j \le s$, $j \ne i$) 的子集 (否则 $C_i \in B$). 于是 $s \le$ 不属于 B U A 的 r 元子集的个数.

 $t = |\mathcal{A}| + |\mathcal{A}| \leq 全部 r 元子集的个数 <math>C_n$.

任取一元素 $x \in X$. 若 A 由全部含 x 的 r 元与 r+1 元子 集组成,则 A 显然为 H_1 族(因而也是 H_r 族)并且

$$|\mathcal{A}| = C_{n-1}^{-1} + C_{n-1}^{-1} = C_n.$$

所以(8)中上界为最佳.

4.12 相距合理的族

本节需量一点线性代数的知识.

 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 是 n 元集 X 的子集族. 如果对 \mathscr{A} 中任意两个集 A_i , A_i , 均有

$$|A_i \triangle A_j| \geqslant \frac{n}{2},$$
 (1)

那么 & 称为相距合理的族.

相距合理的族与编码理论有关.

对每一个集 A,,可以定义

$$x_i = \begin{cases} 1, \ \text{\vec{A} $i \in A_i$;} \\ -1, \ \text{\vec{A} $i \notin A_i$.} \end{cases} (i = 1, 2, \dots, n)$$

这就得一个与 A_i 相对应的、长为n的、1与-1的码(序列)

$$\alpha_1=(x_1,\,x_2,\,\cdots,\,x_n).$$

对两个码 $a_j - (x_1, x_2, \dots, x_n), \alpha_k = (y_1, y_2, \dots, y_n),$ 定义它们的积(内积)为

$$\alpha_{j}\alpha_{k} = x_{1}y_{1} + x_{2}y_{2} + \cdots + x_{n}y_{n}. \tag{2}$$

(2)式右边负项的个数就是恰属于 A_i , A_k 之一的那些 i 的个数. 因此

$$\alpha_j \alpha_k = n - 2 \mid A_j \triangle A_k \mid. \tag{3}$$

对相距合理的族, $\alpha_{j}\alpha_{k} \leq 0$.

例 1 若 n 维空间中 n+r 个非零向量 α_1 , α_2 , …, α_{n+r} , 满足内积

$$(\alpha_i, \alpha_j) \leq 0, \quad 1 \leq i < j \leq n+r,$$

(即每两个 α_i , α_i) 之间的夹角不是锐角),则 $r \leq n$,并且这n+r个向量可分为r组,每两个不同组的向量互相垂直(即内积为0). 当r=n时,这2n个向量可分为n组,每组两个向量. 每两个不同组的向量互相垂直;同一组的两个向量方向相反.

解 采用归纳法. n = 1 时,结论显然. 假设结论在 n 换为较小的数时成立,考虑 n 的情况. 从 n+r 个向量中任取 n+1 个,例如 a_1 , a_2 , …, a_{n+1} , 它们必线性相关,即有不全为 0 的实数 k_1 , k_2 , …, k_{n+1} 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{n+1}\alpha_{n+1} = 0.$$

不妨设其中 k_1 , k_2 , …, k_2 为正,其余的非正,移项得

 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_{j\alpha}, = -k_{j+1}\alpha_{j+1} - \dots - k_{n+1}\alpha_{n+1}.$ (4) 两边同乘 $k_1\alpha_1 + \dots + k_{j\alpha}$, 得

$$0 \leqslant (k_1\alpha_1 + k_2\alpha_2 + \cdots + k_j\alpha_j)^2$$

$$= (k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{j}\alpha_j) \cdot (-k_{j+1}\alpha_{j+1} - \cdots - k_{n+1}\alpha_{n+1}).$$

上式右边用分配律展开后,每一项均不大于0,因此必有

$$k_1 a_1 + k_2 a_2 + \dots + k_j a_j = 0,$$
 (5)

其中 $j \leq n+1$.

用 $\alpha_i(i > j)$ 乘(5)式,得

$$0 = k_1 \alpha_1 \alpha_i + k_2 \alpha_2 \alpha_i + \dots + k_j \alpha_j \alpha_i \leq 0$$
 (6)

(因为 k1, k2, ···. k, 均为正数),所以

$$\alpha_1 \alpha_i = \alpha_2 \alpha_i = \dots = \alpha_i \alpha_i = 0. \tag{7}$$

因此 a_1 , a_2 , …, a_n 生成的空间维数 $n_1 < n$, 并且 a_{j+1} , …, a_{n+r} 均与这个空间垂直. 设后者生成的空间维数为 n_2 ,则 $n_1 + n_2 \le n$.

(5)表明 α_1 , α_2 , …, α_n 线性相关,所以 $j \ge n_1 + 1$. 设 $j = n_1 + r_1$, $n + r - j = n_2 + r_2$.

由归纳假设 $r_1 \leq n_1$, $r_2 \leq n_2$, 并且 α_1 , α_2 , …, α_n 可分为 r_1 组, α_{n+1} , …, α_{n+r} 可分为 r_2 组,每两个不同组的向量互相 垂直. 而

$$r = (r_1 + r_2 + n_1 + n_2) - n \leqslant r_1 + r_2$$

 $\leqslant n_1 + n_2 \leqslant n$.

当r=n时, $n_1+n_2=n$, $r_1=n_1$, $r_2=n_2$. 仍由归纳假设, $2n_1$ 个向量 a_1 , a_2 , …, a_j 可分为 n_1 组,每组两个向量, $2n_2$ 个向量 a_{j+1} , …, a_{2n} 也可分为 n_2 组,每组两个向量,并且每两个不同组的向量互相垂直,同一组的两个向量方向相反.

例 2 设 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 是 n 元集 X 的相距合理的族,则

解 定义向量 $\alpha_i(j=1,2,\dots,t)$ 如本节开头所说,则

$$\alpha_i \alpha_j = n - 2 \mid A_j \triangle A_i \mid \leq 0. \tag{11}$$

由例 $1, t \leq 2n$. 即(8)成立.

若 $t \ge n+2$, 则由例 1, α_1 , α_2 , …, α_n 至少可分为两个

组,不同组的两个向量 αί, αί 垂直,因此

$$n-2 \mid A_i \triangle A_j \mid = \alpha_i \alpha_j = 0. \tag{12}$$

从而 n 为偶数,即(9)成立.

最后,若 $t \ge n+3$,则由例 1,至少有三个向量 α_i , α_j , α_k 两两垂直,从而由(12),

$$|A_i\triangle A_j|=|A_j\triangle A_k|=|A_k\triangle A_i|=\frac{n}{2};$$

而由 1.10 例 2,

$$|A'_j\triangle A_k|=|X-(A_j\triangle A_k)|=n-\frac{n}{2}=\frac{n}{2}.$$

所以

$$|A_i \triangle A_i| + |A_i' \triangle A_k| - |A_i' \triangle A_k| = \frac{n}{2}. \tag{13}$$

由习题 5,(13)的左边是偶数

$$2 \mid A_i \cap A'_i \cap A'_k \mid + 2 \mid A'_i \cap A_i \cap A_k \mid$$
.

因此 n 是 4 的倍数,即(10)成立.

(8), (9), (10)中等号均可成立. 这与 Hadamard 矩阵有关,请参看有关专著.

例3 若 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 中,每两个子集 A_i, A_j 均满足

$$|A_i \triangle A_j| = k, \tag{14}$$

则当 $k = \frac{n+1}{2}$ 时, $t \le n+1$, 对其他的 k 值, $t \le n$.

解 n=1 的情况是平凡的. 设 $n \ge 2$. 定义 α_1 , α_2 , …, α_i 同前,由(11),对 $i \ne j$,

$$\alpha_i \alpha_j = n - 2k, \qquad (15)$$

$$a_i^2 = n. \tag{16}$$

若 α_1 , α_2 , …, α_i 线性无关,则 $t \leq n$, 结论已经成立. 设 α_1 , α_2 , …, α_i 线性相关,则有 k_1 , k_2 , …, k_i 不全为 0,满足

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_t\alpha_t = 0. \tag{17}$$

两边同乘 α_i ,得

$$0 = \sum_{i=1}^{t} k_{i}\alpha_{i}\alpha_{j} = (n-2k) \sum_{i=1}^{t} k_{i} + 2kk_{j},$$

从而

$$k_{i} = \frac{2k - n}{2k} \sum_{i=1}^{t} k_{i}. \tag{18}$$

由于有 k_i 不全为 0, 所以 $\sum_{i=1}^{t} k_i \neq 0$. 将(18)对 i 求和, 得

$$\sum_{j=1}^{t} k_{j} = \frac{t(2k-n)}{2k} \sum_{i=1}^{t} k_{i},$$

从而 $\frac{t(2k-n)}{2k} = 1$, 即 $t = \frac{2k}{2k-n}$. 若 t > n, 则

$$\frac{2k}{2k-n} > n. \tag{19}$$

(19)表明 b = 2k - n > 0,从而 n + b > bn,1 > (b - 1)• (n-1). 于是 b = 1, $k = \frac{n+1}{2}$.

例 3 中的 $|A_i \triangle A_j|$ 改为 $|A_i \cap A_j|$ 时,有类似的结果.

例 4 设子集族 $A = \{A_1, A_2, \dots, A_t\}$ 中,每两个子集 A_i, A_j ,均满足

$$|A_i \cap A_i| = k, \tag{20}$$

则当 k=0 时, $t \leq n+1$. 其他情况 $t \leq n$.

解 若有某个集,例如 A_1 ,满足 $|A_1| = k$,则所有 $A_j \supset A_1(j=2,3,\cdots,t)$,并且每两个 A_j , A_r 除 A_1 的元外无其他公共元. 因而 $X-A_1$ 的 n-k 个元,每一个至多属于一个 A_j $(j=2,3,\cdots,t)$,同时每个 A_j $(j=2,3,\cdots,t)$ 至少含这n-k 个元中一个元. 这表明 $n-k \ge t-1$,即 $t \le n+1-k$,结论成立.

设每个集 A_i 的元数 $a_i = |A_i| \ge k+1$. 对每一个集 A_i ,定义:

$$x_i = \begin{cases} 1, \ \text{\hat{T} $i \in A_j$;} \\ 0, \ \text{\hat{T} $i \notin A_j$.} \end{cases} (i = 1, 2, \dots, n)$$

这样就得到一个与A,对应的、长为n的、1与0的序列(码)

$$\alpha_j=(x_1, x_2, \cdots, x_n).$$

显然内积

$$a_i a_j = |A_i \cap A_j|, \quad (i \neq j)$$
 (21)

$$\alpha_i^2 = \alpha_i \alpha_i = \alpha_i. \tag{22}$$

我们证明 α_1 , α_2 , …, α_n 线性无关, 从而 $t \leq n$. 为此, 设有

$$\sum_{i=1}^{t} k_i \alpha_i = 0. (23)$$

与例 3 相同,在(23)两边同乘 ai 得

$$0 = \sum_{i=1}^{t} k_{i} \alpha_{i} \alpha_{j} = k \sum_{i=1}^{t} k_{i} + (a_{j} - k) k_{j},$$

从而

$$k_{i} = \frac{k}{k - a_{i}} \sum_{i=1}^{t} k_{i} = \frac{k}{k - a_{i}} S.$$
 (24)

再对方求和得

$$S = \sum_{j=1}^{t} k_j = S \sum_{j=1}^{t} \frac{k}{k - a_j}.$$
 (25)

因为 $a_i \ge k+1$, 所以 $\sum_{j=1}^{t} \frac{k}{k-a_j} < 0 < 1$. 于是由

$$\left(1-\sum_{j=1}^{t}\frac{k}{k-a_{j}}\right)S=0,$$

得 S = 0. 再由(24)得一切 $k_i = 0$. 从而 α_1 , α_2 , …, α_i 线性无 关. 结论成立.

第五章 无 限 集

5.1 无 限 集

通俗地说,无限集就是元数为无限(无穷)的集合.但是,什么是"无限"呢?如果我们回答:

无限就是无限集的元数,

那么不仅成为循环定义,而且,无法进行更深入的研究,

利用对应可以比较两个集合元素的多寡,也可以定义什么是无限集.

定义 如果集合 A 能够与它的一个真子集——对应,那么 A 就称为无限集.

显然,两个有限集如果能——对应,它们的元数就一样 多. 因此一个有限集不可能与(元数比它少的)真子集 ----- 对应.

例 1 证明自然数集 N 与全体正偶数的集 M 之间存在 --对 α .

解 令 $n \mapsto 2n$, 则 f 是从 N 到 M 的对应. 不同的 n, 像 f(n) = 2n 也不同. 并且 M 中的每一个数 2n, 都有原像 n 满足 f(n) = 2n. 所以 f 是——对应.

M 显然是 N 的真子集. 因此,根据上面的定义,N 是无限集.

例 2 如果集合 A, B 之间有一对应 f, A 为无限集, 那 · 156 ·

么 B 也是无限集.

解 因为 A 为无限集,所以有 A 的真子集 A_1 及一一对应 φ , $A \rightarrow A_1$.

对任一 $b \in B$,有唯一的 $a \in A$,满足f(a) = b. 设 $\varphi(a) = a_1 \in A_1$, $f(a_1) = b_1 \in B$, 令

$$\psi(b) = b_1. \tag{1}$$

这一映射可用下面的图来表示:

图 5.1.1

设在映射 f 下, A_1 的像 $f(A_1) = B_1$,则 ψ 是从 B 到 B_1 的映射 易知每个 $b_1 \in B_1$ 均有唯一的 a_1 满足 $f(a_1) = b_1$,由 a_1 又得到唯一的 a 与唯一的 b,因此 ψ 是——对应.

 A_1 是 A 的真子集,所以必有元素 $a \in A - A_1$,这时 $f(a) \in B - B_1$,即 B_1 是 B 的真子集.

因此 B 是无限集.

例 3 集合 B 是集合 A 的子集,如果 B 是无限集,那么 A 也是无限集.

解 因为 B 为无限集, 所以必有 B 的真子集 B_1 与—— 对应 $f: B \rightarrow B_1$.

作 A 到自身的映射 φ ,

$$\varphi_{(a)} = \begin{cases} a, & \exists a \in A - B; \\ f(a), & \exists a \in B. \end{cases}$$

易知像集 $\varphi(A) = (A - B) \cup B_1$ 是 A 的真子集,并且 φ 是 A 到 $\varphi(A)$ 的——对应. 因此 A 是无穷集.

若集 A, B 间能建立起——对应,则称 A 与 B 是对等的,或者称它们有相同的基数(或势),记为 $A \sim B$.

对于有限集,基数就是它的元数.

对于无限集,基数就是能与它——对应的集合的族.通俗地说,就是这些——对应的集合的共同性质,说成是这个无限集的元数也无不可.但是,要注意无穷集可以与它的真子集有相同的基数.

5.2 可数集

凡与自然数集 N 对等的集称为可数集. 下面是几个可数集的例子:

$$A = \{1, 4, 9, 16, \dots, n^2, \dots\},$$
 $B = \{1, 8, 27, 64, \dots, n^3, \dots\},$
 $C = \{1, 3, 5, 7, \dots, 2n-1, \dots\},$
 $D = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\},$
 $E = \{p, p 为素数\}.$

显然一个集合 A 为可数集的充分必要条件是它的元素可列成一个形如

$$a_1, a_2, a_3, \dots, a_n, \dots$$
 (1)

的(各项不重复出现的)无穷数列,A 的每一个元素恰在(1)中出现一次。

例 1 证明:

- (i) 任一无限集 A 必含一真子集是可数集;
- (ii) 可数集的任一无限子集是可数的;
- (iii) 可数集与有限集的并集是可数集;
- (iv) 有限多个可数集的并集是可数集;
- (v) 可数个可数集的并集是可数集.

解 (i) A 与它的真子集 A_1 对等. A_1 是无穷集,因而又与真子集 A_2 对等,…… 这样得到

$$A \supset A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$

每一个集 A_i 是前一个集的真子集 ($i = 1, 2, \dots$).

在 $A_1 - A_2$ 中取元 a_1 ,在 $A_2 - A_3$ 中取元 a_2 , ……,在 $A_n - A_{n-1}$ 中取元 a_n , …… 得到集合

$$B = \{a_1, a_2, a_3, \dots, a_n, \dots\},\$$

它是含于 A 中的可数集.

因此,可数集是无限集中"最小的"集.

- (ii) 可数集 A 的元素可列成(1)的形式. 它的无限子集可写成(1)的无限子数列,显然是可数集.
- (iii) 将可数集 A 的元素列成数列(1). 又设有限集 $B = \{b_1, b_2, \dots, b_k\}$,则 $A \cup B$ 的元素可列成数列

$$b_1, b_2, \dots, b_k, a_1, a_2, \dots, a_n, \dots$$
 (2)

(若 b_1 , b_2 , …, b_k 中有在 a_1 , a_2 , …, a_n , …中出现的,则将这样的 b 从(2)中划去).

(iv) 设 $A_i = \{a_{i1}, a_{i2}, \dots, a_m, \dots\}, i = 1, 2, \dots, k$, 是 k 个可数集,则

$$a_{11}$$
, a_{21} , ..., a_{k1} , a_{12} , a_{22} , ...,

$$a_{b2}$$
, ..., a_{1n} , a_{2n} , ..., a_{kn} , ...

(必要时划去一些重复元素)是一可数集,

(v) 设 $A_i = \{a_{i1}, a_{i2}, \dots, a_{in}, \dots\}, i = 1, 2, \dots,$ 是可数个可数集. 先将它们的元素排成矩阵:

$$a_{11}$$
 a_{12} a_{13} ...
 a_{21} a_{22} a_{23} ...
 a_{n1} a_{n2} a_{n3} ...

然后再将这些元素排成一列:

$$a_{11} \ a_{12} \ a_{21} \ a_{13} \ a_{22} \ a_{31} \ \cdots \tag{3}$$

即先排下标的和为 2 的元,再排下标和为 3 的元,……依照下标的和的大小排列各个元素,在下标和相同时,依照横坐标(第一个下标)的大小排列各个元素(只有有限多个).这样,每个元素在数列(3)中至少出现一次(或早或迟必然出现).如果一个元素在(3)中已经出现过一次,那么在它第二、三、……次出现时,将它划去.这样 $A_1 \cup A_2 \cup \dots \cup A_n \cup \dots$ 的每个元素在(3)中恰好出现一次.因此 $\bigcup_{i=1}^{\infty} A_i$ 是可数集.

例3 全体有理数的集 Q 是可数集.

解 由例 2,只需证明正有理数的集合 Q⁺是可数集. 考 虑集合

$$M_n = \left\{ \frac{m}{n} \middle| m \in \mathbb{N} \right\}.$$

显然 M, 是可数集,它的元素可排成数列

$$\frac{1}{n}$$
, $\frac{2}{n}$, $\frac{3}{n}$, ..., $\frac{m}{n}$, ...

由例 2(v),

$$\mathbf{Q}^{+} = M_1 \cup M_2 \cup M_3 \cup \cdots \cup M_n \cup \cdots$$

是可数集.

例 4 如果集 A 的每个元素由n 个互相独立的下标决定,每个下标各自跑遍一个可数集.那么 A 是可数集.

解 n=1 时,结论显然. 设当 n=m 时结论成立,则对元素为 $a_{i_1i_2\cdots i_{m+1}}$ 的集 A,因为当 i_{m+1} 固定时,由元素 $a_{i_1i_2\cdots i_mi_{m+1}}$ 组成的集 $A_{i_{m+1}}$ 是可数集,根据例 2(v),

$$\bigcup_{i_{m+1}} A_{i_{m+1}} = A$$

也是可数集.

由例 4 立即得到平面上的有理点(即横、纵坐标都是有理数的点)组成的集合是可数集. 空间中的有理点所成的集也是可数集.

例 5 证明整系数多项式

$$a_0 x^n + a_1 x^{n-1} + \cdots + a_n \tag{4}$$

 $(n \in \mathbb{N}, a_0, a_1, \dots, a_n \in \mathbb{Z})$ 的全体 A 是可数集.

解 对固定的 n,形如(4)的整系数多项式与 n+1 维空间的整点(a_0 , a_1 , …, a_n)——对应,它们都组成可数集. 记前者所成的集为 A_n .

由例 2(v), $A = \bigcup_{n=1}^{\infty} A_n$ 是可数集.

(4)的根称为代数数. 因为每个多项式只有有限个根. 所以代数数的全体是可数集.

5.3 连续统的基数

无限集不都是可数集.

例1 0与1之间的实数组成的集

$$A = \{x \mid 0 \leqslant x \leqslant 1\} \tag{1}$$

不是可数集.

解 如果 A 是可数集,将它的元素排成

$$\alpha_1$$
, α_2 , ..., α_n , (2)

将每个α,表成十进小数,并排成

$$a_{1} = 0. \ a_{11}a_{12}a_{13} \cdots a_{1n} \cdots,$$

$$a_{2} = 0. \ a_{21}a_{22}a_{23} \cdots a_{2n} \cdots,$$

$$\dots$$

$$a_{n} = 0. \ a_{n1}a_{n2}a_{n3} \cdots a_{m} \cdots,$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

 $a_{ij}(i, j = 1, 2, \dots)$ 都是数字,即 0, 1, …, 9.

现在作一个数 $\alpha = 0$. $a_1 a_2 \cdots a_n \cdots$, 其中 a_1 , a_2 , …都是数字,并且

$$a_n = \begin{cases} a_m + 2, \ \text{ if } a_m < 7; \\ a_m - 2, \ \text{ if } a_m \ge 7. \end{cases} \quad (n = 1, 2, \dots) \tag{4}$$

显然 $0 \le \alpha \le 1$ 即 $\alpha \in A$. 因此 α 应当在(3)中出现. 设 α , α , 但由定义 α , $\alpha \ne \alpha$, 并且 α , 与 α , 的差为 2, 因此 α , $\alpha \ne \alpha$, 矛盾. 这表明 α , 不是可数集.

注:为避免出现 $0.999\dots=1.00\dots$ 的情况,我们取 a_n 与 a_m 相差 2.

上面的证法称为对角线法,

例 1 的 A 及与 A 对等的集, 称为具有连续统的基数,或称 A 的基数为以(读做阿列夫), 而可数集的基数记为以。

例2 区间[a, b], (a, b), [a, b), (a, b]的基数都是 ※.

解 令 y = a + (b-a)x. 这是[0, 1]与[a, b]之间的一一对应. 因此[a, b]与[0, 1](即例 1 中的 A)具有相同的基数 ※.

我们也可以给出(a,b), [a,b), (a,b]与[0,1]间的一一对应(参见习题 33),但更方便的是利用这样的结论:

无限集M去掉有限多个元素后,所得的集K与M对等.

事实上,由 4.2 节,M 含有一个可数集 E,不妨假定要去掉的有限多个元素均在 E 中(否则将它们加到 E 中).从 E 中去掉这有限多个元素后所得的集 F 也是可数集.在 E 与 F 之间有一一对应 φ ,令

$$f(x) = \begin{cases} x, & \text{若 } x \in M - E; \\ \varphi(x), & \text{若 } x \in E. \end{cases}$$

则 f 是 M 到 K 的——对应,

例3 全体实数所成的集 R,基数是公.

解 $y = \tan \frac{\pi}{2} x$ 是(-1, 1)到 R 的——对应.

类似地, $[0, +\infty)$ 的基数是以.

例 4 如果集 A 的基数是S,证明从 A 中去掉一个可数集 B 后,剩下的集的基数仍为S.

解 由于 A 的基数是 \S , 所以 A-B 是无限集(否则 B U (A-B)=A 是可数集). 由 5.2 节例 A-B 有一真子集 D 是可数集. B U D 仍为可数集, 它与 D 之间有——对应 φ . 令

$$f(x) = \begin{cases} x, & \text{if } x \in A - B - D; \\ \varphi(x), & \text{if } x \in B \cup D. \end{cases}$$

则 f 是 A 到 A - B 的——对应. 因此 A - B 的基数是 S.

由例 4 立即得到全体无理数所成的集,基数为以;全体超越数(不是代数数的数)所成的集,基数也是以.

例5 证明自然数集 N 的全体子集所成的族 ⋈ 的基数为 ፟<

$$0. b_1 b_2 \cdots b_n \cdots$$

与之对应,其中

$$b_n = \begin{cases} 1, & \text{if } n \in A; \\ 0, & \text{if } n \notin A. \end{cases}$$

显然这是 \mathcal{A} 到[0,1]中所有二进小数的——对应. 因此 \mathcal{A} 与 [0,1]有同样的基数公.

例 6 可数个两两不相交的基数为公的集,它们的并集 基数为公。

解 设 $\bigcup_{i=1}^{\infty} E_i$ 中每一个 E_i 的基数为 \S , 则 E_i 可与区间 [i-1,i) 中的点——对应. 从而, $\bigcup_{i=1}^{\infty} E_i$ 与 $[0,+\infty)$ 中的点——对应.

注:"两两不相交"这一条件可以去掉.参见下节例 8.

5.4 基数的比较

如果集合 A, B 的基数分别为 α , β , 并且满足,

- (i) A 与 B 不对等;
- (ii) A 与 B 的一个子集对等,

那么就说 A 的基数小于 B 的基数,或 B 的基数大于 A 的基数. 记为

$$\alpha < \beta$$
 或 $\beta > \alpha$.

对有限集,上述概念与元数的大小完全一致.

每个有限集都与 N 的一个子集对等(n 元集与 $\{1, 2, \dots, n\}$ 对等),从而有限集的基数小于(n)。

根据上节所说, 公。< 公.

在公。与公之间没有基数,即不存在一个集合 A,它的基数大于公。,小于公.这称为连续统假设.大数学家希尔伯特在1900 年提出的 23 个问题中,连续统假设列为第一个.根据现代的研究,特别是 1963 年美国数学家科恩(Cohen)所作的工作,连续统假设与 ZF 公理是彼此独立的.这里的 ZF 公理是由策梅罗(Zermelo,1871—1953)建立、弗伦克尔(Fraenkel,1891—1965)加以改进的公理系统,为绝大多数数学家所接受.因此连续统假设在 ZF 公理系统中是无法证明的(正如平行公设无法用欧几里得的其他公理导出).

有没有比以更大的基数? 回答是肯定的.

例 1 设集 A 的基数为 α ,A 是 A 的一切子集所成的族,则 A 的基数大于 α .

解 对 A 的任一个元a,令 $a \mapsto \{a\}$. 这是 A 到 A 的子集 $\{\{a\}: a \in A\}$ 的一一对应. 因此 A 与 A 的一个子集对等.

另一方面,A 与 A 不对等. 不然的话,设 A 与 A 之间有一一对应 f.

将 A 中元素分为两类:

设 $a \in A$. 若 $a \in f(a)$,则称a 为好元素. 若 $a \notin f(a)$,则称a 为坏元素.

设 A 中坏元素组成的集为 A_1 . A_1 与 A 的元素 a_1 对应,即 $A_1 = f(a_1)$.

若 a_1 是好元素,则 $a_1 \in f(a_1) = A_1$. 但这与 A_1 的定义不符. 若 a_1 是坏元素,则 $a_1 \in A_1 = f(a_1)$,这又导出 a_1 为好元素,矛盾.

因此, A 与 ☑ 不对等.

综合以上两个方面,对的基数大于 a.

通常将 A 的全体子集的族 A 的基数记为 2^n . 在 A 为有限集时,A 确实为 2^n . 在 A 为无限集时, 2^n 仅是代表 A 的基数的一个符号. 例 1 的结论就是

$$2^{a} > a. \tag{1}$$

上节例 5 表明 $2^{\aleph_0} = \aleph$. 从而由(1)又得到 $\aleph > \aleph_0$.

例2 设集 $A \supseteq A_1 \supseteq A_2$. 若 $A_2 \sim A_1$ 则 $A_1 \sim A$.

解 设对应 f 使 A 与 A_2 对等. 在对应 f 下,A 的子集 A_1 应与 A_2 的子集 A_3 对等, A_1 的子集 A_2 应与 A_3 的子集 A_4 对等,如此继续下去,得到一串集合

$$A \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq A_5 \supseteq \cdots$$

具有性质:

$$A \sim A_2$$
, $A_1 \sim A_3$,

$$A_2 \sim A_4$$
,

$$A_3 \sim A_5$$
,

.....

并且由 $A_n(n=1, 2, \cdots)$ 的定义,

$$A - A_1 \sim A_2 - A_3$$
,
 $A_1 - A_2 \sim A_3 - A_4$,
 $A_2 - A_3 \sim A_4 - A_5$,
$$(2)$$

因为

$$A = (A - A_1) \cup (A_1 - A_2) \cup (A_2 - A_3)$$

$$\cup (A_3 - A_4) \cup (A_4 - A_5) \cup \cdots \cup (AA_1 A_2 \cdots),$$
(3)

$$A_1 = (A_1 - A_2) \bigcup (A_2 - A_3) \bigcup (A_3 - A_4)$$

$$\bigcup (A_4 - A_5) \bigcup \cdots \bigcup (AA_1 A_2 \cdots). \tag{4}$$

并且由(2),(3)中的一、三、······诸项分别与(4)中的二、四、······诸项对等,其余的项则两两相同,所以 $A_1 \sim A$.

例3 若 $A \supseteq A_1$, $B \supseteq B_1$, 并且 $A \sim B_1$, $B \sim A_1$, 则 $A \sim B$.

解 $B \ni A_1$ 有——对应 f. 在对应 $f \vdash B$ 的子集 $B_1 \sim A_1$ 的子集 A_2 . 因为 $A \sim B_1$, $B_1 \sim A_2$, 所以 $A \sim A_2$.

因为 $A \supseteq A_1 \supseteq A_2$, $A \sim A_2$, 所以由上例, $A \sim A_1$. 因为 $B \sim A_1$, 所以 $A \sim B$.

例 3 称为 Bernstein 定理,有很多应用.

注: $A \sim B_1 \subseteq B$ 可记成 $\alpha \leq \beta$. 例 3 即由 $\alpha \leq \beta$, $\beta \leq \alpha$ 可推出 $\alpha = \beta$. 应当注意,这并不是显然的. 因为关于无穷基数的不等式与通常的不等式意义不尽相同.

例 4 设三个基数 α , β , γ 满足 $\alpha < \beta$, $\beta < \gamma$, 则 $\alpha < \gamma$.

解 设集 A, B, C 的基数分别为 α , β , γ . 由已知 $A \sim B_1 \subseteq B$, $B \sim C_1 \subseteq C$. 从而 $A \sim C_2 \subseteq C_1$.

另一方面,若 $A \sim C$,则 $C \sim C_2$. 从而由例 2, $C \sim C_1 \sim$

B. 这与 $\beta < \gamma$ 的定义不符,因此 A 不对等于 C.

综合以上两方面得 $\alpha < \gamma$.

例 5 表明关于基数的不等式具有传递性.

注:由关于基数的不等式的定义及例 3, $\alpha = \beta$, $\alpha < \beta$, $\alpha > \beta$ 三式不能同时成立. 但这三个关系是否必有一个成立需要证明. 证明要用到有序集与序数的概念. 我们建议读者阅读有关专著,例如豪斯道夫的《集论》(中译本科学出版社1960 年出版).

例 6 平面上点的全体组成的集 A,基数为以.

解 正方形

$$I = \{(x, y) \mid 0 \le x < 1, 0 \le y < 1\}$$

中的点,坐标可写成无限的十进小数

$$x = 0. a_1 a_2 a_3 \cdots,$$

 $y = 0. b_1 b_2 b_3 \cdots.$ (5)

(约定不以 9 为循环节,即 0.12 = 0.1200··· 不写成 0.119 9···. 这样每个坐标的表示是唯一的.)

因此,对于(x, y),有区间[0, 1)中的一个实数

$$0. a_1b_1a_2b_2a_3b_3\cdots$$
 (6)

与之对应. 显然不同的(x, y)对应的实数(6)也不同. 因此 I 与[0, 1)的一个子集对等.

另一方面,显然 $[0,1) \sim \{(x,0) \mid 0 \le x < 1\} \subseteq I$. 因此 I 的基数即[0,1)的基数以.

平面点集 $A = \bigcup_{a,b \in \mathbb{Z}} \{(x,y) \mid a \leq x < a+1, b \leq y < b + 1\}$,由上节例 6,A 的基数为以、

同样可证空间中全体点所成集,基数为以,

例7 区间[0,1]上的全体实函数所成的集,基数为 2[≤]. · 168 ·

解 设所成的集为 A. 由于每个实函数 f 对应于平面上一条曲线 $\{(x, f(x)) | 0 \le x \le 1\}$, 它是平面点集的一个子集,所以 A 的基数 $\le 2^{\aleph}$.

另一方面,[0,1]的每个子集 B 对应于一个函数(即 3.1 节所说的特征函数):

$$f(x) = \begin{cases} 1, \ \text{若 } x \in B; \\ 0, \ \text{若 } x \notin B. \end{cases}$$

对应是一一的. 因此 A 的基数 $\geq 2^{\aleph}$.

综合以上两方面即得 A 的基数为 2[∞].

例 8 可数个基数为分的集,它们的并集基数为分,即上 节例 6"两两不相交"的条件可以取消.

解 设 $\bigcup_{i=1}^{\infty} E_i$ 中每一个 E_i 的基数为分. 显然 $\bigcup_{i=1}^{\infty} E_i$ 的基数 $\geq E_1$ 中的基数分.

另一方面,将 $E_2 \cap E_1$ 中每个元素 a_1 换成一个新元素 a_1' ,将 $E_3 \cap (E_2 \cup E_1)$ 中每个元素 a_2 换成新元素 a_2' ,……得到集 E_1 , F_2 , F_3 ,…,每两个无公共元素,并且 $F_2 \sim E_2$, $F_3 \sim E_3$,…… 基数均为分. 因此由上节例 6, $\bigcup_{i=1}^{\infty} F_i$ 的基数为分. 又显然有 $\bigcup_{i=1}^{\infty} E_i$ 的基数 $\leq \bigcup_{i=1}^{\infty} F_i$ 的基数分.

因此 U≈₁E, 的基数 = ់外.

例9 c个基数为外的集,它们的并集基数为以.

解 可设各集两两不相交(否则用例 8 的方法处理), 每一个集对等于平面上一条直线 y = 常数, 它们的并集对等于整个平面.

5.5 直线上的开集与闭集

直线是一维点集. 如果以这直线为数轴,那么直线上的每

一点对应于一个实数(所以称为一维).

设 E 是(直线上的)一个点集. 对于一点 x_0 , 如果 E 中有一个区间含有 x_0 , 那么称 x_0 为点集 E 的内点. 这时 x_0 本身当然属于 E.

如果 E 中每一个集都是 E 的内点,那么 E 称为开集.

显然开区间(a, b)是开集. 直线本身是开集. 闭区间[a, b]不是开集,因为端点 a = b 不是[a, b]的内点.

空集算作开集.

例1 任意多个开集的并集是开集.

解 设 $S = \bigcup_{\alpha} E_{\alpha}$,其中每个 E_{α} 都是开集.

对任一点 $x_0 \in S$, x_0 必属于某个 E_a . 因为 E_a 是开集,所以有区间 $(c,d) \subseteq E_a$, 并且 $x_0 \in (c,d)$. 于是 $x_0 \in (c,d)$ $\subseteq S$, x_0 是 S 的内点.

由于 S 的任一点都是内点, 所以 S 是开集.

例 2 有限个开集的交集是开集.

解 设 $P = \bigcap_{k=1}^n E_k$, 其中每个 E_k 是开集.

对任一点 $x_0 \in P$, x_0 必属于每个 E_k ,并且有区间 $(c_k, d_k) \subseteq E_k$, $x_0 \in (c_k, d_k)$, $k = 1, 2, \dots, n$. 令

$$c = \max c_k(< x_0), \quad d = \min d_k(> x_0),$$

则 $x_0 \in (c, d)$, 并且 $(c, d) \subseteq E_k$ $(k = 1, 2, \dots, n)$.

从而 $x_0 \in (c, d) \subseteq P$. 所以 P 是开集.

注意无限多个开集的交未必是开集,如

$$E_k = \left(-1 - \frac{1}{k}, 1 + \frac{1}{k}\right), k = 1, 2, \dots$$

则

$$P = \bigcap_{k=1}^{\infty} E_k = \begin{bmatrix} -1, 1 \end{bmatrix}$$

不是开集.

可以证明直线上的每个开集都是不相重**叠的**开区间的并集(下节例 1).

设 E 是一点集. 对于一点 x_0 , 如果任一个含有 x_0 的区间,除 x_0 外至少还含有 E 的一点,那么 x_0 称为 E 的极限点或聚点.

注意 E 的极限点 x_0 本身不一定属于 E. 如果 x_0 是 E 的极限点,那么含 x_0 的区间内必有无限多个 E 的点(设含 x_0 的区间(a, b)中有 x_1 , x_2 , …, x_k 属于 E. 又设 $\delta = \min_{1 \le i \le k} |x_0 - x_i|$, 则含 x_0 的区间($x_0 - \delta$, $x_0 + \delta$) 中的点均不同于 x_1 , x_2 , …, x_k . 而这个区间($x_0 - \delta$, $x_0 + \delta$) 中又有一点 $x_{k+1} \in E$ 并且 $x_{k+1} \neq x_0$. 这样,(a, b)中有无穷多个点 x_1 , x_2 , …, x_k , x_{k+1} , …属于 E).

如果 $x_0 \in E$, 并且 x_0 不是 E 的极限点,那么 x_0 称为 E 的孤立点. 如果 x_0 是 E 的孤立点,那么必有一个区间(c, d),在(c, d)中只有一个点即 x_0 属于 E.

如果 E 的极限点都属于 E,那么 E 称为闭集.

显然闭区间是闭集;直线本身是闭集. 开区间(a, b)不是闭集,因为a, b是(a, b)的极限点,它们不在(a, b)中. 一个点所成的集也是闭集. 空集 \emptyset 算作闭集. 又开又闭的集只有全直线与空集. [a, b)非开非闭.

例 3 开集的补集是闭集,闭集的补集是开集.

解 设 E 为开集,对任一点 $x_0 \in E$,必有区间 $(a, b) \subseteq E$, $x_0 \in (a, b)$,这时 (a, b) 中每一个点都不属于 E',因此 x_0 不是 E' 的极限点,从而 E' 的极限点都属于 E',E' 是闭集、

设 E 为闭集. E' 中的任一点 x_0 不是 E 的极限点,因而必有区间(c,d), (c,d)含 x_0 并且(c,d)中没有 E 的点,即

(c, d) ⊆ E'. 从而 x₀ 是 E'的内点. E'是开集.
 由例 3、例 1、例 2 可知:
 任意多个闭集的交是闭集;
 有限多个闭集的并是闭集.

5.6 Cantor 的完备集

Georg Cantor(1845. 3. 3.—1918. 1. 6)是集合论的创始者,丹麦一位犹太商人的儿子,出生在彼得堡,1856 年移居德国,1874 年,开始引入基数的概念,由此证明了超越数大大多于代数数(5. 3 节例 4). 这一成果当时轰动了整个数学界,同时也遭到强烈的反对. Dedekind, Mittag-Leffler 等人支持他,而 Kronecker 等的反对使他十分苦恼. 他注意到在其他数学分支,例如概率论的历史中,也存在正确的理论未被普遍接受的时期,因而高喊"数学的本质在于它的自由化".

Cantor 还定义了序型,超限序数等概念,并奠定了由基本序列建立实数理论的基础,他将欧氏空间里一般的点集作为研究的对象,定义极限点、闭集、开集等概念.他也是维数理论的开拓者,为点集理论与拓扑空间理论开辟了道路.

Cantor 晚年病魔缠身,在精神病院去世.

本节着重介绍 Cantor 构造的一个完备集.

例1 证明直线上每一个非空的有界开集 G 可以表为有限个或可数个不相重叠的开区间的并集。

解 对任一点 $x \in G$, 因为 G 是开集, 所以 x 是内点, 存在一个开区间(a, b)包含 x, 并且(a, b) $\subseteq G$. 可以这样取区间(a, b), 使得 a, $b \notin G$ (例如 b 可这样产生; 设(x, b_1) $\subseteq G$, 并且 b_1 为有理数 m+0. $c_1c_2\cdots c_n$, $m \in \mathbf{Z}$, c_1 , c_2 , \cdots , $c_n \in \mathbf{Z}$

 $\{0, 1, 2, \dots, 9\}$. 可设 $\left(x, b_1 + \frac{1}{10^n}\right)$ 不含在 G 中 $\left(\text{否则用 } b_1 + \frac{1}{10^n} \text{ 代替 } b_1\right)$. 令 $b_2 = b_1 + \frac{c_{n+1}}{10^{n+1}}$, $c_{n+1} \in \{0, 1, 2, \dots, 9\}$, 使得 $(x, b_2) \subseteq G$ 而 $\left(x, b_2 + \frac{1}{10^{n+1}}\right)$ 不含于 G. 这样继续下去,得出一个数 b = m + 0. $c_1 c_2 \cdots c_n c_{n+1} \cdots$. 任一小于 b 而大于 x 的数 y 或小于 b_1 ; 或不小于 b_1 但至少有一位小数小于 b 的相应数字,从而 y 小于那个直到这一位都与 b 相同的 b_k . 因此 $y \in G$. 这表明 $(x, b) \subseteq G$. 另一方面,G 的补集 G' 是闭集. $\left[b_1, b_1 + \frac{1}{10^n}\right)$, $\left[b_2, b_2 + \frac{1}{10^{n+1}}\right)$, ……中各有一个点 $\in G'$, b 是它们的极限点,因而 $b \in G'$,即 $b \notin G$. 这样的区间 (a, b),称为 G 的构成区间. 它们是包含 x 的、完全在 G 内的最大的开区间.

根据定义,这些构成区间不相重叠.

对每一个构成区间,取这区间中任一有理数与之对应.由于区间互不重叠,这些有理数各不相同.有理数的全体是可数集,因此 G 的构成区间个数为有限或可数.

- 例2 将闭区间[0,1]三等分,取去中间的开区间 $\left(\frac{1}{3},\frac{2}{3}\right)$. 将每一个留下来的闭区间 $\left[0,\frac{1}{3}\right]$, $\left[\frac{2}{3},1\right]$ 义各等分为三等分,并各取去中间的开区间 $\left(\frac{1}{9},\frac{2}{9}\right)$ 与 $\left(\frac{7}{9},\frac{8}{9}\right)$. 再将每一个留下来的闭区间三等分并取去中间的开区间. 这样无限继续下去. 留下的集记为 P. 证明:
 - (i) P 是闭集,并且没有孤立点;
 - (ii) 点集 P 的基数是以,

解 (i) 去掉了可数个开区间,这些开区间的并集是一个开集 G. G'是闭集,所以 $P = G' \cap [0,1]$ 是闭集.

如果 0 是 P 的孤立点,那么在 0 的一个邻域中,0 右边的点均属于 G. 从而 0 是 G 的一个构成区间的端点. 但由 P 与 G 的构造, G 的每 一个构成区间是 $\left[0,\frac{1}{3^n}\right]$ 的中间部分 $\left(\frac{1}{3^{n+1}},\frac{2}{3^{n+1}}\right)$ 或属于 $\left[\frac{1}{3^n},1\right]$,因而 0 不是构成区间的端点. 这一矛盾表明 0 不是 P 的孤立点. 同样 1 也不是 P 的孤立点.

对于 $x \in (0, 1)$, 如果x是P的孤立点,那么必有含x的区间 $(a, b) \subseteq [0, 1]$, (a, b)中仅有 $x \in P$. 因而x是G的两个构成区间的公共点. 但由G的构造,每两个构成区间没有公共点. 所以P没有孤立点.

(ii) 用三进制小数 0. a_1a_2 …表示 [0, 1] 中的数. 去掉 $\left(\frac{1}{3}, \frac{2}{3}\right)$,即去掉那些 a_1 必定为 1 的数 $\left(\frac{1}{3} = 0.100\right)$ — 0.022 …, $\frac{2}{3} = 0.122$ … = 0.200 …, 它们的小数第一位都可以不为 1). 去掉 $\left(\frac{1}{9}, \frac{2}{9}\right)$ 与 $\left(\frac{7}{9}, \frac{8}{9}\right)$ 即去掉那些 a_2 必定为 2 的数. 依此类推,从而

$$P = \{0, a_1 a_2 \cdots \mid a_k = 0 \text{ od } 2, k = 1, 2, \cdots\}.$$

令

$$b_k = \begin{cases} 0, & \text{if } a_k = 0; \\ 1, & \text{if } a_k = 2. \end{cases}$$
 $(k = 1, 2, \dots)$

则 $0.a_1a_2\cdots \vdash 0.b_1b_2\cdots$ 是 P 到 [0,1] 中的数 (用二进制小 \cdot 174 \cdot

数表示)的一一对应, 所以 P 的基数为长.

没有孤立点的闭集(即每一点都是极限点的闭集)称为完备集. 例 2 是 Cantor 发明的完备集. 通常称为 Cantor 的完备集.

有趣的是,在例2中去掉的区间总长为

$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = 1.$$

因而剩下的 Cantor 完备集 P 的"长度"(或称为测度)为 0,但 它的基数却是以.

5.7 Kuratowski 定理

拓扑学中有一著名的 Kuratowski 闭包定理:由集 A 经过补与闭的运算,至多产生 14 个集.

这里的闭运算可以定义为集族上的函数.

设 A 为集 X 的全部子集所成的族. 函数

$$f: \mathscr{A} \rightarrow \mathscr{A}$$

如果满足以下条件:

- (1) 若集 $A \subseteq B$, 则 $f(A) \subseteq f(B)$;
- (2) $f(A) \supseteq A$;
- (3) f(f(A)) = f(A);
- $(4) f(A \cup B) = f(A) \cup f(B),$

那么便称 f 为闭运算.

其中性质(1),(2),(3),(4)分别称为单调增,扩大,幂等,可加.

同样地,可以定义补运算.

如果 $g: A \rightarrow A$,满足:

- (1) 若集 $A \subseteq B$, 则 $g(A) \supseteq g(B)$;
- (2) $g(A) \cap A = \emptyset$;
- (3) g(g(A)) = A;
- $(4) g(A \cup B) = g(A) \cap g(B),$

那么便称 g 为补运算, 其中性质(1), (3)分别称为单调减,幂零.

显然,通常集的补集与闭包具有以上性质.

现在,我们证明 Kuratowski 定理. 为此先建立两个图:

其中 f 是 f(A) 的简写,fgfgf 是 f(g(f(g(f(A)))) 的简写 等等. $B \rightarrow C$ 即 $B \supseteq C$.

左图的关系建立如下:

- (1) 由 $g \subseteq fg$ 得 $A \supseteq gfg$;
- (2) 由 $f \supseteq gfg(f)$ 得 $f \supseteq fgfgf$;
- (3) 易知 gfg 是单调增的. 因而,由 $f \supseteq A$ 得 $gfgf \supseteq gfg$, 从而 $fgfgf \supseteq fgfg$;
 - (4) $gfgfgfg = gfg(fgfg) \subseteq gfg(f) = gfgf;$
 - (5) $gfgfgfg = gfg(fgfg) \subseteq fgfg$;
- (6) 由 $f(gfg) \supseteq gfg$ 得 $gfgfg \subseteq fg$, 从而 gfgfgfg $\supseteq gf(fg) = gfg$.

将 g 作用于左图,就产生右图.

在左、右两个图中已有 14 个集、未在图中出现的、由复合而得接下去的两个集应当是 fgfgfgf 与 fgfgfgfg. 我们证明:

(1) fgfgfgf = fgf.

事实上,由右图

 $fgfgfgf = f(gfgfgf) \supseteq f(gf) = fgf;$

由左图

 $fgf = f(gf) \supseteq fgfgf(gf) = fgfgfgf$.

(2) fgfgfgfg = fgfg.

由(1)(将 A 换作 g(A)),

fgfgfgfg = fgfgfgf(g) = fgf(g) = fgfg.

于是,用 f, g 复合,除图中 14 个集外,不能产生其他的集.

注:在上述证明中,只利用f的性质(1),(2),(3),g的性质(1),(3).

例 1 举出一个集 A,它经过 f,g 的复合恰好产生 14 个不同的集.

解 首先注意上面左图(简称左图)的任一集不与右图的集相等. 否则,左图的最大集 f 包含右图的最小集 gf,产生矛盾.

如果左图的 7 个集两两不同,那么它们的补集,即右图的 7 个集也两两不同. 因此,只要左图的 7 个集两两不同,结合右图,我们就得到 14 个两两不同的集.

设X = [1, 5],

 $A = \{[1, 2] 中的有理点\} \cup [2, 3) \cup (3, 4] \cup \{5\}.$ 则左图的其他六个集合为:

$$f = [1, 4] \cup \{5\},$$

 $gfg = (2, 3) \cup (3, 4),$
 $fgfg = [2, 4],$
 $gfgfgfg = (2, 4),$
 $gfgf = [1, 4),$
 $fgfgf = [1, 4].$

左图这7个集两两不同,因此它们与右图的7个集构成14个不同的集。

Kuratowski 定理有许多推广,下面举一个关于自然数的问题.

- **例2** 对自然数集 N 的任一子集 A,我们令 g(A) = N A, $f(A) = \langle A \rangle$,这里 $\langle A \rangle$ 表示 A 经乘法生成的集,即
- $\langle A \rangle = \{ 任意多个 A 中元素(允许相同) 相乘的积 \}.$ (单独一个元素也算作积,所以 $\langle A \rangle \supseteq A$.)

显然 f 具有单调增、扩大、幂等这三个性质. 于是,根据前面的证明,由 f, g 复合,至多产生 14 个不同的集.

我们可以举例表明的确能得出 14 个不同的集.

取 $A = \{2, 2 \times 3, 2 \times 5, 2 \times 3 \times 5, 3^3\}$,则

 $gfg = \{2, 2\times3, 2\times5, 2\times3\times5\} \neq A.$

 $3^3 \in f$, $3 \notin f$, $3 \in gf$, 3, 3^2 , $3^3 \in fgf$, 3, 3^2 , $3^3 \notin fgfgf$, 所以 $fgfgf \neq f$.

 $(2\times3\times5)^2 \in fgfg$; 2×3^2 , $2\times5^2 \notin f$, 所以 2×3^2 , $2\times5^2 \in gf$, $(2\times3^2)\times(2\times5^2) \in fgf$, 即 $(2\times3\times5)^2 \in fgf$, $(2\times3\times5)^2 \notin gfgf$.

 $2^2 \times 3^3 \notin f(gfg) = fgfg; 2^2 \times 3^3 \in f$, 并且若 $2^2 \times 3^3$ • 178 •

综合以上两段, fgfg 与 gfgf 不可比较, 从而 fgfg, gfgf, fgfgf, gfgfgf, 两两不等.

 $2, 2^2, 2^3, \dots \in fgfg; 2, 2^2, 2^3, \dots \notin gfgfg; 2, 2^2, 2^3, \dots \notin fgfgfg; 2, 2^2, 2^3, \dots \in gfgfgfg.$ 所以 gfgfg-fg, fgfg, gfgf, fgfgf, fgf, fgf

于是左图的 7 个集各不相同. 它们的补集即右图的 7 个 集也各不相同.

左图的任一集决不可能等于右图的集. 如果这种情况发生, 左图的最大集 f 包含右图的最小集 gf, 产生矛盾.

因此,由 $A = \{2, 2 \times 3, 2 \times 5, 2 \times 3 \times 5, 3^3\}$ 经 f, g 复合可产生 14 个不同的集.

下面再举两种 Kuratowski 定理的推广.

例3 设 t 为区间[0,1]中的实数,定义

$$g(t) = 1 - t.$$

显然 g 具有单调减、幂零这两个性质. 又设函数 f: $[0,1] \rightarrow [0,1]$ 满足:

- (1) 单调增;
- (2) $f(t) \geqslant t$;
- (3) f(f(t)) = f(t),

则根据前面的证明 (将 \subseteq 改为 \leqslant), g 与 f 复合, 至多产生 14 个不同的函数.

为了举出恰好产生 14 个不同函数的例子,首先注意 f(t)

的像集必为一些点或一些区间组成,在每一个区间上,f(t) = t. 若(c,d)内的点不属于f(t)的像集,而c,d属于f(t)的像集,那么 f(c) = c,f(d) = d,并且在(c,d)上恒有f(t) = d.

现在令

$$f(t) = \begin{cases} \frac{1}{6}, t \in \left[0, \frac{1}{6}\right]; \\ \frac{7}{24}, t \in \left(\frac{1}{6}, \frac{7}{24}\right]; \\ \frac{3}{4}, t \in \left(\frac{7}{24}, \frac{3}{4}\right]; \\ \frac{7}{8}, t \in \left(\frac{3}{4}, \frac{7}{8}\right]; \\ 1, t \in \left(\frac{7}{8}, 1\right]. \end{cases}$$

则当 $t = \frac{1}{3}$ 时,左图中各函数的值为:

而当
$$t \in \left(\frac{7}{8}, 1\right)$$
 时, $f(t) = 1$,

$$fgfgf = fgf(0) = fg(\frac{1}{6}) = f(\frac{5}{6}) = \frac{7}{8}.$$

当
$$t < \frac{1}{8}$$
时, $gfg = 0$,

$$gfgfgfg = gfgfg(1) = gfg\left(\frac{1}{6}\right) = \frac{1}{8}$$
.

于是左图中 7 个函数各不相同,这时右图中 7 个函数也各不相同(用 1 减去左图的函数就得出右图中相应的函数),

左图中的函数决不可能与右图中的函数相同. 否则将导出 $f \geqslant gf$ 恒成立. 但在 $t \leqslant \frac{1}{6}$ 时, $f(t) = \frac{1}{6} < gf = \frac{5}{6}$.

因此,我们得到14个不同的函数.

- 例 4 设数轴上的点所成的集为 X, g_1 是关于原点的对称. $f_1: X \rightarrow X$, 满足:
 - (1) 单调增(点的大小顺序即相应的实数大小顺序);
 - (2) $f_1(t) \ge t$;
 - (3) $f_1(f_1(t)) = f_1(t)$,

则由 f_1 与 g_1 复合,至多产生 14 个不同的函数.

将例 3 中的自变量 t 改为 $t - \frac{1}{2}$ (即将原点移至原来的点 $\frac{1}{2}$ 处),则在那里的 g 就是现在的 g_1 ($t \in \left[-\frac{1}{2}, \frac{1}{2}\right]$). 令 $f_1(t) = f\left(t + \frac{1}{2}\right), t \in \left[-\frac{1}{2}, \frac{1}{2}\right]$;并且在 $t \notin \left[-\frac{1}{2}, \frac{1}{2}\right]$ 时,f(t) = t,则经 g_1 , f_1 复合恰产生 f(t) = t,则经 f_2 有, f_3 有。

的函数.

例5 平面上的点所成的集为 X. 对于任两个点(a_1 , b_1), (a_2 , b_2),约定当 $a_2 > a_1$ 或 $a_2 = a_1$, $b_2 > b_1$ 时,

$$(a_1, b_1) < (a_2, b_2).$$

如果 g 是关于原点的对称,而 $f_2: X \rightarrow X$,满足:

- (1) 单调增;
- (2) 对任一点 t, $f_2(t) \ge t$, $f_2(f_2(t)) = f_2(t)$, 那么由 f_2 与 g 复合, 至多产生 14 个不同的函数.

我们可以令 $f_2((a, b)) = (f_1(a), b)$, 以产生 14 个不同的函数.

例6 平面上的整点所成的集为 X, 大小顺序及 g, f_2 均与例 5相同. 试举一个 f_2 的实例, 产生 14 个不同的函数.

这只需令
$$f_2((a,b)) = \left(24f_1\left(\frac{a}{24}\right), b\right).$$

习 题

- 1. 已知 $A \cup B \cup X = A \cup B$, $A \cap X = B \cap X = A \cap B$. 证明集合 $X = A \cap B$.
- 用 n(A)表示 A 的子集的个数. 已知 | A | = | B | = 100, n(A) + n(B) + n(C) = n(A ∪ B ∪ C), 求 | A ∩ B ∩ C | 的最小值.
- 3. 从自然数数列 1. 2, 3. 4, 5, ···中依次划去 4 的倍数,7 的倍数,但其中凡 5 的倍数均保留不划去,剩下的数中第 1995 个是多少?
- 4. 在正 6n+1 边形中 $\cdot k$ 个顶点染红色,其余顶点染蓝色. 证明具有同色顶点的等腰三角形的个数 P_k 与染色方式无关,并且 $P_{k+1}-P_k$ = 3k-9n, 从而求出 P_k .
 - 5. 证明:

$$|A_1 \triangle A_2| + |A'_2 \triangle A_3| - |A'_1 \triangle A_3|$$

$$= 2 |A_1 \cap A'_2 \cap A'_3| + 2 |A'_1 \cap A_2 \cap A_3|.$$

6. 证明:

$$\sum_{A_1, \dots, A_k} |A_1 \bigcup A_2 \bigcup \dots \bigcup A_k| = n(2^k - 1)2^{k(n-1)}.$$

这里的求和遍及 n 元集 X 的所有子集 A_1 , A_2 , …, A_4 , 其中允许有空集与相同的集,并且计及顺序(即 $A_1 \neq A_2$ 时, $A_1 \cup A_2$ 与 $A_2 \cup A_1$ 算作不同的).

7. 证明:

 $\sum |A_1 \cup A_2 \cup \cdots \cup A_k| = (2^k - 1) \sum |A_1 \cap A_2 \cap \cdots \cap A_k|.$ 和号意义同上题.

8. m > n. $A = \{1, 2, \dots, m\}$. $B = \{1, 2, \dots, n\}$, 求满足 $C \subseteq A$, $C \cap B \neq \emptyset$ 的 C 的个数.

- - 10. 证明 n 元集 X 的满足 $A \subset B$ 的子集对 A , B 共有 $3^n 2^n$ 对.
- 11. 已知集 S 中的元素均为正实数, S 对加法封闭(即 $a, b \in S$ 时, $a+b \in S$), 并且对任意区间[a, b](a>0), 均有区间[c, d] \subseteq [a, b] \cap S. 试确定 S.
- 12. 设 A, B 都是集 $X = \{1, 2, ..., n\}$ 的子集. 如果 A 中的每一个数都严格地大于 B 中的所有的数,那么有序子集对(A, B)称为"好的",求 X 的"好的"子集对的个数.
- 13. 数轴上n个有界闭区间,其中任k个中均有两个无公共点. 证明其中至少有 $\left[\frac{n-1}{b}\right]+1$ 个两两不相交.
- 14. 25 位绅士围一圆桌而坐. 他们中有些人属于一些团体. 同一团体的绅士相邻而坐,并且
 - (i) 每个团体至多9个人;
- (ii) 每两个团体至少有一个公共成员, 证明有一位绅士属于所有团体,
- 15. 设 $A = \{A_1, A_2, \dots, A_r\}$ 是集 X 的 r 元子集的族. 若 $A \mapsto A \mapsto A$ 十1 个集的交非空,证明交 $A_1 \cap A_2 \cap \dots \cap A_r \neq \emptyset$.
- 16. $A \supset X$ 的子集族, $|A| = t \ge 2$. 证明形如 $A \triangle B$ $(A, B \in A)$ 的子集中,至少有 t 个互不相同.
- 17. 设 A_1 , A_2 , …, A_n 为 n 个两两不同的集. $\{A_{i_1}, A_{i_2}, \dots, A_{i_r}\}$ 为这族集中不含并集的最大子族(不含并集即对任意不同的 j, s, $t \in \{i_1, i_2, \dots, i_r\}$, $A_i \cup A_i \neq A_i$). 对一切 A_1 , A_2 , …, A_n , 令 $f(n) = \min r$. 证明:

$$\sqrt{2n} - 1 \leqslant f(n) \leqslant 2\sqrt{n} + 1$$
.

18. 设 A_1 , A_2 , …, A_n 都是r 元集. $\bigcup_{i=1}^n A_i = X$. 若对自然数 k, 这族集中每 k 个的并为 X,每 k-1 个的并为 X 的真子集. 证明, $|X| \ge$ 184 •

 C_{i} . 等号成立时,必有 $r = C_{i}$.

- 19. A_1 , A_2 , …, A_i 都是r 元集, $X = \bigcup_{i=1}^n A_i$, 求 $\min |X|$. 这里最小值是对所有 A_1 , A_2 , …, A_i 的|X|的最小值.
- 20. 设 $\{A_i\}_{1 \le i \le m}$, $\{B_i\}_{1 \le i \le m}$ 是两族集, 具有性质 $|A_1| = |A_2| = \dots = |A_m| = p$, $|B_1| = |B_2| = \dots = |B_m| = q$, 并且当且仅当 $\iota = j$ 时, $A_i \cap B_i = \emptyset$. 证明: $m \le C_{p-q}^*$.
- **21.** n 元集 X 的非空子集族 \varnothing 称为滤子族,如果对每对 A, $B \in \varnothing$, 存在 $C \in \varnothing$, 使得 $C \subseteq A \cap B$, 求滤子族的个数.
- **22.** 设 $A = \{A_1, A_2, \dots, A_t\}$ 是集 X 的 r 元子集的族, $t \leq 2^{-1}$. 证明可将 X 的元素各染成两种颜色之一,使得每个 A_i ($1 \leq i \leq t$) 的元素不全同色.
- 24. 设 X 为 n 元集. $A = \{A_1, A_2, \dots, A_t\}$ 是 X 的子集族,对所有 $i \neq j$, $1 \leq i$, $j \leq t$, $|A_i \cap A_j| = 1$. 证明: $t \leq n$.
- **25.** 设 A_1 , A_2 , …, A_n 与 B_1 , B_2 , …, B_n 是集 X 的两个分拆. 并且当 $A_i \cap B_i = \emptyset$ 时, $|A_i \cup B_i| \ge n$ ($1 \le i, j \le n$). 求证: $|X| \ge \frac{n^2}{2}$. 并说明在 n 为偶数时,等号可以成立.
- 27. $X = \{1, 2, \dots, n\}$ 的子集族 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$ 称为完全可分的,如果对任意的 $i, j (1 \le i < j \le n)$,存在 A_k , $A_k \in \mathscr{A}$,使得 $i \in A_k A_k$, $j \in A_k A_i$. 对任一集族 $\mathscr{A} = \{A_1, A_2, \dots, A_i\}$,定义 $B_i = \{k \mid i \in A_k\}$,产生一个 $\{1, 2, \dots, t\}$ 的子集族 $\mathscr{A}^* = \{B_1, B_2, \dots, B_n\}$, \mathscr{A}^* 称为 \mathscr{A} 的对偶. 证明当且仅当 \mathscr{A}^* 是 S 族时, \mathscr{A} 完全可分.

- 28. X 的子集族 \checkmark 是 S 族,令 $\flat(\mathscr{A})$ 为 X 的所有与 \checkmark 中每一子集都相交的最小集组成的族. 证明: $\flat(\flat(\mathscr{A})) = \mathscr{A}$
- **29**. 任意 t 个集 A_1 , A_2 , … , A_i 中 , 总能找出 $[t^{\frac{1}{2}}]$ 个 , 每两个的并不等于第三个.
- 30. 设 \mathscr{A} , \mathscr{B} 为 n 元集 X 的子集族, \mathscr{A} 中的每个子集 A 与 \mathscr{B} 中的每一个子集 B 均不可比较. 证明: $\sqrt{|\mathscr{A}|} + \sqrt{|\mathscr{B}|} \leqslant 2^{\frac{\pi}{2}}$.
 - 31. 研究 4.11 节例 1(4)中等号成立的情况.
 - 32. 列出 5.7节例 1 中右图的 7 个集.
 - 33. 建立区间(a, b), [a, b), (a, b]与[0, 1]的---对应.
- 34. 对集合 A_1 , A_2 , ...,令 $\overline{A} = \bigcap_{m=1}^{\infty} \left(\bigcup_{n=m}^{\infty} A_n \right)$, $\underline{A} = \bigcup_{m=1}^{\infty} \left(\bigcap_{n=m}^{\infty} A_n \right)$. 证明: $\overline{A} \supseteq \underline{A}$, 举一个 $\overline{A} \supseteq \underline{A}$ 的例子.
- 35. 设 X 为n 元集,Y 为 X 的k 元子集,证明 X 的恰含 Y 中r 个元的子集,所成的最大的 S 族由 $C[C_{k}^{\lceil \frac{n-k}{2} \rceil}]$ 个子集组成.
- **36.** 考虑 n 元集 X 到自身的映射 $f(n \ge 2)$, 若 a 为 X 中一固定元素,对每个 $x \in X$, 均有 f(f(x)) = a. 求这种映射 f 的个数.
- 37. 设 $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n)$ 为两个n维向量. 若 x = y或 $x_i = y_i$ 对 n-1 个 i 成立,则称 y 覆盖 x. 令 X 表示 p^n 个向量 (x_1, x_2, \dots, x_n) , $x_i \in \{1, 2, \dots, p\}$, $i = 1, 2, \dots, n$ 的集. 若 X 中每个向量至少被 Y 中一个向量覆盖. 求证: $\{Y \mid \ge \frac{p^n}{n(p-1)+1}$, 并且当 n = 2 时,min $\|Y\| = p$.
- 38. 设 X 为 n 元集, $n \ge 4$, A_1 , A_2 ,…, A_{100} 为 X 的子集,其中可以有相同的,满足 $|A_i| > \frac{3}{4}n$,i = 1, 2, ...,100. 证明存在 $Y \subseteq X$, $|Y| \le 4$ 并且 $Y \cap A_i \ne \emptyset$,i = 1, 2, ...,100.
- 39. X 为n 元集, $n \ge 2$, A 为 X 的子集族. 若 X 的每个真子集与 A 中偶数个集的交非空,证明 X 的所有非空子集均在 A 中.
 - 40. 集 X 的元数 n > 1,并且有一关系 \wedge ,满足。
 - (1) 对任 $-x \in X$, $x \land x$ 不成立;
 - · 186 ·

- (2) 对任一对不同元素 $x, y \in X$, $x \land y = y \land x$ 恰有一个成立;
- (3) 若 $x \land y$, 则有 $z \in X$, 使得 $x \land z$, $z \land y$.

问 X 至少有几个元素?

习题解答

- 由 A ∩ X = A ∩ B 得 X ⊇ A ∩ B. 由 A ∪ B ∪ X = A ∪ B 得
 X ⊆ A ∪ B, 此式及 A ∩ X = A ∩ B 得 X ⊆ B. 同理 X ⊆ A. 因此
 X ⊆ A ∩ B. 综合起来得 X = A ∩ B.
- 2. 设 |C| = c, $|A \cup B \cup C| = d$, 则 $2^{100} + 2^{100} + 2^c = 2^d$, 即 $2^{101} + 2^c = 2^d$. 显然 d > c 与 101, 因此 $2^{101} | 2^c$, $2^c | 2^{101}$, 从而 c = 101, d = 102. $A \cap B$ 至少有 100 + 100 102 = 98 个元,其中至多有 102 101 = 1 个元不属于 C. 所求最小值为 98 1 = 97.
 - 3. 可按 1.11 节例 4 解.

另一种解法:4, 5, 7 的最小公倍数为 140. 由中国剩余定理(孙子定理),1 至 140 中的数可唯一地表示成(a, b, c)的形式,其中 a, b, c 分别为该数除以 4, 5, 7 的余数. 保留的数有(a, 0, c)及(a, b, c), $b \neq 0$ 两种. 前者 $a \in \{0, 1, 2, 3\}$, $c \in \{0, 1, 2, 3, 4, 5, 6\}$, 共 $4 \times 7 = 28$ 个;后者 $a \in \{1, 2, 3\}$, $b \in \{1, 2, 3, 4\}$, $c \in \{1, 2, 3, 4, 5, 6\}$, 共 $3 \times 4 \times 6 = 72$ 个. 因此 1 至 140 中共留下 28 + 72 = 100 个数,其中最大的五个数为 140, 139, 138, 137, 135. 在前 $140 \times 20 = 2800$ 个自然数中留下 $100 \times 20 = 2000$ 个数. 因此第 1995 个数是 2800 - (140 - 135) = 2795,

4. 设 P_k 与染色方式无关. 现在增加一个红点 A, 以 A 为顶点的等腰三角形中,设顶点全红的有 a_3 个,两个红点的 a_2 个,一个红点的 a_1 个,则 $a_1+a_2+a_3=9n$ (其中 3n 个以 A 为尖,6n 个不以 A 为尖), $a_2+2a_3=3k$ (另一不同于 A 的红点有 k 种取法,这点与 A 可作为三个等腰三角形的两个顶点. 这样组成的等腰三角形中,每个顶点全红的三角形被计算了两次). 由以上两方程得 $a_3-a_1=3k-9n$. 而增加红点 A 时,同色顶点的等腰三角形的个数 P_k 增加 a_3 ,减少 a_1 (增加 a_3 个顶点全红

的,减少 a_1 个顶点全蓝的等腰三角形). 因此 P_{k+1} 与染色方式无关,并且 $P_{k+1}-P_k=a_3-a_1=3k-9n$. 由于 $P_0=3n(6n+1)$, 所以 $P_k=P_0-9kn+3\sum_{i=1}^k i=3n(6n+1)-9kn+\frac{3}{2}k(k-1)$.

- 5. 左边 = $|A_1| |A_1 \cap A_2| + |A_2| |A_1 \cap A_2| + |A'_2| |A'_2 \cap A_3| + |A_3| |A'_2 \cap A_3| |A'_1| |A_3| + 2 |A'_1 \cap A_3|$
- $= 2(|A_1| |A_1 \cap A_2| |A_2' \cap A_3| + |A_1' \cap A_3|)$
- $= 2(|A_1 \cap A_2'| |A_2' \cap A_3| + |A_1' \cap A_3|)$
- $= 2(|A_1 \cap A_2'| |A_1 \cap A_2' \cap A_3| |A_1' \cap A_2' \cap A_3| + |A_1' \cap A_3|)$
- $= 2(|A_1 \cap A_2' \cap A_3'| + |A_1' \cap A_2 \cap A_3|).$
- 6. X有 2^n 个子集,每个均可作为 A_1 , A_2 , …, A_k 中的任一个,因此和共 $(2^n)^k$ 项. 不含 i 的子集共 2^{n-1} 个 $(1 \le i \le n)$, 因此 i 不在 $(2^{n-1})^k$ 项出现,即 i 对和的贡献是 $(2^n)^k (2^{n-1})^k$. 从而和为 $n(2^n 2^{(n-1)k})$.
 - 7. 右边的和 = $\sum |A'_1 \cap A'_2 \cap \cdots \cap A'_k|$ = $\sum |(A_1 \cup \cdots \cup A_k)'|$ = $\sum (n-|A_1 \cup \cdots \cup A_k|)$ = $n \cdot 2^{nk} - n(2^{nk} - 2^{(n-1)k}) = n \cdot 2^{(n-1)k}$.

从而两边相等.

- 8. C不是 $\{n+1, n+2, \dots, m\}$ 的子集,这样的子集有 2^{m-n} 个,因此 C有 2^{m} -2^{m-n} 个.
- 9. $A_i \cup A_j \neq X$ 即 $A_i' \cap A_j' \neq \emptyset$,由 4. 5 节例 1. A_1' , A_2' , … , A_m' 的个数 $m \leq 2^{m-1}$, 并且可以补充若干个 A_k' , 使每两个交非空的集增加到 2^{m-1} 个. 从而对 网络论成立.
- 10. $(X-B) \cup (B-A) \cup A \in X$ 的一个分拆. 因此 X 的每个元可以属于三者之一,共有 3^* 种上述分拆,其中 $B-A=\varnothing$ 的有 2^* 种,应当排除.
- 11. 对任一正实数 t,取正实数 s < t. 由已知,存在区间 $[c, d] \subseteq [s, t] \cap S$.

在区间 [t-d, t-c] (这是关于[0, t]的中点 $\frac{t}{2}$,与[c, d]对称的区间) 中,由已知,存在区间 $[e, f] \subseteq S$.

 $t-e\left(e$ 关于 $\frac{t}{2}$ 的对称点)在区间[c,d]中,因而 $t-e\in S$.

由加法封闭性, $t = e + (t - e) \in S$.

所以 S 由全体正实数组成.

12. 设 $|A \cup B| = k$. 元数为 k 的子集有 C_k^* 个. 对任一 k 元子集 $\{a_1, a_2, \dots, a_k\} \subseteq X$, $a_1 < a_2 < \dots < a_k$, 集 B 可为 \emptyset , $\{a_1\}$, $\{a_1, a_2\}$, \dots , $\{a_1, a_2, \dots, a_k\}$, 共有 k+1 种,因此好子集对的个数为

$$\sum_{k=0}^{n} (k+1)C_{n}^{k} = 2^{n} + n \cdot 2^{n-1}.$$

13. 答案可加强为 $\left\lceil \frac{n}{k-1} \right\rceil$. 对 n 归纳. 考虑各区间中右端点最大的 k 个区间,其中必有两个区间 $\left\lceil a,b \right\rceil$, $\left\lceil c,d \right\rceil$ 互不相交,即 b < c.

再考虑剩下的 n-k 个区间及 [a,b]. 由归纳假设,其中有 $\left\lceil \frac{n-k+1}{k-1} \right\rceil$ 个两两不相交的区间. 这些区间的右端点均 $\leqslant b$,因而不 与 [c,d] 相交. 连同 [c,d] 共有 $\left\lceil \frac{n-k+1}{k-1} \right\rceil + 1 = \left\lceil \frac{n}{k-1} \right\rceil$ 个两两不相 交的区间.

14. 将人依圆桌的(顺时针)次序编号为 1, 2, …, 25. 不妨设一个团体由 9, 10, …, 8+k ($k \le 9$) 组成. 这时含 1 的团体必为{1, 2, …, 9},含 25 的团体必为{25, 24, …, 17}(否则与(i), (ii)矛盾). 由于{1, 2, …, 9}与{25, 24, …, 17}无公共成员,所以这两个团体至多出现一个. 即 1 或 25 中至少有一个不属于任何一个团体.

不妨设 25 不属于任何一个团体. 各团体的最大号数的最小值记为m,则 m 必属于所有团体. 事实上,m 是某团体 C_1 的最大号数,对任一团体 C_1 , C_i 的最大号数 $m_i \ge m$. 由于 $C_i \cap C_i \ne \emptyset$, C_i 的最小号数必不大于 m,从而 $m \in C_i$.

注:如果从 25 那里将圆周剪断,拉成直线,问题便化成直线上若干闭区间,每两个有公共点,则这些闭区间有公共点.

- 15. 设 $A_1 = \{x_1, x_2, \dots, x_r\}$. 若 $A_1 \cap A_2 \cap \dots \cap A_r = \emptyset$,则对 每个 $i \in \{1\}$ (1 $\leq i \leq r$),均有一个 \varnothing 中的子集不含 x_i . 这些集(不超过 r 个) 与 A_1 的交为空集,矛盾.
- **16.** 设 ⋈= {A₁, A₂, ···, A_i}. 由 1. 10 节例 1, A₁△A_i(1 ≤ i ≤ t) 互不相同.
- 17. 先证 $r \ge \sqrt{2n-1}$. 不妨设 A_1 是 $\{A_1, A_2, \cdots, A_n\}$ 中的最小元 (即 A_1 不包含其他的集 A_i , $i \ne 1$). 设已有 $A_{i_1} = A_i$, A_{i_2} , \cdots , A_{i_s} , 组成无并的族. 因为 A_{i_1} , A_{i_2} , \cdots , A_{i_s} 两两的并集至多 C_i^s 个,所以在 $n-s > C_i^s$ 时,总可以在剩下的 n-s 个集中再取出一个不等于 A_{i_1} , A_{i_2} , \cdots , A_{i_s} 中任两个的并. 这样继续下去,直至选出无并族 A_{i_1} , A_{i_2} , \cdots , A_{i_s} , r满足 $n-r \le C_i^s$, 从而 $r \ge \sqrt{2n-1}$.

再证 $\min r < 2\sqrt{n} + 1$. 设 t 为满足 $\left[\frac{t^2}{4}\right] \ge n$ 的最小整数. 考虑 $\left[\frac{t^2}{4}\right] = \left[\frac{t}{2}\right] \left[\frac{t+1}{2}\right]$ 个自然数的集合.

$$A_{l,j} = \{x \mid i \leqslant x \leqslant j\}, \ 1 \leqslant i \leqslant \frac{t}{2} < j \leqslant t.$$

设 $\{A_{i_k,i_k}, 1 \le k \le r\}$ 为无并的子族,则对每个 k,以下两种情况不能同时发生。(1)存在 A_{i_k,i_k} 满足 $i_k = i_k$, $j_k < j_k$;(2)存在 A_{i_k,i_k} ,满足 $i_k > i_k$, $j_k = j_k$. 否则 A_{i_k,i_k} 以 A_{i_k,i_k} 。当(1)不发生时,将 i_k 染红;当(2)不发生时,将 j_k 染红,这样,对每个 k, $\{1,2,\cdots,t\}$ 中有一个对应的红点.与不同的 k 对应的红点不同(若与 k,k' 对应的红点均为 i_k ,则(1)发生,与红点定义矛盾。若与 k,k' 对应的红点均为 j_k ,则(2)发生,矛盾)。于是 $r \le t$,从而 $r < 2\sqrt{n} + 1$.

18. 对每 k-1 个的并,X 至少有一个元不在这并集中,不同的并对应的元不同. 因此 $|X| \ge C_n^{k-1}$.

若 $|X| = C_n^{n-1}$,则 X 的每个元恰与一族k-1 个集对应,这个元不在这 k-1 个集中,在其他 n-(k-1) 个集中,因此,

$$nr = \sum |A_r| = (n-k+1) |X| = (n-k+1)C_n^{k-1},$$

$$r = \frac{n-k+1}{n}C_n^{k-1} = C_{n-1}^{k-1}.$$

19. 设 n 为满足 $C_n \ge t$ 的最小整数. 一方面, A_1 , A_2 , …, A_n 都是 X 的 r 元子集, 所以 $t \le C_{(X)}$. 从而 $|X| \ge n$.

另一方面,任一n元集 X,有 $C_n \ge t$ 个r元子集,从中任取 t个. 设它们的并集为 Y,则由上面所说, $|Y| \ge n$,因而 Y = X. X 就是所取 t个 r元集的并集.

因此,所求最小值即 n.

20. 在 4.1 节例 3 中,令 $a_1 = a_2 = \cdots = a_n = p$, $b_1 = b_2 = \cdots = b_n = q$ 即得.

21. 设 $\mathscr{A} = \{A_1, A_2, \dots, A_r\}$, 其中 A_1 最小,即 A_1 不包含 A_2 , A_3 , ..., A_r 中任何一个. 由于 $A_1 \cap A_2$, $A_1 \cap A_3$, ..., $A_1 \cap A_r$ 均在 \mathscr{A} 中,所以 $A_1 \cap A_2 = A_1 \cap A_3 = \dots = A_1 \cap A_r = A_1$, $\mathscr{A} = \{A_1, A_1 \cup B_2, \dots, A_1 \cup B_r\}$, 其中 B_2 , B_3 , ..., B_r 是互不相同的非空集合,且均是 $X - A_1$ 的子集.

设 $|X-A_1|=k$,则 $0 \le k \le n-1$. $\{B_2,B_3,\cdots,B_t\}$ 是 $X-A_1$ 的非空子集的族, $X-A_1$ 有 2^k-1 个非空子集,每一个均可属于,也可不属于 $\{B_2,B_3,\cdots,B_t\}$,因而 $\{B_2,B_3,\cdots,B_t\}$ 有 2^{2^k-1} 个.而 A_1 有 C_n^{-k} 种. 所以滤子族的个数为 $\sum_{k=1}^{n-1} C_n^k 2^{2^k-1}$.

22. 设 |X|=n. 至少有一个 A_i 同色的种数 $< t \times 2 \times 2^{m-r} \le 2^{m-1} \times 2 \times 2^{m-r} = 2^m$. 其中 2 表示 A_i 的元素可全染红或全染黑, 2^{m-r} 是 $X-A_i$ 的元素的染色的种数. 由于在 X 的元素全同色时, A_1 , A_2 ,…, A_n 均同色,所以上面的第一个不等号是严格的. X 的染色方法有 2^m 种,因此必有一种使得每个 A_i 均不同色.

23. 任意地将 X 的元素染成红或黑色,若 A_1 中的元素全红,将 A_1 中一个元素 x 改为黑色. 由于 $|A_1| \ge 2$, 所以 A_1 不同色. 设已有 A_1 , A_2 , …, A_i ,每个集的元素不全同色. 若 A_{i+1} 的元素同色,不妨设全为 • 192 •

紅色,将 A_{i+1} 中·一个元素 y 改为黑色,这时 A_{i+1} 中的元素不全同色. 若有 A_{i} ($1 \le j \le i$) 变 为 同 色,则 A_{i} 中 元 素 均 与 y 同 为 黑 色, $|A_{i}|$ A_{i+1} $|=|\{y\}|=1$,矛盾. 因此 A_{i} , A_{2} , … , A_{i+1} 每个集的元素不全同色. 继续这样调整,可使 A_{1} , A_{2} , … , A_{i} 各个集的元素不全同 色.

24. 对任一个 $x \in X$, 用 d(x)表示 A 中含 x 的子集个数. 若有某个 d(x) = t, 则 $A_1 - \{x\}$, $A_2 - \{x\}$, …, $A_t - \{x\}$ (其中可能有一个空集)两两不相交,因此 $t \le n$.

没恒有 d(x) < t. 对 x, A 中存在 A_1 , A_2 , …, $A_{d(x)}$ 及 A, 满足 $x \in A_1$, A_2 , …, $A_{d(x)}$ 及 $x \notin A$. 由已知 $|A_i \cap A_j| = 1$, $A \cap A_1$, $A \cap A_2$, …, $A \cap A_{d(x)}$ 均是单元紊集,并且各不相同,所以 $|A| \geqslant d(x)$.

若
$$t > n$$
, 则 $\frac{d(x)}{t-d(x)} < \frac{d(x)}{n-d(x)} \leqslant \frac{|A|}{n-|A|}$. 求和得

$$\sum_{x \in X} \sum_{\substack{x \notin A \\ A \in \mathscr{A}}} \frac{d(x)}{I - d(x)} = \sum_{x \in X} d(x) < \sum_{A \in \mathscr{A}} \sum_{x \notin A} \frac{|A|}{n - |A|} = \sum_{A \in \mathscr{A}} |A|.$$

另一方面,考虑一个两部分图. 一部分有 n 个点,代表 X 的 n 个元素. 另一部分有 t 个点,代表 x 中的 t 个子集. 若 $x \in A$,就在代表 x 与代表 A 的点之间连一条线. $\sum d(x)$ 与 $\sum |A|$ 都是这个图的线的条数,所以 $\sum d(x) = \sum |A|$. 与上面的不等式矛盾. 这表明 $t \leq n$.

25. 令 $k = \min(|A_i|, |B_i|, 1 \le i \le n)$. 不妨设 $|A_1| = k$. 因为 B_1 , B_2 , ..., B_n 两两不相交, 所以至多有 $k \cap B$. 满足 $A_1 \cap B_i \ne \emptyset$. 设这些 B_i 为 B_1 , B_2 , ..., B_m , $m \le k$, 则对于 i > m, $|B_i| \ge n - |A_1| = n - k$. 当 $k < \frac{n}{2}$ 时,

$$|X| = \sum_{i=1}^{m} |B_{i}| + \sum_{i=m+1}^{n} |B_{i}| \geqslant mk + (n-m)(n-k)$$

$$= n(n-k) - m(n-2k) > n(n-k) - k(n-2k)$$

$$= \frac{n^{2}}{2} + \left(\frac{n}{\sqrt{2}} - \sqrt{2}k\right)^{2} \geqslant \frac{n^{2}}{2}.$$

当
$$k \geqslant \frac{n}{2}$$
 时, $|X| = \sum_{r=1}^{n} |A_r| \geqslant nk \geqslant \frac{n^2}{2}$.

者 n 为偶数,将 $\frac{n^2}{2}$ 元集 X 分拆为 n 个 $\frac{n}{2}$ 元集 A_1 , A_2 , …, A_n . 又 令 $B_i = A_i$ ($1 \le i \le n$), 则题中条件均满足.

26. 对每个 $A \in \mathcal{A}$, 必有 X 的子集 A_1 , A_1 与 A 可以比较,与 \mathcal{A} 中 其他子集均不可比较(否则 A 可取消,与 \mathcal{A} 的最小性矛盾).令 A, A_1 中较大的为 A^* , $\mathcal{A}^* = \{A^* \mid A \in \mathcal{A}\}$.显然不同的 A, A^* 不同,所以 $|\mathcal{A}^*| = |\mathcal{A}|$.

 \mathscr{A}^* 是 S 族. 事实上,若 \mathscr{A}^* 中有 $C^* \subseteq D^*$,则有四种情况: $(1)C^* = C$, $D^* = D_1$. 这时 D_1 与 C 可比较. $(2)C^* = C$, $D^* = D$. 这时 C_1 $\subseteq C \subseteq D$. $(3) C^* = C_1$, $D^* = D$. 这时 $C_1 \subseteq D$. $(4) C^* = C_1$, $D^* = D$. 这时 $C \subseteq C_1 \subseteq D$. 均导致矛盾.

因此 $|\mathcal{A}| = |\mathcal{A}^*| \leqslant C^{\left[\frac{\pi}{2}\right]}$.

- **27.** " B_i 不是 B_j 的子集"意味着存在 $k \in B_i B_j$,即 $i \in A_k$, $j \notin A_k$. " B_j 不是 B_i 的子集"意味存在 k 使得 $i \notin A_k$, $j \in A_k$. 从而 A^* 为 S 族导出 M完全可分. 反之亦然.

于是,设 $A \in \mathbb{A}$,则有 $B \in b(b(\mathbb{A}))$ 满足 $A \supseteq B$,又有 $C \in \mathbb{A}$ 满足 $B \supseteq C$. 但 \mathbb{A} 为 S 族,所以 A = B = C. 因此 $\mathbb{A} \subseteq b(b(\mathbb{A}))$. 反之,对 $B \in b(b(\mathbb{A}))$,存在 $C \in \mathbb{A}$ 满足 $B \supseteq C$.由于 $C \in b(b(\mathbb{A}))$.它是与所有 $b(\mathbb{A})$ 中子集均相交的最小集,所以 B = C.即 $b(b(\mathbb{A})) \subseteq \mathbb{A}$.从而 $\mathbb{A} = b(b(\mathbb{A}))$.

29. 考虑由 A₁, A₂, …, A₁ 组成的链, 如果有一条链含有至少[t²]介 A₁ (1≤i≤t), 这[t²]介子集满足要求, 否则, 对每个 i (1≤i・194・

 $\leqslant i$),称以 A_i 为最小元的链的最大长度为 A_i 的层数,则层数 $\leqslant \left[i^{\frac{1}{2}}\right]$. 因此,必有 $\left[i^{\frac{1}{2}}\right]$ 个 A_i 的层数相同. 它们构成 S 族,满足要求.

 $B_1 \cap X_j = B_2 \cap X_j = \cdots = B_r \cap X_j$, $j=1,\ 2,\ \cdots,\ n.$ 对求和得

 $B_1 = B_1 \cap (\bigcup_j X_i) = B_1 \cap X = B_2 = \dots = B_i = B.$ 又对每个j,凡成为 X_i 子集的 A_i ,元数 a_i 均相等,并且它们是 $X_i - B$ 的全部 a_i 元子集. 若一切 a_i 均等于 a_i 则由 $\sum_{i=1}^t w(i) = 1$ 得 $t = C_{n-\delta}^o$,结论成立. 若有 $a_i \neq a_k$,不妨设 $A_k \subseteq X_1$, $A_i \subseteq X_i$,并且 $a_k < n-1$. 这时 $j \in A_k$ (因为 $A_k \nsubseteq X_j$),又有 $h \neq 1$, $h \notin A_k$ (因为 $a_k < n-1$),所以 $A_k \cup \{h\} - \{j\} \subseteq X_1$ 且元数与 A_k 相同,因而必为某个 A_q ,并且 $\subseteq X_i$,所以 $A_k \mid = \mid A_i \mid$,与 $a_i \neq a_k$ 矛盾,因此一切 a_i 均等于 a_i

32. $g = \{ [1, 2]$ 中的无理点 $\} \cup \{3\} \cup \{4, 5\}.$ $gf = \{4, 5\}.$ $fg = [1, 2] \cup \{3\} \cup [4, 5],$ fgf = [4, 5], $gfgfg = [1, 2) \cup \{4, 5],$

 $gfgfgf = (4, 5], fgfgfg = [1, 2] \cup [4, 5].$

33.
$$f(x) = \begin{cases} x, & \text{若 } x \neq \frac{1}{2^n}, n = 1, 2, \cdots; \\ & \text{建 立 } [0, 1) \\ 2x, & \text{若 } x = \frac{1}{2^n}, n = 1, 2, \cdots \end{cases}$$

[0,1]之间的——对应、f(1-x) 建立(0,1]与[0,1]之间的——对

$$\underline{\omega}.\ \varphi_{(x)} = \begin{cases} \frac{1 - f(1 - 2x)}{2}, \ \texttt{若} \ x \in \left(0, \frac{1}{2}\right]; \\ \frac{1 + f(2x - 1)}{2}, \ \texttt{描} \ x \in \left[\frac{1}{2}, 1\right) \end{cases}$$
建立(0, 1)与[0, 1]之

间的一一对应. 将 y=(b-a)x+a与上述函数复合便得到所需的对应. 当然这样的对应决非唯一.

34. \overline{A} 的元素属于无穷多个 A_n . \underline{A} 的元素属于 A_n ($n \ge \overline{A}$ 某个与该元素有关的 m),因而属于无穷多个 A_n ,即属于 \overline{A} . 所以 $A \subseteq \overline{A}$.

令 $A_1=A_3=A_5=\cdots=A$, $A_2=A_4=A_6=\cdots=B$. 则 $\overline{A}=A\cup B$. $\underline{A}=A\cap B$.

35. 集族 $\left\{A \cup B \mid A \subseteq Y, \mid A \mid = r, B \subseteq X - Y, \mid B \mid = \left[\frac{n-k}{2}\right]\right\}$ 的元数为 $CiC\left[\frac{r-k}{2}\right]$.

另一方面,设 以为满足要求的最大集族. 对 Y 的任 r 元子集 A,以中所有含 A 的子集互不包含,它们减去 A 后组成 X-Y 的 S 族,因而个数 $\leq C^{\left[\frac{r-1}{2}\right]}$.

- 36. 显然 a = f(f(f(a))) = f(a). 设除去 a 外,还有 k 个元的像为 a ,这 k 个元有 C_{k-1}^{k} 种选择. X 中其他的 n-k-1 个元,每个元的像可为这 k 个元中任何一个. 于是 f 共有 $\sum_{k=1}^{n-1} C_{k-1}^{k} \cdot k^{n-k-1}$ 个.
- 37. 每一个 n维向量恰盖住 $C_n^1 \times (p-1)+1$ 个向量,因此 $|Y| \ge \frac{p^n}{n(p-1)+1}$.

当 n=2 时, $\{(1,1),(2,2),\dots,(p,p)\}$ 可覆盖 X. 另一方面, 196 •

对任 p-1 个向量的集 $\{(a_i, b_i), i=1, 2, \dots, p-1\}$, 存在 $a \neq a_i$ (1 $\leq i \leq p-1$), $b \neq b_i$ (1 $\leq i \leq p-1$). (a, b) 不被这 p-1 个向量覆盖. 因此 $\min |Y| = p$.

38. 设 $X = \{x_1, x_2, \dots, x_n\}$, A_1, A_2, \dots, A_{100} 中含 x_k 的有 n_k 个 $(k = 1, 2, \dots, n)$, 则

$$\sum n_b = \sum |A_i| > \frac{3}{4}n \times 100 = 75n.$$

于是必有 k 使 $n_k \ge 76$. 不妨设 $n_1 \ge 76$.

设 A_1 , A_2 , …, A_{100} 中不含 x_1 的为 B_1 , B_2 , …, B_s , $s \le 100-76$ = 24. $\sum |B_s| > \frac{3}{4} n s$, 因而必有 x_k 属于 $> \frac{3}{4} s \land B_s$, 不妨设 x_2 属于 $> \frac{3}{4} s \land B_s$. B_1 , B_2 , …, B_s 中不含 x_2 的为 C_1 , C_2 , …, C_r , 则 $t < \frac{1}{4} s \le 6$.

最后, C_1 , C_2 , …, C_i 中不含某个 x_3 的 $<\frac{1}{4}t \le \frac{5}{4}$ 个,即至多一个,设这个为 D_i

取 $Y = \{x_1, x_2, x_3, x_4\}, x_1 \in D.$

39. 不妨设 $\emptyset \in \mathbb{A}$. 显然 $\mathbb{A} \neq \{X\}$. 设 $A \in \mathbb{A}$ 并且 $|A| = a \geqslant 1$ 为最小. 因为 $a \leqslant n-1$, X-A 是 X 的真子集, X-A 与 \mathbb{A} 中除 A 外的 所有子集的交均非空,因此 $|\mathbb{A}|-1$ 是偶数, \mathbb{A} 含有 X 中奇数个子集.

对任一 $x \in X$, 若 $\{x\} \notin \mathcal{A}$, 则 $X - \{x\}$ 与 \varnothing 中所有子集(奇数个)均相交,与已知矛盾. 因此 $\{x\} \in \mathscr{A}$.

设每个元数、< k (< n) 的子集 $\in \mathbb{Z}$. 对元数为 k 的子集 A , 若 $A \notin \mathbb{Z}$, 则 X - A 与 \mathbb{Z} 中除去 $2^{|A|} - 2$ 个(A 的真子集共 $2^{|A|} - 2$ 个)外的子集相交,与已知矛盾. 于是 X 的真子集均在 \mathbb{Z} 中.

若 $X \notin \mathscr{A}$,则 $|\mathscr{A}| = 2^n - 2$ 为偶数,与上面所证矛盾. 所以 $X \in \mathscr{A}$. $\mathscr{A} = P(X)$ 或 $P(X) - \{\emptyset\}$.

40. 设 x_1 , $x_2 \in X$. 由(2)可设 $x_1 \land x_2$. 由(3)有 $x_3 \in X$, 使 $x_1 \land x_3 \land x_2$ (即 $x_1 \land x_3$, $x_3 \land x_2$).

类似地,有 x_i , x_5 , x_6 , $x_i \in X$.满足:

 $x_1 \wedge x_1 \wedge x_3 \cdot x_4 \wedge x_5 \wedge x_5 \wedge x_3 \cdot x_4 \wedge x_6 \wedge x_2 \cdot x_5 \wedge x_7 \wedge x_6$

 $\mathbf{d}(1)$, $x_3 \neq x_1$, x_2 . 而 $x_1 \neq x_1$, x_3 . $\mathbf{d}(2)$, $x_2 \neq x_2$.

类似地, $x_5 \neq x_1$, x_2 , x_4 , x_5 ; $x_6 \neq x_4$, x_2 , x_3 , x_4 , x_5 ; $x_7 \neq x_1$, x_2 , x_3 , x_4 , x_5 , x_6 .

从而 X 至少有 7 个元素.

另一方面,对任一元数 ≥ 7 的有限集 X,均可建立一个二元关系 \wedge ,满足(1),(2),(3).

情况 1: $X = \{1, 2, \dots, n\}$, n 为奇数 (≥ 7).

对于 $1 \leq s < t \leq n$, 定义;

 $s \wedge t$, 若 t-s=1 或小于 n-1 的正偶数,

 $t \land s$, 岩 t-s=n-1 或大于 1 的奇数.

显然(1), (2)成立、设有 $x \land y$, $1^\circ y - x = 1$, 这时又分两种情况: $x \leqslant n - 4$ 时, $x \land (x + 4) \land y$, x > n - 4 时, $x \land (x - n + 4) \land y$, $2^\circ y - x$ 为小于 n - 1 的正偶数、当 y - x > 2 时, $x \land (x + 2) \land y$. 当 y - x = 2 时, $x \land (x + 1) \land y$, $3^\circ x - y = n - 1$ 或大于 1 的奇数、当 $y \geqslant 3$ 时, x - y 是大于 1 的奇数, $x \land (y - 2) \land y$, 当 $x \leqslant n - 2$ 时, $x \land (x + 2) \land y$, 当 $x \leqslant n - 1$ 时, $x \land n \land y$, 当 $x \leqslant n - 1$ 可, $x \land (n - 3) \land y$, 当 $x \leqslant n - 1$ 可, $x \land n \land y$, $x \leqslant n - 1$ 可, $x \leqslant n \land y$, $x \leqslant n - 1$ 可, $x \leqslant n \land y$, $x \leqslant$

于是(3)成立,

情况 2: $X = \{1, 2, \dots, n+1\}, n$ 为奇数 (≥ 7).

在 $\{1, 2, \dots, n\}$ 上定义 \land 与情况 1 相词. 此外 $x \land (n+1), x = 1, 2, \dots, n$.

显然(1),(2)成立.设 $x \land y$.若x, $y \leqslant n$,与情况(1)同样,(3)成立.若y = n + 1,而 $x \leqslant n - 1$,则 $x \land (x + 1) \land y$.若y = n + 1而x = n,则 $x \land 1 \land y$.因此(3)成立.

综上所述,X 的最小元数为 7.

```
封面页
书名页
版权页
前言页
目录页
第一章
    集合
     1.1集合
     1.2从属关系
     1.3包含
     1 . 4 并与交
     1.5差与补
     1.6 Venn图
     1.7有关集合的等式()
     1.8对称差
     1 . 9 有关集合的等式( )
     1.10有关集合的等式()
     1.11容斥原理()
     1.12容斥原理()
第二章 映射
     2.1映射
     2.2复合映射
     2.3有限集到自身的映射
     2 . 4 构造映射( )
     2.5构造映射()
     2 . 6 函数方程 ( )
2 . 7 函数方程 ( )
     2.8链
     2.9图
第三章 有限集的子集
     3.1子集的个数
     3.2两两相交的子集
     3 . 3 奇偶子集
     3 . 4 另一种奇偶子集
     3.5 Graham的一个问题
     3.6三元子集族()
     3.7三元子集族(
     3.8 Steiner三连系
     3 . 9 构造
     3 . 1 0 分拆( )
     3.11分拆()
     3 . 1 2 覆盖
     3.13 Stirling数
     3.14 \, \text{M} \, (\text{n9 k9 h})
```

第四章 各种子集族

- 4.1 S族
- 4.2链
- 4.3 Dilworth定理
- 4.4 Littlewood-Offord问题
- 4.5 | 族
- 4.6 EKR定理的推广
- 4.7影
- 4.8 Milner定理
- 4.9上族与下族
- 4.10四函数定理
- 4.11 H族
- 4.12相距合理的族

第五章 无限集

- 5.1 无限集
- 5.2可数集
- 5.3连续统的基数
- 5.4基数的比较
- 5.5直线上的开集与闭集
- 5.6 Cantor的完备集
- 5.7 Kuratowski定理

习题

习题解答

附录页