

MINISTRY OF EDUCATION, SINGAPORE in collaboration with CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

Data Booklet

for

Chemistry (Advanced Level)

For use from 2026 in all papers, except practical examinations, for the H1, H2 and H3 syllabuses.

This document has 20 pages.

Contents: Tables of Chemical data

- 1 Important values, constants and standards
- 2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in kJ mol⁻¹
- 3 Bond energies
- 4 Standard electrode potential and redox potentials, *E*[⊕] at 298 K (25 °C)
- 5 Atomic and ionic radii
- 6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0
- 7 Characteristic infra-red absorption frequencies for some selected bonds
- 8 The orientating effect of groups in aromatic substitution reactions
- 9 Qualitative Analysis Notes
- 10 The Periodic Table of Elements

1 Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
the Avogadro constant	$L = 6.02 \times 10^{23} \mathrm{mol}^{-1}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J s}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
rest mass of proton, ¹ ₁ H	$m_{\rm p}$ = 1.67 × 10 ⁻²⁷ kg
rest mass of neutron, ¹ ₀ n	$m_{\rm n}$ = 1.67 × 10 ⁻²⁷ kg
rest mass of electron, $^0_{-1}$ e	$m_{\rm e}$ = 9.11 × 10 ⁻³¹ kg
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.7 dm³ mol ⁻¹ at s.t.p. $V_{\rm m}$ = 24 dm³ mol ⁻¹ at r.t.p. (where s.t.p. is expressed as 10 ⁵ Pa [1 bar] and 273 K [0 °C], r.t.p. is expressed as 101 325 Pa [1 atm] and 293 K [20 °C])
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K [25 °C])
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (= 4.18 J g ⁻¹ K ⁻¹)

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in kJ mol⁻¹

	Proton Number	First	Second	Third	Fourth
Н	1	1310	-	_	-
Не	2	2370	5250	-	-
Li	3	519	7300	11800	_
Ве	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
Р	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300	3850	5150
Ar	18	1520	2660	3950	5770
К	19	418	3070	4600	5860
Са	20	590	1150	4940	6480
Sc	21	632	1240	2390	7110
Ti	22	661	1310	2720	4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100

	Proton Number	First	Second	Third	Fourth
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Ge	32	762	1540	3300	4390
Br	35	1140	2080	3460	4850
Rb	37	403	2632	3900	5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074	3361	_
Sn	50	707	1410	2940	3930
I	53	1010	1840	3200	4030
Cs	55	376	2420	3300	_
Ва	56	502	966	3390	_
Pb	82	716	1450	3080	4080

3 Bond energies

3(a) Bond energies in diatomic molecules (these are exact values)

Homonuclear

Bond	Energy/kJ mol ⁻¹
н—н	436
D—D	442
N≡N	944
O=O	496
F—F	158
C <i>l</i> —C <i>l</i>	244
Br—Br	193
I—I	151

Heteronuclear

Bond	Energy/kJ mol⁻¹
H—F	562
H—Cl	431
H—Br	366
H—I	299
C≡O	1077

3(b) Bond energies in polyatomic molecules (these are average values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
C—C	350
C=C	610
C≡C	840
CC (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	222
P—P	200
S—S	264

Heteronuclear

Bond	Energy / kJ mol ⁻¹
C—H	410
C—F	485
C—Cl	340
C—Br	280
C—I	240
C—N	305
C=N	610
C≡N	890
C—O	360
C=O	740
C=O in CO ₂	805
N—H	390
N—Cl	310
O—H	460
Si—C1	359
Si—H	320
Si—O (in $SiO_2(s)$)	460
Si=O (in SiO ₂ (g))	640
P—H	320
P—Cl	330
P—O	340
P=O	540
S—H	347
S—Cl	250
S-0	360
S=0	500

4 Standard electrode potential and redox potentials, *E*^o at 298 K (25 °C)

For ease of reference, two tabulations are given:

- (a) an extended list in alphabetical order;
- (b) a shorter list in decreasing order of magnitude, i.e. a redox series.

4(a) E^{\ominus} in alphabetical order

Electrode reaction	<i>E</i> [⊕] / V
$Ag^+ + e^- \Rightarrow Ag$	+0.80
$Al^{3+} + 3e^- \Rightarrow Al$	-1.66
Ba ²⁺ + 2e ⁻	-2.90
$Br_2 + 2e^- \Rightarrow 2Br^-$	+1.07
Ca ²⁺ + 2e ⁻	-2.87
$Cl_2 + 2e^- \Rightarrow 2Cl^-$	+1.36
$2HOCl + 2H^{\scriptscriptstyle +} + 2e^{\scriptscriptstyle -} \;\; \rightleftharpoons \;\; Cl_2 + 2H_2O$	+1.64
$ClO^- + H_2O + 2e^- \Rightarrow Cl^- + 2OH^-$	+0.81
Co ²⁺ + 2e ⁻	-0.28
$Co^{3+} + e^- \Rightarrow Co^{2+}$	+1.89
$[Co(NH_3)_6]^{2+} + 2e^- \implies Co + 6NH_3$	-0.43
Cr ²⁺ + 2e ⁻	-0.91
Cr³+ + 3e⁻	-0.74
$Cr^{3+} + e^- \rightleftharpoons Cr^{2+}$	-0.41
$Cr_2O_7^{2-} + 14H^+ + 6e^- \implies 2Cr^{3+} + 7H_2O$	+1.33
Cu ⁺ + e ⁻ ⇌ Cu	+0.52
Cu ²⁺ + 2e ⁻	+0.34
Cu ²⁺ + e ⁻	+0.15
$[Cu(NH_3)_4]^{2+} + 2e^- \Rightarrow Cu + 4NH_3$	-0.05
F ₂ + 2e ⁻	+2.87
Fe ²⁺ + 2e ⁻	-0.44
Fe ³⁺ + 3e ⁻	-0.04

Electrod	e reaction	<i>E</i> ^o / V
Fe ³⁺ + e ⁻	≓ Fe ²⁺	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	⇒ [Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	⇒ Fe(OH) ₂ + OH ⁻	-0.56
2H⁺ + 2e⁻	≓ H ₂	0.00
I ₂ + 2e ⁻	⇒ 2I ⁻	+0.54
K⁺ + e⁻	≓ K	-2.92
Li ⁺ + e ⁻	‡ Li	-3.04
Mg ²⁺ + 2e ⁻	⇒ Mg	-2.38
Mn ²⁺ + 2e ⁻	⇒ Mn	-1.18
Mn ³⁺ + e ⁻	⇒ Mn ²⁺	+1.54
MnO ₂ + 4H ⁺ + 2e ⁻	\Rightarrow Mn ²⁺ + 2H ₂ O	+1.23
MnO ₄ + e	⇒ MnO ₄ ²⁻	+0.56
MnO ₄ ⁻ + 4H ⁺ + 3e ⁻	\Rightarrow MnO ₂ + 2H ₂ O	+1.67
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\Rightarrow Mn ²⁺ + 4H ₂ O	+1.52
NO ₃ ⁻ + 2H ⁺ + e ⁻	\Rightarrow NO ₂ + H ₂ O	+0.81
NO ₃ ⁻ + 3H ⁺ + 2e ⁻	\Rightarrow HNO ₂ + H ₂ O	+0.94
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	\Rightarrow NH ₄ ⁺ + 3H ₂ O	+0.87
Na ⁺ + e ⁻	≓ Na	-2.71
Ni ²⁺ + 2e ⁻	≓ Ni	-0.25
[Ni(NH ₃) ₆] ²⁺ + 2e ⁻	⇒ Ni + 6NH ₃	-0.51
H ₂ O ₂ + 2H ⁺ + 2e ⁻	⇒ 2H ₂ O	+1.77
HO ₂ ⁻ + H ₂ O + 2e ⁻	⇒ 3OH ⁻	+0.88
O ₂ + 4H ⁺ + 4e ⁻	⇒ 2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	⇒ 40H ⁻	+0.40
O ₂ + 2H ⁺ + 2e ⁻		+0.68

Electrode reaction	<i>E</i> [⊕] / V
$O_2 + H_2O + 2e^- \rightleftharpoons HO_2^- + OH^-$	-0.08
$2H_2O + 2e^- \Rightarrow H_2 + 2OH^-$	-0.83
Pb ²⁺ + 2e ⁻	-0.13
Pb ⁴⁺ + 2e ⁻	+1.69
$PbO_2 + 4H^+ + 2e^- \Rightarrow Pb^{2+} + 2H_2O$	+1.47
$SO_4^{2-} + 4H^+ + 2e^- \Rightarrow SO_2 + 2H_2O$	+0.17
$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$	+2.01
$S_4O_6^{2-} + 2e^- \Rightarrow 2S_2O_3^{2-}$	+0.09
Sn ²⁺ + 2e ⁻	-0.14
Sn ⁴⁺ + 2e ⁻	+0.15
V ²⁺ + 2e ⁻	-1.20
$V^{3+} + e^- \rightleftharpoons V^{2+}$	-0.26
$VO^{2+} + 2H^+ + e^- \Rightarrow V^{3+} + H_2O$	+0.34
$VO_2^+ + 2H^+ + e^- \Rightarrow VO^{2+} + H_2O$	+1.00
$VO_3^- + 4H^+ + e^- \rightleftharpoons VO^{2+} + 2H_2O$	+1.00
Zn²+ + 2e⁻	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

4(b) E° in decreasing order of oxidising power (a selection only – see also the extended alphabetical list on the previous pages)

Electrod	de re	eaction	E [⊕] /V
F ₂ + 2e ⁻	=	2F-	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	=	2SO ₄ ²⁻	+2.01
H ₂ O ₂ + 2H ⁺ + 2e ⁻	#	2H ₂ O	+1.77
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H ⁺ + 2e ⁻	=	Pb ²⁺ + 2H ₂ O	+1.47
Cl ₂ + 2e ⁻	=	2C <i>l</i> ⁻	+1.36
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H ⁺ + 4e ⁻	=	2H ₂ O	+1.23
Br ₂ + 2e ⁻	=	2Br ⁻	+1.07
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	=	NH ₄ + 3H ₂ O	+0.87
ClO ⁻ + H ₂ O + 2e ⁻	=	C <i>l</i> ⁻ + 2OH⁻	+0.81
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	NO ₂ + H ₂ O	+0.81
Ag+ + e-	=	Ag	+0.80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+0.77
I ₂ + 2e ⁻	=	2I ⁻	+0.54
O ₂ + 2H ₂ O + 4e ⁻	=	40H ⁻	+0.40
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ + 2H ₂ O	+0.17
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	=	2S ₂ O ₃ ²⁻	+0.09
2H+ + 2e-	=	H ₂	0.00
Pb ²⁺ + 2e ⁻	=	Pb	-0.13
Sn ²⁺ + 2e ⁻	=	Sn	-0.14

Electrode reaction	<i>E</i> [⊕] /V
Fe ²⁺ + 2e ⁻	-0.44
Zn²+ + 2e⁻ ⇒ Zn	-0.76
2H ₂ O + 2e ⁻	-0.83
V ²⁺ + 2e [−]	-1.20
$Mg^{2+} + 2e^- \Rightarrow Mg$	-2.38
Ca ²⁺ + 2e ⁻	-2.87
K ⁺ + e [−]	-2.92

5 Atomic and ionic radii

(a) Period	1	ator	mic/nm		ioni	c/nm	
single o	ovalent	Н	0.037			H⁻	0.208
van der	Waals	He	0.140				
(b) Period	2					·	·
metallic	metallic		0.152	Li ⁺	0.060		
		Ве	0.112	Be ²⁺	0.031		
single o	ovalent	В	0.080	B ³⁺	0.020		
		С	0.077	C ⁴⁺	0.015	C ⁴⁻	0.260
			0.074			N ³⁻	0.171
		0	0.073			O ²⁻	0.140
			0.072			F-	0.136
van der	van der Waals Period 3 metallic		0.160				
(c) Period							
metallic			0.186	Na⁺	0.095		
		Mg	0.160	Mg ²⁺	0.065		
		Al	0.143	A <i>l</i> ³⁺	0.050		
single o	ovalent	Si	0.117	Si ⁴⁺	0.041		
			0.110			P ³⁻	0.212
			0.104			S ²⁻	0.184
		Cl	0.099			C <i>l</i> -	0.181
van der	Waals	Ar	0.190				
(d) Group	2						·
metallic	;	Ве	0.112	Be ²⁺	0.031		
		Mg	0.160	Mg ²⁺	0.065		
		Ca	0.197	Ca ²⁺	0.099		
		Sr	0.215	Sr ²⁺	0.113		
		Ва	0.217	Ba ²⁺	0.135		
		Ra	0.220	Ra ²⁺	0.140		

(e) Group 14	ato	mic/nm		ionic	:/nm	
single covaler	nt C	0.077				
	Si	0.117	Si ⁴⁺	0.041		
	Ge	0.122	Ge ²⁺	0.093		
metallic	Sn	0.162	Sn ²⁺	0.112		
	Pb	0.175	Pb ²⁺	0.120		
(f) Group 17						
single covaler	nt F	0.072			F-	0.136
	Cl	0.099			C <i>l</i> −	0.181
	Br	0.114			Br ⁻	0.195
	I	0.133			\mathbf{I}^-	0.216
	At	0.140				
(g) First row d b	lock elements	\$				
metallic	Sc	0.164			Sc ³⁺	0.075
	Ti	0.146	Ti ²⁺	0.086	Ti ³⁺	0.067
	V	0.135	V ²⁺	0.079	V ³⁺	0.064
	Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
	Mn	0.132	Mn ²⁺	0.083	Mn ³⁺	0.058
	Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
	Со	0.125	Co ²⁺	0.065	Co ³⁺	0.055
	Ni	0.124	Ni ²⁺	0.069	Ni ³⁺	0.056
	Cu	0.128	Cu ²⁺	0.073		
	Zn	0.135	Zn ²⁺	0.074		

6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0

Type of proton	Environment of proton	Example structures	Chemical Shift range (δ)
	alkane	–CH₃, –CH₂–, CH —	0.9–1.7
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, -CHC=O	2.2–3.0
	alkyl next to aromatic ring	CH ₃ —Ar, —CH ₂ —Ar, —CH——Ar	2.3–3.0
C–H	alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i> , CH-Br	3.2–4.0
	attached to alkyne	≡С—Н	1.8–3.1
	attached to alkene	=CH ₂ , =CH—	4.5–6.0
	attached to aromatic ring	—Н	6.0–9.0
	aldehyde	R—C H	9.3–10.5
	alcohol	RO-H	0.5–6.0
О-Н	phenol	ОН	4.5–7.0
(see note below)	carboxylic acid	О О— Н	9.0–13.0
	alkyl amine	R-NH-	1.0–5.0
N–H	aryl amine	NH ₂	3.0–6.0
(see note below)	amide	N—H	5.0–12.0

Note: δ values for -O-H and -N-H protons can vary depending on solvent and concentration.

7 Characteristic infra-red absorption frequencies for some selected bonds

Bond	Functional groups containing the bond	Absorption range (in wavenumbers) / cm ⁻¹	Appearance of peak (s = strong, w = weak)
C-C1	chloroalkanes	700–800	s
C-O	alcohol ether ester carboxylic acids	970–1260 1000–1310 1050–1330 1210–1440	s s s
C=C	aromatic alkenes	1475–1625 1635–1690	s w
C=O	amides ketones and aldehydes carboxylic acids esters	1640–1690 1670–1740 1680–1730 1710–1750	8 8 8 8
C≡C	alkynes	2150–2250	w unless conjugated
C≡N	nitriles	2200–2250	w
C–H	alkanes, CH ₂ —H alkenes/arenes, =C—H	2850–2950 3000–3100	s w
N–H	amines, amides	3300–3500	w
O-H	carboxylic acid, RCO ₂ —H H-bonded alcohol/phenol, RO—H free alcohol, RO—H	2500–3000 3200–3600 3580–3650	s and very broad s s and sharp

8 The orientating effect of groups in aromatic substitution reactions

The position of the incoming group, **E**, is determined by the nature of the group, **G**, already bonded to the ring, and not by the nature of the incoming group **E**.

G	-alkyl -OH or -OR -NH ₂ , -NHR or -NR ₂ -NHCOR	–C <i>l</i> , –Br, −I	-CHO, -COR -CO ₂ H, -CO ₂ R -NH ₃ ⁺ -NO ₂ , -CN		
Reactivity of ring (compared to benzene)	Activated	Deactivated	Deactivated		
Position of E (relative to position of G)	2- and/or 4-	2- and/or 4-	3-		

9 Qualitative Analysis Notes [ppt. = precipitate]

9(a) Reactions of aqueous cations

cation	reacti	ion with			
Cation	NaOH(aq)	NH₃(aq)			
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
ammonium, NH₄⁺(aq)	ammonia produced on heating	_			
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.			
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.			
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess			
copper(II), Cu ²⁺ (aq),	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution			
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess			
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess			
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess			
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess			
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess			

9(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

9(c) Tests for gases

gas	test and test result							
ammonia, NH ₃	turns damp red litmus paper blue							
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)							
chlorine, C l_2	bleaches damp litmus paper							
hydrogen, H ₂	"pops" with a lighted splint							
oxygen, O ₂	relights a glowing splint							
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless							

9(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple

10 The Periodic Table of Elements

			Group															
	1	2											13	14	15	16	17	18
								1										2
								Н										He
					Key			hydrogen 1.0										helium 4.0
	3	4		at	omic numb	er		1.0					5	6	7	8	9	10
	Li	Be			mic sym								B	Č	Ň	Ö	F	Ne
	lithium	beryllium		ato	name	DOI							boron	carbon	nitrogen	oxygen	fluorine	neon
	6.9	9.0		relat	ive atomic ı	mass							10.8	12.0	14.0	16.0	19.0	20.2
	11	12											13	14	15	16	17	18
	Na	Mg											Αl	Si	Р	S	Cl	Ar
	sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
	19	24.3	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35.5	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
	39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
SO O	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium —	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
-	55	56		72	73	74	- 75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	57–71 lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
	132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	· –	-	-
	87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
	_	_		_	_	_	-	_	_	_	-	_	_	_	_	-	_	_
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Ğd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
la	anthanc	olds	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
			138.9	140.1	140.9	144.2	_	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
а	ctinoids	3	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
u	2		actinium —	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium —	plutonium —	americium —	curium —	berkelium –	californium –	einsteinium –	fermium –	mendelevium —	nobelium —	lawrencium -	