PIB-ECUADOR

July 5, 2021

1 Regresion Lineal PIB ECUADOR

```
[1]: #Problema:
    #Analizar con el gasto y el COVID-19 dentro del Ecuador y realizar un análisis∟
     →con respecto a la actualidad
    #y cambio de gobierno del país.
    #Importación de librerías
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from datetime import datetime, timedelta
    from sklearn.model_selection import train_test_split
    import datetime as dt
    from sklearn.linear_model import LinearRegression
[3]: data = pd.read_csv('data.csv',encoding='utf-8')
    data = data.fillna(0)
    data.head()
[3]:
      Country Name Country Code
                                                              Indicator Name
            Aruba
                          ABW
                               Exportaciones de bienes y servicios (% del PIB)
    1
        Afganistán
                          AFG
                               Exportaciones de bienes y servicios (% del PIB)
                               Exportaciones de bienes y servicios (% del PIB)
    2
            Angola
                          AGO
    3
           Albania
                               Exportaciones de bienes y servicios (% del PIB)
                          ALB
                               Exportaciones de bienes y servicios (% del PIB)
           Andorra
                          AND
       Indicator Code
                         1960
                                   1961
                                            1962
                                                     1963
                                                               1964
    O NE.EXP.GNFS.ZS
                     1 NE.EXP.GNFS.ZS
                     4.132233
                               4.453443 4.878051 9.171601 8.888893
    2 NE.EXP.GNFS.ZS
                     0.000000
                               0.000000 0.000000 0.000000 0.000000
    3 NE.EXP.GNFS.ZS
                     0.000000 0.000000 0.000000 0.000000
    4 NE.EXP.GNFS.ZS
                     1965
                                             2012
                         2010
                                   2011
                                                       2013
                                                                 2014 \
    0
        0.000000 ... 61.042300 67.813322 65.241349
                                                  76.509512 77.555556
                     0.000000
                               0.000000
       11.258279 ...
                                         0.000000
                                                   0.000000
                                                              0.000000
```

```
      2
      0.000000
      ...
      61.543113
      60.669948
      55.940131
      50.747084
      44.695031

      3
      0.000000
      ...
      27.979449
      29.241501
      28.937487
      28.916354
      28.212979

      4
      0.000000
      ...
      0.000000
      0.000000
      0.000000
      0.000000
      0.000000

      2015
      2016
      2017
      2018
      2019

      0
      73.517030
      71.294029
      73.332115
      0.000000
      0.000000

      1
      0.000000
      0.000000
      0.000000
      0.000000
      0.000000

      2
      29.754599
      28.124485
      29.004100
      40.836290
      40.556871

      3
      27.267393
      28.977864
      31.569821
      31.591574
      31.555552

      4
      0.000000
      0.000000
      0.000000
      0.000000
      0.000000
```

[5 rows x 64 columns]

[4]:	<pre>data.describe().round(3)</pre>
------	-------------------------------------

[4]:		1960	1961	1962	1963	1964	1965	1966	1967	\
	count	264.000	264.000	264.000	264.000	264.000	264.000	264.000	264.000	
	mean	6.203	6.609	6.460	6.751	6.859	7.460	7.752	7.804	
	std	14.054	14.072	13.760	14.199	13.585	14.232	14.569	14.407	
	min	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	25%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	75%	9.298	9.703	9.281	9.264	10.065	10.985	11.283	11.250	
	max	162.826	142.423	138.121	141.153	122.085	123.237	123.278	114.293	
		1968	1969					13 20	14 \	
	count	264.000	264.000	264.0	000 264.0	00 264.0	00 264.0	00 264.0	00	
	mean	8.319	8.514	36.0	52 38.8	52 37.8	05 37.5	61 37.4	35	
	std	15.727	16.138	32.3	35.1	20 30.4	99 31.3	53 31.1	09	
	min	0.000	0.000	0.0	0.0	0.0	0.0	0.0	00	
	25%	0.000	0.000	19.8	21.6	32 21.9	27 20.3	46 20.7	51	
	50%	0.000	0.000	30.1	.92 31.8	26 31.5	81 30.3	52 31.2	71	
	75%	11.780	12.649	46.7	758 50.8	37 50.4	17 48.1	22 47.3	05	
	max	125.660	132.126	298.3	339.0	19 215.8	50 221.6	10 213.0	90	
		2015		2017		2019				
	count	264.000	264.000	264.000	264.000	264.000				
	mean	35.462	34.301	35.492	35.547	30.421				
	std	31.440	30.358	31.276	31.211	29.816				
	min	0.000	0.000	0.000	0.000	0.000				
	25%	18.819	18.086	18.283	18.555	7.873				
	50%	29.431	28.429	29.575	30.302	26.198				
	75%	45.294	44.546	45.938	47.114	40.717				
	max	221.197	213.036	217.621	211.559	208.753				

[8 rows x 60 columns]

```
[5]: data.keys()
[5]: Index(['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code',
            '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968',
            '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977',
            '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986',
            '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',
            '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',
            '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
            '2014', '2015', '2016', '2017', '2018', '2019'],
           dtype='object')
[6]: #Analizamos el tipo de dato que tiene el dataset en caso de que tengamos que
     → convertir algún valor
     data.dtypes
[6]: Country Name
                        object
     Country Code
                        object
     Indicator Name
                        object
     Indicator Code
                        object
     1960
                       float64
     2015
                       float64
     2016
                       float64
     2017
                       float64
     2018
                       float64
     2019
                       float64
     Length: 64, dtype: object
[7]: #Como no se puede observar de manera adecuada los datos, vamos a pasar las
     → filas como columas
     df = data.T
     df.columns = data['Country Name']
     df = df[4:]
     df.head()
[7]: Country Name Aruba Afganistán Angola Albania Andorra El mundo árabe
     1960
                      0
                            4.13223
                                         0
                                                          0
                                                                         0
                                                 0
                                                          0
                                                                         0
     1961
                      0
                            4.45344
                                         0
                                                 0
                                                 0
                                                          0
                                                                         0
     1962
                      0
                           4.87805
                                         0
     1963
                      0
                             9.1716
                                         0
                                                 0
                                                          0
                                                                         0
     1964
                           8.88889
                                         0
                                                 0
     Country Name Emiratos Árabes Unidos Argentina Armenia Samoa Americana ... \
     1960
                                        0
                                            7.60405
                                                           0
                                                                           0 ...
     1961
                                        0
                                            5.99495
                                                           0
                                                                           0 ...
                                            4.69184
                                                           0
                                                                           0
     1962
                                        0
```

```
1963
                                    0
                                         7.89045
                                                        0
                                                                         0 ...
1964
                                    0
                                         5.56372
                                                        0
                                                                         0 ...
Country Name Islas Vírgenes (EE.UU.) Viet Nam Vanuatu Mundo Samoa Kosovo
1960
                                               0
                                                              0
1961
                                     0
                                               0
                                                        0
                                                              0
                                                                     0
                                                                            0
1962
                                     0
                                               0
                                                        0
                                                              0
                                                                     0
                                                                            0
1963
                                     0
                                               0
                                                        0
                                                              0
                                                                     0
                                                                            0
1964
                                     0
                                               0
                                                        0
                                                              0
                                                                     0
                                                                            0
Country Name Yemen, Rep. del Sudáfrica Zambia Zimbabwe
1960
                             0
                                 29.5509
1961
                                  29.324
                                               0
                                                         0
                             0
1962
                                 29.4069
                                               0
                                                         0
                             0
1963
                             0
                                 28.6139
                                               0
                                                         0
1964
                                 27.4359
                                                         0
                                               0
[5 rows x 264 columns]
```

```
[8]: #Grafica 1
  index = df.index.values.tolist()
  EC = df['Ecuador'].fillna(method='backfill').values
  data = pd.DataFrame({'Ecuador' : EC})
  df['Year']=df.index
  fig = plt.figure(figsize=(8,8))
  plt.title('PIB en Ecuador')
  plt.plot(df['Year'],df['Ecuador'], label='PIB', color='green',)
  plt.xlabel('Year')
  plt.ylabel('Value')
  plt.legend()
```

[8]: <matplotlib.legend.Legend at 0x18f8fbde970>


```
[12]: #Model score
print('Precisión: ', linear_regressor.score(X_train, y_train))
```

Precisión: 0.699017421534448

```
fig = plt.figure(figsize=(8,8))
    years=np.arange(1960, 2020, dtype=int)
    prediction= linear_regressor.predict(years.reshape(-1,1))
    plt.scatter(X.flatten(),y)
    plt.plot(X.flatten(),prediction,color='green')
    plt.xlabel('Años')
    plt.ylabel('Valor')
    plt.title('PIB Regresion Lineal Ecuador')
    plt.show()
```



```
[14]: #PRUEBA 1
      #Prediccion del PIB con año a futuro
      today=df.loc['2019']['Ecuador']
      predict=linear_regressor.predict([[2020]])
      print("El valor del PIB en el 2019:",today,", vs la predicción del 2020 es de:
       →", predict)
     El valor del PIB en el 2019: 23.39003998, vs la predicción del 2020 es de:
     [29.05854896]
[15]: #PRUEBA 2
      #Prediccion del PIB con año a futuro
      today=df.loc['2019']['Ecuador']
      predict=linear_regressor.predict([[2021]])
      print("El valor del PIB en el 2019:",today,", vs la predicción del 2020 es de:

→", predict)

     El valor del PIB en el 2019: 23.39003998 , vs la predicción del 2020 es de:
     [29.382267]
[16]: #PRUEBA 3
      #Prediccion del PIB con año a futuro
      today=df.loc['2019']['Ecuador']
      predict=linear_regressor.predict([[2030]])
      print("El valor del PIB en el 2019:",today,", vs la predicción del 2020 es de:
      →", predict)
     El valor del PIB en el 2019: 23.39003998, vs la predicción del 2020 es de:
     [32.29572935]
 []:
```