ADVANCED GRAPHICS 2003, PAPER 7 0,4 (a) (i) Ray: eye point, E, 3D point viewing direction, D, 3D vector P(t) = E + tD where $t \in \mathbb{R}$, $0 \le t$ Sphere: centre, C, 3D point radius, r, r & IR, D & r (ii) a point on the ray is defined as P(t) = E + tDa point on the sphere is defined as |C-P| = rThe ray equation is put into the sphere equation: C-E-tD=r $\Rightarrow (C-E-tD)^2=r^2$ > C.C-2C-E+E.E-2t.C.D+2tE.D+t2D.D=12 $\Rightarrow t^2(\mathcal{D} \cdot \mathcal{D}) + t(2(E - C) \cdot \mathcal{D}) + ((C - E)^2 - r^2) = 0$ > t2a+tb+c=0 with appropriate equations for a, b, c Algorithm: given the parameters E, D, C and rcalculate a, b, c as above

solve f. a+tb+c=O for t (e.g. $t=\frac{-b+\sqrt{b^2-4ac}}{2a}$)

if no real values of t then return (No Intersection)

otherwise there will be two values for t, call then t, and t_2 , sort so that t, $\leq t_2$ if $(t, \leq t, \leq O)$ return (No Intersection) if (0 \le t, \le t_2) return \(P(t,) = E + t, D; N = P(t,) - C \right) if (t, < 0 \le t_2) return \(P(t_1) = E + t_2 D; N = C - P(t_2) \)

DVANCED GRAPHICS, paper 7, page 2
(b) there are two ways to do this
1) start with a tetrahedron octahedron or icosahedron,
A subdivision step splits each triangle into four,
quadrupling the total number of Friangles.
After a split, the new vertices vertices are pushed out introduced at
along a ray from the mideage paritions
sphere's centre so that they lie on the sphere itself.
As the number of triangles only quadruples at each step it is obvious that there exists an n for which:
$V_{10} < N_0.4 < 10D \nabla D > N_0$
N _o ∈ {4, 8, 20}
(2) the easier method is to evenly subdivides the sphere
(2) the easier method is to evenly subdivides the sphere into M zones along lines of latitude and n along lines of longitude, connecting triangles appropriately across the quadrilateral-like divisions which result
across the quadrilateral-like divisions which result
e.g. It is easy to see that there will be
2(n-2) m triangles
Ideally $m \approx 2n$ and $n-2 \approx n$ so we are generating about m^2 triangles. Set $m = \lfloor \sqrt{D} \rfloor$ to aget the desired number.
to Cast the desired number.

ADVANCED GRAPHICS, pager 7, page 3 (c) (i) face (ii) around extraordinary vertices you get issues with creating new edge & face vertices because it is no longer clear which vertices should be put into the mixture & with what proportion. In the conventional situation there would be two vertices with neight -9256 & one with weight 256. How do we split this between the a, b, c & d vertice,? Should other vertices also change their waight? This is a valid arrangement but what weight should be given to vertex x? ADVANCED GRAPHICS, paper 7, page 4 For the specific problem of edge vertices, here is one idea: 1-1/16 19/16 19/16 1-1/16 the standard case. Vertex of valency 3: Vertex of valency 5: Vertices of higher valary: zero weight to two closest to the edge 16(v-3) where v is valary to rest.

The critical point is that the -/11 is split somehow between the vertices. Associated For even valencies it could just be given to the central one. Most reasonably sensible & justified answers would get full marks. This question covers the ray tracing, converting prinitives to polygon, and subdivision parts of the course requiring knowledge of two of the eight lectures.

