Espacios con producto interno

Álgebra lineal.

I Espacios con producto interno

Un **producto interno** en un espacio vectorial real V es una función que a cada par de vectores \mathbf{u} y \mathbf{v} en V, le asigna un número real denotado por $\langle \mathbf{u}, \mathbf{v} \rangle$. Esta función satisface las siguientes propiedades: si \mathbf{u} , \mathbf{v} y \mathbf{w} son vectores y c es un escalar, entonces

$$a) \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle.$$

b)
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$
.

c)
$$c\langle \mathbf{u}, \mathbf{v} \rangle = \langle c\mathbf{u}, \mathbf{v} \rangle$$

$$d$$
) $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0, \forall \mathbf{v} \in V$.

e)
$$\langle \mathbf{v}, \mathbf{v} \rangle = 0$$
 si y sólo si $\mathbf{v} = \mathbf{0}$.

Definición Un espacio vectorial V en el que hay definido un producto interno se denomina **espacio con producto interno**.

I.I Ejemplo I

Demuestre que en \mathbb{R}^n el producto punto de dos vectores $\mathbf{u} = (u_1, ..., u_n)$ y $\mathbf{v} = (v_1, ..., v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n$$

es un producto interno en \mathbb{R}^n .

1.2 Ejemplo 2

Demuestre que en \mathbb{R}^2 la función que a los vectores $\mathbf{u}=(u_1,u_2)$ y $\mathbf{v}=(v_1,v_2)$ le asigna el número real

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$$

es un producto interno en R^2 .

1.3 Ejemplo 3

Mostrar que en $V = R_3[x]$, la siguiente función $\langle , \rangle : V \times V \to R \langle p, q \rangle = \int_0^1 p(s)q(s)ds$ es un producto interno.

1.4 Ejemplo 4

Mostrar que en $V = \mathcal{M}^{n,n}(\mathbf{R})$, $\langle A, B \rangle = tr(AB^T)$.

$$tr(AB^{T}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$$

1.5 Ejemplo 5

Sea $V = \mathbb{R}^3$, defina la función multivariable

$$\langle \mathbf{u}, \mathbf{v} \rangle_3 = u_1 v_1 + 3u_1 v_2 + 3u_2 v_1 + 4u_2 v_2 + u_3 v_3$$

esta función es un producto interno.

I.6 Norma de un vector

Por medio del producto interno, podemos definir la norma de un vector.

Definición La norma inducida por el producto interno se define como

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

I.6.1 Propiedades de la norma

- 1. Para todo $x \in V$, si $||x|| = 0 \Leftrightarrow x = 0$.
- 2. Para todo $c \in \mathbb{R}$ y $x \in V$

$$\|c \cdot \mathbf{x}\| = \|c\| \|\mathbf{x}\|$$

3. Para todo $x, y \in V$ se cumple la desigualdad de Cauchy-Schwarz

$$|\langle x, y \rangle| \le ||x|| ||y||$$

4. Para todo $x, y \in V$

$$\|x + y\| \le \|x\| + \|y\|$$

1.7 Distancia entre vectores

Definimos la distancia entre vectores $\mathbf{x},\mathbf{y} \in \mathit{V}$ tal que

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\|$$

Derivado de las propiedades de la norma de vectores, la distancia entre 2 vectores, como función $d: V \times V \to \mathbb{R}$ se cumple que

a)

Para todo $\mathbf{x} \in V d(\mathbf{x}, \mathbf{x}) = 0$.

b)

Para todo $\mathbf{x}, \mathbf{y} \in V, d(\mathbf{x}, \mathbf{y}) \ge 0$ y además $d(\mathbf{x}, \mathbf{y}) = 0$ si y sólo si $\mathbf{x} = \mathbf{y}$

c)

Para todo $x, y, z \in V$

$$d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$$

1.8 Ángulo entre vectores

Definimos al ángulo entre dos vectores, $x, y \in V$ como

$$\cos\theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

1.9 Ortogonalidad

Por tanto, dos vectores formarán un ángulo de 90° si $\cos\theta = 0$ es decir $\theta = \pm \frac{\pi}{2} + 2\pi k$, esto ocurre sólo si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Ortogonalidad Sea $\it V$ un espacio vectorial con producto interno, decimos que dos vectores son **ortogonales** si

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Igualmente, un conjunto de vectores $U = \{v_1, v_2, ..., v_k\}$ es un conjunto de vectores **ortogonales** si toda pareja de vectores $\mathbf{v}_i \in U$ y $\mathbf{v}_j \in U$ son ortogonales es decir

$$\langle v_i, v_j \rangle = \begin{cases} 0 & i \neq j \\ \|v_i\|^2 & i = j \end{cases}$$

Por último, un conjunto de vectores finitos $U = \{v_1, v_2, ..., v_k\}$ se dice ser **ortonormal** si

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

I.9.1 Proposición

Si U es un conjunto de vectores *ortogonal*es entonces es un conjunto de vectores **linealmente** independiente. Suponga que $\sum_i \alpha_i \mathbf{v}_i = \mathbf{0}$ entonces tomando el producto interno, con \mathbf{v}_i tenemos que

$$0 = \langle \mathbf{0}, \mathbf{v}_i \rangle = \langle \sum_k \alpha_k \mathbf{v}_k, \mathbf{v}_i \rangle = \alpha_i \| \mathbf{v}_i \|^2$$

Como ${\bf v}_i$ es un elemento de un conjunto de vectores linealmente independiente entonces ${\bf v}_i \neq 0$ (¿por que?) y esto implica que $\alpha_i = 0$

1.9.2 Proposición

Si U es un conjunto de vectores generadores de V que son ortogonales entonces

$$\mathbf{v} = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{v}_{i} \rangle}{\|\mathbf{v}_{i}\|^{2}} \mathbf{v}_{i}$$

En efecto, si U es un conjunto generador de V y U es un conjunto de vectores ortogonales, como U genera a V entonces para todo $v \in V$ y $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_j \in U$

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i$$

Entonces, si tomamos el producto interno por \mathbf{v}_i

$$\langle \mathbf{v}, \mathbf{v}_{j} \rangle = \langle \alpha_{1} \mathbf{v}_{1} + \alpha_{2} \mathbf{v}_{2} + \dots + \alpha_{j} \mathbf{v}_{j}, \mathbf{v}_{j} \rangle$$

$$\langle \mathbf{v}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{j} \alpha_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle$$

$$\langle \mathbf{v}, \mathbf{v}_{i} \rangle = \alpha_{i} \|\mathbf{v}_{i}\|^{2}$$

Entonces, los escalares de la combinación lineal están dados por

$$\alpha_j = \frac{\langle \mathbf{v}, \mathbf{v}_j \rangle}{\|\mathbf{v}_j\|^2}$$

1.9.3 Ejemplo de bases ortogonales y ortonormales

Sea
$$V = \mathbb{R}^3$$
 y

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$$

Los vectores son ortogonales $\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 \cdot 0 + 2 \cdot 1 + (-1) \cdot 2 = 0$, similarmente, $\mathbf{v}_1 \cdot \mathbf{v}_3 = 1 \cdot 5 + 2 \cdot (-2) + (-1) \cdot 1 = 0$ y $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0 \cdot 5 + 1 \cdot (-2) + 2 \cdot 1 = 0$.

La norma de los vectores
$$\|\mathbf{v}_1\| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6}$$
, $\|\mathbf{v}_2\| = \sqrt{0^2 + 1^2 + 2^2} = \sqrt{5}$ y $\|\mathbf{v}_3\| = \sqrt{5^2 + (-2)^2 + 1^2} = \sqrt{30}$.

Por las propiedades de los conjuntos ortogonales, tenemos a 3 vectores linealmente independientes, por tanto forman una base de \mathbb{R}^3 .

Una base ortonormal sería

$$\hat{\mathbf{v}}_{1} = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix}, \quad \hat{\mathbf{v}}_{2} = \begin{pmatrix} 0 \\ 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}, \quad \hat{\mathbf{v}}_{3} = \begin{pmatrix} 5/\sqrt{30} \\ -2/\sqrt{30} \\ 1/\sqrt{30} \end{pmatrix}$$

1.10 Proyección ortogonal sobre un vector

Si w es un vector definimos la proyección ortogonal de v sobre w como

$$P_{w}\mathbf{v} = \mathbf{w} - \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{w}\|^{2}} \mathbf{w}$$

I.II Proceso de ortogonalización de Gramm-Schmidt

Es fácil ver, como en el ejemplo anterior, que en \mathbb{R}^n existen bases ortogonales y ortonormales. ¿Se cumple para un espacio vectorial V arbitrario, finitamente generado?

Se busca obtener la existencia de una base de vectores ortonormales de un espacio vectorial. Sabemos que si V es un espacio vectorial finitamente generado, entonces existe una base \mathcal{B} . ¿Siempre existe una base de vectores ortonormales?

El proceso de ortogonalización da una respuesta afirmativa y un procedimiento para calcular una base ortonormal a partir de una base de vectores.

Sea $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ una base ordenada de V.

Definimos a los siguientes vectores

$$\begin{split} w_1 &= v_1, \\ w_2 &= v_2 - P_{w_1} w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1, \\ w_{n-1} &= v_{n-1} - \sum_{k=1}^{n-2} P_{w_k} v_{n-1} = v_{n-1} - \frac{\langle v_{n-1}, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_{n-1}, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 ... - \frac{\langle v_{n-1}, w_{n-2} \rangle}{\langle w_{n-2}, w_{n-2} \rangle} w_{n-2}, \\ w_n &= v_n - \sum_{k=1}^{n-1} P_{w_k} v_n = v_n - \frac{\langle v_n, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_n, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 ... - \frac{\langle v_n, w_{n-1} \rangle}{\langle w_{n-1}, w_{n-1} \rangle} w_{n-1}, \end{split}$$

Posteriormente, la base **ortonormal** $\mathcal{O} = \{\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n\}$ está dada por

$$\mathbf{y}_i = \frac{w_i}{\|w_i\|}$$

1.12 Proposición

Los vectores \mathbf{w}_i son ortogonales a los vectores $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{i-1}$.

Por hipótesis de inducción, supondremos que \mathbf{w}_{i-1} es ortogonal a los vectores $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{i-2}$, entonces por la linealidad del producto interno si $i \neq j$

$$\langle w_i, w_j \rangle = \left\langle \mathbf{v}_i - \sum_{k=1}^n \frac{\langle \mathbf{v}_i, \mathbf{w}_k \rangle}{\|\mathbf{w}_k\|^2} \mathbf{w}_k, \mathbf{w}_j \right\rangle = \langle \mathbf{v}_i, \mathbf{w}_j \rangle - \sum_{k=1}^n \frac{\langle \mathbf{v}_i, \mathbf{w}_k \rangle}{\|\mathbf{w}_k\|^2} \langle \mathbf{w}_k, \mathbf{w}_j \rangle$$
$$\langle w_i, w_j \rangle = \langle \mathbf{v}_i, \mathbf{w}_j \rangle - \frac{\langle \mathbf{v}_i, \mathbf{w}_j \rangle}{\|\mathbf{w}_i\|^2} \langle \mathbf{w}_j, \mathbf{w}_j \rangle = 0$$

1.13 Teorema.

Sea V un espacio vectorial de dimensión finita. Suponga que $v_1, ..., v_m$ es una lista de vectores linealmente independientes en V. Definimos

$$\begin{aligned} \mathbf{w}_1 &= \mathbf{v}_1, & \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\|\mathbf{w}_1\|^2} \mathbf{w}_1, \\ & \cdots & \cdots \\ \mathbf{w}_m &= \mathbf{v}_m - \sum_{k=1}^{m-1} \frac{\langle \mathbf{v}_n, \mathbf{w}_k \rangle}{\|\mathbf{w}_k\|^2} \mathbf{w}_k \\ & \mathbf{y}_i &= \frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}, \text{ para todo } i = 1, \dots, m \end{aligned}$$

Entonces $\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_m\}$ es una lista de vectores ortonormales en V.Y además

$$\mathcal{S}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m) = \mathcal{S}(\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_m)$$

En particular, todo espacio vectorial de dimensión finita con producto interno tiene una base de vectores ortonormales.

I.I3.I Ejemplo

I. Usar el proceso de ortogonalización de Gram-Schmidt para determinar una base ortonormal de \mathbb{R}^3 , a partir de los siguientes vectores

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$

 Usa el proceso de ortogonalización de Gram-Schmidt para determinar una base ortogonal a partir de

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \right\}$$

3. Encuentra una base ortonormal para el subespacio generado por los vectores

$$\left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

Solución a)

$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

entonces

$$\mathbf{w}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} - \frac{(0, 1, -1) \cdot (1, 1, 0)}{(1, 1, 0) \cdot (1, 1, 0)} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/2 \\ -1 \end{pmatrix}$$

$$\mathbf{w}_{3} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \frac{(1,0,-1)\cdot(1,1,0)}{(1,1,0)\cdot(1,1,0)} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{(1,0,-1)\cdot(-1/2,1/2,-1)}{(-1/2,1/2,-1)\cdot(-1/2,1/2,-1)} \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ -2/3 \\ -2/3 \end{pmatrix}$$

Calculamos la norma

$$||w_1|| = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$$

$$||w_2|| = \sqrt{(-\frac{1}{2})^2 + (\frac{1}{2})^2 + (-1)^2} = \sqrt{\frac{3}{2}}$$

$$||w_3|| = \sqrt{(\frac{2}{3})^2 + (-\frac{2}{3})^2 + (-\frac{2}{3})^2} = \frac{2}{3}\sqrt{2}$$

 $\text{La base ortonormal de } V \text{ esta dada por: } \Big\{ \frac{w_1}{\|w_1\|}, \frac{w_2}{\|w_2\|}, \frac{w_3}{\|w_3\|} \Big\}$