(54) LIQUID CRYSTAL ORIENTE FORMED BY USING THIS FILM

M AND LIQUID CRYSTAL ELEMENT

(11) 5-265004 (A)

(43) 15.10.1993 (19) JP

(21) Appl. No. 4-96991 (22) 23.3.1992

- (71) KANEGAFUCHI CHEM IND CO LTD (72) MAKOTO MURATA(1)
- (51) Int. Cl3. G02F1/1337

PURPOSE: To facilitate production and to obtain good quality without generating dust and static electricity by consisting the oriented film of a liquid crystal polymer and orienting this liquid crystal polymer by a shearing stress, thereby

forming the liquid crystal oriented film.

CONSTITUTION: This oriented film is formed to orient the liquid crystal sealed between substrates formed with electrode layers and consists of the liquid crystal polymer. This liquid crystal polymer extremely strongly orients even with the weak shearing stress and the more preferable polymer includes a lyotropic liquid crystal polymer, such as P-oriented fully arom. polyamide, polyethylene terephthalate/parahydroxy benzoic acid copolymer, etc. The methods for forming the liquid crystal polymer oriented film include a method of casting the lyotropic liquid crystal polymer, such as P-oriented fully arom. polyamide, in a soln. state exhibiting a liquid crystal state on the substrate to form the film thereof, then removing the solvent, a method of forming the film of the thermotropic liquid crystal polymer on the substrate at the temp. at which the polymer exhibits a liquid crystal state and orienting the film, then lowering the temp., etc.

(54) LIQUID CRYSTAL ELEMENT

(11) 5-265005 (A) (43)

(43) 15.10.1993 (19) JP

(21) Appl. No. 4-66151 (22) 24.3.1992

(71) TOPPAN PRINTING CO LTD (72) YUTAKA KATO(2)

(51) Int. Cls. G02F1/1337,B05D1/20,C08F20/30,C09K19/02

PURPOSE: To improve mechanical strength and heat resistance and to obtain the high orientability for a liquid crystal by using a Langmuir-Blodgett film (LB film) formed by using a specific high-polymer liquid crystal having mesogen

contg. a pyrimidine ring in its side chain as the oriented film.

CONSTITUTION: The high-polymer liquid crystal which has the mesogen contg. the pyrimidine ring in its side chain and is expressed by formula I is used as the blank material for the LB film. Further, this blank material for the LB film is used as the liquid crystal oriented film, by which the production of the liquid crystal element of large area is enabled. In the formula I, R denotes a methyl group or hydrogen atom; n denotes 10 to 20 degree of polymn.; K denotes 3 to 10 and m 3 to 12 which are respectively the integers to denote the number of carbon atoms of the methylene group. A hydrophilic part and hydrophobic part are required to exist with proper balance within the molecule in order for the blank material to form the LB film and such film formation is enabled by synthesizing the high-polymer liquid crystal having the mesogen of the type of formula II as the side chain. Strains remain in the mesogen part in the as-laminated state of this LB film and, therefore, the film is once heated up and is cooled after melting.

-{cH₂-c | -{cH₂}_n | -{cH₂-c | -{cH

сн₃= с(сн₃)соо-(снъ), О-(О)-(онъ)- сызы П

(54) PRODUCTION OF ORIENTED FILM FOR LIQUID CRYSTAL

(11) 5-265006 (A)

(43) 15.10.1993 (19) JP

(21) Appl. No. 4-60277

(22) 17.3.1992

(71) SHARP CORP (72) SHINJI SHIMADA(1)

(51) Int. Cl5. G02F1/1337

PURPOSE: To obtain a sufficient voltage holding characteristic, residual DC voltage characteristic and pretilt angle by forming the polyimide oriented film in the presence of alkylamine or alkyl dicarboxylic anhydride by using tetracarboxylic acid and diamine.

CONSTITUTION: The polyimide oriented film is formed from the tetracarboxylic acid and the diamine by using a vacuum vapor deposition polymn. method in the presence of the long-chain alkylamine or alkyl dicarboxylic anhydride. The dianhydrides of alicyclic tetracarboxylic acids among the tetracarboxylic acids are preferably used and in some cases, monoanhydrides and free carboxylic acids which are the precursors thereof may be incorporated therein in some cases. The diamines include, for example, p-phenylene diamine, etc. Compds. having 8 to 25C, more preferably 12 to 25C long-chain alkyl groups are usable as the alkyl amines and include, for example, n-decyl amine, etc. Since the evaporation of the raw material monomers is executed in a vacuum, the collision of the monomers against each other or against the inside wall of the device is prevented. The uniform polyamic film is thus formed.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-265006

(43)公開日 平成5年(1993)10月15日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/1337

5 2 5

9225-2K

審査請求 未請求 請求項の数2(全 5 頁)

(21)出顧番号

(22)出願日

特願平4-60277

平成 4年(1992) 3月17日

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 島田 伸二

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72) 発明者 大植 誠

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 野河 信太郎

(54) 【発明の名称】 液晶用配向膜の製造方法

(57)【要約】

(修正有)

【目的】 良好な電圧保持特性と残留直流電圧特性を有 しかつ大きなプレティルト角を有する液晶分子配向膜を 得る。

【構成】 基板上に真空蒸着重合法によってポリイミド 樹脂配向膜を形成する際に、形成材料がテトラカルボン 酸、ジアミンおよびアルキルアミンあるいはアルキルジ カルボン酸無水物である液晶配合膜。

【請求項1】 テトラカルボン酸とジアミンとを長鎖アルキルアミンまたは長鎖アルキルジカルボン酸無水物の存在下真空蒸着重合法を用いてポリイミド配向膜を形成することからなる液晶用配向膜の製造方法。

1

【請求項2】 長鎖アルキルアミンあるいはアルキルジカルボン酸無水物における長鎖アルキルが炭素数8~25である請求項1記載の液晶配向膜。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明はポリイミド配向膜の製造方法に関する。さらに詳しくは良好な電圧保持性と残留直流電圧特性を有しかつ大きなプレティルト角を有する液晶用配向膜の製造方法に関する。

[0002]

【従来の技術と発明が解決しようとする課題】従来、高分子を用いた液晶用配向膜としては、溶媒に溶解させたポリアミック酸をディッピング、スピンコート、オフセット印刷などの方法で基板上に塗布した後、加熱してイミド化を行うものや溶媒に可溶なポリイミドをディッピング、スピンコート、オフセット印刷などの方法で基板上に塗布した後、加熱して溶媒を除去する方法などが報告されている。また液晶分子の配向制御法としてはこれ以外に酸化シリコンを基板に対し斜方から蒸着する方法もあるが工程マージンの少なさや大面積化の困難さから工業的にはあまり用いられなくなっている。

【0003】ポリイミドを基板上に塗布した後、ラビング法などによって配向処理する方法ではポリイミドや溶媒中に含有される不純物といったものが液晶に影響を及ぼし液晶の特性を劣化させる。不純物量は精製を繰り返すことによって減少するが、精製を何度も行うことはコストの上昇につながる。また高分子中の不純物は完全に取り除くことは困難であり信頼性の低下を引き起こしていた。

【0004】ポリイミド配向膜のこういった欠点を解消する方法としてポリメリット酸二無水物などの芳香族テトラカルボン酸二無水物と4,4'ージアミノジフェニルエーテルなどの芳香族ジアミンのモノマーを真空中で昇華させ、基板上で重合させて全芳香族ポリアミック酸を得、これを加熱してイミド化反応を行いポリイミドを得る、いわゆる真空蒸着重合法によって作成した膜を用いることが提案されている(特開昭61-78463)。

【0005】この方法で作成された高分子蒸着膜は不純物をほとんど含まず、高い絶縁性を示すことが知られている。

【0006】液晶用配向膜では、配向膜と液晶の相互作用から、特別な特性が要求される。まず電圧保持率であるが、これは液晶セルに一旦印加された電圧が単位時間後にどの程度保持されているかを示す指標であり、次に

残留直流電圧であるが、これは液晶セルに単位時間印加された直流電圧が印加電圧除去後にどの程度残留しているかを示すものである。またこれ以外に液晶分子の配向規制力が重要であることは言うまでもない。

【0007】真空蒸着重合法によって形成されたポリイミド液晶配向膜はテトラカルボン酸部分を脂環族構造とすることにより上記の特性の満足するものが見いだされたが、液晶配向膜上をラピング法によって配向処理した時に得られる液晶分子のプレティルト角が小さく、液晶の子に電界を印加した場合に液晶分子が通常とは逆方向に立ち上がるリバースティルトディスクリネーションが発生しやすいという問題点があった。

[0008]

【課題を解決するための手段】この発明の方法によれば テトラカルボン酸とジアミンとを長鎖アルキルアミンま たは長鎖アルキルジカルボン酸無水物の存在下真空蒸着 重合法を用いてポリイミド配向膜を形成することからな る液晶用配向膜の製造方法が提供される。

【0009】この発明に用いられるテトラカルボン酸二 20 無水物としては、ポリイミド配向膜の製造原料として用 いられるものであれば何でもよい。

【0010】例えば、2,3,6,7-ナフタレンテト ラカルポン酸二無水物、3,4,3',4'ーピフェニ ルテトラカルボン酸二無水物、2,3,2',3'-ビ フェニルテトラカルボン酸二無水物、ビスー (3,4-ジカルボキシフェニル) メタン二無水物、ピロメリット 酸二無水物、ピスー (3, 4-ジカルボキシフェニル) エーテル二無水物、ピスー(3,4-ジカルボキシフェ ニル) スルホン二無水物、2,2-ビス-(3,4-カ 30 ルボキシフェニル) プロパン二無水物、3,4,3', 4'-ベンゾフェノンテトラカルボン酸二無水物、1, 2, 5, 6-ナフタレンテトラカルボン酸二無水物又は ペリレン-3,4,9,10-テトラカルポン酸二無水 物等の芳香族テトラカルボン酸類の二無水物、3, 3', 4, 4'ーパーフルオロイソプロピリデンテトラ カルボン酸二無水物、ブタンテトラカルボン酸二無水物 又はエチレンテトラカルボン酸二無水物等の脂肪族テト ラカルポン酸類の二無水物、2,3,4,5ーチオフェ ンテトラカルボン酸二無水物、1,2,3,4-フラン 40 テトラカルボン酸二無水物等の複素環式テトラカルボン 酸類の二無水物もしくは1,2,3,4-シクロブタン テトラカルボン酸二無水物、1,2,3,4ーシクロペ ンタンテトラカルボン酸二無水物、2,3,5ートリカ ルポキシシクロペンチル酸、3,5,6-トリカルボキ シノルボルナン-2-酢酸、5-(2,5-ジオキソテ トラヒドロフリル) - 3 - メチルシクロヘキセンジカル ポン酸、ビシクロ (2, 2, 2) -オクトー7ーエンー テトラカルボン酸二無水物又は3,3',4,4'ーパ ーフルオロイソプロピリデンテトラカルボン酸二無水物 50 等の脂環族テトラカルボン酸類の二無水物が挙げられ

20

30

る。

【0011】この中で脂環族テトラカルボン酸類の二無水物を使用するのが好ましい。また、これらテトラカルボン酸二無水物は場合によってはその前駆体であるモノ無水物、遊離カルボン酸が含まれていてもよい。

【0012】ジアミン類としては、ポリイミド配向膜の 形成に用いられる何れのジアミン類であってもよい。そ の具体例としては、p-フェニレンジアミン、m-フェ ニレンジアミン、4,4'ーシアノアミノピフェニル、 4, 4'-エチレンジアニリン、3, 3'-メチレンジ アニリン、4,4'-イソプロピリデンジアニリン、 4, 4'-メチレンジアニリン、3, 3'-オキシジア ニリン、4,4'ーオキシジアニリン、3,4'ーオキ シジアニリン、3,3'ーチオジアニリン、4,4'ー チオジアニリン、3、3'ーカルボニルジアニリン、 4, 4'-カルボニルジアニリン、3, 3'-スルファ ニルジアニリン、4,4'-スルファニルジアニリン、 1, 4-ナフタレンジアミン、1, 5-ナフタレンジア ミン、ジアミノジフェニルメタン、ジアミノベンゾフェ ノン、ジアミノジフェニルエーテル、ジアミノベンゾフ ェノン、ジアミノナフタレン、2,2-ジアミノジフェ ニルプロパン、ジアミノジフェニルスルホン、2,4-ビスー (4-アミノフェニル) プロパン、ベンジジン、 3, 3'ージメチルベンジジン、3, 3'ージメトキシ ベンジジン、2, 4-ピスー($\beta-$ アミノーt-プチ ル) -トルエン、ピスー (4-β-アミノー t ープチル フェニル) -エーテル、1、4-ビスー(2-メチルー 4-アミノペンチル) -ベンゼン、1-iso-プロピ ルー2, 4-フェニレンジアミン、m-キシレンジアミ ン、p-キシレンジアミン、4, 4'ージ(4-アミノ フェノキシ) ジフェニルスルホン又は2, 2-ピス [4] - (4-アミノフェノキシフェニル)] プロパン等の芳 香族のジアミン類あるいはジ (4-アミノシクロヘキシ ル) メタン、ヘキサメチレンジアミン、2,2-ジメチ ルプロピレンジアミン又は1,4-ジアミノシクロヘキ サン等の脂肪族ジアミン類が挙げられる。

【0013】アルキルアミン類としては炭素数8~25 好ましくは12~25の長鎖アルキル基をもつ化合物が適しており、例えばnーデシルアミン、nーオクチルアミン、nードデシルアミン、nーテトラデシルアミン、nーペキサデシルアミン、nーオクタデシルアミン、Nージメチルーnーオクチルアミン、Nーメチルーnードデシルアミン、Nージメチルーnードデシルアミン、Nージメチルーnートラデシルアミン、Nージメチルーnーテトラデシルアミン、Nージメチルーnートラデシルアミン、Nージメチルーnースクタデシルアミン、Nージメチルーnーオクタデシルアミン、Nージメチルベヘニルアミン、アラキジルアミン、ベヘニルアミン、N, N'ージ

4

メチルベヘニルアミン等が挙げられる。またアルキルジ カルボン酸無水物は炭素数8~25好ましくは12~2 5の長鎖アルキル基をもつ化合物が適しており、例えば テトラデシルシュウ酸無水物等が挙げられる。

【0014】本発明における真空蒸着重合法を実施する 装置は公知の装置が利用できる。この装置によって真空 中でポリイミドの原料モノマーを蒸発させて基板表面に ポリアミックの皮膜を形成し、そのポリアミックをポリ イミドに重合することができる。

10 【0015】ここでポリイミドの原料モノマーの蒸発を 真空中で行うのは、蒸発したモノマーが互いに、あるい は重合装置内壁に衝突するのを防ぎ、モノマー蒸気を直 接電極基板上に付着させて、均一なポリアミックの皮膜 を形成するためで、一般に1×10°Torr程度の真 空度に設定する。

【0016】また、グロー放電を併用する方法によって 重合されたポリイミドは液晶配向性を示す。これはグロ 一放電中に発生イオンや電子等が電場によってポリアミ ックの皮膜表面に水平に近い角度で入射し、これにより ラビング処理と同じ効果を生じ、その状態でポリイミド に重合されるためであると考えられる。

【0017】ポリイミドの原料モノマーの真空中への昇華を促進するため、テトラカルボン酸モノマー側を70~180℃、ジアミンモノマーを70~160℃、アルキルアミンを25~40℃に加熱することが好適である。なお、これら3種類の原料はそれぞれ等モル量蒸発し、反応させるよう蒸発条件が設定される。さらにポリアミック反応を促進するため、基板を38℃以上75℃以下に加熱することが好適である。基板温度が35℃以下であるとポリアミック反応が十分促進されないため重合度が所望程度とならず、さらに80℃以上となると不満足な配向膜形成となる。

【0018】上記方法で作成した液晶配向膜をラピング 法によって処理、洗浄後、スペーサーを散布し、貼合わ せ、焼成した後液晶を注入し、TN配向液晶セルを得る ことができる。

【0019】この発明によって得られる液晶用配向膜は $2\sim4^\circ$ のプレティルト角を有し、かつ従来の液晶配向膜と同等の特性を有したものが得られる。

40 [0020]

【実施例】図1に真空蒸着重合装置の概略を示した。ここで1は真空槽、2は蒸発皿、3,4,5はそれぞれ原料モノマー1,2,3を示し、6は蒸発源ヒーター、7はシャッター、8はマスク、9は基板、10は形成された重合膜、11は基板加熱機構、12は膜厚モニター、13は真空ポンプを示す。

【0021】以下の実施例では基板としてインジウム酸 化錫による透明電極が形成されたガラス基板を用い、モ ノマー1としてテトラカルボン酸二無水物、モノマー2 50 としてジアミン、モノマー3として長鎖アルキル基を有 するカルボン酸またはアミンを用いた。

【0022】まず所定の原料モノマー1,2,3をそれぞれ真空槽中の蒸発皿2に別々にセットし、続いて基板及びマスクを所定の位置にセットする。その後、真空槽に蓋をし真空ポンプを用いて真空槽内を10^{¬1}Pa以下の真空状態にする。続いて基板を40℃に加熱し、モノマー1を160℃、モノマー2を140℃、モノマー3がアルキルアミンのとき25℃、アルキルジカルボン酸のとき40℃に加熱する。三種類のモノマーが所定の温度に達したらシャッターを開け、蒸着を開始する。膜厚が600~1000Åに達したらシャッターを閉じ、原*

*料モノマー及び基板の温度を下げ、真空槽内を大気圧に 戻し、基板を取り出す。この基板は200℃で30分間 加熱しイミド化を完了さす。このようにして形成された 基板をラビング法によって配向処理し、洗浄した後スペーサを散布し、周囲をシールして貼合わせ、焼成した 後、液晶を注入し、注入口を封しセル厚5μmのTN配 向の液晶セルを得た。

【0023】実施例1~8及び比較例1,2に使用した 原料モノマーの組み合せを表1に示す。

10 [0024]

【表 1 】

-	F / 1	モノマー2	E (- 0 (- 0 + 0 - 0 - 1)
	モノマー1	1	モノマー3(アルキルアミン
	(テトラカルボン酸額)	(ジアミン)	又はアルキルジカルボン酸)
実施例 1	1.8.8.4-シクロプタン	4,4゚ーメチレンジアニリン	a-テトラデシルコハク酸
	テトラカルボン酸二無水物		無水物
実施例 2	1.2.3.4-シクロブタン	4.4'-メチレンジアニリン	a-ヘキサデシルコハク酸
	テトラカルポン酸二無水物		無水物
実施例3	1.2.3.4-シクロブタン	4,4'-メチレンジアニリン	1-テトラデシルアミン
	テトラカルポン酸二無水物		
実施例4	1.2.3.4-シクロブタン	4.4 -メチレンジアニリン	1-ヘキサデシルアミン
	テトラカルポン酸二無水物		
実施例 5	ピロメリット酸二無水物	4.4 -ジアミノジフェニル	n-テトラデシルコハク酸
		エーテル	無水物
実施例 6	ピロメリット酸二級水物	4.4 -メチレンジアニリン	п-ヘキサデシルコハク酸
			無水物
実施例7	ピロメリット酸二紙水物	4.4 -ジアミノジフェニル	1-テトラデシルアミン
		エーテル	
実施例8	ピロメリット酸二無水物	4.4 -ジアミノジフェニル	1-ヘキサデシルアミン
ļ		エーテル	
比较例1	1,2,3,4-シクロプタン	4.4 -メチレンジアニリン	
l	テトラカルポン酸二無水物		1
比較例2	ピロメリット酸二無水物	4.4 -ジアミノジフェニル	
		エーテル	

【0025】次に表2に実施例及び比較例で得られた電 圧保持率、残留直流電圧、配向均一性及びプレティルト 角のデータを示した。 **※**[0026]

【表 2 】

		実施例1	実施例2	実施例3	実施例4	比较例1	実施例5	実施例6	実施例7	実施例8	比较例2
電圧保持率	(%)	99. 6	99. 5	99. 5	99. 5	99. 6	99. 2	99. 3	99. 3	99. 1	99. 5
残留直流電圧	(V)	0. 0	0. 0	0. 0	0.0	0. 0	0. 0	0. 0	0.0	0. 0	0. 0
配向均	- 4	0	0	0	0	0	0	0	0	0	0
ブレティルト	(°)	2. 7	3. 5	2. 4	3. 5	0. 6	3. 2	3. 9	3. 0	3. 9	1.8

*

【0027】ここで電圧保持率としては4V、50μs ★ ★の電界パルスを印加し、16.7ms後に電圧を保持し

7

た割合を、残留直流電圧としてはDC2V、AC3V3 OHzの電界を30分印加した後に残留した直流電圧と した。この表から分かるように実施例はいずれも比較例 と比較し他の特性を劣化させる事なくプレティルト角が 大きくなっていることが分かる。

[0028]

【発明の効果】本発明によれば、良好な電圧保持特性と 残留直流電圧特性を有し、かつ大きなプレティルト角と 有する液晶用配向膜が得られ、これを用いて信頼性、表 示特性に優れた液晶表示素子を得ることができる。特に 非線形素子を有するアクティブマトリクス液晶表示素子 へ利用する場合には非常に信頼性、表示特性が向上す る。また調光ガラス、電気一光信号変換素子などに用い た場合でも安定して良好な特性を発揮できるデバイスと なる。 * 【図面の簡単な説明】

【図1】真空蒸着重合装置の概略図である。 【符号の説明】

8

- 1 真空槽
- 2 蒸発皿

3~5 原料モノマー1~3

- 6 蒸発源ヒーター
- 7 シャッター
- 8 マスク
- 10 9 基板
 - 10 形成された重合膜
 - 11 基板加熱機構
 - 12 膜圧モニター
 - 13 真空ポンプ

【図1】

