Multiplicity dependence of strange and multi-strange particle in jets in pp collisions at $\sqrt{s}=7$ TeV

4 authors

5 Abstract

Comprehensive results on the production of unidentified charged particles, π^{\pm} , K^{\pm} , p, K_S^0 , K^{*0} , ϕ , Λ , Ξ^{\pm} , Ω^{\pm} hadrons in jets in proton-proton (pp) collisions at $\sqrt{s}=7$ TeV are presented with two developed color reconnection models, the new color reconnection model and the rope hadronization model, in PYTHIA 8 generator. The observables are ratios of identified hadron yields as a function of the transverse momentum (p_T) and the final-state activity (the charged multiplicity).

11 Introduction

1

10

In heavy-ion collisions at ultra-relativistic energies, it is well established that a strongly coupled Quark-Gluon-Plasma (QGP) is formed [? ? ? ?]. Recent measurements in high multiplicity pp, p-A and d-A collisions at different energies have revealed strong flow-like effects even in these small collision 14 systems [? ? ? ? ? ? ? ? ?]. The baryon-to-meson ratios p/π and Λ/K_S^0 , in pp and p-Pb collision 15 systems, exhibit a characteristic depletion at $p_{\rm T} \sim 0.7$ GeV/c and an enhancement at intermediate $p_{\rm T}$ (\sim 16 3 GeV/c), which is qualitatively similar to that observed in Pb–Pb collisions [?]. In a letter [?], the 17 ALICE Collaboration reported the multiplicity dependent enhancement of strange $(K_S^0, \Lambda \text{ and } \overline{\Lambda})$ and 18 multi-strange $(\Xi^-, \overline{\Xi}^+, \Omega^- \text{ and } \overline{\Omega}^+)$ particle in pp collisions at $\sqrt{s} = 7$ TeV. As well as, those results 19 were complemented by the measurement of π^{\pm} , K^{\pm} , p, \bar{p} , K^{*0} and ϕ with ALICE [?]. Such behaviour 20 cannot be reproduced by any of the MC models commonly used, suggesting that further developments 21 are needed to obtain a complete microscopic understanding of strangeness production and indicating the 22 presence of a phenomenon novel in high-multiplicity pp collisions. 23

In a recent study, to provide further insight into the particle production mechanisms in high-multiplicity pp and p-Pb events, the ALICE Collaboration has studied baryon-to-meson ratios with a new method: by studying the ratios in two parts of the events separately – inside jets and in the event portion perpendicular to a jet cone [?]. In contrast to the inclusive distribution, the p_T -differential Λ/K_S^0 ratio within jets in pp and p-Pb collisions does not exhibit baryon enhancement at intermediate p_T . It is plausible that the baryon enhancement may therefore be attributable to the soft (low Q^2) component of the collision as discussed in [?].

In this work, inspired by this paper [?], we study the "strangeness to pion ratio increase with multiplicity" and the "baryon-to-meson ratio enhancement at intermediate p_T " with charged-particle jet probe by PYTHIA model. In this contribution we consider two of the models: the new colour reconnection (CR) model [??] and the colour rope model [??] in the PYTHIA 8 generator. Both considered colour reconnection models are built upon the Lund model for string hadronization [??]. In these models, outgoing partons are connected with string-like color fields, which fragment into hadrons when moving apart.

- The paper is structured as follows: the Sec. 2 will give a brief introduction about the models which used,
- the results compared to data are provided in Sec. 3, the predictions results can be find in Sec. 4, and in
- the end, the paper will be summarized in Sec. 5,

41 2 Models

42 2.1 New color reconnection model

2.2 Color rope model

- 44 As rope formation is expected to give increased rates of strange particles and baryons, which may mimic
- effects of plasma formation, it makes signals for a phase transition more difficult to interpret. It has also
- been suggested that ropes may initiate the formation of a quark-gluon plasma [????]. At LHC
- energies many overlapping strings are also expected in pp scattering, where plasma formation normally
- 48 is not expected.

52

49 3 Compare to data

The models perform as intended when comparing to existing data. An event and particle selection was implemented to mimic a possible experimental setup. The inclusive measurements on the charged particle pseudo-rapidity and multiplicity distributions are presented in Figure 1.

Figure 1: Charged particle pseudo-rapidity (η_{trk}) (left) and number of mid-rapidity tracks (N_{mid}) (right) distribution for pp collisions at $\sqrt{s} = 7$ TeV. The experimental data are taken from [?].

The average charged densities in each event for different string tension implementations are presented in Table A.3.

The $p_{\rm T}$ -integrated yields of ${\rm K_S^0}$, ${\rm K^{*0}}$, ${\rm \Lambda}$, ${\rm \Xi}$, ${\rm \Omega}$ and ${\rm \phi}$, are shown in figure 2. All of those three configurations can quantitatively describe the trends observed in the experiment data. For ${\rm K_S^0}$ and ${\rm \phi}$ mesons, all the configurations tend to under estimate the data results. The ${\rm K^{*0}}$ yields are described well by all the models. For ${\rm \Lambda}$, the Rope model is slightly underestimated the yields. For the multi-strange baryons (${\rm \Xi}$ and ${\rm \Omega}$), only the CR + Rope configuration give the best descriptions.

The corresponding hadron to π ratios, K_S^0/π , Λ/π , Ξ/π , Ω/π and ϕ/π , as functions of $\langle dN_{ch}/d\eta \rangle$ distributions are shown in Figure 3. All those models can quantitatively describe the experiment results well. For multi-strange baryon to π ratios, the CR + Rope gives the best description. But this configuration overestimate the Λ/π ratio and Rope describe the ratio well. For K_S^0/π and ϕ/π ratios, all the configuration slightly underestimate the data results.

Figure 2: $p_{\rm T}$ -integrated yields ${\rm d}N/{\rm d}y$ of various hadrons, ${\rm K}^0_{\rm S}$, ${\rm K}^{*0}$, ${\rm A}$, ${\rm \Xi}$, ${\rm \Omega}$ and ${\rm \phi}$, as functions of ${\rm d}N_{\rm ch}/{\rm d}\eta_{|\eta|<0.5}$. Model results are show for pp collisions at $\sqrt{s}=7$ TeV, data for pp collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=13$ TeV (only for ${\rm \phi}$ particle). The data point are taken from [??].

- The $p_{\rm T}$ spectra if strange hadrons at midrapidity in pp collisions at $\sqrt{s}=7$ TeV are given in Figure 4. All those models can well describe the experimental data. Prediction results are almost no different among
- those three configurations. Only for Ω (sss) particle, the CR + Rope can simulate well.

Figure 3: Particles to π $p_{\rm T}$ -integrated ratios, $K_{\rm S}^0/\pi$, Λ/π , Ξ/π , Ω/π and ϕ/π in pp collisions at $\sqrt{s}=7$ TeV as functions of ${\rm d}N_{\rm ch}/{\rm d}\eta_{|\eta|<0.5}$. The data point are taken from [??].

Figure 4: Transverse momentum spectra of strange hadrons measured at midrapidity |y| < 0.5 in pp collisions at $\sqrt{s} = 7$ TeV. Data taken from [??].

4 Predictions

In this work we used CR, Rope and CR + Rope models to predict the particles produced in jets distributions. The $p_{\rm T}$ -integrated yield and corresponding ratios as functions of ${\rm d}N_{\rm ch}/{\rm d}\eta$, the $p_{\rm T}$ -differential yields and corresponding ratios will be shown in this section. The jet selection criteria is the same as [?].

Figure 5: Integrated yields of particles in jet with $\langle dN_{ch}/d\eta \rangle$. (Data point at 13 TeV is used hadron-strange correlation method)

Figure 6: Integrated yields ratios in jet of strange particle to π with $\langle dN_{ch}/d\eta \rangle$. (Data taken from arXiv:1606.07424v2 and arXiv:1807.11321v2)

Figure 7: Particle in jet p_T spectra.

Figure 8: Particle ratios in jet with p_T distribution. (Data taken from arXiv:2005.11120)

Figure 9: Particle ratios in jet with p_T distribution in different centrality bins.

- 5 Summary
- 74 References

75 A Model parameters

Parameters	Values
MultiPartonInteractions:pT0Ref	2.15
BeamRemnants:remnantMode	1
BeamRemnants:saturation	5
ColourReconnection:reconnect	on
ColourReconnection:mode	1
ColourReconnection:allowDoubleJunRem	off
ColourReconnection:m0	0.3
ColourReconnection:allowJunctions	on
ColourReconnection:junctionCorrection	1.2
; ColourReconnection:timeDilationMode	2
ColourReconnection:timeDilationPar	0.18

Table A.1: Colour reconnection model parameters

Parameters	Values
Ropewalk:RopeHadronization	on
Ropewalk:doShoving	on
Ropewalk:tInit	1.5
Ropewalk:deltat	0.05
Ropewalk:tShove	0.1
Ropewalk:gAmplitude	0.
Ropewalk:doFlavour	on
Ropewalk:r0	0.5
Ropewalk:m0	0.2
Ropewalk:beta	0.1

Table A.2: Rope hadronization model parameters

Table A.3: Definition of the event classes as fractions of the analyzed event sample and their corresponding $dN_{ch}/d\eta$ within $|\eta_{lab}| < 0.5$.

							O		- I.Iran	
Event class	I	II	Ш	VI	Λ	VI	VII	VIII	IX	×
$\sigma/\sigma_{ m INEL}>0$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14-19%	19-28%	28-38%	38-48%	48-68%	68-100%
Exp data	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12
CR	18.8	15.6	13.3	11.7	10.4	8.8	7.1	5.7	3.9	2.3
Rope	20.3	16.6	14.1	12.3	10.9	9.2	7.5	6.1	4.5	2.9
CR + Rope	18.3	15.2	12.9	11.4	10.2	8.7	7.0	5.7	4.2	2.6