Algebraic Geometry: Seminar 1

James Pagan, Ferbuary 2024

February 1, 2024

Contents

1	Intro	oduction	2
2 Motivation for Schemes		ivation for Schemes	2
	2.1	Spectrum of a Commutative Ring	2
	2.2	Examples	2

1 Introduction

The undergraduate Algebraic Geometry seminar will follow two texts:

- 1. Hartshorne: Algebraic Geometry, and
- 2. THE RISING SEA: Foundations of Algebraic Geometry.

Both texts can be found on Google. The prior seminar examined the Theory of Varieties—this knowledge is critical to the Algebraic Geometry as a whole, but will not be assumed.

2 Motivation for Schemes

2.1 Spectrum of a Commutative Ring

Inutuitively, there are "three components" to a scheme.

- 1. Points. It is a function, after all of a Commutative Ringl.
- 2. A topology, specifically the Zariski topology.
- 3. The **structure sheaf** of the scheme.

The **spectrum** of a commutative ring denotes the set of all prime ideals of the ring:

Spec
$$R = \{ \mathfrak{p} \subseteq R \mid \mathfrak{p} \text{ is a prime ideal of } R \}.$$

The prime ideals constitute the "points" of a scheme. Then what are elements $r \in R$? They are **functions**, that map points \mathfrak{p} to r modulo \mathfrak{p} (notably $\mathfrak{r} \in R/\mathfrak{p}$). We say that the function r vanishes at \mathfrak{p} if $r \in \mathfrak{p}$.

2.2 Examples

Consider Spec \mathbb{Z} . The prime ideals are (p) for prime p. Under the function 8, the prime ideals become 8 (mod p).

Consider Spec $(k[\epsilon]/\epsilon^2)$, where k is a field. Consider a point \mathfrak{p} in the spectrum; since $0 \in \mathfrak{p}$, we have $\epsilon^2 \in \mathfrak{p}$. Since \mathfrak{p} is prime, we have $\epsilon \in \mathfrak{p}$ for all points \mathfrak{p} (duh, because ϵ is nilpotent). ϵ vanishes everywhere on Spec, yet it clear doesn't for the ring itself.

Theorem 1. Let R be a ring. Then $\operatorname{Spec} R / \mathfrak{N} \cong \operatorname{Spec} R$.

Proof. prove it yourself dumbass, i think this is in atiyah-macdonald

Let k be an algebraically closed field, and consider Spec $k[x_1, \ldots, x_n]$. It is a principal ideal domain; the prime/maximal ideals of this ring are exactly the principal ideals generated by linear terms.

If \mathfrak{a} is an ideal of the ring R, then $\operatorname{Spec}(R/\mathfrak{a})\subseteq\operatorname{Spec} R$. Any localization $\operatorname{Spec}(S^{-1}R)$ is also an order-preserving subset of $\operatorname{Spec} R$.

Question: Why not maximal ideals? Well, this falls apart when we consider topology: the intersection of maximal ideals is not a maximal ideal.