PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-038228

(43)Date of publication of application: 06.02.2002

(51)Int.Cl.

C22C 9/06

(21)Application number: 2000-224425

(71)Applicant:

FURUKAWA ELECTRIC CO LTD:THE

(22)Date of filing:

25.07.2000

(72)Inventor:

HIRAI TAKAO

USAMI TAKAYUKI

(54) COPPER ALLOY MATERIAL FOR ELECTRONIC AND ELECTRIC DEVICE PARTS

PROBLEM TO BE SOLVED: To provide a copper alloy material for electronic and electric device parts such as a terminal, connector, switch and relay, which is excellent in bending machineability and stress relaxation property, and capable of fully corresponding to miniaturize electronic and electric device parts.

SOLUTION: This cupper alloy material for electronic and electric device parts, is composed of 1.0-3.0 wt.% Ni, 0.2-0.7 wt.% Si, 0.01-0.2 wt% Mg, 0.05-1.5 wt% Sn, 0.2-1.5 wt% Zn, 0.005 wt% or below (0 wt% is contained) S and the balance Cu with unavoidable impurities, wherein the grain diameter of crystal is above 0.001 mm and below 0.025 mm, and the ratio (a/b) of the major axis a of crystalline grain in the cross section parallel to the final plastic working direction, to the mirror axis b of crystalline grain in the cross section perpendicular to the final plastic working direction, is 1.5 or below.

LEGAL STATUS

[Date of request for examination]

22.02.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-38228 (P2002-38228A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

C 2 2 C 9/06

C 2 2 C 9/06

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出願番号	特願2000-224425(P2000-224425)	(71)出顧人	000005290 古河電気工業株式会社
(22)出顧日	平成12年7月25日(2000.7.25)		東京都千代田区丸の内2丁目6番1号
		(72)発明者	平井 崇夫
			東京都千代田区丸の内2丁目6番1号 古
			河電気工業株式会社内
		(72)発明者	宇佐見 隆行
			東京都千代田区丸の内2丁目6番1号 古
			河電気工業株式会社内

(54) 【発明の名称】 電子電気機器部品用銅合金材

(57)【要約】

【課題】 曲げ加工性および応力緩和特性に優れ、電子電気機器部品の小型化に十分対応し得る端子、コネクタ、スイッチ、リレーなどの電子電気機器部品用銅合金材を提供する。

【解決手段】 Niを1.0~3.0 wt%、Siを0.2~0.7 wt%、Mgを0.01~0.2 wt%、Snを0.05~1.5 wt%、Znを0.2~1.5 wt%、Sを0.005 wt%未満(0 wt%を含む)含有し、残部がCuおよび不可避不純物からなる銅合金材であって、結晶粒径が0.001 mmを超え0.025 mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が1.5 以下である電子電気機器部品用銅合金材。

1

【特許請求の範囲】

【請求項1】 Niを1.0~3.0 wt%、Siを0.2~0.7 wt%、Mgを0.01~0.2 wt%、Snを0.05~1.5 wt%、Znを0.2~1.5 wt%、Sを0.005 wt%未満(0 wt%を含む)含有し、残部がCuおよび不可避不純物からなる銅合金材であって、結晶粒径が0.001 mmを超え0.025 mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が1.5以下であることを特徴とする電子電気機器部品用銅合金材。

【請求項2】 Niを1.0~3.0 wt%、Siを0.2~0.7 wt%、Mgを0.01~0.2 wt%、Snを0.05~1.5 wt%、Znを0.2~1.5 wt%、Ag、Co、Crの群の中から選ばれる1種または2種以上を総量で0.005~2.0 wt%(但してrは0.2 wt%以下)、Sを0.005 wt%未満(0 wt%を含む)含有し、残部がCuおよび不可避不純物からなる銅合金材であって、結晶粒径が0.001 mmを超え0.025 mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が1.5以下であることを特徴とする電子電気機器部品用銅合金材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特に、曲げ加工性 および応力緩和特性に優れ、電子電気機器部品の小型化 に十分対応し得る端子、コネクタ、スイッチ、リレーな 30 どの電子電気機器部品用銅合金材に関する。

[0002]

【従来の技術】従来より、電子電気機器部品には、Cu - Ζ n 系合金、Cu-Fe系合金、Cu-S n 系合金な どの銅合金材が使用され、特に、自動車のエンジンルー ムなどの高温かつ腐食性環境下で使用される電子電気機 器部品にはCu-Ni-Si系合金(特開昭61-12 7842号公報)などが使用されている。しかし、近 年、電子電気機器部品の小型化に伴って、箱型端子など ではオス端子のタブ幅が2mm (090端子)から、約 1mm (040端子)へと所謂バネ部の断面積が減少す る傾向にある。しかしながら、バネ部に要求される接触 圧力は従来と同じであり、断面積の減少に伴い、バネの 変位を大きく取ることで対処しており、材料への負荷応 力が従来にも増して高くなり、より応力緩和が生じ易い 状況になっている。また曲げ加工についても同様であ り、小型化に伴い曲げ半径が小さくなるなど、より厳し い曲げ加工が増えてきており、従来のCu-Ni-Si 系合金では曲げ部にクラックが生じる場合も多い。

[0003]

【発明が解決しようとする課題】しかし、前記要求を満足する銅合金材は前記従来材の中にはなく、とのためMgを添加して応力緩和特性を改善した銅合金材(特開平5-59468号公報)が提案されたが、このものは曲げ加工性に劣り180°密着曲げされる自動車用コネクタなどには適用できない。また熱・電気伝導性に劣る場合は、使用中の自己発熱により応力緩和特性が良好であってもその効果は十分に発現されない。本発明は、特に、曲げ加工性および応力緩和特性に優れ、電子電気機器部品の小型化に十分対応し得る電子電気機器部品用銅合金材の提供を目的とする。

7

[0004]

【課題を解決するための手段】請求項1記載の発明は、Niを1.0~3.0 wt%、Siを0.2~0.7 wt%、Mgを0.01~0.2 wt%、Snを0.05~1.5 wt%、Znを0.2~1.5 wt%、Sを0.005 wt%未満(0 wt%を含む)含有し、残部がCuおよび不可避不純物からなる銅合金材であって、結晶粒径が0.001 mmを超え0.025 mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が1.5以下であることを特徴とする電子電気機器部品用銅合金材である。【0005】請求項2記載の発明は、Niを1.0~

3. 0wt%、Siを0. 2~0. 7wt%、Mgを0. 01~0. 2wt%、Snを0. 05~1. 5wt%、Znを0. 2~1. 5wt%、Ag、Co、Crの群の中から選ばれる1種または2種以上を総量で0. 005~2. 0wt% (但しCrは0. 2wt%以下)、Sを0. 005wt%未満(0wt%を含む)含有し、残部がCuおよび不可避不純物からなる銅合金材であって、結晶粒径が0. 001mmを超え0. 025mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が1. 5以下であることを特徴とする電子電気機器部品用銅合金材である。【0006】

【発明の実施の形態】請求項1記載発明の銅合金材は、合金元素としてNi、Si、Mg、Sn、Znを適量含有し、Sを微量に抑え、かつ結晶粒径および結晶粒の形状を規定することにより、機械的性質、熱・電気伝導性、めっき性などの基本特性を損なわずに、曲げ加工性および応力緩和特性を高めたものである。

【0007】この発明において、合金元素のNiおよびSiはCuマトリックス中にNi-Si化合物として析出して熱・電気伝導性を損なわずに所要の機械的性質を維持する。Niの含有量を1.0~3.0wt%、Siの含有量を0.2~0.7wt%に規定する理由は、いずれが下限値未満でもその効果が十分に得られず、いず50れが上限値を超えても鋳造時および熱間加工時に、強度

に影響しない粗大な化合物が晶出(析出)して含有量に見合う強度が得られなくなり、また熱間加工性および曲げ加工性が低下するためである。特に望ましい含有量は $Nil.7\sim3.0wt\%$ 、 $Si0.4\sim0.7wt\%$ であり、両者の配合比をNi.Si 化合物のNilsi の比に合わせるのが最善である。

【0008】Mg、Sn、Znは本発明の銅合金材を構成する重要な合金元素であり、これらの合金元素は相互に関係しあって特性をバランス良く改善する。Mgは応力緩和特性を大幅に改善する。その含有量を0.01~100.20wt%に規定する理由は、0.01wt%未満では、その効果が十分に得られず、0.2wt%を超えると曲げ加工性が低下するためである。

【0009】SnはMgと相互に関係し合って応力緩和特性をより一層向上させる。その含有量を $0.05\sim1.5$ wt%に規定する理由は、0.05 wt%未満ではその効果が十分に得られず、1.5 wt%を超えると導電率が低下するためである。

【0010】 ZnはMgを含有させることによる曲げ加工性の低下を緩和する。また錫めっき層や半田めっき層 20の耐熱剥離性、耐マイグレーション特性を改善する。その含有量を0.2~1.5 wt%に規定する理由は、0.2 wt%未満ではその効果が十分に得られず、1.5 wt%を超えると導電率が低下するためである。

【0011】不純物元素のSは熱間加工性を悪化させるので、その含有量は0.005wt%未満に規定する。特には0.002wt%未満が望ましい。

【0012】請求項2記載の発明は、前記請求項1記載の銅合金に、さらにAg、Co、Crの群から選ばれる1種または2種以上を含有させたものである。これらの30合金元素は、強度向上に寄与する。前記合金元素の含有量を合計で0.005~2.0w t%に規定する理由は、0.005w t%未満ではその効果が十分に得られず、2.0w t%を超えると、Agはコスト高を招き、CoおよびCrは鋳造時および熱間加工時に粗大な化合物を晶出(析出)して含有量に見合う強度が得られなくなり、また熱間加工性および曲げ加工性が低下するためである。特にAgは高価なため0.3w t%以下が望ましい。Agは、耐熱性を向上させる効果および結晶粒の粗大化を阻止して曲げ加工性を向上させる効果も有す40ス

【0013】Coは、高価であるが、Niと同様の作用を果たし、Niよりもその効果が大きい。またCo-Si化合物は析出硬化能が高いため応力緩和特性も改善される。従って、熱・電気伝導性が重視される部材などにはNiの一部をCoで代替するのが有効である。

【0014】Crは銅中に微細に析出して強度向上に寄与する。Crは曲げ加工性を低下させるため0.2wt%以下に規定する。

【0015】本発明では、Fe、Zr、P、Mn、T

【0016】本発明では、銅合金材の結晶粒径および結晶粒の形状を規定することにより曲げ加工性および応力 緩和特性を改善する。

【0017】本発明において、前記結晶粒径を0.00 1mmを超え0.025mm以下に規定する理由は、結晶粒径が0.001mm以下では、再結晶組織が混粒組織となり易く、曲げ加工性および応力緩和特性が低下し、結晶粒径が0.025mmを超えると曲げ加工性が低下するためである。

【0018】前記結晶粒の形状とは、最終塑性加工方向と平行な断面の結晶粒の長径aと最終塑性加工方向と直角な断面の結晶粒の長径bの比(a/b)を指し、前記比(a/b)を1.5以下に規定する理由は、前記比(a/b)が1.5を超えると応力緩和特性が低下するためである。なお前記比(a/b)が0.8を下回ると応力緩和特性が低下し易くなるので0.8以上が望ましい。なお、前記長径aおよび長径bは、それぞれ結晶粒数20個以上の平均値とする。

【0019】本発明の銅合金材は、例えば、鋳塊を熱間 圧延し、次いで冷間圧延、溶体化熱処理、時効熱処理、 最終冷間圧延、低温焼鈍の各工程を順に施して製造され る。本発明において、結晶粒径および結晶粒の形状は、 前記製造工程において、熱処理条件、圧延加工率、圧延 の方向、圧延時のバックテンション、圧延時の潤滑条 件、圧延時のバス回数などを調整して制御する。

【0020】本発明において、最終塑性加工方向とは、最終に施した塑性加工が圧延加工の場合は圧延方向、引抜(線引)加工の場合は引抜方向を指す。なお、塑性加工とは圧延加工や引抜加工などであり、テンションレベラーなどの矯正(整直)を目的とする加工は含めない。【0021】

【実施例】以下に本発明を実施例により詳細に説明する。

(実施例1)表1に示す本発明規定組成の銅合金(No.A~F)を高周波溶解炉にて溶解し、DC法により 厚さ30mm、幅100mm、長さ150mmの鋳塊に 鋳造した。次にこれら鋳塊を900℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。次いで両面を各1.5mmづつ切削して酸化皮膜を除去したのち、冷間圧延により厚さ0.25~0.50mmに加工した。この後、750~850℃で30秒間熱処理し、直ちに15℃/秒以上の冷却速度で冷却した。ここで試料によっては50%以下の圧延を行った。次に不活性ガス雰囲気中で515℃で2時間の時効処理を施し、その後、最終塑性加工である冷間圧延を50行い、最終的な板厚を0.25mmに揃えた。最終塑性

5

加工後、350℃で2時間の低温焼鈍処理を施した材料で各種特性評価を行った。

【0022】(比較例1)表1に示す本発明規定組成外の銅合金(No.G~O)を用いた他は、実施例1と同じ方法により銅合金板を製造した。

【0023】実施例1および比較例1で製造した各々の 銅合金板について(1)結晶粒径、(2)結晶粒形状、

(3) 引張強さと伸び、(4) 導電率、(5) 曲げ加工性、(6) 応力緩和特性、(7) めっき層の密着性を調べた。

【0024】(1)結晶粒径および(2)結晶粒形状は、JISで規定する切断法(JISH 0501)により結晶粒径を測定し、これを基に算出した。前記結晶粒径の測定断面は、図1に示す最終冷間圧延方向(最終塑性加工方向)と平行な断面A、および最終冷間圧延方向と直角な断面Bである。前記断面Aでは最終冷間圧延方向と平行な方向と直角な方向の2方向で結晶粒径を測定し、測定値の大きい方を長径a、小さい方を短径とした。前記断面Bでは面の法線方向と平行な方向と、面の法線方向と直角な方向の2方向で結晶粒径を測定し、測 20 定値の大きい方を長径b、小さい方を短径とした。

【0025】前記結晶粒径は、前記銅合金板の結晶組織を走査型電子顕微鏡で1000倍に拡大して写真にとり、写真上に200mmの線分を引き、前記線分で切られる結晶粒数nを数え、〔200mm/(n×1000)〕の式から求めた。前記線分で切られる結晶粒数が20未満の場合は、500倍の写真にとり長さ200mmの線分で切られる結晶粒数nを数え、〔200mm/(n×500)〕の式から求めた。

【0026】結晶粒径は、断面A、Bで求めたそれぞれ 30 の長径と短径の4値の平均値を0.005mmの整数倍 に丸めて示した。結晶粒の形状は、前記断面Aの長径 a を前記断面Bの長径 b で除した値(a/b)で示した。【0027】(3)引張強さと伸びは、JIS Z 2 201記載の5号試験片を用い、JIS Z 2241 に準拠して求めた。

- (4) 導電率はJISH0505に準拠して求めた。
- (5)曲げ加工性は、内側曲げ半径が0mmとなる18

0 曲げを行い、曲げ部にクラックが生じないものは良好(○)、クラックが生じたものは不良(×)と判定した。

(6) 応力緩和特性は、日本電子材料工業会標準規格 (EMAS-3003)の片持ちブロック式を採用し、 表面最大応力が450N/mm³ になるように負荷応力 を設定して150℃の恒温槽に1000時間保持して緩 和率(S.R.R)を求めた。緩和率が21%以下を良 好(○)、21%超えを不良(×)と判定した。

(7) めっき層の密着性は、試験片に厚さ 1μ mの光沢 錫めっきを施し、これを大気中で 150 % に 100 0 時間加熱したのち、180 度の密着曲げおよび曲げ戻しを したのち、曲げ部分の錫めっき層の密着状況を目視観察 した。 錫めっき層が剥離しなかったものは密着性良好 (\bigcirc)、剥離したものは密着性不良 (\times) と判定した。

[0028]

結果を表2に示す。

【表1】

分類	合金≥	Ni	Si	Mg	Sn	Zn	S	その他の
254		₩t%	wt%	w1%	w1%	wt%	wt %	元素 vi%
ᇫ	Α	2. 0	0. 49	0. 09	0. 19	0. 49	0. 002	
本発明例	В	2. 5	0. 60	0. 08	0. 20	0. 49	0. 002	
10,1	С	2. 0	0. 48	0. 04	0. 20	0. 50	0. 002	
	Ð	2. 0	0. 49	0. 04	0. 82	0. 49	0 . 002	
	Е	2. 0	0. 48	0. 08	0. 21	0. 49	0. 002	Ag0. 03
	F	2. 0	0. 47	0. 09	0. 20	0. 50	0. 002	Cr0. 007
比較例	G	0. 8	0.19	0. 09	0. 20	0. 50	0. 002	
例	Н	2. 0	0. 47	0. 003	0. 22	0. 49	0. 002	
	1	2. 0	0. 48	0. 003	0. 94	0. 50	0. 002	
	J	1. 9	0. 47	0. 25	0. 30	1. 25	0. 002	
	к	2. 0	0. 49	0. 09	0. 002	0. 50	0. 002	
	L	2. 0	0. 48	0. 08	2. 04	0. 50	0. 002	
	М	2. 1	0. 49	0. 09	0. 21	0. 08	0. 002	
	N	2. 0	0. 48	0. 08	0. 20	0. 51	0. 002	Cr0. 4
	0	1. 9	0. 46	0. 09	0. 33	0. 49	0. 011	

[0029]

【表2】

_	
7	
,	

[1 4 4	T ~	Abbabbi	Lauran	T	т —				
分類	試料	金	結晶粒度	結品粒 の形状	引張 強さ	かび	導泡率.	曲げ性	水力級 和特性	めっき
	Na	No.	mm		N/mn"	%	%1ACS	}	**************************************	密脊性
本発	1	Α	0.005	1. 1	690	16	10	0	O15	0
本発明例	2	В	0.005	0. 9	710	15	3 9	0	014	0
``	3	С	0.005	1. 0	685	16	42	0	O2 0	0
İ	4	D	0.005	1. 1	695	1 3	3 2	0	O17	0
1	5	Ε	0.005	1. 1	700	16	40	0	O1 5	0
	в	F	0.005	1. 1	700	15	3 9	0	015	0
比較例	7	G	0.005	1. 1	520	18	4 7	0	*	0
例	8	Н	0.005	1. 0	690	16	4 1	0	×29	0
	9	I	0.005	1. 0	700	16	30	0	×26	0
	10)	0.005	1. 1	695	1 5	3 5	×	014	0
	11	K	0.005	1. 1	690	16	4 4	0	021	0
	12	L	0.005	1.0	685	16	2 4	0	015	0
	13	М	0.005	1. 1	690	16	4 2	0	O1 5	×
	14	N	0.005	1. 0	680	16	38	×	O15	0
	15	0	熱肉圧延中に割れが発生したため製造を中止した。							

(註) ※耐力値が低く試料をセットする段階で塑性変形が起きたため試験を中止した。

【0030】表2より明らかなように、本発明例のN 20 o. 1~6は、いずれも全ての調査項目について優れた特性を示した。これに対し、比較例のNo. 7はNiおよびSi量が少なかったため所定の強度が得られなかった。No. 8、9はMg量が少ないため応力緩和特性に劣った。No. 10はMg量が多いため曲げ加工性が劣った。No. 11はSn量が少ないため応力緩和特性が劣った。No. 12はSnが多いため導電率が低下した。No. 13はZn量が少ないため錫めっき層の密着性が低下し、No. 14はCr量が多いため曲げ加工性が低下した。No. 15はS量が多いため熱間圧延中に 30割れが発生し製造を中止した。

【0031】(実施例2)表1に示す本発明規定組成の 銅合金(No.A~D)を高周波溶解炉にて溶解し、D C法により厚さ30mm、幅100mm、長さ150m mの鋳塊に鋳造した。次にこれら鋳塊を900℃に加熱 し、この温度に1時間保持後、厚さ12mmに熱間圧延 し、速やかに冷却した。次いで両面を各1.5mmづつ 20 切削して酸化皮膜を除去したのち、冷間圧延により厚さ 0.25~0.50mmに加工した。この後、750~ 850℃で30秒間熱処理し、直ちに15℃/秒以上の 冷却速度で冷却した。ととで試料によっては50%以下 の圧延を行った。次に不活性ガス雰囲気中で515℃で 2時間の時効処理を施し、その後、最終塑性加工である 冷間圧延を行い、最終的な板厚を0.25mmに揃え た。最終塑性加工後、低温焼鈍処理を350℃で2時間 施して銅合金板を製造した。前記銅合金板の結晶粒径お よび結晶粒の形状は、熱処理条件、冷間圧延率、圧延の 方向、圧延時のバックテンション、圧延のバス回数、圧 延時の潤滑条件を調整することにより、本規定内(本発 明例)または本規定外(比較例)で種々に変化させた。 このようにして製造した銅合金板について、実施例1と 同じ項目を同じ方法により測定した。結果を表3に示 す。

【0032】 【表3】

10

Γ.	T	1.		T		· · · · ·		,		
分数	林料	是	枯晶粒度	格品粒の形状	引張強さ	仲び	導電率	曲げ性	応力級 和特性	めつき
\perp	Na	No	min	1	N/mm²	%	%IACS	İ	**************************************	密脊性
本発	21	Λ	0.005	0.9	685	1 5	40	0	O1 5	0
本発明例	22	A	0.005	1. 1	590	16	40	0	O1 5	0
"	23	Α	0.005	1. 3	705	14	4 0	0	Q1 8	0
	24	A	0.005	0. 7	705	13	40	0	O2 0	0
	25	A	0.015	1. 1	675	16	41	0	O1 3	0
	26	В	0.005	0. 9	710	15	3 9	0	O1 4	0
	27	В	0.005	1. 2	715	13	3 9	0	017	0
	28	В	0.005	1. 1	700	14	4 0	0	O1 3	0
1	29	С	0.005	1. 0	685	16	42	0	O2 0	0
L	30	D	0.005	1. 1	695	1 3	3 2	0	O17	0
比較例	31	Α	0.005	1. 7	715	12	4 0	0	×28	0
例	32	Α	0.005	2. 0	735	10	4 2	×	×37	0
	33	Α	0.030	1. 1	670	9	4 2	×	O13	0
i	34	Α	0.001>	1. 0	690	17	4 0	×	021	0
	35	В	0.005	1. 9	745	10	41	×	×35	0
	36	В	0.030	1. 1	700	8	4 3	×	013	0
	37	С	0.005	1. 7	7 1 5	12	4 1	0	×34	0
Ш	38	D	0.030	2. 0	745	6	3 2	×	×39	0

(社) No. 22、26、29、30はそれぞれ表1のNo. 1、2、3、4と同じ。

【0033】表3より明らかなように、本発明例のN 0. 21~30は、いずれも、優れた特性を示した。と れに対し、No.33、36は結晶粒径が大きかったた め、No. 34は結晶粒径が小さかったため、いずれも 曲げ加工性が低下した。No. 38は結晶粒径が大きい 上、結晶粒形状を表す指標(a/b)も大きかったた め、曲げ加工性のみならず、応力緩和特性にも劣った。 /b) が大きかったため、応力緩和特性が低下した。特 にNo. 32、35は前記(a/b)が非常に大きかっ たため曲げ加工性にも劣った。

9

[0034]

【発明の効果】以上に述べたように、本発明の電子電気*

*機器部品用銅合金材は、Ni、Si、Mg、Sn、Zn などの合金元素を適量含有した銅合金材、或いはさらに Ag、Co、Crなどを適量含有した銅合金材であり、 前記銅合金材は結晶粒径および結晶粒形状を適正に規定 して曲げ加工性並びに応力緩和特性が改善されており、 また機械的性質、導電率、錫めっき層の密着性などの基 本特性にも優れるもので、端子、コネクタ、スイッチ、 比較例のNo. 31、32、35、37は前記指標(a 30 リレーなどの電子電気機器部品の小型化に十分対応でき る。依って、工業上顕著な効果を奏する。

【図面の簡単な説明】

【図1】本発明で規定する結晶粒径および結晶粒形状の 求め方の説明図である。

【図1】

