

Patxi Arregui

TEMARIO

Tema 1	Introducción a la Electrónica Digital	
Tema 2	Representación Digital de la Información	
Tema 3	Álgebra de Conmutación. Funciones Lógicas	
Tema 4	Sistemas combinacionales aritméticos	
Tema 5	Multiplexores, codificadores, decodificadores y comparadores	
Tema 6	Sistemas secuenciales	
Tema 7	Memorias	
Tema 8	Dispositivos de Lógica Programable	
Tema 9	Circuitos Digitales Integrados. Familias Lógicas	
Tema 10	Conversión analógica-digital	

TEMARIO

Tema 1	Introducción a la Electrónica Digital		
Tema 2	Representación Digital de la Información		
Tema 3	Álgebra de Conmutación. Funciones Lógicas		
Tema 4	Sistemas combinacionales aritméticos		
Tema 5	Multiplexores, codificadores, decodificadores y comparadores		
Tema 6	Sistemas secuenciales		
Tema 7	Memorias		
Tema 8	Dispositivos de Lógica Programable		
Tema 9	Circuitos Digitales Integrados. Familias Lógicas		
Tema 10	Conversión analógica-digital		

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

INTRODUCCIÓN

- Diseño lógico tradicional para aplicaciones sencillas:
- -"Librería" de circuitos de la serie 74

- -ASICs: Circuitos integrados de aplicación específica.
- -Microprocesadores: (microcontroladores, DSPs, etc...)
- -PLDs: Dispositivos de lógica programable

	REPROGRAMABLES	VELOCIDAD
ASICs	NO	ALTA
Microprocesadores	SÍ	MEDIA
PLDs	SÍ	ALTA

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

1. Introducción

- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

CODIFICADORES ROMS

CODIFICADORES ROM

CODIFICADORES ROM

$$O_0 = I_0 \cdot I_1 + I_0 \cdot \overline{I_2} + I_0 \cdot \overline{I_1} \cdot \overline{I_2}$$

CODIFICADORES ROM

CONSIDERACIONES Y SIMBOLOGÍA

$$O_0 = \overline{I}_0 \overline{I}_1 + \overline{I}_0 \overline{I}_1$$

$$O_1 = \overline{I}_0 \overline{I}_1 + \overline{I}_0 \overline{I}_1$$

$$O_2 = \overline{I}_1$$

$$O_3 = \overline{I}_0 \overline{I}_1$$

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables

- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Dispositivos de lógica programable sencillos: PLA (Programmable Logic Array)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)

- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Matrices lógicas de puertas AND programables:

PAL® (Programmable Array Logic)

Denominación utilizada por Monolithic Memories, Inc. (AMD)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)

- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Matrices lógicas genéricas (GAL) con macroceldas (OLMC)

GAL® (Generic Array Logic) término acuñado por Lattice Semic. OLMC (Output Logic MacroCell)

Aparece por 1^a vez la <u>re-programabilidad</u> (tecnología E²CMOS)

AR: Reset asíncrono

SP: Preset síncrono

AR y SP solidarias

MATRICES LÓGICAS GENÉRICAS (GAL)

MACROCELDAS DE SALIDA

AR: Reset asíncrono

SP: Preset síncrono

AR y SP solidarias

S₁ y S₀: PROGRAMABLES

MODO COMBINACIONAL E/S con salida activa a nivel BAJO

MODO COMBINACIONAL E/S con salida activa a nivel ALTO

MODO SECUENCIAL con salida activa a nivel BAJO

MODO SECUENCIAL con salida activa a nivel ALTO

RESUMEN

S1	S0	CONFIGURACIÓN DE SALIDA
0	0	Modo SECUENCIAL, salida activa a nivel BAJO
0	1	Modo SECUENCIAL, salida activa a nivel ALTO
1	0	Modo COMBINACIONAL de E/S, salida activa a nivel BAJO
1	1	Modo COMBINACIONAL de E/S, salida activa a nivel ALTO

NOMENCLATURA PARA PALS Ó GALS

Denominación del fabricante:

tipo de matriz

lógica programable

Nº posible de
entradas (22)

Tipo de salida:

Activa a nivel bajo (L)
Activa a nivel alto (H)

Versátil ó programable (V)

PALCE22V10 Vantis (AMD)
PEEL22CV10 ICT
85C22V10 INTEL
TIBPAL22V10 TEXAS INSTRUMENTS
PAL16L8
PAL10H8

MATRICES LÓGICAS GENÉRICAS (GAL)

ispGAL22V10

In-System Programmable E²CMOS PLD Generic Array Logic™

Features

- IN-SYSTEM PROGRAMMABLE™ (5-V ONLY)
- 4-Wire Serial Programming Interface
- Minimum 10,000 Program/Erase Cycles
- Built-in Pull-Down on SDI Pin Eliminates Discrete Resistor on Board (ispGAL22V10C Only)
- HIGH PERFORMANCE E²CMOS® TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
- Fmax = 111 MHz
- 5 ns Maximum from Clock Input to Data Output
- UltraMOS® Advanced CMOS Technology
- ACTIVE PULL-UPS ON ALL LOGIC INPUT AND I/O PINS
- COMPATIBLE WITH STANDARD 22V10 DEVICES
- Fully Function/Fuse-Map/Parametric Compatible with Bipolar and CMOS 22V10 Devices
- E² CELL TECHNOLOGY
- In-System Programmable Logic
- 100% Tested/100% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- TEN OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Software-Driven Hardware Configuration
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

MATRICES LÓGICAS GENÉRICAS (GAL)

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)

- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

CPLDs: Complex Program Logic Devices

MAX 7000B Programmable Logic Device Data Sheet

Figure 1. MAX 7000B Device Block Diagram

Figure 1: CoolRunner-II CPLD Architecture

DS090_01_121201

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)

- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

FPGAs: Field Programmable Gate Arrays

LCA (Logic Cell Array) **pASIC** (programmable ASIC)-QuickLogic **FLEX, APEX, Stratix (Altera) ACT (Actel) ORCA (Lucent)** Virtex, Spartan (Xilinx) **INTERCONEXIONES PROGRAMABLES BLOQUES** LÓGICOS **BLOQUES DE ENTRADA-SALIDA**

ELEMENTO LÓGICO

- --El elemento lógico es la unidad lógica mínima que conforma los bloques lógicos
- --No se utilizan macroceldas con matrices AND-OR sino dispositivos <u>LUT</u> (look-up table)
- --Estrategias de grano grueso y de grano fino.
- --Tecnología antifusible ó <u>SRAM</u> (dos dispositivos en circuito E²ROM+FPGA)

CARACTERÍSTICAS DE FPGAS

- -Densidad muy alta de puertas: millones de NAND en un chip
 - Ej. Altera Stratix IV (680.000 bloques lógicos)
 - Ej. Xilinx Virtex (330.000 bloques lógicos)
- -Memoria RAM en el chip (Más de 1 Mbyte)
- -Disponen de PLLs (12)
- -Varios relojes globales (16) y relojes adicionales "regionales" (4)
- -Gran numero de pines(1.900 pines)
- -Incorporan hardware específico para DSP
- -Canales de interfaz serie (Stratix IV 8.5 Gigabaudios/canal)
- -Internamente pueden funcionar a más de 533 MHz
- -Disponibles con diferentes alimentaciones (5V, 3.3V, 2.5V, 1.8V, 1.5V)
- -ISP (In System Programmability) y seguridad frente a copias
- -Megafunciones (Propiedad Intelectual)
- -Continua innovación dentro del mercado. Ej. "Hardcopy™" de Altera

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

Tema Dispositivos de lógica programable (PLDs)

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA

- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

CAPTURA DE DISEÑO 1

- -Captura de esquemático
- -Diseño basado en lenguaje

COMPILACIÓN

- -Comprobación de reglas de diseño
- -Síntesis lógica y optimización
- -Partición "fitting" y Enrutado
- -Creación fichero de programación

VERIFICACIÓN DISEÑO

Simulación funcional

-Comprobación funcionalidad lógica

Simulación temporal

-Estimación de retardos

Programación del dispositivo

Design Compilation Verification & Programming Design Entry Cadence Standard Cadence Standard Mentor Graphics Mentor Graphics **EDA EDA OrCAD OrCAD** Verification Design Synopsys Synopsys **Entry** Viewlogic Viewlogic MAX+PLUS II Compiler Others Synplicity Exemplar Others Design-Rule **Timing** Graphic Checking Simulation **Design Entry** Logic Synthesis & **Functional** ATEO Text Design Entry (AHDL, VHDL, Verilog HDL) Simulation Fitting High-Level MegaCore Functions Multi-Device Multi-Device **LPM Functions** Design Partitioning Simulation Entry **AMPP Megafunctions Automatic Error Timing** Waveform Location **Analysis Design Entry** Timing-Driven Device Hierarchical Compilation Programming **Design Entry** OpenCore OpenCore Floorplan Evaluation Evaluation **Editing**

HERRAMIENTAS SOFTWARE

PUERTO JTAG

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs

9. Ejemplos de aplicación

TARJETA DESARROLLO ALTERA DE2

EJEMPLOS DE APLICACIÓN

EJEMPLOS DE APLICACIÓN

Revolutionizing Non-Volatile Integration

Lowest System Cost and Power

Reinventing the Midrange

Delivering the Unimaginable

TARJETA COMUNICACIONES 3COM

TARJETA UP1X de ALTERA (PROGRAMA UNIVERSITARIO)

ROBOT RASTREADOR

FRONTAL CON DETECTOR DE OBSTÁCULOS

VISTA DESDE ABAJO. SENSORES ÓPTICOS DE REFLEXIÓN

SITUACIONES POSIBLES VISTAS DESDE ABAJO

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

- 1. Introducción
- 2. Codificadores ROM programables
- 3. Dispositivos de lógica programable sencillos (PLA)
- 4. Matrices lógicas de puertas AND programables (PAL)
- 5. Matrices lógicas genéricas (GAL) con macroceldas (OLMC)
- 6. Dispositivos de lógica programable complejos (CPLD)
- 7. Dispositivos de lógica programable FPGA
- 8. Herramientas software para el diseño de circuitos con PLDs
- 9. Ejemplos de aplicación

BIBLIOGRAFÍA

"Fundamentos de Sistemas Digitales", Thomas L. Floyd, 9^a Edición, Edit. Prentice Hall, 2006.

"Circuitos Electrónicos: Digitales", Manuel Mazo Quintas et al., Ed. Servicio de Publicaciones. Universidad de Alcalá, 1995.

"Manual y guiones de prácticas, Quartus II", Juan María Pérez, Javier Goicoechea, Patxi Arregui Publicación Docente, Universidad Pública de Navarra, 2010

www.altera.com

www.xilinx.com

OTRAS LECTURAS

"Programmable Logic: PLDs and FPGAs", R. C. Seals, G. F. Whapshott, MacMillan Press Ltd., 1997.

"Fundamentals of Digital Logic with VHDL design", S. Brown, Z. Vranesic, McGraw-Hill, 2000.