DEVELOPMENT AND EVALUATION OF COATINGS FOR THE PREVENTION OF SURFACE OXIDATION AND DECARBURIZATION OF FERROUS MATERIALS DURING HEAT TREATMENT

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By K. HARI PRASAD

to the

DEPARTMENT OF METALLURGICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

JANUARY, 1979

CEN. 1 5875

3 JUL 1979

ME-1979-M-PRA-DEV

TO MY PARENTS

(Late) Dr. K. Kalidas K. Annapurnamma.

CERTIFICATE

Certified that the thesis entitled 'Development and Evaluation of Coatings for the Prevention of Surface Oxidation and Decarburization of Ferrous Materials During Heat Treatment' has been carried out under our supervision and the same has not been submitted elsewhere for a degree.

(Dr. Raj Narayan) Assistant Professor

Department of Met. Engineering Indian Institute of Technology Kanpur.

(Dr.

Professor

Department of Met. Engineering Indian Institute of Technology Kanpur.

6.2.79 V

ACKNOWLEDGEMENT

I express my deep sence of gratitude to Dr. P.C. Kapur and Dr. Raj Narayan for their valuable suggestions and spirited efforts in bringing this work a success.

I thank B. Sharma, R.K. Prasad, O.P. Malviya, S.R. Chaursia and A.C. Basak for helping me at various stages of my experimental work. I thank also M.N. Mungole for helping me.

I will take this opportunity to thank all of my friends who helped me. Special mention has to be made of P.K. Ghosh, Pallabsarkar, R.N. Chatterjee, Ravi, Devraj and B.P. Rao. I will also thank D.U. Krishna Rao for his valuable discussions with me, J. Subramanyam and B. Nageswar Rao for helping me in proof reading.

I thank V.P. Gupta for his neat tracings and M.R. Nathwani for his neat typing.

K. Hari Prasad.

CONTENTS

		PAGE
Abs	tract	
CHAPTER	I LITERATURE REVIEW	1
1.1	Introduction	1
1.2	Problems During Heat Treatment	1
1.3	Present Methods for Preventing Oxidation and Decarburization During Heat Treatment	7
1.4	Surface Coatings for Preventing Oxidation and Decarburization During Heat Treatment	11
CHAPTER	II EXPERIMENTAL	14
2.1	Measurement of Oxidation Loss	14
2.2	Decarburization	14
2.3	Thermal Conductivity of the Coating	17
2.4	Effect of Coating on the Hardening Treatment	17
CHAPTER	III RESULTS AND DISCUSSION	18
3.1	Effect of Binder Composition	18
3.2	Effect of Coating Composition and specific Gravity of the Binder	18
3.3	Oxidation Prevention of Mild Steel	26
3.4	Oxidation Prevention of Stainless Steel	3 4
3.5	Oxidation Prevention of Tool Steel	40
3.6	Effect of Air Drying Time and Charging	46

	PAGE
3.7 Thermal Conductivity of the Coating	49
3.7 Thermal Conductivity of the Coating	47
3.8 Effect of Coating on the Hardening Treatment for Steels	50
3.9 Prevention of Decarburization	52
3.10 Surface Covering Ability of the Coating	55
3.11 Cost of Coating	61
3.12 Removal of the Coating After Exposure	62
CHAPTER IV CONCLUSIONS	65
REFERENCES	67

ABSTRACT

To prevent surface oxidation and decarburization during heat treatment of ferrous materials the controlled atmosphere furnaces and salt baths are conventionally used. They, however, suffer from many inherent disadvantages e.g. high capital cost of the equipment, high cost of salts and inert gases, explosion hazard etc. Most of these disadvantages can be overcome by using surface coatings. Ideally such a coating should meet the following requirements: It should 1) prevent oxidation and decarburization, 2) be easy to apply, 3) be cheap, 4) not hinder heat treatment process, 5) have good thermal conductivity and 6) come off easily after heat treatment process.

Two coating compositions, meeting the above requirements, have been developed after extensive trials. These coatings are able to reduce the oxidation loss of ferrous materials by 65% to 98%.

CHAPTER I

LITERATURE REVIEW

1.1 INTRODUCTION

Heat treatment is an operation or a combination of operations involving the heating and cooling of metals in the solid state for:

- i) hardening and strengthening of metals,
- ii) reliaving internal stresses, as in castings,
- iii) softening objects for further working,
 - iv) impregnating the metal surface with C, N etc.,
 - v) obtaining combination of strength and useful ductility,
 - vi) obtaining desired grain size,
- vii) obtaining desired mechanical properties.

Table 1.1 list various heat treatments normally given to ferrous materials.

1.2 PROBLEMS DURING HEAT TREATMENT:

The properties of any material depend on the characteristics of the bulk and those of the surface. Any change in surface characteristics affects a wide variety of material properties. When steels are heat treated in a furnace in the presence of air and combustion products, surface oxidation and

Table 1.1

HEAT TREATMENTS NORMALLY GIVEN TO FERROUS METALS (Ref. 1 & 2)

s.No.	Material	Heat Treatment	Temp.	Atmo	spheres or salt Baths Only used.
1.	Carbon and low alloy	A nnealing	740-930	(i)	Nitrogen
	steels			(ii)	Dissociated ammonia
				(iii)Exothermic gas mixtur e.g. 15% H ₂ ; 10% Co;
					5% CO ₂ ; 1% CH ₄ ; and 69% X
	γ.	Tempering		(i)	Endothermic generator
					gas e.g. 4-5% CO ₂ ; 10-12% CO; 15-18%H ₂ ;
					a trace to 1% Methane and oxygen
		Martemp- ering	40°C above au- stenitiz- ation te- mperature	- .	Molten salt baths.e.g mixture of nitrates such as potassium
			holding at just above M		nitrate and sodium
			or just below M temp.		
		Austem- pering	Slightly above M s temp.	(i)	Molten Salt Baths NaCl 45-55% + KCl 45-55%

Table 1.1 Contd.

S1.	Material	Heat Treatment	Temp. Range oC	Atm	ospheres or salt baths commonly used
			***	(ii)	Molten lead
2.	Tool Steel		763 .to	(i)	Ammonia base atmospheres
		ing	872	(ii)	Endothermic base atmospheres
		Annealing	-do-		-do-
		Austenit- izing	763 - 942	(i)	Molten Salt baths e.g. Barium chloride, NaCl, CaCl, KCl, etc. nitrates.
		Tempering	121 - 482		_do_
3.	Stainless steel Austenitic stainless steel	Annealing	1010 to 1121	(a)	Cracked ammonia Dry purified hydrogen
	Ferritic stainless steel	Annealing	649 to 816		-do-
	Martensiti Stainless Steel	c Austenit- izing	927 to 106	б	-do-
		Annealing	649 to 760	-	-do-
		Tempering	149 to 371		-do-

Table 1.1 Contd.

Sl No.	! ! Material	Heat Treatment	Temp.	Atmospheres or salt baths commonly used
4.	High Speed tool steel	Annealing	815 – 900	(a) Cracked ammonia (b) Dry purified hydrogen
		Austenitiz- ing	1204 - 130	2 - do-
		Tempering		
5.	Carburized Steel	Single Quench	760 to 872	- do-
	-	Double Quench	After sing quench, aga: heat it to 871	
		Tempering	148 to 205	-do-

decarburization occurs. Due to oxidation, surface of the components becomes rough and dirty. Apart from metal loss and change in dimentions, this would necessiate cleaning and machining after the heat treatment is over. However, machining may be difficult after certain heat treatment, such as hardening. The carbon content at the surface of the components also decreases due to decarburization. It would then be difficult to achieve the desired mechanical properties at the surface since these properties largly depend on the carbon content of the steel. Therefore all attempts are made to minimize oxidation and decarburization during heat treatment.

OXIDATION: Oxidation of steel is caused by oxygen, carbon dioxide and/or water vapour as in the following general reactions (1,2)

$$0_2 + 2Fe$$
 $= 2Fe0$
 $0_2 + 4Fe$ $= 2Fe_20_3$
 $0_2 + Fe$ $= 00 + Fe0$
 $0_2 + 3Fe0$ $= Fe_30_4 + Co$
 $0_2 + 3Fe0$ $= 100$
 $0_2 + 3Fe0$

The degree of oxidation or scaling that will be produced, determined by the equilibrium relationship between

iron and iron oxide in contact with CO and ${\rm CO_2}$ or ${\rm H_2}$ and water vapour at the heat treating temperatures. The interrelation of these four gases is known as water gas reaction (3) which may be expressed as:

$$CO + H_2O - CO_2 + H_2$$

Since furnace atmospheres tend to adjuest themselves at operating temperatures, the above reaction is important. If the furnace atmosphere is too high in CO and low in $\rm H_2O$ another reaction known as producer gas reaction (3) may take place.

At elevated temperatures steel acts as a catalyst for this reaction which results in the etching or oxidation of bright surfaces and the deposition of soot.

Oxidation of steel may vary from a light adherent straw coloured film which forms at a temperature of about 180°C to a loose blue - black oxide scale that forms at temperatures above 425°C .

<u>DECARBURIZATION</u>: Decarburization of steel surface occurs upon heating steel to a temperature above 650°C and proceeds to greater depths below the surface as a function of time, temperature and furnace atmosphere in accordence with the following typical reactions (3,4):

$$O_2 + C$$
 \Leftarrow CO_2
 $O_2 + Fe_3C$ \Leftarrow $3Fe + CO_2$
 $CO_2 + C$ \Leftarrow $2CO$
 $CO_2 + Fe_3C$ \Leftarrow $2CO + 3Fe$
 $H_2O + Fe_3C$ \Leftarrow $CO + H_2 + 3Fe$

The equilibrium relationship of these reactions are influenced by the ratio of ${\rm CO}$ and ${\rm CO}_2$ which will be neutral to a given carbon content at a given temperature.

1.3 PRESENT METHODS FOR PREVENTING OXIDATION AND DECARBURIZATION DURING HEAT TREATMENT:

To overcome the problems of oxidation and surface decarburization of the ferrous components following methods have been used:

- i) Removal of the oxide scale and decarburized surface by machining after heat treatment.
- ii) Applications of an electroplated coating (12.7 μ 25.4 μ). Usually of copper, prior to heat treatment.
- iii) Heating parts in a sealed steel box packed in charcoal or cast iron chips,
 - iv) Use of molten salt baths as heating media,
 - v) Use of protective furnace atmospheres.

By removing the decarburized surface by machining the metal loss during heat treatment can not be prevented, and may not be a desirable remedy in most cases.

By electroplating copper on steel the oxidation and decarburization can be prevented. This is, however, not economical since copper is a costly metal and its removal after the heat treatment might create problems. Moreover, copper itself gets oxidized in some cases (3).

By sealing the parts to be heat treated in steel box, the parts can be heat treated without oxidation and decarburization. But it is not a convenient solution to the problem. Apart from the extra operations of packing, removing and cleaning the parts, the steel container will oxidize and desintegrate. This would necessiate its replacement after few heat treatment cycles.

Rapid heat transfer for austenetizing and tempering semifinished or finished machine parts will be provided by molten salt baths with adequate protection against oxidation and decarburization, provided the composition of the bath is regularly controlled. Certain limitation (2,3,4) such as

- i) availability of salts,
- ii) salts are mildly oxidizing and decarburizing to steels at heat treatment temperatures,
- iii) periodic rectification of salts is necessary,

- iv) limitations on operating temperature range,
 - v) the difficulty of quenching parts with blind holes etc. restrict the use of salt baths for heat treatment.

At present the application of protective furnace atmospheres is widespread for heat treatment of steels. Typical protective atmospheres used in industry for preventing oxidation and decarburization are (1-3)

- i) Hydrogen,
- ii) Nitrogen,
- iii) Argon,
 - iv) Helium,
 - v) Dissociated ammonia,
 - vi) Exothermic gas,
- vii) Endothermic gas

Table 1.2 shows the gases generally found in protective atmospheres and their reaction with iron and iron oxide.

Some of the draw backs of the protective atmosphere furnaces are (2-10).

- i) Initial cost of the equipment needed is high,
- ii) Cost of the gases used is usually very high,
- iii) They have strong decarburizing potential,
 - iv) They are explosive in contact with air,

Table: 1.2

GASES COMMONLY FOUND IN PROTECTIVE FURNACE ATMOSPHERES AND

THEIR REACTIONS WITH IRON AND IRON CARBIDE (3)

Gas .	E 1	Re	actions
uab .	The gas comb- ining with	to from	Reaction
Nitrogen		Neutral	
Oxygen	Iron	Iron Oxide	Strongly Oxidizing
	Iron Carbide	Iron	Strongly Decarburizing
Carbon	Iron	Iron Oxide	Strongly Oxidizing
Dioxide	Iron Carbide	Iron	Strongly decarburizing
Water	Iron	Iron Oxide	Oxidizing
Vapour	Iron Carbide	Iron	Strongly Decarburizing
Hydrogen	Iron oxide	Iron	Strongly reducing
C _a rbon Monoxide	Iron	Iron Carbide	Strongly Carburizing
	Iron Oxide	Iron	Reducing.
Methane	Iron	Iron Carbide	Strongly Carburizing
	Iron Oxide	Iron	Reducing

- v) They could result in hydrogen embrittlement of certain steels,
- vi) They tend to damage thermocouples and decrease the life of the furnace resistors.
- vii) Atmospheres containing CO may cause rapid and serious disintegration of refractory brick work, etc.

1.4 SURFACE COATINGS FOR PREVENTING OXIDATION AND DECARBURIZATION DURING HEAT TREATMENT

Apart from the many disadvantages listed earlier, associated with salt bath and protective atmosphere furnaces, it may be either difficult, when the component size is too large, or uneconomical, when the frequency of use is less, to use these furnaces. In such cases use of a protective coating which can be directly applied on the component surface would be ideal.

The advantages of using such a coating will include the following:

- 1. It will be possible to use ordinary furnaces without any modification.
- 2. There will be no need to observe additional safety precautions which have to be normally observed in maintaining the protective atmosphere and salt bath furnaces.
- 3. There will be no explosion hazard.

4. The life of the thermocouples and furnace resistors will be increased.

Such a coating ideally should:

- l. be able to prevent surface oxidation and decarburization of the component.
- 2. be cheap.
- 3. be easy to apply.
- 4. easily come off from the component surface after the heat treatment is over.
- 5. have good thermal conductivity.
- 6. not hinder with the normal heat treatment cycle for the given metal.

In a British patent (11) it has been claimed that the oxidation rate of steel billets at 1280°C was reduced from 180 mg/cm² to 20 mg/cm² when they were coated prior to heat treatment with a mixture of polyvenylacetate with water containing powders of aluminium and a divalent metal oxide such as ZnO, MgO. Using sodium-alluminate Cr₂O₃, SiO₂, sodium polycrylate and water as coating composition Higuchi et. al. (12) succeded in decreasing the oxidation rate of 9% Ni steel from 371 mg/cm² to 171 mg/cm² at 1200°C for 3 hrs. Several other investigators (13-25) have also claimed that coatings containing Al₂O₃, SiO₂, Na₂O, B₂O₃ CaO, MnO etc with different carriers of powders such as silicates, phosphates, bakelite, dextrin

etc. reduce the oxidation and decarburization of steel during heat treatment. No information was, however, available regarding the actual composition, oxidation rate and other desirable coating properties listed earlier.

CHAPTER II

F XPE RIMENTAL

2.1 MEASUREMENT OF OXIDATION LOSS

Oxidation loss at different temperatures was determined using specimens of mild steel, stainless steel and tool steel (Table 2.1). Surface oxide from the specimens was removed by using a suitable cleaner (Table 2.1).

The raw materials used for coating were ground in a ball mill, for 12 hours using 1/2" and 1" dia balls. Sieve analysis before and after grinding is given in Table 2.2.

20 gm of the coating powder was mixed with 12 cc of the binder into a smooth paste. This was then applied to the cleaned specimen surface using a paint brush.

The coated specimens were air dried and charged in the furnace either at room temperature or at elevated temperature to determine the oxidation loss.

Any loose oxide on the specimen surface, after exposure at high temperature, was first cleaned. If necessary the specimens were cleaned by pickling.

2.2 <u>DECARBURIZATION</u>

Coated and uncoated specimens of 0.56 %C steel (Table 2.1) were charged in the furnace at 1000 °C for 10 hours followed by air cooling. Specimen cross-section was prepared for metallographic examination.

Table 2.1

MATERIAL'S CHEMICAL COMPOSITION AND THE PICKLING AGENTS USED

Metal attack in 1 minute mg/cm	0.04	Nil	Nil	0.04
Fickling solution composition	l;l HCl acid	5 by vol. HF+ 20 by vol. HNO ₂ + 75 by vol. water	1:1 HCl acid	l:l HCl acid
Chemical Composition weight percentage	C-O.2, Si-C.11, P-O.02, S-C.01, Fm-O.72	C-0.1, Cr-17.9, Ni-11.4	G-0.7, Gr-4.2, V-1.0, Mo-0.53, W-6.0	C-0.56, Si-C.11, P-0.02, S-0.01, Wn-0.72
Material	Wild steel	steel	Tool steel	Carbon steel
S1. No.	٦	∞	20	4

Table 2.2

SHIEVE ANALYSIS OF MATERIALS BEFORE AND AFTER GRINDING

Mesh	A wt/b No grinding	B wt// No grinding	C Before grinding	C wt/2 After g grinding	Before grindin	D wt 2 E E E E E E E E E E E E E E E E E E	E Before grinding	wt% After grinding
- 10 + 60	1		10.0	1	50.0	t	2.0	I
- 60 +100	i	i	i		10.01	1	2.0	i
-100 +140	i	7	l	.	10.0	i	28.0	ŧ
-140 +200	ŧ	i	i	ì	10.0	i	45.0	ī
-200	, X	ī	f w	i	20.0	1	56.0	·
-200 +270	i	, , , , , , , , , , , , , , , , , , ,	ŧ	0.6	į	7.0		2.5
-270 +325	1	i	ì	0.9	ì	5.0	I	4.0
-325 +400	i	ı	i	0.9	1	13.0	f	3.0
-400	100.0	100.0	ĭ	78.0	1	75.0	1	0.06
	100.0	100.0	10.0 100.0	100.0	100.0	100.0	100.0	100.0

Surface turnings in steps of 0.127mm upto a depth of 1.143mm were removed for chemical analysis.

2.3 THERMAL CONDUCTIVITY OF THE COATING

Thermal conductivity of the coating was estimated by measuring the rise in core temperature of 25 cm diameter mild steel bar. The coated and uncoated specimens were charged at room temperature and the furnace temperature was allowed to rise to 1000°C. Good thermal conductivity of the coating would be reflected by a time lag in core temperature rise of coated specimen.

2.4 EFFECT OF COATING ON THE HARDEFING TREATMENT

Coated and uncoated 0.56 %C steel specimen (Table 21) were austenitized at 1000 °C for 1 hour followed by water quenching. Specimen cross-section was prepared for micro-hardness measurement.

CHAPTER III

RESULTS AND DISCUSSION

3.1 EFFECT OF BINDER COMPOSITION

It was evident from the literature survey that the nature of the binder has an important influence on the coating properties. Several materials were therefore evaluated for their suitability as binders (Table 3.1). Minimum oxidation loss of mild steel at 800°C for 5 hrs was observed when binder 'S' having a specific gravity of 1.2 gm/c.c. was used (Figure 1, Table 3.2).

3.2 EFFECT OF COATING COMPOSITION AND SPECIFIC GRAVITY OF THE BINDER

Initially several coating compositions were tried using binder 'S' having a specific gravity of 1.3 gm/c.c.

The results showed that whereas the oxidation loss of uncoating mild steel specimen at 1000°C for 5 hrs was 152 mg/cm², it was possible to reduce it upto a value of 24.035 mg/cm² using coating composition GC3 (Table 3.3, Table 3.4).

However during the coarse of the investigation it became evident that the specific gravity of the binder 'S' was having an influence on the coating properties. In order to determine the optimum value, the specific gravity of the binder was changed between 1.1 and 1.4 gm/c.c. Using coating composition

Table 3.1

BINDER CODE AND THEIR PREPARATION

Binder Code No.	Method of Preparation
S	Either 60 gms or 75 gms of the binder 'S' were dissolved in 100 cc of boiled water to get binder solution having a specific gravity of 1.2 gm/cc or 1.3 gm/cc respectively.
A	30 gms of binder 'A' of -270 mesh was ball milled with 140 gms of 85 orthosphoric acid for 1 hr. Then 30 gms of binder 'A' was added and ball milled for 2 hrs. 150 gms of water was added and milled for 15 mins. after 2 hrs. milling. Then the slurry was kept 42 hrs to settle in a beaker. 2.4 gms of Cr ₂ O ₃ in 20 ml of water was added to the settled mass after clearing the clean solution over the settled mass.
P	4 gms of binder 'P' was dissolved in 100 cc of warm water.

Table 3.2

EFFECT OF BINDER COMPOSITION ON THE OXIDATION

LOSS OF MILD STEEL AT 800°C FOR 5 Hrs USING

COATING GC 4*

Sl.!	Binder Code	Oxidation Loss (mg/cm ²)	
1.	S	3.94	
2.	A	24.11	
3.	Р	38.28	

^{*} In all cases the coated specimens were air dried for 6 hrs and charged in the furnace at room temperature.

Fig. 1 Effect of binder composition on the oxidation loss of mild steel at 800° C for 5 hrs using coating GC 4.

COATING CUMEUSITION

Daniel States Application of the state	Ī	11	1	i	i	1	ı	20.0	ı	i	1	ì	i	1	1	ı	ı	ı
	H	10	20.0	ı	1	ł	i	i	1	i	1	i	ı	ı	1	i	1	1
and the same of th	nts G	6	1	i	ı	1	10.0	ı	1	ı	ı	ı	ı	ı	t	ı	ı	ı
A	components F	8	1	50.0	30.0	1	25.0	ı	ŧ	ı	ŧ	i	1	ı	i	26.7	26.0	12.0
de un van annos japan karaal namen abade dispos i	tage of E	7	1	1	ŧ	30.0	25.0	ŧ	26.7	26.0	12.0	12.0	12.0	34.0	34.0	ł	t	ı
	percentage D	9	. 1	10.0	30.0	30.0	15.0	46.0	26.7	12.0	12.0	0.95	54.0	34.0	12.0	26.7	12.0	12.0
Halle II. I de le commende de la comprédent de l'économie	Wei.ht	5	15.0	10.0	10.0	10.0	ı	ı	10.0	=	-	=	-	-	:	-	=	:
Alle Sales Control of the Sales Sale	В	4		1	10.0	10.01	25.0	40.0	10.0	-	-	-	-	-	-	-	-	-
	A	3	65.0	30.0	20.0	20.0	ŧ	ı	26.6	12.0	56.0	12.0	34.0	12.0	34.0	26.6	12.0	26.0
AND DESCRIPTION OF THE PERSON	Compo sition Code	2	GCI	GC2	GC3	B C4	GC5	90£	MNJ	MN2	MN 3	MIN 4	MN5	MIN 6	MN 7	MGT	MG2	MG 3
	SI.	-	1	2	m	4	5	9	7	ω _.	0	10	T	12	13	14	15	16

Table 3.3 (Contd.)

٦.	2	3	4	5	9	7	8	6	10	11
17	MG4	12.0	10.0	10.0	26.0	1	12.0	í	ı	,
18	MG 5	34.0	-	-	34.0	ı	12.0	ŧ	į	1
19	MG6	12.0	-	=	34.0	ı	34.0	ı	ŧ	ı
50	MG7	34.0	-	=	12.0	1	34.0	ı	i	ı
21	CRI	26.6	:	=	26.7		ı	26.7	1	ı
22	CR2	12.0	-	=	12.0	ı	1	26.0	1	ı
23	CR3	26.0	2 -	=	12.0	ı	1	12.0	. 1	1
24	CR4	12.0	-	<u>.</u>	26.0	1	•	12.0	1	1
25	CR5	34.0	-	=	34.0	1	ı	12.0	ı	ı
56	CR6	12.0	-	, , , , , , , , , , , , , , , , , , ,	34.0	ı	ı	34.0	1	ı
27	CR7	34.0	<u>.</u>	-	12.0	ı	i	34.0	1	1

Table 3.4

EFFECT OF COATING COMPOSITIONS USING BINDER 'S'

OF 1.2 gms/cc SPECIFIC GRAVITY ON THE OXIDATION

LOSS OF MILD STEEL AT 1000°C FOR 5 irs*

	Composition	Oxidation Los			
No.	Code	mg/cm ²	After Air drying for 6 hrs	After firing	
1	GC1	38.77	В	G	
2	GC2	65.60	A	D	
3	GC3	24.04	C	D	
4	GC4	28.60	A	D	
5	GC5	24.94	В	G	
6	GC6	43.00	В	D	
7	MNl	8.01	C	D	
8	MN2	22.93	C	E	
9	MN3	23.52	C	E	
10	MN4	10.23	G	D	
11	MN5	33.97	A	E	
12	MN 6	44.81	В	E	
13	MN7	28.59	C	E	
14	MGl	55.86	В	F	
15	MG2	86.37	В	G.	
16	MG3	49.11	В	E	
17	MG4	32.95	В	E	
18	MG5	40.98	В	F	
19	MG6	23.80	В	E	
20	MG7	33.72	В	E	

Table 3.4 (Contd.)

Expt.	Composition Code	Oxidation Loss mg/cm ²	Visual Observation After Air After drying for firing 6 hrs	
21	CRl	23.71	В	E
22	CR2	22.97	В	E
23	CR3	25.03	В	E
24	CR4	34.48	В	E
25	CR5	60.83	В	F
26	CR6	43.36	В	E
27	CR7	54.24	В	F

^{* - 12} cc of the binder was mixed with 20 gms of Coating Powder.

- A Uneven surface, heavily cracked indicating that the coating has poor paintability and poor adherence to the base.
- B Even surface, slightly cracked at the edges indicating that the coating has moderate paintability and adherent to the base.
- C Even surface, no cracks indicating good paintability and strong adherence to the base.
- D Slight oxidation without pitting.
- E Light gray colour, slightly pits are formed.
- F Dark black coloured oxidation layer which comes off as flakes.
- G Dark gray colour, heavily pitted.

⁻ After firing at high temperature the coating came off in all cases from the specimen surface during cooling.

⁻ Visual observation code.

GC 3, the oxidation loss of mild steel at all temperatures decreased rapidly on increasing the specific gravity of the binder up to 1.3 gm/c.c. Beyond this value there was practically no effect at all temperatures. (Figure 2, Table 3.5). Further experimental work was therefore carried out using binder 'S' having a specific gravity of 1.3 gm/c.c.

Several other coating compositions were tried in an attempt to further reduce the oxidation loss. It was observed that using coating compositions MN1 and MN4 the oxidation loss was only 8 and 10 mg/cm² (Table 3.4). It was therefore, decided to evaluate these two coating compositions on a variety of ferrous materials at different temperatures and times.

3.3 OXIDATION PREVENTION OF MILD STEEL

Effectiveness of coating compositions MN1 and MN4 using binder 'S' of 1.3 gm/cc specific gravity in preventing oxidation loss of mild steel at different temperatures for different times was determined.

Comparing oxidation loss of uncoated mild steel (Figure 3, Table 3.6) with mild steel coated with coating compositions MM1 and MN4 (Figure 4, Table 3.6) and percentage reduction in oxidation loss using these coatings MN1 and MN4 (Figure 5, Table 3.7) following could be observed:

Table 3.5

EFFECT OF SPECIFIC GRAVITY OF THE BINDER 'S' ON

OXIDATION LOSS OF MILD STEEL IN 5 IIrs AT DIFFERENT

TEMPERATURES USING COATING GC3*

Expt.	Firing Tempe-	Oxidation Loss (mg/cm²) Binder Specific Gravity and gms/cc				
10.	rature ^O C	1.1	1.2	1.3	1.4	
1	1000	33.70	22.00	10.76	15.55	
2	900	22.79	21.20	9.99	6.21	
3	800	21.94	16.95	5.30	3-47	

- 12 cc of the binder was mixed with 20 gms of coating powder.
 - In all cases the coated specimens were air dried for 6 hrs. and charged in the furnace at room temperature.
 - In all cases the coating surface after air drying was even with no cracks indicating **goo**d paintability and adequate adherence to the base.
 - After firing at high temperature the coating came off in all cases from the specimen surface during cooling.

Fig. 2 Effect of specific gravity of the binder on the oxidation loss of mild steel exposed at different temperatures for 5 hours.

Table 3.6

OXIDATION LOSS OF MILD STEEL AT DIFFERENT TEMPERATURES AND TIMES WITH AND WITHOUT COATING *

Expt.	Coating	Time	Oxidation Lo	ss (mg/cm ²) a	at temperature
No.	Code	hrs	700°C	800°C	1000°C
1	Uncoated	2.5	6.00	41.35	97.00
2	f t	5.0	14.55	54.36	151.90
3	1 _1	7.5	28.98	88.05	298.86
4	1 1	10.0	46.24	105.28	398.57
5	MNl	2.5	1.79	1.75	8.47
6	1 1	5.0	3.25	2.01	9.97
7	1.1	7.5	2.87	6.39	19.80
8	1 1	10.0	8.53	4.89	22.52
9	MN 4	2.5	4.17	5.50	8.61
10	1.1	5.0	4.45	8.67	18.19
11	1.1	7.5	3.95	5.02	10.14
12	1 1	10.0	4.68	5.68	12.84

 ^{+ - 12} cc of binder 'S' having a specific gravity of
 1.3 gm/cc was mixed with 20 gms of coating powder.

⁻ Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature.

Fig. 3 Oxidation loss of unprotected mild steel at different temperatures and times.

Fig. 4 Oxidation loss of mild steel protected by coatings MN 1 and MN 4 at different temperatures and times.

Table 3.7

PERCENTAGE REDUCTION IN OXIDATION LOSS OF MILD STEEL EXPOSED

AT DIFFERENT TEMPERATURES AND TIMES USING COATINGS MN1 & MN4*

Time!	% Reduc	tion in	Oxidation I	Loss of M	ild Steel	Using
Hrs.	, Topat	ing MN1	at	Coa	ting MNA a	at
1	700°c	800 ⁰ C	1000°C	700 ⁰ C	800°C	1000°C
2.5	70.17	95.77	91.27	30.50	86.70	91.12
5.0	77.66	96.30	93.44	69.42	84.03	88.03
7.5	90.10	92.74	93.37	86.37	94.30	96.61
10.0	81.55	95.36	94.34	89.88	94.60	99.69
•			e .			

^{* - 12.}cc. of binder S having a specific gravity of 1.3gm/cc.
was mixed with 20 gmsof coating powder.

⁻ Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature.

Fig. 5 Effectiveness of coatings MN 1 and MN 4 in reducing oxidation loss of mild steel at different temperatures and times.

- i) Both coatings MN1 and MN4 were very effective in reducing oxidation loss of mild steel at all temperatures and times. At higher temperatures and longer times the coatings are effective in reducing oxidation loss by above 95 %.
- ii) Effective ness of the coatings in preventing oxidation loss, increases with exposure time at all temperatures, the effect being more pronounced at 700°C.
- iii) At lower temperatures, say 700°C, for shorter exposure periods coating MNl was more effective in reducing oxidation loss, whereas for longer exposure periods coating MN4 was more effective.

3.4 OXIDATION PREVENTION OF STAINLESS STEEL

Effectiveness of coating compositions MN1 and MN4 using binder 'S' of 1.3 gm/c.c. specific gravity in preventing oxidation loss of 18-8 stainless steel at different temperatures for different times was determined.

Comparing oxidation loss of uncoated 18-8 stainless steel (Figure 6, Table 3.8) with specimens protected by coatings MN1 and MN4 (Figure 7, Table 3.8) and percentage reduction in oxidation loss using these coatings (Figure 8, Table 3.9) following can be observed:

Table 3.8

OXIDATION LOSS OF STAINLESS AT DIFFERENT TEMPERATURES

AND TIMES WITH AND WITHOUT COATING*

Expt.	Composi- tion Code	Time hrs.	Oxidation 900°C	Loss (mg	/cm ²) at 1	temperature 1200°C
1	Uncoated	2.5	5.74	18.65	48.90	76.00
2	1 1	5.0	9.13	24.90	43.88	111.94
3	1 1	7.5	22 . 0 6	22.45	68.42	152.50
4	1 5	10.0	23.03	34.25	88.00	160.94
5	MNl	2.5	0.00	0.04	1.46	3.43
6	1 1	5.0	0.00	0.11	1.83	3.38
7	1.1	7.5	0.00	0.34	2.83	11.20
8	t t	10.0	0.00	0.55	6.45	16.52
9	MN 4	2.5	0.00	0.21	1.43	6.23
10	1 1	5.0	0.00	1.92	1.96	11.42
11	1 1	7.5	0.00	1.99	2.31	10,00
12	1 1	10.0	0.00	3.76	2.75	12.25

 ^{- 12} cc of binder S having a specific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder.

⁻ Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature.

Fig. 6 Oxidation loss of unprotected stainless steel at different temperatures and times.

Fig. 7 Oxidation loss of stainless steel protected by coatings MN 1 and MN 4 at different temperatures and times.

Table 3.9

PERCENTAGE REDUCTION IN OXIDATION LOSS OF 18-8 STAINLESS STEEL EXPOSED AT DIFFERENT TEMPE ATURES AND TIMES USING COATINGS

MN1 AND MN4 *

Time		Percentage Reduction in oxidation loss of stainless steel using	eduction in	oxidation	1 loss of	stainles	s steel u	sing
hrs.	Appl Appendix 1, 1 may committee beautiful Danger, apply 1974 weeks	Coating MN1 at	1 at		A COLUMN TO SERVICE SE	Coating	Coating MN4 at	
CTO SERVICE POLICE STATE PROPERTY.	2 ₀ 006	1000°C	1100°C	1200°C	1200°C 900°C	1000°C	1000°C 1100°C	1200°C
2.5	100.00	99.81	97.02	95.49	100.00	98.91	97.08	91.80
5.0	100.00	99.49	95.83	96.48	100.00	92.31	95.53	98.68
7.5	100,00	98.49	93.26	95.66	100.00	91.14	69.63	93.44
10.0	100.00	98.41	92.67	89.74	100,00	89.02	96.88	91.15
intidegalages rate swit . A thinaid	M. CHECOMO. DE LABORATE POLICO ARMETE DE CAME CAMERAMA MARINANDA MEMBRICADO SERVICIO. ATRIBUTA	ERIORATE CONTRACTOR OF THE STREET, STR	Appendign . D. C. on Partie Commission Conference Conference Conference Commission Conference Confe		A STATE OF THE STA	ary) Addid At Whrysonoma Buestroom orac elect	LENGELIJA, A. 4-18 o Absorbiguego A. Angel . 1340 a.u.g. 1	

- 12 cc of binder 'S' having a specific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder. gms of coating powder.

Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature. ì

Fig. 8 Effect of coatings MN 1 and MN 4 in reducing oxidation loss of tool steel at different temperatures and times.

- i) Both coatings MN1 and MN4 drastically reduced the oxidation loss of 18-8 stainless steel at all temperatures and times.
- ii) Itappeared that at all temperatures and times there was practically no difference in both the coatings, percentage reduction in oxidation loss being above 89 %in all cases.

3.5 OXIDATION PREVENTION OF TOOL STEEL

Effectiveness of coating compositions MNl and MN4 using binder 'S' of 1.3 gm/c.c. specific gravity in preventing oxidation loss of tool steel at different temperatures for different times was determined.

Comparing oxidation loss of uncoated tool steel (Figure 9, Table 3.10) with tool steel coated with coating compositions MN1 and MN4 (Figure 10, Table 3.10) and percentage reduction in oxidation loss using these coatings (Figure 11, Table 3.11) following could be observed:

i) Coating - MN4 was very effective in reducing oxidation loss of tool steel at all temperatures and times, coating MN1 was effective at 900°C and 1000°C for all times. However at 1100°C its effectiveness decreased with increasing time.

Table 3.10

OXIDATION LOSS OF TOOL STEEL AT DIFFERENT TEMPERATURES

AND TIME WITH AND WITHOUT COATING*

AND VERSE CORNER	They are the second of the sec			THE RESIDENCE OF THE PROPERTY	
Expt.	. Composition Crde	Time hrs.		loss mg/cm ² Temperature	at Exposure
171			900°C	1000°C	1100°C
٠.1	Uncoated	1.0	8.50	28.25	247.85
2	† †	2.0	29.94	102.64	280.64
3	1 1	3.0	28.99	294.41	416.64
4	1 1	4.0	94.76	318.91	426.25
5	1 1	5.0	102.53	339.30	465.23
6	MNl	1.0	3.25	10.98	28.28
7	1 1	2.0	8.97	14.86	50.24
8	1 1	3.0	7.26	15.32	101.00
9	7 1	4.0	10.23	16.21	163.89
10	1 1	5.0	11.36	19.71	327.23
11	MN 4	1.0	3.98	15.56	13.08
12	1 1	2.0	7.42	18.42	17.06
13	1.1	3.0	9.29	20.06	21.89
14	T T	4.0	9.64	22.45	32.05
15	1*1	5.0	9.89	23.93	85.98

 ¹² cc of binder S having a specific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder.

⁻ Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature.

Fig. 9 Oxidation loss of unprotected tool steel at different temperatures and times.

Fig. 10 Oxidation loss of tool steel protected by coatings MN 1 and MN 4 at different temperatures and times .

Table 3.11

PERCENTAGE REDUCTION IN OXIDATION LOSS OF TOOL STEEL

EXPOSED AT DIFFERENT TEMPERATURES AND TIMES USING

COATINGS MN1 AND MN4 *

Time	Percentag	ge Reducti	on in oxi	dation los	ss of Tool	Steel Using
hrs.	Co	ating MNl	. at	Coa	ating MN4	at
	900°C	1000°C	1100°C	900°C	1000°C	1100°C
1.0	61.76	61.13	88.59	53.18	44.92	94.72
2.0	70.04	85.52	82.10	75.22	82.05	93.92
3.0	74.96	94.80	75.76	67.95	93.19	94.75
4.0	89.70	94.91	61.55	89.83	92.96	92, 48
5.0	88.92	94.19	29.66	90.35	92.95	81.52

^{* - 12} cc of binder S having a specific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder.

⁻ Coated specimens were air dried for 6 hrs at room temperature before exposure at high temperature.

Fig. 11 Effectiveness of coatings MN 1 and MN 4 in reducing exidation loss of tool steel at different temperatures and times.

- ii) Effectiveness of the coatings in preventing oxidation, as judged by percentage reduction in oxidation loss increases with exposure time at 900°C and 1000°C.

 At 1100°C it decreased.
- iii) It appears that for longer times at higher temperature coating MN4 is more effective than coating MN1.

3.6 EFFECT OF AIR DRYING TIME AND CHARGING TEMPERATURE

In the work described, so far the coated specimens were charged in the furnace at room temperature after air drying for 6 hours. In many cases, it may be desirable to charge the coated specimens at high temperature. This could however, result in coating failure due to thermal shock. It may also be desirable to reduce the air drying time. In order to evaluate these effects mild steel specimens coated with coating MN1, after air drying for different periods, were charged in the furnace at room temperature and at 1000°C. Oxidation loss was determined at 1000°C after exposure for 5 and 10 hours.

It was observed (Table 3.12 and 3.13) that the oxidation loss of mild steel decreases with increasing air drying time on charing at either 1000°C or at room temperature. As the air drying time is increasing more and more water from the coating gets evaporated which in turn reduces the possibility

Table 3.12

EFFECT OF AIR DRIING TIME AND CHARGING TEMPERATURE ON THE OXIDATION LOSS OF MILD STEEL AT 1000 C.*

Code	Charging Temp.	Expose Ai	Exposed at 1000° G for 5 hrs Exposed at 1000° G for 10 hrs Air drying time hrs. 1 1 2 4 6 6	000 for 10 hrs time hrs.
MNJ	1000c	19.72	19.72 16.70 10.95 7.30 47.02 74.57	47.02 74.57 68.11 12.23
-	Room Temp.	9.108.69	.108.69 21.39 77.05 9.90 76.15 35.26 64.73	64.73 22.52
Market - Charlester Street Street	THE PROPERTY OF THE PROPERTY O	Administrator - Bullimant - Office a control Mice	MARKATAN OF CHARACTER AND	Manage des recognistes de la companya del companya de la companya de la companya del companya de la companya del la companya de la companya d

^{- 12} cc of Linder 'S' having a srecific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder.

Table 3.13

PERCENTAGE REDUCTION IN OXIDATION LOSS OF WILD STEED AIR DRIED FOR DIFFERENT PERIODS AND EXFOSED AT 1000°C FOR 5 Hrs and 10 Hrs*

	THE PARTY OF THE P	en des traspoles australisades desarios	COLUMN TOWNS OF THE PROPERTY OF THE PROPERTY OF THE COLUMN TOWNS O	MANUAL MA	ţ
Coating	Coating Charging	Fronsed	Ferentage Reduction	in Cxidation boss Exposed at 1000 C for 10 hrs	ł 1
9000	AR - L. ARABIT	ALT	dyring time hrs	Air dyring time hrs	1 1
MINIT	1000 C	87.02	89.01 92.18 95.20	88.02 81.29 82.91 96.71	
=	Room Temp.	28.32	8.32 85.92 49.28 93.49	80.89 91.15 83.76 94.35	
	e ye in the second of the seco		ayan da Maries	REALINE AND THE SECOND CONTRACTOR	I

12 cc of Binder 'S' having a specific gravity of 1.3 gm/cc was mixed with 20 gms of coating powder. of coating dammage during firing because of sudden moisture evaporation. This would explain the benificial effect of air drying for longer times. Although the oxidation loss after air drying for 1 hour was more than the loss after air drying for 6 hours, however, it still represented a reduction in oxidation loss of 87% for 5 hrs exposure and 88% for 10 hrs at 1000°C as compared to uncoated specimens. This may be more than adequate for many industrial applications.

Charging at 1000°C showed less oxidation loss in most of the cases. It may be because, while charging at room temperature the poracity of the coating is more, till the coating becomes viscous enough to fill the pores. But in case of charing at 1000°C the coating becomes viscous and fills the pore immediately on charging, thereby reducing the time for which the specimens remain practically unprotected. This results in lower oxidation loss in cases when the specimens are charged in the furnace at 1000°C as compared to charging in furnace at room temperature and raising the temperature afterwords.

3.7 THERMAL CONDUCTIVITY OF THE COATING

Ideal coating should have good thermal conductivity.

Since, poor conductivity would mean that the time taken by
the coated specimen to attain the furnace temperature would be
different than the uncoated specimen. Therefore, adjustments

will have to be made in the normal heat treatment cycle. However, if the thermal conductivity of the coating is good, then, such coating could be used without altering the conventional heat treatment cycle.

To evaluate the thermal conductivity of the \bullet oating and the time taken to attain the furnace temperature at the centre of mild steel specimen, 2.5 cm (dia) x 5 cm (long), in coated and uncoated conditions.

Three specimens, one without coating and the other two with coating MN1 and MN4 were charged in the furnace at room temperature and the temperature has been raised. The temperatures of the specimens were measured after 5 minutes interval. The results clearly show that there was practically no difference in temperature of coated and uncoated specimens indicating both the coatings have good thermal conductivity (Figure 12).

3.8 EFFECT OF COATING ON THE HARDENING TREATMENT FOR STEELS

As stated earlier, an ideal coating should not hinder the normal heat treatment process so that it could be used without altering the conventional heat treatment processes.

To evaluate the effect of coating on material hardenability two specimens one with cut coating and the other with coating MN1 were austenitized at 1000°C for 1 hr followed by water quenching. Microhardness at 0.127 mm interval was

Fig. 12 Rise in temperature at the cente of 25 mm diameter mild st specimen without coating and with coatings MN 1 and MN 4.

CENTRAL LIBRARY

Acc. No. A. 58750

measured on a cross section of each of the specimens. The results show that there was practically no difference in hardness of coated and uncoated specimens indicating that the coating is not hindering the hardening treatment (Figure 13, Table 3.14).

3.9 PREVENTION OF DECARBURIZATION

As mentioned earlier, an ideal coating should also prevent decarburization of steels during heat treatment process. To evaluate this effect, the extent of decarburization, in a 0.56% carbon steel studied by the following methods for coated and uncoated specimens exposed at 1000°C for 10 hrs followed by air cooling.

- i) A cross section of the specimen was prepared for metallographic examination after etching with 5% Nital.
- ii) Variation of microhardness with depth from the specimen surface was determined on a cross section of each specimen.
- iii) Variation of carbon content with depth was studied by removing turnings from the specimen surface in steps of 0.127 mm upto a depth of 1.143 mm.

 These turnings were analysed for carbon content using Strohleim apparatus.

Table 3.14

EFFECT OF COATING ON HARDENING TREATMENT OF A 0.56% C

STEEL SPECIMEN AUSTENITISED AT 1000°C FOR 1 Hr FOLLOWED

BY WATER QUENCHING

Distance from		dness D.P.N.
surface mm	Uncoated	Coated with MN1
0.00	575.6	570.00
0.13	570.0.	565.0
0.25	565.6	557.5
0.38	552.5	547.5
0.51	537.5	527.5
0.64	516.4	512.5
0.76	441.2	441.2
0.89	401.2	401.2
1.40	376.4	. 376.4
1.91	344.4	344.4
2.42	344.4	344.4
3.00	344.4	344.4
3.58	344.4	344.4
4.09	344.4	344.4
4.60	376.4	376.4
5.11	401.2	401.2
5.24	441.2	441.2
5.37	516.4	512.5
5.50	537.5	527.5
5.63	552.5	547.5
5.76	565.6	557.5
5.89	570.0	565.0
6.00	575.6	570.0

Fig. 13 Effect of coating MN 1 on the hardenability of 0.56 % carbon steel specimen austenitized at 1000°C for 1 hour followed by water quenching.

Taking into consideration the loss in specimen thickness during exposure due to oxidation it could be seen that in coated specimen both hardness and carbon content (Figure 14) attained the value of the parent material in annealed condition at a lesser depth than the uncoated specimen. This indicated that the coating MNl was helping in preventing decarburization. This fact was also borne out by the photomacrographs of the cross-sections of coated and uncoated specimens after the heat treatment cycle (Figure 15, Table 3.15 and 3.16).

3.10 SURFACE COVERING ABILITY OF THE COATING

20 gms of coating powder was mixed with 12 cc of binder and coated on the mild steel specimens and the weight of powder plus binder required to cover 1 m² area was calculated as follows.

Weight of the uncoated specimen $(W_1) = 12.3298 \text{ gms}$ Weight of the coated specimen $(W_2) = ..16.3021 \text{ gms}$ Specimen surface area $(A) = 50.96 \text{ cm}^2$ Weight of 12 cc of binder $(W_3) = 15.6 \text{ gms}$ Weight of powder used $(W_4) = 20.0 \text{ gms}$ Weight of powder + binder to cover 50.96 cm² surface $W_2 - W_1 = 3.9723 \text{ gms}$

Table 3.15

VARIATION OF MICROHARDNESS WITH DEPTH IN 0.56% C

STEEL SPECIMENS, UNCOATED AND COATED WITH MN1,

AFTER HEATING AT 1000°C FOR 10 Hrs FOLLOWED BY

AIR	COOPTING

Uncoated		Coated wi	th MN1
Distance from surface mm	Micro- hardness D.P.N.	Distance from surface mm	Microhardness D.P.N.
1.07	85.2	0.66	161.0
1.19	110.2	0.79	92.4
1.32	78.0	0.91	137.2
1.45	106.6	1.04	154.4
1.57	161.0	1.147	168.0
2,08	168.0	1.68	93.4
2.59	168.0	2.18	148.4
3.10	168.0	2.69	168.0
3.61	168.0	3.26	168.0
4.11	168.0	3.71	168.0

<u>Table 3.16</u>

VARIATION OF CARBON CONTENT WITH DEPTH IN 0.56% C STEEL SPECIMENS, UNCOATED AND COATED WITH MN1, AFTER HEATING AT 1000°C FOR 10 Hrs FOLLOWED BY AIR COOLING

Uncoat	ed	Coated w	ith MNl
Distance	Carbon	Distance from	Carbon
from surface mm	percentage	surface mm	percentage
Miningles of the 4000 Hillsoning supplication, Hindlines and			
1.07	0.10	0.66	0.11
1.19	0.08	0.79	0.12
1.32	0.19	0.91	0.15
1.45	0.25	1.04	0.22
1.57	0.33	1.17	0.28
1.70	0.40	1.30	0.29
1.83	0.44	1.42	0.35
1.96	0.43	1.55	0.40
2.08	0.44	1.68	0.51

Fig. 14 Variation of microhardness and carbon content with depth in 0.56 % carbon steel specimens, uncoated and coated with MN 1, after heating at 1000° C for 10 hours followed by air cooling.

Fig. 15: Microstructures showing the decarburized layers in (a) uncoated and (B) coated with MN1 specimens of 0.56% C steel exposed at 1000°C for 10 hrs. (150%).

Weight of powder + binder	7.04
to cover 1 m ² surface area	$= \frac{10^4}{A} \times (W_2 - W_1)$
	$= \frac{10^4 \times 3.9723}{50.96}$
	= 779.49 gms
Weight of powder out of	
779.49 gms of binder + powder	$= \frac{779.49}{W_3 + W_4} \times W_4$
	$= \frac{779.49 \times 20.0}{15.6 + 20.0}$
	= 437.91 gms
Weight of binder	= 779.49 - 437.91
	= 341.58 gms
Volume of 341.58 gms of binder solution	$= \frac{341.58}{W_3} \times 12$
	$= \frac{341.58}{15.6} \times 12$
	= 262.75 cc

To cover 1 m² surface area 437.91 gms of powder and 262.75 cc of binder solution would be required.

Or in other words 20 gms of powder and 12 cc of binder solution mixed together would cover about 450 cm² surface area.

3.11 COST OF COATING

The cost of coating has been calculated on the basis of present raw material cost without grinding and labour charges as follows.

Raw Materials Cost

Material	1 A 1			-Rs.	500/Ton
Material	'B'		·	Rs. 2	2000/Ton
Material	'C'			Rs.	500/Ton
Material	'D'			Rs.	500/Ton
Material	'E'			Rs.	500/Ton
Binder 'S	İ			Rs.2	2000/Ton

To get 1.3 gm/cc specific gravity of binder solution 75 gms of binder was added to 100 cc of water.

Total volume of the binder solution	
i.e. 75 gms of binder + 100 cc of water	= 110 cc
To cover 1 m ² surface area volume of biner required	= 262.75 cc
Weight of the Binder added to get 262.75 cc of solution	$= \frac{262.75}{110} \times 75$
	= 179.15 gms
The cost of 10 Kg of coating MN1 powder (in the proportion as given in Table 3.3)	= Rs. 10.55
The cost of 10 Kg of coating MN4 powder (in the proportion as given in Table 3.3)	= Rs. 8.76

The price of 179.15 gms of the binder	=	Ps.	179.15×2000
	=	Rs.	0.36
To cover 1 m ² surface area required powder	=	437	7.91 gms
The price of 437.91 gms coating MN1	=	Rs.	$\frac{437.91}{10^4} \times 10.55$
	=	Rs.	0.46
Similarly the price of 437.91 gms of coating MN4	=	Rs.	0.38
The price of coating MNl powder + binder 'S' to cover l m2 surface area	_	Rs.	(0.46 + 0.36)
	=	Rs.	0.82
Similarly the price of coating MN4			
powder + binder 'S' to cover I m ² surface area	=	Rs.	(0.38 + 0.36)
	=	Rs.	0.74

3.12 REMOVAL OF THE COATING AFTER EXPOSURE

The surface coatings for heat treatment process ideally should have the properties stated in section 1.3. Two important properties are it should come off by itself from the specimen surface and it should not react with the specimen surface when exposed at high temperatures.

It was observed (Table 3.17) that both coatings MNl and MN4 came off by themself during cooling of the specimen after exposure at high temperature and also they are not

TABLE 3-17 SURFACE APPEARANCE OF UNPROTECTED AND PROTECTED SPECIMENS AFTER EXPOSINE AT DIFFERENT TEMPERATURES AND TIMES.

	ACCIA DOR MARTINOPARTE VA	S 0 %	STEE			STAINL	STAMLESS STEEL	邑			TOOL STEEL	u u	
			enyored journaling	3		Š	empedua ensoir	префия		Exposure	Expo	A RESIDENCE OF THE PROPERTY OF	of the control of the
	o A	730		25.	ž	8	SOS	332	20		8	8	100
176	7	0	The second second	13	25	Li	w	L	-	A Commence	u	i.	L.
Christian Christian	Dis		-	i.	205		w	w		9	l _e ta.	ia.	lá.
Specimen	-	Commence or commence of		ă.	5	w	u	L	441	0 r	la.	i.e.	ii.
d (Arconda	000	1		u	000	ш	w	w	ш	07	M.	ů.	î.
			-		Control of the Contro					5.0	u	Ŀs.	la.
77	2.5	a	0	G	2.5	A	m	en	ø	2.0	60	æ	æ
	205	U	U	0	5.0	A	æ	æ	00	2.0	00	0	m
	7.5	U	G	0	ŭ,	A	on	œ	ပ	o;	20	3 0	۵
	10.0	0	ن	0	6.0	A	œ	8	ပ	0.4	œ	60 	i.
and the same			-							5.0	හ		u.
734	2.5	U	0	a	2.5	4	8	œ	6	0.1	හ	en.	æ
	5.0	U	0	0	5.0	A	8	8	u	2.0	æ	æ	හ
	7.5	2)	LL.	a	7.5	đ	œ	Ø	C	3.0	æ	œ	න
	10.0	ပ	ls.	O	20.0	A	B	60	ပ	0'7	2 0	80	u
										5.0	Ø	œ	۵

REMARKS

- 12 cc of binder 'S' having a specific gravity of 1.3 gm/cc was mixed with 20 gm of coaling powder.
 - Coated specimens were air dried for 6 hours at room temperature before exposure at high temperature.
- in all cases the coating surface after 6 hours of air drying was even and showed no cracks. in all cases the coating came off from the specimen surface by it self on cooling after firing at indicating good pailability and adequate adherence to the base.
- (C) Temper colours appeared on the surface without pit formation (D) Light gray colour with (B) Slight oxidation without pitting (E) Dark black coloured axidation layer which came off as ficiles Surface appearance code: (A) Practically no oxidation (F) Dark grey colour with heavy pitting. slight pits formation high temperature.

reacting with the specimen surface. The coatings come off by itself because the coefficient of thermal contraction of the base metal and the coating was different. The metal contracts more rapidly than coating. So stresses develope in the coating and the bond between the specimen surface and coating breaks. Because of this the coating comes off by itself.

CHAPTER IV

The following conclusions can be drawn from the results which were shown in Chapter III:

- l. Both coatings MN1 and MN4 are very effective in reducing the exidation loss of mild steel and stainless steel. The percentage reduction in exidation, in comparison to uncoated specimens, of mild steel and stainless steel is above 69% and 89% respectively at all temperatures and times. In case of tool steel coating MN4 is more effective than coating MN1 at all temperatures and times.
- 2. In case of mild steel and stainless steel the percentage reduction in oxidation with coatings MNl and MN4 increased with time at all temperatures. But in case of tool steel at 1100°C the effectiveness of both the coatings MNl and MN4 decreased with time.
- 3. For longer exposure the coating MN4 showed better protection to oxidation than coating MN1 in all steels.
- 4. The application of both the coatings is easy by brush painting. It would be possible to adjust the fludity of the coating so that it could be applied by dip or spray coating methods also.

- 5. During cooling, after exposure at high temperature, both the coatings came off the specimen surface by itself.
- 6. Both the coatings showed good thermal conductivity.
- 7. Coating MNl reduced the amount of decarburization and does not hinder the normal hardening treatment of steel. It is expected that coating MN4 will behave in a similar manner.
- 8. The surface covering power of the coatings is good.
 20 gms of the coating powder mixed with 12 cc of the binder would cover about 450 cm² surface area.
- 9. Coating MN1 and MN4 are cheap. Based on raw material costs only it would cost about Rs. 0.82 for coating MN1 and Rs. 0.74 for coating MN4 to cover about 1 Sq. Meter surface area.

REFERENCES

- Metals Reference Book 5th Edition, Butterworths, London, 1976, pp. 1438.
- 2. Metals Hand Book, Volume 2, 8th Edition A.S.M., Metals Park Ohio 1964.
- 3. A.G. Holchkiss and H.M. Webber 'Protective atmospheres' John Wiley and Sons, New York 2nd print 1963.
- 4. D.S. Clark and W.R. Varney 'Physical Metallurgy for Engineers' East-West Press Pvt. Ltd., 1968.
- 5. Y. Lakhtin, 'Engineering Physical Metallurgy' Mir Publications
- 6. Carl A. Zapfer, 'Sources of Hydrogen in Steel and Means for Its Elimination' Metal Progress, Vol. 43, No.3, March 1943, pp 397-401.
- 7. J.B. Seabrook, N.J. Grant and Dennis Carney 'Hydrogen Embrittlement of SAE 1020 Steel', Journal of Metals Vol. 188, No.11, Nov. 1950 pp. 1317-1321.
- 8. C. Burton Clark and C.L. Thomson 'Iron oxide conversion a Previously Unracognized Course of Refractory Destruction' Industrial Heating Vol. 14, No.12, Dec. 1947, pp. 2056-58.
- 9. C.A. Leidholm 'High-Hydrogen Atmosphere Intensifies Que ch Cracking Tendency' Metal Progress, March 1947, Vol.51, No.3, pp. 414-419.
- 10. Raymond. E. Birch 'Modern Blast Furnace Refractories' Blast Furnace and Steel Plant, Vol. 30, No.3, March 1942, pp. 345-350.
- 11. Foseco Trading A.G. Fr. 1, 512, 690 (C1-C09d), 9 Feb. 1968, Chem. Abst. No. 99201W, Vol. , 1972.
- 12. Higuchi, Hisashi, Ghsuzu, Hirotoda, Uchino, Kaoru, Makijima, Hiroshi, Toyota, and Tsunehiko, Chem. Abst. No. 30035W, Vol. 83(4) 1975.

- 13. Popov, N.N., Chem. Abst. No. 34340U., Vol. 82(6), 1975.
- 14. Popov, N.N., Chem. Abst. No. 95393q, Vol.81(16), 1974.
- 15. Popov, N.N., Chem. Abst. No. 125722c, Vol.84(18), 1976.
- 16. Maragin, Yu. V., Arisemova I.V., Popov, N.N., Chem, Abst. No. 165302t, Vol.85(22) 1976.
- 17. Popov N.N. Appen A.A., Antanova E.A., Chem. Abst. No. 24399d, Vol. 71(6), 1969.
- 18. Boggs, William E. Linderman, William A., Snow. Roland.B. Chem. Abst. No. 174230n, Vol.81(26), 1974.
- 19. Murav'ev, V.1., Chem. Abst. No. 49660z, Vol. 70(12), 1969.
- 20. Medvedev, G.A., Sokolova, N.I., Tsapalova, N.K., Chèm. Abst. No. 128173s, Vol. 71(26), 1969.
- 21. Fujita Seichi, Chem. Abst. No. 94969v, Vol.81(16), 1974.
- 22. Yu. V. Grdina, D.I., Tarasko and L.F. Shimova, Chem. Abst. No. 110845v, Vol. 67(24), 1967.
- 23. Colantuono William, R., Chem. Abst. No. 146581d, Vol. 78(8), 1973.
- 24. Masudo, Soichiro, Hasegawar, Kkirai, Fujita, Teruo, Shigashagida, Kazunaga, Chem. Abst. No. Vol. 85(26), 1976.
- 25. Matsuno, Fumio, Chem. Abst. No. 164784q, Vol. 85(22) 1976.