

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo Diferencial e Integral

Professora: Juliana Aragão

Curso: Sistemas de Informação

Aula 5- Parte 2: Limites Laterais

Desejamos saber como se comporta a função $f(x) = \frac{x^2-1}{x-1}$ quando x assume valores próximos de 1.

x	0	0,5	0,9	0,95	0,99	0,999	\boldsymbol{x}	2	1,5	1,1	1,05	1,01	1,001	
f(x)	1	1,5	1,9	1,95	1,99	1,999	f(x)	3	2,5	2,1	2,05	2,01	2,001	
(a)								(b)						

- Observa-se, da tabela (a), que quanto mais x se aproxima de 1, por valores menores que 1, ou seja, pela esquerda, mais f(x) se aproxima de 2, então dizemos que lim f(x) = 2.
- Analogamente, da tabela (b), quanto mais x se aproxima de 1, por valores maiores que 1, ou seja, pela direita, mais f(x) se aproxima de 2, então dizemos que $\lim_{x\to 1^+} f(x) = 2$.

A função
$$f(x) = \begin{cases} 0, x < 0 \\ 1, x \ge 0 \end{cases}$$
 não tem limite quando $x \to 0$

$$\bullet \quad \lim_{x \to 0^-} f(x) = 0.$$

$$\bullet \quad \lim_{x \to 0^+} f(x) = 1.$$

Definição 1: Escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que o limite à esquerda de f(x) quando x tende a a [ou o limite de f(x) quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

Definição 2: Escrevemos

$$\lim_{x \to a^+} f(x) = L$$

e dizemos que o limite à direita de f(x) quando x tende a a [ou o limite de f(x) quando x tende a a pela direita] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x maior que a.

Exemplo 1:

$$\lim_{x \to 2^-} f(x) = 3$$

$$\lim_{x \to 2^+} f(x) = 1$$

f(2) não está definido

$$\lim_{x\to 5^-} f(x) = 2$$

$$\lim_{x\to 5^+} f(x) = 2$$

$$f(5) = 1.4$$

Teorema 1:

$$\lim_{x\to a} f(x) = L$$
 se, e somente se, $\lim_{x\to a^+} f(x) = L$ e $\lim_{x\to a^-} f(x) = L$

Exemplo 2: Use o gráfico dado de *f* para dizer o valor de cada quantidade, se ela existir. Se não existir, explique o porquê.

(a)
$$\lim_{x\to 2^+} f(x)$$

(b)
$$\lim_{x \to 2^{-}} f(x)$$

$$(c)\lim_{x\to 2} f(x)$$

(d)
$$f(2)$$

(e)
$$\lim_{x\to 4} f(x)$$

Exemplo 3: Use o gráfico dado de *f* para dizer o valor de cada quantidade, se ela existir. Se não existir, explique o porquê.

(a)
$$\lim_{x \to 3^+} f(x)$$

(b)
$$\lim_{x \to 3^{-}} f(x)$$

$$(c)\lim_{x\to 3} f(x)$$

(d)
$$f(3)$$

(e)
$$\lim_{x\to 1} f(x)$$

