Exercise Sheet 6

Exercise 1

In order to overcome the ill-posednes of the problem of differentiation of noisy data $f_{\delta} : [0,1] \to \mathbb{R}$, one can apply the Tikhonov regularization. This technique consists in minimizing of the functional

$$J(u) := \frac{1}{2} \int_0^1 (u(x) - f_{\delta}(x))^2 dx + \frac{\alpha}{2} \int_0^1 \left| \frac{du}{dx}(x) \right|^2 dx \tag{1}$$

over all functions u in the Sobolev space $H_0^1(0,1) := \{u \in L^2(0,1) : \frac{du}{dx} \in L^2(0,1), \ u(0) = u(1) = 0\}$. Here $\alpha > 0$ is the regularization parameter.

Prove that the functional J has a unique minimum, which is achieved at the function $u_{\alpha} \in H_0^1(0,1)$, which is a weak solution to the problem

$$\begin{cases} u_{\alpha}(x) - \alpha \frac{d^{2}u}{dx^{2}}(x) = f_{\delta}(x) & x \in (0, 1), \\ u_{\alpha}(0) = u_{\alpha}(1) = 0. \end{cases}$$
 (2)

Given the noisy data f_{δ} , write a computer program to solve the above problem on a uniform grid with N inner nodes $h, 2h, \ldots, 1-h$, where h=1/(N+1). Draw plots of functions f, f_{δ} and u in one figure, and next, their derivatives in the new one. Fix N and vary the regularization parameter α . Investigate the behavior of the errors as a function of α and δ .

Next consider the problem of an optimal value choice for the regularization parameter α in the Tikhonov model (1). To that end, assume that $||n_{\delta}||_{L^{2}(0,1)} = \delta$ and derive a bound in terms of δ and α of the L^{2} -norm of the difference

$$\frac{du_{\alpha}}{dx} - \frac{df}{dx} \,,$$

where u_{α} is a unique solution to the problem (2) and f is the true data. Next, choose α so that the error in the solution would be minimal. *Hint:* At some point you may need to use the inequality $2ab \leq a^2 + b^2$.

Exercise 2

Consider the one-dimensional version of the stady-state diffusion equation with spatially varying heat conductivity a, namely

$$-\frac{d}{dx}\left(a(x)\frac{du}{dx}(x)\right) = f(x) \tag{3}$$

for $x \in (0,1)$ and appropriate boundary condition. Here f is a given function corresponding to internal heat source. We are interested in solving the inverse problem that consists in determining the coefficient a in the above equation from measurements of u.

Derive explicit formula for the function a from equation (3), and discuss terms that may cause effect of instability in solving the considered problem. Suppose that the boundary condition are

$$a(0)\frac{du}{dx}(0) = 0, \quad a(1)\frac{du}{dx}(1) = 0,$$
 (4)

f(x) = -1 and u(x) = x for $x \in (0,1)$. Find a satisfying (3) and (4). Assume that u is perturbed to $u_{\delta}(x) = \delta \sin(x/\delta^2) + x$, find a_{δ} that corresponds to these noisy measurements. Consider the limits of u_{δ} and a_{δ} as δ tends to 0. Is the coefficient identification problem stable or unstable with respect to perturbations in the observation u? Consider the stability estimates in the stady-state diffusion model (3). Assume that functions u_1 and u_2 are solutions to the problem (3) with coefficients a_1 and a_2 , respectively. Find the L^2 -norm estimate of the difference $a_1 - a_2$. In which function space should u lie so that the problem of coefficient estimation in the model (3) would be stable?