[Total No. of Questions: 8]

F.E. (Semester - I) (Revised 2007-08 Course) Examination, Nov./Dec. - 2011

ON BY

APPLIED MATHEMATICS - I

Duration: 3 Hours Total Marks: 100

Instructions: 1) Attempt any five questions, at least one from each Module.

2) Assume suitable data, if necessary.

MODULE - I $\left(\frac{\partial}{\partial x} + \frac{\pi}{\kappa}\right)$ and $\sup_{x \in \mathbb{R}^n} |x| = 0$

(Q1) a)
$$\int_{0}^{1} x^{n-1} \left[\log_{e} \left(\frac{1}{x} \right) \right]^{m-1} dx = \frac{1}{n^{m}} \sqrt{m}$$
 [5]

b) Evaluate
$$\int_{0}^{1} \frac{P^{a-1} + P^{b-1}}{(1+P)^{a+b}} dp$$
. [5]

c) Prove that
$$\int_{0}^{1} \frac{x^3 - 2x^4 + x^5}{(1+x)^7} dx = \frac{7}{60}.$$
 [6]

d) S.7.
$$erf(x) = \frac{2}{\sqrt{\pi}} \left[x - \frac{x^3}{3} + \frac{1}{2!} \frac{x^5}{5} - \frac{1}{3!} \frac{x^7}{7} + \dots \right]$$
 [4]

i)
$$\sum \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}$$
.

ii)
$$\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + ----$$

(iii)
$$y = [\log(x + \sqrt{x^2 + a^2})]^2$$
 show that $(x^2 + a^2) y_{n+} + \frac{5}{4} + \frac{5}{6} + \frac{5}{2} + \frac{2}{3} + \frac{3}{4} + \frac{2}{6} + \frac{3}{4} + \frac{3}{4}$

b) Define absolutely convergent series and conditionally convergent series. Find out the type of the following series. [4]

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + ----$$

c) State and prove Leibnitz's Rule for convergence of on alternating series. [4]

MODULE - II

Q3) a) Use De Moivre's theorem to solve the equation $x^4 - x^3 + x^2 - x + 1 = 0$. [4]

b) If
$$u = \log_e \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$$
. [4]

Prove that $\tan h \frac{u}{2} = \tan \frac{6}{2}$.

c) If
$$\sin (\theta + i \phi) = \tan \alpha + i \sec \alpha$$
 show that $\cos 2\theta \cos h 2 \phi = 3$. [6]

d) Considering the principal value only prove that the real part of $(1+i\sqrt{3})^{1+i\sqrt{3}}$ is

$$2 e^{-\pi/\sqrt{3}} \cos\left(\frac{\pi}{3} + \sqrt{3}\log 2\right).$$
 [6]

Q4) a) Prove that
$$\cos h^{-1} \sqrt{1 + x^2} = \tan h^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right)$$
. [6]

b) Find p and q if the following function is analytic $f(z) = \cos x (\cos h y + p \sin h y) + i \sin x (\cos h y + q \sin h y)$ [6]

c) If
$$f(z) = u + iv$$
 is analytic function then find $f(z)$ in terms of z if [8]

$$u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - 2\cosh y}$$

MODULE - III

Q5) a) If
$$y = [\log(x + \sqrt{x^2 + a^2})]^2$$
 show that $(x^2 + a^2) y_{n+2} + (2n+1) x y_{n+1} + n^2 y_n = 0$
Hence deduce $y_n(0)$

[6]

$$\log(1+\sin x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 - \dots - \dots$$

c) Expand the polynomial
$$f(x) = x^5 + 2x^4 - x^2 + x + 1$$
in powers of $(x + 1)$.

Q6) a) If
$$u = f(x, y)$$
, where $x = e^r \cos \theta \ y = e^r \sin \theta$, then show that
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2r} \left[\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial \theta^2} \right].$$

i)
$$\lim_{x \to 0} \frac{\cos h x - \cos x}{x \sin x}$$

ii)
$$\lim_{x\to 0} (\sin x)^{\tan x}$$

iii)
$$\lim_{x\to 0} \left(\frac{1}{x} - \cos ec^2 x \right)$$

MODULE - IV

Q7) a) Examine the function [7]
$$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy \text{ for extreme values.}$$

b) Find the area of a greatest rectangle that can be inscribed in an ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

c) If
$$u = \sin^{-1} \left(x^3 + y^3\right)^{2/5}$$

Find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

[8]

- Q8) a) Form a partial differential equation by eliminating arbitrary constant
 - i) $ax^2 + by^2 + z^2 = 1$
 - ii) $(x-h)^2 + (y-k)^2 + z^2 = a^2$.
 - b) Solve the following partial differential equation $(y + zx) p (x + yz) q = x^2 y^2$. [6]
 - c) Solve the following partial differential equation $p(1+q^2) = q(z-a).$ [6]

$\frac{3^{2}u}{6u^{2}} + \frac{3^{2}u}{6y^{2}} = \frac{3^{2}u}{6r^{2}} + \frac{3^{2}u}{6r^{2}} + \frac{3^{2}u}{6r^{2}}$

cos har-cos r

 $\lim_{n \to \infty} \left(\frac{1}{1 - \cos ec^2} x \right)$

MODULE - IV

Examine the function

Find the area of a greatest rectangle that can be inscrib

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

c) If $u = \sin^{-1} (x^3 + y^3)^{2/5}$

Find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$