Real Estate Portfolio Optimization

1. Previous Literature

- 1. IBMQ Portfolio Optimization
- 2. Why Real Estate Portfolio

2. REPO

- 1. How REPO works
- 2. LSTM
- 3. QA

3. Result

4. Conclusion

1. PREVIOUS RESEARCH

1) IBMQ Portfolio Optimization

QUBO

Quadratic Unconstrainted
Binary Optimization

 $\min f(x) = \min x^T Qx + q^T x$ $x \in \{0, 1\}^n$

IBMQ Portfolio Optimization

stock & bond Portfolio Optimization

 $\min_{\substack{x \in \{0,1\}^n}} qx^T \ \Sigma x - \mu^T x$ subject to: $1^T x = B$

2) Why Real Estate Portfolio

best portfolio optimization method that can be expressed as 0 and 1

Real Estate Portfolio
Optimization

$$\min_{\substack{x \in \{0,1\}^n \\ \text{subject to}}} qx^T \ \Sigma x - \mu^T x$$

 $\min_{x \in \{0,1\}^n} qx^T \left| \Sigma x - \mu^T x + c^T x \right|$

problem	allowed to buy an asset	okay
problem	② no budget constraint	okay
problem	③ can only buy fixed number of assets	removed

2) Why Real Estate Portfolio

IBMQ Portfolio Optimization

 $\min_{\substack{x \in \{0,1\}^n \\ \text{subject to}}} qx^T \ \Sigma x - \mu^T x$

- Pick or not
 - $\mathbf{x} \in \{0,1\}^n$: binary decision variables
- Expected returns
 - $\mu ∈ \mathbb{R}^n$: Expected Return of past months
- Covariance
 - Σ ∈ $\mathbb{R}^{n \times n}$: covariances between the assets
- Risk appetite
 - ightharpoonup q > 0: risk appetites of the decision maker (how much risk the investor can bear)
- Budget (num of assets selected)
 - B : number of assets to be selected out of n assets

2) Why Real Estate Portfolio

IBMQ Portfolio Optimization

```
\min_{\substack{x \in \{0,1\}^n \\ \text{subject to}: 1^T x = B}} qx^T \sum x - \mu^T x
```

- Expected returns
 - $\mu \in \mathbb{R}^n$: Expected Return of past months

Real Estate Portfolio Optimization

2. REPO

1) How REPO Works

1) How REPO Works

univariate CAPM

①
$$E(r_i) = r_f + \beta_i \times [E(r_M) - r_f]$$

multivariate CAPM

②
$$r = r_f + \beta_1(r_m - r_f) + \beta_2(SMB) + \beta_3(HML) + \varepsilon$$

$$(3) r_i - r_f = \alpha_i + \beta_{i,m} (r_m - r_f) + \beta_{i,SMB} SMB + \beta_{i,HML} HML + \beta_{i,MOM} MOM + \varepsilon_i$$

$$(4) R_{i,t} - R_{f,t} = \alpha_{i,t} + \beta_{i,t} + (R_{m,t} - R_{f,t}) + \sigma SMB_{i,t} + rMom_{i,t} + \delta S^{2}_{i,t} + e_{i,t}$$

1) How REPO Works

LSTM

- A type of NN designed for handling sequential data
- able to capture long-term dependencies in sequence data

Input

- Y: 서울시 동별 아파트 평균 매매가격 변화율
- Rm : 서울시 부동산 매매지수 변화율
- Rf: 무위험 수익률
- SMB(Small Minus Big): 대형 아파트 수익률 소형 아파트 수익률
- HML(High Minus Low): 전세가 / 매매가

평균 예측 집값과 모델 예측 집값의 Mean Absolute Error(MAE)의 차이

총 113개 동 중 **96개**의 동에서 **개선된** MAE를 보임

2) Quantum Annealing

- Optimization process for finding global minimum
- $H(t) = (1 f(t))H_I + f(t)H_f$

Real Estate Portfolio Optimization

3. RESULT

관측 시점에서 수익률 높은 부동산 투자

MEAN : 평균 수익률을 μ로 사용한 QUBO

LSTM : LSTM으로 예측한 μ 사용한 QUBO

3가지 방법으로 구성한 포트폴리오의 미래 변동률

Top profit 방법보다 QUBO를 이용한 방법이 리스크 헷징에 더 좋은 성능을 보여주고 있다!

서울시 부동산 매매지수(Systematic Risk)의 전망 예상

Q. 시장의 체계적 위험을 사용자가 예측하여 모델에 넣었을 시 그에 따른 합리적인 포트폴리오 제시가 가능할까?

세가지 전망에 따른 포트폴리오 수익률

A. 확실히 **다른 포트폴리오를** 제시하는 데 성공했다!

상승 전망: 서교동, 우면동, 성수동1가, 한남동

하강 전망: 서교동, 우면동, 신사동, 하월곡동

세가지 전망에 따른 포트폴리오 수익률

A. 확실히 **다른 포트폴리오를** 제시하는 데 성공했다!

Q. 뽑힌 포트폴리오가 정말로 상승, 하강장일때 **수익률**이 좋을까?

상승 전망: 서교동, 우면동, 성수동1가, 한남동

하강 전망: 서교동, 우면동, 신사동, 하월곡동

A.?

채택된 지역들의 수익률 분산

상승 전망: 서교동, 우면동, 성수동1가, 한남동

하강 전망: 서교동, 우면동, 신사동, 하월곡동

A. 상승장 일때는 변동이 높은 동을, 하락장 일때는 변동이 낮은 동을 뽑았다..!

4. CONCLUSION

1) Limitations

insufficient data

impact of economic policies

lack of price consistency

about 200 dongs have 0 monthly for more than 20 months

Regulations change drastically according to government and policy

2) Further Improvements

fix assets

can fix assets that shouldn't be sold

weight

weight assets before optimization

transition cost

consider transition cost stock portfolio

apply the frameworkto stock portfolio-> QUANTUM QUANT

THANK YOU