Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}{}_+\alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}\; au_{1}^{\#1}{}_{lphaeta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		0	0	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2 k^2 t_3}{3}$
$f_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[3]	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt_3
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_1^{\#1} \dagger^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

	_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
	$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
	$ au_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
	$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0
$\int_{0}^{2} F_{5}$				

 $\int_{\kappa} -6 r_5 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}) [t, x, y, z] \, dz \, dy \, dx$

 $4\,t_3\,\partial^\alpha f^\lambda_{\alpha}\,\partial^\kappa f_{\lambda\kappa}-24\,r_3\,\partial^\beta \omega_{\lambda}^{\lambda\alpha}\,\partial_\lambda \omega_{\alpha\beta}^{\beta}-3\,r_3\,\partial_\alpha \omega_{\lambda}^{\alpha}\,\theta^{\partial\lambda}\omega^{\theta\kappa}_{\kappa}+6\,r_5\,\partial_\alpha \omega_{\alpha}^{\alpha}_{\theta}$

 $8t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,} + 4t_3 \partial_{\kappa} f^{\lambda}_{,} \partial^{\kappa} f'_{,} + 4t_3 \omega_{,\alpha}^{\ \alpha} \partial^{\kappa} f'_{,\kappa} + 4t_3 \omega_{,\lambda}^{\ \lambda} \partial^{\kappa} f'_{,\kappa} +$

 $\partial_{i}\omega^{\kappa\lambda}_{\kappa}\partial^{i}\omega_{\alpha}^{\alpha} + 3\,r_{3}\,\partial_{\alpha}\omega_{\alpha}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 6\,r_{5}\,\partial_{\alpha}\omega_{\alpha}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 3\,r_{3}\,\partial_{\theta}\omega_{\alpha}^{\alpha}\partial_{\kappa}(\omega^{\kappa\lambda})$

Quadratic (free) action

 $6 r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - 3 r_3 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} - 6 \, r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} +$

	$\sigma_0^{\sharp 1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	0

	$\omega_{2+}^{#1} + \alpha \beta$	ξ^{*} .	$I_2 + I$	ω_2^{*} + " $^{\wedge}$
$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	0
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	<i>t</i> ₃	$i\sqrt{2}kt_3$	0	0

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + g_{0}^{#1} + g_{$

 $\omega_{2}^{\#1}$ $\alpha \beta \chi$

0

3 42 13

0

0

0

0

auge generators Multiplicities	1	1	1	3	3	3	3	2	2	25
Source constraints/gauge generators SO(3) irreps Multiplicities	$\sigma_{0}^{#1} == 0$	$\tau_{0+}^{#2} == 0$	$\tau_0^{\#1} - 2 \bar{l} k \sigma_0^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\sigma_1^{\#2}{}^{\alpha\beta}==0$	$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta=0$	Total constraints:

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$