

# Sannolikhetsstatistik - Sannolikhetsteori och statistikteori med tillämpningar

Sannolikhetsteori och statistik I (Kungliga Tekniska Högskolan)

#### Introduktion:

Utfall = resultat av ett slumpmässigt försök Händelse = samling av utfall

**Definition 2.4:** Om antalet utfall är ändligt eller uppräkneligt oändligt, så är  $\Omega$  ett **diskret** utfallsrum, och om antalet är ändligt, så är  $\Omega$  dessutom ett **ändligt** utfallsrum. Om antalet är oändligt eller uppäkneligt oändligt, så är  $\Omega$  ett **kontinuerligt** utfallsrum.

Kolmogorovs axiomsystem:

$$0 \le P(A) \le 1$$
  
  $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_1) + ...$ 

**Definition** Komplementära händelse till A = A\*

Den betingade sannolikheten för B givet att A inträffat:  $P(B \mid A) = P(AnB)/P(A)$ 

## 2.3 Sannolikheter i allmänna utfallsrum

**Sats 2.1 Komplementsatsen:**  $P(A^*) = 1 - P(A)$ 

Bevis: A och A\* är oförenliga och  $P(A) + P(A^*) = P(A \cup A^*) = P(\Omega) = 1$ 

Sats 2.2 Additionssatsen:  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

Bevis:  $A \cup B = A \cup (A^* \cap B)$ ;  $B = (A \cap B) \cup (A^* \cap B)$ 

 $P(A \cup B) = P(A) + P(A^* \cap B)$ ;  $P(B) = P(A \cup B) + P(A) + P(A^* \cap B)$ 

Sats 2.3: Booles olikhet:  $P(A \cup B) \leq P(A) + P(B)$ 

Sanolikhetsrum: utgörs av utfallsrummet och händelserna samt sannolikheterna P(.)

## 2.4 Sannolikheter i diskreta fall = ändligt/uppräkneligt oändligt antal

Likformigt sannolikhetsmått: Om  $P(w_i) = 1/m$ , för alla i = 1,...,m

Sannolikheten att B inträffar efter att A inträffats

 $P(B \mid A) = P(A \mid B) / P(A)$  ger sannolikheten att ett element tillhör både B och A ges av  $P(A \mid B) = P(A)^* P(B \mid A)$ 

Alltså:  $P(A \cap B) = p(A) * sannolikheten att B inträffar efter att A inträffat$ 

Exempel: Sannolikheten att man tar ut två felaktiga bland 50 enheter där 5 av dem är felaktiga?

Låt A vara utfallet att den första är felaktigt och B att den andra är felaktigt. Sannolikheten att B inträffar efter A inträffat är 4/49. Alltså: P(A I B) = P(A)\* P(B I A) = 5/50 \* 4/49 = 2/245 Sannolikheten att två första är felaktigt och den tredje rätt är: P(AIBIC) = 5/50 \* 4/49 \* 45/48

## 2.5 Likformigt sannolikhetsmått och kombinatorik



Multiplikationsprincip: om åtgärd 1 och 2 kan utföras på  $a_1$  resp.  $a_2$  sätt, så finns det  $a_1*a_2$  sätt för att utföra båda, osv.

Sats 2.7: Dragning utan återläggning av k element ur n kan ske på (n;k) = n! / (k!(n-k)! sätt.

**Binomialteoremet**  $(x+y)^n = (n;k) x^k y^{k-1}$  Bevis: antal sätt att plocka k stycken x är (n;k)

Multiplikationsprincip: Antalet olika utfall = A\*B

## 2.6 Betingad sannolikhet

<u>Den betingade sannolikheten</u> för B givet att A inträffat:  $P(B \mid A) = P(AnB)/P(A)$ Följdsats:  $P(B \mid A) = 1 - P(B \mid A) d^a P(B \mid A) + P(B^* \mid A) = P(\Omega) = 1$ 

Alltså P(AnB) = P(A)\*P(B | A)

#### Sats 2.9 Lagen om total sannolikhet

Om händelserna  $H_1,...,H_n$  är parvis oförenliga och  $H_1U...H_n = \Omega$ , dvs att ett försök inträffar precis en av dem gäller för varje händelse att sannolikhet för A är  $P(A) = \sum_{i=1}^{n} P(H_i)P(A \mid H_i)$ 

**Sats 2.10 Bayes sats** 
$$P(H_i IA) = P(A \cap H_i) / P(A) = P(H) * P(A \mid H_i) / \sum_{i=1}^{n} P(H_i) P(A \mid H_i)$$

#### 2.7 Oberoende händelse

Om  $P(A \cap B) = P(A)P(B)$  så är A och B oberoende händelser.

Sats 2.11: Om händelserna är **oberoende** och  $P(A_i) = p_i$ , så är sannolikheten att minst en av dem inträffar lika med 1 - sannolikheten att inget av dem inträffar. 1 -  $(1-p_i)^*(1-p_2)(1-p_3)^*...^*(1-p_n)$ 

Bevis:  $P(A^*) = 1 - P(A)$  ty  $P(A^*U A) = P(A) + P(A^*) = 1$  Alltså:  $P(A^*) = 1 - P(A^*)$  Vi har vidare satsen att om  $A_1, A_2$  är obeoende då har vi  $P(A_1 u A_2) = P(A_1)P(A_2)$  o.s.v.

Följdsats : sannolikhet att ett inträffar är **1 - (1-p)**<sup>n</sup> om det för varje händelse så är sannolikheten lika med p

## 3.1 Endimensionella Stokastiska Variabler = slumpvariabel

$$P(X \in \{0, 1, 2, \dots\}) = \sum_{k=0}^{\infty} p_X(k) = 1.$$

 $p(k) \ge 0$  för alla k

Flerdimensionell = när ett försök ger upphov till flera tal

Stokastisk variabel (s.v.)= en reelvärd funktion definierad på ett utfallsrum Diskret s.v. = kan anta ändligt/uppräkneligt oändligt antal olika värde.

Sannolikhetsfunktionen för den s.v.  $X : p_X(x) = P(X = x)$ , diskret

**Täthetsfunktionen** för den s.v. X:  $f_v(x) = P(X=x)$ , kontinuerlig

**Fördelningsfunktion:**  $F_x(x) = P(X \ge x)$ , arean

## Stokastiska variabler med sannolikhetsfunktioner $p_x(x)$

|                                                                                                 | 1 20 7                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tvåpunktsfördelad om                                                                            | X antar endast två värde a och b                                                                                                                                                                          |
| Bernoulli-fördelad om                                                                           | X antar värdena 1 eller 0                                                                                                                                                                                 |
| Likformig fördelad om                                                                           | m värde med sannolikhet $p_X(k) = 1/m$                                                                                                                                                                    |
| X är första gången fördelad, X ∈ ffg(p) om - Antal ggr tills den första                         | $p_x(k) = (1-p)^{k-1}p$ , där 0 <p<1, k="1,2,&lt;/td"></p<1,>                                                                                                                                             |
| Geometriskt - $X \subseteq Ge(p)$ om                                                            | $p_x(k) = (1-p)^k p$ , 0 <p<1, k="0,1,2,&lt;/td"></p<1,>                                                                                                                                                  |
| Bionomialfördelning - Bin(n,p) = oberoende försök = Med återläggning, utan hänsyn till ordning. | <b>Definition 3.7</b> Om den s.v. $X$ har sannolikhetsfunktionen $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k=0,1,2,\dots,n,$ där $n$ är ett positivt heltal och $0< p<1$ säges $X$ vara $binomial$ - |
| Hypergeometrisk - X ∈ Hyp(N,n,p) - utan återläggning - utan hänsyn till ordning                 | $p_X(k) = \binom{v}{k}\binom{s}{n-k} \mathbin{\middle/} \binom{v+s}{n}$ där $k$ antar alla heltalsvärden sådana att $0 \le k \le v, 0 \le n-k \le s$ säges $X$ vara hypergeometriskt fördelad.            |
| Poissonfördelning - X ∈ Po(u)                                                                   | $p_X(k)=\frac{\mu^k}{k!}e^{-\mu}, \qquad k=0,1,2,\ldots,  \mu>0,$ säges $X$ vara $Poisson\text{-}f\"{o}rdelad.$                                                                                           |

# 3.5 Kontinuerlig stokastisk variabel



## Täthetsfunktion $f_x(x)$ och kontinuerlig stokastisk variabel X

**Definition 3.10** Om det finns en funktion  $f_X(x)$  sådan att

$$P(X \in A) = \int_{A} f_X(x) \, dx$$

för alla A, säges X vara en kontinuerlig s.v. Funktionen  $f_X(x)$  kallas täthetsfunktionen för X.

Integralkalkylens huvudsats:  $F_x'(x) = dF_x/dx = f_x(x)$ Integralkalkylens Medelvärdesatsen:

$$P(a < X < a + \Delta a) = \int_{a}^{a + \Delta a} f_X(t) dt = \Delta a f_X(a + \theta \Delta a) \approx \Delta a f_X(a)$$

## **Likformigfördelad**: om X har täthetsfunktionen

## Den stokastiska variabeln X täthetsfunktionen:

| Likformigt fördelad, X ∈ U(a,b)         | $f_x(x) = 1/(b-a)$ , a < x < b annars 0                                                                                                                                                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exponential fördelad, X ∈ Exp(a,b)      | $f_X(x) = \begin{cases} \lambda  e^{-\lambda x} & \text{om } x > 0 \\ 0 & \text{om } x \leq 0, \end{cases}$ där $\lambda > 0$ , säges $X$ vara $exponential fördelad.$                                     |
| Normalfördelad, $X \in N(\mu,\sigma)$   | $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \qquad -\infty < x < \infty,$ där $\mu$ och $\sigma$ är givna tal $(\sigma>0)$ , säges $X$ vara $normalförd\epsilon$                        |
| Weilbullfördelad - Livslängd - trötthet | $f_X(x) = \begin{cases} \lambda c (\lambda x)^{c-1} e^{-(\lambda x)^c} & \text{om } x > 0 \\ 0 & \text{om } x \leq 0, \end{cases}$ där $\lambda$ och $c$ är positiva tal, säges $X$ vara Weibull-fördelad. |

$$f_X(x) = \begin{cases} \frac{\lambda^c}{\Gamma(c)} \cdot x^{c-1} e^{-\lambda x} & \text{om } x > 0\\ 0 & \text{om } x \le 0, \end{cases}$$

där c > 0 och  $\lambda > 0$ , säges X vara gammafördelad.

## Gammafunktion

$$\Gamma(c) = \int_0^\infty x^{c-1} e^{-x} dx \, \operatorname{där} \, c > 0.$$

Om c är heltal gäller  $\Gamma(c) = (c-1)!$ , som man finner genom upprepad partiell integration av integralen ovan.

Fördelningsfunktion:  $F_x(x) = P(X \le x)$ , x är en reell variabel = Arean Kontinuerlig ger integral

Diskret ger summa där  $p_x(k) = F_x(k) - F_x(k-1)$  om k! = 0, annars  $p_x(k) = F_x(0)$ 

**Sats 3.2** För en fördelningsfunktion  $F_X(x)$  gäller att

$$F_X(x) \to \begin{cases} 0 & \text{då } x \to -\infty, \\ 1 & \text{då } x \to +\infty \end{cases}$$

 $F_X(x)$  är en icke-avtagande funktion av x

 $F_X(x)$  är kontinuerlig till höger för varje x.

Sats 3.3 Om a < b så gäller: P( a < x  $\leq$  b) =  $F_x(b)$  -  $F_x(a)$ 

## $\mathbf{X}_{\alpha}$ , $\boldsymbol{\alpha}$ - **kvantilen** för den stokastiska variabeln X är lösningen till $\mathbf{F}_{\mathbf{x}}(\mathbf{x})$ = 1 - $\alpha$



#### Flerdimensionella stokastiska variabler

**Fördelningsfunktion** för två-dimensionella stokastiska variabler (X,Y) $F_{x,y}(x,y)=P(X \le x,Y \le y)$ 

(Simultana) sannolikhetsfunktionen -I I- :  $p_{X,Y}(j,k) = P(X = j,Y = k)$ 

= > 
$$F_{x,y}(x,y) = \sum_{j \le x} \sum_{k \le y} p_{x,y}(j,k)$$

$$p_x(j) = \sum_{0 \le k} p_{x,y}(j,k)$$

Multinormialfördelad Bin $(n,p_j)$ : Låt x vara antal gånger A träffar vid n försök. För två grupper som tävlar blir sannolikheten att den ena får  $X_1 = k_1$   $X_2 = k_2$ :

$$p_{X_1,X_2}(x_1 = k_1, x_2 = k_2) = n!/(k_1! * k!_2) * p_1^{k_1}p_2^{k_2} \quad n = k_1 + k_2$$

## Exempel:

27% i oavgjort och 30% i bortaseger enligt matchstatistik. Låt  $X_1$ ,  $X_2$  och  $X_3$  vara antalet hemmasegrar, oavgjorda respektive bortasegrar i en tipsomgång omfattande 13 matcher från denna serie.  $(X_1, X_2, X_3)$  är då multinomialfördelad med n = 13 och  $p_1 = 0.43$ ,  $p_2 = 0.27$  och  $p_3 = 0.30$ . Vi får

$$P(X_1 = 5, X_2 = 2, X_3 = 6) = \frac{13!}{5! \cdot 2! \cdot 6!} \cdot 0.43^5 \cdot 0.27^2 \cdot 0.30^6 = 0.0282.$$



Kontinuerlig tvådimensionell s.v. X,Y

**Täthetsfunktion:**  $P((X,Y)\subseteq A) = \iint_A F_{X,Y}(X,Y) dxdy$ 

$$f_X(x) = \int_R f_{X,Y}(x,y) dy$$
  
Marginella f;rdelningsfunktionen för X  
 $F_x(x) = \lim_{y\to\infty} f_{X,Y}(x,y)$ 

Definition 4.5 En tvådimensionell s.v. (X,Y) är likformigt fördelad på B, om för varje del A av området gäller:  $P(X,Y)\subseteq A = areaA / areaB$ ;

Definition 4.6 De s.v. X och Y kallas oberoende om  $P(x\subseteq C, Y\subseteq D) = P(X\subseteq C)P(Y\subseteq D)$ 

Sats 4.1 De s.v X och Y är oberoende om och endast om  $F_{x,y}(x,y) = F_x(x)F_y(y)$  för alla x och y eller

Sats 4.1 De s.v. X och Y är oberoende om och endast om

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 för alla  $x$  och  $y$  (4.9)

eller

$$p_{X,Y}(j,k) = p_X(j)p_Y(k)$$
 för alla  $j$  och  $k$  (diskret s.v. ) 
$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 för alla  $x$  och  $y$  (kontinuerlig s.v.).

Fördelningsfunktion för största värde

$$F_z(z) = P(Z \le z) = P(X \le z, Y \le z) = P(X \le z)P(Y \le z) = F_x(z)F_Y(z)$$
  
Om  $Z = \max(X, Y)$  dvs  $X \le Z, Y \le Z$ 

Fördelningsfunktion för Minsta värde: Z = min(Y,Z) ger : Z≤z om inte X>z och Y>z!

$$F_z(z) = P(Z \le z) = 1 - P(X > z \text{ och } Y > z) = 1 - P(X > z)P(Y > z) 1 - (1 - F_x(z))(1 - F_y(z))$$

Störst och minsta värde för fler än två

Om  $X_1,...,X_n$  är n oberoene s.v. med **samma** fördelningsfunktion F(z). Så är fördelningsfunktionen för största värdet av  $X_1,...,X_n$ :  $F_z(z) = (F(z))^n$ ; Och för minsta värdet:  $F_z(z) = 1 - (1 - F(z))^n$ 

 $F(z) = F_x(Z)$  är fördelningsfunktion.

#### Summan av stokastiska variabler

## Faltningsformeln för oberoende diskreta s.v

$$p_Z(k) = P(X + Y = k) = \sum_{i+j=k} p_{X,Y}(i,j) = \sum_{i=0}^k p_{X,Y}(i,k-i).$$
 (4.13)

Analogt blir

$$F_Z(z) = \sum_{i+j \le z} p_{X,Y}(i,j).$$

#### Om variablerna är oberoende så är,

$$p_Z(k) = \sum_{i+j=k} p_X(i)p_Y(j) = \sum_{i=0}^k p_X(i)p_Y(k-i)$$

## Summa av kontinuerlig s.v.

$$F_Z(z) = P(X + Y \le z) = P((X, Y) \in A_z) = \iint_{x+y \le z} f_{X,Y}(x, y) dx dy.$$

Om X och Y är oberoende erhålls

$$\begin{split} F_Z(z) &= \iint_{x+y \le z} f_X(x) f_Y(y) \, dx \, dy \\ &= \int_{-\infty}^{\infty} f_X(x) \left( \int_{-\infty}^{z-x} f_Y(y) \, dy \right) dx = \int_{-\infty}^{\infty} f_X(x) F_Y(z-x) \, dx. \end{split}$$

Vilket ger en täthetsfunktion(Faltningsformel för oberoende kontinuerliga s.v.):

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx.$$

## Faltning av exponentiellfördelningar $f_x(x) = ke^{-kx}$ för $0 \le x$

Exempel 4.11 Faltning av exponentialfördelningar De s.v. X och Y antas vara oberoende och  $\text{Exp}(\lambda)$ . Vi har alltså

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{om } x > 0\\ 0 & \text{annars} \end{cases}$$

alltså Man kan generalisera ovanstående problem genom att lägga till flera s.v. med samma fördelning. Med induktion kan man då visa att summan  $Z=X_1+\cdots+X_n$  av n oberoende s.v. som alla är  $\operatorname{Exp}(\lambda)$  har täthetsfunktionen

och analogt för Y. Formel (4.15) ger, eftersom integranden är 0 om xeller z-x är negativt,

$$f_Z(z) = \frac{\lambda^n}{(n-1)!} z^{n-1} e^{-\lambda z}, \quad z > 0,$$

 $f_Z(z) = \int_0^z \lambda e^{-\lambda x} \cdot \lambda e^{-\lambda(z-x)} \, dx = \lambda^2 \int_0^z e^{-\lambda z} \, dx = \lambda^2 z e^{-\lambda z}, \quad z > 0. \quad (4.16) \quad \text{dvs } Z \text{ \"{ar} gammaf\"{o}} \\ \text{reduced} \\ \text{med } c = n \text{ (jfr Definition 3.15 på sidan 64)}.$ 

## 4.8. Betingade fördelningar givet att Y = k

(X,Y) har en diskret fördelning given av  $p_{X,Y}(j,k)$ .

$$P(X = j | Y = k) = P(X=j, Y=k)/P(Y=k)$$
 eller  $p_{X|Y=k}(j) = p_{X,Y}(j,k) / p_{Y}(k)$ 

Den betingade sannolikhetsfunktionen för X givet att Y = k definieras av  $p_{X|Y=k}(j) = p_{X,Y}(j,k) / p_{Y}(k)$ , där k är fix men j = 0,1,2...

Den betingade tätheten för X givet Y=y ges av  $f_{X|Y=y}(x) = f_{X,Y}(x,y) / f_{Y}(y)$ , eller:

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{\infty} f_{X,Y}(t,y) dt}$$

f<sub>x,y</sub>(x,y) är tätheten

## 5.1 Väntevärde

= ett lägesmått som är summan av utfall\*sannolikheten och anger var massan är belägen i "genomsnitt"

$$E(X) = \begin{cases} \sum_{k} k p_X(k) & \text{(diskret s.v.)} \\ \int_{-\infty}^{\infty} x f_X(x) \, dx & \text{(kontinuerlig s.v.)}. \end{cases}$$

Sats 5.1 Om 
$$Y = g(X)$$
 gäller att 
$$E(Y) = \begin{cases} \sum\limits_k g(k) p_X(k) & \text{(diskret s.v.)} \\ \sum\limits_{-\infty}^{\infty} g(x) f_X(x) \, dx & \text{(kontinuerlig s.v.)}. \end{cases}$$

Sats 5.2 Om 
$$Z = g(X, Y)$$
 gäller att
$$E(Z) = \begin{cases} \sum_{j,k} g(j,k) p_{X,Y}(j,k) \\ \infty & \infty \\ \int \int \int g(x,y) f_{X,Y}(x,y) \, dx \, dy \end{cases}$$

#### Satser:

$$V(X) = E(X^2) - (E(X))^2$$
  
 $D(aX + b) = IaI * D(X)$   
 $C(X,Y) = E(XY) - E(X)E(Y)$ 

$$E(X_1X_2...X_n) = E(X)E(X_1)...E(X_n)$$
 där  $X_1$ ,...,  $X_n$  är **oberoende**  $E(a_1X_1+...+a_nX_n+b) = a_1E(X_1)+...+a_nE(X_n)+b$  Alltså: om  $X_1,...,X_n$  är oberoende och har samma väntevärde  $\mu$ , så blir;  $E(X_1+...+X_n) = n^*\mu$ 

Om  $X_1,...,X_n$  är oberoende och har samma standardavvikelse  $\sigma$  gäller även att  $V(X_1 + ... + X_n) = n\sigma^2$  och  $D(X_1 + ... + X_n) = \operatorname{sqrt}(n\sigma^2) = \sigma \operatorname{sqrt}(n)$ 

Den aritmetiska medelvärde blir då:

$$X_{\text{medel}} = (X_1 + ... + X_n)/n;$$
  
 $E(X_{\text{medel}}) = \mu$   
 $V(\overline{X}) = \sigma^2/n;$   
 $D(X_{\text{medel}}) = \sigma/\text{sqrt}(n)$ 

**Stora talens lag:** Låt  $X_1, X_2$  vara oberoende och lika fördelade s.v. md väntevärrde u och  $X_{medel} = sum(X_i/n)$  medelvärdet. Då gäller, för alla  $\varepsilon$  större än 0, att  $P(u-\varepsilon < X_{n-medel} < u+\varepsilon) => 1$  när n går mot oändlighet.

Sats 5.13 Markos olikhet: För a>0 och  $Y \ge 0$  gäller  $P(Y \ge a) \le E(Y)/a$ 

Bevis:  $E(Y) = int(0, Inf, y^*f_Y(y)) = int(0, a, yf_Y(y)) + int(a, Inf, yf_Y(y)) \ge int(a, Inf, yf_Y(y)) \ge a^*int(a, Inf, f_Y(y)) = aP(Y \ge a)$ 

Sats 5.14 Tjebysjons olikhet:  $P(|X-u| \ge k \sigma) \le 1/k^2$ 

$$V(a_1X_1 + ... + a_nX_n + b) = a_1^2V(X_1) + ... + a_n^2V(X_n) + 2*a_1*...* a_2*C(X_1, X_2, ...)$$

bevis: 
$$V(aX+b) = E((aX + b - (au +b))^2) = E(aX - au)^2 = a^2E(X-u) = a^2V(X)$$

$$V(X+Y) = V(X) + V(Y) + 2C(X,Y)$$
  
 $V(aX + bY + c) = a^{2*}V(X) + b^{2*}(Y) + 2*a*b*C(X,Y)$ 

-----

Om X och Y är oberoende(icke korrelerade), dvs C(X,Y) = 0, så blir:

$$V(X+Y) = V(X) + V(Y)$$

$$D(X+Y) = sqrt(D^2(X) + D^2(Y))$$

\_\_\_\_\_

**Variansen**: vänte värdet för Y =  $(X - u)^2$  där u = E(X)V(X) =  $E[(X-u)^2]$ 

Om hela massan är koncentrerad i en enda punkt så blir V(X) = 0!!

Standardavvikelse: D(X) = sqrt(V(X))

Variationskooefficient: R(X) = D(X)/E(X)

Sats 5.6: 
$$V(X) = E(X^2) - (E(X))^2$$
, där  $E(X^2) = int(x^{2*}f(x), -inf, inf)$ 

$$E(X^2) = E(X)^2 + V(X)$$

Standardiserad stokatiska variabeln:  $Y = (X-u)/\sigma d \ddot{a} r \sigma \ddot{a} r standardavvikelsen$ 

Systemfel = bias, differensen mellan mätvärdets väntevärde och det korrekta värdet. Slumpmässigt = differens mellan mätvärdet och dess väntevärde, en s.v. med väntevärdet noll

Kovariansen C(X,Y) mellan X och Y är C(X,Y) = E[(X-ux)(Y-uY)]p

Korrelationskoefficienten för X och Y: p(X,Y) = C(X,Y)/[D(X)D(Y)]

C(X,Y) = 0 så är X och Y okorrelerade.

Sats 5.9 Om X och Y är oberoende så är de också okorrelerade.

## Kap. 6 Normalfördelning N(u,sigma), u = median

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Egenskap:

$$\Phi(-x) = 1 - \Phi(x).$$

Egenskap i **standardiserad normalfördelning N(0,1)** : E(X) = 0, D(X) = 1; Bevis : x är udda funktion! Vilket ger  $E(x) = int(x^*\phi,-inf,inf) = 0$   $D(X) = int(x^*2 *\phi,-inf,inf) = Partiell integration = 0 + int(<math>\phi$ , -inf, inf) = 1 Vilket ger  $V(X) = E(X^*2) - (E(X))^*2 = 1$ 

#### Allmänna fall:

Sats 6.1 
$$X \in N(\mu, \sigma)$$
 om och endast om  $Y = (X - \mu)/\sigma \in N(0, 1)$ . Dessutom gäller att 
$$f_X(x) = \frac{1}{\sigma} \varphi\Big(\frac{x - \mu}{\sigma}\Big) \text{ och } F_X(x) = \Phi\Big(\frac{x - \mu}{\sigma}\Big).$$

där Y tillhör N(0,1)

Bevis: Om  $X \in N(\mu, \sigma)$  så gäller

$$\begin{split} P(Y \leq x) &= P\Big(\frac{X - \mu}{\sigma} \leq x\Big) = P(X \leq \mu + \sigma x) \\ &= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\mu + \sigma x} e^{-(t - \mu)^2/2\sigma^2} \, dt. \end{split}$$

Variabeltransformationen  $u=(t-\mu)/\sigma$ ger

$$P(Y \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du = \Phi(x).$$

Vi har härmed visat att Y har fördelningsfunktionen  $\Phi(x)$ , dvs att  $Y\in N(0,1)$ . Om å andra sidan  $Y=(X-\mu)/\sigma$  är N(0,1) så gäller

$$F_X(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$$
  
=  $P\left(Y \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$ . (6.7)

Om detta deriveras erhålls

$$f_X(x) = \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

som visar att X är  $N(\mu, \sigma)$ .

Om X tillhör N(u,sigma), så gäller E(X) = u, V(X) =  $\sigma^2$ , D(X)=  $\sigma$ Bevis: använd sats 6.1, där Y = N(0,1) ger oss E(x) =  $\mu$  +  $\sigma$ E(Y) =  $\mu$ V(X) =  $\sigma^2$ V(Y) =  $\sigma^2$ 

Sats 6.3 Linjärkombinationer av oberoende normalfördelade s.v. Om  $X \in N(\mu, \sigma)$  så gäller  $Y = aX + b \in N(a\mu + b, |a|*\sigma)$ 

Bvis: sats 6.1 ger  $X = \mu + \sigma Z dar Z = N(0,1)$ .

 $Y = a(\mu + \sigma Z) + b = (a\mu + b) + (a*\sigma)Z$ 

Om a > 0: Y = N(a $\mu$  + b, a\* $\sigma$ )

Om a < 0: Y =  $(a\mu + b) + (-a*\sigma)-Z$  = N $(a\mu + b, -a*\sigma)$  ty Z symmetrisk

Sats 6.4 Om  $X \in N(\mu_x, \sigma_x)$ ,  $Y \in N(\mu_y, \sigma_y)$  är oberoende så gäller:

 $X + Y \in N(\mu_X + \mu_Y, sqrt(\sigma_X^2 + \sigma_Y^2))$ 

 $X - Y \in N(\mu_x - \mu_y, sqrt(\sigma_x^2 + \sigma_y^2))$ 

Sats 6.5 Om  $X_1,...,X_n = N(\mu_1,\sigma_1)$ , ..., resp.  $N(\mu_n,\sigma_n)$  är oberoende, så gäller

$$\sum_{1}^{n} a_i X_i + b \in N\left(\sum_{1}^{n} a_i \mu_i + b, \sqrt{\sum_{1}^{n} a_i^2 \sigma_i^2}\right)$$

Följdsats 6.5.1 Om  $X_1,...,X_n$  är oberoende  $N(\mu,\sigma)$  och  $X_m = \sum\limits_{1}^n X_i/n$  är deras aritmetiska medelvärde så gäller:  $X_m \in N(\mu_x,\operatorname{sqrt}(\sigma_x^2/n))$ 

Följdsats 6.5.2 Om  $X_1,...,X_n = N(\mu_1,\sigma_1)$  och  $Y_1,...,Y_{n2} = N(\mu_2,\sigma_2)$  är oberoende så gäller:  $X_m - Y_m \in N(\mu_1 - \mu_2, sqrt(\sigma_1^2/n_1 + \sigma_1^2/n_2))$ 

Definition 6.1 Om den s.v. X har täthetsfunktionen

$$f_X(x) = \begin{cases} \frac{x^{\frac{f}{2} - 1} e^{-x/2}}{\Gamma(f/2) 2^{f/2}} & \text{om } x > 0\\ 0 & \text{om } x \le 0, \end{cases}$$

säges X vara  $\chi^2$ -fördelad med f frihetsgrader.

Kodbeteckning.  $X \in \chi^2(f)$ . (Uttal: tji-två eller ki-två.) Gammafunktionen  $\Gamma(\cdot)$  definierades på sidan 64. Några egenskaper hos  $\Gamma(\cdot)$  är  $\Gamma(1/2) = \sqrt{\pi}$ ,  $\Gamma(1) = 1$  och  $\Gamma(x+1) = x\Gamma(x)$ .

Sats 6.6. Om  $X_1,...,X_f$  är oberoende och N(0,1) så är  $\sum_{i=1}^{f} X_i^2 x^2$ -fördelad med frihetsgrad f, och väntevärde  $E(Y) = f^*E(X_1^2) = f$