Séries: S2-S2A -S4-S5

)U BACCALAUREAT

TTéléfax (221) 33 824 65 81 - Tél. : 33 824 95 92 - 33 824 65 81

CORRIGE DE L'EPREUVE DE SCIENCES PHYSIQUES DU PREMIER GROUPE

Séries: S2-S2A -S4-S5

EXERCICE 1

1.1 Pourcentages massigues de C et H:

$$%C = \frac{m_C}{m} \quad 100 \text{ or } m_C = \frac{12}{44} \quad m_{CC_2} \quad %C = \frac{1200}{44 \quad m} \quad m_{CC_2} = \frac{1200}{44 \quad 0.648} \quad 1.42 = 59.76$$

$$%H = \frac{m_H}{m} \quad 100 \text{ or } m_H = \frac{2}{18} \quad m_{CE_2} \quad %H = \frac{200}{18 \quad m} \quad m_{CE_2} = \frac{200}{18 \quad 0.648} \quad 0.354 = 6.01$$

Cherchons les valeurs de x, y et z:
$$\frac{12x}{%C} = \frac{y}{%H} = \frac{M}{100}$$
 $x = 9$ et $y = 11$

D'où la formule brute C₉H₁₁NO₃

1.2Le groupe fonctionnel est encadré ci-contre :

1.3 1 le carbone en position en position 2 par rapport au groupe carboxyle est un carbone asymétrique et c'est le seul carbone asymétrique : la molécule est chirale. Configurations L et D:

•

H₂N H CH₂-ℛ

COOH

L-tyrosine

COOH $H \xrightarrow{\hspace*{1cm}} NH_2$ $CH_2 \text{-} \Re$ D -tyrosine

1.3.2 Formule semi-développée de l'amphion:

Les couples

$$\mathscr{R}\text{-CH}_2\text{-CH-COOH}$$

$$\mathscr{R}\text{-CH}_2\text{-CH-COO}^-$$

$$\mathsf{NH}_3^+$$

$$\mathsf{NH}_3^+$$

1.3.3 Relation entre pHi, pKa₁ et pKa₂: Notons A l'amphion, A+ le cation et A- l'anion

$$K_{a1} = \frac{[H_30^+] \quad [A]}{[A^+]} K_{a2} = \frac{[H_30^+] \quad [A^-]}{[A]} \quad K_{a1} \quad K_{a2} = \frac{[H_30^+]^2 \quad [A^-]}{[A^+]}$$

pour pH=pHi on a [A⁻] = [A⁺]
$$K_{\epsilon 1}$$
 $K_{\epsilon 2}$ = [H₃0⁺]² $2log[H_30^+] = log (K_{\epsilon 1} K_{\epsilon 2})$ $-log[H_30^+] = \frac{1}{2} (-log K_{a1} - log K_{a2})$ pHi = $\frac{1}{2} (pK_{a1} + pK_{a2})$.
A.N: **pHi** = $\frac{1}{2} (2.2 + 9.1) = 5.6$.

1.3.4.

- a) On peut théoriquement obtenir quatre (04) dipeptides.
- b)Les étapes de la synthèse du dipeptide tyrosine-alanine où la tyrosine est N-terminal:
 - Blocage du groupe amino de la tyrosine et du groupe carboxyle de l'alanine.
 - > Activation du groupe carboxyle de la tyrosine et du groupe amino de l'alanine.
 - > Réaction entre le groupe carboxyle de la tyrosine et le groupe amino de l'alanine.
 - Déblocage du groupe amino de la tyrosine et du groupe carboxyle de l'alanine qui étaient bloqués.

EXERCICE 2

2.1 Montrons qu'il s'agit d'une réaction d'oxydoréduction et précisons les couples redox mis en jeu:

Les couples redox
$$Fe^{2+}/Fe$$
 et H_3O^+/H_2

Les demi-équations électroniques
$$Fe^{2+} + 2e^{-}$$
 Fe et $2H_3C^+ + 2e^{-}$ $H_2 + 2H_2O$

}
$$Fe^{-}F\epsilon^{2+} + 2e^{-}$$
 $Fe^{2+} + 2H_2O$ $Fe^{2+}F\epsilon^{2+} + H_2 + 2H_2O$. If y a un transfert d'électrons donc c'est une réaction d'oxydoréduction.

2.2 Montrons que
$$[H_3O^+] = 0.1 (1 - \frac{V}{60})$$

$$n_{H_3C^+}^{restant} = n_{H_3C^+}^{initial} - n_{H_3C^+}^{reagi} \text{ or } n_{H_3C^+}^{initial} = C_a \quad V_s \quad \text{et } n_{H_3C^+}^{reagi} = 2n_{H_2} = \frac{2V}{V_0} \qquad n_{H_3C^+}^{restant} = C_a \quad V_s - \frac{2V}{V_0}$$

$$n_{H_3C^+}^{restant} = 0 \quad V_s \quad \frac{2V}{V_0} \qquad 2V \qquad 0.1 \quad 2V$$

$$[H_30^+] = \frac{n_{H_3C^+}^{\text{restant}}}{V_S} = C_a \quad \frac{V_S}{V_S} - \frac{\frac{2V}{V_0}}{V_S} = C_a - \frac{2V}{V_0 \quad V_S} = 0.1 - \frac{2V}{24 \quad 50} = 0.1 - \frac{2V}{1200}$$

$$[H_3 a^+] = 0.1 \left[1 - \frac{20 \text{ V}}{1200}\right] = 0.1 \left[1 - \frac{\text{V}}{60}\right]$$

2.3.1 Recopions et complétons le tableau :

t (min)	0	10	20	30	40	50	60	75	90
V (mL)	0	15	22	26	28	29,5	30	31	32
$[H_3O^{\dagger}]$ en 10^{-2} (mol/L)	10	7,5	6,3	5,7	5,3	5,1	5,0	4,8	4,7

[H₃O+] en 10-2(mol/L)

- <u>2.3.2</u> Définition : la vitesse instantanée volumique de disparition des ions H_3O^+ à une date t est l'opposée de la dérivée par rapport au temps de la concentration en ions H_3O^+ .
- 2.3.3 Détermination des vitesses

On détermine les coefficients directeurs des tangentes à la courbe aux dates considérées :

 $a t_0 = min v(t_0)$ 1.84 10⁻³mol L⁻¹ min⁻¹; $a t_1 = 25 minv(t_1)$ 6.66 10⁻⁵mol L⁻¹ min⁻¹

2.3.4 La vitesse de disparition diminue car la concentration des ions H_3O^+ diminue.

2.3.5 Les quantités de matière des ions Fe²⁺ et H₃O⁺ aux dates t₁ et t₂:

$$\begin{split} n_{H_3C^+}^t &= [\text{H}_3\text{O}^+] \quad \text{V}_s \quad n_{H_3C^+}^{t_1} = 0.075 \quad 0.05 = 3.75 \ 1\text{C}^{-3} mol \\ &= \text{etn}_{H_3C^+}^{t_2} = 0.048 \quad 0.05 = 2.4 \ 1\text{C}^{-3} mol \end{split}$$

$$n_{F \varepsilon^{2}+}^{\textbf{t}} = \frac{n_{H_{3}C^{+}}^{initial} - n_{H_{3}C^{+}}^{restant}}{2} = \frac{C_{\textbf{a}} \quad V_{\textbf{s}} - n_{H_{3}C^{+}}^{restant}}{2} = \frac{0.1 \quad 0.05 \quad - n_{H_{3}C^{+}}^{restant}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{1}} - n_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{2}C^{+}} - n_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{f}}^{\textbf{1}_{2}C^{+}}}{2} = \frac{\textbf{n}_{\textbf{$$

Les résultats obtenus sont en accord avec la réponse de la question 2.3.4 car la vitesse diminue avec la concentration en ions H_3O^+ .

EXERCICE 3

3.1 Enoncé de la loi de gravitation : deux corps ponctuels de masses respectives m_1 et m_2 distants de r exercent l'un sur l'autre des forces attractives directement opposées appelées forces d'interaction gravitationnelle dont l'intensité commune est proportionnelle aux masses et à l'inverse du carré de la distance r qui les sépare.

$$\vec{F}_{1/2} = -\vec{F}_{2/1} = -\frac{G \ m_1}{r^2} \frac{m_2}{\vec{u}}$$

3.2 Expression du vecteur champ de gravitation : on a $\vec{F} = m\vec{q}$ $\vec{q} = -\frac{GM}{r^2}$

Au sol
$$r = R$$
 et $\mathcal{G} = \mathcal{G}_0 = \frac{GM}{R^2}$ G $M = \mathcal{G}_0$. R^2 d'où l'on tire $\mathcal{G} = \frac{g_0R^2}{(R+h)^2}$.

3.3 Montrons que le mouvement du satellite est uniforme.

Système : le satellite ; référentiel terrestre supposé galiléen.

Bilan des forces extérieures : $\vec{F} = m\vec{\phi}$ force gravitationnelle.

Théorème du centre d'inertie : $\vec{F} = m\vec{a}$ $m\vec{p} = m\vec{a}$ $\vec{a} = \vec{p}$ or \vec{q} $\vec{v} = \vec{a}_t = \vec{0}$ $\frac{dv}{dt} = 0$

 $donc\ V = cste\ ; \ le\ mouvement\ est\ uniforme.$

3.4 Expression de la vitesse

$$\vec{a} = \vec{g} \qquad \frac{V^2}{R+h} = \frac{g_0 R^2}{(R+h)^2} \qquad V = \int \frac{g_0 R^2}{(R+h)} T = \frac{2 r}{V} \qquad T = \frac{2}{R} \int \frac{(R+h)^3}{g_0 R^2} dt = \frac{1}{R} \int \frac{(R+h)^3}{R^2} dt = \frac{1}{R} \int \frac{(R+h)^3}{R^3} dt = \frac{1}{R} \int \frac{(R+h)^3}{R^3$$

- 3.5 a) Un satellite géostationnaire est un satellite qui paraît immobile par rapport à la Terre.
 - b) la période de rotation du satellite égale la période de la terre.

$$T = \frac{2\pi}{R} \int \frac{(R+h)^3}{4rR^2} = T_{\text{terre}}$$
 $h = 3 \int \frac{T_c^2 g_0 R^2}{4r^2} - R;$ AN $h = 3.6.10^4 \text{Km}$

$$\frac{3.6.1}{\text{S(Terre)}} = \frac{2\pi R^2 (1 - \cos(\theta))}{4\pi R^2} = \frac{(1 - \cos(\theta))}{2}$$

$$cos\theta = \frac{R}{R+h}$$
 $f = \frac{(1-\frac{R}{R+h})}{2} = 0.42 = 42\%$

3.6.2 Méteosat-8 est un satellite géostationnaire donc ses observations concernent toujours la même zone.

EXERCICE 4

4.1 L'amplitude des tensions : $U_{m1} = 3*2,0=6,0 \text{ V}$ et $U_{m2} = 2*2,0=4,0 \text{ V}$.

La courbe (1) correspond à la tension u_G car la tension aux bornes du GBF a la plus grande amplitude. 4.2

4.3 Fréquence
$$N = \frac{1}{T}$$
 or $T = 8$ 2 = 16 ms; $N = \frac{1}{0016} = 62.5$ Hz

4.4 Différence de phase :
$$| \phi | = 2\pi \frac{t}{T} = 2\pi \frac{12}{16} = \frac{\pi}{4} rad$$

L'intensité est en avance sur la tension aux bornes du GBF.

$$\frac{4.5}{R}$$
 Im = $\frac{U_{2m}}{R}$ = $\frac{4}{100}$ = 0,04 A.

Si
$$u_G = U_{1m} cos(\frac{2\pi}{T}t + u)$$
 à $t = 0$ on trouve $u_G = U_{1m} = 6$ $u = 0$ $u_G = 6cos(\frac{2\pi}{T}t)$ on aura $i = 0.04cos(\frac{2\pi}{T}t + \frac{\pi}{4})$.

Capacité du condensateur

$$\tan = \frac{L\alpha - \frac{1}{C\omega}}{R + r} \quad C = \frac{1}{\omega(L\alpha - (R + r)\tan\varphi)} = \frac{1}{125\pi(125\pi L - (108\tan(-\frac{\pi}{4})))} = 5.0.10^{-6}F. \quad \mathbf{C} = \mathbf{5.0.10^{-6}F}$$

4.6.1 A la résonance =
$$_0 = 2$$
 $N_0 = \frac{1}{LC}$ $N_0 = \frac{1}{2\pi} \frac{1}{1510^{-6}} = 71.4$ Hz.

4.6.2 L'allure des courbes

EXERCICE 5

- 5.1 Définition : l'effet photoélectrique est l'émission d'électrons par un métal convenablement éclairé.
- 5.2.1 La fréquence seuil est la fréquence minimale de la radiation incidente qui produit l'effet photoélectrique.
- <u>5.2.2</u> a) Le travail d'extraction est l'énergie minimale à fournir au métal pour extraire un électron de celui-ci.
- b) La relation qui existe entre la fréquence υ de la lumière, l'énergie cinétique maximale des électrons E_C et le travail d'extraction W_{ext} est : $E_C = h \upsilon W_{ext}$
 - c) Valeur du travail d'extractionWext et de la fréquence υ_{S}

On a:
$$Ec_1 = h \ \upsilon$$
- Wext et $Ec_2 = 1.5 \ h \ \upsilon$ -Wext $Wext = \frac{Ec_2 - 1.5 \ Ec_1}{0.5}$: AN: Wext = 3.3eV

La valeur de la fréquence seuil :Wex= $h\upsilon_S$ $\upsilon_S=$ $_{Wex}$; AN : $\upsilon_S=8,0.10^{14} Hz$

5.3.1 Réaction de fusion nucléaire = réaction au cours de laquelle des noyaux légers fusionnent pour donner un ou des noyaux lourds.

5.3.2 Identification de la particule $^{A}_{Z}$ X

On applique la loi de conservation du nombre de nucléons et celle de la charge à l'équation nucléaire

$$_{1}^{2}\,H+_{1}^{3}\,H\rightarrow_{2}^{4}\,He+_{Z}^{A}\,X$$
 , soit 2+3 = 4 + A et 1+1 = 2+ Z A = 1 et Z =0

d'où $_{Z}^{A}X = _{0}^{1}n =$ neutron

5.3.3 a) Energie libérée lors de la formation d'un noyau d'hélium.

 $\Delta E = \Delta m.C^2$ avec Δm variation de masse; soit $\Delta m = m({}_2^4He) + m({}_2^4X) - (m({}_1^2H) + m({}_1^3H))$.

AN : $\Delta E = -17,6 \text{ MeV} = -2,8.10^{-12} \text{ J}$; le signe négatif indique que l'énergie est fournie à l'extérieur.

b) Energie fournie lors de la formation de 1 kg d'hélium

 $\Delta E'$ = nombre de noyaux d'hélium x Energie libérée par la formation d'un noyau d'hélium

 $\Delta E' = \frac{masse \ d'h\'elium}{masse \ d'un \ noyau \ d'h\'elium} x$ Energie libérée par la formation d'un noyau d'hélium

AN: $\Delta E' = -3,9.10^8 MJ$

Masse de pétrole qui fournirait la même quantité d'énergie :

$$m_{_p} = \frac{\Delta E'}{42} = 9.3.10^6~kg~$$
 soit plus de 9300 tonnes de charbon ;

La masse de charbon qui fournirait la même quantité d'énergie est considérable devant celle d'hélium.

c) W représente de l'énergie cinétique.

Fréquence du rayonnement
$$\gamma$$
: E(rayonnement)= h υ d'oùl'on tire υ = $-\frac{2.5 \Delta E}{100 \text{ h}}$

AN : $0=1,0.10^{20}$ Hz