An analysis of the factors driving longterm economic growth

A Business Computing project by Exchange Students

Content

- Our problem
- Macroeconomic theories
- Our data
- Our models
 - Regressions
 - Robustness Analysis
- Predictive power of our model
- Conclusion
- **A**&O

The problem

Analyze the factors driving long-term economic growth

Macroeconomic theories

- Solow-model
 - Robert Solow Winner of Nobel Price in Economics in 1987
- Comined Solow-Romer model

The Solow Diagram

Solow-model

- Growth is a function of capital accumulation, capital depreciation and productivity
- Ends in 'steady-state'
- Poor countries converge towards rich countries

Combined Solow-Romer model

- Productivity is a function of existing knowledge and allocation of labor between production and research within a nation
- Knowledge is a non-rivalry asset
 - Investing in research can yield increasing marginal returns

Capital accumulation and Productivity - our first challenge

- Capital accumulation = last year's capital +this years investment
 - Hard to measure
 - GDP
- Productivity
 - Similarly hard to measure
 - Education
- Exogenous shocks
 - Change investment and productivity

Dataset – our variables

- GDP per capita '60,'96, and '14
 - Growth rates from '60-'96 and '96-'14
- Education, primary '60 and '96, higher '60
- Mining, Oil, Malaria, capitalism
- Data from 182 countries, but only 111 observations on growth.
 - Many less developed countries are left out

Descriptive statistics

	lgdppc_1960	lgdppc_1996	lgdppc_2014	education_p_1960	education_h_1960	mines_1960	oil_1960	malaria_1960	capitalism_1960
count	111.000000	180.000000	182.000000	113.000000	114.000000	123.000000	126.000000	108.000000	126.000000
mean	8.078464	8.839345	9.295894	0.707522	0.031754	0.057724	0.095238	0.358718	3.373016
std	0.990250	1.244994	1.174845	0.311372	0.046435	0.091730	0.294715	0.429967	1.511207
min	5.783145	5.144375	6.345705	0.050000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	7.304172	7.946936	8.477570	0.460000	0.000000	0.000000	0.000000	0.000000	3.000000
50%	7.940775	8.883772	9.438845	0.830000	0.010000	0.020000	0.000000	0.046085	3.000000
75%	8.868837	9.764272	10.101928	1.000000	0.050000	0.080000	0.000000	0.867500	5.000000
max	10.260106	11.666056	12.003310	1.000000	0.320000	0.530000	1.000000	1.000000	5.000000

The effect of initial GDPpc

Dep. Variable: Growth_1960_1996 R-squared: 0.022

Model: OLS Adj. R-squared: 0.013

Method: Least Squares F-statistic: 2.431

Date: Tue, 12 Jun 2018 Prob (F-statistic): 0.122

Time: 13:37:12 Log-Likelihood: 286.92

No. Observations: 111 AIC: -569.8

Df Residuals: 109 BIC: -564.4

Df Model: 1

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0035	0.014	-0.243	0.808	-0.032	0.025
lgdppc_1960	0.0028	0.002	1.559	0.122	-0.001	0.006

Omnibus: 7.534 Durbin-Watson: 2.053

Prob(Omnibus): 0.023 Jarque-Bera (JB): 7.278

Skew: 0.517 Prob(JB): 0.0263

Robustness Analysis 1

- 5 assumptions of regression
 - 1. linear relationship
 - 2. Residuals are normally distributed
 - 3. No or little multicollinearity
 - 4. No autocorrelation
 - 5. Homoscedasticity

Including productivity

- GDP is now significant
- Primary education is significant
- GDP has now a negative effect on growth rate
- R-squared 41,7%

Dep. Variable:	Growth	1960_1996		R-squ	arad:	0.417	
•	GIOWIII_			•			
Model:		OLS	Ad	j. R-squ	ared:	0.399	
Method:	Lea	st Squares	;	F-stat	istic:	22.88	
Date:	Sun, 10	0 Jun 2018	Prob	(F-stati	stic):	2.93e-11	
Time:		22:08:53	Log	g-Likelih	nood:	285.21	
No. Observations:		100)		AIC:	-562.4	
Df Residuals:		96			BIC:	-552.0	
Df Model:		3					
Covariance Type:	Covariance Type: nonr						
	coef	std err	t	P> t	[0.025	0.975]	
const	0.0514	0.015	3.453	0.001	0.022	0.081	
lgdppc_1960	-0.0086	0.002	-4.042	0.000	-0.013	-0.004	
education_p_1960	0.0502	0.007	7.670	0.000	0.037	0.063	
education_h_1960	0.0410	0.039	1.041	0.301	-0.037	0.119	
Omnibus: 1	3.155	Durbin-Wa	atson:	2.13	31		
Prob(Omnibus):	Prob(Omnibus): 0.001 Jarque-B			15.40	04		
Skew:	0.726	Pro	b(JB):	(JB): 0.000452			
Kurtosis:	1.260 Cond. N			234.			

Robustness Analysis 2

- Residuals are slightly non-normal
- Breusch-Pagan test indicate heteroscedasticity
- Multicollinearity?
- Distribution of education is skewed

Including luck and failure

All significant

Dep. Variable:	Growt	h_1960_199	96	R-squ	0.492		
Model	:	OL	.S Ad	lj. R-squ	0.469		
Method	: L	east Square	es	F-sta	tistic:	21.56	
Date	Mon,	11 Jun 201	8 Prob	(F-stat	istic):	1.84e-12	
Time	:	00:40:5	66 Log-Likelihood			276.10	
No. Observations:	:	9	94		AIC:	-542.2	
Df Residuals:	:	8	39		BIC:	-529.5	
Df Model:	:		4				
Covariance Type:	:	nonrobu	st				
	coe	ef std err	t	P> t	[0.025	0.975]	
const	0.072	5 0.015	4.891	0.000	0.043	0.102	
lgdppc_1960	-0.009	0.002	-5.090	0.000	-0.014	-0.006	
education_p_1960	0.040	0.007	6.145	0.000	0.028	0.054	
mines_1960	0.049	0.019	2.586	0.011	0.011	0.087	
malaria_1960	-0.018	0.004	-4.075	0.000	-0.027	-0.009	
Omnibus:	1.593	Durbin-W	atson:	2.097			
Prob(Omnibus):	0.451	Jarque-Ber	a (JB):	1.508			
Skew:	0.304	Pro	b(JB):	JB): 0.471			
Kurtosis:	2.874	Con	d. No.	117.			

Botswana

Excluding Botswana

Kurtosis: 2.932

Dep. Variable	: Grow	Growth_1960_1996			R-squ	ared:	0.517
Model	:	OLS			ij. R-squ	ared:	0.495
Method	:	Least Squares			F-sta	tistic:	23.57
Date	: Mor	Mon, 11 Jun 2018		Prot	(F-stat	istic):	2.88e-13
Time	e	01:33:06			g-Likeli	hood:	279.11
No. Observations	ii.		93	1		AIC:	-548.2
Df Residuals	:		88	\$		BIC:	-535.6
Df Model	:		4				
Covariance Type	=	no	nrobust	t			
	cc	oef st	d err	t	P> t	[0.025	0.975]
				_	-	[0.020	0.0.01
cons	t 0.06	50 (0.014	4.621	0.000	0.037	0.093
				4.621 -4.777	0.000	0.037	
lgdppc_1960	o.00	87 (0.000		-0.005
lgdppc_1960	o -0.00	12 (0.002	-4.777	0.000	-0.012	0.054
lgdppc_1960 education_p_1960	o -0.00 o 0.04 o -0.01	12 (27 (0.002	-4.777 6.618	0.000	-0.012 0.029	0.054 0.036
lgdppc_1960 education_p_1960 mines_1960	o -0.00 o 0.04 o -0.01	987 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	0.002	-4.777 6.618 -0.513 -3.705	0.000 0.000 0.610	-0.012 0.029 -0.062	0.054 0.036
lgdppc_1960 education_p_1960 mines_1960 malaria_1960	0 -0.00 0 0.04 0 -0.01 0 -0.01	987 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	0.002 0.006 0.025 0.004	-4.777 6.618 -0.513 -3.705	0.000 0.000 0.610 0.000	-0.012 0.029 -0.062	0.054 0.036
lgdppc_1960 education_p_1960 mines_1960 malaria_1960 Omnibus:	0 -0.00 0 0.04 0 -0.01 0 -0.01 2.118	987 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	0.002 0.006 0.025 0.004 bin-Wate-Bera	-4.777 6.618 -0.513 -3.705	0.000 0.000 0.610 0.000 2.169	-0.012 0.029 -0.062	0.054 0.036

Cond. No.

161.

The insignificance of the oil dummy

- Higher GDP than their counterparts
 - Effect caught by GDP?
- "Dutch disease"
 - Change in demand of public goods, inflation and subsequent restructuring of the economy
 - Fluctuations
- Potential of laying the foundation of long-term growth
 - Example: Norway
- No findings

Malaria

- What is it about malaria?
- A symptom of an underlying issue in a nation?
- When does Malaria have a negative effect?

Dummy_malaria_1960

- Malaria has a negative influence growth
- Differentiate
 between states that
 handle malaria
 better and worse
- Catch underlying effect

Dep. Variable	: Gro	wth_1960)_1996		R-	square	d: 0.	.508
Model: Method:		OLS Least Squares		Adj. R-squared: F-statistic:			d: 0.	.493
							i c: 3:	3.03
Date	: Т	hu, 14 Jun 2018		Prob (F-statistic):			c): 9.36e	9-15
Time	:	23	3:39:16	Lo	g-Lil	kelihoo	d: 29:	3.69
No. Observations	:		100			Al	C: -5	79.4
Df Residuals	:		96			ВІ	C: -5	69.0
Df Model	l:		3					
Covariance Type	:	non	robust					
		coef	std err		t	P> t	[0.025	0.975]
c	onst	0.0652	0.013	5	.054	0.000	0.040	0.091
education_p_	1960	0.0436	0.006	7.	.065	0.000	0.031	0.056
dummy_malaria_	1960	-0.0159	0.004	-4	.363	0.000	-0.023	-0.009
lgdppc_	1960	-0.0091	0.002	-5	.093	0.000	-0.013	-0.006
Omnibus:	6.472	Durb	in-Watso	on:	2.1	83		
Prob(Omnibus):	0.039	Jarque	-Bera (J	B):	5.9	35		
Skew:	0.508		Prob(J	B):	0.05	14		
Kurtosis:	3.628					3.8		

Robustness analysis 3

- Normality is ok accounted for the sample size (100)
- Problems with heteroskedasticity
- Reduce the precision of the model

Predictive power of our model

- Gathered new data on malaria in 1990
 - Issues with comparison
- Used coefficients of previous regressions
- Compared the predicted growth rate with actual growth rate with a Wilcoxon Signed Rank test
- Conclusion: Difference between the pair does not follow a distribution around 0.
 - = They are different.

Conclusion

Initial GDP per capita is **not** able to explain growth rate

Primary education is able to explain growth rate

Malaria explain those that suffer from other issues

Nothing has been proven – links are discovered

Q&A