### WikipediA

# List of second moments of area

The following is a **list of second moments of area** of some shapes. The <u>second moment of area</u>, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The <u>unit</u> of dimension of the second moment of area is length to fourth power,  $\underline{L}^4$ , and should not be confused with the <u>mass moment of inertia</u>. If the piece is thin, however, the mass moment of inertia equals the <u>area density</u> times the area moment of inertia.

#### **Contents**

Second moments of area

Parallel axis theorem

See also

References

### Second moments of area

Please take into account that in the following equations,

$$I_x = \iint_A y^2 dx dy$$

and

$$I_y = \iint_A x^2 dx dy.$$

| Description                                                                                                                                         | Figure | Area moment of inertia                                                                                                                                                                        | Comment                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A filled<br>circular area<br>of radius <i>r</i>                                                                                                     |        | $egin{aligned} I_x &= rac{\pi}{4} r^4 \ I_y &= rac{\pi}{4} r^4 \ I_z &= rac{\pi}{2} r^4 \ \end{bmatrix}$                                                                                   | $I_z$ is the Polar moment of inertia.                                                                                                                            |
| An annulus of inner radius $r_1$ and outer radius $r_2$                                                                                             |        | $egin{aligned} I_x &= rac{\pi}{4} \left( {r_2}^4 - {r_1}^4  ight) \ I_y &= rac{\pi}{4} \left( {r_2}^4 - {r_1}^4  ight) \ I_z &= rac{\pi}{2} \left( {r_2}^4 - {r_1}^4  ight) \end{aligned}$ | For thin tubes, $r \equiv r_1 \approx r_2$ and $r_2 \equiv r_1 + t$ . So, for a thin tube, $I_x = I_y \approx \pi r^3 t$ . $I_z$ is the Polar moment of inertia. |
| A filled circular sector of angle θ in radians and radius r with respect to an axis through the centroid of the sector and the center of the circle |        | $I_x = (	heta - \sin 	heta)  rac{r^4}{8}$                                                                                                                                                    | This formula is valid only for $0 \le \theta \le 2\pi$                                                                                                           |
| A filled semicircle with radius <i>r</i> with respect to a horizontal line passing through the centroid of the area                                 |        | $I_x=\left(rac{\pi}{8}-rac{8}{9\pi} ight)r^4pprox 0.1098r^4$ $I_y=rac{\pi r^4}{8}$ [2]                                                                                                     |                                                                                                                                                                  |
| A filled semicircle as above but with respect to an axis                                                                                            |        | $I_x=rac{\pi r^4}{8}$ $I_y=rac{\pi r^4}{8}$ [2]                                                                                                                                             | I <sub>x</sub> : This is a consequence of the parallel axis theorem and the fact                                                                                 |

| 14/09/2021, 14:08                                                                          | LIST 0 | i second moments of area - wikipedia                                                                                                           |                                                                                                                               |
|--------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| collinear with the base                                                                    |        |                                                                                                                                                | that the distance between the x axes of the previous one and this one is $\frac{4r}{3\pi}$                                    |
| A filled quarter circle with radius <i>r</i> with the axes passing through the bases       |        | $I_x=rac{\pi r^4}{16}$ $I_y=rac{\pi r^4}{16}$ [3]                                                                                            |                                                                                                                               |
| A filled quarter circle with radius <i>r</i> with the axes passing through the centroid    |        | $I_x = \left(rac{\pi}{16} - rac{4}{9\pi} ight)r^4 pprox 0.0549r^4 \ I_y = \left(rac{\pi}{16} - rac{4}{9\pi} ight)r^4 pprox 0.0549r^4 $ [3] | This is a consequence of the parallel axis theorem and the fact that the distance between these two axes is $\frac{4r}{3\pi}$ |
| A filled ellipse whose radius along the x-axis is a and whose radius along the y-axis is b |        | $I_x=rac{\pi}{4}ab^3 \ I_y=rac{\pi}{4}a^3b$                                                                                                  |                                                                                                                               |
| A filled rectangular area with a base width of b and height h                              |        | $I_x=rac{bh^3}{12} \ I_y=rac{b^3h}{12} \ ^{[4]}$                                                                                             |                                                                                                                               |





An equal legged angle, commonly found in engineering applications



| $I_{m{x}} = I_{m{y}} =$ | $t(5L^2 - 5Lt + t^2)(L^2 - Lt + t^2)$ |
|-------------------------|---------------------------------------|
| $I_x - I_y -$           | 12(2L-t)                              |

$$I_{(xy)} = rac{L^2 t (L-t)^2}{4 (t-2L)}$$

$$I_a = rac{t(2L-t)(2L^2-2Lt+t^2)}{12}$$

$$I_b = rac{t(2L^4-4L^3t+8L^2t^2-6Lt^3+t^4)}{12(2L-t)}$$

 $\boldsymbol{I_{(xy)}}$  is the often unused product of inertia, used to define inertia with a rotated axis

A filled regular hexagon with a side length of a



$$I_x=rac{5\sqrt{3}}{16}a^4 \ I_y=rac{5\sqrt{3}}{16}a^4$$

$$I_y=rac{5\sqrt{3}}{16}a^4$$

The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

## Parallel axis theorem

The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of mass and the perpendicular distance (*d*) between the axes.

$$I_{x'} = I_x + Ad^2$$

## See also

- List of moments of inertia
- List of centroids
- Polar moment of inertia

## References

- 1. "Circle" (http://www.efunda.com/math/areas/Circle.cfm). eFunda. Retrieved 2006-12-30.
- 2. "Circular Half" (http://www.efunda.com/math/areas/CircleHalf.cfm). eFunda. Retrieved 2006-12-30.
- 3. "Quarter Circle" (http://www.efunda.com/math/areas/CircleQuarter.cfm). eFunda. Retrieved 2006-12-30.
- 4. "Rectangular area" (http://www.efunda.com/math/areas/rectangle.cfm). eFunda. Retrieved 2006-12-30.
- 5. "Triangular area" (http://www.efunda.com/math/areas/triangle.cfm). eFunda. Retrieved 2006-12-30.

Retrieved from "https://en.wikipedia.org/w/index.php?title=List\_of\_second\_moments\_of\_area&oldid=1033740534"

This page was last edited on 15 July 2021, at 14:57 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.