AE 625 -Particle Methods in Fluid Flow Simulation

Assignment 7: Report Viscous Flow around a Cylinder

Aditi Taneja

 $\begin{aligned} & \text{Evolution of vortices around Cylinder} \\ & Re = 1000 \\ & Radius = 1.0 \\ & Number of Panels = 30 \\ & delta_t = 0.1sec \\ & Free Stream Velocity = 1.0 \end{aligned}$

1 Vortex Dstibution Around Cylinder with time for a viscous Flow

Figure 1: Vortices around the cylinder at time = 1 sec

Figure 2: Vortices around the cylinder at time = 2 sec

Figure 3: Vortices around the cylinder at time = 3 sec

Figure 4: Vortices around the cylinder at time = 4 sec

Figure 5: Vortices around the cylinder at time = 5 sec

2 Velocity Distribution for Viscous flow around a Cylinder

Figure 6: Velocity Distribution around Cylinder at $0 \sec$

Figure 7: Velocity Distribution around Cylinder after 1 sec

Figure 8: Velocity Distribution around Cylinder after 2 sec

Figure 9: Velocity Distribution around Cylinder after 3 sec

Figure 10: Velocity Distribution around Cylinder after 4 \sec

Figure 11: Velocity Distribution around Cylinder after $5~{\rm sec}$

3 Close View to the Separated Region

Figure 12: Separated Region at time = 5 sec

4 Variation of Drag Coefficient with time

(Smoothed with Moving average of Period 3)

Figure 13: Drag Coefficient vs. time