WaveNet

Pattern Recognition & Machine Learning Laboratory
Ji-Hoon Park
Aug 11, 2021

WaveNet: A Generative Model for Raw Audio [A. Oord et al., 2016] (1/5)

Goal

Generating wideband raw speech signals with subjective naturalness by developing new architecture

Motivation

Unnaturalness of the existing speech generation model

Contribution

> Applying PixelCNN[A. Oord et al., 2016] to speech generation model to get more natural sound

Introducing dilated causal convolutions to exhibit very large receptive fields in order to deal with long-range temporal dependencies needed for

WaveNet: A Generative Model for Raw Audio [A. Oord et al., 2016] (2/5)

Dilated causal convolution

- Enabling networks to have very large receptive fields with just a few layers
- Causal convolution
 - Convolution layer that only depends on past timesteps

$$- p(x_{t+1}|x_1,...,x_t)$$

- Making sure the model cannot violate the ordering
- Training faster than RNN
 - Without recurrent connections
- Limitation: require many layers and filters to increase the receptive field
- Dilated convolution
 - Skipping input values with a certain step
 - Enabling networks to have very large receptive fields with just a few layers

Causal convolution layers

Dilated causal convolution layers

WaveNet: A Generative Model for Raw Audio [A. Oord et al., 2016] (3/5)

Modeling the conditional distribution

- Softmax distribution
 - Categorical distribution is more flexible
 - Easily modeling arbitrary distribution
 - Making no assumptions about distribution shape
- $\triangleright \mu$ -law companding transformation
 - Softmax layer need to output 65,536 probabilities (16-bit integer values)
 - Quantize it to 256 possible values (8-bit values)

$$- f(x_t) = sign(x_t) \frac{\ln(1+\mu|x_t|)}{\ln(1+\mu)}$$

» x_t : raw audio value $(-1 < x_t < 1)$ μ : parameter (255)

Gated activation units

Non-linearity activation function

•
$$z = \tanh(W_{f,k} * x) \odot \sigma(W_{g,k} * x)$$

*: convolution operator

⊙: element-wise multiplication

 σ : sigmoid function

f: filter

g: gate

W: learnable convolution filter

k: layer index

WaveNet Architecture

WaveNet: A Generative Model for Raw Audio[A. Oord et al., 2016] (4/5)

Residual and Skip connection

- Increasing convergence speed
- Enabling training of much deeper models

Conditional WaveNet

- Conditioning the model on other input variables
- Global conditioning
 - Influencing the output distribution across all timesteps
 - Conditioning Speaker identity on model
 - Activation function

$$- \mathbf{z} = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h})$$

- » h: conditioning parameter
 V_{*,k}: learnable linear projection
- Local conditioning
 - Influencing the output distribution across timesteps h_t
 - Transforming time series using a transposed convolution network
 - Conditioning Linguistic features on model
 - Activation function

$$- \mathbf{z} = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} * \mathbf{y}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} * \mathbf{y})$$

» y: new time series y = f(h), $V_{a,k}^T h * y$: 1×1 convolution operation

WaveNet: A Generative Model for Raw Audio [A. Oord et al., 2016] (5/5)

Experiments

- Multi-speaker speech generation
 - Conditioning model on a one-hot encoding of a speaker
 - Dataset
 - CSTR Voice Cloning Toolkit (VCTK)
- > Text to Speech (TTS)
 - Comparing WaveNet to HMM (Hidden Marcov Model) and LSTM-RNN (Long Short-Term Memory Recurrent Neural Network)
 - Datasets
 - Google's North America English and Mandarin Chinese dataset
 - Tests
 - Subjective paired comparison tests and Mean Opinion Score(MOS) tests
- Music and Speech recognition
 - Datasets
 - MagnaTagATune dataset,
 YouTube piano dataset, and TIMIT dataset

Mean Opinion Score test results

Marie VI	Subjective 5-scale MOS in naturalness	
Speech samples	North American English	Mandarin Chinese
LSTM-RNN parametric	3.67 ± 0.098	3.79 ± 0.084
HMM-driven concatenative	3.86 ± 0.137	3.47 ± 0.108
WaveNet (L+F)	4.21 ± 0.081	4.08 ± 0.085
Natural (8-bit μ-law)	4.46 ± 0.067	4.25 ± 0.082
Natural (16-bit linear PCM)	4.55 ± 0.075	4.21 ± 0.071

