VD unit 2 topic 1 part 2

Question 1 – 4 use the prompt from "tomato garden":

Tomato Garden

Herald has a triangular backyard. (the triangle bounded by x-axis, y-axis, and line L) He plants tomatoes in the rectangular area ABCD.

(a) Find the coordinates of C so that he can maximize the rectangle.

(b) What is the area of ABCD when it reaches its maximum?

(Question 1) L: 3x + 4y = 15

(Question 2) L: 4x + 5y = 16

(Question 3) L: 2x + 5y = 20

(Question 4) L: $\frac{x}{3} + \frac{y}{4} = 6$

Q1:	Q2:
$C(\frac{5}{2}, \frac{15}{8})$, $ABCD = \frac{75}{16}$	$C(2,\frac{8}{5})$, $ABCD = \frac{16}{5}$
Q3:	Q4:
C(5,2) , $ABCD = 10$	C(9,12) , $ABCD = 108$

Question 5-8 from prompt of "Fencing"

Fencing:

A rectangular field will be fenced on all 4 sides. There will also be <u>n lines</u> of fence across the field as partitions, with {see details in configuration}. If total of L meters of fencing are available, what dimensions of the field will produce the maximum area? What is the maximum area?

Question #	n	configuration	L
Question 5	2	One parallel and one perpendicular to the short sides	800
Question 6	2	both parallel to the short sides	1120
Question 7	3	all 3 parallel to the short sides	1200
Question 8	5	2 parallel and 3 perpendicular to the short sides	1500

VD unit 2 topic 1 part 2

(In case you don't know how to substitute the given info into the question, here is an example for question 8, when n, configuration, and L are substituted into the question. Underlined texts are substituted from the table above.)

A rectangular field will be fenced on all 4 sides. There will also be <u>5</u> lines of fence across the field as partitions, <u>with 2 parallel and 3 perpendicular to the short sides</u>. If total of <u>1500</u> meters of fencing are available, what dimensions of the field will produce the maximum area? What is the maximum area?

Q5:	Q6
dimension = 400 (m v m)	dimension = 280×140 (m x m)
dimension = $\frac{400}{3} \times 400 \text{ (m x m)}$	Area = $39200 \ m^2$
Area = $\frac{160000}{3} m^2$	
Q7:	Q8
dimension = 120×300 (m x m)	dimension = $\frac{375}{2} \times 150$ (m x m)
Area = $36000 \ m^2$	$\frac{\text{dimension} = -2 \times 150 \text{ (m x m)}}{2}$
	Area = $28125 m^2$