1. Технико-экономическое обоснование

Разработка программного обеспечения — достаточно трудоемкий и длительный процесс, требующий выполнения большого числа разнообразных операций. Организация и планирование процесса разработки программного продукта или программного комплекса при традиционном методе планирования предусматривает выполнение следующих работ:

- формирование состава выполняемых работ и группировка их по стадиям разработки;
- расчет трудоемкости выполнения работ;
- установление профессионального состава и расчет количества исполнителей;
- определение продолжительности выполнения отдельных этапов разработки;
- построение календарного графика выполнения разработки;
- контроль выполнения календарного графика.

Далее приведен перечень и состав работ при разработке программного средства для автоматического установления связей между сообщениями твиттера и новостными статьями. Отметим, что процесс разработки программного продукта характеризуется совместной работой разработчиков постановки задач и разработчиков программного обеспечения.

Укрупненный состав работ по стадиям разработки программного продукта:

1. Техническое задание:

- Постановка задач, выбор критериев эффективности,
- Разработка технико-экономического обоснования разработки,
- Определение состава пакета прикладных программ, состава и структуры информационной базы,
- Выбор языков программирования,
- Предварительный выбор методов выполнения работы,
- Разработка календарного плана выполнения работ;

2. Эскизный проект:

• Предварительная разработка структуры входных и выходных данных,

- Разработка общего описания алгоритмов реализации решения задач,
- Разработка пояснительной записки,
- Консультации разработчиков постановки задач,
- Согласование и утверждение эскизного проекта;

3. Технический проект:

- Разработка алгоритмов решения задач,
- Разработка пояснительной записки,
- Согласование и утверждение технического проекта,
- Разработка структуры программы,
- Разработка программной документации и передача ее для включения в технический проект,
- Уточнение структуры, анализ и определение формы представления входных и выходных данных,
- Выбор конфигурации технических средств;

4. Рабочий проект:

- Комплексная отладка задач и сдача в опытную эксплуатацию,
- Разработка проектной документации,
- Программирование и отладка программ,
- Описание контрольного примера,
- Разработка программной документации,
- Разработка, согласование программы и методики испытаний,
- Предварительное проведение всех видов испытаний;

5. Внедрение:

- Подготовка и передача программной документации для сопровождения с оформлением соответствующего Акта,
- Передача программной продукции в фонд алгоритмов и программ,
- Проверка алгоритмов и программ решения задач, корректировка документации после опытной эксплуатации программного продукта;

Трудоемкость разработки программной продукции зависит от ряда факторов, основными из которых являются следующие: степень новизны разрабатываемого программного комплекса, сложность алгоритма его функционирования, объем используемой информации, вид ее представления и способ обработки, а также уровень используемого алгоритмического языка программирования. Чем выше уровень языка, тем трудоемкость меньше.

По степени новизны разрабатываемый проект относится к *группе новизны А* – разработка программных комплексов, требующих использования принципиально новых методов их создания, проведения НИР и т.п.

По степени сложности алгоритма функционирования проект относится к 2 группе сложности - программная продукция, реализующая учетно-статистические алгоритмы.

По виду представления исходной информации и способа ее контроля программный продукт относится к *группе 12* - исходная информация представлена в форме документов, имеющих различный формат и структуру и *группе 22* - требуется печать документов одинаковой формы и содержания, вывод массивов данных на машинные носители.

1.1. Трудоемкость разработки программной продукции

Трудоемкость разработки программной продукции (τ_{PP}) может быть определена как сумма величин трудоемкости выполнения отдельных стадий разработки программного продукта из выражения:

$$\tau_{PP} = \tau_{TZ} + \tau_{EP} + \tau_{TP} + \tau_{RP} + \tau_{V},$$

где τ_{TZ} — трудоемкость разработки технического задания на создание программного продукта; τ_{EP} — трудоемкость разработки эскизного проекта программного продукта; τ_{TP} — трудоемкость разработки технического проекта программного продукта; τ_{RP} — трудоемкость разработки рабочего проекта программного продукта; τ_{V} — трудоемкость внедрения разработанного программного продукта.

1.1.1. Трудоемкость разработки технического задания

Расчёт трудоёмкости разработки технического задания (τ_{PP}) [чел.-дни] производится по формуле:

$$\tau_{TZ} = T_{RZ}^Z + T_{RP}^Z,$$

где T_{RZ}^Z — затраты времени разработчика постановки задачи на разработку ТЗ, [чел.-дни]; T_{RP}^Z — затраты времени разработчика программного обеспечения на разработку ТЗ, [чел.-дни]. Их значения рассчитываются по формулам:

$$T_{RZ}^Z = t_Z * K_{RZ}^Z,$$

$$T_{RP}^Z = t_Z * K_{RP}^Z,$$

где t_Z — норма времени на разработку ТЗ на программный продукт (зависит от функционального назначения и степени новизны разрабатываемого программного продукта), [чел.-дни]. В нашем случае по таблице получаем значение (группа новизны — А, функциональное назначение — технико-экономическое планирование):

$$t_Z = 79.$$

 K_{RZ}^Z — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задачи на стадии ТЗ. В нашем случае (совместная разработка с разработчиком Π O):

$$K_{RZ}^Z = 0.65.$$

 K_{RP}^{Z} — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии ТЗ. В нашем случае (совместная разработка с разработчиком постановки задач):

$$K_{RP}^{Z} = 0.35.$$

Тогда:

$$\tau_{TZ} = 79 * (0.35 + 0.65) = 79.$$

1.1.2. Трудоемкость разработки эскизного проекта

Расчёт трудоёмкости разработки эскизного проекта (τ_{EP}) [чел.-дни] производится по формуле:

$$\tau_{EP} = T_{RZ}^E + T_{RP}^E,$$

где T_{RZ}^E — затраты времени разработчика постановки задачи на разработку эскизного проекта (ЭП), [чел.-дни]; T_{RP}^E — затраты времени разработчика программного обеспечения на разработку ЭП, [чел.-дни]. Их значения рассчитываются по форму-

лам:

$$T_{RZ}^E = t_E * K_{RZ}^E,$$

$$T_{RP}^E = t_E * K_{RP}^E,$$

где t_E — норма времени на разработку $\Im\Pi$ на программный продукт (зависит от функционального назначения и степени новизны разрабатываемого программного продукта), [чел.-дни]. В нашем случае по таблице получаем значение (группа новизны — A, функциональное назначение — технико-экономическое планирование):

$$t_E = 175.$$

 K_{RZ}^E — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задачи на стадии ЭП. В нашем случае (совместная разработка с разработчиком ПО):

$$K_{RZ}^E = 0.7.$$

 K_{RP}^{E} — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии ТЗ. В нашем случае (совместная разработка с разработчиком постановки задач):

$$K_{RP}^E = 0.3.$$

Тогда:

$$\tau_{EP} = 175 * (0.3 + 0.7) = 175.$$

1.1.3. Трудоемкость разработки технического проекта

Трудоёмкость разработки технического проекта (τ_{TP}) [чел.-дни] зависит от функционального назначения программного продукта, количества разновидностей форм входной и выходной информации и определяется по формуле:

$$\tau_{TP} = (t_{RZ}^T + t_{RP}^T) * K_V * K_R,$$

где t_{RZ}^T — норма времени, затрачиваемого на разработку технического проекта (ТП) разработчиком постановки задач, [чел.-дни]; t_{RP}^T — норма времени, затрачиваемого на разработку ТП разработчиком ПО, [чел.-дни]. По таблице принимаем (функциональное назначение — технико-экономическое планирование, количество разновид-

ностей форм входной информации — 2 (твиты, новости), количество разновидностей форм выходной информации — 2 (набор связей твит-новости, оценка работы рекомендательной системы)):

$$t_{RZ}^{T} = 52,$$

$$t_{RP}^T = 14.$$

 K_R — коэффициент учета режима обработки информации. По таблице принимаем (группа новизны — A, режим обработки информации — реальный масштаб времени):

$$K_R = 1.67.$$

 K_V — коэффициент учета вида используемой информации, определяется по формуле:

$$K_V = \frac{K_P * n_P + K_{NS} * n_{NS} + K_B * n_B}{n_P + n_{NS} + n_B},$$

где K_P — коэффициент учета вида используемой информации для переменной информации; K_{NS} — коэффициент учета вида используемой информации для нормативно-справочной информации; K_B — коэффициент учета вида используемой информации для баз данных; n_P — количество наборов данных переменной информации; n_{NS} — количество наборов данных нормативно-справочной информации; n_B — количество баз данных. Коэффициенты находим по таблице (группа новизны - A):

$$K_P = 1.70,$$

$$K_{NS} = 1.45$$
,

$$K_B = 4.37.$$

Количество наборов данных, используемых в рамках задачи:

$$n_P = 3$$
,

$$n_{NS} = 0$$
,

$$n_B = 1$$
.

Находим значение K_V :

$$K_V = \frac{1.70 * 3 + 1.45 * 0 + 4.37 * 1}{3 + 0 + 1} = 2.3675.$$

Тогда:

$$\tau_{TP} = (52 + 14) * 2.3675 * 1.67 = 261.$$

1.1.4. Трудоемкость разработки рабочего проекта

Трудоёмкость разработки рабочего проекта (τ_{RP}) [чел.-дни] зависит от функционального назначения программного продукта, количества разновидностей форм входной и выходной информации, сложности алгоритма функционирования, сложности контроля информации, степени использования готовых программных модулей, уровня алгоритмического языка программирования и определяется по формуле:

$$\tau_{RP} = (t_{RZ}^R + t_{RP}^R) * K_K * K_R * K_Y * K_Z * K_{IA},$$

где t_{RZ}^R — норма времени, затраченного на разработку рабочего проекта на алгоритмическом языке высокого уровня разработчиком постановки задач, [чел.-дни]. t_{RP}^R — норма времени, затраченного на разработку рабочего проекта на алгоритмическом языке высокого уровня разработчиком ПО, [чел.-дни]. По таблице принимаем (функциональное назначение — технико-экономическое планирование, количество разновидностей форм входной информации — 2 (твиты, новости), количество разновидностей форм выходной информации — 2 (набор связей твит-новости, оценка работы рекомендательной системы)):

$$t_{RZ}^R = 15,$$

$$t_{RP}^R = 91.$$

 K_K — коэффициент учета сложности контроля информации. По таблице принимаем (степень сложности контроля входной информации — 12, степень сложности контроля выходной информации — 22):

$$K_K = 1.00.$$

 K_R — коэффициент учета режима обработки информации. По таблице принимаем (группа новизны — A, режим обработки информации — реальный масштаб времени):

$$K_R = 1.75.$$

 K_Y — коэффициент учета уровня используемого алгоритмического языка программирования. По таблице принимаем значение (интерпретаторы, языковые описатели):

$$K_{\rm Y} = 0.8$$
.

 K_Z — коэффициент учета степени использования готовых программных модулей. По таблице принимаем (использование готовых программных модулей составляет около 30

$$K_Z = 0.7.$$

 K_{IA} — коэффициент учета вида используемой информации и сложности алгоритма программного продукта, его значение определяется по формуле:

$$K_I A = \frac{K_P' * n_P + K_{NS}' * n_{NS} + K_B' * n_B}{n_P + n_{NS} + n_B},$$

где K_P' — коэффициент учета сложности алгоритма ПП и вида используемой информации для переменной информации; K_{NS}' — коэффициент учета сложности алгоритма ПП и вида используемой информации для нормативно-справочной информации; K_B' — коэффициент учета сложности алгоритма ПП и вида используемой информации для баз данных. n_P — количество наборов данных переменной информации; n_{NS} — количество наборов данных нормативно-справочной информации; n_B — количество баз данных. Коэффициенты находим по таблице (группа новизны - A):

$$K_P' = 2.02,$$

$$K'_{NS} = 1.21,$$

$$K'_B = 1.05.$$

Количество наборов данных, используемых в рамках задачи:

$$n_P = 3$$
.

$$n_{NS}=0$$
.

$$n_B = 1.$$

Находим значение K_{IA} :

$$K_{IA} = \frac{2.02 * 3 + 1.21 * 0 + 1.05 * 1}{3 + 0 + 1} = 1.7775.$$

Тогда:

$$\tau_{RP} = (15 + 91) * 1.00 * 1.75 * 0.8 * .7 * 1.7775 = 185.$$

1.1.5. Трудоемкость выполнения стадии «Внедрение»

Расчёт трудоёмкости разработки технического проекта (τ_V) [чел.-дни] производится по формуле:

$$\tau_V = (t_{RZ}^V + t_{RP}^V) * K_K * K_R * K_Z,$$

где t_{RZ}^V — норма времени, затрачиваемого разработчиком постановки задач на выполнение процедур внедрения программного продукта, [чел.-дни]; t_{RP}^V — норма времени, затрачиваемого разработчиком программного обеспечения на выполнение процедур внедрения программного продукта, [чел.-дни]. По таблице принимаем (функциональное назначение — технико-экономическое планирование, количество разновидностей форм входной информации — 2 (твиты, новости), количество разновидностей форм выходной информации — 2 (набор связей твит-новости, оценка работы рекомендательной системы)):

$$t_{RZ}^{V} = 17,$$

$$t_{RP}^{V} = 19.$$

Коэффициент K_K и K_Z были найдены выше:

$$K_K = 1.00,$$

$$K_Z = 0.7$$
.

 K_R — коэффициент учета режима обработки информации. По таблице принимаем (группа новизны — A, режим обработки информации — реальный масштаб времени):

$$K_R = 1.60.$$

Тогда:

$$\tau_V = (17 + 19) * 1.00 * 1.60 * 0.7 = 40.$$

Общая трудоёмкость разработки ПП:

$$\tau_{PP} = 79 + 175 + 261 + 185 + 40 = 740.$$

1.2. Расчет количества исполнителей

Средняя численность исполнителей при реализации проекта разработки и внедрения ПО определяется соотношением:

$$N = \frac{t}{F},$$

где t — затраты труда на выполнение проекта (разработка и внедрение Π O); F — фонд рабочего времени. Разработка велась 5 месяцев с 1 января 2016 по 31 мая 2016. Количество рабочих дней по месяцам приведено в таблице 1. Из таблицы получаем, что фонд рабочего времени

$$F = 96.$$

Таблица 1: Количество рабочих дней по месяцам

Номер месяца	Интервал дней	Количество рабочих дней
1	01.01.2016 - 31.01.2016	15
3	01.02.2016 - 29.02.2016	20
4	01.03.2016 - 31.03.2016	21
5	01.04.2016 - 30.04.2016	21
6	01.05.2016 - 31.05.2016	19
	Итого	96

Получаем число исполнителей проекта:

$$N = \frac{740}{96} = 8$$

Для реализации проекта потребуются 3 старших инженеров и 5 простых инженеров.

1.3. Ленточный график выполнения работ

На основе рассчитанных в главах 1.1, 1.2 трудоёмкости и фонда рабочего времени найдём количество рабочих дней, требуемых для выполнения каждого этапа разработка. Результаты приведены в таблице 2.

Таблица 2: Трудоёмкость выполнения работы над проектом

Номер	Цорронно столин	Количество		
стадии	Название стадии	[челдни]	[%]	рабочих дней
1	Техническое задание	79	11	10
2	Эскизный проект	175	24	23
3	Технический проект	261	35	34
4	Рабочий проект	185	25	24
5	Внедрение	40	5	5
	Итого	740	100	96

Планирование и контроль хода выполнения разработки проводится по ленточному графику выполнения работ. По данным в таблице 2 в ленточный график (таблица 3), в ячейки столбца "продолжительности рабочих дней" заносятся времена, которые требуются на выполнение соответствующего этапа. Все исполнители работают одновременно.

Таблица 3: Ленточный график выполнения работ

	и]		Календарные дни																					
Номер стадии	Продолжительность [рабдни]	01.01.2016 - 03.01.2016	04.01.2016 - 10.01.2016	11.01.2016 - 17.01.2016	18.01.2016 - 24.01.2016	25.01.2016 - 31.01.2016	01.02.2016 - 07.02.2016	08.02.2016 - 14.02.2016	15.02.2016 - 21.02.2016	22.02.2016 - 28.02.2016	29.02.2016 - 06.03.2016	07.03.2016 - 13.03.2016	14.03.2016 - 20.03.2016	21.03.2016 - 27.03.2016	28.03.2016 - 03.04.2016	04.04.2016 - 10.04.2016	11.04.2016 - 17.04.2016	18.04.2016 - 24.04.2016	25.04.2016 - 01.05.2016	02.05.2016 - 08.05.2016	08.05.2016 - 15.05.2016	16.05.2016 - 22.05.2016	23.05.2016 - 29.05.2016	30.05.2016 - 31.05.2016
	род		ı		1					Кол	иче	ство	pa	боч	их д	ней	-	1		ı		I.		
	<u>II</u>	0	0	5	5	5	5	5	6	3	5	3	5	5	5	5	5	5	5	3	4	5	5	2
1	10			5	5																			
2	23					5	5	5	6	2														
3	34									1	5	3	5	5	5	5	5							
4	24																	5	5	3	4	5	2	
5	5																						3	2

1.4. Определение себестоимости программной продукции

Затраты, образующие себестоимость продукции (работ, услуг), состоят из затрат на заработную плату исполнителям, затрат на закупку или аренду оборудования, затрат на организацию рабочих мест, и затрат на накладные расходы.

В таблице 4 приведены затраты на заработную плату и отчисления на социальное страхование в пенсионный фонд, фонд занятости и фонд обязательного медицинского страхования (30.5 %). Для старшего инженера предполагается оклад в размере 120000 рублей в месяц, для инженера предполагается оклад в размере 100000 рублей в месяц.

Таблица 4: Затраты на зарплату и отчисления на социальное страхование

Должность	Зарплата	Рабочих	Суммарная	Затраты на		
должность	в месяц	месяцев	зарплата	социальные нужды		
Старший инженер	120000	5	600000	183000		
Старший инженер	120000	5	600000	183000		
Старший инженер	120000	5	600000	183000		
Инженер	100000	5	500000	152500		
Инженер	100000	5	500000	152500		
Инженер	100000	5	500000	152500		
Инженер	100000	5	500000	152500		
Инженер	100000	5	500000	152500		
Суммара	ные затраты		5611500			

Расходы на материалы, необходимые для разработки программной продукции, указаны в таблице 5.

Таблица 5: Затраты на материалы

Наименование	Единица	Кол-во	Цена за	Сумма, руб.
материала	измерения	IZO11-BO	единицу, руб.	Cymma, pyo.
Бумага А4	Пачка 400 л.	2	200	400
Картридж для принтера НР Р10025	Шт.	3	450	1350
	1750			

В работе над проектом используется специальное оборудование — персональные электронно-вычислительные машины (ПЭВМ) в количестве 8 шт. Стоимость одной ПЭВМ составляет 90000 рублей. Месячная норма амортизации K=2.7%. Тогда за 4 месяцев работы расходы на амортизацию составят P=90000*8*0.027*4=77760 рублей.

Общие затраты на разработку программного продукта (ПП) составят 5611500 + 1750 + 77760 = 5691010 рублей.

1.5. Определение стоимости программной продукции

Для определения стоимости работ необходимо на основании плановых сроков выполнения работ и численности исполнителей рассчитать общую сумму затрат на разработку программного продукта. Если ПП рассматривается и создается как продукция производственно-технического назначения, допускающая многократное тиражирование и отчуждение от непосредственных разработчиков, то ее цена P определяется по формуле:

$$P = K * C + Pr,$$

где C — затраты на разработку ПП (сметная себестоимость); K — коэффициент учёта затрат на изготовление опытного образца ПП как продукции производственнотехнического назначения (K=1.1); Pr — нормативная прибыль, рассчитываемая по формуле:

$$Pr = \frac{C * \rho_N}{100},$$

где ρ_N — норматив рентабельности, $\rho_N = 30\%$;

Получаем стоимость программного продукта:

$$P = 1.1 * 5691010 + 5691010 * 0.3 = 7967414$$
 рублей.

1.6. Расчет экономической эффективности

Основными показателями экономической эффективности является чистый дисконтированный доход (PDD) и срок окупаемости вложенных средств. Чистый дисконтированный доход определяется по формуле:

$$PDD = \sum_{t=0}^{T} (R_t - Z_t) * \frac{1}{(1+E)^t},$$

где T — горизонт расчета по месяцам; t — период расчета; R_t — результат, достигнутый на t шаге (стоимость); Z_t — текущие затраты (на шаге t); E — приемлемая для инвестора норма прибыли на вложенный капитал.

На момент начала 2016 года, ставка рефинансирования 11% годовых (ЦБ РФ), что эквивалентно 0.87% в месяц. В виду особенности разрабатываемого продукта он

может быть продан лишь однократно. Отсюда получаем

$$E = 0.0087.$$

В таблице 6 находится расчёт чистого дисконтированного дохода. График его изменения приведён на рисунке 1.

Месяц	Текущие затраты, руб.	Затраты с начала года, руб.	Текущий доход, руб.	ЧДД, руб.
Январь	1201810	1201810	0	-1201810
Февраль	1122300	2324110	0	-2314430
Март	1122300	3446410	0	-3417454
Апрель	1122300	4568710	0	-4510964
Мая	1122300	5700730	7967414	2101032

Таблица 6: Расчёт чистого дисконтированного дохода

Рисунок 1 — График изменения чистого дисконтированного дохода

Согласно проведенным расчетам, проект является рентабельным. Разрабатываемый проект позволит превысить показатели качества существующих систем и сможет их заменить. Итоговый ЧДД составил: 2101032 рублей.

1.7. Результаты

В рамках организационно-экономической части был спланирован календарный график проведения работ по созданию подсистемы поддержки проведения диагностики промышленных, а также были проведены расчеты по трудозатратам. Были

исследованы и рассчитаны следующие статьи затрат: материальные затраты; заработная плата исполнителей; отчисления на социальное страхование; накладные расходы.

В результате расчетов было получено общее время выполнения проекта, которое составило 96 рабочих дней, получены данные по суммарным затратам на создание системы для автоматического сопоставления твитов и новостных статей, которые составили 5700730 рублей. Согласно проведенным расчетам, проект является рентабельным. Цена данного программного проекта составила 7967414 рублей, итоговый ЧДД составил 2101032 рублей.

Список литературы

- [1] Арсеньев В.В., Сажин Ю.Б. Методические указания к выполнению организационно-экономической части дипломных проектов по созданию программной продукции. М.: изд. МГТУ им. Баумана, 1994. 52 с. 2.
- [2] Под ред. Смирнова С.В. Организационно-экономическая часть дипломных проектов исследовательского профиля. М.: изд. МГТУ им. Баумана, 1995. 100 с.
- [3] ГОСТ 34.601 "АС. Стадии создания".