Circuit Analysis Procedure

Overview

- ° Important concept analyze digital circuits
 - Given a circuit
 - Create a truth table
 - Create a minimized circuit
- ° Approaches
 - Boolean expression approach
 - Truth table approach
- Leads to minimized hardware
- Provides insights on how to design hardware
 - Tie in with K-maps (next time)

The Problem

- ° How can we convert from a circuit drawing to an equation or truth table?
- ° Two approaches
 - ° Create intermediate equations
 - ° Create intermediate truth tables

Label Gate Outputs

- Label all gate outputs that are a function of input variables.
- 2. Label gates that are a function of input variables and previously labeled gates.
- 3. Repeat process until all outputs are labelled.

Approach 1: Create Intermediate Equations

- □ Step 1: Create an equation for each gate output based on its input.
 - R = ABC
 - S = A + B
 - T = C'S
 - Out = R + T

Approach 1: Substitute in subexpressions

- □ Step 2: Form a relationship based on input variables (A, B, C)
 - R = ABC
 - S = A + B
 - T = C'S = C'(A + B)
 - Out = R+T = ABC + C'(A+B)

Approach 1: Substitute in subexpressions

- ☐ Step 3: Expand equation to SOP final result
 - Out = ABC + C'(A+B) = ABC + AC' + BC'

Approach 2: Truth Table

☐ Step 1: Determine outputs for functions of input variables.

Approach 2: Truth Table

□ Step 2: Determine outputs for functions of intermediate variables.

Approach 2: Truth Table

☐ Step 3: Determine outputs for function.

More Difficult Example

☐ Step 3: Note labels on interior nodes

Fig. 4-2 Logic Diagram for Analysis Example

More Difficult Example: Truth Table

- □ Remember to determine intermediate variables starting from the inputs.
- □ When all inputs determined for a gate, determine output.
- ☐ The truth table can be reduced using K-maps.

Α	В	C	F_2	F ' ₂	T_1	T ₂	T ₃	F_1
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0 1	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Summary

- Important to be able to convert circuits into truth table and equation form
 - WHY? ---- leads to minimized sum of product representation
- Two approaches illustrated
 - Approach 1: Create an equation with circuit output dependent on circuit inputs
 - Approach 2: Create a truth table which shows relationship between circuit inputs and circuit outputs
- Both results can then be minimized using K-maps.
- Next time: develop a minimized SOP representation from a high level description