This problem set is individual and worth a total of 100 points. Solutions **must** be handed in using your account on Gradescope in PDF form by Sunday 2/9 at 11:59pm. Please write your answers **clearly within the space provided** for each question.

- 1. Simplify the following:
 - (a) [3 points] $\log_2 xy^2 \log_2 x^2 2\log_2 y$
 - (b) [3 points] $\log_2 16x^2$
 - (c) [3 points] $\log_3(9x^4) \log_3(3x)^2$
- 2. [5 points] Rewrite the following expression into its closed form (i.e. without the sigma): $\sum_{i=1}^{n} (2+i)$.
- 3. [28 points] For each of the following, give a formula T(n) for the exact number of instructions:

```
(d) \qquad /\!/ \ pow \ \textit{C++} \ function \ pow(base , \ exponent) \\ \textbf{for (int } i = 1 \ ; \ i < pow(2 , \ n) \ ; \ i *= 2) \ \{ \\ /\!/ \ count \ 1 \ instruction \\ \}
```

```
(g) for (int i = 0 ; i < n*n ; i++) {
    for (int j = 0 ; j < i ; j++) {
        // count 1 instruction
    }
}</pre>
```

4. [15 points] Rank the following functions by their asymptotic growth rate in ascending order (all log functions are base 2):

T(n)	Rank	T(n)	Rank	T(n)	Rank
$\int 50n \log n$		2^{100}		$\log \log n$	
$\log^2 n$		$2^{\log n}$		2^{2^n}	
$\lceil \sqrt{n} \rceil$		$n^{0.01}$		1/n	
$4n^{3/2}$		4^n		$n^2 \log n$	
$4^{\log n}$		$\sqrt{\log n}$		$\sqrt{81}$	

5. [15 points] Mark each of the following as true or false.

T(n)	Big O	T/F	Big Omega	T/F	Big Theta	T/F
$n^2/10 + 10n\log n$	$O(n \log n)$		$\Omega(n \log n)$		$\Theta(n \log n)$	
$2n^2 + n\log n$	$O(n^2)$		$\Omega(n)$		$\Theta(\log n)$	
(n/2)logn + 4n	$O(2^n)$		$\Omega(n \log n)$		$\Theta(n \log n)$	
$10\sqrt{n} + 2\log n$	$O(\log n)$		$\Omega(n)$		$\Theta(\log n)$	
$3\sqrt{n} + 10\log n$	$O(\sqrt{n})$		$\Omega(1)$		$\Theta(\sqrt{n})$	

6. [15 points] Complete the following table.

T(n)	Big Theta
$\log n + 200n \log n$	
$2^n + n^2$	
$\sqrt{n} + \log n$	
2n + 3n + 4n + 5n + 6n	
$\sqrt{n} + 10 \log n$	

7.	[6 points] An array A contains $n-1$ unique integers in the range $[0, n-1]$; that is, there is one number from this range that is not in A. Describe an $O(n)$ time algorithm for finding that number. You are allowed to use only $O(1)$ additional memory besides the array A itself. Provide a clear and precise explanation of the algorithm.
8.	[7 points] Suppose that each row of an $n \times n$ matrix M consists of only binary digits, such that, in any row of M, all the 1's come before any 0's in that row. Assuming M is already in memory, describe an $O(n)$ -time algorithm for finding the row of M that contains the most 1's. Provide a clear and precise explanation of the algorithm.