

			-	•
•			~	
•				
				•
			-	
			:	
			-	
		*.		
•			-de. 	na na
	`		-	

~	•
•	
-	
·	
, *	
-	
	,
	•
	•
the transfer of the same	
· · · · · · · · · · · · · · · · · · ·	•.
THE CANADA SERVICE AND A SERVI	\wedge \wedge \wedge \wedge
	at a constant of the constant
	` .

			•
	ŧ		
			ń
,			ь
•			

MEMOIRS

OF THE

NATIONAL ACADEMY OF SCIENCES

Volume XIV

FIRST MEMOIR

WASHINGTON
GOVERNMENT PRINTING OFFICE
1916

NATIONAL ACADEMY OF SCIENCES.

Volume XIV. FIRST MEMOIR.

REPORT ON RESEARCHES ON THE CHEMICAL AND MINERAL-OGICAL COMPOSITION OF METEORITES, WITH ESPECIAL REFERENCE TO THEIR MINOR CONSTITUENTS.

 $\mathbf{B}\mathbf{Y}$

GEORGE PERKINS MERRILL,

HEAD CURATOR OF GEOLOGY, UNITED STATES NATIONAL MUSEUM.

CONTENTS.

		Page.
Ι.	Introduction and scope of investigations.	7
11.	Elements doubtfully reported or of unusual occurrence	8
111.	Detailed chemical and mineralogical determinations	9
	1. Canon Diablo	9
	2. Casas Grandes	10
	3. Mount Joy	11
	4. Perryville	11
	5. Mount Vernon	12
	6. Krasnojarsk	12
	7. Bishopville	12
	8. Collescipoli	13
	9. Cullison	14
	10. Elm Creek	15
	11. Fisher	16
	12. Holbrook	17
	13. Indarch	17
	14. Juvinas	19
	.15. McKinney	19
	16. Monroe	20
	17. Ness County	21
	18. Selma	21
	19. Stannern	22
	20. Ballinoo, Glorieta and Misshof	22
IV.	Discussion of results.	23
	Gold and the platinoid elements	23
	Phosphorus	23
	Silicon	24
	Sulphur	25
	Oldhamite	25
	Tin	26
	Other elements reported	26
V_{\cdot}	Résumé	26
VI.	Table of analyses and discussion	27

		3	
	ŷ'		

A REPORT ON RESEARCHES ON THE CHEMICAL AND MINERALOGICAL COMPOSITION OF METEORITES, WITH ESPECIAL REFERENCE TO THEIR MINOR CONSTITUENTS.

By GEORGE PERKINS MERRILL,

Head Curator of Geology, United States National Museum.

I. INTRODUCTION AND SCOPE OF INVESTIGATION.

In June, 1909, in view of the current speculations regarding earth history, the writer published a paper on the composition of stony meteorites compared with that of terrestrial igneous rocks.^a In the preparation of this paper he was impressed with the comparatively small number of satisfactory chemical analyses available, but 99 being found which were considered sufficiently complete and accurate for his purpose. A second fact was the apparent similarity in, and simplicity of, meteoric composition, there being shown scarcely any of those elements which recent rock analyses have found to be common constituents, though in small quantities, of terrestrial rocks. These facts, coupled with the occasional reported occurrences of such elements as platinum, gold, lead, zinc, etc., and the high degree of perfection reached by modern analytical chemistry, suggested to him the advisability of undertaking a systematic investigation of the chemical nature of both stone and iron meteorites, with particular reference to the occurrence of such elements as had been reported as doubtful or found only in traces. On mentioning the matter to Prof. Morley, he was encouraged to make application for financial assistance from the J. Lawrence Smith fund of the National Academy of Sciences. This was promptly granted, and a preliminary report of progress was published in 1913.^b An application for further assistance being granted, the work has been continued down to approximately the present date, the analytical work, as before, being placed in the hands of Dr. J. E. Whitfield, of Booth, Garrett & Blair, in Philadelphia.

As is well known, and was stated in the preliminary report, the nongaseous elements characteristic of meteorites, the presence of which has been established by quantitative methods beyond controversy, are silicon, aluminum, iron, chromium, manganese, nickel, cobalt, magnesium, calcium, sodium, potassium, sulphur, phosphorus, and earbon. In addition there have been reported, usually under such conditions as to need authentication or at least corroboration, antimony, arsenie, copper, gold, lead, palladium, platinum, tin, titanium, tungsten, uranium, vanadium, and zinc. The preliminary investigation above referred to was made mainly for the purpose of fixing the presence or absence of these last named in amounts sufficient for determination by a skillful analyst, though the possible occurrence of other elemental constituents of terrestrial rocks was not ignored, and during the final researches on feldspathic types great care was taken in searching for barium, strontium, and zirconium. Wherever possible samples of the same meteorites in which an element had been doubtfully reported were analyzed. In other cases meteorites were taken which had not before been subjected to analysis, or the analyses of which were unsatisfactory for one reason or another. Whenever possible, too, an amount of material was taken sufficient to warrant a representative selection; as a rule 50 grams and upwards were thus utilized. In a few instances, particularly

a Amer. Journ. Sci., vol. 27, June, 1909, pp. 469-474.

b On the Minor Constituents of Meteorites, Amer. Journ. Sci., vol. 35, May, 1913, pp. 509-525.

in the case of the older falls, the absurdly high price demanded by holders of the material necessitated a lower limit, which, however, was rarely less than 10 grams. In all cases the meteorite was made the subject of careful microscopic study, and the purpose ever held in view of not merely ascertaining the presence or absence of any constituent but of relegating the same, as well, to its proper source.

II. ELEMENTS DOUBTFULLY REPORTED OR OF UNUSUAL OCCURRENCE.

Before discussing the results it will be well to repeat what was given in the preliminary paper regarding the previously reported occurrences of the unusual elements.

Arsenic.—The first determination of arsenic in meteorites of which I have record is that of Karl Rumler who, in 1840, reported a getting distinct arsenical reactions from the olivinelike mineral occurring in both the Atacama, Bolivia, and the Krasnojarsk, Siberia, pallasites. It is difficult to detect possible sources of error in Rumler's method as given. The fact, however, that no one has since been able to corroborate his work would suggest some possible impurity in his reagents. Silliman and Hunt also reported traces of arsenic (and copper) in the iron of Cambria, N. Y.^b The only other reported occurrence of the element known to me is that of Fischer and Duflos in the Braunau iron.c This determination can to-day scarcely be considered satisfactory. The solution remaining after the precipitation of the copper was evaporated, the dry residue mixed with soda and heated before the blowpipe; result, a garlic odor. In stating the analysis, copper, manganese, arsenie, lime, magnesium, silicon, carbon, chromium, and sulphur are all thrown together as amounting to 2.072 per cent.

Antimony.—Traces of this metal were reported by Trottarelli in the stone of Collescipoli. I have not seen the original paper, but an abstract by Max Bauer d gives, among other constituents, lead, antimony, tin, and lithia, as occurring in traces, palladium to the amount of 0.7745 per cent, and soda (Na₂O) to the unheard of amount of 10.386 per cent (!). I have therefore a natural feeling of skepticism regarding the results as a whole. (See new analyses, p. 14.)

Copper.—Copper in amounts from traces up to weighable quantities has been reported by such authorities as Rammelsberg, Rose, J. L. Smith, and many others, and should be removed from the doubtful list.

Gold.—Gold, so far as I am aware, was first plausibly suggested as a meteoric constituent by A. Liversidge, who thought to find it in an iron from Boogaldi, New South Wales. Notwithstanding the fact that the work of Prof. Liversidge seems to have been performed with proper care, there exists a lingering doubt in the minds of many as to the actual occurrence of this element as an original constituent of the iron. It is to be noted, however, that more recent investigations by J. C. H. Mingaye are confirmatory.

Lead.—Trottarelli, whose analysis is above referred to, reported traces of lead in the Collescipoli stone. R. P. Greg also reported a native lead lining the cavities in an iron from the Tarapaca desert of Chile. J. L. Smith, however, concluded from his own examination h that the metal was altogether foreign to the stone when it fell.

Lithia.—Lithia was reported by Story Maskelyne i to the amount of 0.016 per cent in the enstatite and in traces in the augitic constituent of the Busti stone. J. L. Smith likewise reported i traces of lithia in the stones of Waconda, Kans., and Bishopville, S. C. Others report it determined by spectroscopic methods.

Platinum, palladium, and iridium.—Platinum, palladium, and iridium come in for occasional reference as meteoric constituents, but almost invariably in amounts too small to weigh,

a Pogg, Ann. Phys. Chem., vol. 49, 1840, p. 591.

b Amer. Journ. Sci., vol. 2, 1846, p. 376.

c Pogg. Ann. Phys. Chem., vol. 72, 1847, p. 479.

d Neues Jahrb, für Min., etc., 1891, vol. 2, p. 238.

Journ. Proc. Roy. Soc. of, N. S. Wales, vol. 36, 1902.
 Records Geol. Surv. N. S. Wales, vol. 7, 1904, p. 306.

g London, Edinburgh & Dublin Philos. Mag., vol. 10, 1855, p. 12. Also Amer. Journ. Sci., vol. 23, 1857, p. 118.

h Amer. Journ. Sci., vol. 49, 1870, p. 305.

i Philos. Trans. Roy. Soc., vol. 160, 1870, pp. 206-7.

i Amer. Journ. Sci., vol. 13, 1877, p. 212, and vol. 38, 1869, p. 226.

and often in analyses made under such conditions as to give rise to a feeling of doubt as to their correctness. Trottarelli's reported finding of palladium has already received attention. J. M. Davison a obtained from 608.6 grams of the Coahuila iron 0.014 gram of platinum; from 464 grams of the Toluca iron a few crystals of potassium platinic chloride were obtained which showed a reddish color and probably contained iridium. Tassin b doubtfully reported the acid soluble portion of the Persimmon Creek iron as containing traces of platinum too small to weigh. Mallet's work on the Canon Diablo iron is confirmatory, however, of its occasional occurrence (see p. 10).

Tin.—Tin to the amount of 0.17 per cent SnO₂ was reported by Stromeyer and Walmstedt as long ago as 1825 as occurring in the olivine of a pallasite. Unfortunately some doubt exists as to whether this was the pallasite of Krasnojarsk or Steinbach. Rammelsberg in 1884 reported finding 0.08 per cent Sn in the metallic portion of the Klein-Wenden aerolite, and he also tabulates 0.57 per cent Sn in the analysis of the Nashville (?) Tenn., iron. Jackson thought to have found 0.063 per cent Sn in an iron from Dakota, while C. A. Joy reported 0.44 per cent SnO₂ in the mineral portion of the Atacama pallasite, and Mallet reported 0.002 per cent to 0.003 per cent Sn in the iron from Staunton, Virginia. Still more recently traces of the metal have been reported in the Barraba and Cowra, New South Wales, irons, by J. C. H. Mingaye. Coming from such a source the statement might well be considered as conclusive (see further p. 18). Numerous other occurrences of like small amounts are mentioned in the literature, the copper and tin being frequently undifferentiated. Although not so stated, the inference may be drawn, with the possible exception of that found in the olivine above noted, that tin, if present at all, occurs mainly if not wholly in the metallic portion.

Titanium.—Rammelsberg ⁱ found 0.16 per cent titanic oxide (TiO₂) in the insoluble residue from the Juvinas stone. This is the first reported occurrence. Davison reported ^k traces of titanium in the stone from Estacado, Tex. Everhart ^l found 0.09 per cent in that of Pickens County, Ga.; and Stokes ^m found 0.08 per cent in the stone of Allegan, Mich. These occurrences are all dwarfed by Tschermak's ⁿ determination of 2.39 per cent in the stone of Angra dos Reis. The amounts are, however, mostly very small, and knowing the difficulties in the way of determination, it seems unquestionable that it is a common and widespread constituent.

Vanadium.—Apjohn reported of finding unmistakable evidences of vanadium in the Limerick stone, but in amount too small for quantitative determination. The occasional presence of the element seems now confirmed beyond doubt.

Zinc.—E. Pfeiffer, in the report p of his analysis of the Parnallee stone, included traces of copper, tin and zinc. J. L. Smith q found in the schreibersite from the Tazewell iron a trace of zinc. I find no other recorded occurrence of this element.

III. DETAILED CHEMICAL AND MINERALOGICAL DETERMINATIONS.

In the following pages are given in considerable detail the results of my investigations, the chemical analyses upon which most reliance is placed being mainly those of Dr. J. E. Whitfield, as before stated, though in the final tabular statement I have brought together the work of such other analysts as seems sufficiently detailed or given in such forms as to merit attention. The results given in the first paper are here repeated. The order of arrangement is alphabetical, under the three heads Irons, Stony-irons, and Stones.

(1) Iron.—Canon Diablo, Ariz. A coarse octahedral iron with numerous interlaminations of schreibersite and inclusions of graphite and troilite, the latter sometimes an inch or

```
a Amer. Journ. Sci., vol. 7, 1899, p. 4.
```

b Proc. U. S. Nat. Mus., vol. 27, 1904, p. 959.

c See Rose, Beschreibung u. Eintheilung der Meteoriten, etc., 1864, p. 77.

d Pogg. Ann. Phys. Chem., vol. 62, 1844, p. 449.

e Die Chemischer Natur Meteoriten, 1870, p. 146.

 [/] Amer. Journ. Sci., vol. 36, 1863, p. 260.
 / Amer. Journ. Sci., vol. 37, 1864, p. 245.

h Amer. Journ. Sci., vol. 2, 1871, p. 13.

Records Geol, Surv. N. S. Wales, vol. 7, pt. 4, 1904, p. 305.

j Pogg, Ann. Phys. Chem., vol. 73, 1848, p. 585.

k Amer. Journ. Sci., vol. 22, 1906, p. 59. l Science, vol. 30, 1909, p. 772.

m Proc. Wash, Acad. Sci., vol. 2, July, 1900, p. 48.

[&]quot; Tsch. Min. Pet. Mittheil., vol. 28, 1909, p. 110.

o Journ. Chem. Soc. London, vol. 27, 1874, p. 104.

p Sitz, k. Akad. Wiss, Wien, vol. 47, 1863, p. 461.

g Amer. Journ. Sci., vol. 19, 1855, p. 155.

more in diameter. In the selection of samples for analyses these were avoided as far as possible. Carbon is present in form of microscopic diamonds and also as graphite. It has been the subject of numerous analyses, yielding variable results owing to its coarse crystallization. Whitfield's analysis is given in column I below. In column II is given the average of three analyses by Moissan, Booth, Garrett & Blair, and Tassin.

Constituents.	I	11
Silicon Sulphur Phosphorus Manganese Copper Nickel Cobalt Combined carbon Graphitic carbon Iron oxides Jron protochloride	Per cent, Trace, 0,009 ,261 None, ,015 7,335 ,510 ,105 ,028 2,520	Per cent. 0.032 .007 .159 None. Trace. 5.828 .044 } .465
Iron	89, 167 100, 047	93, 425

In process of analysis schreibersite to the amount of 1.832 per cent separated out. This afforded the following composition:

	· rercent.
Iron	55.04
Nickel	29. 58
Phosphorus	15. 38

Platinum was looked for in two portions of fifty grams each, but none was found. Neither is its presence recorded in previous analyses by this same firm, by Derby,^a Tassin or Moissan.^b J. W. Mallet, working on a residue from the solution of 25 pounds of the iron in dilute hydrochloric acid obtained results representing 3.63 grams of platinum and 14.95 grams of iridium per metric ton of the original iron, "with probably a trace of rhodium." He suggests, and this is in accordance with our own results, that the platinoid metals are not uniformly distributed in the iron. This may account for the failure to find it on the part of others. The quantity of material worked upon is undoubtedly an important factor, however.

(2) *Îron.*—Casas Grandes, Mexico. Medium octahedrite. Previously analyzed and described by Tassin.^d The results of Dr. Whitfield's analyses are given in Column I below. In Column II are given Mr. Tassin's results as previously obtained.

Constituents.	ĭ	11
Silicon	Per cent.	Per cent.
lronNiekel	90.470 7.742	95.13 4.38 .27
Cobalt	. 166	Trace.
Sulphur	.029 .145 .032	None. Traces.
Iron oxides	, 794 100, 004	100.02

Whitfield's analyses were made on 50-gram samples, free from evident inclusions of troilite. The following elements were especially looked for but not found; antimony, arsenic, tin, lead, palladium, platinum, titanium, tungsten, vanadium, uranium, chromium, manganese, molybdenum, and zinc.

a Amer. Journ. Sci., vol. 49, 1895, pp. 101-110.

b See contributions to the Study of the Canyon Diablo Meteorite, by G. P. Merrill and W. Tassin, Smithsonian Misc. Coll., Quar. Issue, vol. 50, pt. 2, 1907, p. 209.

c Proc. Acad. Nat. Sci. Phila., Dec., 1905, p. 913. Footnote on p. 862.

d Proc. U. S. Nat. Mus., vol. 25, 1902, pp. 69-74.

(3) *Iron.*—Mount Joy, Pa. Coarse octahedrite; brecciated. Previous analysis by Eakins^a yielded:

	Per cent.
Iron	. 93.80
Nickel	. 4.81
Cobalt	51
Copper	
Phosphorus	190
Sulphur	01
	00 225

Further tests for the minor constituents by Dr. Whitfield on a 50-gram sample yielded:

	Per cent.
Chromium	0. 006
Manganese	
Copper	
Chlorine	
Platinum	

No vanadium, molybdenum, tungsten, gold, silver, lead, or tin, nor in fact any other element in amounts large enough to be determined by wet analysis, were found.

(4) Iron.—Perryville, Mo. Described by Merrill ^b as belonging to Brezina's group of finest octahedrites (Off). As the entire iron was in possession of the National Museum, and it had not before been described, all the necessary material was sacrificed for a very detailed analysis, with the results tabulated below:

	Per cent.
Iron	. 89. 015
Nickel	. 9.660
Cobalt	545
Copper	025
Manganese	
Phosphorus	
Sulphur	002
Silicon	003
Carbon	015
Iridium	.)
Palladium.	
rathum	-
Ruthenium	J
	99.63

The amount of the rarer elements found in different samples of this iron was quite variable, but always small. From one portion of 25 grams was obtained 0.004 gram of platinum and from another portion of 100 grams weight but 0.0002 gram. The precipitates of ammonium platinic chloride were in all cases faintly orange, indicating the presence of palladium but in amounts too small for determination. In a 100-gram sample of the iron were found 0.014 gram of ruthenium and 0.028 gram of iridium, while another portion of equal weight yielded but 0.0009 gram of ruthenium and 0.0011 gram of iridium.

So far as I am aware this is the first recorded occurrence of ruthenium in a meteoric iron. The probable presence of iridium in the Toluca and Coahuila irons was recognized by Davison, as already noted, but is not elsewhere recorded. No chromium, vanadium, molybdenum, or titanium were found.

The mineral schreibersite, constituting 2.61 per cent of the iron, was isolated and analyzed with the following results:

	Per cent.
Phosphorus	14.00
Iron	
Nickel	34, 13
Cobalt	. 30
	99.53

The high percentage of nickel shown by this analysis is comparable with that of the schreibersite from the Magura iron. Even greater amounts have been reported as yielded by the irons of Seeläsgen, Germany (36.17 per cent), and Cranbourne, Australia (38.24 per cent).

(5) Stony-tron (Pallasite).—Mount Vernon, Ky. A coarse pallasite, consisting of large blebs of olivine in a mesh of metal. Described by Tassin.^a No complete (bulk) analyses made owing to the coarse nature of the stone. The nickel alloy yielded Tassin as follows:

		Per cer
lron	 	. 82.52
Nickel	 	. 14.04
'obalt	 	9-
opper	 	10
ulphur	 	28
ilica	 	80
luminum	 	4
arbon		
hosphorus		
'hlorine	 	. Trace
		99. 97

He also gave analyses of the included tænite, schreibersite, troilite, chromite, and olivine separately, but found no constituents of unusual occurrence.

A 50-gram sample, badly oxidized, submitted to Dr. Whitfield for tests for minor elements, yielded:

Chromium. 0.300
(III ()
Copper
Nickel
Cobalt
Manganese
Vanadium

No trace of molybdenum, tungsten, antimony, tin, lead, zinc, gold, silver, or platinum was found.

(6) Stony-iron (Pallasite).—Krasnojarsk, Siberia. A well-known historic meteorite, stated by previous workers to contain arsenic and tin. The material being too coarse for bulk or mass analysis, the metal and olivine were examined independently. The metallic portion yielded:

FeNi	
Co P	
The silicate portion (olivine) yielded:	100, 105 Per cent. 37, 22
$egin{array}{lll} \mathrm{SiO}_2. & & & & & \\ \mathrm{FeO}. & & & & & \\ \mathrm{Al}_2\mathrm{O}_3. & & & & & \\ \mathrm{MgO}. & & & & & \\ \end{array}$	15. 21
мдО	99. 96

with no traces of arsenie, chromium, manganese, sulphur, or tin, in either portion.

(7) Meteoric stone, Chladnite.—Bishopville, S. C. This unique stone fell on March 25, 1843, and was first described by Shepard in 1846.^b It has since been the subject of numerous writings (see Wülfing, pp. 29-31), and in several instances subjected to partial analyses. The widely variant results obtained are due as much to imperfect sampling as to incorrect determinations. The Museum collection possessing several grams of fragmental material, it was deemed advisable to sacrifice them to the searching methods of modern analytical chemistry. The stone was described by Shepard as consisting in large part of a

light gray material, regarded by him as a persilicate of magnesia, and to which he gave the name chladnite in honor of the chemist Chladni. Researches in 1864 by J. Lawrence Smith showed the mineral to be identical with enstatite. The stone was described in 1854 by W. Sartorious von Waltershausen, who thought to show that the siliceous portion was made up of 95.011 per cent chladnite and 4.985 per cent labradorite. Rammelsberg in 1863 stated as a result of his examinations that it contained no feldspar. Later microscopic investigations by Wadsworth and Tschermak show the stone to be a crystalline granular mass of enstatite plagioclase feldspar, and an iron sulphide identified as pyrrhotite. Wadsworth includes also augite and metallic iron. The probable presence of oldhamite, confirmed by the present researches, was suggested but not proven by Maskelyne. Below are given the results of Dr. Whitfield's analyses, made with especial reference to the presence or absence of the mineral oldhamite, and the elements barium, strontium, and zirconium. The commonly quoted analyses of J. Lawrence Smith, it should be noted, were not of the stone in mass, but of the selected white pyroxenic constituent, the chladnite of Shepard.

	Per cent.
Silica (SiO ₂)	57.034
Alumina (Al ₂ O ₃)	1, 706
Ferric oxide (Fe ₂ O ₃)	1.406
Manganous oxide (MnO)	. 189
Lime (CaO)	2.016
Magnesia (MgO)	33, 506
Cobalt oxide (CoO)	Trace.
Nickel oxide (NiO)	. 538
Soda (Na ₂ O)	1.027
Potash (K_2O)	. 089
Ignition (H ₂ O)	1. 995
Iron (Fe)	. 181
Nickel (Ni)	. 039
Sulphur (S)	. 297
_	100.000
	100. 023
Minus O for S	. 147
_	99, 876
	20.010

An amount of calcium equivalent to 0.67 per cent calcium sulphide was liberated by boiling the finely pulverized stone for two hours in distilled water. Inspection of the stone in mass shows, in addition, occasional granules of an iron sulphide (troilite or pyrrhotite) which were not included in the portion analyzed. No traces of barium, strontium, or zirconium could be detected. This is worthy of note in view of the feldspathic nature of the stone. The amount of material utilized in the analyses was not as large as could have been desired.

(8) Meteoric stone, Chondrite (Cc).—Collescipoli, Italy. This stone, which fell on February 3, 1890, is of a gray color, somewhat friable, of a common chondritic type (Cc), composed essentially of olivine and enstatite with the usual sprinkling of metal and metallic sulphide. It presents no unusual features macro- or microscopically, and attention was given it here only on account of the extraordinary array of the rarer elements reported in Trottarelli's analyses.^d It is unfortunate that although this fall is supposed to have comprised some 4 or 5 kilograms, but 1,802 grams are known to-day and hence the prices quoted by dealers (\$0.70 to \$1.27 per gram) are so high as to place it out of reach for exhaustive investigation. Fortunately a few grams were found which, on account of their minutely fragmental condition, could be purchased at prices justifying sacrifice. Below are given the results obtained by Whitfield:

	Per cent.
Metallic portion	. 18.60
Silicate portion	. 81.40
	100.00

a Lithological Studies, p. 200, 1884.

b Sitz. k. Akad, Wiss. Wien, vol. 88, pt. 1, 1883, p. 363.

Proc. Royal Soc. Edinburgh, vol. 18, 1870, p. 146.
 Gazetta Chimica Italiana, vol. 20, 1890, pp. 611-615.

Per cent.

The metallic portion yielded:	T	he	metallic	portion	vielded:
-------------------------------	---	----	----------	---------	----------

Iron (Fe)	Per cent, 91, 60
Nickel (Ni)	
Cobalt (Co)	
	100.09
The silicate portion yielded:	_
(17)	Per cent.
Silica (SiO ₂)	
Alumina (Al_2O_3)	7.90
Iron protoxide (FeO)	19.50
Lime (CaO)	
Magnesia (MgO)	
Potash (K_2O)	32
Soda ($\overline{\mathrm{Na_2O}}$).	
	100.22

Careful search was made for other elements, and in particular, for the reasons noted, for arsenic, antimony, copper, and platinum. None were found.

In order to compare these results with those of Trottarelli, the analyses were recalculated and the results given in column I below; in column II are given those of Trottarelli. I will not attempt to account for the discrepancy.

Constituents.	1	II
Silica (SiO ₂). Alumina (Al ₂ O ₃). Ferrous oxide (FeO). Magnesia (MgO). Lime (CaO). Potash (K ₂ O). Soda (Na ₂ O). Iron (Fe). Nickel (Ni). Cobalt (Co). Palladium (Pd). Manganese (Mn). Chromium (Cr). Sulphur (S). Ignition (H ₂ O).	Per cent. 34, 59 6, 43 15, 87 21, 17 1, 79 26 1, 46 17, 04 1, 49 09 None. None. None. None. None. None.	71.057 31.057 9304 0186 1169 Traces. 10.386 40.983 1.544 Traces. .7745 1.0060 5616 7.679 2.100

a With traces of lead, antimony, tin, lithia, sulphuric anhydride, and chlorine.

(9) Meteoric stone, Chondrite (Cc).—Cullison, Kans. Described by Merrill.^a Thin sections showed it to be of the normal chondritic type containing olivine, enstatite, monoclinic pyroxene, plagioclase feldspar, with the usual sprinkling of metal and metallic sulphides. The separation of the component parts by an electromagnet and treatment with iodine resulted as follows:

Troilite	6.07
Metal	
Silicate	
Schreibersite	
	100.07
The metallic portion yielded:	
	Per cent.
Silicon	0.129
Sulphur	
Phosphorus	
Nickel	
Cobalt	
Copper	.040
Chromium.	

Manganese	Per cent. . 080 89, 700
with no traces of tungsten, vanadium, or molybdenum. The silicate portion yielded:	99. 982
· · · · · · · · · · · · · · · · · · ·	Per cent.
Silica (SiO ₂)	47.36
Alumina (Al_2O_3)	5.67
Ferric oxide (Fe ₂ O ₃)	. 10
Ferrous oxide (FeO)	11.25
Lime (CaO)	. 84
Magnesia (MgO)	31.72
Manganeus exide (MnO)	
Seda (Na ₂ O)	2, 42
Potash (K_2O)	. 23
Titanic exide (${ m TiO}_2$).	
	99, 95

Combining the metallic and nonmetallic portions and recalculating with the usual assumption that the mineral called troilite is the monosulphide FeS, and that the schreibersite conforms to the formula Fe₂NiP, the following figures are obtained representative of the composition of the stone as a whole:

	Per cent.
Silica (SiO ₂)	. 35. 30
Alumina (Al_2O_3)	
Ferric oxide (Fe ₂ O ₃)	75
Ferrous exide (FeO)	. 8, 38
Lime (CaO)	
Magnesia (MgO)	
Manganeus exide (MnO)	
Soda (Na ₂ O)	
Potash (K_2O)	
Sulphur (S)	
Phospherus (P)	
Nickel (Ni)	. 1.80
Cebalt (Ce)	098
Cepper (Cu)	008
Chremium (Cr)	
Carbon (C)	017
Manganese (Mn)	
Iron (Fe)	
	100, 5988
	100. 5988

None of the rarer elements, other than those noted, were found.

(10) Meteoric stone, Chondrite.—Elm Creek, Kans. This stone was plowed up in a field some time in May, 1906. Nothing is known of its fall. It was considerably oxidized on the outside, indicating that it had lain some time in the soil. It is described by Howard a so of a dark gray, nearly black color, thickly studded on a polished surface with metallic points and indistinct chondrules, which break, in part, with the groundmass. The silicate portion, as shown by the microscope, consists essentially of olivine and enstatite with a polysynthetically twinned monoclinic pyroxene. It had never before been subjected to chemical analysis, and was therefore open to critical investigation. Dr. Whitfield found:

	r cent.
Silicates	93. 18
Metal	6.82
_	
10	00. 00

Per cent.

The	siliente	portion	vielded:
T 11C	SHIGARC	PACIFICATION OF THE PROPERTY O	viciaca.

$\begin{array}{lll} \text{Silica } (\text{Si} \Omega_2) & 36.76 \\ \text{Alumina } (\text{Al}_2 \Omega_3) & 3.10 \\ \text{Ferric oxide } (\text{Fe}_2 \Omega_3) & 13.23 \\ \text{Ferrous oxide } (\text{Fe}\Omega) & 14.22 \\ \text{Chromic oxide } (\text{Cr}_2 \Omega_3) & .35 \\ \text{Lime } (\text{Ca}\Omega) & 1.62 \\ \text{Magnesia } (\text{Mg}\Omega) & 25.66 \\ \text{Water } (\Pi_2 \Omega) & 5.10 \\ \end{array}$		Per cent.
Ferric oxide (Fe $_2$ O $_3$) 13. 23 Ferrous oxide (FeO) 14. 22 Chromic oxide (Cr $_2$ O $_3$) .35 Lime (CaO) 1. 62 Magnesia (MgO) .25. 66	Silica (Si O_2)	. 36.76
Ferrous oxide (FeO). 14.22 Chromic oxide (Cr ₂ O ₃). 35 Lime (CaO). 1.62 Magnesia (MgO). 25.66	Alumina (Al ₂ O ₃)	3. 10
$ \begin{array}{lll} \text{Chromic oxide } (\text{Cr}_2\text{O}_3). & .35 \\ \text{Lime } (\text{CaO}). & 1.62 \\ \text{Magnesia } (\text{MgO}). & .25.66 \\ \end{array} $	Ferric oxide (Fe ₂ O ₃)	. 13. 23
Lime (CaO). 1.62 Magnesia (MgO). 25.66	Ferrous oxide (FeO)	. 14. 22
Magnesia (MgO)	Chromic oxide (Cr ₂ O ₃)	35
	Lime (CaO)	1.62
Water (H ₂ O)	Magnesia (MgO)	25. 66
	Water (II ₂ O)	. 5. 10
100 04		100.01

No barium, strontium, zirconium, or other rare elements could be detected. The metallic portion yielded:

	l'er cent.
Iron (Fe)	. 87. 13
Niekel (Ni)	. 11.30
Cobalt (Co)	. 1.42
Manganese (Mn)	15
Copper (Cu)	. None.
•	100.00

The amount of metal available (1.35 grams) was not sufficient for an exhaustive examination for the rarer elements.

(11) Meteoric stone, Chondrite (Ci).—Fisher, Polk County, Minn. This, the first and only meteorie stone thus far reported from Minnesota, is supposed to be the representative of a fall which took place on the 9th of April, 1894. It was made the subject of an investigation by Prof. N. H. Winchell, which was, however, not completed. The matter was subsequently taken up by the present writer, and a detailed account of it published in the Proceedings of the U. S. National Museum. The stone is described as consisting of a confused aggregate of irregular crystalline granules of clivine and pyroxene interspersed with numerous imperfectly outlined chondrules of the same mineral, throughout which are occasional interstitial areas of a colorless, pellucid, isotropic material referred to maskelynite. The pyroxenes are wholly of the enstatite type and devoid of twinned structure. The analyses yielded results as below:

Metallic constituents	11. 44
Silicate constituents.	88. 56
	100. 00
The silicate portion yielded:	
• •	Per cent,
Silica (SiO ₂)	43.70
Alumina (Ãl ₂ O ₃)	
Ferrous oxide (FeO)	
Manganous oxide (MnO)	
Nickel oxide (NiO)	
Lime (CaO)	2.19
Magnesia (MgO)	
Chromite (FeOCr ₂ O ₃)	80
	99. 91

The metallic portion, freed from the last trace of siliceous matter, yielded:

Iron (Fe)	
Nickel (Ni)	14. 15
Cobalt (Co)	. 74
Copper (Cu)	Trace.
	99, 89

a American Geologist, vol. 14, 1894, p. 389; vol. 17, 1896, p. 173; vol. 20, 1897, p. 316.

b Vol. 48, 1915, pp. 503-506,

A recalculation of these results gives the bulk or mass composition of the stone as follows:

		Per cent.
Silica (SiO ₂)		. 38.70
Ferrous oxide (FeO)		. 16.406
Manganous oxide (MnO)		336
Nickel oxide (NiO)		204
Maguesia (MgO)	••••••	. 26.018
Chromic oxide (Cr ₂ O ₃)		482
	•••••	
Metallic nickel (Ni)	•••••	. 1.608
		99. 891

No traces could be discovered of barium, strontium, zirconium, or potassium.

(12) Meteoric stone, Chondrite. Holbrook, Ariz. Described by Merrill.^a A gray chondritic stone, very fresh, having fallen on July 19, 1912. Contains very little metallic iron, but is correspondingly rich in sulphide. Analyses yielded:

	Per cent.
Schreibersite	0.11
Troilite	
Metal	
Silicates	
	100.00
The metallic portion yielded:	
	Per cent.
Nickel	8. 68
Cobalt	64
Copper	
Iron	
	100.11
The silicate portion yielded:	
• •	Per cent.
Silica (SiO ₂)	41. 93
Alumina (Al ₂ O ₃)	4. 30
Ferrous oxide (FeO)	
Lime (CaO)	
Soda (Na_2O)	
Magnesia (MgO)	
Manganous oxide (MnO)	25
Nickel oxide (NiO)	08
	99.92

Specific gravity at 22.6° C., 3.48.

None of the rarer elements under consideration were found, even in traces. The sulphide occurs in such forms as to be readily separated mechanically, and yielded on analysis:

	Per cent.
Iron	63.62
Sulphur	36.50
Nickel, cobalt, and copper	
	100.12

This shows the mineral to be troilite, though its specific gravity (4.61) is low. It is, however, wholly unattracted by the magnet, and apparently there is no question as to its true nature. Its occurrence in this form is interesting in a stone so low in the metallic constituent.

(13) Meteoric stone, Carbonaceous Chondrite (Ce).—Indarch, Elizabethpol, Russia. This interesting stone fell, according to Meunier, on the 9th of April, 1891. Although made the subject of numerous brief papers, it seems never to have been previously analyzed, and was, there-

3.762

fore, taken up in connection with the present work and a detailed description of it has been given in the Proceedings of the National Museum.^a The stone is there described as of a dark greenish gray color, firm and compact, admitting of a polish and thickly studded with small, dark, almost black chondrules and nodular masses of metal and troilite. A microscopic examination shows it to consist of a dense black irresolvable ground, throughout which are scattered iron and iron sulphide, together with abundant sharp splinters of pyroxene and numerous more or less fragmentary chondrules of the same mineral. No olivine, feldspar, or other silicate mineral was determined. The presence of carbonic acid, as shown by the analysis, suggested the mineral breunnerite, but this could not be determined absolutely owing to the obscuring effect of the abundant graphite. The sulphide of calcium, oldhamite, was detected both by chemical means and by the microscope. The analyses yielded results as follows:

Metallic portion separated by mercuric chloride solution:

	1 "	Per cent.
]	(ron (Fe)	90.44
	Nickel (Ni)	
	Cobalt (Co)	
	Phosphorus (P)	
Î	Manganese (Mn)	. 1.04
		100.00
Silie	ate portion, free as possible from the metal, sulphides, and graphite, yi	elded:
		Per cent.
	Silica (SiO ₂)	47.970
	Alumina (Al ₂ O ₃)	2.647
1	Ferrous oxide (FeO)	19.283
	Phosphoric acid (P ₂ O ₅)	
	Manganous oxide (MnO)	
	Nickel oxide (NiO)	
	Cobalt oxide (CoO)	
]	Lime (CaO)	1.559
	Magnesia (MgO)	
	Carbonic acid (CO ₂)	

A recalculation of these analyses gives the following, showing the composition of the stone as a whole:

Soda (Na₂O)...

Potash (K_2 O)...

Water (H_2O)

note.	Per cent.
Silica (SiO ₂)	
Alumina (Al ₂ O ₃)	
Ferrous oxide (FeO)	25.790
Manganous oxide (MnO)	. 130
Nickel oxide (NiO)	
Cobalt oxide (CoO).	
Lime (CaO)	
Magnesia (MgO)	
Carbonic acid (CO ₂)	. 271
Phosphoric acid (P ₂ O ₅)	
Water (H ₂ O)	
lron (Fe)	10.400
Nickel (Ni)	
Cobalt (Co)	. 020
Phosphorus (P)	. 092
Manganese (Mn)	. 119
Carbon (graphite) (C)	. 310
Sulphur (S)	5. 100
	102, 846
Minus O for S.	2. 54
-	100. 306

No barium, strontium, or zirconium could be detected.

The mineral composition so far as determined by analysis and microscopic examination is:

P	er cent.
Silicate (enstatite)	74.42
Metal	
Troilite 1	3.296
Oldhamite	. 596
Graphite	. 31
10	

Specific gravity, 3.42.

(14) Meteoric stone, Eukrite (Eu).—Juvinas, France. This stone has been widely circulated and is represented in all the collections of importance throughout the world. As a result it has been made the subject of numerous memoirs and briefer notices, Wülfing recording forty-seven titles in his catalogue. I find, however, no recorded analysis later than that quoted below, which dates back to 1848. In view of this, and the additional fact that it is a feld-spathic stone, it seemed worth the while to give it consideration here with especial reference to the possible occurrence of barium, strontium and zirconium. Wadsworth, in his review of the mineralogical determinations made by Rammelsberg, Tschermak, and others, states that the stone consists of anorthite and augite with small amounts of pyrrhotite and nickel-iron. Rammelsberg noted chromite and ilmenite, while Fouqué and Lévy detected also enstatite.

In Column I below are given the results obtained by Whitfield and in II those of Rammelsberg.

Constituents.	1	11
Silica (SiO ₂). Titanic oxide (TiO ₂). Alumin (AlaO ₃). Ferric oxide (Fe ₂ O ₃). Iron (Fe). Nickel oxide (NiO). Cobalt oxide (NiO). Ferrous oxide (FeO). Lime (CaO). Magnesia (MgO). Barium oxide (BaO). Strontium oxide (SrO). Zirconium oxide (ZrO).	Per cent. 47, 99 . 57 13, 50 . 22 Traces, . 11 Trace, 18, 63 10, 60 7, 20 None, None, None, None,	Per cent. 49, 23 10 12, 55 1, 21 16 20, 33 10, 23 6, 44
Soda ((R ₂ O). Soda (N ₂ O). Chromic oxide (Cr ₂ O ₃). Phosphoric acid (P ₂ O ₃). Sulphur (S). Sulphuric anhydride (SO ₃). Total.	. 55 Trace. None. . 054 . 02	

The amount of metal was so small as to make it practically impossible to determine the proportional amounts of nickel, cobalt, and iron. The SO₃ and a part of the Fe₂O₃ were doubtless derived from the iron sulphide through oxidation, and have so been considered in the final tabulation. Tests were made for oldhamite by boiling the powdered material in water, but no calcium could be detected. The absence of chromium in Whitfield's analysis is doubtless due to the sporadic occurrence of the mineral chromite and the small size of the sample submitted, but 9 grams being available.

(15) Meteoric stone, Black Chondrite (Cs).—McKinney, Collin County, Tex. Referred to by Brezina a and relegated to his Cs type, characterized by colorless chondrules firmly imbedded in a dark gray to black ground. The mineral composition and structure are given, but no analyses. Dr. Whitfield found the stone to consist of:

	rer cent.
Troilite	6.26
Schreibersite	58
Metal	
Chromite	
Silicate minerals	87. 35
	100.00

The	silicate	portion	vielded:
T 11/	SHICAG	DOT OTOTE	A TO TOTO ST.

	Per cent.
Silica (SiO ₂)	43.30
Alumina (Al ₂ O ₃)	15.18
Ferrous oxide (FeO)	8.45
Lime (CaO)	1.88
Magnesia (MgO)	30.48
Manganons oxide (MnO)	. 25
Nickel oxide (NiO)	. 51
	100.05
The metallic portion yielded:	
•	Per cent.
Iron (by difference)	85.84
Cobalt	. 92
Copper	. 08
Nickel	13. 16
	100.00

Barium, strontium and zirconium, in addition to the other rarer elements, were looked for but no traces discovered.

(16) Meteoric stone, Gray Chondrite (Cg).—Monroe, Cabarrus County, N. C. This stone has been briefly described by several writers and subjected to at least one previous chemical analysis. The first examination was made by C. U. Shepard a who relied for his mineralogical determinations upon the results of chemical analyses, thin sections at that date not being available. Wadsworth mentioned it briefly in his Lithological Studies, but added little excepting to justly remark that "judging from its general character Shepard's analysis is incorrect and it is hoped a new one may be made." Wülfing in his catalogue places the stone in Brezina's group, Cga, that is, with stones consisting of a tuff-like mass with variously colored chondrules firmly embedded in the ground. It remains to be stated that the chondrules are in part of olivine and in part of pyroxene, both varieties occurring in porphyritic or in barred or radiating forms. Two varieties of pyroxene are recognizable, the one obscurely twinned and monoclinic—the klinoenstatite variety—and the other occurring frequently in large pellucid forms and orthorhombic in crystallization. Metallic iron and iron sulphides with their oxidation products complete the list of recognizable minerals. The wide discrepancies between the analyses of Shepard and Whitfield can be accounted for on the supposition that the material utilized by the first named was not representative and his methods imperfect.

Shepard's analysis:

Snepard's analysis:	
	Per cent.
Silica (SiO ₂)	56.168
Ferrous oxide (FeO)	18.108
Magnesia (MgO)	10.406
Alumina (Al ₂ O ₃)	1.797
Nickel-iron with traces of chromium.	
Magnetic pyrite	3.807
Lime, soda, potash, and loss.	
	100.006
Whitfield's results as follows:	
Per cent.	
Silica (SiO_2)	
Alumina (Al ₂ O ₃)	
01 1 11 (0 0)	

GH as (GIO.)	00 71	1
Silica (SiO ₂)	. 30.71	
Alumina (Al ₂ O ₃)	. 3.59	
Chromic oxide (Cr ₂ O ₃)	. Trace.	N
Ferrous oxide (FeO).	. 14.80	Per cent.
Manganous oxide (MnO)	23	5 mcates 82.00
Nickel and cobalt oxides (NiOCoO)		
Lime (CaO)	. 2.27	
Magnesia (MgO)	. 24.54	J
Iron (Fe)	. 12.58	}
Nickel (Ni)		Metal 13. 54
Cobalt (Co)		J

Iron (Fe)	$\left. \begin{array}{c} 2.39 \\ 1.41 \end{array} \right\}$	Per cent. Troilite 3, 80
	99.01	1.0 00

No trace of barium, strontium, lithium, soda, potash, zirconium, or copper, could be discovered.

(17) Meteoric stone, Chondrite (Ci).—Ness County, Kans. Described by H. L. Ward.^a No analysis given. The stone was somewhat decomposed through weathering, but yielded approximately 15 per cent of nickeliferous iron which showed:

Copper		
Nickel		
Cobalt		. 20
Iron		92.04
	-	
		99.54

A bulk analysis in which all the combined and oxidized iron was determined as ferric oxide, yielded:

	Per cent.
Silica (SiO ₂)	38.340
Ferric oxide (Fe ₂ O ₃)	
Alumina (Al ₂ O ₃)	8, 259
Chromic oxide (Cr ₂ O ₃)	587
Lime (CaO)	
Magnesia (MgO)	24.040
Metal (FeNi)	15.000
Loss on ignition	3, 500
	99.457

Recalculating the first analysis in order to include the components of the metallic portions, and thus obtain the composition of the stone as a whole, we have:

	Per cent.
Silica (SiO ₂)	38. 340
Ferrie oxide (Fe ₂ O ₃)	8, 551
Alumina (Al_2O_3)	8. 259
Chromic oxide (Cr ₂ O ₂)	587
Lime (CaO)	1.180
Magnesia (MgO)	24.040
Loss on ignition	. 3.500
Iron (Fe)	13.860
Nickel (Ni)	1.050
Cobalt (Co)	030
Copper (Cu)	
	99, 447

None of the rarer elements were found. The high ignition is due largely to the hydrous sesquioxide of iron formed through weathering.

(18) Meteoric stone, Chondrite (Cc).—Selma. Ala. Described by Merrill^b but no analyses given. Examination of thin sections showed the presence of the usual sulphide particles together with olivine, enstatite, and a monoclinic pyroxene.

A bulk analysis as given in my preliminary report was so unsatisfactory, particularly with reference to the iron and alkali content, that additional material was selected and new analyses made with results as given below. No metallic iron could be detected, though whether or not this was due to oxidation, as seems probable from the high content of ferric oxide and water, could not be determined.

	Per cent.
Silica (SiO ₂)	31.06
Alumina (Al ₂ O ₃)	4.30
Phosphoric acid (P ₂ O ₅)	. 25
Chromic oxide $(Cr_2(t_3)$. 41
Ferrie oxide (Fe ₂ O ₃)	18. 15
Ferrous oxide (FeO)	13.07
Manganous oxide (MnO)	. 26
Nickel oxide (NiO)	1.45
Cobalt oxide (CoO)	. 15
Lime (CaO)	2.13
Magnesia (MgO)	21, 21
Soda (Na ₂ O)	3.96
Potash (\tilde{K}_2O)	. 07
Vanadium oxide (V ₂ O ₃)	Trace.
Water (H ₂ O)	3, 07
Troilite $\{(S), (Fe), ($. 19
Troute (Fe)	. 32
·	100. 05
	100.00

No traces of other constituents than those mentioned.

(19) Meteoric stone, Eukrite.—Stannern, Moravia. This stone, which fell on the 22d of May, 1808, has become, on account of its wide distribution in public and private collections throughout the world, one of the best known of meteorites. It naturally follows that it has been repeatedly the subject of investigation and publication. Wülfing's catalogue gives 74 independent publications between the date of fall and 1894, two of which included chemical analyses. Of these only that of Rammelsberg, given in Column II below, needs consideration. The latest analysis, by Whitfield, is given in column I. This was made with especial reference to the possible presence of barium, strontium, or zirconium, it being a feldspathic stone.

		I
Constitueuts.	I	11
	Per cent.	Per cent.
Silica (SiO ₂)	47, 94	48, 30
Titanic oxide (TiO2)	. 41	
Alumina (Al ₂ O ₃)	11.19	12.65
Ferric oxide (Fe ₂ O ₃)	_ 1.20	
lrou (Fe) Nickel oxide (NiO)	Trace.	
Nickel oxide (NiO)	. 25	· · · · • • • · · · · · ·
Cobalt (Co)	Trace.	
Ferrous oxide (FeO)	18, 97	19.32
Lime (CaO)	10.36	11. 27
Magnesia (MgO)	7.14	6.87
Manganous oxide (MnO)		. 81
Barium oxide (BaO)	None.	
Strontium oxide (SrO)	None.	
Zirconium oxide (ZrO)	None.	
Potash (K2O)	.13	. 23
Soda (Na ₂ O)	.75	.62
Chromic oxide (Cr ₂ O ₃)	.35	.54
Iron (Fe)	. 55	
Sulphur (S)		Trace.
Phosphoric acid (P2O6)	.14	
Ignition (H ₂ O)	.30	
Ignition (1130)	.00	
Total	99, 99	100, 61
- /		

(20) The three meteorites mentioned below were subject to partial analyses only.

Ballinoo, Australia.—Iron. Finest octahedrite. This iron, described by Sjöstrom,^a so closely resembles in its physical and chemical properties that of Perryville, Mo., that it was thought advisable to test it for the rarer or minor constituents not reported in its published analysis. A 30-gram fragment submitted to Dr. Whitfield showed neither platinum nor iridium, but on the other hand did show unmistakable traces of palladium and ruthenium.

Glorieta Mountain, N. Mex.—Iron. Medium octahedrite. This iron, described by G. F. Kunz, with analyses by L. G. Eakins b was stated to carry 0.03 per cent zinc. Dr. Whitfield, however, working on another portion, failed to find a trace of the metal.

Misshof, Courland, Russia.—Stone, Cc. Johanson's analysis shows 0.18 per cent Cu and 0.156 per cent SuO₂.^a Two fragments, one of 7 and one of 28 grams, were submitted to Dr. Whitfield, who reports 0.01 per cent Cu in the first and 0.008 per cent in the second, but no traces of tin in either.

IV. DISCUSSION OF RESULTS.

Gold and the platinoid elements.—It will be noted that our work has failed to substantiate the reported occurrence of gold in meteorites, either iron or the stony varieties, while the occurrence of platinum, palladium, iridium, and ruthenium in the irons appears proven beyond a doubt. That these last are not more frequently reported is probably due to the careful, detailed work involved in their determination, and perhaps also to their very irregular distribution, noted on page 5. The close relationship existing between the gold and platinum metals would render their association in the meteorites not surprising were it not that the mineral associations of the two are in terrestrial rocks so unlike, gold being rarely if ever reported from rocks as basic as the peridotites. I do not find, however, that the terrestrial peridotites have as yet been subjected to the careful scrutiny necessary to decide this absolutely.

While, however, Dr. Whitfield's analyses fail to bring to light a trace of gold, it should be noted that in addition to Liversidge's determinations, J. C. H. Mingaye,^b in a very thorough analysis of the Mount Dyrring, N. S. Wales, pallasite found traces of gold, together with platinum, iridium, and palladium. The same authority also reported platinum and iridium and traces of tin in the Barraba iron.

Phosphorus.—The phosphorus shown by analyses to occur in meteorites is usually relegated to the schreibersite of the metallic portion or to apatite of the silicate portion. So far as the writer at present recalls, the presence, in a meteorite, of the mineral apatite has been satisfactorily demonstrated by optical means in but a single instance, though Shepard claimed to have found in the Richmond, Va., stone particles of such size that he was able to isolate them for qualitative tests.^c These results, so far as I am aware, have never been corroborated. Berwerth d identified the mineral in granular, short, prismatic, and skeleton forms in the silicate secretions of the Kodaikanal iron.^e Numerous other supposed instances of its occurrence have been reported, based mainly upon the presence of a soluble phosphate in the silicate or nonmetallic portions. That the phosphatic mineral is not schreibersite is conclusively shown by its solubility, and the presence of lime in the same soluble portions is naturally suggestive of its combination as apatite, the form in which it exists in corresponding igneous rocks. In my own work I have repeatedly obtained reactions for phosphorus by digesting for a short time the pulverized stony material in an acid solution far too weak to attack the schreibersite. This is the case with the Alfianello, Bluff, Dhurmsala, Estherville, Farmington, Felix, Indarch, Quenggouk, and several other stones which have been examined.

Investigations made to settle the question of its occurrence in some other form of combination than that of apatite have yielded unexpected results which may be briefly mentioned here, though elaborated elsewhere. It may be recalled that in the writer's description of the meteorite from Rich Mountain, N. C., he mentioned the occurrence of a doubtful mineral occurring in plates of irregular outline, faintly gray or almost completely colorless, showing very faint, short, sharp cleavage lines with weak polarization colors, and which were optically biaxial. This he referred to the monticellite-like mineral described by Tschermak, he though confessing to a feeling of doubt as to its true nature. Since Tschermak's writing the mineral has been ob-

a Arb. des Natur. Vereins zu Riga, Neue Folge, Siebentes Helt, 1891, p. 51.

b Records Geol. Surv., N. S. Wales, vol. 7, pt. 4, 1904, p. 305.

Amer. Journ. Sci., vol. 45, 1843, p. 102.

d Tsch. Min. Pet. Mittheil., vol. 25, 1906, p. 188.

c Tschermak in his paper on the Angra dos Reis meteorite describes a singly refracting, optically negative, colorless mineral concerning which he remarks, "Man kann wohl als sicher annehmen, dass diese Körnchen dem Apatite angehören." This occurrence was overlooked in my paper on the monticellite-like mineral in meteorites elsewhere referred to.

f See "On the Monticellite-like Mineral in Meteorites," Proc. Nat. Acad. Sci., vol. 1, 1915.

g Proc. U. S. Nat. Mus., vol. 32, 1907, p. 243.

A Sitz, k. Akad, Wiss, Wien, vol. 88, 1883, p. 355.

served by numerous other investigators, the more recent notices being those of Lacroix in the stone of St. Christophe la Chartreuse, and Borgström in the stone of St. Michel, Finland. In connection with the present investigations it was determined if possible to settle the identity of this mineral. With this in view, slides of both the Rich Mountain and Alfianello stones were submitted to Dr. F. E. Wright, of the Geophysical Laboratory, who reported the refractive indices of the mineral in question as $\alpha = 1.623 \pm 0.002$, $\gamma = 1.627 \pm 0.002$, birefringence weak, less than 0.005, and interference colors not exceeding gray white of the first order. The additional data still left the exact mineral species undetermined, though the refractive indices suggested that if a known mineral it is allied to the phosphate francolite. With this in mind, several slides, embracing those of Alfianello and Rich Mountain, were uncovered, and the mineral submitted to microchemical tests, which proved conclusively its phosphatic nature. The objections to considering the mineral francolite are, that so far as known among terrestrial rocks this mineral is of secondary origin, and a product of aqueous deposition, thus suggesting conditions which are not supposed to prevail among meteorites.

Farrington, it will be recalled, thought to have found native phosphorus in the meteorite of Saline County, Kans. Notwithstanding the care exercised in his determinations, one can but feel that the observations need corroboration before acceptance. The stone had lain some three years in the ground when found and the examinations were not made for a year or so later. Under these conditions, when the nature of phosphorus is considered, it seems well-nigh impossible that material so susceptible to change could have remained unaltered.

Silica or silicon is not infrequently reported in analyses of meteoric iron in amounts rarely exceeding 0.2 of 1 per cent. The condition under which the element exists is in some cases at least problematical. Hunt and Silliman, in describing the iron of Lockport (Cambria), N. Y., d refer to a reddish brown residue obtained by them as being "either silica with a trace of carbon or silicon," which last, they add, "Prof. Shepard has already shown to exist in the Oswego iron." Prof. Shepard, however, in his paper simply tabulates his results as "Silicon 0. 20 per cent" and does not commit himself as to the condition under which the element may exist. Prof. Mallet, in his analysis of the Staunton, Va., iron, gives 0.067 per cent, 0.061 and 0.056 per cent SiO₂, but adds by way of explanation, "some of it (i. e., the Si) seems to have in reality existed as a silicide of iron." e Cohen, in his Meteoritenkunde (p. 55), refers the Ca, Mg, Al, K, and N very properly to the silicate minerals, and adds, "Das gleiche gilt wohl auch in der Regel für Silicium; doch führte Winkler in metallischen Theil von Rittersgrün gefundene Kieselsäure auf Silicium zurück, welches mit Eisen verbunden war, und nahm das Vorhandensein eines Siliciumeisen von der Formel Fe₂Si an, dessen Menge er für das Nickeleisen zu 0.329 Procent berechnete." Tassin in 1907 announced verbally in an informal communication before the National Academy of Sciences "the discovery of elemental silicon" in the meteoric iron of Casas Grandes, Mexico, incidentally claiming it as "the first announcement of the occurrence of this element in nature." With reference to these reports it may be stated that an examination of the insoluble residues from all of these irons reveals the presence of minute particles of quartz, sometimes shreds of glass and sundry silicates. It seems most probable, therefore, that the small percentage of this constituent found had existed either as free quartz (SiO₂) or as a silicide of iron. Until the element shall be actually isolated it is unsafe to claim its existence in other form than that of combination with other elements.

a Bull. Soc. sci. nat. Ouest, 2d ser., vol. 6, 1906, p. 81.

b Bull, Com. Geol. Finlande, No. 34, 1912

c Amer. Journ. Sci., vol. 15, 1903, p. 71.

d Amer. Journ. Sci., vol. 2, 1846, p. 374.

ε Amer. Journ. Sci., vol. 2, 1871, p. 14.

f See Cohen & Weinschenk on the Toluca, Mexico, meteoric iron, Meteoreisen-Studien, Ann. k. k. Hof.-Mus., 1891, p. 140. It should be added, however, that personally I regard the preterrestrial origin of these particles as open to serious doubt. In residues from a quantity of shavings from the Casas Grandes iron and from a 10-gram piece showing a portion of the original surface, though carefully cleansed, I found easily recognizable, clear, glassy quartz, both in form of crystals and angular fragments, shreds of colorless glass and also undetermined silicate minerals. Two other determinations on pieces cut from a depth of 2 centimeters below the surface yielded no such results, the residues being clean graphitic particles and schreibersite flakes. A few minute, colorless, isotropic particles, too small to manipulate, were crushed under the microscope between glass slides and were found to scratch and bite into the glass with all the energy of the diamond.

Sulphur.—The sulphur in meteorites is unquestionably combined in large part with iron, though the form of combination, whether as troilite or pyrrhotite or some intermediate compound, is recognized as still open to discussion. The work of Dr. E. T. Allen, of the Geophysical Laboratory, has shown that in the presence of an excessive amount of iron apparently only the mono-sulphide is possible of formation. That it sometimes occurs in this form in stony meteorites poor in iron has been shown by the writer a and also by Ramsay and Borgström. The subject is thoroughly reviewed up to date of publication by Cohen in his Meteoritenkunde (vol. 1, 1894, pp. 182–209), and it is evident that further work is needed before the question can be considered fully decided. A portion of the sulphur, and one that heretofore has been almost wholly ignored if not overlooked, is that combined with calcium in the form of—

Oldhamite.—The presence of this sulphide was first noted in 1870 by Maskelyne in the meteorite of Busti. ^c Its probable occurrence was also suggested in that of Bishopville. Since that time the mineral has been determined both chemically and microscopically by Borgström in the meteorite of Hvittis, and by Lacroix and the present writer in that of Indarch. Its probable presence as indicated by a soluble calcium-bearing mineral (oldhamite or its alteration product gypsum) has been also shown by the present writer in the stones of Morristown ^d and Cullison, and in that of Allegan by Tassin. ^c These results rendering it probable that, as suggested by Maskelyne, the mineral was more commonly distributed than the published description would lead one to suppose, quantities of a gram or so from each of the stones listed below were finely pulverized and boiled for an hour in distilled water, the solutions being then tested for calcium by the ordinary ammonium oxalate method. The residues from this boiling were in some cases boiled also in very dilute hydrochloric acid and the solutions tested for phosphoric acid, with a view of deciding if the phosphorus shown in the bulk analyses was from the schreibersite, which would be insoluble under these conditions, or existed in the form of apatite or other soluble mineral. The results of the calcium tests were as follows:

Alfianello	
Allegan f	Positive reaction.
Beaver Creek	Negative reaction.
Bishopville	Positive reaction.
Cullison	Positive reaction.
Dhnrmsala	Positive reaction.
Dores dos Campos	Positive reaction.
Estherville	
Farmington	Faint positive reaction.
Fayette	
Felix	
Forest City	Positive reaction.
Hessle	Faint positive reaction.
Holbrook	
Homestead	Positive reaction.
Knyahinya	Negative reaction.
L'Aigle	
Mocs	
Monroe	
New Concord	Doubtful reaction.
Parnallee	Faint positive reaction.
Pultusk	Positive reaction.
Quenggouk	Positive reaction.
Stannern	
Tennasilm	

a A recent meteorite fall near Holbrook, Ariz., Smithsonian Misc. Coll., vol. 60, No. 9, 1912, p. 4.

b Bull. Com. Geol. Finlande, No. 12, 1912.

c Phil. Trans. Roy. Soc. London, vol. 160, 1870, pp. 189-214.

d Amer. Journ. Sci., vol. 4, 1896, p. 149.

e Proc. U. S. Nat. Mus., vol. 34, 1908. p. 433.

f Quantitative tests on this stone by Whitfield show hut 0.064 per cent of this constituent, as against upwards of 6 per cent as found by Tassin (Proc. U. S. N. M., vol. 34, 1908, p. 433). Although not so stated, it seems probable that the latter used an acid solution and decomposed in part the phosphatic mineral and iron sulphide. This would account for the present writer's inability to detect the mineral in the thin section.

There being a question, which is suggested by Maskelyne's description of the Busti stone, as to the sporadic occurrence of the calcium sulphide, three individuals from the Pultusk fall were selected and tested, two of which yielded distinct traces of calcium in the water solution, while the third showed not the slightest trace. The results then are apparently to the effect that oldhamite, or its alteration product, is a fairly common constituent of meteorites, but that it is by no means uniformly distributed throughout the mass of the stone. The cause of its being overlooked is doubtless due in part to the small size of the granules, to their breaking away in the process of cutting the section, or to the obscure form of its alteration products. The most careful examination by the writer has failed to reveal it in distinct crystalline form in any of the cases listed above.

Tin.—The occurrence of this metal has for a long time been regarded as open to question by the writer, notwithstanding the apparent care and skill under which the various analyses had been made. The skepticism was based in part upon the conditions under which the metal occurs in terrestrial rocks, where, as is well known, it is limited almost wholly to acidic types; in but two exceptions has it been found to occur in rocks of intermediate (andesitic) type. Genetically then it is fair to assume there is some connection. Among the common mineral associations of terrestrial tin, in the form in which it usually occurs (cassiterite) are, further, several very characteristic species such as fluorite, tourmaline, wolframite, topaz, etc., which are utterly unknown in meteorites. It is of course possible that the metal, if present, is in the form of the sulphide (stannite) or as an alloy with iron, but none of the recorded analyses of meteoric sulphides show a trace of the element, nor do analyses of terrestrial irons, as those of Ovifak, Greenland, or the various terrestrial nickel-irons as josephinite, awaruite, etc.^a

Other elements reported.—Concerning the occurrence and distribution of some of the other less abundant elements, there is still a lingering doubt. The reported occurrence of titanium, nickel, cobalt, and chromium in the silicate portions, freed from metal, may reasonably be construed as indicating their combination in silicate compounds, particularly the pyroxenes, as in terrestrial rocks. Dr. Whitfield in his analyses has aimed at deciding this by exercising particular caution in separating the metallic from the nonmetallic portions. The analyses of the latter, it will be noted, still show small amounts of nickel and cobalt. It may be recalled in this connection that Tschermak b reported 2.39 per cent TiO₂ in the meteorite of Angra dos Reis, all of which he relegated to the augitic constituent.

v. résumé.

To sum up in brief the results of this investigation: So far as the minor elements are concerned, we have not merely failed to confirm but in most instances have thrown grave doubts on previous determinations of antimony, arsenic, gold, lead, tin, tungsten, uranium, and zine. The occasional presence of platinum is apparently confirmed beyond question, and in two instances of vanadium.^c Palladium, ruthenium, and iridium have also been found in traces. It is very probable that further investigations on the iron meteorites would yield confirmatory results. The presence of platinum was to be expected from the analogy with the terrestrial sources of this metal. Vanadium and titanium were also not unexpected in view of their widespread occurrence in terrestrial peridotites, as shown by Hillebrand's investigations.^d

The apparent universal absence of barium and strontium may perhaps be accounted for by the paucity of the meteorites examined in feldspathic minerals. It is unfortunate that the National Museum collections are very poor in feldspathic types, and the prices per gram asked by dealers, and even other museums and collectors, are practically prohibitive.

a These analyses are brought together in convenient form and discussed on pp. 313-15, 2nd. ed. of Clarke's Data of Geochemistry.

b Tsch. Min. Pet. Mittheil, vol. 28, 1909, pp. 110-114.

c Traces of vanadium are also reported by H. C. White (Records Geol, Surv. N. S. Wales, vol. 7, 1904, p. 312) in the meteorite of Mount Browne. d Bull. 167 U. S. Geol, Surv., pp. 49-55.

ω Ward's Values of Meteorites quotes prices of the feldspar-bearing Eukrites and Howardites varying from \$1 to \$4 per gram. The Juvinas and Stannern among the Eukrites alone drop to prices from 50 cents to \$2 a gram.

30				
		Ş.		
(4)				

tpt i	Dress	Anger	80 67 - 8104	110	11311	Legio	11	1.11		Nito		1-	1.10	Mgr	M ₁	Nagti	К,0		1 1	P205	H ₂ (1	H ₂ O +110°		Mise	Tutals	Remark	Total known weight of full.
																			_								Grome,
Mul	1571	II ite	MI to I							Line			1 ";	21.00	11.5	1,0	1.25	1.54		0.75	(1.7)()	0.49		Proposition, Living	10 on 4	Na Ba or Sr = Carries uldfisamite	14 3100
10.		Mad on					- [11					~19	21.15	1	1.09	-4	274	0.15					1140-0402	771.9%	The second secon	54, 466
Ber Br		lands a grand Tochro mak	1.95					. 11					24.50	Jit 105		20	19	4>		10.10					100 02	1	,500E2,000
		u 10 Pelor	0.00		7.30			1 49 1					1.70	24.71	Trii	91	194	2.47		25	17				100 €	No Ba of St	2,000+
trial for		V. J. IDDHeland	13		2.17	- 1		50 PF J	1.20					25.75	-	*1)	199	[+]		25	25			C (13) 100	1918-181		14,000
0.00		L. I. Widinell	0.04		1 (8)			1 10	(1.1.)			France		11				217		1	1	1915			1	Na Ba, Sr, or Zr. Carries oldhamits	5,100
to Linkwel		W. Brun	1, +				11	1 41		1.54	111			25.75				1.05	H	25 1					200.04		490; (m) 146; 003
11		F Whithold F Pento II			7.17	6. 31	5 9 H	121		1 .*				21.15				2.07		21	47		0.01		100-00		2,0%+
to reduce Mo		L. Whicheld	1.0		1	Ti-	17-01		1.19		194		1.5	21.17		, D	24			j						No As, 8h Un PL or other minor constituent found	4, 500
1 1 an	1.61	do	1.7.1 30		1.15	0 2			1.30		1617			7000					0118				91"	1.11.11.00%	1006.53		10, 100
eta Lyspe		r F Irm	17 15 96		1.71			19 44 1	1911					11.10			H	1501			n;					No Ba Sr or Zr found.	18,904
a Creek Kon		1 Whitheld	10.2	and a	2.83	120	1.41	15.7	1.00		161			27.40			Norm	1.10	15			4.75		1.01.00		1 do	7,075 290 001
and the		M. Duybon G. Lukhi	11.9		1 1			12	- 11		10							1.4							100 00		54,000
		Lineman	x 10 %		21	i .		26.12		1 1	115		1 10	11.74			14	1 *1			Po		131	t n n n n	194-71	· ,	2,649
T. Mani		1. Whithold	1 100		1.24			6 15 1		201	1153		1.8	2002			90	True								No Ba, St, Zt, or K found.	9, 900
top title, loss		to Lakin			2.08	por {	121	16-25	1.19] 1	1.		1.11	25.94			1150	2.25							91.00		122,037
Header are like 100	1901 - 3	A La In	D. 18		2.20			{ PI }	21		115			28.62			10	1.61	012						99.45		6,000
He cowedon		C. Norden kjart	49, 91		1 44	ri -	4 *1 1	11.14	2.10		Trin			2 + 100				15	1100					CH4-SH400 CH400	99 82		.22,895 218,310
Hadron At Hara Embart		I Whitneys	11.5		1.76	- a 15	1.7	PC 13	1.0				1.11	25.45		12		2.75	11%					1111101	100-25	Nu traces of other manor constituents ,	14,040
Li Santa, Januari		1. Whitheld	42 5 (0)		1.6	187	5 10 1	H o	9.		112	1949	1.15	(E-1)	1			. 10	$(1!)_a^{-1}$	12	2.50		- 4			1 No traces of other constituents than those noted - Carries oldhamite,	27,000
h as eather	1000	M. Lo mit ch	9.95		1 >>	50 [1]	1311	21 - 29			45			25.00										Firtrace.	199-28		33,430
to and Lan		B. S. Wichilligton. J. E. Whittheld	1 11	Him	0.77	lier I	- 1	27.55			Line.	Line		21.79			25	1.88		f.	.1	18.0			98, 90	No Fa. St. Zr. and but 0.0008 per cent metal.	29, 543 50, 641
Eripor Eribor Eripor e Bruzio		M. J. Pirani	2.97					18 5 T						2.18			Tran	2.15						Lutrace	100.77		50,100
Fire Lineau	1591	- Kutela	1.67 1.08		Live	11.		D 1	3.9	i				22.61		11		2.09	d.						99.75		7,008
Khon Wonden Tru > Lendondore, Bee nee	1541	Transmit Lorg Letter	10.04				21 (9) [0] 37		1.0					21.13				2.69	102					5 0 0 05 Subtr	[00 0] [00 2]		3, 250
Lugin Sermon	1.4	Ludmi	4 41 65		2.11	0 (311	3.0						7.12				1.84			12				99.19		1 512
Living has Di	91 1	V. Loutillion	0.35			41 D	0.9.	21 1	1.707				11.00		100	1 -	true	2 121	14						100 st	n e e e e e e e e e e e e e e e e e e e	20,000
Lord mid-fair		I. W. Sachol	1 5.65		111	1.33	1.00	2. 80			11	186		22.73	Fri		0.1	2.18	100		1 2			£ 11 D 04	181 17		11,000
Land of sec.		Condition of a Condition of the Conditio	6 96		1 29		I In District	1.15		11	11.2		1.4	2.1				2.28	0.7				11/2	C 11 10 10 04	100.00	No tracos found of Da, Sr, Ar, or other range constituents	300 000
far man be to		L.L. on Leather	10.1		1.00			201	- 4 !				1.0				-		20						100.74		2,196
at the factor		feliam o	1.9			10 !	1011		1									2.29						0 1 0 100 5 800 3 1 0 1 o 1 o 0 0	1 90 72	·	5,841
Mac Victor		V 1 ×1	Kp 1			1.66		200 }	1 %					17.7	111	1000		2.17	41				1.1	Litt, frace,	199		245,000
Modern Lore	1.80	W. Tu	11.1								43 1		1 (25.3		· · · · ·	$\exists \ r \mapsto r$								04.10		15,000
Mention	1.11	to William Co.)			20 × 6.	J. 21.1	15 -0		100	1			$-2s\cdot d$			1911	1.0							99.31	So constituents other than those enhalpted could be detected	7,800
Monate Distriction of the Co.	to the second	II I Who	1 -1					-1																P. G. 181 55	1 100 00	Su Ra, Sr, 2r +1 Su, Su, 14.	25, 230
and Comment Com-		L.L. smire	11		14		1.		1.4		- 1			1 4										Trans	100.00		(50, 1 rl0
and the		L. H. von Dagono. Liver	1000			1.		144		1															100.00		1,.948
and the first		M. Landalettand P. Landanett	+ 1		1911								1.0					1					2.70		90 0		2, 658
to me or Auto-		1 Smith	1 .				ENG.		11				2.41					1.129							1915		140
to their ephic branes.		V. Luctor	1.0			[1 . 1	1 - 14					1.4	. 10			15								[90]n		5,540
2 Mart 10 c		Litohan						1 41	1 0					Ŋ.									66 x	7 To 2 1 month		Contain oldfornite	13,743
2. Michael Lorent Land		L. H. Dony Alema BCAV Suchol						Lag t		- (0.1		2.6	21 1			I IP	1						1 10 01	190 26 199 33		7,000 20,000
a Laster		t minds						1 4 1					1.5	2.4				. 101		20	14				100 1		473
chamed cr. 11		W. Caluplan						101																	2100 cm;		5,815
Con Ale		L. L. Witpeliert						1 1 1		1 1												0."		IV D. The	200-20	Contains traces of $V(\epsilon)$ but menther minor constitue at $(1,\alpha)$, are mentioned.	140,000
hillionis Canata	1.00	1. H. Box 1977 a.	9.13					1.0			11			/				1 (1									{s, 1400
Stabligher - e ten Tannen Anthor	1598	6. Lind tron	1 1								1.						1		1.1	1.		-		(Little	9 51		54 000 2 000
Limite thin Teach		G. L. schilling	15 (1					1 1)			1.111.0		L 26			200								90.91	h	25, 480
The Character St.		L. S. Lakto E. H. von Starios	H .				1 - 1	1 01		2				-1.91			10				5.4			1 o 11 oc 1 o 0 025	100 To		2, 200
Water Land		hanst G. J. Proc	The second			11 1	2.201	1 1	1.1					24 - 47			11	1.94	100					- 0.000	200 10		9, 7/41
	1 1 1 1 1		1			į	11.	1 11 1						2 10				1.20	1 0	1	T,				2.40		nknowi)
						-																					

It may be added that there must invariably be more or less variation in the proportional amounts of the different elements as found by analysis, owing to the difficulties in sampling, without sacrificing what is felt to be too large a quantity of material, a rock in which metallic iron is so prominent a constituent. This might account for the failure on the part of some to detect platinum and allied elements, or such minerals as oldhamite and the problematic phosphate. An analysis of the stony forms, accompanied, as it always should be, by an examination in thin section, leaves, however, little excuse for lapses of this nature. The reported occurrences in the older analyses of elements not found in later investigations may very naturally be ascribed, in part, to impure chemicals.

VI. TABLE OF ANALYSES AND DISCUSSION.

In the following table the writer has brought together the more satisfactory complete analyses of stony meteorites made during the progress of this investigation, as well as such made by others as seem up to the modern standard. In this work of compilation, analyses have been ruled out in most cases in which the totals fell 1 per cent and more short of 100 per cent, and also those that footed up approximately to 100 per cent, but in which certain elements which were obviously present were not mentioned. It is, of course, possible that in all cases full justice in the selections has not been done to the other workers, but the error, if there is one, is of omission rather than commission.

The purpose of tabulation in this form is to render the analyses comparable with those of terrestrial rocks. In the work of preparation it has been necessary to recalculate in part several of them. Those constituents the statement of which required most frequent attention have been the ferrous sulphide which has been tabulated as Fe and S; the ferric oxide, which is mainly secondary, and has been recalculated as ferrous, and the chromite which has been recalculated as chromic oxide (Cr₂O₃) and ferrous oxide (FeO), a proceeding which is recognized as not absolutely correct, since the meteoric chromites almost invariably contain several per cent of alumina and appreciable quantities of magnesia. The phosphorus has been allowed to stand as given, either as P or P₂O₅, though the probabilities are that it belongs in all cases to the silicate portion, and to be consistent should be tabulated as P₂O₅. The recalculation and tabulation of the iron in the sulphide as Fe is also open to question, and hence in such cases the percentage amounts are inclosed in brackets. In all these cases the sulphide is assumed to be in the form of FeS. Where an element has been recalculated as an oxide or the reverse, allowance for the gain or loss in the total percentages has been made in the customary manner.

It is to be noted that one of the most common and widely disseminated of the minor meteoric constituents—chlorine—has been ignored in this investigation, as in that of the majority of workers on stony meteorites. This is due in part to the ready oxidation of the mineral lawrencite, in which it mainly occurs, and in part to its seemingly trifling amount. Its presence in other form of combination than with iron—and perhaps nickel—has yet to be satisfactorily shown.^a As will be seen by reference to the table, I have found but five recorded determinations from which to calculate averages.

The above analyses, it will be noted, cover, to a fair extent, the entire range in composition of the stony meteorites. Although the number is small, it will nevertheless be not without interest to average them, as was done in my paper of 1909, and by Farrington at a later date. b In making this average I have adhered to the plan first adopted of considering only the actual determinations of any particular constituent. Further, it has seemed advisable to rule out a few cases in which the percentage amounts of any constituent were so high as to be considered anomalous, as that of 2.39 per cent TiO₂ in the stone of Angra dos Reis, or 6.33 per cent Cr₂O₃ in that of Long Island.

This elimination is of course open to serious objection, and the question may well be raised as to the desirability of omitting entirely from the calculations the analyses in which such anomalies occur. The only answer that can be given is that in so doing the total number would be so reduced as to make any average of little interest. But it must be borne in mind that the value of any average that can be made to-day lies not in its showing the actual average composition, but rather in showing what has been done and inferentially what remains to be

The figures given in column I are therefore averages of 53 analyses with the 15 exceptions noted. In column II is shown for comparison the average composition of terrestrial igneous rocks, and in III that of the lithosphere, as given by Clarke.^c In columns IV and V are repeated the meteoric averages given in my previous paper and that of Dr. Farrington.

Average composition of stony meteorites compared with terrestrial rocks.

Constituents.	I	11	111	IV	V
	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
SiO2	38, 68	59.93	59, 85	38, 732	39, 12
TiO2	. 18 1	.74	. 73		. 02
SnO ₂	None.	• • • • • • • • • • • • • • • • • • • •			. 02
ZrO ₂	None.	. 03	.03		
Al_2O_3	2.88	14.97	14, 87	2.733	2.62
Fe ₂ (1 ₃		2.58	2, 63	1	.38
CroO3	. 472	. 05	.05	. 835	. 41
V2O3	Trace.	.02	.02	í	
Fe	11.98			11.536	11.46
Ni	1.153			1.312	1.15
Co	.074			1.312	.05
FeO	14, 58	3.42	3, 35	16.435	16. 13
NiO	. 485	. 03	.03		.21
CoO	.066				
CaO	2.42	4.78	4.81	1.758	2.31
BaO	None.	. 11	. 10		
MgO	22.67	3.85	3.77	22.884	22.42
MnO	. 29 7	. 10	.09	. 556	. 18
SrO	None.	. 04	.04		
Na ₂ O	. 87 8	3.40	3.29	.943	. 81
K ₂ O	.219	2.99	3.02	.328	.20
Li ₂ O	Trace.	.01	.01		.
H ₂ O (Ign.)	. 75 10	1.94	2.05		. 20
P ₀ O ₅	. 26 9	. 26	. 25		. 12
8	1.8011	.11	. 10	1.839	1.98
Cu	. 014 12				
C	. 15 13		.03		.06
Cl	.0814	.06	.06		
F	?	. 10	. 10		
CO_2	?	.48	. 70		
SO ₃		l	. 02		
Ni,Mn	}				.02
Cn,Sn	9				
Totals	100, 044	100.00	100,00	99, 891	99. 87

Average of 46 determinations.

A verage of 42 determinations.
3 A verage of 50 determinations.
4 A verage of 50 determinations.
4 A verage of 19 determinations.
5 A verage of 6 determinations.
7 A verage of 33 determinations.

⁸ Average of 49 determinations.

⁹ Average of 44 determinations, 10 Average of 15 determinations.

¹¹ Average of 51 determinations.
12 Average of 16 determinations.

Average of 8 determinations.
 Average of 5 determinations.

a Amer. Journ. Sci., vol. 27, p. 469.

c Bull, 491, U. S. Geol, Surv., 1911, p. 32.

b Publ. 151 Field Mus. Nat. Hist., Geol. Series, vol. 3, No. 9, 1911.

It is, I think, commonly recognized by all who have given the matter thought, that greater uniformity in both method and statement of meteorite analyses is desirable. That the prevailing practice of separation into soluble and insoluble portions is also desirable is, I believe, without question, but the results of these processes can be accepted as little more than suggestive and not final, unless accompanied by a careful and detailed microscopic examination.

The solution obtained by digestion in distilled water will show with a fair degree of safety, the presence, or absence, of calcium sulphide and ferrous chloride as well as ferrous decomposition products, and the metallic and silicate portions be left practically untouched. The moment an neid is added, however, care needs be exercised in the interpretation of results since one has no means of telling how complete may have been the solution of the "soluble" constituents or the extent to which the "insoluble" may have been attacked. To illustrate: It was found, when working on the olivine of the Admire pallasite, that the material when not reduced to an impalpable powder was not completely dissolved even through repeated digestions over the steam bath in standard hydrochloric acid and sodium carbonate solutions, but left, without previous evaporation to dryness, a skeleton residue of white and completely isotropic silica, amounting to some 13 per cent of the original material. As showing the approximate proportional amounts of the olivines and pyroxenes the method is, however, unquestionably useful, particularly when accompanied by the microscopic examination. The late work of Borgström, a Prior, b and Cohen furnishes an excellent example of what may be accomplished, and certainly the carefully detailed analyses of Mingaye d leave little to be desired. The practice, within the prescribed limits, of stating what elements were looked for and not found, as well as what were found, is worthy of commendation and should be followed. Such extremely careful and detailed work as has in times past been done by Fletcher is quite beyond the possibility of general practice, and with the now almost universal use of the microscope is perhaps not essential.

O

e Min. Mag., vol. 10, No. 48, 1894, and vol. 13, No. 59, 1901.

a Der Meteorit von St. Michel, Bull. Com. Geologique de Finland, No. 34, 1912.

b The Meteoric Stones of Baroti, etc., Min. Mag., Dec., 1913.

On the Meteoric Stone which Fell at the Mission of St. Marks, etc. Ann. South African Museum, vol. 5, 1905.

d Notes on, and analyses of, the Mount Dyrring, Barraba, and Cowra Meteorites. Records Gool, Surv. N. S. Wales, vol. 7, 1904.

	-Te>			
>-				
			-8	

MEMOIRS

OF THE

NATIONAL ACADEMY OF SCIENCES

Volume XIV

SECOND MEMOIR

NATIONAL ACADEMY OF SCIENCES.

Volume XIV. SECOND MEMOIR.

COMPLETE CLASSIFICATION OF THE TRIAD SYSTEMS ON FIFTEEN ELEMENTS.

 \mathbf{BY}

H. S. WHITE, F. N. COLE, AND LOUISE D. CUMMINGS.

TABLE OF CONTENTS.

	Page.
Part 1. Triad systems on 15 elements whose group is of order higher than unity	5
By H. S. White.	
Part 2. Trains for triad systems on 15 elements whose group is of order higher than unity	27
By Louise D. Cummings.	
Part 3. Groupless triad systems on 15 elements.	69
By H. S. White and Louise D. Cummings.	
PART 4. Structure as defined by interlacings, heads, and semiheads; a complete census of triad systems in 15	
elements.	73
By F. N. Cole.	
Part 5. Sequences and indices for all groupless triad systems on 15 elements	81
By Louise D. Cummings.	

3

	, å		
		•	

PART 1.

TRIAD SYSTEMS ON 15 ELEMENTS WHOSE GROUP IS OF ORDER HIGHER THAN UNITY.

By H. S. White.

§ 1. INTRODUCTION.

The problem which first led to the study of triad systems (Tripel-systeme) was proposed in the first place for 15 elements, Kirkman's "Fifteen schoolgirls problem." In various journals, during the past 60 years, are described many different ways of constructing triad systems on 15 things. There was not known, prior to 1912, any short and decisive method for comparing systems apparently different; accordingly duplicates were produced, and up to 1912 only 10 noncongruent systems had been found. A triad system, like any other arrangement of elements, may have its appearance changed while its structure is unaltered by a permutation among the elements—a substitution. When one system can be derived from another by a substitution, the two are called congruent or equivalent; otherwise they are incongruent or nonequivalent. If there are substitutions which transform a system into itself (usually permuting its triads among themselves), all such substitutions together are called the group of that triad system.

The number of elements in a triad system must be of the form 6n+1 or 6n+3, where n is an integer.² Such numbers are 3, 7, 9, 13, 15, 19, etc. For any number of elements under 15 the exact number of nonequivalent triad systems has been known for some time, namely, one system for each of the numbers 3, 7, 9, while for 13 there are two systems. These two systems on 13 elements have different groups, of orders 6 and 39, respectively. One might anticipate that for numbers above 13 the same thing might happen, so that the group would serve as a distinctive mark or characteristic for its system. Miss Cummings has shown, however, that for 15 the case is different; that sometimes the same group belongs to two or more incongruent systems.³

Another test has been employed by E. H. Moore to prove the nonequivalence of two systems.⁴ If among the 35 triads in 15 elements there occur 7 triads on any 7 elements, exclusively, the larger system, which Moore denotes by \triangle_{15} , is said to contain the smaller, a \triangle_7 . Then if one \triangle_{15} does contain a \triangle_7 , while another does not contain any \triangle_7 , the two are obviously incongruent. But this is of course not a conclusive test for equivalence, since Miss Cummings has found 23 incongruent \triangle_{15} 's, each of which does contain a \triangle_7 .

Probably it has been the lack of convenient and reliable tests for equivalence or non-equivalence that has deterred investigators from the task of finding how many essentially distinct triad systems are possible in 15 elements. But now we have available two distinct methods of comparison, both of which have given reliable results, positive as well as negative, in all cases where they have been tried, although their value as positive tests of equivalence still lacks a priori demonstration. One of these, the method of trains, uses a given triad system

¹ T. P. Kirkman: On a problem in combinations. Cambridge and Dublin Mathematical Journal, vol. 2 (1847), p. 191. See also Note on an unanswered prize question, ibidem, vol. 5 (1850), p. 255.

² Netto: Substitutionentheorie, p. 220, § 192.

L. D. Cummings: Note on the groups for triple systems. Bulletin of the American Mathematical Society, vol. 19 (1913), p. 355.

⁴ E. Hastings Moore: Concerning triple systems. Mathematische Annalen, vol. 43 (1893), p. 271.

as a transformer of all possible combinations of the elements in threes, and so assembles these combinations into self-evolvent aggregates or trains, analogous to the "path-curves" of a point transformation.¹ The entire set of such trains, abstractly considered, belonging to any triad system on 15 elements is characteristic for that system and for all systems equivalent to it. A second method, that of sequences and indices, is described and exemplified by Miss Cummings in her dissertation.² These two methods have given, so far, accordant results, and both lead to the easy discovery of the substitutions which transform two equivalent systems into each other.

With these two direct and simple methods available for testing triad systems it is reasonable to attempt the complete enumeration of those on 15 elements. In this part, however, I shall undertake an easier task, that of constructing all triad systems on 15 elements whose groups are of order higher than unity; all which have groups containing at least one operation different from the identity. In this research the group, and indeed the particular substitution, will furnish the starting point.

$\S 2$. Substitutions admissible in the group of a \triangle_{15} .

Not every type of substitution can occur in the group of a triad system. Consider in particular a system \triangle_{15} whose elements are denoted by letters, and S a substitution of its group. Represent S, as is uniquely possible, by a product of mutually exclusive cycles:

$$S \equiv (A_1 A_2 \dots A_a) (B_1 B_2 \dots B_b) (C_1 C_2 \dots C_c) \dots \dots$$

It is required by the definition of a triad system that every pair of elements shall occur in some triad, and that no pair occur twice. The pair A_1B_1 must occur in some triad, as $A_1B_1C_1$. As a special case, the third element C_1 may be in one of the cycles (A) or (B). We note that in S the order c of cycle (C) must be a factor of the L. C. M. of a and b; otherwise the pair A_1B_1 , would occur in two or more triads. Let $a=m\beta$, $b=m\alpha$, where α and β are relatively prime; then must

$$m\alpha\beta = \gamma c$$
 (γ an integer).

For similar reasons

a is a factor of the L. C. M. (b, c), $m\beta$ divides $m\alpha c$; b is a factor of the L. C. M. (a, c), $m\alpha$ divides $m\beta c$.

Hence, as a is prime to β , c is a multiple of the product $\alpha\beta$, $c = \mu\alpha\beta$, or

$$\gamma c = \gamma \mu \alpha \beta = m \alpha \beta$$
,

therefore $m = \gamma \mu$. Now we find, more exactly, that

$$a(=\gamma\mu\beta)$$
 divides the L. C. M. $(\gamma\mu\alpha, \mu\alpha\beta)$

which is $\mu \alpha$. L. C. M. (γ, β) .

Therefore

 $\gamma \beta$ divides a. L. C. M. (γ, β)

and

 γ a divides β . L. C. M. (γ, a)

Hence γ is prime to both α and β . We have accordingly for the three orders of cycles (A), (B), and (C), $a = \mu \beta \gamma, b = \mu \gamma \alpha, c = \mu \alpha \beta;$

and we have proved this theorem:

If in the group of a \triangle_{15} there occurs a substitution containing two mutually exclusive cycles of orders $a = \mu \beta \gamma$, $b = \mu \gamma \alpha$ respectively, then that substitution contains also a cycle (possibly coincident with one of the first two) of order $c = \mu \alpha \beta$; α being prime to β , and γ some common factor of α and β but prime to α and β .

¹ H. S. White: Triple systems as transformations, and their paths among triads. Transactions of the American Mathematical Society, vol. 14 (1913), pp. 6-13.

² L. D. Cummings: On a method of comparison for triple systems. Transactions of the American Mathematical Society, vol. 15 (1914), ρp. 311-327.

Particular eases under this theorem are:

```
\alpha = 1, giving cycles of orders \mu\beta, \mu\gamma, \mu\beta\gamma; \alpha = \beta = 1, giving cycles of orders \mu\gamma, \mu\gamma, \mu; \alpha = \beta = \gamma = 1, giving cycles of orders \mu, \mu, \mu; \mu = 1, giving cycles of orders \beta\gamma, \gamma\alpha, \alpha\beta.
```

When two of the numbers are equal, they may refer to the same cycle, under conditions which it is not necessary to examine here.

For our present purpose, the important deduction from this theorem is the simplest case, namely, that if a=1 and b=1, then must c=1. In other words, if there are two letters (or elements) A and B invariant under the substitution S of the group, the triad containing these two must contain a third, C, also unaltered by the substitution S. An immediate extension of this corollary gives the following rule:

All the elements not altered by a substitution in the group of a triad system (cycles of period unity) must constitute a complete triad system contained in the principal system, a subordinate system. Hence, for a \triangle_{15} , the number of cycles of period unity in any operation in its group can only be 0, 1, 3, 7, or 15.

The numbers 9, 13 are excluded, since a subordinate system can not contain half as many elements as the principal systems.

If the substitution S has cycles of different periods both higher than unity, a < b, then a power S^a of that operator will have invariant a additional elements. If S^a still contains cycles of different periods, another power can be found to diminish the number of different periods; and ultimately some power of S will be found with 0, 1, 3, or 7 cycles of period 1, and having the rest of its cycles of equal prime period.

Every triad system on 15 elements, whose group is not the identity, is invariant under at least one substitution of one (at least) of the following seven types:

```
1. (5) (5) (5)
```

2. (3) (3) (3) (3) (3)

3. (1) (7) (7)

4. (1) (2) (2) (2) (2) (2) (2)

5. (1) (1) (1) (3) (3) (3) (3)

6. (1) (1) (1) (2) (2) (2) (2) (2)

7. (1) (1) (1) (1) (1) (1) (2) (2) (2),

where the digit in any parenthesis indicates the period of a cycle.

These seven types of substitution offer a natural means of classifying triad systems on 15 elements, provided they admit groups of substitutions. Under each type I shall construct all possible invariant triad systems, omitting obviously equivalent repetitions. In one case, type 4, no system can exist; all the others have actual systems. It will still happen that certain systems occur in two or more classes, their groups containing substitutions of two or more of these seven types. Further reduction is undertaken by Miss Cummings (Part 2), who furnishes the proof of nonequivalence of the net residue, 44 systems. Of these 44, 24 were known previously, more than half of them discovered by Miss Cummings. It will be noted that the 20 new \triangle_{15} 's contain no \triangle_{7} ; they are not of the "odd-and-even" structure; they may be called "headless," while any \triangle_{7} contained in an earlier known \triangle_{15} is termed its head. One headless system only, discovered by Heffter, has been known heretofore. The discussion of groupless systems, and their enumeration, is deferred to Parts 3 and 4.

§3. CLASS I, INCLUDING THE KIRKMAN AND HEFFTER SYSTEMS.

For each substitution the work of constructing systems of triads must be special; no general conclusions are to be developed. Three requirements guide us: (1) Every pair of elements shall occur; (2) no pair shall occur twice; and (3) the triads shall be grouped in sets conjugate under the particular substitution (operator).

Denote by S_1 the operator of type I, and take for its three cycles of five, respectively, Euglish and Greek letters and Arabic numerals.

$$S_1 \equiv (a \ b \ c \ d \ e) \ (a \ \beta \ \gamma \ \delta \ \epsilon) \ (1 \ 2 \ 3 \ 4 \ 5).$$

Triads of a system may contain elements from one cycle only, or from two, or from three. Further subdivision gives us 10 classes. Indicate the numbers of triads in these several classes as follows:

$$5u_1$$
 of type abc , $5u_2$ of type $a\beta\gamma$, $5u_3$ of type 123 , $5v_1$ of type aba , $5v_2$ of type $a\beta1$, $5v_3$ of type $12a$, $5w_1$ of type $ab1$, $5w_2$ of type $a\beta a$, $5w_3$ of type $12a$, $5t$ of type $aa1$.

As all possible pairs must occur, we have the diophantine equations to satisfy:

$$15u_i + 5v_i + 5w_i = 10$$
 $(i = 1, 2, 3),$
 $10v_i + 10w_{i+1} + 5t = 25$ $(i = 1, 2, \text{ or } 3 \equiv 0).$

The solutions are

Of these the third solution may be dropped, since it is related to the above arrangement of elements in the operator S_1 exactly as the first solution is to the operator S_1^2 (or S_1^{-1}). The first and second solution yield two kinds of systems, as follows:

First kind.—
$$t=1$$
, $u_i=0$, $v_i=2$, $w_i=0$ $(i=1, 2, 3)$.

The triads enumerated by 5t=5 shall be these: aa1, $b\beta2$, $c\gamma3$, $d\delta4$, $\epsilon\epsilon5$. With the pair ab must occur δ ; for if the triad were $ab\gamma$, then must follow in cyclic order $bc\delta$, ..., $ea\beta$. There remains, therefore, no letter of the second cycle to join with the pair ac, since we have already the pairs aa, $c\gamma$, and $a\gamma$, $a\beta$, $c\delta$, $c\epsilon$. The same reasoning excludes the combination $ab\epsilon$. This leaves only the possibility $ab\delta$. Under S_1 there follow from $ab\delta$ the pairs $c\epsilon$, $a\gamma$, and there is left for the pair ac only the letter β , hence $ac\beta$. Similar reasons apply to triads from the second and third cycles and from third and first cycles. The entire system is accordingly determined uniquely, and is given by the following seven triads and the conjugates derived from them by the operator S_1 :

System I1:
$$aa1$$
; $ab\delta$, $ac\beta$; $a\beta4$, $a\gamma2$; $12d$, $13b$.

Second kind.—
$$t=1$$
, $u_i=0$, $v_i=w_i=1$ ($i=1, 2, 3$).

After the five triads, aa1 and its conjugates under S_1 , the apparent possibilities are $ab\gamma$ and $ab\delta$.

Assume first a triad $ab\gamma$. Its conjugates contain the pairs ae, ad, and βa , βe , so that there remains a possibility of the triad $\alpha\beta e$. But also there are found the pairs γe , γb ; whence the pair $\alpha\gamma$ can join with no letter from the first cycle, but must be completed by either 2, 4, or 5. We examine these successively.

(1) Triad
$$\alpha \gamma 2$$
.

Conjugate triads will involve the pairs 1ϵ , 1β , 2α , 2γ , 3β , 3δ ; and already we had 1α , 2β , 3γ . Therefore the pair 13 can not be completed from the Greek cycle, nor can its four conjugate pairs. But $w_3 = 1$, and for the pair 12 we have available the letter δ only. Necessarily one triad is 12δ . We must complete

13 by either
$$b$$
, d , or e , ac by either 2, 4, or 5.

The hypothesis of 13b would result in excluding ac from 2, 5, and 4. The hypothesis 13e leaves open only the alternative ac2, having eb1 as a conjugate, which is inconsistent with 13e. Dismissing, therefore, 13b and 13c, we have 13d, requiring ac4. The remainder of the system follows uniquely from these.

System I2: $\omega a1$, $ab\gamma$, ac4, $a\beta c$, $a\gamma 2$, 12δ , 13d, and their conjugates under the operator S_1 .

By similar scrutiny it is found that triad $\alpha\gamma 4$ excludes the pair 12 from completion by the Greek cycle, but allows the requisite triad 13 δ and its conjugates. To be tested are now 12c, 12d, and 12c. Of these, 12c leads to ac5 and so to cc2 inconsistent with 12c; and the third alternative 12c would exclude the pair ac from the Arabie cycle altogether, and is hence inadmissible. There remains 12d, which allows further ac2. Complete the system thus, uniquely,

$$a\alpha 1$$
, $ab\gamma$, $ac2$, $12d$, 13δ , $\alpha\beta c$, $\alpha\gamma 4$.

This system differs from I2, above, only in the interchange of the Greek cycle and the English. Omit it therefore as a duplicate.

(3) TRIAD αγ5.

By considerations like the above we find that $\alpha\gamma5$ and aa1 with their conjugates will exclude 12 from completion in the Greek cycle, and will necessitate the occurrence of 13ϵ , which in turn requires $\alpha\gamma5$. Next, 12 must be joined with either c, d, or c. The first and last of these lead to inconsistent triads, and we have remaining 12d, and therefore ac2. The sole admissible system here is therefore that given by these seven:

$$aa1$$
, $ab\gamma$, $ac2$, $a\gamma5$, $a\beta c$, 13ϵ , $12d$.

But this triad system is related to the operator S_1^2 ,

$$S_1^2 \equiv (\alpha \gamma \epsilon \beta \delta) (1 3 5 2 4) (a c e b d),$$

in exactly the same way as system I2, above, is related to the operator S_1 ,

$$S_1 \equiv (a \ b \ c \ d \ c) \ (a \ \beta \ \gamma \ \delta \ \epsilon) \ (1 \ 2 \ 3 \ 4 \ 5).$$

We may therefore omit it as a duplicate.

This exhausts the possibilities under the first assumption, i. c., that the second triad was $ab\gamma$. Test now the other alternative: Assume $ab\delta$. By trials similar to the foregoing, we construct the following five systems, exhausting the possibilities:

- (a) aa1, $ab\delta$, $a\gamma b$, ac4, $a\beta 3$, 13d, 12γ .
- (b) aa1, $ab\delta$, $a\gamma b$, ac5, $a\beta3$, 13e, 12γ .
- (c) aa1, $ab\delta$, $a\gamma b$, ac4, $a\beta 5$, 13d, 12ϵ .
- (d) aa1, $ab\delta$, $a\gamma b$, ac5, $a\beta 5$, 13e, 12ϵ .

System I3: aa1, $ab\delta$, $a\gamma b$, ac2, $a\beta 4$, 13β , 12d.

Four of these systems are equivalent to the two already found. Notice first that two of them, (d) and (c), reduce to (a) and (b), respectively, by the reversal of order in each cycle, i. e., by using for operator S_1^4 in place of S_1 . Then (a) is seen to become system I2 by exchange of English and Arabic cycles. To show that (b) is congruent to system I2, replace operator S_1 by S_1^3 in a changed order of cycles, thus

$$\begin{array}{l} S_1 \mathop{\Longrightarrow}\limits_{} (a\ b\ c\ d\ c)\ (a\ \beta\ \gamma\ \delta\ \epsilon)\ (1\ 2\ 3\ 4\ 5) \\ S_1^3 \mathop{\Longrightarrow}\limits_{} (a\ \delta\ \beta\ \epsilon\ \gamma)\ (1\ 4\ 2\ 5\ 3)\ (a\ d\ b\ c\ c) \end{array}$$

The same substitution will change (b) into I2.

The net result of this section is therefore the construction of three systems, I1, I2, and I3. The first and third of these are the well-known systems of Heffter and Kirkman, respectively, the second hitherto unknown.

§4. CLASS II. EIGHT SYSTEMS INVARIANT UNDER A SUBSTITUTION OF THE TYPE (3)5.

A first separation into two divisions is found when we distinguish three kinds of triads. Denote the elements of the five cycles by the letters a, b, c, d, e, attaching to each in their order the subscripts 1, 2, 3:

$$S \equiv (a_1 \ a_2 \ a_3) \ (b_1 \ b_2 \ b_3) \ (c_1 \ c_2 \ c_3) \ (d_1 \ d_2 \ d_3) \ (c_1 \ c_2 \ e_3).$$

Denote any three different letters from among these five by k, l, m, leaving the subscripts undetermined. Then obviously every triad that can occur is of one of the three types represented by

kkk (Denote their number by u),

kkl (Denote their number by 3v),

klm (Denote their number by 3w).

In a given triad system, every possible pair of elements occurs once. There are in the entire 105,

15 pairs of type kk,

90 pairs of type kl, making in combination 35 triads.

Compare these with the numbers of each found in triads of each of the three types above. We find the necessary relations:

$$3u + 3v = 15,$$

 $6v + 9w = 90,$
 $u + 3v + 3w = 35$

We can have, therefore, the two kinds of systems, divisions 1 and 2:

	и	ı,	u'
Division 1	2	3	8
Division 2	5	0	10

Division 1.—As u is 2, assume triads $a_1a_2a_3$ and $b_1b_2b_3$. Now subdivide further, and let k represent either an a or a b, and l, m represent any two of the letters c, d, c, subscripts being disregarded. Since 3v = 9, let us distinguish—

Of type abm, 9 = 3.3 triads,

Of type kll, 3x triads,

Of type klm, 3y triads,

Of type lmm, 3z triads,

Of type cdc, 3t triads.

These numbers have to satisfy the following conditions:

Triads, 3x+3y+3z+3t+2+9=35;

Pairs kl, 18 + 6x + 6y = 54,

Pairs ll, 3x+3z=9,

Pairs lm, 3y + 6z + 9t = 27.

These conditions admit three solutions, which will be taken up in order.

	x	y	z	t
Family a	3	3	0	2
Family b	2	4	1	1
Family c	1	5	2	0

FAMILY 1a.

The only possible schedule, prior to the assignment of subscripts, is this:

For the hypothesis ace, add, and bce, for example, would require a_1 to unite with two c's in the one triad left for it after the three where it occurs with b's; whereas ee is found already with b in bee, whence the impossibility.

With entire generality we fix, in the above schedule, the subscripts in eight typical triads:

$$a_1 \ a_2 \ a_3; \ b_1 \ b_2 \ b_3; \ a_1 \ c_2 \ c_3, \ a_1 \ d_2 \ d_3, \ a_1 \ e_2 \ e_3; \ a_1 \ b_1 \ c_1, \ a_1 \ b_2 \ d_1, \ a_1 \ b_3 \ e_1.$$

Six trials now suffice, to reduce the possible ways of supplying subscripts for the remaining triads to the following two, supplementary to the above:

Prior to assigning subscripts, the only possible schedule is this:

(The other apparent possibility, ace, bdd, cee, leads to the impossibility of five times three pairs ce.)

Subscripts may be fixed arbitrarily, in order, in the following triads (subject, of course, to the cyclic permutation of 1, 2, 3):

$$a_1a_2a_3, b_1b_2b_3; a_1b_1e_1, a_1b_2e_3, a_1b_3e_1, a_1e_2d_1; a_1e_2e_3, a_1d_2d_2.$$

The remaining five sets are found by trial to admit two arrangements only. With the above we may unite either of these:

The association of letters in triads, disregarding subscripts, may follow two schedules. The first possible schedule is this:

```
aaa, bbb;
acc, cdd, cee;
abc, abd, abe;
ade, ade, bde, bcd, bce.
```

In the first six that follow aaa and bbb we may dispose of subscripts by fixing $a_1b_1c_1$, then $a_1c_2c_3$, $c_1d_2d_3$, $c_1e_2e_3$. So far letters d and e are exchangeable, also subscripts 2 and 3. This observation reduces to five the number of essentially different ways of affixing subscripts to the next two triads, abd and abe, viz:

Of these five only the first and the fifth can be completed to full systems. They give each a unique system.

The second of the two possible schedules diverges from the first in its fifth triad and is the following, with seven triads void of subscripts:

$$a_1a_2a_3$$
, $b_1b_2b_3$; $a_1c_2c_3$, $c_1d_2d_3$, $d_1c_2e_3$; $b_1c_1d_1$; adb , adb , $ad\epsilon$; ceb , ceb , cea ; abc .

On trial only two ways are found for affixing subscripts to the triads still left blank, and these differ only by the interchange of 2 and 3. Hence we have finally in this family 1c only the one additional system:

System II, 1₇:
$$a_1a_2a_3$$
, $b_1b_2b_3$, $a_1c_2c_3$, $c_1d_2d_3$, $d_1e_2e_3$, $b_1c_1d_1$
 $a_1d_1b_3$, $a_1d_3b_1$, $a_1d_2e_2$;
 $c_1e_1b_3$, $c_1e_2b_2$, $c_1e_3a_1$;
 $a_1b_2e_1$.

Division 2.—In the second principal division of this class there are five triads formed from single cycles of three letters, and these are necessarily

$$a_1a_2a_3$$
, $b_1b_2b_3$, $c_1c_2c_3$, $d_1d_2d_3$, $c_1e_2e_3$.

$$a_1b_1c_1$$
, $a_1d_1e_1$, $a_2b_1d_1$ $a_2c_1e_1$.

In the second case we find, by permutations of letters and of the five cycles independently, that we may denote four triads by

$$a_1b_1e_1$$
, $a_3d_1e_1$, $a_2b_1d_1$, $a_2c_1e_1$.

Each of these is completed, in two equivalent ways, to a full system.

```
System II, 2<sub>1</sub>: a_1b_1c_1, a_1d_1e_1, a_2b_1d_1, a_2c_1e_1, a_3b_1e_1, a_3c_1d_1, b_1c_2d_3, b_1c_3e_2, b_1d_2e_3, c_1d_3e_2.

System II, 2<sub>2</sub>: a_1b_1c_1, a_1d_1e_1, a_2b_1d_1, a_2b_3e_1, a_3c_1e_1, a_3c_2d_1, b_1c_2d_3, b_1c_3e_1, b_1d_2e_3, c_1d_1e_3.
```

This last system is found to have no interlacings whatever, and so is evidently the exceptional system in Cole's enumeration, the headless cyclical system of Heffter.

The preceding system, however, No. II, 2_1 , is found by quite obvious indications to be equivalent to System II, 1_1 and the one is transformed into the other by the following substitution:

11, 1_1 : $a_1a_3a_2 b_1b_3b_2 c_1c_2c_3 d_1d_2d_3 c_1c_2c_3$.

II, 2_1 : $b_1b_2b_3 a_1a_2a_3 c_1d_2e_3 e_1c_2d_3 d_1e_2c_3$.

Further, the two systems II, 1_3 , II, 1_4 are equivalent by the interchange of letters $(a_3 \ a_2) \ (b_1 \ b_2) \ (c_3 \ c_2) \ (d_3 \ d_2) \ (e_1 \ c_3)$. In conclusion, therefore, this class II contains not more than seven triad systems that are essentially distinct, Nos. 1_4 , 1_2 , 1_3 , 1_5 , 1_6 , 1_7 , 2_2 .

§5. TRIAD SYSTEMS INVARIANT UNDER AN OPERATION OF TYPE (1)(7)(7).

There are three distinct systems, and no more, which admit a substitution of period 7. The proof is almost intuitional, no long analysis being needed. Indicate the 1+7+7 letters, and the substitution, thus:

$$S \equiv (A) \ (a \ b \ c \ d \ e \ f \ q) \ (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7).$$

By diophantine equations of condition it is found that there must be seven triads—a system \triangle_7 , constituted within the one cycle, e. g., the cycle of letters $(a\ b\ c\ d\ e\ f\ g)$; seven triads like Aa1, and 21 triads composed of one letter and two digits.

Take S to be such a power of the cyclic operation that the included \triangle_7 consists of the triad abd and its six conjugates. Of the 21 now remaining to be determined, three must contain the letter a. Indicate on a circle in their order of sequence the seven digits at equal intervals. Since a and 1 are already together in the triad Aa1, we have now to connect in pairs, by three chords, all six digits 2, 3, . . ., 7. No two of these chords can be of equal length, since then the rotation effected by the substitution S would produce a repetition of a pair, contrary to the definition of a triad system. Trial shows at once that chords 23 and 25 would lead necessarily to equality of at least two chords, hence these are excluded; while 24, 26, and 27 lead to one solution each, as represented in figure 1.

Accordingly the three possible systems are given by the following, with the triads conjugate to them under the operation S.

System III, 1: Aa1, abd, a24, a37, a56. System III, 2: Aa1, abd, a26, a34, a57. System III, 3: Aa1, abd, a27, a36, a45.

The first of these is evidently the one ordinarily constructed from the \triangle_7 by the method for passing from n to 2n+1; viz. by substitution of corresponding elements from the second cycle in triads of the first, there are formed from abd, for example, three others: a24, 1b4, 12d. The 21 of this structure, the original 7, and the 7 like Aa1 make up the complete set. It is, prima facie, the Kirkman system (No. IIIA of Miss Cummings's dissertation).

§6. NO TRIAD SYSTEM CAN EXIST THAT ADMITS A SUBSTITUTION OF TYPE $(1)(2)^7$.

If a trind system can be invariant under an operation of the type (1) $(2)^7$, denote the element in the unit cycle by A, and in each dual cycle denote one element by a letter, the other by a digit:

 $S = (A) (a \ 1) (b \ 2) (c \ 3) (d \ 4) (e \ 5) (f \ 6) (g \ 7).$

Every pair a1 from one duad must occur in some one triad and can be associated with no third element save A; hence seven triads are like Aa1. The remaining 28 triads may be arranged in two pairs of classes, each pair equal in number by the symmetry of the operator S in letters and digits, thus:

x triads like abc, x triads like 123; y triads like ab1, y triads like a12.

Since the nature of the system calls for 21 pairs of letters, as ab, and 21 pairs of digits, while there must be 42 mixed pairs such as a2, we have the equations of condition:

$$3x + y = 21, 4y = 42,$$

insoluble in integers. Hence no triad system of this type can exist.

§ 7. SUBSTITUTIONS OF TYPE (1)3(3)4 AND THEIR INVARIANT TRIAD SYSTEMS.

Denote by A, B, C three elements not affected by a certain substitution, and by $(a_1 \ a_2 \ a_3)$, $(b_1 \ b_2 \ b_3)$, $(c_1 \ c_2 \ c_3)$, $(d_1 \ d_2 \ d_3)$, four cycles of period 3 in that substitution.

$$S{\equiv}(A)\ (B)\ (C)\ (a_1\ a_2\ a_3)\ (b_1\ b_2\ b_3)\ (c_1\ c_2\ c_3)\ (d_1\ d_2\ d_3).$$

Any triad system invariant under S must contain the triad ABC; and equations of condition show that of triads and sets like $a_1a_2a_3$, b_1b_2c , there are respectively either 1, 3 or 4, 0. It will be shown that this gives in letters, irrespective of their subscripts, five possible schedules. There are 18 triads like Aab, falling into three sets of twice three. By the subscripts of these latter each of the first five schedules is made a source of five subclasses.

The equations of condition show further that there must be either two or four sets of three triads like abc, formed from three different cycles in S. Hence there are at least three different pairs of letters, as ab, that can not occur more than twice (i. e., 2×3 times) in conjunction with letters A, B, or C. The complementary pairs are excluded thereby also; e. g., a set of triads Aab would imply another set Acd, since all possible pairs of elements occur in a system \triangle_{15} . Where four triads of period 1 occur, like $a_1a_2a_3$, and therefore four sets like abc, no pair ab can occur with two letters from the three A, B, C. We arrive by such considerations at the first five main divisions.

Case 1.—Four triads like $a_1a_2a_3$, four sets like abc. Hence the schedule:

 $a_1a_2a_3$, $b_1b_2b_3$, $c_1c_2c_3$, $d_1d_2d_3$;

ubc, abd, acd, bcd;

Aab, Acd; Bac, Bbd; Cad, Cbc.

Cases 2 and 3.—One triad of period 1, $d_1d_2d_3$; two sets drawn from three different cycles. Consider the triad sets containing pairs aa, bb, or cc. With these may occur the letter d in 3, 2, 1, or 0 sets. If in none, then we must have (if letters are chosen suitably) aab, bbc, cca. But this leaves us to construct triads in which d_1 , for example, shall be united with all nine letters a, b, c. Three of these are of course in sets Aad, Bbd, Ccd, implying sets Abc, Bac, Cab. In the remaining two sets of three, d must be united twice with each letter a, b, and c, a plain impossibility. Similar absurdity results from assuming two sets like daa, dbb. Hypotheses of one such set, or of three such, are admissible, as follows:

Case 2: Assume two sets, and and bba. Trial of ccb leads to absurdity, whence we must have cca. In full, therefore, this schedule is:

ABC; $d_1d_2d_3$; Abc, Aad, Bac, Bbd, Cab, Ccd; aad, bba, cca; bcd, bcd.

Case 3: Assume three sets with d, and, bbd, and ccd. The full schedule will be:

ABC; $d_1d_2d_3$; Abc, Aad, Bac, Bbd, Cad, Cbc; aad, bbd, ccd; abc, abc.

Cases 4 and 5.—With ABC and $d_1d_2d_3$ as in the preceding case, take duplicate pairs of letters with two of the isolated elements ABC; e. g.,

There are yet to be constructed 15 (=5×3) triads. Of these five sets three have to contain a doubled letter, as aa, while the other two consist of distinct letters. Listing the pairs that

must occur, we see that ad and be must occur in triads with a double letter, so that either ac or bd, not both, will also occur in such a triad. There are accordingly two possible schedules:

Case 4: Triads ABC, ddd; Aab, Acd, Bab, Bcd; Cac, Cbd; aad, bbc, cca; abd, bcd.

It is noticeable that in this arrangement no two of the letters abcd are interchangeable; the same is true in the next, the final case.

Case 5: Triads ABC, ddd; Aab, Acd, Bab, Bed; Cac, Cbd; aad, bbd, ccb; abc, aed.

After the above distinction of five schedules there is for each case a subdivision into species by means of the pairs of subscripts attached to letters in the triads with A, B, and C. The numbers of such species, a priori, are for case 1, four; for case 2, four; for case 3, three; and for cases 4, 5, four each. Some of these are realized by two completed systems, some by one, or by none; so that, in all, 26 systems apparently distinct are found invariant under an operation or substitution $(1)^3(3)^4$.

Species in case 1.—In case 1 the sets of letters a, b, c, d are indistinguishable, and are distributed to the exchangeable letters A, B, C in all the complementary pairs. As a means of abbreviating tabulation, write these triads in the order

Aab Acd Bac Bbd Cad Cbc,

and instead of rewriting these letters with subscripts, write the subscripts only. On each letter independently the subscripts may be changed if we do not change the cyclic order 123; and this order may be reversed to 132 for all four sets of letters simultaneously. The first three pairs of subscripts may be fixed arbitrarily as 1, 1, thus: a_1b_1 , c_1d_1 , a_1c_1 . We need only write the three remaining pairs in their relative positions, without letters:

These four cases exhaust the possibilities; for we can reduce all others to these four by permissible interchanges of letters and subscripts. There should be nine cases where indices 2, 3 do not appear in the first row or the second and we see that (a) represents one, (β) four, and (γ) four. If the pair 1 2 or 1 3 occurs in the second line, the reduction is less obvious, but not intricate, as one example will show. Let these six pairs in same order be a_1b_1 , c_1d_1 ; a_1c_1 , b_1d_2 ; a_1d_2 , b_1c_3 (representing also, of course, their 12 conjugate pairs). Write subscripts only, and change those of d cyclically by writing 1 for 2, etc. This leaves

Next, c is written for d and vice versa, as the letters are of equal significance; then for 31 write 12, one of its conjugates. Now we have

since second and third lines have exchanged subscripts. But this is case (δ) by permutation of letters A, B, C. By such verification we confirm the completeness of this list of four species.

Species in case 2.—In case 2 there is no distinction between letters b and c, but a and d are not interchangeable with them or with each other. First we fix triads Ad_1a_1 , Bd_1b_1 , Cd_1c_1 , so that all indices are of determinate meaning except for a choice between the orders 123 and 132. Since the combination bcd is to occur in two sets of three, these can only be $b_1c_2d_3$ and $b_1c_3d_2$; accordingly the triads Abc must include Ab_1c_1 . The pairs with B and C admit some freedom of choice still, all alternatives being reducible to these four following:

Species in case 3.—Letters a, b, c are not yet distinguishable separately in case 3. Fix first, as in case 2, the triads Ad_1a_1 , Bd_1b_1 , Cd_1c_1 . Next, two sets of triads are to contain abc_1 ,

there are three possibilities, and these serve to fix uniquely also the subscripts of the remaining sets of triads. There are then three schedules:

Species in case 4.—With the letters A, B, C, there occur in case 4 twice the pairs ab and cd. With either one of these the subscripts can be taken as 11, 11; then with the other the two can be, in their order, either 12, 12, or 12, 13. In the third set, ac and bd, we are still free to fix arbitrarily one pair of subscripts, as b_1d_1 , leaving two alternatives for the other pair ac. Four partial schedules result, as follows, for the pairs with A, B, and C.

Species in case 5.—The same four schedules, for the same reasons, are valid in case 5 as in case 4.

The foregoing 19 schedules can be completed to actual systems, as is readily seen by inspection, in the following 26 ways only:

System V, 1a: ABC, $a_1a_2a_3$, $b_1b_2b_3$, $c_1c_2c_3$, $d_1d_2d_3$; Aa_1b_1 , Ac_1d_1 , Ba_1c_1 , Bb_1d_1 , Ca_1d_1 , Cb_1c_1 : $a_1b_2c_3$, $a_1b_3d_2$, $a_1c_2d_3$, $b_1c_3d_2$.

A second system, of course, equivalent to this, differs only in the cyclic order 132 instead of 123.

System V, 1β is impossible.

System V, 1γ : ABC, $a_1a_2a_3$, $b_1b_2b_3$, $c_1c_2c_3$, $d_1d_2d_3$. Aa_1b_4 , Ac_1d_4 , Ba_1c_4 , Bb_1d_4 , Ca_1d_2 , Cb_1c_2 . $a_1b_3c_2$, $a_1b_2d_3$, $a_1c_3d_4$, $b_1c_1d_3$.

An equivalent system is converted into this by the substitution (ac) (bd) (23); or two others similar.

System V, 18: ABC, $a_1a_2a_3$, $b_1b_2b_3$, $c_1c_2c_3$, $d_1d_2d_3$. Aa_1b_1 , Ac_1d_1 , Ba_1c_1 , Bb_1d_2 , Ca_1d_1 , Cb_1c_3 . $a_1b_2c_2$, $a_1b_3d_3$, $a_1c_3d_2$, $b_1c_2d_3$.

System V, 2a: ABC, $d_1d_2d_3$: Aa_1d_1 , Ab_1c_1 , Bb_1d_1 , Ba_1c_1 , Cc_1d_1 , Ca_1b_1 ; $a_1a_2d_3$, $b_1b_2a_3$, $c_1c_2a_3$; $b_1c_2d_3$, $b_1c_3d_2$.

System V, 2β : ABC, $d_1d_2d_3$; Aa_1d_1 , Ab_1c_1 , Bb_1d_1 , Ba_1c_2 , Ce_1d_1 , Ca_1b_1 ; $a_1a_2d_3$, $b_1b_2a_3$, $c_1c_2a_2$; $b_1c_2d_3$, $b_1c_3d_2$.

System V, 2γ : ABC, $d_1d_2d_3$: Aa_1d_1 , Ab_1c_1 , Bb_1d_1 , Ba_1c_2 , Cc_1d_1 , Ca_1b_2 : $a_1a_2d_3$, $b_1b_2a_2$, $c_1c_2a_2$: $b_1c_2d_3$, $b_1c_3d_2$.

System V, 28: ABC, $d_1d_2d_3$; Aa_1d_1 , Ab_1c_1 , Bb_1d_1 , Ba_1c_3 , Cc_1d_1 , Ca_1b_2 ; $a_1a_2d_3$, $b_1b_2a_2$, $c_1c_2a_1$; $b_1c_2d_3$, $b_1c_3d_2$.

System V, 3α : ABC, $d_1d_2d_3$: Aa_1d_1 , Ab_1c_3 , Bb_1d_1 , Ba_1c_2 , Cc_1d_1 , Ca_1b_3 : $a_1a_2d_3$, $b_1b_2d_3$, $c_1c_2d_3$: $a_1b_1c_1$, $a_1b_2c_3$.

 $\begin{array}{c} \text{System V, } 3\beta\colon ABC, \ d_1d_2d_3; \ Aa_1d_1, \ Ab_1c_2, \ Bb_1d_1, \ Ba_1c_2, \ Cc_1d_1, \ Ca_1b_1; \ a_1a_2d_3, \ b_1b_2d_3, \ c_1c_2d_3; \\ a_1b_3c_3, \ a_1b_2c_1. \end{array}$

System V, 3γ : ABC, $d_1d_2d_3$; Aa_1d_1 , Ab_1c_1 , Bb_1d_1 , Ba_1c_1 , Cc_1d_1 , Ca_1b_1 ; $a_1a_2d_3$, $b_1b_2d_3$, $c_1c_2d_3$; $a_1b_2c_3$, $a_1b_3c_2$.

System V, 4α (1 and 2): ABC, $d_1d_2d_3$;

 $Aa_1b_1,\ Ac_1d_1,\ (1)\ \ a_1a_2d_1,\ b_1b_2c_2,\ c_1c_2a_3;\ a_1b_3d_2,\ b_1c_3d_2;$

 $Ba_1b_2, Bc_1d_2,$ or

 Ca_1c_1 , Cb_1d_1 , (2) $a_1a_2d_3$, $b_1b_2c_3$, $c_1c_2a_3$; $a_1b_3d_1$, $b_1c_1d_3$.

These two are equivalent; (1) is converted into (2) by the substitution $(b_1b_3b_2)$ $(d_1d_3d_2)$ (23) (AB).

```
System V, 4\beta (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_3, b_1b_2c_3, c_1c_2a_2; a_1b_3d_1, b_1c_1d_3.
Ba_1b_2, Bc_1d_2,
Ca_1c_2, Cb_1d_1, (2) a_1a_2d_1, b_1b_2c_2, c_1c_2a_2; a_1b_3d_2, b_2c_1d_3.
      System V, 4\gamma (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_3, b_1b_2c_1, c_1c_2a_3; a_1b_3d_1, b_3c_1d_2.
Ba_1b_2, Bc_1d_3,
                          or
Ca_1c_1, Cb_1d_1, (2) a_1a_2d_1, b_1b_2c_3, c_1c_2a_3; a_1b_3d_2, b_1c_1d_2.
      System V, 4\delta (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_3, b_1b_2c_1, c_1c_2a_2; a_1b_3d_1, b_3c_1d_2.
Ba_1b_2, Bc_1d_3,
                          \mathbf{or}
Ca_1c_2, Cb_1d_1, (2) a_1a_2d_1, b_1b_2c_3, c_1c_2a_2; a_1b_3d_2, b_1c_1d_2.
             Equivalent systems, by the substitution (a_1a_2a_3) (c_1c_3c_2) (23) (AB).
      Systems V, 5\alpha (1 and 2): ABC, d_1d_2d_3;
Aa_1b_2, Ac_1d_1, (1) a_1a_2d_1, b_1b_2d_3, c_1c_2b_1; a_1b_3c_2, a_2c_1d_3,
Ba_1b_2, Bc_1d_2,
                          or
Ca_1c_1, Cb_1d_1, (2) a_1a_2d_3, b_1b_2d_3, c_1c_2b_3; a_1b_3c_3, a_3c_1d_3.
            These two are equivalent in the same way as V, 4a, 1 and 2.
      Systems V, 5\beta (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_1, b_1b_2d_3, c_1c_2b_2; a_1b_3c_1, a_2c_1d_3,
Ba_1b_2, Bc_1d_2,
Ca_1c_2, Cb_1d_1, (2) a_1a_2d_2, b_1b_2d_3, c_1c_2b_3; a_1b_3c_3, a_1c_1d_3.
      Systems V, 5\gamma (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_3, b_1b_2d_3, c_1c_2b_4; a_1b_3c_2, a_2c_1d_2,
Ba_1b_2, Bc_1d_3,
Ca_1c_1, Cb_1d_1, (2) a_1a_2d_2, b_1b_2d_3, c_1c_2b_3; a_1b_3c_3, a_3c_1d_2.
      Systems V, 5\delta (1 and 2): ABC, d_1d_2d_3;
Aa_1b_1, Ac_1d_1, (1) a_1a_2d_3, b_1b_2d_3, c_1c_2b_2; a_1b_3c_1, a_2c_1d_2,
Ba_1b_2, Bc_1d_3,
Ca_1c_2, Cb_1d_1, (2) a_1a_2d_1, b_1b_2d_3, c_1c_2b_3; a_1b_3c_3, a_1c_1d_2.
```

Two equivalent systems, as under V, 48.

Beside the equivalences already noted, one less obvious is that of systems V, 3α and V, 1α . which Miss Cummings will establish in Part 2. That done, we shall have invariant under this type of substitutions (1)³ (3)⁴, 21 distinct systems.

§8. TRIAD SYSTEMS WHOSE GROUP CONTAINS A SUBSTITUTION OF THE TYPE (1)3 (2)6.

Operations containing longer single cycles belong to fewer distinct types of triad systems, While the fifth kind of substitution, (1)³ (3)⁴, gives rise to 21, the sixth, now to be examined, will yield apparently more than 30. Actually the reduced number is the same, 21, for some systems admit two or more substitutions of the same type. This large number of systems might weary the attention, were it not that novel points of difference are developed, in themselves interesting.

Denote the 15 elements and the operation thus:

$$S \equiv (A) (B) (C) (a_1 b_1) (a_2 b_2) (a_3 b_3) (a_4 b_4) (a_5 b_5) (a_6 b_6)$$

Two triads conjugate under S we shall call dual to each other; there will be six triads self-dual, those containing pairs a_1b_1 , a_2b_2 , etc. According to the principles in section 2, ABC must be one triad and the six self-dual pairs a_1b_1 must be united with A, B, or C to form triads. Denoting the three capitals generically by K, we could specify eight possible types of triads, but for present purposes conjugates combine and form four types. With (or without) the aid of diophantine equations, we find three sets of numbers for these four classes, as follows:

Type of triad,	$Number\ of$	triads i	n a system	ł.
$K\!a_{f i}a_{f k}$	5,	3,	1,	
$Ka_{\mathbf{i}}b_{\mathbf{k}}$	1,	3,	5,	
$a_{\mathbf{i}}a_{\mathbf{j}}a_{\mathbf{k}}$	1,	2	3,	
$a_{\mathbf{i}}a_{\mathbf{j}}b_{\mathbf{k}}$	7,	6,	5.	

The doubles of these numbers, plus the 1 and 6 above mentioned, give the total of 35 triads for a system. The second kind will be taken as standard; the other two will be found to be reducible to this.

By definition, each of the elements A, B, C must appear with six pairs of small letters a, b. Since those not self-dual, as Aa_ib_k or Aa_ia_k , must occur in pairs, Aa_ib_k , Aa_kb_i , the self-dual triads containing A (or B, C) must also be an even number 6, 4, 2, or 0. We therefore divide systems of this section into three principal classes.

```
In class VI, 1: Six self-dual triads contain A;
```

In class VI, 2: Four self-dual triads contain A, two have B;

In class VI, 3: Two self-dual triads contain A, two have B, two have C.

We can fix, for each class, these six self-dual triads and still retain freedom to exchange symbols a, b in each pair; also to exchange certain subscripts. Beside ABC, assign to each class these fundamental triads:

```
Class VI, 1: Aa_1b_1, Aa_2b_2, Aa_3b_3, Aa_4b_4, Aa_5b_5, Aa_6b_6.
Class VI, 2: Aa_1b_1, . . . . . . . . Aa_4b_4; Ba_5b_5, Ba_0b_6.
Class VI, 3: Aa_1b_1, Aa_2b_2; Ba_3b_3, Ba_4b_4; Ca_5b_5, Ca_6b_6.
```

In class VI, 1 we are free to arrange that pairs with the symbol B shall be either $a_i a_k$ or $b_i b_k$ and that the pairs of subscripts shall be 12, 34, 56. Quite similar is the choice permitted in VI, 2.

```
Class VI, 1: Ba_1a_2, Bb_1b_2,; Ba_3a_4, Bb_3b_4; Ba_5a_6, Bb_5b_6.
Class VI, 2: Ba_1a_2, Bb_1b_2; Ba_3a_4, Bb_3b_4; Aa_5a_6, Ab_5b_6.
```

In both classes it is still optional to exchange the a_i , b_i of any conjugate pair as Ba_3a_4 , Bb_3b_4 . Hence it results that triads in C can all be put into a standard form Ca_ib_k . Thus in classes VI, 1 and VI, 2 the numbers of triads can be brought to agree with the second column in our tabulation; that is, there will be two triads of type $a_ia_ja_k$, and six of type $a_ia_jb_k$.

For both these classes, therefore, we write down at once the possible sets of triads containing C, leaving for separate discussion the class VI, 3.

```
CLASS VI, 1—TRIADS IN C.
```

No. VI, 2_4 : Ca_1b_4 , Ca_4b_1 , Ca_2b_5 , Ca_5b_2 , Ca_3b_6 , Ca_6b_3 .

Class VI, 3 has two self-conjugate triads in A, two in B, and two containing C. There are yet to be formed for each, four triads or two pairs of conjugates. That is, for each of these three letters we must combine four subscripts into two pairs. Notice that the six pairs are to contain each subscript twice. These may be grouped into one or more cycles; for example, if 12, 23, 31 are among them, they constitute a cycle of three. Possible are apparently

```
Three cycles of two pairs;
One cycle of two, one cycle of four;
Two cycles of three;
One cycle of six.
```

By trials it is quickly proved that the third alternative gives a schedule which can not be completed to a full system. There remain then only cycles with two, four, or six pairs. Each cycle can be divided into halves so that each half contains the same subscripts as the other (by taking alternate pairs in the cycle). This gives us twice three pairs involving all six subscripts. One set of pairs corresponding can be chosen of letters aa or bb, the other of unlike letters, ab. All these possibilities, together with the self-conjugate triads, are outlined in the following; exhausting the possible schedules for triads in A, B, and C, except for nonessential substitutions.

CLASS VI, 3—TRIADS IN A, B, AND C, AFTER ABC.

-Cona	ensed	tables	of si	ibscripts.

,		ab	aa, bb	ab. ba
No. VI, 3,:				
	• • • • • • • • • • • • • • • • • • •		34 12, 56	56
C No. V1, 3 ₅ :		55, 66		12, 34
A			34	56
C			12, 56	13, 24
No. VI, 3 ₃ :		11, 22	34	56
B		33, 44	1 5, 26	13, 24
No. VI, 3_1 :			0.0	
B		11, 22 33, 44	36 15	$\begin{array}{c} 45 \\ 26 \end{array}$
C		55, 66	24	13
			,	

The cycles above described are seen in the second and third columns of these tables (under aa, bb and ab, ba). There are: One each of the first two species, two of the fourth.

Altogether in the three classes VI, 1, 2, and 3, we have therefore 11 schedules or partial systems. These 11 can all be completed to full systems, most of them in two or more ways. All the systems contain the triad ABC; the 18 triads containing a single A, B, or C are given above; and the various supplementary sets of 16 triads, of the types aaa, bbb, aab, and abb are now to be listed in full.

SUPPLEMENTARY SETS, TO COMPLETE THE FOREGOING SYSTEMS.

(Of two conjugate triads only one is given.)

```
VI, 1_1a. aaa: 135, 246.

aab: 145, 164, 326, 361, 523, 542.

VI, 1_1a'. aaa: 135, 246.

aab: 146, 163, 325, 362, 524, 541.

Equivalent to VI, 1_1a by the substitution (16) (34) (25).

VI, 1_1\beta. aaa: 135, 146.

aab: 235, 246, 254, 263, 361, 451.

VI, 1_1\beta'. aaa: 135, 146.

aab: 236, 245, 253, 264, 361, 451.

Equivalent to VI, 1_1\beta by the substitution (36) (45).

VI, 1_2. aaa: 145, 235.

aab: 135, 162, 245, 263, 364, 461.
```

A second supplementary set is equivalent to this by the substitution (12) (34).

VI, 1₃a. aaa: 135, 246. aab: 145, 162, 324, 361, 523, 546. An equivalent set is derived by the substitution (12) (36) (45).

```
VI, 1_3\beta. aaa: 136, 145.
          aab: 234, 246, 253, 261, 351, 465.
 VI, 2,a. aaa: 135, 246.
          aab: 145, 164, 326, 361, 523, 542.
             An equivalent set is derived by the substitution (13) (24).
 VI, 2_1\beta. aaa: 135, 146.
          aab: 235, 246, 254, 263, 361, 451.
 VI, 2,\gamma. aaa: 135, 146.
          aab: 236, 245, 253, 264, 361, 451.
 VI, 2,δ. aaa: 135, 245.
          aab: 613, 624, 632, 641, 145, 235.
             An equivalent set is derived by the substitution (13) (24).
VI, 2_2a. aaa: 145, 235.
          aab: 135, 162, 245, 263, 364, 461.
             A second supplementary set is transformed into this by the substitution
               (14) (23) (a_5b_5) (a_6b_6).
VI, 2_3\alpha. aaa: 136, 145.
          aab: 234, 245, 256, 263, 351, 461.
             An equivalent set is reduced to this by the substitution (34) (56).
 VI, 2_3\beta. aaa: 135, 146.
          aab: 234, 245, 256, 263, 361, 451.
             Another supplementary set comes from this by the substitution (34) (56).
               No. VI, 2_3\beta is reduced to VI, 2_3\alpha by the substitution (a_3b_4) (a_4b_3) (a_5b_6)
                (a_{6}b_{5}).
 VI, 2_3\gamma. aaa: 135, 245.
          aab: 145, 163, 234, 265, 362, 461.
VI, 2_4\alpha. aaa: 135, 246.
          aab: 145, 162, 324, 361, 523, 546.
VI, 2<sub>4</sub>β. aaa: 135, 246.
          aab: 146, 165, 321, 362, 524, 543.
             This is seen to arise from VI, 2_4a by the substitution (14) (23) (56).
VI, 2_{4}\gamma. aaa: 145, 136.
          aab: 234, 246, 261, 253, 351, 465.
 VI, 2<sub>4</sub>δ. aaa: 145, 235.
          aab: 612, 624, 631, 645, 135, 243.
 VI, 24e. aaa: 236, 245.
          aab: 146, 165, 153, 132, 354, 462.
VI, 3,a. aaa: 135, 246.
          aab: 145, 164, 326, 361, 523, 542.
VI, 3,a'. aaa: 135, 246.
          aab: 146, 163, 325, 362, 524, 541.
             Equivalent to VI, 3_1a by the substitution (BC) (a_1a_2b_4b_2) (a_3a_6b_3b_6)
               (a_5a_4b_5b_4).
VI, 3<sub>1</sub>β. aaa: 135, 146.
          aab: 235, 246, 254, 263, 361, 451.
              This comes from VI, 3_1\alpha by the substitution (AB) (13) (24) (a_6b_6).
VI, 3_1\beta'. aaa: 135, 146.
          aab: 236, 245, 253, 264, 361, 451.
 VI, 3_1\gamma. aaa: 135, 245.
          aab: 613, 624, 632, 641, 145, 235.
              This also is equivalent to VI, 3_1a, by the substitution (AC) (15) (26)
                 (a_{4}b_{4}).
VI, 3_1\gamma', aaa: 135, 245.
```

aab: 614, 623, 631, 642, 145, 235.

```
VI, 3<sub>2</sub>. aaa: 145, 235.
          aab: 135, 162, 245, 263, 364, 461;
             or 135, 164, 245, 261, 362, 463.
              These two alternatives are equivalent by the substitution (12) (34).
                We shall refer to the first.
VI, 3<sub>3</sub>a. aaa: 146, 235.
          aab: 125, 136, 241, 362, 453, 564.
VI, 3_3\beta. aag: 146, 235.
          aab: 126, 132, 245, 364, 451, 563.
              Equivalent to VI, 3_3\alpha by the substitution (12) (34) (56).
VI, 3_3\gamma. aaa: 124, 136.
         aab: 251, 352, 453, 654, 236, 461.
VI, 3<sub>3</sub>δ. aaa: 412, 465.
         aab: 316, 325, 354, 362, 164, 251.
VI, 3, a. aaa: 146, 235.
         aab: 124, 132, 436, 453, 625, 651.
VI, 3<sub>4</sub>β. aaa: 146, 235.
         aab: 125, 134, 432, 456, 621, 653.
             Equivalent to VI, 3_4\alpha by the substitution (BC) (12) (36) (45).
VI, 3_4\gamma. aaa: 126, 134.
         aab: 234, 251, 461, 352, 456, 563.
VI, 3<sub>4</sub>δ. aaa: 312, 345.
         aab: 142, 253, 614, 625, 643, 651.
             Equivalent to VI, 3_4\gamma by the substitution (AB) (13) (24) (56).
```

In the above enumeration some systems can still be omitted as redundant.

No. VI, $3_1\gamma'$ is reduced to VI, $1_1\alpha$ by the substitution (a_4b_3) (b_5b_6) .

Five systems are reducible to VI, 2, a, viz:

VI, $2_1\gamma$ by the substitution (BC) (a_1a_5) (b_1a_6) (a_2b_6) (b_2b_5) (a_4b_4) ;

VI, $3_1 \alpha$ by the substitution (ACB) $(a_1a_5a_3)$ $(b_2b_5a_4)$ $(a_2a_6b_3b_1b_6b_4)$:

and the three whose equivalence to VI, 3, a has been noted already.

Further, No. VI, $3_1\beta'$ is reducible to VI, $2_1\delta$ by the substitution

$$(BC)$$
 (a_1a_2) $(a_2b_2b_4)$ $(a_2b_2b_1a_2b_2b_2)$.

Some of those equivalences are obvious on comparison of the structure as here described, but others would not have been found without the aid of some definite system of procedure. The method actually used was Miss Cummings's method of sequences and indices.

After these deductions for equivalence, there remain 21 systems apparently distinct, automorphic under a substitution of the type (1)³(2)⁶.

In writing down these supplementary sets of triads, the first step was to write the two required triads $a_i a_j a_k$ in all ways that are different as regards the schedule of triads in A, B, and C; that is, in all possible ways not transformable into one another without alteration of the preceding 19 triads of the proposed system. After each way of writing these two triads $a_i a_j a_k$, it is easy to decide from inspection whether the number of ways of filling out the six triads aab is 0, 1, or 2. Where possible pairs of triads $a_i a_j a_k$ have been omitted, it indicates the impossibility of filling out a system.

§9. THE SUBSTITUTION OF THE TYPE (1)7(2)4: INVARIANT TRIAD SYSTEMS.

The only remaining (reduced) type of substitutions is that which leaves unchanged 7 of the 15 elements and exchanges the others in pairs. Denote the former by numerals or digits 1, 2, 3, 4, 5, 6, 7; the latter by the pairs of letters Aa, Bb, Cc, Dd. The operation to be considered is S:

$$S \equiv (1)(2)(3)(4)(5)(6)(7)(Aa)(Bb)(Cc)(Dd).$$

The first 7 elements, as we have seen, must constitute by themselves a triad system \triangle_7 , while each one occurs in 4 additional triads with pairs of letters from the last 8. Of these 8 letters all possible pairs occur, 4 self-conjugate and the rest in 12 conjugate pairs of pairs; 28 in all, so that every such pair is joined in a triad with one of the digits. Two pairs that are conjugate must form triads with the same digit as third element. Hence the 4 self-conjugate pairs, like Aa, are either all completed to triads by the same numeral, as 1, or else by two numerals, as 1 and 2, each joined with two pairs. Triads not self-conjugate, as 3AB, 3ab, occur two by two.

Assembling in columns of four the pairs associated with the several digits, we shall have a seven-by-four array. We shall find that there are five types of such arrays, aside from permutations of entire columns. To complete them to triad systems, it remains only to annex a triad system \triangle_7 constituted upon the seven digits. This can be done in a variety of ways, so that several systems will result from each seven-by-four array. Triads composed of one digit and two letters shall be termed *mixed*. First we tabulate the mixed triads, writing down the pairs of letters only.

Pairs from Mixed Triads, Class VII 1.

1	2	3	4	5	6	7
Aa	AB	Ab	AC	Ac	AD	Ad
Bb	ab	aB	ac	aC	ad	aD
Cc	CD	Cd	BD	Bd	BC	Bc
Dd	cd	cD	bd	bD	bc	bC

Pairs from Mixed Triads, Class VII 2.

	6	7
First five like the above.	AD	Ad
	ad	aD
	Bc	BC
	bC	bc

Here explanation is necessary. Any column could be selected as the second, whence the third would follow. Beside the exchange of conjugate letters in independent pairs, there are still permissible the substitutions

$$(AB)(ab)$$
, $(CD)(cd)$, $(AC)(BD)(ac)(bd)$, $(AD)(BC)(ad)(bc)$,

this last a result of the others. Compared with the second or the third, any later column may be either cross-tied or not. For example, the fourth is cross-tied to the second by the triads 2AB, 2CD in the one and 4AC, 4BD in the other; hence also by the remaining pairs in the two columns. Notice also that when it is cross-tied to the second column it is necessarily cross-tied to its cognate column, the third. As an example of the opposite kind, the columns 6 and 7 in class VII2 are not cross-tied to columns 2, 3, 4, or 5.

If all four self-conjugate pairs stand in a single column, there are but two nonequivalent classes of seven-by-four arrays, those having the other six columns all cross-tied, and those having four all cross-tied and the two others not cross-tied with them. All others having column 1 can be reduced to either VII1 or VII2.

In the other alternative, when self-conjugate pairs of elements appear in two columns, two in each, there are three classes of schedules. Let the columns containing self-conjugate pairs be the first and second; the other two pairs in the first column are cross-tied to the self-conjugates in the second, and vice versa. Therefore also there will be another column—let it be taken for the third—cross-tied to both the first and the second. Compare the four subsequent columns with the third. Either 4, 2, or 0 are cross-tied with this third. If two are not, select them for the sixth and seventh columns. The resulting arrays are the following:

PAIRS FROM MIXED TRIADS.

For e	all three cle	uss∈s.		For clas	ss VII.3.	
1	2	3	4	5	6	7
Aa	AB	Ab	AC	Ac	AD	Ad
Bb	ab	aB	ac	aC	ad	aD
CD	Cc	Cd	BD	Bd	BC	Bc
cd	Dd	cD	bd	bD	bc	bC
				For clas	s VII4.	
			4	5	6	7
			AC	Ac	AD	Ad
			ac	aC	ad	aD
			BD	Bd	Bc	BC
			bd	bD	bC	bc
				For clas	s VII5.	
			4	5	6	7
			AC	Ac	AD	Ad
			ac	aC	ad	aD
			Bd	BD	Bc	BC
			bD	bd	bC	bc

Class VII3 is reducible to class VII2. The array of VII2 has the column 1 unique, cross-tied to (interlaced with) all the others, a character not found in any other column. In the array of class VII3, the column 3 is unique in the same particular. From this clue, one finds without difficulty a transformation of the latter array into the former. This transformation does not preserve, however, the pairs of conjugate letters; in other words, it does alter the substitution S with reference to which the systems are constructed; but it changes S into another substitution S' of the same type $(1)^7(2)^4$. The transformer is this: (A) (B d b a D c C) (1 6 5 4 2 7 3).

Since the array of a system of class VII3 with respect to a substitution S, of type $(1)^7(2)^4$, can be transformed into an array of class VII2 with respect to a different substitution S' of the same type, all systems belonging in the one class belong also in the other; and hence class VII3 does not require a separate investigation.

Upon these arrays we are now to superpose triad systems, \triangle_7 's, constructed in all non-equivalent modes from the seven digits. First, for the class VII1, there is an immediate deduction available. The columns are triply cross-tied (interlaced), so that they indicate an inherent triad-system or \triangle_7 . Compared with this inherent system, the \triangle_7 to be imposed must have 7, 3, 1, or 0 triads in common. As no column and no inherent triad is unique in this array, no further distinction is possible, and there are precisely four essentially different systems in this class.

Supplementary Sets, \triangle_7 's, for Class VIII.

System VII1₁: 123, 145, 167, 246, 257, 347, 356. System VII1₂: 123, 145, 167; 247, 256, 346, 357. System VII1₄: 123, 146, 157, 247, 256, 345, 367. System VII1₆: 124, 136, 157, 237, 256, 345, 467.

In the array for class VII2, as has been pointed out, column 1 is unique, and the two columns 6, 7 are unlike 2, 3 and 4, 5 in relation to cross-tying or interlacing. All three of these pairs, or else only one of them, or none at all, may be united with numeral 1 in the superimposed \triangle_7 . If only one, that one may be either 2 3 or 6 7. There are thus four cases, and each can be completed in two ways, giving apparently eight supplementary sets of triads or \triangle_7 's.

SUPPLEMENTARY SETS, \triangle_7 's, for Class VII2.

```
 \begin{array}{c} \text{System VII2}_1 \\ \text{(System VII2}_2) \\ \text{123, 145, 167;} \\ \begin{bmatrix} 246, 257, 347, 356. \\ 247, 256, 346, 357. \\ 247, 256, 346, 357. \\ 247, 265, 347, 365. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 265, 345, 367. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 246, 356. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 357. \\ 247, 3
```

These are equivalent, two and two. For systems VII2₁ and VII2₂ the transformer is obviously (67)(AB)(ab)(CD)(cd). The same transformer relates VII2₅ and VII2₆. Slightly more intricate is the transformation of VII2₇ and VII2₈, viz by the substitution (24)(35)(67)(ABDC)(abdc); and that which exchanges VII2₃ and VII2₄, namely (23)(45)(67)(ABab)(DCdc). We omit, therefore, the even-numbered systems in the above list, as indicated by parentheses.

In the array for class VII4, column 3 is unique, and the others are paired by being cross-tied or interlaced. The three pairs, 12, 45, 67, are distinct or unlike; for the first are triply interlaced with column 3 by sets of four letters, the second are interlaced with each other, and each by itself with column 3, while the last pair are interlaced with each other but not with column 3. It is important to observe that we can exchange simultaneously the members of all three pairs, by the substitution (ADad)(BCbc)(12)(45)(67). This allows us to omit one of every two that have one of these pairs of numerals in a triad with 3, as for example 345.

Supplementary Sets, \triangle_7 's, for Class VII4.

```
System VII 4_1: 312, 345, 367; 146, 157, 256, 247. System VII 4_2: 312, 346, 357; 145, 167, 247, 256. System VII 4_3: 316, 345, 327; 142, 157, 652, 647. System VII 4_4: 314, 325, 367; 126, 157, 427, 456. System VII 4_5: 314, 326, 357; 125, 167, 427, 465. System VII 4_6: 314, 326, 357; 127, 165, 425, 467.
```

This list is complete. For we need only consider the triads containing the element 3. Either all three contain pairs whose columns are interlaced in the array, $(VII4_1)$, or only one, or none. That should give us (1+6+4=)11 systems, after making allowance for the automorphism mentioned just before the list. A further reduction is effected by observing that each of the three operations like (AB)(CD)(ab)(cd) exchanges each of two pairs of columns, as (45)(67), leaving the other columns of the array unaltered. Accordingly the five systems $VII4_2 \dots VII4_6$ represent ten, and $VII4_1$ makes up eleven, the full count.

The array for class VII5 has the unique column 3, the unique pair of columns 1, 2 containing conjugate pairs, and the interchangeable pairs of columns 45, 67. We shall take account of five substitutions among letters in the array, and their effect in permuting columns and their respective digits.

```
T_1: (AB)(ab) produces (47)(56).

T_2: (CD)(cd) produces (46)(57).

T_3: (AB)(CD)(ab)(cd) produces (45)(67).

T_4: (AC)(BD)(ac)(bd) produces (12)(67).

T_5: (AD)(BC)(ad)(bc) produces (12)(45).
```

Hence we distinguish only four cases, different as regards the pairs associated in triads with the unique numeral 3. Either all the pairs 12, 45, 67, or the pair 12 only, or one of the others exclusively, as 45, or none of them, must occur with 3. Each of these admits evidently two modes of completion, but two of the resulting eight systems are redundant, as will be explained.

SUPPLEMENTARY SETS, \triangle_7 's, for the Class VII5.

$$\begin{array}{c} \text{System VII5}_1 \\ \text{System VI15}_2 \end{array} \} 312, \, 345, \, 367 \cdot \begin{cases} 146, \, 157, \, 247, \, 256. \\ 147, \, 156, \, 246, \, 257. \end{cases} \\ \text{System VI15}_3 \\ \text{System VI15}_4 \end{cases} \} 312, \, 346, \, 357 \cdot \begin{cases} 145, \, 167, \, 247, \, 265. \\ 147, \, 165, \, 245, \, 267. \end{cases} \\ \text{System VI15}_5 \cdot \\ \text{System VI15}_6 \cdot \end{cases} \} 316, \, 345, \, 327 \cdot \begin{cases} 142, \, 157, \, 647, \, 625. \\ 147, \, 125, \, 642, \, 657. \end{cases} \\ \text{System VI15}_7 \cdot \\ \text{System VI15}_8 \cdot \end{cases} \} 314, \, 326, \, 357 \cdot \begin{cases} 125, \, 167, \, 427, \, 465. \\ 127, \, 165, \, 425, \, 467. \end{cases}$$

In this list two equivalences can be detected. A distinction has been pointed out, in the array of class VII5, between the set of columns, 123, and the others, columns 45 67. Substitutions can be seen which will transform any one of these latter columns into itself, permute the three others in cycle, and permute cyclically also the first three columns. Select the pair AC from column 4. Under 5, 6, 7 note the pairs containing A and C; similarly under 132.

The substitution (A)(C)(abB)(cDd) is found to convert column 4 into itself, hence it is equivalent to the operation on numerals:

and this transforms the supplementary system VII54 into VII51. In the same way is found the operation:

$$(B)(D)(deC)(bAa) \equiv (5)(123)(467),$$

which shows an equivalence between VII5, and VII5,

Four other relations, found by the sequence method of Miss Cummings, are readily verified.

```
System VII2, \equivSystem VII12, by the substitution (67) (Dd).
```

System VII4₂ \equiv System VII2₃, by the substitution (23)(4c)(5C)(6d)(7D).

System VII5₁≡System VII2₅, by the substitution

$$\begin{pmatrix} 1234567 & Aa & Bb & Cc & Dd \\ 176b & CBc & 25 & 43 & aD & Ad \end{pmatrix}$$

System VII5₃ System VII1₄, by the substitution

$$\begin{pmatrix} 1234567 & Aa & Bb & Cc & Dd \\ 213 & ABba & CD & cd & 46 & 75 \end{pmatrix}$$

Accordingly there remain as distinct systems in this section the following 16:

Class VII1, systems 1, 2, 4, 6;

Class VII2, systems 3, 5, 7;

Class VII4, systems 1, 3, 4, 5, 6;

Class VII5, systems 2, 5, 6, 7.

No proof of nonequivalence has been given, save in a few special cases. It is believed that all redundances have been eliminated from each separate section. To Miss Cummings will fall the discovery of equivalences in different sections, and the proof of essential difference in the residue. As a summary result, we know that the 71 triad systems analyzed and listed in the foregoing include certainly all that admit any substitution other than the identity.

PART 2.

TRAINS FOR TRIAD SYSTEMS ON 15 ELEMENTS WHOSE GROUP IS OF ORDER HIGHER THAN UNITY.

By L. D. Cummings.

To investigate the 71 systems obtained in Part 1, and to determine the group for each system, Mr. White's method of comparison ¹ for triad systems is employed. For this method the triple system is regarded as an operator and certain covariants of that operator are deduced. These covariants can be represented graphically and are called the trains of the system.

The trains show that the 71 systems are reducible to 44 noncongruent systems; of these 24 are completely known systems already fully discussed in my dissertation, but the remaining 20 systems have not been described heretofore. The trains for the 44 noncongruent systems are exhibited, and for each of the 20 new systems the group is determined. The substitutions which transform the 51 systems into their equivalent systems are also given below.

A triple system on n elements consists of triads so selected that every pair of elements (or dyad) occurs once and only once in the chosen triad. If there are 15 elements, every element occurs with 7 pairs of others, and there are in the system in all 35 triads. This property qualifies the triad system to be a transformer of dyads into single elements, and since each dyad occurs once and no more this duality is unique for dyads. Thus, if the system contains the three triads 124, 135, 236, then it will transform the triad 123 which contains the pairs 12, 13, 23 into the triad 456.

From 15 elements 455 triads can be formed. Any system contains 35 of these, leaving 420 that may be called extraneous triads. Apply the system to transform them all; we shall see, as in the example worked out below, that the 35 triads in the system are transformed into themselves, but the 420 extraneous triads go either into extraneous triads or possibly into triads of the system. Some triads will transform into themselves, some will be produced more than once, and others may not be produced at all by the transformation. All that are found to be produced by the transformation are called derivative; all that are missing after the transformation, if any, are called primitive.

TRAINS OF TRIADS.

Under a given triad system as an operator, let a triad t_1 be converted into the triad t_2 . Repeat the operation and continue indefinitely, so that t_2 becomes t_3 ; t_3 becomes t_4 . Since only 455 triads exist, either a triad of the system t_r is reached or else a triad that has already appeared is repeated, namely, $t_{m+k} \equiv t_m$. In the former case the triad t_r repeats forever, while in the latter case the train beginning at t_m constitutes a recurring cycle. If the triads of the system are designated as one-term cycles, then every triad that is primitive with respect to a given triple system initiates a train terminating in a periodic cycle. Triads that do not recur in the terminal cycle are classified as forming appendices, and a complete train consists of one recurrent cycle and all its appendices.

Some substitution may transform the triple system into itself. Such a substitution evidently must also transform each train into itself or into a precisely similar train and therefore

27

¹ H. S. White: Triple systems as transformations and their paths among triads. Transactions of the American Mathematical Society, vol. 14 (1913), pp. 6-13.

² L. D. Cummings: On a method of comparison for triple systems. Transactions of the American Mathematical Society, vol. 15 (1914), pp. 311-327.

must leave unchanged the totality of trains connected with the system. The totality of complete trains (cycles with their appendices) forms accordingly an arrangement of triads invariant under those substitutions on the 15 elements that transform the triple system into itself and facilitates the determination of the group of the system.

Example: The triple system VI 34γ on 15 elements.—For convenience the system is transformed by the substitution

$$S \!\! = \!\! \! \left(\!\!\! \begin{array}{c} \!\!\! ABC \, a_1b_1 \, a_2b_2 \, a_3b_3 \, a_4b_4 \, a_5b_5 \, a_6b_6 \\ \!\!\! b \, a \, c \, 1 \, 2 \, 3 \, 4 \, d \, e \, f \, g \, 7 \, 8 \, 6 \, 5 \end{array}\!\!\!\!\right)\!\!,$$

and is exhibited in the following 15 by 7 array:

a	ь	c	d	e	f	g	1	2	3	4	5	6	7	8
bc de fg 17 28 36 45	ac d5 e6 f8 g7 12 34	ab d2 €1 f3 g4 56 78	ac b5 c2 f1 g3 47 68	ad b6 c1 f4 g2 38 57	ag b8 c3 d1 c4 25 67	af b7 c4 d3 €2 16 58	07 b2 ce df g6 35 48	a8 b1 cd cg f5 37 46	a6 b4 cf dg e8 15 27	a5 b3 cg d7 ef 18 26	$a1 \\ bd \\ c6 \\ \epsilon 7 \\ f2 \\ g8 \\ 13$	a3 be c5 d8 f7 g1 24	a1 bg c8 d4 e5 f6 23	a2 bf c7 d6 e3 g5

The transforming process is simple and may be shown in its application to a triad 458 which is extraneous to this system. Its pairs 45, 48, 58 transform, respectively, into a, 1, g, giving the transformed triad a1g. The triad a1g transforms into the triad of the system 76f which repeats indefinitely. These three triads form the type of train which is exhibited graphically in figure 3. This system applied as an operator on the 455 triads yields the following set of covariants (trains):

Trains for the System VI3₄γ.

Six classes of trains terminating in triads of the system: (1) 11 trains, figure 1; (2) 4 trains, figure 2; (3) 12 trains, figure 6; (4) 2 trains, figure 206; (5) 2 trains, figure 210; (6) 4 trains, figure 211.

One class of trains terminating in a cycle of period 4: (7) 1 train, figure 182.

Two classes of trains terminating in cycles of period 6: (8) 5 trains, figure 183; (9) 1 train, figure 213.

Two classes of trains terminating in cycles of period 12: (10) 1 train, figure 214; (11) 4 trains, figure 215.

Determination of the Group for the System $VI3_4\gamma$.

The trains for this system separate the 35 triads into 6 distinct classes and every operation of the group that leaves the system invariant must transform any train into itself, or into another train of the same class. Since only those elements may be permuted which occur the same number of times in a class, the enumeration of the appearances of each of the 15 elements in the 6 classes of trains, as in the following table, shows the possible sets of transitive elements. An examination of the triads of the system belonging to class (1) shows that the 15 elements do not enter symmetrically as members of the triads of the class; for example, in these 11 triads the element c appears 7 times but no other element appears 7 times.

	a	ь	с	đ	e	f	g	1	2	3	4	5	6	7	8
(1) (2) (3) (4) (5) (6)	1 4 2	1 4	7	1 1 3 1	1 1 3 1	1 1 3 1	1 1 3 J	3 2 1 1	3 2 1 1	3 2 1 1	3 2 1 1	2 1 3	2 1 3	2 1 3	2 1 3

The possible systems of transitivity for the group are therefore a; b; c; d, e, f, g; 1, 2, 3, 4; 5, 6, 7, 8. The sets of possible transitive elements subdivide the classes into sets of triads which are not transformable into one another by operations of the group of the system; the subdivisions

are shown by lines separating the triads in a class. The system $VI3_4\gamma$ contains 11 nonpermutable subdivisions given in the following table:

·	(1))		(2) (3)				(4)	(5)	(6)
abc	cda cf3 cc1 cg4	135 418 246 327	c78 c56	bd5 bf8 bc6 bg7	d68 f76 €57 g85	dg3 fd1 ef1 ge2	a17 a45 a28 a36	ade afg	b12 b43	d47 f25 €38 g16

In determining the group we examine first for substitutions that transform into itself one of the trains, and secondly for those that transform this train into the remaining trains of its class. Substitutions when determined must be tested on the 35 triads of the system.

The substitutions may be determined from any class of trains in the system, but most easily from the class containing the trains with the greatest number of triads since these exhibit more repetition of the elements. In the present case (4), figure 206 is selected.

(i) Examine for substitutions to transform the train ade into itself. The train consists of two similar parts and the substitution

$$t \equiv (a) \ (b) \ (c) \ (de) \ (fg) \ (12) \ (34) \ (56) \ (78)$$

permutes these similar parts. No other substitution exists which converts this train ade into itself. Therefore only a subgroup of order 2 transforms this train into itself.

(ii) Examine for substitutions to transform the train of the triad ade into the other train of its class. The substitution

$$s \equiv (a) \ (b) \ (c) \ (dfeg) \ (1423) \ (5867)$$

transforms the train of ade into the train of afg. Since $t \equiv s^2$ the substitution t is omitted. The substitution s applied to the 35 triads of the system transforms the system into itself. Therefore the group for this system is a cyclic group of order 4 and is generated by $s \equiv (a)$ (b) (c) (dfeg) (1423) (5867).

Similar detailed study determines the group for each of the following 43 systems:

TRAINS FOR THE SYSTEM V4a1.

Ton classes of trains terminating in triads of the system: (1) Seven trains, figure 1; (2) 6 trains, figure 2; (3) 3 trains, figure 3; (4) 3 trains, figure 6; (5) 1 train, figure 66; (6) 3 trains, figure 205; (7) 3 trains, figure 207; (8) 3 trains, figure 208; (9) 3 trains, figure 209; (10) 3 trains, figure 212.

One class of trains terminating in a cycle of period 12: (11) Three trains, figure 216.

GROUP FOR THE SYSTEM V4a1.

The sets of transitive elements are A; B; C; $a_1a_2a_3$; $b_1b_2b_3$; $c_1c_2c_3$; $d_1d_2d_3$. These with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by $s \equiv (A)$ (B) (C) $(a_1a_2a_3)$ $(b_1b_2b_3)$ $(c_1c_2c_3)$ $(d_1d_2d_3)$, and is of order 3.

The trains which belong to the system VI3₄ γ are exhibited in Plate I, those of the system V4a1 in Plate II; even a casual inspection of these two plates establishes conclusively the noncongruence of the two systems.

The same type of train may occur in several systems, and in order to avoid repetition in the diagrams the 204 distinct types which occur in the remaining 42 systems are numbered and listed in a definite order. The most convenient arrangement seemed to be the following,

{Vol. XIV.

namely: All trains which contain a principal or maximum succession consisting of $1, 2, 3, \ldots, k, \ldots$ triads are placed together and numbered consecutively; the subordinate arrangement of these is easily observed. In general, the trains are exhibited in full, but in order to save space a few of the longest trains which are divisible into parts cyclically repeated are shown in one part only. These, on account of their greater length, appear toward the end of the series of figures.

The noncongruence of the remaining 42 systems is shown in the dissimilarity in the number and in the type of trains enumerated under each system. Systems with different numbers of trains in their classes are noncongruent. The distinctiveness of trains numbered differently is evident, and the fact that no possible confusion of the trains as pictured can arise constitutes the chief merit of this method of proof of the nonconvergence of triad systems.

The trains for the 44 systems contain 216 different types, among which appear trains with cycles of period 4, 6, 9, 10, 12, 18, 20, 24, 30, and 72. Trains with cycles of period 2 or of period 3 are impossible, but while no cycle of period 5 has appeared among the trains of these systems, there is no evident reason why such a cycle may not occur in the trains of systems not yet investigated. The groups for the 44 systems have been determined and the generators for each of the 20 new groups are exhibited.

The groups for the 24 systems IA, IB, IC, IIA, IIB, IIC, IID, IIE, IIF, IIIA, IIIB, IIIC, IIID, IVA, IVB, VA, VB, VC, VD, VIA, VIB, VIC, VID, VII have already been determined, and for the sake of brevity are omitted.

Mr. Cole has pointed out an error in the order of the group for the system IIIB. The order of this group is 192, and not 96, as previously stated.

TRAINS FOR THE SYSTEM IA.

Three classes of trains terminating in triads of the system: (1) Seven trains, figure 20 (2) 7 trains, figure 1; (3) 21 trains, figure 2.

One class of trains terminating in cycles of period 18: (4) Seven trains, figure 194.

Trains for the System IB.

Six classes of trains terminating in trials of the system: (1) Three trains, figure 24; (2) 4 trains, figure 20; (3) 3 trains, figure 4; (4) 6 trains, figure 3; (5) 9 trains, figure 2; (6) 10 trains, figure 1.

Three classes of trains terminating in cycles of period 18: (7) Three trains, figure 195; (8) 3 trains, figure 196; (9) 1 train, figure 197.

TRAINS FOR THE SYSTEM IC.

Six classes of trains terminating in triads of the system: (1) Six trains, figure 24; (2) 1 train, figure 20; (3) 3 trains, figure 4; (4) 12 trains, figure 3; (5) 6 trains, figure 2; (6) 7 trains, figure 1.

Three classes of trains terminating in cycles of period 18: (7) One train, figure 198; (8) 3 trains, figure 199; (9) 3 trains, figure 200.

TRAINS FOR THE SYSTEM IIA.

Five classes of trains terminating in triads of the system: (1) One train, figure 5; (2) 12 trains, figure 21; (3) 6 trains, figure 15; (4) 4 trains, figure 49; (5) 12 trains, figure 35.

TRAINS FOR THE SYSTEM IIB.

Eleven classes of trains terminating in triads of the system: (1) Two trains, figure 21; (2) 1 train, figure 14; (3) 2 trains, figure 15; (4) 4 trains, figure 17; (5) 2 trains, figure 16; (6) 4 trains, figure 85; (7) 4 trains, figure 44; (8) 4 trains, figure 77; (9) 4 trains, figure 74; (10) 4 trains, figure 39; (11) 4 trains, figure 31.

TRAINS FOR THE SYSTEM HC.

Twenty classes of trains terminating in triads of the system: (1) One train, figure 26; (2) 1 train, figure 25; (3) 1 train, figure 21; (4) 2 trains, figure 55; (5) 2 trains, figure 56; (6) 2 trains, figure 90; (7) 1 train, figure 11; (8) 2 trains, figure 50; (9) 2 trains, figure 88; (10) 2 trains, figure 16; (11) 1 train, figure 15; (12) 2 trains, figure 86; (13) 2 trains, figure 82; (14) 2 trains, figure 44; (15) 2 trains, figure 83; (16) 2 trains, figure 36; (17) 2 trains, figure 74; (18) 2 trains, figure 40; (19) 2 trains, figure 67; (20) 2 trains, figure 65.

TRAINS FOR THE SYSTEM IID.

Twenty classes of trains terminating in triads of the system: (1) One train, figure 26; (2) 1 train, figure 25; (3) 1 train, figure 21; (4) 2 trains, figure 19; (5) 2 trains, figure 59; (6) 2 trains, figure 89; (7) 1 train, figure 15; (8) 1 train, figure 14; (9) 2 trains, figure 50; (10) 2 trains, figure 16; (11) 2 trains, figure 43; (12) 2 trains, figure 87; (13) 2 trains, figure 84; (14) 2 trains, figure 45; (15) 2 trains, figure 34; (16) 2 trains, figure 36; (17) 2 trains, figure 69; (18) 2 trains, figure 76; (19) 2 trains, figure 72; (20) 2 trains, figure 40.

TRAINS FOR THE SYSTEM IIE.

Nine classes of trains terminating in triads of the system: (1) 1 train, figure 5; (2) 4 trains, figure 26; (3) 6 trains, figure 25; (4) 4 trains, figure 21; (5) 8 trains, figure 55; (6) 2 trains, figure 14; (7) 4 trains, figure 50; (8) 2 trains, figure 15; (9) 4 trains, figure 36.

TRAINS FOR THE SYSTEM IIF.

Thirteen classes of trains terminating in triads of the system: (1) 2 trains, figure 21; (2) 2 trains, figure 15; (3) 2 trains, figure 51; (4) 1 train, figure 14; (5) 4 trains, figure 52; (6) 2 trains, figure 16; (7) 4 trains, figure 45; (8) 2 trains, figure 70; (9) 2 trains, figure 80; (10) 4 trains, figure 39; (11) 2 trains, figure 33; (12) 4 trains, figure 75; (13) 4 trains, figure 64.

TRAINS FOR THE SYSTEM IIIA.

One class of trains terminating in triads of the system: (1) 35 trains, figure 5.

TRAINS FOR THE SYSTEM IIIB.

Three classes of trains terminating in the triads of the system: (1) 7 trains, figure 5; (2) 24 trains, figure 25; (3) 4 trains, figure 14.

TRAINS FOR THE SYSTEM IIIC.

Four classes of trains terminating in triads of the system: (1) 1 train, figure 5; (2) 12 trains, figure 25; (3) 16 trains, figure 23; (4) 6 trains, figure 14.

TRAINS FOR THE SYSTEM IIID.

Two classes of trains terminating in triads of the system: (1) 28 trains, figure 23; (2) 7 trains, figure 14.

TRAINS FOR THE SYSTEM IVA.

Five classes of trains terminating in triads of the system: (1) 1 train, figure 5; (2) 8 trains, figure 25; (3) 16 trains, figure 19; (4) 6 trains, figure 15; (5) 4 trains, figure 14.

TRAINS FOR THE SYSTEM IVB.

Eleven classes of trains terminating in triads of the system: (1) 1 train, figure 25; (2) 4 trains, figure 23; (3) 4 trains, figure 56; (4) 4 trains, figure 59; (5) 3 trains, figure 14; (6) 3 trains, figure 15; (7) 2 trains, figure 50; (8) 4 trains, figure 52; (9) 4 trains, figure 17; (10) 2 trains, figure 36; (11) 4 trains, figure 39.

TRAINS FOR THE SYSTEM VA.

Three classes of trains terminating in triads of the system: (1) 1 train, figure 5; (2) 18 trains, figure 15; (3) 16 trains, figure 13.

TRAINS FOR THE SYSTEM VB.

Five classes of trains terminating in triads of the system: (1) 1 train, figure 14; (2) 6 trains, figure 15; (3) 12 trains, figure 47; (4) 4 trains, figure 12; (5) 12 trains, figure 39.

TRAINS FOR THE SYSTEM VC.

Nine classes of trains terminating in triads of the system: (1) 2 trains, figure 25; (2) 4 trains, figure 57; (3) 4 trains, figure 15; (4) 1 train, figure 14; (5) 4 trains, figure 50; (6) 8 trains, figure 54; (7) 4 trains, figure 46; (8) 4 trains, figure 36; (9) 4 trains, figure 39.

TRAINS FOR THE SYSTEM VD.

Seven classes of trains terminating in triads of the system: (1) 3 trains, figure 25; (2) 4 trains, figure 60; (3) 1 train, fig. 14; (4) 6 trains, figure 50; (5) 12 trains, figure 53; (6) 3 trains, figure 15; (7) 6 trains, figure 36.

TRAINS FOR THE SYSTEM VIA.

Six classes of trains terminating in triads of the system: (1) 4 trains, figure 20; (2) 3 trains, figure 15; (3) 6 trains, figure 132; (4) 12 trains, figure 64; (5) 6 trains, figure 109; (6) 4 trains, figure 1.

TRAINS FOR THE SYSTEM VIB.

Twenty-one classes of trains terminating in triads of the system: (1) 1 train, figure 26; (2) 2 trains, figure 22; (3) 2 trains, figure 20; (4) 1 train, figure 15; (5) 2 trains, figure 104; (6) 1 train, figure 16; (7) 2 trains, figure 102; (8) 1 train, figure 130; (9) 2 trains, figure 83; (10) 2 trains, figure 3; (11) 2 trains, figure 72; (12) 2 trains, figure 69; (13) 2 trains, figure 35; (14) 2 trains, figure 75; (15) 2 trains, figure 125; (16) 2 trains, figure 67; (17) 1 train, figure 113; (18) 1 train, figure 119; (19) 2 trains, figure 112; (20) 1 train, figure 109; (21) 2 trains, figure 1.

TRAINS FOR THE SYSTEM VIC.

Thirteen classes of trains terminating in triads of the system: (1) 3 trains, figure 22; (2) 1 train, figure 20; (3) 3 trains, figure 16; (4) 3 trains, figure 3; (5) 3 trains, figure 73; (6) 3 trains, figure 74; (7) 3 trains, figure 122; (8) 3 trains, figure 124; (9) 3 trains, figure 126; (10) 3 trains, figure 31; (11) 3 trains, figure 65; (12) 3 trains, figure 117; (13) 1 train, figure 1.

TRAINS FOR THE SYSTEM VID.

Thirteen classes of trains terminating in triads of the system: (1) 3 trains, figure 26; (2) 3 trains, figure 22; (3) 3 trains, figure 89; (4) 3 trains, figure 55; (5) 1 train, figure 20; (6) 3 trains, figure 103; (7) 3 trains, figure 101; (8) 3 trains, figure 3; (9) 3 trains, figure 36; (10) 3 trains, figure 76; (11) 3 trains, figure 96; (12) 3 trains, figure 98; (13) 1 train, figure 1.

TRAINS FOR THE SYSTEM VII.

One class of trains terminating in triads of the system: (1) 35 trains, figure 1.

Two classes of trains terminating in cycles of period 6: (2) 5 trains, figure 183; (3) 5 trains figure 186.

TRAINS FOR THE SYSTEM I2.

Seven classes of trains terminating in triads of the system: (1) 5 trains, figure 32; (2) 5 trains, figure 159; (3) 5 trains, figure 94; (4) 5 trains, figure 163; (5) 5 trains, figure 146: (6) 5 trains, figure 2; (7) 5 trains, figure 1.

Group for the system 12.—The sets of transitive elements are a b c d e; a β γ δ ϵ ; 1 2 3 4 5; these with the trains separate the system into 7 nonpermutable subdivisions. The group is generated by

 $s = (a \ b \ e \ d \ e) \ (1 \ 2 \ 3 \ 4 \ 5) \ (a \beta \gamma \delta \epsilon)$

and is of order 5.

TRAINS FOR THE SYSTEM II12.

Three classes of trains terminating in triads of the system (1) 15 trains, figure 1; (2) 2 trins, figure 48; (3) 18 trains, figure 145.

One class of trains terminating in a cycle of period 4: (4) 9 trains, figure 182.

Group for the system III_2 .—The sets of transitive elements are $a_1 a_2 a_3 b_1 b_2 b_3$; $c_1 c_2 c_3 d_1 d_2 d_3 e_1 e_2 e_3$; these with the trains separate the system into 9 nonpermutable subdivisions. The group is generated by

$$\begin{split} s &= (a_1) \ (u_2) \ (b_1 \ b_2 \ b_3) \ (c_1 \ d_1 \ e_1) \ (c_2 \ d_2 \ e_2) \ (c_3 \ d_3 \ c_3) \ (d_3), \\ t &= (a_1 \ a_3) \ (a_2) \ (b_1 \ b_2) \ (b_3) \ (c_1 \ e_3) \ (c_2 \ e_2) \ (c_3 \ e_1) \ (d_1 \ d_3) \ (d_2), \\ w &= (a_1 \ b_1 \ a_2 \ b_2) \ (a_3 \ b_3) \ (e_1 \ e_2 \ e_2 \ d_1) \ (e_3) \ (d_2 \ e_3 \ e_1 \ d_3), \end{split}$$

d is of order 36.

TRAINS FOR THE SYSTEM II13.

Four classes of trains terminating in triads of the system: (1) 1 train, figure 179; (2) 3 trains, figure 2; (3) 3 trains, figure 27; (4) 28 trains, figure 1.

Three classes of trains terminating respectively in cycles of periods 5, 6, and 6: (5) 1 train. figure 203; (6) 1 train, figure 188; (7) 1 train, figure 185.

Group for the system $II1_3$.—The sets of transitive elements are a_1 a_2 a_3 ; b_1 b_2 b_3 ; e_1 e_2 e_3 , d_1 d_2 d_3 ; e_1 e_2 e_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s \equiv (a_1 \ a_2 \ a_3) \ (b_1 \ b_2 \ b_3) \ (c_1 \ c_2 \ c_3) \ (d_1 \ d_2 \ d_3) \ (e_1 \ e_2 \ e_3),$$

and is of order 3.

TRAINS FOR THE SYSTEM II16.

Nine classes of trains terminating in triads of the system: (1) 1 train, figure 106; (2) 3 train, figure 12; (3) 6 trains, figure 148; (4) 3 trains, figure 122; (5) 3 trains, figure 6; (6) 3 trains, figure 62; (7) 3 trains, figure 2; (8) 3 trains, figure 30; (9) 9 trains, figure 1.

Two classes of trains terminating in cycles of periods 6 and 4, respectively: (10) 2 trains, figure 189; (11) 3 trains, figure 182.

Group for the system II1₈.—The sets of transitive elements are a_1 a_2 a_3 ; b_1 b_2 b_3 ; c_1 c_2 c_3 ; d_1 d_2 d_3 e_1 e_2 e_3 ; these with the trains separate the system into 9 nonpermutable subdivisions. The group is generated by

$$\begin{array}{l} s \equiv (a_1) \ (b_1) \ (e_1) \ (a_2 \ a_3) \ (b_2 \ b_3) \ (e_2 \ e_3) \ (d_1 \ e_1) \ (d_2 \ e_3) \ (d_3 \ e_2), \\ t \equiv (a_1 \ a_2 \ a_3) \ (b_1 \ b_2 \ b_3) \ (e_1 \ e_2 \ e_3) \ (d_1 \ d_2 \ d_3) \ (e_1 \ e_2 \ e_3), \end{array}$$

and is of order 6.

TRAINS FOR THE SYSTEM II17.

Eight classes of trains terminating in triads of the system: (1) 1 train, figure 171; (2) 3 trains, figure 178; (3) 3 trains, figure 93; (4) 3 trains, figure 162; (5) 6 trains, figure 2; (7) 3 trains, figure 6; (8) 13 trains, figure 1.

Two classes of trains terminating in cycles of period 6: (9) 1 train, figure 184; (10) 1 train figure 187.

Group for the system II1₇.—The sets of transitive elements are a_1 a_2 a_3 ; b_1 b_2 b_3 ; e_1 e_2 e_3 ; d_1 d_2 d_3 ; e_1 e_2 e_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s \equiv (a_1 \ a_2 \ a_3) \ (b_1 \ b_2 \ b_3) \ (c_1 \ c_2 \ c_3) \ (d_1 \ d_2 \ d_3) \ (e_1 \ e_2 \ e_3),$$

and is of order 3.

TRAINS FOR THE SYSTEM V17.

Three classes of trains terminating in triads of the system: (1) 6 trains, figure 9; (2) 1 trains, figure 6; (3) 17 trains, figure 1.

One class of trains terminating in a cycle of period 72: (4) 1 train, figure 204.

Group for the system V1 γ .—The sets of transitive elements are A; B C; a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 d_1 d_2 d_3 ; these with the trains separate the system into five nonpermutable subdivisions. The group is generated by

$$s = (A) (B C) (a_1 d_1 b_3 c_3 a_2 d_2 b_1 c_1 a_3 d_3 b_2 c_2),$$

and is of order 12.

Trains for the System $V4\beta1$.

Nine classes of trains terminating in triads of the system: (1) 3 trains, figure 160; (2) 3 trains, figure 180; (3) 9 trains, figure 2; (4) 3 trains, figure 138; (5) 1 train, figure 139; (6) 3 trains, figure 3; (7) 3 trains, figure 27; (8) 3 trains, figure 164; (9) 7 trains, figure 1.

Group for the system $V4\beta1$.—The sets of transitive elements are A; B; C; a_1 a_2 a_3 ; b_1 b_2 b_3 ; c_1 c_2 c_3 ; d_1 d_2 d_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s = (A) (B) (C) (a_1 a_2 a_3) (b_1 b_2 b_3) (c_1 c_2 c_3) (d_1 d_2 d_3)$$

and is of order 3.

Trains for the System $V4\beta2$.

Seven classes of trains terminating in triads of the system: (1) 3 trains, figure 134; (2) 3 trains, figure 10; (3) 3 trains, figure 29; (4) 6 trains, figure 2; (5) 1 train, figure 95; (6) 3 trains, figure 7; (7) 16 trains, figure 1.

Two classes of trains terminating in cycles of periods 9 and 6 respectively: (8) 1 train, figure 191; (9) 3 trains, figure 190.

Group for the system $V4\beta2$.—The sets of transitive elements are A; B; C; a_1 a_2 a_3 ; b_1 b_2 b_3 ; c_1 c_2 c_3 ; d_1 d_2 d_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s = (A) (B) (C) (a_1 a_2 a_3) (b_1 b_2 b_3) (c_1 c_2 c_3) (d_1 d_2 d_3)$$

and is of order 3.

Trains for the System V4 γ 1.

Thirteen classes of trains terminating in triads of the system: (1) 3 trains, figure 107; (2) 3 trains, figure 42; (3) 3 trains, figure 100; (4) 3 trains, figure 8; (5) 3 trains, figure 36; (6) 3 trains, figure 41; (7) 3 trains, figure 78; (8) 3 trains, figure 150; (9) 3 trains, figure 97;

(10) 3 trains, figure 117; (11) 1 train, figure 95; (12) 3 trains, figure 63; (13) 1 train, figure 1.

Group for the system $V/\gamma 1$.—The sets of transitive elements are A; B; C; a_1 a_2 a_3 ; b_1 b_2 b_3 ; c_1 c_2 c_3 ; d_1 d_2 d_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s = (A) (B) (C) (a_1 a_2 a_3) (b_1 b_2 b_3) (c_1 c_2 c_3) (d_1 d_2 d_3)$$

and is of order 3.

Trains for the Systems $V4\gamma2$.

Ten classes of trains terminating in triads of the system: (1) 3 trains, figure 161; (2) 3 trains, figure 71; (3) 3 trains, figure 8; (4) 3 trains, figure 3; (5) 3 trains, figure 68; (6) 3 trains, figure 168; (7) 3 trains, figure 158; (8) 3 trains, figure 155; (9) 1 train, figure 140; (10) 10 trains, figure 1.

Group for the system $V4\gamma2$.—The sets of transitive elements are A; B; C; a_1 a_2 a_3 ; b_1 b_2 b_3 ; c_1 c_2 c_2 ; d_1 d_2 d_3 ; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

 $s = (A) (B) (C) (a_1 a_2 a_3) (b_1 b_2 b_3) (c_1 c_2 c_3) (d_1 d_2 d_3)$

and is of order 3.

TRAINS FOR THE SYSTEM V461.

Nine classes of trains terminating in triads of the system: (1) 3 trains, figure 128; (2) 3 trains, figure 170; (3) 3 trains, figure 6; (4) 3 trains, figure 172; (5) 3 trains, figure 154; (6) 1 train, figure 66; (7) 3 trains, figure 147; (8) 3 trains, figure 137; (9) 13 trains, figure 1.

Group for the system $V/\delta 1$.—The sets of transitive elements are A; B; C; $a_1 a_2 a_3$; $b_1 b_2 b_3$; $c_1 c_2 c_3$; $d_1 d_2 d_3$; these with the trains separate the system into 13 nonpermutable subdivisions. The group is generated by

$$s = (A) (B) (C) (a_1 a_2 a_3) (b_1 b_2 b_3) (c_1 c_2 c_3) (d_1 d_2 d_3)$$

and is of order 3.

Trains for the System VI1₃β.

Nine classes of trains terminating in triads of the system: (1) 2 trains, figure 176; (2) 2 trains, figure 2; (3) 2 trains, figure 128; (4) 4 trains, figure 142; (5) 4 trains, figure 152; (6) 4 trains, figure 62; (7) 4 trains, figure 6; (8) 4 trains, figure 107; (9) 9 trains, figure 1.

One class of trains terminating in a cycle of period 4: (10) 1 train, figure 182.

Group for the system $VII_3\beta$.—The sets of transitive elements are A; B C; a_1 b_1 a_6 b_6 ; a_2 b_2 a_3 b_3 ; a_4 b_4 a_5 b_5 ; these with the trains separate the system into 11 nonpermutable subdivisions. The group is generated by

$$s = (A) (B (!) (a_1 a_8 b_1 b_8) (a_2 b_3 b_2 a_3) (a_4 b_5 b_4 a_5)$$

and is of order 4.

TRAINS FOR THE SYSTEM VI24a.

Eleven classes of trains terminating in triads of the system: (1) One train, figure 105; (2) 1 train, figure 11; (3) 4 trains, figure 3; (4) 1 train, figure 149; (5) 2 trains, figure 8; (6) 4 trains, figure 2; (7) 2 trains, figure 181; (8) 2 trains, figure 6; (9) 1 train, figure 28; (10) 2 trains, figure 175; (11) 15 trains, figure 1.

One class of trains terminating in a cycle of period 24: (12) One train, figure 202.

Group for the System $VI2_4a$.—The sets of transitive elements are A; B; C; a_1 b_1 ; a_2 b_2 ; a_3 b_3 ; a_4 b_4 ; a_5 b_5 ; a_8 b_6 . These with the trains separate the system into 21 nonpermutable subdivisions. The group is generated by

$$s = (A) (B) (C) (a_1 b_1) (a_2 b_2) (a_3 b_3) (a_4 b_4) (a_5 b_5) (a_6 b_6),$$

and is of order 2.

Trains for the System VI2.δ.

Eighteen classes of trains terminating in triads of the system: (1) One train, figure 18; (2) 2 trains, figure 130; (3) 1 train, figure 132; (4) 2 trains, figure 133; (5) 2 trains, figure 153; (6) 1 train, figure 38; (7) 2 trains, figure 174; (8) 2 trains, figure 126; (9) 2 trains, figure 37;

(10) 1 train, figure 8; (11) 2 trains, figure 62; (12) 2 trains, figure 120; (13) 3 trains, figure 2; (14) 2 trains, figure 6; (15) 2 trains, figure 156; (16) 1 train, figure 109; (17) 2 trains, figure 112; (18) 5 trains, figure 1.

One class of trains terminating in a cycle of period 4: (19) One train, figure 182.

Group for the System $VI2_4\delta$.—The sets of transitive elements are A; B; C; a_1 b_1 ; a_2 b_2 ; a_3 b_3 ; a_4 b_4 ; a_5 b_5 ; a_6 b_6 . These with the trains separate the system into 21 nonpermutable subdivisions. The group is generated by

$$s = (A) (BC) (a_1 b_1) (a_2 b_2) (a_3 b_3) (a_4 b_4) (a_5 b_5) (a_6 b_6),$$

and is of order 2.

TRAINS FOR THE SYSTEM VI246.

Fifteen classes of trains terminating in triads of the system: (1) One train, figure 144; (2) 1 train, figure 8; (3) 2 trains, figure 167; (4) 2 trains, figure 139; (5) 1 train, figure 165; (6) 2 trains, figure 157; (7) 4 trains, figure 2; (8) 2 trains, figure 62; (9) 1 train, figure 30; (10) 1 train, figure 6; (11) 2 trains, figure 115; (12) 1 train, figure 114; (13) 2 trains, figure 27; (14) 2 trains, figure 166; (15) 11 trains, figure 1.

Two classes of trains terminating in cycles of periods 10 and 4, respectively: (16) Two trains, figure 192; (17) 1 train, figure 182.

Group for the System $VI2_4\epsilon$.—The sets of transitive elements are $A; B; C; a_1 b_1; a_2 b_2; a_3 b_3 a_4 b_4; a_5 b_5; a_6 b_6$. These with the trains separate the system into 21 nonpermutable subdivisions. The group is generated by

$$s = (A) \ (B) \ (\ell') \ (a_1 \ b_1) \ (a_2 \ b_2) \ (a_3 \ b_3) \ (a_4 \ b_4) \ (a_5 \ b_5) \ (a_6 \ b_6),$$

and is of order 2.

Trains for the System VI33a.

Seven classes of trains terminating in triads of the system: (1) Two trains, figure 143; (2) 2 trains, figure 110; (3) 4 trains, figure 2; (4) 4 trains, figure 61; (5) 4 trains, figure 91; (6) 4 trains, figure 136; (7) 15 trains, figure 1.

Two classes of trains terminating in cycles of periods 18 and 20, respectively: (8) Two trains, figure 193; (9) 1 train, figure 201.

Group for the System $VI3_3a$.—The sets of transitive elements are A; B C; a_1 b_1 a_2 b_2 ; a_3 b_3 a_6 b_6 ; a_4 b_4 a_5 b_5 . These with the trains separate the system into 11 nonpermutable subdivisions. The group is generated by

$$s = (A) (B C) (a_1 a_2 b_1 b_2) (a_3 b_6 a_6 b_3) (a_4 a_5 b_4 b_5),$$

and is of order 4.

Trains for the System VI3₃γ.

Six classes of trains terminating in triads of the system: (1) Four trains, figure 177; (2) 2 trains, figure 79; (3) 4 trains, figure 173; (4) 6 trains, figure 27; (5) 2 trains, figure 92; (6) 17 trains, figure 1.

One class of trains terminating in a cycle of period 4: (7) One train, figure 182.

Group for the System VI3₃ γ .—The sets of transitive elements are A; B C; a_1 b_1 a_2 b_2 ; a_3 b_3 a_6 b_6 ; a_4 b_4 a_5 b_5 ; these with the trains separate the system into 11 nonpermutable subdivisions. The group is generated by

$$s = (A) (B C) (a_1 a_2 b_1 b_2) (a_3 b_6 b_3 a_6) (a_4 a_5 b_4 b_5),$$

and is of order 4.

Trains for the System VI3₃δ.

Ten classes of trains terminating in triads of the system: (1) Two trains, figure 58; (2) 4 trains, figure 87; (3) 4 trains, figure 141; (4) 4 trains, figure 76; (5) 4 trains, figure 151; (6) 4 trains, figure 99; (7) 4 trains, figure 34; (8) 2 trains, figure 81; (9) 6 trains, figure 27; (10) 1 train, figure 1.

One class of trains terminating in cycle of period 4: (11) One train, figure 182.

Group for the System VI3₃ δ .—The sets of transitive elements are A; B C; a_1 b_1 a_2 b_2 ; a_3 b_3 a_6 b_6 ; a_4 b_4 a_5 b_5 ; these with the trains separate the system into 11 nonpermutable subdivisions. The group is generated by

$$s = (A) (B C) (a_1 a_2 b_1 b_2) (a_3 b_6 b_3 a_6) (a_4 a_5 b_4 b_5),$$

and is of order 4.

The trains show that 20 of the 71 systems obtained in Part 1 are new systems and the remaining 51 systems are each congruent to some one of the 44 systems thus far derived. The substitution which transforms each of these 51 systems into its congruent system is given below

I, 1
$$\equiv$$
VII by $s \equiv \begin{pmatrix} a & b & c & d & e & 1 & 2 & 3 & 4 & 5 & \alpha & \beta & \gamma & \delta & \epsilon \\ 4 & 7 & b & e & 1 & a & d & g & 3 & 6 & f & 2 & 5 & 8 & c \end{pmatrix}$
I, 2 a new system.
I \equiv IIIA by $s \equiv \begin{pmatrix} a & b & c & d & e & 1 & 2 & 3 & 4 & 5 & \alpha & \beta & \gamma & \delta & \epsilon \\ a & g & 5 & 8 & e & c & 6 & 1 & 2 & 7 & b & 4 & d & f & 3 \end{pmatrix}$

```
II, l₁≡VA by
                                           II, l_2 new system; 111_3 a new system.
                                           s \equiv \begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 & b_3 & c_1 & c_2 & c_3 \\ d & 4 & 8 & a & b & c & f & 2 & 5 \end{pmatrix}
II, 5≡IIA by
II, I_6 new system; III_7 new system.
II, 2≡V1I by
III, I≡IIIΛ by
                                                                           d
III, 2≝IIID by
                                                                                 d
III, 3≣IA by
V, 1\alpha \equiv V\Lambda by
V, I\gamma a new system.
                                           s \equiv \begin{pmatrix} A & B & C & a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 & d_1 & c_1 & c_1 \end{pmatrix}
V, Iδ≡I, 2 by
                                                                   \begin{array}{cccc} C & a_1 & a_2 & a_3 \\ 2 & c & f & d \end{array}
V, 2α≡IIIB by
V, 2\beta \equiv VD by
                                           s \equiv (A
                                                                                                _{8}^{b_{1}}
                                                                                                      \frac{b_2}{4}
V, 2γ≡IIID by
V, 2\delta \equiv VB by
                                                                         a_1 a_2
                                                                                 a
                                           V, 3\alpha \equiv V, I\alpha by
V, 3\beta \equiv IIIC by
                                           s \equiv \begin{pmatrix} A & B & C & a_1 & a_2 & a_3 & b_1 & b_2 & b_3 & c_1 & c_2 \\ d & I & 5 & c & f & g & 2 & 4 & 3 & 6 & 7 \end{pmatrix}
V, 3γ≡IIIA by
    V, 4\alpha_1, a new system; V, 4\beta_1, a new system.
    V, 4\beta_2, a new system; V, 4\gamma_1, a new system.
    V, 4\gamma_2, a new system; V, 4\delta_1, a new system.
                                          {}^{8} \equiv \begin{pmatrix} A & B & C & a_1 & a_2 \\ 1 & 8 & g & 5 & 3 \end{pmatrix}
    V, 5\alpha_1 \equiv 10 by
                                          ^{8}\!\!\equiv\!\!\begin{pmatrix} A & B & C & a_{1} & a_{2} & a_{3} \\ 4 & I & a & 3 & 2 & 7 \end{pmatrix}
                                          s \equiv \begin{pmatrix} A & B \\ 1 & 8 \end{pmatrix}
                                                                  C
    V, 5\gamma_1 \equiv \text{VID by } s \equiv \begin{pmatrix} A & B \\ 2 & 6 \end{pmatrix}
                                                                   C

\begin{array}{cccc}
a_3 & b_1 \\
5 & b \\
a_3 & b_1 \\
3 & a
\end{array}

                                                           B
                                                                  \begin{array}{ccc} C & a_1 & a_2 \\ g & 8 & 6 \end{array}
    V, 5\gamma_2 \equiv \text{VIC by } s \equiv \begin{pmatrix} A & B \\ 5 & 4 \end{pmatrix}
    V, 5\delta_1 \equiv \text{VIA by } s \equiv \begin{pmatrix} A & B \\ 4 & 5 \end{pmatrix}
  VI, I_1 \alpha \equiv VA by s \equiv \begin{pmatrix} A & B \\ a & c \end{pmatrix}
                                                                   \begin{array}{cc} C & a_1 \\ b & d \end{array}
                                                                                 \overset{a_2}{g}
 VI, \mathbf{I}_1 \beta \equiv \mathbf{I} \mathbf{V} \mathbf{A} by \mathbf{s} \equiv \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & a_1 \\ \mathbf{c} & a & b & d \end{pmatrix}
  VI, I<sub>2</sub> \equivHF by s \equiv \begin{pmatrix} A & B & C & a_1 & a_2 \\ f & a & d & 4 & 3 \end{pmatrix}
                                                                                        VI, I_3\alpha \equiv V, 1\gamma by s \equiv \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix}
  VI, l_3\beta, a new system.
 VI, 2_1\alpha \equiv IVA by s \equiv \begin{pmatrix} A & B & C \\ b & a & c \end{pmatrix}
 VI, 2_1\beta \equiv \text{IIIC by } s \equiv \begin{pmatrix} A & B \\ b & a \end{pmatrix}
 VI, 2_1 \delta \equiv \text{IIIB by } s \equiv \begin{pmatrix} A & B \\ b & a \end{pmatrix}
                                                                 C
                                                            VI, 2_3\alpha \equiv VC by s \equiv \begin{pmatrix} A & B & C & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & b_1 \\ g & f & a & d & c & 6 & 5 & 2 & 4 & c \end{pmatrix}
  VI, 2_4\alpha, a new system.
 VI, 2_4\gamma \equivII, 1_6 by s \equiv \begin{pmatrix} A & B & C & a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & a_4 & b_4 & a_5 & b_5 & a_6 & b_6 \\ a_2 & b_2 & c_2 & a_3 & a_1 & c_2 & d_2 & c_3 & d_1 & c_3 & c_1 & b_3 & b_1 & d_3 & c_1 \end{pmatrix}
```

```
VI, 2_4\gamma, a new system; VI, 2_4\epsilon, a new system.
                   VI, 3_2 \equiv \text{VIA by } s \equiv \begin{pmatrix} 1 & B & C & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ f & c & g & 8 & 1 & 2 & 5 & a & b & 6 & 4 & 7 & 3 & d & c \end{pmatrix}
VI, 3_3\alpha, a new system; VI, 3_3\gamma, a new system.

VI, 3_4\alpha a new system; VI, 3_4\gamma, a new system.

VI, 3_4\alpha a new system; VI, 3_4\gamma, a new system.

VI, 3_4\alpha a new system; VI, 3_4\gamma, a new system.

VII, 3_4\alpha b new system; VI, 3_4\gamma, a new system.

VII, 4_1 b new size \begin{pmatrix} A & B & C & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ b & 5 & g & d & a & 4 & 7 & f & 2 & 3 & 6 & 1 & c & c & D & d \\ a & b & c & d & e & g & f & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix}

VII, 1_4 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ a & b & c & d & c & g & f & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix}

VII, 1_4 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ a & b & c & d & e & g & f & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix}

VII, 1_4 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ a & b & c & d & e & g & f & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix}

VII, 1_4 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ a & b & c & d & e & g & f & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix}

VII, 2_3 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ c & a & b & 4 & 2 & 1 & 3 & 8 & 5 & 7 & 6 & d & f & g & c \end{pmatrix}

VII, 2_5 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ c & a & d & e & f & g & c & b & 3 & 4 & 7 & 8 & 5 & 6 & 1 & 2 \end{pmatrix}

VII, 2_7 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ a & d & e & g & f & b & c & 2 & 1 & 6 & 5 & 7 & 8 & 3 & 4 \end{pmatrix}

VII, 4_3 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ b & c & a & f & d & g & e & 2 & 4 & 3 & 1 & 8 & 5 & 6 & 7 \end{pmatrix}

VII, 4_4 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ b & c & a & f & d & g & e & 2 & 4 & 3 & 1 & 8 & 5 & 6 & 7 \end{pmatrix}

VII, 4_5 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c & D & d \\ b & c & a & f & d & g & e & 2 & 4 & 3 & 1 & 8 & 5 & 6 & 7 \end{pmatrix}

VII, 4_5 b new size \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & a & B & b & C & c
                     VI, 3_3\alpha, a new system; VI, 3_3\gamma, a new system.
                     VI, 3_3\delta, a new system; VI, 3_4\gamma, a new system.
```

Trains for Triad Systems on 15 Elements whose Group is of Order Unity.

The trains for each of the 36 noncongruent groupless systems on 15 elements have been These 36 systems furnish 449 distinct types, different from the trains of the systems with a group. Among these appear trains terminating in polygoms of 4, 6, 11, 12, 13, and 14 sides, respectively.

Hence the 80 noncongruent systems applied as transformers to the 455 triads on 15 elements, produce 665 distinct covariants or trains.

PLATE I: SYSTEM VI 3 47.

PLATE II; SYSTEM V 4 al.

FIG. 208.

FIG 209 Fig. 212.

Fig 216.

F1G. 19.

FIG. 20.

F10. 21.

FIG. 18.

F10. 45.

FIG. 46.

F10. 44.

F10. 58.

Frg. 57.

F10. 56.

11 102.

Fig. 109.

54061°—19——4

FIG. 110.

Fig. 137, Fig. 138.

Fig 139.

Fig. 141.

F10. 152.

Fig. 153.

Fig. 165.

Fic. 166.

Fig. 172.

Fig. 173.

Fig. 174.

Fig. 180.

Fig. 191; 1/2 polygon of nine sides.

Fio. 192.

Fig. 193: 1/2 polygon of eighteen sides.

Fig. 194; 1/2 polygon of eighteen sides.

Fig. 201; ½ polygon of twenty sides

Fig. 202; ½ polygon of twenty-four sides.

Fig. 203 W polyeon of thirty sides.

Fig. 204; 1/2 polygon of seventy-two sides.

PART 3.

GROUPLESS TRIAD SYSTEMS ON 15 ELEMENTS.

By H. S. WIITE and L. D. CUMMINGS.

All noncongruent systems, \triangle_{15} , with a group having been determined in Part 1, there arises next the question concerning the possible existence of triad systems on 15 elements with the group identity. Systems whose group is identity, or groupless systems, do not exist for 7, 9, or 13 elements. In a paper ¹ already published Mr. White has proved the existence of many groupless systems on 31 elements. An investigation given below in some detail has led to the discovery of a considerable number of noncongruent systems on 15 elements with the group identity. Every groupless system on 31 elements whose existence has thus far been demonstrated contains one or more systems \triangle_{15} and, therefore, is a headed system. On the contrary, every groupless system on 15 elements is headless.

In any triad system the pairs of elements are more or less interconnected or interlaced. These interlacings may be determined by applying to the system under consideration a modified form of the method 2 of examination by sequences and indices. The \triangle_{15} is exhibited in a 15 by 7 array. Each element heads one column; below it are placed the seven dyads, which, with the element at the head, constitute the triads of the system. Heretofore sequences and indices have been derived from the three columns of a triad in any \triangle_{15} ; the same process is now applied to every pair of columns and yields what may be called the two-column or contracted indices for the system. Since the number of combinations of 15 columns, two at a time, is 105, this number of pairs of columns must be examined unless the group for the system is known and is different from identity. If the group contains an operator of order m, then in general m pairs of columns are examined simultaneously. The process may be illustrated in its application to a system VI1₃ β , with a group of order 4 generated by t = (a) (bc) (d8e7) (f3g4) (1536). Pairs of columns selected from the following table show every type of two-column or contracted index that can occur in any system.

a	b	d	1
de fa	df ϵg ac	ar hf	a2
fg 12 34	13	bf c2 g8	a2 b3 ce d5
34 56 78 bc	24 57 68	98 15 37 46	f8 g4 67

Pairs of columns.	Index.	Contracted sequences.		
ab b1 da db	2 ³ 3 ² 6 2, 4	de/gf/d, 12/43/1, 56/87/5; df/86/75/d, 24/ge/ca/2; c2/15/64/37/8g/fb/c; 15/73/1, ac/g8/64/2c/a.		

The substitution t applied to the pair of columns ab gives the pair ac with the same index and similar sequences. If t is applied to the pair of columns b1, the three pairs c5, b2, c6 are obtained with index 3^2 . The analysis of the 105 pairs of columns shows that the contracted indices 2^3 ; 2, 4; 3^2 ; 6 belong, respectively, to 2, 24, 4, and 75 pairs of columns.

¹ White, H. S.: Transactions of the American Mathematical Society, vol. 14 (1913), pp. 13-19.

² Cummings, L. D.: Transactions of the American Mathematical Society, vol. 15 (1914), pp. 311-327.

The new groupless systems are formed by interchanging duads of one column with those of another column. For example, in the pair of columns ab, the duads de, fg, of column a, may be exchanged with df, eg, of column b; such an interchange involving four elements, contained only in two pairs in each column, shall be designated as a quadrangular transformation. The columns d, e, f, g must now be rewritten in agreement with the new triads introduced into the system, and the undisturbed nine columns of V11₃ β with the reconstructed six columns form a new system 13. The four duads 12, 34, 56, 78 of column a might be interchanged with the four duads on the same elements in column b, forming an octagonal transformation, but this is equivalent to the above quadrangular transformation followed by the interchange of the elements a and b.

In the pair of columns b1 the duads df, 68, 57 of column b may be interchanged with the duads f8, 67, d5 of column 1; such an interchange, involving six elements appearing exclusively in three pairs in each of two columns, shall be designated as a hexagonal transformation. New columns d, f, 6, 8, 5, 7 must next be constructed; these eight reconstructed columns, with the seven undisturbed columns of VI1 $_{\mathfrak{p}}$ 8, form a system 4. The application of the second hexagonal transformation in b1 is equivalent to an application of the first hexagonal transformation followed by an interchange of the elements b and 1.

A transformation on 12 elements simply interchanges the two elements which head the columns. Therefore only the quadrangular and the hexagonal transformations which exist in a system require consideration.

By means of the operators of the group of the system, the maximum number of non-congruent transformations of each of the above types is determined—for example, in V11₃β the eight hexagonal transformations reduce to one, and the 30 quadrangular transformations to four noncongruent transformations.

Each of the noncongruent transformations is now applied to the system VI1₃ β , and the sequences and indices are determined for the five transformed systems.

The 35 triads of the system 4, arranged in classes according to their indices, are shown in the following table:

14 26	14 35	13 22 5	13 9	12 23 4	12 28	13 37	12 46	12 52
157	a12 258	a78 a56 cg5	168	a34	g14 c17 dy8	cd2	b24	b13
122 7	1236	1245	1, 11	22 43	232 4	5, 7	62	
ade d46	afg g27	626 f45 cf6 c38 d37	bd5 bf8 b67 bcg ce1	c48 df 1 g36	cf7	e35 f23	abc	•

The enumeration of the elements in the 17 classes shows that the sets of transitive elements are $a; b; e; d; e; f; g; 1; 2; 3; 4; 5; 6; 7; 8; hence the group for the system is identity. Therefore under this hexagonal transformation the system VI1₃<math>\beta$, with a group of order 4, is changed into a system 4 with the group identity. The four quadrangular transformations applied to VI1₃ β yield four noncongruent systems. One of these is a new groupless system 13; the remaining three are the known systems VI2₄ ϵ , VI2₄ δ , VI2₄ γ , with groups of orders 2, 2, and 6, respectively.

The headless, groupless system 4 which has been derived by a hexagonal transformation from a headless system VII₃ β with a group of order 4, may also be derived by a quadrangular transformation from the headed system IC with a group order 3. Hence a quadrangular transformation may alter the number of systems \triangle_7 in a \triangle_{15} and change a headed system into one without a head. Hexagonal transformations, on the contrary, leave unchanged the number of systems \triangle_7 in a \triangle_{15} and, therefore, always transform systems with or without heads into systems with or without heads, respectively.

In further illustration of the productiveness of this method in generating new systems from those already known, we exhibit the results of its application to a groupless system 27 previously obtained by this same method. The 35 triads of the system arranged in classes according to their three-column indices are shown in the following table:

18 22 5	13 234	13 9	12 28 4	12 28	12 37	12 52	1236
d47	f37	cfg	def	a35 bd5 157	acg	af 1 e34 g45	ac4 c25 bg3
1245	1,11	23 6	22 42	2,10	3,9	5,7	62
a78 bf8 e58	f24 bc7 b14 cd8 ce1	bc2	f56	468 ad2 c36 d13 c67 g27 g18	ab6 238	dg6	126

The analysis of this system by two-column indices reveals the existence of 1; 24; 15; 65 pairs of columns with the indices 2^3 ; 2, 4; 3^2 ; 6, respectively. The group for this system is the identity and, therefore, it is possible that the application of all the quadrangular and of all the hexagonal transformations would yield 39 noncongruent systems. Since however a quadrangular transformation may lead back to a headed system, already completely determined, we apply only the 15 hexagonal transformations. These generate the following 15 systems: 30, 33, 21, 18, VI2₄a, 28, 29, II1₇, 31, 9, 32, 17, 24, 17, V4 γ 2; 2 of these are congruent, 3 are systems with groups already determined in Part 1, while 11 are new groupless systems, which may be shown to be noncongruent by a comparison either of their indices or of their distinctive sets of trains.

The application of this method to a number of the systems given in Part 1 yielded the 33 noncongruent groupless systems tabulated below.

We make use of the notation $(a\ b)\ c\ d\ e\ f$ to denote a quadrangular transformation which occurs in the pair of columns $a,\ b$ and which involves the four elements $c,\ d,\ e,f$. Similarly $(ab)\ c\ d\ e\ f\ g\ 1$ is a hexagonal transformation in the columns $a,\ b$ which involves the six elements $c,\ d,\ e,f,\ g,\ 1$.

The system 1 may be derived from the system IB by the application of the quadrangular transformation (a 2) b d 5 3, and for the sake of brevity we shall write this in the form 1 = IB, (a 2) b d 5 3.

The 33 new groupless systems are derived as follows:

```
1 = IB, (a \ 2) \ b \ d \ 5 \ 3;
                                             2 = IB, (b \ 3) \ c \ f \ 1 \ 7;
       3 = IB, (b \ 8) \ c \ f \ 5 \ 2;
                                             4 = IC, (a\ 2)\ c\ e\ 4\ 1;
       5 = IC, (a 8) c \in 3.5;
                                             6 = IC, (a \ 5) f g \ 1 \ 4;
       7 = IC, (b \ 3) \ e \ 8 \ g \ 6;
                                             8 = VIC, (b \ 3) f g \ 1 \ 7;
       9 = IIC, (c 3) d f 7 6;
                                            10 = IIC, (a\ 2)\ 5\ 6\ d\ g;
      11 = IIC, (b \ 4) \ d \ e \ 8 \ 6;
                                            12 = IIB, (c 5) ef 4 1;
      13 = IIF, (b \ 2) \ d \ e \ 7 \ 5;
                                            14 = IIC, (c 4) df = 5;
      15 = IID, (c\ 3)\ e\ g\ 8\ 5;
                                            16 = II, 1_3, (a_3 d_3) a_1 b_2 b_1 a_2 e_1 e_3.
In the system I, 2 we now replace the elements \alpha, \beta, \gamma, \delta, \epsilon, by f, g, 6, 7, 8, respectively.
      17 = I, 2, (f 1) 6 2 5 7;
                                           18 = 17, (d f) a 2 4 7 1 3;
      19 = 17, (b \ 1) \ a \ 6 \ g \ 2 \ f \ 8;
                                           20 = 17, (c d) a 4 7 b 5 2;
                                           22 = 17, (b \ 5) \ a \ 3 \ e \ 8 \ f \ 6;
      21 = 17, (b c) a 6 e 3 1 4;
      23 = 17, (6.8) \ a \ b \ f \ 5 \ e \ 7;
                                           24 = 17, (a \ b) \ c \ 4 \ f \ 1 \ 7 \ 8;
                                           26 = 25, (c 5) 6 3 a 4 g f;
      25 = 17, (b e) 8 5 f d;
      27 = 17, (2 3) b q 7 f 4 e;
                                           28 = 27, (c 5) a 4 f g 3 6;
      29 = 27, (e 3) b \ 2 \ a \ g \ 5 \ 8;
                                           30 = 27, (a \ b) \ c \ 4 \ 1 \ f \ 8 \ 7;
      31 = 27, (24) b e 1 6 3 8;
                                           32 = 27, (2 \ 5) \ b \ d \ e \ S \ a \ 3;
      33 = 27, (a t) b 6 5 3 7 8.
```

The 77 noncongruent systems thus far derived are interconnected by quadrangular and by hexagonal transformations, and in general a system is not united uniquely to another system but is derivable from several systems by different transformations; for example, the system 7 possesses the following interconnections: 7 = IC, $(b\ 3)\ e\ 8\ g\ 6$; $7 = V\ 4\ \alpha\ 1$, $(d\ g)\ a\ 3\ ef\ 7\ 6$; 7 = II, $(a\ 1)\ b\ c\ 4\ e\ 6\ 2$.

After this point in the investigation many other systems which were transformed by this process furnished only repetitions of the 77 noncongruent systems thus far determined, showing that the number of groupless systems was probably not much in excess of 33. An exhaustive determination of all groupless systems by this empirical method requires that every new system, as it appears, shall be subjected to each one of its possible quadrangular and hexagonal transformations. The enumeration of these transformations for the 14 new systems derived above from the system 27 shows that a complete investigation even of these systems would necessitate the application of more than 435 transformations. Hence while this empirical method for generating new systems is productive, the amount of work involved in an exhaustive investigation is prohibitive. Therefore it is evident that a new starting point and a new method are requisite to insure a complete determination of the groupless systems. This desideratum is fully met in the following Part 4.

PART 4.

STRUCTURE AS DEFINED BY INTERLACINGS, HEADS, AND SEMIHEADS; A COMPLETE CENSUS OF TRIAD SYSTEMS IN FIFTEEN ELEMENTS.

By F. N. Cole.

1. INTRODUCTION.

In forming triad systems in 15 letters, there are only four typical openings, viz:

	1 2 3	1 4 5	1 6 7	1 8 9 1 10 11	1 12 13	1 14 15
I		2 4 6 2 4 6 2 4 6 2 4 6 2 4 6	$\begin{array}{c} 2 & 5 & 7 \\ 2 & 5 & 7 \\ 2 & 5 & 8 \\ 2 & 7 & 8 \end{array}$	2 8 10 2 9 12 2 8 10 2 9 11 2 7 9 2 10 12 2 9 10 2 11 12	2 11 14 2 12 14 2 11 14 2 13 14	2 13 15 2 13 15 2 13 15 2 13 15 2 5 15

which, from the way in which the triads containing 1 are laced with those containing 2, may be called the single tetrad, triple tetrad, hexad, and duodecad types, respectively. It turns out in the present investigation that, with a single exception, the tetrad type (single or triple) is always present, so that in the final census only openings I and II need be considered. These openings are then treated in sections 4, 5.

2. THE DUODECAD OPENING.

We show here that a triad system in the 15 letters can not be made up with duodecads alone. To this end we note that opening IV above has the following group of 24 substitutions which convert it into itself:

If the triads with 1 and 2 (excluding 1 2 3) are denoted by a, b, c, d, e, f and a', b', c', d', e', f', respectively, this group is equivalent to

$$\{(af'fc'ed'dc'cb'ba'), (ab)(cf)(de)(b'f')(c'e')\}$$

and suffices to interchange the accented and unaccented letters with preservation of order of sequence, to move each set of letters in a cycle, and to reverse the order of each set.

If now the triads with 3 are laced through those with 1 and 2, in the duodecad manner in each case, it may happen that these new triads (1) connect two successive ones of the 1 set or 2 set, or (2) do not exhibit such a sequence. It readily follows then, with the help of the group above, that the only typical lacings are the following 14:

the first 13 presenting the sequence ab, and the last one no such sequence.

This last one, with no sequences, may be worked out in some detail as an example of the method employed throughout this paper. We have to write down the triads with 3, lacing, say, those with 1 in the order acebfd, and those with 2 without sequence. We can not use 3 4 8, since this would give the sequence a'b'; we must take 3 4 9, 3 5 8, or 3 5 9. These lead to the four possibilities:

```
3 4 9
          3 8 13
                      3 - 6 - 12
                                  3 7 15
                                              3 10 14
                                                           3 11 5
3 5 8
          3 - 9 - 13
                      3 - 6 - 12
                                  3 7 14
                                              3 11 15
                                                           3
                                                              4 10
                                              3 10 15
                                                           3
                                                              4 11
                      3712
                                  3 - 6 - 14
3 5 8
          3 9 13
                      3 6 13
                                  3 7 15
                                              3 10 14
                                                            3
                                                               4 11
3 5 9
          3 - 8 - 12
```

The substitution (123), with proper adjustment of the remaining numbers, converts the first of these into the other three. The first may then be taken as typical. It has the following group of six substitutions into itself: {(1 2 3) (4 8 10) (5 7 14) (6 13 11), (1 2) (11 13) (14 10) (9 15) (5 8) (4 7)}. This suggests the formation of the triad 9 15 x. Here x can not be 1, 2, 3, 4, 5, 7, 8, 9, 10, 14, or 15, since 1 9, for example, has already been used in a triad; for x we must take 6, 11, 12, or 13. But 6, 11, and 13 are equivalent under the group of order 6 above. And the remaining possibilities 9 15 6 and 9 15 12, if followed out, lead to tetrads or hexads.

Returning to the table Λ , we may note that in the first 13 cases the 3-triad which joins a and b must be 3 5 7, for 3 4 6 is at once excluded, and 3 4 7 and 3 5 6 involve tetrads of 1 and 4 and of 2 and 5, respectively. Starting with 3 5 7, and writing in the remaining 3-triads, we find that the first, second, sixth, and eighth cases lead directly to tetrads or hexads. The remaining cases prove to be partly equivalent to each other, and those which survive are found on continuation to the 4-triads, etc., to involve tetrads or hexads.

3. THE HEXAD OPENING.

This has the following group of 144 substitutions into itself:

```
{(4 7 8) (5 6 9), (4 5) (6 8) (7 9);
(10 13 14) (11 12 15), (10 11) (12 14) (13 15);
(4 10) (5 11) (6 12) (7 13) (8 14) (9 15);
(1 2) (5 6) (7 8) (11 12) (13 14)}.
```

The triad 3 4 x can not have x=1, 2, 3, 4, 5, or 6, since these have already been used; nor can x=7 or 8, since these give tetrads of 4 and 1 or of 4 and 2. If the triad system is to have no tetrads, we must take x=9, 10, 11, 12, 13, 14, or 15, and of these the last six are equivalent under the group of order 144 above. Hence the only distinct types are 3 4 9 and 3 4 10.

Starting, then, with 3 4 9, we find for 3 5 y, only y=7 or 10, and note that 3 5 10 is equivalent under the group above to 3 4 10, the case to be considered later. It turns out, then, that we can have only

```
3 4 9 3 5 7 3 6 8 3 10 15 3 11 13 3 12 14
```

and we note that this is invariant under the group of order 144 above. If we now write in the 4-triads, we come at once to tetrads.

The case 3 4 10 leads to 3 9 11, 3 9 13, or 3 9 15. Following each of these out in detail, we encounter everywhere tetrads, with the single exception of the Heffter system:

```
1 2 3
         1 4
              5
                    1 6 7
                              189
                                        1 10 11
                                                    1 12 13
                                                                1 14 15
         2 4 6
                    2 5 8
                              2 7 9
                                        2 10 12
                                                    2 11 14
                                                                2 13 15
         3 4 10
                    3 5 7
                             3 6 11
                                        3
                                           8 15
                                                    3
                                                       9 13
                                                                3 12 14
                              4 7 12
                                           8 13
                                        4
                                                    4
                                                       9 14
                                                                4 11 15
                              5 6 14
                                            9 10
                                                    5 11 13
                                        5
                                                                5 12 15
                                                                8 10 14
                              6 8 12
                                        6
                                           9 15
                                                    6 10 13
                              7 8 11
                                        7 10 15
                                                    7 13 14
                                                                9 11 12
```

This, then, is the only triad system in 15 letters that can be constructed solely with hexads and duodecads.

4. THE TRIPLE-TETRAD OPENING.

This has a group of 768 substitutions:

```
{(4 5) (6 7), (4 6) (5 7), (4 7) (5 6);

(8 9) (10 11), (8 10) (9 11), (8 11) (9 10);

(12 13) (14 15), (12 14) (13 15), (12 15) (13 14);

(4 8 12) (5 9 13) (6 10 14) (7 11 15),

(4 8) (5 9) (6 10) (7 11);

(1 2) (5 6) (9 10) (13 14)}.
```

We find that the x of 4 3 x must be 7, 8, . . . , 15, and that 8, . . . , 15 are equivalent. The typical cases are then 4 3 7 and 4 3 8. Of these 4 3 7 has a group of order 128, composed of those substitutions of the group of order 768 which leave 4 and 7 unchanged or interchange them. With the aid of this group of order 128 we find that we may take as typical cases 3 5 6 or 3 5 8.

The case 3 4 7, 3 5 6 exhibits a triad system in the seven letters 1, 2, 3, 4, 5, 6, 7, included in the triad system in the 15 letters. We then speak of the latter as having a 7-head, or simply a head. The triads with 3 are now found to be the six following sets:

$3 \ 4 \ 7 \qquad 3 \ 5 \ 6$	3 8 11	$3 \ 9 \ 10$	$3\ 12\ 15$	$3 \ 13 \ 14$
		3 9 12	$3\ 10\ 15$	$3 \ 13 \ 14$
	$3 \ 8 \ 12$	$3 \ 9 \ 13$	$3\ 10\ 14$	3 11 15
			$3\ 10\ 15$	3 11 14
		$3 \ 9 \ 14$	3 10 13	3 11 15
			3 10 15	3 11 13

Working out their continuations, we find the 22 triad systems with triple tetrads and 7-head exhibited in the previous chapters of this memoir.

The case 3 4 7, 3 5 8 presents what one may perhaps be permitted to call a semihead. The triads with 3 are here:

```
3 4 7
         3 5 S
                    3 - 6 - 9
                               3 10 12
                                           3 11 15
                                                       3 13 14
                    3 6 11
                               3
                                  9.12
                                           3 10 15
                                                       3 13 14
                    3 6 12
                               3
                                  9 10
                                           3 11 15
                                                       3 13 14
                               3
                                  9 13
                                           3 10 14
                                                       3 11 15
                                           3 10 15
                                                       3 11 14
                               3
                                  9 14
                                           3 10 13
                                                       3 11 15
                                           3 10 15
                                                       3 11 13
```

Continuing these, we find 12 triad systems with triple tetrads and semihead.

In the absence of either head or semihead, the 3-triads form one of the following sets:

```
3 4 8
         3 6 12
                    3 5 9
                               3 7 13
                                         3 10 14
                                                      3 11 15
                                          3 10 15
                                                      3 11 14
                               3 7 14
                                         3 10 13
                                                      3 11 15
                                          3 10 15
                                                      3 11 13
                               3 7 15
                                          3 10 13
                                                      3 11 14
                                          3 10 14
                                                      3 11 13
                    3 5 10
                               3 7 15
                                          3
                                             9 13
                                                      3 11 14
                    3 5 11
                               3 7 15
                                             9 13
                                          3
                                                      3 10 14
                                                      3 10 13
                                          3
                                             9 14
                                          3
                    3 5 15
                               3 7 11
                                             9 13
                                                      3 10 14
```

and these lead to 26 triad systems with triple tetrads but no head nor semihead.

5. ONLY SINGLE TETRADS.

The group of the single tetrad opening is of order 64:

```
{(4 5) (6 7), (4 6) (5 7), (4 7) (5 6);
(8 11 15 12) (9 10 14 13), (8 9) (10 12) (11 13) (14 15);
(1 2) (5 6) (9 10) (11 12) (13 14)}.
```

This group also leaves the triad pair 3 4 7, 3 5 6 unchanged, and the 7-head case has the following sets of 3-triads:

leading to a single triad system with 7-head but no triple tetrads.

With a semihead 3 4 7, 3 5 8 there are 17 typical sets of 3-triads:

3 4 7	3 5 8	3 6 9	$3\ 10\ 12$	3 11 15	3 i 3 14
			3 10 13	3 11 15	3 12 14
			3 10 14	3 11 13	3 12 15
			3 10 15	3 11 13	3 12 14
		3 6 11	3 9 10	$3\ 12\ 15$	3 13 14
			3 9 13	3 10 15	$3 \ 12 \ 14$
			3 - 9 - 14	3 10 13	$3\ 12\ 15$
			$3 - 9 \cdot 15$	3 10 13	$3\ 12\ 14$
		3 6 13	3 9 10	3 11 15	$3\ 12\ 14$
			3 - 9 - 11	$3\ 10\ 15$	$3\ 12\ 14$
			$3 - 9 \cdot 14$	$3\ 10\ 12$	3 11 15
				$3\ 10\ 15$	3 11 12
		$3\ 6\ 15$	3 9 10	3 11 12	3 13 14
				3 11 13	3 12 14
			3 9 11	3 10 13	$3\ 12\ 14$
			3 9 13	3 10 14	3 11 12
			3 - 9 - 14	3 10 13	3 11 12

These lead to only three triad systems with semihead but no head or triple tetrads.

There now remains only the case of no triple tetrads, heads, or semiheads. The first 3-triad may be taken as 3 4 8, and the opening set of 14 triads is unchanged by the substitution $s = (1\ 2)\ (5\ 6)\ (9\ 10)\ (11\ 12)\ (13\ 14)\ only.$ The triad 4 15 x has x = 7, 9, 10, 11, or 12, and under s 9 is equivalent to 10 and 11 to 12. We have then three typical cases: 4 7 15, 4 9 15, 4 11 15. For the first of these 8 15 x gives x = 5 or 11, and the continuation is not unreasonably long. But the cases 4 9 15 and 4 11 15 each subdivide into four cases instead of two, making the total labor five times that of the 4 7 15 case unless some method of compression could be devised. Fortunately such a method was at hand.

The triad pairs 4 1 5, 4 2 6 and 7 1 6, 7 2 5 exhibit a tetrad. If, then, a triad system has been constructed so far as to show its triads with 1, 2, 4, and 7, it may be possible by interchanging the pairs 1, 2 and 4, 7 to throw this system into one already identified. For example, arriving at the set

we find that the substitution (1 4) (2 7) (3 15 12 9 13 11) (8 14 10) throws this into a set with the original 1-triads and 2-triads, but containing 3 4 8, 4 7, 15 and therefore coming under a case already explored.

As another example, the set

is thrown by (1 7 2 4) (5 6) (3 9 11 12 15 13 10) into the case 4 3 8, 4 9, 15. In fact, the nearly 150 cases under 4 11 15 reduce to only 6 by this process.

In the end there are found to be 15 triad systems with no triple tetrads, head, or semihead.

6. SUMMARY.

The following table gives the number of triad systems of each type for 15 letters:

22
12
26
1
3
15
1
80

TABLE OF TRIAD SYSTEMS IN FIFTEEN ELEMENTS.

I. TRIPLE TETRADS AND HEAD.

	1. TRIPLE TETE	ADS AND HEAD,
Systems 1-20.		Systems 1-20—Continued.
	8 9 1 10 11 1 12 13 1 14 15	13. 4 8 13 4 9 15 4 10 12 4 11 14
246 257 2	8 10 2 9 11 2 12 14 2 13 15	5 8 15 5 9 14 5 10 13 5 11 12
	2.2.10	6 8 14 6 9 10 6 11 13 6 12 15
1. 3 4 7 3 5 6 3 8 11		7 8 12 7 9 13 7 10 14 7 11 15
4 8 12 5 8 13		Group of order 8.
6 8 14		
7 8 15		14. 5 8 14 5 9 10 5 11 13 5 12 15
Group of order 8!/2.	, , , , , , , , , , , , , , , , , , , ,	6 8 15 6 9 14 6 10 13 6 11 12
- · · · · · · · · · · · · · · · · · · ·		7 8 12 7 9 13 7 10 14 7 11 15
2. 5 S 13		Group of order 12.
6 8 15		15. 3 4 7 3 5 6 3 8 12 3 9 13 3 10 14 3 11 15
7 8 14	7 9 15 7 10 12 7 11 13	4 8 15 4 9 10 4 11 12 4 13 14
Group of order 192.		5 8 14 5 9 12 5 10 15 5 11 13
3. 5 8 14	5 9 15 5 10 12 5 11 13	6 8 11 6 9 14 6 10 13 6 12 15
6 8 15		7 8 13 7 9 15 7 10 12 7 11 14
7 S 13		Group of order 4.
Group of order 96.		•
		16. 4 8 15 4 9 14 4 10 13 4 11 12
4. 5 8 14		5 8 11 5 9 10 5 12 15 5 13 14
6 8 15		6 8 14 6 9 15 6 10 12 6 11 13
7 8 13	3 7 9 15 7 10 12 7 11 14	7 8 13 7 9 12 7 10 15 7 11 14
Group of order 8.		Group of order 168.
5. 4 8 12		
5 8 14	5 9 15 5 10 13 5 11 12	17. ,5 8 11 5 9 12 5 10 15 5 13 14
6 8 13		6 8 14 6 9 10 6 11 13 6 12 15
7 8 15	5 7 9 14 7 10 12 7 11 13	7 8 13 7 9 15 7 10 12 7 11 14
Group of order 32.		Group of order 24.
6. 5 8 14	4 5 9 15 5 1 0 13 5 11 12	18. 3 4 7 3 5 6 3 8 12 3 9 13 3 10 15 3 11 14
6 8 13		4 8 15 4 9 10 4 11 12 4 13 14
7 8 15		5 8 11 5 9 14 5 10 13 5 12 15
Group of order 24.		6 8 14 6 9 15 6 10 12 6 11 13
•		7 8 13 7 9 12 7 10 14 7 11 15
7. 4 8 12		Group of order 4.
5 8 15 6 8 13		
7 8 14		19. 3 4 7 3 5 6 3 8 12 3 9 14 3 10 13 3 11 15
Group of order 288.	1 9 12 1 10 15 1 11 15	4 8 15 4 9 12 4 10 14 4 11 13
-		5 8 13 5 9 10 5 11 14 5 12 15
8. 347 356 3811		6 8 11 6 9 15 6 10 12 6 13 14
4 8 13		7 8 14 7 9 13 7 10 15 7 11 12
5 8 15		Group of order 12.
6 8 14		20. 3 4 7 3 5 6 3 8 12 3 9 14 3 10 15 3 11 13
7 8 12	2 7913 71014 71115	4 8 15 4 9 10 4 11 12 4 13 14
Group of order 4.		5 8 11 5 9 13 5 10 14 5 12 15
9. 5 8 15	5 5 9 14 5 10 12 5 11 13	6 8 14 6 9 12 6 10 13 6 11 15
6 8 14		7 8 13 7 9 15 7 10 12 7 11 14
7 8 12		Group of order 3.
Group of order 2.		•
10. 5 8 15	5 5 9 14 5 10 13 5 11 12	Systems 21-22.
10. 5 8 13 6 8 14		1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
7 8 12		2 4 6 2 5 7 2 8 10 2 9 12 2 11 14 2 13 15
Group of order 2.	, , , , , , , , , , , , , , , , , , , ,	3 4 7 3 5 6 3 8 11 3 9 13 3 10 15 3 12 14
-		4 8 12 4 9 14 4 10 13 4 11 15
11. 4 8 13		21. 5 8 13 5 9 15 5 10 14 5 11 12
5 8 15		6 8 14 6 9 10 6 11 13 6 12 15
6 8 14		7 8 15 7 9 11 7 10 12 7 13 14
7 8 12	2 7 9 15 7 10 13 7 11 14	Group of order 3.
Group of order 2.		
12. 5 8 15	5 5 9 13 5 10 14 5 11 12	22. 5 8 15 5 9 11 5 10 12 5 13 14
6 8 12		6 8 13 6 9 15 6 10 14 6 11 12
7 8 14	7 9 10 7 11 13 7 12 15	7 8 14 7 9 10 7 11 13 7 12 15
Group of order 3.		Group of order 3.

II. TRIPLE TETRADS, NO HEAD, BUT SEMHIEAD.

		11.	TRIPLE	TEIRADS, NO	HEAD, BUT SEMIHE				
Systems 1-12.				10 11 15	Systems 1-12—Continued		4.0.10	1 10 11	4 11 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					7.	4 8 15 5 6 11			4 11 13 5 13 14
240 201	2.0	10 2 3 .				6.8.14			8 11 12
1. 3 4 7 3 5 8	3 6 11	3 9 12	3 10 15	3 13 14		7 8 13	7 9 14	7 10 12	7 11 15
	4 5 13 5 6 14	4 9 14 5 9 10	4 10 12 5 11 13	4 11 15 5 12 15	Group of order	3.			
	6 5 12	6 9 15	6 10 13	8 11 14	8, 3 4 7 3 5 8	3 6 12	3 9 14	3 10 13	3 11 15
	7 × 15	7 9 13	7 10 14	7 11 12		4 8 14	4 9 10		4 12 15
No group.						5 6 11	5 9 12		5 13 14
2.	5 6 12	5 9 15	5 10 13	5 11 14		6 8 13 7 8 15	6 9 15 7 9 13	6 10 14 7 10 12	8 11 12 7 11 14
	$\frac{68}{78} \frac{15}{14}$	6 9 13 7 9 10	6 10 14 7 11 13	8 11 12 7 12 15	Group of order		1 9 10	, 10 12	, 11 14
No group.	, 0 11								
3.	4 8 13	4 9 15	4 10 14	4 11 12	9.	4 8 14	4 9 12	4 10 15	4 11 13
	5 8 15	5 9 13	5 10 12	5 11 14		5 6 11 6 8 13	5 9 10 6 9 15	5 12 15 6 10 14	5 13 14 8 11 12
	6 8 12 7 8 14	6 9 14 7 9 10	6 10 13 7 11 13	8 11 15 7 12 15		7 8 15	7 9 13	7 10 12	7 11 14
No group.	1 5 14	79 10	1 11 13	1 12 10	Group of order				
4, 347 358	3 6 12	3 9 10	3 11 15	3 13 14	10.	4 8 13	4 9 10	4 11 14	4 12 15
1, 01, 000	4 8 13	4 9 12	4 10 15	4 11 14	10.	5 6 11	5 9 15	5 10 12	5 13 14
	5 6 15	5 9 14	5 10 12	5 11 13		6 8 14	6 9 13	6 10 15	8 11 12
	6 8 11 7 8 14	6 9 13 7 9 15	6 10 14 7 10 13	8 12 15 7 11 12		7 S 15	7 9 12	7 10 14	7 11 13
No group.			. 10 10		No group.				
5. 347 358	3 6 12	3 9 13	3 10 14	3 11 15	11. 3 4 7 3 5 8	3 6 12	3 9 14	3 10 15	3 11 13
	4 8 14	4 9 10	4 11 13	4 12 15		4 8 13	4 9 10 5 9 15	4 11 14 5 10 12	4 12 15 5 13 14
	5 6 11	5 9 15	5 10 12 6 10 15	5 13 14 8 11 12		5 6 11 6 8 15	6 9 13	6 10 14	8 11 12
	6 8 13 7 8 15	6 9 14 7 9 12	7 10 13	7 11 14		7 8 14	7 9 12	7 10 13	7 11 15
No group.					No group.				
6. 347 358	3 6 12	3 9 13	3 10 15	3 11 14	12.	4 8 14	4 9 12	4 10 13	4 11 15
	4 8 14	4 9 10	4 11 13	4 12 15	12.	5 6 11	5 9 15	5 10 12	5 13 14
	5 6 11 6 8 15	5 9 15 6 9 14	5 10 12 6 10 13	5 13 14 8 11 12		6 S 15	6 9 13	6 10 14	8 11 12
	7 8 13	7 9 12	7 10 14	7 11 15	_	7 8 13	7 9 10	7 12 15	7 11 14
No group.					No group.				
		111	I. TRIPL	E TETRADS, N	O HEAD OR SEMINE	AD,			
Systems 1-26.					Systems 1-26—Continue	d.			
Systems 1-26, 1 2 3 1 4 5 1 6 3					Systems 1-26—Continue 8. 3 4 8 3 5 9	$3\ 6\ 12$	3 7 14	3 10 15	3 11 13
						3 6 12 4 7 10	4 9 13	4 11 14	4 12 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 28	10 2 9	11 2 12	14 2 13 15		3 6 12 4 7 10 5 6 11			
123 145 167						3 6 12 4 7 10	4 9 13 5 8 15	4 11 14 5 10 12	4 12 15 5 13 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2 8 3 6 12 4 7 14 5 6 15	10 2 9 3 7 13 4 9 12 5 8 14	11 2 12 3 10 14 4 10 15 5 10 13	14 2 13 15 3 11 15 4 11 13 5 11 12		3 6 12 4 7 10 5 6 11 6 8 14 7 8 13	4 9 13 5 8 15 6 9 15	4 11 14 5 10 12 6 10 13	4 12 15 5 13 14 8 11 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13	3 7 13 4 9 12 5 8 14 6 9 10	3 10 14 4 10 15 5 10 13 6 11 14	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15	8, 348 359	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 6 1. 3 4 8 3 5 9	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11	10 2 9 3 7 13 4 9 12 5 8 14	11 2 12 3 10 14 4 10 15 5 10 13	14 2 13 15 3 11 15 4 11 13 5 11 12	8, 348 359 Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 1, 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15	3 10 14 4 10 15 5 10 13 6 11 14 7 10 12	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14	8, 348 359 Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 6 1. 3 4 8 3 5 9	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14	8, 348 359 Group of order 9.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 1, 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15	3 10 14 4 10 15 5 10 13 6 11 14 7 10 12	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14	Group of order Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 1, 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 14	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14 3 11 14 4 11 15 5 11 12 8 12 15	8, 348 359 Group of order 9.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1, 3 4 8 3 5 9 Group of order 2, 3 4 8 3 5 9	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14 3 11 14 4 11 15 5 11 12	Group of order Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14 3 11 14 4 11 15 5 11 12 8 12 15 9 13 14	Group of order Group of order Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1, 3 4 8 3 5 9 Group of order 2, 3 4 8 3 5 9	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 11 7 10 12 4 11 13	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14 3 11 14 4 11 15 5 11 12 8 12 15 9 13 14 4 12 15	Group of order 9. Group of order 10.	3 6 12 4 7 10 5 6 11 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 11 4. 4 7 10 5 6 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12	14 2 13 15 3 11 15 4 11 13 5 11 12 8 12 15 9 13 14 3 11 14 4 11 15 5 11 12 8 12 15 9 13 14	Group of order Group of order Group of order	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 11 7 10 12 4 11 13	14	Group of order 9. Group of order 10.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 7 8 11 4. 4 7 10 5 6 13 7 8 11 7 8 11 7 8 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 6 10 14	14	Group of order 9. Group of order 10.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 7 8 11 4. 4 7 10 5 6 11 6 8 13 7 8 14 12. 3 6 12	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 11 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 4. 4 7 10 5 6 11 6 8 13 7 8 14 12.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 11 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13 4 11 14	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 15	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4 7 10 6 8 13 7 8 14 12. 3 6 12 4 7 16 5 6 15 6 8 14 7 8 11 6 8 13 7 8 14 12.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13 4 11 14 5 10 14	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 7 8 12 6. 3 6 12 4 7 10 5 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 4. 4 7 10 5 6 11 6 8 13 7 8 14 12.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 11 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13 4 11 14	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 6 12 4 7 10 5 6 15 6 8 14 7 8 11 4 7 10 6 8 13 7 8 14 12. 3 6 12 4 7 10 6 8 13 7 8 14 12. 3 6 12 6 8 13 7 8 11 7 8 11 8 12 1 7 8 14 1 7 8 12	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 4 11 13 7 10 12 5 10 14 6 10 15 7 11 13	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12.	3 6 12 4 7 10 5 6 11 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 7 8 12 6. 3 6 12 4 7 10 5 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 7 8 11 4. 4 7 10 5 6 13 7 8 14 12. 3 6 12 4 7 10 5 6 13 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 12 4 7 10 5 6 8 13 7 8 14 12. 3 6 8 11 7 8 12 4 7 10 5 6 8 13 7 8 14 12.	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 4 11 13 5 10 12 3 10 13 4 11 14 6 10 15	14	Group of order Group of order Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2 8 11 2 8 11 3 6 8 11 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 10 7 9 15 8 12 5 8 14 6 9 19 7 9 15 9 16 9 17 9 18 9 18 9 19 1 9 19 1	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4 . 4 7 10 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 13 6 8 11 7 8 12 4 7 10 5 6 6 11 6 8 15 6 11 6 8 15 6 11 6 8 15 6 11 6 8 15	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 15 6 9 14 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13 4 11 14 5 10 14 6 10 15 7 11 13 4 11 13 5 10 12 6 10 14 6 10 15 7 11 13	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 7 9 14 5 8 12 6 9 15 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. 5.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 7 8 11 4. 4 7 10 5 6 11 6 8 13 7 8 12 4 7 10 5 6 11 6 8 13 7 8 12 4 7 10 5 6 11 6 8 13 7 8 11 5 6 15 6 8 11 7 8 11 4 7 10 5 6 11 6 8 13 7 8 11 5 6 15 6 8 11 7 8 12 4 7 10 5 6 15 6 8 13 7 8 11 5 6 15 6 8 11 7 8 11 5 6 15 6 8 11 7 8 12 4 7 10 5 6 13 6 8 11 7 8 12 4 7 10 5 6 13 6 8 11 7 8 12 5 6 13 6 8 11 7 8 12 6 8 13 7 8 15 6 8 13 7 8 15 6 8 13 7 8 16 1 1 5 6 15 6 8 13 7 8 16 8 17 8 18 8 18 7 8 18 8 18	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 15 6 9 14 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 6 10 14 7 11 15 3 10 13 4 11 14 5 10 14 6 10 15 7 11 13 5 10 12	14	Group of order Group of order Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2 8 11 2 8 11 3 6 8 11 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 10 7 9 15 8 12 5 8 14 6 9 19 7 9 15 9 16 9 17 9 18 9 18 9 19 1 9 19 1	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4 . 4 7 10 5 6 13 6 8 11 7 8 12 4 7 10 5 6 13 6 8 11 7 8 12 4 7 10 5 6 13 6 8 15 7 8 13 4 7 13	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 15 6 9 13 7 9 15 4 9 14 5 8 15 6 9 13 7 9 15 4 9 14	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 12 4 11 13 5 10 14 6 10 15 7 11 13 4 11 13 5 10 14 6 10 15 7 11 13 4 11 13 5 10 14 6 10 15 7 11 13 4 11 13 5 10 12 4 11 13 5 10 14 6 10 15 7 11 13	14	Group of order Group of order Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12.	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 15 6 8 13 7 8 11 2. 3 6 15 6 8 13 7 8 11 5 6 15 6 8 13 7 8 11 5 6 15 6 8 13 7 8 11 5 6 15 6 8 11 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 6 9 15	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 14 4 11 14 7 10 15 6 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 5 6 15 6 8 14 7 8 11 4 . 4 7 10 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 11 6 8 13 6 8 11 7 8 12 4 7 10 5 6 11 6 8 15 7 8 13 4 7 13 5 6 15	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 15 6 9 13 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15 4 9 12 5 8 13	11	14	Group of order Group of order Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2.	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 13 7 9 13 5 8 12 6 9 13 7 9 13 5 8 12	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 4 10 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 13 4 11 15 5 10 15 6 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 7 8 11 4 . 4 7 10 5 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 11 7 8 12 4 7 10 5 6 11 7 8 12 4 7 10 5 6 11 6 8 15 7 8 13 4 7 13 5 6 15 6 8 14	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 14 6 10 14 7 11 15 3 10 13 4 11 13 5 10 15 7 11 13 4 11 13 5 10 15 6 10 14 7 11 12 4 10 13 5 10 14 6 11 13	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 11 7 8 13 4 7 10 5 6 15 6 8 11 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 13 4 11 15 6 10 14 7 11 12 3 10 13 6 11 14 7 11 12 1 11 12 3 10 13 6 10 14 7 11 12 1 11 12 1 11 12 3 10 13 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group. No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 5 6 6 15 6 8 14 7 8 11 4 . 4 7 10 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 11 6 8 15 7 8 12 4 7 10 5 6 11 6 8 15 7 8 15 6 8 14 7 8 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15	11	14	Group of order Group of order Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 6 8 13 7 8 11 6 8 13 7 8 13 4 7 10 5 6 15 6 8 13 7 8 11 6 8 13 7 8 13 4 7 10 5 6 15 6 8 13 7 8 11 6 8 13 7 8 13 4 7 10 5 6 15 6 8 13 7 8 11 7 8 13 4 7 10 5 6 15 6 8 13 7 8 11 7 8 13 8 13 8 13 7 8 13 8 13 8 13 8 13 8 13 8 14 8 15 8 16 8 17 8 18 8 18 8 18 8 18 8 18 8 18 8 18	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 7 9 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 14 4 11 14 5 10 15 6 10 13 7 11 12 3 10 14 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group. No group.	7 2 8 3 6 12 4 7 14 5 6 6 8 13 7 8 11 3 . 3 6 12 4 7 14 7 8 11 4 . 4 7 10 5 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 8 11 7 8 12 4 7 10 5 6 11 6 8 15 7 8 13 4 7 13 5 6 8 14 7 8 11 4 7 8 11 4 7 8 11 4 7 11 4 7 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15 4 9 12 5 8 13 6 9 10 7 9 15 4 9 12 5 8 13 6 9 10 7 9 15 4 9 12	11 2 12 3 10 14 4 10 15 5 10 13 6 11 14 7 10 12 3 10 15 4 10 13 5 10 14 6 11 13 7 10 12 4 11 13 5 10 14 6 10 15 7 11 15 3 10 13 4 11 13 5 10 15 7 11 13 4 11 13 5 10 15 6 10 14 7 11 12 4 10 13 7 10 12	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 11 7 8 13 4 7 10 5 6 15 6 8 11 7 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 7 9 13	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 13 4 11 15 6 10 14 7 11 12 3 10 13 6 11 14 7 11 12 1 11 12 3 10 13 6 10 14 7 11 12 1 11 12 1 11 12 3 10 13 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group. No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3 . 3 6 12 4 7 14 5 6 6 15 6 8 14 7 8 11 4 . 4 7 10 6 8 13 7 8 14 12 . 3 6 12 4 7 10 5 6 11 6 8 15 7 8 12 4 7 10 5 6 11 6 8 15 7 8 15 6 8 14 7 8 11	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 12 6 9 13 7 9 15 4 9 12 5 8 13 6 9 10 7 9 15	11	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 8 11 7 8 13 4 7 10 5 6 8 11 7 8 13 4 7 10 5 6 8 11 6 8 13 7 8 14 3 6 12 4 7 10 5 6 8 11 6 8 13 7 8 14 3 6 12 4 7 10 5 6 11 6 8 13 7 8 14 3 6 12 4 7 10 5 6 11 6 8 13 7 8 14 3 6 12 4 7 10 5 6 11 6 8 13 7 8 14	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 7 9 14	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 13 4 11 13 5 10 15 6 10 14 7 11 12 3 10 13 4 11 13 5 10 15 6 10 13 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12
1 2 3 1 4 5 1 6 6 2 4 6 2 5 5 6 1. 3 4 8 3 5 9 Group of order 2. 3 4 8 3 5 9 Group of order 3. Group of order 4. 3 4 8 3 5 9 No group. No group. No group.	7 2 8 3 6 12 4 7 14 5 6 15 6 8 13 7 8 11 3. 3 6 12 4 7 14 7 10 5 6 8 14 7 8 11 4. 4 7 10 5 6 8 14 7 8 14 12. 3 6 12 4 7 10 5 6 11 6 8 15 7 8 12 4 7 10 5 6 11 6 8 15 7 8 13 4 7 13 5 6 15 6 8 14 7 8 11 4 7 11 5 6 10	10 2 9 3 7 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 13 4 9 12 5 8 13 6 9 10 7 9 15 4 9 14 5 8 15 6 9 15 7 9 12 3 7 14 4 9 13 5 8 15 6 9 14 7 9 15 4 9 14 5 8 15 6 9 13 7 9 15 4 9 12 5 8 13 6 9 10 7 9 15 4 9 12 5 8 13 6 9 10 7 9 15	11	14	Group of order 9. Group of order 10. Group of order 11. 3 4 8 3 5 9 No group. 12. No group. 13. 3 4 8 3 5 9	3 6 12 4 7 10 5 6 11 6 8 14 7 8 13 2. 4 7 10 5 6 11 6 8 15 7 8 12 6. 4 7 13 5 6 15 6 8 13 7 8 11 2. 3 6 12 4 7 10 5 6 15 6 8 13 7 8 11 2. 3 6 15 6 8 13 7 8 11 2. 3 6 15 6 8 13 7 8 11 7 8 13 5 6 15 6 8 13 7 8 11 7 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13	4 9 13 5 8 15 6 9 15 7 9 12 4 9 15 5 8 13 6 9 14 7 9 13 4 9 12 5 8 14 6 9 10 7 9 15 3 7 15 4 9 12 5 8 14 6 9 13 7 9 14 4 9 14 5 8 12 6 9 15 7 9 13 3 7 15 4 9 13 5 8 12 6 9 15 7 9 14 3 7 15 7 9 14 5 8 12	4 11 14 5 10 12 6 10 13 7 11 15 4 11 12 5 10 14 6 10 13 7 11 15 4 10 14 5 10 13 6 11 14 7 10 12 3 10 13 4 11 15 5 10 12 6 10 14 7 11 12 4 11 13 5 10 15 6 10 14 7 11 12 3 10 14 4 11 14 5 10 15 6 10 13 7 11 12 3 10 14 4 11 14 5 10 15 6 10 13 7 11 12	4 12 15 5 13 14 8 11 12 9 10 14 4 13 14 5 12 15 8 11 14 9 10 12 4 11 15 5 11 12 8 12 15 9 13 14 3 11 14 4 13 14 5 11 13 8 12 15 9 10 15 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12 3 11 13 4 12 15 5 13 14 8 11 15 9 10 12

Systems 1-26-Continu	ned.				Systems 1-26Contin	ued.			
15,	4 7 14	4 9 15	4 10 12	4 11 13	21.	479	4 10 13	4 11 14	4 12 15
	5 6 13	5 8 14	5 9 12	5 11 15		5 6 10	5 8 15	$5 - 9 \cdot 12$	5 13 14
	6.8.11	6 9 14	6 10 15	8 12 15		6 8 13	6 9 14	6 11 15	8 11 12
	7 8 13	7 9 10	7 11 12	10 13 14		7 8 14	7 10 12	7 11 13	9 10 15
No group,					No group.				
16,	479	4 10 12	4 11 15	4 13 14	22, 3 4 8 3 5 1		3 7 15	3 9 14	3 10 13
	5 6 15	5 8 14	$5 - 9 \cdot 12$	5 H 13		4 7 11	4 9 13	4 10 15	4 11 12
	6 S 11	6 9 14	6 10 13	8 12 15		5.6 9	5 8 15	5 10 12	5 13 14
	7 8 13	7 10 14	7 11 12	9 10 15		6 8 13	6 10 14	6 11 15	8 11 14
No group.						7×12	7 9 10	7 11 13	9 12 15
					No group.				
17, 3 4 8 3 5 11		3 7 15	3 9 13	3 10 14	23	4 7 10	4 9 13	4 11 14	4 12 15
	4 7 10	4 9 14	4 11 13	4 12 15		5 6 9	5 8 15	5 10 12	5 13 14
	5 6 9	5 8 15	$5 \ 10 \ 12$	5 13 14		6 8 13	6 10 14	6 11 15	8 11 12
	6 8 14	6 10 13	6 11 15	8 11 12		7 8 14	7 9 12	7 11 13	9 10 15
	7 8 13	7 9 12	7 11 14	9 10 15	No group,			1 11 10	3 10 13
No group.									
*	4 7 13	4 9 14	4 10 15	4 11 12	24,	1 7 12	4 9 13	4 10 15	4 11 14
18,	569	5 8 15	5 10 12	5 13 14		5 6 9	5 8 15	$5 \ 10 \ 12$	5 13 14
		6 10 13				6 8 13	6 10 14	6 11 15	8 11 12
	6 8 14		6 11 15	8 11 13		7 8 14	7 9 10	7 11 13	9 12 15
No group.	7 8 12	7 9 10	7 11 14	9 12 15	No group.				
No group.					25. 3 4 8 3 5 1	3 6 12	3 7 11	3 9 13	3 10 14
19.	4 7 12	4 9 14	4 10 15	4 11 13	20. 34 5 331	4 7 13	4 9 12	4 10 15	4 11 14
•••	569	5 10 12	5 8 15	5 13 14		5 6 14	5 8 12	5 9 10	
	6 8 14	6 10 13	6 11 15	8 11 12		6 8 11	6 9 15		5 11 13
	7 8 13	7 9 10	7 11 14	9 12 15		7 8 15		6 10 13	8 13 14
No group.					Group of ord		7 9 14	7 10 12	11 12 15
r.o group.					Group of ore	ier s.			
20.	4 7 12	4 9 15	4 10 13	4 11 14	26.	4 7 14	4 9 15	4 11 13	4 10 12
	5 6 10	5 8 15	5 9 12	5 13 14		5 6 13	5 8 12	5 9 10	5 11 14
	6 8 13	6 9 14	6 11 15	8 11 12		6 8 11	6 9 14	6 10 15	84 3 11
	7 8 14	7 9 10	7 11 13	10 12 15		7 8 15	7 9 12	7 10 13	11 12 15
No group.					No group.				

IV. NO TRIPLE TETRADS, BUT HEAD.

One system							One system—Continued,				
1, 123	1 4 5	167	189	1 10 11	1 12 13	1 14 15		5 8 15	5 9 13	5 10 14	5 11 12
	246	257	2 8 10	2 9 12	2 11 14	2 13 15		6 8 14	6 9 10	6 11 13	6 12 15
	3 4 7	3 5 6	3 8 11	3 9 15	3 10 13	3 12 14		7 8 13	7 9 11	7 10 12	7 11 15
			4 8 12	4 9 11	4 10 15	4 13 14	Group of order 21.				

V. NO TRIPLE TETRADS OR HEAD, BUT SEMIHEAD.

Syste	ms	1-	-3.																										1	Sys	tem	ıs	1-3	3	Co	nti	inu	ıeđ													
1:	2 3		1	4	5		1	6	7			1 8	1	}		1	10	11			1	12	13	3		1	14	15	1										5	6	12	5	9	1	3	5	10	14	5	11	15
			2	4	6		2	5	7			2 8	10)		2	9	12	:		2	11	1	1		2	13	15											6	8	13	6	9	1	4	6	10	15	8	11	12
	1	3	4 7	,		3 :	5)	3		3	6	11		3	9	14	1		3	10	1	3		3	12	1.5	5												7	8	15	7	1 9	9 1	1	7	10	12	7	13	14
	•	Ü				•				-	-	10				13					1.			-	12	-	-						G	rou	ıp	of	orc	ler	3.												
										5	6	12		5	9	15	5		5	10	1	1		5	11	13	3				3.		3 4	7		3	5 8	3	3	6	13	3	9	1	4	3	10	12	3 1	11	15
										6	8	14		6	9	13	3		6	10	1	5		8	11	1	2												4	8	15	4	1 9	1	3	4	10	14	4 !	11	12
										7	8	15		7	9	1	1		7	10	1	2		7	13	1	4												5	6	11	5	9	1	5	5	10	13	5 1	12	14
		(īro	ou	D (10	r	lei	7	٠																													6	8	14	6	9	3 1	0	6	12	15	8.1	11	13
:	2.	3	4 7			3 :	5 8	3		3	6	11		3	9	15	5		3	10	1	3		3	12	1	4						-							8	12	7	9) 1	1	7	10	15	7 1	13	14
										4	8	14		4	9	10)		4	11	1	3		4	12	1	5						G	rot	ıp	of	ore	1er	3.												

VI. NO TRIPLE TETRADS, HEAD, OR SEMIHEAD.

Systems 1-15.		Systems 1-15—Continued.
123 145 16	7 1 8 9 1 10 11 1 12 13 1 14	15 5 6 11 5 8 15 5 9 13 5 12 14
246 25	7 2810 2 912 21114 213	15 6 8 12 6 9 15 6 10 14 8 11 13
1. 348 359	3 6 14 3 7 11 3 10 13 3 12 15	7 8 14 7 9 11 7 10 13 10 12 15
	4 7 15 4 9 10 4 11 12 4 13 14	No group,
	5 6 12 5 8 15 5 10 14 5 11 13	4. 3 4 8 3 5 9 3 6 11 3 7 14 3 10 13 3 12 15
	6 8 11 6 9 13 6 10 15 8 12 14	4 7 15 4 9 10 4 11 12 4 13 14
	7 8 13 7 9 14 7 10 12 9 11 15	
No group.		
		6 8 13 6 9 14 6 10 15 8 12 14
2. 348 3512	3 6 14 3 7 11 3 9 13 3 10 15	7 8 11 7 9 13 7 10 12 9 11 15
	4 7 15 4 9 10 4 11 12 4 13 14	No group.
	5 6 9 5 8 15 5 10 14 5 11 13	
		5. 3 4 8 3 5 10 3 6 12 3 7 13 3 11 15 3 9 14
	6 8 11 6 10 13 6 12 15 8 12 14	4 7 15 4 9 10 4 11 12 4 13 14
	7 8 13 7 9 14 7 10 12 8 11 15	
No group.		5 6 11 5 8 15 5 9 13 5 12 14
3, 348 3510	3 6 13 3 7 12 3 9 14 3 11 15	6 8 14 6 9 15 6 10 13 8 11 13
3, 3 4 8 3 3 10		7 8 12 7 9 11 7 10 14 10 12 15
	4 7 15 4 9 10 4 11 12 4 13 14	No group.

Systems 1-15—Continue	ed.				Systems 1-15—Continue	d.			
6. 3 4 8 3 5 14	3 6 12	3 7 11	3 9 15	3 10 13	11. 3 4 8 3 5 1 3	3 6 14	3 7 12	3 9 11	3 10 15
	4 7 15	4 9 10	4 11 13	4 12 14		4 7 15	4 9 14	4 10 12	4 11 13
	5 6 13	5 8 15	5 9 11	5 10 12	i	5 6 11	5 8 15	5 9 10	5 12 14
	6 8 11	6 9 14	6 10 15	8 13 14		6 8 12	6 9 15	6 10 13	8 13 14
	7 8 12	7 9 13	7 10 14	11 12 15		7 8 11	7 9 13	7 10 14	11 12 15
No group.					Group of order 3.				
7, 3 4 8 3 5 13	3 6 11	3 7 12	3 9 14	3 10 15	12, 3 4 8 3 5 14	3 6 11	3 7 9	3 10 13	3 12 15
	4 7 15	4 9 10	4 11 13	4 12 14		4 7 15	4 9 10	4 11 13	4 12 14
	5 6 14	5 8 15	$5 - 9 \cdot 11$	5 10 12	1	5 6 13	5 8 12	5 9 11	5 10 15
	6 8 12	6 9 15	6 10 13	8 13 14	i i	6 8 14	6 9 15	6 10 12	8 11 15
	7 8 11	7 9 13	7 10 14	11 12 15		7 8 13	7 10 14	7 11 12	9 13 14
No group.					Group of order 5,				
8, 3 4 8 3 5 14	3 6 13	3 7 12	3 9 11	3 10 15	13, 3 4 8 3 5 14	369	3 7 13	3 10 15	3 11 12
0.0	4 7 15	4 9 10	4 11 13	4 12 14	13, 313 331		4 9 10	4 11 13	4 12 14
	5 6 11	5 8 15	5 9 13	5 10 12		5 6 11	5 8 13	5 9 15	5 10 12
	6 8 12	6 9 15	6 10 14	8 13 14	1		6 10 13	6 12 15	8 11 15
	7 8 11	7 9 14	7 10 13	11 12 15	1		7 9 11	7 10 14	9 13 14
No group.					Group of order 3.				
9, 348 3513	3 6 10	3 7 12	3 9 14	3 11 15	14. 3 4 8 3 5 11	3 6 13	3 7 9	3 10 15	3 12 14
0, 0, 0	4 7 15	4 9 13	4 10 14	4 11 12		4 7 15	4 9 11	4 10 12	4 13 14
	5 6 11	5 8 15	5 9 10	5 12 14		5 6 10	5 8 13	5 9 14	5 12 15
	6 8 12	6 9 15	6 13 14	8 11 13		6 8 14	6 9 15	6 11 12	8 11 15
	7 8 14	7 9 11	7 10 13	10 12 15		7 8 12	7 10 14	7 11 13	9 10 13
(Froup of order 4.					Group of order 4.				
10. 3 4 8 3 5 11	3 6 12	3 7 14	3 10 15	3 9 13	15, 3 4 8 3 5 10	3 6 15	3 7 13	3 9 11	3 12 14
	4 7 15	4 9 14	4 10 12	4 11 13		4 7 11	4 9 15	4 10 12	4 13 14
	5 6 13	5 8 15	5 9 10	5 12 14		5 6 9	5 8 14	5 11 13	5 12 15
	6 8 11	6 9 15	6 10 14	8 13 14		6 8 13	6 10 14	6 11 12	8 11 15
	7 8 12	7 9 11	7 10 13	11 12 15		7 8 12	7 9 14	7 10 15	9 10 13
Group of order 4.					Group of order 36.				
		VI	I. NO T	ETRADHEI	FFTER'S HEADLESS S'	YSTEM.			
123 145 16	7 18	9 1 10 1	1 1 12	13 1 14 15	I	5 6 14	5 9 1	0 5 11 1	3 5 12 15

123	1 4 5	167	189	1 10 11	1 12 13	1 14 15	1	5 6 14	5 9 10	5 11 13	5 12 15
	24 6	258	279	2 10 12	2 11 14	2 13 15		6 8 12	6 9 15	6 10 13	8 10 14
	3 4 10	3 5 7	3 6 11	3 8 15	3 9 13	3 12 14		7 8 11	7 10 15	7 13 14	9 11 12
			4 7 12	4 8 13	4 9 14	4 11 15	Group of order 60.				

PART 5.

SEQUENCES AND INDICES FOR ALL GROUPLESS TRIAD SYSTEMS ON 15 ELEMENTS.

By L. D. Cummings.

The 80 systems described in this paper separate into the three distinct types:

- (a) Twenty-three systems with a group and with a head.
- (b) Twenty-one systems with a group and with no head.
- (e) Thirty-six systems with no group and with no head.

The indices for type (a) and the Heffter system of type (b) have been fully discussed in an earlier paper 1 and therefore are omitted here. The indices for types (b) and (e) are given in

¹ Cummings, L. D. Transactions of the American Mathematical Society, vol. XV, No. 3, pp. 311-327.

the following tables 1 (b) and 1 (c), respectively. Now in a given system the index of a triad is invariant under all the substitutions of the symmetric group; two systems, therefore, which differ either in their indices or in the number of triads enumerated under each index are certainly incongruent. Hence tables 1 (b) and 1 (c) show conclusively the noncongruency of these 56 systems.

TABLE 1 (b).

System.	16 22 3	11.24	1+35	13 23 5	13234	13 33	13.9	12 23 4	12 22 32	12 2 8	1237	1346	12 52	1 22 7	1236	1245	1325	1, 11	26	23 6	23 42	2 32 4	2, 10	34	3, 9	4,8	5, 7	63
$\begin{array}{c} V_4, I \\ V_{13j5} \\ V_{12,\delta} \\ V_{12,\delta} \\ V_{12,\alpha} \\ V_{12,\gamma} \\ III \\ V_{4\alpha} \\ V_{13j\alpha} \\ V_{4\beta} \\ V_{13j\alpha} \\ V_{4\beta} \\ V_{13j\alpha} \\ V_{13j\alpha} \\ V_{12j\alpha} \\ V_{13j\alpha} \\ V_{1\gamma} \\ V_{1\gamma}$	2 1	1 1 1		3 2	3 1	2	6	6 6	3	6 3 2 4	2	1 4	3 9	2 18 4 3	4 3 4 5	4 3 6 3 9 8	3	6 7 1 14 4 7 10	1	3	3	3	6 8 8 12 5	1 1 9 1	3	2 3 6	3 2 6	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

54061°—19——6

TABLE 1 (c).

System.	1 8	Io 22 3	14.24	1426	1435	13 22 5	13 2 3 4	13.9	12 23 4	12 22 32	1228	1237	1246	12 52	1237	1236	1245	1325	1, 11	81	23 6	23 42	2 32 4	2, 10	3, 9	8,4	5, 7	.9
15		2 3 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 2 1 1 1 1 1 1 1 1 1 1 1	2 3 3 5 1 2 2 3 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 3 2 3 3 2 1 1 1 1 1 1 1 1 1	2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 2 5 5 5 3 3	2221333314421133132233321115543344222111	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 4 5 1 1 1 1 4 4 5 3 3 3 3 3 3 5 5 3 3 3 5 5 5 3 3 3 5	65 66 22 11 1 52 22 12 35 51 32 21 33 31 31 11 22 4	3 2 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	265352234522177742333232225121153332352	3355513443333223553332	1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 . 2545633550002455550043975577445469	1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 3 1 1 2 1 3 1 1 2 1 3 1 1 1 2 1 3 1 1 1 2 1 1 1 1	1 1 3 1 1	24 115131 4574467 126355736488477797	1 1 1 2 1 1 5 2 4 3 2 2 1 5 2 1 1 3 1 3 2 1 3 1 3 2 1 3 3 2 1 3 1 3	1 1 2 1 1 1 1 2 1 1 1 1 2 3 3	2 2 2 1 1 1 1 1 4 2 3 3 1 1 1 1 2 2 3	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The analysis by the method of sequences of the 80 noncongruent systems derived by Mr. Cole in Part 4, shows that 77 of these systems are congruent either to systems derived in Part 1 by means of operators of their groups; or to systems derived from the former, in Part 3, by means of quadrangular or hexagonal transformations.

The names or numbers of these 77 pairs of equivalent systems and the substitution which transforms each of Mr. Cole's systems into its equivalent system are given below.

```
I, 15\equiv IIF by s \equiv \begin{pmatrix} 1 & 2 \\ d & f \end{pmatrix}
                                     5
                                                      \bar{b}
                                               1 - 6
                                        6
                                                      10 11 12 13 14 15
                                               1
                                                      5 - 6 - 3
                                        g
                                                      10 11 12 13 14 15
  I, 17≡VB by
                                        b
                                               1
                                                  3
                                               8
                                                      10 11 12 13 14 15
  I, 18\equivIIB by s\equiv \begin{pmatrix} 1 \\ a \end{pmatrix}
                                        d
                                                      5 6 2 1 8 7
                                           \mathcal{C}
                                               4 - 3
                                        6
                                                      10 11 12 13 14 15
  I, 19≡V1A by s≡(
                                            c
                                               5
                                                      1 2 4 3 7 6
                                        6
                                     5
                                           7
                                               8
                                                      10\ 11\ 12\ 13\ 14\ 15
  I, 20 \equiv \text{VIC by } s \equiv (
                                           g
                                               4
                                                  8
                                                      2 \ 3 \ 6 \ 5 \ 1 \ 7
                                        6
                                                      10 11 12 13 14 15
  I, 21<u>≡</u>1C by
                                               8
                                        a
                                                  1
                                                      4 5 6 3 7 2
                                                      10 11 12 13 14 15
  I, 22≡IB by
                                            b
                                        a
                                                      7 5 3 2 8 4
                                     \frac{5}{3}
                                                      10 11 12 13 14 15
 II, 1<u>≡</u>10 by
                                            7
                                                       e 4 g a 2 5
                                                      10 11 12 13 14 15
 II, 2<u>≡</u>11 by
                                                      g \ b \ c \ 6 \ 4 \ 3
                                        7
                                            8
                                               d
                                                  e
                                     5
                                                      10 11 12 13 14 15
 II, 3 ≡ 9 by
                                     g
                                               8
                                                      b e e 7 f 3
                                     5
                                        6
                                                      10 11 12 13 14 15
 II, 4≡15 by
                                        g
                                            b
                                               8
                                                  7
                                                       ^{2}
                                                         1 3 4 6
                                                      10 11 12 13 14 15
                                                  9
 II, 5<u>≡</u>13 by
                                               2
                                                  8
                                                             -5
                                                      1 7
                                                                -4 - 6 - 3
                                                      10 11 12 13 14 15
 II, 6<u>≡</u>12 by
                                                      6
                                                         5 4 3 8 7
                                        6
                                               8
                                                      10 11 12 13 14 15
                                     B
                                           a_1 a_2 C
                                              8 9 10 11 12 13 14 15
                           b_3 \ a_5 \ b_2
                                        a_8
                                            C
                                               a_3 a_2 A a_1 B b_5 b_4 b_1
                           2 3
                                               8 9 10 11 12 13 14 15
 9 10 11 12 13 14 15
                                     5
                                        6
                                            7
                                               8
 II, 10≡14 by
                                                      5 e f 7 6 d
                                                  8
                                               g
                                        6
                                                  9 10 11 12 13 14 15
 II, 11≡ 8 by
                                               7
                                                      4 3 1 2 5 8
                                                  6
                                                      10 11 12 13 14 15
II, 12<u>≡</u>25 by
                                                      b d 7 2 5 6
                                               4
                                        6
                                                  9
III, 1 \equiv V4\alpha 2 by s \equiv \begin{pmatrix} 1 \\ C \end{pmatrix}
                                                      10 11 12 13 14 15
                                        b_1 \ d_1 \ b_2 \ d_2 \ a_2 \ c_2 \ a_3 \ c_3 \ b_3 \ d_3
                          A B
                                        6
                                               8 9 10 11 12 13 14 15
III, 2 \equiv VI1_3\beta by s \equiv \begin{pmatrix} 1 \\ 2 \end{pmatrix}
                        A B C
                                 a_5 \ b_5 \ a_6
                                           b_6 \ b_2 \ a_2
                                                      b_1 \ a_1 \ b_3 \ a_3 \ b_4 \ a_4
                                     5
                                        6 7
                                               8
                                                      10 11 12 13 14 15
III, 3 \equiv V1\gamma by s \equiv (
                          B
                                 d_1 c_1 b_1 a_1 a_3 b_3
                                                      c_3 \ d_3 \ c_2 \ d_2 \ a_2 \ b_2
                                            7
                                                      10 11 12 13 14 15
III, 4<u>≡</u>28 by
                                        6
                                                  4
                                            g
                                                         C
                                        6
                                               8
                                                  9
                                                      10 11 12 13 14 15
III, 5≡ 6 by
                                            d
                                                  b
                                                         7
                                                             5 f
                                        c
                                               e
                                                      10 11 12 13 14 15
III, 6≡ 4 by
                                               6
                                                         e
                                                      10 11 12 13 14 15
III, 7 \equiv 7 by
                                                             3
                                                       2
                                               8 9
                                                     10 11 12 13 14 15
III, 8≣VI2₄α by s≡(
                                     b_4 \ a_3 \ b_3 \ b_1 \ a_1
                                                      b_2 \ a_2 \ b_6 \ b_5 \ a_6 \ a_5
                                        6
                                           7 8 9 10 11 12 13 14 15
                                 c_3 c_2 d_3 e_2 a_2 a_3 e_1 d_1 d_2 b_2 e_3 b_3
6 7 8 9 10 11 12 13 14 15
                                                      b_2 \ a_2 \ b_6 \ b_5 \ a_8 \ a_5
III, 11=a new groupless system. (Reference number 34.)
                                        III, 12<u>≡</u>25 by
                           d = 5
                                     5 6 7 8 9 10 11 12 13 14 15
2 b e a f 4 5 6 3 d e
III, 13≡ 5 by
```

```
III, 14<u>≡</u>21 by
                                                                               6 7 8
                                                                                                   9 10 11 12 13 14 15
111, 15<u>=</u>20 by
                                                                3 5 6 b 8 7 d 4 1 f e g)
III, 16≊19 by
                                                                 b + 5 + 7 + e + c + f + 8 + a + 6 + 2 + g
                                                                                                 9 10 11 12 13 14 15
                                                                                            8
III, 17≡26 by
                                                                                    8 3
                                                                                                  f 1 b e 2 5 a
                                                                                                  6
                                                                                            8
 II1, 18<u>≡</u>32 by
                                                                                    -1 5
                                                                                     \begin{array}{cc} 7 & 8 \\ 7 & 2 \end{array}
                                                                               6
                                                                                                   9 10 11 12 13 14 15
III, 19≡ 1 by
                                                                                                   5 d a 6 g 8 \epsilon
                                                                                                  9 10 11 12 13 14 15
III, 20 \equiv 3 by
                                                                                                  g = 6 = a = 8 = 5 = f = b
                                                                                    111, 21<u>≡</u>27 by
                                                                                                  9 10 11 12 13 14 15
HI, 22≅22 by
                                                                 8 5 e d 4 3 1 a 7 2 c g)
III, 23=a new groupless system. (Reference number 35.)
                                                                        III, 24≡ 2 by
                                               \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ B & C & A & b_1 & a_1 & d_3 & c_2 & d_1 & c_3 & b_2 & a_2 & b_3 & a_3 & d_2 & c_1 \end{pmatrix}
III, 25<u>⇒</u>V4γ2 by s≕{
                                                  III, 26<u>≡</u>31 by
                                    s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ g & f & b & a \end{pmatrix}
                                                                                    5 - 6
 IV, 1≊1A by
  V, 1 \equiv V4\beta^2 by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ e_3 & e_1 & a_1 & C \end{pmatrix}
                                                                       5 6 7 8 9 10 11 12 13 14 15
                                                                      V, 2 \equiv V4\delta 1 by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ e_1 & e_2 & a_2 & C \end{pmatrix}
                                                                       5 6 7 8 9 10 11 12 13 14 15
                                                                       V, 3 \equiv 114\beta 1 by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ c_1 & C & a_3 & c_2 & a_2 & a_1 & c_3 & d_1 & A & b_1 & d_3 & B & d_2 & b_3 & b_2 \end{pmatrix}
                                                          VI; 1≡23 by
 VI, 2=a new groupless system. (Reference number 36.)
                                                                               V1, 3<u>≡</u>18 by
                                  s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ d_3 & e_1 & e_3 & b_2 & a_1 & d_2 & d_1 & a_2 & b_1 & a_3 & e_3 & e_1 & e_2 & e_2 & b_3 \end{pmatrix}
s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ e_2 & 2 & 5 & g & f & b & 7 & 4 & a & e & 1 & d & 8 & 6 & 3 \end{pmatrix}
s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ e_2 & 2 & 5 & g & f & b & 7 & 4 & a & e & 1 & d & 8 & 6 & 3 \end{pmatrix}
s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 18 \\ b & 2 & e & 8 & 7 & 3 & g & 5 & 7 \end{pmatrix}
 VI, 4<u>≡</u>33 by
 VI, 5<u>≡</u>16 by
 VI, 6<u>=</u>17 by
 V1, 7<u>≡</u>30 by
 VI, 8=29 by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ d & 1 & 3 & b & 5 & 4 & 7 & 2 & a & 6 & g & f & e & 8 & e \end{pmatrix}
VI, 9 \equiv VI3_3 \alpha by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a_3 & b_4 & b_5 & a_4 & A & B & b_3 & b_6 & a_1 & b_1 & C & b_2 & a_6 & a_2 & a_5 \end{pmatrix}
 VI, 10 \equiv \text{VI3}_4 \gamma \text{ by } s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ B & a_1 & a_5 & b_2 & a_6 & a_4 & b_4 & b_6 & a_2 & b_5 & b_1 & a_3 & b_3 & A & C \end{pmatrix}
 VI, 11\(\exists \text{III}_7\) by s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ c_3 & c_1 & a_3 & d_2 & b_2 & c_3 & b_3 & c_2 & a_2 & d_2 & b_3 & d_4 & a_4 & a_5 & a_5 \end{pmatrix}
                                                    c_1 a_3 d_2 b_2 c_3 b_3 c_2 a_2 d_3 b_1 d_1 a_1 e_1 e_2
                                    s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ f & 1 & a & 6 & 2 & 5 & 7 & b & 8 & 4 & 3 & g & c & d & e \end{pmatrix}
  VI, 12≡12 by
 V1, 13\equivII1<sub>3</sub> by s\equiv\begin{pmatrix}1&2&3&4&5&6&7&8&9&10&11&12&13&14&15\\d_1&a_1&c_2&d_2&a_3&d_3&a_2&c_3&b_3&c_2&e_1&c_1&b_2&b_1&e_3\end{pmatrix}
 VI, 14 \equiv VI3_3 \gamma by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a_3 & b_4 & b_5 & b_3 & B & A & a_4 & a_2 & b_6 & C & b_1 & a_1 & a_6 & b_2 & a_5 \end{pmatrix}
VI, 15 \equiv III_2 by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ d_3 & a_3 & e_3 & a_2 & a_1 & d_1 & d_2 & c_3 & e_1 & b_3 & e_2 & c_1 & c_2 & b_2 & b_1 \end{pmatrix}
VII, \equivVII by s \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & f & 4 & 1 & 3 & 7 & g & 2 & c & 5 & 8 & d & e & 6 & b \end{pmatrix}
```

In Part 4 of this paper Mr. Colo distinguishes four varieties of interlacing of duads in a system, namely, the single tetrad or oktad, the triple tetrad, the hexad, and the dodekad.

These types correspond to what we have designated in Part 3 as two-column or contracted indices. The triple tetrad, the oktad, the hexad, and the dodekad corresponding, respectively, to the indices 2^3 ; 2, 4; 3^2 ; 6.

Since these four types of interlacing form the basis for Mr. Cole's derivation of the 80 systems, it seemed probable that the two-column indices might furnish a sufficient and unique characterization for a triad system.

The two-column indices for each of the 80 systems were, therefore, determined and are exhibited in the following Table 2:

System.	23	2, 1	33	6	System.	23	2, 4	31	tì .	System.	23	2, 4	32	6
HIA	105	0	0	0	4	4	27	7	67	31	1	18	18	68
IIIB	57	48	0	0	7	4	24	8	69	21	1	18	14	72
HIC	49	24	0	32	IB.,,	3	42	7	53	20	1	18	12	74
111D	49	- 0	0	50	V1A	3	42	4	56	19	1	15	12	77
HE	29	60	0	16	12	3	36	7	59	36 [Cole]	1	12	11	81
1V A	29	60	0	16	V1, 2 ₁ δ,	3	33	6	63	1A	()	42	7	56
1V B	25	36	0	44	13	3	33	5	61	V, 181	()	30	10	65
VD	25	36	0	44	VI, 2 ₁₇	3	21	6	75	1, 2	0	30	5	70
V.1	21	36	()	48	6	2	30	10	63	17	0	27	12	66
ve	21	36	0	48	3	2	27	13	63	22	- 0	24	12	69
VB	21	12	0	72	1	2	21	9	70	VI, 317	- 0	24	7	7.4
11.	15	66	0	24	V1, 1 ₃ β	2	21	4	75	11, 17	0	21	15	69
V1D	13	57	1	31	26	2	21	15	67	34 [Cole]	0	21	14	70
11D	13	54	0	38	28	2	21	13	69 +	V, 4\beta 2	0	21	7	77
11C	13	54	0	38	V, 17	2	12	12	79	V, 481	0	21	7	77
IIB	11	42	0	52	25	2	10	30	63	VI, 3 ₃ α	0	18	21	66
IIF	11	42	0	52	V, 452,	1	36	16	52	23	0	18	14	73
15	11	36	4	54	14	1	36	9	59	VI, 387	0	18	13	74
9	9	33	1	59	8	1	33	- 8	63	33	-0	18	11	76
Υ, 4γ1	7	36	4	58	5	1	27	9	68	II, 1 ₂	0	18	9	78
VIB	5	51	4	42	27	1	24	15	65	18	0	15	16	74
IC	5	45	7	48	35 [Cole]	1	24	12	68	29	0	15	16	74
V, 4α1	5	21	10	66	32	1	24	12	68	16	- 0	15	14	76
VIC	4	48	4	49	$VI, 2_{i\alpha}$	1	21	20	63	30	Ω	15	11	79
11.,,	4	45	5	51	21	1	21	10	73	II, 1 ₃	Ω	- 6	15	84
10	4	42	3	56	VI, 246	1	21	8	75	V11	0	0	15	90
$V1, 3_3\delta$	4	42	1	58	2	1	21	7	76					

TABLE 2.

This table shows that the two-column indices suffice to establish the noncongruency of 72 of the 80 systems, but fail to distinguish uniquely the remaining 8 systems. The systems not uniquely determined by their two-column indices consist of the five pairs of headed systems IIC, IID; IIB, IIF; IIE, IVA; IVB, VD; VA, VC; one pair with a group but no head $V4\delta 1$, $V4\beta 2$; and two pairs of groupless systems 18, 29; 32, 35 [Cole].

Perfect discrimination is possible by the use of a double entry table, 15 by 15, showing not merely the number, but the exact distribution of triple tetrads, oktads, hexads, and dodekads in each of the eight pairs of apparently duplicate systems.

The investigation for one of these pairs of apparently duplicate systems, IIF and IIB, is given below in some detail.

The system IIF is arranged in a 15-by-7 array. Each element heads one column; below it are placed the seven duads of elements that occur with it in triads of the system. The two-column indices for the 105 pairs of columns are determined, and we find that the indices 2³; 2, 4; 3²; 6 belong, respectively, to 11, 42, 0, and 52 pairs of columns.

To exhibit more evidently the types of interlacings existing amongst the duads in the 105 pairs of columns, we now arrange the two-column indices for the system IIF in the following 15-by-15 array of Table 3.

TABLE 3.

a 2 2 2 4 4 4 6 4 4 6 6 6 6 6 4 4 6 6 6 6 6 4 4 6 6 6 6 6 6 4 4 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		а	b	c	d	c	f	g	1	2	3	4	5	6	7	8
$ \begin{bmatrix} 5 & 6 & 6 & 4 & 6 & 4 & 6 & 6 & 6 & 6 & 4 & 6 & 4 & 6 & 4 & 6 & 4 & 6 & 4 & 4$	a b c d e f f g 1 2 3 4 5 5 6	2 2 2 4 6 6 6 6 6 6 6	2 1 4 4 6 4 6 4 6	2 2 1 4 1 4 6 6 6 6 6 4	4 2 4 6 6 6	4 4 2 6 6 6 6 4	4 4 2 4 6 6 6 6 6	4 4 4 2 4 6 4 6 4 6	6 6 6 6 4 4 4 4 4 4	4 6 6 6 4 4 2 6	6 6 6 6 2 4 4	6 6 4 4 2 4	6 4 6 4 6 4 6	6 6 6 6 6 4 6 4 4	6 4 6 6 6 6 4 4	6 6 4 6 4 6 4 6 4 6 4 6 4 6

In this table the two-column indices 2^3 ; 2, 4; 3^2 ; 6 are replaced, for the sake of brevity, by the single figures 2, 4, 3, 6, respectively. The figure placed at the intersection of any row with any column shows the index for the pair of columns formed from the two elements which lead the row and head the column, respectively. For example, in Table 3, the indices for the pairs of columns bc, bd, b1 are 2^3 ; 2, 4; 6, respectively.

In the 15 by 7 rectangular array for the system IIF, the column headed by the element a may be united with each of the columns headed by one of the remaining 14 elements to form 14 pairs of columns. The figures tabulated under the element a in table 3 shows that of these 14 pairs of columns there are 4 pairs with the index 2^3 ; 2 pairs with the index 2, 4; and 8 pairs with the index 6. Interpreted in terms of interlacings these two-column indices place in evidence the fact that the duads of column a are united with the duads in the remaining 14 columns by 4 triple tetrads, 2 oktads, and 8 dodekads. Similar results for each of the 15 elements are briefly summed up in the following Table 4, which we shall designate as the table of interlacings for the system IIF.

Table 4.—Interlacings for system IIF.

		a	ь	с	d	e	f	g	1	2	3	4	5	6	7	8
1	Index 23	4	2	2	2	1	2	1	1	1	1	1	1	1	1	1
	Index 2, 4	2	6	6	8	7	4	7	5	6	5	6	6	5	5	6
	Index 6	8	6	6	4	6	8	6	8	7	8	7	7	8	8	7

Since only those elements whose duads are similarly interlaced through a system may belong to the same set of transitive elements, Table 4 shows clearly that the possible sets of transitive elements for the system HF are a, bc, d, cg, f, 1367, 2458. A fact in exact accordance with the results obtained previously in the examination of this system by the method of trains and also by the method of the three-column indices.

The interlacings for the system IIB are exhibited in Table 5.

Table 5.—Interlacings for the system IIB.

	a	ь	c	d	c	f	g	1	2	3	4	5	6	7	8
Index 23	4	2	2	2	1	2	1	1	1	1	1	1	1	1	1
Index 2, 4	2	6	6	6	9	6	5	5	6	5	6	6	5	5	6
Index 6	8	6	6	6	4	6	8	8	7	8	7	7	8	8	7

A comparison of Table 4 with Table 5 demonstrates conclusively the noncongruency of the systems IIF and IIB. Table 4 shows that there is a column d in the system IIF the interlacings of whose duads with the duads of other columns in IIF are represented by the numbers 2, 8, and 4, corresponding, respectively, to two triple tetrads, eight oktads, and four dodekads. Table 5 shows no column in IIB with similar interlacings, therefore these two systems IIB and IIF are certainly incongruent. The reader will observe other distinctive columns in these two tables.

The tables of interlacings for the remaining seven apparently duplicate pairs of systems are adjoined below and establish the noncongruency of the two systems in each pair.

Table of interlacings for the system IIC.

	f#	ь	ď	đ	e	ſ	g	1	2	3	4	5	6	7	8
Index 2 ³ Index 2, 4 Index 6	4 6	2 6	2 8 4	4 8 2	1 7 6	2 8 4	- 1 9	1 6 7	1 8	1 6	1 8	1 8 5	2 6	2 6 6	1 8 5

Table of interlacings for the system IID.

	a	b	c	đ	c	ſ	g	1	2	3	-1	5	6	7	8
Index 2 ³	4 6	2 6 6	2 8 4	2 6 6	3 9 2	2 8 4	1 9 4	1 6 7	1 8 5	1 6 7	1 8 5	2 5 7	1 9 4	1 9 4	2 5 7

The system HD contains no column similar to the column d of HC, therefore HC and HD are noncongruent.

Table of interlacings for the system IIE.

	а	ь	c	d	е	f	9	1	2	3	4	5	6	7	8
Index 2 ⁸ Index 2, 4 Index 6	6 0	10 0	6 8 0	4 8 2	3 9 2	4 8 2	3 9 2	2 8 4	4 6 4	2 8 4	4 6 4	3 9 2	4 8 2	4 8 2	3 9 2

Table of interlacings for the system IVA.

	а	b	c	d	e	f	g	1	2	3	4	5	6	7	8
Index 2 ⁸ Index 2, 4 Index 6	6 8 0	6 8 0	12 0	4 6 4	3 11 0	3 11 0	3 11 0	3 11 0							

The system IVA contains no column similar to the column a of IIE, hence IIE and IVA are noncongruent.

Table of interlacings for the system IVB.

	a	b	c	d	e	f	g	1	2	3	4	5	6	7	8
Index 2 ³ lndex 2, 4Index 6	0	2 8 4	2 4 8	4 6 4	4 2 8	4 6 4	4 2 8	4 5 5	4 5 5	4 5 5	4 5 5	3 6 5	3 6 5	3 6 5	3 6 5

Table of interlacings for the system VD.

	а	ь	с	đ	е	f	g	1	2	3	4	5	6	7	8
Index 2 ³	2	2	2	3	7	3	3	3	3	4	4	3	4	4	3
Index 2, 4	8	8	8	7	3	7	7	6	6	6	6	6	6	6	6
Index 6	4	4	4	4	4	4	4	5	5	4	4	5	4	4	5

No column in VD is similar to the column a of IVB, hence IVB and VD are noncongruent.

Table of interlacings for the system VA.

	a	ь	с	đ	e	f	g	1	2	3	4	5	6	7	8
Index 23 Index 2, 4 Index 6	12	12 0	12 0	3 3 8											

Table of interlacings for the system VC.

	a	ь	C	d	e	f	g	1	2	3	4	5	6	7	8
Index 2 ³	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3
Index 2, 4	1	8	8	11	11	11	11	5	5	5	5	5	5	5	5
Index 6	8	1	4	0	0	0	0	6	6	6	6	6	6	6	6

No column of VA agrees with any column in VC, therefore VA and VC are noncongruent.

Table of interlacings for the system V481.

	a	ь	c	d	ϵ	f	g	1	2	3	4	5	6	7	,
Index 2, 4	3	0	3	2	2	2	2	2	2	4	4	4	4	4	4
Index 3 ²	0	1	1	1	I	1	2	2	2	1	1	1	0	0	0
Index 6	11	13	10	11	1r	11	10	10	10	9	9	9	10	10	10

Table of interlacings for the system $V4\beta2$.

	a	b	c	d	ϵ	f	g	1	2	3	-1	5	6)	7	8
Index 2, 4 Index 3 ² Index 6	0 7 7	3 0 11	0 4 10	$\frac{2}{0}$	$\begin{array}{c}2\\0\\12\end{array}$	2 0 12	2 1 11	2 1 11	2 1 11	5 1 8	5 1 8	5 1 8	4 1 9	4 1 9	4 1 9

The two systems V4 δ 1 and V4 β 2 show dissimilar columns a, and therefore are noncongruent.

Table of interlacings for the system 18.

	a	b	c	d	ϵ	f	g	1	2	3	4	5	6	7	8
Index 2, 4	0	3	3	4	3	2	0	0	2	2	2	2	2	3	2
Index 3 ²	1	3	3	4	1	1	3	2	2	3	1	3	2	1	2
Index 6	13	8	8	6	10	11	11	12	10	9	11	9	10	10	10

Table of interlacings for the system 29.

	a	ь	с	đ	e	f	g	1	2	3	-1	5	6	7	8
Index 2, 4	1	1	2	3	2	2	2	1	1	2	5	3	0	3	1
Index 3 ²		1	1	2	4	2	0	3	3	4	3	3	3	1	1
Index 6		12	·11	9	8	10	12	10	10	8	6	8	11	10	12

The tables of interlacings for the systems 18 and 29 show many dissimilar columns, therefore these systems are noncongruent.

Table of interlacings for the system 32.

	а	b	c	d	e	f	g	1	2	3	4	5	6	7	s
Index 2 ³ Index 2, 4 Index 3 ²	0 3	0 4	0 5	0 3	1 3	0 5	0 5	0 2	0 3	0 3	0 4	0 3	0 0	1 2	0 3
Index 6	9	9	ŝ	9	7	7	9	11	9	7	8	10	ıĭ	11	11

Table of interlacings for the system 35 [Cole].

	а	ь	c	đ	ϵ	f	g	1	2	3	4	5	6	7	8
Index 2 ³	1	0 3 4 7	0 3 2 9	0 4 1 9	0 4 1 9	0 3 1 10	0 1 1 12	1 3 0 10	1 2 3 8	0 2 2 2 10	0 3 5 6	0 4 0 10	0 2 2 10	0 4 1 9	0 5 1 8

The column e of 32 has no duplicate in 35; hence the two systems are noncongruent.

We have derived, then, in Part 5 a new method of comparison for triad systems by means of the two-column indices and the table of interlacings for the system.

This method of comparison, since it naturally yields at least a partial, in some cases a complete, separation into sets of transitive elements for the system, will also facilitate the determination of the group belonging to the system.

CONCLUSION

Looking toward the census of triad systems in more than 15 elements, we have in the foregoing memoir four modes of classification which would be applicable to the construction and comparison of systems. Of these we venture to express the belief that the method of indices will be found most convenient for comparisons, while for construction there is no doubt that a group, where one can be prescribed, is the most direct auxiliary. Any exhaustive census, certainly for 31 or more elements, is out of the question in finite time; but systems admitting, for example, certain cyclic groups are not numerous nor difficult of construction, the method of indices showing very quickly their noncongruency. In the present state of the theory the most desirable forward step would be a demonstration that some one of these methods is (or is not) a sufficient means of proving congruency for triad systems of any number of elements above 15.

			344	
		N		
	Δ·			

MEMOIRS

OF THE

NATIONAL ACADEMY OF SCIENCES

Volume XIV

THIRD MEMOIR

WASHINGTON GOVERNMENT PRINTING OFFICE 1922

NATIONAL ACADEMY OF SCIENCES.

Volume XIV. THIRD MEMOIR.

TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON.

PART II.

ON v. ZEIPEL'S THEORY OF THE PERTURBATIONS OF THE MINOR PLANETS OF THE HECUBA GROUP,

 \mathbf{BY}

ARMIN O. LEUSCHNER, ANNA ESTELLE GLANCY, AND SOPHIA H. LEVY.

CONTENTS.

Preface	•••••••••••••••••••••••••••••••••••••••
	ntroduction
	nlæ and tables for the <i>Hecuba</i> group, according to the theory of Bohlin-y. Zeipel, and an example of their
	,
I	Determination of constant elements and of perturbations of the mean anomaly
ŀ	Perturbations of the radius vector
1	Perturbations of the third coordinate
(Theck computation
('omputation of the perturbations for the time t
Č	Omparison of the revised with v. Zeipel's original tables
7	Table A
']	Table B
7	Pable C
7	Table D.
7	Table E_1
7	Fable E_2 .
7	Table F
	Fable G
I. Table	s for the determination of the perturbations of the Hecuba group of minor planets
	Development of the differential equations for W and for the third coordinate
I	utegration of the differential equation for W
	Comparison of tables
I	Perturbations of the mean anomaly
	Comparison of tables.
	Perturbations of the radius vector
I	Perturbations of the third coordinate
	Comparison of tables.
(Constants of integration in not and v
	Comparison of tables
	'Angenäherte Jupiter-Störungen für die Hecuba-Gruppe," H. v. Zeipel
Erata in	Sur la Développement des Perturbations Planétaires '' & 1-7 and Tables I-XX Karl Boblin

		9		
0.0				
	-Şih			

PREFACE.

Part I of "Tables of Minor Planets Discovered by James C. Watson," containing tables for 12 of the 22 Watson planets, was published in 1910 in the Memoirs of the National Academy of Sciences, Volume X, Seventh Memoir, with a preface by Simon Newcomb, in which he gives an account of the early history of the investigations of the perturbations of the Watson planets under the auspices of the Board of Trustees of the Watson Fund.

In the introduction to Part I ¹ reference is made to the Watson planets of the *Hecuba* group, for which it was found necessary to construct special tables on the plan of Boldin's tables for the group 1/3. A comparison of these tables with similar tables by v. Zeipel remained to be made before applying either of them to the development of perturbations of planets of the *Hecuba* group. This comparison was completed in 1913 with the assistance of Miss A. Estelle Glancy and Miss Sophia H. Levy, with the results set forth in the following pages.

Publication of these results was delayed, partly because it seemed desirable to verify the tables by application to a number of planets and partly on account of interruptions caused in recent years by war conditions. Miss Glancy, in particular, had undertaken to test the accuracy of our tables, which we had applied to v. Zeipel's example, (10) Hygiea, by further investigations on this example after joining the Observatorio Nacional at Córdoba in 1913. This test has now been completed with highly satisfactory results. The tables have also been successfully applied to the Watson planets of the Hecuba group, including (175) Andromache, which, on account of unusually large perturbations and other unfavorable conditions, forms so far the most striking example of the applicability of the Bohlin-v. Zeipel method and of our revised tables for the Hecuba group.

The plan of work included conferences, in which Miss Glaney and Miss Levy took a leading part, for the discussion of the Bohlin-v. Zeipel method, involving verification of all mathematical developments and formulation of plans for the construction of tables, and, after the appearance of v. Zeipel's tables, for the comparison of v. Zeipel's original, and our revised tables. The numerical work was carried out by Miss Glancy and Miss Levy, who have also contributed very largely to the theoretical part of the work, and have prepared the principal details of the manuscript.

To avoid confusion v. Zeipel's notation and method of procedure have been followed throughout in completing our tables for the *Hecuba* group, which were well under way when v. Zeipel's memoir appeared.

To aid computers in the use of the formulæ and of the revised tables, Miss Glancy has prepared detailed directions illustrated by an application to (10) *Hygiea*, the example first chosen by v. Zeipel. These are contained in the first section of the present memoir.

Miss Glancy's contributions to this investigation and her work on (10) Hygica were accepted by the University of California in partial fulfillment of the requirements for the degree of doctor of philosophy.

Miss Levy's contributions and her work on (175) Andromache were similarly accepted for the same degree.

It seems highly desirable to make the tables for the development of the perturbations of minor planets of the *Hecuba* group at once available to astronomers. They are therefore published herewith, in advance of the perturbations and tables of the remaining Watson planets, as Part II of "Tables of Minor Planets Discovered by James C. Watson." One or two parts, which are to follow, will contain all the numerical results for the perturbations and tables of Watson planets not published in Part I (1910).

This memoir is presented in two sections. The first section, entitled "Formulæ and Tables for the *Hecuba* Group, according to the Theory of Bohlin-v. Zeipel, and an Example of their

Use," contains a collection of the formulæ to be used for any planet of the *Hecuba* group, the general tables of the perturbations which must be employed, and a more complete application of the formulæ and the revised tables to the planet (10) *Hygica*, than v. Zeipel gives. The second and more extensive section, entitled "Tables for the Determination of the Perturbations of the *Hecuba* Group of Minor Planets," concerns the construction of the tables and their discussion with reference to the corresponding tables by v. Zeipel. It forms the preliminary part of the intestigation but is presented last as supplementary to the final results given in the first section.

In the second section the tabular values which differ from the corresponding numbers in v. Zeipel's tables are placed in brackets. The general Tables XXXV, XXXVIII, XLIII, LIV, LVI, LVII, LVII, LVII, of the second section, which, in order, are required to compute the perturbations of any planet of the Hecuba group, are repeated without brackets at the end of the first section as Tables A, B, C, D, E₁, E₂, F, G, so that the first section is complete in itself for use in developing the perturbations of any planet of this group without the necessity of reference to the second section.

A general account of the investigations of the perturbations of the Watson planets was presented to the Academy on April 16, 1916, and is published in the "Proceedings of the National Academy of Sciences," Volume 4, No. 12, March, 1919.

ARMIN O LEUSCHNER.

Washington, D. C., 1918, December.

TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON.

By Armin O. Leuschner, Anna Estelle Glancy, and Sophia II, Levy.

INTRODUCTION.

Those planets whose mean daily motions are approximately 600" are classed with the planet *Hecuba*, or, in the group for which

$$\mu = \frac{n'}{n} = \frac{1}{2}(1 - w)$$

where n' and n are the mean daily motions of Jupiter and the planet, respectively, and w is a small quantity.

Among the minor planets discovered by James C. Watson there are several of this type. In the course of the general program of determining the perturbations of the Watson asteroids, there arose the necessity of computing special tables for the *Hecuba* group in preparation for the application of Bohlin's method to individual planets.

General tables for the group ½ were in the process of construction, under the direction of Professor Leusehner,¹ according to the method of Bohlin,² when tables for this group were published by H. v. Zeipel.³ The computers, Dr. Sidney D. Townley and Miss Adelaide M. Hobe, made a comparison of their tables with those of v. Zeipel and found certain discrepancies Because of this fact the completion of the tables for the *Hecuba* group was deferred. These discrepancies have been explained, as a result of a careful investigation, and the tables have been completed by Miss A. Estelle Glancy and Miss Sophia H. Levy, under the direction of Professor Leusehner.

In the completion of the tables, v. Zeipel's method and order of procedure have generally been followed. There are numerous discrepancies between our tables and v. Zeipel's. As far as possible, with the aid of the original manuscript, kindly forwarded by the author, we have traced the source of these disagreements. In some of the more complicated functions it was not possible to do so, and these discrepancies remain unexplained. Our own results, however, are substantiated by the employment of independent developments. Further, where we found terms omitted which were of the same order as those which were included, we frequently extended the tables. In this connection, it is pertinent to remark that it is very difficult to set up a consistent criterion for the omission of terms. With the exception of a few scattered negligible terms, our tables are published in full. They contain terms which may ordinarily be omitted, yet their numerical magnitudes depend upon the elements of the particular planet under consideration, and their use is left to the computer's judgment. Many of them are incomplete, i. e., the tabulated coefficients do not necessarily include all the terms of a given degree in the eccentricities or mutual inclination or of the small quantity w, which depends upon the difference between the planet's and twice Jupiter's mean motion. In other words, the coefficients may not contain all the terms of a given degree having the factors

$$w^s$$
, η^p , η'^q , j^{2t}

which are defined on page 12. But, assuming certain numerical limits for the fundamental auxiliary functions, the coefficients are of this magnitude. The value of the additional terms will be shown best in an application of our tables to the same planet for which v. Zeipel computed the perturbations.

Unless stated otherwise, the references to Bohlin refer to the French edition and are designated by B. References to v. Zeipel are designated by Z.

¹ Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 200.

Formein und Tafeln zur gruppenweisen Berechnung der allgemeinen Störungen benachbarter Planeten (Upsala, 1896). Sur le Développement des Perturbations Planétaires (Stockholm, 1902).

Angenäherte Jupiterstörungen für die Hecuba-Gruppe (St. Pétersbourg, 1902).

I. FORMULAE AND TABLES FOR THE HECUBA GROUP, ACCORDING TO THE THEORY OF BOHLIN-v. ZEIPEL, AND AN EXAMPLE OF THEIR USE.

DETERMINATION OF CONSTANT ELEMENTS AND OF PERTURBATIONS OF THE MEAN ANOMALY.

The planet (10) Hygiea was selected by v. Zeipel as an example of the use of his tables for the group $\frac{1}{2}$. We have used it as a preliminary example for the application of our own tables, so as to provide further comparison of our tables with those of v. Zeipel.

This example is presented with the direct purpose of meeting the needs of the computer. For this reason, no attempt is made to explain the significance of the functions involved, yet their use will be less mechanical, if, in a general way, some of the essential principles underlying their development are understood. The theory of v. Zeipel is taken up in the second section of this memoir.

The method proposed by v. Zeipel is a practical adaptation of Bohlin's method of computing the perturbations by Jupiter upon planets whose mean motions bear nearly commensurable ratios to that of Jupiter. In particular, the formulae are derived for the planets of the Hecuba group. Tracing the history of this method one step further back, Bohlin's method is a modification of the theory of Hansen for the indeterminate case of nearly commensurable mean motions. Or, concisely, in v. Zeipel's own words, "Die benutzte Methode kann einfach dadurch charakterisirt werden, dass die Differentialgleichungen von Hansen mittels des Integrationsverfahrens des Herrn K. Bohlin gelöst worden sind."

Certain principles of Hansen are fundamental to an understanding of some of the important equations. Briefly, the perturbations are reckoned in the plane of the orbit and perpendicular to it. In the plane of the orbit $n\delta z$ signifies the displacement in the planet's mean anomaly (δz) is the perturbation in the time); ν gives the disturbed radius vector through the relation

$$r = \bar{r}(1 + \nu)$$

and the displacement in the third coordinate is denoted by $\frac{u}{\cos i}$. With Hansen's choice of ideal coordinates, the fundamental analytical relations are:

$$\varepsilon - e \sin \varepsilon = nt + c + n\delta z
\bar{r} \cos f = a (\cos \varepsilon - e)
\bar{r} \sin f = a \sqrt{1 - e^2} \sin \varepsilon
r = \bar{r}(1 + \nu)$$
(1)

$$d\beta = \frac{u}{\cos i} a \sin 1''$$

$$\Delta x = d\beta \cos a$$

$$\Delta y = d\beta \cos b$$

$$\Delta z = d\beta \cos c$$
(2)

$$x = r \sin a \sin (A' + f) + \Delta x$$

$$y = r \sin b \sin (B' + f) + \Delta y$$

$$z = r \sin c \sin (C' + f) + \Delta z$$
(3)

where ε, f, \bar{r} are fictitiously disturbed coordinates, which, in connection with constant elements and the perturbations $n\delta z$, ν , and $\frac{u}{\cos i}$ give the true position of the body. A', B', C', $\sin a$, $\sin b$, $\sin c$ are the constants for the equator. The notation for the eccentric anomaly and the true anomaly is v. Zeipel's; in Hansen's notation they would be written $\bar{\epsilon}, \bar{f}$.

¹ Angenäherte Jupiterstörungen für die Hecuba-Gruppe, p. I.

When Jupiter's mean motion and that of the planet are nearly commensurable, the integration of Hansen's differential equations becomes impracticable through the presence of large integrating factors. The integrals are of the form:

$$\frac{1}{n^2 \left(i - \frac{i'n'}{n}\right)^2} \sin \left\{ (in - i'n')t \right\} - \infty < i < +\infty$$

$$0 < i' < +\infty$$

For the *Hecuba* group the mean motion is approximately twice the mean motion of *Jupiter*. Hence, for exact commensurability,

$$\mu = \frac{n'}{n} = \frac{1}{2}; \frac{1}{n^2 \left(i - \frac{i'n'}{n}\right)^2} = \infty; i' = 2, i = 1.$$

By introducing the exponential in place of the sine and cosine, the indeterminateness can be removed, for if in-i'n'=0, then $e^{\sqrt{-1}(in-i'n')t}=1$. This is one of Bohlin's modifications.

For any given planet the ratio is not exactly commensurable, and the developments are originally made for the case of exact commensurability. They are then expressed, for a given case, by Taylor's series in ascending powers of a small quantity w, which depends upon the difference between the real ratio and exact commensurability. In addition to positive powers of w there will occur negative powers. They are due to the following causes. An argument θ is introduced (see p. 13), from which the mean anomaly of Jupiter is eliminated through the introduction of w. It is a necessary consequence of the form of the partial differential equations in which $\frac{d\theta}{d\varepsilon}$ appears, that the integration of first-order terms shall contain w^{-1} and that higher order terms shall contain other negative powers. Hence the integrals are series in both positive and negative powers of w.

In distinction to the method of Hansen the elements appear explicitly in the arguments or as factors in the terms of the series.

An important feature of v. Zeipel's theory is his treatment of the constants of integration. Since the method is essentially Hansen's, the constants of integration must be determined consistently with that method. Given osculating elements, the constants of integration are determined by the condition that, at the date of osculation, (t=0), the perturbations and their velocities shall be equal to zero.

v. Zeipel adopts osculating elements as his initial elements. With these elements and the perturbations and their velocities at the date of osculation, he computes elements, designated by the subscript unity, in which the constants of integration are absorbed. They are analogous to Hansen's constant elements, i. e., the fundamental equations of Hansen are valid.

Our transformations of the elements differ from v. Zeipel's in two respects. First, the constants in $\frac{u}{\cos i}$, and in its velocity have not been introduced into the elements i, Ω , but are treated in the usual Hansen manner. Second, v. Zeipel introduces certain terms in the perturbations which have the same period as the planet (argument ε), into the elements to form mean elements. This has not been done.

The general tables, XXXV, XXXVIII, XLIII, LIV, LVI, LVII, LVII, LVII, which are required in computing the perturbations, are given at the conclusion of the formulae. The formulae for any planet of the group ½ are given completely, and they are supplemented by numerical values for the planet (10) Hygiea.

The references to v. Zeipel's paper are indicated briefly by Z, followed by the number of the page.

The osculating elements of the planet are taken from Z 139; the elements for Jupiter are taken from Astronomical Papers of the United States Nautical Almanac Office, Vol. VII, p. 23.

Mean equinox and ecliptic, 1850.0. Epoch, 1851, Sept. 16.96279 Gr. M. T.

The following notes in regard to these elements are of importance:

Jupiter's elements were first taken from Z 139. They were used only in the equations numbered (1). In these equations either set of elements may be used with sufficient accuracy. In fact, it is not necessary to know Jupiter's elements as accurately as those of the planet, for they appear only in the arguments of the perturbations. We have adopted Hill's values of the elements and Newcomb's value of the mass of Jupiter. The tables of the perturbations are based, however, on Bessel's value for m'. To correct the perturbations for the improved value, it is only necessary to multiply them by 1.0005, and this is done in the formulæ which follow.

The original epoch of Jupiter's elements was 1850.0 Gr. M. T. It was changed by the formula $c' = 148^{\circ} 1.97 + n't \tag{4}$

The elements of *Hygiea* are very good osculating elements, computed by Zech. They include perturbations by *Jupiter*, *Saturn*, and *Mars* and are based on five oppositions. The reference for these elements is doubtful, for in Astronomische Nachrichten 39, 347, the elements given by Zech are not identically the same, although the differences are very small. The values given by v. Zeipel were probably taken from Zech's manuscript, to which he had access. They may, therefore, contain some later corrections.

The auxiliary quantities Ψ , Φ , J are first computed by the formulae:

$$\sin \frac{1}{2} J \sin \frac{1}{2} (\Psi + \Phi) = \sin \frac{1}{2} (\Omega_0 - \Omega') \sin \frac{1}{2} (i_0 + i')$$

$$\sin \frac{1}{2} J \cos \frac{1}{2} (\Psi + \Phi) = \cos \frac{1}{2} (\Omega_0 - \Omega') \sin \frac{1}{2} (i_0 - i')$$

$$\cos \frac{1}{2} J \sin \frac{1}{2} (\Psi - \Phi) = \sin \frac{1}{2} (\Omega_0 - \Omega') \cos \frac{1}{2} (i_0 + i')$$

$$\cos \frac{1}{2} J \cos \frac{1}{2} (\Psi - \Phi) = \cos \frac{1}{2} (\Omega_0 - \Omega') \cos \frac{1}{2} (i_0 - i')$$

$$\cosh \frac{1}{2} \sin \Psi = \frac{\sin \Psi}{\sin i_0} = \frac{\sin (\Omega_0 - \Omega')}{\sin J}$$
(5)

Then follow

$$\Pi_{0} = \pi_{0} - \Omega_{0} - \Phi; \ \eta_{0} = \frac{e_{0}}{2}; \qquad \Pi' = \pi' - \Omega' - \Psi; \ \eta' = \frac{e'}{2} \cdot
j^{2} = \sin^{2} \frac{J}{2} \cos^{2} \frac{1}{2} \varphi_{0} \cos^{2} \frac{1}{2} \varphi'; \ \iota = \sin J \cos^{2} \frac{1}{2} \varphi
J_{0} = \Pi_{0} - \Pi'; \ \varSigma_{0} = \Pi_{0} + \Pi'
w_{0} = \frac{n_{0} - 2n'}{n_{0}}$$
(6)

and the arguments for the date of osculation:

$$\theta_0 = \frac{1}{2}c_0 - g' \text{ where } g' = c' + [n'\delta z']; \ [n'\delta z'] = (9.5215) \text{ sin } 115?326, \tag{7}$$

where the coefficient in parentheses is logarithmic in degrees.

$$\varepsilon_0 - e_0 \sin \varepsilon_0 = c_0$$
; $\Gamma = \frac{1}{2} \varepsilon_0 + \theta_0 + J_0$ (8)

(10) Hygica.

 $\epsilon_0 = 131.3236$; $\Gamma = 145.0746$

With these initial quantities all the arguments and factors in Table LVI or F are computed. The required function, $w-w_0$, is computed by successive approximations, the first approximation being

$$w = w_0$$

In the first trial the smallest terms and the last digit may be omitted; the second trial should be accurate; a third trial, if necessary, will require only corrections to the largest terms.

The mean motion n is then given by

$$n = \frac{2n'}{1 - w} \tag{9}$$

(10) Hygiea.

The three successive trials for w give

$$w-w_0$$

+0.00388 $w=+0.061208$
+0.003541 $\log w=8.78681$
+0.003568 $n=637.2633$

Designating by C and S series to be computed next from Table LVII or G, it is evident by inspection of Table LVII that

from which
$$C \cos \psi + S \sin \psi = \Sigma c \cos (\psi + X) = \Sigma c \cos X \cos \psi - \Sigma c \sin X \sin \psi$$

$$C = \Sigma c \cos X; S = -\Sigma c \sin X$$
(10)

¹ Three numerical values for the argument θ, are given. According to the theory (see footnote, Part 2, p. 147), (a) is rigid; (b) is rigid within the accuracy of the developments by v. Zeipel; (c) is an approximation which v. Zeipel used and which is used here. The value (b) is preferable. In equation (b), [n'δz'] = +0°.3114 and is the complete perturbation of Jupiter by Saturn taken from Hill; in all other parts of the computation n'4z'] is only the long period term used by v. Zeipel.

To make the order of computation evident, the successive steps for a group of terms for

Hygica are given.

The second column contains the sum of the numerical coefficients multiplied by their respective factors $w^s \eta^p \eta'^q j^{2t}$. The columns -S and +C contain the required terms from this group in the table. They can be computed at the same time if a traverse table is used.

From S and C the elements π and φ can be computed by the formulæ:

$$e \sin (\pi - \pi_0) = S \cos \varphi_0$$

$$e \cos (\pi - \pi_0) = e_0 + C \cos^2 \varphi_0$$

$$e = \sin \varphi$$
(11)

In place of η_0 , \mathcal{L}_0 , \mathcal{L}_0 the following are used hereafter:

$$\eta = \frac{e}{2} \qquad \qquad \mathcal{L} = \mathcal{L}_0 + (\pi - \pi_0) \qquad \qquad \mathcal{L} = \mathcal{L}_0 + (\pi - \pi_0) \tag{12}$$

(10) Hygiea.

$$\begin{array}{lll} S = +1215\rlap/0 & \pi - \pi_0 = +3\rlap.0203 & \log \eta = 8.74517 \\ C = +2191.1 & \tau = 230.7971 & \log \sin \varphi = 9.04620 \\ \Delta = 218\rlap.02882 & \Sigma = 31\rlap.029492 & \varphi = 6\rlap.03858 \end{array}$$

There remains one more element to determine, namely, c, but the computation must be deferred until we know the perturbation $n\delta z$ at t=0. (See equation (1), page 10 or page 16.)

The fictitiously disturbed eccentric anomaly at the time t=0 denoted by ε_t , is determined through the relations:

$$\varepsilon_0 - e_0 \sin \varepsilon_0 = c_0 \tag{13}$$

where ε_0 is calculated with the aid of Astrand's table ²;

$$tg_{\frac{1}{2}}(v_0 - \pi_0) = \sqrt{\frac{1+e_0}{1-e_0}} tg_{\frac{1}{2}}\varepsilon_0; \ tg_{\frac{1}{2}}\varepsilon_1 = \sqrt{\frac{1-e}{1+e}} tg_{\frac{1}{2}}(v_0 - \pi)$$
 (14)

(10) Hygiea.

$$\epsilon_0 = 131^{\circ}3236$$
 $v_0 = 3^{\circ}2968$ $\epsilon_1 = 127^{\circ}6064$ $\epsilon_1 - e \sin \epsilon_1 = 122^{\circ}5578$

The perturbation $n\partial z$ is computed as follows:

The function $1 + \theta(\vartheta)$ is computed from Table XXXVIII or B. The coefficients are multiplied by their respective factors, the trigonometric functions of the arguments are expanded, and the coefficients of $\frac{\cos}{\sin} j\vartheta$ are collected, (j is the numerical coefficient of ϑ).

¹ Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 218.

 $^{^\}circ$ Hälfstafeln zur leichten und genauen Auflösung des Kepler'schen Problems (Leipzig, 1890).

$$\begin{aligned} 1 + \theta(\vartheta) &= (1 - 0.008064) \{ 1 - 0.055937 \sin 2\vartheta + 0.017170 \cos 2\vartheta \\ &\quad + 0.016057 \sin 4\vartheta + 0.012244 \cos 4\vartheta \\ &\quad + 0.000905 \sin 6\vartheta - 0.005081 \cos 6\vartheta + \dots \\ &\quad + (\vartheta - \vartheta_0) (+ 0.000007 - 0.000490 \sin 2\vartheta - 0.001266 \cos 2\vartheta \\ &\quad - 0.000361 \sin 4\vartheta + 0.000409 \cos 4\vartheta + \dots) \} \end{aligned}$$

where the coefficients are in radians, and ϑ_0 is the value of ϑ at t=0.

Let $1 + \sigma$ be the nontrigonometrical term in $1 + \Phi(\vartheta)$, take it out as a common factor, and denote the numerical coefficients by A_2 , B_2 , A_4 , B_4 , A_6 , B_6 , b_0 , a_2 , b_2 , a_4 , b_4 , respectively.

With these coefficients the following are computed:

$$K = \frac{1}{1 - w} \frac{1}{\sin 1''}$$

$$S_{2} = K \left\{ A_{2} - \frac{5}{4} (A_{2}A_{4} + B_{2}B_{4}) + \frac{1}{4} A_{2} (A_{2}^{2} + B_{2}^{2}) + \frac{1}{2} a_{2} \right\} \qquad S_{2}' = K \frac{w}{2} b_{2}$$

$$C_{2} = K \left\{ -B_{2} + \frac{5}{4} (A_{2}B_{4} - B_{2}A_{4}) - \frac{1}{4} B_{2} (A_{2}^{2} + B_{2}^{2}) + \frac{1}{2} b_{2} \right\} \qquad C_{2}' = -K \frac{w}{2} a_{2}$$

$$S_{4} = K \left\{ \frac{1}{2} A_{4} + \frac{1}{4} (A_{2}^{2} - B_{2}^{2}) \right\} \qquad S_{4}' = K \frac{w}{4} (b_{4} + A_{2}b_{2} - B_{2}a_{2}) \qquad (15)$$

$$C_{4} = K \left\{ -\frac{1}{2} B_{4} - \frac{1}{2} A_{2} B_{2} \right\} \qquad C_{4}' = -K \frac{w}{4} (a_{4} + A_{2}a_{2} + B_{2}b_{2})$$

$$S_{6} = K \left\{ \frac{1}{3} A_{6} + \frac{5}{12} (A_{2}A_{4} - B_{2}B_{4}) - \frac{1}{12} A_{2} (3B_{2}^{2} - A_{2}^{2}) \right\} \qquad C_{0}'' = K \frac{w^{2}}{4} (b_{0} - A_{2}b_{2} - B_{2}a_{2})$$

$$C_{6} = K \left\{ -\frac{1}{3} B_{6} - \frac{5}{12} (A_{2}B_{4} + B_{2}A_{4}) - \frac{1}{12} B_{2} (3A_{2}^{2} - B_{2}^{2}) \right\}$$

There are check formulae for these quantities in Z 134, equation (153), (161'). In equation (153) there is a misprint; in equation (161') there are two misprints. The errors and their corrections are noted in the list of errata which accompanies the second section of this paper.

A part of the long period terms in $n\delta z$, denoted by $[n\delta z]_i$, is expressed by

$$[n\delta z]_1 = S_2 \sin 2\zeta + C_2 \cos 2\zeta + S_4 \sin 4\zeta + C_4 \cos 4\zeta + S_6 \sin 6\zeta + C_6 \cos 6\zeta + \dots + \frac{2}{w}(\zeta - \zeta_0)(S_2' \sin 2\zeta + C_2' \cos 2\zeta + S_4' \sin 4\zeta + C_4' \cos 4\zeta + \dots) + (\frac{2}{w})^2(\zeta - \zeta_0)^2 C_0'' + \dots$$
(16)

(10) Hygiea.

```
\begin{array}{c} 1+\vartheta(\vartheta)=(1-0.008064)\;\{1-0.056384\;\sin\;2\vartheta+0.017308\;\cos\;2\vartheta+0.016186\;\sin\;4\vartheta\\ +0.012342\;\cos\;4\vartheta+0.000912\;\sin\;6\vartheta-0.005122\;\cos\;6\vartheta+\ldots\\ +(\vartheta-\vartheta_0)(+0.000007-0.000494\;\sin\;2\vartheta-0.001276\;\cos\;2\vartheta-0.000364\;\sin\;4\vartheta\\ +0.000412\;\cos\;4\vartheta+\ldots\ldots)+\ldots.\}\\ &b_0=+0.000007\\ A_2=+0.017308&a_2=-0.000494\\ B_2=-0.056384&b_2=-0.001276\\ A_4=+0.012342&a_4=-0.000364\\ B_4=+0.016186&b_4=+0.000412\\ A_6=-0.005122\\ B_6=+0.000912 \end{array}
```

Unit of A_2 , etc., is one radian

$$[n\partial z]_1 = (3.59592) \sin 2\zeta \\ + (4.09785) \cos 2\zeta \\ + (3.0783) \sin 4\zeta \\ + (3.2230_n) \cos 4\zeta \\ + (2.4390_n) \sin 6\zeta \\ + (1.494_n) \cos 6\zeta \\ + \dots \dots$$

in which the coefficients are logarithmic in seconds of arc. For this planet it is not necessary to include C_0'' .

In equation (16) let

$$S_n = k \cos K$$

$$S'_n = -k' \sin K'$$

$$C'_n = k \sin K$$

$$C'_n = k' \cos K'$$
(17)

Then

$$[n\partial z]_1 = \Sigma k \sin (n\zeta + K) + \frac{2}{w}(\zeta - \zeta_0)\Sigma k' \cos (n\zeta + K') + \dots$$
 (18)

The argument ζ is given by the relation:

$$\zeta = \frac{1+\sigma}{1+\frac{1}{2}(A_2^2+B_2^2)} \left(\frac{w}{2}\varepsilon - \left[n'\partial z'\right]\right) + \frac{1-w}{2}c - c'$$
(19)

and ζ_0 is the value of ζ at t=0, in which, $[n'\partial z']$, the long period term between Jupiter and Saturn is:

$$[n'\partial z'] = (9.5215) \sin\{(9.58539) T + 115^{\circ}326\}$$
(20)

where the numerical coefficients are logarithmic in degrees, and T is measured from the date of osculation in Julian years.

The complete expression for the long period term in $n\partial z$ is:

$$[n\partial z] = [n\partial z]_1 + \frac{2}{1-w} \frac{\sigma - \frac{1}{2}(A_2^2 + B_2^2)}{1 + \frac{1}{2}(A_2^2 + B_2^2)} \left(\frac{w}{2}\varepsilon - [n'\partial z']\right)$$
(21)

It is important to remark that, in equations (19), (21), the eccentric anomaly is computed by the usual formula, $\varepsilon - e \sin \varepsilon = c + nt + n\delta z \tag{1}$

in which the multiples of 2π must be retained, for ε is used here as if it were the time. Since $n\partial z$ is unknown, the computation is by successive approximations.

(10) Hygiea.

$$[n\delta z]_1 = (4.11837) \sin (2\zeta + 72^{\circ}5246) + (3.3130) \sin (4\zeta + 305.627) + (2.442) \sin (6\zeta + 186.48) + \cdots + \frac{2}{w}(\zeta - \zeta_0)\{(0.963) \cos (2\zeta + 68.83) + (0.199) \cos (4\zeta + 309.75) + \cdots \} + \cdots$$

in which the coefficients are logarithmic in seconds of arc.

$$\log \frac{1+\sigma}{1+\frac{1}{2}(A_2{}^2+B_2{}^2)} = 9.99572; \log \left\{ \frac{2}{1-w} \frac{\sigma - \frac{1}{2}(A_2{}^2+B_2{}^2)}{1+\frac{1}{2}(A_2{}^2+B_2{}^2)} \right\} = 8.31918_{\rm K}$$

The argument ϑ in $(n\partial z - [n\partial z])$, the short period part of $n\partial z$, is given by

$$\vartheta = \frac{1 - w}{2} \left[n \partial z \right]_{\mathbf{i}} + \zeta \tag{22}$$

and the function itself is computed from Table XXXV or A.

The numerical coefficients in Table XXXV or Λ are multiplied by their respective factors $w^s \eta^p \eta'^q j^{2t}$

and the terms are then collected in the form

$$n\partial z - [n\partial z] = \mathcal{L}C_{\cos}^{\sin}\left(i\frac{1}{2}\varepsilon + j\vartheta + k\mathbf{J} - l\mathcal{L}\right)$$
 (23)

By expanding the trigonometric functions, the known part of the argument, namely,

$$kJ - l\Sigma$$

is incorporated in the coefficients, and the terms are collected in the form;

$$n\partial z - [n\partial z] = \Sigma a \sin \chi + \Sigma b \cos \chi + (\vartheta - \vartheta_0) \left(\Sigma a' \sin \chi + \Sigma b' \cos \chi \right) + (\vartheta - \vartheta_0)^2 (\Sigma a'' \sin \chi + \Sigma b'' \cos \chi) + \dots$$

$$(24)$$

where

$$\chi = i \frac{1}{2} \varepsilon + j\vartheta \tag{25}$$

Let

$$a = k \cos K$$

$$a' = -k' \sin K'$$

$$a'' = k'' \cos K''$$

$$b' = k' \cos K'$$

$$b'' = k'' \sin K''$$
(26)

Then

$$n\partial z - [n\partial z] = \Sigma k \sin (\chi + K) + (\vartheta - \vartheta_{\vartheta}) \Sigma k' \cos (\chi + K') + (\vartheta - \vartheta_{\vartheta})^2 \Sigma k'' \sin (\chi + K'') + \dots$$
(27)

The tabulation of $n\partial z - [n\partial z]$ for (10) Hygiea is given on page 27.

Finally, the complete perturbation in the mean anomaly is:

$$n\partial z = [n\partial z] + (n\partial z - [n\partial z]) \tag{28}$$

It is now possible to determine c by successive approximations from equations (20), (19), (18), (21), (22), (27), (28).

From equation (1), which holds for any time t,

$$c = \varepsilon_1 + e \sin \varepsilon_1 - n\partial z$$

$$t = o$$

$$\varepsilon = \varepsilon_1$$
(29)

As a first approximation

$$n\partial z = 0$$
 $c = \varepsilon_1 - e \sin \varepsilon_1$

Introducing this value of c in equation (19), a first approximation for $n\delta z$ is made. For t=0,

$$(\zeta - \zeta_0) = 0$$

$$(\vartheta - \vartheta_0) = 0$$

$$(30)$$

Substituting the value of $n\partial z$ in equation (29), and computing a new value of c, the process of solution by trials is repeated until a satisfactory agreement is reached.

(10) Hygiea.

Below is the last approximation for the constant c.

(See tabulation of $n\partial z \rightarrow [n\partial z]$ on pg. 27.)

		$\chi = i$	$\frac{i}{2}+j\vartheta$	$\chi + K$	$\log \sin \left(\chi + K\right)$	$k \sin (\chi + K)$
Approx. $u\partial z$ $\epsilon_1 - e \sin \epsilon_1$ Approx. c , equ. (1), p. 10 $\frac{1-v}{2}c$, p. 13	+0°6124 122, 5578 121, 9454 57, 240	$\begin{array}{c} \frac{1}{2}\varepsilon + \vartheta \\ \frac{1}{2}\varepsilon + 3\vartheta \\ \frac{1}{2}\varepsilon + 5\vartheta \end{array}$	285°683 9. 443 93. 203	323°619 291, 021 258, 21	9. 7732 _n 9. 9701 _n 9. 991 _n	- 282'' - 680 - 260
$\frac{1-w}{2}c-c'$, p. 12	217. 278	$\begin{array}{c} -\frac{1}{2}\varepsilon + \vartheta \\ -\frac{1}{2}\varepsilon + 3\vartheta \end{array}$	$\begin{array}{c c} 158.077 \\ 241.837 \end{array}$	183, 00 335, 37	$\frac{8.719_n}{9.620_n}$	$\begin{array}{cccc} - & 6 \\ - & 17 \end{array}$
$\frac{w}{2} \epsilon_{1}, \text{ p. } 13$ $[n'\partial z'], \text{ equ. } (20), \text{ p. } 16$ $(9.99572) \left(\frac{w}{2} \epsilon_{1} - [n'\partial z']\right)$	+3. 9053 +0. 3003 +3. 5697 -0. 0752	$ \begin{array}{c} \varepsilon \\ \varepsilon + 2\vartheta \\ \varepsilon + 4\vartheta \\ \varepsilon + 6\vartheta \\ \varepsilon + 8\vartheta \\ - \varepsilon + 2\vartheta \\ - \varepsilon + 4\vartheta \\ \frac{3}{2}\varepsilon + 3\vartheta \end{array} $	127, 606 211, 366 295, 126 18, 886 102, 646 316, 154 39, 914 137, 049	135, 14 288, 414 256, 179 223, 38 186, 8 14, 11 129, 91 74, 51	9. 848 9. 9772 _n 9. 9872 _n 9. 837 _n 9. 073 _n 9. 387 9. 885 9. 984	$ \begin{vmatrix} + 25'' \\ -3403 \\ -723 \\ -168 \\ -5 \end{vmatrix} $ $ \begin{vmatrix} + 23 \\ + 3 \\ + 121 \\ + 44 \\ + 1 \end{vmatrix} $
(8.3192 _n) $\left(\frac{w}{2} \epsilon_1 - [n'\delta z']\right)$ ξ , equ. (19), p. 16 $\frac{2\zeta}{4\zeta}$ $\frac{4\zeta}{6\zeta}$ $\frac{2\zeta}{2\zeta} + 72°525$, p. 16	220, 848 81, 696 163, 392 245, 088	$\begin{array}{c} \frac{3}{2}\varepsilon + 3\vartheta \\ \frac{3}{2}\varepsilon + 5\vartheta \\ \frac{3}{2}\varepsilon + 7\vartheta \\ 2\varepsilon + 2\vartheta \\ 2\varepsilon + 4\vartheta \\ 2\varepsilon + 6\vartheta \\ \frac{5}{2}\varepsilon + 5\vartheta \\ \frac{5}{2}\varepsilon + 7\vartheta \end{array}$	220, 809 304, 569 338, 972 62, 732 146, 492 348, 415 72, 175	39, 53 3, 25 236, 180 209, 15 183, 0 2, 4 327, 9	9. 804 8. 754 9. 9195 _n 9. 688 _n 8. 72 _n 8. 62 9. 72 _n	- 86 - 19 - 1 0 - 4
42+305.627 62+186.48	109. 019 71. 57 9. 6384 9. 9756					- 0.0752
log sin	$\begin{array}{c c} 9.9771 \\ + 5712'' \\ + 1944 \\ + 262 \end{array}$				$ \begin{array}{c} [n\partial z]_1 \\ n\partial z, \text{ equ. (21)} \\ c = c_1 \\ (6.8050_n)c_1 \end{array} $	121. 9439
$[n\partial z]_{l}$ (9. 67154) $[n\partial z]_{l}$ ϑ , equ. (22), p. 16	$ \begin{cases} +7918'' \\ +291994 \\ +1.032 \end{cases} $ 2219880				$(6.8050_n)c_1 \\ c_2, \mathbf{p}.19$ $\frac{1-w}{2}c_1 \\ \frac{1-w}{2}c_1 \\ \frac{1-w}{2}c_1-c'$	121. 8661 +57. 240
2ϑ 3ϑ 4ϑ	83. 760 305. 640 167. 520				(9. 6715)[n∂z] ₁ ϑ ₀ , equ. (22)	$+\ \frac{1.032}{221.880}$
5θ 6θ 7θ 8θ ½ε, p. 14 ε ½ε 2ε ½ε	29, 400 251, 280 113, 160 335, 040 63, 803 127, 606 191, 409 255, 212 319, 015					

Collecting the elements, and adopting a change of notation, introduced at this point by v. Zeipel, namely, the addition of the subscript unity to the elements just now determined,

$$\begin{split} n_{\mathbf{i}} &= 637.2633 = 0.17701758 \\ \varphi_{\mathbf{i}} &= 6.3858 \\ \pi_{\mathbf{i}} &= 230.7971 \\ c_{\mathbf{i}} &= 121.9439 \end{split}$$

These elements are constants; they differ from constant osculating elements only by the constants of integration in $n\partial z$ and ν . They are to be used in the same manner as Hansen uses constant osculating elements.

It is possible, in a similar manner, to absorb the constants of integration in the third coordinate in the elements i_0 and Ω_0 , but this transformation will be omitted.

It is a convenience to the computer to have n_1 and c_1 transformed to mean elements. The last term in equation (21) increases in magnitude, progressively with the time. The computation of this term of large magnitude may be avoided by modifications of the elements n_1 and c_1 .

The method of transformation can be clearly shown from the example (10) Hygica,

$$\frac{2}{1-w}\frac{\sigma-\frac{1}{2}(A_2{}^2+B_2{}^2)}{1+\frac{1}{2}(A_2{}^2+B_2{}^2)}\!\!\left(\!\frac{w}{2}\,\varepsilon-\left[n'\delta z'\right]\right)\!=\left(6.80497_n\right)\varepsilon+\left(8.3192\right)\left[n'\delta z'\right] \tag{31}$$

By equation (1)

$$(6.80497_n)\varepsilon + (8.3192) [n'\delta z'] = (6.80497_n) c_1 - 0.4067 t - 14.6 \sin \varepsilon + (6.80497_n)n\delta z + (8.3192)[n'\delta z']$$
(32)

It is evident from equations (1), (21), and (23) that the first term on the right-hand side of equation (32) may be combined with the mean anomaly at the epoch to form a mean mean anomaly, given by $c_2 = c_1 + (6.80497_n)c_1$

Furthermore, the second term on the right-hand side of equation (32) may be combined with nt in equation (1). A mean mean motion is thereby introduced, which is given by

$$n_2 = n_1 - 0.4067 = 636.8566$$

Again, the third term on the right-hand side of equation (32) may be combined with a term in $(n\delta z - [n\delta z])$ which has the argument ε . In the construction of $(n\delta z - [n\delta z])$ there occurred the terms $+34.78 \sin \varepsilon + 4.76 \cos \varepsilon = (1.545) \sin (\varepsilon + 7.53)$

The addition of $-14.6 \sin \varepsilon$ from equation (32) gives

$$+20$$
%2 $\sin \varepsilon + 4$ %6 $\cos \varepsilon = (1.320) \sin (\varepsilon + 12$ %74)

These two values for the argument $\chi = \varepsilon$ are tabulated in the body of the table given on p. 27.

Further, since it is intended to improve the perturbations by the use of Newcomb's value for the mass of Jupiter, $n\partial z$ must be multiplied by the factor 1.00050. The combination of the correction for the mass of Jupiter with the term of the same form in equation (32) gives

$$(+0.00050 - 0.00064)n\delta z = -0.00014 \ n\delta z$$

This correction is the last step in the determination of $n\partial z$, since it depends upon the perturbation itself.

Without change of notation for $n\partial z$, the collected results are:

$$\varepsilon - e \sin \varepsilon = c_1 + n\delta z + n_2 t \tag{33}$$

where

$$n\delta z = [n\delta z]_1 + (n\delta z - [n\delta z]) - 0.00014 \ n\delta z + (8.319) \ [n'\delta z']$$
(34)

It must be remembered that $[n\partial z]_1$ and $(n\partial z - [n\partial z])$ are numerically different from their original values, but there should be no confusion if this transformation is not made before the constant c has been determined.

The constant elements are now:

Epoch and Osculation, 1851, Sept. 17.0, Ber. M. T.

$$n_2 = 636.8566 = 0.17690461$$
 $c_2 = 121.8661$
 $\varphi_1 = -6.3858$
 $\pi_1 = 230.7971$
 $\Omega_0 = 287.6198$
 $\dot{\epsilon}_0 = -3.7857$

Equinox and ecliptic, 1850.0

$$a_{2}^{3} = \frac{k^{2}}{n_{2}^{2}}$$

$$e_{1} = \sin \varphi_{1}$$

$$p_{2} = a_{2}(1 - e_{1}^{2})$$

$$\log k^{2} = 9.98741$$

$$\log e_{1} = 9.04620$$

$$\log p_{2} = 0.49191$$

$$\log q_{2}^{2} = 8.49548$$

$$\log \sqrt{\frac{1 - e_{1}}{1 + e_{1}}} = 9.95150$$

$$\log a_{2}^{3} = 1.49193$$

$$\log a_{2} = 0.49731$$

Certain other transformations of the elements which v. Zeipel makes are omitted. Those terms of the perturbations which have the argument ε have the same period as the planet and can, therefore, be absorbed in the elements. It would be necessary to set up formulae for this transformation to mean elements, and it is not profitable to do so.

PERTURBATIONS OF THE RADIUS VECTOR.

The perturbations in the radius vector are computed in a manner similar to that for $(n\delta z - [n\delta z])$. In Table XLIII the numerical coefficients are multiplied by their respective factors w^{i} , η^{p} , η'^{q} , j^{2t} , the terms are collected, the known parts of the arguments are incorporated in the coefficients, and the terms are grouped in the form:

$$\nu = \sum a \sin \chi + \Sigma b \cos \chi + \cdots + (\vartheta - \vartheta_0) \left\{ \sum a' \sin \chi + \Sigma b' \cos \chi + \cdots \right\} + (\vartheta - \vartheta_0)^2 \left\{ \sum a'' \sin \chi + \Sigma b'' \cos \chi + \cdots \right\} + \cdots$$
(35)

Let

$$a = -k \sin K \qquad b = k \cos K$$

$$a' = k' \cos K' \qquad b' = k' \sin K'$$

$$a'' = -k'' \sin K'' \qquad b'' = k''' \cos K''$$
(36)

Then

$$\nu = \Sigma k \cos(\chi + K) + (\vartheta - \vartheta_0) \Sigma k' \sin(\chi + K') + (\vartheta - \vartheta_0)^2 \Sigma k'' \cos(\chi + K'') + \cdots$$
 (37)

and to correct the perturbation for the use of the improved value of the mass, ν should be multiplied by 1.00050.

If the mean motion n_2 is adopted, the constant in ν must be corrected by

$$+\frac{2}{3} \frac{n_2 - n_1}{n_1} \frac{1}{\sin 1''} \tag{38}$$

This correction of the constant in ν permits the use of the relation

$$n_2^2 a_2^3 = k^2$$

in the computation of a geocentric place; without this correction it would be necessary to use the relation

$$n_1^2 a_1^3 = k^2$$

in the determination of the parameter p. In the computation of the eccentric anomaly it is permissible to use either n_1 or n_2 , for the difference is taken up in the modification of $n\delta z$, but the theory of Hansen demands the use of constant elements. Hence, strictly speaking, n_1 must be used in computing a geocentric place. The modification of the constant in ν renders the employment of n_2 equivalent to the use of n_1 .

$$(10)$$
 Hygiea.

$$\frac{2}{3} \frac{n_2 - n_1}{n_1} \frac{1}{\sin 1''} = -\frac{2}{3} \frac{0.4067}{637.3} \frac{1}{\sin 1''} = -87.8$$

The constant in Table XLIII or C is +47.6. Therefore, the new constant is:

$$+47.6 - 87.8 = -40.2 = (1.604) \cos 180.00$$

where the coefficient is logarithmic in seconds of arc.

The perturbation is tabulated on page 27.

PERTURBATIONS OF THE THIRD COORDINATE.

The perturbations of the third coordinate are derived from Tables LIV, LV_I, LV_{II} or D, $\mathbf{E_1}$, $\mathbf{E_2}$. The first of these is of the same form as the tables for $(n\delta z - [n\delta z])$ and ν . After making analogous transformations and multiplying by the factor ι cos i, (ι is defined by equation (6)),

$$\iota \cos i \Sigma U_{p,q} \eta^p \eta'^q \sin A = \Sigma k \sin (\chi + K)$$
(39)

Both Table LV_I or E₁ and Table LV_{II} or E₂ lead to a single numerical quantity, since all the factors and arguments are known constants.

The perturbation u is given by

$$u = \iota \cos i \left[\Sigma U_{p \cdot q} \eta^p \eta'^q \sin A + n_2 t \left\{ K_1 \left(\cos \varepsilon - e_1 \right) + K_2 \sin \varepsilon \right\} + c_1 \left(\cos \varepsilon - e_1 \right) + c_2 \sin \varepsilon \right]$$
 (40)

in which c_1 , c_2 , the constants of integration, have not been determined.

The constants c_1 and c_2 are determined by Hansen's conditions:

Substituting these relations and equation (39) in equation (40), the determination of c_1 and c_2 is given by the solution of

$$C_1 (\cos \varepsilon - e_1) + C_2 \sin \varepsilon = -\Sigma k \sin (\chi + K); C_1 \sin \varepsilon - C_2 \cos \varepsilon = \Sigma k \frac{d\chi}{d\varepsilon} \cos (\chi + K)$$
 (42)

where

$$C_1 = \iota \cos i.c_1$$

$$C_2 = \iota \cos i.c_2$$
(43)

and

$$\frac{d\mathbf{x}}{d\varepsilon} = \frac{i}{2} + j\frac{d\boldsymbol{\vartheta}}{d\varepsilon}$$

where

$$\frac{d\vartheta}{d\varepsilon} = \frac{1+\sigma}{1+\frac{1}{2}(A_2^2+B_2^2)} \frac{w}{2} \left(1 + \frac{1-w}{2} \frac{d[n\delta z]_1}{d\zeta}\right) \tag{44}$$

A double notation is used here, for $\cos i$ is the cosine of the inclination of the orbit, and $\frac{i}{2}$ is the numerical coefficient of ε in the argument χ , but this should cause no confusion.

Dividing and multiplying the factor

by 365.25

$$\iota \cos i \cdot n_2 t = \frac{\iota \cos i \cdot n_2}{365.25} T \tag{45}$$

where T is the interval in Julian years, measured from the date of osculation.

It is evident that

can be incorporated in

$$C_1 (\cos \varepsilon - e_1) + C_2 \sin \varepsilon$$

 $\Sigma k \sin (\chi + K)$

in the same manner as similar terms were treated in $(n\partial z - [n\partial z])$.

For symmetry of form, let

$$\iota \cos i \cdot n_2 t \{ K_1 (\cos \varepsilon - e_1) + K_2 \sin \varepsilon \} = \Sigma k' \cos (\chi + K')$$
 (46)

Finally, then, without change of notation,

$$u = \Sigma k \sin (\chi + K) + T\Sigma k' \cos (\chi + K') \tag{47}$$

in which the constants of integration are absorbed in the first term. The perturbation u is tabulated on page 27.

The perturbations in the heliocentric coordinates are computed from equations (3) The signs of $\cos a$, $\cos b$, $\cos c$ are determined as follows:

$$\cos a > 0$$
 if $0 < \Omega < 180^{\circ}$
 $\cos b < 0$ if $-90^{\circ} < \Omega < +90^{\circ}$
 $\cos b < 0$ in any case, if $\epsilon > i$
 $\cos c > 0$ if $\sin i \cos \Omega < \cos i$
 $\cos c > 0$ in any case if $i < 45^{\circ}$

$$t = 0$$

$$\frac{d}{d\zeta}[n\partial z]_1 = [(4.41940) \cos (2\zeta_0 + 72.5246) + (3.9150) \cos (4\zeta_0 + 305.627) + (3.220) \cos (6\zeta_0 + 186.48)] \sin 1''$$

$$\log \frac{w}{2} \frac{1+\sigma}{1+\frac{1}{2}(A_2^2 + B_2^2)} = 8.48150 \qquad \frac{d\vartheta}{d\varepsilon} = 0.0285$$

$$\log \frac{1-w}{2} = 9.67154 \qquad \frac{d\chi}{d\varepsilon} = \frac{i}{2} + 0.0285j$$

$$\Sigma k \sin (\chi + K) = -70.55$$

$$\Sigma k \frac{d\chi}{d\varepsilon} \cos (\chi + K) = +101.66$$

$$C_1 = +35.99$$

$$C_2 = +120.98$$

From Table LIV, multiplied by ι cos i we have three terms in

$$\Sigma k \sin (\chi + K) = -4.2 - 1.9 \sin \varepsilon + 2.7 \cos \varepsilon$$

which, added to

$$C_1(\cos \varepsilon - c_1) + C_2 \sin \varepsilon = +120.8 \sin \varepsilon + 35.9 (\cos \varepsilon - e_1)$$

gives for two terms in $\Sigma k \sin (\chi + K)$

$$-7.8 + 118.9 \sin \varepsilon + 38.6 \cos \varepsilon = (0.89) \sin 270.0 + (2.0970) \sin (\varepsilon + 17.99)$$

CHECK COMPUTATION.

After the elements have been determined and the final tabulation of the perturbations is ready, the following checks should be performed, even if the computation has been duplicated.

$$\begin{aligned} & t = 0 \\ & \theta_0 = \frac{1}{2}(\varepsilon_1 - e_1 \sin \varepsilon_1) - g' \\ & g' = c' + [n'\partial z'] \end{aligned} \qquad \theta_0 = \vartheta_0 + \frac{1 - w}{2}(n\partial z - [n\partial z]) - \eta w \sin \varepsilon$$

where the necessary quantities are to be taken from the last approximation for c.

Secondly, the heliocentric coordinates

$$x - \Delta x$$
, $y - \Delta y$, $z - \Delta z$

for t=0 must check when computed by the usual formulae for two body motion and osculating elements, and when computed with the final set of elements and the corresponding perturbations, $n\partial z$ and ν , taken from the final tabulation.

The final tabulation of the perturbation in the third coordinate is checked by the test

$$t = 0$$
 ; $u = 0$

COMPUTATION OF THE PERTURBATIONS FOR THE TIME t.

It is well to emphasize here the distinction between the elements n_1 and c_1 and the elements n_2 and c_2 in their relation to the perturbations. Let $n\delta z_1$ denote the perturbation in the mean anomaly computed according to equations (20), (19), (18), (21), (22), (27), (28), and let $n\delta z_2$ signify the perturbation computed according to equations (20), (19), (18), (22), the final tabulation of $(n\delta z - [n\delta z])$, and an equation analogous to (34). (It must be remembered that equation (34) is for (10) Hygien only. The numerical coefficients are determined for each planet individually.)

Before the determination of c there can be no confusion, for there is but one way to compute the perturbation $n\partial z$. Later, when both c_1 and c_2 are given, the computation may be performed in either manner. The latter method is, of course, adopted. The question then arises, what values of ε and c are to be used in equation (19)?

Clearly, there is only one value of ε , for

$$\varepsilon - e_1 \sin \varepsilon = c_1 + n_1 t + n \delta z_1 = c_2 + n_2 t + n \delta z_2$$

and both $n\partial z$ and ε must be found by trials. Further, since the introduction of n_2 and c_2 arises merely from a transfer of certain terms in the perturbation, the argument of the perturbation is independent of this transformation. Therefore c_1 is the constant in equation (19).

For any time t the order of computation is: equation (33), neglecting $n\partial z$, (20), (19), (18), (22), final tabulation of $n\partial z - [n\partial z]$, and the equation analogous to (34). Since the perturbations are large, the argument ε is not sufficiently accurate when $n\partial z$ is neglected. It is, therefore, always necessary to make a second approximation for $n\partial z$. In the first trial the small terms may be omitted.

(10) Hygiea. Perturbations $n\delta z$, ν , u, for 1873, Sept. 20.4491, Ber. M. T.

1				1	
$\log e_1$ (degrees)	0. 80432	log sin	9. 9387 _n		
$\log \frac{w}{2}$	8, 48578	log sin log sin	9. 9918 _n 9. 703 _n		!
$\log \frac{1}{57.30} \cdot \frac{2}{w}$	9.7561				
$\frac{1-w}{2}\cdot c-c'$	217?278				1
50	220?848	log cos	9.741_n		€
θ ₀	221?880	log cos	9. 419	$\chi = i$	3+10
-	12198661	log ("-")	1. 6337		1
c ₂	121.500€	$\begin{vmatrix} \log (\zeta - \zeta_0) \\ \log \frac{2}{w} (\zeta - \zeta_0) \end{vmatrix}$		$\frac{1}{2}\varepsilon + \vartheta$	315?350
		$\log \frac{1}{w}(\xi - \xi_0)$	1. 3898	$\frac{1}{2}\varepsilon + 3\vartheta$ $\frac{1}{2}\varepsilon + 5\vartheta$	119. 524 283. 698
	1873	$\log \frac{2}{w}(\xi - \xi_0) \cos$	1. 131 _n	$\begin{vmatrix} -\frac{1}{2}\varepsilon + \vartheta \\ -\frac{1}{2}\varepsilon + 3\vartheta \end{vmatrix}$	208. 824 12. 998
Ber. M. T.	Sept. 1 20, 4491	$\log \frac{2}{w}(\zeta - \zeta_0) \cos$	0, 809	25 + 30	
t	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} \varepsilon \\ \varepsilon + 2\vartheta \end{array}$	106. 526 270. 700
n_2t	+ 1422°2156 1544.0817		- 11405'' - 2017	ε+4ϑ	74.874
c_2+n_2t	104. 0817+1440°		- 140	$\begin{array}{c} \epsilon+6\vartheta \\ \epsilon+8\vartheta \end{array}$	239. 048 43. 222
$ \begin{array}{c c} n\partial z \\ M = c_2 + n_2 t + n\partial z \end{array} $	$ \frac{2}{100}$ $\frac{3.666}{416}$		$\begin{vmatrix} - & 124 \\ +10 & \end{vmatrix}$	− ε+2θ	57, 648
14-63 1035 1105				$-\frac{\varepsilon+4\vartheta}{\frac{3}{2}\varepsilon+\vartheta}$	221, 822 61, 876
£	$\begin{cases} & \begin{array}{c} 3\ 106.\ 526 + 1440^{\circ} \\ 1546.\ 526 \end{array} \end{cases}$	$[n\partial z]_{i}$	- 13676′′	$\frac{3}{2}\varepsilon + 3\vartheta$	226, 050
		$\log [n \delta z]_1 \text{ (secs)}$	4. 13596 _n	$\frac{\frac{5}{2}\varepsilon+5\vartheta}{\frac{3}{2}\varepsilon+7\vartheta}$	30. 224 194. 398
$\log \varepsilon$	3. 18935	$\log [n \partial z]_1$ (degrees)	0. 57966 _n		
$\log \frac{w}{2}s$	1, 67513	$[n\partial z]_{\mathbf{i}}$	-3°. 7989	$-\frac{3}{2}\varepsilon + \vartheta$	102. 298
$\frac{w}{2}^{\varepsilon}$	+ 479329			2ε	213. 052
$\frac{z}{w} \varepsilon - [n'\partial z']$	470070			2ε+2ϑ 2ε+4ϑ	17. 226 181. 400
_	+ 47?053	$\log (9.6715) [n \delta z]_1$	0. 2512 _n	$2\varepsilon + 6\vartheta$	345. 574
$\log\left(\frac{w}{2}\varepsilon - [n'\partial z']\right)$	1. 67259	$(9.6715) [n\partial z]_1$	-19783	$\frac{5}{2}\varepsilon + 5\vartheta$ $\frac{5}{2}\varepsilon + 7\vartheta$	136. 750 300. 924
$\log (9.99572) \left(\frac{w}{2} \varepsilon - [n'\partial z'] \right)$	1. 66831	ð	2629087	45 - 10	300. 324
$(9.99572) \left(\frac{w}{2} \varepsilon - [n'\delta z'] \right)$	+ 46.592	$\theta - \theta_0$	40°207		
\$	2639870	1			
	1679740	ϑ 2-2	2629087		
4.	335. 480	$\begin{bmatrix} 2\vartheta \\ 3\vartheta \end{bmatrix}$	164. 174 66, 261		
25 45 6;	143. 220	4ϑ	328. 348		
5-50	43. 022	5∂ 6∂	230, 435 132, 522		Ì
		70	34, 609		
25+ 72°5246 45+305, 627	240?265	80	296, 696		1
$4\zeta + 305, 627$ $6\zeta + 186, 48$	281, 107 329, 70	(4)	53°, 263		
•		ε	106. 526		
25 + 68?83 45 + 309.75	236. 57 285. 23	35 25	159, 789		
主。十つ07. (3	200. 20	25 35	213, 052 266, 315		
		2=	±00, 510		

¹ Corr, for aberr.

^{*} From previous approx.

From Astrand's table.

(10) Hygiea.

Perturbations nôz, v, u, for 1873, Sept. 20,4491, Ber. M. T.—Continued.

$\chi = i - \frac{\epsilon}{2} + j\beta$		n8z-[[n ' z]		ν			u	
í j	$\chi + K^*$	$\log \sin \frac{(\lambda + K')}{(\lambda + K')}$	$k \sin (\chi + K)$	$\lambda + K$	$\log \cos (\chi + K)$	$k\cos\left(\chi+K\right)$	$\chi + K$	$\log \sin (\chi + K)$	$k \sin(\chi + K)$
0 0 0 2 4 6 0 6 1 1 1 3 3 1 1 5 5 1 1 3 2 2 4 4 6 5 5 5 7	353, 286 41, 102 88, 71 233 74 106, 53 119, 27 347, 748 35, 927 83, 53 127, 4 115, 61 311, 82 163, 51 208, 94 253, 08 274, 434 327, 82 22, 1 150, 8 196, 6	9. 0679 _n 9. 8178 0. 000 9. 907 _n 9. 982 9. 941 9. 3268 _n 9. 7686 9. 997 9. 90 9. 955 9. 872 _n 9. 453 9. 685 _n 9. 981 _n 9. 9987 _n 9. 726 _n 9. 58 9. 69 9. 46 _n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180, 00 58, 608 98, 841 146, 28 173, 425 221, 824 268, 86 192, 38 111, 41 300, 02 167, 726 215, 194 263, 148 309, 92 88, 6 349, 03 276, 65 341, 94 28, 42 54, 02 136, 79 198, 96 330, 79 16, 85	0,000 _n 9,7167 9,1867 _n 9,920 _n 9,971 _n 9,8723 _n 8,2988 _n 9,562 _n 9,9900 _n 9,9123 _n 9,0767 _n 8,39 9,992 9,064 9,9769 9,864 _n 9,963 _n 9,976 _n 9,963 _n 9,976 _n 9,941 9,9769 9,941	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270. 00 296. 33 238 80. 40 110. 78 156. 04 122. 28 122. 10 124. 52 79. 94 104. 99 150. 50 0. 51 225. 83 257. 49 278. 56 4. 98 348. 8 40. 38 85. 1 92. 97	0. 000 _n 9. 952 _n 9. 928 _n 9. 994 9. 971 9. 609 9. 927 9. 138 9. 916 9. 993 9. 985 9. 692 7. 948 9. 856 _n 9. 990 _n 9. 995 _n 8. 939 9. 288 _n 9. 811 9. 998 9. 999	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$(\vartheta - \vartheta_{\bullet})^{1}$ orT	λ+Κ'	$\log \cos (\chi + K')$	$k'\cos(\chi+K')$	λ+Κ΄	$\log \sin (\chi + K')$	$k' \sin(\zeta + K')$	$(\chi + K')$	log cos (\chi + K'')	$k'\cos(\chi+K')$
0 0 0 0 2 0 4 2 0 2 2 4 4 0 4 2 4 4	292, 53 4, 7 41, 3 123, 85 219, 90 104, 1 154, 82	9. 583 0. 00 9. 88 9. 746 _n 9. 885 _n 9. 39 _n 9. 957 _n	+ 371" + 2 + 6 - 2" - 20 - 1 - 1 + 379" - 24"	270. 00 232. 94 281. 51 292. 573 351. 93 41. 29 305. 02 104. 23 147	0. 000 _n 9. 902 _n 9. 991 _n 9. 965 _n 9. 147 _n 9. 819 9. 913 _n 9. 986 9. 736	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180. 00 47. 67	0. 000 _n 9. 828	+ 6"
(ðð _o)²	$\chi + K^{\prime\prime}$	$\log \sin (\chi + K'')$	$k^{\prime\prime}\sin\left(\chi+K^{\prime\prime}\right)$	λ+Κ"	$\log \cos (\chi + K'')$	$k^{\prime\prime}\cos\left(\chi+K^{\prime\prime}\right)$			
2 0 4 0	296, 23 227, 15	9. 953 _n 9. 865 _n	- 3" - 1 - 4"	112. 79 47	9. 588 _n 9. 834	0 - 1"			

 $^{^{1}}$ For perturbation u use factor \mathbf{T}_{c}

(10) Hygica.

Perturnations nôz, v, u, for 1873, Sept. 20.4491, Ber. M. T.—Continued.

$\begin{array}{l} \log \left(\vartheta - \vartheta_0\right) \text{ rad.} \\ \log \left(\vartheta - \vartheta_0\right)^2 \\ \log \mathbf{T} \\ \log \frac{a}{\cos i} \sin 1'' \end{array}$	9, 8462 9, 692 1, 3426 5, 183				
$\begin{array}{c} \Sigma k \sin (\chi + K) \\ \Sigma k' \cos (\chi + K') \\ \Sigma k'' \sin (\chi + K'') \end{array}$	$+\begin{array}{cc} n\partial z \\ + & 569'' \\ + & 355 \\ - & 4 \end{array}$	$\begin{array}{c} \Sigma k \cos (\chi + K) \\ \Sigma k' \sin (\chi + K') \\ \Sigma k'' \cos (\chi + K'') \end{array}$		$\sum_{k} k \sin (\chi + K)$ $\sum_{k} k' \cos (\chi + K')$	+ 207" + 6
$ \log(\vartheta-\vartheta_0) \Sigma k' \cos(\chi+K') $	2,396	$\begin{array}{l} \log \Sigma k' \sin (\chi \! + \! K') \\ \log (\vartheta \! - \! \vartheta_0) \Sigma k' \sin (\chi \! + \! K') \\ (\vartheta \! - \! \vartheta_0) \Sigma k' \sin (\chi \! + \! K') \end{array}$	2.510_n	$\begin{array}{l} \log \Sigma k' \cos \left(\chi + K' \right) \\ \log \mathrm{T.} \Sigma k' \cos \left(\chi + K' \right) \\ \mathrm{T.} \Sigma k' \cos \left(\chi + K' \right) \end{array}$	0.778 2.121 $+ 132''$
$\begin{array}{l} \log \mathcal{L}k^{\prime\prime} \sin \left(\chi + K^{\prime\prime} \right) \\ \log (\vartheta - \vartheta_0)^2 \mathcal{L}k^{\prime\prime} \sin (\chi + K^{\prime\prime}) \\ (\vartheta - \vartheta_0)^2 \mathcal{L} \end{array}$	$\begin{array}{c} 0.602_{n} \\ 0.294_{n} \\ -2^{"} \\ +816^{"} \end{array}$	$\begin{array}{c} \nu \\ \log \nu \text{ (secs)} \\ \log \nu \text{ (rad)} \\ \log (1+\nu) \end{array}$	$\begin{array}{c} -2458^{\prime\prime} \\ 3.3906_n \\ 8.0762_n \\ 9.99480 \end{array}$	$egin{array}{c} u & \log u & \log deta & \log \cos a & \log \cos b & \log \cos c & \log c & $	$+339''$ 2.530 7.713 8.798_n 9.619_n 9.958
	+0°. 2267 +0°. 0058			$\log \Delta x$	6. 511 _n
$ \begin{bmatrix} n \delta z \\ n \delta z \\ -0.00014 n \delta z \end{bmatrix} $	$-3^{\circ}.7989$ -3.5664 $+5$			$ \begin{array}{c} \log \Delta y \\ \log \Delta z \end{array} $	7.332_n 7.671 -0.00032
$n \delta z$	- 3°. 566			$\begin{array}{c} \Delta x \\ \Delta y \\ \Delta z \end{array}$	-0.0032 -0.00215 +0.00469

The computation of the geocentric place on page 26 is analogous to the usual method for two body motion, the fundamental equations being (1), (2), (3). A complete set of formulae and an example of the computation is also given in Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 215.

CONSTANTS FOR THE EQUATOR.

	A' yearly var.	B' yearly var.	C' yearly var.	log sin a log cos a	log sin b log cos b	log sin e log eos e
1850, 0	3209833+0901399	2299182+0901404	2389657+0901310	9. 99914 8. 799 _n	9, 95884 9, 619 _n	9, 62355 9, 958
1900, 0	321, 532+0, 01399	229, 885+0, 01405	239, 312+0, 01308	9. 99914 8. 797 _n	9, 95868 9, 619 _n	9, 62423 9, 958
1950, 0	322, 232+0, 01399	230, 587+0, 01406	239, 965+0, 01306	9. 99915 8. 795 _n	9, 95853 9, 620 _n	9, 62490 9, 958

(10) Hygica.

COMPARISON, OBSERVATION-COMPUTATION, 1873, SEPT. 20,4491, BER. M. T.

$\operatorname{Ber. M. T.}_{\substack{c_2+n_2t\\n\partial z}}$	1873 Sept. 20.4491 10420817 — 3.5660	x X Jr	+3.0709 -1.00281 -0.00032 $+2.0678$
$M = c_2 + n_2 t + n \partial z$ $d M^{\circ}$	100. 5157 - 0°4843	y Y	-0.89314 +0.03260
$egin{array}{l} d extbf{ extit{M}'} \ darphi' \ rac{dv}{darphi} \end{array}$	$ \begin{array}{rrr} - & 29.06 \\ + & 3.15 \\ + & 1.8124 \end{array} $	Jy 7,	-0. 00215 -0. 86269
$\left(\frac{Ddv}{d\varphi}\right)dM'$ $\left(J\varphi.\frac{d\varphi}{20}\right)$	+ 68 + 8	z Z	-0.19677 $+0.01415$ $+0.00469$
$\sum_{v} d\phi' \ d(v-M)/dM \ \frac{1}{2} D_m.dM' \ \sum_{v} dM'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	log ρ cos δ cos α	-0. 17793 0. 31551
$\begin{vmatrix} v - M \\ v_1 - M_1 \\ \vec{J} = v_1 \end{vmatrix}$	$ \begin{array}{c} + 12^{\circ} & 0.714 \\ + 12^{\circ} & 7.781 \\ + 12^{\circ} & 1302 \\ 112^{\circ} & 6459 \end{array} $	$ \begin{array}{c} \cos \alpha \\ \sin \alpha \\ \log \rho \cos \delta \sin \alpha \end{array} $ $ \log tg \alpha $	9. 96515 9. 58550_n 9. 93586_n 9. 62035_n (337° $21'$ $14''$
$ \begin{vmatrix} \log \cos \overline{f} \\ \log e_1 \cos \overline{f} \\ \log (1 + e_1 \cos \overline{f}) \\ \log \overline{r} \\ \log (1 + \nu) \end{vmatrix} $	9.58550_n 8.63170_n 9.98099 0.51092 9.99480	Red to True α True α Obs. α (A. N. 2029)	{22h 29m 24s, 9 +1.5 22h 29m 26s, 4 22h 29m 07s, 1
$\log \tau$ A' B' C'	0. 50572 32191548 229. 5058 238. 9584	$ \begin{array}{c} \log \rho \cos \delta \\ \cos \delta \\ \sin \delta \\ \log \rho \sin \delta \end{array} $	0.35036 9.99864 8.89852_n 9.25025_n
$A' + \overline{f}$ $B' + \overline{f}$ $C' + \overline{f}$	73, 8007 342, 1517 351, 6043	$ \begin{vmatrix} \log tg \ \delta \\ \delta \end{vmatrix} $ Red to True δ True δ Obs. δ (A. N. 2029)	8.89989_n $-4^{\circ} 32' 26''$ $+6''$ $-4^{\circ} 32' 20''$ $-4^{\circ} 33' 27''$
$\begin{array}{c} \log \sin a \\ \log \sin (A' + \tilde{f}) \\ \log x \end{array}$	9, 99914 9, 98240 0, 48726	log ρ	0. 35172
$\begin{vmatrix} \log \sin b \\ \log \sin (B' + \vec{f}) \\ \log y \end{vmatrix}$	9.95877 9.48643_n 9.95092_n	$(O-C)$ $\Delta \alpha \cos \delta$	-19:3
$ \begin{array}{c c} \log \sin c \\ \log \sin (C' + \overline{f}) \\ \log z \end{array} $	$\begin{array}{c} 9.\ 62387 \\ 9.\ 16438_n \\ 9.\ 29397_n \end{array}$	18	-1' 7"

Given a series of observations well distributed around the orbit and extending over as long an interval as is available, the elements can be corrected by the method of least squares.

For this purpose the formulae by Bauschinger² are convenient. The equations of condition are set up for the residuals in the plane of the orbit and perpendicular to the plane, as seen from the earth. This resolution of the residuals is convenient because it keeps the same resolution into components as is used in the theory of Hansen.

It is to be noticed that the elements to be used in computing the differential coefficients are the finally adopted constant elements referred to the equator by the proper transformation. The value of r to be used is

$$r = \overline{r}(1 + \nu)$$

$$\sin \bar{\varepsilon} = \frac{\overline{r}}{a_2 \sqrt{1 - e_1^2}} \sin \bar{f}$$
 (Hansen's notation)

¹Tafel zur Berechnung der wahren Anomalie, Veröffentlichungen des Rechen-Instituts der Königlichen Sternwarte zu Berlin No. 1.

¹ Über das Problem der Bahnverbesserung, Veröffentlichungen des Königlichen Astronomischen Rechen-Instituts zu Berlin, No. 23, Berlin, 1903.

The use of $\bar{\epsilon}, \bar{f}, r$ and constant elements is equivalent to the use of osculating elements for the given date of observation.

(10) Hygica

Unit of $k=1^{\prime\prime}$.

				ν 			
i j	$\log k$	X.	$\log k$	K.	$\log k$	K	
						•	
0 0			1.604	180.00	0, 89	270,00	
0 2			2. 8570	254, 434	1.118	132. 16	
0 4 0 6			2. 3364 1. 800	130.493	8, 25	270	man in and Their (I I')
1 1	2. 6771	37. 936	2. 1397	13, 76 218, 075	1. 057	125, 05	$n\partial z - [n\partial z] = \sum k \sin(\chi + K)$ $+ (2 - 2) \sum k' \cos(\chi + K')$
1 3	2. 8627	281. 578	2, 4135	102, 300	1. 161	351, 26	$ \begin{array}{c} +(\vartheta-\vartheta_0)\Sigma k'\cos(\chi+K') \\ +(\vartheta-\vartheta_0)^2\Sigma k''\sin(\chi+K'') \end{array} $
1 5	2.4238	165, 01	1. 965	$345.\ 16$	0. 930	232, 34	0, = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
$-1 \ 1$	2,022	24.92	0, 55	343. 56	1, 119	273.46	
$-1 \ 3$	1.628	93. 53	1. 543	98. 41	0. 981	159. 10	F1 (1 F5)
20	$[1.545]^1$	[7, 53] ¹	0.711	109 10	2. 097	17.00	$\nu = \sum k \cos (\chi + K)$
2 2	1. 320 3. 5546	12.74 77.048	0. 711 3. 2776	$ \begin{array}{c c} 193.49 \\ 257.026 \end{array} $	1. 777	17.99 169.24	$ \begin{array}{c} +(\vartheta-\vartheta_0) \overset{\frown}{\Sigma} \overset{\frown}{k'} \sin (\chi + K') \\ +(\vartheta-\vartheta_0)^2 \overset{\frown}{\Sigma} \overset{\frown}{k''} \cos (\chi + K'') \end{array} $
$\tilde{2}$ $\tilde{4}$	2. 8719	321. 053	2. 6054	140. 320	1. 412	30, 12	1 (0 00) 2 k cos (X + K)
$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2. 389	204, 49	2. 1033	24, 100	1. 034	271. 45	
2 8	1. 64	84. 2	1, 62	266. 70			
$-2 \ 2$	1. 970	57. 96	1. 27	31.0	1. 824	302.86	$u = \sum k \sin(\chi + K)$
$-2 \ 4$	0.602	90.00	0. 80	127. 21	A 030	169 05	$+T\Sigma k'\cos(\chi+K')$
$\begin{bmatrix} 3 & 1 \\ 3 & 3 \end{bmatrix}$	2. 100	297. 46	0. 90 1. 95	$214.77 \\ 115.89$	0. 826 0. 446	163. 95 31. 44	Where T is expressed in Julian year
3 3	2. 100	237.40	1. 55	110. 03	0. 110	91, 77	from date of osculation.
3 5	1. 841	178. 72	1. 583	358, 20	0. 171	248.34	
3 7	1.12	58. 68	0.34	219.62			
-3 1			0. 42	34. 68	0. 673	262. 68	$v=i^{\epsilon}+i\theta$ where in ϵ the multiples of
$\begin{bmatrix} 4 & 0 \\ 4 & 2 \end{bmatrix}$	9 0170	257. 208			0. 00 0. 270	135. 7 23. 15	$\chi = i\frac{\varepsilon}{2} + j\vartheta$ where in ε the multiples of 2π must be retained.
4 2 4	$\begin{bmatrix} 2.0170 \\ 1.589 \end{bmatrix}$	146. 42	0. 97	335, 39	9. 91	263.7	
4 6	1. 14	36. 5	0. 66	213. 39	9. 73	107. 40	$\theta_0 = 221.811$
5 5	1.038	14. 0	1.062	194. 04			
5 7	0.88	255. 7	0. 94	75. 93			
$\vartheta - \vartheta_0$) or T	$\log k'$	K*′	log k'	K'	$\log k'$	K.,	
0.0		•	0.700	070.00	0. 200		
$egin{pmatrix} 0 & 0 \ 0 & 2 \end{bmatrix}$			0. 799 1. 021	270. 00 68. 77	9. 690	180.00	
$0 \overline{4}$			0. 86	313. 16			
	2. 9862	186.00	2. 6850	186. 047	0.957	301. 14	
2 2	0.18	94	0. 12	81. 23			
2 4	0. 88	326. 4	0. 60	326. 42			
	0.60	66. 20	0. 11	247.37			
$\begin{array}{ccc} 4 & 0 \\ 4 & 2 \end{array}$	1. 414 0. 68	6. 85 86. 9	0.580	87.00			
4 4	0. 11	333. 42	0. 09	326	1		
$(\vartheta - \vartheta_0)^3$	log k''	K'''	log k''	K''			
$\begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}$	2 72	189. 70	0.00	6. 26			
2 0	0.58	100 70	0. 26				

COMPARISON OF THE REVISED WITH V. ZEIPEL'S ORIGINAL TABLES.

It was originally planned to conclude the example with a least squares solution of the orbit on the basis of the observations used by v. Zeipel for the same purpose, and to test conclusively the relative value of the revised and v. Zeipel's original tables by representing recent observations with both sets of elements and tables.

In the course of the computation doubt arose regarding the accuracy of some of the observations selected by v. Zeipel, which led us to reject them and substitute other observa-

In the determination of the constant c use quantities in brackets.

Logarithmic.

Unit=1"

tions. This substitution produced an unfavorable distribution of the observed places in the orbit and the resulting least squares solution was not satisfactory.

In the meantime, pending a resumption of the least squares solution on the basis of a more favorable distribution of observed places,¹ the following conclusions may be drawn regarding the revised and v. Zeipel's original tables:

- 1. v. Zeipel's tables have been slightly improved by the correction of some numerical errors.
- 2. A moderate further improvement has been accomplished by an extension of the tables in so far as seemed practicable without a more exhaustive and unwarranted study of the practical convergence of the auxiliary series, by including certain terms of higher order and degree.

With reference to the correction of the orbit and the representation of observations by a least squares solution, it should be observed that

- (1) A symmetrical distribution of the observed positions in the orbit is essential to counteract the effect of neglected perturbations of higher order and degree and of major planets other than Jupiter. For the Hecuba Group, in general, the mean motions of the minor planets may be nearly commensurable with those of Saturn, Mars, or the Earth in the ratios 3/2, 3/1, or 3/5.
- (2) However accurate the initial osculating elements may be, comparatively large residuals may remain on account of neglected perturbations.

Table A (XXXV). $n\delta z - [n\delta z]$

 w_{-1} 4.8741_n 4.1570 $\eta \eta'$ 2.7684_n $\vartheta +$ 3.3827 3.7172_n $\bar{4}.0056_{n}$ $\frac{1}{2}\varepsilon + \vartheta + J$ 4.7686 η^2 $\frac{1}{2}\varepsilon + \vartheta + J$ 4.0766_{n} 4.8295 $\tilde{1}\varepsilon + \vartheta + \tilde{1}$ 4.8738_n 4.1365 4. 5162_n 15+ 0+21 3.33454. 2240_n 5. 6685_n 1ε+3θ+21 4.96114.0671 4.8483_n $\frac{1}{2}\epsilon + 3\vartheta + 3J$ 5. 5636 5.0926_n 6.0018 $\frac{1}{2}\varepsilon + 5\vartheta + 3J$ 6. 1714_n $\frac{1}{2}\varepsilon + 5\vartheta + 4J$ 5.23255. 7344 4. 7998 4. 7675_n $\frac{1}{2}s+5\vartheta+5\mathbf{1}$ $\frac{1}{2}\varepsilon + 5\vartheta + 4J - \Sigma$ 3. 8050_n 3.3112 3.8350_{n} 4.1355 η' $\frac{1}{2}\varepsilon + \vartheta$ j^2 3. 7910 4.0833_n $-\frac{1}{2}\varepsilon + \vartheta + \mathbf{1}$ 3.2065_n 4. 6236_n $\frac{1}{2}\varepsilon + 3\vartheta + \mathbf{J}$ 3,5338 $-\frac{1}{2}\varepsilon+3\vartheta+2J$ 4.0879 5.0382 3.6012_n $\frac{1}{2}\varepsilon + 3\vartheta + 3J$ 4. 5318_n 3.2074 $-\frac{1}{2}\epsilon+3\vartheta+2I-\Sigma$ 4. 1925_n 9. 868_n 3.4600_n 0.56892.9223, 3670 η 0.2533_n 2.673_n 9.482 3.2959 3.1772_n η' 3.2927_n e+20+ 1 4. 14906 4. 6990_n 0.746_n 1.384 $\eta \eta'$ e+20+21 9.788_{n} 2.47560 3.10847_n 3.3960_n 3, 4540 η^2 1.342_{n} 2.305_n 3.6179_n e+20+21 4.4018 0.645 j^2 η'^2 $\begin{array}{c} 2.935_n \\ 3.4276_n \end{array}$ e+20+21 3.3017_n 4. 39206 0.326 1.119_n $\begin{array}{c} \epsilon + 2\vartheta + 2J \\ \epsilon + 2\vartheta + 3J \end{array}$ 4.23764 4.76933_n 3. 5449_n 3.8446_n 1.102 3.1738 0.28_{n} ε+40+2J 4.274853.6004 $3.9302_{\it n}$ €+40+31 9.057 0.692_n 3.101614.52415 4.78162_n 4.0519_n $\varepsilon + 4\vartheta + 3J$ 3.7975 4.1385_n 4.6961 $\epsilon + 4\vartheta + 3\mathbf{1}$ 4.2431_{n}^{n} €+40+31 5.1290 2.9351_{n} 3.80359. 500_n 4. 41616₂₂ 4,63017 E+40+41 0.5224. 2108_n e+40+41 3.7714 5. 0931_n 4.4165 E+40+41 $5.\,0661_n$ 4.1524e+40+41 $\varepsilon + 4\vartheta + 5J$ 4.0588_n 4.8136

1 Since 1913, when the revision of the tables was concluded, Miss Glancy has continued the problem of (10) Hygica independently at the Observatorio Nacional, Córdoba, with the following highly satisfactory results, which substantiate further the increased accuracy of the revised tables (1) The original osculating elements and the revised tables resulted in a greatly improved representation of the selected observations (1849-183) over the representation obtained with the original tables. (2) After the correction of the original osculating elements by least squares solution (a) on the basis of v. Zeipel's tables and residuals, (b) on the basis of the residuals resulting from the revised tables, the representation of the selected observations was equally satisfactory; but 3 later observations, taken in 1910, 1914, and 1917, are represented far better by the revised tables and corresponding elements than by the original tables and corresponding elements. (cf. Astronomical Journal, Vol. 32, p. 27, No. 748, January 1919) A. O. Leuschner.

Logarith	imie,	TABLE	YXXX) L :)—Continued	l.		Unit-1
	Sin	<i>y</i> -3	P =2	y'-1	ş.··0	w	$n_{\cdot 1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \varepsilon + 4\vartheta + 3J - \Sigma \\ \varepsilon + 4\vartheta + 4J - \Sigma \\ \varepsilon + 6\vartheta + 4J \\ \varepsilon + 6\vartheta + 4J \\ \varepsilon + 6\vartheta + 5J \\ \varepsilon + 6\vartheta + 6J \\ \varepsilon + 8\vartheta + 5J \\ \varepsilon + 8\vartheta + 6J \\ \varepsilon + 8\vartheta + 7J \\ \varepsilon + 8\vartheta + 8J \\ \varepsilon + 8\vartheta + 6J - \Sigma \\ \varepsilon + 8\vartheta + 7J - \Sigma \end{array}$	0, 28 0, 596 _n 0, 255 8, 8	0.64_n 1.070 0.8_n 9.3_n	$\begin{array}{c} 3.\ 2322n \\ 2.\ 744n \\ 3.\ 8027 \\ 3.\ 9374n \\ 3.\ 4684 \\ 2.\ 415 \\ 4.\ 5564 \\ 4.\ 6690 \\ 4.\ 6931n \\ 3.\ 5829 \\ 3.\ 3768n \end{array}$	$\begin{array}{c} 4.2342 \\ 3.0962 \\ 4.77998_n \\ 4.91542 \\ 4.50125_n \\ 3.4823_n \\ 5.4999_n \\ 5.8416 \\ 5.7030_n \\ 5.0844 \\ 4.6352_n \\ 4.4540 \end{array}$	$5,52852$ $5,70347_n$ $5,27451$ $4,2931$	
j^{2} j^{3} j^{2} j^{2} j^{3} j^{2} j^{2} j^{2} j^{2} j^{2}	$ \begin{array}{l} - \varepsilon + 2\vartheta \\ - \varepsilon + 2\vartheta + J \\ - \varepsilon + 2\vartheta + 2J \\ - \varepsilon + 2\vartheta + J - \Sigma \end{array} $ $ - \varepsilon + 4\vartheta + J \\ - \varepsilon + 4\vartheta + 2J \\ - \varepsilon + 4\vartheta + 3J \\ - \varepsilon + 4\vartheta + 2J - \Sigma $ $ - \varepsilon + 4\vartheta + 3J - \Sigma $	0, 606 0, 791 _n 0, 413 9, 34	$\begin{array}{c} 1.\ 422n \\ 1.\ 690 \\ 1.\ 365n \\ 0.\ 28n \end{array}$	$\begin{array}{c} 3.\ 2132 \\ 2.\ 3777_n \\ 2.\ 894 \\ 2.\ 938 \\ 3.\ 5208 \\ 3.\ 4965_n \\ 3.\ 2416 \\ 2.\ 430_n \\ 3.\ 5496 \\ 3.\ 3247_n \end{array}$	$\begin{array}{c} 3.\ 6657_n \\ 3.\ 8866 \\ 3.\ 4610_n \\ 3.\ 4714_n \\ 4.\ 67255 \\ 4.\ 59582 \\ 4.\ 5467_n \\ 3.\ 9848 \\ 4.\ 19852_n \\ 4.\ 65994 \end{array}$	3. 9260 4. 72168 3. 9078 3. 7962	
7, 7,'	$\begin{array}{c} \frac{1}{2}\varepsilon+3\vartheta+2J\\ \frac{1}{2}\varepsilon+3\vartheta+3J\\ \frac{1}{2}\varepsilon+3\vartheta+3J\\ \frac{1}{2}\varepsilon+3\vartheta+4J\\ \frac{1}{2}\varepsilon+5\vartheta+4J\\ \frac{1}{2}\varepsilon+5\vartheta+5J\\ \frac{1}{2}\varepsilon+7\vartheta+5J\\ \frac{1}{2}\varepsilon+7\vartheta+6J\\ \frac{1}{2}\varepsilon+7\vartheta+7J \end{array}$				$\begin{array}{c} 3.\ 6731 \\ 2.\ 3528 \\ 3.\ 6181_n \\ 3.\ 4072_n \\ 3.\ 5244 \\ 3.\ 3533 \\ 3.\ 1780_n \\ 4.\ 2775 \\ 4.\ 4051_n \\ 3.\ 9296 \end{array}$	$\begin{array}{c} 4.\ 0029_n \\ 3.\ 2475_n \\ 4.\ 2122 \\ 4.\ 4000 \\ 4.\ 4012_n \\ 4.\ 4231_n \\ 4.\ 2730 \\ 5.\ 4708_n \\ 5.\ 6177 \\ 5.\ 1605_n \end{array}$	3. 9005 5. 2725 5. 1359 $_{\eta}$
η η' η η' η ² η'	$\begin{array}{c} 2\varepsilon + 2\vartheta + 2J \\ 2\varepsilon + 2\vartheta + 3J \\ 2\varepsilon + 4\vartheta + 3J \\ 2\varepsilon + 4\vartheta + 4J \\ 2\varepsilon + 4\vartheta + 4J \\ 2\varepsilon + 6\vartheta + 5J \\ 2\varepsilon + 6\vartheta + 6J \end{array}$	8. 8 _n 9. 2	9. 486 0. 561 8. 90 _n 0. 34 _n 9. 819 _n 9. 653	$\begin{array}{c} 2.\ 1744_n \\ 2.\ 789_n \\ 9.\ 599 \\ 2.\ 618 \\ 0.\ 5840 \\ 0.\ 4645_n \end{array}$	$\begin{array}{c} 2.708 \\ 1.916_n \\ 3.5813 \\ 1.711 \\ 3.4962_n \\ 2.7821 \\ 2.5979_n \end{array}$	$\begin{array}{c} 2.889_n \\ 2.501 \\ 4.1074_n \\ 2.5795_n \\ 4.0890 \\ 3.7794_n \\ 3.6265 \end{array}$	2, 599 _n 2, 516 _n 3, 1726 4, 51865 4, 38424
η'	$\frac{\frac{5}{2}\varepsilon + 5\vartheta + 5J}{\frac{5}{2}\varepsilon + 7\vartheta + 6J}$ $\frac{\frac{5}{2}\varepsilon + 7\vartheta + 7J}{\frac{5}{2}\varepsilon + 7\vartheta + 7J}$ $+ \vartheta - \vartheta_0) \cos$				$\begin{array}{c} 1.2340 \\ 2.3679 \\ 2.1758_n \end{array}$	2.1166_n 3.3518_n 3.1926	2. 7076 4. 0587 3. 9204 _n
τ, η 3 η η' ² γ η' γ' ³ η' η' ³ η' η' ³ γ' η'	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c} 0.\ 1021_n \\ 1.\ 377_n \\ 1.\ 941_n \\ 1.\ 364 \\ 9.\ 658 \\ 1.\ 863 \\ 1.\ 844 \\ 1.\ 170_n \end{array}$	$\begin{array}{c} 0.728 \\ 2.346 \\ 2.815 \\ 2.220_n \\ 0.774_n \\ 2.755_n \\ 2.642_n \\ 2.049 \end{array}$	$\begin{array}{c} 2.8978_n \\ 3.8211_n \\ 4.4076_n \\ 4.4076 \\ 2.7836 \\ 4.2546 \\ 4.1953 \\ 4.3715_n \end{array}$	$\begin{array}{c} 3.\ 4504 \\ 4.\ 6762 \\ 5.\ 1971 \\ 5.\ 1971_n \\ 3.\ 3840_n \\ 5.\ 0814_n \\ 4.\ 9770_n \\ 5.\ 1770 \\ \end{array}$	3. 7168 _n 5. 7086 3. 6946 5. 6975 _n	
$\begin{bmatrix} \eta & \eta'^2 \\ \frac{\eta^2}{2\eta} & \eta' \end{bmatrix}$	$\begin{array}{ccc} \varepsilon + & 2 \mathbf{J} \\ \varepsilon + & \Sigma \\ \varepsilon + & \mathbf{J} + \Sigma \end{array}$	$\begin{array}{c} 1.\ 742_n \\ 0.\ 716 \\ 1.\ 00_n \end{array}$	2.574 1.65_n 1.89	$\begin{array}{c} 4.\ 0203_n \\ 4.\ 0809 \\ 4.\ 3427_n \end{array}$	4.8466 4.8829_n 5.0837	5. 4008 5. 5553 _n	
7,27,'	- e+ J	1. 562	2.455_n	3, 9535	4.7803_n		
η^2 $\eta^{\eta'}$	$rac{2arepsilon}{2arepsilon+}$ J	$\frac{9.801}{9.357_n}$	0.43_n 0.473	$\frac{2.5842}{2.4548_n}$	$\frac{3.1493_n}{3.0830}$	3. 4158 3. 3936 _n	
	$(\vartheta-\vartheta_0)^2\sin$						
τ, , , ,	ε ε - 1		9. 56 _n 9. 43	$0.42 \\ 0.32_n$			

$$\begin{split} n \partial z - [n \partial z] &= \sum w^{\mathfrak{g}} \eta^{\mathfrak{p}} \eta'^{\mathfrak{g}} j^{2t} C_{1} \sin \operatorname{Arg.} + (\vartheta - \vartheta_{\vartheta}) \sum u^{\mathfrak{g}} \eta^{\mathfrak{p}} \eta'^{\mathfrak{g}} j^{2t} C_{2} \cos \operatorname{Arg.} + (\vartheta - \vartheta_{\vartheta})^{2} \sum u^{\mathfrak{g}} \eta^{\mathfrak{p}} \eta'^{\mathfrak{g}} j^{2t} C_{3} \sin \operatorname{Arg.} \\ \text{where } C_{1}, \ C_{2}, \ C_{3} \ \text{represent the respective coefficients.} \end{split}$$

TABLE B (XXXVIII).

Logarit	thmic.				$\Phi(\vartheta)$				Unit=1	adian.
	Cos	11-6	tr-5	<i>u</i>)-4	211-3	†£'-2	w-3	<i>u</i> ,0	w	u-2
$j^2 \frac{\eta^2}{\eta^{\prime 2}}$	ı		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 5 4. 644_n 3. 41_n 2. 83_n 4. 446	3.909_n 5.160 4.75_n 5.146 4.57	$\begin{array}{c} 4.\ 960 \\ 6.\ 150 \\ 6.\ 509 \\ 6.\ 299_n \\ 6.\ 728_n \end{array}$	$\begin{array}{c} 6.\ 6748_n \\ 8.\ 048_n \\ 8.\ 2077_n \\ 7.\ 994 \\ 8.\ 4022 \end{array}$	7.2764 8.838 8.994 8.740_n 9.1999_n	7. 540_n 8. 655_n 8. 919_n 8. 656 9. 0854	7. 31 8. 100,
$egin{array}{c c} \eta & \eta'^2 & \eta' & \eta' & \eta'^3 & \eta'^$	20 20+ d 20+ d 20+ d 20+ d 20+ d	1. 6 2. 32 _n	$ \begin{array}{c} 2.6_n \\ 0.8_n \\ 3.30 \end{array} $	5. 744 3. 068 5. 886 _n 5. 301 _n	6. 535 _n 5. 2988 6. 718 6. 149	8.3811 7.2212_n 8.5059_n 8.2302_n 8.5592	9.1031_n 7.3772 9.2804 9.0154 9.3245_n	$\begin{array}{c} 9.\ 0128 \\ 8.\ 0372 \\ 9.\ 2017_n \\ 8.\ 938_n \\ 9.\ 2428 \end{array}$	S. 764 _n	8. 668
$j^{2} \eta' \over \eta'^{3} \eta'^{2} j^{2} \eta' j^{2} \eta' j^{2} \eta' j^{2} \eta' j^{2} \eta'$	$\begin{array}{c} 2\vartheta + 2J \\ 2\vartheta + 3J \\ 2\vartheta + J - \Sigma \end{array}$	$\begin{bmatrix} 2.48 \\ 1.9 \\ 2.04_n \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5. 422 2. 94 _n 5. 442 4. 98 _n 4. 51	6.292_n 5.1206_n 6.328_n 5.89 5.42_n	7.476 7.6416 8.0915_n 8.5904_n 8.0326 8.1011	8. 664 _n 7. 9638 _n 8. 630 _n 9. 3489 8. 1973 _n 8. 873 _n	8.636 7.083_n 8.742 9.8024_n 7.69 8.792	8. 645 9. 6532	8. 582,
$\left. egin{array}{c} \eta'^2 \ \eta' \eta' \ j^2 \end{array} ight $	$2\vartheta + 2J - \Sigma$ $4\vartheta + 2J$ $4\vartheta + 3J$ $4\vartheta + 4J$ $4\vartheta + 3J - \Sigma$		$ \begin{array}{c} 2.66_n \\ 2.72 \\ 2.20_n \\ 1.5_n \end{array} $	4. 04 _n 2. 7 4. 369 4. 624 _n 2. 45	5. 00 6. 1031 6. 2526 _n 5. 824 4. 68	$\begin{array}{c} 6.89_n \\ 8.4188_n \\ 8.5594 \\ 8.0924_n \\ 7.1747_n \end{array}$	8. 5297 8. 7988 _n 8. 4333 7. 301	8.158_n 6.0 7.94_n 7.24 8.111	7.90_n 8.287 7.74_n 8.127_n	8. 210 8. 044
$ \begin{array}{c} \eta'^{3} \\ \eta \eta'^{2} \\ \eta^{2} \eta' \\ \eta^{3} \\ j^{2} \eta' \\ j^{2} \eta \end{array} $	$\begin{array}{c} 6\vartheta + 3J \\ 6\vartheta + 4J \\ 6\vartheta + 5J \\ 6\vartheta + 6J \\ 6\vartheta + 4J - \Sigma \\ 6\vartheta + 5J - \Sigma \end{array}$	$\begin{array}{c} 2.0_n \\ 2.0 \end{array}$	$\begin{array}{c} 3. \ 0 \\ 3. \ 0_n \end{array}$	5. 301 _n 5. 92 5. 93 _n 5. 420 4. 04 _n 4. 51	$\begin{array}{c} 6.\ 149 \\ 6.\ 74_n \\ 6.\ 79 \\ 6.\ 292_n \\ 5.\ 00 \\ 5.\ 42_n \end{array}$	$\begin{array}{c} 9.\ 1294_n \\ 9.\ 4432 \\ 9.\ 2774_n \\ 8.\ 634 \\ 8.\ 272_n \\ 8.\ 0554 \end{array}$	9. 7728 0. 14644 _n 0. 03298 9. 4351 _n 9. 1028 8. 926 _n	$\begin{array}{c} 9.\ 6609_n \\ 0.\ 05077 \\ 9.\ 9494_n \\ 9.\ 3608 \\ 9.\ 0334_n \\ 8.\ 864 \end{array}$		
	$(\vartheta - \vartheta_0) \sin \theta$			2. 60 _n	4. 71	5. 94 _n	6. 507 _n	6. 606		
η η' η'	20+ 1 20+21		1. 36 1. 82 _n	2. 48 2. 42	$\begin{array}{c} 4.49 \\ 4.64_{n} \end{array}$	5. 255 _n 5. 350	5. 51 5. 51 _n	5. 25 _n 5. 16		
$egin{array}{c} \eta'^2 \ \eta \eta' \ \eta^2 \end{array}$	$4\vartheta + 2J$ $4\vartheta + 3J$ $4\vartheta + 4J$		2. 34 2. 89 _n 2. 66	3.00 3.46 3.459_n	5.392 5.702_n 5.357	$ \begin{vmatrix} 6.179_n \\ 6.467 \\ 6.127_n \end{vmatrix} $	6. 528 _n 6. 851 6. 530 _n	6. 665 6. 979 _n 6. 653		
η^2	$(\vartheta-\vartheta_0)^2\cos$			2.08_{n}	2. 08		5. 546 _n	5, 546		
$\begin{array}{c c} & \eta'^2 \\ \eta & \eta' \end{array}$	Δ			2. 54 2. 5 _n	$ \begin{array}{c c} 2.54_n \\ 2.5 \end{array} $		5. 396 _n 5. 776	5. 396 5. 776 _n		
		m'3	m'^3	m'^3, m'^2	m'^3, m'^2	$n\iota'^2$, m'	m'^2 , m'	m'2, m'	m'^2, m'	m'^2 , n

 $\boldsymbol{\vartheta}(\vartheta) = \boldsymbol{\Sigma} w^{\boldsymbol{s}}.\eta^{\boldsymbol{p}}.\eta'^{\boldsymbol{q}}.j^{2\boldsymbol{t}}.C_{1}\cos\operatorname{Arg}. + (\vartheta-\vartheta_{0})\boldsymbol{\Sigma} w^{\boldsymbol{s}}.\eta^{\boldsymbol{p}}.\eta'^{\boldsymbol{q}}.j^{2\boldsymbol{t}}.C_{2}\sin\operatorname{Arg}. + (\vartheta-\vartheta_{0})^{2}\boldsymbol{\Sigma} w^{\boldsymbol{s}}.\eta^{\boldsymbol{p}}.\eta'^{\boldsymbol{q}}.j^{2\boldsymbol{t}}.C_{3}\cos\operatorname{Arg}.$ where C₁, C₂, C₃ represent the respective coefficients.

TABLE C (XLIII).

Logarithmic.

 $Unit=1^{\prime\prime}$

	Cos	213	†ℓ′−‡	₹(-1	11:0	w	11:2
$\begin{array}{c c} \eta^2 \\ \eta'^2 \\ j^2 \\ \eta \eta' \end{array}$	L	9, 80 8, 9 9, 66 _n	8.72 0.212_n 9.23	$9,88_{n}$	1.6349 2.759 2.937 2.937_n 3.1136_n	$\begin{array}{c} 2.1070_n \\ 3.4922_n \\ 3.6295_n \\ 3.6295 \\ 3.8440 \end{array}$	2, 2333
$\begin{bmatrix} \eta & \eta'^2 \\ \eta' \\ \eta'^2 \eta' \\ \eta'^3 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0. 556 _n 0. 997 0. 438	$\begin{array}{c} 1.\ 204 \\ 0.\ 504_n \\ 1.\ 711_n \\ 1.\ 220_n \end{array}$	3.2111_n 2.3472 3.6559 3.3654	3.7970 2.456_n 4.3103_n 4.0763_n	2.686_n	3, 4735
$\begin{bmatrix} J^2 & \eta' \\ \eta \\ \eta^3 \\ \eta & \eta'^2 \\ i^2 \eta \end{bmatrix}$	$2\vartheta + 2J$	$0.732_n \ 0.772_n$	0, 438 1, 497 1, 589	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccccc} 4.3810 & & & \\ 3.2529 & & \\ 4.0643 & & \\ 4.0723 & & \\ 4.5649_{\pi} & & \\ \end{array}$	3.0689_n 4.9303	3, 3979 _n
$ \begin{array}{c c} & \eta & \\ & \eta^3 \\ & \eta & \eta'^2 \\ & j^2 \eta & \\ & j^2 \eta' \\ & j^2 \eta' \\ & j^2 \eta' \\ & \eta'^2 \end{array} $	$ \begin{array}{cccc} 2\vartheta + 3J \\ 2\vartheta + J - \Sigma \\ 2\vartheta + 2J - \Sigma \\ 4\vartheta + 2J \end{array} $	0. 505 9. 33 _n 9. 20 8. 9	$ \begin{array}{c} 1.344_n \\ 0.15 \\ 0.10_n \\ 1.2819_n \end{array} $	$ \begin{array}{c c} 3. & 4757_n \\ 2. & 938_n \\ 2. & 0251 \\ 3. & 5514 \end{array} $	2.783 3.5830 3.2961_n 3.6173_n	3. 8147	
	$ \begin{array}{c} 4\vartheta + 3J \\ 4\vartheta + 4J \\ 4\vartheta + 3J - \Sigma \\ 6\vartheta + 3J \\ 6\vartheta + 4J \\ 6\vartheta + 5J \\ 6\vartheta + 6J \\ 6\vartheta + 4J - \Sigma \\ 6\vartheta + 5J - \Sigma \end{array} $	9, 75 _n 9, 98 0, 438 1, 125 _n 1, 198 0, 732 _n 9, 20 9, 70 _n	$\begin{array}{c} 1.\ 5024 \\ 1.\ 1342_n \\ 9.\ 64_n \\ 1.\ 220_n \\ 1.\ 862 \\ 1.\ 947_n \\ 1.\ 508 \\ 0.\ 10_n \\ 0.\ 56 \end{array}$	3. 7885 _n 3. 4007 2. 305 4. 2675 4. 6479 _n 4. 5397 3. 9457 _n 3. 4099 3. 2601 _n	$\begin{array}{c} 4.1394 \\ 3.9091_n \\ 2.542_n \\ 4.7993_n \\ 5.2324 \\ 5.1768_n \\ 4.6328 \\ 4.1710_n \\ 4.0542 \end{array}$	4. 3110 _n 4. 1480 2. 749 _n	
$\eta \eta'$ j^2 η^2 η'^2 $\eta \eta'$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.3 _n	$\begin{array}{c} 3.\ 4878_n \\ 2.\ 2106 \\ 3.\ 5709_n \\ 3.\ 4507 \\ 3.\ 5100 \\ 2.\ 579_n \end{array}$	4. 1106 2. 7179 _n 4. 2261 4. 1296 _n 4. 1837 _n 3. 9270	2, 919
η' η' η'^2 $\eta \eta'$ η^2 j^2	$ \frac{1}{2}\epsilon + 3\vartheta + 2J $ $ \frac{1}{2}\epsilon + 3\vartheta + 3J $ $ \frac{1}{2}\epsilon + 5\vartheta + 3J $ $ \frac{1}{2}\epsilon + 5\vartheta + 4J $ $ \frac{1}{2}\epsilon + 5\vartheta + 4J $ $ \frac{1}{2}\epsilon + 5\vartheta + 4J - \Sigma $			0, 08 9, 5	3. 6873 3. 5727 _n 4. 5568 4. 7261 _n 4. 2862 3. 2570	$\begin{array}{c} 4.\ 1471_n \\ 4.\ 1511 \\ 5.\ 1414_n \\ 5.\ 4067 \\ 5.\ 0418_n \\ 4.\ 0005_n \end{array}$	4. 7839 4. 7545 _n
η' η'^2 $\eta \eta'$ η'^2 η^2 j^2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1. 086 _n 0. 88	$\begin{array}{c} 2.7090 \\ 2.1967_n \\ 2.514 \\ 4.0853 \\ 3.8341_n \\ 2.416 \end{array}$	3.3467_n 3.0952 4.1049_n 3.9122 3.8118 3.6926_n	3. 7098 3. 5836 _n
$\begin{vmatrix} \eta \\ \eta' \\ \eta \eta' \end{vmatrix}$ $\begin{vmatrix} \eta^2 \\ \eta'^2 \\ j^2 \\ \tau \eta' \end{vmatrix}$	$\begin{array}{c} \varepsilon \\ \varepsilon + \\ \varepsilon + 2\vartheta + J \\ \varepsilon + 2\vartheta + 2J \\ \varepsilon + 2\vartheta + 3J \end{array}$	0. 444 0. 344 _n 0. 025 _n 9. 98	9. 62 9. 04 _n 1. 1661 _n 9. 487 1. 1143 0. 828 0. 811 _n	0. 58 _n 9. 9 3. 0588 2. 1744 _n 2. 692 _n 2. 634 3. 1265 2. 873 _n	$\begin{array}{c} 2.\ 143_n \\ 2.\ 061 \\ 3.\ 8035_n \\ 2.\ 7280 \\ 3.\ 5334 \\ 3.\ 0726 \\ 3.\ 8806_n \\ 3.\ 1697 \end{array}$	2. 682 2. 666 _n 4. 2554 2. 972 _n 4. 0772 _n 4. 0416 _n 4. 3473 3. 5856	2. 9151 _n 2. 9477 2. 976
$ \begin{array}{c c} \eta & \eta'^2 \\ \eta' \\ \eta^2 \eta' \\ \eta'^3 \\ i^2 & \eta' \end{array} $	ε+4θ+2J ε+4θ+3J ε+4θ+3J ε+4θ+3J ε+4θ+3J	1. 105 8. 8 _n 1. 260 _n 0. 267	1. 89 _n 0. 398 2. 083	2. 864 2. 8000 _n 3. 0931 3. 8375 3. 9421	$\begin{array}{c} 4.3477_n \\ 3.5327 \\ 4.4160 \\ 4.0446_n \\ 4.6972_n \end{array}$	4. 0065 _n	4. 3207
$ \begin{array}{c} \eta \\ \eta^3 \\ \eta \eta'^2 \\ j^2 \eta \\ j^2 \eta' \end{array} $	ε+4θ+4J ε+4θ+4J ε+4θ+4J ε+4θ+4J ε+4θ+3J ε+4θ+3J-Σ	9. 19 0. 774 0. 455 _n	0.248_n 1.66_n 1.32	2. 6356 3. 0934 _n 4. 1154 _n 3. 8518 _n 3. 7579 3. 0030	3.4317_n 3.7866_n 4.5547 4.6436 4.3244_n 3.8869_n	3. 9469	4. 2558_n

Table C (XLIII)—Continued.

Unit-1" Logarithmic.

	Cos	<i>u</i> 3	W-2	w-1	u·0	w	11'2
$\begin{bmatrix} j^2 & \tau_{i}' \\ & \tau_{i'2} \\ & \tau_{i'} \\ & \tau_{i'} \\ & j^2 \\ & j^2 \\ & \tau_{i'3} \\ & \tau_{i'3} \\ & \tau_{i'2} \\ & \tau_{i'3} \\ & \tau_{i'2} \\ & \tau_{i'3} \\ & \tau_{i'3}$	$\begin{array}{c} \varepsilon + 4\vartheta + 4J - \Sigma \\ \varepsilon + 6\vartheta + 1J \\ \varepsilon + 6\vartheta + 5J \\ \varepsilon + 6\vartheta + 5J \\ \varepsilon + 6\vartheta + 6J \\ \varepsilon + 6\vartheta + 5J - \Sigma \\ \varepsilon + 8\vartheta + 5J \\ \varepsilon + 8\vartheta + 6J \\ \varepsilon + 8\vartheta + 7J \\ \varepsilon + 8\vartheta + 6J - \Sigma \\ \varepsilon + 8\vartheta + 7J - \Sigma \end{array}$	$\begin{array}{c} 9,98_n\\ 0,296\\ 9,95_n\\ 8,5_n\\ 1,320\\ 1,228_n\\ 0,648\\ \end{array}$	$\begin{array}{c} 0.480 \\ 0.823_n \\ 0.528 \\ 9.15 \\ 2.152_n \\ 2.093 \\ 1.54_n \end{array}$	$\begin{array}{c} 2.\ 4425 \\ 3.\ 5016_n \\ 3.\ 6369 \\ 3.\ 1685_n \\ 2.\ 114_n \\ 4.\ 2551_n \\ 4.\ 5657 \\ 4.\ 3995_n \\ 3.\ 7543 \\ 3.\ 2818_n \\ 3.\ 0763 \end{array}$	$\begin{array}{c} 1.\ 85_n \\ 4.\ 3723 \\ 4.\ 5582_n \\ 4.\ 1934 \\ 3.\ 0881 \\ 4.\ 9349 \\ 5.\ 3010_n \\ 5.\ 1827 \\ 4.\ 5812_n \\ 4.\ 1442 \\ 3.\ 9759_n \end{array}$	$\begin{array}{c} 4.\ 9952_n \\ 5.\ 2093 \\ 4.\ 8131_n \\ 3.\ 7886_n \end{array}$	
$ \begin{vmatrix} \eta'^2 \\ \eta \eta' \\ \eta^2 \\ j^2 \end{vmatrix} $ $ \eta'^3 \\ \eta \eta'^2 \\ \eta^2 \eta' \\ \eta^3 \\ j^2 \eta' \\ j^2 \eta' \end{vmatrix} $	$ \begin{array}{l} - \varepsilon + 2\vartheta \\ - \varepsilon + 2\vartheta + \mathbf{J} \\ - \varepsilon + 2\vartheta + 2\mathbf{J} \\ - \varepsilon + 2\vartheta + \mathbf{J} - \mathbf{\Sigma} \\ - \varepsilon + 4\vartheta + \mathbf{J} \\ - \varepsilon + 4\vartheta + 2\mathbf{J} \\ - \varepsilon + 4\vartheta + 4\mathbf{J} \\ - \varepsilon + 4\vartheta + 4\mathbf{J} \\ - \varepsilon + 4\vartheta + 2\mathbf{J} - \mathbf{\Sigma} \\ - \varepsilon + 4\vartheta + 3\mathbf{J} - \mathbf{\Sigma} \end{array} $	$\begin{array}{c} 0.305 \\ 0.490_n \\ 0.117 \\ 9.04 \\ \hline \\ 1.146_n \\ 1.005 \\ 0.290_n \\ \hline \\ 9.98_n \end{array}$	$ \begin{vmatrix} 1.1007_n \\ 1.3330 \\ 0.982_n \\ 9.96_n \end{vmatrix} $ $ \begin{vmatrix} 1.89 \\ 1.78_n \\ 1.15 \end{vmatrix} $ $ 0.8 $	$\begin{array}{c} 2.\ 912 \\ 3.\ 0166_n \\ 2.\ 288_n \\ 2.\ 636 \\ 3.\ 2197 \\ 3.\ 0204 \\ 3.\ 5247_n \\ 3.\ 1793 \\ 3.\ 2486 \\ 2.\ 957_n \end{array}$	$\begin{array}{c} 3.\ 4958_n \\ 3.\ 7273 \\ 3.\ 2375_n \\ 3.\ 2817_n \\ 3.\ 9650_n \\ 4.\ 2441 \\ 4.\ 0012_n \\ 2.\ 982 \\ 4.\ 0585_n \\ 3.\ 8580 \end{array}$	3. 8151 4. 3119 3. 7892 3. 6568	
$ \begin{array}{c c} \eta & \eta' \\ \eta & \eta' \\ \hline \eta & \eta' \\ \end{array} $ $ \begin{array}{c c} j^2 & \\ j^3 & \\ \eta & \eta' \\ \hline \eta & \\ \eta & \\ j^2 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9. 0 9. 5 9. 28 1. 017 0. 88 _n	$\begin{array}{c} 2.\ 3363\\ 1.\ 500\\ 2.\ 779\\ 2.\ 1614_n\\ 1.\ 32\\ 3.\ 3450\\ 3.\ 2309\\ 3.\ 2994_n\\ 3.\ 1617_n\\ 2.\ 9688\\ 4.\ 0855_n\\ 4.\ 1991\\ 3.\ 7114_n\\ 2.\ 615_n\\ \end{array}$	$\begin{array}{c} 3.\ 0704_n \\ 2.\ 3585 \\ 3.\ 7820_n \\ 3.\ 0257 \\ 2.\ 966 \\ 4.\ 1111_n \\ 4.\ 1965_n \\ 4.\ 1520 \\ 4.\ 1967 \\ 4.\ 0380_n \\ 5.\ 2422 \\ 5.\ 3823_n \\ 4.\ 9188 \\ 3.\ 8317 \end{array}$	3. 5111 3. 1842 _n 3. 6491 _n 5. 0160 _n 4. 8781
j^2	$ \begin{vmatrix} -\frac{3}{2}\varepsilon + \vartheta \\ -\frac{3}{2}\varepsilon + \vartheta + \mathbf{J} \\ -\frac{3}{2}\varepsilon + \vartheta - \mathbf{\Sigma} \end{vmatrix} $				3.2411 2.819_n 2.9181_n	3.7872_n 3.4476 3.4813	
$ \begin{vmatrix} \eta^2 \\ \eta & \eta' \\ \eta'^2 \\ j^2 \\ \eta' \\ \eta' \\ \eta' \\ \eta'^2 \\ j^2 \\ \eta & \eta' \\ \eta' \\ \eta' \\ \eta' \\ j^2 \\ j^2 \\ \end{vmatrix} $	$\begin{array}{c} 2\varepsilon \\ 2\varepsilon + & \mathbf{J} \\ 2\varepsilon + & 2\mathbf{J} \\ 2\varepsilon + & 2\mathbf{J} + \mathbf{\Sigma} \\ 2\varepsilon + 2\vartheta + 2\mathbf{J} \\ 2\varepsilon + 2\vartheta + 3\mathbf{J} \\ 2\varepsilon + 4\vartheta + 3\mathbf{J} \\ 2\varepsilon + 4\vartheta + 4\mathbf{J} \\ 2\varepsilon + 4\vartheta + 5\mathbf{J} \\ 2\varepsilon + 4\vartheta + 5\mathbf{J} \\ 2\varepsilon + 4\vartheta + 6\mathbf{J} \\ 2\varepsilon + 8\vartheta + 6\mathbf{J} \\ 2\varepsilon + 8\vartheta + 8\mathbf{J} \\ 2\varepsilon + 8\vartheta + 7\mathbf{J} - \mathbf{\Sigma} \end{array}$		8. 7 9. 64 9. 48 _n	9. 8n 9. 5 8. 8 0. 53 0. 36n	$\begin{array}{c} 2.\ 364_n \\ 2.\ 624 \\ 2.\ 207_n \\ 2.\ 620_n \\ 1.\ 63 \\ 1.\ 796 \\ 1.\ 92_n \\ 1.\ 5802_n \\ 2.\ 330 \\ 3.\ 1079 \\ 2.\ 736 \\ 2.\ 9881_n \\ 2.\ 652_n \\ 2.\ 441_9 \\ 3.\ 6135_n \\ 3.\ 7124 \\ 3.\ 2109_n \\ 2.\ 068_n \end{array}$	3. 0737 3. 3489n 2. 978 3. 2765 2. 362n 2. 700 2. 4158 3. 1764n 3. 9008n 3. 6809n 3. 6809n 3. 4512n 4. 6784 4. 8075n 4. 3338 3. 2092	2. 873 2. 1007 2. 9867 _n 4. 3279 _n 4. 1892
η η'	$\frac{5}{2}\varepsilon + 5\vartheta + 5\mathbf{J}$ $\frac{5}{2}\varepsilon + 7\vartheta + 6\mathbf{J}$ $\frac{5}{2}\varepsilon + 7\vartheta + 7\mathbf{J}$			$ \begin{array}{c c} 9. \ 3_{n} \\ 0. \ 5_{n} \\ 0. \ 3 \end{array} $	$\begin{array}{c} 1.140_n \\ 2.2749_n \\ 2.0542 \end{array}$	$egin{array}{c} 2.\ 0056 \ 3.\ 2377 \ 3.\ 0565_{n} \end{array}$	2.5727_n 3.9184_n 3.7710
	$\frac{7}{2}s+7\vartheta+7J$			8. 1	0.43_n	1, 346	1. 959 _n
η η' η'	$(\vartheta - \vartheta_0) \sin \frac{1}{2\vartheta + 1}$ $2\vartheta + 2\mathbf{J}$	9, 66	$\begin{array}{c} 0.810_n \\ 9.79_n \\ 9.92 \end{array}$	2, 7559 0, 54 0, 63 _n	3. 3840 _n	3. 6946	

Table C (XLIII) - Continued.

Logarithm	ric.		4'				Unit-1"
	$(v - \partial_{\sigma}) \sin$	u-3	₹1 −2	<i>y</i> -1	2/-3	w	w^{1}
$j^2\eta$: : :	$\begin{array}{c} 9.801_n \\ 1.075_n \\ 1.640_n \\ 1.063 \end{array}$	0, 425 2, 045 2, 514	$ \begin{array}{c} 2.5970_n \\ 3.5201_n \\ 4.1066_n \end{array} $	3. 1493 4. 3751 4. 8961 4. 8961 _n	3.4158_n 5.4076	
	ε ε+ 1 ε+ 1	9. 36 1. 565 1. 543	$ \begin{array}{c c} 1.916_n \\ 0.471_n \\ 2.456_n \\ 2.341_n \end{array} $	4. 1066 2. 4824 3. 9671 3. 8942	$ \begin{array}{c c} 3.0830_n \\ 4.7890_n \\ 4.6760_n \end{array} $	3. 3936	
$ \begin{vmatrix} \eta' \\ \eta^2 \eta' \\ \eta'^3 \\ j^2 \eta' \\ \eta \eta'^2 \\ j^2 \eta' \\ j^2 \eta' \\ \eta \\ \eta' $	\$\frac{1}{\sigma} \frac{1}{\sigma} \frac	$\begin{array}{c} 0.87_n \\ 0.87_n \\ 1.441_n \\ 0.42 \\ 0.695_n \end{array}$	$\begin{array}{c} 1.75 \\ 2.273 \\ 1.36_n \\ 1.585 \\ 9.59_n \\ 9.46 \end{array}$	$\begin{array}{c} 4.0705_n \\ 3.7192_n \\ 3.7799 \\ 4.0417_n \\ 0.45 \\ 0.34_n \end{array}$	4. 8759 4. 5456 4. 5819 _n 4. 7827	5. 3965_n 5. 0998 5. 2543_n	
η η'	$\begin{array}{c} 2\varepsilon + 2\vartheta + 21 \\ 2\varepsilon + 2\vartheta + 31 \end{array}$		9. 45 9. 32 _n	0. 11 _n 0. 04			
η²η΄	$-\varepsilon + \int (\vartheta - \vartheta_0)^2 \cos \theta$	1. 255 _n	2. 149	3. 6240 _n	4. 4615		
η η'	ε ε+ Δ		9. 25 9. 12 _n	$\begin{array}{c} 0.117_n \\ 0.02 \end{array}$			
		m'2	m'2	m'^2 , m'	m'	m'	m'

$$\begin{split} \nu &= \sum w^s \eta^p \eta'^q j^{2t} C_1 \cos \text{Arg.} + (\vartheta - \vartheta_0) \sum w^s \eta^p \eta' q j^{2t} C_2 \sin \text{Arg.} + (\vartheta - \vartheta_0)^2 \sum w^s \eta^p \eta'^q j^{2t} \ C_2 \cos \text{Arg.} \\ \text{where } C_1, C_2, C_3 \text{ represent the respective coefficients.} \\ 110379^\circ &= 22 - - 3 \end{split}$$

TABLE D (L1V).

Logarithmic.

 $\Sigma U_{p\cdot q}\eta p_{\eta'}q\sin {
m Arg}$

Unit-1".

	Sin	wi	11·0	w
η η' η	$\begin{array}{c} -\ J - \Pi' \\ -\ \Pi' \\ 2\theta +\ J - \Pi' \\ 4\theta + 3J - \Pi' \\ 4\theta + 2J - \Pi' \end{array}$	1. 705	$3.062\mathbf{l}_n$ 2.8235 2.2831 3.1591_n 3.2462	3. 7258 3. 5528 _n 2. 8483 _n 3. 9166 _n 3. 8608
η η' η'	$\begin{array}{ccc} \frac{1}{2}\varepsilon + \theta & -\Pi' \\ \frac{1}{2}\varepsilon + \theta + A - \Pi' \\ \frac{1}{2}\varepsilon + 3\theta + 2J - \Pi' \\ \frac{1}{2}\varepsilon + 5\theta + 3J - \Pi' \\ \frac{1}{2}\varepsilon + 5\theta + 4J - \Pi' \end{array}$		3. 2112 _n 2. 5875 2. 2787 3. 3155 3. 0779 _n	3.8544 3.4153_n 2.6304_n 3.5865_n 3.3972
η η' η'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3. 1158 _n 3. 1493 2. 3242 3. 3863 3. 3532 _n	3.7378 3.7544_n 3.0060_n 4.1833_n 4.1452
η η' η'	$\begin{array}{c} \epsilon + 2\theta + \Delta - \Pi' \\ \epsilon + 2\theta + 2\mathbf{J} - \Pi' \\ \epsilon + 4\theta + 3\mathbf{J} - \Pi' \\ \epsilon + 6\theta + 4\mathbf{J} - \Pi' \\ \epsilon + 6\theta + 5\mathbf{J} - \Pi' \end{array}$	$\begin{array}{c} 2.6364 \\ 1.423_n \\ 1.4042_n \\ 2.3306_n \\ 2.1137 \end{array}$	3. 3704 _n 2. 706 2. 1720 3. 1922 3. 0138 _n	3.8423 3.4014_n 2.6339_n 3.7582_n 3.6101
η η' η' η' η	$ \begin{array}{c c} -\varepsilon-2\theta-3\mathbf{J}-\Pi'\\ -\varepsilon-2\theta-2\mathbf{J}-\Pi'\\ -\varepsilon&-\mathbf{J}-\Pi'\\ -\varepsilon&+2\theta&-\Pi'\\ -\varepsilon+2\theta+\mathbf{J}-\Pi' \end{array} $	$ \begin{array}{c c} 2.7175 \\ 2.7756_n \end{array} $ $ \begin{array}{c c} 2.8125 \\ 2.9121_n \end{array} $	3. 4858 _n 3. 5070 1. 6810 3. 4427 _n 3. 4958	$egin{array}{l} 3.\ 9484 \\ 3.\ 9456_n \\ 2.\ 2463_n \\ 3.\ 7846 \\ 3.\ 8338_n \end{array}$
η η' η'	$\begin{array}{c} \frac{8}{2}\epsilon + 3\theta + 2J - \Pi' \\ \frac{8}{2}\epsilon + 3\theta + 3J - \Pi' \\ \frac{8}{2}\epsilon + 5\theta + 4J - \Pi' \\ \frac{8}{2}\epsilon + 7\theta + 5J - \Pi' \end{array}$		2. 6058 1. 760 1. 7510 _n 2. 9120 _n	3. 5312 _n 1. 82 _n 2. 8113 4. 0813
η η' η'	$ \begin{array}{l} -\frac{3}{2}\varepsilon - 3\theta - 4J - \Pi' \\ -\frac{3}{2}\varepsilon - 3\theta - 3J - \Pi' \\ -\frac{5}{2}\varepsilon - \theta - 2J - \Pi' \\ -\frac{5}{2}\varepsilon + \theta - J - \Pi' \\ -\frac{3}{2}\varepsilon + \theta - I' \end{array} $		$\begin{array}{c} 2.8673 \\ 2.9620_n \\ 2.0569_n \\ 2.9275_n \\ 2.9702 \end{array}$	3. 8458 _n 3. 9124 2. 7932 3. 4708 3. 5487 _n
η'	$\begin{array}{c} 2\varepsilon + 4\theta + 3J - \Pi' \\ 2\varepsilon + 4\theta + 4J - \Pi' \\ 2\varepsilon + 6\theta + 5J - \Pi' \end{array}$		1. 640 1. 617 1. 206 _n	2.731_n 2.340_n 2.2110
η η' η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 2.4012 \\ 2.5241_n \\ 1.5290_n \\ 2.3174_n \\ 2.3514 \end{array}$	3. 3634 _n 3. 4544 2. 3210 3. 0558 3. 0737 _n
			m'	

 $[\]frac{u}{\cos i} = \sum U_{p,q\eta} p_{\eta'} q \sin \operatorname{Arg.} + n_2 t \Big\{ K_1 (\cos \epsilon - \epsilon_1) + K_2 \sin \epsilon \Big\} + c_1 (\cos \epsilon - \epsilon_1) + c_2 \sin \epsilon.$

Table $E_{\mathbf{I}}$ (LV_I).

Logarithm	ile.	K_1		Unit-1".	
	Cos	W0	w	w ³	
η'^2 η'^2 j^2 η'^2	# - II' # - II'	$\begin{array}{c} 2.9180_n \\ 1.9821 \\ 2.8035 \\ 3.5175 \\ 3.1764_n \\ 3.4580_n \end{array}$	3. 7732 2. 5473 _n 3. 7182 _n 4. 3017 _n 3. 9772 4. 2668	2. 8138	
			m.'	-	

$$K_1 = \sum w^s \eta p_{\eta}' q j^{2t} \cos \text{Arg.}$$

Table E_2 (LV_{II}).

Logarithn	nic.	K_2		Unit=1".
	Sin	w ⁰	w	w³
$ \begin{array}{c} \eta'^2 \\ \eta \eta' \end{array} $ $ \begin{array}{c} \eta^2 \\ \eta'^2 \\ \eta \eta' \end{array} $ $ \begin{array}{c} \eta'^2 \\ \eta \eta' \end{array} $	4-II' II' 4+II' 4+II' 3+II' 2J+II' J+II'	2. 9180 3. 7799 1. 9821 _n 3. 7744 _n 3. 5175 _n 3. 4580 3. 1764	3. 7732 _n 4. 5819 _n 2. 5473 4. 5420 4. 3017 4. 2668 _n 3. 9772 _n	2. 8138 _n
			m'	

$$K_2 = \sum w^s \eta^p \, \eta'^q j^{2t} \sin Arg.$$

$$\frac{u}{\iota \cos i} = \sum U_{p \cdot q} \eta^p \eta'^q \sin \operatorname{Arg.} + nt \Big\{ K_1(\cos \epsilon - \epsilon) + K_2 \sin \epsilon \Big\} + c_1(\cos \epsilon - \epsilon) + c_2 \sin \epsilon$$

TABLE F (LVI)

Logarithmic.

 $w - w_0$

Unit-1 radian.

	Cos	2/-3	2/-2	U'-1	0	w	w^{1}
	$\begin{array}{c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \\ 5\Gamma \\ 7\Gamma \end{array}$		4. 360	5. 1966 _n 4. 766 4. 416 4. 412 4. 484	5 7767 6, 6599 7, 1194 6, 8442 6, 5883 6, 3457 5, 875	7. 3732_n 7. 7572_n 7. 5458_n 7. 3450_n 7. 1490_n 6. 7632_n	7. 7492 8. 0553 7. 9060 7. 7602 7. 6136 7. 3134
η_0	$\begin{array}{c} -5\varGamma + 2\theta_0 + 2 J_0 \\ -4\varGamma + 2\theta_0 + 2 J_0 \\ -3\varGamma + 2\theta_0 + 2 J_0 \\ -2\varGamma + 2\theta_0 + 2 J_0 \\ -2\varGamma + 2\theta_0 + 2 J_0 \\ -2\theta_0 + 2 J_0 \\ 2\theta_0 + 2 J_0 \\ 2\varGamma + 2\theta_0 + 2 J_0 \\ 3\varGamma + 2\theta_0 + 2 J_0 \\ 3\varGamma + 2\theta_0 + 2 J_0 \\ 4\varGamma + 2\theta_0 + 2 J_0 \\ 4\varGamma + 2\theta_0 + 2 J_0 \\ 7\varGamma + 2\theta_0 + 2 J_0 \end{array}$		4. 379	$\begin{array}{c} 4.\ 161_n \\ 3.\ 19 \\ 3.\ 52 \\ 5.\ 1420 \\ 7.\ 6355_n \\ 4.\ 856_n \\ 4.\ 92_n \\ 5.\ 5174_n \\ 5.\ 4248_n \end{array}$	$\begin{array}{c} 6.5090 \\ 6.169 \\ 6.8821_n \\ 7.0986_n \\ 6.359 \\ 8.2144 \\ 8.0894_n \\ 7.8150_n \\ 7.6056_n \\ 7.4128_n \\ 7.2254_n \\ 6.8746_n \end{array}$	$\begin{array}{c} 6.\ 6325_n \\ 7.\ 0658 \\ 7.\ 6078 \\ 7.\ 6970 \\ 7.\ 0722_n \\ 8.\ 4252_n \\ 8.\ 9548 \\ 8.\ 6561 \\ 8.\ 4650 \\ 8.\ 2958 \\ 8.\ 1426 \\ 7.\ 8484 \end{array}$	$\begin{array}{c} 7.\ 4746_n\\ 7.\ 8698_n\\ 7.\ 997\delta_n\\ 7.\ 9394_n\\ 7.\ 4480\\ 9.\ 5668_n\\ 9.\ 0101_n\\ 8.\ 8561_n\\ 8.\ 7346_n\\ 8.\ 4936_n\\ \end{array}$
η'	$ \begin{vmatrix} -5\Gamma + 2\theta_0 + J_0 \\ -4\Gamma + 2\theta_0 + J_0 \\ -3\Gamma + 2\theta_0 + J_0 \\ -2\Gamma + 2\theta_0 + J_0 \\ -2\Gamma + 2\theta_0 + J_0 \\ -\Gamma + 2\theta_0 + J_0 \\ 2\theta_0 + J_0 \\ 2\Gamma + 2\theta_0 + J_0 \\ 3\Gamma + 2\theta_0 + J_0 \\ 4\Gamma + 2\theta_0 + J_0 \\ 4\Gamma + 2\theta_0 + J_0 \\ 5\Gamma + 2\theta_0 + J_0 \\ 7\Gamma + 2\theta_0 + J_0 \end{vmatrix} $		4.605 _n	$\begin{array}{c} 4.\ 582 \\ 4.\ 674 \\ 4.\ 99 \\ 5.\ 4623_n \\ 7.\ 1987 \\ 5.\ 0056 \\ 4.\ 38 \\ 5.\ 6251 \\ 5.\ 5812 \end{array}$	$\begin{array}{c} 6.\ 8776_n \\ 6.\ 8815_n \\ 6.\ 6271_n \\ 6.\ 7985 \\ \hline \\ 7.\ 8314_n \\ 8.\ 2964 \\ 8.\ 0434 \\ 7.\ 8458 \\ 7.\ 6603 \\ 7.\ 4778 \\ 7.\ 1130 \\ \end{array}$	7. 5604 7. 4536 6. 7816 7. 4732_n 8. 1061 9. 1086_n 8. 8316_n 8. 6564_n 8. 5030_n 8. 3544_n 8. 0545_n	7. 8425 _n 7. 5238 _n 7. 3174 7. 7966 9. 6833 9. 3296 9. 1558 9. 0248 8. 9050 8. 6668
${\eta_0}^2$	Γ 2Γ 3Γ 4Γ	4. 664	4.71	5. 83	7.8102 7.7520_n 7.6172_n 7.7135_n	8.6250_n 8.1242 6.6043_n 8.2308	
η_0^2	$\begin{array}{c} -4\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ -3\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ -2\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ - \varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ 4\theta_{0} + 4 \mathbf{J}_{0} \\ \varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ 2\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ 3\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ 4\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \\ 5\varGamma + 4\theta_{0} + 4 \mathbf{J}_{0} \end{array}$	4. 666	5. 807 _n	8, 0913	7. 1862 7. 1804 6. 817 8. 4680 _n 8. 8270 _n 8. 7850 8. 5144 8. 3274 8. 1627 8. 0050	$7. \ 9072_n$ $7. \ 8679_n$ $7. \ 456_n$ $8. \ 8822$ $9. \ 2073$ $9. \ 8236_n$ $9. \ 4910_n$ $9. \ 3006_n$ $9. \ 1494_n$ $9. \ 0105_n$	
η ₀ η'	$ \begin{array}{c} -4\varGamma + 4\theta_0 + 3 J_0 \\ -3\varGamma + 4\theta_0 + 3 J_0 \\ -2\varGamma + 4\theta_0 + 3 J_0 \\ - \varGamma + 4\theta_0 + 3 J_0 \\ - \varGamma + 4\theta_0 + 3 J_0 \\ 2\varGamma + 4\theta_0 + 3 J_0 \\ 2\varGamma + 4\theta_0 + 3 J_0 \\ 3\varGamma + 4\theta_0 + 3 J_0 \\ 3\varGamma + 4\theta_0 + 3 J_0 \\ 5\varGamma + 4\theta_0 + 3 J_0 \end{array} $	4. 516 _n	6. 2034	8, 5565 _n	7. 354 _n 7. 5708 _n 8. 8838 9. 2180 9. 2783 _n 9. 0241 _n 8. 8480 _n 8. 6916 _n 8. 5401 _n	S. 1083 8. 2084 9. 054\$ _m 9. 5174 _n 0. 2833 9. 9635 9. 7850 9. 6434 9. 5128	
		m'2	$m\iota'^2$	m'2, m'	m'2, m'	m'	m'

Table F (LVI)—Continued.

Logarith	mie.		$n\!-\!\!-\!$			t ⁺ni	t≖1 radian.
	Cos	$w^{\perp 4}$	<i>u</i>	u -1	W,0	w	<i>u</i> ·2
το η'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 510	5 004	5.70	$ \begin{array}{c} 7.\ 7640 \\ 7.\ 4203 \\ 7.\ 8104_n \\ 8.\ 0479_n \end{array} $	7. 8364 _n 8. 3915 8. 6268 8. 8018	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4. 518 _n	5. 886 _n	5. 70 _n	7, 1339 7, 8421 7, 9669 7, 9760	$\begin{array}{c} 7,8500 \\ 8,4293_n \\ 8,6796_n \\ 8,7576_n \end{array}$	
η'^2	$ \begin{array}{c c} -4\Gamma + 4\theta_0 + 2J_0 \\ -3\Gamma + 4\theta_0 + 2J_0 \\ 3\Gamma + 4\theta_0 + 2J_0 \end{array} $				6, 9002 7, 1638	7. 6938_n 7. 8502_n	
	$ \begin{array}{c} -2 \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0}^{\circ} \\ - \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0} \\ 4 \theta_{0}^{\circ} + 2 J_{0} \\ 2 \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0} \\ 2 \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0} \\ 3 \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0} \\ 4 \varGamma + 4 \theta_{0}^{\circ} + 2 J_{0} \end{array} $	3. 76	6. 0608 _m	8. 4157	$\begin{array}{c} 8, 1860_n \\ 8, 9760_n \\ 9, 1714 \\ 8, 9358 \\ 8, 7718 \\ 8, 6236 \end{array}$	$\begin{array}{c} 8.\ 4016 \\ 9.\ 1661 \\ 0.\ 1382_n \\ 9.\ 8333_n \\ 9.\ 6681_n \\ 9.\ 5372_n \end{array}$	
η'2	$\begin{array}{c c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \end{array}$	3. 76	5. 7516	4. 7	7. 8677 7. 8610_n 8. 1026_n 8. 1538_n	8. 6727 _n 8. 2228 8. 7296 8. 8728	
j^2	$ \begin{array}{c c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \end{array} $				$\begin{array}{c} 7.\ 9418_n \\ 7.\ 9312_n \\ 7.\ 7920_n \\ 7.\ 639_n \end{array}$	8, 7337 8, 7154 8, 6154 8, 5001	
\tilde{j}^2	$ \begin{array}{c c} -4\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ -3\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ 2\Gamma + 4\theta_0 + 2J_0 - \Sigma_0 \end{array} $				7. 446 7. 1858	8.1156_n 7.8677_n	
	$\begin{array}{c} -2I + 4\theta_0 + 3J_0 - \Sigma_0 \\ -2I + 4\theta_0 + 3J_0 - \Sigma_0 \\ -I + 4\theta_0 + 3J_0 - \Sigma_0 \\ 4\theta_0 + 3J_0 - \Sigma_0 \\ 2I + 4\theta_0 + 3J_0 - \Sigma_0 \\ 3I + 4\theta_0 + 3J_0 - \Sigma_0 \\ 4I + 4\theta_0 + 3J_0 - \Sigma_0 \end{array}$		4. 804 _n	7. 168	7. 6176n $7. 9368n$ $7. 7887$ $7. 448$ $7. 1976$ $6. 978$	$\begin{array}{c} 7.\ 9693 \\ 8.\ 3724 \\ 8.\ 8492_n \\ 8.\ 4531_n \\ 8.\ 2026_n \\ 7.\ 9963_n \end{array}$	
7,03 7,03 7,02 7,02 7,02 7,07,12 7,07,12 7,07,12 7,07,13 7,13 7,13 7,10 7,2 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0	$\begin{array}{c} 2\theta_{0}+2J_{0} \\ 6\theta_{0}+6J_{0} \\ 2\theta_{0}+4J_{0} \\ 2\theta_{0}+3J_{0} \\ 6\theta_{0}+5J_{0} \\ 2\theta_{0} \\ 2\theta_{0} \\ 2\theta_{0} \\ 2\theta_{0} \\ 2\theta_{0}+2J_{0} \\ 6\theta_{0}+3J_{0} \\ 2\theta_{0}+2J_{0} \\ 2\theta_{0}+2J_{0} \\ 2\theta_{0}+2J_{0} \\ 2\theta_{0}+2J_{0} \\ 2\theta_{0}+2J_{0} \\ 2\theta_{0}+3J_{0} \\ 2\theta_$	5. 418 _n 5. 418 _n 5. 885 4. 974 5. 935 5. 7444 _n 5. 919 _n 5. 301 5. 301 4. 502 _n 4. 502 _n 4. 057 4. 057	$\begin{array}{c} 6.\ 292 \\ 6.\ 292 \\ 6.\ 719_n \\ 5.\ 896_n \\ 6.\ 780_n \\ 6.\ 535 \\ 6.\ 327 \\ 6.\ 744 \\ 6.\ 149_n \\ 6.\ 149_n \\ 5.\ 41 \\ 5.\ 41 \\ 5.\ 021_n \\ 5.\ 021_n \end{array}$	$\begin{array}{c} 7.\ 4754_n \\ 8.\ 6328_n \\ 8.\ 5059 \\ 8.\ 0326_n \\ 9.\ 2774 \\ 8.\ 3811_n \\ 8.\ 0917 \\ 9.\ 4432_n \\ 8.\ 2502 \\ 9.\ 1294 \\ 8.\ 5904 \\ 8.\ 1011_n \\ 8.\ 0554_n \\ 8.\ 5592_n \\ 6.\ 887 \\ 6.\ 82718 \end{array}$	8. 6636 9. 4351 9. 2804_n 8, 1975 0. 0330_n 9. 1030 8. 6300 0. 1464 9. 0152_n 9. 7729_n 9. 3492_n 8. 8726 8. 9263 9. 3245 8. 1804_n 9. 1021_n	9. 8022	

 $w-w_0=\sum Cw^s\eta_sp_{\eta'}qj^{2t}\cos Arg.$

where C represents the coefficient.

TABLE G (LVII).

Legarithmic. $S \sin \psi + C \cos \psi$

Unit-1".

Logarithm	ic.	13	$\sin \phi + C \cos \phi$	Ψ			Unit=1".
	Cos	w-3	w^{-2}	w-1	u.o	w	<i>u</i> , 2
	$\begin{array}{c} \dot{\varphi} - 5\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} - 4\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} - 3\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} - 2\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} - \Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} + 3\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} + 3\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} + 5\Gamma + 2\theta_0 + 2J_0 \\ \dot{\varphi} + 5\Gamma + 2\theta_0 + 2J_0 \end{array}$		9. 196	8. 81 9. 009 9. 318 9. 207 9. 711 2. 1712 _n 9. 230 _n 9. 220 _n 9. 722 _n 9. 494 _n 9. 100 _n	$\begin{array}{c} 1.\ 082_n \\ 1.\ 2314_n \\ 0.\ 931 \\ 1.\ 6478 \\ 1.\ 950 \\ 2.\ 5678 \\ 2.\ 3541_n \\ 1.\ 9114_n \\ 1.\ 5372_n \\ 1.\ 2544_n \\ 1.\ 018_n \end{array}$	1. 5710 1. 5493 1. 604 _n 2. 1070 _n 2. 3426 _n 2. 565 _n 3. 1493 2. 6867 2. 3831 2. 1315 1. 9034	1. 612 _n 0. 989 _n 1. 916 2. 2333 2. 3713 3. 7107 _n 3. 1657 _n 2. 8623 _n 2. 6333 _n 2. 4248 _n
ηο	$ \begin{array}{c} \psi - 5 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi - 4 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi - 3 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi - 2 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi - \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + 2 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + 3 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + 4 \Gamma + 4 \theta_0 + 4 d_0 \\ \psi + 4 \Gamma + 4 \theta_0 + 4 d_0 \\ \end{array} $	9. 199	9. 04 _n	$\begin{array}{c} 9.\ 771_n \\ 0.\ 064_n \\ 0.\ 3185_n \\ 0.\ 497_n \\ 1.\ 0286_n \\ 2.\ 6172 \\ 0.\ 7226 \\ 0.\ 669 \\ 0.\ 9435 \\ 0.\ 5122 \end{array}$	1. 042 _n 1. 723 _n 2. 1626 _n 2. 7787 _n 3. 2379 _n 3. 2511 _n 3. 1702 2. 7877 2. 5117 2. 2732	1. 868 2. 3515 2. 6961 3. 0649 3. 1223 3. 4230 4. 1580 _n 3. 7083 _n 3. 4261 _n 3. 2042 _n	2. 357 _n 2. 6814 _n 2. 9214 _n 3. 0993 _n 3. 9385 _n 4. 9365 4. 3605 4. 0450
70	$ \begin{array}{c} \psi - 5\Gamma \\ \psi - 4\Gamma \\ \psi - 3\Gamma \\ \psi - 2\Gamma \\ \psi - \Gamma \end{array} $		9. 140 9. 274 _n	$\begin{array}{c} 9.814_n \\ 0.0434_n \\ 0.3541_n \\ 0.362_n \\ 0.4164_n \\ 0.1436_n \end{array}$	$\begin{array}{c} 1.\ 925 \\ 2.\ 0527 \\ 2.\ 145 \\ 2.\ 1351 \\ 2.\ 3504_n \end{array}$	$\begin{array}{c} 2.\ 634_n \\ 2.\ 6896_n \\ 2.\ 675_n \\ 2.\ 3850_n \\ 3.\ 0929 \end{array}$	$\begin{array}{c} 2.984 \\ 2.9432 \\ 2.744 \\ 2.4864_n \\ 3.5397_n \end{array}$
			9. 137_n	0. 3102 _n 9. 918 9. 465 9. 20 _n	$\begin{array}{c} 2.\ 497 \\ 1.\ 9006_n \\ 0.\ 812_n \\ 1.\ 406_n \end{array}$	3.1875_n 1.0453 2.5218_n 1.729	3. 5978 2. 8834 3. 3564
7'	$ \begin{array}{c} \psi - 5\Gamma + 4\theta_0 + 3A_0 \\ \psi - 4\Gamma + 4\theta_0 + 3A_0 \\ \psi - 3\Gamma + 4\theta_0 + 3A_0 \\ \psi - 2\Gamma + 4\theta_0 + 3A_0 \\ \psi - \Gamma + 4\theta_0 + 3A_0 \\ \psi + 14\theta_0 + 3A_0 \\ \psi + 2\Gamma + 4\theta_0 + 3A_0 \\ \psi + 2\Gamma + 4\theta_0 + 3A_0 \\ \psi + 3\Gamma + 4\theta_0 + 3A_0 \\ \psi + 3\Gamma + 4\theta_0 + 3A_0 \\ \psi + 4\Gamma + 4\theta_0 + 3A_0 \\ \end{array} $	8. 76 _n	0. 158	9. 476 9. 781 9. 811 0. 3489 0. 9511 2. 7932 _n 9. 961 _n 0. 491 _n 1. 0464 _n 0. 678 _n	1. 327 1. 447 2. 1070 2. 5095 3. 3599 3. 3085 3. 3609 _n 2. 9943 _n 2. 7293 _n 2. 4992 _n	1. 889 _n 2. 1506 _n 2. 6309 _n 2. 9557 _n 2. 7758 3. 4526 _n 4. 3114 3. 8728 3. 6067 3. 3946	$\begin{array}{c} 2.\ 2299 \\ 2.\ 5419 \\ 2.\ 8608 \\ 3.\ 0952 \\ 3.\ 9726 \\ \hline \\ 5.\ 0691_n \\ 4.\ 4922_n \\ 4.\ 1945_n \end{array}$
η'			9. 013_n 9. 885_n	9. 848 0. 0792 0. 3941 0. 248 9. 901 0. 8518	$\begin{array}{c} 2.\ 0766_n \\ 2.\ 1609_n \\ 2.\ 157_n \\ 2.\ 0455 \\ 2.\ 584 \end{array}$	$\begin{array}{c} 2.712 \\ 2.6968 \\ 2.491 \\ 2.7898_n \\ 3.2539_n \end{array}$	2. 9697 _n 2. 7976 _n 1. 51 3. 2380 3. 6434
	$ \begin{vmatrix} \dot{\psi} + \Gamma & + \Delta_0 \\ \dot{\psi} + 2\Gamma & + \Delta_0 \\ \dot{\psi} + 3\Gamma & + \Delta_0 \\ \dot{\psi} + 4\Gamma & + \Delta_0 \end{vmatrix} $		9. 009	0. 1664 9. 76 _n 9. 38 _n	1. 836 2. 1633 2. 1064 1. 9892	$ \begin{array}{c c} 2.448 \\ 2.6170_n \\ 2.7194_n \\ 2.6870_n \end{array} $	3.3029_n 2.2433 2.9212
η ₀ ²	$ \begin{array}{c} \psi - 5 \Gamma + 6 \theta_0 + 6 \mathcal{A}_0 \\ \psi - 4 \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi - 3 \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi - 2 \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi - \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi - \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi + \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi + 2 \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \psi + 3 \Gamma + 6 \theta_0 + 6 \mathcal{J}_0 \\ \end{array} $	9. 95 _n	1. 1109 _n	3. 1673 _n	2. 3144 2. 9538 3. 3102 3. 4970 3. 9455 3. 9296 3. 9144 _n 3. 5594 _n 3. 3121 _n	2. 9730 _n 3. 3785 _n 3. 5843 _n 3. 8423 _n 4. 3377 _n 5. 0372 4. 5942 4. 3236	
η ₀ ²	$ \begin{array}{c} \psi - 5 \Gamma + 2 \theta_0 + 2 J_0 \\ \psi - 4 \Gamma + 2 \theta_0 + 2 J_0 \\ \psi - 3 \Gamma + 2 \theta_0 + 2 J_0 \\ \psi - 3 \Gamma + 2 \theta_0 + 2 J_0 \\ \psi - 2 \Gamma + 2 \theta_0 + 2 J_0 \\ \psi - \Gamma + 2 \theta_0 + 2 J_0 \\ \psi + \Gamma + 2 \theta_0 + 2 J_0 \\ \psi + \Gamma + 2 \theta_0 + 2 J_0 \\ \psi + 2 \Gamma + 2 \theta_0 + 2 J_0 \end{array} $	0. 344 _n	1. 017 9. 45	2. 689 _n	2. 1657 2. 1255 2. 234 2. 576 3. 1995 3. 4822 2. 2480 3. 1612	2. 7221 _n 2. 8004 _n 3. 1304 _n 3. 3804 _n 3. 8325 _n 3. 9938 _n 3. 2839 _n 3. 8424 _n	

τ_{ABLE} G (LV11)— Continued.

Logarithmic.

 $S \sin \phi + C \cos \phi$

Unit="".

	Cos	N-2	u^{j-2}	<i>u</i> -1	<i>u</i> :0	w	u^{i2}
${\eta_0}^2$	$\begin{array}{c} \psi - 5 \Gamma - 2 \theta_0 - 2 J_0 \\ \psi - 4 \Gamma - 2 \theta_0 - 2 J_0 \\ \psi - 3 \Gamma - 2 \theta_0 - 2 J_0 \\ \psi - 3 \Gamma - 2 \theta_0 - 2 J_0 \\ \psi - 2 \Gamma - 2 \theta_0 - 2 J_0 \\ \psi - \Gamma - 2 \theta_0 - 2 J_0 \\ \psi + \Gamma - 2 \theta_0 - 2 J_0 \\ \psi + \Gamma - 2 \theta_0 - 2 J_0 \\ \psi + \Gamma - 2 \theta_0 - 2 J_0 \\ \psi + 2 \Gamma - 2 \theta_0 - 2 J_0 \end{array}$	0. 117	9, 59_n 0, 95_n	2. 297 _n	$\begin{array}{c} 2.700_n \\ 2.817_n \\ 2.9247_n \\ 3.0241_n \\ 3.1364_n \\ 2.7856_n \\ 2.8942_n \\ 2.297_n \end{array}$	3, 5481 3, 6251 3, 6905 3, 7470 3, 8346 3, 6614 3, 5604 3, 1129	
η, γ΄	$ \begin{array}{c} \psi - 5\Gamma + 6\theta_0 + 5J_0 \\ \psi - 4\Gamma + 6\theta_0 + 5J_0 \\ \psi - 3\Gamma + 6\theta_0 + 5J_0 \\ \psi - 2\Gamma + 6\theta_0 + 5J_0 \\ \psi - \Gamma + 6\theta_0 + 5J_0 \\ \psi - \Gamma + 6\theta_0 + 5J_0 \\ \psi + \Gamma + 6\theta_0 + 5J_0 \\ \psi + 3\Gamma + 6\theta_0 + 5J_0 \\ \psi + 3\Gamma + 6\theta_0 + 5J_0 \end{array} $	0. 295	1. 366	3. 6364	$\begin{array}{c} 2.\ 4885n \\ 2.\ 976n \\ 3.\ 6544n \\ 3.\ 9514n \\ 4.\ 3903n \\ 4.\ 3301n \\ 4.\ 4005 \\ 4.\ 0582 \\ 3.\ 8204 \end{array}$	$\begin{array}{c} 3.\ 1691 \\ 3.\ 5560 \\ 3.\ 8829 \\ 4.\ 1632 \\ 4.\ 0037_n \\ 4.\ 6662 \\ 5.\ 4966_n \\ 5.\ 0612_n \\ 4.\ 8027_n \end{array}$	
ηο η'	$ \begin{cases} $	0. 444	1. 188 _n	3. 0569	$\begin{array}{c} 2.\ 426_n \\ 2.\ 399_n \\ 2.\ 410_n \\ 2.\ 701_n \\ 3.\ 2842_n \\ 3.\ 7266_n \\ 2.\ 8541 \\ 3.\ 2191_n \end{array}$	3. 0684 3. 0310 3. 1305 3. 4602 3. 8558 4. 1122 3. 5823 _n 3. 7635	
$\eta_0 \ \eta'$	$ \begin{array}{c} \psi - 5 \Gamma + 2 \theta_0 - A_0 \\ \psi - 4 \Gamma - 2 \theta_0 - A_0 \\ \psi - 3 \Gamma - 2 \theta_0 - A_0 \\ \psi - 2 \Gamma - 2 \theta_0 - A_0 \\ \psi - \Gamma - 2 \theta_0 - A_0 \\ \psi - \Gamma - 2 \theta_0 - A_0 \\ \psi + \Gamma - 2 \theta_0 - A_0 \\ \psi + 2 \Gamma - 2 \theta_0 - A_0 \\ \psi + 2 \Gamma - 2 \theta_0 - A_0 \end{array} $	0. 490 _n	9. 93 1. 324	3. 0145 _n	3. 1551 3. 2454 3. 3100 3. 3277 3. 1976 3. 7326 3. 3632 2. 7792	3. 9530 _n 3. 9948 _n 4. 0023 _n 3. 9401 _n 3. 4598 _n 4. 2787 3. 9402 _n 3. 5224 _n	
η ₀ η'	$ \begin{array}{c} \psi - 5 \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi - 4 \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi - 3 \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi - 2 \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi - \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi + \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi + \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \\ \psi + 2 \Gamma + 2 \theta_0 + 3 \mathbf{J}_0 \end{array} $	9. 98	0. 60 _n 9. 46 _n	2. 873 _n	$\begin{array}{c} 2.\ 2738_n \\ 2.\ 116_n \\ 2.\ 5858_n \\ 2.\ 809_n \\ 2.\ 650_n \\ 2.\ 685 \\ 3.\ 5126_n \\ 3.\ 3438_n \end{array}$	2. 847 3. 0290 3. 3787 3. 5429 3. 7297 3. 7980 4. 2856 4. 1208	
η'^2	$ \begin{vmatrix} \psi - 5\Gamma + 6\theta_0 + 4 J_0 \\ \psi - 4\Gamma + 6\theta_0 + 4 J_0 \\ \psi - 3\Gamma + 6\theta_0 + 4 J_0 \\ \psi - 2\Gamma + 6\theta_0 + 4 J_0 \\ \psi - \Gamma + 6\theta_0 + 4 J_0 \\ \psi + \Gamma + 6\theta_0 + 4 J_0 \\ \psi + \Gamma + 6\theta_0 + 4 J_0 \\ \psi + 2\Gamma + 6\theta_0 + 4 J_0 \end{vmatrix} $	9. 98 _n	0. 76 _n	3. 5017 _n	1. 9950 2. 6112 3. 0556 3. 7934 4. 2260 4. 1098 4. 2852 _n 3. 9567 _n	2. 7422 _n 3. 1949 _n 3. 5583 _n 3. 7947 _n 4. 4064 4. 3552 _n 5. 3521 4. 9249	
η'^2	$\begin{array}{c} \psi - 5\Gamma + 2\theta_0 + 2J_0 \\ \psi - 4\Gamma + 2\theta_0 + 2J_0 \\ \psi - 3\Gamma + 2\theta_0 + 2J_0 \\ \psi - 2\Gamma + 2\theta_0 + 2J_0 \\ \psi - \Gamma + 2\theta_0 + 2J_0 \\ \psi - \Gamma + 2\theta_0 + 2J_0 \\ \psi + \Gamma + 2\theta_0 + 2J_0 \\ \psi + \Gamma + 2\theta_0 + 2J_0 \\ \psi + 2\Gamma + 2\theta_0 + 2J_0 \end{array}$	0. 025 _n	0. 60	2. 634	2. 5018 2. 453 2. 4799 2. 9375 3. 2833 3. 2781 3. 5607 3. 4629	3. 0963 _n 3. 0935 _n 3. 2779 _n 3. 6294 _n 3. 8982 _n 4. 0439 _n 4. 2381 _n 4. 1704 _n	
η'^2	$ \begin{array}{c} \psi - 5 \Gamma - 2 \theta_0 \\ \psi - 4 \Gamma - 2 \theta_0 \\ \psi - 3 \Gamma - 2 \theta_0 \\ \psi - 2 \Gamma - 2 \theta_0 \\ \psi - \Gamma - 2 \theta_0 \\ \psi - \Gamma - 2 \theta_0 \\ \psi + \Gamma - 2 \theta_0 \\ \psi + 2 \Gamma - 2 \theta_0 \\ \end{array} $	0, 305	1. 127 _n	2. 912	$\begin{array}{c} 3.0090_n \\ 3.0676_n \\ 3.0764_n \\ 2.958_n \\ 3.1140 \\ 3.5491_n \\ 3.0396_n \\ 2.4706_n \end{array}$	3. 7477 3. 7445 3. 6664 3. 3121 4. 0201 _n 3. 9085 3. 6320 3. 2330	

Table G (LVII)—Continued.

Logarithmic,		,	S sin ++('co	14 ¢		Unit=1".		
		Cos	w-3	w-2	w-1	u·0	w	w^2
<i>j</i> ²	0.4I 0.4I 0.4I 0.4I	$\begin{array}{c} \Gamma + 6\theta_0 + 5J_0 - \Sigma_0 \\ \Gamma + 6\theta_0 + 5J_0 - \Sigma_0 \end{array}$	8. 6 _n	9. 7	2. 114 _n	2, 006 2, 335 2, 544 2, 718 2, 970 2, 923 2, 7948 _n 2, 3824 _n	$\begin{array}{c} 2.\ 7505_{\pi} \\ 2.\ 981_{\pi} \\ 3.\ 1436_{n} \\ 3.\ 2445_{n} \\ 2.\ 9116_{n} \\ 3.\ 4067_{n} \\ 3.\ 9420 \\ 3.\ 4488 \end{array}$	
j ²	$ \begin{vmatrix} \psi - 4I \\ \psi - 3I \\ \psi - 2I \\ \psi - I \end{vmatrix} $ $ \begin{vmatrix} \psi - 4I \\ \psi - I \\ \psi \\ \psi + I \end{vmatrix} $	$\begin{array}{c} 7+2\theta_{0}+2J_{0} \\ 7+2\theta_{0}+2J_{0} \end{array}$		0, 5910	3. 1266	$\begin{array}{c} 9.\ 6\\ 1.\ 916_n\\ 2.\ 5178_n\\ 2.\ 938_n\\ 3.\ 3406_n\\ 3.\ 8021_n\\ 3.\ 4070\\ 3.\ 0472 \end{array}$	2. 387 2. 911 3. 3047 3. 6294 3. 9330 4. 1894 4. 3178 _n 3. 9308 _n	
<i>j</i> ²	$\left \begin{array}{c} \psi - 4I \\ \psi - 3I \\ \psi - 2I \\ \psi - I \\ \psi \end{array}\right $	$\begin{array}{l} -2\theta_{0}-J_{0}+\Sigma_{0} \\ -2\theta_{0}-J_{0}+\Sigma_{0} \end{array}$	9. 04	0. 11 _n	2. 636	$\begin{array}{c} 0.\ 732_n \\ 0.\ 35 \\ 1.\ 463 \\ 2.\ 064 \\ 2.\ 6816 \\ 3.\ 3284_n \\ 3.\ 0572_n \\ 2.\ 9121_n \end{array}$	$\begin{array}{c} 1,085\\ 1,895_n\\ 2,5144_n\\ 3,0255_n\\ 3,6280_n\\ 3,7399\\ 3,6430\\ 3,5491 \end{array}$	
7,03	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\begin{array}{c} 4\theta_{0} + 4J_{0} \\ 4\theta_{0} - 4J_{0} \\ 8\theta_{0} + 8J_{0} \end{array}$	$\begin{array}{c} 0.775 \\ 0.29_n \\ 0.65 \end{array}$	$ \begin{array}{c} 1.65_n \\ 1.10 \\ 1.54_n \end{array} $	$3. \ 1052_n$ $3. \ 1888$ $3. \ 7520$	$\begin{array}{c} 3.0342_n \\ 3.6104_n \\ 4.5812_n \end{array}$		
$\eta_0^2 \eta'$	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\begin{array}{c} 4\theta_{0} + 5J_{0} \\ 4\theta_{0} + 3J_{0} \\ 4\theta_{0} - 3J_{0} \\ 8\theta_{0} + 7J_{0} \end{array}$	$\begin{array}{c} 1.\ 260_{n} \\ 1.\ 005 \\ 1.\ 228_{n} \end{array}$	2.081 1.77_n 2.093	$\begin{array}{c} 3.7577 \\ 3.1240 \\ 3.5356_n \\ 4.3980_n \end{array}$	4.3244_n 4.1388 3.3560 5.1827	:	
7,07/2	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\begin{array}{c} 4\theta_{0}\!+\!4J_{0} \\ 4\theta_{0}\!+\!2J_{0} \\ 4\theta_{0}\!-\!2J_{0} \\ 8\theta_{0}\!+\!6J_{0} \end{array}$	1. 106 1. 146 _n 1. 321	1.88_n 1.88 2.152_n	$\begin{array}{c c} 4.1155_n \\ 2.831 \\ 3.0422 \\ 4.5658 \end{array}$	$\begin{array}{c} 4.5547 \\ 4.1803_n \\ 4.0180 \\ 5.3010_n \end{array}$		
7/3	↓ ↓ ↓ − ↓ +	$\begin{array}{c} 4\theta_{0} + 3J_{0} \\ 4\theta_{0} - J_{0} \\ 8\theta_{0} + 5J_{0} \end{array}$			$\begin{array}{c} 3.8375 \\ 3.2197 \\ 4.2553_n \end{array}$	$ \begin{array}{c} 4.0446_n \\ 3.9650_n \\ 4.9349 \end{array} $		
j² 70	ψ+ ψ- ψ+ ψ+	$\begin{array}{c} 4\theta_{\theta} + 3\mathbf{J}_{0} - \boldsymbol{\Sigma}_{0} \\ 4\theta_{0} - 3\mathbf{J}_{0} + \boldsymbol{\Sigma}_{0} \\ 8\theta + 7\mathbf{J}_{0} - \boldsymbol{\Sigma}_{0} \\ 4\theta_{0} + 4\mathbf{J}_{0} \end{array}$	9. 98_n 0. 46_n	0. 8 1. 32	$\begin{array}{c} 3.\ 0024 \\ 2.\ 956_n \\ 3.\ 0757 \\ 3.\ 8514_n \end{array}$	3. 8634_n 3. 8331 3. 9759_n 4. 6436		
	I		1		1			

 $S \sin \psi + C \cos \psi = \sum C w^s \eta p_{\eta} q j^{2t} \cos Arg.$

1. 15,

2. 442 3. 2486 3. 2818_n

3. 9421

 $\begin{array}{c} 1.\ 846_n \\ 4.\ 0585_n \\ 4.\ 1441 \end{array}$

 $4.\;6972_n$

where C represents the coefficient.

 $\begin{array}{c} 4\theta_{0}\!+\!4J_{0}\!-\!\varSigma_{0} \\ 4\theta_{0}\!-\!2J_{0}\!+\!\varSigma_{0} \\ 8\theta_{0}\!+\!6J_{0}\!-\!\varSigma_{0} \\ 4\theta_{0}\!+\!3J_{0} \end{array}$

 $j^2 \eta'$

0.27

II. TABLES FOR THE DETERMINATION OF THE PERTURBATIONS THE HECUBA GROUP OF MINOR PLANETS.

DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS FOR W AND FOR THE THIRD COORDINATE.

It would be futile to attempt to give a brief but comprehensive outline of the fundamental developments in the theory of Bohlin-v. Zeipel which would assist the reader to an understanding of the construction of the tables. In broad outlines, the problem is the integration of Hansen's differential equations for $n\delta z$, ν , and $\frac{u}{\cos i}$, by means of the method developed by Bohlin and according to the modifications introduced by v. Zeipel for purposes of numerical computation. The first division of the problem is the development of functions of the partial derivatives of the perturbative function; the second division of the problem is the integration of the Hansen equations in the form of infinite series.

For the theory the reader is referred to the original works of Hansen¹, Bohlin², and v. Zeipel³. As indicated in the introduction to the first section, unless otherwise stated, the references to Bohlin refer to the French edition and are designated by B; references to v. Zeipel are designated by Z. Although duplication of material which can be found in either reference is to be avoided, our experience in attempting to reproduce v. Zeipel's tables led us to fill in certain gaps which are troublesome to the reader and the computer.

The first section of v. Zeipel's theory is concerned with an independent development of Hansen's differential equations for $n\delta z$ and ν and a repetition of the differential equation for $\frac{u}{\cos i}$, and the introduction of Bohlin's argument θ . In passing, it is well to emphasize two facts: First, the variables ε and f used throughout the theory are analogous to Hansen's $\bar{\varepsilon}$ and \bar{f} ;

the dash is unnecessary, for the physically real values do not appear. Second, the constant elements a, e, π, c, Ω , i are neither osculating nor mean elements; they are defined in the section on constants of integration.

The perturbative function and its partial derivatives are developed in Fourier's series, in which the arguments depend upon the relative positions of the disturbed and disturbing bodies and in which the coefficients are infinite series in ascending powers of the eccentricities and the inclination of the orbits. The coefficients in the latter are elliptic integrals depending upon the ratio of the semi-major axes.

Since these elliptic integrals are functions of the ratio of the semi-major axes, or of the mean daily motions, they can be developed in Taylor's series, in which the given function and its successive partial derivatives are expressed for exact commensurability and the series proeeeds according to a small quantity w, defined by $w=1-2\mu$, where μ is the ratio of Jupiter's mean motion to that of the planet and where μ differs but little from $\frac{1}{2}$. These elliptic integrals enter the coefficients in all of the subsequent trigonometric series. Hence all the coefficients are series in w. With some exceptions the terms in w° , w, and w^{2} have been used. The development of all functions in powers of w is the essential principle underlying the group method of determining perturbations.

The following pages contain the tables which are, in general, parallel to those of v. Zeipel. At the end of sections 2, 3, 4, 5 there are brief written comparisons. To facilitate comparisons

* Angenäherte Jupiterstörungen für die Hecula-Gruppe. St. Pétersbourg, 1902.

¹ Auseinandersetzung einer zweckmässigen Methode zur Berechnung der absoluten Störungen der kleinen Planeten.

² Formeln und Tafeln zur gruppenweisen Berechnung der allgemeinen Störungen benachbarter Flaneten. Nova Acta Reg. Soc. Sc. Upsaliensis, Ser. 111, Band XVII, 1896.

Sur le Développement des Perturbations Planétaires, Application aux Petites Planètes. Stockholm, 1902.

with v. Zeipel's tables, those numerical quantities which are in disagreement are inclosed in brackets. There are also certain mathematical developments useful to the reader. These relations are sometimes taken from v. Zeipel and sometimes supplement his text.

Certain simple functions of the elliptic integrals γ_i^{m+n} , defined by Z 19, eqs. (73), (74), (75), are tabulated in Table I (cf. Z 23).

Tables II-IV w^2 (cf. Z 26-32), giving the partial derivatives of the perturbative function, are computed according to Z 24, eq. (77), by means of Table I and B 184, Tables XVI-XVIII and B (Ger.) 182, Tables XII-XIV.

The elimination of Jupiter's mean anomaly from the argument gives Z 25, eq. (78), in which the coefficients are derived from Table II-IV w^2 by the formulae given in B 61. These coefficients are tabulated in Tables V-VII w^2 (cf. Z 33-39).

1.									
	10	9, 73559 9, 22161 8, 88734 8, 60172	0, 79996 0, 82229		0.62442n 0.21732n 9.96912n	1. 77326 n 1. 88881 n		1, 15943 0, 87878	2. 41372
	6	9, 95811 9, 44121 9, 10470 8, 81730	0.98134 1.00614		$\begin{array}{c} 0.80767_n \\ 0.40635_n \\ 0.16150_n \\ 9.9500_n \end{array}$	1. 92310_n 2. 01749_n		1, 29874 1, 03563 0, 89355	2. 53103
	20	0. 183046 9. 66263 9. 32346 9. 03398 8. 7688	1. 16081 1. 18855		$\begin{array}{c} 0.98938_n \\ 0.59483_n \\ 0.35368_n \\ 0.1144_n \\ 0.9476_n \end{array}$	$\frac{2.06865_n}{2.20324_n}$		1, 43166 1, 18943 1, 05858	2. 64179
	1~	0. 411123 9. 88623 9. 54386 9. 25194 8. 9849	1, 33802 1, 36930 1, 31598	2, 38392	1. 16938_n 0. 78270_n 0. 51570_n 0. 33892_n 0. 14337_n	2. 20917_n 2. 35570_n 2. 39290_n	3.35851_n	1. 55683 1. 33971 1. 22170 1. 10730	2. 74499 3. 02025
	9	0. 642905 0. 11256 9. 76625 9. 47141 9. 2021 8. 9485	1. 51210 1. 54784 1. 49771 1. 4127	2, 51617	1. $347043n$ 0. $96997n$ 0. $73762n$ 0. $53345n$ 0. $33942n$	2. 34339_n 2. 50413_n 2. 55037_n	3. 46222_n	1. 67197 1. 48597 1. 38270 1. 27690	2. 83919 3. 13926
	10	0. 880042 0. 34328 9. 99110 9. 69269 9. 4207 9. 1650	1. 68250 1. 72387 1. 67762 1. 5954	2. 64058	1. $522172n$ 1. $15669n$ 0. $92956n$ 0. $72817n$ 0. $53579n$	2. 47019_n 2. 64800_n 2. 70474_n	$3,55696_n$	1. 77438 1. 62754 1. 54142 1. 44520	2. 92310 3. 25216
	4	1, 124592 0, 576825 0, 21906 9, 91620 9, 64095 9, 38289	1. 847875 1. 896645 1. 85527 1. 77661	2. 75505 3. 11061	1. 694089_n 1. 342993_n 1. 12169_n 0. 92322_n 0. 73250_n	2. 58759_n 2. 78638_n 2. 85545_n	3. 64099_n 4. 11042_n	1. 85954 1. 76366 1. 69761 1. 61213	2. 99474 3. 35805
	6	1. 380429 0. 817690 0. 45110 0. 14249 9. 86323 9. 60211	2. 006171 2. 065161 2. 03009 1. 95568	2. 856672 3. 23252	1. 862100_n 1. 529203_n 1. 31435_n 1. 11886_n 0. 92971_n	2. 69286_n 2. 91803_n 3. 00185_n	3. 71207_n 4. 20810_n	1. 92018 1. 89337 1. 85113 1. 77768	3. 05198 3. 45591
	2	1, 655608 1, 068171 0, 688725 0, 37239 0, 08801 9, 82322	2, 153770 2, 227850 2, 201284 2, 13230	2, 941123 3, 34392	2.025704_n 1.716180 $_n$ 1.508098 $_n$ 1.31543 $_n$ 1.12769 $_n$	2.78195_n 3.04132_n 3.14309_n	3. 76747_n 4. 29565_n	1. 94314 2. 01556 2. 00180 1. 94185	3. 09258 3. 54448 3. 77729
-	-	{1, 196164} 1, 334774 0, 934567 0, 60716 0, 31599 0, 04660	2. 283141 2. 382049 2. 367601 2. 30577	3. 001680 3. 44169	$\begin{array}{c} \{1.696947_n\} \\ 1.906225_n\\ 1.704102_n\\ 1.51356_n\\ 1.32679_n \end{array}$	2. 84832_n 3. 15383_n 3. 27800_n	3. 80371_n 4. 37108_n	{1, 79250} 2, 12908 2, 14965 2, 10476	3. 11481 3. 62237 3. 88445
	0	2. 1464086 1. 333861 0. 892830 0. 54795 0. 24722 9. 97185	(1. 898161) 2. 221528 2. 226015 2. 17409	2, 726380 3, 22034	$\begin{array}{c} 2.086910_n \\ 1.806020_n \\ 1.603899_n \\ 1.41336_n \\ 1.22659_n \end{array}$	$\{2, 51524_n\}$ $2, 95077_n$ $3, 10392_n$	3. 51583_n 4. 13087_n	1. 34814 1. 93221 1. 99420 1. 96578	{2. 81277} 3. 38698 3. 68273
	и								
		$\omega_0^{1.n}$ $\omega_1^{1.n}$ $\omega_1^{1.n}$ $\omega_2^{1.n}$ $\omega_3^{1.n}$ $\omega_3^{1.n}$ $\omega_3^{1.n}$ $\omega_3^{1.n}$	$\omega_0^{3.n}$ $\omega_1^{3.n}$ $\omega_2^{3.n}$ $\omega_2^{3.n}$	$\omega_0^{5.n}$ $\omega_1^{5.n}$	2 3 3 3 3 3 3 3 3 3	$\frac{\varepsilon}{\varepsilon_2} \frac{\varepsilon}{3} ^{\frac{3}{3}} \cdot n$	ε. ε. η ε. ε. η	13 13 13 13 E E E E	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

¹ For n=0 the table gives $\log \frac{1}{2}\omega$. For explanation of brackets, { }, see [], Z 14, eq. (63). (v.Zeipel) $\overline{\omega_i}^{m\cdot n} = -\overline{\omega_i}^{s\cdot n}$ (Bohlin).

3. 24597 _n 3. 24515 _n
4. 55468 3.24597_n
4. 05408 3. 24597 _n
4. 44.550 3. 11584n 2. 92477n
3. 09682_n 2. 93746_n
*
$P_{1\cdot 0}[n,-n-3]$ $P_{1\cdot 0}[n,-n+1]+\sigma$ $P_{1\cdot 0}[n,-n-1]-\sigma$ $P_{1\cdot 0}[n-2,-n-1]-\sigma$
$P_{-1}[n-n-1]$

	3. 59437	
265		
3. 24597		
	7 n 2 L	0,4
	. 57107 _n . 58597	3. 47840 _n
	 	es
3. 49574 2. 92477		
ಣ ಕು 		
	130	72333_n 79444_n 07659_n
	1, 72430 3, 24621	3. 72 2. 79 3. 07
 ຄາວອ້		
3.09682 2.93746 2.93746		
		2 2
	2. 52256 2. 52256 _n	2. 52256_n 2. 81256_n 2. 81256 2. 82256
	cici (
19	, ,	$\begin{array}{l} P_{0:1}[n+1,-n]+\delta \\ P_{0:1}[n+1,-n-2]+\delta \\ P_{0:1}[n-1,-n+2]+\delta \\ P_{0:1}[n-1,-n+2]-\delta \end{array}$
$P_{1:0}[n, -n-1] + \delta \\ P_{1:0}[n, -n+1] - \delta \\ P_{1:0}[n-2, -n+1] - \delta$	$\frac{n+\sigma}{n-\sigma}$ $\frac{n-\sigma}{n-2}$	======================================
7 7 9	111	
2 2 2	- 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #
	ت ش ش	

Logarithmic.				TABLE	II w.						Unit=1".
n	0	1	2	8	4	z,	9	7	œ	6	10
$P_{0\cdot 0}[n,-n]$		1. 696947 _n	2. 326734 _n	2. 339221 _n	2. 296149_n	2, 221142 _n	2. 125194_n	2.01448_n	1. 89247n	1. 76191 _n	1. 62442_n
$P_{1,0}[n+1,-n] = P_{1,0}[n-1,-n]$	$\begin{array}{c} 2.\ 107050 \\ 2.\ 107050_n \end{array}$	2. 508285	2. 494331 2. 722988	2. 432293 3. 003816	2. 342993 3. 120166	2. 23587 3. 160145	2, 11610 3, 154557	1. 98682 3. 11841	1. 85010 3. 05995	1, 70738 2, 98480	1. 55974 2. 89638
$P_{0:1}[n,-n+1] $ $P_{0:1}[n,-n-1]$		2. 207255_n 2. 556580_n	0. 613819 3. 228771 _n	2. 368909 3. 377812 _n	2. 620202 3. 438885_n	2. 717783 3. 448053 _n	2. 744353 3. 422723_n	2. 72873 3. 37281n	2. 68442 3. 30420_n	2. 61961 3. 22121_n	2. 53911 3. 12662_n
$egin{array}{l} P_{2\cdot 0}[n+2n] \ P_{2\cdot 0}[n-n] \ P_{2\cdot 0}[n-2n] \end{array}$	2. 65255 _n 2. 65255	2. 92884_n 2. 92348_n 2. 81627	$\frac{2.85948_n}{3.05366_n}$	2. 76460_n 3. 10049_n 3. 20793_n	$\frac{2.65301_n}{3.08583_n}$ $\frac{3.55914_n}{3.55914_n}$	2. 52955_n 3. 03584_n 3. 74023_n	2. 39716_n 2. 96268_n 3. 83827_n	2. 25778_n 2. 87290_n 3. 88477_n	2. 11278_n 2. 77085_n 3. 89537_n	1. 96311_n 2. 65893_n 3. 87961_n	1. 80954_n 2. 53921_n 3. 84335_n
$P_{1\cdot 1}[n+1n+1] \\ P_{1\cdot 1}[n-1n+1] \\ P_{1\cdot 1}[n+1n-1] \\ P_{1\cdot 1}[n+1n-1]$	2. 84832 2. 84832 2. 84832 2. 84832	3. 16261	3. 03557 2. 54847 3. 55417 3. 66096	2. 81950 2. 78202 _n 3. 59183 4. 06072	2. 49006 3. 36491 n 3. 58361 4. 27377	1. 80523 3. $61642n$ 3. 54488 4. 39417	1. $93399n$ 3. $74911n$ 3. 48425 4. 45708	2. 21271_n 3. 81610_n 3. 40707 4. 48041	$\begin{array}{c} 2.28216_n \\ 3.84000_n \\ 3.31690 \\ 4.47449 \end{array}$	2. 27834_n 3. 83352_n 3. 21626 4. 44629	
$P_{0\cdot 2}[nn+2] \\ P_{0\cdot 2}[nn+2] \\ P_{0\cdot 2}[nn-2]$		$\frac{2}{3}$. 79945_n 3. 04572_n 3. 28370_n	2. 75578 _n 2. 17570 3. 97539 _n	2. 66099_m 3. 46537 4. 22145_n	2. 71530 _n 3. 80207 4. 36389 _n	2. 84736_n 3. 97510 4. 44247_n	$\begin{array}{c} 2.96308_n \\ 4.06697 \\ 4.47743_n \end{array}$	$\frac{3.03888_n}{4.10839}$	$\frac{3.07708}{4.11475}$ $\frac{4.11475}{4.45961}$	3. 08493_n 4. 09540 4. 41955_n	
$\begin{array}{l} P_{0 \cdot 0}[n+1n+1] + \sigma \\ P_{0 \cdot 0}[n-1n-1] - \sigma \\ P_{0 \cdot 0}[n+1n-1] + \delta \\ P_{0 \cdot 0}[n+1n-1] + \delta \end{array}$	2.51524n 2.51524 2.51524 2.51524n	$\frac{3,14934_n}{3.14934}$	3. 25907 _n 2. 78195 _n 3. 25907 2. 78195	3. 29492n 2. 99389n 3. 29492 2. 99389	3. 28656_n 3. 06471_n 3. 28656 3. 06471	3. 24834_n 3. 07225_n 3. 24834 3. 07225	3. 18849_n 3. 04236_n 3. 18849 3. 04236	3. 11226_n 2. 98732_n 3. 11226 2. 98732	$\begin{array}{c} 3.02289_n \\ 2.91375_n \\ 3.02289 \\ 2.91375 \end{array}$	2. 92310 n 2. 82619 n 2. 92310 2. 82619	2. 81465_n 2. 72750_n 2. 81465 2. 72750
$egin{array}{l} P_{3 \circ b}[n+1n] \\ P_{3 \circ b}[n-1n] \\ P_{3 \circ b}[n-3n] \end{array}$	3. 04286 3. 04286 _n		3, 36582		3. 63249 3. 67411		4. 29317		4. 52091		
$egin{array}{l} P_{2\cdot1}[nn+1] \\ P_{2\cdot1}[n-2n+1] \\ P_{2\cdot1}[nn-1] \\ P_{2\cdot1}[n-2n-1] \end{array}$		3, 71643 _n 3, 55282 3, 93243 ₁		2. 58404_n 4. 34583_n 4. 29563_n		4. 12637 4. 98494 _n		5. 25186 _n			
$[n-1, -n+2] \\ [n+1, -n]$	3. 54910 _n 3. 62947		3, 45486							***	_
$P_{1:2}^{1:2}[n-1]$ $P_{1:2}[n-1]$ $P_{1:2}[n+1]$ $P_{1:2}[n-1]$ $P_{1:2}[n-1]$	3. 54910		3. 59594 4. 43013 4. 44517		4. 54375_n 5. 21067		5, 51720				
$egin{array}{l} P_{0\cdot 3}[n,-n+1] \\ P_{0\cdot 3}[n,-n-1] \\ P_{0\cdot 3}[n,-n-3] \end{array}$		3. 66472 _n 3. 77533 _n 3. 95620 _n		4. 34178 4. 97543n		5. 32048 _n				-	
$P_{1:0}[n,-n+1]+\sigma \ P_{1:0}[n,-n-1]-\sigma \ P_{1:0}[n-2,-n-1]-\sigma$		3. 75365 3. 62946		3. 89906 3. 66409		4. 06165		4. 13352			

			Unit=1".	2. 15943								
				2, 25298	2. 33666 _n 3. 48266 _n	3. 09238 _n 3. 71674						
				2. 33475	2. 44470_n 3. 51090_n	3. 10228 _n 3. 75213						
-				2. 40193	2. 54383 _n 3. 51720 _n	3. 08198 _n 3. 76766						
	4. 43848 _n			2. 45012	2. 63210 _n 3. 49490 _n	3. 01794_n 3. 75768	4. 20009					
4. 06165n				2. 47335	2. 70672 _n 3. 43434 _n	2. 88392_n 3. 71456	4. 04609	4. 68741 _n			=-	
	2. 98848 4. 34713 n	4. 24543	II w.²	2. 46160	2. 76366 _n 3. 31910 _n	2. 60654 _n 3. 62606	3. 80784	4. 50219 _n	4. 57425			
4. 22531n 3. 66409n			TABLE	2. 39730	2. 79646 _n 3. 11775 _n	1. 47552n 3. 47213		3. 00694 _n 4. 22410 _n	4. 35355	3. 35301 3. 35301 ,	4. 09610	
	2. 99523 _n 3. 91658 _n	4. 39370 3. 53278 3. 76576		2. 24417	2. 79371_n 2. 74649_n	2. 37864 3. 21558	3. 52227		3. 44001 4. 02969			3. 97690 _n
3. 75365_n 3. 62946_n 3. 62946				1. 79250	$\frac{2.73114_n}{}$	2. 43011 2. 71373		3. 73949 _n		3. 41584 3. 41584 _n	4. 13333, 4. 13333 4. 04093 4. 04093,	
	3. 25180 3. 25180 3. 25180	3. 49076 3. 49076 3. 25180 _n			2. 23324 n 2. 23324						-	3. 68801 3. 68801n 3. 68801n 3. 68801
$P_{1 o 0}[n, -n-1] + \delta$ $P_{1 o 0}[n, -n+1] - \delta$ $P_{1 o 0}[n-2, -n+1] - \delta$	$\begin{array}{l} P_{0} \cdot [n+1,-n] + \sigma \\ P_{0} \cdot [n-1,-n] - \sigma \\ P_{0} \cdot [n-1,-n] - \sigma \\ P_{0} \cdot [n-1,-n-2] - \sigma \\ P_{0} \cdot [n+1,-n] + \delta \end{array}$	$P_{0\cdot 1}^{P_{0\cdot 1}} n+1 \cdot -n-\frac{2}{3}+\delta \\ P_{0\cdot 1}^{P_{0\cdot 1}} (n-1,-n+\frac{2}{3})-\delta \\ P_{0\cdot 1} [n-1,-n]-\delta$		$P_{0\cdot 0}[n,-n]$	$P_{1 \cdot 0}[n+1n]$ $P_{1 \cdot 0}[n-1n]$	$P_{0\cdot 1}[n,-n+1] \ P_{0\cdot 1}[n,-n-1]$	$P_{2\cdot0}[n,-n] \ P_{2\cdot0}[n-2n]$	$P_{1:1}[n-1,-n+1] \\ P_{1:1}[n+1,-n-1] \\ P_{1:1}[n-1,-n-1]$	$P_{0.2}[nn] \ P_{0.2}[nn-2]$	$P_{0 \cdot 0}[n+1, -n+1] + \sigma$ $P_{0 \cdot 0}[n-1, -n-1] - \sigma$ $P_{0 \cdot 0}[n+1, -n-1] + \delta$ $P_{0 \cdot 0}[n+1, -n-1] + \delta$	$P_{1 cdot 0}[nn+1] + \sigma \ P_{1 cdot 0}[nn-1] + \delta \ P_{1 cdot 0}[nn-1] + \delta \ P_{1 cdot 0}[nn+1] - \delta \ P_{1 cdot 0}[n-2n+1] - \delta$	$\begin{array}{l} P_{0\cdot 1}[n+1n] + \sigma \\ P_{0\cdot 1}[n-1n] + \sigma \\ P_{0\cdot 1}[n+1n] + \sigma \\ P_{0\cdot 1}[n-1n] + \delta \\ P_{0\cdot 1}[n-1n+2] - \delta \end{array}$

						-								
Unit=1".	10	0, 76140	$\frac{0.66417_n}{2.07946_n}$	1. 67524_n 2. 26382	0, 88007 1, 69674 3, 07783	$\begin{array}{c} 1.33737 \\ 2.98615 \\ 2.21178_n \\ 3.58369_n \end{array}$	$\frac{2.20417}{3.19243_n}$	1. 91742 1. 91742 1. 91742 n 1. 91742 n						
	6	0.91075	0.85090_n 2.21522 $_n$	$\frac{1.79730}{2.40035}$	1. 06969 1. s6136 3. 16860	1. 41794 3. 06253 2. $36024n$ 3. $67708n$	2. 26230 3. 27329_n 3. 59900	2. 06175 2. 06475 2. 06475_a 2. 06175_a						
	x,	1.11765	1. 03671_n 2. 34380_n	1, 90802_n 2, 52983	1, 25876 2, 02324 3, 24697	1. 46243 3. 12177 2. 50409_n 3. 75883_n	2. 30055 3. 33861_n 3. 68567	2 20738 2 20738 2 20738 2 20738n	3. 95271 _n					
	t-	1, 291778	1. 22142_n 2. 463518_n	$\frac{2}{2}$. 003548_n	1. 44723 2. 18203 3. 310214	1. 43523 3. 157977 2. 64243_n 3. 826219_n	2. 314149 3. 383558_n 3. 759151	2. 34446 2. 34446 2. 34446 2. 34446 2. 34446	-	4. 67817				3. 57149 _n
	9	1. 461775	1. 40490_n 2. 571599_n	$\frac{2.076961_n}{2.760132}$	1. 63507 2. 33729 3. 353968	1. 18462 3. 160757 2. $77408n$ 3. $875164n$	$\begin{array}{c} 2.298011 \\ 3.399983_n \\ 3.815716 \end{array}$	2. 47451 2. 47454 2. $47454n$ 2. $47454n$				4. 93640 _n	-	
	1.0	1. 626670	1. 58698_n 2. 664000_n	2. 116256_n 2. 854882	1. 82226 2. 48787 3. 372490	1. 22851_n 3. 110594 2. 89742_n 3. 900319_n	$\begin{array}{c} 2.\ 254404 \\ 3.\ 374162_n \\ 3.\ 850676 \end{array}$	2. 59632 2. 59632 2. 59632 2. 59632 _n		3. 74216_n	·		4. 73013	
111.	4	1, 784183	1. 767441_n 2. 736598_n	2. 093349_n 2. 929137	2. 00881 2. 632508 3. 356762	1. 93963_n 2. 956557 3. 010146_n 3. 893162_n	2. 217983 3. $275873n$ 3. 856471	2. 707475 2. 707475 2. 707475 2. 707475 2. 707475	3. 31760_n 3. 78025_n			4, 13484		
TABLE	8	1. 930336	1. 946074_n 2. 777719_n	1. 914007_n 2. 973184	2. 19478 2. 769075 3. 293194	2. 35193_n 2. 427082 3. 108818_n 3. 840450_n	$\begin{array}{c} 2.\ 299258 \\ 3.\ 010528_n \\ 3.\ 821212 \end{array}$	2. 804889 2. 804889 2. $804889n$ 2. $804889n$		4, 38857			3. 88524 _n	3. 54750_n 3. 78391_n
	2	2. 056512	2. 122754_n 2. 769564_n	1. 273400 2. 968456	2. 380403 2. 893804 3. 162607	2. 681434_n 2. 744514_n 3. 187950_n 3. 721093_n	2. 571441 2. 137444 3. 724815	2. 883904 2. 883904 2. 883904_n 2. 883904_n	·		3. 57901_n	4. 06877_n 4. 51776_n		
	-	1. 770420	2. 297774_n 2. 500222_n	2. 297774 2. 637762	2. 566336 3. 031368 2. 916121	2. 970967_n 3. 124618_n 3. 237886_n 3. 414623_n	2. 900312 3. 150133 3. 372021	2. 937464 2. 937464 2. 937464 2. 937464 2. 937464		[3. 83982] 3. 67126			3, 77983 4, 05121	3. 86075 _n
	0	1. 634891	$\begin{array}{c} 2.172568_n \\ 2.172568_n \end{array}$	2. 283141 2. 283141	2. 453562 2. 754592 2. 453562	2. 937465_n 2. 937465_n 2. 937465_n 2. 937465_n	2. 912119 2. 937465 2. 912119	2. 615092 2. 615092 2. 615092_n 2. 615092_n	3. 16940_n 3. 16940_n		3, 74933,	3.74233_n		
							-							
Logarithmic.	u	$Q_{0\cdot 0}[n,-n]$	$Q_{1\cdot 0}[n+1,-n] = Q_{1\cdot 0}[n-1,-n]$	$Q_{0:1}[n, -n+1]$ $Q_{0:1}[n, -n-1]$	$egin{array}{l} Q_{2\cdot 0}[n+2n] \ Q_{2\cdot 0}[n-n] \ Q_{2\cdot 0}[n-2n] \end{array}$	$\begin{array}{l}Q_{1:1}[n+1,-n+1]\\Q_{1:1}[n-1,-n+1]\\Q_{1:1}[n+1,-n-1]\\Q_{1:1}[n+1,-n-1]\\Q_{1:1}[n-1,-n-1]\end{array}$	$egin{align*} Q_{0-2}[n,-n+2] & Q_{0-2}[n,-n] & Q_{0-2}[n,-n] & Q_{0-2}[n,-n-2] & $	$\begin{array}{l} Q_{0,0}[n+1n+1] + \sigma \\ Q_{0,0}[n-1n-1] - \sigma \\ Q_{0,0}[n+1n-1] + \sigma \\ Q_{0,0}[n+1n-1] + \delta \\ Q_{0,0}[n-1n+1] - \delta \end{array}$	$Q_{3 \cdot 0}[n+1, -n]$ $Q_{3 \cdot 0}[n-1, -n]$ $Q_{3 \cdot 0}[n-3, -n]$	$Q_{2:1}[nn+1]$ $Q_{2:1}[n-2n+1]$ $Q_{2:1}[nn-1]$ $Q_{2:1}[n-2n-1]$	$Q_{1,2}[n-1,-n+2]$ $Q_{1,3}[n+1,-n]$	$Q_{1-2} \begin{bmatrix} n-1 & -n \\ 0 & -n \end{bmatrix}$ $Q_{1-2} \begin{bmatrix} n+1 & -n-2 \\ n+1 & -n-2 \end{bmatrix}$ $Q_{1-2} \begin{bmatrix} n-1 & -n-2 \end{bmatrix}$	$Q_{0:3}[n,-n+1] \ Q_{0:3}[n,-n-1] \ Q_{0:3}[n,-n-1]$	$Q_{1\cdot 0}[nn+1] + \sigma \ Q_{1\cdot 0}[nn-1] - \sigma \ Q_{1\cdot 0}[nn-1] - \sigma$

	87205	
	3.87	
3. 71396		
	2.55964_n	3.89184 _n
3. 86667		
	4, 02594	3. 65248n
3. 74232 3. 74232		
	3. 37022 3. 37022 3. 37022 _n	3. 37022n
1 + 3 $1 - 3$ $3 + 1 - 3$	$\begin{vmatrix} 1 & 1 \\ 1 & -\alpha \\ $	1 + 2 - 3 - 1 - 2 - 3 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
$Q_{1\cdot 0}[nn-1]+\delta \\ Q_{1\cdot 0}[nn+1]-\delta \\ Q_{1\cdot 0}[n-2n+1]-\delta$	$\begin{array}{l} Q_{0\cdot1}[n+1, -n] + \sigma \\ Q_{0\cdot1}[n-1, -n] - \sigma \\ Q_{0\cdot1}[n-1, -n] - \sigma \\ Q_{0\cdot1}[n+1, -n] + \sigma \\ Q_{0\cdot1}[n+1, -n] + \sigma \\ Q_{0\cdot1}[n+1, -n] + \sigma \end{array}$	$Q_{0:1}[n-1n]$ $Q_{0:1}[n-1n]$
	110379°	

Logarithmie.				Table III	III w.						Unit=1".
u	0	1	23	rs	-	æ	9	F	œ	6	10
$Q_{0\cdot 0}[n,-n]$	2.107050_n	2. 324123 _n	2. 500012_n	$2, 456410_n$	2. 383497n	2. 290224 _n	2.182060_n	2.06264_n	1. 93418_n	I. 79862n	L. 65717 _n
$Q_{1\cdot 0}[n+1,-n] \\ Q_{1\cdot 0}[n-1,-n]$	2. 761374 2. 761374	2. 948526 3. 117300	2. 828604 3. 287547	2. 701746 3. 346232	2. 568459 3. 362633	2. 42951 3. 346294	2, 28563 3, 304908	2. 13748 3. 24416	1. 98561 3. 16781	1. 83045 3. 07910	1. 67243 2. 98013
$Q_{0\cdot 1}[n,-n+1] \\ Q_{0\cdot 1}[n,-n-1]$	2. 848322_n 2. 848322_n	2. 948526_n 3. 238533_n	2. 553490_n 3. 460532_n	1. 83791 3. 526791_n	2. 55053 3. 545790_n	2. 70884 3. 530227_n	2. 75385 3. 488898 _n	2. 74519 3. 42791 _n	2. 70312 3. 35124_n	2. 63898 3. 26216 _n	2. 55831 3. 16280 _n
$egin{array}{l} Q_2 \circ [n+2n] \ Q_2 \circ [nn] \ Q_2 \circ [n-2n] \end{array}$	$\begin{array}{c} 3.19118_n \\ 3.49221_n \\ 3.19118_n \end{array}$	3. 35005_n 3. 78130_n 3. 62597_n	3. 20584_n 3. 72230_n 3. 79235_n	3. 05864_n 3. 64840_n 3. 92707_n	2. $90832n$ 3. $55797n$ 4. $02294n$	2. 75501_n 3. 45496_n 4. 08050_n	2. 59890_n 3. 34206_n 4. 10554_n	2. 44023_n 3. 22114_n 4. 10412_n	2. 27924_n 3. 09370_n 4. 08099_n	2. 11612_n 2. 96069_n 4. 04028_n	
$Q_{1:1}[n+1n+1] \\ Q_{1:1}[n-1n+1] \\ Q_{1:1}[n+1n-1] \\ Q_{1:1}[n-1n-1]$	3. 62947 3. 62947 3. 62947 3. 62947	3. 72967 3. 85386 3. 95032 4. 09283	3. 50687 3. 66684 3. 93470 4. 30437	3. 25188 3. 13763 3. 89345 4. 44724	2. 94397 3. 29292n 3. 83267 4. 54300	2. 52009 3. 67977n 3. 75650 4. 59781	1. 34395 3. 83164_n 3. 66791 4. 61956	2. 13049_n 3. 89857_n 3. 56910 4. 61498	2. 30111_n 3. 91787_n 3. 46175 4. 58903	2. 32725 _n 3. 90586 _n 3. 34713 4. 54583	
$egin{array}{l} Q_{0\cdot 2}[nn+2] \ Q_{0\cdot 2}[nn] \ Q_{0\cdot 2}[nn-2] \end{array}$	3. 54909_n 3. 62947_n 3. 54909_n	3. 61500_n 3. 88133_n 4. 01770_n	3. 35799 _n 3. 61213 _n 4. 26538 _n	3. 10979_n 2. 74115 4. 40391_n	2. 96526n 3. 72579 4. 49178n	2. 95859n 3. 96812 4. 53874n	3. 01478 _n 4. 07974 4. 55360 _n	3. 06840n 4. 12792 4. 54322n	3. 09806 _n 4. 13642 4. 51236 _n	3. 10227_n 4. 11736 4. 46502_n	
$egin{array}{l} Q_00[n+1n+1]+\sigma \\ Q_00[n-1n-1]-\sigma \\ Q_00[n+1n-1]+\delta \\ Q_00[n-1n+1]-\delta \end{array}$	3. 32494 _n 3. 32494 _n 3. 32494 3. 32494	3. 62946_n 3. 62946_n 3. 62946 3. 62946	3. 60373 _n 3. 60373 _n 3. 60373 3. 60373	3. 55967_n 3. 55967_n 3. 55967 3. 55967	3. 49933 _n 3. 49933 _n 3. 49933 3. 49933	3. 42500_n 3. 42500_n 3. 42500 3. 42500	3. 33884n 3. 33884n 3. 33884 3. 33884	3. 24270 _n 3. 24270 _n 3. 24270 3. 24270	3. 13782_n 3. 13782_n 3. 13782_n 3. 13782	3. 02565_n 3. 02565_n 3. 02565 3. 02565	2. 90711 _n 2. 90711 _n 2. 90711 2. 90711
$egin{array}{c} Q_{f 3 \cdot 0}[n+1,-n] \ Q_{f 3 \cdot 0}[n-1,-n] \ Q_{f 3 \cdot 0}[n-3,-n] \end{array}$	4. 03175 4. 03175				4. 32136 4. 50550				4. 80030		
$Q_{2:1}[n,-n+1]$ $Q_{2:1}[n-2,-n+1]$ $Q_{2:1}[n,-n-1]$ $Q_{2:1}[n-2,-n-1]$		$\begin{bmatrix} 4. & 68736_n \\ 4. & 49191_n \end{bmatrix}$		4. 89559_n 5. 07295_n		4. 24224		5. 48264n	•		
$Q_{1,2}[n-1,-n+2]$ $Q_{1,2}[n+1,-n]$	4, 54525		4, 42446								
$Q_1 \cdot 2[n-1n]$ $Q_1 \cdot 2[n+1n-2]$ $Q_1 \cdot 2[n-1n-2]$	4. 54525		4. 85406 5. 16184		4. 41262		5. 69280				
$Q_{0\cdot 3}[n,-n+1]$		4. 58186 _n		9 50404					_		
$Q_{0\cdot3}[n,-n-1]$ $Q_{0\cdot3}[n,-n-3]$		4. 74024n		7. 03/04		5. 43190 "					
$Q_{1} \circ [n, -n+1] + \sigma$ $Q_{1} \circ [n, -n-1] - \sigma$ $Q_{1} \circ [n-2, -n-1] - \sigma$		4. 63965		4. 40186 4. 59921				[4. 49128] 1			

	4. 75273 _n	
4. 57721 _n		
	3. 22170 _n	4. 71754
4. 0/205n		
	4. 79432 _n	4. 79432 4. 47930
4. 54525 _n 4. 54525 _n	,	
	4. 19088 _n 4. 19088 _n 4. 19088	4.19088
$Q_{1,0}[n, -n+1] - \delta$ $Q_{1,0}[n, -n+1] - \delta$	$\begin{cases} 0_{01}[n+1n] + \sigma \\ 0_{01}[n-1n] - \sigma \\ 0_{01}[n-1n-2] - \sigma \\ 0_{01}[n+1n] + \sigma \\ 0_{$	$\begin{array}{c} +1n-2 \\ -1n+2 \\ -1n \\ -3 \end{array}$

¹ In v. Zeipel's table this quantity is misplaced. It occurs in the column n=5.

Logarithmic.				TABLE	Table IIIu2.					, , ,	Unit=1".
u	0	1	2	83	odi.	r.o.	9	t-	00	n n	10
$Q_{0\cdot 0}[nn]$	2. 23324	2, 52014	2, 58292	2. 60872	2. 60803	2, 58234	2, 53549	2, 47134	2, 39284	2, 30268	2, 20271
$Q_{1,0}[n+1,-n] = Q_{1,0}[n-1,-n]$	3. 05368 _n 3. 05368 _n	3. 28708_n 3. 41485_n	3. 21286_n 3. 50016_n	$\frac{3.13038_n}{3.57826_n}$	3. 03946_n 3. 63742_n	2. 94059_n 3. 67159_n	2. 83441_n 3. 68131_n	$\frac{2}{3}$. 72166_n $\frac{3}{6}$. 66944_n	$\frac{2}{3}$. 60305_n $\frac{2}{3}$. 63892_n	$\frac{2}{3}$. 47917_n $\frac{2}{3}$. 59276_n	
$Q_{0\cdot 1}[nn+1] \ Q_{0\cdot 1}[nn-1]$	3. 11484 3. 11484	3. 28708 3. 51345	3. 09682 3. 63465	2. 73074 3. 73328	$\frac{2.08444n}{3.80402}$	2. 81745_n 3. 84435	3. 01401_n 3. 85750	3. 09669_n 3. 84754	3. 12342_n 3. 81809	3. 11549_n 3. 77253	
$egin{aligned} Q_{2\cdot0}[n,-n]\ Q_{2\cdot0}[n-2n] \end{aligned}$		•	4.21525 4.15081			4. 45147	4. 51320				
$Q_{1:1}[n-1,-n+1]$ $Q_{1:1}[n+1,-n-1]$ $Q_{1:1}[n-1,-n-1]$		4. 36877n 4. 47566n		4. 00343_n	4. 86044n	4. 95144n					
$Q_{0\cdot 2}[nn+2] \ Q_{0\cdot 2}[nn] \ Q_{0\cdot 2}[nn] \ Q_{0\cdot 2}[nn-2]$	3, 90847		4, 22059	4. 66360	4. 78473						
$Q_{0.0}[n+1n+1] + \sigma$ $Q_{0.0}[n-1n-1] - \sigma$ $Q_{0.0}[n+1n-1] + \delta$ $Q_{0.0}[n-1n+1] - \delta$		4. 04093 4. 04093 4. $04093n$ [4. $04093n$]		4. 00956n							
$Q_{1\cdot 0}[n,-n+1]+\sigma$		$5_{\bullet} 14238_n$									
$Q_{1:0}[n] = \begin{bmatrix} n & 1 & 1 \\ Q_{1:0}[n - n + 1] - \delta \\ Q_{1:0}[n - 2, -n + 1] - \delta \end{bmatrix}$		5. 06752 5. 06752									·
Q_{0} , $[n+1, -n] + \sigma$ Q_{0} , $[n-1, -n] + \sigma$ Q_{0} , $[n+1, -n] + \delta$	4. 72557 4. 72557 4. 72557n		, O) OC)								
$Q_{0\cdot 1}[n-1,-n+2] = \emptyset$ $Q_{0\cdot 1}[n-1,-n] = \emptyset$	$[4, 72557_n]$		o. or our								

Logarithmic.

TABLE IV.

Unit=1".

	n	0	1	2	3	4	5	ß
	$ \begin{array}{c} R_{0 \cdot 0}[n, -n+1] + \pi' \\ R_{0 \cdot 0}[n, -n-1] - \pi' \end{array} $	1. 898161 _n 1. 898161	2. 283141 _n 2. 283141	$\begin{array}{c} 2.\ 153770_n \\ 2.\ 153770 \end{array}$	2.006171_n 2.006171	$\begin{array}{c} 1.847875_n \\ 1.847875 \end{array}$	1.68250_n 1.68250	1.51210_n 1.51210
	$\begin{array}{c} R_{1\cdot0}[n+1,-n+1]+\pi' \\ R_{1\cdot0}[n-1,-n+1]+\pi' \\ R_{1\cdot0}[n+1,-n-1]-\pi' \\ R_{1\cdot0}[n-1,-n-1]-\pi' \end{array}$	$\begin{array}{c} 2.\ 522558 \\ 2.\ 522558 \\ 2.\ 522558_n \\ 2.\ 522558_n \end{array}$	2,683079 2.937464 2.683079 2.937464 n	$\begin{array}{c} 2.\ 528880 \\ 2.\ 958041 \\ 2.\ 528880_n \\ 2.\ 958044_n \end{array}$	$\begin{array}{c} 2.\ 366191 \\ 2.\ 924776 \\ 2.\ 366191_n \\ 2.\ 924776_n \end{array}$	$\begin{array}{c} 2.\ 197675 \\ 2.\ 858077 \\ 2.\ 197675_{n} \\ 2.\ 858077_{n} \end{array}$	$\begin{array}{c} 2.02490 \\ 2.76886 \\ 2.02490_n \\ 2.76886_n \end{array}$	$\begin{array}{c} 1.84887 \\ 2.66352 \\ 1.84887_n \\ 2.66352_n \end{array}$
	$R_{0\cdot 1}[n, -n+2] + \pi'$ $R_{0\cdot 1}[n, -n] + \pi'$ $R_{0\cdot 1}[n, -n] - \pi'$ $R_{0\cdot 1}[n, -n-2] - \pi'$	$ \begin{array}{c} 2.\ 812563_n \\ 2.\ 522558_n \\ 2.\ 522558 \\ 2.\ 812563 \end{array} $	3.024413_n 3.024413_n 2.462558 3.261391	$\begin{array}{c} 2.\ 794447_n \\ 3.\ 076598_n \\ 1.\ 724281 \\ 3.\ 246209 \end{array}$	$\begin{array}{c} 2.\ 523495_n \\ 3.\ 058902_n \\ 1.\ 856833_n \\ 3.\ 190606 \end{array}$	$ \begin{array}{c} 2.\ 197675_n \\ 3.\ 001314_n \\ 2.\ 093957_n \\ 3.\ 108845 \end{array} $	$\begin{array}{c} 1.76164_n \\ 2.91803_n \\ 2.12968_n \\ 3.00884 \end{array}$	0.74650_n 2.81684_n 2.09513_n 2.89541
	$R_{2\cdot0}[nn+1]+\pi'$ $R_{2\cdot0}[n-2n+1]+\pi'$		3.49405_n 3.36728_n					
	$ \begin{vmatrix} R_{1\cdot 1}[n-1,-n+2] + \pi' \\ R_{1\cdot 1}[n+1,-n] + \pi' \\ R_{1\cdot 1}[n-1,-n] + \pi' \\ R_{1\cdot 1}[n+1,-n] - \pi' \\ R_{1\cdot 1}[n-1,-n] - \pi' \end{vmatrix} $	$\begin{array}{c} 3.\ 30370 \\ 3.\ 30370 \\ 3.\ 30370_n \\ 3.\ 30370_n \end{array}$		3. 70912				
	$\begin{array}{c} R_{0\cdot 2}[n,-n+1] + \pi' \\ R_{0\cdot 2}[n,-n+1] - \pi' \end{array}$		3.81842_n 3.21895					
	$ \begin{vmatrix} R_{0\cdot 0}[n-1,-n] + \sigma + \pi' \\ R_{0\cdot 0}[n+1,-n] + \hat{\sigma} + \pi' \\ R_{0\cdot 0}[n-1,-n+2] - \hat{\sigma} + \pi' \end{vmatrix} $	2. 72638 _n 2. 72638		2. 94112				
	$\begin{array}{c} R_{0\cdot0}[n-1,-n+2] = \sigma + \kappa \\ R_{0\cdot0}[n+1,-n] + \sigma - \pi' \\ R_{0\cdot0}[n-1,-n] - \delta - \pi' \end{array}$	$\begin{array}{c} 2.\ 72638 \\ 2.\ 72638_{n} \end{array}$		2. 94112				
	$ \begin{array}{ c c }\hline R_{0\cdot0}[nn+1] + \pi' \\ R_{0\cdot0}[nn-1] - \pi' \end{array}$	2.51524 2.51524_n	2. 84832 2. 84832 _n	$ \begin{array}{c} 2.78195 \\ 2.78195_{n} \end{array} $	2.69286 2.69286_n	$ \begin{array}{c} 2.58759 \\ 2.58759_{n} \end{array} $	2.47019 2.47019_n	
	$ \begin{vmatrix} R_{1 \cdot 0}[n+1n+1] + \pi' \\ R_{1 \cdot 0}[n-1n+1] + \pi' \\ R_{1 \cdot 0}[n+1n-1] - \pi' \\ R_{1 \cdot 0}[n-1n-1] - \pi' \end{vmatrix} $	$\begin{array}{c} 3.\ 25180_n \\ 3.\ 25180_n \\ 3.\ 25180 \\ 3.\ 25180 \end{array}$	3.45486_n 3.62946_n 3.45468 3.62946	3.34235_n 3.66471_n 3.34235 3.66471	3.21906_n 3.66409_n 3.21906 3.66409	$egin{array}{c} 3.\ 08741_n \ 3.\ 63529_n \ 3.\ 08741 \ 3.\ 63529 \ \end{array}$	2. 94903 _n 3. 58453 _n 2. 94903 3. 58453	
	$ \begin{array}{l} R_{0\cdot 1}[n,-n+2] + \pi' \\ R_{0\cdot 1}[n,-n] + \pi' \\ R_{0\cdot 1}[n,-n] - \pi' \\ R_{0\cdot 1}[n,-n-2] - \pi' \end{array} $	$ \begin{array}{c} 3.\ 49076 \\ 3.\ 25180 \\ 3.\ 25180_n \\ 3.\ 49076_n \end{array} $	3.69598 3.69598 3.33141_n 3.89134_n	$\begin{array}{c} 3.\ 53278 \\ 3.\ 76576 \\ 2.\ 99523_n \\ 3.\ 91658_n \end{array}$	3.33224 3.78484 2.24789_n 3.90661_n	$egin{array}{c} 3.08741 \\ 3.76831 \\ 2.51136 \\ 3.87001_n \\ \hline \end{array}$	2. 77380 3. 72575 2. 76863 3. 81284 _n	
Factor w.	$ \begin{vmatrix} R_{2\cdot0}[nn+1] + \pi' \\ R_{2\cdot0}[n-2n+1] + \pi' \end{vmatrix} $		4. 36208 4. 18801		1			
Fac	$ \begin{cases} R_{1\cdot 1}[n-1,-n+2]+\pi' \\ R_{1\cdot 1}[n+1,-n]+\pi' \\ R_{1\cdot 1}[n-1,-n]+\pi' \\ R_{1\cdot 1}[n+1,-n]-\pi' \\ R_{1\cdot 1}[n-1,-n]-\pi' \end{cases} $	$\begin{array}{c} 4.\ 13780_n \\ 4.\ 13780_n \\ 4.\ 13780 \\ 4.\ 13780 \\ 4.\ 13780 \end{array}$		4. 52584 _n				
	$ \begin{vmatrix} R_{0\cdot 2}[nn+1] + \pi' \\ R_{0\cdot 2}[nn+1] - \pi' \end{vmatrix} $		$\substack{4.\ 60272\\4.\ 07416_{\pmb{n}}}$					
	$ \begin{vmatrix} R_{0\cdot0}[n-1,-n] - \sigma + \pi' \\ R_{0\cdot0}[n+1,-n] + \partial + \pi' \\ R_{0\cdot0}[n-1,-n+2] - \partial + \pi' \\ R_{0\cdot0}[n+1,-n] + \sigma - \pi' \\ R_{0\cdot0}[n-1,-n] - \partial - \pi' \end{vmatrix} $	3.51583 3.51583_n 3.51583_n 3.51583		3. 76747 _n				
	$\begin{array}{c} R_{0\cdot 0}[nn+1] + \pi' \\ R_{0\cdot 0}[nn-1] - \pi' \end{array}$		3. 1148 _n 3. 1148		3. 0520 _n 3. 0520		2. 9231	
Factor w ² .	$ \begin{array}{c} R_{1\cdot 0}[n+1n+1]+\pi' \\ R_{1\cdot 0}[n-1n+1]+\pi' \\ R_{1\cdot 0}[n+1n-1]-\pi' \\ R_{1\cdot 0}[n-1n-1]-\pi' \end{array} $		3.9234_n 4.0409_n		4. 0961		4. 0774 _n	
Fa	$ \begin{vmatrix} R_{0\cdot 1}[n,-n+2]+\pi' \\ R_{0\cdot 1}[n,-n]+\pi' \\ R_{0\cdot 1}[n,-n]-\pi' \\ R_{0\cdot 1}[n,-n-2]-\pi \end{vmatrix} $	3. 8736 _n 3. 8736 _n		4.1593_n 3.6562		4. 3090		

·1".		5.440	3. 535 3. 11	5. 63 1. 96	5. 38 5. 53 5. 57	3. 08 3. 08 5. 08 6. 64	5. 51 1. 79 1. 27	3. 40 3. 40 3. 78 3. 78						
Unit=1".	02	rt3	23. 128.	45. 171.	55. 3 600. 8 1456. 8	186. 46 1042. 02 818. 08 4145. 64	155. 1494. 2954.	69 56 59 56						
		+	+1	1+	+1+	1++1	+1+	++11						
		8 172	252 96	$\frac{41}{80}$	53 87 68	68 51 10 44	46 83 25	79 79 64 64						•
		ಯ	31. S		ယ္ထက္ဆ	ထွယ်လုံလ		95. 76. 95.						
	6		3	60. 233.	66. 718. 1738.	218. 1226. 993. 5050.	177. 1798. 3666.	0 6 0 6						
		+_	40, 497 + 225, 93 -	1+	+1+	1++1	+1+	++11						
		12, 194	197 33	8 8	980 88	52.00	$\begin{array}{c} 12 \\ 40 \\ 10 \end{array}$	33 33 37						
		çi	0, 0	78. (312.	77. 46 829. 60 1999. 68	9.09.4	e, o, ∞	0 - 0 -						
	oc	_	4 61	31	7 82 199	246, 77 1385, 39 1166, 27 5961, 29	193, 12 2090, 40 4428, 10	130. 101. 130. 101.	254					
		+	+ 1	1+	+1+	1++1	+ 1 +	+++1	-11254					
		18, 0394	55	32		01001-1-	w :0 w	01202						
		Ö	∞ ∞	4.00	. 916 . 941 . 601	52 08 67 67	. 58 . 76 . 43	22 67 67						
	1-	18	50, 825 288, 845	97. 462 407. 639	86. 912. 2191.	265. 1482. 1312. 6760.	197. 2322. 5171.	174. 130. 174. 130.		361				2281
			+1		+1+	1++1	+1+	++11		+53361				1
	 	_ 		1+				<u> </u>		Т				<u>'</u>
		26. 3667	958 726	$283 \\ 529$	93. 271 940. 779 2247. 590	268. 97 1469. 07 1394. 14 7268. 47	186, 07 2428, 12 5779, 90	$\frac{62}{28}$						
	9	26.	60. 355.	116. 516.	93. 47.	68. 94. 68.	86. 79.	227. 162. 227. 162.	8819			8		
				5					88			84730		
		37. 9325 +	+1	1+	+1+	1++!_	+1+	++11				1		
		332	$\begin{array}{c} 434 \\ 891 \end{array}$	$\begin{array}{c} 732 \\ 920 \end{array}$	377 229 709	3824	253	84 26 26 36						
	2	7.	68. 4 415. 8	129. 7 628. 9	က်လုံကို	8 = 4 9	7.	288. 8 192. 8 288. 8 192. 8		0 11			52	9
		6.5	41	12	95. 882. 2095.	253. 70 1301. 17 1364. 58 7266. 23	157, 29 2330, 12 6097, 47	82282		- 5840 +38961			+45152	- 2340
		+	+1	1+	+1+	1++1	+1+	++11		<u> </u>			<u>+</u>	<u> </u>
>	Ì	53. 2917 +	$\begin{array}{c} 840 \\ 971 \end{array}$	78	87 86 02	01697	448	4040						
E	_	8. 2.	න න න්න්	129. 678 722. 973	3. 8 9. 0	0400	7. 9. 6 9. 1	2.12.2.1.35.12.4.2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	21.0		0	6		
Table	"	ŢĢ.	68. 448.	22	$\begin{array}{c} 93.\ 487 \\ 710.\ 886 \\ 1679.\ 002 \end{array}$	223. 02 955. 49 1175. 06 6524. 67	117. 98 1959. 67 5930. 17	352. 211. 352. 211.	2857 3585		546	713		
T		+	+1	1+	+1+	1++1	+1+	++11	+1		+15460	-57139		
	İ	$\frac{1}{12.0360}$												
	li	6.	55, 479 422, 487	1 0 4. 641 759. 792	91. 548 427. 143 1009. 605	. 06 . 27 . 41	89. 64 1306. 17 5101. 10	272 86 86						
	ا ت	73	55	104 759	91 909	195. 478. 798. 1919.	88 306 101	202. 202. 202.		746 739 482			917 771	900 1247
		,				4				- 746 - 5739 +13482			- 9917 +27771	1
		90. 4978 +	+!	1+	+!+	1++1	+1+	++11		117			, , , ,	
		497	20.300 294.893	43. 699 680. 283	$984 \\ 564 \\ 644$	209. 26 46. 78 271. 44 2630. 66	28 28 58	46 49 46 49						
	~	90.	25 19 19	80.	99. 93. 249.	36.74 30.73 30.	109. 499. 5360.	427. 142. 427. 142.	194		482	88 83		
			21	9	61						4 00	+1883 -15988		
		$-\frac{+}{9}$	+!	1+	+1+	1++1	+1+	++11			1 +-	+[
		15. 7096	78. 609 7. 855	$\frac{43.232}{106.070}$	126. 796 222. 102 156. 231	33.	35 49	98						
	-	<u>~</u>	78.	£3.	8,81,9	310. 55 550. 33 106. 07	150, 35 253, 55 527, 49	383.86		892 666 2174			8000	88
			• •	7	222	E 133 H	22.23	8 8		22.0			$\frac{908}{1160}$	1250 866
		+		++	++1	1 1 1	+++	+ 1		+1+			+++	11
			43, 141		105. 647 105. 647	8888		79. 10 79. 10 79. 10 79. 10						
	0		£. £.	i l		191, 93 191, 93 191, 93 191, 93		79. 79. 79.	179 179		817 866 866	7.7		
		1			7 7	AAAA								
			1+		+ 1	1+1+		+11+			+1+	1		
								600						6
						222£				1)	ର ଚ	99		ڪ ۾ خ
			\widehat{u}	£	ž (ž	++11	3 3	+11+	$\widehat{u}\widehat{u}\widehat{u}$	(n) n+	22	317	5.5
	æ	(2	n	+1	اِ ڇَاِ		+(2)		1, 1, 1,	+111		l l	+	+11
		Ĩ	77	ĨĨ	+ 12	7777		7777	1-1-1-1		777	77		117
		(n-n)	E E	દુદ	<u> కొక్క</u>	<u> ಶ್ರಶ್ರಶ</u>	$P_{0.2}(nn+2) \ P_{0.2}(nn) \ P_{0.2}(nn)$	<u> </u>	2000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2,2,5	z,z,	2,2,2	કુ <u>ફુ ફુ</u>
		$P_{0\cdot 0}$	$P_{1.0}(n+1)$. $P_{1.0}(n-1)$.	$P_{0:1}(n,-n+1) \\ P_{0:1}(n,-n-1)$	$\begin{array}{l} P_{2\cdot 0}(n+2n) \\ P_{2\cdot 0}(n,-n) \\ P_{2\cdot 0}(n-2n) \end{array}$	$\begin{array}{l} P_{1:1}(n+1n+1) \\ P_{1:1}(n-1n+1) \\ P_{1:1}(n+1n-1) \\ P_{1:1}(n-1n-1) \end{array}$	$\begin{array}{l} P_{0\cdot 2}(nn+2) \\ P_{0\cdot 2}(nn) \\ P_{0\cdot 2}(nn-2) \end{array}$	$\begin{array}{l} P_{0\cdot 0}(n+1n+1)+\sigma \\ P_{0\cdot 0}(n-1n-1)-\sigma \\ P_{0\cdot 0}(n+1n-1)+\delta \\ P_{0\cdot 0}(n+1n+1)+\delta \end{array}$	$\begin{array}{l} P_{3.0}(n+1n) \\ P_{3.0}(n-1n) \\ P_{3.0}(n-3n) \end{array}$	$P_{2\cdot 1}(n-n+1) \\ P_{2\cdot 1}(n-2\cdot -n+1) \\ P_{2\cdot 1}(n-n-1) \\ P_{2\cdot 1}(n-2\cdot -n-1)$	$\begin{array}{c} P_{1,2}(n-1,-n+2) \\ P_{1,2}(n+1,-n) \\ P_{1,2}(n-1,-n) \\ \end{array}$	ام. ا	$P_{0.3}(nn+1) \\ P_{0.3}(nn-1) \\ P_{0.3}(nn-3)$	$P_{1\cdot 0}(nn+1)+\sigma \\ P_{1\cdot 0}(nn-1)-\sigma \\ P_{1\cdot 0}(n-2n-1)-\sigma$
	1 1	,												

	3930	
	+	
2147		
<u>.</u> 2		
	64 75	6
	8 33	8
	- 372 - 3855	- 3009
	- 37 + 385	300
	+ 38£	<u> </u>
044	+ - 37 + 385	
+ 3942 + 1044	+ 1 - 33 + 386	300
+ 3942 + 1044	+ 38	908 –
	1+	
	53 – 37 1763 + 385	
	53 - +	
	1+	5288 623 1193
+ +	53 - +	5288 623 1193
	53 - +	5288 623 1193
+ +	53 - +	5288 623 1193
1634 866 + +	53 - +	5288 623 1193
1634 866 866	+ 53 + 1763 + + 1763	- 5288 - 623 - 1193
1634 866 + +	333 + 53 + 1763 + + 1763	649 – 5288 - 649 – 623 - 333 – 1193
+ + 1634 + 866 - 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
+ + 1634 + 866 - 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
+ 1634 + 866 - 866 + 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
+ 1634 + 866 - 866 + 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
+ + 1634 + 866 - 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
+ 1634 + 866 - 866 + 866	+ 333 - 333 + 53 + 1763 + 1763	- 649 + 649 + 333 - 1193
1634 866 866	333 + 53 + 1763 + + 1763	- 649 + 649 + 333 - 1193

w.
>
LE
TAB

1		=======================================	30	5.5	10 € ∞			9660						
	10	- 42.	- 174. + 998.	+ 346.03 - 1338.5	- 409.5 + 4464.0 -11436.8			- 652 6 - 534 0 + 652 6 + 534 0						
	6	57.80	209, 11 1225 69	416. 49	447. 7 4830. 2 12509. 4	1476.1 8481.8 6675.7 36265.0	1216.0 12456.5 26275.8	837.7 670 3 837.7 670.2	<u></u>					
		1	1+_	+!	1+1 4:1	+11+	1+1	11++						
	20	- 78.07	- 241.46 $+$ 1460.30	+ 483.52 $-$ 2014.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + 1500.9 \\ - 8610.8 \\ - 6991.5 \\ + 38884.5 \end{array}$	$-\frac{1191.2}{+13024.3}$ -28814.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+74635					
	2	103, 39	264. 86 1675. 31	535. 46 2359. 4	474.8 4777.7 12899.7	1443. 2 8154. 2 6884. 8 39666. 4	1093. 6 - 12834. 8 30248. 4	1295. 0 971. 2 1295. 0 971. 2		-318377				-
			9 +	+1	1+1	+11+	1+1	45 45 45 1 1 + +)			· · · ·	
	9	133. 41	269, 59 1827, 67	555.08 2646.8	458. 0 4173. 4 11773. 5	1301. 8 6999. 5 6214. 1 37910. 8	918. 5 11667. 3 30021. 4	1543. 43 1102. 45 1543. 43 1102. 45	47337			+449089		
		1	1+	+1	1+1	+11+	1+1	11++	+			+		
	ۍ.	166. 40	243.85 1861.91	522.14 2805.8	428. 1 3138. 4 9633. 2	$1108.1 \\ 5178.8 \\ 4910.7 \\ 33200.8$	703. 7 9412. 8 27699. 4	1771. 50 1181. 00 1771. 50 1181. 00		+ 22690 $-$ 183621			-209160	
		1	1+	_+	1+1	+11+	1+1	11++		+ 1			<u> </u>	
	4	- 197. 76	- 175. 24 - 1714. 29	417.06	404. 7 - 1769. 5 - 6656. 7	- 934. 6 - 2942. 5 - 3034. 2 - 25650. 6	- 519.2 - 6339.7 - 23114.8	- 1934. 46 - 1160. 67 + 1934. 46 + 1160. 67	- 6146 + 14870			-47653 +231778		
			1+0	**************************************	1+1	+11+	1+1		1 1					_
	8	- 218.38	-57.00 + 1336.40	+ 233.8 - 2386.8	- 421.4 + 338.4 - 3373.0	+ 893.8 - 839.2 - 866.6 +16274.2	- 458. 1 + 2919. 9 -16651. 5	$\begin{array}{cccc} - & 1972. & 04 \\ - & 986. & 02 \\ + & 1972. & 04 \\ + & 986. & 02 \end{array}$		$^{+\ 339}_{-47527}$			+21967 -94500	1
	2	212. 19	99, 93	4, 11	517. 5 703. 1 634. 5	1087, 4 351, 5 1042, 2 7121, 2	- 569.9 - 149.9 - 9449.0	. 1815. 81 605. 27 - 1815. 81 - 605. 27	- 2975		+ 2850	$^{+\ 3794}_{+\ 8025}_{+46770}$		
			++	+1	1 1 1	++++	_ +	1 1++	+			-		
	1	49.77	- 297, 43 - 24, 88	- 161. 16 - 360. 23	- 693.9 - 987.2 - 648.8	+ 1454. 2 + 2383. 2 + 360. 2	- 630, 2 - 1111, 0 - 1921, 8	- 1410, 40 $+$ 1410, 40		$\begin{array}{c} -5205 \\ +3571 \\ -10942 \end{array}$			- 4621 - 5961 - 9041	+ 5671
		1	++		11+									
	0		+ 127. 95 $-$ 127. 95		- 449, 3 + 449. 3	+ 705.2 + 705.2 - 705.2 705.2		- 327. 52 + 327. 52 + 327. 52 - 327. 52	+1101		-3541	$^{+4261}$ $^{-4261}$ $^{+3541}$		
	æ	$P_{0.0}(n,-n)$	$P_{1.0}(n+1n) \\ P_{1.0}(n-1n)$	$P_{0\cdot 1}(nn+1) \\ P_{0\cdot 1}(nn-1)$	$P_{2\cdot 0}(n+2n) \ P_{2\cdot 0}(n-n) \ P_{2\cdot 0}(n-n)$	$\begin{array}{c} P_{1:1}(n+1n+1) \\ P_{1:1}(n-1n+1) \\ P_{1:1}(n+1n-1) \\ P_{1:1}(n+1n-1) \end{array}$	$P_{0\cdot 2}(nn+2) \ P_{0\cdot 2}(nn) \ P_{0\cdot 2}(nn) \ P_{0\cdot 2}(nn-2)$	$\begin{array}{l} P_{0\text{-}0}(n+1,-n+1)+\sigma \\ P_{0\text{-}0}(n-1,-n-1)-\sigma \\ P_{0\text{-}0}(n+1,-n-1)+\delta \\ P_{0\text{-}0}(n-1,-n+1)-\delta \end{array}$	$P_{3 \cdot 0}(n+1n)$ $P_{3 \cdot 0}(n-1n)$ $P_{3 \cdot 0}(n-3n)$	$\begin{array}{l} P_{2\cdot 1}(nn+1) \\ P_{2\cdot 1}(n-2n+1) \\ P_{2\cdot 1}(nn-1) \\ P_{2\cdot 1}(n-2n-1) \end{array}$	$P_{1\cdot 2}(n-1,-n+2)$	$P_{1\cdot 2}(n+1n) \\ P_{1\cdot 2}(n-1n) \\ P_{1\cdot 2}(n+1n-2) \\ P_{1\cdot 2}(n-1n-2)$	$P_{0\cdot3}(nn+1) \ P_{0\cdot3}(nn-1) \ P_{0\cdot3}(nn-3)$	$P_{1\cdot 0}(n,-n+1)+\sigma$

		Unit=1".	+141											
			621 +	+ 588 -3844	-1237 + 5209									_
			912 +	+ 586	-1266 +5651			•	•					
			+ 252	+ 533	-1308 +5857									-
	- 27446		+ 282	+ 417 - 3971	- 1042 + 5724	+ 26496								
- 13887			+ 297	+ 235 - 3462	$\frac{-765}{+5183}$	+18846	-64234		+ 3351					
	+ 974 - 22240 + 17597	TABLE Vuz	+ 290	_ 1 _ 2664	- 404 + 4227	+11174	-42351	+37519						-
-20744 - 5600			+ 250	$\frac{-251}{-1686}$	- 30 + 2966		- 986 22685	+22571	+ 2254 - 2254		+14731			
	$\begin{array}{c} -8852 \\ -8252 \\ +24757 \\ +3410 \\ +5831 \end{array}$		+ 175	- 446 - 734	+ 239 + 1643	$^{+}$ 3217 $^{+}$ 646		$^{+\ 2754}_{+\ 10708}$						- 9482
- 7081 - 4260 + 4260			+ 62	_ 507 _ 31	+ 269 + 517		- 4972 - 517		- 2605	-13593	$^{+16199}_{+10988} \\ ^{+10988}_{-10988}$			
	-1786 +1786 +1786 +1786 -3096 -1786			- 171 + 171								+4875 -4875	-4875	+4875
$\begin{array}{c} P_{1\cdot 0}(nn-1)+\delta \\ P_{1\cdot 0}(nn+1)-\delta \\ P_{1\cdot 0}(n-2n+1)-\delta \end{array}$	$\begin{array}{l} P_{0+1}(n+1,-n)+\sigma \\ P_{0+1}(n+1,-n)+\sigma \\ P_{0+1}(n-1,-n)-\sigma \\ P_{0+1}(n-1,-n-2)-\sigma \\ P_{0+1}(n+1,-n)+\tilde{\sigma} \\ P_{0+1}(n+1,-n-2)+\tilde{\sigma} \\ P_{0+1}(n+1,-n+2)-\tilde{\sigma} \\ P_{0+1}(n-1,-n+2)-\tilde{\sigma} \end{array}$		$P_{\sigma^{*}\sigma}(n,-n)$	$P_{1.0}(n+1n)$ $P_{1.0}(n-1n)$	$P_{0\cdot 1}(n,-n+1) = P_{0\cdot 1}(n,-n-1)$	$P_{2\cdot 0}^{2\cdot 0}(n,-n) = P_{2\cdot 0}(n-2,-n)$	$P_{1:1}(n-1,-n+1) \\ P_{1:1}(n+1,-n-1) \\ P_{1:1}(n-1,-n-1)$	$P_{0\cdot z}(n,-n+2) \\ P_{0\cdot z}(n,-n) \\ P_{0\cdot z}(n,-n-2)$	$\begin{array}{l} P_{0\cdot o}(n-1,-n-1)-\sigma \\ P_{0\cdot o}(n+1,-n-1)+\delta \\ P_{0\cdot o}(n-1,-n+1)-\delta \end{array}$	$P_{1\cdot 0}(n,-n+1)+\sigma$	$\begin{array}{c} P_{1,n}(n,-n-1)+\delta \\ P_{1,n}(n,-n+1)-\delta \\ P_{1,0}(n-2,-n+1)-\delta \end{array}$	$P_{0:1}(n+1,-n) + \sigma \\ P_{0:1}(n-1,-n) - \sigma$	$P_{0.1}(n+1,-n)+\delta$	$P_{0\cdot 1}(n-1,-n+2) - \delta \\ P_{0\cdot 1}(n-1,-n) - \delta$

								TA	TABLE VI.								-		-	Unit=1"		
и	θ		-		2		3		4		10		9		2		∞	os		01		
$Q_{0\cdot 0}(n,-n)$	+ 43.141	+	58.941	+	113.897	+	85.180	+	60, 839	+	42, 332	+	28. 958	+	19, 758	+	13. 112	+	+ 252		. 773	
$Q_{1\cdot 0}(n+1,-n) \ Q_{1\cdot 0}(n-1,-n)$	- 148.79 - 148.79	11	169. 04 345. 86	1 1	18. 77 702. 15	+1	39. 45 727. 17	+1	63. 14 666. 93	+ 1	67. 20 567. 79	+1	61. 47 459. 78	+ 1	51. 87 359. 27	+ 1	41. 56 273. 14	+ 32. 17 $-$ 203. 40	17 40 -		24. 25 148. 94	
$Q_{0\cdot 1}(nn+1) \ Q_{0\cdot 1}(nn-1)$	+ 191. 99 + 191. 99	++	198. 51 434. 27	++	18. 77 929. 94	ı +	82. 04 940. 12	1+	123. 98 849. 45	1+	130. 69 715. 95	1+	119. 39 575. 62	1+	100.82 447.38	1+	80. 91 338. 71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 39 +		47. 34 183. 58	
$Q_{2\cdot 0}(n+2n) \ Q_{2\cdot 0}(n,-n) \ Q_{2\cdot 0}(n,-n)$	+ 284.16 + 568.32 + 284.16	+++	276. 53 1001. 22 989. 93	+++	164. 39 213. 59 2099. 34	+1+	119, 94 370, 68 2959, 17	+1+	106. 65 787. 74 3486. 04	+1+	102, 12 1015, 36 3644, 88	+ +	97. 26 1085. 72 3508. 30	+ 1 +	89. 65 1047. 12 3180. 28	+1+	79. 51 943. 56 2753. 6	+ 68. - 810. +2301.	16 74 3	$\begin{array}{ccc} + & 56. \\ - & 671. \\ + 1868. \end{array}$	56. 68 671. 88 1868. 8	
$Q_{1:1}(n+1,-n+1)$ $Q_{1:1}(n-1,-n+1)$ $Q_{1:1}(n+1,-n-1)$ $Q_{1:1}(n+1,-n-1)$	- 961. 86 - 769. 93 - 769. 93 - 961. 86	1111	935. 33 1332. 35 1295. 09 3032. 17	1111	470.84 564.67 146.61 6656.21	1++1	306. 90 349. 39 595. 49 8805. 72	1++1	272. 99 1090. 78 1099. 98 9942. 80	1++1	278. 31 1551. 40 1358. 22 10096. 98	1++1	283. 17 1746. 43 1420. 25 9516. 42	1++1	275. 22 1741. 18 1350. 54 8491. 72	1++1	254. 19 1606. 8 1205. 0 7263. 0	$\begin{array}{c} -224. \\ +1405. \\ +1027. \\ -6011. \end{array}$	64 7 1	$\begin{array}{c} -191.29 \\ +1181.6 \\ +846.8 \\ -4844.0 \end{array}$	6980	
$Q_{0:2}(n,-n+2) \ Q_{0:2}(n,-n) \ Q_{0:2}(n,-n)$	+ 816.81 + 865.89 + 816.81	+++	794. 90 1412. 97 2355. 16	+++	372. 77 137. 23 5306. 59	+ 1 +	199. 19 1024. 54 6625. 40	+1+	165. 19 1887. 44 7185. 73	+1+	179. 64 2366. 80 7090. 49	+1+	198. 61 2511. 79 6542. 08	+1+	206. 13 2418. 56 5743. 16	+1+	199. 78 2180. 8 4849. 2	+ 182. $-$ 1876. $+$ 3971.		+160.02 -1557.5 $+3173.4$. 5. 4.	
$Q_{0.0}(n+1,-n+1)+\sigma \ Q_{0.0}(n-1,-n-1)-\sigma \ Q_{0.0}(n-1,-n-1)-\sigma \ Q_{0.0}(n+1,-n-1)+\delta \ Q_{0.0}(n-1,-n+1)-\delta$	+ 412.18 + 412.18 - 412.18 - 412.18	++11	865. 89 865. 89 865. 89 865. 89	++11	765. 43 765. 43 765. 43 765. 43	++:1	638. 10 638. 10 638. 10 638. 10	++ 1 1	509, 89 509, 89 509, 89 509, 89	++ 1 1	394, 75 394, 75 394, 75 394, 75	++11	298. 22 298. 22 298. 22 298. 22	++11	221. 03 221. 03 221. 03 221. 03	++ 1 1	161. 20 161. 20 164. 20 161. 20	++ 116. - 1116. - 1116.	8888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 88 88	
$Q_{3\cdot 0}(n+1n) \ Q_{3\cdot 0}(n-1n) \ Q_{3\cdot 0}(n-3n)$	1477 1477							+ 1	$^{+}$ 3919 $^{-}$ 11748							-13	-17938					
$Q_{2\cdot 1}(n,-n+1)$ $Q_{2\cdot 1}(n-2,-n+1)$ $Q_{2\cdot 1}(n,-n-1)$ $Q_{2\cdot 1}(n-2,-n-1)$		<u>+</u> +	6916] 4691		·	-4841 + 40197	4841 (0197			1 	8364			+78052	052							
$Q_{1\cdot 2}(n-1n+2)$ $Q_{1\cdot 2}(n+1n)$ $Q_{1\cdot 2}(n-1n)$ $Q_{1\cdot 2}(n+1n-2)$ $Q_{1\cdot 2}(n+1n-2)$	_5525 _5525			1 11	- 3793 - 1102 -43556			+	+17415			= ==	-112546									
$egin{array}{l} Q_{0\cdot 3}(n,-n+1) \ Q_{0\cdot 3}(n,-n-1) \ Q_{0\cdot 3}(n,-n-3) \end{array}$		+ +	+ 6023 +11251			1	8191			+53	+53719											
$Q_{1.0}(n,-n+1)+\sigma \\ Q_{1.0}(n,-n-1)-\sigma \\ Q_{1.0}(n-2,-n-1)-\sigma$	·	1	- 7257			1	2252 7356							1	4612							

		_
		_
		_
	7448	
	+	_
+ 5965		
	8 ro	-
	- 363 - 7795	1
		-
+ 8633		
	+10615 10615 4492	
5525 5525		-
++		
	+2345 +2345 -2345	
0	b %%	-
$Q_{1\cdot 0}(nn-1)+\cdot \delta \\ Q_{1\cdot 0}(nn+1)-\delta \\ Q_{1\cdot 0}(n-2n+1)-\delta$	$\begin{array}{c} Q_{0\cdot1}(n+1,-n)+\sigma \\ Q_{0\cdot1}(n-1,-n)-\sigma \\ Q_{0\cdot1}(n-1,-n-2)-\sigma \\ Q_{0\cdot1}(n+1,-n)+\delta \\ Q_{0\cdot1}(n+1,-n-2)+\delta \\ Q_{0\cdot1}(n+1,-n-2)+\delta \\ Q_{0\cdot1}(n-1,-n-2)-\delta \end{array}$	
1n-1 1n-1 1-2		
\$\$\$ \$	\$	
		ı

Unit-1".	10	- 45.41	$\frac{-180.02}{+1182.3}$	+ 361.7 1454.8				- 807.4 - 807.4 + 807.4 + 807.4						
	6	- 62.90	- 215.35 + 1482.8	+ 435.5 - 1828.8	$\begin{array}{c} - & 462.9 \\ + & 5454.9 \\ -17008 \end{array}$	+ 1529.5 - 9792.9 - 6919.9 +44286	$\begin{array}{c} -1265.5 \\ +13103 \\ -29175 \end{array}$	$\begin{array}{c} -1060.8 \\ -1060.8 \\ +1060.8 \\ +1060.8 \end{array}$						
	œ	- 85, 94	- 247.01 + 1815.4	+ 504.8 - 2245.1	- 490.7 + 5633.9 - 18624	+ 1566.8 - 10044 - 7207.3 + 48920	$\begin{array}{c} -1253.3 \\ +13691 \\ -32536 \end{array}$	- 1373, 5 - 1373, 5 + 1373, 5 + 1373, 5	+124030					
	7	115.52	267.07 2158.8	556. 2 2678. 6	502. 8 5411. 6 19558	1533. 4 9585. 8 7006. 8 51923	1170. 6 13425 34932	1748. 6 1748. 6 1748. 6 1748. 6	1	-490100				+ 37989
	9	152.08	263.20 -	. 567.4 +	. 502.3 - 4645.2 + 19489 -	- 1440.5 + - 8204.8 - - 6133.7 - - 52434 +	- 1034.6 - 12016 - 35777 -	2181.9 - 2181.9 - 2181.9 + + 2181.9 + + - 2181.9 + + - 2181.9 + -	,			090989+		
	2	- 195.08 -	2707. 42 +	511. 49 +	. 506. 4 - 3245. 6 - 18197	- 1354.2 + 5806.9 - - 4462.6 - - 49782 +	- 909.1 – 9292.2 + - 34574	2660.8 - 2660.8 - 2660.8 + 2660.8		+ 28058			-270330	
TABLE VIW.	4	241.82	. 113. 43	- 355.25 + - 3513.91 -	- 552. 9 - - 1222. 5 + - 15636 -	- 1411.8 + - 2495.9 - - 1982.2 - - 43698	- 923.1 – - 5318.5 + - 31030	3157.4 – 3157.4 – 3157.4 + + + + + + + + + + + + + + + + + + +	- 2344 - 58043	+		- 36497		
	8	286.03	74. 16 - 2648. 42 +	68.85 +	711. 5 – 1232. 6 + 12105 –	- 1854.9 + 1304.0 - 1097.5 - 34732 +	- 1287. 6 - 551. 5 - 25346	3628.0 - 3628.0 - 3628.0 + 3628.0 + 1	l +	- 24814 181030			395	+ 17970 + 46993
	2	316.24 -	357. 68 + 2255. 10 +	357. 68 + 2887. 57 -	1090. 6 3 694. 8 8 296. 6	3033.8 + 4822.2 + 4272.7 + 24486 + +	2280.3 4093.8 + 18424	4015.4 - 4015.4 + 4015.4 + +			26574	$^{+}$ 34613 $^{+}$ 182000	+	++
	-	- 210.93	+ 782.77 + 1415.55 +	- 888.23 - 1731.94	- 1821. 2 - 5779. 9 - 4907. 9	+ 5366.2 + 7142.7 + 7187.2 + 14115	- 4121.0 - 7609.0 -10416	- 4260.5 - 4260.5 + 4260.5 + 4260.5		$\begin{bmatrix} -48681 \\ -31039 \end{bmatrix}$	_+	++_	38182 54985	+43616
	0	- 127. 95	+ 577.26 + 577.26	- 705. 22 - 705. 22	- 1553.0 - 3106.1 - 1553.0	+ 4613.3 + 3908.1 + 3908.1 + 4613.3	- 3540.7 - 4260.6 - 3540.7	$\begin{array}{c} -2113.2 \\ -2113.2 \\ +2113.2 \\ +2113.2 \end{array}$	+10758 +10758		+35095	+35095		
	t.	$Q_{0\cdot 0}(n,-n)$	$Q_{1\cdot 0}(n+1,-n) = Q_{1\cdot 0}(n-1,-n)$	$Q_{0.1}(n,-n+1)$ $Q_{0.1}(n,-n-1)$	$Q_{2\cdot 0}(n+2,-n) \ Q_{2\cdot 0}(n,-n) \ Q_{2\cdot 0}(n-2,-n)$	$Q_{1:1}(n+1,-n+1)$ $Q_{1:1}(n-1,-n+1)$ $Q_{1:1}(n+1,-n-1)$ $Q_{1:1}(n-1,-n-1)$	$Q_{0\cdot 2}(n,-n+2) \ Q_{0\cdot 2}(n,-n) \ Q_{0\cdot 2}(n,-n-2)$	$Q_{0.0}(n+1,-n+1)+\sigma \\ Q_{0.0}(n-1,-n-1)-\sigma \\ Q_{0.0}(n+1,-n-1)+\delta \\ Q_{0.0}(n-1,-n+1)-\delta$	$Q_{3 \cdot 0}(n+1,-n) \\ Q_{3 \cdot 0}(n-1,-n) \\ Q_{3 \cdot 0}(n-3,-n)$	$egin{array}{l} Q_{2\cdot 1}(n,-n+1) \ Q_{2\cdot 1}(n-2,-n+1) \ Q_{2\cdot 1}(n,-n-1) \ Q_{2\cdot 1}(n,-n-1) \end{array}$	$Q_{1\cdot 2}(n-1,-n+2) \ Q_{1\cdot 2}(n+1,-n)$	$Q_{1\cdot 2}(n-1,-n) = Q_{1\cdot 2}(n+1,-n-2) = Q_{1\cdot 2}(n+1,-n-2)$	$Q_{0.3}(nn+1) \ Q_{0.3}(n,-n-1) \ Q_{0.3}(n,-n-3)$	$Q_{1\cdot 0}(nn+1)+\sigma \\ Q_{1\cdot 0}(nn-1)-\sigma \\ Q_{1\cdot 0}(n-2n-1)-\sigma$

		Unit=1"	+159.5								THE STATE OF THE S			
			+ 200.8	+ 602 -4818	-1305 + 5923									
			+ 247.1	+ 587	-1329 + 6578									
			+ 296.0	+ 509	-1249 + 7040	•			1 1					
	- 56589		+ 343.2	+ 346	$\frac{-1033}{+7203}$	[+48544]					•			
- 43097		e.	+ 382.2	+ 83 + 5650	- 657 + 6988	+ 41211	-110380		+ 8601					
	- 1666 + 52184	TABLE VIW2	+ 405.5	_ 284 _ 5150	$\frac{-}{+}$ 121 $+$ 6368		-88436	+60916						
- 54250			+ 406.2	$\frac{-}{-}$ 741 $-$ 4396	+ 538 + 5411		-10618	+46088	-10223					
	$-62277 \\ +62277 \\ +30150$		+ 382.8		+ 1250 + 4312	$+\ 14502 + 17506$		+ 16618						-104380
-35095 -35095			+ 331.2	- 1771 $-$ 2765	+ 1937 + 3262		- 20144 - 33161		$\begin{array}{c} +\ 10988 \\ +\ 10988 \\ -\ 10988 \\ [-10988] \end{array}$	-138800	+116820 +116820			
	-15520 -15520 $+15520$ $+15520$		+ 171.1	- 1132 - 1132	+ 1303 + 1303			+ 8100 + 8100				+53159 +53159	-53159	[-53159]
$Q_{1.0}(n,-n-1)+\delta \ Q_{1.0}(n,-n+1)-\delta \ Q_{1.0}(n-2,-n+1)-\delta$	$\begin{array}{c} Q_{0\cdot 1}(n+1n)+\sigma \\ Q_{0\cdot 1}(n-1n)-\sigma \\ Q_{0\cdot 1}(n-1n-2)-\sigma \\ Q_{0\cdot 1}(n+1n-2)-\sigma \\ Q_{0\cdot 1}(n+1n)+\delta \\ Q_{0\cdot 1}(n+1n+2)-\delta \\ Q_{0\cdot 1}(n-1n+2)-\delta \end{array}$		$Q_{0\cdot 0}(n,-n)$	$Q_{1\cdot 0}(n+1,-n) = Q_{1\cdot 0}(n-1,-n)$	$Q_{0:1}(n,-n+1) = (Q_{0:1}(n,-n-1))$	$Q_{2\cdot 0}(n,-n) = Q_{2\cdot 0}(n-2,-n)$	$Q_{1:1}(n+1,-n-1) = Q_{1:1}(n-1,-n+1) = Q_{1:1}(n-1,-n+1) = Q_{1:1}(n-1,-n-1)$	$Q_{0\cdot 2}(n,-n+2) \\ Q_{0\cdot 2}(n,-n) \\ Q_{0\cdot 2}(n,-n-2)$	$\begin{array}{l}Q_{0.0}(n+1n+1)+\sigma\\Q_{0.0}(n-1n-1)-\sigma\\Q_{0.0}(n+1n-1)+\delta\\Q_{0.0}(n-1n-1)+\delta\end{array}$	$Q_{1\cdot 0}(n,-n+1)+\sigma$	$Q_{1\cdot 0}(n,-n+1)-\delta = Q_{1\cdot 0}(n-2,-n+1)-\delta$	$Q_{0:1}(n+1,-n)+\sigma \\ Q_{0:1}(n-1,-n)-\sigma$	$Q_{0:1}(n+1,-n)+\delta$	$Q_{0\cdot 1}(n-1,-n+2)-\delta \\ Q_{0\cdot 1}(n-1,-n)-\delta$

TABLE VII.

Unit=1".

	n	0	1	2	3	4	5	6
	$\begin{array}{l} R_{0\cdot 0}(n,-n\!+\!1)\!+\!\pi' \\ R_{0\cdot 0}(n,-n\!-\!1)\!-\!\pi' \end{array}$	- 79. 10 + 79. 10	- 191. 93 + 191. 93	- 142.48 + 142.48	- 101.43 + 101.43	- 70. 45 + 70. 45	- 48. 14 + 48. 14	- 32. 52 + 32. 52
	$\begin{array}{l} R_{1 \cdot 0}(n+1,-n+1) + \pi' \\ R_{1 \cdot 0}(n-1,-n+1) + \pi' \\ R_{1 \cdot 0}(n+1,-n-1) - \pi' \\ R_{1 \cdot 0}(n-1,-n-1) - \pi' \end{array}$	$\begin{array}{rrrr} + & 372.6 \\ + & 293.5 \\ - & 293.5 \\ - & 372.6 \end{array}$	+ 482.0 + 865.9 - 290.1 - 1057.8	+ 266. 7 + 979. 2 - 124. 2 - 1121. 6	+ 130. 9 + 942. 4 - 29. 5 - 1043. 8	+ 52.0 + 826.9 + 18.5 - 897.4	+ 9.6 + 683.6 + 38.5 - 731.7	$ \begin{array}{r} -10.7 \\ +542.1 \\ +43.2 \\ -574.6 \end{array} $
	$\begin{array}{l} R_{0\cdot 1}(n,-n+2)+\pi' \\ R_{0\cdot 1}(n,-n)+\pi' \\ R_{0\cdot 1}(n,-n)-\pi' \\ R_{0\cdot 1}(n,-n-2)-\pi' \end{array}$	- 649. 5 - 333. 1 + 333. 1 + 649. 5	$\begin{array}{r} -\ 1057.8 \\ -\ 1057.8 \\ +\ 290.1 \\ +\ 1825.5 \end{array}$	$ \begin{array}{rrrrr} - & 622.9 \\ - & 1192.9 \\ + & 53.0 \\ + & 1762.8 \end{array} $	- 333.8 - 1145.3 - 71.9 + 1551.0	- 157. 6 - 1003. 0 - 124. 1 + 1284. 8	- 57. 8 - 828. 0 - 134. 8 + 1020. 6	- 5. 6 -655. 9 -124. 5 +786. 0
	$\substack{R_{2\cdot 0}(nn+1)+\pi'\\R_{2\cdot 0}(n-2n+1)+\pi'}$		- 3119 - 2330					
	$\begin{array}{l} R_{1\cdot 1}(n-1,-n+2)+\pi' \\ R_{1\cdot 1}(n+1,-n)+\pi' \\ R_{1\cdot 1}(n-1,-n)+\pi' \\ R_{1\cdot 1}(n-1,-n)-\pi' \\ R_{1\cdot 1}(n-1,-n)-\pi' \end{array}$	+ 2012 + 2012 - 2012 - 2012		+ 5118				
	$\substack{R_{0\cdot 2}(nn+1)+\pi'\\R_{0\cdot 2}(nn+1)-\pi'}$		-6583 + 1656					
	$\begin{array}{l} R_{0\cdot 0}(n-1,-n) - \sigma + \pi' \\ R_{0\cdot 0}(n+1,-n) + \delta + \pi' \\ R_{0\cdot 0}(n-1,-n+2) - \delta + \pi' \\ R_{0\cdot 0}(n+1,-n) + \sigma - \pi' \\ R_{0\cdot 0}(n-1,-n) - \delta - \pi' \end{array}$	- 533 + 533 + 533 - 533		+ 873				
	$R_{0\cdot 0}(nn+1)+\pi' \ R_{0\cdot 0}(nn-1)-\pi'$	+ 327. 5 - 327. 5	+ 705. 2 - 705. 2	+ 605.3 - 605.3	+ 493. 0 - 493. 0	+ 386. 9 - 386. 9	+ 295. 2 - 295. 2	
	$\begin{array}{l} R_{1\cdot0}(n+1n+1) + \pi' \\ R_{1\cdot0}(n-1n+1) + \pi' \\ R_{1\cdot0}(n+1n-1) - \pi' \\ R_{1\cdot0}(n-1n-1) - \pi' \end{array}$	$ \begin{array}{rrr} - & 1950 \\ - & 1622 \\ + & 1622 \\ + & 1950 \end{array} $	- 2850 - 4260 + 2145 + 4966	- 1897 - 4923 + 1292 + 5529	- 1163 - 5107 + 670 + 5600	- 643 - 4898 + 256 + 5285	- 299 - 4432 + 4 + 4727	
	$\begin{array}{l} R_{0\cdot 1}(n,-n+2) + \pi' \\ R_{0\cdot 1}(n,-n) + \pi' \\ R_{0\cdot 1}(n,-n) - \pi' \\ R_{0\cdot 1}(n,-n-2) - \pi' \end{array}$	+ 3096 + 1786 - 1786 - 3096	+ 4966 + 4966 - 2145 - 7786	+ 3410 + 5831 - 989 - 8252	+ 2149 + 6093 - 177 - 8065	+ 1223 + 5866 + 325 - 7413	+ 594 + 5318 + 587 - 6499	
Factor w	$\substack{R_{2\cdot 0}(nn+1)+\pi'\\R_{2\cdot 0}(n-2n+1)+\pi'}$		$+23018 \\ +15418$					
Fa	$\begin{array}{l} R_{1\cdot 1}(n-1,-n+2)+\pi' \\ R_{1\cdot 1}(n+1,-n)+\pi' \\ R_{1\cdot 1}(n-1,-n)+\pi' \\ R_{1\cdot 1}(n+1,-n)-\pi' \\ R_{1\cdot 1}(n-1,-n)-\pi' \end{array}$	-13734 -13734 $+13734$ $+13734$		-33562				:
	$R_{0\cdot 2}(nn+1)+\pi' \ R_{0\cdot 2}(nn+1)-\pi'$		$^{+40061}_{-11862}$					
	$\begin{array}{l} R_{0\cdot 0}(n-1,-n) - \sigma + \pi' \\ R_{0\cdot 0}(n+1,-n) + \delta + \pi' \\ R_{0\cdot 0}(n-1,-n+2) - \delta + \pi' \\ R_{0\cdot 0}(n+1,-n) + \sigma - \pi' \\ R_{0\cdot 0}(n-1,-n) - \delta - \pi' \end{array}$	+ 3280 - 3280 - 3280 + 3280		- 5854				
	$R_{0\cdot 0}(n,-n+1)+\pi' \\ R_{0\cdot 0}(n,-n-1)-\pi'$		- 1303 + 1303		- 1127 + 1127		+ 838	
Factor w2	$\begin{array}{l} R_{1\cdot 0}(n+1n+1)+\pi' \\ R_{1\cdot 0}(n-1n+1)+\pi' \\ R_{1\cdot 0}(n+1n-1)-\pi' \\ R_{1\cdot 0}(n-1n-1)-\pi' \end{array}$		- 7080 -12290		+13600		-14465	
Fa	$\begin{array}{l} R_{0\cdot 1}(n,-n+2) + \pi' \\ R_{0\cdot 1}(n,-n) + \pi' \\ R_{0\cdot 1}(n,-n) - \pi' \\ R_{0\cdot 1}(n,-n-2) - \pi' \end{array}$	- 7475 + 7475		-14430 + 4532		+20370		

With these tables we compute terms of the first order in the mass in Hansen's differential equations for the function W and the perturbation in the third coordinate. See Z 7, eq. (33) and Z 8, eq. (39). The first order parts of the equations are expressed in Z 41, eqs. (82), (83), in the form of trigonometric series, in which the coefficients are computed from the formulæ given in B 67. These coefficients comprise Tables VIII–XIV w^2 (cf. Z, 42–48).

Table XV (cf. Z 50, eq. (88)) is an auxiliary table of the same type of construction, which is employed in the computation of terms of the second order in the mass in the differential equation for W (cf. Z 53).

			<i>u</i>	n n	g	n n	u	2 2	æ	e	z z	u z		
Unit = 1".	10	1, 21271	$\frac{1.81622}{2.60315_n}$	$\frac{2.13634_n}{2.71256}$	2. 15527 3. 23878 n 3. 67998	2. 71219n 3. 51384 3. 36058 4. 11275n	$\begin{array}{c} 2.66888 \\ 3.65170_n \\ 3.94757 \end{array}$	2. 31847 2. 23132 2. $31847n$ 2. $23132n$	2. 10154_n	2. 68487 _n 3. 49478	$\begin{array}{c c} 3.01623 \\ 3.60374n \end{array}$	3. 02391_n 4. 10902 4. 57492_n		
	33.	1.38947	1, 93508 2 , 73315 n	$\frac{2.25822}{2.84596}$	2. 22709 3. 31422_n 3. 76195	$\begin{array}{c} 2.77663n \\ 3.58693 \\ 3.44139 \\ 4.20058n \end{array}$	2. 72623 3. 73211_n 4. 04134	2. 45846 2. 36155 2. $45846n$ 2. $36155n$	2.23903_n	$\frac{2.75940_n}{3.58609}$	$\frac{3.09673}{3.69833_n}$	3. 05500_n 4. 14015 4. 61891_n	3, 60539 4, 42674 n 4, 26782 n 5, 05672	3. 56205_n 4. 57252 4. 89677_n
	œ	1. 56326	$\frac{2.04226}{2.85447_n}$	$\frac{2.36921_n}{2.97156}$	2. 28339 3. 37282 _n 3. 82926	2, 82297 _n 3, 64277 3, 50693 4, 27524 _n	2. 76294 3. 79735_n 4. 12334	2. 59217 2. 48303 2. $59217n$ 2. $48303n$	2.36959_n	$\frac{2.81568}{3.66492}$	3. 16154 3. $78132n$	$\frac{3.06783}{4.14800}$	$\begin{array}{c} 3.60643 \\ 4.43623_n \\ 4.28308_n \\ 5.08965 \end{array}$	3. 55 120 _n 4. 59187 4. 93673 _n
	t-	1,733342	$\frac{2}{2}$. 13346	$\frac{2.465958_n}{3.087397}$	2. 321047 3. $409205n$ 3. 877911	$\begin{array}{c} 2.846629_n \\ 3.675961 \\ 3.552680 \\ 4.333339_n \end{array}$	2. 772863 3. 843126_n 4. 190732	2. 71823 2. 59329 2. 71823 n 2. 59329 n	2.49160_n	$\frac{2.84714}{3.72820}$	3. 20585 3. 84993_n	3. 06053_n 4. 12446 4. 64765_n	3. 58147 4. 41647_n 4. 26985_n 5. 10174	3. 51600_n 4. 58551 4. 95782_n
	9	1, 898177	$\frac{2.201667}{3.060270_n}$	2. 542637_n 3. 190207	2. 336014 3. 414280_n 3. 901422	$\begin{array}{c} 2.841198_n\\ 3.677530\\ 3.571125\\ 4.369477_n \end{array}$	2. 746793 3. 862392_n 4. 239041	2. 83432 2. 68819 2. 83432 n 2. 68819 n	2.60231_n	$\frac{2}{3}$. 84137 $_n$	3. 22147 3. 89984 n	3. 03311_n 4. 05465 4. 62051_n	3. 52668 4. $35556n$ 4. $21567n$ 5. 08675	3 44020_n 4. 54409 4. 95455_n
	5	2. 056133	$\frac{2.234945}{3.135409_n}$	2. 590169_n 3. 275716	$\begin{array}{c} 2.326457 \\ 3.372758_n \\ 3.890251 \end{array}$	$\begin{array}{c} 2.800935_n \\ 3.632828 \\ 3.550454 \\ 4.376075_n \end{array}$	$\frac{2}{3}$. 673834 3. 844500 $_n$ 4. 262271	2. 93777 2. 76168 2. $93777n$ 2. $93777n$ 2. $76168n$	2.69826_n	$\frac{2.77368_n}{3.78630}$	3, 19490 3, 92517 n	2.99436_n 3.90886 4.55258_n	3. 44584 4. $23280n$ 4. $09729n$ 5. 03585	3. 32448_n 4. 4522_2 4. 91959_n
۷۱۱۱۲	77	2. 203773	$\frac{2.206222}{3.180222_n}$	2, 589989 _n 3 336243	2.297482 3.251084_n 3.827111	2. 727273n 3. 511858 3. 466673 4. 339837n	2. 548932 3. $769305n$ 4. 250188	3. 023966 2. 802117 3. 023966_n 2. 802117_n	2.77327_n	$\frac{2.57056_n}{3.76194}$	3. 09732 3. 91601 _n	2. 96993_n 3. 59612 4. 42532_n	3. 36644 4. $00073n$ 3. $85262n$ 4. 93430	3. $19242n$ 4. 27919 4. $84101n$
TABLE	က	2. 334671	$\frac{2.031587}{3.175139_n}$	2. 496822_n 3. 357816	2. 278726 2. 945378n 3. 677441	2. 660799n 3. 236866 3. 258957 4. 235981n	2. 429622 3. 593121n 4. 184785	3. 085352 2. 784322 3. $085352n$ 2. $784322n$	2. 81634_n	1. 30651 n 3. 67505	$\frac{2}{3}$. 84603	3. 00363_n 2. 44665_n 4. 20261_n	3. 35842 [3. 48489n] 3. 07546n 4. 75558	$\begin{array}{c} 3.13811_{n} \\ 3.94249 \\ 4.69857_{n} \end{array}$
	2	2. 433759	0.79226_n 3. 071724_n	$\begin{array}{c} 2.\ 117596_{n} \\ 3.\ 309811 \end{array}$	2. 336833 2. 107541 3. 351267	2. 717323n 2. 320098 2. 583997 4. 007854n	2. 515602 3. 175443n 4. 028642	3. 108012 2. 630891 3. $108012n$ 2. $630891n$	2.80385_n	2. 61060 3. 47166	1.09094 3.70589 $_n$	3. 11084_n 3. 50053_n 3. 79017_n	3. 46185 3. 14736 3. 55943 4. 44151	$\begin{array}{c} 3.23290_n \\ 2.65282 \\ 4.45251_n \end{array}$
	-	1. 673285	$\begin{array}{c} 2.318698_n \\ 2.056618_n \end{array}$	2, 112925 2, 502714	$\begin{array}{c} 2.512335 \\ 2.878904 \\ 1.51151_n \end{array}$	2. 913604_n 2. 454799_n 3. 154992_n 2. 984357_n	2. 654194 2. 881187 3. 199336	3. 061292 3. 061292 _n	$\frac{2}{2}$. 17407 n	2. 89260 2. 58559	$\frac{2.68438_n}{3.03370_n}$	3. 23873 _n 3. 51482 _n 2. 34335	3. 57940 3. 08298 3. 78804 3. 54815	$\begin{vmatrix} 3.27657_n \\ 3.52284_n \\ 3.76082_n \end{vmatrix}$
	0		1. 935920_n 1. 935920		$\begin{array}{c} 2.\ 324886 \\ 2.\ 324886_n \end{array}$	2. 584171 <i>n</i> 2. 584171 2. 584171 2. 584171 <i>n</i> 2. 584171		2. 375282 2. 375282n 2. 375282n 2. 375282		$\frac{2}{2}$. $\frac{40808}{40808}$		2. 95358 _n 2. 95358	3. 14935 3. 14935n 3. 14935 3. 14935n	
Logarithmic	u	$F_{0\cdot 0}(n,-n)$	$F_{1.0}(n+1n) \ F_{1.0}(n-1n)$	$F_{0\cdot 1}(n,-n+1) \ F_{0\cdot 1}(n,-n-1)$	$F_{2\cdot 0}(n+2n) \ F_{2\cdot 0}(n-n) \ F_{2\cdot 0}(n-2n)$	$F_{1\cdot 1}(n+1n+1) \ F_{1\cdot 1}(n-1n+1) \ F_{1\cdot 1}(n+1n-1) \ F_{1\cdot 1}(n+1n-1)$	$F_{0\cdot 2}(nn+2) \ F_{0\cdot 2}(nn) \ F_{0\cdot 2}(nn-2)$	$F_{0\cdot0}(n+1,-n+1)+\sigma \ F_{0\cdot0}(n-1,-n-1)-\sigma \ F_{0\cdot0}(n-1,-n-1)-\sigma \ F_{0\cdot0}(n+1,-n-1)+\delta \ F_{0\cdot0}(n-1,-n+1)-\delta$	$F_{0\cdot 0}(n,-n)$	$F_{1\cdot 0}(n+1n) \ F_{1\cdot 0}(n-1n)$	$F_{0\cdot 1}(nn+1) \ F_{0\cdot 1}(nn-1)$	$F_{2\cdot 0}(n+2n) \ F_{2\cdot 0}(n-n) \ F_{2\cdot 0}(n-2n)$	$F_{1\cdot 1}(n+1,-n+1) \ F_{1\cdot 1}(n-1,-n+1) \ F_{1\cdot 1}(n+1,-n-1) \ F_{1\cdot 1}(n+1,-n-1)$	$F_{0\cdot 2}(nn+2) \ F_{0\cdot 2}(nn) \ F_{0\cdot 2}(nn)$
Logan												a	Factor	

3. 29177_n 3. 20462_n 3. 29177 3. 29177	2. 6366							
3. 40022_n 3. 30331_n 3. 46022 3. 30331	2. 7301	3. 2065 4. 0825 _n	3. 5695 _n 4. 1938		•			
$\begin{array}{c} 3.50001_{n} \\ 3.39087_{n} \\ 3.50001 \\ 3.39087 \end{array}$	2.8119	3. 1968 4. 1140 _n	3. 5794 _n 4. 2292					
3. $58938n$ 3. $46444n$ 3. 58938 3. 46444	2.8790	3. 1434 4. 1245 n	3. 5591 $_n$ 4. 2448					
3. 66561 _n 3. 51948 _n 3. 66561 3. 51948	2. 9272	3.0131 4.1079 n	3. 4950_n 4. 2348	4. 9726				
3. 72546n 3. 54937n 3. 72546 3. 54937	2. 9505	2. 6910 4. 0555_n	3. 3610 _n 4. 1917			5. 3223 _n		4.0023
3. 76368 _n 3. 54183 _n 3. 76368 3. 54183	2. 9388	2. 2494n 3. 9531n	3. 0836 n 4. 1032	4. 6503			5. 0514	
3. 77204n 3. 47101n 3. 77204 3. 47101	2. 8744	2. 9280 _n 3. 7755 _n	1. 9557n 3. 9492		3. 5361 _n	4. 8998 _n		3.8301 3.8301 _n
3. 73619n 3. 25907n 3. 73619 3. 25907	2, 7214	3. 1164_n 3. 4676_n	2. 8557 3. 6927	4. 0329 3. 8756			3. 9171 4. 5068	
3. 62646 _n 3. 62646	2, 2697	3. 1189 _n 2. 7389 _n	2. 9072 3. 1908		3. 3936_n 4. 1034_n	[3. 7670]		3. 8929 _n
2. 99236 _n 2. 99236 2. 99236 2. 99236 _n		2. 5342n 2. 5342						
$F_{0\cdot 0}(n+1n+1)+\sigma \ F_{0\cdot 0}(n-1n-1)-\sigma \ F_{0\cdot 0}(n-1n-1)-\sigma \ F_{0\cdot 0}(n+1n-1)+\delta \ F_{0\cdot 0}(n-1n+1)-\delta$	$F_{0\cdot 0}(n,-n)$	$F_{1\cdot 0}(n+1n) \ F_{1\cdot 0}(n-1n)$	$F_{0\cdot 1}(n,-n+1) \ F_{0\cdot 1}(n,-n-1)$	$F_{2\cdot 0}(n,-n) = F_{2\cdot 0}(n-2,-n)$	$F_{1\cdot 1}(n-1,-n+1,F_{1\cdot 1}(n+1,-n-1))$	$F_{1,1}(n-1,-n-1)$	$F_{0\cdot 2}(n,-n+2) \ F_{0\cdot 2}(n,-n) \ F_{0\cdot 2}(n,-n)$	$F_{0\cdot 0}(n-1,-n-1)-\sigma \ F_{0\cdot 0}(n+1,-n-1)+\delta \ F_{0\cdot 0}(n-1,-n+1)-\delta$
				_{z,n}	1019E	Ч		

It is convenient to have this table in seconds of arc also.

Unit=1".

TABLE
H

Logarithmic.

IX.

	n	0	1	2	m	4	2	9	ž-	œ	6	10	
$G_{0.0}(n,-n)$	n)	1.634891	1, 439686	1. 826715_n	J. 770059 _n	1. 660318_n	1. 525471_n	1. 376121_n	1, 217493_n	1.05211_n	0.88196_n	0.70814_n	
$G_{1\cdot 0}(n+1,-n)$ $G_{1\cdot 0}(n-1,-n)$	$\begin{pmatrix} 1,-n \\ 1,-n \end{pmatrix}$	2. 023857_n 2. 283141_n	1. 740753_n 2. 350404_n	1. 917856_n 2. 436203	1. 927654_n 2. 622307	1. 914277_n 2. 654871	1.86965 _n 2.623379	1. 79959_n 2. 555976	1, 71025_n 2, 465550	1. 60585_n 2. 35871	1. 48983_n 2. 23993	1. 36459_n 2. 11185	
$G_{0\cdot 1}(n,-n+1)$ $G_{0\cdot 1}(n,-n-1)$	-n+1) - n-1)	2. 283141 2. 283141	2. 049382 2. 346611	2. 025986 2. 634099_n	2. 104641 2. 763025_n	2. 131548 2.775609_n	$\frac{2.109818}{2.733913_n}$	$\frac{2.053762}{2.660317_n}$	1. 973612 2. 565735_n	1. 87535 2. 45592_n	1. 76428 2. 33487_n	1. 64259 2. 20508_n	
$G_{2\cdot 0}(n+2n)$ $G_{2\cdot 0}(nn)$ $G_{2\cdot 0}(n-2n)$	$\begin{array}{c} 2n \\ -n \\ 2n \end{array}$	2, 251669 2, 754592 2, 590848	2. 054473 2. 710784 2. 894131	0, 542701 2, 728285 2, 597213_n	1. 673240_n 2. 864698 3. 136437_n	$\begin{array}{c} 1.872876_{n} \\ 2.965479 \\ 3.325120_{n} \end{array}$	1. 941516_n 3. 013074 3. 401835_n	1. 953253_n 3. 018683 3. 419045_n	1. 930618_n 2. 993200 3. 398628_n	1.88358 $_n$ 2.94396 3.35168 $_n$	1. 81832n 2. 87668 3. 28538n	1. 73875_n 2. 79502 3. 20413_n	
$G_{1:1}(n+1,-n)$ $G_{1:1}(n-1,-n)$ $G_{1:1}(n+1,-n)$ $G_{1:1}(n+1,-n)$	$G_{1.1}(n+1n+1)$ $G_{1.1}(n-1n+1)$ $G_{1.1}(n+1n-1)$ $G_{1.1}(n+1n-1)$	2. 886452_n 2. 983112_n 2. 761928_n 3. 062127_n	2. 671647_n 3. 001797_n 2. 718191_n 3. 315456_n	2. 059927_n 2. 886806_n 2. 972738_n 3. 197526	1, 782544 3, $001111n$ 3, $072386n$ 3, 628655	2. 223601 3. 124901_n 3. 138813_n 3. 787099	$\begin{array}{c} 2.361811 \\ 3.196128_n \\ 3.163746_n \\ 3.847462 \end{array}$	2. 411416 3. 220094_n 3. 154462_n 3. 854044	2. 413615 3. 208491_n 3. 118772_n 3. 826068	2. 38430 3. 16994_n 3. 06222_n 3. 77341	2. 33246 3. 11102 $_n$ 2. 98945 $_n$ 3. 70266	2. 26325 3. 03610_n 2. 90362_n 3. 61772	
$G_{0\cdot 2}(nn+2)$ $G_{0\cdot 2}(nn)$ $G_{0\cdot 2}(nn-2)$	$\begin{array}{c} -n+2) \\ -n \\ -n \end{array}$	2. 912119 2. 937465 2. 912119	2. 693921 2. 957065 3. 114004	2. 188198 3. 055278 3. 258778n	1. 29898 3. 200797 3. 553495_n	1. 84986_n 3. 307904 3. 669745_n	2. 13017_n 3. 360489 3. 707950_n	2. 23936_n 3. 370043 3. 700505_n	2. 27652_n 3. 347712 3. 662731_n	2.27057_n 3.30104 3.60283_n	$\begin{array}{c} 2.\ 23551_n \\ 3.\ 23589 \\ 3.\ 52641_n \end{array}$	2.17899_n 3.15597 3.43700_n	<u>.</u>
$G_{0,0}(n+G_{0$	$G_{0\cdot 0}(n+1,-n+1)+\sigma \ G_{0\cdot 0}(n-1,-n-1)-\sigma \ G_{0\cdot 0}(n+1,-n-1)+\sigma \ G_{0\cdot 0}(n+1,-n-1)+\delta$	2. 404818 2. 756164 2. 404818n 2. 756164n	1. 992001 2. 937464 1. 992001_n 2. 937464_n	1. 951744n 2. 681654 1. 951744 2. 681654n	2. 238919_n 2. 366191 2. 238919 2. 366191_n	2. 289146 _n 1. 94049 2. 289146 1. 94049 _n	2. 26227n 0. 9836 2. 26227 0. 9836n	2. 19592_n 1. 4304_n 2. 19592 1. 4304	2. 10522_n 1. 60533_n 2. 10522 1. 60533_n	1, 99764n 1, 61843n 1, 99764 1, 61843	1. 87801n 1. 57046n 1. 87801 1. 57046	1. 74907_n 1. 48964_n 1. 74907 1. 48964	
$G_{0\cdot0}(n,-n)$	-n)	2.10705_n	2.04685_n	2. 03404	2, 17823	2. 18669	2. 13895	2. 05974	1. 96028	1.84633	1, 72180	1. 58899	
$G_{1\cdot 0}(n+G_{1\cdot 0})$	$G_{1\cdot 0}(n+1,-n) \ G_{1\cdot 0}(n-1,-n)$	2. 65255 2. 84832	2. 54290 3. 00240	$\frac{2.41806}{2.25278_n}$	$\frac{2.40791}{2.98478n}$	2. 44888 3. 16887n	2.47354 3.23317_n	2. 46930 3. 23892_n	2. 43899 3. 20883_n	2. 38700 3. 15392_n	2. 31799 3. 08094 _n	$\frac{2}{2}$. $\frac{23511}{2}$. $\frac{2}{99390_n}$	
$G_{0\cdot 1}(n,-n+1)$ $G_{0\cdot 1}(n,-n-1)$	$\begin{array}{c} -n+1) \\ -n-1) \end{array}$	2. 84832_n 2. 84832_n	2. 75275_n 3. 00496_n	2. 56336_n 2. 69838	$\frac{2.60078_n}{3.14924}$	2. 68023_n 3. 29676	2. 72655 _n 3. 34661	2. 73464_n 3. 34462	$\frac{2.71161_n}{3.30967}$	2. 66487_n 3. 25141	2. 59934_n 3. 17597	2. 51902_n 3. 08714	
$G_{2\cdot 0}(n+2G_{2\cdot 0}(n-n))$ $G_{2\cdot 0}(n-2G_{2\cdot 0}(n-2G_{2\cdot 0}))$	$egin{aligned} G_{2\cdot 0}(n+2n) \ G_{2\cdot 0}(n-n) \ G_{2\cdot 0}(n-2n) \end{aligned}$	3. 04285_n 3. 49220_n 3. 30153_n	2. 96317_n 3. 56162_n 3. 62263_n	2. 49592_n 3. 39880_n 3. 17426_n	8. 9445 3. $41162n$ 3. 36313	2, 28955 3, 52203_n 3, 81210	2. 51168 3. 62520 _n 4. 00369	2. 60979 3. 69230_n 4. 09959	2. 65226 3. $72425n$ 4. 14189	2.65962 3.72689_n 4.14774	2. 64211 3. $70623n$ 4. 12750		
6.5.1.6 6.1.1.6 6.1.1.6 6.1.1.6 6.1.1.6	$G_{1\cdot1}(n+1n+1)$ $G_{1\cdot1}(n-1n+1)$ $G_{1\cdot1}(n+1n-1)$ $G_{1\cdot1}(n+1n-1)$	3. 59196 3. 66401 3. 50554 3. 72579	3, 50310 3, 76125 3, 57892 4, 02457	3. 08664 3. 57678 3. 52922 3. 35713	2. 36611 3. 57435 3. 58063 3. 92118 _n	2. 59736 _n 3. 69858 3. 68601 4. 28687 _n	$\begin{array}{c} 2.93011_n \\ 3.82142 \\ 3.77403 \\ 4.45373_n \end{array}$	3, 07018_n 3, 90454 3, 82803 4, 53669_n	3. 13789_n 3. 94867 3. 85016 4. 57015_n	3. $16324n$ 3. 96061 3. 84548 4. 56981_n	3. 15887n 3. 94722 3. 81929 4. 54488n		
$G_{0\cdot 2}(nn+2)$ $G_{0\cdot 2}(nn)$ $G_{0\cdot 2}(nn-2)$	$ \begin{array}{c} -n+2 \\ -n \\ -n-2 \end{array} $	$\begin{vmatrix} 3.54909_n \\ 3.62947_n \\ 3.54909_n \end{vmatrix}$	$ \begin{vmatrix} 3.45647_n \\ 3.73135_n \\ 3.81772_n \end{vmatrix} $	$\begin{vmatrix} 3.05713_n \\ 3.64281_n \\ 2.67578 \end{vmatrix}$	$\frac{2.56977_n}{3.72335_n}$	2. 06145 3. $86693n$ 4. 18183	$\begin{vmatrix} 2.69745 \\ 3.98197_n \\ 4.31858 \end{vmatrix}$	2. 90437 4. 05380 _n 4. 38499	3. 00723 4. 08795_n 4. 40764	3. 05504 4. 09194 _n 4. 39955	3. 06688 4. 07225n 4. 36878		

$G_{0\cdot 0}(n+1,-n+1)+\sigma$	$ 3.16381_n $	3. 15827 _n	2. 58410n	2, 49979	2.85224	2. 94559	2, 95660	2. 92500	2.86611	2. 78862	2. 69707
) + d - d	3. 16381 3. 44221	3. 15827 3. 62942	2. 58410 3. 44791	3. $21904n$ 3. 21904	2. 85224n 2. 85224n 2. 92221		1. 36173 2. 95660_n 1. 36173_n	$\frac{2.50741}{2.92500_n}$	2. 42556 _n	2. $78862n$ 2. $44648n$	2. 69707 _n 2. 41578 _n
	2, 2332	2.3164	1. 5024	1. 9685 _n	2. 2393 _n	2. 3276n	2. 3436_n	2.3193_n	2.2674_n	2.1964_n	2.1116_n
	$\begin{array}{c} 2.9825_{n} \\ 3.1148_{n} \end{array}$	3. 0110_n 3. 3396_n	$\frac{2.7515_n}{3.0680_n}$	2. 5962_n 2. 1166	2.5991 _n 3.1618	2. 6724 _n 3. 4063	$\frac{2}{3}$. 7396_n 3. 5186	2.7789_n 3.5672	$\frac{2.7896}{3.5769}$	2.7761_n 3.5573	
$G_{0\cdot 1}(n,-n+1) \ G_{0\cdot 1}(n,-n-1)$	3. 1148	3. 1438 3. 3478	2. 8873 3. 0112	2. 7768 2. 7163 n	2. 8368 3. 3194 n	$\frac{2.9416}{3.5286_n}$	$\frac{3.0219}{3.6278_n}$	3.0667 3.6697_n	3. 0800 3. 6743_n	3. 0680 3. 6527_n	
			3, 9709								
$G_{1-1}(n-1,-n-1)$		4. 5912									
$G_{0\cdot 2}(n,-n-2)$	3. 9085										
$G_{0\cdot 0}(n-1,-n-1)-\sigma$		4.0409									

1 It is convenient to have this table in seconds of arc also.

	-													
Unit $= 1'$	2	1. 22149_n	1. 78371 _n 2. 61949	2. 14175 2. 72223_n	$\begin{array}{c} 2.08066_n \\ 3.21513 \\ 3.70406_n \end{array}$	2. 67639 3. 52617_n 3. 33258_n 4. 13004	$\frac{2}{3}$. 67316 _n $\frac{2}{3}$. 65773 $\frac{3}{3}$. 95818 _n	2, 34533, 2, 29280, 2, 34533 2, 29280	2. 11274	$\frac{2,65095}{3,51407_n}$	3. 02273 _n 3. 61614			
	6	f. 39915 _n	1. 89695_n 2. 75144	2. 26368 2. 85672_n	2. 14150_n 3. 28624 3. 78915_n	2.73517 3.60008_n 3.40891_n 4.22004	$\frac{2.73067_n}{3.73829}$	2. 48808 _n 2. 43031 _n 2. 48808 2. 43031	2, 25162	$\frac{2.71844}{3.60798_n}$	3. 10328 _n 3. 71242	$\frac{2.97130}{4.10968_n}$	3. 56441n 4. 44105 4. 23321 5. 08030n	3, 56791 4, 57993 _n 4, 91236
	× 1	1. 57402_n	1. 99603_n 2. 87524	$\frac{2.37459}{2.98368_n}$	$\frac{2.18377_n}{3.33861}$ 3.86046 _n	$\frac{2.77427}{3.65672n}$ $\frac{3.46829n}{4.29747}$	$\begin{array}{c} 2.76791_n \\ 3.80356 \\ 4.13689_n \end{array}$	2. 62518 _n 2. 56103 _n 2. 62518 2. 56103	2, 38394	2. 76467 3. 69020_n	3. 16786_n 3. 79756	$\frac{2}{4}$, $\frac{97290}{10899}$, $\frac{4}{4}$, $\frac{68170}{10899}$	3. 55905 _n 4. 45108 4. 24034 5. 11710 _n	3. 56130 4. 59923n 4. 95504
	1-	1, 745521_n	$\frac{2.075490_n}{2.988817}$	$\frac{2.470917}{3.101284_n}$	$\begin{array}{c} 2.\ 203577_n \\ 3.\ 365683 \\ 3.\ 914428_n \end{array}$	$\begin{array}{c} 2.788666 \\ 3.690517_n \\ 3.505195_n \\ 4.359230 \end{array}$	$\frac{2.779086_n}{3.849057}$	2. 75548 _n 2. 58338 _n 2. 75548 2. 68338	2, 50826	$\frac{2}{3}$. 77970 3. 75803 _n	3. 21114_n 3. 86908	2. 95450 4. 07117_n 4. 69189	3. 52757_n 4. 43113 4. 21423 5. 13448_n	3. 52608 4. 59212_n 4. 97967
	9	1. 912179_n	$\frac{2.124651_n}{3.088688}$	$\frac{2.546486}{3.206462_n}$	$\begin{array}{c} 2.\ 196499_n \\ 3.\ 355296 \\ 3.\ 945418_n \end{array}$	$\begin{array}{c} 2.772070 \\ 3.691986_n \\ 3.509819_n \\ 4.400460 \end{array}$	2. 756447_n 3. 867352 4. 257724_n	2. 87705_n 2. 79476_n 2. 87705 2. 79476	2. 62211	$\frac{2.74368}{3.80720_n}$	3. 22466_n 3. 92304	2. 92186 3. 97365 n 4. 67529	3. 46926_n 4. 36784 4. 13685 5. 12705_n	3. 45811 4. 54840 _n 4. 98146
	'n	2.072607_n	$\frac{2.122538_n}{3.170212}$	$\frac{2.591242}{3.295300_n}$	$\begin{array}{c} 2.\ 164244_n \\ 3.\ 284047 \\ 3.\ 945468_n \end{array}$	2. 721975 3. $644848n$ 3. $464872n$ 4. 414545	2, 693928 _n 3, 846773 4, 285230 _n	$\begin{array}{c} 2.98785_{n} \\ 2.89202_{n} \\ 2.98785 \\ 2.89202_{n} \end{array}$	2, 72253	$\frac{2.60473}{3.83204_n}$	3. 19194 _n 3. 95433	2, 89904 3, 75726 _n 4, 62359	3. 40062_n 4. 23549 3. 96647 5. 08771_n	3.36481 4.44991n 4.95411
E X.1	-	2.223808_n	$\frac{2.007687_n}{3.225052}$	$\frac{2.583580}{3.360857_n}$	$\begin{array}{c} 2.\ 130812_n \\ 3.\ 086389 \\ 3.\ 900910_n \end{array}$	2. 657025 3. 512606 _n 3. 328509 _n 4. 390309	2.603308_n 3.763936 4.279805_n	$\begin{array}{c} 3.084354_n \\ 2.969687_n \\ 3.084354 \\ 2.969687 \end{array}$	2. 80438	$\frac{2.05090}{3.82325_n}$	3. 07532_n 3. 95464	$\begin{array}{c} 2.93550 \\ 3.01092_n \\ 4.52456 \end{array}$	$\begin{array}{c} 3.37752_n\\ 3.96157\\ [3.52156]\\ 5.00543_n \end{array}$	$\begin{vmatrix} 3.29267 \\ 4.25522n \\ 4.88795 \end{vmatrix}$
TABLE	es	2.360312_n	1. 289495_n 3. 237886	$\frac{2}{3}$. 464367 $\frac{3}{3}$. 390883_n	$\begin{array}{c} 2.\ 175386_n \\ 2.\ 248049 \\ 3.\ 787322_n \end{array}$	2. 667577 3. 173785_n 2. 930833_n 4. 308446	$\begin{array}{c} 2.578026_n \\ 3.560728 \\ 4.226022_n \end{array}$	$\begin{array}{c} 3.\ 161233_n\\ 3.\ 018627_n\\ 3.\ 161233\\ 3.\ 018627 \end{array}$	2,85902	$\frac{2.51758_n}{3.76534_n}$	$\frac{2.72959_n}{3.91047}$	3, 06962 3, 58162 4, 35862	3.47854_n 2.83064 3.49986_n 4.86351_n	3. 34318 3. 80556_n 4. 76826
	6.1	$2,469664_n$	$\begin{array}{c} 2.\ 132783 \\ 3.\ 175028 \end{array}$	1. 836524 3. 359932_n	$\begin{array}{c} 2.\ 376382_n \\ 2.\ 990444_n \\ 3.\ 555780_n \end{array}$	2. 868916 2. 649500 2. 854083 4. 131226	$\frac{2}{2}$, 771808_n $\frac{2}{2}$, 935144 $\frac{4}{2}$, 094393_n	3. 209606_n 3. 021354_n 3. 209606 3. 021354	2 86960	$\frac{2.94344_n}{3.62990_n}$	2, 54339 3, 79758	3, 26944 3, 87105 4, 09904	3. $68472n$ 3. $76928n$ 3. $93197n$ 4. $63658n$	3, 53403 3, 57911 4, 57196
	-	1. 955978 _n	2. 497539 2. 639706	$\begin{array}{c} 2.\ 454799_n \\ 2.\ 810509_n \end{array}$	$\begin{array}{c} 2.\ 707952_n \\ 3.\ 199457_n \\ 3.\ 013336_n \end{array}$	3, 172492 3, 197028 3, 357877 3, 578026	3. 039643_n 3. 283318_n 3. 532772_n	3.213148_n 2.937464_n 3.213148 2.937464	2, 49201	3. 11926_n 3. 23704_n	3. 08298 3. 38959	3, 47658 3, 91454 3, 70335	3. 89596_n 3. 91340_n 4. 05317_n 4. 22680_n	3. 73089 3. 99260 4. 15411
	0	1. 634891_n	2. 283141 2. 023857	$\begin{array}{c} 2.283141_n \\ 2.283141_n \end{array}$	$\begin{array}{c} 2.590848_n \\ 2.754592_n \\ 2.251669_n \end{array}$	3. 062127 2. 761928 2. 983112 2. 886452	$\begin{array}{c} 2.912119_n \\ 2.937465_n \\ 2.912119_n \end{array}$	2. 756164 _n 2. 404818 _n 2. 756164 2. 404818	2, 10705	2. 84832_n 2. 65255_n	2, 84832 2, 84532	3. 30153 3. 49221 3. 04285	3. 72579_n 3. 50554_n 3. 66401_n 3. 59196_n	3. 54909 3. 62947 3. 54909
Logsrithmic.	æ	$H_{0\cdot 0}(n,-n)$	$H_{1\cdot \circ}(n+1,-n)$ $H_{1\cdot \circ}(n-1,-n)$	$H_{0\cdot 1}(n,-n+1) \\ H_{0\cdot 1}(n,-n-1)$	$H_{2\cdot 0}(n+2n) \ H_{2\cdot 0}(n-n) \ H_{2\cdot 0}(n-2n)$	$H_{i+1}(n+1,-n+1)$ $H_{i+1}(n-1,-n+1)$ $H_{i+1}(n+1,-n-1)$ $H_{i+1}(n+1,-n-1)$	$H_{0\cdot 2}(n,-n+2)$ $H_{0\cdot 2}(n,-n)$ $H_{0\cdot 2}(n,-n-2)$	$H_{0 o 0}(n+1,-n+1) + \sigma \ H_{0 o 0}(n-1,-n-1) - \sigma \ H_{0 o 0}(n+1,-n-1) - \sigma \ H_{0 o 0}(n+1,-n-1) + \delta$	$H_{0\cdot 0}(n,-n)$	$H_{1\cdot 0}(n+1n)$ $H_{1\cdot 0}(n-1n)$	$H_{0\cdot 1}(n-n+1)$ $H_{0\cdot 1}(n,-n-1)$	$H_{2\cdot 0}(n+2,-n) \ H_{1\cdot 0}(n-2,-n) \ H_{2\cdot 0}(n-2,-n)$	$H_{1:1}(n+1,-n+1)$ $H_{1:1}(n-1,-n+1)$ $H_{1:1}(n+1,-n-1)$ $H_{1:1}(n-1,-n-1)$	$egin{aligned} &H_{0,2}(n,-n+2)\ &H_{0,2}(n,-n)\ &H_{0,2}(n,-n-2) \end{aligned}$
Loga												m I	Facto	

3, 32184 3, 27308 3, 32481n 3, 27308n	2. 6516 _n						
3. 43716 3. 38042 3. 43716 n 3. 38042 _n	2. 7473n	3. 1592 _n 4. 1102	3. 5773 4. 2133 _n				
$\begin{array}{c} 3.54179 \\ 3.47906 \\ 3.54179_n \\ 3.47906_n \end{array}$	2. 8321n	3. 1331 _n 4. 1465	3. 5866 4. 2524_n				
3. 63735 3. 56714 3. 63735 _n 3. 56714 _n	2. 9034 _n	3.0473 _n 4.1644	3. 5640 4. 2731 _n				
3. 64215 3. 64215 3. 72171 n 3. 64215 n	2. 9576 _n	2.8458n 4.1583	3. 4938 4. 2707 _n	[5.0467 _n]			
3. 79264 3. 70094 3. 79264n 3. 70094n	2 9899n	1. 6284n 4 1224	3.3400 4.2394 _n		5. 3997		4.1848 _n
3. 84673 3. 73868 3. 84673n 3. 73868n	2. 9932n	2.8749 4.0482	2, 9683 4, 1709 _n			5. 1334 n	
3. 87921 3. 74819 3. 87921 _n 3. 74819 _n	2. 9568_n	3, 2004 3, 9255	$\frac{2.6792_n}{4.0547_n}$		4. 1173		4. 1683
3. 88349 3. 71816 3. 88349n 3. 71816n	2.8656_n	3. 3589 3. 7460	3. 2375 _n 3. 8807 _n	4. 3637 n		4. 3449n	
3, 85011 3, 62946 3, 85011 3, 62946 _n	2. 6582 _n	3, 4217 3, 5079	3. 3936 _n 3. 6331 _n		4, 4525		4. 2095
3. 16381 3. 44221 3. 44221 _n 3. 16381 _n	2. 2332_n	3, 1148 2, 9825	3 1148 $_n$ 3. 1148 $_n$			3. 9085 _n	
$H_{0,\alpha}(n+1,-n+1)+\sigma \ H_{0,\alpha}(n-1,-n-1)-\sigma \ H_{0,\alpha}(n+1,-n-1)+\delta \ H_{0,\alpha}(n+1,-n-1)+\delta$	$H_{0\cdot 0}(n,-n)$	$H_{1,0}(n+1,-n)$ $H_{1,0}(n-1,-n)$	$H_{0,1}(n,-n+1)$ $H_{0,1}(n,-n-1)$	$H_{2\cdot 0}(n,-n)$ $H_{2\cdot 0}(n-2,-n)$	$H_{1\cdot 1}(n-1,-n+1)$ $H_{1\cdot 1}(n+1,-n-1)$ $H_{1\cdot 1}(n-1,-n-1)$	$H_{0\cdot 2}(n,-n+2)$ $H_{0\cdot 2}(n,-n)$ $H_{0\cdot 2}(n,-n-2)$	$I_{0,o}(n-1,-n-1)-\sigma \ I_{0,o}(n+1,-n-1)+\delta \ I_{0,o}(n-1,-n+1)-\delta$
				zn 10	Facto	-	

It is convenient to have this table in seconds of arc also

•	-
Ь	ď
r	4
F	Q.
٠	3
۶	Q
•	۲.
۴	4
•	

æ	H = +45199											H=-304998					
1		H=-200024					H=+9526							H=+1218446			
æ	F = -35276				H = +294332					H=-15308		F = +189348					H = -1600036
r3		H=+22898 F=+142854				H=-144023	F= -7798		H = -10846				H = -84425	F = -673242			
+	H = -5097 G = +6177			H = -52183	F = -190467					H=+1108 F=+11564	H=+13813	H = -4328 G = -16310		-		H=[+143461]	F = +772593
က		F = -3730 $H = +5323$ $G = -13730$				H = +27512 F = +83314	H=+4022 $G=-3616$	H = -17562	F = +4175				F = [+1693] $H = [+5506]$	G = +9080			
2	F = -1955		H = +5239	F = +3445	G = +4409					F = +159 G = +7090	H = +21192 H = +5738 F = -3579	F = +14862			H = -35125	F = +15177	G = -00080
-		H = [-9270] $G = +4207$ $F = +6733$				H=-7839 F=+3479 G=+6634	H = +11006 F = -1732	F = +6534	G = +6391				H = [+61512] G = -28940 F = -33547				_
9	H = +1656 G = -1656		F = +1634	G = +6391 $G = -6391$	F = - 1004					H = -3012 G = +3012	H = +3012 F = -1948 F = +1948 G = -3012	q = -11862 $G = +11862$			F = -7082	G = +39356	
u	3.0(n+1n) 3.0(n-1n) 3.0(n-3n)	$2 \cdot 1(n - n + 1)$ $2 \cdot 1(n - 2 - n + 1)$ $2 \cdot 1(n - n - 1)$ $2 \cdot 1(n - n - 1)$	1.2(n-1n+2)	$\frac{1\cdot 2(n+1n)}{1\cdot 2(n-1n)}$	$\frac{1\cdot 2(n+1n-2)}{1\cdot 2(n-1n-2)}$	$a_{0.3}(n, -n+1)$ $a_{0.3}(n, -n-1)$ $a_{0.3}(n, -n-3)$	$\frac{1 \cdot 0(n, -n+1) + \sigma}{1 \cdot 0(n, -n-1) - \sigma}$	$\frac{1.0(n-n-1)+3}{(n-n+1)-3}$	$\frac{1 \cdot 0(n - n + 1) - 0}{1 \cdot 0(n - 2 - n + 1) - \delta}$	$ \begin{array}{l} 0.1(n+1n)+\sigma \\ 0.1(n-1n)-\sigma \\ 0.1(n-1n)-\sigma \end{array} $	$ \begin{array}{c} (n+1,-n)+\delta \\ \text{o.1}(n+1,-n-2)+\delta \\ \text{o.1}(n-1,-n+2)-\delta \\ \text{o.1}(n-1,-n+2)-\delta \\ \text{o.1}(n-1,-n)-\delta \end{array} $	$3 \cdot 0(n+1n)$ $2 \cdot 0(n-1n)$ $2 \cdot 0(n-3n)$	$2 \cdot 1 \binom{n - n + 1}{2 \cdot 1 \binom{n - n + 1}{n - n - 1}}$	$\frac{2}{2\cdot 1}(n-2n-1)$	$_{1\cdot 2}(n-1,-n+2)$	$\frac{1\cdot 2(n+1n)}{1\cdot 2(n-1n)}$	$\frac{1\cdot 2(n+1n-2)}{1\cdot 2(n-1n-2)}$

H=-75678				
	H = +111481			
H = +688658 $F = +50227$ $H = +74714$				
	H = -282 $F = +66719$	H = -87378		
H = -44330 $F = -283500$ $H = -29208$ $G = +27235$ $H = +101338$ $F = -22400$			F = +58926	
	F = -2967 $G = -45771$ $H = -111790$	H = -36971 F = +17494		H = +123344
H = +47423 $F = +17883$ $G = -36904$ $H = -60629$ $F = +8521$ $F = -28325$ $H = +39356$ $G = -39356$			H = +179581 F = +64794 $H = \begin{bmatrix} -127808 \end{bmatrix}$ $G = \begin{bmatrix} +127808 \end{bmatrix}$	
	H = +19091 $G = -19091$ $H = -19091$ $F = +9287$	F = -9287 G = +19091		H = -62910 $G = [+62910]$ $H = +62910$ $G = -62910$
$ \begin{array}{l} 0.3(nn+1) \\ 0.3(nn-1) \\ 0.3(nn-3) \\ 1.0(nn+1) + \sigma \\ 1.0(nn-1) - \sigma \\ 1.0(nn-1) - \sigma \\ 1.0(nn-1) + \delta \\ 1.0(nn-1) + \delta \\ 1.0(nn-1) + \delta \\ 1.0(nn-1) + \delta \\ 1.0(nn-1) - \delta \end{array} $	$\begin{array}{c} 0.1(n+1n)+\sigma \\ 0.1(n-1n)-\sigma \\ 0.1(n-1n-2)-\sigma \\ 0.1(n+1n)+\delta \\ 0.1(n+1n)+\delta \end{array}$	$a_{0.1}(n-1,-n+2)-\delta = a_{0.1}(n-1,-n)-\delta$	$\begin{array}{c} {}_{1\cdot 0}(nn+1)+\sigma \\ {}_{1\cdot 0}(nn-1)+\delta \\ {}_{1\cdot 0}(nn+1)-\delta \\ {}_{1\cdot 0}(nn+1)-\delta \end{array}$	$ \begin{array}{c} o_{11}(n+1n) + \sigma \\ o_{11}(n-1n) - \sigma \\ o_{11}(n+1n) + \sigma \\ o_{11}(n+1n) + \delta \\ o_{11}(n-1n+2) - \delta \end{array} $
Factor w			e^n	Factor

	1	1 1 1		7		1 4 1		1 1 1	2 °2		2
	u	$F_{1\cdot 0}(n+1n+1)+\pi'$ $F_{1\cdot 0}(n-1n+1)+\pi'$ $F_{1\cdot 0}(n+1n-1)-\pi'$ $F_{1\cdot 0}(n-1n-1)-\pi'$	$\begin{array}{c} F_{1 \cdot 0}(n+1n+1) + \pi' \\ F_{1 \cdot 0}(n-1n+1) + \pi' \\ F_{1 \cdot 0}(n+1n-1) - \pi' \\ F_{1 \cdot 0}(n-1n-1) - \pi' \end{array}$	$F_{1\cdot 0}(n-1,-n+1)+\pi'$ $F_{1\cdot 0}(n-1,-n-1)-\pi'$		$2G_{0\cdot0}(nn+1)+\pi'$ $2G_{0\cdot0}(nn-1)-\pi'$	$\begin{array}{l} 2G_{1,0}(n+1,-n+1)+\pi' \\ 2G_{1,0}(n-1,-n+1)+\pi' \\ 2G_{1,0}(n+1,-n-1)-\pi' \\ 2G_{1,0}(n-1,-n-1)-\pi' \end{array}$	$2G_{0,1}(n,-n+2)+\pi'$ $2G_{0,1}(n,-n)+\pi'$ $2G_{0,1}(n,-n)-\pi'$ $2G_{0,1}(n,-n-2)-\pi'$	$G_{2\cdot 0}(n,-n+1)+\pi' \ G_{2\cdot 0}(n-2n+1)+\pi'$	$G_{1\cdot 1}(n-1n+2)+\pi'$ $G_{1\cdot 1}(n+1n)+\pi'$ $G_{1\cdot 1}(n-1n)+\pi'$ $G_{1\cdot 1}(n+1n)-\pi'$ $G_{1\cdot 1}(n+1n)-\pi'$	$G_{0\cdot 2}(n,-n+1)+\pi'$
	c	+++ 79.1 + 79.1 79.1 79.1	+ + 327			+ 79.10 - 79.10	- 451.7 - 530.8 + 372.6 + 609.9	+ 649.5 + 333.1 - 333.1 - 649.5		-1506 $+1506$	
TABLE XIII.	1	++ 191.9 + 191.9 - 191.9	+ 1 705	+1303	TABLE XIII.	+ 191.93 - 191.93	- 674.0 - 1441.7 + 482.0 + 1633.6	+ 1057.8 + 1057.8 - 290.1 - 1825.5	+ 2656		
	2	1 +++ 1	+ 605 + 605 + 605 + 605			+ 142. 48 - 142. 48	- 409.2 -1406.6 + 266.7 +1549.1	+ 622.9 +1192.9 - 53.0 -1762.8			
	m	- 101.4 + 101.4 101.4 101.4	+ 493 + 493 + 493	-1127		+ 101.43 - 101.43	- 232, 4 -1246, 7 + 130, 9 +1348, 1	+ 333.8 +1145.3 + 71.9 -1551.0			
	-	1++1 0.07 0.5 2. 4. 2. 4.	+ 387 + 387 + 387			+ 70, 45 - 70, 45	- 122. 4 -1038. 3 + 52. 0 +1108. 7	+ 157.6 +1003.0 + 124.2 -1284.8			
$\Gamma_{0it} = 1$ ".	*0	+++ 8.4	+ 1 + 295 295 295		['nit=1".	+ 48.14 - 48.14	- 57.8 - 828.0 + 9.6 + 876.1	+ 57.8 + 828.0 + 134.8 - 1020.6			

	- 295.2 + 295.2	+ 594 +5318 - 299 -5613	- 594 -5318 - 587 +6499	-							
	- 386.9 + 386.9	+1030 +6059 - 643 - 6446	-1223 -5866 - 325 +7413	_							
	- 493.0 + 493.0	+1656 +6586 -1163 -7079	-2149 -6093 +177 +8065								
	- 605.3 + 605.3	+2501 +6739 -1897 -7344	-3410 -5831 + 989 +8252								
	- 705.2 + 705.2	+ 3555 + 6376 - 2850	- 4966 - 4966 + 2145 + 7786	-14804						+12292	
+ 266	- 327.5 + 327.5	+2277 +2604 -1949 -2932	-3096 -1786 +1786 +3096		+9545	- 9545		-1640	-1640		-7474
$G_{0\cdot 0}(n-1,-n+2)-\delta+\pi' \ G_{0\cdot 0}(n+1,-n)+\sigma-\pi' \ G_{0\cdot 0}(n-1,-n)-\delta-\pi'$	$2G_{0.0}(nn+1)+\pi'$ $2G_{0.0}(nn-1)-\pi'$	$2G_{1\cdot 0}(n+1,-n+1)+\pi'$ $2G_{1\cdot 0}(n-1,-n+1)+\pi'$ $2G_{1\cdot 0}(n+1,-n-1)-\pi'$ $2G_{1\cdot 0}(n+1,-n-1)-\pi'$	$2G_{0\cdot1}(n,-n+2)+\pi'$ $2G_{0\cdot1}(n,-n)+\pi'$ $2G_{0\cdot1}(n,-n)-\pi'$ $2G_{0\cdot1}(n,-n-2)-\pi'$	$G_{2\cdot 0}(n-n+1)+\pi' \ G_{2\cdot 0}(n-2\cdot -n+1)+\pi'$	$G_{1\cdot 1}(n-1n+2)+\pi'$ $G_{1\cdot 1}(n+1n)+\pi'$ $G_{1\cdot 1}(n-1n)+\pi'$ $G_{1\cdot 1}(n+1n)-\pi'$	$G_{1\cdot 1}(n-1,-n)-\pi'$	$G_{0\cdot 2}(nn+1)+\pi' \ G_{0\cdot 2}(nn+1)-\pi'$	$G_{0,0}(n-1,-n)-\sigma+\pi'$ $G_{0,0}(n+1,-n)+\partial+\pi'$ $G_{0,0}(n+1,-n)+\partial+\pi'$	$G_{0\cdot 0}(n-1,-n)+\sigma - \sigma + \kappa = G_{0\cdot 0}(n+1,-n)+\sigma - \pi = G_{0\cdot 0}(n-1,-n)-\delta - \pi = G_{0\cdot 0}(n-1,-n)$	$2G_{1\cdot 0}(n-1,-n-1)-\pi'$	$2G_{0:1}(n,-n-2)-\pi'$
			ort	rotos'I						z.n.	Factor

			TABLE XIV.				Unit=1".
	u	0	ı	C4	3	-qr	rs.
	$2H_{0-0}(n,-n+1)+\pi' \ 2H_{0-0}(n,-n-1)-\pi'$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 191. 93 + 191. 93	- 142. 48 + 142. 48	- 101. 43 + 101. 43	- 70.45 + 70.45	- 48.14 + 48.14
	$\begin{array}{c} 2 H_{10}(n+1,-n+1) + \pi' \\ 2 H_{10}(n-1,-n+1) + \pi' \\ 2 H_{10}(n+1,-n-1) - \pi' \\ 2 H_{10}(n-1,-n-1) - \pi' \end{array}$	+ 609.9 + 372.6 - 530.8 - 451.7	+ 1057.8 + 1057.8 - 865.9 - 1249.8	+ 694.2 + 1121.6 - 551.7 - 1264.1	+ 435.2 + 1043.8 - 333.8 - 1145.2	+ 263.3 + 897.4 - 192.9 - 967.8	+ 154.0 + 731.7 - 105.9 - 779.8
	$\begin{array}{l} 2H_{0\cdot 1}(n_{\cdot}-n+2)+\pi'\\ 2H_{0\cdot 1}(n_{\cdot}-n)+\pi'\\ 2H_{0\cdot 1}(n_{\cdot}-n)-\pi'\\ 2H_{0\cdot 1}(n_{\cdot}-n-2)-\pi' \end{array}$	- 649.4 - 333.0 + 333.0 + 649.4	- 1057.8 - 1057.8 + 290.2 + 1825.6	- 623.0 - 1192.9 + 53.0 + 1762.8	- 338.2 - 1145.2 - 71.9 + 1551.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 57.8 - 828.0 - 134.8 + 1020.6
	$H_{2\cdot 0}(nn+1)+\pi' \ H_{2\cdot 0}(n-2n+1)+\pi'$		- 3292				
	$H_{1,1}(n-1,-n+2)+\pi'$ $H_{1,1}(n+1,-n)+\pi'$ $H_{1,1}(n-1,-n)+\pi'$ $H_{1,1}(n+1,-n)-\pi'$ $H_{1,1}(n-1,-n)-\pi'$	+1506 -1506		+ 2871			
	$H_{0.2}(nn+1)+\pi' \ H_{0.2}(nn+1)-\pi'$		- 3292 + 828				
	$H_{0\cdot 0}(n-1,-n)-\sigma+\pi' \ H_{0\cdot 0}(n+1,-n)+\delta+\pi' \ H_{0\cdot 0}(n-1,-n+2)-\delta+\pi' \ H_{0\cdot 0}(n+1,-n)+\sigma-\pi' \ H_{0\cdot 0}(n+1,-n)+\sigma-\pi' \ H_{0\cdot 0}(n-1,-n)-\delta-\pi'$	+ 266 + 266		+ 437			
	$\frac{2H_{0.0}(nn+1)+\pi'}{2H_{0.0}(nn-1)-\pi'}$	+ 327. 5 - 327. 5	+ 705.2 - 705.2	+ 605.3 - 605.3	+ 493.0 - 493.0	+ 386.9 - 386.9	+ 295.2 - 295.2
	$\begin{array}{c} 2H_{1:0}(n+1n+1)+\pi' \\ 2H_{1:0}(n-1n+1)+\pi' \\ 2H_{1:0}(n+1n-1)-\pi' \\ 2H_{1:0}(n-1n-1)-\pi' \end{array}$	- 2932 - 1949 + 2604 + 2277	- 4966 - 4966 + 4261 + 5671	- 3713 - 5529 + 3108 + 6134	- 2642 - 5600 + 2149 + 6093	- 1803 - 5285 + 1416 + 5672	- 1185 - 4728 + 5889 + 5023
	$2H_{0\cdot 1}(nn+2)+\pi' 2H_{0\cdot 1}(nn)+\pi' 2H_{0\cdot 1}(nn)-\pi' 2H_{0\cdot 1}(nn)-\pi' $	+3096 +1786 -1786 -3096	+ 4966 + 4966 - 2145 - 7786	+ 3410 + 5831 - 989 - 8252	+ 2149 + 6093 - 177 - 8065	+ 1223 + 5866 + 325 - 7413	+ 594 + 5318 + 587 - 6499
<i>m</i> 103:	$H_{2 ext{-}0}(n,-n+1)+\pi' \ H_{2 ext{-}0}(n-2n+1)+\pi'$		+20030				
ાક્ય	$H_{1\cdot 1}(n-1,-n+2)+\pi' = H_{1\cdot 1}(n+1,-n)+\pi'$	-9545		-18486			

		,		
			-15302	
				+20360
		+ 1128	+14730	
	- 2927			-14432 + 4532
+2003 0 - 5931		- 1302	-10988	
+9545	-1640			-7474
$H_{1\cdot1}(n-1,-n)+\pi'$ $H_{1\cdot1}(n+1,-n)-\pi'$ $H_{1\cdot1}(n-1,-n)-\pi'$ $H_{0\cdot2}(n,-n+1)+\pi'$ $H_{0\cdot2}(n,-n+1)-\pi'$	$H_{0 o 0}(n-1,-n) - \sigma + \pi'$ $H_{0 o 0}(n+1,-n) + \partial + \pi'$ $H_{0 o 0}(n-1,-n+2) - \partial + \pi'$ $H_{0 o 0}(n+1,-n) + \sigma - \pi'$ $H_{0 o 0}(n-1,-n) + \sigma - \pi'$	$2H_{0\cdot 0}(n,-n+1)+\pi'$ $2H_{0\cdot 0}(n,-n-1)-\pi'$	$2H_{1.0}(n+1,-n+1)+\pi'$ $2H_{1.0}(n-1,-n+1)+\pi'$ $2H_{1.0}(n+1,-n-1)-\pi'$ $2H_{1.0}(n+1,-n-1)-\pi'$	$2H_{0\cdot 1}(nn+2)+\pi' \ 2H_{0\cdot 1}(nn)+\pi' \ 2H_{0\cdot 1}(nn)-\pi' \ 2H_{0\cdot 1}(nn)-\pi' \ 2H_{0\cdot 1}(nn-2)-\pi'$
			_z .n 1 030	re-I

				TABLE 3	XV.				Unit=1"
	£	0	-	cı	63	-	as.	æ	r-
	$S_{0\cdot 0}(n\cdot -n)$		+ 15.71	+ 90.50	+ 72.04	+ 53.29	+ 37.93	+ 26.37	+ 18.04
	$S_{1.0}(n+1n)$ $S_{1.0}(n-1n)$		- 19.7 - 66.8	+ 134. 2 - 408. 6	+ 140. 7 $-$ 507. 7	+ 129.7 - 509.8	+ 110.8 - 458.2	+ 89.9	- 308.4
	$S_{0\cdot 1}(n\cdot -n+1)$ $S_{0\cdot 1}(n\cdot -n-1)$		+ 43.2 + 106.1	- 43.7 + 680.3	- 104. 6 + 759. 8	- 129.7 + 723.0	- 129.7 + 628.9	- 116.3 + 516.5	
	$S_{2\cdot 0}(n+2n)$ $S_{2\cdot 0}(n,-n)$ $S_{2\cdot 0}(n-2n)$			- 777 + 838				+ 2678	
	$S_{1-1}(n+1n+1)$ $S_{1-1}(n-1n+1)$ $S_{1-1}(n+1n-1)$ $S_{1-1}(n+1n-1)$		- 116 - 540		+ 560		- 7982		
	$S_{0\cdot 2}(nn+2)$ $S_{0\cdot 2}(nn)$ $S_{0\cdot 2}(nn-2)$			- 499		+ 5930			
	$S_{0,n}(n+1,-n+1+\sigma S_{0,n}(n+1,-n+1+\sigma S_{0,n}(n-1,-n-1)-\sigma S_{0,n}(n+1,-n-1)+\delta S_{0,n}(n-1,-n+1)-\delta$		- 383.9		6 303 -		+ 192.6		
1	$S_{0\cdot 0}(n-n)$		40.8	- 212.2	- 218.4	- 197. 8	- 166.4	- 133.4	- 103.4
	$S_{1,0}(n+1,-n) \\ S_{1,0}(n-1,-n)$		+ 87 + 236	$-rac{216}{+1057}$	-343 + 1622	- 417 + 1956	- 439 + 2057	- 422 + 1980	+1791
	$S_{0\cdot 1}(n,-n+1) \\ S_{0\cdot 1}(n,-n-1)$		- 161 - 360	+ 4	+ 234 -2387	+ 417 - 2747	$+\ 522$ $-\ 2806$	+ 555 - 2647	
ı.f	$S_{2,n}(n+2,-n) = S_{2,n}(n-n) = S_{2,n}(n-2,-n)$			+1194 -2573				-14096	
Factor :	$S_{1-1}(n+1,-n+1)$ $S_{1-1}(n-1,-n+1)$ $S_{1-1}(n+1,-n-1)$ $S_{1-1}(n-1,-n-1)$		+ 651 +2092		- 908		+36591		
	$(S_{0\cdot 2}(nn+2),S_{0\cdot 2}(nn),S_{0\cdot 2}(nn-2))$			+ 150		-23115			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 986	+ 289 + 297 +	+ 617 + - 3844 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	+			
$\begin{array}{c} S_{0\cdot0}(n+1n+1)+\sigma\\ S_{0\cdot0}(n-1n-1)+\sigma\\ S_{0\cdot0}(n+1n-1)+\delta\\ S_{0\cdot0}(n-1n+1)-\delta\\ S_{0\cdot0}(nn)\\ S_{0\cdot0}(nn)\\ S_{1\cdot0}(n+1n)\\ S_{1\cdot0}(n+1n)\\ S_{1\cdot0}(n-1n)\\ S_{1\cdot0}(n-1n)\\ S_{1\cdot0}(n-1n)\\ S_{1\cdot0}(n-1n)\\ S_{0\cdot1}(nn+1)\\ S_{0\cdot1}(nn+1)\\ S_{0\cdot1}(nn-1)\\ S_{0$	+1410	79 +		
	$\begin{array}{c} S_{0\cdot0}(n+1,-n+1)+\sigma \\ S_{0\cdot0}(n-1,-n-1)-\sigma \\ S_{0\cdot0}(n+1,-n-1)+\delta \\ S_{0\cdot0}(n+1,-n+1)+\delta \end{array}$	$S_{0\cdot0}(n,-n)$	$S_{1\cdot 0}(n+1,-n)$ $S_{1\cdot 0}(n-1,-n)$	$S_{0-1}(n, -n+1)$ $S_{n-1}(n, -n+1)$

INTEGRATION OF THE DIFFERENTIAL EQUATION FOR W.

With the exception of Tables LVI and LVII all the following tables are concerned with the integration of functions whose coefficients can be derived, more or less directly, from the preceding tables. The terms of first order in the mass, before and after integration, are of the type

$$\begin{split} & \mathcal{\sum} C_{p \cdot q}(n+r,-n+s) \eta^p \eta'^q j^{2t} \begin{cases} \sin \begin{cases} A \\ A+\varepsilon-\psi \\ A-\varepsilon+\psi \end{cases} \\ C_{p \cdot q} &= C_{0 \cdot p \cdot q} + C_{1 \cdot p \cdot q} \cdot w + C_{2 \cdot p \cdot q} \cdot w^2 + \cdots \text{ (see } Z \text{ 25)} \end{cases} \end{split}$$

 $A = [n+r-\frac{1}{2}(n-s)]\varepsilon + (n-s)\theta + i\Pi + i'\Pi'$

where and

In the argument A the factor n is always a positive integer; the factors r, s, i, and i' are positive and negative integers. Evidently, the factor of ε is $\pm \frac{k}{2}$ where k is any positive integer, and the arguments in a series are $\Sigma_n \Sigma_\tau \Sigma_s A$. Within the extent of Bohlin's tables all of the coefficients can be written in symbolic form from B 188, XVII, XVIII. In the notation for the coefficients the particular values of r and s are given, and there remains to be found only the positive value of n, if there is one, for each multiple of $\frac{\varepsilon}{2}$.

The following tables present, in skeleton form, any series of the given type. There are properly two tables, one for perturbations in the plane of the orbit, and the other for perturbations perpendicular to the same. The headings J and Σ are defined by

Considering first the tables referring to the plane of the orbit, omitting for the moment the arguments bearing the subscripts $\pm \delta$ or $\pm \sigma$, the argument A for any term is read from a main heading $\pm \frac{k\varepsilon}{2}$ and the first two columns under this heading. The tabulated numbers are the respective factors of θ , Δ , and Σ . The degree of the factors in the eccentricities is indicated in the subscripts $p \cdot q$ in the symbol for the coefficient. Further, when $j^{2} = 1$

$$i \Pi + i'\Pi' = n(\Pi - \Pi') = n\Delta.$$

Hence the coefficient of Δ is also the number n in the proper table of the numerical values of the coefficients. For instance, in the function T_2 (Z 41, eq. 82) we have for one term

$$F_{1:0}(n-1.-n)\eta \sin (\varepsilon + 4\theta + 4\Delta)$$

where F, taken from Table VIII, is numerically

$$F_{1.0}(n-1.-n)_{n=4} = -1514'' + 5780''w - 8976''w^2.$$

Adding $\varepsilon - \psi$ to the argument and taking the coefficients from Table IX, we have also in the function T, $G_{1,0}(n-1,-n)_{n-1}\eta \sin (2\varepsilon - \psi + 4\theta + 4\Delta)$

$$G_{1\cdot 0}(n-1.-n)_{n=4} = +452^{\prime\prime} - 1475^{\prime\prime}w + 1451^{\prime\prime}w^2.$$

In this manner the series is built up.

where

The coefficients having subscripts $\pm \delta$ and $\pm \sigma$ belong to terms depending upon the mutual inclination of the orbit planes. They differ from the preceding type of terms in three ways. In the first place the subscript signifies the addition of $\pm I$ and $\pm \Sigma$ to the argument, respectively. Evidently, if $\pm I$ is added to the argument, the factor of I is not I but I is not which we determine I. Lastly, these terms contain the factor I, i. e., within the extent of our tables the exponent I is not greater than unity.

For the tables referring to functions which concern the perturbations in the third coordinate the same explanations hold, with the exception that the additional subscript $\pm \pi'$ signifies the addition of $\pm \Pi'$ to the argument.

These tables, in connection with the proper tables of numerical coefficients, enable the computer to write a complete series by inspection or segregate any term of given degree and given argument.

Table XVa. $\Sigma C_{p \cdot q}(n + r \cdot -n + s) \eta p \eta' q j^{2t} \sin \begin{cases} A \\ A + \varepsilon - \psi \end{cases}$ In the Plane of the Orbit.

	М														
+25	77		60	e s											
	æ	7	9 0	9											
	64				,										
20 0	٦					-									
'	æ										<u> </u>		-		
	54														
12 2	7	10	es 1 -	#9	5	01040	201-	01 × 10 10						,	
+	90	ra.	m t-	es t-	- rc o	4000		-5000							
	F-1		1					ī							
က္ချီလ	77				-	0		0							
1	90					-		-							
	54														
5 <mark>1</mark> 3	-	<u>س</u>		ে ক	~100	0 # 01 9	~8.0	0 4 8 8							
+	æ .	₂₀	-10	5.	-103	-002	-101-	2007							
							Ţ								
→][c ₁	-1					0 61									
-164	- T				.,			e - 1							
	a					3		<u> </u>							
$+\frac{1}{2}$	-1							7					-		
+	٦_		· · ·	0.81		2104									
	3 0		3	Ī	1.0			211							
	51														
+34	7	9	₩ 90	2.2											
	20	9	4 ×	4.8											
	М												ī	7	
-24	77				•				C3	-	c		-	0	
	_ s				0				Ç4	C)	ខា		Ç1	81	
	84							77					777	777	
+24	77	7	613	813	C 4+ 30	4281-	0.46	- t- + +	$\begin{smallmatrix} 2\\6\\10\end{smallmatrix}$	57 20	40.048	tt 10 t-	8000000	SON SOL	
	\$	7	210	6.2	⊙ + ∞	O ++ ++ oc	C 4 8	००नन	290	29 9 9 9	88888	199	9000000	2002	စကမ
	61							-					ī	17	
ĭ	77		0		C3	-	c	-	0 4	3	0 61	-	e 0		7
	3 0		0		63	Ĉ1	C)	€1	0 4	0 4	0 #	÷	4 0	0 7	- 0
	F1							ī					-77	777	
+	۵.	61	0 4	65	61.0	8-45	004	10 63 63	0 4 x	4587	00400	-60	m 1- 4-0 4	0 + 4 - 4	216
		63	0 4	0.4	c) Ф	01014	ಚಿಚಾಹ	6363	048	0448	CC448	3 4 ∝	O 47 X 47 O 47	0400	* O *
	5-1		_				ţ	-1					17	77	
	77	0	C3		0 4	3 1	0 01	- e o	c1 @	8-12	0 204	- €	— 10 ci ci		
	30	0	Çã	C1	0 4	0 4	0 4	4 0	61.0	01019	0 000	61.00	ପାକ୍ଷା ପା	819	1
													 	_	
	Cp.4	(n_*-n)	$\frac{1.0(n+1n)}{1.0(n-1n)}$	0.1(nn+1) 0.1(nn-1)	$p_{s,0}(n+2,-n)$ $p_{s,0}(n-n)$ $p_{s,0}(n-2,-n)$	$\{1.1(n+1n+1)\}$ $\{1.1(n-1n+1)\}$ $\{1.1(n+1n-1)\}$ $\{1.1(n-1n-1)\}$	$\begin{array}{c} 0.7(nn+2) \\ 0.2(nn) \\ 0.2(nn-2) \end{array}$	$\begin{array}{c} 0.0(n+1n+1)+\sigma \\ 0.0(n-1n-1)-\sigma \\ 0.0(n+1n-1)+\delta \\ 0.0(n-1n+1)-\delta \end{array}$	a.o(n+1n) a.o(n-1n) a.o(n-3n)	$egin{array}{l} v_1(n,-n+1) \\ v_2(n-2,-n+1) \\ v_3(n,-n-1) \\ v_4(n-2,-n-1) \end{array}$	$egin{array}{ll} & 1, 3(n-1,-n+2) & 1, 3(n+1-n) & 1, 3(n+1-n) & 1, 3(n+1-n-2) & 1, 3(n+1-n-2) & 1, 3(n-1,-n-2) & 1, 3(n-1,-$	0.3(n,-n+1) 0.4(n,-n-1) 0.3(n,-n-3)	$1.6(nn+1)+\sigma$ $1.6(nn-1)-\sigma$ $1.6(nn-1)-\sigma$ $1.6(nn-1)-\sigma$ $1.6(nn-1)+\vartheta$ $1.6(nn+1)-\vartheta$ $1.6(nn+1)-\vartheta$	$0.1(n+1n)+\sigma$ $0.1(n-1n)+\sigma$ $0.1(n-1n)-\sigma$ $0.1(n-1n-2)-\sigma$ $0.1(n+1n)+\vartheta$	$1(n+1,-n-2)+\delta$ $1(n-1,-n+2)-\delta$ $1(n-1,-n)-\delta$
		0.0	1 1	9 9		1111	000	0 0 0	2 4 3	* 4 4 4	11111	0 0 0	11111	0000	000

Table XVb. $\Sigma C_{p\cdot q}(n+r,-n+s)\eta p\eta'qj^{zt}\sin\begin{cases}A+\varepsilon-\psi\\A+\varepsilon-\psi\end{cases}$ Perpendicular to the Plane of the Orbit.

\$\frac{1}{2}\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 0 4 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0.50 ± 80 ± 80 ± 80 ± 90 ± 90 ± 90 ± 90 ± 9	20000000000000000000000000000000000000	© 1 4 51 4 5	1 0000	
# # # # # # # # # # # # # # # # # # #	1 0	0 78 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7655	0.400 to	~10010	© ा या गया व ह	10 01 01	
2	1 0	0 2	7655	\$1 \$2 \$\to \infty \tag{\tag{\tag{\tag{\tag{\tag{\tag{	~10010	ಂ ಬಹುಬಹುತ	10 01 01	
2 B X L B	1 0	0 2	7655				10 01 01	-1-77
2 S S S S S S S S S S S S S S S S S S S	1 0	0 2	7655					
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 0	0 21		ноню	ннюнююз	<u></u>	10 mm	- 7:2:2
8	1		1					
9	1		-				ī	-1
21	1 1	3 -		2 04	n = 8	0 03	7	e 3
	98		8		1 1 2	- 12		٠
	981							7
		S1○4		0+ 619	- c c-c	0010017	. 0	100124
1	3-1	779		7.8 %				r ~ co co
-1			-					-
77	<u> </u> 			-	0			0
E				C1	Çı			C1
-1						 	77	77
	es to	-1381-	01440	95173	ರಕ್ಷಣೆ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ರಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ರಿ ಕ್ಷಾಪ್ತಿ ಕ್ಷಾಪ್ರ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ರ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ರ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ ಕ್ಷಾಪ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾಪ ಕ್ಷಾಪ್ ಕ್ಷಾಪ ಕ್ಷಾಪ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾ ಕ್ಷಾಪ ಕ್ಷಾಪ ಕ್ಷಾಪ ಕ್ಷಾಪ ಕ್ಷಾ ಕ್ಷಾಪ ಕ್ಷಾಪ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾಪ್ ಕ್ಷಾಪ್ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾಪ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ ಕ್ಷಾ		0088	ध∞छाउ
	613	0 + + x	3440	2001001	20000000	889888	ପାଇପାଧା	8658
					1	1	<u> </u>	7
~1				3 5	0 0 0		-	
		C3						4 0
90		-			· · · · · · · · · · · · · · · · · · ·			
*1		<u> </u>	000-		00=0=00		<u> </u>	
						_		
20	7	61614	1 2000	O 7 7 9		9 9 9 9 8		Ç∞+4
<u>برا</u>						<u> </u>	<u> </u>	<u></u>
7	-	3 12	0001	e 40	0 2 204	35.	~ 7	₩₩₩
t	Ç1	Ç #	00#	61 6120	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 VI &	² ³ 1	977
		$1.0(n+1n+1)+\pi'$ $1.0(n-1n+1)+\pi'$ $1.0(n+1n-1)-\pi'$ $1.0(n+1n-1)-\pi'$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.0(n+2n+1)+\pi'$ $2.0(n-n+1)+\pi'$ $2.0(n-1)+\pi'$ $2.0(n+2n+1)+\pi'$ $2.0(n+2n-1)-\pi'$ $2.0(n-2n-1)-\pi'$	1. $(n+1n+2)+\pi'$ 1. $(n-1n+2)+\pi'$ 1. $(n-1n+2)+\pi'$ 1. $(n-1n)+\pi'$ 1. $(n-1n)+\pi'$ 1. $(n+1n)-\pi'$ 1. $(n-1n)-\pi'$ 1. $(n-1n-2)-\pi'$ 1. $(n-1n-2)-\pi'$	$\begin{array}{c} 0.3(n,-n+3)+\pi' \\ 0.3(n,-n+1)+\pi' \\ 0.3(n,-n+1)+\pi' \\ 0.3(n,-n+1)-\pi' \\ 0.3(n,-n+1)-\pi' \\ 0.3(n,-n-1)-\pi' \end{array}$	+ 0 + 11/ + 11/ + 11/ - 0 + 11/	$\begin{array}{lll} & 0.0(n+1,-n)+\sigma-\pi' \\ & 0.0(n-1,-n-2)-\sigma-\pi' \\ & 0.0(n+1,-n-2)+\delta-\pi' \\ & 0.0(n+1,-n-2)+\delta-\pi' \end{array}$
	\$ \tag{2}	\$ 01	2 0 0 7 2 0 0 0 7 2 0 0 0 7 2 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 0 0 4 004 1	### 1	### 1	### 1	2 0

Our problem is now the integration of the partial differential equations Z 7, eq. (33), Z 8, eqs. (37) and (39), and Z 9, eq. (47).

In the trigonometric series to be integrated the argument is a function of θ , ε , ψ , J, Σ . The last two are constants. According to the principles of Hansen, ψ occurs outside the operation. Numerically, however, it is equal to ε . The argument θ contains ε implicitly. See Z 9, eq. (43). Hence we must, in general, write

 $F(\varepsilon, \theta)$

and

$$\frac{dF}{d\varepsilon} = \frac{\partial F}{\partial \varepsilon} + \frac{\partial F}{\partial \theta} \cdot \frac{d\theta}{d\varepsilon}$$

In order to set up the partial differential equations from the total derivative, the following notation is introduced:

$$F(\varepsilon, \theta) = [F(\varepsilon, \theta)] + F(\varepsilon, \theta) - [F(\varepsilon, \theta)]$$

where $[F(\varepsilon, \theta)]$ signifies that part of the function which is independent of ε . Again, since ε has the period of the planet, there can be no secular terms in ε (with the exception of the function θ), i. e.,

$$\left[\frac{\partial F}{\partial \varepsilon}\right] = 0$$

On the other hand, the argument θ varies much more slowly, and there may be secular terms in θ . Hence

$$\left[\frac{\partial F}{\partial \theta}\right] \neq 0$$

and θ may occur outside the sign of integration.

Owing to the presence of the required function in the differential equation, the integrations must be performed rank by rank where rank is defined as follows:

In the course of the developments there arise negative powers of w. Since w is a small quantity, these factors increase the numerical value of the terms, or, in other words, they lower the order. Therefore, it is better to define order in terms of both the disturbing mass m' and w. For this purpose v. Zeipel makes the assumption that both w and $\sqrt{m'}$ are quantities of the first order. Order so defined is called "rank," and the word "order" is reserved as usual for the powers of m'. The factors $\frac{m'^{\alpha}}{w^{\beta}}$ are arranged according to rank in Z 53.

Any function is then written in the form

$$F(\varepsilon, \theta) = F_1(\varepsilon, \theta) + F_2(\varepsilon, \theta) + F_3(\varepsilon, \theta) + \cdots$$

where the subscript denotes the term of lowest rank, for F_i (ε , θ) contains terms of more than one rank since each coefficient is itself a Taylor's series in w. In assigning rank it is to be noted that the coefficients in all the preceding tables contain the factor m' implicitly. The implicit mass factor is indicated at the foot of each table which follows.

On the basis of the foregoing principles, the differential equation for W,

$$\frac{dW}{d\varepsilon} = \frac{\partial W}{\partial \varepsilon} + \frac{\partial W}{\partial \theta} \cdot \frac{d\theta}{d\varepsilon} = T$$

expressed in Z 52, eq. (91), is broken up into four equations, Z 53, eqs. (95₁ — 95₄), according to rank, and before integration they are again subdivided according to parts which contain ε and parts which are independent of ε . The total derivative is then in the form of eight equivalent equations, and the integration can be performed in the following order:

$$W_1$$
; $W_2 - [W_2]$; $[W_2]$; $W_3 - [W_3]$; etc.

It is possible to avoid the computation of T_3 , as v. Zeipel did, by the introduction of some auxiliary functions, but we found it preferable to tabulate them.

Employing Table XVa, and by inspection of Tables VIII, IX, X, XI, T_2 is written directly. (T has no terms of first rank.)

TABLE XVc.

Unit-1"

7 -	Sin $ \begin{array}{c} \varepsilon - \psi \\ \varepsilon + \psi \\ \varepsilon + 2\theta + 2A \\ 2\varepsilon - \psi + 2\theta + 2A \\ 2\varepsilon - \psi + 2\theta + 2A \\ \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} 2\varepsilon + 4\theta + 4A \\ 3\varepsilon - \psi + 4\theta + 4A \\ \varepsilon + \psi + 4\theta + 4A \end{array} $ $ \begin{array}{c} 2\varepsilon + \psi + 6\theta + 6A \\ \varepsilon - \psi + 2\theta + 2A \\ \varepsilon + \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} \varepsilon - \psi + 2\theta + 2A \\ \varepsilon + \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} \varepsilon \\ \varepsilon + \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} \varepsilon \\ \varepsilon + \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} \varepsilon \\ \varepsilon + \psi + 2\theta + 2A \end{array} $ $ \begin{array}{c} \varepsilon \\ \varepsilon + \psi + 2\theta + 2A \end{array} $	$ \begin{array}{r} $	$ \begin{array}{c} $	+ 171 - 171 + 526 + 32 - 734 + 869 - 174 - 984 - 907 - 2935 - 1170 + 5572
7 -	$\begin{array}{c} \epsilon + \psi \\ \epsilon + 2\theta + 2A \\ 2\epsilon - \psi + 2\theta + 2A \\ \psi + 2\theta + 2A \\ \psi + 2\theta + 2A \\ \end{array}$ $\begin{array}{c} 2\epsilon + 4\theta + 4A \\ 3\epsilon - \psi + 4\theta + 4A \\ \epsilon + \psi + 4\theta + 4A \\ \end{array}$ $\begin{array}{c} 2\epsilon + \psi + 6\theta + 6A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ \epsilon - \psi + 2\theta + 2A \\ \epsilon + \psi + 2\theta + 2A \\ \end{array}$ $\begin{array}{c} \epsilon \\ \epsilon - \psi + 2\theta + 2A \\ \end{array}$ $\begin{array}{c} \epsilon \\ \epsilon - \psi + 2\theta + 2A \\ \end{array}$ $\begin{array}{c} \epsilon \\ \epsilon - \psi + 2\theta + 2A \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 128.0 - 636.6 + 108.2 + 740.6 - 593.3 + 122.1 + 637.4 + 418.9 +2962 - 179 - 4265	- 171 + 526 + 32 - 734 + 869 - 174 - 984 - 907 - 2935 - 1170
-	$2\epsilon - \psi + 2\theta + 2A$ $\psi + 2\theta + 2A$ $2\epsilon + 4\theta + 4A$ $3\epsilon - \psi + 4\theta + 4A$ $\epsilon + \psi + 4\theta + 4A$ $2\epsilon + \psi + 6\theta + 6A$ $2\theta + 2A$ $\epsilon - \psi + 2\theta + 2A$ $\epsilon + \psi + 2\theta + 2A$ $\epsilon + \psi + 2\theta + 2A$ $\epsilon - \psi + 2\theta + 2A$ $\epsilon - \psi + 2\theta + 2A$ $\epsilon - \psi + 2\theta + 2A$	$ \begin{array}{c c} - & 67.1 \\ - & 294.9 \end{array} $ $ \begin{array}{c} + & 159.9 \\ - & 45.7 \\ - & 167.4 \end{array} $ $ \begin{array}{c} - & 81.7 \end{array} $ $ \begin{array}{c} -1180 \\ + & 273 \\ + & 1496 \end{array} $ $ \begin{array}{c} - & 173 \\ - & 211 \end{array} $	+ 108. 2 + 740. 6 - 593. 3 + 122. 1 + 637. 4 + 418. 9 + 2962 - 179 - 4265	+ 32 - 734 + 869 - 174 - 984 - 907 - 2935 - 1170
-	$3\varepsilon - \psi + 4\theta + 4\Delta$ $\varepsilon + \psi + 4\theta + 4\Delta$ $2\varepsilon + \psi + 6\theta + 6\Delta$ $2\theta + 2\Delta$ $\varepsilon - \psi + 2\theta + 2\Delta$ $\varepsilon + \psi + 2\theta + 2\Delta$ $\varepsilon + \psi + 2\theta + 2\Delta$ $\varepsilon + \psi + 2\theta + 2\Delta$	$ \begin{array}{c cccc} & - & 45.7 \\ & - & 167.4 \\ & - & 81.7 \\ & - & 1180 \\ & + & 273 \\ & + & 1496 \\ & - & & 173 \\ & - & & 211 \end{array} $	$ \begin{array}{c} + 122.1 \\ + 637.4 \\ + 418.9 \\ + 2962 \\ - 179 \\ - 4265 \end{array} $	- 174 - 984 - 907 - 2935 - 1170
-	$ \begin{array}{c} 2\theta + 2\mathbf{J} \\ \varepsilon - \psi + 2\theta + 2\mathbf{J} \\ \varepsilon + \psi + 2\theta + 2\mathbf{J} \end{array} $ $ \begin{array}{c} \varepsilon \\ 2\varepsilon - \psi \\ \psi \end{array} $	$ \begin{array}{r} -1180 \\ + 273 \\ +1496 \end{array} $ $ \begin{array}{r} - 173 \\ - 211 \end{array} $	$+2962 \\ -179 \\ -4265$	- 2935 - 1170
-	$ \begin{array}{l} \epsilon - \psi + 2\theta + 2\mathbf{J} \\ \epsilon + \psi + 2\theta + 2\mathbf{J} \end{array} $ $ \begin{array}{l} \epsilon \\ \epsilon - \psi \\ \psi \end{array} $	+ 273 +1496 - 173 - 211	$-179 \\ -4265$	- 1170
7		- 211	+ 512	
		+ 384	$+899 \\ -1410$	$ \begin{array}{rrr} - & 684 \\ - & 1921 \\ + & 2605 \end{array} $
7	$ \begin{array}{c} \epsilon + 4\theta + 4\Delta \\ 2\epsilon - \psi + 4\theta + 4\Delta \\ \psi + 4\theta + 4\Delta \end{array} $	$\begin{array}{c} -1514 \\ +452 \\ +1679 \end{array}$	$+5780 \\ -1475 \\ -6656$	-8976 + 1451 + 11172
,	$\begin{array}{l} 2\varepsilon + 2\theta + 2A \\ 3\varepsilon - \psi + 2\theta + 2A \\ \varepsilon + \psi + 2\theta + 2A \end{array}$	- 6 - 83 + 136	$^{+\ 408}_{+\ 262}_{-\ 878}$	-1307 -564 $+2285$
9	$\begin{array}{l} 2\epsilon + 6\theta + 6A \\ 3\epsilon - \psi + 6\theta + 6A \\ \epsilon + \psi + 6\theta + 6A \end{array}$	$-1149 \\ +360 \\ +1227$	+5902 -1734 -6415	$-12820 \\ +3301 \\ +14400$
,	$2\varepsilon + \psi + 4\theta + 4\Delta$	- 102	+ 112	
η	$2\varepsilon + \psi + 8\theta + 8\Delta$	+ 750	-4900	
η'	$ \begin{array}{ccc} 2\theta + 1 \\ \epsilon - \psi + 2\theta + 1 \\ \epsilon + \psi + 2\theta + 1 \end{array} $	+ 318 + 222 - 646	$-1081 \\ -1012 \\ +2452$	+ 1552 + 2227 - 4296
η'	$ \begin{array}{ccc} \epsilon + & A \\ 2\epsilon - \phi + & A \\ \phi + & A \end{array} $	+ 130 + 112 - 285	$ \begin{array}{c c} - 484 \\ - 565 \\ + 1211 \end{array} $	+ 808 + 1393 - 2475
7'	$\begin{array}{c} \epsilon + 4\theta + 3A \\ 2\epsilon - \phi + 4\theta + 3A \\ \phi + 4\theta + 3A \end{array}$	+2279 - 580 -2460	$ \begin{array}{r} -7160 \\ +1410 \\ +8138 \end{array} $	+ 8896 - 520 -11342
n'	$\begin{array}{c} 2\epsilon + 2\theta + 31 \\ 3\epsilon - \psi + 2\theta + 31 \\ \epsilon + \psi + 2\theta + 31 \end{array}$	- 314 + 127 + 291	+ 702 - 399 - 537	- 90 + 598 - 478
η'	$\begin{array}{c} 2\epsilon + 6\theta + 5A \\ 3\epsilon - \psi + 6\theta + 5A \\ \epsilon + \psi + 6\theta + 5A \end{array}$	$+1887 \\ -542 \\ -1974$	$-8417 \\ +2221 \\ +9002$	+15550 - 3377 -17350
η'	$2\varepsilon + \psi + 4\theta + 5\Delta$	+ 390	-1556	
η'	$2\epsilon + \phi + 8\theta + 7\Delta$	-1263	+7397	
η³	$\begin{array}{ccc} \epsilon - \psi \\ - & \epsilon + \psi \end{array}$	+ 568 - 568	$ \begin{array}{ccccc} & - & 3106 \\ & + & 3106 \end{array} $	
η²	$ \begin{array}{c} 4\theta + 4\mathbf{\Delta} \\ \epsilon - \psi + 4\theta + 4\mathbf{\Delta} \\ - \epsilon + \psi + 4\theta + 4\mathbf{\Delta} \end{array} $	+6716 -2114 -7960	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 44700
η²	$\begin{array}{c} \epsilon + 2\theta + 2\mathbf{J} \\ 2\epsilon - \psi + 2\theta + 2\mathbf{J} \\ \psi + 2\theta + 2\mathbf{J} \\ \psi + 2\theta + 2\mathbf{J} \end{array}$	÷ 128 + 535 - 978	$\begin{array}{c c} - & 3166 \\ - & 2505 \\ + & 7431 \end{array}$	- 23105
		I	m'	•

TABLE XVc-Continued.

Unit-1"

				Ont-P
	Sin	fi.o	w	w :
η²	$\begin{array}{c} \boldsymbol{\varepsilon} + & 6\theta + 6\boldsymbol{\varLambda} \\ 2\boldsymbol{\varepsilon} - \boldsymbol{\psi} + 6\theta + 6\boldsymbol{\varLambda} \\ \boldsymbol{\psi} + 6\theta + 6\boldsymbol{\varLambda} \end{array}$	+ 7969 - 2624 - 8819	- 41736 + 12577 + 47347	-111337
η 3	$ \begin{array}{c c} -\epsilon + 2\theta + 2\beta \\ -\psi + 2\theta + 2\beta \\ -2\epsilon + \psi + 2\theta + 2\delta \end{array} $	+ 2245 - 396 - 3596	$\begin{array}{rrr} - & 6168 \\ - & 1494 \\ + & 12561 \end{array}$	+ 9351
η²	$\begin{array}{c} 2\epsilon \\ 3\epsilon - \psi \\ \epsilon + \psi \end{array}$	+ 423 + 357 - 780	- 1797 - 2207 + 4005	
η²	$2\epsilon + 4\theta + 4\mathbf{J}$ $3\epsilon - \psi + 4\theta + 4\mathbf{J}$ $\epsilon + \psi + 4\theta + 4\mathbf{J}$	- 1783 + 924 + 1220	+ 3946 - 3327 - 1026	
η²	$2\epsilon + 8\theta + 81$ $3\epsilon - \psi + 8\theta + 81$ $\epsilon + \psi + 8\theta + 81$	+ 6749 - 2247 - 7252	- 44127 + 14052 + 48051	
η η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 285 - 1004 + 1574	+ 1210 + 5771 - 8192	- 2475
η η'	$ \begin{array}{c} 4\theta + 31 \\ \epsilon - \psi + 4\theta + 31 \\ - \epsilon + \psi + 4\theta + 31 \end{array} $	- 17218 + 4253 + 20345	+ 56961 - 8340 - 73031	- 79400
η η'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1429 - 523 + 2280	$\begin{array}{c} + & 6138 \\ + & 3792 \\ - & 11302 \end{array}$	+ 28347
η η'	$ \begin{array}{c} \epsilon + 2\theta + 31 \\ 2\epsilon - \psi + 2\theta + 31 \\ \psi + 2\theta + 31 \end{array} $	+ 1725 - 1003 - 1492	- 3054 + 3753 + 677	+ 13097
η η'	$\begin{array}{c} \epsilon + 6\theta + 5A \\ 2\epsilon - \psi + 6\theta + 5A \\ \psi + 6\theta + 5A \end{array}$	$\begin{array}{c c} -23773 \\ +7038 \\ +25974 \end{array}$	$\begin{array}{c c} +108605 \\ -28427 \\ -122380 \end{array}$	+251019
ηη	$ \begin{array}{cccc} -\epsilon + & 2\theta + \Delta \\ -\psi + 2\theta + \Delta \\ -2\epsilon + \psi + 2\theta + \Delta \end{array} $	- 965 - 2068 + 3785	+ 3533 + 10582 - 16928	+ 39011
η η'	$ \begin{array}{cccc} 2\epsilon + & \Delta \\ 3\epsilon - \psi + & \Delta \\ \epsilon + \psi + & \Delta \end{array} $	- 820 - 470 + 1488	+ 3797 + 3185 - 7870	
η η'	$\begin{array}{c} 2\varepsilon + 4\theta + 3A \\ 3\varepsilon - \psi + 4\theta + 3A \\ \varepsilon + \psi + 4\theta + 3A \end{array}$	+ 1815 - 1181 - 853	- 1190 + 3807 - 3161	
η η'	$\begin{array}{c} 2\varepsilon + 4\theta + 5A \\ 3\varepsilon - \psi + 4\theta + 5A \\ \varepsilon + \psi + 4\theta + 5A \end{array}$	+ 4294 - 1571 - 4414	$\begin{array}{c c} - 17092 \\ + 6629 \\ + 17198 \end{array}$	
η η'	$\begin{array}{c} 2\varepsilon + 8\theta + 7\mathbf{J} \\ 3\varepsilon - \psi + 8\theta + 7\mathbf{J} \\ \varepsilon + \psi + 8\theta + 7\mathbf{J} \end{array}$	$ \begin{array}{r} -21544 \\ +6700 \\ +22868 \end{array} $	+126397 - 37167 -136294	
η'^2	$\begin{array}{ccc} \epsilon - \psi \\ - & \epsilon + \psi \end{array}$	+ 866 - 866	- 4261 + 4261	
η'2	$\begin{array}{c} 4\theta + 21 \\ \varepsilon - \psi + 4\theta + 21 \\ - \varepsilon + \psi + 4\theta + 21 \end{array}$	+10682 - 1815 -12428	- 28347 + 474 + 37322	+ 32120
τ,′²	$\begin{array}{c} \boldsymbol{\varepsilon} + 2\theta + 2\boldsymbol{J} \\ 2\boldsymbol{\varepsilon} - \boldsymbol{\psi} + 2\theta + 2\boldsymbol{J} \\ \boldsymbol{\psi} + 2\theta + 2\boldsymbol{J} \end{array}$	- 1498 + 1136 + 861	+ 450 - 4394 + 3794	- 22127
			m'	

XVc—Continued.

	λ	€c—Continued.		
		T ₂		Unit = 1"
	Sin	wo	w	W 2
7,12	$\begin{array}{c} \varepsilon + & 6\theta + 4\mathbf{J} \\ 2\varepsilon - \psi + 6\theta + 4\mathbf{J} \\ \psi + 6\theta + 4\mathbf{J} \end{array}$	+17790 -4675 -19046	$\begin{array}{c} -69344 \\ +15200 \\ +77260 \end{array}$	-135954
η'^2	$ \begin{array}{c} -\psi + 2\theta \\ -2\varepsilon + \psi + 2\theta \end{array} $	$\begin{array}{c} + \ 1634 \\ - \ 1634 \end{array}$	- 7031 + 7031	+ 16199
η'^{2}	$\begin{array}{ccc} 2\varepsilon + & 2J \\ 3\varepsilon - \psi + & 2J \\ \varepsilon + \psi + & 2J \end{array}$	+ 328 + 154 - 591	$\begin{array}{cccc} - & 1710 \\ - & 1141 \\ + & 3420 \end{array}$	
η'^2	$ \begin{array}{c} 2\epsilon + 4\theta + 4J \\ 3\epsilon - \psi + 4\theta + 4J \\ \epsilon + \psi + 4\theta + 4J \end{array} $	- 5879 + 2032 + 5807	+ 19019 - 7361 - 17998	
η'^2	$\begin{array}{c} 2\varepsilon + 8\theta + 6\mathbf{J} \\ 3\varepsilon - \psi + 8\theta + 6\mathbf{J} \\ \varepsilon + \psi + 8\theta + 6\mathbf{J} \end{array}$	+17340 - 5018 -18102	- 00064 + 24266 + 95320	
j^2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 866 + 866	+ 4260 - 4260	
j^2	$ \begin{array}{c} 4\theta + 3\mathbf{J} - \Sigma \\ \varepsilon - \psi + 4\theta + 3\mathbf{J} - \Sigma \\ - \varepsilon + \psi + 4\theta + 3\mathbf{J} - \Sigma \end{array} $	+ 609 + 232 - 1044	- 2958 - 1656 + 5600	+ 6763
j^2	$\begin{array}{c} \varepsilon + 2\theta + 2J \\ 2\varepsilon - \psi + 2\theta + 2J \\ \psi + 2\theta + 2J \end{array}$	$ \begin{array}{c c} - & 1760 \\ - & 331 \\ + & 2677 \end{array} $	$ \begin{array}{r} + 7189 \\ + 3096 \\ - 12681 \end{array} $	+ 30930
j^2	$\begin{array}{c} \varepsilon + & 6\theta + 5\mathbf{J} - \Sigma \\ 2\varepsilon - \phi + 6\theta + 5\mathbf{J} - \Sigma \\ \psi + 6\theta + 5\mathbf{J} - \Sigma \end{array}$	+ 578 + 10 - 780	- 3543 - 209 + 5023	- 15302
j²	$ \begin{array}{c} -\psi + 2\theta + \mathbf{J} - \Sigma \\ -2\varepsilon + \psi + 2\theta + \mathbf{J} - \Sigma \end{array} $	+ 866 - 866	- 4260 + 4260	+ 10988
j^{2}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1152 + 98 - 1634	- 4231 - 1440 + 7081	
j^{z}	$\begin{array}{c} 2\varepsilon + 4\theta + 4J \\ 3\varepsilon - \psi + 4\theta + 4J \\ \varepsilon + \psi + 4\theta + 4J \end{array}$	$\begin{array}{c} -1795 \\ +164 \\ +2229 \end{array}$	$\begin{array}{ccc} + & 9459 \\ - & 17 \\ - & 12595 \end{array}$	
j^2	$\begin{array}{c} 2\varepsilon + 8\theta + 7\mathbf{J} - \Sigma \\ 3\varepsilon - \psi + 8\theta + 7\mathbf{J} - \Sigma \\ \varepsilon + \psi + 8\theta + 7\mathbf{J} - \Sigma \end{array}$	+ 392 - 40 - 482	$\begin{array}{cccc} & - & 2914 \\ & + & 194 \\ & + & 3691 \end{array}$	
	$\begin{bmatrix} \frac{1}{2}\varepsilon + & \theta + & \mathbf{J} \\ \frac{3}{2}\varepsilon - \psi + & \theta + & \mathbf{J} \\ -\frac{1}{2}\varepsilon + \psi + & \theta + & \mathbf{J} \end{bmatrix}$	$\begin{array}{c cccc} + & 47.1 \\ + & 27.5 \\ - & 90.4 \end{array}$	$ \begin{array}{ccccc} & & 149.3 \\ & & 111.4 \\ & & 310.5 \end{array} $	+ 186 + 207 - 455
	$\begin{array}{c} \frac{3}{2}\varepsilon + 3\theta + 3J \\ \frac{5}{2}\varepsilon - \psi + 3\theta + 3J \\ \frac{5}{2}\varepsilon + \psi + 3\theta + 3J \end{array}$	$\begin{array}{c cccc} + & 216.1 \\ - & 58.9 \\ - & 229.3 \end{array}$	- 655, 2 + 150, 7 + 722, 8	+ 749 - 93 - 905
	$\begin{array}{c} \frac{5}{2}\varepsilon + 5\theta + 5\mathbf{J} \\ \frac{7}{2}\varepsilon - \psi + 5\theta + 5\mathbf{J} \\ \frac{5}{2}\varepsilon + \psi + 5\theta + 5\mathbf{J} \end{array}$	+ 113.8 - 33.5 - 118.2	- 499. 2 + 137. 7 + 527. 9	+ 892 - 213 - 977
	$\begin{array}{c} \frac{7}{2}\varepsilon + 7\theta + 7J \\ \frac{9}{2}\varepsilon - \psi + 7\theta + 7J \\ \frac{5}{2}\varepsilon + \psi + 7\theta + 7J \end{array}$	+ 54.1 - 16.5 - 55.7	- 310, 2 + 91, 3 + 322, 3	+ 757 - 209 - 801
	$\begin{array}{c} 3\varepsilon + 9\theta + 9J \\ 2^{1}\varepsilon - \psi + 9\theta + 9J \\ 2\varepsilon + \psi + 9\theta + 9J \end{array}$	+ 24.5 - 7.6 - 25.1	- 173.5 + 52.7 + 178.5	+ 537 - 157 - 559
			r.'	

XVc—Continued.

 T_2

Unit = 1''

		I_{2}		Unit ≈ 1"
	sin	H.a	w	u 3
η	$\begin{array}{c} \mathbf{L} \varepsilon + 3\varepsilon + 3\mathbf{J} \\ \xi \varepsilon + 3\varepsilon + 3\varepsilon + 3\mathbf{J} \\ - \xi \varepsilon + \zeta + 3\varepsilon + 3\mathbf{J} \\ - \xi \varepsilon + \zeta + 3\varepsilon + 3\mathbf{J} \end{array}$	$-1497 \\ + 419 \\ +1729$	+ 4732 - 966 - 5826	$ \begin{array}{r} -5063 \\ +101 \\ +8424 \end{array} $
η	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} -114 \\ -224 \\ +436 \end{array} $	$\begin{array}{c} + & 385 \\ + & 1006 \\ - & 1726 \end{array}$	$ \begin{array}{rrr} & -548 \\ & -2186 \\ & +3220 \end{array} $
η	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 208 - 55 + 314	$\begin{array}{c c} + & 781 \\ + & 349 \\ - & 1316 \end{array}$	$\begin{array}{r} - 1315 \\ - 1026 \\ + 2641 \end{array}$
η	$\begin{array}{ccc} 5z + & 5\theta + 5\mathbf{J} \\ 5z - \psi + 5\theta + 5\mathbf{J} \\ 5z + \psi + 5\theta + 5\mathbf{J} \end{array}$	$\begin{array}{c} -1366 \\ +420 \\ +1480 \end{array}$	$\begin{array}{c c} + 6114 \\ - 1711 \\ - 6793 \end{array}$	$\begin{array}{c} -11363 \\ + 2548 \\ +13254 \end{array}$
η	$\begin{array}{c} 4\varepsilon + 3\theta + 3\mathbf{J} \\ \tilde{3}\varepsilon - \psi + 3\theta + 3\mathbf{J} \\ \tilde{2}\varepsilon + \psi + 3\theta + 3\mathbf{J} \end{array}$	+ 108 - 85 - 19	$ \begin{array}{cccc} & 20 \\ + & 256 \\ - & 329 \end{array} $	- 847 - 395 - 15°6
7)	$\begin{array}{c} \frac{5}{2}\varepsilon + 70 + 7\mathbf{J} \\ \frac{7}{2}\varepsilon - \sqrt{2} + 7\theta + 7\mathbf{J} \\ \frac{3}{2}\varepsilon + \sqrt{2} + 7\theta + 7\mathbf{J} \end{array}$	- 922 + 292 + 975	$ \begin{array}{r} + 5348 \\ - 1618 \\ - 5728 \end{array} $	-13320 $+3692$ $+14602$
η	$\begin{array}{c} \frac{7}{5}\varepsilon + 57 + 51 \\ \frac{5}{5}\varepsilon - \zeta' + 50 + 51 \\ \frac{5}{2}\varepsilon + \zeta' + 50 + 51 \end{array}$	+ 172 - 74 - 133	- 594 + 298 + 402	+ 491 - 470 - 42
η	$\begin{array}{c} \mathbf{L} \theta + \theta \theta + \frac{3}{2} \xi \\ \mathbf{L} \theta + \theta \theta + \frac{3}{2} \xi + \frac{3}{2} \theta + \frac{3}{2} \xi \\ \mathbf{L} \theta + \frac{3}{2} \theta + \frac{3}{2} \theta + \frac{3}{2} \xi \end{array}$	- 541 + 174 + 564	+ 3856 - 1205 - 4055	-12092 + 3008 + 12887
η'	$\begin{array}{c} \frac{1}{2}\varepsilon + 3\theta + 21 \\ \frac{3}{2}\varepsilon - \psi + 3\theta + 21 \\ -\frac{1}{2}\varepsilon + \psi + 3\theta + 21 \end{array}$	+2041 - 431 -2290	$\begin{array}{c} -5080 \\ +499 \\ +6274 \end{array}$	$\begin{array}{c} + 4928 \\ - 1026 \\ - 7597 \end{array}$
7′	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 384 - 384	- 1410 + 1410	$^{+\ 2605}_{-\ 2605}$
7'	$\begin{array}{cccc} \xi \varepsilon & + & \theta + 2\mathbf{J} \\ \xi \varepsilon - \psi + & \theta + 2\mathbf{J} \\ \xi \varepsilon + \psi + & \theta + 2\mathbf{J} \end{array}$	$\begin{array}{c c} - 131 \\ + 106 \\ + 69 \end{array}$	+ 12 - 366 + 350	+ 717 + 772 - 1728
7,'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+2169 - 596 -2295	- 8241 + 1980 + 9008	+12680 -2086 -14823
7,'	$\begin{array}{c} \frac{5}{2}\varepsilon + 3\theta + 4\mathbf{J} \\ \frac{7}{2}\varepsilon - \mathbf{y'} + 3\theta + 4\mathbf{J} \\ \frac{3}{2}\varepsilon + \mathbf{y'} + 3\theta + 4\mathbf{J} \end{array}$	- 389 + 135 + 383	+ 1251 - 479 - 1189	$ \begin{array}{rrr} & -1212 \\ & +687 \\ & +930 \end{array} $
7,'	$\begin{array}{c} \frac{5}{2}\varepsilon + 7\theta + 6\mathbf{J} \\ \frac{7}{2}\varepsilon - \psi + 7\theta + 6\mathbf{J} \\ \frac{3}{2}\varepsilon + \psi + 7\theta + 6\mathbf{J} \end{array}$	+1550 - 457 -1609	$ \begin{array}{c c} - 7940 \\ + 2211 \\ + 8376 \end{array} $	+17170 -4245 -18650
η'	$\begin{array}{c} 7 & +5\theta + 6 \mathbf{J} \\ \frac{5}{2} \varepsilon - \psi + 5\theta + 6 \mathbf{J} \\ \frac{5}{2} \varepsilon + \psi + 5\theta + 6 \mathbf{J} \end{array}$	$\begin{array}{c c} - & 349 \\ + & 113 \\ + & 352 \end{array}$	$\begin{array}{c c} + 1665 \\ - 543 \\ - 1678 \end{array}$	-3127 + 1052 + 3117
7/	$\begin{array}{c} \frac{7}{2}\varepsilon + 9\theta + 8\mathbf{J} \\ \frac{9}{2}\varepsilon - \psi + 9\theta + 8\mathbf{J} \\ \frac{5}{2}\varepsilon + \psi + 9\theta + 8\mathbf{J} \end{array}$	+ 937 - 286 - 963	$ \begin{array}{c c} - & 6044 \\ + & 1784 \\ + & 6274 \end{array} $	+16950 -4724 -17880
η2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 757 + 514 -1583	- 3272 - 3644 + 8214	
7,2	$\begin{array}{ccc} \frac{1}{2}\varepsilon & +5\theta + 5\mathbf{J} \\ \frac{3}{2}\varepsilon - \psi + 5\theta + 5\mathbf{J} \\ -\frac{1}{2}\varepsilon + \psi + 5\theta + 5\mathbf{J} \end{array}$	+7767 -2522 -8820	$ \begin{array}{r} -35692 \\ +10085 \\ +42033 \end{array} $	
			n·'	

Table XVc—Continued.

Unit=1''

	T_2		(nit=1
Sin	W.o.	w	2€ 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 4758 - 1369 - 6128	$\begin{array}{c c} - & 15945 \\ + & 2307 \\ + & 22836 \end{array}$	
$\begin{array}{c} \frac{3}{2}\varepsilon + 3\theta + 31 \\ \frac{6}{2}\varepsilon - \psi + 3\theta + 31 \\ \frac{1}{2}\varepsilon + \psi + 3\theta + 31 \end{array}$	- 882 + 732 + 177	$ \begin{array}{ccccc} & - & 280 \\ & - & 2580 \\ & + & 3816 \end{array} $	
$\begin{array}{c} \overset{\circ}{2}\varepsilon & +70 + 71 \\ \overset{\circ}{2}\varepsilon - \psi + 70 + 71 \\ \overset{\circ}{2}\varepsilon + \psi + 70 + 71 \end{array}$	+ 7549 - 2504 - 8212	$\begin{array}{c c} - & 44427 \\ + & 13864 \\ + & 49192 \end{array}$	
$ \begin{vmatrix} -\frac{3}{2}\varepsilon & + & 0 + & \Delta \\ -\frac{1}{2}\varepsilon - & \psi + & 0 + & \Delta \\ -\frac{9}{2}\varepsilon + & \psi + & 0 + & \Delta \end{vmatrix} $	- 32 + 784 - 1031	$\begin{array}{cccc} + & 220 \\ - & 4194 \\ + & 5051 \end{array}$	
$\begin{array}{c} \frac{8}{2}\varepsilon + 9\theta + 9\mathbf{J} \\ \frac{7}{2}\varepsilon - \psi + 9\theta + 9\mathbf{J} \\ \frac{8}{2}\varepsilon + \psi + 9\theta + 9\mathbf{J} \end{array}$	+ 5780 - 1929 - 6154	- 41583 + 13412 + 44735	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 768 - 1156 + 1924	$\begin{array}{c c} + & 2821 \\ + & 6406 \\ - & 9227 \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 209 - 771 + 446	$\begin{array}{c c} + & 1404 \\ + & 3774 \\ - & 5879 \end{array}$	
$\begin{array}{c} \frac{1}{2}\varepsilon + 5\theta + 4\mathbf{J} \\ \frac{2}{3}\varepsilon - \psi + 5\theta + 4\mathbf{J} \\ -\frac{1}{2}\varepsilon + \psi + 5\theta + 4\mathbf{J} \end{array}$	$ \begin{array}{r} -21869 \\ +6125 \\ +24564 \end{array} $	$\begin{array}{c} +85960 \\ -19358 \\ -101260 \end{array}$	
$ \begin{vmatrix} -\frac{1}{2}\varepsilon & +3\theta + 2\mathbf{J} \\ \frac{1}{2}\varepsilon - \psi + 3\theta + 2\mathbf{J} \\ -\frac{3}{2}\varepsilon + \psi + 3\theta + 2\mathbf{J} \end{vmatrix} $	$\begin{array}{c} -10182 \\ + 1576 \\ +13528 \end{array}$	$\begin{array}{c c} + & 27638 \\ + & 2276 \\ - & 43309 \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 384 - 939 + 715	$\begin{array}{c c} + & 3626 \\ + & 3382 \\ - & 8550 \end{array}$	
$\begin{array}{c} \frac{3}{2}\varepsilon + 3\theta + 4\Delta \\ \frac{6}{2}\varepsilon - \psi + 3\theta + 4\Delta \\ \frac{1}{2}\varepsilon + \psi + 3\theta + 4\Delta \end{array}$	+ 3250 - 1333 - 3256	- 10017 + 4996 + 9153	
$\begin{array}{c} \frac{3}{2}\varepsilon + 7\theta + 6\Delta \\ \frac{5}{2}\varepsilon - \psi + 7\theta + 6\Delta \\ \frac{1}{3}\varepsilon + \psi + 7\theta + 6\Delta \end{array}$	-23414 + 7146 +25145	+122108 - 34410 -133985	
$ \begin{vmatrix} -\frac{3}{2}\varepsilon & + & \theta \\ -\frac{1}{2}\varepsilon - \psi + & \theta \\ -\frac{9}{2}\varepsilon + \psi + & \theta \end{vmatrix} $	+ 768 - 2308 + 1540	$\begin{array}{cccc} & - & 2821 \\ & + & 10637 \\ & - & 7816 \end{array}$	
$ \begin{array}{c c} \frac{3}{2}\varepsilon & +9\theta + 8\Delta \\ \frac{7}{2}\varepsilon - \psi + 9\theta + 8\Delta \\ \frac{3}{2}\varepsilon + \psi + 9\theta + 8\Delta \end{array} $	-18847 + 5935 +19837	+122928 -37138 -130949	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 761 + 906 - 1920	- 3333 - 5387 + 9831	
$ \begin{array}{c c} \frac{1}{2}\varepsilon & +5\theta + 3\mathbf{J} \\ \frac{3}{2}\varepsilon - \psi + 5\theta + 3\mathbf{J} \\ -\frac{1}{2}\varepsilon + \psi + 5\theta + 3\mathbf{J} \end{array} $	+15303 - 3577 -16828	$\begin{array}{cccc} - & 49954 \\ + & 7957 \\ + & 58649 \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 1582 + 1300 - 3410	$\begin{array}{ccc} - & 5765 \\ - & 6572 \\ + & 14260 \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 451 \\ + & 494 \\ - & 1096 \end{array}$	$\begin{array}{rrr} - & 1890 \\ - & 2861 \\ + & 5381 \end{array}$	
		m'	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sin u° $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE XVc—Continued.

Unit=1"

	Sin	n.o	u ^r	u ^{, 3}
η'^2	$\begin{vmatrix} \frac{3}{2}\varepsilon & +3\theta + 3\mathbf{J} \\ \frac{2}{3}\varepsilon - \psi + 3\theta + 3\mathbf{J} \\ \frac{1}{3}\varepsilon + \psi + 3\theta + 3\mathbf{J} \end{vmatrix}$	$\begin{array}{cccc} - & 3918 \\ + & 1588 \\ + & 3637 \end{array}$	$\begin{array}{cccc} + & 8760 \\ - & 5289 \\ - & 6391 \end{array}$	
η'3	$\begin{array}{c} \frac{3}{2}\varepsilon + 70 + 5J \\ \frac{5}{2}\varepsilon - \psi + 70 + 5J \\ \frac{3}{2}\varepsilon + \psi + 70 + 5J \end{array}$	$\begin{array}{r} + \ 18292 \\ - \ 5104 \\ - \ 19286 \end{array}$	$\begin{array}{cccc} - & 83098 \\ + & 20825 \\ + & 89973 \end{array}$	
j³	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 902 - 988 + 2191	$\begin{array}{ccc} + & 3781 \\ + & 5721 \\ - & 10762 \end{array}$	
j²	$\begin{array}{c} \frac{1}{2}\varepsilon + 5\theta + 4J - \Sigma \\ \frac{3}{2}\varepsilon - \psi + 5\theta + 4J - \Sigma \\ -\frac{1}{2}\varepsilon + \psi + 5\theta + 4J - \Sigma \end{array}$	+ 634 + 87 - 933	$\begin{array}{cccc} - & 3482 \\ - & 836 \\ + & 5479 \end{array}$	
j°	$ \begin{vmatrix} -\frac{1}{2}\varepsilon + 3\theta + 2J - \Sigma \\ \frac{1}{2}\varepsilon - \psi + 3\theta + 2J - \Sigma \\ -\frac{5}{2}\varepsilon + \psi + 3\theta + 2J - \Sigma \end{vmatrix} $	+ 428 + 480 - 1050	$\begin{array}{cccc} - & 1816 \\ - & 2805 \\ + & 5226 \end{array}$	
j²	$\begin{array}{c} \frac{3}{2}\varepsilon + 3\theta + 3J \\ \frac{5}{2}\varepsilon - \psi + 3\theta + 3J \\ \frac{1}{2}\varepsilon + \psi + 3\theta + 3J \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} + & 8929 \\ + & 1220 \\ - & 13126 \end{array}$	
j^2	$\begin{array}{l} \frac{3}{2}\varepsilon + 7\theta + 6J - \Sigma \\ \frac{5}{2}\varepsilon - \psi + 7\theta + 6J - \Sigma \\ \frac{1}{2}\varepsilon + \psi + 7\theta + 6J - \Sigma \end{array}$	+ 488 - 27 - 623	$\begin{array}{cccc} - & 3307 \\ + & 23 \\ + & 4387 \end{array}$	
j²	$ \begin{array}{ccccc} -\frac{3}{2}\varepsilon & + \theta & -\Sigma \\ -\frac{1}{2}\varepsilon - \psi + \theta & -\Sigma \\ -\frac{5}{2}\varepsilon + \psi + \theta & -\Sigma \end{array} $	- 475 + 1141 - 508	$\begin{array}{cccc} + & 1965 \\ - & 5536 \\ + & 2916 \end{array}$	
j²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1282 - 90 - 1620	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
j°	$\begin{array}{l} \frac{3}{2}\varepsilon + 5\theta + 5J \\ \frac{7}{3}\varepsilon - \psi + 5\theta + 5J \\ \frac{3}{2}\varepsilon + \psi + 5\theta + 5J \end{array}$	- 1544 + 222 + 1838	+ 9111 - 735 - 11413	
j³	$\begin{array}{c} \frac{3}{2}\varepsilon + 9\theta + 8J - \Sigma \\ \frac{7}{2}\varepsilon - \psi + 9\theta + 8J - \Sigma \\ \frac{3}{2}\varepsilon + \psi + 9\theta + 8J - \Sigma \end{array}$	+ 304 - 42 - 364	- 2460 + 266 + 3013	
η ³	$ \begin{array}{c} 2\theta + 2J \\ 6\theta + 6J \end{array} $ $ \psi \\ \psi + 4\theta + 4J \\ -\psi + 4\theta + 4J $ $ \psi + 8\theta + 8J $	- 1955 - 35276 + 3312 - 5097 + 6177 + 45199	+ 14862 + 189348 - 23724 - 4328 - 16310 - 304998	
η ² η΄	$\begin{array}{c} 2\theta + A \\ 2\theta + 3A \\ 6\theta + 5A \\ \psi + A \\ -\psi + A \\ \psi + 4\theta + 3A \\ -\psi + 4\theta + 3A \\ \psi + 4\theta + 5A \\ \psi + 8\theta + 7A \end{array}$	+ 6733 - 3730 +142854 - 9270 + 4207 + 5323 - 13730 + 22898 -200024	$\begin{array}{c} - 33547 \\ + 1693 \\ - 673242 \\ + 61512 \\ - 28940 \\ + 55061 \\ + 9080 \\ - 84425 \\ + 1218446 \end{array}$	
η η'2	$\begin{array}{c} 2\theta \\ 2\theta + 2A \\ 6\theta + 4A \end{array}$ $\begin{array}{c} \psi \\ \psi \\ + 2J \\ \psi + 4\theta + 2J \\ -\psi + 4\theta + 2A \\ \psi + 4\theta + 4A \\ \psi + 8\theta + 6J \end{array}$	$\begin{array}{c} -3268 \\ +3445 \\ -190467 \\ +12782 \\ +5239 \\ +2712 \\ +4409 \\ -52183 \\ +294332 \end{array}$	$\begin{array}{c} + & 14164 \\ + & 15177 \\ + & 772593 \\ - & 78712 \\ - & 35125 \\ - & 60586 \\ + & 41693 \\ + & 143461 \\ - & 1600036 \end{array}$	
			m'	

Table XVe—Continued.

 T_2 Unit=1" Sin 221 7,13 $2\theta + J$ 3479 17883 6θ+3J 283500 +833147839 474236634 36904 $+4\theta+3J$ \pm 27512 44320 + 688658 $+8\theta+51$ -144023 $j^2\eta$ 10709 50725 1732 7799 50227 -1278278712 +1100660629 4022 29208 $+4\theta+3J$ 27235 $+4\theta+3\mathbf{J}$ 3616 28408176052-95267475 $j^2 - \eta'$ 36068 $2\theta + 2J -$ 1592967 $6\theta + 4J - \Sigma$ +1156466719 + 11762751536024 38182 7090 45771 +35006 $-4\theta + 3J$ 199168 -4θ+4**.**1 1108 $+8\theta+6\mathbf{J}-\mathbf{\Sigma}$ + 111481-15308

An inspection of the preceding table, which is typical of all the trigonometric series under consideration, shows readily that any function of this type is of the form

m'

or
$$\Sigma k' \sin K' + \Sigma k \sin (K \pm \psi) = \Sigma k' \sin K' + \Sigma k \sin K \cos \psi \pm \Sigma k \cos K \sin \psi$$
$$\Sigma k' \cos K' + \Sigma k \cos (K \pm \psi) = \Sigma k' \cos K' + \Sigma k \cos K \cos \psi \mp \Sigma k \sin K \sin \psi$$
or, more briefly,
$$a + b \cos \psi + c \sin \psi$$

where a, b, c are trigonometric series and can be written by inspection from the tabulated function. Hence, in v. Zeipel's notation (Z 54, eq. 96),

$$T_i = X_i + Y_i \cos \phi + Z_i \sin \phi$$

and the integral may be written

$$W_i = x_i + y_i \cos \phi + z_i \sin \phi$$

The functions T and W are to be used in this form in solving equations (95). Considering only first order in the mass in T

$$T_2 = X_2 + Y_2 \cos \phi + Z_2 \sin \phi$$

where

$$X_2 = \Sigma k' \sin K'; Y_2 = \Sigma k \sin K; Z_2 = \pm \Sigma k \cos K$$

or, X_2 is the part of T_2 which is independent of ψ , Y_2 is a trigonometric sine series having the same numerical coefficients as the part of T_2 which contains ψ in the argument, but in which ψ is omitted from the argument, and Z_2 is the corresponding cosine series.

Considering the first two of the eqs. (95), the first one states that W_1 is not a function of ε alone, or, $W_1 = [W_1] = 0$; $W_1 = [W_1]$.

Making use of this fact in the second, W_1 can be obtained from (95₂). (See Z 54.) Introducing the auxiliary functions ψ_1 and u_1 , defined by (99) and (101), the differential equation for W_1 is replaced by the equivalent differential equations, (100) and (102), for ψ_1 and u_1 .

$$[X_2] - \eta[Y_2]$$

and

$$[Y_2]\cos\phi + [Z_2]\sin\phi$$

can be written by inspection from T_2 , or, better, the integration itself can be performed in part at the same time.

The function ϕ_1 is given by Z 59, eq. (103), or,

$$\phi_1 - w = \frac{2}{w} \int^{\theta} ([X_2] - \eta[Y_2]) d\theta - \frac{2}{w^3} \left\{ \int^{\theta} ([X_2] - \eta[Y_2]) d\theta \right\}^2 + \frac{4}{w^5} \left\{ \int^{\theta} ([X_2] - \eta[Y_2]) d\theta \right\}^3 + \dots$$

From the table of T_2 , page 82, it is not difficult to write immediately

$$\int_{-\theta}^{\theta} ([X_2] - \eta[Y_2]) d\theta$$

The terms of higher order must be obtained by the usual method for the mechanical multiplication of series. A logarithmic multiplication is the most direct.

In each term in the expression for ϕ_1 the terms of lowest rank must be of the first rank. Recalling the tabulation of factors in Z 53, w, $\frac{m'}{w}$, $\frac{m'^2}{w^3}$, $\frac{m'^3}{w^5}$, etc., are all of first rank. But the coefficient for a given argument consists of three terms in ascending powers of w. Hence ϕ_1-w , within the limits of the given tabulation for T_2 , is of rank 1, 2, 3 for each order in the mass. Table XVI, giving ϕ_1-w , is tabulated with double headings. The three subheadings indicate the expansion of the coefficients in a Taylor's series and the main headings give the factors in the development of the radical in Z 59, eq. (103).

Having found ϕ_1 , its reciprocal, ϕ_1^{-1} , inclusive of first order in the mass, is given by

$$\phi_{\mathbf{1}}^{-\mathbf{1}} \!=\! \frac{1}{w} \!-\! \frac{2}{w^{\mathbf{3}}} \! \int^{\boldsymbol{\theta}} \left([\boldsymbol{X}_{\mathbf{2}}] \!-\! \eta [\boldsymbol{Y}_{\mathbf{2}}] \right) \! d\boldsymbol{\theta}$$

The second term is the negative of the first three columns of Table XVI multiplied by w^{-2} . The product of $2\phi_1^{-1}$ and that part of T_2 which contains ϕ gives $\frac{du_1}{d\theta}$, and integration with respect to θ gives u_1 , tabulated in XVIII. The function u_1 is of first and higher rank because the factor ϕ_1^{-1} is of rank minus one and T_2 is of second rank.

From Table XVIII y_1 can be read by inspection, and ηy_1 added to Table XVI gives x_1 , tabulated in Table XVII. The function W_1 is the sum of Tables XVII and XVIII.

In the integration those terms whose arguments are independent of θ are of the nature of constants. In accordance with the condition that there may be secular terms in θ , the integral contains such terms as the following:

 $\theta \cdot k \sin (\phi + \Delta)$.

As the constant of integration

$$\theta_0 \cdot k \sin (\phi + \Delta)$$

is added. Hence the integral contains terms such as

$$(\theta - \theta_0) k \sin (\phi + \mathbf{1})$$

where θ_0 is the value of θ for the time t=0.

In passing, it should be noted that, in order that the expansion of Z 59, eq. (103), shall represent the function, we must have

$$\left|\frac{4}{w^2}\!\int^\theta \left([X_2]\!-\!\eta[Y_2]\right)d\,\theta\,\right|\,<\,1$$

and this condition should be tested for a given planet before applying this method of determining the perturbations.

To the computer the extent of auxiliary tables, the arrangement of series in logarithms or natural numbers, in seconds of arc or radians, inclusive or exclusive of numerical factors, and foresight in combining operations—all these are of the greatest importance. But considerations of this kind would carry the reader into complicated details which are best left to the computer's own judgment.

On the other hand, general considerations about the extent of the published tables are of importance in the discussion of the accuracy of the final tables. Yet, for a given limit of accuracy, it is so difficult to determine, for each table, the highest powers of m', w, η , η' , and j^2 that little or nothing is said about it in connection with individual tables, but the discussion is reserved until later.

TABLE XVI. $\phi_1\!-\!w\!=\!x_1\!-\!\eta y_1\!\!=\!\![(1\!-\!e\,\cos\,\varepsilon)\,\overline{W}_1]$

Unit=4th decimal of a radian.

			w-1			w^{-1}		u	-1	
	Соз	w° w		w^{s}	u.0	w	w1	w ⁰	w	
7 ² 7, 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 42.889 \\ - & 15.427 \\ - & 122.10 \\ + & 357.75 \\ - & 258.93 \\ - & 14.75 \\ + & 28.2 \\ + & 428 \\ - & 316.1 \\ + & 108.5 \\ - & 1889 \\ + & 237.6 \\ - & 125.3 \\ + & 2770 \\ - & 168.7 \\ - & 1346 \\ - & 389.4 \\ + & 126.0 \\ + & 113 \\ + & 362.4 \\ - & 7.7 \\ - & 187 \\ \end{array}$	$\begin{array}{c} -107.72\\ +52.39\\ +484.1\\ -1183.5\\ +687.2\\ +71.7\\ -433\\ -2295\\ +1592\\ -1030\\ -552\\ -11237\\ +867\\ +4581\\ +1846\\ -620\\ -731\\ -1749\\ +144\\ +1078\\ \end{array}$	+ 106. 7 - 75. 2 - 813 +1650 - 779 - 164	$\begin{array}{c} -0.0460 \\ -0.0060 \\ -0.0060 \\ +0.0331 \\ -0.0460 \\ +0.0331 \\ -0.0060 \\ +0.262 \\ +0.262 \\ -0.767 \\ -0.094 \\ -0.86 \\ +0.555 \\ +0.276 \\ +0.83 \\ -0.200 \\ -0.200 \\ +0.032 \\ +0.032 \\ -0.011 \\ -0.011 \\ \end{array}$	+0. 231 +0. 040 -0. 195 +0. 231 -0. 195 +0. 040 -1. 70 +4. 46 +0. 69 +5. 2 -2. 87 -1. 85 -4. 7 +1. 21 +1. 21 -0. 23 -0. 23 +0. 09 +0. 1	-0. 52 -0. 127 +0. 53 -0. 52 +0. 53 -0. 127	+0.0003 +0.0001 -0.00021 -0.00011 +0.00004 +0.00008	-0.0022 -0.0008 +0.0018 +0.0009 +0.001 -0.0002 -0.0009	
			m'			m'2		$m^{\prime 3}$		

TABLE XVII.

 x_1

Unit=1".

			x_1				Unit=1".
			w^{-1}			₩-3	
	Cos	wo	w	N. 3	w ⁰	w	w³
η η' η' η	$\begin{array}{c} 2\theta + 2A \\ 2\theta + A \\ 4\theta + 4A \\ A \\ 4\theta + 3A \\ \end{array}$ $\begin{array}{c} 4\theta + 2A \\ 4\theta + 3A \\ \end{array}$ $\begin{array}{c} 4\theta + 2A \\ 4\theta + 3A \\ \end{array}$ $\begin{array}{c} 4\theta + 2A \\ 4\theta + 3A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ 2\theta + 2A \\ 6\theta + 6A \\ 2\theta + A \\ 2\theta + 3A \\ 6\theta + 5A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ 2\theta + 3A \\ 2\theta + 4A \\ 2\theta + A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ 2\theta + A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ 2\theta + A \\ \end{array}$ $\begin{array}{c} 2\theta + 2A \\ 2\theta + A \\$	+ 1179.6 - 318.2 - 3358 + 8609 - 5341 - 304 + 1955 +11758 - 6732 + 3730 - 47616 + 3267 - 3446 + 63489 + 1733 + 2599 - 10709 - 3479 - 27772 - 159 - 3855 + 7475	- 2963 + 1081 + 13313 - 28481 + 14175 + 1479 - 14861 - 63112 + 33547 - 1691 + 224423 - 14165 - 15176 - 257533 - 8522 - 16744 + 50748 + 17880 + 94500 + 2966 + 22240 - 36070	+ 2935 - 1552 - 22356 + 39702 - 16063 - 3383 - 123705	$\begin{array}{c} -0.95 \\ -1.27 \\ +0.68 \\ +0.79 \\ -0.12 \\ -0.12 \\ +7.2 \\ +7.2 \\ -15.2 \\ -3.8 \\ -21.7 \\ +7.4 \\ +7.8 \\ +19.0 \\ +0.4 \\ +0.7 \\ -4.1 \\ -0.2 \\ -0.2 \\ \end{array}$	$\begin{array}{c} + & 4.8 \\ + & 6.4 \\ - & 4.0 \\ - & 4.7 \\ + & 0.8 \\ + & 0.8 \\ - & 46.6 \\ - & 46.6 \\ + & 88.0 \\ + & 27.9 \\ + & 130.0 \\ - & 37.8 \\ - & 52.5 \\ - & 108.1 \\ - & 3.1 \\ - & 5.2 \\ + & 24.9 \\ + & 1.9 \\ + & 1.9 \\ \end{array}$	
η η'	$(\theta - \theta_0) \sin \theta$	- 570	+ 2421	- 4950	- 0.45	+ 2.7	−7. 2
			m'			m'^2	

TABLE XVIII. $u_1 = y_1 \cos \phi + z_1 \sin \phi$

Unit=1".

		''1	$=y_1\cos \psi+z_1$		Unit=1"				
	Cos		w-1			€0-3			
		16.0	w	w ²	u.0	w	w ²		
$\eta_{\eta'}$	$ \psi + 2\theta + 21 \psi + 4\theta + 41 \psi + 4\theta + 31 $	$\begin{vmatrix} + & 294.89 \\ - & 839.5 \\ + & 1229.8 \end{vmatrix}$	- 740.6 + 3328 - 4069	$ \begin{array}{ccccc} + & 734 \\ - & 5586 \\ + & 5671 \end{array} $	$ \begin{array}{c} -0.316 \\ +0.114 \end{array} $	+ 1.59 - 0.67	- 3.6 + 1.8		
$\eta^2 \\ \eta^2 \\ \eta^2$	$ \begin{vmatrix} -\dot{\varphi} + 2\theta + 2\mathbf{J} \\ \dot{\varphi} + 2\theta + 2\mathbf{J} \\ \dot{\varphi} + 6\theta + 6\mathbf{J} \end{vmatrix} $	$\begin{vmatrix} + & 396 \\ + & 978 \\ + & 2940 \end{vmatrix}$	$\begin{array}{r} + & 1494 \\ - & 7431 \\ - & 15782 \end{array}$	$ \begin{array}{rrr} & - & 9351 \\ & + & 23105 \\ & [+ & 37112] \end{array} $	$\begin{array}{cccc} & - & 2.62 \\ & + & 4.42 \\ & + & 1.80 \end{array}$	+ 16.8 - 28.4 - 11.7			
η η' η η' η η' η η'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 2068 + 1492 - 2280 - 8658	$ \begin{array}{rrr} - & 10582 \\ - & 677 \\ + & 11302 \\ + & 40793 \end{array} $	- 39010 - 13098 - 28348 - 83730	$\begin{array}{c c} + 6.18 \\ - 1.91 \\ - 5.57 \\ - 3.95 \end{array}$	$\begin{array}{c} -36.9 \\ +13.6 \\ +32.8 \\ +23.6 \end{array}$			
η'2 η'2 η'2 η'2	$ \begin{vmatrix} -\psi + 2\theta \\ \psi + 2\theta + 2J \\ \psi + 6\theta + 4J \end{vmatrix} $	$ \begin{array}{rrr} - & 1634 \\ - & 861 \\ + & 6349 \end{array} $	+ 7081 - 3794 - 25753	$ \begin{array}{rrr} & -16199 \\ & +22127 \\ & +45318 \end{array} $	$\begin{array}{c} -4.04 \\ +2.12 \\ +1.90 \end{array}$	$\begin{array}{c c} + & 21.4 \\ - & 14.4 \\ - & 10.8 \end{array}$			
$j^2 \atop j^2 \atop j^2$	$ \begin{vmatrix} -\psi + 2\theta + \mathbf{J} - \Sigma \\ \psi + 6\theta + 5\mathbf{J} - \Sigma \\ \psi + 2\theta + 2\mathbf{J} \end{vmatrix} $	$\begin{vmatrix} - & 866 \\ + & 260 \\ - & 2677 \end{vmatrix}$	+ 4260 - 1674 + 12681	$ \begin{array}{rrr} & - & 10988 \\ & + & 5101 \\ & - & 30930 \end{array} $	$ \begin{array}{c} -0.22 \\ +0.07 \end{array} $	+ 1.6 - 0.5			
$ \eta^3 $ $ \eta^3 $ $ \eta^3 $	$ \begin{vmatrix} \psi + 4\theta + 4J \\ -\psi + 4\theta + 4J \\ \psi + 8\theta + 8J \end{vmatrix} $	+ 2549 - 3089 -11300	+ 2164 + 8155 + 76250		$\begin{bmatrix} -11.9 \\ +3.9 \\ -8.9 \end{bmatrix}$	[+ 89] [- 25] [+ 70]			
$\eta^2\eta'$ $\eta^2\eta'$ $\eta^2\eta'$ $\eta^2\eta'$		-11449 -2661 $+6865$ $+50005$	$\begin{array}{r} + \ 42212 \\ - \ 27530 \\ - \ 4540 \\ -304611 \end{array}$		$ \begin{array}{c} +1.9 \\ [+36.4] \\ -20.3 \\ [+33.8] \end{array} $	$ \begin{array}{c c} -23 \\ [-241] \\ [+118] \\ [-248] \end{array} $			
$ \eta \eta'^{2} \\ \eta \eta'^{2} \\ \eta \eta'^{2} \\ \eta \eta'^{2} \\ \eta \eta'^{2} $	$ \begin{array}{c c} & \psi + 4\theta + 4J \\ & \psi + 4\theta + 2J \\ & -\psi + 4\theta + 2J \\ & \psi + 8\theta + 6J \end{array} $	+26091 -1356 -2204 -73583	$\begin{array}{r} -71730 \\ +30293 \\ -20846 \\ +400009 \end{array}$		$ \begin{array}{c} -10.1 \\ [-25.5] \\ [+28.0] \\ [-41.9] \end{array} $	+83 $[+153]$ $[-153]$ $[+284]$			
η'3 η'3 η'3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -13756 \\ -3317 \\ +36006 \end{array} $	$\begin{array}{r} + 22165 \\ + 18452 \\ -172164 \end{array}$		+10.1 -12.4 $+16.6$	- 65 + 64 - 104			
$j^{2}\eta \ j^{2}\eta \ j^{2}\eta \ j^{2}\eta \ j^{2}\eta$	$ \begin{vmatrix} \psi + 4\theta + 3\mathbf{J} - \Sigma \\ -\psi + 4\theta + 3\mathbf{J} - \Sigma \\ \psi + 8\theta + 7\mathbf{J} - \Sigma \\ \psi + 4\theta + 4\mathbf{J} \end{vmatrix} $	$ \begin{array}{r} -2011 \\ +1808 \\ -2381 \\ +14204 \end{array} $	$\begin{array}{r} + \ 14604 \\ - \ 13617 \\ + \ 18919 \\ - \ 88026 \end{array}$		$ \begin{array}{r} -1.9 \\ [+1.9] \\ -1.1 \\ +5.7 \end{array} $	$ \begin{array}{c c} + 14 \\ [- 14] \\ + 10 \\ [- 42] \end{array} $			
$egin{array}{ccc} j^2 & ^*\eta' \ j^2 & \eta' \ j^2 & \eta' \ j^3 & \eta' \end{array}$	$ \begin{vmatrix} \psi + 4\theta + 4J - \Sigma \\ -\psi + 4\theta + 2J - \Sigma \\ \psi + 8\theta + 6J - \Sigma \\ \psi + 4\theta + 3J \end{vmatrix} $	$ \begin{array}{r} -554 \\ -3545 \\ +3827 \\ -17503 \end{array} $	$\begin{array}{c} + & 140 \\ + & 22886 \\ - & 27870 \\ + & 99584 \end{array}$		$ \begin{array}{r} + 0.5 \\ - 1.8 \\ + 1.3 \\ - 3.7 \end{array} $	$ \begin{array}{c c} - & 4 \\ + & 14 \\ - & 11 \\ [+ & 28] \end{array} $			
η η' η^3 $\eta^2\eta'$ $\eta^2\eta'$ $\eta^2\eta'$ $\eta^{\eta'^2}$ $\eta^{\eta'^2}$ $\eta^{\eta'^2}$ $\eta^{\eta'^2}$ $\eta^{\eta'^3}$ $j^2\eta$ $j^2\eta$ $j^2\eta'$	$(\theta - \theta_0) \sin \phi$ ψ ψ $+ J$ ψ $-\psi$ $+ J$ ψ $+2J$ ψ $+ J + \Sigma$ ψ $+ J + \Sigma$ ψ $+ J + \Sigma$	$\begin{array}{l} + & 767.72 \\ - & 569.95 \\ + & 6624 \\ [-18540] \\ + & 8414 \\ + 10478 \\ + 25564 \\ - 15678 \\ + 22012 \\ - 25564 \\ - 12048 \\ + 23524 \\ \end{array}$	$\begin{array}{c} - \ 2820.9 \\ + \ 2421.1 \\ - \ 47448 \\ [+123024] \\ - \ 57880 \\ - \ 70250 \\ -157424 \\ + \ 94846 \\ -121258 \\ +157424 \\ + \ 76364 \\ -150306 \\ \end{array}$	+ 5210 $-$ 4950 $+$ 359162 $[-511232]$ -251640 $+$ 498328	+ 1.265 $- 0.455$ $+23.8$ -73.4 $+36.0$ $+55.2$ $+87.3$ -69.9 $+ 9.9$ -23.1 $- 5.2$ $+14.8$	$\begin{array}{c} -6.35 \\ +2.69 \\ [-221.9] \\ +572.4 \\ -282.2 \\ -374.8 \\ -652.8 \\ +438.6 \\ -77.0 \\ +165.0 \\ +45.8 \\ -112.0 \end{array}$	+14.3 - 7.2		
- •			m'			m' ²			

After the determination of W_1 , the function $W_2 - [W_2]$ is obtained from the solution of Z 53, eq. (95₂). The integral may be written as in Z 63, eqs. (105), (106), or, quite as simply, as follows:

$$\begin{split} W_{z} - [\ W_{z}] &= W_{z}' \div \int \left(T_{z} - [\ T_{z}]\right) d\varepsilon \\ W_{z}' &= -\int \left\{\frac{1}{2}(1 - \epsilon \, \cos \, \varepsilon) \left(w + \, \overline{W}_{\mathbf{1}}\right) - \frac{1}{2}[(1 - \epsilon \, \cos \, \varepsilon) \left(w + \, \overline{W}_{\mathbf{1}}\right)]\right\} \frac{d\ W_{\mathbf{1}}}{d\theta} \, d\varepsilon \end{split}$$

The function W_2 is given in Table XIX.

Anticipating some later developments, for which we shall need

$$[(1-\epsilon\cos\epsilon)W]$$

the function

$$[(1 - e \cos \varepsilon) W_2]$$

is tabulated in Table XX.

The determination of [W_2] may be accomplished according to Z 65, eq. (108) – Z 67, eq. (116), or in the manner outlined below, which we regard as preferable.

Repeating Z 65, eq. (107),

$$\begin{split} \phi_1 \frac{d[W_2]}{d\theta} + [x_2 - \eta y_2 + v^2] \frac{dW_1}{d\theta} = & \left\{ w \, \phi_1 + \frac{3}{4} \left[\left(\left. \overline{W}_1 - \frac{1}{3} \, \Xi_1 \right) \left(\left. \overline{W}_1 + \frac{1}{9} \, \Xi_1 \right. \right) (1 - e \, \cos \, \varepsilon) \right. \right] \right\} \frac{dW_1}{d\theta} \\ - & \left[\left. (1 - e \, \cos \, \varepsilon) \left\{ (w + \, \overline{W}_1) \frac{\partial}{\partial \theta} \int \left(\left. T_2 - \left[\left. T_2 \right] \right) d\varepsilon + \frac{d \, W_1}{d\theta} \int \left(\left. T_2 - \left[\left. T_2 \right] \right) d\varepsilon \right\} \right] \right] + 2[T_3] \end{split}$$

in which all the known parts are contained on the right-hand side, the development of equivalent equations proceeds in a manner analogous to that for W_1 .

Writing

$$T_3 = X_3 + Y_3 \cos \phi + Z_3 \sin \phi$$

 $\phi_2 = [x_3] - \eta [y_2] + w^2$

and introducing

and equating parts independent of ψ , coefficients of $\cos \psi$ and coefficients of $\sin \psi$, the three-equivalent equations are:

Multiplying the second of these by η and subtracting from the first:

$$\begin{split} \frac{d}{d\theta} \Big\{ \phi_1 \Big(\phi_2 - \frac{w}{2} \phi_1 \Big) \Big\} &= \frac{3}{4} \bigg[(1 - e \cos \varepsilon) \Big(\overline{W}_1 - \frac{1}{3} \Xi_1 \Big) \Big(W_1 + \frac{1}{9} \Xi_1 \Big) \bigg] \frac{d\phi_1}{d\theta} \\ &- \bigg[(1 - e \cos \varepsilon) (w + \overline{W}_1) \frac{\partial}{\partial \theta} \int \{ X_2 - \eta Y_2 - [X_2 - \eta Y_2] \} d\varepsilon \bigg] \\ &- \bigg[(1 - e \cos \varepsilon) \int \overline{(T_2 - [T_2]) d\varepsilon} \bigg] \frac{d\phi_1}{d\theta} + 2[X_3 - \eta Y_3]. \end{split}$$

Multiplying the second by $\cos \phi$, the third by $\sin \phi$ and adding:

$$\begin{split} \phi_1 \frac{d}{d\theta} (u_2 - w u_1) &= -\phi_2 + \frac{3}{4} \bigg[\left(1 - e \, \cos \, \varepsilon \right) \bigg(\, \left[\overline{W}_1 - \frac{1}{3} \Xi_1 \right) \bigg(\, \left[\overline{W}_1 + \frac{1}{9} \Xi_1 \right) \bigg] \frac{du_1}{d\theta} + 2 \left(\left[\, Y_{\,3} \right] \, \cos \, \zeta' + \left[Z_3 \right] \, \sin \, \zeta' \right) \\ &- \bigg[\left(1 - e \, \cos \, \varepsilon \right) \left(w + \, \overline{W}_1 \right) \frac{\partial}{\partial \theta} \int \left\{ \, Y_{\,2} \, \cos \, \phi + Z_2 \, \sin \, \zeta' - \left[\, Y_{\,2} \, \cos \, \zeta' + Z_2 \, \sin \, \phi \right] \right\} d\varepsilon \bigg] \\ &- \bigg[\left(1 - e \, \cos \, \varepsilon \right) \int \overline{\left(T_2 - \left[\, T_2 \right] \right) d\varepsilon} \, \bigg| \frac{du_1}{d\theta} \end{split}$$

in which

$$u_2 = [y_2] \cos \phi + [z_2] \sin \phi$$

and $[X_3]$, $[X_3]$, $[Z_3]$ are read by inspection from T_3 , which is to be determined as follows: If Z 50, eqs. (89), (90), are written in the form

$$\frac{1}{\cos^{2} \varphi} \frac{4\rho r^{-2}}{a^{3} \cos^{2} \varphi} [1 - \cos(f - \omega)] = 4 \left\{ 1 - 2\eta \cos \varepsilon - \cos (\varepsilon - \psi) + \eta \cos (2\varepsilon - \psi) + \eta \cos \psi + \dots \right\}$$

$$\frac{1}{\cos^{2} \varphi} \left\{ \frac{r^{-2}}{a^{2}} + \frac{2\rho r^{-2}}{a^{3} \cos^{2} \varphi} [1 - \cos(f - \omega)] \right\} = 3 + 14 \eta^{2} - 8 \eta \cos \varepsilon + 2 \eta^{2} \cos 2 \varepsilon - 2 \cos (\varepsilon - \psi)$$

$$- 8 \eta^{2} \cos (\varepsilon - \psi) + 2\eta \cos (2\varepsilon - \psi) + 2\eta \cos \psi + \dots$$

then $T_{\overline{w}}$ and T'_{ν} , given by Z 49, eqs. (S4), (S5), in connection with Z 50, eq. (S7), are given by

$$T_{\overline{w}} = -T_2 - 4\{1 - 2\eta \cos \varepsilon - \cos (\varepsilon - \psi) + \eta \cos (2\varepsilon - \psi) + \eta \cos \psi + \dots \}$$

$$\Sigma S_{p \cdot q}(n + r \cdot - n + s)\eta^p \eta'^q j^{2t} \sin A$$

$$T'_{r} = \{3 + 14\eta^2 - 8\eta \cos \varepsilon + 2\eta^2 \cos 2\varepsilon - 2\cos (\varepsilon - \psi) - 8\eta^2 \cos (\varepsilon - \psi) + 2\eta \cos (2\varepsilon - \psi) + 2\eta \cos \psi + 2\eta \cos (2\varepsilon - \psi) + 2\eta \cos (2\varepsilon - \psi) + 2\eta \cos \psi + 2\eta \cos (2\varepsilon - \psi) + 2$$

$$+\ldots$$
 $\Sigma S_{p\cdot q}(n+r-n+s)\eta^p\eta'^qj^{2t}\sin A-\frac{3}{2}(1-w)\frac{\partial T_2}{\partial w}$

and T_3 (Table XVIIIa) is computed by Z 53, eq. (94), in which

The function

$$\Xi = x + 2\eta y, \qquad \Xi_i = x_i + 2\eta y_i$$
$$\phi_2 - u^2 = [x_2] - \eta[y_2]$$

is tabulated in Table XXI; the function

$$u_2 = [y_2] \cos \phi + [z_2] \sin \phi$$

is tabulated in Table XXII.

From the latter $[y_2]$ can be read by inspection, and $\eta[y_2]$ added to the former gives $[x_2]$. Finally, (Table XXIIa),

$$[W_2] = [x_2] + [y_2] \cos \phi + [z_2] \sin \phi$$

TABLE XVIIIa.

 T_3 .

Unit=1"

			n-2			10-11	
	Sin	u°0	w	tE2	u·o	ŧĿ	u.z
	$-\epsilon + \zeta'$				+0. 339	- 2.01	
	$\begin{bmatrix} \boldsymbol{\epsilon} & +2\theta + 2\mathbf{J} \\ 2\boldsymbol{\epsilon} - \boldsymbol{\psi} + 2\theta + 2\mathbf{J} \\ \boldsymbol{\psi} + 2\theta + 2\mathbf{J} \end{bmatrix}$				$ \begin{array}{c c} -0.375 \\ -0.137 \\ +0.498 \end{array} $	+ 2.403 + 0.847 - 3.223	+ 7.72
	2ε +40+4Δ ε+ψ+40+4Δ				$ \begin{array}{c c} -0.438 \\ +0.429 \end{array} $	$\begin{array}{ccccc} + & 2.234 \\ - & 2.338 \end{array}$	
	2ε+ψ+6θ+6 Δ	}			+0.361	- 2.372	
n n	$ \begin{array}{c c} 2\theta + 21 \\ \epsilon - \psi + 2\theta + 21 \\ - \epsilon + \psi + 2\theta + 21 \end{array} $	-0.00047	+0.0036	-0.0123	$ \begin{array}{r} +2.199 \\ +0.286 \\ -3.294 \end{array} $	-14.58 -3.85 $+23.82$	+ 33.34
7 7	ε ζ ^t ι	-0,00038	+0.0035	-0.0136	$ \begin{array}{c c} -2.811 \\ -0.688 \end{array} $	$^{+12.20}_{+1.67}$	- 16.51
ŋ	ε +4θ+4Δ ψ+4θ+4Δ	-0.00015	+0.0013	-0.0048	+0.432 -4.536	-2.58 +35.80	- 95. 79
7	$\epsilon + \psi + 2\theta + 21$				+1.017	- 6. 333	
7)	$\epsilon + \phi + 6\theta + 61$				-3. 219	+22.43	
η' η' η'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.00017	-0.0014	+0.0055	$ \begin{array}{c c} -2.520 \\ -1.253 \\ +4.372 \end{array} $	+14.78 +10.20 -28.56	— 31. 95
η' η'	ε + 1 ψ + 1	+0.00014	-0.0014	+0.0060	$ \begin{array}{c c} -0.404 \\ +1.188 \end{array} $	$^{+\ 4.06}_{-11.30}$	+ 34.07
η' η'	ε +40+3Δ ψ+40+3Δ	+0.00005	-0.0005	+0.0021	$ \begin{array}{c c} -0.224 \\ +6.480 \end{array} $	+1.53 -47.37	+120.37
7'	$\epsilon + \psi + 2\theta + 3\Delta$				+0. 214	- 1.66	
η'	$\epsilon + \psi + 6\theta + 5\Delta$				+5. 977	- 36.82	
	$(\theta - \theta_0) \cos$						
7 7 7	$ \begin{array}{c c} 2\theta + 21 \\ \epsilon - \psi + 2\theta + 21 \\ - \epsilon + \psi + 2\theta + 21 \end{array} $	-0.00188	+0.0143	-0.0489	$ \begin{array}{c c} -1.141 \\ +0.235 \\ +1.12 \end{array} $	$ \begin{array}{r} + & 7.14 \\ - & 1.12 \\ - & 7.39 \end{array} $	- 20.54
7	ψ	-0.00059	+0.0051	-0.0189	-0.357	+ 2.62	- 8. 20
ŋ	$\epsilon +4\theta +4\Delta \psi +4\theta +4\Delta$	+0.00155	-0.0141	+0.0540	$ \begin{array}{c c} -0.975 \\ +0.939 \end{array} $	+7.39 -7.27	+ 23.43
η	ε+ψ+20+21				-1. 12	+ 7.39	
η' η' η'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.00068	-0.0058	+0.0222	$ \begin{array}{c c} +0.847 \\ -0.17 \\ -0.828 \end{array} $	- 5.79 + 0.93 + 5.96	+ 18.12
η'	ψ + Δ	+0.00021	-0,0020	+0,0085	+0.265	- 2.10	+ 7.15
η' η'	ε +4θ+3Δ ψ+4θ+3Δ	-0, 00056	+0.0056	-0.0239	$ \begin{array}{c c} +0.724 \\ -0.697 \end{array} $	- 5. 90 + 5. 80	- 20, 35
η΄	ε+ψ+2θ+3 1				+0.828	- 5, 96	
			m'^3		,	$n\iota'^2$	

TABLE X1X.

 W_2'

 ${\rm Unit=1''}.$

			<i>u</i> ·0	-		W-2			w~4	
	Cos	u,0	w	u'2	wo	w	u·2	w°	w	
7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c} -\psi + \varepsilon \\ \psi + \varepsilon + 4\theta + 4J \\ \end{array} $ $ \begin{array}{c} \varepsilon \\ \varepsilon + 4\theta + 4J \\ -\psi + \varepsilon - 2\theta - 2J \\ -\psi + \varepsilon + 2\theta + 2J \\ \psi + \varepsilon + 2\theta + 2J \\ \psi + \varepsilon + 6\theta + 6J \\ -\psi + 2\varepsilon \\ \psi + 2\varepsilon + 4\theta + 4J \\ \end{array} $ $ \begin{array}{c} \varepsilon \\ \psi + 2\varepsilon + 4\theta + 4J \\ \end{array} $ $ \begin{array}{c} \varepsilon \\ \psi + 2\varepsilon + 4\theta + 4J \\ \end{array} $ $ \begin{array}{c} \varepsilon \\ \psi + 2\varepsilon + 4\theta + 4J \\ \end{array} $ $ \begin{array}{c} \psi + \varepsilon + 2\theta - 4 \\ \psi + \varepsilon + 2\theta + 3J \\ \psi + \varepsilon + 6\theta + 5J \\ \end{array} $	- 294. 9 + 294. 9	+ 740.6 - 740.6	-733. 9 +733. 9	+0. 2108 -0. 2108 +0. 843 -0. 843 -1. 200 -0. 875 +0. 274 +1. 800 -0. 105 +0. 105 -0. 227 +0. 227 +1. 758 +1. 083 -0. 204 -2. 637	- 1, 059 + 1, 059 - 4, 236 + 4, 236 + 7, 772 + 5, 583 - 1, 697 - 11, 658 + 0, 529 - 0, 529 + 1, 344 - 10, 233 - 6, 493 + 1, 377 + 15, 350	+2. 379 -2. 379			
$ \begin{array}{cccc} $	$ \begin{array}{c} -\psi + \varepsilon \\ -\psi + \varepsilon - 4\theta - 4J \\ \varepsilon + 2\theta + 2J \\ -\varepsilon + 2\theta + 2J \\ \psi + \varepsilon \\ \psi + \varepsilon + 4\theta + 4J \end{array} $	+ 384 +1679 +1180 -1180 - 384 -1679	$\begin{array}{c} -1410 \\ -6656 \\ -2963 \\ +2963 \\ +1410 \\ +6656 \end{array}$							
η η' η η' η η' η η' η η' η η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -285 \\ -2460 \\ -318 \\ +318 \\ +285 \\ +2460 \end{array}$	+1210 +8138 +1081 -1081 -1210 -8138							
η η η' η'	$ \begin{array}{c} (\theta - \theta_0) \sin \\ -\psi + \varepsilon - 2\theta - 2\Delta \\ \psi + \varepsilon + 2\theta + 2\Delta \\ -\psi + \varepsilon - 2\theta - \Delta \\ \psi + \varepsilon + 2\theta + 3\Delta \end{array} $				+0. 549 -0. 549 -0. 407 +0. 407	- 3. 40 + 3. 40 + 2. 75 - 2. 75		+0.00090 -0.00090 -0.00032 +0.00032	-0.0068 +0.0068 +0.0027 -0.0027	
			m'	1		m'2		m′ ³		

TABLE XX.

 $[(1-e\,\cos\varepsilon)\,\,W'_{\,2}]$

Unit=4th decimal of a radian

	Cos		δt. 0			<i>u:−2</i>	u	-1	
	Cus	4.0	u.	$u^{,2}$	w ^o	u	u ^{, 2}	, u.o	u
$\begin{bmatrix} \eta^2 \\ \eta'^2 \\ j^2 \\ \eta \eta' \\ \eta \\ \eta' \\ \eta' \eta' \\ \eta \eta'^2 \\ \eta \eta'^2 \\ j^2 \end{bmatrix}$	$2\theta + 2\mathbf{J}$ $2\theta + 2\mathbf{J}$ $2\theta + 2\mathbf{J}$ $4\theta + 4\mathbf{J}$ $4\theta + 3\mathbf{J}$ $4\theta + 2\mathbf{J}$ $4\theta + 3\mathbf{J} - \Sigma$ $(\theta - \theta_0) \sin \theta$	- 13. 8 - 14. 29 + 81. 4	- 68 + 59 + 35.9 - 323 + 395	- 36	+0. 01022 +0. 187 +0. 296 -0. 186 -0. 529 -0. 1006 +0. 1377 +0. 477 -1. 295 +0. 921 +0. 036	$ \begin{vmatrix} -0.0513 \\ -1.76 \\ -2.46 \\ +1.34 \\ +4.34 \\ +0.647 \\ -0.811 \\ -3.64 \\ +9.36 \\ -6.09 \\ -0.32 \end{vmatrix} $	+0. 115 -4. 8 -1. 91 +2. 19	+0.00043 +0.00020 -0.00075 -0.000055 +0.000020	-0.0039 -0.0020 +0.0065 +0.00041 -0.00017
$\begin{bmatrix} \eta \\ \eta' \\ \eta^2 \\ \eta \eta' \\ \eta'^2 \end{bmatrix}$	$\begin{array}{c} 2\theta + 2J \\ 2\theta + J \\ 4\theta + 4J \\ 4\theta + 3J \\ 4\theta + 2J \end{array}$				$\begin{array}{c} -0.0266 \\ +0.0198 \\ +0.151 \\ -0.334 \\ +0.165 \end{array}$	+0. 165 -0. 134 -1. 16 +2. 47 -1. 24	-0, 49 +0, 43	-0.000044 +0.000016 +0.00031 -0.00052 +0.00015	+0.00033 -0.00013 -0.0027 +0.0045 -0.0014
				m'^2		m'^3			

	[15]
TABLE XXI.	$-u^{2} = [x_{2}] - \eta[y_{2}] = [(1 - \epsilon \cos \epsilon)]$

Unit - 4th decimal of a radian	6.77 p=17;	0 10 11.9 11.0 11.1 11.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	T-VI	Tr.		+ + <u> </u>	 	
					+0.055 -0.077 +0.028	
		tr's	+0.00002 - 0.00001	-0.00338 +0.00154		
	\$- <i>0</i> c	m	-0.00343 -0.00188 +0.00609 	+0 00099 -0 00040 -0 00616 +0 01017 [-0 00308]	$\begin{bmatrix} -0.00149 \\ +0.00177 \\ -0.00046 \end{bmatrix}$:
		4.0	+0.000378 +0.000204 -0.000702 -0.000108] -0.000034] -0.000034] -0.000036]	-0.000132 +0.000047 +0.000630 -0.001166 [+0.000002]	[+0.000171] [-0.000188] [+0.000046]	
	C08		$\begin{array}{c} 2\theta + 2J \\ 2\theta + 2J \\ 2\theta + 4J \\ 4\theta + 4J \\ 4\theta + 3J \\ 4\theta + 3J - \Sigma \\ (\theta - \theta_0) \sin \end{array}$	$\begin{array}{c} 2\theta + 2J \\ 2\theta + 4J \\ 4\theta + 4J \\ 4\theta + 3J \\ 4\theta + 2J \\ (\theta - \theta_0)^2 \cos \theta \end{array}$	71	
			v2 v v2 v v2 v v2 v v2 v v2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	η ² η η' ₂	

TABLE XXII $u_2 = [y_2] \cos \psi + [z_2] \sin \phi$

	n s	+985			
0,N	w	637			m′
	ŭ	+167.4			
	w^{1}	- 10. 30 +70. 40	+20.02		
rn	m	+ 4.059 [-23.39] [+33.80]	(+ 8.43) (- 30.12) + 4.76	+ 2.624 - 2.100	m′2
	0,71	-0.6139 +2.790 [-4.559]	+1.015 +0.781 +3.249 -0.580	-0.3572 +0.2652	
	W.	+0.0059 $+0.046$ -0.032	-0.240 +0.056 +0.220 -0.029	-0.040 + 0.026	
p −Ø?	w	-0.00170 -0.0123 +0.0083	[+0.0620] -0.0141 [-0.0577] +0.0066	+0.01023 -0.0061	m′³
	n_0	+0.00022 +0.00132 -0.00092	-0.00671 +0.00158 +0.00668 -0.00068	-0.00118 +0.00064	,
	3	2+20+24 24+0+44 2+40+31 is (0-0)	$\begin{array}{c} \phi \\ \phi $	7 + 3·3·3·	
		n , 'u	, , , , , , , , , , , , , , , , , , ,	n ,'u	

TABLE XXIIa.

 $[W_2].$

 $Unit=I^{\prime\prime}$

			w-3		w^{0}	
	Cos	w ^o	w	w^2	w ⁶	w
	ζ·+2θ+2 J	- 0.614	+ 4.059	-10.3		
η	$\begin{array}{c} 2\theta + 2\mathbf{J} \\ \psi + 4\theta + 4\mathbf{J} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+27.89 -23.39		$\begin{array}{c c} - & 271.5 \\ + & 167.4 \end{array}$	+636.6 -637.4
$\eta'_{\eta'}$	$2\theta + \mathbf{J}$ $\dot{\psi} + 4\theta + 3\mathbf{J}$	+ 5.444 - 4.558	$-31.91 \\ +33.80$			
η' η' η ² η ² η ² η ² η ²	$ \begin{vmatrix} 4\theta + 4J \\ \psi + 2\theta + 2J \\ \psi + 6\theta + 6J \\ -\psi + 2\theta + 2J \end{vmatrix} $	+ 0.11 +14.90			+1514 +1360 -1227 - 273	-5780 -3387 $+6415$ $+179$
η η' η η' η η' η η' η η' η η'	$ \begin{vmatrix} 4\theta + 3\mathbf{J} \\ 4\theta + 3\mathbf{J} \\ \psi + 2\theta + \mathbf{J} \\ \psi + 2\theta + 3\mathbf{J} \\ \psi + 6\theta + 5\mathbf{J} \\ -\psi + 2\theta + \mathbf{J} \end{vmatrix} $	+ 0.13 -44.62			$ \begin{array}{c} -2279 \\ -646 \\ -291 \\ +1974 \\ -222 \end{array} $	+7160 $+2452$ $+536$ -9002 $+1012$
η'^2 η'^2	4θ+2J	- 0.06 +30.53				
j^2	$4\theta + 3J - \Sigma$	+ 0.34				
	$(\theta - \theta_0) \sin$					
η η η	2θ+2Δ ψ ψ+4θ+4Δ	$\begin{array}{c c} -1.64 \\ +1.014 \\ +0.782 \end{array}$	+10.18 $+8.43$ -5.96			
η' η' η'	$ \begin{array}{cccc} 2\theta + \mathbf{J} \\ \psi & + \mathbf{J} \\ \psi + 4\theta + 3\mathbf{J} \end{array} $	+ 1. 22 + 3. 249 - 0. 579	$ \begin{array}{c c} -8.26 \\ -30.12 \\ +4.74 \end{array} $			
η^2	4θ+4 J	+ 7.81				
$\eta \eta' \eta' \eta \eta'$	β 4θ+3J	$\begin{array}{c} + 3.25 \\ -16.10 \end{array}$				
η'^2	40+21	+ 7.64				
	$(\theta - \theta_0)^2 \cos$	}				
η	ψ	- 0.356	+ 2.62			
η'	ψ + Δ	+ 0.266	- 2.10			
			m'2		m'	

In the construction of Tables XXI and XXII it is necessary to compute

$$\int (T_2 - [T_2]) d\varepsilon$$

as one factor of a product, but the more complete tabulation is best arranged as follows. This function gives all of the terms of the first order in the mass in $W_2 - [W_2]$. Let

$$W_{\mathbf{2}}^{\,\prime\prime}=\int\left(\,T_{\mathbf{2}}-[\,T_{\mathbf{2}}]\right)d\varepsilon$$

and denote first order terms in $W_3 - [W_3]$ and $W_4 - [W_4]$ by W_3'' and W_4'' , respectively. Then because of the similarity in the equations for these functions of successive ranks, the sum

$$W_2^{\prime\prime} + W_3^{\prime\prime} + W_4^{\prime\prime}$$

can be computed by Z 70, eqs. (117), (118), (119). The coefficients \tilde{F} , \tilde{G} , \tilde{H} are tabulated in Tables XXIII, XXIV, XXV. The mass factor m' is, of course, implicitly contained in the tables.

Eliminating the distinction between ψ and ε , the function is

$$\overline{W_2}^{\prime\prime} + \overline{W_3}^{\prime\prime} + \overline{W_4}^{\prime\prime}$$

in which the coefficients $\overline{A}_{p,q}$, determined by Z 71, eq. (121), are tabulated in Table XXVI. The coefficients $A_{p,q}$ in the function

$$(1 - e \cos \varepsilon) (\overline{W}_2^{\prime\prime} + \overline{W}_3^{\prime\prime} + \overline{W}_4^{\prime\prime})$$

are computed by Z 71, eq. (123) and are tabulated in Table XXVIL

By means of Table XXVII we readily compute

$$[(1 - e \cos \varepsilon) \ (\overline{W}_2^{\prime\prime} + \overline{W}_3^{\prime\prime} + \overline{W}_4^{\prime\prime})]$$

tabulated in Table XXVIII.

Proceeding now to the determination of

$$[(1-e\cos\varepsilon)\overline{W_3}]$$

(from which we shall subtract $[(1-e\cos) \overline{W_3}'']$, already included in Table XXVIII), we have by Z 53, eq. (95)

$$\begin{split} \frac{\partial}{\partial \varepsilon} (W_3 - [W_3]) &= (T_3 - [T_3]) \ (1 - e \cos \varepsilon) (w + \overline{W}_1) \frac{\partial W_2}{\partial \theta} - \frac{1}{2} \frac{d}{d\theta} \left\{ (1 - e \cos \varepsilon) (\overline{W}_3 - w \overline{W}_1) \right. \\ &\quad \left. - \frac{3}{4} (1 - e \cos \varepsilon) (\overline{W}_1 - \frac{1}{3} \mathcal{Z}_1) \ (\overline{W}_1 + \frac{1}{9} \mathcal{Z}_1) - \left[(1 - e \cos \varepsilon) (w + \overline{W}_1) \frac{\partial W_2}{\partial \theta} \right] \right. \\ &\quad \left. - [(1 - e \cos \varepsilon) (\overline{W}_3 - w \overline{W}_1)] - \frac{3}{4} [(1 - e \cos \varepsilon) (\overline{W}_1 - \frac{1}{3} \mathcal{Z}_1) \ (\overline{W}_1 + \frac{1}{9} \mathcal{Z}_1)] \right\} \end{split}$$

in which all quantities are known. The integration gives $W_3 - [W_3]$.

Having computed $W_3 - [W_3]$, $[W_3]$ can be obtained from Z 53, eq. (95).

$$\begin{split} &[(1-e\cos\varepsilon)(w+\overline{W_1})]\frac{\partial[W_3]}{\partial\theta} + [(1-e\cos\varepsilon)[\overline{W_3}]]\frac{dW_1}{d\theta} = 2[T_4] - \left[(1-e\cos\varepsilon)(\overline{W_3}-w\overline{W_1})\frac{\partial W_2}{\partial\theta}\right] \\ &+ [1-e\cos\varepsilon)w\overline{W_2}]\frac{dW_1}{d\theta} - [(1-e\cos\varepsilon)(w+\overline{W_1})\frac{\partial}{\partial\theta}(\overline{W_3}-[\overline{W_3}])] - [(1-e\cos\varepsilon)(\overline{W_3}-[\overline{W_3}])]\frac{dW_1}{d\theta} \end{split}$$

The function $[T_4]$, computed from Z 53, eq. (94), is tabulated in Table XXVIIIa.

In a manner similar to the development of equations for W_1 and $[W_2]$, the right-hand side of this equation, when computed, can be segregated into portions independent of ψ , terms multiplied by $\cos \psi$, and terms multiplied by $\sin \psi$. It is of the form

$$A + B \cos \phi + C \sin \phi$$

where A, B, C are too complicated to be written analytically, but can be written by inspection after the computation has been performed.

The equation can then be written in the three following equivalent equations:

$$\begin{split} \phi_1 \frac{d[x_3]}{d\theta} + (\phi_3 - w^3) \frac{dx_1}{d\theta} &= A \\ \phi_1 \frac{d[y_3]}{d\theta} + (\phi_3 - w^3) \frac{dy_1}{d\theta} &= B \\ \phi_1 \frac{d[z_3]}{d\theta} + (\phi_3 - w^3) \frac{dz_1}{d\theta} &= C \end{split}$$

in which we define

$$\phi_3 - w^3 = [x_3] - \eta[y_3] .$$

From the first two equations we compute

$$\phi_3-w^3=\phi_1^{-1}\int{(A-\eta B)d\theta}$$

Let

$$u_3 = [y_3] \cos \psi + [z_3] \sin \psi$$
.

Then from the second and the third equations

$$u_{3} = \int \phi_{1}^{-1} \left\{ B \cos \psi + C \sin \psi - (\phi_{3} - w^{3}) \frac{du_{1}}{d\theta} \right\} d\theta$$

By inspection of u_s the function $[y_3]$ can be written, and $\eta[y_3]$ added to $[x_3] - \eta[y_3]$ gives $[x_3]$. Finally,

 $[W_s] = [x_3] + [y_3] \cos \psi + [z_3] \sin \psi$

and

$$[(1-e\,\cos\,\varepsilon)\; \overline{W}_{\scriptscriptstyle 3}]$$

is readily computed from \overline{W}_3 , which is tabulated in Table XXVIIIb.

But this function contains $[(1-e\cos\varepsilon)\overline{W}_3'']$, already included in Table XXVIII. By Z 69

$$[(1-e\,\cos\,\varepsilon)\,\overline{W}_3{''}] = -\frac{w}{2}\bigg[(1-e\cos\,\varepsilon)\,\int \bigg\{(1-e\,\cos\,\varepsilon)\frac{\partial W_2}{\partial\theta} - [(1-e\,\cos\,\varepsilon)\frac{\partial W_2}{\partial\theta}]\bigg\}d\varepsilon\bigg]$$

Subtracting Table XXVIIIc from $[(1-e\cos\varepsilon)\overline{W}_3]$ we have

$$[(1 - e \cos \varepsilon) \ (\overline{W}_{\mathbf{3}} - \overline{W}_{\mathbf{3}}^{\prime\prime})]$$

which is tabulated in Table XXIX.

_
•
_
\blacksquare
_
×
×
εą
ρ
4
H

·													
10	- 3.26	10.9 + 100.3	+ 24.9 - 114.6	$\begin{array}{ccc} - & 20 \\ + & 347 \\ -1595 \end{array}$	+ 79 - 725 - 417 +3704	$\begin{array}{c} -78 \\ +897 \\ -2216 \end{array}$	1 + + + 38 38 38 38	+ 28.5	+ 87 - 911	-209 + 1032			
6	5.45	- 15.7 $+$ 154.6	$\begin{array}{ccc} + & 36.2 \\ - & 175.4 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 100 \\ - & 966 \\ - & 553 \\ + & 5290 \end{array}$	$\begin{array}{cc} -&97\\ +&1199\\ -&3142 \end{array}$	- + + + + + 577	+ 44.0	$^{+}_{-1307}$	-279 + 1467	+ 182 $- 3388$ $+ 21073$	$\begin{array}{c} - & 714 \\ + & 7680 \\ + & 4092 \\ - & 47093 \end{array}$	$\begin{array}{c} + & 719 \\ - & 9504 \\ + 27464 \end{array}$
×	- 9.15	- 22.0 + 238.4	$\begin{array}{cccc} + & 52.0 \\ - & 267.6 \end{array}$	- 32 + 590 - 3375	+ 121 - 1255 - 714 + 7539	$-\frac{116}{+1568}$	- 71 + 122 + 87	+ 67.7	$^{+}_{-}$ 141	$\frac{-}{+}$ 363 $+$ 2071	$^{+}_{-3889}$ $^{+29290}$	- 778 + 9108 + 4711 -63223	+ 786 -11336 +36194
2	- 15.46	- 30.2 + 368.9	+ 73 1 - 407.6	- 38 + 733 - 5033	+ 140 - 1581 - 893 +10772	- 132 + 1991 - 6206	+ 105 + 131 + 131	+ 104.1	+ 168 - 2677	- 456 + 2903	+ 214 - 4200 +42222	- 803 +10350 + 5139 -85560	+ 802 -12992 +47468
9	- 26.37	- 39.8 + 574.4	+ 99.7 - 619.8	- 43 + 865 - 7969	+ 154 - 1904 - 1064 + 15609	- 140 + 2428 - 8670	+ 195 + 195	+ 159.8	+ 184 - 3852	- 547 + 4044	+ 218 - 4111 + 67367	- 778 + 11073 + 5139 -119275	$\begin{array}{c c} + & 759 \\ - & 14095 \\ + & 62371 \end{array}$
40	- 45.52	- 49.1 + 910.6	+ 129.7 - 943.4	- 47 + 944 - 15534	+ 158 - 2147 - 1184 + 23772	$\begin{array}{c c} - & 135 \\ + & 2796 \\ - & 12195 \end{array}$	- 217 + 289 + 289	+ 245.2	+ 172 - 5669	- 609 + 5624	$\begin{array}{c} + & 218 \\ - & 3325 \\ + 153610 \end{array}$	- 712 + 10823 + 4411 182750	$\begin{array}{c c} + & 661 \\ - & 14128 \\ + & 83854 \end{array}$
7	- 79.94	- 53.6 + 1514.3	+ 155.6 - 1445.9	+ 891	+ 152 - 2167 - 1171 + 43739	$-\frac{118}{+2940}$	- 302 + 423 + 423	+ 376.6	901 +	- 594 + 7904	+ 231 - 1403	- 663 + 9000 + 2574 - 397850	+ 558 - 12449 +122720
.8	- 144.07	- 43.0 + 2993.4	+ 157.0 - 2279.4	- 54 + 588 + 9516	+ 153 - 1725 - 908	- 108 + 2612 - 30607	- ++ 609 - ++	+ 580.8	53 -	- 429 + 11719	+ 293 + 2549 - 12320]	- 759 - 4936] - 777	+ 571 - 8452 +252940
2	- 271. 49	+ 3.1	+ 87.4	- 72 - 128 + 2245	+ 209 - 418 - 256 - 20365	- 164 + 1498	+++ 855 855	+ 908.1	- 341	- 37 +22406	+ 455 (+ 1846) (- 4830)	- 1183 - 2303 - 6243 + 6428	+ 855 - 1947
-	- 94.26	+ 138.9 - 227.8	- 129.7	-130 -1513 -22	+ 410 +1429 - 965	$-301 \\ -1521 \\ +3165$	- 576 +1152	+ 392.9	- 598 + 637	+ 483	$\begin{array}{c c} + 747 \\ + 74969 \\ + 216 \end{array}$	-1898 (-7249) (+2886)	$\begin{array}{c} +1160 \\ +8188 \\ -2036 \end{array}$
0		+ 86.3 + 86.3		- 106 - 106	+ 256 + 768 + 256		- 158 - 158 + 475 + 475		- 256 - 256		+ 449	855 -3589 -3589 -855	
u	$ ilde{m{F}}_{0\cdot 0}(n,-n)$	$ ilde{ ilde{F}}_{1.0}^{(n+1a)} ilde{ ilde{F}}_{1.0}^{(n-1a)}$	$ ilde{ ilde{F}}_{0\cdot 1}(n,-n+1) \\ ilde{F}_{0\cdot 1}(n,-n-1)$	$egin{aligned} ilde{F}_{2\cdot 0}(n+2,-n) \ ilde{F}_{2\cdot 0}(n,-n) \ ilde{F}_{2\cdot 0}(n-2,-n) \end{aligned}$	$egin{aligned} & ilde{F}_{1:1}(n+1,-n+1) \\ & ilde{F}_{1:1}(n-1,-n+1) \\ & ilde{F}_{1:1}(n+1,-n-1) \\ & ilde{F}_{1:1}(n-1,-n-1) \end{aligned}$	$ ilde{F}_{0-2}(n,-n+2) \ ilde{F}_{0-2}(n,-n) \ ilde{F}_{0-2}(n,-n-2)$	$egin{aligned} ilde{F}_{0\cdot 0}(n+1n+1) + \sigma \ ilde{F}_{0\cdot 0}(n-1n-1) - \sigma \ ilde{F}_{0\cdot 0}(n+1n-1) + \delta \ ilde{F}_{0\cdot 0}(n-1n+1) - \delta \end{aligned}$	$ec{ ilde{F}}_{0\cdot 0}(n,-n)$	$ ilde{m{K}}_{1\cdot 0}(n+1,-n) \\ ilde{m{F}}_{1\cdot 0}(n-1,-n)$	$ ilde{ ilde{F}}_{0\cdot 1}(nn+1) \\ ilde{ ilde{F}}_{0\cdot 1}(nn-1)$	$ ilde{F}_{2\cdot 0}(n+2n) \ ilde{F}_{2\cdot 0}(n-2n) \ ilde{F}_{2\cdot 0}(n-2n)$	$\begin{array}{l} \tilde{F}_{1:1}(n+1n+1) \\ \tilde{F}_{1:1}(n-1n+1) \\ \tilde{F}_{1:1}(n+1n-1) \\ \tilde{F}_{1:1}(n-1n-1) \end{array}$	$egin{array}{c} ilde{F}_{0\cdot 2}(n,-n+2) & \\ ilde{F}_{0\cdot 2}(n,-n) & \\ ilde{F}_{0\cdot 2}(n,-n-2) & \end{array}$
											m.	iotor/I	

	1
	- 115
+ 451 + 809 - 560 - 560	- 163 - 349 + 5193 + 966 - 5740
+ 620 + 1203 - 790 - 790	- 230 - 373 + 6920 + 1126 - 7506
+ 840 + 1849 - 1102 - 1102	- 320 - 359 + 9221 + 1248 - 9728
+ 1113 + 2964 - 1518 - 1518	- 442 - 276 + 12430 + 1291 - 12530
+ 1437 + 5276 - 2060 - 2060	- 602 - 88 + 17430 + 1171 - 16210
+ 1788 + 13304 - 2744 - 2744	- 811 + 239 + 27660 + 841 - 21630
+ 2107 - 3566 - 3566	- 1080 + 70290 + 260 - 32330
+ 2281 - 1067 - 4487 - 4487	- 1434 + 1261 - 77090
+2116	- 765 +1207 - 852 - 808
++ 602 - 2440 - 2440	++ 342
$F_{0 \cdot 0}(n+1, -n+1) + \sigma$ $F_{0 \cdot 0}(n-1, -n-1) - \sigma$ $F_{0 \cdot 0}(n+1, -n-1) + \delta$ $F_{0 \cdot 0}(n-1, -n-1) + \delta$	$egin{align*} & egin{align*} & egin{align*$
	Factor v2

TABLE XXIV.

Vnit = 1''

$\tilde{G}_{0\cdot 0}(n,-n)$	- 43.141 -	- 18.35	+ 33, 55	+ 23.56	+ 15.25	+ 9.58	+ 5.	+ ++	3.67	+	2. 25	+	1.39	+ 0.85
$ ilde{G}_{1\cdot 0}(n+1,-n) \ ilde{G}_{1\cdot 0}(n-1,-n)$	+ 52.8	+ 22.0 + 448.2	+ 27. 6 $-$ 273. 0	+ 24.2	+ 20.5 - 225.9	+ 16.5 - 168.1	+ 12.	+ I	9.3	+ 1	6.7	+ 1	4. 8 38. 6	+ 3.3 $-$ 25.9
$ ilde{G}_{0\cdot 1}(n,-n+1) \ ilde{G}_{0\cdot 1}(n,-n-1)$	- 128.0 - 383.9	- 56.0 - 222.1	- 42.5 $+$ 287.1	+ 289.7	- 38.7 + 238.6	- 32.2 + 180.6	- 25. + 130.	1+	18.8 92.0	ı +	13. 7 63. 5	ı +	9.7	- 6.8 + 29.2
$egin{aligned} ilde{Q}_{2}\cdot_0(n+2n) \ ilde{Q}_{2}\cdot_0(n-n) \ ilde{G}_{2}\cdot_0(n-2n) \end{aligned}$	+ - 268 + 390	$\begin{array}{ccc} -&32\\ -&343\\ +&1567 \end{array}$	$\begin{bmatrix} - & 1 \\ - & 267 \end{bmatrix}$	$\begin{array}{c} + & 10 \\ - & 293 \\ + & 2738 \end{array}$	+ 15 - 308 + 2114	$\begin{vmatrix} + & 16 \\ - & 294 \\ + & 1682 \end{vmatrix}$	$\begin{array}{c} + & 15 \\ - & 261 \\ + & 1312 \end{array}$	+ +	13 219 1002	+ +	12 176 749	+1+	9 137 551	+ 104 + 400
$\begin{array}{l} \tilde{G}_{1\cdot 1}(n+1n+1) \\ G_{1\cdot 1}(n-1n+1) \\ G_{1\cdot 1}(n+1n-1) \\ G_{1\cdot 1}(n-1n-1) \end{array}$	+ 308 + 1924 + 385 - 2308	+ 157 + 1004 + 261	+ 33 + 514 + 376 - 3152	$\begin{array}{c} - & 15 \\ + & 501 \\ + & 394 \\ - & 4253 \end{array}$	- 37 + 533 + 393 - 4080	+ + 524 + 364 - 3519	- 47 + 474 + 317 - 2858	1++1	43 404 2533	1++1	37 329 210 696	1++1	31 258 163 1261	$\begin{array}{r} -24 \\ +198 \\ -123 \\ -922 \end{array}$
$ ilde{G}_{0\cdot 2}(nn+2) \ ilde{G}_{0\cdot 2}(nn+2) \ ilde{G}_{0\cdot 2}(nn-2)$	- 408 - 866	$ \begin{array}{ccc} & 198 \\ & 604 \\ & 2600 \end{array} $	$ \begin{array}{ccc} & -51 \\ & -568 \\ & +1815 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 18 \\ - & 677 \\ + & 2337 \end{array}$	+ 30 - 655 + 2042	+ 35 - 586 + 1673	+ +	34 495 1314	+ +	31 400 1002	+1+	26 313 747	$^{+}_{-239}$
$\begin{array}{l} \tilde{Q}_{0.0}(n+1,-n+1)+\sigma \\ \tilde{Q}_{0.0}(n+1,-n-1)-\sigma \\ \tilde{Q}_{0.0}(n+1,-n-1)+\delta \\ \tilde{Q}_{0.0}(n+1,-n+1)-\delta \end{array}$	$ \begin{array}{r} -102 \\ +1141 \\ +141 \end{array} $	++ 33 866	+ 1 + 361 + 320	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ 1 + + 35	++++++	++ 825	++11	21 25 10	++11	15 18 9	++	11 9 13	++11
		The te	terms inclosed by () contain quantities which are functions of	() contain qua	ntitles which ar	e functions of H	W'4-[W]. See	Z 69.						

 $\begin{bmatrix} -30.8 \\ +150.7 \end{bmatrix}$

ĕ
Ě
Ξ.
0
Ç,
5
_
1
$^{\circ}$
1
Ħ
\rightarrow
В
_<
Н

1-											:
10	- 7. 9	-26 + 224	$\begin{array}{c c} + 56 \\ -251 \end{array}$					+ 28			Unit-1"
6	_ 10.7	- 34 + 308	+ 73 - 343	- 61 + 1009 - 4590	$\begin{array}{c} + & 218 \\ - & 1985 \\ - & 1201 \\ + 10396 \end{array}$	+ 2403 - 6108	- 94 - 113 - 62	+ 37	$^{+}_{-1120}$	- 243 $+$ 1242	
œ	- 15.8	- 44 + 416	+ 93 - 460	-68 $+1167$ -5759	+ 237 - 2296 - 1394 +12872	$\begin{array}{c} -205 \\ +2792 \\ -7525 \end{array}$	- 121 - 91 + 148 + 66	+ 20	+ 121 - 1375	$-\frac{278}{+1510}$	
2	- 23.1	- 54 + 549	+ 114 - 602	-71 $+1290$ -7065	$ \begin{array}{c} + 241 \\ - 2538 \\ - 1553 \\ + 15489 \end{array} $	$\begin{array}{c} -200 \\ +3106 \\ -8994 \end{array}$	- 151 - 83 + 189 + 56	+ 64	$^{+}_{-1627}$	$-\frac{302}{+1771}$	
9	- 33.1	- 63 + 704	$^{+}_{-}$ 135	- 69 + 1346 - 8437	$\begin{array}{c} + & 224 \\ - & 2650 \\ - & 1641 \\ +17949 \end{array}$	$-\frac{174}{+3269}$ -10319	- 178 - 24 + 228 + 13	08 +	$+ \frac{128}{-1837}$	-309 + 1975	
တ	- 46.2	- 70 + 862	+ 149 - 921	- 59 + 1307 - 9806	$\begin{array}{c} + & 176 \\ - & 2580 \\ - & 1624 \\ -19763] \end{array}$	$-\frac{121}{+3209}$ -11195	+ 157 + 255 - 102	+ 94	+ 118 - 1928	- 293 $+$ 2047	
4	- 61.4	- 73 + 979	+ 153 - 1031	$\begin{array}{c} -37 \\ +1180 \\ -11168 \end{array}$	$\begin{array}{c} + & 87 \\ - & 2341 \\ - & 1497 \\ + 20109 \end{array}$	$\begin{array}{c} -33 \\ +2905 \\ -11106 \end{array}$	- 173 + 654 + 243 - 355	66 +	+ 105 - 1766	- 262 + 1866	TABLE XXV.1
es	- 74.4	- 73 + 947	+ 147 - 995	+ 5 + 1055 -13668	- 65 - 2148 - 1339 +17425	+ 107 + 2497 - 9279	- 90 + 2121 + 144 - 886	+ 82	+ 112 - 1108	- 248 + 1255	TAI
2	- 70.9	- 85 + 485.5	+ 155 - 620	+ 85 +1264	$\begin{bmatrix} -360\\ [-2701]\\ -1406\\ +5765 \end{bmatrix}$	+ 380 +2481 -4103	$^{+\ 106}_{+8493}$ $^{-\ 132}_{-1977}$	+ 20	+ 193 + 613	- 340 [- 64]	
1	+ 80.4	- 148 - 2478	+ 283 + 1234	$\begin{array}{c} + & 270 \\ + & 2700 \\ - & 7269 \end{array}$	$ \begin{array}{c} -1062 \\ -5771 \\ -2138 \end{array} $	+ 1105 + 3793 +20946	+ 480 - 744 - 4260	- 165	+ 456 + 6930	- 696 - 3461	
0	+ 127.95	- 225	+ 427 +1794	$^{+368}_{-2002}$	-1476 -7175 -2392 $+8713$	+1566 + 4261	+ 563 -4396 -1029 -4396	- 171	+ 480	- 726 4399	
#	$\tilde{G}_{0\cdot 0}(n,-n)$	$\tilde{G}_{1\cdot 0}(n+1,-n) = G_{1\cdot 0}(n-1,-n)$	$ ilde{G}_{0\cdot 1}(n,-n+1) \ ilde{G}_{0\cdot 1}(n,-n-1)$	$ ilde{q}_{2\cdot 0}(n+2n) \ ilde{q}_{2\cdot 0}(n-n) \ ilde{q}_{2\cdot 0}(n-n)$	$\begin{array}{l} \tilde{Q}_{1:1}(n+1n+1) \\ \tilde{Q}_{1:1}(n-1n+1) \\ \tilde{Q}_{1:1}(n+1n-1) \\ \tilde{Q}_{1:1}(n-1n-1) \end{array}$	$ ilde{G}_{0\cdot 2}(n,-n+2) \\ ilde{G}_{0\cdot 2}(n,-n) \\ ilde{G}_{0\cdot 2}(n,-n-2)$	$\begin{array}{l} \tilde{Q}_{0 \cdot 0}(n+1n+1) + \sigma \\ \tilde{Q}_{0 \cdot 0}(n-1n-1) - \sigma \\ \tilde{Q}_{0 \cdot 0}(n+1n-1) + \tilde{\sigma} \\ \tilde{Q}_{0 \cdot 0}(n-1n+1) - \tilde{\sigma} \end{array}$	$\tilde{G}_{0\cdot 0}(n,-n)$	$\hat{G}_{1\cdot 0}(n+1,-n) = G_{1\cdot 0}(n-1,-n)$	$ ilde{G}_{0\cdot 1}(n,-n+1) \ ilde{G}_{0\cdot 1}(n,-n-1)$	
				in	Factor				z <i>m</i> 10	Fact	

	-43.141	-43.141 -180.72		+ 458.50	+	167.42	+	78.80	+	40.85 +	22, 26	+	
$\binom{n}{n}$	+ 52.8	- 628.9 + 290.8	- 135.8 + 1496.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	50.9	+1	53. 0 2959. 7	$+ \iota$	$\begin{vmatrix} 44.4 & + \\ 1226.6 & - \end{vmatrix}$	34. 0 649. 7	+ 1	20
(1)	- 383.9 - 128.7	- 646.4	- 383.9 - 128.7 - 646.4 - 4581.0	- 291.3	1+	255. 6 4590. 8	1+	195. 1 1973. 8	1+	$\begin{vmatrix} 140.8 \\ 1072.4 \end{vmatrix} + $	98. 6 631. 3	1+	က

$\left egin{array}{c} ilde{H}_{2\cdot0}^{2\cdot0} (n-1) \ ilde{H}_{2\cdot0}^{2\cdot0} (n-1) \end{array} ight $	H ₁₋₁ (n H ₁₋₁ (n H ₁₋₁ (n H ₁₋₁ (n)	$ ilde{H}_{0\cdot 2}^{0\cdot 2}(n.) \ ilde{H}_{0\cdot 2}^{0\cdot 2}(n.) \ ilde{H}_{0\cdot 2}(n.)$	$\widetilde{H}_{0\cdot0}^{0\cdot0}(n-1)$ $\widetilde{H}_{0\cdot0}^{0\cdot0}(n-1)$ $\widetilde{H}_{0\cdot0}^{0\cdot0}(n-1)$	$\tilde{H}_{0\cdot 0}(n,-n)$	$\left\ \begin{array}{c} \tilde{H}_{1\cdot0}(n) \\ H_{1\cdot0}(n) \end{array} \right\ $	$= \frac{\tilde{H}_{0\cdot 1}(n)}{\tilde{H}_{0\cdot 1}(n)}$		Factor Pactor P	$ ilde{H}_{0\cdot 2}^{\circ \cdot 2}(n, H_{0\cdot 2}^{\circ -2}(n, H_{0\cdot 2}^{\circ \cdot 2}(n, H_{0\cdot 2}^{\circ \cdot 2}(n$	$ ilde{ ilde{H}}_{0\cdot 0}^{ ilde{ ilde{H}}_{0\cdot 0}} ilde{ ilde{H}}_{0\cdot 0}^{ ilde{ ilde{H}}} ilde{ ilde{H}}_{0\cdot 0}^{ ilde{ ilde{H}}}$	$\tilde{H}_{0\cdot0}(n,-n)$	$\begin{array}{c c} I & \tilde{H}_{1:0}(n) \\ H_{1:0}(n) & \tilde{H}_{1:0}(n) \end{array}$	
$ar{H}_{2\cdot 0}(n+2n) \ H_{2\cdot 0}(n-n) \ H_{2\cdot 0}(n-2n)$	$ ilde{H}_{1\cdot 1}(n+1,-n+1) \\ ilde{H}_{1\cdot 1}(n-1,-n+1) \\ ilde{H}_{1\cdot 1}(n+1,-n-1) \\ ilde{H}_{1\cdot 1}(n-1,-n-1) \\ ilde{H}_{1\cdot 1}(n-1,-n-1)$	$I_{0\cdot 2}(n,-n+2)$ $I_{0\cdot 2}(n,-n)$ $I_{0\cdot 2}(n,-n-2)$	$egin{aligned} ilde{H}_{0,o}(n+1,-n+1) + \sigma \ ilde{H}_{0,o}(n-1,-n-1) - \sigma \ ilde{H}_{0,o}(n+1,-n-1) + \delta \ ilde{H}_{0,o}(n-1,-n+1) - \delta \end{aligned}$.—n)	$ ilde{H}_{1\cdot 0}(n+1n) \\ ilde{H}_{1\cdot 0}(n-1n)$	$ ilde{H}_{0\cdot 1}(n,-n+1) \\ ilde{H}_{0\cdot 1}(n,-n-1)$	$ ilde{H}_{2\cdot 0}(n+2n) \\ ilde{H}_{2\cdot 0}(n-n) \\ ilde{H}_{2\cdot 0}(n-2n)$	$\begin{split} \tilde{H}_{1:1}(n+1,-n+1) \\ \tilde{H}_{1:1}(n-1,-n+1) \\ \tilde{H}_{1:1}(n+1,-n-1) \\ H_{1:1}(n-1,-n-1) \end{split}$	$ ilde{H}_{0\cdot 2}(n,-n+2) \\ ilde{H}_{0\cdot 2}(n,-n+2) \\ ilde{H}_{0\cdot 2}(n,-n-2)$	$ ilde{I}_{0 \cdot \alpha}(n+1, -n+1) + \sigma \\ ilde{I}_{0 \cdot \alpha}(n-1, -n-1) - \sigma \\ ilde{I}_{0 \cdot \alpha}(n+1, -n-1) + \delta \\ ilde{I}_{0 \cdot \alpha}(n-1, -n+1) - \delta \\ ild$	n)	$\tilde{H}_{1\cdot 0}(n+1n) \\ \tilde{H}_{1\cdot 0}(n-1n)$	$egin{aligned} & & & & & & & & & & & & & & & & & & &$
+ 390 - 568 - 60	- 2308 + + 385 + 308	- 866 - 408	+1141 - 102 +1141 + 169	+ 127.95	- 225	+1794 + 427	-2002 +3106 +368	+8713 -2392 -7175 -1476	$^{+4261}_{+1566}$	-4396 + 563 -4396 -1029	- 171	+ 480	$\begin{vmatrix} -4400 \\ -726 \end{vmatrix}$
+ 340 - 3166 - 412	[- 1488] + 1574 + 1892	+ 2191 - 3840 - 2273	+ 1634 - 433 + 866	+ 440.2	+ 3080	+ 1806.0	$\begin{array}{c} -2321 \\ +13600 \\ +1880 \end{array}$	+ 7870 - 8192 - 7195	-8572 + 15822 + 7232	- 7081 + 1914 - 4261	- 470	- 7922 + 1669	- 2491
+ 119	- 493 + 892 - 1429 + 9019	+ 591 -12428	+ 1080 - 700 - 3241 + 2101		(+ 719) (- 3063.4)	- 562 - 1194	(- 910) $(+ 4781)$	+ 3343 -10728 + 7645 -15273	- 3420 +12466	- 5458 + 2784 +25016 - 8351		$\begin{pmatrix} -2262 \\ +3250 \end{pmatrix}$	+ 4017 -18776
+ 60 - 354 - 4085	- 233 + 853 +20344	+ 252 - 7274 -33655	+ 725 - 1044 - 1450	- 2821.1	+ 665 - 2651	+ 828	- 498 + 3845 + 7680	+ 1476 (- 3464) (-37263)	- 1553 +34602 -50979	- 4148 + 3512 +10471	+10273	- 4544 +17358	- 350
+ 45 - 1220 - 7960	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 201 - 5807	+ 486 - 1865 - 810 - 1865	- 972.2	09 +	+ 1048 $- 40971$	$\begin{array}{ccc} & 283 \\ (+ & 7260.3) \\ (+ & 20565) \end{array}$	$\begin{array}{c} + & 910 \\ - & 38605 \\ [+ & 3068] \\ + & 20179 \end{array}$	$-\frac{1081}{+}$ 29611	$\begin{array}{ccc} - & 3102 \\ + & 1632 \\ + & 6033 \\ + & 16553 \end{array}$	+ 2929	- 1407	$-\frac{1668}{+234480}$
$\begin{array}{c c} + & 42 \\ - & 1282 \\ - & 17640 \end{array}$	- 176 + 4414 + 1458	+ 198 - 4685 + 38571	+ 324 - 486 - 780	- 483.2	$-\frac{135}{+28777}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} & 218 \\ + & 1105 \\ + & 10663 \end{array}$	+ 826 - 26417 - 3855	$\begin{array}{c} - & 1045 \\ + & 26593 \\ -449940 \end{array}$	- 2284 + 3831 + 6582	+ 1457	$\begin{bmatrix} -331 \\ -172780 \end{bmatrix}$	$-\frac{2067}{+62130}$
+ 39 - 1133	$\begin{array}{ccc} & 169 \\ & + 3280 \\ & + 1294 \\ & - 50291 \end{array}$	$\begin{array}{c} + & 190 \\ - & 3684 \\ + & 18102 \end{array}$	+ 215 + 1247 - 301 - 416	- 270.7	$-\frac{188}{+10217}$	+ 812 - 8086	- 205 + 4632	$\begin{array}{c} + & 862 \\ - & 21252 \\ - & 5792 \\ + 627529 \end{array}$	$\begin{array}{c} -1084 \\ +23202 \\ -168230 \end{array}$	$\begin{array}{c} - & 1659 \\ - & 17501 \\ + & 2529 \\ + & 3617 \end{array}$	098 +	$\begin{array}{c} + & 151 \\ - & 45846 \end{array}$	$\begin{vmatrix} -2059 \\ +31304 \end{vmatrix}$
$\begin{vmatrix} + & 36 \\ - & 928 \\ + & 16423 \end{vmatrix}$	$\begin{array}{c} -154 \\ +2452 \\ +1067 \\ -22868 \end{array}$	$\begin{array}{ccc} + & 172 \\ - & 2826 \\ + & 10724 \end{array}$	++ + 142 482 190 241	- 160.1	- 184 + 5383	+ 611 - 4961	$\begin{bmatrix} -201\\ +5150\\ [-217895] \end{bmatrix}$	$\begin{array}{c} + & 884 \\ - & 17318 \\ - & 6040 \\ + 230294 \end{array}$	$\begin{array}{c} - & 1082 \\ + & 19594 \\ - & 95788 \end{array}$	$\begin{array}{cccc} & 1191 \\ & 5620 \\ & + 1699 \\ & + 2207 \end{array}$	+ 5.44	+ 342 - 22667	$-\frac{1862}{+19302}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 132 + 1815 + 840 - 13225	$\begin{array}{ccc} + & 147 \\ - & 2121 \\ + & 6853 \end{array}$	+ 94 + 243 - 121 - 146	- 97.4	$\frac{-}{+}$ 3225	+ 488 - 3203	$\begin{array}{ccc} - & 193 \\ + & 4786 \\ - & 78562 \end{array}$	$\begin{array}{c} + & 855 \\ - & 13937 \\ - & 5553 \\ + 128129 \end{array}$	$\begin{array}{c} - & 1020 \\ + & 16074 \\ - & 62214 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 356	$^{+}_{-13652}$	$\frac{-1591}{+12918}$
+ 25 - 552 + 4103	$ \begin{array}{c} - & 109 \\ + & 1327 \\ + & 641 \\ - & 8299 \end{array} $	+ 120 - 1564 + 4522	+ 62 - 77 - 90	- 60.2	$-\frac{127}{+2041}$	$+\ \ \frac{363}{-\ \ 2119}$	$\begin{array}{c} -176 \\ +4120 \\ -42808 \end{array}$	+ 784 -11034 - 4779 +81500	$\begin{vmatrix} - & 915 \\ + 12871 \\ - 42638 \end{vmatrix}$	- 596 - 1537 + 780 + 920	+ 237	+ 387 - 8939	- 1307 + 8978
+ 20 - 410 +2530	$\begin{array}{c} -86 \\ +960 \\ +478 \\ -5396 \end{array}$	$^{+}_{-1137}$ $^{+}_{3027}$	++ 1 1 87 4 49 86 4 49	- 37.6	$\frac{-}{+1327}$	$^{+}_{-1417}$		-			+ 159		

The terms enclosed by () contain quantities which are functions of W2+[W]. See Z 69,

 $Unit=I^{\prime\prime}$

۲.I.۷	
XX	
TABLE	

			2,112		, 1(1111)	J = (= × , =)	110111515	.,.	01	5011	31(01)0.	•	(10)
10	+ 1.79	+ 4.6 - 64.4	- 12.7 + 65.3	$\begin{array}{c} + & 7 \\ - & 167 \\ + & 1335 \end{array}$	$\begin{array}{c} -31 \\ +433 \\ +184 \\ -2614 \end{array}$	+ 38 - 479 +1358	++ 15 24 24	- 16.3	- 37 + 640	+ 112 - 636			
5	+ 3.14	+ 6.6 - 109.7	- 19.4 + 107.5	+ 2342 + 2342	- 40 + 619 + 251 - 4270	+ 49 - 678 + 2126	++ 52	- 26.9	- 48 + 1042	+ 157 - 995	- 55 + 1741 -26325	+ 288 - 5339 - 1888 +44803	- 390 + 5770 -21282
×	5.50	9.5	29.4	. 11 313 4626	48 889 336 7382	62 953 3427	38 52 68 68	45.5	61 1770	218	59 2064 55031	314 7125 2236 77778	439 7530 33545
	474		4 + 1	+1+	1++1	+1+	++11	1	1+	+1	1+1	+ 1 +	1+1
1-	10.	. 13. 364.	44. 315.	$\frac{11}{414}$	$\begin{array}{c} 56 \\ 1275 \\ 437 \\ 14329 \end{array}$	74 1330 5832	58 299 84 120	79.	70 3255	299	$\begin{array}{c} 58 \\ 2240 \\ 182738 \end{array}$	322 9506 2454 160223	480 9708 57314
	4 +	+1	1+	+++	1++1	+1+	++11	1	1+	+1	1+1	+11+	1+1
9	20.4	17. 2 772. 0	66.3 583.3	$\frac{11}{529}$	62 1851 547 37540	$^{85}_{11105}$	$\frac{92}{932}$ $\frac{141}{228}$	144. 0	67 7069	400 4804	56 1867 58930	$\begin{array}{c} 308 \\ -12829 \\ -2294 \\ -526203 \end{array}$	499 12376 116178
	+	+1	1+	+11	1++1	+1+	++11	1	1+	+	1++	+11+	1+1
2	42.86	20.4 2217.1	97.5 1211.0	$\begin{array}{c} 10 \\ 633 \\ 31492 \end{array}$	64 2791 639 20253	$\begin{array}{c} 93 \\ 2544 \\ 28418 \end{array}$	144 582 243 488	284. 2	33 23970	$\frac{513}{10220}$	$\begin{array}{ccc} -&59\\ -&913\\ +154467 \end{array}$	$\begin{array}{c} 290 \\ 18174 \\ 1068 \\ 162987 \end{array}$	505 - 15674 - 377281
	+	+1	1+	+1,1	1+++	+1+	+111	1	1+	+ 1	117	+117	 +
TT.	102. 73	17. 8 1288. 5	138. 6 3383. 4	$\begin{array}{c} 10 \\ 637 \\ 5845. \ 9 \end{array}$	66 4878 642 88785	100 3545 15453	227 3191 442 1408	657.0	93 7990	607 34098	89 7038) 9397)	$\begin{array}{c} 334 \\ 31946 \\ -4145 \\ 357562 \end{array}$	556 20067 111614
_	+	++	1+	+11	1+++	+11	+111	1	+1	+1	1 + +	++±ï	1+7
33	337. 99	5.8 6172.8	176.8 1989.6	$\frac{16}{59}$	$\begin{array}{c} 95 \\ 1224 \\ 339 \\ 16091. 9 \end{array}$	139 5297 61877	363 1276. 2 899 725	2314. 7	$\frac{539}{20581}$	546 10724	200 7449 18308]	652 2788] 5580) 19838)	875 28647 192682
	+	1+	1.1	+1+	11++	+!1	+11+	1	+ 1	++	1+1	+±11	1+7
7	- 237. 94	$-\frac{105.1}{+1223.30}$	- 92. 3 - 8375. 6	[+ 46] - 396 + 447	$\begin{array}{ccc} & 252 \\ + 988 \\ - 1309 \\ -14498 \end{array}$	$^{+}_{-}$ 376 $^{+}_{-}$ 930 $^{-}_{-}$ 10613. 2	$\begin{array}{c} + & 593 \\ - & 806 \\ - & 2422 \\ + & 3276 \end{array}$	+ 837.2	(+ 293) (- 2577.9)	$^{-444}_{+20592}$	$\begin{pmatrix} - & 370 \\ + & 3109 \\ - & 49 \end{pmatrix}$	+1800 -15732 -3080	- 2185 + 534 + 8363
7	- 293.33	- 468.0 + 511.1	- 185.7 - 868.54	+ 178 - 5022 + 1133	+ 2578.2 + 1690 + 928	+ 1693 - 5965 - 1709	+ 1025 - 433 + 1201 + 1731.8	+ 913.5	+ 2334 - 2834	+ 766 + 3040.0	-1304 $[+24269]$ -5173	+ 4910 -13963 - 9387) - 4309)	$\begin{array}{c} -6307 \\ +27803 \\ +26142 \end{array}$
0	- 86. 282	- 139.1 - 139.1	511.8	- 225 - 1136.6 - 225	- 1744 - 3077 - 3077 - 1744	- 408 - 1731. 8 - 408	881 881 1785	- 255.90	- 481 - 481	2222	$\begin{array}{c} 1185 \\ 6212 \\ 1185 \end{array}$	+ 6382 -13156 -13156 + 6382	1566 8522 1566
		++	1 1	+1+	1++1	111	++++	<u> </u> +	11	++	1+1	+11+	+++
u	$\tilde{A}_{0\cdot 0}(nn)$	$\bar{A}_{1\cdot 0}(n+1n) \\ \bar{A}_{1\cdot 0}(n-1n)$	$\bar{A}_{0.1}(n,-n+1) = A_{0.1}(n,-n-1)$	$ar{A}_{2\cdot 0}(n+2,-n) \ A_{2\cdot 0}(n-2,-n) \ A_{2\cdot 0}(n-2,-n)$	$\begin{array}{l} \bar{A}_{1:1}(n+1,-n+1) \\ \bar{A}_{1:1}(n-1,-n+1) \\ \bar{A}_{1:1}(n+1,-n-1) \\ \bar{A}_{1:1}(n-1,-n-1) \end{array}$	$egin{array}{l} ar{A}_{0\cdot 2}(n,-n+2) \ A_{0\cdot 2}(n,-n) \ A_{0\cdot 2}(n,-n-2) \end{array}$	$\begin{array}{l} \bar{A}_{0\cdot 0}(n+1,-n+1) + \sigma \\ A_{0\cdot 0}(n-1,-n-1) - \sigma \\ A_{0\cdot 0}(n+1,-n-1) + \delta \\ A_{0\cdot 0}(n-1,-n+1) - \delta \end{array}$	$\bar{A}_{0\cdot 0}(n,-n)$	$\tilde{A}_{1.0}(n+1n) = A_{1.0}(n-1n)$	$\bar{A}_{0\cdot 1}(n,-n+1) = A_{0\cdot 1}(n,-n-1)$	$egin{array}{l} ar{A}_{2\cdot 0}(n+2n) \\ A_{2\cdot 0}(nn) \\ A_{2\cdot 0}(n-2n) \end{array}$	$\begin{array}{l} \bar{A}_{1\cdot1}(n+1n+1) \\ A_{1\cdot1}(n-1n+1) \\ A_{1\cdot1}(n+1n-1) \\ A_{1\cdot1}(n-1n-1) \end{array}$	$egin{aligned} ar{A}_{0.2}(n,-n+2) \ ar{A}_{0.2}(n,-n) \ ar{A}_{0.2}(n,-n) \end{aligned}$
												tożor4	

	72			
++ 533 ++ 422 +422	+ 1111 +	$^{+}$ 146 $^{-}$ 4866	- 584 + 4480	
- 348 - 1625 + 508 + 685	+ 176	$^{+}_{-}$ 148	$\frac{-}{+}$ 743 $+$ 6922	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 288	$^{+}_{-15073}$	$-\ \ 916 + 11345$	00
$egin{array}{cccccccccccccccccccccccccccccccccccc$	+ 498	$+ \frac{3}{35253}$	$\frac{-}{+}$ 20749	2 - 1 mm
- 1038 + 5433 + 2026 + 4420	+ 949	$\begin{bmatrix} -301 \\ -157278 \end{bmatrix}$	$-\frac{1189}{+47967}$	to the majored by () contain another which are fundament III (III)
$ \begin{vmatrix} - & 1487 \\ + & 15590 \\ + & 3532 \\ + & 13454 \end{vmatrix} $	+ 2217	$-\frac{1063}{+25894}$	$-\frac{1089}{+214716}$	atition with oh
- 2131 + 5633 + 7050 - 4453	+ 9275	$\frac{-3713}{+86540}$	$\frac{-}{31075}$	() contain and
$\begin{array}{r} -3071 \\ +10207 \\ +20397 \\ -14815 \end{array}$	- 1414	$\begin{pmatrix} - & 808 \\ + & 3863 \end{pmatrix}$	$^{+}_{-95930}$	the possions one
$\begin{array}{c c} - & 4485 \\ + & 1914 \\ - & 6127 \\ - & 8522 \end{array}$	- 1400	$\begin{vmatrix} - & 6260 \\ + & 7747 \end{vmatrix}$	$\begin{vmatrix} - & 1504 \\ - & 5952 \end{vmatrix}$	1 The to
- 3231 - 3231 - 7865 - 7865	- 342	++ 822	- 5126 - 5126	
$\begin{array}{c} J_{0\cdot 0}(n+1n+1) + \sigma \\ J_{0\cdot 0}(n-1n-1) - \sigma \\ J_{0\cdot 0}(n+1n-1) + \delta \\ J_{0\cdot 0}(n-1n+1) + \delta \end{array}$	$\tilde{A}_{0\cdot 0}(n,-n)$	$\frac{\bar{A_1}_{1\cdot 0}(n+1,-n)}{A_{1\cdot 0}(n-1,-n)}$	$A_{0:1}^{\overline{l}_{0:1}}(n,-n+1) = A_{0:1}(n,-n-1)$	
		_z m 101:	Fac	

 1 The terms enclosed by () contain quantities which are functions of $\it H_2^* + [\it H_2^*]$. See Z 69,

TABLE XXVII.

 $Unit=1^{\prime\prime}$

1, 79	တ ငာ	m 4				
٦.	9 3	12. 65.	$\begin{array}{c} 2\\107\\399\end{array}$	18 446 119 679	38 479 358	15 28 24 24 25 25
_+	+1	1+	+17	1++1	+17	++11
3. 14	ഹ സ). 4 7. 5			~ · · · ·	10.1- 20.0
0.0	11.5	107	125 2452	22 24 14 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	45 678 2136	82583
+	+ 1	1+	+ 1 +	1++1	+1+	++11
- 50	0.4	च हो				
5	199	$\frac{29}{181}$	1 129 1820	19 918 155 7563	62 953 3427	88888
+	+1	1+		1++1	+1+	++11
1-	ဖတ	c: t-			-	
10	374	44 315	2 63 2756	12 1319 121 1645	74 1330 5832	293 84 130
+	+ 1	1+	+ 1 15	1++1	+ + + +	++11
		-				
20.	3. 792.	66. 583.	$\frac{6}{226}$ 5885	4 1917 36 38 8123	$\frac{85}{1105}$	932 141 228
+	1.1	1+	1+1	++11	+ +	++ 1 1
86	70	20				
7	1360	97.	$\frac{10}{1564}$	34 2889 572 9042	93 2544 8418	144 582 243 488
+	1.1	1+	1+1	++ +	+ +	+++1
73	တတ	9 7	4			
102.	$^{84}_{1185}$	138. 3383.	8 1943 7134.	73 5017 2741 35402	$\begin{array}{c} 100 \\ 3545 \\ 15453 \end{array}$	227 3191 442 1408
+	1 +	$_{1}$ $+$	1.1.1	++++	+ 1 1	+111
<u>8</u>	∞ ∞	& 9		•		¢1
337.	343. 5834.	176. 1989.	22 6226 1996	82 1047 2329 8082	$\frac{139}{5297}$ 1877	363 1276. 899 725
+	+	1.1	+ +	++++	+11	+11+
5.	6.51	က္မ			C1	
237.	132. 461.	92. 375.	151 514 776	160 080 067 122	376 930 613.	593 806 2422 3276
					10 +	+11+
				· · · · ·		,
77 77	म्- 	ბ.⊿ დე	မာအစာ	5. 19.52 7	ကယ္ကေ	യ
8	80.7	86.8	20°50	733 276 255 179	169 596 170	100 120 173 173 173 173 173 173 173 173 173 173
- 1	1+	1-1	+ + +	1+++	+11	+ 1025 - 433 + 1201 + 1731.
\$1 \$2 \$1	ਦਾ ਦਾ	∞ ∞			×	
86.	125. 125.	ΞΞ	86 86 86	28892	831.08	881 881 1785 1785
			_		47.	88717
	++		+ +	1++1		++++
				~~~		+0+0
	22		G G	7777	ຄຄ	<del>+11+</del>
<u> </u>	ĨĨ.	+ <u>-</u> -	Ĩ <del>_</del>		# ( ]	
~		îĩ	777	<del>+ 1 + 1</del>	ĨĨĨ	エフエゴ
ı. – n	<u>+ 1</u>	4.5	1		4.1	
$_{0.0}(nn$	$-u)_{0.1}$	n.1(n.	2.0(R- 2.0(R. 2.0(R-		$\frac{0\cdot 2(n)}{0\cdot 2(n)}$	n)000 n)000 n)000
$A_{0:0}(n,-n)$	$A_{1\cdot 0}(n+1,-n)$ $A_{1\cdot 0}(n-1,-n)$	$A_{0:1}(n,-n+1)$ $A_{0:1}(n,-n-1)$	$A_{2\cdot 0}(n+2,-n)$ $A_{2\cdot 0}(n,-n)$ $A_{2\cdot 0}(n-2,-n)$	$A_{1:1}(n+1,-n+1)\\A_{1:1}(n-1,-n+1)\\A_{1:1}(n+1,-n-1)\\A_{1:1}(n-1,-n-1)$	$A_{0\cdot 2}(n,-n+2)$ $A_{0\cdot 2}(n,-n)$ $A_{0\cdot 2}(n,-n-2)$	$\begin{array}{c} A_{0,0}(n+1,-n+1)+\sigma \\ A_{0,0}(n-1,-n-1)-\sigma \\ A_{0,0}(n+1,-n-1)+\partial \\ A_{0,0}(n-1,-n+1)-\partial \end{array}$
	+ 102. 73 $+$ 42. 86 $+$ 20. 42 $+$ 10. 47 $+$ 5. 50 $+$ 3. 14 $+$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

lnit = l

TABLE XXVII'-Continued.

10	- 16.3	$\frac{-}{+}$ 656	$^{+}$ 112 $^{-}$ 636					+ 73		
o.	26.9	- 31 + 1069	+ 157 - 995	- 747 + 747 -27367	+ 131 - 5496 - 893 + 45798	-390 + 5770 -21282	++ + + + + + + + + + + + + + + + + + +	+ 111	+ 35 - 4977	- 584 + 4480
oc	- 45.5	- 15 + 1815	+ 212 - 1592	+ 355 + 355 -56801	+ 102 - 7337 - 644 +79370	- 439 + 7530 -33545	- 318 - 1625 + 508 + 685	+ 176	- 28 - 8283	- 743 $+$ 6922
t-	- 79.1	+ 3334 + 3334	+ 299 - 2660	+ 12 - 945 [-185993]	$\begin{array}{c} + & 23 \\ - & 9805 \\ + & 206 \\ +162883 \end{array}$	$\begin{array}{ccc} - & 480 \\ + & 9708 \\ - & 57314 \end{array}$	- 502 - 3854 + 786 + 1161	+ 288	- 176 $- 15361$	$-\  \   916 + 11345$
9	- 144.0	+ 777 + 7213	+ 400 - 4804	+ 11 - 5135 + 51861	- 92 - 13229 + 2510 +531007	- 499 + 12376 -116178	- 724 - 14561 + 1239 + 2111	+ 498	- 495 - 35751	$\frac{-1077}{+20749}$
10	- 284.2	+ 24254 + 24254	$^{+}_{-}$ 513 $^{-}_{0220}$	- 26 - 24850 +130497	$\begin{array}{c} -223\\ -18687\\ +9152\\ -152767 \end{array}$	$\begin{array}{c} -505 \\ +15674 \\ -377281 \end{array}$	- 1038 + 5433 + 2026 + 4420	+ 949	$\begin{bmatrix} - & 1250 \\ [-158227] \end{bmatrix}$	- 1189 + 47967
4	- 657.0	+ 750 - 7333	+ 607 - 34098	$\begin{array}{c} - & 182 \\ (+ & 14935) \\ [(+ & 17387)] \end{array}$	- 273 - 32553 [+ 38243] -323464	$\begin{array}{c} -556 \\ +20067 \\ +111614 \end{array}$	- 1487 + 15590 + 3532 + 13454	+ 2217	- 3280 + 23677	$-\frac{1089}{+214716}$
۳.	- 2314.7	+ 2854 - 18266	+ 546 + 10724	- 739 + 27491 [+ 2273]	+ 106 [+ 2242] [- 16304), (- 30562)	$\begin{array}{c} -875 \\ +28647 \\ +192682 \end{array}$	- 2131 + 5633 + 7050 - 4453	+ 9275	$-\frac{12988}{+77265}$	- 338 - 31075
2	+ 837.2	(-544) (-3415.1)	-444 + 20592	(- 663) (+ 5394) (+ 2529)	+ 2244 -15288 -20596 -23672	$\begin{array}{c} -2185 \\ +534 \\ +8363 \end{array}$	$\begin{array}{c} -3071 \\ +10207 \\ +20397 \\ -14815 \end{array}$	- 1414	(+ 606) (+ 5277)	$+\ \frac{3211}{-95930}$
1	+ 913.5	+ 1421 - 3748	+ 766 + 3040.0	$ \begin{array}{c}  -3638 \\  [+24769] \\  -2339 \end{array} $	$\begin{array}{c} + 4144 \\ -14729 \\ (-12427) \\ (-7349) \end{array}$	-6307 $+27803$ $+26142$	- 4485 + 1914 - 6127 - 8522	- 1400	- 4860 + 9147	_ 1504 _ 5952
0	+ 255.90	- 737 - 737	+ 2222 + 2222	- 704 + 7174 - 704	$^{+\ 4160}_{-15378}\\ ^{-15378}_{+\ 4160}$	+ 1566 + 8522 + 1566	- 3231 - 3231 - 7865 - 7865	- 342	+ 1164 + 1164	- 5126 - 5126
¢	$A_{0\cdot 0}(n,-n)$	$A_{1\cdot 0}(n+1n)$ $A_{1\cdot 0}(n-1n)$	$A_{0\cdot 1}(nn+1) \\ A_{0\cdot 1}(nn-1)$	$A_{2\cdot o}(n+2n) \ A_{2\cdot o}(n,-n) \ A_{2\cdot o}(n-2n)$	$A_{1:1}(n+1n+1) \\ A_{1:1}(n-1n+1) \\ A_{1:1}(n+1n-1) \\ A_{1:1}(n-1n-1)$	$A_{0,2}(n,-n+2)$ $A_{0,2}(n,-n)$ $A_{0,2}(n,-n-2)$	$A_{0.6}(n+1n+1)+\sigma$ $A_{0.6}(n-1n-1)-\sigma$ $A_{0.6}(n+1n-1)+\delta$ $A_{0.6}(n-1n+1)-\delta$	$A_{0.0}(nn)$	$A_{1\cdot 0}(n+1,-n)$ $A_{1\cdot 0}(n-1,-n)$	$A_{0\cdot 1}(n,-n+1)$ $A_{0\cdot 1}(n,-n-1)$
					Tactor :				5.N 10	Fact

The terms enclosed by ( ) contain quantities which are functions of  $W_T + \{W_2\}$ . See Z 69.

### TABLE XXVIII.

 $[(1-e\cos\varepsilon)(\overline{W_2}^{\prime\prime}+\overline{W_3}^{\prime\prime}+\overline{W_4}^{\prime\prime})] \hspace{1cm} \text{Unit=4th decimal of a radian.}$ 

	Cos	wa	w	w ¹
$j^{2} \eta'^{2}$ $j^{3} \eta'^{4}$ $j^{7} \eta'^{7}$ $\eta'$ $\eta'$ $\eta'$ $\eta'$ $\eta'$ $\eta'$ $\eta'$ $\eta'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4.1829 \\ -68.61 \\ -83.96 \\ +83.96 \\ +134.0 \\ +70.842 \\ -42.107 \\ -345.88 \\ +876.64 \\ -514.54 \\ -61.87 \end{array}$	$\begin{array}{c} + & 12.406 \\ + & 347.9 \\ + & 413.1 \\ - & 413.1 \\ - & 714.2 \\ [-165.57] \\ + & 147.38 \\ [+843.0] \\ [-1481.7] \\ + & 405.5 \\ + & 273.1 \end{array}$	- 16.58 [+255.8] -288.6
			m'	

### TABLE XXVIIIa.

 $2[T_4]$ 

Unit=4th decimal of a radian.

		w	-:	w	,
	Sin	\$6.0	u·	w ^q	w
	ψ+2θ+2J	-0.00005	+0.00073	-0.0682	+0. 4056
η η	20+21 \$\psi\$ \$\psi+4\theta+41\$			$ \begin{array}{c c} -0.3324 \\ +0.3381 \\ +1.0220 \end{array} $	+2. 1665 -2. 5547 -7. 370
η' η' η'	$ \begin{array}{c cccc} 2\theta + \mathbf{J} \\ \phi & + \mathbf{J} \\ \phi + 4\theta + 3\mathbf{J} \end{array} $			$\begin{array}{c c} +0.2654 \\ -0.3622 \\ -1.2106 \end{array}$	-1.846 $+2.472$ $+8.472$
		m	/3	m [*]	73

# TABLE XXVIIIb.

 $W_3$ 

Unit=4th decimal of a radian,

		l w	-3		$w^{-1}$		1	v
	Cos	w.o	w	<i>u</i> ·0	w	w 2	u.0	w
	- ε+ψ	-0.00004	+0.00038	-0.0032	-0.0005	-0. 4803		
	$\begin{bmatrix} \epsilon & +2\theta + 2\mathbf{J} \\ 2\epsilon - \psi + 2\theta + 2\mathbf{J} \\ \psi + 2\theta + 2\mathbf{J} \end{bmatrix}$	0.00000 +0.00001	+0.00004 -0.00023	+0. 0237 +0. 0050 +0. 0726	-0. 15101 -0. 0318 -0. 4507		+ 13. 16 - 0. 81	- 30, 86 + 1, 31
	$\begin{array}{c} 2\varepsilon + 4\theta + 4\mathbf{J} \\ \varepsilon + \psi + 4\theta + 4\mathbf{J} \end{array}$	+0.00004	-0.00038	+0.0153 +0.0181	-0.0770 -0.0814		+ 3.88 - 16.23	- 14.38 + 61.80
	$2\varepsilon + \psi + 6\theta + 6\mathbf{J}$			-0.0088	+0.0576		- 3.0	+ 15.7
η η η	$ \begin{vmatrix} 2\theta + 2\mathbf{J} \\ \epsilon - \psi + 2\theta + 2\mathbf{J} \\ - \epsilon + \psi + 2\theta + 2\mathbf{J} \end{vmatrix} $			+0. 5242 +0. 1384 -0. 0508	$ \begin{array}{r} -3.3539 \\ -0.7747 \\ +0.4660 \end{array} $		+ 13. 16 + 14. 86 + 58. 25	- 30. 86 - 11. 30 - 170. 9
η	ε			+0.0749	-0. 2385			
η	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		,	+0. 1723 -0. 5378	$-0.8380 \\ +4.082$			+ 589. 2 + 61. 80
η	$\epsilon + \psi + 2\theta + 2\mathbf{J}$			-0. 1801	+1. 1267		<b>-</b> 7. 71	- 6. 66
η	$\epsilon + \psi + 6\theta + 61$			-0. 3275	+2.032		+178.4	- 933.0
η' η' η'	$\begin{vmatrix} 2\theta + \mathbf{\Delta} \\ \epsilon - \psi + 2\theta + \mathbf{\Delta} \\ - \epsilon + \psi + 2\theta + \mathbf{\Delta} \end{vmatrix}$			-0. 6099 -0. 1412 +0. 1220	+3. 634 +0. 6843 -0. 8554		+ 10.77 - 31.34	- 49. <b>0</b> 4 + 118.9
7'	ε + <b>1</b>			+0.0524	<b>-0</b> . 4182			
$\eta'$ $\eta'$	$\begin{array}{c c} \varepsilon & +4\theta + 3A \\ \hline & \psi + 4\theta + 3A \end{array}$			-0.0411 + 0.7660	+0. 2314 -5. 430		+221.0	<b>- 694</b> . 3
n'	$\epsilon + \psi + 2\theta + 3\mathbf{J}$		i	+0.0460	-0. 3060		+ 14.12	- 26.01
7/	$\epsilon + \phi + 6\theta + 51$			+0.3718	-2.0745		-287.1	+1309.3
	$(\theta - \theta_0) \sin$							
η η η	$ \begin{vmatrix} 2\theta + 2\mathbf{J} \\ \epsilon - \psi + 2\theta + 2\mathbf{J} \\ - \epsilon + \psi + 2\theta + 2\mathbf{J} \end{vmatrix} $			+0.0490 $+0.0144$ $-0.0542$	-0. 2949 -0. 0705 +0. 3582			
η	<i>\( \sqrt{\tau} \)</i>			+0.5810	-4. 7017			
η	$\begin{array}{c} \epsilon & +4\theta + 4J \\ \psi + 4\theta + 4J \end{array}$			-0.0618 -0.0453	+0. 4650 +0. 3389			
η	$\epsilon + \psi + 2\theta + 2\Delta$			-0.0010	+0.0290			
η' η' η'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \begin{array}{r} -0.0364 \\ -0.0107 \\ +0.0402 \end{array} $	$   \begin{array}{r}     +0.2398 \\     +0.0585 \\     -0.2889   \end{array} $			
η΄	ψ + A			-0. 7670	+5. 4890			
$\eta'$ $\eta'$	$\begin{array}{ccc} \epsilon & +4\theta + 3 \mathbf{J} \\ \psi + 4\theta + 3 \mathbf{J} \end{array}$			+0.0459 +0.0336	-0.3715 -0.2709			ļ
η'	$\epsilon + \psi + 2\theta + 3\mathbf{J}$			+0.0007	-0.0220			
	·	m	/3		m'2	,	m'	·

TABLE XXVIIIc.

$$[(1-\epsilon\,\cos\,\epsilon)]\bar{W_{\rm a}}^{\prime\prime}]$$

Unit-4th decimal of a radian.

		1	,
	Cos	w ^o	w
$\eta$ $\eta'$	$2\theta + 2J$ $2\theta + J$	+60. 76 -20. 57	-152.6 + 69.8
	· · · · · · · · · · · · · · · · · · ·	n	′

TABLE XXIX.

$$[(1-e\,\cos\,\epsilon)(\overline{\,W_{\!3}}\!-\!\overline{\,W_{\!3}}^{\prime\prime})]$$

Unit-4th decimal of a radian,

		u	· -8	w	-1	u	7
	Cos	u.0	w	wo	w	wo	w
η η'	$ \begin{array}{c} 2\theta + 2J \\ 2\theta + J \\ (\theta - \theta_0) \sin  \end{array} $	-0, 00004	+0.00038	-0.0032 +0.5106 -0.6292	-0. 0005 -3. 0290 +3. 463	+13. 16	-30. 9
ח ח'	$ \begin{array}{c} 2\theta + 2J \\ 2\theta + J \end{array} $			+0.0092 -0.0069	-0.0072 +0.0094		
		n	1/3	m	/2	m	,

These developments cover the function W within the extent of our tables. This does not mean that W is always inclusive of all these terms, but that these terms occur in one or more of the tables. With the exception of  $[(1-e\cos\varepsilon)\overline{W}]$ , which contains  $\overline{W}_3 - \overline{W}_3''$ , W is to be understood to mean  $W = W_1 + W_2' + [W_3] + (W_2'' + W_3'' + W_4'')$ 

$$\overline{W} = W_1 + W_2 + [W_2] + (W_2'' + W_3'' + \overline{W_4''})$$

$$\overline{W} = \overline{W_1} + \overline{W_2'} + [\overline{W_2}] + (\overline{W_2''} + \overline{W_3''} + \overline{W_4''}).$$

The ascending powers of w,  $\eta$ ,  $\eta'$ ,  $j^2$  are selected independently in each function.

To avoid a long series which is analogous in construction to  $T_2$ , the function  $W_2'' + W_3'' + W_4''$  is not tabulated. The sum of this function and Tables XVII, XVIII, XIX, XXIIa gives W. Since W is so long and we only need  $\overline{W}$ , it is not tabulated. The function

$$\overline{W} = W_{\psi = \epsilon}$$

is given in Table XXIXa.

It is convenient to collect here  $[(1-e\cos\epsilon)\overline{W}]$ , which is required later. The function is given by the sum of Tables XVI, XX, XXI, XXVIII, and XXIX, and is tabulated in Table XXIXb.

We shall also need the function  $\Xi$ 

$$\Xi = x + 2\eta y = \Xi_1 + \Xi_2' + [\Xi_2] + (\Xi_2'' + \Xi_3'' + \Xi_4'')$$

Evidently  $\Xi$  can be written by inspection if W is tabulated. If the double headings are retained in the construction of  $\Xi$  the mass factors and ranks are explicit as in the construction of W. If W is not given, we can write by inspection  $\Xi_1$  (previously required in the computation),  $\Xi_2'$  and  $[\Xi_2]$  from  $W_1$ ,  $W_2'$ , and  $[W_2]$ , respectively. The remainder, namely,  $\Xi_2'' + \Xi_3'' + \Xi_4''$ , can be written from  $W_2'' + W_3'' + W_4''$ , i. e., by inspection of Tables XXIII, XXIV, XXV. The function  $\frac{1}{3}\Xi$  is given in Table XXIXc.

Unit = 1".

Table XXIXa. \$\overline{W}\$.

			u	,,	η2	, , , ,	η''2
	Cos	ε+2θ+2 <i>1</i> 2ε+4θ+4 <i>1</i>	$2\theta + 2A$ $\xi + 4\theta + 4A$ $\xi + 2\theta + 4A$ $\xi + 2\theta + 4A$ $\xi + 2\theta + 2\theta + 6A$	$2\theta + \frac{1}{4}$ $\frac{1}{6} + \frac{1}{4}$ $\frac{1}{2} + \frac{1}{4}\theta + \frac{3}{3}$ $\frac{1}{2} + \frac{1}{2}\theta + \frac{3}{2}$	40+44 \$\begin{align*} 40+44 \\ \$\epsilon \epsilon \\ \epsilon \epsilon \\ \ep	. c + 40 + 31 c + 20 + 31 c + 20 + 31 c + 60 + 51 c + 60 + 51 d + 51 2c + 40 + 31 2c + 40 + 51 2c + 80 + 71	$4\theta + 2J$ $\epsilon + 2\theta + 2J$ $\epsilon + 6\theta + 4J$
	w. ₀	+ 294.89	+1179.6 - 839.5	- 318.2 +1229.8	- 3358 + 978 + 2940 + 396	+8609 -2280 +1492 -8658 +2068	-5341 - 861 +6349
	'n	- 86.28 - 978.6 + 102.7	- 2306.1 + 278 + 4784 + 190 - 772	+ 212 - 186 - 6059 - 177 + 1211	753 +10660 -2366 +489 +2316 +4626	+ 2293 -17128 +12028 +63021 - 9588 - 9588 + 2791 -14329	- 1732 + 3562 - 2864 -41206
w-1	wa	+ 255.90 + 1571 - 646.5	+ 1735 - 961 - 14212 - 449 + 7102	+ 1487 + 766 + 16395 + 546 - 10221	+ 4802 - 25394 + 19864 +102458 - 6259 - 959 + 13688 - 55029	- 12753 + 35165 - 34202 - 9774 - 255722 - 43388 + 3699 - 13717 - 18175 +160224	+ 8521 - 7700 + 22660 +156926
	g.,3	- 342. 2 - 1415 + 2209. 8	+ 3127 + 1645 + 25911 - 58 - 35536	$\begin{array}{c} -5950 \\ -1504 \\ -31079 \\ -339 \\ +47956 \end{array}$			
	677		-0.316	+0,114	1 + + + 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+++0.68 +-1.5.57 +-3.95 1.8	- 0.12 - 0.12 - 1.90 - 1.90
, as	u,	+ 0. 2108 - 0. 6139 - 0. 2108	- 6.330 + 0.738 + 3.54 + 0.274 + 1.800	+ 1   1   1   1   1   1   1   1   1   1	++1   +   1   1   4   6   6   6   4   6   6   6   6   6	1 1 + + + 1 + + 1 + + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 1 + 4 + 4	++   1 20 20 20 20 20 20 20 20 20 20 20 20 20
424	\$174	- 1.059 + 4.059 + 1.059	+ 41. 24 - 22. 8 - 1. 70 - 11. 66	-48.64 + 1, 34 + 34.3 + 15.35	olumn were used.	o sid) ni smrot 99129b b	иоээз ХХ
	17.3	+ 2 38					

	In the construction	m/2
5.0 5.4 5.5 5.5		_1 \
+ + 1	+   +   +	m
-4.04	+0.07	
- 13066 - 2185 + 20067 -116175	- 8521 + 2250 - 41509 + 10534 - 9074 - 4486 + 11469 - 3854	nı'
+ 6264 + 376 - 3544 +11104	+ 1732 + 203 + 14606 - 2257 - 2257 + 1025 + 1025 + 387 + 300	
1634	- 304 - 2677 + 260 - 866	
$\begin{array}{c} \epsilon + 20 \\ 2\epsilon + 21 \\ 2\epsilon + 40 + 41 \\ 2\epsilon + 80 + 61 \end{array}$	$\begin{array}{c} 4\theta + 3\mathcal{I} - \mathcal{L} \\ \epsilon + 2\theta + 2\mathcal{I} - \mathcal{L} \\ \epsilon + 2\theta + 2\mathcal{I} - \mathcal{L} \\ \epsilon + 2\theta + 5\mathcal{I} - \mathcal{L} \\ - \epsilon + 2\theta + 5\mathcal{I} - \mathcal{L} \\ 2\epsilon + 4\theta + 4\mathcal{I} \\ 2\epsilon + 8\theta + 7\mathcal{I} - \mathcal{L} \end{array}$	
· ·	5.	

110379°-22-8

[Continued on next page.

TABLE XXIXa—Continued.

W.

Unit=1".

ļ	_		<i>u-</i> 1			£√.−\$	
	Cos	u.0	w	u·3	<i>u</i> .0	w	1U3
$\eta^3$	$\begin{array}{c} \varepsilon + 4\theta + 4\mathbf{J} \\ -\varepsilon + 4\theta + 4\mathbf{J} \\ \varepsilon + 8\theta + 8\mathbf{J} \end{array}$	+2549 $-3089$ $-11300$	$\begin{array}{c cccc} + & 2164 \\ + & 8155 \\ + & 76250 \end{array}$		$ \begin{array}{c} -11.9 \\ +3.9 \\ -8.9 \end{array} $	+ 89 - 25 + 70	- The Control of the
$\eta^2 \eta'$	$\begin{array}{c} \epsilon + 4\theta + 51 \\ \epsilon + 4\theta + 31 \\ - \epsilon + 4\theta + 31 \\ \epsilon + 8\theta + 71 \end{array}$	$ \begin{array}{r} -11449 \\ -2661 \\ +6865 \\ +50005 \end{array} $	$\begin{array}{c} + 42212 \\ - 27530 \\ - 4540 \\ -304611 \end{array}$		$ \begin{array}{c} +1.9 \\ +36.4 \\ -20.3 \\ +33.8 \end{array} $	$ \begin{array}{c c} -23 \\ -241 \\ +118 \\ -248 \end{array} $	
η η'2	$\begin{array}{c} \epsilon + 4\theta + 41 \\ \epsilon + 4\theta + 21 \\ - \epsilon + 4\theta + 21 \\ \epsilon + 8\theta + 61 \end{array}$	$\begin{array}{r} +26091 \\ -1356 \\ -2204 \\ -73583 \end{array}$	$\begin{array}{c c} -71730 \\ +30293 \\ -20846 \\ +400009 \end{array}$		$ \begin{array}{c} -10.1 \\ -25.5 \\ +28.0 \\ -41.9 \end{array} $	+ 83 +153 -153 +284	
$\eta^{/3}$	$\begin{array}{c} \epsilon + 4\theta + 31 \\ - \epsilon + 4\theta + 1 \\ \epsilon + 8\theta + 51 \end{array}$	-13756 - 3317 +36006	$\begin{array}{c} + 22165 \\ + 18452 \\ -172164 \end{array}$		$+10.1 \\ -12.4 \\ +16.6$	$ \begin{array}{ccccc} - & 65 \\ + & 64 \\ - & 104 \end{array} $	
⁵² η	$ \begin{array}{c} \epsilon + 4\theta + 3\mathbf{d} - \Sigma \\ - \epsilon + 4\theta + 3\mathbf{d} - \Sigma \\ \epsilon + 8\theta + 7\mathbf{d} - \Sigma \\ \epsilon + 4\theta + 4\mathbf{d} \end{array} $	$\begin{array}{r} -2011 \\ +1808 \\ -2381 \\ +14204 \end{array}$	$\begin{array}{c} +\ 14604 \\ -\ 13617 \\ +\ 18919 \\ -\ 88026 \end{array}$		- 1. 9 + 1. 9 - 1. 1 + 5. 7	$\begin{array}{c} + \ 14 \\ - \ 14 \\ + \ 10 \\ - \ 42 \end{array}$	
$j^2 - \eta'$	$\begin{bmatrix} \epsilon + 4\theta + 4\mathbf{J} - \Sigma \\ -\epsilon + 4\theta + 2\mathbf{J} - \Sigma \\ \epsilon + 8\theta + 6\mathbf{J} - \Sigma \\ \epsilon + 4\theta + 3\mathbf{J} \end{bmatrix}$	$ \begin{array}{r} - 554 \\ - 3545 \\ + 3827 \\ - 17503 \end{array} $	$\begin{array}{c} + & 140 \\ + & 22886 \\ - & 27870 \\ + & 99584 \end{array}$		+ 0.5 - 1.8 + 1.3 - 3.7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$(\theta - \theta_0) \sin$						
η	$ \begin{array}{c} 2\theta + 2\mathbf{J} \\ \varepsilon \\ \epsilon + 4\theta + 4\mathbf{J} \\ 2\varepsilon + 2\theta + 2\mathbf{J} \end{array} $	+ 767.7	- 2820. 9	+ 5210	+ 1.265	- 2. 19 - 5. 34 + 0. 78 - 0. 55	+13.6 $+22.7$ $-6.0$ $+3.4$
7'	$ \begin{array}{ccc} 2\theta + \mathbf{J} \\ \epsilon + \mathbf{J} \\ \epsilon + 4\theta + 3\mathbf{J} \\ 2\epsilon + 2\theta + 3\mathbf{J} \end{array} $	- 570.0	+ 2421.1	- 4950	<b>—</b> 0. 455	+ 1.63 + 5.94 - 0.58 + 0.41	-11.0 $-37.3$ $+4.8$ $-2.8$
7, 2	$\begin{vmatrix} 4\theta + 4J \\ \epsilon + 2\theta + 2J \\ -\epsilon + 2\theta + 2J \\ 2\epsilon + 4\theta + 4J \end{vmatrix}$					+ 10. 93 - 2. 19 - 1. 92 + 3. 12	
$\eta \eta'$ $\eta^3$	4θ+3. <b>1</b> ε	-570.0 $+6624$	+ 2421.1 - 47448	- 4950	- 0. 455 +23. 8	$\begin{array}{c} + & 5.94 \\ - & 23.00 \\ -221.9 \end{array}$	<b>-</b> 7. 2
$\eta^2\eta'$	$\begin{vmatrix} \epsilon + & A \\ -\epsilon + & A \end{vmatrix}$	$-18540 \\ + 8414$	$+123024 \\ -57880$		$-73.4 \\ +36.0$	$+572.4 \\ -282.2$	
η η'2	$\epsilon \\ \epsilon + 2\Delta$	$+25564 \\ +10478$	-157424 $-70250$		+87.3 +55.2	-652. 8 -374. 8	
$\eta'^3$	ε+ Δ	-15678	+ 94846		-69. 9	+438.6	
$j^2\eta$	$\begin{array}{ccc} \varepsilon & & & & & \\ \varepsilon + & & & & & & & & & & \\ \end{array}$	$-25564 \\ +22012$	+157424 121258	$-511232 \\ +359162$	-23.1 + 9.9	+165.0 - 77.0	
$j^2$ $\eta'$	$\begin{array}{ccc} \epsilon + & \jmath \\ \epsilon + & \Sigma \end{array}$	$+23524 \\ -12048$	-150306 + 76364	$+498328 \\ -251640$	+14.8 $-5.2$	-112.0 + 45.8	
	$(\theta - \theta_0)^2 \cos$						
$^{\eta}_{~\eta'}$	ε . + .					$\begin{array}{c c} - & 0.356 \\ + & 0.266 \end{array}$	+ 2. 623 - 2. 100
	1		m'			m'2	

TABLE XXIXa—Continued.

 $\overline{W}$ .

Unit=1"

	Cos	wo	w	W3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} + & 913.5 \\ - & 2315 \\ - & 284.3 \\ - & 79.2 \end{vmatrix} $	$\begin{array}{lll} -& 1400.1\\ +& 9277\\ +& 948.2\\ +& 288.5 \end{array}$
η	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6172.8 + 511.2 - 467.9 - 2217.1 - 5.8 - 364.3	$\begin{array}{r} -20580 \\ -2834 \\ +2335 \\ +23971 \\ +539 \\ +3259 \end{array}$	$\begin{array}{r} + 86549 \\ + 7746 \\ - 6259 \\ -157308 \\ - 3713 \\ - 15083 \end{array}$
η'	$ \frac{1}{2}\varepsilon + 3\theta + 2J \\ -\frac{1}{2}\varepsilon + \theta \\ \frac{3}{2}\varepsilon + \theta + 2J \\ \frac{3}{2}\varepsilon + 5\theta + 4J \\ \frac{5}{2}\varepsilon + 3\theta + 4J \\ \frac{5}{2}\varepsilon + 7\theta + 6J $	- 8375. 5 - 1023. 4 - 92. 3 + 3383. 4 - 138. 6 + 583. 3	+ 20591 + 4443 - 444 - 34097 + 608 - 4805	$\begin{array}{r} -95913 \\ -10251 \\ +3212 \\ +214736 \\ -1089 \\ +20748 \end{array}$
$\eta^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -5022 \\ -31492 \\ +8169 \\ -59 \\ +12392 \\ +1133 \\ +2342 \end{array}$	$\begin{array}{r} + 24269 \\ + 154465 \\ - 18309 \\ + 7449 \\ - 182737 \\ - 5174 \\ - 25879 \end{array}$	
<b>ካ ካ</b> ′	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6153 + 988 +88784 -14498 - 1309 + 4878 -37540 - 3487 - 7382	- 26311 - 15732 - 357566 - 3083 - 5 - 31947 + 526187 + 12764 + 77025	
7,72	$ \frac{1}{2}\varepsilon + \theta + J  \frac{1}{2}\varepsilon + 5\theta + 3J  -\frac{1}{2}\varepsilon + 3\theta + J  \frac{1}{2}\varepsilon - \theta + J  \frac{1}{2}\varepsilon + 3\theta + 3J  \frac{1}{2}\varepsilon + 7\theta + 5J $	$\begin{array}{r} -5966 \\ -61877 \\ -1709 \\ +1693 \\ -5297 \\ +28418 \end{array}$	$\begin{array}{c} + 27801 \\ +192684 \\ + 26144 \\ - 6306 \\ + 28649 \\ -377278 \end{array}$	
$j^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6846 - 3191 - 806 - 3829 + 932 + 1762	$\begin{array}{r} -30542 \\ +15590 \\ +10210 \\ +33852 \\ -14562 \\ -6460 \end{array}$	-
			m'	

Table XXIXb.  $[(1-e\cos\epsilon) \ \overline{W}]$ 

			)	$[(1-e\cos\epsilon)\ \overline{W}]$				Unit = 4th deci	Unit = 4th decimal of a radian.
	Cos	9-71	<b>≯</b> −i71	£1,−3	7.3	W-1	0,00	a	Lu3
				-0.00004	+0.01060	- 0.054	4.0682	+ 12.406	- 16.59
ŋ	$2\theta + 2J$		-0.000055	+0.00041	-0.2771	+ 45. 203	- 72.26	+ 21.0	+164.8
,'u	$\Gamma + \theta C$		+0.000020	-0.00017	+0.4017	- 18.414	+ 19,67	+ 72.1	-288.5
$\eta^2$	40+41		+0.00081 +0.00011	-0.0533 -0.0470	+0. 423 +1. 294	$\begin{array}{ccc} -&2.32\\ -&131.22 \end{array}$	- 50.0 + 293.6	+ 279.4 - 542	+126.2 $+111$
n n'	40+31		-0.00145 -0.00003	+0.0457 +0.0336	-0.717 -3.432	+ 4.83 + 381.92	$\begin{array}{ccc} + & 120.2 \\ - & 561.9 \end{array}$	- 655.4 + 910	-120.0 -162
η'2	49+23		+0.00042 $-0.00027$	-0.0099 -0.0043	+0.333 +2.441	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 83.96 + 192.5	+ 413.1 - 373.5	
j. ₂	$4\theta + 3J - S$		-0.00003	+0.0003	-0.186 +0.052	$\begin{array}{ccc} + & 1.345 \\ - & 15.295 \end{array}$	+ 79.15 + 10.3	- 413.1 + 109	
$\eta^3$	20+2J 60+6J	+0.00030 +0.0001	-0.0022 -0.0008	+0.262 +0.262	-1.70 -1.70	+ 28.2 + 428	- 433 - 2295		
,½,4	Γ + θ2 Γ + θ2 Γ + 29	$\begin{array}{c} -0.00021 \\ -0.00011 \\ -0.00011 \end{array}$	+0.0018 +0.0009 +0.001	-0.767 -0.094 -0.86	+4. 46 +0. 69 +5. 2	-316.1 + 108.5 -1889	+ 1591. 5 - 49 + 8900		
η η''2	29 29+21 69+41	+0.00004 +0.00008 +0.00004	-0.0004 -0.0009	+0.555 +0.276 +0.83	-2.87 -1.85	+ 237. 6 $-$ 125. 3 $+$ 2770	- 1030 - 552 -11240		
$\eta'^3$	20+ J 60+3J	_0.00001 _0.00005		_0.200 _0.200	+1.21	-168.7 $-1346$	+ 867 + 4580		
$j^2\eta$	$3 - F + \frac{60}{400}$ $3 - F + \frac{60}{400}$			+0.032	-0.23	+ 126.0 $-$ 389.4 $+$ 113	$\begin{array}{ccc}  & 620 \\  + 1844 \\  & 730 \end{array}$	-4500	
j ² η'	$2\theta + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} - \frac{2}{2} = \frac{2}{2}$			-0.011 -0.011	+0.09 +0.09	$\begin{array}{c} + 362.4 \\ - 7.7 \\ - 187 \end{array}$	-1749 + 144 + 1080		
π	$( heta- heta_0)$ sin $2 heta+2 heta$		-0.000176	+0.00132	-0.1098	+ 0.6675	- 1. 920		
η'	$5\theta + A$		+0.000063	-0.00053	+0.0805	- 0, 5404	+ 1.692		
$\eta^2$	<i>F</i> ++ <i>θ</i> +		+0.000100	-0.00890	+0,492	3.760	+ 8.04	-	

40+34		-0.00168	-0.00001 +0.01469	-0.000 -1.086	1+	0, 39 8, 037	1 1	5. 97 17. 28		
40+21		+0.00048	-0, 00444	+0.536	I	4,046	+	9, 024		
$(\theta - \theta_0)^2 \cos$		+0,000171	-0.00149	+0.0520	1	0, 382	+	1. 055		
77	-	-0.000188	+0.00177	-0.0771	+	0.610	1	1. 798		
		+0.000046	-0, 000464	+0.0286	1	0, 243	+	0, 765		
	m'3	m.cs	m'3, m'2	m'3, m'2	m'2	m'2, m'	m	m'2, m'	m'	m,

TABLE XXIXe.

$$\frac{1}{3}\Xi$$

Unit=1"

			11:-	1			₹₹:−\$	
	Cos	$w^{_0}$	w	W ²	11.3	$w^0$	w	<i>u</i> .4
	$\frac{\varepsilon+2\theta+2\mathbf{J}}{2\varepsilon+4\theta+4\mathbf{J}}$		- 90.5 - 26.6	$\begin{array}{cccc} + & 302.7 \\ + & 125.5 \end{array}$	- 478. 2 - 270. 3		-	
η	$2\theta + 21$	+ 589.8	- 1571.9	+ 1680			$\begin{array}{c} -1.82 \\ +0.42 \end{array}$	+12.00 $-2.10$
	$\begin{array}{c} \varepsilon+4\theta+4J \\ 2\varepsilon+2\theta+2J \\ 2\varepsilon+6\theta+6J \end{array}$		$\begin{array}{cccc} + & 616 \\ + & 23 \\ + & 219 \end{array}$	- 3638 - 161 - 1451	+11175 + 439 + 4616		- 0.42	+ 2.10
η'	$\begin{array}{ccc} 2\theta + \mathbf{J} \\ \varepsilon + \mathbf{J} \\ \varepsilon + 4\theta + 3\mathbf{J} \\ 2\varepsilon + 2\theta + 3\mathbf{J} \\ 2\varepsilon + 6\theta + 5\mathbf{J} \end{array}$	- 106.1	$ \begin{array}{rrrr} + & 360 \\ - & 43 \\ - & 760 \\ + & 52 \\ - & 314 \end{array} $	$\begin{array}{r} - & 517 \\ + & 161 \\ + & 3906 \\ - & 143 \\ + & 1874 \end{array}$	$ \begin{array}{r} -269 \\ -10778 \\ +87 \\ -5403 \end{array} $		+ 1.81 - 0.08 + 0.08	-10.64 $+0.45$ $-0.45$
$\eta^2$	$\begin{array}{c} 4\theta + 4\mathbf{J} \\ \varepsilon + 2\theta + 2\mathbf{J} \\ \varepsilon + 6\theta + 6\mathbf{J} \\ -\varepsilon + 2\theta + 2\mathbf{J} \\ 2\varepsilon \end{array}$	-1679	$ \begin{array}{r} + 7272 \\ + 274 \\ - 3474 \\ + 1156 \end{array} $	$ \begin{array}{r} -13527 \\ -63 \\ +29267 \\ -2171 \end{array} $		-0. 317 -0. 633	$\begin{array}{c} +\ 1.\ 63 \\ +10.\ 02 \\ -\ 1.\ 20 \\ +\ 3.\ 60 \\ -\ 2.\ 40 \\ -\ 0.\ 21 \end{array}$	
	$2\varepsilon + 4\theta + 41$ $2\varepsilon + 8\theta + 8\mathbf{J}$		$\begin{vmatrix} + & 180 \\ - & 1375 \end{vmatrix}$	$+\   113 \\ +11897$			+ 0. 21	
7 7	$\begin{array}{c} 4 \\ 4\theta + 3\mathbf{J} \\ \varepsilon + 2\theta + \mathbf{J} \\ \varepsilon + 2\theta + 3\mathbf{J} \\ \varepsilon + 6\theta + 5\mathbf{J} \\ -\varepsilon + 2\theta + \mathbf{J} \\ 2\varepsilon + \mathbf{J} \\ 2\varepsilon + 4\theta + 3\mathbf{J} \\ 2\varepsilon + 4\theta + 5\mathbf{J} \\ 2\varepsilon + 8\theta + 7\mathbf{J} \end{array}$	+3690	$ \begin{vmatrix} -12966 \\ + 222 \\ - 769 \\ + 9240 \\ - 646 \\ + 99 \\ - 109 \\ - 846 \\ + 4012 \end{vmatrix} $	+19401 - 1234 + 2197 -70866 + 1806 - 444 - 922 + 4256 -31827		+0. 227 +0. 340	$ \begin{vmatrix} -1.30 \\ -19.92 \\ +1.96 \\ +0.01 \\ -7.25 \\ +5.27 \\ +0.04 \\ -0.04 \end{vmatrix} $	
η'2	$4\theta + 2\Delta$ $\varepsilon + 2\theta + 2\Delta$ $\varepsilon + 6\theta + 4\Delta$ $-\varepsilon + 2\theta$ $2\varepsilon + 2\Delta$	-1780	+ 4725 + 499 - 5930 - 55	- 5354 - 649 +40905		-0. 039 -0. 039	$\begin{array}{c c} + 0.24 \\ +10.42 \\ - 0.32 \\ + 2.86 \\ - 2.54 \end{array}$	
	$2\epsilon + 4\theta + 4\Delta$ $2\epsilon + 8\theta + 6\Delta$		+ 980 - 2890	$\begin{array}{c} + 285 \\ - 4150 \\ +20791 \end{array}$				
j ³	$4\theta + 3\mathbf{\Delta} - \mathbf{\Sigma}$ $\varepsilon + 2\theta + 2\mathbf{\Delta}$ $\varepsilon + 6\theta + 5\mathbf{J} - \mathbf{\Sigma}$ $-\varepsilon + 2\theta + \mathbf{\Delta} - \mathbf{\Sigma}$ $2\varepsilon + \mathbf{\Delta} + \mathbf{\Sigma}$ $2\varepsilon + 4\theta + 4\mathbf{J}$ $2\varepsilon + 8\theta + 7\mathbf{J} - \mathbf{\Sigma}$	- 101	+ 493 + 587 - 193 - 192 + 298 - 65	- 1128 - 2983 + 1759 + 705 - 1876 + 616			+ 0.11 + 0.14 - 0.14	
			1	m'	1		$m'^2$	1

TABLE XXIXe- Continued.

 $\frac{1}{3}\Xi$ 

Unit =1"

	Cos	11·0	v	11:3
	$\frac{1}{2}\varepsilon + \theta + J$ $\frac{4}{2}\varepsilon + 3\theta + 3J$ $\frac{3}{2}\varepsilon + 5\theta + 5J$ $\frac{7}{2}\varepsilon + 7\theta + 7J$	$\begin{array}{rrrr} - & 31.4 \\ - & 48.0 \\ - & 15.2 \\ - & 5.2 \end{array}$	+ 131.0 + 193.6 + 81.7 + 34.7	$\begin{array}{rrr} - & 255 \\ - & 360 \\ - & 201 \\ - & 107 \end{array}$
7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + \ 1304 \\ - \ 196 \\ + \ 34 \\ + \ 356 \\ + \ 1 \\ + \ 138 \end{array}$	$\begin{array}{cccc} -&8173\\ +&506\\ -&146\\ -&2212\\ -&67\\ -&999 \end{array}$	+30282 $-598$ $+292$ $+6781$ $+294$ $+3437$
η'	$\begin{bmatrix} \frac{1}{2}\varepsilon + 3\theta + 2\mathbf{J} \\ -\frac{1}{2}\varepsilon + \theta \end{bmatrix}$	- 1361	+ 7468	-25691
	$\begin{array}{c} \frac{3}{2}\varepsilon + \theta + 2J \\ \frac{3}{2}\varepsilon + 5\theta + 4J \\ \frac{5}{2}\varepsilon + 3\theta + 4J \\ \frac{5}{2}\varepsilon + 7\theta + 6J \end{array}$	$\begin{array}{rrrr} + & 29 \\ - & 482 \\ + & 52 \\ - & 207 \end{array}$	$\begin{array}{c cccc}  & - & 12 \\  & + & 2635 \\  & - & 197 \\  & + & 1348 \end{array}$	$\begin{array}{r} - & 155 \\ - & 7209 \\ + & 280 \\ - & 4176 \end{array}$
η³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 625 - 7151 + 5478 + 18 - 2111 + 187 - 771	+ 3058 + 70387 - 5874 + 1924 + 17665 - 590 + 6931	
ית יח"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -231 \\ +17640 \\ -9842 \\ -892 \\ +106 \\ +5918 \\ +2513 \end{array}$	$\begin{array}{r} - 1142 \\ -159928 \\ + 1346 \\ + 3699 \\ - 2494 \\ - 45149 \\ - 20914 \end{array}$	
η'2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -507 \\ -10202 \\ +1055 \\ -100 \\ +871 \\ -4065 \end{array} $	$\begin{array}{r} + 2729 \\ + 84314 \\ - 678 \\ + 387 \\ - 2817 \\ + 27951 \end{array}$	
<i>j</i> ²	$ \frac{1}{2}\varepsilon + \theta + J  \frac{1}{2}\varepsilon + 5\theta + 4J - \Sigma  -\frac{1}{2}\varepsilon + 3\theta + 2J - \Sigma  \frac{2}{2}\varepsilon + 3\theta + 3J  \frac{2}{2}\varepsilon + 7\theta + 6J - \Sigma  -\frac{2}{2}\varepsilon + \theta - \Sigma $	+ 601 - 423 + 285 + 426 - 108 - 106	$\begin{array}{rrrr} - & 3122 \\ + & 4435 \\ - & 356 \\ - & 2410 \\ + & 988 \\ + & 402 \end{array}$	
			m'	

TABLE XXIXc-Continued.

$$\frac{1}{3}\Xi$$

 $Unit\!=\!1^{\prime\prime}$ 

			<i>y</i> ₁~1			w-3	
	Cos		1			<i>w</i> •	
		<i>U</i> ¹⁰	np.	w ²	N.0	u ·	W ²
$\eta^3$	$\begin{array}{c} 2\theta + 21 \\ 6\theta + 61 \end{array}$	$^{+\ 1568}_{+\ 5879}$	$ \begin{array}{rrr}     - & 8912 \\     - & 31559 \end{array} $		+3.6 +3.6	-23.3 -23.3	
$\eta^2\eta'$	$2\theta + \mathbf{J} \\ 2\theta + 3\mathbf{J} \\ 6\theta + 5\mathbf{J}$	$\begin{array}{r} -2385 \\ +2238 \\ -21644 \end{array}$	$\begin{array}{r} +\ 11662 \\ -\ 1015 \\ +102003 \end{array}$		$ \begin{array}{r} -4.7 \\ -2.6 \\ -9.9 \end{array} $	+26.6 $+18.4$ $+59.1$	
η η'2	$\begin{array}{c} 2\theta \\ 2\theta + 24 \\ 6\theta + 4\mathbf{J} \end{array}$	-1723 +25396	- 7588 -103013		$ \begin{array}{r} -0.2 \\ +4.0 \\ +7.6 \end{array} $	$\begin{array}{c} +1.7 \\ -27.1 \\ -43.2 \end{array}$	
$\eta^{\prime 3}$	$ \begin{array}{c} 2\theta + \Delta \\ 6\theta + 3\Delta \end{array} $	- 1160 - 9257	$+\ 5960 \\ +\ 31500$		-1.4 $-1.4$	+ 8.3 + 8.3	
$j^2\eta$	$6\theta + 5\mathbf{J} - \mathbf{\Sigma} \\ 2\theta + 2\mathbf{J}$	+ 1040 - 5354	$\begin{array}{c c} - & 6697 \\ + & 25370 \end{array}$	-61855	+0.3	- 2.1	
$j^2$ $\eta'$	$ \begin{array}{c} 2\theta + \mathbf{J} \\ 2\theta + 2\mathbf{J} - \mathbf{\Sigma} \\ 6\theta + 4\mathbf{J} - \mathbf{\Sigma} \end{array} $	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} - & 12023 \\ + & 989 \\ + & 7413 \end{array}$		-0.1 $-0.1$	+ 0.6 + 0.6	
	$(\theta - \theta_0) \sin$						
η	2θ+2 <b>J</b>					<b>- 0</b> . 55	+3.40
$\eta'$	2θ+ <b>Δ</b>					+ 0.41	-2.74
$\eta^2$	$ \begin{array}{c c} 4\theta + 4J \\ \epsilon + 2\theta + 2J \\ -\epsilon + 2\theta + 2J \end{array} $					- 3. 12 - 1. 10 - 1. 10	
η η'	$ \begin{array}{c c} A \\ 4\theta + 3J \\ \epsilon + 2\theta + J \\ \epsilon + 2\theta + 3J \\ -\epsilon + 2\theta + J \end{array} $	- 569. 95	+ 2421.1	- 4950	+0.45	$\begin{array}{c} + 5.94 \\ - 5.75 \\ + 0.20 \\ + 0.82 \\ + 1.01 \end{array}$	
$\eta'^2$	$ \begin{array}{c c} 4\theta + 2\mathbf{J} \\ \epsilon + 2\theta + 2\mathbf{J} \\ -\epsilon + 2\theta \end{array} $					$\begin{array}{c} + \ 2.55 \\ - \ 0.15 \\ - \ 0.15 \end{array}$	
	$(\theta - \theta_0)^2 \cos$						
ין יו	L					- 0.26	
$\eta'^2$					!	+ 0.20	
			m'			m'2	

#### COMPARISON OF TABLES.

As a computer would discover in constructing tables, and as will be evident from an application of the method to a planet, the coefficients in Table II and others of the same form are given with unnecessary accuracy. Although so many digits would never be required, except in a much more exhaustive development, they are given, for completeness, as they resulted from computation.

In all the tables whose constructions involve the multiplication of trigonometric series, the errors are difficult or impossible to determine. Although v. Zeipel's manuscript, which the author generously furnished for comparison, is of assistance, the computations are not entirely parallel, and comparison is not always possible. Many of the computations are so long and

complicated that the origin of certain discrepancies is obscure. Aside from possible errors of calculation, differences are due to the independent adoption of the highest powers of m', w,  $\eta$ ,  $\eta'$ ,  $j^2$ , and the number of arguments in a given series or product of series. In most cases our series are more complete than v. Zeipel's. Whether or not the extension of the tables increases the accuracy of the result remains to be seen from future applications of the theory.

Tables II-XV.—The discrepancies seem to be due to v. Zeipel's errors of calculation and to their subsequent effects. The larger number of these errors have been traced in the manuscript.

Tables XVI, XVII check satisfactorily.

Table XVIII.—The bracketed quantities in the first three columns are in error through previous discrepancies. We did not discover the source of the general disagreement in terms of the third degree, second order in the mass. These terms do not affect v. Zeipel's subsequent tables, since they are of order higher than have been included.

Tables XIX, XX agree satisfactorily.

Table XXI.—The discrepancies are numerous and their origin is obscure because of the very long computation involved. In addition to performing a complete duplicate computation, the terms of first degree and a part of the computation of second degree terms were cheeked by the solution of the differential equation in the form given in Z 64. With the exception of three or four single instances, the discrepancies occur in two groups, having the following probable explanations. The neglect of the term

$$\frac{3}{4} \left[ \overline{W_1}^2 \right] \frac{d\phi_1}{d\theta}$$

in Z 65, eq. (109), by v. Zeipel accounts for one group of differences. The other group can be fairly well explained by an error in the addition of second order terms in  $+\frac{w}{2}\phi_1$  to  $\phi_2 - \frac{w}{2}\phi_1$ . Assuming that for these terms he added  $-w\phi$ , and, correcting his table, three discrepancies are removed and two others are improved.

Table XXII.—Considering the disagreements in Table XXI, Table XXII checks satisfactorily.

Table XXIII-XXVII.—These tables, like II-XV, are simple in construction, and the discrepancies are due to errors of calculation, or they are the result of previous ones, with the exception that some quantities have different numerical values because they are more inclusive. The latter have been indicated by ( ).

Table XXVIII.—The discrepancies arise from the quantities in parentheses in Table XXVII. The omission of the term depending upon the inclination is justifiable in view of its magnitude.

Table XXIX.—The discrepancies are numerous and striking, but, since v. Zeipel does not give the formulæ of computation, they remain unexplained. The remark is made (Z 77), "Die Berechnung der Funktion  $[(1-e\cos\varepsilon)~(\overline{W}_3-\overline{W}_3")]$ , welche eine sehr komplicirte war, wird hier nicht im Einzelnen mitgetheilt." For this reason the development of the formulæ which we used has been included and the auxiliary functions  $2[T_4]$ ,  $W_3$ ,  $[(1-e\cos\varepsilon)~\overline{W}_3"]$  have been tabulated. The differences are not serious because of the high rank of the function. Our table is deficient in certain terms whose computation would be long and the omission of which is justifiable in view of their magnitude.

#### PERTURBATIONS OF THE MEAN ANOMALY.

For clearness some of v. Zeipel's developments will be amplified and repeated in an order which we found more convenient.

The determination of the disturbed mean anomaly is accomplished with the integration of Z 9, eq. (47), (which implicitly contains Z 8, eq. (38)). By Z 9, eq. (43),

$$\theta = \frac{1}{2}(\varepsilon - e \sin \varepsilon) - g' = \frac{1}{2}g - g'$$

The differential equation is repeated in Z 78, eq. (124), in which is emphasized the fact that the arguments are functions of both  $\varepsilon$  and  $\theta$ , as is the case for  $\frac{dW}{d\varepsilon}$ .

If we observe the character of  $\theta$  as it is expressed in the definition and recall that we have admitted trigonometric terms in  $\theta$ , multiplied by t, it is evident that this argument, which is a function of the disturbed positions of the planet and Jupiter, is not periodic, but varies continuously with the time. In the foregoing equation g and g' can not be regarded as angles which are always less than 360°.  $\theta$  contains, therefore, a nontrigonometric secular part in  $\varepsilon$  and a periodic part in  $\theta$  and  $\varepsilon$ .

If we write

$$\theta = (\theta - [\theta]) + [\theta]$$

 $\theta$  –  $[\theta]$  contains the secular term in  $\varepsilon$  as well as periodic terms. The segregation of terms of different type can be made explicit by the introduction of

$$\theta = \vartheta + \theta_1(\vartheta, \varepsilon) + \theta_2(\vartheta, \varepsilon) + \theta_3(\vartheta, \varepsilon) + \cdots \qquad Z 78, \text{ eq. (125)}$$

where  $\vartheta$  is a function of  $\varepsilon$  and  $\theta_1$ ,  $\theta_2$ ,  $\theta_3 \cdot \cdot \cdot$  are the periodic parts of  $\theta - [\theta]$ , i. e., they are entirely trigonometric functions of  $\varepsilon$ . This covers the condition that  $\theta_i$  can not include trigonometric secular terms in  $\varepsilon$ . By definition of  $\vartheta$  and  $\theta_i$ 

$$\begin{split} &\frac{d\vartheta}{d\varepsilon} \!=\! \left[\frac{d\theta}{d\varepsilon}\right] \!=\! \left[F(\theta,\varepsilon)\right] \!-\! \frac{d[n'\delta z']}{d\varepsilon} \\ &\quad \mathcal{\Sigma}\frac{d\theta_4}{d\varepsilon} \!=\! \left(F(\theta,\varepsilon) \!-\! \left[F(\theta,\varepsilon)\right]\right) \!-\! \frac{d}{d\varepsilon}(n'\delta z' \!-\! \left[n'\delta z'\right]\right) \end{split}$$

where  $[n'\partial z']$  is the long period term between Jupiter and Saturn.

The derivative of (125) is

$$\frac{d\theta}{d\varepsilon} = \frac{\partial \theta}{\partial \varepsilon} + \frac{\partial \theta}{\partial \theta} \frac{d\theta}{d\varepsilon} \\
= \left(\frac{\partial \theta}{\partial \varepsilon}^{1} + \frac{\partial \theta}{\partial \varepsilon} + \frac{\partial \theta}{\partial \varepsilon} + \cdots \right) + \left(1 + \frac{\partial \theta}{\partial \theta}^{1} + \frac{\partial \theta}{\partial \theta}^{2} + \frac{\partial \theta}{\partial \theta}^{3} + \cdots \right) \frac{d\theta}{d\varepsilon}$$

Expanding  $F(\theta, \varepsilon)$ , eq. (124) in a Taylor's series in ascending powers of  $\theta_i$  and making the above substitution for  $\frac{d\theta}{d\varepsilon}$ , (124) becomes (126), in which

$$F(\vartheta, \varepsilon) = \frac{1}{2}(1 - e \cos \varepsilon) \left\{ w + (1 - w) \ \overline{W} - \frac{3}{4}(1 - w) \left( \ \overline{W} - \frac{1}{3}\mathcal{Z} \right) \left( \ \overline{W} + \frac{1}{9}\mathcal{Z} \right) + \cdots \right\}; \qquad \theta = \vartheta$$

From the Taylor's series  $\frac{d\vartheta}{d\varepsilon}$  is written in (127). This is the differential equation for  $\vartheta$ , the right-hand side of which can be computed.

Substituting  $\frac{d\vartheta}{d\varepsilon}$  in (126) and equating functions of equal rank, we have the differential equations (128₁-128₃) for  $\theta_i$ , which can be integrated in succession.

Before integration we convert eqs. (128) into differential equations for  $n\delta z$  as follows:

Let

$$n\delta z = (n\delta z - [n\delta z]) + [n\delta z]$$

$$= n\delta z_1 + n\delta z_2 + n\delta z_3 + \dots + [n\delta z]$$
Z 88, eq. (144),

where  $n\partial z_i$  is not only a function of first and higher orders in m', in which the lowest rank is i, but is entirely trigonometric or periodic. Then

Z 9, eq.(46) gives  $n\delta z - [n\delta z] = \frac{2}{1-w} \Big\{ \theta_1(\vartheta,\varepsilon) + \theta_2(\vartheta,\varepsilon) + \theta_3(\vartheta,\varepsilon) + \cdots + w\eta \sin \varepsilon + (n'\delta z' - [n'\delta z']) \Big\}$  and

$$[n\partial z] = \frac{2}{1-w} \left\{ \vartheta - \frac{w}{2} \varepsilon + [n'\partial z'] + c' - \mu e \right\}$$
 Z 88, eq. (145),

where it is to be noticed that  $[n\partial z]$ , unlike [W], is not free from terms in  $\varepsilon$ . Subdividing the first of these two equations according to rank, we have Z 79, eqs. (130), in which  $-n'\delta z' + [n'\delta z']$  can be neglected.

Differentiating eqs. (130) partially with respect to  $\varepsilon$ , substituting in eqs. (128), evaluating the right-hand sides of eqs. (128), we have eqs. (131₁-131₃), in which the superscript indicates that only terms of first order in the mass are included, and where the argument  $\vartheta$  replaces the argument  $\vartheta$ .

For purposes of calculation, the integrations are arranged as follows:

In

$$\overline{W} = \overline{W}_1 + \overline{W}_2' + [W_2] + (\overline{W}_2'' + W_3'' + \overline{W}_4'')$$

consider first only  $\overline{W}_2^{\prime\prime} + \overline{W}_3^{\prime\prime} + \overline{W}_4^{\prime\prime}$  in the integration of eqs. (131). The integrations will concern only part of the terms of first order in  $n\partial z_1 + n\partial z_2 + n\partial z_3$ . It is shown by v. Zeipel that the integration for all three ranks can be performed conveniently at the same time. Let this part of the function be indicated by enclosing it in ( ). The integral

$$(n\partial z_1^{(1)}) + (n\partial z_2^{(1)}) + (n\partial z_3^{(1)})$$

which is a trigonometric series, is given by Z 80, eq. (135), in which the coefficients  $\overline{L}_{p\cdot q}$  are defined by (136) and are easily derived from Table XXVII. The coefficients  $\overline{L}_{p\cdot q}$  are tabulated in Table XXX.

The remaining terms of rank one which are of first order only, namely,  $n\partial z_1^{(1)} - (n\partial z_1^{(1)})$ , are given by the first of Z 81, eqs. (137), in which  $\overline{W_1}$ ,  $\overline{W_2}$ ,  $[\overline{W_2}]$ , can be written by inspection from Tables XVII, XVIII, XIX, XXIIa. The function is tabulated in Table XXXI.

The remaining terms of first order in  $n\partial z_2$  and  $n\partial z_3$  are given by the sum of Z 82, eqs. (139) and (140). The function

$$n\delta z_2^{(1)} - (n\delta z_2^{(1)}) + n\delta z_3^{(1)} - (n\delta z_3^{(1)})$$

is given in Table XXXII.

These developments complete  $n\partial z^{(1)}$  within the limits of the tables, and we next consider  $n\partial z^{(2)}$ . We shall limit ourselves to functions in which the lowest rank is the first or second. Consequently,  $n\partial z_3$  contributes nothing.

Any function of second order in the mass and first rank must contain the factor  $\frac{m'^2}{w^3}$  and in the given  $F(\vartheta, \varepsilon)$  this factor occurs only in  $\overline{W}_1^{(2)}$ . We have, therefore, by Z 80, eq. (131₁), for one part of  $n\partial z_1^{(2)}$ , indicated by parentheses,

$$(n \partial z_1^{(2)}) = \int \big\{ (1 - e \cos \varepsilon) \; \overline{W}_1^{(2)} - [(1 - e \cos \varepsilon) \; \overline{W}_1^{(2)}] \big\} d\varepsilon$$

This function is tabulated in Table XXXIII.

 $Unit = I^{\prime\prime}$ 

١.	4
1	ġ
í.	i.
~	4
:	
۲	•
•	٠.
£	ABL

u	0	-	61		3	40	10		9		-	x		6	10	
$\tilde{L_{0\cdot 0}}(n,-n)$		- 586. 66	- 237. 94 $+$	+	225. 33	+ 51.36	+	17.14	[+ 6.81]	+	2. 99	+ 1.38	+ 88	0.70	+ 0.36	
$\frac{\overline{L}_{1\cdot 0}(n\!+\!1,-n)}{\overline{L}_{1\cdot 0}(n\!-\!1,-n)}$	+ 225.4 - 225.4	+ 116.5 - 1608.8	+ 66.4	1+	137. 5 11669. 6	- 28.3 + 1185.8	$\begin{vmatrix} 3 & - & 6.5 \\ + & 1506.7 \end{vmatrix}$		- 0.8 + 396.2	+ 1	0.6 149.9	+ 0.8	→ 1 + 1	0.6	+ 0.5 - 16.5	
$\frac{\overline{L}_{0\cdot 1}(n,-n+1)}{\overline{L}_{0\cdot 1}(n,-n-1)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 185.7	-61.5 $-16751.2$	1 1	88. 4 1989. 6	- 55.4 + 2255.6	1 +	32, 5	- 18.9 + 233.3	1+	11.1 $105.2$	$\begin{array}{cccc} - & 6.5 \\ + & 51.8 \end{array}$	1+	3.9	- 2.4 + 14.5	
$\overline{L}_{2\cdot n}(n+2n) \ \overline{L}_{2\cdot n}(n,-n) \ \overline{L}_{2\cdot n}(n,-n)$	+ 1	+ 258 -10130 - 415	+ 50 - 1514 + 776	+ 1 1	6 4151 3992	2 - 972 - 972	$\begin{array}{c c} - & 2 \\ + & 626 \\ - & 58550 \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ι +	0 18 8504	$\begin{array}{cc} & 0 \\ - & 32 \\ + & 2410 \end{array}$	ı +	0 28 981	0 - 21 +466	
$\frac{\overline{L}_{1:1}(n+1n+1)}{\overline{L}_{1:1}(n+1n+1)}$ $\frac{\overline{L}_{1:1}(n+1n-1)}{\overline{L}_{1:1}(n+1n-1)}$	- 821 - 7178 + 7178 + 821	- 368 + 2559 - 1797	- 64 + 2160 + 4711 + 12244	+ 1 +	27 1047 1164	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 8 + 1444 - 191 + 19042		$\begin{array}{cccc} + & 1 \\ + & 767 \\ - & 10 \\ - & 25415 \end{array}$	1++1	2 440 30 7322	+ 262 + 34 - 3025	1++1	3 160 29 1459	+ + 93 -765	
$rac{ar{L}_{0\cdot 2}(n,-n+2)}{ar{L}_{0\cdot 2}(n,-n)} \ rac{ar{L}_{0\cdot 2}(n,-n)}{ar{L}_{0\cdot 2}(n,-n-2)}$	- 408 + 408	$\begin{array}{c} + 1129 \\ -11930 \\ + 3418 \end{array}$	+ 188 + 930	+ 1 1	56 3531 123754	+ 33 - 1772 - 15453	+ 27 - 1018 + 18945		+ 21 - 614 + 5553	+1+	379 2333	+ 12 + 238 + 1142	+   +	.9 151 608	+ 6 + 96 +340	
$\begin{array}{l} \bar{L}_{0\cdot 0}(n+1,-n+1) + \sigma \\ \bar{L}_{0\cdot 0}(n-1,-n-1) - \sigma \\ \bar{L}_{0\cdot 0}(n+1,-n-1) + \tilde{\sigma} \\ \bar{L}_{0\cdot 0}(n-1,-n+1) - \tilde{\sigma} \end{array}$	+ 587 - 587 + 3570 - 3570	+ 512 + 433 + 1201	+ 237 + 1612 - 1615 + 6552	+ ++	121 450 725	+ 65 - 6382 - 177 - 939	+ 36 - 582 - 81 - 244		++ - 20 - 40 - 91	++11	150 150 40	++ 53 + 19	++11	+ 61 r 0	++ 10 + 70	
$\overline{L_{0\cdot 0}(n\cdot -n)}$		+ 2413.6	+ 1075.1		1768. 5	- 379.	8 - 130.	8.6	54.8		25.6	12.8	oc	6.7	3.6	
$\bar{L}_{1\cdot 0}(n+1n)$ $\bar{L}_{1\cdot 0}(n-1n)$	- 737 + 737	$+\ 1084 + 6180$	(187)	+ 1	1021 70526	+ 200 - 9499	+ 46 + 18752		+ 4232	1+	7 1558	- + 701	14	7 351	$+\frac{5}{187}$	
$\frac{\overline{L}_{0\cdot 1}(n,-n+1)}{\overline{L}_{0\cdot 1}(n,-n-1)}$	+ 3420 - 3420	992 +	- 275 $+$ 91438	++	317 14703	$\begin{array}{ccc} + & 275 \\ - & 26491 \end{array}$	+ 193 - 6018		+ 128 - 2248	+ 1	83 1027	+ - 521	+ 1	352	+ 22 - 159	
$\overline{L}_{2\cdot 0}(n+2n) \over \overline{L}_{2\cdot 0}(n-2n)$	+ 352	$-1472 \\ +58689 \\ +1153$	$ \begin{array}{ccc} - & (282) \\ [(+ & 5580)] \\ [(- & 3214)] \end{array} $	1+1	66 16299 34026	- 2 + (7168)	+ 8 - 8328 +542444		$\begin{array}{ccc} + & 5 \\ - & 998 \\ + & 67140 \end{array}$	Ŧ <u>.</u>	$^{0}_{-144713}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & 4 \\ + & 288 \\ -12916 \end{array}$	4 288 916		
$\begin{split} \bar{L}_{1:1}(n+1n+1) \\ \bar{L}_{1:1}(n-1n+1) \\ \bar{L}_{1:1}(n+1n-1) \\ \bar{L}_{1:1}(n-1n-1) \end{split}$	+ 2329 +37422 -37422  - 2329	+ 2072 [(-14117)] [(+ 6421)]	$\begin{array}{ccc} + & 929 \\ - & 32828 \\ - & 10066 \\ + & 109204 \end{array}$	++1	85 3112 [[ (7326)	$ \begin{array}{cccc}  & & 27 \\  & & 25186 \\  & & 13010 \\  & & -1484032 \end{array} $	$ \begin{vmatrix} - & 11 \\ - & 10886 \\ + & 2031 \\ -206260 \end{vmatrix} $		+ 16 - 6134 + 141 +414666	+11+	32 3752 295 96717	$\begin{array}{c} + & 40 \\ - & 2386 \\ - & 358 \\ - & 358 \\ +37531 \end{array}$	$\begin{array}{ccc} + & 36 \\ - & 1553 \\ - & 315 \\ + 17877 \end{array}$	36 1553 315 7877		

		1		
	_	+ 18		
- 77 + 1433 - 7034	- 42 - 307 + 74 + 116	+ 31	- 1873 - 145	+ 1472
$\begin{vmatrix} - & 95 \\ + & 2120 \\ -13085 \end{vmatrix}$	- 68 + 745 + 125 + 215		_ 3696 _ 207	+ 2648
$ \begin{array}{ccc}  & & 116 \\  & + & 3153 \\  & - & 27124 \end{array} $	$ \begin{array}{rrr}     & - & 108 \\     & - & 2227 \\     & + & 218 \\     & + & 427 \end{array} $	108		+ 5151
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -172 \\ -11156 \\ +400 \\ +935 \end{array}$	+ 221	- 24224 - 399	+ 11447
$\begin{pmatrix} - & 156 \\ + & 7288 \\ -295725 \end{pmatrix}$	- 278 + 7179 + 756 + 2454	+ 510	[-136738] - 525	+ 33010
$\begin{vmatrix} - & 196 \\ + & 11805 \\ + & 157973 \end{vmatrix}$	- 453 + 63070 + 1590 + 9908	+ 1488	+ 42675	+ 187295
$\begin{vmatrix} -&361\\+&22629\\+1004134 \end{vmatrix}$	- 751 + 3975 - 5178		+ 366108	- 60481
- 1093 - 396	$\begin{array}{cccc}  & 1276 \\  & -15578 \\  & +15213 \\  & -36180 \end{array}$	- 2489 + (397)	+ 2232	-466174
-3828 + 67536 - 42030	- 2242 - 1481 - 7328	- 5214 - 3601	-12114 $-1504$	
+ 1159	$\begin{array}{c} - 1958 \\ + 1958 \\ - 19300 \\ + 19300 \end{array}$	+ 1164	- 1164 - 6831	+ 6831
$\left  \begin{array}{c} \overline{L_{0\cdot 2}(nn+2)} \\ \overline{L_{0\cdot 2}(nn)} \\ \overline{L_{0\cdot 2}(nn-2)} \end{array} \right $	$\begin{array}{l} \overline{I_{0 \cdot 0}(n+1, -n+1) + \sigma} \\ \overline{I_{0 \cdot 0}(n-1, -n-1) - \sigma} \\ \overline{I_{0 \cdot 0}(n+1, -n-1) + \vartheta} \\ \overline{I_{0 \cdot 0}(n+1, -n-1) + \vartheta} \end{array}$	$L_{0.0}(n,-n)$ $\widetilde{L}_{1.0}(n+1,-n)$	$I_{i_1 \cdot 0}(n-1,-n)$ $\underbrace{I_{0 \cdot i}(n,-n+1)}$	$L_{0.1}(n,-n-1)$
		z. $n$	Factor	

The coefficients in parentheses are functions of the coefficients in parentheses in Table XXVII.

TABLE XXXI.  $n\delta z_1^{(1)} - (n\delta z_1^{(1)})$ 

Unit=1"

	noz ₁	$(n\delta z_1^{(1)})$		Unit=1"
	47-		<i>u</i> :-1	
	Sin	u.0	w	w ²
	$\varepsilon + 2\vartheta + 21$	+ 294.89	- 740. 6	+ 734
η	$egin{array}{c} arepsilon +4\vartheta +4artheta \ 2arepsilon +2artheta \ +2artheta +2artheta \end{array}$	- 839. 5 - 147. 4	$\begin{array}{ccc} + & 3495 \\ + & 517 \end{array}$	$ \begin{array}{rrr}  & 6224 \\  & 737 \end{array} $
$\eta'$	$\begin{array}{c} \varepsilon + \mathbf{J} \\ \varepsilon + 4\vartheta + 3\mathbf{J} \end{array}$	+ 1229.8	- 4069	+ 5671
7, ²	$ \begin{array}{c c} -\varepsilon + 2\vartheta + 2J \\ \varepsilon + 2\vartheta + 2J \\ \varepsilon + 6\vartheta + 6J \\ 2\varepsilon + 4\vartheta + 4J \\ 2\varepsilon \end{array} $	$\begin{array}{c} + & 784 \\ - & 202 \\ + & 2940 \\ + & 415 \end{array}$	$ \begin{array}{c c} (- & 3570) \\ (- & 1657) \\ (- & 17009) \\ (- & 2587) \\ - & 192 \end{array} $	$\begin{array}{c} (+\ 10522) \\ (+\ 13183) \\ [(+\ 43527)] \\ (+\ 6440) \\ +\ 705 \end{array}$
$\eta   \eta'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2386 \\ +1492 \\ -1962 \\ -8658 \\ -615 \end{array}$	$\begin{array}{l} (+\ 11567) \\ (-\ 968) \\ (+\ 9257) \\ (+\ 42767) \\ (+\ 3264) \\ +\ 142 \end{array}$	$\begin{array}{c} (+\ 37527) \\ (-\ 12562) \\ (-\ 23263) \\ (-\ 92732) \\ (-\ 6905) \\ -\ 605 \end{array}$
η'2	$ \begin{array}{c c} -\epsilon + 2\vartheta \\ \epsilon + 2\vartheta + 2\vartheta \\ \epsilon + 6\vartheta + 4\vartheta \end{array} $	$+ 1634 \\ - 861 \\ + 6349$	$\begin{array}{rrr} - & 7081 \\ - & 3794 \\ - & 25753 \end{array}$	$\begin{array}{r} + 16199 \\ + 22127 \\ + 45318 \end{array}$
$j^2$	$ \begin{array}{c c} -\varepsilon + 2\vartheta + J - \Sigma \\ \varepsilon + 6\vartheta + 5J - \Sigma \\ \varepsilon + 2\vartheta + 2J \end{array} $	$\begin{array}{c} + & 866 \\ + & 260 \\ - & 2677 \end{array}$	$ \begin{array}{rrr}  & 4260 \\  & 1674 \\  & + 12681 \end{array} $	+ 10988  + 5101  - 30930
<b>7</b> ,3	$\begin{bmatrix} \epsilon + 4\vartheta + 4J \\ -\epsilon + 4\vartheta + 4J \\ \epsilon + 8\vartheta + 8J \end{bmatrix}$	$   \begin{array}{r}     + 5907 \\     - 269 \\     -11300   \end{array} $	$ \begin{array}{rrr}  & -11149 \\  & +5158 \\  & +76249 \end{array} $	
$\eta^2 \eta'$	$ \begin{array}{c} \epsilon + 4\vartheta + 5J \\ \epsilon + 4\vartheta + 3J \\ - \epsilon + 4\vartheta + 3J \\ \epsilon + 8\vartheta + 7J \end{array} $	$ \begin{array}{r} -11449 \\ -11270 \\ + 1744 \\ +50005 \end{array} $	$   \begin{array}{r}     + 42212 \\     + 951 \\     - 23941 \\     -304611   \end{array} $	
$\eta \eta'^2$	$ \begin{array}{c} \varepsilon + 4\vartheta + 4J \\ \varepsilon + 4\vartheta + 2J \\ - \varepsilon + 4\vartheta + 2J \\ \varepsilon + 8\vartheta + 6J \end{array} $	+26091  +3985  -3137  -73583	$\begin{array}{r} -71730 \\ +16118 \\ +35021 \\ +400009 \end{array}$	
$\eta'^3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -13756 \\ + 3317 \\ + 36006 \end{array} $	$\begin{array}{r} + 22165 \\ - 18452 \\ -172164 \end{array}$	1
$j^2\eta$	$ \begin{array}{c c} \epsilon + 4\vartheta + 3J - \Sigma \\ - \epsilon + 4\vartheta + 3J - \Sigma \\ \epsilon + 8\vartheta + 7J - \Sigma \\ \epsilon + 4\vartheta + 4J \end{array} $	$\begin{array}{r} -1707 \\ -2112 \\ -2381 \\ +14204 \end{array}$	+ 13125 + 15096 + 18919 - 88026	
$j^2$ $\eta'$	$\begin{vmatrix} \varepsilon + 4\vartheta + 4\Delta - \Sigma \\ -\varepsilon + 4\vartheta + 2J - \Sigma \\ \varepsilon + 8\vartheta + 6J - \Sigma \\ \varepsilon + 4\vartheta + 3J \end{vmatrix}$	$ \begin{array}{r}     -554 \\     +3545 \\     +3827 \\     -17503 \end{array} $	$\begin{array}{c c} + & 140 \\ - & 22885 \\ - & 27870 \\ + & 99584 \end{array}$	
r.	$+(\vartheta-\vartheta_0)\cos$	- 767.7	+ 2821	- 5210
$\eta = \eta'$	$\epsilon + 1$	+ 570.0	- 2421	+ 4950
$\eta^2$	2ε	- 384	$\begin{array}{c c} + & 1410 \\ - & 1211 \end{array}$	-2605 + 2475
$\eta \eta'$	$2\varepsilon + \Delta$	$+ 285 \\ - 6624$	- 1211 $+ 47448$	+ 2475
$\eta^3 \ \eta^2 \eta'$	ε+ Δ - ε+ Δ	[+17970] + 8984	$   \begin{bmatrix}     -120603 \\     -60301   \end{bmatrix} $	
η η′2	$\epsilon + 2\Delta$	$-10478 \\ -25564$	$+70250 \\ +157424$	
$\eta'^3$	ε ε+ 1	+15678	- 94846	ŀ
$j^2\eta$	$\varepsilon + 1 + \Sigma$	$-22012 \\ +25565$	$+121258 \\ -157424$	-359162 [+511232]
$j^2$ $\eta'$	ε ε + Δ	$+12048 \\ -23524$	$ \begin{array}{r} -137424 \\ -76364 \\ +150306 \end{array} $	+251640 -498328
			m'	

TABLE XXXII.

 $n\delta z_2^{(1)} = (n\delta z_2^{(1)})$ 

 $+ \, n \delta z_3^{\,(1)} - (n \delta z_3^{\,(1)})$ 

Unit-I".

	Sin	u·0	w
	$\varepsilon + 2\vartheta + 2\mathbf{J}$	- 294. 9	+ 1036
η	$\begin{array}{c}\varepsilon\\\varepsilon+4\vartheta+4J\\2\varepsilon+2\vartheta+2J\end{array}$	$\begin{array}{c c} + & 384 \\ + & 1679 \\ - & 74 \end{array}$	$egin{array}{cccc} -&1410\ -&10348\ +&149 \end{array}$
$\eta'$	$\begin{array}{c} \varepsilon + \mathbf{J} \\ \varepsilon + 4\vartheta + 3\mathbf{J} \end{array}$	$-{285} \\ -{2460}$	+ 1211 + 13057
η²	$\begin{array}{c} -\ \varepsilon + 2\vartheta + 2\mathtt{J} \\ \varepsilon + 2\vartheta + 2\mathtt{J} \\ \varepsilon + 6\vartheta + 6\mathtt{J} \\ 2\varepsilon + 4\vartheta + 4\mathtt{J} \\ 2\varepsilon \end{array}$	$ \begin{vmatrix} - & 101 \\ - & 978 \\ - & 8820 \\ + & 424 \\ [+ & 96] \end{vmatrix} $	$ \begin{array}{rrr}  & -883 \\  & +6459 \\  & (+77487) \\  & -1332 \\  & [-352] \end{array} $
ק קי	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2068 - 1492 + 2280 + 25974 - 615 [- 71]	$\begin{array}{c} + 8418 \\ + 2460 \\ - 12618 \\ (-206223) \\ + 1420 \\ [+ 303] \end{array}$
η'2	$\begin{array}{c} -\epsilon + 2\vartheta \\ \epsilon + 2\vartheta + 2 \mathtt{J} \\ \epsilon + 6\vartheta + 4\mathtt{J} \end{array}$	$\begin{array}{r} + & 1634 \\ + & 861 \\ - & 19047 \end{array}$	$\begin{array}{r} - & 5447 \\ + & 2933 \\ [+134400] \end{array}$
j ²	$ \begin{array}{l} -\varepsilon + 2\vartheta + \varDelta - \Sigma \\ \varepsilon + 6\vartheta + 5\varDelta - \Sigma \\ \varepsilon + 2\vartheta + 2\varDelta \end{array} $	$\begin{array}{c c} + & 866 \\ - & 780 \\ + & 2677 \end{array}$	$ \begin{array}{r}  - 3394 \\  + 7362 \\  - 15358 \end{array} $
η3	$\begin{array}{c c} \varepsilon + 4\vartheta + 4J \\ -\varepsilon + 4\vartheta + 4J \\ \varepsilon + 8\vartheta + 8J \end{array}$	$\begin{array}{r} - & 5098 \\ + & 4499 \\ + & 45200 \end{array}$	
$\eta^2\eta'$	$\begin{array}{c} \varepsilon + 4\vartheta + 5J \\ \varepsilon + 4\vartheta + 3J \\ - \varepsilon + 4\vartheta + 3J \\ \varepsilon + 8\vartheta + 7J \end{array}$	$\begin{array}{r} + 22898 \\ + 5322 \\ - 11270 \\ -200020 \end{array}$	
η η'2	$ \begin{array}{c} \epsilon + 4\vartheta + 4\vartheta \\ \epsilon + 4\vartheta + 2\vartheta \\ - \epsilon + 4\vartheta + 2\vartheta \\ \epsilon + 8\vartheta + 6\vartheta \end{array} $	$\begin{array}{r} -52182 \\ +2712 \\ +4408 \\ +294332 \end{array}$	
η/3	$ \begin{array}{cccc} \varepsilon + 4\vartheta + 3J \\ - & \varepsilon + 4\vartheta + J \\ \varepsilon + 8\vartheta + 5J \end{array} $	$\begin{array}{r} + 27512 \\ + 6634 \\ -144024 \end{array}$	
$j^2\eta$	$\begin{array}{c} \varepsilon + 4\vartheta + 3J - \Sigma \\ -\varepsilon + 4\vartheta + 3J - \Sigma \\ \varepsilon + 8\vartheta + 7J - \Sigma \\ \varepsilon + 4\vartheta + 4J \end{array}$	$\begin{array}{r} + & 4022 \\ - & 3616 \\ + & 9524 \\ - & 28408 \end{array}$	
j² η′	$ \begin{array}{c} \epsilon + 4\vartheta + 4J - \Sigma \\ - \epsilon + 4\vartheta + 2J - \Sigma \\ \epsilon + 8\vartheta + 6J - \Sigma \\ \epsilon + 4\vartheta + 3J \end{array} $	$\begin{array}{c} + 1108 \\ + 7090 \\ - 15308 \\ + 35006 \end{array}$	
		n	ı'

The coefficients in parentheses differ from v. Zeipel's values because they contain additional terms. See p. 134.

The remaining terms in the differential equation for  $n \delta z_1^{(2)}$  are, by eq. (143),

$$\begin{split} \frac{\delta}{\delta \varepsilon} \{ n \delta z_1^{(2)} - (n \delta z_1^{(2)}) \} &= (1 - e \cos \varepsilon) \bigg\{ \overline{W_2}^{\prime(2)} + \overline{[W_2]^{(2)}} - \frac{3}{4} \bigg( \overline{W_1}^{(1)} - \frac{1}{3} \overline{\Xi_1}^{(1)} \bigg) \bigg( \overline{W_1}^{(1)} + \frac{1}{9} \overline{\Xi_1}^{(1)} \bigg) \bigg\} \\ &- \bigg[ (1 - e \ \cos \varepsilon) \bigg\{ \overline{W_2}^{\prime(2)} + \overline{[W_2]^{(2)}} - \frac{3}{4} \bigg( \overline{W_1}^{(1)} - \frac{1}{3} \overline{\Xi_1}^{(1)} \bigg) \bigg( \overline{W_1}^{(1)} + \frac{1}{9} \overline{\Xi_1}^{(1)} \bigg) \bigg] \bigg] \end{split}$$

all the terms of which are of the second order whose lowest rank is the second. They therefore contain the factor  $\frac{m'^2}{w^2}$ .

To obtain  $n\partial z_2^{(2)}$  it is necessary to return to eqs. (124)–(130) and make developments for terms of the second order similar to those for first order. The resulting differential equation is:

$$\begin{split} \frac{\partial}{\partial \varepsilon} n \delta z_2^{(2)} &= \frac{(1-e\,\cos\,\varepsilon)}{2} \{n \delta z_1^{(1)} - (n \delta z_1^{(1)})\} \frac{\partial}{\partial \vartheta} \, \overline{W}_1^{(1)} - (1-e\,\cos\,\varepsilon) \eta \ w \ \sin\!\varepsilon \frac{\partial}{\partial \vartheta} \, W_1^{(2)} \\ &- \left[ \frac{(1-e\,\cos\,\varepsilon)}{2} \{n \delta z_1^{(1)} - (n \delta z_1^{(1)})\} \frac{\partial}{\partial \vartheta} \, \overline{W}_1^{(1)} - (1-e\,\cos\,\varepsilon) \eta \ w \ \sin\!\varepsilon \frac{\partial}{\partial \vartheta} \, \overline{W}_1^{(2)} \right] \\ &- \frac{1}{2} [(1-e\,\cos\,\varepsilon) \, \overline{W}_1^{(1)}] \frac{\partial}{\partial \vartheta} \{n \delta z_1 - (n \delta z_1^{(1)})\} - \frac{w}{2} \, \frac{\partial}{\partial \vartheta} (n \delta z_1^{(2)}) \, \cdot \end{split}$$

The sum of the last two equations, when integrated, gives the terms of second order having the factor  $\frac{m'^2}{w^2}$ . It has been shown by v. Zeipel through computation and we have shown analytically that

$$\overline{W_2}^{\prime(2)} + \frac{1}{2} \{ n \partial z_1^{(1)} - (n \partial z_1^{(1)}) \} \frac{\partial}{\partial \vartheta} \, \overline{W_1}^{(1)} = \eta \, w \, \sin \varepsilon \frac{\partial}{\partial \vartheta} \, \overline{W_1}^{(2)}$$

and

$$[(1-e\ \cos\ \varepsilon)\ \overline{W}_{\mathbf{i}}^{(1)}]\frac{\partial}{\partial\vartheta}\left\{n\delta z_{\mathbf{i}}^{(1)}-(n\delta z_{\mathbf{i}}^{(1)})\right\}+w\frac{\partial}{\partial\vartheta}(n\delta z_{\mathbf{i}}^{(2)})=0\cdot$$

Therefore,

$$\begin{split} \frac{\partial}{\partial \varepsilon} \{ n \partial z_1^{(2)} - (n \partial z_1^{(2)}) + n \partial z_2^{(2)} \} &= (1 - e \; \cos \; \varepsilon) \Big\{ \overline{[W_2]}^{(2)} - \frac{3}{4} \Big( \; W_1^{(1)} - \frac{1}{3} \Xi_1^{(1)} \Big) \Big( \; \overline{W}_1^{(1)} + \frac{1}{9} \Xi_1^{(1)} \Big) \Big\} \\ &- \Big[ \; (1 - e \; \cos \; \varepsilon) \Big\{ \overline{[W_2]}^{(2)} - \frac{3}{4} \Big( \; \overline{W}_1^{(1)} - \frac{1}{3} \Xi_1^{(1)} \Big) \Big( \; \overline{W}_1^{(1)} + \frac{1}{9} \Xi_1^{(1)} \Big) \Big\} \; \Big] \end{split}$$

The integral is tabulated in Table XXXIV.

Summarizing, we have included first order terms in

$$n\partial z_1 + n\partial z_2 + n\partial z_3$$

given by tables XXX, XXXI, XXXII and second order terms in

$$n\partial z_1 + n\partial z_2$$

given by Tables XXXIII and XXXIV. The addition of Tables XXX-XXXIV gives the short period terms in  $n\partial z$ , or, the function  $n\partial z - [n\partial z]$ 

which is tabulated in Table XXXV.

Returning now to the differential equation for  $\vartheta$ , the evaluation of  $F(\vartheta, \varepsilon)$  and its derivatives in Z 78, eq. (127) gives Z 91, eq. (146). The variable does not appear;  $\frac{d\vartheta}{d\varepsilon}$  is a function of  $\vartheta$  alone Therefore the function is of long period. The integration is one step in the determination of  $[n\partial z]$ , the long period terms in the perturbations of the mean anomaly.

The function  $[(1 - e \cos \varepsilon) \overline{W}]$  is tabulated in Table XXIXb.

The function  $\left[(1-e\cos\varepsilon)\left(\overline{W}-\frac{1}{3}\mathcal{Z}\right)\left(\overline{W}+\frac{1}{9}\mathcal{Z}\right)\right]$ , computed from Tables XXIXa and XXIXc, is given in Table XXXVI.

The function 
$$\left[ (1 - e \cos \varepsilon)(\theta_1 + \theta_2 + \theta_3) \frac{\partial \overline{W}}{\partial \vartheta} \right]$$
 is computed as follows:  
First,  $\theta - \vartheta = \theta_1 + \theta_2 + \theta_3$ 

is given by Z 93, eq. (150) by means of Table XXXV, and  $\frac{\partial W}{\partial \vartheta}$  is readily written by inspection of Table XXIXa. Performing the indicated multiplications and retaining only the terms which are independent of  $\varepsilon$ , we have the required function as tabulated in Table XXXVII.

By eq. (146), the sum of Tables XXIXb, XXXVI, and XXXVII, multiplied by the factor  $\frac{1-w}{w}$ , gives  $\Phi(\vartheta)$ , tabulated in Table XXXVIII.

TABLE XXXIII.

		$(n\partial z_1^{(2)})$		Unit=1
			<i>u</i> ′−3	
	Sin	w ⁰	tt'	$v^{,z}$
η	$\varepsilon + 4\vartheta + 4J$	- 0.316	+ 1.59	- 3.6
$\eta'$	€+4∂+3.1	+ 0.114	- 0. 67	+ 1.8
$\eta^2$	$ \begin{array}{c c} - & \epsilon + 2\vartheta + 2 J \\ \epsilon + 2\vartheta + 2 J \\ \epsilon + 6\vartheta + 6 J \\ 2z + 4\upsilon + 4 J \end{array} $	+ 2. 62 + 4. 42 + 1. 80 + 0. 16	- 16.8 - 28.4 - 11.7 - 0.8	+ 1.8
η η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 6. 18 - 1. 90 - 5. 57 - 3. 95 - 0. 06	+ 36. 9 + 13. 6 + 32. 8 + 23. 6 + 0. 3	- 0.9
$\eta'^{2}$	$ \begin{array}{c c} -\varepsilon + 2\vartheta \\ \varepsilon + 2\vartheta + 2J \\ \varepsilon + 6\vartheta + 4J \end{array} $	+ 4.04 + 2.12 + 1.90	- 21. 4 - 14. 4 - 10. 8	
$j^2$	$\begin{array}{c} -\varepsilon + 2\vartheta + \mathbf{J} - \Sigma \\ \varepsilon + 6\vartheta + 5\mathbf{J} - \Sigma \end{array}$	+ 0. 22 + 0. 07	- 1. 6 - 0. 5	
	$+(\vartheta-\vartheta_0)\cos$			
η	s	- 1. 265	+ 6.35	-14.3
$\eta'$	ε+ J	+ 0.455	- 2.69	+ 7.2
$\eta^2$	$2\varepsilon$	+ 0.63	- 3.2	+ 7.2
η η'	2e+ <b>1</b>	- 0.23	+ 1.3	- 3.6
$\eta^3$	ε	-23.8	+222	
$\eta^2 \eta'$	+ 3 + + 3 - + + 1	+72. 9 +36. 5	-569 -285	
$\eta \eta'^2$	ε+2 <b>.1</b> ε	-55. 2 -87. 3	+375 +653	
$\eta'^3$	£ + 3	+69.9	-439	
$j^2\eta$	$\varepsilon + J + \Sigma$	- 9. 9 +23. 1	$\begin{array}{c c} + 77 \\ -166 \end{array}$	
$j^2$ $\eta'$	$\begin{array}{c} \varepsilon & +\Sigma \\ \varepsilon + & J \end{array}$	+ 5. 2 -14. 8	$-45 \\ +112$	
		-	m' ²	

110379°-22---9

TABLE XXXIV.

		$-(n\delta z_1^{(2)}) + n\delta z_2^{(2)}$		
	l Sm		n ^{, 2}	
		<i>u</i> *	w	$u^{-2}$
	$\begin{array}{c} \varepsilon + 2\vartheta + 2\mathbf{J} \\ 2\varepsilon + 4\vartheta + 4\mathbf{J} \end{array}$	- 0. 614 - 0. 679	+ 4.06 + 0.40	-10, 3
η	$\begin{array}{c} \varepsilon \\ \varepsilon + 4\theta + 41 \\ 2\varepsilon + 2\theta + 21 \\ 2\varepsilon + 6\theta + 61 \end{array}$	$\begin{array}{c} -0.74 \\ +1.74 \\ +0.31 \\ +0.45 \end{array}$	+ 3. 7 -18. I - 2. 0 - 2. 9	
$\eta'$	$ \begin{array}{c c} \varepsilon + 1 \\ \varepsilon + 4\vartheta + 31 \\ 2\varepsilon + 6\vartheta + 51 \end{array} $	+ 0.30 - 4.26 - 0.66	$ \begin{array}{cccc}  & -1.8 \\  & +32.0 \\  & +3.8 \end{array} $	
η²	$ \begin{array}{c} -\varepsilon + 2\vartheta + 2I \\ \varepsilon + 2\vartheta + 2I \\ \varepsilon + 6\vartheta + 6I \\ 2\varepsilon + 4\vartheta + 4I \\ 2\varepsilon + 8\vartheta + 8I \end{array} $	$\begin{array}{c} -6.4 \\ +6.4 \\ +5.1 \\ -1.4 \\ -2.2 \end{array}$		
η η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} +12.0 \\ -0.9 \\ -8.5 \\ -11.8 \\ +3.4 \\ -0.8 \\ +6.5 \end{array}$		
$\eta'^2$	$\begin{array}{c} -\varepsilon + 2\vartheta \\ \varepsilon + 2\vartheta + 2 \mathfrak{1} \\ \varepsilon + 6\vartheta + 4 \mathfrak{1} \end{array}$	$ \begin{array}{c cccc}  & -5.1 \\  & +1.3 \\  & +6.4 \end{array} $		
$j^2$	$ \begin{array}{l} -\varepsilon + 2\vartheta + 1 - \Sigma \\ \varepsilon + 6\vartheta + 51 - \Sigma \\ 2\varepsilon + 4\vartheta + 41 \end{array} $	$\begin{array}{c c} -0.3 \\ +0.3 \\ +1.4 \end{array}$		
	$+(\vartheta-\vartheta_0)\cos$			
η	$\begin{array}{c} \varepsilon \\ \varepsilon + 4\vartheta + 4J \\ 2\varepsilon + 2\vartheta + 2J \end{array}$	$\begin{array}{c c} -1.02 \\ -0.78 \\ +0.41 \end{array}$	$ \begin{array}{c c} -8.4 \\ +6.0 \\ -2.5 \end{array} $	
$\eta'$	$\begin{array}{c} \varepsilon + J \\ \varepsilon + 4\vartheta + 3J \\ 2\varepsilon + 2\vartheta + 3J \end{array}$	$\begin{array}{c} -3.25 \\ +0.58 \\ -0.31 \end{array}$	$ \begin{array}{c c} +30.1 \\ -4.8 \\ +2.1 \end{array} $	
$\eta^2$	$ \begin{array}{c} -\varepsilon + 2\vartheta + 2J \\ \varepsilon + 2\vartheta + 2J \\ 2\varepsilon \\ 2\varepsilon + 4\vartheta + 4J \end{array} $	+ 3.6 + 1.1 + 0.5 - 0.8		
η η'	$\begin{vmatrix} -\varepsilon + 2\vartheta + 1 \\ 2\varepsilon + 1 \end{vmatrix}$ $(\vartheta - \vartheta_0)^2 \sin \theta$	- 3. 4 + 1. 6		
7/	ε	- 0.36	+ 2.6	
$\eta'$	L +3	+ 0.27	- 2.1	
	1		$m'^2$	

#### TABLE XXXV.

Logarithmic,

 $n\delta z - [n\delta z]$ 

Unit=1".

	Sin	w-3	· # ***********************************	<i>U</i> :−1	<i>u</i> ·0	w	$u^{\cdot 2}$
$ \begin{array}{c c} \eta & \eta' \\ \hline \eta^2 \\ j^2 \\ j'' \\ \eta & \eta' \\ \eta' \\ \eta & \eta'' \\ \eta & \eta'' \\ \eta & \eta'' \\ j^2 \\ j^2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} 4.1570 \\ 2.7684_n \\ 4.0056_n \\ 4.0766_n \\ 4.1365 \\ 3.3345 \\ 4.2240_n \\ 4.0671 \\ 5.0926_n \\ 5.2325 \\ 4.7675_n \\ 3.8050_n \end{array}$	4. 8741 _n 3. 3827 4. 7686 4. 8295 4. 8738 _n 4. 5162 _n 4. 9611 4. 8483 _n 6. 0018 6. 1714 _n 5. 7344 4. 7998	3. 7172 _n 5. 6685 _n 5. 5636
$ \begin{vmatrix} \eta' \\ \eta \\ \eta'^2 \\ \eta \eta' \\ \bar{\eta}^2 \\ j^2 \end{vmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3. 3112 3. 2065 _a 3. 5338 4. 0879 3. 6012 _n 3. 2074	$\begin{array}{c} 3.\ 8350_n \\ 3.\ 7910 \\ 4.\ 6236_n \\ 5.\ 0382 \\ 4.\ 5318_n \\ 4.\ 1925_n \end{array}$	$\frac{4.1355}{4.0833_n}$
$\begin{bmatrix} \eta \\ \eta' \\ \eta \eta' \\ \eta^2 \\ \eta'^2 \\ j^2 \\ \eta \eta' \end{bmatrix}$	$\begin{bmatrix} \varepsilon \\ \varepsilon + & J \\ \varepsilon + 2\vartheta + J \\ \varepsilon + 2\vartheta + 2J \\ \varepsilon + 2\vartheta + 3J \\ \varepsilon + 4\vartheta + 2J \end{bmatrix}$	0. 746 _n 0. 645 0. 326 0. 28 _n	$\begin{array}{c} 9.868_n \\ 9.482 \\ [1.384] \\ 9.788_n \\ [1.342_n] \\ 1.119_n \\ \end{array}$	$\begin{array}{c} 0.\ 5689 \\ 0.\ 2533_n \\ 3.\ 2927_n \\ 2.\ 47560 \\ 2.\ 305_n \\ 2.\ 935_n \\ 3.\ 4276_n \\ 3.\ 1738 \\ 3.\ 6004 \end{array}$	$\begin{bmatrix} 2.922 \\ 2.673_n \\ [4.14906] \\ 3.10847_n \\ [3.6179_n] \\ 3.3017_n \\ 4.23764 \\ [3.5449_n] \\ 4.27485 \end{bmatrix}$	$\begin{array}{c} 3.\ 4600_n \\ 3.\ 2959 \\ [4.\ 6990_n] \\ 3.\ 4540 \\ [4.\ 4018] \\ [4.\ 39206] \\ 4.\ 76933_n \\ [3.\ 8446_n] \end{array}$	$3. \ 3670 \\ 3. \ 1772_n$ $[3. \ 3960_n]$
$ \begin{vmatrix} \eta & \eta' & \gamma' & \gamma' & \gamma' & \gamma' & \gamma' & \gamma' & $	\$\begin{align*} \epsilon +4\darkall +3\darkall \\ \epsilon +4\darkall +3\darkall \\ \epsilon +4\darkall +3\darkall \\ \epsilon +4\darkall +4\darkall \\ \epsilon +4\darkall +5\darkall \\ \epsilon +4\darkall +5\darkall \\ \epsilon +4\darkall +5\darkall \\ \epsilon +4\darkall +6\darkall +6\darkall \\ \epsilon +6\darkall +6\d	9. 057 9. 500 _n	0. 692 _n 0. 522	3.10161 $4.0519n$ $4.1385n$ $4.2431n$ $2.9351n$ $3.7714$ $4.4165$ $4.1524$ $4.0588n$	3. 9302 _n 3. 7975 4. 6961 5. 1290 3. 8035 4. 2108 _n 5. 0931 _n 5. 0661 _n 4. 8136	4. 52415 4. 41616 _n	[4. 78162 _n ] 4. 63017
$ \begin{vmatrix} \eta & \eta' \\ \eta & \eta' \\ j^2 \end{vmatrix} $ $ \begin{vmatrix} \eta'^3 \\ \eta & \eta'^2 \\ \eta^2 \eta' \\ \eta^3 \\ j^2 & \eta' \\ j^2 \eta \end{vmatrix} $	$\begin{array}{c} \varepsilon + 4\vartheta + 3J - \Sigma \\ \varepsilon + 4\vartheta + 4J - \Sigma \\ \varepsilon + 6\vartheta + 4J \\ \varepsilon + 6\vartheta + 5J \\ \varepsilon + 6\vartheta + 5J - \Sigma \\ \varepsilon + 6\vartheta + 5J - \Sigma \\ \varepsilon + 8\vartheta + 5J \\ \varepsilon + 8\vartheta + 6J \\ \varepsilon + 8\vartheta + 7J \\ \varepsilon + 8\vartheta + 8J - \Sigma \\ \varepsilon + 8\vartheta + 7J - \Sigma \\ \end{array}$	0. 28 0. 596 _n 0. 255 8. 8	$   \begin{bmatrix}     0.64_n \\     1.070 \\     0.8_n \\     0.3_n   \end{bmatrix} $	3. 2322 ⁿ 2. 744 ⁿ 3. 8027 3. 9374 ⁿ 3. 4684 2. 415 4. 5564 4. 8668 ⁿ 4. 6990 4. 0531 ⁿ 3. 5829 3. 3768 ⁿ	$ \begin{array}{c} 4.\ 2342 \\ [3.\ 0962] \\ 4.\ 77998_n \\ [4.\ 94342] \\ [4.\ 50125_n] \\ 3.\ 4823_n \\ 5.\ 4999_n \\ 5.\ 8416 \\ 5.\ 7030_n \\ 5.\ 0844 \\ 4.\ 6352_n \\ 4.\ 4540 \\ \end{array} $	[5, 52852] [5, 70347 _n ] [5, 27451] [4, 2931]	
$ \begin{array}{c c} & \tau'^2 \\ \eta \ \tau' \\ j^2 \\ j^2 \\ & \tau'^3 \\ \eta \ \tau'^2 \\ \eta^2 \eta' \\ & \eta^3 \\ j^2 \eta \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 606 0. 791 _n 0. 418 9. 34	$ \begin{bmatrix} 1.422_n \\ 1.690 \end{bmatrix} \\ \begin{bmatrix} 1.365_n \\ 0.28_n \end{bmatrix} $	3. 2132 3. 3777n 2. 894 2. 938 3. 5208 3. 4965 _n 3. 2416 2. 430 _n 3. 5496 3. 3247 _n	$\begin{array}{c} 3.\ 6657_n \\ 3.\ 8866 \\ [3.\ 4616_n] \\ 3.\ 4714_n \\ 4.\ 07255 \\ 4.\ 59582 \\ 4.\ 5467_n \\ 3.\ 9848 \\ 4.\ 19852_n \\ 4.\ 05994 \end{array}$	3. 9260 4. 72168 3. 8078 3. 7862	

Table XXXV—Continued.

Logarithmic.

 $n\delta z - [n\delta z]$ 

Unit=1".

	Sin	217-3	W-2	$w^{-1}$	$w^{\mathfrak{q}}$	w	$w^2$
7, 7,'  7  7  7  7  7  7  7  7  7  7  7  7  7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3. 6731 2. 3528 3. 6181 _n 3. 4072 _n 3. 5244 3. 3533 3. 1780 _n 4. 2775 4. 4051 _n 3. 9296	$\begin{array}{c} 4.\ 0029_n \\ 3.\ 2475_n \\ 4.\ 2122 \\ 4.\ 4000 \\ 4.\ 4012_n \\ 4.\ 2730 \\ 5.\ 4708_n \\ 5.\ 6177 \\ 5.\ 1605_n \end{array}$	3. 9005 5. 2725 5. 1359 _n
η η' η η' η' η' η'	$\begin{array}{c} 2\varepsilon + 2\vartheta + 2J \\ 2\varepsilon + 2\vartheta + 3J \\ 2\varepsilon + 4\vartheta + 3J \\ 2\varepsilon + 4\vartheta + 4J \\ 2\varepsilon + 4\vartheta + 4J \\ 2\varepsilon + 6\vartheta + 5J \\ 2\varepsilon + 6\vartheta + 6J \end{array}$	8. 8 _n 9. 2	9. $486$ [0. $561$ ] 8. $90_n$ [0. $34_n$ ] 9. $819_n$ 9. $653$	$\begin{array}{c} 2.\ 1744_n \\ 2.\ 789_n \\ 9.\ 599 \\ 2.\ 618 \\ 0.\ 5840 \\ 0.\ 4645_n \end{array}$	$ \begin{vmatrix} 2.708 \\ 1.946_n \\ [3.5813] \\ 1.711 \\ [3.4962_n] \\ 2.7821 \\ 2.5979_n \end{vmatrix} $	$ \begin{bmatrix} 2.889_n \\ 2.501 \\ [4.1074_n] \\ 2.5795_n \\ [4.0890] \\ 3.7794_n \\ 3.6265 $	$\begin{array}{c} 2.599_n \\ 2.516_n \\ 3.1726 \\ \hline +4.51865 \\ 4.38424_n \end{array}$
η η' •	$\begin{array}{c} \frac{5}{2}\varepsilon + 5\vartheta + 5\mathbf{J} \\ \frac{5}{2}\varepsilon + 7\vartheta + 6\mathbf{J} \\ \frac{5}{2}\varepsilon + 7\vartheta + 7\mathbf{J} \end{array}$ $(\vartheta - \vartheta_0) \cos$				$\begin{array}{c} 1.2340 \\ 2.3679 \\ 2.1758_n \end{array}$	$\begin{array}{c} 2.\ 1166_n \\ 3.\ 3518_n \\ 3.\ 1926 \end{array}$	2. 7076 4. 0587 3. 9204 _n
	ε ε ε ε +	0. 1021 _n 1. 377 _n 1. 941 _n 1. 364' 9. 658 1. 863 1. 844 1. 170 _n	$\begin{array}{c} 0.728 \\ [2.346] \\ 2.815 \\ 2.220_n \\ 0.774_n \\ 2.755_n \\ 2.642_n \\ 2.049 \end{array}$	2. 8978 _n 3. 8211 _n 4. 4076 4. 4076 2. 7836 4. 2546 4. 1953 4. 3715 _n	3. 4504 4. 6762 5. 1971 5. 1971n 3. 3840n 5. 0814n 4. 9770n 5. 1770	3. 7168 _n 5. 7086 3. 6946 5. 6975 _n	
$j^2 \eta$	$ \begin{array}{ccc} \varepsilon + & 2J \\ \varepsilon + & \Sigma \\ \varepsilon + & J + \Sigma \end{array} $	$\begin{array}{c} 1.742_n \\ 0.716 \\ 1.00_n \end{array}$	$ \begin{array}{c} 2.574 \\ 1.65_n \\ 1.89 \end{array} $	$\begin{array}{c} 4.0203_n \\ 4.0809 \\ 4.3427_n \end{array}$	4. 8466 4. 8829 _n 5. 0837	5. 4008 5. 5553 _n	
$\eta^2 \eta'$ $\eta^2$ $\eta$ $\eta'$	- ε+ Δ  2ε 2ε+ Δ	1. 562 9. 801 9. 357 _n	$ \begin{array}{c c} 2. \ 455_n \\ [0. \ 43_n] \\ [0. \ 473] \end{array} $	3. 9535 2. 5842 2. 4548 _n	4. 7803 _n 3. 1493 _n 3. 0830	3. 4158 3. 3936 _n	
η η'	$(\vartheta - \vartheta_0)^2 \sin$ $\varepsilon$ $\varepsilon + \qquad \bot$		9. 56 _n 9. 43	0. 42 0. 32 _n			

 $\begin{array}{l} n\delta z - [n\delta z] = \mathcal{\Sigma} w^{\mathfrak{g}} \eta^{p} \eta' q j^{2t} C_{1} \text{ sin Arg.} + (\vartheta - \vartheta_{0}) \mathcal{\Sigma} w^{\mathfrak{g}} \eta^{p} \eta' q j^{2t} C_{2} \cos \text{Arg.} + (\vartheta - \vartheta_{0})^{2} \mathcal{\Sigma} w^{\mathfrak{g}} \eta^{p} \eta' q j^{2t} C_{3} \sin \text{Arg.} \\ \text{where } C_{1}, \ C_{2}, \ C_{3}, \ \text{represent the respective coefficients.} \end{array}$ 

TABLE XXXVI.

$$-\frac{3}{4}\bigg[(1-\epsilon\ \cos\ \epsilon)\,(\overline{W}-\frac{1}{3}\ \Xi\ )\,(\overline{W}+\frac{1}{9}\ \Xi)\bigg]$$

Unit=4th decimal of a radian.

	Cos	w-4	241-28	$t\ell'-2$	₹/-1	V 0	w
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.00028 \\ -0.00014 \\ +0.00047 \\ +0.000017 \\ -0.00006 \\ +0.00004 \\ -0.00012 \\ +0.0001 \\ +0.00001 \end{array}$	+0.000032 +0.0037 +0.0026 -0.0003 -0.0070 -0.00042 +0.00045 +0.0006 -0.0012 +0.0003 -0.0001	$\begin{array}{c} -0,0080 \\ -0,133 \\ -0,095 \\ +0,139 \\ +0,252 \\ +0,0437 \\ -0,0639 \\ -0,194 \\ +0,372 \\ -0,252 \\ +0,032 \end{array}$	$\begin{array}{c} +0.0493 \\ +1.10 \\ +1.27 \\ -1.20 \\ -2.51 \\ -0.366 \\ +0.508 \\ +1.64 \\ -3.59 \\ +2.40 \\ -0.19 \end{array}$	$\begin{array}{c c} -0.176 \\ -8.8 \\ -14.4 \\ +5.9 \\ +22.8 \\ +2.10 \\ -2.79 \\ -11.4 \\ +32.2 \\ -19.8 \end{array}$	+0.52
η η' η η' η² η η' η'²	$\begin{array}{c c} + (\vartheta - \vartheta_0) \sin \\ & \mathcal{J} \\ 2\vartheta + 2\mathcal{J} \\ 2\vartheta + \mathcal{J} \\ 4\vartheta + 4\mathcal{J} \\ 4\vartheta + 3\mathcal{J} \\ 4\vartheta + 2\mathcal{J} \end{array}$	+0.000066 -0.000024 -0.00023 +0.00039 -0.00011	$\begin{array}{c} -0.00004 \\ -0.00060 \\ +0.00047 \\ +0.0028 \\ -0.0053 \\ +0.0024 \end{array}$	+0.0399 -0.0296 -0.114 +0.251 -0.124	$\begin{array}{c} +0.010 \\ -0.275 \\ +0.221 \\ +1.02 \\ -2.20 \\ +1.11 \end{array}$	$ \begin{array}{c c} -0.08 \\ +0.94 \\ -0.81 \\ -4.7 \\ +9.9 \\ -5.1 \end{array} $	
$\eta^2 \over \eta \ \eta' \over \eta'^2$	$(\vartheta - \vartheta_0)^2 \cos$	$\begin{array}{c} -0.00017 \\ +0.00019 \\ -0.00005 \end{array}$	$ \begin{array}{c ccccc} +0.0014 \\ -0.0021 \\ +0.0008 \end{array} $	$ \begin{array}{c c} -0.052 \\ +0.077 \\ -0.029 \end{array} $	$   \begin{array}{c}     +0.38 \\     -0.61 \\     +0.24   \end{array} $	$\begin{array}{c c} -1.4 \\ +2.4 \\ -1.0 \end{array}$	
		m'3	m'3	$m'^3, m'^2$	$n\iota'^2$	$n\iota'^2$	$m'^2$

TABLE XXXVII.

$$\left[ (\theta \! - \! \vartheta) \, (1 \! - \! \epsilon \, \cos \, \epsilon) \frac{\partial \, \overline{\mathbf{W}}}{\partial \vartheta} \right]$$

Unit=4th decimal of a radian.

	Cos	<i>w</i> -4	u-3	u'-2	w-1	u-0	w	u 2
η ² j ² η η' η η' η η' η ² η η' η η' η ² η η' η' ³ j ²	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.00043 -0.00021 +0.00076 +0.000055 -0.000020 -0.00031 +0.00068 -0.00030 -0.00001	+0.000042 +0.0056 +0.0048 -0.0004 -0.0110 -0.00086 +0.00090 +0.0041 -0.0054 +0.0041 +0.0001	$ \begin{array}{c} -0.01071 \\ -0.189 \\ -0.296 \\ +0.186 \\ +0.530 \\ +0.1005 \\ -0.1377 \\ -0.477 \\ +1.295 \\ -0.921 \\ -0.036 \end{array} $	+ 0.0883 + 2.73 + 4.47 - 2.00 - 7.59 - 1.153 + 1.463 + 6.49 - 17.43 + 11.58 + 0.58	$\begin{array}{c} -0.402 \\ -51.3 \\ -59.8 \\ +11.7 \\ +104.2 \\ +21.86 \\ -9.50 \\ -133.8 \\ +261.3 \\ -95.2 \\ -5.3 \end{array}$	$\begin{array}{c} + & 1.31 \\ + & 299 \\ + & 416 \\ - & 40 \\ - & 682 \\ - & 81.5 \\ + & 44.2 \\ + & 708 \\ -1266 \\ + & 452 \\ + & 25 \end{array}$	- 3.9 +217 -176
η η' η η' η' η η' η''2	$+(\vartheta-\vartheta_0)\sin\frac{\vartheta}{2\vartheta+2\vartheta}$ $2\vartheta+2\vartheta+3\vartheta+4\vartheta+4\vartheta+3\vartheta+3\vartheta+3\vartheta+3\vartheta+2\vartheta$	0, 00000 +0, 000014 -0, 000016 -0, 00031 +0, 00052 -0, 00015	$ \begin{vmatrix} -0.0004 \\ -0.00052 \\ +0.00038 \\ +0.0037 \\ -0.0072 \\ +0.0032 \end{vmatrix} $	$ \begin{vmatrix} +0.052 \\ +0.0266 \\ -0.0197 \\ -0.153 \\ +0.335 \\ -0.165 \end{vmatrix} $ $ m'^3, m'^2 $	$ \begin{vmatrix} -0.44 \\ -0.212 \\ +0.170 \\ +1.62 \\ -3.40 \\ +1.68 \end{vmatrix} $	+ 2.0 + 0.83 - 0.70 - 7.9 + 16.9 - 8.6	m'2, m'	m'2, m'

TABLE XXXVIII.

Logari	thmic.				$\Phi(\vartheta)$				₹ <b>ni</b> t=	l radian.
	Cos	<i>1</i> 1.−4	₹€-5	<i>u</i> -•	$w^{-3}$	u-2	<i>y</i> r−1	u.0	w	$u^2$
$j^2_{\substack{\eta'^2 \ \eta'^2}}$	١		$ \begin{array}{c} 2.0 \\ 1.9 \\ 2.34_{n} \end{array} $	$\begin{bmatrix} 1.5 \\ [4.644_n] \\ [3.41_n] \\ 2.83_n \\ [4.446] \end{bmatrix}$	$   \begin{bmatrix} 3.909_n \\ 5.160 \\ 4.75_n \\ 5.146 \\ 4.57   \end{bmatrix} $	4. 960 [6. 150] [6. 509] [6. 299 _n ] [6. 728 _n ]	$\begin{array}{c} 6.6748_n \\ [8.048_n] \\ [8.2077_n] \\ [7.994] \\ [8.4022] \end{array}$	$\begin{bmatrix} 7.2764 \\ 8.838 \\ [8.994] \\ 8.740_n \\ 9.1999_n \end{bmatrix}$	7. $540_n$ 8. $655_n$ 8. $919_n$ [8. $656$ ] 9. $0854$	$\begin{bmatrix} 7.31 \\ 8.100_n \end{bmatrix}$
$j^2$	$ \begin{vmatrix} 2\vartheta \\ 2\vartheta + \mathbf{J} \\ 2\vartheta + \mathbf{J} \\ 2\vartheta + \mathbf{J} \end{vmatrix} $ $ \begin{vmatrix} 2\vartheta + \mathbf{J} \\ 2\vartheta + \mathbf{J} \end{vmatrix} $	1. 6 2. 32 _n	$\begin{bmatrix} 2. & 6_n \\ 0. & 8_n \\ 3. & 30 \end{bmatrix}$	5. 744 [3. 068] 5. 886 _n 5. 301 _n		$ \begin{vmatrix} 8.3811 \\ 7.2212_n \\ 8.5059_n \\ 8.2302_n \\ 8.5592 \end{vmatrix} $	$\begin{array}{c} 9.\ 1031_n \\ [7.\ 3772] \\ 9.\ 2804 \\ 9.\ 0154 \\ 9.\ 3245_n \end{array}$	$ \begin{array}{c c} 9 & 0128 \\ [8.0372] \\ 9.2017_n \\ 8.938_n \\ 9.2428 \end{array} $	[8. 764 _n ]	8, 668
$\begin{vmatrix} \mathbf{j}^{\eta^3} \\ \mathbf{\eta} \\ \mathbf{\eta} \\ \mathbf{j}^2 \mathbf{\eta} \end{vmatrix}$ $\begin{vmatrix} \mathbf{j}^2 \mathbf{\eta} \\ \mathbf{j}^2 \mathbf{\eta} \end{vmatrix}$ $\begin{vmatrix} \mathbf{j}^2 \mathbf{\eta} \\ \mathbf{j}^2 \end{vmatrix}$	$egin{array}{c} 2\vartheta + 2J \\ 2\vartheta + 2J \\ 2\vartheta + 2J \\ 2\vartheta + 2J \\ 2\vartheta + 3J \\ \end{array}$	2. 48 1. 9 2. 04 _n	$\begin{bmatrix} 3.40_n \\ 1.22 \\ [3.0_n] \end{bmatrix}$	$ \begin{bmatrix} 5. & 422 \\ [2. & 94_n] \\ 5. & 442 \end{bmatrix} $ $ 4. & 98_n $	$\begin{bmatrix} 6.292_n \\ [5.1206_n] \\ 6.328_n \end{bmatrix}$ $5.89$	$\begin{array}{c} 7.476 \\ 7.6416 \\ 8.0915_n \\ 8.5904_n \\ 8.0326 \end{array}$	$\begin{bmatrix} 8.664_n \\ [7.9638_n] \\ 8.630_n \\ 9.3489 \\ 8.1973_n \end{bmatrix}$	$\begin{bmatrix} 8.636 \\ [7.083_n] \\ 8.742 \\ 9.8024_n \\ 7.69 \end{bmatrix}$	[8, 645] 9, 6532	8. 582 _n
$egin{pmatrix} oldsymbol{j}^2 \eta \ oldsymbol{j}^2 & \eta' \end{pmatrix}$	$\begin{array}{c c} 2\vartheta + \mathbf{J} - \mathbf{\Sigma} \\ 2\vartheta + 2\mathbf{J} - \mathbf{\Sigma} \end{array}$			4. 51 4. 04 _n	5. 42 _n 5. 00	$\begin{array}{c} 8.\ 1011 \\ 6.\ 89_n \end{array}$	8. 873 _n 8. 182	$8.792 \\ 8.158_n$		
$\begin{vmatrix} \eta'^2 \\ \eta \eta' \\ \eta^2 \end{vmatrix}$	$ \begin{vmatrix} 4\vartheta + 2J \\ 4\vartheta + 3J \\ 4\vartheta + 4J \\ 4\vartheta + 3J - \Sigma \end{vmatrix} $		$   \begin{bmatrix}     2. & 66_n \\     2. & 72 \\     2. & 20_n \\     1. & 5_n   \end{bmatrix} $	$   \begin{bmatrix}     2.7 \\     4.369 \\     4.624_n   \end{bmatrix} $ $   \begin{bmatrix}     2.45   \end{bmatrix} $		$ \begin{array}{c} [8.4188_n] \\ 8.5594 \\ [8.0924_n] \\ 7.1747_n \end{array} $	$   \begin{bmatrix}     8,5297 \\     8,7988_n \\     8,4338 \\     7,301   \end{bmatrix} $	$   \begin{bmatrix}     6, 0 \\     7, 94_n   \end{bmatrix}   \begin{bmatrix}     7, 24 \\     8, 111   \end{bmatrix} $	$7,90_n$ $8,287$ $7,74_n$ $8,127_n$	8. 210 8. 044 _n
$ \begin{vmatrix} \eta'^{3} \\ \eta & \eta'^{2} \\ \eta^{2} \eta' \\ \eta^{3} \\ j^{2} & \eta' \\ j^{2} \eta \end{vmatrix} $		$\begin{bmatrix} 2. \ 0_n \\ 2. \ 0 \end{bmatrix}$	$\begin{array}{c} 3.\ 0 \\ 3.\ 0_n \end{array}$	5. 301 _n 5. 92 5. 93 _n 5. 420 4. 04 _n 4. 51	$\begin{array}{c} 6.\ 149 \\ 6.\ 74_n \\ 6.\ 79 \\ 6.\ 292_n \\ 5.\ 00 \\ 5.\ 42_n \end{array}$	$\begin{array}{c} 9.\ 1294_n \\ 9.\ 4432 \\ 9.\ 2774_n \\ 8.\ 634 \\ 8.\ 272_n \\ 8.\ 0554 \end{array}$	$ \begin{vmatrix} 9.7728 \\ 0.14644_n \\ 0.03298 \\ 9.4351_n \\ 9.1028 \\ 8.926_n \end{vmatrix} $	$ \begin{array}{c c} 9.6609_n \\ 0.05077 \\ 9.9494_n \\ 9.3608 \\ 9.0334_n \\ 8.864 \end{array} $		
	$(\partial - \partial_0) \sin$									
יי מי	J			$[2, 60_n]$	4. 71	5. 94 _n	6. $507_n$	6. 606		
η	$\begin{vmatrix} 2\vartheta + J \\ 2\vartheta + 2J \end{vmatrix}$		1. 36 1. 82 _n	[2. 48] [2. 42]	4. 49 4. 64 _n	$\begin{bmatrix} 5.255_n \\ 5.350 \end{bmatrix}$	[5, 51] [5, 51 _n ]	$[5.25_n]$		
$\eta'^2$ $\eta^2$	4∂+2↓   4∂+3↓   4∂+4↓		$2.34$ $2.89_n$ $2.66$	$   \begin{bmatrix}     3.00 \\     3.46 \\     3.459_n   \end{bmatrix} $	$\begin{bmatrix} 5, 392 \\ 5, 702_n \\ [5, 357] \end{bmatrix}$	$\begin{bmatrix} 6.179_n \\ 6.467 \\ 6.127_n \end{bmatrix}$	$ \begin{vmatrix} 6.528_n \\ 6.851 \\ 6.530_n \end{vmatrix} $	6. 665 6. 979 _n 6. 653		
	$(\vartheta - \vartheta_0)^2 \cos$									
$\frac{\eta^2}{\eta^{\prime 2}}$	Ł			$ \begin{array}{c c} 2.08_n \\ 2.54 \\ 2.5_n \end{array} $	$\begin{array}{c} 2.08 \\ 2.54_n \\ 2.5 \end{array}$		$\begin{array}{c} 5.\ 546_n \\ 5.\ 396_n \\ 5.\ 776 \end{array}$	5, 546 5, 396 5, 776 _n		
		$m'^3$	$m'^3$	m'3, m'2	$m'^3, m'^2$	$m'^2$ , $m'$	$m'^2, m'$	$n\iota'^2$ . $n\iota'$	$m'^2$ , $m'$	$m'^2, m'$
				ļ.			1			

 $\varPhi(\vartheta) = \Sigma w^{g} q^{p} \eta' I j^{2} U_{1} \cos \operatorname{Arg.} + (\vartheta - \vartheta_{0}) \Sigma w^{g} \eta^{p} \eta' I j^{2} U_{2} \sin \operatorname{Arg.} + (\vartheta - \vartheta_{0})^{2} \Sigma w^{g} \eta^{p} \eta' I j^{2} U_{3} \cos \operatorname{Arg.}$ 

where  $\ell_1^t$ ,  $\ell_2^t$ ,  $\ell_3^t$ , represent the respective coefficients.

#### COMPARISON OF TABLES.

Table XXX.—With the aid of the manuscript the source of all the discrepancies indicated by brackets has been traced. Coefficients in parentheses are functions of coefficients in parentheses in Table XXVII.

Table XXXI.—The function was computed by the first of Z 81, eqs. (137), which is more rigid than the one following it, which v. Zeipel used. Aside from the addition of omitted terms, the bracketed coefficients are more accurate by reason of the errors in v. Zeipel's Table XVIII.

Table XXXII.—The computation was performed according to Z 82, eqs. (139) and (140), in place of eq. (141) which is less rigid. Besides the discrepancies due to the addition of omitted terms, four bracketed coefficients are of opposite sign. These discrepancies may be due either

to a numerical error or to the number of terms included. The remaining discrepancy is due to slight inaccuracies of y, Zeipel's computation.

Table XXXIII.—The discrepancy in this table follows from one in Table XVIII. Third degree terms in Table XVIII were not integrated because, in the aggregate, they amount to very little.

Table XXXIV.—Our table is more extensive. Second degree terms are, however, not complete, for they do not include second degree terms in

$$[y_2]\cos \varepsilon + [z_2]\sin \varepsilon$$

The discrepancies are of no importance.

The integration of eq. (146) is best performed individually for each planet. The analytical developments are as follows:

The differential equation can be written

$$\frac{d\vartheta}{d\varepsilon}\!=\!\varPhi\left(\vartheta\right)\frac{d}{d\varepsilon}\!\!\left(\frac{w}{2}\varepsilon\right)\!+\!\frac{d}{d\varepsilon}\!\!\left(\frac{w}{2}\varepsilon\!-\!\left[n'\delta z'\right]\right)$$

By a change of variable

$$\frac{d\vartheta}{d\left(\frac{w}{2}\varepsilon - \left[n'\delta z'\right]\right)} = 1 + \vartheta\left(\vartheta\right) - \frac{d\left(\frac{w}{2}\varepsilon\right)}{d\left(\frac{w}{2}\varepsilon - \left[n'\delta z'\right]\right)}$$

Writing

$$\frac{w}{2}\varepsilon\!=\!\left(\frac{w}{2}\varepsilon\!-\!\left[n'\delta z'\right]\right)\!+\!\left[n'\delta z'\right]$$

we have Z 96, eq. (152), in which the last term can be neglected.

For a given planet the factors w,  $\eta$ ,  $j^2$  and the argument J are known constants. Therefore  $1 + \theta$  ( $\theta$ ) can be expressed as in eq. (153), as a Fourier series of sines and cosines of multiples of  $2\theta$ , in which the nontrigonometrical term is designated by  $\sigma$ .

Expressing eq. (153) in terms of exponentials and solving for  $d\left(\frac{w}{2}\varepsilon - [u'\delta z']\right)$  by the expansion of  $\{1 + \theta(\vartheta)\}^{-1}$ , and reintroducing the trigonometric functions, we have the equation following eq. (153), in which the nontrigonometrical part is taken outside the brackets as a common factor. The brackets in this equation do not have the special significance which they have had previously.

The variables  $\varepsilon$  and  $\vartheta$  are now separate and the integration can be performed. Transferring the common factor to the left-hand side of the equation, performing the integration and adding

$$\frac{n'}{n}c - c'$$

as the constant of integration, we have the argument  $\zeta$  expressed as a function of  $\vartheta$  in eq. (154), where  $\zeta$  is defined by eq. (155).

The reversion of the series gives  $\vartheta$  as a function of  $\zeta$ . We have by eq. (154)

$$\vartheta = \zeta + \Sigma C \frac{\sin}{\cos} n\vartheta$$

where  $\Sigma C$  is a small quantity. Given

$$z = w + \alpha \Phi(z)$$
, where  $\alpha$  is small,

we have, by a theorem of Lagrange,

$$F(z) = F(w) + \alpha \Phi(w) \ F'(w) + \frac{\alpha^2}{1 \cdot 2} \frac{\partial}{\partial w} [\{\Phi(w)\}^2 F'(w)] + \cdots + \frac{\alpha^{n+1}}{n+1} \frac{\partial^n}{\partial w^n} [\{\Phi(w)\}^{n+1} F'(w)] + \cdots$$
By means of this theorem eqs. (156), (157) can be derived, where it is to be noticed that  $(\zeta - \frac{1}{2}c + c')$  is an approximation for  $(\zeta - \zeta_0)$ . In our developments we have used  $(\zeta - \zeta_0)$ .

If in Z eq. (155) we add and subtract  $\left(\frac{w}{2}\epsilon - [n'\delta z']\right)$ 

$$\zeta = \frac{\sigma - \frac{1}{2} (A_2^2 + B_2^2)}{1 + \frac{1}{2} (A_2^2 + B_2^2)} \left( \frac{w}{2} \varepsilon - [n' \delta z'] \right) + \frac{n'}{n} e - e' + \left( \frac{w}{2} \varepsilon - [n' \delta z'] \right)$$

Substituting this value of  $\zeta$  in eq. (156),

$$\vartheta - \frac{w}{2}\varepsilon + [n'\partial z'] - \frac{n'}{n}c + c' = \frac{\sigma - \frac{1}{2}(A_2^2 + B_2^2)}{1 + \frac{1}{2}(A_2^2 + B_2^2)} \left(\frac{w}{2}\varepsilon - [n'\partial z']\right) + \text{Series}$$

Substituting the last equation in eq. (145), we obtain Z 98, eqs. (159), (160), and (161). In eq. (160) the factor  $(\varepsilon - c)$  is an approximation for  $\frac{2}{w}$   $(\zeta - \zeta_0)$ ; in our work we have used the latter.

Since  $[n\partial z]_i$  is the series in eq. (156) multiplied by the factor  $\frac{2}{1-w}$ ,

$$\vartheta = \frac{1 - w}{2} [n \delta z]_1 + \zeta$$

Table XXXV.—With the exception of the two coefficients under the heading  $w^2$ , all the bracketed quantities are functions of other coefficients in parentheses or brackets, or they are functions of additional terms. The two coefficients excepted seem to be in disagreement through some numerical error by v. Zeipel.

Table XXXVI.—Since the mass factors have not been kept explicit, it may be well to remark that only the zero degree term of third order has been included under the heading  $w^{-2}$ .

The bracketed quantities are numerous. Aside from the accumulation of discrepancies already discussed, the disagreements are to be attributed, in general, to the relative extent of the computations. It is found from computation that as the number of terms included in a product is increased the resulting coefficient for a given argument is numerically larger. For the most part our values are larger than v. Zeipel's. Hence the discrepancies are explained by assuming that our computation is more extensive. On the other hand, the function is computed much more accurately than is necessary, and many of our disagreements are less important than they appear to be.

Table XXXVII.—The comparison of Tables XXXVII is similar to that for Tables XXXVII with the exception that our values are not, in general, numerically larger. Some are larger and some are smaller. Below are brief tables showing to what extent we used the necessary series. The 0, 1, 2 signify the degrees of the terms included.

$$\frac{1-n}{2} \left\{ n \partial z - [n \partial z] \right\}$$

	w-	_1			w-8	
w°	w	w ²	$w^{z}$	$w^0$	w	$w^2$
0	0	0	0	0	0	0
2	2	2		2	2	
	m	,			$n\iota'^2$	

w

0

 $m'^3$ 

## $\frac{\eth}{\eth\vartheta}\!\!\left\{\!\left(1\!-\!\epsilon\,\cos\,\varepsilon\right)\overline{W}\!-\!\left[\left(1\!-\!\epsilon\,\cos\,\varepsilon\right)\overline{W}\right]\!\right\}$

Table XXXVIII.—All the bracketed quantities probably contain only the accumulation of the discrepancies in Tables XXIXb, XXXVI, and XXXVII. This is a very important table, and it is from differences in  $\Phi$  ( $\theta$ ) that the perturbations may be expected to differ most.

 $m'^2$ 

#### PERTURBATIONS OF THE RADIUS VECTOR.

If  $\overline{W}$  and  $\frac{1}{3}\Xi$  are tabulated and the computation is performed in duplicate, it is not necessary to make the long developments and the auxiliary tables in Z §6, 99–114. For this reason the formulae in §6 have not been checked and the list of errata does not cover this section.

The essential formulae are given in Z 99. By Z 7, eq. (36),

m'

$$\nu = -\frac{1}{2} \, \overline{W} - \frac{1}{6} \, \Xi + \frac{1}{4} \overline{W}^2 + \dots$$

In order to parallel the form of  $n\partial z$ , we write

$$\nu = f(\theta) = f(\theta + \theta_1 + \theta_2 + \theta_3 + \dots) = f(\theta) + \frac{\partial f(\theta)}{\partial \theta} (\theta_1 + \theta_2 + \theta_3 + \dots) + \dots$$

where  $(\theta_1 + \theta_2 + \theta_3)$  is given by Z 93, eq. (150).

Hence the computation proceeds as follows: the perturbation is computed by eq. (36), the argument  $\theta$  is replaced by  $\vartheta$ , and a corrective term which is the product of  $(\theta_1 + \theta_2 + \theta_3)$  and the derivative of the function with respect to  $\vartheta$  is added. The perturbation  $\nu$  is then expressed as a function of  $\vartheta$ . It is tabulated in Table XLIII.

Table XLIII.—If there are no errors of calculation in the construction of the table, all the discrepancies are due to the accumulation of other discrepancies previously discussed.

The perturbation  $\nu = f(\theta)$  includes

	$u^{-3}$			.1	w-	
w2	w	w o	w³	u ^{, 2}	w	n ₀
	0	0	0	0	0	0
	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	3	3			3	3
	$m'^2$	-		,	m	

where the tabulated numbers signify the degrees of the terms included and where only  $\overline{W}_1$  and  $\Xi_1$  are inclusive of third degree.

#### TABLE XLIII.

Logarithmic.			L				Unit=1".
	Cos	5n_2	u-2	w-1	<i>u</i> ·0	w	$w^2$
$\begin{bmatrix} \eta^2 \\ \eta'^2 \\ j^2 \\ \eta \eta' \end{bmatrix}$	ı	9, 80 8, 9 9, 66 _n	8. 72 [0. 212 _n ] 9. 23 9. 78	$[9, 88_n]$	1. 6349 2. 759 2. 937 2. 937 _n 3. 1136 _n	$\begin{array}{c} 2.\ 1070_n \\ 3.\ 4922_n \\ 3.\ 6295_n \\ 3.\ 6295 \\ 3.\ 8440 \end{array}$	2. 2333
$\left \begin{array}{c}\eta \eta'' \\ \eta' \\ \eta'' \eta'' \end{array}\right $	$egin{array}{c} 2 artheta \ 2 artheta + \ artheta \ 2 artheta + \ artheta \ 2 artheta + \ artheta \ \end{array}$	$0.55\hat{6}_n$ $0.997$ $0.438$	$ \begin{vmatrix} 1.201 \\ 0.504_n \\ 1.711_n \\ 1.220_n \end{vmatrix} $	$3.2111_n$ $2.3472$ $3.6559$ $3.3654$	$\begin{array}{c} 3.7970 \\ 2.156_n \\ 4.3103_n \\ 4.0763_n \end{array}$	$2.686_n$	3, 4735
$\begin{bmatrix} j^3 & \eta' \\ \eta \\ \eta^3 \\ \eta & \eta'^2 \end{bmatrix}$	$egin{array}{c} 2artheta + \ artheta \ 2artheta + 2\ artheta \ 2artheta + 2\ artheta \ 2artheta + 2\ artheta \ \end{array}$	$0.732_n \\ 0.772_n$	0. 438 1. 497 1. 589	$\begin{array}{c} 3.\ 6975_n \\ 2.\ 952_n \\ 3.\ 2410_n \\ 3.\ 4136 \end{array}$	4, 3810 3, 2529 4, 0643 4, 0723	[3. 0689 _n ]	$3,3979_n$
$ \begin{vmatrix}                                    $	$egin{array}{c} 2\vartheta + 2J \\ 2\vartheta + 3J \\ 2\vartheta + J - \Sigma \\ 2\vartheta + 2J - \Sigma \end{array}$	0. 505 9. 33 _n 9. 20	$\begin{bmatrix} 1.344_n \\ 0.15 \\ 0.10_n \end{bmatrix}$	$egin{array}{l} 3,9048 \\ 3,4757_n \\ 2,938_n \\ 2,0251 \end{array}$	$   \begin{bmatrix}     1.5049_n \\     2.783 \\     3.5830 \\     3.2961_n   \end{bmatrix} $	4. 9303	
y y y y y y y y y y y y y y y y y y y	$ \begin{array}{c} 4\vartheta + 2J \\ 4\vartheta + 3J \\ 4\vartheta + 4J \\ 4\vartheta + 3J - \Sigma \\ 6\vartheta + 3J \\ 6\vartheta + 5J \\ 6\vartheta + 6J \\ 6\vartheta + 6J \\ 6\vartheta + 4J - \Sigma \\ 6\vartheta + 5J - \Sigma \end{array} $	8. 9 9. 75 _n 9. 98 0. 438 1. 125 _n 1. 198 0. 732 _n 9. 20 9. 70 _n	$\begin{array}{c} 1.\ 28\mathring{1}9_n \\ [1.\ 5024] \\ [1.\ 1342_n] \\ 9.\ 64_n \\ 1.\ 220_n \\ 1.\ 862 \\ 1.\ 947_n \\ 1.\ 508 \\ 0.\ 10_n \\ 0.\ 56 \end{array}$	$\begin{array}{c} 3.5514 \\ 3.7885_n \\ 3.4007 \\ 2.305 \\ 4.2675 \\ 4.6479_n \\ 4.5397 \\ 3.9457_n \\ 3.4099 \\ 3.2601_n \end{array}$	$\begin{bmatrix} 3.6173_R^n \\ [4.1394] \\ [3.9091_n] \\ 2.542_R^n \\ 4.7993_R^n \\ [5.2324] \\ [5.1768_R] \\ [4.6328] \\ 4.1710_R \\ [4.0542] \end{bmatrix}$	3. 8147 4. 3110 _n (4. 1480) [2. 749 _n ]	
$ \begin{vmatrix} \eta, \eta' \\ j^2 \\ \eta^2 \\ \eta'^2 \\ \eta, \eta' \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8. 3 _n	$\begin{array}{c} 3.4878_n \\ 2.2106 \\ 3.5709_n \\ 3.4507 \\ 3.5100 \\ 2.579_n \end{array}$	$\begin{array}{c} 4.\ 1106 \\ 2.\ 7179_n \\ 4.\ 2261 \\ 4.\ 1296_n \\ 4.\ 1837_n \\ 3.\ 9270 \end{array}$	2. 919
η'	$\begin{array}{l} \frac{1}{2}\varepsilon + 3\vartheta + 2\mathbf{J} \\ \frac{1}{2}\varepsilon + 3\vartheta + 3\mathbf{J} \end{array}$			0, 08 9, 5	3. 6873 3. 5727 _n	4. <b>1</b> 471 _n 4. 1511	$rac{4.7839}{4.7545_n}$
$\begin{vmatrix} \eta'^2 \\ \eta' \eta' \\ j^2 \end{vmatrix}$	$\begin{array}{l} \frac{1}{2}z + 5\vartheta + 3J \\ \frac{1}{2}z + 5\vartheta + 4J \\ \frac{1}{2}z + 5\vartheta + 5J \\ \frac{1}{2}z + 5\vartheta + 4J - \Sigma \end{array}$				$\begin{array}{c} 4.5568 \\ 4.7261_n \\ 4.2862 \\ 3.2570 \end{array}$	$ \begin{array}{c} 5. \ 1414_n \\ [5. \ 4067] \\ [5. \ 0418_n] \\ 4. \ 0005_n \end{array} $	
$j^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1. 086 _n 0. 88	$\begin{array}{c} 2.7090 \\ 2.1967_n \\ 2.514 \\ 4.0853 \\ 3.8341_n \\ 2.416 \end{array}$	$\begin{array}{c} 3,3467_n \\ 3,0952 \\ 4,1049_n \\ [3,9122] \\ [3,8118] \\ 3,6926_n \end{array}$	3. 7098 3. 5836 _n
$ \begin{vmatrix} \eta & & & & \\ \eta' & & & & \\ \eta' & \eta' & & & \\ \eta^2 & & & & \\ j^2 & & & & \\ \eta' & \eta' & & \\ \eta' & \eta' & & \\ \eta' & & \\ \eta' & & & \\ \eta' & & & \\$	$\begin{array}{c} \varepsilon \\ \varepsilon + \\ \varepsilon + 2\vartheta + \exists \\ \varepsilon + 2\vartheta + 2\exists \\ \varepsilon + 2\vartheta + 3\exists \\ \varepsilon + 4\vartheta + 2\exists \end{array}$	$ \begin{vmatrix} 0.444 \\ 0.344_n \\ 0.025_n \\ 9.98 \\ 1.105 \end{vmatrix} $	$ \begin{vmatrix} 9.62 \\ 9.04_n \\ 1.1661_n \\ 9.487 \\ 1.1143 \\ 0.828 \end{vmatrix} $ $ 0.811_n \\ 1.89_n $	$\begin{array}{c} 0.58_n \\ 9.9 \\ 3.0588 \\ 2.1744_n \\ 2.692_n \\ 2.634 \\ 3.1265 \\ 2.873_n \\ 2.864 \end{array}$	$\begin{array}{c} 2.\ 143_n \\ 2.\ 061 \\ 3.\ 8035_n \\ 2.\ 7280 \\ [3.\ 5334] \\ 3.\ 0726 \\ 3.\ 8806_n \\ 3.\ 1697 \\ 4.\ 3477_n \end{array}$	$ \begin{array}{c} 2.\ 682 \\ 2.\ 666_n \\ [4.\ 2554] \\ 2.\ 972_n \\ [4.\ 0772_n] \\ 4.\ 0416_n \\ 4.\ 3473 \\ [3.\ 5856] \end{array} $	$ \begin{array}{c} 2.9151_{n} \\ 2.9477 \end{array} $ $ 2.976 $
$egin{array}{cccc} \dot{\eta}' & \dot{\eta}' & \\ \eta^2 \eta' & \\ \eta'^3 & \\ \dot{j}^2 & \eta' & \\ \eta & \\ \eta^3 & \\ \end{array}$	$\begin{array}{c} \varepsilon + 4\vartheta + 3J \\ \varepsilon + 4\vartheta + 4JJ \\ \varepsilon + 4\vartheta + 4J \\ \varepsilon + 4\vartheta + 4J \\ \varepsilon + 4\vartheta + 4J \end{array}$	$\begin{array}{c} 8.8_n \\ 1.260_n \\ 0.267 \\ 9.19 \\ 0.774 \end{array}$	$0.398$ $2.083$ $1.15_n$ $0.248_n$ $1.66_n$	$\begin{array}{c} 2.8000_n \\ 3.0931 \\ 3.8375 \\ 3.9421 \\ [2.6356] \\ 3.0934_n \\ 4.1154_n \end{array}$	$\begin{array}{c} 3.5327 \\ 4.4160 \\ 4.0446_n \\ 4.6972_n \\ 3.4317_n \\ [3.7866_n] \\ 4.5547 \end{array}$	$4.0065_n$ $3.9469$	4. 3207 4. 2558 _n
$j^2 \eta$ $\eta^2 \eta'$	$ \begin{array}{c} \varepsilon + 4\vartheta + 4J \\ \varepsilon + 4\vartheta + 5J \end{array} $	$0.455_n$	1. 32	$\frac{3.8518}{3.7579}$	$4.6436$ $4.3244_n$		

Table XLIII Continued.

Logarithmic			ν				Unit=1"
	Cos	<i>U</i> 1−3	<i>u</i> -2	<i>11-11</i>	$w^0$	w	<i>\t</i> +2
$j^2\eta$	$\varepsilon + 4\vartheta + 3J - \Sigma$			3, 0030	3, 8860 _n	1	
$ \begin{vmatrix} j^2 & \eta' \\ & \eta'^2 \\ & \eta'^3 \end{vmatrix} $ $ j^2 \qquad	$\begin{array}{c} \varepsilon + 1\vartheta + 4J - \Sigma \\ \varepsilon + 6\vartheta + 4J \\ \varepsilon + 6\vartheta + 5J \\ \varepsilon + 6\vartheta + 6J \\ \varepsilon + 6\vartheta + 5J - \Sigma \\ \varepsilon + 8\vartheta + 5J \\ \varepsilon + 8\vartheta + 6J \\ \varepsilon + 8\vartheta + 7J \\ \varepsilon + 8\vartheta + 8J \\ \varepsilon + 8\vartheta + 6J - \Sigma \\ \varepsilon + 8\vartheta + 7J - \Sigma \end{array}$	$\begin{array}{c} 9,98_{R} \\ 0,296 \\ 9,95_{R} \\ 8,5_{R} \\ \end{array}$ $\begin{array}{c} 1,320 \\ 1,228_{R} \\ 0,648 \\ \end{array}$	0. 480 0. 823 _n 0. 558 [9. 15] 2. 152 _n 2. 093 1. 54 _n	$\begin{array}{c} 2.\ 1425 \\ 3.\ 5016_n \\ 3.\ 6369 \\ 3.\ 1685_n \\ 2.\ 144_n \\ 4.\ 2551_n \\ 4.\ 5657 \\ 4.\ 3995_n \\ 3.\ 7543 \\ 3.\ 2818_n \\ 3.\ 0763 \end{array}$	$\begin{array}{c} 1.85_n \\ 4.3723 \\ [4.5582_n] \\ [4.1334] \\ 3.0881 \\ 4.9349 \\ 5.3010_n \\ 5.1827 \\ 4.5812_n \\ 4.4442 \\ 3.9759_n \end{array}$	$\begin{bmatrix} 4.9952_n \\ 5.2093 \\ [1.8434_n] \\ [3.7886_R] \end{bmatrix}$	
$\begin{bmatrix} \eta_{1}^{'2} \\ \eta_{1}\eta_{1}^{'} \\ j^{2} \end{bmatrix}$ $\begin{bmatrix} \eta_{1}^{'3} \\ \eta_{1}^{'2} \\ \eta_{2}^{2}\eta_{1}^{'} \\ \eta_{3}^{3} \end{bmatrix}$ $\begin{bmatrix} j^{2} \\ j^{2}\eta \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, 305 0, 490 _n 0, 117 9, 04 1, 146 _n 1, 005 0, 290 _n 9, 98 _n	[1. 1007 _n ] [1. 3330] 0. 982 _n 9. 96 _n 1. 89 1. 78 _n 1. 15	$\begin{array}{c} 2.\ 912 \\ 3.\ 0166_n \\ 2.\ 288_n \\ 2.\ 636 \\ 3.\ 2197 \\ 3.\ 0204 \\ 3.\ 5247_n \\ 3.\ 1793 \\ 3.\ 2486 \\ 2.\ 957_n \end{array}$	$ \begin{array}{c} 3.4958_n \\ [3.7273] \\ [3.2375_n] \\ 3.2817_n \\ 3.9650_n \\ 4.2141 \\ 4.0912_n \\ 2.932 \\ 4.0585_n \\ 3.8580 \end{array} $	[3, 815]] [4, 3119] [3, 7892] [3, 6568]	
$ \begin{array}{c c}                                    $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9. 0 9. 5 9. 28 1. 017 0. 88 _n	$\begin{array}{c} 2,3363\\ 1,500\\ 2,779\\ 2,1614_n\\ 1,32\\ 3,3450\\ 3,2309\\ 3,2994_n\\ 3,1617_n\\ 2,9688\\ 4,0855_n\\ 4,1991\\ 3,7114_n\\ 2,615_n\\ \end{array}$	$ \begin{bmatrix} 3.\ 0701_n \\ 2.\ 3585 \\ 3.\ 7820_n \\ 3.\ 0257 \\ 2.\ 966 \\ 4.\ 1111_n \\ 4.\ 1965_n \\ 4.\ 1520 \\ 4.\ 1967 \\ 4.\ 0380_n \\ 5.\ 2422 \\ 5.\ 3823_n \\ 4.\ 9488 \\ 3.\ 8317 $	[3, 5111] 3, 1842 _n 3, 6491 _n 5, 0160 _n 4, 8781
$j^2$	$ \begin{array}{cccc} -\frac{3}{2}\varepsilon + & \vartheta \\ -\frac{3}{2}\varepsilon + & \vartheta + & \mathcal{I} \\ -\frac{3}{2}\varepsilon + & \vartheta & -\Sigma \end{array} $				$\begin{array}{c} 3.2411 \\ 2.819_n \\ 2.918I_n \end{array}$	$3.7872_n$ $3.4476$ $3.4813$	
7 ² 7, 7'  j ² 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7, 7' 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9. 64 9. 48 _n	9. S _n 9. 5 [8. 8] [0. 53] [0. 36 _n ]	$\begin{array}{c} 2.364_n \\ 2.624 \\ 2.207_n \\ 2.620_n \\ 1.63 \\ 1.796 \\ 1.92_n \\ 1.5802_n \\ 2.330 \\ 3.1079 \\ 2.736 \\ 2.9881_n \\ 2.652_n \\ 2.4419 \\ 3.6135_n \\ 3.7124 \\ 3.2109_n \\ 2.068_n \end{array}$	3. 0737 3. 3489n 2. 978 3. 2765 2. 362n 2. 303n 2. 700 2. 4158 3. 1764n 3. 9008n 3. 6809n 3. 8425 3. 6204 4. 4512n 4. 8075n 4. 3338 3. 2092	$2.873$ $2.1007$ $2.9867_n$ $4.3279_n$ $4.1892$
η΄	$\begin{array}{c} \sharp \varepsilon + 5\vartheta + 5J \\ \sharp \varepsilon + 7\vartheta + 6J \\ \sharp \varepsilon + 7\vartheta + 7J \\ \\ \sharp \varepsilon + 7\vartheta + 7J \end{array}$			$9.3_n$ $0.5_n$ $0.3$	$ \begin{array}{c c} 1. \ 140_n \\ 2. \ 2749_n \\ 2. \ 0542 \end{array} $ $ 0. \ 43_n $	$ \begin{array}{c c} 2.0056 \\ 3.2377 \\ 3.0565_n \\ \hline 1.346 \\ \end{array} $	$2.5727_n$ $3.9184_n$ $3.7710$ $1.959_n$

TABLE XLIII—Continued.

Logarithmic,	$\nu$	$\mathbf{Unit} = \mathbf{1''}$

	Cos	<i>u</i> −3	u-*	<i>u</i> -1	w	w	$w^2$
	$(\vartheta - \vartheta_0) \sin$						
η η' η' η	$\begin{array}{c} \mathbf{J} \\ \mathbf{J} \\ \mathbf{J} \\ 2\vartheta + 2\mathbf{J} \end{array}$	9. 66	$\begin{array}{c c} 0.810_n \\ 9.79_n \\ 9.92 \end{array}$	$ \begin{array}{c c} 2.7559 \\ 0.54 \\ [0.63_n] \end{array} $	3. 3840 _n	3. 6946	
$\begin{bmatrix} \frac{\eta}{\eta^3} \\ \frac{\eta}{\eta} \frac{\eta'^2}{\eta'} \\ j^2 \eta \\ \eta' \end{bmatrix}$	€	$\begin{array}{c c} 9.801_n \\ 1.075_n \\ 1.640_n \\ 1.063 \\ 9.36 \end{array}$	$ \begin{vmatrix} 0.425 \\ 2.045 \\ 2.514 \\ 1.916_n \\ 0.471_n \end{vmatrix} $	$\begin{array}{c} 2.5970_n \\ 3.5201_n \\ 4.1066_n \\ 4.1066 \\ 2.4824 \end{array}$	$ \begin{array}{c} 3. \ 1493 \\ 4. \ 3751 \\ 4. \ 8961 \\ 4. \ 8961_n \\ 3. \ 0830_n \end{array} $	$3.4158_n$ $5.4076$ $3.3936$	
$j^{2}\eta'$ $\eta'^{2}\eta'$ $\eta'^{3}$ $j^{2}\eta'$ $\eta'^{3}$ $j^{2}\eta'$ $j^{2}\eta'$	ε+ 1 ε+ 1 ε+ 3 ε+ 21 ε+ Σ ε+ 1+Σ	1. 565 1. 543 0. 87 _n 1. 441 _n 0. 42 0. 695 _n	$\begin{bmatrix} 2.456_n \\ 2.341_n \\ 1.75 \\ 2.273 \\ 1.36_n \\ 1.585 \end{bmatrix}$	$ \begin{vmatrix} 3.9671 \\ 3.8942 \\ 4.0705_n \\ 3.7192_n \\ 3.7799 \\ 4.0417_n \end{vmatrix} $	4. 7890n 4. 6760n 4. 8759 4. 5456 4. 5819n 4. 7827	5. 3965 _n 5. 0998 5. 2543 _n	
η ² η'	ε+4θ+4 <b>1</b> ε+4θ+3 <b>1</b>		$9.59_n$ $9.46$	0. 45 0. 34 _n			
$\eta$ $\eta'$	$egin{array}{c} 2arepsilon+2artheta+2artheta+2artheta\ 2arepsilon+2artheta+3artheta \end{array}$		9. 45 9. 32 _n	$\begin{bmatrix} 0.11_n \\ 0.04 \end{bmatrix}$			
$\eta^2 \eta'$	- ε+ t	1. $255_n$	2. 149	3. 6240 _n	4. 4615		
	$(\vartheta - \vartheta_0)^2 \cos$		0.25	0.115			
η η'	ε ε+ Δ		$9.25$ $9.12_n$	0. 117 _n 0. 02			
		$m'^2$	m'2	m'2, m'	m'	m'	m'

 $\tau = \Sigma w^{s} \eta p \eta' q j^{2t} C_1 \text{ eos Arg.} + (\vartheta - \vartheta_0) \Sigma w^{s} \eta p \eta' q j^{2t} C_2 \sin \text{ Arg.} + (\vartheta - \vartheta_0)^2 \Sigma w^{s} \eta p \eta' q j^{2t} C_3 \cos \text{ Arg.}$ 

where C₁, C₂, C₃ represent the respective coefficients.

#### PERTURBATIONS OF THE THIRD COORDINATE.

For the third coordinate the developments are limited to perturbations of the first order and of the first degree with the exception of some secular terms of second degree. We can therefore use osculating elements in this section, and use  $\theta$  and  $\vartheta$  without distinction.

By Z 8 eq. (39), 41, eq. (83) and 8, eq. (41) the equations Z 115, (192) are given, in which  $\Sigma$  is defined.

Since

$$\frac{dS}{d\varepsilon} = \frac{\partial S}{\partial \varepsilon} + \frac{\partial S}{\partial \theta} \frac{d\theta}{d\varepsilon} = \Sigma$$

By Z 9, eq. (45) we have, with sufficient accuracy, Z 115, eqs. (193). Within these limits,

$$\frac{d\theta}{d\varepsilon} = \frac{w}{2} (\mathbf{I} - e \cos \varepsilon).$$

Substituting this relation in the above equation and in eq. (192) in turn, the differential equation to be integrated is (194).

Since F, G, H are power series in w, it is evident from eqs. (192) that

$$\frac{dS}{d\epsilon} = \Sigma_0 + \Sigma_1 w + \Sigma_2 w^2 + \dots$$

where

$$-\Sigma_{i} = F_{i,p,q} + G_{i,p,q} + H_{i,p,q}$$

Therefore, eq. (194) becomes

$$\frac{\partial S}{\partial \varepsilon} + \frac{w}{2} (1 - e \cos \varepsilon) \frac{\partial S}{\partial \theta} = \Sigma_0 + \Sigma_1 w + \Sigma_2 w^2 + \dots$$

Comparing the coefficients of like powers of w on either side of the equation, it is evident that the integral must be of the form

$$S = S_{-1} \frac{1}{m} + S_0 + S_1 w + S_2 w^2 + \dots$$

Substituting this relation in the preceding equation and equating like powers of w, the system of equations  $(195_{-1}) - (195_1)$  follows.

Within the extent of the following developments one more equation should be written by analogy.

This system of equations is integrated in a manner similar to that for  $\frac{dW}{d\varepsilon}$  (see p. 81). Each equation is broken up into two equations, one a function of  $\varepsilon$  and one independent of  $\varepsilon$ . The differential equation (194) is then replaced by eight differential equations, the integrals of which can be obtained in the order,

$$S_{-1}$$
,  $(S_0 - [S_0])$ ,  $[S_0]$ ,  $(S_1 - [S_1])$ ,  $[S_1]$ ,

As in the case of  $\frac{dW}{d\varepsilon}$ , the condition is imposed that

$$\left[\frac{\partial S_i}{\partial \varepsilon}\right] = 0$$

The equivalent equations are (196)-(200).

A comparison of the differential equations for  $(S_t - [S_i])$  with the expressions for  $\frac{dW_2^{"}}{d\varepsilon}$  leads to an analogous form of integration for certain terms. Within the extent of our developments,

 $(\Sigma_{\mathbf{0}} - [\Sigma_{\mathbf{0}}]) + w(\Sigma_{\mathbf{1}} - [\Sigma_{\mathbf{1}}])$ 

and

$$-\frac{1}{2}\left(1-\epsilon\,\cos\,\varepsilon\right)\frac{\partial}{\partial\theta}\!\int(\varSigma_0-[\varSigma_0])d\varepsilon - [(1-\epsilon\,\cos\,\varepsilon)\frac{\partial}{\partial\theta}\!\int(\varSigma_0-[\varSigma_0])d\varepsilon]$$

take the place of  $\frac{\partial W_2^{\prime\prime}}{\partial \varepsilon}$  and  $\frac{\partial W_3^{\prime\prime}}{\partial \varepsilon}$ , respectively. Without change of notation for the third coordinate, (S-[S]) is given by eqs. (201), (202), where  $\widetilde{F}$ ,  $\widetilde{G}$ ,  $\widetilde{H}$  are computed from F, G, H in Tables XII-XIV, by means of eqs. (118) and (119). The coefficients  $\widetilde{F}$ ,  $\widetilde{G}$ ,  $\widetilde{H}$  are tabulated in Tables L to LII.

The function [S] is obtained from the integration of eq. (203). A constant of integration is added, which is the same in form as Hansen's constant of integration for the perturbation of the third coordinate, namely,

where  $c_1$  and  $c_2$  are undetermined.

$$c_1(\cos\psi - e) + c_2\sin\psi$$
 Z eq. (204)

By eqs. (192), the pertubation  $\frac{u}{\cos i}$  is derived from

$$\frac{u}{\cos i} = \vec{S}$$

The perturbation comprises the computed value of eq. (202), the trigonometric sine series given by Tables L to LII (which can be written by inspection with the aid of Table XVb), the series forming Table LIII, and the constant of integration (204), in all of which

$$\psi = \varepsilon$$

r	3		٠,		г	7
		۸.	13	1	1.	- 1

1	L.			Unit=1"	
	l.i.			Unit=1"	

n	0	1	2	3	1	5
$\begin{array}{c} \tilde{F}_{1:0}(n+1,-n+1)+\pi' \\ \tilde{F}_{1:0}(n+1,-n+1)+\pi' \\ \tilde{F}_{1:1}(n+1,-n+1)-\pi' \\ \tilde{F}_{1:0}(n-1,-n+1)-\pi' \end{array}$	+ 52.7 +158.2 -158.2 - 52.7	+96.0 $-191.9$ $-191.9$	+ 57. 0 - 285. 0 - 95. 0 - 285. 0	$\begin{array}{r} + 33.8 \\ -101.4 \\ - 50.7 \end{array}$	+ 20.1 - 47.0 - 28.2 + 140.9	+ 12.0 - 24.0 - 16.0 + 48.1
$ \begin{array}{c c} \tilde{\mathcal{E}} & \tilde{F}_{1:0}(n+1,-n+1) + \pi' \\ \tilde{\mathcal{E}} & \tilde{F}_{1:0}(n-1,-n+1) + \pi' \\ \tilde{\mathcal{E}} & \tilde{F}_{1:0}(n+1,-n-1) - \pi' \\ \tilde{\mathcal{E}} & \tilde{F}_{1:0}(n-1,-n-1) - \pi' \end{array} $	-201 -812 +812 +201	-352 +897 +513	- 253 +1495 + 498 + 355	-176 +594 +297	- 119 + 305 + 183 -1473	$ \begin{array}{c} -80 \\ +172 \\ +114 \\ -439 \end{array} $

TABLE LI.

t'nit=1''.

	$\begin{array}{c} \tilde{G}_{0:0}(n,-n+1)^{-1}\pi' \\ \tilde{G}_{0:0}(n,-n-1)-\pi' \\ \tilde{G}_{1:0}(n+1,-n+1)+\pi' \\ \tilde{G}_{1:0}(n+1,-n+1)+\pi' \\ \tilde{G}_{1:0}(n+1,-n-1)-\pi' \\ \tilde{G}_{1:0}(n-1,-n-1)-\pi' \\ \tilde{G}_{0:1}(n,-n+2)+\pi' \\ \tilde{G}_{0:1}(n,-n)+\pi' \\ \tilde{G}_{0:1}(n,-n)-\pi' \\ \tilde{G}_{0:1}(n,-n-2)-\pi' \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 28.50 + 47.50 + 58.5 + 468.9 - 53.3 - 1549.1 - 103.8 - 298.2 + 13.2 + 881.4	$\begin{array}{r} - & 16.91 \\ + & 25.36 \\ + & 29.0 \\ + & 311.7 \\ - & 21.8 \\ - & 674.1 \\ - & 47.7 \\ - & 229.0 \\ - & 14.4 \\ + & 516.6 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrr}  & - & 6.02 \\  & + & 8.02 \\  & + & 5.8 \\  & + & 138.0 \\  & - & 1.2 \\  & - & 219.0 \\  & - & 6.4 \\  & - & 118.3 \\  & - & 19.3 \\  & + & 204.1 \end{array} $
Factor w	$ \begin{array}{l} \tilde{G}_{0\cdot0}(nn+1)+\pi' \\ \tilde{G}_{0\cdot0}(nn-1)-\pi' \\ \tilde{G}_{1\cdot0}(n+1n+1)+\pi' \\ \tilde{G}_{1\cdot0}(n-1n+1)+\pi' \\ \tilde{G}_{1\cdot0}(n+1n-1)-\pi' \\ \tilde{G}_{1\cdot0}(n-1n-1)-\pi' \\ \tilde{G}_{0\cdot1}(nn+1)+\pi' \\ \tilde{G}_{0\cdot1}(nn)+\pi' \\ \tilde{G}_{0\cdot1}(nn)-\pi' \\ \tilde{G}_{0\cdot1}(nn)-\pi' \end{array} $	$\begin{array}{c} +\ 100.\ 4 \\ -\ 406.\ 6 \\ -\ 432 \\ -2047 \\ +\ 718 \\ -2401 \\ +\ 693 \\ +\ 893 \\ -\ 893 \end{array}$	+ 176.3 - 448.6 - 592 - 3188 + 821 + 951 + 1773 - 747 - 13263	$\begin{array}{l} + & 126.8 \\ - & 249.2 \\ - & 370 \\ - & 2412 \\ + & 440 \\ + 12134 \\ + & 568 \\ + & 1607 \\ - & 254 \\ - & 5889 \end{array}$	$\begin{array}{c} + & 87.8 \\ - & 148.6 \\ - & 218 \\ - & 1811 \\ + & 225 \\ + & 4939 \\ + & 314 \\ + & 1356 \\ - & 27 \\ - & 3549 \\ \end{array}$	$\begin{array}{r} + 59.6 \\ - 91.5 \\ - 122 \\ -1342 \\ + 107 \\ +2788 \\ + 158 \\ +1089 \\ + 68 \\ -2336 \end{array}$	$\begin{array}{r} + & 39.9 \\ - & 57.2 \\ - & 64 \\ - & 982 \\ + & 44 \\ + 1744 \\ + & 68 \\ + & 844 \\ + & 98 \\ - & 1586 \end{array}$

TABLE LII.

Unit=1".

	$ \begin{array}{c} \tilde{H}_{0\cdot 0}(n,-n+1)+\pi' \\ \tilde{H}_{0\cdot 0}(n,-n-1)-\pi' \\ \tilde{H}_{1\cdot 0}(n+1,-n+1)+\pi' \\ \tilde{H}_{1\cdot 0}(n-1,-n+1)+\pi' \\ \tilde{H}_{1\cdot 0}(n+1,-n-1)-\pi' \\ \tilde{H}_{1\cdot 0}(n-1,-n-1)-\pi' \\ \tilde{H}_{0\cdot 1}(n,-n+2)+\pi' \\ \tilde{H}_{0\cdot 1}(n,-n)+\pi' \\ \tilde{H}_{0\cdot 1}(n,-n)-\pi' \\ \tilde{H}_{0\cdot 1}(n,-n-2)-\pi' \end{array} $	$\begin{array}{r} -79.10 \\ +26.37 \\ -609.9 \\ +124.2 \\ -530.8 \\ -90.3 \\ \end{array}$ $\begin{array}{r} -166.5 \\ +166.5 \\ +162.4 \end{array}$	+ 95. 96 - 528. 9 + 528. 9 - 312. 4 +1057. 8 -1057. 8 + 290. 1 + 608. 5	+ 142.49 + 142.49 - 231.4 +1121.6 + 551.7 - 421.4 + 311.5	+ 50.72 - 108.8 + 166.9 - 572.6 + 111.3 +1145.2 + 71.9 +1551.0	$\begin{array}{rrrrr} + & 23.48 \\ - & 70.45 \\ - & 52.7 \\ - & 897.4 \\ + & 64.3 \\ - & 967.8 \\ + & 39.4 \\ + & 501.5 \\ + & 62.1 \end{array}$	+ 12.03 - 24.07 - 25.7 - 365.9 + 26.5 + 11.6 + 276.0 + 44.9 - 1020.6
Factor w	$\begin{split} \widetilde{H}_{0\cdot 0}(n,-n+1) + \pi' \\ \widetilde{H}_{0\cdot 0}(n,-n-1) - \pi' \\ \widetilde{H}_{1\cdot 0}(n+1,-n+1) + \pi' \\ \widetilde{H}_{1\cdot 0}(n+1,-n+1) + \pi' \\ \widetilde{H}_{1\cdot 0}(n+1,-n-1) - \pi' \\ \widetilde{H}_{1\cdot 0}(n-1,-n-1) - \pi' \\ \widetilde{H}_{0\cdot 1}(n,-n+2) + \pi' \\ \widetilde{H}_{0\cdot 1}(n,-n) + \pi' \\ \widetilde{H}_{0\cdot 1}(n,-n) - \pi' \\ \widetilde{H}_{0\cdot 1}(n,-n-2) - \pi' \end{split}$	+ 406.6 - 100.4 +2402 - 717 +2046 + 432 + 893 - 893 - 693	- 256.6 +2483 -2183 +1214 -3908 +3908 -1855 -1987	- 747. 8 - 177. 8 +1362 -4550 -4336 +1481 -1705	- 297. 2 + 740 -1408 +1901 - 753 -9529 - 39 - 310	- 152.4 + 739.1 + 406 +8048 - 697 +1186 - 325 -3936 - 287	- 85.8 + 219.8 + 222 + 3120 - 298 - 126 - 2233 - 270 +13643

Unit=1".

Table 4.111.  $[S] - \{c_1(\cos \phi + c) + c, \sin \phi\}$ 

		1		
	Sin	w ⁻¹	$u^{c0}$	7/7
	Ş+4θ+3J−II′	- 25, 36	123. 2	- 281.8
η	$\begin{array}{c} +\theta + \beta \mathbf{J} - \mathbf{H}' \\ -\psi + 2\theta + \mathbf{J} - \mathbf{H}' \\ \psi + 2\theta + 3\mathbf{J} + \mathbf{H}' \\ \psi + 2\theta + \mathbf{J} - \mathbf{H}' \\ \psi + 6\theta + 5\mathbf{J} - \mathbf{H}' \end{array}$	+ 50.7 - 816.8 - 521.8 + 432.9 + 129.9	$\begin{array}{l} - & 246.5 \\ + & 3636 \\ + & 2851 \\ - & 2031 \\ - & 861 \end{array}$	+563.6 $-8548$ $-7663$ $+5237$ $+2770$
7,'	$     \begin{array}{ccc}       \zeta' - 2\theta & + \Pi' \\       \zeta' + 2\theta + 2J + \Pi' \\       \zeta' + 2\theta + 2J - \Pi' \\       \zeta' + 6\theta + 4J - \Pi'    \end{array} $	$\begin{array}{r} - 649.4 \\ + 596.4 \\ - 26.5 \\ - 214 \end{array}$	$\begin{array}{c c} + 3096 \\ - 2916 \\ + 494 \\ + 1236 \end{array}$	$-7475 \\ +7216 \\ -2266 \\ -3395$
,	$(\theta - \theta_0)$ cos			
	$\varsigma'+$ $J+\Pi'$	+ 191, 93	<b>–</b> 705, 2	+1302. 0
η	1+II,	- 383.8	+ 1410	-2605
$\eta^2$		$+6584 \\ -5312$	$-40060 \\ +29610$	
η η'	ψ+ 2J+II′ ψ+ II′ ψ− II′	$     \begin{array}{r}       -5742 \\       -6024 \\       +6024   \end{array} $	$+36970 \\ +38180 \\ -38180$	
$\eta'^2$	$\phi'+ \qquad J+\Pi' \ \phi+ \qquad J-\Pi'$	$^{+6584}_{-1656}$	$-40060 \\ [+11860]$	
$j^2$	$\phi+$ J+ $\Pi'$	-3002	+18970	
			m'	

and by eq. (193),

$$\theta - \theta_0 = \frac{w}{2}nt$$

By inspection it is clear that the periodic part of  $\bar{S}$  is of the form

$$\sum U_{p\cdot q} \eta^{p} \eta'^{q} \sin A$$

and the secular terms are of the form

$$\Sigma U_{p \cdot q \eta} p_{\eta'} q \frac{w}{2} nt \cos \{ (A - \varepsilon) + \varepsilon \} + \frac{w}{2} nt. \ \eta U_{1 \cdot 0} \cos A$$

Expanding  $\cos \{(A - \varepsilon) + \varepsilon\}$ , and collecting coefficients of  $\sin \varepsilon$  and  $\cos \varepsilon$ , the secular terms can be written

$$nt\{K_1(\cos \varepsilon - \epsilon) + K_2 \sin \epsilon\}$$

where

$$K_{\scriptscriptstyle 1} \! = \! \varSigma \; U_{p \cdot q} \eta^p \eta'^q \frac{w}{2} \; \mathrm{cos} \; \left( A \! - \! \varepsilon \right) - \frac{w}{4} \; U_{\scriptscriptstyle 1 \cdot 0} \; \mathrm{cos} \; A$$

$$K_2 = - \sum U_{p \cdot q} \eta^p \eta'^q \frac{\eta}{2} \sin (A - \varepsilon)$$

Introducing this notation, the perturbation can be written in the form of eq. (205).

The coefficients  $U_{p\cdot q}$  are given in Table LIV.  $K_1$  and  $K_2$ , which are constants, are tabulated in Tables LV₁ and LV₁₁, respectively. For a given planet the factors and arguments are known. Therefore  $K_1$  and  $K_2$  reduce each to a single numerical quantity.

Since the Bohlin-v.Zeipel method is based on the fundamental principles of Hansen, the constants of integration are determined by the condition which must be satisfied when the

perturbations are developed on the basis of osculating elements, namely, that the perturbations and their first derivatives shall be zero at the time t=0. The relations to be satisfied are

$$\frac{u}{\frac{du}{dt}} = 0$$

and the following equations are equivalent relations:

$$\frac{u}{t \cos i} = 0$$

$$t = 0$$

$$\frac{d}{dz} \left(\frac{u}{t \cos i}\right) = 0$$

TABLE LIV

 $\Sigma U_{p\cdot q}\eta^p\eta^{\prime q}\sin Arg.$ Logarithmic. Unit=I"  $u^{1}-1$ Sin w  $3.\,0621_n$ - 1-11' 3.7258 $3.5528_n$  $\frac{2.8235}{2.2831}$  $-\Pi'$  $\frac{5}{2}$ .  $8483_n$  $2\theta + J - \Pi'$  $\bar{3}.\ \bar{1}591_n$ 4θ+3J-II' 3.86081,705 3. 2462  $4\theta + 2\mathbf{J} - \mathbf{H}'$ 3.  $9166_n$  $3.2112_n$ 3.8544 $\frac{1}{2}\varepsilon + \frac{\theta}{\theta} + \mathbf{J} - \mathbf{H}'$  $\frac{1}{2}\varepsilon + 3\theta + 2\mathbf{J} - \mathbf{H}'$ 2.5875 $3.4153_n$ 2.2787 $\frac{1}{2}$ .  $6304_n$  $\frac{1}{3}\varepsilon + 5\theta + 3\mathbf{J} - \mathbf{\Pi}'$ 3. 3155 3.  $5865_n$ η  $\tilde{1}_{\varepsilon} + 5\theta + 4J - \Pi'$ 3.3972 $3.0779_n$ T)  $-\frac{1}{2}\varepsilon - \theta - 2J - \Pi'$  $3.1158_n$ 3.7378 η  $\eta'$  $-\frac{1}{2}\varepsilon - \theta - \mathbf{J} - \mathbf{H}'$ 3. 1493  $3.7544_n$  $\begin{array}{cccc}
-\frac{1}{2}\varepsilon + \theta & -\Pi' \\
-\frac{1}{2}\varepsilon + 3\theta + \mathbf{J} - \Pi'
\end{array}$ 2.32423.  $0060_n$ 4.  $1833_n$ 3.3863 $\eta'$  $-\frac{1}{2}\varepsilon+3\theta+2J-\Pi'$ 4.14523.  $3532_n$ Tj  $3.3704_n$ 3.8423 2.6364  $1.423_n$   $1.4042_n$  $3.4014_n$ 2.706 $\eta'$  $\varepsilon + 4\theta + 3J - \Pi'$ 2.17202.  $6339_n$  $\varepsilon + 6\theta + 4J - \Pi'$  $2.3306_n$ 3.19223.  $7582_n$ η 2.1137  $\varepsilon + 6\theta + 54 - 11'$  $3.0138_n$ 3. 6101  $-\varepsilon-2\theta-3\mathbf{J}-\mathbf{H}'$ 2.7175 $3.4858_n$ 3.9484 7  $-\epsilon - 2\theta - 2\mathbf{J} - \mathbf{H}'$  $2.7756_n$ 3.5070  $3.9456_n$  $\eta'$  $2.2463_n$ - ε 1.6810 3. 7846 2.8125  $3.4427_n$ η  $\frac{5}{2}$ .  $9121_n$  $-\varepsilon + 2\theta + J - \Pi'$ 3.49583.  $8338_n$ η  $\frac{\frac{3}{2}\varepsilon+3\theta+2\mathbf{J}-\mathbf{\Pi'}}{\frac{3}{2}\varepsilon+3\theta+3\mathbf{J}-\mathbf{\Pi'}}$ 2.6058 $3.5312_n$ 1.7601. 82_n 2. 8113  $\frac{3}{2}\varepsilon + 5\theta + 4\mathbf{J} - \mathbf{\Pi}'$  $\frac{3}{2}\varepsilon + 7\theta + 5\mathbf{J} - \mathbf{\Pi}'$  $1.7510_n$ 2.  $9120_n$ 4. 0813  $\eta'$  $-\frac{3}{2}\varepsilon-3\theta-4\mathbf{1}-\Pi'$ 2.86733.  $8458_n$  $\begin{array}{c} 2.9620_n \\ 2.0569_n \end{array}$  $-\frac{3}{2}\varepsilon - 3\theta - 3\Delta - \Pi'$ 3.9124 $\eta'$ 2.7932 $\frac{5}{2}$ .  $9275_n$ 3.4708 η 2. 9702  $3.5487_n$ 1.640  $2.731_{n}$  $2\varepsilon + 4\theta + 3J - \Pi'$ η  $\bar{2}$ .  $340_{\eta}$  $2\varepsilon + 4\theta + 4\mathbf{J} - \Pi'$ 1.617 2. 2110  $2\varepsilon + 6\theta + 5A - \Pi'$ 1.  $206_n$  $3.3634_n$  $-2\varepsilon-4\theta-5J-\Pi'$ 2.4012η  $-2\varepsilon-4\theta-4\mathbf{J}-\Pi'$  $2.5241_n$ 3.4544 $1.5290_n$ 2.3210  $-2\varepsilon-2\theta-3\mathbf{J}-\mathbf{\Pi'}$  $\frac{1}{2}$ .  $\frac{3}{3}$  $\frac{1}{174}$  $\frac{1}{n}$  $-2J - \Pi'$ 3,0558  $-2\varepsilon$ η 2.3514 $3.0737_n$  $-2\varepsilon$  $-J-\Pi'$ η m'

 $\frac{u}{\iota\cos i} = \Sigma \, U_{p\cdot q} \eta p \eta' q \sin A + nt \{ K_1(\cos \varepsilon - e) + K_2 \sin \varepsilon \} + c_1(\cos \varepsilon - e) + c_2 \sin \varepsilon \}$ 

*****

TABLE LV,1.

Logarithmic		$\Lambda_1$		Unit-1".
	Cos	w°	w	$w^{i}$
$ \begin{array}{c} \eta'^2 \\ \eta^2 \\ \eta'^2 \\ j^2 \\ \eta'\eta' \end{array} $	J-II' J+II' J+II' J+II' J+II' 2J+II'	$\begin{array}{c} 2,9180_n \\ 1,9821 \\ 2,8035 \\ 3,5175 \\ 3,1764_n \\ 3,4580_n \end{array}$	3. 7732 2. 5473n 3. 7182n 4. 3017n 3. 9772 4. 2668	2. 8138
			m'	

$$K_1 = \sum w^a \eta^p \eta'^q j^{2t} \cos \text{Arg.}$$

TABLE LV, II.

Logarithmic		$K_2$		Unit≖1".
	Sin	и 0	w	$w^2$
$ \begin{array}{c} \eta'^2 \\ \eta \eta' \end{array} $ $ \begin{array}{c} \eta^2 \\ \eta'^2 \\ \eta \eta' \end{array} $ $ j^2 $	J-II' II' J+II' J+II' J+II' J+II' J+II' J+II'	2. 9180 3. 7799 1. 9821 _n 3. 7744 _n 3. 5175 _n 3. 4580 3. 1764	3. 7732 _n 4. 5819 _n 2. 5473 4. 5420 4. 3017 4. 2668 _n 3. 9772 _n	$2.8138_n$
			m'	

$$K_2 = \sum w^s \eta^p \eta'^q j^{2t} \sin \text{Arg.}$$

$$\frac{u}{\epsilon \cos i} = \Sigma U_{p \cdot q} \eta^p \eta'^q \sin A + nt \bigg\{ K_1(\cos \varepsilon - \epsilon) + K_2 \sin \varepsilon \bigg\} + c_1(\cos \varepsilon - \epsilon) + c_2 \sin \varepsilon$$

By eq. (205), at the date of osculation,

$$t = 0, \qquad \theta = \theta_0$$

$$\frac{u}{c \cos i} = \sum U_{p \cdot q} \eta^p \eta'^q \sin A + c_1(\cos \varepsilon - e) + c_2 \sin \varepsilon$$
(A)

By Hansen,1

$$\frac{d}{ds} \left( \frac{u}{c \cos i} \right) = \overline{\frac{d}{d\psi} \left( \frac{U}{c \cos i} \right)} = \overline{\frac{dS}{d\psi}} = 0$$
 (B)

in which v. Zeipel's notation is adopted.

From the various parts of S, enumerated above,  $\overline{dS}$  can be computed. Since S contains the constants of integration

 $c_1(\cos \psi - e) + c_2 \sin \psi$ 

the derivative,  $\frac{\overline{dS}}{d\phi}$ , contains the constants

$$-c_1 \sin \varepsilon + c_2 \cos \varepsilon$$

The solution of eqs. (A) and (B) gives  $c_1$  and  $c_2$ . But there is a better way of determining the derivative of the perturbation. The exposition of this second method is postponed until a particular example is considered, for the perturbations are not yet in a form which leads to the development of the equations.

¹ Auseinandersetzung einer zweckmässigen Methode zur Berechnung der Absoluten Störungen der kleinen Planeten, Erste Abhandlung, § 5. p. 8 110379°—22——10

#### COMPARISON OF TABLES.

Tables L, LI, LII check satisfactorily.

Table LIII.—With one exception, the agreement is satisfactory. The bracketed coefficient contains a misprint in sign in v. Zeipel's table. That it is a misprint is evident from Table LV₁, in which the correct sign is given to the corresponding coefficient.

The terms included in the last column are computed from the additional tables, XII $w^2$ , XII $w^2$ , XIV $w^2$  and from first degree terms in Z 116, eq. (200). The latter part, namely,

$$\frac{1}{2} \!\! \left[ e \; \cos \; \varepsilon \! \left( \frac{\delta}{\delta \overline{\theta}} \! \int (\boldsymbol{\varSigma}_1 \! - \! [\boldsymbol{\varSigma}_1]) d\varepsilon \! - \! \frac{1}{2} \; \frac{\delta}{\delta \overline{\theta}} \! \int \! \left\{ \! \frac{\delta}{\delta \overline{\theta}} \! \int (\boldsymbol{\varSigma}_0 \! - \! [\boldsymbol{\varSigma}_0]) d\varepsilon \! \right\} \! d\varepsilon \right) \! \right]$$

is added to both eq. (200) and eq. (203).

Table LIV.—Our table is more extensive. The one bracketed quantity includes an additional term from Table LIII.

Tables LV_I, LV_{II} check satisfactorily.

#### CONSTANTS OF INTEGRATION IN $n \delta z$ AND $\nu$ .

The constants in  $\frac{u}{\cos i}$  were treated in the preceding section by the familiar Hansen method.

It is the purpose of this section to modify the similar treatment of the constants in the perturbations  $n\partial z$  and  $\nu$  so as to incorporate them in the elements  $a_0$ ,  $e_0$ ,  $\pi_0$ ,  $\psi_0$ . Through the constants of integration, the constant elements, which have been used from the beginning without definition, are to be explained.

Since the group method of developing perturbations is built upon the fundamental principles of Hansen, his conditions for the determination of the constants of integration must be fulfilled. These conditions depend upon the choice of initial osculating or mean elements. Osculating elements are used here. The corresponding conditions are that the perturbations and their first derivatives, at the date of osculation, (t=0), shall be zero.

Consider the relation of the constants of integration to the elements. There are two constants in each perturbation since the differential equations are of the second order. The constant added in the first integration is a velocity; the one added in the second integration is a displacement, or, a perturbation. Now, recalling that the position and velocity of a body for any time t can be transformed into the constants which are ordinarily called the elements of the orbit, it is evident, by analogy, that a displacement of the body and the velocity of the displacement can be transformed similarly into changes in the elements. The four constants in  $n\delta z$  and  $\nu$  are related to the four elements, a, c,  $\pi$ , c, defining the shape and size of the orbit and the position in the orbit, and the two constants in the perturbation which is measured perpendicular to the plane of the orbit are related to the elements  $\Omega$ , i, which determine the position of the plane of the orbit. It is possible therefore to modify all six elements, but it is  $\nu$ . Zeipel's preference to make the transformations only for the first four constants.

It is not necessary to compute

$$\frac{n\delta z}{dn\delta z} \quad \frac{v}{dv} = 0$$

for the following developments perform the transformation analytically, and the changes in the elements can be computed from auxiliary functions.

Let  $a_0$ ,  $e_0$ ,  $\pi_0$ ,  $e_0$  be osculating elements; let a, e,  $\pi$ , e be the osculating elements modified by the constants of integration in the manner indicated above.

For undisturbed motion,

$$\begin{split} \varepsilon - e_0 \sin \varepsilon &= c_0 + n_0 t \\ r \cos (v - \pi_0) &= a \left(\cos \varepsilon - e_0\right) \end{split} \qquad \begin{aligned} tg(v - \pi_0) &= \sqrt{\frac{1 + e_0}{1 - e_0}} \, tg \, \frac{1}{2} \, \varepsilon \\ r \sin (v - \pi_0) &= a_0 \sqrt{1 - e_0^2} \, \sin \varepsilon \end{aligned}$$

Hansen's choice of ideal coordinates demands that the coordinates and their velocities shall have the same form of expression for disturbed and undisturbed motion. The ideal polar

coordinates are designated by  $\tilde{\epsilon}$  or f and  $\tilde{r}$ . The relations which are analogous to the above are

$$\begin{split} \bar{\varepsilon} - e_0 \sin \bar{\varepsilon} &= e_0 + n_0 t + n_0 \delta z = e_0 + n_0 (t + \delta z) \\ \bar{r} \cos \bar{f} &= a_0 \; (\cos \bar{\varepsilon} - e_0) \end{split} \qquad \begin{aligned} tg(v - \pi_0) &= \sqrt{\frac{1 + e_0}{1 - e_0}} \, tg \; \frac{1}{2} \; \bar{\epsilon} \\ \bar{r} \sin \bar{f} &= a_0 \sqrt{1 - e_0^2} \, \sin \bar{\epsilon} \\ r &= \bar{r} (1 + \nu) \end{aligned}$$

These are the equations for motion in the orbit based on constant osculating elements and appropriately determined constants of integration.

If, in place of osculating elements and Hansen's  $n\partial z$  and  $\nu$ ,  $\nu$ . Zeipel's elements and the corresponding perturbations are used, the equations are the same in form. In  $\nu$ . Zeipel's notation  $\varepsilon$  and f take the place of  $\bar{\varepsilon}$  and  $\bar{f}$ . The omission of the dash over these variables is permissible, since the physically real values, with which they might be confused, do not occur in the theory except for the date of osculation, where the subscript zero is added. It is to be noted that, through  $\nu$ . Zeipel's choice of elements, the coordinates and the perturbations have values which are numerically different from the Hansen quantities of the same designation.

Let the time be the date of osculation and denote the true coordinates by  $\epsilon_0$ ,  $v_0$ ,  $r_0$ . Then the preceding equations for undisturbed motion become Z 121, equations (206), (207), and Z 125, equation (230).

Let the disturbed eccentric anomaly and radius vector  $(\varepsilon, \bar{r})$  be  $\varepsilon_1$  and  $r_1$ , respectively. The relations for disturbed motion become Z 121, equation (209), and Z 122, equations (210).

The first derivatives of these expressions are given by equations (208) and (211), respectively, and the time rate of  $\varepsilon$  is given by the equation following (209).

The solution of the four equations (210), (211), with the aid of all the others, determines the four unknown constant elements, a, e,  $\pi$ , c, or, better,  $a - a_0$ ,  $e - e_0$ ,  $\pi - \pi_0$ , and e.

The fact that the adoption of the new elements in connection with the perturbations  $n\partial z$  and  $\nu$ , as developed in the preceding sections, is equivalent to the use of osculating elements, follows from the simultaneous solution of the equations for the disturbed coordinates and their velocities and the corresponding equations for undisturbed motion.

The method of calculating e from the equation

is given in the example, page 18.

$$c=\varepsilon_1-e\,\sin\,\varepsilon_1-n\partial z$$

After many laborious transformations the other three unknowns are expressed in terms of familiar functions in equations (233)–(236). In the verification of these equations slight differences in the numerical coefficients of certain unimportant terms were found. The magnitudes of these coefficients depend upon the number of the terms included in making the transformations. Since it makes little difference whether or not they are included and since v. Zeipel's values present a more symmetrical form of a later auxiliary function, we adopted his coefficients.

In the functions x, y, z the arguments and factors are functions of  $\eta$ ,  $\pi$ ,  $\varepsilon_1$ ,  $\theta_1$ ,  $\Delta$ ,  $\Sigma$ , where

$$\theta_1 = \frac{1}{2}(\varepsilon_1 - e \sin \varepsilon_1) - g'$$

but at the beginning of the computation only  $\eta_0$ ,  $\pi_0$ ,  $\varepsilon_0$ ,  $\theta_0$ ,  $\theta_0$ ,  $\theta_0$ ,  $\theta_0$ , the corresponding functions of osculating elements are known.

and their di-Terence is computed by Z 127, equation (238). In the collection of formulae by Z 133,

$$\theta_1 = \frac{1}{2}(\epsilon_1 - e \sin \epsilon_1) - g'$$

This is an approximation for the above equation. Again, in Z, 60,

$$\theta_0 = \frac{1}{2} c_0 - c'$$

$$\theta_0 = \frac{1}{2}c - c'$$

$$= \frac{1}{2}(\epsilon_1 - e\sin\epsilon_1) - n\beta z - c'$$

If the secular terms are counted from the date of osculation, the factor  $(\theta - \theta_0)$  ought to be replaced by  $(\theta - \theta_1)$ .

¹ There is a confusion of notation in v. Zeipel's developments. In Z 127, equation (238),  $\theta_0$  is defined to be the value of  $\theta$  at the date of osculation when osculating elements are used for the planet, and  $\theta_1$  signifies the argument if the elements a, e,  $\pi$ , etc., are employed, or by Z 9,  $\theta_0 = \frac{1}{2}(\varepsilon_0 - e_0 \sin \varepsilon_0) - g'$ 

By equations Z (43), (235), (236) and the equations preceding (233), the factor  $\eta$  and the arguments  $\Delta$ ,  $\varepsilon_1$ ,  $\theta_1$  are given in equations (238) in terms of osculating values and functions of perturbations, inclusive of first order.

To these should be added

 $\Sigma = \Sigma_0 - \frac{1}{4\pi} z + \frac{1}{2} \eta_0 z + \dots$ 

and

$$\Gamma_1 = \Gamma + \frac{3}{4} \left( 1 - \frac{2}{3} \eta_0 \cos \varepsilon_0 \right) (y \sin \varepsilon_0 - z \cos \varepsilon_0) + \frac{1}{2} \eta_0 z + \dots$$

where

$$\boldsymbol{\varGamma}_{\mathbf{1}} \!=\! \frac{1}{2}\boldsymbol{\varepsilon}_{\mathbf{1}} \!+\! \boldsymbol{\vartheta}_{\mathbf{1}} \!+\! \boldsymbol{J}_{\mathbf{1}}$$

$$\Gamma \ = \frac{1}{2}\varepsilon_{\rm o} + \theta_{\rm o} + A_{\rm o}$$

The equations (233), (235), (236), and (238) permit the construction of two tables which determine w, n or a, and e and  $\pi$ . From here on the developments differ in form from v. Zeipel's although they are the same in principle. If v. Zeipel's equations (237) and (239) are used, the term  $(x_2^{\prime\prime} - \eta y_2^{\prime\prime})$  should read

$$(x_2^{\prime\prime} + x_3^{\prime\prime} + x_4^{\prime\prime}) - \eta(y_2^{\prime\prime} + y_3^{\prime\prime} + y_4^{\prime\prime})$$

in agreement with Z 91, line 14.

Suppose that  $w-w_0$  has been computed by equation (233) and the argument  $\Gamma$  has been introduced. The arguments and factors are unknown.

By Taylor's theorem

$$\begin{aligned} w - w_0 = & f(\eta, \ \Gamma_1, \ \theta_1, \ \varDelta, \ \varSigma) \\ w - w_0 = & f(\eta_0, \ \Gamma, \ \theta_0, \ \varDelta_0, \ \varSigma_0) + \frac{\partial f}{\partial \eta_0} \varDelta \eta_0 + \frac{\partial f}{\partial \Gamma} \varDelta \Gamma_0 + \frac{\partial f}{\partial \theta_0} \varDelta \theta_0 + \frac{\partial f}{\partial \varDelta_0} \varDelta \varDelta_0 + \frac{\partial f}{\partial \varSigma_0} \varDelta \varSigma_0 + \ \ldots \ . \end{aligned}$$

Inclusive of second order in m', the differentiation is for first order terms.

Substituting the values of  $\Delta \eta$ ,  $\Delta \Gamma$ ,  $\Delta \theta_0$ ,  $\Delta \Delta \theta_0$ ,  $\Delta \Sigma_0$  from equations (238) and the additional equations above,

solve, 
$$w - w_0 = f(\eta_0, \Gamma, \theta_0, \Delta_0, \Sigma_0) + \left(\frac{\delta f}{\delta(2\theta_0)} - \frac{\delta f}{\delta J_0} - \frac{\delta f}{\delta \Sigma_0}\right) \frac{1}{4\eta_0} z + \left(\frac{\delta f}{\delta J_0} + \frac{\delta f}{\delta \Gamma} + \frac{\delta f}{\delta \Sigma_0}\right) \frac{1}{2} \eta_0 z$$
$$-\frac{\delta f}{\delta \eta_0} \frac{1}{4} y + \left\{\frac{1}{2} (1 - \eta_0 \cos \varepsilon_0) \frac{\delta f}{\delta \theta_0} + \frac{3}{4} \left(1 - \frac{2}{3} \eta_0 \cos \varepsilon_0\right) \frac{\delta f}{\delta \Gamma}\right\} (y \sin \varepsilon_0 - z \cos \varepsilon_0) + \dots$$

The order of calculation is: computation of equation (233), in which the arguments and the factors are given the subscript zero, differentiation of first order terms, computation of the second order terms in the above equation, and the addition of these second order terms to the first calculation.

With some foresight the computation can be simplified. The arguments should be arranged in groups like the following:

$$-n\Gamma + 2\theta + 2\Delta$$

$$-(n-1)\Gamma + 2\theta + 2\Delta$$

$$-(n-2)\Gamma + 2\theta + 2\Delta$$

$$\cdots$$

$$\cdots$$

$$(n-1)\Gamma + 2\theta + 2\Delta$$

$$n\Gamma + 2\theta + 2\Delta$$

Then, for whole groups of arguments,

$$\frac{\partial f}{\partial (2\theta_0)} - \frac{\partial f}{\partial \mathbf{J}_0} - \frac{\partial f}{\partial \boldsymbol{\Sigma}_0} = 0$$

Also for some particular argument in a group, the condition

$$\frac{\partial f}{\partial \mathbf{J_0}} + \frac{\partial f}{\partial \Gamma} + \frac{\partial f}{\partial \Sigma_0} = 0$$

may be satisfied.

Finally, by inspection of the arguments, considerable computation can be avoided if

$$\frac{1}{\eta_{0}} \left( \frac{\partial f}{\partial (2\theta_{0})} - \frac{\partial f}{\partial J_{0}} - \frac{\partial f}{\partial \Sigma_{0}} \right) z = \frac{\partial f}{\partial \eta_{0}} y$$

The function  $w-w_0$  is tabulated in Table LVI. Since it is unavoidably a function of w itself, the determination of w for a given case must be made by successive trials, the first approximation being  $w=w_0$ 

TABLE LVI.

Logarithr	nic.		$w-w_0$			Unit=1 radian.		
	Cos	u-3	₹₹1−2	u-1	<i>u</i> ¹⁰	w	ws	
	$\Gamma$ $2\Gamma$ $3\Gamma$ $4\Gamma$ $5\Gamma$ $7\Gamma$		4. 360	[5. 1966 _n ] 4. 766 4. 446 4. 412 4. 484	[5, 7767] 6, 6599 7, 1194 6, 8442 6, 5883 6, 3437 5, 875	$7. 3732_n$ $7. 7572_n$ $7. 5458_n$ $7. 3450_n$ $7. 1490_n$ $6. 7632_n$	7. 7492 8. 0553 7. 9060 7. 7602 7. 6136 7. 3134	
7/0	$ \begin{vmatrix} -5\varGamma + 2\theta_0 + 2J_0 \\ -4\varGamma + 2\theta_0 + 2J_0 \\ -3\varGamma + 2\theta_0 + 2J_0 \\ -2\varGamma + 2\theta_0 + 2J_0 \\ -2\varGamma + 2\theta_0 + 2J_0 \\ -2\theta_0 + 2J_0 \\ 2\theta_0 + 2J_0 \\ 2\varGamma + 2\theta_0 + 2J_0 \\ 2\varGamma + 2\theta_0 + 2J_0 \\ 4\varGamma + 2\theta_0 + 2J_0 \\ 4\varGamma + 2\theta_0 + 2J_0 \\ 5\varGamma + 2\theta_0 + 2J_0 \\ 7\varGamma + 2\theta_0 + 2J_0 \\ 7\varGamma + 2\theta_0 + 2J_0 \\ 7\varGamma + 2\theta_0 + 2J_0 \end{vmatrix} $		4. 379	$\begin{array}{c} 4.\ 161_n \\ 3.\ 19 \\ 3.\ 52 \\ 5.\ 1420 \\ 7.\ 6355_n \\ 4.\ 856_n \\ 4.\ 92_n \\ 5.\ 5174_n \\ 5.\ 4248_n \end{array}$	6. 5090 6. 169 6. 8821 _n 7. 0986 _n 6. 359 8. 2144 8. 0894 _n 7. 8150 _n 7. 6056 _n 7. 4128 _n 7. 2254 _n [6. 8746 _n ]	6. 6325 _n 7. 0658 7. 6078 7. 6970 7. 0722 _n 8. 4125 _n 8. 9548 8. 6561 8. 4650 [8. 2958] 8. 1426 [7. 8484]	7. 4746 _n 7. 8698 _n 7. 9975 _n 7. 9394 _n 7. 4480  9. 5668 _n 9. 2006 _n 9. 0111 _n [8. 8561 _n ] 8. 7346 _n 8. 4936 _n	
η'	$ \begin{vmatrix} -5\Gamma + 2\theta_0 + & J_0 \\ -4\Gamma + 2\theta_0 + & J_0 \\ -3\Gamma + 2\theta_0 + & J_0 \\ -2\Gamma + 2\theta_0 + & J_0 \\ -2\Gamma + 2\theta_0 + & J_0 \\ -2\theta_0 + & J_0 \end{vmatrix} $ $ \begin{vmatrix} -2\theta_0 + & J_0 \\ 2\Gamma + 2\theta_0 + & J_0 \\ 3\Gamma + 2\theta_0 + & J_0 \\ 3\Gamma + 2\theta_0 + & J_0 \\ 4\Gamma + 2\theta_0 + & J_0 \\ 5\Gamma + 2\theta_0 + & J_0 \end{vmatrix} $ $ \begin{vmatrix} 4\Gamma + 2\theta_0 + & J_0 \\ 5\Gamma + 2\theta_0 + & J_0 \\ 7\Gamma + 2\theta_0 + & J_0 \end{vmatrix} $		$4.605_n$	4. 582 4. 674 4. 99 5. 4623 _n [7. 1987] 5. 0056 4. 38 5. 6251 5. 5812	6. 8776 _n 6. 8815 _n 6. 6271 _n 6. 7985  7. 8314 _n 8. 2964 8. 0434 7. 8458 7. 6603 7. 4778 7. 1130	7. 5604 7. 4536 6. 7816 7. 4732 _n 8. 1061 9. 1086 _n 8. 8316 _n 8. 6564 _n 8. 5030 _n 8. 3544 _n 8. 0545 _n	7. 8425 _n 7. 5238 _n 7. 3174 7. 7966  9. 6833 9. 3296 9. 1558 9. 0248 8. 9050 8. 6668	
η ₀ ²	$\begin{array}{c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \end{array}$	4. 664	4. 71	5. 83	$7.8102$ $7.7520_n$ $7.6172_n$ $7.7135_n$	8. 6250 _n 8. 1242 6. 6043 _n 8. 2308		
$\eta_0^2$	$\begin{array}{c} -4\varGamma + 4\theta_0 + 4J_0 \\ -3\varGamma + 4\theta_0 + 4J_0 \\ -2\varGamma + 4\theta_0 + 4J_0 \\ - \varGamma + 4\theta_0 + 4J_0 \\ 4\theta_0 + 4J_0 \\ 2\varGamma + 4\theta_0 + 4J_0 \\ 3\varGamma + 4\theta_0 + 4J_0 \\ 4\varGamma + 4\theta_0 + 4J_0 \end{array}$	4. 666	[5. 807 _n ]	[8. 0913]	7. 1862 7. 1804 6. 817 8. 4680 _n 8. 8270 _n 8. 7850 [8. 5144] 8. 3274 8. 1627 8. 0050	$\begin{array}{c} 7.\ 9072_n \\ 7.\ 8679_n \\ 7.\ 456_n \\ 8.\ 8822 \\ 9.\ 2073 \\ 9.\ 8236_n \\ 9.\ 4910_n \\ 9.\ 3006_n \\ 9.\ 1494_n \\ 9.\ 0105_n \end{array}$		
η _ο τ/	$ \begin{vmatrix} -4\Gamma + 4\theta_{0} + 3J_{0} \\ -3\Gamma + 4\theta_{0} + 3J_{0} \\ -2\Gamma + 4\theta_{0} + 3J_{0} \\ -\Gamma + 4\theta_{0} + 3J_{0} \\ 4\theta_{0} + 3J_{0} \\ 2\Gamma + 4\theta_{0} + 3J_{0} \\ 3\Gamma + 4\theta_{0} + 3J_{0} \\ 3\Gamma + 4\theta_{0} + 3J_{0} \\ 3\Gamma + 4\theta_{0} + 3J_{0} \\ 4\Gamma + 4\theta_{0} + 3J_{0} \\ 5\Gamma + 4\theta_{0} + 3J_{0} \end{vmatrix} $	4.516 _n	[6. 2084]	8. 5565 _n	7. 354 _n 7. 5708 _n 8. 8838 9. 2180 9. 2783 _n 9. 0241 _n 8. 8480 _n 8. 6916 _n 8. 5401 _n	8. 1083 8. 2084 9. 0548 _n 9. 5174 _n 0. 2833 9. 9635 9. 7850 9. 6434 9. 5128		
		m'2	m'2	$m'^2, m'$	m'2, m'	m'	m'	

TABLE LVI—Continued.

 $w-w_0$ Logarithmic. Unit=1 radian.

	Cos	w-3	u·-2	<i>u</i> -1	$w^0$	u	<i>u</i> ·2
¥07/	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4.518_{n}$	[5. 886 _n ]	[5, 70 _n ]	7. 7640 7. 4203 7. 8104 _n 8. 0479 _n	7. 8364 _n 8. 3915 8. 6268 8. 8018	
	$ \begin{array}{c} \Gamma + J_0 \\ 2\Gamma + J_0 \\ 3\Gamma + J_0 \\ 4\Gamma + J_0 \end{array} $				7. 1339 7. 8421 7. 9669 7. 9760	7. 8500 8. 4293 _n 8. 6796 _n 8. 7576 _n	
$\eta'^2$	$ \begin{vmatrix} -4\Gamma + 4\theta_0 + 2\mathbf{J}_0 \\ -3\Gamma + 4\theta_0 + 2\mathbf{J}_0 \\ -2\Gamma + 4\theta_0 + 2\mathbf{J}_0 \end{vmatrix} $				6. 9002 7. 1638	7. $6938_n$ 7. $8502_n$	
	$\begin{array}{c} - \ \Gamma + 4\theta_0^+ + 2J_0^- \\ + \theta_0^- + 2J_0^- \\ + \Gamma + 4\theta_0^- + 2J_0^- \\ + 2\Gamma + 4\theta_0^- + 2J_0^- \\ + 3\Gamma + 4\theta_0^- + 2J_0^- \\ + 4\Gamma + 4\theta_0^- + 2J_0^- \end{array}$	3. 76	6. 0608 _n	8. 4157	$\begin{array}{c} 8.\ 1860_n \\ 8.\ 9760_n \\ 9.\ 1714 \\ 8.\ 9358 \\ 8.\ 7718 \\ 8.\ 6236 \end{array}$	8. 4016 9. 1661 0. 1382 _n 9. 8333 _n 9. 6681 _n 9. 5372 _n	
$\eta'^2$		3. 76	5. 7516	4. 7			
	$\begin{array}{c c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \end{array}$				$7.8677$ $7.8610_n$ $8.1026_n$ $8.1538_n$	8. 6727n 8. 2228 8. 7296 8. 8728	
$j^2$	$\begin{array}{c} \Gamma \\ 2\Gamma \\ 3\Gamma \\ 4\Gamma \end{array}$				$\begin{array}{c} 7.\ 9418_n \\ 7.\ 9312_n \\ 7.\ 7920_n \\ 7.\ 639_n \end{array}$	8. 7337 8. 7154 8. 6154 8. 5001	
$j^2$	$\begin{vmatrix} -4\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ -3\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ -2\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \end{vmatrix}$				7. 446 7. 1858	$8.1156_n$ $7.8677_n$	
	$\begin{array}{c} -\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ -\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ 4\theta_0 + 3J_0 - \Sigma_0 \\ \Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ 2\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ 3\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \\ 4\Gamma + 4\theta_0 + 3J_0 - \Sigma_0 \end{array}$		4. 804 _n	7. 168	$7.6176_n$ $7.9368_n$ $7.7887$ $7.448$ $7.1976$ $6.978$	7. 9693 8. 3724 8. 8492 _n 8. 4531 _n 8. 2026 _n 7. 9963 _n	
$\eta_0^3$	$\begin{array}{c} 2\theta_{0} + 2\mathbf{J}_{0} \\ 6\theta_{0} + 6\mathbf{J}_{0} \end{array}$	$5.4181_n$ $5.418_n$	6. 292 6. 292	$ \begin{array}{c c} 7.4754_n \\ 8.6328_n \end{array} $	8. 6636 9. 4351		
$\eta_0^2 \eta^{\dot{\cdot}}$	$\begin{array}{c} 2\theta_{0} + A_{0} \\ 2\theta_{0} + 3A_{0} \\ 6\theta_{0} + 5A_{0} \end{array}$	5. 885 4. 974 5. 935	$\begin{array}{c} 6.719_n \\ 5.896_n \\ 6.780_n \end{array}$	$\begin{array}{c c} 8.5059 \\ 8.0326_n \\ 9.2774 \end{array}$	$\begin{array}{c} 9.\ 2804_n \\ 8.\ 1975 \\ 0.\ 0330_n \end{array}$		
$\eta_0 \; \eta'^2$	$\begin{array}{c} 2\theta_{0} \\ 2\theta_{0} + 2\mathcal{I}_{0} \\ 6\theta_{0} + 4\mathcal{I}_{0} \end{array}$	$5.744_n$ $5.44_n$ $5.919_n$	6. 535 6. 327 6. 744	$\begin{bmatrix} 8.3811_n \\ 8.0917 \\ 9.4432_n \end{bmatrix}$	9. 1030 8. 6300 0. 1464		
$\eta'^3$	$\begin{array}{c} 2\theta_0 + \Delta_0 \\ 6\theta_0 + 3\Delta_0 \end{array}$	5. 301 5. 301	$   \begin{array}{c}     6.149_n \\     6.149_n   \end{array} $	8. 2302 9. 1294	$9.0152_n$ $9.7729_n$		
$j^2\eta_0$	$\begin{array}{c} 2\theta_{0} + 2A_{0} \\ 2\theta_{0} + A_{0} - \Sigma_{0} \\ 6\theta_{0} + 5A_{0} - \Sigma_{0} \end{array}$	$4.502_n$ $4.502_n$	5. 41 5. 41	$8.5904 \\ 8.1011_n \\ 8.0554_n$	9. 3492 _n 8. 8726 8. 9263	9. 8022	
$j^2\eta'$	$\begin{array}{c} 2\theta_0 + \mathbf{J}_0 \\ 2\theta_0 + 2\mathbf{J}_0 - \mathbf{\Sigma}_0 \\ 6\theta_0 + 4\mathbf{J}_0 - \mathbf{\Sigma}_0 \end{array}$	4. 057 4. 057	$5.021_n \\ 5.021_n$	8. 5592 _n 6. 887 8. 2718	9. 3245 8. 1804 _n 9. 1021 _n		
		m'2	m'2	m'2,m'	m'2,m'	m'	m'

 $w-w_0=\sum Cw^0\eta^{p'}\eta^{q}j^{2t}\cos$  Agr., where C represents the respective coefficient.

Turning now to the determination of e and  $\pi$ , let equations (235), (236) be written in the form (244), where

$$S = -\frac{1}{2}z + \left(\frac{1}{4e_0} - \frac{e_0}{3}\right)yz + \frac{1}{6}xz + \dots$$

$$C = -\frac{1}{2}y - \frac{z^2}{4e_0} + \frac{1}{6}xy - \frac{1}{3}e_0y^2 + \dots$$

Multiplying the first of these by  $\sin \phi$ , the second by  $\cos \phi$  and adding,

$$S \sin \psi + C \cos \psi = -\frac{1}{2} (y \cos \psi + z \sin \psi) + \frac{1}{6} x (y \cos \psi + z \sin \psi)$$
$$-\frac{1}{3} e_0 y (y \cos \psi + z \sin \psi) + \frac{1}{4} e_0 z (y \sin \psi - z \cos \psi) + \dots$$

Here, again, the arguments and factors are functions of the elements a, e,  $\pi$ , c, and the expansion in a Taylor's series is necessary.

Let

$$S \sin \phi + C \cos \phi = f(\eta, \Gamma_1, \theta_1, \Delta, \Sigma)$$

Then the form of Taylor's series is the same as the expression for  $w-w_0$ , (p. 148), with the following modification. Within first order quantities,

$$f(\eta, \Gamma_1, \theta_1, J, \Sigma) = -\frac{1}{2} (y \cos \psi + z \sin \psi)$$
$$\frac{\overline{\partial f}}{\partial \psi} = \frac{\overline{\partial f}}{\partial \psi_{\psi=\varepsilon}} = \frac{1}{2} (y \sin \varepsilon - z \cos \varepsilon)$$

Hence,

$$S \sin \psi + C \cos \psi = f(\eta_0, \Gamma, \theta_0, J_0, \Sigma_0) + \left(\frac{\partial f}{\partial (2\theta_0)} - \frac{\partial f}{\partial J_0} - \frac{\partial f}{\partial \Sigma_0}\right) \frac{1}{4\eta_0} z$$

$$+ \left(\frac{\partial f}{\partial J_0} + \frac{\partial f}{\partial \Gamma} + \frac{\partial f}{\partial \Sigma_0}\right) \frac{1}{2} \eta_0 z - \frac{\partial f}{\partial \eta} \frac{1}{4} y$$

$$+ \left\{ (1 - \eta_0 \cos \varepsilon_0) \frac{\partial f}{\partial \theta_0} + \frac{3}{2} \left(1 - \frac{2}{3} \eta_0 \cos \varepsilon_0\right) \frac{\partial f}{\partial \Gamma} \right\} \frac{\overline{\partial f}}{\partial \psi} + \cdots$$

The order of computation is: calculation of

$$-\frac{1}{2}(y\cos \psi + z\sin \psi)$$

by inspection of the table for W, in which the arguments are to be given the subscript zero, differentiation of the first order terms, calculation of the necessary products of functions of y, z, and the partial derivatives, and the addition of these products to the first calculation. The required function is given in Table LVII.

TABLE LVII.

Logarithmic

 $S\sin\phi + C\cos\phi$ 

Unit=1".

Logarttumic			,	7			· · · · · · · · · · · · · · · · · · ·
	Cos	w-3	u-2	<i>u</i> -1	W.0	w	u 2
	$\begin{array}{l} \dot{\varphi} - 5\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} - 4\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} - 3\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} - 3\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} - 2\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} - \Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + \Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + \Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + 3\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + 3\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + 4\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + 5\Gamma + 2\theta_0 + 2\mathbf{J}_0 \\ \dot{\varphi} + 5\Gamma + 2\theta_0 + 2\mathbf{J}_0 \end{array}$		9. 196	$\begin{array}{c} 8.81 \\ 9.009 \\ 9.318 \\ 9.207 \\ 9.711 \\ 2.17^{\dagger 2}{}_{n} \\ 9.230{}_{n} \\ 9.220{}_{n} \\ 9.724{}_{n} \\ 9.494{}_{n} \\ 9.100{}_{n} \end{array}$	$\begin{array}{c} 1.\ 082n \\ 1.\ 2314n \\ 0.\ 931 \\ [1.\ 6478] \\ 1.\ 950 \\ 2.\ 5678 \\ [2.\ 3541n] \\ [1.\ 9114n] \\ [1.\ 5372n] \\ [1.\ 2544n] \\ 1.\ 018n \end{array}$	$\begin{array}{c} 1.\ 5710 \\ 1.\ 5492 \\ 1.\ 604_n \\ 2.\ 1670_n \\ 2.\ 3426_n \\ 2.\ 565_n \\ 3.\ 1493 \\ 2.\ 6867 \\ 2.\ 3831 \\ 2.\ 1315 \\ 1.\ 9034 \end{array}$	$\begin{array}{c} 1.\ 612_n \\ 0.\ 989_n \\ 1.\ 916 \\ 2.\ 2333 \\ 2.\ 3713 \\ 3.\ 7107_n \\ 3.\ 1657_n \\ 2.\ 8623_n \\ 2.\ 6333_n \\ 2.\ 4348_n \end{array}$
7/0	$ \begin{array}{c} \dot{\psi} - 5\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} - 4\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} - 3\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} - 2\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} - \Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + \Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + 2\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + 3\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + 4\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + 4\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \dot{\psi} + 4\Gamma + 4\theta_0 + 4\mathbf{J_0} \\ \end{array} $	9. 199	9. 04 _n	$\begin{array}{c} 9.\ 771_n \\ 0.\ 064_n \\ 0.\ 3185_n \\ 0.\ 497_n \\ 1.\ 0286_n \\ [2.\ 6172] \\ 0.\ 7226 \\ 0.\ 669 \\ 0.\ 9435 \\ 0.\ 5122 \end{array}$	$\begin{array}{c} 1.\ 042_n \\ 1.\ 723_n \\ 2.\ 1626_n \\ [2.\ 7787_n] \\ 3.\ 2379_n \\ [3.\ 2511_n] \\ 3.\ 1782 \\ 2.\ 7877 \\ 2.\ 5117 \\ 2.\ 2732 \end{array}$	1. 868 2. 3515 2. 6961 [3. 0649] 3. 1223 [3. 4930] 4. 1580 _n 3. 7083 _n 3. 4261 _n 3. 2042 _n	$\begin{array}{c} 2.\ 357_n \\ 2.\ 6814_n \\ 2.\ 9214_n \\ 3.\ 0993_n \\ 3.\ 9385_n \\ 4.\ 9365 \\ 4.\ 3605 \\ 4.\ 0450 \end{array}$
7,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	,	9. 140 9. 274 _n 9. 137 _n	$\begin{array}{c} 9.814_n \\ 0.0434_n \\ 0.3541_n \\ 0.362_n \\ 0.4164_n \\ 0.1436_n \\ 0.3102_n \\ 9.918 \\ 9.465 \\ 9.20_n \end{array}$	1. $925$ 2. $0527$ 2. $145$ 2. $1351$ 2. $3504_n$ 2. $497$ 1. $9006_n$ 0. $812_n$ 1. $406_n$	$\begin{array}{c} 2.\ 634_n \\ 2.\ 6896_n \\ 2.\ 675_n \\ 2.\ 3850_n \\ 3.\ 0929 \\ \\ 3.\ 1875_n \\ 1.\ 0453 \\ 2.\ 5218_n \\ 1.\ 729 \end{array}$	2. 984 2. 9432 2. 744 2. 4864n 3. 5397n 3. 5978 2. 8834 3. 3564
η'	$\begin{array}{c} \psi - 5\Gamma + 4\theta_0 + 3A_0 \\ \psi - 4\Gamma + 4\theta_0 + 3A_0 \\ \psi - 3\Gamma + 4\theta_0 + 3A_0 \\ \psi - 2\Gamma + 4\theta_0 + 3A_0 \\ \psi - \Gamma + 4\theta_0 + 3A_0 \\ \psi + 4\theta_0 + 3A_0 \\ \psi + \Gamma + 4\theta_0 + 3A_0 \\ \psi + 2\Gamma + 4\theta_0 + 3A_0 \\ \psi + 3\Gamma + 4\theta_0 + 3A_0 \\ \psi + 4\Gamma + 4\theta_0 + 3A_0 \\ \psi + 4\Gamma + 4\theta_0 + 3A_0 \end{array}$	8. 76 _n	[0. 158]	9. 476 9. 781 9. 811 0. 3489 0. 9511 [2. 7932 _n ] 9. 961 _n 0. 491 _n 1. 0464 _n 0. 678 _n	1. 327 1. 447 2. 1070 2. 5095 3. 3599 3. 3085 3. 3609 _n 2. 9943 _n 2. 7293 _n 2. 4992 _n	$\begin{array}{c} 1.889_n \\ 2.1506_n \\ 2.6309_n \\ 2.9557_n \\ 2.7758 \\ 3.4526_n \\ 4.3114 \\ 3.8728 \\ 3.6067 \\ 3.3946 \end{array}$	2. 2299 2. 5419 2. 8608 3. 0952 3. 9726 5. 0691 _n 4. 4922 _n 4. 1945 _n
$\eta'$	$ \begin{array}{c} \psi - 5\Gamma + \mathcal{J}_{0} \\ \psi - 4\Gamma + \mathcal{J}_{0} \\ \psi - 3\Gamma + \mathcal{J}_{0} \\ \psi - 2\Gamma + \mathcal{J}_{0} \\ \psi - \Gamma + \mathcal{J}_{0} \\ \psi + \Gamma + \mathcal{J}_{0} \\ \psi + \mathcal{J}_{0} \\ \psi + 2\Gamma + \mathcal{J}_{0} \\ \psi + 3\Gamma + \mathcal{J}_{0} \\ \psi + 4\Gamma + \mathcal{J}_{0} \end{array} $		9. 013 _n 9. 885 _n 9. 009	9. 848 0. 0792 0. 3941 0. 248 9. 901 0. 8518 0. 1664 9. 76 _n 9. 38 _n	$\begin{array}{c} 2.\ 0766_n \\ 2.\ 1609_n \\ 2.\ 157_n \\ 2.\ 0455 \\ 2.\ 584 \\ \hline \\ 1.\ 836 \\ 2.\ 1633 \\ 2.\ 1064 \\ 1.\ 9892 \\ \end{array}$	2. 712 2. 6968 2. 491 2. 7898 _n 3. 2539 _n 2. 448 2. 6170 _n 2. 7194 _n 2. 6870 _n	2. 9697 _n 2. 7976 _n 1. 51 3. 2380 3. 6434 3. 3029 _n 2. 2433 2. 9212
$\eta_0^2$	$ \begin{array}{c}                                   $	9. 95 _n	1.1109 _n	3. 1673 _n	2. 3144 2. 9538 3. 3102 [3. 4970] 3. 9455 [3. 9296] 3. 9144 _n 3. 5594 _n 3. 3121 _n	$\begin{array}{c} 2.\ 9730_n\\ 3.\ 3785_n\\ 3.\ 5843_n\\ [3.\ 8423_n]\\ 3.\ 7269_n\\ [4.\ 3377_n]\\ 5.\ 0372\\ 4.\ 5942\\ 4.\ 3236\\ \end{array}$	

#### 

 $S \ {\rm ein} \ \psi + C \ {\rm cos} \ \psi$  Logarithmic

Unit=1".

	1						
	Cos	10-3	u-3	<i>u</i> :−1	w ⁰	w	₹€2
${\overline{\eta}_{i0}}^2$	$ \begin{array}{c}                                   $	0. 344 _n	1, 017 9, 45	$2.689_{\it n}$	2. 1657 2. 1255 2. 234 2. 576 3. 1995 [3. 4822] 2. 2480 3. 1612	$\begin{array}{c} 2.\ 7221_n \\ 2.\ 8004_n \\ 3.\ 1304_n \\ 3.\ 3804_n \\ 3.\ 8325_n \\ 3.\ 9938_n \\ 3.\ 2839_n \\ 3.\ 8424_n \end{array}$	
7,02	$ \begin{array}{c}                                   $	0. 117	9. 59 _n 0. 95 _n	2. 297 _n	$\begin{array}{c} 2.700_n \\ 2.817_n \\ 2.9247_n \\ 3.0241_n \\ 3.1364_n \\ [2.7856_n] \\ 2.8942_n \\ 2.297_n \end{array}$	3. 5481 3. 6251 3. 6905 3. 7470 3. 8346 3. 6614 3. 5604 3. 1129	
η _α η'	$ \begin{array}{c}                                   $	0. 295	1. 366	3. 6364	$\begin{array}{c} 2.\ 4885_n \\ 2.\ 976_n \\ 3.\ 6541_n \\ [3.\ 9514_n] \\ 4.\ 3903_n \\ [4.\ 3301_n] \\ 4.\ 4005 \\ 4.\ 0582 \\ 3.\ 8204 \end{array}$	$\begin{array}{c} 3.\ 1691 \\ 3.\ 5560 \\ 3.\ 8829 \\ [4.\ 1632] \\ 4.\ 0037_n \\ [4.\ 6662] \\ 5.\ 4966_n \\ 5.\ 0612_n \\ 4.\ 8027_n \end{array}$	
ηο η'	$ \begin{array}{c}                                   $	0. 444	$1.188_n$	3. 0569	$\begin{array}{c} 2.\ 426_n \\ 2.\ 399_n \\ 2.\ 410_n \\ 2.\ 701_n \\ 3.\ 2842_n \\ [3.\ 7266_n] \\ 2.\ 8541 \\ 3.\ 2191_n \end{array}$	3. 0684 3. 0310 3. 1305 3. 4602 3. 8558 4. 1122 3. 5823 _n 3. 7635	
ηο η'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 490 _n	9. 93 1. 324	3. 0145 _n	3. 1551 3. 2454 3. 3100 3. 3277 3. 1976 3. 7326 3. 3632 2. 7792	$\begin{array}{c} 3.9530_n \\ 3.9948_n \\ 4.0023_n \\ 3.9401_n \\ 3.4598_n \\ 4.2787 \\ 3.9402_n \\ 3.5224_n \end{array}$	
7,0 7/	$ \begin{array}{c}                                   $	9. 98	$0.60_n$ $9.46_n$	2. 873 _n	$\begin{array}{c} 2.\ 2738_n \\ 2.\ 116_n \\ 2.\ 5858_n \\ 2.\ 809_n \\ 2.\ 650_n \\ [2.\ 685] \\ 3.\ 5126_n \\ 3.\ 3438_n \end{array}$	2. 847 3. 0290 3. 3787 3. 5429 3. 7297 3. 7980 4. 2856 4. 1208	
η'2	$\begin{array}{c} \dot{\psi} - 5 \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} - 4 \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} - 3 \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} - 2 \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} - \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} + \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \\ \dot{\psi} + 2 \Gamma + 6 \theta_0 + 4  \mathbf{J}_0 \end{array}$	9. 98 _n	0. 76 _n	3. 5017 _n	1. 9950 2. 6112 3. 0556 3. 7934 4. 2260 4. 1098 4. 2852 _n 3. 9567 _n	$\begin{array}{c} 2.7422_n \\ 3.1949_n \\ 3.5583_n \\ 3.7947_n \\ 4.4064 \\ 4.3552_n \\ 5.3521 \\ 4.9249 \end{array}$	
$\eta'^2$	$\begin{array}{c} \psi - 5 \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi - 4 \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi - 3 \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi - 2 \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi - \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi - \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi + \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi + \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \\ \psi + 2 \Gamma + 2 \theta_0 + 2 \mathbf{J}_0 \end{array}$	0. 025 _n	0, 60	2. 634	2. 5018 2. 453 2. 4799 2. 9375 3. 2833 3. 2781 3. 5607 3. 4629	$\begin{array}{c} 3.\ 0963_n \\ 3.\ 0935_n \\ 3.\ 2779_n \\ 3.\ 6294_n \\ 3.\ 8982_n \\ 4.\ 0439_n \\ 4.\ 2381_n \\ 4.\ 1704_n \end{array}$	

#### TABLE LVII—Continued.

Logarithmic  $S \sin \psi + \ell' \cos \psi$  Unit=1".

	Cos	w-s	w-2	1ℓ'−1	и. о	w	w ²
η'2	$\begin{array}{l} \psi - 5\Gamma - 2\theta_0 \\ \psi - 4\Gamma - 2\theta_0 \\ \psi - 3\Gamma - 2\theta_0 \\ \psi - 2\Gamma - 2\theta_0 \\ \psi - \Gamma - 2\theta_0 \\ \psi - \Gamma - 2\theta_0 \\ \psi + 2\Gamma - 2\theta_0 \end{array}$	0. 305	1. 127 _n	2. 912	$\begin{array}{c} 3.\ 0090_n\\ 3.\ 0676_n\\ 3.\ 0764_n\\ 2.\ 958_n\\ 3.\ 1140\\ 3.\ 5491_n\\ 3.\ 0396_n\\ 2.\ 4706_n \end{array}$	3. 7477 3. 7445 3. 6664 3. 3121 4. 0201 _n 3. 9085 3. 6320 3. 2330	
j²	$ \begin{array}{c}                                   $	8. 6 _n	9. 7	2. 114 _n	2. 006 2. 335 2. 544 2. 718 2. 970 2. 923 2. 7948 _n 2. 3824 _n	$\begin{array}{c} 2.7505_n \\ 2.981_n \\ 3.1436_n \\ 3.2445_n \\ 2.9116_n \\ 3.4067_n \\ 3.9420 \\ 3.4488 \end{array}$	
<i>j</i> ²	$ \begin{array}{c} \psi - 5\Gamma + 2\theta_0 + 2J_0 \\ \psi - 4\Gamma + 2\theta_0 + 2J_0 \\ \psi - 3\Gamma + 2\theta_0 + 2J_0 \\ \psi - 2\Gamma + 2\theta_0 + 2J_0 \\ \psi - \Gamma + 2\theta_0 + 2J_0 \\ \psi + \Gamma + 2\theta_0 + 2J_0 \\ \psi + \Gamma + 2\theta_0 + 2J_0 \\ \psi + 2\theta_0 + 2J_0 \\ \psi + 2\Gamma + 2\theta_0 + 2J_0 \end{array} $		0. 5910	3. 1266	$\begin{array}{c} 9.\ 6 \\ 1.\ 916_n \\ 2.\ 5178_n \\ 2.\ 938_n \\ 3.\ 3406_n \\ 3.\ 8021_n \\ 3.\ 4070 \\ 3.\ 0472 \end{array}$	2. 387 2. 911 3. 3047 3. 6294 3. 9330 4. 1894 4. 3178 _n 3. 9308 _n	
$j^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9. 04	0. 11 _n	2. 636	0. 732 _n 0. 35 1. 463 2. 064 2. 6816 3. 3284 _n 3. 0572 _n 2. 9121 _n	$\begin{array}{c} 1.\ 085 \\ 1.\ 895_n \\ 2.\ 5146_n \\ 3.\ 0255_n \\ 3.\ 6280_n \\ 3.\ 7399 \\ 3.\ 6430 \\ 3.\ 5491 \end{array}$	
$\eta_0^3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.775$ $0.29_n$ $0.65$	$egin{array}{l} 1.\ 65_n \\ 1.\ 10 \\ 1.\ 54_n \end{array}$	3. 1052n $ 3. 1888 $ $ 3. 7520$	$ \begin{array}{c} 3.0342_n \\ 3.6104_n \\ 4.5812_n \end{array} $		
$\eta_{i0}^2 \eta_i'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.\ 260_n \\ 1.\ 005 \\ 1.\ 228_n \end{array}$	$ \begin{array}{c} 2.081 \\ 1.77_n \\ 2.093 \end{array} $	$3.7577$ $3.1240$ $3.5356_n$ $4.3980_n$	$4.3244_n$ $4.1388$ $3.3560$ $5.1827$		
$\eta_0 \; \eta'^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.\ 106 \\ 1.\ 146_n \\ 1.\ 321 \end{array}$	$ \begin{array}{c} 1.88_n \\ 1.88 \\ 2.152_n \end{array} $	$\begin{array}{c} 4.\ 1155_n \\ 2.\ 831 \\ 3.\ 0422 \\ 4.\ 5658 \end{array}$	$\begin{array}{c} 4.\ 5547 \\ 4.\ 1803_n \\ 4.\ 0180 \\ 5.\ 3010_n \end{array}$		
$\eta'^3$	$ \begin{vmatrix} \dot{\zeta} & +4\theta_0 + 3J_0 \\ \dot{\zeta} & -4\theta_0 - J_0 \\ \dot{\zeta} & +8\theta_0 + 5J_0 \end{vmatrix} $			$3.8375$ $3.2197$ $4.2553_n$	$4.0446_n$ $3.9650_n$ $4.9349$		
$j^2$ $\eta_0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$9.98_n$ $0.46_n$	0. 8 1. 32	$3.0024$ $2.956_n$ $3.0757$ $3.8514_n$	$3.8634_n$ $3.8331$ $3.9759_n$ $4.6436$		
$j^2$ $\eta'$	$ \begin{vmatrix} \dot{\gamma}^{i} & +4\theta_{0}+4J_{0}-\Sigma_{0} \\ \dot{\zeta}^{i} & -4\theta_{0}-2J_{0}+\Sigma_{0} \\ \dot{\zeta}^{i} & +8\theta_{0}+6J_{0}-\Sigma_{0} \\ \dot{\zeta}^{i} & +4\theta_{0}+3J_{0} \end{vmatrix} $	0. 27	1. 15 _n	$2.442$ $3.2486$ $3.2818_n$ $3.9421$	$\begin{array}{c} 1.846_n \\ 4.0585_n \\ 4.1441 \\ 4.6972_n \end{array}$		

 $S \sin \phi + C \cos \phi = \Sigma C_1 w^s \eta^p \eta' q \mathbf{j}^{2t} \cos Arg$ , where  $C_1$  represents the coefficient.

#### COMPARISON OF TABLES.

Table LVI.—Unless there are errors of calculation, all the discrepancies are due to the accumulation of other discrepancies already discussed. Without going into the details of the construction, it is sufficient to remark that our table is built from practically all of the available auxiliary material. Our table includes many more terms than v. Zeipel's table, but it is wanting in the two arguments  $6\Gamma$  and  $8\Gamma$  in the first block of terms. These arguments contain  $3\varepsilon$  and  $4\varepsilon$ , respectively, and our series were not inclusive of these higher multiples. It would be more consistent to include them, since the argument  $7\Gamma$  is included.

Table LVII.—Unless there are errors of calculation, all the discrepancies are due to the accumulation of discrepancies already discussed. Our table is built from practically all the available auxiliary material. Large disagreements are to be explained by v. Zeipel's use of the formula following Z 131, equation (244). In this equation the following functions are omitted:

$$-\frac{1}{2}(y_2'\cos\phi+z_2'\sin\phi)-\frac{1}{2}([y_2]\cos\phi+[z_2]\sin\phi).$$

ERRATA I IN H. v. ZEIPEL, ANGENÄHERTE JUPITERSTÖRUNGEN FÜR DIE HECUBA-GRUPPE.

With the exception of § 6, Störungen des Radius-vector, all the developments have been checked.

Page.	Line.2	For—	Read—
1	8a	$\frac{d\Omega}{dx}$	$\frac{\partial \Omega}{\partial x}$
1	9a	$\frac{d\Omega}{dy}$	$\frac{\partial \varrho}{\partial y}$
$3 ff^3$		ν'	$\frac{d^{\nu}}{d\varepsilon}$
5	5b	(15)	$\begin{pmatrix} u^2 \\ (16) \\ \frac{\partial}{\partial U} \end{pmatrix}$
9	2a	$\frac{\partial \vec{U}}{\partial \vec{\psi}}$	$\overline{\lambda}.\overline{b}$
9	1b	$\omega + (1 - \omega) \frac{\overline{W} + \nu^2}{1 + \overline{W}}$	$w + (1-w)\frac{\overline{W} + \nu^2}{1 + \overline{W}}$
12	2a	$\left(\frac{a}{J}\right)^{s}$	$\left(\frac{a}{J_0}\right)^s$
12	9a	$\beta_{n+i}^{2i+1}$	$\beta^{(2i+1)}_{n+i}$
12	10a	$\beta^{m{q}}_{\ m{p}}$	β ^(q) _p
12	6Ь	$(2n+4i+1)\gamma_{i}^{1\cdot n}(4i+4)\gamma_{i+1}^{1\cdot n}$ $(2n+4i+3)\gamma_{i}^{3\cdot n}(4i+4)\gamma_{i+1}^{3\cdot n}$	$(2n+4i+1)\gamma_i^{1\cdot n}+(4i+4)\gamma_{i+1}^{1\cdot n}$
13	5a		$(2n+4i+1)\gamma_{i}^{3\cdot n}+(4i+4)\gamma_{i+1}^{3\cdot n}$
14	2b	n'g'	$ng'$ $n=\infty$
15	8bff	$\Sigma$	Σ n=•
16	10a	sin	COS
16	6b	$\frac{1}{i} \frac{a_2 \partial \Omega}{\partial z}$	$\frac{1}{\epsilon}a^2\frac{\partial Q}{\partial z}$
19	6a	$rac{dF}{da_0}$	$\frac{dF}{d\alpha_0}$
20	5b	3:n 7 i-1	$\gamma_{\ell-1}^{a,n}$
21	4a	$\overline{\vartheta}_{\mathbf{i}}^{m,n}$	$\overline{\vartheta}_i^{3\cdot n}$
$\begin{bmatrix} 21 \\ 24 \end{bmatrix}$	4b 9b	Metoden	Methoden $-\sum P_{i,n,n}$
27	21a	$\sum_{P} P_{0,0}^{i} P_{0,0} [n-1,-n+1] \sigma$	$\begin{array}{c} -\sum P i_{p\cdot q} \\ P_{0\cdot 0}[n-1,-n+1] \bot s \\ P_{0\cdot 0}(n-1,-n+1) _ s \end{array}$
34	21a	$P_{0,0}(n-1,-n+1)_{-\sigma}$	$egin{array}{c} P_{0.0}(n-1,-n+1)_{oldsymbol{5}} \ F_{0.2}(n,-n) \end{array}$
42 44	5b 18b	$P_{0.2}^{0.2}(n,-n) \\ H_{1.1}(n+1,-n+1)$	$II \cdot I(n+1-n-1)$
45	20a	$H_{1\cdot 0}^{(n+1,-n+1)}(n,-2-n-1)_{-\sigma}$	$G^{(n-2,-n-1)}$
46	8a		$G_{(n-1, n+2)}$
46 46	10a	$\frac{1\cdot 0}{1\cdot 0}(n-1\cdot -n+2)-\delta$ $\frac{1\cdot 0}{1\cdot 0}(n-1\cdot -n)+\delta$	$ \begin{vmatrix} 0 \cdot 1(n-1 \cdot -n+2) - \delta \\ 0 \cdot 1(n-1 \cdot -n) - \delta \end{vmatrix} $

¹ Inclusive of those tabulated by v. Zeipel.
3 The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b.
4 On page 3 and all following pages  $\nu'$  is defined by  $\nu' = \frac{d\nu}{d\epsilon}$ . The error consists in the omission of a statement announcing a change of notation. See definition of  $\nu'$  given on page 2.

Errata in H. v. Zeipel, Angenäherte Jupiterstörungen für die Hecuba-Gruppe-Continued.

Page.	Line.1	For—	Read—
		_0.0	00
49	7b	$r_{O\varepsilon}$	$\tilde{r} \frac{\partial \varrho}{\sigma \tilde{r}}$
50	6b	$r^2$	$\tilde{r}^2$
		$\overline{a^2}$	62
50 51	6b 1b	$\begin{vmatrix} 3+\eta^2 \\ S_{0-1}(n,-n+1) \end{vmatrix}$	$ \begin{vmatrix} 3+14\eta^2 \\ S_{0,1}(n,-n-1) \end{vmatrix} $
53	-11b		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
54	5a	Ξ <b>.</b>	$=\frac{\overline{z}_{i}}{2}$
56 61	4b 11b	$II_{1\cdot 1}(n-1\cdot n-1) = 2\theta + 2\theta$	$H_{1\cdot 1}(n-1\cdot -n-1) = 2\theta + 2\mathbf{J}$
62	17a	$\psi + 6\theta + 40$	\$\frac{1}{5} + 6\theta + 4.1
62	5b	+436	+439
63	9a 3a	$\begin{bmatrix} (1-e\cos\varepsilon)W_2 \\ (106) \end{bmatrix}$	$\begin{bmatrix} (1-e\cos\varepsilon)W_2' \\ (106a) \end{bmatrix}$
65	5a	(106)	(106a)
68	3a	$w^{-4} w^{-3} w^{-2} w^{-1} w$	$w^{-4} w^{-3} w^{-2} v^{-1} w w^{2}$
69 69	6b 5b	$\begin{vmatrix} \sin A \\ \sin (A - \psi + \epsilon) \end{vmatrix}$	$\eta p \eta'^{\alpha} j^{2t} \sin A$
69	4b	$\sin (A + \psi - \varepsilon)$	$ \begin{array}{c} \eta^p \eta' q j^{2t} \sin \left( A - \zeta' + \epsilon \right) \\ \eta^p \eta' q j^{2t} \sin \left( A + \zeta' - \epsilon \right) \end{array} $
70	1b	$ \overline{W}_{\bullet}^{\prime\prime\prime} $	$\overline{W}_{4}^{\prime\prime}$
70	1b	cos A	$\eta p_{\eta'}q_{j}^{2t}\cos A$
71 75	7a 15a	$egin{array}{c} \cos A \ A_{0\cdot 3} \end{array}$	$\frac{\partial p \eta' \dot{q}_j^{2t} \cos A}{A_{0^{1/2}}}$
75	18a	$A_{0\cdot 1}^{\circ \cdot 3}$	$A_{0\cdot 0}^{20\cdot 2}$
75	2b	$A_{1\cdot 0}$	$A_{0\cdot 1}$
75 79	1b 1 <b>0</b> b	$\left( egin{array}{c} A_{1}, 0 \\  heta \end{array}  ight)$	$egin{pmatrix} A_{0\cdot 1} \  heta_{m{i}} \end{pmatrix}$
81	8b	$1-e\cos\varepsilon$	$(1-c\cos\varepsilon)$
83	12a	+3744	+3344
86	4a	$(\frac{(128_2)}{\lambda W})$ und (130)	$(128_2), (128_3) \text{ und } (130)$
86	6a	$\frac{\partial W_1}{\partial \theta}$	$\frac{\partial W_1}{\partial \vartheta}$
91	9a	ε COS ε	<i>e</i> cos ε
91	11a	W'2	$\overline{W_2}'$
92	3a	$\eta_1 \cos \varepsilon$	$y_1 \cos \varepsilon$
92	10b	$-\frac{3}{4}(1-e\cos\epsilon)(\overline{W}-\frac{1}{3}\mathcal{Z})(\overline{W}+\frac{1}{9}\mathcal{Z})$	$-\frac{3}{2}[(1-\epsilon\cos\epsilon)(\overline{W}-\frac{1}{3}\Xi)(\overline{W}+\frac{1}{2}\Xi)]$
92	<b>4</b> b	$\frac{\partial h}{\partial \theta}$	$\frac{\partial \theta}{\partial W}$
93	10a	$\sin A$	$\eta^p \eta' q j^{2t} \sin A$
93	10a	$\sum_{i=1}^{N}$	Σ
94	19b	<u>∂</u> W	$\frac{\delta W}{2}$
97	15a	$\begin{pmatrix} \delta \vartheta \\ (156) \end{pmatrix}$	$\overline{O\vartheta}$ (154)
99	4b	$\frac{100}{-\eta w}\sin \varepsilon$	$\begin{cases} -\eta w \sin \varepsilon \end{cases}$
100	5a		A
$\frac{100}{115}$	6a 4b	$\begin{pmatrix} -\frac{1}{2}u_2 \\ (191) \end{pmatrix}$	$-\frac{1}{2}\bar{u}_2$ (192)
116	7a	$(195_1)$	(192) (195 ₋₁ )
116	10b	1.0	1 A
1		1/e ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{\partial}{\partial \epsilon} (S_1 - [S_1])$
$\begin{array}{c c} 119 \\ 122 \end{array}$	(1) 3a	$egin{array}{c} U_{q\cdot q} \  u_0-\pi \end{array}$	$U_{p \cdot q} = v_0 - \pi$
123	4b	$(1-\xi'^2-\xi'^2)$	$v_0 = \frac{1}{2}$ $(1 - \xi^2 - \xi'^2)$
$\frac{125}{128}$	3a 7a	$\frac{1-e_0\cos{\epsilon_0}^2}{f^0}$	$1-\epsilon_0\cos\epsilon_0$
128	5a	$\frac{\omega}{\mu}$	$\frac{\mathcal{A}}{p}$
131	7b	$(\psi + A - \epsilon)$	$(y'-A-\epsilon)$
131 132	6b 8a	$ \begin{array}{c} (\psi + A + \epsilon) \\ 2.9227_n \end{array} $	$(\psi + A - \varepsilon)$
132	26a	5.3376	$1.9227_n \\ 5.0376$
134	9a	$(2\vartheta + f_4)$	$(4\vartheta + f_4)$
135	10a	$\frac{w}{2}$	$\eta p$
		$\begin{bmatrix} 2 \\ w \end{bmatrix}$	$\frac{\overline{4}}{w}$
135	11a	$\left\lfloor \frac{\omega}{2} \right\rfloor$	$\frac{w}{4}$
140	26a	$[n\delta z]$	$[n\delta z]_1$
141	6a	0.4898	0.48998

¹ The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b.

# ERRATA IN KARL BOHLIN, SUR LE DÉVELOPPEMENT DES PERTURBATIONS PLANÉTAIRES, § 1-7, AND TABLES I-XX.

Page.	Line,1	For—	Read—
3	5a	$\mu^3 = (1+m)\alpha^2$	$\mu^2 = (1+m) a^3$
		\( \frac{\hat{n}}{\tilde{w}} \) \( \frac{\hat{n}}{\tilde{w}} \)	$\frac{\delta W}{}$
11	1b	<u> ठ</u> ट्	ō;
14	lla	$1 + \nu^2$	$1-\nu^2$
$\frac{20}{29}$	3a 8b	$\frac{+\frac{1}{2}e^2\cos 2\varepsilon}{y'^n}$	$-rac{1}{2}\epsilon^2\cos2arepsilon \ y'=n$
	2b	$e^{\sqrt{-1}f'}$	$\left  \begin{array}{c} g - n \\ c - \sqrt{-1}f' \end{array} \right $
29		a	$\frac{\epsilon}{a'}$
30	11a	$\frac{\ddot{r}}{r'}$	$r^{\bar{r}}$
30	11a	c'	$+\frac{e'}{\pi}$
		$-\overline{\kappa'}$	K
30	12a	2n+m-1	2n+m+1
30	13a	$-(\frac{1}{2})$	$+(\frac{1}{\kappa'})$
30	13a	2n+m-1	2n+m+1
30	13a	2n+m-2	2n+m+2
30	14a	2n+m-1	$\begin{vmatrix} 2n+m+1 \\ e^{\sqrt{-1}n(\pi-\pi')} \end{vmatrix}$
30	5b	$e^{\sqrt{-1}n(\pi-\pi')}$	
33	9a	$K_{1.0}^{2i+s}(n-1, n)$	$K_{1,0}^{2i+s}(n-1,-n)$
35	4a	(73)	(74)
36	la	$2\Gamma_s^{s \cdot n} e^{\sqrt{-1} n(\pi - \pi)}$	$2\Gamma_i^{3\cdot n}e^{\sqrt{-1}n(\pi-\pi')}$
$\frac{36}{38}$	10a 13a	$\overline{K_1}_{1,1}(n-1,+n+1)$	$\bar{K}_{1,1}(n-1,-n+1)$
	10b	$ \begin{array}{l} a \\ e^{-\sqrt{-1}\pi - \pi'} \end{array} $	$\begin{pmatrix} \alpha \\ e^{-\sqrt{-1}(\pi-\pi')} \end{pmatrix}$
38	3b	$\frac{e}{2(\eta')y'-1}$	$\frac{e}{2(\eta')y^{-1}}$
38	2b	$(2\eta)y'-1$	$(2(\eta)y'^{-1})$
40	3a	$K_{1\cdot 0}(n,-1-n)$	$K_{1\cdot 0}(n-1n)$
41	13a   2a	$K_{0\cdot 0}(0n)$	$\begin{vmatrix} a \\ K_{0,0}(n,-n) \end{vmatrix}$
45   45	9b	$\hat{\mathbf{A}}_{0.0}(0, -n)$	$K_{0.0}(n,-n)$
	7a	$-\frac{r(r-1)^2x'^{-1}}{1.1.2}$	$+\frac{r(r-1)^2x'^{-1}}{1,1,2}$
46	/ a	1.1.2	
46	7b	$-\frac{(n-s)(n-s+2)}{2}\eta'^2x'^{-2}$	$+\frac{(n-s)(n-s+2)}{2}\eta'^2x'^{-2}$
46	5b	(n-3)	(n-s)
46	4b	$\tilde{\eta}^4$	$\frac{1}{\eta}'^4$
48	14a	$P_{210}^{1}(n-2,-n)$	$P_{2,0}(n-2,-n)$
48	7b 7b	$P_{1,0}(n+1,-n+2)$	$P_{1\cdot 2}^{1\cdot 2}[n+1,-n-2]$
$\frac{48}{48}$	6b	$P_{1+1}^{(1)}(n+1,-n-2)$ $P_{1+1}^{(1)}(n-1,-n-2)$	$ \begin{array}{c} P^{1}_{1,2}(n+1,-n-2) \\ P^{1}_{1,2}(n-1,-n-2) \end{array} $
50	5a	$R_{1,0}^{n}(n+1,-n-1)_{-\pi}$	$R^{1}_{*,n}(n+1,-n-1)_{-\pi'}$
50	9b	$R_{1,0}^{1}(n-1,-n+1)+\pi'$	$R^{1}_{1\cdot 0}(n-1,-n+1)+\pi'$
$\frac{50}{51}$	3b 1b	$R^{\Gamma_{0,0}}(nn+2)+\pi'$ $P^{\Gamma_{0,0}}(n+rn+s)$	$egin{array}{c} R^1_{0\cdot 1}(n,-n+2)_{+\pi'} \ P^1[n+r,-n+s] \end{array}$
59	5a	$Q^{3\cdot 1}_{1\cdot 0}[n+1,-n]$	$Q^{3\cdot 1}$ , $n[n-1,-n]$
59	8a	$Q_{-1}^{3,1}[n,-n+1].$	$[Q^{3\cdot 1}, [n, -n+1]]$
60	6a 8a	g'	g'
		(See footnote 2 ) - $(m\mu)^4$	$+(m\mu)^4$
60	9Ъ	24	$\frac{}{24}$
60	5b	$\eta(-n+s)$	$y(-n+s)\mu$
$\frac{61}{61}$	7b 5b	$P_{0\cdot 1}[n.+n+1] \\ P_{0\cdot 1}[n.+n-1] \\ \frac{n^2\mu^3}{6}$	$\left\{egin{array}{l} P_{0},[n,-n+1] \ P_{0},[n,-n-1] \ rac{n^3\mu^3}{2} \end{array} ight.$
-		$\frac{1}{n^2 \mu^3} n^2 + \frac{1}{n^2 \mu^3}$	$\begin{bmatrix} \frac{1}{n} \frac{0.11}{n} \frac{1}{n} & -\frac{1}{n} - \frac{1}{n} \\ \frac{1}{n} \frac{3}{n} \frac{3}{n} \end{bmatrix}$
62	la	$\frac{\cdot}{6}$	$\frac{\kappa}{6}$
62	7a	$P_{2\cdot 1}$ $(n+2,-n-1)$	$P_{2\cdot 1}(n+2,-n+1)$
62	7a	$\frac{P_{2\cdot 1} (n+2, -n-1)}{(n-2)^2 \mu^2}$	$(\frac{n-1)^2\mu^2}{2}$
62	8a	$P_{1} = \begin{bmatrix} 2 \\ n-1 \\ -n+1 \end{bmatrix}$	$P_{1,1}[n+1,-n+1]$
63	5a	$P_{0,0}(n-1,-n+1)+\delta$	$P_{0,0}(n-1,-n+1)=\delta$
63	11a	$P_{1,0}(n+2,-n-1)+\sigma$	$P_{1,n}(n+2,-n-1)+3$
63	13a	$P_{0.0}^{n}[n-1,-n-1] = 3$ $P_{0.0}[n-1,-n-1] = 3$	$\begin{bmatrix} P_{0 \cdots 0} \\ P_{0 \cdots 0} \\ n-1, -n+1 \end{bmatrix} = \delta \\ P_{0 \cdots 0} \\ [n-1, -n+1] = \delta$
63 63	14a 5b	$R_{0\cdot 0}[n-1,-n-1]=0$ $R_{0\cdot 0}[n,-n+1]=\pi'$	$\begin{bmatrix} P_{0\cdot0}[n-1,-n+1]-s \\ R_{0\cdot0}[n,-n-1]-s' \end{bmatrix}$
63	2b	$R_{0\cdot 0}[n, -u+1] = \pi$ $R_{0\cdot 0}[n, -u+1] = \pi'$ $R_{0\cdot 0}[n, -u+1] = \pi'$	$egin{array}{c} R_{0\cdot 0}^{10\cdot 0}[nn-1]_{-\pi'} \ R_{0\cdot 0}[nn-1]_{-\pi'} \end{array}$
63	11.	R = [n, n-1]'	$P^{-1}$ in n 11 $I$

¹ The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b. 

The argument  $\theta$  is defined first by eq. (31), p. 20, secondly by eq. (105), p. 60. The first of these definitions is used in § 8.

Errata in Karl Bohlin, Sur le Développement des Perturbations Planétaires, § 1-7, and Tables I-XX—Continued.

	_		
Page.	Line.1	For—	Read—
64	6a	$R_{\geq 0}[n+1,-n]_{+\pi'}$	$R_{2\cdot 0}[n,-n+1]_{+\pi'}$
64	12a	$R_{0\cdot 0}[u,-u-1]_{-\pi'}$	$R_{0\cdot 0}[n, -n-1]^{+\kappa}$
64	14a	(n-n)	(n-2)
64	15a	$\begin{bmatrix} R_{1\cdot1}[n+1,-n]_{-\pi'} \\ F(n+\epsilon,-n+s \end{bmatrix}$	$F_{1,1}[n+1,-n]_{+\pi'}$ $F(n+r,-n+s)$
66	7a		F(n+r,-n+s)
66	Sa	$\begin{bmatrix} G(n+r,-n+s) \\ +3 \end{bmatrix}$	$\begin{pmatrix} G(n+r,-n+s) \\ +3 \end{pmatrix}$
70	1a	$\begin{bmatrix} -3 & P_{1,2}(n+1,-n-2) \\ -2 & \end{bmatrix}$	$\begin{array}{c} -2 \\ -2 \\ -2 \end{array} P_{1\cdot 2}(n+1,-n-2)$
71	4a	$F_{1\cdot 0}(n, n+1)_{+\sigma} + 3$	$ F_{1,0}(n,-n+1)_{+\sigma} $
71	9b	$-2 P_{1,0}(nn+1) = \delta$	$\begin{vmatrix} -2 & P_{1\cdot 0}(n, -n+1) - \delta \\ -2 & \end{vmatrix}$
73	2a	$F_{2\cdot 0}(n,-n+1)_{-\pi'}$	$F_{j^2\cdot 0}(n,-n-1)-\pi'$
$\frac{73}{73}$	18a, ff.	See foot note, ²	$\frac{J_{D}^{2}}{J_{D}^{2}}$
73 73	4b 3b	$R_{0\cdot 0}(n,-n+1)_{+\pi} + R_{0\cdot 0}(n,-n+1)_{+\pi}$	$R_{0.0}(nn+1)+\pi'$
74	8a	$R_{0.0}(n,-n+1)+\pi$ $R_{0.0}(n,-n+1)+\pi'$	$R_{0.0}(n,-n+1)+\pi'$
75	la.	$G_{0.0}(n+1,-n)$	$\begin{vmatrix} R_{0\cdot 0}(n,-n+1)_{+\pi'} \\ G_{0\cdot 0}(n+1,-n)_{+\sigma+\pi'} \end{vmatrix}$
75	11b	$R_{0.0}(n,-n+1)_{-\pi'}$	$R_{0\cdot 0}(n+1,-n)+\sigma+\pi'$ $R_{0\cdot 0}(n,-n-1)-\pi'$
78	1b	$\gamma_0^{-1} \cdot n$	$\begin{array}{c} n_{0.0}(n,-n-1)-\pi \\ \gamma_1^{1,n} \end{array}$
79	1b	$\frac{1}{\gamma_i}m+2.n$	$\gamma_{i-1}^{1}^{m+2}$ , $n$
79	*)	n=1	n=0
80	9 <b>b</b>	$\gamma_{i+1}^{m\cdot n}$	$= \frac{1}{\gamma_{i+1}m \cdot n}$
81	12a	*)	7 2+1
81	13a	(120)	(120)*)
135	7a	$K_{0:3}$ 1·6	$\overline{K}_{\alpha}$
139	3a	$\Gamma_{i^{1}}$ n	$egin{array}{c} \overline{K}_{0,3}, i \ 2 \overline{\Gamma}_{i}^{1} \cdot n \end{array}$
140	2a	$\Gamma_i^{1\cdot n}$	$2\Gamma_{i}^{\iota_{1}} \cdot n$
154	la	(86)	(93)
161	la	-ar	ar
169	8b	<b>&gt;&gt;</b>	$\frac{3}{4\alpha^2} 2\Gamma_i^{\delta,n}$
170	3a	$\frac{1}{2\alpha} 2\Gamma_{i}^{3,n}$	$2\gamma_t^{1\cdot n}$
170	4b	>>	$\frac{1}{2\alpha}^2 \gamma_i^{3\cdot n}$
171 ff.		See foot note.3	
185	2a	3. 27886	3. 27887
185	13b	4	3
188	6b	$2.017 3_n$	$2.01703_n$
189	14a	3. 27886	3. 27887
197	16a	$0.146128_n$	$1.146128_n$
197	18b	1. 505151	1. 505150
198	15b	$1.662759_n$	$1.662758_n$
198	$^{2\mathrm{b}}$	0. 477121	$0.477121_n$

¹ The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b.

² The space between lines 18 and 19 should read j².

³ Tables XII, XIII, XIV give the same coefficients in numbers as Tables XVI, XVII, XVIII give in logarithms, respectively. The same factor should therefore occur in the former.

### MEMOIRS

OF THE

# NATIONAL ACADEMY OF SCIENCES

Volume XIV

FOURTH MEMOIR

4				
	+	0		

### NATIONAL ACADEMY OF SCIENCES.

Volume XIV. FOURTH MEMOIR.

# SECOND REPORT ON RESEARCHES ON THE CHEMICAL AND MINERALOGICAL COMPOSITION OF METEORITES.

 $\mathbf{BY}$ 

GEORGE PERKINS MERRILL,

HEAD CURATOR OF GEOLOGY, UNITED STATES NATIONAL MUSEUM.

		0.
		• •

## CONTENTS.

	Page.
Bath, Brown County, S. Dak.	1
Bjelokrynitschie, Volhynia, Russia	
Farmington, Washington County, Kans	
Forest City, Winnebago County, Iowa	2
Gargantillo, Jalisco, Mexico	3
Hartford (Marion), Linn County, Iowa.	4
Homestead, Iowa	
McKinney, Collin County, Tex	
Ness County, Kans.	7
Ochansk, Siberia	7
Ruffs Mountain, S. C.	10
Tennasilm, Estland, Russia	11
Travis County, Tex.	11
Waconda, Kans	12
Weston, Conn	

	e <del>,</del> i	

## EXPLANATION OF PLATES, MICROSTRUCTURES OF METEORITES.

		Page.
Plate I.	Figure 1—Bath, Brown County, S. Dak.	
	Figure 2—Bjelokrynitschie, Volhynia, Russia.	]
II.	Figure 1—Farmington, Washington County, Kans.	-
	Figure 2—Forest City, Winnebago County, Iowa	6
III.	Figure 1—Gargantillo, Mexico.	5
	Figure 2—Hartford, Linn County, Iowa.	
IV.	Ness County, Kans. In figure 1, highly magnified, are shown in white, areas (1) of maskelynite	7
V.	Figure 1—Tennasilm, Estland, Russia	11
	Figure 2—Waconda, Kans.	
	- ·	

VII

į.	0.0	7.	
	•		
			130
e de			

# SECOND REPORT ON RESEARCHES ON THE CHEMICAL AND MINERALOGICAL COMPOSITION OF METEORITES.

By GEORGE P. MERRILL,

Head Curator of Geology, United States National Museum.

The paper here presented contains the detailed results of studies made during the past year under a grant from the J. Lawrence Smith fund. The immediate purpose of the investigation, as noted in my first report, these Memoirs, volume 14, 1916, pages 7-29, was the determination of the presence or absence of sundry reported elements existing in minor quantities, but naturally it was found advisable to extend these boundaries from time to time, as interesting or important features developed in progress of the work. In several instances results deemed of special importance have already received publication elsewhere.²

For convenience of reference, the meteorites studied are, in the following pages, considered alphabetically.

Bath, Brown County, S. Dak.—The fall of this stone and the attendant phenomena were briefly described by Foote.³ Later, Brezina,⁴ with even greater brevity, described its lithological features. There is nothing to indicate that he examined the stone in thin sections, and as it has never been subjected to chemical analysis it seemed a fit subject for further investigation.

Macroscopically the stone is gray, but, owing to oxidation, so filled with rust spots as to give it a brownish cast. The crust is rough and dull, a characteristic of stones of this class. The texture is firm, but the chondrules, for a large part at least, break free from it when the stone is fractured. The most unusual feature, when examined with a pocket lens, is the abundance of glittering crystalline facets of nickel-iron. The slipping faces mentioned by Brezina are not evident to the unaided eye in the pieces in the museum collection, but in the thin section are numerous fine black fracture lines, along some of which a differential movement has plainly taken place.

In thin section the stone is seen to be a spherulitic chondrite with crystalline base. (Fig. 1, Pl. I.) The chondrules are extremely variable in detail, but present no unusual features. The

essential minerals are olivine and enstatite; more rarely polysynthetically twinned monoclinic forms appear. Fragmental forms are common, particularly among the radiating and cryptocrystalline enstatite types. In one of the latter was observed a single granule of a distinctly red, translucent, but not transparent, mineral, of somewhat rounded outline as though corroded, and completely isotropic. (Fig. 1.) It is believed to be a spinel; possibly osbornite; it is impossible to decide from the single occurence of so small an object. (See further under Homestead.) The phosphatic mineral I have of late had so frequent occasion to note occurs but rarely.



Fig. 1.

Bjelokrynitschie, Volhynia, Russia.—This stone, which fell on January 1, 1887, has apparently as yet received but brief notice and been subjected to no chemical analyses. Four references to descriptions are cited by Wülfing, two of which are by B. K. Agafonov, the others being even briefer notes in the catalogues of Brezina and Meunier. I have had access to but

¹ Presented April, 1918; read November, 1918.

² On the Calcium Phosphate of Meteorites, Amer. Journ. Science, vol. 43, 1917, pp. 322-324, and Tests for Fluorine and Tin in Meteorites, with notes on Maskelynite and the Effect of Dry Heat on Meteoric Stones, Proc. Nat. Acad. Sci., vol. 4, no. 6, 1918, p. 176.

^{*} Amer. Journ. Sci., vol. 45, 1893, p. 64.

Wiener Sammlung, 1895, p. 259.

one of the papers cited by Agafonov.¹ In this the stone is described as composed chiefly of chondrules, entire and fragmental, embedded in a ground of crystals and crystal fragments. The mineral composition is given as olivine, bronzite, augite, maskelynite, nickel-iron, and troilite. Brezina describes it² as having suffered from oxidation to a depth of 1–3 cm. below the original surface, as of a breeciated structure and with strongly developed slicken-sided surfaces (Harnischflächen). He classes it a breeciated chondrite (Cib), though with occasional black chondrules showing a gradation into the breeciated spherulitic chondrites (Ccb). One fragment badly oxidized he seems inclined to class as a crystalline chondrite (Ck). Meunier in his list³ states that while the characteristics are not absolutely identical with those of Tadjera, the composition is the same and the differences not sufficiently marked to justify relegating to a distinct type. Neither says anything of the mineral composition other than is to be inferred from the classification.

The stone is represented in the national collection only by a small oxidized mass weighing 8 grams and a thin slice of the fresh, unaltered stone weighing 14 grams. A thin section cut from this last shows the stone to be of a pronounced chondritic type, the entire mass being composed of chondrules and fragments of chondrules closely compressed and with a minimum amount of fragmental interstitial matter. The mineral composition is nickel-iron, iron sulphide, olivine, an orthorhombic and a monoclinic pyroxene, the last named polysynthetically twinned. In two instances interstitial areas of the phosphate provisionally called "francolite" were noted and there are numerous areas of the black irresoluble matter which Meunier regards as fayalite and of secondary origin.

Judging from what has been written and my own observation, the stone is of a somewhat variable character. From the result of study of this one section I feel disposed to class it as a

veined spherulitic chondrite (Cca). (See Fig. 2, Pl. I.)

Farmington, Washington County, Kans.—This stone belongs to the group of black chondrites of Brezina, of which but eight representatives are known. The stone was seen to fall and its history is beyond question. It has been described by several writers among whom only Kunz, Weinschenk, and Brezina need here be mentioned. Weinschenk, to whom the microscopic descriptions are doubtless due, refers to the occurrence of "the mineral designated by Tschermak as 'monticellite-like' formed in the usual way. This contains rounded, colorless inclusions with bubbles probably of glass." Brezina⁵ says "Auch monticellitartige Chondren kommen vor." I am unable in the five thin sections we have of this stone to find the monticellite-like mineral in chondrules. It occurs rather in irregular cavities, sometimes completely filling them and sometimes merely small, colorless crystalline plates lining their walls. (See Fig. 1, Pl. II.) Naturally there was at once suggested the possibility that these were a phosphate, a possibility made a certainty by treating one of the areas in an uncovered slide with a drop of acid ammonium molybdate, when the mineral was quite dissolved, giving rise to abundant crystals of the phosphomolybdate of ammonium. I have been unable to detect the "asymmetric feldspar," the presence of which was thought to be indicated by the chemical analysis. The structure is, however, very obscure, and it is yet possible that a mineral of this nature may exist and be unrecognizable. Meunier's conclusions relative to the secondary nature of the dark color in the black chondrites are well supported by a comparison of slides of this stone with those from a roasted fragment of Homestead.

Forest City, Winnebago County, Iowa.—The only mineralogical description of this stone that has thus far been given is that of Kunz.⁶ This is incomplete and unsatisfactory, made evidently without recourse to thin sections and a microscope. He describes it as a "typical chondrite, apparently of the type of the Parnallite group of Meunier . . . A broken surface shows the interior color to be gray, spotted with brown, black, and white, containing small

¹ Rev. des Sciences Naturelle, St. Petersburg, no. 1, 1891, p. 41.

² Die Meteoriten Sammlung, 1895, p. 249.

⁸ Revision des Pierres Meteorique, 1894, p. 413.

⁴ Min. u. Pet. Mittheil. vol. 12, 1891, pp. 177-182, and Amer. Jeurn. Sci. ,vol. 43, 1892, pp. 65-67.

Weiner Sammlung, 1895, p. 253.
 Amer. Jeurn. Sci., vol. 40, 1890, pp. 318-320.

specks of meteoric iron, from 1 to 2 millimeters across. Troilite is also present in small rounded masses of about the same size. On one broken surface was a very thin scum of black substance, evidently graphite, soft enough to mark white paper; a feldspar (auorthite) was likewise observed, and enstatite was also present." Further on, in discussing the analyses by L. G. Eakins he remarks that "it is of course probable that the Cr₂ O₃ represents chromite, and possible that the alkalies and alumina with a little lime represent a soda-lime feldspar." Nothing is said as to the presence of olivine, though its presence is to be inferred from the 36.04 percent soluble in hydrochloric acid.

Under the microscope I find the structure very obscure, confused, and, as is so often the case with meteorites of this class, baffling all efforts at satisfactory descriptions. Few of the constituent minerals are crystallographically well developed, though occasional small forms in the midst of the chondrules present recognizable crystal faces. The recognized constituents, aside from the nicket iron and iron sulphide, are olivine and two pyroxenes, one orthorhombic in crystallization and one monoclinic, the latter polysynthetically twinned. The calcium phosphate is common in the usual interstitial forms. A black carbonaceous matter in veins and coating slicken-sided surfaces is not uncommon. Nothing resembling a feldspar is to be seen in any of the sections examined. (Fig. 2, Pl. II.)

Gargantillo (Tomatlan), Jalisco, Mexico.—This stone was described by Shepard, who seems to have secured 511 grams out of the total known weight of 780 grams. The mineral composition as given by him was as follows:

	Per cent.
Chrysolite.	80, 00
Chladnite (?)	10.00
Nickeliferous iron.	
Troilite	)
Chromite	3.00
Troilite	
Total	100. 00

Specific gravity, 3.47 to 3.48.

He noted as a "striking peculiarity . . . the prevalence everywhere of octahedral crystals of nickeliferous iron," which were "so distinct as to be recognizable with the naked eye, the brilliant equilateral, triangular faces coming into view by every change of position of the specimen." No chemical analysis appears to have been made, nor has it apparently been studied further except by Brezina, who classes it in his catalogue 2 as a "kugelchenchondrit" (Cc) and refers to it as having a very loose and friable ground mass, thick crust, large chondrules, many brown flecks, like Sarbanovas, and the iron abundant with many crystalline faces.

A little more may well be added to this description. The stone is so friable and the abundant chondrules so loosely embedded that it is practically impossible to get a satisfactory section without sacrificing a larger amount of material than is warranted. The microscope shows an indistinct and confused, fine, granular ground of olivine, enstatite, and occasional grains of a monoclinic pyroxene, in addition to the metallic constituents and the sulphide. (See Fig. 1, Pl. III.) The fine powder treated on the slide with a drop of ammonium molybdate yields characteristic globules and crystals of phosphomolybdate of ammonium. No feldspars, even of the maskelynite type, were detected.

A vial of fragments too small for other purposes, found in the Shepard collection, was sacrificed for the purposes of analysis, with the following results:

,	Per cent.
Mineral	93, 54
Metal	6.46
D1	:. 4 1 . C.
The metal amounted to 0.41 grains and o	CONSISTED OI:
o o	CONSISTED OF:
Nickel	Per cent.

The mineral portion amounted to 5.94 grains and consisted of:

		Per cent.
Silica SiO ₂		. 41.16
Alumina Al ₂ O ₃		
Ferrous oxide FeO	· · · · · · · · · · · · · · · ·	. 18.48
Manganous oxide MnO		. 0.39
Chromic oxide Cr ₂ O ₃		. 0.20
Phosphoric acid P ₂ O ₅		. 0.30
Sulphuric anhydride SO ₃		. 5.56
Lime CaO		
Magnesia MgO		. 26.88
Soda Na ₂ O		
Potash K ₂ O		. 0.06
Total		. 100.06

A recalculation of these figures gives the following, representing the composition of the stone as a whole:

	Per cent.
SiO ₂	
$\mathrm{Al_2}\mathrm{ ilde{O}_3}$	3.71
$\operatorname{Cr}_2\operatorname{O}_3$	
FeO.	17, 28
MnO	0.36
MgO	25. 14
CaO	1.79
Na ₂ O	1.06
K ₂ O	
$P_2O_5$	0. 28
SO ₃	
Fe	5.74
Ni	0.66
Co	0.06
Total	100. 01

These figures fall well within the range of chondritic stones. No barium strontium or other alkaline earths than those mentioned could be detected. No calcium in a water solution, hence no oldhamite. The mineral composition is olivine, monoclinic and orthorhombic pyroxene, calcium phosphate (merrillite of Wherry), chromite, nickel-iron, and troilite.

Hartford (Marion), Linn County, Iowa.—The first descriptions of this stone are by Shepard.¹ His determination of its lithological nature is excusable only in consideration of the times and the means at his command. He wrote: "It appears to contain but a single mineral species of this (i. c., 'earthy') description, and this one which . . . has until now escaped a separate recognition." For this mineral he proposed the name howardite and gave the complete mineral composition of the stone as howardite, 83 per cent; nickel-iron, 10.44 per cent; magnetic pyrite, 5 per cent; olivinoid and anorthite, traces. Some twenty and odd years later Rammelsberg ² reviewed Shepard's work and showed the stone to consist of 10.54 per cent nickel-iron; 6.37 per cent troilite; 41.58 per cent soluble silicate, and 41.24 per cent insoluble, the soluble portion being identified as olivine; the insoluble, which was analyzed, being "almost exactly a bisilicate," but which he does not name.

An examination of thin sections from fragments in the Museum collection shows the essential constituents to be olivine and enstatite, with the usual interstitial calcium phosphate, nickel-iron, and troilite. The structure is not strongly chondritic. (Fig. 2, Pl. III.) No polysynthetically twinned pyroxenes were noted. The phosphatic mineral was evident to the naked eye in two instances as small white spots, perhaps 2 mm. in diameter, on a broken surface of the stone. These were so soft and friable as to fall down to almost dustlike particles when touched with a needle point. It is doubtless this brittle property of the mineral, causing it to break away in the process of grinding the section, that has prevented its earlier detection. It

should be stated that a particle tested by the immersion method showed an index of refraction of 1.625. Far more abundant than the phosphate is a limpid, colorless mineral, likewise occurring interstitially, but locally so abundant as to form almost the base in which the other silicates The mode of occurrence and appearance are in every way characteristic of the are embedded. so-called maskelynite, but that in many instances the area between crossed nicols breaks up into granular aggregates which are plainly biaxial and give distinct polarizations in light and dark, rarely yellowish colors in the thicker sections. The dark cloud, as a rule, sweeps over the face of the crystal in a manner indicating conditions of strain, and in no case have I been able to find a satisfactory section showing the emergence of an optic axis, or other indications of its optical properties than the indistinct black brushes sweeping across it as the stage is revolved. It is apparently positive. There are no signs of cleavage, but in a few instances faint lines were observed traversing the section. In these cases I was able to measure extinction angles against these lines, of 8° and 10°. But for its very evident doubly refracting properties the mineral would have been set down at once as maskelynite. As it was, additional tests seemed necessary. Two determinations of its refractive index by the immersion method gave 1.54 and 1.545, which is higher than that of a similar appearing mineral to which I have frequently referred in other publications. All further doubts as to the nature of the substance are, however, in this particular case set at rest by the finding of occasional granules still retaining residual traces of the characteristic twinning bands of a plagioclase feldspar.

Homestead, Iowa,—The Homestead meteoric stone fell on February 12, 1875, and is now represented by 124,492 grams scattered among 62 collections throughout the world. It has been the subject of numerous papers, concerning which a reference to Wülfing's bibliography is here sufficient. The stone is classed by Brezina as a brecciated gray chondrite (Ccb), and by Meunier as a limerickite. Wadsworth, who examined the stone in thin section, states it to consist of "crystals and grains of olivine, enstatite, pyrrhotite, iron, and base," and quotes Lasaulx as stating that it carries plagioclase. Several chemical analyses have been made, none of which show the presence of any unusual constituents. This is little to be wondered at when one considers that in the case of Gumbel but 1.5 grams of material were at his disposal. Much of the interest that is attached to the stone is due to A. W. Wright's work on the gaseous contents of meteorites.

My own attention was first drawn to this stone when studying the occurrence of the calcium phosphate concerning which I have of late written several papers, and which, incidentally, I find here in abundant characteristic forms. I do not find the plagioclase feldspar

referred to by Lasaulx, but do find in some of the chondrules a polysynthetically twinned monoclinic pyroxene which seems to have been wholly overlooked by previous observers. The immediate cause of the present note is, however, the occurrence in each of two slides examined of a minute. bright red-brown, scarcely translucent, isotropic mineral embedded in enstatite, as shown in the drawing reproduced here. (Fig. 2.) An attempt at a definite determination of its mineral nature was a partial failure. Finding it insoluble in ordinary acids, one of the slides was sacrificed, painting around the object as closely as possible with vaseline and then covering the exposed portion with a large drop of fluorhydric acid. The silicates were all decomposed badly, but amidst the gelatinous mass of decomposition products I



was still able to detect the red granule apparently untouched. In an attempt to remove the granule for further tests and observation, it became hopelessly lost. I can only surmise from its apparent insolubility, subtranslucency, color, isotropic nature, and a suggestion of octahedral form, that it may be a spinel. That it is osbornite does not seem probable. The second slide, from which the accompanying figure was drawn, has been covered and preserved. I may add that eight other small sections, cut from fragments of the stone in the Barker bequest, gave no new occurrences of the mineral. This is probably the same mineral noted by Gumbel 1 but thought to be garnet. The decidedly octahedral termination on the form figured in the present paper seems to warrant its being considered a spinel.

Mc Kinney, Collin County, Tex.—It is remarkable that this interesting stone, which has been known since 1895, should have been allowed so long to remain unstudied, the bibliography consisting only of a brief statement by von Hauer ¹ regarding the acquisition by the Vienna museum of upward of 40 kilograms of the material, a description of the stone by Brezina, ² based evidently only on an examination by the naked eye, aided perhaps by a pocket lens, a brief note by Meunier ³ calling attention to the evidence it afforded of the introduction of the metal and sulphide after consolidation, and lastly an analysis by Whitfield given in my paper on the minor constituents of meteorites ⁴ the last named made with particular reference to the possible occurrence of barium, strontium, zirconium, or other of the rare elements.

Macroscopically the stone is fine-grained, compact, dull brownish gray, almost black, looking on a broken surface very much like a piece of hard shale, showing here and there a minute fleck of metal, and with chondrules quite inconspicuous except where it is polished. The texture is firm and the chondrules break with the stone. On the polished surface they are of greenish color, suggestive of a serpentimous alteration, which, however, microscopic examination shows not to have taken place.

In the thin section the microscope reveals, in addition to the iron and iron sulphide, three varieties of pyroxene, one occurring in broad plates with wide (25°-30°) extinction angles, a polysynthetically twinned variety and normal enstatite, in addition to olivine and the calcium phosphate, while the whole mass is here and there so impregnated with a coal black compound as to give it the dark color referred to.

The chondrules are varied and interesting. They consist of enstatite in the common radiating and cryptocrystalline forms as well as in good, well developed phenocrysts in a glassy or fibrous base. Sometimes the entire chondrule is composed of small, closely compacted forms with little or no interstitial base. Others are formed wholly of the polysynthetically twinned monoclinic forms. These twinned pyroxenes occur also scattered throughout the groundmass and under such condition with relation to their associated minerals as to suggest a dynamic action, a crowding and crushing, and sometimes even raising the question if the twin structure may not itself be due to this same cause. The occurrence of the twinned forms in the chondrules where there are no signs of strain forbids, however, the universal application of any such theory of origin. Still other chondrules are wholly of olivine. The calcium phosphate occurs in the usual irregular, interstitial, colorless forms with low relief. The groundmass is everywhere so obscured by the black matter that it is impossible to make out a structure for a certainty. It is apparently fragmental, though if we accept Meunier's views, it may have been caused by the reheating to which he ascribes this black color. In this connection Brezina says "Dessen Zugehörigkeit zu den Cs insoferne nicht ganz sichergestellt ist, als die schwarze Farbe nicht mit Bestimmtheit auf einen Kohlegehalt Zurückgeführt ist". (See further under "Effects of dry heat on meteoric stones," Proc. Nat. Acad. Sci., vol. 4, 1918, p. 178.)

This black constituent, which is sufficiently abundant to give the stone a uniform color, is by no means uniformly distributed, but, as shown in the thin section and figures, is injected throughout the ground and along cleavage and fracture lines of the various minerals, being absent in quantity from the chondrules, forming a dense black, opaque ground from which these and the scattered, often fragmental silicates stand out sharply. An attempt was made to determine the possible presence of a hydrocarbon, but the facilities at command did not enable me to arrive at a satisfactory result. One hundred grams of the pulverized stone were digested for 48 hours, first in ether and next in carbon disulphide. Although care was taken to use the purest chemicals obtainable, and the filters were first washed in ether, the slight, colorless extract obtained in the first instance, and the single small drop of a greenish, oil-like matter in the second, were both felt to be perhaps in part due to impurities. Any hydrocarbon, if present at all, is certainly there in very small quantities. The apparent introduction (or perhaps better production) of the coloring matter at a late period in the history of the

¹ Ann. Hef-Mus., vol. 10, 1895, p. 34.

³ Idem, pp. 252, 253.

<sup>Revision des Pierres Meteorique, etc., p. 412.
Mem. Nat. Acad. Sci., vol. 14, 1916, p. 19.</sup> 

stone is beautifully shown in some of the pyroxene sections where the cleavage and fracture lines have become so filled as to form a black network between the threads of which the colorless pyroxenic material stands out sharply and in all its original freshness.

Naturally these observations recalled Meunier's views on the origin of the meteorites of his tadjerite group through a preterrestial heating of aumalites, and the matter seemed of sufficient interest to warrant a partial repetition of his experiments. The results, I have given on page 178 of the Proceedings of the Academy as noted above.

Ness County, Kans.—This is a helecrystalline chendritic stone, of firm texture, the chondrules breaking with the matrix. Thin sections show, where not too badly stained by iron oxides, a granular aggregate of olivine and bronzite with the usual scattering blebs and granules

of nickel-iron and iron sulphide. The chondritic structure is very obscure and the chondrules themselves present little variation. (Fig. 2, Pl. IV.) The structure is in places decidedly cataclastic. Aside from the minerals mentioned, I find, rarely, clusters of minute, polysynthetically twinned pyroxenes and numerous limpid, completely colorless interstitial areas, without crystal outlines or determinable cleavage, polarizing only in light and dark colors, often showing conditions of strain, and giving occasionally biaxial interference figures. It is evidently of the nature of the so-called maskelynite. By careful work with a needle point on an un-



covered section the edge of one of these areas was sufficiently exposed to permit testing by the immersion method, and found to have an index of refraction of between 1.55 and 1.56, or that of andesine as given by Iddings. In addition, two of the sections show a completely colorless mineral, one of which is isotropic and shows two lines of cleavage cutting at angles of about 56° and 124°, and the other showing extinctions parallel with a single series of cleavage lines and giving

a uniaxial interference figure strongly suggestive of the mineral apatite 1 (see Figs. 3 and 4). Although sought for most carefully, this mineral could not be found in any of the six other sections examined, and a more exact determination is impossible. It is perhaps the

same mineral referred to by Farrington 2 and which he also failed to determine.

Ochansk, Siberia.—Through an oversight on my part, this stone in my Handbook and Catalogue 3 was stated not to have been analyzed as a whole. Since the issue of that publication, my attention has been called to the paper of Tichomirow and Petrow in which is given the analysis quoted below.

My excuse for taking the matter up once more lies in the somewhat unusually high ratio of nickel to iron ⁵ (1-3.5) which, so far as I now recall, is equalled only by that of the Middlesberough stone. They also report 0.52 per cent of copper and tin. A quantity of fragments of not over a gram or so each in weight, the residues from the Ward collection, formed abundant opportunity for further investigation, which after sundry qualitative tests by myself, was undertaken in detail by Dr. Whitfield.

As is well known, the stone belongs to the brecciated spherulitic chendrules of Brezina or cancilities of Meunier. The texture seems to be somewhat variable. In a sample received from De Kroutschoff in 1887, the texture is firm enough to receive a smooth surface and a rather lew-grade polish. The samples in the Ward collection, on the other hand, which are fresh and unoxidized, are quite friable. Otherwise, however, both in structure and mineral com-

A similar mineral described by me in the Mocs meteorite (see Fig. 5, p. 305, Proc. Nat. Acad. Sci., vol. 1, May, 1915) was found to be soluble in acid and to give solutions reacting for phosphorus and calcium.

Meteorite Studies I, Field Columbian Museum Publ. 64, Geol. Ser., vol. 1, 1902, p. 300.
 Bull. 94, 1916, U. S. National Museum.

Jour. de russ. phys-chem. Ges. 1888, Part 1, pp. 513-518.

See Prior, on the Genetic Relationship and Classification of Meteorites, Mineralogical Magazine, vol. 18, 1916, no. 83, pp. 29 and 33.

position, the stones seem to be identical and there is apparently no reason for doubting the authenticity of the material now under consideration. A broken surface is light ash gray in color, thickly studded with chondrules, some of which are of a dark color and others very tight greenish when broken across. All separate readily from the ground, often in very perfect spherulitic forms. No metal is evident to the unaided eye. In thin sections under the microscope the structure is that of a tufaceous ground carrying the abundant chondrules, entire and fragmental, and scattered crystalline particles with the usual sprinkling of metal and metallic sulphide. It will be recalled that Siemasehko described this last as occurring in pentagododecahedral forms and, therefore, pyrite. The correctness of this has been questioned (see Cohen, p. 208). The recognizable silicates are olivine and enstatite, though as often the case many of the chondrules are densely crypto-crystalline and their mineralogical nature indeterminable other than that they are pyroxenic. The powdered stone treated with a drop of acid ammonium molybdate solution gives rise to abundant reaction for phosphorus, indicative of a lime phosphate which occurs only in minute interstitial granules quite inconspicuous unless specially sought under the microscope.

The results of Dr. Whitfield's work are given below. It should be stated that particular pains were taken, as usual of late, to determine the presence of the rarer elements particularly tin and copper which the previous investigators had reported, and also the presence or absence of nickel and cobalt in the silicate portions.

Several grams of the finely pulverized material boiled for half an hour in distilled water in a platinum vessel yielded no evidences of the presence of oldhamite.

The mineral composition, determined by the usual methods, was found to be-

Silicate portion (including a small amount of phosphate)       76. 274         Troilite       6. 100         Metallic portion       16. 860         Chromite (calculated)       0. 766         Total       100. 000         The metallic portion yielded—         Iron       92. 092         Nickel       7. 158         Cobalt       0. 686         Phosphorus       0. 064         Total       100. 000         The silicate portion yielded—       Per cent.         SiO2       44. 438         A120       9. 226         Gr2O3       20. 550         P2O5       0. 503         FeO       13. 675         MnO       0. 376         CaO       1. 505         MgO       27. 204         NiO       0. 678         CoO       0. 066         Na2O       1. 186         K2O       0. 222         SO2       0. 371         Total       100. 000			rer cent.
Metallic portion       16.860         Chromite (calculated)       0.766         Total       100.000         The metallic portion yielded—         Iron.       92.092         Nickel.       7.158         Cobalt.       0.686         Phosphorus       0.064         Total       100.000         The silicate portion yielded—       Per cent.         SiO₂.       44.438         A1₂O.       9.226         Cr₂O₃.       2.0.550         P₃O₃.       0.503         FeO.       13.675         MnO.       0.376         CaO.       1.505         MgO.       27.204         NiO.       0.678         CoO.       0.066         Na₂O.       1.186         K₂O.       0.222         SO₂.       0.222         SO₂.       0.371         Total       100.000		• • • •	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<del>-</del>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Chromite (calculated)	0.766
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Total	100.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The metallic	portion yielded—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• •	
$\begin{array}{c c} \text{Cobalt} & 0.686 \\ \text{Phosphorus} & 0.064 \\ \hline Total & 100.000 \\ \hline \\ \text{The silicate portion yielded} & \\ \hline SiO_2 & 44.438 \\ AI_2O & 9.226 \\ Cr_2O_3 & 20.550 \\ P_2O_5 & 0.503 \\ FeO & 13.675 \\ MnO & 0.376 \\ CaO & 1.505 \\ MgO & 27.204 \\ NiO & 0.678 \\ CoO & 0.066 \\ Na_2O & 0.066 \\ Na_2O & 0.222 \\ SO_2 & 0.371 \\ \hline \\ \hline \\ \text{Total} & 100.000 \\ \hline \end{array}$			
$\begin{array}{c cccc} Phosphorus & 0.064 \\ \hline Total & 100.000 \\ \hline The silicate portion yielded— & Per cent. \\ SiO_2 & 44.438 \\ A1_2O & 9.226 \\ Cr_2O_3 & 20.550 \\ P_2O_5 & 0.503 \\ FeO & 13.675 \\ MnO & 0.376 \\ CaO & 1.505 \\ MgO & 27.204 \\ NiO & 0.678 \\ CoO & 0.066 \\ Na_2O & 0.066 \\ Na_2O & 0.222 \\ SO_2 & 0.371 \\ \hline Total & 100.000 \\ \hline \end{array}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cobalt	
$\begin{array}{c ccccc} \text{The silicate portion yielded-} & & & & & & \\ & & & & & & & \\ SiO_2 & & & & & 44.438 \\ & & & & & A1_2O & & & 9.226 \\ & & & & & & & 20.550 \\ & & & & & & 20.550 \\ & & & & & & 20.550 \\ & & & & & & 20.503 \\ & & & & & & 20.503 \\ & & & & & & & 20.503 \\ & & & & & & & & 20.503 \\ & & & & & & & & & \\ & & & & & & & & $		Phosphorus.	0.064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Total	100, 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The silicate	portion yielded—	
$\begin{array}{c c} A1_2O & 9.226 \\ Cr_2O_3 & 20.550 \\ P_2O_5 & 0.503 \\ FeO & 13.675 \\ MnO & 0.376 \\ CaO & 1.505 \\ MgO & 27.204 \\ NiO & 0.678 \\ CoO & 0.066 \\ Na_2O & 0.066 \\ Na_2O & 0.222 \\ SO_2 & 0.371 \\ \hline \\ Total & 100.000 \\ \end{array}$		7.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 0	
$\begin{array}{cccc} MnO & 0.376 \\ CaO & 1.505 \\ MgO & 27.204 \\ NiO & 0.678 \\ CoO & 0.066 \\ Na_2O & 1.186 \\ K_2O & 0.222 \\ SO_2 & 0.371 \\ & & & & & & & & & & & & & & & & & & $		5 0	
$\begin{array}{ccc} \text{CaO} & 1.505 \\ \text{MgO} & 27.204 \\ \text{NiO} & 0.678 \\ \text{CoO} & 0.066 \\ \text{Na}_2\text{O} & 1.186 \\ \text{K}_2\text{O} & 0.222 \\ \text{SO}_2 & 0.371 \\ & & & & & & & & & & & & & & & & & & $		- +	
$\begin{array}{cccc} MgO & 27.204 \\ NiO & 0.678 \\ CoO & 0.066 \\ Na_2O & 1.186 \\ K_2O & 0.222 \\ SO_2 & 0.371 \\ \hline \\ Total & 100.000 \\ \end{array}$			
$\begin{array}{ccc} \text{NiO} & 0.678 \\ \text{CoO} & 0.066 \\ \text{Na}_2\text{O} & 1.186 \\ \text{K}_2\text{O} & 0.222 \\ \text{SO}_2 & 0.371 \\ \hline \\ \text{Total} & 100.000 \\ \end{array}$			
$\begin{array}{ccc} \text{CoO} & & & 0.066 \\ \text{Na}_2\text{O} & & & 1.186 \\ \text{K}_2\text{O} & & & 0.222 \\ \text{SO}_2 & & & 0.371 \\ & & & & & \hline \end{array}$		MgO	
$egin{array}{cccc} Na_2O & & & 1.186 \\ K_2O & & & 0.222 \\ SO_2 & & & & 0.371 \\ \hline Total & & & 100.000 \\ \hline \end{array}$		NiO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$c_{00}$	
Total 0. 371  Total 100. 000		Na ₂ O	
Total		$K_2O$	0. 222
		SO ₃	0.371

¹ Tschermak's Min. u. petro. Mitt, vol. 11, I890, p. op.

Per cent.

By recalculation the composition as a whole is found to be—

	Per cent.
SiO ₂	34. 235
A1 ₂ O	7. 107
Cr ₂ O ₃	0. 423
$P_2O_5$	0. 387
FeO	10. 535]
MnO	0. 289 Silicate
CaO	1. 159}
MgO	20. 958 Portion.
NiO	0. 563
CoO	0.058
Na ₂ O	
$K_2O$	0. 171
\$0 ₃	0. 285
Fe	15, 526)
Ni	
Co	0.115 portion.
P	0.011
Fe.	3. 880)
S	2. 220 Troilite.
0,	2. 220j
Total.	100, 031

The analysis given by Tichomirow and Petrow is as follows:

8-,J	- •	Per eent.
$SiO_2$		36.36
FeO.		
MgO		18.54
CaO		
Fe		19.80
Ni		5. 55
S		2.30
P		0.05
C		0.08
CuSn		
Mn, Co, Na		Traces.
		100.00

The discordance in these results is altogether too large to be accounted for satisfactorily. That there must have been some error in the percentage of nickel, as suspected, is evident, as Dr. Whitfield's analysis of the metallic portion shows but 7.158 per cent of this constituent, which, when calculated in percentage of the entire stone, amounts to but 1.196 per cent instead of 5.55. The discrepancy in the calcium oxide (1.159 per cent against 3 per cent) is greater than should exist in portions from the same mass, but, singularly enough, the amount of troilite as indicated by the 2.30 per cent of sulphur is about the same and the remaining differences are perhaps not greater than might be expected with the exception of the alkalies, Whitfield reporting 1.084 per cent.

It is to be noted further that Whitfield reports no traces of tin or copper and that the silicate portion freed from all metal by boiling the finely pulverized mineral in mercuric chloride still yields 0.744 nickel and cobalt oxide. It may be recalled that in the table of analyses given in the Memoirs of the Academy ¹ there are to be found several instances of this character.

To these, at the time, I made no reference in the text, feeling that in some instances at least they might be due to imperfect separation of the metal from the silicate portion. In analyses since made especial care has been taken to guard against any such possibility and there seems no reasonable doubt but that the silicates-olivines or pyroxenes, or both—in meteorites carry small quantities of these constituents, as is the case in terrestrial rocks. Such being the case, it follows that the statement made by Dr. Prior,² together with an explanation by Dr. Wahl ³ to the effect that "the ferromagnesium minerals of chondritic stones contain practically no oxide of nickel," is founded upon faulty analyses and insufficient data.

The Ruff's Mountain, South Carolina, meteoric iron, and its included phosphide.—This beautiful iron was first described by Shepard 1 and has since been the subject of numerous other notices, which need reference here only as they bear directly upon the matter in hand. An etched surface shows it to be a medium octahedrite, after Brezina, or a caillite if we follow Meunier. It is chiefly distinguished by the broad fields of plessite and the lack of notable quantities of troilite. The kamacite bands are somewhat swollen and there are occasional rather inconspicuous Reichenbach lamellae. My attention was first drawn to it by the unsatisfactory nature of Shepard's analysis and his supposed discovery of potassium as one of its constituents. A slice weighing a little over 150 grams was therefore submitted to Dr. J. E. Whitfield with the request that he utilize so much as was necessary for an exhaustive analysis. Bulk analysis vields:

 Iron.
 90. 654

 Copper.
 0. 018

 Nickel.
 8. 550

 Phosphorus
 0. 233

 Cobalt.
 0. 500

 Carbon.
 0. 025

 Sulphur.
 0. 020

 Silicon.
 None.

with no traces of platinum, palladium, iridium, ruthenium, or the allied elements. Shepard, it may be recalled, reported 96 per cent iron; 3.121 per cent nickel, with chromium, cobalt, magnesium, and sulphur in traces. Later Rammelsburg reported a mean of 8.62 per cent nickel, which is substantially the amount given by Whitfield above. There is nothing of especial note in this composition unless it be its freedom from the rare elements.

Ninety grams of the iron yielded 1.4843 grams of material insoluble in hydrochloric acid of one-half ordinary strength. This residue when examined under the microscope was found to consist largely of schreibersite particles, among which were a few of sufficiently perfect crystalline form to permit measurements and determination of crystalline system. The material possessed the well-known physical properties of schreibersite (see Cohen, Meteoritenkunde, pp. 118–131), including the characteristic habit of breaking up readily into cuboidal forms, and which need not be further discussed.

The particles showing well-developed crystal faces were submitted to Dr. Edgar T. Wherry, then assistant curator in charge of the Mineral Department, who reported as follows: ²

The crystals average about one-half millimeter in diameter and are irregularly distorted, some of the faces being cavernous; the system of crystallization is not evident on superficial examination. The faces yield, however, fairly good reflections, the positions of which can be located in many cases within 5-10 minutes, unquestionable tetragonal symmetry being exhibited by the angular relations. The forms observed are: c (001) a (100), m (110), o (111), and m (1362). In addition there are rounded or poorly developed faces of other pyramids and prisms. All of the forms are incomplete, but there is hardly sufficient regularity in the suppression of faces to justify the assignment of the crystals to any particular hemihedral class.

Below are given the angles observed, which compare closely with those measured on artificial crystals by Mallard, Hlawatsch, and Spencer.

Table 1.—Measured and calculated angles of iron phosphide.

Tetragonal, c=0.346±0.001.

		Symbol.	Crystals.	Measure- ments.	Angles m	easured.	Angles calculated.	
No.	Letter.				φ	ρ	φ	ρ
0 1 2 3 4	c a' m o x	001 010 110 111 362	1 2 2 2 2 1	1 5 5 5 2	0° 00'- 45° 00'±15' 45° 00'±60' 26° 00'±60'	0° 00′ 90° 00′— 90° 00′— 26° 05′±15′ 49° 00′±60′	0° 00' 45° 00' 45° 00' 26° 34'	0° 00′ 90° 00′ 90° 00′ 26° 05′ 49° 15′

¹ Amer. Journ. Sci., vol. 10, 1850 p. 128.

² Amer. Mineralogist, vol. 2, 1917, pp. 80-81; vol. 3, 1198, p. 184.

Several attempts were made at a determination of the chemical composition of this material, but with results so discordant that the matter must be pended awaiting further investigation.

Tennasilm, Estland, Russia.—This stone, which fell on the 28th of June, 1872, was described by G. Baron Schilling some 10 years later.¹ The acquisition of a fragment weighing nearly a kilogram, through Krantz, in Bonn, led me to sacrifice enough for thin sections. An examination of these leads to conclusions relative to its mineral composition somewhat at variance with those of Schilling and is the cause of the present note. It should, however, be stated in advance that Schilling apparently made no use of thin sections, but based his mineralogical determinations wholly upon the results of chemical analysis.

The stone is of a pronounced chondritic type, a veined spherical chondrite (Cca) according to Brezina, or a limerickite if one follows Meunier. Schilling, as a result of analyses which need not be repeated here in their entirety, finds the silicate portion of the stone to consist of 54.45 per cent ofivine; 32.27 per cent bronzite, and 13.23 per cent labradorite. Cohen 2 seems to have accepted these results without question and by a further calculation gives the chemical composition of the labradorite as though it had actually been isolated and analyzed, while as a matter of fact, as noted later, labradorite, or other feldspar, is wholly lacking, at least so far as the Museum material is concerned. Meunier 3 apparently accepts this mineralogical determination, placing the stone in his limerickite group, the mineral composition of which is enstatite associated with bronzite and a feldspathic mineral. My observations are based upon a study of four thin sections cut from different portions of the mass mentioned. As described, the stone is of a gray color, plainly chondritic, somewhat soft and friable, the chondrules falling away readily from the matrix when the stone is broken. The metallic constituents are scarcely evident to the unaided eye. Under the microscope the chondritic structure is very pronounced (see Fig. 1, Pl. V). The chondrules are in some cases of beautifully limpid, well developed orthorhombic pyroxenes in a somewhat fibrous base, sometimes of the radiating cryptocrystalline forms, sometimes of polysynthetically twinned monoclinic forms, or again, of olivine. In no case have I been able to find a feldspar, even in the maskelynite condition.

This occurrence offers an interesting illustration of the danger of calculating the mineral composition from chemical analyses, and also the weakness of the quantitative classification when applied to rocks of this type.

Travis County, Tex.—This stone needs a brief reference for the reason that Wülfing in his catalogue raises the question if it does not belong to the Bluff, Fayette County, fall.

Such a suggestion is wholly unwarranted, and it is safe to say would never have been made by one who had seen and compared the two stones. Indeed, if the question of identity were to be raised it might well be with that of McKinney, in Collin County, which it closely resembles. Like the McKinney stone it is black in color, very firm and compact, and presents on a freshly broken surface little to suggest its meteoric nature. It might well be mistaken for a fine-grained basalt. The chondritic structure is very obscure and metallic particles safely identified only with a microscope or pocket lens. Abundant exudations of lawrencite, made conspicuous by globules of iron oxide, serve as a fairly safe criterion of its celestial nature.

Under the microscope the resemblance to the McKinney stone is further augmented. The ground is everywhere impregnated with a black material, carbonaceous 4 in part, which permeates into the borders of the chondrules and cleavage and fracture lines of the enstatites, and the olivines have in many cases the same greenish yellow appearance suggestive of a serpentinous or chloritic alteration. The enstatites of the ground are colorless except where injected with the black matter which gives the dark hue to the stone. These are interspersed in a manner difficult of description, with radiating and polysomatic chondrules of both olivine and pyroxenes often so altered as to break up into scaly and fibrous aggregates when

¹ Arch. Naturk, Liv. Est. u. Kurlands, vol. 9, pt. 2, 1882, pp. 95-114.

² Meteoritenkunde, vol. 1, p. 310.

Revision des Pierres Meteorique, etc., pp. 393-406.

[•] Roasted in a closed tube the powdered stone yields moisture and gives a distinct empyreumatic odor.

the stage is revolved between crossed nicols. A monoclinic pyroxene is present in minor quantity, showing indistinct traces of polysynthetic twinning, and there are frequent interstitial, very irregular areas of calcium phosphate. It will be noted from Eakins' analysis that the stone yields 0.41 per cent  $P_2O_5$ , an unusually large amount. I find nothing that I can with safety relegate to a feldspar, even of the maskelynite type. The structure is, however, so obscure that it will not do to pronounce too definitely on this point. The general resemblance to the McKinney stone is very close, but in composition, as shown by the two analyses below, it differs radically in the proportional amounts of alumina and ferrous iron, a difference which can be explained by the presence of an aluminous-monoclinic-pyroxene in the stone of McKinney, while magnesian forms prevail in that of Travis County.

	Travis County.	McKin- ney.
Silica (SiO) \lumina (SiQo ₃ ) \hromic oxide (Cr ₂ O ₃ ) \earnous oxide (FeO) \hromic (SiO) \	2. 72 .52 .6. 04 27. 93 2. 23 Trace. .52 .13 1. 13 1. 83 .22 .01 Trace. 1. 83	Per cent. 37.90 13.29 1.11 7.40 26.69 1.65 21 44  5.07 922 05 00 26.26
Totaless O for S		100.04
Total	100.19	

Chromite.

² FeS.

It is obvious from the above that the Travis County stone is to be classed—following Brezina—as a black chondrite, rather than a Ckb, as is Bluff.

It is greatly to be regretted that so little is known regarding the fall or finding of either of these interesting stones.

Waconda, Kans.—This stone has been the subject of several papers and briefer references, of which only those of Shepard, Smith, Wadsworth, and Brezina, are important. Neither Shepard nor Smith made use of thin sections, a method then practically unknown, and their determinations of mineral composition were surmises based on chemical analyses. Wadsworth based his brief description evidently on a single section, and there is nothing in Brezina's to indicate that he made use of other means than perhaps a pocket lens.

As thus far described, the stone is a brecciated crystalline chondrite, or aumalite of Meunier, consisting of olivine, enstatite and a monoclinic pyroxene with the usual sprinkling of metallic iron and iron sulphide. Smith's analysis, referred to later, showed it to consist of 3.85 per cent troilite, 5.34 per cent nickel-iron, and 90.81 per cent stony matter. In describing the appearance of the stone he mentioned as occurring "only on one part" of his specimen a mineral "in the form of a white, crystalline mass, not exceeding in weight 20 milligrams," which was soluble in hydrochloric acid, the solution reacting for magnesia and silica. This mineral he thought might occupy "the same place among the unisilicates of the meteorites that the enstatite does among the bisilicates."

In looking over a quantity of fragmental material in the Shepard collection my attention was attracted to a small white area, some 2 mm. in diameter, on one of the fragments, and, recalling Smith's work, I undertook its determination. The results are given below, and, as will be apparent, the investigation was much more extended than at first intended.

In the thin section the stone is at once seen to be composed essentially of olivine and pyroxene with nickel-iron and troilite. The chondritic structure is very evident (Fig. 2, Pl. V), the individual chondrules consisting wholly of pyroxenes or of olivine in the customary forms, embedded in a crystalline ground of the same constituents, and the metallic components. Where not stained by oxidation the silicates are beautifully clear and pellucid. The pyroxene is in part of the normal enstatite type, though many of the larger forms are monoclinic, showing extinction angles as high as 25°. In almost the first section examined attention was attracted to a minute, irregular, colorless area traversed by numerous fracture lines, with only moderate relief, nonpleochroic, and polarized in faint bluish-gray colors. Its appearance at once suggested the phosphatic mineral described by me in a previous paper. Microscopic examination of a considerable number of slides, accompanied in some instances by microchemical tests, showed the mineral to be a calcium phosphate, and occurring not infrequently. In no instance was the mineral found in the crystalline form characteristic of apatite. Nearly altogether it occurs as an interstitial filling, almost isotropic, and, as in the previous eases which I have described, of lower refractive indices than normal apatite. Indeed, in many instances the mode of occurrence and low relief without cleavage or crystal outline causes it to resemble on casual inspection an interstitial glass, for which doubtless it has heretofore been frequently mistaken. In such cases, it is only by treating a slide with a drop of acid and watching the mineral gradually disappear, then testing the solution, that its true nature can be determined.

Further examination showed the presence of this phosphate in the Waconda stone where it could not be recognized even microscopically. It was found that when the surface of an uncovered slide was treated with a dilute solution of hydrochloric acid and allowed to stand for not more than a quarter of an hour, the solution thus obtained would react for phosphorus and calcium, and the slide when examined be found to contain frequent minute, irregular, interstitial pits where the material had been dissolved away.

These determinations naturally suggested the possible phosphatic nature of the white spots before noted. An examination with a pocket lens showed these to be composed of aggregates of minute crystals of a faint yellow-green tint. It being obviously impossible to rely on cutting a thin section including the desired area, recourse was made once more to microchemical tests on minute fragments broken out by a needle point. Reactions for phosphorus and calcium were easily obtained, the mineral being readily soluble in cold nitric acid and less so in hydrochloric acid. Dr. E. S. Larsen kindly determined the indices of refraction by solutions, as follows:  $\alpha = 1.627 \pm 0.003$ ;  $\gamma = 1.621 \pm 0.003$ . These results are low for normal apatite, agreeing more closely with those obtained by Dr. Wright on material from the Alfianello and Rich Mountain stones, as given in the paper before referred to.

As phosphorus was not determined by J. L. Smith in his analysis of either the metallic or silicate portions of this stone, a second analysis was decided upon. The results as determined by Dr. J. E. Whitfield are given below, Smith's results being also given for purposes of comparison.

Preliminary separations yielded:

	J. E. Whitfield.	J. L. Smith.	
tony matter	Per cent. 87.80	Per cent. 90.8	
ickel-Iron roilite.	5.93	5.3 3.8	
Total	100.00	100.0	
	13.78	86.1 12.0	
Copper		.0	
Total	99.99	99.1	

¹ On the monthcellite-like mineral in meteorites, and on oldhamite as a meteoric constituent, Proc. Nat. Acad. Sci., vol. 1, 1915, p. 302, and On the calcium phosphate of meteoric stones, Amer. Journ. Sci., vol. 43, 1917, p. 322.

Not determined.

Phosphorus not determined in either case.

Smith further determined the stony portion to consist of 69 per cent soluble in aqua regia and 41 per cent insoluble, giving analyses of each, from which the bulk analysis given below was calculated.

	J. E. Whitfield.	J. L. Smith.
	Per cent.	Per cent.
2	35.05	38.1
S	16.53	23.4
	. 23	(2)
03	4.94	(3)
<u></u>	2.25 24.98	26.6
)	24.98	
)		(2) (2)
)	.04	(*)
0		(2)
	.06	1.0
0	.76	
)	. 17	(3) (2)
)	1.61	(2)
	5.07	4.6
	.81	1 :
	.04	ļ. ·'
Troilite.	3.99 2.28	3.8
Total.	99.84	100.

Analyses recalculated by Farrington. Smith reported also traces of lithium and copper.
 Not determined.
 Trace.

Five grams of the finely pulverized stone were boiled in distilled water for an hour, resulting in a solution yielding 0.062 per cent SO₃ and 0.012 per cent CaO. A portion of the SO₃ probably came from the decomposed troilite, rendering any calculations uncertain, while the amount of lime (CaO) is too small to make the results more than suggestive of the presence of a minute quantity of oldhamite. A second 5 grams were boiled for half an hour in acetic acid of 15 per cent normal strength. The solution yielded 0.08 per cent P₂O₅ and 0.122 per cent CaO. Inasmuch as the bulk analysis shows 0.23 per cent P₂O₅, it is evident that a complete solution of the phosphate was not accomplished by the acetic acid. Be this as it may, the relative proportion of acid to base is such as to render it unsafe to draw definite conclusions.1

It is difficult to account for all the discrepancies between the two analyses. The difference of some 3 per cent between the amount of stony matter and troilite may perhaps be accounted for on the supposition that Smith worked, as is so often the custom, on very small amounts that did not correctly represent the stone as a whole. (Whitfield had 19 grams of selected material.) The analyses of the metallic portion, it will be noticed, agree fairly well excepting that Whitfield reports no copper. In the bulk analyses, however, we find a difference of 3 per cent (in round numbers) in the total silica, nearly 7 per cent in the ferrous iron, 3.92 per cent in the alumina, and 2.25 per cent in the lime, with minor differences, mainly due to omissions elsewhere. The totals for iron and magnesia do not differ more than might be anticipated from analyses on separate portions, made by even the same analyst. That Smith did not determine the nickel and cobalt in the silicate portion is not strange, it being customary in his day to regard these elements as constituents of the nickel-iron only. The phosphoric acid, amounting to 0.23 per cent, should in this day certainly not be overlooked.

It does not seem in the least probable that the phosphate to which I have referred above as evident to the unaided eye can be the white mineral mentioned by Smith. Nevertheless, a most careful examination of all the material in the Museum and Shepard collections reveals nothing that is even suggestive of his doubtful unisilicate.

¹ Since the above was written, Dr. E. T. Wherry (Amer. Mineralegist, vol. 2, No. 9, 1917) bas complimented me by suggesting that the problematic phosphate be given the name merrillite. Had I been consulted in the matter I should have suggested a postponement until a more definite statement of its composition could be given. Incidentally, it may be stated, I had considered the use of Shepard's name, aparoid (Amer. Journ. Sci., vol. 2, 1846), but abandoned it because of his definite statement that his mineral contained no phosphorus.

Weston, Conn.—Notwithstanding that this is the oldest known of American falls, it is deserving of more detailed study than it has yet received either from a mineralogical or chemical standpoint. The work of Shepard (in 1809, 1846-1848) would naturally at this date be considered faulty. He described the stone as composed principally of howardite and olivinoid, with scattered grains of magnetic pyrites and nickel-iron. Little advance over this seems to have been made by subsequent workers, excepting Meunier, who, in classifying the stone as a limerickite, recognized its chondritic character and mineral composition. Brezina classified it as a spherical chondrite, brecciated, apparently without regard to its composition or microscopic structure. The breccia-like structure is very evident, and is produced by angular pieces of a light gray color embedded in the prevailing dark-gray material. The chondritic structure is equally pronounced in both, and so far as can be determined by the unaided eye or a pocket lens there are no essential differences between the two kinds of fragments other than that of color. The mineral composition I find to be chiefly a pyroxene with a low angle of extinction, about 10°, which therefore relegates it to the elino-enstatite of Wahl, a polysynthetically twinned pyroxene, olivine, "merrillite," nickel-iron, and iron sulphide. No feldspars, even in the form of maskelynite, were observed.







FIG. 1



FIG. 2.





FIG. 1.



FIG. 2.



FIG. 1.



FIG. 2.



F1G. 1.



FIG. 2.





FIG. 1,



FIG 2.



## MEMOIRS

OF THE

## NATIONAL ACADEMY OF SCIENCES

Volume XIV

FIFTH MEMOIR

WASHINGTON GOVERNMENT PRINTING OFFICE 1921

		•	
			44
,			

#### NATIONAL ACADEMY OF SCIENCES.

Volume XIV. FIFTH MEMOIR.

# TABLES OF THE EXPONENTIAL FUNCTION AND OF THE CIRCULAR SINE AND COSINE TO RADIAN ARGUMENT.

 $\mathbf{B}\mathbf{Y}$ 

C. E. VAN ORSTRAND.

# TABLES OF THE EXPONENTIAL FUNCTION AND OF THE CIRCULAR SINE AND COSINE TO RADIAN ARGUMENT.¹

By C. E. VAN ORSTRAND.

The tables accompanying this paper have been prepared with the expectation of meeting a twofold requirement. The first was to obtain a few high place values at sufficiently small intervals of argument for general use in the evaluation of integrals and other functions; the other object was to obtain a basis for subsequent interpolation to small intervals of argument for use in the construction of complete 10-place tables which are applicable in the various fields of pure and applied mathematics. The need of tables meeting these and other requirements has been emphasized by various authors.

The most important tables of extended values of the exponential function in which the exponents are integers or fractions have been constructed by Schulze, Bretschneider, Newman, Gram, Glaisher, and Burgess. Bretschneider included a few high place values of the circular sine and cosine to radian argument, but with the exception of these and a few values computed by Gudermann, there appears to be no extended values of these important functions.

Schulze 2 gives values of the ascending exponential at intervals of unity between the limits 1 and 24, inclusive, to 28 or 29 significant figures, and for the special arguments 25, 30, and 60 his values include 32 or 33 figures. In so far as I have been able to ascertain, Schulze gives no information regarding methods of computation or accuracy of results. Glaisher 3 verified the first 15 figures of Schulze's value of  $e^{16}$  by direct substitution in the series; the first 13 powers of  $e^{16}$  were verified to 22 places of decimals; and the values of  $e^{14}$ ,  $e^{15}$ , ...  $e^{25}$  to 15 places of decimals by means of the relation

$$\frac{e^{n}-1}{e-1}=e^{n-1}+e^{n-2} \dots + e+1.$$

Bretschneider  4  evaluated e,  $e^{-1}$ , sin 1 and cos 1 each to 105 places of decimals; also values of the same functions at intervals of unity between the limits 1 and 10, inclusive, to 20 places of decimals. He corrected the erroneous value of e given in Callet's tables and Vega's Thesaurus and the slightly erroneous values of sin 1 and cos 1 given to the twenty-fifth decimal by Gudermann.

Bretschneider obtained his values by direct substitution in the exponential series in connection with the evaluation of the three transcendants,

¹ Published by permission of the Director of the U.S. Geological Survey.

¹ I. S. Schulze, Sammlung logarithmischer Trigonometrischer-Tafeln (Berlin, 1778).

² J. W. L. Glaisher, Tables of the exponential function. Camb. Phil. Trans., vol. 13 (1883), pp. 243-272. (In Salomon's Tafeln (1827) the values of  $e^n$ ,  $e^{-n}$   $e^{0.0n}$ , ...  $e^{0.00000n}$  where n has the values 1, 2, ... 9 are given to 12 places.

⁴C, A. Bretschneider. Berechnung der Grundzahl der natürlichen Logarithmen, so wie mehrerer anderer mit ihr zusammenhängender Zahlwerthe. Grunert's Archiv der Math. und Phys., Bd. 3 (1843), pp. 27-34.

C. Oudermann. Potenzial oder cykisch-hyperbolische Functionen. Jour. für die reine und angewandte Math., Bd. VI (1830), pp. 1-39.

Si 
$$x = \int_{0}^{x} \frac{\sin x}{x} dx = x - \frac{1}{3} \frac{x^{3}}{3!} + \frac{1}{5} \frac{x^{5}}{5!} - \frac{1}{7} \frac{x^{7}}{7!} + \cdots$$

$$= \frac{\pi}{2} - \cos x \left[ \frac{1}{x} - \frac{2!}{x^{3}} + \frac{4!}{x^{5}} - \frac{6!}{x^{7}} + \cdots \right]$$

$$- \sin x \left[ \frac{1}{x^{2}} - \frac{3!}{x^{4}} + \frac{5!}{x^{6}} - \frac{7!}{x^{8}} + \cdots \right]$$
Ci  $x = \int_{\infty}^{x} \frac{\cos x}{x} dx = \gamma + \frac{1}{4} \log_{e}(x^{4}) - \frac{1}{2} \frac{x^{2}}{2!} + \frac{1}{4} \frac{x^{4}}{4!} - \cdots$ 

$$= \sin x \left[ \frac{1}{x} - \frac{2!}{x^{3}} + \frac{4!}{x^{6}} - \frac{6!}{x^{7}} + \cdots \right]$$

$$- \cos x \left[ \frac{1}{x^{2}} - \frac{3!}{x^{4}} + \frac{5!}{x^{6}} - \frac{7!}{x^{8}} + \cdots \right]$$
Ei  $x = \int_{-\infty}^{x} \frac{e^{x}}{x} dx = \gamma + \frac{1}{4} \log_{e}(x^{4}) + x + \frac{1}{2} \frac{x^{2}}{2!} + \frac{1}{3} \frac{x^{3}}{3!} + \cdots$ 

$$= e^{x} \left[ \frac{1}{x} + \frac{1}{x^{2}} + \frac{2!}{x^{3}} + \frac{3!}{x^{4}} + \frac{4!}{x^{5}} + \cdots \right],$$

known, respectively, as the sine integral, the cosine integral and the exponential integral. The quantity  $\gamma$  is the Eulerian constant 0.5772156 .....

Newman's 1 contribution to the subject consists of the following:

18-place values of  $e^{-x}$  from x = 0.0 to x = 37.0 at intervals of 0.1.

12-place values of  $e^{-x}$  from x = 0.000 to x = 15.349 at intervals of 0.001.

14-place values of  $e^{-x}$  from x = 15.350 to x = 17.298 at intervals of 0.002.

14-place values of  $e^{-x}$  from x = 17.300 to x = 27.635 at intervals of 0.005.

16-place values of  $e^x$  from x = 0.1 to x = 3.0 at intervals of 0.1.

12-place values of  $e^x$  from x = 0.001 to x = 2.000 at intervals of 0.001.

The 18-place table is hardly the equivalent of a 16-place table, as the original computation included only 18 decimals.

All of Newman's computations are based on formulas of the type

$$M \pm N = e^{-x \pm h} = e^{-x} \left[ 1 \pm \frac{h}{1!} + \frac{h^2}{2!} \pm \frac{h^3}{3!} + \dots \right]$$

wherein h assumes the constant values 1, 0.1, 0.01, . . . dependent upon the interval of interpolation. Having given  $e^{-x}$  and  $e^{-x+h}$  the value of  $e^{-x-h}$  is computed from the formula by putting

$$M = \Sigma \frac{h^m}{m!} e^{-x}$$
 and  $N = \Sigma \frac{h^n}{n!} e^{-x}$ ,

m being an even and n an odd integer. The values of the separate terms in these expressions may be computed by successive divisions. Then the appropriate summations give

$$M+N=e^{-x+h}$$

a known quantity, and

$$M-N=e^{-x-h}$$

¹ F. W. Newman. Tables of the descending exponential function to 12 or 14 places of decimals. Trans. Camb. Phil. Soc., vol. XIII (1883), pp. 146-241; table of the exponential function ε^z to 12 places of decimals. Trans. Camb. Phil. Soc., vol. XIV (1889), pp. 237-249.

the quantity to be determined. The equation for  $M \pm N$  provides a check on the values of M and N, but the sum or difference which is the quantity sought is not verified by this method until another interpolation is made.

Gram gives values of the ascending exponential to 24 places of decimals at intervals of unity between the limits x=0 and x=20, inclusive; also values of the same function from x=5.00 to x=20.00, inclusive, at intervals of 0.02, the number of tabular decimals ranging from 4 to 15; and from x=0.1 to x=15.0, the values are given to one decimal only at intervals of 0.1. Some of the values were obtained by either repeated multiplication or logarithmic computation, and the remainder were borrowed from Schulze, Bretschneider, and Oppermann.

Glaisher 2 gives 10-place logarithmic values and 9 significant figures of the natural values of both the ascending and descending function for the following ranges of argument:

From x = 0.001 to x = 0.100 at intervals of 0.001.

From x = 0.01 to x = 2.00 at intervals of 0.01.

From x = 0.1 to x = 10.0 at intervals of 0.1.

From x = 1 to x = 500 at intervals of unity.

Since the natural values were computed from the logarithmic values, the maximum tabular error is one unit in the ninth significant figure with the exception of values of  $e^{-x}$  contained in Nowman's tables. The remaining values of Glaisher's tables were checked either by differences or by duplicate computation. Glaisher gives also the reciprocals of the factorials from 1 to 50, inclusive, to 28 significant figures, and verifies his values by forming the summations for e and  $e^{-1}$ . A further verification is obtained by evaluating  $e^{-10}$  to 32 decimal places by means of the formula

$$e^{-x} = \frac{y+h}{10^n}.$$

The quantity  $y \times 10^{-n}$  is here an approximate value of  $e^{-x}$ . The equation gives

$$\log_{e}(y+h) = n \log_{e} 10 - x$$

a known quantity. Since log y is also known, we may evaluate the expressions

$$[\log_e(y+h) - \log_e y]$$
 and  $y[\log_e(y+h) - \log_e y]$ .

The expansion of the first by Taylor's series gives

$$h = y[\log_e(y+h) - \log_e y] + \frac{1}{2} \frac{h^2}{y} - \frac{1}{3} \frac{h^3}{y^2} + \dots,$$

from which an approximate value of  $h y^{-1}$  may be computed by neglecting terms in h beginning with the square. Finally the substitution of

$$\frac{1}{2} y \frac{h^2}{y^2}$$
 and  $-\frac{1}{3} h \frac{h^2}{y^2}$ 

in the preceding equation gives a corrected value of h.

Burgess 3 gives 30-place values of  $e^{-x}$  for  $x=0.5, 1, 2, \ldots$  10; and 14 values of  $e^{-x^2}$  at irregular intervals between the limits 1.0 and 3.0, ranging in extent from 23 to 27 decimals. These values were used in his evaluation of the probability integral, but no information seems to have been given with regard to either method or accuracy of computation.

In his "Rectification of the Circle" (1853), Shanks evaluates the Naperian base by direct substitution in the series to 137 places of decimals. His second computation was carried to

¹ J. P. Gram, Undersogelser angaaende Maengden af Primtal under en given Graense. Copenhagen Academy, 6 vol. II (1834), pp. 183-306.

² J. W. L. Glatsher. Tables of the exponential function. Trans. Camb. Phil. Soc., vol. 13 (1883), pp. 244-272.

James Burgess. On the definite integral  $\frac{2}{\sqrt{\pi}} \int_0^t e^{-t^2} dt$ , with extended tables of values. Trans. Roy. Soc. Edinburgh, vol. 39 (1900), pp. 321.

[•] William Shanks. On the extension of the value of the base of Napier's logarithms; of the Naperian logarithms of 2, 3, 5, and 10, and of the Modulus of Brigg's, or the Common system of logarithms; all to 205 places of decimals. Proc. Roy. Soc. Vol., VI (1850-1854), p. 397.

the two hundred and fifth decimal by a method given in J. R. Young's Elementary essay on the computation of logarithms (pp. 13-14). Glaisher verified the first result, using the continued fraction

$$\frac{e-1}{2} = \frac{1}{1} + \frac{1}{6} + \frac{1}{10} + \cdots + \frac{1}{4n+2+\ldots,$$

but the second result was shown by Boorman 2 to be incorrect after the one hundred and eightyseventh decimal.

Boorman's formula is readily deduced. Since we have identically

$$\frac{1}{m} + \frac{1}{mn} = \frac{1}{n} + \frac{n+1-m}{mn}$$
,

we obtain

$$\frac{1}{m} + \frac{1}{mn} = \frac{1}{n} + \frac{2}{mn}$$

by the substitution

$$m = n - 1$$

in the numerator of the right-hand member. The series for the Naperian base may thus be transformed into the series

$$e = \left(1 + \frac{1}{1}\right) + \frac{1}{1}\left(\frac{1}{n} + \frac{2}{mn}\right) + \frac{1}{1} \cdot \frac{1}{mn}\left(\frac{1}{n_1} + \frac{2}{m_1n_1}\right) + \frac{1}{1} \cdot \frac{1}{mn} \cdot \frac{1}{m_1n_1}\left(\frac{1}{n_2} + \frac{2}{m_2n_2}\right) + \dots,$$

wherein m=2, n=3;  $m_1=4$ ,  $n_1=5$ ;  $m_2=6$ ,  $n_2=7$ ; .... Tichánek ³ and Minks verified Boorman's value of e as far as the two hundred and twentythird decimal, making use of Euler's continued fraction

$$F = \frac{1}{2.1} + \frac{1}{2.3} + \frac{1}{2.5} + \cdots$$

in connection with the relations

$$e = \frac{1+F}{1-F}$$

$$\frac{e-1}{2} = \frac{1}{1} - \frac{1}{1.7} + \frac{1}{7.71} - \frac{1}{71.1001} + \frac{1}{1001.18089} - \cdots$$

Gauss 'gives values of  $e^{n\pi}$  ranging from 15 to 57 decimals for 13 values of n at irregular intervals between the limits 1/2 and -16. He used the formula

$$e^{n\pi} = Ne^{\log a + 10 \log b - \log c - \log b} \dots - n\pi$$

The quantity N is an approximate value of  $e^{n\pi}$  multiplied by  $a \times 10^{b}$ , and the quantities c, d, ... are the factors of N so selected that their natural logarithms may be taken from Wolfram's 5 tables.

The present contribution consists of the following tables:

Table I: Values of the reciprocal of n! to 108 places of decimals at intervals of unity from 1 to 74.

Table II: Values of  $e^x$  to 42 significant figures at intervals of unity from 0 to 100.

Table III: Values of  $e^z$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0.

¹ J. W. L. Glaisher. On the calculation of e from a continued fraction. Brit. Assoc. Rcp. (1871), pp. 16-18.

² J. Marcus Boorman. Computation of the Naperian hase. Math. Mag. vol. I (1882-1884), pp. 204-205; see also L'Intermediaire des mathe-

maticiens, vol. 7 (1900), p. 53; G. Peano, Formelaire de mathematiques. Tome 11, No. 3, p. 125.

• F. J. Studnička. Ueber die Berechnung die transcendenten Zahle. Jahr. über die Fort. der Math. Bd. 23 (1891), p. 440: Vorträge über monoperiodische Functionen. Jahr. über die Fort. der Math. Bd. 25 (1893-1894), p. 736.

Lemniscatische Functionen. Werke 3, pp. 413-432.

⁵ Logarithmorum Naturalium. (48 decimais). See Vega's Thesaurus, pp. 641-684.

Table IV: Values of  $e^x$  to 62 places of decimals at decimal intervals from  $1 \times 10^{-10}$  to  $9 \times 10^{-1}$ .

Table V: Values of  $e^{-x}$  ranging from 52 to 62 places of decimals at intervals of unity from 0 to 100.

Table VI: Values of  $e^{-x}$  ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0.

Table VII: Values of  $e^{-x}$  to 62 places of decimals at decimal intervals from  $1 \times 10^{-10}$  to  $9 \times 10^{-1}$ .

Table VIII: Values of  $e^{\pm (n \pi/360)}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360.

Table IX: Values of  $e^{\pm n\pi}$  to 25 places of decimals or significant figures for various values of n.

Table X: Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of unity from 0 to 100.

Table XI: Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.1 from 0.0 to 10.0.

Table XII: Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600.

Table XIII: Values of sin x and cos x to 25 places of decimals at decimal intervals from  $1 \times 10^{-10}$  to  $9 \times 10^{-4}$ .

Table XIV: Miscellaneous values of  $e^x$ ,  $e^{-x}$ , sin x and cos x to a great number of decimals, including Boorman's value of e.

The tabular error of the preceding tables may in some cases slightly exceed 5 units in the next succeeding tabular digit as two digits only were dropped from most of the values.

In my preliminary computations, Glaisher's ¹ table of the reciprocals of the factorials was used. It contains all of the recurring decimals from n=1 to n=12, inclusive, and from n=13 to n=50, inclusive, the values are given to 28 significant figures. This table frequently failed to give the requisite number of decimals in the vicinity of n=13 and upwards, so it was afterwards extended roughly to 110 decimals, and the range of the argument extended from 50 to 74, the results being verified by forming the summations for e and  $e^{-1}$ , and then computing the product of these two quantities, in addition to making a direct comparison with the well known value of e. A further check on the value of  $e^{-1}$  consisted in reciprocating e, written in the form  $(a+b)^{-1}$ .

With the table of reciprocal factorials as a basis, it was easy to compute the value of  $e^{0.1}$  from the series: and afterwards by repeated multiplications by this factor, in accordance with the formula,

$$e^{x+\Delta z} = e^x \cdot e^{\Delta z} \qquad (2).$$

the values of  $e^{0.2}$ ,  $e^{0.3}$ , ... e were obtained and verified by comparing the last computed value with the well known value of e. Similarly the value of  $e^{10}$  was computed from e and the value of  $e^{100}$  was computed from  $e^{10}$ . Values of the descending exponential for the same intervals of argument were determined in the same manner, and the evaluation of both functions was verified at frequent intervals by means of the product relation,  $e^x e^{-x}$ . Another check consisted in substituting values of x and  $\Delta x$  in (2). Subsequent interpolations to one-tenth the previous interval of interpolation provided a further complete check on the entire computation. The maximum difference between any value and the corresponding value obtained by 10 interpolations did not exceed 15 units in the last decimal or significant figure. Practically all of the computations were made with a 10-groove computing machine of the millionaire type.

¹ J. W. L. Glaisher, Tables of the exponential function. Trans. Camb. Phil. Soc., vol. 13 (1883), pp. 244-272.

[•] C. F. Degen, Tabularum Enneas (Copenhagen 1824) gives 18-place values of  $\log_{10}(n!)$  from n=1 to n=1200. De Morgan reprinted the same to 6 places in his article on "Probabilities" in Encyclopedia Metropolitana. J. W. L. Glaisher gives 20-place values of  $n \times n!$  and 10-place values of  $-\log(n \times n!)$  to n=71 in Phil. Trans. Roy. Soc., vol. 160, 1870, p. 370. Shortrede, Tables (1849, Vol. I) contains 5-place values of  $\log(n!)$  to n=1000 and 8-place values for arguments ending in 0.

The values of  $e^{\pm n\pi/360}$  contained in Tables VIII and IX were computed in the manner just described from the values,  $e^{\pm \pi/360}$ . The latter function was evaluated for the first 10 decimals of the exponent by successive multiplication of the appropriate factors taken from Tables IV and VII. The values for the remaining decimals of the exponents were obtained by substitution in the exponential series. The product of the two factors thus obtained is the required result. Checks were applied in the usual manner, also by comparison with the values given by Gauss.¹

Values of the exponential function previously obtained provided an excellent check on the fundamental values needed in the computation of  $\sin x$  and  $\cos x$ . These values were computed at intervals of 0.1 from 0.0 to 1.6, inclusive, by direct substitution in the series and

verified by means of the relation

$$e^x = \sin x + \cos x + 2 \left[ \frac{x^2}{2!} + \frac{x^6}{6!} + \dots \right] + 2 \left[ \frac{x^3}{3!} + \frac{x^7}{7!} + \dots \right] \dots (3).$$

Interpolations were made by means of the formulas

$$\sin(x + \Delta x) = \sin x + \frac{\Delta x}{1!} \cos x - \frac{(\Delta x)^2}{2!} \sin x + \dots$$

$$\cos (x + \Delta x) = \cos x - \frac{\Delta x}{1!} \sin x - \frac{(\Delta x)^2}{2!} \cos x + \dots$$

in which  $\Delta x$  assumes the values 0.1, 0.01, ... according to the interval of interpolation. It will be noted that the two equations together contain terms of the form

$$(\Delta x)^n \sin x/n!$$
 and  $(\Delta x)^n \cos x/n!$ 

wherein n assumes successive values of the natural numbers beginning with unity. There are thus two series of terms,

$$\frac{1}{2!}\sin x$$
,  $\frac{1}{3!}\sin x$ ,  $\frac{1}{4!}\sin x$ , ...

$$\frac{1}{2!}\cos x, \frac{1}{3!}\cos x, \frac{1}{4!}\cos x, \dots$$

which may be evaluated by dividing the sine or cosine, as the case may be, first by 2, this quotient by 3, the last by 4, and so on, thus avoiding the use of large factors. The computation of both functions is made at the same time, and a complete check is obtained on the tenth interpolation. The maximum difference between the interpolated values is 10 units, and as there were two interpolations, the maximum error of interpolation is of the order of magnitude of 20 units in the twenty-fifth decimal. Table X was computed with the assistance of a computing machine by substitution in the trigonometric expansions for  $\sin (x+\Delta x)$  and  $\cos (x+\Delta x)$ , and verified by assigning various values to x and  $\Delta x$ ; also by forming the sum of the squares of the sine and cosine for several values of the argument. The values of  $\sin x$  and  $\cos x$  contained in Tables XIII and XIV were computed by substitution in the respective series and verified by means of equation (3).

Writers on interpolation emphasize the importance of interpolation by differences while not much attention is given to interpolation by means of derivatives. This procedure does not seem justifiable as the time lost in retabulating and differencing the quantities is sometimes much greater than the loss of time due to the possible increased labor and difficulty of computation by the derivative formula. Furthermore the check provided by the derivative formula is much more reliable than that of the difference formula when both the interval of interpolation and the interpolated values are large. Neither method provides an absolute check, for experience proves that positive and negative errors of equal or approximately equal magnitudes very frequently escape detection. The same is true of the various methods of mechanical quadratures which could be used for the same purpose.

A comparison of the present values with those mentioned in the first part of this paper shows some interesting results. The values given by Schulze are generally incorrect in the last or the next to the last decimal. Newman's 18-place table of the descending exponential is correct to 16 decimals when the last two decimals are taken into account. His values for x = -3.5, -26.1, -26.4, and -26.9 contain misprints. The values of  $e^{-0.5}$  by Burgess is in error by approximately one unit in the thirtieth decimal. Glaisher's value of  $e^{-10}$  computed from formula (1) is correct. His table of the reciprocals of the factorials contain errors slightly in excess of 5 units in the next succeeding decimal for n = 20, 27, 41, and 50. All of Bretschneider's values are correct and the values of  $e^x$  given by Gram to 24 decimals are correct. The value of  $e^{x/2}$  given by Gauss is incorrect in the twenty-third and following decimals.

The present paper was completed before the 1916 report  1  of the British Association for the Advancement of Science was received. The report of the committee on the calculation of mathematical tables (pp. 59–126) contains the following tables of  $\sin x$  and  $\cos x$  to radian argument:

Table I: Values of  $\sin x$  and  $\cos x$  to 11 places of decimals at intervals of 0.001 from 0.000 to 1.600.

Table II: Values of  $x-\sin x$  and  $1-\cos x$  to 11 places of decimals at intervals of 0.00001 from 0.00001 to 0.00100.

Table III: Values of  $\sin x$  and  $\cos x$  to 15 places of decimals at intervals of 0.1 from 0.1 to 10.0.

In one value only, does the tabular error of Tables I and III exceed 10 units in the next succeeding decimal; the value of sin 9.1 should read 52 instead of 53 in the last two tabular digits.

Nearly all of the numerical computations were made by A. G. Seiler, piece work computer, and R. Weinstein and A. T. Harris, aids in the physical laboratory of the Geological Survey. I am indebted to F. A. Wolff, of the United States Bureau of Standards, Washington, D. C., for valuable suggestions in regard to the contents of Table IX, and to E. B. Escott, who kindly called my attention to the omission of several important references which had been overlooked in my preliminary publications in the Journal of the Washington Academy of Sciences (1912–13). The values given by Gram and Bretschneider were especially useful as a partial check on certain values which I had previously carried to a slightly greater number of decimals. No errors were discovered in my computations.

The same report, pp. 123-126, contains the following:
 10 place values of the logarithmic gamma function at intervals of 0.005 from 0.005 to 1.000.
 10 place values of the integral of the logarithmic gamma function at intervals of 0.01 from 0.01 to 1.00.
 13 place values of the logarithmic derivate of the gamma function at intervals of unity from 1 to 101, and from 0.5 to 100.5.

Table 1.— Values of the reciprocal of n! to 108 places of decimals at intervals of unity from 1 to 74.

n					$\frac{1}{n!}$					
1 2 3 4	1. 0. 5 . 16 . 0416									
5 6 7	0.0083 .00138 .00019 8412									
8 9	00002 48013 . (5) 27557		39858	90652						
10	<b>0. 5</b> ) 02755	73192	23985	89065	<u>.</u>					
11 12	(5) 00250 (5) 00020 53476	52108 \$7675 564\$	38544 69878	17187 68098	7 97921	00903	21201	43231	25434	23654
13	(5) 00001 34882	60590 8126	43836	82161	45993	92377	17015	49479	32725	71050
14	. (10) 11470 48661	74559 86136	$\begin{array}{c} 77297 \\ 02740 \end{array}$	$\frac{24713}{58686}$	$85169 \\ 75709$	$79786 \\ 94555$	$82105 \\ 12153$	$66623 \\ 92485$	$26503 \\ 23375$	59634 508
15	0. (10) 00764 63244	$71637 \\ 12409$	$\frac{31819}{06849}$	$81647 \\ 37245$	$\frac{59011}{78380}$	$\frac{31985}{66303}$	$78807 \\ 67476$	$04441 \\ 92832$	$55100 \\ 34891$	23975 701
16	, (10) 00047 47702	79477 75775	33238 56678	73852 08577	97438 86148	20749 79143	11175 97967	$\frac{44027}{30802}$	59693 02180	76498 731
17	. (10) 00002 20453	81145 10339	$72543 \\ 73922$	$\frac{45520}{24033}$	76319 $99185$	$89455 \\ 22302$	83010 58703	$\frac{32001}{95929}$	$62334 \\ 53069$	92735 455
18	. (15) 15619 61685	$20696 \\ 54106$	$85862 \\ 79112$	$26462 \\ 99954$	$21636 \\ 73461$	$\frac{43500}{25483}$	57333 $55329$	$\frac{42351}{41837}$	$94040 \\ 192$	84469
19	. (15) 00822 61141	$06352 \\ 34426$	$46624 \\ 67321$	$\frac{32971}{73681}$	$69559 \\ 82813$	$81236 \\ 75025$	87228 45017	$07492 \\ 33780$	20738 905	99182
20	0. (15) 00041 13057	$\begin{array}{c} 10317 \\ 06721 \end{array}$	$62331 \\ 33366$	$21648 \\ 08684$	$58477 \\ 09140$	$\frac{99061}{68751}$	$84361 \\ 27250$	$\frac{40374}{86689}$	$61036 \\ 045$	94959
21	$\begin{array}{c} .\ (15)\ 00001 \\ 00621 \end{array}$	$95729 \\ 76510$	41063 53969	$39126 \\ 81365$	$12308 \\ 90911$	47574 $46131$	$37350 \\ 01297$	$\frac{54303}{66032}$	$55287 \\ 812$	47379
22	. (20) 08896 89841	79139 38816	24505 80971	73286 17768	74889 70278	74425 $68240$	02468 80274	34331 219	24880	86391
23	. (20) 00386	81701 36470	70630 29607	68403 44250	77169 81316	11931 46445	52281 25229	23231 314	79342	64625
24	. (20) 00016 07227	$11737 \\ 97352$	$57109 \\ 92900$	$61183 \\ 31010$	49048 45054	71330 85268	$\frac{48011}{55217}$	71801 888	32472	61026
25	0. (25) 64469 11894	$50284 \\ 11716$	$\frac{38447}{01240}$	$\frac{33961}{41802}$	$94853 \\ 19410$	$\frac{21920}{74208}$	$\frac{46872}{716}$	05298	90441	04289
26	. (25) 02479 65842	$59626 \\ 08142$	$\frac{32247}{92355}$	$97460 \\ 40069$	$07494 \\ 31515$	$\frac{35458}{79777}$	$\frac{47956}{258}$	61742	26555	42472
27	. (25) 00091 43179	83689	86379	55461	48425	$71683 \\ 39991$	64739	13397	86168	71943
28	. (25) 00003 55113	$27988 \\ 54772$	$92370 \\ 67582$	69837 $48068$	$91015 \\ 87475$	$20417 \\ 54999$	$\frac{27312}{705}$		78077	45426
29	. (30) 11309 98440	$96288 \\ 43709$	$64477 \\ 74071$	$\frac{16931}{34050}$	55876 88103	$\frac{45769}{438}$	38316	99244	05014	70865
30	0. (30) 00376 19948	$99876 \\ 01456$	$28815 \\ 99135$	$\frac{90564}{71135}$	$\frac{38529}{02936}$	$\frac{21525}{781}$	64610	56641	46833	82362
31	. (30) 00012	16125 87143	$04155 \\ 77391$	35179 47455	49629 96868	97468 928	56922	92149	72478	51043
32	. (35) 38003 49598	$90754 \\ 24293$	85474 48357	35925 99902	$93670 \\ 154$		84129	67889	95345	12318
33	. (35) 01151 86351	63356 $46190$	$20771 \\ 71162$	95028 36360	$05868 \\ 671$		29822	11148	18040	
34	. (35) 00033 14304	87157 45476	53552 $19740$	11618 06951	47231 784	43573	33230	06210	24060	02239
35	0. (40) 96775 41299	$92958 \\ 31992$	$63189 \\ 57341$	$09920 \\ 480$	89816	38092	28748	86401	71492	<b>54</b> 694
36		22026 86999	62866 79370	36386 597	69161	56613	67465	24622	26985	90408

The numbers in the parentheses represent the number of zeros between the first tabular figure and the decimal point.

Table 1.— Values of the reciprocal of n! to 108 places of decimals at intervals of unity from 1 to 74—Continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
18	n										
38	37					15382	74503	07228	79043	84513	13254
39	38	. (40) 00001	91196	32050	40281	92510	07223	76506	02080	10118	76664
1	39	. (45) 04902	46975	65135		69415	99397	59027	69490	22478	57913
14	40				38584	94235	39984	93975	69237	25561	96447
42	41	. (45) 00002	98931	08271	42404	51078	91219	14487	21200	90867	36498
43	42	. (50) 07117	40673		39311	40267	12249	69552	40258	74678	54113
44	43	. (50) 00165	52108	67742	19518	86982	95633	71384	93959	50573	91956
151	44	. (50) 00003	76184	28812	32261	79249	61264	40258	74862	71603	95271
46	45		65084	71828	03983	32472	54227	97219	17146	75450	48289
47	46	. (55) 00181	73154	01561	47912	68097	22917	99939	54720	58161	96701
48       . (60) 08055	47	. (55) 00003	86662	85139	60593	88682	91976	97871	05419	58684	29717
51         . (65) 06446         95964         04571         72680         45417         78342         52124         50958         455           52         . (65) 00123         97999         30857         14859         23950         34198         89463         93287         663           53         . (65) 00002         33924         51525         60657         72150         00645         26216         30062         031           54         . (70) 04331         93546         77049         21706         48160         09744         74630         778           55         0. (70) 00078         76246         30491         80394         66330         18358         99538         741           56         . (70) 00007         76246         30491         80394         66330         18358         99538         741           57         . (75) 02467         49570         95607         89306         49441         84179         953           58         . (75) 00042         54302         94751         86022         52576         58347         915           59         . (80) 7216         82961         89593         60213         16243         185		. (60) 08055									
52       . (65) 00123       97999       30857       14859       23950       34198       89463       93287       663         53       . (65) 00002       33924       51525       60657       72150       00645       26216       30062       031         54       . (70) 04331       93546       77049       21706       48160       09744       74630       778         55       0. (70) 00001       40647       25544       49649       90470       18184       98206       049         57       . (75) 02467       49570       95607       89306       49441       84179       053         58       . (75) 00042       54302       94751       86022       52576       58347       915         59       . (80) 72106       82961       89593       60213       16243       185         60       0. (80) 01201       78049       36493       22670       21937       386         61       . (80) 00019       70131       95680       21683       11835       039         62       . (85) 31776       32188       39059       40513       468         63       . (85) 00504       38606       16493       00643	50						16306			98881	205
53											
54       .(70) 04331       93546       77049       21706       48160       09744       74630       778         55       0.(70) 00078       76246       30491       80394       66330       18358       99538       741         56       .(70) 00001       40647       25544       49649       90470       18184       98206       049         57       .(75) 02467       49570       95607       89306       49441       84179       053         58       .(75) 00042       54302       94751       86022       52576       58347       915         59       .(80) 72106       82961       89593       60213       16243       185         60       0.(80) 01201       78049       36493       22670       21937       386         61       .(80) 00019       70131       95680       21683       11835       039         62       .(85) 31776       32188       39059       40513       468         63       .(85) 00504       38606       16493       00643       071         64       .(85) 00007       88103       22132       70322       548         65       0.(90) 00183       70704       4598											
56       . (70)       00001       40647       25544       49649       90470       18184       98206       049         57       . (75)       02467       49570       95607       89306       49441       84179       053         58       . (75)       00042       54302       94751       86022       52576       58347       915         59       . (80)       72106       82961       89593       60213       16243       185         60       0. (80)       01201       78049       36493       22670       21937       386         61       . (80)       00019       70131       95680       21683       11835       039         62       . (85)       31776       32188       39059       40513       468         63       . (85)       00504       38606       16493       00643       071         64       . (85)       00007       88103       22132       70322       548         65       0. (90)       12124       66494       34928       039         68       . (95)       04032       20027       652         69       . (95)       04032       20027       65										031	
56       . (70) 00001 40647 25544 49649 90470 18184 98206 049         57       . (75) 02467 49570 95607 89306 49441 84179 053         58       . (75) 00042 54302 94751 86022 52576 58347 915         59       . (80) 72106 82961 89593 60213 16243 185         60       0. (80) 01201 78049 36493 22670 21937 386         61       . (80) 00019 70131 95680 21683 11835 039         62       . (85) 31776 32188 39059 40513 468         63       . (85) 00504 38606 16493 00643 071         64       . (85) 00007 88103 22132 70322 548          65       0. (90) 12124 66494 34928 039         66       . (90) 00183 70704 45983 758         67       . (90) 00002 74189 61880 355         68       . (95) 04032 20027 652         69       . (95) 00058 43768 517          70       0. (100)83482 407         71       . (100)001175 809         . (100)0016 331       . (105)224	55	0, (70) 00078	76246	30491	80394	66330	18358	99538	741		
58       . (75)       00042       54302       94751       86022       52576       58347       915         59       . (80)       72106       82961       89593       60213       16243       185         60       0. (80)       01201       78049       36493       22670       21937       386         61       . (80)       00019       70131       95680       21683       11835       039         62       . (85)       31776       32188       39059       40513       468         63       . (85)       00504       38606       16493       00643       071         64       . (85)       00007       88103       22132       70322       548         65       0. (90)       12124       66494       34928       039         66       . (90)       00183       70704       45983       758         67       . (90)       00002       74189       61880       355         68       . (95)       04032       20027       652         69       . (95)       00058       43768       517         70       0. (100)001175       809         71       . (100)			40647						049		
59											
61								915			
62   .(85) 31776 32188 39059 40513 468 63   .(85) 00504 38606 16493 00643 071 64   .(85) 00007 88103 22132 70322 548 65   0.(90) 12124 66494 34928 039 66   .(90) 00183 70704 45983 758 67   .(90) 00002 74189 61880 355 68   .(95) 04032 20027 652 69   .(95) 00058 43768 517 70   0.(100)83482 407 71   .(100)001175 809 72   .(100)00016 331 73   .(105)224											
63							039				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
66   .(90) 00183 70704 45983 758 67   .(90) 00002 74189 61880 355 68   .(95) 04032 20027 652 69   .(95) 00058 43768 517 70   0.(100)83482 407 71   .(100)01175 809 72   .(106)00016 331 73   .(105)224											
	68	. (95) 04032	20027	652	000						
	70	0. (100)83482	407								
73 . (105)224	71	. (100)01175	809								
			331								
1,237,000											
		. (200)									

The numbers in the parentheses represent the number of zeros between the first tabular figure and the decimal point.

Table II.—Values of ex to 42 significant figures at intervals of unity from 0 to 100.

x						$\epsilon x$				· · · · · ·			
0 1 2 3 4					1. 00000 2. 71828 7. 38905 20. 08553 54. 59815	00000 18284 60989 69231 00331	00000 59045 30650 87667 44239	00000 23536 22723 74092 07811	00000 02874 04274 85296 02612	00000 71352 60575 54581 02860	00000 66249 00781 71789 87840	00000 77572 31803 69879 27907	0 5 2
5 6 7 8 9					148, 41315 403, 42879 1096, 63315 2980, 95798 8103, 08392	91025 34927 84284 70417 75753	76603 35122 58599 28274 84007	42111 60838 26372 74359 70999	55800 71805 02382 20994 66894	40552 43388 88121 52888 32759	27962 27960 43244 67375 96501	3488 5900 222 597 148	
10 11 12 13 14				$\begin{array}{c} 1\\4\\12\end{array}$	22026. 46579 59874. 14171 62754. 79141 42413. 39200 02604. 28416	48067 51978 90039 89205 47767	16516 18455 20808 03326 77749	95790 32648 00520 10277 23677	06452 57922 48984 59490 07678	84244 57781 86783 88281 59449	36635 61426 17020 78439 41249	35 11 9 1	
15 16 17 18 19				32 88 241 656 1784	69017. 37247 86110. 52050 54952. 75357 59969. 13733 82300. 96318	21106 78726 52982 05111 72608	39301 36763 14775 38786 44910	85504 02374 43518 50325 03378	60917 07814 03858 90600 87227	21315 50350 23879 33569 03883	50574 80272 8676 2164 620		
20 21 22 23 24			2	4851 13188 35849 97448 64891	65195, 40979 15734, 48321 12846, 13159 03446, 24890 22129, 84347	$\begin{array}{c} 02779 \\ 46972 \\ 15616 \\ 26000 \\ 22941 \end{array}$	69106 09998 81159 34632 39162	83054 88374 94597 68482 15281	15405 53027 84206 29752 18823	58684 85091 89222 77649 40870	639 44 69 39		
25 26 27 28 29			7 19 53 144 393	20048 57296 20482 62570 13342	99337. 38587 09428 83876 40601. 79861 64291. 47517 97144. 04207	25241 42697 66837 36770 43886	61351 76397 47304 47422 20580	46612 87609 34117 99692 84352	61579 53427 74416 88569 76857	15223 92036 59256 0206 9694	5		
30 31 32 33 34			1068 2904 7896 21464 58346	64745 88496 29601 35797 17425	81524. 46214 65247. 42523 82680. 69516 85916. 06462 27454. 88140	69904 10856 09780 42977 29027	68650 82111 22635 61531 34610	74140 67982 10822 26088 39101	16500 56667 42199 03692 90036	245 647 . 562 26 59			
35 36 37 38 39		1 4 11 31 86	58601 31123 71914 85593 59340	34523 15471 23728 17571 04239	13430, 72812 15195, 22711 02611, 30877 13756, 22032 93746, 95360	96446 34222 29397 86717 69327	25774 92856 91190 01298 19264	66012 92539 19452 64599 93424	51762 07888 16754 95422 97019	0 6			
40 41 42 43 44		235 639 1739 4727 12851	38526 84349 27494 83946 60011	68370 35300 15205 82293 43593	19985. 40789 54949. 22266 01047. 39468 46561. 47445 08275. 80929	99107 34035 13036 75627 96321	49034 15570 11235 44280 43099	80450 81887 22614 37081 25780	8872 9337 798 975				
45 46 47 48 49	$\begin{array}{c}2\\7\\19\end{array}$	34934 94961 58131 01673 07346	27105 19420 28861 59120 57249	74850 60244 90067 97631 50996	95348. 03479 88745. 13364 39623. 28580 73865. 47159 90525. 09984	72334 91171 02152 98861 09538	06099 18323 73380 17405 48447	53341 10181 43163 45593 38819	17 72 7 8				
<b>5</b> 0 <b>51</b> 52 53 54	51 140 383 1041 2830	84705 93490 10080 37594 75330	52858 82426 00716 33029 32746	70724 93879 57684 08779 93900	64087. 45332 64492. 14331 93035. 69548 71834. 72933 44206. 35480	29334 23701 78619 49379 14074	85384 68788 93898 64398 54085	82747 6848 7056 047 033					
55 56 57 58 59	7694 20916 56857 1 54553 4 20121	78526 59496 19999 89355 04037	51420 01299 33593 90103 90514	17138 61539 22226 93035 25495	18274. 55901 07071. 15721 40348. 82063 30766. 91117 65934. 30719	29393 46737 32533 46200 16176	99207 78152 03372 68363 84111	077 97 16 7					

Table II.—Values of  $e^x$  to 42 significant figures at intervals of unity from 0 to 100—Continued.

x						$\epsilon$	x				
60 61				11 31	42007 04297	38981 93570	56842 19199	83662 08707	95718. 31447 34214. 11071	65630 00372	19805 06295
62				84	38356	66874	14544	89073	32948. 03731	17960	08069
63				229	37831	59469	60987	90993	52840, 26861	36004	6328
64				623	51490	80811	61688	29092	38708, 92846	97448	3139
65				1694	88924	44103	33714	14178	36114. 37197	49489	262
66				4607	18663	43312	91542	67731	84428, 06008	68933	490
67				12523	63170	84221	37805	13521	96074.43657	67534	89
68				34042	76049	93174	05213	76907	18700, 43505	95373	88
69				92537	81725	58778	76002	42397	91668. 73458	73476	60
70			2	51543	86709	19167	00626	57811	74252. 11296	14074	1
71			6	83767	12297	62743	86675	58928	26677.71095	59458	4
72			18	58671	74528	41279	80340	37018	12545, 41194	69464	
73			50	52393	63027	61041	94557	03833	21857. 64648	53672	
74			137	33829	79540	17618	77841	88529	80853, 89315	7998	
75			373	32419	96799	00164	02549	08317	26470,01434	2778	
76			1014	80038	81138	88727	83246	17841	31716, 97577	666	
77			2758	51345	45231	70206	28646	98199	02661. 94334	152	
78			7498	41699	69901	20434	67563	05912	24060. 45470	466	
79			20382	81066	51266	87668	32313	75371	72632. 37469	74	
80			55406	22384	39351	00525	71173	39583	16612. 92485	67	
81		I	50609	73145	85030	54835	25941	30167	67498. 18994	0	
82		4	09399	69621	27454	69666	09142	29327	82904. 32005	4	
83		11	12863	75479	17594	12087	07147	81839	40805. 73408		
84		30	25077	32220	11423	38266	56639	64434	28742. 46903		
85		82	23012	71462	29135	10304	32801	64077	74695, 48629		
86		223	52466	03734	71504	74430	65732	33271	47398. 7754		
87		607	60302	25056	87214	95223	28938	13027	60752. 6138		
88		1651	63625	49940	01855	52832	97962	64858	76706. 963		
89		4489	61281	91743	45246	28424	55796	45316	27776. 598		
90		12204	03294	31784	08020	02710	03513	63697	53970.75		
91		33174	00098	33574	26257	55516	10785	25919	09603. 01		
92		90176	28405	03429	89314	00995	98217	09052	59128.75		
93	2	45124	55429	20085	78555	27729	43110	91534	23487. 6		
94	6	66317	62164	10895	83424	48140	50240	87326	26873.9		
95	18	11239	08288	90232	82193	79875	80988	15925	04790.		
96	49	23458	28601	20583	99754	86205	91133	04494	83780.		
97	133	83347	19204	26950	04617	36408	70611	50290	7672 .		
98	363	79709	47608	80457	92877	43826	76018	57298	9310 .		
99	988	90303	19346	94677	05600	30967	13803	71014	0508 .		
100	2688	11714	18161	35448	41262	55515	80013	58736	111 .		

Table III.—Values of  $e^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0.

r.			$\epsilon^x$				
0.0	1. 00000 1. 10517	00000 09180	00000 75647	00000 62481	00000 17078	00000 26490	00 25
. 2	1. 22140 1. 34985 1. 49182	27581 88075 46976	$60169 \\ 76003 \\ 41270$	83392 $10398$ $31782$	$   \begin{array}{c}     10719 \\     37443 \\     48529   \end{array} $	$\begin{array}{c} 94639 \\ 13328 \\ 52837 \end{array}$	$67 \\ 01 \\ 22$
0.5	1. 64872 1. 82211	12707 88003	00128 90508	14684 97487	86507 53676	87814 68162	16 86
. 6 . 7 . 8	2. 01375 2. 22554 2. 45960	27074 09284 31111	70476 92467 56949	52162 60457 66380	45493 95375 01265	88583 31395 63602	07 08 47
1.0	2.71828 3.00416	18284 60239	59045 46433	23536 11205	02874 84079	71352 53588	66 67
$\begin{bmatrix} \cdot 2 \\ \cdot 3 \\ \cdot 4 \end{bmatrix}$	3. 32011 3. 66929 4. 05519	69227 66676 99668	36547 19244 44674	48953 22045 58722	07674 74899 41088	29601 16011 95228	64 49 62
1.5	4. 48168 4. 95303	90703 24243	38064 95114	82260 80365	$20554 \\ 42863$	60119 56423	28 96
.7	5, 47394 6, 04964 6, 68589	73917 74644 44422	27199 12946 79269	76079 08373 41607	08626 10239 25307	63009 $53027$ $27692$	10 72 86
2. 0	7, 38905 8, 16616	60989 99125	30650 67650	22723 07344	04274 97274	60575 10478	01 63
. 2 . 3 . 4	9, 02501 9, 97418 11, 02317	34994 24548 63806	34120 14720 41601	92647 73995 65223	17771 76151 79397	66888 56908 69667	66 86 8
2.5	12. 18249 13. 46373	39607 80350	03473 01690	43807 39775	01759 08253	51168 32584	0
.7 .8 .9	14. 87973 16. 44464 18. 17414	17248 $67710$ $53694$	72834 97049 43060	11186 $87149$ $94267$	89930 $80160$ $62565$	$\begin{array}{c} 19468 \\ 10925 \\ 74128 \end{array}$	$\begin{array}{c} 4 \\ 0 \\ 1 \end{array}$
3.0	20. 08553 22. 19795	69231 12814	87667 41633	74092 40482	85296 79743	54581 81257	$\frac{7}{2}$
.2 .3 .4	24. 53253 27. 11263 29. 96410	01971 89206 00473	09348 57887 97013	64356 42681 34816	02637 83721 27530	$\begin{array}{c} 27964 \\ 10231 \\ 33730 \end{array}$	$\frac{2}{2}$
3.5	33. 11545 36. 59823	19586 44436	92313 77987	75065 75259	32493 47658	50388 99183	6 7
.7 .8 .9	40. 44730 44. 70118 49. 40244	43600 44933 91055	67390 00823 30173	52889 03755 87976	$\begin{array}{c} 41892 \\ 78287 \\ 14865 \end{array}$	39039 $29065$ $41220$	1 3 3
4.0	54. 59815 60. 34028	00331 75973	44239 61969	07811 49748	$02612 \\ 72197$	02860 08124	9
.3	66. 68633 73. 69979 81. 45086	10409 36995 86649	25141 95796 68117	64502 $91176$ $44440$	17346 19511 08117	53992 70652 26181	0 5 1
4. 5	90. 01713 99. 48431	13005 56419	21813 33808	55011 73545	54567 40534	45574 87566	47
. 7 . 8 . 9	109, 94717 121, 51041 134, 28977	$\begin{array}{c} 24521 \\ 75187 \\ 96849 \end{array}$	23498 34880 35484	87972 75704 84005	$87004 \\ 81162 \\ 86277$	55366 9788 1 74352	
5.0	148. 41315 164. 02190	72999	76603 01743	42111 94514	55800 82613	02021	
. 2 . 3 . 4	181. 27224 200. 33680 221. 40641	99747	51179 91684 87087	$36998 \\ 83525 \\ 02509$	41338 66156 46801	38620	
5. 5	244, 69193 270, 42640		20387 52628	91518 15292	89495 10465	31487	
.7	298, 86740 330, 29955 365, 03746	09670 99096	60232	67202	80305 52287 32150	64816	

Table III.—Values of ex to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

x			$\epsilon^{x}$			
6. 0	403. 42879	34927	35122	60838	71805	43388
. 1	445. 85777	00825	16931	79233	21972	16812
. 2	492. 74904	10932	56254	57006	20910	66389
. 3	544. 57191	01259	29033	05938	86677	33165
.4 6.5 .6 .7 .8	601. 84503 665. 14163 735. 09518 812. 40582 897. 84729	78720 30443 92419 51675 16504	82056 61840 72894 43113 17697	69396 90710 47226 57784	82761 14942 17107 72512 39706	16979 42634 60161 95340 81908
7. 0 .1 .2 .3	992. 27471 1096. 63315 1211. 96707 1339. 43076 1480. 29992 1635. 98442	56050 84284 44925 43944 75845 99959	25876 58599 76721 17829 45222 26540	97253 26372 19815 68735 83730 06633	10085 02382 40043 15152 58693 38342	94319 8812 4583 9872 3122 5709
7.5	1808. 04241	44560	63206	90380	14827	7881
.6	1998. 19589	51041	17959	25232	48348	4882
.7	2208. 34799	18872	08523	98030	94345	1393
.8	2440. 60197	76244	99077	24871	55411	2634
.9	2697. 28232	82685	08847	21116	61148	7690
8.0	2980, 95798	70417	28274	74359	20994	5289
.1	3294, 46807	52838	41333	08812	83565	2825
.2	3640, 95030	73323	54721	56857	18339	5742
.3	4023, 87239	38223	09841	54472	32070	1925
.4	4447, 06674	76998	56085	59847	50173	2566
8.5	4914. 76884	02991	34375	43137	36763	4783
.6	5431. 65959	13629	80321	56806	91897	0967
.7	6002. 91221	72610	21980	07565	92099	0448
.8	6634. 24400	62778	85158	52737	29275	5448
.9	7331. 97353	91559	92905	24450	31452	0296
9. 0	8103.08392	7 <b>5</b> 753 34825 87439 81651 02169	84007	70999	66894	3276
•1	8955.29270		11710	77437	86428	2849
•2	9897.12905		15886	8 <b>54</b> 34	02479	7437
•3	10938.01920		83753	<b>33</b> 85 <b>0</b>	61222	010
•4	12088.38073		84397	55833	57238	533
9.5	13359. 72682	96618	72275	90175	59729	146
.6	14764. 78156	55772	72615	55426	11148	697
.7	16317. 60719	80154	32232	76797	34500	972
.8	18033. 74492	78285	11245	99526	53348	081
.9	19930. 37043	82302	89490	56032	14677	875
10.0	22026. 46579	48067	16516	95790	06452	842
.1	24343. 00942	44083	88345	98557	99428	153
.2	26903. 18607	42975	60998	95889	84543	248
.3	29732. 61885	28914	13820	76842	75016	320
.4	32859. 62567	44433	12762	26957	08978	804
10.5	36315. 50267	42466	37738	91202	69013	166
.6	40134. 83743	08757	93109	47683	09703	197
.7	44355. 85513	02978	66938	62836	34286	021
.8	49020. 80113	63817	18305	10499	68773	316
.9	54176. 36379	66987	33990	00463	83753	492
11.0	59874. 14171	51978	18455	32648	57922	578
.1	66171. 16016	83766	04182	26482	33834	845
.2	73130. 44183	34154	97311	60903	28180	212
.3	80821. 63754	03135	52465	42612	50238	593
.4	89321. 72336	08055	55699	37363	40540	407
11.5	98715.77101	07604	97428	11026	81147	200
.6	1 09097.79927	65075	80429	18173	80085	19
.7	1 20571.71498	64506	07884	32987	03867	70
.8	1 33252.35294	55309	39735	38206	60578	27
.9	1 47266.62524	05526	56665	65566	98194	62

Table III.—Values of  $\epsilon^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

x			€-	ž			
12.0 .1 .2 .3	$\begin{array}{c}1\\1\\1\\2\\2\end{array}$	62754. 79141 79871. 86225 98789. 15114 19695. 98867	90039 37510 29545 21377 83235	20808 99202 30399 34715 41021	00520 55498 15171 78951 99665	48984 70958 71329 40139 43832	87 42 96 70 72
.4 12.5 .6 .7 .8	2 2 3 3 4	42801. 61749 68337. 28652 96558. 56529 27747. 90187 62217. 44961 00312. 19132	08744 82029 38118 12478 98824	56956 28131 24915 85014 57935	47967 06698 27613 64554 63962	37871 18068 20512 45272 48069	50 83 30 23 30
13.0	4	42413. 39200	89205	03326	10277	59490	88
.1	4	88942. 41461	54600	59140	29689	39772	44
.2	5	40364. 93724	66919	42887	77702	08966	51
.3	5	97195. 61379	28162	51018	72789	72271	12
.4	6	60003. 22476	61566	27675	08247	66901	27
13.5	7	29416, 36984	77013	31861	$\begin{array}{c} 08259 \\ 49212 \\ 21710 \\ 14285 \\ 04190 \end{array}$	40363	04
.6	8	06129, 75912	39902	17000		27173	34
.7	8	90911, 16597	91609	45513		16782	56
.8	9	84609, 11122	90349	84647		05695	62
.9	10	88161, 35540	26400	42869		82607	5
14.0	12	02604, 28416	47767	77749	23677	07678	6
.1	13	29083, 28081	20933	72415	65547	31032	3
.2	14	68864, 18965	40950	11264	71279	19631	2
.3	16	23345, 98500	84583	73176	94920	55661	4
.4	17	94074, 77260	62144	46062	26766	69215	2
14.5	19	82759, 26353	75687	67141	76278	73256	4
.6	21	91287, 87560	68098	30730	21834	00372	8
.7	24	21747, 63325	24135	50747	88825	38372	5
.8	26	76445, 05518	90966	65944	60323	31294	3
.9	29	57929, 23882	23613	37256	83192	42565	6
15. 0	32	69017. 37247	$\begin{array}{c} 21106 \\ 02438 \\ 09471 \\ 04420 \\ 22664 \end{array}$	39301	85504	60917	2
.1	36	12822. 93074		44330	52318	26886	2
.2	39	92786. 83521		82558	38605	78417	8
.3	44	12711. 89235		61860	72912	49413	9
.4	48	76800. 85327		04847	12229	15576	7
15. 5	53	89698, 47628	30123	67815	21079	20761	8
. 6	59	56538, 01318	46158	94525	78083	82516	5
. 7	65	82992, 58458	37360	04428	51377	35395	1
. 8	72	75331, 95838	95879	21060	75789	28904	5
. 9	80	40485, 29975	85202	66729	31241	77682	7
16.0 .1 .2 .3 .4	88 98 108 119 132	86110. 52050 20670. 92207 53519. 89906 94994. 55120 56519. 14046	78726 13565 44180 13332 35683	36763 82889 45529 33724 00166	$\begin{array}{c} 02374 \\ 22079 \\ 12596 \\ 02003 \\ 44194 \end{array}$	07814 08745 65383 53020 17466	5 3
16. 5	146	50719, 42895	35169	10097	65773	23551	
. 6	161	91549, 04176	52861	89444	22585	06037	
. 7	178	94429, 11955	46139	05552	62473	92240	
. 8	197	76402, 65849	77754	61390	92622	74676	
. 9	218	56305, 08232	56648	96058	58443	63455	
17.0 $1$ $2$ $3$ $4$	241 266 295 326 360	54952.75357 95351.31074 02925.91644 05775.72099 34955.08814	52982 27049 54583 58447 16391	14775 13394 71110 95506 55271	43518 12187 68906 06223 54298	03858 57749 11219 13988 50110	
17.5	398	24784. 39757	62250	21870	67634	98518	
.6	440	13193. 53483	40439	30710	38742	44398	
.7	486	42101. 50633	36988	59843	73758	07283	
.8	537	57835. 97888	36562	28073	19655	81474	
.9	594	11596. 94254	29315	75595	99097	66876	

Table III.—Values of  $e^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

x				(X			
$ \begin{array}{c} 18.0 \\ .1 \\ .2 \\ .3 \\ .4 \end{array} $		656 725 801 886 979	59969. 13733 65488. 37232 97267. 40504 31687. 64519 53163. 60543	$\begin{array}{c} 05111 \\ 22497 \\ 71134 \\ 41289 \\ 32304 \end{array}$	38786 75110 14452 61081 45541	50325 99891 49662 78952 27301	90600 90593 99965 16349 00064
18.5 .6 .7 .8 .9		1082 1196 1322 1461 1614	$\begin{array}{c} 54987.75023 \\ 40264.19819 \\ 22940.62272 \\ 28948.67868 \\ 97464.36864 \end{array}$	07572 05133 72454 13129 74215	48748 97759 49131 20356 13410	04460 51385 49731 77145 14609	1217 3688 9827 8982 5743
19.0 .1 .2 .3 .4		1784 1972 2179 2409 2662	82300. 96318 53448. 41573 98774. 67921 25905. 95158 64304. 66872	$72608 \\ 97114 \\ 04573 \\ 92662 \\ 50454$	$\begin{array}{c} 44910 \\ 12668 \\ 69563 \\ 02664 \\ 28992 \end{array}$	$\begin{array}{c} 03378 \\ 18600 \\ 01720 \\ 76985 \\ 02822 \end{array}$	8723 1486 4717 1347 0165
19.5		2942	67566. 04150	88065	66680	80045	3345
.6		3252	15956. 12198	05562	88545	56147	9971
.7		3594	19216. 80017	87860	03058	99120	6792
.8		3972	19665. 80508	38215	53744	05532	4200
.9		4389	95622. 73550	64203	80154	45375	0896
20. 0		4851	65195. 40979	02779	69106	83054	1541
. 1		5361	90464. 42938	89023	64651	69867	1124
. 2		5925	82107. 83683	56144	86124	27127	3255
. 3		6549	04512 15323	80392	40495	98782	8846
. 4		7237	81420. 94827	82113	22801	67333	7645
20. 5		7999	02177. 47550	54067	04598	83728	3990
. 6		8840	28623. 85131	39326	49420	01192	2695
. 7		9770	02725. 82690	79801	12264	26784	8714
. 8		10797	54999. 46453	41371	25566	62697	510
. 9		11933	13824. 05498	96018	57459	21390	201
21. 0 . 1 . 2 . 3 . 4		13188 14575 16108 17802 19674	15734. 48321 16796. 05142 05175. 60282 15034. 76198 41884. 33997	46972 39203 86330 29093 16024	$\begin{array}{c} 09998 \\ 84629 \\ 43100 \\ 45688 \\ 55721 \end{array}$	88374 61823 62026 56781 30300	530 210 135 729 926
21. 5		21743	59553. 57648	85454	85310	20243	562
. 6		24030	38944. 05268	31647	45191	75991	160
. 7		26557	68755. 97023	86819	92208	74387	373
. 8		29350	78394. 23224	92632	94732	06188	947
. 9		32437	63283. 57765	25326	80093	80230	715
22. 0		35849	12846. 13159	15616	81159	94597	842
. 1		39619	41421. 38043	39369	91055	46827	187
. 2		43786	22438. 02895	04595	53310	41691	167
. 3		48391	26179. 74308	56773	45193	39107	005
. 4		53480	61522. 75056	74038	45957	13828	733
22. 5		59105	22063. 02329	06142	72278	94443	044
. 6		65321	37094. 69782	08990	20985	63179	874
. 7		72191	27949. 94318	43117	28947	94442	179
. 8		79783	70264. 14427	69362	61695	05249	058
. 9		88174	62789. 57177	77864	45437	53886	624
23. 0 . 1 . 2 . 3 . 4	1 1 1 1	97448 07696 19023 31541 45375	03446. 24890 73371. 15763 29806. 97713 08760. 01606 38454. 77387	26000 45779 79397 93214 81109	34632 38536 34848 92804 95934	68482 25530 01024 01732 22322	298 80 86 96 54
23. 5	1	60664	64720. 62247	86090	61991	59775	50
. 6	1	77561	89565. 52034	81110	48593	83852	42
. 7	1	96236	24323. 65135	78359	05185	09236	20
. 8	2	16874	58909. 74138	08217	35308	44175	78
. 9	2	39683	48874. 00676	57400	68251	23095	68

Table III.—Values of  $e^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0.—Continued.

	1						
x				ex.			
24. 0	2	64891	22129. 84347	22941	39162	15281	19
. 1	2	92750	07423. 25706	46440	91249	77678	54
. 2	3	23538	86830. 63240	94606	10181	71913	49
. 3	3	57565	74811. 92562	51762	98574	72157	75
. 4	3	95171	26612. 13642	04797	38119	69976	30
24. 5	4	36731	79097. 64641	45304	17828	87281	52
. 6	4	82663	27438. 62807	18527	03687	39155	11
. 7	5	33425	41407. 48840	78591	38870	16973	92
. 8	5	89526	25459. 80221	23469	39592	04239	87
. 9	6	51527	27202. 37940	92103	46415	77990	24
25. 0	7	20048	99337, 38587	25241	61351	46612	62
. 1	7	95777	20706, 64333	60674	37733	94535	75
. 2	8	79469	82651, 72848	99796	19698	43300	30
. 3	9	71964	47559, 19382	99044	89837	30276	11
. 4	10	74186	87182, 68578	47334	69615	59214	4
25. 5 . 6 . 7 . 8 . 9	11 13 14 16 17	87160 12014 50000 02498 71034	09132. 16965 80802. 87690 60991. 79992 50527. 33242 74428. 77727	$\begin{array}{c} 09652 \\ 06069 \\ 16792 \\ 01261 \\ 54108 \end{array}$	01023 $24450$ $65970$ $84906$ $41351$	$\begin{array}{c} 04023 \\ 49061 \\ 81555 \\ 43941 \\ 39504 \end{array}$	3 0 6 9 1
26. 0	19	57296	09428, \$3876	$\begin{array}{c} 42697 \\ 28406 \\ 04520 \\ 83050 \\ 14147 \end{array}$	76397	87609	5
. 1	21	63146	72147, 05767		29286	74083	0
. 2	23	90646	84809, 99645		70140	43285	0
. 3	26	42073	37190, 92910		91670	72539	2
. 4	29	19942	65405, 62132		79370	61947	9
26. 5	32	27035	70371. 15483	07849	19455	52377	3
. 6	35	66426	01133. 37854	36755	39770	00888	2
. 7	39	41510	30919. 46297	12378	08766	28766	3
. 8	43	56042	56701. 72586	52960	40096	29323	2
. 9	48	14171	56296. 70645	41109	23997	81144	6
27. 0	53	20482	40601. 79861	66837	47304	34117	7
. 1	58	80042	42526. 42283	53382	81240	46422	3
. 2	64	98451	88545. 30248	85133	02409	44687	4
. 3	71	81900	03631. 65428	08266	99454	22658	5
. 4	79	37227	05666. 34806	33381	19699	12653	4
27.5	87	71992	51318. 76492	83096	93392	27847	5 2
.6	96	94551	01915. 23018	62951	00965	77092	
.7	107	14135	85016. 77547	89905	47059	90553	
.8	118	40951	35391. 71069	44133	88465	01118	
.9	130	86275	07869. 76518	22787	42513	40126	
28. 0	144	62570	64291. 47517	36770	47422	99693	
.1	159	83612	47516. 40054	90476	75454	54890	
.2	176	64623	67334. 23784	68124	17444	60541	
.3	195	22428	36252. 86153	64001	24396	78170	
.4	215	75620	07648. 18119	79284	16722	73105	
28. 5 . 6 . 7 . 8 . 9	238 263 291 321 355	44747 52521 24040 87042 72183	84797. 67787 87043. 08195 78915. 26116 89702. 04007 74864. 02890	68074 72729 09982 25720 79644	$\begin{array}{c} 52711 \\ 35918 \\ 34926 \\ 34279 \\ 36208 \end{array}$	03802 88625 73407 28499 11659	
29. 0	393	13342	97144. 04207	43886	20580	84353	
. 1	434	47963	34436. 96185	95024	47682	30942	
. 2	480	17425	53781. 40567	43880	77859	92347	
. 3	530	67462	26525. 50089	96447	48663	05030	
. 4	586	48615	99163. 66652	71853	60117	55890	
29. 5	648	16744	77934. 32021	79214	42218	51631	
. 6	716	33581	33446. 16669	80045	98003	56392	
. 7	791	67350	84845. 35758	16856	01647	30249	
. 8	874	93453	81880. 23393	20218	01897	03542	
. 9	966	95220	68253. 50589	75038	08871	22088	

Table III.—Values of ex to 33 significant figures at intervals of 0.1 from 0.0 to 50.0.—Continued

_	,						
r				$\epsilon^{x}$			
30. 0		1068	64745	81524, 46214	69904	COCEO	7414
. 1	1	1181	03809	24255, 46209	$09904 \\ 01487$	$68650 \\ 22090$	7414
: 2		1305	24895	28882, 52476	97252	90255	$\frac{7004}{6973}$
. 3	!	1442	52318	35807, 87724	46546	87919	4322
. 4		1594	23467	11433, 85149	18434	29655	0257
							0_3.
30. 5		1761	90179	51355, 63141	21609	84760	9319
. 6 . 7		$\frac{1947}{2151}$	20262	44891, 01937	17824	87753	5604
. 8		$\frac{2131}{2378}$	$99171 \\ 31865$	21859, 31322 62477, 10567	$\frac{47658}{98775}$	79141	9410
. 9		2628	44861	28017. 22881	21183	$07647 \\ 58524$	$\frac{3359}{8783}$
0.2.0							
31.0	1	2904	88496	65247. 42523	10856	82111	6798
$\frac{1}{2}$		3210	39438	53582. 96612	04636	67150	6906
. 3	ļ	$\frac{3548}{3921}$	$03451 \\ 18455$	02513. 33135	61277	07371	6175
. 4	ł	4333	57913	70585. 46635 68684. 45663	$65946 \\ 26741$	87032	8266
		1000	07313	00001, 10003	20741	42381	5711
31.5		4789	34563	32463. 72707	54403	58901	8061
. 6		5293	04551	04764,87666	92400	05063	9297
. 7	1	5849	71996	62294.84813	15789	57425	7372
.8		6464	94038	55632. 86150	88365	43609	9270
. 9		7144	86410	12173.08287	18592	40090	3405
32.0		7896	29601	82680, 69516	09780	22635	1082
. 1		8726	75671	99064, 03195	78574	92376	1833
. 2		9644	55773	59617, 86912	13519	98498	2802
. 3		10658	88472	74864. 77539	68973	56901	625
. 4		11779	88941	99387.29527	90142	63008	392
32. 5		13018	79120	50632, 93871	96745	7.1701	961
. 6		14387	98942	83349, 67368	$\frac{26745}{39501}$	$74701 \\ 94593$	$\frac{261}{527}$
. 7		15901	18748	57756. 68324	09867	00264	957
.8		17573	52997	21476. 94368	79223	01141	844
. 9		19421	75425	31483. 77619	09187	05800	909
20. 0		03.40.4	05505	0.010.00100			
33.0		21464	35797	85916. 06462	42977	61531	261
		$\frac{23721}{26216}$	78421	31044. 37760	36693	34787	219
.3		28973	$62603 \\ 85266$	71890. 35741 63661. 34260	$\frac{51580}{27596}$	$61740 \\ 09521$	413
.4		32021	05935	14764. 11460	39540	04425	$\frac{264}{132}$
			0.000		00010	01120	102
33.5		35388	74356	12259.87392	92482	12571	573
. 6		39110	61021	11037.88087	97251	60053	907
.7		43223	90899	35043. 72041	86857	86658	642
.8		$\frac{47769}{52793}$	80718	51694, 68936	96145	39196	174
. 9		92793	80166	31304. 10421	90549	88835	133
34. 0		58346	17425	27454. 88140	29027	34610	391
. 1		64482	49496	51084, 44647	43293	22486	580
. 2		71264	17816	03972, 25326	59900	26513	914
.3		78759	09720	34327.18570	84270	17314	623
.4		87042	26376	31269,08969	92798	21172	377
34.5		96196	57855	44776, 41048	71247	85963	930
.6	1	06313	66103	67882, 10250	93915	64891	930 44
. 7	ī	17494	76637	20104. 34037	07747	33623	41
.8	1	29851	79882	04385, 00894	18446	81468	97
. 9	1	43508	43171	61583, <b>1535</b> 4	06356	61404	02
35. 0	1	50001	9 (500	19490 50010	00440	05554	0.0
.1	1	$\frac{58601}{75281}$	$\frac{34523}{59431}$	13430. 72812 73561. 61212	96446	25774	66
. 2	i	93716	12051	34757, 28303	$\frac{33756}{31243}$	$\frac{44114}{64910}$	37 33
.3	$\frac{1}{2}$	14089	42275	39307. 66424	$\frac{31243}{27337}$	78435	33 43
.4	2	36605	40389	52471. 09566	20224	56329	49
	~						
35. 5	$\frac{2}{2}$	61489	41144	45696, 60738	41656	44430	36
.6	3	$88990 \\ 19383$	49291	32558. 10962	41749	67431	50
.8	3	$\frac{19383}{52973}$	$88836 \\ 78512$	80768. 63352 63176. 61523	$\frac{22189}{70828}$	$34573 \\ 13371$	53
. 9	3	90096	36216	46888, 64411	37401	49460	84 41
		2 2 2 2 2 2	~~=10	-JOOO, UIIII	01.101		

Table III.—Values of  $e^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

- 1							<del></del> -
<i>x</i>				ex			
36. 0 . 1 . 2 . 3	4 4 5 5	31123 76464 26575 81955 43160	15471 77269 01027 38753 16992	15195. 22711 61994. 98745 13635. 63500 72964. 47397 36632. 16821	34222 07283 14974 44109 94211	92856 67350 59058 37106 47485	93 68 17 06 19
36. 5 . 6 . 7 . 8	7 7 8 9	10801 85557 68175 59482 60391	91546 60548 42005 22603 85262	42244, 06486 35257, 60090 35355, 65163 12769, 18144 02523, 59786	15833 79367 79156 67304 47544	68420 46411 01753 04477 17130	94 88 73 19 2
37. 0	11	71914	23728	02611. 30877	29397	91190	2
. 1	12	95165	53352	09485. 45824	65306	72850	0
. 2	14	31379	28174	12826. 72968	64500	92801	3
. 3	15	81918	75491	64744. 53050	66757	27100	8
. 4	17	48290	60269	21254. 81056	07962	69122	2
37. 5	19	32159	93044	02836, 20844	22759	20919	7
. 6	21	35366	96419	36677, 02922	94101	03254	3
. 7	23	59945	46824	63243, 03968	93611	44775	8
. 8	26	08143	09975	02543, 50501	04825	61149	7
. 9	28	82443	90402	36540, 01941	88916	28577	7
38. 0	31	85593	17571	13756, 22032	86717	01298	6
. 1	35	20624	93461	64588, 56603	83582	49016	4
. 2	38	90892	29119	00887, 26618	70087	82885	6
. 3	43	00101	00558	80104, 30725	35475	49330	3
. 4	47	52346	57616	37170, 45041	48507	32909	5
38. 5	52	52155	22859	25158. 15729	58254	$\begin{array}{c} 60641 \\ 28230 \\ 97636 \\ 15188 \\ 57630 \end{array}$	7
. 6	58	04529	21585	94036. 20184	79777		9
. 7	64	14996	88248	82561. 06182	08507		0
. 8	70	89667	99407	19634. 02423	10740		6
. 9	78	35294	88586	00468. 95973	47814		8
39. 0 . 1 . 2 . 3 . 4	86 95 105 116 129	59340 70050 76541 88886 18217	$\begin{array}{c} 04239 \\ 78458 \\ 81163 \\ 42402 \\ 34052 \end{array}$	93746, 95360 77343, 61342 33982, 46846 83560, 86698 53920, 49038	69327 17376 15693 34176 85620	19264 38971 64994 84070 11921	9
39. 5	142	76838	11812	91985. 91758	33666	53263	
. 6	157	78346	29023	02477. 43715	59460	30821	
. 7	174	37769	45528	92517. 50602	13224	60008	
. 8	192	71715	67809	35081. 54052	84561	81318	
. 9	212	98539	70885	14544. 13549	39399	97850	
40. 0	235	38526	68370	19985, 40789	99107	49035	
. 1	260	14095	14517	50670, 00948	59692	83355	
. 2	287	50021	41450	03765, 77508	14124	91637	
. 3	317	73687	56135	79105, 26803	06064	59178	
. 4	351	15355	45283	47072, 98994	83315	42259	
40. 5	388	08469	62436	20324. 02317	21875	72699	
. 6	428	89992	00386	70710. 64074	96477	64288	
. 7	474	00771	83917	09565. 01140	65056	82629	
. 8	523	85954	53099	08701. 59178	65130	82966	
. 9	578	95433	46328	43124. 57201	85917	65939	
41. 0	639	84349	35300	54949, 22266	34035	15571	
. 1	707	13642	11693	40529, 35962	83009	93650	
. 2	781	50660	77884	47896, 96629	84417	00348	
. 3	863	69837	52117	44030, 73926	44719	24967	
. 4	954	53432	62732	08325, 47163	27987	89991	
41. 5	1054	92357	77020	81418. 45053	91711	6615	
. 6	1165	87085	88686	56114. 75075	60769	2286	
. 7	1288	48656	74535	16481. 07600	60987	0147	
. 8	1423	99788	26807	42680. 14854	81712	4332	
. 9	1573	76104	73400	54746. 30325	05193	6633	

Table III.—Values of c^x to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

<u> </u>						
x				e <b>x</b>		
42. 0	1739	27494	15205	01047, 39468	13036	1124
. 1	1922	19608	39061	80476, 58968	93786	0494
. 2	2124	35521	07720	08071, 35617	33172	1242
. 3	2347	77559	86076	86074, 87538	89370	8665
. 4	2594	69331	37488	59588, 85140	73151	4199
42. 5	2867	57959	16805	71559, 56393	30187	8547
. 6	3169	16556	99926	08018, 31712	57371	5547
. 7	3502	46962	25224	63704, 82268	16568	0900
. 8	3870	82756	82552	18196, 19954	73844	1926
. 9	4277	92605	73211	46063, 77834	40083	1416
43. 0	4727	83946	82293	46561, 47445	75627	4428
. 1	5225	07068	56173	08600, 14746	75513	6950
. 2	5774	59616	66338	34529, 15450	27874	7849
. 3	6381	91574	69948	30360, 69842	21728	8812
. 4	7053	10768	51877	09178, 99594	13708	6927
43. 5	7794	88949	57253	06399, 59362	37456	5717
. 6	8614	68518	02889	59825, 49151	03780	4263
. 7	9520	69952	96326	24602, 82213	30778	8026
. 8	10522	00023	98864	74241, 01297	41703	5134
. 9	11628	60866	51075	19279, 13929	36648	7541
44. 0	12851	60011	43593	08275, 80929	96321	4310
. 1	14203	21469	71275	74732, 70231	52164	8956
. 2	15696	97982	64500	13186, 98266	35129	2425
. 3	17347	84560	58126	80995, 55797	31144	1650
. 4	19172	33445	48105	90107, 58191	10264	4550
44. 5	21188	70647	10763	90948, 92010	98100	2595
. 6	23417	14218	34749	10750, 51432	14409	6533
. 7	25879	94452	56189	42730, 17190	82453	0870
. 8	28601	76205	11251	17788, 91534	78007	8747
. 9	31609	83562	46231	64724, 23096	09490	4714
45. 0	34934	27105	74850	95348. 03479	72334	061
. 1	38608	34041	69043	28227. 13228	24629	719
. 2	42668	81502	39272	88395. 41377	10669	376
. 3	47156	33347	31937	07791. 30039	79777	515
. 4	52115	80835	76508	83053. 61114	98817	745
45. 5	57596	87576	88795	35865. 26851	87821	549
. 6	63654	39207	17816	19332. 12347	80923	907
. 7	70348	98292	55181	17701. 87293	63572	117
. 8	77747	65004	54829	17232. 44579	79926	261
. 9	85924	44177	89905	22451. 73279	26071	196
46. 0	94961	19420	60244	88745. 13364	91171	183
. 1	1 04948	35018	22319	54147. 90908	66367	30
. 2	1 15985	86452	14218	49473. 77180	46271	79
. 3	1 28184	20437	69374	71210. 96429	62509	89
. 4	1 41665	45483	40564	33686. 31382	49717	92
46. 5	1 56564	54077	85583	41656. 97621	59025	54
. 6	1 73030	57727	03314	92805. 23175	74257	30
. 7	1 91228	36193	70115	42258. 16763	34724	90
. 8	2 11340	02432	40292	75711. 22343	53462	67
. 9	2 33566	84870	83171	34964. 40927	95531	96
47. 0	2 58131	28861	90067	39623. 28580	02152	73
. 1	2 85279	19322	71176	49551. 26703	03268	27
. 2	3 15282	26788	66936	88624. 40776	84037	26
. 3	3 48440	79345	33095	38552. 71985	37705	33
. 4	3 85086	63159	58012	11272. 71553	28309	79
47. 5	4 25586	54617	93903	18634, 74249	65238	53
. 6	4 70345	87396	17208	02496, 15995	73329	63
. 7	5 19812	58133	93678	24359, 56886	42328	44
. 8	5 74481	74774	61013	95112, 69333	79245	43
. 9	6 34900	52057	42614	89472, 44726	63512	18

Table III.—Values of  $\epsilon^x$  to 33 significant figures at intervals of 0.1 from 0.0 to 50.0—Continued.

x	$e^{x}$											
48, 0	7	01673	59120	97631	73865. 47159	98861	17					
.1	7	75469	24698	67306	37991, 61667	18811	74					
. 2	8	57026	05963	17562	39656, 99046	28407	19					
. 3	9	47160	27713	79827	71146. 82358	95213	41					
. 4	10	46773	99304	93692	57138, 00626	58991	2					
8. 5	11	56864	17491	60830	07521. 04037	92992	4					
. 6	12	78532	64228	08340	57448. 38688	41765	1					
. 7	14	12997	09405	91929	46708. 68045	97513	8					
. 8	15	61603	29567	96204	89284. 58072	41039	8					
. 9	17	25838	54795	62031	90250. 54761	43153	1					
19. 0	19	07346	57249	50996	90525. 09984	09538	5					
. 1	21	07943	96261	28491	13381. 14667	72236	0					
. 2	23	29638	36441	28610	87238. 76943	67133	6					
. 3	25	74648	56998	24118	27728.21369	31403	7					
. 4	<b>2</b> 8	45426	72380	96153	72548. 47735	30218	9					
19. 5	31	44682	86466	96548	51738. 26948	84493	5					
. 6	34	75412	04860	37200	08737. 07381	37971	6					
. 7	38	40924	32444	65405	26989. 78298	37803	3					
. 8	42	44877	86190	76698	38363. 39647	78017	9					
. 9	46	91315	56376	34916	34374. 10241	66244	6					
60. 0	51	84705	52858	70724	64087. 45332	29334	9					

Table IV.—Values of  $\epsilon^x$  to 62 places of decimals at decimal intervals from  $1\times10^{-10}$  to  $9\times10^{-1}$ .

x							$\epsilon^{m{x}}$						
1×10 ⁻¹⁰	1. 00000	00001	00000	00000	50000	00000	16666	66666	70833	33333	34166	66666	67
2	-1,00000	00002	00000	00002	00000	10000	33333	33334	00000	00000	26666	66666	76
3	-1,00000	00003	00000	00001	50000	00004	50000	00003	37500	00002	02500	00001	01
4	1.00000	00004	00000	00008	00000	00010	66666	66677	33333	33341	86666	66672	36
5	1.00000	00005	00000	00012	50000	00020	83333	33359	37500	00026	04166	66688	37
6	1.00000	00006	00000	00018	00000	00036	00000	00054	00000	00064	80000	00064	80
7	1.00000	00007	00000	00024	50000	00057	16666	66766	70833	33473	39166	66830	-07
8	1. 00000 1. 00000	00008	00000	$00032 \\ 00040$	00000 50000	$-00085 \\ -00121$	33333 50000	$\frac{33504}{00273}$	00000 37500	$00273 \\ 00492$	06666 07500	$67030 \\ 00738$	$-76 \\ -11$
	1, 00000		00000										
1×10 ⁻⁹	1. 00000	$-00010 \\ -00020$	00000	$00050 \\ 00200$	00000	$-00166 \\ -01333$	66666	67083	33333	34166	66666	68055	56
3	1. 00000	00020	00000	00450	00000	04500	33333 00000	$\frac{40000}{33750}$	00000	26666	66667	55555	56
4	1.00000	00030	00000	00800	00000	10666	66667	73333	$00002 \\ 33341$	$-02500 \\ -86666$	$00010 \\ 66723$	$12500 \\ 55555$	00 56
5	1. 00000	00050	00000	01250	00000	20833	33335	93750					
6	1. 00000	00060	00000	01800	00000	36000	00005	40000	00026	04166	66883	68055	57
7	1. 00000	00070	00000	02450	00000	57166	66676	67083	$00064 \\ 33473$	80000 39166	$00648 \\ 68300$	00000	- 06 - 79
8	1, 00000	00080	00000	03200	00000	85333	33350	40000	00273	06666	70307	68055 $55555$	72
9	1, 00000	00090	00000	04050	00000	21500	00027	33750	00492	07500	07381		98
												12500	95
1×10 ⁻⁸	1.00000	00100	00000	05000	00001	66666	66708	33333	34166	66666	80555	55557	54
	1.00000	00200	00000	20000	00013	33333	34000	00000	26666	66675	55555	55809	52
	1.00000 $1.00000$	$00300 \\ 00400$	00000	45000 80000	$00045 \\ 00106$	00000 66666	$03375 \\ 77333$	$00002 \\ 33341$	$02500 \\ 86666$	$00101 \\ 67235$	$25000 \\ 55555$	$04339 \\ 88063$	29 49
													40
<u> </u>	1.00000	00500	00001	25000	00208	33333	59375	00026	04166	68836	80557	10565	48
3	1.00000	00600	00001	80000	00360	00000	54000	00064	80000	06480	00005	55428	58
Z	1.00000	00700	00002	45000	00571	66667	66708	33473	39166	83006	80571	89569	46
	1.00000	00800	00003	20000	00853	33335	04000	00273	06667	03075	55597	16571	47
)	1.00000	00900	00004	05000	01215	00002	73375	00492	07500	73811	25094	90017	96
1×10-1	1.00000	01000	00005	00000	01666	66670	83333	34166	66668	05555	55753	96825	64
2	1.00000	02000	00020	00000	13333	33400	00000	26666	66755	55555	80952	38158	73
} !	1. 00000 1. 00000	$03000 \\ 04000$	$00045 \\ 00080$	$00000 \\ 00001$	$45000 \\ 06666$	$00337 \\ 67733$	$\frac{50002}{33341}$	02500 86666	$01012 \\ 72355$	50004 55588	$33928 \\ 06349$	$\frac{58770}{36888}$	$\frac{09}{89}$
	1 00000	05000	00125	00000	00000	95097							
5	1, 00000 1, 00000	06000	00123	$00002 \\ 00003$	$08333 \\ 60000$	$\frac{35937}{05400}$	50026	04166	88368	05710	56548	58785	97
3	1, 00000	07000	00130	00005	71666	76670	$00064 \\ 83473$	80000	64800	00555	42861	30857	17
	1. 00000	08000	00320	00008	53333	50400	00273	39168	30068	07189	56958	74206	71
)	1. 00000	09000	00405	00012	15000	27337	50492	$06670 \\ 07507$	$\frac{30755}{38112}$	$59716 \\ 59490$	$57184 \\ 01892$	$\frac{46730}{47699}$	53 73
1 > 10~6	1,00000	10000	00500	00016	66667	08333	34166	66680	EEEEE	75200	82787	60044	
1×10 ⁻⁶	1.00000	20000	02000	00133	33340	00000	26666	67555	55555 55580	$75396 \\ 95238$	73015	69844 88712	$\frac{03}{52}$
**************	1.00000	30000	04500	00150	00033	75002	02500	10125	00433	92873	41518	39955	$\frac{52}{37}$
	1.00000	40000	08000	01066	66773	33341	86667	23555	58806	35083	17467	54144	91
5	1, 00000	50000	12500	02083	33593	75026	04168	83680	71056	55730	71730	41021	76
	1. 00000	60000	18000	03600	00540	00064	80006	48000	55542	89880	00277	71445	$\frac{70}{23}$
•••••••	1. 00000	70000	24500	05716		08473	39183	00682		08742	07709	26023	$\frac{23}{06}$
		80000	32000		35040		06703	07559	71657	55895	91000	27103	65
	1. 00000	90000	40500	12150	02733	75492	07573	81134	49002	85334	23622	70826	94
×10 ⁻⁵	1.00001	00000	50000	16666	70833	34166	66805	55575	39685	01984	40255	75947	97
	1.00002	00002	00001	33334	00000	26666	75555	58095	24444	44585	53820	10587	14
	1. 00003	00004	50004	50003	37502	02501	01250	43393	01986	66138	40912	95086	65
	1.00004	0000S	00010	66677	33341	86672	35558	80636	54603	89700	46532	73294	25
	1. 00005	00012	50020	83359	37526	04188	36821	05664	45007	86247	45526	60354	36
	1. 00006	00018	00036	00054	00064	80064	80055	54327	37170	62873	80580	51744	80
	1, 00007	00024	50057	16766	70973	39330	06968	95837	42177	17672	36470	63988	79
	1. 00008	00032	00085	33504	00273	07030	75971	66130	39100	02976	67262	81645	47
	1. 00009	00040	50121	50273	37992	08238	12199	01246	20911	38661	76502	68546	00
×10 ⁻⁴	1. 00010	00050	00166	67083	34166	68055	57539	70734	15454	17217	83810	34635	39
2	1.00020	00200	01333	40000	26667	55558	09530	15887	12550	26506	33402	81249	62
	1.00030	00450	04500	33752	02510	12543	39448	44292	42698	70509	44536	57909	05
	1.00040	00800	10667	73341	86723	55880	65117	53256	02089	23421	81273	13638	99
					_								

Table IV.—Values of  $e^x$  to 62 places of decimals at decimal intervals from  $1\times10^{-10}$  to  $9\times10^{-1}$ —Continued.

x							$e^x$						
5×10 ⁻⁴	1, 00050	01250	20835	93776	04383	69605	75164	84877	16767	77200	56676	54052	53
6	1. 00060	01800	36005	40064	80648	05554	70231	34873	80662	32142	77422	18779	52
7	1. 00070	02450	57176	67223	40800	84397	12431	78087	29972	04988	70829	20697	54
	1. 00070	03200	85350	40273	10307	97169	87567	14849	70787	02383	19576	98136	83
8	1. 00030	04051	21527	34242	14882	07410	85590	92409	60364	43887	07063	86170	96
9	1.00090	04001	21027	34244	14004	07410	30330	32403	00004	10007	07003	30170	30
1×10 ⁻³	1,00100	05001	66708	34166	80557	53993	05831	15630	76200	58070	14602	28514	67
2	1.00200	20013	34000	26675	55809	58731	56994	71412	62360	35588	16507	84254	33
3	1.00300	45045	03377	02601	29340	91348	90020	53318	72719	56193	06400	58163	87
4	1.00400	80106	77341	87235	88079	75325	86225	67866	79584	56844	65158	24520	10
5	1.00501	25208	59401	06338	35662	41124	06858	07348	75538	59395	63607	58053	70
6	1.00601	80360	54064	86485	55845	42073	81480	76633	97023	13120	72381	28209	31
7	1.00702	45572	66848	55523	16000	31941	33738	72606	26958	32484	35735	15364	69
8	1.00803	20855	04273	43117	20736	14608	63184	74612	48193	62989	84773	19670	85
9	1.00904	06217	73867	81406	25704	81311	87427	40577	45096	80755	75335	36793	79
1×10 ⁻²	1.01005	01670	84168	05754	21654	56902	86003	38073	62201	52429	25151	64404	03
2	1.02020	13400	26755	81016	01439	20483	15143	53035	08991	19392	55772	74241	06
3	1.03045	45339	53516	85561	24399	53831	19813	29050	25142	98822	33256	69945	48
4	1.04081	07741	92388	22675	70447	57916	85474	40829	77050	31231	20352	33957	19
5	1.05127	10963	76024	03969	75176	36335	64522	01748	21296	05506	25287	83938	48
6	1.06183	65465	45359	62222	46848	77168	37232	84282	60420	33007	90597	72946	22
7	1.07250	81812	54216	47905	31039	49889	11460	55749	58973	09301	36313	68582	00
8	1.08328	70676	74958	55443	59877	58674	\$8850	01987	13572	83659	39689	77149	14
9	1.09417	42837	05210	35787	28976	23544	88601	18465	19908	74708	51134	95537	27
1×10 ⁻¹	1. 10517	09180	75647	62481	17078	26490	24666	82245	47194	73751	87187	92863	29
2	1.22140	27581	60169	83392	10719	94639	67417	03075	80941	52050	36412	73425	10
3	1. 34985	88075	76003	10398	37443	13328	00733	03782	99697	35936	58030	49917	99
4	1. 49182	46976	41270	31782	48529	52837	22228	06432	82773	93742	52815	95633	15
***************************************													
5	1.64872	12707	00128	14684	86507	87814	16357	16537	76100	71014	80115	75079	31
6	1.82211	88003	90508	97487	53676	68162	86451	33822	38808	54643	53863	20547	48
7	2.01375	27074	70476	52162	45493	88583	06527	00175	42394	14586	73115	68989	30
8	2. 22554	09284	92467	60457	95375	31395	07675	70536	34135	04848	45961	18583	96
9	2. 45960	31111	56949	66380	01265	63602	47069	54217	72306	44008	30207	48545	74
	10000	31111	30010	30000	31230	30302	1.000		. =000	22000	J	20020	

Table V.—Values of  $e^{-x}$  ranging from 52 to 62 places of decimals at intervals of unity from 0 to 100.

x						e-x					
0	1.00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00
1	0.36787	94411	71442	32159	55237	70161	46086	74458	11131	03176	78
2	. 13533	52832	36612	69189	39994	94972	48440	34076	31545	90957	59
3	. 04978	70683	67863	94297	93424	15650	06177	66316	99592	18842	32
4	. 01831	56388	88734	18029	37180	21273	24124	22119	12067	55347	56
5	0.00673	79469	99085	46709	66360	48423	14842	42488	49585	02735	51
6	. 00247	87521	76666	35842	30451	67430	81666	78915	06479	58553	39
$\frac{7}{8}$	. 00091	18819	65554	51620	80031	36084	40928	26264	73724	52743	61
9	. 00033	$\frac{54626}{34098}$	$\frac{27902}{04086}$	$51183 \\ 67954$	88213 $94976$	$89125 \\ 36690$	$78086 \\ 73003$	$\frac{10193}{38260}$	$\frac{10900}{72152}$	$13372 \\ 83228$	$\frac{03}{89}$
10	0.00004	53999	29762	48485	15355	91515	56055				
ii	. 00001	67017	00790	24565	93126	35517	36058	06102	37918	08886	66
$\tilde{1}\tilde{2}$	. 00000	61442	12353	32820	97586	82308	17880	$08790 \\ 55323$	77938 $11223$	$-04695 \\ -98931$	93
13	. 00000	22603	29406	98105	43257	85277	29053	86894	69353	14242	$\frac{49}{27}$
14	. 00000	08315	28719	10356	78840	63985	14256	52622	94607	65836	50
15	0.00000	03059	02320	50182	57883	71479	49770	22896	39370	82078	08
16	. 00000	01125	35174	71925	91145	13775	17906	01271	91637	94080	07
17	. 00000	00413	99377	18785	16665	96510	27718	95528	06229	36694	37
18	. 00000	00152	29979	74471	26284	36136	62923	35174	31862	17484	33
19	. 00000	00056	02796	43753	72675	40012	98281	62064	63079	78387	37
20	0.00000	00020	61153	62243	85578	27965	94038	01558	20976	37580	73
21	. 00000	00007	58256	04279	11906	72794	17432	41268	12644	29803	62
22 23	. 00000	00002	78946	80928	68924	80771	89130	30644	29320	76931	73
24	. 00000	00001 00000	$02618 \\ 37751$	$79631 \\ 34544$	$70189 \\ 27909$	$03039 \\ 77516$	$27527 \\ 44969$	$84061 \\ 54752$	$\frac{24977}{34067}$	59833 $79168$	84 61
25	0. 00000	00000	13887	94386	49640	20594	66176	37460	86856		
26	.00000	00000	05109	08902	80633	24719	87440	01934	79215	$91039 \\ 76659$	$\frac{98}{41}$
27	. 00000	00000	01879	52881	65390	83294	75827	04184	22192	62122	87
28	. 00000	00000	00691	44001	06940	20300	94125	84658	74140	92711	82
29	. 00000	00000	00254	36656	47376	92291	03033	85614	85768	16666	03
30	0.00000	00000	00093	57622	96884	01746	04915	83222	33787	06744	96
31	. 00000	00000	00034	42477	10846	99764	58392	38933	28515	57284	62
32	. 00000	00000	00012	66416	55490	94175	72312	09041	55965	09638	21
33	. 00000	00000	00004	65888	61451	03397	36418	42455	43610	16841	14
34	. 00000	00000	00001	71390	84315	42012	96630	27203	42576	04924	12
35 36	0. 00000 . 00000	00000	00000	63051	16760	14698	93856	39021	19224	65427	61
37	. 00000	00000	00000	23195	22830	24356	93883	12263	60973	80800	41
38	. 00000	00000	00000	$08533 \\ 03139$	$04762 \\ 13279$	57440	65794	27804	98229	41244	17
39	. 00000	00000	00000	01154	82241	$20480 \\ 73015$	$29628 \\ 78598$	$70896 \\ 62624$	$\frac{46522}{42063}$	$\frac{31919}{32386}$	$\frac{65}{87}$
40	0. 00000	00000	00000	00424	83542	55291	58899	53292	34782	85865	
41	. 00000	00000	00000	00156	28821	89334	98876	80908	82995	10583	80 41
42	. 00000	00000	00000	00057	49522	26429	35598	06664	38088	05734	23
43	. 00000	00000	00000	00021	15131	03759	10804	86631	40100	70226	$\frac{23}{51}$
44	. 00000	00000	00000	00007	78113	22411	33796	51571	33167	29279	90
45	. 00000	00000	00000	00002	86251	85805	49393	64447	01216	29183	94
46	. 00000	00000	00000	00001	05306	17357	55381	23787	63324	44942	81
47	. 00000	00000	00000	00000	38739	97628	68718	71129	31477	49726	91
48	. 00000	00000	00000	00000	14251	64082	74093	51062	85321	02803	41
49	. 00000	00000	00000	00000	05242	88566	33634	63937	17180	53028	32
50	0.00000	00000	00000	00000	01928	74984	79639	17783	01734	28165	27

Table V.—Values of  $e^{-x}$  ranging from 52 to 62 places of decimals at intervals of unity from 0 to 100—Continued.

x				€	-x×10 ²⁰	)			
50 51 52 53 54	0. 01928 . 00709 . 00261 . 00096 . 00035	74984 54741 02790 02680 32628	79639 62284 69667 <b>05</b> 450 57220	17783 70413 70480 86760 08070	01734 89832 47026 30230 29735	28165 69387 95315 76967 39281	27012 80807 33186 00074 01772	57475 34876 48093 90907 08837	28 89 16 63 39
55 56 57 58 59	0.00012 .00004 .00001 .00000 .00000	99581 78089 75879 64702 23802	42500 28838 22024 34925 66408	75030 85469 24311 64546 69440	73600 08127 64895 03261 06058	71340 71770 58751 54039 94324	60714 42317 28803 55292 58880	85530 96289 43631 64893 24963	28 39 78 76 31
60 61 62 63 64	0.00000 .00000 .00000 .00000	$\begin{array}{c} 08756 \\ 03221 \\ 01185 \\ 00435 \\ 00160 \end{array}$	51076 $34028$ $06486$ $96100$ $38108$	26965 59925 42339 00063 90548	20338 16089 81006 08097 63785	$\begin{array}{c} 48873 \\ 00124 \\ 28503 \\ 36231 \\ 29760 \end{array}$	28007 77758 07390 24815 87034	39166 48943 97280 88845 14233	04 75 99 96 54
65 66 67 68 69	0.00000 .00000 .00000 .00000	$\begin{array}{c} 00059 \\ 00021 \\ 00007 \\ 00002 \\ 00001 \end{array}$	00090 70522 98490 93748 08063	54159 01130 42456 21117 92777	70613 36394 86978 10802 07278	91401 11986 80839 94660 49453	26029 56925 26942 88806 66496	55584 95727 66474 42392 16247	23 06 24 87 34
70 71 72 73 74	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	39754 14624 05380 01979 00728	49735 86227 18616 25987 12901	90864 25123 00211 79469 78321	68077 09468 38413 04553 64383	89099 26378 81818 74919 42969	75379 73083 72704 15336 73716	48 16 54 02 88
75 76 77 78 79	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00267 00098 00036 00013 00004	86369 54154 25140 33614 90609	61808 68611 91914 81550 47306	$\begin{array}{c} 07794 \\ 12580 \\ 35592 \\ 22613 \\ 49280 \end{array}$	43444 28938 24240 41453 56613	15201 09797 83319 01407 53873	08 36 73 91 52
80 81 82 83 84	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00001 00000 00000 00000 00000	80485 66396 24426 08985 03305	13878 77199 00737 82594 70062	45415 58073 74052 40493 67607	17231 44007 76794 80669 34298	$\begin{array}{c} 21283 \\ 02255 \\ 40802 \\ 66884 \\ 45509 \end{array}$	57 27 61 82 64
85 86 87 88 89	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	$\begin{array}{c} 01216 \\ 00447 \\ 00164 \\ 00060 \\ 00022 \end{array}$	09929 37793 58114 54601 27363	$\begin{array}{c} 92528 \\ 06181 \\ 31082 \\ 89540 \\ 56179 \end{array}$	25564 12073 27365 11858 57437	41682 46276 11660 84531 39222	63 56 34 86 91
90 91 92 93 94	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	00008 00003 00001 00000 00000	19401 01440 10893 40795 15007	26239 87850 90193 58667 85762	90515 65374 12136 17756 70739	43036 55326 37945 01577 48875	11 31 96 01 45
95 96 97 98 99	0.00000 .00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	$\begin{array}{c} 05521 \\ 02031 \\ 00747 \\ 00274 \\ 00101 \end{array}$	08227 09266 19723 87850 12214	70285 27348 37342 07910 92610	32731 10925 99016 21493 44852	72 69 06 00 99
100	0.00000	00000	00000	00000	00037	20075	97602	08359	63

Table VI.—Values of e^{-x} ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0.

x				e-x			
0.0	1, 00000	00000	00000	00000	00000	00000	000
.1	0, 90483	74180	35959	57316	42490	59446	437
. 2	. 81873	07530	77981	85866	99355	08619	039
.3	. 74081	82206	81717	86606	68737	79317	817
. 4	67032	00460	35639	30074	44329	25147	826
0.5	0. 60653	06597	12633	42360	37995	34991	180
. 6	. 54881	1636 <b>0</b>	94026	43262	84589	17232	568
. 7	. 49658	53037	91409	51470	48000	93397	529
.8	. 44932	89641	17221	59143	01023	85015	563
. 9	. 40656	96597	40599	11188	34542	39645	626
1.0	0, 36787	94411	71442	32159	55237	70161	461
. 1	. 33287	10836	98079	55328	88469	06431	316
$\cdot \cdot \cdot \cdot \cdot \cdot$	. 30119	42119	12202	09664	49776	07083	222
. 3	, 27253	17930	34012	60312	23331	67563	350
. 4	. 24659	69639	41606	47693	98612	39833	768
1.5	0. 22313	01601	48429	82893	32804	70764	013
.6	. 20189	65179	94655	40848	51792	67643	350
.7	. 18268	35240	52734	65022	39008	37758	940
. 8	. 16529	88882	21586	53829	68047	20432	214
. 9	. 14956	86192	22635	05264	10120	<b>6910</b> 3	735
2. 0	0. 13533	52832	36612	69189	39994	94972	484
. i	. 12245	64282	52981	91021	86473	76072	626
. 2	. 11080	31583	62333	88333	41444	25849	939
. 3	. 10025	88437	22803	73372	99406	93797	987
. 4	. 09071	79532	89412	50337	51722	20079	691
2. 5	0.08208	49986	23898	79516	95286	74467	160
. 6	. 07427	35782	14333	88042	82105	70169	975
. 7	. 06720	55127	39749	76512	65517	00855	966
. 8	. 06081	00626	25217	96499	56213	88183	941
. 9	. 05502	32200	56407	22902	99465	30834	175
3. 0	0. 04978	70683	67863	94297	93424	15650	062
. 1	. 04504	92023	93557	80606	83350	92178	335
. 2	. 04076	22039	78366	21516	60792	62144	425
. 3	. 03688	31674	01240	00544	56037	04741	515
. 4	. 03337	32699	60326	07948	24001	31470	948
3.5	0. 03019	73834	22318	50073	97862	92363	620
. 6	. 02732	37224	47292	56080	15630	62435	553
. 7	. 02472	35264	70339	39120	27573	82983	403
. 8	. 02237	07718	56165	59577	85833 20275	$22540 \\ 43743$	$823 \\ 654$
. 9	. 02024	19114	45804	38847	20210	40/40	
4. 0	0. 01831	56388	88734	18029	37180	21273	241
. 1	. 01657	26754	01761	24754	19836	98083	451
. 2	. 01499	55768	20477	70621	19843	60228	$729 \\ 767$
3	. 01356	85590 73399	$12200 \\ 03068$	$93175 \\ 44117$	72305 89393	$74525 \\ 86236$	542
						94000	931
4.5	0.01110	89965	38242	30649	$61431 \\ 21330$	$\frac{34286}{94331}$	550
. 6	. 01005	18357	44633	58164	20540	74291	388
. 7	. 00909	52771	$01695 \\ 49020$	$81709 \\ 02884$	13620	26766	074
. 8 . 9	. 00822	$97470 \\ 65830$	70924	34051	82360	46420	128
	0.00673		0000	46709	66360	48423	148
5. 0 . 1	, 00609	$79469 \\ 67465$	$99085 \\ 65515$	63610	71345	64785	425
$\stackrel{\cdot}{\cdot}\stackrel{1}{2}$	. 00551	65644	20760	77241	79937	54667	303
.3	. 00331	15939	06910	21621	22867	25942	075
. 4	. 00451	65809	42612	66798	16490	18705	780
5. 5	0.00408	67714	38464	06699	34647	02684	721
, 6	. 00369	78637	16482	93082	06926	36441	249
. 7	. 003334	59654	57471	27276	57324	36020	607
. 8	. 00302	75547	45375	81474	81920	44595	488
				36923	27755	20842	148

Table VI.— Values of  $e^{-x}$  ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0—Continued.

x				€ <i>x</i> − <i>x</i>			
6. 0	0, 00247	87521	76666	35842	30451	67430	817
. 1	.00224	28677	19485	80247	32236	16521	454
. 2	00202	94306	36295	73436	33862	53459	782
. 3	. 00183	63047	77028	90682	52279	36299	895
. 4	. 00166	15572	73173	93449	90832	54173	641
6.5	0.00150	34391	92977	57244	73829	03332	168
. 6	00136 $00123$	$03680 \\ 09119$	$\frac{37547}{02673}$	$89341 \\ 48118$	$68557 \\ 46234$	$63685 \\ 76276$	$\frac{588}{674}$
.8	. 00123	37751	47844	80307	87892	19640	468
. 9	.00100	77854	29048	51076	14475	35575	166
7. 0	0.00091	18819	65554	51620	80031	36084	409
.1	.00082	51049	23265	90427	01462	25456	749
. 2	. 00074	65858	08376	67936	80906	47515	335
. 3	. 00067	55387	75193	84423	78367	24317	781
. 4	. 00061	12527	61129	57255	56702	29776	745
7.5	0.00055	30843	70147	83358	$\frac{31020}{55020}$	$\frac{00088}{35820}$	530
. 6	00050 $00045$	$04514 \\ 28271$	$33440 \\ 82886$	$61069 \\ 79705$	79972	07264	$\frac{856}{598}$
.8	. 00040	97349	78979	78670	84619	67840	934
.9	.00037	07435	40459	08837	44300	21422	977
8.0	0.00033	54626	27902	51183	88213	89125	781
. 1	. 00030	35391	38078	86666	08655	09532	209
. 2	. 00027	46535	69972	14232	76277	89393	761
. 3	. 00024	85168	27107	$95202 \\ 84827$	$08034 \\ 27986$	74470	637
.4	. 00022	48673	24178	04041	21900	33560	122
8.5	0.00020	34683	69010	64417	43689	33430	487
. 6	. 00018	41057	93667	57912	49547	76189	$\frac{858}{125}$
.7	. 00016 . 00015	$65858 \\ 07330$	$\frac{10987}{75095}$	$63341 \\ 47660$	$14921 \\ 06434$	$\frac{30507}{06463}$	915
.9	.00013	63889	26482	01144	78477	65082	136
9.0	0.00012	34098	04086	67954	94976	36690	730
. 1	. 00011	16658	08490	11473	56400	85376	178
. 2	. 00010	10394	01837	09335	07306	72733	712
. 3	. 00009	14242	31478	17333	78629	43248	947
.4	. 00008	27240	65556	63226	27291	71823	338
9. 5	0.00007	48518	29887	70059	14711	89319	355
. 6	. 00006	77287	$\frac{36490}{95053}$	$85387 \\ 22209$	$29971 \\ 55132$	$88458 \\ 40931$	$\frac{992}{438}$
. 7 . 8	. 00005	$12834 \\ 54515$	99432	17698	18088	77544	465
. 9	. 00005	01746	82056	17530	21858	33726	590
10.0	0.00004	53999	29762	48485	15355	91515	561
.1	.00004	10795	55225	30070	84235	23804	485
$\cdot 2$	.00003	71703	18684	12670	45551	91140	292
. 3	. 00003	36330	95185	71899	37288	28297	935
.4	.00003	04324	83008	40363	65062	22204	232.
10.5	0.00002	75364	49349	74715	78574	11097	102
. 6	. 00002	49160	09731	50319	62336	14140	627
. 7	.00002	25449	37913	21219	$\frac{44136}{64237}$	71874	562
.8	.00002	$03995 \\ 84582$	$03411 \\ 33995$	$\frac{17193}{78056}$	47431	$54489 \\ 58551$	$\frac{295}{471}$
11.0	0.00001	67017	00790	24565	93126	35517	361
.1	. 00001	51123	23819	85502	79896	87011	$\frac{301}{424}$
. 2	.00001	36741	96065	68095	33745	88026	$7\overline{47}$
. 3	. 00001	23729	24261	78823	05171	26757	815
. 4	.00001	11954	84842	59094	36391	53266	479
11.5	0.00001	01300	93598	63071	07289	41355	749
. 6	.00000	91660	87736	24761	44734	00846	298 571
.7 .8	.00000	82938 75045	$19160 \\ 57915$	75736 07686	50913 33506	$52973 \\ 65463$	$\frac{571}{934}$
. 9	.00000	67904	04807	37947	30051	67517	816

Table V1.—Values of  $e^{-x}$  ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0—Continued.

x			e-x	×10 ⁵			
12.0	0. 61442	12353	32820	97586	82308	179	
.1	*55595	13241	65014	42782	64691	467	
.2	.50304	55607	11144	43312	43226	772	
.3	.45517	44463	08323	47633	86288	946	
.4	.41185	88707	53570	92504	35497	759	
12.5	0.37266	53172	07867	09929	24851	476	
.6	.33720	15234	13918	32115	08762	687	
.7	.30511	25558	03642	02182	53527	096	
.8	.27607	72572	03720	07929	85038	819	
.9	.24980	50325	86663	59687	66158	817	
13.0	0, 22603	29406	98105	43257	85277	291	
.1	. 20452	30624	52348	88517	46920	038	
.2	. 18506	01197	58190	67532	46783	110	
.3	. 16744	93209	43426	71792	86875	852	
.4	. 15151	44112	14324	96163	05769	581	
13.5	0. 13709	59086	38408	43645	02599	613	
.6	. 12404	95079	95671	29562	42723	616	
.7	. 11224	46365	23434	33766	81407	425	
.8	. 10156	31471	00249	09180	75395	895	
.9	. 09189	81357	89795	74280	69218	720	
14.0	0.08315	28719	10356	78840	63985	143	
.1	.07523	98299	21642	10566	16958	717	
.2	.06807	98134	39763	37737	59450	189	
.3	.06160	11626	13205	31394	82053	038	
.4	.05573	90369	26945	98049	07658	331	
14.5	0.05043	47662	56788	80758	92222	233	
.6	.04563	52636	79039	92229	75634	380	
.7	.04129	24941	58732	68861	37841	627	
.8	.03736	29937	98852	62858	23297	360	
.9	.03380	74348	39047	38111	80934	638	
15.0	0. 03059	02320	50182	57883	71479	49770	229
.1	. 02767	91865	85408	06275	11062	90303	601
.2	. 02504	51637	23276	19971	12378	74692	052
.3	. 02266	18012	77657	11644	48865	71008	072
.4	. 02050	52457	56119	27503	43940	88106	805
15.5	0. 01855	39136	26159	78240	71710	86473	493
.6	. 01678	82752	99956	62558	32695	60836	212
.7	. 01519	06596	75689	62781	87087	19027	273
.8	. 01374	50772	79213	96984	28825	38479	717
.9	. 01243	70602	36028	70065	42338	53941	588
16.0	0. 01125	35174	71925	91145	13775	17906	013
.1	. 01018	26036	93120	00088	98479	40768	981
.2	. 00921	36008	34566	12805	18330	14487	091
.3	. 00833	68107	89962	77760	99947	21871	855
.4	. 00754	34583	49844	24816	62940	02631	941
16.5	0.00682	56033	76334	86975	53833	89689	872
.6	.00617	60613	35580	37163	68288	57083	203
.7	.00558	83313	92518	26353	28123	48887	751
.8	.00505	65313	48335	52410	44488	14372	545
.9	.00457	53387	69445	80493	73240	17735	568
17. 0	0.00413	99377	18785	16665	96510	27718	955
.1	.00374	59705	56295	25069	03124	10250	558
.2	.00338	94943	26196	92178	25752	20721	809
.3	.00306	69412	94563	55723	45060	05384	994
.4	.00277	50832	42240	75246	48379	49380	576

 $\begin{array}{ll} \textbf{Table} & \textbf{VI.-Values of } e^{-x} \ ranging \ from \ 33 \ to \ 48 \ places \ of \ decimals \\ & at \ intervals \ of \ 0.1 \ from \ 0.0 \ to \ 50.0 — \textbf{Continued.} \end{array}$ 

х			e	×105			
17.5	0.00251	09991	55743	98180	35473	43740	193
.6	.00227	20459	92773	85882	20171	05083	212
. 7	. 00205	58322	29760	44687	85201	69381	462
.8	.00186	01939	26691	55236	15658	41796	203
. 9	. 00168	31730	69673	75730	08575	95356	349
18.0	0.00152	29979	74471	26284	36136	62923	352
. 1	. 00137	80655	54894	57374	37067	27046	561
. 2	. 00124	69252	78575	09801	76125	51553	128
. 3 . 4	.00112	$82646 \\ 08960$	$\frac{49549}{72359}$	$66131 \\ 76231$	$01387 \\ 78545$	$\frac{32549}{44852}$	$077 \\ 002$
18.5	0,00092	37449	66197	05948	97883	17038	460
. 6	. 00083	58390	10137	46206	26295	28090	620
. 7	. 00075	62984	11826	51341	18612	28066	415
. 8	. 00068	43271	02221	79922	76049	65053	096
. 9	. 00061	92047	68266	40298	69210	94237	034
19.0	0.00056	02796	43753	72675	40012	98281	621
.1	. 00050	69619	86232	22936	08100	57441	536
. 2	. 00045	87181	74664	75209	98545	73639	897
.3	.00041	50653 55666	$68769 \\ 76593$	$82261 \\ 82970$	$54061 \\ 51383$	$18520 \\ 03756$	$\frac{217}{200}$
19.5	0.00033	98267	81949	50712	25140	73787	681
.6	.00030	74879	87958	66105	71369	28807	703
.7	.00027	82266	37101	58709	84770	56340	891
.8	. 00025	17498	71943	82798	50011	88884	873
. 9	.00022	77927	04120	53677	29238	72891	527
20.0	0. 00020	61153	62243	85578	27965	94038	016
. 1	. 00018	65008	92190	27697	33189	22598	761
. 2	. 00016	87529	85750	85307	37206	62805	645
. 3	. 00015	26940	15912	66097	18605	61466	414
. 4	. 00013	81632	59107	95387	89246	35435	639
20.5	0.00012	50152	86638	67426	28937	55311	923
. 6	. 00011	31185	09177	16341	53263	71739	791
. 7	. 00010	23538	$59775 \\ 02205$	94154	$25949 \\ 50298$	62818	$\frac{845}{554}$
$\frac{.8}{.9}$	. 00009	$\frac{26136}{38002}$	52694	$67760 \\ 79477$	46801	$19435 \\ 25352$	979
21.0	0. 00007	58256	04279	11906	72794	17432	413
.1	. 00006	86098	43996	93450	45164	74732	749
$\tilde{2}$	. 00006	20807	54094	03619	76867	91816	079
. 3	. 00005	61729	89244	17303	97323	90528	550
. 4	. 00005	08274	22551	05926	15332	48072	717
21.5	0.00004	59905	53786	52316	77907	05925	361
. 6	. 00004	16139	73942	24154	70246	73925	373
. 7	. 00003	76538	80736	11354	32827	62725	700
$\frac{.8}{.9}$	. 00003	$40706 \\ 08283$	90131	$\frac{29893}{38675}$	$53380 \\ 51913$	32631	$820 \\ 879$
22. 0	0.00002	78946	80928	68924	80771	89130	306
.1	. 00002	52401	51068	45210	21742	73861	$\frac{300}{281}$
. 2	. 00002	28382	33123	61576	64470	64849	105
. 3	.00002	06648	87892	07581	80510	04029	230
. 4	. 00001	86983	63804	26844	64135	94383	017
22.5	0.00001	69189	79226	15130	36130	19439	206
. 6	. 00001	53089	25478	79478	29098	85778	291
. 7	. 00001	38520	88603	13758	75438	72331	863
. S . 9	. 00001	$25338 \\ 13411$	$88086 \\ 30933$	$06835 \\ 74976$	$66073 \\ 68297$	58263 68776	$\frac{954}{038}$
23.0	0.00001 .00000	$02618 \\ 92853$	$79631 \\ 32670$	$70189 \\ 14494$	$03039 \\ 21797$	$27527 \\ 43920$	$\frac{841}{867}$
.2	. 00000	84017	16438	85889	17671	85250	385
.3	. 00000	76021	87409	60735	66299	49779	464
. 4	. 00000	68787	43627	13460	03812	13048	694

	1						
x			€-	×1010			
23. 5	0. 62241	44622	90778	32321	36689	302	
. 6	. 56318			98158		375	
. 7	. 50958			07815			
. 8	. 46109			57885	97649		
. 9	. 41721			20720			
24. 0	0. 37751	34544	27909	77516	44969	548	
. 1	. 34158		78385	77078	17927	744	
. 2	. 30908		40832	95528	56856	901	
. 3	. 27966		92692	90452	20914	954	
. 4	. 25305	48361	51189	69970	95413	063	
24.5	0. 22897	34845	64555	28940	85224	694	
. 6	. 20718	37765	72088	85115	75223	970	
. 7	. 18746	76334	52428	00712	00483	363	
. 8	. 16962	77294	18406	63987	44513	620	
. 9	. 15348	55167	14253	44644	47610	507	
25.0	0. 13887	94386	49640	20594	66176	37460	869
. 1	. 12566	33126	86023	89591	28573	24497	477
. 2	. 11370	48673	92667	30575	06855	57781	111
. 3	. 10288	44186	29702	25556	66047	29002	133
. 4	. 09309	36717	09030	56681	48387	57235	814
25. 5	0.08423	46375	44686	47405	87646	52628	816
. 6	. 07621	86519	45129	01041	86087	42569	880
. 7	. 06896	54882	32212	00165	51703	34317	985
. 8	. 06240	25543	05624	06152	61704	36655	883
. 9	. 05646	41661	16749	62792	72023	10934	402
26.0	0.05109	08902	80633	24719	87440	01934	792
. 1	. 04622	89492	46686	68940	73403	07967	410
. 2	. 04182	96830	74887	40238	10483	40957	393
. 3	. 03784	90624	30743	59536	01635	97079	765
. 4	. 03424	72479	24915	87477	54037	63906	063
26. 5	0.03098	81913	87218	25441	64178	60818	385
. 6	. 02803	92750	84414	72566	40350	61367	907
. 7	. 02537	09852	70981	83277	48943	37439	574
. 8	. 02295	66168	05623	56169	40441	23976	976
. 9	. 02077	20058	77241	34158	48280	41113	052
27.0	0.01879	52881	65390	83294	75827	04184	222
.1	. 01700	66800	14814	06878	50865	79529	609
$\cdot \frac{2}{2}$	. 01538	82804	33968	11670	38458	16312	667
.3	. 01392 . 01259	$\frac{38919}{88584}$	$35884 \\ 28277$	$98620 \\ 88967$	$87677 \\ 69065$	$77862 \\ 98718$	$\frac{518}{199}$
97 5	0.01120	00105					
$\begin{bmatrix} 27.5 \\ .6 \end{bmatrix}$	0. 01139 . 01031	99185	30443	55345	31786	95696	403
.7	. 01031	$50728 \\ 34638$	48906	83550	57811	58485	712
.8	. 00933	52673	83457	69077	84065	71852	384
.9	. 00344	15939	$61639 \\ 14129$	$73721 \\ 46027$	$35688 \\ 61067$	$85617 \\ 13778$	$\frac{335}{082}$
28. 0	0. 00691	44001					
.1	. 00625	64079	$06940 \\ 40031$	$20300 \\ 33604$	$94125 \\ 79651$	84658 20550	$\begin{array}{c} 741 \\ 275 \end{array}$
. 2	. 00566	10320	06637	63070	77960	29403	337
.3	. 00512	23135	84304	92092	59075	13264	538
.4	. 00463	48609	97992	98618	53973	63255	792
28. 5	0.00419	37956	58379	54442	52680	72672	186
. 6	. 00379	47032	35298	56414	35892	66116	403
. 7	. 00343	35894	77640	25514	74190	24136	674
.8	. 00310	68402	37543	44761	24890	39628	848
				~ * * * * * *	93344	23703	0.10

 $\begin{array}{ll} \textbf{Table VI.-Values of $e^{-x}$ ranging from 33 to 48 places of decimals} \\ at intervals of 0.1 from 0.0 to 50.0—Continued. \end{array}$ 

			e-x	×10 ¹⁰			
29.0	0.00254	36656	47376	92291	03033	85614	858
. 1	. 00230	16038	56719	30252	98961	98444	442
. 2	00208 00188	$25772 \\ 43938$	$91055 \\ 58898$	$50034 \\ 98201$	$\frac{41929}{66055}$	$59577 \\ 82710$	$\frac{002}{392}$
. 4	. 00170	50700	73848	97320	95731	68146	459
20.5	0.00154	00110	00101	00700	00701	000.16	~
29. 5 . 6	$0.00154 \\ 0.00139$	$28112 \\ 59933$	$03191 \\ 05613$	88783 09997	$\frac{29721}{76718}$	$02046 \\ 93894$	$\begin{array}{c} 747 \\ 576 \end{array}$
. 7	. 00126	31469	78246	44161	41824	90288	582
. 8	. 00114	29426	50396	43462	40460	89725	866
. 9	. 00103	41772	76747	88631	14871	35865	680
30. 0	0.00093	57622	96884	01746	04915	83222	338
. 1	. 00084	67127	40607	93341	71972	67749	165
. 2	.00076	$\frac{61373}{32297}$	$70029 \\ 59758$	$83365 \\ 65523$	$\frac{22776}{77079}$	$85364 \\ 03801$	$\begin{array}{c} 170 \\ 763 \end{array}$
. 3	00069	$\frac{52297}{72602}$	25925	71015	47054	72075	602
30. 5	0.00056	75685	23263	$27224 \\ 02171$	$61872 \\ 53091$	$78872 \\ 68192$	$\frac{381}{004}$
$\frac{.6}{.7}$	00051	$\frac{35572}{46858}$	$37148 \\ 04474$	69695	17315	32710	431
.8	. 00042	04651	03518	84753	93216	26484	901
. 9	. 00038	04525	58642	21646	74684	33532	907
31. 0	0, 00034	42477	10846	99764	58392	38933	285
.1	. 00031	14882	09847	58694	36580	83265	878
. 2	. 00028	18461	87547	13372	67019	06804	197
.3	. 00025	$50249 \\ 07561$	$76623 \\ 41382$	$\frac{42730}{62290}$	$\frac{31718}{86183}$	$\frac{36825}{09083}$	$\begin{array}{c} 785 \\ 925 \end{array}$
. 1	. 00025	07301	41002	02290	00100	09000	920
31.5	0.00020	87967	91164	59335	50509	88967	622
$\begin{array}{c} \cdot 6 \\ \cdot 7 \end{array}$	. 00018	$89271 \\ 09483$	$\frac{49411}{54070}$	$\frac{56410}{45362}$	$78926 \\ 63790$	$\frac{37742}{25908}$	$\frac{140}{984}$
.8	. 00017	46804	67314	60627	92270	38923	531
. 9	. 00013	99606	74665	54398	29638	60755	089
32, 0	0,00012	66416	55490	94175	72312	09041	560
. 1	. 00011	45901	08570	22324	18777	38161	942
. 2	. 00010	$\frac{36854}{38184}$	$17971 \\ 45884$	$\frac{14108}{98657}$	$\frac{12572}{78521}$	72255 $57413$	$\frac{979}{808}$
$\frac{.3}{.4}$	. 00009	48904	40338	71765	13373	59415	985
32. 5	0.00007	68120	46852	02094	90674	25977	989
. 6	. 00006	95024	14147	63979	20547	50203	795
. 7	.00006	28883	84964	61633	73835	11081	070
. 8 9	. 00005	69037 $14886$	$63875 \\ 54781$	$83490 \\ 93836$	$75590 \\ 54103$	$\frac{29624}{95285}$	$\begin{array}{c} 051 \\ 602 \end{array}$
33. 0 . 1	0.00004	$65888 \\ 21553$	$61451 \\ 45104$	$03397 \\ 58862$	$\frac{36418}{97123}$	$42455 \\ 52302$	$\frac{436}{914}$
$\frac{1}{2}$	. 00003	81437	33620	85080	38776	35563	724
. 3	. 00003	45138	77443	74206	47237	60762	601
. 4	. 00003	12294	47752	60511	44037	56739	759
33.5	0.00002	82575	72871	15611	21020	28754	875
. 6	. 00002	55685	09276	69987	34084	22688	697
.7 .8	. 00002	$31353 \\ 09337$	$43916 \\ 24855$	95759 $19385$	$\frac{36958}{25874}$	$\frac{40314}{99128}$	$\frac{990}{963}$
. 9	. 00001	89416	17547	84879	72752	75933	317
34.0	0.00001	71390	84315	42012	96630	27203	426
.1	. 00001	55080	84799	46536	18659	27328	468
. 2	. 00001	40322	95408	63094	99211	85099	450
. 3 . 4	.00001	$\frac{26969}{14886}$	$45946 \\ 71787$	$\frac{66347}{32112}$	89949 48054	81449 47810	$\frac{683}{798}$
	ľ						
34.5	0.00001	$03953 \\ 94061$	$80116 \\ 28904$	$70221 \\ 29918$	94395 83443	$13367 \\ 95415$	$\frac{453}{969}$
. 7	. 00000	85110	17391	47948	70615	64947	459
.8	. 00000	77010	87001	36544	68253	41936	893
. 9	. 00000	69682	31678	38580	11813	28543	327
35. 0	0.00000	63051	16760	14698	93856	39021	192
	<u> </u>						

Table VI.— Values of  $c^{-x}$  ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0—Continued.

x			e-3	x×1015			
35. 0 .1 .2 .3 .4	0. 6305 . 5705 . 5162 . 4670 . 4226	$\begin{array}{ccc} 1 & 05569 \\ 1 & 92993 \\ 9 & 45379 \end{array}$	66665 $27974$ $44257$	64836 97344 03580	$\begin{array}{ccc} 20656 \\ 74467 \\ 57879 \end{array}$	86873 39592 67927	8 686 2 088 7 598
35. 5 . 6 . 7 . 8 . 9	0. 38243 . 34603 . 31310 . 28330 . 25634	2 46628 3 21444 0 28321 0 71582	09713 90013 77790 47497	53519 64814 04439	$\begin{array}{c} 42886 \\ 69714 \\ 10367 \\ 45219 \end{array}$	25672 18553 50706 11627	271 590 083 172
36.0 .1 .2 .3 .4	0. 23198 . 20987 . 18990 . 17183 . 15548	7 91048 0 64673 3 44775	24356 79305 58688 93166 34958	93883 26873		60973 66680 82482 57303 21321	808 239 057
36. 5 . 6 . 7 . 8 . 9	0. 14068 . 12729 . 11518 . 10422 . 09430	81119 40949 28790	44614 42342 30761 55958 85267	67672 00516 29059 90584 94412	48913 07241 26337 32069 20739	72822 99744 74188 53886 28211	964 214 051 118 370
37. 0	0. 08533	$\begin{array}{c} 02078 \\ 26850 \\ 43715 \end{array}$	57440	65794	27804	98229	412
. 1	. 07721		16561	35572	52863	52358	518
. 2	. 06986		86757	24087	00541	33072	436
. 3	. 06321		90960	76015	74919	93941	739
. 4	. 05719		73180	64818	04795	09826	246
37. 5	0. 05175	55500	58018	68534	85109	07057	388
. 6	. 04683	03582	83528	48493	54683	16855	962
. 7	. 04237	38604	74966	82593	34655	87997	980
. 8	. 03834	14545	04384	98234	92936	93413	804
. 9	. 03469	27826	97490	91944	53846	38105	277
38. 0	0. 03139	13279	20480	29628	70896	46522	319
. 1	. 02840	40481	04287	51936	53646	27988	899
. 2	. 02570	10455	48452	71119	81485	05469	214
. 3	. 02325	52676	94886	54372	34296	62932	824
. 4	. 02104	22363	76776	20152	57806	72554	547
38.5	0.01903	98028	32864	52319	09651	51045	524
.6	.01722	79260	35202	88389	09152	96528	151
.7	.01558	84721	11807	46343	27407	39887	817
.8	.01410	50328	56773	42732	90339	44269	328
.9	.01276	27615	11435	24275	64109	91551	699
39. 0	0. 01154	82241	73015	78598	62624	42063	324
. 1	. 01044	92653	43612	05827	71170	02291	972
. 2	. 00945	48862	73886	56872	67683	46735	659
. 3	. 00855	51348	83887	15734	63340	96583	931
. 4	. 00774	10061	59285	82425	54038	35334	841
39. 5	0.00700	43520	26168	64522	06111	20117	684
. 6	.00633	77998	02373	37888	31289	73849	824
. 7	.00573	46784	09208	34299	62399	53206	969
. 8	.00518	89516	05054	64108	86055	09785	357
. 9	.00469	51575	72631	18967	64182	28650	614
40.0	0.00424	83542	55291	71953	53292	34782	859
.1	.00384	40698	95260		93217	25582	228
.2	.00347	82582	78776		38283	85687	124
.3	.00314	72582	40230		77048	96788	377
.4	.00284	77570	19982		37354	14757	803
40. 5 . 6 . 7 . 8 . 9	0. 00257 . 00233 . 00210 . 00190 . 00172	15462 96702 89086	09154 49553 88477 16733 44031	59620 50105 16004	81244 87332 40714 79492 18344	03947 35047 22490 13432 04012	486 951 491 437 470

 $\begin{array}{l} {\rm Table~V1.-Values~of~e^{-x}~ranging~from~33~to~48~places~of~decimals} \\ {\rm ~at~intervals~of~0.1~from~0.0~to~50.0-Continued.} \end{array}$ 

x			e-x	$\times 10^{15}$			
41. 0	0.00156	28821	89334	98876	80908	82995	106
. 1	. 00141	41542	84892	25895	04128	48638	316
. 2	. 00127	95797	11846	40038	13520	71489	987
. 3	. 00115	78116	02638	29407	39244	53079	409
. 4	. 00104	76312	61103	31040	88099	91446	531
41.5	0.00094	79359	65350	47559	45429	56113	551
. 6	. 00085	77279	31351	14917	47393	06788	324
.7	00077	$\frac{61043}{22482}$	$\frac{26781}{35171}$	$09860 \\ 14588$	09063 95695	$86820 \\ 22686$	$825 \\ 530$
. 9	. 00070	54204	79932	56898	16115	01639	407
42. 0	0.00057	49522	26429	35598	06664	38088	057
. 1	. 00052	02382	88056	36486	16013	12077	002
. 2	. 00047	07310	69328	36896	66194	65095	023
. 3	. 00042	59350	85360	38765	82354	83665	338
. 4	. 00038	54020	02888	41921	20220	99004	186
42.5	0.00034	87261	53199	44467	34281	84859	880
. 6 . 7	00031 00028	$55404 \\ 55128$	$72062 \\ 26026$	$59800 \\ 96901$	$09588 \\ 02510$	$74554 \\ 06254$	$\frac{002}{767}$
.8	00028. $00025$	83426	88318	39275	69583	84336	693
. 9	. 00023	37581	31066	48315	69181	60051	823
43. 0	0.00021	15131	03759	10804	86631	40100	702
. I	. 00019	13849	70686	16334	16651	97089	136
. 2	. 00017	31722	82726	55584	82545	15506	796
. 3	. 00015	66927	61177	68999	51381	41226	635
. 4	. 00014	17814	73448	94625	92151	05608	824
43.5	0.00012	82891	82360	87848	92767	77284	128
. 6	. 00011	60808	52529	36166	06882	27545	051
.7	. 00010	$50342 \\ 50389$	$98886 \\ 63809$	$08059 \\ 29842$	$\frac{21548}{77008}$	$25900 \\ 33343$	$\frac{989}{029}$
.9	.00003	59948	10626	01859	42848	36603	861
44.0	0.00007	78113	22411	33796	51571	33167	293
. 1	. 00007	04065	96064	63864	02594	11819	481
. 2	. 00006	37065	22595	82837	94977	89144	024
. 3	. 00005	76440	45417	65886	78362	28242	312
. 4	. 00005	21584	89220	86203	68464	15609	422
44.5	0.00004	71949	52715	26123	41636	05846	918
. 6	. 00004	$27037 \\ 36399$	$59159 \\ 59178$	$20617 \\ 04557$	$\frac{46712}{49710}$	$38215 \\ 54130$	253 889
. 7 . 8	. 00003	49628	80895	67763	67822	60571	334
. 9	. 00003	16357	22876	74373	05000	03529	236
45. 0	0.00002	86251	85805	49393	64447	01216	292
. 1	.00002	59011	39215	04273	31305	92431	185
. 2	. 00002	34363	19931	52920	73161	89041	858
. 3 . 4	.00002	$\frac{12060}{91880}$	59215 35866	$10958 \\ 91742$	$48008 \\ 41361$	$45775 \\ 20466$	$\frac{273}{612}$
45, 5	0.00001				72541		
40. 5	. 00001	73620 57098	$52831 \\ 35055$	$00294 \\ 40862$	91529	72775 $13892$	$\frac{788}{163}$
. 7	. 00001	42148	46589	30674	99007	15384	638
. 8	. 00001	28621	25085	64558	58060	81817	263
. 9	. 00001	16381	32052	95109	72519	37515	872
46.0	0.00001	05306	17357	55381	23787	63324	449
$\begin{array}{c} \cdot 1 \\ \cdot 2 \end{array}$	.00000	$95284 \\ 86217$	$96620 \\ 40279$	$13365 \\ 52610$	$08941 \\ 01613$	90311 69548	$942 \\ 955$
. 3	. 00000	78012	73213	50302	88340	07777	956 956
. 4	.00000	70588	83911	89917	38002	38406	937
46.5	0.00000	63871	42293	05842	23502	28846	869
. 6	. 00000	57793	25341	07926	11131	32265	356
. 7	.00000	52293	49819	61195	00313	96943	218
. 8	.00000	47317	11388	78448	78157	94017	572
. 9	. 00000	42814	29515	91910	04355	72624	796

**Table** VI.—Values of  $e^{-x}$  ranging from 33 to 48 places of decimals at intervals of 0.1 from 0.0 to 50.0—Continued.

I			$e^{-x} \times 1$	$0^{20}$		
47. 0	0. 38739	97628	68718	71129	31477	497
. 1	. 35053	38011	81874	44181	14696	776
. 2	. 31717	60995	95737	66419	90234	132
. 3	. 28699	28030	20923	62903	85594	584
. 4	. 25968	18268	80355	27517	22837	845
47. 5	0. 23496	98337	45281	70976	26987	584
. 6	. 21260	94976	82419	38687	22606	325
. 7	. 19237	70289	32882	68879	79646	073
. 8	. 17406	99341	49058	66327	58806	721
. 9	. 15750	49897	73123	74854	18083	799
48. 0	0. 14251	64082	74093	51062	85321	028
. 1	. 12895	41788	90489	43765	81148	006
. 2	. 11668	25662	72217	70475	74887	795
. 3	. 10557	87519	95563	20838	55106	156
. 4	. 09553	16053	55124	32778	83159	356
<b>1</b> 8. <b>5</b>	0.08644	05711	30360	94557	72312	023
. 6	. 07821	46631	95149	50544	60620	901
. 7	. 07077	15538	98051	27453	54748	366
. 8	.06403	67500	99505	46535	26327	711
. 9	. 05794	28476	19450	50254	69685	961
19. 0	0.05242	88566	33634	63937	17180	530
. 1	. 04743	95912	66955	45835	05016	148
. 2	. 04292	51172	74673	23310	79205	757
. 3	. 03884	02522	83706	09393	43055	524
. 4	. 03514	41135	92253	90440	00963	185
19. 5	0.03179	97090	01977	49498	18153	259
. 6	. 02877	35665	87644	17741	59121	756
. 7	. 02603	53996	98849	71336	86526	680
. 8	. 02355	78038	41041	37407	48630	165
. 9	. 02131	59824	02125	48791	98821	454
50. 0	0.01928	74984	79639	17783	01734	282

Table VII.—Values of  $e^{-x}$  to 63 places of decimals at decimal intervals from  $1 \times 10^{-10}$  to  $9 \times 10^{-1}$ .

x				_			$e^{-x}$		_				
1×10 ⁻¹⁰ .	0. 99999	99999	00000	00000	49999	99999	83333	33333	37499	99999	99166	66666	668
2	. 99999	99998	00000	00001	99999	99998	66666	66667	$33333 \\ 37499$	33333	$06666 \\ 97500$	66666	756
34	, 99999 , 99999	99997 $99996$	00000	$00004 \\ 00007$	$\frac{49999}{99999}$	$99995 \\ 99989$	50000 33333	$00003 \\ 33343$	99999	$99997 \\ 99991$	$\frac{97500}{46666}$	$00001 \\ 66672$	$\frac{012}{356}$
4	. 33333	33330	00000	00007	99499	30303	00000	99949	00000	00001	40000	00012	000
5	0.99999	99995	00000	00012	49999	99979	16666	66692	70833	33307	29166	66688	368
6	. 99999	99994	00000	00017	99999	99964	00000	00053	99999	99935	20000	00064	800
7	. 99999	99993	00000	00024	49999	99942	83333	<b>3</b> 3433	37499	99859	94166	66830	068
8	. 99999	99992	00000	00031	99999	99914	66666	66837	33333	33060	26666	67030	755
9	. 99999	99991	00000	00040	49999	99878	50000	00273	37499	99507	92500	00737	112
1×10-9	0, 99999	99990	00000	00049	99999	99833	33333	33749	99999	99166	66666	68055	556
1×10 ⁻⁹	. 99999	99980	00000	00199	99999	98666	66666	73333	33333	06666	66667	55555	556
3	.99999	99970	00000	00449	99999	95500	00000	33749	99997	97500	00010	12500	000
4	. 99999	99960	00000	00799	99999	89333	33334	39999	99991	46666	66723	55555	552
E .	0.00000	99950	00000	01249	99999	79166	66669	27083	33307	29166	66883	68055	540
5 6	0.99999	99940	00000	$01249 \\ 01799$	99999	64000	00005	39999	99935	20000	00647	99999	944
7	. 99999	99930	00000	02449	99999	42833	33343	33749	<b>9</b> 9859	94166	68300	68055	392
8	. 99999	99920	00000	03199	99999	14666	66683	7 <b>3</b> 333	33060	26666	70307	55555	139
9	. 99999	99910	00000	04049	99998	78500	00027	3 <b>3</b> 749	99507	92500	07381	12499	051
1 × 10-8	0. 99999	99900	00000	04999	99998	<b>3</b> 3333	33374	99999	99166	66666	80555	55553	571
$1 \times 10^{-8} \dots$	, 99999	99800	00000	19999	99998	66666	67333	33333	99100	66675	55555	55301	587
3	. 99999	99700	00000	44999	99955	00000	03374	99997	97500	00101	24999	95660	714
4	. 99999	99600	00000	79999	99893	33333	43999	99991	46666	67235	55555	23047	619
_	0.00000	00500	00001	0.4000	0.0703	00000	00200	0000=	003.00	00000	00554	005.45	000
5 6	0.99999	99500	00001	24999	99791	66666 00000	$92708 \\ 53999$	33307	$\frac{29166}{20000}$	$68836 \\ 06479$	$80554 \\ 99994$	$00545 \\ 44571$	636
7	. 99999	99400 99300	$00001 \\ 00002$	$79999 \\ 44999$	$99640 \\ 99428$	33334	33374	99935 $99859$	94166	S3006	80539	21541	$\frac{433}{681}$
8	. 99999	99200	00003	19999	99146	66668	37333	33060	26667	03075	55513	94539	724
9	. 99999	99100	00004	04999	98785	00002	73374	99507	92500	73811	24905	09982	250
			00001		00000	0000=	40000	00100	00000	05555		1.00*	0.00
1×10 ⁻⁷	0. 99999	99000	00004	99999	98333	33337	49999	99166	66668	05555	55357	14285	962
3	. 99999 . 99999	$98000 \\ 97000$	$00019 \\ 00044$	99999 99999	86666 55000	$66733 \\ 00337$	$\frac{33333}{49997}$	$06666 \\ 97500$	$66755 \\ 01012$	55555 $49995$	$\frac{30158}{66071}$	73079 $44484$	$\frac{365}{375}$
4	. 99999	96000	00079	99998	93333	34399	99991	46666	72355	55523	04762	06730	158
	.00000	00000	000.0	00000									
5	0.99999	95000	00124	99997	91666	69270	83307	29166	88368	05400	54564	46087	544
6	. 99999	94000	00179	99996	40000	05399	99935	20000	64799	99444	57147	02285	686
7 8	. 99999 . 99999	$93000 \\ 92000$	$00244 \\ 00319$	99994 $99991$	$\frac{28333}{46666}$	$43337 \\ 83733$	$\frac{49859}{33060}$	$\frac{94168}{26670}$	$\frac{30068}{30755}$	$03921 \\ 51394$	$54180 \\ 54009$	$96428 \\ 86412$	$\frac{708}{329}$
9	. 99999	91000	00404	99987	85000	27337	49507	92507	38112	40509	98321	04840	450
		• 1000											
1×10-6	0.99999	90000	00499	99983	33333	74999	99166	66680	55555	35714	28819	44441	689
$2 \cdots \cdots$	. 99999	80000	01999	99866	66673	33333	06666	67555	55530	15873	65079	35097	002
34	. 99999	70000 60000	$04499 \\ 07999$	$99550 \\ 98933$	00033 33439	$74997 \\ 99991$	$97500 \\ 46667$	$10124 \\ 23555$	$99566 \\ 52304$	$07159 \\ 76353$	$12945 \\ 01580$	$88616 \\ 07760$	$\begin{array}{c} 088 \\ 430 \end{array}$
7	. 33333	00000	01000	00000	00400	00001	10001	20000	02301	10000	01000	01100	100
5	0. 99999	50000	12499	97916	66927	08307	29168	83680	40054	57318	01781	49459	812
6	. 99999	40000	17999	96400	00539	99935	20006	47999	44457	18451	42579	42873	806
7	. 99999	30000	24499	94283	34333	74859		00678	92154	30964	27707	$40799 \\ 87773$	293
8 9	. 99999	$\frac{20000}{10000}$	$\frac{31999}{40499}$	$91466 \\ 87850$	$68373 \\ 02733$	$\frac{33060}{74507}$	92573	$07551 \\ 81115$	$\frac{39454}{50999}$	$\frac{38435}{28191}$	51856 $16555$	88237	$\frac{848}{649}$
	. 00000	10000	40400	67000	02100	7 1007	02010	01110	00000	20101	10000	00201	040
1×10-5	0, 99999	00000	49999	S3333	37499	99166	66805	55535	71431	05158	45458	58134	918
2	. 99998	00001	99998	66667	33333	06666	75555	53015	87936	50652	55760	14104	217
3	. 99997	00004	49995	50003	37497	97501	01249	56607	30557	98147	33770	08484	782
4	. 99996	00007	99989	33343	99991	46672	35552	30477	81586	57919	16021	05894	536
5	0. 99995	00012	49979	16692	70807	29188	36790	05466	03727	25662	68892	76375	056
6	, 99994	00017	99964	00053	99935	20064	79944	45755	94257	94302	37705	19692	856
7	. 99993	00024	49942	83433	37359	94330	06642	15559	64176	99149	98717	24649	249
8	. 99992	00031	99914	66837	33060	27030	75139	45812	92328	54757	97343	88835	463
9	, 99991	00040	49878	50273	37007	93238	10301	00889	04490	41831	39216	07633	246
1×10-4	0. 99990	00049	99833	33749	99166	68055	53571	45337	27403	02579	34002	74654	599
2	. 99980	00199	98666	73333	06667	55553	01593	65065	25601	41042	16856	39331	863
3	. 99970	00449	95500	33747	97510	12456	60877	$00350 \\ 37220$	46270	04490	77652	95014	$\frac{129}{422}$
4	. 99960	00799	89334	39991	46723	55230	49244		74750	27202	47629	64868	

Table VII.—Values of  $e^{-x}$  to 63 places of decimals at decimal intervals from  $1\times10^{-10}$  to  $9\times10^{-1}$ —Continued.

x							$e^{-x}$						
5×10-4	0. 99950	01249	79169	27057	29383	66505	55322	50247	26223	02486	90844	35858	478
3	. 99940	01799	64005	39935	20647	94446	13082	93730	94766	25908	96603	96600	981
7	. 99930	02449	42843	33609	95800	51716	84631	76235	05215	89370	76242	29612	61
3	, 99920	03199	14683	73060	30307	13949	55747	14313	50962	82217	88989	57251	-83
9	. 99910	04048	78527	33257	99880	17610	49663	11297	83926	91894	32872	95547	93
×10 ⁻³	0.99900	04998	33374	99166	80553	57167	65597	47023	55902	36008	20590	52028	51
2	.99800	19986	67333	06675	55301	65077	95442	67564	61972	92438	30580	58147	-63
3	. 99700	44955	03372	97601	20662	34097	56091	07417	74804	89844	71559	07658	-98
	, 99600	79893	43991	47235	23063	86579	47756	69165	28160	35315	78639	52494	89
	0, 99501	24791	92682	31335	25642	46232	50418	53859	08435	97232	32954	07758	99
	. 99401	79640	53935	26474	44987	72245	22520	14254	35943	49101	19096	12949	83
'	.99302	44429	33235	10490	47970	31756	01454	93896	51151	39821	82973	32899	-7€
3	.99203	19148	37060	63033	98697	00268	87164	93433	59144	20431	49248	41054	34
	. 99104	03787	72883	66216	45647	74627	71266	41139	11021	68667	32984	92224	92
×10 ⁻²	0. 99004	98337	49168	05357	39059	77180	03655	77720	79081	25383	74668	83878	7.4
2	. 98019	86733	06755	30222	08141	04225	30886	62997	12400	46914	40777	25203	93
3	. 97044	55335	48508	17693	25283	51959	19433	34867	36815	52894	36205	32113	50
	, 96078	94391	52323	20943	92106	91323	24588	60279	72093	71791	65716	23439	63
5	0.95122	94245	00714	00909	14253	19779	65216	06570	87449	34037	31345	30249	50
3	. 94176	45335	84248	70953	71527	83271	14970	60946	88662	54183	92213	74047	23
7	. 93239	38199	05948	22885	79726	32484	96785	43600	68377	74845	73976	05493	45
3	. 92311	63463	86635	78291	07598	49572	38881	00435	83063	14608	64993	87892	99
·	. 91393	11852	71228	18674	73535	46499	52061	02105	85194	82680	97766	63588	20
×10-1	0.90483	74180	35959	57316	42490	59446	43662	11947	05360	98040	09520	56257	31
2	. 81873	07530	77981	85866	99355	08619	03942	43585	91256	26901	56724	78028	70
3	.74081	82206	81717	86606	68737	79317	81687	21822	51231	99900	63482	95310	06
	. 67032	00460	35639	30074	44329	25147	82607	19369	80925	21081	21998	88910	33
5	<b>0</b> , 60653	06597	12633	42360	37995	34991	18045	34419	18135	48718	69556	82892	15
3	. 54881	16360	94026	43262	84589	17232	56787	53323	11956	69062	80669	80712	11
7	. 49658	53037	91409	51470	48000	93397	52896	17076	67165	71181	62620	54711	49
3	. 44932	89641	17221	59143	01023	85015	56279	59342	14941	27218	44908	97989	33
)	.40656	96597	40599	11188	34542	39645	62598	78337	03376	17037	\$1677	46288	64

Table VIII.—Values of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360.

				7011111						
n		$\epsilon^{\frac{n}{3}}$	π 60				ć	$-\frac{n\pi}{360}$		
0	1,00000	00000	00000	00000	000	1.00000	00000	$\begin{array}{c} 00000 \\ 96706 \\ 46661 \\ 14044 \\ 62250 \end{array}$	00000	000
1	.00876	48344	41532	05452	851	0.99131	13203		33089	086
2	.01760	64912	05851	57557	922	.98269	81339		35321	293
3	.02652	56436	27899	20923	149	.97415	97847		24673	777
4	.03552	29709	44284	88002	636	.96569	56224		37866	736
5	1. 04459	91583	45014	94512	101	0. 95730	50026	04372	64019	161
6	. 05375	48970	25672	72838	534	. 94898	72861	54113	03484	687
7	. 06299	08842	40056	40824	120	. 94074	18396	77120	78035	553
8	. 07230	78233	53278	26787	366	. 93256	80352	42753	21810	750
9	. 08170	64238	95329	35157	955	. 92446	52503	76255	85664	364
10	1. 09118	74016	15113	60646	067	0. 91643	28680	11357	90742	001
11	. 10075	14785	34955	62442	319	. 90847	02764	43279	70277	354
12	. 11039	93830	05586	13551	147	. 90057	68692	82148	41737	686
13	. 12013	18497	61609	43998	758	. 89275	20454	06818	54556	387
14	. 12994	96199	77457	00326	997	. 88499	52089	19093	61773	205
15	1. 13985	34413	23831	47486	813	0. 87730	57690	98345	66958	381
16	. 14984	40680	24645	42979	844	. 86968	31403	56529	00825	980
17	. 15992	22609	14459	16864	183	. 86212	67421	93584	84944	480
18	. 17008	87874	96421	95040	967	. 85463	59991	53233	42929	363
19	. 18034	44220	00721	07072	304	. 84721	03407	79150	22453	252
20	1.19068	99454	43543	23648	548	0. 83984	92015	71522	94334	292
21	.20112	61456	86552	72724	323	. 83255	20209	43985	97863	261
22	.21165	38174	96890	87278	267	. 82531	82431	80929	04404	425
23	.22227	37626	07701	41621	544	. 81814	73173	95176	74154	744
24	.23298	67897	79186	37185	061	. 81103	86974	86035	83770	873
25	1. 24379	37148	60197	02755	267	0.80399	$\begin{array}{c} 18420 \\ 62145 \\ 12829 \\ 65198 \\ 14024 \end{array}$	97707	05373	653
26	. 25469	53608	50364	78203	834	.79700		78058	20215	764
27	. 26569	25579	62776	54867	601	.79008		37755	53050	019
28	. 27678	61436	87199	49882	300	.78321		09750	15963	722
29	. 28797	69628	53859	95957	082	.77641		09116	53148	702
30	1. 29926	58676	97781	32296	996	0.76966	54124	93239	80757	377
31	. 31065	37179	23685	86637	747	.76297	80363	22349	18652	629
32	. 32214	13807	71465	42651	469	.75634	87646	20394	13493	606
33	. 33372	97310	82225	91314	403	.74977	70925	36260	55211	011
34	. 34541	96513	64910	69197	373	.74326	25196	05323	91514	228
35	$\begin{array}{c} 1.35721 \\ .36910 \\ .38110 \\ .39321 \\ .40542 \end{array}$	20318	63507	91048	389	0.73680	45497	11336	47638	859
36		77706	24846	88483	649	.73040	26910	48645	61087	260
37		77735	66988	71089	244	.72405	64560	84740	43636	504
38		29545	48216	30761	162	.71776	53615	23123	85388	162
39		42354	36629	14676	135	.71152	89282	66507	18112	526
40	1.41774	25461	80347	96890	877	0.70534	66813	80324	57596	608
41	.43016	88248	78334	83212	599	.69921	81500	56564	47140	580
42	.44270	40178	51833	88669	716	.69314	28675	77915	26761	562
43	.45534	90797	16438	31638	830	.68712	03712	82222	55056	820
44	.46810	49734	54788	93452	606	.68115	02025	27255	13050	927
45	1.48097	26704	89909	97123	524	0.67523	19066	55777	21703	207
46	.49395	31507	59187	63671	005	.66936	50329	60924	07083	184
47	.50704	74027	88997	09434	472	.66354	91346	51878	49532	865
48	.52025	64237	69983	52692	842	.65778	37688	19845	55425	741
49	.53358	12196	33003	02892	202	.65206	84964	04322	92403	513
50	1.54702	28051	25729	10808	292 $387$ $494$ $016$ $368$	0. 64640	28821	59664	31222	960
51	.56058	22038	89930	63039		. 64078	64946	21933	39577	206
52	.57426	04485	39427	09338		. 63521	89060	76045	75468	076
53	.58805	85807	38727	16452		. 62969	96925	23196	29899	492
54	.60197	76512	82356	47335		. 62422	84336	48569	70835	975
55	1.61601	87201	74880	69865	091	0. 61880	47127	89331	42525	659
56	.63018	28567	11630	04461	975	. 61342	81169	02896	76423	722
57	.64447	11395	60131	25381	130	. 60809	82365	35475	72070	156
58	.65888	46568	42253	35813	200	. 60281	46657	90891	08375	381
59	.67342	45062	17073	42376	336	. 59757	70022	99667	47848	532

**Table** VIII.—Values of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360—Continued.

			<i>Jrone ne</i>			ontinued	·			
n		$e^{\frac{i}{\epsilon}}$	$n\pi$ 360				$e^{-}$	$\frac{n\pi}{360}$		
60 61 62 63 64	. 70288 . 71781	17949 76400 31683 95163 78307	64468 69440 07180 28876 48277	60061 84226 71806 79556 12786	685 286 918 987 401	0. 59238 . 58723 . 58213 . 57707 . 57206	48471 78050 54839 74952 34537	88388 49322 10307 04903 42796	98366 99127 99458 01162 37068	542 427 797 498 836
65		92682	29009	43812	068	0, 56709	29776	80471	60448	935
66		49955	72666	65104	439	, 56216	56884	92128	21891	844
67		61898	07664	47944	055	, 55728	12109	40855	12193	974
68		40382	78877	83281	609	, 55243	91730	50054	51732	561
69		97387	38062	87426	137	, 54763	92060	75114	08702	308
70	1.84202	44994	35071	61169	047	0. 54288	09444	75325	30485	148
71	.85816	95392	09865	96987	248	. 53816	40258	86045	74297	510
72	.87445	60875	85338	35057	029	. 53348	80910	91103	25117	573
73	.89088	53848	60945	74952	191	. 52885	27839	95439	90737	003
74	.90745	86822	07164	56095	507	. 52425	77515	97993	65607	591
75	1. 92417	72417	60773	26282	571	0.51970	26439	64815	56963	376
76	. 94104	23367	20970	23901	766	.51518	71142	02420	68493	176
77	. 95805	52514	46334	05834	083	.51071	08184	31370	38617	250
78	. 97521	72815	52633	59432	218	.50627	34157	60084	32185	175
79	. 99252	97340	11495	43450	340	.50187	45682	58879	86159	993
80	2. 00999	39272	49936	09324	583	0. 49751	39409	34237	11586	546
81	. 02761	11912	50766	60790	224	. 49319	12017	03287	55859	665
82	. 04538	28676	53877	16465	121	. 48890	60213	68524	31010	739
83	. 06331	03098	58409	46730	841	. 48465	80735	92732	15419	220
84	. 08139	48831	25824	63003	504	. 48044	70348	74135	38029	032
85	2. 09963	79646	83874	44306	209	0. 47627	25845	21761	55808	661
86	. 11804	09438	31483	92934	532	. 47213	44046	31019	36838	163
87	. 13660	52220	44553	17946	512	. 46803	21800	59488	63036	447
88	. 15533	22130	82686	52209	299	. 46396	55984	02920	68158	185
89	. 17422	33430	96857	15796	707	. 45993	43499	71447	28291	620
90	2. 19328	00507	38015	45655	977	0. 45593	81277	65996	23676	592
91	. 21250	37872	66649	18648	471	. 45197	66274	54911	92236	275
92	. 23189	60166	63304	02318	445	. 44804	95473	50778	96776	722
93	. 25145	82157	40072	75057	055	. 44415	65883	87447	29355	240
94	. 27119	18742	53061	64705	804	. 44029	74540	97256	77852	204
95	2. 29109	84950	15842	62085	369	0. 43647	18505	88459	81301	115
96	.31117	95940	13899	73442	713	. 43267	94865	22840	02038	712
97	.33143	67005	20078	83382	137	. 42892	00730	93525	44230	900
98	.35187	13572	11049	07485	054	. 42519	33240	02994	49811	129
99	.37248	51202	84785	21529	362	. 42149	89554	41273	04335	996
100	2. 39327	95595	79079	61992	899	0. 41783	66860	64320	86718	102
101	. 41425	62586	91093	00367	250	. 41420	62369	72605	98238	893
102	. 43541	68150	97953	01718	646	. 41060	73316	89865	07674	338
103	. 45676	28402	78409	85912	539	. 40703	96961	42048	50783	996
104	. 47829	59598	35558	17968	202	. 40350	30586	36448	23819	430
105	2. 50001	78136	20634	62130	019	0. 39999	71498	41007	12101	097
106	. 52193	00558	57900	42433	634	. 39652	17027	63807	96093	901
107	. 54403	43552	70618	60808	433	. 39307	64527	32740	78780	699
108	. 56633	23952	08135	32093	526	. 38966	11373	75346	79490	198
109	. 58882	58737	74075	03753	213	. 38627	54965	98837	40681	099
110	2.61151	65039	55659	36560	368	0. 38291	92725	70286	95517	995
111	.63440	60137	54159	31073	041	. 37959	22096	96997	45396	697
112	.65749	61463	16490	93361	367	. 37629	40546	07033	97887	229
113	.68078	86600	67964	42149	403	. 37302	45561	29929	16861	994
114	.70428	53288	46196	68320	288	. 36978	34652	77555	37864	563
115	2.72798	79420	36197	66593	929	0. 36657	05352	25163	03051	267
116	.75189	83047	06640	68124	869	. 36338	55212	92583	71303	459
117	.77601	82377	47327	11784	814	. 36022	81809	25596	60362	966
118	.80034	95780	07856	00990	098	. 35709	82736	77456	79087	012
119	.82489	41784	37509	02109	953	. 35399	55611	90584	09151	846

Table VIII.—Values of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360—Continued.

n	$n\pi$ $e^{300}$	$e^{-rac{n\pi}{360}}$
120 121 122 123 124	2. 84965     39082     26361     49747     413       . 87463     06529     47630     33521     788       . 89982     63147     01269     50400     604       . 92524     28122     58824     16130     382       . 95088     20812     09554     38900     424	0. 35091     98071     78410     96756     574       . 34787     07774     07388     16090     274       . 34484     82396     79146     67526     631       . 34185     19638     12814     74700     914       . 33888     17216     27488     45804     511
125 126 127 128 129	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
130 131 132 133 134	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 32159     44453     34503     86537     070       .31880     02142     36793     42076     927       .31603     02613     17828     54178     719       .31328     43756     32292     75671     061       .31056     23480     67705     86246     376
135 136 137 138 139	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 30786     39713     28498     99750     548       .30518     90399     20228     08131     505       .30253     73501     33924     41824     435       .29990     87000     30581     27395     911       .29730     28894     25775     24304     706
140 141 142 143 144	3.39305 42565 19026 13629 581 .42279 38153 28551 03522 967 .45279 40364 47405 62602 350 .48305 72045 37576 33084 269 .51358 56242 85733 63770 467	0. 29471     97198     74421     23663     566       . 29215     89946     55659     92903     789       . 28962     05187     57876     51253     226       . 28710     40988     63849     61938     250       . 28460     95433     36029     28011     557
145 146 147 148 149	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 28213     66622     01942     79690     337       .27968     52671     39727     42063     470       .27725     51714     63788     72992     081       .27484     61901     10583     61985     084       .27245     81396     24526     81780     282
150 151 152 153 154	3. 70245     80577     10097     27735     985       . 73490     94896     12642     61314     616       . 76764     53529     43204     41037     843       . 80066     81406     96159     20188     329       . 83398     03677     16566     49446     801	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
155 156 157 158 159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
160 161 162 163 164	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.24752     01214     23915     57768     972       .24536     94983     93494     83007     990       .24323     75614     37532     87283     989       .24112     41481     98715     69025     103       .23902     90977     30399     94932     856
165 166 167 168 169	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 23695     22504     84356     13423     360       . 23489     34482     98618     17666     319       . 23285     25343     85438     65690     883       . 23082     93533     19348     65831     400       . 22882     37510     25321     36583     071
170 171 172 173 174	4. 40847     95827     41842     78299     274       . 44711     91764     23449     34735     479       . 48609     74397     46563     26129     116       . 52541     73410     94522     70973     329       . 56508     18748     68054     39580     576	0. 22683     55747     67038     50727     579       . 22486     46731     35258     74371     974       . 22291     08960     36287     12320     482       . 22097     40946     80544     71968     532       . 21905     41215     71237     58671     293
175 176 177 178 179	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table VIII.—Value of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=o to n=360—Continued.

	from n=0 to n=360-	
n	$r \pi c = 360$	$e^{-\frac{n\pi}{360}}$
180 181 182 183 184	4. 81047     73809     65351     65547     304       . 85264     04187     94247     68376     546       . 80517     30086     69266     03886     689       . 93807     83896     52908     51238     967       . 98135     98291     97523     46992     426	0.20787     95763     50761     90854     696       .20607     33773     15781     71456     866       .20428     28717     65516     24171     015       .20250     79233     44304     94157     308       .20074     83968     81237     92433     351
185 186 187 188 189	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19900     41583     79862     00996     409       .19727     50750     07976     28001     825       .19556     10150     87516     24785     622       .19386     18480     84525     93994     446       .19217     74445     99217     10355     391
190 191 192 193 194	5. 24913     23138     63859     03458     976       . 29514     00895     56571     83265     967       . 34155     11157     86254     40114     022       . 38836     89269     77101     73897     017       . 43559     70885     31951     76039     916	0.19050     76763     56114     78681     754       .18885     24161     94288     54068     539       .18721     15380     57668     49883     602       .18558     49169     85445     59806     685       .18397     24291     02555     20809     382
195 196 197 198 199	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.18237     39516     10243     44604     271       .18078     93627     76715     45721     131       .17921     85419     27864     94992     380       .17766     13694     38084     27848     651       .17611     77267     21154     37438     854
200 201 202 203 204	5.72778     70502     99033     31615     443       .77799     01555     11255     57775     134       .82863     32826     29113     78243     032       .87972     02883     71761     47667     295       .93125     50632     61857     07528     136	0.17458     74962     21213     83197     126       .17307     05614     03806     46081     903       .17156     68067     47006     62309     877       .17007     61177     32621     68000     005       .16859     83808     37470     87729     933
205 206 207 208 209	5. 98324     15319     21845     98509     259       6. 03568     36533     72839     59245     528       . 08858     54213     36113     87554     966       . 14195     08645     37250     60212     885       . 19578     40470     12944     27450     523	0.16713     34835     24740     00589     333       .16568     13142     35411     17891     704       .16424     17623     79767     07278     251       .16281     47183     28968     98514     529       .16140     00734     06708     06842     675
210 211 212 213 214	6. 25008     90684     20498     18661     514       .30487     90643     50033     16278     404       .36013     12066     39432     75439     813       .41587     67036     92048     87908     302       .47211     08007     97192     09721     086	0.15999     77198     80929     10309     347       .15860     75509     55626     18041     887       .15722     94607     62709     66992     878       .15586     33443     53943     85216     098       .15450     90976     92954     60275     062
215 216 217 218 219	6. 528\$3     77804     53430     93262     120       .58606     19626     94724     85836     308       .64378     77054     19415     78406     301       .70201     94047     22103     09921     242       .76076     14952     28427     54626     483	0.15316     66176     47306     51918     782       .15183     58019     30648     88688     251       .15051     65493     44929     88641     365       .14920     87592     72678     44903     714       .14791     23321     69353     17267     840
220 221 222 223 224	6.82001     84504     32789     41895     435       .87979     47830     39026     80471     041       .94009     50453     04079     81546     502       7.00092     38293     84666     97854     660       .06228     57676     87000     18874     469	0.14662     71693     05757     71574     243       .14535     31728     10522     09113     701       .14409     02456     62649     28792     320       .14283     82916     84126     65298     220       .14159     72155     32601     47001     970
225 226 227 228 229	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.14036     69226     94120     17811     747       .13914     73194     75930     67688     869       .13793     83129     99347     17009     761       .13673     98111     92677     00436     697       .13555     17227     84208     96431     763
230 231 232 233 234	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13437     39572     95262     49016     520       .13320     64250     33297     28843     804       .13204     90370     85082     81107     998       .13090     17053     09927     08276     070       .12976     43423     32964     36073     612
235 236 237 238 239	7.77382     15006     17839     59185     504       .84195     77590     48777     23202     201       .91069     12205     04327     48324     230       .98002     71193     70129     05724     452       8.04997     07359     10344     19219     860	0.12863     68615     38501     11608     165       .12751     .91770     63419     82956     263       .12641     12037     90640     09980     896       .12531     28573     42636     56582     583       .12422     40540     75013     15019     892

**Table VIII.**—Values of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360—Continued.

n			$e^{\frac{n\pi}{360}}$					$e^{-\frac{n\pi}{360}}$		
240	8. 12052	73966	69776	31584	700	0. 12314	47110	70133	13364	153
241	. 19170	24748	79512	20337	923	. 12207	47461	30804	57578	317
242	. 26350	13908	66119	52166	269	. 12101	40777	74020	60131	364
243	. 33592	96124	64430	92220	258	. 11996	26252	24754	07477	529
244	. 40899	26554	33946	11833	666	. 11892	03084	09806	19143	782
$\begin{array}{ c c c c }\hline 245 \\ 246 \\ 247 \\ 248 \\ 349 \\ \hline \end{array}$	8. 48269 . 55704 . 63204 . 70770 . 78402	60838 55106 65978 50572 66503	78883 71914 81608 03631 95712	65769 37891 82193 14405 37936	776 883 324 896 932	0. 11788 . 11686 . 11584 . 11484 . 11384	$70479 \\ 27651 \\ 73820 \\ 08212 \\ 30061$	51708 62678 38624 53210 51962	51579 00330 54497 57853 31368	606 151 323 367 003
250	8. 86101	71897	16436	16666	869	0. 11285	38607	46432	12303	254
251	. 93868	25383	67870	36172	912	. 11187	33097	08411	65419	737
252	9. 01702	86109	42078	24232	692	. 11090	12783	64195	22224	482
253	. 09606	13738	71543	31006	758	. 10993	76926	88893	04573	217
254	. 17578	68458	83541	99102	710	. 10898	24793	00793	89319	680
255	9. 25621	10984	58498	83788	916	0. 10803	55654	55776	71080	766
256	. 33734	02562	92359	13954	448	. 10709	68790	41770	80559	368
257	. 41918	04977	63014	15006	354	. 10616	63485	73264	16236	506
258	. 50173	80554	00814	45758	072	. 10524	39031	85859	47610	938
259	. 58501	92163	63207	32495	911	. 10432	94726	30877	48527	800
260	9, 66903	03229	13534	14816	610	0. 10342	29872	70007	19498	038
261	.75377	77729	04024	49510	263	. 10252	43780	70002	58267	516
262	.83926	80202	63023	50721	902	. 10163	35765	97425	38248	614
263	.92550	75754	86489	76864	133	. 10075	05150	13433	54778	112
264	10, 01250	30061	33801	07274	906	. 09987	51260	68614	99512	953
265	10. 10026	09373	27905	84421	191	0. 09900	73430	97866	23620	359
266	. 18878	80522	59858	30543	655	. 09814	71000	15315	50760	602
267	. 27809	10926	97775	81021	711	. 09729	43313	09290	01199	605
268	. 36817	68595	00257	10415	295	. 09644	89720	37326	88724	480
269	. 45905	22131	34300	61111	832	. 09561	09578	21227	52368	126
270	10. 55072	40741	97762	18776	707	0. 09478	02248	42154	85279	102
271	. 64319	94239	46392	13375	833	. 09395	67098	35773	23400	282
272	. 73648	53048	25491	59412	138	. 09314	03500	87430	56944	153
273	. 83058	88210	06228	84196	705	. 09233	10834	27382	27974	251
274	. 92551	71389	26656	28462	535	. 09152	88482	26056	77720	981
275	11. 02127	74878	37469	39427	$194 \\ 656 \\ 212 \\ 174 \\ 044$	0. 09073	35833	89362	07576	123
276	.11787	71603	52549	12522		. 08994	52283	54033	18023	577
277	.21532	35130	04329	74439		. 08916	37230	83019	90074	479
278	.31362	39668	04034	36878		. 08838	90080	60914	74082	642
279	.41278	60078	06820	87478		. 08762	10242	89420	51121	503
280	11. 51281	71876	81881	21773	686	0. 08685	97132	82857	32406	240
281	. 61372	51242	87537	57770	642	. 08610	50170	63708	62544	664
282	. 71551	75022	51379	12769	988	. 08535	68781	58205	92697	753
283	. 81820	20735	55483	60465	906	. 08461	52395	91951	90025	436
284	. 92178	66581	26768	25061	373	. 08388	00448	85581	50085	363
285	12. 02627	91444	32515	08210	017	0. 08315	12380	50460	79142	032
286	. 13168	74900	81115	83997	199	. 08242	87635	84423	13630	715
287	. 23801	97224	28082	36923	751	. 08171	25664	67542	44305	263
288	. 34528	39391	87368	57954	636	. 08100	25921	57943	12880	954
289	. 45348	83090	48050	54145	018	. 08029	87865	87646	49263	274
290	12. 56264	10722	96411	68161	042	0. 07960	10961	58453	17730	730
291	. 67275	05414	43480	45175	074	. 07890	94677	37861	40714	661
292	. 78382	51018	58068	26138	346	. 07822	38486	55020	69091	440
293	. 89587	32124	05355	88321	175	. 07754	41866	96720	68172	576
294	13. 00890	34060	91076	96265	160	. 07687	04301	03414	88845	924
295	13. 12292	42907	11347	68916	485	0. 07620	25275	65278	93586	651
296	. 23794	45495	08192	11707	660	. 07554	04282	18303	07319	705
297	. 35397	29418	30813	05730	179	. 07488	40816	40418	63376	343
298	. 47101	83038	02658	89895	883	. 07423	34378	47658	15045	833
299	. 58908	95489	94337	16123	604	. 07358	84472	90348	83479	756

Table VIII.—Value of  $e^{\pm \frac{n\pi}{360}}$  to 23 places of decimals or significant figures at intervals of unity from n=0 to n=360—Continued.

n			$n\pi$ 360			$e^{-rac{n\pi}{360}}$
300 301 302 303 304	13. 70819 . 82834 . 94954 14. 07181 . 19515	56691 57346 88955 43822 15055	02426 34235 98570 02548 54523	02113 51186 53978 32482 33038	374 394 601 414 599	0. 07294     90608     49339     12960     414       . 07231     52298     32258     04796     701       . 07168     69059     69807     01360     509       . 07106     40414     12083     92024     232       . 07044     65887     24939     13005     305
305 306 307 308 309	14. 31956 . 44507 . 57168 . 69940 . 82824	96583 83157 70356 54600 33152	73173 02799 34899 36058 82226	21391 79841 53854 43239 81168	$\begin{array}{c} 698 \\ 590 \\ 180 \\ 420 \\ 582 \end{array}$	0.06983     45008     86363     13366     939       .06922     77312     82905     59665     336       .06862     62337     06125     51972     697       .06802     99623     49072     24242     264       .06743     88718     02797     02216     549
310 311 312 313 314	14. 95821 15. 08931 . 22157 . 35498 . 48957	04129 66508 20130 65717 04868	$\begin{array}{c} 99429 \\ 10970 \\ 91181 \\ 25783 \\ 78908 \end{array}$	92888 75002 85629 85622 21351	587 865 540 353 505	0.06685     29170     52894     92312     725       .06627     20534     76076     75149     998       .06569     62368     36770     77612     585       .06512     54232     83753     97568     760       .06455     95693     46812     55591     273
315 316 317 318 319	15. 62533 . 76228 . 90044 16. 03980 . 18039	40077 74734 13135 60492 22937	66842 38559 63083 23760 19490	90294 81883 37706 27247 87927	364 558 315 885 558	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
320 321 322 323 324	16. 32221 . 46527 . 60958 . 75516 . 90202	07533 22283 76134 78990 41717	$72983 \\ 46091 \\ 62300 \\ 36419 \\ 11546$	31192 69911 76276 33804 01993	026 820 270 977 393	0. 06126     62105     09709     91134     679       . 06073     38880     36083     09861     317       . 06020     61907     41875     26199     944       . 05968     30784     40384     32227     413       . 05916     45112     94077     57888     523
325 326 327 328 329	17. 05016 . 19960 . 35036 . 50243 . 65584	$76153 \\ 95116 \\ 12414 \\ 42852 \\ 02240$	03370 51876 80504 62855 96979	67490 11575 80046 98504 33333	843 491 591 <b>0</b> 99 821	0. 05865     04498     11557     88910     155       . 05814     08548     44556     20705     151       . 05763     56875     84950     25362     667       . 05713     49095     61809     09020     719       . 05663     84826     38463     37113     933
331	17. 81059 . 96669 18. 12417 . 28302 . 44327	07405 76197 27498 81233 58379	87331 34463 32503 74512 65764	56566 31140 91954 57506 66793	908 320 067 306 056	0. 05614     63690     09601     05185     051       . 05565     85311     98388     33142     596       . 05517     49320     53615     61039     295       . 05469     55347     46868     24636     339       . 05422     03027     69721     89207     412
336 337	18, 60492 , 76799 , 93249 19, 09843 , 26583	\$0972 72118 56001 57896 04174	45042 14003 74688 75253 63988	96590 75195 70203 89920 00603	118 206 097 315 375	0.05374     91999     30962     20223     646       .05328     21903     53828     69746     206       .05281     92384     73282     57537     209       .05236     03090     33298     26082     030       .05190     53670     84178     48896     838
341 342 343	19. 43469 . 60503 . 77686 . 95020 20. 12507	22314 40912 89693 99516 02389	51692 82495 13178 01081 00669	24830 49996 40155 09241 79061	545 317 162 569 689	0. 05145     43779     79892     71674     436       . 05100     73073     75438     65999     091       . 05056     41212     24226     75537     216       . 05012     47857     75487     34785     287       . 04968     92675     71700     40629     501
346 347 348	20. 30146 . 47940 . 65890 . 83997 21. 02263	31476 21110 06800 25242 14331	68838 79019 44189 48830 89948	11393 70049 35867 65263 51294	295 959 752 134 515	0.04925     75334     46047     57143     187       .04882     95505     19886     34218     104       .04840     52862     00246     20794     325       .04798     47081     77346     53620     544       .04756     77844     22136     02642     314
350 351 352 353 354	21. 20689 . 39276 . 58027 . 76941 . 96022	13172 62086 02627 77587 31013	27206 42266 07417 63565 07675	15042 24607 09125 05900 50090	175 222 285 027 701	0.04715     44831     83853     54279     980       .04674     47729     87610     14020     846       .04633     86226     31992     09911     568       .04593     60011     86684     78696     681       .04553     68779     90117     16507     855
355 356 357 358 359	22. 15270 . 34686 . 54273 . 74031 . 93963	08210 55762 21532 54684 05686	89744 19387 82122 65441 94751	88342 70332 45426 65506 69532	326 009 202 596 741	0.04514     12226     47126     76165     636       .04474     90050     26644     93311     316       .04436     01952     59402     23741     086       .04397     47637     35653     74467     767       .04359     26811     02924     11187     273
360 2	23. 14069	26327	79269	00572	909	0. 04321 39182 63772 24977 442

Table IX.—Values of  $e^{\pm n\pi}$  to 25 places of decimals or significant figures for various values of n.

n		-	$n\pi$						$e^{-n\pi}$		
7/6 13/6 19/6		39. 06361 903. 95906 20918. 23899	33631 99632 06336	89410 95003 20474	86273 11733 74990	103 87	0. 02559 . 00110 . 00004	92703 62447 78051	67096 77255 71384	25596 90464 06160	73767 07938 18611
5/4 9/4 13/4		50. 75401 1174. 48316 27178. 35393	$\begin{array}{c} 95117 \\ 53991 \\ 28751 \end{array}$	$34935 \\ 39896 \\ 52262$	$\begin{array}{c} 60233 \\ 15170 \\ 56105 \end{array}$	883 1	0. 01970 . 00085 . 00003	$\begin{array}{c} 28729 \\ 14383 \\ 67939 \end{array}$	$\begin{array}{c} 86617 \\ 42805 \\ 86952 \end{array}$	$\begin{array}{c} 11028 \\ 15803 \\ 62379 \end{array}$	$\begin{array}{c} 26839 \\ 58525 \\ 65643 \end{array}$
$^{4/3}_{7/3}_{10/3}$		65, 94296 1525, 96588 35311, 90760	52000 89887 51944	$\begin{array}{c} 64414 \\ 50315 \\ 42270 \end{array}$	$\begin{array}{c} 66050 \\ 18599 \\ 60088 \end{array}$	359 0	0. 01516 . 00065 . 00002	$\begin{array}{c} 46198 \\ 53226 \\ 83190 \end{array}$	64546 43327 59145	$\begin{array}{c} 56995 \\ 69247 \\ 16207 \end{array}$	25407 97556 79080
3/2 5/2 7/2		$\begin{array}{c} 111.\ 31777 \\ 2575.\ 97049 \\ 59609.\ 74149 \end{array}$	$84898 \\ 65975 \\ 28721$	$\begin{array}{c} 56226 \\ 70550 \\ 55884 \end{array}$	$\begin{array}{c} 02684 \\ 92240 \\ 50138 \end{array}$	10 7	0. 00898 . 00038 . 00001	$32910 \\ 82032 \\ 67757$	$\begin{array}{c} 21129 \\ 03926 \\ 81524 \end{array}$	$\begin{array}{c} 42788 \\ 76624 \\ 22578 \end{array}$	$\begin{array}{c} 96650 \\ 72325 \\ 70825 \end{array}$
5/3 8/3 11/3		187. 91462 4348. 47465 1 00626. 71551	$\begin{array}{c} 85023 \\ 93769 \\ 40705 \end{array}$	$\begin{array}{c} 98509 \\ 06427 \\ 19800 \end{array}$	$\begin{array}{c} 43960 \\ 43192 \\ 4780 \end{array}$	$_0^{74}$	0. 00532 . 00022 . 00000	15654 99656 99377	$\begin{array}{c} 78800 \\ 95636 \\ 18774 \end{array}$	58297 $20042$ $69429$	$30579 \\ 96150 \\ 21058$
$7/4 \\ 11/4 \\ 15/4$		244. 15106 5649. 82470 1 30740. 85684	$\begin{array}{c} 28542 \\ 14771 \\ 59666 \end{array}$	$75029 \\ 50409 \\ 27285$	$\begin{array}{c} 02837 \\ 93657 \\ 2389 \end{array}$	17 8	0. 00409 . 00017 . 00000	58248 69966 76487	89350 41991 18419	83589 13104 96689	$\begin{array}{c} 25536 \\ 12384 \\ 60038 \end{array}$
11/6 17/6 23/6		317. 21714 7340. 62439 1 69867. 13281	$\begin{array}{c} 25286 \\ 31050 \\ 35262 \end{array}$	95191 68162 43509	88997 80074 0267	58 8	0. 00315 . 00013 . 00000	$\begin{array}{c} 24147 \\ 62281 \\ 58869 \end{array}$	$\begin{array}{c} 52962 \\ 93468 \\ 54017 \end{array}$	$\begin{array}{c} 28940 \\ 02216 \\ 74846 \end{array}$	$\begin{array}{c} 00659 \\ 28376 \\ 24408 \end{array}$
2 3 4		535. 49165 12391. 64780 2 86751. 31313	$\begin{array}{c} 55247 \\ 79166 \\ 66532 \end{array}$	$\begin{array}{c} 64736 \\ 97481 \\ 99746 \end{array}$	50304 $50654$ $6916$	93	0. 00186 . 00008 . 00000	$74427 \\ 06995 \\ 34873$	31707 17570 42356	$\begin{array}{c} 98881 \\ 30459 \\ 20899 \end{array}$	44302 92392 54918
5 6 7	15 355		$\begin{array}{c} 11342 \\ 66939 \\ 43596 \end{array}$	$33266 \\ 22626 \\ 96468$	264 2		0. 00000 . 00000 . 00000	$\begin{array}{c} 01507 \\ 00065 \\ 00002 \end{array}$	01727 12412 81426	53900 13607 84574	64611 99007 85553
$\begin{smallmatrix}8\\9\\10\end{smallmatrix}$	8 222 190 277 4403 150	38 95292, 16129	$\begin{array}{c} 52749 \\ 16866 \\ 14005 \end{array}$	$6691 \\ 54 \\ 4$			0. 00000 . 00000 . 00000	00000 00000 00000	$\begin{array}{c} 12161 \\ 00525 \\ 00022 \end{array}$	55670 54851 71101	$\begin{array}{c} 94093 \\ 76006 \\ 06832 \end{array}$

Table X.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of unity from 0 to 100.

x	sin x		cos x						
0 1 2 3 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000 000 50665 250 69539 602 22210 074 25137 264	1.00000 00000 00000 00000 000 +0.54030 23058 68139 71740 094 41614 68365 47142 38699 757 98999 24966 00445 45727 157 65364 36208 63611 91463 917						
5 6 7 8 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	46889 315 87281 156 09039 700 77780 812 56975 627	+0.28366 21854 63226 26446 664 +.96017 02866 50366 02054 565 +.75390 22543 43304 63814 120 14550 00338 08613 52586 884 91113 02618 84676 98836 829						
10 11 12 13 14	99999 02065 50703 53657 29180 00434 + .42016 70368 26640	81340 475 45705 156 97166 537 92186 896 30787 535	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
15 16 17 18 19	28790 33166 65065 3 96139 74918 79556 8 75098 72467 71676	86582 974 29478 446 85726 164 10375 016 32975 424	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
20 21 22 23 24	+ .83665 56385 36056 ( 00885 13092 90403 8 84622 04041 75170 (	65437 610 03186 648 87592 169 03524 133 84513 579	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
25 26 27 28 29	+ .76255 84504 79602 7 + .95637 59284 04503 6 + .27090 57883 07869 6	02890 201 73751 582 01343 234 01998 634 60215 117	+0.99120 28118 63473 59808 329 + .64691 93223 28640 34272 138 29213 88087 33836 19337 140 96260 58663 13566 60197 545 74805 75296 89000 35176 519						
30 31 32 33 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78998 775 90604 877 95066 156 94572 808 92083 249	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
35 36 37 38 39	99177 88534 43115 7 64353 81333 56999 4 + . 29636 85787 09385 3	0440 675 3683 529 6068 567 1739 230 5326 066	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
40 41 42 43 44	15862 26688 04708 9 91652 15479 15633 7 83177 47426 28598 2	8698 771 8710 332 8589 899 8820 958 7780 795	-0.66693     80616     52261     84438     409      98733     92775     23826     45822     883      39998     53149     88351     29395     471       +.55511     33015     20625     67704     483       +.99984     33086     47691     22006     901						
45 46 47 48 49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2486 238 8503 329 0406 153 9904 497 1836 042	+0.52532 19888 17729 69604 746 43217 79448 84778 29495 278 99233 54691 50928 71827 975 64014 43394 69199 73131 294 +.30059 25437 43637 08368 703						
50 51 52 53 54	+ .67022 91758 43374 73 + .98662 75920 40485 29 + .39592 51501 81834 18	8591 439 3449 435 9658 757 8150 339 4581 787	+0.96496 60284 92113 27406 896 +.74215 41968 13782 53946 738 16299 07807 95705 48100 333 91828 27862 12118 89119 973 82930 98328 63150 14772 785						
55 56 57 58 59	52155 10020 86911 88 + .43616 47552 47824 95 + .99287 26480 84537 11	3659 863 8018 741 5908 053 1816 509 8077 123	+0.02212 67562 61955 73456 356 +.85322 01077 22584 11396 968 +.89986 68269 69193 78650 300 +.11918 01354 48819 28543 584 77108 02229 75845 22938 744						

<i>x</i>		si	<b>n</b> x				co	8 J		
60	-0.30481	06211	02216	70562	565	-0. 95241	29804	15156	29269	382
61	96611	77700	08392	94701	829	25810	16359	38267	44570	121
62	73918	06966	49222	86727	602	+ . 67350	71623	23586	25288	783
63	+.16735	57003	02806	92152	784	+ . 98589	65815	82549	69743	864
64	+.92002	60381	96790	68335	154	+ . 39185	72304	29550	00516	171
65 66 67 68 69	+0. 82682 02655 85551 89792 11478	\$6794 11540 99789 76806 48137	90103 23966 75322 89291 83187	$\begin{array}{c} 46771 \\ 79446 \\ 25899 \\ 26040 \\ 22054 \end{array}$	021 384 683 073 507	$\begin{array}{c} -0.56245 \\99964 \\51776 \\ +.44014 \\ +.99339 \end{array}$	38512 74559 97997 30224 03797	38172 66349 89505 96040 22271	03106 96483 06565 70593 63756	212 045 339 105 155
70 71 72 73 74	+0.77389 + .95105 + .25382 67677 98514	$\begin{array}{c} 06815 \\ 46532 \\ 33627 \\ 19568 \\ 62604 \end{array}$	57889 54374 62036 87307 68247	$\begin{array}{c} 09778 \\ 63665 \\ 27306 \\ 62215 \\ 37085 \end{array}$	733 657 903 498 189	+0.63331 30902 96725 73619 +.17171	92030 27281 05882 27182 73418	86299 66070 73882 27315 30777	83233 70291 48729 96016 55609	201 749 171 815 845
75	$\begin{array}{c} -0.38778 \\ + .56610 \\ + .99952 \\ + .51397 \\44411 \end{array}$	16354	09430	43773	094	+0. 92175	12697	24749	31639	230
76		76368	98180	32361	028	+ . 82433	13311	07557	75991	501
77		01585	80731	24386	610	03097	50317	31216	45752	196
78		84559	87535	21169	609	85780	30932	44987	85540	835
79		26687	07508	36850	760	89597	09467	90963	14833	703
80	-0. 99388	86539	23375	18973	081	$\begin{array}{c c} -0.11038 \\ + .77668 \\ + .94967 \\ + .24954 \\68002 \end{array}$	72438	39047	55811	787
81	62988	79942	74453	87856	521		59820	21631	15768	342
82	+ . 31322	87824	33085	15263	353		76978	82543	20471	326
83	+ . 96836	44611	00185	40435	015		01179	73338	12437	735
84	+ . 73319	03200	73292	16636	321		34955	87338	79542	720
85	-0. 17607	56199	48587	07696	212	$ \begin{vmatrix} -0.98437 \\38369 \\ +.56975 \\ +.99937 \\ +.51017 \end{vmatrix} $	66433	94041	89491	821
86	92345	84470	04059	80260	163		84449	49741	84477	893
87	82181	78366	30822	54487	211		03342	65311	92000	851
88	+ . 03539	83027	33660	68362	543		32836	95124	65698	442
89	+ . 86006	94058	12453	22683	685		70449	41668	89902	379
90	+0. 89399	66636	00557	89051	827	$\begin{array}{r} -0.44807 \\99436 \\62644 \\ + .31742 \\ + .96945 \end{array}$	36161	29170	15236	548
91	+ . 10598	75117	51156	85002	021		74609	28201	52610	672
92	77946	60696	15804	68855	400		44479	10339	06880	027
93	94828	21412	69947	23213	104		87015	19701	64974	551
94	24525	19854	67654	32522	044		93666	69987	60380	439
95	+0. 68326	17147	36120	98369	958	+0. 73017	35609	94819	66479	352
96	+ . 98358	77454	34344	85760	773	18043	04492	91083	95011	850
97	+ . 37960	77390	27521	69648	192	92514	75365	96413	89170	475
98	57338	18719	90422	88494	922	81928	82452	91459	25267	566
99	99920	68341	86353	69443	272	+ . 03982	08803	93138	89816	180
100	<b>-0</b> . <b>50</b> 636	56411	09758	79365	656	+0.86231	88722	87683	93410	194

**Table XI.**—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.1 from 0.0 to 10.0.

x		รเำ	ı x				coa	s .r		
0. 0 .1 .2 .3 .4	+0.00000 .09983 .19866 .29552 .38941	00000 34166 93307 02066 83423	00000 46828 95061 61339 08650	00000 15230 21545 57510 49166	000 681 941 532 631	+1,00000 0,99500 ,98006 ,95533 ,92106	00000 41652 65778 64891 09940	00000 78025 41241 25606 02885	00000 76609 63112 01964 08279	000 556 420 231 853
0.5 .6 .7 .8 .9	+0. 47942 . 56464 . 64421 . 71735 . 78332	55386 24733 76872 60908 69096	04203 95035 37691 99522 27483	$\begin{array}{c} 00027 \\ 35720 \\ 05367 \\ 76162 \\ 38846 \end{array}$	329 095 261 717 138	+0.87758 .82533 .76484 .69670 .62160	25618 56149 21872 67093 99682	90372 09678 84488 47165 70664	$71611 \\ 29724 \\ 42625 \\ 42092 \\ 45648$	628 095 586 075 472
1. 0 . 1 . 2 . 3 . 4	+0. \$4147 . \$9120 . 93203 . 96355 . 98544	09848 73600 90859 81854 97299	07896 61435 67226 17192 88460	50665 33995 34967 96470 18065	250 180 013 135 947	+0.54030 $.45359$ $.36235$ $.26749$ $.16996$	23058 61214 77544 88286 71429	68139 25577 76673 24587 00240	71740 38777 57763 40699 93861	094 137 837 798 675
1.5 .6 .7 .8	+0.99749 $.99957$ $.99166$ $.97384$ $.94630$	49866 36030 48104 76308 00876	04054 41505 52468 78195 87414	43094 16434 61534 18653 48848	172 211 613 237 971	+0.07073 02919 .12884 .22720 .32328	72016 95223 44942 20946 95668	67702 01288 95524 93087 63503	91008 72620 68408 05531 42227	819 577 764 667 883
2. 0 .1 .2 .3 .4	+0.90929 .86320 .80849 .74570 .67546	74268 93666 64038 52121 31805	25681 48873 19590 76720 51150	69539 77068 18430 17738 92656	602 076 404 541 577	-0. 41614 . 50484 . 58850 . 66627 . 73739	68365 61045 11172 60212 37155	47142 99857 55345 79824 41245	38699 45162 70852 19331 49960	757 094 414 788 882
2. 5 . 6 . 7 . 8	+0. 59847 . 51550 . 42737 . 33498 . 23924	21441 13718 98802 81501 93292	03956 21464 33829 55904 13982	49405 23525 93455 91954 32818	185 773 605 385 426	-0.80114 .85688 .90407 .94222 .97095	36155 87533 21420 23406 81651	46933 68947 17061 68658 49590	71483 23379 14798 15258 52178	350 770 253 679 111
3. 0 .1 .2 .3 .4	+0.14112 $+0.04158$ $-0.05837$ $0.15774$ $0.25554$	00080 06624 41434 56941 11020	59867 33290 27579 43248 26831	22210 57919 90913 38201 31924	074 470 722 165 990	-0. 98999 . 99913 . 99829 . 98747 . 96679	24966 51502 47757 97699 81925	00445 73279 94753 08864 79461	45727 46449 08466 88393 01428	157 238 160 659 220
3. 5 . 6 . 7 . 8 . 9	-0.35078 .44252 .52983 .61185 .68776	32276 04432 61409 78909 61591	89619 94852 08493 42719 83973	84812 38426 21321 07573 81809	037 673 078 359 089	-0. 93645 . 89675 . 84810 . 79096 . 72593	66872 84163 00317 77119 23042	90796 34147 10408 14416 00140	33769 00587 15883 69999 12937	866 029 567 657 233
4. 0 .1 .2 .3 .4	-0.75680 .81827 .87157 .91616 .95160	24953 71110 57724 59367 20738	07928 64410 13588 49454 89515	25137 50426 06001 98403 95403	264 504 858 171 539	-0. 65364 .57482 .49026 .40079 .30733	36208 39465 08213 91720 28699	63611 33268 40699 79975 78419	91463 91153 57765 29690 68311	917 503 55- 670 91-
4.5 .6 .7 .8 .9	-0. 97753 . 99369 . 99992 . 99616 . 98245	$\begin{array}{c} 01176 \\ 10036 \\ 32575 \\ 46088 \\ 26126 \end{array}$	$\begin{array}{c} 65097 \\ 33464 \\ 64100 \\ 35840 \\ 24332 \end{array}$	05538 45613 88417 67178 51227	914 $810$ $954$ $160$ $638$	$\begin{array}{c c} -0.21079 \\11215 \\01238 \\ +.08749 \\ .18651 \end{array}$	57994 25269 86634 89834 23694	$\begin{array}{c} 30779 \\ 35054 \\ 62890 \\ 39446 \\ 22575 \end{array}$	70598 51742 73715 56932 40449	04: 99: 05: 02: 43:
5. 0 . 1 . 2 . 3 . 4	-0. 95892 . 92581 . 88345 . 83226 . 77276	42746 46823 46557 74422 44875	63138 27732 20153 23901 55987	46889 29694 26467 16356 36235	315 615 308 456 847	+0, 28366 . 37797 . 46851 . 55437 . 63469	21854 77427 66713 43361 28759	$\begin{array}{c} 63226 \\ 12980 \\ 00376 \\ 79160 \\ 42634 \end{array}$	$\begin{array}{c} 26446 \\ 56332 \\ 95863 \\ 92944 \\ 36240 \end{array}$	66- 05- 90- 49- 67-
5. 5 . 6 . 7 . 8 . 9	-0.70554 .63126 .55068 .46460 .37387	03255 66378 55425 21794 66648	70391 72321 97637 13757 30236	90623 31146 76122 21141 35981	192 367 735 823 485	+0.70866 .77556 .83471 .88551	97742 58785 27848 95169 84307	91260 10249 39159 41319 44035	$\begin{array}{c} 00002 \\ 79765 \\ 68274 \\ 00416 \\ 74090 \end{array}$	74 58 92 46 61

Table XI.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.1 from 0.0 to 10.0—Continued.

					_	I	_			
x		รเ๋า	ı x				co	s x		
6, 0	-0. 27941	54981	98925	87281	156	+0.96017	02866	50366	02054	565
1 1	- 18216	25042	72095	54002	413	. 98326	84384	42584	59658	502
.2	08308	94028	17496	57800	058	. 99654	20970	23217	47513	940
.3	+ .01681	39004	84349	89031	097	. 99985	86363	83415	14228	667
.4	. 11654	92048	50493	28948	042	. 99318	49187	58192	65859	474
6, 5	+0.21511	99880	87815	52429	695	+0.97658	76257	28023	49988	631
6	. 31154	13635	13378	17435	499	. 95023	25919	58529	46621	974
7	. 40484	99206	16598	16163	219	. 91438	31482	35319	44113	790
.8	. 49411	33511	38608	32222	208	. 86939	74903	49825	17244	162
. 9	. 57843	97643	88199	87017	378	. 81572	51001	25357	07265	676
7.0	+0, 65698	65987	18789	09039	700	+0.75390	22543	43304	63814	120
1.1	. 72896	90401	25876	15207	599	. 68454	66664	42806	34062	180
.2	. 79366	78638	49153	05246	445	. 60835	13145	32254	67100	485
.3	. 85043	66206	28564	51751	737	52607	75173	81105	18891	541
.4	. 89870	80958	11626	75926	950	. 43854	73275	74390	64913	410
7.5	+0, 93799	99767	74738	85794	846	+0.34663	53178	35025	81097	162
.6	. 96791	96720	31486	42590	346	+ .25125	98425	82255	38005	815
.7	. 98816	82338	77000	36855	239	+ .15337	38620	37864	52597	738
.8	. 99854	33453	74604	96343	877	+ .05395	54205	62649	57303	257
9	. 99894	13418	39772	03630	491	-0.04600	21256	39536	59449	775
	. 00004	10110	00112	00000	101	.01000	21200	00000	00110	•••
8.0	+0.98935	82466	23381	77780	812	-0.14550	00338	08613	52586	884
.1	. 96988	98108	45086	24322	432	. 24354	41537	35791	46446	505
.2	. 94073	05566	79772	90115	365	. 33915	48609	83835	20740	049
.3	. 90217	18337	56293	64000	050	. 43137	68449	70620	17370	933
.4	. 85459	89080	88280	66283	324	. 51928	86541	16685	29914	480
8.5	+0.79848	71126	23490	28666	691	-0.60201	19026	84823	61534	843
. 6	. 73439	70978	74113	14371	716	. 67872	00473	20012	70086	447
.7	. 66296	92300	82182	79220	235	. 74864	66455	97399	15731	879
.8	. 58491	71928	91762	25353	093	. 81109	30140	61655	56288	909
.9	. 50102	08564	57884	98201	617	. 86543	52092	41112	05963	983
9.0	+0.41211	84852	41756	56975	627	-0. 91113	02618	84676	98836	829
1 1	+.31909	83623	49351	77079	400	. 94772	16021	31112	02471	907
$\tilde{2}$	+ .22288	99141	00246	95752	807	. 97484	36214	04163	74194	145
. 3	+ . 12445	44235	07062	40798	941	. 99222	53254	52603	40775	691
.4	+.02477	54254	53358	12107	977	. 99969	30420	35206	47217	795
9.5	-0.07515	11204	61809	30728	348	-0. 99717	21561	96378	47289	160
.6	. 17432	67812	22979	98512	410	. 98468	78557	94126	91002	034
.7	. 27176	06264	10943	12433	774	. 96236	48798	31310	03407	036
.8	. 36647	91292	51927	74816	925	. 93042	62721	04753	51854	938
	. 45753	58937	75321	04441	382	. 88919	11526	25361	05463	444
10.0	<b>-0</b> . 54402	11108	89369	81340	475	-0. 83907	15290	76452	45225	886

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600.

x		si	n x				co.	s x		
0, 000	0, 00000	00000	00000	00000	000	1. 00000	00000	00000	00000	000
. 001	. 00099	99998	33333	34166	667	0.99999	95000	00041	66666	528
. 002	. 00199	99986	66666	93333	331	. 99999	80000	00666	66657	778
. 003	. 00299	99955	00002	03499	957	. 99999	55000	03374	99898	750
. 004	. 00399	99893	33341	86666	342	. 99999	20000	10666	66097	778
0.005	0. 00499	99791	66692	70831	783	0. 99998	75000	26041	64496	<b>52</b> 9
. 006 . 007	. 00599 . 00699	$99640 \\ 99428$	$\frac{00064}{33473}$	79994 39 <b>150</b>	$\frac{446}{327}$	. 99998	$\frac{20000}{55001}$	$53999 \\ 00041$	93520 5 <b>0</b> 326	004
.008	. 00099	99146	66939	73291	723	. 99997 . 99996	80001	70666	30257	$\frac{542}{819}$
. 009	. 00899	98785	00492	07405	100	. 99995	95002	73374	26188	857
0.010	0. 00999	98333	34166	66468	254	0. 99995	00004	16665	27778	026
. 011	. 01099	97781	68008	75446	684	. 99993	95006	10039	20617	059
. 012	. 01199	97120	02073	59289	053	. 99992	80008	63995	85281	066
. 013	. 01299	96338	36427	42921	659	. 99991	55011	90034	96278	551
. 014	. <b>0</b> 1399	95426	71148	51241	801	. 99990	20016	00656	20901	438
0.015	0. 01499	94375	06328	09109	944	0. 99988	75021	09359	17975	106
. 016	. 01599	$93173 \\ 91811$	42071 78498	$\frac{41340}{72691}$	$\frac{585}{726}$	. 99987	$\frac{20027}{55034}$	30643	36508	430
. 017 . 018	. 01799	90280	15746	$\frac{72091}{27852}$	832	. 99985	80043	$80008 \\ 73952$	$\frac{14243}{76107}$	$\frac{829}{331}$
. 019	. 01899	88568	53967	31431	205	. 99981	95054	29976	32558	650
0. 020	0. 01999	86666	93333	07936	649	0.99980	00066	66577	77841	270
. 021	. 02099	84565	34033	81764	335	. 99977	95081	03255	88132	556
. 022	. 02199	82253	76279	77175	771	. 99975	80097	60509	19593	878
. 023	.02299	79722	20302	18277	769	. 99973	55116	59836	06320	750
. 024	. 02399	76960	66354	28999	311	. 99971	20138	23734	58193	002
0.025	0.02499	73959	14712	33066	217	0. 99968	75162	75702	58624	967
. 026	. 02599	70707	65676	53973	517	. 99966	20190	40237	62215	698
. 027	02699. $02799$	$67196 \\ 63414$	$\frac{19572}{76750}$	$\frac{14955}{38952}$	$\begin{array}{c} 411 \\ 746 \end{array}$	. 99963	$55221 \\ 80256$	$\frac{42836}{09997}$	$92299 \\ 38394$	$\frac{214}{779}$
. 029	. 02899	59353	37589	48577	881	. 99957	95294	69215	53557	207
0. 030	0. 02999	55002	02495	66076	853	0, 99955	00337	48987	51627	216
. 031	. 03099	50350	71904	13288	752	. 99951	95384	78809	04381	810
. 032	. 03199	45389	46280	11602	188	. 99948	80436	89175	38584	710
. 033	. 03299	40108	26119	81908	762	. 99945	55494	11581	32936	824
. 034	. 03399	34497	11951	44553	435	. 99942	20556	78521	14926	773
0. 035	0.03499	28546	04336	19281	702	0. 99938	75625	23488	57581	460
. 036	. 03599	22245	03869	25183	461	. 99935	20699	80976	76116	700
. 037	. 03699 . 03799	$15584 \\ 08553$	$\frac{11180}{26937}$	$80633 \\ 03228$	$\frac{489}{414}$	.99931 $.99927$	55780 80868	$86478 \\ 76484$	24487 91840	$\frac{902}{819}$
. 039	. 03899	01142	51841	09720	085	. 99923	95963	88487	98862	358
0.040	0. 03998	93341	86634	15945	255	0. 99920	01066	60977	94031	457
. 041	. 04098	85141	32096	36751	449	. 99915	96177	33444	49770	040
. 042	. 04198	76530	89047	85918	946	. 99911	81296	46376	58494	043
. 043	. 04298	67500	58349	76078	755	. 99907	56424	41262	28564	524
. 044	. 04398	58040	40905	18626	492	. 99903	21561	60588	80138	853
0.045	0.04498	48140	37660	23632	066	0. 99898	76708	47842	40921	992
. 046	. 04598	37790	49604	99745	054	. 99894	21865	47508	41817	869
. 047	. 04698 . 04798	$26980 \\ 15701$	$77774 \\ 23249$	$\frac{54095}{92191}$	$\frac{689}{340}$	. 99889 . 99884	$57033 \\ 82211$	$05071 \\ 67013$	$\frac{12480}{76767}$	$\frac{849}{299}$
. 045	. 04798	03941	23249 87159	17808	403	. 99879	97401	80818	48087	$\frac{299}{272}$
				99050						
0.050	0. 04997 . 05097	$91692 \\ 78943$	$70678 \\ 75032$	$\frac{32879}{37375}$	487 800	0. 99875 . 99869	$02603 \\ 97818$	$94966 \\ 58936$	$24656 \\ 84647$	$\begin{array}{c} 287 \\ 237 \end{array}$
. 052	. 05197	65685	01496	29184	649	. 99864	83046	23208	81242	407
. 053	. 05297	51906	51396	03981	925	. 99859	58287	39259	37585	623
. 054	. 05397	37598	26109	55099	505	. 99854	23542	59564	41634	531
0.055	0.05497	22750	27067	73387	446	0.99848	78812	37598	40913	005
. 056	. 05597	07352	55755	47070	891	. 99843	24097	27834	37163	704
. 057	. 05696	91395	13712	61601	567	. 99837	59397	85743	80900	770 676
. 058	. 05796 . 05896	$74868 \\ 57761$	$02534 \\ 23875$	$99503 \\ 40214$	$\begin{array}{c} 794 \\ 896 \end{array}$	. 99831 . 99826	84714 00048	$67796 \\ 31461$	$65862 \\ 23365$	676 <b>235</b>
	. 000390	01101	-0010	TU414	000	. 55020	OFFO	101.10	20000	200

 $\begin{array}{c} \textbf{Table XII.} - Values \ of \ sin \ x \ and \ cos \ x \ to \ 23 \ places \ of \ decimals \ at \ intervals \ of \ 0.001 \ from \ 0.000 \\ to \ 1.600 - \textbf{Continued.} \end{array}$ 

x	sin x		cos	x
0.060 .061 .062 .063 .064	0.05996     40064     794       .06096     21768     710       .06196     02863     004       .06295     83337     695       .06395     63182     803	012 31380 500 08 23757 982 023 02430 343	0.99820 05399 .99814 00768 .99807 86156 .99801 61562 .99795 26989	35204     16554     766       38490     34561     437       01782     86552     769       86542     95687     334       55229     92968     628
0.065 .066 .067 .068 .069	0.06495     42388     347       .06595     20944     356       .06694     98840     831       .06794     76067     814       .06894     52615     321	122 49232 601 173 44449 361 145 89264 458	0.99788     82436       .99782     27904       .99775     63395       .99768     88907       .99762     04443	71301 10999 144 99211 77634 635 04415 09538 592 53362 05636 926 13501 40472 866
0. 070 . 071 . 072 . 073 . 074	0.06994     28473     375       .07094     03632     001       .07193     78081     223       .07293     51811     067       .07393     24811     558	106 79734 071 323 54229 480 38 15974 250	0. 99755 10002 . 99748 05586 . 99740 91195 . 99733 66830 . 99726 32492	$\begin{array}{ccccc} 53279 & 57462 & 091 \\ 42140 & 62048 & 084 \\ 50526 & 14757 & 726 \\ 49875 & 24157 & 139 \\ 12624 & 39707 & 777 \end{array}$
0. 075 . 076 . 077 . 078 . 079	0. 07492     97072     727       .07592     68584     598       .07692     39337     200       .07792     09320     568       .07891     78524     716	805 90718 980 017 33972 485 001 46257 015	0. 99718 88181 . 99711 33898 . 99703 69644 . 99695 95419 . 99688 11225	12207 44522 774 23055 48023 568 20596 78496 785 81256 75551 417 82457 82476 279
0. 080 . 081 . 082 . 083 . 084	0.07991     46939     691       .08091     14555     519       .08190     81362     233       .08290     47349     866       .08390     12508     451	998 04247 389 374 58826 394 321 73635 718	0.99680     17063       .99672     12932       .99663     98834       .99655     74769       .99647     40739	02619 38497 771 21157 70937 933 18485 87272 823 76013 67091 212 76147 53953 598
0. 085 . 086 . 087 . 088 . 089	0. 08489 76828 024 . 08589 40298 620 . 08689 02910 277 . 08788 64653 028 . 08888 25516 917	015 51260 514 592 29764 492 885 29594 973	0. 99638 96745 . 99630 42786 . 99621 78864 . 99613 04980 . 99604 21135	02290 47151 570 38841 93367 506 71197 78234 626 85750 17797 412 69887 49872 388
0. 090 . 091 . 092 . 093 . 094	0. 08987 85491 986 . 09087 44568 257 . 09187 02735 790 . 09286 59984 620 . 09386 16304 791	760 07600 919 059 84943 819 093 69966 323	0. 99595 27330 . 99586 23565 . 99577 09841 . 99567 86159 . 99558 52521	11994 25309 284 01450 99152 586 28634 21703 483 84916 29482 217 62665 36090 844
0. 095 . 096 . 097 . 098 . 099	0. 09485     71686     348       . 09585     26119     328       . 09684     79593     784       . 09784     32099     761       . 09883     83627     306	317 03609 347 472 83083 006 477 31775 683	0. 99549 08927 . 99539 55378 . 99529 91875 . 99520 18419 . 99510 35011	55245         22976         426           57015         30094         649           63330         46473         881           70541         00679         686           75992         51179         796
0.100 .101 .102 .103 .104	0.09983     34166     468       .10082     83707     299       .10182     32239     839       .10281     79754     151       .10381     26240     283	567 99512 975 945 51074 864 107 52769 040	0.99500     41652       .99490     38343       .99480     25085       .99470     01879       .99459     68726	78025 76609 556 75976 65937 840 70176 08533 469 61949 84132 117 53618 52703 737
0.105 .106 .107 .108 .109	0.10480     71688     288       .10580     16088     222       .10679     59430     141       .10779     01704     100       .10878     42900     157	302 18823 209 21 88052 588 007 45835 941	0.99449     25627       .99438     72583       .99428     09595       .99417     36665       .99406     53792	48497 44220 501 50896 48325 268 66120 03900 596 00466 88538 307 61230 07909 607
0.110 .111 .112 .113 .114	0.10977 83008 371 .11077 22018 803 .11176 59921 512 .11275 96706 562 .11375 32364 018	326 31964 714 285 18131 952 261 20553 909	0.99395     60979       .99384     58226       .99373     45535       .99362     22907       .99350     90342	56696         85035         784           96148         49459         483           89860         26316         578           49101         25308         652           86134         29576         080
0.115 .116 .117 .118 .119	0.11474     66883     936       .11574     00256     390       .11673     32471     444       .11772     63519     166       .11871     93389     624	072 82361 097 165 84055 722 021 44080 790	0.99339     47843       .99327     95409       .99316     33043       .99304     60744       .99292     78516	14215     84471     755       47595     86235     439       01517     70568     768       92218     01110     921       36926     57814     950

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

£		ę1	in x						08 X		
					_	-			,,,,,		
$0.120 \\ 121$	$0.11971 \\ 12070$	$\frac{22072}{49559}$	$88919 \\ 03206$	$\frac{35996}{47206}$	$\begin{array}{c} 735 \\ 615 \end{array}$		99280 99268	$86358 \\ 84272$	$53866 \\ 62252$	$25224 \\ 80653$	810 067
.122	. 12169	75838	12547	73970	-147		99256	72259	82294	82259	329
.123	.12269 $.12368$	$00900 \\ 24735$	$\frac{24315}{46003}$	$\frac{33626}{13267}$	$\frac{003}{407}$		99244 99232	50321 $18458$	$35193 \\ 43142$	$57029 \\ 88655$	$\frac{382}{070}$
0.125 .126	$0.12467 \\ 12566$	$47333 \\ 68685$	85227 $49729$	68995 $25157$	$\frac{744}{389}$		99219 99207	76672 $24964$	$\frac{29329}{17930}$	$05314 \\ 67355$	$\frac{910}{462}$
.127	. 12665	88780	47372	73569	978		99194	63335	34118	54873	474
.128	.12765 $.12864$	$07608 \\ 25160$	$86148 \\ 74174$	$72735 \\ 47043$	$\frac{909}{273}$		99181 99169	$91787 \\ 10320$	$04055 \\ 54896$	$55198 \\ 50278$	$\frac{803}{123}$
0.130	0.12963	41426	19694	85954	121	0.	99156	18937	14788	03959	451
.131	.13062 $.13161$	$\frac{56395}{70058}$	$\frac{31083}{16843}$	$\frac{43179}{35844}$	$\frac{968}{433}$		99143 99 <b>13</b> 0	$\frac{17638}{06424}$	$\frac{12868}{79267}$	$49177 \\ 75039$	$\frac{481}{751}$
.133	.13260	82404	85608	43632	907		99116	85298	45107	13813	659
. 134	. 13359	93425	46144	07929	171		99103	54260	42499	27814	3 <b>2</b> 5
0.135 .136	0.13459 .13558	03110 $11448$	$07348 \\ 78252$	30938 $74799$	$\frac{844}{575}$		99090 99076	$13312 \\ 62454$	$04547 \\ 65348$	$96193 \\ 01628$	339
.137	.13657	18431	68023	60677	867		99063	01689	59985	16913	$\frac{375}{714}$
.138	. 13756 . 13855	$24048 \\ 28290$	$85962 \\ 41508$	$67852 \\ 32784$	$\frac{453}{107}$		99049 99035	$\frac{31018}{50441}$	$\frac{24535}{96067}$	$91451 \\ 37644$	$\frac{667}{937}$
0.140	0.13954	31146	44236	48171	799		99021	59962	12637	17189	895
. 141	.14053	32607	03861	61995	092		99007	59580	13293	27270	829
.142	.14152 $.14251$	$\frac{32662}{31302}$	$30237 \\ 33359$	76542 $47427$	$\frac{691}{025}$		98993 98979	$49297 \\ 29115$	380 <b>7</b> 3 28007	$86655 \\ 21689$	$\frac{145}{546}$
.144	. 14350	28517	23362	82584	791		98964	99035	25111	52197	214
0.145	0.14449	24297	10526	41263	332		98950	59058	72394	77275	984
.146	.14548 .14647	$18632 \\ 11512$	$05272 \\ 18167$	$\frac{32992}{16543}$	$\frac{773}{800}$		98936 98921	$09187 \\ 49421$	13854 94478	$60997 \\ 18007$	$\begin{array}{c} 551 \\ 704 \end{array}$
.148	. 14746	02927	59922	98870	997		98906	79764	60241	99027	617
.149	.14844	92868	41398	34041	627	1	98892	00216	58111	76256	193
0.150	0.14943 $15042$	$81324 \\ 68286$	$73599 \\ 67680$	$\frac{22149}{08215}$	$773 \\ 725$		98877 98862	10779 $11454$	$\frac{36042}{42977}$	$28673 \\ 27245$	$\frac{498}{283}$
.152	. 15141	53744	34944	81070	532		98847	02243	28849	20028	611
.153	.15240 $.15339$	$\frac{37687}{20107}$	$86847 \\ 34994$	72225 $54727$	$\frac{604}{267}$		98831 98816	83147 $54168$	$\frac{44579}{42076}$	17178 75856	$\frac{614}{382}$
0.155 .156	0.15438 .15536	$00992 \\ 80334$	$\frac{91143}{67205}$	$\frac{41996}{86651}$	$\frac{190}{555}$		98801 98785	$15307 \\ 66566$	74239 $94954$	$85038 \\ 50224$	$\frac{006}{794}$
. 157	. 15635	58122	75247	79319	902		98770	07947	59094	78054	663
.158 .159	. 15734 . 15833	$\frac{34347}{08998}$	$27490 \\ 36311$	47428 $53983$	$\frac{529}{354}$		$98754 \\ 98738$	$\frac{39451}{61079}$	$\frac{22522}{42087}$	$60814 \\ 60855$	$\begin{array}{c} 736 \\ 150 \end{array}$
0.160	0.15931	82066	14245	96331	146	0.	98722	72833	75626	94904	095
. 161 . 162	.16030 $.16129$	53540 $23412$	73987 $28387$	$04906 \\ 41960$	$\frac{020}{095}$		98706 98690	$74715 \\ 66727$	$81965 \\ 20914$	$18284 \\ 09029$	$\frac{099}{574}$
.163	.16227	91670	90460	00278	226		98674	48869	53272	51905	638
. 164	. 16326	58306	73379	01876	705		98658	21144	40826	22328	234
0.165	0.16425	23309	90480	96685	825		98641	83553 36098	46347	70185	554
$.166 \\ .167$	.16523 $.16622$	$86670 \\ 48378$	$55265 \\ 81396$	$\frac{61216}{97208}$	$\begin{array}{c} 228 \\ 916 \end{array}$		98625 98608	36098 78780	$\frac{33596}{67316}$	$03560 \\ 72356$	$\frac{791}{233}$
.168	. 16721	08424	82704	30268	843	.	98592	11602	13241	$51818 \\ 25966$	712
. 169	.16819	66798	73183	08481	981		98575	34564	38088		434
$0.170 \\ .171$	$0.16918 \\ .17016$	$23490 \\ 78490$	$66996 \\ 78473$	$01015 \\ 96702$	$\frac{762}{805}$		$98558 \\ 98541$	$47669 \\ 50917$	$09560 \\ 96348$	$70917 \\ 38117$	$\begin{array}{c} 193 \\ 998 \end{array}$
.172	.17115	31789	22117	02607	812		98524	44312	68126	37476	124
.173 .174	.17213 $.17312$	83376 33241	$12595 \\ 64750$	$42577 \\ 55773$	$\frac{560}{865}$		$98507 \\ 98490$	$27854 \\ 01546$	$95555 \\ 50280$	$20391 \\ 62691$	$\frac{598}{158}$
0.175	0.17410	81375	93595	95189	433	0.	98472	65389	04933	47463	670
. 176	. 17509	27769	14318	26146	505		98455	19384	33129	47797	052
.177 .178	.17607 .17706	$72411 \\ 15292$	$\frac{42278}{93011}$	$24778 \\ 76492$	$\frac{176}{317}$		$98437 \\ 98419$	$63534 \\ 97840$	<b>0</b> 9469 09537	$09416 \\ 33225$	$699 \\ 443$
.179	.17804	56403	82230	74417	975		98402	22304	09903	57745	046
						<u> </u>					

Table XII.—Values of sin x and cos x to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x	sin x	cos x
0.180 .181 .182 .183 .184	0.17902     95734     25824     17834     180       .18001     33274     39859     10581     029       .18099     69014     40581     59452     980       .18198     02944     44417     72574     233       .18296     35054     67974     57756     116	0.98384     36927     88121     41459     272       .98366     41713     22728     45058     522       .98348     36661     93246     13586     083       .98330     21775     80179     58485     974       .98311     97056     65017     39552     448
0.185 .186 .187 .188 .189	0.18394     65335     28041     20836     370       .18492     93776     41589     64000     231       .18591     20368     25775     84083     224       .18689     45100     97940     70855     554       .18787     67964     75611     05288     013	0.98293     62506     30231     46781     122       .98275     18126     59276     82121     799       .98256     63919     36591     41132     959       .98237     99886     47595     94537     971       .98219     26029     78693     69683     022
0.190 .191 .192 .193 .194	0.18885     88949     76500     57799     285       .18984     08046     18510     86484     571       .19082     25244     19732     35325     424       .19180     40533     98445     32380     691       .19278     53905     73120     87958     485	0.98200     42351     17270     31896     788       .98181     48852     51693     65751     875       .98162     45535     71313     56228     034       .98143     32402     66461     69777     178       .98124     09455     28451     35290     214
0.195 .196 .197 .198 .199	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 0.98104 & 76695 & 49577 & 24965 & 723 \\ .98085 & 34125 & 23115 & 35080 & 479 \\ .98065 & 81746 & 43322 & 66661 & 867 \\ .98046 & 19561 & 05437 & 05062 & 170 \\ .98026 & 47571 & 05677 & 05434 & 796 \end{array}$
0. 200 . 201 . 202 . 203 . 204	0.19866     93307     95061     21545     941       .19964     92978     74900     91597     545       .20062     90653     05459     37903     151       .20160     86321     06969     25571     640       .20258     79972     99863     82615     083	$\begin{array}{cccccccccccccc} 0.\ 98006 & 65778 & 41241 & 63112 & 420 \\ .\ 97986 & 74185 & 10310 & 03887 & 090 \\ .\ 97966 & 72793 & 12041 & 59192 & 306 \\ .\ 97946 & 61604 & 46575 & 47187 & 084 \\ .\ 97926 & 40621 & 15030 & 52742 & 047 \end{array}$
0. 205 . 206 . 207 . 208 . 209	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 210 . 211 . 212 . 213 . 214	0. 20845     98998     46099     57060     871       . 20943     78263     67877     33732     895       . 21041     55434     51846     18932     346       . 21139     30501     20289     12409     982       . 21237     03453     95699     55467     398	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 215 . 216 . 217 . 218 . 219	0. 21334     74283     00782     28707     677       . 21432     42978     58454     49764     905       . 21530     09530     91846     71012     439       . 21627     73930     24303     77249     851       . 21725     36166     79385     83368     434	0.97697     63942     06862     38054     344       .97676     25583     25963     10511     247       .97654     77456     82586     90059     555       .97633     19564     91546     39246     782       .97611     51909     68630     75378     736
0. 220 . 221 . 222 . 223 . 224	0. 21822     96230     80869     31995     179       . 21920     54112     52747     91115     124       . 22018     09802     19233     51671     977       . 22115     63290     04757     25146     920       . 22213     14566     33970     41115     484	0.97589     74493     30605     48940     602       .97567     87317     95212     21920     392       .97545     90385     81168     46034     788       .97523     83699     08167     40857     388       .97501     67259     96877     71849     392
0. 225 . 226 . 227 . 228 . 229	0. 22310     63621     31745     44782     417       . 22408     10445     23176     94494     428       . 22505     55028     33582     59230     720       . 22602     97360     88504     16071     214       . 22700     37433     13708     47642     363	0.97479     41070     68943     28292     737       .97457     05133     46983     01125     708       .97434     59450     54590     60681     052       .97412     04024     16334     34326     607       .97389     38856     57756     84008     477
0. 230 . 231 . 232 . 233 . 234	0. 22797     75235     35188     39540     462       . 22895     10757     79163     77732     354       . 22992     43990     72082     45933     437       . 23089     74924     40621     22962     869       . 23187     03549     11686     80075     884	0.97366     63950     05374     83696     773       .97343     79306     86678     96733     940       .97320     84929     30133     53085     695       .97297     80819     65176     26494     602       .97274     66980     22218     11536     294
0. 235 . 236 . 237 . 238 . 239	0. 23284     29855     12416     78273     112       . 23381     53832     70180     65586     809       . 23478     75472     12580     74343     904       . 23575     94763     67453     18405     752       . 23673     11697     62868     90384     520	0.97251     43413     32643     00578     389       .97228     10121     28807     60642     091       .97204     67106     44041     10166     529       .97181     14371     12644     95675     843       .97157     51917     69892     68349     034

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

1	Τ										
<i>x</i>		8	in x			_			CO8 X		
0. 240	0. 23770	26264	27134	58836	079		0. 97133	79748	52029	60492	618
. 241	. 23867	38453	88793	65429	334		. 97109	97865	96272	61916	095
. 242	. 23964	48256	76627	22091	869		. 97086	06272	40809	96210	262
. 243	. 24061	55663	19655	08131	828		. 97062	04970	24800	96928	391
. 244	. 24158	60663	47136	67335	933		. 97037	93961	88375	83670	294
0. 245 . 246 . 247 . 248 . 249	0. 24255 . 24352 . 24449 . 24546 . 24643	$\begin{array}{c} 63247 \\ 63406 \\ 61130 \\ 56408 \\ 49232 \end{array}$	88572 73702 32513 95231 92328	05043 85196 27365 03750 36159	522 546 389 445 337		0. 97013 . 96989 . 96965 . 96940 . 96915	73249 42836 02723 52914 93411	72635 19650 72463 75084 72494	38069 79682 41782 47054 83195	313 233 166 425 397
0. 250	0. 24740	39592	54522	92959	685		0. 96891	24217	10644	78414	459
. 251	. 24837	27478	12778	86007	332		. 96866	45333	36453	76838	955
. 252	. 24934	12879	98307	67549	922		. 96841	56762	97810	13822	250
. 253	. 25030	95788	42569	27105	742		. 96816	58508	43570	91154	897
. 254	. 25127	76193	77272	88317	722		. 96791	50572	23561	52178	941
0. 255	0. 25224	54086	34378	05782	506		0. 96766	32956	88575	56805	375
. 256	. 25321	29456	46095	61854	486		. 96741	05664	90374	56434	780
. 257	. 25418	02294	44888	63424	714		. 96715	68698	81687	68781	180
. 258	. 25514	72590	63473	38674	587		. 96690	22061	16211	52599	126
. 259	. 25611	40335	34820	33804	209		. 96664	65754	48609	82314	035
0. 260	0. 25708	05518	92155	09735	339		0. 96638	99781	34513	22555	822
. 261	. 25804	68131	68959	38788	820		. 96613	24144	30519	02595	835
. 262	. 25901	28163	98972	01336	401		. 96587	38845	94190	90687	131
. 263	. 25997	85606	16189	82426	844		. 96561	43888	84058	68308	107
. 264	. 26094	40448	54868	68386	239		. 96535	39275	59618	04309	520
0. 265	0. 26190	92681	49524	43392	399		0. 96509	25008	81330	28964	923
. 266	. 26287	42295	34933	86023	278		. 96483	01091	10622	07924	537
. 267	. 26383	89280	46135	65779	278		. 96456	67525	09885	16072	584
. 268	. 26480	33627	18431	39579	372		. 96430	24313	42476	11288	118
. 269	. 26576	75325	87386	48230	942		. 96403	71458	72716	08109	368
0. 270	0. 26673	14366	88831	12873	229		0. 96377	08963	65890	51301	623
. 271	. 26769	50740	58861	31394	301		. 96350	36830	88248	89328	696
. 272	. 26865	84437	33839	74821	451		. 96323	55063	07004	47727	972
. 273	. 26962	15447	50396	83684	915		. 96296	63662	90334	02389	084
. 274	. 27058	43761	45431	64354	828		. 96269	62633	07377	52736	246
0. 275	0. 27154	69369	56112	85351	302		0. 96242	51976	28237	94814	248
. 276	. 27250	92262	19879	73627	557		. 96215	31695	23980	94278	169
. 277	. 27347	12429	74443	10825	981		. 96188	01792	66634	59286	807
. 278	. 27443	29862	57786	29507	043		. 96160	62271	29189	13299	879
. 279	. 27539	44551	08166	09350	952		. 96133	13133	85596	67778	997
0. 280	0. 27635	56485	64113	73331	967		0. 96105	54383	10770	94792	459
. 281	. 27731	65656	64435	83865	270		. 96077	86021	80586	99523	878
. 282	. 27827	72054	48215	38926	293		. 96050	08052	71880	92684	682
. 283	. 27923	75669	54812	68142	411		. 96022	20478	62449	62830	504
. 284	. 28019	76492	23866	28856	909		. 95994	23302	31050	48581	495
0. 285	0. 28115	74512	95294	02165	110		0, 95966	16526	57401	10746	590
. 286	. 28211	69722	09293	88922	591		, 95938	00154	22179	04351	746
. 287	. 28307	62110	06345	05725	374		, 95909	74188	07021	50572	193
. 288	. 28403	51667	27208	80861	997		, 95881	38630	94525	08568	713
. 289	. 28499	38384	12929	50237	384		, 95852	93485	68245	47227	984
0. 290	0. 28595	22251	04835	53268	394	!	0. 95824	38755	12697	16807	013
. 291	. 28691	03258	44540	28750	981		. 95795	74442	13353	20481	688
. 292	. 28786	81396	73943	10698	841		. 95767	00549	56644	85799	478
. 293	. 28882	56656	35230	24153	475		. 95738	17080	29961	36036	308
. 294	. 28978	29027	70875	80965	551		. 95709	24037	21649	61457	636
0. 295	0. 29073	98501	23642	75547	489		0. 95680	21423	21013	90483	768
. 296	. 29169	65067	36583	80597	155		. 95651	09241	18315	60759	429
. 297	. 29265	28716	53042	42792	582		. 95621	87494	04772	90127	632
. 298	. 29360	89439	16653	78457	616		. 95592	56184	72560	47507	858
. 299	. 29456	47225	71345	69198	389		. 95563	15316	14809	23678	590

Table X11.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x	sin x	cos x
0. 300 . 301 . 302 . 303 . 304	0. 29552     02066     61339     57510     532       . 29647     53952     31151     42357     025       . 29743     02873     25592     74716     586       . 29838     48819     89771     53102     518       . 29933     91782     69093     19051     897	0.95533     64891     25606     01964     231       .95504     04912     99993     28826     414       .95474     35384     33968     84359     763       .95444     56308     24485     52692     116       .95414     67687     69450     92289     242
0. 305 . 306 . 307 . 308 . 309	0.30029     31752     09261     52585     026       .30124     68718     56279     67635     045       .30220     02672     56451     07447     613       .30315     33604     56380     39950     549       .30410     61505     02974     53093     365	0.95384     69525     67727     06164     084       .95354     61825     19130     11990     559       .95324     44589     24430     12121     945       .95294     17820     85350     63513     878       .95263     81523     04568     47552     001
0. 310 . 311 . 312 . 313 . 314	0.30505     86364     43443     50156     564       .30601     08173     25301     45030     632       .30696     26921     96367     57464     615       .30791     42601     04767     08284     189       .30886     55200     98932     14579     138	$\begin{array}{ccccccc} 0.95233 & 35698 & 85713 & 39784 & 281 \\ .95202 & 80351 & 33367 & 79558 & 038 \\ .95172 & 15483 & 53066 & 39561 & 711 \\ .95141 & 41098 & 51295 & 95271 & 383 \\ .95110 & 57199 & 35494 & 94302 & 111 \end{array}$
0. 315 . 316 . 317 . 318 . 319	0.30981     64712     27602     84860     120       .31076     71125     39828     14184     658       .31171     74430     84966     79252     234       .31266     74619     12688     33468     402       .31361     71680     72974     01977     833	$\begin{array}{ccccccccc} 0.\ 95079 & 63789 & 14053 & 25664 & 080 \\ .\ 95048 & 60870 & 96311 & 88923 & 617 \\ .\ 95017 & 48447 & 92562 & 63269 & 094 \\ .\ 94986 & 26523 & 14047 & 76481 & 749 \\ .\ 94954 & 95099 & 72959 & 73811 & 467 \end{array}$
0. 320 . 321 . 322 . 323 . 324	0.31456     65606     16117     76666     176       .31551     56385     92727     11130     659       .31646     44010     53724     15619     332       .31741     28470     50346     51938     844       .31836     09756     34148     28330     674	$\begin{array}{cccccccc} 0.94923 & 54180 & 82440 & 86757 & 531 \\ .94892 & 03769 & 56583 & 01754 & 395 \\ .94860 & 43869 & 10427 & 28762 & 501 \\ .94828 & 74482 & 59963 & 69764 & 173 \\ .94796 & 95613 & 22130 & 87164 & 613 \end{array}$
0. 325 . 326 . 327 . 328 . 329	0.31930     87858     57000     94315     718       .32025     62767     71094     35507     128       .32120     34474     28937     68391     319       .32215     02968     83360     35077     048       .32309     68241     87512     98012     460	$\begin{array}{ccccccc} 0.94765 & 07264 & 14815 & 72098 & 048 \\ .94733 & 09438 & 56853 & 12639 & 034 \\ .94701 & 02139 & 68025 & 61918 & 976 \\ .94668 & 85370 & 69063 & 06147 & 877 \\ .94636 & 59134 & 81642 & 32541 & 351 \end{array}$
0. 330 . 331 . 332 . 333 . 334	0. 32404     30283     94868     34670     020       .32498     89085     59222     32199     224       .32593     44637     34694     82047     011       .32687     96929     75730     74545     756       .32782     45953     37100     93468     777	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 335 . 336 . 337 . 338 . 339	0. 32876     91698     73903     10553     241       .32971     34156     41562     79990     386       .33065     73316     95834     32882     957       .33160     09170     92801     71669     766       .33254     41708     88879     64517     288	0. 94441     03096     32643     01006     864       . 94408     10683     12448     49997     577       . 94375     08829     11264     35085     413       . 94341     97537     59275     93637     243       . 94308     76811     87612     38092     499
0. 340 . 341 . 342 . 343 . 344	0. 33348     70921     40814     39678     177       . 33442     96799     05684     79816     635       . 33537     19332     40903     16300     519       . 33631     38512     04216     23460     104       . 33725     54328     53706     12813     399	0. 94275     46655     28346     22850     264       . 94242     07071     14493     11062     025       . 94208     58062     80011     41330     105       . 94174     99633     59801     94311     834       . 94141     31786     89707     59229     468
0. 345 . 346 . 347 . 348 . 349	0. 33819     66772     47791     27257     928       .33913     75834     45227     35228     880       .34007     81505     05108     24823     531       .34101     83774     86866     97891     850       .34195     82634     50276     64093     188	$\begin{array}{cccccccc} 0.94107 & 54526 & 06513 & 00285 & 905 \\ .94073 & 67854 & 47944 & 22986 & 218 \\ .94039 & 71775 & 52668 & 40365 & 059 \\ .94005 & 66292 & 60293 & 39119 & 944 \\ .93971 & 51409 & 11367 & 45650 & 473 \end{array}$
0. 350 . 351 . 352 . 353 . 354	0.34289     78074     55451     34918     963       .34383     70085     62847     17681     237       .34477     58658     33263     09467     102       .34571     43783     27841     91058     778       .34665     25451     08071     20819     319	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 355 . 356 . 357 . 358 . 359	0.34759     03652     35784     28543     852       .34852     78377     73161     09276     237       .34946     49617     82729     17001     064       .35040     17363     27364     58840     891       .35133     81604     70292     87868     632	0. 93764     64888     19349     27409     412       . 93729     84296     88839     87337     915       . 93694     94332     59978     89202     418       . 93659     94998     81762     72980     716       . 93624     86299     04124     73578     312

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

	to 1.900—Continued.							
x			sin x			cos x		
0. 360	0. 35227	42332	75089	97684	991	0. 93589     68236     77934     85835     091       . 93554     40815     54999     29438     322       . 93519     04038     88060     13742     042       . 93483     57910     30795     02492     855       . 93448     02433     37816     78462     165		
. 361	. 35320	99538	05683	15610	866			
. 362	. 35414	53211	26351	96384	608			
. 363	. 35508	03343	01729	15734	065			
. 364	. 35601	49923	96801	63913	294			
0. 365	0. 35694	92944	76911	39203	863	0.93412     37611     64673     07984     897       .93376     63448     67846     05404     739       .93340     79948     04751     97425     922       .93304     87113     33740     87371     606       .93268     84948     14096     19348     871		
. 366	. 35788	32396	07756	41380	647			
. 367	. 35881	68268	55391	65142	021			
. 368	. 35975	00552	86229	93504	354			
. 369	. 36068	29239	67042	91160	721			
0. 370	0.36161	54319	64961	97803	729	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
. 371	.36254	75783	47479	21412	373			
. 372	.36347	93621	82448	31502	813			
. 373	.36441	07825	38085	52343	006			
. 374	.36534	18384	82970	56131	067			
0.375 .376 .377 .378 .379	0.36627 .36720 .36813 .36906 .36999	$\begin{array}{c} 25290 \\ 28534 \\ 28105 \\ 23995 \\ 16194 \end{array}$	86047 16625 44381 39357 71964	56137 99809 61843 37211 34164	291 733 251 <b>9</b> 26 758	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
0.380 .381 .382 .383 .384	0. 37092 . 37184 . 37277 . 37370 . 37463	$\begin{array}{c} 04694 \\ 89484 \\ 70556 \\ 47899 \\ 21506 \end{array}$	12982 33562 05224 99862 89741	67184 49909 88020 72083 70366	549 881 096 184 479	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
0.385	0. 37555	91367	47501	21610	089	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
.386	. 37648	57472	46155	27762	945			
.387	. 37741	19812	59093	46681	397			
.388	. 37833	78378	60081	84790	240			
.389	. 37926	33161	23263	89706	110			
0.390	0. 38018	\$4151	23161	42823	118	0. 92490     90598     57313     04145     068       . 92452     84090     51063     22192     776       . 92414     68337     16481     39537     314       . 92376     43342     35142     86457     070       . 92338     09109     89547     07898     401		
.391	. 38111	31339	34675	51860	671			
.392	. 38203	74716	33087	43373	349			
.393	. 38296	14272	94059	55222	774			
.394	. 38388	49999	93636	29011	366			
0. 395	0. 38480	\$1888	08245	02477	888	0. 92299     65643     63117     25225     693       . 92261     12947     40199     97879     040       . 92222     51025     06064     84939     589       . 92183     79880     46904     06602     584       . 92144     99517     49832     05558     150		
. 396	. 38573	09928	14697	01854	707			
. 397	. 38665	34110	90188	34186	658			
. 398	. 38757	54427	12300	79611	426			
. 399	. 38849	70867	59002	83601	363			
0.400 .401 .402 .403 .404	0.38941 .39033 .39125 .39217 .39309	83423 92084 96842 97687 94611	08650 $39988$ $32150$ $64660$ $17434$	49166 29019 17700 43663 61324	631 595 358 363 955	0.92106     09940     02885     08279     853       .92067     11151     95020     86221     075       .92028     03157     16118     16919     248       .91988     85959     56976     45007     979       .91949     59563     09315     43137     110		
0. 405	0.39401	87603	70780	43071	820	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
. 406	.39493	76656	05398	71230	202			
. 407	.39585	61759	02384	29995	816			
. 408	.39677	42903	43226	97324	356			
. 409	.39769	20080	09812	36782	508			
0.410	0.39860	93279	84422	89359	380	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
.411	.39952	62493	49738	65238	251			
.412	.40044	27711	88838	35528	558			
.413	.40135	88925	85200	23958	010			
.414	.40227	46126	22702	98524	766			
0.415	0,40318	99303	85626	63109	550	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
.416	.40410	48449	58653	49047	645			
.417	.40501	93554	26869	06660	654			
.418	.40593	34608	75762	96747	939			
.419	.40684	71603	91229	82037	655			

**Table XII.**—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x	sin x	cos x
0. 420 . 421 . 422 . 423 . 424	$\begin{array}{ccccccc} .40867 & 33379 & 67491 & 47203 \\ .40958 & 58142 & 02108 & 84671 \\ .41049 & 78808 & 50946 & 15143 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 0.425 \\ .426 \\ .427 \\ .428 \\ .429 \end{array}$	.41323 16141 64165 31825 .41414 20333 53326 15081 .41505 20384 00488 14189	435         0.91103         87329         54033         67564         373           593         .91062         59567         21681         86066         990           889         .91021         22698         63449         20950         808           067         .90979         76727         93022         54591         701           301         .90938         21659         24998         90577         360
0.430 .431 .432 .433 .434	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	692     0.90896     57496     74885     12247     591       243     .90854     84244     59097     41143     638       257     .90813     01906     94960     95366     563       028     .90771     10488     00709     47844     729       774     .90729     09991     95484     84510     435
0.435 .436 .437 .438 .439	$\begin{array}{cccccc} .42231 & 70605 & 52619 & 26011 \\ .42322 & 32974 & 21565 & 11315 \\ .42412 & 91110 & 67248 & 81323 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.440 .441 .442 .433 .444	$\begin{array}{cccccc} .42684 & 40036 & 08712 & 84433 \\ .42774 & 81153 & 07458 & 04751 \\ .42865 & 17992 & 58123 & 58891 \end{array}$	972     0.90475     16632     19963     41716     554       381     .90432     52714     50093     41286     061       750     .90389     79753     55027     31889     904       823     .90346     97753     62061     19473     892       745     .90304     06718     99394     99766     305
0.445 .446 .447 .448 .449	.43136 02755 86947 65073 .43226 22395 12746 82453 .43316 37711 76342 50745	443     0.90261     06653     96132     15457     899       141     .90217     97562     82279     13291     573       917     .90174     79449     88745     01061     718       219     .90131     52319     47341     04523     319       244     .90088     16175     90780     24210     832
0.450 .451 .452 .453 .454	.43586 57635 80759 44573 .43676 55571 84561 42243 .43766 49140 22842 61170	084         0.90044         71023         52676         92166         884           567         .90001         16866         67546         28580         847           681         .89957         53709         70803         98337         319           507         .89913         81556         98765         67474         569           568         .89870         00412         88646         59552         965
0.455 .456 .457 .458 .459	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	492     0.89826     10281     78561     11933     463       918     .89782     11168     07522     31966     167       542     .89738     03076     15441     53089     030       215     .89693     86010     43127     90836     721       008     .89649     59975     32287     98759     714
$\begin{array}{c} 0.460 \\ .461 \\ .462 \\ .463 \\ .464 \end{array}$	$\begin{array}{ccccccc} .44484 & 39373 & 39668 & 23010 \\ .44573 & 93228 & 69916 & 42563 \\ .44663 & 42626 & 60878 & 89618 \end{array}$	151     0.89605     24975     25525     24253     639       752     .89560     81014     66339     64298     937       218     .89516     28097     99127     21110     867       275     .89471     66229     69179     57699     918       506     .89426     95414     22683     53342     602
0.465 .466 .467 .468 .469	$\begin{array}{cccccccccc} .44931 & 63986 & 50888 & 85958 \\ .45020 & 95465 & 39782 & 08029 \\ .45110 & 22442 & 19166 & 27868 \end{array}$	319     0.89382     15656     06720     58962     873       244     .89337     26959     69266     52423     883       479     .89292     29329     59190     93730     459       603     .89247     22770     26256     80142     134       342     .89202     07286     21120     01196     857
0.470 .471 .472 .473 .474	.45377 76270 75545 09309 .45466 85149 94432 63474 .45555 89482 44843 07100	327     0.89156     82881     95328     93645     402       736     .89111     49562     01323     96296     541       735     .89066     07330     92437     04773     005       635     .89020     56193     22891     26178     292       671     .88974     96153     47800     33674     367
0.475 .476 .477 .478 .479	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	307     0.88929     27216     23168     20970     288       994     .88883     49386     05888     56721     822       279     .88837     62667     53744     38842     074       180     .88791     67065     25407     45723     197       739     .88745     62583     80438     05369     212

 $\begin{tabular}{ll} \textbf{Table XII.} & - Values of sin $x$ and cos $x$ to 23 places of decimals at intervals of 0.001 from 0.000 \\ & to 1.600 - Continued. \\ \end{tabular}$ 

x	sin x	CO8 T
0.480 .481 .482 .483 .484	0.46177     91755     41482     88913     664       .46266     59394     26861     16364     968       .46355     22406     46338     56679     522       .46443     80783     13613     95295     430       .46532     34515     42849     72867     132	0.88699     49227     79284     19439     995       .88653     27001     83281     47206     469       .88606     95910     54652     44417     051       .88560     55958     56506     20075     401       .88514     07150     52837     90129     517
0.485 .486 .487 .488 .489	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.88467     49491     08528     31072     223       .88420     82984     89343     33453     094       .88374     07636     61933     55301     874       .88327     23450     93833     75463     416       .88280     30432     53462     46844     214
0.490 .491 .492 .493 .494	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.88233     28586     10121     49570     547       .88186     17916     33995     44058     307       .88138     98427     96151     23994     541       .88091     70125     68537     69230     763       .88044     33014     23984     98588     075
0.495 .496 .497 • .498 .499	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.87996     87098     36204     22574     157       .87949     32382     79786     96012     154       .87901     68872     30204     70581     529       .87853     96571     63808     47270     917       .87806     15485     57828     28743     023
0.500 .501 .502 .503 .504	0.47942     55386     04203     00027     329       .48030     28813     07080     29394     947       .48117     97437     07116     30578     414       .48205     61249     27448     70881     314       .48293     20240     91696     35573     583	0.87758     25618     90372     71611     628       .87710     26976     40428     38630     733       .87662     19562     87859     50795     903       .87614     03383     13407     39357     847       .87565     78441     98689     97748     295
0, 505 . 506 . 507 . 508 . 509	0.48380     74403     23960     15529     617       .48468     23727     48823     94818     170       .48555     68204     91355     38243     967       .48643     07826     77106     78840     928       .48730     42584     32116     05316     931	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 510 . 511 . 512 . 513 . 514	0.48817     72468     82907     49450     013       .48904     97471     56492     73435     934       .48992     17583     80371     57187     006       .49079     32796     82532     85582     104       .49166     43101     91455     35667     778	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.515 .516 .517 .518 .519	0.49253     48490     36108     63810     364       .49340     48953     45953     92799     025       .49427     44482     50944     98899     617       .49514     35068     81528     98859     309       .49601     20703     68647     36861     855	0.87029     27222     98065     45347     504       .86979     97523     84793     59540     132       .86930     59126     71841     83584     429       .86881     12036     53049     84660     240       .86831     56258     23126     60524     189
0.520 .521 .522 .523 .524	0.49688     01378     43736     71433     446       .49774     77084     38729     62299     043       .49861     47812     86055     57189     109       .49948     13555     18641     78596     658       .50034     74302     69914     10484     518	0.86781     91796     77649     90038     785       .86732     18657     13065     83614     647       .86682     36844     26688     33565     898       .86632     46363     16698     64378     779       .86582     47218     82144     82893     524
0. 525 . 526 . 527 . 528 . 529	0.50121     30046     73797     84942     748       .50207     80778     64718     68796     092       .50294     26489     77603     50161     411       .50380     67171     47881     24954     981       .50467     02815     11483     83349     596	0. 86532     39416     22941     28399     561       . 86482     22960     39868     22644     077       . 86431     97856     34571     19753     996       . 86381     64109     09560     56071     436       . 86331     21723     68210     99902     671
0.530 .531 .532 .533 .534	0.50553     33412     04846     96181     366       .50639     58953     64911     01306     143       .50725     79431     29121     89905     473       .50811     94836     35431     92741     999       .50898     05160     22300     66364     220	0.86280     70705     14761     01180     670       .86230     11058     54312     41041     248       .86179     42788     92829     81312     894       .86128     65901     37140     13920     311       .86077     80400     94932     10201     726
0.535 .536 .537 .538 .539	0.50984     10394     28695     79260     534       .51070     10529     94093     97962     456       .51156     05558     58481     73096     946       .51241     95471     62356     25387     754       .51327     80260     46726     31605     686	0.86026     86292     74755     70140     025       .85975     83581     86021     71507     760       .85924     72273     39001     18926     068       .85873     52372     44824     92837     581       .85822     23884     15482     98393     339

Table XII.—Values of sin x and cos x to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x		sir	ı x					co	08 X		
0, 540	0. 51413	59916	53113	10467	728	(	0. 85770	86813	63824	14253	797
. 541	. 51499	34431	23551	08484	914		. 85719	41166	03555	41303	947
. 542	. 51585	03796	00588	85758	874		. 85667	86946	49241	51282	623
. 543	. 51670	68002	27290	01726	969		. 85616	24160	16304	35326	032
. 544	. 51756	27041	47234	00855	920		. 85564	52812	21022	52425	567
0. 545	0.51841	80905	04516	98283	861	(	0, 85512	72907	\$0530	77799	957
. 546	.51927	29584	43752	65410	714		. 85460	84452	12819	51181	787
. 547	.52012	73071	10073	15436	812		. 85408	87450	36734	25018	472
. 548	.52098	11356	49129	88849	675		. 85356	81907	71975	12587	703
. 549	.52183	44432	07094	38858	868		. 85304	67829	39096	36027	442
0.550	0.52268	72289	30659	16778	838	i	0. 85252	45220	59505	74280	498
.551	.52353	94919	67038	57359	653		. 85200	14086	55464	10953	761
.552	.52439	12314	63969	64065	565		. 85147	74432	50084	82092	114
.553	.52524	24465	69712	94301	297		. 85095	26263	67333	23867	110
.554	.52609	31364	33053	44585	976		. 85042	69585	32026	20180	431
0, 555	0. 52694	33002	03301	35674	635		0. 84990	04402	69831	50182	218
, 556	. 52779	29370	30292	97627	180		. 84937	30721	07267	35704	287
, 557	. 52864	20460	64391	54824	757		. 84884	48545	71701	88608	318
, 558	. 52949	06264	56488	10933	415		. 84831	57881	91352	58049	047
, 559	. 53033	86773	58002	33815	002		. 84778	58734	95285	77652	517
0.560 .561 .562 .563 .564	0. 53118 . 53203 . 53287 . 53372 . 53457	61979 31872 96446 55691 09598	20883 97610 41195 05179 43639	40385 81418 26300 47726 06347	187 533 543 585 607		0. 84725 . 84672 . 84619 . 84565 . 84512	51110 35012 10448 77421 35938	13416 76506 16165 64850 55863	$\begin{array}{c} 12609 \\ 06683 \\ 29136 \\ 21564 \\ 44654 \end{array}$	452 799 481 438 991
0. 565 . 566 . 567 . 568 . 569	0.53541 .53626 .53710 .53794 .53878	58160 01367 39212 71686 98780	11183 62956 54637 42441 83121	35362 25057 07291 39926 91211	572 521 168 969 553		0. 84458 . 84405 . 84351 . 84297 . 84244	\$6004 27624 60803 85547 01861	23353 02313 28580 38838 70611	$\begin{array}{c} 24855 \\ 00958 \\ 70603 \\ 36691 \\ 53715 \end{array}$	579 945 796 <b>011</b> 445
0. 570	0.53963	20487	33969	24099	446		0. 84190	09751	62268	74013	376
. 571	.54047	36797	52812	80524	005		. 84136	09222	53020	93925	658
. 572	.54131	47702	98021	65614	465		. 84082	00279	82920	99876	632
. 573	.54215	53195	28505	31859	028		. 84027	82928	92863	14368	839
. 574	.54299	53266	03714	63213	905		. 83973	57175	24582	41893	605
0. 575	0. 54383	47906	83642	59158	222		0. 83919	23024	20654	14757	543
. 576	. 54467	37109	28825	18694	718		. 83864	80481	24493	38825	019
. 577	. 54551	20865	00342	24296	136		. 83810	29551	80354	39176	658
. 578	. 54634	99165	59818	25797	231		. 83755	70241	33330	05683	918
. 579	. 54718	72002	69423	24232	321		. 83701	02555	29351	38499	807
0. 580	0.54802	39367	91873	55618	270		0. 83646	26499	15186	93465	789
. 581	.54886	01252	90432	74682	851		. 83591	42078	38442	27434	927
. 582	.54969	57649	28912	38538	382		. 83536	49298	47559	43511	337
. 583	.55053	08548	71672	90300	563		. 83481	48164	91816	36205	988
. 584	.55136	53942	83624	42652	424		. 83426	38683	21326	36508	907
0. 585 . 586 . 587 . 588 . 589	0. 55219 . 55303 . 55386 . 55469 . 55552	93823 28181 57009 80299 98041	30227 77494 91989 40829 91685	61353 48692 26889 21434 44380	309 799 504 637 278		0.83371 .83315 .83260 .83205 .83149	$\begin{array}{c} 20858 \\ 94697 \\ 60204 \\ 17385 \\ 66245 \end{array}$	87037 40732 35026 23370 60044	56877 36143 84331 27399 51895	861 543 337 720 332
0.590	0.55636	10229	12783	77572	254		0. 83094	06791	00163	49524	800
.591	.55719	16852	72905	55827	556		. 83038	39026	99672	61643	346
.592	.55802	17904	41388	50056	192		. 82982	62959	15348	23660	255
.593	.55885	13375	88127	50327	409		. 82926	78593	04797	09361	243
.594	.55968	03258	83575	48880	201		. 82870	85934	26455	75147	786
0. 595	0.56050	87544	98744	23078	004		0. 82814	84988	39590	04193	468
. 596	.56133	66226	05205	18307	516		. 82758	75761	04294	50517	407
. 597	.56216	39293	75090	30821	541		. 82702	58257	81491	82974	799
. 598	.56299	06739	81092	90525	792		. 82646	32484	32932	29164	660
. 599	.56381	68555	96468	43709	545		. 82589	98446	21193	19254	799

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x		8	n x					co	8 X		
0.600 .601 .602 .603 .604	0.56464 .56546 .56629 .56711 .56793	24733 75265 20142 59356 92899	95035 51175 39837 36531 17336	35720 93580 08553 18642 91043	095 897 336 028 574		0. 82533 . 82477 . 82420 . 82363 , 82307	56149 05598 46800 79760 04483	09678 62617 45065 22901 62830	29724 27022 11146 59135 68484	095 123 193 858 934
0. 605 . 606 . 607 . 608 . 609	0, 56876 , 56958 , 57040 , 57122 , 57204	20762 42938 59418 70194 75257	58900 38434 33722 23115 85537	04538 31827 21808 81800 59705	687 607 719 299 300		0. 82250 . 82193 . 82136 . 82079 . 82022	20976 29243 29292 21127 04753	32380 99900 34564 06368 86127	$\begin{array}{c} 00471 \\ 23403 \\ 55786 \\ 09403 \\ 32317 \end{array}$	116 216 102 380 893
0. 610 . 611 . 612 . 613 . 614	0, 57286 , 57368 , 57450 , 57532 , 57614	74601 68215 56093 38225 14604	$\begin{array}{c} 00481 \\ 48012 \\ 08770 \\ 63966 \\ 95387 \end{array}$	$\begin{array}{c} 26119 \\ 56380 \\ 12563 \\ 25415 \\ 76236 \end{array}$	098 111 221 904 989		0. 81964 . 81907 . 81850 . 81792 . 81734	80178 47406 06443 57296 99969	45479 56882 93612 29766 40259	51790 17114 42372 49108 08915	075 225 770 549 198
0. 615 . 616 . 617 . 618 . 619	0. 57695 . 57777 . 57859 . 57940 . 58022	$\begin{array}{c} 85222 \\ 50071 \\ 09141 \\ 62426 \\ 09916 \end{array}$	85396 16931 73507 39217 98732	78697 60606 45614 34861 88572	975 809 047 330 073		0. 81677 . 81619 . 81561 . 81503 . 81445	34469 60800 78970 88984 90847	00822 88007 79180 52524 87037	85945 79339 65565 40689 62551	685 051 411 288 318
0. 620 . 621 . 622 . 623 . 624	0.58103 .58184 .58266 .58347 .58428	51605 87483 17542 41775 60174	37305 40765 95525 88579 07505	07584 14825 36729 84595 35888	296 522 641 681 387		0. 81387 . 81329 . 81271 . 81213 . 81154	84566 70146 47593 16913 78111	62533 59641 59801 45270 99116	92868 39252 97147 91684 19458	400 335 027 290 331
0. 625 . 626 . 627 . 628 . 629	0,58509 .58590 .58671 .58752 .58833	72729 79433 80279 75257 64359	40462 76194 04032 13891 96274	15480 76836 83139 88356 18246	540 923 861 252 006		0, 81096 . 81037 . 80979 . 80920 . 80861	31195 76168 13038 41809 62489	05217 48267 13768 88032 58182	90218 68483 15067 28536 86569	953 556 973 214 178
0. 630 . 631 . 632 . 633 . 634	0, 58914 . 58995 . 59075 . 59156 . 59237	47579 24907 96335 61856 21462	$\begin{array}{c} 42269 \\ 43555 \\ 92400 \\ 81661 \\ 04785 \end{array}$	51311 99690 89983 44033 59635	811 151 484 509 440		0. 80802 . 80743 . 80684 . 80625 . 80566	75083 79596 76035 64405 44713	12151 38679 27315 68414 53140	87252 90282 58094 96904 97676	371 722 522 569 566
0. 635 . 636 . 637 . 638 . 639	0. 59317 . 59398 . 59478 . 59559 . 59639	75143 22893 64703 00565 30471	55812 29375 20697 25599 40494	91193 30315 86352 66873 58084	198 454 425 364 641		0. 80507 . 80447 . 80388 . 80328 . 80269	16964 81165 37320 85437 25521	73462 22155 92798 79775 78276	77004 17917 10598 93030 91556	837 411 548 752 338
0. 640 . 641 . 642 . 643 . 644	0. 59719 . 59799 . 59879 . 59959 . 60039	54413 72383 84374 90376 90382	62392 88897 18215 49145 81087	05188 92681 24594 04673 16496	355 375 757 426 070		0. 80209 . 80149 . 80089 . 80030 . 79970	57578 81614 97636 05648 05657	84292 94617 06847 19380 31415	61358 26862 22056 30729 26635	611 715 216 469 842
0. 645 . 646 . 647 . 648 . 649	0. 60119 . 60199 . 60279 . 60359 . 60439	84385 72375 54345 30288 00194	14041 48606 85984 27978 76993	$\begin{array}{c} 03535 \\ 49156 \\ 56561 \\ 28662 \\ 47908 \end{array}$	151 949 576 868 070		0. 79909 . 79849 . 79789 . 79729 . 79668	97669 81690 57726 25783 85868	42951 54786 68519 86546 12061	13571 65377 65855 48612 36819	848 243 159 327 444
0. 650 . 651 . 652 . 653 . 654	0.60518 .60598 .60677 .60757	64057 21868 73618 19302 58909	36039 08730 99284 12527 53891	56037 33782 80505 93778 48897	252 358 818 646 929		0. 79608 . 79547 . 79487 . 79426 . 79365	37985 82142 18343 46596 66907	49055 02318 77432 80778 19531	82891 08089 42041 62180 33114	760 927 183 929 757
0. 655 . 656 . 657 . 658 . 659	0. 60915 . 60995 . 61074 . 61153 . 61232	92433 19865 41198 56423 65533	29414 45745 10140 30466 15201	78343 51174 52364 62074 34867	652 755 359 073 307		0. 79304 . 79243 . 79182 . 79121 . 79060	79281 83724 80243 68843 49532	01659 35925 31885 99886 51069	45900 57253 28666 65458 55734	987 785 909 154 550

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

1					1					
x		sin x					c	os x		
0, 660 . 661 . 662 . 663 . 664		660 89197	78861 34819 55178 83019 30974	515 272 137 186 165		0, 78999 , 78937 , 78876 , 78814 , 78753	22314 87197 44186 93287 34506	97365 51494 26970 38093 99953	09278 96354 86436 86857 81380	382 080 061 558 523
0. 665 . 666 . 667 . 668 . 669	0. 61705 913 . 61784 574 . 61863 173 . 61941 710 . 62020 183	408 52521 311 31267 027 78333	$\begin{array}{c} 60071 \\ 58518 \\ 20428 \\ 24475 \\ 12498 \end{array}$	171 785 576 901 919		0. 78691 . 78629 . 78568 . 78506 . 78444	67851 93326 10938 20693 22598	28428 40184 52672 84132 53587	68686 00789 21368 04022 90446	643 551 279 017 244
0. 670 . 671 . 672 . 673 . 674	0. 62098 598 . 62176 949 . 62255 238 . 62333 465 . 62411 629	980 78835 873 51665 640 72160	68035 94799 95092 48154 88456	744 654 281 700 349		0. 78382 . 78320 . 78257 . 78195 . 78133	16658 02880 81270 51835 14579	80849 86510 91948 19324 91581	28530 10376 10240 22393 98907	294 414 374 698 578
0. 675 . 676 . 677 . 678 . 679	0, 62489 731 , 62567 771 , 62645 747 , 62723 662 , 62801 513	11 00082 797 94805 220 32101	83921 14094 48239 23383 22288	682 496 849 477 658		0. 78070 . 78008 . 77945 . 77882 . 77820	69511 16635 55959 87488 11228	32446 66425 18805 15655 83820	87358 68455 93590 22308 59699	526 830 877 414 786
0. 680 . 681 . 682 . 683 . 684	0. 62879 302 . 62957 028 . 63034 691 . 63112 290 . 63189 827	322 11138 .08 33578 .091 09159	51370 18547 11028 73043 83499	418 018 644 207 207		0. 77757 . 77694 . 77631 . 77568 . 77505	27187 35370 35783 28434 13327	50927 45381 96362 33829 88518	93718 32416 41105 79438 38411	239 339 566 156 247
0, 685 . 686 . 687 . 688 . 689	$\begin{array}{ccc} 0.\ 63267 & 301 \\ .\ 63344 & 711 \\ .\ 63422 & 058 \\ .\ 63499 & 341 \\ .\ 63576 & 561 \end{array}$	40 97929 32 32410 81 46361	33585 04308 43963 45549 24110	507 094 552 316 576		0. 77441 . 77378 . 77315 . 77251 . 77188	$\begin{array}{c} 90470 \\ 59869 \\ 21530 \\ 75460 \\ 21664 \end{array}$	91938 76376 74891 21318 50263	77293 60473 94232 63436 68154	390 500 293 286 418
0, 690 . 691 . 692 . 693 . 694	0. 63653 718 . 63730 810 . 63807 840 . 63884 805 . 63961 706	98 39859 01 49694 23 81182	94023 46216 25323 06781 73855	743 467 984 899 200		0. 77124 . 77060 . 76997 . 76933 . 76869	60149 90922 13989 29357 37030	97106 97998 89862 10392 98049	60197 79579 90904 19670 88505	354 541 069 418 132
0, 695 , 696 , 697 , 698 , 699	0. 64038 543 . 64115 317 . 64192 026 . 64268 671 . 64345 252	29 12236 51 40207 54 47966	94603 98782 54680 45892 48031	464 185 136 698 063		0. 76805 . 76741 . 76677 . 76612 . 76548	37017 29324 13956 90921 60224	92068 32449 59961 16142 43294	53315 39366 77279 38958 73431	502 321 757 434 759
0. 700 . 701 . 702 . 703 . 704	0. 64421 768 . 64498 220 . 64574 608 . 64650 931 . 64727 189	71 88685 21 57525 13 80337	05367 07414 65445 88940 61979	261 902 583 870 783		0. 76484 . 76419 . 76355 . 76290 . 76225	21872 75872 22230 60953 92046	84488 83558 85105 34492 77847	42625 57055 11442 20253 53166	586 252 075 368 023
0. 705 . 706 . 707 . 708 . 709	0. 64803 382 . 64879 511 . 64955 575 . 65031 574 . 65107 508	69 43546 55 56422 46 13597	19561 23864 40438 14335 46169	705 641 747 062 354		0.76161 .76096 .76031 .75966 .75901	15517 31372 39617 40259 33304	62061 34787 44439 40193 71984	70453 58298 64022 31253 34997	752 030 815 107 406
0.710 .711 .712 .713 .714	0. 65183 377 . 65259 180 . 65334 919 . 65410 591 . 65486 199	68 54275 00 95261 99 87111	68121 19866 24450 64083 55888	013 915 173 709 565		0. 75836 . 75770 . 75705 . 75640 . 75574	18759 96631 66925 29649 84809	90508 47219 94330 84811 72391	16654 18942 20755 71940 28003	146 159 235 852 128
0.715 .716 .717 .718 .719	0.65561 741 .65637 218 .65712 629 .65787 974 .65863 253	20 03821 09 38376 27 46694	27566 93009 27837 44880 69585	883 463 851 853 417		0. 75509 . 75443 . 75378 . 75312 . 75246	32412 72463 04970 29939 47378	11552 57536 66335 94701 00135	84730 12745 91983 46092 76755	074 203 563 263 558

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

<i>x</i>			sin x			cos x	
0. 720	0, 65938	46719	71473	15361	800	0.75180     57291     40894     97944     549       .75114     59686     75987     70091     576       .75048     54570     65174     34189     363       .74982     41949     68966     45814     983       .74916     21830     48626     09078     707	
. 721	, 66013	61478	83004	58862	952		
. 722	, 66088	69636	58443	15198	027		
. 723	, 66163	71185	46973	13079	967		
. 724	, 66238	66117	98439	69907	065		
0. 725 . 726 . 727 . 728 . 729	0. 66313 . 66388 . 66463 . 66537 . 66612	54426 36103 11142 79534 41272	63349 92872 38839 53748 90759	66778 23443 73184 37633 01524	$\begin{array}{c} 441 \\ 354 \\ 280 \\ 666 \\ 309 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0. 730	0.66686	96350	03697	87373	259	0.74517     44023     44870     38879     013       .74450     71602     33841     50102     364       .74383     91736     15714     42167     693       .74317     04431     58475     71321     153       .74250     09695     30855     77713     862	
. 731	.66761	44758	47057	30099	195		
. 732	.66835	86490	75996	51573	181		
. 733	.66910	21539	46342	35102	739		
. 734	.66984	49897	14589	99849	159		
0, 735	0. 67058	71556	37903	75177	973	0.74183     07534     02328     18528     866       .74115     97954     43109     01033     791       .74048     80963     24156     15559     237       .73981     56567     17168     68402     998       .73914     24772     94586     14660     158	
. 736	. 67132	86509	74117	74942	523		
. 737	. 67206	94749	81736	71700	537		
. 738	. 67280	96269	19936	70863	650		
. 739	. 67354	91060	48565	84779	796		
0. 740	0. 67428	79116	28145	06748	388	0.73846     85587     29587     90979     142       .73779     39016     96092     48243     787       .73711     85068     68756     84181     492       .73644     23749     22975     75897     532       .73576     55065     34881     12335     582	
. 741	. 67502	60429	19868	84968	216		
. 742	. 67576	34991	85605	96417	996		
. 743	. 67650	02796	87900	20669	485		
. 744	. 67723	63836	89971	13633	096		
0. 745	0. 67797	18104	55714	81235	936	0.73508     79023     81341     26664     537       .73440     95631     39960     28591     681       .73373     04894     89077     36602     285       .73305     06821     07766     10125     695       .73237     01416     75833     81627     975	
. 746	. 67870	65592	49704	53032	193		
. 747	. 67944	06293	37191	55745	803		
. 748	. 68017	40199	84105	86745	313		
. 749	. 68090	67304	57056	87450	880		
0. 750	0, 68163	87600	23334	16673	324	0.73168     88688     73820     88631     184       .73100     68643     83000     05659     342       .73032     41288     85375     76111     160       .72964     06630     63683     44059     608       .72895     64676     01388     85978     367	
. 751	. 68237	01079	50908	23885	163		
. 752	. 68310	07735	08431	22423	554		
. 753	. 68383	07559	65237	62625	080		
. 754	. 68456	00545	91345	04892	285		
0.755	0. 68528	86686	57454	92691	917	0. 72827     15431     82687     42395     268       . 72758     58904     92503     49472     750       . 72689     95102     16489     70515     436       . 72621     24030     41026     27404     867       . 72552     45696     53220     31961     494	
.756	. 68601	65974	34953	25484	772		
.757	. 68674	38401	95911	31587	089		
.758	. 68747	03962	13086	40963	419		
.759	. 68819	62647	59922	57950	885		
0.760	0. 68892	14451	10551	33914	776	0.72483 60107 40905 17233 969	
.761	. 68964	59365	39792	39835	383	.72414 67269 92639 68715 814	
.762	. 69036	97383	23154	38826	030	.72345 67190 97707 55489 548	
.763	. 69109	28497	36835	58582	200	.72276 59877 46116 61298 318	
.764	. 69181	52700	57724	63761	700	.72207 45336 28598 15545 123	
0.765	0. 69253	69985	63401	28295	794	0.72138     23574     36606     24219     693       .72068     94598     62317     00753     084       .71999     58415     98627     96800     072       .71930     15033     39157     32949     410       .71860     64457     78243     29362     010	
.766	. 69325	80345	32137	07631	223		
.767	. 69397	83772	42896	10903	039		
.768	. 69469	80259	75335	73038	195		
.769	. 69541	69800	09807	26789	802		
0.770	0. 69613	52386	27356	74701	988	0.71791     06696     10943     36337     129       .71721     41755     33033     64806     626       .71651     69642     41008     16757     355       .71581     90364     32078     15581     770       .71512     03928     04171     36356     807	
.771	. 69685	28011	09725	61005	296		
.772	. 69756	96667	39351	43442	524		
.773	. 69828	58347	99368	65024	972		
.774	. 69900	13045	73609	25718	983		
0.775	0. 69971	60753	46603	54062	747	0.71442     10340     55931     36051     117       .71372     09608     86716     83660     709       .71302     01739     96600     90273     093       .71231     86740     86370     39059     972       .71161     64618     57525     15198     564	
.776	. 70043	01464	03580	78713	256		
.777	. 70114	35170	30469	99923	379		
.778	. 70185	61865	13900	60948	949		
.779	. 70256	81541	41203	19385	818		

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x	sin x	cos.x
0. 780 . 781 . 782 . 783 . 784		$\begin{array}{cccccccc} 0.71091 & 35380 & 12277 & 35721 & 626 \\ .71020 & 99032 & 53550 & 79296 & 239 \\ .70950 & 55582 & 84980 & 15931 & 435 \\ .70880 & 05038 & 10910 & 36614 & 737 \\ .70809 & 47405 & 36395 & 82877 & 671 \end{array}$
0.785 .786 .787 .788 .789	0.70682     51811     05365     92374     614       .70753     22158     44073     98290     801       .70823     85430     50625     15901     193       .70894     41620     18692     30436     730       .70964     90720     42656     50970     857	$\begin{array}{cccccccc} 0.70738 & 82691 & 67199 & 76290 & 330 \\ .70668 & 10904 & 09793 & 47885 & 059 \\ .70597 & 32049 & 71355 & 67509 & 330 \\ .70526 & 46135 & 59771 & 73107 & 880 \\ .70455 & 53168 & 83632 & 99934 & 173 \end{array}$
0. 790 . 791 . 792 . 793 . 794	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.70384 & 53156 & 52236 & 09691 & 278 \\ .70313 & 46105 & 75582 & 19602 & 208 \\ .70242 & 32023 & 64376 & 31409 & 812 \\ .70171 & 10917 & 30026 & 60306 & 275 \\ .70099 & 82793 & 84643 & 63792 & 314 \\ \end{array}$
0.795 .796 .797 .798 .799		$\begin{array}{cccccccc} 0.70028 & 47660 & 41039 & 70466 & 123 \\ .69957 & 05524 & 12728 & 08742 & 151 \\ .69885 & 56392 & 13922 & 35499 & 779 \\ .69814 & 00271 & 59535 & 64661 & 971 \\ .69742 & 37169 & 65179 & 95703 & 964 \end{array}$
0. 800 . 801 . 802 . 803 . 804	0. 71735     60908     99522     76162     718       . 71805     24388     14736     58803     753       . 71874     80686     77571     43741     255       . 71944     29797     92397     50488     651       . 72013     71714     64303     73354     263	$\begin{array}{cccccccc} 0.69670 & 67093 & 47165 & 42092 & 075 \\ .69598 & 90050 & 22499 & 59652 & 695 \\ .69527 & 06047 & 08886 & 74871 & 538 \\ .69455 & 15091 & 24727 & 13123 & 218 \\ .69383 & 17189 & 89116 & 26831 & 236 \end{array}$
0. 805 . 806 . 807 . 808 . 809	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.69311 & 12350 & 21844 & 23558 & 425 \\ .69239 & 00579 & 43394 & 94027 & 956 \\ .69166 & 81884 & 74945 & 40074 & 951 \\ .69094 & 56273 & 38365 & 02528 & 784 \\ .69022 & 23752 & 56214 & 89026 & 151 \end{array}$
0.810 .811 .812 .813 .814		$\begin{array}{ccccccccc} 0.68949 & 84329 & 51747 & 01754 & 964 \\ .68877 & 38011 & 48903 & 65129 & 158 \\ .68804 & 84805 & 72316 & 53394 & 472 \\ .68732 & 24719 & 47306 & 18165 & 280 \\ .68659 & 57759 & 99881 & 15892 & 545 \end{array}$
0.815 .816 .817 .818 .819	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.68586 & 83934 & 56737 & 35262 & 969 \\ .68514 & 03250 & 45257 & 24529 & 414 \\ .68441 & 15714 & 93509 & 18772 & 652 \\ .68368 & 21335 & 30246 & 67094 & 544 \\ .68295 & 20118 & 84907 & 59742 & 692 \end{array}$
0. 820 . 821 . 822 . 823 . 824	0.73114     58297     26895     87938     131       .73182     76852     47595     56503     084       .73250     88089     40670     98872     320       .73318     92001     24998     51414     329       .73386     88581     20187     01366     283	$\begin{array}{cccccc} 0.68222 & 12072 & 87613 & 55166 & 656 \\ .68148 & 97204 & 69169 & 07005 & 802 \\ .68075 & 75521 & 61060 & 91008 & 857 \\ .68002 & 47030 & 95457 & 31885 & 232 \\ .67929 & 11740 & 05207 & 30088 & 213 \end{array}$
0. 825 . 826 . 827 . 828 . 829	0.73454     77822     46578     54873     150       .73522     59718     25249     04953     477       .73590     34261     78008     99391     793       .73658     01446     27404     08557     557       .73725     61264     96715     93150     579	$\begin{array}{cccccc} 0.67855 & 69656 & 23839 & 88530 & 058 \\ .67782 & 20786 & 85563 & 39229 & 106 \\ .67708 & 65139 & 25264 & 69888 & 949 \\ .67635 & 02720 & 78508 & 50409 & 750 \\ .67561 & 33538 & 81536 & 59331 & 781 \\ \end{array}$
0. 830 . 831 . 832 . 833 . 834	0.73793     13711     09962     71872     858       .73860     58777     91899     89026     752       .73927     96458     68020     82039     434       .73995     26746     64557     48913     544       .74062     49635     08481     15603     989	$\begin{array}{ccccccc} 0.67487 & 57600 & 71267 & 10211 & 246 \\ .67413 & 74913 & 85293 & 77928 & 481 \\ .67339 & 85485 & 61885 & 24928 & 580 \\ .67265 & 89323 & 39984 & 27394 & 537 \\ .67191 & 86434 & 59207 & 01352 & 983 \end{array}$
0. 835 . 836 . 837 . 838 . 839	0. 74129     65117     27503     03320     808       . 74196     73186     50074     95758     049       . 74263     73836     05390     06248     576       . 74330     67059     23383     44844     755       . 74397     52849     34732     85324     932	$\begin{array}{ccccccc} 0.67117 & 76826 & 59842 & 28712 & 570 \\ .67043 & 60506 & 82850 & 83235 & 098 \\ .66969 & 37482 & 69864 & 56439 & 445 \\ .66895 & 07761 & 63185 & 83438 & 385 \\ .66820 & 71351 & 05786 & 68708 & 357 \\ \end{array}$

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

	10 1.800—Contin	
x	sin x	cos x
0. 840 . 841 . 842 . 843 . 844	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccccc} 0.66746 & 28258 & 41308 & 11792 & 267 \\ 66671 & 78491 & 14059 & 32935 & 396 \\ .66597 & 22056 & 69016 & 98654 & 482 \\ .66522 & 58962 & 51824 & 47240 & 065 \\ .66447 & 89216 & 08791 & 14192 & 152 \\ \end{array}$
0. 845 . 846 . 847 . 848 . 849	0.74797     11121     74999     80133     429       .74863     44693     61339     89598     886       .74929     70779     13273     01550     724       .74995     89371     68190     66317     368       .75062     00464     64233     63922     547	$\begin{array}{cccccccc} 0.66373 & 12824 & 86891 & 57589 & 286 \\ .66298 & 29796 & 33764 & 83391 & 100 \\ .66223 & 40137 & 97713 & 70674 & 409 \\ .66148 & 43857 & 27703 & 96802 & 946 \\ .66073 & 40961 & 73363 & 62530 & 783 \end{array}$
0. 850 . 851 . 852 . 853 . 854	0.75128     04051     40292     70271     207       .75194     00125     36009     23260     432       .75259     88679     91775     88815     295       .75325     69708     48737     26849     594       .75391     43204     48790     57151     380	$\begin{array}{ccccccc} 0.65998 & 31458 & 84982 & 17039 & 542 \\ .65923 & 15356 & 13509 & 82909 & 449 \\ .65847 & 92661 & 10556 & 81024 & 321 \\ .65772 & 63381 & 28392 & 55410 & 547 \\ .65697 & 27524 & 19944 & 98010 & 152 \end{array}$
0. 855 . 856 . 857 . 858 . 859	0.75457     09161     34586     25193     237       .75522     67572     49528     67867     227       .75588     18431     37776     79144     450       .75653     61731     44244     75659     143       .75718     97466     14602     62217     260	$\begin{array}{ccccccc} 0.65621 & 85097 & 38799 & 73388 & 013 \\ .65546 & 36108 & 39199 & 43373 & 300 \\ .65470 & 80564 & 76042 & 91635 & 218 \\ .65395 & 18474 & 04884 & 48193 & 134 \\ .65319 & 49843 & 81933 & 13861 & 148 \\ \end{array}$
0.860 .861 .862 .863 .864	0.75784     25628     95276     97229     459       .75849     46213     33451     58068     441       .75914     59212     77068     06350     566       .75979     64620     74826     53141     684       .76044     62430     76186     24087     122	$\begin{array}{ccccccc} \textbf{0.} 65243 & 74681 & 64051 & 84627 & 203 \\ \textbf{.} 65167 & 92995 & 08756 & 75966 & 794 \\ \textbf{.} 65092 & 04791 & 74216 & 47091 & 357 \\ \textbf{.} 65016 & 10079 & 19251 & 25131 & 418 \\ \textbf{.} 64940 & 08865 & 03332 & 29254 & 574 \\ \end{array}$
0. 865 . 866 . 867 . 868 . 869	0.76109     52636     31366     24465     750       .76174     35230     91346     04168     073       .76239     10208     07866     22598     272       .76303     77561     33429     13500     144       .76368     37284     21299     49706     858	$\begin{array}{cccccccc} 0.64864 & 01156 & 86580 & 94718 & 373 \\ .64787 & 86962 & 29767 & 96858 & 196 \\ .64711 & 66288 & 94312 & 75010 & 176 \\ .64635 & 39144 & 42282 & 56369 & 276 \\ .64559 & 05536 & 36391 & 79782 & 561 \end{array}$
0. 870 . 871 . 872 . 873 . 874	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0. 875 . 876 . 877 . 878 . 879	$\begin{array}{ccccccc} \textbf{0.76754} & 35022 & 36027 & 03963 & 458 \\ \textbf{.76818} & 41152 & 15638 & 42337 & 736 \\ \textbf{.76882} & 39600 & 11198 & 60682 & 252 \\ \textbf{.76946} & 30359 & 82862 & 84773 & 027 \\ \textbf{.77010} & 13424 & 91555 & 22769 & 271 \\ \end{array}$	0. 64099     68581     63325     13035     656       . 64022     89942     90610     64049     903       . 63946     04901     88955     21244     528       . 63869     13466     26862     88380     872       . 63792     15643     73477     15258     639
0.880 .881 .882 .883 .884	0.77073     88788     98969     29120     965       .77137     56445     67568     68399     506       .77201     16388     60587     79051     337       .77264     68611     42032     37074     497       .77328     13107     76680     19618     049	$\begin{array}{cccccccc} 0.63715 & 11441 & 98580 & 20801 & 550 \\ .63638 & 00868 & 72592 & 16079 & 131 \\ .63560 & 83931 & 66570 & 27264 & 710 \\ .63483 & 60638 & 52208 & 18529 & 695 \\ .63406 & 30997 & 01835 & 14874 & 218 \end{array}$
0. 885 . 886 . 887 . 888 . 889	0.77391     49871     30081     68504     290       .77454     78895     68560     53673     706       .77518     00174     59214     36552     600       .77581     13701     69915     33343     321       .77644     19470     69310     78237     045	$\begin{array}{cccccccc} 0.63328 & 95014 & 88415 & 24894 & 213 \\ .63251 & 52699 & 85546 & 63485 & 020 \\ .63174 & 04059 & 67460 & 74481 & 571 \\ .63096 & 49102 & 09021 & 53235 & 256 \\ .63018 & 87834 & 85724 & 69127 & 530 \end{array}$
0. 890 . 891 . 892 . 893 . 894	0.77707     17475     26823     86549     033       .77770     07709     12654     17776     316       .77832     90165     97778     38577     722       .77895     64839     53950     85676     211       .77958     31723     53704     28683     432	$\begin{array}{ccccccc} 0.62941 & 20265 & 73696 & 88020 & 355 \\ .62863 & 46402 & 49694 & 94643 & 540 \\ .62785 & 66252 & 91105 & 14919 & 057 \\ .62707 & 79824 & 75942 & 38222 & 428 \\ .62629 & 87125 & 82849 & 39581 & 242 \\ \end{array}$
0. 895 - 896 - 897 - 898 - 899	0.78020     90811     70350     32846     443       .78083     42097     77980     21716     548       .78145     85575     51465     39740     163       .78208     21238     66458     14771     667       .78270     49080     99392     20508     171	$\begin{array}{ccccccc} 0.62551 & 88163 & 91096 & 01810 & 880 \\ 62473 & 82946 & 80578 & 37587 & 545 \\ .62395 & 71482 & 31818 & 11458 & 656 \\ .62317 & 53778 & 25961 & 61790 & 683 \\ .62239 & 29842 & 44779 & 22654 & 524 \\ \end{array}$

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

			200.7
<i>x</i>	sin x		COS X
0. 900 . 901 . 902 . 903 . 904	. 78394 81278 28730 22 . 78456 85620 81914 55 . 78518 82117 66602 18	3846 138 2159 796 5501 279 3722 439 8518 260	0. 62160     99682     70664     45648     472       . 62082     63306     86633     21658     870       . 62004     20722     76323     02558     530       . 61925     71938     23992     22842     983       . 61847     16961     14519     21204     658
0. 905 . 906 . 907 . 908 . 909	. 78704 24472 17115 10 . 78765 89524 39174 57 . 78827 46700 02347 2-	0391 817 0540 713 7664 940 4696 094 0447 888	0. 61768     55799     33401     62045     040       . 61689     88460     66755     56924     921       . 61611     14953     01314     85952     792       . 61532     35284     24430     19111     466       . 61453     49462     24068     37523     020
0. 910 . 911 . 912 . 913 . 914	.79011 70905 85311 33 .79072 96513 63647 48 .79134 14214 12398 18	1187 896 2130 474 8850 789 8619 897 1660 812	0.61374     57494     88811     54652     118       .61295     59390     07856     37447     803       .61216     55155     71013     27423     839       .61137     44799     68705     61677     674       .61058     28329     91968     93848     110
0. 915 . 916 . 917 . 918 . 919	. 79317 19810 67394 80 . 79378 05820 88020 1 . 79438 83893 28129 4	2325 499 0192 738 1086 785 8016 785 2036 860	$\begin{array}{ccccccc} 0.60979 & 05754 & 32450 & 15011 & 758 \\ .60899 & 77080 & 82406 & 74518 & 350 \\ .60820 & 42317 & 34706 & 00764 & 999 \\ .60741 & 01471 & 82824 & 21909 & 476 \\ .60661 & 54552 & 20845 & 86522 & 589 \end{array}$
0. 920 . 921 . 922 . 923 . 924	$\begin{array}{ccccc} .79620 & 70422 & 91262 & 66 \\ .79681 & 16683 & 39183 & 23 \\ .79741 & 54975 & 75501 & 93 \end{array}$	3026 828 0393 471 3692 319 3169 858 0226 129	$\begin{array}{cccccccccc} 0.60582 & 01566 & 43462 & 84179 & 741 \\ .60502 & 42522 & 45973 & 65991 & 745 \\ .60422 & 77428 & 24282 & 65074 & 984 \\ .60343 & 06291 & 74899 & 16960 & 980 \\ .60263 & 29120 & 94936 & 79945 & 468 \end{array}$
0. 925 . 926 . 927 . 928 . 929	. 79922 21983 80542 2 . 79982 28343 40138 4 . 80042 26704 76967 0	7797 639 0660 537 5653 978 1823 638 0485 294	$\begin{array}{cccccccc} 0.60183 & 45923 & 82112 & 55377 & 043 \\ .60103 & 56708 & 34746 & 07885 & 466 \\ .60023 & 61482 & 51758 & 85549 & 703 \\ .59943 & 60254 & 32673 & 40005 & 791 \\ .59863 & 53031 & 77612 & 46494 & 584 \end{array}$
0. 930 . 931 . 932 . 933 . 934	. 80221 73739 56488 4 . 80281 40048 11892 5 . 80340 98328 53358 8	5208 432 1719 806 7726 899 2661 218 7341 371	$\begin{array}{cccccccc} 0.59783 & 39822 & 87298 & 23849 & 491 \\ .59703 & 20635 & 63051 & 54424 & 260 \\ .59622 & 95478 & 06791 & 03960 & 905 \\ .59542 & 64358 & 21032 & 41397 & 846 \\ .59462 & 27284 & 08887 & 58618 & 345 \end{array}$
0. 935 . 936 . 937 . 938 . 939	.80519 24941 39867 8 .80578 51049 75339 5 .80637 69100 25773 5	3555 863 3565 545 9525 671 2827 488 3359 313	$\begin{array}{cccccccc} 0.59381 & 84263 & 74063 & 90139 & 324 \\ .59301 & 35305 & 20863 & 32740 & 634 \\ .59220 & 80416 & 54181 & 65034 & 867 \\ .59140 & 19605 & 79507 & 66977 & 785 \\ .59059 & 52881 & 02922 & 39319 & 443 \end{array}$
0. 940 . 941 . 942 . 943 . 944	. \$0814 74845 52830 8 . \$0873 60605 53130 1 . \$0932 38278 17436 3	8687 022 3153 915 6899 872 4799 758 5321 017	$\begin{array}{ccccccc} 0.58978 & 80250 & 31098 & 22996 & 099 \\ .58898 & 01721 & 71298 & 18462 & 976 \\ .58817 & 17303 & 31375 & 04967 & 973 \\ .58736 & 27003 & 19770 & 59766 & 388 \\ .58655 & 30829 & 45514 & 77276 & 748 \end{array}$
0. 945 . 946 . 947 . 948 . 949	.81108 22713 20770 9 .81166 67977 71528 5 .81225 05125 55555 9	9300 383 8639 669 4920 560 7938 351 4154 591	0.58574     28790     18224     88177     827       .58493     20893     48104     78446     913       .58412     07147     45944     08339     436       .58330     87560     23117     31310     012       .58249     62139     91583     12874     994
0. 950 . 951 . 952 . 953 . 954	.81399 67810 74171 9 .81457 72433 62256 9 .81515 68910 73166 4	5068 542 5507 433 1835 411 0081 165 3984 145	$\begin{array}{ccccccccc} 0.58168 & 30894 & 63883 & 49416 & 618 \\ .58086 & 93832 & 53142 & 86928 & 810 \\ .58005 & 50961 & 73067 & 39704 & 748 \\ .57924 & 02290 & 37944 & 08966 & 253 \\ .57842 & 47826 & 62640 & 01435 & 096 \end{array}$
0. 955 . 956 . 957 . 958 . 959	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2959 322 9980 433 9381 654 4577 644 5701 891	$\begin{array}{cccccccc} 0.57760 & 87578 & 62601 & 47846 & 300 \\ .57679 & 21554 & 53853 & 21403 & 511 \\ .57597 & 49762 & 52997 & 56176 & 536 \\ .57515 & 72210 & 77213 & 65441 & 113 \\ .57433 & 88907 & 44256 & 59961 & 007 \end{array}$

**Table XII.**—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—('ontinued.

	to 1.000—( ontin	ided.
x	sin x	cos x
0, 960 . 961 . 962 . 963 . 964	0. 81919     15683     00998     27163     322       . 81976     46785     95734     05121     101       . 82033     69691     25859     54877     569       . 82090     84393     19084     28189     263       . 82147     90886     03938     10495     962	0. 57351     99860     72456     66212     505       . 57270     05078     80718     44551     395       . 57188     04569     88520     07322     513       . 57105     98342     15912     36911     940       . 57023     86403     83518     03741     923
0. 965 . 966 . 967 . 968 . 969	0.82204     89164     09771     78067     694       .82261     79221     66757     55069     656       .82318     61053     05889     70544     986       .82375     34652     58985     15315     328       .82432     00014     58683     98799     136	$\begin{array}{cccccccc} 0.56941 & 68763 & 12530 & 84208 & 614 \\ .56859 & 45428 & 24714 & 78562 & 699 \\ .56777 & 16407 & 42403 & 28733 & 004 \\ .56694 & 81708 & 88498 & 36093 & 162 \\ .56612 & 41340 & 86469 & 79171 & 417 \end{array}$
0. 970 . 971 . 972 . 973 . 974	0.82488     57133     38450     05747     662       .82545     06003     32571     52898     564       .82601     46618     76161     45547     087       .82657     78974     05158     34034     750       .82714     03063     56326     70155     495	$\begin{array}{ccccccc} 0.56529 & 95311 & 60354 & 31303 & 653 \\ .56447 & 43629 & 34754 & 78229 & 727 \\ .56364 & 86302 & 34839 & 35633 & 190 \\ .56282 & 23338 & 86340 & 66624 & 480 \\ .56199 & 54747 & 15554 & 99167 & 663 \end{array}$
0. 975 . 976 . 977 . 978 . 979	0.82770     18881     67257     63479     226       .82826     26422     76369     37592     699       .82882     25681     22907     86257     689       .82938     16651     46947     29486     397       .82993     99327     89390     69534     022	$\begin{array}{ccccccccc} 0.56116 & 80535 & 49341 & 43450 & 813 \\ .56034 & 00712 & 15121 & 09200 & 110 \\ .55951 & 15285 & 40876 & 22937 & 736 \\ .55868 & 24263 & 55149 & 45183 & 654 \\ .55785 & 27654 & 87042 & 87601 & 358 \end{array}$
0. 980 . 981 . 982 . 983 . 984	0.83049     73704     91970     46808     453       .83105     39776     97248     95697     028       .83160     97538     48619     00310     290       .83216     46983     90304     50142     703       .83271     88107     67360     95650     254	$\begin{array}{cccccccc} 0.55702 & 25467 & 66217 & 30087 & 666 \\ .55619 & 17710 & 22891 & 37806 & 645 \\ .55536 & 04390 & 87840 & 78167 & 757 \\ .55452 & 85517 & 92397 & 37748 & 295 \\ .55369 & 61099 & 68448 & 39160 & 207 \end{array}$
0. 985 . 986 . 987 . 988 . 989	0.83327     20904     25676     03744     902       .83382     45368     11970     13205     801       .83437     61493     73796     90007     262       .83492     69275     59543     82563     379       .83547     68708     18432     76889     279	$\begin{array}{ccccccccc} 0.55286 & 31144 & 48435 & 57861 & 376 \\ .55202 & 95660 & 65354 & 38911 & 453 \\ .55119 & 54656 & 52753 & 13672 & 322 \\ .55036 & 08140 & 44732 & 16453 & 272 \\ .54952 & 56120 & 75943 & 01100 & 969 \end{array}$
0.990 .991 .992 .993 .994	0.83602     59786     00520     51678     926       .83657     42503     56699     33299     444       .83712     16855     38697     50701     883       .83766     82835     99079     90248     385       .83821     40439     91248     50455     694	$\begin{array}{cccccccc} 0.54868 & 98605 & 81587 & 57534 & 313 \\ .54785 & 35603 & 97417 & 28224 & 252 \\ .54701 & 67123 & 59732 & 24618 & 647 \\ .54617 & 93173 & 05380 & 43512 & 268 \\ .54534 & 13760 & 71756 & 83362 & 006 \end{array}$
0. 995 . 996 . 997 . 998 . 999	0. 83875     89661     69442     96654     953       . 83930     30495     88741     15567     733       . 83984     62937     05059     69798     245       . 84038     86979     75154     52241     668       . 84093     02618     56621     40408     555	$\begin{array}{ccccccc} 0.54450 & 28894 & 96802 & 60547 & 375 \\ .54366 & 38584 & 19004 & 25576 & 412 \\ .54282 & 42836 & 77392 & 79237 & 026 \\ .54198 & 41661 & 11542 & 88693 & 907 \\ .54114 & 35065 & 61572 & 03531 & 067 \end{array}$
1.000 .001 .002 .003 .004	0.84147     09848     07896     50665     250       .84201     08662     88256     92390     268       .84254     99057     57821     22046     578       .84308     81026     77549     97169     747       .84362     54565     09246     30271     873	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.005 .006 .007 .008 .009	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccc} \textbf{0.} 53608 & 82147 & 09970 & 84748 & 188 \\ .53524 & 37848 & 39863 & 92716 & 262 \\ .53439 & 88197 & 26016 & 77062 & 668 \\ .53355 & 33202 & 13394 & 42130 & 747 \\ .53270 & 72871 & 47496 & 32136 & 904 \\ \end{array}$
1.010 .011 .012 .013 .014	0.84683     18446     18015     19012     310       .84736     32818     34859     07211     051       .84789     38716     88491     73284     331       .84842     36136     48323     36290     466       .84895     25071     84612     04660     810	$\begin{array}{ccccccccc} 0.53186 & 07213 & 74355 & 46620 & 673 \\ .53101 & 36237 & 40537 & 55841 & 426 \\ .53016 & 59950 & 93140 & 16121 & 808 \\ .52931 & 78362 & 79791 & 85137 & 984 \\ .52846 & 91481 & 48651 & 37156 & 798 \end{array}$
1.015 .016 .017 .018 .019	0.84948     05517     68464     29173     940       .85000     77468     71835     55845     003       .85053     40919     67530     78730     164       .85105     95865     29204     92646     111       .85158     42300     31363     45804     549	$\begin{array}{cccccccc} 0.52761 & 99315 & 48406 & 78219 & 896 \\ .52677 & 01873 & 28274 & 61274 & 932 \\ .52591 & 99163 & 37999 & 01253 & 921 \\ .52506 & 91194 & 27850 & 90098 & 832 \\ .52421 & 77974 & 48627 & 11734 & 503 \end{array}$

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x		sin x					(	208 X		
1. 020 . 021 . 022 . 023 . 024	. 85263 09 . 85315 30 . 85367 42	0219 49362 0617 59411 0489 38569 2829 64749 3633 16717	92361 44882 26719 24308 39374	655 415 808 778 945		0, 52336 , 52251 , 52166 , 52080 , 51995	59512 35816 06896 72758 33413	51649 88764 12341 75271 30969	56988 38461 05336 58150 63497	961 245 792 502 542
1. 025 . 026 . 027 . 028 . 029	. 85523 28 . 85575 06 . 85626 76	1894 74093 8609 17351 6771 27819 6375 87681 7417 79977	$\begin{array}{c} 41057 \\ 17949 \\ 30046 \\ 60616 \\ 67982 \end{array}$	997 715 586 931 525	(	0.51909 .51824 .51738 .51653 .51567	88868 39132 84213 24121 58864	33369 36926 96612 67920 06859	68691 16373 59061 73657 75899	985 373 276 956 186
1.030 .031 .032 .033 .034	. 85781 33 . 85832 69 . 85883 95	9891 88603 8792 98311 9115 94711 6855 64271 1006 94317	37214 31744 44887 51283 58248	627 398 626 734 998	(	0.51481 .51396 .51310 .51224 .51138	88449 12887 32184 46351 55396	69955 14248 97296 77168 12447	34753 86768 50370 40101 80821	$350 \\ 878 \\ 116 \\ 715 \\ 625$
1.035 .036 .037 .038 .039	.86037 24 .86088 16 .86139 00	5564 73034 523 89466 6879 33518 6625 95953 68397	57043 74054 21889 50385 97536	938 819 224 634 975	0	0.51052 .50966 .50880 .50794 .50708	59326 58151 51880 40520 24082	$\begin{array}{c} 62230 \\ 86122 \\ 44242 \\ 97216 \\ 06180 \end{array}$	21842 51023 08807 02209 18757	776 535 028 404 138
1. 040 . 041 . 042 . 043 . 044	. 86291 00 . 86341 49 . 86391 90	2272 43338 1162 14123 1422 74964 1049 20934 1036 47972	40328 45486 20150 62441 11963	079 997 131 124 456	6	0.50622 .50535 .50449 .50363 .50276	$\begin{array}{c} 02572 \\ 76000 \\ 44374 \\ 07704 \\ 65997 \end{array}$	32778 $39161$ $87986$ $42416$ $66117$	40373 57213 81451 61010 93250	447 919 427 426 711
1.045 .046 .047 .048 .049	. 86542 60 . 86592 66 . 86642 63	5379 52878 5073 33318 5112 87822 5493 15788 5209 17477	$\begin{array}{c} 00206 \\ 00866 \\ 80077 \\ 46561 \\ 01685 \end{array}$	699 385 424 037 140	0	.50190 .50103 .50017 .49930 .49843	19263 67509 10745 48980 82221	23261 78520 97070 44586 87247	38600 34140 07134 88513 26307	728 520 396 415 756
1.050 .051 .052 .053 .054	. 86792 03 . 86841 66 . 86891 20	255 94016 628 47403 321 80499 330 97035 6651 01611	89438 46316 51123 74685 29477	$141 \\ 092 \\ 146 \\ 276 \\ 198$	0	0.49757 .49670 .49583 .49496 .49409	10478 33760 52074 65430 73836	$\begin{array}{c} 91726 \\ 25200 \\ 55338 \\ 50311 \\ 78782 \end{array}$	99029 29002 95651 48726 21490	085 975 499 051 510
1.055 .056 .057 .058 .059	.87039 30 .87088 49 .87137 59	276 99694 97621 427 02601 941 22711 741 66899	19162 88046 70443 39954 58660	460 624 529 543 794	0	. 49322 . 49235 . 49148 . 49061 . 48974	77302 75835 69444 58139 41927	09910 13349 59246 18239 61459	43854 55459 18707 31756 41446	806 008 979 732 534
$egin{array}{c} 1.060 \\ .061 \\ .062 \\ .063 \\ .064 \\ \hline \end{array}$	.87284 39 .87333 14 .87381 81	823 44986 9181 67663 8811 46494 707 93918 866 23243	26228 28925 88556 11299 36468	295 947 345 356 402		. 48887 . 48799 . 48712 . 48625 . 48537	20818 94820 63943 28194 87582	60527 87554 15140 16372 64825	56191 58818 19351 07757 06632	864 317 528 202 362
1.065 .066 .067 .068 .069	.87527 29 .87575 61 .87623 85	281 48654 948 85211 863 48845 020 56366 415 25458	85179 08932 38105 30362 18969	424 453 753 492 874		. 48450 . 48362 . 48275 . 48187 . 48100	42117 91807 36660 76686 11893	34560 00124 36547 19345 24514	23847 05142 46667 07484 22014	867 311 387 800 811
1.070 .071 .072 .073 .074	.87768 01 .87815 89 .87863 69	042 74681 898 23473 1976 92149 1274 01900 1784 74797	61030 85627 41877 46904 33716	706 336 919 963 111		. 48012 . 47924 . 47836 . 47749 . 47661	42290 $67886$ $88689$ $04709$ $15953$	28534 08365 41447 05700 79522	$\begin{array}{c} 12436 \\ 01039 \\ 22529 \\ 36282 \\ 38551 \end{array}$	509 904 904 289 762
1.075 .076 .077 .078 .079	. 88006 54 . 88053 98 . 88101 33	504 33788 428 02703 551 06248 868 70011 376 20461	98997 50816 56244 88879 76291	101 869 731 619 297		. 47573 . 47485 . 47397 . 47309 . 47221	22432 24153 21126 13359 00861	41788 71851 49538 55152 69469	74632 50968 47223 28292 56273	160 911 840 396 392

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

		wer.
x	sin x	cos r
1.080 .081 .082 .083 .084	0.88195     78068     84947     47373     533       .88242     86941     91699     79609     169       .88289     86990     69831     46247     031       .88336     78210     49337     63390     660       .88383     60596     61096     36998     790	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.085 .086 .087 .088 .089	0.88430     34144     36869     09797     534       .88476     98849     09301     08104     243       .88523     54706     11921     88562     972       .88570     01710     79145     84791     522       .88616     39858     46272     53940     000	$\begin{array}{cccccccc} 0.46691 & 27019 & 21135 & 28984 & 862 \\ .46602 & 81651 & 97750 & 80991 & 522 \\ .46514 & 31624 & 46239 & 96791 & 014 \\ .46425 & 76945 & 51605 & 44159 & 401 \\ .46337 & 17623 & 99315 & 05181 & 235 \end{array}$
1,090 .091 .092 .093 .094	0.88662     69144     49487     23160     860       .88708     89564     25861     35990     371       .88755     01113     13352     98641     470       .88801     03786     50807     26207     951       .88846     97579     77956     88779     948	$\begin{array}{ccccccc} 0.46248 & 53668 & 75300 & 87702 & 790 \\ .46159 & 85088 & 65958 & 36738 & 852 \\ .46071 & 11892 & 58145 & 45833 & 190 \\ .45982 & 34089 & 39181 & 68372 & 764 \\ .45893 & 51687 & 96847 & 28855 & 783 \end{array}$
1.095 .096 .097 .098 .099	0.88892     82488     35422     57470     660       .88938     58507     64713     50354     274       .88984     25633     08227     78315     047       .89029     83860     09252     90807     488       .89075     33184     11966     21527     609	0.45804     64697     19382     34113     686       .45715     73125     95485     84487     142       .45626     76983     14314     84956     158       .45537     76277     65483     56224     382       .4548     71018     39062     45757     688
1.100 .101 .102 .103 .104	0.89120     73600     61435     33995     180       .89166     05105     03618     67046     971       .89211     27692     85365     80240     901       .89256     41359     54417     99171     080       .89301     46100     59408     60693     678	$\begin{array}{cccccccc} 0.45359 & 61214 & 25577 & 38777 & 137 \\ .45270 & 46874 & 16008 & 69206 & 400 \\ .45181 & 28007 & 01790 & 30573 & 730 \\ .45092 & 04621 & 74808 & 86868 & 576 \\ .45002 & 76727 & 27402 & 83352 & 928 \end{array}$
1. 105 . 106 . 107 . 108 . 109	0.89346     41911     49863     58063     585       .89391     28787     76201     85981     812       .89436     06724     89735     85553     594       .89480     75718     42671     89157     146       .89525     35763     88110     65223     027	0.44913     44332     52361     57327     478       .44824     07446     42924     48852     689       .44734     66077     92780     11424     866       .44645     20235     96065     22607     305       .44555     69929     47363     94616     628
1.110 .111 .112 .113 .114	0.89569     86856     80047     62924     063       .89614     28992     73373     56775     801       .89658     62167     23874     91147     427       .89702     86375     88234     24683     120       .89747     01614     24030     74633     785	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.115 .116 .117 .118 .119	0.89791     07877     89740     61099     138       .89835     05162     44737     51180     079       .89878     93463     49293     03041     321       .89922     72776     64577     09884     230       .89966     43097     52658     43829     826	$\begin{array}{ccccccc} 0.44017 & 74837 & 16293 & 01603 & 891 \\ .43927 & 93529 & 89431 & 54849 & 166 \\ .43838 & 07829 & 83253 & 69812 & 438 \\ .43748 & 17745 & 96329 & 39623 & 410 \\ .43658 & 23287 & 27666 & 95482 & 777 \end{array}$
1. 120 . 121 . 122 . 123 . 124	0.90010     04421     76504     99711     910       .90053     56744     99984     38780     263       .90097     00062     87864     32313     880       .90140     34371     05813     05144     201       .90183     59665     20399     79088     276	$\begin{array}{ccccccc} 0.43568 & 24462 & 76712 & 16761 & 399 \\ .43478 & 21281 & 43347 & 41055 & 736 \\ .43388 & 13752 & 27890 & 74199 & 612 \\ .43298 & 01884 & 31095 & 00232 & 420 \\ .43207 & 85686 & 54146 & 91323 & 845 \end{array}$
1. 125 . 126 . 127 . 128 . 129	$\begin{array}{cccccccc} 0.90226 & 75940 & 99095 & 16291 & 842 \\ .90269 & 83194 & 10271 & 62482 & 258 \\ .90312 & 81420 & 23203 & 90131 & 256 \\ .90355 & 70615 & 08069 & 41527 & 464 \\ .90398 & 50774 & 35948 & 71758 & 658 \end{array}$	$\begin{array}{ccccccccc} 0.43117 & 65167 & 98666 & 17655 & 197 \\ .43027 & 40337 & 66704 & 57257 & 452 \\ .42937 & 11204 & 60745 & 05806 & 078 \\ .42846 & 77777 & 83700 & 86372 & 749 \\ .42756 & 40066 & 38914 & 59134 & 030 \end{array}$
1. 130 . 131 . 132 . 133 . 134	0.90441     21893     78825     91603     708       .90483     83969     09589     10334     160       .90526     36996     02030     78425     425       .90568     80970     30848     30177     523       .90611     15887     71644     26245     348	$\begin{array}{cccccccccc} 0.42665 & 98079 & 30157 & 31037 & 122 \\ .42575 & 51825 & 61627 & 65422 & 763 \\ .42485 & 01314 & 37950 & 91605 & 376 \\ .42394 & 46554 & 64178 & 14410 & 340 \\ .42303 & 87555 & 45785 & 23669 & 902 \end{array}$
1.135 .136 .137 .138 .139	0.90653     41744     00926     96078     401       .90695     58534     96110     80269     960       .90737     66256     35516     72815     632       .90779     64903     98372     63281     260       .90821     54473     64813     78880     126	$\begin{array}{cccccc} 0.42213 & 24325 & 88672 & 03673 & 585 \\ .42122 & 56874 & 99161 & 42580 & 219 \\ .42031 & 85211 & 83998 & 41784 & 656 \\ .41941 & 09345 & 50349 & 25243 & 478 \\ .41850 & 29285 & 05800 & 48758 & 379 \\ \end{array}$

 $\begin{array}{lll} \textbf{Table XII.-Values of sin $x$ and cos $x$ to 23 places of decimals at intervals of 0.001 from 0.000 \\ & to 1.600-\text{Continued.} \end{array}$ 

x	sin x	cos x
1, 140 , 141 , 142 , 143 , 144	0.90863     34961     15883     26459     422       .90905     06362     33532     34395     940       .90946     68673     00620     94400     939       .90988     21889     00918     03234     153       .91029     66006     19102     04326     885	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 145 . 146 . 147 . 148 . 149	0.91071     01020     40761     29314     164       .91112     26927     52394     39475     912       .91153     43723     41410     67087     073       .91194     51403     96130     56676     684       .91235     49965     05786     06195     821	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 150 . 151 . 152 . 153 . 154	0.91276     39402     60521     08094     403       .91317     19712     51391     90306     792       .91357     90890     70367     57146     165       .91398     52933     10330     30107     602       .91439     05835     65075     88579     865	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.155 .156 .157 .158 .159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.160 .161 .162 .163 .164	0.91680     31087     71766     92661     866       .91720     19898     33100     42911     136       .91759     99536     92520     53200     023       .91799     69999     52063     40902     883       .91839     31282     14682     83374     147	0.39933     95294     06273     15445     164       .39842     25267     80553     83402     355       .39750     51257     32340     93491     775       .39658     73271     79035     42889     706       .39566     91320     38435     79278     377
1.165 .166 .167 .168 .169	0.91878     83380     84250     57652     941       ,91918     26291     65556     80075     906       ,91957     60010     64310     45798     178       ,91996     84533     87139     68222     492       ,92035     99857     41592     18336     360	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 170 . 171 . 172 . 173 . 174	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.39015     16843     08230     21533     266       .38923     07387     88126     60718     072       .38830     94040     37316     64679     599       .38738     76809     77135     00821     054       .38646     55705     29304     67479     575
1. 175 . 176 . 177 . 178 . 179	0.92268     98386     71033     01956     127       .92307     49203     35510     88974     783       .92345     90789     25145     34733     097       .92384     23140     55777     83468     944       .92422     46253     44173     25312     701	0.38554     30736     15936     01753     942       .38462     01911     59525     87293     547       .38369     69240     82956     62048     718       .38277     32733     09495     25982     487       .38184     92397     62792     48743     902
1. 180 . 181 . 182 . 183 . 184	0.92460     60124     08020     34610     754       .92498     64748     65932     08156     619       .92536     60123     37446     03329     642       .92574     46244     43024     76141     242       .92612     23108     04056     19188     645	0.38092     48243     66881     77302     960       .38000     00280     46178     43547     271       .37907     48517     25478     71840     534       .37814     92963     29958     86542     917       .37722     33627     85174     19493     444
1.185 .186 .187 .188 .189	0.92649     90710     42853     99516     095       .92687     49047     82657     96383     480       .92724     98116     47634     38942     352       .92762     37912     62876     43819     290       .92799     68432     54404     52606     588	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 190 . 191 . 192 . 193 . 194	0.92836     89672     49166     69260     202       .92874     01628     75038     97404     950       .92911     04297     60825     77546     899       .92947     97675     36260     24192     928       .92984     81758     32004     62877     403	0.37165     98722     60532     93806     568       .37073     13176     18091     28040     589       .36980     23922     44362     89893     026       .36887     30970     68273     08995     672       .36794     34330     19116     95213     382
1. 195 . 196 . 197 . 198 . 199	0.93021     56542     79650     67095     956       .93058     22025     11719     95146     303       .93094     78201     61664     26876     083       .93131     25068     63866     00337     679       .93167     62622     53638     48349     974	0.36701     34010     26558     45714     570       .36608     30020     20629     52004     819       .36515     22369     31729     06923     698       .36422     11066     90622     11604     876       .36328     96122     28438     82399     631

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

			10	1.600-	-Contr.	шис	. ( )				
x		sin	ı x					cos	x		
1. 200 . 201 . 202 . 203 . 204	. 93240 . 93276 . 93312	90859 09776 19369 19634 10568	67226 41805 15485 27305 17240	34967 91853 54567 98748 76215	013 542 367 519 175		$\begin{array}{c} .36142 \\ .36049 \\ .35956 \end{array}$	77544 55343 29528 00108 67092	76673 67184 32190 04273 16376	57763 05108 27614 71008 30309	837 539 189 651 065
1. 205 . 206 . 207 . 208 . 209	. 93419 . 93455 . 93490	92167 64427 27346 80919 25144	26196 96013 69465 90260 03041	50966 35090 24584 35070 37431	302 992 444 567 162		0. 35769 . 35675 . 35582 . 35488 . 35395	30490 90310 46564 99259 48405	01799 94203 27606 36382 55261	56527 63341 33727 26557 83165	660 607 018 166 039
1. 210 . 211 . 212 . 213 . 214	. 93596 . 93632 . 93667	60015 85530 01686 08478 05904	53385 87806 53752 99608 74693	93341 90713 79041 04663 45913	646 291 926 095 598		0. 35301 . 35208 . 35114 . 35021 . 34927	94012 36088 74644 09688 41230	19330 64027 25144 38826 41568	$\begin{array}{c} 33870 \\ 04470 \\ 22698 \\ 24640 \\ 61124 \end{array}$	301 775 521 616 730
1. 215 . 216 . 217 . 218 . 219	. 93771 . 93806 . 93841	93960 72642 41946 01870 52410	29266 14521 82590 86543 80386	48199 58969 62598 15169 79170	416 959 617 574 848		0. 34833 . 34739 . 34646 . 34552 . 34458	69279 93845 14937 32564 46736	70217 61966 54360 85289 92990	04069 52800 40329 39601 69704	578 358 260 140 455
1. 220 . 221 . 222 . 223 . 224	.93944 $.93978$	93563 25324 47691 60660 64228	19067 58470 55418 67676 53946	58093 30937 86621 58302 57600	524 151 257 957 622		0. 34364 . 34270 . 34176 . 34082 . 33988	57463 64752 68615 69060 66097	16047 93385 64277 68336 45517	02047 $66500$ $57501$ $40132$ $56153$	552 405 890 702 996
1. 225 . 226 . 227 . 228 . 229	0. 94080 . 94114 . 94148 . 94181 . 94215	58391 43146 18490 84419 40930	73872 88036 57965 46123 15917	08723 82507 30357 18091 59701	559 685 157 912 104		0. 33894 . 33800 . 33706 . 33612 . 33518	59735 49983 36852 20349 00486	36117 80771 20455 96483 50503	30011 74807 98234 08479 20093	855 668 533 750 523
1. 230 . 231 . 232 . 233 . 234	0. 94248 . 94282 . 94315 . 94348 . 94381	88019 25683 53919 72724 82093	31697 58754 63320 12574 74633	51002 03206 76390 12870 70486	382 998 684 299 175		0. 33423 . 33329 . 33235 . 33140 . 33046	77271 50713 20823 87608 51080	$\begin{array}{c} 24502 \\ 60802 \\ 02059 \\ 91261 \\ 71729 \end{array}$	59823 72418 26391 19759 85740	955 427 462 164 328
1. 235 . 236 . 237 . 238 . 239	0. 94414 . 94447 . 94480 . 94513 . 94545	82025 72515 53560 25157 87303	18562 14367 32999 46354 27272	55790 57139 77695 68328 60431	164 322 223 851 046		0. 32952 . 32857 . 32763 . 32668 . 32574	11247 68119 21705 72015 19058	87117 81408 98914 84277 82466	98424 78405 98386 88743 43066	316 786 387 487 054
1. 240 . 241 . 242 . 243 . 244	0. 94578 . 94610 . 94643 . 94675 . 94707	39994 83227 17000 41308 56148	49538 87884 17986 16467 60895	98628 73405 53628 18984 92311	471 063 942 738 309		0. 32479 . 32385 . 32290 . 32195 . 32101	62844 03381 40681 74751 05601	38776 98828 08569 14269 62521	23657 67007 89227 91456 65238	769 475 042 764 364
1. 245 . 246 . 247 . 248 . 249	0. 94739 . 94771 . 94803 . 94835 . 94866	61518 57414 43832 20770 88225	29788 02608 59766 82619 53474	71844 63367 12259 35461 53335	815 118 472 479 262		0. 32006 . 31911 . 31816 . 31721 . 31627	33242 57681 78930 96997 11891	00239 74660 33339 24152 95292	97855 77643 99262 68947 09714	712 341 871 423 116
1. 250 . 251 . 252 . 253 . 254	0.94898 .94929 .94961 .94992 .95023	46193 94671 33656 63145 83135	55586 73157 91340 96237 74899	21434 62180 96439 75008 10006	849 713 444 528 196		0. 31532 . 31437 . 31342 . 31247 . 31152	23623 32202 37637 39938 39114	95268 72909 77355 58064 64805	$\frac{49010}{20615}$	754 791 665 601 979
1. 255 . 256 . 257 . 258 . 259	0.95054 .95085 .95116 .95147 .95178	93623 94605 86078 68040 40486	15326 06469 38232 01466 87975	51091 52726	$\frac{729}{783}$		0. 31057 . 30962 . 30867 . 30772 . 30676	35175 28130 17989 04761 88456	43600 58403	$\begin{array}{c} 22311 \\ 69445 \\ 94485 \end{array}$	355 242 729 052 196

 $\begin{array}{lll} \textbf{Table XII.-Values of sin $x$ and cos $x$ to 23 places of decimals at intervals of 0.001 from 0.000 \\ & to 1.600- \textbf{Continued.} \end{array}$ 

<i>x</i>	sin x	cos x
1. 260 . 261 . 262 . 263 . 264	0.95209     03415     90515     76385     682       .95239     56824     02793     44617     416       .95270     00708     19468     09200     227       .95300     35065     36151     31003     222       .95330     59892     49407     40886     709	$\begin{array}{ccccccccc} 0.30581 & 69083 & 78289 & 32688 & 634 \\ .30486 & 46652 & 86939 & 08001 & 291 \\ .30391 & 21173 & 30948 & 95158 & 833 \\ .30295 & 92654 & 62866 & 81822 & 373 \\ .30200 & 61106 & 35544 & 46859 & 693 \end{array}$
1. 265 . 266 . 267 . 268 . 269	0.95360     75186     56753     70045     767       .95390     80944     56660     80258     512       .95420     77163     48552     94039     032       .95450     63840     32808     24694     963       .95480     40972     10759     06289     671	$\begin{array}{cccccccccc} 0.30105 & 26538 & 02136 & 65060 & 070 \\ .30009 & 88959 & 16100 & 11818 & 814 \\ .29914 & 48379 & 31192 & 67791 & 595 \\ .29819 & 04808 & 01472 & 23518 & 675 \\ .29723 & 58254 & 81295 & 84019 & 121 \\ \end{array}$
1. 270 . 271 . 272 . 273 . 274	0.95510     08555     84692     23509     018       .95539     66588     57849     41432     673       .95569     15067     34427     35209     944       .95598     53989     19578     19640     104       .95627     83351     19409     78657     170	$\begin{array}{cccccccc} 0.29628 & 08729 & 25318 & 73355 & 114 \\ .29532 & 56240 & 88493 & 39166 & 425 \\ .29437 & 00799 & 26068 & 57175 & 182 \\ .29341 & 42413 & 93588 & 35661 & 000 \\ .29245 & 81094 & 46891 & 19906 & 579 \end{array}$
1. 275 . 276 . 277 . 278 . 279	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.29150 & 16850 & 42108 & 96613 & 869 \\ .29054 & 49691 & 35665 & 98290 & 890 \\ .28958 & 79626 & 84278 & 07609 & 308 \\ .28863 & 06666 & 44951 & 61732 & 860 \\ .28767 & 30819 & 74982 & 56616 & 726 \end{array}$
1. 280 . 281 . 282 . 283 . 284	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.28671 & 52096 & 31955 & 51277 & 939 \\ .28575 & 70505 & 73742 & 72036 & 934 \\ .28479 & 86057 & 58503 & 16730 & 332 \\ .28383 & 98761 & 44681 & 58895 & 050 \\ .28288 & 08626 & 91007 & 51923 & 831 \end{array}$
1. 285 . 286 . 287 . 288 . 289	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 28192     15663     56494     33192     303       . 28096     19881     00438     28157     651       . 28000     21288     82417     54428     993       . 27904     19896     62291     25809     577       . 27808     15714     00198     56310     871
1. 290 . 291 . 292 . 293 . 294	$\begin{array}{ccccccc} 0.96083 & 50642 & 06072 & 65890 & 556 \\ .96111 & 17046 & 17450 & 33810 & 354 \\ .96138 & 73839 & 17203 & 49249 & 056 \\ .96166 & 21018 & 29652 & 84528 & 675 \\ .96193 & 58580 & 80080 & 50693 & 590 \\ \end{array}$	0. 27712     08750     56557     64138     661       . 27615     99015     92064     75651     234       . 27519     86519     67693     29289     769       . 27423     71271     44692     79480     997       . 27327     53280     84588     00512     263
1. 295 . 296 . 297 . 298 . 299	$\begin{array}{ccccccc} 0.96220 & 86523 & 94730 & 24982 & 339 \\ .96248 & 04845 & 00807 & 78203 & 231 \\ .96275 & 13541 & 26481 & 02013 & 782 \\ .96302 & 12610 & 00880 & 36103 & 915 \\ .96329 & 02048 & 54098 & 95282 & 920 \\ \end{array}$	$\begin{array}{ccccccc} 0.27231 & 32557 & 49177 & 90379 & 053 \\ .27135 & 09111 & 00534 & 74605 & 108 \\ .27038 & 82951 & 01003 & 10035 & 206 \\ .26942 & 54087 & 13198 & 88600 & 711 \\ .26846 & 22529 & 00008 & 41057 & 992 \end{array}$
1.300 .301 .302 .303 .304	0. 96355     81854     17192     96470     135       . 96382     52024     22181     85589     331       . 96409     12556     02048     64366     761       . 96435     63446     90740     17032     855       . 96462     04694     23167     36927     537	$\begin{array}{ccccccc} 0.26749 & 88286 & 24587 & 40699 & 798 \\ .26653 & 51368 & 50360 & 07039 & 695 \\ .26557 & 11785 & 41018 & 09469 & 650 \\ .26460 & 69546 & 60519 & 70890 & 877 \\ .26364 & 24661 & 73088 & 71318 & 016 \end{array}$
1. 305 . 306 . 307 . 308 . 309	0. 96488     36295     35205     53009     126       . 96514     58247     63694     56266     806       . 96540     70548     46439     26036     635       . 96566     73195     22209     56221     061       . 96592     66185     30740     81411     924	$\begin{array}{cccccccc} 0.26267 & 77140 & 43213 & 51456 & 761 \\ .26171 & 26992 & 35646 & 16255 & 031 \\ .26074 & 74227 & 15401 & 38427 & 774 \\ .25978 & 18854 & 47755 & 61955 & 494 \\ .25881 & 60883 & 98246 & 05556 & 626 \\ \end{array}$
1.310 .311 .312 .313 .314	0.96618     49516     12734     02916     926       .96644     23185     09856     14689     520       .96669     87189     64740     29162     218       .96695     41527     20986     02983     276       .96720     86195     23159     62656     736	$\begin{array}{ccccccc} 0.25785 & 00325 & 32669 & 66133 & 818 \\ .25688 & 37188 & 17082 & 22194 & 242 \\ .25591 & 71482 & 17797 & 37244 & 030 \\ .25495 & 03217 & 01385 & 63156 & 911 \\ .25398 & 32402 & 34673 & 43517 & 173 \end{array}$
1, 315 .316 .317 .318 .319	0. 96746     21191     16794     30085     794       . 96771     46512     48390     48019     478       . 96796     62156     65416     05402     607       . 96821     68121     16306     62628     991       . 96846     64403     50465     76697     879	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

**Table XII.**—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

	to 1.600—Contin	rueu.
x	sin x	cos x
1. 320 . 321 . 322 . 323 . 324	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 0.24817 & 54516 & 52372 & 95957 & 398 \\ .24720 & 66126 & 25991 & 71738 & 199 \\ .24623 & 75263 & 93018 & 44974 & 865 \\ .24526 & 81939 & 22539 & 30889 & 004 \\ .24429 & 86161 & 83886 & 68450 & 760 \\ \end{array}$
1. 325 . 326 . 327 . 328 . 329	0.96994     38632     92687     13740     188       .97018     67070     74387     74662     236       .97042     85806     69462     13034     465       .97066     94838     36036     71365     051       .97090     94163     33208     35004     060	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 330 . 331 . 332 . 333 . 334	0.97114     83779     21044     56233     768       .97138     63683     60583     78261     900       .97162     33874     13835     59117     786       .97185     94348     43780     95451     405       .97209     45104     14372     46235     282	$\begin{array}{ccccccc} 0.23847 & 60534 & 33723 & 20751 & 578 \\ .23750 & 47859 & 79643 & 43748 & 768 \\ .23653 & 32810 & 20797 & 47988 & 097 \\ .23556 & 15395 & 28690 & 21258 & 288 \\ .23458 & 95624 & 75063 & 04672 & 221 \\ \end{array}$
1. 335 . 336 . 337 . 338 . 339	$\begin{array}{cccccccc} 0.97232 & 86138 & 90534 & 56369 & 230 \\ .97256 & 17450 & 38163 & 80187 & 900 \\ .97279 & 39036 & 24129 & 04871 & 129 \\ .97302 & 50894 & 16271 & 73757 & 046 \\ .97325 & 53021 & 83406 & 09557 & 931 \\ \end{array}$	$\begin{array}{ccccccc} 0.23361 & 73508 & 31892 & 95492 & 805 \\ .23264 & 49055 & 71391 & 49935 & 286 \\ .23167 & 22276 & 66003 & 85946 & 099 \\ .23069 & 93180 & 88407 & 85958 & 358 \\ .22972 & 61778 & 11512 & 99624 & 085 \end{array}$
1. 340 . 341 . 342 . 343 . 344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.22875 & 28078 & 08459 & 46523 & 264 \\ .22777 & 92090 & 52617 & 18849 & 831 \\ .22680 & 53825 & 17584 & 84074 & 691 \\ .22583 & 13291 & 77188 & 87585 & 859 \\ .22485 & 70500 & 05482 & 55305 & 819 \end{array}$
1. 345 . 346 . 347 . 348 . 349	$\begin{array}{ccccccc} 0.97461 & 61324 & 37264 & 08052 & 713 \\ .97483 & 95276 & 37901 & 46006 & 501 \\ .97506 & 19479 & 99092 & 43832 & 603 \\ .97528 & 33932 & 98416 & 67265 & 423 \\ .97550 & 38633 & 14428 & 88217 & 916 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 350 . 351 . 352 . 353 . 354	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 355 . 356 . 357 . 358 . 359	0.97680     61901     82927     27405     609       .97701     98270     97238     89325     386       .97723     24869     91804     83352     894       .97744     41696     53965     21803     706       .97765     48748     72037     40225     805	$\begin{array}{ccccccc} 0.21412 & 53530 & 53567 & 46271 & 899 \\ .21314 & 84399 & 63517 & 95410 & 772 \\ .21217 & 13137 & 25046 & 24434 & 790 \\ .21119 & 39753 & 15278 & 49048 & 406 \\ .21021 & 64257 & 11553 & 02083 & 908 \end{array}$
1. 360 . 361 . 362 . 363 . 364	$\begin{array}{cccccccc} 0.97786 & 46024 & 35316 & 18567 & 849 \\ .97807 & 33521 & 34074 & 02249 & 690 \\ .97828 & 11237 & 59561 & 23135 & 125 \\ .97848 & 79171 & 04006 & 20406 & 864 \\ .97869 & 37319 & 60615 & 61343 & 685 \end{array}$	$\begin{array}{ccccccc} 0.20923 & 86658 & 91419 & 35767 & 598 \\ .20826 & 06968 & 32637 & 23964 & 842 \\ .20728 & 25195 & 13175 & 64404 & 112 \\ .20630 & 41349 & 11211 & 80880 & 089 \\ .20532 & 55440 & 05130 & 25435 & 952 \end{array}$
1. 365 . 366 . 367 . 368 . 369	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 370 . 371 . 372 . 373 . 374	0.97990     80613     98614     22288     769       .98010     70211     32380     30754     328       .98030     50007     59206     93540     094       .98050     20000     81114     49613     233       .98069     80189     01103     68424     652	$\begin{array}{cccccccc} 0.19944 & 97209 & 97572 & 96568 & 820 \\ .19846 & 97133 & 74640 & 16515 & 079 \\ .19748 & 95072 & 82010 & 52911 & 545 \\ .19650 & 91036 & 99890 & 06852 & 798 \\ .19552 & 85036 & 08682 & 28380 & 853 \end{array}$
1.375 .376 .377 .378 .379	0.98089     30570     23155     69608     920       .98108     71142     52232     42586     155       .98128     01903     94276     66065     826       .98147     22852     56212     27452     479       .98166     33986     45944     42153     343	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x		si	n x					cos	x		
1. 380 . 381 . 382 . 383 . 384	0. 98185 . 98204 . 98223 . 98241 . 98260	35303 26802 08480 80336 42368	72359 45326 75694 75296 56947	72787 48298 82965 95320 26961	813 791 850 221 571	0, 189 , 189 , 180 , 180	865 767 669	08312 88831 67462 44217 19105	97834 10696 64691 41955 24813	36320 50314 25395 37980 32156	915 508 757 715 930
1.385 .386 .387 .388 .389	0. 98278 . 98297 . 98315 . 98333 . 98352	94574 36952 69500 92216 05100	34442 22562 37068 94707 13205	61276 42059 92032 31273 95537	561 162 708 673 148	0. 184 . 183 . 183 . 184 . 186	374 276 178	92135 63319 32665 00183 65884	95776 37540 32988 65185 17379	21451 90577 97169 73489 28124	016 542 360 451 404
1,390 .391 .392 .393 .394	0. 98370 . 98388 . 98405 . 98423 . 98441	08148 $01359$ $84731$ $58262$ $21952$	11276 08614 25898 84790 07939	54484 29809 13274 84637 29485	004 722 870 207 405	0. 179 . 179 . 179 . 179 . 179	882 784 686	29776 91871 52177 10704 67464	72999 15656 29142 97424 04651	47659 98336 27690 66173 28756	616 311 484 860 976
1.395 .396 .397 .398 .399	0. 98458 . 98476 . 98493 . 98510 . 98527	75797 19796 53948 78250 92701	18974 42512 04152 30479 4906 <b>3</b>	56974 17462 20048 50013 86162	360 083 145 670 846	0. 174 . 177 . 17 . 17 . 17	390 292 193	22464 75715 27228 77011 25074	35146 73409 04115 12112 82423	16514 18192 11759 65937 41718	467 681 690 830 833
1. 400 . 401 . 402 . 403 . 404	0. 98544 . 98561 . 98578 . 98595 . 98612	97299 92043 76931 51961 17131	88460 78208 48834 31850 59751	18065 63203 84013 04837 28769	947 840 966 776 609	0. 16 . 16 . 16 . 16 . 16	898 799	71429 16083 59048 00332 39947	00240 50929 20024 93227 56412	93861 72373 23971 93533 25523	675 233 842 854 303
1. 405 . 406 . 407 . 408 . 409	0. 98628 . 98645 . 98661 . 98677 . 98693	72440 17886 53468 79184 95031	66021 85129 52531 04669 78970	54406 92502 82515 09070 18307	982 294 912 631 486	. 16 . 16	503 405 306 207 5109	77901 14205 48869 81902 13314	95615 97042 47062 32209 39179	65404 61039 64065 31258 25882	770 544 184 571 568
1.410 .411 .412 .413 .414	0. 98710 . 98725 . 98741 . 98757 . 98773	01010 97117 83352 59712 26197	13850 48711 23943 80922 62012	34142 74427 67004 65672 66048	909 198 304 895 706	. 15	010 911 812 5714 6615	43115 71315 97924 22952 46408	54831 66184 60420 24876 47050	19016 90869 32080 44997 44945	356 577 359 336 751
1.415 .416 .417 .418 .419	0. 98788 . 98804 . 98819 . 98834 . 98850	82805 29533 66381 93348 10430	10565 70919 88402 09330 81005	21328 57953 91177 40532 45199	142 120 144 586 170	. 15 . 15	5516 5417 5319 5220 5121	68303 88646 07447 24716 40463	14596 15325 37202 68347 97033	61477 39606 41027 45317 51126	752 967 471 231 135
1. 420 . 421 . 422 . 423 . 424	0. 98865 . 98880 . 98895 . 98909 . 98924	17628 14939 02362 79896 47539	51719 70753 88375 55844 25405	79273 66940 97544 40562 60478	627 521 222 021 351	. 14	5022 1923 1824 1725 1626	54699 67432 78672 88430 96716	11685 00880 53344 57953 03732	77348 64281 74765 95314 37224	698 559 840 499 747
1. 425 . 426 . 427 . 428 . 429	0. 98939 . 98953 . 98967 . 98982 . 98996	05289 53145 91106 19171 37337	50295 84738 83949 04132 02480	31560 52533 61159 48716 74376	129 174 714 941 619	.14	1528 1429 1330 1231 1132	03538 08908 12835 15329 16400	79851 75628 80526 84153 76259	37675 60810 98807 72928 34563	648 986 514 666 848
1. 430 . 431 . 432 . 433 . 434	0. 99010 . 99024 . 99038 . 99052 . 99065	45603 43968 32431 10990 79644	37177 67397 53301 56046 37773	79485 01748 89307 14729 88889	729 121 176 460 346	. 13	4033 3934 3835 3736 3637	16058 14312 11173 06651 00755	46736 85619 83083 29440 15144	66253 82699 31761 95441 90849	390 275 733 799 940
1. 435 . 436 . 437 . 438 . 439	0. 99079 . 99092 . 99106 . 99119 . 99132	38391 87230 26160 55180 74287	61619 91709 93157 32073 75552	74754 01072 75959 00385 81565	$\frac{459}{060}$	.1	3537 3438 3339 3240 3141	93495 84881 74924 63632 51017	30784 67086 14910 65254 09245	71160 26554 85143 13887 19491	849 495 546 244 852

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

	to 1.600—Conti	
x	sin x	· cos x
1. 440 . 441 . 442 . 443 . 444	0. 99145     83481     91686     46252     760       .99158     82761     49554     53923     766       .99171     72125     19229     09874     676       .99184     51571     71773     78212     505       .99197     21099     79243     94748     990	0.13042     37087     38145     49297     752       .12943     21853     43347     92153     306       .12844     05325     16375     79275     576       .12744     87512     48881     85098     002       .12645     68425     32647     28105     135
1. 445 . 446 . 447 . 448 . 449	$\begin{array}{cccccccc} 0.99209 & 80708 & 14686 & 79795 & 055 \\ .99222 & 30395 & 52141 & 50856 & 088 \\ .99234 & 70160 & 66639 & 35228 & 024 \\ .99247 & 00002 & 34203 & 82494 & 216 \\ .99259 & 19919 & 31850 & 76923 & 086 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1, 450 , 451 , 452 , 453 , 454	0. 99271     29910     37588     49766     535       . 99283     29974     30417     91459     118       . 99295     20109     90332     63717     946       . 99307     00315     98319     11543     325       . 99318     70591     36356     75120     114	0.12050     27693     67366     57053     287       .11950     99962     90401     47620     080       .11851     71037     03450     05063     327       .11752     40925     99404     79804     068       .11653     09639     71276     73971     735
1. 455 . 456 . 457 . 458 . 459	0.99330     30934     87418     01619     777       .99341     81345     35468     56903     143       .99353     21821     65467     37123     830       .99364     52362     63366     80232     355       .99375     72967     16112     77380     893	0.11553     77188     12194     42103     061       .11454     43581     15402     91829     237       .11355     08828     74262     84551     407       .11255     72940     82249     36104     618       .11156     35927     32951     17410     313
1.460 .461 .462 .463 .464	0.99386     83634     11644     84228     683       .99397     84362     38896     32148     075       .99408     75150     87794     39331     194       .99419     55998     49260     21797     223       .99430     26904     15209     04300     286	0. 11056     97798     20069     55117     465       . 10957     58563     37417     32232     463       . 10858     18232     78917     88737     835       . 10758     76816     38604     22199     915       . 10659     34324     10617     88365     556
1. 465 . 466 . 467 . 468 . 469	0.99440     87866     78550     31137     923       .99451     38885     33187     76860     141       .99461     79958     74019     56879     043       .99472     11085     96938     37979     012       .99482     32265     98831     48727     437	0. 10559     90765     89208     01747     983       . 10460     46151     68730     36201     884       . 10361     00491     43646     25487     846       . 10261     53795     08521     63826     230       . 10162     06072     58926     06440     584
1. 470 . 471 . 472 . 473 . 474	0.99492     43497     77580     89785     993       .99502     44780     32063     44122     430       .99512     36112     62150     87122     898       .99522     17493     68709     96604     762       .99531     88922     53602     62729     932	0. 10062     57333     86931     70090     698       . 09963     07588     90112     33595     391       . 09863     56847     62542     38345     147       . 09764     05119     99295     88804     678       . 09664     52415     95545     53005     525
1. 475 . 476 . 477 . 478 . 479	0.99541     50398     19685     97818     664       .99551     01919     70812     46063     854       .99560     43486     11829     93145     787       .99569     75096     48581     75747     356       .99578     96749     87906     90969     720	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 480 481 . 482 . 483 . 484	0.99588     08445     37640     05648     408       .99597     10182     06611     65569     851       .99606     01959     04648     04588     337       .99614     83775     42571     53643     374       .99623     55630     32200     49677     461	0.09067     16244     64309     65577     623       .08967     56984     49943     69400     641       .08867     96827     59886     75526     752       .08768     35783     90154     44661     519       .08668     73863     36851     05477     303
1. 485 . 486 . 487 . 488 . 489	0.99632     17522     86349     44454     246       .99640     69452     18829     13277     079       .99649     11417     44446     63607     933       .99657     43417     79005     43586     693       .99665     65452     39305     50450     815	0.08569     11075     96168     55002     845       .08469     47431     64385     59004     070       .08369     82940     37866     52356     240       .08270     17612     13060     39407     518       .08170     51456     86499     94334     076
1. 490 . 491 . 492 . 493 . 494	0.99673     77520     43143     38855     320       .99681     79621     09312     29093     143       .99689     71753     57602     15215     811       .99697     53917     08799     73054     448       .99705     26110     84688     68141     099	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1. 495 . 496 . 497 . 498 . 499	0.99712     88334     08049     63530     364       .99720     40586     02660     27521     334       .99727     82865     93295     41279     821       .99735     15173     05727     06360     877       .99742     37506     66724     52131     595	0.07572     37716     06424     87121     354       .07472     66050     77322     30411     478       .07372     93638     21620     88691     060       .07273     20488     36561     79219     898       .07173     46611     19459     92192     943

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

	10 1.600—0	
£	sin x	CO8 X
1. 500 . 501 . 502 . 503 . 504	0.99749     49866     04054     43094     17       .99756     52250     46480     86109     25       .99763     44659     23765     37519     56       .99770     27001     66667     10173     56       .99776     99547     06942     80349     75	51
1.505 .506 .507 .508 .509	0.99783     62024     77346     94581     06       .99790     14524     11631     76379     05       .99796     57044     44547     32859     16       .99802     89585     11841     61264     97       .99809     12145     50260     55394     36	92
1.510 .511 .512 .513 .514	. 99827 19938 74695 50542 93 . 99833 02571 85033 95912 94	74     0.06075     88812     19385     90658     160       32     .05976     06985     33809     01748     769       12     .05876     24560     87538     57464     281       47     .05776     41548     78816     94113     053       18     .05676     57959     05945     24248     072
1. 515 . 516 . 517 . 518 . 519	. 99849 90569 06943 86092 49 . 99855 33265 56990 10456 61 . 99860 65976 53793 00399 16	88     0.05576     73801     67282     36886     851       95     .05476     89086     61243     97425     545       12     .05377     03823     86301     48297     399       63     .05277     18023     40981     08625     609       84     .05177     31695     23862     74620     716
1.520 .521 .522 .523 .524	. 99876 04190 97023 79776 66 . 99880 96954 58128 72136 86 . 99885 79730 09621 42098 08	31     0.05077     44849     33579     19672     613       34     .04977     57495     68814     94487     284       72     .04877     69644     28305     27218     360       89     .04777     81305     10835     23593     598       28     .04677     92488     15238     67036     388
1. 525 . 526 . 527 . 528 . 529	. 99899 68123 28645 03749 18 . 99904 10941 68902 17990 73 . 99908 43769 68148 40684 23	85     0.04578     03203     40397     18782     371       80     .04478     13460     85239     17991     291       29     .04378     23270     48738     81854     166       34     .04278     32642     29915     05695     871       62     .04178     41586     27830     63073     262
1.530 .531 .532 .533 .534	. 99920 82306 91989 10170 78 . 99924 75169 04354 76285 18 . 99928 58038 69286 79026 48	27     0.04078     50112     41591     05868     899       55     .03978     58230     70343     64380     513       52     .03878     65951     13276     47406     277       36     .03778     73283     69617     42326     008       63     .03678     80238     38633     15178     390
1.535 .536 .537 .538 .539	. 99939 46689 01607 91817 5 . 99942 89585 03928 83506 2 . 99946 22486 77374 53376 3	19     0.03578     86825     19628     10734     312       92     .03478     93054     11943     52566     435       02     .03378     98935     14956     43115     073       06     .03279     04478     28078     63750     505       52     .03179     09693     50755     74831     796
1. 540 . 541 . 542 . 543 . 544	. 99955 61222 96555 95674 1 . 99958 54144 31593 85726 2 . 99961 37069 81300 62497 0	96     0.03079     14590     82466     15762     248       80     .02979     19180     22720     05041     568       42     .02879     23471     71058     40314     858       95     .02779     27475     27051     98418     526       32     .02679     31200     90300     35423     217
1. 545 . 546 . 547 . 548 . 549	. 99969 25868 40506 75272 8 . 99971 68807 75959 78656 6 . 99974 01749 94615 35418 2	86 0.02579 34658 60430 86673 867 21 02479 37858 37097 66826 971 60 02379 40810 19980 69885 184 49 02279 43524 08784 69229 328 50 02179 46010 03238 17647 934
1. 550 . 551 . 552 . 553 . 554	. 99980 40591 21853 81488 7 . 99982 33542 50374 86102 6 . 99984 16495 55624 97539 9	61 0.02079 48278 03092 47364 391 667 .01979 50338 08120 70061 827 06 .01879 52200 18116 76905 802 66 .01779 53874 32894 38564 929 98 .01679 55370 52286 05229 507
1. 555 . 556 . 557 . 558 . 559	. 99989 05363 53795 91538 6 . 99990 48321 93007 76575 2 . 99991 81281 27470 74851 0	42     0.01579     56698     76142     06628     284       76     .01479     57869     04329     52043     433       77     .01379     58891     36731     30323     849       93     .01279     59775     73245     09896     874       23     .01179     60532     13782     38778     533

Table XII.—Values of  $\sin x$  and  $\cos x$  to 23 places of decimals at intervals of 0.001 from 0.000 to 1.600—Continued.

x		sir	ıx				c	98 X		
1, 560	0, 99994	17202	29966	29574	517	0.01079	61170	58267	44582	392
. 561	. 99995	20163	$\frac{29966}{74406}$	75969	$\frac{317}{172}$	. 00979	61701	06636	34527	146
0.562	. 99996	13125	66914	17856	344	.00879	62133	58835	95443	014
. 563	. 99996	96087	98192	36062	758	. 00779	62478	14822	93777	062
. 564	. 99997	69050	59945	07529	731	. 00679	62744	74562	75597	546
1. 565	0. 99998	32013	44876	06142	794	0.00579	62943	38028	66597	372
. 566	. 99998	84976	46689	03461	318	. 00479	63084	05200	72096	784
. 567	. 99999	27939	60087	69348	142	. 00379	63176	76064	77045	359
. 568	. 99999	60902	80775	72499	201	. 00279	63231	50611	46023	436
. 569	. 99999	83866	05456	80873	162	. 00179	63258	28835	23243	059
1.570	0. 99999	96829	31834	62021	053	+0.00079	63267	10733	32548	541
. 571	. 99999	99792	58612	83315	895	-0.00020	36732	03695	22583	254
. 572	. 99999	92755	85495	12082	337	. 00120	36729	14450	59042	80:1
. 573	. 99999	75719	13185	15626	285	. 00220	36714	21533	14087	901
. 574	. 99999	48682	43386	61164	539	. 00320	36677	24944	45343	613
1. 575	0. 99999	11645	78803	15654	423	-0.00420	36608	24688	30802	109
. 576	. 99998	64609	23138	45523	419	. 00520	36497	20771	68822	280
. 577	. 99998	07572	81096	16298	798	. 00620	36334	13205	78129	029
. 578	. 99997	40536	58379	92137	261	. 00720	36109	02006	97812	142
. 579	. 99996	63500	61693	35254	568	. 00820	35811	87197	87324	647
1.580	0. 99995	76464	98740	05255	179	-0.00920	35432	68808	26480	539
.581	.99994	79429	78223	58361	895	. 01020	34961	46876	15451	796
. 582	. 99993	72395	09847	46545	499	. 01120	34388	21448	74764	568
. 583	.99992	55361	04315	16554	408	. 01220	33702	92583	45294	454
. 584	. 99991	28327	73330	08844	324	. 01320	32895	60348	88260	743
1.585	0.99989	91295	29595	56407	893	-0.01420	31956	24825	85219	553
. 586	. 99988	44263	86814	83504	374	. 01520	30874	86108	38055	737
. 587	. <b>999</b> 86	87233	59691	04289	313	. 01620	29641	44304	68973	475
. 588	.99985	20204	63927	21344	232	. 01720	28245	99538	20485	440
. 589	. 99983	43177	16226	24106	322	. 01820	26678	51948	55400	452
1.590	0.99981	56151	34290	87198	158	-0.01920	24929	01692	56809	503
. 591	. 99979	59127	36823	68657	422	. 02020	22987	48945	28070	065
. 592	. 99977	52105	43527	08066	646	. 02120	20843	93900	92788	583
. 593	. 99975	35085	75103	24582	972	. 02220	18488	36773	94801	039
. 594	. 99973	08068	53254	14867	933	. 02320	15910	77799	98151	502
1.595	0.99970	71054	00681	50917	259	-0.02420	13101	17236	87068	552
. 596	. 99968	24042	41086	77790	702	. 02520	10049	55365	65939	492
. 597	. 99965	67033	99171	11241	891	. 02620	06745	92491	59282	234
. 598	. 99963	00029	00635	35248	219	. 02720	03180	28945	11714	764
. 599	. 99960	23027	72179	99440	759	. 02819	99342	65082	87922	093
1.600	0. 99957	36030	41505	16434	211	-0. 02919	95223	01288	72620	577

Table XIII. — Values of sin x and cos x to 25 places of decimals at decimal intervals from  $1 \times 10^{-10}$  to  $9 \times 10^{-4}$ .

1						1				
<i>x</i>			sin x					cos x		
1×10 ⁻¹⁰	0.00000	00001	00000	00000	00000	0.99999	99999	99999	99999	50000
2	. 00000	00002	00000	00000	00000	. 99999	99999	99999	99998	00000
3	.00000	00003	00000	00000	00000	. 99999	99999	99999	99995	50000
4	. 00000	00004	00000	00000	00000	.99999	99999	99999	99992	00000
5	. 00000	00005	00000	00000	00000	. 99999	99999	99999	99987	50000
6	.00000	00006	00000	00000	00000	.99999	99999	99999	99982	00000
7 8	.00000	00007	00000	00000	00000	. 99999	99999	99999	99975	50000
9	.00000	$00008 \\ 00009$	00000	00000	00000 00000	.99999	99999 99999	99999 99999	99968 999 <b>5</b> 9	00000 50000
1 > 10-9	0.00000	00010	00000	00000	00000	0.99999	99999	99999		
1×10 ⁻⁹	.00000	00010	00000	00000	00000	99999	99999	99999	99950 99800	00000
3	.00000	00030	00000	00000	00000	.99999	99999	99999	99550	00000
4	.00000	00040	00000	00000	00000	. 99999	99999	99999	99200	00000
5	.00000	00050	00000	00000	00000	. 99999	99999	99999	98750	00000
6	.00000	00060	00000	00000	00000	. 99999	99999	99999	98200	00000
7	.00000	00069	99999	99999	99999	. 99999	99999	99999	97550	00000
8	. 00000	00079	99999	99999	99999	. 99999	99999	99999	96800	00000
9	.00000	00089	99999	99999	99999	.99999	99999	99999	95950	00000
1×10-8	0.00000	00099	99999	99999	99998	0.99999	99999	99999	95000	00000
3	.00000	$00199 \\ 00299$	99999 99999	99999	99987	. 99999	99999	99999	80000	00000
4	.00000	00399	99999	99999 99999	$99955 \\ 99893$	. 99999	99999 99999	99999 99999	$\frac{55000}{20000}$	00000
5	.00000									
6	.00000	$00499 \\ 00599$	99999 99999	99999 99999	997 <b>92</b> 9964 <b>0</b>	.99999	99999 9 <b>99</b> 99	99998 99998	75000 $20000$	00000
7	.00000	00699	99999	99999	99428	. 99999	99999	99997	55000	00000
8	. 00000	00799	99999	99999	99147	. 99999	99999	99996	80000	00000
9	.00000	00899	99999	99999	98785	. 99999	99999	99995	9 <b>5</b> 000	00000
1×10 ⁻⁷	0.00000	00999	99999	99999	98333	0.99999	99999	99995	00000	00000
2	.00000	01999	99999	99999	86667	. 99999	99999	99980	00000	00000
3 4	.00000	$02999 \\ 03999$	99999 99999	99999	55000	. 99999	99999	99955	00000	00000
				99998	93333	. 99999	99999	99920	00000	00000
5	.00000	04999	99999	99997	91667	. 99999	99999	99875	00000	00000
6 7	. 00000	05999	99999	99996	40000	. 99999	99999	99820	00000	00000
8	.00000	06999 <b>0799</b> 9	99999 99999	99994 $99991$	$28333 \\ 46667$	. 99999	99999 99999	99755 $99680$	00000	00000
9	.00000	08999	99999	99987	85000	.99999	99999	99595	00000	00000
1×10-6	0.00000	09999	99999	99983	33333	0.99999	99999	99500	00000	00000
1×10-6	. 00000	19999	99999	99866	66667	. 99999	99999	98000	00000	00007
3	.00000	29999	99999	99550	00000	. 99999	99999	95500	00000	00034
4	.00000	39999	99999	98933	33333	. 99999	99999	92000	00000	00107
5	. 00000	49999	99999	97916	66667	.99999	99999	87500	00000	00260
6	.00000	59999	99999	96400	00000	.99999	99999	82000	00000	00540
7 8	.00000	69999	99999 99999	94283	33333	. 99999	99999	75500	00000	01000
9	.00000	79999 89999	99999	$91466 \\ 87850$	66667 00000	.99999	99999 99 <b>999</b>	$68000 \\ 59500$	00000	$01707 \\ 02734$
1×10 ⁻⁵	0.00000	99999	99999	83333	33333	0.99999	99999	50000	00000	04167
2	. 00001	99999	99998	66666	66667	.99999	99998	00000	00000	66667
3	. 00002	99999	99995	50000	00002	.99999	99995	50000	00003	37500
4	.00003	99999	99989	33333	33342	. 99999	99992	00000	00010	66667
5	. 00004	99999	99979	16666	66693	. 99999	99987	50000	00026	04167
$\frac{6}{7}$	. 00005	99999	99964	00000	00065	. 99999	99982	00000	00054	00000
7 8	.00006	99999 99999	99942	83333	33473	. 99999	99975	50000	00100	04167
9	.00007	99999	$\frac{99914}{99878}$	66666 50000	$66940 \\ 00492$	. 99999	$99968 \\ 99959$	00000 50000	$00170 \\ 00273$	66667 37500
1×10⊶	0.00009	99999	99833	33333		0.99999	99950	00000		
2	.00019	99999	98666	66666	$\frac{34167}{93333}$	. 99999	99800	00000	$00416 \\ 06666$	$66667 \\ 66666$
3	.00029	99999	95500	00002	02500	. 99999	99550	00000	33749	99990
4	$000\overline{3}9$	99999	89333	33341	86667	. 99999	99200	00001	06666	66610
5	. 00049	99999	79166	66692	70833	.99999	98750	00002	60416	66450
6	.00059	99999	64000	00064	80000	. 99999	98200	00005	39999	99352
7	. 00069	99999	42833	33473	39167	. 99999	97550	00010	00416	65033
9	00079 $00089$	99999 99998	14666	66939	73333	. 99999	96800	00017	06666	63026
······	. 00003	<i>3333</i> 3	78500	00492	07499	. 99999	95950	00027	33749	92619

Table XIV.—Miscellaneous values of  $e^x$ ,  $e^{-x}$ ,  $\sin x$  and  $\cos x$  to a great number of decimals, including Boorman's value of e.

$e^{+0.1}=1.10517$	09180	75647	62481	17078	26490	24666	82245	47194	73751
87187	92863	28944	09679	66747	65430	29891	43318	97074	86536
32917	12048	54012	44536	111/1/11	00400	20001	OIGGE	01014	00000
$e^{-0.1} = 0.90483$	74180	35959	57316	42490	59446	43662	11947	05360	98040
09520	56257	31705	57799	65344	24836	10125	03446	03609	04572
38478	74531	46483	18498	00011	21000	10120	00110	000,00	04072
$\sin 0.1 = 0.09983$	34166	46828	15230	68141	98410	62202	69899	15388	01798
22599	92766	86156	16517	44283	29242	76096	62443	80406	30362
67832	50318	09359	89035	11200	20212	*0000	02110	00100	00002
$\cos 0.1 = 0.99500$	41652	78025	76609	55619	87803	87029	48385	76225	41508
40359	59352	74468	52659	10218	24046	65296	63618	52826	29279
10723	68588	08368	71860			0020	00010	02020	20210
$e^{+1.0} = 2.71828$	18284	59045	23536	02874	71352	60249	77572	47093	69995
95749	66967	62772	40766	30353	54759	45713	82178	52516	64274
27466	39193	20030	59921	81741	35966	29043	57290	03342	95260
59563	07381	32328	62794	34907	63233	82988	07531	95251	01901
15738	34187	93070	21540	89126	94937	99405	34631	93819	87250
90567	36251	50082	37715	27509	03586	67692	05047	15575	85094
92906	45748	86005	84299	93465	94757	59371	00435	26480	0
$e^{-1.0} = 0.36787$	94411	71442	32159	55237	70161	46086	74458	11131	03176
78345	07836	80169	74614	95744	89980	33571	47274	34591	96437
46627									
$\sin 1.0 = 0.84147$	09848	07896	50665	25023	21630	29899	96225	63060	79837
10656	72751	70999	19104	04391	23966	89486	39743	54305	26958
54349									
$\cos 1.0 = 0.54030$	23058	68139	71740	09366	07442	97660	37323	10420	61792
22276	70097	25538	11003	94774	47176	45179	51856	08718	30893
43572									

OF THE

### NATIONAL ACADEMY OF SCIENCES

Volume XIV

FIRST MEMOIR



					•	
				[18]		
					•	
*						
				· ·		
	•					
	1					
- 10						
	•					
		1				
N.						
197						
Ď						

		,				
				,		
	•					
			~			
		٠				
		-				ì
					-	

OF THE

# NATIONAL ACADEMY OF SCIENCES

Volume XIV SECOND MEMOIR

WASHINGTON GOVERNMENT PRINTING OFFICE 1919

705



,			
	•		
,			
	,		
		•	
			-
		,	
			,
			,

					1
			•		•
				1	
					. `
	•				
•			,		
•					
					*

OF THE

## NATIONAL ACADEMY OF SCIENCES

Volume XIV

THIRD MEMOIR



in production of the second of



	•		
			2 7 ( • 3
		•	

OF THE

## NATIONAL ACADEMY OF SCIENCES

Volume XIV
FOURTH MEMOIR

•





OF THE

### NATIONAL ACADEMY OF SCIENCES

Volume XIV

FIFTH MEMOIR



.

*			
•	•		
	- 1/2		

		•			
		•			
	•				
	•				
5					
~					
	1				
	•				
. *					
s er e					
· -					
- 4. <b>T</b>					
**	*				
			•		
A					
	•	•		•	
	. (	* 3			
	**				
A STATE OF THE STA					
				_	
	7.		•		
	1. 6,				
		- t-			
1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		and the second			
The state of the state of	29.3	. =			
	the state of the s				
A Comment of the Comm	* 15 to 15 t		1 = /		
2			-		
			7		
and the second s	and the second s	~	*		

*	



