Linear Asymptotic Stability (For line in problem)

Asymptotic Stability (7N of x* s.t.)

Linear Asymptotic Stability (2N of x* s.t.)

Linear Asymptotic Stability (2N of x* s.t.)

Linear Asymptotic Stability (2N of x* s.t.)

Linear Asymptotic Stability (500 x of x* s.t.) Re(x) < 0 $\hat{x} = f(x)$, $f: \mathbb{R}^n \to \mathbb{R}^n$ is C' $f(x^*) = 0$ Re-write with equilibrium at origin: X = X* + y $\dot{y} = Ay + g(y)$ g(0)=0Here A = Df(x*), which has eigenvalues
A for which Re(x)<0 and g(y) = f(x*+y) - Ay = nonlinear partof f. From Taylor's theorem we know that g(y) is o(y) ["little o of y"] i.e. for all $\in 70$ there is a neighborhood $N(\epsilon)$ of y=0, s.t. $(g(y)) < \epsilon |y|$, $\forall y \in N(\epsilon)$ [if f is c^2 then g(y) is $\partial(y^2)$, $|g(y)| < \epsilon |y^2|$]

$$\int \dot{y} = Ay + g(y)$$

$$y(0) = y_0$$

re-write this by integrating it, with an integrating factor:

$$\dot{y} - Ay = g(y)$$

$$e^{At}(\dot{y}-Ay)=e^{-At}g(y)$$

$$\int \frac{d}{ds} \left[e^{-As} y \right] ds = \int e^{-As} g(y(s)) ds$$

$$e^{-AE}y(t) = y_0 + \int_0^t e^{-AS}g(y(s)) ds$$

Im(X)

Proved in book: If 4 > Ay then

there is a K21 and x>0 s.t. letyol 5 Ke-xt lyol for

(Re(x) (xx)) any 40 & +20

	Lecture 6 p.3
	$ y(t) \leq \kappa e^{-\alpha t} \delta + \int_{0}^{t} e^{A(t-s)}g(y(s)) ds$
<u> </u>	
	(here yo <5) bound this
	usigng g(y) is o(y)?
	For any \in we can find a δ s.t. if $ y < k\delta$ then $ g(y) < \epsilon y $
,	Also, since lyol < 5 and y(s) is
	an interval [0, T) where y(s) < KJ
	[WR will later see we can let T -> 00]
	V +- 5 \ 20
	e A(t-s) g(y(s)) < Ke - x(t-s) g(y(s))
-	≤ Ke-«(E-s) ∈ ly(s) , SE[o, E
1	ext y(t) < KS + Ke Se exs y(s) ds
	$S(t)$ $S(s)$ $S \in [0,T)$
	If it was an equality then it looks like Sis
	Soln. to $S = KES$ which has soln. $S(0) = KS$ $S = KS = KS e^{KES}$

Grönwall inequality Suppose $g, K: [0, a] \rightarrow \mathbb{R}$ are continuous a > 0, $K(t) \geq 0$, and g(t) ≤ G(t) = c + 5 t (s) g(s) ds for all o≤t≤a, Then for all t∈ [o,a] $g(t) \leq c e^{\int_{0}^{t} K(s) ds}$ Proof: gikeco, GEC' with Glo)=c => differentiat G(t) G= K(t) g(t) < K(t) G(t) G-K(E)G(E) = 0 e [G(t)-K(t)G(t)] <0 $\frac{d}{dt} \left[G(t) e^{-\int_0^t K(s)ds} \right] \le 0$

 $= \int_{0}^{t} \chi(s)ds$ $= \int_{0}^{t} \chi(s)ds$ $= G(t) \leq G(t) = C$ $G(t) \leq e^{-\int_{0}^{t} \chi(s)ds}, \quad g(t) \leq G(t) \Rightarrow g(t) \leq ce^{-\int_{0}^{t} \chi(s)ds}$

5(t) = ext /y(t)	
y(t) < Kos + Ke S 5(s) ds	
=> 5(t) 5 Kdy eket by Grön	rwall's
$ y(t) \leq K S_{e} e^{-(\alpha - k \epsilon)t}$ $ y(t) \leq K S_{e} e^{-(\alpha - k \epsilon)t}$	t € [0, t]
Now choose $\in \langle \frac{\kappa}{\kappa} \rangle$	
Note $ y(t) < K S_{\phi}$ for $t \in (0,T)$	
We introduced T because we wan	ted an
interval where 1y(t) 1 < Ko, but no	on we've
shown that lylt) I isn't in dagger	of
interval where $ y(t) < K\delta$, but no Shown that $ y(t) $ isn't in dagger reaching $K\delta$ at some finite time can let $T \to \infty$	T 50
can let T>00	
ly(t) 1 5 KS e (x-Ke)t te	-{o,∞)
lim /y(t) / = 0 t > 00	

	Alternative method to show that the
	stability of a hyperbolic equilibrium,
	(ones w/Re(1) =0) can be determined by
	linearization is via the Hartman-Grobman
	Thm.
· 	
	Let xt be a hyperbolic equilibrium of a
	C' vector field f(x) with flow (f(x).
	Then there is a neighborhood of Nof
	C' vector field f(x) with flow (f(x). Then there is a neighborhood of N of X* s.t. (f(x) is toppologically conjugate to its linearized flow (f(x) on N,
· .	to its linearized flow 4(x) on N,
	Two Flows G: A > A & 4:B > B
	are topologically conjugate if there
	exists a homeomorphism hiA +B s.t.
	for each xEA & tER, h(q(x))=4(h(x))
	homeomorphism h: A > B is continuous.
	one-to-one mapping with a continuous
	inverse
	$\chi \xrightarrow{\mathcal{G}_{t}} \mathcal{Q}(\chi)$
	70 74
	h h
,	
	V V MARIO SOL
	y - 7 (y) = 16 (4 (w))
	- Carl action

In homework you use this to show linear asymptotic stability

	Lecture 6 p.B
	Nonhyperbolic equilibria with Re(h) < 0: linearization is inconclusive
	example:
(x)2	$\dot{x} = y + a(x^2 + y^2)x$ $\dot{y} = -x + a(x^2 + y^2)y$
	lineanitation $\begin{bmatrix} 0 \\ -1 \end{bmatrix} \Rightarrow \lambda = \pm i$
-	$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -$
	Lyapunov Stable?
	Re-write (4) in polar coordinates
	$\chi = r \cos \theta \qquad \qquad \chi^2 + y^2 = r^2$ $y = r \sin \theta \qquad \qquad \int t \cos \theta = \frac{y}{x}$
	$2r\dot{r} = 2x\dot{x} + 2y\dot{y} \qquad \dot{r} = ar^{3}$ $5ec^{2}\theta \dot{\theta} = \dot{y} \times -\dot{x}\dot{y} \qquad \dot{\theta} = -1$

Lecture 6 p.9 r sar3 Ø 9=0 a <0 unstable asymptotically Stable Lyapunov stable 400 a>0 940