

Academy of Mathematics and Systems Science

Initial-value iterative neural network for solitary wave computations

Jin Song

supervisor: Zhenya Yan

Joint work with Ming Zhong, Zhenya Yan and George Em Karniadakis

KLMM 2023/12/12

II Methodology

II Applications

IV Discussions

Solitary wave

Soliton

In 1844, John Scott Russell

[Proc. Roy. Soc., Edinburgh, 319 (1844)]

Boussinesq: $U_{tt} - U_{xx} + 3(U^2)_{xx} - U_{xxxx} = 0$ [J. Math. Pure. Appl. 17, 55–108 (1872)]

 $\mathbf{KdV:} \qquad U_t + 6UU_x + U_{xxx} = 0$

D. J. Korteweg, and G. de Vries [Phil. Mag. 39, 422(1895)]

NLS: $U_t - U_{xx} - U|U|^2 = 0$

d-dimensional generalized NLS with potential

$$iU_t - \Delta U + V(\mathbf{x})U + \mathcal{N}(\mathbf{x}, |U|^2)U = 0$$
 (1)

where $U = U(\mathbf{x}, t)$ is a complex field of the d-dimensional spatial variable $\mathbf{x} \in \mathbb{R}^d$ and time t, $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2 + \cdots + \partial_{x_d}^2$, $V(\mathbf{x})$ a real or complex potential, and $\mathcal{N}(\mathbf{x}, |U|^2)$ a function of \mathbf{x} and intensity $|U|^2$.

$$U(\mathbf{x},t) = u(\mathbf{x})e^{i\mu t} \tag{2}$$

$$Lu = 0$$
, where $L = -\Delta + V(\mathbf{x}) + \mathcal{N}(\mathbf{x}, |u|^2) - \mu$. (3)

The system can be written in the following form:

$$\mathbf{L_0}\mathbf{u}(\mathbf{x}) = 0$$

where $\mathbf{L_0}$ is a nonlinear operator, $\mathbf{u}(\mathbf{x}) \in \mathbb{C}^m$ is a complex-valued vector solitary wave solution, and $\mathbf{u} \to 0$ as $|\mathbf{x}| \to \infty$.

Traditional numerical methods

Shooting method

[Commun. ACM, 5(12) 613-614; J. Phys. A- Math. Gen. 20(6) (1987) 1411.]

- Iterative methods $\mathbf{u}_{n+1} = \mathcal{M}_n \mathbf{u}_n$
 - · Petviashvili method [J. Comput. Phys. 226 1668-1692.]
 - Imaginary-time evolution method [SIAM J.Sci.Comput.25 1674–1697.]
 - · Squared-operator iteration [Stud. Appl. Math. 118 153-197.]
 - Newton-conjugate-gradient [J. Comput. Phys. 228 7007–7024.]

Discretization scheme

- Finite different method
- Finite element method
- Discontinuous Galerkin method
- Spectral method
- Spectral elements methods

High dimensional problem? $M \sim N^d$

10.0

7.5 0.0 -2.5-5.0-7.5-10.0

Complex computational domains?

Scientific Machine Learning (SciML)

- · Deep Ritz method [Commun. Math. Stat. 6 1-12.]
- · Deep Galerkin method [J. Comput. Phys. 375 1339-1364.]
- · Physics-informed neural networks [J. Comput. Phys. 378 686.]
- · Neural Operator [JMLR 24 1-97]

• • • • • •

Numerical methods	Machine learning methods
Mesh-based	Mesh-free
Discretization	Automatic differentiation
No generalization	Generalization

Problem statement

$$\mathbf{L_0}\mathbf{u}(\mathbf{x}) = 0$$

where $\mathbf{L_0}$ is a nonlinear operator, $\mathbf{u}(\mathbf{x}) \in \mathbb{C}^m$ is a complex-valued vector solitary wave solution, and $\mathbf{u} \to 0$ as $|\mathbf{x}| \to \infty$.

Purpose: $NN(x; \theta)$

$$NN(\mathbf{x}; \theta) \approx \mathbf{u}(\mathbf{x})$$

- Model: Build a loss function \mathcal{L}_1 according to PDE
- Optimization: Minimize the loss function

$$\theta_0 = \operatorname{argmin} \mathcal{L}_1(\theta)$$

Problem: multi-solution

Problem 1: Trivial solution

$$\mathbf{u}(\mathbf{x}) \equiv 0$$

Problem 2: Multi-solution

- Degenerate state
- Symmetry breaking bifurcations

Where can you get to already decided at the beginning

Analyzing monotonic linear interpolation in neural network loss landscapes. arXiv preprint arXiv:2104.11044.

Newton method

Initial-value

Initial-value iterative neural network (IINN)

Given an appropriate initial value \mathbf{u}_0 , such that it is sufficiently close to \mathbf{u}^* .

 NN_1 Train the network parameters θ by minimizing the meansquared error loss.

$$\mathcal{L}_1 := \frac{1}{N} \|\bar{\mathbf{u}} - \mathbf{u}_0\|_2^2 = \frac{1}{N} \sum_{i=1}^N |\bar{\mathbf{u}}(\mathbf{x}_i) - \mathbf{u}_0(\mathbf{x}_i)|^2.$$

Initial-value iterative neural network (IINN)

Initialize the parameters θ of NN2 with the learned ones from NN1

 NN_2

$$\theta_0 = \operatorname{argmin} \mathcal{L}_1(\theta)$$

Define the loss function L2 as follows and utilize SGD or Adam optimizer to minimize it

$$\mathcal{L}_2 := \frac{1}{N} \frac{\|\mathbf{L}_0 \hat{\mathbf{u}}\|_2^2}{\max(|\hat{\mathbf{u}}|)} = \frac{1}{N} \frac{\sum_{i=1}^N |\mathbf{L}_0 \hat{\mathbf{u}}(\mathbf{x}_i)|^2}{\max_i(|\hat{\mathbf{u}}(\mathbf{x}_i)|)}$$

end while

II. Methodology

Algorithm 1 The framework of initial value iterative neural network (IINN)

Require: Operator L_0 in (2); initial state u_0 ; error threshold ε_1 and ε_2 ; training data $\{x_i, u_0(x_i)\}_{i=1}^N$; learning rate α , maximum iteration number K.

```
Ensure: Output \hat{\mathbf{u}}.

For NN<sub>1</sub>, randomly initialize the parameters \theta_0 s.t. they satisfy the normal distribution. For network output \bar{\mathbf{u}}(\mathbf{x},\theta_0), \mathcal{L}_1:=\frac{1}{N}\|\bar{\mathbf{u}}-\mathbf{u}_0\|_2^2.

for k=0: K do

if \mathcal{L}_1(\theta_k)<\varepsilon_1 then

\theta^*=\theta_k;

break;

else

Apply the Adam optimizer update parameters \theta_k;

end if

end for

For NN<sub>2</sub>, initialize the parameters \theta_0=\theta^* and set k=0. For network output \hat{\mathbf{u}}(\mathbf{x},\theta_0), \mathcal{L}_2:=\frac{1}{N}\frac{\|\mathbf{L}_0\hat{\mathbf{u}}\|_2^2}{\max(|\hat{\mathbf{u}}|)}.

while \mathcal{L}_2\geq\varepsilon_2 do

\theta_{k+1}=\theta_k-\alpha\nabla\mathcal{L}_2;
k=k+1:
```


Remark 1: From the perspective of numerical iteration, for NN2, we iterate the network parameters with $\hat{\mathbf{u}}(\theta_0)$ as the initial value, such that $\hat{\mathbf{u}}$ satisfies the Eq by minimizing loss function L2.

From a machine learning perspective, the approach is known as transfer learning, where knowledge gained from training one model is transferred to another model, typically when the two models have similar tasks or domains. By initializing NN2 with the parameters of NN1, we can leverage the pre-trained model's learned representations and potentially achieve better performance, especially if the new task or data is related to the original task or data on which NN1 is trained.

Lemma 1 Let $\Lambda = \bigcup_{i=1}^{N} \Lambda_i$, where $\Lambda_i = \{\theta_i | \mathbf{L_0} \hat{\mathbf{u}}(\theta_i) = 0, ||\hat{\mathbf{u}}(\theta_i^m) - \hat{\mathbf{u}}(\theta_i^n)||_2 = 0 \text{ for } m \neq n\}$ and N is the number of distinct solitary wave solutions. Then, $\theta_i \in \Lambda_i$ is isolated in Λ_j for $i \neq j$.

Theorem 1 [58] If f is a C^2 function and θ^* be a strict saddle. Assume that learning rate $0 < \alpha < \frac{1}{\rho}$ then

$$\Pr\left(\lim_k \theta_k = \theta^*\right) = 0.$$

Theorem 7 (**Theorem III.7**, **Shub** (1987)) Let 0 be a fixed point for the C^r local diffeomorphism $\phi: U \to E$, where U is a neighborhood of 0 in the Banach space E. Suppose that $E = E_s \oplus E_u$, where E_s is the span of the eigenvectors corresponding to eigenvalues of magnitude less than or equal to 1 of $D\phi(0)$, and E_u is the span of the eigenvectors corresponding to eigenvalues of magnitude greater than 1 of $D\phi(0)$. Then there exists a C^r embedded disk W_{loc}^{cs} that is tangent to E_s at 0 called the local stable center manifold. Moreover, there exists a neighborhood E_s of 0, such that $\phi(W_{loc}^{cs}) \cap E \subset W_{loc}^{cs}$, and $\bigcap_{k=0}^{\infty} \phi^{-k}(E) \subset W_{loc}^{cs}$.

Theorem 2 For a given soliton state \mathbf{u}^* , suppose that the initial state \mathbf{u}_0 is sufficiently close to \mathbf{u}^* and the output of NN_1 $\bar{\mathbf{u}}(\theta^*) = \mathbf{u}_0$. And θ^* satisfies $d(\theta^*, \Lambda_i) < d(\theta^*, \Lambda_i)$ $(j \neq i)$, where i satisfies $\hat{\mathbf{u}}(\theta_i) = \mathbf{u}^*$. Then, the output of NN_2 $\hat{\mathbf{u}}$ is sufficiently close to \mathbf{u}^* , for sufficiently small learning rate α .

Remark 2: In the scheme of IINN, the choice of initial value \mathbf{u}_0 is crucial as it determines the type of solution we ultimately obtain.

Usually, based on the characteristics of the system and our understanding of the system, we can estimate the initial value using physical background knowledge or past experience.

For example, 1D NLS admits sech-type soliton solution. Therefore, we can take $u_0(x) = A \operatorname{sech}(x)$ then by adjusting the coefficient A to make $|Lu_0|$ smaller than a certain threshold.

Example 1.1 (Solitons of the 1D NLS equation with Kerr nonlinearity).

 $\mathcal{N}(x, |U|^2)U$ is taken as the Kerr nonlinear term $g|U|^2U$

$$iU_t - U_{xx} + V(x)U + g|U|^2U = 0,$$

 $Lu = 0, \quad L = -\partial_{xx} + V(x) + g|u|^2 - u.$

Case 1.—Bright soliton of the 1D NLS equation with V = 0 and g = -1.

$$u(x) = \sqrt{-2\mu} \operatorname{sech}(\sqrt{-\mu}x), \quad \mu < 0.$$

$$u_0(x) = \operatorname{sech}(x),$$

$$\omega_t = J_x,$$

$$(UU^*)_t = i(UU_x^* - U^*U_x)_x,$$

$$(UU_x^*)_t = i(UU_{xx}^* - U_xU_x^* - \frac{1}{2}gU^2U^{*2})_x,$$

$$K_1 = \int_{\mathbb{R}} \omega dx = \int_{\mathbb{R}} UU^* dx, \quad K_2 = \int_{\mathbb{R}} \omega dx = \int_{\mathbb{R}} UU_x^* dx$$

Case 2.—Soliton solution of 1D NLS equation with complex potentials

PT-symmetric Scarf-II potential: $V(x) = V_{re}(x) + iV_{im}(x) = V_0 \operatorname{sech}^2(x) + iW_0 \operatorname{sech}(x) \tanh(x)$.

$$u(x) = \sqrt{-\frac{2 + V_0 + W_0^2/9}{g}} \operatorname{sech}(x) \exp\left[-\frac{iW_0}{3} \arctan(\sinh(x))\right],$$

Considering that the solution is a complex-valued function, in practical we set the network's output $\hat{u}(x) = p(x) + iq(x)$

$$\mathcal{F}_{p}(x) := -\partial_{xx}p + V_{\text{re}}p - V_{\text{im}}(x)q + g(p^{2} + q^{2})p - \mu p,$$

$$\mathcal{F}_{q}(x) := -\partial_{xx}q + V_{\text{re}}q + V_{\text{im}}(x)p + g(p^{2} + q^{2})q - \mu q.$$

$$\mathcal{L}_2 := \frac{1}{N} \frac{\sum_{i=1}^{N} \left(|\mathcal{F}_p(x_i)|^2 + |\mathcal{F}_q(x_i)|^2 \right)}{\max_i \left(\sqrt{(p(x_i)^2 + q(x_i)^2} \right)}.$$

$$u_0(x) = \operatorname{sech}(x) e^{ix}.$$

Example 1.2 (The solitary wave solution of KdV equation).

$$U_t + 6UU_x + U_{xxx} = 0.$$

Considering the traveling wave transform $\xi = x - ct$, then $U(x, t) = u(x - ct) = u(\xi)$

$$-c\frac{\mathrm{d}u}{\mathrm{d}\xi} + 6u\frac{\mathrm{d}u}{\mathrm{d}\xi} + \frac{\mathrm{d}^3u}{\mathrm{d}\xi^3} = 0,$$

We can integrate this with respect to ξ to obtain

$$-cu + 3u^2 + \frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} = A,$$

where A is a constant of integration. Therefore we consider the nonlinear wave system

$$Lu - A = 0$$
, $L = \frac{d^2}{d\xi^2} + 3u - c$,

When A = 0, the solitary wave solution of the KdV equation can be found,

$$u(\xi) = \frac{1}{2}c\operatorname{sech}^2\left[\frac{\sqrt{c}}{2}(\xi+a)\right]$$

Initial value

$$u_0(\xi) = \operatorname{sech}^2(\xi + 2)$$

$$c = 1$$
 and $a = 2$

Example 1.3 (Quantum droplets of the 2D amended GP equation with LHY correction and multi-well potential).

Example 1.4 (Solitary-wave solution of Kadomtsev-Petviashvili equation).

$$(U_t + 6UU_x + U_{xxx})_x + \alpha U_{yy} = 0, \qquad \alpha \in \mathbb{R}.$$

Applications

Example 1.5 (Optical bullets of 3D NLS equation with HO trapping potential).

$$iU_t - \Delta_3 U + V(x, y, z)U - |U|^2 U = 0,$$

$$V(x,y,z) = \frac{1}{2}(x^2 + y^2 + z^2).$$

Table 1: The tested some examples and data via the IINN method.

Equation	Potential	Solution	Initial value	Step (NN ₁)	Step (NN ₂)	N	E_1
1D NLS HG	/	Bright soliton	$u_0 = \operatorname{sech}(x)$	10000	25000	500	1.63e-03
		Dark soliton	$u_0 = \tanh(x)$	10000	14000	500	3.40e-04
	Ground state	$u_0 = \exp(-x^2)$	5000	30000	200	2.51e-04	
		Dipole mode	$u_0 = 4x \exp(-x^2/2)$	10000	25000	200	4.66e-04
7	$\mathcal{P}\mathcal{T}$ Scarf-II	Soliton (focusing)	$u_0 = \operatorname{sech}(x) \exp(ix)$	2000	25000	200	6.83e-04
_	, , , , , , , , , , , , , , , , , , , ,	Soliton (defocusing)	$u_0 = \operatorname{sech}(x) \exp(ix)$	2000	25000	200	5.08e-04
1D SNLS	\mathcal{PT} OL	Gap soliton	$u_0 = \operatorname{sech}(x)\cos(x)\exp(ix)$	15000	20000	800	4.00e-04
1D fdCNLS	/	Single-soliton	${u_{10}, u_{20}} = {2,1}\operatorname{sech}(x)$	5000	20000	500	1.56e-03
1D KdV	/	Solitary wave	$u_0 = \operatorname{sech}^2(\xi + a)$	12000	30000	500	8.50e-04
2D NLS	НО	Ground state	$u_0 = e^{-0.5(x^2 + y^2)}$	2000	20000	20000	4.62e-04
		Vortex soliton	$u_0 = 3re^{-0.5r^2}e^{i\phi}$	10000	20000	20000	1.83e-03
	Periodic	Gap soliton	$u_0 = \operatorname{sech}\left(\sqrt{x^2 + y^2}\right)\cos(x)\cos(y)$	20000	40000	20000	6.47e-03
2D GP	Quadruple-well	Branch B1	$u_0 = 0.3 \left[e^{-0.1 \mathbf{r} - \mathbf{r}_1 ^2} + e^{-0.1 \mathbf{r} - \mathbf{r}_3 ^2} \right]$	15000	80000	20000	4.29e-03
		Branch A1	$u_0 = 0.46e^{-0.1 \mathbf{r} - \mathbf{r}_3 ^2}$	10000	80000	20000	2.85e-03
2D KP	/	Solitary wave	$u_0 = \operatorname{sech}^2(\xi + y)$	10000	50000	20000	8.35e-04
3D NLS	НО	Bullet	$u_0 = e^{-0.5(x^2 + y^2 + z^2)}$	10000	35000	40000	8.55e-03
**							

IV. Discussions

Limitations of PINNs method

· Advantages over traditional numerical methods

The ground state solution u(x) of 2D NLS equation on the disk.

IV. Discussions

· Advantages over traditional numerical methods

The ground state solution u(x) of 2D NLS equation on the equilateral triangle region.

Thanks