ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 110

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с п степенями свободы. Запишите плотность χ^2 распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с п степенями свободы. Найдите а) $\mathbb{P}(\chi^2_{20}>10.9)$, где χ^2_{20} -случайная величина, которая имеет χ^2 распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы $\mathbb{P}(\chi^2_{20}>10.9)=0.948775; \chi^2_{0.93}(5)=1.34721.$
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;10] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,057\leqslant Z\leqslant 0,556)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{5x}{3}, 0 \leqslant x \leqslant \frac{3}{10} \approx 0,3; \\ 1 \frac{3}{20x}, x \geqslant \frac{3}{10}; \end{cases}$ Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leqslant 0; \\ 1 \frac{3}{20x}, x \geqslant \frac{3}{10}; \\ \frac{5}{3}, 0 \leqslant x \leqslant \frac{3}{10} \approx 0,3; \\ \frac{3}{20x^2}, x \geqslant \frac{3}{10}; \end{cases}$

- 3) вероятность равна: $\P(0.057 \le Z \le 0.556) = 0.63552$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 52%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 140608

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 32, y_0 = 89, \ x_1 = 61, y_1 = 91, \ x_2 = 64, y_2 = 88, \ x_3 = 97, y_3 = 55, \ x_4 = 66, y_4 = 84, \ x_5 = 78, y_5 = 56, \ x_6 = 62, y_6 = 60, \ x_7 = 73, y_7 = 42, \ x_8 = 40, y_8 = 59, \ x_9 = 86, y_9 = 80, \ x_{10} = 76, y_{10} = 33, \ x_{11} = 56, y_{11} = 64, \ x_{12} = 87, y_{12} = 86, \ x_{13} = 70, y_{13} = 38, \ x_{14} = 87, y_{14} = 76, \ x_{15} = 72, y_{15} = 63, \ x_{16} = 79, y_{16} = 41, \ x_{17} = 33, y_{17} = 74, \ x_{18} = 67, y_{18} = 71, \ x_{19} = 65, y_{19} = 34, \ x_{20} = 57, y_{20} = 56, \ x_{21} = 63, \ y_{21} = 87, \ x_{22} = 68, \ y_{22} = 95, \ x_{23} = 46, \ y_{23} = 94, \ x_{24} = 50, \ y_{24} = 73$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
 - 1) Ковариация =-262.8 2) Коэффициент корреляции =-1.5753
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y=5
X = 200	16	19	5
X = 300	25	10	25

Из Ω случайным образом без возвращения извлекаются 6 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.48 2) стандартное отклонение $\sigma(\bar{X})$: 256.5595
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: 0.5887
- 6. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 71.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 62.0%.

$$f(x) = F'(x) = \beta \cdot x^{\beta - 1}$$

$$\mu_1 = E(X) = \int_{-\inf}^{\inf} x \cdot f(x) = \int_{-\inf}^{\inf} \beta \cdot x^{\beta} = \beta \cdot \frac{x^{\beta+1}}{\beta+1} \Big|_{0}^{1} = \frac{\beta}{\beta+1}$$

$$\beta = (\beta + 1) \cdot 71.0$$

$$\beta = \frac{71.0}{1 - 71.0}$$

$$P(x \le 62.0) = F(62.0) = 62.0^{2.45}$$

Ответ: 2.45, 0.31

Подготовил

Рубов П.Е. Рябов

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021

Режии Феклин В.Г.