* Spé - St Joseph/ICAM Toulouse * -

2020-2021 -

Math. - ES 1 - S1 - Epreuve 2

lundi 4 janvier 2021 - Durée 2 h

On s'intéresse dans ce problème à l'équation différentielle $x^2y'' + axy' + by = 0$. La **partie I** est une partie d'algèbre linéaire qui traite des solutions polynomiales de cette équation lorsque a et b sont des constantes réelles. Dans la **partie II**, on détermine l'ensemble des solutions de l'équation lorsque a et b sont des constantes réelles. La **partie III** traite des solutions lorsque a = 1 et b est la fonction carrée. Les trois parties sont indépendantes.

PARTIE I - Endomorphismes

Dans cette partie, n désigne un entier naturel non nul et a et b des constantes réelles. On note Δ l'endomorphisme de $\mathbb{R}[X]$ défini par

$$\forall P \in \mathbb{R}[X], \ \Delta(P) = XP'$$

- **1.** Calculer, pour tout $k \in [0, n]$, $\Delta(X^k)$.
- 2. Montrer que

$$\forall P \in \mathbb{R}[X], X^2 P'' = \Delta \circ (\Delta - \mathrm{Id})(P)$$

où Id désigne l'endomorphisme identité de $\mathbb{R}[X]$.

- 3. Justifier que $\mathbb{R}_n[X]$ est stable par Δ . On notera Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ .
- **4.** Déterminer la matrice de Δ_n dans la base canonique de $\mathbb{R}_n[X]$.
- 5. On considère l'endomorphisme φ de $\mathbb{R}[X]$ défini par

$$\forall P \in \mathbb{R}[X], \varphi(P) = X^2 P'' + aXP' + bP$$

Exprimer φ en fonction de Δ , et en déduire que φ induit un endomorphisme de $\mathbb{R}_n[X]$. On notera φ_n l'endomorphisme induit.

- **6.** Exprimer la matrice de φ_n dans la base canonique de $\mathbb{R}_n[X]$.
- 7. On considère l'équation

$$s^2 + (a-1)s + b = 0$$
 (1)

- a. Expliciter le noyau de φ_n lorsque l'équation (1) admet deux racines entières $m_1, m_2 \in [0, n]$.
- **b.** Expliciter le noyau de φ_n lorsque l'équation (1) admet une unique racine entière $m \in [0, n]$.
- c. Déterminer le noyau de φ .

PARTIE II - Une équation différentielle

On considère dans cette partie l'équation différentielle

$$x^2y'' + axy' + by = 0$$
 (H₀)

où a et b sont des constantes réelles, et on note $I=]0,+\infty[$.

1. Montrer que si y est solution de (H_0) sur I, alors $g = y \circ \exp$ est une solution sur \mathbb{R} de l'équation différentielle linéaire à coefficients constants :

$$u'' + (a-1)u' + bu = 0$$
 (H₁)

- **2.** Réciproquement, soit g une solution de (H_1) sur \mathbb{R} . Montrer que $g \circ \ln$ est solution de (H_0) sur I.
- **3.** Dans cette question on suppose que a=3 et b=1.
 - a. Donner les solutions à valeurs réelles de l'équation (H₁).
 - **b.** En déduire les solutions à valeurs réelles de l'équation (H_0) sur l'intervalle I.
 - c. Après vous être assuré que la fonction $x \mapsto \frac{1}{x}$ figure bien parmi les solutions sur I de (H_0) , résoudre l'équation différentielle suivante :

$$x^2y'' + 3xy' + y = \frac{1}{x}$$
 (L₀)

PARTIE III - Une équation de Bessel

On se propose dans cette partie d'étudier l'équation différentielle

$$x^2y'' + xy' + x^2y = 0 (H_2)$$

- 1. Rappeler la définition du rayon de convergence d'une série entière.
- 2. Série entière dont la somme est solution de (H₂)

On suppose qu'il existe une série entière $\sum_{k\geq 0} c_k x^k$, avec $c_0=1$, de rayon de convergence R>0, dont la fonction somme S est solution de (H_2) sur]-R,R[.

a. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$\begin{cases} c_{2k+1} = 0 \\ c_{2k} = \frac{(-1)^k}{4^k (k!)^2} \end{cases}$$

2

b. Déterminer le rayon de convergence de la série entière $\sum_{k\geq 0} c_k x^k$.

3. Inverse d'une série entière non nulle en 0

Soit $\sum_{k>0} a_k x^k$ une série entière de rayon de convergence $R_a>0$ telle que $a_0=1$.

L'objectif de cette question est de montrer l'existence et l'unicité d'une série entière $\sum_{k\geq 0} b_k x^k$ de rayon de convergence $R_b>0$ telle que pour tout x dans les domaines de convergence :

$$\left(\sum_{k=0}^{+\infty} a_k x^k\right) \left(\sum_{k=0}^{+\infty} b_k x^k\right) = 1$$

a. Montrer que si $\sum_{k\geq 0} b_k x^k$ est solution, alors la suite (b_k) satisfait aux relations suivantes :

$$\begin{cases} b_0 = 1\\ \sum_{k=0}^{n} a_k b_{n-k} = 0, \quad \forall n \in \mathbb{N}^* \end{cases}$$
 (2)

b. Soit r un réel tel que $0 < r < R_a$. Montrer qu'il existe un réel M > 0 tel que pour tout $k \in \mathbb{N}$:

$$|a_k| \le \frac{M}{r^k}$$

c. Montrer que (2) admet une unique solution $(b_k)_{k\in\mathbb{N}}$ et que pour tout $k\in\mathbb{N}^*$:

$$|b_k| \le \frac{M(M+1)^{k-1}}{r^k}$$

d. Que peut-on dire du rayon de convergence R_b ?

4. Ensemble des solutions de (H₂)

- **a.** Justifier qu'il existe un réel r > 0, tel que S ne s'annule pas sur [0, r].
- **b.** Soit λ une fonction de classe C^2 sur]0, r[. Montrer que la fonction $y: x \mapsto \lambda(x)S(x)$ est solution de (H_2) sur]0, r[si, et seulement si la fonction $x \mapsto xS^2(x)\lambda'(x)$ est de dérivée nulle sur]0, r[.
- c. Montrer que S^2 est somme d'une série entière dont on donnera le rayon de convergence. Que vaut $S^2(0)$?
- d. En déduire l'existence d'une fonction μ somme d'une série entière de rayon de convergence $R_m > 0$ telle que $x \mapsto \mu(x) + S(x) \ln(x)$ soit solution de (H_2) sur un intervalle $]0, R_m[$.
- e. En déduire l'ensemble des solutions de (H_2) sur $]0, R_m[$, à l'aide des fonctions définies au fil du problème.

Fin de l'énoncé