

DSD Exercise

Gauss-Seidel Iteration Machine

Speaker: Daniel

Advisor: Prof. An-Yeu Wu

Date: 2024/04/18

Background

- Solving large systems of linear equations is required in many engineering simulations and scientific computing applications
- Several iterative methods are used to accelerate the computing due to their simplicity, such as Jacobi Iteration, Gauss-Seidel Iteration

$$\begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

$$\vdots$$

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N = b_1$$

$$\vdots$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N = b_2$$

$$\vdots$$

$$a_{N1}x_1 + a_{N2}x_2 + \cdots + a_{NN}x_N = b_N$$

Gauss-Seidel Iteration Machine (GSIM)

Iterative method to solve a linear system of equations

$$x_{3}^{0}: \text{ initial value of } x_{3}$$

$$x_{1}^{1} = \frac{1}{a_{11}}(b_{1} - a_{12}x_{2}^{0} - \cdots - a_{1N}x_{N}^{0})$$

$$x_{2}^{1}: \text{ first iteration result of } x_{2}$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

Expand eq (1)

$$x_1^1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2^0 - \dots - a_{1N}x_N^0)$$

$$x_2^1 = \frac{1}{a_{22}} (b_2 - a_{21}^2 x_1^1 - a_{23}^2 x_3^0 - \dots - a_{2N}^0 x_N^0)$$

$$a_{\rm N1}x_1 + a_{\rm N2}x_2 + \dots + a_{\rm NN}x_{\rm N} = b_{\rm N} \qquad x_{\rm N}^{\rm 1} = \frac{1}{a_{\rm NN}}(b_{\rm N} - a_{\rm N1}x_1^{\rm 1} - a_{\rm N2}x_2^{\rm 1} - \dots - a_{\rm NN-1}x_{\rm N-1}^{\rm 1})$$

Change the order

$$x_i^{k+1} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_j^k \right]$$

Final equation

Project Description

Initialization

M iterations (define by yourself!)

Output result x

$$x^{0} = \begin{bmatrix} x_{1}^{0} \\ x_{2}^{0} \\ \vdots \\ x_{N}^{0} \end{bmatrix}$$

Given a fixed 16 × 16 matrix A

At most 7 non-zero terms one time

By the previous equation:

$$\begin{split} x_1^1 &= \frac{1}{20} [b_1 + 13 \left(x_2^0 + 0 \right) - 6 \left(x_3^0 + 0 \right) + \left(x_4^0 + 0 \right)] \\ x_2^1 &= \frac{1}{20} [b_2 + 13 \left(x_3^0 + x_1^1 \right) - 6 \left(x_4^0 + 0 \right) + \left(x_5^0 + 0 \right)] \\ x_3^1 &= \frac{1}{20} [b_3 + 13 \left(x_4^0 + x_2^1 \right) - 6 \left(x_5^0 + x_1^1 \right) + \left(x_6^0 + 0 \right)] \\ x_4^1 &= \frac{1}{20} [b_4 + 13 \left(x_5^0 + x_3^1 \right) - 6 \left(x_6^0 + x_2^1 \right) + \left(x_7^0 + x_1^1 \right)] \\ &\vdots \\ x_{16}^1 &= \frac{1}{20} [b_{16} + 13 \left(0 + x_{15}^1 \right) - 6 \left(0 + x_{14}^1 \right) + \left(0 + x_{13}^1 \right)] \end{split}$$

Only divided by 20

Score Criteria

- ❖ 評分一: Error rate E²

 - Achieve Level A

A 級:		E^2	< 0.000001
B級:	$0.000001 \le$	E^2	< 0.000005
C級:	$0.000005 \le$	E^2	< 0.000010
D級:	$0.000010 \leq$	E^2	< 0.000050
E級:	$0.000050 \le$	E^2	< 0.000100
F級:	$0.000100 \le$	E^2	< 0.001000
G級:	$0.001000 \le$	E^2	< 0.005000
H級:	$0.005000 \le$	E^2	< 0.010000
I級:	$0.010000 \le$	E^2	< 0.100000
J級:	$0.100000 \le$	E^2	< 0.300000
K 級:	$0.300000 \le$	E^2	

- ❖ 評分二:AT score
 - $AT = area \times total timing$
 - Area: synthesis cell area
 - Timing: total execution time (tb1+tb2+...+tb5)

```
Your Score Level: A

Congratulations! GSIM's Function Successfully!

PASS

Simulation complete via $finish(1) at time 3734500 PS + 0

/testfixture5.v:213 #(`CYCLE/2); $finish;
ncsim> exit
```

Combinational area: 3875.164193
Buf/Inv area: 434.534396
Noncombinational area: 1147.442383
Macro/Black Box area: 0.000000
Net Interconnect area: 48580.242432

Total cell area: 5022.606576
Total area: 53602.849008

Design Guidelines

- Architecture level
 - Data path scheduling
 - Parallel processing (unfolding)
 - Pipelining
- Computation unit level
 - Constant multiplier, constant divider
 - Decimal analysis

Architecture Level Optimization (1/3)

- Reading data
 - Arbitrary reading: Using several MUXs to load data
 - Structural reading: Similar computation dataflow

Scheduling by removing 6 MUXs

Architecture Level Optimization (2/3)

- Parallel processing (unfolding)
 - Using multi-core to compute
 - Necessity: No data dependancy
- Reordering computation
 - ❖ Processing elements: 1, 5, 9, 13, ...

rescheduling

Architecture Level Optimization (3/3)

- Pipelining
 - Divide computation into several cycles

e.g. 3-stages pipeling

Computation Unit Level (1/2)

1 Division 2 Multiplication

Computation flow x_5^0 x_3^1 x_6^0 x_7^0 x_1^1 Divider x_7^0 x_1^0 x_1^0 x_2^0 x_2^0 x_2^0 x_2^0 x_1^0 x_2^0 x_2

Division and multiplication is complicated.
It need large area and long computation time.

Computation Unit Level (2/2)

- Multiplier
 - Power-of-two method (e.g. $6 = 110_2$, $13 = 1101_2$)
- Divider
 - Conventional (for arbitrary input): requires 32 cycles
 - Constant divider: requires 3 cycles
 - Canonic Signed Digit (CSD) code
 - For each odd integer d, there exists an odd integer m such that $d \times m = 2^n 1$

Need: 1 Adder, 1 shifter

Time: 32 cycles

$$\frac{1}{d} = \frac{m}{2^{n} - 1} = \frac{m}{2^{n} (1 - 2^{-n})}$$
$$= \frac{m}{2^{n}} (1 + 2^{-n}) (1 + 2^{-2n}) (1 + 2^{-4n}) \dots$$

Need: 1 Adder, 1 shifter

Time: 3 cycles

Simulation & Synthesis

- Check "doc.pdf"
- 3 Major Things
 - RTL coding & Simulation
 - Synthesizable coding & Logic Synthesis
 - Gate-level simulation & Debugging/refinement
- Files needed for simulation
 - RTL code: GSIM.v
 - Gate-level code: GSIM _syn.v,
 - Timing info (SDF file): GSIM _syn.sdf,
 - Design library (DDC file): GSIM _syn.ddc

Notice

- Do not fit the given test pattern, there will be hidden cases!
- Latches are not allowed in gate level code after synthesis, use Flipflop instead.
- Negative Slack and Timing Violations are not allowed after synthesis.
- The tsmc13_neg.v file is not allowed to be downloaded! Or you may offend the copyright protected by NTU & TSRI!

Grading Policy

- RTL (40%): Function correctness, Rank A
 - 10% for hidden tb
- Synthesis (40%): Pass baseline AT score: 1.0×10^{10}
 - 10% for hidden tb
- Ranking (15%): AT ranking. Get 0% if not passing the hidden to
- Report (5%)
- For each team, you need to submit 4 files + 1 report
 - * RTL code: GSIM.v
 - Synthesis: GSIM_syn.v,

GSIM_syn.sdf,

GSIM_syn.ddc

Report: report.pdf

Report

1. Simulated cycle time (ns)

Gate-level simulation clock cycle (i.e. The cycle you passed testbench after synthesis)

2. Area (um^2)

report_area

3. AT score

 $AT = area \times timing$

Area: total cell area

❖ Timing: total execution time (tb1 + tb2 + ... + tb5)

4. Screenshot

Inferred memory devices in process (*No latch should be inferred!)

 Combinational area:
 3875.164193

 Buf/Inv area:
 434.534396

 Noncombinational area:
 1147.442383

 Macro/Black Box area:
 0.000000

 Net Interconnect area:
 48580.242432

Total cell area: 5022.606576
Total area: 53602.849008

Submission

```
❖ DSD_Exercise_學號/
GSIM.v
GSIM_syn.v
GSIM_syn.sdf
GSIM_syn.ddc
report.pdf
```

- Compress all the files into one ZIP file
 - ❖ File name: DSD_ Exercise _學號.zip
 - ❖ EX: DSD_ Exercise _b09901001.zip
- Upload the file to NTUCOOL
- Deadline: 2024/05/01 23:59 XLate submission is not allowed