

Advanced Multimodal Machine Learning

Lecture 10.1: Probabilistic
Graphical Models
Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Probabilistic Graphical Models
- Markov Random Fields
 - Boltzmann/Gibbs distribution
 - Factor graphs
- Conditional Random Fields
 - Multi-View Conditional Random Fields
- CRFs and Deep Learning
 - DeepConditional Neural Fields
 - CRF and Bilinear LSTM
- Continuous and Fully-Connected CRFs

Administrative Stuff

Upcoming Schedule

- First project assignment:
 - Proposal presentation (10/3 and 10/5)
 - First project report (10/8)
- Midterm project assignment
 - Midterm presentations
 - Tuesday 11/7 (DH1112) & Thursday 11/9 (GHC-6115)
 - Midterm report (Sunday 11/12)
- Final project assignment
 - Final presentation (12/4 & 12/5)
 - Final report (12/10)

Quick Recap

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

Deep MultimodalBoltzmann machines

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep MultimodalBoltzmann machines
- Stacked Autoencoder

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep MultimodalBoltzmann machines
- Stacked Autoencoder
- Encoder-Decoder

Learn (unsupervised) a joint representation between multiple modalities where similar unimodal concepts are closely projected.

- Deep MultimodalBoltzmann machines
- Stacked Autoencoder
- Encoder-Decoder
- "Minimum-distance"Multimodal Embedding

Recurrent Neural Network using LSTM Units

How can we improve reasoning by including prior domain knowledge?

Probabilistic Graphical Models

Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM) is a graph formalism for compactly modeling joint probability distributions and dependence structures over a set of random variables.

- Random variables: X₁,...,X_n
- P is a joint distribution over $X_1, ..., X_n$

Can we represent P more compactly?

Key: Exploit independence properties

Independent Random Variables

- Two variables X and Y are independent if
 - P(X=x|Y=y) = P(X=x) for all values x,y
 - Equivalently, knowing Y does not change predictions of X
- If X and Y are independent then:
 - P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)

- If $X_1,...,X_n$ are independent then:
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$

Conditional Independence

- X and Y are conditionally independent given Z if
 - P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z
 - Equivalently, if we know Z, then knowing Y does not change predictions of X

Graphical Model

- A tool that visually illustrate <u>conditional</u> <u>dependence</u> among variables in a given problem.
- Consisting of nodes (Random variables or States) and edges (Connecting two nodes, directed or undirected).
- The lack of edge represents conditional independence between variables.

Graphical Model

 Chain, Path, Cycle, Directed Acyclic Graph (DAG), Parents and Children

Reasoning

 The activity of guessing the state of the domain from prior knowledge and observations.

Uncertain Reasoning (Guessing)

- Some aspects of the domain are often unobservable and must be estimated indirectly through other observations.
- The relationships among domain events are often uncertain, particularly the relationship between the observables and non-observables.

Non-observables Observables

Developing a Graphical Model

Example: Inferring Emotion from Interaction Logs

Emotion

[Sabourin et al., 2011]

Evidences observable)

Observable environment variables

Mastery **Openness** avoidance Agreeableness Mastery Conscientious approach

Survey-based personality variables

Example: Direct Prediction Approach

Appraisal Theory of Emotion

Example: Graphical Model Approach

Example: Dynamic Graphical Model Approach

Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]

What if the "evidences" require neural network architectures to perform automatic perception?

Markov Random Fields

Restricted Boltzmann Machine (RBM)

- Undirected Graphical Model
- A generative rather than discriminative model
- Connections from every hidden unit to every visible one
- No connections across units (hence Restricted), makes it easier to train and do inference

Restricted Boltzmann Machine (RBM)

$$p(\mathbf{x}, \mathbf{h}; \theta) = \frac{\exp(-\mathbf{E}(\mathbf{x}, \mathbf{h}; \theta))}{\sum_{\mathbf{x}'} \sum_{\mathbf{h}'} \exp(-\mathbf{E}(\mathbf{x}', \mathbf{h}'; \theta))} \leftarrow \frac{\text{Partition}}{\text{function } \mathbf{z}}$$

- Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)
- Model parameters $\theta = \{W, b, a\}$

$$E = -xWh - bx - ah$$

$$\mathbf{E} = -\sum_{i} \sum_{j} \mathbf{w}_{i,j} x_{i} h_{j} - \sum_{i} \mathbf{b}_{i} x_{i} - \sum_{j} a_{j} h_{j}$$
Interaction Bias terms term

Boltzmann Machine

$$p(\mathbf{x}, \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{x}, \mathbf{h}; \theta))}{\sum_{\mathbf{x}'} \sum_{\mathbf{h}'} \exp(-E(\mathbf{x}', \mathbf{h}'; \theta))}$$

• Hidden and visible layers are binary (e.g. $x = \{0, ..., 1, 0, 1\}$)

Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

$$p(\mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{h}; \theta)/kT)}{\sum_{\mathbf{h}'} \exp(-E(\mathbf{h}'; \theta)/kT)}$$

probability distribution that gives the probability that a system will be in a certain state h

 $E(h; \theta)$: Energy of state h

k: Boltzmann constant

T: Thermodynamic temperature

Markov Random Fields

$$p(H = \mathbf{h}; \theta) = \frac{\exp(-E(\mathbf{h}; \theta))}{\sum_{\mathbf{h}'} \exp(-E(\mathbf{h}'; \theta))} = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)}$$

Set of random variables H having a Markov property described by undirected graph

$$\Phi(\mathbf{h}; \theta) = \prod_{k} \phi_{k}(\mathbf{h}; \theta_{k})$$
 functions
$$\phi_{k}(\mathbf{h}; \theta) > 0$$
$$= \exp\left(-\sum_{k} E_{k}(\mathbf{h}; \theta_{k})\right)$$

Markov Random Fields

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

Markov Random Fields: Factor Graphs

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_1, h_2; \theta_{12}) \times \\ \phi_{16}(h_1, h_6; \theta_{16}) \times \\ \phi_{26}(h_2, h_6; \theta_{26}) \times \\ \phi_{25}(h_2, h_5; \theta_{25}) \times \\ \phi_{45}(h_4, h_5; \theta_{45}) \times \\ \phi_{34}(h_3, h_4; \theta_{34})$$

Markov Random Fields (Factor Graphs)

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

Markov Random Fields - Clique Factorization

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\phi_{16}(h_1, h_6; \theta_{16}) \times \phi_{26}(h_2, h_6; \theta_{26}) \times \phi_{25}(h_2, h_5; \theta_{25}) \times \phi_{45}(h_4, h_5; \theta_{45}) \times \phi_{34}(h_3, h_4; \theta_{34}) \times \phi_{34}(h_4, h_5; \theta_{34}) \times \phi_{34}(h_5, h_5; \theta_$$

potentials

pairwise

 $\psi_1(h_1;\theta_1) \times \psi_5(h_5;\theta_5)$ Unary $\psi_1(h_1;\theta_1) \times \psi_5(h_5;\theta_5)$ potentials $\psi_3(h_3,h_4,h_5;\theta_{345})$

Chain Markov Random Fields (Factor Graphs)

$$p(H = \mathbf{h}; \theta) = \frac{\Phi(\mathbf{h}; \theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}'; \theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y}, \mathbf{x}; \theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}', \mathbf{x}; \theta)}$$

$$\Phi(\mathbf{h}; \theta) = \phi_{12}(h_{1}, h_{2}; \theta_{12}) \times \phi_{23}(h_{2}, h_{3}; \theta_{23}) \times \phi_{34}(h_{3}, h_{4}; \theta_{34}) \times \phi_{34}(h_{3}, h_{4}; \theta_{34}) \times \phi_{34}(h_{1}; \theta_{1}) \times \phi_{23}(h_{2}; \theta_{2}) \times \phi_{34}(h_{3}; \theta_{3}) \times \phi_{34}(h_$$

Conditional Random Fields

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y}, \mathbf{x}; \theta) = \phi_{12}(y_1, y_2, \mathbf{x}; \theta_{12}) \times \phi_{23}(y_2, y_3, \mathbf{x}; \theta_{23}) \times \phi_{34}(y_3, y_4, \mathbf{x}; \theta_{34}) \times$$

$$\psi_1(y_1, \mathbf{x}; \theta_1) \times \psi_2(y_2, \mathbf{x}; \theta_2) \times \psi_3(y_3, \mathbf{x}; \theta_3) \times \psi_4(y_4, \mathbf{x}; \theta_4)$$

Unary potentials

pairwise

potentials

Conditional Random Fields (Factor Graphs)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$

$$\Phi(\mathbf{y},\mathbf{x};\theta) = \phi_{12}(y_{1},y_{2},\mathbf{x};\theta_{12}) \times \phi_{23}(y_{2},y_{3},\mathbf{x};\theta_{23}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{4},\mathbf{x};\theta_{34}) \times \phi_{34}(y_{3},y_{3},\mathbf{x};\theta_{3}) \times \phi_{34}(y_{3},\mathbf{x};\theta_{3}) \times \phi_{34}(y_{3},\mathbf{x};\theta_{3})$$

Conditional Random Fields (Log-linear Model)

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\sum_{k} \phi_{k}(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \sum_{k} \phi_{k}(\mathbf{y}',\mathbf{x};\theta)}$$
$$= \frac{\exp(\sum_{k} \theta_{k} f_{k}(\mathbf{y},\mathbf{x}))}{\sum_{\mathbf{y}'} \exp(\sum_{k} \theta_{k} f_{k}(\mathbf{y}',\mathbf{x}))}$$

 $f_k(y, x)$: feature function

- Pairwise feature function $f_k(y_i, y_i, \mathbf{x}; \theta^e)$
- Unary feature function $f_k(y_i, \mathbf{x}; \theta^x)$

Learning Parameters of a CRF Model

$$\underset{\hat{y}}{\operatorname{argmax}} \log (p(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{\theta}))$$

- Gradient can be computed analytically
 - Inference of marginal probabilities using belief propagation (or loopy belief propagation for cyclic graphs)
- Optimized with stochastic or batch approaches

CRFs for Shallow Parsing

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},\mathbf{x};\theta)}{\sum_{\mathbf{y}'} \Phi(\mathbf{y}',\mathbf{x};\theta)} = \frac{\exp(\sum_{k} \theta_{k} f_{k}(\mathbf{y},\mathbf{x}))}{\sum_{\mathbf{y}'} \exp(\sum_{k} \theta_{k} f_{k}(\mathbf{y}',\mathbf{x}))}$$

- \triangleright How many θ^x parameters?
- \triangleright What did θ^x learn?

 \triangleright What did θ^e learn?

	B-NP	I-NP	0
B-NP	$ heta_{11}$	θ_{21}	θ_{31}
I-NP	$ heta_{12}$	θ_{22}	θ_{32}
0	θ_{13}	θ_{23}	θ_{33}

Labels:

B-NP: Beginning of a noun phrase I-NP: Continuation of a noun phrase

O: Outside a noun phrase

Latent-Dynamic CRF

$$p(\mathbf{y}|\mathbf{x};\theta) = \sum_{\mathbf{h}} p(\mathbf{y}|\mathbf{h};\theta) p(\mathbf{h}|\mathbf{x};\theta) \quad \text{where} \quad p(\mathbf{y}|\mathbf{h};\theta) = \begin{cases} 1 & \text{if } \forall h_t \in \mathcal{H}_{y_t} \\ 0 & \text{otherwise} \end{cases}$$
$$= \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} p(\mathbf{h}|\mathbf{x};\theta) = \sum_{\mathbf{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\Phi(\mathbf{h},\mathbf{x};\theta)}{\sum_{\mathbf{h}'} \Phi(\mathbf{h}',\mathbf{x};\theta)}$$

Latent variables (e.g., POS tags)

$$\mathbf{h} = \{h_1, h_2, h_3, \dots, h_t\}$$
 where $h_t \in \{\mathcal{H}_{y_t}\}$

For example:

$$\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{0}\}$$

$$\mathcal{H} = \{B_{1}, B_{2}, B_{3}, B_{4} \ I_{1}, I_{2}, I_{3}, I_{4} \ O_{1}, O_{2}, O_{3}, O_{4}\}$$

Latent-Dynamic CRF

$$p(\boldsymbol{y}|\boldsymbol{x};\theta) = \sum_{\boldsymbol{h}:\forall h_t \in \mathcal{H}_{y_t}} \frac{\exp(\sum_k \theta_k f_k(\boldsymbol{h},\boldsymbol{x}))}{\sum_{\boldsymbol{h}'} \exp(\sum_k \theta_k f_k(\boldsymbol{h}',\boldsymbol{x}))}$$

- \triangleright How many θ^x parameters? \triangleright How many θ^e parameters?
- \triangleright What did θ^x learn?

- \triangleright What did θ^e learn?
 - Intrinsic dynamics
 - Extrinsic dynamics

Latent variables (e.g., POS tags)

$$\mathbf{h} = \{h_1, h_2, h_3, \dots, h_t\}$$
 where $h_t \in \{\mathcal{H}_{y_t}\}$

For example:

$$\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{0}\}$$

$$\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, O_1, O_2, O_3, O_4\}$$

Latent-Dynamic CRF for Shallow Parsing

Experiment – Analyzing latent variables

- Task: Shallow parsing with CoNLL 2000 dataset
- Input features: word feature only
- Output labels: Noun phrase labels
- 1) Select hidden state a^* with highest marginal: $a^* = \arg \max p(h_t = a | x; \theta)$
- 2) Compute relative frequency for each word

B-NP	0	B-NP	I-NP	I-NP
y_1	y_2	y_3	y_4	y_5
B_3	_	B_2		I_3
h_1	$-(h_2)$	$-(h_3)-$	$-(h_4)$	$-(h_5)$
x_1	x_2	x_3	x_4	x_5
We	saw	the	yellow	dog

Label	State	Words	POS	Freq.
В	B_1	That	WDT	0.85
		who	WP	0.49
		Who	WP	0.33
	B_2	any	DT	1.00
		an	DT	1.00
		а	DT	0.98
	B_3	They	PRP	1.00
		we	PRP	1.00
		he	PRP	1.00
	B_4	Nasdaq	NNP	1.00
		Florida	NNP	0.99
		cities	NNS	0.99

Label	State	Words	POS	Freq.
0	O_1	but	CC	0.88
		by	IN	0.73
		or	IN	0.67
	O_2	4.6	CD	1.00
		1	CD	1.00
		11	CD	0.62
	03	were	VBD	0.94
		rose	VBD	0.93
		have	VBP	0.92
	04	been	VBN	0.97
		be	VB	0.94
		to	TO	0.92

Latent variables (e.g., POS tags)

$$\mathbf{h} = \{h_1, h_2, h_3, \dots, h_t\}$$
 where $h_t \in \{\mathcal{H}_{y_t}\}$

For example:

$$\mathcal{H} = \{\mathcal{H}_{B-NP} \ \mathcal{H}_{I-NP} \ \mathcal{H}_{0}\}$$

$$\mathcal{H} = \{B_1, B_2, B_3, B_4, I_1, I_2, I_3, I_4, O_1, O_2, O_3, O_4\}$$

Hidden Conditional Random Field

Sequence label:

 $y \in \mathcal{Y}$ for example, \mathcal{Y} : {positive, negative}

Latent variables with shared hidden states:

$$m{h} = \{h_1, h_2, h_3, \dots, h_t\}$$
 where $h_t \in \mathcal{H}$

$$p(\mathbf{y}, \mathbf{h} \mid \mathbf{x}; \boldsymbol{\theta}) = \frac{1}{\mathcal{Z}(\mathbf{x}; \boldsymbol{\theta})} \exp \left\{ \sum_{t} \boldsymbol{\theta}^{x} \cdot f^{x}(h_{t}, \mathbf{x}_{t}) + \sum_{t} \boldsymbol{\theta}^{e} \cdot f^{e}(h_{t}, h_{t-1}, \mathbf{y}) + \sum_{t} \boldsymbol{\theta}^{y} \cdot f^{y}(\mathbf{y}, \mathbf{h}_{t}) \right\}$$

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \sum_{\mathbf{h}} p$$

- $p(y|x;\theta) = \sum p(\cdot |x|) = \sum p(\cdot |x|)$
 - Linear in sequence length T!
 - Parameter learning $(\theta^x, \theta^e, \theta^y)$:
 - **Gradient descent or L-BFGS**

Shared hidden states

Learning Multimodal Structure

Modality-private structure

Internal grouping of observations

Modality-shared structure

Interaction and synchrony

Multi-view Latent Variable Discriminative Models

Modality-private structure

Internal grouping of observations

Modality-shared structure

Interaction and synchrony

$$p(y|\mathbf{x}^A, \mathbf{x}^V; \boldsymbol{\theta}) = \sum_{\mathbf{h}^A, \mathbf{h}^V} p(y, \mathbf{h}^A, \mathbf{h}^V | \mathbf{x}^A, \mathbf{x}^V; \boldsymbol{\theta})$$

Approximate inference using loopy-belief

CRFs and Deep Learning

Conditional Neural Fields

$$\mathbf{G}^l(\mathbf{x}_i, \mathbf{W}^l) = \left[g_1^l(\mathbf{x}_i \cdot \mathbf{W}_1^l), g_2^l(\mathbf{x}_t \cdot \mathbf{W}_i^l), \dots, g_n^l(\mathbf{x}_i \cdot \mathbf{W}_n^l)\right]$$

$$p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta}) \propto \exp \left\{ \sum_{i} \boldsymbol{\theta}^{x} \cdot \boldsymbol{f}^{x}(y_{i}, \mathbf{x}_{i}) + \sum_{i} \boldsymbol{\theta}^{e} \cdot \boldsymbol{f}^{e}(y_{i}, y_{i-1}) \right\}$$

$$f^{x}(y_{i}, \mathbf{x}_{i}) = \mathbb{I}[y_{i} = y'] \cdot \mathcal{G}(\mathbf{x}_{i}, \mathbf{W}^{l})$$

Deep Conditional Neural Fields

$$\begin{aligned} \mathcal{G}^{l}(x_{i}, \mathbf{W}^{l}) &= \left[g_{1}^{l}(x_{i} \cdot \mathbf{W}_{1}^{l}), g_{2}^{l}(x_{t} \cdot \mathbf{W}_{i}^{l}), \dots, g_{n}^{l}(x_{i} \cdot \mathbf{W}_{n}^{l})\right] \\ p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta}) &\propto \exp\left\{\sum_{i} \boldsymbol{\theta}^{x} \cdot \boldsymbol{f}^{x}(y_{i}, \mathbf{x}_{i}) + \sum_{i} \boldsymbol{\theta}^{e} \cdot \boldsymbol{f}^{e}(y_{i}, y_{i-1})\right\} \\ \frac{\theta^{e}}{y_{1}} & \theta^{e} & \theta^{e} & \theta^{e} & \theta^{e} \\ y_{3} & \theta^{x} & \theta^{x} & \theta^{x} & \theta^{x} \\ g_{1}^{x} & g_{2}^{2} & g_{3}^{2} & g_{4}^{2} & \theta^{x} \\ g_{1}^{2} & g_{2}^{2} & g_{3}^{2} & g_{4}^{2} & \theta^{x} \\ g_{1}^{1} & g_{2}^{1} & g_{3}^{1} & g_{3}^{1} \\ w^{1} & w^{1} & w^{1} & w^{1} \\ x_{1} & x_{2} & x_{3} & x_{4} \end{aligned}$$

CRF and Bilinear LSTM

[Dyer, 2016]

Learning:

- 1. Feedforward
- 2. Gradient
 - a) Belief propagation
- 3. Backpropagation

Output labels:

Name entities

Input features:

Word embedding

- \triangleright What did θ^e paramters learn?
- What does LSTM parameters learns?

CNN and **CRF** and Bilinear **LSTM**

[Hovy, 2016]

Learning:

- 1. Feedforward
- 2. Gradient
 - a) Belief propagation
- 3. Backpropagation

Output labels:

Name entities

Input features:

 Character embedding

Continuous and Fully-Connected CRFs

Continuous Conditional Neural Field

[Baltrusaitis 2014]

Continuous output variables: (e.g., continuous emotional label)

$$y = \{y_1, y_2, y_3, ..., y_t\}$$
 where $y_t \in \mathbb{R}$

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{\mathcal{Z}(\mathbf{x};\boldsymbol{\theta})} \exp \left\{ \sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g}) \right\}$$

$$Z(\mathbf{x}; \boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\} d\mathbf{y}$$

We saw the yellowdod

How to solve

Multivariate Gaussian integral:

$$\int_{-\infty}^{\infty} \exp\{\frac{1}{2} \mathbf{y}^T \Sigma^{-1} \mathbf{y} + \mathbf{y} \Sigma^{-1} \boldsymbol{\mu}\} d\mathbf{y}$$

$$= \frac{(2\pi)^{n/2}}{|\Sigma^{-1}|^{1/2}} \exp\left(\frac{1}{2}\boldsymbol{\mu} \Sigma^{-1}\boldsymbol{\mu}\right)$$

Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

$$\mathbf{y} = \{y_1, y_2, y_3, \dots, y_t\}$$
 where $y_t \in \mathbb{R}$

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{Z(\mathbf{x};\boldsymbol{\theta})} \exp \left\{ \sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g}) \right\}$$

$$Z(\mathbf{x}; \boldsymbol{\theta}) = \int_{-\infty}^{\infty} \exp\left\{\sum_{t} \boldsymbol{\theta} \cdot F(y_{t}, y_{t-1}, \mathbf{x}_{t}, \boldsymbol{\theta}^{g})\right\} d\boldsymbol{y}$$

$$f^{x}(y_{t}, x_{t}, \theta^{g}) = -(y_{t} - g_{k}(x_{t}, \theta_{k}^{g}))^{2}$$
$$f^{e}(y_{t}, y_{t-1}) = -\frac{1}{2}(y_{t} - y_{t-1})^{2}$$

Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

$$\mathbf{y} = \{y_1, y_2, y_3, ..., y_t\}$$
 where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{T}\mathbf{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

We saw the yellowdoo

where 2

matrix v

and
$$\mu=\Sigma$$

Since CCNF can be viewed as a multivariate Gaussian, the prediction of y' is simply the mean value of distribution:

$$y' = \arg\max_{y} (P(y|x)) = \mu$$

Optimized using gradient ascent or BFGS.

High-Order Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

$$\mathbf{y} = \{y_1, y_2, y_3, ..., y_t\}$$
 where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{T}\mathbf{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{\mathbf{k}}}(y_t, y_{t-\mathbf{k}}) = -\frac{1}{2}(y_t - y_{t-\mathbf{k}})^2$$

Fully-Connected Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

$$\mathbf{y} = \{y_1, y_2, y_3, ..., y_t\}$$
 where $y_t \in \mathbb{R}$

Multivariate Gaussian distribution:

$$p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{T}\mathbf{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

k-order potential functions:

$$f^{e_{\mathbf{k}}}(y_t, y_{t-\mathbf{k}}) = -\frac{1}{2}(y_t - y_{t-\mathbf{k}})^2$$

Grid potential functions:

$$f^{2D}(y_i, y_j) = -\frac{1}{2} S_{ij} (y_i - y_j)^2$$

where $S_{i,j}$ specifies which nodes are connected.

Fully-Connected CRF_[Krahenbuhl and Koltun, 2013]

"Semantic" image segmentation

 y_i : object class label

 x_i : local pixel features

$$p(\mathbf{y}|\mathbf{x};\theta) = \frac{\Phi(\mathbf{y},;\theta)}{\sum_{\mathbf{y}'} \Phi(\mathbf{y}',\mathbf{x};\theta)}$$
 Mixture of kernels where
$$\Phi_{ij}(y_i,y_j;\theta) = \sum^{C} u^{(m)}(y_i,y_j|\theta)k^{(m)}(\mathbf{x}_i,\mathbf{x}_j)$$

where
$$\Phi_{ij}(y_i, y_j; \boldsymbol{\theta}) = \sum_{m=1}^{n} \boldsymbol{\theta}$$

$$u^{(m)}(y_i, y_j | \boldsymbol{\theta}) k^{(m)}(x_i, x_j)$$

CNN and Fully-Connected CRF

[Chen et al., 2014]

Fully Connected Deep Structured Networks [Zheng et al., 2015; Schwing and Urtasun, 2015]

"Semantic" image segmentation

Algorithm: Learning Fully Connected Deep Structured Models Repeat until stopping criteria

- 1. Forward pass to compute $f_r(x, \hat{y}_r; w) \ \forall r \in \mathcal{R}, y_r \in \mathcal{Y}_r$
- 2. Computation of marginals $q_{(x,y),i}^t(\hat{y}_i)$ via filtering for $t \in \{1,\ldots,T\}$
- 3. Backtracking through the marginals $q_{(x,y),i}^t(\hat{y}_i)$ from t=T-1 down to t=1
- 4. Backward pass through definition of function via chain rule
- 5. Parameter update

Using mean field

approximation