AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 2: Algorithmic Consideration; Orthogonality; Vector Norms

Xiangmin Jiao

Stony Brook University

Outline

Algorithmic Considerations (MC §1.2)

2 Orthogonal Vectors and Matrices (NLA §2)

3 Vector Norms (NLA §3)

Xiangmin Jiao Numerical Analysis I 2 / 20

Algorithms for Matrix-Vector Multiplication

- Suppose $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$
- MATLAB-style code for b = Ax:

Row oriented

```
for i = 1 : m

b(i) = 0

for j = 1 : n

b(i) = b(i) + A(i,j) *

x(j)

end

end
```

Column oriented

```
\begin{array}{l} b(:) = 0 \\ \text{for } j = 1:n \\ \quad \text{for } i = 1:m \\ \quad b(i) = b(i) + A(i,j) * \\ \times (j) \\ \quad \text{end} \\ \text{end} \end{array}
```

- Number of operations is O(mn), but big-Oh notation is insufficient
- Number of operations is 2*mn*: coefficient of leading-order term is important for comparison

Flop Count

- It is important to assess efficiency of algorithms. But how?
 - We could implement different algorithms and do direct comparison, but implementation details can affect true performance
 - We could estimate cost of all operations, but it is very tedious
 - Relatively simple and effective approach is to estimate amount of floating-point operations, or "flops", and focus on asymptotic analysis as sizes of matrices approach infinity
- Idealization
 - ▶ Count each operation +,-,*,/, and $\sqrt{\ }$ as one flop
 - ► This estimation is crude, as it omits data movement in memory, which is non-negligible on modern computer architectures (e.g., different loop orders can affect cache performance)
- Matrix-vector product requires about 2mn flops
- Suppose m = n, it takes quadratic time in n, or $O(n^2)$

Xiangmin Jiao Numerical Analysis I 4 / 20

Algorithms for Saxpy: Scalar a x plus y

• Saxpy computes ax + y and updates y

$$y = ax + y \Rightarrow y_i = ax_i + y_i$$

• Suppose $x, y \in \mathbb{R}^n$ and $a \in \mathbb{R}$

MATLAB-style code

for
$$i = 1 : n$$

 $y(i) = y(i) + a * x(i)$
end

Pseudo-code

for
$$i = 1 : n$$

 $y_i \leftarrow y_i + a x_i$

- Number of flops is 2n
- Pseudo-code cannot run on any computer, but are human readable and straightforward to convert into real codes in any programming language (e.g., C, FORTRAN, MATLAB, etc.)
- We use pseudo-code on slides for conciseness

Gaxpy: Generalized saxpy

• Computes y = y + Ax, where $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$

Row oriented

for
$$i = 1 : m$$

for $j = 1 : n$
 $y_i = y_i + a_{ij}x_j$

Column oriented

for
$$j = 1 : n$$

for $i = 1 : m$
 $y_i = y_i + a_{ij}x_j$

- Inner loop of column-oriented algorithm can be converted to $y = y + x_i a_{::i}$
- Number of flops is 2mn

Matrix Multiplication Update

• Computes C = C + AB, where $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$, and $C \in \mathbb{R}^{m \times n}$

$$c_{ij} = c_{ij} + \sum_{k=1}^{r} a_{ik} b_{kj}$$

```
for i = 1 : m

for j = 1 : n

for k = 1 : r

c_{ij} = c_{ij} + a_{ik}b_{kj}
```

- Number of flops is 2mnr
- In BLAS (Basic Linear Algebra Subroutines), functions are grouped into level-1, 2, and 3, depending on whether complexity is linear, quadratic, or cubic

Six Variants of Algorithms

• There are six variants depending on permutation of i, j, and k:

• Inner product: $c_{ii} = c_{ii} + a_{i.i}b_i$

for
$$i = 1 : m$$

for $j = 1 : n$
 $c_{ij} = c_{ij} + a_{i,:}b_j$

• Saxpy: computes as $c_j = c_j + Ab_j$

for
$$j = 1 : n$$

 $c_j = c_j + Ab_j$

• Outer product: computes as $C = C + \sum_{k=1}^{r} a_k b_{::k}$

for
$$k = 1 : r$$

 $C = C + a_k b_{:,k}$

Outline

Algorithmic Considerations (MC §1.2)

2 Orthogonal Vectors and Matrices (NLA §2)

Vector Norms (NLA §3)

Xiangmin Jiao Numerical Analysis I 9 / 20

Inner Product

- Euclidean length of u is square root of inner product of u with itself, i.e., $\sqrt{u^T u}$
- Inner product of two **unit** vectors u and v is cosine of angle α between u and v, i.e., $\cos \alpha = u^T v$
- Inner product is *bilinear*, in the sense that it is linear in each vertex separately:

$$(u_1 + u_2)^T v = u_1^T v + u_2^T v$$

 $u^T (v_1 + v_2) = u^T v_1 + u^T v_2$
 $(\alpha u)^T (\beta v) = \alpha \beta u^T v$

Orthogonal Vectors

Definition

A pair of vectors are *orthogonal* if $x^Ty = 0$.

In other words, angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $x \in X$ is orthogonal to every $y \in Y$.

- Subspaces S^{\perp} is *orthogonal complement* of S if they are orthogonal and complementary subspaces
- For $A \in \mathbb{R}^{m \times n}$, null(A) is orthogonal complement of $range(A^T)$

Definition

A set of nonzero vectors S is *orthogonal* if they are pairwise orthogonal. They are *orthonormal* if it is orthogonal and in addition each vector has unit Euclidean length.

Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A?

Orthogonal Vectors

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof.

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself.

Question: If the column vectors of an $m \times n$ matrix A are orthogonal, what is the rank of A?

Answer: $n = \min\{m, n\}$. In other words, A has full rank.

Components of Vector

- Given an orthonormal set $\{q_1, q_2, \dots, q_m\}$ forming a basis of \mathbb{R}^m , vector v can be decomposed into orthogonal components as $v = \sum_{i=1}^m (q_i^T v) q_i$
- Another way to express the decomposition is $v = \sum_{i=1}^{m} (q_i q_i^T) v$
- $q_i q_i^T$ is an orthogonal projection matrix
- More generally, given an orthonormal set $\{q_1, q_2, \dots, q_n\}$ with $n \leq m$, we have

$$v = r + \sum_{i=1}^{n} (q_i^T v) q_i = r + \sum_{i=1}^{n} (q_i q_i^T) v$$
 and $r^T q_i = 0, 1 \le i \le n$

• Let Q be composed of column vectors $\{q_1, q_2, \ldots, q_n\}$. $QQ^T = \sum_{i=1}^n (q_i q_i^T)$ is an orthogonal projection matrix (more in Lecture 4)

Orthogonal Matrices

Definition

A matrix is orthogonal if $Q^T = Q^{-1}$, i.e., if $Q^T Q = QQ^T = I$.

- Its column vectors are *orthonormal*. In other words, $q_i^T q_j = \delta_{ij}$, the Kronecker delta.
- For complex matrices, we say the matrix is *unitary* if $Q^H = Q^{-1}$.

Question: What is the geometric meaning of multiplication by an orthogonal matrix?

Orthogonal Matrices

Definition

A matrix is orthogonal if $Q^T = Q^{-1}$, i.e., if $Q^T Q = QQ^T = I$.

- Its column vectors are *orthonormal*. In other words, $q_i^T q_j = \delta_{ij}$, the Kronecker delta.
- For complex matrices, we say the matrix is *unitary* if $Q^H = Q^{-1}$.

Question: What is the geometric meaning of multiplication by an orthogonal matrix?

Answer: It preserves angles and Euclidean length. In the real case, multiplication by an orthogonal matrix Q is a rotation (if det(Q) = 1) or reflection (if det(Q) = -1).

Outline

Algorithmic Considerations (MC §1.2)

Orthogonal Vectors and Matrices (NLA §2)

3 Vector Norms (NLA §3)

Xiangmin Jiao Numerical Analysis I 15 / 20

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A *norm* is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

$$(1)||x|| \ge 0$$
, and $||x|| = 0$ only if $x = 0$,

$$(2)||x+y|| \le ||x|| + ||y||,$$

(3)
$$\|\alpha x\| = |\alpha| \|x\|$$
.

• An example is Euclidean length (i.e, $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$)

p-norms

Euclidean length is a special case of p-norms, defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for
$$1 \le p \le \infty$$

- Euclidean norm is 2-norm $||x||_2$ (i.e., p=2)
- 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $||x||_{\infty}$. What is its value?

p-norms

Euclidean length is a special case of p-norms, defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for $1 \le p \le \infty$

- Euclidean norm is 2-norm $||x||_2$ (i.e., p=2)
- 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $||x||_{\infty}$. What is its value?
 - Answer: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- Why we require $p \ge 1$? What happens if $0 \le p < 1$?

Some Properties of Vector Norms

- Hölder inequality: $|x^Ty| \le \|x\|_p \|y\|_q, \quad \frac{1}{p} + \frac{1}{q} = 1$
- In particular when p = q = 2: $|x^T y| \le ||x||_2 ||y||_2$ (Cauchy-Schwarz inequality)
- All norms are equivalent, in that there exists c_1 and c_2 s.t.

$$c_1||x||_{\alpha} \leq ||x||_{\beta} \leq c_2||x||_{\alpha}$$

where c_1 and c_2 are constants and may depend on n. e.g.,

$$||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$$

• 2-norm is preserved under orthogonal transformation Qx

$$||Qx||_2 = ||x||_2$$

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
 - It is anisotropic instead of isotropic
- Algebraically, $||x||_W = ||Wx||$, where W is diagonal matrix with ith diagonal entry $w_i \neq 0$ being weight for ith component
- In other words,

$$||x||_W = \left(\sum_{i=1}^n |w_i x_i|^p\right)^{1/p}$$

• What happens if we allow $w_i = 0$?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
 - It is anisotropic instead of isotropic
- Algebraically, $||x||_W = ||Wx||$, where W is diagonal matrix with ith diagonal entry $w_i \neq 0$ being weight for ith component
- In other words.

$$||x||_{W} = \left(\sum_{i=1}^{n} |w_{i}x_{i}|^{p}\right)^{1/p}$$

- What happens if we allow $w_i = 0$?
- Can we further generalize it to allow W being arbitrary matrix?
 - ▶ No. But we can allow W to be arbitrary nonsingular matrix.

A-norm of Vectors

• Given a positive definite matrix $A \in \mathbb{R}^{n \times n}$, the A-norm on \mathbb{R}^n is

$$||x||_A = \sqrt{x^T A x}$$

- Note: Weighted 2-norm with W is A-norm with $A = W^2$.
- These conventions are somewhat inconsistent, but they are both commonly used in the literature