Last time

An algorithm is efficient if it does qualitatively better than brute force on every input.

Does every computational problem have a polynomial time algorithm?

Are we satisfied? $\mathcal{N}_{\mathcal{O}}$

How to define runtime:

(i) (evel of defail

Dig Onotation

2) union inputs?

Dest case X 7 one bad input =

one bad input =

onusable

average case > probability distribution

over inputs

worst case > "For all inputs"

How many primitive operations does the algorithm take?

Algorithm 1

Input: integer array A of length n

Assume the following

- 1 operation for basic arithmetic operations
- · 1 operation for variable assignment
- 1 operation for variable retrieval

runtime = # primitive ops for input of size n

$$t(n) = N(5n+4) = 5n^2 + 4n$$

Big O notation

upperbound

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

ex $5n^2 + 4nis$ $O(n^2)$. We need to show that there exist could No s.t. $5n^2 + 4 \le C N^2$ for all $n \ge N_0$.

how about C=(0) and $n_0=0$? Show frat $5n^2 + 4n \leq 10n^2$ for $n \geq 0$. Note that for all $n \geq 0$, $n^2 > N$. So $5n^2 + 4n \leq 5n^2 + 4n^2 = 9n^2 \leq 10n^2$ Could I have chosen C=4, $N_0=0$? Could I have chosen C=4, $N_0=100$? Could I have chosen C=9, $N_0=100$? $\int_{n_0}^{n_0} \int_{n}^{n} f(n)$ $\int_{n_0}^{n_0} \int_{n}^{n} f(n)$

Big O notation: another example

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Claim: 2n + 100 is $O(n^2)$.

To Show 2n+100 is $0(n^2)$, we have to show that there exist constants c70 and n_0 70 s.t. $2n+100 \le cN^2$ for all $n \ge N_0$.

nelet to show:

Big O notation: another example

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Claim: 2n + 100 is $O(n^2)$.

Proof:

choose c=1 and no=20. Then, [we have 24100 \le n2 for all n7,20.

See pidare

(aim: 10 is 0(2ⁿ).

is 5n+4 0(n)? how do I prove that 5 n2 +4 is not O(n)? To prove true: give (70, No 20 S.t. Sn2 +4 E Cn for all n3 No. To prove false (5n²+4 is not O(n)): show that there are no (70, No2,0) S. I 5n2+4 ECN for all n3No.

Let's do some examples together

1. Prove that $3n^3 + 5n^2 - 2n = O(n^3)$ using the definition of big O. That is, you must give a c and an n_0 and show that they fit the definition, either by reasoning in words or by drawing a graph.

$$3n^3+5n^2-2n \leq CN^3$$
 for all $n \geq N_0 zon^3$
 $C = 20$, $N_0 = 0$.
 $3n^3+5n^2-2n \leq 20n^3$ for all $n \geq 0$.

2. How would you prove that $3n^3 + 5n^2 - 2n \neq O(n^2)$? Don't do it, just tell me how you would.

Def of Dig 0: f(n) is O(g(n)) if there exist c70, No70 S.t. F(n) & Cg(w) for all n7 No.

Back at 9:45 1. (8 points) Suppose you have algorithms with the following runtimes. (Assume these are exact running times as a function of the input size n, not a asymptotic running

are exact running times as a function of the input size
$$n$$
, not a asymptotic running times.) How much slower do these algorithms get when you double the input size?

(a) n $fiml$ $for all 00ble$ $for al$

(b)
$$n \log n$$
 $(2n \log (2n)) = 2n \log 2 + 2n \log n$
 $n \log n$
 $= 2n(\log 2) + 2n \log n = 2 + 2$
 $n(\log n) = \log n$
 $= \log n$
 $= \log n$
 $= \log n$

Grargen, 2

2. (7 points) Recall the definition of big O:

$$f(n)$$
 is $O(g(n))$ if there exist positive constants n_0 , c such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.
Using this definition, prove that $2n + 5$ is $O(n^2)$

Using this definition, prove that
$$2n + 5$$
 is $O(n^2)$.

Consider c=7, $n_0=1$.

Notice mat $2n+5 \le 7 \cdot n^2$ for all $n \ge 1$.

Summary

Endfor

Endfor

When we talk about the runtime of an algorithm, we always mean: There is a f(n) expressing the # of primitive operations an alg. Takes on an input of size n (ex sniogn+2n+25) 2) give g(n) such that f(n) is O(g(n))'
ex (not exactly unat we want:
sniogn+2n+2s is $O(2^n)$ ex Sniogn+2n+2s is $O(n\log n)$ For i = 1, 2, ..., nFor j = i + 1, i + 3, ..., nAdd up array entries A[i] through A[j]Store the result in B[i, j]

15

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that f(n) \ge $c \cdot g(n)$ for all $n \ge n_0$.

$$E_{X}, f(n) = 32n^2 + 17n + 1.$$

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$.
- f(n) is not $\Omega(n^3)$.

Sive Sit. 32 N2417N+12 CN2 Arall N2No. $32n^2+17n+1 \text{ is not } \Omega(n^3)$

argue that there are no c, no s.f.

argue that there are no c, no s.f.

32n2+17n+12 cn3 for all n2no.,

Big Theta notation

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n)$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is $\Theta(n^2)$.
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

 $c_2 \cdot g(n)$

f(n)

$$Is f(n) = 32n^2 + 17n + 5...$$

- 1. $\Theta(n)$
- 2. $\Theta(n^2)$

f(n) is f(g(n)) if both $\Omega(g(n))$ and O(g(n))3. $\Theta(n^3)$ 4. All three 5. $\Theta(n^2)$ and $\Theta(n^3)$

Multiplication by a constant

backat: 20

Suppose I have runtime f(n) and I know it is O(g(n)).

Is $b \cdot f(n) = O(g(n))$ for all constants b?

no? to prove, give a counter example
$$f(n) = 3n^2$$

$$f(n) = 3n$$
 $f(n) = n^3$
 $f(n) = n^3$
 $f(n) = n^3$
 $f(n) = n^3$
 $f(n) = n^3$

$$ex + (n) = 3n^2$$
 $g(n) = n^3$
 $for all b,$

is
$$2^{n+1} O(2^n)$$
?

Notice that $2^{n+1} = 2^n 2$ so

 $()(2^n)$

15 2^{2n} $O(2^n)$? $h_{1}n+:$ $2^{2n}=2^{n+n}=2^n2^n$ $p_{1}n+1$ $p_{2}n+1$ $p_{2}n+1$ $p_{3}n+1$ $p_{4}n+1$ $p_{5}n+1$ $p_{6}n+1$ p_{6

Asymptotically different functions

Summary

Big O is _____ for functions

Big Omega is _____ for functions

Big Theta is _____ for functions

We use Big O/Big Omega/Big Theta in order to:

Is there a worst-case input here? (Or best case?)

Algorithm 1

```
Input: integer array A of length n
for i = 1, 2, ..., n:
    total = 0
    for j = 1, 2, ..., n:
        total = total + A[i]
    B[i] = total
```

Worst-case: worst case for given n.

Insertion Soft: for size n input L it sorted: O(n) if revose-: () (n2) Sosted: WORT- case runtime: f(n) such that alg takes f(n) Steps on worst-case input of size n.

Summary

When we talk about the runtime of an algorithm, we always mean:

Runtime of Gale-Shapley:

GALE-SHAPLEY (preference lists for hospitals and students)

```
INITIALIZE M to empty matching.
WHILE (some hospital h is unmatched and hasn't proposed to every student)
s ← first student on h's list to whom h has not yet proposed.

IF (s is unmatched)
   Add h-s to matching M.

ELSE IF (s prefers h to current partner h')
   Replace h'-s with h-s in matching M.

ELSE
s rejects h.
```

RETURN stable matching M.

1#	2nd	3rd	4th

Val

Boston

Chicago

El Paso

Boston

Wayne

Chicago

Boston

Atlanta

Detroit

Atlanta

Wayne

Xavier

Yolanda

Zeus

Boston	Yolanda	Wayne	Val	Xavier	Zeus
Chicago	Wayne	Zeus	Xavier	Yolanda	Val
Detroit	Val	Yolanda	Xavier	Wayne	Zeus
El Paso	Wayne	Yolanda	Val	Zeus	Xavier
			s' prefere	ence lists	
	1st	student 2 nd	s' prefere	ence lists	5 th

hospitals' preference lists

Yolanda

Detroit

Detroit

Detroit

El Paso

Zeus

Atlanta

El Paso

Chicago

Chicago

5th

Xavier

El Paso

Atlanta

Boston

Atlanta