Privacy Proofs for OpenDP: Lipschitz Sized Mean for Proportion CI (for Partitioned Data)

Summer 2022

Contents

1	Algorithm Implementation	1
	1.1 Code in Rust	1
	1.2 Pseudo Code in Python	1
2	Proof	2

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_lipschitz_sized_proportion_ci_mean function estimating the overall sample proportion for partitioned data. This is defined in lines 34-182 of the file mod.rs in the Git repository https://github.com/opendp/opendp/blob/e9a8ce533a900a6561c0ea3be6bea8c985311374/rust/src/trans/proportion_ci/mod.rs#L134-L182.

1.2 Pseudo Code in Python

Preconditions

To ensure the correctness of the output, we require the following preconditions:

- User-specified types:
 - Variable sample_sizes must be of type Vec<usize>.
 - Variable strat_sizes must be of type Vec<usize>.
 - TA: must be of type float.

Postconditions

• A transformation is returned (i.e., if a transformation cannot be returned successfully, then an error should be returned).

Pseudo Code

```
def (sample_sizes: Vec<TA>, strat_sizes: Vec<TA>) -> TA:
      :param strat_sizes: the population size of each stratum
3
      :param sample_sizes: sample sizes in each stratum
      input_domain = ProductDomain < AllDomain < TA>>
6
      output_domain = AllDomain <TA>
      strat_weights = strat_sizes / sum(strat_sizes)
8
      def function(sample_sums: Vec<TA>) -> TA:
9
          strat_means = sample_sums / sample_sizes
10
          return sum(strat_weights * strat_means)
      input_metric = ProductMetric < AbsoluteDistance < TA>>
12
      output_metric = AbsoluteDistance <TA>
      def stability_map(d_in: AbsoluteDistance <TA>) -> TA:
          sens = max(strat_weights / sample_sizes)
16
          return d_in * sens
17
      return Transformation(input_domain, output_domain, function,
18
     input_metric, output_metric, stability_map)
```

2 Proof

Theorem 2.1. For every setting of the input parameters sample_sizes and strat_sizes to make_lipschitz_sized_proportion_ci_mean such that the given preconditions hold, make_lipschitz_sized_proportion_ci_mean raises an exception (at compile time or runtime) or returns a valid transformation with the following properties:

- 1. (Appropriate output domain). For every vector v in the input domain, function(v) is in the output domain.
- 2. (Domain-metric compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability guarantee). For every pair of elements v, w in input_domain and for any d_in, where d_in has the associated type for input_metric, if v, w are d_in-close under input_metric, then function(v), function(w) are stability_map(d_in)-close under output_metric.

Proof.

- 1. (Appropriate output domain). From line 6, we know strat_weights is of type Vec<TA>. On line 12, strat_means will also be of type Vec<TA> since both strat_sizes and sample_sizes are of type Vec<TA>. The function returns a sum of a vector of type Vec<TA>, then the sum will be of type TA. That is, the output is in the output domain AllDomain<TA>.
- 2. (Domain-metric compatibility). The input domain of make_lipschitz_sized_proportion_ci_mean is ProductDomain of AllDomain<TA> and the input metric is ProductMetric of AbsoluteDistance<TA>. Each component of the input is in AllDomain<TA>. Since AllDomain<TA> matches one of the

possible domains listed in the definition of AbsoluteDistance, the input domain is compatible with the input metric.

Also, it follows directly that the output domain (AllDomain<TA>) is compatible with the output metric (AbsoluteDistance<TA>).

3. (Stability guarantee.) Let Abs stand for AbsoluteDistance. If v, w are d_inclose, then by the definition 1,

$$d_{ t PM, Abs}(v, w) = \sum_i d_{ t Abs}(v_i, w_i) \leq { t d_in},$$

Let f denote the function in make_lipschitz_sized_proportion_ci_mean. For ease of notation, let c_i and n_i denote the ith element of stra_weights and sample_sizes, respectively. Then

$$\begin{split} d_{\mathtt{Abs}}(f(v),f(w)) &= \left| \sum_{i} c_{i} \cdot \frac{v_{i}}{n_{i}} - \sum_{i} c_{i} \cdot \frac{w_{i}}{n_{i}} \right| \\ &= \sum_{i} \frac{c_{i}}{n_{i}} \left| v_{i} - w_{i} \right| \\ &= \sum_{i} \frac{c_{i}}{n_{i}} \cdot d_{\mathtt{Abs}}(v_{i},w_{i}) \\ &\leq \max_{i} \frac{c_{i}}{n_{i}} \cdot \sum_{i} d_{\mathtt{Abs}}(v_{i},w_{i}) \\ &\leq \max_{i} \frac{c_{i}}{n_{i}} \cdot \mathtt{d_in}. \end{split}$$

That is, f(v) and f(w) are stability_map(d_in)-close.

Definition 1 (Distance under ProductMetric). Let $d_{PM,M}$ denote the distance under ProductMetric(M) where M is a valid metric. Then $d_{PM,M}$ is defined as the sum of distance under each M. Specifically, for any v, w in the input domain and v_i , w_i denote their ith entry, respectively,

(i) for input metric MI,

$$d_{\mathit{PM},\mathit{MI}}(v,w) = \sum_i d_{\mathit{MI}}(v_i,w_i).$$

(ii) for output metric MO,

$$d_{\textit{PM},\textit{MO}}(g(v),g(w)) = \sum_i d_{\textit{MO}}(f_i(v_i),f_i(w_i)),$$

where g and f_i denote the function in their corresponding Transformation.