Oral-Example-Geometry-Topology

All-round

- 1. (a) Let $f: \mathbb{CP}^2 \to \mathbb{CP}^2$ be a continuous map of degree d with $|d| \geq 2$. Show that there are at least 3 fixed points.
 - (b) Show that \mathbb{CP}^{2n} does not cover any manifold except itself.
- 2. Let D be a bounded and simply connected domain in \mathbb{R}^2 , and Γ be the boundary of D. Set

$$A := Area(D), \quad L := Length(\Gamma).$$

(a) Prove that

$$4\pi A \le L^2,$$

and the equality holds iff Γ is a circle.

(b) Generalize the theorem above to the case where D is a compact and simply connected minimal surface with boundary in \mathbb{R}^3 .