Supervised Learning: Market Prediction

Libraries

- Numpy
- Pandas
- Pandas_datareader
- Matplotlib
- Sklearn
 - Svm
 - Ensemble
 - Linear_model
 - Preprocessing
 - Model_selection

Steps

- Collect data on major country indexes
- Review/Model data
- Prep Data
- Choose a Models

- Train the Models
- Evaluate the Models
- Make Predictions

What is the S&P500 & index funds in general? --

S&P500:

market-capitalization-weighted index of the 500 largest U.S. publicly traded companies. Strong gauge of large-cap U.S. equities.

- market-capitalization-weighted in $S\&P = \frac{Company market cap}{Total S\&P market cap}$
- Company market cap = current stock price * company's outstanding shares
- Most index funds are calculated in a similar manner.

- Selected indexes:

77	S&P/TSX Composite index	(^GSPTSE)	- Canada	(CAD)		1	CAD	=	.77	USD
$\overline{}$	S&P 500	(^GSPC)	- USA	(USD)		1	USD	=	1.00	USD
+	Euro Stoxx 50	(STOXX: SX5E)	- Eurozone	(Euro)		1	Euro	=	1.12	USD
-	SSE Composite Index	(000001.SS)	- Shanghai	(CNY)	Chinese Yuan Renminbi	1	CNY	=	.15	USD
9	Nikkei 225	(^N225)	- Japan	(JPY)	Japanese Yen	1	JPY	=	.0093	USD
2	MSCI Singapore Capped ETF	(EWS)	- Singapore	(SGD)	Singapore Dollar	1	SGD	=	.74	USD

Graph of adjusted close prices from 2000 to 2019:

Adjusted close = closing price after adjustments for all applicable splits and dividend distributions

Note: These returns do not account for exchange rates. This is only to review a general trend of the movement of different countries.

Graph of rolling 1 year returns from 2000 to 2019:

• Non cumulative returns = $\frac{\text{Adjusted Close}}{\text{Adjusted Close from 1 year ago}} = 1 \text{ year rolling } \% \text{ return}$

Sharpe ratio for indexes' returns:

- Sharpe Ratio = (average index return) (countries' risk free rate) indexes' standard deviation
- Risk free rate of a country is the return on treasury bonds ranging from 5 to 30 years.
- · Average Risk free rate per country:

- USA: 2.76 - Canada: 0.375 - Eurozone: 1.38 - China: 3.754 - Japan: 1.936 - Singapore: 2.41

> SP500 lyr Buy/Hold Sharpe Ratio= -10.08 TSX lyr Buy/Hold Sharpe Ratio= 4.07 STOXX600 lyr Buy/Hold Sharpe Ratio= -1.9 SSE lyr Buy/Hold Sharpe Ratio= -5.41 NKE lyr Buy/Hold Sharpe Ratio= 4.07 TSI lyr Buy/Hold Sharpe Ratio= 4.07

Feature Engineering:

- · Features include:
 - % Daily change
 - 3 month moving average
 - 7 month moving average
 - 12 month moving average
 - 90 day moving average as a percentage this normalizes the data
 - 5 year treasury
 - 10 year treasury
 - 30 year treasury

Create Target Variable:

- Target variable:
 - When Close > yesterdays close.
 - 1: True 0: False

Split train/test sets:

- Shuffle data to ensure randomization
- test size = 30%

Split train/test sets:

- · Shuffle data to ensure randomization
- test size = 30%

Preprocessing:

- Use sklearns' StandardScaler():
 - Standardize features by removing the mean and scaling to unit variance.
 - z = (x u) / s:
 - u = mean of the training samples
 - s = standard deviation of training samples
 - x = independent variables

Note: scale train and test data separately

(Receiver operating characteristic) Roc Curve function + AUC(area under the curve):

- · Features true positive rate on the Y axis, and false positive rate on the X axis.
- . Top left corner of plot is 'ideal' false positive rate of zero & a true positive rate of one.
 - Not very realistic, but larger AUC is usually better.
 - 'Steepness' of ROC is important, ideal to max true positive rate w/ min false positive rate.

Logistic Regression:

- Calculate:
 - Accuracy: $\frac{TP + TN}{TP + TN + FP + FP}$ Precision: $\frac{TP}{TP + FP}$ Recall: $\frac{TP}{TP + FN}$

 - AUC

LR:

Accuracy: 0.8405797101449275 Precision: 0.8321513002364066 Recall: 0.8756218905472637

AUC of the model is 0.8383711694

Support Vector Classifier:

- Calculate:
 - Accuracy: $\frac{TP + TN}{TP + TN + FP + FP}$ Precision: $\frac{TP}{TP + FP}$ Recall: $\frac{TP}{TP + FN}$

 - AUC

SVC:

Accuracy: 0.8313570487483531 Precision: 0.8071748878923767 Recall: 0.8955223880597015

AUC of the model is 0.8273130148

Random Forest Classifier:

- Calculate:
 - Accuracy: $\frac{TP + TN}{TP + TN + FP + FP}$ Precision: $\frac{TP}{TP + FP}$ Recall: $\frac{TP}{TP + FN}$

 - AUC

rf

Accuracy: 0.81818181818182 Precision: 0.8113207547169812 Recall: 0.8557213930348259

AUC of the model is 0.8158158786

Perform Cross validation on models:

- 5 folds
- Metrics:

What happens if I place 100,000 USD into the S&P500 of 10 years?

- · Will my models be able to predict?
- · We've already seen the prediction above, they're not the best. But we can below shows a different visualization.

View Prediction as Graph:

- · Compare using:
 - Logistic Regression
 - Random Forest Classifier
 - Support Vector Classifier

Fin