

Propriedades ACID

- Os bancos de dados relacionais costumam apresentar as chamadas propriedades ACID:
 - Atomicidade: uma transação será totalmente executada ou não será executada de forma alguma
 - Consistência: garante que um banco de dados passará sempre de um estado consistente a outro estado também consistente
 - Isolamento: garante que nenhuma transação sofrerá interferência de uma transação concorrente
 - <u>Durabilidade</u>: garante que os dados salvos não serão perdidos (persistência)

Propriedades BASE

- Os bancos de dados não relacionais, por sua vez, apresentam as chamadas <u>propriedades</u> BASE:
 - <u>Basically Available</u> (disponível de forma básica)
 - <u>Soft-state</u> (estado não-duradouro)
 - <u>Eventually Consistent</u> (consistente em algum momento)
- Uma aplicação NoSQL funciona, ainda que parcialmente, o tempo todo (basically available), não sendo consistente o tempo todo (soft-state), mas tornando-se consistente no momento devido (eventually consistent)

Comparação

Teorema CAP (ou Teorema de Brewer)

- Introduzido por Eric A. Brewer em 2000
- Postula que sistemas distribuídos são capazes de entregar simultaneamente apenas duas de três características desejadas:
 - Consistência
 - Disponibilidade (Availability)
 - Tolerância a Partição

Consistência

- Significa que todos os clientes veem os mesmos dados ao mesmo tempo, não importa em qual nó eles se conectem
- Para que isso aconteça, sempre que os dados forem gravados em um nó, ele deve ser instantaneamente encaminhado ou replicado para todos os outros nós do sistema antes que a gravação seja considerada "bemsucedida"

Disponibilidade (availability)

- Significa que qualquer cliente que fizer uma solicitação de dados obterá uma resposta, mesmo que um ou mais nós estejam desativados
- Ou seja, todos os nós em funcionamento no sistema distribuído retornam uma resposta válida para qualquer solicitação, sem exceção

Tolerância a partição

- * A partição é uma quebra de comunicações dentro de um sistema distribuído, uma conexão perdida ou temporariamente lenta entre dois nós
- Tolerância de partição significa que o cluster deve continuar a funcionar mesmo de ocorrer uma ou mais falhas de comunicação entre os nós no sistema

Diagrama

Sistemas CA

- Sistemas com consistência forte e alta disponibilidade não sabem lidar com uma possível falha de partição
- Caso ocorra, o sistema inteiro pode ficar indisponível até o membro do cluster ser restaurado
- É o caso da maioria dos SGBD relacionais

Sistemas CP

- Sistemas que requerem consistência forte e tolerância a partição acabam precisando abrir mão de um pouco de disponibilidade
- Exemplos:
 - BigTable
 - HBase
 - MongoDB
 - Redis

Sistemas AP

- Há sistemas que jamais podem ficar offline e, portanto, não podem sacrificar a disponibilidade
- Para manter uma alta disponibilidade mesmo com tolerância a partição, é necessário prejudicar a consistência
- Exemplos:
 - Apache Cassandra
 - CouchDB
 - DynamoDB
 - Riak

Conclusão

- O Teorema CAP e as propriedades ACID × BASE são importantes para a compreensão do funcionamento do bancos de dados relacionais e não relacionais
- No entanto, com a evolução da tecnologia, a diferença entre as duas categorias de SGBD tem ficado cada vez mais tênue. Exemplos:
 - Desde a versão 4, o MongoDB suporta transações ACID envolvendo múltiplos documentos
 - Bancos de dados relacionais, como PostgreSQL e MySQL, passaram a permitir instalações em clusters para obter melhor tolerância a partição

Para saber mais

- Princípios de funcionamento ACID vs BASE nos bancos de dados. Disponível em:
 - https://blog.compass.uol/tech/principios-de-funcionamentoacid-vs-base-nos-bancos-de-dados/. Acesso em 11 mar. 2022
- Teorema CAP. Disponível em: https://www.ibm.com/br-pt/cloud/learn/cap-theorem. Acesso em: 11 mar. 2022
- SGBDs distribuídos e o Teorema CAP. Disponível em: https://edisciplinas.usp.br/pluginfile.php/5214218/mod_reso urce/content/1/mac439_aula6_teorema_cap.pdf. Acesso em: 11 mar. 2022