This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(51) Int. Cl.: C 07 c, 59/24 C 07 c, 149/40; C 07 c, 69/66; BUNDESREPUBLIK DEUTSCHLAND C 07 d, 29/20; C 07 d, 87/34; A 61 k, 27/00 **PATENTAMT 52** Deutsche Kl.: 12 q, 14/04 12 p, 1/01 12 p, 3 30 h, 2/36 2250 327 Offenlegungsschrift 1 @ Aktenzeichen: P 22 50 327.1 Anmeldetag: 13. Oktober 1972 43) Offenlegungstag: 26. April 1973 CENTONAL REFERENCE LIBRAR SCIENCE AND INVENTION Ausstellungspriorität: -7 MAY 1973 Unionspriorität Datum: 14. Oktober 1971 14. Oktober 1971 (33) Land: Großbritannien Aktenzeichen: 47926-71 47927-71 **54**) Bezeichnung: Neue Phenoxycarbonsäurederivate, ihre Herstellung sowie diese enthaltende pharmazeutische Mittel **(61)** Zusatz zu: 2 003 430

Als Erfinder benannt: Mieville, Andre, Lausanne (Schweiz)

Laboratorien Fournier GmbH, 6600 Saarbrücken

@

7

Ausscheidung aus:

Vertreter gem. § 16 PatG:

Anmelder:

AM5
9 4.73 309 817/1217 31/1

Patentanwälte
Dipl.-ing. R. BEETZ sen.
Dipl-ing. K. LAMPRECH (
Or.-ing. R. BEETZ jr.
8 Müschen 22, Steinedorfstr. 10

56-19.514P

13.10.1972

LABORATORIEN FOURNIER GmbH, 66 Saarbrücken 3

Schopenhauerstr. 8

Neue Phenoxycarbonsaurederivate, ihre Herstellung sowie diese enthaltende pharmazeutische Mittel

Gegenstand der Erfindung sind als neue industrielle Produkte p-Carbonylphenoxycarbonsäuren sowie diejenigen Derivate derselben, die zum einen durch Umwandlung der Carbonsäurefunktion in Ester- oder Amidfunktionen und zum anderen durch Umwandlung der Carbonylfunktion in Oxim-, Säure-, Ester- oder Amidfunktionen entstehen. Sie umfaßt ferner die möglichen Säureanlagerungssalze dieser Verbindungen bzw. Derivate.

Das Hauptpatent (Patentanmeldung P 20 03 430.4 vom 27.1.1970) betrifft Verbindungen der allgemeinen Formel

56-(4889) NöHe

wobei

 $Y_0 = OH$, OCH_3 , OC_2H_5 , NHOH oder NR_1R_2 ;

A = einfache Bindung oder eine lineare oder verzweigte Kohlenwasserstoffkette mit höchstens 3 C-Atomen;

 $R' = H \text{ oder } C_6H_5;$

X = 0 oder NOH und

R=H, C_6H_5 , Halogenophenyl oder eine ggf. ω -halogenierte Alkylgruppe mit 1 bis 3 C-Atomen; oder auch OH, OCH3, OC_2H_5 , OC_3H_7 , NHOH oder NR_1R_2 , wenn X=0 ist, wobei R_1 und R_2 jeweils H oder Alkyl bedeuten oder auch zusammen mit dem Stickstoffatom, an dem sie hängen, einen ggf. substituierten heterocyclischen Rest bilden können.

Gemäß der Erfindung werden neue Verbindungen vorgeschlagen, die der allgemeinen Formel (I) entsprechen:

$$R^{VI} - C \xrightarrow{R^{III}} O - C - CO - Y$$

$$(I)$$

in der

- R^{II} und R^V gleich oder verschieden sein können und jeweils ein Wasserstoffatom oder eine CH₃-, C₂H₅- oder p-F-C₆H₄-gruppe bedeuten;
- R^{III} und R^{IV} gleich oder verschieden sein können und je-

- weils ein Wasserstoff- oder Halogenatom, vorzugsweise F, Cl oder Er, eine AlkyIgruppe mit 1 bis 5 C-Atomen oder CF3, SCH3, SOCH5, SO₂CH3, OCH3, OH oder C₆H₅ bedeuten;
- RVI ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 5 C-Atomen, eine ggf. einen oder mehrere Substituenten CH₃, CF₃ oder Halogen aufweisende Arylgruppe, eine Cyclohexylgruppe, eine \(\text{\substitute} \) 1,2-Cyclohexenylgruppe, eine Hydroxylgruppe, eine Alkoxygruppe mit 1 bis 6 C-Atomen, eine ggf. substituierte Aryloxygruppe, eine Cyclohexyloxygruppe, eine \(\text{\substitute} \) 1,2-Cyclohexenyloxygruppe, eine \(\text{\substitute} \) 3R₄N-GH₂-CH₂-NH-gruppe oder eine \(\text{\substitute} \) 3R₄N-alkylen-O-gruppe bedeutet;
- Y eine Hydroxylgruppe, eine vorzugsweise 1 bis 4 C-Atome aufweisende niedere Alkoxygruppe, eine R₃R₄N-GH₂-CH₂-NH-gruppe oder eine R₃R₄N-alkylen-O-gruppe ist;
- Wobei R_o ein Wasserstoffatom, eine niedere Alkylgruppe mit 1 bis 5 C-Atomen, eine R₃R₄N-CH₂-CH₂-gruppe oder eine HOCH₂-CHOH-CH₂-gruppen sein kann und R₃ und R₄, die gleich oder verschieden sein können, jeweils ein Wasserstoffatom, eine niedere Alkylgruppe mit 1 bis 5 C-Atomen, eine Cycloalkylgruppe mit 3 bis 7, vorzugsweise 5 bis 6 C-Atomen oder eine ggf. am aromatischen Kern ein oder mehrere Halogenatome, insbesondere F, Cl und Br oder CF₃- bzw. CH₃-gruppen aufweisende Arylgruppe darstellen können, wobei R₃ und R₄ auch zusammen mit dem Stickstoffatom, an das sie gebunden sind,
 - a) einen 5- bis 7-gliedrigen M-heterocyclischen Rest, der ein weiteres Heteroatom aus der Gruppe H, O und 3 aufweisen und substituiert sein kann, oder

b) einen vom Lysin oder Cystein abgeleiteten Amidrest bilden können.

Die Erfindung umfaßt auch die Säureanlagerungssalze, die ausgehend von den Verbindungen der allgemeinen Formel (I) erhalten werden können, während die im Hauptpatent beschriebenen Verbindungen selbstverständlich vom Schutz im vorliegenden Fall ausgeschlossen sein sollen.

Die erfindungsgemäßen Verbindungen sind in der Therapie nützlich. Sie wirken insbesondere auf das Zentralnervensystem oder als entzündungshemmende Mittel oder in Richtung einer Normalisierung des Lipoidhaushaltes im Blut und sie sind damit erfolgreich anwendbar als Arzneimittel, insbesondere als analgetisch, entzündungshemmend, psychotrop, kardiovaskulär, lipoidnormalisierend, hypochlolesterinämisch oder antitussiv wirkende Bestandteile derselben.

Die pharmazeutischen Mittel enthalten eine wirksame Menge von zumindest einer Verbindung der allgemeinen Formel I oder einem ihrer nicht-toxischem Säureanlagerungssalze neben einem pharmazeutisch akzeptablen Exzipienten.

Unter Alkylgruppen werden im Rahmen der vorliegenden Beschreibung lineare oder verzweigte Kohlenwasserstoffreste verstanden und unter Alkoxygruppen ebenso lineare oder verzweigte Kohlenwasserstoffreste, die über eine einfache Bindung mit einem Sauerstoffatom verbunden sind.

Von den Alkoxygruppen sind insbesondere, was die einfachsten Reste betrifft, die Methoxy-, Äthoxy-, Propyloxy-, Iso-

propyloxy-, Butyloxy-, Isobutyloxy- und tert.Butyloxyreste zu nennen.

Unter einem R_3R_4N -alkylen-O-rest, der nachfolgend als Aminoalkoxyrest bezeichnet wird, ist eine Gruppe zu verstehen, die eine lineare oder verzweigte divalente Kohlenwasserstoff-kette aufweist, welche zwischen einem Sauerstoffatom (an das sie über eine einfache Bindung gebunden ist) und einem aliphatischen, cycloaliphatischen oder N-heterocyclischen Aminorest NR_3R_4 angeordnet ist; diese Kohlenwasserstoffkette umfaßt vorzugsweise nicht mehr als 6 Kohlenstoffatome.

Unter den der vorstehenden Definition entsprechenden Aminoalkoxygruppe werden diejenigen Gruppen bevorzugt, bei denen
die divalente Kohlenwasserstoffkette nicht mehr als 5 Kohlenstoffatome aufweist. Von diesen Aminoalkoxygruppen kann man
Insbesondere die folgenden bevorzugten Gruppen nennen:
Aminoathoxy, Aminopropyloxy, Aminoisopropyloxy, Mono- und Dialkylaminoathoxy, Mono- und Dialkylaminopropyloxy, Mono- und
Dialkylaminoisopropyloxy, Piperidinoathoxy, Azepinoathoxy
(azepinoethoxy), Morpholinoathoxy, Piperazinoathoxy, N'-Methylpiperazinoathoxy, Pyrrolidinoathoxy, Piperidinopropyloxy, Piperidinoisopropyloxy, Azepinopropyloxy, Azepinoisopropyloxy,
Piperazinopropyloxy, Thiomorpholinopropyloxy,
Morpholinoisopropyloxy, Thiomorpholinopropyloxy, Thiomorpholinoisopropyloxy, N'-p-Unlorphenylpiperazinopropyloxy und N'-pChlorphenylpiperazinoisopropyloxy.

Als typische Beispiele für R3H4N-gruppen sind insbesondere die Amino-, Mono- und Dialkylamino-, Morpholino-, Thimorpho-

lino-, Pyrrolidino-, Piperidino-, Azepino-, Piperazino-, N-p-Chlorphenylpiperazino-, N-Methylpiperazino-, 4-Methylpi-peridino-, Anilino-, 2,3-Dimethylanilino-, p-Chloranilino-, o-Trifluormethylanilino-, p-Trifluormethylanilino-, Cyclohexylamino-, Cyclopentylamino- und N-Methylanilino-gruppen sowie ihre Analogen zu nennen.

Die bevorzugten Halogenreste gemäß der Erfindung sind F, Cl und Br. Die Arylgruppen R^{IV} , R_3 und R_4 können einen oder mehrere Substituenten F, Cl, Br, CF_3 und CH_3 aufweisen, wobei die bevorzugten Arylgruppen insbesondere die Phenyl- sowie p-Chlor- und p-Fluorphenylgruppen sind.

Bei den neuen Verbindungen gemäß vorliegender Erfindung können zwei Typen unterschieden werden, und zwar:

- 1) p-Carbonyl-phenoxy-alkyl-carbonsauren und ihre Derivate, die resultieren aus:
 - a) Der Umwandlung der Carbonylfunktion (X = 0) in eine Oximfunktion ($X = NOR_0$);
 - b) der Umwandlung der Carbonsäurefunktion in eine Esteroder Amidfunktion und
 - c) der Umwandlung der Carbonylfunktion einerseits sowie der Carbonsäurefunktion andererseits; und
- 2) p-Carboxy-phenoxy-alkyl-carbonsäuren, die nachfolgend als "Dicarbonsäuren" bezeichnet werden und ihre Derivate, die durch Umwandlung von einer oder beiden Carbonsäure-funktionen in Ester oder Amidfunktionen entstehen.

In der Reihe der Derivate vom "p-Carbonyl"-Typ bedeutet, der Rest R^{VI} ein Wasserstoffatom, eine niedere Alkylgruppe

mit 1 bis 5 Kohlenstoffatomen oder eine Arylgruppe und vorzugsweise ${}^{\rm C}{}_6{}^{\rm H}{}_5$, ${}^{\rm p-Cl-C}{}_6{}^{\rm H}{}_4$ und ${}^{\rm p-F-C}{}_6{}^{\rm H}{}_4$.

In der Reihe der Derivate vom "Dicarbonsäure"-Typ bedeutet \mathbb{R}^{VI} OH, eine Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen, eine Aryloxygruppe und vorzugsweise einen Phenoxy- oder p-Chlorphenoxyrest oder einen Cycloalkyloxyrest wie insbesondere eine Cyclohexyloxygruppe oder eine $\Delta^{1,2}$ -Cyclohexenyloxygruppe oder eine Gruppe $\mathrm{NR_3R_4}$, $\mathrm{NHCH_2CH_2NR_3R_4}$ oder O-alkylen- $\mathrm{NR_3R_4}$.

Das Verfahren zur Herstellung der Verbindungen der Formel I vom "p-Carbonyl-Typ besteht darin, daß man in alkalischem Milieu eine p-Hydroxybenzoyl-Verbindung der allgemeinen Formel:

$$R^{VI}$$
-C OH (II)

in der R^{VI}, R^{III} und R^{IV} die bereits angegebene Bedeutung haben, mit einer hallogenierten Verbindung der allgemeinen Formel

$$Ha1 - C - COY''$$
(III)

umsetzt, in der Hal ein Halogenatom und Y" OH oder ein Alkoxyrest mit 1 bis 3 Kohlenstoffatomen ist und R $^{\rm V}$ und R $^{\rm II}$ die bereits angegebene Bedeutung haben; und daß man ggf. die Carbonylfunktion in eine Oximfunktion (X = NOR $_{\rm O}$) und die Esterfunktion in eine Saurefunktion, Amidfunktion oder eine andere Esterfunktion nach an sich bekannten Verfahren umwandelt.

Bei der Herstellung dieser Verbindungen vom "p-Carbonyl"-Typ kann man insbesondere nach folgenden Frotokollmarbeiten:

Protokoll A

Herstellung von Säuren, Estern und Amiden der Formel I, bei denen \mathbb{R}^{II} = H und X = 0 sind.

a) Umsetzung eines p-Hydroxybenzoylderivats der allgemeinen Formel:

mit $R_5 = H$, Alkyl, Aryl, insbesondere Phenyl und p-Chlor-phenyl mit einer ∞ -Halogencarbonsäure von Typ

$$R^{V}$$
-CH(Cl)-CO₂H (IIIa)

oder einem ≪-halogemierten Ester vom Typ

zur Erzielung einer Verbindung der Formel

$$R_{5} = C \longrightarrow R^{III}$$

$$R_{5} = C \longrightarrow R^{IV}$$

$$R_{V}$$

$$R_{V}$$

$$R_{V}$$

$$R_{V}$$

$$R_{V}$$

$$R_{V}$$

oder

- b) Die Verbindung IVa, bei der R₅ ein Wasserstoffatom oder eine Alkylgruppe ist, wird mit Methylalkohol oder Äthylalkohol verestert; der erhaltene Ester wird entweder mit geeigneten Aminen zur Erzeugung der gewünschten Amide kondensiert oder zur Synthetisierung anderer Ester als der beiden genannten einer Umesterung unterzogen.
 - c) Die Verbindung IVa, bei der R₅ ein Arylrest ist, wird mit Hilfe von SOCl₂ oder PCl₅ in ein Säurechlorid überführt, das man nach an sich bekannten Verfahren mit einem Amin, einem Alkchol oder einem Aminoalkohol zur Erzeugung der gewünschten Amide, Ester oder Aminoester umsetzt.

d) die Verbindung IVb wird nach an sich bekannten Verfahren zur Erzielung der gewünschten Amide mit einem Amin kondensiert oder auch zur Herstellung anderer Ester einer Umesterung unterzogen.

Protokoll A1

Herstellung von Säuren, Astern und Amiden der Formel I, bei denen $R^V=R^{II}=CH_3$ und X=0 sind.

a) Die Verbindung II wird mit einer Aceton-Chloroformmischung oder einem «halogenierten Ester vom Typ

Br-C(CH₃)₂-CO₂Et (V) in alkalischem Milieu umgesetzt

zur Erzielung von

oder

$$R_{5}$$
 R_{5}
 R_{5

b) Die Verbindung VIa kann mit einem niederen Alkohol zur Erzielung der Methyl-, Äthyl- oder Isopropylester ver-

estert werden, und zwar vorzugsweise, wenn R₅ = Alkyl ist.

- c) Der Ester VIb kann nach an sich bekannten Verlahren in ein Amid oder einen anderen Ester der Formel I umgewandelt werden.
- d) Venn R₅ ein Arylrest ist, wird die Verbindung VIa mit SOCl₂ oder PCl₅ in ein Säurechlorid umgewandelt, das man dann bei Bedarf mit einem Amin, einem Alkohol oder einem Aminoalkohol zur Erzielung eines Amids, eines Esters oder eines Aminoesters reagieren läßt.

Protokoll B

Herstellung von Aldoximen und Ketoximen ($X = HOR_0$)

- a) Zur Erzielung der Oxime mit R_0 = H werden die Aldehyde und Ketone mit X = O in basischem Milieu mit Hydroxylamin-hydrochlorid, vorzugsweise in pyridinischem Milieu behandelt.
- b) Zur Erzielung`der Derivate mit no ≠ H werden die Aldehyde und Letone mit X = C in basischem (pyridinischem) Lilieu mit einem substituierten Hydroxylaminhydrochlorid wie:

$$H_2N - C - R_0$$
, HC1

kondensiert oder auch eine Verbindung der Formel I, bei der K = NOH ist, nach dem folgenden Lechanismus umgewandelt:

- MOH
$$\xrightarrow{\text{t-BuOK}}$$
 - MOR $\xrightarrow{\text{Hal-Ro}}$ - NOR $\xrightarrow{\text{(Ro } \neq \text{H)}}$

Die folgenden Beispiele dienen zur Erläuterung der Erfindung.

Beispiel 1

4-Acetyl-3-thiomethyl-phenoxyessigsaure

a) Herstellung von 4-Hydroxy-2-methylthioacetophenon

Es wird nach einem "Pseudo-De Fries-Verfahren" gearbeitet: m-Thiomethylphenol und Acetylchlorid werden nacheinander zu einer AlCl₃-Lösung in Nitrobenzol (oder einer Suspension von AlCl₃ in Dichloräthylen oder Ligroin) bei 0°C gegeben; die Reaktionsmischung wird dann 17 Stunden lang bei 25°C gehalten und hydrolysiert; das 4-Hydroxy-2-methylthio-acetophenon wird mit verdünnter NaOH extrahiert und dann mit Hexan gewaschen.

Schmelzpunkt: 168°C

b) Eine Mischung von 1 Mol 4-Hydroxy-2-methylthio-acetophenon; 2,2 Mol NaOH; 1,2 Mol ClCH₂CO₂H und 1 300 ml Wasser
wird 7 Stunden lang auf Rückflußbedingungen gebracht. Nach
Ansäuern und Extraktion mit NaHCO₃ und einem anschließendem
erneuten zweiten Ansäuern wird die 4-Acetyl-3-thiomethylphenoxy-essigsäure isoliert.

Schmelzpunkt: 245°C.

p-Isobutyryl-phenoxy-essigsaureathylester

Kondensation von Bromessigsäureäthylester mit p-Hydroxy-isobutyrophenon, Äthylbromacetat und p-Hydroxy-isobutyrophenon werden innerhalb von wasserfreiem Aceton in Gegenwart von wasserfreiem K₂CO₃ miteinander umgesetzt. Die Mischung wird 12 Stunden lang unter Rückfluß erhitzt; nach der Hydrolyse wird das Aceton unter vermindertem Druck abgedampft und der Ester mit Äther extrahiert. Man erhält so als ein bei 40°C schmelzendes festes Produkt den Äthylester der p-Isobutyrylphenoxy-essigsäure:

Nach der in Beispiel 2 angegebenen Verfahrensweise wurden die in der weiter unten angegebenen Tabelle II angeführten Produkte erhalten.

Beispiel 3

Morpholinid der p-Propionyl-phenoxyessigsäure

In diesem Beispiel werden die Arbeitsweise gemäß Protokoll Ab und Ad erläutert.

a) p-Propionyl-phenoxyessigsäuremethylester
Ein Mol p-Propionyl-phenoxyessigsäure wird mit 100 cm³
MeOH; 300 cm³ CHCl₃ oder CH₂Cl₂ in Gegenwart von Schwefelsäure 10 Stunden lang unter Rückfluß behandelt. Die Reaktions-

mischung wird dann in Wasser geschüttet, wobei der Ester in der organischen Phase bleibt. Es wird einmal mit verdünnter NaOH und dann zweimal mit Wasser gewaschen. Der reine Ester wird mit einer Ausbeute von mehr als 90 % isoliert.

b)

$$CH_3-CH_2-CO$$
 $O-CH_2-CO-N$ O

1 Mol des wie vorstehend erhaltenen Esters wird 8 Stunden lang zusammen mit 2,5 Mol Morpholin unter Rückfluß aufgeheizt. Man gibt dann 1 Volumen Wasser hinzu und läßt in der Kälte kristallisieren. Das Morpholinid wird abfiltriert und aus Alkohol umkristallisiert (Ausbeute: 85 %; Fp. 88°C).

Die nach dem in Beispiel 3 angegebenen Verfahren erhaltenen Produkte sind in der weiter unten angegebenen Tabelle III aufgeführt.

Beispiel 4

Vom Piperidin abgeleitetes p-Benzoyl-phenoxyessigsaureamid

In diesem Beispiel wird die Arbeitsweise gemäß Protokoll Ac beschrieben.

Das vom Piperidin abgeleitete p-Benzoylphenoxyessigsäureamid wird durch Behandlung von 1 Mol Säurechlorid mit 2 Mol Piperidin in Benzol erhalten.

Die nach Beispiel 4 erhaltenen Produkte sind in der weiter unten angegebenen Tabelle IV aufgeführt.

Beispiel 5.

Vom Piperidin abgeleitetes Amid der p-Propionyloxim--phenoxyessigsaure

1 Mol N-[p-Propionylphenoxyacetyl]-piperidin wird 5 Stunden lang unter Rückfluß zusammen mit 1,1 Mol NH₂OH, HCl und 1,05 Mol Pyridin erhitzt. Das Oxim wird in Wasser ausgefällt und aus Alkohol umkristallisiert. Schmelzpunkt: 144°C.

Die nach diesem Verfahren erhaltenen Produkte sind in der weiter unten anzegebenen Tabelle V aufgeführt.

Beispiel 5 bis

Halbindustrielle Herstellung des von Piperidin abgeleiteten Amids der p-Acetyloxim-phenoxyessigsäure

309817/1217

a) Synthese von p-Acetylphenoxyessigsäure

p-Hydroxy-acetophenon wird mit 2-Chloressigsaure in wassriger Lösung in Gegenwart von Natriumhydroxid behandelt. Die Säure wird ausgehend von ihrem Natriumsalz mit einer globalen Ausbeute von 80 bis 82 % isoliert, während das überschüssige p-Hydroxy-acetophenon mit Methylenchlorid extrahiert wird.

b) Synthese des Esters

Die Veresterung erfolgt unter Rückfluß in Dichlormethan in Mengen von 600 ml pro 80 g der vorstehenden Säure, wobei der Methylalkohol dann in Mengen von 200 ml in Gegenwart von Schwefelsäure zugegeben wird. Der Ester wird nach an sich bekannten Verfahren isoliert und umkristallisiert.

Durch 12 Stunden langes Siedenlassen unter Rückfluß erhält man eine Ausbeute von 70 %. Eine 18-stündige Rückflußbehandlung liefert eine Ausbeute von 85 %.

c) Synthese des Amids

Man arbeitet wie in Beispiel 3 angegeben mit scharf getrocknetem Piperidin. Die Ausbeute beträgt 80 %.

d) Synthese des Oxims

Anstelle von 100 %ig reinem Hydroxylamin wird das technische Produkt mit 98 %iger Reinheit verwendet und der absolute Alkohol selbst gegenüber der ursprünglichen Methode durch mit Methanol vergällten Alkohol ersetzt. Die Ausbeute beträgt 75 %.

Bei der halbindustriellen Synthese kann man auch zur Erzielung besserer Ausbeuten die Stufe a) weglassen und den Ester b) direkt durch Reaktion von p-Hydroxy-acetophenon mit 2-Bromessigsäureäthylester in Gegenwart von Calciumcarbonat in Butanon herstellen. Die Ausbeute des Esters beträgt 90 % und die Beseitigung des p-Hydroxy-acetophenons erfolgt durch Waschen mit Natronlauge.

Gemäß Protokoll B wurden die Verbindungen der Formel I erhalten, bei denen $R_0 = C_2H_5$ oder $CH_2CH_2NR'_1R_2$ ist mit $NR'_1R'_2 = N(CH_3)_2$, $N(C_2H_5)_2$, Pyrrolyl, Pyrrolidino, Piperidino, Pyridinyl und Morpholino.

Beispiel 6

p-(4-Chlor-benzoyl)-phenoxy-isobuttersaure

$$c_1 - c_2 - c_2 - c_3 - c_2 - c_2 - c_3 - c_3$$

1 Mol 4-Hydroxy-4'-chlor-benzophenon wird in wasserfreiem Aceton gelöst. Zu der Lösung werden 5 Mol gepulvertes
Natriumhydroxid hinzugegeben: Das Phenolat fällt aus. Man
erhitzt unter Rückfluß und gibt 1,5 Mol CHCl3, verdünnt in
wasserfreiem Aceton, hinzu. Nach Beendigung der Zugabe wird
10 Stunden lang unter Rückfluß erhitzt; nach dem Abkühlen wird
Wasser zugesetzt und das Aceton verdampft. Die mit Äther gewaschene wässrige Phase wird angesäuert; das Öl in Äther aufgenommen und mit einer Bicarbonatlösung extrahiert. Durch
Ansäuern der letzteren erhält man die gewünschte Säure.

Ausbeute: 75 %; Fp = 185° C.

In der weiter unten angegebenen Tabelle VI sind Beispiele für Produkte angegeben, die nach der in Beispiel 6 angegebenen Verfahrensweise erhalten wurden.

Die Ester und Amide der nach dem Verfahren von Beispiel 6 hergestellten p-Carbonyl-phenoxy-isobuttersäuren wurden nach dem weiter oben angegebenen Protokoll A erhalten. Die so hergestellten Ester und Amide sind in der weiter unten angegebenen Tabelle VII aufgeführt.

Nachfolgend wird ein Beispiel für die Herstellung eines Esters von Tabelle VII angegeben.

Beispiel 7

p-(4-Chlor-benzoyl)-phenoxyisobuttersaureisopropylester

c1
$$\longrightarrow$$
 c0 \longrightarrow c \longrightarrow cH₃ \longrightarrow cO - O - CH \longrightarrow CH₃ \longrightarrow CH₃

(Code-Nr. 178)

Die nach Beispiel 6 erhaltene Säure (1 Mol) wird mit Thionylchlorid (2,5 Mol) in das Säurechlorid umgewandelt. 1 Mol Säurechlorid wird dann mit 1,05 Mol Isopropylalkohol in Gegenwart von 0,98 Mol Pyridin in einem inerten Lösungsmittel wie Benzol kondensiert.

Da das Thionylchlorid-Verfahren bisweilen SO₂-Spuren hinterläßt (die einen schlechten Geruch verleihen), kann man zur Vermeidung dieses Nachteils eine direkte Veresterung vornehmen.

Die nach dem Protokoll B erhaltenen Oxime der Isobutyrate und Isobutyramide sind in der weiter unten angegebenen Tabelle VIII aufgeführt.

Die Ergebnisse von pharmakologischen Prüfungen, die mit den erfindungsgemäßen Verbindungen durchgeführt wurden, sind in der weiter unten angegebenen Tabelle IX für einige Produkte zusammengefaßt. In Tabelle IX sind Werte für folgende Wirkungen angegeben:

- analgetische Wirksamkeit:

 Zunahme (in %) der Reaktionszeit bei Wärme;
- entzündungsheimende Wirkung:
 Inhibition (in %) eines erzwungenen Ödems;
- antitussive Wirksamkeit:

 Inhibition (in %) der Anzahl von erzwungenen

 Hustenanfällen:
- cholesterinspiegelsenkende Wirksamkeit:
 Verminderung in %.

Zur Herstellung der Produkte vom "Dicarbonsäure"-Typ und ihrer Derivate wird zunächst ein Produkt bei dem R^{VI} = Y = OH ist, wie folgt synthetisiert:

a) Ein Hol p-Hydroxybenzoesäure der Formel

wird in alkalischem Milieu unter Rückfluß in Wasser mit 1 Moleiner Halogencarbonsäure der Pormel

umgesetzt, wobei Hal ein Halogenatom ist und

b) die erhaltene Dicarbonsäure wird in saurem Milieu ausgefällt.

Vorzugsweise wird 1 Hol p-Hydroxybenzoesäure pro 1 Hol Halogencarbonsäure verwendet.

Die wie oben definierten Verbindungen der Formel I vom "Dicarbonsäure"-Typ, bei denen zumindest einer der Reste R^{VI} bzw. Y keine Hydroxylgruppe ist, werden zur Abwandlung der HCOC-Funktion in einen Ester oder ein Amid durch Umwandlung von zumindest einer der Carbonsäurefunktionen der Dicarbonsäure in Ester- oder Amidfunktionen nach einem an sich bekannten Verfahren hergestellt.

Die Dicarbonsäure

kann direkt verwendet werden für:

- a) die Synthese eines Diesters, bei dem R = Y ist;
 - die Herstellung eines intermediären Säurechlorids für die Synthetisierung eines Diesters oder eines Diamids, bei dem R = Y ist;
 - c) die Synthese eines Monoesters: Diese Veresterung erstreckt sich dann auf die Säurefunktion der Oxyessigsäurekette.

Der Monoester

der nach der Methode c) synthetisiert werden kann, kann ebenfalls durch Einwirkung von Äthyl-bromacetat

auf ein p-Carboxy-hydroxyphenon der Formel

in heterogenem alkalischen Milieu erhalten werden.

Ausgehend von Honoestern gemäß der Erfindung und insbesondere von Honoestern der Formel VIII kann man nach einem an sich bekannten Verfahren Honoamide der Formel

oder konosäurechloride der Formel

$$ci - co \xrightarrow{R^{\text{III}}} o - \overset{R^{\text{V}}}{\underset{R^{\text{II}}}{\bigcirc}} cooc_{2}^{\text{H}_{5}}$$
(IX)

herstellen.

Die Säurechloride IX können ihrerseits zu symmetrischen oder unsymmetrischen Diestern oder Amidestern vom Typ

$$\begin{array}{c}
R_{3} \\
R_{4}
\end{array}$$

$$\begin{array}{c}
R_{111} \\
R_{11}
\end{array}$$

$$\begin{array}{c}
R_{11} \\
R_{11}
\end{array}$$

$$\begin{array}{c}
R_{11} \\
R_{11}
\end{array}$$

$$\begin{array}{c}
R_{11} \\
R_{11}
\end{array}$$

führen. Schließlich ist es möglich, ausgehend von einem symmetrischen oder unsymmetrischen Diester wie

$$R^{VI} - CO \longrightarrow 0 - C - CO_2C_2H_5$$
 (XI)

ein Esteramid wie

$$R^{VI}$$
 - CO
 O
 O
 R^{III}
 O
 O
 R^{V}
 R^{II}
 R_{4}

hersustellen.

Gemäß der Erfindung kann man durch eine einfache Abwandlung der Reaktionsfolgen Verbindungen erhalten, die in 1,4Stellung zum einen eine Aminoesterfunktion und zum anderen
eine Amidfunktion aufweisen, wobei die Substitutionen am
Stickstoffatom der Aminoesterfunktion identisch oder verschieden von denjenigen sind, die am Stickstoffatom der Amidfunktion vorhanden sind. Diese doppelte köglichkeit wird in den
nachfolgenden Reaktionsschemen veranschaulicht, bei denen mit
den Aminogruppen N_1 und N_2 die Identität oder Unterschiedlichkeit der Substitutionen verdeutlicht werden soll.

$$\begin{array}{c} \text{R}^{\text{III}} \\ \text{HO}_2\text{C} \\ \\ \text{R}^{\text{IV}} \end{array}$$

 $\underline{\mathbf{N}} = \underbrace{\left[1 - \left(\mathbf{p} - \mathbf{Carboxyphenoxy}\right) - \mathbf{acetyl}\right] - \mathbf{piperidin}}_{}$

1 Mol p-Carboxyphenoxyessigsäureäthylester und 2,5 Mol Piperidin werden 7 Stunden lang unter Rückfluß erhitzt. Bei Zugabe von Wasser fällt das Amid aus.

p-Piperidinocarbonyl-phenoxy-essigsaureathylester
Man arbeitet nach dem klassischen Reaktionschema:

$$HO_2C$$
 $O-CH_2CO_2C_2H_5$ $SOC1_2$

Der so erhaltene Amidester ist in der Lage, mit irgendeinem Amin nach dem in Beispiel 1 beschriebenen Verfahren unter Bildung von Diamiden zu reagieren.

Die in den weiter unten angegebenen Tabellen I bis und II bis aufgeführten Produkte wurden nach Beispiel 1 oder Beispiel 2 hergestellt.

In den nachfolgenden Beispielen wird eine besondere Arbeitsweise angegeben, die sich auf die Synthese der Verbindungen mit Code-Nr. 96 und 99 der Tabellen I bis bzw. II bis bezieht.

M-[p-Carboxyphenoxy-acetyl]-piperidin

Code-Mr. 96.

a) p-Carboxyphenoxyessigsäureäthylester

1 Mol Athyl-bromacetat wird in Gegenwart von 2 Mol K₂CO₃ in Aceton, Methyläthylketon, Dioxan oder Tetrahydrofuran 48 Stunden lang bei Rückflußtemperatur des organischen Lösungsmittels mit 1 Mol p-Hydroxybenzoesäure umgesetzt.

b) N-[p-Carboxy-phenoxy-acetyl]-piperidin

Der vorstehende Ester (1 Mol) wird unter Rückfluß mit Fiperidin (3 Mol) in einem chlorierten Lösungsmittel 7 Stunden lang aufgeheizt. Zur Ausfällung des Amids wird nach Beendigung der Kondensation Wasser zugegeben.

Beispiel 12

N-[p-Athoxycarbonyl-phenoxy-acetyl]-piperidin
Code-Nr. 99.

Der p-Carboxy-phenoxyessigsäureäthylester wird in Äthanol und Chloroform in Gegenwart von Schwefelsäure verestert. Das Amid wird durch 7-stündige Kondensation von einem Mol des so erhaltenen Diesters (p-Athoxycarbonyl-phenoxyessigsäureäthylester) mit 3 Mol Fiperidin in einem inerten Lösungsmittel bei der Siedetemperatur des Lösungsmittels erhalten.

Ι	T 1								251	3327	7
cm -1) -ç- Säure	1720	1720	1	1760	1760	1760	1730	1760	1760	1740 1730
I.R.	V-c- N Keton	1670	1670	1	1650	1630	1640	1650	1640	1640	1650 1650
Et.	င့	108	96	152	162	158	150	154	170	157	245 158
R-RIV		Ħ	æ	Ħ	-6 CH ₃	-3 сн ₃	Ħ	-5 CH ₃	H	"	н -5 СН ₃
RIII		H		æ	-2 CH ₃	-2 CH ₃	-2 CH ₃	-2 CH ₃	-3 OCH ₃	7-	-3 SCH ₃ -2 C H 2 C B
		2								•	
R		сн ₃ -сн ₂ -сн ₂ -сн ₂	н ₃ с сн-сн ₂	c1	CH ₃	CH ₃	CH ₃	CH ₃	снз	CH ₃	CH ₃
	Nr.			· · · · · · · · · · · · · · · · · · ·	. 566	267	268	269	270	276	

	\sim		\sim	\sim	$\boldsymbol{\neg}$	7
		^	11	.3		•
۷.	_	U .	V	<u> </u>	4	

RVI	RIII	RIV	Fp bzw.Kp	I.R.	cm cm	
))	-c- Keton	V -c-	
(сн ₃) ₂ -сн	#	æ	Fp = 40		1	
сн ₃ -(сн ₂) _{2.}	Ħ	nt .	R _p = 30	1	ı	
св ₃ -(сн ₂) ₃		單	$K_{P0,05} = 155$	1	1	
(CH ₃) ₂ -CH-CH ₂	#	#	$K_{PO,05} = 155$	1680	1760	
сн3	-2 CH ₃	-е сн	$K_{P0,05} = 156-157$	1680	1770	
EHJ	-2	H	$F_{\rho} = 105$	1660	1760	
້ສ	-2 CH ₃	-3 CH ₃	Fp = 70	1660	1750	
	-2 CH ₃	-5 CH ₃	Fp == 66	1650	1760	
CH ₃	-2 CH ₃	=	F ₂ = 45	1680	1760	
ch ₃	-3 GCH ₃ .	缸	$K_{0,05} = 160$	1660	1760	

309817/1217

TABELLE

TABELLE II (Fortsetzung)

-	RII	RIV	Fp bzw.Kp	I.R. cm	
1			ပ)-c- Keton) -c- Ester
СНЗ	-3 SCH ₃	#	F, a 95	1660	1760
CH ₃	-3 80 ₂ CH ₃	ж	F ₂ = 89	1690	1760
CH ₃	-2 C ₂ H ₅	-5 CH ₃	Fp = 66,5	1680	1740
E	-2 Br	Ħ	Fp = 70	1680	1760

	festgest.	Aktivität	Antitussif	Psychotrop	=	=	ຸ າ 2	50327
		ີ	18 000 18 000	18 000 18 000	18 000 24 000	17 500 17 500	18 000 17 000	18 500 18 000
	U.V.	$\lambda_{\text{max.}}$	213	214 266	210 263	214 266	214 265	214 267
		o==o AB	1650	1650	1665	1660		
	T EJ	o o o	·		·	· ·	1670	1660
	I.R.	V -c- Keton	1680	1680	1700	1680		
	₽4.0 € C	>	82	92	130	107	88	80
R-v	¥			$\binom{\circ}{z}$	HIN		$\binom{\circ}{z}$	
Λ	^ æ		#	Ħ	Ħ	æ	m	Ħ
VI	R		æ	, ##	Ħ	Ħ	æ	æ
	æ		æ	æ	Ħ	H	=	=
IV			сн ₃ -(сн ₂) ₂	сн ₃ -(сн ₂) ₂	CH ₃	сн ₃ -сн ₂	сн ₃ -сн ₂ н,с	H ₃ C CH
0	, S		309817	126	184	134	136	148

309817/1217

. TABELLE

					TABELLE	iii (Forts	(Fortsetzung)				
Code-	e- R VI	RIII	RIV	RV	X		ند. و	I.R. c	cm -1	V.U	,	festgest
Nr.							\sim	-c- Keton)-c- Amid	λ. max.	ت	Aktivität
149	н ₃ с / сн	#	ш	Ħ			76	1670	1650	214	19 000 18 000	Antitussi V นเก่ psychotrop
151	сн ₃ -(сн ₂) ₃	æ	æ	±			75	1670	1650	214 268	19 000 18 500	=
154	H ₃ C CH-CH ₂	æ	#	ш			73	1660		214 267	19 000 18 000	=
157	н ₃ с сн-сн ₂	Ħ	#	Ħ	$\binom{\circ}{\mathbf{z}}$		86	1665	1650	213 267	18 000 18 000	=
159	сн ₃ -(сн ₂) ₃	Ħ	×	æ			66	1680	1660	211 257	19 000 15 000	=
164	Br-CH ₂	m	#	#			134	1670	1640	214	22 000 15 000	=
	снз	z	æ	CH ₃			124	1670	1650		r	2:
142	сн3	×	æ	CH ₃	C C		151	1670	1660	214 267	18 000 18 000	25031 =
202	сн3	×	# ,	#	HN		106	1660		214 266	14 000 18 500	Antitussik, psy-
												anaigetisch

TABELLE III (Fortsetzung)

Code-	RVI	RIII	RIV	RV	Ā	F 0	I.R.	cm -1	U.V.	N.	festgest.
Nr.			-			י	V-c- Keton	V-C-	λ max.	ယ	Aktivität
203	c _H 3	#	Ħ	Ħ	HM	66	1680	1640	215	14 000 18 500	Antitussif, psychotrop und
216	CH ₃	Ħ	æ	ra .	NH H	170 CH.	1670	1640	212	24 000 18 500	analgetisch "
218	CH ₃	æ	Ħ	×	<i>:</i>	167	1680	1630	215 268	14 000 17 500	z
219	CH ₃	Ħ	Ħ	Ħ		125	1670	1645	212 268	14 000 16 000	=
223	GH ₃	-3 СН ₃	.	Ħ	$\binom{\circ}{z}$	117	1670	1650	210 265	19 000 116 000	=
	CH ₃	-3 och ₃	Ė	.	$\binom{\circ}{\mathbf{z}}$	137			·		=
256	CH ₃	Ħ	Ħ	Ħ	NA BAN	104	1705	1665	210	15 000 17 000	22
			•		CF.		· .	ĺ			503

s t	נפל	if, p und lsch						225	032
festgest.	AKTIVI	Antitussif, psychotrop und. analgetisch	=	=	=	=	Ŧ	=	=
Ju		29 000 17 000 6	27 000 16 000	22 000 13 000	23 000 13 000	25 000 15 000	23 000 15 000	19 000 16 000	20 000 17 000
Λ'Ω	d max.	245 273	244 270	214 267	214	213 268	214 268	217	209
cm ⁻¹	v-[- a d Amid	1660	1660	1650	1660	1660	1660	1660	1660
I.R.	V -{- V Keton	1660	1660	1670	1680	1680	1660	1680	1680
P.O.		86	109	79	119	82	88	67	107
>-			$\binom{\circ}{z}$		$\binom{\circ}{\mathtt{z}}$		$\binom{\circ}{\mathbf{z}}$		$\binom{\circ}{\mathtt{z}}$
D'SI		æ	Ħ	æ	æ	æ	Ħ		.
RIV		æ	Ħ	-3 CH ₃	-3 CH ₃	-5 CH ₃	-5 CH ₃	=	; =
RIII		-2		-2 CH ₃	-2 сн ₃	-2 CH ₃	-2 CH ₃	-2 CH ₃	-2 CH ₃
RVI		CH ₃	снз	CH ₃	ch S	снз	СН3	сн3	Э
-apo2	Nr.	246	263	287	254	260	286	261	797

TABELLE III (Fortsetzung)

	I		 č	· ~ ——						
	festgest.	Aktivität	Antítussif, psychotrop un	analgetisch "	=		E		2250 =	32
		ယ	15 000	40 000	ı			13 000	•	
	V.V	, тах.	264 302	249		ı		215		
	cm -1	V-G-	1660	1650	1660	1660	1650	1660	, I	,
Sim za aca e	I.R.	V-[- 0 Keton	1680	1670	1660	1660	1670	1660		
	۳. و م		125	128	130	95	96	140	06	
	Ą				$\binom{\circ}{\mathtt{z}}$	$\binom{\circ}{z}$		NH-CH-CH ₂ SH CO ₂ H		
	N .		. #		#	сн3 н	н3 н	. # ', '	#	
	RIV		Ħ	Ħ	= .	-5 0	-5 CH ₃	Ħ	# ## ## ## ## ## ## ## ## ## ## ## ## #	
:	RIII		-3 OCH ₃	-3 SCH ₃	-3 SCH ₃	-2 C ₂ H ₅	-2 C ₂ H ₅	æ	-2 Br	
-	R VI		сн3	. CH ₃	сн3	сн3	CH ₃	CH ₃	CH ₃	
	Code-		271	3 (1 8 8 2 7 5 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	% 17/1	6 2 1 7	318	304	· · · · · · · · · · · · · · · · · · ·	-
				-		- 1 /				

٠	Τ Ψ ο					2250327
fe s tgest. Aktivität	Antitussif und psychotrop	=	=	=	=	
ω	22 000 18 000	20 000 16 000	41 000 40. 000	22 000 19 000	14 000 15 000	
υ.ν. λ max.	211 283	211 283	211 255	245	210	
V-c-	1650	1650		1650	1660	
I.R. cm -1 Keton			1650			
I.R.	1670	1675		1680	1690	
9. 9.0	104	129	140	130	116	
	·	·	- C1			
₩				NH	HN	
RIV		Ħ	# *	=	#	·
R ^{III}	æ	æ	=	×	æ	
R VI						
Code- Nr.	<u>8</u> 30981'	129	131	168	167	

TABELLE IV (Fortsetzung)

festgest. Aktivität	0 Antitussif 0 und psychotrop	= 0 0	=
w c	16 000 17 500	25 000 18 000	26 000 19 000
11.V.	210	208 288	207 286
I.R. cm ⁻¹	1650	1645	1645
J-c- O Keton	,	1665	1665
a O	130	140	130
λ	HN		
RIV	æ	Ħ	m
RIII	z		Ħ
R VI		CI	C1
Code- Nr.	174	22 109817	248

		† • ¤		·· · · · · · · · · · · · · · · · · · ·	<u>.</u>		22	50327
festgest.	Aktivität	sedativ, ent- zündungshem., analgetisch u antitussiv	=	=	=	=	=	a ·
	ص	45 000	22 000 18 000	26 000 16 000	19 500 16 000	22 000 18 000	22 000 18 000	22 000 18 000
U.V.	λ max.	211 255	212 257	212 240	212 258	-211 257	210	210 256
-1 cm -)-c- Amid	1640	1645	1650	1645	1660	1620	1630
I.R.	VoH Oxim	3250	3250	3250	3250	3300	3250	3250
1	1 0	172	147	136	159	144	149	183
•		N N C1	C Z	$\binom{\circ}{z}$	Ç			
>		æ	æ	#	æ	Ħ	сн3	ਜ
VI		æ	Ħ	. #	#	Ħ	Ħ	=
III.	¥	Ħ	Ħ	Ħ	Ħ	#	=	Ħ
-	×°°	æ	Ħ	Ħ	=	Ħ	Ħ	Ħ
IV	±.		сн ₃ -сн ₂ -сн ₂		сн ₃ -сн ₂ -сн ₂	сн ₃ -сн ₂	снз	снз
7	Code- Nr.	125	127	130	132	135	141	144

VI - $\frac{R}{\| \begin{pmatrix} 4 \\ 4 \end{pmatrix} - O - CH - C - Y \\ NOR_{o} \end{pmatrix} = \frac{1}{R}$

TABELLE V (Fortsetzung)

		i va						2250	32
+	ität Ität	f, ent-	> -1 2					•	
4	restgest. Aktivität	sedativ, ent- zündungshem., analgetisch u	2 5 1	=	=	=	=		
	ယ	Ø 10 60 6	000			000 0	000	000	
L.V.	×	·	19 15	•		18 10	21 21	18	
	λ ď max.	÷	212 268			212 243	213 266	210 242	•
cm -1	V-c- d Amid	1635	. 1650	1635	1640	1635	1640	1660	
I.R. CT	VoH Oxim	3300	3350	3300	3300	3150	3200	3350	
101	້າວ	150	144	124	147	142	132	170	· ·
					• .		•		
×	·			\bigcap		\bigcap	\sim		•
		(z			(z)		\ _z J		
>~		Ħ	Ħ	#	æ _.	Ħ	Ħ	Ħ	
RIV		#	. 🗷	# ;	· #	æ	Ħ	æ	
RIII		Ħ.	Ħ	æ	æ	æ	æ	· #	
<u>_</u> ح'	o	#	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	
RVI		сн3-сн2	сн ₃ -(сн ₂) ₃	н ₃ с сн-сн ₂	н ₃ с н ₃ с	н ₃ с сн	сн ₃ -(сн ₂) ₃	^н 3с сн н3с	
Code-	Nr.	147	152	155	156	160	191	177	

TABELLE V (Fortsetzung)

		1						:	
festgest.	Aktivität	analgetisch, antitussiv u. entzündungs-	remmenta.	=	=	wirkt auf Cholest.sp.	Antitussi und psychotrop	22	50327
	ω	29 000	27 000 19 000	25 000 18 000	15 000 15 000	29 000 17 500	24 000 9 000	23 000 21 000	21 000
	λ m a x.	215 259	212	210 264	240	209	210 240	210 265	210 257
ca -1	V-G- o Amid	1630	1630	1640	1640	1660	1650	1620	1640
I,R.	V OH Oxim	3350	3350	3200	3250	3250	3300	3200	3300
Et c	ပ	182	184	200	194	216	142	130	162
*		$\bigcirc_{\mathbf{z}}^{\circ}$		NH HAI	NH	NH CH3 CH3			
RV		æ	#	æ	Ħ	æ	Ħ	=	Ħ
RIV		æ	#	Ħ	æ	Ħ	ж С	Ħ	#
RIII		Ħ	Ħ	Ħ	Ħ	Ħ	-3 CH ₃	#	Ħ
_æ °		· ж	æ	· #	#	Ħ	Ħ	, #	æ
RVI		Br-CH ₂				CH ₃	CH ₃	Ħ	СН3
Code-	Nr.	179	181	183	185	214	220	236	279

TABELLE V (Fortsetzung)

Ī		pun						· · · · · · · · · · · · · · · · · · ·	225	0327
	festgest. Aktivität	Antitussir und psychotrop	Ξ.	= .	=	=	=	=	=	=
	ω	25 000 17 000	22 000	40 000	30 000	27 000 29 500	28 000	24 000	27 000 17 000	25 000 17 000
	υ.ν. λ max.	211 241	211	212 255	208	211 242	212	212	212 258	213
-	cm_1 \-c- \-c- 1 \ Amid	16	1640	1630	1640	1640	1640	1640	1640	1630
	J.R. c	3300	3300	3250	3200	3200	3250	3250	3250	3250
	a C	202	133	164	153	166	149	166	200	188
	Y				$\bigcirc_{\mathbf{z}}$					(°)
	ጽ >	Ħ	#	-6 сн ₃ н	н	H	-3 сн ₃ н	-3 CH ₃ H	H	## ##
	R ¹¹¹ R ^{1V}	н	-3 CH ₃ H	-2 CH ₃ -6			-2 сн ₃ -	-2 CH ₃ -	-2 CH ₃	-2 сн ₃
	R O	ж	#	#	#	#	#	Ħ	#	zi
	R.VI		снз	CH ₃	B	сн3	сн3	CH ₃	CH ³	CH ₃
	Code-	295	258	245	247	250	262	252	255	257

TABELLE V (Fortsetzung)

2000	RVI	æ	RIII	RIV	N _C	¥	124 22	I.R.	_ 1		U.V.	festgest.
Nr.		o				***	္ခဲ့	V OH Oxim)-c- A Amid	, тах.	ယ	Aktivität
274	СН3	æ	-3 SCH ₃	н	Ħ		163	3200	1640	225	25 000	Antitussiv und psychotrop
265	сн3	æ	-3 SCH ₃	#	Ħ	٥	167	3250	1640	223	23 000	=
** 80981	СН.	zz	-3 OCH ₃	ж	, #	\bigcirc	154	3250	1630	245 282	11 000 4. 000	=
	CH ₃	#	-3 OCH ₃	=	# .	$\binom{\circ}{z}$	153	3300	1640	245 283	11 000 4 000	, =
00 1 7	CH ₃	æ	-2 CH ₃	-5 CH ₃	Ħ		140	3250	1630	213	26 000	=
292	GH 3	æ	-2 CH ₃	-5 CH ₃	#	$\binom{\mathbf{z}}{\mathbf{z}}$	146	3250	1640	. 213	26 000	=
281	сн3	$(CH_2)_2$ -N Funarat	, -3 CH ₃	Ħ	Ħ	$\binom{\mathbf{z}}{\mathbf{z}}$	125		1620	213	36 000	=
251	E 3	$(G_2)_2$ -N	m	#	Ħ		130	i	1640	213 263	24 000 20 000	=
		Oxelat				·	24 8 22 23 24 24	•				

2250327

	at. Ltät	sstv	т. Ф				
	festgst. Aktivität	Antitussivund	psychotr p	=	=	=	
	W	23 000	35 000 20 000				
	υ.ν λ max.	210	211 262			·.	
- 1	CEE CEE	16	1630	1630	1660	1620	
,	Oxfm		1	3300	i	3250	
F	န ီ ပ	011	125	195	126	126	
>	4	(°)	()		Ç	R Et	
>~	:	×	#	æ	Ħ	=	
RIV		æ	# .	-5 CH ₃	Ħ	æ	
RIII		Ħ	Ħ	-2C ₂ H ₅	=	æ	
R		сн2-снон-сн2он	$(CH_2)_2^{-N}$,	Fumarat H	cH ₃	æ	
RVI		сн3	cH ₃	CH ₃	CH ₃	СН3	
-ode-	Nr.	772	280	317	320		

TABELLE V (Forts tzung)

-apop	- R ^{VI}	RIII	RV	E.	I.R.	-1	U.V.	V.	festgest.
Nr.				o .)-c- 0 Keton	J_c- ∦ Säure	λ max.	ယ	Aktivität
82	ch ₃ -ch ₂	#	сн3	- 96	1660	1740	217	7 000 10 000	liboidnormalis.
198	сн ₃ -сн ₂ -сн ₂	ж	GH ₃	6,2	1670	1720	215 .269	13 000 19 000	=
153		ш	сн3	184	1640	1710	259 294	13 000	=
243	снз	-3 CH ₃	сн3	86	1640	1735	222 271	15 000 17 000	=
	снз	-2	CH ₃	106	1660	1710	1	i ,	=
305	C1-	H	C2H5	140	1630	1740	258 294	13 000 16 000	<u>.</u>
				·					250
									327

A STATE OF THE STA

The second secon

					<u> </u>			
		ω.					225	032
festgest. Aktivität	-	Lipoidnormalis.	=	=	=		=	=
U.V.	ယ	12 000 17 000	13 000	19 000 18 000	24 000 18 000	25 000 20 000	18 000 17 000	17 000 16 500
	kerλ max.	215 267	207 284	208 285	208 287	210 285	207 283	207 283
-9-(\ T.	Estero d r Amid	1730	1740	1735	1620	1640	1745	1730
I.R. cm-1	Keton	0/91	1660	1665	1650	1650	1645	1655
Fp bzw.Kp		Fp = 62	H 89	Fp = 79	Fp = 160	$F_{\rho} = 148$	F = 58	Fp = 87
> + _ [∴]		0-сн3	0-сн ₃	0-C ₂ H ₅		$\binom{\circ}{z}$	0-сн3	0-C ₂ H ₅
RIII	·	Ħ	щ	Ħ	æ	æ	Ħ	Ħ
7		CH ₃						
Code-		140	162	163	170	171	180	186

309817/1217

TABELLE VII (Fortsetzung)

		lis.			<u> </u>		-, -, -, -, -, -, -, -, -, -, -, -, -, -	2:	250327
festgest. Aktivität	ı	lipoidnormalis.	=	=	=	=	=	=	=
	w	18 500 18 000	13 000 18 000	12 000 19 000	12 000 17 000	19 500 18 000	13 000 16 000	26 000 18 000	14 000 16 000
U.V.	л шах.	207 284	214 265	216 267	215 266	207	215 265	213 265	214 260
-1- -0000000000000	Esteroder Amid	1730	1740	1740	1730	1730	1735	1740	1745
I.R. cm	Keton	1660	1680	1680	1680	1650	1680	1680	2 1670
Fp bzw.Kp		Fp = 84	K 0,05 = 147-9	K _{0,05} = 157-8	$K_{P0,05} = 156-7$	$\mathbf{F}_{\mathbf{r}} = 78$, HC1 Fp = 128	F _f = 100),HC1 Fp = 132
М		0-CH CH ₃	0-сн ₃	0-c ₂ H ₅	0-CH CH ₃	0-CH CH ₃	0-cH ₂ -cH ₂ -N	O-CH ₂ -CH ₂ -N Et	
RIII		 #	# (*)	*	H	æ	#	, m	#
R			сн ₃ -(сн ₂) ₃	сн ₃ -(сн ₂) ₃	сн ₃ -(сн ₂) ₃	CI	сн3	CH ₃	GH ₃
Cod	•	190	188	187	189	178	195	196	197

TABELLE VII (Fortsetzung)

Note that the second of the se

festgest. Aktivität		lipoid- normalis.	lipoidnor- malis. und kardiovas- kulär	lipoid- normalis.	lipoidnor- malis. und kardiovas- kulär	lipoid- normalis.	2250327
U.V.	ယ	38 700 l. 18 000 m	44 000 11 20 000 ma ka	32 000 L 12 000 n	33 000 11 17 000 ma ka ka	35 000 11 18 000 nd	1
'n	λ max.	208	208	212 265	208 184	209	
-1- \ -C-	Ester oder Amid	1740	1740	1740	1740	1740	1760
I.R. cm	Keton	1660	1655	1670	1650	1660	1645
Fp bzw.Kp		F _p = 100	F = 118	Fp = 134	F _P = 115	F _P = 62	Fρ = 135
≯•		$0-CH_2-CH_2-N$ $fumarat$	$0-CH_2-CH_2-N$ 0 ,	$0-CH_2-CH_2-N$ 0 ,	$0-CH_2-CH_2-N$ Fumarat	O-CH ₂ -CH ₂ -N Et	0
RIII		æ	#	ш	æ	æ	æ
RVI				снз			CI
Code-		208	209	210	211	212	21.7

TABELLE VII (Fortsetzung)

Code-	RVI	RIII	>-	Fp bzw.Kp	I.R. cm	-1 _=-\ \==-	U.V.		festgest. Aktivität
· ·	·				Keton	Ester oder Amid	λ max.	ယ	
229	C1	H.	O-CH ₂ -CH ₂ -N Fumarat	$F_{\rho} = 120$	1650	1745	207	33 16	000 11poidnormali:
230		#	0-CH ₂ -CH ₂ -N Et	t , Fp = 104 t	1650	1730	206	22 000 17 500	=
231	C1	=	0-CH ₂ -CH ₂ -N	\rangle , Fp = 116	1645	1730	208	26 000 14 000	=
232	сн ₃ -(сн ₂) ₃	ж	O-CH ₂ -CH ₂ -N Et	, HC1 $F_{p} = 72$	1675	1740	214 267	12 000 16 000	=
233	сн ₃ -(сн ₂) ₃	=	$0-CH_2-CH_2-N$	HC1 Fp = 118	1675	1740	212 267	12 500 16 000	= ·
238		Ħ	0-сн ₂ , нс1	$1 F_{\rho} = 144$	1660	1740	259 285	20 000 19 000	=
239		, #	0-CH ₂ -CH ₂ -N	9, HCl Fp = 145	1645	1740	208 286	20 000 16 000	2503
			, .		./				27

TABELLE VII (Fortsetzung)

st.		13.				·		2250	327
festgest. Aktivität		lipoid- normalis	· =	=	=	=	=	=	. =
	w	17 000 15 500	16 000 16 200	17 000 16 200	22 700 18 000	17 000 16 500	1	1	ı
U.V.	λ max.	208	208	208 269	211 257	207	t	1	ı
-1- 	Ester oder Amid	1745	1740	1730	1730	1740	1720	1720	1710
I.R. cm	Keton	1680	1680	1680	1660	1640	1650	1690	1660
Fp bzw.Kp		K _{0,05} = 132	K _{0,05} = 136	16,005 = 139		$\begin{array}{c} cH_3 \\ \\ \\ -c - cH_3 \\ \\ CH_3 \end{array}$	Kp1 = 198	F = 86	Fp = 95
Y		0-сн ₃	0-c ₂ H ₅	0-CH (H)	O-CH CH ₃	CH ₃ 0-CH ₂ -0 ₂ C-C-CH ₃ CH ₃	0-CH CH ₃	сн ₃	CH ₃
RIII		-3 CH ₃	-3 сн ₃	-3 CH ₃	-3 CH ₃	æ	-3 sсн ₃	-3 so ₂ сн ₃	7-
R VI		CH ₃	сн ₃	сн3	c1-	CI	снз	снз	CH ₃
Code- Nr.		240	241	242	253	297		• .	

TABELLE

309817/1217

289

Nr.

团
긐
圙
9
급

A STATE OF THE STA

Code-Nr.	DI 50	analget.Wrkg.	Entzundungshemmung	antitussive Wrkg.	depressive Wrkg.
128	1600	Krampf - 57 %	0	- 10 % NS	Acto.: 0 Evas.: 0 Trac.: 0
143	1600	0	0	- 47 %	Acto. : 0 Evas. : - 27 % Trac. : 0
142	1600	0	0	- 33 %	Acto.: 0 Evas.: - 33% Trac.: 0
175	1600	0	1	0	Acto. : 0 Evas. : - 24 % Trac. : 0
182	1200	Krampf - 37 %	0	- 51 %	Acto.: 0 Evas.: - 38 % Trac.: 0

•			1					···	
			tori						2250327
	+	ئة: . ب	.amma	•					
	+	Aktivität	-infl	=	=	=	=	=	=
	1	AK	Anti-inflammatorial Antitussiv		•	•			
			000	000	000	000	000	88	000
	·	w	19 00	18 00 17 00	12 00 15 00	17 00 16 00	14 00 11 00	20 000 16 000	15 00 12 00
•.		(n/							
	U.V.	λ _{max.} (m/u)			. <u></u>				
		ک ma	209	210 249	208	209	207 237	208 249	207
					•				
		Y-2-Y	1660	1640	1690	1640	1760	1660	1760
	cm -1	7	1	,	1	7		~	1
•	8	c-r ^{VI}	1630	1700	1640	1700	1630	1630	1620
4	I	√	1(, Ä	Η	ĭ	.)	16
	E-1	.ပ	168	190	265	183	. 06	181	116
	124	,	1	7	. /	~	6	-	1
				^					
	¥				-NH ₂		-0C ₂ H ₅	$(^{\circ})$	-0C ₂ H ₅
,			Z	\N_	N-	`z,	Ŏ	\ _Z /	ŏ
	RII		Ħ	Ħ	Ħ	æ	Ħ	· #	Ħ
	R _V		= ,	Ħ	Ħ	Ħ	æ	Ħ	æ
								•	. •
						•		•	
	RVI								
	~		8		8	İ		ا م	<u> </u>
			-MR ₂	-0H	-NH ₂	НО-	\ _z /	-MH ₂	\ _{\\} \
	Code-	.	_						
Į	ပိ	ž	100	96	106	112	116	138	145

TABELLE I bis (Fortsetzung)

W									
Code- R		R,	> -	다. 5 0	J.R. cm ⁻¹	-C-Y	υ.ν. λ _{max. (m/u)}	3	festgest. Aktivität
199 -0-CH ₂ -CH ₂ -N,	CH ₂ -N	н	-0C ₂ H ₅	75	1710	1760	210 253	27 000	antitussiv, analgetisch,
200 -0-сн ₂ -сн ₂ -м	$2^{-N} < \frac{Et}{Et}$, HC1	н	-0C ₂ H ₅	108	1710	1760	208 255	16 000 20 000	Kardiovaskulär "
201 -0-CH-CH ₂ -N CH ₃	0, HC1	н	-oc ₂ H ₅	182	1710	1760	208 253	17 500 20 000	=
225 -0-CH ₂ -CH ₂ -N	, HC1	н	-oc ₂ H ₅	169	1710	1760	207 254	18 000 19 000	=
293 -0-CH ₂ -CH ₂ -N	irat	H	-0-CH ₂ -CH ₂ -N	190	1710	0771	213 252	36 000 22 000	=
294 -0-сн ₂ -сн ₂ -й	, ICH ₃	ш	-0-CH ₂ -CH ₂ -N), ICH ₃	1710	1760	217 256	34 000	. =
310ОН		СН.3 СН.3	но-	175	1690	1700	210 253	000	antitussiv, kardiovaskulär, lipoidnormalis,
•				÷					•

TABELLE I bis (Fortsetzung)

R	RV	RII	Ā	64	I.R. cm	n-1		U.V.		£00+	
	•			ပို	Jc-R ^{VI}	¥-0=0 ∕	λ (m/u)	(n/m)	w	Aktivität	
-0-CH CH ₃	СН3	GH ₃	-о-сн Ссн3	_m _m	1710	1760	1		ant kar lip	antitussiv, kardiovaskulär, lipoidnormalis.	
-0-CH ₂ -CH ₂ -N	O CH ₃	CH ₃	-0-CH ₂ -CH ₂ -N	136	1710	1730	209	15 15	15 000 15 000	Ξ	
, Oxalat	ħ		, Oxalat	at		·					
	•							·			

II bis

TABELLE

RA

										_
	<pre>- festgest. Aktivität</pre>		Antitussiv	=	£	=	antitussiv, analgetisch.	kardiovaskulär "	=	
	(a)		13 000 18 000	19 000 19 000	20 000	19 000	000	23 000	30 000	
	υ.ν. λ _{max.} (m _/ u)		216 267	210 253	209 252	209	210 255	209	210 254	
0	cm-1	=0	1650	1650	1660	1660	1660	1660	1660	
	J-c-RVI	=0	1720	1710	1700	1710	1710	1720	1710	
· >	<u>a.</u> ∪ (≈ 0		61	104	72	110	162	85	160	
	>		~	رٍ	(()				
	RVI	:	-0C ₂ H ₅	-осн ₃	-0c ₂ H ₅	-0CH ₃	$-0-CH_2-CH_2-N$	$-0-cH_2-cH_2-N$ HC1	-0-CH ₂ -CH ₂ -N 0	fumarat
	Code-	00	6	105	120	139	205 -0-CI	204 -0-CH	221 -0-CH ₂	

309817/1217

TABELLE II bis (Fortsetzung)

4 6 6	Testgest. Aktivität	antitussiv analgetisch, kardiovaskulär	=	·	=	=	=
'.V.	w	36 000	32 000 16 000	34 000 21 600	27 000 30 000	32 000 18 000	31 000 22 000
n	λ _{max.} (m/u)	210	207	209 254	211 242	212 250	212 253
-1	۲-۵-۷ مار	1660	1660	1660	1660	1660	1660
	V-c-R ^{VI}	1710	1710	1710	1710	1710	1710
67.	ပ္ က	139	100	138	162	N Et 168	134
¥			٢	(°)	(z	NH-CH ₂ -CH ₂ -N	()
					, існ ₃	•	
R ^{VI}		-0-CH ₂ -CH ₂ -N	-0-CH ₂ -CH ₂ -N	-0-CH ₂ -CH ₂ -N	-0-cH ₂ -cH ₂ -N	-0-CH ₂ -CH ₂ -N	-0-CH ₂ -CH ₂ -N
Code-	Nr.	222 -	228	235	249 -(311	312 -0

TABELLE II bis (Fortsetzung)

	VI			-1				
Code-	.	¥	မှ <mark>ာ</mark> ပု	I.R. cm	V-C-Y	υ.ν. λ _{max.} (m _/ u)	w	festgest. Aktivität
313	-O-CH-CH ₂ -N CH ₃	() () () () () () () () () ()	150	1710	1660	211 252	30 000 22 000	antitussiv, analgetisch, kardiovaskulär
314	-0-CH-CH ₂ -N CH ₃		134	1710	1660	211 252	30 000 23 000	=
	-0-CH ₂ -CH ₂ -N	(_z	142	1710	1660	212 252	30 000	=
		١				.)		

Patentansprüche

1. Neue Phenoxycarbonsäurederivate der allgemeinen Formel:

$$R^{VI} - C \longrightarrow R^{III}$$

$$R^{VI} - C \longrightarrow R^{III}$$

$$R^{III} \longrightarrow R^{III}$$

$$R^{III} \longrightarrow R^{III}$$

$$R^{III} \longrightarrow R^{III}$$

in der R^{II} und R^{V} gleich oder verschieden sein können und jeweils ein Wasserstoffatom oder eine CH_3 -, C_2H_5 - oder p-F- C_6H_4 -gruppe bedeuten;

R^{III} und R^{IV} gleich oder verschieden sein können und jeweils ein Wasserstoff- oder Halogenatom, vorzugsweise F, Cl oder Br, eine Alkylgruppe mit 1 bis 5 C-Atomen oder CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH oder C₆H₅ bedeuten;

R^{VI} ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 5 C-Atomen, eine ggf. einen oder mehrere Substituenten CH₃, CF₃ oder Halogen aufweisende Arylgruppe, eine Cyclohexylgruppe, eine Alkoxygruppe mit 1 bis 6 C-Atomen, eine ggf. substituierte Aryloxygruppe, eine Cyclohexyloxygruppe, eine Maralloxygruppe, eine Cyclohexyloxygruppe, eine Cyclohexyloxygruppe, eine Cyclohexenyloxygruppe, eine R₃R₄N-CH₂-Cyclohexenyloxygruppe, eine R₃R₄N-CH₂-CH₂-NH-gruppe oder eine R₃R₄N-CH₂-CH₂-CH₂-NH-gruppe oder eine R₃R₄N-CH₂-CH₂-CH₂-NH-gruppe oder eine R₃R₄N-CH₂-CH₂-CH₂-NH-gruppe oder eine R₃R₄N-CH₂-CH₂-CH₂-CH₂-CH

Y eine Hydroxylgruppe, eine vorzugsweise 1 bis 4 C-Atome aufweisende niedere Alkoxygruppe, eine R₃R₄N-gruppe, eine R₃R₄N-CH₂-CH₂-NH-gruppe oder eine R₃R₄N-alkylen-O-gruppe ist;

- X ein Sauerstoffatom oder eine R₀0N-gruppe sein kann; wobei R₀ ein Wasserstoffatom, eine niedere Alkylgruppe mit 1 bis 5 C-Atomen, eine R₃R₄N-CH₂-CH₂-gruppe oder eine HOCH₂-CHOH-CH₂-gruppen sein kann und
 - R_3 und R_4 , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom, eine niedere Alkylgruppe mit 1 bis 5 C-Atomen, eine Cycloalkylgruppe mit 3 bis 7, vorzugsweise 5 bis 6 C-Atomen oder eine ggf. am aromatischen Kern ein oder mehrere Halogenatome, insbesondere F, Cl und Br oder CF₃- bzw. CH_3 -gruppen aufweisende Arylgruppe darstellen können, wobei R_3 und R_4 auch zusammen mit dem Stickstoffatom, an das sie gebunden sind,
 - a) einen 5- bis 7-gliedrigen N-heterocyclischen Rest, der ein weiteres Heteroatom aus der Gruppe N, O und S aufweisen und substituiert sein kann, oder
 - b) einen von Lysin oder Cystein abgeleiteten Amidrest bilden können und deren mögliche Säureanlagerungssalze.
- 2. Neue Derivate nach Anspruch 1, dadurch gekennzeichnet, daß die R₃R₄N-gruppe ein Amino-, Mono- oder Dialkylamino-, Morpholino-, Thiomorpholino-, Pyrrolidino-, Piperidino-, Azepino-, Piperazino-, N-p-Chlorophenylpiperazino-, N-Methylpiperazino-, Anilino-, 2,3-Dimethylani-lino-, p-Chloranilino-, o-Trifluormethylanilino-, p-Trifluormethylanilino-, Cyclohexylamino-, Cyclopentylamino- oder N-Methylanilino-rest ist, sowie ihre Analogen.
- 3. 4-Acetyl-3-thiomethyl-phenoxyessigsaure als neue Verbindung nach Anspruch 1.
- 4. p-Isobutyryl-phenoxyessigsaureathylester als neue Verbindung nach Anspruch 1.

- 5. N-(p-Propionyl-phenoxyacetyl)-morpholin als neue Verbindung nach Anspruch 1.
- 6. N-(p-Benzoyl-phenoxyacetyl)-piperidin als neue Verbindung nach Anspruch 1.
- 7. N-(p-Propionyloxim-phenoxyacetyl)-piperidin als neue Verbindung nach Anspruch 1.
- 8. N-(p-Acetyloxim-phenoxyacetyl)-piperidin als neue Verbindung nach Anspruch 1.
- 9. p-(4-Chlorbenzoyl)-phenoxy-isobuttersaure als neue Verbindung nach Anspruch 1.
- 10. p-(4-Chlorbenzoyl)-phenoxy-isobuttersäureisopropylester als neue Verbindung nach Anspruch 1.
- 11. N-(p-Carboxyphenoxy-acetyl)-piperidin als neue Verbindung nach Anspruch 1.
- 12. p-Piperidinocarbonyl-phenoxyessigsäureäthylester als neue Verbindung nach Anspruch 1.
- 13. N-(p-thoxycarbonyl-phenoxy-acetyl)-piperidin als neue Verbindung nach Anspruch 1.
- 14. Verfahren zur Herstellung der Verbindungen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man eine p-Hydroxybenzoylverbindung mit einer X-Halogencarbonsäure oder einem Ester derselben in alkalischem Milieu umsetzt und

- ggf. die Säure-, Ester- und/oder Carbonylfunktionen in Bäure-, Ester-, Amid- und/oder Oximfunktionen umwandelt.
- 15. Pharmazeutische Mittel, gekennzeichnet durch einen wirksamen Gehalt an zumindest einer der Verbindungen der Formel I oder einem ihrer nicht-toxischen Säureanlagerungssalze als Mirkstoff.