Group 6

Nguyễn Huy Hoàng – 20194433

Phùng Hà Nguyên - 20190087

Hoàng Nguyễn Minh Nhật – 20194445

Nguyễn Quang Minh – 20194444

EXERCISE LIST NUMBER 6

Exercise 1:

1. Schema

MANAGER (manager_id, manager_name)

WAREHOUSE (warehouse_name, warehouse_address, manager_id #)

PART (part_no, supplier name, inventory date)

PART_IN_WAREHOUSE (part_no #, warehouse_name #, qty_on_hand)

DELIVERY (delivery_no, delivery_date, delivery_destination)

DELIVERY_DETAILS (delivery_no #, part_no #, delivery_qty)

2. ERD

Why do you need manager_id as part of the PK of the table WAREHOUSE?
Also, inventory_date should be in the PART_IN_WAREHOUSE table (the inventory date also depends on the warehouse)

Good, except that inventory_date should be an attribute of the CONTAIN relationship between PART and warehouse (the inventory date also depends on the warehouse, not only on the part)

Exercise 2:

1. Move the attribute *title_id* in the DOMAIN table and add the attribute domain_id in the TITLES table.

AUTHOR (author id, first name, last name)

TITLES (title id, name, author id #, domain id #)

DOMAIN (domain id, name)

READERS (reader id, first name, last name, address, city id, city name, phone)

BORROWING (borrowing_id, reader id #, title id #, date)

HISTORY (reader id #, title id #, date of borrowing, date of returning)

OK, but the HISTORY PK is not unique...

2. They are not because there is Transitive Dependency between city id \rightarrow city name.

Very good

3. Schema in 3NF:

AUTHOR (author id, first name, last name)

TITLES (title_id, name, author id #, domain id #)

DOMAIN (domain id, name)

READERS (reader_id, first_name, last_name, address, city_id #, phone)

CITY (city_id, city_name)

BORROWING (borrowing id, reader id #, title id #, date)

HISTORY (reader_id #, title_id #, date of borrowing, date of returning)

4. Add a relationship table WRITING with 2 attributes title_id (PK) and author_id.

AUTHOR (author_id, first_name, last_name)

WRITING (title_id #, author id #)

TITLES (title_id, name, domain id #)

DOMAIN (domain_id, name)

READERS (reader_id, first_name, last_name, address, city_id #, phone)

CITY (city id, city name)

BORROWING (borrowing_id, reader id #, title id #, date)

HISTORY (reader_id #, title_id #, date_of_borrowing, date_of_returning)
OK for the idea of adding writing, but in your implementation the WRITING and HISTORY

PKs are not unique. a good idea. Because when using one single BORROWING table with a date_of_returning column, you will have to update the table manual whenever a reader returns a book. Meanwhile, with the trigger will automatically updates the information.

It is indeed a good idea, but your argument is not necessarily true.

6. ERD:

Very good

Exercise 3:

1. ERD:

2. Relational schema:

ORDER (order_id, customer, vehicle, date, advisor)
SERVICES (service_id, type, price_rate, work_hours)
ORDER_NEED (order_id #, service_id #)
MECHANIC (mechanic_id, mechanic_name, order_id #)
SERVICE MADE (mechanic_id #, service_id #)

This is not a good schema: each mechanic can work on one order maximum!

3. The schema in 3NF:

CUSTOMER (cust_id, cust_name, vehicle)

ORDER (order_id, cust_id #, date, advisor)

SERVICES (service_id, type, price_rate, work_hours)

ORDER_NEED (order_id #, service_id #)

MECHANIC (mechanic_id, mechanic_name, order_id #)

SERVICE MADE (mechanic id #, service id #)

Exercise 4:

1. ERD:

Wondershare EdrawMax

Database (IT3090E)

This model is OK, except that there should be no attribute a toy in the relationship « HISTORY » (info about the toy is in the entity TQY, and we don't put FKs in ER diagrams). Just have a look at the solution proposed by group 5, and the alternative model that I

propose.2. Relational schema:

CHILDREN (child_id, name, address, DOB)

TOY (**toy_id**, model, type)

HISTORY (year, child_id #, nice_or_naughty, toy_id #)

WISH LIST (year, child_id #, toy _id #)

OK.

3. The schema is in 3NF.

Exercise 5:

- 1. Main drawback:
 - + The way this design combines all information into one table makes it bulky and when there is a need of modify or query, it would be inconvenient.
 - + This design brings a large amount of wasted memory because there would be a lot of NULL attributes.

- True. And also,
 the attribute 'degree' is not simple: it is composite -> not in 1NF
- What if an employee has 4 degrees (for instance 1 Bachelor, 1 Master and 2 PhDs??)

Database (IT3090E)

Very good, except that there should

Very good

be no double rectangle for the entity **DEGREE** (it is

not a weak entity)

3. In the two diagrams, the second one might be more memory-saving in order to store GPA for each degree.

Very good

4. Relational schema:

MEMBER (member_id, first_name, last_name) DEGREE (degree_id, year, major, university, degree_level) DEGREE DETAIL (member_id #, degree_id #, GPA)

Very good

5. Yes, it is in 3NF because its attributes are atomic and cannot be broken into smaller tables (No Transitive).

OK