Regression Models & ANCOVA

Advanced Biostatistics

Dean Adams

Lecture 4

EEOB 590C

Regression: Y~X

-X & Y are continuous

H₀: no relationship between X & Y

-Compare variation explained by model to residual error variation

 $\text{Model:} \quad Y_i = \beta_0 + \beta_i X_i + \mathcal{E}_i \quad \text{ (β is grand mean, β_1 is slope, and ϵ_{ij} is error)}$

-Standard test statistic: F-ratio (ratio of variances)

 $Fpproxrac{\sigma_{\mathrm{mod}\,el}^{2}}{\sigma_{error}^{2}}$

Name from Galton's work: offspring values 'regress' (tend towards) to that of parents

- 1: Independence: ϵ_{ij} of variates must be independent
- **2: Normality**: requires normally distributed ϵ_{ij}
- 3: Homoscedasticity: equal variance
 - -Samples along regression line are homoscedastic (variance doesn't 'balloon' along regression)
- **4:** X values are independent and measures without error

Fit line that minimizes sum of squared deviations (LS fit) from Y-variates to line (vertical deviations b/c no error in X)

Slope calculated as:
$$b_{Y \cdot X} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 ($\sum (cross\ products) / SS_x$)

Regression line always crosses $\left(\overline{X}, \overline{Y} \right)$ so intercept is: $\beta_0 = \overline{Y} - b_{Y \cdot X} \overline{X}$

Note: this is Model I regression with 1 Y for each X. Slight alterations exist for multiple Y for each X: see Biometry.

Can obtain SS_{Model} & SS_{Error}

SS explained:
$$SSR = SSM = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$
 where \hat{Y} are predicted values

SS error:
$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Traditional test: F-ratio (MSR / MSE)

Source	df	SS	MS	F	P
Regression	1	SSM	SSM/df	MSM/MSE	
Error	n-2	SSE	SSE/df		
Total	n-1	SST=SSM+SSE			

Tests whether regression explains a significant portion of variation

Standard approach:

-Compare F-ratio to F-distribution with appropriate df

Resampling Alternative:

-Shuffle Y relative to X & generate distribution of possible outcomes

F-test assesses variance explained, but not how much Y changes with X

Can evaluate the model parameters separately

Slope test
$$(\beta_1 \neq 0)$$
: $t = \beta_1 - 0 / s_{\beta_1}$ with $s_{\beta_1} = \sqrt{\frac{MSE}{\sum_{i=1}^{n} (X_i - \overline{X})^2}}$ (n-2 df)

Intercept test (
$$\beta_0 \neq 0$$
): $t = \frac{\beta_0 - 0}{s_{\beta_0}}$ with $s_{\beta_0} = \sqrt{MSE \left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \right]}$ (n-2 df)

Can also test against particular values (e.g., Isometry: is β_1 = 1?)

Very useful for certain biological hypotheses

> summary(lm(Y~X1))#TotalLength ~ AlarExtent
Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3045 0.3383 3.856 0.000179 ***
X1 0.6848 0.0615 11.136 < 2e-16 ***
Multiple R-squared: 0.4806, Adjusted R-squared: 0.4768
```


Y = 1.3045 + 0.6848X

Correlation and regression closely linked

Mathematically:
$$b_{Y \cdot X} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{SS_x}$$
 vs. $r_{xy} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{S_x S_y}$

vs.
$$r_{xy} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{S_x S_y}$$

Difference in denominator, so related as: $r_{xy} = b_{Y \cdot X} \begin{pmatrix} s_x \\ s_y \end{pmatrix}$

r is a standardized regression coefficient (i.e. slope in standard deviation units)

- $-\beta$: error in Y direction only (direction of scatter)
- *-r*: error in X & Y (dispersion of scatter)
- -Thus, regression models *causation* (Y as function of X) and correlation models association (covariation in X & Y)

Regression

$$b_{Y \cdot X} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{SS_x}$$

Correlation

$$r_{xy} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{S_x S_y}$$

When both X & Y contain measurement error, model I regression underestimates slope

- -Model II regression accounts for this by minimizing deviations perpendicular to regression line (not in Y direction only)
- -Different types of model II regression, depending on data (major axis, reduced major axis, etc.)
- -X & Y in 'same' units/scale: major axis regression (PCA)
- -X & Y not in same units/scale: standard (reduced) major axis regression

When X & Y in 'same' units/scale: major axis regression (PCA)

Compute covariance matrix for X & Y:

$$VCV = \begin{bmatrix} s_X^2 & s_{XY} \\ s_{XY} & s_Y^2 \end{bmatrix}$$

Obtain principle eigenvalue (λ) and eigenvector

$$\lambda_{1} = \frac{s_{X}^{2} + s_{Y}^{2} + \sqrt{\left(s_{X}^{2} + s_{Y}^{2}\right)^{2} - 4\left(s_{X}^{2}s_{Y}^{2} - s_{XY}^{2}\right)}}{2}$$

Slope is:
$$b_{Y \cdot X} = \frac{s_{XY}}{\lambda_1 - s_X^2}$$

When X & Y not in same units/scale: standard (reduced) major axis regression Standardize variables to N(0,1) (standard normal deviates)

Calculate SMA slope as: $b_{Y \cdot Xrma} = \frac{b_{Y \cdot X}}{r_{xy}}$

> lmodel2(Y~X1,nperm=999)

Angle between the two OLS regression lines = 20.53316 degrees

Ме	ethod Intercept	Slope Angle	(degrees) P-perm	ı (1-tailed)
1	OLS 1.3044593	0.6847984	34.40328	0.001
2	MA -0.3329159	0.9824064	44.49152	0.001
3	SMA -0.3624212	0.9877692	44.64746	NA

OLS slope (blue)

MA slope (red)

*SMA slope = β_{OLS}/r

*NOTE: Justification for RMA usage has been overplayed in biology.

- -What matters is *NOT* whether X has measurement error: $var(\varepsilon_v)$
- -Instead, ONLY when $var(\epsilon_x)/var(X)$ is large, might there be an issue with Model I regression
- -But even in this case, RMA is not guaranteed to alleviate the problem (see Kilmer & Rodriguez, 2017. *J. Evol. Biol.*)

Identify relationship between several X and continuous Y

Predict Y using several variables simultaneously

Model:
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \varepsilon_i$$

 β_i are partial regression coefficients (effect of X_i while holding effects of other X constant)

For 2X, think of fitting a plane to the data

Standard partial regression coefficients $b_{YX_i \cdot X_j}^{'}$: β of Y & X_i holding X_j constant.

Expresses change in normalized units (standard normal deviates: $\frac{Y-\overline{Y}}{\sigma_{_{Y}}}$)

ADVANTAGE: can be directly compared for each variable

Found from variable correlations: $b_{YX_1 \cdot X_2} = \frac{r_{X_1Y} - r_{X_2Y} r_{X_1X_2}}{1 - r_{X_1X_2}^2}$

Interpret, then calculate back to original units and for conventional partial

regression coefficients

$$b_{YX_1 \cdot X_2} = b_{YX_1 \cdot X_2} \cdot \frac{S_Y}{S_{X1}}$$

For all models, R²: proportion of variance explained by model

Should I add another variable? Test difference in R²

NOTE: R² will 'top' out as you add variables (so frequently adjusted R² used)

Can also compare models using 'aov' in R, using AIC, etc.

How to add variables: stepwise addition, stepwise deletion, random addition, etc. NOTE: different methods yield different results (b/c $b_{YX_i \cdot X_j}$ depend on other variables in model)

CAREFUL WITH BIOLOGICAL INTERPRETATION!!!

To compare 2 regression lines, calculate F-ratio as:

$$F = \frac{\left(b_{1} - b_{2}\right)^{2}}{\frac{\sum\left(X_{1} - \bar{X}_{1}\right)^{2} + \sum\left(X_{2} - \bar{X}_{2}\right)^{2}}{\left(\sum\left(X_{1} - \bar{X}_{1}\right)^{2}\right)\left(\sum\left(X_{2} - \bar{X}_{2}\right)^{2}\right)^{3}} \overline{S_{Y \cdot X}^{2}}}$$

Df = 1, $(n_1 + n_2 - 4)$

Where $\overline{S}_{Y \cdot X}^2$ is the weighted average of $S_{Y \cdot X}^2$

Procedure can be generalized to compare > 2 regression lines (see *Biometry*)

- -Often, one wishes to compare regression lines AND the groups
- -ANCOVA 'combines' regression and ANOVA
- -H₀: no difference among slopes, no difference among groups
- -Must first compare slopes, then compare groups (ANOVA) while holding effects of covariate constant
- -Several possible outcomes

Model: $Y_{ij} = \mu + \alpha_i + \beta_{within} \left(X_{ij} - \overline{X}_i \right) + \varepsilon_{ij}$

Calculate SS for:

1: covariate (common regression)

2: group x covariate interaction (slopes test)

3: groups

Source	df	SS	MS	F	Р
Covariate	1	SSR	SSR/df		
Group	a-1	SSG	SSG/df		
Cov x Group	a-1	SSInt	SSInt/df		
Error	n-2(a-1)+1	SSE	SSE/df		

Standard approach:

-Compare F-ratio for each factor to F-distribution with appropriate df

Resampling Alternative:

-Residual randomization: shuffle residuals from reduced model to assess that factor (e.g., remove A×cov and use randomization to test A×cov factor)

- 1: Are slopes for groups different (SS_{covXgroup} > 0?)
- 2: If interaction significant, then we cannot compare groups, because slopes differ Group comparisons not useful, as the variation is in their group-specific slopes

3: If interaction term is NOT significant, then test groups while holding covariate constant (ie, refit new model as Y~cov + group)

Fit common-slope model

- 1: Perform ANOVA on regression residuals: NOT the same as ANCOVA (different df, pooled β , etc.). Also, lose test of slopes, which is important (see J. Anim. Ecol. 2001. 70:708-711)
- **2: Significant cov:gp interaction, but still compare groups**: not useful, as answer depends upon where along regression you compare
- 3: "Size may be a covariate, so I'll use a small size range to 'standardize' for it": choosing animals of similar sizes will eliminate covariate, but also will eliminate potentially important biological information (e.g., what if male head width grows relatively faster than females (i.e. size:head interaction?)

Many other models possible

-PATH ANALYSIS & SEM (structural equation modeling): looks at partial correlation coefficients and partial regression coefficients to explain variance in data according to hypothesized 'causal' path between variables

Curvilinear regression: Fit polynomials of X: X, X², X³, etc.

Regression an incredibly flexible tool for testing hypotheses

Can add factors, based on theory of partitioning SS

Careful in decisions here!

Permutations also incredibly useful for hypothesis testing