Metody statystyczne

Zestaw zadań numer 2

Vitalii Urbanevych

vitalii.urbanevych@doctoral.uj.edu.pl

14.12.2021

Process Poissona

- t_i czas pomiędzy zdarzeniami (i-1) i i, $t_0=0$ i=1,2,...
- t_i jest losowane z rozkładu wykładniczego, $f(t) = \lambda e^{-\lambda t}$
 - losujemy t_i metodą odwróconej dystrybuanty
 - $t_i = \frac{-\ln(n_i)}{\lambda}$
 - n_i losowane z rozkładu jednorodnego na przedziale (0,1)
- N(t) ilość zdarzeń, które wystąpiły do chwili tN(0)=0
- ullet Taki proces nazywa się procesem Poissona o intensywności λ
- N(t) ma rozkład Poissona $P(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$, z parametrem λt

Problem A

Symulacja procesu Poissona

- $\lambda = 1$
- t = 1, 10, 20, 90
- Zaimplementować symulację pojawienia zdarzeń
- Dla każdej wartości t:
 - Otrzymać rozkład prawdopodobieństwa ilości zdarzeń
 - ullet Porównać z rozkłądem Poissona z parametrem λt
- ullet Sprawdzić że wartość średnia jest λt

3/4

Problem B

- Mamy symulację zdarzeń jak w A
- $\lambda = 1, t = 1, 10, 20, 90$
- Każde zdarzenie może należeć do jednej z trzech grup: 1,2,3
- Należność do jednej z grup jest losowane i prawdopodobieństwa należności do grup: $p_1 = 0.2$, $p_2 = 0.5$, $p_3 = 0.3$ ($p_1 + p_2 + p_3 = 1$)
- Sprawdzić że rozkład prawdopodobieństwa zdarzeń grupy i jest rozkładem Poissona z parametrem λtp_i
- Sprawdzić że wartość średnia dla takiego rozkładu jest λtp_i

4/4