COT 2000 Foundations of Computing

Summer 2024

Lecture 11 – part 1

Lab 6 Exam 2 – 06/21/24 Lecture 11 – part 2

Review

Review

- Logic review
- Logic exercises
- Quantified statements
- Arguments and fallacies with quantifiers

Lecture 11 – part 3

Bash/Terminal (Lab 6)

Bash/Terminal

- **Terminal:** An interface to interact with the computer system. Allows direct input and output from/to the user.
- CLI (Command Line Interface). Interface where users type commands to operate the computer.
 - Faster operations once commands are known.
 - Offers more powerful functionalities.
 - Challenge: Requires learning and memorizing commands.

Shell

- Software that interprets and executes CLI commands.
- Acts as an interface between user and the operating system's kernel.

Bash

• A popular Unix shell. Known for scripting capabilities and user-friendliness.

https://en.wikipedia.org/wiki/Computer_terminal

Why is Bash Important for Computer Science?

Linux Everywhere:

- Powers cloud servers, serverless infrastructures, and VMs.
- Runs on edge devices, IoT gadgets, and more.
- Dominates modern tech landscape: understanding Linux = indispensable skill.

Ubiquity in Cloud:

- Default shell in major cloud ecosystems.
- Automates cloud tasks, making deployments and configurations efficient.

• CLI vs. GUI:

- CLI (like Bash) offers precision, speed, and scriptability.
- Essential for many backend, cloud, and infrastructure tasks.
- GUIs are limited, but CLIs empower deeper system interactions.

• Future-Proofing Careers:

- As technology leans more towards automation and cloud, Bash proficiency becomes a valuable asset.
- Opens doors to roles in DevOps, Cloud Engineering, IoT development, and more

SOME COMMANDS

Is - List files/directories.

Example: Is -I (Lists files in detailed view)

cd <directory> - Change to <directory>.

Example: cd Documents/ (Changes the directory to 'Documents')

pwd - Show current directory.

Example: pwd (Displays the path of the current directory)

touch <filename> - Create an empty file.

Example: touch newfile.txt (Creates a new file named newfile.txt)

cat <filename> - Display file content.

Example: cat myfile.txt (Displays the content of myfile.txt)

cp <source> <destination> - Copy file.

Example: cp file1.txt file2.txt (Copies file1.txt to file2.txt)

mv <source> <destination> - Move/rename file.

Example: mv oldname.txt newname.txt (Renames oldname.txt to newname.txt)

rm <filename> - Delete file.

Example: rm unwantedfile.txt (Deletes the file named unwantedfile.txt)

grep "pattern" <filename> - Search for a pattern in a file.

Example: grep "hello" myfile.txt (Searches for the word "hello" in myfile.txt)

find . -name "filename" - Search for a file in current and sub-directories.

Example: find . -name "notes.txt" (Searches for notes.txt in the current directory and all sub-

directories)

man <command> - Display the manual for a command.

Example: man Is (Displays the manual for the 'Is' command)

<command> --help - Get a quick help for a command.

Example: Is --help (Provides a brief help documentation for the 'ls' command)

Lecture 11 – part 4

Sequences

Introduction to Sequences

An ordered list of numbers (or elements).

Example: Imagine that a person decides to count his ancestors.

Position in the row	1	2	3	4	5	6	7
Number of ancestors	2	4	8	16	32	64	128

$$n = 1, 2, 3, 4, \dots$$

$$2^n = 2, 4, 8, 16, \dots$$

$$A_k = 2^k$$

Definition

A **sequence** is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.

$$a_m, a_{m+1}, \ldots, a_n$$

Finite Sequence

$$a_m, a_{m+1}, a_{m+2}, \dots$$

Infinite Sequence

 a_k is called a term.

k is the subscript or index.

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

$$a_k = \frac{k}{k+1}$$
 for all integers $k \ge 1$,

$$b_i = \frac{i-1}{i}$$
 for all integers $i \ge 2$.

Compute the first five terms of both sequences.

$$a_{1} = \frac{1}{1+1} = \frac{1}{2}$$

$$b_{2} = \frac{2-1}{2} = \frac{1}{2}$$

$$a_{2} = \frac{2}{2+1} = \frac{2}{3}$$

$$b_{3} = \frac{3-1}{3} = \frac{2}{3}$$

$$a_{3} = \frac{3}{3+1} = \frac{3}{4}$$

$$b_{4} = \frac{4-1}{4} = \frac{3}{4}$$

$$a_{4} = \frac{4}{4+1} = \frac{4}{5}$$

$$b_{5} = \frac{5-1}{5} = \frac{4}{5}$$

$$a_{5} = \frac{5}{5+1} = \frac{5}{6}$$

$$b_{6} = \frac{6-1}{6} = \frac{5}{6}$$

Compute the first six terms of the sequence c_0, c_1, c_2, \ldots defined as follows:

$$c_j = (-1)^j$$
 for all integers $j \ge 0$.

$$c_0 = (-1)^0 = 1$$

 $c_1 = (-1)^1 = -1$
 $c_2 = (-1)^2 = 1$
 $c_3 = (-1)^3 = -1$
 $c_4 = (-1)^4 = 1$
 $c_5 = (-1)^5 = -1$

Find an explicit formula for a sequence that has the following initial terms:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots$$

$$\frac{1}{1^2}, \quad \frac{(-1)}{2^2}, \quad \frac{1}{3^2}, \quad \frac{(-1)}{4^2}, \quad \frac{1}{5^2}, \quad \frac{(-1)}{6^2}.$$

$$\updownarrow \qquad \qquad \updownarrow \qquad \qquad \updownarrow \qquad \qquad \updownarrow \qquad \qquad \updownarrow$$

$$a_1 \qquad a_2 \qquad a_3 \qquad a_4 \qquad a_5 \qquad a_6$$

$$a_k = \frac{\pm 1}{k^2}$$
. When k is odd, $k + 1$ is even: $(-1)^{k+1} = +1$ and when k is even, $k + 1$ is odd: $(-1)^{k+1} = -1$.

$$a_k = \frac{(-1)^{k+1}}{k^2}$$
 for all integers $k \ge 1$.

Note that making the first term a_0 would have led to the alternative formula

$$a_k = \frac{(-1)^k}{(k+1)^2}$$
 for all integers $k \ge 0$.

Summation Notation

$$A_1 + A_2 + A_3 + A_4 + A_5 + A_6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 = 126.$$

Definition

If m and n are integers and $m \le n$, the symbol $\sum_{k=m}^{n} a_k$, read the summation from

k equals **m** to **n** of **a**-sub-**k**, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We say that $a_m + a_{m+1} + a_{m+2} + ... + a_n$ is the expanded form of the sum, and we write

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n.$$

We call k the **index** of the summation, m the **lower limit** of the summation, and n the **upper limit** of the summation.

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$\sum_{k=1}^{5} a_k$$

b.
$$\sum_{k=2}^{2} a_k$$

a.
$$\sum_{k=1}^{5} a_k$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

a.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$$

b.
$$\sum_{k=2}^{2} a_k = a_2 = -1$$

c.
$$\sum_{k=1}^{2} a_{2k} = a_{2 \cdot 1} + a_{2 \cdot 2} = a_2 + a_4 = -1 + 1 = 0$$

Write the following summation in expanded form:

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}.$$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$

$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$
.

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}.$$

Product Notation

$$\prod_{k=1}^{5} a_k = a_1 a_2 a_3 a_4 a_5.$$

Definition

If m and n are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$, read the **product from** k **equals** m **to** n **of** a-**sub-**k, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n .

We write

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \cdots \cdot a_n.$$

Compute the following products:

a.
$$\prod_{k=1}^{5} k$$

$$b. \prod_{k=1}^{1} \frac{k}{k+1}$$

a.
$$\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$
 b.
$$\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$$

b.
$$\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$$

Properties

If $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

2.
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$$
 generalized distributive law

3.
$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k).$$

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

a.
$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k$$
 b.
$$\left(\prod_{k=m}^{n} a_k \right) \cdot \left(\prod_{k=m}^{n} b_k \right)$$

a.
$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$
 by substitution
$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$
 by Theorem 5.1.1 (2)
$$= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$$
 by Theorem 5.1.1 (1)
$$= \sum_{k=m}^{n} (3k-1)$$
 by algebraic simplification

b.
$$\left(\prod_{k=m}^{n} a_{k}\right) \cdot \left(\prod_{k=m}^{n} b_{k}\right) = \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right)$$
 by substitution
$$= \prod_{k=m}^{n} (k+1) \cdot (k-1)$$
 by Theorem 5.1.1 (3)
$$= \prod_{k=m}^{n} (k^{2} - 1)$$
 by algebraic simplification

Transforming a Sum by a Change of Variable

Example: Transform the following summation by making the specified change of variable

summation:
$$\sum_{k=0}^{6} \frac{1}{k+1}$$
 change of variable: $j = k+1$

Solution: First calculate the lower and upper limits of the new summation:

When
$$k = 0$$
, $j = k + 1 = 0 + 1 = 1$.
When $k = 6$, $j = k + 1 = 6 + 1 = 7$.

Since
$$j = k + 1$$
, then $k = j - 1$.
Hence $\frac{1}{k+1} = \frac{1}{(j-1)+1} = \frac{1}{j}$.
$$\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{j=1}^{7} \frac{1}{j}$$
.

Upper Limit change

Example:

a. Transform the following summation by making the specified change of variable.

summation:
$$\sum_{k=1}^{n+1} \left(\frac{k}{n+k} \right)$$
 change of variable: $j = k-1$

b. Transform the summation obtained in part (a) by changing all j's to k's.

a)
$$\frac{k}{n+k} = \frac{j+1}{n+(j+1)}$$

$$\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{j=0}^{n} \frac{j+1}{n+(j+1)}.$$

b)
$$\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$

Factorial Notation

Definition

For each positive integer n, the quantity n factorial denoted n!, is defined to be the product of all the integers from 1 to n:

$$n! = n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1.$$

Zero factorial, denoted 0!, is defined to be 1:

$$0! = 1$$
.

Recursive definition

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{if } n \ge 1. \end{cases}$$

Example: Fist 10 factorials

$$0! = 1$$

$$2! = 2 \cdot 1 = 2$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

$$8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 40,320$$

$$1! = 1$$

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040$$

$$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 362,880$$

Simplify the following expressions:

a.
$$\frac{8!}{7!}$$

b.
$$\frac{5!}{2! \cdot 3!}$$

a.
$$\frac{8!}{7!}$$
 b. $\frac{5!}{2! \cdot 3!}$ c. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!}$ d. $\frac{(n+1)!}{n!}$ e. $\frac{n!}{(n-3)!}$

d.
$$\frac{(n+1)!}{n!}$$

e.
$$\frac{n!}{(n-3)!}$$

Solution:

a.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

a.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$
 b. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$

c.
$$\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4}$$
$$= \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!}$$
$$= \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!}$$
$$= \frac{7}{3! \cdot 4!}$$
$$= \frac{7}{144}$$

by multiplying each numerator and denominator by just what is necessary to obtain a common denominator

by rearranging factors

because $3 \cdot 2! = 3!$ and $4 \cdot 3! = 4!$

by the rule for adding fractions with a common denominator

d.
$$\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

e.
$$\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!}$$
$$= n \cdot (n-1) \cdot (n-2)$$
$$= n^3 - 3n^2 + 2n$$

(n choose r) Notation

• Binomial coefficient $\binom{n}{r}$

Definition

Let *n* and *r* be integers with $0 \le r \le n$. The symbol

$$\binom{n}{r}$$

is read "*n* choose *r*" and represents the number of subsets of size *r* that can be chosen from a set with *n* elements.

• Formula for Computing $\binom{n}{r}$

For all integers n and r with $0 \le r \le n$,

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

also called combinations

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Use the formula for computing $\binom{n}{r}$ to evaluate the following expressions: **Example:**

a.
$$\binom{8}{5}$$

b.
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

a.
$$\binom{8}{5}$$
 b. $\binom{4}{0}$ c. $\binom{n+1}{n}$

a.
$$\binom{8}{5} = \frac{8!}{5!(8-5)!}$$

$$= \frac{8 \cdot 7 \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1}}{(\cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1}) \cdot (\cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1})}$$

$$= 56.$$

b.
$$\binom{4}{4} = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)} = 1$$

c.
$$\binom{n+1}{n} = \frac{(n+1)!}{n!((n+1)-n)!} = \frac{(n+1)!}{n!1!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

Lecture 11 – part 5

Sequences Exercises

Lecture 11 – part 6

Mathematical Induction

Mathematical Induction

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

- 1. P(a) is true.
- 2. For all integers $k \ge a$, if P(k) is true then P(k+1) is true.

Then the statement

for all integers $n \ge a$, P(n)

is true.

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \ge a$, a property P(n) is true." To prove such a statement, perform the following two steps:

```
Step 1 (basis step): Show that P(a) is true.
```

Step 2 (inductive step): Show that for all integers $k \ge a$, if P(k) is true then P(k+1) is true. To perform this step,

suppose that P(k) is true, where k is any particular but arbitrarily chosen integer with $k \ge a$.

[This supposition is called the inductive hypothesis.]

Then

show that P(k + 1) is true.

Let P(n) be the proposition that the sum of the first n odd numbers is n^2 .

That is,

$$P(n): 1+3+5+\cdots+(2n-1)=n^2.$$

The kth odd number is 2k-1, and the next odd number is 2k+1.

STEP 1: Observe that P(1) is true: $1 = 1^2$.

STEP 2: Assuming P(k) is true, we add 2k + 1 to both sides, obtaining:

$$1+3+5+\cdots+(2k-1)+(2k+1)=k^2+(2k+1).$$

This simplifies to:

$$1+3+5+\cdots+(2k-1)+(2k+1)=(k+1)^2$$
.

By the principle of mathematical induction, P(n) is true for all positive integers n.

$$P(1): 1 = 1^2$$

$$P(2): 1+3=2^2$$

$$P(3): 1+3+5=3^2$$

$$P(4): 1+3+5+7=4^2$$

Any whole number of cents of at least 8¢. I can be obtained using 3¢ and 5¢ coins.

Number of Cents	How to Obtain It
8¢	$3\phi + 5\phi$
9¢	$3\phi + 3\phi + 3\phi$
10¢	$5\phi + 5\phi$
11¢	$3\phi + 3\phi + 5\phi$
12¢	$3\phi + 3\phi + 3\phi + 3\phi$
13¢	$3\phi + 5\phi + 5\phi$
14¢	$3\phi + 3\phi + 3\phi + 5\phi$
15¢	$5\phi + 5\phi + 5\phi$
16¢	$3\phi + 3\phi + 5\phi + 5\phi$
17¢	$3\phi + 3\phi + 3\phi + 3\phi + 5\phi$

For all integers $n \ge 8$, $n \notin \text{can}$ be obtained using $3 \notin \text{and } 5 \notin \text{coins}$.

Proof (by mathematical induction):

Let the property P(n) be the sentence

 $n\phi$ can be obtained using 3ϕ and 5ϕ coins. $\leftarrow P(n)$

Show that P(8) is true:

P(8) is true because 8ϕ can be obtained using one 3ϕ coin and one 5ϕ coin.

Show that for all integers $k \ge 8$, if P(k) is true then P(k+1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer $k \ge 8$. That is:] Suppose that k is any integer with $k \ge 8$ such that

 $k \not\in \text{can be obtained using } 3 \not\in \text{ and } 5 \not\in \text{ coins.}$ $\leftarrow P(k)$ inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

 $(k+1)\phi$ can be obtained using 3ϕ and 5ϕ coins. $\leftarrow P(k+1)$

Case 1 (There is a 5¢ coin among those used to make up the k¢.): In this case replace the 5¢ coin by two 3¢ coins; the result will be (k + 1)¢.

Case 2 (There is not a 5¢ coin among those used to make up the k¢.): In this case, because $k \ge 8$, at least three 3¢ coins must have been used. So remove three 3¢ coins and replace them by two 5¢ coins; the result will be (k + 1)¢.

Thus in either case $(k + 1)\phi$ can be obtained using 3ϕ and 5ϕ coins [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the proposition is true.]

Case 1

Case 2

