UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

半记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4v1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移 梢

机器学习基础

可视化

模仿学习 生成模型 元学习 卷积网络

梯度策略

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复「添砖加瓦]

Convolutional Networks

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

Neural network with images

image is $128 \times 128 \times 3 = 49,152$

 $z^{(1)}$ is 64-dim

 $64 \times 49,152 \approx 3,000,000$

We need a better way!

Layer 1:

edge detectors?

Layer 2:

ears? noses?

Observation: many useful image features are **local**

to tell if a particular patch of image contains a feature, enough to look at the local patch

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

$$z^{(1)} \text{ is 64-dim}$$

$$64 \times 27 = 1728$$

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

 $z^{(1)}$ is 64-dim
 $64 \times 27 = 1728$

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

 $z^{(1)}$ is 64-dim
 $64 \times 27 = 1728$

We get a **different** output at each image location!

What do they look like?

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

$$z^{(1)} \text{ is 64-dim}$$

$$64 \times 27 = 1728$$

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

 $z^{(1)}$ is 64-dim
 $64 \times 27 = 1728$

Observation: many useful image features are **local**

patch is
$$3 \times 3 \times 3 = 27$$

 $z^{(1)}$ is 64-dim
 $64 \times 27 = 1728$

What does a real conv net look like?

"LeNet" network for handwritten digit recognition

Implementing convolutional layers

Summary

> Convolutional layer

- > A way to avoid needing millions of parameters with images
- ➤ Each layer is "local"
- ➤ Each layer produces an "image" with (roughly) the same width & height, and number of channels = number of filters

Pooling

- ➤ If we ever want to get down to a single output, we must reduce resolution as we go
- ➤ Max pooling: downsample the "image" at each layer, taking the max in each region
- ➤ This makes it robust to small translation changes

> Finishing it up

➤ At the end, we get something small enough that we can "flatten" it (turn it into a vector), and feed into a standard fully connected layer

ND arrays/tensors

all these operations will involve N-dimensional arrays

often used synonymously with tensor

input image: $HEIGHT \times WIDTH \times CHANNELS$

filter: $FLT.HEIGHT \times FLT.WIDTH \times OUTPUT CHAN \times INPUT CHAN$

activations: $HEIGHT \times WIDTH \times LAYER.CHANNELS$

The "inner" (rightmost) dimensions work just like vectors/matrices

Matching "outer" dimensions (e.g., height/width) are treated as "broadcast" (i.e., elementwise operations)

Convolution operations performs a tiny matrix multiply at each position (like a tiny linear layer at each position)

Convolutional layer in equations

all these operations will involve N-dimensional arrays

often used synonymously with tensor

input image: $HEIGHT \times WIDTH \times CHANNELS$

filter: FLT.HEIGHT \times FLT.WIDTH \times OUTPUT CHAN \times INPUT CHAN

activations: $HEIGHT \times WIDTH \times LAYER.CHANNELS$

$$a^{(1)} \rightarrow z^{(2)}$$
 $W^{(2)}: H_F \times W_F \times C_{\text{out}} \times C_{\text{in}}$
 $H_{\text{in}} \times W_{\text{in}} \times C_{\text{in}}$ $H_{\text{out}} \times W_{\text{out}} \times C_{\text{out}}$

equal or almost equal (more on this later)

Convolutional layer in equations

equal or almost equal (more on this later)

$$z^{(2)}[i,j,k] = \sum_{l=0}^{H_F - 1} \sum_{m=0}^{H_W - 1} \sum_{n=0}^{C_{\text{in}} - 1} W^{(2)}[l,m,k,n] \ a^{(1)}[i+l-(H_F - 1)/2,j+m-(H_W - 1)/2,n]$$

$$z^{(2)}[i,j] = \sum_{l=0}^{H_F - 1H_W - 1} \sum_{m=0}^{W^{(2)}} W^{(2)}[l,m] a^{(1)}[i+l-(H_F - 1)/2, j+m-(H_W - 1)/2]$$

$$a^{(2)}[i,j,k] = \sigma(z^{(2)}[i,j,k])$$
 Activation function applied per element, just like before

Simple principle, but a bit complicated to write

Padding and edges

Option 1: cut off the edges

Problem: our activations shrink with every layer

Pop quiz:

input is 32x32x3 filter is 5x5x6 what is the output in this case?

"radius" is $(H_F - 1)/2$ on each side = 2

$$H_{\text{out}} = H_{\text{in}} - ((H_F - 1)/2) \times 2 = 28$$

$$28 \times 28 \times 6$$

Some people don't like this

Padding and edges

Option 2: zero pad

Detail: remember to subtract the image mean first (fancier contrast normalization often used in practice)

Advantage: simple, size is preserved

Disadvantage: weird effect at boundary

(this is usually not a problem, hence why this method is so popular)

Strided convolutions

standard conv net structure at each layer:

 $C_{\text{out}} \times C_{\text{in}}$ matrix multiply at each position in $H \times W$ image!

Idea: what if skip over some positions?

Some people think that strided convolutions are just as good as conv + pooling

Examples of convolutional neural networks

[Krizhevsky et al. 2012]

Why is this model important?

- "Classic" medium-depth convolutional network design (a bit like a modernized version of LeNet)
- ➤ Widely known for being the first neural network to attain state-of-the-art results on the ImageNet large-scale visual recognition challenge (ILSVRC)

ILSVRC (ImageNet), 2009: 1.5 **million** images 1000 categories

depth: 3

[Krizhevsky et al. 2012]

trained on two GPUs, hence why the diagram is "split"

... we don't worry about this sort of thing these days

Stride 2

Pop quiz: how many parameters in CONV1?

Weights: 11x11x3x96 = 34,848

Biases: 96

pooling w/ overlapping regions

Total: 34,944

[Krizhevsky et al. 2012]

trained on two GPUs, hence why the diagram is "split"

... we don't worry about this sort of thing these days

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]

POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORM1: Local normalization layer [not widely used anymore, but we'll talk about normalization later]

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]

POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORM2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]

CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]

CONV5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]

POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX

[Krizhevsky et al. 2012]

- Don't forget: ReLU nonlinearities after every CONV or FC layer (except the last one!)
- > Trained with regularization (we'll learn about these later):
 - > Data augmentation
 - Dropout
- Local normalization (not used much anymore, but there are other types of normalization we do use)

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]

POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORM1: Local normalization layer

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]

POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORM2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]

CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]

CONV5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]

POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX

VGG

Why is this model important?

- > Still often used today
- Big increase in depth over previous best model
- > Start seeing "homogenous" stacks of multiple convolutions interspersed with resolution reduction

VGG

CONV: 3x3x64, maps 224x224x3 -> 224x224x64 **CONV:** 3x3x64, maps 224x224x64 -> 224x224x64

POOL: 2x2, maps 224x224x64 -> 112x112x64

CONV: 3x3x128, maps 112x112x64 -> 112x112x128

CONV: 3x3x128, maps 112x112x128 -> 112x112x128

POOL: 2x2, maps 112x112x128 -> 56x56x128

CONV: 3x3x256, maps 56x56x128 -> 56x56x256

CONV: 3x3x256, maps 56x56x256 -> 56x56x256

CONV: 3x3x256, maps 56x56x256 -> 56x56x256

POOL: 2x2, maps 56x56x256 -> 28x28x256

CONV: 3x3x512, maps 28x28x256 -> 28x28x512

CONV: 3x3x512, maps 28x28x512 -> 28x28x512

CONV: 3x3x512, maps 28x28x512 -> 28x28x512

POOL: 2x2, maps 28x28x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512

POOL: 2x2, maps 14x14x512 -> 7x7x512

FC: 7x7x512 -> 25,088 -> 4,096 ← almost all parameters are here

FC: 4,096 -> 4,096 **FC:** 4,096 -> 1,000

SOFTMAX

- More layers = more processing, which is why we see repeated blocks
- > Which parts use the most memory?
- Which parts have the most parameters?

ResNet 152 layers!

don't bother with huge FC layer at the end, just average pool over all positions and have one linear layer

ResNet

CIFAR-10 experiments

What's the main idea?

Why is this a good idea?

Why are deep networks hard to train?

$$\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}} \frac{da^{(1)}}{dz^{(1)}} \frac{dz^{(2)}}{da^{(1)}} \frac{d\mathcal{L}}{dz^{(2)}}$$
$$\frac{d\mathcal{L}}{dW^{(1)}} = J_1 J_2 J_3 \dots J_n \frac{d\mathcal{L}}{dz^{(n)}}$$

ReLU:
$$\left(\frac{df}{dz}\right)_i = \operatorname{Ind}(z_i \ge 0)$$

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

For matrices, this means we want $J_i \approx \mathbf{I}$

So why is this a good idea?

 $\frac{dH}{dx}$

could be **big** or **small**

not close to \mathbf{I}

$$\frac{dH}{dx} = \frac{dF}{dx} + \mathbf{I}$$

If weights are not too big, this will be small(ish)

ResNet

152 layers

- "Generic" blocks with many layers, interspersed with a few pooling operations
- ➤ No giant FC layer at the end, just mean pool over all x/y positions and a small(ish) FC layer to go into the softmax
- > Residual layers to provide for good gradient flow

UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

官方筆记翻译

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4y1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 机器学习基础

循环神经网络

模仿学习 生成模型

可视化

梯度策略 元学习

卷积网络

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分支系列,覆盖 最具知名度的 TOP50+ 门 AI 课程, 旨在为读者和学习者提供一整套高品质中文学习笔 记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复[添砖加瓦]