### Modelización de Sistemas Biológicos Parte I

#### Modelización por Analogías

**FIUNER** 



#### Organización

- Parte I
  - Introducción: concepto de modelo
  - Etapas de la modelización
  - Modelos Poblacionales
  - Modelos Compartimentales
  - Modelos de Epidemiología
  - Modelos por Analogías
  - Modelización por Autómatas

### Organización

Modelos por Analogías

El modelo de Hodgkin y Huxley

 El enfoque estocástico del Modelo de H&H



### Repaso: Cuándo usar una determinada estrategia de modelización Analogías

- Es factible discernir claramente la existencia de elementos físicos concentrados que disipan energía y/o que almacenan energía (cinética o potencial).
- Existe un esquema físico sencillo del sistema a modelizar
- Es factible y provechoso **extrapolar** la naturaleza del sistema a un sistema análogo para encontrar sus ecuaciones matem.

Modelo físico mecanístico

## Modelización por analogías

 En la naturaleza se pueden encontrar sistemas de distintos tipos con dinámicas similares



 Generalmente el conocimiento del modelador en un campo o domino puede ayudarlo en la construcción de un modelo para un campo análogo

#### Dinámicas similares



$$j.r_F + \frac{1}{c_m}.\int j_k.dt = \Delta C$$

$$i.\frac{1}{g_k} + \frac{1}{C}.\int i.\,dt = E_k(t)$$

#### Dinámicas similares



## Ejemplo 1: El Modelo de Hodgkin-Huxley

Circuito
equivalente de
la Membrana en
Reposo



$$C_m \frac{dV}{dt} + I_{tot} = 0$$

# Ejemplo 2: Generación de mARN como Flujo en una Red de Tuberías

TFIID assembly



# Ejemplo 2: Generación de mARN como Flujo en una Red de Tuberías



La **activación** de una maquinaria de transcrip.

Los reguladores

presión externa  $(v_1 y v_2)$ 

(determinan el caudal)

Interconexión entre los agentes de modulación (ARNm)

T**opología** de la red

válvulas

 $(S_1 y S_2)$ 

## Ejemplo 3: Modelo del Sist. CardioVascular



#### Ejemplo 4: Modelo de la Presión IntraCraneal



#### Ejemplo 5: Modelos de las vías aéreas



## Ejemplo 6: Modelos del músculo esquelético



Para el análisis de la dinámica de estos sistemas se consideran dos tipos de variables generalizadas:

- a) Las variables que fluyen a través de un elemento del sistema, las cuales se denominan genéricamente f.
- b) Las variables esfuerzo entre los extremos de un elemento del sistema, las cuales se denominan genéricamente e.







 $J = -\left(\frac{DA}{\nabla x}\right)\nabla C$  ecular

D: Coef. de difusión

| Naturaleza del<br>sistema | Variable <i>a través</i> | Variable <i>entre</i>         |
|---------------------------|--------------------------|-------------------------------|
| Eléctrico                 | Corrte. eléctrica i      | Diferencia de potencial V     |
| Mecánico                  |                          |                               |
| Hidráulico                | Caudal Q                 | Diferencia de presión P       |
| Térmico                   | Flujo calorífico q       | Diferencia de temperatura T   |
| Químico                   | Flujo molar J            | Diferencia de concentración C |

| Naturaleza del<br>sistema | Variable <i>a través</i> | Variable <i>entre</i>         |
|---------------------------|--------------------------|-------------------------------|
| Eléctrico                 | Corriente i              | Diferencia de potencial V     |
| Mecánico                  | Velocidad v              | Fuerza F                      |
| Hidráulico                | Caudal Q                 | Diferencia de presión P       |
| Térmico                   | Flujo calorífico q       | Diferencia de temperatura T   |
| Químico                   | Flujo molar J            | Diferencia de concentración C |

 En base a estas analogías se puede definir una ley generalizada que relaciona los dos tipos de variables:

$$e = Z.f$$

donde Z es una impedancia generalizada.

 Se define el desplazamiento generalizado h como la integral de la variable que fluye

$$h = \int f dt \iff f = \frac{dh}{dt}$$







 $J = -\left(\frac{DA}{\nabla x}\right)\nabla C$ 

J: flujo molecular

D: Coef. de difusión





 Se define el desplazamiento generalizado h como la integral de la variable que fluye

$$h = \int f dt \iff f = \frac{dh}{dt}$$



Fluye un líquido



Fluyen las cargas



Fick:  $J = -\left(\frac{DA}{\nabla x}\right)\nabla C$ J: fluio molecular

D: Coef. de difusión



Fluye el calor



Fluye dist/espacio

Fluyen iones/moléculas

#### Tipos de elementos

- Elementos que disipan energía
- Elementos que almacenan energía potencial
- Elementos que almacenan energía cinética

Asumiendo linealidad

#### Elementos disipadores

Se oponen al paso de la variable que fluye



Resistencia eléctrica



Rozamiento Viscoso



Resistencia a la difusión



Resistencia al flujo



Resistencia Térmica

## Elementos disipadores

$$e = Z \cdot f$$

| Sistemas   | Elemento físico         | Símbolo                                  | Ecuación                                        | Ley que la gobierna |
|------------|-------------------------|------------------------------------------|-------------------------------------------------|---------------------|
| Eléctrico  | Resistencia eléctrica   |                                          | V = R.i                                         | Ohm                 |
| Mecánico   | Resistencia lineal      |                                          | F = h.v                                         | Stokes              |
| Hidráulico | Resistencia al flujo    |                                          | P = Rh.Q                                        | Poiseuille          |
| Térmico    | Resistencia térmica     | <b>#</b>                                 | $T=Rt.\dot{\zeta}$                              | Fourier             |
| Químico    | Resistencia de difusión | $C_1 \subset C_2$ $C_1 - C_2 = \nabla C$ | $J = -\left(\frac{DA}{\nabla x}\right)\nabla C$ | Fick                |

$$P = e \cdot f = z \cdot f^2 = \frac{e^2}{z}$$

#### Elementos almacenan EP (estática)

$$e = \frac{1}{C} \int_0^t f dt$$

#### $C \rightarrow$ Capacidad generalizada

| Sistemas   | Elemento físico | Símbolo    | Ecuación                                       |
|------------|-----------------|------------|------------------------------------------------|
| Eléctrico  | Capacitor       | +          | $V = \frac{1}{C} \cdot \int i \cdot dt$        |
| Mecánico   | Resorte         | -0000000   | $F = k. \int v. dt$                            |
| Hidráulico | Compliancia     | $\Delta P$ | $P = Co. \int Q.dt$                            |
| Térmico    | Masa térmica    |            | $\theta = \frac{1}{C_T} \cdot \int q \cdot dt$ |
| Químico    | Capacitancia    |            | $\nabla C = \frac{1}{C_m} \int J \cdot dt$     |

#### Elementos almacenan EC

$$e = L \frac{df}{dt}$$

| Sistemas   | Elemento físico | Símbolo | Ecuación               |
|------------|-----------------|---------|------------------------|
| Eléctrico  | Inductancia     |         | $V = L. \frac{di}{dt}$ |
| Mecánico   | Inercia (masa)  |         | $F = m. \frac{dv}{dt}$ |
| Hidráulico | Inertancia      |         | $P = I.\frac{dQ}{dt}$  |

#### Kirchov - Thevenin - Norton



 $=\frac{1}{2} \cdot 15 \,\mathrm{V} = 7.5 \,\mathrm{V}$ 

$$\begin{split} R_{\rm Th} &= R_1 + [(R_2 + R_3) \, \| R_4] \\ &= 1 \, \mathrm{k}\Omega + [(1 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega) \, \| 2 \, \mathrm{k}\Omega] \end{split}$$

 $R_3$   $1K\Omega$ 

#### Elementos en paralelo







# El Modelo de Hodgkin-Huxley de membrana de Axón

Modelización de sistemas biológicos

#### La Bomba Na<sup>+</sup> K<sup>+</sup>

- Ingreso de 2\*K+ por cada 3\*Na+ que saca
- 1/3 de la energía de la célula





#### Ecuación de Nernst

 Describe cómo una diferencia en la concentración iónica puede resultar en una diferencia de potencial

$$V_n = \frac{RT}{zF} \ln \left( \frac{[N]_e}{[N]_i} \right)$$

R: constante universal de los gases

T: temperatura absoluta

z: carga en el ión N

*F*: constante de Faraday

#### Fuerza de arrastre



#### El potencial de membrana

- Estado de equilibrio
- Control del volumen
- Balance entre Difusión y Diferencia de Potencial Eléctrico

$$V_{m} = -\frac{RT}{F} \ln \left( \frac{P_{Na} [Na^{+}]_{i} + P_{K} [K^{+}]_{i} + P_{L} [Cl^{-}]_{e}}{P_{Na} [Na^{+}]_{e} + P_{K} [K^{+}]_{e} + P_{L} [Cl^{-}]_{i}} \right)$$

Ecuación de Goldman-Hodgkin-Katz

 $P_n$ : permeab. de la membrana al ión

μ: movilidad del ión

b: coeficiente de partición aceite/agua

a: espesor de la membrana

Sustancia muy soluble en aceite $\rightarrow b$  grande

$$P_n = \mu b \frac{RT}{aF}$$

 No hay corriente neta a través de la membrana debido a que la difusión es balanceada por la diferencia de potencial eléctrico

## Modelo del circuito eléctrico de la membrana

- La membrana separa cargas 

   Capacitor aprox. (1μF/cm²)
- Hay difusión pasiva (escape) de iones → Resistencia



$$C_m \frac{dV}{dt} + I_R = 0$$

## Circuito Equivalente de la Membrana en Reposo

$$P_n = \mu b \frac{RT}{aF}$$
  $V_n = \frac{RT}{zF} \ln \left( \frac{[N]_e}{[N]_i} \right)$ 

| lón             | Permeabilidad      | Potenc. de Nernst |
|-----------------|--------------------|-------------------|
| K <sup>+</sup>  | 6x10 <sup>-6</sup> | -72 mV            |
| Na <sup>+</sup> | 8x10 <sup>-9</sup> | 55 mV             |
| CL-             | 1                  | -50 mV            |



## Membrana en reposo



$$g_{\rm K} = 0.367 \, \text{mS/cm}^2$$
  
 $I_{\rm n} = g_{\rm n} (E_{\rm m} - E_{\rm n})$   $g_{\rm Na} = 0.01 \, \text{mS/cm}^2$   
 $g_{\rm L} = 0.30 \, \text{mS/cm}^2$ 

#### Potencial de acción

- Tejidos exitables
- Saca del estado de equilibrio
- Señaliza



# Hodgkin y Huxley (1939)



# Hodgkin y Huxley (1939)





# Hodgkin-Huxley

- Existe un umbral
- Existe un *período refractario*
- El potencial de acción puede *propagarse* (de 20 a 120 m/seg).



#### Potencial de acción



# Hodgkin-Huxley (1957, premio Nobel 1963)

- Pinzado de voltaje ("voltage clamp")
- Umbral
- Corrientes selectivas
  - Corriente explosiva de entrada de Na<sup>+</sup>
  - Corriente lenta de salida de K<sup>+</sup>



• Permeabilidades  $(g_n)$  son función de  $V_m$  y t

### Potencial de acción



Varían Potenciales de Nernst



#### Potencial de Acción



#### Modelo Matemático



#### Por Kirchoff

$$I_{ap} = C_m \frac{dV_m}{dt} + g_K(t) \cdot [V_m(t) - E_K(t)] + g_{Na}(t) \cdot [V_m(t) - E_{Na}(t)] + g_{cl} \cdot [V_m(t) - E_{cl}(t)]$$

## Modelo Matemático: Corriente de *K*<sup>+</sup>





La dinámica de la apertura de los canales de  $K^+$  es una sigmoidea de  $4^\circ$  orden

$$g_k(v) = \overline{g_k} n^4$$

#### Resultados del <u>Pinzado de Voltaje</u>

La  $g_k$  se mantiene mientras el  $V_m$  se mantenga (no se inactiva)

Canales abiertos

$$\beta\downarrow$$
  $\uparrow \alpha$ 

Canales cerrados

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$

$$\alpha y \beta \text{ dependen de } V_m$$

## Modelo Matemático: Corriente de *Na*<sup>+</sup>



Resultados del Pinzado de Voltaje

> La  $g_{Na}$  es explosiva e inmediata pero se inactiva por tiempo

La dinámica de la apertura de los canales de *Na*<sup>+</sup> es de 3° orden con inactivación

$$g_{Na} = \overline{g_{Na}} m^3 h$$

Canal abierto  $\beta_{m} \downarrow \qquad \uparrow \alpha_{m}$ Canal cerrado  $\beta_{h} \downarrow \qquad \uparrow \alpha_{h}$ 

Canal Inactivado

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m$$

 $\alpha$  y  $\beta$  dependen de  $V_m$ 

#### Modelo Matemático



$$g_{Na} = g_{Na}^{-} m^{3} h$$

$$\frac{dm}{dt} = \alpha_{m} (1-m) - \beta_{m} m$$

$$\alpha_{m}(v) = 0.1(45+v)/(1-e^{-((45+v)/10)}),$$

$$\beta_{m}(v) = 4e^{-((70+v)/18)},$$

$$\alpha_{n}(v) = 0.01(v+60)/(1-e^{-((60+v)/10)}),$$

$$\beta_{n}(v) = 0.125e^{-((70+v)/80)},$$

$$\beta_{n}(v) = 0.125e^{-((70+v)/80)},$$

$$\beta_{n}(v) = 0.125e^{-((70+v)/20)},$$

$$\beta_{n}(v) = 0.07 e^{-((70+v)/20)},$$

$$\beta_{n}(v) = 1/(1+e^{-((40+v)/10)})$$

Suponiendo la evolución normal del potencial de acción

#### Modelo Matemático

$$I_{ap}(t) = C_m \frac{dv}{dt} + g_K(t) \cdot [v(t) - E_K] + g_{Na}(t) \cdot [v(t) - E_{Na}] + g_L \cdot [v(t) - E_L]$$

$$I_{ap}(t) = C_m \frac{dv}{dt} + g(v - E_m)$$

donde

$$g = g_{Na} + g_{K} + g_{L}$$

$$E_{m} = \frac{g_{Na}E_{Na} + g_{K}E_{K} + g_{L}E_{L}}{g_{Na} + g_{K} + g_{L}}$$



$$g_{Na} = g_{Na} m^{3} h$$

$$g_{Na} = g_{Na} m^{3} h$$

$$g_{k} = g_{k} n^{4}$$

$$g_{L} = g_{L}$$

$$\frac{dn}{dt} = \alpha_{m} (1 - m) - \beta_{m} m$$

$$\frac{dn}{dt} = \alpha_{n} (1 - n) - \beta_{n} n$$

$$\frac{dh}{dt} = \alpha_{h} (1 - h) - \beta_{h} h$$

$$\alpha_{m}(v) = 0.1(45+v)/(1-e^{-((45+v)/10)}),$$
 $\beta_{m}(v) = 4e^{-((70+v)/18)},$ 
 $\alpha_{n}(v) = 0.01(v+60)/(1-e^{-((60+v)/10)}),$ 
 $\beta_{n}(v) = 0.125e^{-((70+v)/80)}$ 
 $\alpha_{h}(v) = 0.07 e^{-((70+v)/20)},$ 
 $\beta_{h}(v) = 1/(1+e^{-((40+v)/10)})$ 

#### Modelo del cable



Error de la gráfica: según el modelo de H-H las conductancias están en serie con los potenciales de Nernst

#### Conducción saltatoria



despolarizada

La membrana está repalarizada

... transcurrido alrededor de un milisegundo...



membrana del axón

# Bibliografía

- "Physiological Control Systems", Michael C. Khoo, IEEE Press, 2000.
- "Introducción a la Bioingenieria", Marcombo-Boixareu Editores, 1988.
- "Mathematical Physiology", J. Keener J. Sneyd, Volume 8, Springer,
   1988
- Modelling with Diferencial Equations", Burghes-Borrie.
- "An introduction to Mathematical Modelling", Bender.
- "Elementos de Biomatematica", Engel, Sec Gral de la OEA., Programa Regional de Desarrollo Cientifico, 1979.
- "Modelling and Control in Biomedical Systems", Cobelli-Mariani, 1988.
- "Dynamics of Physical systems", R. Cannon, McGraw-Hill.
- "Farmacocinética Clínica", John G. Wagner, Ed. Reverté, S.A., 1983.
- "Drugs and Pharmaceutical Sciences", Gibaldi