CMPT 150: Introduction to Computer Design A Course Overview

Jeffrey Leung Simon Fraser University

 $Summer\ 2015$

Contents

1	Encoding	Encoding				
	1.1 Introd	$\operatorname{duction}$				
	1.2 Binar	ry, Hexadecimal, and BCD				
	1.3 Positi	ional Number System Conversions				
	1.3.1	Base 10 to Base X				
	1.3.2	Base X to Base 10				
	1.4 Signe	d Arithmetic				
2	Digital Systems					
3	Assembly Programming					
4 Boolean Algebra						
	4.1 Introd	duction				

1 Encoding

1.1 Introduction

- Alphabet: Finite set of symbols
 - E.g. $\{0,1\}, \{T,F\}, \{0,1,2,...,9\}, \{A,B,C,...,Z\}$
- Message: Meaningful sequence of symbols from an alphabet
 - E.g. "CMPT 150", "XYZ-AB2", 0110101 (a binary sequence)
- *Encoding:* Representation of the symbols of one alphabet by sequences of symbols from a second alphabet
 - Codeword: Meaningful sequence of symbols which translates into a sequence of symbols of another alphabet
 - * Uniquely decipherable: Each codeword has only one meaning
 - * Fixed-length: Each codeword has the same length
 - · Number of different codewords of length k where there are j elements in the alphabet is j^k (e.g. 4-bit binary has $2^4 = 16$ different possibilities)

1.2 Binary, Hexadecimal, and BCD

- Codewords: See Table 1
- Binary:
 - Computers interpret voltage levels of cells as 0 or 1
 - Little Endian notation: The rightmost bit is numbered as the least significant bit (0) and the leftmost bit is numbered as the most significant bit (n-1) where n = length of sequence)
 - Integer field: Digits to the left of the decimal point
 - Fractional field: Digits to the right of the decimal point
- Hexadecimal:
 - Add additional leading 0s if necessary for conversion
 - E.g. Base 2 to base 16:

$$0011111100101011_2 = x_{16}$$

$$0011111100101011_2 = 1F2B_{16}$$

Table 1: Binary/Decimal/Hexadecimal encoding scheme
Binary: | Decimal: | Hexadecimal:

Binary:	Decimal:	Hexadecimal:
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	C
1101	13	D
1110	14	E
1111	15	F

 \bullet Binary Coded Decimal (BCD): Encoding scheme where each decimal digit is encoded as 4 binary bits

Table 2: BCD encoding scheme

BCD:
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

- E.g. BCD encoding:

$$\begin{array}{c|cccc}
169_{10} = x_{BCD} \\
1 & 6 & 9 \\
0001 & 0110 & 1001
\end{array}$$

$$169_{10} = 0001\ 0110\ 1001_{BCD}$$

- E.g. BCD decoding:

$$1010\ 0001\ 0110_{BCD} = x_{10}$$

$$\begin{array}{c|cccc}
1010 & 0001 & 0110 \\
? & 1 & 6
\end{array}$$

 $1010\ 0001\ 0110_{BCD}$ is meaningless.

1.3 Positional Number System Conversions

1.3.1 Base 10 to Base X

- Integer: Divide the base 10 number by x and write the remainder to the right. The number in base x is the sequence of remainders from bottom to top.
 - E.g. Base 10 to base 2:

$$13_{10} = x_2$$

$$\begin{array}{c|cccc}
2 & 13 \\
2 & 6 \\
2 & 3 \\
2 & 1 \\
0 & 1
\end{array}$$

$$13_{10} = 1101_2$$

- E.g. Base 10 to base 16:

$$38_{10} = x_{16}$$

$$38_{10} = 26_{16}$$

- Fractional: Draw a line down from the decimal point. While the right side is greater than 0, multiply the right side by 2 and write the result below. The fraction in binary is the sequence of 0s and 1s on the left side from top to bottom.
 - E.g. Base 10 to base 2:

$$0.625_{10} = x_2$$

$$\begin{array}{c|c} \cdot & 625 \\ 1 & 25 \\ 0 & 5 \\ 1 & 0 \end{array}$$

$$0.625_{10} = 0.101_2$$

• E.g. Base 10 to base 2:

 $18.375_{10} = x_2$

$$18.375_{10} = 1\ 0010.011_2$$

1.3.2 Base X to Base 10

 $\overline{0}$ 2

- Write the position values underneath each digit, then add the position values of all digits with 1s.
- E.g. Base 2 to base 10:

• E.g. Base 16 to base 10:

$$26_{16} = x_{10}$$

$$\begin{array}{c|c}
2 & 6 \\
16^1 & 16^0
\end{array}$$

$$(2 \times 16^1) + (6 \times 16^0) = 32 + 6 = 38$$

$$26_{16} = 38_{10}$$

• E.g. Base 2 to base 10:

$$0.101_{2} = x_{10}$$

$$\begin{array}{c|ccc}
0 & 1 & 0 & 1\\
2^{0} & 2^{-1} & 2^{-2} & 2^{-3}
\end{array}$$

$$2^{-1} + 2^{-3} = 0.5 + 0.125 + 0.625$$

$$0.101_{2} = 0.625_{10}$$

1.4 Signed Arithmetic

- Signed arithmetic: Binary encoding which represents both positive and negative numbers
 - Codewords: See Table 3
 - Rules:
 - * 0 is always represented
 - * For any positive number which is represented, its corresponding negative number must also be represented
 - $-2^{k}-1$ codewords where k is the number of bits
 - * Greatest number which can be represented: $\frac{2^k-1}{2}=2^{k-1}-1$
 - * Least number which can be represented: $-2^{k-1} 1$
 - * E.g. 4 bits can represent:
 - · In signed magnitude encoding: $\{-7, -6, \dots, -1, 0, 1, \dots, 6, 7\} = 15$ numbers
 - · In 2's complement encoding: $\{-8,-7,-6,\ldots,-1,0,1,\ldots,6,7\}=16 \text{ numbers}$

- Signed magnitude: Binary encoding where the most significant bit represents whether the number is positive/negative (0 for positive, 1 for negative) and the other bits represent the value
 - Conversion: Interpret the sign and value separately, then combine them

* E.g.
$$-13_{10} = x_2$$
 (signed magnitude)
Sign = - = 1
Magnitude = $13_{10} = 1101_2$
 $\therefore -13_{10} = 1$ 1101_2 (signed magnitude)
* E.g. 100 1001_2 (signed magnitude) = x_{10}
Sign = 1 = -
Magnitude = $1001_2 = 9_{10}$
 $\therefore 100$ 1001_2 (signed magnitude) = -9_{10}
* E.g. 1000_2 (signed magnitude) = x_{10}
Sign = 1 = -
Magnitude = 0

Table 3: Binary representations

Codeword	Sign-magnitude decoding	2's complement decoding
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	-0	-8
1001	-1	-7
1010	-2	-6
1011	-3	-5
1100	-4	-4
1101	-5	-3
1110	-6	-2
1111	-7	-1

```
\therefore 1000_{2 \text{ (signed magnitude)}} = -0_{10}
```

2 Digital Systems

- Digital system: Electronic circuit which processes discrete signals representing logic values
- Computer design:
 - Instruction set architecture involves the selection, design, and representation of a set of instructions and of some basic data types
 - Construction of a circuit that can:
 - * Interpret binary sequences representing instructions
 - * Perform computations on binary sequences as directed by instructions
 - * Express results as binary encoded data
- Register: Component which stores one binary sequence
 - Memory: A 1-dimensional array of registers
- Bus: Component which transmits one binary sequence
 - Signal line: A bus of size 1
- Registry Transfer Notation: Convention for naming registers
 - Register names begin with an uppercase letter
 Bus names begin with a lowercase letter
 - Bit positions are specified by a number in parenthesis after the name
 - * E.g. RNG(MSB), abc(12)
 - Field: Sequence of bits within a binary sequence written as NAME(start:end) where the bit positions include the start and end positions
 - * E.g. For INST = $0110 \ 1101 \ 0100 \ 0000$, INST(15:8) = $0110 \ 1101$
 - * E.g. For $R = 10010.011_2$, R(INT) = R(8:3) and R(FRAC) = R(2:0)

3 Assembly Programming

• x

4 Boolean Algebra

4.1 Introduction

A specific input creates a specific output

- ullet Values can be 0 (false) or 1 (true)
- \bullet Boolean expressions:
 - Evaluate to 0 or 1 $\,$
 - Function table: Representation of all possible inputs and their corresponding outputs displayed in a table

Table 4: Example of a function table

I_2	I_1	Sum
0	0	0
0	1	1
0	2	2
:	:	:
9	8	17
9	9	18