Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Prof. Dr. Ringo Baumann Jamie Keitsch Moritz Schönherr

Probeklausur Logik

Sommersemester 2025, 10.07.2025

Bearbeitungszeit: 60 Minuten Gesamtpunktzahl: 60 Punkte

Allgemeine Hinweise

- Bitte lösen Sie die Aufgaben direkt auf den Aufgabenblättern.
- Versehen Sie jedes Aufgabenblatt mit Ihrer Matrikelnummer.
- Schreiben Sie Ihre Lösungen dokumentenecht auf, also in blau oder schwarz, keinesfalls mit Bleistift und bitte nicht in rot oder grün.
- Als Hilfsmittel ist <u>ein Blatt DIN A4</u> zugelassen, das handschriftlich beschrieben oder bedruckt sein darf. Alle anderen Hilfsmittel (Handy, Hefter etc.) sind nicht zugelassen.
- Viel Erfolg!

Aufgabe 1 (Wahrheitswertetabelle, Hornformeln)

Gegeben ist die aussagenlogische Formel

$$\varphi = A_1 \vee (\neg A_2 \to (A_1 \vee A_3))$$

(a) Füllen Sie folgende Wahrheitswertetabelle aus:

	A_1	A_2	A_3	$A_1 \vee A_3$	$\neg A_2$		$A_1 \lor (\neg A_2 \to (A_1 \lor A_3))$
	0	0	0	0	1	0	0
•	0	0	1	1	1	1	1
_	0	1	0	0	0	4	1
	0	1	1	1	0	1	1
Ī	1	0	0	1	1	1	1
Ī	1	0	1	1	1	1	1
Ī	1	1	0	1	6	1	1
•	1	1	1	1	0		1

- (b) Geben Sie eine Formel ψ an, die äquivalent zu φ und kürzer als φ ist.
- (c) Gegeben ist die Interpretation $I(A_1) = 1$, $I(A_2) = 0$, $I(A_3) = 1$, $I(A_4) = 0$. (2) Ist I ein Modell von φ ? Markieren Sie in der Wahrheitswertetabelle die Interpretation I.
- (d) Lässt sich φ als Hornformel darstellen? Geben Sie im positiven Fall eine äquivalente Hornformel an, oder begründen Sie kurz warum keine existiert.

(4)

(1)

	-		-		
Λ	latr	ike	lnı	ım	mer.

Aufgabe 2 (Folgerungsoperator, Interpolation)

(a) Gegeben sind die Formeln

$$\varphi = (\neg A_1 \land A_2 \land \neg A_3) \lor (\neg A_1 \land A_2 \land A_3)$$

$$\psi = (A_1 \lor \neg A_2 \lor \neg A_3) \land (\neg A_1 \lor A_2 \lor A_3) \land (A_1 \lor A_2 \lor A_3).$$
(3)

Gilt $\varphi \models \psi$? Begründen Sie Ihre Antwort.

(b) Gilt
$$\neg (A_1 \land \neg A_2) \land (\neg A_1 \to A_2) \land \neg A_2 \models A_3$$
? Begründen Sie kurz. (2)

(c) Gegeben sind die Formeln

$$\varphi = (\neg A_3 \to (\neg A_1 \land \neg A_2)) \land (A_3 \to (A_1 \leftrightarrow A_2))$$

$$\psi = (A_1 \to (A_2 \lor A_4)) \land (\neg A_5 \to (\neg A_1 \lor A_2))$$

Geben Sie eine Interpolante ξ mit $\varphi \models \xi$ und $\xi \models \psi$ an. (Sie dürfen annehmen, dass $\varphi \models \psi$ gilt.)

(4)

Aufgabe 3 (Strukturelle Induktion)

Wir definieren die Menge \mathcal{X} der aussagenlogische Formeln mit XOR-Junktor (ausschließendes Oder) induktiv wie folgt:

- für alle atomaren Aussagen $A \in \mathcal{A}$ gilt $A \in \mathcal{X}$,
- für zwei Formeln $\varphi, \psi \in \mathcal{X}$ ist $\varphi \oplus \psi \in \mathcal{X}$.

Es existieren keine weiteren Formeln in \mathcal{X} .

Die Semantik ist wie folgt definiert:

$$I(\varphi \oplus \psi) = 1$$
 gdw. entweder $I(\varphi) = 1$ oder $I(\psi) = 1$.

(a) Sei I die Interpretation, die alle Atome zu falsch auswertet, d.h. I(A) = 0 für alle $A \in \mathcal{A}$. Zeigen Sie mittels struktureller Induktion, dass für alle $\varphi \in \mathcal{X}$ gilt

$$I(\varphi) = 0.$$

(2)(b) Beweisen oder widerlegen Sie, dass in \mathcal{X} eine Formel existiert, die äquivalent zu $\neg A_1$ ist.

Allgemeines vorgehen:

$$A) \frac{2A}{N_{in}} \frac{Set}{gitt} \frac{\varphi}{J(y)} = \frac{1}{J(A_i)} = 0$$
This

Aus
$$\frac{2V}{2}$$
; $\mathcal{I}(4) \neq 1$ und $\mathcal{I}(4) \neq 1$

$$A(50)$$
 $7(P \oplus Y) \neq 1$ und somit $7(P \oplus Y) = 0$

(8)

Aufgabe 4 (Prädikatenlogik)

Gegeben ist die Formel

$$\varphi = \exists y \bigg(R(x,y) \land \exists z R(y,z) \bigg) \rightarrow \exists y \bigg(P(y) \land R(y,x) \bigg).$$

Sei A folgende Struktur:

•
$$U^{\mathfrak{A}} = \{a, b, c, d\},\$$

•
$$R^{\mathfrak{A}} = \{(a,b), (b,c), (c,d)\},\$$

•
$$P^{\mathfrak{A}} = \{a, b, c\}.$$

Sei
$$\beta(x) = \beta(y) = \beta(z) = b$$
.

- (a) Ist (\mathfrak{A}, β) ein Modell von φ ? Begründen Sie Ihre Antwort. (4)
- (2) \uparrow (b) Geben Sie eine Belegung γ an, sodass (\mathfrak{A}, γ) kein Modell von φ ist. Ohne Begründung. (2) \uparrow (c) Lösen Sie die Implikation auf und überführen Sie φ in Negationsnormalform. Ist die resultierende Formel bereinigt? Begründen Sie kurz.

(21,
$$\beta$$
) ist ein Modell: $(21, \beta_{[\gamma \rightarrow \gamma]})(P(\gamma) \wedge P(\gamma, \gamma)) = \Lambda$
somit $(21, \beta)(\exists \gamma (P(\gamma) \wedge P(\gamma, \gamma)) = \Lambda$
 $A(so(21, \beta)(Q) = \Lambda$

$$\begin{array}{lll} (21,8)(\exists j(k(x,y) \land \exists z \ R(y,z))=1 \ \ \lambda a \\ (21,8[y+h])(R(x,y))=1 \ \ \text{und}(21,8[y+h]z+c))(R(y,z))=1 \\ (21,7)(\exists j(P(y) \land R(y,x))=0, \ \ \lambda a \\ \ \, & \text{fin allo} \ \ u \in \{a,b,c,d\} \ \ y : \text{If} \ (U,a) \notin \mathbb{R}^{2d} \\ \ \, & \text{Sonif} \ \ (21,8[y+n])(P(y) \land R(y,x))=0 \\ \ \, & \text{fin allo} \ \ u \in \{a,b,c,d\} \\ \ \, & \text{Sonif} \ \ (21,8[y+n])(P(y) \land R(y,x))=0 \\ \ \, & \text{fin allo} \ \ u \in \{a,b,c,d\} \\ \end{array}$$

Aufgabe 5 (Resolution)

(a) Wenden Sie den Resolutionsalgorithmus auf folgende Klauselmenge an:

$$\{\{A_1, A_2\}, \{A_1, \neg A_2, A_3\}, \{\neg A_1, A_3\}, \{\neg A_1, \neg A_3\}, \{\neg A_2, \neg A_3\}\}\}$$

$$(9)$$

Ist die Klauselmenge erfüllbar? Begründen Sie kurz.

(b) Wenden Sie den Unifikationsalgorithmus auf folgende atomare Formeln an:

$$R(z, y, g(y, z))$$
 und $R(c, f(v), g(f(v), v))$.

Bilden Sie eine Resolvente der Klauseln

$$\{P(z, f(y)), R(z, y, g(y, z)), \neg Q(z, z)\}$$
 und $\{\neg R(c, f(v), g(f(v), v)), Q(v, f(v))\}.$

(5)

Aufgabe 6 (Äquivalenzen)

- (a) Sei φ, ψ zwei prädikatenlogische Formeln und sei $x \notin \text{frei}(\varphi)$ und $y \notin \text{frei}(\psi)$. Beweisen Sie, dass
- (4)

(3)

- $\forall x \exists y (\varphi \wedge \psi) \equiv \exists y \forall x (\varphi \wedge \psi).$
- (b) Beweisen oder widerlegen Sie: Es existiert ein erfüllbarer prädikatenlogischer Satz φ dessen Modelle alle überabzählbar sind.

	_						
ΛA	at:	ril	20	mı	ım	m	or