Lösung: Aufgabe 1

(a) Wie immer definieren wir einen neuen Vektor $y(t) := (y_1(t), y_2(t))^t$, denn dann lässt sich dy/dt schreiben als

$$\frac{dy}{dt} = \left(\begin{array}{cc} 0 & 1\\ -0.5 & a \end{array}\right) \left(\begin{array}{c} y_1\\ y_2 \end{array}\right).$$

(b)+(c) Um das Verhalten der Lösungen zu bestimmen, betrachten wir die Eigenwerte. Diese berechnen sich mit unserem Standardansatz $y(t) = v \exp(\lambda t), \ y'(t) = \lambda y(t)$ wie folgt:

$$0 \stackrel{!}{=} det \left(\begin{array}{cc} -\lambda & 1 \\ -0.5 & a - \lambda \end{array} \right) = \lambda^2 - a\lambda + 0.5 \Rightarrow \lambda_{1/2} = \frac{a \pm \sqrt{a^2 - 2}}{2}.$$

Wie man sieht, ist zum einen die Determinante entscheidend, da sie abhängig von a die Eigenwerte komplex oder reell macht. Außerdem ist noch der (Realteil vom) Zähler wichtig, denn ob er positiv oder negativ ist, ist ja auch wichtig für das Lösungsverhalten.

 $a > \sqrt{2}$: Die Eigenwerte sind reell und positiv, da $|a| > \sqrt{a^2 - 2}$ trivialerweise gilt.

 $a=\sqrt{2}$: Die Eigenwerte sind positiv-reell und fallen zu einem einzigen zusammen.

 $0 < a < \sqrt{2}$: Die Eigenwerte werden komplex. Dann ist aber der Realteil sofort $Re(\lambda) = a/2$ und dieser ist positiv.

a=0: Die Eigenwerte sind rein imaginär. Es liegt oszillierendes Verhalten mit konstanter Amplitude vor.

 $-\sqrt{2} < a < 0$: Komplexe Eigenwerte mit negativem Reateil.

 $a = -\sqrt{2}$: Die Eigenwerte sind negativ-reell und fallen zu einem einzigen zusammen.

 $a<-\sqrt{2}$: Die Eigenwerte sind reell und negativ (s. $a>\sqrt{2}$).

Insgesamt finden wir für (b) und (c) folgende Aussagen:

- (b) Für $|a| < \sqrt{2}$ haben wir oszillierendes Verhalten; insbesondere gilt: Für a < 0 klingt die Schwingung zeitlich ab, für a > 0 explodiert sie.
- (c) Zum einen siehe Teil (b), zum anderen gilt für $a \ge \sqrt{2}$, dass die Lösungen explodieren und für $a \le -\sqrt{2}$, dass sie auf Null schrumpfen.

Lösung: Aufgabe 2

Für
$$a = 1$$
 gilt $\lambda_1 = \frac{1+i}{2}$ und $\lambda_2 = \frac{1-i}{2}$.

Für die Eigenvektoren hat man dann den Ansatz $v = (v_1, v_2)^t + i(w_1, w_2)^t = \overline{v'}$. Dabei erspart uns die Tatsache, dass beide Vektoren wie auch die Eigenwerte zueinander konjugiert-komplex sind, einige Rechenarbeit. Zudem wollen wir unser Ergebnis von B10A2 verwenden, denn mit $a_{11} = 0$, $a_{12} = 1$ haben wir sofort v, v'.

Für die Lösungsformel im Skript brauchen wir "nur" die Real- und Imaginärteile von λ und v. Diese seien hier angegeben:

$$Re(\lambda) = Im(\lambda) = 1/2$$
 und $Re(v) = (1, 0.5)^t$, $Im(v) = (0, 0.5)^t$.

Mit den gegebenen Angfangsbedingungen und unter Beachtung von cos(0) = 1, sin(0) = 0 finden wir schließlich noch die Konstanten c_1 , c_2 der Lösung:

$$\left(\begin{array}{c}1\\2\end{array}\right) = c_1 \left(\begin{array}{c}1\\0.5\end{array}\right) + c_2 \left(\begin{array}{c}0\\0.5\end{array}\right).$$

Dieses einfache LGS löst man nach der oberen Zeile direkt mit $c_1 = 1$, $c_2 = 3$. Insgesamt finden wir die Lösung

$$y(t) = \exp(t/2) \begin{pmatrix} 1 \\ 0.5 \end{pmatrix} \cos(t/2) - \begin{pmatrix} 0 \\ 0.5 \end{pmatrix} \sin(t/2) + 3 \exp(t/2) \begin{pmatrix} 0 \\ 0.5 \end{pmatrix} \cos(t/2) + \begin{pmatrix} 1 \\ 0.5 \end{pmatrix} \sin(t/2)$$

Lösung: Aufgabe 3

Gleichgewichtslösungen $y = (y_1, y_2)^t$ sind Lösungen, welche nicht von t abhängen, also gilt dy/dt = 0.

Damit und mit der Feststellung, dass im Reellen ein Produkt genau dann Null wird, wenn einer der Faktoren Null ist, findet man vier mögliche 0-Kandidaten, je zwei in den beiden Gleichungen.

Da nun aber Koexistenz heißt, dass beide y_i echt positiv sein sollen, bleiben nurnoch die beiden Klammern als 0-Kandidaten übrig. Damit haben wir zwei Gleichungen für die zwei Unbekannten a, b, welche wir elementar lösen können.

Aus der ersten Gleichung folgt $y_1 = 1 - ay_2$. Dies eingesetzt in die zweite Gleichung ergibt $y_2(ab-1) = (b-1)$. Um y_2 zu erhalten, brauchen wir eine Fallunterscheidung.

$$ab = 1 \Rightarrow y_2 \cdot 0 = 0 = b - 1 \Leftrightarrow b = 1 \Rightarrow a = 1.$$

 y_2 hat erst einmal keine Einschränkung, aus $y_1 = 1 - ay_2 = 1 - y_2$ folgt jedoch, soll y_1 positiv sein, dass $0 < y_2 < 1$ gelten muss. Dies ist möglich und so gibt es in diesem Fall eventuell Koexistenz.

 $ab \neq 1 \Rightarrow y_2 = (b-1)/(ab-1)$. Wegen $0 \stackrel{!}{<} y_2$ folgt sgn(b-1) = sgn(ab-1). Ist also b < 1, so muss gelten ab-1 > 1 und gleiches gilt für b > 1, denn dann muss ab-1 < 1 sein. Dann findet man a > 2/b bzw. a < 2/b.

Fasst man unser Ergebnis zusammen, so findet sich einmal bei ab = 1 und bei $ab \neq 1$ mit obigen Zusatzbedingungen ggf. Koexistenz.

Lösung: Aufgabe 4

Diese Aufgabe ist leicht lösbar mit dem Ansatz von B10A4. Definiert man nämlich x := dy/dt und führt einen Vektor $z := (x, y)^t$ ein, so kann man wieder die Matrix-Vektor Norm aufstellen:

$$z = \left(\begin{array}{c} x \\ y \end{array}\right) \Rightarrow z' = \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} 0.5 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Dann finden wir mit unserem Ansatz $z(t) = v \exp(\lambda t)$ für die Eigenwerte folgendes Polynom:

 $\lambda^2 - 0.5\lambda + 1 = 0 \Rightarrow \lambda_{1/2} = 1/4 \pm i\sqrt{15}/4$. Da hier die Eigenwerte komplex sind, haben wir oszillierendes Verhalten. Zudem wächst, da $Re(\lambda) > 0$ ist, die Amplitude.

Zusatz: Die gegebene Gleichung ist eine typische Schwingungsgleichung der Physik.