Definition 1. Compound propositions are made of primitive propositions.

Definition 2. Logic connectives and their symbols are

negation	not	_
conjunction	and	\wedge
disjunction	or	V
exclusive OR	eitheror	\oplus
implication	ifthen	\rightarrow
equivalent	if and only if	\leftrightarrow

												_
			p	q	p	$\wedge q$		p	q	p	$\vee q$	
p	$\neg p$		1	0	'	0		1	0		1	
0	1		1	1		1		1	1		1	
1	0		0	0	1	0		0	0		0	
			0	1		0		0	1		1	j
p	q	$q \oplus$	q		p	q	<i>p</i> –	$\rightarrow q$] [p	q	$p \leftrightarrow q$
1	0	1			1	0	l)		1	0	0
1	1	0		ĺ	1	1	í	!] [1	1	1
0	0	0		Ì	0	0	i	1		0	0	0
0	1	1		Ì	0	1		1	ĺ	0	1	0

Definition 3. Two statements are logically equivalent to each other if they have the same truth table.

Theorem 1. Law of substitution: If two statements are logically equivalent, one can substitute the other.

Definition 4. Logic substitution rules

Commtative	$p \land q \Leftrightarrow q \land p$	$p \lor q \Leftrightarrow q \lor p$
Associative	$(p \land q) \land r \Leftrightarrow q \land (p \land r)$	$(p \lor q) \lor r \Leftrightarrow q \lor (p \lor r)$
Distributive	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Identity	$p \wedge T \Leftrightarrow p$	$p \lor F \Leftrightarrow p$
Negation	$p \lor \neg p \Leftrightarrow T$	$p \land \neg p \Leftrightarrow F$
Double Negation	$\neg(\neg p) \Leftrightarrow p$	
Idempotent	$p \land p \Leftrightarrow p$	$p \lor p \Leftrightarrow p$
Universal Bound	$p \lor T \Leftrightarrow T$	$p \wedge F \Leftrightarrow F$
De Morgan's	$\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$	$\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$
Absorption	$p \lor (p \land q) \Leftrightarrow p$	$p \land (p \lor q) \Leftrightarrow p$
Conditional	$(p \to q) \Leftrightarrow (\neg p \lor q)$	$\neg(p \to q) \Leftrightarrow (p \land \neg q)$

Definition 5. Logic inference rules

Modus Ponens	Modus Tollens	Disjunctive Syllogism		
$p \rightarrow q$	$p \rightarrow q$	$p \lor q p \lor q$		
p	$\neg q$	$\neg q \mid \neg p$		
$\therefore q$	∴ ¬ <i>p</i>	$\therefore p \therefore q$		
Disjunctive Addition	Conjunctive Simplification	Rule of contradiction		
p q	$p \wedge q \mid p \wedge q$	$\neg p \to F$		
$p \lor q : p \lor q$	$\therefore p \mid : q$	$\therefore p$		
Hypothetical Syllogism	Conjunctive Addition	Dilemma		
$p \rightarrow q$	p	$p \lor q$		
$q \rightarrow r$	q	$p \rightarrow r$		
$\therefore p \to r$	$\therefore p \land q$	$q \rightarrow r$		
		$\therefore r$		