EE-559 – Deep learning

1.2. Current applications and success

François Fleuret https://fleuret.org/ee559/ Sat Oct 6 18:43:49 CEST 2018

Object detection and segmentation

(Pinheiro et al., 2016)

Human pose estimation

(Wei et al., 2016)

Image generation

(Radford et al., 2015)

Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)

Strategy games

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)

Translation

"The reason Boeing are doing this is to cram more seats in to make their plane more competitive with our products," said Kevin Keniston, head of passenger comfort at Europe's Airbus.

"La raison pour laquelle Boeing fait cela est de créer plus de sièges pour rendre son avion plus compétitif avec nos produits", a déclaré Kevin Keniston, chef du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied: "The United States is not conducting electronic surveillance aimed at offices of the World Bank and IMF in Washington."

Interrogé à ce sujet, un fonctionnaire de l'administration américaine a répondu:

→ "Les États-Unis n'effectuent pas de surveillance électronique à l'intention des bureaux de la Banque mondiale et du FMI à Washington"

(Wu et al., 2016)

Auto-captioning

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

(Vinyals et al., 2015)

Question answering

```
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden

I: It started boring, but then it got interesting.
Q: What's the sentiment?
A: positive
```

I: Jane went to the hallway.

(Kumar et al., 2015)

Why does it work now?

The success of deep learning is multi-factorial:

- · Five decades of research in machine learning,
- CPUs/GPUs/storage developed for other purposes,
- lots of data from "the internet",
- tools and culture of collaborative and reproducible science,
- resources and efforts from large corporations.

Five decades of research in ML provided

- a taxonomy of ML concepts (classification, generative models, clustering, kernels, linear embeddings, etc.),
- a sound statistical formalization (Bayesian estimation, PAC),
- a clear picture of fundamental issues (bias/variance dilemma, VC dimension, generalization bounds, etc.),
- a good understanding of optimization issues,
- efficient large-scale algorithms.

From a practical perspective, deep learning

- · lessens the need for a deep mathematical grasp,
- makes the design of large learning architectures a system/software development task,
- allows to leverage modern hardware (clusters of GPUs),
- · does not plateau when using more data,
- makes large trained networks a commodity.

(Wikipedia "FLOPS")

	TFlops (10 ¹²)	Price	GFlops per \$
Intel i7-6700K	0.2	\$344	0.6
AMD Radeon R-7 240	0.5	\$55	9.1
NVIDIA GTX 750 Ti	1.3	\$105	12.3
AMD RX 480	5.2	\$239	21.6
NVIDIA GTX 1080	8.9	\$699	12.7

The typical cost of a 4Tb hard disk is \$120 (Dec 2016).

(Canziani et al., 2016)

Data-set	Year	Nb. images	Resolution	Nb. classes
MNIST	1998	6.0×10^{4}	28 × 28	10
NORB	2004	4.8×10^{4}	96×96	5
Caltech 101	2003	$9.1 imes 10^3$	$\simeq 300 \times 200$	101
Caltech 256	2007	3.0×10^4	$\simeq 640 \times 480$	256
LFW	2007	$1.3 imes 10^4$	250×250	_
CIFAR10	2009	$6.0 imes 10^4$	32×32	10
PASCAL VOC	2012	$2.1 imes 10^4$	$\simeq 500 \times 400$	20
MS-COCO	2015	2.0×10^{5}	$\simeq 640 \times 480$	91
ImageNet	2016	14.2×10^{6}	$\simeq 500 \times 400$	21,841
Cityscape	2016	25×10^{3}	$2,000 \times 1000$	30

"Quantity has a Quality All Its Own."

(Thomas A. Callaghan Jr.)

Implementing a deep network, PyTorch

Deep-learning development is usually done in a framework:

	Language(s)	License	Main backer
PyTorch	Python	BSD	Facebook
Caffe2	C++, Python	Apache	Facebook
TensorFlow	Python, $C++$	Apache	Google
MXNet	Python, $C++$, R , Scala	Apache	Amazon
CNTK	Python, $C++$	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined with a slow, high-level, interpreted language.

We will use the PyTorch framework for our experiments.

http://pytorch.org

"PyTorch is a python package that provides two high-level features:

- Tensor computation (like numpy) with strong GPU acceleration
- Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed."

MNIST data-set

```
1/836/03/00/12730465
26471899307102035465
86375809103122336475
06279859211445641253
93905965741340480436
87609757211689415229
03967203543658954742
13489192879187413110
23949216841744925724
42197287692238165110
409/1243273869056076
264583 (5192744481589
56799370906623901548
09412801261030118203
94050617781920512273
54971839603/12635768
29585741131755525870
9775090089248/6/6518
34055836239211521328
73724697742811384065
```

 28×28 grayscale images, 60k train samples, 10k test samples.

(leCun et al., 1998)

```
model = nn.Sequential(
    nn.Conv2d(1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
    nn.Conv2d(32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
    Flattener().
    nn.Linear(256, 200), nn.ReLU(),
    nn.Linear(200, 10)
nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropvLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)
model.cuda()
criterion.cuda()
train_input, train_target = train_input.cuda(), train_target.cuda()
mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)
for e in range(nb_epochs):
    for input, target in zip(train_input.split(batch_size),
                             train target.split(batch size)):
        output = model(input)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
```

 \simeq 7s on a GTX1080, \simeq 1% test error

References

- A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models for practical applications. CoRR, abs/1605.07678, 2016.
- A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani, and R. Socher. Ask me anything: Dynamic memory networks for natural language processing. CoRR, abs/1506.07285, 2015.
- Y. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, Feb. 2015.
- P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learning to refine object segments. In *European Conference on Computer Vision (ECCV)*, pages 75–91, 2016.
- A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
- D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*. 529:484–503. 2016.

- O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.
- S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. *CoRR*, abs/1602.00134, 2016.
- abs/1602.00134, 2016.

 Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,

J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google's neural machine translation system: Bridging the gap between human and

machine translation. CoRR. abs/1609.08144, 2016.