A Review of Applied Probability Theory

Random Variables

Dr. Bahman Honari Autumn 2022

Random Variable

• We assign a unique number to every outcome in a sample space. The outcome of an experiment is then described as a single numerical value X, which is called a random variable.

Random Variable

• Example 3.1. Let X be the number of heads obtained in 3 tosses of a fair coin. The following tables show how a number is assigned to X from each outcome of an experiment.

• The probabilities of X are given below.

$$P(X = 0) = \frac{1}{8}$$
, $P(X = 1) = \frac{3}{8}$, $P(X = 2) = \frac{3}{8}$, $P(X = 3) = \frac{1}{8}$

Value of <i>X</i>	Event
0	{TTT}
1	{HTT, THT, TTH}
2	{HHT, HTH, THH}
3	{HHH}

• If a random variable X has a discrete set of possible values (as in Example 3.1), then its probability distribution, denoted f (x), is defined as follows:

$$f(x) = P(X = x)$$

• Based on this definition, we note the following necessary and sufficient conditions for f(x) to be a probability distribution:

i.
$$0 \le f(x) \le 1$$
 for all x

ii.
$$\sum_{all \ x} f(x) = 1$$

Example 3.2.

- a. Let $f(x) = \frac{x-1}{3}$ for x = 0, 1, 2, 3. Since $f(0) = -\frac{1}{3} < 0$, this function is not a valid probability distribution.
- b. Let $f(x) = \frac{x^2}{12}$ for x = 0, 1, 2, 3. Then $0 \le f(x) \le 1$ for all x. However,

$$\sum_{x=0}^{3} f(x) = 0 + \frac{1}{12} + \frac{4}{12} + \frac{9}{12} = \frac{14}{12} = \frac{7}{6} > 1$$

Thus, *f* is not a valid probability distribution.

- Example 3.3. 30% of the automobiles in a certain city are foreign made. Four cars are selected at random. Let X be the number of cars sampled that are foreign made.
- Let F: foreign made, and D: domestic. The following table displays all possible outcomes for each value of X.

<i>X</i> = 0	<i>X</i> = 1	X = 2	<i>X</i> = 3	X = 4	
DDDD	DDDF	DDFF	DFFF	FFFF	
	DDFD	DFDF	FDFF		
	DFDD	DFFD	FFDF		
	FDDD	FDDF	FFFD		
		FDFD			
		FFDD			

• Example 3.3.Cont

The probability of each value of X is given below

$$P(X = 0) = P(DDDD) = 0.7^4 = 0.2401$$

$$P(X = 1) = 4 \cdot 0.7^{3} \cdot 0.3 = 0.4116$$

$$P(X = 2) = 6 \cdot 0.7^2 \cdot 0.3^2 = 0.2646$$

$$P(X = 3) = 4 \cdot 0.7 \cdot 0.3^3 = 0.0756$$

$$P(X = 4) = 0.3^4 = 0.0081$$

- Example 3.4. Bernoulli trials have the following properties:
 - a. Each trial yields one of two outcomes: success (S) or failure (F).

b.
$$P(S) = P(X = 1) = p$$
, $P(F) = P(X = 0) = 1 - p$

or
$$f(x) = \begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}$$

where *p* is the probability of success in a single trial.

c. Each trial is independent.

For a discrete random variable X, the *cumulative distribution function* (cdf) for a probability distribution f(x) is denoted F(x) and is defined as follows:

$$F(x) = P(X \le x) = \sum_{y \le x} f(y)$$

If the range of a random variable X consists of the values $x_1 < x_2 < \cdots < x_n$, then $f(x_1) = F(x_1)$ and $f(x_i) = F(x_i) - F(x_{i-1})$ for $i = 2, 3, \dots, n$. The cdf is a nondecreasing function.

For a discrete random variable:

- i. A cdf has a jump at each possible value equal to the probability of that value.
- ii. The graph of the cdf will be a step function.
- iii. The graph increases from a minimum of 0 to a maximum of 1.

• Example 3.3.Cont . From the automobile example in Example 3.3, the distribution of X was obtained as follows:

$$f(0) = 0.2401$$
, $f(1) = 0.4116$, $f(2) = 0.2646$, $f(3) = 0.0756$, $f(4) = 0.0081$

and thus the cdf is given as follows

$$F(0) = P(X \le 0)$$
 = probability of no foreign made car = $f(0)$ = 0.2401
 $F(1) = P(X \le 1)$ = probability that at most 1 car is foreign made = $f(0) + f(1)$
= 0.2401 + 0.4116 = 0.6517
 $F(2) = P(X \le 2)$ = probability that at most 2 cars are foreign made
= $f(0) + f(1) + f(2) = 0.9163$
 $F(3) = P(X \le 3) = f(0) + f(1) + f(2) + f(3) = 0.9919$
 $F(4) = P(X \le 4) = 1$

• Example 3.3.Cont.

• The probability of a discrete distribution varies depending on the inclusion and exclusion of the boundary values. Figures below show the probability expressed in terms of cdf 's for a < b in each case. In this figure, a — denotes a number that is less than a by an infinitesimally small value.

$$P(a \le X \le b) = P(X \le b) - P(X < a) = F(b) - F(a^{-})$$

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

$$P(a \le X < b) = P(X < b) - P(X < a) = F(b^{-}) - F(a^{-})$$

$$P(a < X < b) = P(X < b) - P(X \le a) = F(b^{-}) - F(a)$$

• Example 3. 5. Let's X have the following distribution:

• Then we have:

$$P(1 \le X \le 3) = F(3) - F(0) = 0.8 - 0.1 = 0.7$$

$$P(1 < X \le 3) = F(3) - F(1) = 0.8 - 0.3 = 0.5$$

$$P(1 \le X < 3) = F(2) - F(0) = 0.6 - 0.1 = 0.5$$

$$P(1 < X < 3) = F(2) - F(1) = 0.6 - 0.3 = 0.3$$

x	f(x)	F(x)
0	0.1	0.1
1	0.2	0.3
2	0.3	0.6
3	0.2	0.8
4	0.2	1

x	f(x)	F(x)
0	0.1	0.1
1	0.2	0.3
2	0.3	0.6
3	0.2	0.8
4	0.2	1

$$P(1 \le X \le 3) = F(3) - F(0) = 0.8 - 0.1 = 0.7$$

$$P(1 < X \le 3) = F(3) - F(1) = 0.8 - 0.3 = 0.5$$

$$P(1 \le X < 3) = F(2) - F(0) = 0.6 - 0.1 = 0.5$$

$$P(1 < X < 3) = F(2) - F(1) = 0.6 - 0.3 = 0.3$$

The mean (expected value) of a discrete random variable X is defined as follows:

$$E[X] = \sum_{all \ x} x.f(x)$$

Example 3. 6. Let's X have the following distribution:

X	f(x)	xf(x)
0	1/8	0
1	3/8	3/8
2	3/8	3/4
3	1/8	3/8

In this example, E(X) = 1.5. This means that if this experiment were repeated an extremely large number of times, the average number of heads obtained per experiment would be very close to 1.5.

Example 3. 7. Let's X have the following Bernoulli distribution:

$$f(x) = \begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0\\ 0, & \text{otherwise} \end{cases}$$

Then we have:

$$E[X] = \sum_{all\ x} x. f(x) = 0 \times (1-p) + 1 \times p = p$$

Example 3. 8. In a state lottery, a player picks 5 different integers between 1 and 50. If all 5 of these numbers are drawn, the prize is €1,000,000. If 4 of the 5 match, the prize is \$1,000. If 3 of the 5 match, the prize is a free lottery ticket (worth €1). Matching 2 or fewer of the numbers earns no prize. For an individual player, what is the expected prize?

$$P(X = 1,000,000) = \frac{1}{\binom{50}{5}} = \frac{1}{2,118,760}$$

$$P(X = 1,000) = \frac{\binom{5}{4}\binom{45}{1}}{\binom{50}{5}} = \frac{225}{2,118,760}$$

$$P(X = 1) = \frac{\binom{5}{3}\binom{45}{2}}{\binom{50}{5}} = \frac{9,900}{2,118,760}$$

$$E(X)$$

$$= 0 + \frac{9,900}{2,118,760} + \frac{1,000 \cdot 225}{2,118,760} + \frac{1,000,000}{2,118,760} \approx 0.583$$

$$P(X = 0) = 1 - P(X = 1) - P(X = 1,000) - P(X = 1,000,000)$$

Example 3. 9. In flipping 3 fair coins, find $E[X^3 - X]$.

x	$x^3 - x$	f(x)	$(x^3-x) f(x)$
0	0	1/8	0
1	0	3/8	0
2	6	3/8	9/4
3	24	1/8	3

Then we have:

$$E(X^3 - X) = 0 + 0 + \frac{9}{4} + 3 = \frac{21}{4} = 5.25$$

Variance

Now we can define the variance of a probability distribution as follows:

$$Var[(X - E[X])^2] = \sum_{all \ x} (x - \mu)^2 f(x)$$

The standard deviation σ is the square root of the variance.

Example 3. 10. For the following distribution, the mean and variance of X can be calculated as follows.

х	f(x)	xf(x)	$(x-\mu)^2$	$(x-\mu)^2 f(x)$
1	0.3	0.3	4	1.2
2	0.4	0.8	1	0.4
5	0.2	1.0	4	0.8
9	0.1	0.9	36	3.6
Total	1	$\mu = 3$		$\sigma^2 = 6$

Moment Generating Function

Moment Generating Function (MGF) is defined as

$$m_X(t) = E[e^{tX}] = \sum_x e^{tx} f(x)$$

Property of $m_X(t)$

$$\frac{\partial m_X(t)}{\partial t} = \frac{\partial}{\partial t} E[e^{tX}] = \frac{\partial}{\partial t} \sum_{x} e^{tx} f(x) = \sum_{x} \frac{\partial}{\partial t} e^{tx} f(x) = \sum_{x} x e^{tx} f(x)$$

By putting t = 0 we have:

$$\left. \frac{\partial m_X(t)}{\partial t} \right|_{t=0} = \sum_{x} x e^{tx} f(x) \bigg|_{t=0} = \sum_{x} x f(x) = E[X]$$

Moment Generating Function

Similarly:

$$\left. \frac{\partial^k m_X(t)}{\partial t^k} \right|_{t=0} = \left. \frac{\partial^k}{\partial t^k} \sum_{x} e^{tx} f(x) \right|_{t=0} = \left. \sum_{x} \frac{\partial^k}{\partial t^k} e^{tx} f(x) \right|_{t=0} = \left. \sum_{x} x^k e^{tx} f(x) \right|_{t=0}$$

$$= \sum_{x} x^{k} f(x) = E[X^{k}]$$

Moment Generating Function - Example

If
$$m_X(t) = p(1 - qe^t)^{-1}$$
, $(p + q = 1)$, find $Var[X]$.

$$\left. \frac{\partial m_X(t)}{\partial t} \right|_{t=0} = p(-1)(-qe^t)(1-qe^t)^{-2} \Big|_{t=0} = \frac{pq}{(1-q)^2} = \frac{q}{p} = E[X]$$

$$\frac{\partial^2 m_X(t)}{\partial t^2} \bigg|_{t=0} = p(-1)(-qe^t)(1-qe^t)^{-2} + p(-1)(-2)(-qe^t)^2(1-qe^t)^{-3} \bigg|_{t=0}$$

$$= \frac{pq}{(1-q)^2} + 2\frac{pq^2}{(1-q)^3} = \frac{pq}{p^2} + 2\frac{pq^2}{p^3} = \frac{q}{p} + 2\frac{q^2}{p^2} = E[X^2]$$

$$Var[X] = E[X^2] - E^2[X] = \frac{q}{p} + 2\frac{q^2}{p^2} - \frac{q^2}{p^2} = \frac{q}{p} + \frac{q^2}{p^2} = \frac{pq}{p^2} + \frac{q^2}{p^2} = \frac{q(p+q)}{p^2} = \frac{q}{p^2}$$