Épreuve de Mathématiques de l'Ingénieur : Méthodes Numériques

Examen, Durée : à rendre avant le 08 avril 2021.

N.B. : Il sera tenu compte de la rédaction, la justification de réponses et la clarté de l'écriture. La rédaction doit être faite sur des feuilles A4 de l'imprimante.

Envoyer vos comptes-rendus à l'adresse mail : m.addam@uae.ac.ma

Exercice 1

Nous avons utilisé la méthode de Gauss pour résoudre des systèmes linéaires réels du type Ax = b où $A \in \mathbb{R}^{(n \times n)}$ et $b \in \mathbb{R}^n$. L'objectif de cet exercice est, de résoudre des systèmes linéaires Az = b où $A \in \mathbb{C}^{(n \times n)}$ et $b \in \mathbb{C}^n$, par la méthode de Gauss.

- 1. Montrer que si $A \in \mathbb{C}^{(n \times n)}$ et $b \in \mathbb{C}^n$, alors $A = A_r + iA_i$ et $b = b_r + ib_i$ où $A_r, A_i \in \mathbb{R}^{(n \times n)}$ et $b_r, b_i \in \mathbb{R}^n$.
- 2. Montrer que résoudre le système linéaire complexe Az=b est équivalent à résoudre le système linéaire réel suivant

$$\begin{pmatrix} A_{\mathbf{r}} & -A_{\mathbf{i}} \\ A_{\mathbf{i}} & A_{\mathbf{r}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{\mathbf{r}} \\ b_{\mathbf{i}} \end{pmatrix}$$
 (1.1)

où z = x + iy.

- 3. Présenter une analyse sur le stockage des deux systèmes linéaires (complexe et réelle) dans la mémoire de votre machine.
- 4. Soit A la matrice à coefficients complexe suivante

$$A = \begin{pmatrix} 2+4i & -1 & 7i \\ -2-3i & 3-i & 1+i \\ 1+i & 1-i & -3+i \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 5+3i \\ 7-i \\ -1-i \end{pmatrix}$$

- (a) Déterminer $A_{\rm r},\,A_{\rm i},\,b_{\rm r}$ et $b_{\rm i},\,{\rm puis}$ préciser leurs tailles.
- (b) Écrire le système linéaire réel équivalent, de type (1.1), à résoudre.
- (c) En utilisant la méthode de Gauss, triangulariser le système linéaire réel et le résoudre au même temps. (Écrire les matrices L_1, L_2, \ldots, L_5 , puis les matrices L et U de la factorisation LU du système réel équivalent).
- (d) En déduire la solution z du système linéaire complexe.

Exercice 2

On propose de résoudre le système d'équations linéaire suivant :

$$(S): \begin{cases} 3x_1 + x_2 + x_3 - x_4 &= 5, \\ x_1 + 3x_2 + x_3 - 2x_4 &= 3, \\ x_1 + x_2 + 3x_3 + x_4 &= 1 \end{cases}$$

Soit $b = (5 + x_4, 3 + 2x_4, 1 - x_4)^T$ un vecteur de \mathbb{R}^3

- 1. Écrire le système (S) sous la forme matricielle Ax = b équivalente où A et x sont à déterminer.
- 2. Montrer que la matrice A est symétrique et définie positive, puis trouver le rayon spectral de A.

- 3. Quelle est la méthode numérique proposée pour la résolution du système linéaire équivalent ? Justifier
- 4. On procède maintenant à résoudre le système linéaire Ax = b.
 - (a) Déterminer la matrice B telle que l'on a la factorisation de Cholesky $A = BB^T$.
 - (b) Rappeler l'expression générale des solutions d'un système triangulaire, résoudre les systèmes trinagulaires linéaires By = b et $B^T x = y$.
 - (c) En déduire l'ensemble E des solutions du système linéaire (S), puis montrer que E est un sous-espace vectoriel de \mathbb{R}^4 et déterminer sa dimension.

Exercice 3

On souhaite calculer le zéro de la fonction $f(x) = x^3 - 2$ par une méthode de point fixe utilisant la fonction

$$g(x) = \left(1 - \frac{\omega}{3}\right)x + (1 - \omega)x^3 + \frac{2\omega}{3x^2} + 2(\omega - 1),$$

où ω est un paramètre réel.

- 1. Déterminer les valeurs de ω pour les quelles le zéro de f soit un point fixe de la méthode g.
- 2. Déterminer les valeurs de ω pour les quelles la convergence de la méthode soit d'ordre 1.
- 3. Existe-t-il une valeur du paramètre ω telle que l'ordre de la méthode soit supérieur à deux?

Exercice 4

Soit A une matrice carrée de taille $(n \times n)$, à coefficient dans \mathbb{R} , symétrique et définie-positive. On décompose A sous la forme A = D + H + V avec :

- $-(H_1): D = \alpha I_n$, où I_n est la matrice identité et $\alpha > 0$.
- $-(H_2): H$ et V sont deux matrices symétriques qui vérifient : D+V et D+H sont inversibles. Pour résoudre le système linéaire Ax = b, où x et b sont deux vecteurs de \mathbb{R}^n , on considère la méthode itérative suivante :

(E₁)
$$\begin{cases} (D+H)x^{(k+\frac{1}{2})} = -V x^{(k)} + b, \\ (D+V)x^{(k+1)} = -H x^{(k+\frac{1}{2})} + b. \end{cases}$$

- 1. Exprimer $x^{(k+1)}$ en fonction de $x^{(k)}$. En déduire que $\lim_{k\to+\infty}x^{(k)}=x$ si, et seulement si $\rho(F)<1$ où F est une matrice à déterminer.
- 2. On pose $B = D^{-1}H$ et $C = D^{-1}V$.
 - (a) Vérifier que $\rho(F) = \rho (B(I+B)^{-1}C(I+C)^{-1}).$
 - (b) Vérifier que la matrice B commute avec la matrice $(I B)^{-1}$. De même, vérifier que la matrice C commute avec la matrice $(I + C)^{-1}$.
 - (c) Montrer que les matrices $B(I+B)^{-1}$ et $C(I+C)^{-1}$ sont symétriques.
 - (d) Déduire que $\rho(F) \leq \rho \left(B(I+B)^{-1}\right) \rho \left(C(I+C)^{-1}\right)$.
- 3. Montrer que l'on a

$$\rho\left(B(I+B)^{-1}\right) < 1 \quad \Leftrightarrow \quad \frac{1}{2}I_n + B \quad \text{est symétrique et définie-positive}$$

4. Déduire que la méthode itérative (E_1) converge dès que les matrices $\frac{1}{2}D + H$ et $\frac{1}{2}D + V$ sont symétriques et définies-positives.

2

Exercice 5

Soit la matrice réelle A d'ordre n:

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & a_0 \\ 1 & 0 & & \vdots & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix}$$

On suppose que A est diagonalisable et que ses valeurs propres $(\lambda_i)_{1 \le i \le n}$ vérifient

$$|\lambda_1| \le \ldots \le |\lambda_{n-1}| \le |\lambda_n|.$$

- 1. Calculer le polynôme caractéristique de A.
- 2. Soient $X^{(i)}$ $(i=1,\ldots,n)$ les n vecteurs propres indépendants de A et les $X_j^{(i)}$ leurs composantes dans la base canonique $\beta=\{e_1,\ldots,e_n\}$ de \mathbb{R}^n ; soit v un vecteur quelconque de \mathbb{R}^n .
 - (a) Exprimer $W^{(p)} = A^p v$ en fonction de X_1, \ldots, X_n où $p \in \mathbb{N}^*$.
 - (b) En déduire que pour tout j = 1, ..., n on a

$$\lim_{p \to +\infty} \frac{W_j^{(p+1)}}{W_j^{(p)}}$$

où $(W_j^{(p)})_{1 \leq j \leq n}$ sont les composantes du vecteur W_p dans la base canonique β de \mathbb{R}^n .

- 3. Soit le polynôme suivant $P(x) = x^3 4.82 x^2 + 1.66 x + 2.16$.
 - (a) Calculer P(-1), P(0), P(1) et P(2); puis localiser les racines de P(x).
 - (b) Prendre $v = (0, 0, 1)^T$ et approcher la racine de plus grand module de P(x).