GUIDA ESERCIZI

LISTA ESERCIZI

- 1. Un dato vettore può essere una base ammissibile?
- 2. Può esistere una soluzione di base ammissibile con x_2 e x_3 in base
- 3. Può esistere un vertice della regione ammissibile del problema con x_1 e x_2 strettamente positivi?
- 4. Può esistere una soluzione ottima con x_3 in base?
- 5. Può esistere una soluzione ottima con x_1 e x_2 strettamente positivi?
- 6. Simplesso
- 7. Simplesso a 2 fasi
- 8. simplesso primale-duale a partire da una soluzione duale y
- 9. Verificare se le soluzioni del vettore dato sono ottime

1. Un dato vettore può essere una base ammissibile?

ESERCIZIO 1. Dato il seguente problema di programmazione lineare:

$$\min 2x_1 + x_2 - x_3$$

$$x_1 + 3x_2 \le 6$$

$$3x_1 - x_2 + 4x_3 \ge 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0$$

1.1 Rispondere alla seguenti domande senza risolvere direttamente

a) $\bar{x} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$ può essere una soluzione di base ammissibile?

- 1. Prendo i *vincoli ORIGINALI* e sostituisco il *vettore*
 - se i vincoli sono corretti → proseguo oltre
 - se i vincoli NON sono corretti → non può essere SBA → fine
- 2. Faccio forma standard
 - aggiungo slack/surplus
- 3. Sostituisco il vettore alla forma standard
 - trovo quanto valgono gli slack/surplus

- 4. Scrivo vettore finale
 - Vedo quanti vincoli avevo ORIGINARIAMENTE (n)
 - DEVO avere esattamente n variabili ≠ 0 nel vettore
 - le ho? è SBA
 - non le ho? non è SBA

2. Può esistere una soluzione di base ammissibile con x_2 e x_3 in base

ESERCIZIO 1. Dato il seguente problema di programmazione lineare:

$$\max -4x_1 + 3x_2 - x_3$$

$$x_1 + 3x_2 \ge 10$$

$$x_1 - x_2 + 4x_3 \ge 8$$

$$x_1 \ge 0, x_2 \le 0, x_3 \ge 0$$

1.1 Rispondere alla seguenti domande senza risolvere direttamente

Quali di questi vettori
$$x_1 = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 12 \\ 0 \\ 2 \end{bmatrix}$, $x_3 = \begin{bmatrix} 13 \\ -1 \\ 0 \end{bmatrix}$, $x_4 = \begin{bmatrix} 14 \\ -1 \\ 2 \end{bmatrix}$ sono soluzioni di base ammissibili?

- b) Può esistere una soluzione di base ammissibile con x_2 e x_3 in base?
 - Faccio forma standard
- 2. Metto x_2 e x_3 in base
 - ossia, pongo TUTTO tranne, x_2 e x_3 , uguale a 0 (e quindi cancello le variabili che non sono x_2 e x_3 dai vincoli)
- 3. Scrivo il sistema con i nuovi vincoli
- 4. Trovo il valore di x_2 e x_3
 - rispettano il dominio del problema originale → Esiste soluzione ottima
 - non rispettano il dominio → non esiste soluzione ammissibile

3. Può esistere un vertice della regione ammissibile del problema con x_1 e x_2 strettamente positivi?

ESERCIZIO 1. Dato il seguente problema di programmazione lineare:

$$\min 2x_1 + x_2 - x_3$$

$$x_1 + 3x_2 \le 6$$

$$3x_1 - x_2 + 4x_3 \ge 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0$$

28-05-

1.1 Rispondere alla seguenti domande senza risolvere direttamente

b) Può esistere un vertice della regione ammissibile del problema con x_1 e x_2 strettamente positivi?

- 1. Parto dalla forma standard (=)
- 2. Pongo <u>TUTTE</u> le variabili diverse da x_1 e x_2 UGUALI A 0
- 3. Risolvo il sistema ottenuto e trovo x_1 e x_2
 - $x_1 e x_2 sono > 0$?
 - si → esiste il vertice
 - no → non esiste il vertice

4. Può esistere una soluzione ottima con x_3 in base

ESERCIZIO 1. Dato il seguente problema di programmazione lineare:

$$\min 2x_1 + x_2 - x_3$$

$$x_1 + 3x_2 \le 6$$

$$3x_1 - x_2 + 4x_3 \ge 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0$$

28-05-

1.1 Rispondere alla seguenti domande senza risolvere direttamente

b) Può esistere un vertice della regione ammissibile del problema con x_1 e x_2 strettamente positivi?

1. Faccio il duale DIRETTAMENTE DAI VINCOLI ORIGINALI

- 2. Seleziono la riga che nel duale corrisponde a x_3 (quindi la terza riga)
- 3. vedo quanto vale u_i (che io chiamerò y_i)
 - rispetta il dominio? (quello cerchiato in rosso)
 - si → esiste soluzione ottima
 - no → non esiste soluzione ottima

\bigcirc ATTENZIONE, potrei avere un vincolo con più di una y_i , tipo riga 1.

In questo caso io devo applicare la complementarietà tra primale e duale, trovandomi i valori delle varie y_i e poi eseguire il punto 3).

Questa roba della complementarietà la vedi nell'esercizio 8.

5. Può esistere una soluzione ottima con x_1 e x_2 strettamente positivi?

ESERCIZIO 1. Dato il seguente problema di programmazione lineare:

$$\min 2x_1 + x_2 - x_3$$

$$x_1 + 3x_2 \le 6$$

$$3x_1 - x_2 + 4x_3 \ge 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0$$

28-05-

1.1 Rispondere alla seguenti domande senza risolvere direttamente

b) Può esistere un vertice della regione ammissibile del problema con x_1 e x_2 strettamente positivi?

- 1. Faccio il duale della formula ORIGINALE
- 2. Pongo i vincoli di x_1 e $x_2 > 0$, il resto = 0 (in pratica cancello tutti i vincoli tranne quelli di x_1 e x_2)
- 3. Trovo i valori di delle varie y
 - rispettano i vincoli delle variabili → Esiste soluzione ottima
 - non rispettano i vincoli delle variabili → Non esiste soluzione ottima

6. Simplesso

- 1. Forma standard
- 2. Metto tutto nel tableaux

For	na	5	and	ard									
	M	in	_	41/2	-	×2	-	5X	3				
				- X1	t	X2			+	አ ų	1	1	
						245	-	x 3	ł	Χs	3	2	
				X ₁			+	X3		X6	<	1	
			X,	, ۲۶	2	0							
Tableaux													
		f		X 1		X.		X 3		Xh		Xs	Xe
	7	0		- 4		- 1		٠5		0		O	0
	Χų	1		-1		1		0		1		0	0
	X5	2		0		2		- 1		0		1	0
	XE	1		1		0		1		0		0	1

- prendo il γ_i di z più piccolo tra quelli < 0
- Trovo il pivot (come nel tableaux del primale-duale)
- Divido tutta la riga scelta per il pivot

	b	X 1	X.	X3	Xh	Xs	XE
ス	0	- 4	- 1	۰5	0	O	0
Χų	1	-1	1	0	1	0	0
%5	2	0	2	- 1	0	1	0
χc	1	1	0	1	0	O	I

- Cancello tutte le righe tranne
 - quella scelta
 - le righe che hanno nella colonna del pivot valore = 0

	6	X 1	X.	X3	Xh	Xs	Xe
ス							
Χų	1	-1	1	0	1	0	0
X 5							
Уς	1	1	0	1	0	0	1

- Per riscrivere le righe cancellate
 - parto dalla riga che voglio riscrivere
 - se voglio scrivere la b allora
 - prendo la b della riga in verde
 - la moltiplico per il valore (cambiato di segno) che si trova nella colonna verde e nella riga che voglio scrivere NEL TABLEAUX PRECEDENTE(es. riga z, prendo il suo valore originale di x_3 (-(-5)))
 - sommo questo valore con la casella del vecchio tableaux
 - sostituisco questo valore nella corrispettiva casella nel tableaux nuovo

- 3. Finito il tableaux controllo se TUTTI i γ_i di $\, {
 m z \, \, sono} \geq 0 \,$
 - si \rightarrow fine simplesso e scrivo B_{ot}

7. Simplesso a due fasi

b Lo fai se devi sottrarre un *surplus* oppure se hai una base *con più volte la stessa variabile*.

1. Forma standard

Trovo che la base non è ammissibile

2. FASE 1

- riscrivo la forma standard aggiungendo n variabili artificiali quante sono le variabili in base "sbagliate"
 - la funzione obiettivo sarà il *min* delle variabili artificiali con il davanti e sommate tra loro
 - aggiungo le variabili artificiali ai vincoli, sommate
- scrivo il tableaux con le variabili artificiali
- azzero le variabili artificiali
- faccio simplesso
- se arrivo ad avere che z = 0 → FASE 2

3. FASE 2

- riscrivo l'ultimo tableaux ottenuto, togliendo le colonne delle variabili artificiali
- se $\gamma < 0 \rightarrow$ faccio simplesso
- se $\gamma \geq 0 \rightarrow$ fine \rightarrow scrivo B_{ot}

8. Eseguire primale-duale

- 1. Scrivo il **primale** (forma standard)
 - ricorda di volerla portare sempre a min
 - se la formula originale è max → scrivi min e cambia <u>TUTTI</u> i segni della funzione obiettivo
- 2. Scrivo il **duale** del primale (vedi foto sopra)
- 3. Verifica ammissibilità duale
- 4. ITERAZIONE
 - 1. Scrivo le equazioni delle variabili
 - prendo i vincoli del duale
 - sposto il termine noto
 - pongo tutto = 0
 - metto il vincolo in una parantesi e moltiplico la variabile corrispondente

- 2. Sostituisco il vettore dato dal prof
 - Se dentro la parentesi ho un valore $eq 0
 ightarrow x_i = 0$
 - Se dentro la parentesi ho un valore $= 0 \rightarrow$ non so quanto vale

3. Faccio il primale ristretto

- parto dal primale
- cancello tutte le variabili che prima ho trovato essere = 0
- aggiungo tanti a_i quante sono le variabili con le parentesi (= 0)

4. Faccio il tableaux

- scrivo l'equazione di z
- scrivo l'equazione delle a
- azzero le a sulla riga di z (sottraggo le righe)
- controllo se ho qualche variabile sulla riga di z che è ≤ 0
 - se ce l'ho → la porto in base
 - eseguo $min\{rac{eta_i}{lpha_{i-entrante}}:lpha_{i-entrante}>0\}$ e trovo il pivot
 - divido tutta la riga per il pivot
 - scrivo la variabile in base
 - sottraggo la riga di z per la riga dove ho diviso α_i
- controllo quanto vale il valore di z
 - se $z^* = 0 \rightarrow$ la base è ottima \rightarrow fine
 - se $z^* \leq 0 \rightarrow$ faccio il duale ristretto

5. Faccio il duale del primale

- identico al duale ma le variabili che aggiungo sono π_i
- prendo in considerazione le righe delle variabili che ho in base nell'ultimo tableaux
- i valori che ho dopo il ≤ corrispondono alle mie π
- 6. Calcolo $y^{(1)} = y^{(0)} + \Theta \cdot \pi$
- 7. Trovo il valore di Θ
- 8. Sostituisco Θ nel duale
- Faccio il grafico
 - Se ho tutti i vincoli ≤ (oppure ≥), e quindi il grafico va tutto a sx (o tutto a dx) →
 non ho soluzioni e il problema si dice illimitato → fine
 - Se ho anche un solo vincolo diverso dagli altri → scelgo il valora più piccolo MA NON POSSO PRENDERE I NEGATIVI
- 10. Cambio base
- 11. RIINIZIO L'ITERAZIONE

9. Verificare se le soluzioni del vettore dato sono ottime (applica complementarietà tra primale e duale)

- 1. Applico vettore ai vincoli ORIGINALI
 - i vincoli sono corretti? È ammissibile → continuo
 - i vincono NON sono corretti? Non è ammissibile → stop
- 2. Scrivo il duale partendo dai vincoli ORIGINALI
- 3. Creo due sistemi
 - 1. Sistema per le y, dove metto dentro le parentesi i vincoli originali con il termine noto spostato e pongo tutto uguale a 0
 - esempio

$$y_1(-x_1+x_2+1)=0$$

- ATTENZIONE: se un vincolo originale era un'uguaglianza (=) non lo devi inserire nel sistema
- 2. Sistema per le x, dove faccio la stessa cosa del sistema di prima solo prendendo i vincoli del duale
 - ATTENZIONE: se un vincolo nel duale era un'uguaglianza lo riscrivo così com'è nel sistema
- 4. Mi trovo i vari valori delle y
 - se ho $y(0) = 0 \rightarrow \text{si dice } \textbf{satura}$
 - se ho $y(\text{valore} \neq 0) = 0 \rightarrow \text{allora } y = 0$ e posso usarla nel secondo sistema
- 5. Una volta trovati tutti i valori delle *y* vedo se rispettano il dominio dei vincoli
 - Li rispettano → verifico per dualità forte
 - Non li rispettano → la soluzione non è ottima
- 6. Dualità forte
 - sostituisco i valori delle x nella funzione obiettivo originale
 - sostituisco i valori delle y nella funzione obiettivo del duale
 - sono uguali → è ottima
 - non sono uguali → non è ottima