COMP 4901Q: High Performance Computing (HPC)

Lecture 1: Introduction

Instructor: Shaohuai SHI (shaohuais@cse.ust.hk)

Teaching assistants: Mingkai TANG (mtangag@connect.ust.hk)

Yazhou XING (yxingag@connect.ust.hk)

Intended Learning Outcomes

- Be able to describe the elements and principles of HPC.
- ▶ Be able to master the **system architecture** of high performance computers.
- ▶ Be able to learn **parallel programming** languages and frameworks.
- Be able to use one of programming languages or frameworks to design and develop HPC systems for real-world science or engineering problems.

Course Schedule

- Introduction to high performance computing. (I lecture) (4 Feb, Fri)
 - Course structure, basic concepts of HPC, examples that are using HPC.
- Introduction to parallel computer architecture. (I lecture) (9 Feb, Wed)
 - Parallel computer organization, processor (e.g., CPU and GPU), memory, storage, interconnect, etc.
- 3. Revisit C/C++ programming and common Linux commands. (I lecture) (II Feb, Fri)
 - For the preparation of the following classes that will have extensive code examples.
- 4. Introduction to parallel programming. (1 lecture) (16 Feb, Wed)
 - Overview of parallel programming and related frameworks/libraries/languages.
- Introduction to OpenMP. (2 lectures) (18 Feb, Fri and 23 Feb, Wed) (Lab Tutorial 1, 21 Feb, Mon)
 - Multi-threading programming for CPUs and the framework of OpenMP and its syntax.
- OpenMP 3.0 and tasking. (2 lectures) (25 Feb, Fri and 2 Mar, Wed)
 - Introduce main features of OpenMP 3.0
- 7. Introduction to GPU computing. (2 lectures) (4 Mar, Fri and 9 Mar, Wed)
 - Basic concepts of GPU computing, GPU architecture (e.g., stream processors, memory, scheduler, etc.)

Course Schedule

- 8. CUDA programming on the GPU. (4 lectures) (11, 16, 18, and 23 Mar) (Lab Tutorial 2, 14 Mar, Mon)
 - Basic concepts in CUDA programming, how to program CUDA code on the GPU, and some advanced topics in optimizing CUDA code.
- 9. Introduction to MPI. (2 lectures) (25 Mar, Fri and 30 Mar, Wed) (Lab Tutorial 3, 28 Mar, Mon)
 - Basic concepts of MPI and distributed memory programming.
- 10. Collective communication algorithms in MPI. (4 lectures) (1, 6, 8, and 20 Apr)
 - Some advanced topics in optimized algorithms for collective communication.
- 11. Combining shared-memory and distributed-memory computing with OpenMP, CUDA, and MPI. (2 lectures) (22 Apr, Fri and 27 Apr, Wed) (Lab Tutorial 4, 25 Apr, Mon)
 - Practices and examples to demonstrate how to combine these three technologies to achieve higher performance.
- 12. A case study: large-scale machine learning in HPC. (2 lectures) (29 Apr, Fri and 4 May, Fri)
 - A detailed example to show how to exploit HPC to support large-scale machine learning
- 13. Introduction to Hadoop and Spark. (4 May)
 - Introduce some basic concepts of Hadoop and Spark

Lab Sessions

- I. Lab Tutorial I: Programming with OpenMP (21 Feb, Mon)
 - Programming environment setup
 - Examples of writing, debugging, compiling, and running code
- 2. Lab Tutorial 2: Programming with CUDA on GPUs (14 Mar, Mon)
 - Programming environment setup
 - Examples of writing, debugging, compiling, and running code
- 3. Lab Tutorial 3: Programming with MPI on clusters (28 Mar, Mon)
 - Programming environment setup
 - Examples of writing, debugging, compiling, and running code
- 4. Lab Tutorial 4: Examples of combining OpenMP, CUDA, and MPI (25 Apr, Mon)
 - Some examples to demonstrate how to combine different parallel programming techniques

Grading (No Final Exam)

- Homework: 2 times, 10% each.
 - Non-programming homework
- Programming assignments: 4 times, 10% each.
 - OpenMP
 - CUDA
 - ▶ MPI
 - Combine two or three of the above
- One final project (documentation, code, and presentation): 40%.
 - Proposal
 - Design
 - Coding
 - Presentation

Final Project

- Find a challenging problem
 - should be computing-intensive/time-consuming to solve with a single processor
 - can be any science or engineering area you like
- Literature review
 - search related work to understand how they address the problem
 - what are the main issues of the existing methods
- Methodology
 - propose your own method to address the problem
 - compare your method with existing ones
 - theoretically analyze the improvement
 - empirically compare performance on specific hardware (e.g., multi-core CPU, GPU, or clusters)
- Code
 - implement your methods using existing frameworks to run on specific hardware
- Documentation
- Presentation

What is HPC

- ▶ HPC most generally refers to the practice of aggregating **computing power** in a way that delivers **higher performance** (thus shorter time) to **solve large problems** in science and engineering
 - Computing power: many-core processors to supercomputers
 - Large problems: can be divided into small problems and solved by parallel computing
 - ▶ **Higher performance**: solve the problem as fast as possible
- It is typically talking about two main areas:
 - Hardware
 - From multi-core processors to supercomputers
 - The top500 list: https://www.top500.org/
 - Software stack
 - Frameworks to utilize the computing resources
 - Algorithms to reduce the time/memory complexity

Hardware of Supercomputers

- On a single node
 - Processors: e.g., CPU, GPU, etc.
 - Memory: e.g., DRAM, HBM
 - Storage: HDD, SSD, etc.
 - Interconnects: QPI, UPI, PCIe, NVLink, ...
- On a cluster
 - Interconnect between nodes:
 - Ethernet or InfiniBand
 - Network switch
 - Topology of interconnects
 - Fat-tree, BCube, etc.
 - Management nodes
 - Login, Monitor, ...

#1 Supercomputer Fugaku: 158,976 nodes, 7,630,848 Cores

Performance Measure

- FLOP: floating point operation
 - double (default, 8 bytes) or float precision (4 bytes)
 - measure the workload of the problem
- ▶ FLOP/s (or FLOPS): floating point operations per second
 - measure the performance of the system at addressing a target problem
- Commonly used units

► Kilo: KFLOP/s = 10^3 FLOPS

Mega: MFLOP/s = 10^6 FLOPS

► Giga: GFLOP/s = 10^9 FLOPS

► Tera: TFLOP/s = 10^12 FLOPS

Peta: PFLOP/s = 10^15 FLOPS

Exa: EFLOP/s=10^18 FLOPS

Arr Zetta: ZFLOP/s = 10^21 FLOPS

World-wide # I (Supercomputer Fugaku): ~537 PFLOPS

World-wide # 2 (Summit): ~200 PFLOPS

The top500 list: https://www.top500.org/

Supercomputer Fugaku (#1)

- Calculate peak performance
 - # of cores: 48
 - SVE 512-bit × 2 vector extensions per core
 - Frequency per core: 2.2 GHz
 - Double precision: 64 bits
 - ▶ 512-bit addition or multiply (fma) per cycle
 - ▶ 512/64=8 double-precision FLOP per cycle
 - Peak performance = 2.2×10^9 (Frequency) $\times 8 \times 2 \times 2$ (FLOP per cycle) $\times 10^{-12}$ (Tera) $\times 48$ (Cores) = 3.3792 TFLOPS

(Source: https://www.riken.jp/en/news_pubs/news/2020/20201117_2/index.html)

- Supercomputer Fugaku (#1 supercomputer)
 - Peak performance: ~537 PFLOPS
 - ▶ 158,976 nodes

Architecture		Armv8.2-A SVE 512bit With the following Fujitsu's extensions: Hardware barrier, Sector cache, and Prefetch				
Core		48 cores for compute and 2 or 4 cores for OS activities 4 CMGs (NUMA nodes)				
Performance	Normal Mode: 2.0 GHz	DP: 3.072 TF, SP: 6.144 TF, HP: 12.288 TF				
renormance	Boost Mode: 2.2 GHz	DP: 3.3792 TF, SP: 6.7584 TF, HP: 13.5168 TF				
Cache*1 *2		L1D/core: 64 KiB, 4way, 256 GB/s (load), 128 GB/s (store)				
		L2/CMG: 8 MiB, 16way L2/node: 4 TB/s (load), 2 TB/s (store) L2/core: 128 GB/s (load), 64 GB/s (store)				
М	emory	HBM2 32 GiB, 1024 GB/s				
Interconnect		Tofu Interconnect D (28 Gbps x 2 lane x 10 port)				
I/O		PCIe Gen3 x16				
Technology		7nm FinFET				

(Source: https://www.r-ccs.riken.jp/en/fugaku/project/outline)

Top500

Performance Development

Graphic Processing Units (GPUs) processors
 play an important role in supercomputers

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589
6	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646

12

~92% systems are with GPUs in the Top500 list (June 2020)

Development of Processors

- Moore's law, 1965 by Intel CEO and co-founder Gordon Moore
 - the number of transistors in a dense integrated circuit (IC) doubles about every two years.
- Huang's law, 2018 by Nvidia CEO Jensen Huang
 - the performance of GPUs will more than double every two years

Source: https://arxiv.org/pdf/1911.11313.pdf

Transistor count comparison

Development of Processors

Performance comparison: CPU vs. GPU

Why needs HPC

- A large problem: input->process->output
 - Size: too big or Time: too slow
- ▶ A large number of HPC applications from science and engineering
 - Engineering: e.g., Computational Fluid Dynamics (CFD) simulation
 - Geoscience
 - Molecular Dynamics
 - Physics
 - Quantum Mechanics
 - Data Analytics
 - **)** ...

Image credits:

https://www.npd-solutions.com/cfd.html

http://www.onegeology.org/

https://www.epcc.ed.ac.uk/blog/2014/10/06/improving-tinker

http://www.sci-news.com/physics/naked-singularities-saddle-shaped-universe-04886.html

https://online.stanford.edu/courses/ee222-applied-quantum-mechanics-i

https://rishi30-mehta.medium.com/object-detection-with-yolo-giving-eyes-to-ai-7a3076c6977e

HPC in AI

Al models are computing hungry

Source: https://ark-invest.com/articles/analyst-research/ai-training/

• #1 supercomputer: 2.146176e18 FLOPS (Half precision for AI)!

HPC in AI

- Al models are computing hungry
- Training large models is still very slow on single GPU/TPU
 - ▶ E.g., training a ResNet-50 model with a Tesla P100 GPU takes 11 days;
 - ▶ BERT pre-training with Google TPUv3 takes more than **1.5 months**

Training ResNet-50 to 75+% accuracy (90 epochs)									
1 hour	20 mii	nutes	6.6 minutes	1.2 minutes	45.6 seconds	28.2 seconds			
June 2017 Facebook 256 GPUs	September 2017 UC Berkeley 2048 KNLs		July 2018 Tencent & HKBU 2048 P40 GPUs	April 2019 Fujitsu 2048 V100 GPUs	July 2020 Nvidia 1840 A100 GPUs	July 2020 Google 4096 TPUv3			
December 2021			let-50 A100 GPUs, NVID	BEI IA: ~20s 432	RT 20 A I 00 GPUs, NVII	DIA: ∼I 4s			

How to use HPC: Software Stack

	Performance Monitoring	HPCC	IC	OR PA		API/IPM		NPB		Netperf	
HPC Programming	Development Tools	Alliena DD	T/TAU	Intel Cluster Studio/IBM XC			PGI (PGI SDK)		GN	GNU Compiler	
Tools	Application Libraries	Ferret/GRADS/PARA		MVAPIO OpenN	The state of the s	ACML/E	ESSL MPSS/CU		DA	BLAS, LAPACK	
	Resource Management/ Job Scheduling	SLURM Grid Engine MOAB		AB	Altair PBS Pro		IBM Platform LSF		Torque/ Maui		
Middleware	File System	NFS Local FS (ext3, ext4, X					GPF:	PFS		Lustre	
Applications and Management	Provisioning	XCAT / ROCKS / C-DAC Developed tools									
	Cluster Monitoring	onitoring XCAT / ROCKS / C-DAC Developed tools									
Operating Systems	Operating System	Linux (Red Hat, CentOS, SUSE)									

19

How to use HPC: Parallel Programming

- Parallel programming
 - Multi-threading: shared memory
 - OpenMP for CPUs, CUDA for GPUs
 - Multi-processing: distributed memory
 - Message passing interface (MPI), Spark, etc.
 - Storage
 - Hadoop
 - Interconnect protocol
 - TCP/IP, RDMA, etc.
- Design lower complexity algorithms
 - ▶ FFT: Fast Fourier transform with complexity of O(nlogn)
 - A fast algorithm for computing discrete Fourier transform (DFT)
 - ▶ DFT complexity: $O(n^2)$
 - n is the data size
 - Matrix multiplication: A × B, dimension in: n × n
 - Typically $O(n^3)$
 - It can be reduced to $O(n^{2.37548})$ [1] $O(n^{2.3728596})$ [2]
 - **..**