ECONOMETRICS 2

M.BEN SALEM and C.DOZ

Exercises: session 5

ARMA processes.

2022-2023

Exercise # 1

Consider the ARMA(1,1) process (x_t) defined by

$$(1 - 0.8L)x_t = 0.4 + (1 - 0.4L)u_t$$

with $u_t \sim WN(0, \sigma_u^2)$.

- 1. Compute Ex_t .
- 2. Is (u_t) the innovation process of (x_t) and why?
- 3. Compute the $AR(\infty)$ representation of (x_t) .
- 4. Compute the $MA(\infty)$ representation of (x_t) .
- 5. Compute $Cov(u_t, x_t)$ and $Cov(x_t, u_{t-1})$.

 HINT: This can be done using the $MA(\infty)$ representation of (x_t) , but this can be also directly obtained from the ARMA representation of (x_t) : do it this way.
- 6. Compute $\gamma_x(0)$ and $\gamma_x(1)$.
- 7. i) Show that, for $h \ge 2$, $\gamma_x(h) = 0.8\gamma_x(h-1)$.
 - ii) Compute $\gamma_x(h)$ for any h.
 - iii) What happens to $\gamma_x(h)$ when $h \longrightarrow +\infty$?

Exercise # 2

(Extracted from 2017's exam) Let (x_t) the MA(2) process defined by the following equation:

$$x_t = m + \left(1 - \frac{1}{2}L\right)\left(1 - \frac{1}{3}L\right)\varepsilon_t$$

where ε_t is a WN(0, σ^2).

- 1. Compute Ex_t .
- 2. Is (ε_t) the innovation process of (x_t) and why?
- 3. How would you compute the $AR(\infty)$ representation of (x_t) ? Compute this representation entirely if you can (bonus) or give its general form and just compute the 3 first terms.
- 4. i) Give the best linear forecast $x_{t+1|t}^*$ of x_{t+1} at time t as a function of the x_{t-k} 's and give the forecast error variance.
 - ii) Give the best linear forecast $x_{t+2|t}^*$ of x_{t+2} at time t as a function of the x_{t-k} 's. Compute the forecast error variance.
 - iii) In practise, the x_t 's are observed only for $t \geq 1$ and the corresponding truncation of $x_{t+1|t}^*$ is taken to get an approximate forecast of x_{t+1} at time t. If this approximation is denoted as $\hat{x}_{t+1|t}$ what is the variance of the associated forecast error $x_{t+1} \hat{x}_{t+1|t}$ (give its formula, but don't compute it)? What can you say of this variance when $t \to \infty$ and why?
 - iv) Give the best linear forecast $x_{t+h|t}^*$ of x_{t+h} at time t, for h > 2. Compute the forecast error variance.