2_Mengenlehre

Größtenteils analog zu <u>Logik->Mengenlehre</u>, aber hat (Stand jetzt) mehr Inhalt

2.1 Darstellung von Mengen

Mengennamen (M) sind in der Regel in **Großbuchstaben** geschrieben:

 $M = \{A, \%, 1, Ü, a, T, I\}$

Eine Menge kann mehr oder weniger alles enthalten, sogar andere Mengen in der Menge!

Bestimmt: Ein Element x gehört entweder zu einer Menge oder nicht

Wohlunterschieden: Jedes Element ist nur einmal in der Menge, die Elemente in der

Menge sind also unterscheidbar.

Nicht wohlunterschieden: {1,2,2,3}

Wohlunterschieden: {1,2,3}

Die Reihenfolge ist in der Notation der Menge egal:

 $\{1,2,3\} = \{3,2,1\}$

Zum Merken:)

Runde Klammern -> Reihenfolge wichtig!

Geschweifte Klammern -> Reihenfolge egal!

Darstellungsweisen

Menge in aufzählender Darstellung:

 $M1 := \{a1, a2, ... an\}$

Menge in **beschreibender** Darstellung:

M2 := $\{x \in X \mid x \text{ besitzt die Eigenschaften E1, E2, ..., Em}\}$

hier ist X eine Übermenge / größere Menge (größer als M2)

Übung: Formulieren sie Q in Symbolschreibweise.

Zu Teilmengen

Warum auch immer ist eine Teilmenge, wenn sie keine Teilmenge ist, nur eine Teilmenge, und nicht gleich...? Wegen präventiven Gründen.

...so wie 3 < 4 = 3 <= 4

(die Relation der Zahlen muss noch untersucht werden, deswegen wird nicht gesagt, dass keine echte Teilmenge bedeutet, dass die beiden Mengen gleich sind.)

Lösungsmenge:

Zusammenfassung aller Elemente, die die Gleichung erfüllen.

Für $x \in \mathbb{N}$ keine Lösung für x + 1 = 0, also $L = \emptyset$

-> Erweiterung des Zahlenbereichs nötig, damit die Gleichung gelöst werden kann (Zu ℤ)

Es gilt:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Intervallschreibweise

- [] Beinhaltet diesen Wert
- () Beinhaltet diesen Wert nicht

Es wird auch alternativ zum Nichtbeinhalten eines Wertes] [verwendet (Das Verwenden davon ist erlaubt, aber ich sollte mich zu der in der Präsentation angewöhnen)

Potenzmengen

Eine Potenzmenge P(X) ist die Menge aller Teilmengen von X. Verwirrend. Deswegen hier ein Beispiel:

$$X = \{1, 5, 7\}$$

 $P(X) = \{\emptyset, \{1\}, \{5\}, \{7\}, \{1, 5\}, \{1, 7\}, \{5, 7\}, \{1, 5, 7\}\}$

Die leere Menge und Menge X selbst sind **triviale Teilmengen**.

In der Potenzmenge muss die Menge X selbst dabei sein.

Mächtigkeit (erklärt in <u>Logik->Mengenlehre->Definition 2.2</u> (<u>Mächtigkeit</u>))

Einige zusätzliche Funfacts:

|N| ist unendlich. (Alle natürlichen Zahlen)

[{N}] ist 1, da $\mathbb N$ ein Element in einer Menge ist, nicht die Menge!

$$|A \cup B| = |A| + |B| - |(A \cap B)|$$

Um die Mächtigkeit der Menge A UB zu bekommen, kann man die Mächtigkeiten von A und B addieren, muss dann aber die Mächtigkeit der Schnittmenge abziehen, da es sonst 2x gezählt wird.

$$|\overline{A}| = |X| - |A|$$

Die Mächtigkeit vom Komplement von A (was einfach alles ist, das nicht A ist) ist die Mächtigkeit der Grundmenge X abzezogen von der Mächtigkeit von A, was dann alles außer die Elemente von A beinhaltet.

(B gehört nicht zur Grundmenge, oder? Also geht das nur, wenn es A und die Schnittmenge gibt?)

$$|A \times B| = |A| * |B|$$

2.2 Mengenoperationen

Analog zu Logik->Mengenlehre->Mengenoperationen

Zusätzlich:

Man nennt Mengen disjunkte Mengen, wenn $A \cap B = \emptyset$ ist.

z.B.

A =
$$\{1,2,3\}$$
 und B = $\{4,5,6\}$
A \cap B = $\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset$

Wenn eine Menge disjunkt ist, dann ist die Vereinigung dann mit einem Punkt:

$$A\dot{\cup}B = \{1, 2, 3, 4, 5, 6\}$$

Kartesisches Produkt (A x B)

Das Produkt ist durch die **2-Tupel** (a, b) mit $a \in A$ und $b \in B$ gegeben:

$$A imes B=\{(a,b)|a\in A\wedge b\in B\}$$

z.B.

A = {1; 3} B = {2; 4; 7}

 $A \times B = \{(1;2); (1;4); (1;7);$

(3,2); (3,4); (3,7)

2.3 Binäre Relationen

~ -> Steht in Relation zu

Aber gleichzeitig steht dieses Symbol auch für die Menge, die für eine bestimmte Relation gilt!

Beispiel mithilfe der selben Menge oben:

 $A \sim B <-> x+y$ ist gerade (\sim ist hier die Relation zwischen A und B)

 \sim = {(1;7);(3;7)} (\sim ist hier die Menge, für welche die Relation zutrifft.)

Äquivalenzrelationen

Wir schauen uns folgende Menge an:

$$A = \{1; 2\}$$

$$A \times A = \{(1, 1); (1, 2); (2, 1); (2, 2)\}$$

 $\sim = \{(1, 1); (2, 2)\}$

Für die Relation ~ (hier x + y ist gerade) in A x A gilt:

Reflexiv: $x \sim x$ für alle $x \in A$

für x = 1: 1 + 1 ist 2 -> gerade

für x = 2: 2 + 2 ist 4 -> gerade

-> Die Relation ist reflexiv.

Symmetrisch: $x \sim y \rightarrow y \sim x$

Wenn x + y gerade ist, ist auch y + x gerade.

Für (1, 1):

x + y = 1 + 1 -> gerade

y + x = 1 + 1 -> gerade

Für (2, 2):

x + y = 2 + 2 -> gerade

y + x = 2 + 2 -> gerade

-> Die Relation ist symmetrisch.

Transitiv: $x \sim y \wedge y \sim z \rightarrow x \sim z$

Wenn x + y gerade ist UND y und z gerade ist, ist x und z auch gerade.

Für (1, 1):

x + y = 1 + 1 -> gerade

y + z = 1 + (2n+1) -> gerade

x + z = 1 + (2n+1) -> auch gerade

2n+1 steht für eine ungerade Zahl. 1 + eine beliebige ungerade Zahl ergibt eine gerade Zahl.

Für (2, 2):

x + y = 2 + 2 -> gerade

y + z = 2 + (2n) -> gerade

x + z = 2 + (2n) -> auch gerade

2n steht für eine gerade Zahl. 2 + eine beliebige gerade Zahl ergibt eine gerade Zahl.

-> Die Relation ist transitiv.

Wenn alle 3 Relationstypen für eine Relation zustimmen (die Relation ist reflexiv, symmetrisch und transitiv), wird sie Äquivalenzrelation genannt.

-> Diese Relation ist eine Äquivalenzrelation.

Mögliche Hilfen, um es klarer zu machen.

Aufgabe 10 (Äquivalenzrelationen)

(a) Zeigen Sie, dass durch

 $x \sim y \iff$ Man kann von Stadt x nach Stadt y mit dem Zug fahren eine Äquivalenzrelation auf den deutschen Städten gegeben ist.

Beispiel für Transitivität:

Wenn **Stadt x** Stuttgart ist und **Stadt y** Berlin ist, dann kann **Stadt z** z.B. München sein. **Wenn man also von Stuttgart nach München und von München nach Berlin fahren kann, kann man auch von Stuttgart nach Berlin fahren.**

Paar weitere Beispiele

```
x \sim y <-> x = y

x = x und y = y -> Reflexiv!

Wenn x = y, dann auch y = x -> Transitiv!

Wenn x = y und y = z, dann auch x = z -> Transitiv!

x \sim y <-> x <= y

x <= x und y <= y -> Reflexiv!

Wenn x <= y, dann auch y <= x -> Falsch! Nicht transitiv!

Wenn x <= y und y <= z, dann auch auch x <= z -> Transitiv!

x \sim y <-> x >= y

x >= x und y >= y -> Reflexiv!

Wenn x >= y, dann auch y >= x -> Falsch! Nicht transitiv!

Wenn x >= y und y >= z, dann auch auch x >= z -> Transitiv!
```

Äquivalenzklassen

Aufteilung einer Menge in verschiedene Äquivalenzklassen mithilfe von Äquivalenzrelationen

```
z.B.
```

Menge ist \mathbb{Z} (Ganze Zahlen)

x ~ y <-> "x und y haben denselben Rest bei Division durch 2"

 $\mathbb Z$ wird aufgeteilt (**disjunkt**) in die beiden Äquivalenzklassen der geraden Zahlen $2\mathbb Z$ bzw. der ungeraden Zahlen $2\mathbb Z+1$

Repräsentant für 2Z ist z.B. 14, Repräsentant 2Z+1 ist z.B. 17

Jedes Element liegt in genau einer Äquivalenzklasse, d.h. durch die Äquivalenzrelation wird die Menge **partitioniert.**

S.60 Bedeutung: x - y ist durch 3 teilbar

Restklassen: Sie haben den gleichen Rest bei Division (hier durch 3)

(Hier am besten nochmal nachfragen)

2.4 Abbildungen

Mehr oder weniger Funktionen (Zuweisung eines Wertes zu einem anderen Wert)

Bei den Mengen A und B, die nicht leer sind, ist eine Abbildung f von A nach B eine Vorschrift

 $f: A \rightarrow B, a \mapsto b = f(a)$

die jedem a \in A *genau* ein Element aus B zuordnet.

Informationen:

- b = f(a) wird **Funktionswert** oder **Bild** von a unter f genannt.
- Die Menge A wird Definitionsbereich genannt und die Menge B wird Zielbereich genannt
- Der Eingabewert a nennt man das Urbild von b unter f

Wertebereich muss aber nicht dem Bild entsprechen, da nicht alles im Wertebereich im Bild sein muss!

Künftig immer Definitionsbereich und Zielbereich aufschreiben bei einer Funktion! Ist wichtig.

Definitionen

Eine Abbildung f von einer Menge A nach B kann folgende Eigenschaften haben:

Injektivität

Jedes b in B wird höchstens 1x getroffen (kann also entweder nicht oder getroffen werden, aber nicht 2x)

d.h. jedes b in B besitzt mindestens 1 Urbild (mindestens einen a aus A oder mehrere) (Bild einfügen)

Surjektivität

Jedes b in B wird mindestens 1x getroffen (muss also getroffen werden, aber kann auch mehr als einmal getroffen werden)

d.h. jedes b in B besitzt höchstens 1 Urbild (kein a aus A oder eins) (Bild einfügen)

Bijektivität

2_Mengenlehre

Wenn die Abbildung injektiv UND surjektiv ist, ist die Abbildung auch bijektiv.

Merkmal:

Es müssen genauso viele Elemente im Definitionsbereich wie im Zielbereich sein (|A| = |B|)

Bijektivität nötig, um Funktion wie in S.67 beschrieben wird umzukehren!!

S.69 wichtig!

Kapitel II in den Übungen durchmachen ;)