9 : Variables aléatoires

9 Variables aléatoires

Activité d'introduction 1

On lance deux fois de suite une pièce de monnaie et on note les côtés apparus : Pile (P) ou Face (F).

L'ensemble des issues est :

 $\Omega = \{(P, P); (F, F); (F, P); (P, F)\}.$

On convient du jeu suivant : on gagne 5F chaque fois que sort Pile et on perd 2F chaque fois sort Face.

Par exemple à l'issue (F, P) on perd 2F et gagne 5F donc le gain résultant est -2 + 5 = 3F.

- 1. On note par G un gain possible pour un joueur. Donner toutes les valeurs x de G.
- 2. Justifier que G est une application et préciser son ensemble de départ et d'arrivée.
- 3. Pour chacune des valeurs x de G, calculer la probabilité de gagner x francs? On notera cette probabilité par P(G = x).
- 4. Vérifier que la somme des probabilités trouvées est égale à 1.

Définition 2

 Ω est l'ensemble des issues d'une expérience aléatoire.

Une **variable aléatoire** sur Ω est une fonction qui, à chaque issue de Ω , associe un nombre réel.

Notation 3

Une variable aléatoire est généralement notée $X, Y, Z \cdots$

Lorsque x désigne un nombre réel, dire « X prend la valeur x» est un événement, il est noté (X = x).

(X < x) désigne l'événement « X prend une valeur strictement inférieure à x»

 $(X \ge x)$ désigne l'événement « X prend au moins une fois la valeur x» , c'est le contraire de l'événement précédent.

Exemple 4

On reprend l'exercice de l'activité.

On lance deux fois de suite une pièce de monnaie et on note les côtés apparus : *P* ou *F*.

L'ensemble des issues est :

 $\Omega = \{(P, P); (F, F); (F, P); (P, F)\}.$

On gagne 5F chaque fois que sort Pile et on perd 2F chaque fois sort Face. On définit ainsi une variable aléatoire X sur Ω qui prend les valeurs; -4; 3 et 10.

L'événement (X = 3) est réalisé par les issues (F, P) et (P, F)

9 : Variables aléatoires

I - Loi de probabilité d'une variable aléatoire

Définition 5

Une loi de probabilité est définie sur un ensemble Ω d'issues.

X est une variable aléatoire définie sur Ω et $E = \{x_1, x_2, \cdots, x_n\}$ est l'ensemble des valeurs prises par X.

Lorsqu'on associe à chaque valeur x_i , la probabilité de l'événement $(X = x_i)$, on définit une loi de probabilité sur E.

Cette loi est appelée loi de probabilité de variable aléatoire X.

Remarque 6

On présente souvent la loi de probabilité d'une variable aléatoire discrète X à l'aide d'un tableau

Valeurs de
$$X$$
 $\begin{vmatrix} x_1 & x_2 & \cdots & x_n \\ P(X = x_i) & p_1 & p_2 & \cdots & p_n \end{vmatrix}$

On a:
$$P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = p_1 + p_2 + \dots + p_n = \sum_{k=1}^{n} p_k = 1$$

Exemple 7

On reprend l'exemple de l'activité d'introduction.

La probabilité de l'événement (X=-4) est la probabilité de l'issue (F,F) c'est-à-dire $P(X=-4)=\frac{1}{4}$

La probabilité de l'événement (X = 3) est la somme des probabilités des issues (P, F) et (F, P) c'est-à-dire $P(X = 3) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

La probabilité de l'événement (X = 10) est la probabilité de l'issue (P,P) c'est-à-dire $P(X = 10) = \frac{1}{4}$

La loi de la variable aléatoire *X* est résumée dans le tableau ci-dessous.

x_i	-4	3	10
$P(X=x_i)$	1	1	1
	$\frac{-}{4}$	$\frac{-}{2}$	$\frac{-}{4}$

II - Fonction de répartition

Définition 8

Soit X une variable aléatoire définie sur un univers Ω muni d'une probabilité P. La fonction de répartition de X est l'application F de \mathbb{R} vers [0,1] définie par : $F(x) = P(X \le x)$

3 9 : Variables aléatoires

Exemple 9

Reprenons l'exemple de l'activité.

F est définie par :
$$\begin{cases} F(x) = 0, & \text{si } x < -4 \\ F(x) = \frac{1}{4}, & \text{si } -4 \le x < 3 \\ F(x) = \frac{3}{4}, & \text{si } 3 \le x < 10 \\ F(x) = 1, & \text{si } 10 \le x \end{cases}$$

Remarque 10 — F est une fonction croissante en escalier.

— La représentation graphique de F correspond en statistiques à la courbe des fréquences cumulées croissantes.

III - Paramètres d'une variable aléatoire

Espérance, variance et écart-type

Définition 11

Une loi de probabilité est définie sur un ensemble Ω d'issues.

X est une variable aléatoire définie sur Ω dont la loi de probabilité est résumée dans le tableau ci-dessous.

Valeurs de X	x_1	x_2	•••	x_n
$P(X = x_i)$	p_1	p_2	•••	p_n

— L'espérance de la variable aléatoire X est le nombre réel, noté $\mathrm{E}(X)$ défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n = \sum_{k=1}^{n} p_k x_k$$

— La variance de la variable aléatoire X est le nombre réel positif, noté V(X) défini par :

$$V(X) = p_1 (x_1 - E(X))^2 + p_2 (x_2 - E(X))^2 + \dots + p_n (x_n - E(X))^2 = \sum_{k=1}^{n} p_k (x_k - E(X))^2$$

— L'écart-type de la variable aléatoire X est le nombre réel positif, noté $\sigma(X)$ défini par :

$$\sigma(X) = \sqrt{V(X)}.$$

9 : Variables aléatoires

Exemple 12

On reprend l'exemple de la variable aléatoire X précédent.

 $E(X) = \frac{1}{4}(-4) + \frac{1}{2} \times 3 + \frac{1}{4} \times 10 = 3$ francs. E(X) = 3 francs signifie qu'en jouant un grand nombre de fois à ce jeu, un joueur peut espérer gagner 3 francs en moyenne.

$$V(X) = \frac{1}{4}(-4-3)^2 + \frac{1}{2}(3-3)^2 + \frac{1}{4}(10-3)^2 = \frac{49}{2} \text{ et } \sigma(X) = \frac{7\sqrt{2}}{2}.$$

Remarque 13 — L'espérance mathématique correspond, en statistiques, à la moyenne.

- L'espérance et l'écart-type sont exprimés dans la même unité que les valeurs x_i prises par X
- Un jeu est dit équitable lorsque E(X) = 0.

Propriété 14

Soit *X* une variable aléatoire. On a $V(X) = E(X^2) - (E(X))^2$

Démonstration

On a V(X)=
$$\sum_{k=1}^{n} p_k (x_k - E(X))^2 = \sum_{k=1}^{n} p_k x_k^2 - 2E(X) \sum_{k=1}^{n} p_k x_k + (E(X))^2 \sum_{k=1}^{n} p_k$$

Or $\sum_{k=1}^{n} p_k x_k = E(X)$, $\sum_{k=1}^{n} p_k = 1$ et $\sum_{k=1}^{n} p_k x_k^2 = E(X^2)$

$$V(X) = E(X^{2}) - 2 \times E(X) \times E(X) + (E(X))^{2} = E(X^{2}) - (E(X))^{2}$$

Propriété 15 (Admise)

X est une variable aléatoire. Pour tous nombres réels *a* et *b*.

$$E(aX + b) = aE(X) + b$$
 et $V(aX + b) = a^2V(X)$