

Práctica 3

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

 $\rm http://www.exactas.uba.ar$

$\acute{\mathbf{I}}\mathbf{ndice}$

3. Práctica 3

3.1. Ejercicio 1

Por enunciado, $A = \{n \in V : n \ge 132\}$

Y también, $A^c = \{ n \in V : n < 132 \}$

Se que dado un elemento cualquiera, $x \in V \iff (x \in \mathbb{N} \land x \mod 15 = 0)$

Por lo tanto, $A^c = \{ n \in V : (n < 132 \land n \mod 15 = 0) \}$

Así,
$$\#A^c = \lfloor \frac{132}{15} \rfloor = 8$$

Por extensión, $A^c = \{15, 30, 45, 60, 75, 90, 105, 120\}$

3.2. Ejercicio 2

Defino el conjunto universal $V = \{n \in \mathbb{N} : n \le 1000\}$

Defino el conjunto $T = \{n \in \mathbb{N} : n \mod 3 = 0\}$

Defino el conjunto $C = \{n \in \mathbb{N} : n \mod 5 = 0\}$

Luego busco $\#(T^c \cup C^c) = \#(T \cup C)^c$

Entonces $(T \cup C) = \{n \in \mathbb{N} : n \mod 15 = 0\}$ pues 3 y 5 son primos.

Por lo tanto $\#(T \cup C) = \lfloor \frac{1000}{15} \rfloor = 66$

Y así, $\#(T \cup C)^c = 1000 - 66 = 934$

3.3. Ejercicio 3

$$\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$$

3.4. Ejercicio 4

3.4.A. Pregunta i

Datos del enunciado:

1.
$$\#V = 150$$

2.
$$\#A = 83$$

3.
$$\#B = 67$$

4.
$$\#(A \cap B) = 45$$

Luego,

$$#(A \cup B)^{c} = #V - #(A \cup B)$$

$$= #V - (#A + #B - #(A \cap B))$$

$$= 150 - (83 + 67 - 45)$$

$$= 45$$

3.4.B. Pregunta ii

TODO

3.5. Ejercicio 5

Datos del enunciado:

- 1. Rutas BSAS Ros = 3
- 2. Rutas Ros SF = 4
- 3. Rutas SF Req = 4

Por lo tanto hay $3 \cdot 4 \cdot 2 = 24$ formas de ir de Buenos Aires a Reconquista pasando por Rosario y Santa Fe.

3.6. Ejercicio 6

3.6.A. Pregunta i

Hay $8 \cdot 9 \cdot 9 \cdot 9 = 5832$ números.

3.6.B. Pregunta ii

Calculando por el complemento:

Hay $9 \cdot 10 \cdot 10 \cdot 10 = 9000$ números de cuatro cifras.

En el inciso anterior se calculó la cantidad de números que no tienen cierto dígito (calculado por 5, vale para 7).

Luego habrá 9000 - 5832 = 3168 números.

3.7. Ejercicio 7

Puede distribuirlos en 3¹⁷ formas.

3.8. Ejercicio 8

Defino $A = \{materias\}$, se que #A = 5

Luego las posibles elecciones están dadas por $\#P(A)=2^5=32$

Si tiene que cursar al menos dos materias, no puede elegir las opciones de cursar ninguna materia o una sola materia.

Así tiene 32 - 5 - 1 = 26 formas de cursar al menos dos materias.

3.9. Ejercicio 9

Se que A es de la forma $A = \{a_1, a_2, ..., a_n\}$

R es una relación en $A \times A \iff R \subseteq A \times A$: si R es un subconjunto del producto cartesiano $A \times A$

Luego la cantidad de relaciones en A será: $\#P(A\times A)=2^{n^2}$

- 1. Reflexivas: 2^{n^2-2}
- 2. Simétricas: $2^{\sum_{k=1}^{n} k} = 2^{\frac{n(n+1)}{2}}$
- 3. Simétricas: $2^{\sum_{k=1}^{n-1} k} = 2^{\frac{n(n-1)}{2}}$

3.10. Ejercicio 10

- 1. $\#\{f \in F/f \text{ es función}\} = 12^5$
- 2. $\#\{f \in F/10 \not\in Im(f)\} = 11^5$

- 3. $\#\{f \in F/10 \in \text{Im}(f)\} = 12^5 11^5$
- 4. $\#\{f \in F/f(1) \in \{2,4,6\}\} = 3 \cdot 12^4$