TEMA I

Teoría de Circuitos

Electrónica II 2009-2010

1

1 Teoría de Circuitos

- 1.1 Introducción.
- 1.2 Elementos básicos.
- 1.3 Leyes de Kirchhoff.
- 1.4 Métodos de análisis: mallas y nodos.
- 1.5 Teoremas de circuitos:

Thévenin y Norton.

- 1.6 Fuentes reales dependientes.
- 1.7 Condensadores e inductores.
- 1.8 Respuesta en frecuencia.

1.5 Teoremas de circuitos

Superposición.
Teorema de Thevenin.
Teorema de Norton.
Teorema de transferencia de máxima potencia.

- 3

Teorema de Thévenin

- ♦ Es uno de los más importantes y de mayor aplicación.
- Sea un circuito lineal, en el que puede haber de todo, R, L, C, fuentes de tensión y corriente, independientes y dependientes. Distinguimos dos bornes A y B de ese circuito, conectamos una impedancia exterior Z; se trata de calcular la corriente que circula por esa impedancia.

ŀ

Teorema de Thévenin

"La corriente que pasa por la impedancia Z conectada entre los bornes A y B es I = V_{AB}/(Z_{AB}+Z)"

- ♦ Voltaje de Vacío o de Circuito Abierto: VAB
 - Voltaje que aparece entre A y B cuando no existe la impedancia Z
- ♦ Impedancia Vista: Z_{AB} Para definirla, anulamos todas las fuentes.

Independientemente de lo que haya dentro de la "caja negra", si conocemos V_{AB} y Z_{AB} , estamos en condiciones de saber qué corriente va a pasar por cualquier Z En particular, si cortocircuitamos A y B tenemos una corriente que denominamos de cortocircuito: Icc = V_{AB}/Z_{AB}

5

Teorema de Thévenin

Demostración:

Se apoya en la linealidad del circuito, que nos permite aplicar superposición. Superpondremos dos estados de modo de obtener el circuito original.

Teorema de Thévenin

- ♦ Una función es lineal si para dos entradas cualesquiera se cumple: $f(x_1 + x_2) = f(x_1) + f(x_2)$
- Los circuitos que solo tienen elementos pasivos resistivos son lineales: las entradas son fuentes y la función la diferencia de potencial en los nodos o las corrientes en las ramas.

7

Teorema de Thévenin

- ♦ Si tenemos un circuito lineal con múltiples fuentes →
 - Suprimir todas las fuentes menos una: Las fuentes de tensión independientes se cortocircuitan; las de corriente se abren.

- ♦ Repetir este proceso para todas las fuentes.
- ♦ Sumar las respuestas individuales a cada fuente.

Equivalente de Thévenin A los efectos de lo que pasa en Z, podemos reemplazar la caja negra por su equivalente Thévenin: fuente VAB e impedancia ZAB ZAB A

Pues en este también: I = VAB/(ZAB + Z)

Teorema de Norton

- ♦ El Teorema de Norton es el dual de Thévenin.
- ♦ Tenemos una caja negra con fuentes, componentes lineales, etc, en las mismas hipótesis generales de Thévenin, y conectamos entre dos bornes una admitancia Y (es lo mismo que decir Z). Y=1/Z
- ♦ Trabajamos con la corriente de cortocircuito Icc y la admitancia vista YAB = 1/ZAB
- ♦ Norton dice que V = Icc/ (YAB + Y)

Icc =
$$V/Z_{eq}$$
; $Z_{eq} = (Z_{AB}*Z)/(Z_{AB}+Z)$

$$Icc = V*(Z_{AB}+Z)/(Z_{AB}*Z)$$

13

Teorema de Norton

La demostración es análoga a la de thévenin. EN VEZ DE LA IMPEDANCIA Z UTILIZA LA ADMITANCIA Y=1/Z

Digo que V1 = 0 es solución => la corriente por Y es cero, y por el sistema circula Icc, como al hacer el cortocircuito. En el estado 2, Utilizando LA <u>admitancia</u> vista: $Y_{AB} = 1/Z_{AB}$; el bloque SF:

$$\begin{array}{ll} \text{Icc} = V2 \; (Y + Y_{AB}) & \text{Icc} = V2 \; /Z_{eq}; \; Z_{eq} = (Z_{AB} * Z) / (Z_{AB} + Z) \\ \text{Como} \; V = V1 \; + \; V2 \; = \; V2 \\ V = \text{Icc} / (Y_{AB} \; + Y \;) & V = \text{Icc} (Z_{AB} * Z) / (Z_{AB} + Z) \end{array}$$

Equivalente de Norton

♦ En otras palabras: el circuito se puede sustituir por su equivalente Norton:

♦ ¿Cuál es la relación de éste con el equivalente Thévenin? El de Norton tiene la fuente de corriente en paralelo con la admitancia vista.

15

Equivalente de Norton Ejemplo

$$I_{n} = \frac{V_{s} - I_{s}R_{3}}{P_{1} + P_{3} + P_{4}}$$

$$Rn = \frac{R2(R1 + R3 + R4)}{R1 + R2 + R3 + R4}$$

Transformación de fuentes Ejemplo 1 Sustitución por el equivalente de Norton Ahora tenemos una fuente de voltaje en serie con una resistencia Sustituimos por el equivalente de Norton

Teorema de transferencia de máxima potencia

A menudo los sistemas eléctrico son diseñados para proporcionar potencia a una carga como en la figura

21

Teorema de transferencia de máxima potencia

$$P=i^2RL$$

$$i = \frac{VTh}{RTh + RL}$$

$$P = \left(\frac{VTh}{RTh + RL}\right)^2 RL$$

 Si sustituimos la red eléctrica por su equivalente de Thevenin

Teorema de transferencia de máxima potencia

$$\frac{dP}{dRL} = VTh^{2} \left[\frac{(RTh + RL)^{2} - 2RL(RTh + RL)}{(RTh + RL)^{4}} \right]$$

$$\frac{dP}{dRL} = 0 \rightarrow RL - RTh = 0$$

- ♦ Si derivamos la expresión de la potencia respecto de la resistencia de carga e igualamos a cero → la resistencia de carga es igual a la resistencia de Thévenin
- ♦ Como la segunda derivada es negativa → es un máximo

23

Teorema de transferencia de máxima potencia

- Gráfica de la transferencia de potencia al variar la resistencia de carga
- Podemos ver que el máximo se sitúa en el valor de la resistencia de Théveninn

Teorema de transferencia de máxima potencia. Ejemplo

 Averiguar la transferencia de potencia del "puente de Wheatstone" a la resistencia de carga.

25

Teorema de transferencia de máxima potencia. Ejemplo

$$P\max = \frac{VTh^2}{4RTh} = \frac{Vs^2 \left(\frac{R3}{R1 + R3} - \frac{R4}{R2 + R4}\right)^2}{4\left(\frac{R1R3}{R1 + R3} + \frac{R2R4}{R2 + R4}\right)}$$

- Anteriormente ya habíamos hallado el circuito equivalente de Thévenin
- Con los valores de la resistencia y el voltaje de Thevenin, aplicamos la formula de transferencia de potencia