Foundations of Mathematics

Math 300H Section 970

Twelfth Homework:

Due 29 November 2022

- 1. Let A be a set. Prove that the identity function I_A is a bijection.
- 2. For each of the following, either give an example of functions $f: A \to B$ and $g: B \to C$ that satisfy the given properties, or explain why no such example exists. I urge simplicity.
 - (a) The function f is a surjection, but the function $g \circ f$ is not a surjection.
 - (b) The function f is an injection, but the function $g \circ f$ is not an injection.
 - (c) The function g is a surjection, but the function $g \circ f$ is not a surjection.
 - (d) The function g is an injection, but the function $g \circ f$ is not an injection.
 - (e) The function f is not a surjection, but the function $g \circ f$ is a surjection.
 - (f) The function f is not an injection, but the function $g \circ f$ is an injection.
 - (g) The function g is not a surjection, but the function $g \circ f$ is a surjection.
 - (h) The function g is not an injection, but the function $g \circ f$ is an injection.
- 3. For functions f, g, and h with domain and codomain \mathbb{R} , prove or disprove the following:
 - (a) $(q+h) \circ f = (q \circ f) + (h \circ f)$.
 - (b) $f \circ (g+h) = (f \circ g) + (f \circ h)$.

Definition: The sum of two g and h with domain and codomain \mathbb{R} is defined to be the function g+h whose value at a number $x \in \mathbb{R}$ is g(x)+h(x).

4. Let A and B be sets. Recall the definitions of the identity functions $I_A: A \to A$ and $I_B: B \to B$: For $a \in A$, $I_A(a) = a$ and for $b \in B$, $I_B(b) = b$.

Let $f: A \to B$ be a function. Prove by a direct computation that $f = f \circ I_A$ and that $f = I_B \circ f$.

5. Let A, B, and C be nonempty sets, and suppose that $f: A \to B$ and $g: B \to C$ are functions. Suppose that $g \circ f: A \to C$ is an injection. Prove that f is an injection.

Give an example of functions f and g with these properties illustrating that g need not be an injection.

6. Let A, B, and C be nonempty sets, and suppose that $f: A \to B$ and $g: B \to C$ are functions. Suppose that $g \circ f: A \to C$ is a surjection. Prove that g is a surjection.

Give an example of functions f and g with these properties illustrating that f need not be a surjection.

- 7. Let A, B, and C be nonempty sets, and suppose that $f: A \to B, g: B \to C,$ and $h: B \to C$ are functions. For each of the following, prove or disprove:
 - (a) If $g \circ f = h \circ f$, then g = h.
 - (b) If f is one-to-one and $g \circ f = h \circ f$, then g = h.