Optimisation du placement des antennes au Sénégal

SOMA Ben Idriss Diloma

2025-05-29

Introduction

Ce projet vise à étudier l'**optimisation du placement des antennes** pour une meilleure couverture réseau et réduction des interferences, en tenant compte des contraintes de propagation des ondes, de répartition de fréquences, et des contraintes coûts.

Modélisation de la propagation des ondes

Modèle de propagation dans le vide (Equation de Friis)

Dans le modèle idéalisé sans obstacles (propagation en espace libre), la puissance reçue est donnée par l'équation de Friis :

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2 L}$$

Où : - $P_r(d)$: puissance reçue à une distance d - P_t : puissance transmise - G_t , G_r : gain des antennes émettrice et réceptrice - λ : longueur d'onde ($\lambda = c/f$) - L : pertes système (câbles, connecteurs...) - d : distance entre émetteur et récepteur

En dB, cela devient :

$$P_r(dB) = P_t(dB) + G_t(dB) + G_r(dB) - 20\log_{10}(4\pi d/\lambda) - L(dB)$$

Modèles plus réalistes

- Modèle à deux trajets (sol) : présence d'un trajet direct + un trajet réfléchi sur le sol.
- Modèle de diffraction (Ikegami, Walfisch-Bertoni) : prise en compte de la géométrie urbaine.

Loi de décroissance de la puissance (modèle général)

$$P_r(d) = P_0 \left(\frac{d_0}{d}\right)^n$$

- P_0 : puissance à distance référence d_0
- n: coefficient d'affaiblissement (entre 2 et 5)

Multiplexage et répartition des fréquences

Multiplexage Fréquentiel (FDMA)

On divise le spectre en N canaux :

$$B_{total} = N \cdot B_{canal}$$

Chaque utilisateur utilise un canal fixe.

Multiplexage Temporel (TDMA)

Le temps est divisé en C créneaux de durée T :

$$T_{total} = C \cdot T$$

Chaque utilisateur communique à tour de rôle.

Combiné TDMA/FDMA

Chaque canal fréquentiel est subdivisé en créneaux temporels, pour une meilleure utilisation du spectre.

Optimisation du placement des antennes

Objectif de couverture

Donnons un modèle mathématique :

Soit x_i les coordonnées des antennes à placer, y_j les points à couvrir.

- P_{ij} : puissance reçue à y_j depuis l'antenne i.
- γ : seuil minimum de puissance.

Contraintes:

$$P_{ij} \ge \gamma$$
 pour tous $j \Rightarrow y_j$ est couvert

Fonction objectif (par exemple):

- Max. nombre de points couverts
- Min. nombre d'antennes placées
- Max. somme de puissances reçues (pondérées)

Modèles d'interférences

Le rapport signal-bruit (SNR):

$$SNR = \frac{P_{signal}}{P_{bruit} + P_{interf\'erences}}$$

Une zone est jugée couverte si SNR $\geq \theta$ (seuil).

Optimisation de l'assignation de fréquences

On affecte à chaque antenne i une fréquence $f_i \in \mathcal{F}$.

Objectif:

$$\min \sum_{(i,j)\in \text{Paires}} I_{ij}(f_i, f_j)$$

• I_{ij} : fonction modélisant les interferences entre antennes i et j.

C'est un problème combinatoire, souvent traité par :

- Algorithmes gloutons
- Algorithmes génétiques
- Recuit simulé (simulated annealing)
- Programmation linéaire en nombres entiers (MILP)

Optimisation conjointe (placement + fréquence)

Fonction objectif conjointe:

$$\min \left[\text{coût}_{placement} + \text{interf\'erences} \right]$$

On doit déterminer simultanément :

- Coordonnées x_i des antennes
- Fréquences f_i associées

Algorithmes utilisables:

- Algorithmes évolutionnaires multi-objectifs
- Algorithmes hybrides

Implémentation R (idées)

- Simuler une grille 10x10 avec expand.grid()
- Calculer les distances et puissances avec dist() et la formule de Friis
- Optimisation via optim(), GA, GenSA
- Visualisation avec ggplot2, leaflet, shiny

Conclusion

Ce projet propose une modélisation rigoureuse du placement optimal des antennes, intégrant les principes physiques de propagation, les contraintes réseaux, et l'optimisation combinatoire. Il peut servir de base à une application Shiny interactive pour l'analyse territoriale au Sénégal.