Feuille d'exercice n° 09 : Matrices – Fiche d'entraînement – Forrigé

Exercice 1

1) AB: impossible. $BA = \begin{pmatrix} -4 & 9 & 7 \\ -2 & 15 & 7 \end{pmatrix}$.

2) AB: impossible. $BA = \begin{pmatrix} 24 & 15 & 2 \end{pmatrix}$.

3) $AB = \begin{pmatrix} -4\\3\\2 \end{pmatrix}$. BA: impossible.

4) $AA^T = \begin{pmatrix} 50 & 5 \\ 5 & 26 \end{pmatrix}$. $A^TA = \begin{pmatrix} 10 & 15 & -11 \\ 15 & 25 & -8 \\ -11 & -8 & 41 \end{pmatrix}$.

Exercice 2 C'est une matrice 1×1 : un réel. $X^T A Y = \sum_{1 \le i \le j \le n} a_{i,j} x_i y_j$.

Exercice 3

1) $A^{-1} = \frac{1}{4} \begin{pmatrix} 6 & -4 \\ 4 & -2 \end{pmatrix}$

2) B n'est pas inversible.

3)
$$C^{-1} = \frac{1}{7} \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$$

Exercice 4

1)
$$A^{-1} = \frac{1}{2} \begin{pmatrix} 15 & -42 & -11 \\ 13 & -36 & -9 \\ -6 & 16 & 4 \end{pmatrix}$$

2) B n'est pas inversible.

4)
$$D^{-1} = \frac{1}{6} \begin{pmatrix} 30 & -18 & 6 \\ -9 & 4 & -2 \\ -6 & 4 & -2 \end{pmatrix}$$

5) E n'est pas inversible.

6)
$$F^{-1} = \frac{1}{4} \begin{pmatrix} -8 & 15 & -1 \\ 4 & -8 & 0 \\ -16 & 25 & -3 \end{pmatrix}$$

Exercice 5

1)
$$A^{-1} = \frac{1}{2} \begin{pmatrix} -65 & 48 & -320 & 109 \\ 8 & -6 & 40 & -14 \\ 19 & -14 & 92 & -31 \\ -89 & 66 & -438 & 149 \end{pmatrix}$$

2) B n'est pas inversible.

Exercice 6 $A^n = \begin{pmatrix} 1 & 2n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}$.

Exercice 7

1)
$$F_{-1} = 1$$
.

2)
$$A^2 = A + I_2$$
, effectuer une récurrence simple.

3)
$$A^{-1} = A - I_2$$
.

Exercice 8

1)
$$A^2 = 2A - I_2$$
.

2)
$$A^n = nA - (n-1)I_2$$
 (montrer que pour tout n , il existe $a_n, b_n \in \mathbb{R}$ vérifiant $A^n = a_nA + b_nI_2$, établir des relations, tester les premières valeurs pour conjecturer une formule).

3) Oui. Effectuer le calcul
$$(nA - (n-1)I_2)(-nA + (n+1)I_2)$$
.

Exercice 9

1) Calculer
$$A^2$$
. $A^n = 2^n A$.

2) Non :
$$A$$
 n'est pas inversible.

3)
$$A^n = p^n A$$
.

Exercice 10

1)
$$A = \begin{pmatrix} 9 & 0 & 12 \\ -4 & 0 & -5 \\ 0 & 1 & 0 \end{pmatrix}$$
, $A^{-1} = \frac{1}{3} \begin{pmatrix} -5 & -12 & 0 \\ 0 & 0 & 3 \\ 4 & 9 & 0 \end{pmatrix}$

2)
$$B = \begin{pmatrix} 0 & 3 & 1 \\ 0 & -2 & 0 \\ 1 & 1 & 0 \end{pmatrix}, B^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 \\ 0 & -1 & 0 \\ 2 & 3 & 0 \end{pmatrix}$$