Insper

Sistemas Hardware-Software

Aula 2 - Números fracionários

2019 – Engenharia

Igor Montagner, Fábio Ayres

Números fracionários

 Representamos inteiros usando bits, sendo que cada posição equivale a uma multiplicação por potência de 2.

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -X_{W-1} \cdot 2^{W-1} + \sum_{i=0}^{W-2} X_i \cdot 2^i$$
Bit de sinal

Como vocês estenderiam isso para representar números fracionários?

Ponto fixo

Número fixo de bits para a parte decimal

- 16 bits para a parte inteira
- 16 bits para a parte fracionária

Equivalente a dividir a representação binária por uma fator escala!

Expoente é fixo!

Revisão: números decimais fracionários

$$3x10^2 + 1x10^1 + 4x10^0 + 1x10^{-1} + 5x10^{-2}$$

$$-(3x10^2 + 1x10^1 + 4x10^0 + 1x10^{-1} + 5x10^{-2})$$

Números binários fracionários

Já sabemos o que significam números inteiros representados em base 2:

$$10110_2 = 1x2^4 + ... + 0x2^0 = 22_{10}$$

-1101₂ = -(1x2³ + ... + 1x2⁰) = -13₁₀

Sabemos também o que significam números fracionários decimais

O que seriam números fracionários em base 2?

$$11.0110_2 = ?$$

Números binários fracionários

Já sabemos o que significam números inteiros representados em base 2: $10110_2 = 1x2^4 + ... + 0x2^0 = 22_{10}$ $-1101_2 = -(1x2^3 + ... + 1x2^0) = -13_{10}$

Sabemos também o que significam números fracionários decimais

O que seriam números fracionários em base 2?

$$11.0110_2 = ?$$

$$11.01102 = 1x2^{1} + 1x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3} + 0x2^{-4}$$
$$= 2 + 1 + 0 + 0.25 + 0.125 + 0$$
$$= 3.37510$$

- 1. Calcule o valor dos seguintes valores binários em decimal:
- a) 101.11₂
- b) -0.001₂
- c) 11.0₂
- 2. Prove que $0.111111..._2 = 1$

1. Calcule o valor dos seguintes valores binários em decimal:

a) 101.11₂ Resposta: 5.75

b) -0.001₂ Resposta: -0.125

c) 11.0₂ Resposta: 3

2. Prove que $0.111111..._2 = 1$

$$0.111\cdots_2 = 2^{-1} + 2^{-2} + 2^{-3} + \dots = \sum_{k=-1}^{-\infty} 2^k = \sum_{i=1}^{+\infty} \left(\frac{1}{2}\right)^i = 1$$

Números decimais em notação científica

$$314.15 = 3.1415 \times 10^{2}$$
Mantissa Base

$$-314.15 = -1 \times 3.1415 \times 10^{2}$$

= $(-1)^{1} \times 3.1415 \times 10^{2}$

Bit de sinal

Números decimais em notação científica

Todo número real pode ser arredondado para um número real escrito da seguinte forma:

$$x = (-1)^s \times M \times 10^E$$

onde:

- s é o bit de sinal (0: positivo, 1: negativo)
- M é a mantissa
- E é o expoente

Números binários em notação científica

Vamos fazer a mesma coisa que fizemos para os números decimais:

$$x = (-1)^s \times M \times 2^E$$

onde:

- s é o bit de sinal (0: positivo, 1: negativo)
- M é a mantissa
- E é o expoente

Exemplo

$$10.1_2 = (-1)^0 \times 1.01_2 \times 2^1$$

$$s = 0$$
 $M = 1.01_2 = 1.25$
 $E = 1$

Determine o bit de sinal, a mantissa e o expoente (de base 2) dos seguintes números reais representados em base 2:

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11 ₂			
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_{2} = $(-1)^{0}$ x 1.0111_{2} x 2^{2}			
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_{2} = $(-1)^{0}$ x 1.0111_{2} x 2^{2}	0		
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_{2} = $(-1)^{0}$ x 1.0111 ₂ x 2 ²	0	1.0111_{2} = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_{2} = $(-1)^{0}$ x 1.0111 ₂ x 2 ²	0	1.0111_{2} = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	2
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_{2} = $(-1)^{0}$ x 1.0111 ₂ x 2 ²	0	1.0111_{2} = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	2
-0.001_2 = $(-1)^1 \times 1.0_2 \times 2^{-3}$	1	1.0 ₂ = 1	3
$11.0_{2} = (-1)^{0} \times 1.1_{2} \times 2^{1}$	0	1.1 ₂ = 1.5	1

Representando números reais no computador

- Vamos adotar essa ideia de representação em notação científica binária para armazenar números reais no computador!
 - 1 bit para guardar o sinal
 - Seguido de alguns bits para guardar a mantissa
 - E mais alguns bits para guardar o expoente

Padrão IEEE 754

- No início era a baderna...
 - Cada fabricante de CPU definia seu próprio formato de número em ponto flutuante
- Padrão IEEE 754
 - Surgiu em 1985 para uniformizar operações em ponto-flutuante
 - Adotado por todas as CPUs mais importantes do mercado
- Criado principalmente por razões matemáticas
 - Arredondamento, overflow, underflow tem propriedades bem bacanas
 - Mas é difícil de implementar eficientemente em hardware!
 - FPUs

Precisão

Precisão simples (single precision): 32 bits

float

Precisão dupla (double precision): 64 bits

double

s	ехр	frac
1	11-hits	52-bits

Precisão estendida (extended precision): 80 bits (apenas Intel)

long double

s	ехр	frac	
1	15-bits	63 or 64-bits	_

Insper

Representando valores float

Normalizado

s	exp ≠ 0 e ≠ 255	frac	
1	8-bits	23-bits	

Desnormalizado

s	00000000	frac	
1	8-bits	23-bits	4.45

Infinito

s	11111111	0000000000000000000
1	8-bits	23-bits

NaN

s	11111111	≠ 0	
1	8-bits	23-bits	

Valores normalizados

1	Normalizado		
	s	exp ≠ 0 e ≠ 255	frac
-	1	8-bits	23-bits

Desnormalizado

S	00000000	frac
1	8-bits	23-bits

Infinito

s	11111111	00000000000000000000	
1	8-bits	23-bits	

NaN

S	11111111	≠ 0
1	8-bits	23-bits

Valores normalizados

Normalizado

s	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

onde:

- s é o bit de sinal
- M = 1.frac
 - Assuma que já tem um bit 1 implícito lá e que frac representa os bits da parte fracionária
- $E = \exp Bias$
 - Tomando exp como inteiro sem sinal, subtraia o valor do bias. Tipo float: bias = 127

Aplicável quando $0 < \exp < 255$

Ou seja, quando -126 ≤ E ≤ 127

Exemplo

Determine os bits de uma variável do tipo float que armazene o número matemático 101.11_{2}

Resposta:

Passo 1: Lembrando que $101.11_2 = (-1)^0 \times 1.0111_2 \times 2^2$

temos s = 0, $M = 1.0111_2$ e E = 2

Passo 2: Como $E \ge -126$, vamos usar float normalizado.

Passo 3:

23 bits

- De M = 1.0111_2 temos frac = $0111\ 0000\ 0000\ 0000\ 0000\ 0000$
- De E = 2 temos exp = E + Bias = 129 = 1000 0001

Determine o bit de sinal, a mantissa e o expoente (de base 2) dos seguintes números reais representados em base 2:

101.11₂

-0.001₂

11.02

Valores desnormalizados

Normalizado

S	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

Desnormalizado

s	00000000	frac
1	8-bits	23-bits

Infinito

s	11111111	00000000000000000000
1	8-bits	23-bits

NaN

S	11111111	≠ 0	
1	8-hits	23-hits	

Valores desnormalizados

Desnormalizado

s	00000000	frac	
1	8-bits	23-bits	

$$V = (-1)^s \times M \times 2^E$$

onde:

- s é o bit de sinal
- M = 0.frac
 - Assuma que o bit mais alto agora é zero. Novamente, frac representa os bits da parte fracionária
- E = 1 Bias = -126

São os números de magnitude menor que 2⁻¹²⁶. Inclui o valor matemático zero (e também o bizarro menos zero!)

Valores especiais

Normalizado

S	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

Desnormalizado

S	00000000	frac
1	8-bits	23-bits

Infinito

s	11111111	00000000000000000000
1	8-bits	23-bits

NaN

s	11111111	≠ 0
1	8-bits	23-bits

Valores especiais

- Infinito
 - Tanto positivo como negativo
 - Aparece em operações que resultam em overflow
- NaN
 - "Not-a-Number"
 - · Aparece em operações que não resultam em número real

Calcule (na mão) a seguinte soma:

Regra: sempre que fizer uma soma, arredonde o resultado para 2 dígitos apenas. Exemplos: $2.34 \rightarrow 2.3$, $10.1 \rightarrow 10$

- a) Some do maior para o menor
- b) Some do menor para o maior

O que aconteceu?

Usando Python, teste o seguinte:

```
>> 0.1
>> format(0.1, `.24f')
>>0.9
>> format(0.9, `.24f')
>> 0.5
>> format(0.5, `.24f')
```

Pergunta: todos números são representáveis de maneira exata?

Visualizando a reta numérica

Insper

www.insper.edu.br