1 Skalární součin

Definice 1.1 (Standardní skalární součin)

Buďte $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$. Pak standardní skalární součin \mathbf{u} a \mathbf{v} definujeme jako $\mathbf{u} \cdot \mathbf{v} = \overline{u_1} \cdot v_1 + \ldots + \overline{u_n} \cdot v_n$.

Definice 1.2 (Euklidovská norma)

Nechť · je standardní skalární součin na \mathbf{V} . Potom $\forall \mathbf{v} \in \mathbf{V}$ definujeme euklidovskou normu jako $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Definice 1.3 (Skalární součin)

Nechť V je vektorový prostor nad \mathbb{C} . Skalární součin je zobrazení $\cdot: V \times V \to \mathbb{C}$, které $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V} \text{ a } \forall t \in \mathbb{C})$ splňuje:

$$\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}, \text{ (Symetričnost)}$$

$$\mathbf{u} \cdot (t\mathbf{v}) = t(\mathbf{u} \cdot \mathbf{v}), \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}, \ \text{(Linearita)}$$

$$\langle \mathbf{u}, \mathbf{u} \rangle > 0 \wedge (\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

Definice 1.4 (Hermitovsky sdružená matice)

Nechť $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, potom hermitovsky sdružená matice je $A^* = (\overline{a_{ji}})$.

Čtvercová matice je Hermitovská, pokud je rovna své hermitovsky sdružené matici.

Definice 1.5

Buď $\mathbb{T}=\mathbb{R}$ nebo \mathbb{C} a buď $A=T^{n\times n}$. Pak A je pozitivně definitní, pokud je hermitovská a platí

$$\mathbf{u} * Au \ge 0 \land (\mathbf{u} * Au = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

Důsledek

 $\langle \cdot, \cdot \rangle_A = \cdot^* A \cdot$ je skalární součin, právě kdyžAje pozitivně definitní.

Definice 1.6 (Norma)

Buď V VP nad $\mathbb R$ nebo $\mathbb C$ se skalárním součinem $\langle \cdot, \cdot \rangle$. Pak normou vektoru $\mathbf u \in V$ rozumíme $||\mathbf u|| = \sqrt{\langle \mathbf u, \mathbf u \rangle}$.

${f Tvrzen\'i}$ 1.1 (Vlastnosti normy)

$$||\mathbf{u}|| \ge 0 \land (||\mathbf{u}|| = 0 \Leftrightarrow \mathbf{u} = \mathbf{o}).$$

 $\forall t \in \mathbb{T} : ||t\mathbf{u}|| = |t| \cdot ||\mathbf{u}||.$

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2.$$

1

$$\Re(\langle \mathbf{u}, \mathbf{v} \rangle) = \frac{1}{2} ||\mathbf{u} + \mathbf{v}||^2 - ||\mathbf{u}||^2 - ||\mathbf{v}||^2.$$

Věta 1.2 (Cauchy-Schwarzova nerovnost)

Buď $\mathbb{T} = \mathbb{R}$ nebo \mathbb{C} , \mathbf{V} VP nad \mathbb{T} se skalárním součinem $\langle \cdot, \cdot \rangle$. Pak platí $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$. Rovnost platí právě tehdy, pokud (\mathbf{u}, \mathbf{v}) je lineárně závislá.

 $D\mathring{u}kaz$

Případ 1): (\mathbf{u}, \mathbf{v}) je LZ: Buď $\mathbf{u} = t\mathbf{v}$: $|\langle \mathbf{u}, \mathbf{v} \rangle| = |\langle \mathbf{u}, t \cdot \mathbf{u} \rangle| = |t| \cdot |\langle \mathbf{u}, \mathbf{u} \rangle| = |t| \cdot ||\mathbf{u}|| \cdot ||\mathbf{u}|| = ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Případ 2): (\mathbf{u}, \mathbf{v}) je LN: Víme, že $||\mathbf{u} - t\mathbf{v}||^2 > 0$. Zvolme t tak, aby $\langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = 0$. (To lze, protože $\langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - t \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - t ||\mathbf{v}||^2 \implies t = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{||\mathbf{v}||^2}$.) $0 < ||\mathbf{u} - t\mathbf{v}||^2 = \langle \mathbf{u} - t\mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} - t\mathbf{v} \rangle - \overline{t} \cdot \langle \mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} - t\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle - t \langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}||^2 - \frac{\langle \mathbf{v}, \mathbf{u} \rangle \cdot \langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||^2} = ||\mathbf{u}||^2 - \frac{|\langle \mathbf{u}, \mathbf{v} \rangle \cdot \langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||^2}.$

Tj.
$$0 < ||\mathbf{u}||^2 \cdot ||\mathbf{v}||^2 - |\langle \mathbf{u}, \mathbf{v} \rangle|^2$$
, tedy $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Důsledek (Trojúhelníková nerovnost)

Buď $\mathbb{T} = \mathbb{R}$ nebo \mathbb{C} , \mathbf{V} VP nad \mathbb{T} se skalárním součinem $\langle \cdot, \cdot \rangle$. Pak platí $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$: $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$. Rovnost platí právě tehdy, pokud (\mathbf{u}, \mathbf{v}) je lineárně závislá.

 $D\mathring{u}kaz$

$$||\mathbf{u} + \mathbf{v}||^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{u}||^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + ||\mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\Re(\langle \mathbf{u}, \mathbf{v} \rangle) + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2 \cdot ||\mathbf{u}|| \cdot ||\mathbf{v}|| + ||\mathbf{v}||^2 = (||\mathbf{u}|| + ||\mathbf{v}||)^2.$$

Definice 1.7 (Kolmost)

Buď **V** VP se skalárním součinem $\langle \cdot, \cdot \rangle$ a $\mathbf{u}, \mathbf{v} \in \mathbf{V}$. Řekneme, že \mathbf{u} a \mathbf{v} jsou kolmé, značíme $\mathbf{u} \perp \mathbf{v}$, pokud $\langle \mathbf{u}, \mathbf{v} \rangle$.

Poznámka

Ze skoro symetrie (SSS) plyne, že relace jsou kolmé je symetrická.

Definice 1.8 (Kolmost množin)

Množina nebo posloupnost M vektorů VP \mathbf{V} s $\langle \cdot, \cdot \rangle$ se nazývá ortogonální, pokud každá dvojice různých prvků M je kolmá. Nazývá se ortonormální, pokud je ortogonální a každý prvek má normu 1.

Důsledek

Kanonická báze je ortonormální. Normovaná (tj. každý prvek vydělíme normou) ortogonální množina / posloupnost je ortonormální.

Tvrzení 1.3 (Pythagorova věta)

 \mathbf{V} vektorový prostor se $\langle \cdot, \cdot \rangle$, buďte $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ kolmé vektory. Pak

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$$

 □ Důkaz

$$||\mathbf{u}+\mathbf{v}||^2 = \langle \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + 0 + 0 + \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Důsledek

Je-li $(\mathbf{v}_1,\dots,\mathbf{v}_k)$ ortogonální posloupnost, pak $||\mathbf{v}_1+\dots+\mathbf{v}_k||^2=||\mathbf{v}_1||^2+\dots+||\mathbf{v}_k||^2$.

 $D\mathring{u}kaz$

Indukcí triviálně.

Tvrzení 1.4

Buď **V** vektorový prostor s $\langle \cdot, \cdot \rangle$ a $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ ortogonální posloupnost nenulových vektorů. Pak je $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ LN.

 $D\mathring{u}kaz$

Předpokládejme, že $0 = a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k$, kde $a_1, \ldots, a_k \in \mathbb{T}$ ($\mathbb{T} = \mathbb{R} \vee \mathbb{T} = \mathbb{C}$). Chceme ukázat, že $a_1 = \ldots = a_k = 0$.

$$\forall i \in [k] : 0 = \langle v_i, \mathbf{o} \rangle = \langle \mathbf{v}_i, a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k \rangle = a_1 \langle \mathbf{v}_i, \mathbf{v}_1 \rangle + \ldots + a_k \langle \mathbf{v}_i, \mathbf{v}_k \rangle = a_i \cdot ||\mathbf{v}_i||^2 \implies a_i = 0.$$

1.1 Ortonormální báze a vyjádření vektorů vzhledem k nim

Tvrzení 1.5

 $\mathbf{V} \ VP \ s \ \langle \cdot, \cdot \rangle, \ B = (\mathbf{v}_1, \dots, \mathbf{v}_n) \ ortonormální báze. Pak pro každý <math>\mathbf{u} \in \mathbf{V} \ platí:$

$$\mathbf{u} = \langle \mathbf{v}_1, \mathbf{u} \rangle \cdot \mathbf{v}_1 + \ldots + \langle \mathbf{v}_n, \mathbf{u} \rangle \cdot \mathbf{v}_n.$$

To jest $[\mathbf{u}]_B = (\langle \mathbf{v}_1, \mathbf{u} \rangle, \dots, \langle \mathbf{v}_k, \mathbf{u} \rangle)^T.$ $D \mathring{u}kaz$ Vezmeme $a_1, \dots, a_n \in \mathbb{T}$ tak, aby $\mathbf{u} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$. Máme $\langle \mathbf{v}_i, \mathbf{u} \rangle = \langle \mathbf{v}_i, a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n \rangle = a_1 \cdot 0 + \dots + a_i + \dots + a_n \cdot 0 = a_i.$

Poznámka

Kdyby B byla jen ortogonální, pak $[\mathbf{u}]_B = (\frac{\langle \mathbf{v}_1, \mathbf{u} \rangle}{||\mathbf{v}_1||}, \dots, \frac{\langle \mathbf{v}_k, \mathbf{u} \rangle}{||\mathbf{v}_k||})^T$.

Poznámka

 a_1, \ldots, a_n se někdy nazývají Fourierovy koeficienty.

Tvrzení 1.6

 $\mathbf{V} \ VP \ s \ \langle \cdot, \cdot \rangle, \ B = (\mathbf{v}_1, \dots, \mathbf{v}_n) \ ortonormální \ báze, \ \mathbf{u}, \mathbf{w} \in \mathbf{V}. \ Pak \ \langle \mathbf{u}, \mathbf{w} \rangle = [\mathbf{u}]_B \cdot [\mathbf{w}]_B = [\mathbf{u}]_B^* [\mathbf{w}]_B.$

 $D\mathring{u}kaz$

Bud
$$[\mathbf{u}]_B = (a_1, \dots, a_n)^T$$
, $[\mathbf{w}]_B = (b_1, \dots, b_n)^T$. Pak $\langle \mathbf{u}, \mathbf{v} \rangle = \langle a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n, b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n \rangle = \sum_{i=1}^n \sum_{j=1}^n \overline{a_i} \cdot b_j \cdot \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \sum_{i=1}^n \overline{a_i} b_i \cdot \langle \mathbf{v}_i, \mathbf{v}_i \rangle = [\mathbf{u}]_B^* [\mathbf{w}]_B.$

1.2 Kolmost množin

Definice 1.9 (Kolmost množin)

 ${f V}$ VP s $\langle\cdot,\cdot\rangle$, ${f v}\in{f V},\,M,N\subseteq{f V}$. Pak řekneme, že ${f v}$ je kolmý kM, značíme ${f v}\perp M$, pokud ${f v}\perp{f w}$ $\forall{f w}\in M$, a řekneme, že M je kolmá kN, značíme $M\perp N$, pokud ${f v}\perp{f w}$ $\forall{f v}\in M$ $\forall{f w}\in N$.

Definice 1.10

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a buď $\mathbf{W} \leq \mathbf{v}$. Je-li $\mathbf{v} \in \mathbf{V}$, ortogonální projekcí vektoru \mathbf{v} na podprostor \mathbf{W} rozumíme vektor \mathbf{w} takový, že $\mathbf{w} \in \mathbf{W}$ a $\mathbf{v} - \mathbf{w} \perp \mathbf{w}$.

Věta 1.7

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$, buď $\mathbf{W} \leq \mathbf{V}$, $\mathbf{v} \in \mathbf{V}$ a $\mathbf{w} \in \mathbf{W}$ ortogonální projekce \mathbf{v} na \mathbf{W} . Potom pro každý vektor $\mathbf{u} \in \mathbf{W}$ různý od \mathbf{w} platí: $||\mathbf{v} - \mathbf{w}|| < ||\mathbf{v} - \mathbf{u}||$.

Speciálně existuje-li ortogonální projekce v na W, pak je určena jednoznačně.

 $D\mathring{u}kaz$

Z předpokladu $\mathbf{w},\mathbf{u},$ a tedy i $\mathbf{w}-\mathbf{u}$ jsou vektory $\mathbf{W}.$ Tudíž $\mathbf{v}-\mathbf{w}\perp\mathbf{w}-\mathbf{u}$ $(\mathbf{v}-\mathbf{w}\perp\mathbf{W}).$

Z Pythagorovy věty: $||\mathbf{v} - \mathbf{u}||^2 = ||\mathbf{v} - \mathbf{w}||^2 + ||\mathbf{w} - \mathbf{u}||^2 > ||\mathbf{v} - \mathbf{w}||^2$.

Tvrzení 1.8

 $\textit{Bud} \; \mathbf{V} \; \textit{VP s} \; \langle \cdot, \cdot \rangle \; \textit{a budte} \; \textit{M}, \textit{N} \subseteq \mathbf{V}. \; \textit{Pak} \; \textit{M} \perp \textit{N} \Leftrightarrow \textit{M} \perp \textit{LO}(\textit{N}) \; (\Leftrightarrow \textit{LO}(\textit{M}) \perp \textit{LO}(\textit{N})).$

 $D\mathring{u}kaz$

 \Leftarrow : Triviální (protože $N \subseteq LO(N)$).

 \Longrightarrow : Předpokládejme, že $M \perp N$. Vezměme $\mathbf{v} \in M$ a $\mathbf{w} = a_1 \mathbf{w}_1 + \ldots + a_n \mathbf{w}_n \in \mathrm{LO}(N)$. Pak $\langle \mathbf{v}, \mathbf{w} \rangle = a_1 \langle \mathbf{v}_1, \mathbf{w}_1 \rangle + \ldots + a_n \langle \mathbf{v}_n, \mathbf{w}_n \rangle = 0$.

Tvrzení 1.9

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a $\mathbf{W} \leq \mathbf{V}$, který má ortonormální bázi $B = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. Pak pro libovolné $\mathbf{v} \in \mathbf{V}$ je

$$\mathbf{w} := \langle \mathbf{u}_1, \mathbf{v} \rangle \cdot \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{v} \rangle \, \mathbf{u}_2 + \ldots + \langle \mathbf{u}_k, \mathbf{v} \rangle \cdot \mathbf{u}_k$$

ortogonální projekcí do W.

Důkaz

Zjevně $\mathbf{w} \in LO(B) = \mathbf{W}$. Chceme ukázat, že $\mathbf{v} - \mathbf{w} \perp \mathbf{W}$. Podle tvrzení výše stačí ukázat, že $\mathbf{v} - \mathbf{w} \perp \mathbf{u}_i, \forall i \in [k]$. Označme $a_i := \langle \mathbf{u}_i, \mathbf{v} \rangle$.

 $\langle \mathbf{u}_i, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}_i, \mathbf{v} - a_1 \mathbf{u}_1 - a_2 \mathbf{u}_2 - \dots - a_k \mathbf{u}_k \rangle = a_i - a_1 \cdot 0 - \dots - a_i \cdot 1 - \dots - a_k \cdot 0 = \mathbf{o}.$

Definice 1.11 (Gramova-Schmidtova ortogonalizace)

Postup, který vezme LN posloupnost $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ z VP s $\langle \cdot, \cdot \rangle$ a vytvoří ortonormální posloupnost $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ taková, že $\forall i \in [k] : \mathrm{LO}\{\mathbf{v}_1, \dots, \mathbf{v}_i\} = \mathrm{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_i\}$.

1) $\mathbf{u}_1 := \frac{\mathbf{v}_1}{||\mathbf{v}_1||}$. 2) Pro každé $i = 2, \ldots, k$ spočítáme $\mathbf{w}_i = \langle \mathbf{u}_1, \mathbf{v}_i \rangle \cdot \mathbf{u}_1 + \ldots + \langle \mathbf{u}_{i-1}, \mathbf{v}_i \rangle \cdot \mathbf{u}_{i-1}$ a položíme $\mathbf{u}_i = \frac{\mathbf{v}_i - \mathbf{w}_i}{||\mathbf{v}_i - \mathbf{w}_i||}$.

Důkaz

To, že $(\mathbf{u}_1, \dots, \mathbf{u}_i)$ je ortonormální $\forall i \in [k]$ dokážeme triviálně indukcí.

Stejně tak, že LO $\{\mathbf{v}_1, \dots, \mathbf{v}_i\} = \text{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_i\}.$

$$\mathbf{u}_{i} = \frac{\mathbf{v}_{i}}{||\ldots||} - \frac{\mathbf{w}_{i}}{||\ldots||}, \frac{\mathbf{w}_{i}}{||\ldots||} \in \mathrm{LO}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{i-1}\right\} \stackrel{\mathrm{IP}}{=} \mathrm{LO}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}\right\}.$$

 \mathbf{v}_i také z definice.

Nakonec musíme ukázat, že nikdy nedělíme nulou (naopak, pokud dostaneme špatný (= LZ) vstup, tak dělíme). Ukáže se, že kdybychom dělili, tak nějaké $\mathbf{u}_i \in LO \{\mathbf{u}_1, \dots, \mathbf{u}_{i-1}\}$.

Věta 1.10

Máme-li \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ a aplikujeme-li GS ortogonalizaci na LN posloupnost vektorů z \mathbf{V} , pak dostaneme ortonormální posloupnost, že se jejich LO rovnají.

 $D\mathring{u}kaz$

Viz předchozí důkaz.

Důsledek

Každý konečně generovaný VP se skalárním součinem má ortonormální bázi.

Dusledek

Máme-li \mathbf{V} konečně generovaný VP s $\langle \cdot, \cdot \rangle$ a ortonormální posloupnost $(\mathbf{u}_1, \dots, \mathbf{u}_k)$, můžeme ji doplnit na ortonormální bázi.

 $D\mathring{u}kaz$

Doplníme na bázi a aplikujeme GS ortogonalizaci, kde si rozmyslíme, že nám nezmění původní posloupnost. $\hfill\Box$

Důsledek

Je-li **V** konečně generovaný VP s ortonormální bází $B = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ a s $\langle \cdot, \cdot \rangle$, pak existuje isomorfismus $\mathbf{V} \to T^n$ takový, že $\forall \mathbf{v}, \mathbf{w} : \langle \mathbf{v}, \mathbf{w} \rangle = f(\mathbf{v}) \cdot f(\mathbf{w})$.

Poznámka

Aplikováním GS ortogonalizace na \mathbb{T}^n dostaneme tzv. QR - rozklad matice, kde $A=Q\cdot R$ a A má za sloupce původní vektory, Q má ortonormální posloupnost sloupců a R je horní trojúhelníková s nezápornými reálnými čísly na diagonále.

1.3 Ortogonální doplněk, Gramova matice

Definice 1.12

Buď \mathbf{V} VP s $\langle\cdot,\cdot\rangle$ nad $\mathbb{T}=\mathbb{R}$ nebo \mathbb{C} . Je-li $M\subseteq\mathbf{V}$ množina vektorů, pak ortogonálním doplňkem k M ve \mathbf{V} , rozumíme

$$M^{\perp} = \{ \mathbf{v} \in \mathbf{v} | \mathbf{v} \perp M \} = \{ \mathbf{v} \in \mathbf{V} | (\forall \mathbf{u} \in M : \langle \mathbf{v}, \mathbf{u} \rangle = 0) \}.$$

Důsledek

 $M\perp M^{\perp}$ a M^{\perp} je největší taková množina vzhledem k inkluzi.

Tvrzení 1.11

 $\mathbf{V}\ \mathit{VP}\ s\ \langle\cdot,\cdot\rangle,\ M\subseteq\mathbf{V}.\ \mathit{Pak}\ M^{\perp}=(\mathrm{LO}\ M)^{\perp},\ M^{\perp}\ \mathit{je}\ \mathit{podprostor}\ \mathbf{V},\ M\subseteq N\ \Longrightarrow\ N^{\perp}\subseteq M^{\perp}.$

 $D\mathring{u}kaz$

$$\mathbf{v} \in M^{\perp} \Leftrightarrow \mathbf{v} \perp M \Leftrightarrow \mathbf{v} \perp LOM \Leftrightarrow \mathbf{v} \in (LOM)^{\perp}.$$

Vezmeme $\mathbf{w}_1, \mathbf{w}_2 \in M^{\perp}$ a $t \in \mathbb{T}$, pak $\forall \mathbf{v} \in M : \langle \mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2 \rangle = \langle \mathbf{v}, \mathbf{w}_1 \rangle + \langle \mathbf{v}, \mathbf{u}_2 \rangle = 0 + 0 = 0$ a $\langle \mathbf{v}, t \cdot \mathbf{w}_1 \rangle = t \cdot \langle \mathbf{v}, \mathbf{w}_1 \rangle = t \cdot 0 = 0 \implies \mathbf{w}_1 + \mathbf{w}_2, t \cdot \mathbf{w}_1 \in M^{\perp}$.

At
$$M \subseteq N$$
. Pak $\mathbf{v} \in N^{\perp} \Leftrightarrow \mathbf{v} \perp N \implies \mathbf{v} \perp M \Leftrightarrow \mathbf{v} \in M^{\perp}$.

Věta 1.12

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$ nad \mathbb{R} nebo \mathbb{C} . Buď $\mathbf{W} \leq \mathbf{V}$ konečně generovaný. Pak platí:

$$1)\mathbf{V} = \mathbf{W} \oplus \mathbf{W}^{\perp}.$$

$$2)(\mathbf{W}^{\perp})^{\perp} = \mathbf{W}.$$

- 3) Každý vektor $\mathbf{v} \in \mathbf{V}$ má (jednoznačnou) ortogonální projekci jak na \mathbf{W} , tak ne \mathbf{W}^{\perp} .
- 4) Je-li \mathbf{V} konečně generovaný dimenze n, pak $n = \dim \mathbf{W} + \dim \mathbf{W}^{\perp}$.

 $D\mathring{u}kaz$

- 1) Triviálně $\mathbf{W} \cap \mathbf{W}^{\perp} = \{\mathbf{o}\}$. Navíc použitím toho, že existuje ortogonální projekce (a toho, že je kolmá) na \mathbf{W} máme, že $\mathbf{W} + \mathbf{W}^{\perp} = \mathbf{V}$.
- 2) $\mathbf{W} \subseteq (\mathbf{W}^{\perp})^{\perp}$: je-li $\mathbf{w} \in \mathbf{W}$, pak $w \perp (\mathbf{W}^{\perp})$, tj. $w \in (\mathbf{w}^{\perp})^{\perp}$. Naopak $(\mathbf{W}^{\perp})^{\perp} \subseteq \mathbf{W}$: vezměme $\mathbf{v} \in (\mathbf{W}^{\perp})^{\perp}$. Uvažujme ortogonální projekci \mathbf{v} na \mathbf{W} :

$$(\mathbf{W}^{\perp})^{\perp} \ni \mathbf{v} = \mathbf{w} + (\mathbf{v} - \mathbf{w}) \wedge \mathbf{v} - \mathbf{w} \in (\mathbf{W}^{\perp})^{\perp} \implies (\mathbf{v} - \mathbf{w}) \perp (\mathbf{v} - \mathbf{w}) \implies \mathbf{v} - \mathbf{w} = \mathbf{o} \implies \mathbf{v} = \mathbf{w} \in \mathbf{W}.$$

Víme, že ortogonální projekce na \mathbf{W} existuje. Je-li tedy $\mathbf{v} \in \mathbf{V}$, pak můžeme psát $\mathbf{v} = \mathbf{w} + (\mathbf{v} - \mathbf{w}) = (\mathbf{v} - \mathbf{w}) + \mathbf{w}$, potom $(\mathbf{v} - \mathbf{w}) \in \mathbf{W}^{\perp}$ je podle definice ortogonální projekce na \mathbf{W}^{\perp} . $(\mathbf{w} \in (\mathbf{W}^{\perp})^{\perp}$.)

Použijeme 1) a větu o dimenzi součtu a průniku podprostorů.

Definice 1.13 (Gramova matice)

Buď V VP s $\langle \cdot, \cdot \rangle$ nad \mathbb{R} nebo \mathbb{C} . Buď $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů. Pak Gramovu matici posloupnosti $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ definujeme jako:

$$(\langle \mathbf{u}_i, \mathbf{u}_j \rangle)_{k \times k}.$$

Tvrzení 1.13

Buď \mathbf{V} VP s $\langle \cdot, \cdot \rangle$, $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů \mathbf{V} , B Gramova matice. Vezměme $\mathbf{v} \in \mathbf{V}$ a $\mathbf{w} = a_1\mathbf{u}_1 + \dots + a_k\mathbf{u}_k \in \mathbf{W} := \mathrm{LO}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$. Pak následující je ekvivalentní:

- 1) w je ortogonální projekce v na W.
- 2) $B \cdot (a_1, \ldots, a_k)^T = (\langle \mathbf{u}_1, \mathbf{v} \rangle, \ldots, \langle \mathbf{u}_k, \mathbf{v} \rangle).$

 $D\mathring{u}kaz$

1)
$$\Leftrightarrow \mathbf{v} - \mathbf{w} \perp \mathbf{W} \Leftrightarrow \forall i \in [k] : \Leftrightarrow \mathbf{u}_i \perp \mathbf{v} - \mathbf{w} \Leftrightarrow \forall i \in [k] : \langle \mathbf{u}_i, \mathbf{v} - \mathbf{w} \rangle = 0 \Leftrightarrow \forall [k] : \langle \mathbf{u}_i, \mathbf{w} \rangle = \langle \mathbf{u}_i, \mathbf{v} \rangle \Leftrightarrow \forall i \in [k] : \langle \mathbf{u}_i, \mathbf{u}_1 \rangle \cdot a_1 + \langle \mathbf{u}_i, \mathbf{u}_k \rangle \cdot a_k = \langle \mathbf{u}_i, \mathbf{v} \rangle \Leftrightarrow 2).$$

Důsledek

Buď A matice typu $n \times k$ nad \mathbb{R} nebo \mathbb{C} . Buď $\mathbf{v} \in \mathbb{R}^n$ nebo \mathbb{C}^n a $x \in \mathbb{C}^k$ nebo \mathbb{R}^k . Pak následující je ekvivalentní:

- 1) Ax je ortogonální projekce v na $\Im A$.
- $2) A^*A \cdot x = A^* \cdot \mathbf{v}.$

Tvrzení 1.14 (8.80)

Buď $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ posloupnost vektorů ve VP \mathbf{V} s $\langle \cdot, \cdot \rangle$ a buď $B \in T^{k \times k}$ gramova matice. Pak platí:

- 1) B je regulární \Leftrightarrow $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ LN.
- 2) B je hermitovská (v reálném případě symetrická). 3) Je-li $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ LN, pak B je pozitivně definitní.

 $D\mathring{u}kaz$

- 1) aplikujeme tvrzení výše na $\mathbf{v} = \mathbf{o}$. První podmínka se přepíše na $0 = a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k \Leftrightarrow B \cdot (a_1, \ldots, a_k)^T = \mathbf{o} \Leftrightarrow (a_1, \ldots, a_k)^T \in \text{Ker } B$. Ale jádro je $\{\mathbf{o}\} \Leftrightarrow B$ je regulární.
 - 2) Plyne z rovnosti: $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \overline{\langle \mathbf{u}_j, \mathbf{u}_i \rangle}$.
- 3) Vezměme ortonormální bázi C prostoru LO $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ a položme $A = ([\mathbf{u}_1]_C | \dots | [\mathbf{u}_k]_C)$. Pak A je regulární, tj. A^*A je pozitivně definitní.

1.4 Unitární a ortogonální matice

Definice 1.14 (Unitární a ortogonální matice)

Čtvercová matice nad \mathbb{R} se nazývá ortogonální, pokud má ortonormální posloupnost sloupců vzhledem ke standardnímu skalárnímu součinu.

Čtvercová matice nad \mathbb{C} se nazývá unitární, pokud má ortonormální posloupnost sloupců vzhledem ke standardnímu skalárnímu součinu.

Tvrzení 1.15

Buď Q čtvercová komplexní matice řádu n. Pak následující je ekvivalentní: 1) Q je unitární, 2) $Q^* \cdot Q = I_n$, 3) Q^* je unitární, 4) $Q \cdot Q^* = I_n$, 5) Q^T je unitární, 6) f_Q zachovává standardní skalární součin, tj. $\forall \mathbf{u}, \mathbf{v} \in \mathbb{C}^n : f(\mathbf{u}) \cdot f(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$.

Speciálně je každá unitární matice regulární a $Q^{-1} = Q^*$.

Důkaz

$$1) \Leftrightarrow 2), 3) \Leftrightarrow 4)$$
: z definice. $2) \implies Q$ má levou inverzi $Q^* \implies Q$ regulární a $Q^{-1} = Q^* \implies Q \cdot Q^{-1} = Q \cdot Q^* = I_n$. $4) \implies 2$): analogicky.

- $3) \Leftrightarrow 5$): 5) říká, že Q má ortonormální posloupnost řádků, 3) říká, že když komplexně sdružíme všechny prvky Q, pak dostaneme ortonormální posloupnost řádků. Z toho to už jednoduše dostaneme.
- 2) \Longrightarrow 6): Předpokládejme 2), uvažujme $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$. Pak $f_Q(\mathbf{u}) \cdot f_Q(\mathbf{v}) = (Q\mathbf{u})^*(Q\mathbf{v}) = \mathbf{u}^*(Q^*Q)\mathbf{v} = \mathbf{u}^*\mathbf{v}$.
- 6) \implies 1) $Q=(f_Q(e_1)|\dots|f_Q(e_n))$ \implies $(f_Q(e_1),\dots,f_Q(e_n))$ ortonormální \implies Q unitární.

Důsledek

Součin unitárních matic stejného řádu je unitární matice.

Tvrzení 1.16

Je-li A regulární komplexní matice a $Q_1R_1=A=Q_2R_2$ jsou 2 QR rozklady, pak nutně $Q_1=Q_2$ a $R_1=R_2$.

 $D\mathring{u}kaz$

Z regularity $Q_1R_1 = Q_2R_2 \implies Q_2^*Q_1 = Q_2^{-1}Q_1 = R_2R^{-1} =: (\mathbf{c}_1|\dots|\mathbf{c}_n)$. Chceme ukázat, ze $\mathbf{c}_i = e_i \forall i$. To ukážeme indukcí podle i. Víme, že $R_2R_1^{-1}$ je horní trojúhelníková, tedy každé \mathbf{c}_i musí mít kladný prvek na i-té pozici a zároveň všude výše musí mít nulu, aby byl kolmý ke všem předchozím (o kterých z IP víme, že jsou to jednotkové vektory). \square

Definice 1.15

Buď **V** komplexní VP s $\langle \cdot, \cdot \rangle_{\mathbf{V}}$ a **W** komplexní VP s $\langle \cdot, \cdot \rangle_{\mathbf{W}}$. Pak lineární zobrazení $f: \mathbf{V} \to \mathbf{W}$ se nazývá unitární, pokud $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V} : \langle f(\mathbf{v}), f(\mathbf{w}) \rangle_{\mathbf{W}} = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{V}}$.

Tvrzení 1.17

Buď $f: \mathbf{V} \to \mathbf{W}$ lineární zobrazení, \mathbf{V} , \mathbf{W} komplexní VP se skalárním součinem, pak následující je ekvivalentní: 1) f je unitární, 2) $\forall \mathbf{u} \in \mathbf{V}: ||f(\mathbf{u})_{\mathbf{W}} = ||\mathbf{u}||_{\mathbf{V}}$ (f zachovává normu), 3) f zobrazí každou ortonormální posloupnost $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$ na ortonormální posloupnost $(f(\mathbf{u}_1, \ldots, f(\mathbf{u}_k)))$, 4) f zobrazuje jednotkové vektory na jednotkové vektory.

Speciálně: každé unitární zobrazení je prosté.

 $D\mathring{u}kaz$

Ve skriptech. Dodatek plyne z 2) a f prosté \Leftrightarrow Ker $f = \{\mathbf{o}\}$. 1) \Longrightarrow 2) \Longrightarrow 4), 1) \Longrightarrow 3) \Longrightarrow 4) jednoduché. 4) \Longrightarrow 2): $\mathbf{o} \neq \mathbf{v} \in \mathbf{V}$, pak $\mathbf{v} = t\mathbf{u}$ pro $t = ||\mathbf{v}||_{\mathbf{V}}$, \mathbf{u} jednokový. $||f(\mathbf{v})||_{\mathbf{W}} = t \cdot ||f(\mathbf{u})||_{\mathbf{W}} = t = ||\mathbf{v}||_{\mathbf{V}}$.

2)
$$\implies$$
 1): Polarizační identity: $\Re \langle \mathbf{u}, \mathbf{v} \rangle$, $\Im \langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{2}(...)$.

Poznámka

Unitární zobrazení může zobrazovat i do prostoru větší dimenze.

1.5 Přibližné řešení SLR metodou nejmenších čtverců

Definice 1.16

Vektor $\mathbf{c} \in \mathbb{C}^n$ je přibližné řešení SLR $A\mathbf{x} = \mathbf{b}$ metodou nejmenších čtverců, pokud

$$||A\mathbf{c} - \mathbf{b}|| = \min_{\mathbf{x} \in \mathbb{C}^n} ||A\mathbf{x} - \mathbf{b}||.$$

Důsledek

 \mathbf{c} je ortogonální projekce \mathbf{b} do Im A.

Poznámka

Používá se například, když chybou měření soustava nemá řešení, ale my víme, že řešení mít má.

Jmenuje se podle čtverců ve výpočtu normy.

Tvrzení 1.18

 \mathbf{c} je přibližné řešení $A\mathbf{x} = \mathbf{b}$ metodou nejmenších čtverců, právě když $A^*A\mathbf{x} = A^*\mathbf{b}$.

2 Lineární dynamické systémy, vlastní čísla a vlastní vektory

Definice 2.1 (Vlastní čísla a vlastní vektory)

Buď \mathbb{T} těleso, A čtvercová matice řádu n (tj. máme $f_a: \mathbb{T}^n \to \mathbb{T}^n$). $\lambda \in \mathbb{T}$ se nazývá vlastní číslo matice A, pokud $\exists \mathbf{v} \in T^n, \mathbf{v} \neq \mathbf{o}$ takový, že $A \cdot \mathbf{V} = \lambda \cdot \mathbf{v}$. Je-li $\lambda \in \mathbb{T}$ vlastní číslo matice A, pak $\mathbf{w} \in \mathbb{T}^n$ je vlastním vektorem příslušným k λ , pokud $A \cdot \mathbf{w} = \lambda \cdot \mathbf{w}$.

Definice 2.2 (Vlastní čísla a vlastní vektory)

Buď \mathbb{T} těleso, \mathbf{V} VP nad \mathbb{T} a $f: \mathbf{V} \to \mathbf{V}$ lineární operátor. $\lambda \in \mathbb{T}$ se nazývá vlastní číslo operátoru f, pokud $\exists \mathbf{v} \in \mathbf{V}, \mathbf{v} \neq \mathbf{o}$ takový, že $f(\mathbf{V}) = \lambda \cdot \mathbf{v}$. Je-li $\lambda \in \mathbb{T}$ vlastní číslo operátoru f, pak $\mathbf{w} \in \mathbf{V}$ je vlastním vektorem příslušným k λ , pokud $f(\mathbf{w}) = \lambda \cdot \mathbf{w}$.

Pozorování

A má vlastní číslo $0 \Leftrightarrow \operatorname{Ker} A \neq \{\mathbf{o}\} \Leftrightarrow (\operatorname{pro} \, \check{\operatorname{e}} \operatorname{tvercov} \check{e}) \, A$ je singulární $\Leftrightarrow \det A = 0$.

f má vlastní číslo $0 \Leftrightarrow \operatorname{Ker} f \neq \{\mathbf{o}\}.$

Navíc množina vlastních vektorů příslušných k 0 je přesně $\operatorname{Ker} A$ ($\operatorname{Ker} f$).

Pozorování

A má vlastní číslo $\lambda \Leftrightarrow \operatorname{Ker}(A - \lambda I_n) \neq \{\mathbf{o}\} \Leftrightarrow A - \lambda I_n$ singulární $\Leftrightarrow \det(A - \lambda I_n) = 0$.

f má vlastní číslo $\lambda \Leftrightarrow \operatorname{Ker}(f - \lambda \cdot \operatorname{id}_{\mathbf{V}}) \neq \{\mathbf{o}\}.$

Navíc množina M_{λ} vlastních vektorů A (resp. f) příslušných k λ je v tom případě rovna $\operatorname{Ker}(A - \lambda I_n)$ (resp. $\operatorname{Ker}(f - \lambda \cdot \operatorname{id}_{\mathbf{V}})$). Speciálně $M_{\lambda} \leq \mathbb{T}^n$ (resp. $M_{\lambda} \leq \mathbf{V}$).

Definice 2.3 (Charakteristický polynom)

Buď A čtvercová matice nad $\mathbb T.$ Potom charakteristickým polynomem Arozumíme polynom v $\lambda:$

$$p_A(\lambda) = \det(A - \lambda I_n).$$

Tvrzení 2.1

Buď $A = (a_{ij})$ matice řadu n nad \mathbb{T} . A $p_A(\lambda)$ charakteristický polynom. Pak

- 1. $p_A(\lambda)$ je polynom stupně n.
- 2. Koeficient u λ^n je roven $(-1)^n$.
- 3. Koeficient u λ^{n-1} je roven $(-1)^{n-1} \cdot (a_{11} + \ldots + a_{nn})$ (tzv. stopa matice $\cdot (-1)^{n-1}$).
- 4. Absolutní člen je roven det A.

Definice 2.4 (Podobné matice)

Čtvercové matice X a Y jsou podobné, pokud $Y = RXR^{-1}$ pro R regulární.

Tvrzení 2.2

 $X, Y \ podobn\'e \implies p_X(\lambda) = p_Y(\lambda).$