# Project Idea 2 - France COVID-19 Key Figures

Group 4.

2025-09-30

#### 1 Link to the dataset

Kaggle - Coronavirusdataset France (file: chiffres-cles.csv)
Actual URL: https://www.kaggle.com/datasets/mclikmb4/coronavirusdataset-france?select=chiffres-cles.csv Google drive URL: https://drive.google.com/file/d/1rXHdGEDWFAMaitmkNSgehAt\_e2FaC PZ/view?usp=sharing

#### 2 Introduction to the dataset

This dataset provides daily COVID-19 surveillance indicators for France at multiple geographic granularities (country, region, department, overseas collectivities). Each record includes a calendar date, a location code, and a location name, enabling comparisons across space and time. Indicators cover hospitalized patients, ICU occupancy, cumulative deaths, cumulative recoveries, and daily flows of new admissions (hospital and ICU). Source/provenance fields support auditability. The structure suits descriptive analyses and visualizations, with optional regional comparisons to highlight spatial heterogeneity. These indicators and their definitions are documented on the Kaggle dataset page (mclikmb4, 2020-2021).

# 3 Dataset justification

**Relevance:** Directly biomedical/public-health, reflecting real-world hospital and ICU loads during COVID-19.

**Size/structure:** The file far exceeds the minimum requirements (well over 100 rows and more than 20 columns) and includes both categorical (granularity, location IDs, sources) and continuous (counts) variables.

Accessibility/ethics: Publicly accessible aggregated, de-identified counts suitable for academic use.

Analytical potential: Enables trend estimation, wave identification, geographic comparison, and lead-lag analysis between admissions ("flow") and occupancy ("stock").

**Ethical use.** The dataset consists of aggregated, de-identified counts without PII; no patient-level identifiers are present, aligning with course requirements for ethical, public data.

## 4 Variables description

#### Key columns:

date (daily), granularity (country, region, department), location\_code (location code), location\_name (location name).

#### **Indicators:**

- hospitalized current hospitalized patients
- icu\_patients current ICU patients
- deaths cumulative deaths
- recovered cumulative recoveries
- new\_hospitalizations new daily hospital admissions
- new\_icu\_admissions new daily ICU admissions

#### Additional fields:

confirmed\_cases and tested may be present with different levels of completeness.

**Note:** Due to several missing/invalid values (NaN/Inf), the tested column is largely unusable for analysis and is excluded from primary summaries and plots.

#### Source metadata:

source\_name, source\_url, source\_archive, source\_type.

Table 1: Row counts by geographic granularity

| granularity           | n     |
|-----------------------|-------|
| department            | 40715 |
| region                | 7708  |
| country               | 817   |
| overseas_collectivity | 131   |
| world                 | 83    |

Table 2: Summary statistics for key numeric indicators

| variable               | n     | mean       | sd         | median | min                  | max     |
|------------------------|-------|------------|------------|--------|----------------------|---------|
| confirmed_cases        | 3081  | 121010.685 | 508142.429 | 27.0   | 0                    | 3560764 |
| deaths                 | 47928 | 920.086    | 4150.452   | 135.0  | 0                    | 70574   |
| hospitalized           | 46826 | 578.225    | 2597.057   | 91.0   | 0                    | 33497   |
| icu_patients           | 46743 | 80.489     | 387.667    | 10.0   | 0                    | 7148    |
| new_hospitalizations   | 46095 | 32.664     | 166.648    | 4.0    | 0                    | 4281    |
| $new\_icu\_admissions$ | 46095 | 5.421      | 28.033     | 0.0    | 0                    | 771     |
| recovered              | 46712 | 3949.800   | 17835.138  | 645.5  | 0                    | 299624  |
| tested                 | 0     | NaN        | NA         | NA     | $\operatorname{Inf}$ | -Inf    |

# 5 Research question(s)

1. **National waves:** How did France's national hospitalization and ICU occupancy evolve across early pandemic waves (2020-2021)?

2. Flow-stock timing: Do peaks in new hospital admissions precede peaks in current hospitalizations, and by roughly how many days?

### 6 Data cleanup and processing plan

- Parsing and types: Ensure the date field is properly parsed as a date variable and convert indicator fields into numeric types for consistency.
- Subsetting: For national trends, include only rows classified as country with location\_code = "FRA". For geographic comparisons, restrict the dataset to rows where granularity is region.
- Missingness: Quantify missing values for each column and handle them transparently by applying listwise deletion for plotted series (no imputation).
- **Duplicates:** Identify and remove duplicate entries defined by the combination of date and location\_code.
- **Provenance:** Retain all source metadata fields, and include them in the appendix when relevant for transparency.

### 7 Descriptive statistics (figures in Appendix)

France's national indicators exhibit multi-wave patterns during 2020-2021. Hospital occupancy and ICU burden rise and fall in tandem with case surges, while cumulative deaths increase monotonically. The timing relationship between new admissions (flow) and current occupancy (stock) suggests admissions lead occupancy by several days. For visuals supporting these statements, see Appendix Figures A1-A3. Tables above summarize structure and central tendencies.

Across all rows, the median current hospitalizations was 91, with an IQR of 25-285; ICU occupancy had a much lower median, which is expected since ICU is a subset of the total hospital (median 10), consistent with ICU being a subset of total hospital burden.

#### 8 Planned statistical methods

- Lagged cross-correlation between new\_hospitalizations (flow) and hospitalized (stock) to estimate lead time from admissions to occupancy.
- Regional comparison of ICU vs hospital burden by wave period (medians, IQRs).
- Simple time-series decomposition on national hospitalizations to separate trend/seasonal/residual components (if applicable).

### 9 Limitations

Several fields like tested and early confirmed\_cases have bad coverage over time, and indicators are hospital-centric rather than community-representative. Counts are aggregated and de-identified, so patient-level cannot be controlled. Because the dataset mixes granularities (national, regional, departmental), comparing across levels requires careful subsetting (granularity == "country" for national trends). These constraints limit causal interpretation, so we have to focus more on descriptive trends and clearly labeled comparisons.

## 10 Appendix



Figure 1: France (national): Hospitalized (current) over time.



Figure 2: France (national): ICU (current) over time.



Figure 3: France (national): Cumulative deaths over time.

# 11 References

mclikmb4, (2021, April 4), Coronavirus-dataset France, Kaggle, https://www.kaggle.com/datasets/mclikmb4/coronavirus<br/>dataset-france?select=chiffres-cles.csv