

Lab4: Queueing networks

Alberto Tarable

alberto.tarable@polito.it

 Implement in Simulink the following network, where all the queues are M/M/1

- 2. Simulate from t = 0 to t = 10000 the system with the values:
 - $\gamma_1 = 0.5, \gamma_2 = 0.5$ [customers/s]
 - $-\mu_1 = 4$, $\mu_2 = 12$, $\mu_3 = 4$ [customers/s]
 - $p_{21} = 0.4$, $p_{31} = 1-p_{21}$, $p_{12} = 0.3$, $p_{22} = 1-p_{12}$, $p_{13} = 0.4$, $p_{33} = 0.2$

and compare with the theoretical values:

- the utilization at each node
- the average queue length at each node

- 3. Now simulate the system with the same parameters as in point 2, except $\gamma_1 = 1$ cust./s
 - What do you observe? Why?

4. With the same parameters as in point 3, add a server to the first node, thus transforming it to a M/M/2, simulate it and compare with theoretical results

- 5. With the same parameters as in point 4, now set for all queues a finite capacity *k*
 - Uncheck the flag "Overwrite the oldest element if the queue is full" for all queues
 - Simulate the system for k = 25, 50, 100. What do you observe? Why?
 - If you check the flag and run the system for k =
 25, which utilization do you observe for the three nodes?

