	Generate Image Captions using CNN+LSTM. (you can use pretrained models) Dataset: MNIST is a dataset of images, consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Requirements: • tensorflow • keras • numpy, pandas, matplotlib • Pillow, opency, tgdm					
	 numpy, pandas, matplotlib Pillow, opency, tqdm nltk (For evaluation of test set using BLEU Score) All our code, data and other related information could be accessed on this drive link. Import Libraries/Dataset/Prepare Data %reload_ext autoreload %autoreload 2					
[n []:	<pre># Import all the needed libraries here import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from tqdm import tqdm import pickle # Basic Libraries import numpy as np import pandas as pd from collections import Counter, defaultdict from pathlib import Path</pre>					
	<pre># Image Image manipulation libraries import PIL.Image # Deep Learning Libraries import tensorflow as tf import keras from keras.applications.resnet import ResNet50, preprocess_input from keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import (LSTM, Embedding, Dense, Flatten, BatchNormalization,</pre>					
	<pre>from tensorflow.keras import optimizers from tensorflow.keras.models import Model from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.utils import to_categorical # For evaluation from nltk.translate.bleu_score import sentence_bleu # For plotting import matplotlib.pyplot as plt plt.style.use("ggplot") ematplotlib inline</pre>					
	<pre>%matplotlib inline # Define constants here START = "startseq" STOP = "endseq" EPOCHS = 12 BATCH_SIZE = 32 TEXT_EMBED_DIMENSION = 32 IMAGE_EMBED_DIMENSION = 2048</pre> • Download the MNIST data					
	 Download a pretrained model (pretrained for ImageNet classification) Extract embeddings of the MNIST images from this pretrained model Convert data into correct format (tensors) and plot two input-output pairs # Download the MNIST dataset from keras (X_train, y_train), (X_test, y_test) = mnist.load_data() # Check the shapes of the dataset print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) 					
	<pre>(60000, 28, 28) (60000,) (10000, 28, 28) (10000,) # Create resnet50 model for feature extraction # We are keeping the input shape as 28 x 28 only and not resizing it to 224 x 224 # Resnet does GAP at the feature extraction part so input shape doesn't impact the output # Also we believe that the image upscaling from 28 to 224 square image will introduce # unnecessary artefacts which would be undesirable new_input = Input(shape=(28, 28, 3)) res = ResNet50(include_top=False, input_tensor=new_input)</pre> # Extract embeddings in batches					
	<pre># Function to create batches of data from the provided input data def create_batches(X, batch_size=32): # With the given batch size, find the total number of batches n_batches = X.shape[0] // batch_size # Last batch could've been fractional and may get ignored hence increment n_batches by one n_batches += 1 # Loop over all the data for n_batches times to create the batch all_batches = [] for batch in tqdm(range(n_batches), total=n_batches, desc="Creating batches"):</pre>					
	<pre># Subset into the batch dimension of the numpy array start = batch * batch_size end = start + batch_size images = X[start:end, :, :] preprocessed_images = [] # Process each image in the batch if len(images) > 0: for image in images: # Create the numpy array into a 1-D grayscale PIL Image # Post that convert that image into an RGB image since the</pre>					
	<pre># pretrained model was trained on 3-channel images image = np.array(PIL.Image.fromarray(image).convert("RGB")) image = image.reshape((1, *image.shape)) preprocessed_images.append(image) # Create a tensor out of this batch batch_tensor = Concatenate(axis=0)(preprocessed_images) # Add these batches to a list all_batches.append(batch_tensor) except Exception as e: print(str(e))</pre>					
	# Return the list of all the batches return all_batches # Create a set of train and validation batches with the help of above function train_batches = create_batches(X_train) test_batches = create_batches(X_test) Creating batches: 100% 1876/1876 [02:03<00:00, 15.13it/s] Creating batches: 100% 313/313 [00:20<00:00, 15.12it/s]					
	<pre># Get the resnet embeddings for the images def get_embeddings(batched_data): embeddings = [] for batch in tqdm(batched_data, total=len(batched_data)): embeddings.append(res.predict(batch, verbose=0)) return embeddings # Get the train embeddings train_embeds = get_embeddings(train_batches) train_embeds = np.concatenate(train_embeds, axis=0) train_embeds = train_embeds[:, 0, 0, :]</pre>					
[n []:	# Get the test embeddings test_embeds = get_embeddings(test_batches) test_embeds = np.concatenate(test_embeds, axis=0) test_embeds = test_embeds[:, 0, 0, :] 100% 313/313 [00:20<00:00, 15.00it/s] train_embeds.shape, test_embeds.shape ((60000, 2048), (10000, 2048))					
in []:	<pre># Dump the embeddings along with labels in pickle file # This is to persist the data and to look at the same for any subsequent analysis data = { "train": {"embeddings": train_embeds, "labels": y_train}, "test": {"embeddings": test_embeds, "labels": y_test}, } pickle.dump(data, open("data/embeddings_with_labels.pkl", "wb"))</pre> Understanding Captions					
în []:	<pre># Create a pool of labels which our model is expected to output label_pool = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] # Examine the distribution of letters in all these labels chars = [] for l in label_pool:</pre>					
	Counts of 15 characters across all the 10 labels 8 -					
	Observations From this we can think that In any batch which is picked using random sampling, there's a high chance that characters like o, i, e will appear in the word representation, so these character embeddings should get trained pretty well. Characters like x, w, g etc. might be underrepresented in our batches as opposed to the above characters. We					
	<pre>could think of using weighted sampling for dataloading such that characters like x, g etc. also appear higher number of times. Build the text pipeline # Load the embedding data which was extracted and stored data = pickle.load(open("data/embeddings_with_labels.pkl", "rb")) # Create an output map which gives the output of the class in the form of alphabets output_map = {0: "zero", 1:"one", 2:"two", 3:"three",</pre>					
	4: "four", 5: "five", 6: "six", 7:"seven", 8: "eight", 9: "nine"} # Create a vocabulary of alphabets which are used in the word representation # This is to basically help frame the problem using LSTM as a next alphabet prediction vocab = [] for item in output_map.values(): vocab.extend(list(item)) # Add the special tokens to the vocabulary list vocab.extend([START, STOP]) vocab = sorted(list(set(vocab)))					
	<pre># Recreate output_map in form of lists of alphabets in place of single string words for k, v in output_map.items(): v = [START] + list(v) + [STOP] output_map[k] = v # Create two sided mapping from word to index and vice-versa idx_to_alphabet = {} alphabet_to_idx = {} ix = 1 for w in vocab: alphabet_to_idx[w] = ix idx_to_alphabet_fivel_ext</pre>					
Out[]:	<pre>idx_to_alphabet[ix] = w ix += 1 VOCAB_SIZE = len(idx_to_alphabet) + 1 VOCAB_SIZE 18 # Display all the important data structures created above print(f"VOCAB: \n{vocab}\n") print(f"OUTPUT MAP: \n{output_map}\n") print(f"IDX TO ALPHABET: \n{idx_to_alphabet}\n")</pre>					
	<pre>print(f"ALPHABET TO IDX: \n{alphabet_to_idx}") VOCAB: ['e', 'endseq', 'f', 'g', 'h', 'i', 'n', 'o', 'r', 's', 'startseq', 't', 'u', 'v', 'w', 'x', 'z'] OUTPUT MAP: {0: ['startseq', 'z', 'e', 'r', 'o', 'endseq'], 1: ['startseq', 'o', 'n', 'e', 'endseq'], 2: ['strtseq', 't', 'w', 'o', 'endseq'], 3: ['startseq', 't', 'h', 'r', 'e', 'e', 'endseq'], 4: ['startseq', 'f', 'o', 'u', 'r', 'endseq'], 5: ['startseq', 'f', 'i', 'v', 'e', 'endseq'], 6: ['startseq', 's', 'i', 'x', 'endseq'], 7: ['startseq', 's', 'e', 'v', 'e', 'n', 'endseq'], 8: ['startseq', 'e', 'g', 'h', 't', 'endseq'], 9: ['startseq', 'n', 'i', 'n', 'e', 'endseq']}</pre> IDX TO ALPHABET:					
in []:	{1: 'e', 2: 'endseq', 3: 'f', 4: 'g', 5: 'h', 6: 'i', 7: 'n', 8: 'o', 9: 'r', 10: 's', 11: 'start eq', 12: 't', 13: 'u', 14: 'v', 15: 'w', 16: 'x', 17: 'z'} ALPHABET TO IDX: {'e': 1, 'endseq': 2, 'f': 3, 'g': 4, 'h': 5, 'i': 6, 'n': 7, 'o': 8, 'r': 9, 's': 10, 'startseq' 11, 't': 12, 'u': 13, 'v': 14, 'w': 15, 'x': 16, 'z': 17} # Find out the term with the maximum length; This is to help pad all the sequences to a same leng MAX_SEQUENCE_LENGTH = max([len(x) for x in output_map.values()]) print(f"The label/word with maximum length (including start and stop tokens) is {MAX_SEQUENCE_LENGTH} The label/word with maximum length (including start and stop tokens) is 7					
	<pre># Define train and test set inputs train = data["train"] train_embeds, train_labels = train["embeddings"], train["labels"] test = data["test"] test_embeds, test_labels = test["embeddings"], test["labels"] # Define a data generator # We will not be able to load everything at once in memory # Hence need to use a generator which yields the current batch and remembers # the state of the last returned batch so it could resume from there onwards def data generator(labels, image embeds, alphabet to idx,</pre>					
	<pre>max_length = MAX_SEQUENCE_LENGTH, num_photos_per_batch = BATCH_SIZE): # x1 - Training data for photos/image embeddings # x2 - The word/alphabet that goes with each photo/embedding # y - The predicted rest of alphabets of the word x1, x2, y = [], [], [] n = 0 while True: for lbl, img_embed in zip(labels, image_embeds):</pre>					
	<pre>seq = [alphabet_to_idx[alphabet] for alphabet in val if alphabet in alphabet_to_idx] # Generate a training case for every possible sequence and outcome for i in range(1, len(seq)): in_seq, out_seq = seq[:i], seq[i] in_seq = pad_sequences([in_seq], maxlen = max_length, padding = 'post')[0] out_seq = to_categorical([out_seq], num_classes = VOCAB_SIZE)[0] x1.append(img_embed) x2.append(in_seq) y.append(out_seq) # On collecting as many as num_of_photos_per_batch images, yield this as the output if n == num_photos_per_batch:</pre>					
	<pre>out = ((np.array(x1), np.array(x2)), np.array(y)) yield out x1, x2, y = [], [], [] n = 0 # Make a temporary generator to understand how the data is being curated # Only show one sample here end to end temp_gen = data_generator(train_labels, train_embeds, alphabet_to_idx,</pre>					
	<pre>sample = next(temp_gen) (img, seq), out = sample # Show the image for which we are making the caption plt.figure(figsize = (3, 3)) plt.imshow(X_train[0], cmap = "gray") # Input the image embedding plus the individual tokens/alphabets one by one # and then predict next token as the output, stop on encountering the end token for s, o in zip(seq, out): print(f"Input: {['img_embed'] + [idx_to_alphabet[x] for x in s if x != 0]}\nOutput: {idx_to_alphabet[x] for x in s if x !=</pre>					
	Output: f Input: ['img_embed', 'startseq', 'f'] Output: i Input: ['img_embed', 'startseq', 'f', 'i'] Output: v Input: ['img_embed', 'startseq', 'f', 'i', 'v'] Output: e Input: ['img_embed', 'startseq', 'f', 'i', 'v', 'e']					
	Output: endseq 0					
în []:	<pre># Extract another sample from the temporary generator created above sample = next(temp_gen) (img, seq), out = sample # Show the image for which we are making the caption plt.figure(figsize = (3, 3)) plt.imshow(X_train[1], cmap = "gray") # Input the image embedding plus the individual tokens/alphabets one by one # and then predict next token as the output, stop on encountering the end token for s, o in zip(seq, out):</pre>					
	<pre>print(f"Input: {['img_embed'] + [idx_to_alphabet[x] for x in s if x != 0]}\nOutput: {idx_to_a} Input: ['img_embed', 'startseq'] Output: z Input: ['img_embed', 'startseq', 'z'] Output: e Input: ['img_embed', 'startseq', 'z', 'e'] Output: r Input: ['img_embed', 'startseq', 'z', 'e', 'r'] Output: o</pre>					
	<pre>Input: ['img_embed', 'startseq', 'z', 'e', 'r', 'o'] Output: endseq</pre>					
īn []:	# Create an embedding matrix, start with random embeddings # Set the seed to a number to ensure reproducibility np.random.seed(314) embedding_matrix = np.random.randn(VOCAB_SIZE, TEXT_EMBED_DIMENSION) Model Building					
in []:	<pre># Define the model architecture here # Define the encoder architecture i.e. input of embedding # obtained from resnet50 embedding as the input inputs1 = Input(shape=(IMAGE_EMBED_DIMENSION,)) fel = Dropout(0.5)(inputs1) fe2 = Dense(128, activation='relu')(fe1) # Define the Decoder architecture # i.e. LSTM with two layers and a dropout sandwiched between them inputs2 = Input(shape=(MAX_SEQUENCE_LENGTH,)) se1 = Embedding(VOCAB_SIZE, TEXT_EMBED_DIMENSION, mask_zero=True)(inputs2)</pre>					
	<pre>se2 = LSTM(256, return_sequences = True)(sel) se3 = Dropout(0.5)(se2) se4 = LSTM(128)(se3) # Add a dense head to do a classification in the final layer after LSTM # Add batch normalization for faster training and also dropout to # have a good regularization effect fc1 = add([fe2, se4]) bn1 = BatchNormalization()(fc1) fc2 = Dense(128, activation='relu')(bn1) decoder2 = Dropout(0.5)(fc2) bn2 = BatchNormalization()(decoder2) outputs = Dense(VOCAB_SIZE, activation='softmax')(bn2)</pre>					
in []:	<pre>caption_model.summary() Model: "model" Layer (type)</pre>					
	<pre>input_2 (InputLayer)</pre>					
	'lstm_1[0][0]'] batch_normalization (BatchNorm (None, 128) 512					
	dense_2 (Dense) (None, 18) 2322 ['batch_normalization_1[0][0]']					
in []:	<pre>given input, hence using Categorical Cross Entropy as the loss function • Optimizer used is Adam with a learning rate of 0.001; learning rate is the default one, we tried other Irs as well but this one was giving a steeper decrease in loss (as opposed to rmsprop) so we chose this combination of Ir and optimizer. # Set the weights of embeding layer to the ones we defined above # Keep them trainable only since we're randomly initializing them and not loading them # from any set of pretrained weights like glove/word2vec etx. caption_model.layers[1].set_weights([embedding_matrix]) caption_model.compile(loss = 'categorical_crossentropy',</pre>					
in []:	<pre># Defining N and N_TEST will allow us to do experiments with small sets of data # and then we can use the entire dataset for our experiments N = len(train_labels) # 1000 N_TEST = len(test_labels) # 1000 train_gen = data_generator(train_labels[:N], train_embeds[:N], alphabet_to_idx,</pre>					
)ut[]:	<pre>out = next(iter(train_gen)) (image_embeddings, text_seq), lbls = out[0], out[1] image_embeddings.shape, text_seq.shape, lbls.shape ((157, 2048), (157, 7), (157, 18)) Model Training # Take a modest batch size</pre>					
.11 []:	<pre># Take a modest batch size # Define how many batches are there in an epoch, this is for the generator to understand when an # Take advantage of multiprocessing to load the data in memory # Display the training logs and perform validation on a test set at the end of every epoch import time start = time.time() BATCH_SIZE = 32 train_steps = N // BATCH_SIZE test_steps = N_TEST // BATCH_SIZE history_part_one = caption_model.fit(train_gen,</pre>					
	<pre>validation_data = test_gen, validation_steps = test_steps, verbose = 1) Epoch 1/12 1875/1875 [====================================</pre>					
	Epoch 5/12 1875/1875 [====================================					
in []:	<pre>Epoch 11/12 1875/1875 [===========] - 100s 53ms/step - loss: 0.0663 - val_loss: 0.0425 Epoch 12/12 1875/1875 [=========] - 100s 53ms/step - loss: 0.0661 - val_loss: 0.0457 # Reduce the learning rate after some epochs for stabilizing the learning caption_model.optimizer.lr = 5e-4 history_part_two = caption_model.fit(train_gen,</pre>					
	·					
in []:	<pre>1875/1875 [============] - 100s 53ms/step - loss: 0.0527 - val_loss: 0.0366 # Reduce the learning rate even more and train for more epochs caption_model.optimizer.lr = le-4 history_part_three = caption_model.fit(train_gen,</pre>					
	1875/1875 [====================================					
īn []·	1875/1875 [====================================					
in []:	<pre>Training time: 3590.069 seconds # Plot the loss curves # Train loss train_loss = history_part_one.history["loss"] + history_part_two.history["loss"] + history_part_t train_minibatch_index = range(len(train_loss)) tr_break1 = len(train_loss) // 3; tr_break2 = 2 * len(train_loss) // 3 # Valid loss valid_loss = history_part_one.history["val_loss"] + history_part_two.history["val_loss"] + history_part</pre>					
	<pre>valid_loss = history_part_one.history["val_loss"] + history_part_two.history["val_loss"] + history valid_minibatch_index = range(len(valid_loss)) vl_break1 = len(valid_loss) // 3; vl_break2 = 2 * len(valid_loss) // 3 fig, ax = plt.subplots(1, 2, figsize = (15,4), sharey = True) # Plot train loss and validation loss with different colors ax[0].plot(train_minibatch_index, train_loss)#, color = "r") ax[1].plot(valid_minibatch_index, valid_loss)#, color = "b") ax[0].axvline(tr_break1, linestyle = "dashdot", color = "b") ax[1].axvline(vl_break1, linestyle = "dashdot", color = "b") ax[1].axvline(vl_break2, linestyle = "dashdot", color = "b")</pre>					
	ax[1].axvline(vl_break2, linestyle = "dashdot", color = "b") ax[0].set_title("Train Loss Profile across 30 epochs") ax[1].set_title("Validation Loss Profile across 30 epochs"); Train Loss Profile across 30 epochs Validation Loss Profile across 30 epochs 0.25 -					
in []:	# Save the training stats # pickle.dump({"train_loss": train_loss, "valid_loss": valid_loss, "epoch": EPOCHS}, open("data/l" # Save the model to disk caption_model.save_weights("models/alphabet_caption_generation_15_epochs_with_bn.h5")					
In []:	# caption_model.load_weights("models/alphabet_caption_generation.h5") Model Evaluation I have curated a test set by using a GAN model obtained from kaggle which generates MNIST images and a few more by manually drawing on a black canvas, they're as follows. Let's evaluate on this test set!					
	GAN_MNIST_0.png GAN_MNIST_1.png GAN_MNIST_2.png GAN_MNIST_3.png GAN_MNIST_4.png GAN_MNIST_5.png GAN_MNIST_6.png GAN_MNIST_7.png GAN_MNIST_8.png GAN_MNIST_9.png handdrawn_0.png handdrawn_1.png					
In []:	GAN_MNIST_8.png GAN_MNIST_9.png GAN_MNIST_9.png Annddrawn_0.png Annddrawn_0.pn					
[n []:	CAN_MNIST_6.png GAN_MNIST_7.png CAN_MNIST_8.png CAN_MNIST_9.png handdrawn_0.png handdrawn_1.png handdrawn_2.png handdrawn_3.png handdrawn_4.png handdrawn_5.png handdrawn_6.png handdrawn_7.png # from pathlib import Path					
In []: In []:	# from pathlib import Path # for sample in Path("samples/").glob("*"); # if sample.is_file(): # PIL.Image.open(sample).convert("L").resize((28,28)).save(sample) # Define a function to get the encoded representation for the image def get_encoder(): new_input = Input(shape=(28, 28, 3)) res = ResNet50(include_top=False, input_tensor=new_input) return res # Get the embedding_using_encoder defined above def get_embedding(img_pth, encoder):					
In []:	# from pathilb import Path # for sample in Path "samples/").glob("*"): # if sample is file(): # PIL.Image.open(sample).convert("L").resize((28,28)).save(sample) # Get the embedding using encoder defined above def get_encoder(): new_input = Input(shape=(28, 28, 3)) res = ReshletS(include_top=False, input_tensor=new_input) return res # Get the embedding(img_pth, encoder): ing = np.array(PIL.Image.open(img_pth).convert("RGB")) image = ing_reshape((1, *ing_shape)) return encoder.predict(image, verbose = 0)[0][0] # Given the image embedding define a function to generate the caption for def generateCaption(img_embed): # Start with the image embedding and the startseq tag in_text = START # Loop over for as much length as the max sequence length for i in range(MAX_SCOUENCE_LENGTH): # Start with only the start seq and iteratively feed subsequent alphabets/tokens into the sequence = [alphabet to_idx(w) for w in in_text.split() if w in alphabet/token yhat = caption model.predict(ling_embed, sequence), verbose=0) yhat = np_argmax(yhat) alphabet = idx_to_alphabet(yhat) in_text * ' ' + alphabet # If w reach the end of sequence, stop the generation if alphabet = idx_to_alphabet(yhat) in_text * ' ' + alphabet # If w reach the end of sequence, stop the generation					
in []:	# from pathlib import Path # for sample in Path("samples/").glob("*"): # if sample in Path("sample).convert("L").resize((28,28)).save(sample) # Define a function to get the encoded representation for the image def get_encoder(): new_input = Input(shape(28, 28, 3)) res = ResNet50(include_top=False, input_tensor=new_input) return res # Get the embedding using encoder defined above def get embedding(imp_th, encoder): ing = np.array(Pll. limage open(ing_th).convert("RGB")) inage = img.reshape((1. *img.shape)) return encoder.predict(image, veroose = 0)[0][0] # Given the image embedding, define a function to generate the caption for def generateCaption(img_embed): # Start with the image embedding and the startseq tag in_text = START # Loop over for as much length as the max sequence length for i in range(MAX_SEQUENCE_LENGTH): # Start with only the start seq and ireratively feed subsequent alphabets/tokens into the sequence = [alphabet_to_idx(w) for w in in_text.split() if w in alphabets/tokens into the sequence = pad_sequences((sequence), maxlen = MAX_SEQUENCE_LENGTH, padding = "post") # Give the image embedding and sequence and predict the next alphabet/token yhat = caption model.predict([ing_embed, sequence], verbose=0) yhat = np.argmaxyhat) alphabet = idx_to_alphabet(yhat) in_text = x' + alphabet # If we reach the end of sequence, stop the generation					

Group No 97

Group Member Names:

Student ID

2021fc04586

Member

Vinayak Nayak 2021fc04135

Shreysi Kalra

No.

1

a.imshow(PIL	ubplots(2, 5, f zip(GAN_imgs, a = unseen_map[na Image.open(f"	x.flat): me] samples/{name})) "), cmap = "gray	")	
<pre># Compute BL temp = name. ground_truth reference_ch weights = [] score = sent</pre>	<pre>split(".")[0]. n = output_map[nars = max(len(l/reference_cha tence_bleu([gro</pre>	<pre>split("_")[-1] int(temp)] ground_truth) irs] * reference ound_truth[1:-1</pre>	- 2, len(predict e_chars]] ,prediction.s	plit(" "), weights	= weights)
a.set_title(n/prediction e:.3f}", fontsize : GAN_MNIST_4.png Caption: n i n e BLEU: 0.000	= 10)
GAN_MNIST_5.png Caption: f i v e BLEU: 1.000	GAN_MNIST_6.png Caption: t h r e e BLEU: 0.000	GAN_MNIST_7.png Caption: t h r e e BLEU: 0.000	GAN_MNIST_8.png Caption: e ī g h t BLEU: 1.000	GAN_MNIST_9.png Caption: n i n e BLEU: 1.000	
a.imshow(PIL	ubplots(2, 5, f zip(hand_imgs, = unseen_map[na	<pre>ax.flat): me] samples/{name}</pre>)) "), cmap = "gray	")	
<pre># Compute BL temp = name. ground_truth reference_ch weights = [1 score = sent</pre>	LEU Score split(".")[0]. n = output_map[nars = max(len(l/reference_cha tence_bleu([gro	<pre>split("_")[-1] int(temp)] ground_truth) ers] * reference ound_truth[1:-1</pre>	- 2, len(predict e_chars]] ,prediction.s	plit(" "), weights	= weights)
a.set_title(n/prediction e:.3f}", fontsize: handdrawn_4.png Caption:four BLEU:1.000	= 10)
handdrawn 5.png Caption: f i v e BLEU: 1.000	handdrawn_6.png Caption: o n e BLEU: 0.000	handdrawn_7.png Caption: f o u r BLEU: 0.000	handdrawn 8.png Caption: f i v e BLEU: 0.000	handdrawn_9.png Caption: f o u r BLEU: 0.000	
Conclusio		in a latent space	and subsequently a	ccepts tokens and build	Is upon the same
using an LSTM to g We saw that the res of distribution image sensitive and we ne	et a word from the sulting model work es i.e. handdrawn eed to show our mo	image. s well on images in images with a thin	n the same distribution pen of slightly differ	on however it doesn't pent font. This means ouke it work well on differ	erform so well on out Ir model is very
1. Generation of M 2. Image captionin 3. Github noteboo	MNIST Images GA				