Can we predict a player's [Strike-Rate] in Cricket?

Harish Vasudevasarma
Data Scientist @ Metis

What's Cricket?

- A One-Day International (ODI) game:
 - 50 overs = 300 balls delivered to a team, consisting of 11 batsmen.
 - Game duration: ~6hrs / day.

Motivation

- Good batsmen are like quarterbacks.
- A batsman's skill in ODI is judged by his/her,
 - Strike Rate: (Runs)/(100 balls) served.

 Predicting <u>Strike Rate per player</u> is key in <u>game outcome prediction</u>.

Key issues that could affect prediction

- Complex rules governing the game
 - Batting order, runs, bowling errors, etc

- Number of external parameters:
 - Weather related, Pitch

- Different formats of games:
 - ODI, Test, T20

Problem Formulation

Given the historical 'match' (=game) data and assumptions,

Learn a model for <u>predicting the likely Strike Rate</u> per player

1. Scraped Data from ESPN Cricinfo

2. Data exploring, and filtering

- 12,100 data points
 - Player level batting history in ODI
 - 1972 to date

3. Run a linear regression with all of it

Explore how each player level stats affect Strike Rate

4,5: Which ones are most influential features (X's) to Strike Rate (Y)

Predictor Importance

Target: StrikeRate

6. Revised model with relevant features only, after a few more iterations

```
Predicted_StrikeRate =

45.3+

0.9 * BattingAvg +

11.4 * AvgRunRate +

-0.61 * BattingAvg:AvgRunRate +

0.18 * HighestScore +

0.84 * Matches
```

Does this mean, a new batsman with no history hits 45.3 runs?

7. Predicted new Strike Rate

Reflections

Was it an 'acceptable' prediction? Yes, for the following reasons:

- Consistent results in 5-fold cross-validation (R^2 scores = 0.29, 0.31, 0.34, 0.28, 0.30)

- Reasonably sized sample (2,500 players) in making the prediction
- Improvement in the model from 24% to 31% explained variation, considering all the 'unexplained' noise in the data.

Appendix

Modeling Approach

01. Sraped historial data from ESPN cricinfo

02. Clean & Filter and describe 03. Run a couple of iteration of Linear Regression model Check Results for goodness of fit, & collinearity

04. Select Relevant Features using pvalue

OLS Regression Results

Dep. Variable:	StrikeRate	R-squared:	0.304
Model:	OLS	Adj. R-squared:	0.302
Method:	Least Squares	F-statistic:	179.6
Date:	Fri, 17 Jul 2015	Prob (F-statistic):	4.46e-190
Time:	06:21:26	Log-Likelihood:	-11099.
No. Observations:	2477	AIC:	2.221e+04
Df Residuals:	2470	BIC:	2.225e+04
Df Model:	6		
Covariance Type:	nonrobust		

 Run a new linear regression model

> 06. Cross Validate with some test data

07. Final Model