Lógica Computacional Tarea Semanal 7

Rubí Rojas Tania Michelle

16 de mayo de 2019

Encuentra un programa t que tenga el tipo indicado:

a)
$$\vdash t : (A \to B \to C) \to (A \to B) \to (A \to C)$$

Solución:

1.
$$f: A \to B \to C, x: A \to B, y: A \vdash f: A \to B \to C$$
 (Hip)

2.
$$f: A \to B \to C, x: A \to B, y: A \vdash x: A \to B$$
 (Hip)

3.
$$f: A \to B \to C, x: A \to B, y: A \vdash y: A$$
 (Hip)

4.
$$f: A \rightarrow B \rightarrow C, x: A \rightarrow B, y: A \vdash fx: C$$
 $(\rightarrow E) 1, 2$

5.
$$f: A \to B \to C, x: A \to B \vdash fun(y: A.fx): A \to C \quad (\to I)$$
 4

6.
$$f: A \to B \to C \vdash fun(x: A \to B.fun(y: A.fx)): (A \to B) \to (A \to C) \quad (\to I)$$

9.
$$\vdash fun(f:A \rightarrow B \rightarrow C.fun(x:A \rightarrow B.fun(y:A.fx)):$$
 $(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$ $(\rightarrow I)$ 6

b)
$$x:(A \to C) \land (B \to C) \vdash t:A \lor B \to C$$

Solución:

$$1. \ x:(A \to C) \land (B \to C), y:A \lor B \vdash x:(A \to C) \land (B \to C) \tag{Hip}$$

2.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash y: A \lor B$$
 (Hip)

3.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash snd \ x: B \to C$$
 $(\land E)$ 1

4.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash fst \ x: A \to C$$
 $(\land E)$ 1

5.
$$x: (A \to C) \land (B \to C), y: A \lor B, r: A \vdash r: A$$
 (Hip)

6.
$$x: (A \to C) \land (B \to C), y: A \lor B, r: A \vdash fstxr: C$$
 $(\to E) 4, 5$

7.
$$x:(A \to C) \land (B \to C), y:A \lor B, s:B \vdash s:B$$
 (Hip)

8.
$$x:(A \to C) \land (B \to C), y:A \lor B, s:B \vdash sndxs:C$$
 $(\to E)$ 3,7

9.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash$$

 $case \ y \ of \ inlr \Rightarrow fstxr \mid inrs \Rightarrow sndxs: C$ $(\lor E) \ 2, 6, 8$

10.
$$x: (A \to C) \land (B \to C) \vdash fun(y: A \lor B.(case \ y \ of \ inlr \Rightarrow fstxr \ | \ inrs \Rightarrow sndxs)): A \lor B \to C \quad (\to I) \ 9$$

c) $x: P \to Q \land R \vdash t: (P \to Q) \land (P \to R)$

SOLUCIÓN: Sabemos que $\Gamma \vdash A \land B \Leftrightarrow \Gamma \vdash A$ y $\Gamma \vdash B$. Así, basta probar cada uno de los lados de la conjunción por separado. Entonces

- a) PD. $x: P \to Q \land R \vdash P \to Q$
 - 1. $x: P \to Q \land R, y: P \vdash x: P \to Q \land R$ (Hip)
 - 2. $x: P \to Q \land R, y: P \vdash y: P$ (Hip)
 - 3. $x: P \to Q \land R, y: P \vdash xy: Q \land R$ $(\to E) 1, 2$
 - $4. \ \ x:P \rightarrow Q \land R, y:P \vdash fstxy:Q \qquad \qquad (\land E) \ 3$
 - 5. $x: P \to Q \land R \vdash fun(y: P.fstxy): P \to Q \quad (\to I)$ 4
- b) PD. $x: P \to Q \land R \vdash P \to R$
 - 6. $x: P \to Q \land R, y: P \vdash x: P \to Q \land R$ (Hip)
 - 7. $x: P \to Q \land R, y: P \vdash y: P$ (Hip)
 - 8. $x: P \to Q \land R, y: P \vdash xy: Q \land R$ $(\to E) 1, 2$
 - 9. $x: P \to Q \land R, y: P \vdash sndxy: R$ ($\land E$) 3
 - 10. $x: P \to Q \land R \vdash fun(y: P.sndxy): P \to R \quad (\to I)$ 4

Por lo tanto, $x: P \to Q \land R \vdash \langle fun(y: P.fstxy): P \to Q, \ fun(y: P.sndxy): P \to R \rangle: (P \to Q) \land (P \to R) \text{ por } (\land I) 5, 10$