- 1. Num sistema de eixos 0xyz as coordenadas de dois pontos A e B são, respectivamente (2,2,0) e (4,2,0).
 - a) Determine os vectores de posição dos pontos A e B.
 - b) Determine os vectores \overrightarrow{AB} e \overrightarrow{BA}
 - c) Calcule o módulo, a direcção e o sentido do vector AB.
- 2. Um vector \vec{a} tem de módulo 5 unidades e faz com o semi-eixo positivo dos xx um ângulo de 60° .
 - a) Determine as componentes do vector
 - b) Determine as componentes e o módulo do vector vectores $\vec{a}-\vec{b}$, sabendo que $\vec{b}=2\hat{\imath}-5\hat{\jmath}$
- 3. Considere os vectores: que $\vec{A} = 3\hat{\imath} 2\hat{\jmath} \hat{k}$ e $\vec{B} = \hat{\imath} + 2\hat{\jmath} 3\hat{k}$.
 - a) Determine os vectores $-\vec{B}$ e $2\vec{B}$. Verifique a relação entre $|-\vec{B}|$, $|2\vec{B}|$ e $|-\vec{B}|$.
 - b) Determine os vectores $\vec{A} \vec{B}$ e $\vec{A} + \vec{B}$.
 - c) Calcule $|\vec{A} \vec{B}|$ e $|\vec{A} + \vec{B}|$. Compare os resultados obtidos com $|\vec{A}| |\vec{B}|$ e com $|\vec{A}| + |\vec{B}|$. Comente os resultados.
 - d) Calcule os versores \hat{A} e \hat{B} . Calcule o versor da direcção \overline{AB} .
 - e) Determine os produtos escalares $\vec{A} \cdot \vec{B}$ e $\vec{A} \cdot 2\vec{B}$. Calcule o ângulo formado por \vec{A} e \vec{B} .
 - f) Determine o produto vectorial $\vec{A} \times \vec{B}$ e $\vec{B} \times \vec{A}$. Compare os resultados e comente.

DFUM 2010/2011 1