Problem

Let

$$\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

Here, Σ_2 contains all columns of 0s and 1s of height two. A string of symbols in Σ_2 gives two rows of 0s and 1s. Consider each row to be a binary number and let

 $C = \{w \in \Sigma_2^* | \text{ the bottom row of } w \text{ is three times the top row} \}.$

For example, $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in C$, but $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \notin C$. Show that C is regular. (You may assume the result claimed in Problem 1.31.)

Step-by-step solution

Step 1 of 5

Consider the language,

 $C = \{ w \in \Sigma_2^* \mid \text{ the bottom row of } w \text{ is three times the top row} \}$

Over the alphabet
$$\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

Comment

Step 2 of 5

Here each row is binary number.

- ullet The regular languages are closed under reversal. Use this property to prove the language ${\it C}$ is regular.
- Scan the input in reverse order.
- · Begin with the lower order bits and multiply it by 3 in binary format to add the multiplicand with the result of shifting the multiplicand itself by 1 bit.
- Consider a binary number 110 (6). Three times of 110(6) is 18 (10010) which is obtained by adding 110(6) with 1100(12).
- The top row can be represented as $X_n X_{n-1} ... X_1 X_0$.
- The bottom row can be represented as $P_n P_{n-1}...P_1 P_0$
- Add $X_{n-1} X_{n-2} ... X_0$ 0 to the top row to obtain the bottom row. It can be represented as follows:

$$X_{n} X_{n-1} X_{1} X_{0}$$

$$X_{n-1} X_{n-2} ... X_{0} 0$$

$$\overline{P_{n} P_{n-1} P_{1} P_{0}}$$

- The value of $\ P_i$ depends on the values of $\ X_i$ and $\ X_{i-1}$.
- The bit at the top of the column is the carry-in (C_i^{in}). For the first column the carry-in will be zero.
- If two 1 bits are added, the carry will be generated. It is called carry-out (C_{i-1}^{out}).
- The P_i can be obtained by performing the XOR operation on X_i, X_{i-1} and C_i^{in} . The carry-out of the currently working column will be given as the carry-in for the next column.

0	m	m	^	n	ŀ

Step 3 of 5

The language is said to be regular if there exists a finite automaton (DFA or NFA) for that language.

- To prove that the language C is regular, construct a DFA.
- It is necessary with 4 states without counting sink state to keep track of all the possible combinations of C_{i+1}^{in} and X_{i-1} and for each of these states, there will be exactly two possible valid output transitions depending on whether X_i is 0 or 1.
- Assume that q_{ii} represents the state for which Cⁱⁿ (Carry in) is equal to i and the preceding symbol is observed at the top is equal to j.

Comment

Step 4 of 5

The state diagram of DFA is as follows:

Where
$$a = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Consider an example string $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Read the string in reverse order. Here, the initial state is q00. The input $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to the q00, stays in the same state. The input $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to q00, moves to the state q01. The input $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to q01, moves to the state q00. The input $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to the q00, stays in the same state. The string $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is accepted in reverse order.

Comment

Step 5 of 5

Since a DFA that recognizes C^R is built. Therefore C^R is regular. Hence, it is proved that C is regular.

Comment