

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/568,980	02/21/2006	Yasumasa Fujioka	127112	8848
25944	7590	10/22/2007	EXAMINER	
OLIFF & BERRIDGE, PLC P.O. BOX 320850 ALEXANDRIA, VA 22320-4850				RALIS, STEPHEN J
ART UNIT		PAPER NUMBER		
3742				
MAIL DATE		DELIVERY MODE		
10/22/2007		PAPER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/568,980	FUJIOKA ET AL.
	Examiner	Art Unit
	Stephen J. Ralis	3742

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 21 February 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-9 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-9 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)	5) <input type="checkbox"/> Notice of Informal Patent Application
Paper No(s)/Mail Date _____	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

1. Applicant's claim for foreign priority benefit of Japanese Application No. 2003-322065, filed 12 September 2003, is acknowledged.

Drawings

2. The drawings are objected to because the cross-section elements are not cross-hatched. Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as "amended." If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement sheets may be necessary to show the renumbering of the remaining figures. Each drawing sheet submitted after the filing date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

The following hatching symbols should be used to indicate various materials where materials in cross-section. The use of such hatching is also very helpful in making prior art searches.

Claim Rejections - 35 USC § 112

3. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Art Unit: 3742

4. Claims 1-9 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 1-3 and 7 recite limitations within parentheses. It is not definitive to whether the recited structure elements in the parentheses are positive recitations to structure or explanation of structure. Further clarification is respectfully required.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

6. Claims 1-3 and 5-7 are rejected under 35 U.S.C. 102(a) and (e) as being anticipated by Nelson et al. (U.S. Publication No. 2002/0131918).

Nelson et al. disclose a plasma generating electrode (a double dielectric barrier edge-connected reactor element (54; page 4, paragraph 45, Figure 9) comprising at least two opposing plate-shaped unit electrodes (electrode plates 26, 28), each having a rectangular surface and four end faces (see Figures 5, 6), and a holding member (edge connector 10), which holds at least one (fixed end) of a pair of parallel ends (pair of

Art Unit: 3742

ends) of four ends of the unit electrode corresponding to the four end faces in a state in which the unit electrodes are separated at a specific interval (see Figure 9), and is capable of generating plasma upon application of voltage between the unit electrodes (Abstract; page 2, paragraph 15-16; whole document), at least one of the opposing unit electrodes being a conductive-film-containing electrode including a ceramic body as a dielectric and a conductive film disposed inside the ceramic body (page 4, paragraphs 45-47; see Figures 4-6, 9), and a distance "a" (mm) (distance 35; page 3-4, paragraphs 40-42; Figures 4-6) from an edge of the conductive film to an edge of the ceramic body on the other pair of parallel ends (other pair of ends) of the four ends of the conductive-film-containing electrode adjacent to the pair of ends and a thickness "c" (mm) (thickness 25; page 3-4, paragraphs 40-42; Figures 4-6). Nelson et al. further disclose the thickness, "c", (25) being in the range 0.38 millimeters to about 1 millimeter, preferably 0.5 millimeters (page 3, paragraph 40), and the distance, "a", being large relative to the width (13) of the tines (12), which is in the range of 0.5 millimeters to about 2.0 millimeters, preferably about 0.9 millimeters.

With respect to the limitation of satisfying a relationship of " $(c/2) \leq a \leq 5c$ ", Nelson disclose an embodiment with two dielectric plates (26, 28) being on either side of the conductive electrode ink (30) (see Figure 9), therefore, the thickness of the electrode plate would be the thickness of the dielectric plate (0.38 millimeters to about 1 millimeter, preferably 0.5 millimeters) multiplied by two. For mathematical simplification, the recited relationship may be simplified to recite " $c \leq 2a \leq 10c$ " with the thickness "c" actually being " $2 * c$ " since the electrode (30) is inside two dielectric plates (26, 28).

Therefore, $2^*(0.38 \text{ to } 1 \text{ millimeters}) \leq 2(0.5 \text{ to } 2 \text{ millimeters}) \leq 10^*(2^*(0.38 \text{ to } 1 \text{ millimeters}))$ fully meets " $(c/2) \leq a \leq 5c$ " given its broadest reasonable interpretation.

With respect to the limitations of claim 2, Nelson et al. disclose a distance "b" (small setback 39) as being about 5 millimeter. As noted previously, the thickness "c" is actually " $2 * c$ " since the electrode (30) is inside two dielectric plates (26, 28). Therefore, the relationship, " $2c \leq b \leq 10c$ ", with respect to Nelson et al. is " $4c \leq b \leq 20c$ " or $4^*(0.38 - 1 \text{ millimeters}) \leq (\text{about } 5 \text{ millimeters}) \leq 10^*(2^*(0.38 - 1 \text{ millimeters}))$ fully meets " $2c \leq b \leq 10c$ " given its broadest reasonable interpretation.

With respect to the limitations of claim 3, Nelson et al. disclose a distance "d" (small setback 39) as being about 5 millimeter. For mathematical simplification, the recited relationship may be simplified to recite " $c \leq 2d \leq 10c$ " with the thickness "c" actually being " $2 * c$ " since the electrode (30) is inside two dielectric plates (26, 28). Furthermore, Nelson recites a preferred thickness "c" being 0.5 millimeters and the preferred distance "d" being about 5 millimeters. Therefore, the relationship, " $c \leq 2d \leq 10c$ ", with respect to Nelson et al. is " $2c \leq 2d \leq 20c$ " or $2^*(0.5 \text{ millimeters preferred}) \leq 2^*(\text{about } 5 \text{ millimeters}) \leq 10^*(2^*(0.5 \text{ millimeters preferred}))$ fully meets " $(c/2) \leq d \leq 5c$ " given its broadest reasonable interpretation.

With respect to the limitation of claim 5, Nelson et al. disclose the holding member (edge connector 10) being made of dielectric materials not limited to but including alumina, cordierite or mullite (page 3, paragraph 34). Nelson et al. further discloses the barrier electrode plates (24, 26, 28) being dielectric barrier plates (page 3-4, paragraphs 40-42, 45-47). Therefore since Nelson et al. disclose alumina or mullite

Art Unit: 3742

being the preferred material for use as the dielectric material, the Nelson et al. dielectric electrode plates would be inherently made of the same material since it is preferred.

With respect to the limitation of claim 6, Nelson et al. disclose the electrode being made of materials such as silver or platinum (page 5, paragraph 50).

With respect to the limitations of claim 7, Nelson et al. disclose a plasma reactor (44) that would inherently have a casing holding the reactor element (54) or the exhaust steam (74) gas would not be constricted to the reactor (44) with the gas passage (exhaust stream 74) being introduced into the reactor (44) with the inherent casing and flowing through the plasma generated by the electrode structure Abstract; page 2, paragraph 15-16; page 5, paragraph 55).

Nelson et al. further disclose high frequency AC electrical energy being provided from a source (70).

As the reference meets all material limitations of the claims at hand, the reference is anticipatory.

Claim Rejections - 35 USC § 103

7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 3742

8. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148

USPQ 459 (1966), that are applied for establishing a background for determining

obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

9. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nelson et al. (U.S. Publication No. 2002/0131918).

To the degree it can be argued that Nelson et al. do not teach the ceramic body including at least one ceramic selected from the group consisting of alumina, mullite, ceramic glass, zirconia, cordierite, silicon nitride, aluminum nitride, and glass, Nelson is applied to itself as set forth:

Nelson et al. disclose the holding member (edge connector 10) being made of dielectric materials not limited to but including alumina, cordierite or mullite (page 3, paragraph 34). Nelson et al. further discloses the barrier electrode plates (24, 26, 28) being dielectric barrier plates (page 3-4, paragraphs 40-42, 45-47). Nelson et al. teach that alumina, cordierite and mullite is recognized by those of ordinary skill in the art to be a ceramic material suitable for a dielectric material in a plasma generating electrode in a plasma reactor. Therefore, it would have been obvious to modify Nelson et al. with the teaching within itself to include alumina, cordierite or mullite as the dielectric material since it has been found that alumina, cordierite and mullite are art recognized

equivalent dielectric material in plasma generating electrode structures within plasma reactors.

10. Claim 4 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nelson et al. (U.S. Publication No. 2002/0131918) in view of Kellogg et al. (U.S. Publication No. 2002/0027133).

Nelson et al. disclose all of the limitations of the claimed invention, as previously set forth, except for the conductive film has a thickness of 5 to 30 μm .

However, applying a resistive conductive film/ink having a thickness of 5 to 30 μm is known in the art. Kellogg et al. specifically teach a known technique of screen printing conductive inks to a thickness of about 10 microns (page 17, paragraph 194). Kellogg et al. teach that screen printing conductive inks to a thickness of about 10 micron is recognized by those of ordinary skill in the art of providing conductive layers. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the conductive ink of Nelson et al. with the known technique and resulting micron thickness of Kellogg et al. to improve the device and yield predictable results.

11. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nelson et al. (U.S. Publication No. 2002/0131918) in view of Hemingway et al. (U.S. Patent No. 6,423,190).

Nelson et al. disclose all of the limitations of the claimed invention, as previously set forth, except for the power source being a pulsed power supply for applying voltage to the plasma generating electrode.

However, a pulsed power source for applying voltage to a plasma generating electrode is known in the art. Hemingway et al. teach the usage of modulating a carrier frequency to provide pulses at a given interval in order to provide optimal energy transfer to the exhaust gas (page 2, line 50 – page 3, line 8). It would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the AC high frequency electrical power supply with the pulsed power modulation power supply method of Hemingway in order to provide optimal energy transfer to the exhaust gas, thereby improving the efficiency of the plasma reactor.

12. Claim 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nelson et al. (U.S. Publication No. 2002/0131918) in view of Hemingway et al. (U.S. Patent No. 6,423,190) as applied to claim 8 above, and further in view of Okubo et al. (U.S. Publication No. 2005/0229564).

The Nelson-Hemingway combination discloses all of the limitations, as previously set forth, except for the pulsed power supply including at least one SI thyristor.

However, a plasma generation device for exhaust gas treatment utilizing a pulsed power supply including at least one SI thyristor is known in the art. Okubo et al. teach a plasma generation device utilizing a high voltage pulse power source including an SI thyristor as a switching element to provide a maximum voltage of about 45kV at a

Art Unit: 3742

rated load and a frequency that can be changed within the range of 80 to 500 Hz. It would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the Nelson-Hemingway combination with the pulsed power supply including an SI thyristor of Okubo et al. in order to provide a maximum voltage of about 45kV at a rated load and a frequency that can be changed within the range of 80 to 500 Hz. Furthermore, it would have been obvious to modify the Nelson-Hemingway combination with the pulsed power supply including an SI thyristor of Okubo et al. since it has been found that a pulsed power supply with an SI thyristor is an art recognized equivalent of a pulsed power supply in plasma generating electrode structures within plasma reactors.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Stephen J. Ralis whose telephone number is 571-272-6227. The examiner can normally be reached on Monday - Friday, 8:00-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tu Hoang can be reached on 571-272-4780. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Stephen J Ralis
Examiner
Art Unit 3742

SJR
October 17, 2007

TU BA HOANG
SUPERVISORY PATENT EXAMINER