实验第1题 利用 NTC 热敏电阻设计制作数字体温计

参考答案及评分标准

1、测量不同温度 T 下热敏电阻的阻值 R。(40 分)

1.1 设计实验方案, 画出实验电路图, 标明各元件的参数。

先用数字万用表的欧姆档粗测热敏电阻的阻值: 33℃时,Rx=6.4kΩ

实验电路图:

 \mathbb{R} $R_0=5000\Omega$, $\varepsilon=1.5\mathrm{V}$

评分标准: (满分 20 分)

- 1、用欧姆档粗测热敏电阻阻值,有效数字不作要求,得5分;
- 2、电路正确,得5分;电路如下图,得3分;

- 3、标明 R_0 值,且与热敏电阻的粗测值同一量级($1k\Omega$ ~ $10k\Omega$),得 5 分;
- 4、标明 ε 值,且回路电流不超过300μA,得5分;
- 5、如步骤 2-4 中直接用万用表欧姆档测量,15 分中得 5 分。

1.2 测量 R 和 T 的数据记录: (自行列表)

实验条件: R_0 =5000Ω, ε =2.25V

$T/$ $^{\circ}$ C	<i>T</i> -¹ / °C-¹	U_0 / ${ m V}$	U_x / V	R_x / Ω
35.8	0.0279	1.000	1.257	6285
36.6	0.0273	1.020	1.237	6064
37.3	0.0268	1.041	1.214	5831
38.4	0.0260	1.072	1.184	5522
39.1	0.0256	1.087	1.169	5377
40.2	0.0249	1.112	1.143	5139
40.9	0.0244	1.129	1.127	4991
42.0	0.0238	1.142	1.114	4877

评分标准: (满分 20 分)

- 1、注明实验条件(可以和设计方案不同,但要保证回路电流不超过300μA),得2分;
- 2、4列数据,且单位正确,得5分;少1列扣1分,单位错1个扣1分;
- 3、有效数字正确,得4分;错1个扣1分;
- 4、热敏电阻的阻值大致在 $5\sim7k\Omega$, 得1分;
- 5、35-42℃范围内,测量数据不少于8组,得8分;少1组扣1分。

2、求出 R 与 T^{-1} 之间的函数关系。(15 分)

<i>T</i> ⁻¹ / °C ⁻¹	R_x / Ω
0.0279	6285
0.0273	6064
0.0268	5831
0.0260	5522
0.0256	5377
0.0249	5139
0.0244	4991
0.0238	4877

用计算器拟合函数关系:
$$R_x = -3622\Omega + \frac{3.53 \times 10^5 \Omega \cdot \text{C}^{\circ}}{T}$$

评分标准: (满分15分)

- 1、函数形式正确,得5分;
- 2、截距计算正确,得3分;有效数字3或4位,得1分;单位正确得1分;
- 3、斜率计算正确,得3分;有效数字3或4位,得1分;单位正确得1分。

3、利用提供的仪器设备,设计数字体温计的电路。(30分)

3.1 设计的数字体温计电路图:

评分标准: (满分15分)

1、线路正确, 得 15 分; 无 R_2 , 得 8 分; 用提示卡, 得-5 分。

3.2 计算各元件的参数值: (附计算过程)

由设计的电路可得:
$$V = \frac{\varepsilon \cdot R_1}{R_x + R_1 + R_2}$$

故,有: $\varepsilon \cdot R_1 = 3.53 \times 10^5 \,\text{mV} \cdot \Omega$; $R_1 + R_2 = 3622\Omega$

选取: 电源电压 2.00V,则 $R_1=176\Omega$, $R_2=3446\Omega$ 。

评分标准: (满分 15 分)

- 1、推导过程正确,得4分;
- 2、3个元件值计算正确,每个得1分;有效数字正确,每个得1分;
- 3、回路电流不超过 300μA, 得 5 分。

4、根据设计的电路图搭建数字温度计,并进行调试。(15分)

4.1 测量不同温度时,数字温度计的电压示数,并绘制校准曲线。

实验条件: 电源电压 1.960V,则 R_1 =180.0Ω, R_2 =3442.0Ω。

$T / ^{\circ}\mathbb{C}$	U / mV
35.6	35.5
36.9	36.8
38.1	37.9
39.6	39.4
40.9	40.6
42.0	41.5

评分标准: (满分10分)

- 1、 R_1 、 R_2 与计算值基本相符,得 2 分;
- 2、 ε 与计算值基本相符,得 1 分;用数字电压表实测(4 位有效数字),得 1 分;
- 3、35-42℃范围内,测量数据不少于 6 组,得 2 分; 3~5 组数据,得 1 分;少于 3 组,得 0 分;
- 4、坐标轴正确,得1分;分度合适,得1分;数据点标识正确,得1分;有趋势线,得1分。
- 4.2 对设计的电路进行改进,要求使数字温度计的误差不超过 0.1℃。

对数据作线性拟合,结果为: $U = 0.944 \cdot T + 1.96$

发现,斜率偏小 5%左右,截距偏大 1.96mV。因此,在不改变电源电压的前提下, R_1 应增大 5%,即改为 190.6Ω; R_2 应减小为 3431.4Ω(具体数值应在某个温度,如 38.0℃时,实际调节,使电压表示数为 38.0mV)。

评分标准: (满分5分)

1、分析合理,得5分。

实验试题二 答题纸(在方格内概括你所获得的结果) (共 7 页) 实验参考答案及评分标准

1. 波长为 579.0 nm 的谱线所对应的折射率。(25 分)

1.1 在下列的表格中填入你所测量的实验数据。 (满分: 8分)

实验所用的棱镜的顶角 $A \pm \Delta A = 60^{\circ}00' \pm 2'$ 。

表 1. 最小偏向角 δ_m 的测量 (三棱镜编号:)

测量	"左"游标读数		"右"游标读数			$\delta_m =$	
次数	<i>θ'1</i> (出	θ'2(\)	$\delta'_m =$	<i>θ"1</i> (出	θ"2(λ	δ" _m =	$(\delta'_m + \delta''_m)/2$
	射光)	射光)	$\theta'_1 - \theta'_2$	射光)	射光)	θ " ₁ $-\theta$ " ₂	
1	155°16′	104°19′	50°57′	335°17′	284°20′	50°57′	50°57′
2	155°6′	104°10′	50°56′	335°7′	284°11′	50°56′	50°56′
3	154°57′	104°00′	50°57′	334°59′	284°1′	50°58′	50°57.5′
4	155°5′	104°8′	50°57′	335°6′	284°8′	50°58′	50°57.5′
5	155°15′	104°18′	50°57′	335°16′	284°19′	50°57′	50°57′
/	/	/	/	/	/	/	/
总平 均值	_	_	_	_	_	_	50°57′

评分标准: ① 测量次数大于 3 次,得 2 分; ② 每组的"左"与"右"游标读数相差满足 180° ,可得 2 分; 缺少一项扣 1 分,直至扣完为止; ③ 算出每组平均值的,得 2 分; ④ 算出总平均值,得 2 分。

1.2 实验数据的处理:(在下划线上填写你的计算过程和结果) (满分: 10 分) 测角仪(分光计)的最大允许误差为 $\Delta\theta_{\mathbb{Q}}=1'\approx 0.00029$ rad。 (0.5 分) 最小偏向角算术平均值的标准不确定度:

$$\Delta\theta_{\mathbb{M}} = \Delta\delta_{\mathrm{m}} =$$

$$\sqrt{[2\times(50^{\circ}57^{'}-50^{\circ}57^{'})^{2}+(50^{\circ}56^{'}-50^{\circ}57^{'})^{2}+2\times(50^{\circ}57.5^{'}-50^{\circ}57^{'})^{2}]/[5(5-1)]}\approx$$

17'' = 0.000082 rad。(2分:前一个空1分,写出计算公式亦可;后两个空各 0.5分)

$$\Delta \theta = \sqrt{(\Delta \theta_{\text{M}})^2 + (\Delta \theta_{\text{LX}})^2 / 3} = \underline{0.00019} \quad rad. \tag{1 \%}$$

$$\Delta A = 2' \approx 0.00058 \quad rad_{\circ} \tag{0.5 \%}$$

棱镜材料的折射率n为:

$$n = \frac{\sin\frac{\delta_m + 60^{\circ}00'}{2}}{\sin\frac{60^{\circ}00'}{2}} = \frac{\sin\frac{50^{\circ}57' + 60^{\circ}00'}{2}}{\sin\frac{60^{\circ}00'}{2}}$$
 (计算过程) (0.5 分)

(1分)

折射率n的不确定度为:

$$\Delta n = \sqrt{\left(\frac{\partial n}{\partial \delta_m}\right)^2 \cdot \Delta \theta^2 + \left(\frac{\partial n}{\partial A}\right)^2 \cdot \Delta A^2}$$

= 1.647757938 (尽量多保留几位有效数字!)

其中:

$$\frac{\partial n}{\partial \delta_m} = \frac{1}{2} \times \frac{\cos(\frac{\delta_m + A}{2})}{\sin\frac{A}{2}} = \underline{0.566765775/(2 \times 0.5)} \quad (计算过程)$$
 (0.5 分)

$$=$$
 0.566765775 (尽量多保留几位有效数字!) (1分)

$$\frac{\partial n}{\partial A} = \frac{1}{2} \times \frac{\cos(\frac{\delta_m + A}{2})\sin(\frac{A}{2}) - \sin(\frac{\delta_m + A}{2})\cos(\frac{A}{2})}{\sin^2(\frac{A}{2})} = \frac{1}{2} \times \frac{\sin(-\frac{\delta_m}{2})}{\sin^2(\frac{A}{2})}$$

$$\Delta n = \sqrt{0.566765775^2 \times 0.00019^2 + (-0.860234457)^2 \times 0.00058^2}$$
 (计算过程) (0.5 分)
$$= \underline{0.000512}$$
 (尽量多保留几位有效数字!) (1 分)

评分标准: ① 每个空格的分数值,按照标定的数值计算,给分; ② 上述"计算过程"空格填入 相关项的计算数值 或 代入角度数值 均算正确,可得相应的分数值。

1.3 测量结果: (满分: 7分)

$$n = _{1.647757938}$$
 (1 $\%$)

$$\Delta n = \underline{0.000512} \tag{1 \%}$$

光学玻璃材料的折射率是 $n=1.6478\pm0.0005$ (5分: 3+1+1)

评分标准: ① 前 2 个空格的分数值,各 1 分;② 最后一个空格的分数值为 5 分:折射率的数值落在[1.6470,1.6490]区间内,得 3 分;在[1.6465,1.6495]区间内,得 1 分;小于 1.6465或大于 1.6495,得 0 分;不确定度的有效数字的位数大于 2 位的,扣 1 分;计算结果的末位有效数字没有与不确定度的有效数字对齐,扣 1 分。

2. 测定光学玻璃材料的色散曲线。(50分)

2.1 在可见光范围内,单次测量不同波长下(**即在 400nm 到 700nm 之间,至少需要测量 20 个数据点**)的最小偏向角,并计算其所对应的折射率。将全部测定的λ 对应的 *n* 值列成数据表格。在自己设计的表格内记录实验数据。(满分:20 分)

答: 表 2 光波长值、最小偏向角及折射率

• •			
波长 / nm	波长-2 / 10 ⁻⁶ × nm ⁻²	最小偏向角 / °	折射率 n
405.0	6.0960	54.483	1.6819
410.0	5.9488	54.308	1.6803
420.0	5.6689	53.950	1.6769
430.0	5.4083	53.658	1.6741
440.0	5.1653	53.375	1.6714
450.0	4.9383	53.167	1.6694
460.0	4.7259	52.883	1.6666
470.0	4.5269	52.667	1.6646
480.0	4.3403	52.442	1.6624
490.0	4.1643	52.258	1.6606
500.0	4.0000	52.075	1.6588
510.0	3.8447	51.917	1.6573
520.0	3.6982	51.783	1.6560
530.0	3.5600	51.650	1.6547
540.0	3.4294	51.508	1.6533
550.0	3.3058	51.400	1.6522
560.0	3.1888	51.267	1.6509
570.0	3.0779	51.142	1.6497
580.0	2.9727	51.033	1.6486
590.0	2.8727	50.933	1.6476
600.0	2.7778	50.858	1.6469
610.0	2.6874	50.767	1.6459
620.0	2.6015	50.675	1.6450
630.0	2.5195	50.592	1.6442
640.0	2.4414	50.508	1.6434
650.0	2.3669	50.433	1.6426
660.0	2.2957	50.375	1.6420
670.0	2.2277	50.308	1.6414
680.0	2.1626	50.242	1.6407
690.0	2.1004	50.158	1.6399
700.0	2.0408	50.100	1.6393

评分标准: ① 测量的数据点大于或等于 20 个,得 10 分;每少测 1 个数据点扣 0.5 分,直至扣完为止;② 表格中有所测量的最小偏向角的数据列,得 4 分;③ 表格中有所计算的折射率数据,得 4 分;④ 表格中所计算折射率的有效数字位数保持在 5 位(含 5 位)以上,得 2 分。⑤ 对表中第 2 列的变换数据不作具体要求。

2.2 以波长 λ 为横坐标,折射率 n 为纵坐标,画出色散 $n-\lambda$ 关系曲线。(满分: 18 分)

答:根据表 2 中所测量的最小偏向角而计算出的折射率数值,绘制其色散关系曲线(如图 1 所示)。

图 1 光学玻璃 ZF1 材料的色散关系曲线

评分标准: 总的要求是色散关系曲线应为平滑的和单调下降的。

具体评分如下:

- ① 图中标有多于或等于 15 个测量数据点,得 10 分,每少标 1 个数据点扣 1 分,直至扣完为止;
- ② 坐标轴上正确地标注物理量名称和单位,得 2 分;缺少或错误一项扣 1 分,直至扣 完为止;
- ③ 在图中正确地绘出了拟合曲线的,得2分;
- ④ 测量数据点均匀分布在拟合曲线上或附近,可得2分;
- ⑤ 正确地标注图名,可得2分。

2.3 借助柯西公式,利用计算器的拟合(回归)功能分别求出玻璃材料的特征常数 C_1 和 C_2 值,并给出拟合的相关系数 γ (这里,不需要给出不确定度)。 (满分: 12 分)

答:按照考生自带的(或考场提供的)科学型计算器的回归功能要求,分别输入 $1/\lambda^2$ 数值和 n 数值;然后,通过计算器的相关输出功能,直接在下列空格中填入由计算器中得到的所需截距和斜率,亦即为玻璃材料的特征常数 C_1 和 C_2 值,以及拟合的相关系数 γ 。

$$C_1 = 1.6181$$
 (3 $\%$: 2 +1)

$$C_2 = 10322 \text{ nm}^2$$
 (6 $\%$: 3 + 1 + 2)

拟合的相关系数
$$\gamma = 0.9997$$
 (3分: 2 + 1)

评分标准:

- ① 在 C_1 空格项中填入的数值落在 [1.6165, 1.6195] 区间内,得 2 分;且其有效数字位数保持在 5 位(含 5 位)以上,得 1 分。
- ② 在 C_2 项中填入的数值落在 [10200, 10900] 区间内,可得 3 分;且其有效数字位数保持在 5 位(含 5 位)以上,得 1 分。
- ③ C₂ 的"单位"正确,得 2分; 若缺少"单位",则扣 2分; 或"单位"标示错误,则扣 2分。
- ④ 在相关系数 γ 项中填入的具体数值有 3 个 (含 3 个) 9 以上,可得 2 分;否则,每少 1 个 9 扣 1 分,直至扣完为止;其有效数字位数保持在 4 位 (含 4 位)以上,则得 1 分。

3. 利用自己在上面的实验过程中已经获得的实验数据值,绘出所求光学玻璃材料的角色散率与波长λ的关系曲线。(25分)

3.1 在可见光范围内,测量所选光谱线对(**实验中至少需要 10 组线对**)的相应最小偏向角,进而可以得到该光谱线对最小偏向角的差值Δδ,即可算得各中心波长(指光谱线对的平均波长)的Δδ/Δλ值。将全部测定的中心波长λ对应的Δδ/Δλ值列成数据表格。**在自己设计的表格内记录实验数据。** (满分: 12 分)

答:利用上面表 2 中的数值,可以得到下表中的具体数值,进而得到角色散率。

表 3 中心波长值、最小偏向角差值及折射率

中心波长 最小偏向角的差值A8 角色散率A8/A2 (nm) (') (rad/nm) 415.0 21.5 -6.254×10 ⁻⁴ 425.0 17.5 -5.091×10 ⁻⁴ 435.0 17.0 -4.945×10 ⁻⁴ 445.0 15.5 -4.509×10 ⁻⁴ 445.0 15.5 -4.509×10 ⁻⁴ 465.0 13.0 -3.782×10 ⁻⁴ 475.0 13.5 -3.927×10 ⁻⁴ 485.0 11.0 -3.200×10 ⁻⁴ 495.0 11.0 -3.199×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 505.0 8.0 -2.327×10 ⁻⁴ 525.0 8.0 -2.327×10 ⁻⁴ 535.0 8.5 -2.473×10 ⁻⁴ 545.0 6.5 -1.891×10 ⁻⁴ 555.0 8.0 -2.327×10 ⁻⁴ 565.0 7.5 -2.182×10 ⁻⁴ 575.0 6.5 -1.891×10 ⁻⁴ 585.0 6.0 -1.745×10 ⁻⁴ 595.0 4.5 -1.309×10 ⁻⁴ 605.0 5.5 -1.600×10 ⁻⁴ 615.0 5.5 -1.600×10 ⁻⁴ 625.0 5.0 -1.454×10 ⁻⁴ 635.0 4.5 -1.309×10 ⁻⁴ 645.0 4.5 -1.309×10 ⁻⁴ 655.0 5.0 -1.454×10 ⁻⁴ 665.0 4.0 -1.164×10 ⁻⁴ 665.0 4.0 -1.164×10 ⁻⁴ 675.0 4.0 -1.164×10 ⁻⁴ 685.0 5.0 -1.454×10 ⁻⁴						
415.0 21.5 -6.254×10 ⁻⁴ 425.0 17.5 -5.091×10 ⁻⁴ 435.0 17.0 -4.945×10 ⁻⁴ 445.0 15.5 -4.509×10 ⁻⁴ 455.0 14.0 -4.072×10 ⁻⁴ 465.0 13.0 -3.782×10 ⁻⁴ 475.0 13.5 -3.927×10 ⁻⁴ 485.0 11.0 -3.200×10 ⁻⁴ 495.0 11.0 -3.199×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 515.0 8.0 -2.327×10 ⁻⁴ 525.0 8.0 -2.327×10 ⁻⁴ 535.0 8.5 -2.473×10 ⁻⁴ 545.0 6.5 -1.891×10 ⁻⁴ 555.0 8.0 -2.327×10 ⁻⁴ 555.0 8.0 -2.327×10 ⁻⁴ 555.0 6.5 -1.891×10 ⁻⁴ 565.0 7.5 -2.182×10 ⁻⁴ 575.0 6.5 -1.891×10 ⁻⁴ 585.0 6.0 -1.745×10 ⁻⁴ 595.0 4.5 -1.309×10 ⁻⁴ 605.0 5.5 -1.600×10 ⁻⁴ 615.0 5.5 -1.600×10 ⁻⁴	中心波长	最小偏向角的差值△δ	角色散率 $\Delta\delta/\Delta\lambda$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(nm)	(')	(rad/nm)			
435.0 17.0 -4.945×10 ⁻⁴ 445.0 15.5 -4.509×10 ⁻⁴ 455.0 14.0 -4.072×10 ⁻⁴ 465.0 13.0 -3.782×10 ⁻⁴ 475.0 13.5 -3.927×10 ⁻⁴ 485.0 11.0 -3.200×10 ⁻⁴ 495.0 11.0 -3.199×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 515.0 8.0 -2.327×10 ⁻⁴ 525.0 8.0 -2.327×10 ⁻⁴ 535.0 8.5 -2.473×10 ⁻⁴ 545.0 6.5 -1.891×10 ⁻⁴ 555.0 8.0 -2.327×10 ⁻⁴ 565.0 7.5 -2.182×10 ⁻⁴ 575.0 6.5 -1.891×10 ⁻⁴ 585.0 6.0 -1.745×10 ⁻⁴ 595.0 4.5 -1.309×10 ⁻⁴ 605.0 5.5 -1.600×10 ⁻⁴ 615.0 5.5 -1.600×10 ⁻⁴ 615.0 5.0 -1.454×10 ⁻⁴ 645.0 4.5 -1.309×10 ⁻⁴ 655.0 3.5 -1.018×10 ⁻⁴	415.0	21.5	-6.254×10^{-4}			
445.0 15.5 -4.509×10 ⁻⁴ 455.0 14.0 -4.072×10 ⁻⁴ 465.0 13.0 -3.782×10 ⁻⁴ 475.0 13.5 -3.927×10 ⁻⁴ 485.0 11.0 -3.200×10 ⁻⁴ 495.0 11.0 -3.199×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 505.0 9.5 -2.763×10 ⁻⁴ 515.0 8.0 -2.327×10 ⁻⁴ 525.0 8.0 -2.327×10 ⁻⁴ 535.0 8.5 -2.473×10 ⁻⁴ 545.0 6.5 -1.891×10 ⁻⁴ 555.0 8.0 -2.327×10 ⁻⁴ 555.0 7.5 -2.182×10 ⁻⁴ 575.0 6.5 -1.891×10 ⁻⁴ 585.0 6.0 -1.745×10 ⁻⁴ 595.0 4.5 -1.309×10 ⁻⁴ 605.0 5.5 -1.600×10 ⁻⁴ 615.0 5.5 -1.600×10 ⁻⁴ 625.0 5.0 -1.454×10 ⁻⁴ 645.0 4.5 -1.309×10 ⁻⁴ 655.0 3.5 -1.018×10 ⁻⁴ 665.0 4.0 -1.164×10 ⁻⁴	425.0	17.5	-5.091×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	435.0	17.0	-4.945×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	445.0	15.5	-4.509×10^{-4}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455.0	14.0	-4.072×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	465.0	13.0	-3.782×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	475.0	13.5	-3.927×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	485.0	11.0	-3.200×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	495.0	11.0	-3.199×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	505.0	9.5	-2.763×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	515.0	8.0	-2.327×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	525.0	8.0	-2.327×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	535.0	8.5	-2.473×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	545.0	6.5	-1.891×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	555.0	8.0	-2.327×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	565.0	7.5	-2.182×10 ⁻⁴			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	575.0	6.5	-1.891×10 ⁻⁴			
605.0 5.5 -1.600×10^{-4} 615.0 5.5 -1.600×10^{-4} 625.0 5.0 -1.454×10^{-4} 635.0 5.0 -1.454×10^{-4} 645.0 4.5 -1.309×10^{-4} 655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	585.0	6.0	-1.745×10 ⁻⁴			
615.0 5.5 -1.600×10^{-4} 625.0 5.0 -1.454×10^{-4} 635.0 5.0 -1.454×10^{-4} 645.0 4.5 -1.309×10^{-4} 655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	595.0	4.5	-1.309×10 ⁻⁴			
625.0 5.0 -1.454×10^{-4} 635.0 5.0 -1.454×10^{-4} 645.0 4.5 -1.309×10^{-4} 655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	605.0	5.5	-1.600×10 ⁻⁴			
635.0 5.0 -1.454×10^{-4} 645.0 4.5 -1.309×10^{-4} 655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	615.0	5.5	-1.600×10 ⁻⁴			
645.0 4.5 -1.309×10^{-4} 655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	625.0	5.0	-1.454×10 ⁻⁴			
655.0 3.5 -1.018×10^{-4} 665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	635.0	5.0	-1.454×10 ⁻⁴			
665.0 4.0 -1.164×10^{-4} 675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	645.0	4.5	-1.309×10 ⁻⁴			
675.0 4.0 -1.164×10^{-4} 685.0 5.0 -1.454×10^{-4}	655.0	3.5	-1.018×10 ⁻⁴			
685.0 5.0 -1.454×10 ⁻⁴	665.0	4.0	-1.164×10 ⁻⁴			
	675.0	4.0	-1.164×10 ⁻⁴			
695.0 3.5 -1.018×10 ⁻⁴	685.0	5.0	-1.454×10 ⁻⁴			
	695.0	3.5	-1.018×10 ⁻⁴			

评分标准: ① 所测中心波长的数据点大于或等于 10 个,得 6 分;每少测 1 个数据点 扣 1 分,直至扣完为止; ② 表格中有所测量的最小偏向角差值Δδ的数据列,得 2 分; ③ 表格中列有所计算的角色散率Δδ/Δλ数据,得 3 分;<u>若负号不写 或 数量级错误,</u> 加 1 分;④ 表格中所计算角色散率Δδ/Δλ的有效数字位数保持在 3 位(含 3 位)以上,得 1 分。

3.2 以中心波长 λ 为横坐标,角色散率 $\Delta\delta/\Delta\lambda$ 为纵坐标,画出 $\Delta\delta/\Delta\lambda$ - λ 关系曲线。

(满分: 13分)

答:根据表 3 中的相关数据,可以绘制出如下图所示的光学玻璃材料的角色散率关系曲线图。

图 2 光学玻璃材料的角色散率关系曲线

评分标准: 总的要求是角色散率关系曲线应为平滑的和单调上升的。在图 2 的实验数据点中可能会出现几个点纵轴坐标相同的情况,这显然是由于光栅单色仪的分辨本领不够造成的,而不是关系曲线本身的规律。

具体评分如下:

- ① 图中标有多于或等于 10 个测量数据点,得 5 分,每少标 1 个数据点扣 1 分,直至扣完为止;
- ② 坐标轴上正确地标注物理量名称和单位,得 2 分;缺少或错误一项扣 1 分,直至扣完为止;
- ③ 在图中正确地绘出拟合曲线的,得3分;
- ④ 测量数据点均匀分布在拟合曲线附近,得2分;若拟合曲线出现平台,扣2分;
- ⑤ 正确地标注了图名,得1分。