Universidade Federal de Alfenas - UNIFAL-MG

Primeira Lista - Processamento de Imagens Prof. Luiz Eduardo da Silva

Exercício 1. Quando você entra numa sala de cinema escura em um dia claro, leva um tempo antes de conseguir enxergar bem o suficiente para encontrar um lugar vago. Quais dos processos explicados na seção 2.1 (livro do Gonzalez) ocorrem nessa situação?

Exercício 2. Qual a profundidade em bits de uma imagem com 8192 níveis de cinza?

Exercício 3. Considere um protocolo de transmissão de dados consistidos em pacotes com 1 bit de início, 8 bits de informação e 1 bit de parada. Qual o tempo (em segundos) necessário para se transmitir uma imagem de 1024x1024 pixels com 256 níveis de cinza à taxa de transmissão de 9600 bits/segundo?

Exercício 4. Considere a imagem binária mostrada abaixo, onde os pixels de valor 1 pertencem ao objeto e os pixels de valor 0 pertencem ao fundo. Determine o número de componentes conexos existentes na imagem com vizinhança-4 e vizinhança-8:

0	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0
0	0	1	1	0	0	0	0
0	0	0	1	0	1	0	0
0	1	1	0	1	1	0	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

Exercício 5. Diferencie os conceitos de resolução, amostragem e quantização no processo de digitalização de imagens.

Exercício 6. Determine a distância Euclidiana, Xadrez e City-block para os pixels de coordenadas p=(1,1) e q=(6,6) na imagem binária do exercício 4. Considere que o pixel superior esquerdo da imagem tem coordenadas (0,0).

Exercício 7. Determine uma borda exterior e interior para a imagem binária abaixo:

0	0	0	0	0	0	0	0
0	1	1	1	1	1	0	0
0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	1	0	0	1	0	0
0	0	0	0	0	0	0	0

Exercício 8. Dentre as transformações apresentadas na Figura 1, determine as que produzem o clareamento da imagem de entrada.

Exercício 9. Considerando a transformação representada na Figura 2, qual é o resultado dessa transformação aplicada na imagem seguinte:

Figura 1: Transformação de intensidade

7	1	4	7	6	3	4	6
7	1	7	1	0	1	6	3
4	5	2	4	1	1	7	5
6	0	2	3	7	0	0	7
1	0	5	1	3	1	2	1
7	4	1	1	2	1	4	5
2	6	4	5	1	2	7	2
5	7	3	5	0	4	2	3

Exercício 10. Escreva o algoritmo para realizar a transformação do exercício anterior. Represente essa função de transformação num vetor

int
$$T[8] = {...};$$

Exercício 11. Construa um histograma para a imagem abaixo com 10 níveis de cinza:

9	5	7	5	3	4
0	2	6	4	2	5
4	1	2	4	6	2
2	3	6	3	0	0
7	8	3	4	5	4
0	5	2	9	8	7

Exercício 12. Dado o histograma mostrado na tabela abaixo, equalize-o utilizando a função de distribuição acumulada e desenhe o histograma resultante. O valor k corresponde a cada nível de cinza na imagem e n_k o número de pixels para o nível de cinza k:

Nível de $cinza(k)$	0	1	2	3	4	5	6	7
Nro. pixels (n_k)	120	200	350	400	100	80	50	30

Exercício 13. Calcule a transformação linear para alterar a escala de níveis de cinza do intervalo [0,70] para [10,180]. O restante da escala de cinza [71,255] considere a transformação identidade. Apresentar o gráfico da transformação, conforme ilustrado na Figura 2.

Figura 2:

Exercício 14. Considere o trecho de imagem seguinte de dimensão 7 x 7, onde o pixel do centro está destacado. Calcule o novo valor do pixel central (18) após a aplicação dos seguintes filtros: Filtro de média, mediana, Sobel (horizontal e vertical), Prewitt (horizontal e vertical), Robert (dois, conforme ilustrado no livro do Gonzalez).

0	3	22	22	18	84	4
3	23	18	18	19	9	8
9	9	18	15	14	49	9
0	5	17	<u>18</u>	18	98	9
14	12	15	18	18	76	8
15	15	12	18	16	98	9
9	8	19	19	17	9	10