Cálculo Lambda

Paulo Torrens

paulotorrens@gnu.org

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

2019/02

- O cálculo lambda foi *descoberto* em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

- O cálculo lambda foi *descoberto* em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

- O cálculo lambda foi descoberto em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

- O cálculo lambda foi descoberto em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

- O cálculo lambda foi *descoberto* em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

- O cálculo lambda foi descoberto em 1936 pelo matemático Alonzo Church...
 - ...orientador de doutorado de Alan Turing, com o qual trabalhou junto em sua tese de computabilidade
- O cálculo lambda foi criado como um formalismo matemático, a fim de formalizar a matemática e se estudar o conceito do que é ser computável
- O cálculo lambda é um sistema de reescrita: "executamos" programas reescrevendo termos
- Pode ser entendido como uma linguagem de programação funcional extremamente simples
 - Serve como base para a maioria das linguagens funcionais, incluindo Haskell e CFG/SSA

• Possui uma sintaxe bastante simples:

$$e ::= x \\ | \lambda x.e \\ | e e$$

- Em outras palavras, um termo pode ser:
 - 1 Uma variável (representada pela meta-variável "x")
 - 2 Uma abstração, ou seja, uma função com um único argumento e seu corpo (um termo), representada pela letra grega lambda
 - 3 Uma aplicação, ou seja, uma chamada de função (à esquerda, um termo) com um argumento (à direita, um termo)

Possui uma sintaxe bastante simples:

$$e ::= x \\ | \lambda x.\epsilon \\ | e e$$

- Em outras palavras, um termo pode ser:
 - 1 Uma variável (representada pela meta-variável "x")
 - 2 Uma abstração, ou seja, uma função com um único argumento e seu corpo (um termo), representada pela letra grega lambda
 - 3 Uma aplicação, ou seja, uma chamada de função (à esquerda, um termo) com um argumento (à direita, um termo)

Possui uma sintaxe bastante simples:

$$e ::= x \\ | \lambda x.\epsilon \\ | e e$$

- Em outras palavras, um termo pode ser:
 - 1 Uma variável (representada pela meta-variável "x")
 - 2 Uma abstração, ou seja, uma função com um único argumento e seu corpo (um termo), representada pela letra grega lambda
 - 3 Uma aplicação, ou seja, uma chamada de função (à esquerda, um termo) com um argumento (à direita, um termo)

Possui uma sintaxe bastante simples:

$$e ::= x \\ | \lambda x.e \\ | e e$$

- Em outras palavras, um termo pode ser:
 - 1 Uma variável (representada pela meta-variável "x")
 - 2 Uma abstração, ou seja, uma função com um único argumento e seu corpo (um termo), representada pela letra grega lambda
 - 3 Uma aplicação, ou seja, uma chamada de função (à esquerda, um termo) com um argumento (à direita, um termo)

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$abc = (ab)c$$

 $abcd = ((ab)c)d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\lambda x.x$
 - · abc
 - a (b c)
 - $\lambda f.\lambda x.f.x$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

Assumimos que uma abstração lambda se extende até onde for

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\bullet \lambda x.x$
 - · abc
 - a (b c)
 - $\lambda f \cdot \lambda x \cdot f x$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\lambda x.x$
 - · a b c
 - a (b c)
 - $\lambda f.\lambda x.f.x$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\lambda x.x$
 - · abc
 - a (b c)
 - $\lambda f.\lambda x.f.x$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\lambda x.x$
 - a b c
 - a (b c)
 - $\lambda f.\lambda x.f.x$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\bullet \lambda x.x$
 - a b c
 - a (b c)
 - $\lambda f \cdot \lambda x \cdot f \times f$

- É útil lembrarmos algumas convenções sobre a notação de termos lambda:
 - Aplicação associa à esquerda, ou seja:

$$a b c = (a b) c$$

 $a b c d = ((a b) c) d$

 Assumimos que uma abstração lambda se extende até onde for possível à direita, ou seja:

$$\lambda x.\lambda y.x \ y \ z = \lambda x.(\lambda y.((x \ y) \ z))$$

- Exemplos:
 - $\lambda x.x$
 - a b c
 - a (b c)
 - $\lambda f.\lambda x.f.x$

• O cálculo lambda é composto unicamente por funções

- Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda v. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x. \lambda x. x$
 - $\lambda x.y (\lambda y.a y x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

2019/02 Cálculo Lambda 7 /

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x.\lambda x.x$
 - $\lambda x.y (\lambda y.a \ y \ x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x.\lambda x.x$
 - $\lambda x.y (\lambda y.a y x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x. x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x.\lambda x.x$
 - $\lambda x.y (\lambda y.a y x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x.\lambda x.x$
 - $\lambda x.y (\lambda y.a y x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x(\lambda x.xy)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$
 - $\lambda x. \lambda x. x$
 - $\lambda x.y (\lambda y.a y x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x(\lambda x.xy)$
 - $\lambda \dot{x}.\lambda \dot{y}.\dot{x}$
 - $\lambda x. \lambda y. y$
 - $\lambda x. \lambda x. x$
 - $\lambda x.y (\lambda y.a \ y \ x)$
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$

 - λx.λx.x
 λx.y (λy.a y x)
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$

 - λx.λx.x
 λx.y (λy.a y x)
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda

- O cálculo lambda é composto unicamente por funções
 - Uma abstração lambda é uma função que recebe uma função como argumento e retorna uma função como resultado
- Existe um conceito de escopo: uma variável é considerada ligada à abstração lambda mais próxima que contém o mesmo nome como parâmetro; por exemplo:
 - $x (\lambda x.x y)$
 - $\lambda x. \lambda y. x$
 - $\lambda x. \lambda y. y$

 - λx.λx.x
 λx.y (λy.a y x)
- Uma variável que não está ligada é chamada de livre
- Importante notar que, num termo $\lambda x.e$, a abstração lambda irá ligar todas as variáveis x que estavam livres em e

- Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:
 - λx.xa (λa.b a)
- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:
 - $(\lambda x.x)[y/x]$ • $(x (\lambda z.z x))[y/x]$

- Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:
 - $\lambda x.x$
 - a (λa.b a)
- Um conceito importante no cálculo lambda é o conceito de
- Uma substituição, anotada como a[b/x], representa a
 - $(\lambda x.x)[y/x]$ $(x (\lambda z.z x))[y/x]$

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

- a (λa.b a)
- Um conceito importante no cálculo lambda é o conceito de
- Uma substituição, anotada como a[b/x], representa a

•
$$(\lambda x.x)[y/x]$$

• $(x (\lambda z.z x))[y/x]$

- Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:
 - $\lambda x.x = \lambda y.y$
 - a (λa.b a)
- Um conceito importante no cálculo lambda é o conceito de
- Uma substituição, anotada como a[b/x], representa a

 - $(\lambda x.x)[y/x]$ $(x (\lambda z.z x))[y/x]$

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

• $a(\lambda a.b a) = a(\lambda x.b x)$

- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:
 - $(\lambda x.x)[y/x]$ • $(x (\lambda z.z x))[y/x]$

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

• $a(\lambda a.b a) = a(\lambda x.b x)$

- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a
 - $(\lambda x.x)[y/x]$ • $(x (\lambda z.z x))[y/x]$

2019/02

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

• $a(\lambda a.b a) = a(\lambda x.b x)$

- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:
 - $(\lambda x.x)[y/x]$
 - $(x (\lambda z.z x))[y/x]$

Cálculo Lambda

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

• $a(\lambda a.b a) = a(\lambda x.b x)$

- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:

•
$$(\lambda x.x)[y/x]$$

• $(x (\lambda z.z x))[y/x]$

• Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:

•
$$\lambda x.x = \lambda y.y$$

• $a(\lambda a.b a) = a(\lambda x.b x)$

- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:

•
$$(\lambda x.x)[y/x] = (\lambda x.x)$$

• $(\times (\lambda z.z.x))[y/x]$

- Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:
 - $\lambda x.x = \lambda y.y$ • $a(\lambda a.b a) = a(\lambda x.b x)$
- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:
 - $(\lambda x.x)[y/x] = (\lambda x.x)$ $(x (\lambda z.z x))[v/x]$

- Dois termos são considerados α -equivalentes se a renomeação de parâmetros (junto aos seus usos ligados) pode tornar dois termos idênticos; por exemplo:
 - $\lambda x.x = \lambda y.y$ • $a(\lambda a.b a) = a(\lambda x.b x)$
- Um conceito importante no cálculo lambda é o conceito de substituição, usado na reescrita de termos
- Uma substituição, anotada como a[b/x], representa a reescrita do termo a, com todas as ocorrências da variável livre x substituídas por b... por exemplo:
 - $(\lambda x.x)[y/x] = (\lambda x.x)$ • $(x (\lambda z.z x))[y/x] = y (\lambda z.z y)$

• Para "executarmos" o termo, usamos a chamada redução β : substituição

$$\underbrace{(\lambda x.e) \ y}_{\beta-\mathsf{redex}} \ \longrightarrow \ \ \underbrace{e[y/x]}$$

- Itens sujeitos à redução são chamados de β-redexes, que são apenas uma aplicação cujo subtermo à esquerda é uma abstração
- Em outras palavras, devemos reescrever o termo à esquerda removendo a abstração lambda, e substituindo todos os casos ligados de seu parâmetro com o argumento fornecido

• Para "executarmos" o termo, usamos a chamada redução β : substituição

$$\underbrace{(\lambda x.e) \ y}_{\beta-\mathsf{redex}} \ \longrightarrow \ \widehat{e[y/x]}$$

- Itens sujeitos à redução são chamados de β-redexes, que são apenas uma aplicação cujo subtermo à esquerda é uma abstração
- Em outras palavras, devemos reescrever o termo à esquerda removendo a abstração lambda, e substituindo todos os casos ligados de seu parâmetro com o argumento fornecido

• Para "executarmos" o termo, usamos a chamada redução β : substituição

$$\underbrace{(\lambda x.e) \ y}_{\beta-\mathsf{redex}} \ \longrightarrow \ \ \underbrace{e[y/x]}$$

- Itens sujeitos à redução são chamados de β-redexes, que são apenas uma aplicação cujo subtermo à esquerda é uma abstração
- Em outras palavras, devemos reescrever o termo à esquerda removendo a abstração lambda, e substituindo todos os casos ligados de seu parâmetro com o argumento fornecido

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ a
 - $(\lambda x.y)$ a
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β :
 - $(\lambda x.x)$ a
 - $(\lambda x.y)$ a
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β :
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ a
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β :
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ a
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5

• $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5 $\rightarrow 5*5$
 - $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5
 - $\begin{array}{ccc} \rightarrow & 5*5 \\ \rightarrow & 25 \end{array}$
 - $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5 $\begin{array}{ccc} \rightarrow & 5*5 \\ \rightarrow & 25 \end{array}$
 - $(\lambda x.\lambda y.x + y)$ 10 20

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y) a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5
 - \rightarrow 5 * 5
 - \rightarrow 25
 - $(\lambda x.\lambda y.x + y)$ 10 20 \rightarrow $(\lambda y.10 + y) 20$

- Alguns exemplos de reduções β :
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y)$ $a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5
 - \rightarrow 5 * 5
 - \rightarrow 25
 - $(\lambda x.\lambda y.x + y)$ 10 20
 - $\rightarrow (\lambda y.10 + y) 20$
 - \rightarrow 10 + 20

2019/02 Cálculo Lambda

10 / 10

- Alguns exemplos de reduções β:
 - $(\lambda x.x)$ $a \rightarrow a$
 - $(\lambda x.y) a \rightarrow y$
- Assumindo que podemos usar números e operações:
 - $(\lambda x.x * x)$ 5
 - \rightarrow 5 * 5
 - \rightarrow 25
 - $(\lambda x. \lambda y. x + y)$ 10 20
 - $\rightarrow (\lambda y.10 + y) 20$
 - $\begin{array}{c} \rightarrow & 10 + 20 \\ \rightarrow & 30 \end{array}$

