IMPORTING NECESSARY LIBRARIES

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
LOAD THE DATA FROM EACH SHEETS
f1 = pd.read_excel('Inventory_data.xlsx', sheet_name='MB51')
f2 = pd.read_excel('Inventory_data.xlsx', sheet_name='MC.9')
f3 = pd.read_excel('Inventory_data.xlsx', sheet_name='MB51(Backflush)-Summary')
f4 = pd.read_excel('Inventory_data.xlsx', sheet_name='MC.9(Stock)-Summary')
f1.to_csv('MB51.csv', index=False)
f2.to_csv('MC.9.csv', index=False)
f3.to_csv('MB51(Backflush)-Summary.csv', index=False)
f4.to_csv('MC.9(Stock)-Summary.csv', index=False)
df1 = pd.read_csv('MB51.csv')
df2 = pd.read_csv('MC.9.csv')
df3 = pd.read_csv('MB51(Backflush)-Summary.csv')
df4 = pd.read_csv('MC.9(Stock)-Summary.csv')
      <ipython-input-331-14d2b0863be4>:1: DtypeWarning: Columns (3,4,5,7,9,10,12,13,14,16,17,18,20,21,22,25,27,28,30,31,32,33,35,37,38,39
        df1 = pd.read_csv('MB51.csv')
df1.shape
      (110398, 68)
df2.shape
      (6709, 12)
df3.shape
      (260, 26)
df4.shape
      (307, 46)
df1.head()
```

	Year	Month	Pstng Date	Time	Vendor	Material	Description	Reference	Doc. Date	Quantity	•••
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	2,021	2021- 01-01	31.01.2021	19:20:03	NaN	100300630	Limiting & Quick Release Valve	NaN	31.01.2021	10	
2	2,021	2021- 01-01	31.01.2021	19:19:50	NaN	100300630	Limiting & Quick Release Valve	NaN	31.01.2021	10	
3	2,021	2021- 01-01	31.01.2021	13:38:15	NaN	100302910	Q.S.P.Valve (New)-Tata	NaN	31.01.2021	15	
4	2,021	2021- 01-01	31.01.2021	17:29:39	NaN	100304920	Quick Relase Valve (Voss)	NaN	31.01.2021	20	

df2.head()

	Part	Material	Value valua st		Valuated stock	UOM Val	Cl La	ast LstRed	ceipt Mon	ch Year D
0	NaN	NaN	١	NaN NaN	NaN	NaN Na	aN N	laN	NaN Na	N NaN
.head	()									
	Sum of Quantity	Unnamed:	Column Labels	Unnamed:		Unnamed: 5		Unnamed:	Unnamed:	Unnamed: 9
0	NaN	NaN	2021	2021	2021	2021	2021	2021	2021	2021
1	Row Labels	Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
2	100250040	Low Pressure Indicator Switch	335	365	1220	1310	100	245	135	510
3	100250050	Air Cylinder	NaN	NaN	182	295	NaN	NaN	NaN	56
4	100250150	Stop Light Switch- (M15) Assy	3216	4150	1750	2685	1425	2340	1390	1645
5 rc	ows × 26 colu	mns								
7	‡									

df4.head()

	Unnamed:	Unnamed:	Column Labels	Unnamed:	Unnamed:	Unnamed:	Unnamed:	Unnamed:	Unnamed:	Unnamed:
					•					
0	NaN	NaN	2021	2021	2021	2021	2021	2021	2021	2021
1	NaN	NaN	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr
2	Row Labels	Part - Description	Valuated stock Qty	Value of valuated stock	Valuated stock Qty	Value of valuated stock	Valuated stock Qty	Value of valuated stock	Valuated stock Qty	Value of valuated stock
3	-	-	NaN	NaN	0	0	NaN	NaN	NaN	NaN
4	100250040	Low Pressure Indicator Switch	0	0	150	7648.5	400	20396	800	40792

5 rows × 46 columns

SUMMARY OF THE DATASETS

df1.describe()

	Year	1
count	110,337	
mean	2,021	
std	0	
min	2,021	
25%	2,021	
50%	2,021	
75%	2,022	
max	2,022	

df2.describe()

df3.describe()

	Sum of Quantity	Unnamed:	Column Labels	Unnamed:	Unnamed:	Unnamed: 5	Unnamed:	Unnamed:	Unnamed:	Unnamed
count	259	258	177	185	201	193	171	180	194	18
unique	259	76	139	143	163	147	112	135	152	139
top	Row Labels	Foot brake valve	10	8	10	40	5	80	24	
freq	1	32	6	7	4	5	8	4	6	ţ

4 rows × 26 columns

df4.describe()

	Unnamed: 0	Unnamed:	Column Labels	Unnamed:	Unnamed:	Unnamed: 5	Unnamed: 6	Unnamed: 7	Unnamed: 8	Unnamed
count	305	304	306	306	307	307	306	306	306	306
unique	305	98	57	107	59	130	73	148	75	160
top	Row Labels	Foot brake valve	0	0	0	0	0	0	0	(
freq	1	32	200	200	177	177	158	158	147	147

4 rows × 46 columns

MISSING VALUES

df1.isnull().sum()

61 Year Month 61 Pstng Date 41 Time 41 Vendor 110378 ... Crcy 110378 GR/GI Sl 110378 Aut 0rLi 110378 Multi AA 110378 Length: 68, dtype: int64

df2.isnull().sum()

Part	1
Material	44
Value of valuated stock	44
INR	65
Valuated stock	44
UOM	65
ValCl	44
Last cons.	604
LstReceipt	419
Month	63

```
Year 6:
Part - Description :
dtype: int64
```

DUPLICATE ROWS

```
df1.duplicated().sum()
```

57

df2.duplicated().sum()

60

df3.duplicated().sum()

0

df4.duplicated().sum()

0

df1.dtypes

float64
object
object
object
object
object
<pre>dtype: object</pre>

df2.dtypes

Part	object
Material	object
Value of valuated stock	object
INR	object
Valuated stock	object
UOM	object
ValC1	object
Last cons.	object
LstReceipt	object
Month	object
Year	float64
Part - Description	object
dtype: object	

df1.tail()

	Year	Month	Pstng Date	Time	Vendor	Material	Description	Reference	Doc. Date	Quantity
110393	2,022	2022- 10-01	01.10.2022	1	NaN	9718990000	Inversion Relay Valve	NaN	01.10.2022	1
110394	2,022	2022- 10-01	01.10.2022	1	NaN	9718990000	Inversion Relay Valve	NaN	01.10.2022	1
110395	2,022	2022- 10-01	01.10.2022	0	NaN	9718990000	Inversion Relay Valve	NaN	01.10.2022	8
110396	2,022	2022- 10-01	01.10.2022	1	NaN	9718990000	Inversion Relay Valve	NaN	01.10.2022	5
110397	2,022	2022- 10-01	01.10.2022	1	NaN	9718990000	Inversion Relay Valve	NaN	01.10.2022	1

5 rows × 68 columns

df2.tail()

	Part	Material	Value of valuated stock	INR	Valuated stock	UOM	ValC1	Last cons.	LstReceipt	Month	Year
6704	9718990110	9718990110 Inversion Relay Valve	0	INR	0	NOS	7921	22.09.2022	22.09.2022	2022- 10-01	2,022
6705	0740004000	9718991200	0	IVID	0	NOC	7004	42.00.0000	05.04.0004	2022-	0.000

PARTS CONTRIBUTED MORE

```
df1.columns
    dtype='object')
# format the quantity
def format_qty(qty):
   if qty >= 1000000000:
       return f'{qty/1000000000:,.2f}B'
   elif qty >= 1000000:
       return f'{qty/1000000:,.2f}M'
   elif qty >= 1000:
      return f'{qty/1000:,.2f}K'
       return f'{qty:,.2f}'
total_qty = df1.groupby(['Material', 'Description'])['     Quantity'].sum()
total_qty = pd.to_numeric(total_qty, errors='coerce')
sorted_qty = total_qty.sort_values(ascending=False)
sorted_qty = sorted_qty.apply(format_qty)
print(sorted_qty.head((4)))
    Material
               Description
    4611000040 Foot brake valve
                                            181.010.105.153.510.110.785.625.121.051.656.27...
    9618990410 Foot control valve w/treadle 31,173,134,232,520,200,234,359,446,010,477,906...
    4214292650 Exhaust Brake assembly
                                            4,522,222,222,222,626,394,212,482,296,600,...
    100830600 E 1 Brake Valve
                                            88,551,768,687,282,086,377,635,893,677,791,162...
    Name:
            Quantity, dtype: object
```

The output above shows the total quantity for each material and part description. The quantity column is formatted with commas to make it more readable. The material are sorted in descending order based on the total quantity.

Trend impacting the Inventory

```
value_by_part = value_by_part.sort_values(ascending=False)
value_by_part.head(10).plot(kind='bar', title='Impact of different parts')
```

<Axes: title={'center': 'Impact of different parts'}, xlabel='Part'>

To analyze the impact of different parts/assemblies on the inventory, we can use the data from the second sheet and group the data based on the Part or Material column. We can then calculate the sum of Value of valuated stock or Valuated stock to determine which parts/assemblies are contributing more.

```
# Replace non-finite values with -1
df2['Year'] = df2['Year'].replace([np.inf, -np.inf, np.nan], -1)
# Cast 'Year' column to int data type
df2['Year'] = df2['Year'].astype(int)
df2['Value of valuated stock'] = df2['Value of valuated stock'].astype(float)
df2['Valuated stock'] = df2['
                                  Valuated stock'].str.strip()
df2.dtypes
                                 object
     Part
     Material
                                 object
     Value of valuated stock
                                 float64
     INR
                                 object
          Valuated stock
                                 object
     UOM
                                 object
     ValCl
                                 object
     Last cons.
                                 object
     LstReceipt
                                 object
     Month
                                 object
                                  int64
     Year
     Part - Description
                                 object
     Valuated stock
                                 object
     dtype: object
df2['Valuated stock'] = df2['Valuated stock'].str.replace('Valuated stock', '0').astype(float)
# Group data based on Year
grouped_df = df2.groupby('Year')
# Calculate the sum of Valuated stock column for each group
production_by_year = grouped_df['Valuated stock'].sum()
```

```
# Plot the production by year
production_by_year.plot(kind='bar', title='Production by Year')
# Set axis labels
plt.xlabel('Year')
plt.ylabel('Production')
```


The resulting graph shows the total production of each year based on the 'Valuated stock' column.

The Minimum Inventory required

```
df1['Year'] = pd.to_datetime(df1['Year'], format='%Y')
df1['Month'] = pd.to_datetime(df1['Month'], format='%Y-%m-%d').dt.month
df1['
        Quantity'] = pd.to_numeric(df1[' Quantity'], errors='coerce')
monthly_demand = df1.groupby(['Year', 'Month', 'Material'])[' Quantity'].sum().reset_index()
monthly_demand['Demand Rate'] = monthly_demand[' Quantity'] / 30
df1[' Quantity'] = pd.to_numeric(df1[' Quantity'], errors='coerce')
df1['Pstng Date'] = pd.to_numeric(df1['Pstng Date'], errors='coerce')
df1['Doc. Date'] = pd.to_numeric(df1['Doc. Date'], errors='coerce')
df1['Pstng Date'] = pd.to_datetime(df1['Pstng Date'])
df1['Doc. Date'] = pd.to_datetime(df1['Doc. Date'])
df1['Lead Time'] = (df1['Pstng Date'] - df1['Doc. Date']).dt.days
df1['Lead Time'] = (df1['Pstng Date'] - df1['Doc. Date']).dt.days
service_level = 0.95
safety_factor = 1.64
df1['Year'] = pd.to_datetime(df1['Year'], format='%Y')
df1['Month'] = pd.to_datetime(df1['Month'], format='%Y-%m-%d').dt.month
df1['
       Quantity'] = pd.to_numeric(df1[' Quantity'], errors='coerce')
monthly_demand = df1.groupby(['Year', 'Month', 'Material'])[' Quantity'].sum().reset_index()
monthly_demand['Demand Rate'] = monthly_demand['
                                                    Quantity'] / 30
df1['Lead Time'] = (df1['Pstng Date'] - df1['Doc. Date']).dt.days
service_level = 0.95
safety_factor = 1.64 # for 95% service level
```

```
d+1['Demand during lead time'] = monthly_demand['Demand Rate'] * d+1['Lead Time']
stddev_lead_time = df1.groupby('Material')['Demand during lead time'].std()
reorder_point = (monthly_demand['Demand Rate'].mean() * (stddev_lead_time * safety_factor).fillna(0) +
                monthly_demand['Demand Rate'].mean() * df1['Lead Time'].mean())
safety_stock = stddev_lead_time * safety_factor
                                                         + Code -
                                                                    + Text
df1['Year'] = pd.to_datetime(df1['Year'], format='%Y')
df1['Month'] = pd.to_datetime(df1['Month'], format='%Y-%m-%d').dt.month
df1[' Quantity'] = pd.to_numeric(df1[' Quantity'], errors='coerce')
monthly_demand = df1.groupby(['Year', 'Month', 'Material'])[' Quantity'].sum().reset_index()
monthly_demand['Demand Rate'] = monthly_demand[' Quantity'] / 30
df1['Lead Time'] = (df1['Pstng Date'] - df1['Doc. Date']).dt.days
df1 = df1.merge(monthly_demand, on=['Year', 'Month', 'Material'], how='left')
df1['Demand during lead time'] = df1['Demand Rate'] * df1['Lead Time']
stddev_lead_time = df1.groupby('Material')['Demand during lead time'].std()
service_level = 0.95
safety_factor = 1.64 # for 95% service level
reorder_point = (monthly_demand['Demand Rate'].mean() * (stddev_lead_time * safety_factor).fillna(0) +
                monthly demand['Demand Rate'].mean() * df1['Lead Time'].mean())
safety_stock = stddev_lead_time * safety_factor
print(monthly_demand.columns)
     Index(['Year', 'Month', 'Material', ' Quantity', 'Demand Rate',
            'Average monthly demand', 'Lead Time', 'Demand during lead time'],
           dtype='object')
monthly_demand["Average monthly demand"] = monthly_demand["Demand Rate"].rolling(window=3).mean()
# Add the Lead Time column to monthly_demand
monthly_demand = monthly_demand.merge(df1[['Material', 'Lead Time']].drop_duplicates(), on='Material')
monthly demand["Demand during lead time"] = monthly demand["Average monthly demand"] * monthly demand["Lead Time"]
```

✓ 0s completed at 7:00 PM