Practice Problems for Midterm Exam 1

(A little more difficult, and much longer, than the real exam)

1. Consider the following graph G:

- (a) Determine the degree sequence of G, as well as $\delta(G)$ and $\Delta(G)$.
- (b) Draw the complementary graph to G.
- (c) Find a path in G of maximum length, and explain why no longer path is possible.
- (d) Find a trail in G of maximum length, and explain why no longer trail is possible.
- (e) Write down the adjacency matrix of G.
- (f) Find the eccentricity of every vertex of G.
- (g) Find the radius, diameter, and center of G.
- (h) What is the connectivity $\kappa(G)$? Why?
- (h) What is the connectivity and the second of the second
 - (a) Draw the graph G.
 - (b) Find the number of walks of length 3 from vertex v_2 to vertex v_3 in G.
- 3. Prove that there are no graphs with 10 vertices and 46 edges.
- 4. Let G be a graph with 5 vertices and at least 5 edges. Suppose that G has has no isolated vertices. Prove that G is connected.
- 5. Give an example of a graph with 5 vertices and 6 edges that is *not* connected.
- 6. Give an example of a simple graph with 6 vertices and 7 edges that has no isolated points and is *not* connected.
- 7. Let G be a graph. Suppose that for any two vertices $u, v \in V(G)$, there is a unique path from u to v in G. Prove that G is a tree.
- 8. Let T be a tree, and let $e \in E(T)$ be an edge. Prove that e is a bridge, i.e., that T e is disconnected.

(continued next page)

9. Let T be a tree, and let $v \in V(T)$ be a vertex. Define $m = \deg(v)$. Prove that T - v has at least m connected components.

[In fact, it has exactly m, but I'm only asking you to prove "at least" here.]

10. Let T be a tree with at least one vertex of degree at least 3. Prove that there is no trail in T that reaches every vertex.

(Suggestion: use one of the previous two problems.)

- 11. Let T be a tree of order $n \geq 2$. Prove that $\kappa(T) = 1$.
- 12. Use Kruskal's Algorithm to find a minimal spanning tree of the following weighted graph:

- 13. Find an example of a graph G that has a vertex $v \in V(G)$ such that v is a cut vertex of G, but also, v lies on a cycle of G.
- 14. Let G be a graph, and let $e \in E(G)$ be an edge. Suppose that e is not a bridge of G. Prove that e lies on some cycle of G.
- 15. Let G be a graph of order $n \geq 1$ and of size m. Prove that

$$\delta(G) \le \frac{2m}{n} \le \Delta(G).$$

- 16. Let G be a graph with adjacency matrix A.
 - (a) Suppose A is 7×7 . What does this say about G?
 - (b) Suppose exactly 26 of the entries of A are 1's. What does this say about G?
 - (c) Suppose that the (2,5) entry of A^4 is 6. What does this say about G?
 - (d) Suppose that the (3,4) entry of $I+A+A^2$ is 0, but the entire third row of $I+A+A^2+A^3$ is nonzero. What does this say about G?
- 17. Let P_{50} be the path graph with 50 vertices, numbered 1 to 50 from one end to the other. Let A be the associated adjacency matrix.
 - (a) What is the (3,42) entry of A^{20} ? Why?
 - (b) What is the smallest integer $k \geq 0$ such that the (6,38) entry of A^k is nonzero? Why?
 - (c) For k as in part (b), what is the (6,38) entry of A^k ? Why?