"Лабораторная работа № 2.4.1 "Определение теплоты испарения жидкости"

Петров Артём Антонович, группа 721

5 марта 2018 г.

Цель работы: Вычисление теплоты испарения жидкости с помощью уравнения Клапейрона-Клаузиуса.

Оборудование: термостат, герметичный сосуд с исследуемой жидкостью и манометром, отсчётный микроскоп.

Теория

Уравнение Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Где P - давление пара жидкости при температуре T. T - абсолютная температура жидкости (и пара). L - теплота испарения жидкости. V_2 и V_1 - объёмы пара и жидкости соответственно. Величины удельные (на 1 моль).

В нашем опыте можно будет принебречь V_1 по сравнению с V_2 , так как удельный обьём жидкости много меньше удельного обьёма пара при наших порядках температур и давления (в сосуде давление газа (паров) ниже атмосферного). В дальнейшем будем вместо V_2 писать V.

Так как сосуд с жидкостью запаян, а воздух был выкачан из него перед герметизацией, над житкостью находится насыщенный пар.

Он подчиняется уравнению Ван-дер-Ваальса:

$$\left(P + \frac{\alpha}{V^2}\right)(V - b) = RT$$
(2)

Однако, при наших диапазонах P и T, $b \sim V_1 << V_2$ и $\alpha/V^2 << P$. Таким образом получаем уравнение Клапейрона:

$$PV = RT \tag{3}$$

Откуда получаем:

$$V = \frac{RT}{P} \tag{4}$$

Подставляя 4 в 1 и выражая L получаем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{5}$$

Измеряя T термостатом и P с помощью манометра с микроскопом и проведя соответствующие вычисления можно получить зависимость ln(P) от 1/T. По ней можно найти dP/dT и вычислить L по 5.

Установка:

На схеме 1 представлена эксперементальня установка.

Рис. 1: Схема установки: 1 - термостат с системой контроля температуры воды (2,3 и 4); 5 - термометр; 6 - герметичный сосуд с исследуемой жидкостью

Показания манометра снимаются с помощью микроскопа.

Важно помнить, что термометр измеряет не температуру исследуемой жидкости (и её паров) T, а температуру термостата, которая $\sim T$ только при медленном нагреве. Для проверки того, что в нашем эксперименте изменение температуры достаточно медленное снимем зависимость P от T как при нагреве, так и при охлаждении. Если они совпадут, то скорость изменения T выбрана верно.

Ход работы:

Заметим, что поверх одного из столбиков ртути в манометре есть конденсат жидкости. Необходимо будет учитывать его вклад в показания манометра при измерении давления.

Снимаем значения h_{base} - высоту нижнего столбика ртути, $h_{hidrargium}$ - высоту верхнего столбика и h_{spirit} с помощью манометра и микроскопа. Давление паров над жидкостью найдём по формуле:

$$P = ((h_{hidrargium} - h_{base}) * \rho_{hidrargium} - (h_{spirit} - h_{base}) * \rho_{spirit}) * g$$
 (6)

Температуру будем измерять напрямую с помощью термометра.

- 1) Снимем данные для комнатной температуры.
- 2) Повысим температуру на 2 градуса и подождём пока термостат нагреется и установится тепловое равновесие.
 - 3)Снимем данные.
 - 4)Повторим пункты 2 3.
- 5) Теперь отключим термостат и снимем данные для уменьшения температур. (с помощью добавления в термостат холодной водопроводной воды и слива излишков)
 - 6)Вычислим зависимость ln(P) от 1/T.
 - 7) По формуле 5 используя полученную зависимость найдём L.

Записи из журнала:

Выполним пункты 1-4 до достижения температуры в 38 градусов. Установления теплового равновесия будем ждать ~ 1 минуту.

Затем выполним пункт 5 до достижения температуры $\sim 24^\circ$. Заметим, что очень трудно добиться чёткого шага в 2° при понижении температуры указанным методом.

base h	h(rtuti)	extra h(sp	dh	T	T	dΤ	Р	dP	1/T	d(1/T)	In(P)	d(In(P))
mm	mm	mm	mm	celsium	kelvin	kelvin	Pa	Pa	1/kelvin	1/kelvin	In(Pa)	In(Pa)
					ol(b)+273.1		-(col(j)-col(l	ol(I)*14,5*9,	1/col(n1)	d)/col(n1)*co	In(col(a))	(c)/col(a)*co
6,04	10,93	10,765	0,02	20,4	293,6	0,1	608,1	6	0,00341	1E-06	6,41037	0,06
5,82	11,14	10,55	0,02	22,0	295,2	0,1	665,2	6	0,00339	1E-06	6,50012	0,06
5,51	11,53	10,23	0,02	24,0	297,2	0,1	758,3	6	0,00337	1E-06	6,63112	0,05
5,17	11,8	9,9	0,02	26,0	299,2	0,1	839,3	6	0,00334	1E-06	6,73258	0,05
4,83	12,2	9,53	0,02	28,0	301,2	0,1	937,9	6	0,00332	1E-06	6,84366	0,04
4,48	12,54	9,2	0,02	30,0	303,2	0,1	1029	6	0,0033	1E-06	6,93677	0,04
3,95	13,2	8,7	0,02	32,0	305,2	0,1	1187	6	0,00328	1E-06	7,07945	0,03
3,44	13,48	8,17	0,02	34,0	307,2	0,1	1292	6	0,00326	1E-06	7,16432	0,03
2,9	14,03	7,64	0,02	36,0	309,2	0,1	1437	6	0,00323	1E-06	7,27049	0,03
2,26	14,66	7,08	0,02	38,0	311,2	0,1	1605	6	0,00321	1E-06	7,38108	0,03
			-	-			-	-				-
2,93	14,25	7,75	0,02	35,8	309,0	0,1	1462	6	0,00324	1E-06	7,28742	0,03
3,45	13,5	8,33	0,02	33,8	307,0	0,1	1292	6	0,00326	1E-06	7,16432	0,03
3,84	13,13	8,83	0,02	32,2	305,3	0,1	1191	6	0,00328	1E-06	7,08214	0,03
4,27	12,66	9,25	0,02	30,2	303,4	0,1	1071	6	0,0033	1E-06	6,97635	0,04
4,77	12,19	9,74	0,02	27,8	301,0	0,1	942,2	6	0,00332	1E-06	6,8482	0,04
5,44	11,51	10,46	0,02	24,1	297,3	0,1	762,3	6	0,00336	1E-06	6,63638	0,05

Рис. 2: Таблица результатов измерений и их обработки. Обозначения: Измеряемые величины: T - температура воды в термостате, h_{base} - высота более низкого столба ртути, h_{extra} - высота столбика спирта над более низким столбиком ртути, h - высота более высокого столбика ртути; Вычисляемые величины: P - давление пара.

Дальше найдём коэффициент наклона линейной зависимости ln(P)(1/T) и рассчитаем L по формуле 5.

Рис. 3: График

Итог:

$$L = (41900 \pm 500) \frac{J}{mole} \tag{7}$$

Как видно из графика 3 зависимость идеально ложится на прямую, подтверждая предсказания уравнения Клапейрона-Клаузиуса и наших предположений относитьельно малости величин ($b \sim V_1 << V_2$ и $\alpha/V^2 << P$).

Полученное значение 7 не сильно отличается от табличного значения $L_{table} = 40700 \frac{kJ}{mole}$ при атмосферном давлении. Хорошим объяснением того, что полученное значение ниже табличного является то, что давление в герметичном сосуде ниже атмосферного, а известно, что при понижении давления, L растёт.