A function f is called *increasing* if $f(s) \leq f(t)$ holds for every $s \leq t$. Consider the formula:

$$\lim_{x \to 0} \left\{ \lim_{n \to \infty} \left[\sum_{i=1}^{n} \left(f(nx) - \int_{0}^{x} \sin(nx) \, dx \right), \frac{\left((x + \frac{2}{8})^{2} - 5 \right)}{\left(\frac{4x - 1}{x^{2}} \right) / (n \oplus 3)}, \frac{\left((x + \frac{2}{8})^{2} - 5 \right)}{\left(\frac{4x - 1}{x^{2}} \right) / (n \oplus 3)}, \frac{1}{1} \right\} \times \frac{1}{1} \right\} \times \frac{1}{1} \cdot \frac{$$

This gives us a good impression about the function.