Finding isogenies of fixed degree between supersingular elliptic curves

Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit, Miha Stopar, Charlotte Weitkämper

December 12th, 2023

Isogeny Club - Season Three

Contents

Motivation

General strategy

Improved algorithms for solving the norm form

Hybrid approach

Conclusion

Isogeny problems

When looking at supersingular elliptic curves, naturally questions about isogenies between specific curves arise:

- The pure isogeny problem: find any isogeny between given supersingular elliptic curves.
- The SIDH variant: find an isogeny of specific degree and torsion action between given supersingular curves.
- The *fixed-degree variant*: find an isogeny of specific degree between given supersingular curves.

The problem of finding fixed-degree isogenies

Problem

Let p be a prime, and E_1 and E_2 supersingular elliptic curves defined over \mathbb{F}_{p^2} . Let d be a positive integer. Find an isogeny $E_1 \to E_2$ of degree d.

We want to examine the general problem where (other than size) there are no restrictions on the degree d.

Let $\epsilon > 0$ be such that $d \approx p^{1/2+\epsilon}$.

The state of the art

Computing endomorphism rings takes

- $O^*(p^{1/2})$ classically.
- $O^*(p^{1/4})$ quantumly with Grover.

Computing fixed-degree isogenies classically via

- exhaustive search over all outgoing isogenies: cost O(d).
- meet-in-the-middle: cost $O^*(\sqrt{d})$ time and memory.
- van Oorschot-Wiener collision search variants: cost depends heavily on available memory.

Quantum speed-ups:

- Grover's algorithm improves exhaustive search to $O^*(\sqrt{d})$.
- (Tani's algorithm: $d^{1/3}$.)

The state of the art

Computing endomorphism rings takes

- $O^*(p^{1/2})$ classically.
- $O^*(p^{1/4})$ quantumly with Grover.

Computing fixed-degree isogenies classically via

- exhaustive search over all outgoing isogenies: cost O(d).
- meet-in-the-middle: cost $O^*(\sqrt{d})$ time and memory.
- van Oorschot-Wiener collision search variants: cost depends heavily on available memory.

Quantum speed-ups:

- Grover's algorithm improves exhaustive search to $O^*(\sqrt{d})$.
- (Tani's algorithm: $d^{1/3}$.)

The state of the art

Computing endomorphism rings takes

- $O^*(p^{1/2})$ classically.
- $O^*(p^{1/4})$ quantumly with Grover.

Computing fixed-degree isogenies classically via

- exhaustive search over all outgoing isogenies: cost O(d). (general d, but specifically primes)
- meet-in-the-middle: cost $O^*(\sqrt{d})$ time and memory. (smooth d)
- van Oorschot-Wiener collision search variants: cost depends heavily on available memory. (smooth d)

Quantum speed-ups:

- Grover's algorithm improves exhaustive search to $O^*(\sqrt{d})$. (general d, but specifically primes)
- (Tani's algorithm: $d^{1/3}$.)

Our strategy

- 1. Compute the endomorphism rings of E_1 and E_2 .
- 2. Construct a connecting ideal between these two quaternion orders.
- 3. Compute the norm form associated to $Hom(E_1, E_2)$.
- 4. Represent d via this norm form.
- 5. Compute an ideal equivalent to the connecting ideal of correct norm.
- 6. Convert the ideal back to an isogeny representation.

Individual steps I

- 1. Compute the endomorphism rings of E_1 and E_2 . $\implies O_1$ and O_2 can be found using Eisenträger et al. (and Grover for quantum speed up).
- 2. Construct a connecting ideal between O_1 and O_2 . \implies Kirschmer and Voight provide an efficient algorithm for finding I.
- 3. Compute the norm form associated to $Hom(E_1, E_2)$. \Longrightarrow First compute an LLL-reduced Gram matrix G of the ideal I, where $g_{ij} = \langle \sigma_i, \sigma_j \rangle = tr(\sigma_i \overline{\sigma_j})$ for σ_i a basis of I. Then normalise the matrix by Norm(I) and compute the associated norm form Q:

$$Q(x_1, x_2, x_3, x_4) = (x_1 x_2 x_3 x_4) G(x_1 x_2 x_3 x_4)^T$$

4. Represent d via this norm form.

 \implies Find a solution to $Q(x_1, x_2, x_3, x_4) = d$, where Q is a quadratic form and we have bounds on the x_i .

Individual steps II

- 5. Compute an ideal equivalent to the connecting ideal of correct norm.
 - \implies Like in KLPT can compute J with of norm d such that $J \approx I$.
- 6. Convert the ideal back to an isogeny representation.
 - \implies Depending on d, this can mean a sequence of rational maps or a representation like Robert's for non-smooth degrees.

Our main task

- 1. Compute the endomorphism rings of E_1 and E_2 .
- 2. Construct a connecting ideal between these two quaternion orders.
- 3. Compute the norm form associated to $Hom(E_1, E_2)$.
- 4. Represent d via this norm form. \implies Find a solution to $Q(x_1, x_2, x_3, x_4) = d$, where Q is a quadratic form and we have bounds on the x_i .
- 5. Compute an ideal equivalent to the connecting ideal of correct norm.
- 6. Convert the ideal back to an isogeny representation.

Solve Step 4 given that $Norm(\sigma_i) \approx \sqrt{p}$ for σ_i with i = 1, ..., 4 an LLL-reduced basis of I and $|x_i| < c \cdot p^{\epsilon/2}$.

Solving Step 4: Cornacchia's algorithm I

- Need to find a solution to multivariate equation $Q(x_1, x_2, x_3, x_4) = d$.
- From the way a basis of the lattice I is computed, we have bounds on $|x_i|$.
- Guess two variables, say $k = x_3$ and $l = x_4$.
- Thus we want to solve the equation

$$\begin{split} f(x_1,x_2) &= Q(x_1,x_2,k,I) - d \\ &= g_{11}x_1^2 + g_{22}x_2^2 + 2g_{12}x_1x_2 \\ &+ (2g_{13}k + 2g_{14}I)x_1 + (2g_{23}k + 2g_{24}I)x_2 \\ &+ (2g_{34}kI + g_{33}k^2 + g_{44}I^2 - d), \end{split} \tag{quadratic}$$

Solving Step 4: Cornacchia's algorithm II

Changing variables transforms

$$f(x_1,x_2) = Q(x_1,x_2,k,l) - d$$

into an equation of the form

$$x^2 - Dy^2 = N$$

which can be solved with Cornacchia's algorithm given that N does not have too many prime factors as we need to factor N to find all square roots of D(modN).

- If we do not find a solution we make another guess for (x_3, x_4) .
- We can show that if N has at most $B \log \log N$ distinct prime divisors for B=11, we obtain a solution in >99% of cases after working through all guesses. Abandoning N with more prime divisors leads to a small failure probability.
- **Complexity**: quantum time $O^*(p^{\epsilon/2})$, $O^*(p^{\epsilon}) \cdot L_{\log p}(1/3)$ classically, or the algorithm returns no solution.

Solving Step 4: Coppersmith's algorithms I

- Again, need to find a solution to multivariate equation $Q(x_1, x_2, x_3, x_4) = d$, and guess one or two variables.
- Using Coppersmith variants due to Coron and Bauer–Joux, we want to solve the remaining bivariate or trivariate equation.
- Restrictions on the size of ϵ arise from Coppersmith limitations.
- Bivariate Coron complexity: $O^*(p^{\epsilon})$ classically or $O^*(p^{\epsilon/2})$ on a quantum computer when $\epsilon < 1/2$.
- Trivariate Bauer–Joux complexity: $O^*(p^{\epsilon/2})$ classically or $O^*(p^{\epsilon/4})$ on a quantum computer.

More guessing: a hybrid approach

- If the degree d is sufficiently smooth, we can additionally guess parts of the isogeny starting from E_1 or E_2 to decrease the parameter sizes of the norm equation.
- Let $d=\ell^epprox p^{1/2+\epsilon}$ such that ϵ is too large for the other methods to work efficiently.
- New strategy:
 - 1. Guess ℓ^{e_1} -isogeny $\phi_1: E_1 \to E$.
 - 2. Use ϕ_1 to compute End(E) from $End(E_1)$.
 - 3. Solve the fixed-degree isogeny problem with E and E_2 for degree ℓ^{e-e_1} to obtain ϕ_2 , or guess again.
 - 4. Compose ϕ_2 with ϕ_1 to find a solution to the original problem.
- Classically we obtain a complexity of $O^*(\max\{p^{1/2},p^{\epsilon-1/8}\})$ with Coppersmith's trivariate method.

Cost of our algorithms (in log_p)

Method	Cost (classical)	Cost (quantum)	Condition on size
State of the art (general d)	$\frac{1}{2} + \epsilon$	$rac{1}{4}+rac{\epsilon}{2}$	
Cornacchia	(1 2-)	(1 -)	
(our version)	$\max\{rac{1}{2},2\epsilon\}$	$max\{rac{1}{4},\epsilon\}$	
Coppersmith bivariate	$\max\{rac{1}{2},2\epsilon\}$	$\max\{rac{1}{4},\epsilon\}$	$\epsilon < 1/4$
Coppersmith trivariate	$\max\{rac{1}{2},\epsilon\}$	$\max\{rac{1}{4},rac{\epsilon}{2}\}$	$\epsilon < 0.16$
Hybrid approach $(smooth d)$	$\max\{\tfrac{1}{2},\epsilon-\tfrac{1}{8}\}$	$\max\{rac{1}{4},rac{\epsilon}{2}\}$	$\epsilon > 1/4$

Results

Smooth degrees (classical)

- Comparison to MITM with $p^{1/4+\epsilon/2}$.
- We always compute endomorphism rings, so we consider $\epsilon > 1/2$.
- The hybrid algorithm works best in ranges $p \le d \le p^{5/4}$.
- MITM has large memory-requirements, while our algorithms are low-memory and parallelisable.

Non-smooth degrees (classical)

- All methods have same complexity.
- For ranges $\sqrt{p} < d < p^3$, any algorithm improves upon the state of the art.

Quantum algorithms

- No difference between smooth and non-smooth.
- For ranges $\sqrt{p} < d < p^3$, the Cornacchia approach is fastest.
- For ranges $\sqrt{p} < d < p$, bivariate Coppersmith is preferable (no heuristics).

Summary

- We provide improved algorithms for computing *d*-isogenies using Cornacchia's algorithm and Coppersmith methods to solve Diophantine equations.
- Further improvements can stem from hybrid algorithms utilising Coppersmith's trivariate algorithm.
- The Cornacchia approach has no condition on the size of the parameters but requires a small heuristic.
- The Coppersmith approaches have conditions on the size of the degree but require no heuristics.
- We improve isogeny finding where $d=p^{1/2+\epsilon}$ for $1/2<\epsilon<5/2$ in different settings.

Open questions & further ideas

- Perform more experiments.
- Can these algorithms be utilised constructively?
- Work on Coppersmith variants which do not involve any guessing (solve the four-variable equation directly).

Thank you!

References I

- Bauer, Aurélie and Joux Antoine. "Toward a Rigorous Variation of Coppersmith's Algorithm on Three Variables". In: *Advances in Cryptology EUROCRYPT 2007*. 2007.
- Coppersmith, Don. "Finding a small root of a bivariate integer equation; factoring with high bits known". In: Advances in Cryptology EUROCRYPT 1996. 1996.
- . "Finding a small root of a univariate modular equation". In: Advances in Cryptology EUROCRYPT 1996. 1996.
- Cornacchia, Giuseppe. "Su di un metodo per la risoluzione in numeri interi dell'equazione $\sum_{h=0}^{n} c_h x^{n-h} y^h = p$ ". In: Giornale di Matematiche di Battaglini (1908).
- Coron, Jean-Sébastien. "Finding small roots of bivariate integer polynomial equations: A direct approach". In: Advances in Cryptology CRYPTO 2007. 2007.
- Eisenträger, Kirsten et al. "Computing endomorphism rings of supersingular elliptic curves and connections to path-finding in isogeny graphs". In: *Open Book Series* (2020).

References II

- Galbraith, Steven D. et al. "On the Security of Supersingular Isogeny Cryptosystems". In: Advances in Cryptology ASIACRYPT 2016.
- Grover, Lov K. "A fast quantum mechanical algorithm for database search". In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996.
- Kohel, David et al. "On the quaternion ℓ -isogeny path problem". In: LMS Journal of Computation and Mathematics (2014).