Chapter 1.2 Gaussian Elimination and Gauss-Jordan Elimination

IRISH C. SIDAYA

Definition

If m and n are positive integers, an $m \times n$ (read "m by n") **matrix** is a rectangular array

	Column 1	Column 2	Column 3		Column n
Row 1	a_{11}	a_{12}	a_{13}		a_{1n}
Row 2	a_{21}	a_{22}	a_{23}		a_{2n}
Row 3	a_{31}	a_{32}	a_{33}		a_{3n}
:	:	•	:		:
$\mathrm{Row}\ m$	a_{m1}	a_{m2}	a_{m3}	• • •	a_{mn}

in which each **entry**, a_{ij} , of the matrix is a number. An $m \times n$ matrix has m rows and n columns. Matrices are usually denoted by capital letters.

Definition

If m and n are positive integers, an $m \times n$ (read "m by n") **matrix** is a rectangular array

	Column 1	Column 2	Column 3	 Column n
Row 1	a_{11}	a_{12}	a_{13}	 a_{1n}
Row 2	a_{21}	a_{22}	a_{23}	 a_{2n}
Row 3	a_{31}	a_{32}	a_{33}	 a_{3n}
:	:	:	:	:
$\mathrm{Row}\ m$	a_{m1}	a_{m2}	a_{m3}	 a_{mn}

in which each **entry**, a_{ij} , of the matrix is a number. An $m \times n$ matrix has m rows and n columns. Matrices are usually denoted by capital letters.

Remarks:

- The entry a_{ij} is located in the *i*th row and *j*th column.
- The index i is called the **row subscript** and the index j is called the **column subscript**.

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Example

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Example

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Example

$$\bullet$$
 [2] \Longrightarrow size: 1×1

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Example

$$\bullet$$
 [2] \Longrightarrow size: 1×1

Matrices are commonly used to represent systems of linear equations. The matrix derived from the coefficients and constant terms of a system of linear equations is called the **augmented matrix** of the system.

Sizes of Matrices

A matrix with m rows and n columns is said to be of **size** $m \times n$. When m = n, the matrix is called **square** of **order** n and the entries $a_{11}, a_{22}, a_{33}, \ldots$ are called the **main diagonal** entries.

Example

$$\bullet$$
 [2] \Longrightarrow size: 1×1

Matrices are commonly used to represent systems of linear equations. The matrix derived from the coefficients and constant terms of a system of linear equations is called the **augmented matrix** of the system. The matrix containing only the coefficients of the system is called the **coefficient matrix** of the system.

Example

$$\begin{aligned}
c - 4y + 3z &= 5 \\
-x + 3y - z &= -3
\end{aligned}$$

System Augmented Matrix Coefficient Matrix

$$\begin{bmatrix}
1 & -4 & 3 \\
-1 & 3 & -1 \\
2 & 0 & -4
\end{bmatrix}$$

Elementary Row Operations

- Interchange two rows.
- 2 Multiply a row by a nonzero constant.
- **3** Add a multiple of a row to another row.

Note

- An elementary row operation on an augmented matrix produces a new augmented matrix corresponding to a new (but equivalent) system of linear equations.
- Two matrices are **row-equivalent** when one can be obtained from the other by a finite sequence of elementary row operations

To keep track of each elementary row operation you perform, it is helpful to use a shorthand method of notation such as:

To keep track of each elementary row operation you perform, it is helpful to use a shorthand method of notation such as:

• Interchanging the first and second rows: $R_1 \leftrightarrow R_2$

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \leftrightarrow R_2 \\ \Longrightarrow \end{matrix} \quad \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

To keep track of each elementary row operation you perform, it is helpful to use a shorthand method of notation such as:

• Interchanging the first and second rows: $R_1 \leftrightarrow R_2$

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \leftrightarrow R_2 \\ \Longrightarrow \end{matrix} \quad \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

• Multiplying the first row by $\frac{1}{2}$ to produce a new first row: $(\frac{1}{2}) R_1 \to R_1$

$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \quad \stackrel{\left(\frac{1}{2}\right)}{=} R_1 \quad \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$

To keep track of each elementary row operation you perform, it is helpful to use a shorthand method of notation such as:

• Interchanging the first and second rows: $R_1 \leftrightarrow R_2$

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \quad \begin{matrix} R_1 \leftrightarrow R_2 \\ \Longrightarrow \end{matrix} \quad \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

• Multiplying the first row by $\frac{1}{2}$ to produce a new first row: $(\frac{1}{2}) R_1 \to R_1$

$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \quad \stackrel{\left(\frac{1}{2}\right)}{\Longrightarrow} R_1 \xrightarrow{} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$

• Add -2 times the first row to the third row to produce a new third row: $R_3 + (-2) R_1 \rightarrow R_3$

$$\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix} \qquad R_3 + (-2)R_1 \to R_3 \qquad \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 0 & -3 & 13 & -8 \end{bmatrix}$$

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Row-Echelon Form (REF) and Reduced Row-Echelon Form (RREF)

A matrix in **row-echelon form** has the following properties:

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Row-Echelon Form (REF) and Reduced Row-Echelon Form (RREF)

A matrix in **row-echelon form** has the following properties:

• Any rows consisting entirely of zeros occur at the bottom of the matrix.

Sidaya, Irish C. 5 / 10

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Row-Echelon Form (REF) and Reduced Row-Echelon Form (RREF)

A matrix in **row-echelon form** has the following properties:

- Any rows consisting entirely of zeros occur at the bottom of the matrix.
- 2 For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a **leading 1**).

5/10

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Row-Echelon Form (REF) and Reduced Row-Echelon Form (RREF)

A matrix in **row-echelon form** has the following properties:

- Any rows consisting entirely of zeros occur at the bottom of the matrix.
- ② For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a **leading 1**).
- For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.

Example

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Row-Echelon Form (REF) and Reduced Row-Echelon Form (RREF)

A matrix in **row-echelon form** has the following properties:

- Any rows consisting entirely of zeros occur at the bottom of the matrix.
- 2 For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a **leading 1**).
- **3** For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.

A matrix in row-echelon form is in reduced row-echelon form when every column that has a leading 1 has zeros in every position above and below its leading 1.

Sidaya, Irish C. 5 / 10

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

whether the matrix is in redu
a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
b.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
d.
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

d. frow-echelon form.
$$\begin{bmatrix}
1 & 2 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 1 & 2 & -4 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

e.
$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

row-echelon form.
$$\begin{bmatrix}
1 & 2 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 1 & 2 & -4 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
e.
$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

e.
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
f.
$$\begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
b.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
d.
$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
e.
$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$
f.
$$\begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: (a), (c), (d) and (f) are in row-echelon form and (d) and (f) are in reduced row-echelon form.

 ✓ □ → ✓ □ → ✓ Ē → ✓ Ē → ○ Ē → ○ ○

 Sidava, Irish C.

Gaussian Elimination

Gaussian Elimination with Back-Substitution

- Write the augmented matrix of the system of linear equations.
- **②** Use elementary row operations to rewrite the matrix in row-echelon form.
- Write the system of linear equations corresponding to the matrix in row-echelon form, and use back-substitution to find the solution.

Examples

1

$$\begin{cases} x_2 + x_3 - 2x_4 = -3\\ x_1 + 2x_2 - x_3 = 2\\ 2x_1 + 4x_2 + x_3 - 3x_4 = -2\\ x_1 - 4x_2 - 7x_3 - x_4 = -19 \end{cases}$$

2

$$\begin{cases} x_1 - x_2 + 2x_3 = 4 \\ x_1 + x_3 = 6 \\ 2x_1 - 3x_2 + 5x_3 = 4 \\ 3x_1 + 2x_2 - x_3 = 1 \end{cases}$$

Gauss- Jordan Elimination

With Gaussian elimination, you apply elementary row operations to a matrix to obtain a (row-equivalent) row-echelon form. A second method of elimination, called **Gauss-Jordan elimination**, after Carl Friedrich Gauss and Wilhelm Jordan (1842–1899), continues the reduction process until a reduced row-echelon form is obtained.

Gauss- Jordan Elimination

With Gaussian elimination, you apply elementary row operations to a matrix to obtain a (row-equivalent) row-echelon form. A second method of elimination, called **Gauss-Jordan elimination**, after Carl Friedrich Gauss and Wilhelm Jordan (1842–1899), continues the reduction process until a reduced row-echelon form is obtained.

Examples

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

Gauss- Jordan Elimination

With Gaussian elimination, you apply elementary row operations to a matrix to obtain a (row-equivalent) row-echelon form. A second method of elimination, called **Gauss-Jordan elimination**, after Carl Friedrich Gauss and Wilhelm Jordan (1842–1899), continues the reduction process until a reduced row-echelon form is obtained.

Examples

1

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$

2

$$\begin{cases} 2x_1 + 4x_2 - 2x_3 = 0 \\ 3x_1 + 5x_2 = 1 \end{cases}$$

Systems of linear equations in which each of the constant terms is zero are called **homogeneous**. A homogeneous system of equations in m variables has the form

9/10

Systems of linear equations in which each of the constant terms is zero are called **homogeneous**. A homogeneous system of equations in m variables has the form

A homogeneous system must have at least one solution. Specifically, if all variables in a homogeneous system have the value zero, then each of the equations must be satisfied. Such a solution is called **trivial**.

Systems of linear equations in which each of the constant terms is zero are called **homogeneous**. A homogeneous system of equations in m variables has the form

A homogeneous system must have at least one solution. Specifically, if all variables in a homogeneous system have the value zero, then each of the equations must be satisfied. Such a solution is called **trivial**.

Example

Solve the system of linear equations

$$\begin{cases} x_1 - x_2 + 3x_3 = 0 \\ 2x_1 + x_2 + 3x_3 = 0 \end{cases}$$

Theorem

Every homogeneous system of linear equations is consistent. Moreover, if the system has fewer equations than variables, then it must have infinitely many solutions.

Theorem

Every homogeneous system of linear equations is consistent. Moreover, if the system has fewer equations than variables, then it must have infinitely many solutions.

Exercise

Solve the following by Gauss-Jordan elimination

Solve the following by Gauss-Jordan elimination

1.
$$\begin{cases} x + 2y = 0 \\ x + y = 6 \\ 3x - 2y = 8 \end{cases} = \begin{cases} x_1 + x_2 - 5x_3 = 3 \\ x_1 - 2x_3 = 1 \\ 2x_1 - x_2 - x_3 = 0 \end{cases}$$

$$\begin{cases} 2x + y - z + 2w = -6 \\ 3x + 4y + w = 1 \\ x + 5y + 2z + 6w = -3 \\ 5x + 2y - z - w = 3 \end{cases}$$