

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

5^a Lista de Física Geral IV

Horários e salas		
Terça-Feira	17:15 - 19:15	Bloco C34 - Sala 105
Quinta-Feira	17:15 - 19:15	Bloco C34 - Sala 101
Sexta-Feira	17:15 - 19:15	Bloco C34 - Sala 101

1 - (Circuito puramente resistivo em AC) Considere um circuito formado por um resistor R e um gerador de corrente alternada cuja força eletromotriz é dada pela equação

$$\epsilon(t) = V_m cos(\omega t)$$

Escreva a tensão e a corrente em função do tempo no resistor. Escreva a Lei de Ohm para esse circuito. Faça um diagrama de fasores e descreva suas propriedades.

2 - (Circuito puramente indutivo em AC) Considere um circuito formado por um indutor L e um gerador de corrente alternada cuja força eletromotriz é dada pela equação

$$\epsilon(t) = V_m cos(\omega t)$$

Encontre a tensão e a corrente em função do tempo. Explique o que é a chamada reatância indutiva. Escreva a Lei de Ohm para esse circuito. Faça um diagrama de fasores e encontre a diferença de fase entre a corrente e a tensão.

3 - (Circuito puramente capacitivo em AC) Considere um circuito formado por um capacitor
C e um gerador de corrente alternada cuja força eletromotriz é dada pela equação

$$\epsilon(t) = V_m cos(\omega t)$$

Encontre a tensão, a carga no capacitor e a corrente em função do tempo. Explique o que é a chamada reatância capacitiva. Escreva a Lei de Ohm para esse circuito. Faça um diagrama de fasores e encontre a diferença de fase entre a corrente e a tensão.

4 - (Circuito RL em AC). Considere um circuito composto por um gerador AC $\epsilon(t) = V_m cos(\omega t)$, um indutor e um resistor. Mostre que a corrente estacionária nesse sistema pode ser escrita como,

$$I(t) = \frac{V_m}{Z}cos(\omega t - \phi_L)$$

sendo $Z=R^2+\omega^2L^2$ a chamada impedância do circuito e $\phi_L=\arctan(\omega L/R)$ a fase da corrente. Represente a corrente e a tensão entre os terminais do indutor e do resistor usando fasores e verifique que a corrente está atrasada uma fase igual a ϕ_L em relação a tensão. Verifique que para $R\to 0$, $\phi_L\to \pi/2$, como encontramos ao resolver o Problema 2.

5 - (Circuito RC em AC). Considere um circuito composto por um gerador AC $\epsilon(t) = V_m cos(\omega t)$, um capacitor e um resistor. Mostre que a corrente estacionária nesse sistema pode ser escrita como,

$$I(t) = \frac{V_m}{Z}cos(\omega t - \phi_C)$$

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

sendo $Z=R^2+1/(\omega^2C^2)$ a chamada impedância do circuito e $\phi_C=\arctan(1/(\omega RC)$ a fase da corrente. Represente a corrente e a tensão entre os terminais do capacitor e do resistor usando fasores e verifique que a corrente está adiantada uma fase igual a ϕ_L em relação a tensão. Verifique que para $R\to 0$, $\phi_C\to \pi/2$, como encontramos ao resolver o Problema 3.

6 - (Circuito RLC em AC). Considere um circuito formado por um capacitor, um indutor, um resistor e um gerador AC $\epsilon(t) = V_m cos(\omega t)$. Obtenha a expressão que descreve a corrente estacionária nesse sistema, isto é, mostre que:

$$I(t) = \frac{V_m}{Z}cos(\omega t - \phi)$$

sendo Z o módulo da impedância complexa $\bar{Z}=R+i[\omega L-1/(\omega C)]$ e $\phi=\arctan\left(\frac{\omega L-1/\omega C}{R}\right)$ a fase da corrente. Esboce um gráfico da corrente máxima $I_m=V_m/Z$ em função de ω do problema anterior e verifique que essa função tem um máximo em $\omega=\omega_0=1/\sqrt{LC}$

 $\bf 7$ - A lei de Ampère na forma integral apresenta um problema relacionado à conservação da carga. Uma maneira de observar esse problema é considerar um processo de carga e descarga de um capacitor. A figura abaixo ilustra a aplicação da lei de Ampère para dois caminhos C e C' num circuito onde existe um capacitor sendo carregado. Aplique a lei de Ampère nas duas situações para observar que há uma descontinuidade na corrente.

Figura 1: Figura referente ao problema 7.

- 8 Quais são as equações de Maxwell (já com a correção na lei de Ampere) e qual a interpretação física de cada uma? Utilizando os teoremas de *Stokes* (rotacional) e *Gauss* (divergente), passe as equações de Maxwell da forma integral para a diferencial.
- 9 Utilizando as equações de Maxwell obtenha a equação de onda para o campo elétrico \vec{E} , para o campo magnético \vec{B} e para o caso geral unidimensional.
 - 10 A densidade de energia armazenada eletromagnética pode ser escrita como

$$U = \frac{1}{2}\varepsilon_o \vec{E}^2 + \frac{1}{2}\frac{\vec{B}^2}{\mu_o}$$

Sendo a taxa de variação temporal de U expressa por

$$-\frac{\partial U}{\partial t} = \vec{J} \cdot \vec{E} + \nabla \cdot \vec{S}$$

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

com $\vec{S} = \frac{1}{\mu_o} \vec{E} \times \vec{B}$ sendo o vetor de *Poynting*. (a) Argumente que o primeiro termo dessa expressão $(\vec{J} \cdot \vec{E})$ representa o trabalho por unidade de tempo e volume realizado pelo campo \vec{E} sobre as cargas. (b) Integrando a expressão para $-\frac{\partial U}{\partial t}$ em um volume V e usando o Teorema da Divergência, mostre que \vec{S} deve representar um fluxo de energia eletromagnética para fora do volume V.

- 11 Para uma onda eletromagnética plana $(\vec{E} = \vec{\epsilon}E \text{ e } \vec{B} = \frac{1}{c}\hat{v} \times \vec{E})$ calcule a densidade de energia U. Observe que, em cada instante de tempo, metade dessa densidade de energia encontra-se na forma magnética e metade na forma elétrica. Aproveite e calcule também o vetor de *Poynting*.
- 12 (a) Enuncie o princípio de *Huygens* e o princípio de *Fermat*. (b) Utilizando o princípio de *Fermat* deduza a lei de Reflexão e a lei de *Snell*.
- 13 Um feixe de luz monocromático é refletido e refratado num ponto A da interface entre o material 1, cujo índice de refração é $n_1 = 1,33$, e o material 2, cujo o índice de refração é $n_2 = 1,77$. O feixe incidente faz um ângulo de 50° com a interface. Qual é o ângulo de reflexão no ponto A? Qual é o ângulo de refração?
- 14 Um modelo simplificado de fibra óptica consiste em um material (a fibra) com índice de refração n_f , envolvido por um revestimento cujo índice de refração é $n_c < n_f$. Qual deve ser o ângulo de incidência θ para que o feixe de luz fique confinado no interior da fibra? Suponha que o índice de refração no meio exterior a fibra seja n. Em seus cálculos, você deverá encontrar a quantidade $n \sin(\theta)$, a qual é conhecida como abertura numérica da fibra.

Figura 2: Figura referente ao problema 14.