Introdução à Redes Neurais Artificiais

Alexandre Heiden

Universidade do Estado de Santa Catarina – UDESC/CCT
Departamento de Ciência da Computação – DCC
Programa de Pós-Graduação em Computação Aplicada - PPGCA
alexandreheiden@hotmail.com

Joinville – SC 2021/2

Roteiro

- Objetivo da Aula
- Requisitos Básicos
- ▶ Introdução à Redes Neurais Artificiais
- Aprendizado Supervisionado

Objetivo da Aula

- Desmistificação de Redes Neurais Artificiais
 - Conceitos básicos
 - Aplicações
 - Exercícios práticos

Ninguém sairá expert em redes neurais depois de apenas uma aula!

Requisitos Básicos

► Álgebra: vetores, matrizes, operações matriciais

Estatística

Linguagem de programação: Python ou R

O que são Redes Neurais Artificiais?

- ▶ Redes neurais artificiais são sistemas computacionais
 - Baseados no funcionamento do cérebro humano
- Abstração da biologia para a computação
 - ► Sistema nervoso: componentes e funcionamento

A. Heiden MEP - PPGCA Novembro/21

Generalização:

Dados incompletos:

Ruído:

- Nosso cérebro possui habilidades que são difíceis de serem reproduzidas por algoritmos convencionais
- Nosso cérebro possui capacidade limitada em algumas tarefas onde as máquinas se saem muito melhor
- Paradigma convencional de programação: problemas complexos requerem soluções complexas
- ▶ Redes neurais: aprendem as regras sozinhas, são autoprogramáveis

Aplicações

▶ Processamento de sinais

Jogos

Auxílio no diagnóstico médico

Agricultura

► Mineração de dados

Química

Veículos aéreos não tripulados

Biologia

Carros autônomos

Música

Finanças

Astronomia

Aplicações

- ► Classificação de Padrões
- Aproximação de Funções
- Segmentação em Classes
- Predição de Séries Temporais

Neurônio Biológico

 Inspiração biológica para as redes neurais artificiais

► Componentes e funcionamento

Neurônio Artificial

- Sinais de entrada
- ► Integrador
- ► Função de ativação
- Bias

Redes Neurais Artificiais

- ► Conjunto de neurônios artificiais organizados de uma determinada forma
 - Arquitetura
- Altíssimo poder (e custo) computacional
- Atributos descritos numericamente!

Redes Neurais Artificiais

Aprendizado

- Fundamental para o funcionamento das RNAs
- ► Processo de ajuste dos parâmetros internos da rede
- ► São 3 os tipos: **supervisionado**, não-supervisionado e por reforço

Aprendizado Supervisionado

Atributos: cor, textura, peso

Aprendizado Supervisionado

Amostra	Cor	Textura	Peso (g)	Fruta
1	Vermelho	Lisa	113	Maçã
2	Verde	Rugosa	122	Laranja
3	Verde	Lisa	124	Maçã
4	Marrom	Áspera	76	Kiwi
5	Laranja	Rugosa	121	Laranja
6	Marrom	Áspera	85	Kiwi
7	Vermelho	Lisa	109	Maçã
8	Marrom	Áspera	66	Kiwi
9	Verde	Rugosa	110	Laranja

Aprendizado Supervisionado

Neurônio Artificial

$$v = \sum_{i=1}^{n} x_n w_n + b \qquad (1)$$

$$y = f(v) \tag{2}$$

Função de Ativação

1) Degrau bipolar

$$f(v) = \begin{cases} +1, se \ v \ge 0 \\ -1, se \ v < 0 \end{cases}$$

2) Sigmóide

$$f(v) = \frac{1}{1 + e^{-av}}$$

Implementação: Perceptron

- ► Estrutura do *perceptron*
- ► Importância dos elementos
- ► Algoritmo de treinamento
- Extração de dados do problema

Complexidade

▶ Problemas com mais de 2 classes

▶ Problemas com classes que não são linearmente separáveis

▶ O que fazer?

Próxima Aula

► Algoritmo de Aprendizado: Backpropagation

Implementação da primeira rede neural: Perceptron de Múltiplas Camadas (MLP)

Introdução à Redes Neurais Artificiais

Alexandre Heiden

Universidade do Estado de Santa Catarina – UDESC/CCT
Departamento de Ciência da Computação – DCC
Programa de Pós-Graduação em Computação Aplicada - PPGCA
alexandreheiden@hotmail.com

Joinville – SC 2021/2

