Machine Learning Prediction in mHealth Data

Team 15: Xiaoxuan Han, Hunter Ponzzebon, Gwen Eagle

Introduction:

Dataset:

- mHealth data (999,999 records, 14 variables);
- Time-series data on linear and angular motion on the x-,y-,z-axis during 13 different activities
- Goal: To build a machine learning model that can accurately ascertain activity type based on multidimensional time series data
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory Neural Network (LSTMNN)

Data Engineering & EDA:

Data Engineering:

- Data split into 80% for training and 20% for test;
- Data normalization;
- Addressed class imbalance: undersampled class 0 and oversampled class 12;
- Sequence generation

♦ EDA:

- No missing data;
- Correlation heatmap on 12 sensors

Model Comparisons

RNN:

256 hidden units, 100 epochs, learning rate = 0.001/0.00001, batch size = 512, regularization term = 0.0001/0.00001

Binary class

Features: 12 motions (linear and angular motion on the x-,y-,z-axis) **Target:** Activity (multi-classes vs. binary classes)

LSTMNN:

❖ 256 hidden units, 20 epochs, learning rate = 0.001/0.00001, a batch size = 512, regularization term = 0.0001/0.00001

Findings: The RNN and LSTMNN model for the activity type performed similarly (validation accuracy of ~20%); the RNN and LSTMNN model for the presence of activity performed similarly (validation accuracy of ~62%).

Limitations: A high degree of overfitting might have occurred in both models, potentially due to the models trying to predict a high number of classes based on a low number of subjects, as well as a high degree of class imbalance.