33. Dokumentové databáze- koncept, srovnání s key-value úložišti, pojem dokument, výhody a nevýhody. MongoDB- charakteristika a architektura.

Dokumentové databáze- Koncept, srovnání s key-value úložišti a pojem dokument

- označovány také jako
 - dokumentově orientované databáze
 - úložiště dokumentů
- v současnosti asi nejpoužívanější typ NoSQL databází
- v principu podobné key-value úložištím
 - zachován princip key-value (klíč-hodnota)
 - key jednoznačným identifikátorem value
 - ale value obsahují strukturovaná nebo částečně strukturovaná data
 - tzv. dokumenty
 - samotná data mohou být indexována a dotazována
 - indexy nad atributy dat
 - dotazy na strukturu dat i na prvky v této struktuře
 - je možné získat jen požadované části dokumentů

základní stavební prvky dokumentových databází

- zapouzdřují a kódují data v definovaném formátu (kódování)
 - implementace se liší databázi od databáze
- používaná kódování
 - textová forma
 - XML, YAML, JSON
 - binární forma
 - BSON, PDF, MS Office dokumenty
- identifikovány jednoznačným identifikátorem (klíčem)
 - typicky řetězec, URI nebo cesta
 - slouží pro přístup k dokumentům
 - ale i pro vkládání
 - často indexovány
 - rychlejší přístup k dokumentům

základní stavební prvky dokumentových databází

- koncepčně odpovídají objektům v OOP
- volné schéma
 - dokumenty mohou být velmi komplexní
 - mohou obsahovat vnořené (embedded) dokumenty
 - nemusí obsahovat stejné oddíly, atributy, části nebo klíče
 - podobně jako objekty
 - vysoká míra flexibility

- obecně data patřící k sobě ukládána do jednoho dokumentu
 - na rozdíl od relačních databází
 - usnadňuje přístup a práci s daty
- k dokumentům často přidružena a uložena metadata

```
<artist>
   <artistname>Iron Maiden</artistname>
   <albums>
    <album>
      <albumname>The Book of Souls</albumname>
      <datereleased>2015</datereleased>
      <genre>Hard Rock</genre>
    </album>
    <album>
       <albumname>Killers</albumname>
       <datereleased>1981</datereleased>
       <genre>Hard Rock
    </album>
    <album>
       <albumname>Powerslave</albumname>
       <datereleased>1984</datereleased>
       <genre>Hard Rock
    </album>
    <album>
       <albumname>Somewhere in Time</albumname>
       <datereleased>1986</datereleased>
      <genre>Hard Rock</genre>
    </album>
   </albums>
</artist>
```

Ukázka v JSON:

ukázka volného schématu ve formátu JSON

```
_id: ObjectId("5f8ef175c43ece2db0230f85")
 title: "Post One"
 body: "Body of post one"
                                                            _id: ObjectId("5f8ef175c43ece2db0230f88")
 category: "News"
                                                           title: "Post Four"
 likes: 4
                                                           category: "Entertainment"
v tags: Array
   0: "news"
   1: "events"
vuser: Object
                                                           _id: ObjectId("5f8fe759c43ece2db0230f8a")
   name: "John Doe"
                                                           title: "Post Five"
    status: "author"
                                                           likes: 81
 date: "Date()"
                                                          v user: Object
                                                              name: "John Doe"
                                                              status: "author'
                                                           date: "Date()"
 _id: ObjectId("5f8ef175c43ece2db0230f86")
 title: "Post Two"
 body: "Body of post two"
 tags: "news"
                                                           id: ObjectId("5f9026800cbc092824d7e420")
 date: "Date()"
                                                           source: "id2"
                                                           title: "Unknown
                                                         ∨user:Object
                                                             name: "Jane Doe"
 _id: ObjectId("5f8ef175c43ece2db0230f87")
                                                             gender: "female"
 source: "id1"
 title: "Post Three"
 views: "80"
```

Charakteristiky

- podporují standardní operace s daty (dokumenty)
 - operace CRUD
 - implementace se liší databázi od databáze
 - vytvoření (vložení) [creation]
 - čtení (dotazování, vyhledávání) [retrieval]
 - kromě vyhledávání podle klíče také podpora dotazovacího jazyka
 - vyhledávání v závislosti na obsahu (nebo metadatech)
 - aktualizace [update]
 - i jen části dokumentu
 - smazání [deletion]
 - mohou podporovat transakce
 - ACID
 - není ale pravidlem

https://medium.com/@hau12a1/golang-http-crud-l-the-create-part-ae42c962c557

- obecně se vyhýbají vazbám mezi dokumenty
 - případně dvě varianty řešení
 - embedded dokumenty
 - reference

INDEXOVÁNÍ

- vylepšuje rychlost vyhledávání
 - bez indexování se provádí sken celé kolekce
 - vhodný index výrazně omezuje dokumenty, které je potřeba skenovat
- index
 - speciální datová struktura definovaná na úrovni kolekcí
 - ukládá hodnotu specifického pole v seřazené formě
 - snadné procházení a porovnávání
 - obsahuje také pointer na celý dokument pro snadný přístup
 - možnost definovat nad libovolným polem ale i nad jejich kombinací
 - v základu index _id
 - využití i pro rychlé řazení
 - základ pro sharding
 - jen jeden může být použit

INDEXOVÁNÍ

- vylepšuje rychlost vyhledávání
- proč tedy nedefinovat indexy nad všemi poli?

v praxi ale index není zadarmo

- cenou je vkládání / aktualizace
- při každém vložení je potřeba vložit prvek i do seřazeného indexu
 - potřeba vložit do všech indexů
 - . ⊳ pomalé?
- > indexy je potřeba řádně promyslet

- indexování je pomalejší, když dotaz vrací velkou část kolekce
 - způsobeno přechodem index pointer dokument
 - naopak při kompletním skenu už jsou dokumenty načteny v paměti

u dokumentových databazí nejcastejí typu master-slave

- obvyklá vazba mezi originálem a kopiemi
- master zaznamenává změny, které předává slaves
- slaves potvrdí přijetí změn, čímž umožní další aktualizace
- asynchronní (eventuálně k.), semi synchronní, synchronní (striktně k.)

zajišťuje vysokou dostupnost

Škálování

- u dokumentových databází nejčastěji horizontální škálování (ven)
 - přidání (nebo ubrání) prvků
 - přidání výpočetních uzlů
- přesun k distribuovanému paralelnímu zpracování
 - rozdělení dat mezi uzly
 - horizontální sharding
- zvýšení kapacity
 - nové komponenty jsou levné
 - základní HW
 distribuované clustery
- cloudové služby řeší za uživatele
- big data

https://medium.com/faun/scalability-248019b918e

Sharding

- databázový vzor pro horizontální škálování na více serverů
- rozdělení záznamů na části (partitions, shards) umístěné na různých serverech
 - např. u relačních databází rozdělení tabulky podle řádků, ne sloupců
 - např. u dokumentových databází rozdělení podle dokumentů, ne atributů

data mezi shardy nejsou sdílena

Architektury:

• Založena na klíči (hashi)

Založena na rozsahu

Založena na adresářích

Použití

- široké možnosti použití (ukládání)
 - webové aplikace
 - blogovací platformy, analytická data, nastavení uživatelů, e-reklamy, ...
 - data generovaná uživateli
 - chaty, tweety, příspěvky, hodnocení, komentáře, ...
 - katalogy
 - uživatelské účty, produkty, preference, ...
 - počítačové hry
 - herní statistiky, žebříčky, vestavěné chaty, splněné úkoly, integrace social media, ...
 - networking
 - data ze senzorů, logy, real-time analýza, ...
 - ...

výhody a nevýhody.

MongoDB – charakteristika, architektura.

- Dokumenty ve formátu BSON (binární JSON)
- Hlavní funkce:
- volné schéma
- ad-hoc dotazy
 - dotazy neznámé v době vytvoření databáze
- indexování
- replikace
 - vysoká dostupnost
- sharding
- agregace
- v databázi data ukládána v kolekcích dokumentů
 - kolekce
 - seznam dokumentů
 - odpovídá relaci (tabulce)
 - dokument
 - obsahuje data
 - reprezentován pomocí vnořených objektů / map
 - ve formátu BSON
 - binární JSON
 - přidané datové typy
 - odpovídá záznamu v relaci (řádku)
 - pohled
 - pouze ke čtení
 - zdrojem je kolekce nebo jiný pohled

BSON dokument:

JSON VS. BSON

DOKUMENT

- maximum 16 MB
- volné schéma
- pole _id
 - primární klíč
 - automaticky přidán
 - ObjectID
 - 12 bytů
 - unikátní, rostoucí
- pole comments
 - obsahuje pole dalších vnořených dokumentů

DOKUMENTY

- data patřící k sobě uložena v jednom dokumentu
 - na rozdíl od relačních databází
 - data v různých relacích propojena přes cizí klíče
 - přístup k datům přes náročné join dotazy
 - usnadňuje přístup a práci s daty
 - vazby mezi kolekcemi ideálně nejsou
 - možné ale jsou
 - ale je nutné je sloučit manuálně
 - dotaz na první dokument v první kolekci
 - dotaz na základě prvního dokumentu na druhou kolekci
- podpora vnořených dokumentů
 - embedded dokumenty
 - až 100 úrovní

https://www.udemy.com/course/mongodb-the-complete-developers-guide

MongoDB EKOSYSTÉM

PŘÍSTUPOVÉ METODY

- MongoDB shell
 - interaktivní JS interface k MongoDB
 - dotazy, updaty
 - administrativní operace
 - kompletní obsluha
- MongoDB Compass
 - GUI nadstavba
- v praxi shell užitečnější
 - práce na dálku
 - terminálová obsluha rychlejší…