$\label{eq: Matematuчeckas} \mbox{Математическая логика} - 2 \\ \mbox{V семестр}$

Лектор: Виктор Львович Селиванов Записывали: Глеб Минаев, Иван Кабашный Редактировал: Борис Алексеевич Золотов

МКН СПбГУ, осень 2022

Содержание

1	Лог	Логика предикатов			
	1.1	Истинность и доказуемость			
		1.1.1 Структура			
		1.1.2 Термы и формулы			
		1.1.3 Значение термов и формул			
		1.1.4 Ультрафильтры			
		1.1.5 Декартово и фильтрованное произведения структур 6			
	1.2	Лекция 3			
		1.2.1 Понижение и повышение мощности			
	1.3	· · · · · · · · · · · · · · · · · · ·			
	1.4				
	1.5				
	1.6	Лекция 6			
		1.6.1 Полнота, модельная полнота, элиминация кванторов			
	1.7	У Лекция 7			
	1.8				
		1.8.1 Элиминация кванторов			
	1.9	Лекция 9			
		1.9.1 Игры Эренфойхта			
2	Hep	разрешимость и неполнота 23			
	2.1	Лекция 10			
		2.1.1 Свойства выводимости, теория Хенкина			
		2.1.2 Теоремы о существовании модели и полноте И Π_{σ}			
	2.2	Лекция 11			
		2.2.1 Рекурсивные функции и предикаты			
	2.3	Лекция 12			
		$2.3.1$ Кодирование ИП $_{\sigma}$			

	2.4	Лекция 13		
		2.4.1	Представимость И Π_σ в минимальной арифметике	32
		2.4.2	Неразрешимость и неполнота арифметики. Проблемы разреши-	
			мости	32
3 Введение в вычислимость				33
	3.1	Лекци	тя 14	33
		3.1.1	R-вычислимость	33
		3.1.2	R-вычислимость и рекурсивность	33
3.2 Лекция 15		ия 15	34	
		3.2.1	Главная вычислимая нумерация рекурсивных частичных функций	35
		3.2.2	Рекурсивно перечислимые множества. Сводимости. Тьюрингов ска-	
			чок.	37

1 Логика предикатов

1.1 Истинность и доказуемость

1.1.1 Структура

Бурбаки классифицировал структуры как:

- 1) операции,
- 2) частичные порядки,
- 3) топологические структуры.

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции" — это структуры алгебраические, "частичные порядки" — это структуры, снабжённые каким-либо отношением.

Определение 1. *Сигнатура* — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции $A^n \to A$, предикатные символы — как функции $A^m \to \{u; \pi\}$, а константы — как элементы A (или, что равносильно, функции $\{\varnothing\} \to A$).

Будем называть σ -структурой (структурой сигнатуры σ) пару (A,I), где A — непустое множество, а I — интерпретация сигнатурных символов σ в A.

Пример 1. Сигнатура упорядоченного кольца — $\langle +, \cdot; <; 0, 1 \rangle$. Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

Определение 2. \mathbb{A} , $\mathbb{B}-\sigma$ -структуры. Тогда отображение $\varphi:\mathbb{A}\to\mathbb{B}$ называется гомоморфизмом, если оно задаёт $\varphi:A\to B$, что для всякой функции f^n из сигнатуры σ и для всяких $a_1,\ldots,a_n\in A$

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката P^m в сигнатуре σ и всяких $a_1,\ldots,a_m\in A$

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры σ

$$\varphi(c_A) = c_B$$
.

 φ — изоморфизм, если φ — гомоморфизм, биективен, и φ^{-1} — гомоморфизм.

 \mathbb{A} называется $nodcmpy\kappa mypoù$ \mathbb{B} ($\mathbb{A}\subseteq\mathbb{B}$), если $A\subseteq B$ и $\varphi:A\to B, a\mapsto a$ гомоморфизм.

1.1.2 Термы и формулы

Определение 3. Фиксируем некоторое множество V — "множество переменных" — символы \land , \lor , \rightarrow , \neq и символы $\forall x$ и $\exists x$ для всякого $x \in V$.

Терм — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- ullet для всяких термов t_1,\ldots,t_n и функции f^n выражение $f(t_1,\ldots,t_n)$ терм.

 Φ ормула — это понятие, рекурсивно определяемое следующими соотношениями:

- для всяких термов t_1 , t_2 выражение $t_1 = t_2$ формула,
- ullet для всяких предиката P^n из σ и термов t_1,\ldots,t_n выражение $P(t_1,\ldots,t_n)$ формула,
- для всяких формул φ и ψ выражения $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, $\neg \varphi$ формулы,
- ullet для всяких формулы φ и переменной x выражения $\forall x \varphi$ и $\exists x \varphi$ формулы.

 For_{σ} — множество всех формул с сигнатурой σ .

Пример 2. В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

Задача 1. Семейства термов и формул задаются контекстно свободными грамматиками.

Определение 4. Переменная x называется csofoolnoй в формуле φ , если есть вхождение x не покрывается никаким квантором $\forall x$ и никаким квантором $\exists x$. $FV(\varphi)$ — множество всех свободных переменных формулы φ .

1.1.3 Значение термов и формул

Определение 5. Пусть t — терм в сигнатуре σ , а \mathbb{A} — σ -структура. Тогда $t^{\mathbb{A}}: A^n \to A$ — $osnavusanue\ t$, некоторая функция, полученная подставлением вместо констант их значений в \mathbb{A} и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы $f^{\mathbb{A}}: A^n \to \{u; \pi\}$.

Определение 6. *Предложение* в сигнатуре σ — формула без свободных переменных.

$$\varphi^{\mathbb{A}} \in \{T, F\},$$

$$\varphi^{\mathbb{A}} = T \Longleftrightarrow \mathbb{A} \models \varphi.$$

Определение 7. *Моделью* данного множества предложения Γ называется структура, в которой все предложения из Γ истины. Если \mathbb{A} — это модель, то иногда пишут $\mathbb{A} \models \Gamma$.

Если Γ — множество предложений, φ — предложение. Говорят, что φ логически следует из Γ ($\Gamma \models \varphi$), если φ истино в любой модели Γ .

Определение 8. Предложение φ называется тождественно истино, если оно истино в любой структуре. Иногда пишут $\models \varphi$.

Утверждение 1.

- $\Gamma \models \varphi$ тогда и только тогда, когда $\Gamma \cup \{\neg \varphi\}$ не имеет модели.
- ullet φ тождественная истина тогда и только тогда, когда $\models \varphi$.
- Γ конечное; $\Gamma \models \varphi$ тогда и только тогда, когда $(\land \Gamma) \rightarrow \varphi$ тожественная истина.

1.1.4 Ультрафильтры

Определение 9. Пусть I — непустое множество. Φ ильтром на множестве I называется непустое множество $F \subseteq \mathcal{P}(I)$ (где $\mathcal{P}(I)$ — множество всех подмножеств), которое не содержит $\emptyset \subset I$, а также замкнуто относительно пересечения:

$$\forall A, B \in F \ A \cap B \in F$$

и взятия надмножеств:

$$\forall A \in F \ A \subseteq B \subseteq I \implies B \in F.$$

Фильтр F называется ультрафильтром, если $A \in F$ или $\overline{A} \in F$ для любого $A \subseteq I$.

Утверждение 2.

1) Фильтр F является ультрафильтром тогда и только тогда, когда он является максимальным по включению среди всех фильтров (то есть, нет фильтра, который бы его расширял). 2) Пусть F — ультрафильтр u A, $B \subseteq I$, тогда

$$A \in F \iff \overline{A} \notin F,$$

 $A \cup B \in F \iff A \in F \text{ unu } B \in F.$

3) Любой фильтр содержится в некотором ультрафильтре.

Доказательство. Докажем 1.

Пусть F — ультрафильтр. Утверждается, что нет фильтра F', который содержал бы F ($F'\supseteq F$). Предположим противное, т.е. что существует такое A, что оно принадлежит F' и не принадлежит F. Раз $A\notin F$, то $\overline{A}\in F$. В силу того, что $F\subseteq F'$, то \overline{A} также принадлежит F'. Таким образом, $\emptyset=A\cap\overline{A}\in F'$, противоречие.

В обратную сторону, F — максимальный по включению фильтр. От противного, пусть есть множество $A\subseteq I$ такое, что $A,\overline{A}\notin F$. Рассмотрим

$$F' = \{ X \subseteq I \mid \exists B \in F \ A \cap B \subseteq X \}.$$

F' должно быть фильтром (замкнутость вверх по включению понятна, замкнутость относительно пересечения также верна, так как если $X,Y\in F',\ A\cap B\subseteq X,\ A\cap C\subseteq Y$ для $B,C\in F$, то $A\cap B\cap C\subseteq (X\cap Y).\ B\cap C\in F$, а значит, $X\cap Y\in F'$; и последнее, если $\emptyset\in F'$, то получается очевидное противоречие из того, что $A\cap B$ всегда непусто — иначе $\overline{A}\supseteq B$, а F замкнуто относительно взятия надмножеств).

Докажем 2. Пусть F — ультрафильтр. Одновременно A и \overline{A} принадлежать F не могут. Имеем $A \in F \vee \overline{A} \in F$, откуда понятно. Второе утверждение очевидно в левую сторону.

В другую сторону, имеем $A \cup B \in F$, предоположим противное. Пусть $A, B \notin F$, значит, $\overline{A}, \overline{B} \in F$, а тогда $\overline{A} \cap \overline{B} \in F$. По закону деМоргана, $\overline{A \cup B} \in F$, откуда $A \cup B \notin F$.

Докажем 3. Пусть имеется F. Утверждается, что существует ультрафильтр F^* , который сожержит F ($F^* \supseteq F$). Данное утверждение нетривиально и в каком-то смысле схоже с аксиомой выбора. Применим лемму Цорна.

Лемма 3 (Цорн). Пусть $(P; \leq)$ — частичный порядок, в котором всякая линейная цепь $A \supseteq P$ имеет верхнюю границу. Тогда в этом частичном порядке есть максимальный элемент.

Рассмотрим множество всех фильтров $P = \{G - \text{фильтр} \mid F \subseteq G\}$, и порядок \subseteq . Пусть \mathfrak{F} — цепочка фильтров. Несложно проверить, что $F' = \bigcup \mathfrak{F}$ является фильтром, это верхняя грань цепочки. По лемме, существует F^* — максимальное расширение. Оно является ультрафильтром.

Пример 3.

- Пусть есть I, тогда $\{I\}$ фильтр.
- Пусть $\emptyset \neq A \subseteq I$, тогда $F = \{X \subseteq I \mid A \subseteq X\}$ фильтр. Является ультрафильтром тогда и только тогда, когда |A| = 1. В таком случае называется главным ультрафильтром.

Задача 2. Если I бесконечное, то в P(I) есть неглавные ультрафильтры. Для доказательства рассматриваем $F = \{A \subseteq I \mid A - \text{коконечно}\}$, и существующий по доказанному ранее $F^* \supseteq F$.

1.1.5 Декартово и фильтрованное произведения структур

Пусть имеется некоторое проиндексированное семейство σ -структур $\{\mathbb{A}_i\}_{i\in I}$.

Определение 10 (Декартово произведение). Определим σ -структуру на декартовом произведении нескольких σ -структур. Мы будем обозначать её $\mathbb{A} = \prod_{i \in I} \mathbb{A}_i$.

Носителем структуры будет множество

$$A = \prod_{i \in I} A_i = \left\{ a \colon I \longrightarrow \bigsqcup_{i \in I} A_i \mid a(i) \in A_i \right\}.$$

Константы, функции и предикаты интерпретируются следующим образом:

- 1) $c^{\mathbb{A}}(i) = c^{\mathbb{A}_i}$ отображение, возвращающее в каждой структуре соответствующую константу;
- 2) $(f^{\mathbb{A}}(a_1,\ldots,a_n))(i) = f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ действуем функцией в каждой структуре, собираем из образов элемент декартова произведения;
- 3) $P^{\mathbb{A}}(a_1,\ldots,a_n) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ выполнен для всех $i\in I$.

Определение 11 (Фильтрованное произведение). Пусть F — фильтр на множестве I. $Фильтрованное произведение нескольких структур (обозначается <math>\mathbb{A}_F$) получается факторизацией их декартова произведения по следующему отношению эквивалентности:

$$a \equiv_F b \iff \{i \in I \mid a(i) = b(i)\} \in F$$

(говорят, что $a(i) = b(i) \ \partial \mathcal{A} \mathcal{A} \ F$ -большинства i).

Носителем фильтрованного произведения будет фактор-множество A/\equiv_F , состоящее из классов эквивалентности $\{[a] \mid a \in A\}$. Константы, функции и предикаты интерпретируются следующим образом:

- 1) $c^{\mathbb{A}_F} = [c^{\mathbb{A}}]$ класс элемента, собранного из соответствующих констант во всех структурах;
- 2) $f^{\mathbb{A}_F}([a_1],\ldots,[a_n]) = [f^{\mathbb{A}}(a_1,\ldots,a_n)]$ надо проверить, что определено однозначно (потому что пересечение множеств фильтра принадлежит фильтру);
- 3) $P^{\mathbb{A}_F}([a_1],\ldots,[a_n]) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ для F-большинства i.

Если F — ультрафильтр, то \mathbb{A}_F называется ультрапроизведением.

Теорема 4 (Лося об ультрапроизведениях). Пусть F- ультрафильтр на множестве I, \mathbb{A}_i- семейство структур, $\varphi(x_1,\ldots,x_k) \sigma$ -формула и пусть $a_1,\ldots,a_k\in\prod_i A_i$. Тогда $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_k])$ тогда и только тогда, когда $\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_n(i))$ для F-большинства индексов.

1.2 Лекция 3

Утверждение 5 (Следствие). Для ультрафильтра F и предложения φ выполенно

$$\mathbb{A}_F \models \varphi \Longleftrightarrow \{i \mid \mathbb{A}_i \models \varphi\} \in F.$$

Доказательство. (теоремы Лося) Доказательство приведём индукцией по построению формулы. Простейшие формулы в виде предиката и равенства двух термов рассматриваются очевидно, это - база. Обратим внимание на функциональный символ $f \in \sigma$. Как он интерпретируется?

$$f^{\mathbb{A}_F}([a_1], \dots, [a_k]) := [\lambda_i f^{\mathbb{A}_i}(a_1(i), \dots, a_k(i))]$$

Из определения декартового у нас было

$$f^{\mathbb{A}}([a_1],\ldots,[a_k]) := \lambda_i f^{\mathbb{A}_i}(a_1(i),\ldots,a_k(i)),$$

где $i\mathbb{A} \mapsto f^{\mathbb{A}_i}(a_1(i),\ldots,a_k(i))$, и $\lambda x f(x) = f$. Причём согласно фильтру

$$a_1 \equiv_F a'_1$$

$$\vdots$$

$$a_k \equiv_F a'_k$$

$$f^{\mathbb{A}}(a_1, \dots, a_k) \equiv_F f^{\mathbb{A}}(a'_1, \dots, a'_k).$$

 $J_{i}\{i\mid a_{1}(i)=a'_{1}(i)\}\in F,\ f^{\mathbb{A}_{i}}(a_{1}(i),\ldots,a_{k}(i))=J_{1}\cap\ldots,\cap J_{k}\in F=f^{\mathbb{A}}(a'_{1},\ldots,a'_{k}).$ Константы $c^{\mathbb{A}}$ интерпретируются как $\lambda_{i}c^{\mathbb{A}_{i}}$, переменные означиваются каким-то образом $x_{j}\mathbb{A}pstoa_{j}(i),\ t^{\mathbb{A}_{i}}=f^{\mathbb{A}_{i}}(t_{1}^{\mathbb{A}_{i}},\ldots,t_{k}^{\mathbb{A}_{i}}),$ значит, $t^{\mathbb{A}}(a_{1},\ldots,a_{k})=f^{\mathbb{A}}(t_{1}^{\mathbb{A}}(\overline{a}),\ldots,t_{k}^{\mathbb{A}}(\overline{a})).$ Соответственно, из определения это верно для простейших формул. Перейдём теперь к сложным формулам.

Более сложные формулы строятся из простых при помощи логических связок и кванторов. Достаточно рассматривать только конъюнкцию, отрицанию и существование (остальные выражаются через них). Пусть мы хотим проверить

$$\mathbb{A}_F \models (\varphi \wedge \psi)(a_1, \dots, a_k).$$

Это означает, что $\mathbb{A}_F \models \varphi([\overline{a}])$ и $\mathbb{A} \models \psi([\overline{a}])$. $J = \{i \mid \mathbb{A}_i \models \varphi(\overline{a(i)})\} \in F$. Проверяется $i \in J \cap K$,

$$\{\mathbb{A}_i \models (\varphi \wedge \psi)(a_1(i), \dots, a_k(i))\} \in F.$$

Отрицание также легко проверяется для ультрафильтров, так как есть свойство дополнения.

$$\mathbb{A}_F \models \neg \varphi([\overline{a}])$$
$$\neg (\mathbb{A}_F \models \varphi([\overline{a}]))$$

7

Существование проверяется следующим образом:

$$arphi=arphi(x_1,\ldots,x_k),$$
 $arphi=\exists x \theta(x,x_1,\ldots,x_k).$ $\mathbb{A}_F\models arphi([a_1],\ldots,[a_k]),$ $\mathbb{A}_F\models \theta([b],[a_1],\ldots,[a_k])$ для некоторого $b\in\mathbb{A}.$

И нам нужно доказать в две стороны. Для этого рассматриваем

$$J = \{i \mid \mathbb{A}_i \models \theta(b(i), a_1(i), \dots, a_k(i))\},$$

$$K = \{i \mid \mathbb{A}_i \models \varphi(a_1(i), \dots, a_k(i))\}.$$

Это — элементы F, которые в разных случаях лежат друг в друге. Не уловил суть, надо будет дописать и переписать.

Теорема 6 (Гёделя-Мальцева о компактности). Весконечное множество предложений Γ имеет модель тогда и только тогда, когда каждое его конечное подмножество Γ имеет модель.

Доказательство. В одну сторону очевидно. Доказываем в обратную сторону.

Пусть $I = \{i \mid i$ — конечное подмножество $\Gamma\}$. Из существования модели для каждого $i \in I$, по аксиоме выбора, существует семейство структур $\{\mathbb{A}_i\}_{i \in I}$ такое, что $\forall i \mathbb{A}_i \models i$.

Будем строить ультрапроизведение, соответствующее декартовому произведению $\prod_{i\in I} \mathbb{A}_i$, подходящее под требования теоремы. Начнём с построения фильтра. Для каждого $i\in I$ пусть $G_i=\{j\in I\mid i\subseteq j\}$. Для каждой пары $i,j\in I$ выполнено $G_i\cap G_k=G_{i\cup k}$. Пусть $F=\{A\subseteq I\mid \exists i\ G_i\subseteq A\}$. Можно проверить, что это фильтр (\emptyset отсутствует, так как все G_i непусты; надмножество $A\supseteq G_i$ тоже содержит G_i ; пересечение $A\supseteq G_i$ и $B\supseteq G_i$ содержит $G_{i\cup j}$). По доказанному ранее, существует ультрафильтр $H\supseteq F$.

Наконец, рассмотрим ультрапроизведение \mathbb{A}_H . Для любой формулы $\varphi \in \Gamma$, имеем $\{\varphi\} \in I$, поэтому $G_{\{\varphi\}} \in F \subseteq H$. По теореме Лося, так как $\forall i \in G_{\{\varphi\}}$ выполнено $\mathbb{A}_i \models \varphi$, то и $\mathbb{A}_H \models \varphi$.

1.2.1 Понижение и повышение мощности

Определение 12.

- (Уже определялось выше) $\mathbb{A} nodcmpy\kappa mypa$ \mathbb{B} (обозначается $\mathbb{A} \subseteq \mathbb{B}$), если $A \subseteq B$ и значения простых формул на элементах \mathbb{A} в \mathbb{A} и \mathbb{B} совпадают;
- А элементарная подструктура \mathbb{B} (обозначается $\mathbb{A} \leq \mathbb{B}$), если $A \subseteq B$ и значения любых формул на элементах \mathbb{A} в \mathbb{A} и \mathbb{B} совпадают (то есть $\forall \overline{a} \in \mathbb{A}$ выполнено $\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{a})$);

• \mathbb{A} элементарно эквивалентно \mathbb{B} (обозначается $\mathbb{A} \equiv \mathbb{B}$), если они удовлетворяют одни и те же предложения.

Утверждение 7. $\mathbb{A} \leq \mathbb{B}$, тогда $\mathbb{A} \subseteq \mathbb{B}$ $u \mathbb{A} \equiv \mathbb{B}$.

Теорема 8 (Лёвенгейма-Сколема, понижение). Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |For_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ u $|\mathbb{B}| \leq |For_{\sigma}|$.

1.3 Лекция 4

Доказательство. Построим последовательность $X = S_0 \subseteq S_1 \subseteq \ldots$, где

$$S_{n+1} = S_n \cup \{ \eta(e) \mid e \in E_n \},\$$

где E_n и $\eta:E_n\to A$ определены следующим образом:

$$E_n = \{(\overline{a}, \varphi(\overline{x}, y)) \mid \overline{a} \in S_n \text{ и } \mathbb{A} \models \exists y \ \varphi(\overline{a}, y)\}$$
 и $\mathbb{A} \models \varphi(\overline{a}, \eta(e)) \ (\forall e \in E_n).$

В качестве B просто возьмём $\bigcup_n S_n$. Нужно проверить, что $|B| \leq |\operatorname{For}_{\sigma}|$ — это делается индукцией по S_i . E_n по мощности не превосходит $\operatorname{For}_{\sigma}$ посредством сравнения через $\operatorname{For}_{\sigma}^2$, откуда и получаем требуемое.

Рассмотрим теперь $\mathbb{B} = (B, I)$ с сигнатурой σ и проверим, что B замкнуто относительно интерпретаций элементов сигнатуры. Для константных символов выполнено $(\emptyset, y = c) \in E_0$. Для функционального символа f, если элементы $\overline{a} \in S_n$, то $(\overline{a}, y = f(\overline{a})) \in E_n$. А интерпретация предикатов в структуре \mathbb{B} задаётся как и в \mathbb{A} :

$$P^{\mathbb{B}}(b_1,\ldots,b_n)=T\iff P^{\mathbb{A}}(b_1,\ldots,b_n)=T.$$

Осталось лишь проверить, что для любой формулы $\varphi(x_1, \ldots, x_k)$ и для любых значений переменных $(a_1, \ldots, a_k) = \overline{a} \in B$ значение на этих элементах в $\mathbb B$ будет совпадать со значением в $\mathbb A$:

$$\mathbb{B} \models \varphi(\overline{a}) \Longleftrightarrow \mathbb{A} \models \varphi(\overline{a}).$$

Проверяется это, конечно, индукцией по построению формулы. Рассмотрим \land, \neg и \exists — через них всё выражается — и проверим для них. Конъюнкция — очевидна, ровно как и отрицание. Интерес представляет существование. Пусть $\psi(\overline{x}) = \exists y \, \varphi(\overline{x}, y)$. Пусть для φ уже доказано, что $\mathbb{B} \models \varphi(\overline{a}, c) \iff \mathbb{A} \models \varphi(\overline{a}, c)$. Слева направо требуемое очевидно, а справа налево получается из построенной конструкции: если $\overline{a} \in S_n$, то $(\overline{a}, \varphi) \in E_n$, на шаге n+1 получим нужный $c \in S_{n+1}$, значит $\mathbb{B} \models \psi(\overline{a})$.

Замечание. Теория ZFC строится в сигнатуре $\{=,\in\}$. Множествао $\{\varphi \mid \text{ZFC} \models \varphi\}$ — в точности множество всех математических теорем. Мы считаем, что ZFC непротиворечива (то есть из ZFC не следует тождественно ложного утверждения; это гипотеза).

Рассмотрим $\mathbb{A} \models \mathrm{ZFC}$. По теореме Лёвенгейма-Сколема, так как мощность множества формул счётно, то существует счётная модель $\mathbb{A}_0 \models \mathrm{ZFC}$. Это утверждение называется *парадоксом Сколема*. На самом деле никаких противоречий нет. Но показывает, что понятие мощности не такое простое, каким кажется на первый взгляд.

Сигнатура τ называется обогащением сигнатуры σ (записывается $\sigma \subseteq \tau$), если последняя лежит в первой и дополнение непусто. Если \mathbb{A} — структура в сигнатуре σ , то определив интерпретацию символов $\tau \setminus \sigma$, то получим структуру \mathbb{A} сигнатуры τ — тоже называется обогащением. Наоборот: если $\mathbb{B} - \tau$ -структура, то $B|_{\sigma} - oбеднение$. Чаще всего сигнатуры обобщаются константными символами.

Определение 13.

- 1) Пусть $\mathbb{A} \sigma$ -структура. $\sigma_{\mathbb{A}} = \sigma \cup \{c_a \mid a \in A\}$, где c_a новые константные символы, причём $c_a \neq c_b$ при $a \neq b$. $D(\mathbb{A})$ множество атомарных формул сигнатуры $\sigma_{\mathbb{A}}$ (либо c = d, либо $f(c_1, \ldots, c_k) = d$, либо $P(c_1, \ldots, c_k)$, где все аргументы константы) и их отрицаний, истинных в \mathbb{A} при интерпретации $\sigma_a \models a$. ($\partial ua \operatorname{граммa} \mathbb{A}$)
- 2) Элементарная диаграмма \mathbb{A} это множество $D^*(\mathbb{A})$ всех предложений $\sigma_{\mathbb{A}}$, истинных в \mathbb{A} . $(D(\mathbb{A}) \subseteq D^*(\mathbb{A}))$

Утверждение 9.

- 1) Echu $\mathbb{B} \models D(\mathbb{A})$, mo $\mathbb{B}|_{\sigma}$ codephium nodempyrmypy $\mathbb{A}' \subseteq \mathbb{B}|_{\sigma}$ maryo, umo $\mathbb{A}' \simeq \mathbb{A}$.
- 2) Если $\mathbb{B} \models D^*(\mathbb{A})$, то $\mathbb{B}|_{\sigma}$ содержит элементарную подструктуру, изоморфную \mathbb{A} .

Доказательство. В каждом пункте нужная структура состоит из множества A' всех констант сигнатуры $\sigma_{\mathbb{A}}$.

Теорема 10 (Лёвенгейма-Сколема о повышении мощности). Пусть имеется бесконечная σ -структура \mathbb{A} и $\varkappa \geq \max(|A|,|For_{\sigma}|)$. Тогда найдётся $\mathbb{B} \succeq \mathbb{A}$ мощности в точности \varkappa .

Доказательство. Рассмотрим исходную сигнатуру и дважды её расширим: $\sigma \mapsto \sigma_{\mathbb{A}} \mapsto \tau = \sigma_{\mathbb{A}} \cup \{d_x \mid x \in \kappa\}$ так, что $x \neq x' \Rightarrow d_x \neq d_{x'}$. И построим множество предложений сигнатуры τ

$$\Gamma = D^*(A) \cup \{ \neg (d_x = d_{x'}) \mid x, x' \in \varkappa, x \neq x' \}.$$

Любое конечное $\Gamma_0 \subseteq \Gamma$ имеет модель, являющуюся τ -расширением структуры \mathbb{A} (интерпретируем $c_a \mapsto a$, а конечному подмножеству $\{d_{x_k}\}_{k \leq n}$, входящих в Γ_0 , сопоставим различные элементы A). По теореме о компактности существует $\mathbb{C} - \tau$ -структура, такая, что $\mathbb{C} \models \Gamma$.

Тогда $\varkappa \leq |C|$ из-за существования инъекции $x \mapsto d_x$. $\mathbb{C}|_{\sigma_{\mathbb{A}}} \models D^*(\mathbb{A})$, значит есть $\mathbb{A}' \preceq \mathbb{C}$, изоморфная \mathbb{A} . Воспользуемся теоремой Лёвенгейма-Сколема о понижении мощности для \mathbb{C} и $X \supseteq A'$ мощности \varkappa , получим $\mathbb{B}' \preceq \mathbb{C}$ мощности $|\mathbb{B}'| \leq |\mathrm{For}_{\tau}| = \varkappa$. С другой стороны, $B' \supseteq X$, поэтому $|B'| \geq |X| = \varkappa$. Значит $|\mathbb{B}'| = \varkappa$. Обеднение \mathbb{B}' и есть искомая структура.

Определение 14.

- $Teopus\ T$ множество предложений сигнатуры σ .
- Теории T соответствует класс структур $Mod(T) = \{A \mid A \models T\}$
- Классу структур $K \subseteq \operatorname{Str}_{\sigma}$ соответствует теория $\operatorname{Th}(K) = \{ \varphi \operatorname{предложение} \mid \forall \mathbb{A} \in K \ \mathbb{A} \models \varphi \}$
- Класс структур K называется $a\kappa cuomamusupyemыm$, если $K=\mathrm{Mod}(T)$ для некоторой теории T.

1.4 Лекция 5

Утверждение 11 (следствие теоремы Лёвенгейма—Сколема).

- 1) Если σ -теория имеет бесконечную модель, то она имеет модель любой мощности хотя бы $|For_{\sigma}|$;
- 2) Если σ -теория имеет конечные модели сколь угодно большой мощности, то она имеет модель любой мощности хотя бы $|For_{\sigma}|$.

Доказательство. В пункте 1 сначала берём модель \mathbb{B} очень большой мощности (как в доказательстве теоремы о повышении с использованием теоремы о компактности). Потом, по теореме о понижении мощности находим элементарную подструктуру $\mathbb{C} \preceq \mathbb{B}$ мощности $|\text{For}_{\sigma}|$. TODO: Лектор не закончил доказательство, отвлёкшись на следующую теорему.

Теорема 12 (без доказательства). Логика предикатов — единственная логика, для которой верны и теорема о компактности и теорема о понижении мощности.

1.5 Аксиоматизируемые классы структур

Определение 15. Sent_{σ} $\supseteq T$, Str_{σ} $\supseteq K$. Сопоставим $T \mapsto \text{Mod}(T)$, $K \mapsto \text{Th}(K) = \{\varphi \mid \forall \mathbb{A} \in K(\mathbb{A} \models \varphi)\}.$

- 1) Класс K называется аксиоматизируемым, если K = Mod(T) для некоторой теории T;
- 2) K конечно аксиоматизируемый, если K = Mod(T) для некоторого конечного $T = \{\varphi_1, \dots, \varphi_n\}$. Это равносильно аксиоматизируемости одной формулой $(\varphi_1 \land \dots \land \varphi_n)$

Предложение 13.

- 1) $T \subseteq T'$, $mor\partial a \; Mod(T) \supseteq Mod(T')$;
- 2) $K \subseteq K'$, тогда $Th(K) \supseteq Th(K')$;
- 3) $K \subseteq Mod(Th(K))$ $u \ T \subseteq ThMod(T)$;

- 4) Любое пересечение аксиоматизируемых классов является аксиоматизируемым классом. Объединение двух аксиоматизируемых классов является аксиоматизируемым классом;
- 5) Класс K является аксиоматизируемым тогда и только тогда, когда K = Mod(Th(K));
- 6) K конечно аксиоматизируемый тогда и только тогда, когда K и $Str_{\sigma}\backslash K$ аксиоматизируемы;
- 7) $K- a \kappa c u o m a m u з u p y e m ы й m o r d a u m o n ь к o m o r d a, к o r d a <math>K$ з a м к н y m o m н o c u m e n ь н o $\equiv u$ y n ь m p a n p o u з в e d e н и й.

Доказательство. Свойства 1, 2, 3 и 5 очевидны. Свойство 6 давалось на практику.

В пункте 4 для $\{K_i\}_{i\in I}$ с $K_i = \operatorname{Mod}(T_i)$ выполнено $\bigcap K_i = \operatorname{Mod}(\bigcup T_i)$. Для $K = \operatorname{Mod}(T)$, $K' = \operatorname{Mod}(T')$ выполнено $K \bigcup K' = \operatorname{Mod}(\{\varphi \lor \psi \mid \varphi \in T, \psi \in T'\})$

Докажем 7 в левую сторону (в правую — д/з). Пусть $\{\mathbb{A}\}_{i\in I}\in K$, тогда $\mathsf{MA}_F\in K$. Проверим, что K совпалает с множеством $\mathsf{Mod}(\mathsf{Th}(K))$ (этого достаточно по пункту 5), причём из свойства 3 включение K в множество моделей очевидно, а с другим придётся повозиться.

Пусть $\mathbb{A} \models \operatorname{Th}(K)$, и нам нужно показать, что $\mathbb{A} \in K$. $\mathbb{A} \equiv \mathbb{B}_{F^*}$, где F^* — некий ультрафильтр на подходящем множестве I; $B_i \in K$. Возьмём $I := \operatorname{Th}(A)$. Утверждается, что для любого $\varphi \in \operatorname{Th}(\mathbb{A})$ существует $\mathbb{B} \in K$ такой, что $\mathbb{B} \models \varphi$.

Возьмём любое φ и предположим, что это не верно. То есть, для любой структуры $\mathbb{B} \in K$, $\mathbb{B} \models \neg \varphi$, тогда $\neg \varphi \in \text{Th}(K)$ и в \mathbb{A} истино $\neg \varphi$ — противоречие. Таким образом $\varphi \mapsto \mathbb{B}_{\varphi} \models \varphi$, и мы получили семейство структур. Надо построить ультрафильтр.

Для каждого $\varphi \in I$ рассмотрим $U_{\varphi} := \{ \psi \in \operatorname{Th}(\mathbb{A}) | \models \psi \to \varphi \}$ (то есть импликации $\psi \to \varphi$ тождественно истинны) $\varphi \in U_{\varphi}$, поэтому непусто. $U_{\varphi} \cap U_{\varphi'} = U_{\varphi \wedge \varphi'} \neq \emptyset$ и принадлежит $\operatorname{Th}(\mathbb{A})$. Пусть $F = \{ J \subseteq \operatorname{Th}(\mathbb{A}) \mid \exists \varphi (J \supseteq U_{\varphi}) \}$. Это фильтр. Пусть $F^* -$ любой ультрафильтр, расширяющий F. Проверим, что $\mathbb{A} \equiv B_{F^*}$.

Пускай для некоторого предложения φ выполнено $\mathbb{A} \models \varphi$, по определению $\varphi \in I = \text{Th}(\mathbb{A}), \mathbb{B}_{\varphi} \models \varphi$. Хотим доказать

$$U_{\varphi} \subseteq \{ \psi \in \text{Th}(\mathbb{A}) \mid \mathbb{B}_{\psi} \models \varphi \} \in F \subseteq F^*.$$

Действительно, для всех $\psi \in U_{\phi}$ выполнено $\models \psi \to \varphi$, в частности $\mathbb{B}_{\psi} \models \psi \to \varphi$. Также $\mathbb{B}_{\psi} \models \psi$, поэтому $\mathbb{B}_{\psi} \models \varphi$. Значит, по теореме Лося, $B_{F^*} \models \varphi$.

Определение 16 (Иерархия по числу перемен кванторов).

- Σ_0 все формулы, равносильные бескванторным формулам;
- Σ_1 формулы, равносильные формулам вида $\exists \overline{x} \, \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- Σ_2 формулы, равносильные формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная;

• и так далее по иерархии σ -формул по числу перемен кванторов в предварённой нормальной форме получаем $\{\Sigma_n\}_{n\in\mathbb{N}}$.

 Π_n — определяется аналогично с заменой \exists на \forall и наоборот.

Предложение 14.

- $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$;
- $\varphi \in \Pi_n$ тогда и только тогда, когда $\neg \varphi \in \Sigma_n$;
- $\bigcup \Sigma_n = \bigcup \Pi_n = For_{\sigma}$.

Теорема 15. Аксиоматизируемый класс является Π_1 -аксиоматизируемым (или универсально аксиоматизируемым) тогда и только тогда, когда он замкнут относительно подструктур (то есть если какая-то структура лежит в классе, то и любая её подструктура тоже лежит в нём).

Замечание. Существуют равносильные условия для аксиоматизируемости формулами любого уровня иерархии. Но общий вид этой теоремы весьма труден, в этом курсе не приводятся.

Доказательство. Докажем слева направо. Пусть у нас есть класс K = Mod(T), где T — множество Π_1 предложений. Нам нужно доказать, что он замкнут относительно подструктур. Пусть $\mathbb{B} \models T$, а $\mathbb{A} \subseteq \mathbb{B}$. Зафиксируем Π_1 -предложение $\varphi = \forall \overline{x} \, \psi(\overline{a})$ из T. $\mathbb{A} \models \varphi$ означает, что для любого набора $\overline{b} \in \mathbb{B}$ выполнено $\psi(\overline{b})$, откуда в частности для любого набора $\overline{b} \in \mathbb{A}$ выполнено $\psi(\overline{b})$. Значит $\mathbb{A} \models \varphi$, откуда $\mathbb{A} \models T$.

Справа налево. $K = \operatorname{Mod}(T)$ для некоторой теории T, введём класс аксиом $\Gamma = \{\varphi \in \Pi_1$ -предложения $| T \models \varphi \}$. Оказывается, что $K = \operatorname{Mod}(\Gamma)$, докажем это. Включение K в $\operatorname{Mod}(\Gamma)$ очевидно. В другую — возьмём некоторую модель множества Γ ($\mathbb{B} \models \Gamma$), тогда нужно проверить, что $\mathbb{B} \in K$, Конечно, нужно воспользоваться замкнутостью. Достаточно найти $\mathbb{C} \in K$, что $\mathbb{B} \subseteq \mathbb{C}$.

Определение 17. Если что, $\operatorname{Th}(\mathbb{A}) = \{ \varphi \mid \mathbb{A} \models \varphi \}, \ \Phi \subseteq \operatorname{Sent}_{\sigma}, \ \operatorname{Th}_{\Phi}(\mathbb{A}) = \{ \varphi \in \Phi | \mathbb{A} \models \varphi \}.$

Утверждается, что существует $\mathbb{A} \models T$ такая, что $\mathrm{Th}_{\Sigma_1}(\mathbb{A}) \supseteq \mathrm{Th}_{\Sigma_1}(\mathbb{B})$. В качестве такого \mathbb{A} возьмём модель $T \cup \mathrm{Th}_{\Sigma_1}(\mathbb{B})$, существование которой мы докажем по теореме о компактности. Предположим, что $T \cup \{\psi_1, \dots, \psi_n\}$ не имеет модели. $\psi = \psi_1 \wedge \dots \wedge \psi_n \in \Sigma_1, T \cup \{\psi\}$ не имеет модели, значит $T \models \neg \psi \in \Pi_1$, а значит, $\mathbb{B} \models \neg \psi$. По определению $\neg \psi \in \Gamma$, $\mathbb{B} \models \Gamma$, поэтому $\mathbb{B} \models \neg \psi$. Но с другой стороны $\mathbb{B} \models \psi$, противоречие.

Нам нужно вложить $\mathbb{B} \subseteq \mathbb{C} \models T$. Это всё равно, что найти модель для $T \cup D(\mathbb{B})$. Применим в очередной раз теорему о компактности. То есть хочется, чтобы $T \cup \{\delta_1, \ldots, \delta_m\}$ имело модель, где $\delta_i = \delta_i(\overline{c}) \ (c \in \sigma_B)$. Возьмём какие-то новые переменные и подставим: $\mathbb{B} \models \exists \overline{x} \ (\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x}))$. Это предложение истинно в \mathbb{B} , лежит в Σ_1 , а значит, истинно и в \mathbb{A} . Тогда при подходящей интерпретации \mathbb{A} — искомая модель. \square

1.6 Лекция 6

Докажем теперь аналогичную теорему для Π_2 . ¹

Теорема 16 (Теорема Чэна-Лося-Сушко). Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Замечание. Что значит последнее условие? Если у нас есть возрастающая бесконечная цепочка структур $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots$, тогда можно построить $\mathbb{A} = \bigcup \mathbb{A}_n$. Носителем будет $A = \bigcup A_n$, предикаты, функции и константы интерпретируются просто через объединение $P^{\mathbb{A}} = \bigcup P^{\mathbb{A}_n}$, и даже если с первого взгляда не верится, это — корректное определение структуры. Таким образом, класс замкнут относительно объединений цепей, если $\forall n \ (\mathbb{A}_n \in K), \ \mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots$, то и $\bigcup \mathbb{A}_n \in K$.

Доказательство. Докажем сначала в лёгкую сторону, слева направо. Пусть у нас есть $K = \operatorname{Mod}(T), T \subseteq \Pi_2$. А также цепочка $\mathbb{A}_i \in K$, тогда нам нужно показать, что их объединение $\mathbb{A} \in K$. Рассмотрим $\varphi \in T$, мы хотим проверить, что $\mathbb{A} \models \varphi = \forall \overline{x} \, \exists \overline{y} \, \psi(\overline{x}, \overline{y})$, ψ — бескванторная. $\mathbb{A}_n \models \varphi$ при любом $n. \, \overline{a} \in A$ — значение \overline{x} . Тогда нужно доказать, что $\mathbb{A} \models \exists \overline{y} \psi(\overline{a}, \overline{y})$. $\overline{a} \in A_n$ для некоторого $n \geq 0$ ($\mathbb{A}_n \subseteq \mathbb{A}$). $\mathbb{A}_n \models \exists \overline{y} \, \psi(\overline{a}, \overline{y})$. Значит найдётся $\overline{b} \in A_n$ такой, что $\mathbb{A}_n \models \psi(\overline{a}, \overline{b})$. Тогда и $\mathbb{A} \models \psi(\overline{a}, \overline{b})$, значит $\mathbb{A} \models \exists \overline{y} \, \psi(\overline{a}, \overline{y})$. \overline{a} брали произвольным, поэтому и исходная формула выводится.

В обратную сторону начало аналогичное предыдущей теореме: для $K = \operatorname{Mod}(T)$ рассматриваем $\Gamma = \{\varphi \in \Pi_2 \mid T \models \varphi\}$ и доказываем $K = \operatorname{Mod}(\Gamma)$. Включение слева направо опять понятно, и далее схема тоже схожа, для $\mathbb{B} \models \Gamma$ мы только хотим, чтобы $\mathbb{B} \models T$. Найдём объединение возрастающей цепочки K-структур $\mathbb{B}_{\omega} \succeq \mathbb{B}$. Ну то есть, мы её построим для начала. Доказательство того, что существует $A \models T$ такое, что $\operatorname{Th}_{\Sigma_2}(\mathbb{A}) \supseteq \operatorname{Th}_{\Sigma_2}(\mathbb{B})$, аналогично предыдущей теореме. Докажем ещё одно вспомогательное утверждение.

Существуют $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B}' \succeq \mathbb{B}$ такие, что $\mathbb{B} \subseteq \mathbb{A}' \subseteq \mathbb{B}'$. Рассмотрим $\operatorname{Th}(\mathbb{A}) \cup \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$, где \mathbb{B}_B — естественное σ_B -обогащение \mathbb{B} . Если взять любое конечное множество из второй теории объединения, то аналогично предыдущей теореме, они они имеют константы: $\delta_1(\overline{c}), \ldots, \delta_m(\overline{c})$. Значит,

$$\mathbb{B} \models \exists \overline{x} (\delta_1(\overline{x}) \land \ldots \land \delta_m(\overline{x})) \in \Sigma_2,$$

следовательно, истино и в \mathbb{A}_B . \mathbb{A}'_B — любая модель $\mathrm{Th}(\mathbb{A}) \cup \mathrm{Th}_{\Pi_1}(\mathbb{B}_B)$ (\mathbb{A}' — объединение до σ -структуры). $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B} \subseteq \mathbb{A}'$, отрицания к формулам из Π_1 лежат в Σ_1 , поэтому из $\mathrm{Th}_{\Sigma_1}(\mathbb{B}_B) \supseteq \mathrm{Th}_{\Sigma_1}(\mathbb{A}'_B)$.

Рассмотрим теперь $D(\mathbb{A}'_B) \cup \operatorname{Th}(\mathbb{B}_B)$. Точно так же рассуждая, как и выше, эта теория имеет модель $\mathbb{B}'_{A'}$ такую, что $\mathbb{B} \leq \mathbb{B}'$. Исходя из этого и будем строить цепочку.

¹Окончание доказательства с прошлой лекции в разделе прошлой лекции

Возьмём структуры $\mathbb{B} = \mathbb{B}_0 \subseteq \mathbb{A}_1 (\equiv \mathbb{A}) \subseteq \mathbb{B}_1$. Берём теперь опять \mathbb{A} и \mathbb{B}_1 , для них применяем опять утверждение из третьего абзаца, получаем, что $\mathbb{B}_1 \subseteq \mathbb{A}_2 (\equiv \mathbb{A}) \subseteq \mathbb{B}_2$, и так далее. $\mathbb{A}_n \models T$, $\mathbb{A}_\omega = \bigcup \mathbb{A}_n \models T$. $\mathbb{B} = \mathbb{B}_0 \preceq \mathbb{B}_1 \preceq \ldots$ Значится, $\mathbb{B}_\omega = \mathbb{A}_\omega$, $\mathbb{B}_0 \preceq \mathbb{B}_\omega$, откуда и получается требуемое.

1.6.1 Полнота, модельная полнота, элиминация кванторов.

Определение 18. Теория T называется *полной*, если она имеет модель и из неё следует либо φ , либо $\neg \varphi$ для любого σ -предложения.

Утверждение 17. Для непротиворечивой теории T равносильны следующие условия:

- 1) T nonna;
- 2) $[T] = Th(\mathbb{A})$, для любой $\mathbb{A} \models T$ (где $[T] = \{\varphi \mid T \models \varphi\}$ замыкание теории);
- 3) $Th(\mathbb{A}) = Th(\mathbb{B})$ для любых \mathbb{A} , $\mathbb{A} \models T$.

Определение 19. T называется категоричной в мощности H, если T имеет единственную с точностью до изоморфизма модель мощности H.

Теорема 18 (тест Воота). Если теория не имеет конечных моделей и категорична в некоторой мощности $\geq |For_{\sigma}|$, то она полна.

Определение 20. Непротиворечивая теория T модельно полна, если \subseteq и \preceq на $\mathrm{Mod}(T)$ совпадают.

1.7 Лекция 7

Теорема 19. Для непротиворечивой теории T равносильны следующие условия:

- 1) T Modenbho nonha;
- 2) Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна;
- 3) (Тест Робинсона) Для любых $\mathbb{A}, \mathbb{B} \models T$ из $\mathbb{A} \subseteq \mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B} , будет истинно и в \mathbb{A} ;
- 4) $\Sigma_1 = \Pi_1$ по модулю T, то есть любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T (то есть $T \models \forall \overline{x} \ (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$);
- 5) Любая формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле в T.

Замечание. Пока мы ввели иерархию только для предложений. Она точно так же строится для формул со свободными переменными.

Доказательство. На практиках мы уже доказали $1 \Rightarrow 2, 2 \Rightarrow 3$.

Нетривиальным является следствие $3\Rightarrow 4$. Пусть $\varphi(\overline{y})-\Sigma_1$ -формула. Нам нужно найти Π_1 -формулу $\psi(\overline{y})$ такую, что $T\models \forall \overline{y}\ (\varphi(\overline{y})\leftrightarrow \psi(\overline{y}))$. Скажем, $\overline{y}=(y_1,\ldots,y_k)$, обогатим сигнатуру константными символами $\overline{c}=(c_1,\ldots,c_k)$. Тогда достаточно доказать, что $T\models \varphi(\overline{c})\leftrightarrow \psi(\overline{c})$.

Пусть $\Gamma = \{ \gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma \}$. Достаточно доказать, что $T \cup \Gamma \models \varphi(\overline{c})$. Действительно, если это так, то для конечного подмножества Γ выполнено $T \cup \{\gamma_1, \ldots, \gamma_m\} \models \varphi$, тогда $\psi = \gamma_1 \wedge \ldots \wedge \gamma_k \in \Pi_1$ — искомая формула.

Рассмотрим произвольную модель $\mathbb{A} \models T \cup \Gamma$. Наша цель — показать, что $\mathbb{A} \models \varphi$. Сначала докажем, что $T \cup \{\varphi\} \cup D(\mathbb{A})$ имеет модель. Предположим противное, тогда по теореме о компактности для некоторых $\{\delta_1, \ldots, \delta_m\} \subseteq D(\mathbb{A})$ у $T \cup \{\varphi\} \cup \{\delta_1, \ldots, \delta_m\}$ нет модели. Пусть $\delta = \delta_1 \wedge \ldots \wedge \delta_m$. По определению диаграммы, $\mathbb{A} \models \exists \overline{x} \ \delta(\overline{x})$. С другой стороны, из-за отсутствия модели, $T \cup \{\varphi\} \models \forall x \neg \delta(\overline{x})$, поэтому $T \models \varphi \rightarrow \forall \overline{x} \ \neg \delta(\overline{x})$. По определению $\Gamma, \forall \overline{x} \ \neg \delta(\overline{x}) \in \Gamma$, значит эта формула верна в \mathbb{A} . Но и её отрицание верно в \mathbb{A} . Противоречие.

Пусть $\mathbb{B} \models T \cup \{\varphi\} \cup D(\mathbb{A})$. Тогда $\mathbb{A} \subseteq \mathbb{B}$, $\varphi - \Sigma_1$ -предложение. Тогда из пункта 3 получаем $\mathbb{A} \models \varphi$, что мы и пытались доказать.

 $4\Rightarrow 5$. Рассмотрим произвольную φ . Она лежит на одном из уровней иерархии формул. Рассмотрим только случаи $\varphi\in\Pi_2$ и $\varphi\in\Sigma_2$. В остальных случаях рассуждения аналогичны.

Для формулы $\varphi(\overline{z}) \in \Pi_2$ существует запись в виде $\forall \overline{x} \exists \overline{y} \ \psi(\overline{x}, \overline{y}, \overline{z})$. Формула $\exists \overline{y} \ \psi(\overline{x}, \overline{y}, \overline{z})$ лежит в Σ_1 , поэтому по пункту 4 существует $\psi'(\overline{x}, \overline{z}) \in \Pi_1$, эквивалентная ей по модулю T. Значит $\varphi \equiv_T \forall \overline{x} \ \psi' \in \Pi_1$.

Для формулы $\varphi \in \Sigma_2$ выполнено $\neg \varphi \in \Pi_2$. Поэтому $\exists \psi \in \Pi_1$ такая, что $\neg \varphi \equiv_T \psi$. Тогда $\varphi \equiv_T \neg \psi \in \Sigma_1$. А $\neg \psi$ в свою очередь эквивалентна формуле Π_1 из пункта 4.

 $5 \Rightarrow 1$. Нам нужно, чтобы выполнялось $\mathbb{A} \subseteq \mathbb{B} \Rightarrow \mathbb{A} \preceq \mathbb{B}$, где \mathbb{A} и \mathbb{B} — модели T. Рассмотрим произвольную формулу φ . Из пункта 5 следует существование универсальной формулы ψ с условием $\varphi(\overline{x}) \equiv_T \psi(\overline{x})$.

Для $\overline{a} \in \mathbb{A}$, если $\mathbb{B} \models \varphi(\overline{a})$, то и $\mathbb{B} \models \psi(\overline{a})$, из универсальности $\mathbb{A} \models \psi(\overline{a})$, из равносильности $\mathbb{A} \models \varphi(\overline{a})$. Мы доказали $\mathbb{B} \models \varphi \Rightarrow \mathbb{A} \models \varphi$. Для доказательства в обратную сторону можно рассмотреть формулу $\neg \varphi$.

Предложение 20 (Свойства модельно полных теорий).

- 1) Любая модельно полная теория Π_2 -аксиоматизируемая;
- 2) (Тест Линдстрёма) Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |For_{\sigma}|$, то она модельно полна;
- 3) Если модельно полная теория T имеет модель, котоаря вкладывается в любую модель T, то T полная;
- 4) Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.

Доказательство.

1) T — модель полная. Достаточно доказать, что $\mathrm{Mod}(T)$ замкнут относительно объединения цепей (по теореме Чэна-Лося-Сушко)

$$A_0 \subseteq A_1 \subseteq \dots \quad A = \bigcup_n A_n,$$

где $\mathbb{A}_i \models T_i$. Из модельной полноты имеем $\mathbb{A}_0 \preceq \mathbb{A}_1 \preceq \ldots$, отсюда нетрудно показать, что $\mathbb{A}_n \preceq \mathbb{A}$, тогда $T = \mathbb{A}_n \equiv \mathbb{A}$.

- 2) Набросок доказательства приводится ниже.
- 3) \mathbb{A} структура, изоморфная подструктуре любой модели $\mathbb{B} \models T$, тогда из модельной полноты $\forall \mathbb{B} \ (\mathbb{A} \preceq \mathbb{B})$. Для любой φ выполнено либо $\mathbb{A} \models \varphi$, либо $\mathbb{A} \models \neg \varphi$. Тогда одна из этих формул верна во всех моделях T, откуда и получим, что из T следует либо эта формула, либо её отрицание.
- 4) Рассмотрим \mathbb{A}, \mathbb{B} модели T. По предположению, существует третья модель \mathbb{C} с двумя подструктурами \mathbb{A}', \mathbb{B}' , причём выполнено $\mathbb{A} \simeq \mathbb{A}' \subseteq \mathbb{C}$ и аналогичное для \mathbb{B} . T модельно полна, поэтому $\mathrm{Th}(\mathbb{A}') = \mathrm{Th}(C)$. Значит $\mathrm{Th}(\mathbb{A}) = \mathrm{Th}(\mathbb{C}) = \mathrm{Th}(\mathbb{B})$. Значит T полна.

1.8 Лекция 8

Утверждение 21 (Тест Линдстрёма). Если некоторая теория T Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |For_{\sigma}|$, то она модельно полна.

Доказательство. Достаточно проверить выполнение теста Робинсона. Предположим противное. Тогда существуют структуры $\mathbb{A} \subseteq \mathbb{B}$, являющиеся моделями T, и Σ_1 -формула φ сигнатуры σ такая, что $\mathbb{B} \models \varphi(\overline{a})$, но $\mathbb{A} \models \neg \varphi(\overline{a})$ для некоторого набора $\overline{a} \in A$.

Рассмотрим обогащение исходной сигнатуры $\sigma^+ = \sigma \cup \{P\}$, где P — новый одноместный предикатный символ. Структура \mathbb{B}^+ — обогащение \mathbb{B} до σ^+ -структуры, в которой P интерпретируется как множество \mathbb{A} . Пусть $T^+ = \operatorname{Th}(\mathbb{B}^+) \supseteq T$.

Также заметим, что $\theta \in T^+$, где

$$\theta = \exists x_1 \dots \exists x_k \, (P(x_1) \wedge \dots \wedge P(x_k) \wedge \varphi(\overline{x}) \wedge \neg \varphi^P(\overline{x})).$$

Здесь $\varphi^P - p$ елятивизация формулы φ относительно предиката P, то есть все кванторы формулы ограничены P (более формально определяется по индукции: $(\forall y \, \psi)^P := \forall y \, (P(y) \to \psi^P)$ и $(\exists y \, \psi)^P := \exists y \, (P(y) \land \psi^P)$). Формула θ как раз утверждает, что для некоторого $\overline{a} \in A \mathbb{B} \models \varphi(\overline{a})$, но $\mathbb{A} \models \neg \varphi(\overline{a})$.

(Примечание записывающего: дальше доказательство даётся в форме наброска, как на лекции. Формальное доказательство длиннее)

По теоремам Лёвенгейма-Сколема (надо использовать обе), теория T^+ имеет модель $\mathbb D$ мощности λ такую, что мощность множества $P^{\mathbb D^+}$. Тогда $\mathbb D = \mathbb D^+|_{\sigma}$ — модель теориия T. Пусть $\mathbb C$ — подструктура $\mathbb D$ на множестве P^{D^+} . Тогда $\mathbb C$ — модель теории T мощности λ .

Утверждение 22. Для любой $\mathbb{C} \models T$ мощности λ существует экзистенциально замкнутое расширение $\mathbb{C}^+ \supseteq \mathbb{C} \ (\mathbb{C}^+ \models T)$ мощности λ .

Определение 21. Структура \mathbb{C}^+ называется *экзистенциально замкнутой*, если для любого расширения $\mathbb{E} \supseteq \mathbb{C}^+$ для любой Σ_1 -формулы φ и набора $\overline{c} \in \mathbb{C}^+$ из истинности $\varphi(\overline{c})$ в \mathbb{E} следует истинность в \mathbb{C}^+ .

Идея доказательства утверждения — рассмотреть цепочку $\mathbb{C} \subseteq \mathbb{C}_0 \subseteq \mathbb{C}_1 \subseteq \dots$ моделей T, где на каждом шаге к \mathbb{C}_n добавляются все решения экзистенциальных формул с коэффициентами в \mathbb{C}_n . Тогда каждое \mathbb{C}_i имеет мощность λ , тогда $\bigcup \mathbb{C}_i$ — экзистенциально замкнуто, модель T и имеет мощность λ .

Тогда получаем противоречие, так как из $\mathbb{C}\subseteq\mathbb{D}\models \varphi(\overline{a})$ следует $\mathbb{C}\models \varphi(\overline{a})$ из категоричности.

1.8.1 Элиминация кванторов

Определение 22. Теория T допускает элиминацию кванторов, если любая формула равносильна бескванторной.

Предложение 23.

- 1) Если Т допускает элиминацию кванторов, то она модельно полна;
- 2) Если для любой бескванторной формулы $\theta(\overline{x}, y)$ формула $\exists y \, \theta(\overline{x}, y)$ равносильна некоторой бескванторной, то T допускает элиминацию кванторов;
- 3) Если для данной формулы φ выполнено условие \circledast , то φ равносильна бескванторной $\psi(\overline{x})$ в T.
 - Условие \circledast : для любых вложений (то есть изоморфизмов на подструктуры) $f: \mathbb{C} \to \mathbb{A}, g: \mathbb{C} \to \mathbb{B}$ σ -структуры \mathbb{C} в модели \mathbb{A}, \mathbb{B} теории T и для любых значений $\overline{c} \in \mathbb{C}$ выполнено $\varphi(f(\overline{c})) = \varphi(g(\overline{c}))$
- 4) Пусть для любой бескванторной $\theta(\overline{x}, y)$ формула $\phi(\overline{x}) = \exists y \ \theta(\overline{x}, y)$ удовлетворяет \circledast . Тогда T допускает элиминацию кванторов.

Доказательство.

1) Одно из эквивалентных условие модельно полной теории — равносильность любой формулы универсальной, а любая бескванторная формула лежит в Π_1 .

- 2) Доказывается индукцией по сложности формулы, кванторы всеобщности можно представить через кванторы существования.
- 3) Схема доказательства уже неоднократно нами применялась.

Зафиксируем $\varphi(x_1,\ldots,x_k)$, удовлетворяющую \circledast . Обогатим сигнатуру новыми константами $\overline{d}=(d_1,\ldots,d_k)$. Для доказательства нам надо придумать бескванторную ψ , такую что в исходной сигнатуре $T\models \forall \overline{x}\; (\varphi(\overline{x})\leftrightarrow \psi(\overline{x}))$, что эквивалентно $T\models \varphi(\overline{d})\leftrightarrow \psi(\overline{d})$ в обогащённой структуре.

Пусть $\Gamma = \{ \gamma \text{ - }$ бескванторное $\sigma_{\overline{d}}$ -предложение $\mid T \models \varphi(\overline{d}) \to \gamma \}$. Достаточно доказать, что $T \cup \Gamma \models \varphi(\overline{d})$. Действительно, если это так, то по теореме о компакности для конечного $\{\gamma_i\}_i \subset \Gamma$ верно $T \cup \{\gamma_i\}_i \models \varphi(\overline{d})$, откуда для $\gamma = \wedge_i \gamma_i$ верно $T \models \gamma \to \varphi(\overline{d})$.

Будем доказывать от противного. Тогда $T \cup \Gamma \cup \{\neg \varphi(\overline{d})\}$ имеет модель \mathbb{A} . Обозначим через d_i' интерпретацию d_i в структуре \mathbb{A} .

Пусть \mathbb{C} — подструктура \mathbb{A} , порождённая элементами d'_1, \ldots, d'_k (то есть кроме этих элементов есть ещё все применения функций к этим переменным, а предикаты как в исходной структуре). Конечно, \mathbb{C} не обязана быть моделью T. Пусть $f: \mathbb{C} \to \mathbb{A}$ — тождественное вложение.

 $Diag(\mathbb{C})$ — вариант $D(\mathbb{C})$, но без использования новых констант — в нашем случае уже есть имена для всех элементов (термы от d_i'), поэтому новых символов добавлять не нужно.

Утверждение 24. $T \cup Diag(\mathbb{C}) \cup \{\varphi(\overline{d})\}$ имеет модель.

Доказательство. Доказываем от противного. Тогда для некоторого конечного подмножества Γ $T \cup \{\delta_1(\overline{d}), \ldots, \delta_n(\overline{d})\} \cup \{\varphi(\overline{d})\}$ не имеет модели. Значит $T \models \bigwedge \delta_i(\overline{d}) \to \neg \varphi(\overline{d})$, откуда по контрпозиции $T \models \varphi(\overline{d}) \to \bigvee \neg \delta_i(\overline{d})$.

Тогда $\gamma = \bigvee \neg \delta_i(\overline{d})$ лежит в Γ . Значит $\mathbb{A} \models \gamma$, но по определению Diag выполнено $\mathbb{A} \models \neg \gamma$. Противоречие

Пусть \mathbb{B}' — модель, удовлетворяющая утверждению. Рассмотрим её обеднение \mathbb{B} до структуры σ . Существует единственное вложение $g:\mathbb{C}\to\mathbb{B}$, переводящее d_i в d_i' .

Наконец, воспользуемся условием \circledast . По определению, в $\mathbb{A} \varphi(f(\overline{d}))$ ложно, а в $\mathbb{B} \varphi(g(\overline{d}))$ истинно. Противоречие.

4) Очевидно следует из пунктов 2 и 3.

Тарский доказал, что структуры (\mathbb{R} , <, +, ·, 0, 1) и (\mathbb{C} , +, ·, 0, 1) допускают элиминацию кванторов. Доказательство конструктивное, но длинное. Мы докажем то же самое утверждение для всех алгебраически замкнутых полей, но не конструктивно.

Пример 4. Теория АСF (теория алгебраически замкнутых полей) допускает элиминацию кванторов

Доказательство. (плохо записано)

Сначала докажем, что ACF модельно полна, используя тест Линдстрёма: Π_2 аксиоматизируемость по определению, ACF не имеет конечных моделей.

(ТООО) С доказательством категоричности возникли проблемы, из-за существования полей разных характеристик. Но, насколько я понял, для полей фиксированной характеристики всё нормально, поэтому мы доказали модельную полноту ACF_p (p — характеристика). Вроде бы и сама ACF модельно полна, но это надо доказывать не тестом Линдстрёма.

Для доказательства основного факта воспользуемся пунктом 4 предыдущего утверждения, обозначения те же. Для $\mathbb C$ с вложениями f,g в $\mathbb A,\mathbb B$ можно рассмотреть поле частных $\mathbb C^*$ и его алгебраическое замыкание $\tilde{\mathbb C}$, для которого можно придумать вложения $\tilde f, \tilde g$ в $\mathbb A, \mathbb B$, чтобы в диаграмме со стрелочками $f,g,\tilde f,\tilde g$ и вложением $\mathbb C$ в $\tilde{\mathbb C}$ они согласовывались. Тогда из модельной полноты, если φ от образа верно в $\mathbb A$, то и в $\mathbb C$ и в $\mathbb B$ тоже верно.

1.9 Лекция 9

1.9.1 Игры Эренфойхта

Считаем, что сигнатура σ не содержит функциональных символов и конечна. Первое требование не существенно, ведь можно рассматривать соответствующие предикаты. А и $\mathbb{B}-\sigma$ -структуры, n— произвольное натуральное число.

Определение 23. В *игре Эренфойхта с п ходами* $G_n(\mathbb{A}, \mathbb{B})$ каждый из двух игроков I и II делает по n ходов. Сначала I выбирает элемент из $A \cup B$ (A, B) множества, соответствующие структурам \mathbb{A}, \mathbb{B}). Затем II выбирает элемент в другой структуре. Получили обогащение каждой структуры константой: $(\mathbb{A}, a), (\mathbb{B}, b)$. Такая пара ходов повторяется п раз.

II выигрывает в партии, если конечные подструктуры, порождённые \overline{ab} (в каждом наборе по п элементов) изоморфны относительно изоморфизма, который отправляет $a_i \mapsto b_i$ и для каждой константы $c^{\mathbb{A}} \to c^{\mathbb{B}}$

Замечание. Игроков в такой игре иногда называют Новатор и Консерватор. В англоязычной литературе — spoiler и duplicator или \forall (Adam) и \exists (Eve).

Определение 24. В игре $G(\mathbb{A}, \mathbb{B})$ в свой первых ход I выбирает натуральное число n, после чего игра идёт как $G_n(\mathbb{A}, \mathbb{B})$.

Обозначим через S_1 стратегию для первого игрока (функцию $(A \cdot B)^* \to A \cup B$), через S_2 стратегию для второго игрока (функции $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Стратегия S_i для игрока i называется выигрышной, если он, следуя этой стратегии, выигрывает вне зависимости от стратегии другого игрока.

Обозначим $G_n^I(\mathbb{A}, \mathbb{B})$ наличие выигрышной стратегии у игрока I в игре $G_n(\mathbb{A}, \mathbb{B})$. Аналогично определяется G_n^{II} .

Предложение 25. Свойства игр и стратегий

1)
$$G_{n+1}^{I}(\mathbb{A}, \mathbb{B}) \Leftrightarrow (\exists a \in \mathbb{A} \ \forall b \in \mathbb{B} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))) \lor (\exists b \in \mathbb{B} \ \forall a \in \mathbb{A} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b)))$$

$$2) \quad G_{n+1}^{II}(\mathbb{A},\mathbb{B}) \Leftrightarrow \left(\forall a \in \mathbb{A} \ \exists b \in \mathbb{B} \ G_n^{II}((\mathbb{A},a),(\mathbb{B},b))\right) \wedge \left(\forall b \in \mathbb{B} \ \exists a \in \mathbb{A} \ G_n^{II}((\mathbb{A},a),(\mathbb{B},b))\right)$$

3)
$$G^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow \forall n \ G_n^{II}(\mathbb{A}, \mathbb{B})$$

4)
$$G^I(\mathbb{A}, \mathbb{B}) \Leftrightarrow \exists n \ G_n^I(\mathbb{A}, \mathbb{B})$$

- 5) $B G_n(\mathbb{A}, \mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.
- 6) $B G(\mathbb{A}, \mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.

Доказательство. В пункте 1 выигрышная стратегия у первого игрока есть либо когда есть выигрышный первый ход в первую структуру, либо выигрышный первый ход во вторую структуру. Формально утверждение доказывается по индукции. Пункт 2 доказывается аналогично.

В 5 достаточно проверить, что оба игрока не могут иметь выигрышную стратегию. Действительно, если такие стратегии S_1, S_2 есть, то можно запустить партию с этими стратегиями. В итоге одна из них проиграет.

Определение 25. *Квантовая глубина* формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ :

- 1) Если φ простейшая, то $q(\varphi) = 0$.
- 2) Если $\varphi = \neg \varphi_1$, то $q(\varphi) = q(\varphi_1)$.
- 3) Если $\varphi = \varphi_1 \wedge \varphi_2$, то $q(\varphi) = \max(q(\varphi_1), q(\varphi_2))$.
- 4) Если $\varphi = \exists x \ \varphi_1$, то $q(\varphi) = q(\varphi_1) + 1$.

Определение 26. Обозначим через $C_n^{\overline{x}}$ множество всех σ -формул $\varphi(\overline{x})$ глубины не более n.

Предложение 26. Множество $C_n^{\overline{x}}/\equiv$ (отношение \equiv обозначает равносильность формул) конечно.

Доказательство. Доказываем индукцией по n. База индукции n=0. $C_0^{\overline{x}}$ — бескванторные формулы. Каждая формула оттуда эквивалентна булевой комбинации формул вида $x_i=x_j, x_i=c, c=x_i, c=d$ (c,d) — константы)и $P(t_1,\ldots,t_m)$ (t_i) — переменные или константы). Таких формул конечное число, поэтому и их булевых комбинаций конечное число.

Переход: рассматриваем n>0. В этом случае $C_n^{\overline{x}}=C_{n-1}^{\overline{x}}\cup D_n^{\overline{x}}$, где $D_n^{\overline{x}}$ — формулы с факторной глубиной ровно n. Факторизация первого множества конечна по предположению индукции, а для второго выполнено

$$D_n^{\overline{x}}/{\equiv} = BC(\{\exists y\ \psi(\overline{x},y) \mid \psi \in D_{n-1}^{\overline{x}}\}),$$

что тоже конечно. (Примечание записывающего: наверное стоит сделать $\psi \in C_{n-1}^{\overline{x}}$, потому что разные подформулы могут иметь разную глубину)

Теорема 27.
$$G_n^{II} \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}), \ \textit{где} \ C_n = C_n^{\emptyset}$$

 $\@ifnextchar[{\it Доказательство}]$. Будем доказывать обобщение этой теоремы: пусть $\@ifnextchar[{\it a}, \@ifnextchar[{\it b}]$ — наборы элементов одинаковой длины, равные по длине набору $\@ifnextchar[{\it x}]$; докажем

$$G_n^{II}((\mathbb{A}, \overline{a}), (\mathbb{B}, \overline{b})) \iff \forall \varphi \in C_n^{\overline{x}}(\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{b})).$$

Доказываем индукцией по n.

В случае n=0 надо доказать $G_0^{II}((\mathbb{A},\overline{a}),(\mathbb{B},\overline{b}))\iff \forall \varphi\in C_0^{\overline{x}}(\varphi^{\mathbb{A}}(\overline{a})=\varphi^{\mathbb{B}}(\overline{b})).$ По определению левая часть выполнена когда подструктуры, порождённые \overline{a} и \overline{b} , изоморфны, то есть значения простейших формул совпадают. А значит и значения бескванторных (то есть $C_0^{\overline{x}}$) совпадают. И наоборот.

Переход: n > 0. Сначала докажем слева направо.

Для $\varphi \in C_n^{\overline{x}}$ либо $\varphi \in C_{n-1}^{\overline{x}}$ — тогда применимо предположение индукции для n-1, либо $\varphi \in D_n^{\overline{x}}$ — тогда φ эквивалентна булевой комбинации формул вида $\exists y \, \psi(\overline{x}, y)$, где кванторная глубина ψ на единицу меньше. Достаточно доказать утверждение для формул такого вида.

Предположим, что $\mathbb{A} \models \exists y \, \psi(\overline{a}, y)$, зафиксируем $a \in A$ такой, что $\mathbb{A} \models \psi(\overline{a}, a)$. Воспользуемся свойством 2, чтобы зафиксировать $b \in B$ с условием $G^{II}_{n-1}((\mathbb{A}, \overline{a}, a), (\mathbb{B}, \overline{b}, b))$. Пользуемся предположением индукции — из $\psi^{\mathbb{A}}(\overline{a}, a)$ получаем $\psi^{\mathbb{B}}(\overline{b}, b)$, откуда $\mathbb{B} \models \exists y \, \psi(\overline{b}, y)$. Это в точности то, что мы хотели доказать. Для истинной формулы из \mathbb{B} истинность в \mathbb{A} доказывается так же.

Теперь докажем в обратную сторону. По контрпозиции, применив свойство 5, надо доказать:

$$G_n^I((\mathbb{A},\overline{a}),(\mathbb{B},\overline{b})) \Longrightarrow \exists \varphi \in C_n^{\overline{x}} \, (\varphi^{\mathbb{A}}(\overline{a}) \neq \varphi^{\mathbb{B}}(\overline{b})).$$

Пользуемся свойством 1. Не умаляя общности считаем, что первый выигрышный ход игрока I — это элемент $a \in A$ (то есть в применяющемся свойстве выполнен первый дизъюнкт). Зафиксируем это a. Для него выполнено

$$\forall b \in B \ G_{n-1}^I((\mathbb{A}, \overline{a}, a), (\mathbb{B}, \overline{b}, b)),$$

откуда по предположению индукции можно получить

$$\forall b \,\exists \psi \in C_{n-1}^{\overline{x},y} \, (\psi^{\mathbb{A}}(\overline{a},a) \neq \psi^{\mathbb{B}}(\overline{b},b)).$$

Выше мы доказали конечность $C_{n-1}^{\overline{x},y}/\equiv$, поэтому для каждого b можно выбрать подходяющую ψ из некоторого множества $\{\psi_1(\overline{x},y),\dots,\psi_N(\overline{x},y)\}\subseteq C_{n-1}^{\overline{x},y}$:

$$\forall b \bigvee_{i < N} (\psi_i^{\mathbb{A}}(\overline{a}, a) \neq \psi_i^{\mathbb{B}}(\overline{b}, b)).$$

Пусть

$$heta_i := egin{cases} \psi_i, & ext{ если } \psi_i^{\mathbb{A}}(\overline{a}, a) \
eg\psi_i, & ext{ если }
eg\psi_i^{\mathbb{A}}(\overline{a}, a) \end{cases}$$

Тогда формула $\varphi(\overline{x})=\exists y\bigwedge_{i\leq N}\theta_i(\overline{x},y)$ подходит: $\varphi^{\mathbb{A}}(\overline{a})$ — это истина, а $\varphi^{\mathbb{B}}(\overline{b})$ — ложь.

Утверждение 28. $G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in Sent(\varphi^{\mathbb{A}} = \varphi^b), mo\ ecmb\ \mathbb{A} \equiv \mathbb{B}.$

Доказательство. Очевидное следствие свойства 3 и конечной кванторной глубины любой формулы.

Определение 27. \mathbb{A} *n-эквивалентно* \mathbb{B} , если $\forall \varphi \in C_n(\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}})$. Обозначается $\mathbb{A} \equiv_n \mathbb{B}$.

2 Неразрешимость и неполнота

2.1 Лекция 10

2.1.1 Свойства выводимости, теория Хенкина

Определение 28. И Π_{σ} — исчисление предикатов в сигнатуре σ (со всеми тавтологиями). И Π_{σ}^* (только с основными тавтологиями)

Из теоремы о полноте исчисления высказываний очевидно, что они эквивалентны, потому что любая тавтология может быть выведена из основных тавтологий с помощью правил вывода исчисления высказываний.

Утверждение 29 (Свойства аксиом и правил).

- Все аксиомы тождественно истинны (в любой структуре при любых значениях свободных переменных)
- Если формула получена по некоторым правилам из формул, тождественно истинных в данной структуре, то тогда она тождественно истинна. (Примечание: правила вывода есть в репозитории в папке с материалами)
- Если в любой аксиоме (любом правиле вывода) заменить все вхождения константного символа с на переменную z, не входяющую в эту аксиому (это правило вывода), то получим аксиому (правило вывода). Неформально говоря, константы похожи на свободные переменные.

Определение 29. Выводом данной формулы φ из T (множества формул) называется последовательность формул $\varphi_0, \ldots, \varphi_n = \varphi$, где φ_i либо аксиома, либо принадлежит T, либо получается из предыдущих по одному из правил.

Определение 30. Формула φ выводима из множества формул T, если существует вывод формулы φ из T. Обозначается $T \vdash \varphi$.

Замечание. Это отношение очень похоже на \models . Действительно, мы докажем, что $T \vdash \varphi \iff T \models \varphi$. Заметим, что первое отношение чисто синтаксическое, а второе — семантическое. Этот результат строго доказывает, что любую истину можно доказать.

(Примечание: Большинство следующих результатов давались на практике (смотри домашнее задание \mathbb{N}_9))

Предложение 30 (Свойства отношения выводимости).

Теорема 31 (о дедукции). Соотношения $T \vdash (\varphi \to \psi)$ и $T \cup \{\varphi\} \vdash \psi$ равносильны для всех предложений φ , формул ψ и множества формул T.

- 1) $Ecnu \varphi \in T$, $mo T \vdash \varphi$;
- 2) Если $T \vdash \varphi$, то $T_0 \vdash \varphi$ для подходящего конечного множества $T_0 \subseteq T$.
- 3) Если $S \vdash \varphi$ и все формулы множества S выводимы из T, то $T \vdash \varphi$.
- 4) Если $T \cup \{\varphi\} \vdash \theta$ и $T \cup \{\psi\} \vdash \theta$, то $T \cup \{\varphi \lor \psi\} \vdash \theta$ (φ и ψ предложения).
- 5) Если $T \cup \{\varphi\} \vdash \psi$ и $T \cup \{\varphi\} \vdash \neg \psi$, то $T \vdash \neg \varphi$ (φ предложение).
- 6) $T \vdash \varphi \land \psi$ тогда и только тогда, когда $T \vdash \varphi$ и $T \vdash \psi$.

Определение 31. Множество формул называется *противоречивым*, если из него выводима любая формула. В противном случае называется *непротиворечивым*.

Предложение 32 (Свойства непротиворечивости).

- 1) Множество формул T противоречиво тогда и только тогда, когда из него выводима хотя бы одна формула вида $\theta \land \neg \theta$.
- 2) Если множества формул T_n , $n \in \mathbb{N}$ непротиворечивы и $T_0 \subseteq T_1 \subseteq \ldots$, то множество $\bigcup_n T_n$ непротиворечиво.
- 3) Если φ предложение, T множество формул и $T \cup \{\varphi\}$ противоречиво, то $T \vdash \neg \varphi$.
- 4) Если множество формул T непротиворечиво, то для любого предложения φ непротиворечиво хотя бы одно из множеств $T \cup \{\varphi\}$ и $T \cup \{\neg \varphi\}$.
- 5) Если множество предложений $S = T \cup \{\exists x \ \psi(x)\}$ непротиворечиво, то и множество $S \cup \{\psi(c)\}$ непротиворечиво для любого не входящего в формулы из S сигнатурного константного символа c.

Определение 32. Множество предложений Т называется *теорией Хенкина*, если T непротиворечива и любое предложение или его отрицание выводимо из T и для любого выводимого из T предложения вида $\exists x \, \psi(x)$ существует константный символ $c \in \sigma$ такой, что $T \vdash \psi(c)$.

Предложение 33 (Свойства теории Хенкина). Для теории Хенкина T выполнены следующие утверждения:

- 1) $T \vdash \neg \varphi \iff T \not\vdash \varphi$.
- 2) $T \vdash (\varphi \lor \psi) \iff T \vdash \varphi \text{ unu } T \vdash \psi.$

- 3) $T \vdash (\varphi \rightarrow \psi) \iff T \not\vdash \varphi \text{ unu } T \vdash \psi.$
- 4) $T \vdash \exists x \theta(x) \iff T \vdash \theta(t)$ для некоторого терма t без переменных.
- 5) $T \vdash \forall x \theta(x) \iff T \vdash \theta(t)$ для любого терма t без переменных.

Предложение 34. Любая непротиворечивая теория не более чем счетной сигнатуры σ может быть расширена до теории Хенкина сигнатуры σ_C , где C — счетное множество новых константных символов.

Доказательство. Рассмотрим непротиворечивую теорию S не более чем счётной сигнатуры σ . Расширим сигнатуру σ до σ_C , добавив счётное количество новых константных символов $C = \{c_0, c_1, \ldots\}$. σ_c — счётная сигнатура, поэтому $\operatorname{Prop}_{\sigma_C}$ не более чем счётно, поэтому можно пронумеровать его элементы: $\{\varphi_1, \varphi_2, \ldots\}$.

Для начала построим возрастающую последовательность вложенных теорий $\{T_n\}_{n\geq 0}$ в сигнатуре σ_c , начав с $T_0=S$. Строим по индукции. Предположим T_n построено, строим T_{n+1} . Рассмотрим несколько случаев:

- Если $T_n \cup \{\varphi_n\}$ противоречива, то пусть $T_{n+1} = T_n \cup \{\neg \varphi_n\}$ она непротиворечива по ранее доказанному утверждению.
- Если $T_n \cup \{\varphi_n\}$ непротиворечива, и φ_n не начинается с квантора существования, то $T_{n+1} = T_n \cup \{\varphi_n\}$.
- Если $T_n \cup \{\varphi_n\}$ непротиворечива, и $\varphi_n = \exists x \ \psi(x)$, то выберем наименьший индекс k, такой что c_k не входит в запись формул из T_n (такой найдётся, потому что в записи T_0 нет символов из C, а в $T_n \setminus T_0$ конечное число элементов). Тогда пусть $T_{n+1} = T_n \cup \{\varphi_n, \psi(c_k)\}$. Из непротиворечивости $T_n \cup \{\varphi_n\}$ получаем непротиворечивость T_{n+1} .

Проверим, что $T = \bigcup_{n \geq 0} T_n$ подходит под требования. Непротиворечивость есть, так как каждая T_n непротиворечива по построению. Для каждого предложения $\varphi = \varphi_m$ либо она была добавлена в T_m (случаи 2,3), либо её отрицание было добавлено (случай 1). Поэтому любое предложение или его отрицание выводимо. Для предложения вида $\exists x \ \psi(x) = \varphi_m$ на m шаге добавляется нужная константа.

2.1.2 Теоремы о существовании модели и полноте И Π_{σ}

Теорема 35 (О существовании модели). Любое непротиворечивое множество предложений имеет модель.

Доказательство. Пусть S — непротиворечивое множество предложений сигнатуры σ . Хотим показать, что S имеет модель. По теореме о компактности можем считать, что S конечна. Тогда в формулы S входит конечное подмножество символов сигнатуры σ , поэтому можно считать, что σ конечна. Тогда, по доказанному выше факту, существует теория Хенкина T сигнатуры σ_C , расширяющая S.

25

Пусть M — множество всех термов сигнатуры σ_C , не содержащих переменных (то есть это константы с "накрученными"на них функциональными символами). Введём на этом множестве отношение \sim следующим образом: $s \sim t$, если $T \vdash s = t$.

Дальше проверяем несколько несложных утверждений:

- 1) ~ является отношением эквивалентности;
- 2) Если $s_1 \sim t_1, \dots, s_n \sim t_n$, выполняется $T \vdash P(s_1, \dots, s_n)$, то $T \vdash P(t_1, \dots, t_n)$;
- 3) Если $s_1 \sim t_1, \ldots, s_n \sim t_n$, то $f(s_1, \ldots, s_n) \sim f(t_1, \ldots, t_n)$;
- 4) Пусть $t = t(x_1, ..., x_n)$ терм, $s_1, ..., s_n \in M$. Тогда $t^{\mathbb{A}}([s_1], ..., [s_n]) = [t(s_1, ..., s_n)];$
- 5) Для любой формулы $g(x_1,\ldots,x_n)$ и для $s_1,\ldots,s_k\in M$ выполнено

$$\mathbb{A} \models \varphi([s_1], \dots, [s_k]) \iff T \vdash \varphi(s_1, \dots, s_k)$$

Первые три утверждения проверяются с помощью аксиом равенства. Первое свойство позволяет корректно определить $A=M/\equiv-$ носитель будущей структуры. Следующие два свойства позволяют корректно задать интерпретацию I сигнатуры на этом множестве: в $\mathbb{A}=(A,I)$ $f^{\mathbb{A}}([t_1],\ldots,[t_n]):=[f(t_1,\ldots,t_n)],$ $P^{\mathbb{A}}([t_1],\ldots,[t_n])\iff T\vdash P(t_1,\ldots,t_n),$ $c^{\mathbb{A}}:=[c].$

Предпоследнее свойство доказывается по индукции.

2.2 Лекция 11

Теорема 36 (теорема Гёделя о полноте).

- 1) Для любой теории T и любого предложения φ в той же сигнатуре σ $T \vdash \varphi \iff T \models \varphi$
- 2) φ тождественно истинна $\iff \varphi$ выводима в $M\Pi_{\sigma}$

 \mathcal{A} оказательство. Второй пункт получается из первого при $T=\varnothing$. Теперь докажем первый пункт.

- ⇒ Доказательство довалось на первом курсе. На практиках доказали, что все аксиомы тождественно истинны, правила вывода сохраняют истинность.
- $\Leftarrow T \models \varphi$, значит $T \cup \{\neg \varphi\}$ не имеет модели. Из теоремы о существовании модели отсюда следует, что $T \cup \{\neg \varphi\}$. Тогда $T \models \neg \neg \varphi$, из эквивалентности $\varphi \equiv \neg \neg \varphi$ получаем $T \models \varphi$, что и требовалось.

Следствие 37.

1) Если σ конечна, то множество $\{\varphi \mid \phi$ ормула φ тождественно истинна $\}$ перечислимо, то есть сущестует алгоритм, перечисляющий элементы этого множества.

- 2) Если σ конечна, T перечислимое множество предложений, то [T] (множество следствий T) перечислимо.
- 3) Если σ конечно, T перечислимо, T полная, то тогда [T] разрешимо, то есть существует алгоритм, распознающий логические следствия из T.
- 4) Множество выводов $\varphi_1, \ldots, \varphi_n$ в ИП $_\sigma$ разрешимо.

Доказательство.

- 1) Следует из второго при $T=\varnothing$
- 2) T перечислимо, множество аксиом И Π_{σ}^* тоже перечислимо. Перечисляя формулы из объединения этих двух перечислимых и применяя правила вывода, можно перечислить и все выводимые.
- 3) Пользуемся пунктом 2. Либо $\varphi \in [T]$, либо $\neg \varphi \in [T]$. Запускаем перечисление [T] и ждём, пока встретится φ или $\neg \varphi$.

4) TODO

Замечание. Традиционно логика разбивается на четыре части:

- Теория множеств
- Теория моделей
- Теория доказательств
- Теория вычислимости

Теорема 38 (Линдстрёма). (без доказателства)

- Не существует логической системы, которая более выразительна, чем логика первого порядка и удовлетворяет понижающей теореме Лёвингейма-Сколема и теореме о компактности.
- 2) Не существует логической системы, которая более выразительна, чем логика первого порядка и удовлетворяет понижающей теореме Лёвингейма-Сколема и в которой множество тождественно истинных формул перечислимо.

2.2.1 Рекурсивные функции и предикаты

Ограничимся функциями на \mathbb{N} (с нулём). Соответственно, далее все аргументы — натуральные числа.

Введём две функции:

$$l(x,y) = egin{cases} 0, & ext{если } x < y \ 1, & ext{в противном случае} \end{cases}$$

$$I_k^n(x_1,\ldots,x_n)=x_k$$

Определение 33. Рекурсивные функции на \mathbb{N} определяются индуктивно:

- $+,\cdot,l,I_k^n$ являются рекурсивными
- Суперпозиция рекурсивных является рекурсивной, то есть если $g = g(y_1, ..., y_k)$ рекурсивна и $h_1(\overline{x}), ..., h_k(\overline{x})$ рекурсивны, то и $g(h_1(\overline{x}), ..., h_k(\overline{x}))$ рекурсивна.
- Минимизация любой рекурсивной функции является рекурсивной. То есть, если $g(\overline{x},y)$ рекурсивна и $\forall \overline{x} \; \exists y \; g(\overline{x},y) = 0$, то функция $f(\overline{x}) = \mu y(g(\overline{x},y) = 0)$ тоже рекурсивна. Здесь $\mu y(P(y))$ наименьшее значение y, при котором предикат истинен.
- Других рекурсивных функций нет.

Замечание. Любая рекурсивная функция вычислима, это доказывается индуктивно. А существует ли вычислимая функция, которая не рекурсивна?

Гипотеза 39 (Тезис Чёрча). Любая тотальная (всюда определённая) вычислимая функция на N рекурсивна.

Почему тезис, а не теорема? Потому что понятие вычислимости не математично.

Определение 34. Предикат $P(\overline{x})$ рекурсивен, если рекурсивна его характеристическая функция

$$\chi_P(\overline{x}) = \begin{cases} 0, & P(\overline{x}) = \mathbf{M} \\ 1, & P(\overline{x}) = \mathbf{J} \end{cases}$$

Предложение 40 (Свойства рекурсивных функций и предикатов).

- Если предикат $P(y_1, \ldots, y_k)$ рекурсивен и функции $h_1(\overline{x}), \ldots, h_k(\overline{x})$ рекурсивны, то $P(h_1(\overline{x}), \ldots, h_k(\overline{x})$ рекурсивен.
- $P(\overline{x},y)$ рекурсивен и $\forall \overline{x} \; \exists y \; P(\overline{x},y)$, то тогда формула $f(overlinex) = \mu y (P(\overline{x},y) = 0)$ рекурсивна.
- $P(\overline{x}), Q(\overline{x}), R(\overline{x}, y)$ рекурсивны, то рекурсивны и предикаты $P(\overline{x}) \vee Q(\overline{x})$ (и для \wedge, \to), $\neg P(\overline{x}), \forall y < z \to R(\overline{x}, y)$ (по определению это $\forall y \ (y < z \to R(\overline{x}, y))$), $\exists y < z \ R(\overline{x}, y)$ (экивалентно $\exists y \ (y < z \wedge) R(\overline{x}, y)$) рекурсивны
- Рекурсивна функция

$$f(\bar{x}) = \begin{cases} g_1(\bar{x}), & P_1(\bar{x}) = \mathcal{U} \\ g_2(\bar{x}), & P_2(\bar{x}) = \mathcal{U} \\ \dots & \dots \\ g_k(\bar{x}), & P_k(\bar{x}) = \mathcal{U}, \end{cases}$$

здесь g_i — рекурсивные функции, P_i — дизъюнктные рекурсивные предикаты, $| \cdot | P_i = \mathbb{N}^d$.

Пример 5.

- Все константые функции рекурсивны
- Функции, задаваемые полиномами с натуральными коэффициентами рекурсивны
- \leq , =, \vdots рекурсивны

peкуpcuвность констант. Хотим показать, что $f_c(\overline{x}) = c$ рекуpcuвна индукцией по c.

Если
$$c=0$$
, то $f_0(\overline{x})=\mu y(y=0)=\mu y(I_{n+1}^{n+1}(\overline{x},y)=0)$

Если c=1, то $f_1(\overline{x})=\mu y(0< y)=\mu(l(f_0(\overline{x},y),I_{n+1}^{n+1}(\overline{x},y))=0)$. Или можно было взять $f_1(\overline{x})=l(I_1^n(\overline{x}),I_1^n(\overline{x}))$, если $n\geq 1$.

Если $f_c(\overline{x})$ построена, то $f_{c+1}(\overline{x})=f_c(\overline{x})+f_1(\overline{x})$ рекурсивна как сумма рекурсивных

Предложение 41. Существует рекурсивная фукнция $\beta(a,i)$ такая, что $\beta(0,i) = 0$, $\beta(a+1,i) \le a \ u \ \forall n, a_0, \dots, a_n \ \exists a(\beta(a,0) = a_0 \land \dots, \beta(a,n) = a_n)$

Доказательство. Строим вспомогательную функцию $p(x,y) = (x+y)^2 + x + 1$. Она рекурсивна, потому что полином. Обладает свойствами x,y < p(x,y) и $(x,y) \neq (x_1,y_1) \Rightarrow p(x,y) \neq p(x_1,y_1)$. Второе свойство доказывается сравнением x+y с x_1+y_1 : если они отличаются, то значения функции разделены квадратом большей сумма, а в случае равенства, значения функции различаются из-за $x \neq x_1$.

Тогда пусть

$$\beta(a,i) = \mu x (a = 0 \lor x + 1 = a \lor \exists y < a \ \exists z < a \ (a = p(y,z) \land y : (1 + z \cdot p(x,i))))$$

Первые два свойства следуют из первых двух членов дизъюнкции. Теперь зафиксируем n, a_0, \ldots, a_n и проверим последнее свойство. Пусть $c = \max(p(a_0, 0), \ldots, p(a_n, n)),$ $z = c!, \ y = \prod_{i=0}^n (1 + z \cdot p(a_n, n)).$ Будем доказывать, что a = p(y, z) подходит.

Проверяем, что $\beta(a,i)=a_i$ для $1\leq i\leq n$. Для $x=a_i$ третье условие минимизации выполнено с заданными в предыдущем абзаце y,z. Докажем, что не существует $x< a_i$, удовлетворяющего условиям минимизации.

Предположим противное, такой x нашелся. Первые два члена дизъюнкции не могут выполняться, потому что $a>0, x+1< a_i+1< a$. Значит нашлись y_1,z_1 , такие что $a=p(y_1,z_1)$ и y_1 : $(1+z\cdot p(x,i))$. Тогда $p(y,z)=a=p(y_1,z_1)$, следовательно $(y,z)=(y_1,z_1)$. Тогда y: $(1+z\cdot p(x,i))$. Распишем y по определению, получим

$$\left(\prod_{i=0}^{n} (1 + z \cdot p(a_n, n))\right) : (1 + z \cdot p(x, i))$$

Заметим, что при $k,l \le c, k \ne l$ числа 1+zk и 1+zl взаимнопросты. Действительно, иначе найдётся простой q|(1+zk)-(1+zl)=z(k-l)=c!(k-l). Тогда $q\le c\Rightarrow q|c!=$

 $z \Rightarrow q|zk, q|(1+zk)$, но они взаимнопросты. Все множители в произведении и число $(1+z\cdot p(x,i))$ имеют такой вид, поэтому для некоторого j выполнено $1+z\cdot p(a_j,j)=1+z\cdot p(x,i)\Rightarrow (a_j,j)=(x,i)\Rightarrow i=j, x=a_i.$

2.3 Лекция 12

Используя функцию β любой конечной последовательности натуральных чисел (a_1, \ldots, a_n) можно сопоставить её код:

$$\langle a_1, \dots, a_n \rangle = \mu a \ (\beta(a, 0) = n \land \beta(a, 1) = a_1 \land \dots \land \beta(a, n) = a_n)$$

Например, пустой последовательности соответствует соответствует $\langle \rangle$ — наименьшее a, такое что $\beta(a,0)=0$, то есть $\langle \rangle=0$

Введём новые функции

- Функция «начало»: нач $(a,i) = \mu x \; (\beta(x,0) = i \land \forall j < i \; (\beta(x,j+1) = \beta(a,j+1)))$
- Предикат Π oc $(a) = \neg \exists x < a \ (\beta(x,0) = \beta(a,0) \land \forall i < \beta(a,0) (\beta(x,i+1) = \beta(a,i+1)))$

Предложение 42 (Свойства кодирования последовательностей).

- Функции нач и $\langle a_1, \dots, a_n \rangle$ при n > 0 рекурсивны, предикат Пос рекурсивен.
- $a = \langle a_1, \dots, a_n \rangle \Rightarrow \beta(a, 0) = n \land \beta(a, 1) = a_1 \land \dots \land \beta(a, n) = a_n$
- $(a_1, \ldots, a_n) \neq (b_1, \ldots, b_n) \Rightarrow \langle a_1, \ldots, a_n \rangle \neq \langle b_1, \ldots, b_n \rangle$
- $a = \langle a_1, \dots, a_n \rangle \Rightarrow \mathcal{H}a\mathcal{A}(a, i) = \langle a_1, \dots, a_i \rangle \ npu \ i \leq n$
- $\Pi oc(a) ucmuna \Leftrightarrow a \kappa od$ некоторой последовательности

Теорема 43 (о рекурсивных определениях). Пусть \overline{x} — вектор переменных (возможно пустой)

1) Если функция $g(\bar{x}, y, z)$ рекурсивна, то рекурсивна и функция

$$f(\overline{x}, y) = g(\overline{x}, y, \langle f(\overline{x}, 0), \dots, f(\overline{x}, y - 1) \rangle)$$

Про такую f говорят, что она определена рекурсией с помощью g.

2) Если предикат $Q(\overline{x}, y, z)$ рекурсивен, то рекурсивен и предикат

$$P(\overline{x}, y) = Q(\overline{x}, y, \langle \chi_P(\overline{x}, 0), \dots, \chi_P(\overline{x}, y - 1) \rangle)$$

Доказательство. Второй пункт получается из первого заменой f на χ_P , а q на χ_Q .

Рассмотрим вспомогательную функцию h:

$$h(\overline{x}, y) = \langle f(\overline{x}, 0), \dots, f(\overline{x}, y - 1) \rangle$$

$$= \mu a \left(\Pi oc(a) \land \beta(a, 0) = y \land \forall i < y \ (\beta(a, i + 1) = f(\overline{x}, i)) \right)$$

$$= \mu a \left(\Pi oc(a) \land \beta(a, 0) = y \land \forall i < y \ (\beta(a, i + 1) = g(\overline{x}, i, \text{hay}(a, i))) \right)$$

Значит $h(\overline{x},y)$ рекурсивна, поэтому $f(\overline{x},y)=g(\overline{x},y,h(\overline{x},y))$ тоже рекурсивна.

2.3.1 Кодирование И Π_{σ}

Замечание. Повествование в этом (и предыдущем) разделе перекликается с книгой "Краткий курс математической логики"В.Л. Селиванова 1992 года издания.

Пусть σ — конечная сигнатура. Для примера возьмём $\sigma = \{<, =, +, \cdot, 0, 1\}$, а что делать для остальных сигнатур будет понятно.

Из чего состоят формулы? Из счётного набора переменных $\{v_0, v_1, \ldots\}$ и математических символов. Сопоставим им натуральные числа:

$$v_n \land \lor \to \neg \forall \exists = < + \cdot 0 1$$

 $2n \ 1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \ 17 \ 19 \ 21 \ 23$

Теперь закодируем термы. Через $\lceil t \rceil$ будем обозначать код терма. Пусть $\lceil v_n \rceil = \langle 2n \rangle$, $\lceil 0 \rceil = \langle 21 \rangle$, $\lceil 1 \rceil = \langle 23 \rangle$ — взяли значения из таблицы. Остальные термы кодирутся по рекурсии, например $\lceil s + t \rceil = \langle 17, \lceil s \rceil, \lceil t \rceil \rangle$. Формулы кодируются аналогично, например $\lceil s = t \rceil = \langle 13, \lceil s \rceil, \lceil t \rceil \rangle$, $\lceil \forall v_n \varphi \rceil = \langle 9, 2n, \lceil \varphi \rceil \rangle$

Введём несколько новых предикатов и функций:

- $T(a) \Leftrightarrow a$ код терма
- $\Phi(a) \Leftrightarrow a$ код формулы
- $\Phi_0(a) \Leftrightarrow a$ код формулы, не содержащей свободных переменных, кроме v_0
- $\Pi p(a) \Leftrightarrow a \kappa o g$ предложения
- отр(a) функция, равная $\lceil \neg \varphi \rceil$, если $a = \lceil \varphi \rceil$ и 0 иначе.
- подс(a,b,c): если a код формулы $\varphi(x)$, b код переменной x, а c код терма t, для которого разрешена подстановка $\varphi(t)$, то подс $(a,b,c) = \lceil \varphi(t) \rceil$, иначе 0
- Для множества формул T предикат $P_T(a)$ выполнен когда a код некоторой формулы из T
- Выв $_T(a,b)$ выполнен, если $\Pi p(b)$ и a есть код последовательности кодов формул $\varphi_1, \ldots, \varphi_n$, которая является выводом предложения с кодом b из теории T в $\Pi \Pi_{\sigma}$.

2.4 Лекция 13

Предложение 44 (свойства кодирования).

- 1) Разным термам и формулам соответствуют разные коды
- 2) Существует алгоритм, вычисляющий по данному логическому объекту (терму, формуле) его код
- 3) Наоборот: существует алгоритм, вычисляющий по коду этот объект.
- 4) Предикаты $T, \Phi, \Phi_0, \Pi_{p, \dots}$ и функции отp, nodc рекурсивны.

5) Если множество формул T рекурсивно (то есть рекурсивен предикат $P_T(x)$), то $B \bowtie_T (a,b)$ рекурсивен.

Доказательство. Второй и третий пункт не являются строгими математическими утверждениями, потому то понятие алгоритма не математично. Но нестрого утверждение понятно. Доказательство пятого пункта есть в книжке². Остальные пункты доказываются несложно □

2.4.1 Представимость $\Pi\Pi_{\sigma}$ в минимальной арифметике

Напомним, что МА (минимальная арифметика) состоит из 10 аксиом в сигнатуре $\sigma = \{<,+,\cdot,0,1\}$. Каждому натуральному числу n можно сопоставить терм \hat{n} по следующим правилам: $\hat{0} = 0$, $\hat{1} = 1$, $\widehat{n+1} = (\hat{n}) + 1$

Определение 35. Предикат $P(x_1, ..., x_n)$ на \mathbb{N} называется представимым в MA, если сущесвует формула $\varphi(x_1, ..., x_n)$ такая, что для любых значений $\overline{x} \in \mathbb{N}$ выполнено $P(\overline{x}) = \mathbb{N} \Rightarrow MA \vdash \varphi(\widehat{x_1}, ..., \widehat{x_n})$ и $P(\overline{x}) = \mathbb{N} \Rightarrow MA \vdash \neg \varphi(\widehat{x_1}, ..., \widehat{x_n})$

Функция $f(x_1,\ldots,x_n)$ называется представимой в MA, если сущесвует формула $\varphi(\overline{x},y)$ такая, что для любых $\overline{x} \in \mathbb{N}$ MA $\vdash \forall y \; (\psi(\widehat{x_1},\ldots,\widehat{x_n}) \leftrightarrow y = \widehat{f(\overline{x})})$

Теорема 45. Любой рекурсивный предикат представим в МА.

Доказательство. TODO

2.4.2 Неразрешимость и неполнота арифметики. Проблемы разрешимости

Теорема 46 (Чёрча о неразрешимости арифметики). Для любой непротиворечивой теории $T \supseteq MA$ множество $[T] = \{ \varphi \mid T \vdash \varphi \}$ не рекурсивно.

 \square Локазательство. TODO

Теорема 47 (Гёделя о неполноте арифметики). Любая непротиворечивая рекурсивная теория $T \supseteq MA$ неполна.

 \square Локазательство. TODO

Теорема 48. Множество тождественно истинных формул неразрешимо (нерекурсивно)

 $^{^{2}}$ В.Л.Селиванов — «Краткий курс математической логики» 1992 года издания

3 Введение в вычислимость

3.1 Лекция 14

3.1.1 R-вычислимость

Замечание. Не имеет никакого отношения к языку программирования R.

Определение 36. Программа — это непустая последовательность операторов (I_0, \ldots, I_l) . Оператор — либо оператор присваивания, либо условный оператор. Операторы присваивания: $r_i := 0, r_i := r_i + 1$ и $r_i := r_j$. Условный оператор: $r_i = r_j \Rightarrow k$

Здесь r_0, r_1, r_2, \ldots — переменные со значениями в N

Определение 37.

- 1) Длина программы равна l+1
- (P) равна наибольшему номеру переменной, входящему в (P).
- 3) Состояние программы в момент t при начальных данных $r_i=x_i\in\mathbb{N}$ это кортеж

$$(r_0(t), \ldots, r_m(t), k(t)),$$

где $r_i(t)$ — содержимое регистра r_i в момент t, а k(t) — номер оператора, выполняющегося в момент t. Если $k(t) \ge l+1$, то считаем k(t+1) = k(t)

Определение 38. Пусть P — программа и $n \geq 0$. Тогда P вычисляет частичную функцию $\varphi_P(x_0, \ldots, x_n)$ на \mathbb{N} , которая определяется так: при любых $\overline{x} \in \mathbb{N}$ зададим значения $r_0 = x_0, \ldots, r_n = x_n$; $r_i = 0$ при i > n и запустим P. Если P никогда не останавливается (то есть $\forall t \ k(t) \leq l$), то $\varphi_P(\overline{x})$ не определена. Если же она остановится в момент t, то $\varphi_P(\overline{x}) = r_0(t)$.

 Φ ункции такого вида называются R-вычислимыми.

Предложение 49.

- 1) $+,\cdot,\chi_{<},I_{k}^{m}$ R-вычислимы.
- 2) Суперпозиция R-вычислимых функций R-вычислима.
- 3) Минимизация R-вычислимых функций R-вычислима.

Есть вариант этого предложения для тотальных функций, есть для частичных. Оба верны.

3.1.2 R-вычислимость и рекурсивность

Теорема 50. Класс тотальных R-вычислимых функций совпадает с классом рекурсивных функций.

Определение 39. Закодируем операторы программы натуральными числами:

- $\lceil r_i := 0 \rceil = \langle 0, i \rangle$
- $\lceil r_i := r_{i+1} \rceil = \langle 1, i \rangle$
- \bullet $\lceil r_i := r_j \rceil = \langle 2, i, j \rangle$
- $\lceil r_i = r_i \Rightarrow k \rceil = \langle 3, i, j, k \rangle$
- $\bullet \ \ulcorner P \urcorner = \langle \ulcorner I_0 \urcorner, \dots, \ulcorner I_l \urcorner \rangle$

Определение 40.

- On(a) означает, что a код некоторого оператора.
- Прог(a) означает, что a код некоторой программы.
- Пер(i,a) означает, что a код некоторой программы, в которую входит r_i .
- дл(a) равна длине программы P, если a код программы P; иначе 0.
- $\operatorname{пам}(a)$ равна $\operatorname{Память}(P)$, если $a-\operatorname{код}$ программы P; иначе 0.
- $coc(a, x_0, ..., x_n, t)$ равна коду состояния P в момент t при $r_i = x_i$ для $i \le n$ и $r_i = 0$ для i > n, если a код P; иначе 0.

Предложение 51 (Свойства кодирования).

- 1) Коды разных операторов различны
- 2) Коды разных программ различны
- 3) Все описанные предикаты рекурсивны
- 4) Ecau r_i exodum e P, mo $i < \lceil P \rceil$
- 5) Если k номер условного оператора, входящего в P, то $k < \lceil P \rceil$
- б) Существует алгоритм, который по программе вычисляет её код и наоборот.

3.2 Лекция 15

Доказательство. Доказательство в одну сторону рассматривалось на практике.

В другую сторону: доказываем, что любая R-вычислимая функция является рекурсивной. Рассматриваем тотальную функцию $\varphi_P(\overline{x})$. Пусть $a = \lceil P \rceil$. Введём вспомогательную функцию

$$g(\overline{x}) = \mu t \ (s_t \text{ заключительное})$$

= $\mu t \ (\beta(\cos(a, \overline{x}, t), \max(a) + 2) \ge \text{дл}(a)).$

Она рекурсивна и вычисляет номер первого момента, в который программа прекратит работу. Отсюда получаем рекурсивность нужной функции:

$$\phi_P(\overline{x}) = \beta(\cos(a, \overline{x}, g(\overline{x})), 1)$$

То же самое доказательство работает для другого варианта теоремы:

Теорема 52. Класс рекурсивных частичных функций совпадает с классом R-вычислимых частичных функций.

Определение 41. Для произвольной (возможно не вычислимой) функции $h: \mathbb{N} \to \mathbb{N}$

- Частичные функции, вычислимые относительно h определяются так же, как и обычные рекурсивные частичные функции, но в списке начальных функций присутствует h.
- R-вычислимые относительно h частичные функции (или c оракулом h) функции, вычислимые R-программами c оракулом h.
- R-программа c оракулом o R-программа c дополнительным оператором $r_i = o(r_i)$.

Приведём ещё один вариант теоремы:

Теорема 53. Для любой функции $h: \mathbb{N} \to \mathbb{N}$ класс частичных функций, рекурсивных относительно h совпадает с классом функций, R-вычислимых относительно h.

3.2.1 Главная вычислимая нумерация рекурсивных частичных функций

Определение 42. Φ — класс одноместных рекурсивных частичных функций. Нумерация $\nu: \mathbb{N} \to \Phi$ называется вычислимой, если двуместная функция $\tilde{\nu}(n,x) = \nu_n(x)$ вычислима.

Определение 43. Вычислимая нумерация ν называется главной, если любая вычислимая нумерация $\mu: \mathbb{N} \to \Phi$ сводится к ν , то есть $\mu = \nu \circ f$ для некоторой рекурсивной функции f.

Пример 6. Основным рассматриваемым примером вычислимой нумерации является φ , zde

$$\varphi_n = \begin{cases} \varphi_P^{(1)}, & ecnu \ n = \lceil P \rceil \\ \emptyset, & uhave \end{cases}$$

Теорема 54 (о главной вычислимой нумерации). φ — главная вычислимая нумерация одноместных рекурсивных частичных функций.

Доказательство. Сначала проверим вычислимость $\tilde{\varphi}$. Модифицируем g из предыдущего раздела, добавив ко входу код программы:

$$g(n,x) = \mu t \; (\Pi \text{por}(n) \land \beta(\text{coc}(n,x,t), \text{пам} + 2) \ge \text{дл}(n)).$$

Тогда $\tilde{\varphi}(n,x) = \beta(\cos(n,x,g(n,x)),1)$ рекурсивна.

Теперь проверим, что φ — главная. Зафиксируем вычислимую нумерацию μ . Обозначим за М R-программу, которая вычисляет $\tilde{\mu}(n,x)$. Для всех n построим программы P_n , для которых $\mu_n = \varphi_{P_n}^{(1)}$.

Идея программы — получив на входе x, дописать n, после чего запустить программу М. Код выглядит так:

```
egin{aligned} \overline{r_1} &:= r_0 \ r_0 &:= 0 \ r_o &:= r_0 + 1 \ \dots \ r_o &:= r_0 + 1 \ \mathrm{M}(\mathrm{n}{+}2) \end{aligned}
```

(Последняя строчка обозначает код программы M, где все индексы увеличены на n+2). Нетрудно проверить, что функция $s(n) := \lceil P_n \rceil$ является рекурсивной. Значит $\mu = \varphi \circ s$.

Теорема 55 (о неподвижной точке). Для любой одноместной рекурсивной функции f(x) найдётся e, для которого $\varphi_e = \varphi_{f(e)}$

Доказательство. Рассмотрим вычислимую нумерацию $\mu_n = \varphi_{\varphi_n(n)}$. По предыдущей теореме, существует рекурсивная функция s такая, что $\mu_n = \varphi_{s(n)}$. $f \circ s$ рекурсивная, поэтому $\exists v : f \circ s = \varphi_v$. Значит e = s(v) подходит:

$$\varphi_{s(v)} = \mu_v = \varphi_{\varphi_v(v)} = \varphi_{f(s(v))}$$

Теорема 56 (Райса о неразрешимости свойств рекурсивных частичных функций). Пусть $\emptyset \subseteq C \subseteq \Phi$ (собственного подкласса Φ) множество $\varphi^{-1}(C) = \{n \mid \varphi_n \in C\}$ нерекурсивно.

Доказательство. Предположим, что это множество рекурсивно. Возьмём $a \in \varphi^{-1}(C)$ и $b \in \mathbb{N} \backslash \varphi^{-1}(C)$. Рассмотрим рекурсивную функцию

$$f(x) = \begin{cases} a, & \text{если } x \notin \varphi^{-1}(C) \\ b, & \text{если } x \in \varphi^{-1}(C) \end{cases}$$

По теореме о неподвижной точке, для некоторого c выполнено $\varphi_c = \varphi_{f(c)}$. Но одна функцию лежит в классе C, а другая — нет. Противоречие.

3.2.2 Рекурсивно перечислимые множества. Сводимости. Тьюрингов скачок.

Напоминание: $A \subset \mathbb{N}$ рекурсивно перечислимо, если $A = \emptyset \lor A = rng(f)$ для некоторой рекурсивной функции f.

Определение 44. Нумерация $\nu: \mathbb{N} \to \mathcal{E}$ всех рекурсивно перечислимых множеств называется *вычислимой*, если $\{(n,x) \mid x \in \nu_n\}$ вычислимо (ТОДО: перечислимо?). Вычислимая нумерация называется главной, если к ней сводится любая другая вычислимая нумерация.

Предложение 57.

- 1) A рекурсивно $\Leftrightarrow A$ и \overline{A} рекурсивно перечислимы (теорема Поста)
- 2) А рекурсивно перечислимо $\Leftrightarrow A = rng(\varphi_n)$ для некоторого $n \in \mathbb{N} \Leftrightarrow A = dom(\varphi_n)$ для некоторого $n \in \mathbb{N}$
- 3) $W_n = dom(\varphi_n)$ главная вычислимая нумерация класса \mathcal{E} всех рекурсивно перечислимых множеств.
- 4) $C = \{n \mid b \in W_n\}$ рекурсивно перечислимо, но не рекурсивно.
- 5) Любое рекурсивно перечислимое множество m-сводится κ C.

Доказательство. Доказательство 4 пункта: предположим, что С рекурсивно. Тогда \overline{C} тоже рекурсивно, а значит и рекурсивно перечислимо. Значит $\overline{X} = W_e$ для некоторого e. Тогда $e \in W_e \Leftrightarrow e \notin W_e$. Противоречие.

Определение 45. Мы говорим, что f сводится по Тьюрингу κ g, если f рекурсивна относительно g. Обозначается $f \leq_T g$. Для множеств $A \leq_T B \Leftrightarrow \chi_A \leq_T \chi_B$

 \Box

Определение 46. Тьюринговым скачком множества $A \subset \mathbb{N}$ называют $A' = \{n \mid n \in W_n^A\}$, где $W_n^A = dom(\varphi_n^A)$ (A — оракул).