Part III-B: Artificial Intelligence Outline

Lecture by 熊庆宇 Note by THF

2024年10月24日

目录

	0.1	启发式搜索			 	 2	
1	智能	計算				3	
	1.1	对物质适者生存能力的解读			 	 3	
Le	ectu	re 9		A			10.21
		5	1				

$$g(D) = g(B) + g(B, D) = 4 + 4 = 8.$$

0.1 启发式搜索

Notation. 盲目搜索的不足:效率低、组合爆炸、产生大量无用节点

Notation. 启发式信息:与具体问题求解过程有关的,指导搜索过程朝最可能前进方向的数据

Notation. A 算法:

引入估价函数: f(n) = g(n) + h(n)

g(n): 从起始状态到当前状态已实际付出的代价

g(n) 从当前状态到目标状态的估计代价(启发函数)

Example. 错位个数:与目标状态的比较差别

$$g(n) = 0 \quad h(n) = 4.$$

可得 f(n) = g(n) + h(n) = 4

类似于等代价算法,通过比较估价函数值即可减少遍历节点数

Notation. A* 算法:对函数进行限定,使其一定可以找到最优解

Lecture 9

$$A^* = g(n) + h(n).$$

- g(n) 为起点到 n 点已走过距离
- $g^*(n)$ 是起点到 n 点的最短路径
- g(n) 是对 $g^*(n)$ 的估计
- h(n) 为引导从 n 点到目的地的参照距离,一般为欧氏距离 $L_2(\boldsymbol{x}_i, \boldsymbol{x}_i)$
- $h^*(n)$ 为从 n 点到目的地的实际最短距离, $h(n) \le h^*(n)$

Example. 百度地图:一直有一条红线引导方向,该红线即是 h(n) 确定的路线为绿色,为 $h^*(n)$

Example. 八数码难题: $h_1(n)$ 表示不在位置上的数字数量 $h_2(n)$ 表示节点 n 到目标位置的曼哈顿距离之和 易得 $0 < h(n) < h_1(n) < h_2(n)$

Lecture 10

10.24

Notation. A* 算法的搜索效率: $h(n) \le h^*(n)$ 的前提下 h(n) 越大越好

1 智能计算

1.1 对物质适者生存能力的解读

时间维度: 进化智能空间维度: 群体智能