Tööleht nr 5 aines "Matemaatiline analüüs"

I. Arvutada järgmised piirväärtused, kasutades L'Hospitali reeglit.

$$1. \quad \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

4.
$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2}$$

$$2. \quad \lim_{x \to 1} \frac{1 - \sin \frac{\pi x}{2}}{1 - x}$$

5.
$$\lim_{x \to \pi/4} \frac{\sqrt[3]{\tan x} - 1}{2\sin^2 x - 1}$$

$$3. \quad \lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$$

$$6. \quad \lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right)$$

II. Leida järgmiste funktsioonide monotoonsuse piirkonnad.

7.
$$f(x) = x^3 - 3x^2$$

10.
$$f(x) = \sqrt[3]{(x-2)^2} + \sqrt[3]{(x+1)^2}$$

$$8. \quad f(x) = \frac{x}{\ln x}$$

$$9. \quad f(x) = x^2 e^x$$

III. Leida järgmiste funktsioonide lokaalsed ekstreemumid.

$$11. \ f(x) = x \ln^2 x$$

14.
$$f(x) = \frac{1}{6}x^6 - \frac{1}{4}x^4$$

12.
$$f(x) = (x-4)^3 x$$

13.
$$f(x) = \sqrt[3]{x^2}e^x$$

IV. Leida järgmiste funktsioonide graafikute käänupunktid ning kumeruse ja nõgususe piirkonnad.

15.
$$f(x) = x^3 - 6x^2 + 12x + 4$$

17.
$$f(x) = \arctan x - x$$

16.
$$f(x) = \frac{3}{x-4}$$

18.
$$f(x) = x^2 (\ln x - \frac{1}{2})$$

V. Leida järgmiste funktsioonide graafikute asümptoodid.

19.
$$f(x) = \frac{1}{x-2}$$

$$22. \ f(x) = \frac{x}{\ln x}$$

20.
$$f(x) = \frac{x^2}{x^2 - 4}$$

23.
$$f(x) = \frac{2x^2 + 1}{x + 1}$$

$$21. \ f(x) = x + \ln x$$

VI. Uurida funktsioone.

24.
$$f(x) = \frac{x-1}{2x+1}$$

26.
$$f(x) = \frac{(x-1)^3}{(x+1)^2}$$

25.
$$f(x) = \frac{(x+1)^2}{x-2}$$

Vastused: 1. 1/2 2. 0 3. 2 4. 1/2 5. 1/3 6. 1/2

- 7. Kasvab vahemikes $(-\infty;0)$ ja $(2;\infty)$, kahaneb vahemikus (0;2).
- **8.** Kahaneb vahemikes (0;1) ja (1;e), kasvab vahemikus $(e;\infty)$.
- **9.** Kasvab vahemikes $(-\infty; -2)$ ja $(0; \infty)$, kahaneb vahemikus (-2; 0).
- **10.** Kasvab vahemikes $(-1; \frac{1}{2})$ ja $(2; \infty)$, kahaneb vahemikus $(-\infty; -1)$ ja $(\frac{1}{2}; 2)$.
- **11.** Punktis x = 1 on lokaalne miinimum f(1) = 0. Punktis $x = e^{-2}$ on lokaalne maksimum $f(e^{-2}) = 4e^{-2}$.

- **12.** Punktis x = 1 on lokaalne miinimum f(1) = -27.
- **13.** Punktis x = -2/3 on lokaalne maksimum $f\left(-\frac{2}{3}\right) = \sqrt[3]{\frac{4}{9}e^{-2}}$. Punktis x = 0 on lokaalne miinimum f(0) = 0.
- **14.** Punktis x = -1 on lokaalne miinimum f(-1) = -1/12. Punktis x = 0 on lokaalne maksimum f(0) = 0. Punktis x = 1 on lokaalne miinimum f(1) = -1/12.
- **15.** Kumer vahemikus $(-\infty; 2)$, nõgus vahemikus $(2; \infty)$. Punkt (2; 12) on käänupunkt.
- **16.** Kumer vahemikus $(-\infty; 4)$, nõgus vahemikus $(4; \infty)$. Käänupunkte pole (funktsioon pole määratud kohal x = 4).
- 17. Nõgus vahemikus $(-\infty;0)$, kumer vahemikus $(0;\infty)$. Punkt (0;0) on käänupunkt.
- **18.** Kumer vahemikus $(0; \frac{1}{e})$, nõgus vahemikus $(\frac{1}{e}; \infty)$. Punkt $(\frac{1}{e}; -\frac{3}{2e^2})$ on käänupunkt.
- **19.** Kahepoolne püstasümptoot x = 2, kahepoolne kaldasümptoot y = 0.
- **20.** Kahepoolne püstasümptoot x = -2, kahepoolne püstasümptoot x = 2, kahepoolne kaldasümptoot y = 1.
- **21.** Püstasümptoot x = 0 punkti 0 parempoolses ümbruses.
- **22.** Kahepoolne püstasümptoot x = 1.
- **23.** Kahepoolne püstasümptoot x = -1, kahepoolne kaldasümptoot y = 2x 2.
- **24.** $X = \left\{ (-\infty; -\frac{1}{2}); (-\frac{1}{2}; \infty) \right\}; X_0 = \{1\}, \text{ funktsioon ei ole ei paaris ega paaritu};$

$$X^{+} = \left\{ (-\infty; -\frac{1}{2}); (1; \infty) \right\}; \ X^{-} = (-\frac{1}{2}; 1); \ f'(x) = \frac{3}{(2x+1)^{2}}; \ X \uparrow = \left\{ (-\infty; -\frac{1}{2}); (-\frac{1}{2}; \infty) \right\};$$

$$X \downarrow = \varnothing$$
; ekstreemumpunkte pole; $f''(x) = -\frac{12}{(2x+1)^3}$; $\widehat{X} = (-\frac{1}{2}; \infty)$; $\widehat{X} = (-\infty; -\frac{1}{2})$;

käänupunkte pole; kahepoolne püstasümptoot võrrandiga $x = -\frac{1}{2}$; kahepoolne

kaldasümptoot (rõhtasümptoot) võrrandiga $y = \frac{1}{2}$.

25. $X = \{(-\infty; 2); (2; \infty)\}; X_0 = \{-1\}$, funktsioon ei ole ei paaris ega paaritu; $X^+ = (2; \infty)$;

$$X^{-} = \{(-\infty; -1); (-1; 2)\}; \ f'(x) = \frac{(x+1)(x-5)}{(x-2)^{2}}; \ X \uparrow = \{(-\infty; -1); (5; \infty)\};$$

 $X \downarrow = \{(-1;2);(2;5)\};$ maksimumpunkt $E_1 = (-1;0);$ miinimumpunkt $E_2 = (5;12);$

 $f''(x) = \frac{18}{(x-2)^3}$; $\hat{X} = (-\infty;2)$; $\hat{X} = (2;\infty)$; käänupunkte pole; kahepoolne püstasümptoot

võrrandiga x = 2; kahepoolne kaldasümptoot võrrandiga y = x + 4.

26. $X = \{(-\infty; -1); (-1; \infty)\}; X_0 = \{1\}$, funktsioon ei ole ei paaris ega paaritu; $X^+ = (1; \infty);$

$$X^{-} = \{(-\infty; -1); (-1; 1)\}; \ f'(x) = \frac{(x-1)^{2}(x+5)}{(x+1)^{3}}; \ X \uparrow = \{(-\infty; -5); (-1; \infty)\}; \ X \downarrow = (-5; -1);$$

maksimumpunkt
$$E = (-5;-13,5)$$
, $f''(x) = \frac{24(x-1)}{(x+1)^4}$; $\widehat{X} = \{(-\infty;-1);(-1;1)\}$; $\widehat{X} = (1;\infty)$;

käänupunkt K=(1;0); kahepoolne püstasümptoot võrrandiga x=-1; kahepoolne kaldasümptoot võrrandiga y=x-5.

