ALGEBRA DE CONJUNTOS

```
LPara cualquier conjunto A, B, y C:
  A \cap A = A;
  A \cup A = A;
  A \setminus A = \{\};
  A \cap B = B \cap A;
  A \cup B = B \cup A:
  (A \cap B) \cap C = A \cap (B \cap C);
  (A \cup B) \cup C = A \cup (B \cup C);
  C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B);
  C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B);
  C \setminus (B \setminus A) = (A \cap C) \cup (C \setminus B);
  (B \setminus A) \cap C = (B \cap C) \setminus A = B \cap (C \setminus A);
  (B \setminus A) \cup C = (B \cup C) \setminus (A \setminus C);
  A \subseteq B sí y solamente si A \cap B = A;
  A \subseteq B sí y solamente si A \cup B = B;
  A \subseteq B sí y solamente si A \setminus B = \emptyset;
  A \cap B = \emptyset sí y solamente si B \setminus A = B;
  A \cap B \subseteq A \subseteq A \cup B;
  A \cap \{\} = \emptyset;
  A \cup \{\} = A;
\{\} \setminus A = \emptyset;
```

 $A \setminus \{\} = A$.

Existen varias equivalencias entre fórmulas de la lógica proposicional, las cuales se conocen como leyes de equivalencia. La tabla 3 muestra estas leyes. Se utiliza el símbolo Tautología para indicar una tautología y el símbolo Contradicción para indicar una contradicción

Ley de equivalencia	Fórmula		
Doble Implicación	$F \leftrightarrow G = (F \rightarrow G) \land (G \rightarrow H)$		
Implicación	$F \rightarrow G = \neg F \lor G$		
Distribución	$F_{\checkmark}(G_{\land}H) = (F_{\checkmark}G)_{\land}(F_{\checkmark}H)$		
	$F \land (G \lor H) = (F \land G) \lor (F \land H)$		
Asociación	$(F \lor G) \lor H = F \lor (G \lor H)$		
	$(F \land G) \land H = F \land (G \land H)$		
Complementación	F∧¬ F = Contradicción		
	F∨¬ F = Tautología		
	¬¬F=F		
Conmutación	$F \lor G = G \lor F$		
	$F \wedge G = G \wedge F$		
Cero	<i>F</i> ∨Tautología = Tautología		
	<i>F</i> ∧Contradicción = Contradicción		
Identidad	F∨Contradicción = F		
	<i>F</i> ∧Tautología = <i>F</i>		
Idempotencia	F∨F= F		
	<i>F</i> ∧ <i>F</i> = <i>F</i>		
Absorción	$F \lor F \land Q = F$		
	$F \land (F \lor Q) = F$		
	$F \lor \neg F \land Q = F \lor Q$		
Leyes de Morgan	$\neg (F \lor Q \lor H) = \neg F \land \neg Q \land \neg H$		
	$\neg (F \land Q \land H) = \neg F \lor \neg Q \lor \neg H$		

CONECTIVAS LOGICAS

• La construcción de fórmulas compuestas requiere del uso de elementos que permitan establecer una relación entre los átomos que la forman; estos elementos se conocen como conectivas lógicas.

Conectiva	Símbolos asociados	
Negación (No)	~, ¬ , -	
Conjunción (Y)	^, &, *	
Disyunción (O)	v, , +	
Condicional (Si entonces)	\rightarrow	
Bicondicional (Si y solo si)	↔,=	

CIRCUITOS LOGICOS

- Debido a que una proposición puede ser evaluada y resultar solo verdadera o falsa, se puede deducir alguna equivalencia con el álgebra booleana, que maneja solamente dos valores (0 y 1). Las propiedades del cálculo proposicional son equivalentes a las del álgebra desarrollada por Boole.
- En el álgebra booleana, una proposición es equivalente a una variables, y las conectivas lógicas se utilizan como compuertas lógicas. La figura 1 muestra las compuestas lógicas más representativas de esta álgebra. Los esquemas que resultan de aplicar las compuertas lógicas se conocen como circuitos lógicos.

Generalización de Conjuntos

Sea M un conjunto de índices cualquiera:

$$\bigcup_{\alpha \in M} A = \{ x \mid x \in A_{\alpha}, para \ algún \ \alpha \in M \}$$

$$\bigcap_{\alpha \in M} A = \{ x \mid x \in A_{\alpha}, \text{ para algún } \alpha \in M \}$$

Ejercicios

1. Sean \mathcal{A} , \mathcal{B} y \mathcal{C} , tres conjuntos arbitrarios, demuestre las siguientes propiedades de conjuntos:

a).
$$\mathcal{A}$$
- $(\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} - \mathcal{B}) \cup (\mathcal{A} - \mathcal{C})$

b).
$$\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C})$$

MCC3182

Principio de Inducción Matemática: Supóngase que se tiene una proposición S(n) para cada entero positivo n, la cual es verdadera o falsa. Consideremos que

Paso Básico:

S(1) es verdadera

Paso Inductivo:

si S(i) es verdadera para todo i<n+1, entonces S(n+1) es verdadera.

Problemas resueltos de inducción

MCC3182

Grafo Normal

MCC3182

Grafo Ciencias de la Computación

MCC3182

Definición

Un grafo es una conjunto de vértices *V* y un conjunto de arcos *E*,tal que

$$E \subset V \times V$$

Así E, es simplemente una relación binaria en el conjunto V.

MCC3182

Tipos de Grafos

Grafos Simples (no dirigidos)

Multi-Grafos

MCC3182

Relaciones y Grafos

$$A = \{a,b,c,d\}$$

$$R = \{(a,b) (a,c) (c,b)\}$$

MCC3182

Propiedades de Relación

Reflexiva

Transitiva

Simétrica

Antisimetrica

MCC3182

MCC3182

Representación de Matriz Booleana

$$A = \{a,b,c,d\}$$

 $R = \{(a,b) (a,c) (c,b)\}$

	a	b	C	d
a	0	1	1	0
b	0	0	0	0
C	0	1	0	0
d	0	0	0	0

MCC3182

Operaciones sobre la Matriz Booleana

$$\overline{R} = A \times A - R$$
 (Todos los pares que no están en R)

MCC3182

Composición Usando Matrices

$$T(\mathbf{a_1,c_1}) = [R(\mathbf{a_1,b_1}) \land S(\mathbf{b_1,c_1})] \lor [R(\mathbf{a_1,b_2}) \land S(\mathbf{b_2,c_1})] \lor [R(\mathbf{a_1,b_3}) \land S(\mathbf{b_3,c_1})] \lor [R(\mathbf{a_1,b_4}) \land S(\mathbf{b_4,c_1})]$$

MCC3182

Problemas del Mundo Real

Redes de Computadores Conecciones Aereas Conflictos en examenes Mapas

