Komutativna algebra - 5. domača naloga

Benjamin Benčina, 27192018

14. april 2020

Nal. 1: Naj bo R_2 podkolobar kolobarja R_1 .

- (a) Naj ima R_2 samo en praideal P_2 . Privzemimo, da P_2 ni ideal v R_1 , saj v nasprotnem primeru lahko vzamemo $P_1 = P_2$. Množica P_2 je vsebovana v nekem maksimalnem idealu v R_1 , torej tudi praidealu. Definiramo množico $\mathcal{A} = \{I \in \operatorname{Spec} R_1; P_2 \subseteq I\}$ in jo uredimo z obratno inkluzijo. Množica \mathcal{A} ni prazna, saj vsebuje zgornji praideal. Po klasičnem dokazu z Zornovo lemo za praideale dobimo maksimalni element množice \mathcal{A} in ga označimo s P_1 . Vemo, da je $P_1 \cap R_2$ praideal v P_2 . Če slučajno $P_1 \cap R_2 = P_2$, potem $P_1 \cap P_2$ praideal v P_2 praideal v P_3 . Če slučajno $P_1 \cap P_2$ praideal v P_3 praideal v P_4 praideal v P_3 praideal v P_4 praideal v P_3 praideal v P_4 praidea
- (b) Oglejmo si kolobarja R_2 in R_1 kot R_2 -modula na naraven način. Potem je $S = R_2 \setminus P_2$ multiplikativna množica v R_2 in R_1 , zato oba modula (v resnici kar kolobarja) lokaliziramo po S. Spomnimo se, da so praideali v R_{2P_2} v bijektivni korespondenci s praideali v R_2 , ki ne sekajo množice S. Ker je P_2 minimalni praideal, ima R_{2P_2} samo en praideal. Seveda je $R_{2P_2} \leq R_{1P_2}$ po trditvi iz predavanj. Sedaj smo v situaciji iz točke (a). V R_{1P_2} torej obstaja minimalni praideal P'_1 z lastnostjo $P'_1 \cap R_{2P_2} = S^{-1}P_2$. Iskani praideal P_1 je kontrakcija tega ideala glede na standardni homomorfizem $R_1 \to R_{1P_2}$ in ima želeno lastnost, saj se vsi elementi iz S slikajo v obrnljive elemente. Res, če je $s \in R_2 \setminus P_2$, potem je $\left(\frac{s}{1}\right)^{-1} = \frac{1}{s}$ (do ekvivalenčnega razreda natančno). Pravi ideali seveda ne vsebujejo obrnljivih elementov, saj potem vsebujejo tudi 1 in so enaki celemu kolobarju, zato praslik teh elementov ni v kontrakciji.

Alternativna rešitev: Nalogo lahko rešimo tudi v drugo smer.

- (a) Predpostavimo, da ima R_2 samo en praideal P_2 . Pokažimo, da obstaja minimalni praideal $P_1 \triangleleft R_1$, za katerega je $R_2 \cap P_1 = P_2$. Ker je P_2 edini praideal, je seveda tudi minimalni, zato ta točka sledi iz naslednje.
- (b) Pokažimo, da za vsak minimalni praideal $P_2 \triangleleft R_2$ obstaja minimalni praideal $P_1 \triangleleft R_1$, za katerega velja $R_2 \cap P_1 = P_2$.
 - Privzemimo, da P_2 ni ideal v R_1 , saj v nasprotnem primeru lahko vzamemo $P_1 = P_2$. Dovolj je najti nek praideal v R_1 , ki ustreza pogoju, saj zaradi minimalnosti P_2 ustreza tudi vsak manjši, minimalni pa bo obstajal po Zornovi lemi. Oglejmo si R_1 kot R_2 -modul na običajen način (delovanje je kar množenje). Spomnimo se, da potem za poljubno multiplikativno množico $S \subseteq R_2$ lahko tvorimo lokalizacijo modula $S^{-1}R_1$ (v resnici je S multiplikativna tudi v R_1 , zato je to tudi lokalizacija kolobarja). Zato tvorimo lokalizacijo $R_{1P_2} = (R_2 \setminus P_2)^{-1}R_1$. Ta lokalizacija ni ničelna, zato vsebuje nek ideal in posledično nek praideal. Kontrakcija tega ideala glede na standarden homomorfizem $R_1 \to R_{1P_2}$ je praideal (kontrakcija praideala je očitno praideal, sicer pridemo v takojšnje protislovje), ki ustraza pogoju, saj se vsi elementi iz $R_2 \setminus P_2$ slikajo v obrnljive.
- <u>Nal. 2:</u> Naj bo M R-modul in N_1 in N_2 taka podmodula, da sta M/N_1 in M/N_2 Noetherska. Pokažimo, da je tudi $M/(N_1 \cap N_2)$ Noetherski modul.
- Najprej nalogo poenostavimo. Označimo $M'=M/(N_1\cap N_2),\,N_1'=N_1/(N_1\cap N_2)$ in $N_2'=N_2/(N_1\cap N_2)$. Po tretjem izreku o izmomorfizmih sta modula M/N_1 in M/N_2 Noetherska natanko tedaj, ko sta

Noetherska modula M'/N'_1 in M'/N'_2 . Radi bi pokazali, da je Notherski tudi modul M'. Pokazali smo, da lahko predpostavimo $N_1 \cap N_2 = \{0\}$. V nadaljevanju bomo uporabljali staro notacijo (brez črtic).

Vzemimo različna elementa $u, v \in N_1$, ki sta v istem odseku po N_2 . Potem je razlika $u - v \in N_1 \cap N_2$, torej u = v, kar je protislovje. Vsak element iz N_1 torej predstavlja svoj odsek po N_2 . Seveda velja tudi obratno.

Privzemimo sedaj, da modul M ni Noetherski. Naj bo C poljubna neskončna strogo naraščujoča veriga podmodulov v M. Če C delimo z N_1 , dobimo verigo v M/N_1 , ki se po predpostavki nekje ustavi. Enako velja za N_2 . Obstaja torej indeks $j \in \mathbb{N}$ (kar maksimum prejšnjih dveh indeksov), da velja $C_j/N_1 = C_{j+1}/N_1$ in $C_j/N_2 = C_{j+1}/N_2$. Vzemimo sedaj poljuben $x \in C_{j+1} \setminus C_j$. Element x nam ne more dati nobenega novega odseka v M/N_1 , torej obstaja element $y \in C_j$, da je $x + N_1 = y + N_1$. Potem $z = y - x \in N_1$. Ker je bil x nov element iz verige, je nujno tudi z, saj verigo tvorijo podmoduli. Od tod $z \in C_{j+1} \cap N_1$. V vsakem naslednjem koraku, če j povečamo, dobimo večji podmodul v N_1 , torej modul N_1 ni Noetherski.

Označimo nove podmodule $T_j = C_j \cap N_1$. Pokazali smo, da je T neskončna veriga podmodulov v N_1 . Vendar pa T inducira neskončno naraščujočo verigo podmodulov v M/N_2 , saj vsak $x \in T_j$ predstavlja svoj odsek po N_2 za vsak $j \in \mathbb{N}$. Sledi, da M/N_2 ni Noetherski modul, kar je v protislovju s predpostavko. Taka veriga C torej ne obstaja, zato je M Noetherski modul.