Leveraging Differentiable Programming in the Inverse Problem of Neutron Stars

Thibeau Wouters, Peter T. H. Pang, Rahul Somasundaram, Ingo Tews, Tim Dietrich, and Chris Van Den Broeck

t.r.i.wouters@uu.nl

() in y

Extreme Matter 17/03/2025

Introduction

Inverse problem of neutron stars: infer the equation of state (EOS) of dense nuclear matter from observations of neutron stars (NSs): masses, radii, tidal deformabilities, . . .

Bottleneck: solving Tolman-Oppenheimer-Volkoff (TOV) equations

Inverting neutron stars with differentiable programming

Our solution: differentiable programming with JAX [1]

- GPU accelerators no emulators required!
- Automatic differentiation to compute gradients of code

We efficiently invert neutron stars with

- 1 Bayesian inference: using NS data to constrain EOS parameters
- **2** Gradient-based optimizers: efficient inversion of R(M) or $\Lambda(M)$

Available open source: JESTER (Otsunhopang/jester)

Methods – Equation of state parametrization (1)

- At low density, we use the metamodel [2, 3]: Taylor expansion of energy per nucleon E/A in $x = (n n_{\rm sat})/3n_{\rm sat}$
- Nuclear empirical parameters (NEPs): coefficients of the expansion

$$E/A(n,\delta) = e_{\mathrm{sat}}(n) + e_{\mathrm{sym}}(n)\delta^2 + \mathcal{O}(\delta^4), \quad \delta = (n_n - n_p)/n$$

$$\begin{split} e_{\rm sat}(n) &= E_{\rm sat} + \tfrac{1}{2} K_{\rm sat} x^2 + \tfrac{1}{3!} Q_{\rm sat} x^3 + \tfrac{1}{4!} Z_{\rm sat} x^4 + \mathcal{O}(x^5) \\ e_{\rm sym}(n) &= E_{\rm sym} + L_{\rm sym} x + \tfrac{1}{2} K_{\rm sym} x^2 \\ &+ \tfrac{1}{3!} Q_{\rm sym} x^3 + \tfrac{1}{4!} Z_{\rm sym} x^4 + \mathcal{O}(x^5) \end{split}$$

 $^{^{1}}n_{\rm sat} \equiv 0.16 \; {\rm fm}^{-3}$

Methods – Equation of state parametrization (2)

- Metamodel description breaks down at $\emph{n}_{
 m break} \sim [1,2] \ \emph{n}_{
 m sat}$
- Higher density: parametrize the EOS with $c_s^2(n)$ grid points and linear interpolation [4]

Contents

Bayesian inference

@ Gradient-based optimization

Results – Bayesian inference

- EOS constraints: nuclear theory ($\chi_{\rm EFT}$), NS observations (heavy PSRs, NICER, GW170817)
- Extend Koehn *et al.* [5]: directly sample $\theta_{\rm EOS}$
- \sim 0.24 ms per TOV solver call, \sim 1 h for MCMC run (H100 GPU)
- Scales well with number of parameters (more $c_s^2(n)$ grid points)

Constraint	$R_{1.4}~\mathrm{[km]}$			
	Koehn+	This work		
$\chi_{\rm EFT}$	$12.11^{+1.69}_{-3.39}$	$12.59^{+2.24}_{-3.51}$		
Radio timing	$13.70^{+1.41}_{-2.17}$	$13.71^{+1.19}_{-1.88}$		
PSR J0030+0451	$13.17^{+1.65}_{-2.24}$	$13.48^{+1.42}_{-2.15}$		
PSR J0740+6620	$13.39^{+1.57}_{-1.72}$	$13.79^{+1.26}_{-1.73}$		
$\rm GW170817^{\dagger}$	$11.98^{+1.08}_{-1.09}$	$12.40^{+1.33}_{-1.49}$		
All	$12.26^{+0.80}_{-0.91}$	$12.62^{+1.04}_{-1.11}$		

Results – Measuring n_{break}

 $\chi_{\rm EFT}$ predicts metamodel to break down at a density $n_{\rm break} \sim 1-2~n_{\rm sat}$ Can we determine this with NSs?

- Wide, agnostic prior on $n_{\rm break}$: U(1,4) $n_{\rm sat}$
- Only consider heavy PSRs, NICER, GW170817

Contents

Bayesian inference

② Gradient-based optimization

Methods – Gradient-based optimization

- Given $\hat{\Lambda}_i$: "true" tidal deformabilities at masses M_i to invert
- ullet Loss function $L(heta_{
 m EOS})$: relative error in tidal deformability Λ
- Gradient descent: $\theta^{(i+1)} \leftarrow \theta^{(i)} \gamma \nabla L(\theta^{(i)})$ with Adam
 - Automatic differentation!

$$L(oldsymbol{ heta}_{\mathrm{EOS}}) = rac{1}{N} \sum_{i=1}^{N} \left| rac{\Lambda_i(oldsymbol{ heta}_{\mathrm{EOS}}) - \hat{\Lambda}_i}{\hat{\Lambda}_i}
ight|$$

Results – Recovery of nuclear empirical parameters

What do NSs tell us about nuclear empirical parameters (NEPs)?

- "True" EOS: only NEPs no $c_s^2(n)$ grid points
- Recover with increasingly more NEPs being varied
- ullet If more NEPs are varied, $L_{
 m sym}$ is no longer constrained
- Recovered EOSs deviate < 100 meters, < 10 in Λ from the true EOS observationally indistinguishable

Conclusion

- We have developed JESTER, a differentiable programming framework for the inverse problem of NSs
- We demonstrate accurate and scalable Bayesian inference on NS data
- Gradient-based optimizers can efficiently invert a complete NS family
- New tool to gain insights into how NSs probe the EOS

Available open source: JESTER (Otsunhopang/jester)

References I

- Roy Frostig, Matthew James Johnson, and Chris Leary. "Compiling machine learning programs via high-level tracing". In: Systems for Machine Learning 4.9 (2018). Available at: https://github.com/google/jax.
- [2] Jérôme Margueron, Rudiney Hoffmann Casali, and Francesca Gulminelli. "Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects". In: *Phys. Rev. C* 97.2 (2018), p. 025805. DOI: 10.1103/PhysRevC.97.025805. arXiv: 1708.06894 [nucl-th].
- [3] Jérôme Margueron, Rudiney Hoffmann Casali, and Francesca Gulminelli. "Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties". In: Phys. Rev. C 97.2 (2018), p. 025806. DOI: 10.1103/PhysRevC.97.025806. arXiv: 1708.06895 [nucl-th].
- [4] Rahul Somasundaram, Ingo Tews, and Jérôme Margueron. "Investigating signatures of phase transitions in neutron-star cores". In: Phys. Rev. C 107.2 (2023), p. 025801. DOI: 10.1103/PhysRevC.107.025801. arXiv: 2112.08157 [nucl-th].
- [5] Hauke Koehn et al. "From existing and new nuclear and astrophysical constraints to stringent limits on the equation of state of neutron-rich dense matter". In: (Feb. 2024). arXiv: 2402.04172 [astro-ph.HE].

11

More validation results

Constraint	$M_{ m TOV} \; [M_{\odot}]$		$p(3n_{ m sat})~[{ m MeV~fm^{-3}}]$		$n_{ m TOV} \; [n_{ m sat}]$	
	Koehn+	This work	Koehn+	This work	Koehn+	This work
χeft	$2.05^{+1.08}_{-1.16}$	$2.03^{+1.03}_{-0.97}$	69^{+186}_{-53}	72^{+165}_{-65}	$6.51^{+10.7}_{-3.11}$	$6.53^{+9.26}_{-4.09}$
Radio timing	$2.35^{+0.73}_{-0.29}$	$2.20^{+0.39}_{-0.26}$	111^{+140}_{-49}	97^{+65}_{-49}	$5.51^{+1.89}_{-1.66}$	$5.68^{+1.63}_{-1.74}$
PSR J0030+0451	$2.16^{+0.83}_{-0.71}$	$2.19^{+0.78}_{-0.76}$	89^{+143}_{-46}	94^{+135}_{-62}	$5.62^{+4.44}_{-1.91}$	$5.60^{+3.65}_{-2.59}$
PSR J0740+6620	$2.34^{+0.65}_{-0.32}$	$2.38^{+0.70}_{-0.42}$	107^{+125}_{-40}	118^{+150}_{-59}	$5.34^{+1.63}_{-1.61}$	$5.16^{+1.72}_{-2.04}$
GW170817	$2.21^{+0.45}_{-0.18}$	$2.17^{+0.39}_{-0.23}$	80^{+81}_{-32}	80^{+70}_{-48}	$6.25^{+1.40}_{-1.70}$	$6.35^{+1.65}_{-1.88}$
All	$2.25^{+0.42}_{-0.22}$	$2.24^{+0.36}_{-0.23}$	90^{+71}_{-31}	93_37	$5.92^{+1.35}_{-1.38}$	$5.91^{+1.36}_{-1.45}$