Теория категорий Пределы и копределы

Валерий Исаев

3 февраля 2020 г.

План лекции

Уравнители

Предель

Уравнители в **Set**

- Часто новые множества конструируются из уже существующих как подмножества элементов, удовлетворяющих некоторому уравнению.
- lacktriangle Например, множество неотрицательных вещественных чисел $\mathbb{R}_{\geq 0}$ является подмножеством \mathbb{R} таких x, что |x|=x.
- ▶ Другой пример: множество корней полинома p является подмножеством $\mathbb R$ таких x, что p(x) = 0.
- ▶ В общем случае, если $f,g:A\to B$ пара функций, то уравнитель этих функций это подмножество A таких x, что f(x)=g(x).

Уравнители в произвольной категории

Уравнитель пары морфизмов $f,g:A\to B$ – это мономорфизм $e:E\to A$ такой, что $f\circ e=g\circ e$ и для любого $h:F\to A$ такого, что $f\circ h=g\circ h$, существует стрелка $k:F\to E$ такая, что $e\circ k=h$.

Мономорфизм называется *регулярным*, если он является уравнителем некоторой пары стрелок.

Другое определение уравнителей

Уравнитель пары морфизмов $f,g:A\to B$ – это морфизм $e:E\to A$ такой, что $f\circ e=g\circ e$ и для любого $h:F\to A$ такого, что $f\circ h=g\circ h$, существует уникальная стрелка $k:F\to E$ такая, что $e\circ k=h$.

Упражнение: докажите, что эти определения эквивалентны.

Уравнители в категории **Ab**

- В категории **Ab** абелевых групп уравнители тесно связаны с понятием ядра морфизма.
- **Р** Если $f:A\to B$ морфизм абелевых групп, то ядро f это уравнитель пары стрелок $f,0:A\to B$.
- lacktriangle И наоборот, если $f,g:A\to B$ пара морфизмов, то их уравнитель это ядро морфизма $f-g:A\to B$.
- ► Таким образом, в категории **Ab** существуют все уравнители.

План лекции

Уравнители

Пределы

Конусы диграмм

- ightharpoonup Пусть J=(V,E) некоторый граф, и D диграмма формы J в категории ${f C}$.
- Конус диаграммы D это объект A вместе с коллекцией морфизмов $a_v:A\to D(v)$ для каждой $v\in V$, удовлетворяющие условию, что для любого $e\in E$ следующая диаграмма коммутирует

Определение пределов

▶ Предел диграммы D — это такой конус A, что для любого конуса B существует уникальный морфизм $f:B\to A$, такой что для любой $v\in V$ следующая диаграмма коммутирует

- ightharpoonup Предел D обозначается $\lim D$.
- ► Категория называется *полной* (*конечно полной*), если в ней существуют все малые (конечные) пределы.

Примеры пределов

- Произведения это пределы дискретных диаграмм.
- Бинарные произведения это пределы диаграмм вида

• •

Уравнители – это пределы диаграмм вида

Терминальные объекты – это пределы пустой диаграммы.

Уникальность пределов

Proposition

Если A и B – пределы диаграммы D, то существует изоморфизм $f:A\simeq B$, такой что $a_v=b_v\circ f$ для любой $v\in V$.

Доказательство.

Так как B — предел, то существует стрелка $f:A\to B$, удовлетворяющая условию утверждения. Так как A — предел, то существует стрелка $g:B\to A$. По уникальности мы знаем, что $g\circ f=id_A$ и $f\circ g=id_B$, то есть f — изоморфизм.

Пулбэки

► Пулбэки – это пределы диаграмм вида

Пулбэк можно изображать как коммутативный квадрат

$$\begin{array}{ccc}
A \times_C B & \longrightarrow & B \\
\downarrow & & \downarrow \\
A & \longrightarrow & C
\end{array}$$

- Пулбэк иногда называют декартовым квадратом.
- lacktriangle Стрелку $A imes_C B o A$ называют пулбэком стрелки B o C.

Декартово произведение через пулбэки

Proposition

Если 1 – терминальный объект, то пулбэк $A \times_1 B$ является декартовым произведением $A \times B$.

Доказательство.

Действительно, конус диаграммы A B - это тоже самое, что и конус диаграммы

Следовательно пределы этих диграмм также совпадают.

Пулбэки в Set

В **Set** пулбэк диаграммы

можно определить как подмножество декартова произведения $A \times B$. Действительно, если мы положим $A \times_C B = \{(a,b) \mid f(a) = g(b)\}$, то легко видеть, что $A \times_C B$ является пулбэком диграммы выше.

Пулбэки через уравнители и произведения

Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют пулбэки.

Доказательство.

Пулбэки можно сконструировать так же, как и в **Set**. Пусть $e:D\to A\times B$ — уравнитель стрелок $f\circ\pi_1:A\times B\to C$ и $g\circ\pi_2:A\times B\to C$. Тогда легко видеть, что квадрат ниже является декартовым.

$$D \xrightarrow{\pi_2 \circ e} B$$

$$\pi_1 \circ e \bigvee_{q} \bigvee_{q} g$$

$$A \xrightarrow{f} C$$

Пределы через уравнители и произведения

Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют все конечные пределы.

Доказательство.

Пусть D — диаграмма формы (V, E). Тогда рассмотрим диаграмму, состоящую из пары стрелок

$$\langle \pi_{t(e)} \rangle_{e \in E}, \langle D(e) \circ \pi_{s(e)} \rangle_{e \in E} : \prod_{v \in V} D(v) \Longrightarrow \prod_{e \in E} D(t(e))$$

Конус этой диаграммы — это тоже самое, что конус диаграммы D. Следовательно предел этой диаграммы также является пределом D.

Прообраз подобъекта

- ightharpoonup Пусть f:A o C функция в **Set** и $B \subseteq C$.
- ▶ Тогда мы можем определить прообраз f: $f^{-1}(B) = \{a \in A \mid f(a) \in B\} \subseteq A$.
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangledown Прообраз подобъекта $B\hookrightarrow C$ вдоль морфизма $f:A\to C$ это пулбэк

$$f^{-1}(B) \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \longrightarrow C$$

ightharpoonup Упражнение: докажите, что $f^{-1}(B) o A$ является мономорфизмом.

Пересечение подобъектов

- ▶ Пусть A и B подмножества C.
- Тогда мы можем определить их пересечение $A \cap B$, которое является подмножеством и A, и B.
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangle Пересечение подобъектов $A\hookrightarrow C$ и $B\hookrightarrow C$ это пулбэк

