Math 108C Homework 1

Rad Mallari 8360828

1.) Compute the product of the following matrices using the column-row defintion of matrix multiplication

 $A = egin{bmatrix} 1 & 2 \ 2 & -3 \ 0 & 1 \end{bmatrix}, \quad B = egin{bmatrix} 1 & 0 & 1 \ 2 & -1 & 0 \end{bmatrix}$

Proof:

We can do this by **Proposition 5, Section 4.3** which yields:

 $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix} + \begin{bmatrix} 4 & -2 & 0 \\ -6 & 3 & 0 \\ 2 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 1 \\ -4 & 3 & 2 \\ 2 & -1 & 0 \end{bmatrix}$

3.) Express the product of AB in terms of

1. A and the columns of B. 2. B and the rows of A.

Proof:

1. The columns of AB can be expressed as A times the ith column of B.

That is, $AB = A[b_1, b_2, \dots, b_i] = [Ab_1, Ab_2, \dots, Ab_i]$ where b_i is the ith column of B.

The rows of A $AB = \begin{bmatrix} a_1^T B \\ a_2^T B \\ \vdots \\ a_j^T B \end{bmatrix} \text{ where } a_j^T \text{ is the jth row of } A.$ 2. The rows of AB can be expressed as the jth row of A times B, i.e.,

4.) Assume the following matrices are partitioned comformably for block multiplication.

Compute the product

 $\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$

Proof:

By **Theorem 2**, the product is given by:

(c) Create a 50×50 matrix of the form

13.)(Matlab/Python)For block operations, it may be necessary to access or enter submatrcies of a large matrix. Describe the function or commands in Matlab that accomplix the following tasks.

Suppose A is 20×30 matrix. (a) Display the submatrix of A from rows 15 to 20 and columns 5 to 10. **(b)** Insert a 5×10 matrix B into A, beginning at row 10 and column 20.

1', 'A_3_12', 'A_3_13', 'A_3_14', 'A_3_15', 'A_3_16', 'A_3_17', 'A_3_18', 'A_3_19', 'A_3_20', 'A_3_22', 'A_3_23', 'A_3_25', 'A_3_26', 'A_3_27', 'A_3_28', 'A_3_29', 'A_3_30'], ['A_4_1', 'A_4_2', 'A_4_3', 'A_4_3', 'A_4_2', 'A_4_3', 'A_4_2', 'A_4_3', 'A_4_3_4', 'A_4_3', 'A_4_4', 'A_4_3', 'A_4_3', 'A_4_4', 4', 'A_4_5', 'A_4_6', 'A_4_7', 'A_4_8', 'A_4_9', 'A_4_10', 'A_4_11', 'A_4_12', 'A_4_13', 'A_4_15', 'A_4_16', 'A_4_18', 'A_4_18', 'A_4_20', 'A_4_21', 'A_4_22', 'A_4_23', 'A_4_24', 'A_4_25', 'A_4_26', 'A_4_27', 'A_4_28', 'A_4_8', ' 'A_4_28', 'A_4_29', 'A_4_30'], ['A_5_1', 'A_5_2', 'A_5_3', 'A_5_4', 'A_5_5', 'A_5_6', 'A_5_7', 'A_5_8', 'A_5_9', 'A_5_11', 'A_5_12', 'A_5_13', 'A_5_15', 'A_5_15', 'A_5_16', 'A_5_17', 'A_5_18', 'A_5_19', 'A_5_20', 'A_5_2

1', 'A_5_22', 'A_5_23', 'A_5_24', 'A_5_25', 'A_5_26', 'A_5_28', 'A_5_29', 'A_5_30'], ['A_6_1', 'A_6_2', 'A_6_2', 'A_6_6', 'A_6_6', 'A_6_6', 'A_6_8', 'A_6_9', 'A_6_10', 'A_6_11', 'A_6_12', 'A_6_14', 'A_6_15', 'A_6_29', 'A_6_17', 'A_6_18', 'A_6_19', 'A_6_21', 'A_6_21', 'A_6_24', 'A_6_26', 'A_6_28', 'A_6_29', 'A_6_30'], ['A_7_11', 'A_7_2', 'A_7_3', 'A_7_4', 'A_7_5', 'A_7_6', 'A_7_7', 'A_7_8', 'A_7_9', 'A_7_10', 'A_7_11', 'A_7_12', 'A_7_13', 'A_7_15', 'A_7_18', 'A_7_18', 'A_7_20', 'A_7_22', 'A_7_23', 'A_7_25', 'A_7_26', 'A_7_27', 'A_7_30'], ['A_8_8']

_1', 'A_8_2', 'A_8_3', 'A_8_4', 'A_8_5', 'A_8_6', 'A_8_7', 'A_8_8', 'A_8_9', 'A_8_10', 'A_8_12', 'A_8_13', 'A_8_15', 'A_8_16', 'A_8_17', 'A_8_18', 'A_8_21', 'A_8_21', 'A_8_22', 'A_8_23', 'A_8_24', 'A_8_18', _8_25', 'A_8_26', 'A_8_27', 'A_8_28', 'A_8_29', 'A_8_30'], ['A_9_1', 'A_9_2', 'A_9_3', 'A_9_5', 'A_9_6', 'A_9_7', 'A_9_8', 'A_9_9', 'A_9_10', 'A_9_12', 'A_9_13', 'A_9_14', 'A_9_15', 'A_9_16', 'A_9_17', 'A_9_1 8', 'A_9_19', 'A_9_20', 'A_9_21', 'A_9_22', 'A_9_23', 'A_9_24', 'A_9_25', 'A_9_26', 'A_9_28', 'A_9_29', 'A_9_30'], ['A_10_1', 'A_10_2', 'A_10_3', 'A_10_5', 'A_10_6', 'A_10_7', 'A_10_8', 'A_10_9', 'A_10_10', 'A_ _10_11', 'A_10_12', 'A_10_13', 'A_10_14', 'A_10_15', 'A_10_16', 'A_10_17', 'A_10_18', 'A_10_19', 'A_10_20', 'A_10_21', 'A_10_22', 'A_10_23', 'A_10_25', 'A_10_26', 'A_10_27', 'A_10_28', 'A_10_29', 'A_10_30'], ['A_11_1', 'A_10_11', '

'A_11_2', 'A_11_3', 'A_11_4', 'A_11_5', 'A_11_6', 'A_11_9', 'A_11_9', 'A_11_11', 'A_11_1

8', 'B_2_9', 'B_2_10'], ['B_3_1', 'B_3_2', 'B_3_3', 'B_3_4', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10'], ['B_4_1', 'B_4_2', 'B_4_5', 'B_4_6', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10'], ['B_5_1', 'B_5_2', 'B_5_1'] 'B_5_3', 'B_5_4', 'B_5_5', 'B_5_6', 'B_5_7', 'B_5_8', 'B_5_9', 'B_5_10']], 'A_12_22', 'A_12_23', 'A_12_26', 'A_12_26', 'A_12_28', 'A_12_28', 'A_12_29', 'A_12_30'], ['A_13_1', 'A_13_2', 'A_13_3', 'A_13_4', 'A_13_5', '

8', 'B_19', 'B_110'], ['B_2_1', 'B_2_3', 'B_2_4', 'B_2_5', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_10'], ['B_3_1', 'B_3_2', 'B_3_5', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10'], ['B_4_1', 'B_4_2', 'B_4_3', 'B_4_4', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10'], ['B_5_1', 'B_5_3', 'B_5_6', 'B_5_6', 'B_5_8', 'B_5_9', 'B_5_10']], 'A_13_22', 'A_13_23', 'A_13_24', 'A_13_25', 'A_13_26', 'A_13_28', 'A_13_29', 'A_13_30'], ['A_14_1', 'A_14_2', 'A_14_3', 'A_14_5', 'A_14_6', 'A_14_7', 'A_14_8', 'A_14_9', 'A_14_11', 'A_14_12', 'A_14_13', 'A_14_14', 'A_14_15', 'A_14_16', 'A_14_18', 'A_14_19', 'A_14_20', [['B_1_1', 'B_1_2', 'B_1_3', 'B_1_4', 'B_1_5', 'B_1_6', 'B_1_7', 'B_1_8', 'B_1_9', 'B_1_10'], ['B_2_1', 'B_2_2', 'B_2_3', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_9', 'B_2_10'], ['B_3_1', 'B_3_2', 'B_1_8', 'B_1_8

'B_3_3', 'B_3_4', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10'], ['B_4_1', 'B_4_2', 'B_4_3', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10'], ['B_5_1', 'B_5_2', 'B_5_3', 'B_5_4', 'B_5_5', 'B_5_6', 'B_5_6', 'B_5_6'] 7', 'B_5_8', 'B_5_9', 'B_5_10']], 'A_14_22', 'A_14_23', 'A_14_25', 'A_14_26', 'A_14_28', 'A_14_29', 'A_15_2', 'A_15_2', 'A_15_3', 'A_15_4', 'A_15_5', 'A_15_6', 'A_15_7', 'A_15_8', 'A_15_9', 'A_15_9', 'A_18_9', 'A_18_9 5_10', 'A_15_11', 'A_15_12', 'A_15_13', 'A_15_15', 'A_15_16', 'A_15_16', 'A_15_18', 'A_15_19', 'B_1_2', 'B_1_3', 'B_1_4', 'B_1_5', 'B_1_6', 'B_1_7', 'B_1_8', 'B_1_9', 'B_1_10'], ['B_2_1', 'B_2_2', 'B_2_3', 'B_2_4', 'B_2_5', 'B_2_6', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_9', 'B_3_1', 'B_3_3', 'B_3_4', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10'], ['B_4_1', 'B_4_2', 'B_4_3', 'B_4_4', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', '

'B_23', 'B_24', 'B_25', 'B_26', 'B_27', 'B_28', 'B_29', 'B_210'], ['B_31', 'B_32', 'B_33', 'B_34', 'B_35', 'B_36', 'B_37', 'B_38', 'B_39', 'B_310'], ['B_41', 'B_42', 'B_43', 'B_42', 'A_15_29', 'A_15_29', 'A_15_30'], ['A_16_1', 'A_16_2', 'A_16_2', 'A_16_2', 'A_16_3', 'A_16_4', 'A_16_5', 'A_16_6', 'A_16_6', 'A_16_9', 'A_16_9', 'A_16_10', 'A_16_11', 'A_16_12', 'A_16_13', 'A_16_14', 'A_16_15', 'A_16_18', 'A_16_18', 'A_16_20', ['B_13', 'B_18_2', 'B_28', 'B_29', 'B_28', 'B_28', 'B_29', 'B_28', '

1, B_3_2, B_3_3, B_3_4, B_3_0, B_3_0,

[0, [['A_1_1', 'A_2_1', 'A_3_1', 'A_4_1', 'A_5_1', 'A_6_1', 'A_7_1', 'A_8_1', 'A_9_1', 'A_10_1', 'A_11_1', 'A_12_1', 'A_13_1', 'A_15_1', 'A_16_1', 'A_17_1', 'A_18_1', 'A_19_1', 'A_20_1'], ['A_1_2', 'A_2_2', 'A_3_2', 'A_11_1', 4_2', 'A_5_2', 'A_6_2', 'A_7_2', 'A_8_2', 'A_9_2', 'A_10_2', 'A_11_2', 'A_12_2', 'A_13_2', 'A_14_2', 'A_15_2', 'A_16_2', 'A_18_2', 'A_19_2', 'A_19_2', 'A_20_2'], ['A_1_3', 'A_2_3', 'A_3_3', 'A_4_3', 'A_5_3', 'A_6_3', 'A_7_3', 'A_7_3', 'A_7_2', 'A_18_2', 'A

8_3', 'A_9_3', 'A_10_3', 'A_11_3', 'A_12_3', 'A_13_3', 'A_14_3', 'A_15_3', 'A_16_3', 'A_11_4', 'A_20_3'], ['A_14_4', 'A_24', 'A_44', 'A_5_4', 'A_6_4', 'A_6_4', 'A_14_5', 'A_14_5', 'A_16_5', 'A_16_5', 'A_18_5', 'A_18_

 19_{6} , $19_{$ 8', 'A_3_8', 'A_4_8', 'A_5_8', 'A_6_8', 'A_7_8', 'A_8_8', 'A_9_8', 'A_10_8', 'A_11_8', 'A_12_8', 'A_14_8', 'A_15_8', 'A_16_8', 'A_17_8', 'A_18_8', 'A_19_8', 'A_20_8'], ['A_1_9', 'A_2_9', 'A_3_9', 'A_4_9', 'A_5_9', 'A_6_8', 'A_10_8', 'A_1 9', 'A_7_9', 'A_8_9', 'A_9_9', 'A_10_9', 'A_11_9', 'A_12_9', 'A_13_9', 'A_14_9', 'A_16_9', 'A_16_9', 'A_18_9', 'A_19_9', 'A_20_9'], ['A_1_10', 'A_2_10', 'A_3_10', 'A_4_10', 'A_5_10', 'A_6_10', 'A_7_10', 'A_8_10', 'A_9_10', 'A_10_10', 'A_11_10', 'A_11_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_12_10', 'A_11_10', 'A_11_10 _12', 'A_13_12', 'A_14_12', 'A_15_12', 'A_16_12', 'A_17_12', 'A_18_12', 'A_19_12', 'A_20_12'], ['A_1_13', 'A_2_13', 'A_4_13', 'A_5_13', 'A_6_13', 'A_7_13', 'A_8_13', 'A_9_13', 'A_10_13', 'A_11_13', 'A_12_13', 'A_13_13', 'A_14_13', 'A_15_13', 'A_16_13', 'A_17_13', 'A_18_13', 'A_19_13', 'A_20_13'], ['A_1_14', 'A_2_14', 'A_3_14', 'A_4_14', 'A_5_14', 'A_6_14', 'A_7_14', 'A_8_14', 'A_9_14', 'A_10_14', 'A_11_14', 'A_12_14', 'A_13_14', 'A_14_14', 'A_15_14', 'A_18_18', 'A_18_1 _14', 'A_16_14', 'A_17_14', 'A_18_14', 'A_19_14', 'A_20_14'], ['A_1_15', 'A_2_15', 'A_3_15', 'A_4_15', 'A_5_15', 'A_6_15', 'A_8_15', 'A_9_15', 'A_10_15', 'A_11_15', 'A_12_15', 'A_13_15', 'A_14_15', 'A_15_15', 'A_16_15', 'A_18_15', 'A_17_15', 'A_18_15', 'A_19_15', 'A_20_15'], ['A_1_16', 'A_2_16', 'A_3_16', 'A_4_16', 'A_5_16', 'A_6_16', 'A_7_16', 'A_9_16', 'A_10_16', 'A_11_16', 'A_12_16', 'A_13_16', 'A_14_16', 'A_15_16', 'A_16_16', 'A_17_16', 'A_18_18', 'A_18_ _16', 'A_19_16', 'A_20_16'], ['A_1_17', 'A_2_17', 'A_3_17', 'A_4_17', 'A_5_17', 'A_6_17', 'A_8_17', 'A_9_17', 'A_10_17', 'A_11_17', 'A_12_17', 'A_13_17', 'A_14_17', 'A_15_17', 'A_16_17', 'A_17_17', 'A_18_17', 'A_19_17', 'A_18_17', 1_19', 'A_2_19', 'A_3_19', 'A_4_19', 'A_5_19', 'A_6_19', 'A_7_19', 'A_8_19', 'A_9_19', 'A_11_19', 'A_12_19', 'A_13_19', 'A_15_19', 'A_16_19', 'A_17_19', 'A_18_19', 'A

19, A_19, A_519, A_519, A_619, A_620, A_621, A_621,

9', 'B_1_10'], ['B_2_1', 'B_2_2', 'B_2_3', 'B_2_4', 'B_2_5', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_9', 'B_2_10'], ['B_3_1', 'B_3_2', 'B_3_5', 'B_3_6', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10'], ['B_4_1', 'B_4_2', 'B_4_3', 'B_4_8'] 'B_4_4', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10'], ['B_5_1', 'B_5_2', 'B_5_3', 'B_5_5', 'B_5_6', 'B_5_7', 'B_5_8', 'B_5_9', 'B_5_10']]], ['A_1_22', 'A_2_22', 'A_3_22', 'A_4_22', 'A_5_22', 'A_6_22', 'A_7_22', 'A_8_22', 'A_9_22', 'A_10_22', 'A_10_22', 'A_11_22', 'A_12_22', 'A_12_22', 'A_16_22', 'A_16_22', 'A_18_22', _9_23', 'A_10_23', 'A_11_23', 'A_12_23', 'A_13_23', 'A_14_23', 'A_15_23', 'A_16_23', 'A_17_23', 'A_18_23', 'A_19_23', 'A_20_23'], ['A_1_24', 'A_2_24', 'A_3_24', 'A_4_24', 'A_5_24', 'A_6_24', 'A_7_24', 'A_8_24', 'A_9_24', 'A_10_2 4', 'A_11_24', 'A_12_24', 'A_13_24', 'A_14_24', 'A_15_24', 'A_16_24', 'A_17_24', 'A_18_24', 'A_19_24', 'A_20_24'], ['A_1_25', 'A_2_25', 'A_3_25', 'A_4_25', 'A_5_25', 'A_6_25', 'A_7_25', 'A_8_25', 'A_9_25', 'A_10_25', 'A_11_25', 'A_ 'A_12_25', 'A_13_25', 'A_14_25', 'A_14_25', 'A_15_25', 'A_16_25', 'A_16_25', 'A_18_25', _26', 'A_14_26', 'A_15_26', 'A_16_26', 'A_17_26', 'A_18_26', 'A_19_26', 'A_20_26'], ['A_1_27', 'A_2_27', 'A_3_27', 'A_4_27', 'A_5_27', 'A_6_27', 'A_8_27', 'A_9_27', 'A_9_27', 'A_10_27', 'A_11_27', 'A_12_27', 'A_13_27', 'A_14_27', ' 'A_15_27', 'A_16_27', 'A_17_27', 'A_18_27', 'A_19_27', 'A_20_27'], ['A_1_28', 'A_2_28', 'A_3_28', 'A_4_28', 'A_5_28', 'A_5_28', 'A_7_28', 'A_8_28', 'A_9_28', 'A_10_28', 'A_11_28', 'A_12_28', 'A_13_28', 'A_14_28', 'A_15_28', 'A_16_28', 'A_18_28', 'A_18_2 _28', 'A_17_28', 'A_18_28', 'A_19_28', 'A_20_28'], ['A_1_29', 'A_2_29', 'A_3_29', 'A_4_29', 'A_5_29', 'A_6_29', 'A_7_29', 'A_9_29', 'A_10_29', 'A_11_29', 'A_12_29', 'A_13_29', 'A_14_29', 'A_15_29', 'A_16_29', 'A_17_29', 'A_18_29', 'A_19_29', 'A_20_29'], ['A_1_30', 'A_2_30', 'A_3_30', 'A_4_30', 'A_5_30', 'A_4_30', 'A_10_30', 'A_11_30', 'A_12_30', 'A_12_30', 'A_13_30', 'A_14_30', 'A_15_30', 'A_16_30', 'A_17_30', 'A_18_30', 'A_19_30', 'A_1

'B_5_7', 'B_5_8', 'B_5_9', 'B_5_10']], 'A_19_22', 'A_19_23', 'A_19_24', 'A_19_25', 'A_19_26', 'A_19_27', 'A_19_28', 'A_19_29', 'A_19_30'], ['A_20_1', 'A_20_2', 'A_20_3', 'A_20_4', 'A_20_5', 'A_20_6', 'A_20_7', 'A_20_8', 'A_20_

Proof:

We can use 2D list in Python to represent a matrix.

Therefore, a block matrix can be represented by a 2D list, with each element being another 2d list.

import numpy big_matrix = $[[f"A_{r+1}]_{c+1}]$ " for c in range(30)] for r in range(20)] print("(a)") for row in big_matrix[14:20]: print(row[4:10]) print("(b)") matrix_B = $[[f''B_{r+1}]_{c+1}]''$ for c in range(10)] for r in range(5)] **for** i **in** range(10,20): big_matrix[i][20] = matrix_B print("row 10, column 20 of matrix A:") **for** x **in** big_matrix[10][20]: print(x) print("row 15, column 20 of matrix A") **for** x **in** big_matrix[15][20]: print(x) print("(c)") very_big_matrix = [[big_matrix for c in range(50)] for r in range(50)] matrix_B = [[big_matrix for i in range(2)] for j in range(2)] # too braindead to do this properly. $matrix_B[0][1] = 0$ $matrix_B[1][0] = 0$ t_big_matrix = [list(x) for x in numpy.transpose(big_matrix)] matrix_B[1][1] = t_big_matrix **for** i **in** range(10,20): very_big_matrix[i][20]=matrix_B print("row 15, column 20 of matrix A")

['A_15_5', 'A_15_6', 'A_15_7', 'A_15_8', 'A_15_9', 'A_15_10']

'A_16_5', 'A_16_6', 'A_16_7', 'A_16_8', 'A_16_9', 'A_16_10' 'A_17_5', 'A_17_6', 'A_17_7', 'A_17_8', 'A_17_9', 'A_17_10' 'A_18_5', 'A_18_6', 'A_18_7', 'A_18_8', 'A_18_9', 'A_18_10' 'A_19_5', 'A_19_6', 'A_19_7', 'A_19_8', 'A_19_9', 'A_19_10' ['A_20_5', 'A_20_6', 'A_20_7', 'A_20_8', 'A_20_9', 'A_20_10'] row 10, column 20 of matrix A: ['B_1_1', 'B_1_2', 'B_1_3', 'B_1_4', 'B_1_5', 'B_1_6', 'B_1_7', 'B_1_8', 'B_1_9', 'B_1_10' ['B_2_1', 'B_2_2', 'B_2_3', 'B_2_4', 'B_2_5', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_9', 'B_2_10' 'B_3_1', 'B_3_2', 'B_3_3', 'B_3_4', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10' 'B_4_1', 'B_4_2', 'B_4_3', 'B_4_4', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10' ['B_5_1', 'B_5_2', 'B_5_3', 'B_5_4', 'B_5_5', 'B_5_6', 'B_5_7', 'B_5_8', 'B_5_9', 'B_5_10'] row 15, column 20 of matrix A ['B_1_1', 'B_1_2', 'B_1_3', 'B_1_4', 'B_1_5', 'B_1_6', 'B_1_7', 'B_1_8', 'B_1_9', 'B_1_10'] 'B_2_1', 'B_2_2', 'B_2_3', 'B_2_4', 'B_2_5', 'B_2_6', 'B_2_7', 'B_2_8', 'B_2_9', 'B_2_10' ['B_3_1', 'B_3_2', 'B_3_3', 'B_3_4', 'B_3_5', 'B_3_6', 'B_3_7', 'B_3_8', 'B_3_9', 'B_3_10' 'B_4_1', 'B_4_2', 'B_4_3', 'B_4_4', 'B_4_5', 'B_4_6', 'B_4_7', 'B_4_8', 'B_4_9', 'B_4_10' ['B_5_1', 'B_5_2', 'B_5_3', 'B_5_4', 'B_5_5', 'B_5_6', 'B_5_7', 'B_5_8', 'B_5_9', 'B_5_10']

row 15, column 20 of matrix A [[['A_1_1', 'A_1_2', 'A_1_3', 'A_1_4', 'A_1_5', 'A_1_6', 'A_1_7', 'A_1_8', 'A_1_9', 'A_1_10', 'A_1_11', 'A_1_12', 'A_1_13', 'A_1_16', 'A_1_17', 'A_1_18', 'A_1_21', 'A_1_22', 'A_1_23', 'A_1_24', 'A_1_25', 'A_1_26', 'A_1_27', 'A_1_28', 'A_1_27', 'A_1_28', 'A_1_18', 'A

for x in very_big_matrix[15][20]:

print(x)