Repaso Probabilidad

Luis Gerardo Martínez Valdés Mail: luis.martinez@neverlandconsultants.capital

Otoño 2021

Índice general $\overline{}$

1	Var	iables	Aleatorias	1
	1.1	Esper	anza, Varianza, Covarianza y Correlación	2
		1.1.1	Esperanza	2
		1.1.2	Varianza	2
		1.1.3	Covarianza	3
		1.1.4	Correlación	3
		1.1.5	Desigualdades Importantes	3
2	Dist	trbuci	ones Conocidas	4
	2.1	Conti	nuas	4
	2.2	Discre	etas	5
3	Rela	ación (entre distribuciones	6
	3.1	Binon	nial	6
	3.2	Binon	nial Negativa	6
	3.3	Poisso	on	6
	3.4	Expor	nencial	6
	3.5	Unifor	rme	6
	3.6	Gamn	na	7
	3.7	Chi-C	uadrada	7
	3.8	Norma	al	7
	3.9	t-Stuc	lent	7
	3.10	Pareto	0	7
	3.11	Beta		8
4	Ejei	rcicios		9
Bi	ibliog	grafía		11
Ín	dice			

Variables Aleatorias 1.

Jo sugnica

dyarlo ono

esto obsenso

Lecu si que sel Ximi = 20 4 e x

decir si que sel x

vacelor societoros.

Definición 1 (Variable Aleatoria). Una función $\mathcal{X}:(\Omega,\mathcal{F})\longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$ es variable aleatoria (v.a) si $\forall B \in \mathcal{B}(\mathbb{R}) \quad \underline{\mathcal{X}^{-1}} \in \mathcal{F} \not | 2 \uparrow$

Para fines de este curso diremos que una v.a. es una función que va del espacio muestral Ω a los reales \mathbb{R} ; definida por $\mathcal{X}:\Omega\longrightarrow\mathbb{R}$.

Definición 2 (Funcion de Masa de Probabilidad (f.m.p)). $Si \mathbb{P}(X=x) = \mathbb{P}(\omega \in \Omega : X(\omega) = x)$ es una f.m.p, entonces:

También, se tiene que $\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$.

Definición 4 (Función de Distribución Acumulada). Sea X una v.a. la F.d.a cumple:

$$F_{\bullet} \stackrel{\text{e. e.}}{\longrightarrow} \mathbb{R} \longrightarrow [0,1], \ F_{\bullet}(x) = \mathbb{P}(X \leq x)$$

• No-Decreciente: $Shx_1 < x$ intended $F(x_1) < F(x_2)$

• Continua por la derecha: $\lim_{y\to x^+} F(y) = F(x)$

 $A \longrightarrow Si X es continua, entonces$

$$\lim_{x \to a} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} dx = f(x); \quad F(x) = \int_{\mathbb{R}^n}^x f(t) dt$$

Definición 5 (Función de Densidad de Probabilidad Condicional).

$$\mathbb{P}(a \le Y \le b \mid X = x) = \int_{a}^{b} f_{Y|X}(y|x) \, dy \; ; \; a \le b$$

$$\int_a^b f_{Y|X}(y|x) \, dy = \frac{f(x,y)}{f_X(x)}$$

 $\int_a^{J_Y|X}(y|x)\,\mathrm{d}y = \frac{1}{f_X(x)}$ Donde f(x,y) es la distribución conjunta de X,Y y $f_X(x)$ es la función de densidad marginal de X.

$$f_{y}(x) = \int_{-\infty}^{\infty} f(x,y) dx$$

Sean X, Y v.a.'s independientes, entonces se tiene que:

1.
$$F(x,y) = \mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y) = F(x)F(y)$$

2.
$$f_{X,Y}(x,y) = f(x)f(y)$$

2.
$$f_{X,Y}(x,y) = f(x)f(y)$$

3. $\rho(x,y) = \int_{x}^{x} \rho(x) \rho(y)$

Esperanza, Varianza, Covarianza y Correlación

[1] Definiciones y propiedades, sean X, Y, Z va.a's:

1.1.1 Esperanza

1.
$$\mathbb{E}(X) = \mu_X = \begin{cases} \sum_{X \in S} x f(x) & X \text{ es discreta} \\ \int_{X_f} x f_X(x) dx & X \text{ es continua} \end{cases}$$

2.
$$\mathbb{E}(cX) = c \mathbb{E}(X)$$
; $c \in \mathbb{R}$

3.
$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

4.
$$\mathbb{E}(g(X,Y)) = \int_{X,Y} g(x,y) f_{X,Y}(x,y) \, dx \, dy$$
 para cualquier función real valuada $g(\bullet)$

5.
$$\mathbb{E}(X) = \sum_{x=1}^{\infty} \mathbb{P}(X \geq x)$$
 con X discreta

6. Esperanza Condicional:
$$\mathbb{E}(Y \mid X = x) = \int_{0}^{0} y f(y|x) dy$$

7. Ley de Esperanza Total(Teorema de Torre): $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$

8.
$$\mathbb{E}(g(X,Y)|X=x) = \int_{-\infty}^{\infty} g(x,y) f_{Y|X}(y|x) dx$$

9.
$$\mathbb{E}(g(Y,Z)|X=x) = \int_{-\infty}^{\infty} g(y,z) f_{Y,Z|X}(y,z|x) \, dy dz$$
10.
$$\mathbb{E}(X+Y|X) = \mathbb{E}(Y|X) + \mathbb{E}(Z|X)$$

$$\lim_{z \to \infty} g(y,z) f_{Y,Z|X}(y,z|x) \, dy dz$$

$$\lim_{z \to \infty} g(y,z) f_{Y,Z|X}(y,z|x) \, dy dz$$

Se recomienda al lector probar algunas de las propiedades anteriores, en especial: 6,7,10 y 11.

1.1.2 Varianza

1.
$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X)$$

2.
$$\mathbb{V}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \mathbb{V}(X_i) + \sum_{i \neq j} COV(X_i, X_j) = \sum_{i=1}^{n} \mathbb{V}(X_i) + 2\sum_{i < j} COV(X_i, X_j)$$

3. Varianza Condicional:
$$\mathbb{V}(Y|X) = \mathbb{E}(Y^2|X) - \mathbb{E}^2(Y|X)$$

4. Varianza Total:
$$\mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X))$$

Se recomienda al lector demostrar las propiedades 2 y 4.

Covarianza 1.1.3

1.
$$COV(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

2.
$$COV(X, y) = E(XY) - E(X)E(Y)$$

3.
$$COV(X, a) = 0$$
 donde $a \in \mathbb{R}$

4.
$$COV(X, X) = V(X)$$

5.
$$COV(aX, bY) = ab \ COV(X, Y) \ donde \ a, b \in \mathbb{R}$$

6.
$$COV(X + a, Y + b) = COV(X, Y)$$

7.
$$COV(\sum X_i, \sum Y_i) = \sum \sum COV(X_i, Y_i)$$

1.1.4 Correlación

1.
$$Corr(X,Y) = \rho(X,Y) = \frac{COV(X,Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$$

2.
$$\rho(c,Y) = 0 \quad \forall \quad c \in \mathbb{R}$$

3. $\rho(X,Y) \in [-1,1]$

3.
$$\rho(X,Y) \in [-1,1]$$

4. Sea
$$Y = aX + b$$
 entonces $\rho(X, Y) = \begin{cases} \rho(X, Y) = 1 & \text{si } a > 0 \\ \rho(X, Y) = -1 & \text{si } a < 0 \end{cases}$

Se recomienda al lector demostrar las propiedades 3 y 4.

Desigualdades Importantes 1.1.5

1. Desigualdad de Markov Si X es una v.a. y $g(\bullet)$ es una funcion tal que $g(x) \ge 0 \ \forall x$ entonces $\forall k$ se tiene que

$$\mathbb{P}(g(X) \ge k) \le \frac{\mathbb{E}(g(x))}{k} \tag{1.1}$$

2. Desigualdad de Tchebysheff

$$\mathbb{P}\left(\left|\frac{x-\mu}{\sigma}\right|^2 \ge t^2\right) \le \frac{1}{t^2} \tag{1.2}$$

Otras versiones:

$$\mathbb{P}(|x - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$\mathbb{P}(|x - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

3. Desigualdad de Jensen: Sea $g:\mathbb{R}\longrightarrow\mathbb{R}$ una función, tal que

$$\begin{cases} \mathbb{E}(g(X)) \ge g(E(X)) & \text{g convexa} \\ \mathbb{E}(g(X)) \le g(E(X)) & \text{g cóncava} \end{cases}$$
 (1.3)

Distrbuciones Conocidas

Acá les paré el famulario de Carella A Bergn

famulario de Carella A Bergn

te la mondo

2.1

Pareto	Weibull	Beta	Gamma	Exponential	Chi-square	Student's t	$_{ m Log-Normal}$	Normal	Uniform	
Pareto (x_m, α)	$\operatorname{Weibull}(\lambda,k)$	$\mathrm{Beta}(\alpha,\beta)$	$\mathrm{Gam}(\alpha,\beta)$	$\mathrm{EXP}(\lambda)$	$\chi^2(u)$	$\operatorname{Student}(\nu)$	$\mathbb{LN}(\mu,\sigma^2)$	$\mathbb{N}(\mu,\sigma^2)$	U(a,b)	Notation
$\frac{\alpha x_m^{\alpha}}{x^{\alpha+1}} x \ge x_m$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left(\frac{x}{\lambda}\right)^k$	$\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$	$\lambda e^{-\lambda x}$	$\frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$		$2\sigma^2)$	$\frac{1}{b-a} \ x \in (a,b)$	PDF
$1 - \left(\frac{x_m}{x}\right)^{\alpha} \ x \ge x_m$	$1 - e^{-(x/\lambda)^k}$	$I_x(\alpha,\beta) \frac{\alpha}{\alpha+\beta}$	$\frac{\gamma(\alpha,\beta x)}{\Gamma(\alpha)}$	$1 - e^{-\lambda x}$	$\frac{1}{\Gamma(\nu/2)}\gamma\left(\frac{\nu}{2},\frac{x}{2}\right)$	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{1}{2} + \frac{1}{2} \operatorname{erf} \left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}} \right]$	$\Phi(x) = \int_{-\infty}^{x} \phi(t)dt$	$\frac{x-a}{b-a} \ x \in (a,b)$	CDF
$\frac{\alpha x_m}{\alpha - 1} \alpha > 1$	$\lambda\Gamma\left(1+rac{1}{k} ight)$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\beta \alpha$	$1/\lambda$	ν	0	$e^{\mu+\sigma^2/2}$	μ	$\frac{a+b}{2}$	Expectation
$\frac{x_m^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)} \alpha > 2$	$\lambda^2 \Gamma \left(1 + \frac{2}{k}\right) - \mu^2$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{s^k}{k!}$	$\frac{\alpha}{eta^2}$	$1/\lambda^2$	2ν	$\frac{\nu}{\nu-2};\ \nu>2$	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$	σ^2	$\frac{(b-a)^2}{12}$	Variance

2.2 Discretas

	Notation	PDF	CDF	Expectation	Variance	MGF
Bernoulli	$\mathrm{Ber}(p)$	$p^x \left(1-p\right)^{1-x}$	$(1-p)^{1-x}$	d	p(1-p)	$1 - p + pe^s$
Binomial	$\mathrm{Bin}(n,p)$	$\binom{n}{x}p^x (1-p)^{n-x}$		np	np(1-p)	$(1 - p + pe^t)^n$
Multinomial	$\operatorname{Multi}(n,p_1,\cdots,p_n)$	$\frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k} \sum_{i=1}^k x_i = n$		$\left(egin{array}{c} np_1 \ dots \ np_k \end{array} ight)$	$ \left(\begin{array}{cc} np_1(1-p_1) & -np_1p_2 \\ -np_2p_1 & \ddots \end{array}\right) $	$\left(\sum_{i=0}^k p_i e^{t_i}\right)^n$
$\operatorname{Geometric}^1$	$\mathrm{Geo}(p)$	$p(1-p)^{x-1}$	$1 - (1 - p)^x$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$\mathrm{HG}(N,m,n)$	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{x}}$		$\frac{nm}{m}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	
Negative Binomial	NB	$\binom{x+r-1}{r-1}p^r(1-p)^x$	1	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$
Poisson	$\mathrm{Po}(heta)$	$\frac{e^{-\theta}\theta^x}{x!}$	-	θ	θ	$e^{\theta(e^t-1)}$

3. Relación entre distribuciones

3.1Binomial

- $Bin(1,p) \equiv Ber(p)$
- Si $X_i \overset{v.a.i.i.d}{\sim} Bin(1,p) \Rightarrow \sum_{i=1}^n X_i \sim Bin(n,p)$
- Si $X_1 \sim Bin(n_1, p), \ X_2 \sim Bin(n_2, p)$ independientes, entonces $X_1 + X_2 \sim Bin(n_1 + n_2, p)$
- Si $\Lambda_1 \sim Bin(n_1, p)$, $\Lambda_2 = Bin(n, p) \equiv Poisson(np)$ para n grande y p pequeña M (indeed).
 $Bin(n, p) \equiv N(np, np(1-p))$ para n grande y una p ni tan pequña ni tan grande

3.2 Binomial Negativa

- $BN(1,p) \equiv Geo(p)$
- $X_i \overset{v.a.i.i.d}{\sim} Geo(p) \Rightarrow \sum_{i=1}^n X_i \sim BN(n, p)$
- Si $X_i \overset{v.a.i.i.d}{\sim} Geo(p) \Rightarrow X_{(1)} = min(X_1, ..., X_n) \sim Geo(1 (1-p)^n)$

3.3 Poisson

- Si $X_i \overset{v.a.i.i.d}{\sim} Poisson(\lambda_i) \Rightarrow \sum_{i=1}^n X_i \sim Possion(\sum_{i=1}^n \lambda_i)$
- Si $X_i \overset{v.a.i.i.d}{\sim} Poisson(\lambda_i) \Rightarrow |X_i| \sum_{j=1}^n X_j \sim Bin(\sum_{j=1}^n X_j, \frac{\lambda_i}{\sum_{j=1}^n \lambda_j})$

3.4Exponencial

- Si $X_i \overset{v.a.i.i.d}{\sim} Exp(\lambda_i) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(n, \sum_{i=1}^n \lambda_i)$
- Si $X_i \stackrel{v.a.i.i.d}{\sim} Exp(\lambda)$ entonces:
 - 1. $X_{(1)} \sim Exp(n\lambda)$
 - 2. $X^{\frac{1}{\alpha}} \sim Weibull(\alpha, \lambda)$

3.5 Uniforme

- Si $X_i \overset{v.a.i.i.d}{\sim} U(0,1)$ entonces:
 - 1. $-\theta ln(X_i) \sim Exp(\frac{1}{\theta})$ donde θ es usualmente un parámetro que queremos estimar.
 - 2. $-2ln(X_i) \sim \chi^2_{(2)}$

3.6 Gamma

• Si $X_i \overset{v.a.i.i.d}{\sim} Gamma(r, \lambda_i) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(r, \sum_{i=1}^n \lambda_i)$

• $Gamma(1, \lambda) \equiv Exp(\lambda)$

• Si $X \sim Gamma(r, \lambda)$ entonces para $k > 0, \ kX \ \sim Gamma(r, \frac{\lambda}{k})$

• $Gamma(\frac{\nu}{2}) \equiv \chi^2_{(\nu)}$

• $X_1 \sim Gamma(r_1, \lambda), \ X_2 \sim Bin(r_2, \lambda)$ independientes, entonces $\frac{X_1}{X_1 + X_2} \sim Beta(r_1, r_2)$

3.7 Chi-Cuadrada

• $X_i \overset{v.a.i.i.d}{\sim} \chi^2_{(\nu_i)} \Rightarrow \sum_{i=1}^n X_i \sim \chi^2_{(\sum_{i=1}^n \nu_i)}$

• $X_1 \sim \chi^2_{(\nu_1)}, \ X_2 \sim \chi^2_{(\nu_2)}$ independientes, entonces:

1. $\frac{\frac{X_1}{\nu_1}}{\frac{X_2}{\nu_2}} \sim F(\nu_1, \nu_2)$

2. $\frac{X_1}{X_1+X_2} \sim Beta(\frac{\nu_1}{2}, \frac{\nu_2}{2})$

3.8 Normal

• Si $Z_i \stackrel{v.a.i.i.d}{\sim} N(0,1) \Rightarrow \sum_{i=1}^n Z_i^2 \sim \chi_{(n)}^2$

• Si Z_1 es independiente de Z_2 entonces $\frac{Z_1}{Z_2} \sim Cauchy(0,1) \equiv t(1)$

3.9 t-Student

• Si $Z \sim N(0,1)$ es independiente de $V \sim \chi^2_{\nu}$ entonces $\frac{Z}{\sqrt{\frac{V}{\nu}}} \sim t(\nu)$

• Si $X \sim t(\nu) \Rightarrow X^2 \sim F(1, \nu)$

3.10 Pareto

• Si $X_i \overset{v.a.i.i.d}{\sim} Pareto(\alpha, \beta)$ con i = 1, ..., n entonces:

1. $ln(\frac{X_i}{\beta}) \sim Exp(\alpha)$

2. $X_{(1)} \sim Pareto(n\alpha, \beta)$

3. $2\alpha \sum_{1}^{n} (\frac{X_i}{\beta}) \sim \chi_{(2n)}^2$

3.11 Beta

- Si $X \sim Beta(\alpha, 1)$ entonces:
 - 1. $-ln(X) \sim Exp(\alpha)$
 - 2. $-2\alpha ln(X) \sim \chi^2_{(2)}$
- Si $X \sim Beta(1, \beta)$ entonces:
 - 1. $-ln(1-X) \sim Exp(\beta)$
 - 2. $-2\beta ln(1-X) \sim \chi^2_{(2)}$

4. Ejercicios

- 1. Una tarea llega a un sistema y es atendida por el procesador C_i con una probabilidad p_i , i = 1, ..., n. El tiempo aleatorio que toma el procesador en terminar la tarea es distribuido exponencialmente con parámetro λ_i
 - (a) Muestre que la función de densidad de $T \equiv$ el tiempo que toma el sistema para el procesamiento de la tarea está dada por:

$$f_T(t) = \sum_{i=1}^n p_i \lambda_i e^{-\lambda_i t}, \quad 0 \le t$$

(b) Muestre entonces que:

$$\mathbb{E}(T) = \sum_{i=1}^{n} \frac{p_i}{\lambda_i}$$

2. Demuestra el Teorema de Cambio de variable univariado para el caso estrictamente creciente i.e. Sea X una v.a. continua y ϕ una función estrictamente creciente. Entonces:

$$f_{\phi(X)}(t) = f_X(\phi^{-1}(t)) \left| \frac{d}{dt} \phi^{-1}(t) \right|$$

- 3. Para cierto tipo de suelo, el número de lombrices por pie cúbico tiene una media de 100. Suponiendo una distribución de Poisson de las lombrices, proponga un intervalo que incluirá al menos $\frac{5}{9}$ de los valores muestrales de las cantidades de lobrices ibtenidas de un número grande de muestras de 1 pie cúbico.
- 4. Si $X,Y \overset{v.a.i.i.d}{\sim} Exponenciales$ con parámetros λ_1,λ_2 respectivamente. Encuentra la f.d.p $Z=\frac{X}{Y}$ y calcule $\mathbb{P}(X < Y)$
- 5. Sea $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ valores ordenados de n v.a.'s Uniformes(0,1). Prueba para 1 < k < n+1 que $\mathbb{P}(X_{(k)} X_{(k-1)} > t) = (1-t)^n$ donde $X_{(0)} = 0$, $X_{(n+1)} = t$
- 6. Si $U_1, U_2 \sim Unif(0,1)$ son independientes, encuentre la f.d.p de $|U_1 U_2|$
- 7. Si $\theta \sim Unif(\frac{-\pi}{2}, \frac{\pi}{2})$. Encuentre la distribución de Y.

8. Demuestra la Desigualdad de Markov.

ambas 8 y 9 dans lans liver of the liver of

- 9. Demuestra la Desigualdad de Tchebysheff
- 10. Sean $X_1,...,X_n \overset{v.a.i.i.d.}{\sim} f(ullet)$ tal que $\mathbb{E}(X_i) = \mu, \ \mathbb{V}(X_i) = \sigma^2$. Demuestra:

 - (a) $\mathbb{E}(\bar{X}) = \mu$ (b) $\mathbb{V}(\bar{X}) = \frac{\sigma^2}{n}$ (c) $\mathbb{E}(S^2) = \sigma^2$

Bibliografía

- [1] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.
- [2] Dennis Wackerly, William Mendenhall, and Richard L Scheaffer. *Mathematical statistics with applications*. Cengage Learning, 2014.