From De Bruijn to co-De Bruijn using Category Theory Everybody's Got To Be Somewhere^[coDe Bruijn]

Marius Weidner

Chair of Programming Languages, University of Freiburg

January 29, 2024

Outline

- Getting Started: Scopes and Binders Categorically
 - The Category of Scopes
 - Intrinsically Scoped De Bruijn Syntax
- - The Slice Category of Subscopes
 - A Monad Over Sets Indexed by Scopes
 - Intrinsically Scoped co-De Bruijn Syntax
- Wrapping Up: What I've (Not) Told You
 - This Is Actually an Agda Paper (!)
 - References

The Category of Scopes: Δ^X_+

Definition

Let Δ_{+}^{X} be the category of scopes.

- Objects: $\bar{x}, \bar{y}, \bar{s} \in |\Delta_+^X| = X^*$
- Morphisms: $f, g \in \Delta^X_+(\bar{x}, \bar{y})$ for $\bar{x}, \bar{y} \in X^*$ are inductively defined:

$$\frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x}x \sqsubseteq \bar{y}x} \quad 1 \qquad \frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x} \sqsubseteq \bar{y}y} \quad 0$$

Corollary

The initial object of the Δ_+^X category is the empty scope ε with the $\bar 0$ as the unique morphism.

Remark

Morphisms in Δ_+^X can be represented by bit vectors $\bar{b} \in \{0,1\}^*$ with one bit per variable of the target scope telling whether it has been mapped to or skipped by the source scope.

Objects & Morphisms in Δ_+^\top

Example

Let $X = \top$ (where \top is the set with exactly one element $\langle \rangle$).

Thus, Objects $n \in X^*$ represents numbers.

Identity and Composition in Δ_+^{\top}

Δ_+^X is in Fact a Category

Lemma

In Δ_+^X every object $\bar{x} \in X^*$ has an identity morphism, i.e. we can construct an identity morphism for \bar{x} using the inference rules.

Proof.

$$\begin{array}{ll} id & : \; (\bar{x}:X^*) \to \bar{x} \sqsubseteq \bar{x} \\ id \; \varepsilon & = \; \cdot \\ id \; \bar{x}x \; = \; (\mathrm{id} \; \bar{x})1 \end{array}$$

Corollary

$$id-l$$
 : $id; f = f$
 $id-r$: $f; id = f$

Lemma

In Δ_+^X two morphisms $f: \bar x \sqsubseteq \bar y$ and $g: \bar y \sqsubseteq \bar z$ compose to a morphism $f; g: \bar x \sqsubseteq \bar z$, i.e. we can construct a morphism f; g from f and g using the inference rules.

Proof.

$$\begin{array}{lll} \underline{};\underline{} & : \; \bar{x} \sqsubseteq \bar{y} \to \bar{y} \sqsubseteq \bar{z} \to \bar{x} \sqsubseteq \bar{z} \\ \hline \cdot \; ; \cdot & = \cdot \\ f1 \; ; \; g1 \; = \; (f;g)1 \\ f0 \; ; \; g1 \; = \; (f;g)0 \\ f \; ; \; g0 \; = \; (f;g)0 \end{array}$$

Corollary

assoc :
$$f;(g;h)=(f;g);h$$

antisym : $(f:\bar{x}\sqsubseteq\bar{y})\to(g:\bar{y}\sqsubseteq\bar{z})\to\bar{x}=\bar{y}\land f=g=\operatorname{id}\bar{x}$

Intrinsically Scoped De Bruijn Syntax via $\Delta_+^ op$

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\frac{1 \sqsubseteq n}{Tm \ n} \ \#$$

$$\frac{Tm\ n}{Tm\ n}$$
 \$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

Example

The Slice Category of Subscopes: $\Delta^X_+ \setminus \bar{s}$

Definition

Let $\Delta_+^X \setminus \bar{s}$ be the category of subscopes for a given $\bar{s} \in X^*$.

- $\bullet \ \ \text{Objects:} \ \bar{b}, (\bar{x},f) \in |\Delta^X_+ \setminus \bar{s}| = \left(\bar{x}: X^* \times \Delta^X_+(\bar{x},\bar{s})\right)$
- \bullet Morphisms: $h \in [\Delta_+^X \smallsetminus \bar{s}]((\bar{x},f),(\bar{y},g))$ such that f=h;g

Corollary

The initial object of the $\Delta^X_+ \setminus \bar{s}$ category is the empty subscope $(\varepsilon, \bar{0})$.

Remark

Objects in $\Delta_+^X \setminus \bar{s}$ can be represented by *bit vectors* $\bar{b} \in \{0,1\}^*$ with one bit per variable of scope \bar{s} , telling whether it has been selected.

Objects & Morphisms in $\Delta_{\perp}^T \setminus 5$

$$3 \xrightarrow{\quad 0111} \quad 4 \qquad \qquad 4 \xrightarrow{\quad 11110} \quad 5 \qquad \qquad 3 \xrightarrow{\quad 01110} \quad 5$$

$$3 \xrightarrow{01110} 5$$

Alternatively:

- $(3,01110) \xrightarrow{0111} (4,11110)$
- $01110 \xrightarrow{0111} 11110$

Coproducts in $\Delta^X_+ \setminus \bar{s}$

Theorem

Objects in the slice category $\bar{b}_1, \bar{b}_2 \in |\Delta_+^X \setminus \bar{s}|$ have a coproduct object $\bar{b}_1 + \bar{b}_2$ if there exist morphisms $l \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_1 + \bar{b}_2)$ and $r \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_1 + \bar{b}_2)$. Then for every $f \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_3)$ and $g \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_3)$, there exists a unquie $h \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1 + \bar{b}_2, \bar{b}_3)$ such that f = l; h and g = r; h.

Remark

The coproduct $\bar{b}_1 + \bar{b}_2$ of two subscopes \bar{b}_1, \bar{b}_2 corresponds to the minimal subscope covering both \bar{b}_1 and \bar{b}_2 . The coproduct $\bar{b}_1 + \bar{b}_2$ can be computed by pointswise disjunction of \bar{b}_1 and \bar{b}_2 .

Category of Sets Indexed by Scopes

Definition

Let Set_X be the category of sets indexed by scopes $\bar{x} \in X^*$.

- ullet Objects: $T,S\in |Set_X|=X^* \to Set=\bar{X}$
- $\bullet \ \, \text{Morphisms:} \ \, f \in Set_X(T,S) = (\bar{x} \in X^*) \to T(\bar{x}) \to S(\bar{x}) = T \stackrel{\cdot}{\to} S$

Definition

Let $\underline{\ }\uparrow\underline{\ }:\bar{X}\to \bar{X}=(T,\bar{x})\mapsto (T(\bar{s})\times \bar{s}\sqsubseteq \bar{x}).$

We define $Ref: Set_X \xrightarrow{\cdot} Set_X$ to be the endofunctor induced by the mapping

- $Ref(T) = \bar{x} \mapsto T \uparrow \bar{x} \in \bar{X}$
- $Ref(f) = (t,h) \mapsto (f(t),h) \in T \xrightarrow{\cdot} S$

Remark

The set $T \uparrow \bar{x}$ packs an set $T \in \bar{X}$ indexed by $\bar{x} \in X^*$ applied to a subscope \bar{s} of \bar{x} , together with a selection $h \in |\Delta^X_+ \setminus \bar{x}|$ of the variables of T.

Δ^X_+ makes Ref a Monad!

Theorem

The functor $Ref: Set_X \to Set_X$ gives rise to a monad with the two natural transformations

- $\bullet \ unit: Id(T) \stackrel{\cdot}{\rightarrow} Ref(T) = t \mapsto (t,id)$
- $\bullet \ mult: Ref(Ref(T)) \stackrel{\cdot}{\rightarrow} Ref(T) = ((t,h_1)h_2) \mapsto (t,h_1;h_2)$

Example

$$Tm \xrightarrow{unit} \bar{x} \mapsto (Tm \ \bar{x}, \bar{x} \sqsubseteq \bar{x})$$

$$Ref \longrightarrow C$$

The Notion of Relevant Pairs

Definition

We define the set of relevant pairs as:

- $\bullet \quad \times_{R} : \bar{X} \to \bar{X} \to \bar{X} = (T, S, \bar{x}) \mapsto ((T \uparrow \bar{x}) \times (S \uparrow \bar{x}))$
- __,__ : $T \uparrow \bar{x} \to S \uparrow \bar{x} \to (T \times_R S) \uparrow \bar{x} = ((t_1, \bar{b}_1), (t_2, \bar{b}_2)) \mapsto (((t_1, \bar{b}_1'), (t_2, \bar{b}_2')), \bar{b}')$ where $\bar{b}' = \bar{b}_1 | \bar{b}_2$ and $\bar{b}'_{1,2} = ((\bar{b}_1 | \bar{b}_2) \& \bar{b}_{1,2})$

Example

We again look at Tm indexed by Δ_{\perp}^{T} . Let

$$(t_1, \bar{b}_1) = (.., 01100) : Tm \uparrow 5 = Tm \ 2 \times 2 \sqsubseteq 5,$$

 $(t_2, \bar{b}_2) = (.., 11000) : Tm \uparrow 5 = Tm \ 2 \times 2 \sqsubseteq 5.$

Then
$$\bar{b} = \bar{b}_1 | \bar{b}_2 = 11100$$
 and $\bar{b}_1' = 011, \bar{b}_2' = 110.$

Thus
$$(t_1, \bar{b}_1)_{,R} (t_1, \bar{b}_2) = (((t_1, \bar{b}_1'), (t_2, \bar{b}_2')), (\bar{b}_1 | \bar{b}_2)) = (Tm \times_R Tm) \uparrow 5$$

Intrinsically Scoped co-De Bruijn Syntax

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\overline{Tm\ 1}$$
 #

$$\frac{(Tm\times_RTm)\;n}{Tm\;n}\;\$$$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

Example

What I've (not) told you: This is actually an Agda Paper

- All categorical concepts formalized in Agda
- Suitable representations of objects and morphisms
- Comes with a universe of metasyntaxes-with-binding
- Categorical concepts applied to formally reason over programming languages

Using co-De Bruijn is not hard, category theory is!

References

[1] Conor McBride. Cats and types: Best friends? Aug. 2021. URL: https://www.youtube.com/watch?v=05IJ3YL8p0s.