Занятие №1

Кохович Д.И.

- 1. Случайные величины ξ_1 и ξ_2 независимы и имеют одно и то же геометрическое распределение. Доказать, что
 - (a) $(\xi_1 = k | \xi_1 + \xi_2 = n)$ не зависит от k;

(b)

$$\mathbb{P}(\xi_1 = k | \xi_1 + \xi_2 = n) = \frac{1}{n+1}, \qquad k = 0, 1, \dots, n.$$

2. Случайные величины ξ_1 и ξ_2 независимы и имеют распределения Пуассона с параметрами λ_1 и λ_2 соответственно. Найти

$$\mathbb{P}(\xi_1 = k | \xi_1 + \xi_2 = n), \qquad k = 0, 1, \dots, n.$$

- 3. Пусть $\xi_n \xrightarrow{\mathbb{P}} \xi$ и $\xi_n \xrightarrow{\mathbb{P}} \eta$. Доказать, что $\mathbb{P}(\xi = \eta) = 1$.
- 4. Пусть $\xi_n \xrightarrow{\mathbb{P}} \xi$ и $\eta_n \xrightarrow{\mathbb{P}} \eta$. Доказать, что
 - (a) $a\xi_n + b\eta_n \xrightarrow{\mathbb{P}} a\xi + b\eta$;
 - (b) $\xi_n \eta_n \xrightarrow{\mathbb{P}} \xi \eta$.
- 5. Пусть ξ_1, ξ_2, \ldots последовательность независимых случайных величин, причем ξ_n принимает значения -n, 0, n с вероятностями 1/4, 1/2, 1/4 соответственно. Применим ли к этой последовательности ЗБЧ?
- 6. (Задача на ЦПТ). Пусть ξ_1, ξ_2, \ldots последовательность независимых одинаково распределенных невырожденных случайных величин с конечными дисперсиями, $S_n = \xi_1 + \cdots + \xi_n$. Доказать, что для любых конечных вещественных чисел a и b верно

$$\lim_{n \to \infty} \mathbb{P}(a \le S_n \le b) = 0.$$