Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 9

Last Week

- 1 Direct solvers for linear systems
- Stability and backward stability
- Error bounds
- Backward/forward substitution
- 6 LU decomposition
- 6 Gaussian Elimination (tridiagonal matrices)
- Gaussian Elimination (general case)
- 6 Gaussian Elimination with partial pivoting

This Week

- 1 Linear least squares problems
- Matrix subspaces (i.e., the range, nullspace, and orthogonal complements)
- The pseudo inverse of a matrix
- The QR decomposition
- Gram-Schmidt orthogonalization

Daily Linear Algebra

Permutation Matrix PDT=I

Projection Matrices

A matrix $P \in \mathbb{R}^{n \times n}$ is called a *projection matrix* if $P = P^2$.

Complementary Projector

If P is a projection matrix then (I - P) is called its *Complementary Projector*.

Orthogonal Projector (not to be confused with orthogonal matrix!)

Let P be a projection matrix. If P is also symmetric, so that $P = P^T$, then it is an *Orthogonal Projector*, with the property that y = Px and z = (I - P)x implies that $y^Tz = 0$ for any $x \in \mathbb{R}^n$.

Daily Linear Algebra

Constructing orthogonal projectors

Any orthonormal set of vectors forming a matrix \boldsymbol{U} can form a orthogonal projection matrix with

$$P = UU^T$$
.

Motivation: Linear Least Squares problems

Linear least squares problem

Let $A \in \mathbb{R}^{m \times n}$ be a singular matrix. We wish to find the vector $x \in \mathbb{R}^n$

which yields Full roak

 $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2^2.$

residual

r= Ax-h

Overdetermined (m>n)

Can have exact solA

underdetermined (M<N)

cannot be full rank

Motivation: Linear Least Squares problems

Example: curve fitting (related to interpolation)

Suppose we want to fit a polynomial of degree n-1 to the m data points x_i, y_i , where it is assumed that n < m. This can be formulated as a least squares solution to

Review: matrix subspaces

Range of a matrix

Let $A \in \mathbb{R}^{m \times n}$. The range of A is the space spanned by the column vectors of A. In other words, the vector $Ax \in R(A)$ for all $x \in \mathbb{R}^n$.

Nullspace of a matrix

The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$ contains all null vectors. In other words, if $A\rho = 0$ then $\rho \in N(A)$.

$$dim(R(A)) + dim(N(A)) = n$$

 $Pull rank: dim(N(A)) = 0$
 $dim(R(A)) = n$

A = UZVT > AV=UE

Singular value decomposition (SVD)

For every matrix $A \in \mathbb{R}^{m \times n}$ there exists unitary matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ such that $A = U \Sigma V^T$.

Theorem: Fredholm Alternative

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The equation Ax = b has a solution (not necessarily unique) if and only if $\eta^T b = 0$ for every $\eta \in N(A^T)$.

Corollary

If a solution to Ax = b exists, it is either the only solution or there are infinitely many solutions.

Solution to the least squares problem

Use projections to find the minimizer

The equation Ax = Pb has a solution if P is a projection onto R(A). The length of residual r = Ax - b is minimized if P is an *orthogonal* projection onto R(A) so that $r = (I - P)b \in R(A)^{\perp}$.

Proof: Let
$$y = Pb \in R(A)$$
, suppose there is a vector $z \in R(A)$ is $z \neq y$. Uant to show $||b-z||_2^2 > ||b-y||_2^2$. $\times [I-P]b = b-y \in R(A)^{\perp}$ $\times z-y \in R(A)$ $(z-y\neq 0)$

110-21/2=116-41/2+1/2-41/2>116-41/2 whes 1/2-41/2=0

Solution to the least squares problem

Definition: Pseudo Inverse

For a given full rank matrix $A \in \mathbb{R}^{m \times n}$, its pseudo inverse A^+ is a matrix such that $x = A^+b$ is the unique solution to the least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2.$$

The pseudo inverse can be written in many equivalent ways

Normal equations

For a given full rank matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$, the least squares solution to Ax = b is the solution to

$$A^T A x = A^T b.$$

Proof:
$$r = Ax - b$$
, where r is the residual.
 $A^{T}r = A^{T}(Ax - b) = A^{T}Ax - A^{T}b = 0$
 \Rightarrow either $r = 0$ so that $Ax = b$ or $r \in N(A^{T}) = R(A)^{T}$. By slide II, x is soly to least squares problem.

Normal equations version of the pseudo Inverse

For a given full rank matrix $A \in \mathbb{R}^{m \times n}$, its pseudo inverse is given by

$$A^+ = (A^T A)^{-1} A^T$$
.

Proof: If A^TA is nonsingular (see next slide), and if AA^+ is an orthogonal projection for R(A) (see two slides down) then

$$Ax = AA^+b$$
 $Ax=y=Pb$

has a solution that solves the LS problem. Then we have that

$$M = A^T A \in \mathbb{R}$$
 $M = A^T A A = A^T A A^+ b$

has a unique solution given by

$$x = (A^T A)^{-1} (A^T A) A^+ b = A^+ b.$$

Claim:

If $A \in \mathbb{R}^{m \times n}$ is full rank then $A^T A$ is nonsingular

Proof: Want to show
$$A^TAp=0 \Rightarrow p=0$$
.
Since is full rank $y=Ap \neq 0$ if $p\neq 0$.
Then we want to show $A^Ty \neq 0$ if $y\neq 0$.
Since $y \in R(A) \notin R(A)^{\perp} = N(A^T) \Rightarrow A^Ty = 0$ iff $y=0$.

For a given full rank matrix $A \in \mathbb{R}^{m \times n}$, an orthogonal projector onto R(A) is given by

$$P = AA^+$$
.

- $P^2 = P A(ATA)^TA^T A(ATA)^TA^T = A(ATA)^TA^T = AA^T$
- $P^T = P \left(A (A^T A)^T A^T \right)^T = A \left(A^T A)^T A^T = A (A^T A)^T A^T$

$$A(A^{+}x) \in R(A)$$

General approach

Given an orthogonal projector P onto R(A):

- **1** Compute y = Pb
- 2 Solve Ax = y