DIRECT AND ITERATED METHODS FOR IMPULSE RESPONSES: THEORY AND APPLICATIONS

SILVIA MIRANDA-AGRIPPINO BANK OF ENGLAND AND CFM

London Business School - July 1, 2016

OUTLINE

- i. IRFs from Vector Autoregressions (\mathbf{VARs})
- ii. Alternative: Local Projection Method (LPs)
 - ▶ Estimation and Inference
 - ▶ Relation with VAR
 - ▶ Potential Drawbacks
- iii. Direct vs Iterated Methods: Forecasting
- iv. Bayesian Local Projections (**BLPs**)
 - ▶ Intuition
 - ▶ Bayesian VARs: priors and prior tightness
 - ▶ Estimation and Inference
 - ▶ Application

IRFs from Vector Autoregressions

Multivariate Forecast

Consider the n-dimensional process

$$y_t \equiv (y_{1,t}, \dots, y_{n,t})'$$

Conditional on information (i.e. realizations of y_t) up to time t-1

$$\mathcal{O}_{t-1} \equiv \operatorname{span}\{y_{t-1}, y_{t-2}, \ldots\}$$

the optimal linear forecast for y_t is

$$\hat{y}_{t|t-1} = \text{Proj}(y_t|\mathcal{O}_{t-1}) = \underline{\mathbb{E}(y_t|\mathcal{O}_{t-1})}$$

INNOVATIONS

Forecast errors / innovations:

$$\underline{u_t} \equiv y_t - \hat{y}_{t|t-1} = \underline{y_t - \text{Proj}(y_t|\mathcal{O}_{t-1})}$$

$$u_t \sim \text{WN}(0, \Sigma_u)$$
:

$$\triangleright \mathbb{E}(u_{i,t}) = 0 \quad i = 1, \dots, n \quad \forall t$$

$$\triangleright \mathbb{E}(u_{i,t}u'_{j,t}) = \sigma_{ij}$$

$$\triangleright \ \mathbb{E}(u_{i,t}u'_{j,t-s}) = 0 \quad \forall i,j \quad \forall s > 0$$

Remark: Optimality $\Rightarrow u_t \perp \mathcal{O}_{t-1}$

WOLD (MA) REPRESENTATION

Any covariance-stationary process y_t can be written as

$$\frac{y_t = \mu + \psi(L)u_t}{= \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j}}$$

$$= \mu + \psi_0 u_t + \psi_1 u_{t-1} + \dots$$

where (i) $\psi_0 = 1$ and (ii) $\sum_{j=0}^{\infty} \psi_j < \infty$

IMPULSE RESPONSE FUNCTIONS $\psi_j = \frac{\partial y_{t+j}}{\partial u_t'} \quad | \times \wedge$

APPROXIMATING THE WOLD (MA) REPRESENTATION

In practice

$$u_t = y_t - \left[c + \sum_{j=1}^{p} \phi_j y_{t-j}\right]$$

Finite-order Vector Autoregression: VAR(p)

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + u_t$$

 $[n \times 1]$

$VAR(P) \rightarrow VAR(1)$

▶ VAR(p):

$$y_t = \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + u_t$$

 \triangleright VAR(1) (companion form):

$$Y_t = \Phi_{[n(p-1)\times 1]} = [np \times np] Y_{t-1} + U_t$$

IRF Coefficients from VAR(1)

$$\begin{split} Y_t &= \Phi Y_{t-1} + U_t \\ &= \Phi^2 Y_{t-2} + U_t + \Phi U_{t-1} \\ &\vdots \\ &= \underbrace{\Phi^j Y_{t-j}}_{=0 \ j \to \infty} + U_t + \Phi U_{t-1} + \ldots + \Phi^j U_{t-j} \end{split}$$

 $B^j \equiv \text{upper left } [n \times n] \text{ block of } \Phi^j$:

$$\underbrace{y_t = u_t + Bu_{t-1} + \dots + B^j u_{t-j}}_{\boldsymbol{\psi}_j = \frac{\partial y_{t+j}}{\partial u_t'}}$$

BANK OF ENGLAND

IRF COEFFICIENTS FROM VAR(1)

Equivalently:

$$Y_{t+1} = \Phi Y_t + U_t$$

$$\vdots$$

$$Y_{t+h} = \underbrace{\Phi^h Y_t}_{Y_{t+h}|_t} + U_{t+h} + \Phi U_{t+h-1} + \dots + \Phi^{h-1} U_{t+1}$$

 $B^h \equiv \text{upper left } [n \times n] \text{ block of } \Phi^h$:

VAR-IRF

$$IRF_h^{VAR} = \mathbf{B^h} \qquad h = 0, \dots, H$$

REDUCED-FORM INNOVATIONS TO ORTHOGONAL (STRUCTURAL) SHOCKS

Forecasting Model:

$$\triangleright y_t = \mu + u_t + \psi_1 u_{t-1} + \psi_2 u_{t-2} + \dots \qquad u_t \sim NW(0, \Sigma)$$

$$\, \triangleright \, \mathcal{O}_{\underline{t}-1} = \operatorname{span}\{y_t, y_{t-1}, \ldots\} \quad \boldsymbol{\rightarrow} \quad \operatorname{Information Set Econometrician}$$

$$\triangleright u_t = y_t - \operatorname{Proj}(y_t | \mathcal{O}_{t-1})$$

Structural Model:

- $y_t = \mu + A_0 e_t + A_1 e_{t-1} + A_2 e_{t-2} + \dots$ $\underline{e_t} \sim NW(0, \mathbb{I}_n)$
- $\triangleright \mathcal{I}_{t-1} = \operatorname{span}\{e_t, e_{t-1}, \ldots\} \rightarrow \operatorname{Information Set Agents}$
- $A_0 e_t = y_t \operatorname{Proj}(y_t | \mathcal{I}_{t-1})$

IDENTIFICATION

$$\mathcal{O}_{t-1} = \mathcal{I}_{t-1}$$

$$\Downarrow$$

$$y_t - \text{Proj}(y_t | \mathcal{O}_{t-1}) = y_t - \text{Proj}(y_t | \mathcal{I}_{t-1})$$

$$u_t = A_0 e_t$$

 $\downarrow \downarrow$

$$\Sigma_u = A_0 A_0'$$

Assumption: number of shocks \leq number of variables

VAR-BASED IRFS

i. Specify VAR(p) for y_t :

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + u_t$$

ii. Iterate / MA Representation:

$$y_t = \kappa + u_t + Bu_{t-1} + \ldots + \frac{B^j}{2} u_{t-j} + \ldots$$

iii. Shock Identification:

$$u_t = A_0 e_t$$

$$\downarrow$$

VAR-IRF

$$IRF_h^{VAR} = B^h A_0 \qquad h = 0, \dots, H$$

VAR AS MISSPECIFIED REPRESENTATIONS OF THE TRUE DGP

There is no reason to believe that the VAR be generally equal to the true DGP \rightarrow VAR as an approximation of the true model (e.g. VARMA)

VARs are designed for one-step ahead forecast optimality.

If misspecified:

- i. can still deliver reasonable t+1|t forecasts [Stock and Watson (1999)]
- ii. but misspecification errors will be compounded at <u>further-ahead</u> horizons \rightarrow potentially important distortions for the IRFs

VAR MISSPECIFICATION: IRFs - Braun and Mittnik (1993)

Fig. 1. Impulse response functions - Trivariate VAR(1). Key: trivariate ARMA (1,1) ----, trivariate VAR(1) ----, ± 2 std. deviation ----.

[⊳]

15/70

THE LOCAL PROJECTION METHOD

Intuition

IRFs coefficients are obtained by projecting the variable of interest at the desired horizon onto the relevant information set

Alternative to standard methods, LP does not require the specification and estimation of an underlying multivariate model

IRFs based on Local Projection methods were first introduced by Oscar Jordà (2005)

GENERAL IDEA

Suppose

where $\mathcal{Y}_t \equiv [y_{t-1}, y_{t-2}, \dots, y_{t-p}]'$. We want to compute the response of y_{t+h} to a given shock of size **s** without specifying a model for y_t

Define the IRFs as:

$$IRF(h, \mathbf{s}) = \mathbb{E}[y_{t+h}|v_t = \mathbf{s}, \mathcal{Y}_t] - \mathbb{E}[y_{t+h}|v_t = 0, \mathcal{Y}_t] \qquad h = 0, \dots, H$$

where $\mathbb{E}[\cdot]$ is the <u>best predictor (in mean square sense)</u>

LOCAL PROJECTION IRFS

Consider the linear local projection

$$y_{t+h} = \tilde{c} + \underline{\tilde{B}^{(h)}}y_t + \ldots + \tilde{B}^{(h)}_p y_{t-p} + v_{t+h}$$

then

$$\mathbb{E}[y_{t+h}|v_t = \mathbf{s}, \mathcal{Y}_t] = \tilde{c} + \tilde{B}^{(h)}(v_t = \mathbf{s}) + \dots + \tilde{B}^{(h)}_p y_{t-p}$$
(1)

$$\mathbb{E}[y_{t+h}|v_t=0,\mathcal{Y}_t] = \tilde{c} + \ldots + \tilde{B}_p^{(h)}y_{t-p}$$
 (2)

The IRFs from the local linear projection are

LP-IRF

$$IRF_h^{LP} = \tilde{B}^{(h)}$$
s $h = 0, \dots, H$

LP-BASED IRFS

i. Estimate Local Linear Projection for y_{t+h} :

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)} y_t + \ldots + \tilde{B}^{(h)}_p y_{t-p} + v_{t+h}$$

ii. Shock Identification:

$$u_t = A_0 e_t$$

 \Downarrow

LP-IRF

$$IRF_h^{LP} = \tilde{B}^{(h)}A_0 \qquad h = 0, \dots, H$$

RELATION WITH VAR

 \triangleright Iterated VAR(p):

$$y_{t+h} = \kappa + B^h y_t + \ldots + \underline{u_{t+h}} + \ldots + B^{h-1} u_{t+1}$$

▶ LP(p):

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)}y_t + \ldots + \tilde{B}^{(h)}_p y_{t-p} + \underline{v_{t+h}}$$

If the DGP is the VAR:

i.
$$\tilde{B}^{(h)} = B^h$$

ii.
$$v_{t+h} = u_{t+h} + \ldots + B^{h-1}u_{t+1}$$

LP: Coefficients Estimates

Projection residuals are a moving average of forecast errors dated $t+1,\ldots,t+h$

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)} y_t + \ldots + \tilde{B}^{(h)}_p y_{t-p} + \frac{v_{t+h}}{v_{t+h}}$$
$$v_{t+h} = f(u_{t+h}, \ldots, u_{t+1})$$

Hence orthogonal to the projection set $\rightarrow v_{t+h} \perp \text{span}\{y_t, \dots, y_{t-p}\}$

Result: Local Projection coefficients (IRFs) are consistently estimated using standard Least Squares estimators

LP: Inference

$$v_{t+h} \sim MA(h-1)$$

$$\Sigma_v^{(h)} \equiv \mathbb{E}(v_{t+h}v'_{t+h})$$

HAC-consistent (Newey-West) estimator for $\Sigma_v^{(h)}$:

$$\Sigma_{v,HAC}^{(h)} = \hat{\Gamma}_v(0) + \sum_{j=1}^{h-1} \omega_j \left[\hat{\Gamma}_v(j) + \hat{\Gamma}_v(j)' \right]$$

$$ho \hat{\Gamma}_v(j) = T^{-1} \sum_{t=j+1}^T (v_{t+h} v'_{t+h-j})$$

 $\triangleright \ \omega_j = 1 - j/h$ Bartlett weights

[⊳]

LP: ESTIMATION AND INFERENCE

i. Estimate Local Linear Projection for y_{t+h} :

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)}y_t + \ldots + \tilde{B}^{(h)}_p y_{t-p} + v_{t+h}$$

Note: Consistency does not require estimating the full system jointly \rightarrow the response of each $y_{i,t+h}$ can be estimated by linear regression

ii. Estimate HAC-consistent coefficients variance for each $\tilde{B}^{(h)}$ $h = 1, \dots, H$

Note: LP residuals up to h-1 could be in principle used in regression at horizon h to improve efficiency

iii. Construct robust standard errors around projection coefficients at each horizon h

LP: Monte Carlo - Jordà (2005)

▶ True Model: VAR(12) on monthly data 1960:2001

 \triangleright Misspecification: p=2

LP: Monte Carlo - Jordà (2005)

- ▶ True Model: VAR(12) on monthly data 1960:2001
- \triangleright Misspecification: p=2

LP: Monte Carlo - Jordà (2005)

- ▶ True Model: VAR(12) on monthly data 1960:2001
- ▷ <u>Univariate</u> LP(12)

	EM			P			PCOM		
	True-	Newey-	Newey-	True-	Newey-	Newey-	True-	Newey-	Newey-
	MC	West	West	MC	West	West	MC	West	West
S		(Linear)	(Cubic)		(Linear)	(Cubic)		(Linear)	(Cubic)
1	0.000	0.007	0.008	0.000	0.007	0.007	0.000	0.089	0.096
2	0.008	0.011	0.012	0.007	0.010	0.011	0.094	0.146	0.161
3	0.013	0.015	0.016	0.012	0.014	0.015	0.155	0.191	0.212
4	0.018	0.019	0.021	0.015	0.017	0.018	0.202	0.224	0.250
5	0.022	0.023	0.025	0.018	0.020	0.022	0.240	0.255	0.284
6	0.027	0.026	0.030	0.021	0.023	0.025	0.267	0.279	0.311
7	0.031	0.030	0.033	0.025	0.026	0.029	0.296	0.301	0.335
8	0.035	0.033	0.037	0.028	0.029	0.032	0.325	0.322	0.357
9	0.038	0.036	0.040	0.031	0.032	0.035	0.350	0.340	0.376
10	0.041	0.039	0.043	0.035	0.035	0.039	0.361	0.356	0.392
11	0.044	0.042	0.046	0.038	0.038	0.042	0.377	0.371	0.407
12	0.046	0.044	0.048	0.042	0.042	0.045	0.390	0.380	0.416

[⊳]

LP: Non-Linearities

Because LP leave the specification of the underlying model largely unrestricted, they can easily accommodate nonlinearities

With quadratic and cubic terms:

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)} y_t + \tilde{Q}^{(h)} y_t^2 + \tilde{C}^{(h)} y_t^3$$
$$+ \tilde{B}_2^{(h)} y_{t-2} + \dots + \tilde{B}_p^{(h)} y_{t-p} + v_{t+h}$$

CUBIC LP-IRF

$$IRF_{h}^{CLP} = \tilde{B}^{(h)}\mathbf{s} + \tilde{Q}^{(h)}(2y_{t}\mathbf{s} + \mathbf{s}^{2}) + \tilde{C}^{(h)}(3y_{t}^{2}\mathbf{s} + 3y_{t}\mathbf{s}^{2} + \mathbf{s}^{3})$$

LP: Non-Linearities

$$IRF_{h}^{CLP} = \tilde{B}^{(h)}\mathbf{s} + \tilde{Q}^{(h)}(2y_{t}\mathbf{s} + \mathbf{s}^{2}) + \tilde{C}^{(h)}(3y_{t}^{2}\mathbf{s} + 3y_{t}\mathbf{s}^{2} + \mathbf{s}^{3})$$

Inclusion of higher order terms makes responses of y_{t+h} to shock of size **s** depend on:

- \triangleright local history of y_t
- ▶ the size of the shock
- \triangleright the sign of the shock

→ Asymmetric effects of monetary policy shocks [Tenreyro and Thwaites (forthcoming)]

[⊳]

▶ Asymmetric effects of monetary policy shocks [Tenreyro and Thwaites (forthcoming)]

[⊳]

▶ Government spending multipliers in good and bad times [Ramey and Zubairy (2016)]

Figure 5. Government spending and GDP responses to a news shock: Considering slack states

▶ Government spending multipliers in good and bad times [Ramey and Zubairy (2014)]

Figure 11. Government spending and GDP responses to a news shock: Considering zero lower bound

▶ Monetary policy on (daily) long-term forward rates
[Hanson and Stein (2012)]

[⊳]

DIRECT VS ITERATED METHODS: FORECASTING

Iterated vs Direct Forecasts: Theory

Which one is best?

Tradeoff between bias and estimation variance

- ▶ Iterated methods (VAR) give more efficient parameters estimates
- ▶ Direct methods (LP) are more robust to misspecifications
- ▶ Ignoring estimation uncertainty:
 - i. VAR(p) and LP(p) but $p^* > p \Rightarrow MSFE(LP) \leq MSFE(VAR)$
 - ii. VAR(p) and LP(p) but $p^* \le p \Rightarrow MSFE(LP) = MSFE(VAR)$

Related Literature: Marcellino, Stock and Watson (2006) and references therein, Schorfheide (2005)

ITERATED VS DIRECT FORECASTS: THEORY

With estimation uncertainty:

VAR(p) and LP(p) and
$$p^* = p \Rightarrow MSFE(VAR) \leq MSFE(LP)$$

Implausible that low-order VARs are well specified (i.e. best linear predictor)

LP are theoretically preferable due to robustness to misspecification

Are gains also realized in practice?

Iterated vs Direct Forecasts: Monte Carlo - Schorfheide (2005)

DGP:

$$y_t = M'FY_{t-1} + u_t + \underbrace{\alpha T^{-1/2} \sum_{j=1}^{\infty} M'A_j M u_{t-j}}_{MA: \alpha = \text{severity of misspecification}}$$

Design:

- \triangleright misspecification shrinks as $T \to \infty$
- $p^* = 1, VMA(10)$
- $\triangleright \overline{MLE}$: iterated, \overline{LFE} : direct
- \triangleright % change in Prediction Risk: $\mathcal{R}(\hat{y}_{t+h}) = \mathbb{E}[\|\hat{y}_{t+h} \mathbb{E}_t(y_{t+h})\|^2] \ge 0$

ITERATED VS DIRECT FORECASTS: MONTE CARLO - SCHORFHEIDE (2005)

T	p = 1			p = 2		p = 4	
		MLE	LFE	MLE	LFE	MLE	LFE
	Misspecifi	cation $\alpha = 0$					
100	Risk	-67.8	-61.8	-52.9	-41.8	-11.9	0.0
	$\mathbb{E}[PC]$	-48.6	-44.1	-37.2	-27.7	-8.4	0.0
	$\sigma[PC]$	38.2	36.8	32.6	28.5	9.0	0.0
500	Risk	-69.1	-63.5	-54.8	-42.7	-12.5	0.0
	$\mathbb{E}[PC]$	-64.9	-59.5	-51.1	-39.2	-11.6	0.0
	$\sigma[PC]$	39.2	37.8	34.1	29.6	10.4	0.0
5000	Risk	-69.5	-63.9	-54.9	-42.2	-12.1	0.0
	$\mathbb{E}[PC]$	-69.3	-63.8	-55.0	-42.5	-12.5	0.0
	$\sigma[PC]$	39.7	38.1	34.7	30.1	10.8	0.0
∞	Risk	-69.8	-64.3	-55.4	-42.9	-12.5	0.0
	Misspecifi	cation $\alpha = 2$					
100	Risk	-51.3	-56.6	-41.5	-36.4	-9.9	0.0
	$\mathbb{E}[PC]$	-32.5	-35.8	-23.0	-23.0	-6.0	0.0
	$\sigma[PC]$	38.5	36.5	33.3	28.3	8.7	0.0
500	Risk	-48.2	-54.1	-36.5	-34.6	-10.6	0.0
	$\mathbb{E}[PC]$	-44.6	-49.1	-31.2	-31.2	-9.5	0.0
	$\sigma[PC]$	40.5	38.5	36.8	30.5	10.5	0.0
5000	Risk	-48.3	-52.9	-35.2	-33.4	-10.3	0.0
	$\mathbb{E}[PC]$	-48.3	-52.4	-34.5	-33.4	-10.5	0.0
	$\sigma[PC]$	41.5	39.3	37.9	31.6	11.0	0.0
∞	Risk	-48.8	-52.6	-35.8	-33.8	-10.7	0.0

ITERATED VS DIRECT FORECASTS: MONTE CARLO - SCHORFHEIDE (2005)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3 0 2.8 0 9.7 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7
$\mathbb{E}[PC]$ 27.7 -14.6 24.2 -7.6 $\sigma[PC]$ 40.8 36.7 39.5 29.9	9./
$\sigma[PC]$ 40.8 36.7 39.5 29.9	-2.2 0
-[]	-1.1 0
5000 Risk 32.3 -11.7 41.1 -1.0	10.8
	-3.8 0
$\mathbb{E}[PC]$ 32.2 -10.8 42.6 -1.0	-3.9 0
$\sigma[PC]$ 43.9 40.3 44.6 33.7	11.2
∞ Risk 30.6 -8.7 37.8 0.4	-3.7 0
Misspecification $\alpha = 10$	
100 Risk 21.0 -9.3 -7.9 -6.6	14.7 0
$\mathbb{E}[PC]$ 30.5 1.7 -0.1 -1.9	13.1 0
$\sigma[PC]$ 30.9 23.4 20.0 17.0	11.0
500 Risk 91.1 15.1 42.4 11.4	15.1 0
E[PC] 91.9 18.7 45.1 11.2	15.5 0
$\sigma[PC]$ 31.9 25.6 27.8 21.0	10.1
5000 Risk 147.3 43.1 139.7 40.6	6.7 0
$\mathbb{E}[PC]$ 147.1 44.1 141.1 40.4	6.7 0
$\sigma[PC]$ 37.6 33.4 40.5 28.4	9.8
∞ Risk 147.2 55.9 146.1 50.7	6.6 0

Iterated vs Direct Forecasts: Practice - MSW (2006)

- ▶ Large-scale exercise on 170 US variables from 1959:1 to 2002:2
- \triangleright Recursive "pseudo" out-of-sample forecasts at h = 3, 6, 12, 24
- $\triangleright MSFE(LP)/MSFE(VAR), H_0: VAR$ is efficient

Lag Selection	Mean/Percentile	Forecast Horizon					
Lay Selection	wear/refcertile	3	6	12	24		
	mean	0.99 (<.005)	0.99 (<.005)	1.00 (<.005)	1.05 (0.83)		
	0.10	0.97 (<.005)	0.92 (<.005)	0.90 (<.005)	0.85 (<.005)		
AR(4)	0.25	0.99 (<.005)	0.98 (<.005)	0.98 (<.005)	0.97 (0.04)		
	0.50	1.00 (0.01)	1.00 (0.03)	1.01 (0.25)	1.05 (>.995)		
	0.75	1.01 (0.85)	1.02 (0.83)	1.04 (0.55)	1.12 (>.995)		
	0.90	1.02 (0.83)	1.04 (0.86)	1.08 (0.82)	1.23 (0.99)		
	mean	1.01 (>.995)	1.01 (>.995)	1.03 (>.995)	1.10 (>.995)		
	0.10	0.98 (>.995)	0.97 (>.995)	0.95 (>.995)	0.93 (>.995)		
AR(12)	0.25	1.00 (>.995)	0.99 (>.995)	1.00 (>.995)	1.02 (>.995)		
	0.50	1.00 (>.995)	1.01 (>.995)	1.03 (>.995)	1.09 (>.995)		
	0.75	1.01 (>.995)	1.02 (>.995)	1.06 (>.995)	1.17 (>.995)		
	0.90	1.02 (0.99)	1.05 (>.995)	1.11 (>.995)	1.29 (>.995)		
	mean	0.98 (<.005)	0.97 (<.005)	0.99 (0.21)	1.05 (0.99)		
	0.10	0.92 (<.005)	0.86 (<.005)	0.86 (0.01)	0.88 (0.06)		
AR(BIC)	0.25	0.97 (<.005)	0.96 (<.005)	0.97 (0.02)	0.98 (0.50)		
	0.50	1.00 (<.005)	1.00 (0.01)	1.01 (0.56)	1.04 (>.995)		
	0.75	1.01 (0.99)	1.02 (0.91)	1.03 (0.76)	1.12 (>.995)		
	0.90	1.03 (>.995)	1.05 (>.995)	1.10 (>.995)	1.20 (0.98)		
	mean	1.00 (>.995)	1.01 (>.995)	1.02 (>.995)	1.09 (>.995)		
	0.10	0.97 (0.51)	0.95 (0.99)	0.94 (>.995)	0.91 (0.97)		
AR(AIC)	0.25	0.98 (0.08)	0.98 (0.90)	0.98 (0.97)	1.00 (>.995)		
	0.50	1.00 (0.22)	1.00 (>.995)	1.02 (>.995)	1.07 (>.995)		
	0.75	1.01 (>.995)	1.03 (>.995)	1.06 (>.995)	1.18 (>.995)		
	0.90	1.04 (>.995)	1.06 (>.995)	1.11 (>.995)	1.29 (>.995)		

Iterated vs Direct Forecasts: Practice - MSW (2006)

Which method is best is largely an empirical matter:

- i. $p = p_{AIC}^* \Rightarrow MSFE(VAR) \leq MSFE(LP)$ Note: Gains are modest: largely due to reduction in estimation uncertainty
- ii. $MSFE(LP) \ge MSFE(VAR)$ the <u>larger h</u> Note: Again efficiency of VAR outweighs robustness of LP
- iii. $MSFE(LP) \leq MSFE(VAR)$ for series with large MA roots **Note:** Vanishes for large p, as expected
- iv. $MSFE(LP) \ge MSFE(VAR)$ for all other macro variables **Note:** Also for low p

Iterated vs Direct Forecasts

VAR likely to be misspecified $(\neq DGP)$ \Rightarrow errors compounded at large horizons

LP are theoretically preferable because more robust to misspecification

Theoretical gains are hardly realized in practice due to high estimation uncertainty

43/70

All else equal, LP deteriorate with small T and large h

BAYESIAN LOCAL PROJECTION

Miranda-Agrippino and Ricco (2016)

BAYESIAN LOCAL PROJECTION

- i. If the VAR adequately captures the DGP, IRFs are optimal and consistent. Implausible \rightarrow misspecification errors compound at higher h
- ii. LP are more robust to model misspecification and preferable in theory. Not in practice → high estimation uncertainty

Bias-Variance tradeoff is standard in Bayesian estimation

optimally bridge between VAR and LP

References: Miranda-Agrippino and Ricco (2016), The Transmission of Monetary Policy Shocks, mimeo, University of Warwick

Miranda-Agrippino and Ricco (2016), Bayesian Direct Methods, Technical Report

BLP: Intuition

- ▶ BLP priors give weight to the assumption that macro-variables behaviour is approximately linear and described by a VAR(p)
- ▷ Conjugate priors centred around the posterior mean of the VAR-based IRFs (pre-sample)
- ➤ The optimal level of informativeness of the priors is chosen to obtain optimal forecasts at all horizons [Giannone, Lenza, and Primiceri (2015)]

Alternative Priors: Additional hyperparameters for autoregressive coefficients

BLP: Intuition

BLP-IRF: POSTERIOR MEAN

$$B_{BLP}^{(h)} \quad \propto \left(X'X + \frac{1}{\lambda^{(h)}}\right)^{-1} \left(\frac{1}{\lambda^{(h)}} B_{VAR}^h + X'Y^{(h)}\right)$$

 $\triangleright \lambda^{(h)}$ optimally balances between VAR and LP

i.
$$\lambda^{(h)} \to 0 \quad \Rightarrow \quad B^{(h)}_{BLP} \to B^h_{VAR}$$

ii.
$$\lambda^{(h)} \to \infty \quad \Rightarrow \quad B^{(h)}_{BLP} = B^{(h)}_{LP}$$

 $\lambda^{(h)}$ is looser the larger $h \rightarrow \underline{\text{LP more reliable}}$ if VAR is misspecified at large h

DIGRESSION: BAYESIAN VAR

VAR(p) in stacked and "vec" form:

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + u_t$$

$$Y = X B + U$$

$$[(T-p)\times n] = (\mathbb{I}_n \otimes X) \beta + U$$

$$y = (\mathbb{I}_n \otimes X) \beta + u$$

$$[n(T-p)\times 1] = [n(T-p)\times nk][nk\times n]$$

$$\triangleright k = n(p+1)$$

$$\triangleright y = \text{vec}(Y), \ \beta = \text{vec}(B), \ u = \text{vec}(U)$$

$$\ \, v \sim N(0, \Sigma_u \otimes \mathbb{I}_n)$$

BANK OF ENGLAND

DIGRESSION: BAYESIAN PROCEDURE TO INFERENCE

i. Formulate a parametric model as a collection of probability distributions of all possible realization of the data Z conditional on different values of the model parameters $\theta \in \Theta$

$$Model: p(Z|\theta)$$

ii. Organize the beliefs about θ into a (prior) probability distribution over Θ

Prior :
$$p(\theta)$$

iii. Collect the data z, treat them as realizations of Z, and insert them into the family of distributions

Likelihood :
$$\mathcal{L}(z|\theta) = p(z|\theta)$$

iv. Use the Bayes theorem to update the new belief about θ

Posterior :
$$p(\theta|y) \propto \mathcal{L}(z|\theta)p(\theta)$$

DIGRESSION: VAR WITH INFORMATIVE PRIORS

Natural Conjugate Priors: prior distributions that, once combined with the likelihood, result in posterior distributions of the same family

NORMAL - INVERSE WISHART PRIOR

$$\Sigma_u \sim IW(\Psi_0, d_0)$$

$$\beta | \Sigma_u \sim N \left(\beta_0, \Sigma_u \otimes \Omega_0(\lambda) \right)$$

- $\triangleright \beta_0 \equiv \text{vec}(B) \rightarrow B : \text{equations in columns}$
- $\triangleright \lambda = \text{prior tightness} \rightarrow \text{controls coefficients variance}$
- \triangleright Ψ_0 and d_0 : prior scale and degrees of freedom of the IW

DIGRESSION: VAR POSTERIOR

VAR POSTERIOR

$$\Sigma_u | y \sim IW (\Psi, d)$$

$$\beta | \Sigma_u, y \sim N\left(\tilde{\beta}, \Sigma_u \otimes \Omega\right)$$

 $\triangleright \ \tilde{\beta} \equiv \text{vec(b)}$

$$\underset{[k \times n]}{\mathbf{b}} = \left(X'X + \Omega_0(\lambda)^{-1} \right)^{-1} \left(X'Y + \Omega_0(\lambda)^{-1} \beta_0 \right)$$

- $\triangleright \lambda$ = prior tightness \rightarrow controls coefficients variance
 - i. $\lambda \to 0$ \Rightarrow prior dominates \Rightarrow b $\to \beta_0$
 - ii. $\lambda \to \infty \quad \Rightarrow \quad \text{OLS dominates} \Rightarrow \quad \mathbf{b} \to (X'X)^{-1}(X'Y)$
- \triangleright Ψ_0 and d_0 : prior scale and degrees of freedom of the IW

DIGRESSION: PRIOR TIGHTNESS

Hierarchical Modelling: Treat hyperparameters (λ) as additional unknown coefficients [Giannone, Lenza and Primiceri (2014)]

- $\triangleright \theta \equiv \text{model parameters: } B, \Sigma_u$
- $\trianglerighteq \underline{\gamma} \equiv$ hyperparameters: λ (there might be more...)
 - i. specify prior distribution for γ

Hyperprior :
$$p(\gamma)$$

ii. compute:

$$p(\gamma|y) \propto \underbrace{\int p(y|\theta, \gamma)p(\theta|\gamma)d\theta}_{p(y|\gamma)} \times p(\gamma)$$
$$\lambda^* = \underset{p(y|\gamma)}{\operatorname{argmax}} p(y|\gamma)$$

under flat hyperprior

BLP: Priors

BLP PRIOR

$$\begin{split} & \Sigma_v^{(h)} | \gamma^{(h)} \sim IW \left(\Psi_0^{(h)}, d_0 \right) \\ & \beta^{(h)} | \Sigma_v^{(h)}, \gamma^{(h)} \sim N \left(\beta_0^{(h)}, \Sigma_v^{(h)} \otimes \Omega_0^{(h)}(\lambda^{(h)}) \right) \end{split}$$

Prior mean:

$$\beta^{(h)} \equiv \operatorname{vec}(b^{(h)}) = \operatorname{vec}\left(\left[\tilde{c}, \tilde{B}^{(h)}, \dots, \tilde{B}_{p}^{(h)}\right]'\right)$$

 $\rhd \ \beta_0^{(h)} = \beta_{T_0}^{(0,h)} = \text{vec}\left(b_{T_0}^{(0,h)}\right) \ \Rightarrow \ \text{posterior mean of VAR(p)}$ coefficients iterated at h-horizon (pre-sample)

BANK OF ENGLAND

BLP: Priors

BLP PRIOR

$$\begin{split} & \Sigma_v^{(h)} | \gamma^{(h)} \sim IW \left(\underline{\Psi_0^{(h)}}, d_0 \right) \\ & \beta^{(h)} | \Sigma_v^{(h)}, \gamma^{(h)} \sim N \left(\beta_0^{(h)}, \Sigma_v^{(h)} \otimes \Omega_0^{(h)}(\lambda^{(h)}) \right) \end{split}$$

Prior variance:

$$\triangleright \ \, \underset{[(np+1)\times(np+1)]}{\Omega_0^{(h)}} = \left(\begin{array}{cc} \epsilon^{-1} & 0 \\ 0 & \mathbb{I}_p \otimes \operatorname{diag}\left(\left[\lambda^{(h)}/\sigma_i^{(h)}\right]^2\right) \end{array} \right)$$

$$\triangleright \operatorname{Var}[(\underline{\tilde{B}^{(h)}})_{ij}|\Sigma_v^{(h)}] = \left(\lambda^{(h)} \frac{\sigma_i^{(h)}}{\sigma_j^{(h)}}\right)^2$$

BLP: LIKELIHOOD

$$y_{t+h} = \tilde{c} + \tilde{B}^{(h)}y_t + \dots + \tilde{B}^{(h)}_p y_{t-p} + v_{t+h}$$
$$v_{t+h} \sim N\left(0, \Sigma_v^{(h)}\right) \qquad \forall h = 1, \dots, H$$
$$v_{t+h} \sim MA(h-1)$$

- ▶ Frequentist solution: LS + HAC standard errors
- Our solution:
 - i. misspecified likelihood $\rightarrow v_{t+h} \perp \text{span}\{y_t, \dots, y_{t-p}\}$
 - ii. correction to posterior variance $\rightarrow \mathbb{E}\left[\Sigma_v^{(h)}\right] = \Sigma_{v,HAC}^{(h)}$

Alternative: fully specified VARMA likelihood

BLP: Posterior

BLP POSTERIOR

$$\begin{split} & \Sigma_v^{(h)} | \gamma^{(h)}, \mathbf{y} \sim IW \left(\Psi^{(h)}, d \right) \\ & \beta^{(h)} | \Sigma_v^{(h)}, \gamma^{(h)}, \mathbf{y} \sim N \left(\tilde{\beta}^{(h)}, \Sigma_v^{(h)} \otimes \Omega^{(h)} \right) \end{split}$$

Misspecified parametric model:

- i. Posterior variance-covariance <u>is un</u>derestimated → ignores correlation in projection residuals
- ii. Posterior beliefs constructed from a misspecified likelihood lead to inadmissible decisions [Müller (2013)] \rightarrow suboptimal prediction risk $\mathcal{R}(\hat{y}_{t+h})$

BLP: Corrected Posterior

BLP HAC-POSTERIOR

$$\Sigma_{v,HAC}^{(h)}|\gamma^{(h)}, \mathbf{y} \sim IW\left(\mathbf{\Psi}_{HAC}^{(h)}, d\right)$$

$$\beta^{(h)}|\Sigma_{v,HAC}^{(h)}, \gamma^{(h)}, \mathbf{y} \sim N\left(\tilde{\beta}^{(h)}, \Sigma_{v,HAC}^{(h)} \otimes \Omega^{(h)}\right)$$

Inference based on an "artificial" Gaussian posterior centred at the MLE with the HAC covariance matrix [Müller (2013)]

Alternative: VARMA → GLS estimator

BLP: Hyperprior

$$\lambda^{(h)} \sim \Gamma\left(k^{(h)}, \theta^{(h)}\right)$$

- \triangleright mode = 0.3
- \triangleright standard deviation = logistic function over h

BANK OF ENGLAND

BLP: IRFs

BLP: IRFs

BLP: IRFs

[⊳]

66/70

BLP: PRIOR TIGHTNESS

- \triangleright Heterogeneous information set: n = 19
- ▶ Estimation: 1979 to 2014
- ▶ Identification consistent with information asymmetries/frictions
- ▶ 12 lags
- ▶ 90% posterior coverage bands

Selected References

- Banbura, Marta, Domenico Giannone, and Lucrezia Reichlin (2010) "Large Bayesian vector auto regressions," Journal of Applied Econometrics, Vol. 25, No. 1, pp. 71–92.
- Braun, Phillip A. and Stefan Mittnik (1993) "Misspecifications in vector autoregressions and their effects on impulse responses and variance decompositions," *Journal of Eco*nometrics, Vol. 59, No. 3, pp. 319–341, October.
- Giannone, Domenico, Michele Lenza, and Giorgio E. Primiceri (2015) "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, Vol. 2, No. 97, pp. 436–451, May.
- Jordà, Oscar (2005) "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, Vol. 95, No. 1, pp. 161–182, March.
- Marcellino, Massimiliano, James H. Stock, and Mark W. Watson (2006) "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," *Journal of Econometrics*, Vol. 135, No. 1-2, pp. 499–526.