1.5: Substitution

Alex L.

October 5, 2024

0.1 Method

The equation $\frac{dy}{dx} = (x - y + 1)^2$ is not separable or linear, but we can turn it into a solvable form by implementing a change in variables. Let v = x - y + 1. We want to know $\frac{dy}{dx}$ in terms of $\frac{dv}{dx}$, v, and x. By differentiating, we get $\frac{dv}{dx} = 1 - \frac{dy}{dx}$. We then plug in and get $\frac{dv}{dx} - 1 = v^2$. This is a separable equation. We get $\frac{1}{1-v^2}dv = dv$ and by integrating, we get $\frac{1}{2}ln|\frac{v+1}{v-1}| = x + C \rightarrow \frac{v+1}{v-1} = C_1e^{2x}$. Now, substitute for v = x - y + 1 to get $\frac{x-y+2}{x-y} = De^{2x}$.

When you see	Substitute
$y rac{dy}{dx}$	$v = y^2$
$y^2 \frac{dy}{dx}$	$v = y^3$
$\cos(y)\frac{dy}{dx}$	$v = \sin y$
$\sin(y)\frac{dy}{dx}$	$v = \cos y$
$e^y rac{dy}{dx}$	$v = e^y$

0.2 Bernoulli Equations

One of the special equations with a predefined substitution is the Bernoulli equations. They come in the form

$$\frac{dy}{dx} + p(x)y = q(x)y^n$$

The substitution $v = y^{1-n}$ turns the equation linear. Keep in mind that n does not need to equal an integer, it can be any number.

Ex: Solve $x \frac{dy}{dx} + y(x+1) + xy^5 = 0$ for y(1) = 1

Solution: This is a Bernoulli equation so we substitute $v=y^{1-5}=y^{-4}\to \frac{dv}{dx}=-4y^{-5}\frac{dy}{dx}\to \frac{dy}{dx}=\frac{-1}{4}y^5\frac{dv}{dx}$. Then, we substitute and get $(x-\frac{1}{4}y^5)\frac{dv}{dx}+y(x+1)+xy^5=0\to -\frac{1}{4}\frac{dv}{dx}+y^{-4}(x+1)+x=0\to \frac{dv}{dx}-\frac{4(x+1)}{x}v=4$. The last part is a linear equation, and so our integrating factor is $e^{\int \frac{-4x-4}{x}dx}=e^{-4x-\ln(x)+4}=e^{-4x+4}x^4$, and $e^{-\int \frac{-4x-4}{x}}=e^{4x-4}x^4$. This means our entire linear equation evaluates to $e^{4x-4}x^4(\int 4\frac{e^{-4x+4}}{x^4}dx+1)$, which is not possible to evaluate in closed form. We then unsubstitute to get $y=\frac{e^{-x+1}}{x(4\int \frac{e^{-4x+4}}{x^4}dx+1)^{\frac{1}{4}}}$

0.3 Homogeneous Equations

Another type of special equation is the homogeneous equation. Suppose we can write a differential in the form $\frac{dy}{dx} = F(\frac{y}{x})$. Then, a substitution might be $v = \frac{y}{x}$ and therefore, $\frac{dy}{dx} = x\frac{dv}{dx} + v$. Then, by substituting, we get $v + x\frac{dv}{dx} = F(v) \to x\frac{dv}{dx} = F(v) \to x\frac{dv}{dx} = F(v) \to x\frac{dv}{dx} = F(v) \to x\frac{dv}{dx} = x\frac$

1