定性数据统计分析作业(4)

钟瑜 222018314210044

2020年12月4日

7. 为检验一个人品酒的能力如何,告诉他有 15 杯黄酒和 15 杯白酒,并让他蒙上眼睛分别品尝这 30 杯酒,并要他说品尝的这杯酒是黄

酒还是白酒。这就有了两侧都给定的四格表,例如下面的表。

A THE SE		品尝结果		A 11
	THE F. L. A.	黄酒	白酒	合 计
实际情况	黄酒	11	4	15
	白酒	4.		15
合 计		15	15	30

对于品酒能力的检验问题是把这个人有品酒能力作为原假设,还是把他没有品酒能力,而是随机地猜测作为原假设?试解该检验问题。

解.

```
> x<-matrix(c(11,4,4,11),nrow=2)
> fisher.test(x,alternative = "greater")

Fisher's Exact Test for Count Data

data: x
p-value = 0.01342
alternative hypothesis: true odds ratio is greater than 1

ps percent confidence interval:
1.500179    Inf
sample estimates:
odds ratio
6.983892
```

p 值大于 α =0.01, 故接受原假设, 认为有品酒能力.

9. 对 72 个可疑患者用两种不同的方法进行检测, 检测结果如下:

* (检测方法 1		A 11
		阳性	阴性	合 计
检测方法 2	阳性	28	18 (4.7.	46
	阴性	9	17	26
合 计		37	35	72

问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同?

解.

```
1 > x<-matrix(c(28,9,18,17),nrow=2)
2 > mcnemar.test(x,correct=F)
3
4 McNemar's Chi-squared test with continuity correction
5
6 data: x
7 McNemar's chi-squared = 2.3704, df = 1, p-value = 0.1237
```

p 值大于 α =0.01, 故接受原假设, 认为比例相同.

12. 某超市做过一个实验,分别在两个入口处各设置一个吃摊,一个有 24 种口味的果酱,另一个有 6 种口味的果酱。242 位经过 24 种口味吃摊的顾客中,有 60%的人停下来试吃。而 260 位经过 6 种口味吃摊的顾客中,只有 40%的人停下来试吃。在有 6 种口味的摊位前停下来试吃的顾客有 30%的人至少买了一瓶果酱,而在有 24 种口味摊前停下来试吃的顾客中只有 3%的人至少买了一瓶果酱。请问,选择是否一定越多越好?就这个实验而言,选择多一些和少一些有没有显著的差异?

解, 四格表如下所示:

```
> x<-matrix(c(4,31,238,229),nrow=2)
> fisher.test(x)

Fisher's Exact Test for Count Data
```

```
data: x

p-value = 4.408e-06

alternative hypothesis: true odds ratio is not equal to 1

process percent confidence interval:

0.03146334 0.36030504

sample estimates:

odds ratio

0.1245649
```

p 值大于 α=0.01, 故拒绝原假设, 认为选择多一些和少一些有显著差异.