

Data-driven optimization of processes with degrading equipment

Iohannes Wiebe¹

Wednesday 1st August, 2018

Supervisors: Ruth Misener¹, Ines Cecilio²

¹Department of Computing, Imperial College London, London, UK

²Schlumberger Research Cambridge, Cambridge, UK London

Motivation: Why degradation matters


```
\begin{array}{ccc} \min & \cos t(\boldsymbol{x}, \boldsymbol{m} &) \\ \text{s.t.} & \operatorname{process} \operatorname{model}(\boldsymbol{x}, \boldsymbol{m} &) & \text{(eg. balance equations)} \\ & \operatorname{maintenance} \operatorname{model}(\boldsymbol{x}, \boldsymbol{m} &) & \text{(eg. types of maint.)} \end{array}
```

where $oldsymbol{x}$ are process variables, $oldsymbol{m}$ are maintenance variables

```
\min_{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}} \quad \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h})
s.t. \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \quad \text{(eg. balance\ equations)}
\operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \quad \text{(eg. types\ of\ maint.)}
\operatorname{health\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}), \quad \text{(eq. prognosis\ model)}
```

where x are process variables, m are maintenance variables, and h are health related variables.

```
\min_{\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}} \quad \operatorname{cost}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) s.t. \operatorname{process\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \quad \text{(eg. balance\ equations)} \operatorname{maintenance\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \quad \text{(eg. types\ of\ maint.)} \operatorname{health\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}), \quad \text{(eq. prognosis\ model)}
```

where x are process variables, m are maintenance variables, and h are health related variables.

Related Work

?

```
\begin{array}{ll} \min \limits_{\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}} & \operatorname{cost}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ \text{s.t.} & \operatorname{process\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. balance\ equations)} \\ & \operatorname{maintenance\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. types\ of\ maint.)} \\ & \operatorname{health\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}), & \text{(eq. prognosis\ model)} \end{array}
```

where x are process variables, m are maintenance variables, and h are health related variables.

Idea

Combine process level MI(N)LP scheduling & planning with more sophisticated (stochastic) degradation modelling and robust optimization.

The degradation signal $s^{meas}(t)$ is often modelled by a stochastic process:

$$S(t) = \{S_t : t \in T\},\$$

where S_t is a random variable.

3

The degradation signal $s^{meas}(t)$ is often modelled by a stochastic process:

$$S(t) = \{S_t : t \in T\},\$$

where S_t is a random variable.

Often used: Lévy type processes

- Independent increments: $S_{t_2}-S_{t_1},...,S_{t_n}-S_{t_{n-1}}$ are independent for any $0 < t_1 < t_2 < ... < t_n < \infty$
- Stationary increments: $S_t S_s$ and S_{t-s} have the same distribution for any s < t
- Continuity in probability: $\lim_{h\to 0} P(|S_{t+h}-S_t|>\epsilon)=0$ for any $\epsilon>0$, $t\geq 0$.

A health model based on Lévy processes

Assumption

The health of each unit j can be described by a Lévy process $S_j(t)$ with increments $S_{j,t} - S_{j,t-\Delta t} = D_j \sim \mathcal{D}_j(\Theta, \Delta t)$.

A health model based on Lévy processes

Assumption

The health of each unit j can be described by a Lévy process $S_j(t)$ with increments $S_{j,t} - S_{j,t-\Delta t} = D_j \sim \mathcal{D}_j(\boldsymbol{\Theta}, \boldsymbol{x}, \Delta t)$.

$$\begin{aligned} & \underset{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}}{\text{min}} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & S_{j,t} \leq s_j^{max} & & \forall t, j \in J \\ & & S_{j,t} = \begin{cases} S_{j,t-1} + D_j, & \text{if } m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

where $m_{j,t}=1$ if maintenance is performed on unit j at time t.

Accounting for effects of process variables

Assumption [Liao & Tian 2013]

All relevant operating variables are piecewise constant – i.e. the process has a set of discrete operating modes $k \in K$.

$$\begin{aligned} & \min_{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & S_{j,t} \leq s_j^{max} & & \forall t, j \in J \\ & & & \\ S_{j,t} = \begin{cases} S_{j,t-1} + & D_j \ , & \text{if} \ m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

where $x_{j,k,t} = 1$ if unit j operates in mode k at time t.

Accounting for effects of process variables

Assumption [Liao & Tian 2013]

All relevant operating variables are piecewise constant – i.e. the process has a set of discrete operating modes $k \in K$.

$$\begin{aligned} & \min_{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & S_{j,t} \leq s_j^{max} & & \forall t, j \in J \\ & & & S_{j,t} = \begin{cases} S_{j,t-1} + \sum\limits_{\boldsymbol{k} \in \mathcal{K}} \boldsymbol{x}_{j,\boldsymbol{k},t} \cdot D_{j,\boldsymbol{k}}, & \text{if } m_{j,t} = 0 \\ s_j^0, & & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

where $x_{j,k,t} = 1$ if unit j operates in mode k at time t.

Deriving a robust counterpart [Lappas & Gounaris 2016]

Replace random variables $D_{j,k}$ and $S_{j,t}$ by uncertain parameter $\tilde{d}_{j,k} \in \mathcal{U}$ and second stage variable $s_{j,t}\left(\tilde{d}_{j,k}\right)$.

$$\begin{aligned} & \underset{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}}{\min} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & \operatorname{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & s_{j,t} \left(\tilde{\boldsymbol{d}}_{j,k}\right) \leq s_{j}^{max} & & \forall t, j \in J \\ & & & s_{j,t} = \begin{cases} s_{j,t-1} + \sum\limits_{k \in \mathcal{K}} x_{j,k,t} \cdot \tilde{\boldsymbol{d}}_{j,k}, & \text{if } m_{j,t} = 0 \\ s_{j}^{0}, & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

 $\forall \tilde{d}_{j,k} \in \mathcal{U}$. Approximate $s_{j,t}\left(\tilde{d}_{j,k}\right)$ by linear decision rule.

How do we choose \mathcal{U} ?

Assumption: \mathcal{U} is a box uncertainty set

$$\mathcal{U} = \{\tilde{d}_{j,k} | \bar{d}_{j,k} (1 - \epsilon_{j,k}) \le \tilde{d}_{j,k} \le \bar{d}_{j,k} (1 + \epsilon_{j,k})\}$$

How do we choose \mathcal{U} ?

Assumption: \mathcal{U} is a box uncertainty set

$$\mathcal{U} = \{\tilde{d}_{j,k} | \bar{d}_{j,k} (1 - \epsilon_{j,k}) \le \tilde{d}_{j,k} \le \bar{d}_{j,k} (1 + \epsilon_{j,k})\}$$

Choose $\epsilon_{j,k}$ from distribution $\mathcal{D}_{j,k}$:

$$\epsilon_{j,k} = 1 - F^{-1}(\alpha)/\bar{d}_{j,k}$$

Size of $\mathcal U$ depends on a single parameter $\alpha!$

Case study: State-Task-Network [Kondili et al. 1993]

Case study: State-Task-Network [Kondili et al. 1993]

Extension for degradation [Biondi et al. 2017]

- Include maintenance scheduling
- Multiple operating modes per task
- Integrated scheduling and planning

The price of robustness

Choosing α is its own optimization problem

We optimize α by solving

$$\min_{\alpha} c^*(\alpha) + \sum_{j} p_j^f(\alpha) \cdot c_j^f$$

- $c^*(\alpha)$ is the objective value of a MILP solution given α .
- $p_j^f(\alpha)$ is the corresponding probability of failure (of unit j).
- · c_j^f is the cost of an unexpected failure.

Choosing α is its own optimization problem

We optimize α by solving

$$\min_{\alpha} c^*(\alpha) + \sum_{j} p_j^f(\alpha) \cdot c_j^f$$

- $c^*(\alpha)$ is the objective value of a MILP solution given α .
- $p_j^f(\alpha)$ is the corresponding probability of failure (of unit j).
- \cdot c_{j}^{f} is the cost of an unexpected failure.

Idea: Use Bayesian Optimization (BO)

Both c^{*} and p_{j}^{f} can be viewed as expensive black box functions. BO is very suitable for this setting.

Saving time: a deterministic approximation

Assumption

Only the health model depends on $\tilde{d}_{j,k}$ and $\tilde{d}_{j,k} \geq 0$.

Then we can prove that a solution to

$$\min_{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}} \; \mathsf{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h})$$

s.t. process model, maint. model(x, m, h)

$$s_{j,t} \leq s_{j}^{max} \qquad \forall t, j \in J$$

$$s_{j,t} = \begin{cases} s_{j,t-1} + \sum_{k \in \mathcal{K}} x_{j,k,t} \cdot d_{j,k}^{max}, & \text{if } m_{j,t} = 0 \\ s_{j}^{0}, & \text{otherwise} \end{cases} \quad \forall t, j \in J$$

with $d_{j,k}^{max} = \max_{\mathcal{U}} \tilde{d}_{j,k}$ is also feasible in the robust problem.

Saving time: a deterministic approximation

Saving time: data-driven approximations

For long time horizons, model can only be solved using rolling horizon. Instead, an upper bound on the probability of failure p_i^f can be estimated from data.

Saving time: data-driven approximations

For long time horizons, model can only be solved using rolling horizon. Instead, an upper bound on the probability of failure p_i^f can be estimated from data.

Estimating frequencies and transition probabilities

Covariate dependencies

Frequencies and transition probabilities depend on product demand p.

Estimating frequencies and transition probabilities

Covariate dependencies

Frequencies and transition probabilities depend on product demand p.

Logistic regression [Paton et al 2014]

Predict the probability η_{n_k} that mode k occurs n_k times using logistic regression:

$$\eta_{n_k}(\boldsymbol{p}(t)) = P(N_k = n_k, \boldsymbol{p}) = \frac{\exp(\boldsymbol{\beta}_{n_k} \boldsymbol{p})}{\sum_{n_k'} \exp(\boldsymbol{\beta}_{n_k'} \boldsymbol{p})}$$

Similarly predict transition probabilities based on demand:

$$\pi_{k,k^*}(\boldsymbol{p}(t)) = P(X_n = k^* | X_{n-1} = k, \boldsymbol{p}) = \frac{\exp(\boldsymbol{\beta}_{n_k} \boldsymbol{p})}{\sum_{n_k'} \exp(\boldsymbol{\beta}_{n_k'} \boldsymbol{p})}$$

Results

Results

instance	bound	rms_all	rms_max	p_out
toy	freq	8.00	1.53	29.40
toy	mc	10.41	3.08	21.27
P1	freq	12.61	3.52	17.54
P1	mc	17.25	4.39	9.62
P2	freq	7.40	2.31	18.08
P2	mc	13.68	4.98	10.13
P4	freq	9.17	3.27	47.78
P4	mc	11.43	2.84	32.50
P6	freq	18.75	8.94	12.17
P6	mc	20.84	10.09	10.98
all	freq	11.19	3.91	24.99
all	mc	14.72	5.08	16.90

Table 1: Average performance metrics for probability estimates - all instances

Outlook

Optimizing $\boldsymbol{\alpha}$

$$\min_{\alpha} c^*(\alpha) + \sum_{j} p_j^f(\alpha) \cdot c_j^f$$

Degradation modelling with multiple operating modes

How does robust optimization work?

General idea

- Make constraints hold for all values in \mathcal{U} :

$$\sum_{j} \tilde{a}_{ij} x_j \leq b_i, \forall \tilde{a}_{ij} \in \mathcal{U}$$

· Reformulate semi-infinite constraint:

$$\sum_{j} a_{ij}x_{j} + \text{protection}(\mathcal{U}) \leq b_{i}$$

• How do we choose the right protection level?

Example: Soyster's method (worst case) [1973]

$$\max_{x_1, x_2} x_1 + x_2$$

s.t.
$$\tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 \leq b_1$$
,

$$\forall \tilde{a}_{ij} \in \mathcal{U}$$

$$\max_{x_1, x_2} x_1 + x_2$$

Formulation

$$M_{j,t}S_{j,0} \leq \tilde{S}_{j,t} \leq S_{j,max} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) \qquad \forall t, j \in J, D \in \mathcal{D}$$

$$S_{j,t} \geq S_{j,t-\Delta t} + \sum_{k} Z_{j,k,t}D_{j,k,t} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) \quad \forall t, j \in J, D \in \mathcal{D}$$

$$S_{j,t} \le S_{j,t-\Delta t} + \sum_{k} Z_{j,k,t} D_{j,k,t}$$

$$\forall t, j \in J, D \in \mathcal{D}$$

Planning

$$S_{j,t} \le S_{j,max} \qquad \forall t, j \in J$$

$$S_{j,t} \ge S_{j,t-\Delta t} + \sum_{k} N_{j,k,t} D_{j,k,t} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) \quad \forall t, j \in J$$

$$S_{j,t} \le S_{j,t-\Delta t} + \sum_{i} N_{j,k,t} D_{j,k,t}$$

$$\forall t, j \in J$$

Adjustable robust optimization

Affine decision rule

$$S_{j,t} = [S_{j,t}]_0 + \sum_k \sum_{t'=0}^t [S_{j,t}]_{k,t'} D_{j,k,t'}. \tag{1}$$

Size of toy problem

	deterministic	robust $D \neq f(t)$	robust $D = 1$
# vars	913	3011	27719
# binaries	338	338	338
# constraints	1198	2356	13300
time to solve [s]	2	0.3-10	0.3-10
gap [%]	0	0	0
scheduling periods	30	30	30
planning periods	8	8	8
task-unit-op. mode combinations	6	6	6

Size of realistic problem

		deterministic	robust $D \neq f(t)$	robust $D = 1$
	# vars	5389		397361
	# binaries	2492		2492
	# constraints	6798		180858
	time to solve [s]	7883		16756
	gap [%]	3.62		31.02
	scheduling periods	56	56	56
	planning periods	24	24	24
	task-unit-op. mode	24	24	24
	combinations			

How do we choose \mathcal{U} ?

Choose \mathcal{U} from distribution

- \cdot Choose parameter lpha
- Choose D_{min} such that $P(D \le D_{min}) = \alpha$
- Choose D_{max} such that $P(D \ge D_{max}) = \alpha$
- $U = \{D|D_{min} \le D \le D_{max}\}$

Robust optimization:deriving a robust counterpart [lappas & gounaris 2016]

Replace $D_{j,k}$ by an uncertain parameter $\tilde{d}_{j,k}$ bounded by a set

$$\begin{aligned} &\mathcal{U}:\\ s_{j,t} \leq s_{j}^{max} & \forall t,j \in J \\ s_{j,t} = \begin{cases} s_{j,t-1} + \sum_{k \in \mathcal{K}} x_{j,k,t} \cdot \tilde{d}_{j,k}, & \text{if } m_{j,t} = 0 \\ s_{j}^{0}, & \text{otherwise} \end{cases} & \forall \tilde{d}_{j,k} \in \mathcal{U}, t,j \in J \\ \end{aligned}$$
 Reformulate:
$$m_{j,t}s_{j}^{s} \leq s_{j,t} \leq s_{j,t}^{max} + m_{j,t} \cdot (s_{j}^{0} - s_{j,max}) & \forall t,j \in J, \tilde{d}_{j,k} \in \mathcal{U} \\ s_{j,t} \geq s_{j,t-\Delta t} + \sum_{k} x_{j,k,t} \tilde{d}_{j,k} + m_{j,t} \cdot (s_{j}^{0} - s_{j}^{max}) & \forall t,j \in J, \tilde{d}_{j,k} \in \mathcal{U} \\ s_{j,t} \leq s_{j,t-\Delta t} + \sum_{k} x_{j,k,t} \tilde{d}_{j,k} & \forall t,j \in J, \tilde{d}_{j,k} \in \mathcal{U}, \end{aligned}$$

Replace $s_{j,t}$ by linear decision rule $s_{j,t} = [s_{j,t}]_0 + \sum_k [s_{j,t}]_k \tilde{d}_{j,k}$.