Algorithms and Algorithmic Intractability in High Dimensional Linear Regression

Ilias Zadik

Massachusetts Institute of Technology (MIT)

NYU MIC Seminar 2/6/19

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Required heavy **statistical and computational tools** on dealing with issues such as high dimensionality, large noise, missing entries.

Over the recent years, the **number** and **magnitude** of available **datasets** have been growing **enormously**.

Big impact across science:

From artificial intelligence to economics to medicine and many others.

Required heavy **statistical and computational tools** on dealing with issues such as high dimensionality, large noise, missing entries.

Still many open problems

even for simple high dimensional statistical models!

Overview

This talk

Algorithms and algorithmic barriers

for high dimensional linear regression.

- Improve information-theory upper bounds through tight analysis of MLE. ("All or Nothing Property")
- Explain computational-statistical gap, through statistical-physics based methods. ("Overlap Gap Property")
- Offer new polynomial time algorithm for noiseless case using lattice basis reduction ("One Sample Suffices")

Papers:

```
(Gamarnik, Z. COLT '17)
(Gamarnik, Z. Annals of Stats (major revision) '17+)
(Gamarnik, Z. NeurIPS '18)
```


Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$. p number of features. For **data matrix** $X \in \mathbb{R}^{n \times p}$, and **noise** $W \in \mathbb{R}^n$, **observe** n noisy linear samples of β^* , $Y = X\beta^* + W$.

Goal: Given (Y, X), recover β^* .

Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$. p number of features. For **data matrix** $X \in \mathbb{R}^{n \times p}$, and **noise** $W \in \mathbb{R}^n$, **observe** n noisy linear samples of β^* , $Y = X\beta^* + W$.

Goal: Given (Y, X), recover β^* .

Simplifying assumption between dependent Y and independent X.

Main Question

Setting:
$$Y = X\beta^* + W$$
, $X \in \mathbb{R}^{n \times p}$, $W \in \mathbb{R}^n$.

Main Question: Sample Complexity

What is the **minimum** n so that β^* is (efficiently) recoverable?

Main Question

Setting: $Y = X\beta^* + W$, $X \in \mathbb{R}^{n \times p}$, $W \in \mathbb{R}^n$.

Main Question: Sample Complexity

What is the **minimum** n so that β^* is (efficiently) recoverable?

An immediate answer under full generality: at least p.

Main Question

Setting: $Y = X\beta^* + W$, $X \in \mathbb{R}^{n \times p}$, $W \in \mathbb{R}^n$.

Main Question: Sample Complexity

What is the **minimum** n so that β^* is (efficiently) recoverable?

An immediate answer under full generality: at least p.

Reason: Even if W = 0, we have $Y = X\beta^*$,

a linear system with p unknowns and n equations!

To solve it, we need at least p equations, i.e. $n \ge p$.

Problem: A High Dimensional Reality

In many **real-life applications** of Linear Regression (e.g. computer vision, digital economy, computational biology) we observe **more** features than samples (i.e. $n \ll p$, $p \to +\infty$.)

Problem: A High Dimensional Reality

In many **real-life applications** of Linear Regression (e.g. computer vision, digital economy, computational biology) we observe **more** features than samples (i.e. $n \ll p, p \to +\infty$.)

To be well-posed, **need additional assumptions.**

Structural Assumptions on β^*

Assumptions:

- (1) β^* is k-sparse: k non-zero coordinates, k = o (p). (A lot of research, e.g. *Compressed Sensing*.)
- (2) β^* is binary valued: $\beta^* \in \{0, 1\}^p$. (†)

(†) (non-trivial) simplification of well-studied $\beta_{\min}^* := \min_{\beta_i^* \neq 0} |\beta_i^*| = \Theta(1)$ and support recovery task.

Structural Assumptions on β^*

Assumptions:

- (1) β^* is k-sparse: k non-zero coordinates, k = o (p). (A lot of research, e.g. *Compressed Sensing.*)
- (2) β^* is binary valued: $\beta^* \in \{0, 1\}^p$. (†)

Main Question: Sample Complexity

What is the **minimum** n so that β^* is (efficiently) recoverable **under these assumptions**?

(†) (non-trivial) simplification of well-studied $\beta^*_{\min} := \min_{\beta^*_i \neq 0} |\beta^*_i| = \Theta(1)$ and support recovery task.

Structural Assumptions on β^*

Assumptions:

- (1) β^* is k-sparse: k non-zero coordinates, k = o (p). (A lot of research, e.g. *Compressed Sensing.*)
- (2) β^* is binary valued: $\beta^* \in \{0, 1\}^p$. (†)

Main Question: Sample Complexity

What is the **minimum** n so that β^* is (efficiently) recoverable **under these assumptions**?

Assume: X iid $\mathcal{N}(0,1)$ entries, W iid $\mathcal{N}(0,\sigma^2)$ entries.

(†) (non-trivial) simplification of well-studied $\beta^*_{\min} := \min_{\beta^*_i \neq 0} |\beta^*_i| = \Theta(1)$ and support recovery task.

The Model

Setup

Let $\beta^* \in \{0, 1\}^p$ be a **binary** k-sparse vector, k = o(p). For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0,1)$ entries
- W $\in \mathbb{R}^n$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n noisy linear samples of β^* , $Y \in \mathbb{R}^n$, given by,

$$Y := X\beta^* + W.$$

The Model

Setup

Let $\beta^* \in \{0, 1\}^p$ be a **binary** k-sparse vector, k = o(p). For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0,1)$ entries
- W $\in \mathbb{R}^n$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n noisy linear samples of β^* , $Y \in \mathbb{R}^n$, given by,

$$Y := X\beta^* + W$$
.

Goal

Minimum n so that given (Y, X), β^* is **(efficiently) recoverable** with probability tending to 1 as n, k, p $\to +\infty$ **(w.h.p.)**.

Algorithmic Results ([Wainwright '09], [Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$\mathsf{n} > (1+\epsilon)\mathsf{n}_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Algorithmic Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Information-Theoretic Bounds

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

Algorithmic Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Information-Theoretic Bounds

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

• If $n < (1 - \epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]

Algorithmic Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Information-Theoretic Bounds

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

- If $n < (1-\epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]
- For some large C > 0, if $n \ge Cn^*$, MLE succeeds [Rad' 11].

Algorithmic Results ([Wainwright '09],[Fletcher et al '11])

Set $n_{alg} = 2k \log p$. Assume $SNR = \frac{k}{\sigma^2} \to +\infty$. If

$$n > (1 + \epsilon) n_{\mathsf{alg}}$$

LASSO (convex relaxation) and OMP (greedy algorithm) succeed w.h.p.

Information-Theoretic Bounds

Let $n^* := 2k \log \frac{p}{k} / \log \left(\frac{k}{\sigma^2} + 1 \right)$. Assume $\mathsf{SNR} = \frac{k}{\sigma^2} \to +\infty$.

- If $n < (1 \epsilon)n^*$ no algorithm can succeed w.h.p. [Wang et al '10]
- For some large C > 0, if $n \ge Cn^*$, MLE succeeds [Rad' 11].

Pictorial Representation

Figure: Computational-Statistical Gap

Pictorial Representation

Figure: Computational-Statistical Gap

Questions

- (1) Can we find the **exact information theoretic bound** of the problem?
- (2) Is there some **fundamental** explanation for the apparent computational-statistical gap?

Pictorial Representation

Figure: Computational-Statistical Gap

Questions/Contributions

- (1) Can we find the **exact information theoretic bound** of the problem? Contribution: n*, in an (asymptotic) strong sense.
- (2) Is there some **fundamental** explanation for the apparent computational-statistical gap?

 Contributions: Stat physics-based evidence for (landscape) hardness. If $\sigma = 0$, β^* **truly** binary: gap closes using lattice basis reduction.

Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Maximum Likelihood Estimator (MLE)

 $Y = X\beta^* + W$ with W iid $N(0, \sigma^2)$ entries.

The MLE

 \hat{eta}_{MLE} is the optimal solution of least-squares

(LS):
$$\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$$

[Rad '11]: success with Cn* samples.

"All or Nothing" Theorem [Gamarnik, Z. '17]

Definition

For $\beta \in \{0,1\}^p$, k-sparse we define

 $overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$

"All or Nothing" Theorem [Gamarnik, Z. '17]

Definition

For $\beta \in \{0,1\}^p$, k-sparse we define

 $overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$

Theorem ("MLE: All or Nothing" (Gamarnik, Z. COLT '17))

Let $\epsilon > 0$ be arbitrary.

- If $n > (1 + \epsilon) n^*$, then $\frac{1}{k}$ overlap $(\hat{\beta}_{\mathsf{MLE}}) \to 1$ whp.
- If $n < (1 \epsilon) n^*$, (†) then $\frac{1}{k}$ overlap($\hat{\beta}_{\mathsf{MLE}}$) $\to 0$ whp.

(†)
$$k \leq \exp(\sqrt{\log p})$$

An "All or Nothing" phase transition!

• With $n = (1 + \epsilon)n^*$, MLE recovers **all but** o(1)-fraction of the support.

An "All or Nothing" phase transition!

- With $n = (1 + \epsilon)n^*$, MLE recovers **all but** o(1)-fraction of the support.
- With $n = (1 \epsilon)n^*$, MLE recovers **at most** o(1)-fraction of the support.

An "All or Nothing" phase transition!

- With n = (1 + ε)n*, MLE recovers all but o(1)-fraction of the support.
- With $n = (1 \epsilon)n^*$, MLE recovers **at most** o(1)-fraction of the support.
- Delicate argument: **novel conditional second moment method** for the existence of "low overlap" β with "small" $\|Y X\beta\|_2$.

An "All or Nothing" phase transition!

- With $n = (1 + \epsilon)n^*$, MLE recovers **all but** o(1)-fraction of the support.
- With $n = (1 \epsilon)n^*$, MLE recovers **at most** o(1)-fraction of the support.
- Delicate argument: **novel conditional second moment method** for the existence of "low overlap" β with "small" $\|Y X\beta\|_2$.

For
$$Z = |\{$$
 "low-overlap" β : "small" $\|Y - X\beta\|_2\}|$,

$$\mathbb{P}\left[\mathsf{Z}\geq1
ight]\geqrac{\mathbb{E}\left[\mathsf{Z}
ight]^{2}}{\mathbb{E}\left[\mathsf{Z}^{2}
ight]}$$
 (standard 2nd MM)

"All or Nothing Theorem" - Comments

An "All or Nothing" phase transition!

- With $n = (1 + \epsilon)n^*$, MLE recovers **all but** o(1)-fraction of the support.
- With $n = (1 \epsilon)n^*$, MLE recovers **at most** o(1)-fraction of the support.
- Delicate argument: **novel conditional second moment method** for the existence of "low overlap" β with "small" $\|Y X\beta\|_2$.

For
$$Z = |\{$$
 "low-overlap" β : "small" $\|Y - X\beta\|_2\}|$,

$$\mathbb{P}\left[\mathsf{Z}\geq1
ight]\geqrac{\mathbb{E}\left[\mathsf{Z}
ight]^{2}}{\mathbb{E}\left[\mathsf{Z}^{2}
ight]}$$
 (standard 2nd MM)

We use for $Y = X\beta^* + W$

$$\mathbb{P}\left[Z \geq 1\right] = \mathbb{E}_{W}[\mathbb{P}[Z \geq 1|W]] \geq \mathbb{E}_{W}[\frac{\mathbb{E}[Z|W]^2}{\mathbb{E}[Z^2|W]}] \text{ (conditional 2nd MM)}$$

Summary for n* contribution

Sharp Information-Theoretic Limit n*

 $(1+\epsilon) n^*$ samples MLE (asymptotically) succeeds.

 $(1-\epsilon)n^*$ samples MLE strongly fails.

Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Computational-Statistical Gap

Question 2

Is there some **fundamental** explanation for the apparent *computational-statistical gap*?

Computational-Statistical Gap

Question 2

Is there some **fundamental** explanation for the apparent *computational-statistical gap*?

Contribution through Landscape Analysis

n_{alg} is a **phase transition point** for certain Overlap Gap Property (OGP) on the space of binary k-sparse vectors (origin in *spin glass theory*). **Conjecture computational hardness!**

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

(Vague) Strategy of Studying the Geometry

Study **realizable overlap sizes** between "near-optimal" solutions. Algorithms appear to work as long as there are **no gaps** in the overlaps.

Computational gaps appear frequently in random environments

- (1) randoms CSPs, such as random-k-SAT (e.g. [MMZ '05], [ACORT '11])
- (2) average-case combinatorial opt problems such as max-independent set in ER graphs (e.g. [GS '17], [RV '17])

Between easy and hard regime there is an "abrupt change in the geometry of the space of (near-optimal) solutions" [ACO '08].

(Vague) Strategy of Studying the Geometry

Study **realizable overlap sizes** between "near-optimal" solutions. Algorithms appear to work as long as there are **no gaps** in the overlaps.

Overlap Gap Property, Shattering, Clustering, Free Energy Wells etc

The Overlap Gap Property (OGP) for Linear Regression

"Near-optimal solutions" $\{\beta \in \{0,1\}^p : \|\beta\|_0 = \mathsf{k}, \text{ "small" } \|\mathsf{Y} - \mathsf{X}\beta\|_2\}.$

The Overlap Gap Property (OGP) for Linear Regression

"Near-optimal solutions" $\{\beta \in \{0,1\}^p : \|\beta\|_0 = k$, "small" $\|Y - X\beta\|_2\}$. *Idea:* Study overlaps between β and β^* . overlap $(\beta) = |\mathsf{Support}(\beta) \cap \mathsf{Support}(\beta^*)|$.

The OGP (informally)

The set of β' s with "small" $\|Y - X\beta\|_2$ partitions in one group where β have **low** overlap with the ground truth β^* and the other group where β have **high** overlap with the ground truth β^* .

The Overlap Gap Property for Linear Regression-definition

For
$$r > 0$$
, set $S_r := \{ \beta \in \{0, 1\}^p : \|\beta\|_0 = k, n^{-\frac{1}{2}} \|Y - X\beta\|_2 < r \}.$

Definition (The Overlap Gap Property)

The linear regression problem satisfies OGP if there exists r>0 and $0<\zeta_1<\zeta_2<1$ such that

(a) For every $\beta \in S_r$,

$$\frac{1}{\mathsf{k}}\mathsf{overlap}\left(\beta\right)<\zeta_1 \text{ or } \frac{1}{\mathsf{k}}\mathsf{overlap}\left(\beta\right)>\zeta_2.$$

(b) Both the sets

$$\mathsf{S_r} \cap \{\beta: \frac{1}{\mathsf{k}} \mathsf{overlap}\left(\beta\right) < \zeta_1\} \text{ and } \mathsf{S_r} \cap \{\beta: \frac{1}{\mathsf{k}} \mathsf{overlap}\left(\beta\right) > \zeta_2\}$$

are non-empty.

OGP Phase Transition at $\Theta(n_{alg})$

Theorem (Gamarnik, Z COLT '17a), (Gamarnik, Z '17b)

Suppose $k \le \exp(\sqrt{\log p})$. There exists C > 1 > c > 0 such that,

- If n < cn_{alg} then w.h.p. OGP holds.
- If n > Cn_{alg} then w.h.p. OGP does not hold.

Figure: n < cn_{alg}

Figure: $n > Cn_{alg}$

OGP Phase Transition at $\Theta(n_{alg})$

Theorem (Gamarnik, Z COLT '17a), (Gamarnik, Z '17b)

Suppose $k \le \exp(\sqrt{\log p})$. There exists C > 1 > c > 0 such that,

- If n < cn_{alg} then w.h.p. OGP holds.
- If n > Cn_{alg} then w.h.p. OGP does not hold.

OGP coincides with the failure of **convex relaxation** and **compressed sensing** methods!

 $\begin{array}{c} \text{X.J} \\ \text{with medium-overlap } \beta \\ \text{with high-overlap } \beta \\ \text{with high-overlap } \beta \\ \end{array}$

Figure: n < cn_{alg}

Figure: $n > Cn_{alg}$

Local Step:
$$\beta \to \beta'$$
 if $d_H(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$

Local Step:
$$\beta \to \beta'$$
 if $d_H(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$ (LS): $\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$.

Local Step:
$$\beta \to \beta'$$
 if $d_{\mathsf{H}}(\beta, \beta') = 2$. E.g. $\begin{bmatrix} * \\ 0 \\ 1 \\ * \end{bmatrix} \to \begin{bmatrix} * \\ 1 \\ 0 \\ * \end{bmatrix}$

(LS): $\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \|Y - X\beta\|_2$.

Local Search Barrier

Under OGP, there are **low-overlap local minima** in (LS). If $n < cn_{alg}$, greedy local-search algorithm **fails** (worst-case) w.h.p.

Theorem (Gamarnik, Z '17b)

If n > Cn_{alg}, the **only local minimum** in (LS) is β^* whp and greedy local search algorithm **succeeds** in $O(k/\sigma^2)$ iterations whp.

Summary of Contribution

Sharp Information-Theoretic Limit n*

 $(1+\epsilon)n^*$ samples MLE (asymptotically) succeeds.

 $(1-\epsilon)$ n* samples MLE strongly fails.

OGP Phase Transition at nalg

 $n < cn_{alg}$ OGP holds and $n > Cn_{alg}$ OGP does not hold.

Computational Hardness conjectured!

Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Fact

Under $X \in \mathbb{R}^{n \times p}$ iid $\mathcal{N}(0, 1)$, one samples suffices for $\sigma = 0$. $(n^* = 1)$

Fact

Under $X \in \mathbb{R}^{n \times p}$ iid $\mathcal{N}(0, 1)$, one samples suffices for $\sigma = 0$. $(n^* = 1)$

Reason: Recall $y_1 = \langle X_1, \beta^* \rangle$ and no other binary β satisfies $y_1 = \langle X_1, \beta \rangle$ For any $\beta \neq \beta^* \mathbb{P}[y_1 = \langle X_1, \beta \rangle] = 0$ (no sparsity needed.)

Fact

Under $X \in \mathbb{R}^{n \times p}$ iid $\mathcal{N}(0, 1)$, one samples suffices for $\sigma = 0$. $(n^* = 1)$

Reason: Recall $y_1 = \langle X_1, \beta^* \rangle$ and no other binary β satisfies $y_1 = \langle X_1, \beta \rangle$ For any $\beta \neq \beta^* \mathbb{P}[y_1 = \langle X_1, \beta \rangle] = 0$ (no sparsity needed.)

Question

Can we make brute-force search efficient?

Fact

Under $X \in \mathbb{R}^{n \times p}$ iid $\mathcal{N}(0, 1)$, one samples suffices for $\sigma = 0$. $(n^* = 1)$

Reason: Recall $y_1 = \langle X_1, \beta^* \rangle$ and no other binary β satisfies $y_1 = \langle X_1, \beta \rangle$ For any $\beta \neq \beta^* \mathbb{P}[y_1 = \langle X_1, \beta \rangle] = 0$ (no sparsity needed.)

Question

Can we make brute-force search efficient?

 $n_{alg} = 2k \log p$ and OGP for $n < n_{alg}$.

Fact

Under $X \in \mathbb{R}^{n \times p}$ iid $\mathcal{N}(0, 1)$, one samples suffices for $\sigma = 0$. $(n^* = 1)$

Reason: Recall $y_1 = \langle X_1, \beta^* \rangle$ and no other binary β satisfies $y_1 = \langle X_1, \beta \rangle$ For any $\beta \neq \beta^* \mathbb{P}[y_1 = \langle X_1, \beta \rangle] = 0$ (no sparsity needed.)

Question

Can we make brute-force search efficient?

 $n_{alg} = 2k \log p$ and OGP for $n < n_{alg}$.

Contribution: Beyond the sparsity constraint

Offer an **efficient algorithm**

which recovers any **rational-valued** β^* (no-sparsity)

from n = 1 noiseless sample $y_1 = \langle X_1, \beta^* \rangle$ and $p \to +\infty$.

Generalizes to higher n and tolerates small noise.

Regression using Lattice Based Methods

Suppose β^* has Q-rational entries: $\beta_i^* \in \frac{1}{Q}\mathbb{Z}$.

Theorem ("One Sample Suffices", (Gamarnik, Z. NeurIPS '18))

Assume any n = o(p) samples and $\sigma \le e^{-p \max\{p, \log Q\}/n}$.

Then there exists a **polynomial-in-**n, p, log Q time algorithm with input (Y, X) ouputs β^* w.h.p. as $p \to +\infty$.

Regression using Lattice Based Methods

Suppose β^* has Q-rational entries: $\beta_{\mathbf{i}}^* \in \frac{1}{\mathbb{Q}}\mathbb{Z}$.

Theorem ("One Sample Suffices", (Gamarnik, Z. NeurIPS '18))

Assume any n = o(p) samples and $\sigma \le e^{-p \max\{p, \log Q\}/n}$. Then there exists a **polynomial-in-**n, p, $\log Q$ time algorithm

with input (Y, X) ouputs β^* w.h.p. as $p \to +\infty$.

Works for any iid (bounded mean) continuous entries on X.

Regression using Lattice Based Methods

Suppose β^* has Q-rational entries: $\beta^*_{\mathbf{i}} \in \frac{1}{\overline{Q}}\mathbb{Z}$.

Theorem ("One Sample Suffices", (Gamarnik, Z. NeurIPS '18))

Assume any n = o(p) samples and $\sigma \le e^{-p \max\{p, \log Q\}/n}$. Then there exists a **polynomial-in-**n, p, log Q time algorithm with input (Y, X) ouputs β^* w.h.p. as $p \to +\infty$.

Works for any iid (bounded mean) continuous entries on X.

The Algorithm: Lattice-Based Method

Reduces to **Shortest Vector Problem** on a lattice and uses **lattice basis reduction** technique.

Based on pioneering work [Lagarias, Odlyzko '83], [Frieze '86] on randomly generated subset-sum problems.

Lattices

• Lattice produced by matrix $A \in \mathbb{Z}^{d \times d} \colon \mathcal{L} = \{Aw : w \in \mathbb{Z}^d\}.$

Lattices

- Lattice produced by matrix $A \in \mathbb{Z}^{d \times d}$: $\mathcal{L} = \{Aw : w \in \mathbb{Z}^d\}$.
- Shortest Vector Problem: $\min \|z\|_2 : z \in \mathcal{L} \setminus \{0\}$, say optimum z_{SV} .

Lattices

- Lattice produced by matrix $A \in \mathbb{Z}^{d \times d}$: $\mathcal{L} = \{Aw : w \in \mathbb{Z}^d\}$.
- Shortest Vector Problem: $\min \|z\|_2 : z \in \mathcal{L} \setminus \{0\}$, say optimum z_{SV} .
- NP-hard, but Lenstra-Lenstra-Lovász efficiently approximates it, outputs $\hat{\mathbf{z}} \in \mathcal{L} \setminus \{0\}$ with $\|\hat{\mathbf{z}}\|_2 \leq 2^{\mathsf{d}/2} \|\mathbf{z}_{\mathsf{SV}}\|_2$.

Algorithm Ideas

Main Idea (High Level)

Construct lattice $\mathcal{L}(Y, X)$ where

- shortest vector is β^*
- all "approximately" short vectors are multiples of β^* .

Use **Lenstra-Lenstra-Lovász** to recover β^* .

Outline of the Talk

- (1) Introduction
- (2) Background in High Dimensional Linear Regression
- (3) Information Theory Limits: MLE performance
- (4) Computational-Statistical Gap: a statistical-physics perspective
- (5) The Noiseless Case: A lattice basis reduction approach
- (6) Conclusion

Conclusion - Overview

This talk

Algorithms and algorithmic barriers

for high dimensional linear regression.

- Improve information-theory upper bounds through tight analysis of MLE. ("All or Nothing Property")
- Explain computational-statistical gap, through statistical-physics based methods. ("Overlap Gap Property")
- Offer new polynomial time algorithm for noiseless case using lattice basis reduction ("One Sample Suffices")

Papers:

```
(Gamarnik, Z. COLT '17)
(Gamarnik, Z. Annals of Stats (major revision) '17+)
(Gamarnik, Z. NeurIPS '18)
```

Conclusion - Future Directions

(1) How fundamental is the "All-or-Nothing" Property? Does it appear in other settings? Ongoing work with Jiaming Xu and Galen Reeves.

Conclusion - Future Directions

- (1) How fundamental is the "All-or-Nothing" Property? Does it appear in other settings? Ongoing work with Jiaming Xu and Galen Reeves.
- (2) OGP framework for computational-statistical hardness. Does it work for e.g. planted clique? Relation to SOS hierarchy/average-case reductions?

Conclusion - Future Directions

- (1) How fundamental is the "All-or-Nothing" Property? Does it appear in other settings? Ongoing work with Jiaming Xu and Galen Reeves.
- (2) OGP framework for computational-statistical hardness. Does it work for e.g. planted clique? Relation to SOS hierarchy/average-case reductions?
- (3) Study power of lattice-based methods for regression (instead of convex relaxation, message passing, greedy methods)? Can they generalize to real coefficients/higher noise level?

Conclusion - Future Directions

- (1) How fundamental is the "All-or-Nothing" Property? Does it appear in other settings? Ongoing work with Jiaming Xu and Galen Reeves.
- (2) **OGP framework** for computational-statistical hardness. Does it work for e.g. planted clique? Relation to SOS hierarchy/average-case reductions?
- (3) Study power of lattice-based methods for regression (instead of convex relaxation, message passing, greedy methods)? Can they generalize to real coefficients/higher noise level?

Thank you!!

Assume

- n = 1, $\sigma = 0$, β^* binary: $y = \langle X_1, \beta^* \rangle$.
- $X_1 \in \mathbb{Z}^p$ with iid **uniform in** $[2^N]$ **entries** for large N (say $N = p^2$).

Assume

- n = 1, σ = 0, β * binary: y = $\langle X_1, \beta^* \rangle$.
- $X_1 \in \mathbb{Z}^p$ with iid **uniform in** $[2^N]$ **entries** for large N (say $N = p^2$).
- (1) For M sufficiently large enough set $\mathcal{L}_M(y_1,X_1)$ produced by the columns of

$$\mathsf{A}_\mathsf{M} := \left[\begin{array}{cc} \mathsf{M}\mathsf{X}_1 & -\mathsf{M}\mathsf{y}_1 \\ \mathsf{I}_{\mathsf{p} \times \mathsf{p}} & \mathsf{0} \end{array} \right]$$

Assume

- n = 1, $\sigma = 0$, β^* binary: $y = \langle X_1, \beta^* \rangle$.
- $X_1 \in \mathbb{Z}^p$ with iid **uniform in** $[2^N]$ **entries** for large N (say $N = p^2$).
- (1) For M sufficiently large enough set $\mathcal{L}_M(y_1,X_1)$ produced by the columns of

$$\mathsf{A}_\mathsf{M} := \left[\begin{array}{cc} \mathsf{MX}_1 & -\mathsf{My}_1 \\ \mathsf{I}_{\mathsf{p} \times \mathsf{p}} & 0 \end{array} \right]$$

Lemma: Each $z \in \mathcal{L}_M$, $||z||_2 < M$ is a multiple of $\begin{vmatrix} 0 \\ \beta^* \end{vmatrix}$, w.h.p. (N large)

Assume

- n = 1, $\sigma = 0$, β^* binary: $y = \langle X_1, \beta^* \rangle$.
- $X_1 \in \mathbb{Z}^p$ with iid **uniform in** $[2^N]$ **entries** for large N (say $N = p^2$).
- (1) For M sufficiently large enough set $\mathcal{L}_M(y_1, X_1)$ produced by the columns of

$$\mathsf{A}_M := \left[\begin{array}{cc} \mathsf{M} \mathsf{X}_1 & -\mathsf{M} \mathsf{y}_1 \\ \mathsf{I}_{\mathsf{p} \times \mathsf{p}} & 0 \end{array} \right]$$

Lemma: Each $z \in \mathcal{L}_M$, $||z||_2 < M$ is a multiple of $\begin{bmatrix} 0 \\ \beta^* \end{bmatrix}$, w.h.p. (N large) **Intuition:**

$$\mathbf{z} = \mathsf{A}_\mathsf{M} \left[\begin{array}{c} \beta \\ \lambda \end{array} \right] = \left[\begin{array}{c} \mathsf{M} \langle \mathsf{X}_1, \beta \rangle - \mathsf{M} \lambda \mathsf{y}_1 \\ \beta \end{array} \right] = \left[\begin{array}{c} \mathsf{M} \langle \mathsf{X}_1, \beta - \lambda \beta^* \rangle \\ \beta \end{array} \right],$$

 $\mathbb{P}\left(\text{Lemma is false}\right) \leq \mathbb{P}\left(\exists \beta \neq \lambda \beta^* : \|\beta\|_2 < M, \langle X_1, \beta - \lambda \beta^* \rangle = 0\right) \to 0.$

"All or Nothing" Theorem [Gamarnik, Z. '17]

Definition

For $\beta \in \{0,1\}^p$, k-sparse we define

 $overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$

"All or Nothing" Theorem [Gamarnik, Z. '17]

Definition

For $\beta \in \{0,1\}^p$, k-sparse we define

$$overlap(\beta) := |Support(\beta^*) \cap Support(\beta)|.$$

Theorem ("All or Nothing" (Gamarnik, Z. COLT '17))

Let $\epsilon > 0$ be arbitrary.

- If $n > (1 + \epsilon) n^*$, then $\frac{1}{k}$ overlap $(\hat{\beta}_{\mathsf{MLE}}) \to 1$ whp.
- If $n < (1 \epsilon) n^*$, (\dagger) then $\frac{1}{k}$ overlap $(\hat{\beta}_{MLE}) \rightarrow 0$ whp.

$$(\dagger) \ \mathsf{k} \leq \exp(\sqrt{\log p})$$

• Set $\mathsf{OPT} = \min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} \left(||\mathsf{Y} - \mathsf{X}\beta||_2 \right)$.

- Set $OPT = \min_{\beta \in \{0,1\}^{P}, ||\beta||_0 = k} (||Y X\beta||_2)$.
- For any $\ell \in \{0, 1, \ldots, k\}$ set

$$\mathcal{T}_{\ell} = \{\beta \in \{0,1\}^p \big| \|\beta\|_0 = \mathsf{k}, \mathsf{overlap}(\beta) = \ell\}.$$

- Set OPT = $\min_{\beta \in \{0,1\}^p, ||\beta||_0 = k} (||Y X\beta||_2)$.
- For any $\ell \in \{0, 1, \dots, k\}$ set

$$\mathcal{T}_{\ell} = \{\beta \in \{0,1\}^p \big| \|\beta\|_0 = \mathsf{k}, \mathsf{overlap}(\beta) = \ell\}.$$

• Set $\mathsf{OPT}_\ell = \mathsf{min}_{\beta \in \mathcal{T}_\ell} \left(||\mathsf{Y} - \mathsf{X}\beta||_2 \right)$. Then $\mathsf{OPT} = \mathsf{min}_{\ell = 0,1,\dots,k} \, \mathsf{OPT}_\ell$.

• We show that w.h.p. for all $\ell = 0, 1, \ldots, k$,

$$\mathsf{OPT}_{\ell} \sim \sqrt{2\mathsf{k}(1\!-\!\frac{\ell}{\mathsf{k}}) + \sigma^2} \exp\left(\!-\!\frac{\mathsf{k}(1\!-\!\frac{\ell}{\mathsf{k}})\log p}{\mathsf{n}}\right).$$

(requires novel conditional second moment method)

• We show that w.h.p. for all $\ell = 0, 1, \ldots, k$,

$$\mathsf{OPT}_{\ell} \sim \sqrt{2\mathsf{k}(1-\frac{\ell}{\mathsf{k}}) + \sigma^2} \exp\left(-\frac{\mathsf{k}(1-\frac{\ell}{\mathsf{k}})\log p}{\mathsf{n}}\right).$$

(requires novel conditional second moment method)

• So, w.h.p. for all $\ell=0,1,\ldots,k$,

$$\mathsf{OPT}_\ell \sim \mathsf{f}\left(1 - rac{\ell}{\mathsf{k}}
ight)$$
 ,

for f (
$$\alpha$$
) := $\sqrt{2\alpha k + \sigma^2} \exp\left(-\alpha \frac{k \log p}{n}\right)$, $\alpha \in [0, 1]$

• So w.h.p. for $\alpha = 1 - \frac{\ell}{\mathbf{k}}$ (false detection rate - FDR) ,

$$\mathsf{OPT} = \min_{\ell = 0, 1, \dots, k} \mathsf{OPT}_{\ell} \sim \min_{\ell = 0, 1, \dots, k} \mathsf{f}\left(1 - \frac{\ell}{\mathsf{k}}\right) \sim \min_{\alpha \in [0, 1]} \mathsf{f}\left(\alpha\right).$$

• So w.h.p. for $\alpha = 1 - \frac{\ell}{k}$ (false detection rate - FDR) ,

$$\mathsf{OPT} = \min_{\ell = 0,1,\dots,k} \mathsf{OPT}_{\ell} \sim \min_{\ell = 0,1,\dots,k} \mathsf{f}\left(1 - \frac{\ell}{\mathsf{k}}\right) \sim \min_{\alpha \in [0,1]} \mathsf{f}\left(\alpha\right).$$

• $f(\alpha) := \sqrt{2\alpha k + \sigma^2} \exp\left(-\alpha \frac{k \log p}{n}\right)$ is strictly log-concave.

• So w.h.p. for $\alpha = 1 - \frac{\ell}{k}$ (false detection rate - FDR) ,

$$\mathsf{OPT} = \min_{\ell = 0, 1, \dots, k} \mathsf{OPT}_{\ell} \sim \min_{\ell = 0, 1, \dots, k} \mathsf{f}\left(1 - \frac{\ell}{\mathsf{k}}\right) \sim \min_{\alpha \in [0, 1]} \mathsf{f}\left(\alpha\right).$$

- $f(\alpha) := \sqrt{2\alpha k + \sigma^2} \exp\left(-\alpha \frac{k \log p}{n}\right)$ is strictly log-concave.
- OPT $\sim \min(f(0), f(1))$. But

$$\begin{split} f(0) > f(1) &\Leftrightarrow \sqrt{\sigma^2} > \sqrt{2k + \sigma^2} \exp\left(-\frac{k\log p}{n}\right) \\ &\Leftrightarrow n^* := \frac{2k}{\log\left(\frac{2k}{\sigma^2} + 1\right)}\log p > n. \end{split}$$

• So w.h.p. for $\alpha = 1 - \frac{\ell}{k}$ (false detection rate - FDR) ,

$$\mathsf{OPT} = \min_{\ell = 0,1,\dots,k} \mathsf{OPT}_{\ell} \sim \min_{\ell = 0,1,\dots,k} \mathsf{f}\left(1 - \frac{\ell}{\mathsf{k}}\right) \sim \min_{\alpha \in [0,1]} \mathsf{f}\left(\alpha\right).$$

- $f(\alpha) := \sqrt{2\alpha k + \sigma^2} \exp\left(-\alpha \frac{k \log p}{n}\right)$ is strictly log-concave.
- OPT ~ min (f(0), f(1)). But

$$\begin{split} f(0) > f(1) &\Leftrightarrow \sqrt{\sigma^2} > \sqrt{2k + \sigma^2} \exp\left(-\frac{k\log p}{n}\right) \\ &\Leftrightarrow n^* := \frac{2k}{\log\left(\frac{2k}{\sigma^2} + 1\right)}\log p > n. \end{split}$$

"All or Nothing Phase Transition":
 n < n* full FDR or zero overlap
 but n > n* zero FDR or full overlap.

OGP curve

Figure: OGP

Figure: no-OGP

Figure: OGP

