第四章作业

16337341 朱志儒

思考题

- 4.1 群的定义:群 G 定义了一个二元运算的集合,这个二元运算可表示为·, G 中每个序偶(a,b)通过运算生成 G 中的元素(a·b),并满足封闭性、结合律、单位元、逆元。
- 4.2 环的定义: 环 R 是一个有两个二元运算的集合,这两个二元运算分别称为加 法和乘法,且对于 R 中的任意元素 a、b、c 满足封闭性、结合律、单位元、逆元、 交换律、乘法的封闭性、乘法的结合律、分配率、乘法的交换律。
- 4.3 域的定义:域F是有两个二元运算的集合,这两个二元运算分别称为加法和乘法,且对于F中的任意元素 a、b、c满足封闭性、结合律、单位元、逆元、交换律、乘法的封闭性、乘法的结合律、分配率、乘法的交换律、乘法单位元、无零因子、乘法逆元。
- 4.4 对于非零 b, 存在一个整数 m 使得 a = bm, 则 b 是 a 的因子。

习题

- 4.1 (a) S_n中有 n!个元素。
- (b) 对于 S_3 有 $\{3,2,1\} \cdot \{1,3,2\} = \{3,1,2\}$ 和 $\{1,3,2\} \cdot \{3,2,1\} = \{2,3,1\}$,则 $\{3,2,1\} \cdot \{1,3,2\} \neq \{1,3,2\} \cdot \{3,2,1\}$,所以当 n>2 时, S_n 不是交换群。

4.2 (a)

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

可以构成一个群,单位元是0,0、1、2的逆元分别是0、2、1。

(b)

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

不可以构成一个群,单位元是1,1、2的逆元分别是1、2,而0没有逆元。

4.3 S 构成环, 因为 S 中的任意元素 a、b、c 满足封闭性、结合律、单位元、逆元、交换律、乘法的封闭性、乘法的结合律、分配率、乘法的交换律。

$$4.4 \begin{cases} a = qn + r & a > 0; 0 \le r < n; q = \left\lfloor \frac{a}{n} \right\rfloor \\ a = qn + r & a < 0; 0 \le r < n; q = \left\lfloor \frac{a}{n} \right\rfloor \end{cases}$$

4.6 (a)
$$x \equiv 2 \mod 3$$
 (b) $x \equiv 3 \mod 5$ (c) $x = 4 \mod 7$

4.7 (a)
$$5 \mod 3 = 2$$
 (b) $5 \mod -3 = -1$

(c)
$$-5 \mod 3 = -2$$
 (d) $-5 \mod -3 = -2$

4.8 a = b

4.12 (a) 设 $c = a \mod n$, $d = b \mod n$, 则 c = a + kn, d = b + mn, c - d = (a - b) + (k - m), 所以 $(c - d) = (a - b) \mod n_\circ$

(b) 设 $c = a \mod n$, $d = b \mod n$, 则 cd = ab + n(kb + ma + kmn), 所以 $cd = ab \mod n_\circ$

4.13
$$1^{-1} = 1$$
, $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$

4.14 因为 $1=1 \mod 9$, $10=1 \mod 9$, $10^2=1 \mod 9$, ..., $10^{n-1}=1 \mod 9$, 对于 $N=a_0+a_110^1+a_210^2+\cdots+a_{n-1}10^{n-1}$, 有 $N\equiv a_0+a_1+a_2+\cdots+a_{n-1}(\mod 9)_\circ$

4.15 (a)
$$gcd(24140, 16762) = 34$$
 (b) $gcd(4655, 12075) = 35$

4.19 (a)
$$1234^{-1} = 3239$$

- (b) 24140 与 40902 不互素, 所以 24140 没有乘法逆元
- (c) $550^{-1} = 550$

4.20

模 5 加法

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

模5乘法

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

模5乘法逆元和加法逆元

W	-W	w-1
0	0	-
1	4	1
2	3	3
3	2	2
4	1	4

4.23 (a)
$$9x^2 + 7x + 7$$
 (b) $5x^3 + 7x^2 + 2x + 6$

4.24 (a) 可约,
$$x^3 + 1 = (x+1)(x^2 + x + 1)$$
 (b) 不可约

(c) 可约,
$$x^4 + 1 = (x+1)^2(x^2+1) = (x+1)^4$$

4.25 (a) 1 (b) 1 (c)
$$x+1$$
 (d) $x+78$

4.26	加法
------	----

X

000	001	010	011
0	1	X	x+1
0	1	X	x+1
1	0	x+1	X
X	<i>x</i> + 1	0	1
x+1	X	1	0

x+1	x+1	X
		乘法

		000	001	010	011
	×	0	1	X	x+1
000	0	0	0	0	0
001	1	0	1	X	<i>x</i> + 1
010	X	0	X	<i>x</i> + 1	1
011	x+1	0	x+1	1	X

4.27
$$(x^3 + x + 1)^{-1} = x^2 + 1$$

4.28

幂表示	多项式表示	二进制表示	十进制表示
0	0	0000	0

$g^0 (= g^{15})$	1	0001	1
g ¹	g	0010	2
g ²	g ²	0100	4
g ³	g ³	1000	8
g^{A}	g+1	0011	3
<i>g</i> 5	$g^2 + g$	0110	6
<i>g</i> 6	$g^3 + g^2$	1100	12
g ⁷	$g^3 + g + 1$	1011	11
g ⁸	$g^2 + 1$	0101	5
<i>g</i> 9	$g^3 + g$	1010	10
g ¹⁰	$g^2 + g + 1$	0111	7
g ¹¹	g^3+g^2+g	1110	14
g ¹²	$g^3 + g^2 + g + 1$	1111	15
_g 13	$g^3 + g^2 + 1$	1101	13
g ¹⁴	$g^3 + 1$	1001	9