

Tor: alla scoperta dei router a cipolla

Marco Bonetti marco.bonetti@slackware.it

MOCA 2008 - Pescara

Questo lavoro è distribuito sotto Creative Commons Attribution-Share Alike 2.5 Italy License.

Per maggiori informazioni visita:

http://creativecommons.org/licenses/by-sa/2.5/it/

Outline

- Tor: the second-generation onion router
- Funzionamento di Tor
- Tor in pratica

Tor: the second-generation onion router

Cronologia

- Anni '80: David Chaum teorizza e implementa le "mix networks", catene di proxy server
- Anni '90: lo United States Naval Research Laboratory si interessa alla materia e sviluppa la tecnologia dell'onion routing
 - Onion Routing briefing slides, 1996
 - "Hiding Routing Information," Information Hiding, R.
 Anderson (editor), Springer-Verlag LLNCS 1174, 1996, pp. 137-150
- Oggi: "Tor: The Second-Generation Onion Router", Venerdì 13 Agosto 2004 @ 13th USENIX Security Symposium

Cosa è Tor?

- Uno strumento per persone e organizzazioni che voglio migliorare la loro sicurezza in internet
- Un programma per anonimizzare la navigazione, la pubblicazione di contenuti, lo scambio di messaggi, IRC, SSH e altre applicazioni che usano il protocollo TCP
- Una piattaforma per sviluppare nuovi programmi dotati di caratteristiche di anonimità, sicurezza e privacy

Perchè usare Tor?

- La raccolta di dati riguardanti le comunicazioni permette di ricostruire il profilo degli interessi e dei gusti dei partecipanti
- Dimmi dove vai e ti dirò chi sei ;-)
- L'impiego di protocolli insicuri (smtp, vnc, telnet) lascia filtrare troppe informazioni
- Esempi di analisi del traffico:
 - Un sito di e-commerce può applicare prezzi differenti a seconda del paese di origine del visitatore
 - Controllare la posta dall'estero permette di scoprire da dove si proviene o chi si è

- Tor: the second-generation onion router
- Funzionamento di Tor

Una prima soluzione

- \checkmark
- I pacchetti che viaggiano in Internet sono composti da:
 - Header, contiene le informazioni di instradamento
 - Payload, contiene i dati

Una prima soluzione

- ✓
- I pacchetti che viaggiano in Internet sono composti da:
 - Header, contiene le informazioni di instradamento
 - Payload, contiene i dati
- Se riesco a criptare il payload nessuno può "leggere" il contenuto della mia sessione
- È vero, ma questa tecnica da sola non è sufficiente a proteggermi: l'header contiene ancora troppe informazioni
 - Allora cripto anche l'header!

Una prima soluzione

- ✓
- I pacchetti che viaggiano in Internet sono composti da:
 - Header, contiene le informazioni di instradamento
 - Payload, contiene i dati
- Se riesco a criptare il payload nessuno può "leggere" il contenuto della mia sessione
- È vero, ma questa tecnica da sola non è sufficiente a proteggermi: l'header contiene ancora troppe informazioni
 - Allora cripto anche l'header!
 - Provateci...;-)

La soluzione proposta da Tor

- Creiamo una rete di nodi parallela a Internet per l'instradamento dei pacchetti
- La rete di Tor funziona come una scatola nera (black box): i pacchetti che vi entrano scompaiono e appaiono "auto magicamente" all'uscita, dopo aver percorso un viaggio all'interno della rete parallela
- L'idea è quella di raggiungere la destinazione cancellando le tracce che ci lasciamo dietro, in modo da rendere impossibile l'analisi del traffico

La soluzione proposta da Tor

- Creiamo una rete di nodi parallela a Internet per l'instradamento dei pacchetti
- La rete di Tor funziona come una scatola nera (black box): i pacchetti che vi entrano scompaiono e appaiono "auto magicamente" all'uscita, dopo aver percorso un viaggio all'interno della rete parallela
- L'idea è quella di raggiungere la destinazione cancellando le tracce che ci lasciamo dietro, in modo da rendere impossibile l'analisi del traffico
- Come accade la magia?

La magia – 1

La magia – 2

La magia - 3

- Il client invia al nodo di guardia (GUARD) il pacchetto completo
- Il nodo di guardia decritta il primo strato e individua il nodo di transito a cui inviare il rimanente payload

- Il nodo di transito (MIDDLEMAN) riceve dal guardiano il payload ridotto
- Come nel caso precedente, decritta lo strato di sua competenza per conoscere quale sarà il prossimo nodo a cui inviare il resto del payload

- Il nodo di uscita (EXIT) riceve le istruzioni finali per la creazione del circuito
- Decrittando le informazioni ricevute, il nodo individua la macchina da contattare e la specifica richiesta da inviare

- Il circuito è completo!
- Con le informazioni ottenute al passaggio precedente, il nodo di uscita si collega alla macchina finale e chiede le informazioni volute dal client di partenza
- Una volta ottenuta una risposta provvederà ad inoltrarla all'indietro, utilizzando il circuito appena stabilito

Cipolle!

Avete capito perché si chiama "router a cipolla"?

Cipolle!

- Avete capito perché si chiama "router a cipolla"?
- One-hop routing: ogni nodo conosce solo che un pacchetto gli arriva dal nodo a monte e devo consegnarlo al nodo a valle
- I nodi intermedi non possono leggere il contenuto del payload di destinazione
- In questo modo riusciamo a fuggire dalle tecniche di analisi del traffico in quanto non è possibile risalire agli attori del dialogo senza riuscire a leggere TUTTO il traffico che viaggia all'interno della rete di Tor e, anche in questo malaugurato caso, non si avrebbe la certezza matematica dell'individuazione dei partecipanti ma solo una approssimazione.

Spingersi oltre

- Perché limitarsi a oscurare le comunicazioni?
- Nascondere i servizi!
- Un server Tor è in grado di pubblicare informazioni riguardanti particolari servizi (sito web, server IM) offerti esclusivamente ad altri utenti Tor
- Questi servizi (gli "hidden service") non sono visibili dall'esterno ma solo dalla rete torificata

- Tor: the second-generation onion router
- Funzionamento di Tor
- Tor in pratica

Installare Tor – il client

- Tor è free software rilasciato sotto la 3-clause BSD
- Liberamente scaricabile all'indirizzo https://www.torproject.org/download.html.en
- Il client ascolta su localhost sulle seguenti porte:
 - porta 9050 per il proxy SOCKS v. 4/4A/5
 - porta 9051 per la control port (opzionale)
- Se si è installato il bundle, ci si trova anche il proxy http
 Privoxy in ascolto su localhost:8118
- Non serve aprire porte sui router/firewall!

Installare Tor – il server

- Non c'è differenza tra il programma client e quello server, solo che il secondo caso deve essere esplicitamente configurato dall'utente
- Il server ascolta all'esterno su diverse porte:
 - porta 9001 (443) per la creazione di circuiti
 - porta 9030 (80) per fornire servizio directory (opzionale)
 - porta 9040 per eseguire transparent proxying (opzionale)
- Permette il relay di traffico verso e fuori dalla rete Tor
- Permette la gestione di hidden services
- Ora potete controllare le porte dei vostri firewall/router ;-)

Configurare un Tor server - 1

- La rete Tor funziona solamente grazie alla buona volontà degli utilizzatori che decidono di impiegare la propria macchina anche come server
- Se si hanno almeno 20KB di banda in upload e download è consigliabile settare un server Tor
- Le istruzioni si trovano all'indirizzo http://www.torproject.org/docs/tor-doc-relay

Configurare un Tor server - 2

- Si può scegliere quale porte permettere in uscita dalla propria macchina
- Per chi non ha un abbonamento flat è possibile selezionare le finestre orarie di utilizzo della banda oppure una quota di banda totale mensile
- Per non incidere troppo sulle performance della rete locale si possono settare i picchi di utilizzo

Web - 1

- La navigazione via web è semplice da anonimizzare: basta selezionare 127.0.0.1:9050 come socks proxy per il proprio browser
- L'utilizzo della versione 4a rispetto alla 4 o alla 5 è importante per inteccettare le richieste DNS

Web - 2

- Tor viene distribuito accoppiato con Privoxy e TorButton
 - Privoxy è un proxy http/https
 - usato in cascata prima di Tor
 - esegue information stripping delle richieste
 - rimuove ads e simili
 - NO http pipelining :'(
 - provate Polipo ;-)
 - TorButton è un plugin per Firefox
 - imposta automaticamente il browser per l'utilizzo di Tor
 - esegue una serie di controlli aggiuntivi volti a limitare al massimo il filtraggio di informazioni
 - blocca js/plugin/updates
 - isola sessioni
 - gestisce i cookies

IM

- I maggiori protocolli di instant messagging forniscono la possibilità di utilizzare proxy http e/o socks per la comunicazione, basta utilizzarli attraverso Tor o Privoxy
- Un buon compagno di Tor+IM è l'utilizzo del plugin OTR http://www.cypherpunks.ca/otr/

IRC

- Purtroppo non è così semplice utilizzare Tor+IRC, la maggior parte dei server blocca l'accesso via proxy dei client per motivi di ordine pubblico
- Freenode fornisce ben due hidden server per la propria rete: irc://mejokbp2brhw4omd.onion/ per l'accesso autenticato via GPG e irc://5t7o4shdbhotfuzp.onion/ per l'acceso libero (down durante i periodi di abuso)

P₂P

- Non ha molto senso torificare il flusso di informazioni di un programma P2P, effetto leech.
- Il protocollo più flessibile è BitTorrent
 - Il metodo più comune è torificare le informazioni scambiate con il tracker e lasciare in chiaro le connessioni ai peer, sia bittorrent (l'originale) che Azureus e gli altri client supportano l'impiego di socks e http proxy
 - Il secondo metodo è impiegare una rete di filesharing completamente torificata, con il tracker come hidden service, funziona ma impatta negativamente sulle performance globali della rete

Il resto

- Il protocollo ssh prevede l'utilizzo di programmi proxy, con Tor e OpenSSH è utile impiegare un proxy command come Connect:
 - http://www.meadowy.org/~gotoh/projects/connect
- Non tutti i programmi supportano nativamente l'utilizzo di proxy: tsocks (linux e *bsd) permette di wrappare le chiamate di sistema alla funzione connect() in modo da instradarla attraverso un socks proxy, è un metodo brutale ma funziona
 - tsocks nc \$IP \$PORT
 - tsocks links http://www.google.com/
- Per tutti gli altri: http://shellscripts.org/project/toraliases/

Il futuro

Il futuro

Il futuro

Ringraziamenti

- A Roger Dingledine, Nick Mathewson, Peter Palfrader, tutti gli altri sviluppatori di Tor e la EFF per portare avanti un tale progetto
- A Ren Bucholz per le immagini di "How Tor works"
- A Mike Perry per il suo lavoro su Tor e TorButton

Fine

Domande?

