CST 生存指南

JNU 15 CST Geno JNU 15 SE littleredhat1997

March 2, 2019

版本 0.0 (构建次数 279)

Contents

1	数学	基础 1
	1.1	记数系统 1
	1.2	算术
	1.3	布尔代数 1
	1.4	公理和定理 1
2	数 捉	结构 3
-	2.1	整数的表达 3
	2.2	小数的表达
	2.3	字符编码
	$\frac{2.3}{2.4}$	数据的组织形式
	del Ind	
3		交互 5
	3.1	进程间通信 5
4	硬件	执行 7
	4.1	逻辑门
	4.2	门电路
	4.3	CPU 执行
	4.4	执行流的修改 7
5	编译	原理 9
	5.1	Chomsky 范式 9
	5.2	自动机理论 9
	5.3	代码生成 9
	5.4	程序优化
6	Doo	p Learning 11
U	6.1	Classification
	6.1	Object Detection
	6.2	· ·
	0.0	Semantic Segmentation

CONTENTS

	6.5	Instance Segmentation	21
-	真实 7.1	干发 2 健康小贴士 2	2 5
_	情感 8.1	生活 2	2 7 27

数学基础

数学是计算机的核心。小到计算器,大到超级电脑,从简单的算术运算到大型的天文、生物仿真,计算机的一个目标就是更快的运算速度;或者说,数学就是一个计算机的毕生任务。

1.1 记数系统

记数系统就是一套表达数字的系统。数字有很多"种",对于不同"种"数字,它们有不同的特点,需要不同的记数系统来表达。即使对于同一"种"数字,也可能会因为不同场合(上下文)而需要表达为不同的"形态"。这一节主要讲述

- 1.2 算术
- 1.3 布尔代数
- 1.4 公理和定理

数据结构

- 2.1 整数的表达
- 2.2 小数的表达
- 2.3 字符编码
- 2.4 数据的组织形式

数据交互

3.1 进程间通信

硬件执行

- 4.1 逻辑门
- 4.2 门电路
- 4.3 CPU 执行
- 4.4 执行流的修改

编译原理

- 5.1 Chomsky 范式
- 5.2 自动机理论
- 5.3 代码生成
- 5.4 程序优化

Deep Learning

6.1 Classification

Paper	Network	Release	Conference	Top-5(5.1%)
ImageNet Classifica- tion with Deep Convo- lutional Neural	AlexNet	_	NIPS 2012	16.4%
Networks Visualizing and Understanding Convolutional Networks	ZFNet	2013.11.12	ECCV 2014	11.7%
OverFeat: Integrated Recognition, Localization and Detection using Con- volutional Networks	OverFeat	2013.12.21	ICLR 2014	
Network In Network	NIN	2013.12.16	ICLR 2014	-

Paper	Network	Release	Conference	Top-5(5.1%)
Very Deep Convolu- tional Networks for Large-Scale Image Recognition	VGG	2014.9.4	ICLR 2015	7.3%
Going Deeper With Convolutions	GoogLeNet(Inv1)	nc 2∮tib⊕ -17	CVPR 2015	6.7%
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift	Inception-v2*	2015.2.11	ICML 2015	4.8%
Rethinking the Inception Architecture for Computer Vision	Inception-v3*	2015.12.2	CVPR 2016	3.5%
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning	Inception- v4, Inception- ResNet-v1, Inception- ResNet-v2	2016.2.23	AAAI 2016	3.08%
Highway Networks	Highway	2015.5.3	ICML 2015	-

Paper	Network	Release	Conference	Top-5(5.1%)
Deep Residual Learning for Image Recognition	ResNet-v1	2015.12.10	CVPR 2016	3.57%
Identity Mappings in Deep Residual Networks	ResNet-v2	2016.3.16	ECCV 2016	-
Wide Residual Networks	WideResNet	2016.5.23	BMVC 2016	-
FractalNet: Ultra-Deep Neural Networks without	FractalNet	2016.5.24	ICLR 2017	-
Residuals Densely Connected Convolutional Networks	DenseNet	2016.8.25	CVPR 2017	-
Aggregated Residual Transforma- tions for Deep Neural	ResNeXt	2016.11.16	CVPR 2017	3.03%
Networks PolyNet: A Pursuit of Structural Diversity in Very Deep Networks	PolyNet	2016.11.17	CVPR 2017	_
Dual Path Networks	DPN	2017.7.6	NIPS 2017	-

Paper	Network	Release	Conference	Top- $5(5.1\%)$
Squeeze- and- Excitation Networks	SENet	2017.9.5	CVPR 2018	2.25%

• 按照 Inception 系列四篇论文中的第三篇论文的划分,类似于 Inception v3 的一个网络称之为 v2,但是按照第四篇论文的划分,BN-Inception 称之为v2,这里采用第四篇论文的划分,Inception v2 指 BN-Inception。

6.2 Object Detection

Paper	Network	Release	Conference
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual	SPPNet	2014.6.18	ECCV 2014
Recognition Rich feature hierarchies for accurate object detection and semantic segmentation	R-CNN	2013.11.11	CVPR 2014
Fast R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks	Fast R-CNN Fast R-CNN	2015.4.30 2015.6.4	ICCV 2015 NIPS 2015

Paper	Network	Release	Conference
You Only Look	YOLO-v1	2015.6.8	CVPR 2016
Once: Unified,			
Real-Time			
Object			
Detection			
YOLO9000:	YOLO-v2,	2015.12.25	CVPR 2017
Better, Faster,	YOLO-9000		
Stronger			
YOLOv3: An	YOLO-v3	2018.4.8	-
Incremental			
Improvement			
SSD: Single	SSD	2015.12.8	ECCV 2016
Shot MultiBox			
Detector			
Inside-Outside	ION	2015.12.14	CVPR 2016
Net: Detecting			
Objects in			
Context with			
Skip Pooling			
and Recurrent			
Neural Networks			
HyperNet:	HyperNet	2016.4.3	CVPR 2016
Towards			
Accurate Region			
Proposal			
Generation and			
Joint Object			
Detection	D. EGN	2016 7 20	NIDCOMA
R-FCN: Object	R-FCN	2016.5.20	NIPS 2016
Detection via			
Region-based			
Fully			
Convolutional			
Networks			

Paper	Network	Release	Conference
A Unified	MS-CNN	2016.7.25	ECCV 2016
Multi-scale			
Deep			
Convolutional			
Neural Network			
for Fast Object			
Detection			
Feature	FPN	2016.12.9	CVPR 2017
Pyramid			
Networks for			
Object			
Detection			
Deformable	DeformableNet	2017.3.17	ICCV 2017
Convolutional			
Networks			
Focal Loss for	RetinaNet	2017.8.7	ICCV 2017
Dense Object			
Detection			

6.3 Semantic Segmentation

Paper	Network	Release	Conference
Fully	FCN	2014.11.14	CVPR 2015
Convolutional			
Networks for			
Semantic			
Segmentation			
Learning	DeconvNet	2015.5.17	ICCV 2015
Deconvolution			
Network for			
Semantic			
Segmentation			

-			
Paper	Network	Release	Conference
U-Net:	U-Net	2015.5.18	MICCAI 2015
Convolutional			
Networks for			
Biomedical			
Image			
Segmentation			
SegNet: A Deep	SegNet	2015.11.2	TPAMI 2016
Convolutional	_		
Encoder-			
Decoder			
Architecture for			
Image			
Segmentation			
Laplacian	LRR	2016.5.8	ECCV 2016
Pyramid			
Reconstruction			
and Refinement			
for Semantic			
Segmentation			
ENet: A Deep	ENet	2016.6.7	ICLR
Neural Network			2017(Reject)
Architecture for			
Real-Time			
Semantic			
Segmentation			
RefineNet:	RefineNet	2016.11.20	CVPR 2017
Multi-Path			
Refinement			
Networks for			
High-Resolution			
Semantic			
Segmentation			
Pyramid Scene	PSPNet	2016.12.4	CVPR 2017
Parsing Network			

1			
Paper	Network	Release	Conference
ICNet for	ICNet	2017.4.27	ECCV 2018
Real-Time			
Semantic			
Segmentation on			
High-Resolution			
Images			
Learning a	DFN	2018.4.25	CVPR 2018
Discriminative			
Feature Network			
for Semantic			
Segmentation			
Semantic Image	DeepLab-v1	2014.12.22	ICLR 2015
Segmentation			
with Deep			
Convolutional			
Nets and Fully			
Connected			
CRFs			
DeepLab:	DeepLab-v2	2016.6.2	TPAMI 2017
Semantic Image			
Segmentation			
with Deep			
Convolutional			
Nets, Atrous			
Convolution,			
and Fully			
Connected			
CRFs			
Rethinking	DeepLab-v3	2017.6.17	-
Atrous			
Convolution for			
Semantic Image			
Segmentation			

Paper	Network	Release	Conference
Encoder-	DeepLab-v3+	2018.2.7	ECCV 2018
Decoder with			
Atrous			
Separable			
Convolution for			
Semantic Image			
Segmentation			

6.4 Instance Segmentation

Paper	Network	Release	Conference
Simultaneous Detection and Segmentation	SDS	2014.7.7	ECCV 2014
Hypercolumns for Object Segmenta- tion and Fine-grained Localization	Hypercolumns	2014.11.21	CVPR 2015
Convolutional Feature Masking for Joint Object and Stuff Segmenta- tion	CFM	2014.12.3	CVPR 2015
Learning to Segment Object Candidates	DeepMask	2015.6.20	NIPS 2015
Learning to Refine Object Segments	SharpMask	2016.3.29	ECCV 2016

Paper	Network	Release	Conference
A MultiPath	MultiPathNet	2016.4.7	BMVC 2016
Network for			
Object			
Detection) (DIC	2017 12 11	CLIDD 2012
Instance-	MNC	2015.12.14	CVPR 2016
aware			
Semantic			
Segmenta-			
tion via			
Multi-task			
Network Cascades			
Instance-	ISFCN	2016.3.29	ECCV 2016
sensitive	ISPON	2010.3.29	ECCV 2010
Fully Convo-			
lutional			
Networks			
Fully Convo-	FCIS	2016.11.23	CVPR 2017
lutional	1 010	2010.11.20	0 1110 2011
Instance-			
aware			
Semantic			
Segmenta-			
tion			
BiSeg: Si-	BiSeg	2017.6.7	BMVC 2017
multaneous			
Instance			
Segmenta-			
tion and			
Semantic			
Segmenta-			
tion with			
Fully Convo-			
lutional			
Networks	3.6 1	0015000	ICCU 2015
Mask	Mask	2017.3.20	ICCV 2017
R-CNN	R-CNN		

6.5. MOBILE 21

Paper	Network	Release	Conference
Path Aggregation Network for Instance Segmenta- tion	PANet	2018.3.5	CVPR 2018

6.5 Mobile

Paper	Network	Release	Conference
SqueezeNet: AlexNet- level accuracy with 50x fewer parameters and <0.5MB model size	SqueezeNet	2016.2.24	ICLR 2017(Reject)
Xception: Deep Learning with Depthwise Separable Convolutions	Xception	2016.10.7	CVPR 2017
MobileNets: Efficient Convolutional Neural Neural Networks for Mobile Vision Applications	MobileNet-v1	2017.4.17	

Paper	Network	Release	Conference
MobileNetV2: Inverted Residuals and Linear Bottlenecks	MobileNet- v2	2018.1.13	CVPR 2018
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile	ShuffleNet-v1	2017.7.4	CVPR 2018
Devices ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design	ShuffleNet- v2	2018.7.30	ECCV 2018

6.6 Search Network

Paper	Network	Release	Conference
Neural	NAS	2016.11.5	ICRL 2017
Architecture			
Search With			
Reinforcement			
Learning			
Learning	NASNet	2017.7.21	CVPR 2018
Transferable			
Architectures			
for Scalable			
Image			
Recognition			

Paper	Network	Release	Conference
Progressive Neural	PNASNet	2017.12.2	ECCV 2018
Architecture			
Search			
Efficient Neural	ENASNet	2018.2.9	-
Architecture			
Search via			
Parameter			
Sharing			
MnasNet:	MNASNet	2018.7.31	-
Platform-Aware			
Neural			
Architecture			
Search for			
Mobile			

真实开发

7.1 健康小贴士

Section Content.

情感生活

8.1 .

This page intentionally left blank. $\,$