Flip-flop

- intrările sunt luate în considerare doar pe frontul crescător (sau descrescător) al semnalului de ceas
- cum se poate obţine un flip-flop
 - electronic derivarea semnalului de ceas
 - utilizând circuite latch → circuite master-slave

Flip-flop master-slave D

Latch vs. flip-flop

- fiecare categorie are utilitatea sa
- circuitele flip-flop utilizate pentru comanda sistemelor digitale
 - frontul semnalului de ceas este foarte scurt comparativ cu perioada ceasului
 - exact un pas în evoluţia sistemului într-o perioadă de ceas
- circuitele latch sisteme asincrone

III.2. Circuite secvenţiale complexe

Regiștri

- un circuit bistabil controlează un singur bit
 - nu foarte util în practică
- putem utiliza mai mulţi bistabili simultan
 - toţi primind acceaşi comandă
 - un asemenea circuit se numește registru
- tipuri de regiştri
 - paraleli
 - cu deplasare (seriali)

Registru paralel

- implementare cu bistabili D
 - pot fi latch sau flipflop, după necesități
- aceeași comandă (ceas)
 - toţi bistabilii se modifică la aceleași momente
- extinderea bistabilului

Registru cu deplasare (clasic)

- memorează ultimele *n* valori de la intrare
- poate fi implementat doar cu flip-flop
 - temă: de ce?

Alţi regiştri cu deplasare

Registru universal

- intrări și ieșiri seriale sau paralele
- deplasare spre stânga sau spre dreapta
- pot fi folosite cele care sunt necesare la un moment dat

intrare paralela

s_0	s_1	funcție
0	0	nemodificat
0	1	deplasare dreapta
1	0	deplasare stânga
1	1	încărcare paralelă

Proiectarea unui circuit secvențial

- mașină cu număr finit de stări (automat)
- 1. stabilirea stărilor prin care trece circuitul
- 2. stabilirea tranzițiilor între stări
 - starea următoare și ieșirile în funcție de intrări și de starea curentă
- 3. codificarea stărilor
 - pe numărul de biți necesar
- 4. scrierea tabelului de adevăr pentru tranziții

Proiectarea unui circuit secvențial

- 5. minimizare
- 6. implementare
 - starea este memorată prin circuite bistabile
 - partea combinațională conform minimizării
 - intrările părții combinaționale (starea curentă) se preiau de la ieșirile circuitelor bistabile și de la variabilele de intrare
 - ieșirile părții combinaționale (starea următoare) se aplică la intrările circuitelor bistabile

Numărătorul (contorul) binar

- reține la fiecare moment un număr pe n biți
- la fiecare "bătaie" a ceasului incrementare
 - poate fi şi decrementare
 - după valoarea maximă urmează din nou 0
 - nu are intrări, doar variabile de stare
 - care rețin de fapt numărul curent
 - ieșirile sunt identice cu variabilele de stare

Exemplu: *n*=4

starea curentă			starea următoare			starea curentă				starea următoare					
q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0	q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0
0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1
0	0	0	1	0	0	1	0	1	0	0	1	1	0	1	0
0	0	1	0	0	0	1	1	1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0	1	0	1	1	1	1	0	0
0	1	0	0	0	1	0	1	1	1	0	0	1	1	0	1
0	1	0	1	0	1	1	0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	0

Exemplu: *n*=4

• prin minimizare se obțin ecuațiile

$$\begin{aligned} &d_0 = \overline{q_0} = q_0 \oplus 1 \\ &d_1 = \overline{q_1} \cdot q_0 + q_1 \cdot \overline{q_0} = q_1 \oplus q_0 \\ &d_2 = \overline{q_2} \cdot q_1 \cdot q_0 + q_2 \cdot \overline{q_1} + q_2 \cdot \overline{q_0} = q_2 \oplus (q_1 \cdot q_0) \\ &d_3 = \overline{q_3} \cdot q_2 \cdot q_1 \cdot q_0 + q_3 \cdot \overline{q_2} + q_3 \cdot \overline{q_1} + q_3 \cdot \overline{q_0} = \\ &= q_3 \oplus (q_2 \cdot q_1 \cdot q_0) \end{aligned}$$

implementarea stării - cu flip-flop-uri D

Implementare

Microprogramare (1)

- formă alternativă de implementare
 - starea este memorată tot de circuite bistabile
 - partea combinațională cu ajutorul unei memorii ROM
 - intrările funcțiilor booleene se aplică la intrările de adresă ale circuitului
 - iar ieșirile funcțiilor booleene se colectează de la ieșirile de date

Microprogramare (2)

- implementarea părții combinaționale
 - se pornește tot de la tabelul de adevăr
 - în fiecare locație se scriu valorile dorite pentru ieșire
- avantaj flexibilitate
 - orice modificare a automatului implică doar rescrierea conținutului memoriei ROM
- dezavantaj viteză redusă
 - memoria ROM este mai lentă decât porțile

Același exemplu

- avem $16 (= 2^4)$ stări
 - codificate pe 4 biți de stare
- deci circuitul ROM va avea
 - -2^4 adrese \rightarrow 4 biți de adresă
 - 16 locații
 - 4 biți de date → locații de 4 biți
 - în acest exemplu nu avem variabile de intrare şi ieşiri ale sistemului care să se adauge la biţii de stare

Conținutul memoriei ROM

adresă	valoare
0	0001
1	0010
2	0 0 1 1
3	0100
4	0101
5	0110
6	0111
7	1000

adresă	valoare
8	1001
9	1010
10	1011
11	1100
12	1 1 0 1
13	1110
14	1111
15	0000

Implementare

IV. Reprezentări interne

- reprezentări interne elementare
 - fac parte din arhitectura calculatorului
 - deci sunt implementate în hardware
 - accesibile direct programatorilor
- structuri de date mai complexe
 - pe baza reprezentărilor elementare
 - definite şi accesibile programatorilor prin software

Reprezentări elementare

- date numerice
 - numere întregi, raționale
 - doar anumite submulțimi ale acestora
- date alfa-numerice
 - caractere etc.
- instrucțiuni
 - singurele specifice fiecărui sistem
 - deci nestandardizate și neportabile

Studiul reprezentărilor

• reprezentări numerice

$$repr(n_1) op repr(n_2) = repr(n_1 op n_2) ???$$

- exemplu dacă adunăm două variabile întregi, rezultatul va fi scris corect?
- erori de reprezentare
 - aproximări
 - depășiri

Transmiterea informațiilor

- între diverse medii
 - între calculatoare/sisteme
 - între componente ale aceluiași calculator/sistem
- pot apărea erori de transmisie
 - datorită perturbărilor/funcționării incorecte
 - semnal digital unii biți sunt inversați
 - se dorește detectarea apariției acestor erori
 - și chiar corectarea lor, unde e posibil

Moduri de detectare/corectare

- adăugarea de biți suplimentari redundanți
- paritate 1 bit suplimentar
 - permite detecția apariției unei erori (pe 1 bit)
 - paritate (im)pară: număr total (im)par de biți 1
- cod Hamming
 - 4 biţi de informaţie, 3 biţi suplimentari
 - permite detectarea/corecţia mai multor erori simultan

Exemplu paritate impară

• emițător

- are de trimis valoarea $(110)_2$
- 2 biţi (par) pe 1, deci bitul suplimentar va fi 1
- se va trimite $(1101)_2$

receptor

- primeşte şirul de biţi
- dacă numărul de biți pe 1 este par eroare
- altfel elimină bitul de paritate și obține $(110)_2$

IV.1. Codificări alfanumerice

Codificări alfanumerice

- calculatorul nu poate reprezenta direct caractere
 - sau alte informații nenumerice: imagini etc.
- fiecărui caracter îi este asociat în mod unic un număr
 - este de fapt o codificare
 - codificarea poate fi la nivel hardware
 (reprezentare elementară) sau software

Standarde

- ASCII
 - fiecare caracter 7 biți plus unul de paritate
- EBCDIC
 - fost concurent al ASCII
- ISO 8859-1
 - extinde codul ASCII: diacritice etc.
- Unicode, UCS
 - caractere non-latine

Codul ASCII

- literele mici au coduri consecutive
 - în ordinea dată de alfabetul englez
 - 'a' 97; 'b' 98; ...; 'z' 122
- similar literele mari (65, 66, ..., 90)
- similar caracterele care afișează cifrele zecimale
 - atenție: codul pentru caracterul '0' este 48 (nu 0)
- comparații lexicografice comparator binar

IV.2. Reprezentări interne numerice

Scrierea pozițională

- este tot o reprezentare
 - 397 nu este un număr, ci reprezentarea unui număr
- introdusă de indieni/arabi
- factor implicit ataşat fiecărei poziții din reprezentare
- esențială pentru arhitectura calculatoarelor
 - permite algoritmi eficienți de calcul (adunare...)

Baze de numerație

- orice număr natural d>1
- mulţimea cifrelor în baza d: {0,1,...,d-1}
- calculatorul lucrează în baza d=2
 - tehnic: cel mai ușor de implementat fizic 2 cifre
 - teoretic: baza 2 se "potrivește" cu logica booleană
 - ca simboli și ca operații
 - operațiile se pot implementa prin funcții booleene

Limitele reprezentărilor

- în practică, numărul de cifre este finit
- exemplu numere întregi fără semn
 - pe 1 octet: $0 \div 2^{8}$ -1 (= 255)
 - pe 2 octeți: $0 \div 2^{16}$ -1 (= 65535)
 - pe 4 octeți: $0 \div 2^{32}$ -1 (= 4294967295)
- orice număr mai mare (sau mai mic) decât limitele nu va putea fi reprezentat corect

Scrierea pozițională

- fie baza $d \in N^*-\{1\}$
- și reprezentarea dată de șirul de cifre

$$a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}$$

• numărul corespunzător reprezentării este

$$\sum_{i=-m}^{n-1} (a_i \times d^i)$$
(10)

- di este factorul implicit asociat poziției i
 - inclusiv pentru puteri negative

Treceri dintr-o bază d în baza 10

- conform formulei anterioare
- virgula rămâne în același loc
- exemplu

$$5E4,D_{(16)} = 5 \times 16^{2} + 14 \times 16^{1} + 4 \times 16^{0} + 13$$

 $\times 16^{-1} = 20480 + 3584 + 64 + 0,8125 =$
 $24128,8125_{(10)}$

Trecerea din baza 10 în baza d

Exemplu: $87,35_{(10)} = 1010111,01(0110)_{(2)}$

partea întreagă

$$87 / 2 = 43 \text{ rest } 1$$

$$43 / 2 = 21 \text{ rest } 1$$

$$21/2 = 10 \text{ rest } 1$$

$$10 / 2 = 5 \text{ rest } 0$$

$$5/2 = 2 \text{ rest } 1$$

$$2/2 = 1 \text{ rest } 0$$

$$1/2 = 0 \text{ rest } 1$$

$$87_{(10)} = 1010111_{(2)}$$

(cifrele se scriu de jos în sus)

partea fracționară

$$0.35 \times 2 = 0.7 + 0$$

$$0.7 \times 2 = 0.4 + 1$$

$$0.4 \times 2 = 0.8 + 0$$

$$0.8 \times 2 = 0.6 + 1$$

$$0.6 \times 2 = 0.2 + 1$$

$$0.2 \times 2 = 0.4 + 0$$

$$0.4 \times 2 = 0.8 + 0$$

(perioadă)

$$0.35_{(10)} = 0.01(0110)_{(2)}$$

Conversii între baze

- o bază este o putere a celeilalte baze
 - $-d_1 = d_2^k \Rightarrow$ fiecărei cifre în baza d_1 îi corespund exact k cifre în baza d_2
- ambele baze sunt puteri ale numărului *n*
 - conversia se poate face prin intermediul bazei n

$$703,102_{(8)} = 111\ 000\ 011,001\ 000\ 010_{(2)} =$$

$$= 0001 \ 1100 \ 0011,0010 \ 0001 \ 0000_{(2)} =$$

$$=1C3,21_{(16)}$$

Aproximare și depășire

- o reprezentare are *n* cifre la partea întreagă și *m* cifre la partea fracționară
 - -n și m sunt finite
- dacă numărul necesită mai mult de *n* cifre la partea întreagă, se produce depășire
- dacă numărul necesită mai mult de *m* cifre la partea fracționară, apare o aproximare
 - de cel mult 2^{-m}

IV.3. Reprezentările BCD și în exces

Reprezentarea BCD

- numerele sunt reprezentate ca şiruri de cifre în baza 10
 - fiecare cifră este reprezentată pe 4 biţi
- utilitate
 - aplicații de tip business (financiar etc.)
 - afișaje în baza 10 (temperatură etc.)
- calculele sunt dificil de efectuat
 - adunare nu se poate utiliza direct un sumator

Adunarea BCD (1)

problemele apar atunci când suma cifrelor depășește 9

Adunarea BCD (2)

- soluţie
 - se adună 6 (0110) atunci când suma depăşeşte 9
- temă: de ce?

Sumator BCD

Reprezentarea în exces

- pornește de la scrierea pozițională
 - numere pozitive
 - pe *n* biți, intervalul reprezentabil este $0 \div 2^n$ -1
- reprezentarea Excess-k
 - pentru fiecare șir de biți, din valoarea care îi
 corespunde în scrierea pozițională se scade k
 - intervalul reprezentabil devine $-k \div 2^n k 1$

Exemplu: Excess-5

Binar	Zecimal	Excess-5	Binar	Zecimal	Excess-5
0000	0	-5	1000	8	3
0001	1	-4	1001	9	4
0010	2	-3	1010	10	5
0011	3	-2	1011	11	6
0100	4	-1	1100	12	7
0101	5	0	1101	13	8
0110	6	1	1110	14	9
0111	7	2	1111	15	10