

Mintオペレーティングシステム上の KVMの評価

平成25年2月15日 岡山大学 工学部 情報工学科 仲尾 和祥

研究背景

<mark>I ロ の 回 昇 仮</mark>で複数のOSを走行させる方式が研究されている

- < KVM(Kernel-based Virtual Machine) >
 - (1) 複数のOSを走行させるソフトウェア(ハイパーバイザ)
 - (2) Linuxカーネルに組み込まれたハイパーバイザ
- <Mintオペレーティングシステム(Mint)>
 - (1) ハードウェア上で複数のOSを独立に走行させるOS

	KVM	Mint
利点	各OSが資源を共有可能	各OSが独立に走行可能
欠点	OS間に処理負荷の影響が存在	資源分割の粒度が大

Mintを利用し、複数のハイパーバイザを動作させる方式を提案

Unlimited Pages and Expai

Mintを利用した Med Features YZ 安文 / \イノパーノバイザの動作

- (1) 各OS nodeに計算機資源を分割して占有
 - OS nodeは独立して走行可能
- (2) 各OS node上でKVMを使用し、VMを動作
 - 📥 計算機資源を効率的に分配可能

Mintの構成例

(構成2) OS node0

(構成3) OS node0,1

(構成5) OS node0/KVM/GuestOS1

(構成6) OS node0/KVM/GuestOS1, OS node1/KVM/Guest2

評価構成

(構成2) OS node0

(構成3) OS node0,1

(構成4) Vanilla Linux1/KVM/GuestOS1

(構成5) OS node0/KVM/GuestOS1

(構成6) OS node0/KVM/GuestOS1,OS node1/KVM/Guest2

(構成7) Vanilla Linux2/KVM/GuestOS1,2

評価方法

<評価目的>

- (1) Mintの基本性能の測定
- (2) MintでKVMを使用した場合の性能
- (3) Mintで複数のKVMを使用し、VMを 分散して動作させた場合の性能

<評価プログラムの測定項目>

- (1) I/O処理 磁気ディスク領域へのアクセスとブ ロック単位の読み込みの性能
- (2) CPU処理 CPU処理の性能
- (3) メモリ処理 メモリのランダムな位置へアクセス する処理の性能

Thank you for using PDF Complete. 1 理とメモリ処理の評価

Unlimited Pages and Expanded Features

<CPU処理の評価>

構成1~7において,処理実行時間は同等

CPU処理はVanilla Linux, Mint, KVMの構成に影響しない

<メモリ処理の評価>

- (1) 読み込むデータサイズが1024KBになると処理実行時間は 長くなる
- (2) KVMを使用する場合の構成において, 処理実行時間は 同等

<u>メモリ処理の性能はKVMを使用するか否かで変化する</u>

💵の評価(個別処理)

- (1)(構成1)と(構成2)の処理実行時間は同等
- (2)(構成4)と(構成5)の処理実行時間は同等

🏻 理の評価(個別処理)

🗓 理の評価(個別処理)

💵の評価(個別処理)

- (1) (構成1)と(構成2)の処理実行時間は同等
- (2)(構成4)と(構成5)の処理実行時間は同等

□理の評価(同時処理)

(構成6)より(構成7)の方が処理実行時間が長い

KVMを1個で動作させるより、Mintで複数のKVMを動作させる方が I/O処理は速くなる

□理の評価(同時処理)

Unlimited Pages and Expanded Features 0.3秒(8%) 处理実行時間**[s]** 0.2 2.2 1 1 Guest Guest **QEMU** OS1 **QEMU** OS₂ OS OS **KVM** KVM node0 node1 1024KB H/W (構成6) OS node0/KVM/GuestOS1,OS node1/KVM/Guest2 VM/GuestOS2 2/KVM/GuestOS2 Guest Guest **QEMU** OS2 **QEMU** OS₁ 長い Vanilla **KVM** Linux2 H/W 作させる方が (構成7) Vanilla Linux2/KVM/GuestOS1,2

心理の評価(同時処理)

(構成6)より(構成7)の方が処理実行時間が長い

KVMを1個で動作させるより、Mintで複数のKVMを動作させる方が I/O処理は速くなる

まとめ

く実績>

- (1) KVMの処理の流れの調査
- (2) MintへのKVMの導入
- (3) Mintを利用して複数のハイパーバイザを動作する方式の評価
 - (A) CPU処理の性能は構成によって変化しない
 - (B) メモリ処理の性能はハイパーバイザの個数で変化しない
 - (C) I/O処理の性能は処理負荷の影響が分散して高くなる

く残された課題>

(1) ベンチマークを使用した評価

予備スライド

仮想計算機方式

Click Here to upgrade to Unlimited Pages and Expanded Features

- <ベアメタルハイパーバイザ方式>
 - (1) ハードウェア上で直接ハイパーバイザを動作させる方式
 - (2) 仮想化のオーバヘッドが小さい

<ホストOS方式>

- (1) ホストOSのプロセスとしてハイパーバイザを動作させる方式
- (2) 仮想化のオーバヘッドが大きい

複数/\\イ/\(\)一/\\イザの動作(1/4)

複数/\\イ/\パー/バイザの動作(2/4)

である **Manage of Expanded Features** イパーバイザの動作(3/4)

複数/\\イバーバイザの動作(4/4)

Thank you for using PDF Complete. nel-based Virtual Machine)

Inlimited Pages and Expanded Features

<QEMUの役割>

- (2) ハードウェアのエミュレート

<KVMの役割>

- (1) システムコールの発行 (1) CPUの動作モードの変更
 - (2) 例外処理の判断
 - (3) VMの作成

<KVMの特徴>

- (1) Linuxカーネルに組み込まれたハイパーバイザ
- (2) 各VMはホストOSのユーザプロセスとして動作可能.

ペレーティングシステム

<Mintの設計方針>

- (1) 走行している全てのOS ノードが相互に処理負 荷の影響を与えない
- (2) 全てのOSノードが入出力 機能を十分に利用できる

<計算機資源の分割>

- (1) CPU コア単位で分割し、各OSノードが占有
- (2) メモリ 空間分割し、各OSノードに分配
- (3) 1/0デバイス デバイス単位で分割し、指定されたデバイスを各OSノードが占有

wse period has ended. Thank you for using PDF Complete. **ITHIN YOU FOR USING PDF Complete.** **ITHIN YOU FOR USING PDF COMPLETE.**

Click Here to upgrade to
Unlimited Pages and Expanded Features

CPUの仮想支援化機能による保護 non-root mode root mode ← ゲストモード ユーザ空間上の ゲストOSやその上で リングプロテクションによる モギ AP 動作するAP ring3 力 ring3 命令の実行 特権命令の実行 七 ring0 ring0 ・ネルモ 保護 力。

)処理の流れ(CPU処理)

処理の流れ(メモリ処理)

Thank you for using PDF Complete. D処理の流れ(I/O処理)

Click Here to upgrade to Unlimited Pages and Expanded Features

Unlimited Pages and Expanded Features

『価構成(個別処理)

Vanilla Linux1 H/W

(構成1) Vanilla Linux1

(構成4) Vanilla Linux1/KVM/GuestOS1

(構成2) OS node0

(構成5) OS node0/KVM/GuestOS1

wse period has ended. Thank you for using PDF Complete. 「Thank you for using PDF Complete.」「個環境(個別処理)

構成番号	ホストOS メモリ,HDD,コア数	ゲストOS メモリ, HDD, コア数
構成1	Vanilla Linux 512MB, HDD1, 1	
構成2	OS node0 512MB, HDD1, 1	
構成4	Vanilla Linux 512MB, HDD1, 1	Vanilla Linux 512MB, HDD1, 1
構成5	OS node0 512MB, HDD1, 1	Vanilla Linux 512MB, HDD1, 1

『価構成(同時処理)

Click Here to upgrade to Unlimited Pages and Expanded Features

(構成6) OS node0/KVM/GuestOS1,OS node1/KVM/GuestOS2

(構成7) Vanilla Linux2/KVM/GuestOS1,2

wee period has ended. Thank you for using PDF Complete. 「一面環境(同時処理)

構成番号	ホストOS メモリ,HDD,コア数	ゲストOS メモリ, HDD, コア数		
構成3	OS node0 512MB, HDD1, 1			
	OS node1 512MB, HDD2, 1			
構成6	OS node0 512MB, HDD1, 1	Vanilla Linux 512MB, HDD1, 1		
	OS node1 512MB, HDD1, 1	Vanilla Linux 512MB, HDD2, 1		
構成7	Vanilla Linux	Vanilla Linux 512MB, HDD1, 1		
	1024MB, HDD1, 2	Vanilla Linux 512MB, HDD2, 1		

処理の評価(個別処理)

処理実行時間が全ての構成で同等

CPU処理の性能はKVMを使用しても同等

処理の評価(同時処理)

■(構成3-A)OS node0

■(構成3-B)OS node1

■ (構成6-A)OS node0/KVM/GuestOS1

■ (構成6-B)OS node1/KVM/GuestOS2

■ (構成7-A)Vanilla Linux2/KVM/GuestOS1

■ (構成7-B)Vanilla Linux2/KVM/GuestOS2

処理実行時間が全ての構成で同等

処理実行回数[M回]

CPU処理の性能はKVMを使用しても同等

処理の評価(個別処理)

- (1) KVMを使用し、読み込むデータサイズを1024KBに指定すると 処理実行時間が長い
- (2) Vanilla Linux1とOS node0の処理実行時間は同等
- (3) Vanilla Linux1/KVM/GuestOS1とOS node0/KVM/GuestOS1の 処理実行時間は同等

処理の評価(同時処理)

- (1) KVMを使用し、読み込むデータサイズを1024KBに指定すると 処理実行時間が長い
- (2) メモリにアクセスするCPUコアは1個のため、個別処理に比べ 処理実行時間が長い
- (3) OS node0/KVM/GuestOS1,OS node1/KVM/GuestOS2と Vanilla Linux/KVM/GuestOS1,2の処理実行時間は同等