CompSci 161 Spring 2021 Lecture 3: InsertionSort and HeapSort

2 InsertionSort

₹ ← is sorted and contains only elements that were these previously

Idea:

85	24	63	45	17	31	96	50
24	85	63	45	17	31	96	50
24	63	85	45	17	31	96	50

Insertion Sort for $j \leftarrow 2$ to n do key $\leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > ke do $A[i+1] \leftarrow A[i]$ i = i - 1 $A[i+1] \leftarrow key$ We get host case behavior always true? worst case behavior

best:
$$\frac{5}{5}c$$
 is convis $O(n)$
 $\frac{5}{5}c^2$ worst $\frac{5}{5}$ is $O(n^2)$

InsertionSort A[1...j-1] sorted, $for j \leftarrow 2 \text{ to } n \text{ do} \qquad \text{value that storted}$ $key \leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > key do $A[i+1] \leftarrow A[i] \text{ removes one inverted pair}$ i = i - 1 $A[i+1] \leftarrow \text{key}$

- ▶ Why is InsertionSort correct?
- What is true *every time* we check the **for** loop? (including the time we find j > n and stop)

- About that running time ...
 - ▶ Why are we so concerned with worst case?

Exp. # inversions in an array

- ightharpoonup Ordered pair (i,j) is called an *inversion* if :
 - i < j but
 - \triangleright j preceeds i in the permutation.
- \triangleright Six inversions in the permutation 3, 5, 1, 4, 2.
- ▶ If all permutations are equally likely, what is expected number of inversions in a permutation of the first *n* positive integers?

Exp. # comparisons by InsertionSort

- ▶ An expected n(n-1)/4 inversions in a permutation of the first n positive integers.
- ► Average number of comparisons used by INSERTIONSORT to sort *n* distinct elements?
- ightharpoonup X = # of comparisons used by the algorithm.
- \triangleright $X_i \#$ of comparisons used to insert a_i
- $X = X_2 + X_3 + ... + X_n$
- \triangleright $E(X) = E(X_2) + E(X_3) + ... + E(X_n)$
- ▶ We now need only to determine each $E(X_i)$.

How tall is a heap?

Claim: A heap with *n* entries has height $h = |\log n|$

- ► How many nodes in level i < h? 2^i
- ► How many nodes prior to level *h*?

$$2^{\circ} + 2^{'} + 2^{2} + \dots + 2^{h-1} = 2^{h} - 1$$

► Level *h* has at most how many?

$$\begin{bmatrix} 1 & 2^h \end{bmatrix} \qquad n \ge 2^h - 1 + 1$$

$$n \le 2^h - 1 + 2^h$$

$$= 2^{h+1} - 1$$

10 HeapSort

Idea: Use a heap.

- ► Find max, put max at end
- ► Then second-max, etc.
- ▶ Use the yet-to-be-sorted array as max heap

Heapify: make array into max heap

▶ Idea 1: insert each into growing heap

Heapify: Better way

14 | 8 | 7 16 10

- Treat array as complete tree.
- ▶ Where are leaf nodes? last n/2
- What should we do with non-leaf nodes?

How long to heapify?

- ► The cost to insert varies by height.
- Node at height h costs $\mathcal{O}(h)$.
- Cost for total is:

st for total is:
$$\frac{\sum_{h=0}^{\log_n 1} \left[\frac{n}{2^{h+1}} \right] O(h)}{\sum_{h=0}^{\log_n 1} \left[\frac{n}{2^{h+1}} \right] O(h)} \text{ is } O\left(n \right)$$

