Homework 2-3: Parallelizing a Particle Simulation Using CUDA

Andrew Chen, Xuan Jiang, and Brian Park UC Berkeley, Computer Science 267

March 2022

1 Introduction

We used variety of techniques to optimize the problem of parallelizing n-body particle simulation on the NVIDIA V100. In the remainder of this report, we describe each of our optimizations in our final submission, present results with evidence that they work, and describe attempted optimizations that did not noticeably improve overall our performance. We used the O(n) solution from our previous homework to accelerate it with CUDA using the NVIDIA V100 GPUs on Bridges-2, which are effectively the same setup on Cori, but we have more allocation hours for Bridges-2.

2 CUDA

2.1 Data Structures

- bin_ids
 This holds the head of the pointer of the next reference of the particle in the bin in particle_ids.
- particle_ids

 This is a mapping and reference of the particle ids. In it is stored len(bin_ids) linked lists, where each linked list contains the particle in that specific bin. The element inside particle_ids will point to the next index of the particle. The end of the linked list or the null pointer is encoded as -1.

2.2 Algorithm

In general, compared to using prefix sum, this saves on memory allocation, but may seem to take a hit on spatial locality, since the linked list is not stored contiguously and cannot take advantage of the GPU cache. Another tradeoff that this design has is that it does not need to sort and can append to the linked list in O(1) time using an atomic swap primitive in CUDA. Thus, the creation of the linked list can be called by a <code>__global__</code> function, although the actual appending takes O(n) time for each iteration per bin. But note that as the number of particles increase, the more bins that are created, so each bin will have a relatively small amount of particles, thus the O(n) time mentioned earlier is smaller and latency of pointer chasing is essentially hidden to a smaller constant as you increase the number of particles.

2.3 Synchronization

The only synchronization primitive that this code uses are atomic instructions atomicExch(), atomicAdd() and __syncthreads(). We need atomicExch() to append the linked list atomically and update the heads of the bin_ids table of references. We need __syncthreads() during the end of compute_forces_gpu_bin() because we rebin the particles every time after moving. This is a GPU kernel level synchronization that should ensure this correctness. Otherwise, the code may decide to bin particles without finishing moving. We also had to change the starter code and include atomicAdd() in apply_force_gpu(). In order to algorithmically speed up our code by including bidirectional iteration, we needed to add those atomics, as GPU threads would often collide and give incorrect results when updating particle metadata. This resolved the WAW (write after write) hazard we had with correctness.

2.4 Other Design Choices

Originally, we tried to use the GSI's recitation slides as a guide, using the prefix sum to compute the location of the particle_ids into bin_ids as the pointer to the location, since particles would be sorted and stored contiguously into particle_ids. But we had a lot of trouble figuring out how to make this ensure correctness, as in init_simulation everything would seem correct, but after iterations in simulate_one_step there was synchronization issues where sometimes the bins wouldn't be sorted properly. Adding synchronization primitives such as cudaDeviceSynchronize() and __syncthreads() only slowed down the code and didn't fix correctness. Due to this weird correctness bug, we started from scratch again. We had the linked list implementation in mind, but were worried that pointer chasing would incur a lot of GPU cache misses. Given that the GPU architecture is very expensive and performant on registers and memory bandwidth, this type of concern should be free and very minimal. The linked list implementation is under 4 seconds and pretty good compared to previous semester grades, we merged it into our main implementation. Ignoring correctness, the performance of prefix sum and sorting implementation was very bad, and it was probably due to the calls of cudaMemCpy to do transfer data from CPU to GPU. Fortunately, the linked list implementation resides all of its computation on the GPU memory. Surprisingly, the code is very straightforward and cleaner than the original prefix sum and sorting implementation.

3 Experimental Results

Figure 1: Log-Log Plot of Naive and GPU Implementation with Linear Behavior

Figure 2 shows the plots of the GPU optimized performance compared to the naive implementation from the starter code. We have a constant increase in performance for naive and our optimized solution is able to follow that increase but at a much lower time. This is essentially the Roofline model in effect, where we see our performance be in memory bound and change to compute bound at around 10^5 particles.

Figure 2: All Implmentations of HW 2 Compared

Interestingly, we see all of our implementations from OpenMP, MPI, and CUDA graphed together. As expected, CUDA beats all of the implementation time-wise. While benchmarking, we could not test 10 million particles on OpenMP and MPI as it would take too long. But even at 1 million particles, it's amazing to see how adding hardware improves speed by a lot. Note that OpenMP was run on 68 threads on Cori, and MPI was run on 2 nodes with 68 processes (total 136 processes). Both were on Cori KNL nodes while CUDA was on bridges-2 node with 1 Nvidia Tesla V100 GPU (a whopping 5120 CUDA cores).

3.1 Performance Breakdown

Here is a dump of the profiling log from nvprof for 1000 particles:

Туре	Time(%)	Time	Calls	Avg	Min	Max	Name				
GPU activities:	63.15%	7.8961ms	1000	7.8960us	3.8400us	9.3760us	compute_forces_gpu_bin				
					(p	article_t*	ticle_t*, int, int, double, int*, int*)				
	20.81%	2.6014 ms	1000	2.6010us	2.5590us	2.8480us	move_gpu				
					(p	<pre>(particle_t*, int, double)</pre>					
	15.99%	$1.9989 \mathrm{ms}$	1001	1.9960us	1.9190us	2.6880us	binning				
					-	<pre>(particle_t*, int, int, double, int*, int*</pre>					
	0.05%	6.7520us	1	6.7520us	6.7520us	6.7520us	[CUDA memcpy HtoD]				
API calls:	90.32%	213.51ms	3	71.170ms	3.2540us	213.50ms	cudaMalloc				
	4.72%	11.163ms	3001	3.7190us	3.2580us	32.592us	cudaLaunchKernel				
	4.37%	10.341ms	1001	10.330us	1.1000us	18.366us	cudaDeviceSynchronize				
	0.27%	632.12us	1	632.12us	632.12us	632.12us	cuDeviceTotalMem				
	0.25%	592.64us	101	5.8670us	124ns	264.68us	cuDeviceGetAttribute				
	0.04%	87.428us	1	87.428us	87.428us	87.428us	cuDeviceGetName				
	0.02%	39.854us	1	39.854us	39.854us	39.854us	cudaMemcpy				
	0.00%	10.101us	1	10.101us	10.101us	10.101us	cudaFree				
	0.00%	9.7660us	1	9.7660us	9.7660us	9.7660us	cuDeviceGetPCIBusId				
	0.00%	1.3440us	2	672ns	144ns	1.2000us	cuDeviceGet				
	0.00%	992ns	3	330ns	174ns	634ns	cuDeviceGetCount				
	0.00%	237ns	1	237ns	237ns	237ns	cuDeviceGetUuid				

Unless profiling creates some overhead, we know that in general, it takes around 0.020 seconds or 20ms for 1000 particles. We see that 63% of the GPU's time is spent on compute_forces_gpu, which is obviously the bottleneck even

on serial implementation. Surprisingly, not that much time is spent on move_gpu, but the analysis is understandable as it doesn't do anything computationally expensive. And impressively, binning takes 15% of the GPU's time. It seems very fast to append to the linked list, and it's satisfying to know that pointer chasing doesn't seem to incur that much overhead or slowdown in performance given how binning works. As binning is mostly memory movement and move_gpu and compute_forces_gpu_bin are arithmetic computations, it shows us that most of our code is in compute bound, which is a good sign.

For fun, a dump of 1 million particles is shown below:

Туре	Time(%)	Time	Calls	Avg	Min	Max	Name		
GPU activities:	53.99%	688.40ms	1000	688.40us	641.85us	844.57us	compute_forces_gpu_bin		
					(particle_t*, int, int, double, int*, int;				
	33.89%	432.18ms	1001	431.75us	398.94us	484.45us	binning		
					<pre>(particle_t*, int, int, double, int*</pre>				
	11.29%	143.91ms	1000	143.91us	137.92us	150.30us	move_gpu		
					<pre>(particle_t*, int, double)</pre>				
	0.83%	10.630ms	1	10.630ms	10.630ms	10.630ms	[CUDA memcpy HtoD]		
API calls:	82.36%	1.26246s	1001	1.2612ms	1.3870us	1.6215 ms	${\tt cudaDeviceSynchronize}$		
	15.87%	243.32ms	3	81.105ms	236.70us	242.57ms	cudaMalloc		
	0.94%	14.429 ms	3001	4.8070us	3.2350us	60.706us	cudaLaunchKernel		
	0.71%	10.834ms	1	10.834ms	10.834ms	10.834ms	cudaMemcpy		
	0.04%	632.14us	1	632.14us	632.14us	632.14us	${\tt cuDeviceTotalMem}$		
	0.04%	578.40us	101	5.7260us	126ns	259.78us	${\tt cuDeviceGetAttribute}$		
	0.03%	484.55us	1	484.55us	484.55us	484.55us	cudaFree		
	0.01%	102.29us	1	102.29us	102.29us	102.29us	${\tt cuDeviceGetName}$		
	0.00%	5.8710us	1	5.8710us	5.8710us	5.8710us	${\tt cuDeviceGetPCIBusId}$		
	0.00%	1.5100us	3	503ns	167ns	1.1120us	${\tt cuDeviceGetCount}$		
	0.00%	807ns	2	403ns	144ns	663ns	cuDeviceGet		
	0.00%	377ns	1	377ns	377ns	377ns	cuDeviceGetUuid		

Again, we see that with profiling, the scaling of particles scales well with the simulation. There are small shifts in percentages, such as binning and computing forces, but that is probably mainly due to the ratio between particles and bins and the number of times it can map to GPU kernels threads. At some point, binning takes more execution time then move for a certain number of particles.

Here are more visuals to depict the profiling of GPU execution:

Figure 3: Profiling of CUDA

Figure 4: Profiling of CUDA

Figure 5: Profiling of CUDA

4 Can We Do Better?

If given enough time, abandoning the linked list implementation and redoing the prefix sum could give us better performance. But considering that a student on Piazza reached 1.5 seconds on 1 million particles (ours is around 1.26s), we considered this as our stopping point. To implement the prefix sum required more code and a lot more debugging, and it was frustrating to use cuda-gdb as switching into GPU kernel threads was often difficult to understand and had a high learning curve. Instead, we printed statements by transferring copies to CPU for correctness.

5 Contributions

Brian contributed to all of the code and report. The record breaking 1.26s simulation for 1 million particles was done by him. Andrew helped with a few edge cases and debugging.