SEPTEMBER 1982

Population Ecology of the Mallard VII. Distribution and Derivation of the Harvest

DESCRIPTION STATEMENT A

Approved for public releases
Distribution Universed

19970319 064

Fish and Wildlife Service

U.S. Department of the Interior

RESOURCE PUBLICATIONS

This publication of the Fish and Wildlife Service is a miscellaneous series for separately issued popular or instructional materials dealing with investigations related to wildlife and sport fish. Each is published as a separate paper. The Service distributes a limited number of these reports for the use of Federal and State agencies and cooperators. A list of recent issues appears on inside back cover.

Library of Congress Cataloging in Publication Data

(Revised)

Main entry under title: Population ecology of the mallard.

(v. 1-3: Resource publication of the Bureau of Sport Fisheries and Wildlife, 105, 115, 119) (v. 4-: Resource publication of the Fish and Wildlife Service, 125, 128, 130, 147)

Beginning with v. 4- issued by the U.S. Fish and Wildlife Service. Includes bibliographies.

Supt. of Docs. no.: I 49.66:105

CÔNTENTS: 1. Anderson, D. R. and Henny, C. J. A review of previous studies and the distribution and migration from breeding areas — 2. Pospahala, R. S., Anderson, D. R., and Henny, C. J. Breeding habitat conditions, size of the breeding populations, and production of indices — [etc.] — v. 7. Distribution and derivation of the harvest/Robert E. Munro, Charles F. Kimball.

1. Mallard — Ecology. 2. Bird populations — North America. 3. Waterfowl management — North America. 4. Birds — Ecology. 5. Birds — North America — Ecology. I. Anderson, David Raymond, 1942 — II. Series: Resources publication (United States. Bureau of Sport Fisheries and Wildlife); 105, etc. III. Series: Resource publication Fish and Wildlife Service; 125.

S914.A3 no. 105, etc.

333.95'4'0973s

72-603502

[QL696.A52]

[639.9'7841]

POPULATION ECOLOGY OF THE MALLARD

VII. Distribution and Derivation of the Harvest

By Robert E. Munro Charles F. Kimball

UNITED STATES
DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE

Resource Publication 147

Washington, D.C. • 1982

Contents

Pag	-
Abstract	1
Methods	2
Definition of Terms	2
Sources of Data	2
Procedures	3
Results and Discussion	. 5
Preseason Age and Sex Structure in the Continental Population	. 5
Recovery Distribution Comparisons by Age, Sex, Type of Recovery, and Year	6
Locals versus immatures	6
Immatures versus adults	. 7
Males versus females	. 8
Direct versus indirect recoveries	. 9
Direct adults versus indirect immatures	11
Direct recovery distributions during consecutive years	П
Indirect recovery distributions during consecutive years	13
Summary of age, sex, type of recovery, and between-year comparisons	lЗ
Becovery Date Comparisons	13
Distribution of Mallard Harvest from Breeding Reference Areas	18
Comparison of Harvest Distribution from Banding Data and Harvest	
Survey Data	19
Derivation of Mallard Harvest from Breeding Reference Areas	19
Within-season Derivation of the Mallard Harvest	10
Harvest Derivation Implications	11 10
Summary4	±Ο 4Ω
Acknowledgments4	±Θ 4Ω
References	10
APPENDIX A. Mallard Breeding Population Indices, Population Weights, and	5 9
Band Reporting Rate Adjustments	52 57
APPENDIX B. Recovery Distribution Comparisons	20
APPENDIX C. Inferences Regarding Variation in Recovery Dates	
APPENDIX D. Derivation of the Total Mallard Harvest from Major Reference Areas	90
Reference Areas APPENDIX E. Temporal (within-season) Derivation of the Total	,,,
Mollard Harvest	08

Population Ecology of the Mallard VII. Distribution and Derivation of the Harvest

by

Robert E. Munro and Charles F. Kimball

U.S. Fish and Wildlife Service Migratory Bird and Habitat Research Laboratory Division of Wildlife Ecology Research Laurel, Maryland 20708

Abstract

This is the seventh in a series of comprehensive reports on population ecology of the mallard (Anas platurhynchos) in North America. Banding records for 1961-1975 were used, together with information from previous reports in this series, to estimate annual and average preseason age and sex structure of the mallard population and patterns of harvest distribution and derivation. Age ratios in the preseason population averaged 0.98 immatures per adult and ranged from 0.75 to 1.44. The adult male per female ratio averaged 1.42. The voung male per female ratio averaged 1.01. Geographic and annual differences in recovery distributions were associated with age, sex, and years after banding. Such variation might indicate that survival or band recovery rates, or both, change as a function of number of years after banding, and that estimates of these rates might thus be affected. Distribution of the mallard harvest from 16 major breeding ground reference areas to States, Provinces, and flyways is tabulated and illustrated. Seasonal (weekly) breeding ground derivation of the harvest within States and Provinces from the 16 reference areas also is tabulated. Harvest distribution, derivation, and similarity of derivation between harvest areas are summarily illustrated with maps. Derivation of harvest appears to be consistent throughout the hunting season in the middle and south central United States, encompassing States in both the Central and Mississippi flyways. However, weekly derivation patterns for most northern States suggest that early dates of hunting result in relatively greater harvest of locally derived mallards, in contrast to birds from more northern breeding areas.

This is the seventh in a series of reports on the population ecology of the mallard (Anas platurhynchos). The report series uses a sequential approach whereby information presented in earlier reports is used for background and development in subsequent reports. The first report (Anderson and Henny 1972) discussed the history of waterfowl research and management in North America, reviewed previous mallard studies, and delineated 16 major and 44 minor reference areas for the breeding range of the mallard. The second report (Pospahala et al. 1974) discussed mallard breeding habitat conditions, breeding mallard populations, and productivity. Breeding population estimates, established according to reference areas given in the first report, are used in our report. Anderson et al. (1974) presented a bibliography of published literature on the mallard in the third report in the series.

The fourth report (Martin and Carney 1977) reviewed and summarized long-term hunting regulations, duck stamp sales, and harvest survey statistics with special reference to the mallard. Post-1960 harvest data were summarized by harvest area, State, and flyway. The fifth report (Ander-

son 1975) presented annual estimates of survival, band recovery rates, and harvest rates of the mallard in North America. These estimates were made for each age and sex category banded preseason in previously defined reference areas (Anderson and Henny 1972). The sixth report (Anderson and Burnham 1976) examined the effect of hunting on annual survival rates of the mallard.

The following objectives are addressed in this report:

- Estimate preseason age and sex structure of the continental population
- Compare for all age and sex categories the geographic distribution of recoveries from major reference areas
- Describe geographic distribution of the harvest among States and Provinces as indicated by band recoveries from each major breeding ground reference area
- Describe geographic and seasonal derivation of the harvest within each State and Province as represented by population-weighted band recoveries from the various breeding ground reference areas.

Several studies of the distribution of mallard band recoveries from various locations in the breeding range were cited in Anderson and Henny (1972). However, using band recoveries to represent distribution and derivation of the harvest is more complex. Crissey (1955) discussed the problems associated with using banding data to determine waterfowl migration and distribution. Previous harvest distribution and derivation studies include those of Geis (1971, 1972) on mallards, Geis et al. (1971) on black ducks (Anas rubripes), Bowers and Martin (1975) and Bowers and Hamilton (1978) on wood ducks (Aix sponsa), and Stewart et al. (1958) and Geis (1974) on canvasbacks (Aythya valisineria).

Methods

Definition of Terms

Age at banding:

Adult - a bird known to have hatched before the calendar year of banding.

Immature—a young bird capable of sustained flight, hence not necessarily hatched in the vicinity of banding. Local—a young bird incapable of sustained flight, thus hatched locally in the vicinity of banding.

Young—a bird known to have hatched during the calendar year in which it was banded (i.e., immature or local).

Band reporting rate — the proportion of banded birds taken by hunters that is reported to the Bird Banding Laboratory (see Henny and Burnham 1976).

Breeding population estimates—annual population estimates of adult birds in breeding reference areas, based primarily on aerial surveys (see Pospahala et al. 1974).

Breeding ground reference area — several preseason banding stations located in the same general area that display similar recovery distribution patterns (see Anderson and Henny 1972). Several of these areas (SE Saskatchewan, SW Manitoba, Missouri River Basin, and Great Lakes collectively) are used in this report to approximate the proposed Mid-Continent Waterfowl Management Unit (Office of Migratory Bird Management, personal communication).

Harvest-retrieved hunting kill.

Harvest areas — States and Provinces except (1) States from Montana south to New Mexico, which are split along a boundary between the Pacific and Central flyways, and (2) Central Flyway States from North Dakota south to Texas, which are split along the 100th meridian. The latter division separates the High Plains Mallard Management Unit from the rest of the Central Flyway, which we will refer to as the "Low Plains" (Hyland and Gabig 1980).

Harvest distribution — for each breeding ground reference area, the distribution of harvest (i.e., band recoveries adjusted for reporting rate).

Harvest derivation — for each harvest area, the derivation (sources) of harvest (i.e., band recoveries adjusted for reporting rate and weighted for population size).

Harvest rate — the proportion of the population harvested, estimated by dividing the recovery rate by the band reporting rate.

Harvest survey – the waterfowl questionnaire and wingcollection survey, collectively.

Hunting season—a variable period within the inclusive dates of 1 September through 15 February.

Hunting season shot (HSS) code—the number of hunting seasons that a bird survived before it was shot.

Preseason banding period – 1 July through 30 September, except when locally curtailed by early hunting seasons.

Preseason population—the population present during the preseason banding period. Preseason age and sex structure pertains to the population at the midpoint of the banding period.

Recovery — a banded bird killed or found dead and reported to the Bird Banding Laboratory.

Direct recovery—a banded bird recovered the first hunting season after banding (HSS-1).

Indirect recovery—a banded bird recovered in any hunting season following the first hunting season after banding (HSS2-N, as in 2nd through Nth season).

Recovery rate—the proportion of banded birds that is recovered and reported to the Bird Banding Laboratory.

Waterfowl questionnaire surveys—annual questionnaire surveys, conducted independently by the United States Fish and Wildlife Service and the Canadian Wildlife Service, to estimate the harvest of major categories of waterfowl (e.g., ducks, geese).

Waterfowl wing-collection surveys — annual collections of wings submitted by hunters, which are used to estimate the species, age, and sex composition of the harvest.

Sources of Data

Banding and Recovery Data

Records of "normal wild" mallards banded preseason from 1961 through 1975 are used in this report. Selected recovery records include only birds shot or found dead during the 1961–75 hunting seasons that had been banded within the study years. These selections provided 697,530 banding records and 109,588 recovery records.

Breeding Population Surveys

Aerial surveys of waterfowl on their breeding grounds were initiated in 1947. These surveys have been described by Stewart et al. (1958) and discussed by Crissey (1957), Diem and Lu (1960), and Martinson and Kaczynski (1967). For 1955–1973, Pospahala et al. (1974) estimated that the aerial survey sampled an average of 84% of the North American mallard breeding population. Population estimates are available for mallards breeding in some areas

(3)

outside those covered by aerial surveys. These additional estimates are based on Provincial and State surveys and subjective estimates from waterfowl biologists (Pospahala et al. 1974). Mallard breeding population estimates used in this report are shown in Appendix Table A-1.

Band Reporting Rates

Henny and Burnham (1976) identified three factors, based on results of a recent reward band study, that influence band reporting rates: (1) band collecting by conservation officials, (2) distance of band recovery from the banding site, and (3) general intensity of banding effort relative to hunter success. Band reporting rate adjustments, which were applied only to recoveries that were submitted directly by hunters, are shown in Table A-2.

Harvest Surveys

From 1952 to 1960 the size and species composition of the waterfowl harvest in the United States were estimated through an annual mail questionnaire survey of waterfowl hunters. In 1961 the questionnaire survey was supplemented by a wing-collection survey, thus allowing a more direct estimate of (1) the species composition of the harvest (formerly obtained through the questionnaire), and (2) age and sex composition of the species harvested. Comparable information was not available for the Canadian waterfowl harvest until 1967. Details concerning the harvest surveys are presented in Martin and Carney (1977). Harvest survey data are used in this report to estimate (1) age and sex structure in the continental mallard population before the hunting season, and (2) harvest distribution for comparison with that shown by banding data analysis.

Procedures

Estimation of Annual Age and Sex Structure of the Preseason Population

Banding and recovery data, when used to estimate harvest derivation, require weighting to adjust for variation in populations and banding effort. We therefore need to estimate the preseason age and sex structure of the population to better utilize estimates of mallard numbers in the various breeding ground reference areas. This information. combined with banding effort, provides an estimate of the number of mallards represented by each banded bird as shown in the following procedures.

Breeding population estimates (\hat{B}) apply to an unknown mix of adult males and adult females. We need an estimate of the sex composition of the population because the sexes are not banded in proportion to their abundance, and are known to differ in likelihood of survival and other characteristics (Anderson 1975). We also need an estimate of the production of young in order to include young birds and adults in the harvest estimates. These needs are met by making "indirect population estimates" for each age and sex category. If we use an independent estimate of the total mallard harvest (H) provided by the harvest survey for year t, then an estimate of the continental preseason population (N_t) can be made for each year:

$$\hat{N}_t = \hat{H}_t / \hat{h}_t$$
, where \hat{h}_t is the total harvest rate for year t.

The total harvest rate for a given year is computed as the sum (over the 16 major reference areas) of the products of the harvest rate in year t from area i $(\hat{h}_{t,i})$ and the proportion of the continental breeding population estimate in year t from area $i(\hat{B}_{t,i}/\hat{B}_{t})$:

$$\hat{h}_t = \sum_{i=1}^{16} (\hat{h}_{t,i}) (\hat{B}_{t,i}/\hat{B}_t)$$

If we let AM, AF, YM, and YF represent adult males, adult females, young males, and young females, respectively, then the equation for estimating the continental preseason population of adult males $(N_{t,AM})$ for a given year is:

$$\hat{N}_{t,\text{AM}} = \hat{H}_{t,\text{AM}} / [\sum_{i=1}^{16} (\hat{h}_{t,\text{AM},i}) (\hat{B}_{t,i} / \hat{B}_{t})]$$
 (1)

The age and sex structure defined by these indirect estimates (Equation 1) provided our estimate of the preseason age and sex structure of the continental population.

Each reference area is allocated a portion of the continental population corresponding to the size of its breeding population estimate:

$$\hat{N}_{t,\text{AM},i} = [\hat{N}_{t,\text{AM}}/\hat{N}_{t,(\text{AM}+\text{AF})}] \hat{B}_{t,i},$$
where $i = 1, 2, ..., 16$ areas
$$\hat{N}_{t,\text{AF},i} = [\hat{N}_{t,\text{AF}}/\hat{N}_{t,(\text{AM}+\text{AF})}] \hat{B}_{t,i}$$
(3)

Assuming an even sex ratio for young birds (Bellrose et al. 1961; Anderson 1975) in the population,

$$\hat{N}_{t,\text{YM},i} = \hat{N}_{t,\text{YF},i} = \frac{1}{2} \left[\hat{N}_{t,(\text{YM}+\text{YF})} / \hat{N}_{t,(\text{AM}+\text{AF})} \right] \hat{B}_{t,i}$$
 (4)

Thus the age and sex structure of the population assigned to each reference area is the same as that of the continental population.

Assumptions inherent in the above formulations include (1) the populations remain unchanged during the preseason banding period; (2) the banded samples are representative of the populations with respect to mortality, movement, and migration; (3) the harvest area (United States) is large enough to include an adequate sample from all banded populations; (4) recruitment is uniform among all populations; (5) the adult sex ratio is uniform among all populations; and (6) band reporting rates are accurately estimated.

Unfortunately, movement (1) between the time of survey (May) and banding (July, August, and September) occurs to an unknown extent (e.g., Crissey 1955); banding (2) is not widespread within all reference areas; age and sex ratios (4, 5) vary over the breeding range, and band reporting rates (6) may not be accurately estimated (Conroy and

Williams 1981). However, we cannot obtain appropriate data for use in an alternative procedure, i.e., one that recognizes differences among breeding reference areas in population age and sex structure. Thus we are limited to the approach described in the above equations.

Estimation of Harvest and Harvest Rate of the Banded Sample

The harvest of banded birds and harvest rates of the banded samples are estimated as shown below, because all recovered bands are not reported. Let

 $N'_{t,i}$ = the number of birds banded in year t, area i;

 $R'_{t,i}$ = the number of birds banded in year t, area i, and recovered in the hunting season of year t;

 $\hat{\mathbf{f}}_{t,i}$ = the estimated recovery rate $(R'_{t,i}/N'_{t,i})$ of the banded sample in year t, area i; and

 $\hat{\lambda}_t$ = the reporting rate for year t, as estimated by Henny and Burnham (1976).

The number of banded birds harvested $(\hat{H}'_{t,i})$ is estimated by the number of banded birds recovered divided by the reporting rate:

$$\hat{H}'_{t,i} = R'_{t,i}/\hat{\lambda}_t$$

The estimated harvest rate $(\hat{h}_{t,i})$ of the banded sample equals the recovery rate divided by the reporting rate:

$$\hat{h}_{t,i} = \hat{f}_{t,i}/\hat{\lambda}_t$$

Estimation of Harvest of the Population

Harvest estimation relies upon the relationship described by the Petersen estimate or "Lincoln Index." If we let

 $\hat{N}_{t,i}$ = estimated number of birds in the *i*th population where $i = 1, 2, \ldots, 16$,

 $\hat{H}_{t,i}$ = estimated number of birds harvested from the ith population,

 $N'_{i,i}$ = number of banded birds in the *i*th population, and

 $\hat{H}'_{t,i}$ = estimated number of banded birds harvested from the *i*th population, then

$$\hat{H}_{t,i}/\hat{N}_{t,i} = \hat{H}'_{t,i}/N'_{t,i} \tag{5}$$

and

$$\hat{H}_{t,i} = \hat{H}'_{t,i} (\hat{N}_{t,i} / N'_{t,i}) \tag{6}$$

Equation (6) emphasizes the concept of $(\hat{N}_{t,i}/N'_{t,i})$ as a "weighting factor" (Stewart et al. 1958; Geis 1972) by which the number of banded birds harvested, that were banded in area i, must be multiplied to give the total (banded and unbanded) harvest of birds from the population in area i. The weights are thus the estimated populations $(\hat{N}_{t,i})$ obtained from Equations (2) to (4) divided by the number of birds banded $(N'_{t,i})$.

However, we encountered substantial problems with this approach. Some population segments were not banded in some years and consequently could not be represented in

the harvest. Small sample sizes (with large population weights) overwhelmed harvest derivation estimates based on preliminary results. An obvious and often used solution to both problems would be to eliminate small samples of banded birds, i.e., not include the breeding area.

We decided on an alternative approach to alleviate these problems. For each reference area we summed the breeding population estimate over the 15-year study period:

$$\hat{B}_i = \sum_{j=1}^{15} \hat{B}_{i,j}$$
 where $i = 1, 2, ..., 16$ areas;
 $i = 1, 2, ..., 15$ years.

We also summed, for each age and sex class, the numbers banded (N'_i) during the 15-year study period. Thus, for adult males we have

$$N'_{i,AM} = \sum_{j=1}^{15} N'_{i,j,AM}$$

Then the population weight for adult males from the *i*th area in the *j*th year is

$$W_{i,i,AM} = \hat{B}_i [\hat{N}_{i,i,AM} / \hat{N}_{i,i(AM+AF)}] / N'_{i,AM}$$
 (7)

where the bracketed term is the proportion of adult males to total adults in the preseason population in the *j*th year. Calculations are similarly performed for the other age and sex classes. This procedure introduces errors in population weighting within individual years, but it greatly reduces variability in population weights among years. Population weights used in this study are shown in Table A-3.

Testing for Similarity in Band Recovery Distribution Patterns

The comparison of geographic distributions of band recoveries in this report has two major objectives: (1) to detect similarities or differences of significance to harvest management, and (2) to ascertain categories that may be combined (appear to be from the same population) and thereby obtain more reliable information as a result of larger sample sizes. Categories which may be examined with the above objectives in mind include (singly, or in selected combinations) banding locations, age, sex, year(s) of banding or recovery, direct and indirect recoveries, and calendar time of banding or recovery. For example, we may wish to compare the recovery pattern of immature male mallards banded in year i and recovered in year i + 1 (indirect recoveries) with the recovery pattern of adult male mallards banded and recovered in year i (direct recoveries).

In preliminary tests, we found that neither latitudes nor longitudes of band recovery were normally distributed. Thus we used a nonparametric test for our recovery distribution comparisons. The test (sometimes called the "Mardia–Watson–Wheeler" test or the "Uniform Scores" test) was originally proposed by Mardia (1967), although a special case of this general test was presented earlier by Wheeler and Watson (1964). The test is also discussed in

Mardia (1969a, 1969b, 1972:197-201) and Batschelet (1972: 80-82).

Briefly, this test involves computation of the centroid or center of gravity of the combined two-sample distribution. Vectors are then considered from this centroid through each sample point (latitude-longitude of band recovery), and the points are ranked based on the vector directions. These directions or angular observations are then replaced in the first sample by

$$C_i = 2 \pi r_i/(n + m), i = 1, 2, ..., n,$$

where r_i is the linear rank of observation i, n is the number of observations in the first sample, and m denotes the number of observations in the second sample. We then compute the resultant or vector sum of the first sample as

$$R_{1} = \left[\left(\sum_{i=1}^{n} \cos C_{i} \right)^{2} + \left(\sum_{i=1}^{n} \sin C_{i} \right)^{2} \right]^{1/2}$$
 (8)

The null hypothesis of no difference between the two bivariate samples (i.e., two groups of recoveries exhibit the same geographic distribution pattern) is then rejected for large values of R_1 . Mardia (1967) has shown that when (n + m) > 17 then

$$U = 2R_1^2 (m + n-1)/mn (9)$$

is approximately distributed as X^2 with 2 df.

We required 20 recoveries in each group (n or m) as the smallest practical sample size with which to work. In many instances we combined recoveries across years to meet this criterion. In this manner we used years or year-groups as repeated measures within a major reference area. Although there is no completely satisfactory method of handling "ties" between observations from the two samples, approximate X^2 test statistics were computed in the manner suggested by Robson (1968). Continental statistics were obtained as

$$-2\sum_{i=1}^{n} \ln P_i$$
, where P_i denotes the probability associated with

the individual test statistic of reference area i, and n denotes the number of reference areas available for the test (Sokal and Rohlf 1969:621–624). This statistic is distributed as X^2 with 2n df under the null hypothesis. We will refer to this procedure as the "centroid" test.

Describing Similarity in Harvest Derivation

Areas that derive their harvest from common production areas need to be identified. In this report we use "similarity indices" to compare sources of harvest for any two harvest areas. Similarity between two harvest areas is defined as the sum of harvest percentages that are derived from the same source areas. The index can range from 0 (completely independent in sources of harvest) to 100 (equal in percentages from all source areas). Hypothetical examples are illustrated in Table 1. The comparison of Areas B and C (Table 1) was especially intended to show that, although they have the same index (50) relative to A, this does not indicate similarity between B and C, which have an index of 0

Results and Discussion

Preseason Age and Sex Structure in the Continental Population

Annual estimates of the preseason age and sex structure for the years 1961 through 1975 are presented in Table 2. The age ratio of young per adult averaged about 1.0, which agrees with earlier estimates (Bellrose et al. 1961; Anderson 1975). The average adult preseason sex ratio was 1.42 males per female.

Using survival and production rate (1.0) estimates for the 1961–1970 period, Anderson (1975) estimated an adult preseason sex ratio of 1.21 males per female using the method of Wight et al. (1965). However, Anderson's simulation

Table 1. Hypothetical example of similarity indices.

		Bre	eding	groun	d ref	erence	area	5		
Comparison		1		2		3		4		Total
Harvest area A: Harvest area B: Similarity index	=	25% 50% 25	+	25% 50% 25	+	25% 0% 0	+	25% 0% 0	=	100% 100% 50
Harvest area A: Harvest area C: Similarity index	=	25% 0% 0	+	25% 0% 0	+	25% 50% 25	+	25% 50% 25	=	100% 100% 50
Harvest area B: Harvest area C: Similarity index	=	50% 0% 0	+	50% 0% 0	+	0% 50% 0	+	0% 50% 0	=	100% 100% 0

Table 2. Preseason age and sex structure in the mallard population for the years 1961-1975.

	Proporti		Age ratio
Year	Adult	Young	(young/adult)
1961 1962 1963 1964 1965 1966 1967 1968 1969 1971 1972	0.56 0.555 0.655 0.659 0.659 0.665 0.655 0.655 0.68	0.55 0.50 0.51 0.53 0.47 0.49 0.53 0.53 0.54 0.54	0.83 1.16 1.04 0.85 1.30 1.02 0.75 1.44 0.85 0.85
1974 1975 Average	0.62 0.58 b 0.59 b	0.48 0.50 0.50 c	1.26 0.95 0.98

aStructure was derived by dividing appropriate harvest estimate by the corresponding harvest rate (weighted on the basis of relative breeding population estimates).

b_{1.42 males/female}

C_{1.01 males/female}

work in that study led him to conclude that the adult preseason sex ratio ranged from 1.20 to 1.30 and might occasionally reach 1.35.

Johnson and Sargeant (1977), using a modification of Wight's method, simulated a final spring adult sex ratio of 1.26 males per female mallard for the period 1963-1973 in North Dakota's prairie pothole region. Spring through summer mortality rates averaged 16.4% for males and 28.5% for females. These interim mortality rates suggest a preseason sex ratio of 1.47. When Johnson and Sargeant (1977) modified their model for predictive purposes, they obtained an average spring sex ratio of 1.18, which they thought was more typical of the study period than the final simulated sex ratio of 1.26. Given the interim mortality rates used in their model, a spring sex ratio of 1.18 suggests a preseason sex ratio of 1.38. Martin et al. (1979) estimated an adult preseason sex ratio of 1.39 males per female using more current survival rate data (1961-1974) and a modification of the matrix population model developed by Leslie (1945, 1948).

Thus, the data used in this report suggest an adult preseason sex ratio that is somewhat higher than other estimates. However, it is unlikely that an overestimate of the ratio would cause an important bias in estimates of harvest derivation. The balanced sex ratio estimated for young birds in the preseason population provides additional support for the procedure and the resultant parameters.

Recovery Distribution Comparisons by Age, Sex, Type of Recovery, and Year

We tested for similarities in recovery distributions among various groups before we addressed distribution of the mallard harvest. For example, we could combine local and immature mallard bandings whenever recovery distributions were sufficiently similar. With this objective we made extensive and systematic use of the centroid test described earlier.

A test for similarity of recovery distributions is also affected by differences in banding intensity and location within a particular reference area. We used major reference areas as source areas to provide adequate sample sizes for analysis, but in the process we unavoidably added these sources of variability. Because of these additional sources of variation we disregarded significance at the 0.05 level in favor of significance at the 0.01 level. We are not inclined to speculate upon the biological significance of differences in recovery distributions unless the differences are independent of banding site sources of variation (e.g., the same cohort recovered in different years), prevalent in many areas, directionally (latitude or longitude) consistent, and supported by other evidence.

For statistical considerations we used recoveries that were not adjusted for band reporting rate. Use of adjusted recoveries, although biologically more meaningful, would have invalidated the tests.

Locals Versus Immatures

Recovery distributions of local and immature mallards were compared in four categories: (1) direct recoveries of males, (2) direct recoveries of females, (3) indirect recoveries of males, and (4) indirect recoveries of females. In each instance the continental test statistic was highly significant (Table 3). However, few differences between local and immature recovery distributions were detected across the important production areas of southern Canada (SW Alberta, SW Saskatchewan, SE Saskatchewan, and SW Manitoba). Test results for remaining major reference areas in which data were sufficient indicated significant differences (P < 0.01). Tests of direct recovery distributions indicated more difference between the age classes than did those of indirect recoveries.

Our results compare favorably with those of Anderson and Henny (1972). They found that the greatest difference in distribution between locals and immatures occurred in direct recoveries from bandings in the United States. They suggested that some of the immatures had migrated into the United States from more northern areas. However, earlier movement of the more physiologically advanced immatures away from banding areas cannot be discounted

Table 3. Summary of results of testing the hypothesis that local and immature mallards have similar recovery distributions.

	Direct r	recoveries	Indirect recoveries
	Male	Female	Male Female
Major reference area	Test ^a df	Test df	Test of Test of
SW Alberta SW Saskatchewan SE Saskatchewan SW Manitoba	0.98 2 10.87 4 1.19 2 13.32** 2	3.52 2 7.17 4 7.30 2 2.98 2	3.59 2 7.09 4 5.24 2 1.84 2 2.83 2
E Ont - W Quebec Washington-Oregon N California	19.67** 4 55.00** 2 3.87 2 19.75** 2	17.68** 4 46.77** 2 13.36** 2	42.34** 2 44.59** 2
Intermountain High Plains Missouri R. Basin Great Lakes Mid-Atlantic NE United States	19.75** 2 20.76** 6 94.80** 6 316.13** 12 28.99** 2 27.49** 2	27.98** 4 96.52** 6 331.91** 12 20.77** 2 42.58** 2	4.31 4 7.94 2 17.70** 6 26.70** 4 67.49** 10 108.22** 10 0.56 2 2.64 2 9.82** 2
Continental total	540.53** 26	549.53** 24	119.59** 18 167.11** 14

aThe test statistic is distributed approximately as X^2 with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-1.

(J. B. Gollop, personal communication; Bellrose and Crompton 1970). We concluded that recoveries from the two age classes could not be combined because of the large differences between direct recovery distributions of local and immature mallards.

The local age class is not well represented by bandings and recoveries (Table B-1). Test statistics for 3 of the 16 major reference areas could not be obtained within our sample size constraints (n and $m \ge 20$) even with 15 years of banding data combined. We therefore excluded recoveries of mallards banded as locals from subsequent analyses.

Immatures Versus Adults

The same four categories were used to compare recovery distributions of mallards banded as immatures and adults. We again found large differences across most reference areas, which contributed to highly significant differences in the continental test statistics (Table 4). Recovery distributions of immature and adult males were different for both direct and indirect comparisons. Direct female recovery distributions also differed by age class.

With the notable exception of the *High Plains*, the prevailing difference was a more northerly distribution of immatures (Table B-2). J. B. Gollop (personal communication) noted that late-hatched locals were recovered closer to the banding site than were early-hatched locals. Jessen (1970) noted delayed migration from Minnesota of locally

reared mallards and hens that had nested. He stated that locally reared mallards were especially vulnerable to local hunters. A prolonged attachment of the more vulnerable immatures to natal (i.e., northern) areas, perhaps related to later physiological development, could have caused the more northerly distribution of immature recoveries.

The extreme sensitivity of the centroid test is suggested by the significant difference ($X^2 = 74.29, P < 0.01$) between age classes of indirect females. Of all comparisons made, these recoveries should have revealed similar distributions (assuming that breeding habitat conditions were suitable) because of the strong homing tendency of females to natal areas (J. B. Gollop, personal communication; Sowls 1955; Lensink 1964; Jessen 1970). Examination of Table B-2 shows that for indirect females few within-reference area tests were significant, and that reference area test statistics were significant due to many small (statistically additive) differences which lacked directional (latitude or longitude) consistency. For example, in the indirect female column for the E Ontario-W Quebec reference area, the reference area statistic ($X^2 = 40.44, P < 0.01$) was significant in the absence of significant individual test statistics. This can be contrasted with the direct male column for the same reference area wherein the significant area test statistic $(X^2 = 105.82, P < 0.01)$ reflects significant differences in 5 of the 12 individual tests (1965, 1968, 1971, 1972, and

Differences between immature and adult recovery distributions are most pronounced among male mallards, but

Table 4. Summary of results of testing the hypothesis that immature and adult mallards have similar recovery distributions.

	Direct r	ecoveries	Indirect	recoveries
	Male	Female	Male	Female
Major reference area	Test ^a df	Test df	Test df	Test df
N Pacific	0.14 2		0.06 2	book darm after some order dends some dends dends some ander
N Alta - N NWT	58.13** 8	19.81 8	36.75** 8	7.25 8
SW Alberta	66.43** 6	4.56 6	23.28** 6	5.07 6
SW Saskatchewan	77.24×× 14	14.15 10	9.13 12	17.17 12
SE Saskatchewan	45.27** 8	3.45 6	9.64 8	1.72 2
SW Manitoba	96.23×× 12	15.01 12	28.56** 10	10.75 10
N Sask-N Man-W Ont	4.38 2		1.69 4	
E Ont - W Quebec	105.82** 24	43.12** 24	149.25** 22	40.44** 22
Washington-Oregon	157.09** 14	132.30×× 14	24.18 14	31.52** 12
N California	108.27×× 16	41.69×× 14	23.71 14	8.09 8
Intermountain	49.45** 12	16.06 10	39.82×× 12	13.02 10
High Plains	206.65** 14	129.35** 14	109.01×× 14	20.89 12
Missouri R. Basin	441.27** 16	111.60×× 16	8.32 14	29.71** 14
Great Lakes	265.96** 30	133.49×× 30	206.22** 28	50.57** 26
Mid-Atlantic	196.28×× 16	120.54×× 16	117.64×× 14	24.62 12
NE United States	45.73** 12	15.18 14	35.56** 12	10.40 10
Continental total	1384.88** 32	455.83** 28	480.13** 32	74.29** 28

 a The test statistic is distributed approximately as 2 with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-2.

they are of little biological significance beyond the first year among females. Relative similarity among recovery distributions of females provides some evidence that annual movements, including return to natal, migration, and wintering areas, are more stable and less prone to change than those of males. This suggests that females will effectively maintain long-term relationships through generations between breeding and wintering areas.

We concluded that we could not combine immature and adult recovery distributions due to the large continental test statistics for three of the four categories. However, we concluded that indirect immature female and indirect adult female recoveries could be pooled because the differences between these two groups were relatively small.

Males Versus Females

We made the following comparisons of males and females: (1) direct recovery of immatures, (2) direct recovery of adults, (3) indirect recovery of immatures, and (4) indirect recovery of adults. Once again all four categories yielded highly significant (P < 0.01) continental test statistics (Table 5). However, the differences in recovery distributions between males and females were less pronounced than, for example, immatures and adults. Only 6 of 15 reference area test statistics were significant (P < 0.01).

Data in Table B-3 demonstrate that E Ontario-W Quebec, Missouri River Basin, Great Lakes, and High Plains (to a lesser extent) were mostly responsible for the significant continental statistics. Within E Ontario-W Quebec most of the differences between indirect immature male and female recoveries were significant, and due almost entirely to a 3-5° mean longitudinal shift west by the males (assuming that most females returned to natal areas). To a lesser extent, this shift also occurred in the Great Lakes and NE United States reference areas. We believe that some males from the eastern edge of the breeding range become paired during the winter with females that home to areas farther west (toward the middle of the breeding range). These "displaced" males then migrate south toward the same wintering area, and pass through and become harvested in different areas.

When we next examined the large differences between indirect immature males and females from the *Missouri River Basin* (almost mid-continent), we expected to find males farther north (toward the middle of the breeding range) based on the previous explanation. Although the difference in latitude was consistent and more important than variation in longitude, we found that males were recovered farther south. If these differences related to banding site location, they should also have appeared within direct recoveries. Anderson (1975) provisionally concluded that the proportionately greater harvest of adult females in the north

Table 5. Summary of results of testing the hypothesis that male and female mallards have similar recovery distributions.

	Direct r	ecoveries	Indirect	recoveries
	Immature	Adult	Immature	Adult
Major reference area	Test ^a df	Test df	Test df	Test df
N Pacific N Alta - N NWT SW Alberta SW Saskatchewan SE Saskatchewan SW Manitoba N Sask-N Man-W Ont E Ont - W Quebec Washington-Oregon N California Intermountain High Plains Missouri R. Basin Great Lakes Mid-Atlantic	2.50 2 10.46 8 9.60 6 9.16 14 5.34 8 22.10 12 6.67 6 39.90 24 30.13** 14 11.64 14 12.72 12 26.55 14 45.86** 16 51.50** 30 44.16** 16	15.44 8 1.97 6 11.52 10 11.45 6 22.98 12 56.02** 24 31.67** 14 25.51 16 21.12 10 64.16** 14 43.17** 16 98.77** 30 27.59 16	6.50 2 12.91 8 0.51 6 11.72 12 10.04 4 56.81** 10 12.90 6 233.84** 22 16.04 14 2.53 8 16.50 12 12.95 12 124.13** 14 379.80** 28 72.29** 14 80.96** 14	11.48 12
NE United States Continental total	12.83 16 92.77** 32	15.76 12 162.68** 28	705.05** 32	

^aThe test statistic is distributed approximately as X^2 with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-3.

reflected vulnerability more than occurrence. He suggested delayed molt, stresses of brood production, and the need for more feeding flights as possible factors causing greater vulnerability. The more pronounced differences within indirect recoveries of immatures, as opposed to direct or indirect recoveries of adults, could also reflect vulnerability if females are more vulnerable during their first year of nesting.

Martin and Carney (1977) suggested that adult males migrate south earlier and thus avoid early season hunting pressure. This is supported by Bellrose and Crompton (1970) who found hunters' bags composed entirely of adult drakes during the early fall. However, male mallards in Europe appear to migrate later than females (Lebret 1950; Mathiasson 1971; Ogilvie and Cook 1971).

The greater harvest of adult males in the South (Martin and Carney 1977) may be in part a result of the proportionately greater harvest of adult females in the North. Additional factors that might cause a more southerly distribution of males are hunter preference and regulations favoring the harvest of males. The sexes usually cannot be distinguished on the breeding grounds early in the season but can be distinguished later in the season (farther south). If these were major factors, however, they should have caused similar latitudinal differences between direct recoveries of the sexes, which were not apparent (Table B-3). The above factors may favor a more southerly distribution

of males that was detectable only within indirect recoveries due to the accumulation of small differences over years.

We concluded that, for other than direct recoveries of immatures, the continental test statistics were sufficiently large to preclude combining males and females.

Direct Versus Indirect Recoveries

We again made four comparisons, two for each age and sex (Table 6). The effects of within-area variability in banding intensity and location were eliminated because we compared the distributions of direct recoveries with all subsequent (indirect) hunting season recoveries from the same banded samples (through 1975). Other than for adult females, most reference area test statistics were highly significant (P < 0.01).

The tabulation of within-reference area comparisons (Table B-4) documents an almost universal difference in mean latitude of recovery. Except for the $High\ Plains$, direct recovery distributions occurred farther north than indirect recoveries wherever a difference was detected (P < 0.01). The pattern was reversed for direct and indirect (farther north) recoveries from the $High\ Plains$ because most birds were banded along the southern border of the reference area, particularly in the San Luis Valley. Previous work (Funk et al. 1971; Hopper et al. 1975, 1978) demonstrated the concentration of recoveries within the High Plains Mal-

Table 6. Summary of results of testing the hypothesis that direct and indirect recovery distributions of mallards are similar.

	Adult	recoveries	Immature	recoveries
м : с	Male	Female	Male	Female
Major reference area	Test ^a df	Test df	Test df	Test df
SW Alberta SW Saskatchewan SE Saskatchewan SW Manitoba N Sask-N Man-W Ont E Ont - W Quebec Washington-Oregon N California Intermountain High Plains Missouri R. Basin	9.73 8 25.88** 6 25.06 12 21.80** 8 46.19** 10 10.45** 2 132.17** 22 26.43 14 23.56 14 30.16** 12 99.33** 12 69.99** 14 89.27** 28 39.28** 14	5.07 8 1.84 4 19.32 10 4.45 4 17.89 10 66.17** 22 31.55** 12 23.95 14 21.45 10 49.21** 12 24.58 14 76.02** 26 30.59** 12	20.31** 2 82.99** 8 70.32** 6 89.10** 12 41.28** 8 170.22** 10 55.57** 6 985.85** 22 188.93** 14 61.23** 14 28.71** 12 257.56** 12 548.17** 14 987.12** 28 398.18** 14	152.43** 12
NE United States	13.25 10	20.42 10	352.46** 14	60.25** 14
Continental total	343.10** 30	148.57** 28	2554.46** 32	635.15** 32

a The test statistic is distributed approximately as X^2 with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-4.

lard Management Unit, of which the High Plains breeding ground reference area is a part.

Although the mean latitudinal differences were variable in magnitude and often considerably less important than those for mean longitude, the underlying consistency (and direction) must be examined. We believe that the most logical explanation for this difference, which spans age and sex classes and most portions of the breeding range, is the greater association of direct recoveries with banding sites (assuming a general north to south movement from summer to winter areas). Areas of quality habitat attract large numbers of ducks, which attract both banders and hunters. Some of these birds, particularly young of the year and adult females, remain in the general vicinity of the banding site until southward migration begins. This causes a concentration of recoveries near banding sites that affects, and is a portion of, the total distribution of direct recoveries. Indirect recovery distributions do not show the same degree of concentration near banding sites. Annual variation in breeding habitat conditions displaces some birds; this causes a more scattered distribution of indirect recoveries that is centered farther south than a comparable distribution of direct recoveries. Both distributions may be very similar geographically, but the direct recovery distribution includes a higher proportion near the banding site.

Age is also a factor in comparisons of direct and indirect recoveries. Birds banded as immatures return the following summer as adults, and those banded as adults return a little older and perhaps more experienced. The timing or rate of movement may be somewhat different in older birds, or variation in early fall weather conditions may promote a more scattered distribution of indirect recoveries. These differences are more pronounced for males than for females which, because of homing, are expected to have similar distributions in successive years.

Direct versus indirect recovery distribution comparisons are illustrated in Fig. 1 for the Missouri River Basin. Although only significant (P < 0.01) mean latitude or longitude differences are shown in Table B-4, the actual centers of recovery distributions are plotted in Fig. 1. Only one point was plotted for each direct or indirect adult female recovery distribution, because only one significant (P < 0.01) difference was detected. However, seven points were plotted for each direct or indirect immature male recovery distribution, because seven differences were found between them. Direct recoveries of immatures were centered the farthest north, followed by direct adult and indirect immature females, direct adult males and indirect adult females, and finally indirect males. Within an age-sex class, direct recovery distributions were almost always centered farther north than indirect recoveries. Indirect males were the only recovery distributions centered south of the reference area (40°N).

We previously suggested that westward shifts by males

Fig. 1. Comparison of direct (D) and indirect (I) recovery distributions of immature (Y), adult (A), male (M), and female (F) mallards banded preseason in the *Missouri River Basin*. Points represent significantly different (P < 0.01) geographic centers of recovery distributions from year-group comparisons shown in Table B-4. Of seven comparisons made for each age—sex class, all were different for immature males; hence seven points are illustrated for both direct immature males (DYM) and indirect immature males (IYM). Lines serve only to connect or surround points representing a given age—sex class. The southern boundary of the reference area lies in part along 40°N latitude.

are probably due to pair formation on the wintering grounds with females from the central part of the range. This explanation is also appropriate when direct and indirect recoveries of immature males are compared. Indirect recoveries of immature males banded in eastern reference areas were centered several degrees west of direct recoveries. Similarly, immature males that were banded in the west and survived their first hunting season were recovered farther east.

Our results compare favorably with previously reported differences between direct and indirect recoveries (Lensink 1964; Geis et al. 1971; Anderson and Henny 1972; Hopper et al. 1978; March and Hunt 1978). Although direct and indirect recovery distributions of adult females were statistically different ($X^2 = 148.57, P < 0.01$) at the continental level, differences were found in only 5 of the 16 major reference areas (Table 6). We concluded that, except for adult females, we could not combine direct and indirect recoveries.

Direct Adults Versus Indirect Immatures

An immature mallard that survives its first hunting season enters its second calendar year as an adult. Subsequent indirect recovery distributions of birds banded as immatures might be similar to direct recovery distributions of adult-banded birds. Table 7 presents comparisons of direct adult and indirect immature recoveries for each sex (indirect adults and immatures were previously compared). The continental test statistics for both sexes were highly significant (P < 0.01), although differences within males were much more pronounced. The most pronounced difference was a more westward distribution for immature males banded in the East (Table B-5). We concluded that direct adult and indirect immature female recoveries represented the same population and could be combined because differences within females were detected in only 5 of 16 major reference areas.

Direct Recovery Distributions During Consecutive Years

In previous analyses of direct recovery distributions we used years or groups of consecutive years as repeated measures within reference areas, which tended to minimize any effect of annual variation. Here we examined the extent of annual (or year–group) variation in direct recovery distributions within each age and sex class (Table 8). Once again we found highly significant (P < 0.01) differences in recovery distributions from one year to the next, as measured by continental test statistics for the four age–sex classes examined. Immature males displayed the greatest year-to-year variation in distribution.

Fortunately, trends or consistencies were not detected within reference areas (Table B-6). For example, immature male test statistics within the *Great Lakes* area, which demonstrated the largest difference, showed no consistent directional differences in mean latitude–longitude of recovery distribution. Between-year comparisons are affected by changes in banding sites, breeding ground habitat, migration chronology, migration and winter habitat conditions, hunting pressure, hunting regulations, and other factors. Between-year comparisons of direct recovery distributions showed no consistent latitude or longitude differences within reference areas (Table B-6); therefore, we combined the 15 years of banding and recovery data.

Table 7. Summary of results of testing the hypothesis that direct recovery distributions of birds banded as adults are similar to indirect recovery distributions of birds banded as immatures.

Main as farmer	Mal	e e	Femal	е
Major reference area	Test ^a	df	Test	df
N Alta - N NWT	24.68**	8	12.77	8
SW Alberta	5.14	6	1.26	4
SW Saskatchewan	10.73	12	13.59	10
SE Saskatchewan	16.02	8	2.37	4
SW Manitoba	97.59* *	10	10.46	10
N Sask-N Man-W Ont	8.23	2		
E Ont - W Quebec	382.73**	22	98.64××	22
Washington-Oregon	30.26**	14	20.31	14
N California	14.13	14	2.96	8
Intermountain	54.03××	12	10.38	10
High Plains	35.47××	12	45,38××	12
Missouri R. Basin	52.48××	14	17.35	14
Great Lakes	318.46××	28	99.37××	28
Mid-Atlantic	197.99××	14	82.55××	14
NE United States	69.35××	12	30.68××	14
Continental total	924.18××	30	196.47**	28

aThe test statistic is distributed approximately as χ^2 with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-5.

Table 8. Summary of results of testing the hypothesis that direct recovery distributions of mallards are similar during consecutive years or groups of years.

	Adult r	ecoveries	Immature recoveries			
Major reference	Male	Female	Male	Female		
area	Test ^a df	Test df	Test df	Test df		
N Alta - N NWT	5.94 6	2.74 2	20.61** 6	4.03 4		
SW Alberta	1.25 4	0.26 2	4.27 4	1.13 2		
SW Saskatchewan	30.57** 8	0.26 2 1.66 2 0.72 2	19.19** 6	8.56 6		
SE Saskatchewan	14.70×× 4	0.72 2	22.84** 4	4.32 4		
SW Manitoba	17.00** 6	11.41 6	51.62** 6	17.95** 6		
N Sask- N Man-W Ont			24.57** 4	0.71 2		
E Ont - W Quebec	16.45 12	13.04 12	65.94** 12	76.56** 12		
Washington-Oregon	12.54 8	22.40** 6	32.18** 8	9.36 8		
N California	11.87 8	21.39** 8	108.38×× 8	51.97** 6		
Intermountain	27.01** 6	28.49** 4	88.85×× 6	31.29** 6		
High Plains	85.38** 6	59.91×× 6	79.95** 6	80.42** 6		
Great Lakes	25.34 14	89.93×× 14	209.08** 14	90.46** 14		
Mid-Atlantic	24.79** 8	44.05×× 8	46.20** 8	42.44** 8		
NE United States	11.47 4	6.41 6	26.70** 8	18.93 8		
Continental total	176.98** 28	195.74** 28	612.49** 30	301.36** 30		

 $^{^{\}mathbf{a}}$ The test statistic is distributed approximately as $^{\mathbf{2}}$ with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-6.

Table 9. Summary of results of testing the hypothesis that mallards banded during consecutive years or groups of years have similar indirect recovery distributions.

	Adult	recoveries	Immature	recoveries
	Male	Female	Male	Female
Major reference area	Test ^a df	Test df	Test df	Test df
N Alta - N NWT	12.46 6	2.72 2	9.39 4	4.95 2
SW Alberta	6.99 2	0.03 2	3.33 2	0.64 2
SW Saskatchewan	27.79** 8	1.59 4	5.82 6	2.03 4
SE Saskatchewan	4.39 4		7.25 4	
SW Manitoba	12.23 6	1.88 4	8.10 6	13.20 4
N Sask-N Man-W Ont			18.80×× 4	1.35 2
E Ont - W Quebec	13.91 10	18.57 10	17.32 10	27.78** 10
Washington-Oregon	15.62 6	38.75** 6	8.08 8	19.11×× 6
N California	7.65 6	4.52 6	5.69 6	7.79 2
Intermountain	24.00** 6	3.20 4	38.19** 6	31.18** 6
Missouri R. Basin	18.86 8	19.86 8	11.45 8	8.73 8
Great Lakes	13.47 14	13.39 12	35.39** 14	22.04 14
Mid-Atlantic	10.84 6	7.58 6	3.92 6	14.33 6
NE United States	10.47 6	1.31 4	11.36 6	4.36 6
Continental total	130.97** 28	90.57** 26	109.62** 30	94.65** 28

 ${f a}$ The test statistic is distributed approximately as X $^{f 2}$ with df = twice the number of comparisons included. Significance levels: p<0.05 not indicated, ** p<0.01. Greater detail is shown in Appendix Table B-7.

Indirect Recovery Distributions During Consecutive Years

We compared indirect recovery distributions of birds banded in consecutive years, or groups of years, within reference areas and within age-sex classes (Tables 9 and B-7). In contrast to the direct recovery comparisons discussed above, indirect recoveries of birds banded in consecutive years often occurred in essentially the same hunting seasons. For example, here we compared mallards banded in 1961 and recovered during 1962-75 with mallards banded in 1962 and recovered during 1963-75. Numerous small but significant differences (P < 0.01) were detected in some reference areas and all age-sex classes. Their combined effect yielded significant X^2 test statistics at the continental level. However, magnitudes of these X^2 values were substantially less than corresponding statistics for direct recovery distributions during consecutive years. We concluded that these data provide further justification for combining banding and recovery data across years.

Summary of Age, Sex, Type of Recovery, and Between-year Comparisons

We found large differences between recovery distributions of local- and immature-banded mallards, particularly in northern U.S. major reference areas. We therefore excluded local-banded mallards from further analysis. Significant differences were also found between immature and adult, male and female, direct and indirect, and annual recovery distributions.

Direct recovery distributions of immatures and females were generally centered farther north (closer to banding sites) than those of adult males. Direct recovery distributions of any age–sex class, because of the concentration of direct recoveries near banding sites, were almost always centered farther north than respective indirect recovery distributions. Indirect recovery distributions of immature males were centered nearer the middle of the breeding range than respective direct recovery distributions.

We concluded that distribution and derivation of the mallard harvest could be described using four sets of data: (1) direct adult males, (2) adult females (direct and indirect adult, and indirect immature females), (3) direct immatures, and (4) total (i.e., all age [locals excluded], sex, and recovery types). However, the fourth category also includes indirect recoveries of immature- and adult-banded male mallards, which are not included in the other categories.

Recovery Date Comparisons

Dates on which mallards were harvested during the hunting seasons present an additional means of comparing agesex classes. We first modified recovery dates so that 1 September was represented by Day 1. Then for each major ref-

Summary of results of testing the effects of recovery type (R), age at banding (A), and on recovery dates of mallards from major reference areas. 10. (S) Table sex

	; ; ; ; ; ; ; ;		Param	ete:	rs, est	stimate	1 IO	5),	pu	nific	i c		 	}
Major reference area	e C .	type	0 1		S		* 02		* 02 	S	¥	S	1 4	
(number of recoveries)	st.	p>t	54.	p>+	ا بد ا	p>t	+	p>t	1 e : : : : : : : : : : : : : : : : : :		est.	p>+		
N Pacific (198)	-23.3	*		č v		r S		ពន		r S		r S		i E
N Alta - N Nwt (1950)	1.6-	*		n S		ย	16.0	*	9.9	*	8.6-	* *		r S
SW Alberta (1914)	6.7-	*		E E	-5.0	*	20.9	*		S		ភ		2
SW Saskatchewan (5401)	-5.4	*	4.1	*	-2.9	*	9.5	*		S	-5.8	*		S
SE Saskatchewan (1510)	-8.3	*	8.8	*	-4.9	*		20	-8.6	*		S S	-22.1	*
SW Manitoba (4034)	-11.1	*	5.6	*	-4.8	*	9.0	* *		ន		n N	-11.7	*
N Sask-N Man-W Ont (844)	-13.1	*		2		ຜ		r N		r S		S		S
E Ont - W Que (10110)	-14.9	*	5.9	*	6.9-	*	5.4	*		2	-3.6	*		5
Washington - Oregon (5893)	-12.3	*	8.9	*	-3.7	*	8.4	*		ני	-5.0	*		2
N California (3342)	-12.3	* *	10.1	* *	-3.4	*	9.6	*	-5.4	*		2		2
Intermountain (4131)	4.8-	*	5.4	*	-3.3	* *	8.5	*	4.2	*		ខ		2
High Plains (6744)	-13.1	*	5.8	*	-7.2	*	5.8	*	5.4	*	-4.1	ж		2
Missouri R. Basin (11960)	6.9-	* *	8.9	*	-6.4	* *	8.6	* *	8.0	*		ا ا	7.6-	*
Great Lakes (15808)	-8.1	*	7.0	*	-7.8	*	10.5	* *	6.9	*	-3.0	*	6.8-	*
Mid-Atlantic (4980)	4.9-	*	5.5	*	-4.7	*	3.6	ж		ž S	-4.2	*		2
NE United States (3743)	-7.5	*	4.0	*	-4.1	*		ns		S C		ខ		5
	1	1	1	1		1	1	1	1	1	1	1	1	!

alwo levels of each main effect were compared; recovery type (direct – indirect), age at banding (adult – immature), and sex (female – male). Parameter estimates (est.) are shown only for effects that were significant (* p>t = 0.05; ** p>t = 0.01). Lack of significance is indicated by "ns". The interaction between the effects of recovery type (R) and age (A), for example, is shown as "R * A".

erence area we examined the effects of type of recovery (direct or indirect), age at banding (adult or immature), and sex (male or female) on recovery dates. As used here, type of recovery is a measure of age.

There were consistent effects of recovery type, age at banding, sex, and interactions among main effects within most reference areas (Table 10). For example, a significant interaction between recovery type and age (R*A) simply means that the effect of recovery type was not the same over all ages, or vice versa. Direct recoveries generally occurred earlier during the hunting season than indirect recoveries. Mean recovery dates for immatures were earlier than dates for adults, and females were recovered earlier than males.

We combined recoveries from bandings in all areas and repeated the analysis (Table 11) because the parameter estimates did not vary greatly from one reference area to the next. All main effects and interactions were again highly significant, with parameter estimates of similar magnitude.

As an extension of our recovery date analysis, we subdivided indirect recoveries into HSS-2 (birds harvested during their second hunting season after banding) and HSS3-N classes (Table 12). Most of the interaction terms were not significant, but differences due to recovery type, age, and sex were still found within most reference areas. We again combined recoveries from all reference areas (Table 13). Parameter estimates were generally smaller but directionally consistent with previous results. The largest detected differences were between females and males (8.4 days) and recovery type (3.3 days).

Recovery date differences were consistent within age—sex classes (Table 14). For birds banded as immatures, HSS3-N recoveries occurred at a significantly later date than HSS-2 recoveries, which in turn occurred at a significantly later date than direct (HSS-1) recoveries. Birds banded as adults showed the same pattern, but not to the same extent.

There are apparent differences in dates of recovery beyond the first year after banding and, quite possibly, distributional differences. We can only speculate on the importance of these differences, since Botkin and Miller (1974) concluded that the prevailing hypothesis of constant annual mortality among adult birds (age-independent) was questionable. With few exceptions (e.g., Model H3 in Brownie et al. 1978:80), survival rate estimation requires the assumption that survival and recovery rates are agedependent only for the first year of life. Differences in dates of recovery and geographic distribution raise the possibility that survival or recovery rates may also change as a function of years after banding. The effects of such changes in survival or recovery rates on estimates of these rates are examined in Appendix C. A summary of results obtained under Model 1 of Brownie et al. (1978) is presented here.

If recovery rates increase as a function of years after banding, then recovery rates will be underestimated and survival rates will be overestimated. Alternatively, if recovery rates decrease, then recovery rates will be overestimated and survival rates underestimated. The effects of changes in survival rates are opposite those of changes in recovery rates. Recovery rates will be underestimated and survival rates overestimated (for most years) if survival rates increase as a function of years after banding; decreasing survival rates cause overestimates of recovery rate and underestimates of survival rate.

The magnitude of bias in survival or recovery rate estimates is affected by the extent to which the true rates vary with years after banding. Fortunately, power of the goodness-of-fit test to reject the model increases with larger changes in survival rates. However, the test has very little power to detect such changes in recovery rates.

We conclude that the data would usually be rejected by the goodness-of-fit test if mallard survival rates actually changed as a function of years after banding. Although the

Table 11. The effects of recovery type, age at banding, and sex on recovery dates of mallards. $^{\mathbf{a}}$

Source	df	Sum of squares	F value	p>F	Estimate (Days)
Model Recovery type (R) Age at banding Sex R * Age interaction R * Sex interaction Age * Sex interaction R * Age * Sex interaction Corrected total	7 (1) (1) (1) (1) (1) (1) (1) 82364 82371	5467831.4 1542208.1 893996.1 767261.4 362450.1 78990.1 61467.7 42889.3 82994355.6 88462187.0	775.19 1530.49 887.21 761.43 359.70 78.39 61.00 42.56	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	-9.3 7.0 -6.5 9.0 4.2 3.7 -6.2

 $a_{\rm Day}$ 1 = 1 September. Inexact recovery dates were excluded. All major reference and harvest areas and 1961-75 hunting seasons were combined.

Table 12. Summary of results of testing the effects of recovery type (R), age at banding (A), and sex (S) on dates of indirect recoveries of mallards from major reference areas.

			Para	mete	rs, est	imate	s s (day	 s), an	0	ficance	tests	: :
Major reference area	Rec.	type	¥		Se		* œ		ж ж	4	၂ ၂ ၂	RXAXS
(number of recoveries)	1 + 1			P>4	est.	p>t	 	p>t	t	t est		
N Pacific (70)		S		5		<u>د</u>		2	c	ın	s	ឧក
N Alta - N Nwt (978)		s	-4.7	*		2	14.2	*	د	Ŋ	5	S C
SW Alberta (1098)		n n	-6.7	*	-8.6	* *		25	ב	ហ	มร	รน
SW Saskatchewan (3053)		១១		มร	-4.5	*		ខ	ב	ហ្ម	ខ	20
SE Saskatchewan (808)		มร		5		ns		5	٤	Ŋ	20	20
SW Manitoba (1864)	-5.5	*		E N	-4.2	*		<u>د</u>	c	5	E C	20
N Sask-N Man-W Ont (354)		ย		r C		S		<u>ت</u>	د	51	ខ	e S
E Ont - W Que (3662)	-4.5	*	2.9	*	-8.2	*		ខ	ב	S	ខ	E E
Washington - Oregon (2243)		n S		S C	4.4	*	7.3	* *	c	S.	s s	ខ
N California (1420)	-5.2	*	5.2	*		n S		ន្តប	<u>.</u>	s n	E E	Si C
Intermountain (2096)	-4.1	*		S	-5.1	*		2	_	8 1	s	20
High Plains (3547)	-7.0	*	2.7	*	-9.3	*		2	_	Su	s C	ะแ
Missouri R. Basin (5859)		2	2.6	*	-9.9	ж ж		ខ	8.4	* *	n S	ST.
Great Lakes (6772)	-4.2	* *	1.6	*	-10.9	ж ж		ยน	_	2	ม	รน
Mid-Atlantic (2123)	-3.9	*	3.9	*	-5.6	*		s s	5.8	*	r S	ย
NE United States (1379)		in C		ដ	-6.0	*		2	_	ខ	R	น
	; ; ;		;	1	1	1	} 	1	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

altwo levels of each main effect were compared; recovery type (HSS2 - HSS3-N), age at banding (adult - immature), and sex (female - male). HSS2 represents birds harvested during the second hunting season after banding; HSS3-N represents birds harvested during the third through Nth hunting season after banding. Parameter estimates (est.) are shown only for effects that were significant (* p>t = 0.05; ** p>t = 0.01). Lack of significance is indicated by "ns". The interaction between the effects of recovery type (R) and age (A), for example, is shown as "R * A".

Table 13. The effects of recovery type, age at banding, and sex on dates of indirect recoveries of mallards.^a

Source	df	Sum of squares	F value	p>F	Estimate (Days)
Model Recovery type (R) Age at banding Sex R * Age interaction R * Sex interaction Age * Sex interaction R * Age * Sex interaction Corrected total	7 (1) (1) (1) (1) (1) (1) (1) 37226 37233	821955.6 88086.9 52213.1 579362.9 12356.0 44.9 1439.0 35.9 39383210.5 40205166.1	110.99 83.26 49.35 547.63 12.53 0.04 1.36 0.03	0.0001 0.0001 0.0001 0.0001 0.0004 0.8368 0.2435 0.8538	-3.3 2.5 -8.4 2.5 -0.2 -0.8 -0.3

^aDay 1 = 1 September. Inexact recovery dates were excluded. Indirect recoveries were split into HSS-2 and HSS3-N categories. All major reference and harvest areas and 1961-75 hunting seasons were combined.

model was insensitive to similar changes in recovery rates, we do not expect these changes to be large enough to appreciably bias survival rate estimates. We further conclude that results generally parallel those of our geographic distribution comparisons, although differences in mean recovery dates were small. For instance, we previously concluded that direct immature male and female recovery distributions were sufficiently similar geographically to allow their combination; their mean recovery dates differed temporally by about 1 day. Our data suggest that differences in dates of recovery are age- and sex-dependent beyond the first year of life, and to some extent provide evidence for a "subadult"

age class. Anderson (1975:18) concluded there was insufficient evidence that mallard subadult survival or recovery rates were different from adult survival, although his test results were not conclusive. Hopper et al. (1978) found no differences in survival or recovery rates between subadult and adult mallards banded during the winter, although they found substantial distributional differences in recovery patterns. We suggest that these age- and sex-specific differences in timing of recovery (harvest) may be related to differential vulnerability, but differential availability (timing and rate of movement through harvest areas) cannot be discounted.

Table 14. Mean dates of mallard recoveries by age, sex, and three categories of time between banding and recovery (all major reference and harvest areas, and 1961-75 hunting seasons combined).

	Mal	9	Femal	е
Timeb	Immature	Adult	Immature	Adult
HSS-1	62.78	c 77.70	61.73	69.87 >*
HSS-2	77.59	81.86	69.61	72.91 >NS
H583-N	82.12	83.72	74.16	75.05

 $a_{\rm Day}$ 1 = 1 September; Day 80, for example, = 19 November. Inexact recovery dates were excluded.

bHSS-1 represents birds harvested during the first hunting season after banding; HSS-2 represents birds harvested during the second hunting season after banding; HSS3-N represents birds harvested during the third through Nth hunting season after banding.

^cScheffe's method of multiple comparisons (Kleinbaum and Kupper 1978:271-276) was used to test for differences between means. Significance levels: * p<0.05 and ** p<0.01.

Distribution of Mallard Harvest from Breeding Reference Areas

Harvest distribution was based on recoveries that were each adjusted for band reporting rate. Indirect recoveries were adjusted with the estimated reporting rate for the recovery year. Population weighting was not necessary because each reference area was addressed separately.

Table 15 shows percent distribution of the harvest of adult males from major breeding ground reference areas to harvest areas as previously defined. Tables 16, 17, and 18 show the same information for adult female, immature, and total mallards. Two maps were prepared for each major reference area to facilitate presentation of these data: (1) a map showing harvest distribution by age–sex class among Alaska–Canada, the flyways, and High (west) and Low (east) Plains portions of the Central Flyway (separated by the 100th meridian); and (2) an adjoining map showing distribution of the total mallard harvest among harvest areas, based on direct and indirect recoveries of all age–sex classes, except locals. A brief description of harvest distribution from each major reference area is presented here.

N Pacific. — Distribution of the harvest from this area was based on a small sample of 226 recoveries (Table 18). The harvest occurred mainly in Alaska—Canada and the Pacific Flyway (Fig. 2). British Columbia, Washington, and Oregon accounted for 84.3% of the total mallard harvest (Fig. 3).

N Alberta-N Northwest Territories. — Harvest from this area was well distributed among Canada and the flyways (Fig. 4), except for the Atlantic Flyway. Immatures (49%) predominated in Canada. Based on total mallards (Fig. 5), Alberta (18.9%) and Washington (10.7%) were major harvest areas. Some of these birds move across the northern portion of the High Plains, the Low Plains, and into western Mississippi Flyway States such as Arkansas (7.3%) and Louisiana (5.8%).

SW Alberta. – The Pacific Flyway (33%), Canada (31%), and the Central Flyway (25%, including 16% in the High Plains) received the major portion of the total mallard harvest from this area; the harvest of immatures (59%) and adult females (38%) occurred mainly in Canada, whereas that of adult males (40%) occurred mainly in the Pacific Flyway (Fig. 6). Major harvest areas (Fig. 7) were Alberta (28.6%), Idaho (11.5%), and Washington (11.3%).

SW Saskatchewan. — The Mississippi Flyway (42%) was the major recipient of the total mallard harvest from this area (Fig. 8); most of the remaining harvest was equally divided between Canada and the Central Flyway (both 26%). A higher proportion of total mallards from this area was harvested in the Low Plains (18%) than in the High Plains (8%). The immature harvest (46%) occurred mainly in Canada, whereas 42–44% of the adult harvest occurred in the Mississippi Flyway. Major harvest areas (Fig. 9) were

Saskatchewan (19.8%), Arkansas (13.1%), and Louisiana (9.0%).

SE Saskatchewan. — Except for the increased importance of the Mississippi Flyway, and the decreased importance of the High Plains, distribution of harvest from this area (Fig. 10) was similar to that from SW Saskatchewan (Fig. 8). Immatures (47%) were harvested mainly in Canada, whereas adults (males, 58%; females, 51%) were harvested mainly in the Mississippi Flyway. Most birds from this area move south into the Low Plains and then southeast into the Mississippi Flyway. Major harvest areas (Fig. 11) also included Saskatchewan (22.7%), Arkansas (14.5%), and Louisiana (10.4%).

SW Manitoba. — The Mississippi Flyway (47%) and Canada (39%) accounted for most of the total mallard harvest from this area (Fig. 12). Among the four southern Canadian reference areas from Alberta to Manitoba, this area contributed the greatest percentage of its total mallard harvest to Canada. The two reference areas in southern Saskatchewan and the SW Manitoba area showed similar patterns of harvest distribution, such as (1) the Mississippi Flyway as the major recipient of adult and total mallard harvests, (2) Canada as the major recipient of the immature harvest, (3) a higher percentage of adult females than adult males harvested in Canada, and (4) Arkansas as the major harvest area in the United States (Fig. 13). About 10% of the total mallard harvest from this area occurred in the Low Plains.

N Saskatchewan–N Manitoba–W Ontario. — Although a reasonable number of recoveries was available (1,002 for total mallards), the banding distribution was probably too heavily concentrated along the southern margin to be representative of the entire area. The Mississippi Flyway dominated in the harvest represented by these bandings with 54% of the adult males, 69% of the adult females, 57% of the immatures, and 61% of the total mallard harvest (Fig. 14). This was the only Canadian reference area from which more immatures were harvested in the United States than in Canada, Major mallard harvest areas (Fig. 15) were Manitoba (12.1%), Minnesota (11.4%), and Ontario (8.8%).

E Ontario-W Quebec. – This was the only Canadian reference area for which the total harvest in Canada (61%) exceeded that in the United States (Fig. 16), and for which most of the harvest in the United States occurred in the Atlantic Flyway (23%). Ontario accounted for 51.8% of the total mallard harvest from this area (Fig. 17).

Washington–Oregon. – For total mallards, 95% of the harvest from this area remained within the Pacific Flyway (Fig. 18) and 80.6% remained within the reference area (Fig. 19). Other than Washington and Oregon, California (11.2%) and British Columbia (3.6%) were the major harvest recipients.

N California. — Ninety-nine percent of the harvest from this area remained within the Pacific Flyway (Fig. 20) and 90.7% within California (Fig. 21).

Intermountain. — Most of this reference area is in the Pacific Flyway, and 83% of the total mallard harvest remained in the Flyway (Fig. 22). A large percentage (71.4%) of the total harvest of these birds occurred within the reference area (Fig. 23). The higher incidence of adult females (15%) than adult males (4%) in the Central Flyway from this area probably is not meaningful. This difference apparently resulted from the banding of relatively large numbers of immatures and few adults near the eastern boundary of the area, and our inclusion of direct recoveries of adult females with indirect recoveries of immature females. About 1% of these birds were harvested in the Low Plains.

High Plains. — This area is almost entirely within the Central Flyway (Fig. 24). Eighty-six percent of the total mallard harvest remained within the Flyway. However, the high percentage (79%) of harvest in the High Plains portion of the Central Flyway and the 64% harvested in Eastern Colorado (Fig. 25) are biased upward by unrepresentatively large numbers of birds banded in the San Luis Valley at the southern extreme of the reference area. About 25% of the recoveries from mallards banded preseason in Eastern Montana (northern extreme of the area) were reported from the Mississippi Flyway (Anderson and Henny 1972).

Missouri River Basin. – The Mississippi Flyway dominated in the harvest from this area (Fig. 26), although the major portion of this area is in the Central Flyway. Large banded samples in the northeastern portion (western Minnesota) of the reference area overemphasized importance of the Mississippi Flyway in the harvest (67%) of birds from this area. Minnesota, with 23.3% of the total mallard harvest (Fig. 27), dominated as a harvest area, with Arkansas (10.8%) second. About 5% of the mallard harvest from this area extended to the High Plains, whereas 17% remained within the Low Plains.

Great Lakes. — Eighty-three percent of the total mallard harvest from this area, located entirely within the Mississippi Flyway, remained within the Flyway (Fig. 28). The Atlantic Flyway was second in importance with $8\,\%$ of the total mallard harvest and $15\,\%$ of the adult males. Wisconsin was the major harvest area $(34.8\,\%$, Fig. 29).

Mid-Atlantic. — All of this area, except for Ohio, is in the Atlantic Flyway (Fig. 30). Seventy-three percent of the combined harvest occurred in the Atlantic Flyway, 18% in the Mississippi Flyway, and 8% in Canada. As noted earlier with respect to the Intermountain area, the inclusion of indirect immature female recoveries to represent the harvest of adult females probably exaggerated the distribution. The most prominent harvest areas (Fig. 31) were New York (34.9%), Pennsylvania (13.4%), and Ohio (7.2%).

NE United States. — Most of the harvest from this area is distributed in the Atlantic Flyway (Fig. 32). The relative dispersion of adult females to adult males is also probably exaggerated. The most prominent harvest areas (Fig. 33) were New York (30.5%), New England (19.3%), and On-

tario (15.9%). However, both here and in the *Mid-Atlantic* the importance of New York is exaggerated by the relatively high intensity of banding there.

Comparison of Harvest Distribution from Banding Data and Harvest Survey Data

Percent distribution of the total mallard harvest in the United States, based on banding and recovery data used in this report (1961–75), is compared in Table 19 with the distribution indicated by harvest surveys (1966–75) as summarized by Carney et al. (1978). Both are estimates and it would be inappropriate to view one as a "check" on the other. However, we have greater confidence when these independently obtained estimates agree with each other.

Banding and harvest data agreed most closely in the Mississippi Flyway: both data sources indicated that Arkansas was the area of greatest mallard harvest in the United States (Table 19). Harvest in the combined Pacific and Central flyways was 48.8% as indicated by banding data and 49.2% by harvest surveys. Banding data suggested that the larger portion of harvest occurred in the Central Flyway. but harvest data suggested that the Pacific Flyway harvested the larger portion. Geis (1971) demonstrated a similar pattern of disagreement using a more restricted banding and harvest data set (1966-68) and State- and Province-defined population weights. We suspect the discrepancy in California is due to a lack of banded birds in important source areas. Birds banded in Colorado's San Luis Valley were assigned population weights for the High Plains, which resulted in a overweighting of these birds and an overestimate of the harvest. San Luis Valley mallard recoveries also were reported at unusually high rates associated with experimental seasons (Hopper et al. 1975).

Derivation of Mallard Harvest from Breeding Reference Areas

Harvest derivation (Tables 20–23) was based on recoveries that were each adjusted for band reporting rate and then population-weighted (see Methods). Reporting rate adjustments were based on the recovery year, whereas population weights reflected the band year. Estimates of harvest derivation rely on accurate preseason population estimates, and adequate and representative banding of all population segments; for these and other reasons caution must be exercised in their interpretation. For example, banding effort was low in Eastern Wyoming compared to other Central Flyway States. This perhaps led to an underestimation of the importance of locally derived birds and a consequent overestimation of the importance of birds from other areas.

We have simplified and summarized information contained in Tables 20–23 by presenting two maps (Appendix D) for harvest areas that accounted for 0.5% or

Table 15. Percent distribution of the adult male mallard harvest from major reference areas to harvest areas within the United States and Canada (1961–75 hunting seasons combined).a

N SASK N SASK N SASK N SAN MISSOURI N MAN E ONT WONT W QUE WA-OR N Ca mtn Plains Basin Lakes At 6 6 7 8 9 10 11 12 13 14 15
00000000000000000000000000000000000000
0000000000000400
000000000000000000000000000000000000000
0000-48700
000
. !
. m
2 2
PAC 1

Table 15. Continued.

	NE United States 16	00000000000000000000000000000000000000	13.9 0.0 0.0 0.0 0.0 1.3 1.3 100.0	100
	Mid- At1 15	00000000000000000000000000000000000000	2.2 0.0 0.0 14.9 100.0	435
6 u i	Great Lakes 14		4.5 0.0 0.9 (0.6) 79.6 15.0	∞ I
ים ים	Missour River Basin 13	W/+040-40WW0000000000000000000000000000000	28:5 28:5 (20:3) (20:4 62:4	1 CH -1
ð	High Plains 12	64.000000000000000000000000000000000000	87.5 87.5 (80.2) (7.3)	021
 4 0	Inter mtn 11		95.0 33.7 (33.2) (0.5)	680
	Z Ca		100.00	991
	WA-OR		97.3	959
] 	E ONT	000-000-00-000000000000000000000000000	59.7 0.0 0.0 0.0 0.0 8.9 31.4	001
e n c e	N SASK N MAN W ONT		29.5 2.8 7.7 (7.7) (7.0) 53.6 6.4	
+ 6 -	SW MAN	 4%004-04WW000000000000000000000000000000	31.5 10.7 (1.7) (9.0) 54.4 3.2	39
1 2	SASK 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		19.7 19.0 (17.9) (17.1) 57.8 2.8 100.0	336
1 1 1 0	SAS	04-00000000000000000000000000000000000	22.6 5.6 27.0 (8.8) (18.2) 44.1 100.0	80 00 1
T a N	SW ALTA 3		21.9 40.3 28.3 (17.1) (11.2) 9.3 0.1	29
	N ALTA N NWT		23.2 17.2 29.0 (19.3) 30.1	275
 	I Z K -		256.1 35.0 0.0 (0.0) (0.0) 100.0	38
! ! ! ! !	> 01 NL >		Ak-Canada Pacific Central High Low Miss. Atlantic	actual adj.

^aHarvest distribution was based on direct adult male recoveries (N actual) that were each adjusted for band reporting rate (N adj.).

NE United States within Great Lakes 14 σi دا Missouri River G Basin L₂ 40 eas a r reference 4- j 101 jor E E i noi from Œ adult female mallard harvest hunting seasons combined). MAN 6 2 the 51-75 of t 0 distribution 16. Percent d United States zz Table the

Table 16. Continued.

 	 	 	χ (a) Σ	10		e f e r			1 0		4 0	q	b n e	j n g		
> 0 + 0 -	N A C	N ALTA N NHT	SW ALTA	S S	SASK 5	SW MAN	N SASK N MAN W ONT	E ONT	WA-OR	N Ca	Inter mtn 11	i m	Missour River Basin	i Great Lakes 14	Mid- At1 15	NE United States 16
I I C L L L L L L L L L L L L L L L L L		VWOOL4W@VNVOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	000000000000000000000000000000000000000	WWG-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W	4w00401700000000000000000000000000000000	044-0400000000000000000000000000000000	\(\pi \) \(\	000-00000000000000000000000000000000							00000000000000000000000000000000000000	
Ak-Canada Pacific Central High Low Miss. Atlantic Total pct	55.7 55.7 0.0 (0.0) (0.0) 3.1 100.0	26.8 26.6 17.8 (6.6) (11.2) 28.5 28.5	38.0 34.5 19.0 (11.2) (7.8) 100.0	28.0 5.8 23.8 (6.3) (17.5) 41.6	28.4 20.3 (2.7) (17.6) 50.8	41.1 10.2 (1.1) (9.1) 47.7 100.0	19.8 0.0 7.1 (0.5) (6.6) 69.1	55.9 0.0 0.5 (0.5) (0.3) 15.4 100.0	94.4	99.4	82.1 15.0 (14.4) (0.6)	3.1 88.0 (83.2) (4.8) 100.0	~	6.2 0.0 1.8 (1.7) 83.9 83.9	9.0 0.1 (0.1) (0.3) 18.4 72.2 100.0	24.5 0.0 0.3 (0.0) 7 4.0
actu adj.	1 95	845	361	186	297	182	160	250	890	153	-01	166	∞ r∪ l	573	140	401

^aHarvest distribution was based on direct and indirect adult, and indirect immature female recoveries (N actual) that were each adjusted for band reporting rate (N adj.).

Table 17. Percent distribution of the immature mallard harvest from major reference areas to harvest areas within the United States and Canada (1961–75 hunting seasons combined).

	NE United States	
	Mid- At1 15	
ים מ	Great Lakes 14	
ם ב	Missour River Basin 13	00000V00000000000000000000000000000000
2	gh ins	8 000000000000000000000000000000000000
4	Inter mtn 11	00000000000000000000000000000000000000
n	K Ca	 00000000000000000000000000000000000
ه ا	WA-OR	74 004000000000000000000000000000000000
	M ONT	
1 U U	N SASK N MAN 7 ONT	0000000 L C C C C C C C C C C C C C C C
т г	SW MAN	
٤	SE SASK 5	00000000000000000000000000000000000000
L	SW SASK 4	0000-4000000-0-00000000000-0-000000-0m000
Σ	SW ALTA 3	00008000000000000000000000000000000000
	N ALTA N NWT	00000000000000000000000000000000000000
	Z < -	
	Harvest area of recovery	THE STATE OF THE S

Table 17. Continued.

1	NE United States 16	00000000000000000000000000000000000000	22.9 0.0 0.0 0.0 0.0 75.1	 ∞ 1
1	Mid- A+1 15	00070000000000000000000000000000000000	6.8 (0.00) 12.3 100.0	551
i n g	Great Lakes 14	W4-V000-000000000000000000000000000000	6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7686
and	Missour River Basin 13	VW00W03+W+000000000000000000000000000000	8.1 14.4 (3.5) 76.5 100.0	4145
	High Plains 12		92.9 92.9 (90.0) (2.9) 100.0	N 1
4	Inter mtn 11		97.8 1.3 (0.8) (0.7) 100.0	N 70 I
æ	N Ca 10		100.00	1 M W
ده م	WA-OR		95.9 0.0 (0.0) (0.0)	2945 5246
	E ONT 8 OUE	000-000-00000000000000 0w4w0%nnwnnow00w4-0%vnnvnn	75.0 0.0 0.0 0.0 0.0 19.2 19.2	9101
e n c	N SASK N MAN W ONT	WV0040V+WM00000000000000000000000000000000000	34.0 7.7 7.7 (1.2) (6.4) 56.9	489
afer	SW MAN	000000000000000000000000000000000000000	59.3 0.1 8.4 (1.4) (7.1) 31.4 100.0	102
٤	S S E S S S S S S S S S S S S S S S S S	+W0040++8+000000000000000000000000000000	46.8 16.3 (13.2) (13.1) 35.6 100.0	373
L 0	S S W	000040018000000000000000000000000000000	45.8 16.4 (3.8) (12.4) 33.5 100.0	1389
Σ o	SW ALTA	00000000000000000000000000000000000000	59.2 26.2 7.9 (4.1) (3.7) 6.7 6.7	961
	N ALTA	+400000404+000000000000000000000000000	(8.9 (3.8) (9.2) (8.2) (8.2) (18.2)	10 m
	Z K -		a 63.1 36.9 (0.0) (0.0) (0.0)	179
	> 0 4 >		w w m m m m m m m m m m m m m m m m m m	actu adj.

^aHarvest distribution was based on direct immature male and female recoveries (N actual) that were each adjusted for band reporting rate (N adj.).

Table 18. Percent distribution of the total mallard harvest from major reference areas to harvest areas within the United States and Canada (1961–75 hunting seasons combined).

	1		M E	5	<u>.</u>	4	0 0 0		a 7 e	0	+ 0	d d	1 6	p u i	; ; ; ;	
Harvest area of recovery	PAC	N ALTA N NWT	3-m	SW SASK 4	S A S K	SW MAN	N SASK N MAN W ONT	E ONT	WA-OR	Z Z	Inter	ah 2	Missour River Basin 13	Great Lakes	Mid- Atl	NE Nrited States
THE STATE OF THE S		00-V\$0000000000000000000000000000000000	00008-000000-4-000000000000000000000000	0000000 000000000000000000000000000000	00000000000000000000000000000000000000	00000W40000000000000000000000000000000			4W		00000000000000000000000000000000000000		00000-W-000000000000000000000000000000			000000000000000000000000000000000000000
ロンゴロ					±.									'n	1.7	

Table 18. Continued.

Harvest Pac X A P P P C		Majo	r o	r	٠ ١	a n c e		r a	ro	۰	Φ	n n	i n g		
	ALTA NWT 2	SW ALTA 3	SW SASK 4	S S E S S S S S S S S S S S S S S S S S	SW MAN	N SASK N MAN M ONT	E ON E	WA-OR	ZC CB	Inter mtn 11	High Plains 12	Missour River Basin 13	Great Lakes 14	Mid- Atl 15	NE United States 16
0 0 0	 96-060M086-000000000000000000000000000000	0000+040000000000000000000000000000000	жмоойой- образования в при	WW00404-0 WW00404-0 WW4+-0 WW4+-0 WW7+4 WW7+0 WW	W		000-0 00-0000000000 000000 000-0 00-0000000000				4w00/0000400000000000000000000000000000		40000000000000000000000000000000000000	W1 0-070000000000000000000000000000000000	00000000000000000000000000000000000000
ic 46.9 20 20 20 46.9 20 20 46.9 20 20 46.9 20 46.9 20 46.9 20 46.9 20 46.2 20	0 w w = 4 e w 0	604660	26.2 26.6 (18.4) (10.0 10.0	26.2 0.7 21.9 (17.5) 50.1	38.7 0.2 12.1 (10.2) 47.2 100.0	26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61.0 0.8 (0.2) 15.3 22.8	-	99.3	-	3.3 85.7 (79.0) (6.6) 100.0	-	6.5 0.0 0.0 0.0 0.0 8 8,1,9 10 10 10 10	7.9 0.0 0.7 (0.1) (0.6) 18.4 73.0	21.8 0.0 0.4 (0.1) (0.3) 72.9
actual 226 2 adj. 385 4	79	220	6318	774	4664	1	002	6680 11849	3738 6883	4962	8023	13998	8442	129	452

^aHarvest distribution was based on direct and indirect recoveries (N actual) of all age and sex classes, except locals, that were each adjusted for band reporting rate (N adj.).

Fig. 2. Percent distribution of the mallard harvest among flyways (including Alaska-Canada and the 100th meridian division in the Central Flyway) from the N Pacific major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 4. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the N Alberta–N Northwest Territories major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than $1.0\,\%$).

Fig. 3. Percent distribution of the mallard harvest from the $N\ Pacific$ major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 5. Percent distribution of the mallard harvest from the N Alberta-N Northwest Territories major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 6. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the SW Alberta major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 8. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the SW Saskatchewan major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 7. Percent distribution of the mallard harvest from the SW Alberta major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 9. Percent distribution of the mallard harvest from the SW Saskatchewan major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 12. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the SW Manitoba major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 11. Percent distribution of the mallard harvest from the SE Saskatchewan major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 13. Percent distribution of the mallard harvest from the SW Manitoba major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 14. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the N Saskatchewan–N Manitoba–W Ontario major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 16. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the *E Ontario–W Quebec* major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 15. Percent distribution of the mallard harvest from the N Saskatchewan-N Manitoba-W Ontario major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 17. Percent distribution of the mallard harvest from the E Ontario-W Quebec major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 18. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the Washington – Oregon major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than $1.0\,\%$).

Fig. 20. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the N California major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than $1.0\,\%$).

Fig. 19. Percent distribution of the mallard harvest from the Washington-Oregon major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 21. Percent distribution of the mallard harvest from the N California major reference area (shaded) to harvest areas within the United States and Canada.

 $\label{eq:Fig. 22.} Fercent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the <math display="inline">Intermountain$ major reference area (shaded). $AM = adult\ male,\ AF = adult\ female,\ Imm = immature,\ t = trace\ percentages\ (less\ than\ 1.0\,\%).$

Fig. 24. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the $\mathit{High\ Plains\ major\ reference}$ area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than $1.0\,\%$).

Fig. 23. Percent distribution of the mallard harvest from the *Intermountain* major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 25. Percent distribution of the mallard harvest from the *High Plains* major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 26. Percent distribution of the mallard harvest among flyways (including Alaska-Canada and the 100th meridian division in the Central Flyway) from the *Missouri River Basin* major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 28. Percent distribution of the mallard harvest among flyways (including Alaska-Canada and the 100th meridian division in the Central Flyway) from the *Great Lakes* major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 27. Percent distribution of the mallard harvest from the *Missouri River Basin* major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 29. Percent distribution of the mallard harvest from the *Great Lakes* major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 30. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the *Mid-Atlantic* major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 32. Percent distribution of the mallard harvest among flyways (including Alaska–Canada and the 100th meridian division in the Central Flyway) from the NE United States major reference area (shaded). AM = adult male, AF = adult female, Imm = immature, t = trace percentages (less than 1.0%).

Fig. 31. Percent distribution of the mallard harvest from the *Mid-Atlantic* major reference area (shaded) to harvest areas within the United States and Canada.

Fig. 33. Percent distribution of the mallard harvest from the $\it NE$ United States major reference area (shaded) to harvest areas within the United States and Canada.

Table 19. Percent distribution of the total mallard harvest in the contiguous United States comparing estimates from preseason banding data (1961-75) with estimates from harvest survey data (1966-75).

Harvest area	Banding data	Harvest data a	Harvest area	Banding data	Harvest data
Pacific F	1умау		Central F	lyway	
WA OR ID MT-W WY-W CA NV UTAH CO-W AZ NM-W Total	7.4 3.5 4.2 0.9 tr 3.6 0.4 0.8 0.1 0.1 tr 21.0	6.8 3.4 5.2 2.0 0.2 7.2 0.7 2.0 0.4 0.2 tr 28.0	MT-E N D S D WY-E NEB CO-E KS NM-E OK TX	0.7 3.4 2.6 1.3 4.1 7.4 2.5 0.5 2.0 3.3	0.7 4.1 3.0 0.5 3.2 2.1 2.9 0.2 1.8 2.8
Mississip	рі Flyway		Atlantic	Flyway	
MN WISC MICH IOWA ILL IND OHIO MO KY ARK TENN LA MISS ALAB	6.0 3.7 1.8 34.7 0.5 0.5 4.6 9.6 2.5 2.9	6.1 4.5 2.7 4.7 0.9 2.6 8.4 1.4 52.2	ME VT N ASS CT I Y P A V D E D M C C C G G G	0.1 0.1 0.1 tr 0.9 0.6 0.1 0.2 0.4 0.5 0.3	0.1 0.1 0.3 0.2 tr 1.4 tr 0.3 0.5 0.5
Total	46.6	43.3	FL	0.1 4.5	0.1 7.4

a_{Carney} et al. (1978).

more of the total mallard harvest (see Table 23): (1) a map showing percent derivation of harvest from each of the reference areas, and (2) an adjoining map showing harvest derivation similarity indices (see Methods) between the harvest area and other areas. The New England States have been combined on the similarity maps. Instead of discussing harvest derivation for every area, we will limit our discussion to selected, representative areas.

Alberta. – The N Alberta–N Northwest Territories and SW Alberta reference areas accounted for 78.7% of the harvest in Alberta (Fig. D-3). Alberta is similar in harvest derivation to States in both the Pacific and Central flyways, which is indicated by similarity indices equal to or greater than 50 (shaded) in Washington, Idaho, Eastern Montana, Eastern Wyoming, and the western portions of South Dakota, Nebraska, Kansas, and Texas (Fig. D-4).

Saskatchewan. — More than 75% of the mallard harvest in this area is derived from within the Province. With the exception of Minnesota, adjoining States on the Central-Mississippi Flyway boundary were most similar to Saskatchewan in harvest derivation (Fig. D-6).

Manitoba. – Locally derived birds from *SW Manitoba* comprised 40% of the total mallard harvest. Mississippi Flyway States were most prominent in sharing common sources of harvest with Manitoba (Fig. D-8).

Ontario. – States in the Atlantic Flyway, particularly from Pennsylvania south to North Carolina, were associated with Ontario in harvest derivation (Fig. D-10).

Washington and Oregon.—The three westernmost breeding reference areas in Canada accounted for 79% of the harvest in Washington (Fig. D-11) and 63% of the harvest in Oregon (Fig. D-13). Most of the remainder of the

harvest came from the reference area comprised of these two States.

California. – This harvest area, which totally encompasses its main source of harvest (57.7% from N California in Fig. D-15), appears to be isolated from the rest of the Pacific Flyway. However, the apparent isolation or lack of similarity with other areas in harvest derivation (Fig. D-16) is influenced by California's coastal location.

Western Montana. — This area derives most of its harvest (57.5%) from the *Intermountain* area (Fig. D-17), of which Western Montana is a part. High similarity indices (Fig. D-18) with other States in the same reference area are to be expected.

Idaho. – SW Alberta and the Intermountain area were the most important sources of harvest in Idaho (33.8 and 32.3% respectively, Fig. D-19). Idaho is most similar in harvest derivation to areas from Alberta to Arizona, and Eastern Montana and Eastern Wyoming (Fig. D-20). The extremely low similarity index (13) between Idaho and Western Wyoming is believed to be a result of too few recoveries in the latter, geographically small, harvest area. For example, a single recovery from N Saskatchewan–W Manitoba–W Ontario accounted for 87.5% of the mallard harvest estimated for Western Wyoming.

Eastern Colorado. — The intensity of banding in the San Luis Valley of south-central Colorado overemphasized importance of the High Plains as a source of harvest for Eastern Colorado (81.9% in Fig. D-27), and underemphasized similarity in harvest derivation with other High Plains and Low Plains areas. Other areas similar in harvest derivation were Western Colorado and New Mexico (Fig. D-28). In their analysis of Valley-banded mallards, Hopper et al. (1975) showed that less than 10% of the direct recoveries and less than 20% of the indirect recoveries occurred outside of Colorado and New Mexico.

Western North Dakota, Eastern North Dakota, and Eastern South Dakota. — These harvest areas are discussed as a group because they shared common derivation characteristics. The three most important source areas were (1) Missouri River Basin, 37.1%, 30.4%, and 27.0%, respectively, for each harvest area; (2) SW Saskatchewan, 22.2%, 18.6%, and 22.3%; and (3) N Alberta—N Northwest Territories, 16.1%, 11.3%, and 13.1% (Figs. D-29, D-33, and D-35). Their sources of mallard harvest (similarity indices > 50) were also similar to Saskatchewan, the eastern tier States (generally both High and Low Plains portions) in the Central Flyway, and most of the Mississippi Flyway (Figs. D-30, D-34, and D-36).

Eastern Nebraska, Eastern Kansas, Eastern Oklahoma, and Eastern Texas. — These harvest areas, all of which are within the Low Plains, derive 29–38% of their mallard harvest from SW Saskatchewan, 16–18% from SE Saskatchewan, and 13–15% from N Alberta–N Northwest Territories (Figs. D-37, D-39, D-41, and D-43). Other areas with similar patterns of harvest derivation included Saskatchewan, Eastern Montana, the remaining eastern tier States

(both High and Low Plains portions) of the Central Flyway, and most Mississippi Flyway States except for the northern tier (Figs. D-38, D-40, D-42, and D-44). This portion of the Low Plains is equally similar in harvest derivation to the western tier of Mississippi Flyway States and adjoining (High Plains) portions of these States.

Minnesota, Wisconsin, and Michigan. – These harvest areas are discussed together because (1) they receive less than about 15% (Figs. D-41, D-43, and D-45) of their total mallard harvest from the four southern Canadian reference areas (SW Alberta, SW and SE Saskatchewan, and SW Manitoba) and (2) each derives about 20% or more of its harvest from N Saskatchewan–N Manitoba–W Ontario. Similarity indices (Figs. D-46, D-48, and D-50) are also comparable and include a number of harvest areas in the Atlantic Flyway. The main source of mallards, however, is different for Minnesota (48.5% from the Missouri River Basin) compared to Wisconsin and Michigan (55.1% and 46.1% from the Great Lakes).

Iowa and Illinois. — Both of these areas derive almost 40% (Figs. D-51 and D-53) of their harvest from the four southern Canadian reference areas and about 25% from the Missouri River Basin and Great Lakes areas combined. N Saskatchewan—N Manitoba—W Ontario is also an important source of mallards and accounts for another 20% of the total mallard harvest in these areas. Their similarity in harvest derivation is further reflected by similarity indices (Figs. D-52 and D-54). Both areas have high indices with Saskatchewan and Manitoba, the Dakotas south to Texas, and States east to Georgia.

Missouri, Arkansas, Louisiana, and Mississippi. — There are similarities and differences in harvest derivation for these areas, although the differences are mostly gradual changes in derivation. All rely on the four southern Canadian reference areas for 50–61% (Figs. D-55, D-59, D-61, and D-63) of their total mallard harvest, 22–32% from N Alberta–N Northwest Territories and N Saskatchewan–N Manitoba–W Ontario combined, and 11–13% from the Missouri River Basin. Indices (Figs. D-56, D-60, D-62, and D-64) also suggest similarity in harvest derivation to Saskatchewan and Manitoba, eastern tier States (both High and Low Plains portions) of the Central Flyway, and most Mississippi Flyway States except the northern tier.

New York and Pennsylvania. — The importance of E Ontario—W Quebec to the total mallard harvest in these areas is about 37% (Figs. D-65 and D-67). N Saskatchewan—N Manitoba—W Ontario is also an important source of mallards for these areas. New York derives more of its mallard harvest (14.2%) from the NE United States than does Pennsylvania (2.8%). The Great Lakes and Mid-Atlantic reference areas also differ in their importance as sources of mallards for New York and Pennsylvania.

South Carolina. – This harvest area is representative of the southeastern Atlantic Flyway in terms of magnitude and derivation of the mallard harvest. The total harvest in this area is derived mainly from the *Great Lakes* (28.9% in

0W04WW4004WW-0W000000-0-0-WW0-00-0WWWWW40 Total States NE United States 16 T σi \subseteq United Mid-At1 15 σi no i Great Lakes 14 the إه within areas Inter High mtn Plains 11 12 o i est in harvest combined). no j αi L lard harvest g seasons comb ne i WA-OR 9 ٥ adult male malla (1961-75 hunting c i SASK MAN ONT œ ۷ Ø ZZ z MAN 6 0000VW+0000000000000VVV4+0V00000WWWAV+0000 4 a) S the of the areas SM SASK 4 L i derivation reference 0 1 SW ALTA 3 ro Σ ma jor . Per zz Table 20. Canada

Table 20. Continued.

!	α.	W44w9v-1w000-0000w04vw0000
	Ë	0,007-,00000000000000000000000000000000
, ,	otal	
ה	NE nited tates 16	00000000040400000404040000000000000000
n d i	Mid- U Atl S 15	2
d i	i Great Lakes 14	74 72 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75
 	issour River Basin 13	22.23.33.22.33.33.33.33.33.33.33.33.33.3
0	High Lains 12	0.0000000000000000000000000000000000000
יים מיים	Inter mtn P	000000000000000000000000000000000000000
. a	N Ca 10	
	WA-OR	0.0000000000000000000000000000000000000
υ L	E ONT W QUE	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
เ	SASK N MAN W ONT	0.000000000000000000000000000000000000
9	SW MAN	7.00.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	S S S S S S S S S S S S S S S S S S S	80.00000000000000000000000000000000000
i o	SW SASK 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ıσ	SW ALTA 3	00-450000000000000000000000000000000000
	N ALTA N NIUT	20000000000000000000000000000000000000
 	PAN I	
 	Harvest area of recovery	A C C C C C C C C C C C C C C C C C C C

^aHarvest derivation was based on direct adult male recoveries that were each adjusted for reporting rate and then population-weighted. The relative contribution of each major reference area to the adult male harvest is shown by "ALL", and the importance of each harvest area to the adult male harvest is shown by "Imp".

 $\begin{array}{c} \texttt{0} \\ \texttt{10} \\ \texttt{0} \\ \texttt$ and otal States NE United States 16 T ioi United \subseteq σi c i the Missouri River Great D s Basin Lakes 13 14 no i ρi within areas High A Plains P 0 | adult female mallard harvest in harvest (1961-75 hunting seasons combined).a Inter mtn P 11 m į a i 4 N Can n i WA-OR ONT QUE 8 \subseteq ШΖ a i ۷ ø 4 o i SE of the areas (SASK 5 SW SASK 4 derivation (0 SW ALTA 3 . Percent de from major ALTA NWT 2 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00 zz Table 21. Canada Harvest area of recovery NBAK NBAKA N

Table 21. Continued.

!	d E	44-44000-00000000000000000000000000000
1	a]	
	10	
9	NE United States 16	0.00 100 100 100 100 100 100 100 100 100
n d i	Mid- L Atl 9	22. 22. 23. 23. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25
- C	reat akes	8
1	ssouri iver Glasin La	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1	Mi Ah Ri ins B	80000000000000000000000000000000000000
	r Hi	00-000000000000000000000000000000000000
9	Inter mtn 11	
r l	N Ca	
	WA-OR	
ပ မ	ONT QUE	$\frac{1}{2}$
ت م	ASK MAN E ONT W	N
φ ψ	N Z	20000000000000000000000000000000000000
e S	SIJ MA	W- AAV AW & CO CO CO CO CO CO CO W CO W W CO
	S A S K	20.02 20.03 20.04 20.03 20
0 1	SW SASK 4	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
ro E	SW ALTA 3	8040WVA4W00000000000000000000000000000000
	4 ALTA	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	NA -	
	Harvest area of recovery	DE COMPAND COM

^aHarvest derivation was based on direct and indirect adult, and indirect immature female recoveries that were each adjusted for band reporting rate and then population-weighted. The relative contribution of each major reference area to the adult female harvest is shown by "ALL", and the importance of each harvest area to the adult female harvest is shown by "Imp".

and NE United States 16 T States or i ci 000000 Mid-At1 15 United 0 اء Great Lakes 14 ωi the ssouri River G Basin [within 1 0 1 Z RB areas harvest pined).a a i a i ن ۽ N Ca in F na i J harvest seasons co WA-OR ONT QUE iori hunting s 000000%+00000000000000+0000000000004//00/ υi ici шЗ SASK NAN ONT 0000V&V00000040000000000000000000V0VWWW+V x z z Œ immature 1961-75 MAN 6 αi the eas (SASK 5 of are Li derivation r reference o i m i Σ major ALTA NWT 2 from r 2000 AA-22 ada able Cana

Table 22. Continued.

ı	1	0,m,m,m,e,e,m,d,e,e,e,e,e,e,e,e,e,e,e,e,e
1	Q E I	000000000000000000000000000000000000000
1	Total	
ا و ا	NE United States 16	0.000000000000000000000000000000000000
פוס	Mid- U Atl 9 15	2 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
e q	Great Lakes 14	20.25 4.93.0 20.1.25 4.6.4 4.6.6 6.00
- I	Missour River Basin 13	8470171 8 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	High Plains 12	00-00/04-400000000000000000000000000000
e e	Inter mtn f	60000000000000000000000000000000000000
r r	N Ca	00000000000000000000000000000000000000
1	WA-OR 9	00000000000000000000000000000000000000
ت د	E ONT 8 OUE	2
2	N SASK N MAN W ONT	40 8 7 4 7 8 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r e	SW MAN	0. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	SASK SASK	00 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
jor	SW SASK 4	21
π Σ	<<	
	N ALTA N NWT	000440400000000000000000000000000000000
		000000000000000000000000000000000000000
	и п п	THE TOTAL TOTAL THE TABLE TO TH

Alarvest derivation was based on direct immature male and female recoveries that were each adjusted for band reporting rate and then population-weighted. The relative contribution of each major reference area to the immature harvest is shown by "All", and the importance of each harvest area to the immature harvest is shown by "Imp".

Table 23. Percent derivation of the total mallard harvest in harvest areas within the United States and Canada from major reference areas (1961—75 hunting seasons combined).a

THE PLAN SWANN WALLA SWANN WAL			
THE PLAN SAN SAN SAN MAN MAT M COLOR TO SAN	1	£Ι	OOMO&FWWOOOOWWWOOWOOOOOOOFO
THE PART AND THE P		ota	
N	- 1	NE nited tates 16	
M A ALIA SM NATION TO BE A STANDARY MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM MAN MONTH ME ONLY THIS SM STANDARY SALES SM STANDARY S		id- U Atls	
NA ALTA SM. A LITA SM. SASK SM. MAN M CHAIN WELL WATER SM. SASK SM	1	r ake 14e	$ \ \ $
N ALTA SW SASK SW MAN MAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN QUE WA-DR N CA The Plain Part N N ALTA SW SASK SW MAN WAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N CA THE PART N N MAN E ONT IN GO THE WA-DR N MAN E ONT IN GO THE WAN E ONT IN GO	1	sour Sin	
MALTA SWAN ASK SASK SW MAN WONT W GUE WA-DR N CA INTO PHY NOT A CAN BE C	9	gh ins	NOOONUGOOOONNOOOONUO
PAC N ALTA SW SK SW MAN W ONLY WOLLD WALLA SW SW SW SW MAN W ONLY WOLLD WALLA SW SW SW MAN W ONLY WOLLD WALLA SW		n Pl	00-00-00000000000000000000000000000000
PAC N ALTA SW SW SASK SW MAN WONT W QUE MA-OR N C C C C C C C C C C C C C C C C C C	i	444	0000+000000-0000400000-000004-000000000-0000
PAC N NUT A SASK SASK SW MAN W ONT W QUE MAD ON SASK SW MAD	r.	00	0400000000004000/-000000000000000000000
PAC N NUT ALTA SW SW SE SW MAN W ONT W QUENTY ALTA SW SW SW MAN W ONT W QUENTY ALTA SW SW SW MAN W ONT W QUENTY ALTA SW SW SW MAN W ONT W QUENTY ALTA SW SW SW MAN W ONT W QUENTY ALTA SW SW SW MAN W ONT W QUENTY ALTA SW		A-0 9	-W-0000000044-008W000-000000000000000000
PAC N NUT ALTA SW SW SK SW MAN W ON TAIL SW SW SW SK SW MAN W ON TAIL SW	υ	00% NU	000000000000000000000000000000000000000
PAC N ALTA SW	L	SAS N MA W ON	OOOOON&NOOOOOOOOOON\O=00\OOOOO\
PAC N ALTA SW	i	MAN 6	00001000000000000000000000000000000000
PAC N ALTA SW ALTA SW SW ALTA	1	% ™% \ X	0000084-0000000000000000000000000000000
A A LTA SW A		S A S E	$ \ \ $
AN	e i	ST	00-0700400000000000000000000000000000
T) 9 1	AP NE	DO49-080000085560047900079+88809555555555
0.		PAC OA-	o
# W WY W		Harves area of ecover	MEMORANDO SANCA SA

Table 23. Continued.

	4.	WW4404WW4-W000000/W0WW4WWW000
1	Imp	0w00w0V-4u00000000000000000000000000000000000
1	otal	
9 u	NE nited tates 16 T	00000000000000000000000000000000000000
	Mid- Ur Atl St	0.000000000000000000000000000000000000
e q	reat akes 14	48884 4888
	souri ver G sin L	648684606860088018744887886 648688606860004800880036707741
4	Mis gh Ri ins Ba 2	000000000000000000000000000000000000000
	er Hi	0000-0-0-000000000000000000000000000000
9	Int mt	000000000000000000000000000000000000000
מו	X C 2 C 8	
	WA-0	
200	E ONT W QUE	0-100000000000000000000000000000000000
1 2	SASK N MAN W ONT	2020 2020 2020 2020 2020 2020 2020 202
r e f	X X X Y X Y X X X X X X X X X X X X X X	UVUVAUAAAVVVOOOOOOOOOOOOOOOOOOOOOOOOOOO
 	SE SASK S	2.50
	S A S K	720 720 720 720 720 720 720 720
Maj	SW ALTA 3	8880-1-3486-000000000000000000000000000000000000
 	A A N	77.4.1.4.7.7.4.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
1	. —	184888888888888888888888888888888888888
	Harvest area of recovery	TOWA TOWA

Alarvest derivation was based on direct and indirect recoveries of all age and sex classes, except locals, that were each adjusted for band reporting rate and then population-weighted. The relative contribution of each major reference area to the total harvest is shown by "ALL", and the importance of each harvest area to the total harvest is shown by "Imp".

Fig. D-69), E Ontario-W Quebec (24.4%), the Missouri River Basin (12.7%), and N Saskatchewan-N Manitoba-W Ontario (10.6%). This area is similar (Fig. D-70) to most Mississippi Flyway States except the western tier (Minnesota to Louisiana), and to most areas in the Atlantic Flyway other than New York and New England.

Within-season Derivation of the Mallard Harvest

Weekly derivation of the total mallard harvest by harvest area is shown in Table E-2 for weeks that contributed 1% or more of the area's harvest. Corresponding dates of weekly periods, which begin on 1 September, are shown in the introduction to Appendix E. These data are presented primarily as reference material. They should be interpreted cautiously, because varying intensities (including lack) of banding in particular breeding reference areas, years, and varying season lengths could indicate a temporal change in harvest derivation that is unjustified. This caution is especially appropriate with respect to the N Pacific, N Alberta-N Northwest Territories, and N Saskatchewan-N Manitoba-W Ontario reference areas where banded samples have been small and variable during the 1961-75 period. The column labelled "Imp" shows percent distribution of harvest among weekly periods for the harvest area. Values in this column are affected by varying numbers of season-days among time periods over years. They indicate time periods during which hunting seasons were most often open and relative importance of the harvest among time periods. In the following discussion we identify apparent temporal changes in harvest derivation of mallards in selected areas.

Washington. — Weeks 6 (6–12 October) to 21 (19–25 January) were represented by 1% or more of the harvest. Percent distribution of the harvest ranged from 1.8% (Week 6) to 9.3% (Week 7). This suggests that Week 6 was a period of small harvest and also that the seasons frequently began early in Week 7 (13-19 October), because large harvest values are associated with opening days. Regulation records show that the season opened late in Week 6 (earliest date 10 October) in 7 of the 15 years and in the early or middle part of Week 7 in 8 of the 15 years (see Table A-2 in Martin and Carney 1977). Mallards from Washington-Oregon contributed more than one-fourth but less than onehalf of the harvest for Weeks 6 through 8 (6-26 October). For Weeks 10 (3-9 November) through 21 (19-25 January) more than four-fifths of the harvest was derived from Canadian reference areas.

Oregon. – For Weeks 6 through 9 (6 October–2 November) locally derived mallards (Washington–Oregon and N California) comprised a minimum of three-fourths of the harvest. For Weeks 11 (10–16 November) through 21 (19–25 January) the maximum contribution from these local areas was less than one-third of the harvest, and derivation from Canada clearly surpassed local derivation.

Idaho and Western Montana. — In both of these harvest areas derivation shifted from local to Canadian mallards at about the same time. During Weeks 6 through 10 (6 October–9 November) the average percent contribution from the Intermountain area to Idaho was 49%. For subsequent weeks (11–21) this average dropped to 27%. Comparable average percentages for Western Montana were 76% for the early (5–10) and 38% for the late (11–19) weeks.

California. — Particularly in the early weeks but throughout all weeks, locally derived mallards from *N California* and *Washington-Oregon* were most important in California's harvest. Their contribution to the harvest in California dropped below 50% in only one period (19).

Nevada and Utah.—The local Intermountain area appeared to be an important source of harvest for all weeks, although data for these States were somewhat erratic due to small numbers of recoveries. A shift toward more Canadian mallards after Week 7 (13–19 October) was indicated.

Eastern Montana. — Locally derived (High Plains) mallards comprised more than one-half of the harvest for Weeks 5 through 8 (29 September-26 October), but less than one-third during the remaining weeks.

Eastern Colorado.—Consistent opening season dates were indicated by the high importance (31.4%) of Week 5 (29 September–5 October). Local derivation comprised more than 95% of the harvest in Weeks 5 through 7 (29 September–19 October) and more than 50% of the harvest through Week 18 (29 December–4 January).

Eastern Dakotas. — In these areas, a moderate derivation shift was suggested from Weeks 8 to 9 (20 October-2 November), when locally derived (Missouri River Basin) mallards decreased in importance.

Nebraska, Kansas, Oklahoma, and Texas. — Both High and Low Plains portions of these States appeared to be consistent in source of harvest throughout the season. Percentage changes, which are believed to have resulted mainly from sampling variation, did not form a pattern. Relative consistency in harvest derivation appears to be affected by later opening season dates, by which time mallards from more areas are available.

Minnesota, Wisconsin, and Michigan.—These States appeared to harvest mainly locally derived birds for the first few weeks of their seasons. Missouri River Basin and Great Lakes mallards averaged over 60% of the harvest for Weeks 5 (29 September–5 October) through 9 (27 October–2 November) and less than 50% thereafter. Apparently, birds from more northern breeding areas are still north of these States when their hunting seasons open.

Iowa. — Temporal derivation was clearly different although the contributions of SW Saskatchewan (20.5% in Table 23) and the Missouri River Basin (20.6%) to the total Iowa mallard harvest were the same. The Missouri River Basin was the source of about 60% of Iowa's mallard harvest during Weeks 5 and 6 (29 September–12 October), a period during which birds from SW Saskatchewan

were apparently unavailable. This relationship, however, is complicated by the different hunting seasons (dates) that were selected in Iowa over the 15 years. Since all years were combined, it is impossible to demonstrate with certainty that early opening dates in Iowa impact *Missouri River Basin* mallards to a much greater extent than birds from other areas. The relatively low level of harvest during the early weeks must also be considered.

Illinois. — Derivation of the total mallard harvest in Illinois was very similar to that of Iowa from a season-long perspective. However, Illinois tended to select opening season dates that were 2–3 weeks later, which favored relative consistency in weekly harvest derivation. We interpret this as an indication that by Week 8 (20–26 October), mallards from many source areas were available to Illinois hunters.

Missouri, Arkansas, Louisiana, and Mississippi. — These harvest areas demonstrate remarkable consistency in weekly harvest derivation from major reference areas. Variations in percentages by time period, as in the southern Central Flyway, appeared to be rather small and more random than patterned.

Atlantic Flyway. — Recovery samples in the New England States were too small to demonstrate temporal changes in derivation even if such changes occurred. The larger samples available for New York, Pennsylvania, and South Carolina suggested consistency in seasonal derivation.

Harvest Derivation Implications

The principal purpose of this work has been to consolidate information on breeding-harvest area relationships. This information, pertaining only to mallards, may be of value in assessing flyway boundaries or proposed management units. However, other factors such as estimates of waterfowl harvest (see Martin and Carney 1977), recruitment and population size (see Pospahala et al. 1974), and survival and harvest rates (see Anderson 1975) must also be considered in a thorough assessment, which is beyond the scope of this study. Given these limitations, analyses of geographic and temporal derivation of the mallard harvest suggest a few management implications.

Although mallards and other waterfowl may migrate within corridors that are much narrower than flyways, these lanes of travel are shared by birds from a number of source areas. Bellrose and Crompton (1970:227), in their analysis of recovery distributions of mallards banded during the hunting season, stated that ". . . ducks migrate along definable areas of geography, which we have referred to as 'migration corridors'" They further suggest that, with more information, hunting regulations might be based upon migration corridors rather than flyways. Our results do not support the concept of management by migration corridors, assuming that identification of discrete source-harvest area populations is inherent in the concept. Simply stated, there are very few discrete source-harvest area

relationships. Adjacent harvest areas in different flyways (e.g., Arkansas and Eastern Oklahoma) derive more than 80% of their total mallard harvest from the same reference areas. Many geographically separated harvest areas, regardless of flyway boundaries, derive more than 50% of their mallard harvest from the same source areas. Other examples further confirm that patterns of mallard movement from breeding to wintering areas are generally fan-shaped and overlapping.

Of the major flyway boundaries in the United States, only that between the Pacific and Central flyways appears reasonably intact. The remaining boundaries are transgressed by the dominant northwest–southeast movement of mallards from the important breeding areas in southern Canada and the northern United States. For example, mallards preseason-banded in Southern Saskatchewan have been recovered in all harvest areas of both High and Low Plains portions of the Central Flyway, all States in the Mississippi Flyway, and many southeastern States in the Atlantic Flyway.

Flyway boundaries are indistinct to mallards; therefore, it was not surprising to find general similarity in harvest derivation within and between High and Low Plains portions of the Central Flyway, and also the Low Plains and western tier States in the Mississippi Flyway. The High Plains Mallard Management Unit was justified on the basis of many factors (Funk et al. 1971), including recovery distributions from winter bandings, mortality and survival rate estimates, and relatively light hunting pressure. The *High Plains* reference area is the most important source of mallards for Eastern Colorado, Eastern New Mexico, and Western Oklahoma (Table 23). Although all remaining areas in the High Plains Unit derive much of their mallard harvest from the *High Plains* reference area, Canadian sources in combination are more important to their total harvest.

The Low Plains Unit was proposed mainly on the basis of survival rates and geographic and temporal distribution of recoveries from winter-banded mallards in the High Plains, Low Plains, and western tier States of the Mississippi Flyway (Hyland and Gabig 1980). Our results are in general agreement with those of Hyland and Gabig concerning mallards banded in the High Plains Unit. Few preseason- or winter-banded mallards from the High Plains are harvested in the Low Plains. However, both High and Low Plains portions of the Central Flyway other than North Dakota are very similar in combined harvest derivation from major reference areas in Canada. There is a gradual shift in importance of *SW Alberta* and *SW Saskatchewan* to the High Plains, and of *SW Saskatchewan* and *SE Saskatchewan* to the Low Plains.

Similarity continues when we compare harvest derivation in the Low Plains portion of the Central Flyway with that in the western tier States of the Mississippi Flyway except Minnesota. SW Saskatchewan and SE Saskatchewan are both important sources of mallards without regard to the flyway boundary.

The Mid-Continent Waterfowl Management Unit is another area under consideration (Office of Migratory Bird Management, personal communication). Approximated here by SE Saskatchewan, SW Manitoba, Missouri River Basin, and Great Lakes reference areas, this region has been characterized by declining quality and quantity of mallard breeding habitat, recruitment, and fall flights. Mallards from the western portion of the Mid-Continent Unit, according to our derivation analyses, are important in the Low Plains harvest. Harvest areas in the Low Plains derive from 25 (Eastern Texas) to 51% (Eastern North Dakota) of their total mallard harvest from the Mid-Continent Unit. Other than Western North Dakota, all harvest areas in the High Plains derive from 5 (Western Texas) to $20\,\%$ (Western Kansas and Western South Dakota) of their total mallard harvest from the Mid-Continent Unit. The importance of the Mid-Continent Unit as a source of harvest is more apparent during the early portion of the hunting season in the northern portion of the Low Plains.

The Mid-Continent Unit is also an important source of mallards for the Mississippi Flyway, but particularly for the northern tier States. Like other northern harvest areas within the breeding range, locally derived mallards are usually the principal source of harvest. Although we found shifts in temporal (within-season) derivation of the mallard harvest in northern areas of the Pacific and Central flyways, the shifts within Minnesota, Wisconsin, and Michigan are more pronounced. A delay of perhaps a week in the opening of hunting seasons in these areas may buffer resident populations with additional birds migrating in from other areas, although the level of benefit is questionable (Cowardin and Johnson 1979).

Although existing flyway boundaries may not be optimally oriented for the management of mallard populations, the boundaries encompass areas that are geographically and appropriately large when the many similarities in harvest derivation are considered. We are consequently unable to describe previously unknown mallard subpopulations in geographic terms. We suggest, therefore, that future breeding-harvest area investigations include a greater emphasis on temporal or seasonal relationships.

Summary

This is the seventh in a series of reports on the population ecology of the mallard, the waterfowl species for which we have accumulated the most data. Results presented herein are based on (1) preseason bandings (1961–75) in major breeding ground reference areas, and subsequent recoveries of these birds in the United States and Canada, (2) May breeding ground surveys, (3) waterfowl harvest surveys, (4) mallard band reporting rate adjustments, and (5) results of previous reports in this series.

The major objectives of this report were to (1) estimate preseason age and sex structure of the continental popula-

tion, (2) compare recovery distributions from major breeding ground reference areas of all age–sex classes, (3) describe geographic distribution of the harvest among States and Provinces from major reference areas, and (4) describe geographic and seasonal derivation of the harvest within each State and Province from major reference areas.

Age ratios in the preseason population averaged 0.98 immatures per adult and ranged from 0.75 (1968 and 1972) to 1.44 (1969). Percent males among preseason adults varied from 54% (1962) to 63% (1967 and 1969); the sex ratio averaged 1.42 males per female. Among young birds, the preseason sex ratio averaged 1.01 males per female.

Direct recovery distributions of immatures and females, perhaps due to their greater vulnerability to shooting or their longer association (greater availability) with breeding areas or both, were usually centered farther north than those of adult males. Direct recovery distributions, which included higher proportions of recoveries near banding sites, generally were centered farther north than distributions of indirect recoveries. Indirect recovery distributions of immature males were affected by pair formation (during winter or while on spring migration) with females destined for midcontinent breeding areas.

Analysis of recovery distributions led to the following combinations of banding or recovery-types or both to best describe distribution and derivation of the mallard harvest: (1) direct recoveries of adult males; (2) direct and indirect recoveries of adult females, and indirect recoveries of immature females; (3) direct recoveries of males and females that were banded as immatures; and (4) total mallards (combined direct and indirect recoveries of all age–sex classes, except locals).

Analysis of recovery-date distributions indicated substantial effects of age at banding, sex, and, to a lesser extent, time since banding on date of recovery within hunting seasons. The time difference suggested that survival or recovery rates might also vary as a function of years after banding. We therefore investigated what effect this variation would have on survival and recovery rate estimates. We concluded (1) survival rates that changed with years after banding would usually be detected (and rejected by the goodness-of-fit test); (2) similar changes in recovery rates, although essentially undetectable, would have to be unusually large to bias survival rate estimates; and (3) differences in dates of recovery generally parallel differences in geographic distribution.

Distribution of the harvest from major breeding reference areas is presented. The mallard harvest from *N Alberta-N Northwest Territories*, based on total recoveries that were each adjusted for reporting rate, was equally divided between Canada and each of the U.S. flyways except for the Atlantic. *SW Alberta* mallards were prevalent in Canada (31%) and the Pacific (33%) and Central (25%) flyways. Mallards from *SW* and *SE Saskatchewan* were mainly distributed in Canada (26%), the Central (27–22%), and Mississippi (42–50%) flyways, whereas birds from *SW Mani-*

toba were more restricted to Canada (39%) and the Mississippi Flyway (47%). Sixty-one percent of the total harvest from N Saskatchewan-N Manitoba—W Ontario was associated with areas in the Mississippi Flyway, whereas an equal percentage (61%) of the E Ontario-W Quebec harvest occurred in Canada. Most of the mallards harvested from the Washington-Oregon (95%), N California (99%), and Intermountain (83%) areas were associated with the Pacific Flyway. Most High Plains mallards (79%) remained in the High Plains portion of the Central Flyway. Sixtyseven percent of Missouri River Basin and 83% of Great Lakes mallards were associated with the Mississippi Flyway. About 75% of the mallards from the Mid-Atlantic and NE United States areas remained within the Atlantic Flyway.

Distribution of the total mallard harvest among flyways is compared to that estimated by the harvest survey with the following results: (1) Pacific Flyway, 21% (banding data) and 28% (harvest survey); (2) Central Flyway, 28% and 21%; (3) Mississippi Flyway, 46% and 43%, and (4) Atlantic Flyway, 4.5% and 7.4%. Our results tend to overestimate the harvest in areas of high banding intensity, such as the San Luis Valley of south-central Colorado, although lack of banded birds in important source areas is also a problem.

For each harvest area (State and Province) the derivation of harvest from major reference areas is tabulated. Harvest derivation is illustrated for areas that accounted for 0.5% or more of the total mallard harvest. Mallard harvest derivation similarity index maps are also presented for the same areas. We do not summarize harvest derivation, due to the number of harvest areas and the many similarities and differences encountered. However, we point out the extensive overlap and similarity in harvest derivation within and between High and Low Plains portions of the Central Flyway, and also the Low Plains and the western tier of Mississippi Flyway States (Minnesota to Louisiana). Geographically separate harvest areas may derive much of their harvest from common source areas, because recovery distributions are generally fan-shaped and overlap with those from adjacent source areas. Our results do not support the concept of management by migration corridors. The northwest-southeast movement of mallards from important interior breeding areas in the United States and Canada is not consistent with flyway boundaries.

There is little doubt that most mallards preseason-banded in the *High Plains* reference area remain within the High Plains Mallard Management Unit. The High-Low Plains boundary (100th meridian in this report) is certainly appropriate with respect to birds banded in the Central Flyway. When viewed from the continental perspective, however, contributions of mallards from other breeding areas override distinction of this boundary. Mallards from the proposed Mid-Continent Waterfowl Management Unit are more important to the harvest in the Low Plains than in the High Plains.

Seasonal derivation of the mallard harvest is tabulated. Locally derived birds are important during early hunting season days to the mallard harvest in the northern United States. Substantial shifts in harvest derivation within this region occurred 1 or 2 weeks after season openings. In view of extensive geographic similarities in harvest distribution and derivation, both within and among existing management units, future efforts to refine the management of waterfowl resources should also consider the timing of movements within and among population segments.

Acknowledgments

We are especially indebted to the authors of previous reports in this series; the important contributions of D. R. Anderson, K. P. Burnham, S. M. Carney, C. J. Henny, E. M. Martin, and R. S. Pospahala of the U.S. Fish and Wildlife Service (USFWS) led to the development of this report. The exhaustive work of J. D. Nichols and J. E. Hines (USFWS) in developing and implementing the "centroid test" procedure and approximating recovery and survival rate bias is gratefully acknowledged. P. H. Geissler (USFWS) provided invaluable assistance in statistical analysis and interpreting results. S. L. Stokes (USFWS) provided considerable assistance in interpreting and presenting results of recovery and survival rate bias approximations.

For their critical and editorial review, we thank D. R. Anderson, J. C. Bartonek, W. W. Blandin, R. J. Blohm, M. J. Conroy, K. E. Gamble, D. H. Johnson, F. W. Martin, H. W. Miller, J. D. Nichols, H. F. Percival, R. S. Pospahala, H. M. Reeves, R. I. Smith, and S. L. Stokes of the USFWS, and J. H. Patterson and G. H. Townsend of the Canadian Wildlife Service.

We thank the Electronic Data Processing staff of the Office of Migratory Bird Management (Laurel, Maryland) for their assistance in preparing files of banding and recovery records, and P. C. Bowley and R. M. Wilcox for technical assistance.

For their administrative expertise, advice, and encouragement, we thank H. F. Percival and F. W. Martin. Finally, we extend our deepest appreciation to the many individuals who banded mallards, participated in breeding ground or waterfowl harvest surveys, and to hunters who submitted bands and harvest information.

References

Anderson, D. R. 1975. Population ecology of the mallard: V. Temporal and geographic estimates of survival, recovery, and harvest rates. U.S. Fish Wildl. Serv., Resour. Publ. 125. 110 pp.
Anderson, D. R., and K. P. Burnham. 1976. Population ecology of the mallard: VI. The effect of exploitation on survival. U.S. Fish Wildl. Serv., Resour. Publ. 128. 66 pp.

Anderson, D. R., and C. J. Henny. 1972. Population ecology of the mallard: I. A review of previous studies and the distribution and migration from breeding areas. U.S. Fish Wildl. Serv., Resour. Publ. 105. 166 pp.

Anderson, D. R., P. A. Skaptason, K. G. Fahey, and C. J. Henny. 1974. Population ecology of the mallard: III. Bibliography of published research and management findings. U.S. Fish Wildl. Serv., Resour. Publ. 119. 46 pp.

Batschelet, E. 1972. Recent statistical methods for orientation data. Pages 61-91 in S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs, and R. E. Belleville, eds. Animal Orientation and Navigation, NASA SP-262. National Aeronautics and Space Administration, Washington, D.C. 606 pp.

Bellrose, F. C., Jr., and R. D. Crompton. 1970. Migrational behavior of mallards and black ducks as determined from banding. Ill. Nat. Hist. Surv. Bull. 30:167-234.

Bellrose, F. C., Jr., T. G. Scott, A. S. Hawkins, and J. B. Low. 1961. Sex ratios and age ratios in North American ducks. Ill. Nat. Hist. Surv. Bull. 27:391-474.

Botkin, D. B., and R. S. Miller. 1974. Mortality rates and survival of birds. Am. Nat. 108:181-192.

Bowers, E. F., and R. B. Hamilton. 1978. Derivation of northern wood ducks harvested in southern states of the Mississippi Flyway. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies 31:90-98.

Bowers, E. F., and F. W. Martin. 1975. Managing wood ducks by population units. Trans. N. Am. Wildl. Nat. Resour. Conf. 40:300-324.

Brownie, C., D. R. Anderson, K. P. Burnham, and D. S. Robson. 1978. Statistical inference from band recovery data: A handbook. U.S. Fish Wildl. Serv., Resour. Publ. 131. 212 pp.

Carney, S. M., M. F. Sorensen, and E. M. Martin. 1978. Average harvest of each duck species in states and counties during 1966-75 hunting seasons. U.S. Fish Wildl. Serv., Admin. Rep. 99 pp.

Conroy, M. J., and B. K. Williams. 1981. Sensitivity of band reporting-rate estimates to violations of assumptions. J. Wildl. Manage. 45:789-792.

Cowardin, L. M., and D. H. Johnson. 1979. Mathematics and mallard management. J. Wildl. Manage. 43:18-35.

Crissey, W. F. 1955. The use of banding data in determining waterfowl migration and distribution. J. Wildl. Manage. 19:75-84.

Crissey, W. F. 1957. Forecasting waterfowl harvest by flyways. Trans. N. Am. Wildl. Nat. Resour. Conf. 22:256-268.

Diem, K. L., and K. H. Lu. 1960. Factors influencing waterfowl censuses in the parklands, Alberta, Canada. J. Wildl. Manage. 24:113-133.

Funk, H. D., J. R. Grieb, D. Witt, G. F. Wrakestraw, G. W. Merrill, T. Kuck, D. Timm, T. Logan, and C. D. Stutzenbaker. 1971. Justification of the Central Flyway High Plains Mallard Management Unit. Central Flyway Technical Committee Report. 48 pp. (mimeo)

Geis, A. D. 1971. Breeding and wintering areas of mallards harvested in various states and provinces. U.S. Fish Wildl. Serv.,

Spec. Sci. Rep. - Wildl. 144. 59 pp.

Geis, A. D. 1972. Use of banding data in migratory game bird research and management. U.S. Fish Wildl. Serv., Spec. Sci. Rep. – Wildl. 154. 47 pp.

Ceis, A. D. 1974. Breeding and wintering areas of canvasbacks harvested in various states and provinces. U.S. Fish Wildl. Serv., Spec. Sci. Rep. – Wildl. 185. 78 pp.

Geis, A. D., R. I. Smith, and J. P. Rogers. 1971. Black duck distribution, harvest characteristics, and survival. U.S. Fish Wildl. Serv., Spec. Sci. Rep. – Wildl. 139. 241 pp.

Serv., Spec. Sci. Rep. — Wildl. 139. 241 pp. Henny, C. J., and K. P. Burnham. 1976. A reward band study of mallards to estimate band reporting rates. J. Wildl. Manage. 40:1–14.

Hopper, R. M., H. D. Funk, and D. R. Anderson. 1978. Age specificity in mallards banded postseason in eastern Colorado. J. Wildl. Manage. 42:263–270. Hopper, R. M., A. D. Geis, J. R. Grieb, and L. Nelson, Jr. 1975.
 Experimental duck hunting seasons, San Luis Valley, Colorado, 1963–1970.
 Wildl. Monogr. 46. 68 pp.

Hyland, J. M., and P. J. Gabig. 1980. Survival and recovery distribution of central and western Mississippi Flyway winterbanded mallards. Nebr. Tech. Ser. 6. 132 pp.

Jessen, R. L. 1970. Mallard population trends and hunting losses in Minnesota. J. Wildl. Manage. 34:93-104.

Johnson, D. H., and A. B. Sargeant. 1977. Impact of red fox predation on the sex ratio of prairie mallards. U.S. Fish Wildl. Serv., Wildl. Res. Rep. 6. 56 pp.

Kleinbaum, D. G., and L. L. Kupper. 1978. Applied regression analysis and other multivariate methods. Duxbury Press, N. Situate, Mass. 556 pp.

Lebret, T. 1950. The sex-ratios and the proportion of adult drakes of teal, pintail, shoveler and wigeon in the Netherlands, based on field counts made during autumn, winter and spring. Ardea 38:1–18.

Lensink, C. J. 1964. Distribution of recoveries from bandings of ducklings. U.S. Fish Wildl. Serv., Spec. Sci. Rep. — Wildl. 89. 146 pp.

Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183-212.

Leslie, P. H. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35:213-245.

March, J. R., and R. A. Hunt. 1978. Mallard population and harvest dynamics in Wisconsin. Wisconsin Dep. Nat. Resour. Tech. Bull. 106. 74 pp.

Mardia, K. V. 1967. A non-parametric test for the bivariate twosample location problem. J. R. Stat. Soc., Ser. B, 29:320-342.

Mardia, K. V. 1969a. On Wheeler and Watson's two-sample test on a circle. Sankhya, Ser. A, 31:177-190.

Mardia, K. V. 1969b. On the null distribution of a non-parametric test for the bivariate two-sample problem. J. R. Stat. Soc., Ser. B, 31:98–102.

Mardia, K. V. 1972. Statistics of directional data. Academic Press, London. 357 pp.

Martin, E. M., and S. M. Carney. 1977. Population ecology of the mallard: IV. A review of duck hunting regulations, activity, and success, with special reference to the mallard. U.S. Fish Wildl. Serv., Resour. Publ. 130. 137 pp.

Martin, F. W., R. S. Pospahala, and J. D. Nichols. 1979. Assessment and population management of North American migratory birds. Pages 187–239 in J. Cairns, G. P. Patil, and W. E. Waters, eds. Environmental biomonitoring, assessment, prediction and management – certain case studies and related quantitative issues. Statistical Ecology Ser. Vol. II, International Cooperative Publishing House, Fairland, Md. 438 pp.

 Martinson, R. K., and C. F. Kaczynski. 1967. Factors influencing waterfowl counts on aerial surveys, 1961–1966. U.S. Fish Wildl. Serv., Spec. Sci. Rep. – Wildl. 105. 78 pp.

Mathiasson, S. 1971. A study of a mallard population (Anas platy-rhynchos) in the non-breeding season. Pages 13–36 in Annual Report of the Goteborgs Naturhistoriska Museum. Goteborgs, Sweden.

Ogilvie, M. A., and W. A. Cook. 1971. Differential migration of the sexes and other aspects of the recovery overseas of mallard ringed at Borough Fen Decoy, Northhamptonshire. Wildfowl 22:89-97.

Pospahala, R. S., D. R. Anderson, and C. J. Henny. 1974. Population ecology of the mallard: II. Breeding habitat conditions, size of the breeding populations, and production indices. U.S. Fish Wildl. Serv., Resour. Publ. 115. 73 pp.

Robson, D. S. 1968. The effect of ties on critical values of some two-sample rank tests. Biometrics Unit, Cornell Univ., Ithaca, New York, BU-258-M. 4 pp. (mimeo)

Sokal, R. R., and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Company, San Francisco, Calif. 776 pp.

Sowls, L. K. 1955. Prairie ducks: a study of their behavior, ecol-

- ogy and management. The Stackpole Co., Harrisburg, Pennsylvania, and Wildlife Management Institute. 193 pp.
- Stewart, R. E., A. D. Geis, and C. D. Evans. 1958. Distribution of populations and hunting kill of the canvasback. J. Wildl. Manage. 22:333–370.
- Wheeler, S., and G. S. Watson. 1964. A distribution-free two-sample test on a circle. Biometrika 51:256-257.
- Wight, H. M., R. G. Heath, and A. D. Geis. 1965. A method for estimating fall adult sex ratios from production and survival data. J. Wildl. Manage. 29:185–192.

^aData taken from Pospahala et al. (1974) and files, Office of Migratory Bird Management, Laurel, Maryland.

Appendix A

Mallard Breeding Population Indices, Population Weights, and Band Reporting Rate Adjustments

Table A-1. Mallard breeding population indices in major reference areas for the years 1961-75.a

	Σ i o		r e f e	ren	9	a 7 e a	9	e e d	p n i	d 0 d	u] a	t i o n	ر د	t h o u	ro ro	(s p
Year	PAC O-	N ALTA N NWT	SW ALTA 3	SW SASK 4	S A S K	SW MAN	N SASK	E ONT W QUE	WA-OR	N Ca	Inter mtn 11	High Plains	Missour River Basin 13	Great Lakes 14	Mid- U Atl S 15	NE United States 16
1961	762.2	762.2 2536.7	823.3	823.3 1474.1	765.2	358.8	566.1	300.0	120.0	119.3	256.7	587.0	567.8	323.5	39.6	23.6
1962	534.3	534.3 1289.0	611.1	976.5	580.5	246.8	722.0	300.0	120.0	119.3	256.7	624.3	723.2	310.8	39.6	23.6
1963	640.0	640.0 1362.4	715.6	715.6 1387.4	9.969	361.0	549.0	300.0	120.0	119.3	256.7	740.4	953.4	311.7	39.6	23.6
1964	445.9	445.9 1485.2	712.7	712.7 1118.8	736.9	8.744	678.6	300.0	120.0	119.3	256.7	613.0	735.5	315.9	39.6	23.6
1965	575.4	846.7	563.7	921.5	583.5	342.1	701.6	300.0	120.0	119.3	269.3	745.8	757.5	344.6	39.6	23.6
1966	456.4		913.6 1011.5 1794.9	1794.9	770.3	355.4	572.2	300.0	120.0	119.3	340.6	802.3	726.0	326.0	39.6	23.6
1967	555.1		806.1 1047.8 1690.9	1690.9	897.3	0.494	1352.3	300.0	120.0	119.3	279.8	809.4	712.0	345.3	39.6	23.6
1968	559.7	1065.1	606.7	606.7 1802.8	750.5	291.2	1185.1	300.0	120.0	119.3	212.8	632.1	789.4	313.1	39.6	23.6
1969	460.5	822.7		767.4 1757.2	916.4	480.1	1346.7	300.0	120.0	119.3	251.5	842.8	730.3	313.1	39.6	23.6
1970	639.6	639.6 1001.5 1030.6	1030.6	2422.6	1235.7	560.0	1763.1	300.0	120.0	119.3	257.3	798.3	1009.0	313.1	39.6	23.6
1971	498.9	498.9 1069.6 1168.7	1168.7	2986.8	1216.6	354.0	922.2	300.0	120.0	119.3	243.5	761.0	1015.2	313.1	39.6	23.6
1972	541.9	541.9 1654.1 1166.3 2128.1	1166.3	2128.1	1283.2	454.9	841.7	300.0	120.0	119.3	286.7	973.8	948.9	313.1	39.6	23.6
1973	517.6	517.6 1242.9 1121.0 2126.1	1121.0	2126.1	933.8	293.7	8.646	300.0	120.0	119.3	227.3	732.7	858.8	313.1	39.6	23.6
1974	543.1	543.1 1015.1	998.3	998.3 1884.9	833.4	346.1	638.0	300.0	120.0	119.3	198.6	493.7	637.1	313.1	39.6	23.6
1975	422.1	422.1 1085.4		871.3 1928.7	1111.2	382.8	712.5	300.0	120.0	119.3	260.7	860.1	682.9	313.1	39.6	23.6
] 	; ; ;	; ; ; ; ; ;	1													

Table A-2. Suggested hunter band reporting rate adjustments for mallard recoveries during the years 1961-75.a

3 1 3 4 4 4 1	D i	stanc	S (K m)	b n e		ons a f	0 0 0	e 1 1 e	•
	ani	eastward i tlantic Fl	Canada	Cent	l and Missi Flyways	ippi	askatc nada a	n west acific	- ro
recovery	8-0	62-6	!] ;	8-0	16	80+	8-0	62-6	80+
)	3.09	2.7	2.11	3.19	2.36	1.84	. 19	2.11	1.63
1962	3.16	2.80	2.14	3.26	2.40	1.86	3.26	2.14	1.65
1963	3.23	2.86	2.17	3.33	2.44	1.89	3.33	2.17	1.67
1964	3.30	2.91	2.21	3.41	2.48	1.91	3.41	2.21	1.69
1965	3.37	2.97	2.24	3.49	2.52	1.94	3.49	2.24	1.70
1966	3.45	3.03	2.27	3.57	2.56	1.96	3.57	2.27	1.72
1967	3.53	3.09	2.31	3.66	2.61	1.99	3.66	2.31	1.74
1968	3.61	3.16	2.34	3.75	2.65	2.01	3.75	2.34	1.76
1969	3.70	3.23	2.38	3.85	2.70	2.04	3.85	2.38	1.79
1970	3.80	3.30	2.42	3.95	2.75	2.07	3.95	2.42	1.81
1971	3.90	3.37	2.46	4.05	2.80	2.10	4.05	2.46	1.83
1972	4.00	3.45	2.50	4.17	2.86	2.13	4.17	2.50	1.85
1973	4.11	3.53	2.54	4.29	2.91	2.16	4.29	2.54	1.87
1974	4.23	3.62	2.59	4.41	2.97	2.19	4.41	2.59	1.90
1975	4.35	3.71	2.63	4.55	3.03	2.22	4.55	2.63	1.92

^aThese estimates refer to who reported code "21" only. All others are assumed to be reported at a 100% rate. Data through 1972 taken from Henny and Burnham (1976:11); adjustments for subsequent years were extrapolated from their results.

Mallard population weights by major reference area for the years 1961-75.ª Table A-3.

Hard Name of the control of the cont	i i i	1000	56 56 56 56 56 56 56 56 56 56 56 56 56 5	84.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.7 17.2 17.2 17.2 17.6 16.9 16.9 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8
No.		id- Un Atl St 15	701-VUV8484004WV4 VUV6WV4VW8080804	74m8077070m6+8+	26.93.
Name	- 1	reat akes 14	889. 884. 900. 900. 901. 904.	7-184000000000000000000000000000000000000	- WWW 6 WO 4 2
Major Malta Same Same Major	卢	ssouri iver asin 13	25.00 20.00	884. 885. 815.	582 567 575 575 575 575 575
Mail	3 !	High lains 12	864. 884. 884. 884.	947. 7527. 7527. 7527. 7527.	94. 10. 69. 67. 67. 67.
Major reference are earlier to be unit and the large are are are are are are are are are ar	0	1 - te	23.7.5. 23.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	26449 0049 0049 0044 0084 0084 0084 0084 0	685. 685. 685.
Half And All All All And	ם	201	45444564666666666666666666666666666666	2482432	51. 90. 90. 90. 50. 50.
N	0	0-0	2822 2822 2822 2822 2823 2823 283 283 28	143. 998. 996. 104. 093.	
Name	ני עס ני	8 0 N	6852474786874591 68623747466	87. 886. 727. 727. 727. 787. 787. 787.	27.88.07.98.2
Tear N ALTA SW SK SASK SW MAN ALTA LONG SE SW MAN ALTA LONG SE SW MAN ALTA LONG SW SASK SW MAN ALTA LONG SE SW MAN ALTA LONG S		SAS W MA	074. 074. 718. 9903. 5511. 9967. 815. 815. 372.	179. 3303. 3460. 3460. 2747. 2701. 434. 622. 884.	862. 592. 334. 389. 5294. 674.
Major Lee Natta SW SASK SASK Be-sex 1 AM 17286.6 2033.2 985.2 647.0 1014.6 3 AM 17286.6 2033.2 985.2 647.0 1014.6 3 AM 17286.6 2033.2 985.2 647.0 1014.8 3 AM 17801.4 2093.7 1014.5 666.3 1044.8 4 AM 19061.3 2241.9 1086.3 713.4 1118.7 4 AM 18858.8 2217.8 1046.5 713.4 1118.7 4 AM 18858.8 2217.8 1044.5 751.6 1178.6 6 AM 18856.9 2256.9 1144.5 751.6 1178.6 7 AM 20082.0 2361.9 1144.5 751.6 1178.6 7 AM 18856.9 2256.9 1144.5 751.6 1178.6 7 AM 18856.9 2256.9 1144.5 751.6 1178.6 7 AM 18856.9 2265.4 1102.5 724.1 1135.4 7 AM 18858.8 2217.8 1092.5 724.1 1135.4 7 AM 18858.8 2217.8 1065.1 7 AM 18858.9 2266.9 1144.5 751.6 178.6 7 AM 18858.9 2265.4 1102.5 724.1 1135.4 7 AM 18858.9 2265.4 1102.5 724.1 1135.4 7 AM 18858.9 2265.4 1102.5 724.1 1135.4 7 AM 18858.9 2265.4 1478.3 2308.2 7 AM 18750.2 2265.4 1478.3 2308.2 7 AM 18750.2 2265.7 1213.5 1894.9 7 AF 12254.9 2158.8 2267.7 1213.5 1894.9 7 AF 12254.9 2158.8 2267.7 1213.5 1894.9 7 AF 12255.9 2412.0 2274.7 1390.6 2171.3 7 AF 12852.5 2364.4 2173.1 1354.7 2115.2 7 AF 12852.5 2364.4 2173.1 1354.7 2115.2 7 AF 1268.0 2452.7 2313.1 1354.8 2247.0 7 AF 1368.0 2452.7 2313.1 1354.8 2247.0 7 AF 1268.0 2452.7 2313.1 1354.8 2247.0 7 AF 1268.0 2452.7 2313.1 1354.8 2247.0 7 AF 1268.0 2452.7 248.2 3 336.6 1830.1 7 AF 1268.0 2452.7 2313.1 1354.8 2247.0 7 AF 1268.0 2459.4 2487.2 1468.8 247.0 7 AF 1268.0 2459.4 2487.2 1468.8 247.0 7 AF 1268.0 2459.4 2487.2 1468.8 247.0 7 AF 1268.0 2469.4 2487.2 1468.8 247.0 7 AF 1268.0 2468.0 1468.8 2448.8 1468.8 1	e .	MAN 6	724.77 74.77 74.73 7	5976.97 507.6	740045004500000000000000000000000000000
M a j o r r r and below by the service of the servi	9	. ง ∢ เพณ X	100 170 170 170 170 170 172 170	184. 2228. 2228. 3894. 171. 872. 872. 872. 115.	830. 293. 293. 8866. 870. 348. 177.
Year		SW ASK 4	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8488.8 2213.3 2213.5 2213.5 3301.1 390.6 390.7 272.7 272.7 3734.7 373.2	936. 173. 173. 468. 201. 153. 972.
Year N ALTA N AL	a i	SW ALTA	030. 035. 036. 036. 036. 146. 146. 092. 092. 055.	2000 2000	568. 182. 9655. 012. 722. 628.
7 ear		ALTA NWT 2	200933. 3455. 3455. 3465. 3366. 20584. 20584. 20584.	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	382 923 732 7409 7767 7702 7399
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	N V T	88082.9 78286.6 9938.8 9961.3 9061.3 8164.8 8164.8 8856.8 9856.2 97502.9 9346.0	4609. 70068. 70068. 7008.	9671. 3462. 2122. 9865. 5167. 2411. 1914. 6791.
	 	Year and ge-se	D T T T T T T T T T T T T T T T T T T T	44444444444444444444444444444444444444	098765632 BERMARARA BERMARARA

Table A-3. Continued.

	NE NE - United I States 16
1	at Mid- es Atl
hts	Great Cake
e i 9	Missoul River Basin 13
3	High Plains
t i o	Inter mtn 11
u la	x 10
0 0	WA-OR
a a	E ONT 8 OUE
a	N SASK N MAN W ONT
r e n c	SW MAN
1. e f	S A S K
	SW SASK 4
M a j o	SW ALTA 3
1	N ALTA N NWT
1	PAC
	Year and age sex

Aweights were based on a reference area's breeding population index summed over the years 1961-75, modified to reflect the age and sex structure calculated for each year, and then divided by the numbers banded, which were also summed over the years. Weights were applied on the basis of the year of banding, regardless of the year of recovery (e.g., indirect recoveries).

Appendix B

Recovery Distribution Comparisons

Tables in this Appendix present results of extensive testing of recovery distribution patterns. Our purpose was to compare categories of mallard bandings or recoveries, or both, to identify those that could be combined, based on empirical evidence. Our use of a procedure, referred to as a centroid test, follows the recommendations of J. Nichols (personal communication). A brief explanation of the procedure is described under Methods. The test statistic for each comparison is distributed approximately as X^2 with 2 degrees of freedom. Since X^2 random variables are additive, a summary statistic for each reference area may be computed with degrees of freedom equal to twice the number of comparisons included. Continental test statistics were

obtained as $-2 \sum_{i=1}^{n} \ln P_i$, where P_i denotes the probability

associated with the individual test statistic of reference area i, and n denotes the number of reference areas available for the test. This statistic is distributed as X^2 with 2n df under the null hypothesis. Although the X^2 approximation

is valid for a total sample size of 17 or more recoveries, we compared sets of recoveries only where each was represented by 20 or more recoveries.

Only differences in recovery distributions that were significant at the 0.01 level are indicated in the tables, because the centroid test is also affected by variation in banding site or banding intensity. To provide more information we tabulated latitude-longitude differences (denoted Lat and Long in the tables) between centers (means) of recovery distributions if they were significant at the 0.01 level. Comparisons of banding or recovery-types, or both, include the following: (1) locals versus immatures (Table B-1), (2) immatures versus adults (Table B-2), (3) males versus females (Table B-3), (4) direct (HSS-1) versus indirect (HSS2-N) recoveries (Table B-4), (5) direct adults versus indirect immatures (Table B-5), (6) direct recoveries during consecutive years or year-groups (Table B-6), and (7) indirect recoveries of birds banded during consecutive years (Table B-7).

Table B-1. Results of testing the hypothesis that local and immature mallards have similar recovery distributions.

	į)) 1	Direct		שו טו		e r ' e		1		n d i r		7 1 0	0 0	B r i e	
Major reference		ΣΙ	i			ָ װ װ װ		ı	1	Σ	a 1			F F	E] e
year group	Z I	N I	Test Lat L	ong	į	I I	Test	lat long	ž	Ä	Test L	at Long	į	HK	 Test L	at Long
N Pacific (1) 1961 - 1975 Reference area total ^a	19	42			∞	55			7	22] 		2	21	; ! ! !	†
N ALTA - N NWT (2) 1961 - 1975 Reference area total	₩	386			Ξ	296			7	3 5			īŪ	195		
SW Alberta (3) 1961 - 1975 Reference area total	21	291	0.98	(4F)	26	154	3.52	(2 df)	2 1	288	3.59	(2 df)	=	140		
SW Saskatchewan (4) 1961 1968 - 1975 Reference area total	3.59	539	10.28 3.7 0.59 10.87 (4	4.5 df)	30	316	6.04	(4 df)	60	465 503	2.99 4.10 7.09	(4 df)	24	185	5.24	(2 df)
SE Saskatchewan (5) 1961 1968 - 1975 Reference area total	80 A	140	1.19 (2	() P	63	76 53	7.30	(2 df)	87	174	1.84	(2 df)	36	67	2.83	(2 df)
SW Manitoba (6) 1961 - 1967 1968 - 1975 Reference area total	136	569	13.32 8.9 13.32** (2	1.7 df)	24	141	2.98	(2 df)	125	158 420			ыn	89		
N SASK-N MAN-W ONT (7) 1961 - 1975 Reference area total	6	250			m	197			м	18 83			-	78		
E ONT - W QUE (8) 1961 - 1965 1966 - 1970 1971 - 1975 Reference area total	24.5	275 1306 1651	6.61 13.06 2.0 - 19.67** (4	2.5 df)	23.9	290 1004 1064	5.58 12.10 17.68**	2.5 -2.0 * (4 df)	51	209 721 842			1.67	130 502 415		
Mashington-Oregon (9) 1961 - 1967 1968 - 1975 Reference area total	50	939	55.00 1.1 - 55.00** (2	-1.7 df)	65	683 480	46.77	1.0 -1.7	57 3.49	504 305	42.34 42.34**	1.8 -2.1 (2 df)	10 M	299	44.59	2.2 -1.0 (2 df)

Table B-1. Continued.

,	, 	 	Direct		o o	> >	eries		1	I I	d i r	ا د اد ا د اد	9 1	>	eries	1
	i	Σ] 		a l e	i i		Σ			1	a i	L e E	
Major reference area and year group	1 =	H Z	Test Lat L	Long	N	Z	Test tat Lo	1		1 	Test	t Lon	1 _ 1	빌	1 0	6 1
N California (10) 1961 – 1975 Reference area total	22	685	3.87 (2	df)	12	323			φ.	82			'n	146		
Intermountain (11) 1961 - 1967 1968 - 1975 Reference area total	20	568	19.75 -2.7 - 19.75** (2	-0.9 df)	10	327	13.36 0.7 -3	2.0 df)	1 5	578			N 00	261		
High Plains (12) 1961 - 1965 1966 - 1970 1971 - 1975 Reference area total	34	226 591 310	10.68 0.6 8.51 1.57 20.76** (6	1.2 df)	34 17 24	148 339 180	19.32 -0.3 -0 8.66 27.98** (4 e	0.2 7 2 2 1	V	0 0 0 4	3.57	(4 df)	35	138 232 96	7.94	2 df)
Missouri R. Basin (13) 1961 - 1965 1966 - 1970 1971 - 1975 Reference area total	90 179 76	728 715 864	58.34 -1.4 35.35 -0.7 1.11 94.80** (6	1.0 0.7 df)	525	446 492 574	40.63 1.0 51.19 1.2 4.70 96.52** (6	1.7 9: 1.5 111 df)	5 5 3	800	4.60 2.62 10.48 17.70**	.0 3.8 (6 df)	56 15	394 308 166	8.83 17.87 0.2 26.70** (1.2 4 df)
Great Lakes (14) 1961 - 1962 1963 - 1964 1965 - 1966 1967 - 1970 1971 - 1972 1973 - 1975 Reference area total	43 43 45 45 45 45 45 45 45 43 43 43 43 43 43 43 43 43 43 43 43 44 43 44 43 44 44	296 406 439 617 713 371	29.36 1.0 4.17 30.97 1.9 112.24 0.8 176.36 2.4 63.03 1.9 316.13** (12	4 4 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11 50 53 107 70	8 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	34.33 0.2 12.75 0.5 51.12 2.6 114.73 86 2.9 44.94 1.4 331.91** (12	6450 6450 650 650 650 650 650 650 650 6	26 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	946 968 97 98	7.33 17.98 17.92 16.92 7.34 67.49**	.3 3.4 .2 4.1 .9 2.6 (10 df)	42288 434488	281 205 305 188 209	10.72 0.2 8.81 31.87 1.1 53.80 1.5 23.02 2.2	2.4 4.7 4.7 4.7 0 df)
Mid-Atlantic (15) 1961 – 1975 Reference area total	72	1245	28.99 -0.5 · 28.99** (2	-1.8 df)	99	980	20.77 -0.7 - 20.77** (2	1.7 df)	5 1 8	16	0.56	(2 df)	45	589	2.64 (2 df)
NE United States (16) 1961 - 1975 Reference area total Continental total	47	1107	27.49 -0.1 27.49** (2 540.53** (26	-2.1 df)	53	978	42.58 -0.1 - 42.58** (2 549.53** (24	2.6 df)	28 6	24	9.82 -0 9.82**	(18 df)	15	497	167.11** (14	4 df)

Othe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 local (NL) or immature (NI) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of '**'.

Table B-2. Results of testing the hypothesis that immature and adult mallards have similar recovery distributions.

	1		Dire	וני	- L	0 0	>		 			Indi	rect		!	a	5 0
Major reference	1	Σ		0	1		īT.	ro E		i		M a 1		 	L	. n	1 e
and year group	IN	A I	Test	Lat	Lon	Z	Z I	Test	Lat Long	IN	X	Test	Lat Long	IX	X	Test	Lat Long
N Pacific (1) 1961 – 1975 Reference area total a	42	21	0.14	~	2 df)	55	8			22	2		(2 df)	21	16	; 	I .
N ALTA - N NUT (2) 1961 - 1962 1963 - 1966 1967 - 1970 1971 - 1975 Reference area total	137 165 105 79	80 70 27 90	26.20 12.00 7.53 12.40 58.13*	5.7 3.7 ** (5.5	6.9 7 5.5 8 2.5 8 df)	66 66 66 66	455 455 455 455	6.29 1.34 0.68 11.50	1.6 -3.5 (8 df)	13.7 63.9 63.6 62.0	117 149 61 75	80 VIV-V	**************************************	71 37 60 27	37 25 25 25 25	0.00 0.45 0.45 0.13 0.13	() P &)
SW Alberta (3) 1961 - 1966 1967 - 1970 1971 - 1975 Reference area total	61 148 1 82 1	60 62 43	13.72 25.03 27.68 66.43*	4.0 3.4 3.9 4.0	1.8 1.6 3.0 6 df)	7.0	224	0.09 4.17 0.30 4.56	(6 df)	64 174 50	123 403 142	7.54 11.76 3.98 23.28*	1.3 1.2 * (6 df)	27 886 27	21 67 29	UW40	9
SW Saskatchewan (4) 1961 1963 - 1964 1965 - 1966 1967 - 1972 1973 - 1974	1222 1222 1239 1420 1411 1411 1411 1411 1411 1411 1411	20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.53 0.53 0.53 133.443 133.863	4.0 3.9	23 × 55 × 50 × 50 × 50 × 50 × 50 × 50 × 5	116 103 103 103 103 103	222	5.37 1.09 2.10 4.57 1.02		18 105 280 101 126 124	1989 3005 3055 356 356 356 356	1.89 1.18 0.27 0.30 4.71		109 109 988 981 141	867460 867460 86746	00 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.1.
Reference area total	,	T Ø	.24	**	(4 Qf)	32	9	14.15	(10 df)			9.13	(12 df)			Ξ.	(12 df)
SE Saskatchewan (5) 1961 - 1964 1965 - 1966 1967 - 1968 1969 - 1975 Reference area total	36 62 74 14	34 50 50	12.09 15.26 1.12 16.80 45.27*	6.5 1.6 7.2 *	7.0 2.9 3.1 8 df)	551	224	1.34 0.04 2.07 3.45	(6 df)	4 8 7 0 7 0 7	41 137 230 89	5.15 1.28 1.05 9.64	(& df)	17 34 19 23	13 36 11	1.72	(2 4f)
M Manitoba (6) 1961 1967 1973 1973	168 179 129 102	73 33 32 32 32 32 32	21.75 10.10 15.26 14.43 15.53	4w 9+0	00 0mm	108 478 795 495	465773 46577	0.79 0.85 2.29 5.89		101 101 187 118 711	135 264 219 236 91	2.03 0.55 15.21 8.90	1.2 1.1	24 5 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23 23 24 26 37 37 37 37 37 37 37 37 37 37 37 37 37	4.83 0.191 0.09	
Reference area total			.2	*	d f	:			(12 df)			28.56*	** (10 df)			10.75	(10 df)

Table B-2. Continued.

	1	Ω		e c t	L 	1 0	0 1 0			 		H	ر ا ا	2 9 7	+	9	0	۵ ۲	en N	
	1 1 1	Σ	a 1	1 0		l l	1 0	re E	1		1 1 1	Σ.	a 1	a			L L	E	- 1	0 1
oj e a	H	I A	Test	Lat	Long	H	A N	Test	Lat	Long	Z	4 2	Test	Lat	0	불	Ϋ́	0 1	Lat	Lon
MAN-1	62 56 132	15 7 34	4.38	V	2 df)	63 89	111				69 70 49	30 34	1.08	4	(+ q +)	33 25 20	r 8 19			
E ONT - M QUE (8) 1961 1965 1966 1967 1958 1959 1970 1972	24 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	N4W4400-000 8000000400000	21. 21. 21. 22. 22. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	8.1 6.0	0 0	041112 04112 0412 0410 0410 0410 0410 04	44000000000000000000000000000000000000	0.400000000000000000000000000000000000	7.0	7.0-	\$25 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40000000 40000000000000000000000000000	222 282 282 293 293 293 293 293 293 293 293 293 29	0.5 0.0 0.0 0.0 4.0	4 7 4 4 4 6 0 . 0 . 0 . 4 1 . 1 . 2 . 3	00000000000000000000000000000000000000	V0V80W0010C	00000000000000000000000000000000000000		
7 C B	0.4	00	80.00	** (2)	1.8 4 df)	130	J 70 - 4		** (2	(4 df)))	. 25	** (22	2 44)	>		. 4.	, 4** (2	2 df)
Washington-Oregon (9) 1961 1965 1965 1966 1967 1968 1969 1970 1971 1971 1975 Reference area total	2000 2000 2000 2000 2000 2000 2000 200	488844 48744 000000000000000000000000000	56.94 556.94 224.19 11.28 0.54 3.53 3.65	**	2 1.3 2 0.8 6 0.6 6 0.2 14 df)	2552 2252 1116 1288 0	488 488 688	27.68 63.01 18.93 1.61 5.97 1.43	**************************************	0.8 1.0 0.6 0.6 4 df)	122 122 123 123 0 0	168 118 70 96 46 45	10.85 0.19 5.31 3.28 1.99 2.02 0.54	1.5	0.2 f df)	30000 3000 3000 3000 3000	566 116 73 73 64 15	2.00 2.00 2.00 2.00 11.00 31.50	22 24 44 3 0.4 3 0.4	1.2 2 df)
N California (10) 1961 - 1962 1963 - 1964 1965 - 1968 1969 - 1970 1971 - 1972 1973 - 1974 Reference area total	85 48 80 130 75 117 107	766 766 886 947 797 75	11.66 10.95 57.36 5.52 12.81 1.51 1.51 3.68 4.78	**	1 -0.4 2 0.1 4 1.2 8 0.0	######################################	200 200 200 200 200 200 200	4.29 17.83 17.83 2.66 6.24 6.13 41.69	** (1)	1.4 (4 df)	4777447 798897 7	97 115 119 108 108 66	0.57 6.58 2.00 3.50 3.50 2.3.71	(14	4 df)	30 22 17 25 13 18 21	747 747 748 748 748	2.27 3.11 1.06 1.65	V-	8 df)

Table B-2. Continued.

	1		ire	30 +	1 1 1 1 1	0	>	e r	2				Indi	r O	ט ט	en On	0 0	erie	ហ	
יים מתמתמלמת יים: עת	1	Σ	a 1	ا ا د	1		e i	E	. 1	a		-	M a I	0	 	; ; ; ;	T		1 e	f I J
and year group	I I	∀	Test	Lat		z	Z A	1 9	t Lat	Long	Z	Z.	Test	Lat	Long	Z	X	Test	at L	540
Intermountain (11) 1961 - 1962 1963 - 1964		19	4.00			74	63	w 0.	40 –		103	17	3.7			57	1 / 4	40	1 1 1 1	
65 - 1	242 116 80	561	7.32	-1.9	2.0	130 56 44	00 € 80 €	3.34	0.7		239	126	1.91	-1.3	3.1	32	123	80.08		
71 - 197 rence area tot		1 40	50.4	- *	2 df)	4 2	4 0	0.44 16.06		10 df)	50	.	39.88	: *	2 df)	2 + 2	- m	3.84	(10	d∱)
Plains (12) 1 196 3 - 196 5 - 196	- 0	\$ 4 4 4	2.6		2-	L 4	2 4 4 5	6.9	0	5 0.9	0100	29	26.7	0 0	616		12	w.		
50 SO 1	218 20 226 22 109 14	428	38.62 11.44 11.98	-0.9		132 104 72	96	32.66 4.56 5.96		· ·	278 195 125	289	28.27 28.27 2.97 13.56	5 9 . O	/ ·	100 430 430 430	98	13.54	9.0	0.5
73 <u>- 197</u> 1975 rence area tot		2	. 4.9	** (14	4 df)		345	9.46	** (.	4 -0.3 14 df)	75	∞	109.0	*	14 df)		50	0. %	(12	Q£)
Missouri R. Basin (13) 1961 - 1962 1963 - 1964 1965 - 1966	0929	-	27.53		-00-	318	27 27 24 24	7. r. w.		2 0.1	0000	500	3.00			60 224 190	8 mm	-100		
69 - 197 71 - 197 73 - 197	3329	136	59.94 59.94	74W0,	2.00.7	227 227		27.65	1014501 102 01	- 0	222 210 194 145	281 251 218	0.38			115 92 74		5.49 0.69 0.69		
Reference area total	<u>, </u>	4	1.2	· · ·	o to	13/	_	1.6	· · · · · · · · · · · · · · · · · · ·	8 1.6 16 df)			8.32	J	14 df)			29.71%	* (14	df)
Great Lakes (14) 1961 1962 1963 1964	0 × 0 4 4 4 9 8 8 € 1 € 1 € 1	47876	13.61 10.23 10.81	÷ 5 8. €	1.6	137 182 194 232 162	93 126 92	20001	0.80 V V 8	5 0.8	1128 1139 167	988	13 4 6 0 1	1.0	2.7	170 170 123 132 132	175 125 119	4.32 12.04 0.17 3.38	. ·	9.0
96	00/00	000U4	12.62-	2.5	1.5	0740	209 103 116 92	10074	-0-	2 0.2 9 1.7 1 -0.7		25 9 4 5	10.0 15.9 34.8	0.00	3.7	134 156 210 199	55255	- ruso 10 4		

Table B-2. Continued.

	 		Dire	0	 	2 0	>	erie	, s				n d	ر د م	c t	ر م د	0	ە	មា
•		Σ	a 1		 	! ! !	1 6	F	0	; ; ;		-	. σ] e			1 <u>1</u>	E E	O.
Major reference area and year group	I H I	4 2	Test	Lat	Long	Z	A	Test	Lat	Long	Z	Y Z	105	t Lat	Long	Z	¥ Z	Test La	t Long
(14) C	nue	σ.																	
1970	313	9	3.7	2.0		249	Ξ	٠,	1.2	0.0		66	39.3	1 0.	4		84	ŗ.	
1971	47	43	4.0			162	67	۰.				57	7.6	ان ب	ι, υ		, m	6.50	
2/61	- - -	† °	O •			2/5	ν o υ o					000	0.7.0		'n		411	0,1	
1979	279	00	26.60	20.	7.6	264	0 6 9	1.57			70	\$ 0 \$	10.9	 	3.6	68	19		
1975	96	63	7.7			267	101	C	1.0	.8									
Reference area total		4.0	¥96.	*	d+			3.4	× (30	(†P			206.2	2**	28 df)			50.57**	(56 df)
tlantic (15																			
1961 -	C	54	23.48			112	34	. 7	٦. ٦	0.1	103	9	29.	2 1.	3 4.6	65	27	∞.	
63 - 1	_	09	32.12	8.		128	63	0.5	1.3	0.1	107	∞	5	6		56	93	4	
65 - 1	.+	55	48.29	•		215	66	1.7	1.0		198	13	16.	6	ς.	165	1.3	m.	
- 19	.	φ, φ,	11.07	J 1	ο.	115	0	ů,			163	Ø I	23.	- 1		105	25	١ ٠	
1 1		7 C	32./3	, i		700	ر د د	? ‹		P		ם ס ט ט ט	5 T		20.00 0.00	÷ •	7 7	70.0	
1 2/	-	, .	20.00	7		0 0	0 ~	. 4			2 6	- 0				- u) <u>-</u>		
1975	7.7	0 0	2 - 6) O	17.57	1.7	8 0 -	5	J	J	•	-	3)		
. m	,	,	.28*	× (16	(JP	•		J.	* (16	df)			117.6) **59	14 df)			24.62	(12 df)
NE United States (16)																			
1961 - 196	7	28	7.64			56	54	6.			7.0	27	4.9	2		58	54	Μ.	
- 196	2	4.9				142	32	٣.			117	21	5.4	7		88	37	۲.	
- 196	м	25	٠,	2.2	-0.4	202	40	2			120	27	3.0	7		103	32	.5	
	S	34	66.9			162	48	1.26			143	38	17.1	.1-6	5.3	116	30	1.54	
- 197	Ŋ	32	∞.			138	42	6.			89	6 5	2.5	2		69	31	∞.	
- 197	6	38	.5	1.2	-1.8	8 9	23	7.			55	33	2.3	6		35	13		
197	141	28	Ο,			87	24	0.			30	14				28	15		
1975	6 1	6	1			9	17		,				1					•	
Reference area total			45.73*	* (12	Q+)			15.18	- 14	d +)			35.5	**9	12 dt)			10.40	(10 dt)
Continental total		=	384.88*	* (32	(f P			455.83*	* (28	(†P			480.1	13×× (3	(32 df)			74.29**	(28 df)
	1 1 1 1 1 1	1				1	1	1 1 1 1 1	1	1 1 1 1 1	11111	1111			1111111		-		

Alhe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 immature (NI) or adult (NA) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of '**'.

Results of testing the hypothesis that male and female mallards have similar recovery distributions. Table B-3.

			Dire	P C L	£	0	2	1				H	n d i	U		10	0	7	1 10
Morror action	H	E	ا عا ا	i	OJ.		70	מו	4	1 1	Н	E	ו ומי		i OJ		1)	1 1 1 1 1
and year group	ξ	F	Test	no i	6	Z.	노	Test	Lat			 노	T st	1 4 1	101	Σ	F.	Test	Lat Long
N Pacific (1) 1961 – 1975 Reference area totala	42	55	2.50	2	() (4)	21	∞				22	21	6.50	2	df)	21	16		
N ALTA - N NWI (2) 1961 - 1962 1963 - 1966 1967 - 1968 1969 - 1970 1971 - 1975 Reference area total	137 655 105 79	6948 648 648 648	1.64 3.32 4.72 0.78	∞ ∵	(JP	80 70 27 90	05255 2555 1	0.49 4.17 2.42 8.36	*	df)	137 63 96 62	7 1 37 50 50 57 57 57 57 57 57 57 57 57 57 57 57 57	1.88 1.03 3.18 6.82	& U	() (4)	117 149 61 75	37 25 28	7.10 6.11 0.10 1.55	(& df)
SW Alberta (3) 1961 - 1966 1967 - 1970 1971 - 1975 Reference area total	61 148 82	28 7 4 7	3.20 3.64 9.60	9)	df)	60 162 143	24 5 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	1.15 0.38 0.44 1.97	9	df)	174 174 50	27 86 27	0.16 0.01 0.34	9	df)	123 403 142	21 67 29	6.17 5.62 10.89 22.68*	-3.8 -2.3 * (6 df)
SW Saskatchewan (4) 1961 - 1962 1963 - 1964 1965 - 1966 1969 - 1970 1971 - 1972 1973 - 1974 Reference area total	222 322 142 142 142 143 143 143 143 143 143 143 143 143 143	146 1030 1030 1030 132	W-0-0-00 W0W004-00 DW8GAW880	91.)	Q£)	35 116 116 127 197 46 46	2012 2012 2012 2012 2013 2013 2013 2013	2.11 1.64 0.84 4.06 2.87 11.52	210	df)	105 280 280 261 124 79	33.7 400 440 34 34 34	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	(12	φŧ)	133333 1333 1333 1333 1333 1333 1333 1	W67W60W 467W60W	1.55 1.35 1.54 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	(12 df)
SE Saskatchewan (5) 1961 1965 - 1966 1967 - 1968 1967 - 1975 Reference area total	4626 7462	22 31 25 51	0.84 1.00 1.00 5.34	6 0 ○	df)	34 75 62 150	12 22 37	7.63 0.08 3.74 11.45	9	df)	4887 000 000	233	6.33 3.71 10.04	○	df)	41 137 230 89	13 36 11	0.75 1.60 2.35	(4 df)
SW Manitoba (6) 1961 - 1968 1967 - 1978 1979 - 1970 1971 - 1972 1973 - 1974 Reference area total	168 179 129 102	108 474 795 498 498	0.58 0.02 0.63 9.20 9.69 1.98	-0.6	0.7 df)	70 134 139 132	346 30 30 30	6.63 2.62 3.72 25.74 25.97	(12	df)	101 101 1187 118	64 104 25 25 55	30.64 - 33.34 - 1.31	-2.2 -1.5 * (10	0.2 1.6 df)	135 264 219 236 91	26 25 26 26 26	5.15 5.57 1.97 0.03 4.15	(10 df)

Table B-3. Continued.

		Dire	e c t	0 0 0	>	r .	v		Н	n d i r	e C	r 0	0	 	1
	 E H	3 a t	9		A			i i i ⊢ i		9 +			A	-	
Major reference area and year group	EZ	Test	Lat Long	Σ	L	Test La	at Long	돌		est	Lon	Zi	<u> </u>	Test	Long
SAS 196 196 196 ef⊟r	62 63 56 45 132 89	1.28 5.12 0.27 6.67	(f df)	34	20 - 6			69 70 49	33 25 20	7.33 0.84 4.73 12.90	(6 df)	30 34	7 8 9 9		
E ONT - M QUE (8) 1961 1965 1966 1966 1968 1969 1970 1972	127 136 148 154 178 154 175 130 264 137 475 130 475 330 671 310 671 310	1004000414 100444004 1005584004	1.1	7/4 W 4/4 4/4 4/2 8/4 8/4 8/4 8/4 4/4 4/4 4/4 8/4 8/4 8/4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000-00-00-00-00-00-00-00-00-00-00-00-0	1.0	4000 4000 4000 4000 4000 4000 4000 400	00000000000000000000000000000000000000	468444686868686868686868686868686868686	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0000000 4080000 4080000 40800	V&V&&W&@V&V	14.78 -1.8 0.44 4.75 -1.9 12.70 -1.9 14.92 -2.0 5.37 6.27	4. E. 4.
6	34.		(24 df)	0 9	54.	6.6	(24 df)			. ∞	(22 df)	;		. 9	(2 df)
Mashington-Oregon (9) 1961 - 1962 1963 - 1964 1965 - 1966 1969 - 1970 1973 - 1974	261 153 289 252 266 226 212 125 212 164 164 128	5.66 2.73 2.73 1.59 1.59	-0.2 -0.2	0 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65 65 77 77 48	21.25 21.25 21.25 21.25 21.25 21.25 21.25	1.7 0.0	1644 1833 123 78 78	8787878 8687387	1.92 3.092 3.092 5.20 0.20		44 88 84 84 84 85 85 85 85	566 116 73 59 64 15	3.64 1.60 11.78 -1.2 0.73 0.84 6.06	9.0
1975 Reference area total	0	30.139	** (14 df)	0		31.67**	(14 df)			16.04	(14 df)			24.65	2 df)
	85 34 48 32 80 57 130 60 75 22 117 50	00.22 00.23 00.23 00.23 00.23 00.23		46 76 86 94 109 75	699 699 699 699	48 8 8 8 9 9 4 7 8 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9		400044n 008800V	22 - 22	1.39 0.39 0.48		97 111 1128 108 90 90	24 24 24 24 24 24 24 24	28.5.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 3.0.0 3.0.0 4.0.0 5.0.0	
1975 Reference arma total	m	11.64	(14 df)	62	26 2	4.0	(16 df)			2.53	(8 df)			18.43 ((14 df)

Table B-3. Continued.

			ire	C)	٤	Ø O	>	e	ın			Н	ס	2	0	Q	0	2 2	0	! ! ! ! !!	
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		E .	u +		a		I 4	d 0 1	 -	} } !	i H	E	. m	1			A	סו	-	4	
and year group	Σ	포	Test	14	Lon	Σ	L L	Test		Long	Σ	<u> </u>		t Lat	Long	Σ	노	- L	st La	+	0 n g
Intermountain (11) 1961 - 1964 1965 - 1966 1967 - 1968 1969 - 1970 1971 - 1975 Reference area total	97 164 116 80 99	74 98 130 56 44	4.11 0.57 2.70 1.70 1.12	(12	2 df)	1129 1529 164 164 164 164 164 164 164 164 164 164	66 60 60 60 60 60 60 60 60 60 60 60 60 6	3.30 4.21 2.89 10.71 21.12	2.0	-1.1 df)	103 188 239 90 75 50	75 711 712 722 723 724 725	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0274784	12 df)	175 216 238 126 68	71 66 123 37 37 36	4-4-4 V.W.	99 41 -2 16 77 77 10**	-1 -0 (10 d	٠. 4
High Plains (12) 1961 1963 1965 1965 1967 1969 1970 1971 1972 1975 Reference area total		25 25 25 25 25 25 25 25 25 25 25 25 25 2	26. 352 26. 389 26. 389 26. 382 57. 382 57. 382	910	4 df)	221288 22128 23128 24228 24228 24228	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29.33 12.888 12.888 2.33 5.03 64.16*	1.7 0.8 0.6 414	df) 5522	227 277 277 277 275 775 775 775	121 121 121 121 121 121 121 121 121 121	00400- 5	\$ 070\$ LO 17	12 df)	22 95 6 6 0 2 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	151 151 151 153 153 153	202.1.5.0.7	747 8855 8992 10 87 87 87 87	44. 25. 17. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21	1.8 1.8 df)
Missouri R. Basin (13) 1961 - 1962 1963 - 1964 1967 - 1968 1970 - 1970 1973 - 1972 1973 - 1975 Reference area total	12422221 00020200 00020000	53 18 25 63 17 1 17 1 17 1 17 1 17 1 17 1 17 1 1	0.56 10.55 6.99 5.07 3.48 1.26 1.26 45.86	1.2 * (1.2	0.4 0.5 6 df)	2223 2223 2223 2223 223 223 223 223 223	22 25 22 79 17 0 72 72 72 72 75	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-0.7 * (16	-2.1 df)	1222551 1222551 1222551 1220251	2224 190 113 115 74	101 27 27 27 27 12 27 14 15 15 15 15 15 15 15 15 15 15 15 15 15	X + 672 + 112	2 -0.5 2 -0.5 2 0.2 2 0.5 1 -0.1 4 df)	36 50 50 50 50 50 50 50 50 50 50 50 50 50	88 100 100 100 100 100 100 100 100 100 1	4-40048	77 337 -1 222 -1 228 -0 990 -2 22 -22 -3	4. 4. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1.1 0.6 1.0 0.1
Great Lakes (14) 1961 1962 1963 1965 1966 1966 1968	4301242 4301244 60104 60174 60174 60174	137 1827 1937 162 276 306	6.47 6.60 7.66 6.60 6.60 6.60 6.60 6.60 6.6			466833344 456833444	153 153 155 209 116 92	0.98 4.74 4.10 6.10 12.33 6.05 5.72	9.	6.	128 139 149 179 250 250 255	111 170 123 132 171 171 156	8-100-00-00-00-00-00-00-00-00-00-00-00-00	7227-2-69	8000827778 800007777	040 601 601 601 601 601 601 601 601 601 60	242 242 125 101 102 102 103 103 103 103	200 200 200 200 200 200 200 200 200 200	335 -0 336 -0 337 -0 229 -0	6. 9. 6. 1.	2 . 4 . 5

Table B-3. Continued.

		Direct	r e c o	د ت : ه	ر ر		н	n ت ت ه	4	ا ا	0	 C	មា
	E		A	ס	رب	ы	E	عا (- در ت	a l		<	d u 1	
and year group	7 1	+ 		F Test L	at Long	Σ	2	Test Lat L	1 6 1	Σ	L L	Test	at Long
+ 400 model + 400mg	7												
1970	313 249	-	_	1 14.84 -	1.0 -2.	142	121	0.17 -0	2.5	66	84	∞.	1.4 -1.9
1971	147 162	NO 1	~	7 11.76 -	0.2 - 2	∞	7.9	3.78 -0	2.1	57	58	2.02	
1972	224 179	\sim		~ ~ ~		156	109	22.78 -2.0	- 4	00	119	12.11 -	7 -1.5
1976	279 264	1.60	710	18.21 -	2.6 -1.9	20	89	3.62 -0	2.2	400	9.6		<i>:</i> :
1975 Reference area total	792 967		^	98.7	(30 df)			379.80** (28	9£)			184.89**	(26 df)
Mid-Atlantic (15)													
196	119 112	8.82	24 3	51		103	65	7.		67	27	21	
		7.03	ر ا	- c		10.4	7 V	26.07	0	130	7 7	7.79	
- 196		2.81	n ∞	0 7		163	100	5.68	:	99	5	,4	
- 197		.53	6	1 3		111	59	δ.	3.5	56	29	٣.	
197		13.64 0.6 0.2	7.	∞ r		100	9	90.		105	50	Ξ.	
1975		/ · · ·		ハロ		d n	35	`.	ų.	22	5		
Reference area total		44.16** (16 df)	>	27	(16 df)			72.29** (14	df)			11.48	(12 df)
NE United States (16)													
1961 - 10		3.9	80	4 0.73		7.0	58	4		27	54	Τ.	
- 195		0.5	6	2		117	88	. 95		21	37	6.	
196		~ . ₽	Z.	9.8.0		120	103	4.08 -0.		27	32	5.	
196		2.9	J- (2.7		143	116	.78 -1.		80	30	1.53	
1971 - 1970			νo	1.1		א מ א ת	9 10	2,70	٠. ٠.	ょん	2	j.	
- 197	141 87	22	288	0		0 0 0	0 00		•	7 -	- 12		
1975		0.08	6	7		,	i						
Reference area total		∞.		a 15.76	(12 df)			80.96** (14	df)			11.76	(10 df)
Continental total		92.77** (32 df)		162.68**	(28 df)		•	705.05** (32	df)			318.34**	(28 df)
			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1	1		1 1 1 1 1 1 1 1 1	1

aThe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 male (NM) or female (NF) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of '**'.

Table B-4. Results of testing the hypothesis that direct and indirect recovery distributions of mallards are similar.

		∢	d u 1	4	٤	0	a >	اء 0	ın.			ы	E E	t u r	QJ	ت ت	0	ه ۲	en en
		Σ	-				-	ro E	-			Σ	l l l	Q.	i	1	i di	1 6 1 E	1 1 1 1
Major reterence area and year group	Ω. Q.		101	Lat	Long	Q Z		Test	Lat	Long	2	H	Test	Lat .	Long	2		Test	Lat Long
N Pacific (1) 1961 through 1974 Reference area total a	80	2.1				\$1	16				40	22	20.31 20.31	* (2	5.9 df)	15	21	7.55	(2 df)
N ALTA - N NWT'(2) 1961 - 1962 1963 - 1966 1967 - 1970 1971 - 1974 Reference area total	80 72 77	117 149 61 75	2.48 3.37 2.75 1.13	Ü	8 df)	455 455 058	337 237 28 28	0.40 0.10 1.45 3.12 5.07	~	\$ df)	137 655 105 74	137 63 96 62	30.80 7.54 21.35 23.30 82.99*	5.7 5.3 7.0 8 (%	6.1 6.1 df)	644 000 000 000 000	71 37 60 27	18.94 1.80 14.38 1.97 37.09*	5.3 2.3 5.5 5.8 * (8 df)
SW Alberta (3) 1961 - 1976 1967 - 1970 1971 - 1974 Reference area total	60 13 162 40 127 10	23 42 42	10.93 13.81 1.14 25.88*	#.9 * (4.6 1.7 6 df)	34	21 67 29	1.22 0.62 1.84	Ü	4 df)	61 148 72	174 50	22.63 30.36 17.33 70.32*	5.7 3.3 2.6	3.6 0.3 df)	28 79 40	27 86 27	1.49 10.18 0.69 12.36	2.0 0.6 (6 df)
SW Saskatchewan (4) 1961 - 1966 1965 - 1968 1967 - 1978 1971 - 1972 1973 - 1972 1973 - 1974 Reference area total	132 2 116 34 137 2 154 3 197 1	73967 986 988 988	25.53 25.53 25.53 25.55 25.55 0.66	3.0	0 1.8 12 df)	32 17 64 62 33	000000 000000 000000	6.57 0.69 6.01 0.35 5.70 19.32	(10	10 df)	22 122 33 120 141 142	123 280 101 124 79	25.22 9.28 1.90 6.64 17.35 89.10*	* 5.5 5.7 5.2 5.2 5.2	2.6 2.3 3.5 4.6 4.5	116 116 108 933 803	45 40 40 98 41 31	0.28 4.80 3.79 15.29 5.87	3.8 0.5 * (12 df)
SE Saskatchewan (5) 1961 - 1964 1965 - 1966 1967 - 1978 Reference area total	52 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37 37 89	6.87 8.79 0.85 5.29 21.80*	*	8 df)	22 2 2 4 1	13 11 11	2.02 2.43 4.45	J	4 df)	36 62 33 33	4 8 8 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	28.64 5.61 2.04 4.99	7.2	5.9 : df)	232	17 34 19 23	0.41	(2 df)
SW Manitoba (6) 1961 - 1966 1967 - 1968 1969 - 1970 1971 - 1972 1973 - 1974 Reference area total	70 134 2139 2139 2132 132	35	6.39 13.97 3.65 5.02 17.16 46.19*	3.0 3.0 (*)	-0.8 -0.1 0 df)	465 465 465 465	26 23 26 26	7.60 0.49 3.62 6.03 0.15	5	(10 df)	168 179 129 129	101 101 187 118	58.97 31.51 47.59 16.11 16.04	7.4484 7.6484 7.6486	1.9 1.7 1.2 2.0 df)	108 47 94 95 78	44 40 55 55 55 55	9.47 1.22 14.49 7.78 2.61 35.57*	2.6 0.7 2.4 2.5 * (10 df)

Table B-4. Continued.

		1	A d u 1	+	0 0 0 0	0		 		H		٠ ا			> 0	1 0	1 e s		
		Σ	-	ď		i O	, rg	9		Σ.		0			i di	 E	e	ø	
rajor reterence area and year group	Q.	岦	Test		S.	z l	-	-	2	¥	Test	Lat I t	Long	2	Z	Test			
N SASK-N MAN-W ONT (7) 1961 - 1964 1965 - 1968 1969 - 1974 Reference area total	15 7 33	3488	10.45 10.45	* (2 df)	12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1897			6.52 6.8 8.8	69 70 49	19.69 17.12 18.76 55.57*	* 4.56 2.56	-0.6 -0.1 2.5 6 df)	44 45 45 45 45 45 45 45 45 45 45 45 45 4	255	25.83	7449	9	df)
0196	0.4 m 0	7287	∞က္∾•	1.2 -0.7	40 62 72	527	∞ n. ∞ c	2.0 -0.9	10001	\$ 22 20 20 20 20	0.000		444	136	27.78	2704	2	5 -0	∞ ∞
1966 1966 1970 1971	1446 <u>1</u> 4466 1846	45 77 77 77	26.67 15.61 26.49	1.2 - 2.1	000 000 000 000 000	0410404 041040+	7.0.00 7.0.00 7.0.00 7.0.00 7.00 7.00 7		44664-44664-44664-4664-4664-4664-4664-	136 136 361 361	97.51 90.69 151.84 179.86	100	0 1 1 1 1 1 1 1 4 6 6 6 6 6 6 6 6 6 6 6 6	222 198 337 320	83 105 176 176	28.7.50	- 86 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	655.9	WON4
770	0 0 0 0 0 0 0 0 0	300	 	1.3 -3. * (22 df	300	200	.23	* (22 df	MO	182 55	10 m 10	*	6 d	98	369	8.6 199.1	* * *	22 0	df)
Mashington-Oregon (9) 1961 - 1962 1963 - 1964 1965 - 1966 1967 - 1970 1971 - 1970 1973 - 1970 1973 - 1970	888 708 84 86 86 86 87	168 118 70 96 46	7 3.08 3.08 22.27 26.43 6.43	(14 df)	65 131 71 70 76 48	56 116 73 59 59 15	6.72 2.01 7.38 4.69 3.31 7.44	* (12 df)	266 2266 2266 2266 267 267 268	122 183 183 123 160 160	57.35 69.60 31.16 22.75 19.93 5.84 22.30	0.0 0.3 1.0 4.0-4	1.8 1.2 1.3 4 df)	2552 2256 1256 128 128	30 30 30 30 30 30 30 30 30 30 30 30 30 3	33.0 58.7 14.9 7.7 0 1 1 0 1 1 16.5	**************************************	264 4	1.5 1.3 df)
California 1961 1965 1965 1967 1976 1973 eference are	46 76 86 94 79 109	97 115 119 108 90 66	- 0000000 0-000000	(14 df)	00000000000000000000000000000000000000	25 24 24 24 24 24 24 24	23.23 25.27 25.27 25.25 25.26 25.26 25.26	(14 df)	85 880 130 177 107	550 550 550 550 550 550 550 550 550 550	0.58 27.25 27.25 13.98 13.84 57.37 61.23*	0.8 0.6 ** (14	1.3 0.7 t df)	8889888 487888	2422 2435 2435 2435 2435 2435 2435 2435	2.5 4.1 7.5 7.5	322 40 14 14 55 69	* 0	df)

Table B-4. Continued.

7 8 0 0 0 0 1 8 5	e E	ND NI Test Lat Long		83 63 11.02 -0.8 1.3 168 121 93.34 -19 132 86 21.29 -0.3 0.7 104 100 23.15 -1.0 0.2 72 43 1.61 69 53 2.02 152.43** (12 df)	63 60 2.86 318 224 13.19 1.1 -0.3 260 190 3.32 126 113 1.62 171 115 12.71 1.5 0.6 227 74 7.34 43.08** (14 df)	137 111 8.15 194 123 8.81 232 132 5.82 162 171 3.82 291 134 5.90 249 156 11.18 1.0 -0.7 206 210 1.43 1.4 -0.1 206 210 1.43 1.4 -0.1 207 199 3.14 0.1 208 199 3.14 0.1 209 109 3.45 200 141 4.99 201 141 4.99 201 141 4.99 201 141 4.99 201 141 4.99
Immetere	a 1	ND NI Test Lat Long	97 103 4.32 164 188 0.58 242 239 0.09 116 90 15.14 -0.7 0.1 80 75 8.40 78 50 0.18 28.71** (12 df)	138 174 50.97 -1.6 0.4 235 270 104.80 -1.6 2.5 278 228 278 33.22 -0.9 0.4 226 195 49.57 -2.1 0.1 109 125 11.41 -1.8 -0.2 116 79 257.56** (12 df)	100 101 34.00 3.9 0.7 506 405 159.73 3.6 0.6 506 220 60.10 3.3 -0.1 529 210 59.08 3.8 0.4 535 194 68.75 3.4 1.0 548.17** (14 df)	158 128 35.96 0.9 -2.4 158 118 4184 1.4 -2.1 151 1139 64.60 1.9 -0.9 140 189 29.15 2.0 0.0 180 29.15 2.0 0.0 29 179 45.89 0.9 -2.8 310 250 135.44 2.3 -2.8 310 257 241.76 2.7 -1.9 313 142 70.50 1.8 147 81 55.43 1.6 -1.4 147 81 55.43 1.6 -1.4 224 156 50.61 1.9 -2.0 224 156 50.61 1.9 -2.0 227 70.50 1.1 -1.7 27 28 53.31 2.0 -1.7 27 28 53.31 2.0 -1.7 27 28 65.31 2.0 -1.7
8 C O V e r i e s	Female	D NI Test Lat Lon	63 71 2.43 65 66 2.15 98 123 1.64 55 37 14.91 -2.7 0.2 18 16 0.32 33 36 0.32	86 91 15.12 -1.8 0.8 114 97 5.42 -0.5 -0.1 96 98 7.42 63 53 9.38 -1.0 -1.3 42 35 9.21** (12 df)	55 85 0.55 279 314 4.28 349 345 14.0 170 195 10.92 1.8 0.8 74 104 6.55 87 89 0.66 72 61 0.22 24.58 (14 df)	93 175 7.25 155 222 8.53 126 122 7.38 92 119 2.29 50 107 1.28 103 126 3.65 116 162 4.43 111 84 5.81 67 58 24.66 1.6 1.9 88 76 6.62 69 19 76.02** (26 df)
A d u 1 t	M a I e	ND NI Test Lat Long	119 175 13.35 0.9 -0.4 161 238 2.09 86 126 0.89 55 68 4.05 47 49 1.31 30.16** (12 df)	164 355 8.57 0.9 1.1 208 421 17.17 -0.7 0.6 252 289 40.65 -0.7 0.9 147 199 5.56 99.33** (12 df)	156 364 4.76 6 -0.2 273 573 28.74 1.4 -0.2 226 396 16.33 0.4 -1.2 136 281 0.99 229 251 5.02 227 218 4.56 69.99** (14 df)	64 140 1.55 0.3 -1.3 53 61 1.386 0.3 -1.3 53 61 1.32 62 63 63 64 64 65 65 148 6
	Major reference	and year group	Intermountain (11) 1961 - 1962 1963 - 1966 1965 - 1966 1967 - 1958 1971 - 1974 Reference area total	High Plains (12) 1961 - 1964 1965 - 1966 1967 - 1970 1971 - 1972 1973 - 1974 Reference area total	Missouri R. Basin (13) 1961 - 1962 1963 - 1964 1965 - 1968 1967 - 1970 1971 - 1972 1973 - 1974 Reference area total	Great Lakes (14) 1961 1962 1963 1965 1965 1966 1967 1970 1971 1972 1973 1973

Table B-4. Continued.

		4	Adu	4	Ŀ	O O	o r	 e s				I m m	a u	ت 9	٤	O O	>	eri	8	1
	1	Σ		! ! ! (U)	i i i i i		a					n n				ı	ָ פונים	ro E	7	0 1
Major reterence area and year group	Q.		Test	Lat	Long	2	Z	Test L	Lat Long	Q	Z	Test	t Lat	1 2	6.	2	H	Test	Lat	Long
Mid-Atlantic (15)																				
1961 - 1962		67	0.62			36	27	6.21		119	103	50.79		0.9 -4.5	ייי	112	65	25.37	- 0	
1	0		2.00			6.3	93	0.45		150					?!			١٧٠٠١	٠. د .	7.7
ı	N		4.93			66	113	5. 14		286					. 7			16.49	0 . 0	6.
1967 - 1968	00		0.56			20	45	7.95		168					∞.			14.14	1.0	-
1	_		6.70			3.1	53	2.76		14					9			13.27	0.7	-2.5
1			19.51	0.2	0.2 -1.7	78	50	8.08		19(∞.			26.50	0.5	-2.7
1973 - 1974	_		4.96			43	15			12(9.			4.46		
Reference area total			39.28*	~	(14 df)			30.59**	(12 df)			398.	₾		£		•-	16.14*	* (14	df)
NF United States (16)																				
1961 - 1962	28	27	0.60			24	24	1.27		6		69.78			4			21.36	1.5	-1.2
1963 - 1964	19	2 1				32	37	6.79		15.					κ.			8.31		
1965 - 1966	25	27	3.76			4 0	32	3.53		24.					4			8.26		
1	34	38	4.73			48	30	3.12		17(. 7			10.05	0.5	-1.5
ı	32	65	3.33			42	31	5.71		14					2			9.33	9.0	-1.4
1971 - 1972	38	33	0.83			23	19			89	55			1.0 -5.4	4	89	35	2.74		
1973 - 1974	28	14				54	15			14					6.			0.20		
Reference area total			13.25	Ξ	(10 df)			20.42	(10 df)			352.	ж		£			50.25*	* (14	t dt)
Continental total		,	343.10**	** (30	(4P 0			148.57**	(28 df)			2554.46**	**91	(32 df	()		9	635.15**	* (32	2 df)
	1		111111	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111				1		1		1 1 1 1 1	1	1	1	} } !]

^aThe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 direct (ND) or indirect (NI) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of '**'.

Table B-5. Results of testing the hypothesis that direct recovery distributions of birds banded as adults are similar to indirect recovery distributions of birds banded as immatures.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Σ	rø		-	a			9]]]
and year group	ו ו ע ו ע	A i	HHZ	– e	st La	ا ا ا	e no	NAD	HH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	a+ :	Long
cific (1) 161 - 19 rence area to	74 tal a	€	22]]]	; ; ; ;		21	; 1 1 1] 	i
ALTA - N NWT (2 1961 - 19 1963 - 19 1967 - 19	665 665 770 665 770	80 77 77	137 63 96 62	1.52 1.20	4084 1	6		25 25 40 40	71 37 50 27	0001 0001 0046	m−∞n.	6.	₩.
Alberta (3) 961 - 19 967 - 19 971 - 19 erence area to		162	64 174 50		* * *	× 9	df)	34	27 86 27		7 09 9	× 4	(†) (†)
SW Saskatchewan (1961 - 1961 - 1965 - 1967 - 1969 - 1971 - 1973 - 1973 Reference area to	4) 64 66 68 68 72 72 74 tal	132 116 137 154 197	123 280 101 126 79	10.5 10.5 10.5 10.9	907870v	12	() P	32 177 64 52 33	109 400 440 341	2.7 7.0 1.0 1.6 1.5	0 17746	(10	df)
SE Saskatchewan (1961 - 1961 - 1965 - 1967 - 1969 - 1969 Reference area to	55) 664 686 74 121	34 52 52	880 57 67	9.6.4.4	880 927 024	<u></u>	·1.4 df)	24 21 22	23 23 33	1.7	73 4	. 4	df)
SW Manitoba (6) 1961 - 191 1967 - 191 1969 - 197 1971 - 19	66 68 70 74 4al	70 134 139 132	101 101 187 71 7	8.9 14.8 14.1 14.1 26.8	661616 * * 3007	2.8.2.1	d. 1. 1. 2. 2. 4	44 465 465	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	404-00	204040	(10	df)

Table B-5. Continued.

	Σ	Ø	Н	a	U 1	i	e		9
Major reterence area and year group	NAN		Test	Lat Long	∢ 1	HILL	H E	at	Long
SASK-N MAN-W 0 1961 - 1 1965 - 1	← w	69 70 49	.2		2112	233			
erence area tot			8.23	(2 df)					
E ONT - W QUE (8)	28	3	0.1	0 -4.		59	ς,	1.7	9.0-
1965	141	125	40.77	1.6 -4.6	62	7 1	8.03		
9 0	5 5 5	\circ	3.0	.8-16.		069	in.		
9	48	3	7.1	.3 -4.		83	7.7		
91	99	136	0 +	.55 1.6.	С	0 4	-0	t t	12.4
- 1	116	2 0	6.6	.0 -7.	· +	176	0.6		2
~	85	4	3.0	.8 -5.	~	~ (21		
1973	68 68 89 89	വയ	% < 2 ≪	.3 -5.		010 04	÷ 10		
- ra	•	1	2.7	(22 df			9.	% *	2 df)
Oregon			4		65		0		
963 - 196			5		09		9.		
965 - 196			4.		131		٠, ر		
967 - 196				-1.5 1.1			7.4	4	-
761 - 696	7 4 U 4	720	7.6		76	6 v	.6.	•	
973 - 197			2.01		48		0.14	•	
rence area tot			0.26	** (14 df)			?	5	4 0 +
lifornia (10)			•			,	1		
196 - 196	4.6	41	10)))	00.0		
1963 – 196	9/	UП	`. `			17			
165 - 196	000	UL	۰ ۲			- v . r.	1.52		
197	79	· 4	, ru			13	t		
1971 - 1972	109	45	4.03		69	18	•		
1973 - 197	75	5	∞.			1.7	0.02	`	٦
rence area tot			٦.	(14 94)			•	ر	0 017

Table B-5. Continued.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Σ	Ø	-	J		ш.	(U)	В	7		
and year	NAD	HIX	Test	Lat	Long	NAD		Tes	t La	1 1	-
		! ! !	 	! ! ! !	 	 	; ! !		Í 1 1	!	1
rmountain (11)											
961 - 196	119	0	۲.								
63 - 196	129	188	ς.	6.0-	-0.1			4.2	0		
961 - 196	161	M	6.9					•			
67 - 196	86	06	Ş	1.2				•			
	55	75	11.45		0	18	43				
1971 - 197	47	20	6.9					•			
rence area tot			0.	** (12	(df)			10.3	∞	(10	df)
h Plain											
1961 - 196	4	1	7							,	
965 - 196	·	- 1	. c							ی م	0.0
967 - 196	- c	· r	M					٠	l V •		•
69 - 197	> M	٠ 0	, w	7 1 7	c					ц	c
1971 - 1972	147	125	2.45	•	•	63	2 4 0 W	2.0	2 20	·	•
1973 - 197		4	7.5								
ence area tot			.47	** (12	(4P)					(12	9 +)
Souri R. Basin											
1961 - 1962	u	C	۲								
963 - 196	7 -	o c	. -			7	00	٠			
965 - 196	- 1	0	. M		c	~ 4	40				
967 - 196	S	S		0.7	-1.4						
761 - 197	m	-	0.			~	-				
1971 - 1972	229	194	5.64			87	92	0.4	0		
19/3 - 197	S	d.	5								
rea tot			5.	** (14	df)					(14	df)
1961	99	0	6		4	8	111				
9	67	٦-	· ·	` «		153	- 1	, ,	זור		
9	M 19	M	2.0	•	j	100	- c			. «) 4
96	37	9	0.0	6.0-	-2.8	92	1 1) 0		•
96	30	8	6.7	•	•	500	7	• •			
96	88	7	4.5	4	4	0	· M)				
96	69	5	0.1		4	0	I LO				
96	65	346	6.7		ς.	116	210				
96	74	5	1.0		ς.	g,	6				
97	09	4	300	•	Š,		2				
~ r	かく す c *	× ×	× ×	•	÷.	67	62.				
1973	+ ×	100	31 30	> 0	? * M	ν α υ ο	7	, t	ر ا بر ب		
~	7 1	20	, M.	٠	, , ,	9 4	- « - «) L	?	2.3
π		,	. ~	2	٠4	>	0			000	(47
		•		j	5				K		5

Table B-5. Continued.

Mid-Atlantic (15) Mid-Atlantic (15) 1961 1965 1967 1967 1969 1971 1971 1972 1973 1974 1974 1976 1971 1976 1976 1976 1976 1976 1976	NAD 224 550 555 460 107	N I I I I I I I I I I I I I I I I I I I	1 1 80008478	Lat 11.38 10.20 10.40 0.7	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NAN NAD 999	N I I I I I I I I I I I I I I I I I I I	10.24 53.114 23.22	ا ا	1 2 3
d-Atlantic (1 1963 1965 1967 1967 1971 1973 ference area United State	4000 4000 4000 7000 1000	103 107 198 163 111 100	55.7 55.22 56.92 56.93 57.52 57.52 57.52 57.53			489044 489011	2001 2001 2001 2001 2001		0.3	-2.5
1963 - 1967 - 1967 - 1967 - 1973 - 1973 - 1973 - 1974 - 1974 - 1974 - 1961 - 1961 - 1961 - 1961	460 555 400 407 41	103 198 163 111 100 34	55.22 5.22 5.22 5.32 5.92 5.93		87.00090	180904 48001	00000 0000 04004		-1.0	13.0
1961 1963 1965 1967 1971 1973 eference area E United State	4 4 4 4 7 7 7 7 7 7 7 7 7 7	1003 1003 1014 1014 1014	7 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1	18608 1860 1860 1860 1860	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1.0	-3.0 -2.5 -2.5
1965 - 1967 - 1967 - 1971 - 1971 - 1971 - 1971 - 1975 - 1961 - 1961 - 1961 - 1961	04440 000 000 000 000 000	107 198 163 111 100 34	52.22 75.22 14.94 13.44		11111 W40440 C400000	00000 00000 00000	165 105 24 105 105		-1.0	2.5
1965 - 1967 - 1969 - 1971 - 1973 - 1973 - 1974 - 1969 - 19	448 440 410 411	198 163 100 34	0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 M M 9	165 105 64		-1.0	2 2
1967 1969 - 1971 - 1973 - eference area E United State	48 40 407 41	163 100 34	7.53 0.84 6.97		1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 W C	105		1.0-	5
1969 - 1971 - 1973 - eference area E United State	40 107 41	111 100 34	0.84 6.97 4.13		14.3	3.1	64			0
1971 1973 - eference area E United State	107	100 34	6.97		-4.6	0	4.1	٠		0
eference area E United State	4.1	34	4.13		-5.0	0	-			J
eference area E United State 1961					147	43	35		0.1	9.0-
E United States (_	6./		017			. 55	** (1:	4 df)
1961 -										
	28	7.0	17.55	0.5	-6.3		58	5.80		
i	19	117					88	6.17		
1	25	120	7		-4.0	4 0	103	2.62		
ı	34		0		-6.0		116	8.94		
ı	32		6	0.7	-5.2		69	5.68		
ı	38		0				35	0.03		
ı	28		2.56				28	1.44		
eaue acc			69.35**	(12	df)			30.68**	* * (14	4 df)
Continental total		6	924.18**	(30	df)			196.47**	** (28	3 df)

aThe test statistic is distributed approximately as X with df = twice the number of comparisons included. Test are not shown for sample sizes < 20 adult direct (NAD) or immature indirect (NII) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of ***.

Table B-6. Results of testing the hypothesis that direct recovery distributions of mallards are similar during consecutive years or groups of years.

			Р	t	reco	0		; ; ; ; ;		Н	4	1	2 2	>			
	i	i	i	1 1 1 1 1 1 1) ; ; ; ;	i fr	1 6 5	1 1 1 1 1 1 1 1 1] 	Σ		i		0	n E	- I	!
Major reterence area and year group	- Z	22	est	at Long	Z	N2	Test	lat Long	ž	7 12	Test Lat L	9 U O	z	N2	Test	Lat	5 H O
A - N NWT 3-64 vs 19 7-68 vs 19 1-72 vs 19 ence area	22 70 48	52 72 27		(\$P 9)	80 W W W	222	2.74	(2 df)	864 876	105	3.81 0.84 15.96 4.3 20.61** (6	8.0 df)	2744 800	57 97 18	3.80 0.23 4.03	٠ 4	(JP
SW Alberta (3) 1961-66 vs 1967-70 1971-72 vs 1973-75 Reference area total	116	162	0.38 0.87 1.25	(4 df)	15	36	0.26	(2 df)	61	148 36	0.11 4.16 4.27 (4	df)	2 2 8	79	1.13	6.2	df)
SW Saskatchewan (4) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973-74 vs 1975 Reference area total	116 154 197	97 276 46	10.67 6.35 5.26 8.28 30.57**	0.9 4.9 (8 df)	344	22 62 16 16	1.66	(2 df)	122 122 141	828 828 828	0.49 17.05 -2.6 -1.65 19.19** (6	3.1 df)	116 80 08	33 33 33 33	1,13 6.56 0.87 8.56	9)	df)
SE Saskatchewan (5) 1961-64 vs 1965-66 1967-68 vs 1969-75 Reference area total	34	75	6.01 8.69 14.70**	(4 df)	211	37	0.72	(2 df)	36 46	62	18.89 7.7 3.95 22.84** (4	6.5 df)	22 25	5 5	1.24 3.08 4.32	4	df)
SW Manitoba (6) 1951-65 vs 1967-68 1969-70 vs 1971-72 1973-74 vs 1975 Reference area total	139	134	2.74 4.16 10.10 17.00**	3.0 0.6 (6 df)	6774	37 65 30	3.92 0.73 6.76	(6 df)	168 179 129	87 129 102	20.98 1.6 5.33 25.31 -1.7 51.62** (6	0.2 0.3 df)	108 94 78	47 95 49	7.74 5.00 5.21 17.95*		df)
N SASK- N MAN- W ONT (7 1961-64 vs 1965-68 1969-70 vs 1971-75 Reference area total	15	31			1 0	1 6			62	56	4.44 20.13 -0.9 24.57** (4	4.4 df)	11	45	0.71	2	df)
E DNT - W QUE (8) 1961-64 vs 1965 1966 vs 1967 1970 vs 1971 1972 vs 1973 1974 vs 1975 Reference area total	2224989 888878	44 45 68 60	0.02 2.90 3.17 6.51 6.51 6.53 6.53	(12 df)	40 37 38 38 60 57 57	6572 1069 1069 1069	3.32 3.175 3.175 1.75 1.61	(12 df)	127 182 242 446 471 193	148 175 261 473 330 184	28.91 -0.3 - 1.83 7.96 6.68 12.11 -0.4 8.45 65.94** (12.	0.1 0.7 df)	113 2222 3322 742 847	154 130 130 130	40.15 55.23 22.85 1.19 6.60 0.54 76.56	-0.4 - 0.1 * (12	1.3 0.6 df)

Table B-6. Continued.

		A	ъ	4	L	0	>	 G	Ŋ			Ι	E	a to	9 2	9	۰ د		Į.	!
	i	l l	1		1	; ; ;	F	i	-		l l	Σ:	m T	9			O 1	ra I	1 6	
Major reference area and year group	Z	M2 H	Test	Lat	Long	Z	2 2	Test	Lat	Long	Z	2	Test	La	t Long	Z	2	Test	at to	5
Washington-Oregon (9) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	272 255 265 265	88 37 37	6.22 3.09 1.86 1.37	J	8 df)	131 70 31	60 71 76	0.77 9.28 12.35 22.40		-0.8 0.7 6 df)	261 266 212 112	289 212 164 113	4.0 1.9.4 32.1	9 9 9 8 8 1 * 1 *	.3 -0.2 (8 df)	153 226 164 68	252 115 128 57	2.87 2.10 4.36 9.33	Р 8 С	£
N California (10) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973-74 vs 1975 Reference area total	46 86 79 11	76 94 09 62	1.03 5.14 4.11 1.59	J	8 df)	30 221 69 60	36 72 69 26	1.59 0.83 18.57 0.40 21.39	8 × × × × × × × × × × × × × × × × × × ×	-1.1 8 df)	85 80 75 107	130 117 43	8.9 28.6 11.3 108.3	240 8 * 1 1 0 *	.1 1.0 .2 0.0 .9 0.1	52274	32 50 15	14.16 -2 33.30 4.51 51.97**	2.7 -0 0.6 1	ъъ. С
Intermountain (11) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-75 Reference area total	119 155	286 56	17.91 1.51 7.59 27.01*	* C *	6 df)	6 8 8 8	65 65 40	4.17 24.32 28.49	2.9	1 0.2 4 df)	97 242 80	164 116 99	4.6 60.6 23.4 88.8	58 9 8 58 8 8 8 8 8 8	.0 -1.3 .1 -0.4 (6 df)	74 130 44	800 800 800 800	28.45 2.24 31.29**	3.0 0 (6 d	0.4 df)
High Plains (12) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973-74 vs 1975 Reference area total	2 18 16 2 3 2 16 8 9	46 08 47 61	1.26 82.02 22.10 85.38*	- *	1 2.0 6 df)	11. 96 42	118 63 34	16.29 42.76 0.86 59.91	-0.2 -1.5	0.5 2.4 6 df)	235 226 116	128 2 18 10 9 8 5	31.8 4.7.5 4.0.9	7 - 0 8 - 0 0 * *	.1 0.2 .4 1.4 (6 df)	168 104 69	132 132 132 39	33.33 - (44.33 - 2.76 80.42**	0.4 0 1.1 0	÷.7
Missouri R. Basin (13) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973-74 vs 1975 Reference area total	156 3 273 2 136 2 227	10 226 91	0.32 0.14 11.05 9.38 20.89*	0.t 1.0 **	2.4 1.9 8 df)	255 749 72	279 170 87 74	0.08 3.37 0.97 1.38 5.80		8 df)	100 402 229 360	506 206 335 169	13.0 0.4 3.6 4.9 22.1	19 - 0 17 13 ** (.5 0.5 (8 df)	63 260 171 227	318 126 210 137	0.13 14.60 3.35 19.41	1.5 0 (8 d	0.6 df)
Great Lakes (14) 1961 vs 1962 1963 vs 1964 1967 vs 1968 1967 vs 1970 1973 vs 1972 1973 vs 1974 Reference area total	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	65 65 71 71	3.88 1.34 1.24 1.64 7.02 7.02 25.34	-0.1	1 -1.5 14 df)	93 126 103 92 67 88	153 209 116 111 95	16.04 11.16 9.21 0.88 15.82 25.85	1.7 -0.4 -0.4 0.4 -2.0	1.5 1.5 1.5 1.5 1.5 4 df)	158 161 140 307 400 147 317	138 245 3310 224 224 278	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 57 10 30 14 17 17 18 18 11 11 11 11 11 11 11 11 11 11 11	.3 -1.9 .5 -1.7 .2 -1.9 .1 -1.7 .1 -4.1	137 162 162 306 162 270	282 232 232 276 276 264 264	7.033 7.033 7.033 7.152 71.24 7.057 7.09 7.09	0.1 -1 0.7 1 0.8 -1 (14 d	1.0 1.5 df)

Table B-6. Continued.

		¥	Adu 1	1	Ĺ	0	0		i i v				Immature	t		. a	>	2	5	! ! !
		Σ	E E	a					 	1	1	_	M a 1 e	0	l .			E	-	
and year group	ž	22	N1 N2 Test	!!	Lat Long	Z	N2	N1 N2 Test Lat Long	Lat	Long	ž	N2	Test	Lat	Long	Z	N2	N1 N2 Test Lat Long	Lat	Long
Mid-Atlantic (15)						i				,										
1965-66 VS 1967-68	5.4	0 9 8	12.05	0	12.04 0.5 -0.9	4 O	50	13.55	- c	13.55 - 0.8 - 0.9	7 4 9	150	13.04	00	13.04 0.4 -0.9	212	128	13.96 0.8 0.0	•o.	0.
1969-70 vs 1971-72			2.62			3.1	200	0.14		,	141	190	14.	-0	-0.7	109	145	7.22		
1973-74 VS 1975						43	39	17.37	1,3	0.2	120	73	3.19			102	'n	16.03	-0.5	÷.
Reference area total			24.79) **	8 df)			44.05) *	8 df)			46.20	* *	8 df)			45.44	*	8 df)
NE United States (16)																				
1961-62 vs 1963-64	28	19				24	32	1.27			9.7	155	6.16			96		4.80		
1965-66 vs 1967-68	25	34	7.31	_		40	\$	2.39			243	176	4.57	_		202		2.68		
1969-70 vs 1971-72	32	33	4.16			45	23	2.75			145	83	7.16			138	8	1.65		
1973-74 vs 1975 Reference area total		6	11.47		(404)	24	17		_	6 41 (R df)	141	6.1	8.8	- ×	8.81 26.70** (M. J.f.)	87		9.80 -0.7 -0.3	-0.7	10-8
									•						5				•	
Continental total			176.98	?) **:	176.98** (28 df)		-	195.74** (28 df)	** (2	8 df)			612.49** (30 df)	£) **	() Of)			301.36** (30 df)	** (3	0 045)
	1	1				1 1 1 1 1 1	1	****		111111	11511		11111111					1	1 1 1	

^aThe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 year-group 1 (N1) or year-group 2 (N2) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of ***'.

Table B-7. Results of testing the hypothesis that mallards banded during consecutive years or groups of years have similar indirect recovery distributions.

		∀	d u 1		0 0 0	(C)				H	m E E	ture		>	!	
	i	ĮΣ	e	i		الا	- E		į	ΙΣ.	To the second	1	•	F 1	E	
Major reterence area and year group	- z	N2	Test	Lat Long	z	N2	Test	Lat Long	Z	N2	Test	at Long	ž	N2	Test	at Long
N ALTA - N NWI (2) 1963-64 vs 1965-66 1967-68 vs 1969-70 1971-72 vs 1973-74 Reference area totala	35 149 51	262	2.96 3.14 6.36	(6 df)	37 22	228 6	2.72	(2 df)	35 63 50	102 96 12	8.17 1.22 9.39	(4 df)	22.0	60 8	4.95	(2 df)
SW Alberta (3) 1961-66 vs 1967-70 1971-72 vs 1973-74 Reference area total	123	403	6.99	(2 df)	21 26	67	0.03	(2 df)	45	174	3.33	(2 df)	27 26	86	0.64	(2 df)
SW Saskatchewan (4) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	333 333 333 333 333 333 333 333 333 33	190 296 356 60	12.07 2.03 12.36 1.33 27.79*	1.3 2.9 -0.2 -1.6 * (8 df)	246 57 18	30 66 16	1.59	(4 df)	280 261 31	105 124 48	5000 8460 8400	(6 df)	10.9 98 6	40 41 25	1.94	(4 94)
SE Saskatchewan (5) 1961-64 vs 1965-66 1967-68 vs 1969-74 Reference area total	230	137	3.68 0.71 4.39	(4 df)	13	24			57	800	6.61 0.64 7.25	(4 df)	17	34		
SW Manitoba (6) 1961-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	135 219 58	256 236 33	8.71 1.07 2.45 12.23	(6 df)	26 72 21	333	1.88	(4 df)	187	101	2.25 4.15 1.70 8.10	(6 44)	64 104 16	۵ ا	1.31	-1.6 -2.4 (4 df)
N SASK-N MAN-W ONT (7) 1961-64 vs 1965-68 1969-70 vs 1971-74 Reference area total	30	18			L 4	\$ 2	,		69	70	4.26 14.54 18.80**	0.5 -4.3 ((4 df)	33	13	1.35	(2 df)
E ONT - W QUE (8) 1961-64 vs 1965 1966 vs 1967 1970 vs 1971 1972 vs 1973 Reference area total	24 77 77 70 70 70	65 65 57 58	2.35 3.35 5.90 1.52 13.91	(10 df)	744 469 1	7 7 7 7 7 7 7	7.46 1.36 4.14 0.76 4.85	(10 df)	256 256 266 266	125 105 136 182	1.63 4.46 5.14 1.71 4.38	(10 df)	58 83 167 116	71 69 105 176 89	14.87 3.88 3.88 5.17 5.15 0.71	-1.8 -1.6 * (10 df)

Table B-7. Continued.

		_	σ	٦	0	o) >	·-	L O			H	E	もしっ	a	9	> 0	ر د د	ស
•		i	1	 	1		m	1 1	! !		Σ			1 1		L	E	- 1
Major reference area and year group	2	22	Test	Lat Long	ž	N 2 1	Test	Lat	Long	Z	N2	Test	Lat	Long	Z	N2	Test	t Lon
ashington-Orego 1961-62 vs 196 1965-66 vs 196 1969-70 vs 197 1973 vs 19 eference area t	168 118 26 28	98 70 71 71	13.18 1.38 1.06	-1.0 -0.7 (6 df)	116 59 7	6430 8430	1.48 19.48 17.79 38.75*	0.4 -1.1	-1.3 1.1 3 df)	144 183 123 36	122 99 78 24	1.02 3.70 0.18 3.18	80	df)	993 933 15	72 77 22	2.36 11.89 4.86 19.11**	-0.6 -1.2 * (6 df)
N California (10) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	119 108 49	1128 128 17	6.35 0.90 0.40 7.65	(6 df)	22 48 168 168	466 110 110	4.52	9	(4	4044 0804	56 78 13	3.33 2.04 0.32 5.69	9	(df)	30 17 13 21	225 18 0	7.79	(2 df)
Intermountain (11) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-74 Reference area total	2335	216 126 49	19.98 . 3.60 0.42 24.00%	-0.5 1.1 (* (6 df)	123	36	2.15 1.05 3.20	2	4 df)	103 239 75	\$ 0 0 C	3.90 30.12 4.17 38.19*	2.0	-1.4 (df)	57 117 43	69 32 21	23.52 4.77 31.18*	3.0 -1.0 ** (6 df)
High Plains (12) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	496 289 47	295 421 199 37	12.74 8.37 39.92 3.08 64.11*	1.7 -1.9 -0.9 1.9 ** (8 df)	12 97 22 22	79 151 151 11	6.69 35.73 42.42*	. 1. 6 	1.1 4 df)	23 270 195 45	151 278 125 34	16.80 1.32 14.00 0.04 32.16*	3.5 -0.1 * (-1.5 1.0 8 df)	121 100 29	2007 2007 2007	2.71 14.04 1.01 17.76	-0.9 0.8 ** (6 df)
Missouri R. Basin (13) 1961-62 vs 1963-64 1965-66 vs 1967-68 1969-70 vs 1971-72 1973 vs 1974 Reference area total	364 573 128	502 396 251 90	0.41 7.38 9.32 1.75 18.86	0.6 1.6 (8 df)	38 343 104 34	314 195 89 27	0.26 2.89 10.62 6.09 19.86	1.9	2.0 8 df)	101 405 210 101	405 222 194 44	4.12 4.99 0.68 11.45	ů.	8 df)	60 119 43	224 113 92 31	4.90 1.22 0.10 2.51 8.73	(8 df)
Great Lakes (14) 1961 vs 1962 1963 vs 1964 1965 vs 1968 1969 vs 1970 1971 vs 1972 1973 vs 1974 Reference area total	140 61 83 129 57 80	98 60 172 1 148 100 44	0.00 0.26 0.26 5.68 12.47 14.74	(14 df)	175 107 107 109 58 76	242 1919 162 194 194	2.35 3.09 1.30 1.10 1.10	(12	2 df)	128 139 189 255 257 257 257	118 167 179 346 142 156	0.70 0.70 0.00 0.70 0.70 0.70 0.70 0.70	** (14	4 df)	111 123 171 156 199 79 141	132 132 134 121 109 68	7.70 3.75 0.76 2.33 1.02 1.02 22.04	(14 df)

Table B-7. Continued.

		A	A d u 1	+	recoverie	> S		ហ			H	Immature	t U	a	9	0 (recoveries	or or	
		Σ	M a l e	6	 		Fe m a 1 e		† !	i i i	Σ	M a 1 m	t	; ; ; ;	, 1 1 1	1 6	F e B a 1		
Major reference area and year group	N N2 T	X 2 1	N1 N2 Test	Lat Long	-	N2	N1 N2 Test Lat Long	at	Long	~	X2	N1 N2 Test Lat Long	Lat	Long	ž	, N2	N1 N2 Test Lat Long	Lat	Long
Mid-Atlantic (15)																			
1961-62 vs 1963-64	67		9.16		27	93	4.37			103	107	1.20			65	96	6.53		
1969-70 vs 1971-72	56 1	105	0.35		25	1 to	0.04			111	100	0.10			640	6 1	3.98		
1973 vs 1974 Reference area total	16	9	10.84	(f df)	9	6	7.58	9)	(6 df)	23		3.92		(6 df)	27	∞	14.33		(6 df)
(31) 10+1148 F0+1141 UN																			
1961-62 vs 1963-64		2.1	0.60		24	37	76.0			7.0	117	5.88			58		3.77		
1965-66 vs 1967-68		38	38 7.97		32	30	0.34			120	143	5.36			103		0.07		
1969-70 vs 1971-72	4 o to	m 0	1.90		3.1	<u>~</u> ≪				89	55	0.12			69	35	0.52		
Reference area total	1		10.47	(P 9))	1.31 (4 df)	4	df)			11.36		(f df)	1		4.36	~	(6 df)
Continental total		-	30.97*	130.97** (28 df)			90.57** (26 df)	× (26	df)			109.62** (30 df)	* (30	df)			94.65	** (2	94.65** (28 df)

^aThe test statistic is distributed approximately as X with df = twice the number of comparisons included. Tests are not shown for sample sizes < 20 year-group 1 (N1) or year-group 2 (N2) recoveries. Significance levels: <0.05 not indicated, ** <0.01; mean latitude-longitude differences are tabulated instead of "**".

Appendix C

Inferences Regarding Variation in Recovery Dates

Recovery dates were shown to vary with time since banding. Such variation might indicate that survival or recovery rates, or both, change as a function of number of years after banding. If such variation exists, then it reflects an important deviation from assumptions of models generally used to estimate migratory bird survival and recovery rates. Here we examine the effects of such variation on estimates of survival and recovery rates obtained under the Seber–Robson–Youngs model (Model 1 of Brownie et al. 1978).

For a 3-year banding experiment, the structure of the band recovery matrix under Model 1 is

Year	Number -	Expect	ed number by year	
banded	banded	1	2	3
1	N_1	N_1f_1	$N_1 S_1 f_2$	$N_1S_1S_2f_3$
2	N_2		$N_2 f_2$	$N_2S_2f_3$
3	N_3			N_3f_3

where N_i denotes the number of birds banded in year i, and S_i and f_i are the survival and recovery rates for year i. Under this model, recovery and survival rates are specific only to calendar year of recovery.

One way to specify the structure of the recovery matrix under an alternative model is

Year	Number	Expect	ed number re	ecovered by year
banded	l banded	1	2	3
1	N_1	$N_1(a_1f_1)$	$N_1(b_1S_1)(a_2f_2)$	$N_1(b_1S_1)(b_2S_2)(a_3f_2)$
2	N_2		$N_2(a_1f_2)$	$N_2(b_1S_2)(a_2f_3)$
3	N_3			$N_3(a_1f_3)$

where a_j specifies a change in recovery rate associated with the jth year after banding, and b_j specifies a change in survival probability. For example, the recovery rate for birds banded in year 1 and recovered in year 2 (a_2f_2) is not necessarily the same as that for birds banded and recovered in year 2 (a_1f_2) .

In the following results it was convenient to let the survival (b_i) and recovery rate coefficients (a_i) take initial values of 1.0 and then increase or decrease annually by a constant amount, Δ . For example,

$$\Delta a = 0.0$$
 implies $a_1 = 1.0$, $a_2 = 1.0$, . . . $a_7 = 1.0$; $\Delta a = 0.1$ implies $a_1 = 1.0$, $a_2 = 1.1$, . . . $a_7 = 1.6$; $\Delta a = -0.1$ implies $a_1 = 1.0$, $a_2 = 0.9$, . . . $a_7 = 0.4$.

Thus, if all f_i and S_i remain constant (i.e., $f_i = f^*$, $S_i = S^*$ for all i), positive values of Δ correspond to rates that

increase with number of years after banding, whereas negative values correspond to decreasing rates.

The objective of this work was to estimate or approximate the bias in estimates of S and f (obtained assuming Model 1) if survival or recovery probabilities, or both, increase or decrease with time since banding. Two methods were used to examine bias. The first method involved use of a computer simulation model in which recovery matrices were generated from a multinomial distribution with cell probabilities defined by f_i , S_i , a_i , and b_i . Model 1 estimates were computed for each of a number (e.g., 200) of recovery matrices generated using the same parameter values. Mean squared error and sample variance were then computed for each \hat{S}_i and \hat{f}_i from the 200 iterations, and squared bias was estimated as the difference between these two values. Monte Carlo simulations were also used to examine coverage of the estimated confidence intervals and power of the Model 1 goodness-of-fit test of Brownie et al. (1978).

Confidence intervals were estimated from parameter and variance estimates for each iteration, and the proportion of iterations in which these intervals covered the true parameter was recorded. A goodness-of-fit test statistic was also computed based on the data and parameter estimates of each iteration, and the proportion of iterations in which Model 1 was rejected (P < 0.05) was recorded. The other approach was to approximate bias by computing the first term in Taylor series expansions of the estimators of S_i and f_i (Brownie et al. 1978:16) about the expected values of R_i , C_i , and T_i (the row, column, and block totals of the recovery matrix, Brownie et al. 1978). The difference between this approximation to the expected value of the estimator and the true parameter value represented an approximation of the bias. Monte Carlo simulations suggested this approximation was good, because the higher order terms in the Taylor series expansion apparently were not large for the situations examined.

Both methods of investigating bias naturally require knowledge of the "true" value of the parameter being estimated, which was not entirely obvious. For example, there are two recovery rates for year 2. Birds banded in year 1 are recovered with probability a_2f_2 , whereas birds banded in year 2 are recovered with probability a_1f_2 . One approach is to simply take the arithmetic mean of the recovery (or survival) rates for a given calendar year. Another approach is to obtain a mean of rates weighted by the number of birds expected to be alive at the beginning of the interval for which the rates are expected to pertain. A general equation for the weighted average recovery rate is:

$$\bar{f}_{x} = \frac{\sum_{i=1}^{x} \left\{ N_{i} \begin{bmatrix} 1 & \text{if } x \leq i \\ & \text{or} \\ & x - 1 \\ & \Pi & S_{j} \\ & j = i \end{bmatrix} \begin{bmatrix} 1 & \text{if } x \leq i \\ & \text{or} \\ & \Pi & b_{j} \\ & j = 1 \end{bmatrix} \begin{bmatrix} f_{x}a_{x-i+1} \end{bmatrix} \right\}}{\left\{ \sum_{i=1}^{x} \left\{ N_{i} \begin{bmatrix} 1 & \text{if } x \leq i \\ & \text{or} \\ & x - 1 \\ & \Pi & S_{j} \\ & j = i \end{bmatrix} \begin{bmatrix} 1 & \text{if } x \leq i \\ & \text{or} \\ & x - i \\ & \Pi & b_{j} \\ & j = 1 \end{bmatrix} \right\}}$$

A similar expression for \overline{S}_x is obtained by substituting $[S_x \ b_{x-i+1}]$ for $[f_x \ a_{x-i+1}]$ in the numerator.

Both methods of approximating bias are quite flexible and could have been used to examine a wide variety of situations. However, it seemed appropriate to standardize as many variables as possible for comparative purposes. Unless otherwise specified, all runs used 7 years of banding with all $N_i=1,000$, $S_i=0.60$, and $f_i=0.10$ ($i=1,2,\ldots 7$). Taylor series approximations were used, except where noted. Both methods of computing "true" parameters were used. In some instances the true values were not ambiguous (e.g., when all Δ $b_i=0$). Both approaches showed the same direction of bias, but the bias using weighted mean true values was usually smaller. We have condensed the presentation of results by including only weighted mean true values.

Effects of Recovery Rate Variation $(\Delta a \neq 0)$

Whereas the expected value of \hat{f}_i (denoted $E(\hat{f}_i)$) remained unchanged for $\Delta a \neq 0$ in each of 7 years, the true recovery rate (f_i) after year 1 deviated further from $E(\hat{f}_i)$ each year in accordance with the sign and magnitude of Δa (Fig. C-1). The increment of deviation, however, decreased annually after year 2. Confidence interval coverage of f_i when $\Delta a > 0$ is shown in Fig. C-2, where each point represents results of 200 iterations with the simulation model. When $\Delta a > 0$, f_i fell outside of the confidence interval of \hat{f}_i more frequently with the passage of time. A plot of $\Delta a < 0$ (not shown) gave nearly identical results.

Taylor series approximations of the effect of $\Delta a \pm 0$ on survival rate estimates (Fig. C-3) indicated \hat{S}_i was biased for all years in accordance with the sign and magnitude of Δa . Confidence interval coverage of the true survival rate (S_i) when $\Delta a > 0$ (Fig. C-4) indicated that, for most values of Δa , S_i fell within the 95% confidence interval of \hat{S}_i approximately 85–95% of the time.

The ability of the goodness-of-fit test to reject the hypothesis that the data fit Model 1 when $\Delta a \neq 0$ is shown in

Fig. C-5 (dashed line). The power is estimated as the proportion of the 200 Monte Carlo iterations in which Model 1 was rejected at the 95% confidence level. For all values of Δa , the goodness-of-fit test accepted the hypothesis that the data fitted Model 1 approximately 95% of the time. Variation in recovery rates was thus virtually undetectable in the situations examined.

Effects of Survival Rate Variation $(\Delta b \neq 0)$

When we examined $\Delta b \neq 0$, $E(\hat{f}_i)$ deviated from f_i in all but the first and last years (Fig. C-6). The deviation was symmetrical among years and greatest in the middle year of the series. The sign of the bias was opposite the sign of Δb and varied with the magnitude of Δb . Confidence interval coverage of f_i when $\Delta b > 0$ (Fig. C-7) was poorest for the middle years of the series and for the higher values of Δb .

Figures C-8 and C-9 compare $E(\hat{S_i})$ and S_i when $\Delta b \neq 0$. The bias of $\hat{S_i}$ was of the same sign as Δb , greatest in the initial estimate, decreased through the years, but reversed itself near the end of the series. The pattern remained much the same with 6 additional years of banding (Fig. C-10). Confidence interval coverage of S_i when $\Delta b > 0$ (Fig. C-11) was poorest in the initial year of estimation and improved annually except for the last year of the series.

Power of the Model 1 goodness-of-fit test when $\Delta b \pm 0$ (solid line in Fig. C-5) was considerably >0.05 for large Δb . The power curve was asymmetric with greater power for $\Delta b > 0$. Thus, unlike variations in recovery rate, survival rates with appreciable variation appeared likely to result in rejection of Model 1.

In summary, if survival rates appreciably varied as a function of years after banding, rejection of Model 1 is likely. Although rejection is unlikely for an appreciable variation of recovery rates, it is difficult to hypothesize a specific directional effect of a relationship between recovery dates and recovery rates. For example, early recovery dates might relate to greater vulnerability to hunting, hence higher observed recovery rates. Conversely, assuming a relationship between recovery date and geographic area, early recovery dates might relate to recovery in an area of lower reporting rates (nearer the banding site), hence lower observed recovery rates. If both of the above hypotheses are correct, the biases would be offsetting. Also, we believe that the ratio of recovery rate bias to standard error would be very low. In other words, if a bias exists we expect it to be of little importance compared to sampling variation.

Fig. C-1. $E(\hat{f}_i)$ and true f_i for selected Δa .

Fig. C-2. Confidence interval coverage of the true recovery rate (f_i) for selected Δa .

Fig. C-3. $E(\hat{S}_i)$ and true S_i for selected Δa .

Fig. C-4. Confidence interval coverage of the true survival rate (S_i) for selected Δa .

Fig. C-5. Power of the goodness-of-fit test as a function of $\Delta a, \ \Delta b.$

Fig. C-6. $E(\hat{f_i})$ and true f_i for selected Δb .

Fig. C-7. Confidence interval coverage of the true recovery rate (f_i) for selected Δb .

Fig. C-8. $E(\hat{S}_i)$ and true S_i for $\Delta b = -0.05$.

Fig. C-9. $E(\hat{S}_i)$ and true S_i for $\Delta b = +0.05$ (6 years).

Fig. C-10. $E(\hat{S}_i)$ and true S_i for $\Delta b = +0.05$ (12 years).

Fig. C-11. Confidence interval coverage of the true survival rate (S_i) for selected Δb .

Appendix D

Derivation of the Total Mallard Harvest from Major Reference Areas

Harvest derivation for each of 35 selected areas is presented in this Appendix with two adjoining figures—one odd-numbered and one even-numbered. Only the areas that accounted for 0.5% or more of the "total" mallard harvest (see Table 23) are illustrated. Harvest estimates (in percent) for all figures (D-1 to D-70) were based on direct and indirect recoveries of all age and sex classes (except locals) that were each adjusted for band reporting rate and population weighted.

Percent derivation of the "total" mallard harvest in a given area from major breeding areas is shown in odd-numbered figures, and mallard harvest derivation similarity indices are shown in even-numbered figures. Computation of these similarity indices is described in detail under Methods. The indices were based on data in Table 23. Values range from 0 to 100; a high similarity index indicates that two areas derive substantial portions of their harvest from the same source areas. In each figure the sources of harvest for the area are compared with sources of harvest for all other areas. Similarity indices equaling or exceeding 50 (midpoint of the range of possible values) are shaded.

Figures are ordered in a general north-to-south sequence within flyways, which are in turn ordered from west to east. The Canadian Provinces, however, are illustrated first.

Fig. D-1. Percent derivation of the mallard harvest in *British Columbia* (shaded) from major breeding reference areas.

Fig. D-2. Mallard harvest derivation similarity indices for British Columbia (hatched) compared with indices for other harvest areas.

Fig. D-3. Percent derivation of the mallard harvest in *Alberta* (shaded) from major breeding reference areas.

Fig. D-4. Mallard harvest derivation similarity indices for *Alberta* (hatched) compared with indices for other harvest areas.

Fig. D-5. Percent derivation of the mallard harvest in Saskatchewan (shaded) from major breeding reference areas.

Fig. D-6. Mallard harvest derivation similarity indices for *Sas-katchewan* (hatched) compared with indices for other harvest areas.

Fig. D-7. Percent derivation of the mallard harvest in Manitoba (shaded) from major breeding reference areas.

Fig. D-8. Mallard harvest derivation similarity indices for Manitoba (hatched) compared with indices for other harvest areas.

Fig. D-9. Percent derivation of the mallard harvest in Ontario (shaded) from major breeding reference areas.

Fig. D-10. Mallard harvest derivation similarity indices for *Ontario* (hatched) compared with indices for other harvest areas.

Fig. D-11. Percent derivation of the mallard harvest in Washington (shaded) from major breeding reference areas.

Fig. D-12. Mallard harvest derivation similarity indices for Washington (hatched) compared with indices for other harvest areas.

Fig. D-13. Percent derivation of the mallard harvest in *Oregon* (shaded) from major breeding reference areas.

Fig. D-14. Mallard harvest derivation similarity indices for *Oregon* (hatched) compared with indices for other harvest areas.

Fig. D-15. Percent derivation of the mallard harvest in *California* (shaded) from major breeding reference areas.

Fig. D-17. Percent derivation of the mallard harvest in Western Montana (shaded) from major breeding reference areas.

Fig. D-16. Mallard harvest derivation similarity indices for *California* (hatched) compared with indices for other harvest areas.

Fig. D-18. Mallard harvest derivation similarity indices for Western Montana (hatched) compared with indices for other harvest areas.

Fig. D-19. Percent derivation of the mallard harvest in Idaho (shaded) from major breeding reference areas.

Fig. D-20. Mallard harvest derivation similarity indices for *Idaho* (hatched) compared with indices for other harvest areas.

Fig. D-21. Percent derivation of the mallard harvest in *Utah* (shaded) from major breeding reference areas.

 $\label{eq:Fig.D-22.Mallard} \textbf{Fig. D-22. Mallard harvest derivation similarity indices for $Utah$ (hatched) compared with indices for other harvest areas.}$

Fig. D-23. Percent derivation of the mallard harvest in Eastern Montana (shaded) from major breeding reference areas.

Fig. D-25. Percent derivation of the mallard harvest in *Eastern Wyoming* (shaded) from major breeding reference areas.

Fig. D-24. Mallard harvest derivation similarity indices for Eastern Montana (hatched) compared with indices for other harvest areas.

Fig. D-26. Mallard harvest derivation similarity indices for *East-ern Wyoming* (hatched) compared with indices for other harvest areas.

Fig. D-27. Percent derivation of the mallard harvest in Eastern Colorado (shaded) from major breeding reference areas.

Fig. D-29. Percent derivation of the mallard harvest in Western North Dakota (shaded) from major breeding reference areas.

Fig. D-28. Mallard harvest derivation similarity indices for Eastern Colorado (hatched) compared with indices for other harvest areas.

Fig. D-30. Mallard harvest derivation similarity indices for Western North Dakota (hatched) compared with indices for other harvest areas.

Fig. D-31. Percent derivation of the mallard harvest in Western Nebraska (shaded) from major breeding reference areas.

Fig. D-33. Percent derivation of the mallard harvest in Eastern North Dakota (shaded) from major breeding reference areas.

Fig. D-32. Mallard harvest derivation similarity indices for Western Nebraska (hatched) compared with indices for other harvest areas.

Fig. D-34. Mallard harvest derivation similarity indices for *East-ern North Dakota* (hatched) compared with indices for other harvest areas.

Fig. D-35. Percent derivation of the mallard harvest in *Eastern South Dakota* (shaded) from major breeding reference areas.

Fig. D-37. Percent derivation of the mallard harvest in *Eastern Nebraska* (shaded) from major breeding reference areas.

Fig. D-36. Mallard harvest derivation similarity indices for *East-ern South Dakota* (hatched) compared with indices for other harvest areas.

Fig. D-38. Mallard harvest derivation similarity indices for *East-ern Nebraska* (hatched) compared with indices for other harvest areas.

Fig. D-39. Percent derivation of the mallard harvest in Eastern Kansas (shaded) from major breeding reference areas.

Fig. D-41. Percent derivation of the mallard harvest in *Eastern Oklahoma* (shaded) from major breeding reference areas.

Fig. D-40. Mallard harvest derivation similarity indices for Eastern Kansas (hatched) compared with indices for other harvest areas

Fig. D-42. Mallard harvest derivation similarity indices for *East-ern Oklahoma* (hatched) compared with indices for other harvest areas.

Fig. D-43. Percent derivation of the mallard harvest in *Eastern Texas* (shaded) from major breeding reference areas.

Fig. D-45. Percent derivation of the mallard harvest in *Minnesota* (shaded) from major breeding reference areas.

Fig. D-44. Mallard harvest derivation similarity indices for Eastern Texas (hatched) compared with indices for other harvest areas.

Fig. D-46. Mallard harvest derivation similarity indices for *Minnesota* (hatched) compared with indices for other harvest areas.

Fig. D-47. Percent derivation of the mallard harvest in Wisconsin (shaded) from major breeding reference areas.

Fig. D-48. Mallard harvest derivation similarity indices for Wisconsin (hatched) compared with indices for other harvest areas.

Fig. D-49. Percent derivation of the mallard harvest in *Michigan* (shaded) from major breeding reference areas.

Fig. D-50. Mallard harvest derivation similarity indices for *Michigan* (hatched) compared with indices for other harvest areas.

Fig. D-53. Percent derivation of the mallard harvest in *Illinois* (shaded) from major breeding reference areas.

Fig. D-52. Mallard harvest derivation similarity indices for Iowa (hatched) compared with indices for other harvest areas.

Fig. D-54. Mallard harvest derivation similarity indices for *Illinois* (hatched) compared with indices for other harvest areas.

Fig. D-55. Percent derivation of the mallard harvest in *Missouri* (shaded) from major breeding reference areas.

Fig. D-57. Percent derivation of the mallard harvest in Tennessee (shaded) from major breeding reference areas.

Fig. D-56. Mallard harvest derivation similarity indices for *Missouri* (hatched) compared with indices for other harvest areas.

Fig. D-58. Mallard harvest derivation similarity indices for Tennessee (hatched) compared with indices for other harvest areas.

Fig. D-59. Percent derivation of the mallard harvest in *Arkansas* (shaded) from major breeding reference areas.

Fig. D-61. Percent derivation of the mallard harvest in *Louisiana* (shaded) from major breeding reference areas.

Fig. D-60. Mallard harvest derivation similarity indices for *Arkansas* (hatched) compared with indices for other harvest areas.

Fig. D-62. Mallard harvest derivation similarity indices for *Louisiana* (hatched) compared with indices for other harvest areas.

Fig. D-63. Percent derivation of the mallard harvest in *Mississippi* (shaded) from major breeding reference areas.

Fig. D-65. Percent derivation of the mallard harvest in $New\ York$ (shaded) from major breeding reference areas.

Fig. D-64. Mallard harvest derivation similarity indices for *Mississippi* (hatched) compared with indices for other harvest areas.

Fig. D-66. Mallard harvest derivation similarity indices for $New\ York$ (hatched) compared with indices for other harvest areas.

Fig. D-67. Percent derivation of the mallard harvest in *Pennsylvania* (shaded) from major breeding reference areas.

Fig. D-69. Percent derivation of the mallard harvest in South Carolina (shaded) from major breeding reference areas.

Fig. D-68. Mallard harvest derivation similarity indices for *Pennsylvania* (hatched) compared with indices for other harvest areas.

Fig. D-70. Mallard harvest derivation similarity indices for South Carolina (hatched) compared with indices for other harvest areas.

Appendix E

Temporal (Within-season) Derivation of the Total Mallard Harvest

Temporal (within-season) derivation of the mallard harvest is estimated here for weekly periods during which we estimate that 1% or more of the area's harvest occurred. Weeks of less importance, as far as harvest levels are concerned, are not tabulated. Temporal derivation of the total mallard harvest was based on 1961-75 recoveries each adjusted for band reporting rate, population weighted, and then measured against the season's harvest and converted to percentages. Week 1, common to all harvest areas, begins on 1 September. These estimates are affected by such factors as annual population fluctuations, changes in banding intensity, hunting pressure, timing of migration, and changes in hunting regulations. Variations in season opening dates and changes to split-season frameworks are of particular concern. For these and other reasons caution must be exercised when interpreting these data. Dates of weekly periods are shown in Table E-1.

Table E-1. Dates of weekly periods that correspond to those shown in Table E-2.

Week	D a	y and Month
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	29 13 20 27 30 17 24 18 15 22 5 12 19	- 28 September September - 5 October - 12 October - 19 October - 26 October October - 2 November - 9 November - 16 November - 30 November - 7 December - 14 December - 21 December - 28 December December - 4 January - 11 January

48.8 1.5 28.8 19.7 NE United States 16 0. that Mid-Atl i oi weeks ci Great Lakes 0000 0 00000000000 000 000N+++0N00 NWWW4 σi for ⊆i no i ا م ا а**с** Х area by wee combined). 4 nter mtn P o i harvest N Ca no i o i total mallard harvest by harvest (1961-75 hunting e f e r e n c e a r WA-OR 9 000 /---00000004 0000-ONT QUE 8 шЗ SASK MAN ONT 7 zз MAN 6 0000 0 000000000000 000 00101mww400 000040 SE of the area's tion the SW SASK 4 | - | 0 1 l derivat more of i .---SW ALTA 3 i no i iΣi Temporal ALTA NWT 2 100. zzN A P 00000 ble E-2. Tecontributed -08 -08459C860t - UM45 8450120515 Harvest area and week SASK SASK SASK SASK SASK YUK XXXX XXXX n

E-2.

able

NE United States 16 σi ⊑ i σ i. Gr c i m Ф EXE 4 ۵ nter mtn P 0 0-0000 0000000000 000000000 000000000 n i or i WA-OR 9 no i o i U ø ۲ z Ø 4 CI) ٤ SE SASK 5 SW SASK 4 L 0 SW ALTA 3 m i ALTA NWT 2

 \$\frac{11121}{4\frac{1}{4 zz PAC Harvest and week SASK 76 SASK 8 SASK 8 SASK 8 SASK 10 SASK 10 SASK 10 SASK 10

82.6 12.9 1.7 92. 8. L NE United States 16 0.0 15.7 100.0 100.0 5⁴1 σi \subseteq Great Lakes 14 0000 O 0000 00 \subseteq ssouri iver G iasin L 13 m 0000 00 0000 0+MM00000MM0NTTO M0000000M0TO Ω 10000 00 4 ter 1 0 0000 00 0000 08707000808-0000 4000000-80-8 CE-10000 00 NAWNOW-1445 --- NA-NO-NOONON 0000 0.0 m Œ z ۲ WA-OR m 0000 00 0000 ONT QUE 90-0. ø 00 0040 O ШΖ MAN ONT $\boldsymbol{\mathsf{c}}$ ø ۲ zз MAN 6 ø 4 Ø SASK 155 10.00.00.00.00.00.00.00.00.00 L SW SASK 4 L 0 SW ALTA 3 4000 00 0000 0W0W04W0WLV0VV40 00----40w00000 no i 0000 00 Σ ALTA NWT 2 0.0 0000 0000 00 zz 0000447-67266 darvest area and week 27.87 80 727.8 $\alpha\alpha\alpha\alpha$ EI S S S Szzzz

E-2.

able

		4~~	で~~ななるなななのなるのとである	るちめるこのひりりもの 4とりここ	V=080	м
	Q.I	4.01-	พพงพงสุดหลุดตลอ	~Wνωυνω4υ~ονν~ω~	- 52.33 - 52.33	m
1	SC Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch	000	000000000000000	00000000000000	00000	0.0
5	Mid- Atl		00000000000000000	00000000000000	00000	0.0
. p c	-0-1 	000	0000000000000000	000000000000000000000000000000000000000	00000	0.0
ا م	River Basin 13		00-0000000000000 40-0000000000000	000000000000000	00000	0.0
4	ם2 ל.ב מ	000	~~WW0000000000000000000000000000000000	00000000000480	00000	0.0
٥	44- 50-	744 7.90	######################################	24594446 24594446 24594446 24596 2007 2007 2008 2009 2009 2009 2009 2009 2009 2009	0.000	0.8
0	χ	420	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	95.3
rg	9-0R	19.7	0000-000 400-0000000000000000	0.0000000000000000000000000000000000000	00000	1.5
8		000	-00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	0.0
0	N Z Z	000	000000000000000000000000000000000000000	000000000000000	00000	0.0
ог Ч-	Ψ Ψ 9	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	0.0
<u>.</u>	x	000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	0.0
	U O ≪	0.00	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000	2.3
Z	SW ALTA	4.02 4.05 4.05 1.49	7407444700447746447776474777674777777777	00000000000000000000000000000000000000	00000	0.0
 	A N	27.9 34.8 36.5	2227.10 2227.10 2227.11 2227.13 2227.14 2227.1	0.00 17.00 17.00 17.00 17.00 10.00 10.00 10.00 10.00	00000	0.0
	0	000	24 26 26 26 26 26 26 26 26 26 26 26 26 26	000000000000000000000000000000000000000	00000	0.0
	א מומ	19 20 21	97.80.01.02.42.07.82.00.00.00.00.00.00.00.00.00.00.00.00.00	23233333333333333 000000000000000000000	791297	9
1	H and bra bra	1			ZZZZZ ZEEE	CA

NE United States 16 Mid-Atl O i 5 О \subseteq Missour River Basin ssour n Ð 4 inter mtn P 0 899333 89933 8993 8993 8993 to 10 m 048620074-82008 0 Z L WA-OR m φ no i 00-W-W0W-W-WWWW 0000-000-0 ONT QUE 8 ø ШΞ U SASK MAN ONT 5 Œ, zз MAN 6 Œ 4 SE Ø SE SASK 5 SW SASK 4 ٤ 0 SW ALTA 3 ro ALTA HHT 2 zz PAC darvest area and week UTAH UTAH UTAH UTAH UTAH UTAH UTAH

E-2

aple

Table E-2. Continued.

	ο.	ו איייאו		26.7644086262	δην δου φ.	9 :
	E	100-	での4~とや/ なりごめるりや~	0-0-88W0014	2V4V0X420	67
	מסי					0
		000	00000000000000		00000000	0.0
!	S T T T T T T T T T T T T T T T T T T T		0000000000000	0000000000000		_
	1	000	0000000000000	00000000000	00000000	0
O			000000000000000	00000000000	000000000	
ב						
i i	un on Th Nu	1000	00000000000000	00000000000	00000000	0
סו	下 Ui ← Oi 不 4		000000000000000		000000000	0.
ובו	ا ، ا	 				
ן מין		000	000000000000000	00000000000	00000000	5
ובו	n n n > n ->		00000000000000000	000000000000	00000000	Ŋ.
	Σ α m					
	ئے د 2	ww.	00000040000-0500	0004-0000000	000000000	∞.
	1. g		000000000000000000000000000000000000000	62426 4644 67466 87466 87466	000000000000000000000000000000000000000	99
1 4 I	7		551155400500000000000000000000000000000	- 17077 1011010	5554 1.555	•
		20.0	000000000000000000000000000000000000000	0000000000000	000040000	0.
	C E -	9000	00000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	b0000000	0
i i						_
ומו	ပ္မ		0000000000000	00000000000	00000000	0.0
י ש	z	000		00000000000	866666666	0
T I	0.R	000	0000000000000	00000-000000	000000000	0
") 6 0	000	000000000000000	00000000000000	00000-000	0
j	3				0	
	Z ⊃	000	000000000000000	00000000000	00000000	0
ו פו	000	000	00000000000000	00000000000	00000000	0.
0 1	mЗ					
	NAN	000	00000000000000	0000000000	00000000	0
0 1	SA I D I	000	00000000000000	00000000000	00000000	0
ו ט ו ר ב ו	zzz					
+	MA!	000	0000000000000	00000000000	00000000	0.
02 1	3	000	00000000000000	0000000000	00000000	0
_	S					
	шол		0000000000000000	00000000000	00000000	
	SA	000	000000000000000000000000000000000000000	00000000000	00000000	0
		~ 90	00400000000040	000000044810	000000000	0
١	3041	280	000000000000000000000000000000000000000	000000047870	000000000	
0	ິທີ		4 4	W	9	
	4	-14	0000040000000000	000000000000	00000000	7
ו מי	SE LT	60.	00000400000000000	00000000000	000000000	7.
E		- WV	τυ ~	V 0 0 W		2
	+3 .	200	00000000000000	0000000000	000000000	ο.
	A S	200	0000000000000	0000000000	000-0000	0
	zz				, .	
į	Z O -	000		00000000000	000000000	٥.
į	<u>-</u> ا	000	0000000000000	0000000000	00000000	0
1		L		10 00 00 01 00 10	10 5 = 10 + 10 + 6 + 6	10
	in i	7 8 1 9	20/8001111111111111111111111111111111111	28 € 5 € 5 € 5 € 5 € 5 € 5 € 5 € 5 € 5 €	2712455	Ŋ
	> 0 0 0 0 1	III	333333333333333		333333333	Щ
				NNNNNNNNNN PPPPPPPPP	ESEESEESE E	Ė

Table E-2. Continued.

!		8020002000	000000	V02001+0	1400 W W W W W W W W W W W W W W W W W W
i	Ë	1 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8	0 \$ 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200 200 40 40 40 40 40 40	0-rnr-00-0m
1	United States	000000000000	000000	000000	00000000000000
5	1 d-	0000000000000	000000	0000000 4000-wa	000000000000000000000000000000000000000
י ס י	Gr Cake 14 14	000000000000000000000000000000000000000	0000 000 000 000 000 000 000 000 000 0	\$0,40,00+ 40,00,00	00000000000000
b a	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NOW+00WV0000	30 37 37 37 37 30 30 30 30 30 30 30 30 30 30 30 30 30	22.1.8 20.0.8 22.1.8 22.1.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+	D	2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 2010000 201000 2010000 2010000 2010000 2010000 2010000 2010000 2	1.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0	02002-0 0200-0	8 8 7 7 8 7 7 7 9 8 9 9 9 9 9 9 9 9 9 9
0		0000000000000000000000000000000000000	000000	000000	000000000000000000000000000000000000000
		000000000000	0000000	000000	0000000000000000
	WA-OR	000000000000	000000	0000000	00000000000000
0	3 0 0 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	800000000000	UUUU000	42.0001 42.0001	0000000000000000
		0000000000000	0000000	150 150 150 150 150 150 150 150 150 150	00000 XX
. e	SW MAN	008000000000	7.00.00 1.00.00 1.00.00	88.50.50 88.50 80 80 80 80 80 80 80 80 80 80 80 80 80	0000040000000
	mww Ж	000000000000	19.3 20.0 18.0 32.3 32.3	2001 2007 2007 2007 2007	90000000000000000000000000000000000000
	AS A	78780000000000000000000000000000000000	2025 2027 2027 2027 2027 2027	15.6 19.9 13.7 29.5 29.6	0.00 220 220 220 220 220 230 24 24 24 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26
Σ	SW LTA 3	23 25 27 27 27 27 27 27 27 27 27 27 27 27 27	W0W0000 -000000	001W200	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	N ALTA	0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18.8 22.7.5 30.2 19.2 7.6	28.0 15.7 13.9 35.2 7.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	PAN O		000000	24.000000000000000000000000000000000000	000000000000000000000000000000000000000
	i	8 × 8 × 0 1 1 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	2978601	29 20 10 11	1297860112154978
	andan Endan		XXXXXX QQQQQQQ QQQQQQQQ	XXXXXX 0000000 1111111	

E-2.

O)

abl

NE United States 16 541 6 E c i THE RE ake 14 σ - G -- \subseteq יררי יה היי n iver lasi ٩ 00W00W44-WWW0 N8744500044W E RE 4 C. nter mtn F 0 Ca 10 n Ü z ۲ WA-0R 9 n ONT SUE Ð шз O ASK MAN ONT ⊆ ۵ ZΖ ٤ MAN 6 ø 4 SW O) L 000000004000000 000040000044 $N \leftarrow N \odot O O M \otimes N + O V M M M$ 887-5-07849 09-7488484847 SW SASK 4 ٤ 0 SW ALTA 3 000000000000 n i ALTA HWT 2 $\circ \circ \circ \circ \mathsf{ru}_{\mathsf{A}} \mathsf{ru}_{\mathsf{Q}} \circ \mathsf{ru}_{\mathsf{R}} \mathsf{u}_{\mathsf{Q}} \circ \mathsf{u}_{\mathsf{Q}} \mathsf{u}_{\mathsf{Q}} \circ \mathsf{u}_{\mathsf{Q$ zz 0000000000000 ACA-20/8001-121442 20/8001-1214425/80 0/8001-1214425/80

	Imp		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.22 1.22 1.22 1.25 1.25 1.25 1.25 1.25	1.0
	NE United States 16	0000000000	0000000000000000	000000000000	0.0
	id- A+1 15	0400000000	000000000000000000000000000000000000000	0000000000000	0.0
n d i	Grea Lake	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0
b a	1 8 2 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20.5 20.5 20.5 20.7 20.7 20.0 10.9	000000000000000000000000000000000000000	177.5 1.25 8.00 0.00 0.00 40.3 65.8	0.0
+	D C	0 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	24 6 6 7 7 8 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22 82 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0
0	Inter mtn P	00000000000000000000000000000000000000	-01-0000000000000000000000000000000000	000400000000	0.0
1 6	N Ca			000000000000000000000000000000000000000	0.0
	MA-0R	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0
1 0	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0
6	 \X \S \X \C	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0000000000000	0.00
	Z	00mm44mm0-0 84-720-034-	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0
-	n X X	2017 2017 2017 2017 2017 2017 2017 2017	0004W000+VW04408	57.90 237.90 23.77 23.77 20.00 10.00 10.00	0.0
- L	SW ASK 4	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000440000041800 8000010000480000000000	0.0 13.7 14.1 14.1 14.1 6.8 870.4 17.2 43.9 6.0 25.4	0
M a j	SW ALTA 3	20.04 20.04 20.04 20.04 20.04 20.00	840010000000000000000000000000000000000	2 22 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0
	A A B	22.7 22.7 22.0 22.0 22.0 20.0 20.0 20.0	60000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c
	PAC N	0.0000000000000000000000000000000000000		0000000000000	c
	on a ba		тапапапапапапапапапапапапапапапапапапап	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	L.
	してしる			**************************************	ر ک

Table E-2.

E-2.

ø

abl

NE United States 16 Mid-Atl 15 σi Εį Great Lakes 14 ס ء ا ssouri iver (Jasin 13 m Ω OL M High Plains 4 Inter mtn F 0 Ca 10 ro a z` £ WA-0R 9 æ 80 UNI Œ O шз S A S K M MAN V ON T c 0 ٤.. MAN 6 ø 4 SE Q) ٤. SASK 0.00 74.8 447.9 229.0 336.0 34.9 524.4 327.7 327.7 SW SASK L 0 •--SW ALTA 3 n i Σ ALTA NWT 00-01-4-000000 ZZ PAC arve area week

	0. E		00000000000000000000000000000000000000	-40000444-U- \under \under \u	5.7
	וֹם מסו	(4110200012			20
	8 - 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		0000000000000	00000000000	0.0
1	St				
6	54 G I	0000000000000	00000000000000	00000000000	0.3
ם ו	6 to 1	00000000000000000000000000000000000000	00000000000000	000000000000 0000000000000000	7.9
1 0	1 - 0 -				-
٩	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$0000000000000000000000000000000000000	00000000400000	4474848864780	2.9
į !	1 :- 0X EA	0	•		Φ Ω
	1 0-0	8-045400040		04-4444000- 0400000000000000	0.0
¥ 0	H T		~000400400044000	~	
	1 44-	0-0-0000-00	000000000000000000000000000000000000000	00000000000	
	i ii -				
. a		000000000000	0000000000000	00000000000	0.0
1 -	i Σ !				
i m	0-6	000000000000	0000000000000		0.0
	i ⊒				
U	NO S	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	1.6
10	XXF M3				
i a	SAS MA ON	0070700000000	0000000000000	0.000488-4-10	3.2
1 2	Z 3			00	- 2
4	Ε 9	$\begin{bmatrix} 0.0448488888888888888888888888888888888$	000044800000000000000000000000000000000	8008888800-09 004-008000-00	2.2 8.4
1 2	MS				
 	ASE 5	00-71-08651-00-0	0.0000000000000000000000000000000000000	22.22 17.72 18.72 19.73	3.4
•	S	1 0-2-0 0			∞ ∞
1 6	A SE	047477777777	20.00 29.00 29.00 20.01 223.00 223.00 223.00	331.2 331.2 331.3 331.3 331.3 331.3 331.3 331.3 331.3 331.3 331.3	₩. 9
1	1	 U440W0W4WW4W0		V00V0V0W-080	00
j m	SE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.55 20.00 22.55 20.00 30.00 30.00	008445000800	0.0
	TA WT A	 	V040000400000	87000229697=6	ru ∞
	ALT NW NW	0.027.22.02.04.00.00			2 m
	1	+ ++0m 0+	000000000000000000000000000000000000000	000000	00
	ZXT				00
i	ب ب	& & O = C W 4 V 9 C 8 & O	7000103400 10087651600	0-284597860-	6.0
1	in as				
	F F E 0	000000000000000000000000000000000000			ΣE
'					

Table E-2. Continued.

E-2

O)

ab1

NE United States 16 514 -000-0 4wwww--0 w-0000ww -0--0-000 0wwwwa--9 <1 -C reat akes 14 9/1/20 -20-0000 О 233722 335 335 335 335 335 0-10400000 77878880 879BVB \subseteq ت ق ہ ssouri iver (3asin 13 æ 51.8 45.4 38.7 31.3 24.1 2402080804W 04708V04V Ω Mi. Ri ហ High lains 4V4200 0000000 0000000 000V7286V0 4 nter mtn F 0 Ca 10 no i ø z 1-0R æ 000000 00000000 00000000 000000000 00000000 ONT QUE 000.00 00 ø 0-0WU-0шз U ASK MAN ONT \subseteq a £ ZЗ z MAN 6 a V4080M 440480+0 040VNVQ 888880V80N0 40VNVV+44 4 07887000 00404004 0----0 000040000 VWUV08800 SE a SE SASK 5 8.6 7.6 7.5 12.9 24.2 V0-40000 0W0000800 SW SASK 4 ٤ 0 .-SW ALTA 3 n Σ ALTA NWT 2 8956837770 001000 00400040 00000V00 zzPAC V800112141 ares ares and week MICH MICH MICH MICH MICH

W Q Q D Q V D ~

00000-1840 780080074

				_		
1	1	o i	842 842 842 842 842 843 843 843 843 843 843 843 843 843 843	15.27 10.27 10.27 10.27 10.27 10.27 10.27 10.27	0.61 19.61 15.22 15.22 15.22 15.22	23.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
! ! ! !	1	NE United States 16		001000000	00000000	00000000
1	n 9	1 1	00000000000000000000000000000000000000	2222 2001 2001 2001 2001 2001 2001 2001	0000000	4.7.0.04.8.5.0.0
1	n d i	Gree Lake		44000000000000000000000000000000000000	0	4.2 10.7 119.7 119.2 122.1 10.0 18.3
1	b a	12 N N N N N N N N N N N N N N N N N N N		88.82 24.77 89.82 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	111112 112113 122113 12213 12213	16.5 16.5 10.8 13.6 13.6 13.6
! ! !	4	High Lains 12	0.0000000000000000000000000000000000000	0000000000	7-1-1-0W 7-1-1-0W 7-1-1-0W	0.0000000000000000000000000000000000000
 	0	- te	000000000000000000000000000000000000000	0000000000	00000000	00000000
,	8	N Ca		0000000000	00000000	000000000
		-0R		000000000000000000000000000000000000000	00000000	00000000
	9 0	00%	2.7.4 2.7.5 2.0.0 2.0.0 2.0.0 0.0 0.0	722 1156 1156 1156 1156 1156 1156 1156 11	0000 0000 0000 0000 0000 0000	13882 120 120 120 120 140 150 150 150 150 150 150 150 150 150 15
	1 0	1 Z 3	50000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	19.7 24.28 24.88 15.00	0.00 3,425 1,425 1,663 1
	e f e	M MA	87.4.4.4.4.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		67455468 67477777	404440460 -828-3200
	 L 	S S E S S S S S S S S S S S S S S S S S	28.77 1.3.88 1.3.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00	000007000000000000000000000000000000000	8.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1 0	N A S A	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		22 22 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	22 20 20 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20
d.	. e Ε	SW LTA 3	000000000000000000000000000000000000000		60.00 7.1.18 7.1.19 7.7.1	8 0000 0000 0000 0000 0000
tinue	1	ALTA NUT 2	0.0000000000000000000000000000000000000		12.7 15.0 16.9 13.7 12.3 26.6	10.5 17.6 0.0 0.0 0.0 0.0 0.0
•	 	I Z < -				00000000
E-2	l .	st L	0 1 1 2 2 2 2 5 1 5 1 5 1 5 1 5 1 5 1 5 1	V8001112247220	001122425	2209 200 200 200 200 200 200 200 200 200
Table	1	o v o e a o			0000000	\$\$\$\$\$\$\$\$\$\$

E-2.

Ø

+-0000000 0V-00004N0V--N80000000 NE United States 16 00000000 000-0N--mo 00000000000-0-00000 541 000-00---000000-004 N---6 \subseteq reat akes 14 200 O i. Gr \subseteq ssouri iver (Basin 13 Ω 82242211 482501844 8700000-70800WW746UUR dp 2 | WOWO40800 OCO-LWW040 L4008080W8000L4WUN-80 090 High 0-000---00000--0--0 0 000 Can O m a z -0R 9 ŘΜ ONT QUE 8 Q U шз \subseteq 0+200000 000WVU04W0 0040000004000400000000 ø z3 MAN 6 a 2002-2002-02040200000 4 277202577 Œ ٤ SE SASK 5 0 6 0 80.08-V-00 0000404000 0087-20480708-48660-6 0-0784-2-0 SW SASK 4 5025-4272 9757-WU004 060 ٤ 449999944 449999941 0 SW ALTA 3 •-000 -4270420000000000-400 æ W-4W0-8V0W00V0-W0-000 000 Σ ALTA NWT 2 -000NV004 00086794-0 OMO W7707-80W8 0004478400 zz PAC-000 00000000 00000000 0000000000000000000 000 2000 - 10 arke area Eand Eand A A B HHHHHHHAPAPAPAPAPAPAPAPAPA

Table E-2. Continued.

1	0. E	1227	47.80 20 20 20 20 20 20 20 20 20 20 20 20 20	201- 2-01-8001- 6-6-02886	- 004-00 - 004-00	- 8000 m 4 4 4 m 80 m 6 v 6 m m m
1	NE United States 16		100 100 100 100 100 100 100 100 100 100	00000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100	0.00 66.00 66.00 66.00 67.00 6
ت 0	1 d	0-0000 VW&V&U	00000000	000000000	000000	0-0000400 0w0000000
n d	£ 10 -		00000000	0400000000	000000 000000	00000000
to i	n 2 > 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	22.1 26.7 12.3 12.3	000000000	00000000	000000	000000000
	igh ain	00000	000000000	000000000	0000000	00000000
0	1 44-		00000000	00000000	000000	00000000
	z		000000000	00000000	000000	00000000
æ	3		00000000	00000000	0000000	00000000
a	1.1.	14.5 17.8 17.8 17.8	00000000000000000000000000000000000000	400 8838 84603 8603 9603 1	56.2 0.0 0.0 0.0 0.0	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0	· σ	12.6 0.0 0.0 6.0 6.0	000000000	000000000	0000000	00000000
e T	Ψ₩	200 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	00000000	00000000	000000	00000000
<u> </u>		10.0	000000000	00000000	000000	00000000
٥ د	SAS	2.0.00	00000000	00000000	0000000	00000000
E G	SW ALTA	23.00.00.00.00.00.00.00.00.00.00.00.00.00	00000000	00000000	0000000	00000000
	AL 2	200000	00000000	000000000	0000000	00000000
	Z		00000000		0000000	00000000
	on o		20/8017114	247884515	29/81128	0 V 8 Q D T S Z Z Z
	ark are and wee	ALABBALABBALABBALABBALABBALABBABBABBABBA	EXELTEE	>>>>>>>>>>	ZZZZZZZZ Z	TATATATA SASONON ON

Table E-2. Continued.

 	1 0	1207	2227 2227 2528 2528 2538 2538 2538 2538 2538 2538	20000000000000000000000000000000000000	4800 4800 640 640 640 640 640 640 640 6	26.7 12.6
; ; ; ;	NE United States	100.0 37.1 66.9 100.0	227 131.6 123.7 123.7 130.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10	100.0 100.0 100.0 100.0 100.0 12.9 100.0 100.0	113.0 123.0 123.0 133.0	1.3
6	id- Atl 15	0.00	28 00 00 00 00 00 00 00 00 00 00 00 00 00	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.33 37.33 37.33 26.1.33 26.1.4 15.6 15.6 15.6	12.6
ب م	ri Great Lakes		15.3 0.00 0.00 0.00 0.00 0.00 0.00	00000000000	NU 4 W 4 W 4 W W W W W W W W W W W W W W	6.5
b d	issour River Basin 13	19.6 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0000000000000000	000000000000000000000000000000000000000	9.8
1 4	High Lai	00000	0000000000	000000000000000000000000000000000000000		0.0
0		00000	000000000	000000000000000000000000000000000000000	000000000000	0.0
. e a .	1 00	00000	000000000	000000000000	0000000000000	0.0
	WA-OR	00000	000000000	000000000000	0000000000000	0.0
0	1 000	28.1 0.0 0.0	747 888 888 888 888 888 888 888	89.1 0.0 0.0 0.0 0.0 92.6 0.0 70.0 0.0 0.0	58.4 337.5 337.5 50.0 50.1 50.1 50.1 50.5 50.5 50.5 50	21.1
a a	N SASK N MAN W ONT	00000	0000000000	000000000000	25.7 25.7 60.0 60.0 63.9	56.9
e +	N Ψ Ψ	00000	0000000000	000000000000	0.0000000000000000000000000000000000000	0.8
-	1 moru 1 x	00000	0000000000	000000000000	000000000000	0.0
10	S A A S A A S A A S A A S A A A A A A A		0.000000000000000000000000000000000000	000000000000	00000M000000	0.0
L e H	SIM	00000	0000000000	00000000000	000000000000	0.0
	1 -42 01	00000	000000000	00000000000	000000000000	0.0
	AC 1	00000	000000000	000000000000000000000000000000000000000	00000000000	0.0
	מש או ה	15 17 18 18 18	V8004U3L86	80112111 2012 2012 2013 2013 2013 2013 20	20/800112225/8	9 ~
 	a a a a a a a a a a a a a a a a a a a	MAASS MASSS MASSS MASSS	555555555		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	PA PA

!	qmI		0.525.445.58 0.525.525.58	200.200.200.200.200.200.200.200.200.200	0.88 0.88 0.82 0.62 0.61 0.62 0.63
1	NE United States 16	6 4 8 5 5 7 0 7	000004000 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10. 2.2.2. 4.7.6. 5.2.2. 5.2.2. 0.2.2.
9		31.3 35.8 35.8 10.9 13.7 13.7	18.0 13.2 7.1 1.1 1.1 0.0	4.000 4.0000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.0	23.5 10.7 17.0 19.0 19.0 7.6 8.7
- 1	ri Great Lakes 14		100.0 18.0 13.8 13.0 13.0 42.9 52.9	0.07 44.00 1.00	86 4 2 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
וֹמ וכ וכ	Missoul River Basin 13		25.8 25.8 0.0 0.0 0.0	0 w w 0 0 0 0 0 0 4 8 0 8 4 8 0 0 0 0 0 0 0 0	22 27 20 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50
; ; + ;	gh ins	0000000	000000000	000000000000000000000000000000000000000	00000000
0 1	Inter mtn 11	0000000	00000000	0000000000000	00000000
ם טו	N Ca	0000000	000000000	000000000000000000000000000000000000000	00000000
0 1	WA-OR 9	00000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
י ו ו ו ו	000	44488 4446 772 772 772	0.00 553.00 26.44 7.47 1.14	885 660.78 667.77 7060.78 7060.18 7060.18 7060.19 7060.19 7060.19	224 448 448 448 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54
2 2 2 2	N SASK N MAN W ONT	23.7000.00000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	SW MAN	04.0000 0-50000	000000000	00000000000000000000000000000000000000	000000000
<u>ا</u> ا	SASK 5	00000000	00000000	000000000000000000000000000000000000000	000000000
2	×	0.00	000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000
ر ه ۳	3⊢m	00000000	0.000 m	000000000000000000000000000000000000000	00000000
	A N	00000000	00000000	000000000000000	000000000
1			00000000	000000000000000000000000000000000000000	000000000
i	one 7 n t	800-52545	V 2 4 7 5 7 8 9 0 0	47860110174597867	e011222478
	> 0 C 0		>>>>>>>>	ZZZZZZZZZZZZZZZ	

E-2.

[able

- RV-4-1004 RV-10 401-4 V R44-1 R 0V-00 R NO 100- 01-01-1-000 R 004-1 4-1 12-1-1 σí _ Great Lakes 14 4.000WV σ 748846 2 Missour River Basin SSour n 4 nter mtn F 0 q Œ ۷ MA-OR 9 ro 18.4 253.0 16.1 226.3 24.3 QI O SASK MAN ONT c ø z3 ٤ MAN 6 ø VOVO00000000 001440000000 00V001140000 004000 ø ٤ SW SASK 4 ۲ 0 ø ALTA NWT 2 Harvest area and week

able E-2		Continued							1	; ; ;	1	; ; ;	; ; ; ;) 	1	1	1
; ; ; ;	, 	 	M a		L	e f e	9	ں 0	ra _	e e	0	4	D.	n d i	9 L		1
1150	PAC	N ALTA N NWT	SW ALTA	SW SASK 4	SE SASK 5	SW MAN	N SASK N MAN W ONT	E ONT M QUE	WA-OR	N Ca	Inter mtn 11	High Plains 12	River Basin 13	ri Great Lakes 14	Mid- Atl	NE United States 16	dwI
C 20 C 20 C 20 C 20	0000	0000	6.0	20.9 9.1 2.8 0.0	12.1	0.00 0.00	0000	25.5 25.0 48.5	0000	0.00	0.00	4.00	13.4 14.0 12.2	27.2 28.1 41.8 33.7	4.22	0.7 0.9 0.7	17.5 13.9 8.2 2.9
GGA GGA GGA GGA 15 GGA 17 GGA 17 GGA 18 GGA 18 CGA 18 CGA 17 17 CGA 17 C	0000000000	35 25 25 25 25 25 25 25 25 25 25 25 25 25	000000000	0.0 0.0 14.8 13.0 6.73 0.0	00000 00000 00000 00000	2000 11.85 10.00 1	48.00 3.00 3.00 0.00 0.00 0.00	4-122-4 4-122-4 4-122-4 4-123-4 5-34-123-4 5-34-123-4	000000000	000000000	000000000	4.000000000000000000000000000000000000	201.25 201.25 201.25 201.25 201.25 201.55	16.2 3.88.9 3.6.9 1.4.6 25.6 25.6 23.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
77777777777777777777777777777777777777	000000000	000000	000000000	52.0 0.00 0.00 0.00 0.00	000000000	0.40004 0.0000 0.0000000000000000000000	000000000	45.3 165.3 38.6 22.6 4.2 4.2 11.0	000000000	000000000	000000000	000000000000000000000000000000000000000	25.29 26.29 26.29 14.56 10.00 10.00	54.7 346.5 346.5 37.5 37.9 37.9 37.9	0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	00000000000000000000000000000000000000	1.8 1.8 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

Affarvest derivation was based on direct and indirect recoveries of all age and sex classes, except locals, that were each adjusted for band reporting rate and then population-weighted. The relative importance of each week's harvest, provided that it exceeded 1% of the total harvest in the harvest area, is shown by "Imp". Week 1 for all harvest areas begins on 1 September.

A list of current Resource Publications follows.

- 133. A Handbook for Terrestrial Habitat Evaluation in Central Missouri, edited and compiled by Thomas S. Baskett, Deretha A. Darrow, Diana L. Hallett, Michael J. Armbruster, Jonathan A. Ellis, Bettina Flood Sparrowe, and Paul A. Korte. 1980. 155 pp.
- 134. Conservation of the Amphibia of the United States: A Review, by R. Bruce Bury, C. Kenneth Dodd, Jr., and Gary M. Fellers. 1980. 34 pp.
- 135. Annotated Bibliography for Aquatic Resource Management of the Upper Colorado River Ecosystem, by Richard S. Wydoski, Kim Gilbert, Karl Seethaler, Charles W. McAda, and Joy A. Wydoski. 1980. 186 pp.
- 136. Blackbirds and Corn in Ohio, by Richard A. Dolbeer. 1980. 18 pp.
- 137. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates, by Waynon W. Johnson and Mack T. Finley. 1980. 98 pp.
- 138. Waterfowl and their Wintering Grounds in Mexico, 1937–64, by George B. Saunders and Dorothy Chapman Saunders. 1981. 151 pp.
- 139. Native Names of Mexican Birds, researched and compiled by Lillian R. Birkenstein and Roy E. Tomlinson. 1981.
- 140. Procedures for the Use of Aircraft in Wildlife Biotelemetry Studies, by David S. Gilmer, Lewis M. Cowardin, Renee L. Duval, Larry M. Mechlin, Charles W. Shaiffer, and V. B. Kuechle. 1981. 19 pp.
- 141. Use of Wetland Habitats by Birds in the National Petroleum Reserve—Alaska, by Dirk V. Derksen, Thomas C. Rothe, and William D. Eldridge. 1981. 27 pp.
- 142. Key to Trematodes Reported in Waterfowl, by Malcolm E. McDonald. 1981. 156 pp.
- 143. House Bat Management, by Arthur M. Greenhall. 1982. 30 pp.
- 144. Avian Use of Sheyenne Lake and Associated Habitats in Central North Dakota, by Craig A. Faanes. 1982.
- 145. Wolf Depredation on Livestock in Minnesota, by Steven H. Fritts. 1982. 11 pp.
- 146. Effects of the 1976 Seney National Wildlife Refuge Wildfire on Wildlife and Wildlife Habitats, compiled by Stanley H. Anderson. 1982. 28 pp.

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

UNITED STATES
DEPARTMENT OF THE INTERIOR

FISH AND WILDLIFE SERVICE

EDITORIAL OFFICE

AYLESWORTH HALL, CSU

FORT COLLINS, COLORADO 80523

POSTAGE AND FEES PAID
US DEPARTMENT OF THE INTERIOR
INT 423

