Determining quality of wine based on 11 factors

this dataset is taken from the UCI repository https://archive.ics.uci.edu/ml/datasets/wine+quality (https://archive.ics.uci.edu/ml/datasets/wine+quality)

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from scipy.stats import skew

In [2]: wine=pd.read_csv('winequality-red.csv')
   wine.head()
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
In [3]: print(f"There are {wine.shape[0]} rows and {wine.shape[1]} columns in dataset."
```

There are 1599 rows and 12 columns in dataset.

```
In [4]: wine.dtypes
```

Out[4]:	fixed acidity	float64
	volatile acidity	float64
	citric acid	float64
	residual sugar	float64
	chlorides	float64
	free sulfur dioxide	float64
	total sulfur dioxide	float64
	density	float64
	рН	float64
	sulphates	float64
	alcohol	float64
	quality	int64
	dtype: object	

```
In [5]: | wine.isnull().sum()
Out[5]: fixed acidity
                                      0
         volatile acidity
                                      0
         citric acid
                                      0
         residual sugar
                                      0
         chlorides
                                      0
         free sulfur dioxide
                                      0
         total sulfur dioxide
                                      0
         density
                                      0
                                      0
         рН
         sulphates
                                      0
         alcohol
                                      0
         quality
                                      0
         dtype: int64
In [6]:
         target=wine['quality']
         features=wine
In [7]:
          features=features.drop('quality',axis=1)
         pd.set_option('display.float_format', lambda x: '%.3f' % x)
In [8]:
         wine.describe().T
Out[8]:
                                                         25%
                                                                50%
                                                                       75%
                              count
                                     mean
                                             std
                                                   min
                                                                               max
                fixed acidity 1599.000
                                     8.320
                                            1.741
                                                  4.600
                                                         7.100
                                                                7.900
                                                                       9.200
                                                                              15.900
              volatile acidity 1599.000
                                     0.528
                                            0.179 0.120
                                                         0.390
                                                                0.520
                                                                       0.640
                                                                              1.580
                 citric acid 1599.000
                                     0.271
                                            0.195 0.000
                                                         0.090
                                                                0.260
                                                                      0.420
                                                                              1.000
                                                                2.200
              residual sugar 1599.000
                                     2.539
                                            1.410 0.900
                                                         1.900
                                                                       2.600
                                                                             15.500
                  chlorides 1599.000
                                     0.087
                                            0.047 0.012
                                                         0.070
                                                               0.079
                                                                      0.090
                                                                              0.611
```

15.875 10.460 1.000

32.895 6.000

0.002 0.990

0.154 2.740

0.170 0.330

1.066 8.400

0.808 3.000

46.468

0.997

3.311

0.658

5.636

1599.000 10.423

free sulfur dioxide 1599.000

total sulfur dioxide 1599.000

alcohol

density 1599.000

sulphates 1599.000

quality 1599.000

pH 1599.000

7.000 14.000

38.000

0.997

3.310

0.620

9.500 10.200 11.100

6.000

22.000

0.996

3.210

0.550

5.000

21.000

62.000

0.998

3.400

0.730

6.000

72.000

289.000

1.004

4.010

2.000

14.900

8.000

```
In [9]: for column in wine:
    fig, ax = plt.subplots()
    sns.boxplot(x=wine[column], ax=ax, color="cyan");
    plt.title(f'Boxplot of {column.title().replace("_", " ")}')
```


Boxplot of Citric Acid

Boxplot of Chlorides

Boxplot of Free Sulfur Dioxide


```
In [10]: scale= wine['quality'].unique().tolist()
    scale.sort()
    print(scale)
```

[3, 4, 5, 6, 7, 8]

```
In [11]: for column in features:
    ax=wine.plot(kind='scatter', x='quality', y=[column], color='blue')
    ax.set_xlabel("Quality")
    ax.set_ylabel(column.title().replace("_", " "))
```



```
In [12]: wine_grp=wine.quality.value_counts()
    wine_grp=wine_grp.sort_index()
    wine_grp
```

Out[12]: 3 10 4 53 5 681 6 638 7 199 8 18

Name: quality, dtype: int64

```
In [13]: plt.bar(scale,wine_grp, color='lime',width=0.75)
    plt.xlabel('Quality')
    plt.ylabel('Frequency')
    plt.title("Quality of alcohol samples")
```

Out[13]: Text(0.5, 1.0, 'Quality of alcohol samples')


```
In [14]: | wine[list].skew().sort_values()
Out[14]: density
                                  0.071
         рН
                                  0.194
         quality
                                  0.218
         citric acid
                                  0.318
         volatile acidity
                                  0.672
         alcohol
                                  0.861
         fixed acidity
                                  0.983
         free sulfur dioxide
                                  1.251
         total sulfur dioxide
                                  1.516
         sulphates
                                  2.429
         residual sugar
                                  4.541
         chlorides
                                  5.680
         dtype: float64
```

vanilla Regression

```
In [19]: | from sklearn.metrics import mean_squared_error
            def rmse(ytrue, ypredicted):
                return np.sqrt(mean_squared_error(ytrue, ypredicted))
   In [20]: LR = LinearRegression()
            error_df = list()
            LR = LR.fit(X_train, y_train)
            y_train_pred = LR.predict(X_train)
            v_test_pred = LR.predict(X_test)
            error_df.append(pd.Series({'train': rmse(y_train, y_train_pred),
                                        'test' : rmse(y_test, y_test_pred)},
                                        name='no enc'))
   In [21]: | error_df
   Out[21]: [train
                     0.649
                     0.641
             test
             Name: no enc, dtype: float64]
Scaling vanilla
   In [22]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler
            scalers = {'standard': StandardScaler(),
                        'minmax': MinMaxScaler(),
                        'maxabs': MaxAbsScaler()}
   In [23]: | mask = X_train.dtypes == np.float
            errors = {}
            lists=[]
            float_columns = X_train.columns[mask]
            for scaler_label, scaler in scalers.items():
                    trainingset = X_train.copy()
                    testset = X_test.copy()
                    trainingset[float_columns] = scaler.fit_transform(trainingset[float_col
            umns])
                    testset[float_columns] = scaler.transform(testset[float_columns])
                    regression=LR.fit(trainingset, y_train)
                    predictions = LR.predict(testset)
                    key = scaler_label + 'scaling'
                    errors[key] = rmse(y_test, predictions)
                    coeff=regression.coef_
                    lists.append(coeff)
            for key, error_val in errors.items():
                print(key, error_val)
            standardscaling 0.6412759715991387
```

In [24]: coeff_table=pd.DataFrame(np.row_stack(lists))
 coeff_table.columns = list(features.columns)

minmaxscaling 0.6412759715991387 maxabsscaling 0.6412759715991388

```
In [25]: coeff_table
Out[25]:
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
(0.040	-0.200	-0.048	0.011	-0.079	0.047	-0.108	-0.026	-0.049	0.140	0.309	
1	L 0.265	-1.605	-0.248	0.113	-1.002	0.305	-0.924	-0.194	-0.405	1.325	1.898	
•	0 373	-1 737	-0 248	0.120	-1 023	0.309	-0 943	-14 292	-1 280	1 626	<i>4</i> 351	

Polynomial regression

Out[26]: 1.2247685785449771

Regularization

```
In [27]: from sklearn.model_selection import train_test_split
    train, test = train_test_split(wine, test_size=0.3, random_state=42)
```

```
In [28]: | mask = wine.dtypes == np.float
          float_cols = wine.columns[mask]
          skew_limit = 0.75
          skew_vals = train[float_cols].skew()
          skew\_cols = (skew\_vals)
                        .sort_values(ascending=False)
                        .to_frame()
                        .rename(columns={0:'Skew'})
                        .query('abs(Skew) > {0}'.format(skew_limit)))
          skew_cols
Out[28]:
                          Skew
                 chlorides 5.836
              residual sugar 4.511
                 sulphates 2.554
          total sulfur dioxide 1.382
           free sulfur dioxide 1.190
               fixed acidity 0.994
                   alcohol 0.915
              volatile acidity 0.756
In [29]: |pd.options.mode.chained_assignment = None
          for col in skew_cols.index.tolist():
              if col == "quality":
                  continue
              train[col] = np.log1p(train[col])
              test[col] = test[col].apply(np.log1p)
In [30]: | feature_cols = [x for x in train.columns if x != 'quality']
          X_train = train[feature_cols]
          y_train = train['quality']
          X_test = test[feature_cols]
          v_test = test['quality']
In [31]: from sklearn.linear_model import LinearRegression
          linearRegression = LinearRegression().fit(X_train, y_train)
          linearRegression_rmse = rmse(y_test, linearRegression.predict(X_test))
          print(linearRegression_rmse)
```


Ridge, Lasso and ElasticNet

0.3 0.6415615577068983

Of 11 coefficients, 9 are non-zero with Lasso.

0.0005 0.1 0.6419132509667584

```
In [37]: rmse_vals = [linearRegression_rmse, ridgeCV_rmse, lassoCV_rmse, elasticNetCV_rm
    se]
    labels = ['Linear', 'Ridge', 'Lasso', 'ElasticNet']
    rmse_df = pd.Series(rmse_vals, index=labels).to_frame()
    rmse_df.rename(columns={0: 'RMSE'}, inplace=1)
    rmse_df
```

Out[37]:

	RMSE
Linear	0.641
Ridge	0.642
Lasso	0.644
ElasticNet	0.642

Scohastic gradient descent

```
In [39]: from sklearn.linear_model import SGDRegressor
         model_parameters_dict = {
              'Linear': {'penalty': 'none'},
'Lasso': {'penalty': '12',
                     'alpha': lassoCV.alpha_},
              'Ridge': {'penalty': 'l1',
                     'alpha': ridgeCV_rmse},
              'ElasticNet': {'penalty': 'elasticnet',
                              'alpha': elasticNetCV.alpha_,
                              'l1_ratio': elasticNetCV.l1_ratio_}
         }
         new_rmses = {}
          for modellabel, parameters in model_parameters_dict.items():
              # following notation passes the dict items as arguments
              SGD = SGDRegressor(**parameters)
              SGD.fit(X_train, y_train)
              new_rmses[modellabel] = rmse(y_test, SGD.predict(X_test))
          rmse_df['RMSE-SGD'] = pd.Series(new_rmses)
          rmse_df
```

Out[39]:

	RMSE	RMSE-SGD
Linear	0.641	0.699
Ridge	0.642	0.798
Lasso	0.644	0.696
ElasticNet	0.642	0.701


```
In [ ]:
```