Introduction to Quantum Information and Communication

Theory Assignment-1

Moida Praneeth Jain, 2022101093

Question 1

To Prove: Any n+1 vectors belonging to an n dimensional vector space must be linearly dependent

Proof:

Let V be an n dimensional vector space

Assume $A = \left\{v_1, v_2, v_3, ..., v_{n+1}\right\}$ is a set of linearly independent vectors where $v_i \in V$

Let $B=A\setminus \{v_{n+1}\}=\{v_1,v_2,v_3,...,v_n\}.$ Since $B\subset A,B$ is also a set of linearly independent vectors.

Now, since V is n dimensional and |B|=n, $\operatorname{span}(B)=V$ by the definition of n dimensional vector space.

Therefore, every vector $v \in V$ can be expressed as a linear combination of vectors in B

 $\therefore v_{n+1} = a_1v_1 + a_2v_2 + a_3v_3 + \ldots + a_nv_n \text{, where } a_i \in \mathbb{F} \text{(field over which } V \text{ is defined)}$

 $\div\,V$ is not linearly dependent. This is a contradiction

Any set A of n + 1 vectors belonging to an n dimensional vector space must be linearly dependent.

Question 2

Given: $A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$

To Find: square root of matrix A

Solution:

Note that $A^{\dagger} = A$. Thus, by the spectral theorem, A can be decomposed into an orthonormal eigenbasis. Now, we find this eigenbasis.

$$\begin{aligned} |A-\lambda I| &= 0 \\ |\binom{1-\lambda}{2} - 2 - \lambda| &= 0 \\ \lambda_1 &= 2, \lambda_2 = -3 \end{aligned}$$

Let their corresponding normalized eigenvectors be $|2\rangle$ and $|-3\rangle$

$$A|2\rangle = 2|2\rangle$$
 and $A|-3\rangle = 2|-3\rangle$

On solving, we get

$$|2\rangle = \frac{1}{\sqrt{5}} {2 \choose 1}$$
 and $|-3\rangle = \frac{1}{\sqrt{5}} {1 \choose -2}$

Now, by the spectral theorem, we have

$$A = \sum_i \lambda_i |\lambda_i\rangle\langle\lambda_i|$$

$$A = 2|2\rangle\langle2|-3|-3\rangle\langle-3|$$

We know that

$$f(A) = \sum_i f(\lambda_i) |\lambda_i\rangle\langle\lambda_i|$$

So

$$\sqrt{A} = \sqrt{2}|2\rangle\langle 2| + \sqrt{-3}|-3\rangle\langle -3|$$

$$\sqrt{A} = \sqrt{2}|2\rangle\langle 2| + \sqrt{-3}|-3\rangle\langle -3|$$

$$\sqrt{A} = \frac{1}{5}\left(\sqrt{2}\binom{2}{1}(2\ 1) + \sqrt{-3}\binom{1}{-2}(1\ -2)\right)$$

$$\sqrt{A} = \frac{1}{5}\left(\sqrt{2}\binom{4}{2}\frac{2}{1} + \sqrt{-3}\binom{1}{-2}\frac{-2}{4}\right)$$

$$\sqrt{A} = \frac{1}{5}\begin{pmatrix} 4\sqrt{2} + i\sqrt{3} & 2\sqrt{2} - 2i\sqrt{3} \\ 2\sqrt{2} - 2i\sqrt{3} & \sqrt{2} + 4i\sqrt{3} \end{pmatrix}$$

Question 3

Given: A is an $n \times n$ matrix and B is an $m \times m$ matrix

To Prove: $tr(A \otimes B) = tr(A) \times tr(B)$

Proof:

$$A \otimes B = \begin{pmatrix} A_{1,1}B & A_{1,2}B & \dots & A_{1,n}B \\ A_{2,1}B & A_{2,2}B & \dots & A_{2,n}B \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1}B & A_{n,2}B & \dots & A_{n,n}B \end{pmatrix}$$

where each $A_{i,j}B$ is an $m \times m$ matrix expanded.

$$\begin{split} \operatorname{tr}(A \otimes B) &= \sum_{i=1}^n \operatorname{tr} \left(A_{i,i} B \right) \\ \operatorname{tr}(A \otimes B) &= \sum_{i=1}^n A_{i,i} \operatorname{tr}(B) \\ \operatorname{tr}(A \otimes B) &= \operatorname{tr}(B) \times \sum_{i=1}^n A_{i,i} \\ \operatorname{tr}(A \otimes B) &= \operatorname{tr}(A) \times \operatorname{tr}(B) \end{split}$$