LATIHAN SOAL ISYARAT DAN SISTEM GANJIL 2022 Selasa, 23 Agustus 2022 (Kelas A) Jumat, 26 Agustus 2022 (Kelas B)

1. Diberikan isyarat x(t) sebagai berikut

Bila isyarat tersebut dikenakan diolah sedemikian rupa, sehingga didapatkan isyarat keluaran yang baru:

$$y(t) = 3x(t) - 0.5x(t-2) + x(t+1)$$

Gambarkan isyarat keluaran y(t)!

Jawab:

2. Apabila diketahui isyarat step

AZKA HARIZ S. 1

Pecah jadi isyarat genap dan ganjil

$$ev\{u[n]\} = \frac{1}{2}[u[n] + u[-n]]$$

Even
$$(x[n]) = \begin{cases} \frac{1}{2}, & n < 0\\ 1, & n = 0\\ \frac{1}{2}, & n > 0 \end{cases}$$

3. Untuk setiap isyarat yang diberikan di bawah ini, tentukan semua nilai variabel bebas di mana bagian genap dari isyarat dijamin bernilai nol.

a.
$$x_1[n] = u[n] - u[n-4]$$

b.
$$x_2(t) = \sin\left(\frac{1}{2}t\right)$$

c.
$$x_3[n] = \left(\frac{1}{2}\right)^n u[n-3]$$

d.
$$x_4(t) = e^{-5t}u(t+2)$$

Jawab:

- a. $ev\{x_1[n]\} = \frac{1}{2}(x_1[n] + x_1[-n]) = \frac{1}{2}(u[n] u[n-4] + u[-n] u[-n-4])$ Sehingga, $ev\{x_1[n]\}$ bernilai nol untuk |n| > 4.
- b. Karena $x_2(t)$ adalah sinyal ganjil, maka $ev\{x_2(t)\}$ bernilai nol untuk semua nilai t.

c.
$$ev\{x_3[n]\} = \frac{1}{2}(x_1[n] + x_1[-n]) = \frac{1}{2}\left[\left(\frac{1}{2}\right)^n u[n-3] + \left(\frac{1}{2}\right)^{-n} u[-n-3]\right]$$

Sehingga, $ev\{x_3[n]\}$ bernilai nol ketika |n| < 3 dan ketika $|n| \to \infty$.

d.
$$ev\{x_4(t)\} = \frac{1}{2}(x_4(t) + x_4(-t)) = \frac{1}{2}[e^{-5t}u(t+2) + e^{5t}u(-t+2)]$$

Sehingga, $ev\{x_4(t)\}$ bernilai nol ketika $|t| \to \infty$.

4. Buktikan persamaan berikut dengan bentuk Euler $e^{j\phi} = \cos \phi + j \sin \phi$:

a.
$$cos(A + B) = cos A cos B - sin A sin B$$

b.
$$sin(A + B) = sin A cos B + cos A sin B$$

c.
$$cos(A - B) = cos A cos B + sin A sin B$$

d.
$$sin(A - B) = sin A cos B - cos A sin B$$

Jawab:

Kita ketahui bahwa $Re\{e^{j\phi}\}=\cos\phi$ dan $Im\{e^{j\phi}\}=\sin\phi$.

Kemudian $e^{j(A+B)}$ dapat kita uraikan sebagai berikut:

$$e^{j(A+B)} = e^{jA}e^{jB} = (\cos A + j\sin A)(\cos B + j\sin B)$$

$$e^{j(A+B)} = \cos A\cos B - \sin A\sin B + j(\sin A\cos B + \sin B\cos A)$$

a.
$$cos(A+B) = Re\{e^{j(A+B)}\} = cos A cos B - sin A sin B$$

b.
$$sin(A+B) = Im\{e^{j(A+B)}\} = sin A cos B + sin B cos A$$

Kemudian $e^{j(A-B)}$ dapat kita uraikan sebagai berikut:

$$e^{j(A-B)} = e^{jA}e^{-jB} = (\cos A + j\sin A)(\cos B - j\sin B)$$

$$e^{j(A-B)} = \cos A\cos B + \sin A\sin B - j(\sin A\cos B + \sin B\cos A)$$

c.
$$cos(A - B) = cos A cos B + sin A sin B$$

d.
$$sin(A - B) = sin A cos B + sin B cos A$$

5. Representasikan gambar berikut sebagai suatu fungsi gabungan dari beberapa unit step u(t)

Jawab:

$$x_1(t) = u(t+2) - u(t-2)$$

6. Sistem S merupakan sistem linear waktu kontinu dengan input x(t) dan output y(t) yang berpasangan sebagai berikut:

$$x(t) = e^{j2t} \stackrel{S}{\rightarrow} y(t) = e^{j3t},$$

$$x(t) = e^{-j2t} \stackrel{S}{\rightarrow} y(t) = e^{-j3t}$$

a. Apabila $x_1(t) = \cos(2t)$, tentukan output $y_1(t)$ yang sesuai untuk sistem S.

b. Apabila $x_2(t) = \cos\left(2\left(t - \frac{1}{2}\right)\right)$, tentukan output $y_2(t)$ yang sesuai untuk sistem S.

Jawab:

a. Kita tahu bahwa $x_1(t)=\cos(2t)=\frac{1}{2}\big(e^{j2t}+e^{-j2t}\big)$. Selanjutnya kita gunakan prinsip sistem linear sistem S.

$$x_1(t) = \cos(2t) = \frac{1}{2} \left(e^{j2t} + e^{-j2t} \right) \stackrel{s}{\to} y_1(t) = \frac{1}{2} \left(e^{j3t} + e^{-j3t} \right)$$

b. Kita tahu bahwa

$$x_2(t) = \cos(2t - 1) = \frac{1}{2} \left(e^{j(2t - 1)} + e^{-j(2t - 1)} \right)$$
$$x_2(t) = \frac{1}{2} \left(e^{-j} e^{j2t} + e^{j} e^{-j2t} \right)$$

Seperti sebelumnya, gunakan prinsip sistem linear sistem S untuk mendapatkan hasil sebagai berikut:

$$x_2(t) = \frac{1}{2} \left(e^{-j} e^{j2t} + e^j e^{-j2t} \right) \stackrel{s}{\to} y_2(t) = \frac{1}{2} \left(e^{-j} e^{j3t} + e^j e^{-j3t} \right)$$

AZKA HARIZ S. 4