SAT-Solving und Anwendungen Probabilistische Algorithmen für SAT

Prof. Dr. Wolfgang Küchlin Rouven Walter, M.Sc. Informatik Dr. Eray Gençay

Universität Tübingen

23. November 2017

SAT als Optimierungsproblem

SAT kann auch als Optimierungsproblem gesehen werden:

• Minimiere die Anzahl der unerfüllten Klauseln

Grundlegende Idee

- Rate eine Zufallsbelegung aller Variablen (vollständige Belegung)
- "Flippe" wiederholt die Belegung einer Variablen um die Anzahl der unerfüllten Klauseln zu minimieren.

Beispiel

$$F := \{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}\}$$

- Rate Belegung: $[a \mapsto \top, b \mapsto \bot, c \mapsto \top]$ (F nicht erfüllt)
- "Flippe" Variable a auf \bot (F weiterhin nicht erfüllt)
- "Flippe" Variable b auf ⊤ (F ist jetzt erfüllt)

Eigentliche Optimierung: Welche Variablen werden am besten geflippt?

Lokale Suche vs. DPLL

Kriterium	DPLL	Stochastische (Lokale) Suche
Methode	Erweiterung partieller Va-	Optimierung totaler Varia-
	riablenbelegungen	blenbelegungen
Vereinfachung	Unit-Propagation, Pure-	-
	Literal-Deletion	
vollständig	ja	nein
Stärken	strukturierte (unerfüllbare)	erfüllbare Instanzen mit vie-
	Instanzen (z.B. Verifikati-	len Lösungen (z.B. Pla-
	on)	nungsprobleme)

Begrifflichkeiten

Betrachte Flip, der Belegung α in Belegung α' überführt

Breakcount

Anzahl Klauseln, die in α erfüllt, aber in α' unerfüllt sind

Makecount

Anzahl Klauseln, die in α unerfüllt, aber in α' erfüllt sind

Diffscore

Anzahl der unerfüllten Klauseln in lpha minus Anzahl unerfüllte Klauseln in lpha'

• Alle drei Werte werden für jede Variable nach jedem Flip aktualisiert

Beispiel für Variablenflips

Beispiel (Variablenflips)

$$F := \{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}, \{\neg b, \neg d\}, \{a, c, d\}\}$$

Initiale Belegung: $\alpha = [a \mapsto \bot, b \mapsto \top, c \mapsto \bot, d \mapsto \top]$

- Flip von a: $\alpha' = [a \mapsto \top, b \mapsto \top, c \mapsto \bot, d \mapsto \top]$ $\{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}, \{\neg b, \neg d\}, \{a, c, d\}\}$ Breakcount: 0 / Makecount: 0 / Diffscore : 0
- Flip von b: $\alpha' = [a \mapsto \bot, b \mapsto \bot, c \mapsto \bot, d \mapsto \top]$ $\{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}, \{\neg b, \neg d\}, \{a, c, d\}\}$ Breakcount: $0 \mid Makecount: 2 \mid Diffscore: 2$
- Flip von c: $\alpha' = [a \mapsto \bot, b \mapsto \top, c \mapsto \top, d \mapsto \top]$ $\{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}, \{\neg b, \neg d\}, \{a, c, d\}\}$ Breakcount: $0 \mid Makecount: 1 \mid Diffscore: 1$
- Flip von d: $\alpha' = [a \mapsto \bot, b \mapsto \top, c \mapsto \bot, d \mapsto \bot]$ $\{\{a, b, \neg c\}, \{\neg a, b\}, \{\neg b, c\}, \{\neg b, \neg d\}, \{a, c, d\}\}$ Breakcount: $1 \mid Makecount: 1 \mid Diffscore: 0$

GSAT Algorithmus

Algorithmus

Algorithm 1: GSAT

```
for i=0 to MAX\_TRIES do
\alpha = \text{random assignment to all variables;}
for j=0 to MAX\_FLIPS do
\text{if } \alpha \text{ satisfies all clauses then}
\text{return true}
x = \text{variable that produces the highest diffscore;}
\text{flip } x;
\text{return } Nothing
```

 MAX_TRIES und MAX_FLIPS müssen so gewählt werden, dass die Fehlerwahrscheinlichkeit sehr gering wird

WalkSAT

Variation von GSAT, Grundalgorithmus bleibt gleich, aber die zu flippende Variable wird anders ausgewählt

Variablenauswahl bei WalkSAT

- Selektiere zufällig eine unerfüllte Klausel C
- Wenn Variable mit breakcount 0 in C existiert, flippe diese um C zu erfüllen.
- Ansonsten:
 - mit Wahrscheinlichkeit p: wähle Zufallsvariable aus C
 - mit Wahrscheinlichkeit 1-p: wähle Variable mit minimalem breakcount in C
- WalkSAT läuft meistens viel schneller als GSAT

Hammingkugel-Algorithmus

Idee: Mache die innere Schleife von GSAT deterministisch

ullet Systematisches Prüfen aller Belegungen in der "Nachbarschaft" von α

Hammingdistanz zweier Belegungen

- Zwei Belegungen α, β
- Hammingdistanz: $d(\alpha, \beta) := |\{x | \alpha(x) \neq \beta(x)\}|$
- ullet Anzahl der Variablen mit unterschiedlicher Belegung in lpha und eta

Beispiel (Hammingdistanz)

$$\alpha = (0, 1, 1, 0, 0), \beta = (1, 0, 1, 0, 1), \gamma = (1, 1, 1, 0, 0)$$

•
$$d(\alpha, \beta) = 3, d(\alpha, \gamma) = 1, d(\beta, \gamma) = 2$$

Hammingkugel

Hammingkugel vom Radius r um α :

$$H(\alpha, r) := \{ \alpha' | d(\alpha, \alpha') \le r \}$$

Alle Belegungen α' , die einen Hammingabstand $\leq r$ von α haben

Suchen in einer Hammingkugel

Algorithmus

Methode zum Durchsuchen einer Hammingkugel nach einer erfüllenden Belegung:

```
Algorithm 2: test(\alpha,r)
if \alpha is a satisfying assignment then
 \perp return \alpha
if r = 0 then
    return Nothing
choose unsatisfied clause C = (x_1 \vee ... \vee x_n);
for i = 1 to n do
    \alpha' = \alpha with flipped x_i;
    \beta = \text{test}(\alpha', r-1);
    if \beta \neq Nothing then
        return \beta
return Nothing
```

Visualisierung des Algorithmus

 Problem: Passende Anzahl und Wahl der Anfangsbelegungen, so dass Wahrscheinlichkeit, dass keine Hammingkugel eine erfüllende Belegung überdeckt, vernachlässigbar wird.

Derandomisierung der Anfangsbelegungen

Idee: Wähle Anfangsbelegungen nicht zufällig, sondern nach bestimmtem

Schema, um möglichst große Teile des Suchraums abzudecken

Verfahren: Überdeckungscodes

Überdeckungscode

Eine Menge B von Belegungen ist ein Überdeckungscode mit Radius r, falls für jede Belegung α gilt, dass es ein $\beta \in B$ gibt mit $\alpha \in H(\beta, r)$.

Folgerung: Wenn alle Belegungen $\beta \in B$ als Anfangsbelegungen getestet werden und jeweils eine Hammingkugel-Suche mit Radius r vollzogen wird, werden alle möglichen Belegungen getestet (möglicherweise sogar mehrmals wegen Überschneidungen).

Berechnung von minimalen Überdeckungscodes

Kann zurückgeführt werden auf ein klassisches NP-vollständiges Problem (Karp, 1972): SET-COVER (Mengenüberdeckung)

SET-COVER als Entscheidungsproblem

Gibt es zu einer Menge U und n Teilmengen $S_j \subset U$ und einer natürlichen Zahl $k \leq n$ eine Vereinigung von k oder weniger Teilmengen S_j , so dass $\bigcup_{j=1}^k S_j = U$.

SET-COVER als Optimierungsproblem

Suche ein minimales k und zugehörige Teilmengen $S_j \subset U$, so dass $\bigcup_{j=1}^k S_j = U$.

Bemerkung: SET-COVER wird bei der Minimierung boolscher Ausdrücke (z.B. nach Quine-McCluskey) zur Auswahl einer minimalen Teilmenge von Prim-Implikanten verwendet, die äquivalent zum Ausdruck ist.

SFT-COVFR

Beispiel (SET-COVER)

- $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 6 Teilmengen: $S_1 = \{1, 3, 5\}, S_2 = \{2, 4, 8\}, S_3 = \{1, 3, 4, 6\}, S_4 = \{1, 3, 4, 6\}$ $\{7,8\}, S_5 = \{3,4,6\}, S_6 = \{2,6,7\}$

Verschiedene Überdeckungen:

- $S_1 \cup S_2 \cup S_6$
- $S_1 \cup S_3 \cup S_4 \cup S_6$
- $S_1 \cup S_2 \cup S_4 \cup S_5$

Analogie zu Überdeckungscodes:

- Menge $U = \text{Menge aller m\"{o}glichen Belegungen } \alpha$
- Teilmengen S_i = Alle Hammingkugeln vom Radius r
- Gesuchte minimale Teilmenge = Anfangsbelegungen des Algorithmus

Greedy Algorithmus zur Berechnung von SET-COVER

Algorithmus

- **1** Setze $B = \emptyset$
- 2 Solange es noch unüberdeckte Elemente in U gibt:
 - 1 Wähle ein S_i , das möglichst viele noch unüberdeckte Elemente aus U enthält
 - **2** $B = B \cup \{S_j\}$
- 3 Falls $\bigcup B = U$, so ist B die Lösung, ansonsten gibt es keine

Beispiel (Greedy Algorithmus)

- $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 6 Teilmengen:

$$S_1 = \{1, 3, 5\}, S_2 = \{2, 4, 8\}, S_3 = \{1, 3, 4, 6\}, S_4 = \{7, 8\}, S_5 = \{3, 4, 6\}, S_6 = \{2, 6, 7\}$$

- **1** Wähle S_3 , dann bleibt noch: $\{2, 5, 7, 8\}$
- 2 Wähle S_4 , dann bleibt noch: $\{2,5\}$
- **3** Wähle S_1 , dann bleibt noch: $\{2\}$
- 4 Wähle S₂, dann bleibt noch: ∅

 $B = \{S_3, S_4, S_1, S_2\}$ (aber nicht optimal)

Zusammenfassung

GSAT Algorithmus

```
Algorithm 3: GSAT
```

```
for i = 0 to MAX\_TRIES do

\alpha = \text{random assignment to all variables;}
for j = 0 to MAX\_FLIPS do

if \alpha satisfies all clauses then

\square return true

x = \text{variable that produces the highest diffscore;}
flip x;
return Nothing
```

- Ersetze innere Schleife durch Hammingkugel-Suche (deterministisch)
- Ersetze äußere Schleife durch Finden eines minimalen Überdeckungscodes mit Greedy Algorithmus (deterministisch)
- \rightarrow Derandomisierter Algorithmus (nach Dantsin et al.), der beweisbare obere Schranke für 3-SAT von 1.481^n hat.