Como o ponteiro das horas é sempre o ponteiro menor, deduzimos que ele é w, e o ponteiro dos minutos é z. Assim, o relógio marca 9h (ou 21h, já que se trata de um jantar).

4. Verificando

Se o horário secreto é 21h (9h), então o menor ponteiro deve estar no 9 (e portanto deve ser um número complexo de argumento π) e o maior ponteiro deve estar no 12 (e portanto deve ser um número complexo de argumento

 $\frac{\pi}{2}$, além de ter módulo maior do que o outro

número complexo).

Analisando z e w, temos que:

$$z = \alpha \left[\cos \left(\frac{\pi}{2} \right) + i \cdot \operatorname{sen} \left(\frac{\pi}{2} \right) \right]$$
, ou seja, tem

módulo α e argumento $\frac{\pi}{2}$.

Usando a primeira fórmula de De Moivre, temos que:

$$w = z^2 = \alpha^2 \left[\cos \left(2 \cdot \frac{\pi}{2} \right) + i \cdot \sin \left(2 \cdot \frac{\pi}{2} \right) \right] =$$

 $= \alpha^2 [\cos \pi + i \cdot \sin \pi]$

Assim, $w=\alpha^2$ [cos $\pi+i\cdot$ sen π], ou seja, tem módulo α^2 e argumento π . Como $\alpha<1$, então $\alpha^2<\alpha$. Isso verifica todas as condições necessárias para que z e w indiquem o horário secreto das 21h.

5. Emitindo a resposta

O jantar será às 21h (9 horas da noite).

6. Ampliando o problema

- a) Se $\alpha > 1$, o horário do jantar seria diferente?
- b) Discussão em equipe

Em todas as épocas, houve necessidade de mandar mensagens secretas que deveriam ser lidas apenas pelo destinatário da mensagem, motivando o aparecimento de determinados processos que impedissem terceiros de conhecer o conteúdo da mensagem. Esses processos compõem um ramo da Matemática chamado Criptografia (do grego kryptós, 'escondido', e gráphein, 'escrita'). Hoje, a Criptografia está presente em vários momentos do nosso cotidiano, na maioria das vezes sem que percebamos. Por exemplo, quando você se cadastra em um site da internet, a senha é criptografada antes de ser armazenada no banco de dados. Assim, se um hacker roubar o banco de dados com as senhas, ele não conseguirá lê-las.

Conversem com seus colegas e opinem sobre outras possíveis situações em que a Criptografia está presente na vida moderna. Reflitam sobre quais informações são restritas e não devem ser de conhecimento de terceiros.

RadiciaÇe Dado um nu

Exemplos:

a) 2. -2, 2i e -2; 2, $pois 2^4 = 1$; -2, $pois (-2)^4$

2i, pois (2i)⁴
-2i, pois (-2i)

Há, portanto

i, pois $i^2 = -$

-i, pois (-i) Há, portante

c) 3e - 3 são a3, pois $3^2 =$

-3, pois (-3

Há, portant

d) 1, -1, i e -i

1. pois 14 = 1

-1, pois (-1 1, pois i⁴ =

-i, pois (-

Há, portan