Jan-23 Lecture

Today's Goals

- Say something about "research" papers
 - Since we'll be covering quite a few of them
- Review methods and conclusions of one of the <u>seminal</u> <u>papers</u> to study routing in the Internet
 - Ties to our look at Internet diagnostic tools

Research Papers

- Good source of material that represent the state-of-the-art on what researchers are working
- Even the "old" papers provide some useful insight, background, and context
- Types: workshops, conferences, and journals
 - Workshops are more work-in-progress
 - Journals are more for an archive of finished research
- All follow a similar process for reviewing papers
 - Papers are submitted
 - A committee (or editor(s)) evaluate the paper
 - A set of papers are accepted and published

Research Papers

- Workshops and conferences have a set submission date
- Papers are orally presented at the event
- Journals either don't have deadlines or have deadlines for specific, "special" issues focused on a specific topic
- Acceptance rates
 - at the top conferences are anywhere from 5%-20%
 - good conferences range up to about 30%
- The quality of a workshop/conference/journal is measured by its acceptance rate the organizing committee
- Flagship conferences for networking
 - http://www.sigcomm.org/events/sigcomm-conference (39 of 231)
 - http://www.ieee-infocom.org/ (292 out of 1395)

Routing Studies of the Internet

- Paxson, V., "End-to-End Routing Behavior in the Internet," IEEE/ACM Transactions on Network, vol. 5, no. 5, October 1997.
- Schwartz, Y., Shavitt, Y., Weinsberg, U., "On the Diversity, Stability and Symmetry of End-to-End Internet Routes,"
 IEEE Global Internet, San Diego, CA, March 2010.

What to Focus On

- What is the objective of the study?
- What is the methodology?
- What was learned?
- What are the weaknesses of the work?
- What ideas for improving the work are there?
 - Can target questions be better answered?
 - Are there other questions raised?

Paxson: E2E Routing in the Internet

- Basic idea: use traceroute and see what routes are, how they change, when they change, and is there symmetry
 - Turns out, using traceroutes was and is one of the best ways to discover the stability of routes
- What exactly can traceroutes tell us?
- What other information might someone want to know?

The Study

- 37 Internet sites
- 40,000 measurements
- Data collected over two periods
 - Nov 8 Dec 24, 1994
 - Nov 3 Dec 21, 1995

The Metrics

- Pathologies
- Prevalence: "Given that we observed route r at the present, how likely are we to observe r again in the future?
- Persistence: "Given that we observed route r at time t, how long before that route is likely to have changed?"

• [Q]: How can this information be determined by just taking periodic measurements?

Prevalence and Persistence

- [Q]: How can this information be determined by just taking periodic measurements?
 - The problem is, couldn't a route have been stable, changed, then changed back again by the next traceroute. How would you know it changed and changed back?

Prevalence and Persistence

- [Q]: How can this information be determined by just taking periodic measurements?
 - The problem is, couldn't a route have been stable, changed, then changed back again by the next traceroute. How would you know it changed and changed back?
- [A]: One of the more interesting ways in which they did the study was not to take samples at random intervals
 - For example: the route from A -> B could have been taken one day, one hour, or one second apart
 - By analyzing the changes when the interval was small, results could be extrapolated to larger and larger periods of time
 - Not perfect, but it provides good insight, even when the data set isn't perfect

Major Conclusions

- Likelihood of encountering a pathology increased from 1994 to 1995 (from 1.5% to 3.3%).
- Internet paths are heavily dominated by a single prevalent route, but that the time periods over which routes persist show wide variations.
- At the end of 1995, A->B and B->A paths differed by at least one AS approximately 30% of the time.
- Different sites (or pairs of sites) experienced very different routing characteristics

Accounting of Routing Pathologies

- Loops (forwarding, information, traceroute)
 - 1/10 of 1%
 - Generally on the order of hours (suprising)
 - Loops more common in high connectivity areas
- Erroneous routing (packets took the wrong path)
 - Infrequent
- Connectivity altered (clear non-contiguous path)
 - .16% and .44%
- Fluttering (now called flapping—oscillations in a path)
 - Minimal

Accounting of Routing Pathologies

- Infrastructure failures (unreachables)
 - .21% in D1, slightly higher in D2
- Too Many Hops (more than 30 hops)
 - Minimal (none in D1 and 6 in D2)
 - Average hop count was 15.6 and 16.2 respectively
 - Noted exceptions to hop count being correlated with physical dist
- Temporary Outages (series of lost traceroute packets)
 - 0 losses: about half
 - 1-5 losses (likely due to congestion): about half
 - >5 losses: about 1%
- Time of Day Patterns
 - Routing affected by network use (load leading to congestion)
 - Some effects maybe from router maintenance

Prevalence Graph

Graph is a bit challenging to understand

Examples from the Prevalence Graph

- For 90% of the Internet paths, the most common series of cities occurred at least 60% (60%-100%) of the time (red)
- For 82% of the Internet paths,, the most common series of cites occurred at least 80% (80%-100%) of the time (blue)

Examples from the Prevalence Graph

- Extreme example: for 100% of the Internet paths, the most common series of cities occurred 100% of the time (red)
- Extreme example: for 60% of the Internet paths, the most common series of cities occurred 100% of the time (red)

Examples from the Prevalence Graph

 For 50% of the Internet paths, the most common series of hosts occurred at least 80% (80%-100%) of the time

Persistence Graph

Easier to understand

Persistence Table

SUMMARY OF PERSISTENCE AT DIFFERENT TIME SCALES

Time scale	%	Notes
seconds	N/A	"Flutter" for purposes of load balancing.
		Treated separately, as a pathology, and not
		included in the analysis of persistence.
minutes	N/A	"Tightly-coupled routers." We identified
		five instances, which we merged into single
		routers for the remainder of the analysis.
10's of minutes	9%	Frequent route changes inside the network.
		In some cases involved routing through
		different cities or AS's.
hours	4%	Usually intra-network changes.
6+ hours	19%	Also intra-network changes.
days	68%	Two regions. 50% of routes persist for
		under 7 days. The remaining 50% account
		for 90% of the total route lifetimes.

Routing Asymmetries

- 49% of the measurements observed an asymmetric path that visited at least one <u>different city</u>
- 30% of the measurements observed an asymmetric path that visited at least one <u>different AS</u>
- Majority of asymmetries are confined to a single city or AS difference
- 1/3 of city asymmetries differed by 2 or more hops
 - One example: UCL in London to Univ of Mannheim in Germany
 - One direction was through Amsterdam and Heidelberg and the other was through Princeton and College Park

Next Paper: Schwartz, Shavitt, Weinsberg

- Looked at many of the same basic questions
- Used a similar technique, but used 100 different locations (called vantage points)
- Two 96-hour measurement periods: late '06 and early '09
 - Much shorter time period
 - 100K traceroutes per each measurement

Major Conclusions

- Routes are diverse but relatively stable with high variance between sites
- Stability properties are consistent for both directions between two sites
- At the country level (higher level than previous study), routes are very stable
- Diversity and stability are consistent over time (between 2006 and 2009)

(See also their characterization of other studies)

Some Differences in Methodology

- Newer study (SSW) used fixed intervals between measurements where Paxson used exponentially distributed times
- Newer study (SSW) used ICMP and UDP traceroutes
 - The key part is still the timeout of the TTL
 - But different protocols and ports mean load balancing might kick in
 - Routers avoid flapping by considering other information when deciding to route out redundant interfaces (protocol, addresses, ports, etc.)

Dominant Route Length

 Another CDF: 80% of routes are 20 hops or less; the other 20% have more than 20 hops or more

Route Diversity

 Another CDF: approximately 30% have <u>more than 10</u> <u>routes</u> between the source-destination pair

• The rest (70%) have < 10

Route Diversity

More route diversity in 2009 than in 2006

Route Prevalence

 Another CDF: for 50% of the Internet paths, the most common series of routers occurred 50% of the time

Higher Level Granularity

 As the granularity goes up (from host level to city, AS, or country, stability increases

Academic v. Commercial Networks

Based on this graph, which has the more prevalent routes?

<u>Symmetry</u>

 Host level is not symmetric because routers have different addresses in different directions

(a) RouteISM symmetry

<u>Differential</u> <u>Symmetry</u>

 Routes in the two directions are either both stable or both unstable

What to Focus On

- What is the objective of the study?
- What is the methodology?
- What was learned?
- What are the weaknesses of the work?
- What ideas for improving the work are there?
 - Can target questions be better answered?
 - Are there other questions raised?