цифровой ↑ сезон: ии

## KEMC



Генерация тегов для видео

**RUTUBE** 





#### Кейсодержатель

**RUTUBE** 

🚺 👤 Сфера деятельности

Видеохостинг

1 Краткое описание кейса

На основе доступного контента присвоить к видео теги из заранее известного иерархического списка тегов



https://rutube.ru/











#### Постановка задачи

Необходимо создать систему тегирования видео на основе видео контента, названия и описания видео. Тегирование происходит по универсальному списку тегов для web платформ, широко затрагивающему различные тематики и подтематики. В решении участников протегированное видео может иметь тег родительской категории и тег подкатегории, соответствующий родительской. Видео может содержать несколько тегов из различных тематик.













#### Проблематика

На платформу RUTUBE ежедневно заливаются сотни тысяч видео, большая часть которых - это идс контент, то есть видео от обычных пользователей. Часть контента - это популярные шоу, передачи, каналы, другой лицензионный контент. Чтобы упорядочить весь этот контент, необходимо создать систему тегирования видео, чтобы разделять их по категориям и подкатегориям. Причем система должна быть достаточно гибкой к обновлению списка тегов, широко и разнообразно покрывать контент. Такая система также улучшит рекомендательную систему, так как возможно будет рекомендовать контент из любимой категории пользователя, например.









#### Решение

Прототип системы, создающей теги для видеоконтента. На вход приходят видео (или видео id), название и описание видео. На выходе - список вероятных категорий (и подкатегорий), предсказанных в соответствии с заранее известным иерархическим списком тегов.

Необходимо иметь репозиторий с понятным и качественным кодом модели, оформленным README. Реализовать прототип возможно в виде веб сервиса, демонстрирующего способности алгоритма (в рамках критериев интерфейс веб-сервиса не оценивается).

сезон: ии











### Стек технологий, рекомендуемых к использованию

#### 01

Язык программирования - Python Библиотеки для использования - torch, pandas, tensorflow, любые доступные в opensource Обязательные условия - решение должно работать без доступа к интернету









#### Необходимые данные, дополнения, пояснения, уточнения



названиях и описаниях к видео уже может содержаться некоторая информация видеоконтенте, но часто информация не совсем релевантна или неполна. Поэтому важно научиться работать с видеорядом, извлекать важные или часто повторяющиеся сущности, которые можно соотнести со списком тегов. Можно пробовать суммаризировать видео или извлекать сущности из полного видеоряда. Немаловажную роль может аудиодорожка, играть которую можно преобразовать в текст и извлечь теги оттуда, но не забывайте учесть, что часть видео могут не содержать речи совсем или речь может соответствовать видеоряду. Список тегов - это текстовые данные, которые также можно преобразовать в вектора или при желании разметить под свои нужды.











#### Оценка

Для оценки решений применяется метод экспертных оценок и автоматизированные средства оценивания.

Жюри состоит из отраслевых и технических членов жюри.

На основании описанных далее характеристик, жюри выставляет оценки.

Возможность скачивания тестового датасета с паролем открывается за 12 часов до стоп-кода. Возможность отправки сабмитов и пароль открываются за 4 часа до стоп-кода. Интервал успешных отправок: 20 минут.

сезон: ии

Итоговая оценка определяется как сумма баллов всех членов жюри, суммируемая с оценкой автоматизированной системы, нормализованной в 25% от итоговой оценки.









# Технический член жюри оценивает решение по следующим критериям:

01

Документация и комментарии к коду

Шкала: 0-2-4-6

02

Обоснованность выбранного метода (описание подходов к решению, их обоснование и релевантность задаче)

Шкала: 0-1-2-3

03

Решение использует фичи с видео

Шкала 0-2-4

04

Прозрачность решения

Шкала 0-1-2

**05** 

Выступление команды (умение презентовать результаты своей работы, строить логичный, понятный и интересный рассказ для презентации результатов своей работы)

Шкала 0-1-2-3

Автоматизированные средства оценивания точности работы предложенных участниками алгоритмов (решений) выставляют оценку в диапазоне 0-1, где 1 равно 100% точности работы решения.

Итоговая оценка определяется как сумма баллов всех членов жюри, суммируемая с оценкой автоматизированной системы, нормализованной в 25% от итоговой оценки.

Метрика: IoU











### Отраслевой член жюри оценивает решение по следующим критериям:

01

Качество иерархического тегирования

02

Качество работы решения в различных тематиках

Шкала 0-2-4

Шкала 0-2-4

03

Скорость работы решения

Шкала 0-1-2

04

Выступление команды (умение презентовать результаты своей работы, строить логичный, понятный и интересный рассказ для презентации результатов своей работы)

Шкала 0-1-2-3

















#### цифровой т прорыв

сезон: ии















