# ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ



Ο φοιτητής Σωτήρου Θεόδωρος 03118209

## Άσκηση 1

#### 1.

|     | $X_{\kappa}$   | Υ <sub>κ</sub> | $f(w_k^T \chi_k)$ | $\beta(Y_{\kappa} - f(w_{k}^{T}\chi_{\kappa}))$ | W <sub>K+1</sub>       |
|-----|----------------|----------------|-------------------|-------------------------------------------------|------------------------|
| 1.1 | (1, 0, -1, 4)  | 1              | f(-2) = 0         | 0.2                                             | (1.2, 1, -1.2, -0.2)   |
| 1.2 | (1, 4, 0, -1)  | 0              | f(5) = 1          | -0.2                                            | (1, 0.2, -1.2, 0)      |
| 1.3 | (1, 2, 2, -1)  | 1              | f(-1) = 0         | 0.2                                             | (1.2, 0.6, -0.8, -0.2) |
| 1.4 | (1, 3, -1, 0)  | 0              | f(3.8) = 1        | -0.2                                            | (1, 0, -0.6, -0.2)     |
| 1.5 | (1, -2, 1, -3) | 1              | f(1) = 1          | 0                                               | >>                     |
| 1.6 | (1, 0, -2, -1) | 0              | f(2.4) = 1        | -0.2                                            | (0.8, 0, -0.2, 0)      |
| 2.1 | (1, 0, -1, 4)  | 1              | f(1) = 1          | 0                                               | >>                     |
| 2.2 | (1, 4, 0, -1)  | 0              | f(0.8) = 1        | -0.2                                            | (0.6, -0.8, -0.2, 0.2) |
| 2.3 | (1, 2, 2, -1)  | 1              | f(-1.6) = 0       | 0.2                                             | (0.8, -0.4, 0.2, 0.2)  |
| 2.4 | (1, 3, -1, 0)  | 0              | f(-0.6) = 0       | 0                                               | >>                     |
| 2.5 | (1, -2, 1, -3) | 1              | f(1.2) = 1        | 0                                               | >>                     |
| 2.6 | (1, 0, -2, -1) | 0              | f(-0.2) = 0       | 0                                               | >>                     |
| 3.1 | (1, 0, -1 ,4)  | 1              | f(1.4) = 1        | 0                                               | >>                     |
| 3.2 | (1, 4, 0, -1)  | 0              | f(-1) = 0         | 0                                               | >>                     |
| 3.3 | (1, 2, 2, -1)  | 1              | f(0.2) = 1        | 0                                               | >>                     |

#### 2.

Το διάνυσμα (-1, 2, 2) θα ταξινομηθεί στην κλάση Β επειδή:

$$0.8 - 1*(-0.4) + 2*(0.2) + 2*(0.2) = 2 > 0$$

## Άσκηση 2

Υπολογίζω τις αποστάσεις του διανύσματος (-1, 2, 2) από όλα τα δοσμένα διανύσματα και έχω:

| Διάνυσμα       | Ευκλείδεια απόσταση | Κλάση |
|----------------|---------------------|-------|
| (1, 0, -1 ,4)  | $\sqrt{14}$         | В     |
| (1, 4, 0, -1)  | $\sqrt{38}$         | Α     |
| (1, 2, 2, -1)  | $\sqrt{18}$         | В     |
| (1, 3, -1, 0)  | $\sqrt{29}$         | Α     |
| (1, -2, 1, -3) | $\sqrt{27}$         | В     |
| (1, 0, -2, -1) | $\sqrt{26}$         | Α     |

- Στην περίπτωση του ταξινομητή πλησιέστερου γείτονα θα ταξινομηθεί στην κλάση Β.
- Στην περίπτωση του ταξινομητή τριών πλησιέστερων γειτόνων θα ταξινομηθεί στην κλάση Β.

## Άσκηση 3

**2.** Από το θεώρημα Bayes 
$$P(A \mid K) = \frac{P(A) \cdot P(K \mid A)}{P(K)}$$
 και επειδή  $P(K) = P(K \mid A) \cdot P(A) + P(K \mid \Gamma) \cdot P(\Gamma)$  προκύπτει ότι  $P(A \mid K) = 5,67$  %.

### Άσκηση 4

Θεωρώ  $h(\alpha) = \sqrt{a}$  και προκύπτει:

$$R(x,y,z) = J(i(A_1(x), h(A_2(y))), B(z))$$

$$h(A_2(x)) = 1/y_1 + 0.3/y_2$$

$$i(A_1(x),\,h(A_2(y)))=min\{A_1,\,A_2\}=0.2/x_1,y_1+0.2/x_1,y_2+1/x_2,y_1+0.3/x_2,y_2+0.8/x_3,y_1+0.3/x_3,y_2+0.8/x_3,y_1+0.8/x_3,y_2+0.8/x_3,y_1+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_2+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3,y_3+0.8/x_3$$

και με την συνεπαγωγή Mamdami:

$$\begin{split} R(x,y,z) &= 0.2/x_1, y_1, z_1 + 0.2/x_1, y_1, z_2 + 0.2/x_1y_2, z_1 + 0.2/x_1, y_2, z_2 + 0.7/x_2, y_1, z_1 + 1/x_2, y_1, z_2 + \\ &\quad + 0.3/x_2, y_2, z_1 + 0.3/x_2, y_2, z_2 + 0.7/x_3, y_1, z_1 + 0.8/x_3, y_1, z_2 + 0.3/x_3, y_2, z_1 + 0.3/x_3, y_2, z_2 \\ \Gamma \iota \alpha \, \epsilon i \sigma o \delta o \, x_2 \, \, \kappa \alpha \iota \, y_1 \, \, \gamma \iota \alpha \, X \, \kappa \alpha \iota \, Y \, \, \alpha \nu \tau i \sigma \tau o \iota \chi \alpha \, \epsilon \chi o \upsilon \mu \epsilon \, \epsilon \xi o \delta o \, 0.7/z_1 + 1/z_2. \end{split}$$