Projekt Zespołowy Etap projektu – projektowanie rozwiązania na zadaną architekturę

Autorzy: Biernacka Kamila Kania Dominik Leśniak Mateusz Maziarz Wojciech

kwiecień 2021

${\bf Streszczenie}$

Poniższe sprawozdanie jest wynikiem naszej pracy na drugim etapie projektu zespołowego z implementacji metody indeksu w architekturach GPU. Przedstawimy w nim przygotowane przez nas projekty i rysunki koncepcyjne wymaganych do zaimplementowania algorytmów.

Spis treści

1	Mn	ożenie modularne dużych liczb	3
2	Poszukiwanie relacji i faktoryzacja w bazie		3
	2.1	Szybkie potęgowanie modularne	:
		Fakoryzacja w bazie	
		Budowa relacji	
3	Eliminacja Gaussa w pierścieniu \mathbb{Z}_{p-1}		3
	3.1	ninacja Gaussa w pierścieniu \mathbb{Z}_{p-1} Algorytm Euklidesa	:
		Rozszerzony algorytm Euklidesa	

1 Mnożenie modularne dużych liczb

2 Poszukiwanie relacji i faktoryzacja w bazie

2.1 Szybkie potęgowanie modularne

Metoda indeksu wymaga obliczenia wartości typu $a^b \mod n$. Szybkie potęgowanie modularne jest prostym algorytmem pozwalającym zredukować liczbę mnożeń i dzieleń modulo z b do $O(\log b)$.

Algorithm 1: szybkie potęgowanie

```
Input: podstawa potęgi a, wykładnik potęgi b, modulnik n
Output: a^b \mod n

1 bits = to\_bin(b)
2 nbits = length(bits)
3 a = a\%n
4 result = 1
5 x = a
6 for i=0 to nbits do
7 \begin{vmatrix} & & & & & & & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

- 2.2 Fakoryzacja w bazie
- 2.3 Budowa relacji
- 3 Eliminacja Gaussa w pierścieniu \mathbb{Z}_{p-1}
- 3.1 Algorytm Euklidesa
- 3.2 Rozszerzony algorytm Euklidesa