לוגיקה הרצאה 4

סמנטיקה של פסוקי:

```
v:\{p_i|i\in\mathbb{N}\}\to\{T,F\} מתונה המשווה \overline{V}=WFF\to\{T,F\} מגדירים אם \overline{V}(p_i)=v(p_i)\;\alpha=p_i אם \overline{V}(\alpha)=TT_{\square}(\overline{V}(\beta),\overline{V}(\gamma))\;\text{tx}\;\alpha=(\beta\square\gamma) אם \overline{V}(\alpha)=TT_{\neg}(\overline{V}(\beta))\;\text{tx}\;\alpha=(\neg\beta) אם אם
```

מושגים סמנטיים:

טאוטולוגיה

הוא פסוק שמקבל ערך ${
m T}$ לכל השמה

ותירה:

פסוק שמקבל ערך F לכל השמה. מה משמעות שך $v(
ensuremath{\notred}) lpha = F$ v(lpha) = F לא בהכרח סתירה v(lpha) = F לא בהכרח טאוטולוגיה.

דוגמה:

למה:

 $\models \alpha \rightarrow \beta$ אם ורק אם $\alpha \models \beta$

הוכחה:

 $\models \alpha \to \beta$ נתון $\alpha \models \beta$ נתון \Leftarrow נבחר השמה V:

$$\overline{V}(lpha) = F$$
 , $\neg \models lpha$:1 מקרה

$$V \models \alpha \to \beta$$

$$TT_{\to}(\underbrace{\overline{V}}_{\text{F or FT or FF}}(\beta)) = T$$

$$\models \alpha \to \beta$$
 נתון :⇒
$$\alpha \models \beta$$
צ"ל צ"ל

2 מקרים:

$$\overline{V}(lpha)=T$$
 .1 מאחר ש־ eta טאוטולוגיה אז $lpha oeta$ מאחר ש־ מסקנה עפ"י י $\overline{V}(eta)=T:TT$ מסקנה עפ"י

$$\overline{V}(lpha) = F$$
 .2

אין צורך להוכיח כי ה \models מתקיים וריויאלי.

דוגמה:

X אם מספקת שמספקת אם כל אם אם גאמר או נאמר ע $X \models \beta$ נאמר מסוקית קבוצת בהינתן בהינתן eta את גם את מספקת ($lpha\in X$ מספקת את (כלומר

דוגמה:

$$\alpha \to \beta$$
 , $\alpha \models \beta$ $\{\alpha \to \beta, \alpha\} \models \beta$

למה:

$$X \models \alpha \rightarrow \beta$$
 אם ורק אם $X, \alpha \models \beta$

:סימון

$$M(\alpha)\{v|v \models \alpha\}$$
 $M(X) = \{v|v \models X\}$
 $M(\alpha) = \emptyset$ סתירה: α
 $M(\alpha) \subseteq M(\beta), \ \alpha \models \beta$

שקילות לוגית

. אוג פסוקים אותו ערך אם הם הם לוגית אם הם שקולים אותו שקולים לוגית אם אוג פסוקים $\beta,\!\alpha$

$$\overline{v}(lpha)=\overline{v}(eta)$$
 . v השמה לכל אחרות, לכל

$$\alpha \equiv \beta$$
 סימון $M(\alpha) = M(\beta)$

דוגמה לפסוקים שקולים:

- * כל הטאוטולוגיות
 - * כל הסתירות

$$(\alpha_{\wedge}(\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \beta))$$
$$(\neg(\neg\alpha)) \equiv \alpha$$

למה:

$$\models \alpha \xrightarrow{} \alpha$$
אם ורק אם $\alpha \equiv \beta$

שלמות של מערכת קשרים:

הגדרה: פסוק α מממש טבלת אמת נתונה אם טבלת האמת של α זהה לטבלה הנתונה.

 \wedge, \vee, \neg :נראה

עבור טבלת אמת עם k פסוקים אטומיים יש לה

$$TT: \{T, F\}^k \to \{T, F\}$$

דוגמה:

"קשר לוגה "רוב"

תלת־ערה(תלת מקומי?)

p_1	p_2	p_3	$\#(p_1, p_2, p_3)$	
Т	Т	Т	Т	
Т	Т	F	Т	
Т	F	Т	Т	
Т	F	F	F	
F	Т	Т	Т	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

T שורות שקבלו

$$\alpha_1 = p_1 \wedge p_2 \wedge p_3$$
 .1

$$\alpha_2 = p_1 \wedge p_2 \neg p_3$$
 .2

$$\alpha_3 = p_1 \wedge \neg p_2 \wedge p_3$$
 .3

$$\alpha_5 = \neg p_1 \wedge p_2 \wedge p_3$$
 .4

$$\alpha = \alpha_1 \vee \alpha_2 \vee \alpha_3 \alpha_5$$

:טענה

.# מממשת את טבלת האמת של lpha

F עבור טבלת אמת שבה כל השורות מחזירות

. נחזיר שמופיע בטבלה פסוק אטומי בטבלה בטבלה כאשר $p_1 \wedge \neg p_1$

$P_1 \wedge P_1 \wedge P_1$						
p_2	p_1	$?(p_1,p_2)$				
F	F	F				
F	F	F				
F	F	F				
F	F	F				
$(p_1 \wedge \neg p_1)$						

:המשך

גם מערכת קשרי שלמה $\{\land, \neg\}$

$$(\alpha \vee \beta) \equiv \neg(\neg \alpha \wedge \neg \beta)$$

מערכת קשרים שלמה $\{v,\neg\}\leftarrow(\alpha\wedge\beta)\equiv\neg(\neg\alpha\vee\neg\beta)$

מערכת קשרים שלמה $\{\neg,\leftarrow\}$

$$(\alpha \vee \beta) \equiv \neg \alpha \to \beta$$

($\alpha \vee \rho$, —	x / p
Т	T	T	T
Т	T	F	T
Т	F	T	T
F	F	F	T

הגדרה:

נגדיר קבוצה אינדוקטיבית של קבוצת המשפטים הפורמליים או הפסוקים היכיחים.

בסיס(אקסיומות[קבוצת פסוקים]): (עוזרים להוכיח/לקבל פסוקים חדשים עס' פסוקים נתונים).

כללי יצירה/פעולות

.(למעלה נתון שיכיח, גורר שלמטה בם). $\underline{lpha,lpha oeta}$

MP-Modus Promens , כלל הניתוק

קבוצות האכסיומות של תחשיב הפסוקים

:A1 תבנית ראשונה

A1 פסוק מטיפוס אכסיומה אכסיומ δ

אם קיימים פסוקים eta, lpha כך ש־

$$\delta = (\alpha \to (\beta \to \alpha)) : A1$$

:A2

:מהצורה δ

$$\delta = (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$$

 $:\!\!A3$

מהצורה δ

$$\delta = ((\neg \alpha \to \neg \beta) \to (\beta \to \gamma))$$
 הבטיס.
$$B = A_1 \cup A_2 \cup A_3$$

דוגמאות:

$$\begin{array}{c} (p_2 \rightarrow (p_1 \rightarrow p_2)): A_1 \\ (\neg \neg p_5 \rightarrow \neg p_5) \rightarrow (p_5 \rightarrow \neg p_5) \end{array}$$

3 עץ יצירה עבור אכסיומה

 A_3 האם הוא $(lpha
ightarrow eta)
ightarrow (
eg eta
ightarrow \pi lpha)$

להראות שפסוק יכיח:

להראות סדרת יצירה בקרא לה סדרת הוכחה להראות סדרת יצירה בסוק β סדרת הוכחה עבור פסוק הינה סדרה של פסוקים a_1,a_2,\dots,a_n כך ש־

$$a_b = \beta \star$$

לכל מהפעלתו. $1 \leq i \leq n$ לכל

כלל ההיסק על פסוקים קודמים בסדרה

 $?a_1$ מה יכול היות אחת אחת מהאכסיומות .\- α נכוק יכיח יכוק α