2. Второе начало термодинамики

Энтропия S как функция равновесного состояния термодинамической системы вводится на основе равенства Клаузиуса

$$\iint_{o\delta p} \frac{\delta Q}{T} = 0$$

для обратимых круговых процессов. Здесь δQ - количество теплоты, которое получает ($\delta Q > 0$) или отдает ($\delta Q < 0$) система на бесконечно малом участке кругового процесса при температуре Т.

Согласно определению разность энтропии $S_2 - S_1$ в равновесных состояниях 1 и 2 описываются выражением

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} .$$

Интеграл в правой части вычисляется для любого обратимого процесса, переводящего систему из равновесного состояния 1 в равновесное состояние 2. С помощью первого начала термодинамики интеграл в правой части можно переписать следующим образом

$$S_2 - S_1 = \int_1^2 \frac{dU}{T} + \int_1^2 \frac{p}{T} dV$$
,

где U - внутренняя энергия системы, p - давление и V - объём.

В классической термодинамике определяется только разность энтропии произвольных равновесных состояний, поэтому равновесного состояния задана с точностью до постоянной. Размерность энтропии в СИ Дж/К.

Задача №4

Определить изменение ΔS_{μ} энтропии 1 моля идеального газа при 1) изохорном, 2) изобарном, 3) изотермическом и 4) адиабатном процессах.

Решение

Задача решается на основе определения энтропии
$$S_2 - S_1 = \int\limits_1^2 \frac{\delta Q}{T} = \int\limits_1^2 \frac{dU}{T} + \int\limits_1^2 \frac{p}{T} dV \ , \tag{4.1}$$

уравнение Клапейрона - Менделеева для 1 моля идеального газа

$$pV = RT \tag{4.2}$$

и формулы, описывающей внутреннюю энергию 1 моля одноатомного идеального газа,

$$U_{\mu} = C_{\nu V} T , \qquad (4.3)$$

где $C_{\mu V} = 3R/2$ — молярная теплоёмкость идеального газа при постоянном объёме.

Изохорный процесс V = const. Из (4.1) и (4.3) следует, что 1)

$$\Delta S_{\mu} = S_{\mu 2} - S_{\mu 1} = \int_{1}^{2} \frac{dU_{\mu}}{T} = \int_{T}^{T_{2}} C_{\mu V} \frac{dT}{T} = C_{\mu V} \int_{T}^{T_{2}} \frac{dT}{T} = \frac{3}{2} R \ln \frac{T_{2}}{T_{1}} , \qquad (4.4)$$

где T_i – температура газа в i-ом состоянии, i=1,2, ...

2) Изобарный процесс p = const. Согласно (4.1) - (4.3)

$$\Delta S_{\mu} = \int_{T_{1}}^{T_{2}} C_{\mu V} \frac{dT}{T} + p \int_{V_{1}}^{V_{2}} \frac{dV}{T} = C_{\mu V} \ln \frac{T_{2}}{T_{1}} + R \int_{T_{1}}^{T_{2}} \frac{dT}{T} = C_{\mu V} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{T_{2}}{T_{1}} =$$

$$= (C_{\mu V} + R) \ln \frac{T_{2}}{T_{1}} = C_{\mu p} \ln \frac{T_{2}}{T_{1}} = \frac{5}{2} R \ln \frac{T_{2}}{T_{1}}.$$
(4.5)

Здесь $C_{\mu p}$ – молярная теплоёмкость идеального газа при постоянном давлении. В преобразованиях (4.5) использовано соотношение

$$dV = \frac{R}{p}dT ,$$

которое получается для изобарного процесса из уравнения Клапейрона – Менделеева (4.2).

3) Изотермический процесс T = const. Используя (4.1) и (4.2), находим

$$\Delta S_{\mu} = \int_{V_1}^{V_2} \frac{p}{T} dV = \int_{V_1}^{V_2} \frac{RT}{V} dV = RT \int_{V_1}^{V_2} \frac{dV}{V} = RT \ln \frac{V_2}{V_1} , \qquad (4.6)$$

где T - температура изотермического процесса и V_i — объем газа в i-ом состоянии , i=1,2 .

4) Адиабатный процесс $\delta Q = 0$. По определению энтропии и адиабатного процесса

$$\Delta S_{\mu} = \int_{1}^{2} \frac{\delta Q}{T} = 0 .$$

Otbet: 1) $\Delta S_{\mu} = \frac{3}{2} R \ln \frac{T_2}{T_1}$, 2) $\Delta S_{\mu} = \frac{5}{2} R \ln \frac{T_2}{T_1}$, 3) $\Delta S_{\mu} = RT \ln \frac{V_2}{V_1}$, 4) $\Delta S_{\mu} = 0$.

Задача №5

Определить изменение ΔS энтропии 1 моля вещества при 1) плавлении, если удельная теплота плавления λ , температура плавления T_{λ} и 2) испарении, если удельная теплота испарения (парообразования) r, температура кипения T_r . Молярная масса вещества μ .

Решение

Задача решается на основе формул для приращения энтропии

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} , \qquad (5.1)$$

молярной теплоты плавления

$$\lambda_{\mu} = \mu \cdot \lambda \tag{5.2}$$

и молярной теплоты испарения (парообразования)

$$r_{\mu} = \mu \cdot r \quad . \tag{5.3}$$

1) Плавление происходит при постоянной температуре $T = T_{\lambda}$, поэтому из (5.1) и (5.2) следует, что

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} = \frac{1}{T_{\lambda}} \int_{1}^{2} \delta Q = \frac{\mu \cdot \lambda}{T_{\lambda}} . \qquad (5.4)$$

2) Кипение происходит при постоянной температуре $T = T_r$, поэтому из (5.1) и (5.2) получаем, что

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} = \frac{1}{T_r} \int_{1}^{2} \delta Q = \frac{\mu \cdot r}{T_r} . \qquad (5.5)$$

Оба процесса протекают при получении веществом теплоты извне, поэтому энтропия увеличивается.

OTBET: 1)
$$\Delta S = \frac{\mu \cdot \lambda}{T_{\lambda}}$$
, 2) $\Delta S = \frac{\mu \cdot r}{T_{r}}$.

Залача №6

Два тела, имеющие массы m_1 и m_2 , температуры T_1 и $T_2 < T_1$ и одинаковую удельную теплоёмкость c, помещены в теплоизолирующую оболочку. Определить равновесную температуру T_p тел и изменение ΔS суммарной энергии системы при установлении равновесия.

Решение

Начальное состояние тел не является равновесным, поскольку $T_1 \neq T_2$. За счет теплопроводности при непосредственном контакте тел или лучистого теплообмена тела переходят в равновесное состояние, где они имеют одинаковую температуру T_p .

Расчеты выполняются на основе закона сохранения энергии и определения энтропии.

Если температура тела 1 уменьшилась от T_1 до T_p , то тело 1 передало телу 2 количество теплоты

$$Q_1 = -\Delta U_1 = m_1 c (T_1 - T_p) , \qquad (6.1)$$

которое пошло на увеличение, $\square U_2$ внутренней энергии этого тела

$$Q_1 = \Delta U_2 = m_2 c (T_p - T_1) . (6.2)$$

Из (6.1)и (6.2) следует, что равновесная температура двух тел

$$T_2 < T_p = \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} < T_1 . {(6.3)}$$

Изменение энтропия тела 1 в случае обратимого охлаждения от T_1 до T_p описывается выражением

$$\Delta S_1 = \int_{1}^{2} \frac{\delta Q}{T} = \int_{T_1}^{T_p} \frac{m_1 c}{T} dT = m_1 c \int_{T_1}^{T_p} \frac{dT}{T} = m_1 c \ln \frac{T_p}{T_1} < 0 . \tag{6.4}$$

Изменение энтропия тела 2 в случае обратимого нагревания от T_2 до T_p определяется формулой

$$\Delta S_2 = \int_{1}^{2} \frac{\delta Q}{T} = \int_{T_2}^{T_p} \frac{m_2 c}{T} dT = m_2 c \int_{T_2}^{T_p} \frac{dT}{T} = m_2 c \ln \frac{T_p}{T_2} > 0 .$$
 (6.5)

Полное изменение энтропии двух тел

$$\Delta S = \Delta S_1 + \Delta S_2 = c(m_1 \ln \frac{T_p}{T_1} + m_2 \ln \frac{T_p}{T_2}) . \tag{6.6}$$

Поскольку в случае $T_1 = T_2 = T_p$ $\Delta S = 0$ и $\partial \Delta S / \partial T_1$ при $T_1 > T_2$, то $\Delta S > 0$ в полном соответствии со вторым началом термодинамики.

Otbet:
$$T_p = \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$$
, $\Delta S = c(m_1 \ln \frac{T_p}{T_1} + m_2 \ln \frac{T_p}{T_2})$.