Дільники нуля та одиниці

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

15 лютого 2023

FACULTY OF MECHANICS AND MATHEMATICS

Дільники нуля

Нехай *R* — нетривіальне кільце з одиницею.

Означення

Ненульовий елемент $a \in R$ називається *правим дільником нуля*, якщо для нього існує такий ненульовий елемент $b \in R$, що ba = 0.

Означення

Ненульовий елемент $a \in R$ називається *лівим дільником нуля* , якщо для нього існує такий ненульовий елемент $b \in R$, що ab = 0.

15 лютого 2023

Дільники одиниці

Означення

Ненульовий елемент $a \in R$ називається *правим дільником одиниці*, якщо для нього існує такий ненульовий елемент $b \in R$, що ba = 1.

Означення

Ненульовий елемент $a \in R$ називається *лівим дільником одиниці*, якщо для нього існує такий ненульовий елемент $b \in R$, що ab = 1.

Означення

Елемент називається *дільником одиниці*, або *оборотним*, якщо він є і лівим, і правим дільником одиниці.

Приклади: дільники нуля та одиниці в \mathbb{Z} та \mathbb{Z}_n

Приклад

- lacktriangle В \mathbb{Z}_{12} дільниками нуля ϵ $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{6}$, $\overline{8}$, $\overline{9}$, $\overline{10}$; дільниками одиниці ϵ $\overline{1}$, $\overline{5}$, $\overline{7}$, $\overline{11}$.
- ② В \mathbb{Z} дільників нуля немає, дільники одиниці ± 1 .

Приклади: дільники нуля та одиниці в \mathbb{Z}_n

Твердження

У кільці \mathbb{Z}_n ненульовий елемент α є дільником нуля \Leftrightarrow $(\alpha, n) \neq 1$.

Доведення.

```
(\Rightarrow) a — дільник нуля \Rightarrow \exists b \in \mathbb{Z}_n, b \neq 0 : ab = 0 \Rightarrow n \mid ab. Позначимо d_1 = (a, n), d_2 = (b, n): a = a_1d_1, b = b_1d_2, (a_1, n) = 1, (b_1, n) = 1 \Rightarrow ab = a_1d_1b_1d_2 та (a_1b_1, n) = 1 \Rightarrow n \mid d_1d_2. Оскільки d_2 \leq b < n, то d_1 > 1. (\Leftarrow) (a, n) = d > 1. Покладемо b = \frac{n}{d} \neq 0: ab = 0.
```

Алгебра і теорія чисел Дільники нуля та одиниці 15 лютого 2023

Приклади: дільники нуля та одиниці в \mathbb{Z}_n

Твердження

У кільці \mathbb{Z}_n ненульовий елемент α є дільником одиниці \Leftrightarrow $(\alpha, n) = 1$.

Доведення.

① (\Rightarrow) α — дільник одиниці \Rightarrow $\exists b \in \mathbb{Z}_n, b \neq 0 : ab = 1.$ Якщо d = (a, n), то $d \mid (ab - 1)$, а тому d = 1. (\Leftarrow) $(a, n) = 1 \Rightarrow \exists x, y \in \mathbb{Z} : ax + ny = 1 \Rightarrow ax = 1$ в \mathbb{Z}_n .

Приклади: дільники нуля та одиниці в \mathbb{Z}_n

Твердження

Кожний ненульовий елемент кільця \mathbb{Z}_n є або дільником нуля, або дільником одиниці.

Приклади: дільники нуля та одиниці в $M_n(R)$

Приклад

Матриці $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ та $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ є дільниками нуля, бо $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Матриця $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ є дільником одиниці.

Твердження

В кільці $M_{\it D}(R)$ дільниками нуля є вироджені матриці, дільниками одиниці невироджені матриці.

Мультиплікативна група кільця

Твердження

Позначимо через R^* множину всіх оборотних елементів кільця з одиницею R. Множина R^* є групою відносно множення.

Доведення.

 $R \neq \emptyset$, бо $1 \in R^*$. Нехай $a, b \in R^*$:

$$abb^{-1}a^{-1} = 1 \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \Rightarrow ab \in R^*$$

 $\Rightarrow R^*$ — група.

$$aa^{-1} = a^{-1}a = 1 \implies a^{-1} \in R^*$$

Мультиплікативна група кільця

Означення

Група R^* називається *мультиплікативною* групою кільця R.

Приклади

Приклад

- **3** Нехай \mathbb{k} поле. $(M_n(\mathbb{k}))^* = GL_n(\mathbb{k})$.

Твердження

- 🔾 Правий (лівий) дільник одиниці не може бути лівим (правим) дільником нуля.
- Правий (лівий) дільник нуля не може бути лівим (правим) дільником одиниці.

Доведення.

● Нехай α — правий дільник одиниці $\Rightarrow \exists b \in R, b \neq 0$: $b\alpha = 1$. Припустимо, що ac = 0 ($a \neq 0, c \neq 0$). Тоді

$$bac = b(ac) = c$$

$$bac = b(ac) = 0$$

$$\Rightarrow c = 0$$

$$444$$

② Нехай α — правий дільник нуля $\Rightarrow \exists b \in R$: $b\alpha = 0$. Припустимо, що $\alpha c = 1$. Тоді

$$bac = (ba)c = 0$$

$$bac = \Rightarrow b = 0$$

$$= b(ac) = b$$

Нільпотентні елементи

Означення

Елемент $\alpha \in R$ називається *нільпотентним*, якщо $\alpha^m = 0$ для деякого $m \in \mathbb{N}$. Найменше таке m називається *класом нільпотентності*.

Приклад

- **○** Нільпотентні елементи кільця \mathbb{Z}_{12} : $\overline{0}$ та $\overline{6}$.
- ② Нільпотентні елементи в кільці $M_n(k)$: матриці, всі власні числа яких дорівнюють нулю.

Нільпотентні елементи в \mathbb{Z}_n

Твердження

Елемент $\alpha \in \mathbb{Z}_n$ є нільпотентним $\Leftrightarrow \alpha$ ділиться на кожний простий дільник числа n.

Доведення.

Нехай $n = p_1^{k_1} \dots p_s^{k_s}$ — канонічний розклад числа n.

(⇒)
$$a \in \mathbb{Z}_n$$
 — нільпотентний ⇒ $\exists k \in \mathbb{N}$: $n \mid a^k$. Тоді

$$n \mid a^k \Rightarrow p_i \mid a^k \ (i = 1, ..., s) \Rightarrow p_i \mid a \ (i = 1, ..., s) \Rightarrow p_1 ... p_s \mid a.$$

(
$$\Leftarrow$$
) Нехай $p_i | a, i = 1, \dots, s$. Покладемо $k = \max\{k_1, \dots, k_s\}$. Тоді $n | a^k \Rightarrow a$ — нільпотентний.