3. Reactions of carbonyl groups

3.1 Addition reaction

3. Reactions of carbonyl groups Addition reaction

"carbonyl" functional group

 One of the most common reaction themes of a carbonyl group is addition of a nucleophile to form a tetrahedral carbonyl addition compound.

Reaction Themes

- A second common theme is reaction with a proton or other
 Lewis acid to form a resonance-stabilized cation.
 - Protonation increases the electron deficiency of the carbonyl carbon and makes it more reactive toward nucleophiles.

$$R = \frac{\text{fast}}{R} + \frac{\text{R}}{R} = \frac{\text{Fast}}{R} = \frac{\text{Fast}}{R}$$

Addition of C Nucleophiles

- Addition of carbon nucleophiles is one of the most important types of nucleophilic additions to a C=O group.
- A new carbon-carbon bond is formed in the process.
- Four common types of carbon nucleophiles are:

RMgX RLi RC≡C: C≡N:
A Grignard An organolithium An alkyne Cyanide ion reagent reagent anion

Hydrates

- Addition of water (hydration) to the carbonyl group of an aldehyde or ketone gives a geminal diol, commonly referred to a gem-diol.
- A gem-diol is also referred to as a hydrate.

Aldehydes and Ketones:

Reaction with Water produces a Hydrate

$$R \stackrel{\text{OH}}{\longleftarrow} R' \stackrel{\text{H}^+}{\longleftarrow} R \stackrel{\text{OH}}{\longleftarrow} R' \text{ (geminal diol)}$$

Acid-Catalyzed Addition of water

$$R \stackrel{OH}{\longrightarrow} R' \stackrel{OH}{\longleftarrow} R \stackrel{OH}{\longrightarrow} R' \qquad \begin{array}{c} \text{hydrate} \\ \text{(geminal diol)} \end{array}$$

Base-Catalyzed Addition of water

Acid-Catalyzed Hydration of Aldehydes and Ketones

Step 1. Protonation of carbonyl

Both resoanace structures can be attacked by the water.

Step 2. Nucleophilic Addition

Base-Catalyzed Hydration of Aldehydes and Ketones

Hydrates

 When formaldehyde is dissolved in water at 20°C, the carbonyl group is more than 99% hydrated.

 The equilibrium concentration of a hydrated ketone is considerably smaller.

Nucleophilic Addition: Hydration

- Aldehydes and ketones react with water to yield 1,1-diols or geminal diols
- Hydration is reversible
- Equilibrium depends on structure of carbonyl compound

Acetone (99.9%)

Acetone hydrate (0.1%)

Hemi-acetals

- Addition of one molecule of alcohol to the C=O group of an aldehyde or ketone gives a hemiacetal.
- Hemiacetal: A molecule containing an -OH and an -OR or -OAr bonded to the same carbon.

Hemiacetals are only minor components of an equilibrium mixture,
 except where a five- or six-membered ring can form.

Hemiacetals

 Hemiacetals are only minor components of an equilibrium mixture, except where a five- or six-membered ring can form.

Hemiacetals

- Formation of a hemiacetal is base catalyzed
 - Step 1: Proton transfer from HOR gives an alkoxide.

Step 2: Attack of RO⁻ on the carbonyl carbon.

 Step 3: Proton transfer from the alcohol to O⁻ gives the hemiacetal and generates a new base catalyst.

Hemiacetals

- Formation of a hemiacetal is also acid catalyzed.
 - Step 1: Proton transfer to the carbonyl oxygen.

Step 2: Attack of ROH on the carbonyl carbon.

Step 3: Proton transfer from the oxonium ion to A⁻ gives the hemiacetal and generates a new acid catalyst.

$$OH$$
 CH_3 - C - CH_3 - C - CH_3 + H-A

 O - O

Cyanohydrin

- HCN adds to the C=O group of an aldehyde or ketone to give a cyanohydrin.
- Mechanism of cyanohydrin formation

2-Hydroxypropanenitrile (Acetaldehyde cyanohydrin)

Step 1: Nucleophilic addition of cyanide

$$H_3C$$

$$C = O: + C = N:$$

$$H_3C$$

$$C = O: + C = N:$$

$$H_3C$$

$$C = N:$$

 Step 2: Proton transfer gives the cyanohydrin and regenerates cyanide ion nucleophile.

$$H_3$$
 C $C \equiv N$: H_3 C $C \equiv N$: H_3 C $C \equiv N$: H_3 C $C \equiv N$:

Cyanohydrins

Acid-catalyzed dehydration gives an alkene.

OH acid
$$CH_3 CHC \equiv N \xrightarrow{catalyst} CH_2 = CHC \equiv N + H_2 O$$
2-Hydroxypropanenitrile
(Acetaldehyde cyanohydrin)

Propenenitrile
(Acrylonitrile)

Catalytic reduction of the cyano group gives a 1° amine.

- O Given the difference in electronegativity between carbon and magnesium , the C-Mg bond is polar covalent, with C δ and Mg $^{δ+}$.
 - A Grignard reagent behaves as a carbanion.
- Carbanion: An anion in which carbon has an unshared pair of electrons and bears a negative charge.
 - A carbanion is a good nucleophile and adds readily to the carbonyl group of aldehydes and ketones.
 - Addition of a Grignard reagent to formaldehyde followed by treatment with H₃O⁺ gives a 1° alcohol.

R, R' = H, alkyl, aryl R" = alkyl, aryl

•Carbon A to Oxygen π bond breaks

The Mechanism of Grignard reaction with an Aldehyde

Addition to any other RCHO gives a 2° alcohol.

Addition to a ketone gives a 3° alcohol.

Problem: 2-Phenyl-2-butanol can be synthesized by three different combinations of a Grignard reagent and a ketone. Show each combination.

3.2 Addition-Elimination Reactions

• Ammonia, 1° aliphatic amines, and 1° aromatic amines react with the C=O group of aldehydes and ketones to give imines (Schiff bases).

CH₃ CH + H₂ N
$$\longrightarrow$$
 CH₃ CH=N \longrightarrow + H₂ C
Acetaldehyde Aniline An imine (a Schiff base)

Cyclohexanone Ammonia
$$H_3^+$$
 $H_2^ H_2^ H_3^ H_2^ H_2^-$

Formation of an imine occurs in two steps:

Step 1: Carbonyl addition followed by proton

Step 2: Loss of H₂O and proton transfer

 A value of imines is that the carbon-nitrogen double bond can be reduced to a carbon-nitrogen single bond.

$$\bigcirc = 0 + H_2N - \bigcirc \frac{H^+}{-H_2O}$$

Cyclohexanone Cyclohexylamine

$$\begin{bmatrix}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$$

• Rhodopsin (visual purple) is the imine formed in the eye between 11-*cis*-retinal (vitamin A aldehyde) and the protein opsin.

 Secondary amines react with the C=O group of aldehydes and ketones to form enamines.

 The mechanism of enamine formation involves formation of a tetrahedral carbonyl addition compound followed by its acid-catalyzed dehydration.

• The carbonyl groups of aldehydes and ketones react with hydrazine in a manner similar to their reactions with 1° amines.

Reagent, H ₂ N-R	Name of Reagent	Name of Derivative Formed
H ₂ N-OH	Hydroxylamine	Oxime
H ₂ N-NH-	Phen ylh yd razine	Ph enylhyd razone
H_2 N-NH NO ₂ NO ₂	2,4-Dinitrophenyl- hydrazine	2,4-Dinitrop henylhy drazon e
O H ₂ N-NHCNH ₂	Semicarbazide	Semicarbazone

Wittig Reaction

 The Wittig reaction is a very versatile synthetic method for the synthesis of alkenes from aldehydes and ketones.

Phosphonium Ylides

- Phosphonium ylides are formed in two steps:
- Step 1: Nucleophilic displacement of iodine by triphenylphosphine.

$$Ph_3P$$
 + CH_3 + S_N^2 > Ph_3 P- CH_3 : I

Triphenylphosphine Methyltriphenylphosphonium iodide

Step 2: Treatment of the phosphonium salt with a very strong base,
 such as BuLi, NaH, or NaNH₂

$$CH_3CH_2CH_2^-$$
 Li $^+$ H- CH_2 - $^+$ PPh $_3$ I $^ ^-$ H Butyllithium
$$CH_3CH_2CH_2CH_3 + {^+}CH_2$$
- $^+$ PPh $_3$ + LiI Butane A phosphonium ylide

Wittig Reaction-mechanism

- Phosphonium ylides react with aldehydes and ketones to give alkenes.
 - Step 1: Nucleophilic addition of the ylide to the electrophilic carbonyl carbon.

Step 2: Decomposition of the oxaphosphatane.

Wittig Reaction-examples

Examples:

Ph.
$$Ph_3$$
 + Ph_3 + Ph_3 + Ph_3 + Ph_4 + Ph_3 P= 0

Phenylacetaldehyde

(Z)-1-Phenyl-2-
butene
(87%)

(E)-1-Phenyl-2-
butene
(13%)

Ph
$$\rightarrow$$
 Ph₃ P \rightarrow OEt \rightarrow Ph \rightarrow OEt \rightarrow Ph₃ P=O

Phenyl-

acetaldehyde

Ethyl (E)-4-phenyl-2-butenoate (only the E isomer is formed)

Acetals

- Hemiacetals react with alcohols to form acetals.
- Acetal: A molecule containing two -OR or -OAr groups bonded to the same carbon.

OEt + H-OEt
$$\xrightarrow{H^+}$$
 OEt + H₂O

A hemiacetal A diethyl acetal

Acetals

Step 1: Proton transfer from HA gives oxonium ion.

Step 2: Loss of water gives resonance-stabilized cation.

$$H_{O} \stackrel{+}{O} H$$
 $R \stackrel{+}{C} \stackrel{+}{O} CH_3 \longrightarrow R \stackrel{+}{C} \stackrel{-}{O} CH_3 + H_2 \stackrel{+}{O} H$

A resonance-stabilized cation

Loss of water gives resonance-stabilized cation.

Step 3: Reaction of the cation with methanol gives the conjugate acid of the acetal.

$$CH_3$$
-OH + R-C=OCH₃

H

A protonated acetal

Step 4: Proton transfer to A⁻ gives the acetal and generates a replacement acid catalyst.

 With ethylene glycol and other glycols, the product is a fivemembered cyclic acetal.

Ester hydrolysis and formation

- Esters occur in nature, low molecular weight esters are fairly volatile
- possess pleasing odors
- prepared using

1. From carboxylic acids

- Alcohols and carboxylic acids react in the presence of an acid catalyst to form an ester and water
- reaction is called as the Fischer esterification

Ester hydrolysis and formation

2.From acyl chloride

- reaction of alcohols with acyl chlorides by nucleophilic acyl substitution yields esters
- in the presence of a weak base such as pyridine

3. From anhydrides of carboxylic acids

 The transfer of an acyl group from an acid anhydride to an alcohol is a common method used for the preparation of esters.

a catalyst, which is normally an acid (H2SO4) or base (pyridine).

Ester hydrolysis and formation

Ester hydrolysis

- catalyzed either by using acids or by bases
- Acid catalyzed hydrolysis is considered as the reverse of the Fischer esterification
- Base catalyzed hydrolysis is irreversible

- The treatment of an acyl chloride with an appropriate nucleophile may lead to an acid anhydride, an ester, an amide and carboxylic acid.
- nucleophilic acyl substitution follows a two-step mechanism and involves the formation of a tetrahedral intermediate.

1. Reactions with carboxylic acids

- reaction of acyl chlorides with carboxylic acids yields an acid anhydride.
- pyridine is normally added as a catalyst.
- The base also neutralizes the hydrogen chloride formed.

example

O O O
$$\parallel$$
 CH₃(CH₂)₅C-CI + CH₃(CH₂)₅COOH \longrightarrow CH₃(CH₂)₅ \longrightarrow CH₃(CH

2. Reaction with alcohols

- The reaction of acyl chlorides with alcohols gives esters.
- The reaction is typically carried out in the presence of small amount of pyridine.

O

R—C—CI + R'—OH

R—C—O—R' + HCI

O

$$C_6H_5C$$
-CI + (CH₃)₃-C-OH

Benzoyl

Chloride

O

 C_6H_5C -CI

 C_6H_5

3. Reaction with ammonia and amines

- The reaction of acyl chlorides with ammonia and amines leads to the formation of amides.
- A base such as NaOH is normally added to neutralize the hydrogen chloride produced.

$$R - C - CI + R_2NH - NaOH - R - C - NR_2$$
 acid chloride amime amide

Example

$$C_6H_5C$$
—CI + NH $NaOH$ NaO

4. Hydrolysis of acid chloride

- hydrolysis of acyl chlorides yields carboxylic acids
- In basic medium, the product acid is converted to its carboxylate salt.

- The nucleophilic substitution in acid anhydrides involves cleavage of C-O bond between central oxygen and one of the carbonyl groups.
- The result is that one acyl group is transferred to an attacking nucleophile; whereas, the other acyl group retains its single bond to oxygen and becomes the acyl group of a carboxylic acid

1. Reaction with alcohols

- leads to the formation of esters.
- The catalyst used is pyridine or small amount of acid
- An acyl group of acetic anhydride is incorporated into the ester whereas the other becomes the acyl group of an acetic acid molecule.

2. Reaction with ammonia and amines

- The reaction of acid anhydrides with ammonia or amines gives amides.
- the reaction requires two mole equivalents of amine.
- One of the acyl groups of acetic anhydride is incorporated into the amide
- the other become s the acyl group of the amine salt of acetic acid

3. Hydrolysis

Acid anhydrides on reaction with water yields two moles of a carboxylic acid.

1. Hydrolysis

hydrolysed by acid, alkali and even by water.

O O
$$CH_3 - C - NH_2 + H_2O \longrightarrow CH_3 - C - OH + NH_3$$

• If hydrolysis is carried out in acidic medium, the amine formed is protonated giving an ammonium ion.

• Whereas in basic medium, the carboxylic acid gets deprotonated, and a carboxylate ion is formed.

2. Reduction

- The reduction of amides with different reducing agents like $LiAlH_4$ in ether, $NaBH_4$ in $AlCl_3$ and B_2H_6 in THF give amines along with water.
- Thus >C=O group is reduced to -CH₂.

3. Reaction with HNO₂

 treatment of amides with nitrous acid gives carboxylic acids along with nitrogen gas and water.

O O
$$\parallel$$
 CH₃-C-NH₂ + HNO₂ \longrightarrow CH₃ \longrightarrow CH₃ \longrightarrow CH + H₂O + N₂

4. Dehydration

 Loss of water molecule occurs in presence of P₂O₅ and nitriles are produced

$$P_2O_5$$
R-C-NH₂ \longrightarrow CH₃-C=N + H₂C

3.3 Enolization -ketonization

Enolization - ketonization

Hydrogens alpha to a carbonyl group are more acidic than hydrogens of alkanes, alkenes, and alkynes but less acidic than the hydroxyl hydrogen of alcohols

Type of Bond	рKa
CH ₃ CH ₂ O-H	16
O	
CH ₃ CCH ₂ -H	20
CH ₃ C≡C-H	25
$CH_2 = CH-H$	44
CH ₃ CH ₂ -H	51

Enolization - ketonization

- α -Hydrogens are more acidic because the enolate anion is stabilized by:
 - 1. Delocalization of its negative charge.
 - 2. The electron-withdrawing inductive effect of the adjacent electronegative oxygen

$$CH_3$$
- C - CH_2 - H +: A CH_3 - C - CH_2 CH_3 - C - CH_2 + H-A Resonance-stabilized enolate anion

keto-enol tautomerism

- keto-enol tautomerism refers to a chemical equilibrium between a keto form (a ketone or an aldehyde) and an enol (an alcohol).
- The keto and enol forms are said to be tautomers of each other.

Keto-Enol Tautomerism

Electrophilic!

 reacts with nucleophiles at carbonyl carbon

- acidic at α−carbon
- hydrogen bond acceptor

Nucleophilic!

- reacts with electrophiles
- at α -carbon
- •acidic at oxygen (○−H)
- hydrogen bond donor and acceptor
- Equilibrium between isomers (not resonance)
- Under most conditions, keto form is favored (6600:1 for acetone)
- •Important for aldehydes, ketones, but not so much for carboxylic acids, esters and amides under normal conditions (>10 million : 1 keto: enol)

A)
$$R \downarrow R'$$
 $R' \downarrow R'$ $R' \downarrow R'$ enol

Mechanism with acid catalysis:

Mechanism with base catalysis:

Which of the following is a keto-enol tautomeric pair?

 Problem: Select keto enol tautomer pairs among the following

2)

Enolization - ketonization

Protonation of the enolate anion on oxygen gives the enol form;
 protonation on carbon gives the keto form.

$$CH_{3}-C-CH_{2} \longrightarrow CH_{3}-C=CH_{2}$$

$$Enolate anion$$

$$H-A \longrightarrow CH_{3}-C=CH_{2} + A$$

$$CH_{3}-C=CH_{2} + A$$

$$Keto form Enol form$$

Aldol and related condensation

- aldehyde or ketone that has a hydrogen next to the carbonyl group, can form an enolate in basic solution
- the enolate can react by nucleophilic addition at the carbonyl group of another molecule.
- is known as the Aldol Condensation
- The product is called an aldol.

$$CH_{3}CH=O \xrightarrow{OH} CH_{2}CH=O \xrightarrow{CH_{2}CH=O} CH_{2}CH-O$$

$$CH_{3}CH=O \xrightarrow{CH_{2}CH=O} CH_{3}CH-O \xrightarrow{CH_{2}CH=O} CH_{2}CH=O$$

$$CH_{2}CH=O \xrightarrow{CH_{2}CH=O} an aldol$$

Aldol and related condensation

Example

Acid catalyzed aldol condensation

How it works:

Aldol condensation and related reactions Alkylation at alpha carbon

- When strong anhydrous bases such as sodium hydride, sodamide or lithium diethylamide $LiN(C_2H_5)_2$, are used to prepare the enolate anions at low temperatures,
- The resulting enolate reacts very slowly with carbonyl groups and can be used as nucleophiles in the $S_N 2$ reaction with primary alkyl halides.

- In the resonance stabilized enolate, a negative charge exists on both a carbon and an oxygen. Both sites are possible nucleophiles
- but the carbon nucleophile predominates, but minor products from O-alkylation are found.

$$\begin{array}{c|c}
CH_{3}I & \longrightarrow & CH_{3}I \\
\hline
CH_{3}I & \longrightarrow & CH_{3}I
\end{array}$$

$$\begin{array}{c|c}
CH_{3}I & \longrightarrow & CH_{3}I \\
\hline
major & minor
\end{array}$$

Aldol and related condensation

Claisen Condensation

- Esters, like aldehydes and ketones, give an aldol-type reaction
- hydrogen of the ester is removed by base to give the enolate.
- The resulting product is a β-ketoester.
- The reaction is known as the Claisen condensation.

Examples of Claisen Condensation Reaction

A. General Claisen Condensation Reaction

ChemistryLearner.com

The Claisen Condensation

Specific Example:

CH₃

Ester enolizable (2 molar equivalents)

of base)

NaOCH₂CH₃

CH₃CH₂OH

solvent

then mild
acid quench

 (H^+)

(1 molar equivalent

Claisen condensation product

a "beta-keto" ester, since the ketone is 2 carbons away from the ester carbonyl

Bonds

Formed

- If two different esters are used, the reaction is called a "crossed" Claisen condensation
- If the two esters are attached through a carbon chain, an intramolecular reaction is possible, which is often called the "Dieckmann condensation".

Bonds

Broken

С-Н

The Mechanism of Claisen Condensation

The β -keto ester has a very acidic proton which is removed by the base. Therefore, an acidic workup is needed.

a β-keto ester

A "Crossed" Claisen Condensation Joins Two Different Esters

Crossed Claisen Reaction with Ketones using Ethyl Formate

Aldol and related condensation The Michael Reaction

Enolate Addition

- Enolates may also be alkylated with α,β -unsaturated carbonyl substrates.
- The enolate adds in the 1,4 fashion to give a unit extended by three carbon atoms in a process known as the Michael reaction.
- Many α,β -unsaturated carbonyl systems may be prepared by the dehydration of aldol products.

Step 1: Deprotonation (enolate formation)

O H → A Na[⊕] ⊖OH Step 2: 1, 4-addition

. Na[⊕]

Step 3: Protonation

Bonds formed

A 0-1

C C-C

E C-H

Bonds Broken

B C-H

D C - C(x)

F 0-H

@ Byjus.com

Michael Addition Mechanism

Conjugate addition

$$protonation \qquad H_3O^+$$
Note: KET= keto enol tautomer

$$KET$$

$$KET$$

$$OH$$