Propositional Logic Lecture 2

Hadjila Fethallah
Associate Professor at the
Department of Computer Science
fethallah.hadjila@univ-tlemcen.dz

Proof Theory

- The purely semantic approach based on model searching - is not practical
- To verify that A |= B, we must:
 - Find all models of A.
 - Check if these models are also models for B
- If A contains n atomic propositions then, it is necessary browse 2ⁿ interpretations (the cost is exponential and not practical)
- Solution:
 - Possibility of using a syntactic approach
 - This means that it is only permitted to use inference rules and axioms Mathematical logic L2 2

Formal system (proof system)

- A proof system (or axiomatic system) is a quadruplet (V, F, A, RI) such that:
- V is a countable set of symbols
- F is a subset of V* called set of formulas
- A is a subset of F called a set of axioms
- RI is a subset of F called a set of inference rules
- A rule of inference is an implication that is always true
- An axiom is a valid formula
- Examples :
- \blacksquare Axiom : $(p \rightarrow (q \rightarrow p))$
- modus ponens (RI): p,p → q

Inference Rules (Examples)

Modus Ponens: $\{P \rightarrow Q, P\} \vdash Q$

Modus Tollens: $\{P \rightarrow Q, Not(Q)\} \vdash Not(P)$

Syllogism: $\{P \rightarrow Q, Q \rightarrow R\} \vdash P \rightarrow R$

Demonstration (proof)

- A demonstration in a formal system S, is a sequence of expressions A1,...An, such that:
- Each Ai is either:
 - An axiom of S
 - Or a consequence of the previous expressions, generated with one of the inference rules
- A theorem of S is the last expression of the demonstration
- ■We note it as : —An

Deductibility

- A given formula A is deductible from the set of hypotheses H, in a formal system S iff:
- There is a finite sequence of expressions A1,...An, such that , An=A, and for all i∈ {1,...,n}, Ai is created with one of the following scenarios:
- Ai is an axiom of S
- Ai is a consequence of the previous expressions, generated with one of the inference rules
- Ai ∈ H
- We note the relationship as: H |— An

Hilbert style system

- Classical propositional logic contains many proof systems, we cite the example of Łukasiewicz formal system:
- ■L1 ($V=\{P \cup \{\neg, \rightarrow\}\}, F, \{A1,A2,A3\}, MP$)
- \blacksquare A1: (A \rightarrow (B \rightarrow A))
- ■A2: $((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$
- \blacksquare A3: $((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$
- Inference rule:
- \blacksquare MP: A, (A \rightarrow B) |— B

Example of proof

■Is $P \rightarrow P$ provable?

1.
$$((P \rightarrow ((P \rightarrow P) \rightarrow P)) \rightarrow ((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P)))$$
 by Ax2
2. $(P \rightarrow ((P \rightarrow P) \rightarrow P))$ by Ax1
3. $((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P))$ from 2, 1 by MP
4. $(P \rightarrow (P \rightarrow P))$ Ax1
5. $(P \rightarrow P)$ from 4, 3 by MP

Example of proof

■ Can we prove $P \rightarrow R$ from $\{P \rightarrow Q, Q \rightarrow R\}$?

Proof of:
$$(P \rightarrow Q), (Q \rightarrow R) \vdash_{M} (P \rightarrow R)$$
:

1.
$$(P \rightarrow Q)$$

2.
$$(Q \rightarrow R)$$

3.
$$((Q \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R)))$$

4.
$$(P \rightarrow (Q \rightarrow R))$$

5.
$$((P \rightarrow (Q \rightarrow R) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)))$$

6.
$$((P \rightarrow Q) \rightarrow (P \rightarrow R))$$

7.
$$(P \rightarrow R)$$

Resolution method

- The resolution inference rule is invented by Robinson in 1965.
- All formulas of the resolution rule are under the conjunctive normal form CNF
- \blacksquare E.g., $(A \lor B)$, $(B \lor C \lor D)$
- **■** Unitary resolution rule:
- 11 ∨... ∨ lk, m
- L1 ∨ ... ∨ li-1 ∨li+1 ∨ ... ∨ lk
- With li and m are the complementary (conflictual) literals. P1.3 ∨ P2.2 P2.2

Example:

Resolution rule

- We assume that li et mr are the conflictual literals
- The result is called resolvent
- \blacksquare I1 $\lor ... \lor$ I k, m1 $\lor ... \lor$ mi
- I1∨ ...∨ Ii-1∨ Ii+1∨ ... ∨ Ik∨ m1∨ ...∨ mr-1∨mr+1 ∨...∨ mi
- Example
- \blacksquare C1 = (p V q V¬r V s)
- \blacksquare C2 = (q $\lor \neg p \lor t$)
 - Resolution over p and ¬p
- Resolvent:
- \blacksquare (q $\vee \neg r \vee s \vee q \vee t$)

Generalized Resolution rule

- It operates as the previous rule but it also removes (factorizes) the multiple copies of the same literal.
- Example (factoring)
- \blacksquare C1 = (p V q V¬r V s)
- $C2 = (q \lor \neg p \lor t)$

Resolution over p and ¬p and factoring of q.

- Resolvent :
- \blacksquare (¬r \lor s \lor q \lor t)
- This rule is correct (sound) and refutation complete.

Refutation principle

- To prove the clause A from a set of clauses H, it suffices to prove that H and A are unsatisfiable (inconsistent), and this means that □ can be derived from H and ¬ A
- To prove H |— A ,it suffices to prove H \cup {¬ A } |— \square .

Resolution Algorithm

How do we prove $H \vdash A$?

Algorithm

- H1 is first obtained by replacing the formulas of H by their CNF.
- 2. $H2 = H1 \cup \{\neg A\}$. (Where $\neg A$ is under CNF)
- 3. H3 is obtained by replacing the formulas of H2 with their clauses.
- 4. We iteratively apply (if possible) the resolution rule for any pair (Bj, Bi) where Bi,Bj ∈ H3 and augment H3 with resolvent
- 5. we stop when we obtain the empty clause □
 (which is always unsatisfiable), in this case:
 H | A is confirmed. If the empty clause □ cannot be obtained, then H | A

Example (1)

- Can we demonstrate **a** from the set H?
- H={
- \blacksquare (b \land c) \rightarrow a
- b
- \blacksquare (d \land e) \rightarrow c
- \blacksquare e \vee f
- $\blacksquare D \land \neg f$

Example (2)

- CNF transformation of H
- $\blacksquare a \lor \neg b \lor \neg c$
- \blacksquare b
- $\blacksquare c \lor \neg d \lor \neg e$
- ■e ∨ f
- **■**¬ f }

16

Example (3)

- Application of refutation principle
- $\blacksquare a \lor \neg b \lor \neg c$
- b
- $\blacksquare c \lor \neg d \lor \neg e$
- \blacksquare e \vee f
- **■**¬ f
- **■**¬a}

Example (4)

$$\neg a \qquad a \lor \neg b \lor \neg c$$

$$\neg b \lor \neg c \qquad b$$

$$\neg c \qquad c \lor \neg d \lor \neg e$$

$$\neg d \lor \neg e \qquad e \lor f$$

$$\neg d \lor f \qquad d$$

$$f \qquad \neg f$$

END