# **NOTION DE RISQUE**



# **SOMMAIRE:**

| Les risques               | <u>P 02</u> . |
|---------------------------|---------------|
| La directive machines     | <u>P 04</u> . |
| Les normes de sécurité    | <u>P 05</u> . |
| Estimation du risque      | <u>P 06</u> . |
| Signalisation de sécurité | <u>P 18</u> . |
| Terminologie              | P 19.         |

#### LES RISQUES

## Principal risque:

- Le risque mécanique est le plus important.
- Le risque de blessure est dû à l'action mécanique d'éléments de machines, d'outils, de pièces, ou de matériaux solides ou de fluides projetés.
- L'opérateur peut être victime d'écrasement, cisaillement, coupure, happement, entraînement, emprisonnement, choc, chute...

#### **Autres risques**:

- Energie alimentant une machine :
  - électrique,
  - hydraulique,
  - pneumatique,
- Transformation des produits :
  - bruit,
  - températures extrêmes,
  - vibrations,
  - rayonnements ionisants, optiques,
  - produits polluants...

## LES RISQUES

#### Principaux facteurs d'accident :

- Mauvaise conception des machines
- Utilisation d'une machine inadaptée aux travaux à réaliser
- Interventions en cours de fonctionnement
- Modes opératoires inappropriés et dangereux
- Insuffisance de formation des opérateurs
- Manque de sensibilisation à la sécurité des utilisateurs

#### **Prévention:**

- Eliminer les risques
- Evaluer les risques qui ne peuvent être éliminer
- Combattre les risques à la source
- Adapter le travail à l'homme

#### **DIRECTIVE MACHINES**

#### Objectif de la directive :

- Assurer un haut niveau protection de la santé et de la sécurité des salariés.
- Garantir la libre circulation des machines sur le marché de l'UE.

#### Aspect juridique:

- La directive machine est une directive européenne basée sur les articles 95 et 137 du traité CE.
- L'application de la directive machine se fait par des normes européennes (EN) :
  - Conception et estimation du risque de la machine : EN ISO 12100 et EN ISO 14121-1
  - Conception et réalisation des systèmes de commande relatifs à la sécurité :
     EN/CEI 62061 et EN ISO 13849-1
  - Aspect électrique de la sécurité : EN 60204-1
- La directive machines concerne les constructeurs de machine et les exploitants procédant à des modifications affectant la sécurité de la machine.
- Le code du travail indique qu'il est interdit d'exposer, de mettre en vente, de vendre, d'importer, de céder, de mettre à disposition, de louer des machines qui ne seraient pas conformes à la directive machine.
- La conformité à la directive machine peut être garantie de plusieurs manières :
  - Vérification de la machine par un organisme de contrôle
  - Respect de normes harmonisées
  - Attestation de sécurité établie par le constructeur
- La conformité est indiquée par le marquage CE et le dossier associé.

#### LES NORMES DE SECURITE

## Objectif:

- Aider les concepteurs à développer le système de commande qui assurera un niveau de sécurité désiré.
- Garantir qu'un disfonctionnement du circuit de commande ne génère pas de situation dangereuse.

#### Principe:

- Norme EN ISO 13849-1 → Niveau de performance PL (Performance Level)
   Elle considère tous les appareils impliqués dans les fonctions de sécurité : électrique, hydraulique, mécanique, pneumatique.
- Norme EN/CEI 62061 → Niveau d'intégrité de sécurité SIL (Safety Integrity Level)
   Elle considère l'ensemble de la chaine de sécurité à commande électrique.

## **Méthodologie:**

- Analyse globale des risques → détermination des fonctions de sécurité à implanter sur la machine :
  - définition des spécificités qu'elles doivent respecter (fréquence de sollicitation, temps de réponse...),
  - détermination du niveau de performance requis qu'elles doivent atteindre.
- Analyse technologiques (recherche des possibilités d'apparition d'une défaillance)
  - détermination des parties constitutives de la fonction de sécurité (matériel et logiciel)
  - estimation du niveau de performance atteint par la fonction (niveau suffisant par rapport au Plr défini par l'analyse des risques)
  - > étude des combinaisons des fonctions de sécurité.

#### Performance Level:

- Le Performace Level (**PL**) est un **niveau d'aptitude à réaliser une fonction de sécurité** dans des conditions prévisibles.
- La valeur du PL est défini en 5 niveaux classés de a à e :
  - a niveau de performance faible
  - e niveau de performance élevé.
- Un niveau de performance est caractérisé par une probabilité de défaillance dangereuse par heure : Probability of dangerous failure per hour = PFH<sub>D</sub>

| а | ≥10 <sup>-5</sup> à <10 <sup>-4</sup>   |  |  |
|---|-----------------------------------------|--|--|
| b | ≥3x10 <sup>-6</sup> à <10 <sup>-5</sup> |  |  |
| С | ≥10 <sup>-6</sup> à <3x10 <sup>-6</sup> |  |  |
| d | ≥10 <sup>-7</sup> à <10 <sup>-6</sup>   |  |  |
| е | ≥10 <sup>-8</sup> à <10 <sup>-7</sup>   |  |  |

PFH<sub>n</sub> (1/H)

| Le PL obtenu par un équipement est déterminé par : |
|----------------------------------------------------|

- ❖ la structure de son système de commande qui est définie par sa catégorie (catégories B, 1, 2, 3, 4 issues de la norme EN 954-1),
- son MTTFd (Mean Time To Failure dangerous): temps moyen avant une défaillance dangereuse,
- son **DCavg** (Diagnostic Coverage): mesure de l'efficacité de la surveillance des défauts,
- du CCF (Common Cause Failure) défaillance de cause commune : capacité d'un équipement à éviter des défaillances affectant plusieurs entités à partir d'un même événement.

## **Performance level:**

#### PL obtenu par un équipement



#### Mean time to failure dangerous

| MTTFd de chaque canal |                  |  |  |
|-----------------------|------------------|--|--|
| Indice Gamme ( an )   |                  |  |  |
| Faible                | 3 ≤ MTTFd < 10   |  |  |
| Moyen                 | 10 ≤ MTTFd < 30  |  |  |
| Élevé                 | 30 ≤ MTTFd ≤ 100 |  |  |

#### **Diagnostic Coverage**

| DC      |              |  |
|---------|--------------|--|
| Indice  | Gamme ( % )  |  |
| Nulle   | DC < 60      |  |
| Faible  | 60 ≤ DC < 90 |  |
| Moyenne | 90 ≤ DC < 99 |  |
| Elevée  | 99 ≤ DC      |  |

#### **Performance Level:**

Détermination du niveau de performance requis à respecter à l'aide d'un graphique de risque :

> Point de départ de l'estimation de la contribution à la réduction du risque

#### • Gravité de la blessure : S

- S1 = légère (blessure réversible)
- S2 = sérieuse (blessure normalement irréversible, y compris décès)

#### Fréquence et / ou exposition à un danger : F

- ► F1 rare à peu fréquente et / ou temps d'exposition court
- > F2 fréquente à continue et / ou temps d'exposition long

#### Possibilités de prévention ou de limitation du danger : P

- P1 Possible sous certaines conditions spécifiques
- P2 Presque impossible

# Faible contribution à la réduction des risque Risque faible Risque élevé

#### Forte contribution à la réduction des risque

- Vitesse à laquelle le danger se produit (exemple : rapide ou lente)
- Possibilités d'éviter le danger (exemple : par la fuite)
- Expérience pratique relative à la sécurité dans le cadre du processus
- Exploitation par un personnel formé et adapté
- Exploitation avec ou sans surveillance

## Les catégories du système de commande :

Les catégories définissent, par rapport à la sécurité, l'architecture et le comportement en présence de défauts des systèmes de commandes.

| Catégories | Base principale<br>de la sécurité                                      | Exigence du système de commande                                                                                                                                                                            | Comportement en cas de défaut                                                       | Structure typique d'un circuit<br>de sécurité en cas de défaut | Commentaires                                                                                                                                |
|------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| В          | Par la sélection des<br>composants conformes aux<br>normes pertinentes | Contrôle correspondant aux<br>régles de l'art en la matière                                                                                                                                                | Perte possible de la fonction de sécurité                                           |                                                                | Perte possible de la fonction de sécurité                                                                                                   |
| 1          | Par la sélection de<br>composants conformes aux<br>normes pertinentes  | Utilisation de constituants<br>et de principes éprouvés                                                                                                                                                    | Perte possible de la<br>fonction de sécurité.<br>Probabilité plus faible<br>qu'en B | UT*  J  S * Unité de traitement                                | Pas de redondance sur E     Pas de redondance interne<br>assurée par un relais à<br>contacts liés mécaniquement     Pas de redondance sur S |
| 2          | Par la structure des<br>circuits de sécurité                           | Test par cycle.<br>La périodicité du test doit<br>être adaptée à la machine<br>et à son application                                                                                                        | Défaut détecté à chaque<br>test                                                     | Contrôle périodique                                            | Redondance ou pas sur les<br>entrées     La boucle de retour permet<br>d'assurer un test cyclique sur<br>la sortie                          |
| 3          | Par la structure des<br>circuits de sécurité                           | Un défaut unique ne doit<br>pas conduire à la perte de<br>la fonction de sécurité.<br>Ce défaut doit être détecté<br>si cela est raisonnablement<br>faisable                                               | Fonction de sécurité<br>garantie, sauf en cas<br>d'accumulation de défauts          | E1 E2 UT1 UT2 S1 S2                                            | Redondance sur les E     Redondance sur les S                                                                                               |
| 4          | Par la structure des<br>circuits de sécurité                           | Un défaut unique (ou une accumulation de défauts) ne doit pas mener à la perte de la fonction de sécurité. Ce défaut doit être détecté dès, ou avant la prochaine sollicitation de la fonction de sécurité | Fonction de sécurité<br>toujours garantie                                           | E1 E2 UT1 UT2 S1 S2                                            | Redondance sur les E     Redondance sur les S     La boucle de retour permet d'assurer un test cyclique sur les sorties                     |

#### Structure d'une commande de catégorie B et 1 :

- La coupure de fil entraine la mise en sécurité.
- Le court circuit dans le câble n'est pas détecté.
- Catégorie : 1 → si et seulement si il y a détection des pannes des cartes d'entrées TOR.
  - B → pas de détection des pannes des cartes d'entrées TOR.



Entrée avec signal continu C

#### Structure d'une commande de catégorie 2 :

- La coupure de fil, l'alimentation par un signal autre que T1 et la mise à la mase entraine la mise en sécurité.
- Le court circuit dans le câble n'est pas détecté.
- La catégorie 2 est atteinte s'il n'existe pas de risque de court-circuit dans le câble.



Entrée avec signal impulsionnel T1

#### Structure d'une commande de catégorie 3 :

- Contrôle de la discordance des deux entrées par l'automate.
- La coupure de fil, la mise à la masse, les courts-circuits (sauf entre les deux entrées), les défauts de contacts de l'arrêt d'urgence, la discordance ou la désynchronisation provoquent une réaction sure.
- Les câbles de raccordement doivent être distincts pour chaque entrées (prévention contre les risques de courts-circuits entre les câbles).



#### Autre structure pour la catégorie 3 :

- Contrôle de la discordance des deux entrées par l'automate.
- La coupure de fil, la mise à la masse d'une des deux entrées, les courts-circuits (dont ceux entre les deux entrées), les défauts internes de l'arrêt d'urgence, la discordance ou la désynchronisation provoquent une réaction sure.
- Il est possible d'utiliser un seul câble.



#### Structure d'une commande de catégorie 4 :

- Contrôle de la discordance des deux entrées par l'automate.
- La coupure de fil, la mise à la masse des deux entrées, les courts-circuits (sauf entre les deux entrées), les défauts internes de l'arrêt d'urgence, provoquent une réaction sure.



#### Capteur de type de mode négatif :

Une action sur le capteur engendre la fermeture du contact.

#### Capteur de type de mode positif :

Une action sur le capteur engendre l'ouverture du contact.





Symbole selon la norme EN 60947-5-1



#### Le mode combiné :

L'association du mode négatif pour un capteur et du mode positif pour un autre capteur permet de s'affranchir des défauts de même nature sur les deux capteurs.





#### **Safety Integrity Level:**

- Le Safety Integrity Level (SIL) est une quantification du niveau de réduction de risque spécifié pour une fonction de sécurité sur un procédé.
- La valeur du SIL est un nombre entier compris entre 1 et 4.
- > Plus la valeur du SIL est élevée, plus la **réduction** du risque est importante.
- Le SIL obtenu par un équipement est déterminé par :
  - la probabilité de défaillances dangereuses d'une fonction de sécurité,
  - la tolérance aux pannes hardware (HFT),
  - le taux de défaillances non dangereuses,
  - le type des composants,
  - la périodicité des tests,
  - la durée de vie utile.

| SIL | PFD<br>Probabilité de<br>défaillance à la<br>sollicitation | RRF<br>Facteur de<br>réduction<br>de risque | PFH Probabilité de défaillance dangereuse par heure |
|-----|------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|
| 1   | 10¹ à 10⁴                                                  | 10 à 100                                    | 10⁻⁵ à 10⁻⁵                                         |
| 2   | 10 <sup>-2</sup> à 10 <sup>-3</sup>                        | 100 à 1 000                                 | 10 <sup>-6</sup> à 10 <sup>-7</sup>                 |
| 3   | 10³ à 10⁴                                                  | 1000 à 10 000                               | 10⁻² à 10⁴                                          |
| 4   | 10⁴ à 10⁵                                                  | 10 000 à 100 00                             | 0 10 <sup>-8</sup> à 10 <sup>-9</sup>               |

#### Safety Integrity Level:

Détermination du niveau de réduction de risque à respecter :

#### Conséquence du dommage

- > CA = blessure légère d'une personne ou problèmes environnementaux mineurs.
- ➤ **CB** = blessure grave, irréversible d'une ou de plusieurs personnes ou décès d'une personne ou problèmes environnementaux passagers majeurs.
- > CC = décès de plusieurs personnes ou problèmes environnementaux majeurs de longue durée.
- > CD = conséquences catastrophiques, nombreux morts.

#### Fréquence et durée d'exposition

- > **FA** = rarement à plus souvent
- > **FB** = fréquemment à en permanence

#### Probabilité d'éviter le danger

- > **PA** = possible sous certaines conditions
- > **PB** = rarement possible

#### Probabilité de concrétisation

- ▶ W1 = très faible
- **W2** = faible
- **W3** = relativement élevée



## Tolérance aux erreurs matérielles (HFT) :

- L'architecture d'une fonction de sécurité est déterminée par la tolérance aux erreurs matérielles de ces composants. Une tolérance de N erreurs matérielles signifie que N+1 erreurs matérielles peuvent conduire à une perte de la fonction de sécurité.
- Tolérance aux erreurs matérielles : elle est fixée par l'architecture "MooN" (M out of N : M voies sur N ) utilisée.
  - M : nombre de voies redondantes requis pour assurer la fonction de sécurité
  - N : nombre total de voies redondantes de la fonction de sécurité





Architecture 1002 : système redondant à deux voies (double canal : 1 capteur bicanal ou 2 capteurs monocanal)

Chacune des 2 voies peut exécuter la fonction de sécurité HFT = 1



☐ Architecture 2002 : système à deux voies

La fonction de sécurité est déclenchée uniquement par l'action des deux voies simultanément. HFT = 0



☐ Architecture 2003 : système redondant à trois voies

2 voies sont nécessaires pour activer la fonction de sécurité. Une voie ayant une erreur matérielle, la fonction de sécurité est encore assurée

HFT = 1

# **Correspondance PL/SIL:**

| Probabilité moyenne d'une défaillance<br>Dangereuse par heure<br>1/h | PL | SIL | SYSTEM INTEGRITY LEVEL |
|----------------------------------------------------------------------|----|-----|------------------------|
| ≥ 10 <sup>-5</sup> à < 10 <sup>-4</sup>                              | а  | SIL | Pas de correspondance  |
| ≥ 3 x 10 <sup>-6</sup> à < 10 <sup>-5</sup>                          | b  | SIL | 1                      |
| ≥ 10 <sup>-6</sup> à < 3 x 10 <sup>-6</sup>                          | С  | SIL | 1                      |
| ≥ 10 <sup>-7</sup> à < 10 <sup>-6</sup>                              | d  | SIL | 2                      |
| ≥ 10 <sup>-8</sup> à < 10 <sup>-7</sup>                              | е  | SIL | 3                      |

## SIGNALISATION DE SECURITE

## Couleurs et formes de sécurité :

| Couleur<br>de sécurité | Signification ou but                    | Couleur<br>de contraste | Couleur<br>des symboles |
|------------------------|-----------------------------------------|-------------------------|-------------------------|
| Rouge                  | Danger, interdiction                    | Blanc                   | Noir                    |
| Jaune                  | Prudence                                | Noir                    | Noir                    |
| Vert                   | Sécurité (protection, premiers secours) | Blanc                   | Blanc                   |
| Bleu                   | Obligation, information                 | Blanc                   | Blanc                   |

| Couleur | Forme        |                                |                                                  |  |
|---------|--------------|--------------------------------|--------------------------------------------------|--|
|         | 0            | $\triangle$                    |                                                  |  |
| Rouge   | Interdiction |                                | Matériel de lutte<br>contre l'incendie           |  |
| Jaune   |              | Attention!<br>Risque de danger |                                                  |  |
| Vert    |              |                                | Situation de sécurité,<br>dispositifs de secours |  |
| Bleu    | Obligation   |                                | Information ou instruction                       |  |

# Combinaison des voyants lumineux de signalisation :

| Couleur | Signification | Explication                                                                                                                     | Action de l'opérateur                                                                                  | Exemples d'application                                                                                                                        |
|---------|---------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ROUGE   | URGENCE       | Etat dangereux                                                                                                                  | Action immédiate pour<br>traiter l'état dangereux<br>(exemple : déclenchement<br>d'un arrêt d'urgence) | <ul> <li>Pression en dehors des limites de sécurité;</li> <li>Chute de tension;</li> <li>Surcourse au-delà de la position d'arrêt,</li> </ul> |
| JAUNE   | ANORMAL       | Etat anormal<br>entraînant un état critique<br>imminent                                                                         | Surveillance ou intervention,<br>(exemple : rétablissement<br>d'une fonction désirée)                  | - Température en dehors d'une page de fonctionnement normal; - Déclenchement d'un dispositif de protection.                                   |
| VERT    | NORMAL        | Etat normale                                                                                                                    | Libre                                                                                                  | - Autorisation de démarrer;     - Indication des limites normales de travail.                                                                 |
| BLEU    | OBLIGATOIRE   | Indication d'un état qui requiert l'action de l'opérateur                                                                       | Action prescrite obligatoire                                                                           | - Demande pour régler des valeurs présélectionnées.                                                                                           |
| BLANC   | NEUTRE        | Toute signification: peut être utilisée à chaque fois qu'il y a un doute sur l'utilisation des couleurs ROUGE JAUNE, VERT, BLEU | Surveillance                                                                                           | - Information générale                                                                                                                        |

#### **TERMINOLOGIE**

#### **Redondance**:

- La redondance est l'utilisation de plus d'un système, pour garantir qu'en cas de défaillance d'un système, un autre soit disponible pour effectuer les fonctions de sécurité.
- > Si la première défaillance n'est pas détectée, l'apparition d'une deuxième pourra entraîner la perte de la fonction de sécurité.

#### Autocontrôle:

L'autocontrôle consiste à vérifier automatiquement le fonctionnement d'un dispositif de sécurité qui intervient dans le cycle de la machine. Par conséquent, le cycle suivant pourra être interdit ou autorisé.