MS BGD: MDI720 Tests statistiques (pour le modèle linéaire)

François Portier, Anne Sabourin Telecom ParisTech

Septembre 2018

Tests d'hypothèses Définition Test pour le modèle linéaire

- 2. Illustration : forward variable selection base de données 'diabetes'
- 3. Courbe ROC Présentation Exemples

1. Tests d'hypothèses

Définition

Test pour le modèle linéaire

- 2. Illustration: forward variable selection
- 3. Courbe ROC

Tests d'hypothèses pour le "Pile ou face"

• On veut tester une hypothèse sur le paramètre θ .

```
• On l'appelle hypothèse nulle \mathcal{H}_0

Exemple : 'la pièce est non biaisée" : \mathcal{H}_0 = \{p = 0.5\}.

Exemple : 'la pièce est peu biaisée', \mathcal{H}_0 = \{0.45 \le p \le 0.55\}
```

• L'hypothèse alternative \mathcal{H}_1 est (souvent) le contraire de \mathcal{H}_0 . Exemple : $\mathcal{H}_1 = \{ p \neq 0.5 \}$

 $\overline{\text{Exemple}}: \ \mathcal{H}_1 = \{ p \notin [0.45, 0.55] \}$

• « Faire un test » : déterminer si les données permettent de rejeter l'hypothèse \mathcal{H}_0 . On cherche une région R pour laquelle si $(y_1, \ldots, y_n) \in R$ on rejette l'hypothèse \mathcal{H}_0 . R est la région de rejet.

Rejet ou acceptation?

Présomption d'innocence en faveur de \mathcal{H}_0

Même si \mathcal{H}_0 n'est pas rejetée par le test, on ne peut en général pas conclure que \mathcal{H}_0 est vraie!

Rejeter \mathcal{H}_1 est souvent impossible car \mathcal{H}_1 est trop générale. e.g. $\{p \in [0, 0.5[\cup]0.5, 1]\}$ ne peut pas être rejetée!

- \mathcal{H}_0 s'écrit sous la forme $\{\theta \in \Theta_0\}$, avec $\Theta_0 \subset \Theta$
- \mathcal{H}_1 s'écrit sous la forme $\{\theta \in \Theta_1\}$, avec $\Theta_1 \subset \Theta$

Rem: $\{\theta \in \Theta_0\}$ et $\{\theta \in \Theta_1\}$ sont disjoints.

Risques de première et de seconde espèce

	\mathcal{H}_0	\mathcal{H}_1			
Non rejet de \mathcal{H}_0	Juste	Faux (acceptation à tort)			
Rejet de \mathcal{H}_0	Faux (rejet à tort)	Juste			

• Risque de 1^{re} espèce : probabilité de rejeter à tord

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}((y_1, \dots, y_n) \in R)$$

 $\bullet\,$ Risque de $2^{\rm nde}$ espèce : probabilité d'accepter à tord

$$\sup_{\theta\in\Theta_1}\mathbb{P}_{\theta}\left(\left(y_1,\ldots,y_n\right)\notin R\right)$$

Niveau/Puissance

Niveau du test

 $1 - \alpha = \text{probabilit\'e d'} \ll \text{accepter} \gg \text{à raison (si } \mathcal{H}_0 \text{ est valide)}$

Puissance du test

 $1 - \beta =$ probabilité de rejeter \mathcal{H}_0 à raison (si \mathcal{H}_1 est valide)

En général, lorsqu'on parle de « test à 95% » on parle d'un test de niveau $1-\alpha \geq 95\%$.

Statistique de test et région de rejet

Objectif classique : construire un test de niveau $1-\alpha$

- On cherche une fonction des données $T_n(y_1, \ldots, y_n)$ dont on connaît la loi si \mathcal{H}_0 est vraie : T_n est appelée statistique de test.
- On définit une région de rejet ou région critique de niveau α , une région R telle que, sous \mathcal{H}_0 ,

$$\mathbb{P}(T_n(y_1,\ldots,y_n)\in R)\leq \alpha$$

• Règle de rejet de \mathcal{H}_0 : on rejet te si $T_n(y_1,\ldots,y_n)\in R$

Exemple gaussien : nullité de la moyenne

- Modèle : $\Theta = \mathbb{R}, \, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1).$
- Hypothèse nulle : \mathcal{H}_0 : $\{\theta = 0\}$
- Sous \mathcal{H}_0 , $T_n(y_1,\ldots,y_n)=\frac{1}{\sqrt{n}}\sum_i y_i \sim \mathcal{N}(0,1)$
- Région critique pour T_n ? Quantiles gaussiens : sous H_0 ,

$$\mathbb{P}(T_n \in [-1.96, 1.96]) = 0.95$$

On prend $R = [-1.96, 1.96]^C =]-\infty, -1.96[\cup]1.96, +\infty[.$

• Exemple numérique : si $T_n = 1.5$, on ne rejette PAS \mathcal{H}_0 au niveau 95%

1. Tests d'hypothèses

Définition

Test pour le modèle linéaire

- 2. Illustration: forward variable selection
- 3. Courbe ROC

Tester la nullité des coefficients (I)

Rappel: prenons $X \in \mathbb{R}^{n \times p}$, alors $\widehat{\sigma}^2 = \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2/(n - \text{rang}(X))$ est un estimateur sans biais de la variance. Ainsi

$$\operatorname{Si} \epsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n), \text{ alors}$$

Si
$$\epsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$$
, alors
$$T_j = \frac{\widehat{\theta}_j - \theta_j^*}{\widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rang}(X)}$$

où $\mathcal{T}_{n-\operatorname{rang}(X)}$ est une loi dite de Student (de degré $n-\operatorname{rang}(X)$).

Sa densité, ses quantiles, etc... peuvent être calculés numériquement.

Tester la nullité des coefficients (I)

 $H_0: \theta_j^* = 0$ ce qui revient à prendre $\Theta_0 = \{ \boldsymbol{\theta} \in \mathbb{R}^p : \theta_j = 0 \}$. Sous H_0 on connaît donc la distribution de $\widehat{\theta_j}$:

t-statistiques:
$$T_j := \frac{\widehat{\theta_j}}{\widehat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\mathsf{rang}(X)}$$

Ainsi en choisissant comme région de rejet $[-t_{1-\alpha/2},t_{1-\alpha/2}]^c$ (en notant $t_{1-\alpha/2}$ un quantile d'ordre $1-\alpha/2$ de la loi $\mathcal{T}_{n-\mathsf{rang}(X)}$), on peut former le test (de Student) :

c'est-à-dire que l'on rejette H_0 au niveau $\alpha,$ si $|T_j| > t_{1-\alpha/2}$

cf.Tsybakov (2006) pour plus de détails

Lien IC et Test

Rappel (modèle gaussien):

$$\mathit{IC}_{lpha} := \left[\widehat{ heta}_j - t_{1-lpha/2} \widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}, \widehat{ heta}_j + t_{1-lpha/2} \widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}
ight]$$

est un IC de niveau α pour θ_j^* . Dire que " $0 \in IC_{\alpha}$ " signifie que

$$|\widehat{\theta}_j| \leq t_{1-\alpha/2} \widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\widehat{\theta}_j|}{\widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \leq t_{1-\alpha/2}$$

Cela est donc équivalent à accepter l'hypothèse $\theta_j^*=0$ au niveau α . Le α le plus petit telle que $0\in IC_{\alpha}$ est appelé la p-value.

Rem: On sait que si l'on prend α très proche de zéro un IC_{α} va recouvrir l'espace entier, on peut donc trouver (par continuité) un α qui assure l'égalité dans les équations ci-dessus.

- Tests d'hypothèses
 Définition
 Test pour le modèle linéaire
- 2. Illustration : forward variable selection base de données 'diabetes'
- 3. Courbe ROC Présentation Exemples

- 1. Tests d'hypothèses
- 2. Illustration : forward variable selection base de données 'diabetes'
- 3. Courbe ROC

Base de données 'diabetes'

	age	sex	bmi	bp		Serun	n mea	surei	nents		Resp
patient	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	у
1	59	2	32.1	101	157	93	38	4	4.9	87	151
2	48	1	21.6	87	183	103	70	3	3.9	69	75
441	36	1	30.0	95	201	125	42	5	5.1	85	220
442	36	1	19.6	71	250	133	97	3	4.6	92	57

n=442 patients diabétiques, p=10 variables 'baseline' body mass index, bmi), average blood pressure (bp), etc. ont été mesurées.

 $\mathbf{Objectif}:$ prédire la progression de la maladie un an après les mesures 'baseline' [EHJT04]

- Chacunes des variables de la base de *sklearn* a été standardisée préalablement
- On applique une version peu couteuse de la méthode 'forward variable selection' (voir par exemple [Zha09])

Base de données 'diabetes'

• On définit le vecteur des covariables avec intercept $\tilde{X} = (1, x_1, \dots, x_{10})$.

Etape 0

ullet pour chacune des variables $ilde{X}_k, \ k=1,\ldots,11,$ on considère le modèle

$$\mathbf{y} \simeq \beta_k \mathbf{x}_k$$

• on test si son coefficient de régression est nulle, i.e.

$$H_0: \beta_k = 0$$

via la statistique $\widehat{\beta}_k/\widehat{s}_k$ avec \widehat{s}_k l'écart type estimé.

• on compare toutes les p-valeurs, on garde celle ayant la plus petite. On sauvegarde les résidus dans r_0 .

Base de données "diabetes"

Etape ℓ

On a sélectionné ℓ variable(s) : $\tilde{X}^{(\ell)} \in \mathbb{R}^{\ell}$. Les autres sont notées $\tilde{X}^{(-\ell)} \in \mathbb{R}^{p-\ell}$. On dispose du vecteur des résidus $\mathbf{r}_{\ell-1}$ calculé à l'étape précédente.

 \bullet pour chacune des variables $\mathsf{x}_k,$ dans $\tilde{X}^{(-\ell)},$ on considère le modèle

$$\mathbf{r}_{\ell-1} \simeq \beta_k \mathbf{x}_k$$

• on teste si son coefficient de régression est nul, i.e.

$$H_0: \beta_k = 0$$

via la statistique $\widehat{\beta}_k/\widehat{s}_k$ avec \widehat{s}_k l'écart type estimé.

• on compare toutes les p-valeurs, on garde celle ayant la plus petite. On sauvegarde les résidus dans \mathbf{r}_{ℓ} .

Valeurs de la statistique de test à chaque étape

- la statistique d'une variable sélectionnée est mise à 0 aux étapes suivantes
- L'intercept est la première variable sélectionnée, ensuite x_3 ...

Valeurs de la statistique de test à chaque étape

• variables sélectionnées lors d'un test de niveau .1 :

- Tests d'hypothèses
 Définition
 Test pour le modèle linéaire
- 2. Illustration : forward variable selection base de données 'diabetes'
- 3. Courbe ROC Présentation Exemples

- 1. Tests d'hypothèses
- 2. Illustration: forward variable selection
- 3. Courbe ROC Présentation

Contexte médical

- Un groupe de patients $i=1,\ldots,n$ est suivi pour un dépistage.
- Pour chaque individu, le test se base sur une variable aléatoire $X_i \in \mathbb{R}$ et un seuil $q \in \mathbb{R}$

$$\begin{cases} \text{Si } X_i > q & \text{le test est positif} \\ \text{Sinon} & \text{le test est négatif} \end{cases}$$

Ensemble des configurations possibles

	Normal H_0	Atteint H_1
négatif	vrai négatif	faux négatif (FN)
positif	faux positif (FP)	vrai positif

Sensibilité - Spécificité

- On suppose que les individus normaux ont la même fonction de répartition ${\cal F}$
- On suppose que les individus atteints ont la même fonction de répartition G

Définition

- Sensibilité : Se(q) = 1 G(q) (1- risque de 2^{nde} espèce = Puissance)
- Spécificité : Sp(q) = F(q) (1- risque de 1^{re} espèce = Niveau)

Courbe ROC

Définition

La courbe ROC est la courbe décrite par $(1 - \mathsf{Sp}(q), \mathsf{Se}(q))$, quand $q \in \mathbb{R}$. C'est donc la fonction $[0,1] \to [0,1]$

$$\mathsf{ROC}(t) = 1 - G(F^-(1-t))$$

où
$$F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$$

- 1. Tests d'hypothèses
- 2. Illustration: forward variable selection
- 3. Courbe ROC
 Présentation
 Exemples

La courbe ROC dans le cas bi-normal

- F et G sont des gaussiennes de paramètres μ_0, σ_0 et μ_1, σ_1 , respectivement.
- On spécifie $\mu_0 = 0$, $\sigma_0 = \sigma_1 = 1$, on fait varier μ_1

Estimation-application

Estimation de la courbe ROC

- Maximum de vraisemblance
- Non-paramétrique
- Bayésien avec variable d'état latente
- Estimation de l'aire sous la courbe ROC

Application

- Pour comparer différents tests statistiques
- Pour comparer différents algorithmes d'apprentissage supervisé
- Pour comparer des méthodes de sélection de support du Lasso

 $(ROC=Receiver\ Operating\ Characteristic)$

Références I

- [EHJT04] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.
 - [Tsy06] A. B. Tsybakov. Statistique appliquée, 2006.
 - [Zha09] Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In *Advances in Neural Information Processing Systems*, pages 1921–1928, 2009.