The Battle for Filter Supremacy:

A Comparative Study of the Multi-State Constraint Kalman Filter and the Sliding Window Filter

Lee Clement, Valentin Peretroukhin, Jacob Lambert, and Jonathan Kelly CRV 2015, Halifax, Canada

Motivation: Monocular Camera + IMU

Wearable sensors

Smartphones

Motivation: Monocular Camera + IMU

Wearable sensors

Smartphones

How can we use these sensors to **navigate** an unknown environment? What is the **best algorithm** to use **online** in this context?

MSCKF dead-reckons the vehicle state using interoceptive (IMU) measurements, just like the EKF, but treats exteroceptive (camera) measurements like the SWF.

Hybrid Approach:

- Batch component
 estimates feature position
 using Gauss-Newton
- Filter component
 uses combined
 observations as one
 exteroceptive update
- Repeat for all feature tracks over a window of poses

MSCKF dead-reckons the vehicle state using interoceptive (IMU) measurements, just like the EKF, but treats exteroceptive (camera) measurements like the SWF.

A. I. Mourikis and S. I. Roumeliotis, "A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation," ICRA, 2007.

EKF: Many features constrain one state.

MSCKF: One feature constrains many states.

EKF: Many features constrain one state.

MSCKF: One feature constrains many states.

Measurement errors:

$$\mathbf{r}_i^{(j)} := \mathbf{z}_i^{(j)} - \hat{\mathbf{z}}_i^{(j)}$$

Feature position errors correlated with state!

Stacked and linearized...

$$\mathbf{r}^{(j)} = \mathbf{z}^{(j)} - \hat{\mathbf{z}}^{(j)} \simeq \mathbf{H}_{\mathbf{x}}^{(j)} \widetilde{\mathbf{x}} + \mathbf{H}_{f}^{(j)} \widetilde{\mathbf{p}}_{G}^{f_{j}G} + \mathbf{n}^{(j)}$$

EKF: Many features constrain one state.

MSCKF: One feature constrains many states.

Measurement errors:

$$\mathbf{r}_i^{(j)} := \mathbf{z}_i^{(j)} - \hat{\mathbf{z}}_i^{(j)}$$

Feature position errors correlated with state!

Stacked and linearized...

$$\mathbf{r}^{(j)} = \mathbf{z}^{(j)} - \hat{\mathbf{z}}^{(j)} \simeq \mathbf{H}_{\mathbf{x}}^{(j)} \widetilde{\mathbf{x}} + \mathbf{H}_f^{(j)} \widetilde{\mathbf{p}}_G^{f_j G} + \mathbf{n}^{(j)}$$

Not correlated with state!

$$\mathbf{A} = \mathrm{Null}(\mathbf{H}_f^{(j)})$$

Project into nullspace of
$$\mathbf{H}_f^{(j)}$$
: $\mathbf{r}_o^{(j)} := \mathbf{A}^T \mathbf{r}^{(j)} \simeq \mathbf{A}^T \mathbf{H}_{\mathbf{x}}^{(j)} \widetilde{\mathbf{x}} + \mathbf{0} + \mathbf{A}^T \mathbf{n}^{(j)}$

$$=: \mathbf{H}_o^{(j)} \widetilde{\mathbf{x}} + \mathbf{n}_o^{(j)}$$

Stacked...
$$\mathbf{r}_o = \mathbf{H}_o \widetilde{\mathbf{x}} + \mathbf{n}_o$$

EKF: Many features constrain one state.

MSCKF: One feature constrains many states.

Measurement errors:

$$\mathbf{r}_i^{(j)} := \mathbf{z}_i^{(j)} - \hat{\mathbf{z}}_i^{(j)}$$

Feature position errors correlated with state!

Stacked and linearized...

$$\mathbf{r}^{(j)} = \mathbf{z}^{(j)} - \hat{\mathbf{z}}^{(j)} \simeq \mathbf{H}_{\mathbf{x}}^{(j)} \widetilde{\mathbf{x}} + \mathbf{H}_{f}^{(j)} \widetilde{\mathbf{p}}_{G}^{f_{j}G} + \mathbf{n}^{(j)}$$

Is this null space projection really necessary?

Experiment 1: Starry Night Dataset

Ground truth for landmark positions

✓ Pre-integrated IMU measurements

Experiment 1: Starry Night Dataset

Ground truth for landmark positions

✓ Pre-integrated IMU measurements

Experiment 1.1: Window Size Comparison

We investigated the sensitivity of estimation accuracy to window size.

Many visible features

Few visible features

Experiment 1.2: Feature Density Comparison

We added synthetic features to the dataset to investigate the sensitivity of estimation accuracy to feature density.

Experiment 2: KITTI Dataset

- **M**Realistic urban driving
- Mulity IMU data
- **Synchronized** measurements

A. Geiger et al. "Vision meets robotics: The KITTI dataset," IJRR 2013. http://www.cvlibs.net/datasets/kitti/

Experiment 2: KITTI Dataset

- **M**Realistic urban driving
- Mulity IMU data
- **Synchronized** measurements

A. Geiger et al. "Vision meets robotics: The KITTI dataset," IJRR 2013. http://www.cvlibs.net/datasets/kitti/

Experiment 2: KITTI Dataset

Starry Night

		Feature Count		
		40	60	100
IMU Only	Trans. ARMSE	0.3679	0.3679	0.3679
	Rot. ARMSE	0.1452	0.1452	0.1452
	ANEES	0.2850	0.2850	0.2850
	Compute Time†	8.90 s	8.90 s	8.90 s
MSCKF	Trans. ARMSE	0.2672	0.2550	0.2304
(20-100)	Rot. ARMSE	0.1378	0.1247	0.0952
	ANEES	10.18	12.03	16.76
	Compute Time†	12.19 s	14.64 s	20.58 s
SWF	Trans. ARMSE	0.1750	0.1687	0.1755
(25)	Rot. ARMSE	0.0495	0.0377	0.0481
-	ANEES	2280	2093	2013
	Compute Time†	114.3 s	175.9 s	245.3 s

[†] Running MATLAB 2014b on a MacBook Pro Retina (11,3) with a 2.3 GHz Intel Core i7 processor and 16 GB of DDR3L RAM.

		KITTI Traverse			
		0001	0036	0051	0095
IMU Only	Trans. ARMSE	0.7197	0.5131	0.7834	1.039
	ANEES	0.1630	0.0092	0.1170	0.6254
MSCKF	Trans. ARMSE	0.3492	0.4401	0.7530	0.8170
(5-Inf)	ANEES	5.103	1.826	2.031	14.98
SWF	Trans. ARMSE	0.3372	0.3778	0.5832	0.7196
(10)	ANEES	358.3	703.2	1124	3767

Starry Night

		Feature Count		
		40	60	100
IMU Only	Trans. ARMSE Rot. ARMSE ANEES Compute Time†	0.3679 0.1452 0.2850 8.90 s	0.3679 0.1452 0.2850 8.90 s	0.3679 0.1452 0.2850 8.90 s
MSCKF (20-100)	Trans. ARMSE Rot. ARMSE ANEES Compute Time [†]	0.2672 0.1378 10.18 12.19 s	0.2550 0.1247 12.03 14.64 s	0.2304 0.0952 16.76 20.58 s
SWF (25)	Trans. ARMSE Rot. ARMSE ANEES Compute Time†	0.1750 0.0495 2280 114.3 s	0.1687 0.0377 2093 175.9 s	0.1755 0.0481 2013 245.3 s

[†] Running MATLAB 2014b on a MacBook Pro Retina (11,3) with a 2.3 GHz Intel Core i7 processor and 16 GB of DDR3L RAM.

		KITTI Traverse			
		0001	0036	0051	0095
IMU Only	Trans. ARMSE ANEES	0.7197 0.1630	0.5131 0.0092	0.7834 0.1170	1.039 0.6254
MSCKF (5-Inf)	Trans. ARMSE ANEES	0.3492 5.103	0.4401 1.826	0.7530 2.031	0.8170 14.98
SWF (10)	Trans. ARMSE ANEES	0.3372 358.3	0.3778 703.2	0.5832 1124	0.7196 3767

Starry Night

		Feature Count		
		40	60	100
IMU Only	Trans. ARMSE Rot. ARMSE	0.3679 0.1452	0.3679 0.1452	0.3679 0.1452
	ANEES	0.2850	0.2850	0.2850
	Compute Time†	8.90 s	8.90 s	8.90 s
MSCKF	Trans. ARMSE	0.2672	0.2550	0.2304
(20-100)	Rot. ARMSE	0.1378	0.1247	0.0952
	ANEES	10.18	12.03	16.76
	Compute Time†	12.19 s	14.64 s	20.58 s
SWF	Trans. ARMSE	0.1750	0.1687	0.1755
(25)	Rot. ARMSE	0.0495	0.0377	0.0481
	ANEES	2280	2093	2013
	Compute Time†	114.3 s	175.9 s	245.3 s

[†] Running MATLAB 2014b on a MacBook Pro Retina (11,3) with a 2.3 GHz Intel Core i7 processor and 16 GB of DDR3L RAM.

		KITTI Traverse			
		0001	0036	0051	0095
IMU Only	Trans. ARMSE	0.7197	0.5131	0.7834	1.039
	ANEES	0.1630	0.0092	0.1170	0.6254
MSCKF	Trans. ARMSE	0.3492	0.4401	0.7530	0.8170
(5-Inf)	ANEES	5.103	1.826	2.031	14.98
SWF	Trans. ARMSE	0.3372	0.3778	0.5832	0.7196
(10)	ANEES	358.3	703.2	1124	3767

Starry Night

		Feature Count		
		40	60	100
IMU Only	Trans. ARMSE Rot. ARMSE ANEES Compute Time†	0.3679 0.1452 0.2850 8.90 s	0.3679 0.1452 0.2850 8.90 s	0.3679 0.1452 0.2850 8.90 s
MSCKF (20-100)	Trans. ARMSE Rot. ARMSE ANEES Compute Time†	0.2672 0.1378 10.18 12.19 s	0.2550 0.1247 12.03 14.64 s	0.2304 0.0952 16.76 20.58 s
SWF (25)	Trans. ARMSE Rot. ARMSE ANEES Compute Time	0.1750 0.0495 2280 114.3 s	0.1687 0.0377 2093 175.9 s	0.1755 0.0481 2013 245.3 s

[†] Running MATLAB 2014b on a MacBook Pro Retina (11,3) with a 2.3 GHz Intel Core i7 processor and 16 GB of DDR3L RAM.

			KITTI	Traverse	
		0001	0036	0051	0095
IMU Only	Trans. ARMSE	0.7197	0.5131	0.7834	1.039
	ANEES	0.1630	0.0092	0.1170	0.6254
MSCKF	Trans. ARMSE	0.3492	0.4401	0.7530	0.8170
(5-Inf)	ANEES	5.103	1.826	2.031	14.98
SWF	Trans. ARMSE	0.3372	0.3778	0.5832	0.7196
(10)	ANEES	358.3	703.2	1124	3767

The Battle for Filter Supremacy: Who Won?

	Winner	Comments
Accuracy	SWF	Accuracy of MSCKF is more sensitive to length and number of feature tracks.
Consistency (in basic form)	MSCKF	Consistency of SWF can be improved by marginalizing out old poses. (Sibley et al., 2010)
Compute time	MSCKF	MSCKF complexity scales linearly with number of features, SWF complexity scales cubically in general.
Sensitivity to tuning parameters	SWF	In our experience, MSCKF is very difficult to tune for optimal performance.

Thanks!

Email: {lee.clement, v.peretroukhin, jacob.lambert}

@mail.utoronto.ca, jkelly@utias.utoronto.ca

Web: http://starslab.ca

Questions?

Image credit: http://www.globalrobots.com/

