Best Practices for Property Prediction from Molecular Simulations

Bryce C. Manubay,^{1,*} John D. Chodera,^{2,†} and Michael R. Shirts^{1,‡}

¹University of Colorado

²Computational Biology Program, Sloan Kettering Institute,

Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States

(Dated: October 25, 2016)

This document describes a collected set of best practices for computing various physical properties from molecular simulations of liquid mixtures.

Keywords: best practices; molecular dynamics simulation; physical property computation

Todo list

I. Preliminaries

Definitions

11

13

14

- V: Volume
- U: Total energy (including potential and kinetic, excluding external energy such as due to gravity, etc)
 - S: Entopy
- N: Number of particles
- T: Temperature
- P: Pressure
- k_B: Boltzmann constant
- β : $(k_B T)^{-1}$
- M: Molar mass
- ρ : Density (M/V)
- H: Enthalpy
- G: Gibbs Free Energy (free enthalpy)
- A: Helmholtz Free Energy
- μ: Chemical potential
- D: Total dipole moment
- u: reduced energy
- f: reduced free energy

Macroscopically, the quantities V, U, N are constants (assuming the system is not perturbed in any way), as we assume that the fluctuations are essentially zero, and any uncertainty comes from our inability to measure that constant precisly. For a mole of compound (about 18 mL for water), the relative uncertainty in any of these quantites is about 10^{-12} , far lower than any thermodynamics experiment.

[JDC1]: This is a TODO item example.

However, in a molecular simulation, these quantites are not necessarily constant. For example, in an NVT equilib- rium simulation, U is allowed to vary. For a long enough simulation (assuming ergodicity, which can pretty much always be assumed with correct simulations and simple flu- ids), then the ensemble average value of $U = \langle U \rangle$ will be constant, and in the limit of large simulations/long time will converge to the macroscopic value U; at least, the macroscopic value of that given model, though perhaps not the U for the real system. In an VVT simulation, clearly V is constant. In an VVT simulation, however, V is a variable, and we must estimate what the macroscopic value would be with the ensemble average V.

The quantities T, P, and μ are typically constant dursing the equilibrium simulations and experiments of interest here. There are a number of quantities that can be used to ESTIMATE these constants. For example, $\left\langle \frac{1}{3Nk_B}\sum_i m_i|v_i|^2\right\rangle$, where m is the mass of each particle and $|v_i|$ is the magnitude of the velocity of each particle, is an estimate of T, and it's average will be equal to the temperature. But it is not the temperature. This quantity fluctuates, but the tempature remains constant; otherwise the simulation could not be at constant temperature.

To even say that some environmental variable, such as 61 T or P is held constant is not entirely correct. What this 62 means is that such quantities are controlled by an external 63 force in order to hold them at a certain value. In the case of temperature, a thermostat is used. Recalling some basics of chemical engineering controller design, we know that no 66 controller is perfect. Corrections from feedback cannot be 67 made instantanteously, hence there is some variation in the 68 simulation temperature reported. A thermostat constantly 69 modifies the velocities of the particles in simulation in order 70 to achieve the distribution of kinetic energies that would be 71 expected for a simulation at the temperature specified.

Ensemble averages of some quantity X ($\langle X \rangle$) are assumed to be averages over the appropriate Boltzmann

^{*} email@email.com

[†] john.chodera@choderalab.org

[‡] Corresponding author; michael.shirts@virginia.edu

 $_{74}$ weighting, i.e. in the NVT ensemble with classical sta- $_{115}$ In the case of Boltzmann averages, then $p_i(x)=e^{f_i-u_i(x)}$, ₇₅ tistical mechanics, they would be $\int X(\vec{x}, \vec{p})e^{-\beta U(\vec{x}, \vec{p})}d\vec{x}d\vec{p}$. $_{^{76}}$ We note that in the limit of very large systems, $\langle X
angle_{NPT} =$ $\langle X \rangle_{NVT} = \langle X \rangle_{\mu VT}.$

Ensemble averages can be computed by one of two ways. 79 First, they can be computed directly, by running a simulation that produces samples with the desired Boltzmann distribution. In that case ensemble averages can be computed as simple averages, $\langle V \rangle = \frac{1}{N} \sum_{i} V_{i}$, where the sum is over all observations. Uncertainties can be estimated in a number of different ways, but usually require estimating the number of 85 uncorrelated samples. Secondly, they can be calculated as reweighted estimates from several different simulations, as $_{87}$ $\langle V \rangle = \frac{1}{\sum_i w_i} V_i w_i$ where w_i is a reweighting factor that can be derived from importance sampling theory.

To simplify our discussion of reweighting, we use some $_{ ext{\tiny 90}}$ additional notation. We define the reduced potential $u\,=\,$ $\beta U(\vec{x})$ in the canonical (NVT) ensemble, $u = \beta U + \beta PV$ in the isobaric-isothermal (NPT) ensemble, and $u = \beta U$ – $_{93}$ $\beta N\mu$ in the grand canonical ensemble (similar potentials $_{94}$ can be defined in other ensembles). We then define f= $\int e^{-u} dx$, where the integral is over all of the DOF of the system (x for NVT, x, V for NPT, and x, N for μVT . For $_{97}$ NPT, we then have $f=\beta G$, and for NVT we have f= βA , while for μVT we have $f = -\beta \langle P \rangle V$.

To calculate expectations at one set of parameters generated with paramters that give rise to a different set of probability distributions, we start with the definition of an ensemble average given a probability distribution $p_i(x)$.

$$\langle X \rangle_i = \int X(x) p_i(x) dx$$
 (1)

We then multiply and divide by $p_i(x)$, to get

$$\langle X \rangle_i = \int X(x) p_i(x) \frac{p_j(x)}{p_j(x)} dx = \int X(x) p_j(x) \frac{p_i(x)}{p_j(x)} dx$$
(2)

104 We then note that this last integral can be estimated by the 105 Monte Carlo estimate

$$\langle X \rangle_i = \int X(x) p_j(x) \frac{p_i(x)}{p_j(x)} dx = \frac{1}{N} \sum_{n=1}^N X(x_n) \frac{p_i(x_n)}{p_j(x_n)}$$
(3)

Where the x_k are sampled from probability distribution $_{\scriptscriptstyle 144}$ 107 $p_i(x)$

We now define the mixture distribution of K other distribution a. Direct calculation Starting with butions as: $p_m(x)=\frac{1}{N}\sum_{i=1}^N N_k p_k(x)$, where $N=\sum_k N_k$. The to calculate the density experimentally, 110 We can construct a sample from the mixture distribution $_{\rm III}$ by simply pooling all the samples from k individual simulations. The formula for calculating ensemble averages in a $_{\scriptscriptstyle 113}$ distribution $p_i(x)$ from samples from the mixture distribu-114 tion is:

$$\langle X \rangle_i = \sum_{n=1}^{N} X(x_n) \frac{p_i(x_n)}{\sum_{k=1}^{N_k} p_k(x_n)}$$
 (4)

where the reduced free energy f is unknown. Reweighting 117 from the mixture distibution becomes.

$$\langle X \rangle_i = \sum_{n=1}^{N} X(x_n) \frac{e^{f_i - u_i(x_n)}}{\sum_{k=1}^{N_k} e^{f_k - u_k(x)}}$$
 (5)

which can be seen to be the same formula as the MBAR formula for expectations. The free energies can be obtained $_{120}$ by setting X=1, and looking at the K equations obtained by reweighting to the K different distributions.

Finite differences at different temperatures and pressures can be calculated by including states with different reduced potentials. For example, $u_j(x)=\beta_i U(x)+\beta_i(P_i+\Delta P)V$, or $u_j=\frac{1}{k_B(T_i+\Delta T)}U(x)+\frac{1}{k_B(T_i+\Delta T)}P_iV$. However, the relationship between f and G can be problematic when looking at differences in free energy with respect to temperature, because $G_2-G_1=\beta_2f_2-\beta_1f_1$. [MRS: needs to find notes on how this was dealt with last time

Since with MBAR, one can make the differences as small as one would like (you don't have to actually carry out a simulation at those points), we can use the simplest formulas: 133 central difference for first derivatives:

$$\frac{dA}{dx} \approx \frac{1}{2\Delta x} \left(A(x + \Delta x) - A(x - \Delta x) \right)$$

134 And for 2nd deriatives:

$$\frac{d^2A}{dx^2} \approx \frac{1}{\Delta x^2} \left(A(x + \Delta x) - 2A(x) + A(x - \Delta x) \right)$$

(1) 135 Thus, only properties at two additional points need to be evaluated to calculate both first and 2nd derivatives.

Note that if the finite differences are reevaluated using reweighting approaches, it is important that the simulation used generates the correct Boltzmann distribution. If not, 140 reweighted observables will be incorrect, and the results of the finite difference approach will have significant error.

Single Phase Properties

Pure Solvent Properties

1. Density

a. Direct calculation Starting with the equation used

$$\rho = \frac{M}{V} \tag{6}$$

147 We replace the average with the esemble estimate (calculated either directly, or with reweighting) to obtain:

$$\rho = \frac{M}{\langle V \rangle} \tag{7}$$

b. Derivative Estimate From the differential definition Recall that $\beta=\frac{1}{k_BT}$, therefore $\frac{\partial \beta}{\partial T}=-\frac{1}{k_BT^2}$. Substitution of the Gibbs free energy $dG=VdP-SdT+\sum_i \mu_i dN_i$ that Recall that $\beta=\frac{1}{k_BT}$, therefore $\frac{\partial \beta}{\partial T}=-\frac{1}{k_BT^2}$. Substitution of the Gibbs free energy $dG=VdP-SdT+\sum_i \mu_i dN_i$ that Recall that $\beta=\frac{1}{k_BT}$, therefore $\frac{\partial \beta}{\partial T}=-\frac{1}{k_BT^2}$. Substitution of the Gibbs free energy $dG=VdP-SdT+\sum_i \mu_i dN_i$ that Recall that $\beta=\frac{1}{k_BT}$, therefore $\frac{\partial \beta}{\partial T}=-\frac{1}{k_BT^2}$. ¹⁵¹ V can be calculated from the Gibbs free energy as:

$$V = \left(\frac{\partial G}{\partial P}\right)_{T N} \tag{8}$$

152 The density can therefore be estimated from the Gibbs free 153 energy.

$$\rho = \frac{M}{\left(\frac{\partial G}{\partial P}\right)_{T,N}} \tag{9} \quad {}_{175}$$

154 The derivative can be estimated using a central difference 155 numerical method utilizing Gibbs free energies reweighted 156 to different pressures.

$$\left(\frac{\partial G}{\partial P}\right)_{T,N} \approx \frac{G_{P+\Delta P} - G_{P-\Delta P}}{2\Delta p}$$
 (10)

157 The density can then finally be estimated.

$$\rho \approx \frac{M}{\frac{G_{P+\Delta P} - G_{P-\Delta P}}{2\Delta P}} \tag{11}$$

This can be calculated from the reduced free energy f if de-159 sired by simply substituting:

$$\rho \approx \frac{\beta M}{\frac{f_{P+\Delta P} - f_{P-\Delta P}}{2\Delta P}} \tag{12}$$

186

Intuitively, one would imagine that equation 12 would be worse estimate of density given that the calculations involved have more room for error than direct simulations. That being said, this method should prove invaluable when estimating densities of unsampled states using MBAR.

Molar Enthalpy

165

This section is on the relation of enthalpy to Gibbs free en-167 ergy (should we need it). This is not an experimental quan-168 tity, but will be helpful in calculating related properties of interest. The enthalpy, H, can be found from the Gibbs free $_{170}$ energy, G, by the Gibbs-Helmholtz relation:

$$H = -T^2 \left(\frac{\partial \left(\frac{G}{T} \right)}{\partial T} \right)_{BN} \tag{13}$$

Transforming the derivative in the Gibbs-Helmholtz rela-172 tion to be in terms of β instead of T yields:

$$H = -T^{2} \frac{\beta^{2}}{\beta^{2}} \left(\frac{\partial \left(\frac{G}{T} \right)}{\partial T} \frac{\partial T}{\partial \beta} \frac{\partial \beta}{\partial T} \right)_{P,N} \tag{14}$$

$$H = \frac{1}{k_B^3 T^2 \beta^2} \left(\frac{\partial \left(\frac{G}{T} \right)}{\partial \beta} \right)_{P,N}$$

$$= \frac{1}{k_B} \left(\frac{\partial \left(\frac{G}{T} \right)}{\beta} \right)_{P,N} = \frac{\partial f}{\partial \beta_{P,N}} \quad (15)$$

3. Heat Capacity

The definition of the isobaric heat capacity is:

$$C_P = \left(\frac{\partial H}{\partial T}\right)_{PN} \tag{16}$$

$$C_{P} = \frac{\partial \left(\frac{\partial f}{\partial \beta}\right)}{\partial T}_{P,N} \tag{17}$$

$$C_P = k_B \beta^2 \frac{\partial^2 f}{\partial \beta^2} \tag{18}$$

This could be computed by finite differences approach or 182 analytical derivation using MBAR

The enthalpy fluctuation formula can also be used to cal-185 culate $C_P[1]$.

$$C_P = \frac{\langle H^2 \rangle - \langle H \rangle^2}{Nk_P \langle T \rangle^2} \tag{19}$$

The form is equivalent for isochoric heat capacity, but with derivatives at constant volume rather than pressure.

Isothermal Compressibility

The definition of isothermal compressibility is:

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \tag{20}$$

a. First Derivative Thus, it can be estimated by the fi-193 nite difference of $\langle V
angle$

$$\kappa_T = -\frac{1}{2V(T, P)^2} \left(\langle V(P + \Delta P, T) \rangle - \langle V(P - \Delta P, T) \rangle \right) \tag{21}$$

194 Or by the finite differences evaluation of:

$$\kappa_T = -\frac{\left(\frac{\partial^2 G}{\partial P^2}\right)_{T,N}}{\left(\frac{\partial G}{\partial P}\right)_{T,N}} \tag{22}$$

 κ_T can also be estimated from the ensemble average and fluctuation of volume (in the NPT ensemble) or particle number (in the μ VT ensemble)[2]:

$$\kappa_T = \beta \frac{\langle \Delta V^2 \rangle_{NTP}}{\langle V \rangle_{NTP}} = V \beta \frac{\langle \Delta N^2 \rangle_{VT}}{\langle N \rangle_{VT}}$$
 (23)

5. Speed of Sound

The definition of the speed of sound is[3]:

$$c^{2} = \left(\frac{\partial P}{\partial \rho}\right)_{S} = -\frac{V^{2}}{M} \left(\frac{\partial P}{\partial V}\right)_{S} \tag{24}$$

$$c^{2} = \frac{V^{2}}{\beta M} \left[\frac{\left(\frac{\gamma_{V}}{k_{B}}\right)^{2}}{\frac{C_{V}}{k_{B}}} + \frac{\beta}{V \kappa_{T}} \right]$$
 (25)

Where:

195 196

200

201

202

204

205

206

208

215

216

217

$$\gamma_V = \left(\frac{\partial P}{\partial T}\right)_V \tag{26}$$

 γ_V is known as the isochoric pressure coefficient. κ_T is the same isothermal compressibility from section A.1.3

An alternate derivation, applying the triple product rule to $\left(\frac{\partial P}{\partial V}\right)_S$ yields the following.

$$\left(\frac{\partial P}{\partial V}\right)_{S} = \frac{\left(\frac{\partial S}{\partial V}\right)_{P}}{\left(\frac{\partial S}{\partial P}\right)_{V}} \tag{27}$$

$$\left(\frac{\partial S}{\partial V}\right)_{P} = \left(\frac{\partial S}{\partial T}\right)_{P} \left(\frac{\partial T}{\partial V}\right)_{P} = \frac{C_{P}}{T} \left(\frac{\partial T}{\partial V}\right)_{P} = \frac{C_{P}}{TV\alpha}$$
(28)

Where $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_P=\left(\frac{\partial \ln V}{\partial T}\right)_P$ is the coefficient of

thermal expansion. The second term is our triple product rule $\left(\frac{\partial S}{\partial P}\right)_V$ can be expressed as follows.

$$\left(\frac{\partial S}{\partial P}\right)_{V} = \left(\frac{\partial S}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial P}\right)_{V} = \frac{C_{V}}{T} \left(\frac{\partial T}{\partial P}\right)_{V} = \frac{C_{V}}{T\gamma_{V}} \tag{29}$$

Thus our derivation yields:

225

226

227

228

229

235

236

$$\left(\frac{\partial P}{\partial V}\right)_{S} = \frac{C_{P}\gamma_{V}}{C_{V}V\alpha} \tag{30}$$

Horn et al set out several ways for calculating α [1]:

a. Analytical derivative of density with respect to temperature

$$\alpha = -\frac{d\ln\langle\rho\rangle}{dT} \tag{31}$$

b. Numerical derivative of density over range of T of interest The same finite differences approach as shown for isothermal compressibility can be applied here, thus:

$$\alpha = -\frac{d \ln \langle \rho \rangle}{dT} = -\frac{1}{2\rho(T, P)} \left(\ln \langle \rho(P, T + \Delta T) \rangle - \ln \langle V(P, T - \Delta T) \rangle \right)$$
(32)

c. Using the enthalpy-volume fluctuation formula

$$\alpha = \frac{\langle VH \rangle - \langle V \rangle \langle H \rangle}{k_B \langle T \rangle^2 \langle V \rangle} \tag{33}$$

Finite differences approximations and/or analytical derivation can also be used to calculate γ_V or by note of the relation:

$$\gamma_V = -\frac{\alpha}{\kappa_T} \tag{34}$$

6. Dielectric Constant

This equation was provided by a literature reference authored by CJ Fennell[4] and is the standard for calculating the dielectric constant. Below, $\epsilon(0)$ is the zero frequency dielectric constant, V is the system volume and D is the total system dipole moment.

$$\epsilon(0) = 1 + \frac{4\pi}{3k_B T \langle V \rangle} (\langle D^2 \rangle - \langle D \rangle^2)$$
 (35)

Binary Mixture Properties

242

243

252

258

261

262

263

264

269 270

Mass Density, Speed of Sound and Dielectric Constant

The methods for these calculations are the same for a 245 multicomponent system.

Activity Coefficient

The definition of chemical potential in a pure substance 247 248 İS:

$$\mu(T, P) = \left(\frac{\partial G}{\partial N}\right)_{T, P} \tag{36}$$

287 288

²⁴⁹ which is a function of only temperaure and pressure.

Then the definition of the chemical potential μ_i of com- $_{251}$ pound i in a mixture is:

$$\mu_i(T, P, \vec{N}) = \left(\frac{\partial G}{\partial N_i}\right)_{T, P, N_{i \neq i}} \tag{37}$$

 $_{ extstyle 253}$ N_i refers to a molecule of component i and $N_{j
eq i}$ refers to $_{254}$ all molecules other than component i, with \vec{N} the vector of all component numbers. Since μ_i is intensive, this is equivalently a function of the vector of mole fractions $ec{x}_{i}$ 295 instead of simply of N_i .

For an ideal solution, the chemical potential μ_i can be related to the pure chemical potential by

$$\mu_i(T, P, \vec{x}_i) = \mu(T, P) + k_B T \ln(\gamma_i) \tag{38}$$

By analogy to this form, we can say

$$\mu_i(T, P, \vec{x}_i) = \mu(T, P) + k_B T \ln(x_i \gamma_i) \tag{39}$$

Where γ_i is the activity coefficient of component i, and 266 is a function of T,P,and $\vec{x_i}$. Rearrangement of the previous equation yields:

$$\gamma_i = \frac{e^{\left(\frac{\mu_i(T, P, \vec{x}_i) - \mu(T, P)}{k_B T}\right)}}{x_i} \tag{40}$$

Although chemical potentials cannot be directly calcu- 313 lated from simulation, chemical potential residuals can. We 314 can calculate the difference $\mu_i(T,P,\vec{x}_i) - \mu(T,P)$ by calculating $\Delta \mu(T,P)_{liquid} - \Delta \mu(T,P)_{qas}$ using a standard al- $_{275}$ chemical simulation of the pure substance, followed by the $_{337}$ ture and y_i is the pure solvent quantity. In general, the sim-276 calculation of $\mu_i(T,P,\vec{x}_i)_{liquid} - \Delta\mu(T,P,\vec{x}_i)_{gas}$, and as- 318 plest methods for calculating excess molar properties for bi- 277 suming that $\Delta\mu(T,P,\vec{x}_i)_{gas} = \Delta\mu(T,P)_{gas}$ (note: there 319 nary mixtures will require three simulations. One simulation

278 are a few subleties here relating to the $\ln x_i$ factor, but it appears that with alchemical simulations with a only one particle that is allowed to change, this will cancel out (need to follow up).

Several of these alchemical simulation methods for calculating activity coefficients have been pioneered by Andrew 284 Paluch [5]. A method detailing the calculation of infinite dialess lution activity coefficients γ_i^{inf} for binary a mixture follows 286 directly:

$$\begin{split} \ln\gamma_{2}^{\infty}\left(T,P,x_{2}=0\right)&=\beta\mu_{2}^{res,\infty}\left(T,P,N_{1},N_{2}=1\right)\\ &+\ln\left[\frac{RT}{v_{1}\left(T,P\right)}\right]-\ln f_{2}^{0}\left(T,P\right) \end{split} \tag{41}$$

Where $\beta\mu_2^{res,\infty}$ is the dimensionless residual chemical 290 potential of component 2 at inifinite dilution. The residual is ²⁹¹ defined here as the difference between the liquid and ideal v_1 gas state. v_1 (T, P) is the molar volume of component 1 at T and P. $\ln f_2^0(T, P)$ is the natural logarithm of the pure ²⁹⁴ liquid fugacity of component 2 and is defined as:

$$\ln f_2^0(T, P) = \beta \mu_2^{res}(T, P) + \ln \left[\frac{RT}{v_2(T, P)} \right]$$
 (42)

Paluch et al. use a multistage free energy perturbation approach utilizing MBAR in order to calculate the residual chemical potentials (recall that the chemical potential is the partial molar Gibbs free energy and dimensionless Gibbs free energy differences between multiple states are readily computed with MBAR). The idea is to connect two states of interest. In the case of a pure liquid, connecting a system of pure liquid molecules with N-1 interacting molecules and $_{305}$ one fully decoupled molecule to a system of N fully interact-306 ing molecules. The coupling/decoupling process is detailed 307 by Paluch et al [6], but involves a linear alchemical switch-308 ing function where LJ and electronic interactions are slowly turned on for the decoupled molecule until they are fully on.

3. Excess Molar Properties

The general definition of an excess molar property can be (40) 312 stated as follows:

$$y^E = y^M - \sum_i x_i y_i \tag{43}$$

Where \boldsymbol{y}^E is the excess molar quantity, \boldsymbol{y}^M is the mixture

is run for each pure component and a third will be run for the 350 321 specific mixture of interest. We note that only one set of pure simulations are needed to calculate excess properties at all 323 compositions.

Excess Molar Heat Capacity and Volume

324

329

330

335

336

337

340

341

Excess molar heat capacities and volume will be calcu-325 lated using the methods for the pure quantities in section A.1 in combination with the general method for excess property calculation above.

Excess Molar Enthalpy

Excess molar enthalpy can be calculated using the general relation of molar enthalpy as it relates to Gibbs Free Energy $_{333}$ from section A.1 and the generalized method of ecess molar property calculation above or by the following[7]:

$$H^{E} = \langle E^{M} \rangle + PV^{E} - \sum_{i} x_{i} \langle E_{i} \rangle \tag{44}$$

Where $\langle \rangle$ denotes an ensemble average and V^E is calculated using the general method of excess molar properties. 338

Suggested Corrections

1. Heat Capacity

Horn et al suggest a number of vibrational corrections be ³⁴³ applied to the calculation of C_P due to a number of approximations made during the simulation of the liquid [1]. The 345 following terms were added as a correction.

$$\left(\frac{\partial E_{vib,l}}{\partial T}\right)_{P} = \left(\frac{\partial E_{vib,l,intra}^{QM}}{\partial T}\right)_{P} + \left(\frac{\partial E_{vib,l,inter}^{QM}}{\partial T}\right)_{P} - \left(\frac{\partial E_{vib,l,inter}^{CM}}{\partial T}\right)_{P} \tag{45}$$

Where:

346

347

348

349

$$\left(\frac{\partial E_{vib}^{CM}}{\partial T}\right)_{P} = k_{B} n_{vib} \tag{46}$$

$$\left(\frac{\partial E_{vib}^{QM}}{\partial T}\right)_{P} = \sum_{i=1}^{n_{vib}} \left(\frac{h^{2}v_{i}^{2}e^{\frac{hv_{i}}{k_{B}T}}}{k_{B}T^{2}\left(e^{\frac{hv_{i}}{k_{B}T}} - 1\right)^{2}}\right) \tag{47}$$

Above, n_{vib} is the number of vibrational modes, h is Planck's constant and v_i is the vibrational frequency of

351

365

374

Properties Involving Change of Phase

Pure Solvent Properties

Enthalpy of Vaporization

The definition of the enthalpy of vaporization is[8]:

$$\Delta H_{vap} = H_{gas} - H_{liq} = E_{gas} - E_{liq} + P(V_{gas} - V_{liq}) \tag{48}$$

If we assume that $V_{gas}>>V_{liq}$ and that the gas is ideal 363 (and therefore kinetic energy terms cancel):

$$\Delta H_{vap} = E_{gas,potential} - E_{liq,potential} + RT$$
 (49)

Binary Mixture Properties

Suggested Corrections

Enthalpy of Vaporization

An alternate, but similar, method for calculating the enth-₃₇₀ lapy of vaporization is recommended by Horn et al [1].

$$\Delta H_{vap} = -\frac{E_{liq,potential}}{N} + RT - PV_{liq} + C$$
 (50)

In the above equation C is a correction factor for vibrational energies, polarizability, non-ideality of the gas and pressure. It can be calculated as follows.

$$C_{vib} = C_{vib,intra} + C_{vib,inter}$$

$$= (E_{vib,QM,gas,intra} - E_{vib,QM,liq,intra})$$

$$+ (E_{vib,QM,liq,inter} - E_{vib,CM,liq,inter})$$
(51)

sical mechanics, resectively.

$$C_{pol} = \frac{N}{2} \frac{\left(d_{gas} - d_{liq}\right)^2}{\alpha_{n,gas}} \tag{52}$$

Where d_i is the dipole moment of a molecule in phase i379 and $\alpha_{p,qas}$ is the mean polarizability of a molecule in the gas

$$C_{ni} = P_{vap} \left(B - T \frac{dB}{dT} \right) \tag{53}$$

Where B is the second virial coefficient.

377

378

382

384

386

422

$$C_{x} = \int_{P_{ext}}^{P_{vap}} \left[V\left(P_{ext}\right) \left[1 - \left(P - P_{ext}\right) \kappa_{T} \right] - TV\alpha \right] dP \tag{54}$$

Where P_{ext} in the external pressure and $V\left(P_{ext}\right)$ is the 419 the following equation. volume at P_{ext} . 388

This is frequently done as a single simulation calculation 390 by assuming the average intramolecular energies remains constant during the phase change, which is rigorously correct for something like a rigid water molecule (intramolecu-

The QM and CM subscripts stand for quantum and clastural rearrangement between gas and liquid phases.

> As discussed by myself and MRS, we have decided to not initially begin the parametrization process using enthalpy of vaporization data. While force field parametrization is com-398 monly done using said property we have ample reason to 399 not follow classical practice. First of all, the enthalpy data is usually not collected at standard temperature and pressure, but at the saturation conditions of the liquid being vaporized [9]. This would require corrections to be made to get the property at STP (the process will be explained below) using fitted equations for heat capacity. Not only is this inconvenient, but it adds an unknown complexity when adjusting experimental uncertainties due to the added correction. Often times the uncertainties of these "experimental" enthalpies are unrecorded because they are estimated from fitted Antoine equation coefficients [9].

> An additional issue is the necessity of having to use gas phase simulation data in order to validate a parametrization process meant for small organic liquids and their mixtures. Following an example of Wang et al. [10] we plan to instead use enthalpy of vaporization calculations as an unbiased means of testing the success of the parametrization. If the parametrization procedure is expanded to use enthalpy of vaporization, corrections can be made to the experimental heat of vaporization in order to get a value at STP using

$$\Delta H_{vap}(T) = \Delta H_{vap}^{ref} + \int_{T_{ref}}^{T} \left(C_{P,gas} - C_{P,liq} \right) dT \quad (55)$$

^[1] H. et al., Journal of Chemical Physics **120**, 9665 (2004).

^[2] D. et al., The Journal of Physical Chemistry B **105**, 715 (2000). 423

^[3] R. Lustig, Molecular Simulation 37, 457 (2011). 424

^[4] C. Fennell, The Journal of Physical Chemistry B 116, 6936 425 426

^[5] P. et al., Industrial and Engineering Chemistry Research 55, 435 427 5415 (2016).

^[6] P. et al., Industrial and Engineering Chemistry Research 54,

^{9027 (2015).}

D. et al., Fluid Phase Equilibria 289, 156 (2010).

W. et al., Journal of Chemical Theory and Computation 7, 2151

^[9] C. et al., Journal of Physical and Chemical Reference Data 32, 519 (2003).

^{436 [10]} W. et al., Journal of Physical Chemistry B 116, 7088 (2012).