Лабораторна робота №2

Тема: Розробка імітаційної моделі діючої сонячної електростанції

Мета: Ознайомлення з принципами роботи сонячної електростанції та методами імітаційного моделювання. Розробка та дослідження імітаційної моделі функціонування сонячної електростанції для оцінки її продуктивності в залежності від різних параметрів, таких як інтенсивність сонячного випромінювання, кут нахилу панелей, температурні умови та інші фактори.

Завдання:

Створення математичного апарату для визначення сумарної сонячної радіації як складової частини моделі сонячної електростанції.

Результатом роботи є визначення сумарної сонячної радіації в кожен момент часу з подальшим використанням програми в моделі прогнозування експлуатаційних характеристик сонячної електростанції.

Теоретичні матеріали

Задачею сонячної електростанції є генерація електричної енергії. Ефективність використання встановленої потужності залежить від потоку сончної енергії, яка сприймається панеллю електроснатції. З метою підвищення надходження сонячної інсоляції приймаючу поверхню намагаються повертати перпендикулярно до Сонця, тобто так, щоб кут між сонцем і панеллю, що приймає, був мінімальним.

На рис. 1 показано характеристики, що задають розташування панелі сонячної електротсанції щодо положення Сонця, де β – кут нахилу панелі щодо землі; γ – азимутальний кут установки приймальною панеллю, град.; θ_Z – зенітний кут, град.; θ – кут падіння сонячного випромінювання, град.; 1 і 2 — нормалі до горизонтальної та похилої площин; W, S, E, N — сторони світла, відповідно.

Рис. 1. Схема орієнтації поверхні, приймаючої соняне випромінювання

Сумарна сонячна радіація дорівнює сумі прямої, розсіяної та відбитої інсоляцій:

$$I_{\text{сум}}^{\beta\gamma} = I_{\text{пр}}^{\beta\gamma} + I_{\text{posc}}^{\beta\gamma} + I_{\text{Bidofp}}^{\beta\gamma} =$$

$$= I_{\text{пр}}^{\text{rop}} \frac{\cos\theta}{\cos\theta_z} + I_{\text{posc}}^{\text{rop}} \frac{1 + \cos\beta}{2} + \rho I_{\text{cym}}^{\text{rop}} \frac{1 - \cos\beta}{2}, \qquad (1)$$

$$I_{\text{сум}}^{\beta\gamma} = I_{\text{пр}}^{\beta\gamma} + I_{\text{posc}}^{\beta\gamma} + I_{\text{Bidofp}}^{\beta\gamma} = I_{\text{пр}}^{\text{rop}} \cdot \frac{\cos\theta}{\cos\theta_z} + I_{\text{posc}}^{\text{rop}} \cdot \frac{1 + \cos\beta}{2} + \rho \cdot I_{\text{суm}}^{\text{rop}} \cdot \frac{1 - \cos\beta}{2}$$

де $I_{\rm np}^{\beta\gamma}$, $I_{\rm posc}^{\beta\gamma}$, $I_{\rm Biдoбp}^{\beta\gamma}$ - значення прямої, розсіяної від хмар і аерозолів, і відбитої від земної поверхні радіації на похилу поверхню, відповідно;

 $I_{\rm np}^{\rm rop}$, $I_{\rm cym}^{\rm rop}$ - значення прямої, розсіяної та сумарної сонячної радіації, що падає на горизонтальну поверхню;

 ρ — альбедо до земної поверхні. Альбедо - здатність поверхонь або окремих тіл відбивати сонячну радіацію. Визначається в долях потоку радіації, що поступає на поверхню.

Найбільше альбедо у снігу - 70-90 %, що сильно затримує його танення, особливо в Заполяр'ї. У піску до 35 %, у трав'яного покриву 20-25 %, у лісових крон від 5 до 20 %. Найменше альбедо у води - 5 % і зораних грунтів (чорноземи 5 %, підзоли до 20 %). Це самі теплоємні поверхні. Загальне альбедо земної кулі близько 40 %.

Величина кута 9 визначається з рівняння

$$\cos \theta = (A - B) \cdot \sin \sigma + [C \cdot \sin \omega + + (D + E) \cdot \cos \omega] \cdot \cos \sigma.$$
 (2)

Коефіцієнти А, В, С, D, Е обчислюються за формулами:

$$A = \sin \phi \cdot \cos \beta; B = \cos \phi \cdot \sin \beta \cdot \cos \gamma;$$

$$C = \sin \beta \cdot \sin \gamma; D = \cos \phi \cdot \cos \beta;$$

$$E = \sin \phi \cdot \sin \beta \cdot \cos \gamma,$$
(3)

де ϕ — широта місцевості, де встановлені панелі, град;

б - кутове схилювання Сонця, град;

 γ - азимутальний кут встановлення приймального майданчика, град., який при розміщенні на південь $\gamma=0^\circ$; при розвороті на східн γ вважається позитивним, на захід – негативним.

ω – часовий кут Сонця, град.

Зенітний кут Сонця визначається за виразом:

$$\mathcal{G}_{Z} = \arccos[\sin \delta \cdot \sin \phi + (4) + \cos \phi \cdot \cos \delta \cdot \cos \omega].$$

Кут висоти підйому Сонця над обрієм һ обчислюється за формулою:

$$h = 90^{\circ} - \theta_{Z} \tag{5}$$

Азімутальний кут положення Сонця $A_Z \, \varepsilon$ рішенням рівняння:

$$\cos A_Z = \frac{\sin \phi \cdot \sin h - \sin \delta}{\cos \phi \cdot \cos h}.$$
 (6)

Часовий кут обчислюється за формулою:

$$\omega = 15 \cdot (t - 12 - T_{yB} - \Delta T_{UTC}) + \psi, \tag{7}$$

де t - поточний офіційний місцевий час;

 ΔT_{UTC} - різниця між місцевим офіційним часом та середнім часом за Грінвічем, год; ψ - географічна довгота точки розміщення приймального майданчика, град.

Часова поправка на рівняння часу визначається за такою формулою:

$$T_{vR} = 0.11 \cdot \sin(2B) - 0.08 \cdot \cos(B) - \sin(B)$$
, (8)

де $B = (0.986 \cdot N - 79.866)$ град; N - номер календарного дня з початку року. Кут похилювання знаходиться за формулою:

$$\delta = 23.45 \cdot \sin(0.986 \cdot N + 280.024).$$
 (9)

Кути сходу ω_n і заходу ω_k Сонця за сонячним часом визначаються з виразів:

$$\omega_n$$
, $\omega_k = 0 \pm \arccos[-\tan\phi \cdot \tan\delta]$. (10)

Для врахування реальних характеристик сонячної радіації, що приходить на певну територію, при моделюванні використовуються середні для заданого місяця значення індексу прозорості атмосфери K_T :

$$K_T = \frac{I_{\text{cym}}^{\text{rop}}}{I_0},\tag{11}$$

Значення сумарної сонячної радіації, що падає на горизонтальну поверхню $I_{\text{сум}}^{\text{гор}}$ визначається за даними NASA (Таблиця 1)

 I^0 - позаатмосферна радіація на горизонтальну поверхню, що визначається за формулою:

$$I_0 = I_{sun} \cdot [1+0.033 \cdot cos(0.986 \cdot N)] \cdot cos(\vartheta_z)$$
 (12) де $I_{sun} = 1367~\mathrm{Bt/M^2} - \mathrm{coh}$ ячна стала.

Для визначення осереднених значень розсіяної та сумарної радіації використовуються матеріали NASA, які надають осереднені протягом 22 років сонячної інсоляції на 1 м² поверхні протягом доби (світлового дня) у містах, вказаних в таблиці. Використовуючи дані таблиці 1 визначаємо осереднену сумарну сонячну інсоляцію на гроризонтальну поверхню $I_{\text{сум}}^{\text{гор}}$.

Таблиця 1. Сонячна інсоляція в різних містах України за даними NASA ($I_{\text{сум}}^{\text{гop}}$)

1							1			(-cym/	1	1	
	січ	лют	бер	квіт	трав	лип	черв	серп	вер	жовт	лист	груд	рік
Симферополь	1,27	2,06	3,05	4,30	5,44	5,84	6,20	5,34	4,07	2,67	1,55	1,07	3,58
Вінница	1,07	1,89	2,94	3,92	5,19	5,3	5,16	4,68	3,21	1,97	1,10	0,9	3,11
Луцьк	1,02	1,77	2,83	3,91	5,05	5,08	4,94	4,55	3,01	1,83	1,05	0,79	2,99
Дніпро	1,21	1,99	2,98	4,05	5,55	5,57	5,70	5,08	3,66	2,27	1,20	0,96	3,36
Донецьк	1,21	1,99	2,94	4,04	5,48	5,55	5,66	5,09	3,67	2,24	1,23	0,96	3,34
Житомир	1,01	1,82	2,87	3,88	5,16	5,19	5,04	4,66	3,06	1,87	1,04	0,83	3,04
Ужгород	1,13	1,91	3,01	4,03	5,01	5,31	5,25	4,82	3,33	2,02	1,19	0,88	3,16
Запоріжжя	1,21	2,00	2,91	4,20	5,62	5,72	5,88	5,18	3,87	2,44	1,25	0,95	3,44
Івано-Франківськ	1,19	1,93	2,84	3,68	4,54	4,75	4,76	4,40	3,06	2,00	1,20	0,94	2,94
Київ	1,07	1,87	2,95	3,96	5,25	5,22	5,25	4,67	3,12	1,94	1,02	0,86	3,10
Кропивницький	1,20	1,95	2,96	4,07	5,47	5,49	5,57	4,92	3,57	2,24	1,14	0,96	3,30
Луганськ	1,23	2,06	3,05	4,05	5,46	5,57	5,65	4,99	3,62	2,23	1,26	0,93	3,34
Львів	1,08	1,83	2,82	3,78	4,67	4,83	4,83	4,45	3,00	1,85	1,06	0,83	2,92
Миколаїв	1,25	2,10	3,07	4,38	5,65	5,85	6,03	5,34	3,93	2,52	1,36	1,04	3,55
Одеса	1,25	2,11	3,08	4,38	5,65	5,85	6,04	5,33	3,93	2,52	1,36	1,04	3,55
Полтава	1,18	1,96	3,05	4,00	5,40	5,44	5,51	4,87	3,42	2,11	1,15	0,91	3,25
Ровно	1,01	1,81	2,83	3,87	5,08	5,17	4,98	4,58	3,02	1,87	1,04	0,81	3,01
Суми	1,13	1,93	3,05	3,98	5,27	5,32	5,38	4,67	3,19	1,98	1,10	0,86	3,16
Терніполь	1,09	1,86	2,85	3,85	4,84	5,00	4,93	4,51	3,08	1,91	1,09	0,85	2,99
Харків	1,19	2,02	3,05	3,92	5,38	5,46	5,56	4,88	3,49	2,10	1,19	0,9	3,26
Херсон	1,30	2,13	3,08	4,36	5,68	5,76	6,00	5,29	4,00	2,57	1,36	1,04	3,55
Хмельницький	1,09	1,86	2,87	3,85	5,08	5,21	5,04	4,58	3,14	1,98	1,10	0,87	3,06
Черкаси	1,15	1,91	2,94	3,99	5,44	5,46	5,54	4,87	3,40	2,13	1,09	0,91	3,24
Чернігів	0,99	1,80	2,92	3,96	5,17	5,19	5,12	4,54	3,00	1,86	0,98	0,75	3,03
Чернівці	1,19	1,93	2,84	3,68	4,54	4,75	4,76	4,40	3,06	2,00	1,20	0,94	2,94

Індекс $K_{\rm T}$, коректніше записати у вигляді $K_T = I_{\rm cym}^{\rm rop}/\int_0^{24} I_0 \ (t)$

$$K_T = I_{\text{cym}}^{\text{rop}} / \int_0^{24} I_0(t) \tag{13}$$

оскільки табличні дані дають саме добову значення сумарного випромінювання.

Величина розсіяної радіації визначається з залежності

$$I_{\text{posc}}^{\text{rop}} = \frac{I_{\text{cym}}^{\text{rop}}}{\frac{1+e^{(-5+8,6\cdot K_T)}}{}}$$
(14)

 $I_{\text{розс}}^{\text{гор}} = \frac{I_{\text{сум}}^{\text{гор}}}{1 + \mathrm{e}^{(-5 + 8, 6 \cdot K_T)}}$ (14) Показники, які ми визначили на основі осереднених значень $I_{\text{пр}}^{\text{гор}}$, $I_{\text{розс}}^{\text{гор}}$, $I_{\text{сум}}^{\text{гор}}$ не дають нам інформаціх по зміні падаючого випромінювання протягом доби.

Єдиний результат, прив'язаний до доби та часу доби – результат залежності 12. В рамках виконання лабораторного завдання зміну $I_{\text{сум}}^{\text{гор}}(t)$ протягом доби проводиться з залежностей:

$$I_{\text{сум}}^{\text{гор}}(t) = K_T \cdot I_0(t)$$

$$I_{\text{розс}}^{\text{гор}}(t) = \frac{K_T \cdot I_0(t)}{1 + e^{(-5+8,6 \cdot K_T)}}$$

$$I_{\text{відобр}}^{\text{гор}}(t) = \rho \cdot I_{\text{сум}}^{\text{гор}}(t)$$

$$I_{\text{пр}}^{\text{гор}}(t) = I_{\text{сум}}^{\text{гор}}(t) - I_{\text{розс}}^{\text{гор}}(t) - I_{\text{відобр}}^{\text{гор}}(t)$$

$$I_{\text{сум}}^{\beta \gamma}(t) = I_{\text{пр}}^{\text{гор}}(t) \cdot \frac{\cos \theta}{\cos \theta_z} + I_{\text{розс}}^{\text{гор}}(t) \cdot \frac{1 + \cos \beta}{2} + I_{\text{відобр}}^{\text{гор}}(t) \cdot \frac{1 - \cos \beta}{2}$$

$$(15)$$

Миттєвий показник сонячної радіації визначається за формулою 15, результуючий – інтегруванням

$$W_{\text{cyr}}(N) = \int_{0}^{24} I_{\text{cym}}^{\beta \gamma} dt.$$
 (16)

Матеріали для захисту лабораторної роботи:

- 1. Лістінг програми;
- 2. Графік (таблицю) зміни величини сонячної інсоляції протягом доби один день у грудні, квітні, липні, вересні.
- 3. Графік (таблицю) залежності сумарної радіації, падаючої на поверхню сонячної панелі при зміні кута нахилу (β)/ напряму розміщення (γ) панелі.

Бажаючі можуть виконати роботу не спираючись на запропоновану модель, а використовуючі інші матеріали, які дозволяють побудувати звіт з наданням інформації в об'ємі, наведеному вище. В такому випадку необхідно надати додатково посилання на матеріал, який став основою моделі.

Додаткова інформація

Студентам, хто зацікавлений у завершенні роботи зі створенням моделі, яка пов'язує інтенсивність сонячного випромінювання з результуючої генерацією електричної енергії пропоную завершити роботу з урахуванням формул 17-19 та даних панелей з їх технічних характеристик.

Максимальна вихідна потужність сонячної панелі розраховується з використанням залежності:

$$P_{PV} = C_{FF} \cdot \eta_{conv} \cdot I_{cym}^{\beta \gamma} \cdot \ln(10^6 \cdot I_{cym}^{\beta \gamma}) / T_{FM}$$
 (17)

 ${f C}_{FF}$ — постійний коефіцієнт сонячної панелі, η_{conv} — ККД перетворювача з контролером максимальної потужності, T_{FM} – температура сонячної панелі.

$$C_{FF} = \frac{FF \cdot T_{ref}}{G_{ref}} \cdot \frac{\left[I_{SC} + k_I \cdot \left(T_{FM} - T_{ref}\right)\right] \cdot \left[I_{OC} + k_V \cdot \left(T_{FM} - T_{ref}\right)\right]}{\ln\left(10^6 \cdot G_{ref}\right)}$$
(18)

де FF- коефіцієнт заповнення вольт-амперної характеристики сонячної панелі; T_{ref} , G_{ref} — температура та освітленість сонячної панелі в стандартних умовах, k_I , k_V — температурні коефіцієнти струму короткого замикання і напруги холостого ходу сонячної панелі, відповідно.

Коефіцієнт заповнення ВАХ (вольт-ампреної характеристики) сонячної панелі визначається за даними їх технічної специфікації:

$$FF = I_{MPP} \cdot V_{MPP} \cdot / I_{SC} \cdot V_{OC}$$
 (19)

де I_{MPP} , V_{MPP} - паспортні значення струму та напруги сонячної панелі у точці максимальної потужності за стандартних умов, I_{SC} , V_{OC} - паспортні значення струму короткого замикання та напруги холостого ходу сонячної панелі за стандартних умов.

Звіт про роботу

Звіт про роботу повинен містити:

- 1. Титульний лист
- 2. Лістінг програми
- 3. Графік (таблицю) зміни величини сонячної інсоляції протягом доби один день у грудні, квітні, липні, вересні.
- 4. Графік (таблицю) залежності сумарної радіації, падаючої на поверхню сонячної панелі при зміні кута нахилу (β)/ напряму розміщення (γ) панелі.
- 5. Висновки.