RUPRECHT-KARLS-UNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad

12/9/2008 | Page 1

Master's Program in Medical Physics

Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging III

Prof. Dr. Lothar Schad

Chair in Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany Lothar.Schad@MedMa.Uni-Heidelberg.de www.ma.uni-heidelberg.de/inst/cbtm/ckm/

UNIVERSITY HEIDELBERG

12/9/2008 | Page 2

Relaxation

Relaxation

uter Assisted Clinical Media Prof. Dr. Lothar Schad

Comparison: CT and MRI

CT

1025 Hu

1035 Hu } $\Delta = 1\%$ GM:

1000 Hu CSF:

WM:

patient: astrocytoma grade II

T2 MRI

WM: 90 ms 550 ms GM: 100 ms 1000 ms } Δ = 100%

CSF: >1000 ms 2000 ms

- no bones

+ best soft tissue contrast

+ no radiation

12/9/2008 | Page 18

Bloch Equations with T1 and T2

$$dM_z/dt = (\gamma \times B)_z + (M_0 - M_z)/T1$$

$$dM_{xy}/dt = (\gamma \times B)_{xy} - M_{xy}/T2$$

rotating system:

$$\frac{d\vec{M}(t)}{dt} = \gamma \cdot \vec{M} \times \vec{B}(t) - \frac{M_x(t) \vec{i} + M_y(t) \vec{j}}{T_2} - \frac{(M_z(t) - M_z^0) \vec{k}}{T_1}$$

laboratory system:

$$\mathbf{M}_{x}(t) = e^{-\frac{t}{T_{2}}} \cdot (\mathbf{M}_{x}(0)\cos(\omega_{0} \cdot t) + \mathbf{M}_{y}(0) \cdot \sin(\omega_{0} \cdot t))$$

complex signal:

$$M_{y}(t) = e^{-\frac{t}{T_{2}}} \cdot (M_{y}(0)\cos(\omega_{0} \cdot t) - M_{x}(0) \cdot \sin(\omega_{0} \cdot t))$$

$$M_{\perp} = M_x + iM_y$$

$$M_z(t) = M_0 \cdot (1 - e^{-\frac{t}{T_1}}) + M_z(0) \cdot e^{-\frac{t}{T_1}}$$
 $\omega_0 = \gamma \cdot B_0$

$$\mathsf{M}_{\perp} = \mathsf{M}_0 \exp(-\mathrm{i}\omega_\mathsf{L} t - t/\mathsf{T2})$$

- precession frequency of nuclei bound in a specific molecule is determined by the local magnetic field B_{loc}:

$$\begin{aligned} &\mathsf{B}_{\mathsf{loc}} = \mathsf{B} - \delta \mathsf{B} \\ &\omega_{\mathsf{loc}} = \gamma \; \mathsf{B}_{\mathsf{loc}} = \gamma (1 - \delta) \mathsf{B} \end{aligned}$$

with
$$\delta$$
 = 10⁶ (ω - ω_{ref})/ ω_0 the relative chemical shift [ppm]

- δ ~ 10 ppm for ¹H $\delta \sim 100$ ppm for ¹³C, ¹⁹F, and ³¹P
- high resolution spectrum at $\rm B_0$ > 1.5 T with $\Delta B/B_0$ < 0.1 0.5 ppm show multiplet splitting due to spin-spin coupling
- in MRI only protons of water are imaged, chemical shift is not relevant! exception: δ_{fat} = 3.5 ppm (220 Hz) at 1.5 T

RUPRECHT-KARLS-UNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 12/9/2008 | Page 23

Summary: FID and MRI

FID signal is the transient response of a spin system after RF excitation; FID is a complex signal with amplitude and phase

FID amplitude is dependent on many parameters like: flip angle, number of spins, and magnetic field strength

FID timing is dependent on the grade of local magnetic field inhomogeneities characterized by T2*:

 $1/T2^* = 1/T2 + \gamma \Delta B_z$ with $T2^* < T2$

T2*: the effective (local) T2 relaxation time

T2: the true T2 relaxation time

UNIVERSITY HEIDELBERG

Computer Assisted Clinical Medicine
Prof. Dr. Lothar Schad

Standard Techniques for T1 and T2

Saturation-Recovery Sequence
Inversion-Recovery Sequence
Spin-Echo Sequence

