Analysis of RNA-seq data for RAP1:

RAP1:

- General Regulatory Factor¹
 - ► Abundant + essential.
 - ▶ Binding sites found in many promoters.
 - ▶ Enhancers of regulation.
- ► According to SGD, targets 1655 genes
- ► Chromatin silencing²
- Regulation of ribosome components³

¹Fourel et al.,2002

²Konig et al., 1996

³Lieb et al., 2001

FIRST DISCLAIMER:

RNA-seq data for only the ATFs for RAP1 was generated during the first 3 weeks of classes.

SECOND DISCLAIMER:

Number of GFP positive cells by FACS

CuffDiff run to compare:

- ▶ 0" to 15"
- ▶ 0" to 90"
- ▶ 0" min to 90" uninduced
- ▶ 15" to 90"
- ▶ 15" to 90" uninduced
- ▶ 90" to 90" uninduced

CuffDiff run to compare:

- ▶ 0" to 15"
- ▶ 0" to 90"
- ▶ 0" min to 90" uninduced
- ▶ 15" to 90"
- ▶ 15" to 90" uninduced
- ▶ 90" to 90" uninduced

The only significant differences found were between **0** and **90" induced**.

	Gene	Log2 Fold Change	p-value
1	TIS11	2.69	5×10^{-5}
2	INO1	2.50	$5 imes 10^{-5}$
3	SSA2	-1.90	$5 imes 10^{-5}$
4	YEL073C	1.74	$5 imes 10^{-5}$
5	GPG1	1.52	$5 imes 10^{-5}$
6	ICY1	1.39	$5 imes 10^{-5}$
7	MRS3	1.35	$5 imes 10^{-5}$
8	YOR387C	1.27	$5 imes10^{-5}$
9	PDR12	1.26	$5 imes10^{-5}$
10	GSC2	1.25	$5 imes 10^{-5}$
11	YMR090W	1.24	5×10^{-5}

	Gene	Log2 Fold Change	p-value
1	TIS11	2.69	5×10^{-5}
2	INO1	2.50	$5 imes 10^{-5}$
3	SSA2	-1.90	$5 imes 10^{-5}$
4	YEL073C	1.74	5×10^{-5}
5	GPG1	1.52	5×10^{-5}
6	ICY1	1.39	5×10^{-5}
7	MRS3	1.35	5×10^{-5}
8	YOR387C	1.27	$5 imes 10^{-5}$
9	PDR12	1.26	$5 imes 10^{-5}$
10	GSC2	1.25	$5 imes 10^{-5}$
11	YMR090W	1.24	5×10^{-5}

Rap1 has 1655 targets, according to the SGD.

	Gene	Log2 Fold Change	p-value
1	TIS11	2.69	5×10^{-5}
2	INO1	2.50	5×10^{-5}
3	SSA2	-1.90	$5 imes 10^{-5}$
4	YEL073C	1.74	$5 imes 10^{-5}$
5	GPG1	1.52	$5 imes 10^{-5}$
6	ICY1	1.39	5×10^{-5}
7	MRS3	1.35	5×10^{-5}
8	YOR387C	1.27	5×10^{-5}
9	PDR12	1.26	5×10^{-5}
10	GSC2	1.25	$5 imes 10^{-5}$
11	YMR090W	1.24	$5 imes 10^{-5}$

Rap1 has 1655 targets, according to the SGD. (p = 0.14)

GSC2

Figure : 0 - 90 minutes induced. Distribution of fold change for all genes, SGD targets.

Wilcoxon significance:

▶ All vs. SGD targets: p-value = 0.2101.

There is no difference in fold change between Rap1 targets and the full set of genes.

Yarragudi et al, 2007 - provides a list of probable and putative Rap1 targets by experimentation with Rap1 ts mutants.

Figure : 0 - 90 minutes induced. Distribution of fold change for all genes, putative direct Rap1 targets, and probable direct Rap1 targets from Yarragudi et al, 2007.

Wilcoxon significance:

- ▶ All vs. Putative: p-value = 0.5316.
- ▶ **All vs. Probable:** p-value = 0.08193.

Where do the top hits come from?

Where do the top hits come from?

	Gene	Function
1	TIS11	Increases on DNA replication stress
2	INO1	Inositol phosphate synthesis
3	SSA2	Stress response / Protein folding
4	YEL073C	Unknown function, regulated by Inositol
5	GPG1	Signal Transduction
6	ICY1	Unknown function, paralog to ICY2
7	MRS3	Iron transporter (mitochondrion)
8	YOR387C	Unknown function, has paralog VEL1
9	PDR12	Membrane transporter
10	GSC2	Spore wall formation
11	YMR090W	Unknown function

GO term	p-value
RNA modification guide activity rRNA modification guide activity base pairing with rRNA rRNA modification small nucleolar ribonucleoprotein complex	8.194×10^{-09} 8.194×10^{-09} 1.228×10^{-08} 1.719×10^{-07} 1.609×10^{-06}

FuncAssociate Berriz, 2009

GO term	p-value
cytosolic large ribosomal subunit	3.1129×10^{-37}
cytosolic small ribosomal subunit	8.9788×10^{-24}
cytosolic ribosome	9.6384×10^{-57}
rRNA export from nucleus	3.4673×10^{-07}
rRNA transport	3.4673×10^{-07}
glycolysis	2.1990×10^{-09}
cytoplasmic translation	5.8050×10^{-44}
cytosolic part	1.3412×10^{-43}
glucose catabolic process	$1.6974 imes 10^{-10}$
structural constituent of ribosome	$1.5817 imes 10^{-31}$
large ribosomal subunit	1.8137×10^{-19}
hexose catabolic process	5.4872×10^{-09}
ribosomal subunit	6.0681×10^{-31}
monosaccharide catabolic process	4.4285×10^{-09}
small ribosomal subunit	$1.9764 imes 10^{-12}$
ribosome	1.9820×10^{-27}
pyridine nucleotide metabolic process	4.3267×10^{-05}
glucose metabolic process	2.7083×10^{-06}
structural molecule activity	3.7227×10^{-14}
cytosol	2.2175×10^{-12}
translation	2.8191×10^{-09}

GO term	p-value
cytosolic large ribosomal subunit	3.1129×10^{-37}
cytosolic small ribosomal subunit	8.9788×10^{-24}
cytosolic ribosome	9.6384×10^{-57}
rRNA export from nucleus	3.4673×10^{-07}
rRNA transport	3.4673×10^{-07}
glycolysis	2.1990×10^{-09}
cytoplasmic translation	5.8050×10^{-44}
cytosolic part	1.3412×10^{-43}
glucose catabolic process	$1.6974 imes 10^{-10}$
structural constituent of ribosome	$1.5817 imes 10^{-31}$
large ribosomal subunit	$1.8137 imes 10^{-19}$
hexose catabolic process	5.4872×10^{-09}
ribosomal subunit	6.0681×10^{-31}
monosaccharide catabolic process	4.4285×10^{-09}
small ribosomal subunit	$1.9764 imes 10^{-12}$
ribosome	1.9820×10^{-27}
pyridine nucleotide metabolic process	4.3267×10^{-05}
glucose metabolic process	2.7083×10^{-06}
structural molecule activity	3.7227×10^{-14}
cytosol	2.2175×10^{-12}
translation	2.8191×10^{-09}

Lieb et al., 2001 - almost all ($^{124}/_{137}$) ribosomal protein genes (RPG) have binding sites for Rap1.

Using ~ 300 genes classified under the ribsome cell component in gene ontology:

Figure : 0 - 15 minutes induced. Distribution of fold change for all genes, all ribosome genes

RPGs seem to be downregulated by overexpression of Rap1. Wilcoxon significance:

▶ All vs. Ribosomal p-value = 2.2×10^{-16}

Lieb et al., 2001 - almost all ($^{124}/_{137}$) ribosomal protein genes (RPG) have binding sites for Rap1.

Using ~ 300 genes classified under the ribsome cell component in gene ontology:

Figure : 0 - 90 minutes induced. Distribution of fold change for all genes, all ribosome genes

RPGs seem to be downregulated by overexpression of Rap1. Wilcoxon significance:

▶ All vs. Ribosomal p-value = 7.899×10^{-16}

Using a different transcription factor (MIG1):

Figure : 0 - 15 minutes induced for MIG1. Distribution of fold change for all genes, all ribosome genes

Wilcoxon significance:

▶ MIG1 all vs. MIG1 ribosomal p-value = 2.2×10^{-16}

MIG1 v. RAP1 0-15 Ribosome

Adjusted $R^2 = 0.7816$.

Genes w/ low p-values from 0 to 15 minutes (immediate response) are highly enriched for stress response: DDR2, SSA2, PHM7, TMA10, HSP26. .

Genes w/ low p-values from 0 to 15 minutes (*immediate response*) are highly enriched for stress response: *DDR2*,

Why might the yeast stress response be activated?

- (1) Freeman et al., 1995 overexpression of Rap1 in yeast is toxic.
- (2) The ATF-EV construct may be toxic.

SSA2, PHM7, TMA10, HSP26...

- (3) Banerjee et al., 2004 show that progesterone activates the stress response (however, β -estradiol is native, progesterone is not).
- $^{68}\!/_{152}$ genes under "response to stress" are also Rap1 Targets. (p-val = 0.00136 by $\chi^2)$

Look at 0 to 15 minutes induction. The \sim 150 genes annotated under GO term *response to stress* are, on average, upregulated between 0 and 15 min.

Figure : 0 - 15 minutes induced. Distribution of fold change for all genes, stress response genes.

Wilcoxon significance:

▶ All vs. Stress Response: p-value = 3.031×10^{-08}

Is the stress response a β -estradiol or otherwise technical response?

0 to 15 minutes induction for another transcription factor (MIG1).

Figure : 0 - 15 minutes induced for MIG1. Distribution of fold change for all genes, stress response genes.

Wilcoxon significance:

► MIG1 All vs. MIG1 Stress Response: p-value $= 9.934 \times 10^{-08}$

MIG1 v. RAP1 0-15 Stress Response

Adjusted $R^2 = 0.8914$.

MIG1 v. RAP1 0-15 All

Adjusted $R^2 = 0.6428$.

RAP1 0 to 15 v. 0 to 90 All

Adjusted $R^2 = 0.09552$.

Conclusions

- ▶ Clear fast stress response after adding β -estradiol.
- Ribosomal down-regulation in contradicts what we know about Rap1 targeting.
- Stress may also lead to decreased ribosome expression.
- Coordinated response after 15 minutes in both MIG1 and RAP1.
- ATF may not have worked.
- Because Rap1 is a GRF, it may need TF partners to activate/repress.