

		Ce	ntre	Nun	nber
		Stuc	lent	Nun	nber

NSW Education Standards Authority

2024 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- · Draw diagrams using pencil
- Calculators approved by NESA may be used
- A formulae sheet, data sheet and Periodic Table are provided at the back of this paper
- Write your Centre Number and Student Number at the top of this page

Total marks: 100

Section I - 20 marks (pages 2-12)

- Attempt Questions 1-20
- Allow about 35 minutes for this section

Section II - 80 marks (pages 13-40)

- Attempt Questions 21–39
- Allow about 2 hours and 25 minutes for this section

Section I

20 marks

Attempt Questions 1–20

Allow about 35 minutes for this section

Use the multiple-choice answer sheet for Questions 1–20.

1 Which two substances are members of the same homologous series?

2 Aboriginal and Torres Strait Islander Peoples have used leaching in flowing water over several days to prepare various foods from plants that can be toxic to humans.

What was the reason for this?

- A. To react with toxins
- B. To dissolve low solubility toxins
- C. To prevent the food from decomposing
- D. To break down compounds that are difficult to digest

- Which of the following compounds can be correctly described as an Arrhenius base when dissolved in water?
 - A. Sodium nitrate
 - B. Sodium sulfate
 - C. Sodium chloride
 - D. Sodium hydroxide
- 4 An infrared spectrum of an organic compound is shown.

Which of the following compounds would produce the spectrum shown?

A.

В.

C.

D.

- Which would be the best reagent to use to determine whether an unknown substance was 2-methylpropan-1-ol or 2-methylpropan-2-ol?
 - A. Bromine water
 - B. Potassium nitrate solution
 - C. Sodium carbonate solution
 - D. Acidified potassium permanganate solution
- **6** What is the hydroxide ion concentration of a solution of potassium hydroxide with a pH of 11?
 - A. $10^{-11} \text{ mol L}^{-1}$
 - B. $10^{-3} \text{ mol } L^{-1}$
 - C. $10^3 \text{ mol } L^{-1}$
 - D. $10^{11} \text{ mol } L^{-1}$
- 7 The following equilibrium was established in a container.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -198 \text{ kJ mol}^{-1}$

Which of the following would increase the yield of $SO_3(g)$?

- A. Increasing the volume
- B. Increasing the temperature
- C. Removing the product as it is formed
- D. Keeping temperature and volume constant
- **8** Which pair of ions produce different colours in a flame test?
 - A. Br and Cl
 - B. Ag⁺ and OH⁻
 - C. Cu^{2+} and Ca^{2+}
 - D. CH₃OOO⁻ and H₂PO₄⁻

9 Which of the following is the mass spectrum of ethanamine?

10 The following system is at equilibrium.

$$CH_3CHOHCH_3(g) \rightleftharpoons CH_3COCH_3(g) + H_2(g)$$

propan-2-one

A catalyst is added to the system.

Which row of the table correctly identifies the change in the yield of propan-2-one and the reaction rates?

	Yield of propan-2-one	Reaction rates
A.	Remains the same	Both forward and reverse rates are unchanged.
B.	Remains the same	Both forward and reverse rates increase equally.
C.	Decreases	Reverse rate increases more than the forward rate increases.
D.	Increases	Forward rate increases more than the reverse rate increases.

Which is the correct expression for calculating the solubility (in mol L^{-1}) of lead(II) iodide in a 0.1 mol L^{-1} solution of NaI at 25°C?

A.
$$\frac{9.8 \times 10^{-9}}{2 \times 0.1}$$

B.
$$\frac{9.8 \times 10^{-9}}{(2 \times 0.1)^2}$$

C.
$$\frac{9.8 \times 10^{-9}}{0.1}$$

D.
$$\frac{9.8 \times 10^{-9}}{(0.1)^2}$$

12 The structure of an organic substance is shown.

What is the preferred IUPAC name for this substance?

- A. 2-chloro-1-ethylbutanamide
- B. 2-chloro-*N*-ethylpropanamide
- C. 3-chloro-*N*-ethylbutanamide
- D. 3-chloro-1-ethylpropanamide
- 13 A fuel has these enthalpies of combustion: $-2057.8 \text{ kJ mol}^{-1}$ and -48.9 kJ g^{-1} .

Which of the following correctly identifies the fuel?

- A. Ethanol $(MM = 46.1 \text{ g mol}^{-1})$
- B. Propane $(MM = 44.1 \text{ g mol}^{-1})$
- C. Propene $(MM = 42.1 \text{ g mol}^{-1})$
- D. Hydrogen $(MM = 2.02 \text{ g mol}^{-1})$

14 Glycine, an amino acid, can react with itself or other amino acid monomers to form silk, a natural polymer.

Glycine has the structure:

$$\begin{array}{c} O \\ \parallel \\ H_2N \\ CH_2 \end{array} \begin{array}{c} O \\ \parallel \\ OH \end{array}$$

A section of silk polymer is shown.

Which monomer could react with glycine to form this section of silk polymer?

$$H_2N$$
 CH_2
 OH

B.
$$O$$
 \parallel
 CH
 CH
 CH_3

$$\mathbf{C}$$

$$C = CH_2$$

D.

15 The thermal decomposition of lithium peroxide (Li_2O_2) is given by the equation shown.

$$2\text{Li}_2\text{O}_2(s) \rightleftharpoons 2\text{Li}_2\text{O}(s) + \text{O}_2(g)$$

Mixtures of Li_2O_2 , Li_2O and O_2 were allowed to reach equilibrium in two identical, closed containers, P and Q, at the same temperature. The amount of $\text{Li}_2\text{O}_2(s)$ in container P is double that in container Q. The amount of $\text{Li}_2\text{O}(s)$ is the same in each container.

What is the ratio of $[O_2(g)]$ in container P to $[O_2(g)]$ in container Q?

- A. 1:1
- B. 2:1
- C. 3:2
- D. 5:4
- Which of the following is the overall reaction that takes place when a strong acid is added to a buffer containing equal amounts of acetic acid and acetate ions?
 - A. $HCOO^- + H_3O^+ \rightarrow HCOOH + H_2O$
 - B. $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$
 - C. $CH_3COO^- + H_3O^+ \rightarrow CH_3COOH + H_2O$
 - $D. \quad CH_3COOH + H_3O^+ \longrightarrow CH_3C(OH)_2^+ + H_2O$

17 20 mL of a 0.1 mol L^{-1} solution of an acid is titrated against a 0.1 mol L^{-1} solution of sodium hydroxide. A graph of pH against the volume of sodium hydroxide for this experiment is shown.

Volume of $0.1 \text{ mol } L^{-1}$ sodium hydroxide added (mL)

Which of the following acids was used in the titration?

	Acid	pK_{a1}	pK_{a2}
A.	1	4.76	_
B.	2	Strong	_
C.	3	1.91	6.30
D.	4	4.11	9.61

A reaction mixture, not at equilibrium, is composed of both $N_2O_4(g)$ and $NO_2(g)$ in a closed container. The reaction quotient for the system, Q, is given. 18

$$Q = \frac{\left[\text{NO}_2\right]^2}{\left[\text{N}_2\text{O}_4\right]}$$

The rate of the forward reaction is initially greater than the rate of the reverse reaction.

Which diagram shows how Q changes over time for this mixture?

D.

Which of the following compounds produces TWO doublets in the ¹H NMR spectrum? 19

$$\begin{array}{c|ccccc} & CH_{3} & Cl & CH_{3} \\ & | & | & | \\ H_{3}C - C - C - C - C - CH_{3} \\ & | & | & | \\ Cl & H & CH_{3} \end{array}$$

C.

- 20 The concentration of ascorbic acid $(MM = 176.124 \text{ g mol}^{-1})$ in solution A was determined by titration.
 - A 25.00 mL sample of solution A was titrated with potassium hydroxide solution.
 - 50.00 mg of ascorbic acid was added to a second 25.00 mL sample of solution A, which was titrated in the same way.

Titration volumes for both titrations are given.

Solution	Titre (mL)
25.00 mL solution A	17.50
25.00 mL solution A + 50.00 mg of ascorbic acid	33.10

What is the concentration of ascorbic acid in solution A?

- A. $5.352 \times 10^{-3} \text{ mol L}^{-1}$
- B. $6.004 \times 10^{-3} \text{ mol L}^{-1}$
- C. $1.012 \times 10^{-2} \text{ mol L}^{-1}$
- D. $1.274 \times 10^{-2} \text{ mol L}^{-1}$

2024 HIGHER SCHOOL CERTIFICATE EXAMINATION								
					Ce	ntre	Nun	nber
Chemistry								
Section II Answer Booklet					Stuc	dent	Nun	nber

80 marks
Attempt Questions 21–39
Allow about 2 hours and 25 minutes for this section

Instructions

- Write your Centre Number and Student Number at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Show all relevant working in questions involving calculations.
- Extra writing space is provided at the back of this booklet.
 If you use this space, clearly indicate which question you are answering.

Please turn over

2

Do NOT write in this area.

Question 21 (2 marks)

A solution of acetic acid reacts with magnesium metal.

Write the names of the products of this reaction in the boxes provided.

Question 22 (2 marks)

Vinyl fluoride can be polymerised.

$$H$$
 $C = C$
 H
 H
 H
 H

In the box provided, draw the structural formula for a six-carbon section of the polymer formed from the polymerisation of vinyl fluoride.

Question	23	(3	marks)

Consider the following equilibrium system.

$$\big[\operatorname{Co}\big(\operatorname{H}_2\operatorname{O}\big)_6\big]^{2+}(aq) \,+\, 4\operatorname{Cl}^-(aq) \ \Longleftrightarrow \big[\operatorname{CoCl}_4\big]^{2-}(aq) \,+\, 6\operatorname{H}_2\operatorname{O}(l)$$

 $[Co(H_2O)_6]^{2+}(aq)$ is pink and $[CoCl_4]^{2-}(aq)$ is blue. When a solution of these ions and chloride ions is heated, the mixture becomes more blue.

Relate the observed colour change to the change in K_{eq} .

Please turn over

3

3

Question 24 (7 marks)

The boiling points for two series of compounds are listed.

Amine	Boiling point (°C)
Methanamine	-6
Ethanamine	17
Propan-1-amine	48
Butan-1-amine	78

Alcohol	Boiling point (°C)
Methanol	65
Ethanol	78
Propan-1-ol	97
Butan-1-ol	118

(a) Plot the boiling points for each series of compounds against the number of carbon atoms per molecule.

Number of carbon atoms per molecule

Question 24 continues on page 17

Question 24 (continued)

b)	With reference to hydrogen bonding and dispersion forces, explain the trends in the boiling point data of these compounds, within each series and between the series.

End of Question 24

Please turn over

4

Question 25 (4 marks)

The concentration of phosphate ions in washing machine waste water can be determined using colourimetry.

4

A sample of washing machine waste water was collected and diluted by quantitatively transferring 1.00 mL of the solution to a volumetric flask and making up the volume to 1.000 L with distilled water.

Standard phosphate solutions were prepared and analysed with a colourimeter using an accepted method.

The standard calibration graph is shown.

Question 25 continues on page 19

Question	25	(continued)
Question	40	Commuca

The diluted sample solution was then analysed using the same method as the standard solutions. The absorbance of this solution was found to be 0.64.

waste water, in n	$1 \text{ nol } L^{-1}$.	 •	or wasning machine

End of Question 25

Please turn over

2

3

Question 26 (5 marks)

The equilibrium equation for the reaction of iodine with hydrogen cyanide in aqueous solution is given.

$$I_2(aq) + HCN(aq) \rightleftharpoons ICN(aq) + I^-(aq) + H^+(aq)$$

At t=0 min, I_2 was added to a mixture of HCN, I^- and H^+ , bringing $\left[I_2\right]$ to 2.0×10^{-5} mol L^{-1} . After 3 minutes, the system was at equilibrium, and an analysis of the mixture found that half of the I_2 had reacted.

(a) On the axes provided, sketch a graph to show how $[I_2]$ changes in the solution between t = 0 min and t = 6 min.

(b) Using collision theory, explain the rate of reaction between t = 0 min and t = 6 min. Refer to the $[I_2]$ in your answer.

Question 27 (4 marks)

The following procedure is proposed to test for the presence of lead(II) and barium ions in water at concentrations of $0.1 \text{ mol } L^{-1}$.

4

- 1. Add excess 0.1 mol L⁻¹ sodium sulfate solution. If a precipitate is produced, then barium ions are present.
- 2. Filter any precipitate produced.
- 3. Add excess $0.1 \text{ mol } L^{-1}$ sodium bromide solution to the filtrate. If a precipitate is produced, then lead(II) ions are present.

Explain why this procedure gives correct results when only barium ions are present but not when both barium and lead(II) ions are present. Include ONE balanced chemical equation in your answer.

Please turn over

3

Question 28 (3 marks)

Iodic acid and sulfamic acid are monoprotic acids. A $0.100 \text{ mol } L^{-1}$ solution of iodic acid has a pH of 1.151, as does a $0.120 \text{ mol } L^{-1}$ solution of sulfamic acid.	
Show that neither iodic acid nor sulfamic acid dissociates completely in water, and determine which is the stronger acid.	

Question	29	(4	marks)	

$0.10 \text{ mol } L^{-1}$ sulfuric acid solution.
Calculate the pH of the resulting solution, assuming that the volume of the resulting solution is 250 mL and that its temperature is 25°C.

Please turn over

4

Question 30 (4 marks)

An equilibrium mixture of hydrogen, carbon dioxide, water and carbon monoxide is in a closed, 1 L container at a fixed temperature as shown:

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$
 $K_{eq} = 1.600$

The initial concentrations are $[H_2] = 1.000 \text{ mol L}^{-1}$, $[CO_2] = 0.500 \text{ mol L}^{-1}$, $[H_2O] = 0.400 \text{ mol L}^{-1}$ and $[CO] = 2.000 \text{ mol L}^{-1}$.

An unknown amount of CO(g) was added to the same container, and the temperature was kept constant. After the new equilibrium had been established, the concentration of $H_2O(g)$ was found to be 0.200 mol L^{-1} .

Using this information, calculate the unknown amount (in mol) of $CO(g)$ that was added to the container.

Question 31 (3 marks)

The atom economy (AE) of a reaction is a measure of the mass of atoms in the starting materials that are incorporated into the desired product. Higher AE means lower mass of waste products.

3

Urea can be produced in a variety of ways. One way is to react ammonia (high toxicity) with phosgene (high toxicity). Another way is to react ammonia with dimethyl carbonate (DMC, low toxicity). The chemical equations and AE for these two processes are provided.

which of these two processes is preferable for urea production? Justify your answer with reference to the information provided.

Question 32 (4 marks)

cadmium(II) phosphate, $Cd_3(PO_4)_2$, $K_{sp} = 2.53 \times 10^{-33}$.				

Question 33 (5 marks)

Acetone can be reduced, as shown.

- (a) Identify the shape around the central carbon atom in each molecule. 2
- (b) Explain how ¹³C NMR spectroscopy could be used to monitor the progress of this reaction.

3

4

Question 34 (4 marks)

An aqueous solution of ammonia is added to a solution containing hydrochloric acid. A plot of conductivity against volume of ammonia solution added is shown. The temperature of the solution is kept constant throughout and the conductivity of the solution is corrected for dilution.

The relative conductivities of some relevant ions are shown in the table.

Ion	Relative conductivity
H^{+}	4.76
OH ⁻	2.70
Cl ⁻	1.04
NH ₄ ⁺	1.00

Question 34 continues on page 29

Question 34 (continued)

answer.	-	- 1			equations	-
•••••		 •	 	 ••••••	•••••	•••••
•••••		 	 	 		•••••
		 	 •••••	 		
		 	 •••••	 		
		 	 •••••	 		
		 	 •••••	 		

End of Question 34

Please turn over

Question 35 (7 marks)

Unknown samples of three carboxylic acids, labelled X, Y and Z, are analysed to determine their identities.

- Both Y and Z react rapidly with bromine in the absence of UV light, but X does not. A 0.100 g sample of Y reacts with the same amount of bromine as a 0.200 g sample of Z.
- Separate 0.100 g samples of X, Y and Z are titrated with 0.0617 mol L⁻¹ sodium hydroxide solution. The titre volumes are shown.

Acid	X	Y	Z
Volume of NaOH (mL)	21.88	22.49	22.49

• Both Y and Z can undergo hydration reactions in the presence of a suitable catalyst. Two products are possible for the hydration of Y, but only one product is possible with Z.

Identify which structures 1, 2 and 3 in the table are acids X, Y and Z. Justify your answer with reference to the information provided.

	Structure 1	Structure 2	Structure 3		
	H O		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Molar mass (g mol ⁻¹)	72.062 g mol ⁻¹	74.078 g mol ⁻¹	144.124 g mol ⁻¹		
Acid (X, Y or Z)					

Question 35 continues on page 31

Question 35 (continued)

End of Question 35

5

Question 36 (5 marks)

14.7 g of solid sodium hydrogen carbonate $(MM = 84.008~{\rm g~mol^{-1}})$ was reacted with 120 mL of 1.50 mol L⁻¹ hydrochloric acid solution (density 1.02 g mL⁻¹) in a calorimeter. The temperature of the solution before and after reaction was recorded.

Initial temperature of hydrochloric acid solution (°C)	Final temperature of reaction solution (°C)
21.5	11.5

Assume that all CO_2 produced is lost from the reaction solution and that the specific heat capacity of the reaction solution is 3.80 J K⁻¹ g⁻¹.

What is the enthalpy of reaction, in kJ mol ⁻¹ ?

Question 37 (3 marks)

The relationship between the equilibrium constant, K_{eq} , and ΔG° for any reaction is shown in the graph, for a limited range of ΔG° values.

3

The ΔH° and $T\Delta S^{\circ}$ values for the reaction between copper(I) sulfide and oxygen are provided.

$$\text{Cu}_2\text{S}(s) + \text{O}_2(g) \rightarrow 2\text{Cu}(s) + \text{SO}_2(g)$$

$$\Delta H^\circ = -217 \text{ kJ mol}^{-1}$$
$$T\Delta S^\circ = -3 \text{ kJ mol}^{-1}$$

Explain, with reference to the information provided, why this reaction proceeds to completion rather than coming to equilibrium.

7

Question 38 (7 marks)

Compounds A and B are isomers with formula C_3H_7X , where X is a halogen. The mass spectrum for compound A is shown.

Compounds A and B undergo substitution reactions in the presence of hydroxide ions, producing alcohols C and D. Compound D can be oxidised to a ketone; compound C can also be oxidised, but does not produce a ketone.

$$\begin{array}{ccc} \textcircled{A} & \xrightarrow{OH^-} & \textcircled{C} \\ \\ \textcircled{B} & \xrightarrow{OH^-} & \textcircled{D} & \xrightarrow{oxidation} & \text{ketone} \end{array}$$

Compound E can be produced by refluxing 3-methylbutanoic acid, with one of the alcohols C or D, in the presence of a catalyst.

The ¹H NMR spectrum for compound E contains the following features.

¹H NMR spectrum data for compound E

Chemical shift (ppm)	Integration	Peak splitting
0.95	3	Triplet
0.96	6	Doublet
1.7	2	Multiplet
2.1	1	Multiplet
2.2	2	Doublet
4.0	2	Triplet

Reference ¹H chemical shift data

Type of proton	δ/ppm
$-C\mathbf{H}_{3}, -C\mathbf{H}_{2}-, -C\mathbf{H}-$	0.7–2.1
$ \begin{array}{c} \mathbf{H_{3}C-CO-} \\ \mathbf{H_{2}C-CO-} \\ \mathbf{H_{2}C-CO} \end{array} \begin{array}{c} \text{(aldehydes, ketones,} \\ \text{carboxylic acids} \\ \text{or esters)} \end{array} $	2.2–2.6
	3.2-5.0

Question 38 continues on page 35

	Question	38	(continued)
--	----------	----	-------------

Draw the structure of compounds A, B and E. Explain your answer with reference to the information provided.

Compound A	
Compound B	
Compound E	
	•••••
	•••••
	••••

Question 38 continues on page 36

Question 38 (continued)

End of Question 38

Question 39 (4 marks)

Water and octan-1-ol do not mix. When an aqueous solution of bromoacetic acid (BrCH₂COOH) is shaken with octan-1-ol, an equilibrium system is established between bromoacetic acid dissolved in the octan-1-ol and in the water.

4

$$\mathsf{BrCH}_2\mathsf{COOH}(aq) \rightleftharpoons \mathsf{BrCH}_2\mathsf{COOH}(octan\text{-}l\text{-}ol)$$

The equilibrium constant expression for this system is

$$K_{eq} = \frac{\left[\text{BrCH}_2\text{COOH}(octan-1-ol)}\right]}{\left[\text{BrCH}_2\text{COOH}(aq)\right]}.$$

An aqueous solution of bromoacetic acid with an initial concentration of 0.1000 mol L⁻¹ is shaken with an equal volume of octan-1-ol. Bromoacetic acid does not dissociate in octan-1-ol but does dissociate in water, with $K_a = 1.29 \times 10^{-3}$. When the system has reached equilibrium, the [H⁺] is 9.18×10^{-3} mol L⁻¹.

Calculate the equilibrium concentration of aqueous bromoacetic acid and hence,

or otherwise, calculate the K_{eq} for the octan-1-ol and water system.											

End of paper

ŏ
0
_
Z
NOT
\subseteq
_
_
\$
=
rite
二
V
3
-
5
=.
this
9
$\overline{}$
0
area
_

0
Z
0
\dashv
write
3
this
ar
ea.

Chemistry

FORMULAE SHEET

$n = \frac{m}{MM}$	$c = \frac{n}{V}$	PV = nRT
$q = mc\Delta T$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$pH = -log_{10}[H^+]$
$pK_a = -\log_{10}[K_a]$	$A = \varepsilon lc = \log_{10} \frac{I_o}{I}$	
Avogadro constant, N_A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Gas constant		$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

DATA SHEET

Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

-1-1022

Infrared absorption data

Bond	Wavenumber/cm ⁻¹
N—H (amines)	3300–3500
O—H (alcohols)	3230–3550 (broad)
С—Н	2850-3300
O—H (acids)	2500–3000 (very broad)
C≡N	2220–2260
C=O	1680–1750
C=C	1620–1680
С—О	1000–1300
С—С	750–1100

¹³C NMR chemical shift data

Type of carbon		δ/ppm
$\begin{array}{c c} -C-C-\\ \end{array}$	5–40	
R - C - Cl c	10–70	
$\begin{bmatrix} R - C - C - C - C - C - C - C - C - C -$	_	20–50
R-C-N		25–60
- C $ O$ $-$	alcohols, ethers or esters	50-90
C = C		90–150
$R - C \equiv N$		110–125
		110–160
R — C — O	esters or acids	160–185
R — C — O	aldehydes or ketones	190–220

UV absorption

(This is not a definitive list and is approximate.)

Chromophore	λ_{\max} (nm)
С—Н	122
С—С	135
C=C	162

Chromophore	λ_{\max} (nm)
C≡C	173 178
<u> </u>	196 222
C—Cl	173
C CI	173
C—Br	208
СВ	200

Some standard potentials

	ic stair	aura potentiais	
$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$A1^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^-$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^-$	\rightleftharpoons	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I_	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	\rightleftharpoons	F ⁻	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for the standard potentials. Some data may have been modified for examination purposes.

ELEMENTS
THE
OF
TABLE OF
ERIODIC
PE

_									_					ı			_				-				-				
(2 He	4.003 Helium	10 Ne	20.18	Neon	81	Ar	39.95	Argon	98	Kr	83.80	Krypton	54	Xe	131.3	Xenon	98	Rn		Kadon	N	SO	Oceano	Oganesson				
			9	19.00	Fluorine	17	ご	35.45	Chlorine	35	Br	79.90	Bromine	53	Π	126.9	Iodine	85	At		Astatine	117	Is	Tompooring	Tellilessille			71 Lu	1
			∞ (16.00	Oxygen	16	S	32.07	Sulfur	34	Se	78.96	Selenium	52	Te	127.6	Tellurium	84	Po		Polonium	91 <u>1</u>	7	T istomatoria	Liverinioi iuiii			70 Yb	- د د
			<u>~</u> 2	14.01	Nitrogen	15	Ь	30.97	Phosphorus	33	As	74.92	Arsenic	51	Sb	121.8	Antimony	83	Bi	209.0	Bismuth	115	Mc	Mossonium	MOSCOVIUII			69 Tm	1111
			9	12.01	Carbon	14	S:	28.09	Silicon	32	Ge	72.64	Germanium	50	Sn	118.7	Tin	82	Pb	207.2	Lead	71.	I	Florestimen	FICTOVIUII			68 Fr	1
			ν α	10.81	Boron	13	Al	26.98	Aluminium	31	Сa	69.72	Gallium	49	In	114.8	Indium	81	Ξ	204.4	I hallium	113	Nh	Nihonium	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			о <u>Н</u>	>777
	} -									30	Zu	65.38	Zinc	48	Cq	112.4	Cadmium	80	Hg	200.6	Mercury	112	C	minician C	Copermicium			99 Ov	-
										59	Cn	63.55	Copper	47	Ag	107.9	Silver	62	Au	197.0	Gold	Ξί	Rg Sg	Doontoonium	Darmstautum Roemgemum Coperment			65 Th	- ک
										28	Z	58.69	Nickel	46	Pd	106.4	Palladium	78	Pt	195.1	Platinum	011	CS	Dormotodtium	Darmstautum			64 Gd	,)
VBLE (KEY	79	197.0	Gold					27	ට	58.93	Cobalt	45	Rh	102.9	Rhodium	77	1	192.2	Iridium	60;	Mt	Moitnorium	Mennerman			63 Eu	1 2
			Atomic Number	Symbol mic Weight	Name					56	Е	55.85	Iron	44	Ru	101.1	Ruthenium	92	Os	190.2	Osmium	108	HS	Hooding	паѕѕіпп			62 Sm	7777
PERIODIC			Aton	Standard Atomic Weight						25	Mn	54.94	Manganese	43	Γ		Technetium	75	Re	186.2	Khenium	107	Rh	Dobring	DOULIMIII			61 Pm	777 7
										24	Ċ	52.00	Chromium	42	Mo	95.96	Molybdenum	74	\geqslant	183.9	Iungsten	106 90I	Š	Cochorainm	Scanorgium			РN 09	3
										23	>	50.94	Vanadium	41	γ	92.91	Niobium	73	Га	180.9	Tantalum	<u>6</u>	വ	Dukaina				59 Pr	
										22	Ξ	47.87	Titanium	40	Zr	91.22	Zirconium	72	Hf	178.5	Hafnıum	104	Kİ	Durkarfardinm	Actinolds Rutherrordinin		ids	58 Ce)
										21	Sc	44.96	Scandium	39	Υ	88.91	Yttrium	57–71		:	Lanthanoids	89–103		A original distriction	Actillolus		Lanthanoids	57 La	1
			4 Re	9.012	Beryllium	12	Mg	24.31	Magnesium	20	c _a	40.08	Calcium	38	Sr	87.61	Strontium	99	Ba	137.3	Barıum	∞ ∞ ¢	Ка	Dodina	Radiuiii	J	11		_
,	Η	1.008 Hydrogen	3	6.941	Lithium	П	Na	22.99	Sodium	19	×	39.10	Potassium	37	Rb	85.47	Rubidium	55	Cs	132.9	Caesium	×7×	Ï	Dronoines	FIGURE				
_																				1	_				-				

57	58	59	09	61	62	63	64	65	99	29	89	69	70	71
La	د د	Pr	pN	Pm	Sm	En	Вq	Tb	Dy	Ho	Ë	Tm	Yb	Lu
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
Actinoid :	S													
68	96	91	92	93	94	95	96	67	86	66	100	101	102	103
Ac	Th	Pa	n	dZ	Pu	Am	Cm	Bķ	Cţ	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	•										
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curinm	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

2024 HSC Chemistry Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	А
2	В
3	D
4	A
5	D
6	В
7	С
8	С
9	В
10	В
11	D
12	С
13	С
14	В
15	A
16	С
17	С
18	В
19	A
20	D

Section II

Question 21

Criteria	Marks
Identifies both products	2
Provides some relevant information	1

Sample answer:

Hydrogen and magnesium acetate/ethanoate

Answers could include:

 $\rm H_2 \ and \ Mg(CH_3COO)_2$

Question 22

Criteria	Marks
Provides a correct structural formula	2
Provides some relevant information	1

Sample answer:

Criteria	Marks
- Provides a sound relationship between the observed colour change and ${\it K}_{\it eq}$	3
Provides some information about changes in concentration of reactants and/or products	2
Provides some relevant information	1

Sample answer:

The mixture becomes more blue as temperature is increased, which suggests that the concentration of $\left[\operatorname{CoCl_4}\right]^{2-}$ is increasing. This means that an increase in temperature favours the forward reaction. This response will result in a larger value of K_{eq} as $K_{eq} = \frac{\left[\left[\operatorname{CoCl_4}\right]^{2-}\right]}{\left[\left[\operatorname{Co}(\operatorname{H_2O})_6\right]^{2+}\right]\left[\operatorname{Cl}^-\right]^4}.$

Question 24 (a)

Criteria	Marks
All correct points plotted	
Correct scale and label on y-axis	3
Each series identified	
Two of three features included (correct points, label/scale <i>y</i> -axis, each series identified)	2
Provides some relevant information	1

Sample answer:

Question 24 (b)

Criteria	Marks
Explains increase in boiling point with increasing carbon number due to increasing dispersion forces	4
Explains difference in boiling point between series with reference to difference in strength of hydrogen bonding	4
Explains ONE trend	
OR	3
Describes trends	
Makes a relevant comparison to a data series	2
Provides some relevant information	1

Sample answer:

For both the alcohols and the amines, dispersion forces will increase with increasing carbon number, due to increased number of electrons present, leading to increased boiling points.

However, for any given carbon number, the alcohol has stronger hydrogen bonding than the corresponding amine, as oxygen has a higher electronegativity than nitrogen, so the alcohols all have higher boiling points than the corresponding amines.

Question 25

Criteria	Marks
 Calculates the correct concentration of phosphate ions, in mol L⁻¹ 	4
Provides the main steps of the calculation	3
Provides some steps of the calculation	2
Provides some relevant information	1

Sample answer:

Concentration of diluted sample = 0.78 mg L^{-1}

Concentration of phosphate ions in original sample in mg $L^{-1}=1000\times0.78$ mg $L^{-1}=780$ mg $L^{-1}=0.78$ g L^{-1}

Molar mass of $PO_4^{3-} = (30.97 + 4 \times 16.00) = 94.97 \text{ g mol}^{-1}$

Concentration of phosphate ions in mol $L^{-1} = \frac{0.78}{94.97} = 0.0082$ mol L^{-1}

Question 26 (a)

Criteria	Marks
Provides a correct graph	2
Provides one correct feature	1

Sample answer:

Question 26 (b)

Criteria	Marks
- Provides an explanation of the rate of reaction with clear link to $\left[I_2^{}\right]$ and collision theory	3
- Provides some description of the rate of reaction with link to $\left[{\rm I}_2\right]$ and/or collision theory	2
Provides some relevant information	1

Sample answer:

The initial high $[I_2]$ results in more frequent successful collisions and a high rate of forward reaction. As the reaction proceeds, I_2 is consumed, so $[I_2]$ decreases, so the reaction rate decreases. After t=3 min, the system is at equilibrium so the rates of the forward and reverse reactions are the same, so $[I_2]$ is constant.

Criteria	Marks
Demonstrates a thorough understanding of the procedure and qualitative ion testing	4
Includes a balanced chemical equation, including states	
Demonstrates a sound understanding of the procedure and qualitative ion testing	3
Demonstrates some understanding of the procedure and qualitative ion testing	2
Provides some relevant information	1

Sample answer:

If only barium ions are present, they will give a precipitate in step 1 of this procedure $(Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s))$, so the conclusion that only barium ions are present will be correct.

If lead(II) ions are present, they will also precipitate at step 1 of this procedure. This will leave insufficient lead(II) ions in solution to give a precipitate in step 3. The conclusion reached will be that only barium ions are present, which is incorrect.

Question 28

Criteria	Marks
Shows that both acids do not dissociate completely in water and that iodic acid is stronger	3
Provides some information relating to of the dissociation of one or both acids	2
Provides some relevant information	1

Sample answer:

For both acids, $[H_3O^+] = 10^{-pH} = 10^{-1.151} = 0.0706$ mol L^{-1} , which is less than the acid concentration. Accordingly, both acids do not dissociate completely in water and are weak.

Since a smaller concentration of iodic acid is required to give a pH of 1.151 compared to sulfamic acid, iodic acid must ionise to a greater extent than sulfamic acid, ie iodic acid must be a stronger acid than sulfamic acid.

Criteria	Marks
Calculates the pH of the resulting solution	4
Provides most relevant steps of the calculation	3
Provides some relevant steps of the calculation	2
Provides some relevant information	1

Sample answer:

$$n({\rm NaOH}) = 0.150~{\rm L} \times 0.20~{\rm mol}~{\rm L}^{-1} = 0.030~{\rm mol}$$
 $n({\rm H_2SO_4}) = 0.100~{\rm L} \times 0.10~{\rm mol}~{\rm L}^{-1} = 0.010~{\rm mol}$ ${\rm H_2SO_4}(aq) + 2{\rm NaOH}(aq) \longrightarrow {\rm Na_2SO_4}(aq) + 2{\rm H_2O}(l)$ $n({\rm NaOH}~{\rm required}~{\rm for}~{\rm reaction}~{\rm with}~{\rm H_2SO_4}) = 2 \times 0.010~{\rm mol} = 0.020~{\rm mol}$ $n({\rm NaOH}~{\rm in}~{\rm excess}) = 0.030~{\rm mol} - 0.020~{\rm mol} = 0.010~{\rm mol}$ $[{\rm NaOH}] = \frac{0.010~{\rm mol}}{0.250~{\rm L}} = 0.040~{\rm mol}~{\rm L}^{-1}$

$$p(OH) = -log_{10}(0.040) = 1.40$$

$$pH = 14.00 - 1.40 = 12.60$$

Criteria	Marks
Calculates correct amount of CO(g) added	4
Provides the main steps of the calculation	3
Provides some steps of the calculation	2
Provides some relevant information	1

Sample answer:

Changes in $\left[\, H_2 O \, \right] = (0.400 - 0.200) = 0.200$ mol $L^{-1} = 0.200$ mol in 1 L

ICE table:

	n(H ₂) in 1 L (mol)	$n(CO_2)$ in 1 L (mol)	n(H ₂ O) in 1 L (mol)	n(CO) in 1 L (mol)
Initial	1.000	0.500	0.400	2.000 + x
Change	+0.200	+0.200	-0.200	-0.200
Equib	1.200	0.700	0.200	1.800 + x

$$K_{eq} = \frac{[H_2O][CO]}{[H_2][CO_2]}$$

$$1.600 = \frac{[0.200][1.800 + x]}{[1.200][0.700]}$$

$$x = \frac{1.600 \times 1.200 \times 0.700}{0.200} - 1.800$$

$$x = 4.92 \text{ mol in 1 L}$$

Criteria	Marks
Correctly compares the processes and justifies preferred approach	3
Compares one aspect of the processes	2
Provides some relevant information	1

Sample answer:

The atom economy for the reaction with DMC is 48.4% compared to the phosgene reaction at 35.9%. As a result, there is less waste in the process involving the less harmful DMC. Less ammonia is also required (2 moles, in place of 4 for phosgene).

This comparison identifies the production of urea from DMC as the preferred approach in terms of atom economy, toxicity of starting materials and quantities of harmful reactants required.

Question 32

Criteria	Marks
Calculates the concentration of Cd ²⁺ ions to 3 significant figures	4
Provides most relevant steps of the calculation	3
Provides some relevant steps of the calculation	2
Provides some relevant information	1

Sample answer:

$$\operatorname{Cd}_{3}(\operatorname{PO}_{4})_{2}(s) \rightleftharpoons 3\operatorname{Cd}^{2+}(aq) + 2\operatorname{PO}_{4}^{3-}(aq)$$

Let s mol $Cd_3(PO_4)_2(s)$ dissolve per litre

$$K_{sp} = [Cd^{2+}]^3[PO_4^{3-}]^2 = (3s)^3(2s)^2 = 108s^5$$

$$s = \sqrt[5]{\frac{2.53 \times 10^{-33}}{108}} = 1.19 \times 10^{-7}$$

$$\left[\text{Cd}^{2^+}\right] = 3s = 3.56 \times 10^{-7} \text{ mol L}^{-1}$$

Question 33 (a)

Criteria	Marks
Identifies correct shape around both central carbon atoms in the reactant and product molecules	2
Provides some relevant information	1

Sample answer:

The shape around the central carbon in the reactant molecule is trigonal planar, whereas the shape around the central carbon atom in the product is tetrahedral.

Question 33 (b)

Criteria	Marks
 Provides a sound explanation of how key ¹³C NMR spectral features can be used to monitor the reaction 	3
 Provides some explanation of how key ¹³C NMR spectral features can be used to monitor the reaction 	2
Provides some relevant information	1

Sample answer:

In the 13 C NMR spectrum of the reaction mixture at the start of the reaction, there will be two (2) signals, due to the 2 different carbons (C=O and CH₃) in the reactant molecule. However, as the reaction proceeds, the C=O bond is transformed to H—C—OH. Therefore, a new signal will appear in the 13 C NMR spectrum of the reaction mixture that corresponds to the different carbon environment in the product. This peak will appear as the reaction proceeds, while the original peak for C=O will disappear.

Criteria	Marks
Provides a thorough explanation of the shape of the graph	1
Includes TWO balanced chemical equations	4
Provides a sound explanation of the shape of the graph	2
Includes a balanced chemical equation	3
Demonstrates some understanding of the shape of the graph	2
Provides some relevant information	1

Sample answer:

Before the equivalence point (below 4.5 mL), hydrochloric acid is being neutralised by the added ammonia:

$$H^{+}(aq) + NH_{3}(aq) \rightarrow NH_{4}^{+}(aq)$$

This has the effect of replacing H^+ ions (high conductivity) with NH_4^{+} ions (low conductivity), so the conductivity decreases.

After the equivalence point, the excess ammonia added will produce some NH₄⁺ and OH⁻ ions, both of which have greater conductivity than the reactant molecules:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

This reaction only occurs to a small extent, however, as the $\mathrm{NH_4}^+$ already present in the solution will suppress this ionisation, in accordance with Le Châtelier's Principle. Accordingly, the conductivity only increases slightly after the equivalence point.

Criteria	Marks
Correctly identifies the structure of compounds X, Y and Z	
Justifies the correct structures showing an extensive understanding of the interpretation of titration and reaction data	7
Makes extensive reference to the information provided	
Correctly identifies the structure of compounds X, Y and Z	
Justifies the correct structures showing a thorough understanding of the interpretation of titration and reaction data	6
Makes reference to the information provided	
Demonstrates a sound understanding of the interpretation of titration and/or reaction data	4–5
Uses relevant information presented in the question to explain structures	
Demonstrates some understanding of the interpretation of titration and/or reaction data	2–3
Provides some relevant information	1

Sample answer:

X does not undergo an addition reaction with Br_2 or a hydration reaction so does not possess a double bond. Thus, the only structure that can be X is Structure 2.

Y and Z do contain at least one double bond because of the addition and hydration reactions. As $0.100 \, g$ of Y reacts with the same amount of Br_2 as $0.200 \, g$ of Z, Z must have a molar mass that is double the molar mass of Y.

Only one product is formed from the hydration of Z so Z must be symmetrical around the double bond and Y is not symmetrical.

The equal volumes of Y and Z in the titration is a result of Z having double the molar mass of Y AND being a diprotic acid. Thus, Structure 1 is Y and Structure 3 is Z.

Criteria	Marks
Calculates the enthalpy of reaction	5
Provides a substantially correct calculation	4
Provides the main steps in the calculation	3
Provides some relevant steps in the calculation	2
Provides some relevant information	1

Sample answer:

$$NaHCO_3(s) + HCI(aq) \rightarrow NaCI(aq) + CO_2(g) + H_2O(l)$$

$$n(\text{NaHCO}_3) \text{ added} = \frac{14.7 \text{ g}}{84.008 \text{ mol L}^{-1}} = 0.175 \text{ mol}$$

$$n(HCI)$$
 added = 1.50 mol × 0.120 L = 0.180 mol

1:1 reaction therefore HCl is in excess and NaHCO₃ is the limiting reagent

$$m(CO_2 lost) = 0.175 mol \times (12.01 + 16.00 \times 2) g mol^{-1} = 7.70 g$$

Therefore, total mass of reaction solution = (14.7 - 7.70) g + (1.02×120) g = 129 g

$$q = mc\Delta T$$

$$q = 129 \text{ g} \times 3.80 \text{ J K}^{-1} \text{ g}^{-1} \times (11.5 - 21.5)^{\circ}\text{C}$$

$$q = -4917 \text{ J} = -4.92 \text{ kJ}$$

$$\Delta H = \frac{4.92 \text{ kJ}}{0.175 \text{ mol}} = +28.1 \text{ kJ mol}^{-1}$$

Answers could include:

$$NaHCO_3(s) + HCI(aq) \rightarrow NaCI(aq) + CO_2(g) + H_2O(l)$$

$$n(\text{NaHCO}_3) \text{ added} = \frac{14.7 \text{ g}}{84.008 \text{ mol L}^{-1}} = 0.175 \text{ mol}$$

$$n(HCI)$$
 added = 1.50 mol × 0.120 L = 0.180 mol

1:1 reaction therefore HCl is in excess and NaHCO₃ is the limiting reagent

Therefore, total mass of reaction solution = $14.7 \text{ g} + (1.02 \times 120 \text{ g}) = 137.1 \text{ g}$

$$q = mc\Delta T$$

$$q = 137.1 \text{ g} \times 3.80 \text{ J K}^{-1} \text{ g}^{-1} \times (11.5 - 21.5)^{\circ}\text{C}$$

$$q = -5209.8 \text{ J} = -5.209 \text{ kJ}$$

$$\Delta H = \frac{5.209 \text{ kJ}}{0.175 \text{ mol}} = +29.8 \text{ kJ mol}^{-1}$$

Criteria	Marks
Provides an explanation of why the reaction proceeds to completion with reference to the data provided	3
Demonstrates some understanding of why the reaction proceeds to completion with reference to some of the data provided	2
Provides some relevant information	1

Sample answer:

The graph shows that reactions with large negative ΔG° values will have extremely large equilibrium constants, ie they effectively proceed to completion.

For this reaction,
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -217 \text{ kJ mol}^{-1} - (-3 \text{ kJ mol}^{-1}) = -214 \text{ kJ mol}^{-1}$$

This ΔG° value is large and negative, which means that the reaction will effectively proceed to completion. Accordingly, this reaction proceeds to completion mostly due to its large, negative ΔH° value; the $T\Delta S^{\circ}$ term is small and has little effect.

Criteria	Marks
Draws the correct structure of compounds A, B and E	
Explains the correct structures showing an extensive understanding of the interpretation of spectroscopic data and reaction pathways	7
Refers to relevant spectroscopic data	
Draws the correct structure of compounds A, B and E	
Explains the correct structures showing a thorough understanding of the interpretation of spectroscopic data and reaction pathways	6
Refers to most relevant spectroscopic data	
Shows a sound understanding of the interpretation of spectroscopic data and reaction pathways	
Uses relevant information presented in the question to explain structures	
Draws structures for compounds A and B with halogen location correct	4–5
AND/OR	
Draws correct structure for compound E	
Demonstrates some understanding of the different reactions	
AND/OR	2–3
Demonstrates some understanding of the interpretation of spectroscopic data	2 0
Provides some relevant information	1

Sample answer:

From the mass spectrum of A, the two peaks at m/z 122/124 indicate the presence of a Br atom (two isotopes of approximately equal abundance) – halogen X in C_3H_7X is Br. The peak at m/z 43 is due to the loss of Br.

There are two isomers of C_3H_7Br : 1-bromopropane and 2-bromopropane. These will produce propan-1-ol and propan-2-ol respectively after substitution with hydroxide. Only propan-2-ol will produce a ketone upon oxidation, so B must be 2-bromopropane and A must be 1-bromopropane.

E is an ester formed from the reaction of 3-methylbutanoic acid with either C (propan-1-ol) or D (propan-2-ol).

The ¹H NMR data gives the following information:

- The peak at δ 4.0 ppm is a CH₂ group bonded to an oxygen atom (hence the high chemical shift). This tells us that E is a propyl ester, —OCH₂CH₂CH₃.
- The rest of the propyl group gives rise to a CH $_2$ multiplet (present at δ 1.7 ppm) and a CH $_3$ triplet (present at δ 0.95 ppm).
- The peak at δ 2.2 ppm is a CH₂ group attached to a carbonyl (C=O) group.
- The remaining peaks integrate for 6 (δ 0.95 ppm doublet) and 1 (δ 2.1 ppm multiplet), which indicates an isopropyl group attached to the CH₂ group, giving the structure for E.

Question 39

Criteria	Marks
Calculates the K _{eq}	4
Provides most steps of the calculation	3
Provides some steps of the calculation	2
Provides some relevant information	1

Sample answer:

$$K_{a} = \frac{\left[H^{+}\right]\left[BrCH_{2}COO^{-}\right]}{\left[BrCH_{2}COOH\right]}$$

$$[BrCH2COOH](aq) = \frac{[H^+][BrCH2COO^-]}{K_a}$$

$$= \frac{[9.18 \times 10^{-3}][9.18 \times 10^{-3}]}{1.29 \times 10^{-3}}$$

$$= 0.0654 \text{ mol } L^{-1}$$

[BrCH₂COOH](
$$octan-1-ol$$
) = 0.1000 $-$ 0.0654 $-$ 9.18 \times 10⁻³ = 0.0254 mol L⁻¹

$$K_{eq} = \frac{\left[\text{BrCH}_2\text{COOH}(octan-1-ol)}\right]}{\left[\text{BrCH}_2\text{COOH}(aq)\right]} = \frac{0.0254 \text{ mol L}^{-1}}{0.0654 \text{ mol L}^{-1}} = 0.390$$

2024 HSC Chemistry Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	Mod 7 Hydrocarbons	12-14
2	1	Mod 5 Solution Equilibria	12-12
3	1	Mod 6 Properties of Acids and Bases	12-13
4	1	Mod 8 Analysis of Organic Substances	12-5, 12-15
5	1	Mod 7 Alcohols	12-2, 12-14
6	1	Mod 6 Using Brønsted-Lowry Theory	12-4, 12-13
7	1	Mod 5 Factors that Affect Equilibrium	12-6, 12-12
8	1	Mod 8 Analysis of Inorganic Substances	12-6, 12-15
9	1	Mod 8 Analysis of Organic Substances	12-5, 12-15
10	1	Mod 5 Factors that Affect Equilibrium	12-12
11	1	Mod 5 Solution Equilibria	12-4, 12-12
12	1	Mod 7 Nomenclature	12-14
13	1	Mod 7 Alcohols	12-4, 12-14
14	1	Mod 7 Polymers	12-6, 12-14
15	1	Mod 5 Factors that Affect Equilibrium	12-6, 12-12
16	1	Mod 6 Quantitative Analysis	12-7, 12-13
17	1	Mod 6 Quantitative Analysis	12-5, 12-13
18	1	Mod 5 Calculating the Equilibrium Constant	12-6, 12-12
19	1	Mod 8 Analysis of Organic Substances	12-5, 12-15
20	1	Mod 6 Quantitative Analysis	12-4, 12-6, 12-13

Section II

Question	Marks	Content	Syllabus outcomes
21	2	Mod 6 Properties of Acids and Bases	12-13
22	2	Mod 7 Polymers	12-7, 12-14
23	3	Mod 5 Calculating the Equilibrium Constant	12-12
24 (a)	3	Mod 7 Reactions of Organic Acids and Bases	12-4, 12-7, 12-14
24 (b)	4	Mod 7 Reactions of Organic Acids and Bases	12-5, 12-14
25	4	Mod 8 Analysis of Inorganic Substances	12-4, 12-5, 12-15
26 (a)	2	Mod 5 Factors that Affect Equilibrium	12-4, 12-12
26 (b)	3	Mod 5 Factors that Affect Equilibrium	12-12
27	4	Mod 8 Analysis of Inorganic Substances	12-2, 12-6, 12-15
28	3	Mod 6 Using Brønsted-Lowry Theory	12-13
29	4	Mod 6 Using Brønsted-Lowry Theory	12-13

Question	Marks	Content	Syllabus outcomes
30	4	Mod 5 Calculating the Equilibrium Constant	12-12
31	3	Mod 8 Chemical Synthesis and Design	12-4, 12-6, 12-15
32	4	Mod 5 Solution Equilibria	12-12
33 (a)	2	Mod 7 Hydrocarbons	12-1, 12-14
33 (b)	3	Mod 8 Analysis of Organic Substances	12-15
34	4	Mod 6 Quantitative Analysis	12-5, 12-13
35	7	Mod 6 Quantitative Analysis Mod 7 Hydrocarbons	12-7, 12-13, 12-14
36	5	Mod 6 Properties of Acids and Bases	12-13
37	3	Mod 5 Static and Dynamic Equilibrium	12-12
38	7	Mod 7 Reactions of Organic Acids and Bases Mod 8 Analysis of Organic Substances	12-7, 12-14, 12-15
39	4	Mod 5 Calculating the Equilibrium Constant Mod 6 Quantitative Analysis	12-12, 12-13