Dozent: PD Dr. Daniel Sebastiani

Ausgabe: Montag, 09.11.2009 **Abgabe:** Sonntag, 15.11.2009

Genauigkeit der Polynominterpolation

Die Genauigkeit der Polynominterpolation ist durch den folgenden Satz gegeben:

Satz: Ist f n+1-mal differenzierbar, so gibt es zu jedem \tilde{x} eine Zahl ξ aus dem kleinsten Intervall $I = [x_0, x_1, \dots, \tilde{x}]$, das alle x_i und \tilde{x} enthält, so daß

$$f(\tilde{x}) - p^{(n)}(\tilde{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (\tilde{x} - x_i).$$
(1)

Dies erlaubt eine Abschätzung der Polynominterpolation nach:

$$|f(\tilde{x}) - p^{(n)}(\tilde{x})| \le \max(\frac{f^{(n+1)}(\xi)}{(n+1)!}) \prod_{i=0}^{n} (\tilde{x} - x_i),$$
 (2)

wobei ξ aus dem kleinsten Interval $I[x_0, x_1, \dots, \tilde{x}]$, das alle x_i und \tilde{x} enthält, gewählt wird.

4.1 Aufgabe 1

(aufgabe4_1.pdf, 4 Punkte)

Betrachten Sie die Funktion $f(x) = \sqrt{x}$ und konstruieren Sie interpolierende Polynome der 5-ten, 10-ten und 15-ten Ordnung auf dem Intervall I = (0, 1]. Verwenden Sie dafür gleichmäßig verteilte Stützpunkte:

$$x_i^{(n)} = a + ih, \quad h = (b - a)/n, \quad i = 1, \dots, n$$
 (3)

Berechnen Sie die Werte des interpolierenden Polynoms $p^{(n)}(\tilde{x})$ für hundert gleichmäßig verteilte Punkte im Intervall $(0, x_1]$ und stellen Sie das Ergebnis zusammen mit der ursprünglichen Funktion graphisch dar. Plotten Sie auch den absoluten Fehler $|f(\tilde{x})-p^{(n)}(\tilde{x})|$ im gleichen Intervall. Berechnen Sie die obere Grenze für den absoluten Fehler nach Gl. 2.

4.2 Aufgabe 2

(aufgabe4_2.pdf, aufgabe4_2.pdf, 4 Punkte)

Die Besselsche Funktion nullter Ordnung

$$J_0(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin t) dt \tag{4}$$

soll an äquidistanten Stellen $x_i = a + ih, i = 0, ..., n$ tabelliert werden. Welche Schrittweite h ist zu wählen, wenn bei linearer Interpolation mit Hilfe des Tabelle der Interpolationsfehler kleiner als 10^{-6} ausfallen soll? (aufgabe3_2.pdf)

Wie verhält sich der Interpolationsfehler

$$\max_{0 \le x \le 1} |p^{(n)}(x) - J_0(x)| \tag{5}$$

für $n \to \infty$, wenn $p^{(n)} \in \Pi_n$ die Funktion $J_0(x)$ an den Stellen $x_i^{(n)} = \frac{i}{n}, i = 0, \dots, n$, interpoliert. Hinweis: Es genügt $|J_0^{(k)}| \le 1$ für $k = 0, 1, \dots$ zu zeigen.