Matson Social Skills

- Kamyab Abedi
- Kian Jalilian
- Ehsan Sajadi

DataMining Course - Spring 1400

TABLE OF CONTENTS

Introduction

Briefly elaborate on what we want to discuss.

PROBLEM & SOLUTION

Review on our datasets

OUR PROCESS

What we did?

TARGET

What is our target?

Our Data Set

Life Expectancy

The data was collected from WHO and United Nations website

Matson social skills

The data was collected by a master student of SBU

Fish

Review on Hematology factors collected by a PHD student of TU

Books Recommendation

The data was collected by Dr. Amirreza Asrafi

Final Data Set

Matson social skills

The development of social skills is an important process in young childhood and adolescence. Deficits present in childhood that are left undetected and/or untreated can lead to increased problems into adulthood.

Life Expectancy

This study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well.

Matson social Skills

160 row

Contain 80 men and women

135 column

Collected by surveys

Final data set

Briefly elaborate on what you want to discuss.

OUR PROCESS

1. Data Collection

The process of gathering information from different sources.

مربوطه	بعد
1-18	مهارت های اجتماعی مناسب
19-29	رفتارهای غیر اجتماعی
30-41	پرخاشگری و رفتارهای تکانشی
42-47	برتري طلبي، اطمينان زياد به خود
	داشتن

2. Data Profiling

The process of reviewing source data for content and quality.

همیشه	اغلب اوقات	یرخی اوقات	يە ئدرت	هرگز	من به هنگام صحبت با دیگران، از آنها سوال هم می پرسم.	14
همیشه	اغلب اوقات	یرخی اوقات	يە ئدرت	هرگز	من وقتی کسی را اذیت می کنم، بعدا متاسف می شوم.	15
همیشه	اغلب	يرڅى	يه	هرگز	من به کسانی که با من خوب هستند، خوبی می کنم.	16
همیشه	اوقات اغلب	اوقات بردی	ندرت یه	هرگز	من از اطرافیان احوالپرسی کرده و جویای کار آنها و مسایلی از این قبیل می	17
	اوقات	اوقات	ثدرت		شوم.	

Matson Social Skills

13-25-28-29-48-59-65-73	رشد و بالندگی
	فردی
1-11-20-24-37-47-58-69-71-74	خود پیروی
5-7-9-10-21-40-41-64	ارتباط مثبت با
	دیگران
4-12-19-22-23-30-31-33-34-38-	رضایت از زندگی
45-49-52-55-57-60-61-62- 68	
3-8-14-16-27-32-39-42-46-50-	معنويت
56-63-76	
2-6-15-17-18-26-35-36-43-44-	شادی و
51-53-54-66-67-70-72-75-77	خوشبینی

كاملأ مخالفم	مخالفم	نظرى ندارم	موافقم	كاملأ موافقم	من جزء افرادی هستم که دوست دارند چیزهای جدید را تجربه کنند	15
كاماذ	مخالفم	نظرى	موافقم	كاملأ موافقه	معنی وجودی خودم را درک می کنم	16
كاملأ مخالفم	مخالفم	نظرى ندارم	موافقها	كاملأ موافقم	در کل، نگرش مثبت و خوشبینانه ای نسبت به انسان ها و زندگی دارم	17

3. Data Exploration

A visual exploration to help users familiariza with information.

Data set

```
[155]: # Discard the metadata (age and variable and row).
     le = le.drop(['age', 'variable', 'row'], axis=1)
[156]: le.head()
[156]: sex b1 b2 b3 b4 b5 b6 b7 b8 b9 ... m55 m56 maharat roshd khodpeiravi ertebatm rezayat manaviat shadi behzisti
     28.0
                                                                           16.0
                                                                                 42.0
                                                                                        22.0 48.0
                                                                                                  170.0
     1 1.0 3.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 ... 5.0 5.0
                                                    170.0 18.0
                                                                                 43.0
                                                                                        21.0 47.0
                                                                                                  171.0
                                                                    26.0
                                                                           17.0
     2 1.0 3.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0
                                                    135.0 15.0
                                                                                        27.0 42.0
                                                                                                  171.0
                                                                    31.0
                                                                           18.0
                                                                                 34.0
     3 1.0 2.0 5.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 ... 1.0 1.0
                                                                                        25.0 53.0
                                                                                                   193.0
                                                                    29.0
                                                                           20.0
                                                                                 45.0
     25.0
                                                                           12.0
                                                                                40.0
                                                                                        22.0 38.0
                                                                                                  159.0
     5 rows × 142 columns
```



```
[164]: # Plot heatmap to visualize the correlations.
plt.figure(figsize = (14, 12))
sns.heatmap(le.corr(), annot = True)
plt.title('Correlation between different features');
```



```
le = pd.read_csv('DataSet.csv', sep=',')
le.dataframeName = 'DataSet.csv'
le.head()
```

Python

	Variable	row	age	sex	b1	b2	b3	b4	b5	b6	 m55	m56	maharat	roshd	khodpeiravi	ertebatm	rezayat	manaviat	shadi	behzisti
0	NaN	1	NaN	1	1	1	1	1	1	1	 1	5	168	15	28	16	42	22	48	170
1	NaN	2	NaN	1	3	1	2	1	2	1	 5	5	170	18	26	17	43	21	47	171
2	NaN	3	NaN	1	3	4	4	1	1	1	 1	1	135	15	31	18	34	27	42	171
3	NaN	4	NaN	1	2	5	2	2	2	2	 1	1	155	24	29	20	45	25	53	193
4	NaN	5	NaN	1	1	1	2	1	1	1	 1	1	152	24	25	12	40	22	38	159

5 rows × 145 columns

```
# Modify the original names of the features using a standard format for all the features.

orig_cols = list(le.columns)

new_cols = []

for col in orig_cols:

    new_cols.append(col.strip().replace(' ', ' ').replace(' ', '_').lower())

le.columns = new_cols

# Discard the metadata (age and variable and row).

le.drop(['age', 'variable', 'row'], axis=1, inplace=True)

Press Ctrl+Alt+Enter to execute cell
```

Python

```
le.drop(le.iloc[:,1:134], axis = 1, inplace = True)
le.head()
```

Python

	sex	maharat	roshd	khodpeiravi	ertebatm	rezayat	manaviat	shadi	behzisti
0	1	168	15	28	16	42	22	48	170
1	1	170	18	26	17	43	21	47	171
2	1	135	15	31	18	34	27	42	171
3	1	155	24	29	20	45	25	53	193
4	1	152	24	25	12	40	22	38	159

DecisionTree

```
#split dataset in features and target variable
feature_cols = ['sex', 'maharat', 'roshd', 'khodpeiravi','ertebatm','rezayat','manaviat','shadi','behzisti']
X = le[feature cols] # Features
y = le.Label # Target variable
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
# Create Decision Tree classifer object
le = DecisionTreeClassifier()
# Train Decision Tree Classifer
le = le.fit(X train,y train)
#Predict the response for test dataset
y pred = le.predict(X test)
```

Accuracy: 0.854166666666666

print("Accuracy:",metrics.accuracy score(y test, y pred))

OUR TARGET

دختران

```
[194] for variable,i in col_dict2.items():
    print(variable,end=' = ')
    print(girls[variable].mean())

maharat_ej = 75.4625
    raftar_gheir_ej = 17.5375
    parkhash = 19.8875
    bartari = 15.95
    rabete_hamsal = 24.6375
    maharat = 153.475
```

پسران

```
for variable,i in col_dict2.items():
    print(variable,end=' = ')
    print(boys[variable].mean())

maharat_ej = 69.8875
    raftar_gheir_ej = 19.75
    parkhash = 23.325
    bartari = 16.525
    rabete_hamsal = 24.575
    maharat = 154.0625
```

```
meandict = {}
for col in le.columns:
  # print(le[col].mean())
  meandict[col] = le[col].mean()
meandict
 'b1': 2.4375,
 'b10': 2.3125,
'b11': 2.575,
 'b12': 2.3375,
 'b13': 2.875,
 'b14': 2.53125,
 'b15': 1.6625,
 'b16': 2.00625,
 'b17': 2.1875,
 'b18': 3.0125,
 'b19': 3.10625,
 'b2': 2.4875,
 'b20': 3.525,
 'b21': 2.14375,
 'b22': 2.1625,
 'b23': 2.1,
 'b24': 3.80625,
 'b25': 2.70625,
 'b26': 3.09375,
 'b27': 1.5875,
 'b28': 1.76875,
 'b29': 3.375,
 'b3': 1.80625,
 'b30': 3.70625,
 'b31': 2.21875,
 'b32': 1.66875,
 'b33': 2.10625,
 'b34': 2.0,
 'b35': 3.43125,
```

```
[175] for i in range(0,160):
      print('\n### ', i, ' ###\n')
      x = le.iloc[i]
      # print(le.iloc[i])
      # print(x['b13'])
      for variable, j in meandict.items():
        diff = x[variable] - meandict[variable]
        if abs(diff) > 2:
          print(variable, x[variable], diff, sep=' ')
               ###
     b33 5.0 2.89375
     b40 5.0 2.1
     b41 5.0 2.14375
     b77 5.0 2.0625
     m19 5.0 3.26875
     m39 5.0 2.35625
     maharat 168.0 14.231249999999999
     roshd 15.0 -5.21875
     manaviat 22.0 -4.39999999999999
     behzisti 170.0 -16.03749999999999
     maharat ej 89.0 16.3250000000000003
     parkhash 17.0 -4.60624999999999
          1
              ###
     m15 2.0 -2.1125
     m20 4.0 2.40625
     m31 5.0 2.48125
     m39 5.0 2.35625
     m52 4.0 2.04375
     m55 5.0 2.89375
     maharat 170.0 16.23124999999999
     roshd 18.0 -2.21875
     manaviat 21.0 -5.39999999999999
     behzisti 171.0 -15.03749999999999
     maharat ej 80.0 7.3250000000000003
     parkhash 26.0 4.393750000000001
     rabete hamsal 28.0 3.39375000000000007
     ###
           2
               ###
```

Do you have any questions?

THANKS