Quiz 3 - Computational Physics II

. 1 / 1	
NAME: Iran Paniel Vaswnez	SCORE:
Date: Tuesday 6 May 2025 Credits: 20 points (4 questions) Duration: 45 minutes Type of evaluation: LAE	3
Provide <u>clear and concise answers</u> to the following items	3.
 (5 points) High-performance computing (a) List and briefly explain 3 key architectural differences 	between CPUs and GPUs.
(b) Provide 1 example of an application more suited for C	CPUs and 1 more suited for GPUs.
abores ove optimized to gue tast respons	e to complex calculations,
govs are good at simpler tasks but a	lot of tasks.
@ CPOS have normally 8-16 coves per a more "Ismaller" coves por 6PU.	ro, and opus have a lot
more "Ismaller" wres por 6PU.	
3 CPUS have li, Lz, L3 cacre and 6 pus v	normally not more than
li, lz.	
	7
con be devided on parts and parallelized 2. (5 points) MPI parallelisation how?	thre on other but with different
2. (5 points) MPI parallelisation how? (a) Describe 1 difference between point-to-point and collection	ctive MPI communication. be done in Clike
(b) Sketch a workflow that clearly shows the main steps collective MPI communication.	
a) Point - to - point communication localizes jo	
then returns, the intermation to the voi	nk=0 core to collect tre
total task. collecture commication uses	a collective workferce?
of the cores to complete a job and	
b) Storte which library & functions are v	sed?
b) (Storte) which Dibrary & 70.00	which one recibe resurts
Install and import withe fosk to be	
Hot and dependencies acomplished, stat	true - how (trush)
creck number of I write a if state cores code with the tos	evet 1)
*	rank to how?

3. (5 points) Partial Differential Equations (PDEs)

- (a) Explain the concept of a stencil in the context of numerically solving PDEs.
- (b) Mathematically explain why the heat equation is used to study diffusion processes.
- a) I don't really remiter well but referes to how we can use grids or maps to encounter a sourcenced solutions to the press which we know hove a very condensed space dependencies, this stencil can be a useful tool in discretising we though to a step sized job? (I) (A) These are stencils by at = c It. Evolution in time is linearly compared to a slope in second order. This gorantees to an easy concretence into BCIS, treatone in diffusion X problems when we know the BCIS, and sometime there are constants burders (0 (72003)) it is easier to subt numerically this bend?

4. (5 points) Discretisation and numerical stability

Consider the one-dimensional heat equation with a positive thermal diffusivity (c > 0).

- (a) Write down the discrete equation that results from applying an implicit numerical scheme (first order in time, second order in space) on a uniform grid to the heat equation.
 - (b) Derive the stability condition for the above implicit scheme based on the amplification factor obtained from the von Neumann analysis.

$$\frac{\partial f}{\partial t} = c \frac{\partial^2 f}{\partial x^2}$$

$$\frac{\int_{(n+1)}^{(n+1)} - f(t)}{\Delta t} + \frac{\int_{(n+1)}^{(n+1)} + f(t)}{\int_{(n+1)}^{(n+1)} + f(t)} + \frac{\chi}{(n+1)}$$

Just had a Montan Lagown. Don't serven bor I'm sony.