The statistical model behind simmr (and SIAR)

Andrew Parnell andrew.parnell@mu.ie

Learning outcomes:

- Understand the statistical model behind simmr/SIAR
- Know how to run a model in simmr/SIAR and check that it works
- ▶ Be able to follow the technical details of the 2010 SIAR Plos ONE paper

Our simple SIMM

In the last class we had a simple SIMM defined via:

$$y_i \sim N\left(\sum_{k=1}^2 p_k s_k, \sigma^2\right)$$

with $s_k \sim N(\mu_{s_k}, \sigma_{s_k}^2)$, $p_1 \sim U(0, 1)$ and $\sigma \sim U(0, 100)$

- ▶ Here y_i is the isotope value, s are the source values, p are the dietary proportions, and σ is the residual standard deviation
- ► The goal is to estimate the *p* and its uncertainty. The other parameters can be considered nuisance parameters

Expanding the simple SIMM

- ▶ This SIMM is currently too simplistic. We need to expand it by:
 - increasing the number of food sources
 - including trophic enrichment factors (TEFs)
 - including concentration dependence
 - allowing for multiple isotopes
 - allowing for richer source sampling by consumers
- ▶ If we include all of these factors we end up with the simmr/SIAR model
- We will take them in turn and add them into our JAGS code

Reminder: the SIAR geese data

```
data(geese1demo, sourcesdemo, correctionsdemo, concdepdemo)
head(geese1demo,3)

## d15NPl d13CPl
## [1,] 10.22 -11.36
## [2,] 10.37 -11.88
## [3,] 10.44 -10.60
sourcesdemo
```

```
## Sources Meand15N SDd15N Meand13C SDd13C
## 1 Zostera 6.488984 1.4594632 -11.17023 1.2149562
## 2 Grass 4.432160 2.2680709 -30.87984 0.6413182
## 3 U.lactuca 11.192613 1.1124385 -11.17090 1.9593306
## 4 Enteromorpha 9.816280 0.8271039 -14.05701 1.1724677
```

Plotting the data

A plot in isotope space:

plot(simmr_in)

Including multiple sources

Adding in multiple sources to the likelihood means having more terms in the sum:

$$y_i \sim N\left(\sum_{k=1}^K p_k s_k, \sigma^2\right)$$

- ▶ In the above we have K sources and hence K dietary proportions
- ▶ We also now need *K* source prior distributions
- The tricky part about adding in multiple proportions is the prior distribution

Priors for constrained dietary proportions

- We must have $\sum_{k=1}^{K} p_k = 1$ so any prior distribution we place on the ps must satisfy this restriction
- (You will often hear values restricted in sum referred to as a simplex)
- ► Luckily there is a distribution known as the *Dirichlet* which is suitable for restricted sum parameters
- ▶ The Dirichlet has one parameter for each proportion $\alpha_1, \ldots, \alpha_K$. The larger the α value the larger prior weight that dietary proportion will be given
- \blacktriangleright Setting all the α values to 1 is equivalent to the simplex uniform distribution, i.e. a prior assumption that all sources are consumed equally

JAGS SIMM with a Dirichlet prior

```
model code ='
model {
  for(i in 1:N) { y[i] ~ dnorm(inprod(p,s),sigma^-2) }
  p ~ ddirch(alpha)
  for(k in 1:K) { s[k] ~ dnorm(s_mean[k],s_sd[k]^-2) }
  sigma ~ dunif(0,100)
sources = sourcesdemo[,4:5]
data=list(y=consumers,s mean=sources[,1],s sd=sources[,2],
          N=length(consumers), K=nrow(sources),
          alpha=rep(1,nrow(sources)))
set.seed(123)
model run = jags(data = data,
                 parameters.to.save = c("p", "sigma"),
                 model.file = textConnection(model code))
```

module glm loaded

This is now running with all 4 sources

Results

- We can explore/plot results with summary(output), plot(output), and also run multiple chains, form predictive distributions, check convergence, etc
- One important thing to note is that the fitting method (MCMC) produces a joint posterior distribution of the dietary proportions. This means that each set of samples will sum to 1:

```
head(model_run$BUGSoutput$sims.matrix,4)
```

► The key implication of this is that, aside from exploring the *marginal* posterior distributions (with means, sds, etc) we can explore the *joint* uncertainty of the dietary proportions

A joint plot of the posterior dietary proportions

Trophic enrichment factors and concentration dependence

- ▶ Trophic enrichment factors (c) and concentration dependence (q) represent adjustments to the source values to account for various measurement effects
- ▶ We can include them by expanding the likelihood:

$$y_i \sim N\left(\frac{\sum_{k=1}^K p_k q_k(s_k + c_k)}{\sum_{k=1}^K p_k q_k}, \sigma^2\right)$$

- ► The extra part on the denominator is needed so that the dietary proportions still sum to 1
- ▶ The prior for c_k comes from external data and are given normal distributions like the source values
- ▶ In SIAR the concentration dependencies must be less than 1 (given as proportions) and are treated as fixed. You could use a strong Dirichlet prior on these instead

Including TEFs and CD - JAGS model model code ='

```
model {
  for(i in 1:N) {
   y[i] ~ dnorm(inprod(p*q,s+c)/inprod(p,q),sigma^-2)
  p ~ ddirch(alpha)
  for(k in 1:K) {
    s[k] ~ dnorm(s mean[k],s sd[k]^-2)
    c[k] ~ dnorm(c mean[k],c sd[k]^-2)
  sigma ~ dunif(0,100)
data(concdepdemo); data(correctionsdemo)
data=list(y=consumers,s mean=sources[,1],s sd=sources[,2],
          c mean=correctionsdemo[,4],c sd=correctionsdemo[,5],
          q=concdepdemo[,4], N=length(consumers), K=nrow(sources),
          alpha=rep(1,nrow(sources)))
model_run = jags(data = data,
```

parameters.to.save = c("p"),

model.file = textConnection(model code))

13 / 24

Notes on the TEF and CD model

- ► If you run this, you'll find that convergence isn't quite as neat and it starts to get a bit slower
- Although it's a nuisance parameter, saving sigma is often a good idea because a large value indicates a poorly fitting model (usually also seen in the iso-space plot)
- ► The model will also create posterior distributions for s and c, though these are usually pretty similar to the prior, as there isn't much information about their values in the data

Adding extra isotopes

- ▶ If we have extra isotopes we can just list the likelihood twice, once for each value of the isotope. Only the dietary proportions are 'shared' between the isotopes
- Now write y_{ij} as the consumer values for observation i on isotope j, where $j=1,\ldots,J$
- We now have source values s_{jk} , TEF values c_{jk} , concentration dependencies q_{jk} , and each isotope has its own residual standard deviation σ_j
- The likelihood is now:

$$y_{ij} \sim N\left(\frac{\sum_{k=1}^{K} p_k q_{jk}(s_{jk} + c_{jk})}{\sum_{k=1}^{K} p_k q_{jk}}, \sigma_j^2\right)$$

Richer source sampling

- ▶ The model we've been fitting up to now assumes that all individuals sample the same source value s_k for each source and isotope. This is unrealistic
- A better model has each individual sampling a different source value from the source prior distribution, i.e. we now have s_{ik} (or s_{ikj} with multiple isotopes)
- ▶ The JAGS code becomes:

```
for(k in 1:K) {
  for(i in 1:N) {
    s[i,k] ~ dnorm(s_mean[k],s_sd[k]^-2)
  }
}
```

- ▶ We can do the same with the concentration dependence values
- In fact with a bit of clever maths we can remove (marginalise over) the s_{ik} values to get a simpler model with fewer parameters.

The full simmr/SIAR model

Using the trick mentioned on the last slide, we end up with a full model which looks like this:

$$y_{ij} \sim N\left(\frac{\sum_{k=1}^{K} p_k q_{jk} (\mu_{s,jk} + \mu_{c,jk})}{\sum_{k=1}^{K} p_k q_{jk}}, \frac{\sum_{k=1}^{K} p_k^2 q_{jk}^2 (\sigma_{s,jk}^2 + \sigma_{c,jk}^2)}{(\sum_{k=1}^{K} p_k q_{jk})^2} + \sigma_j^2\right)$$

► This model has a more complicated likelihood, but removes the extra s and c parameters

Full SIAR model: JAGS code

```
model_code ='
model {
  for (i in 1:N) {
    for (j in 1:J) {
      y[i,j] ~ dnorm(inprod(p*q[,j], s_mean[,j]+c_mean[,j])
        inprod(p,q[,j]), var_y[j]^-1)
  p ~ ddirch(alpha)
  for(j in 1:J) {
    var_y[j] \leftarrow inprod(pow(p*q[,j],2),s_sd[,j]^2+c_sd[,j]^2
      + pow(sigma[i],2)
  for(j in 1:J) { sigma[j] ~ dunif(0,100) }
```

Full simmr/SIAR model: R code

```
sources = as.matrix(sourcesdemo[,2:5])
tefs = as.matrix(correctionsdemo[,2:5])
cd = as.matrix(concdepdemo[,c(2,4)])
data=list(y=geese1demo,s mean=sources[,c(1,3)],
          s sd=sources[,c(2,4)],
          c mean=tefs[,c(1,3)],c sd=tefs[,c(2,4)],
          q=cd, N=nrow(geese1demo),
          J=ncol(geese1demo),alpha=rep(1,nrow(sources)))
model_run = jags(data = data,
                 parameters.to.save = c("p", "sigma"),
                 model.file = textConnection(model_code),
                 DIC = FALSE)
```

Summary of posterior dietary proportions

Some of these proportions are quite imprecise: perhaps see better with matrix plot?

Running SIAR/simmr

- ► The SIAR/simmr R packages run exactly this model with a few extra tweaks
- ▶ It contains a slightly optimised algorithm as JAGS sometimes gets a bit stuck on harder data sets. It's also much faster than JAGS for complicated problems
- It allows for direct plotting of the data in isotope space and p-space (i.e. dietary proportion space - pairs plots)
- It allows for changing the α values to put in proper prior information
- It includes convergence checking
- Most of this covered in the practical this afternoon

simmr version

- simmr is a much more elegantly written version of SIAR with neater plots and many more features
- Four steps to run a simmr model
 - 1. Call simmr_load to load in the data
 - 2. Call plot to see the iso-space plot
 - 3. Call simmr_mcmc to run the model
 - 4. Call plot or summary to access the output
- simmr has further features to combine sources and to compare dietary proportions

simmr code

```
# Load
simmr_in = simmr_load(mixtures=mix,
                      source_names=s_names,
                      source_means=s_means,
                      source sds=s sds,
                      correction means=c means,
                      correction sds=c sds,
                      concentration_means = conc)
# Iso-space plot
plot(simmr in)
# MCMC run.
simmr out = simmr mcmc(simmr in)
# Box-plots
plot(simmr_out, type = 'boxplot')
```

Summary

- ► The simmr and SIAR models are just complicated versions of linear regression
- ► The response is multivariate and the prior distributions on some of the parameters have to be constrained to sum to 1
- ▶ It used to be the case that JAGS was slow and couldn't run SIMM-type models. This is no longer true. You can fit much richer models in JAGS (and now MixSIAR) than with SIAR/simmr
- More details on running simmr in the practical next