Data-Intensive Distributed Computing CS431/451/631/651

Module 6 – Data Mining / Machine Learning

Part 2 – LHS, Min-Hashing, and Random Hashing

Woah, trippy

What the, we skipped relational data? (Yes, the assignments flow more easily this way...maybe I should change the graphic...)

Some of the following diagrams are borrowed

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

- If a slide says that at the bottom:
 - I've borrowed the whole slide, or
 - I've borrowed the diagrams and put my own words on them

Here each feature would be 0 or 1, meaning "does not contain this 4-gram" or "does". You could also have them be counts instead of strictly 0 or 1. 0 or 1 is easier.

Scene Completion Problem

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10 nearest neighbors, 20,000 image database

10 nearest neighbors, 20,000 image database

10 nearest neighbors, 2.3 million image database

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Today's Objective

Given high-dimensional datapoints $x_1, x_2, ... x_n$ and some distance function $d(x_1, x_2)$:

Find all pairs of datapoints x_i , x_j s.t. $d(x_i,x_j) < s$

The naïve approach: just compute $d(x_i, x_j)$ for all i,j $O(n^2)$ – not very big data

Magic: O(n) – normal to want, and possible to achieve.

Why do we care? The core technique applies to ML!

The fingerprint is because we're going to be creating signatures (fingerprints)

Hey! "Magic" isn't an explanation!

Sure, but it caught your attention.

Q: How can you find all **identical** items in a collection of n?

A: Hash table – insert is O(1) – only need to compare collisions, not all pairs!

This is O(n) (assuming a low collision rate)

Locality Sensitive Hashing (LHS)

Normal Hash Function: If you know X and h(X): No idea what h(X+c) is

LHS Hash Function: If you know X and h(X):

 $E[h(X+c)] = h(x) \pm c$

Translation: items that are "close" have hash codes that are "close" (on average)

Brilliant, so all we need is a LHS function?

Yup, we "just" need a LHS function.

We now spend the rest of the lecture "just" constructing such a creature.

"just" strikes again!

What's Distance, Anyway? Measuring distance between text documents:

Remember, one goal is detecting duplicate news stories

- Diff: Too sensitive to rearrangement
- Word Count: not sensitive enough to rearrangement
- Edit Distance: too difficult to compute
- N-Grams: Just right

Jaccard

How do n-grams give us a distance measure? Jaccard distance! This is used for sets.

Do we have sets?

Yes: A document embedding is the set of n-grams it contains.

$$sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

$$d(C_1, C_2) = 1 - sim(C_1, C_2)$$

3 in intersection
7 in union
Jaccard similarity= 3/7
Jaccard distance = 4/7

What if you can't make sets? Well, you'll need a different LHS technique. Sorry, this is only for sets!

What *n* should I use?

Depends on if you're doing byte-level or word-level n-grams Depends on what size of documents

For byte-level:

- 4-5 for short documents (tweets, sms, emails)
- 8-10 for long documents (webpages, books, papers)

For word-level:

- 2-3 for short documents
- 3-5 for long documents

The sentiment analysis paper used byte-level 4-grams, and so does the spam filter assignment!

Sets and Vectors

Reminder: A Set can be represented as a bit vector

- 1. Assign natural numbers 0...n to the elements of the Universe set
- 2. Bit vector at index *i* is 1 if the set contains element *l*
- 3. Benefit: union/intersection are bitwise or / bitwise and

I already made the opposite argument when I said our feature vector is a set! But a little repetition never hurts

Collection as a Matrix

- Row = Elements of Set (i.e. n-gram)
- Column = Set (i.e. document)
- 1 in (*i,j*) -> n-gram *i* is in document *j*

Next Objective: Compute a signature for each column (document) s.t $|sig| \ll |col|$

Ideally, column similarity = signature similarity

Documents

	1	1	1	0
	1	1	0	1
ns	0	1	0	1
N-Grams	0	0	0	1
Ż	1	0	0	1
	1	1	1	0
	1	0	1	0

Reminder: LHS

A Hash function $h(\bigcirc)$ such that:

- If C1 and C2 are highly similar, then with high probability:
 - $h(C_1) = h(C_2)$
- If C1 and C2 are highly dissimilar, then with high probability:
 - $h(C_1) \neq h(C_2)$
- Different approach needed for each definition of "similarity"

For Jaccard distance: Min-Hashing!

 $h(\bigcirc)$ - My Physics 12 teacher did this with all function definitions to avoid h(x) and confusing people with other X's we'd already been talking about. That or he was weird. Maybe both.

Min-Hashing

Imagine you have a random permutation π

LHS function $h_{\pi}(C) = min \pi(C)$ In other words: After permuting the rows of C by π , it's the index of the first 1

Not good enough as a signature, but what if we had 100 of them?

The Min-Hash Property

Claim:
$$Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$$

Proof:

Let
$$y = min(\pi(C_1 \cup C_2))$$

It must be the case that $y = min(\pi(C_1))$ or $y = min(\pi(C_2)) - Why?$

Is it in both though? There are $|C_1 \cap C_2|$ things in common.

And $|C_1 \cup C_2|$ possible y.

So the probability it's in both =
$$\frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = sim(C1, C_2)$$

Why? The permutation is random. So, every single element y in the union has the same chance of being placed first by the permutation. So it's a uniform random choice!

Signatures

Let K be the number of permutations (say 100)

Sig(C)[i] = the index of the first row that has a 1 in column C, after applying permutation I

The signature is K x 4 bytes (400 if K=100)

Much smaller than column C!

We know: $Pr[h(C_1) = h(C_2)] = sim(C_1,C_2)$ The signature is 100 such hash functions. Signatures

What's $sim(Sig_1, Sig_2)$? $E[sim(Sig_1,Sig_2)] = sim(C_1,C_2)$

(This is true no matter how many entries the sig has, but the more it has, the lower the variance)

Implementation

```
sig[C][i] = ∞ for all C, I
for each row index j in each column C:
   if C[j]:
      for each hash function index i:
       sig[C][i] = min(sig[C][i], h<sub>i</sub>(j))
```

Problem: computing h_i is prohibitive! In fact even writing down h_i is prohibitive

Why so Prohibitive?

How many n-length permutations are there? n!

(That's not an excited answer, it's n factorial)

How many bits needed to distinguish each possible permutation?

$$\Omega(\lg(n!)) = \Omega(n \lg n)$$

That's too many bits! If doing byte-level 4-grams,

 2^{32} x 32 = 137,438,953,472 = 16GB

Alternative?

Let h_i be a k-universal hash function

```
for each hash function index i: sig[C][i] = min(sig[C][i], h_i(j))
```

Conceptually: let $\boldsymbol{\pi}_i$ be the "permutation" we get if we sort using \boldsymbol{h}_i as the key function

K-Universal Hash Function

Pick K constants - c1 ... ck

$$h(x) = (c1 + c_2x + c_3x^2 + ... c_kx^{k-1}) \mod p$$
 p being a large prime

K-Universal means $h(x_1)$, $h(x_2)$, $h(x_k)$ will not correlate (but after that they might)

Is that good enough? Maybe $Pr[h_k(y)=min(h_k(X))] = (1 / |X|)(1 \pm e^{-k})$

Only need a 4-universal function to be within 2% of the Jaccard distance

(at this point I ran out of time)

Remaining slides are

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

LSH: First Cut

- 2 1 4 1
 1 2 1 2
 2 1 2 1
- Goal: Find documents with Jaccard similarity at least s
 (for some similarity threshold, e.g., s=0.8)
- **LSH General idea:** Use a function f(x,y) that tells whether x and y is a *candidate pair:* a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix **M** to many buckets
 - Each pair of documents that hashes into the same bucket is a **candidate pair**

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 M (i, x) = M (i, y) for at least frac. s values of i
 - We expect documents **x** and **y** to have the same (Jaccard) similarity as their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Partition M into Bands

- Divide matrix **M** into **b** bands of **r** rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make **k** as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

,

Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of **M** (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose **b** = 20 bands of **r** = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2	1	4	1
1	2	1	2
2	1	2	1

C₁, C₂ are 80% Similar • Find pairs of \geq s=0.8 similarity, set b=20, r=5

- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C₁, C₂ identical in one particular **band:** $(0.8)^5 = 0.328$
- Probability C₁, C₂ are *not* similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2	1	4	1
1	2	1	2
2	1	2	1

C₁, C₂ are 30% Similar

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

ISH	Involve	2 2 Z	Trad	anff
LOП	11100106	25 a i	Tau	eon

2 1 4 1 1 2 1 2 2 1 2 1

- Pick:
 - The number of Min-Hashes (rows of M)
 - The number of bands **b**, and
 - The number of rows *r* per band

to balance false positives/negatives

• Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t'
 - Prob. that some row in band unequal = 1 t'
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = t^r)^b

1 - (1 -

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Dan Note]: This is a hand-drawn sketch from their slides, that's why it's got a bit of a nub at the top. See next slide

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is

n	d is i	dentical: 1-(1-s ^r) ^b	
	.2	.006	
	.3	.047	
	.4	.186	
	.5	.470	
	.6	.802	
	.7	.975	
Le		ajarama 9996 Mining of Massive	

Different values for b, given 100 elements in the signatures. (b * r = 100)

This is one of Dan's slides again

LSH Summary

- Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Summary: 3 Steps

- N-Grams: Convert documents to sets
 - We used hashing to assign each N-Gram an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity ≥ **s**

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Do it with Spark

- 1. Generate Signatures: map
- 2. Split each signature into bands: flatMap
- 3. Ship each band somewhere: groupByKey with custom partitioner
- 4. Find collisions within each band: mapPartitions
 - 1. Remove (some) false positives by double checking signatures are similar before emitting
- 5. Merge results: union -> distinct
- 6. [optional] remove remaining false positives by checking sets are similar (expensive): **filter**

What's this doing in the course???

Remember Sentiment Analysis???
"Features – sliding window byte-level 4-grams"

Length of bit-vector: 2³² (4 billion parameters, big model)

Length of example signature: 100

(but each value is an unsigned 32-bit integer)

What if we want bit-vectors still?

"Random Projection" – If you have N-length embeddings, and want M length – Create a random projection matrix (M x N)

- First row is a random unit vector
- Second row is a random unit vector orthogonal to first row
- Third row is a random unit vector orthogonal to first two
- ...

Isn't that a Real Vector?

Yes – it will be a vector from $\mathbb{R}^{\boldsymbol{k}}$

But – clamp like this: If the value is positive, it's 1, else it's 0

Tada! Bit vector!

Problem: It's expensive!

Solution: Have you tried not caring?

With high probability a set of random unit vectors is

approximately orthogonal

Approximately orthogonal means that while the inner product is sufficiently small The argument here is the same as

Can we go even faster?

Yes, through the power of hashing! Define two hash functions: h, σ h: [n] -> [m] σ : [n] -> {-1,1}

For column i of the random projection matrix:

• entry at index h(i) is set to $\sigma(i)$

• all other entries are 0

Sparse: fast to compute

All columns are unit-vectors - trivially