1 1.1: Solutions of Linear Equations and Inequalities in One Variable

Definition. (Functions)

A function f is a special relation between x and y such that each input x results in at most one y. The symbol f(x) is read "f of x" and is called the **value of** f **at** x

Example. Let $f(x) = \frac{x^2}{2} + x$. Evaluate the following:

$$f(1) f(\frac{1}{2})$$

$$f(-2) f(0)$$

Composite Functions:

Let f and g be functions of x. Then, the **composite functions** g of f (denoted $g \circ f$) and f of g (denoted $f \circ g$) are defined as:

$$(g \circ f)(x) = g(f(x))$$

$$(f \circ g)(x) = f(g(x))$$

Example. Let g = x - 1. Find:

$$(g \circ f)(x) \tag{f \circ g}(x)$$

Operations with Functions:

Let f and g be functions of x and define the following:

Sum (f+g)(x) = f(x) + g(x) Difference (f-g)(x) = f(x) - g(x) Product $(f \cdot g)(x) = f(x) \cdot g(x)$ Quotient $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{ if } g(x) \neq 0$

Definition.

An **expression** is a meaningful string of numbers, variables and operations:

$$3x-2$$

An equation is a statement that two quantities or algebraic expressions are equal:

$$3x - 2 = 7$$

A **solution** is a value of the variable that makes the equation true:

$$3(3) - 2 = 7$$

 $9 - 2 = 7$
 $7 = 7$

A **solution set** is the set of ALL possible solutions of an equation:

3x - 2 = 7 only has the solution x = 3,

2(x-1) = 2x - 2 is true for all possible values of x.

Properties of Equality:

Substitution Property: The equation formed by substituting one expression for an equal expression is equivalent to the original equation:

$$3(x-3) - \frac{1}{2}(4x-18) = 4$$
$$3x - 9 - 2x + 9 = 4$$
$$x = 4$$

Addition Property: The equation formed by adding the same quantity to both sides of an equation is equivalent to the original equation:

$$x-4=6$$
 $x+5=12$
 $x-4+4=6+4$ $x+5+(-5)=12+(-5)$
 $x=10$ $x=7$

Multiplication Property: The equation formed by multiplying both sides of an equation by the same *nonzero* quantity is equivalent to the original equation:

$$\frac{1}{3}x = 6$$

$$3\left(\frac{1}{3}x\right) = 3(6)$$

$$x = 18$$

$$5x = 20$$

$$\frac{5x}{5} = \frac{20}{5}$$

$$x = 4$$

Solving a linear equation:

Using the properties of equality above, we can solve any linear equation in 1 variable:

Example. Solve $\frac{3x}{4} + 3 = \frac{x-1}{3}$

$$12\left(\frac{3x}{4} + 3\right) = 12\left(\frac{x - 1}{3}\right)$$
$$9x + 36 = 4x - 4$$

$$9x + 36 - 36 - 4x = 4x - 4 - 36 - 4x$$

$$\frac{5x}{5} = \frac{-40}{5}$$

$$\underbrace{\frac{3(-8)}{4} + 3}_{-6+3=-3} \stackrel{?}{=} \underbrace{\frac{(-8) - 1}{3}}_{\underbrace{\frac{-9}{3} = -3}}$$

Example. Solve the following:

$$\frac{3x+1}{2} = \frac{x}{3} - 3$$

$$\frac{2x-1}{x-3} = 4 + \frac{5}{x-3}$$