Лабораторная работа № 1

Количественная оценка стойкости парольной защиты.

Цель работы: реализация простейшего генератора паролей, обладающего требуемой стойкостью к взлому.

Теоретические сведения

Подсистемы идентификации и аутентификации пользователя играют важную роль в системах защиты информации.

Стойкость подсистемы идентификации и аутентификации пользователя в системе защиты информации (СЗИ) во многом определяет устойчивость к взлому самой СЗИ. Данная стойкость определяется гарантией того, что зло-умышленник не сможет пройти аутентификацию, присвоив чужой идентификатор или украв его.

Парольные системы идентификации/аутентификации являются одними из основных и наиболее распространенных в СЗИ методами пользовательской аутентификации. В данном случае информацией, аутентифицирующей пользователя, является некоторый секретный пароль, известный только легальному пользователю.

Парольная аутентификация пользователя, как правило, передний край обороны СЗИ. В связи с этим модуль аутентификации по паролю наиболее часто подвергается атакам со стороны злоумышленника. Цель последнего в

данном случае – подобрать аутентифицирующую информацию (пароль) легального пользователя.

Методы парольной аутентификации пользователя наиболее просты и при несоблюдении определенных требований к выбору пароля являются достаточно уязвимыми.

Основными минимальными требованиями к выбору пароля и к подсистеме парольной аутентификации пользователя являются следующие.

К паролю:

- 1) минимальная длина пароля должна быть не менее 6 символов;
- 2) пароль должен состоять из различных групп символов (малые и большие латинские буквы, цифры, специальные символы '(', ')', '#' и т.д.);
- 3) в качестве пароля не должны использоваться реальные слова, имена, фамилии и т.д.

К подсистеме парольной аутентификации:

- 1) администратор СЗИ должен устанавливать максимальный срок действия пароля, после чего, пароль следует сменить;
- 2) в подсистеме парольной аутентификации необходимо установить ограничение числа попыток ввода пароля (как правило, не более трёх);
- 3) в подсистеме парольной аутентификации требуется установить временную задержку в случае ввода неправильного пароля.

Как правило, для генерирования паролей в СЗИ, удовлетворяющих перечисленным требованиям к паролям, используются программы — автоматические генераторы паролей пользователей.

При выполнении перечисленных требований к паролям и к подсистеме парольной аутентификации единственно возможным методом взлома данной подсистемы злоумышленником является прямой перебор паролей (brute forcing). В данном случае, оценка стойкости парольной защиты осуществляется следующим образом.

Количественная оценка стойкости парольной защиты

Пусть A — мощность алфавита паролей (количество символов, которые могут быть использованы при составлении пароля: если пароль состоит только из малых английских букв, то A=26), L — длина пароля, $S=A^L$ — число всевозможных паролей длины L, которые можно составить из символов алфавита A, V — скорость перебора паролей злоумышленником, T — максимальный срок действия пароля.

Тогда, вероятность P подбора пароля злоумышленником в течение срока его действия V определяется по следующей формуле:

$$P = (V \cdot T) / S = (V \cdot T) / A^{L}.$$

Эту формулу можно использовать в обратную сторону для решения следующей задачи.

 $\it 3adaчa$. Определить минимальные мощность алфавита паролей $\it A$ и длину паролей $\it L$, обеспечивающих вероятность подбора пароля злоумышленником не более заданной $\it P$, при скорости подбора паролей $\it V$, максимальном сроке действия пароля $\it T$.

Данная задача имеет неоднозначное решение. При исходных данных V, T, P однозначно можно определить лишь нижнюю границу S^* числа всевозможных паролей. Целочисленное значение нижней границы вычисляется по формуле

$$S^* = [V \cdot P / T],$$

(1)

где [] – целая часть числа, взятая с округлением вверх.

После определения нижней границы S^* необходимо выбрать такие A и L для формирования $S=A^L$, чтобы выполнялось следующее неравенство:

$$S^* < S = A^L$$
.

(2)

При выборе S, удовлетворяющего неравенству (2), вероятность подбора пароля злоумышленника (при заданных V и T) будет меньше, чем заданная P.

Следует отметить, что при осуществлении вычислений по формулам (1) и (2), величины должны быть приведены к одним размерностям.

Пример. Исходные данные: $P = 10^{-6}$, T = 7 дней = 1 неделя, V = 10 (паролей / минуту) = $10 \cdot 60 \cdot 24 \cdot 7 = 100800$ паролей в неделю. Тогда, $S^* = [(10800 \cdot 1) / 10^{-6}] = 108 \cdot 10^8$.

Условию $S^* \leq A^L$ удовлетворяют, например, такие комбинации A и L, как $A=26,\ L=8$ (пароль состоит из восьми малых символов английского алфавита), $A=36,\ L=6$ (пароль состоит из шести символов, среди которых могут быть малые латинские буквы и произвольные цифры).

Задание на лабораторную работу

- 1. В табл. 1 найти для указанного варианта значения характеристик $P,\ V,\ T.$
 - 2. Вычислить по формуле (1) нижнюю границу S^* для заданных P, V, T.
- 3. Выбрать некоторый алфавит с мощностью A и получить минимальную длину пароля L, при котором выполняется условие (2).
- 4. Реализовать программу для генерации паролей пользователей. Программа должна формировать случайную последовательность символов длины L, при этом должен использоваться алфавит из A символов.
 - 5. Оформить отчет по лабораторной работе.

Коды символов:

- 1. Коды английских символов : «А» = 65, ..., «Z» = 90, «а» = 97,..., «z» = 122.
 - 2. Коды цифр : <0>> = 48, <<9>> = 57.
 - 3. (4) = 33, (4) = 34, (4) = 35, (4) = 36, (4) = 37, (4) = 38, (4) = 39.
- 4. Коды русских символов : «А» 128, ... «Я» 159, «а» 160,..., «п» 175, «р» 224,..., «я» 239.

Таблица 1. Варианты заданий

Вариант	P	V	T
1	10^{-4}	15 паролей/мин	2 недели
2	10^{-5}	3 паролей/мин	10 дней

3	10 ⁻⁶	10 паролей/мин	5 дней
4	10 ⁻⁷	11 паролей/мин	6 дней
5	10 ⁻⁴	100 паролей/день	12 дней
6	10 ⁻⁵	10 паролей/день	1 месяц
7	10 ⁻⁶	20 паролей/мин	3 недели
8	10 ⁻⁷	15 паролей/мин	20 дней
9	10 ⁻⁴	3 паролей/мин	15 дней
10	10 ⁻⁵	10 паролей/мин	1 неделя
11	10 ⁻⁶	11 паролей/мин	2 недели
12	10 ⁻⁷	100 паролей/день	10 дней
13	10 ⁻⁴	10 паролей/день	5 дней
14	10 ⁻⁵	20 паролей/мин	6 дней
15	10 ⁻⁶	15 паролей/мин	12 дней
16	10 ⁻⁷	3 паролей/мин	1 месяц
17	10 ⁻⁴	10 паролей/мин	3 недели
18	10 ⁻⁵	11 паролей/мин	20 дней
19	10 ⁻⁶	100 паролей/день	15 дней
20	10 ⁻⁷	10 паролей/день	1 неделя
21	10 ⁻⁴	20 паролей/мин	2 недели
22	10 ⁻⁵	15 паролей/мин	10 дней
23	10 ⁻⁶	3 паролей/мин	5 дней
		_	Окончание табл. 3

Вариант	P	V	T
24	10^{-7}	10 паролей/мин	6 дней
25	10^{-4}	11 паролей/мин	12 дней
26	10^{-5}	100 паролей/день	1 месяц
27	10^{-6}	10 паролей/день	3 недели
28	10 ⁻⁷	20 паролей/мин	20 дней
29	10^{-4}	15 паролей/мин	15 дней
30	10^{-5}	3 паролей/мин	1 неделя