Name: Yuhan Shao UTORid: shaoyuha

Student Number: 1002281327

CSC411 Assignment 4

l, (a)								
	CI	C2	C3	C4	C5	Fı	F ₂	OUT
224 111 111 224	5 5 48 55 5 5 5 5 5 5 6 4 8	128	192 13 3 3 192 ax poling	192 13 3 3 192	128 Max poolii	2048 ense der	1	ense
# Units	(SS2X48)X2	(212X128) X2	(13°x192) X2	(13°X192)X2	(13, X158) X7			
	= 290,400	= 186, 624	=64,896	= 64,896	=43,264	=4096	= 4096	1000
# Weights	(LI2X3)X	L52X48)X	(32x128x2)x	(32x192)X	(32X192)X	(13x192X2)	(2048)(2)	(204812)
0	(48 X 2)	(128 x 2)	(192x2)	(192X2)	(128x2)	X (2048 x2)	X (2048x2)	XIOOO
	=34,848	= 307, 200	= 884, 736	= 663,552	=442,368	=11],29,344	=16717.216	=4,096,000
# Connections	(13 X3) X	(5 ² x48)x	(3°x128 x2)x	(3°x192)x	(3°X192)X	(13°x/28x2)	(2048X2)	(J048X2)
	(55° x48 x2)	(27°x 128x2)	(13 x 192x2)	(13°X 192X2)	(132 X 128 X2)			
	=105,415,200	= 223, 948, 800	= 149,520,384	= 112,140,288	=74,760,192	=M,209,344	=16,777, 216	=4,096,000

	# Units	# Weights	# Connections
Convolution Layer 1	290,400	34,848	105,415,200
Convolution Layer 2	186,624	307, 200	223, 948, 800
Convolution Layer 3	64,896	884, 736	149, 520, 384
Convolution Layer 4	64,896	663,552	112, 140, 288
Convolution Layer 5	43, 264	442, 368	74, 760, 192
Fully Connected Layer 1	4096	177, 209, 344	177, 209, 344
Fully Connected Layer 2	4096	16,777,216	16,777,216
Output Layer	1000	4,096,000	4,096,000

(6)

- (i) To reduce the number of parameters for the network \rightarrow reduce the number of weights \odot Consider reducing the number of units generated by increasing the pooling size in the Convolution layers.

 (ii) To reduce the number of connections:

 (ii) Reduce the kernel size in the convolution layers.

 (a) Add "bottle-neck" layer between fully-connected layers.

```
2.(a) p(y=k|\vec{x}, \vec{u}, \vec{6}) = \frac{p(\vec{x}|y=k, \vec{u}\vec{\delta}) P(y=k|\vec{u}, \vec{6})}{p(\vec{y}=k|\vec{u}, \vec{6})}
                                                                                                                                                                                                                                                                                                                                                                                                                                             # By Bayes' Rule: P(A|B) = P(B|A) P(A)
                                                                                                                                                                                                                                                            P($ | 2, 8)
                                                                                                                                                                                                       P(オリ=k, 疝る) P(y=k| 疝,る)
                                                                                                                                                                                                    \sum_{j=1}^{n} P(\vec{X}|y=j,\vec{u},\vec{e}) P(y=j|\vec{u},\vec{e})
\left(\frac{1}{d^{2}}(2\pi.6a^{2})^{+/2} \exp\left[-\sum_{k=1}^{n} \frac{1}{26a^{k}}(X_{d}-\mu_{kd})^{2}\right] \cdot d_{k}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                # By (1), (2).
                                                                                                                                                                                                    Σ, (1 2π62) 12 em - Σ, (X, - μja) 1 · dj ]
        (b) L(\vec{\theta}; D) = -\log P(y^{(0)}, \vec{x}^{(0)}, y^{(0)}, \vec{x}^{(0)}, y^{(0)}, \vec{x}^{(0)}, \vec{x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              # By deta are i.i.d.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    #By Chain Rule.
                                                                                                                     = \(\sum_{\mathbb{N}}\) \[ \frac{1}{2} \Sigma_{\mathbb{N}} \left[ \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \left] \right] \left[ \frac{1}{2} \left[ \frac{1}{2} \left] \right] \right]^2 - \log \delta_{\mathbb{N}} \times \right]
       (() L(\vec{\theta}; D) = \sum_{i=1}^{N} \left[ \frac{1}{2} \sum_{\alpha=1}^{N} log(2\pi 6\hat{a}) + \sum_{\alpha=1}^{N} \frac{1}{26a^{\alpha}} (X_{\alpha}^{i,j} - M_{y^{\alpha}\alpha})^{2} - log d_{y^{\alpha}} \right]
                                                                                                                    = \(\frac{1}{2}\Sin \Sin \Sin \log (2\tau 6a) + \Sin \Sin \San \frac{1}{26a^2} (\text{Xa}) - \log (\text{Ya})^2 - \Sin \log (\text{Ya}) \text{w}
                    • \frac{\partial (\vec{\theta}; D)}{\partial (\vec{\theta}; D)} = 0 + \sum_{i=1}^{N} \sum_{\alpha=1}^{N} \frac{1}{\delta \alpha^{2}} (X_{\alpha}^{ij} - M_{\gamma^{in}\alpha}) \cdot (-1) = 0
                                              allyind
                                                                                                                              = \(\Signa \)\(\Signa 
                  ⇒ al(\vec{\theta}; D) = \(\Sigma_i \) \(\text{los} \) \(\text{L}(\text{kd} - \text{Xd}) \) \(\text{L}(\text{y}) = \text{k}\).
                                                   alled
                   \bullet \frac{\partial \left( \overrightarrow{\theta}; D \right)}{\partial \zeta^{2}} = \frac{1}{2} \sum_{i=1}^{N} \frac{1}{6a^{2}} + \sum_{i=1}^{N} \frac{1}{-26a^{2}} \left( \chi_{a}^{(i)} - \mathcal{U}_{y} \circ d \right)^{2} - 0
                                             26L
                                                                                                                                = N - 1 - Eiz 262 (xa - Myord)
                 · Set al(\vec{\vartheta}; D) = 0 => \(\Sigma_{\vec{a}}^{\text{N}} \big(\mathbb{L}_{kd} - \text{X}_a^{\vec{d}})\) \(\mathbb{L}[y^{(i)} = k] = 0\)
                                                                                                                                                                                          => I Mka I [yi)=k] = I N X I [yi)=k]
                                                                                                                                                                                           \Rightarrow \mathcal{L}_{kd} = \frac{\sum_{i=1}^{k} X_{i}^{(i)} \mathbb{I}[y^{(i)} = k]}{\sum_{i=1}^{k} \mathbb{I}[y^{(i)} = k]}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     # Let No = Ei I [y"= k]
                                                                                                                                                                                         =) MRd = Sin Xa I [yii)=k]
                                                                                                                                                                                                                                                                                                                                                                                                                                                 # maximum likelihood oxtenate for lind
                 \frac{N}{2} \cdot \frac{1}{6a^2} - \sum_{i=1}^{N} \frac{1}{26a} (\chi_{ai}^{(i)} - M_{yind})^2 = 0
                                                                                                                                                                                         \Rightarrow \frac{N}{2} \cdot \frac{1}{6a^2} = \sum_{i=1}^{N} \frac{1}{26a} (\chi_a^{(i)} - lly_{ui}d)^2
                                                                                                                                                                                                                                                                                     = \(\frac{\Sin}{\Sin}(\chia^{(1)} - Myord)\) # maximum likelihood oximas for 6d
                                                                                                                                                                                                                                                        6d = N \(\sum_{i=1}^{N} (\(\chi_{d}^{(1)} - \llyund\)^2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         where I = d = D
    (d) L(\vec{\theta}; D) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{26a^{2}} (X^{(i)} - M_{i})^{2} - \sum_{i=1}^{n} l_{i}g(2\pi \cdot 6\vec{a}) + \sum
                  \Rightarrow \frac{\partial l(\overline{\theta}; D)}{\partial d_k} = 0 + 0 - \sum_{i=1}^{N} \frac{1}{\partial k} \mathbb{I}[y^{(i)} = k]
                    = -\frac{1}{d} \sum_{i=1}^{N} I[y^{(i)} = k] = -\frac{Nk}{dn} \# \text{ Let } N_k = \sum_{i=1}^{N} I[y^{(i)} = k]
• Let g(d_1, d_2, ..., d_k) = \sum_{i=1}^{N} d_i = 1 \implies \frac{2d}{dn} = 1 \pmod{2}

— By Langrange Multiplies: (f' = \lambda g') with constraint g(d_1, ..., d_k) = \sum_{i=1}^{N} d_i = 1
                                                                   \left(-\frac{N_1}{d_1}, -\frac{N_2}{d_2}, \dots, -\frac{N_k}{d_k}\right) = \lambda \left(1, 1, \dots, 1\right)
                  \Rightarrow di = -\frac{Ni}{\lambda} \quad \text{where} \quad | \leq i \leq k
-\frac{1}{\lambda} \quad \text{Use constraint} \quad \sum_{i=1}^{k} |di = |, \text{ we have}:
-\frac{1}{\lambda} \quad \sum_{i=1}^{k} |N_i = | \Rightarrow -\frac{N}{\lambda} = | \Rightarrow \lambda = -N
• Therefore, di = -\frac{Ni}{\lambda} = -\frac{Ni}{\lambda} = \frac{Ni}{\lambda}
                                                                                                                    \Rightarrow d_{R} = \frac{N_{R}}{N} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[y^{(n)} = R]
```