Apresentação → T2 - Aprendizado de Máquina

Grupo: Ana Carolina Xavier, Érico Bis, Gabriel Piazenski e Rubens Montanha

Introdução

- O uso das Redes Neurais Convolucionais Profundas (DCNN) permitiram um novo nível de desempenho nas tarefas de visão computacional.
- As DCNN oferecem suporte a uma série de tarefas:
 - Classificação,
 - o Detecção,
 - Segmentação;
- Diversos modelos de DCNN permitem classificar imagens:
 - VGGNet,
 - GoogLeNet (Inception)
 - ResNet

Introdução

- Objetivo:
 - Treinar uma rede neural convolucional para classificar 10 espécies de flores.
- Perguntas:
 - Como a ResNet classifica diferentes espécies de flores?
- Com o objetivo de responder a essa pergunta:
 - Desenvolvemos um fine-tuning da ResNet por 10 e 25 épocas.
 - Avaliamos o desempenho do modelo após o Fine-tunning.

Dataset

- Dataset composto por:
 - 10 classes diferentes:
 - Aster, Daisy, Iris, Lavender, Lily, Marigold,
 Orchid, Poppy, Rose, Sunflower
 - 22355 imagens:
 - Treino: 15000 imagens (68%)
 - Validação: 2355 imagens (10%)
 - Teste: 5000 imagens (22%)

ResNet

- Arquitetura:
 - o Rede convolucional profunda com 50 camadas treináveis.
 - o Baseada em blocos residuais com conexões de atalho (skip connections).
 - Cada bloco aprende um resíduo da função de mapeamento, não o mapeamento completo.

Metodologia

- Configuração do treinamento:
 - o Modelo: ResNet-50
 - o Otimizador: Adam
 - Learning Rate: 0.001
 - Épocas: 10 e 25

Análise dos Modelos

Modelo treinado por 10 épocas.

Accuracy: 0.9	040			
	precision	recall	f1-score	support
Aster	0.92	0.87	0.89	500
Daisy	0.87	0.97	0.91	500
Iris	0.93	0.89	0.91	500
Lavender	0.89	0.93	0.91	500
Lily	0.85	0.86	0.86	500
Marigold	0.89	0.95	0.92	500
Orchid	0.88	0.83	0.85	500
Рорру	0.94	0.83	0.88	500
Rose	0.91	0.96	0.93	500
Sunflower	0.97	0.96	0.97	500
accuracy			0.90	5000
macro avg	0.91	0.90	0.90	5000
weighted avg	0.91	0.90	0.90	5000

Análise dos Modelos

Modelo treinado por 25 épocas.

Accuracy: 0.9100

	precision	recall	f1-score	support
Aster	0.93	0.88	0.90	500
Daisy	0.90	0.96	0.93	500
Iris	0.94	0.89	0.91	500
Lavender	0.91	0.90	0.90	500
Lily	0.84	0.90	0.87	500
Marigold	0.90	0.94	0.92	500
Orchid	0.88	0.87	0.87	500
Рорру	0.93	0.84	0.88	500
Rose	0.94	0.95	0.94	500
Sunflower	0.96	0.97	0.96	500
accuracy			0.91	5000
macro avg	0.91	0.91	0.91	5000
weighted avg	0.91	0.91	0.91	5000

Demonstração

Considerações Finais

- Treinamos a ResNet-50 com imagens de diferentes espécies de flores.
- O modelo ResNet-50 consegue aprender a classificar as diferentes espécies de flores.
- As acurácias do modelo chegaram a 90% e 91%.
- Os F1-Score variaram entre 0.85 e 0.97.