國立彰化師範大學 資訊工程學系 數位系統技術 期中考

2025/04/23

- ※ 資料夾、project name、top file、及top module name,未依規定命名時該題不計分。
- ※ 每位同學會有四組代碼 AB、DEF、PQR、及 XY,所有題目均以個人的代碼作答。
- ※ 考試時僅可攜帶Verilog相關參考檔案(*.v),不可使用其他類型檔案應考。
- ※ 每一題完成後整個資料夾壓縮,分別上傳至雲端學院作業區(Q01~Q07),未壓縮者該題不計分, 12:10關閉上傳。
- ※ 上傳之電路經compile後燒錄驗證,燈號顯示可清楚辨識且正確後給分。
- ※ 成績計算:答題分數佔84%、完成時間佔16%。
- ※ 比序一:考試分數越高、成績越高
- ※ 比序二:考試分數相同、完成時間越短、成績越高
- ※ 如有違反考試規則如作弊者期中考成績以零分計算。
- 1. (12%) **資料夾、project name、top file、及top module name:** 您的學號_q01 (ex. S1254000_q01) 利用下表SW與LED之對應關係,使得當SW在指定位置 (up or down) 時,LED會顯示對應的亮(值為1) or 暗(值為0)。完成後,請將"您的學號_q01"整個資料夾壓縮上傳至作業區Q01。

(SW_A, SW_B)	(LED_D, LED_E, LED_F)
(dn, dn)	(0, 0, 0)
(dn, up)	(0, 0, 1)
(up, up)	(0, 1, 0)
(up, dn)	(1, 0, 0)

2. (12%) 資料夾、project name、top file、及top module name: 您的學號_q02 (ex. S1254000_q02) 利用下表SW與SEG7之對應關係,使得當SW在指定位置 (up or down) 時,SEG7會顯示對應的數字。完成後,請將"您的學號 q02" 整個資料夾壓縮上傳至作業區Q02。

(SW_A, SW_B)	(SEG_P, SEG_Q, SEG_R)
(dn, dn)	(0, 0, 0)
(dn, <mark>up</mark>)	$(\mathbf{P}, 0, 0)$
(up, up)	$(0, \mathbf{Q}, 0)$
(up, dn)	$(0, 0, \mathbf{R})$

3. (12%) 資料夾、project name、top file、及top module name: 您的學號_q03 (ex. S1254000_q03) 利用LED,產生下表依序亮燈且不斷循環之變化,同時利用對應的SW切換LED亮燈變化之快慢。 電路reset時所有的LED都為暗(值為0),電路速度最慢時必須可清楚識別LED之變化情形。完成後,請將"您的學號_q03"整個資料夾壓縮上傳至作業區Q03。

(SW_A, SW_B)	LED亮燈順序 (LED_D, LED_E, LED_F)
1. (up, up) - 慢 2. (up, dn) - 快 3. (dn, dn) - 最快	(0,0,0), (0,0,1), (0,1,1), (1,1,1), (1,1,0), (1,0,0), (0,0,0), $(0,0,1), (0,1,1), \dots$

4. (12%) 資料夾、project name、top file、及top module name: 您的學號_q04 (ex. S1254000_q04) 利用SEG7,產生下表不斷循環之數字序列,同時利用對應的SW切換SEG7變化之快慢。電路reset 時SEG7均顯示"0",電路速度最慢時必須可清楚識別SEG7之變化情形。完成後,請將 "您的學號 q04" 整個資料夾壓縮上傳至作業區Q04。

(SW_A, SW_B)	SEG7變化順序 (SEG_P, SEG_Q, SEG_R)
1. (up, up) - 慢 2. (up, dn) - 快 3. (dn, dn) - 最快	$(0, 0, 0), (0, 0, \mathbf{P}), (0, \mathbf{P}, \mathbf{Q}), (\mathbf{P}, \mathbf{Q}, \mathbf{R}), (\mathbf{Q}, \mathbf{R}, 0), (\mathbf{R}, 0, 0), (0, 0, 0), (0, 0, \mathbf{P}), (0, \mathbf{P}, \mathbf{Q}), \dots$

5. (12%) 資料夾、project name、top file、及top module name: 您的學號_q05 (ex. S1254000_q05) 利用SEG7,產生下表不斷循環之數字序列,同時利用對應的SW切換SEG7變化之情形。電路reset 時SEG7均顯示"0",電路速度必須可清楚識別SEG7之變化情形。完成後,請將 "您的學號_q05" 整個資料夾壓縮上傳至作業區Q05。

(SW_A, SW_B)	SEG7變化順序 (SEG_P, SEG_Q, SEG_R)
(dn, dn)	$(0, 0, 0), (P, P, P), (0, 0, 0), (P, P, P), (0, 0, 0), \dots$
(dn, up)	$(0, 0, 0), (P, P, P), (Q, Q, Q), (0, 0, 0), (P, P, P), \dots$
(up, up)	$(0, 0, 0), (P, P, P), (Q, Q, Q), (R, R, R), (0, 0, 0), (P, P, P), \dots$
(up, dn)	(0,0,0)

- 6. (12%) 資料夾、project name、top file、及top module name: 學號_q06 (ex. S1254000_q06) 利用兩個SEG7 (SEG_P 及 SEG_Q), 電路reset時,兩個SEG7顯示00。接著SEG_P由0數到X,停留在X,SEG_Q由0數到Y,停留在Y。之後SEG_P由X再數到9,然後直接跳到0,接著SEG_Q也由Y數到9,再直接跳到0。此時電路回到初始狀態00,進行下一個週期之變化,SEG_P繼續由0數到X,依此類推,不斷循環。電路速度必須可清楚識別SEG7之變化情形。完成後,請將"您的學號_q06"整個資料夾壓縮上傳至作業區Q06。
- 7. (12%) 資料夾、project name、top file、及top module name: 學號_q07 (ex. S1254000_q07) 利用三個SEG7 (SEG_P, SEG_Q, SEG_R), 電路reset後,讓這三個SEG7的一支亮燈燈號以下圖順時針變化方式移動,同時利用三個LED (LED_D, LED_E, LED_F),以二進制紀錄燈號移動完成之圈數。電路reset時,這三個LED均為暗(值為000)。燈號移動完1圈,這三個LED之值為001,移動完2圈,這三個LED之值為010,移動完3圈,這三個LED之值為011,依此類推,直到移動完7圈,此時三個LED之值為111 (全亮),同時SEG7燈號不再移動。電路速度必須可清楚識別SEG7及LED之變化情形。完成後,請將"您的學號_q07"整個資料夾壓縮上傳至作業區Q07。

 $SW_9 \sim SW_0$

 $LED_9 \sim LED_0$

 $SEG_{5} \sim SEG_{0}$

