P/NP Notizen

Paper #49

18. Februar 2021

Aufbau von Paper #49

Titel: A polynomial-Time Algorithm for the Maximum Clique Problem

Author: Zohreh O. Akbari

I. Introduction

Eine wichtige Konsequenz des Cook-Levin Theorems (SAT Problem ist NP-vollständig) ist, dass sobald ein Problem aus NP in polynomieller Zeit lösbar ist, alle Probleme aus NP in polynomieller Zeit lösbar sind. Das würde bedeuten, dass P = NP.

Paper #49 präsentiert einen polynomiellen Algorithmus für das Maximum Clique Problem. Der Autor folgert also P = NP.

II. The Maximum Clique Problem

Definition 1 (Graph).

Sei V eine Knotenmenge und $E \subseteq \{\{i,j\} \mid i,j \in V, i \neq j\}$. Dann heißt das Paar G = (V,E) ein Graph.

Definition 2 (Vollständiger Graph).

Ein Graph G = (V, E) heißt vollständig, wenn alle Knoten paarweise adjazent sind. Also $\forall i, j \in V, i \neq j \Longrightarrow (i, j) \in E$. Falls jeder Knoten Knotengrad |V| - 1 besitzt, so ist G vollständig.

Autor bezeichnet mit φ (vermutlich) den vollständigen Graphen.

Definition 3 (Clique).

Sei $C \subseteq V$. C nennt man Clique, falls G = (C, E') vollständig ist.

Definition 4 (Größte Clique).

 $\omega(G)$ ist die größte Clique in G. Also

$$\omega(G) = \max\{|S| : S \text{ ist eine Clique in } G\}$$

Definition 5 (Größter Teilgraph von G der α enthält).

Sei α jener Knoten mit geringstem Knotengrad.

$$\alpha = \{ j \in V : deq(j) \text{ ist minimal} \}$$

Den Teilgraph, der α und alle inzidenten Knoten zu α enhält, bezeichnet der Autor als größten Teilgraph in G.

 $(\alpha \ und \ alle \ seine \ Nachbarn \ samt \ deren \ Kanten)$

III. A Polynomial-Time Algorithm for the Maximum Clique Problem

Pseudocode:

```
1 MaxClique(G) {
       if (G is a complete graph)
           for each vertex of G: v
                if (|V| - 1 > max C[v])
                     max C[v] := |V|;
                     make max CP[v] point to a linked list containing V;
       else
       find the vertex of lowest degree: \boldsymbol{\alpha}
       find the largest subgraph of G in which \alpha exists: G'(V',E')
       MaxClique(G');
10
       if (V - \alpha \neq \varphi)
11
           MaxClique(G - \alpha);
12
13 }
```

Beispiel:

Graph G

Ausganglage ist der obige beliebige Graph G.

1,7: G ist nicht vollständig, da nicht jeder Knoten Knotengrad |V|-1 besitzt.

8–9: Knoten mit minimalen Knotengrad ist g, also $\alpha := g$.

$$G' = (\{c, g\}, \{\{c, g\}\})$$

10,2-6: G' ist vollständig.

a	b	с	d	е	f	g	h	i
		2				2		
		/						
c C								
	a c g	c	2 c	2 c	2 c	2 c	2 2 c	2 2 2 c

11: V-g ist nicht vollständig.

12,8,9: Knoten mit minimalen Knotengrad ist f, also $\alpha := f$.

$$G' = (\{b,e,f,i\},\{\{b,e\},\{b,f\},\{b,i\},\{e,f\},\{e,i\},\{f,i\}\})$$

10,2-6: G' ist vollständig.

	a	b	С	d	e	f	g	h	i
maxC		4	2		4	4	2		4
maxC									
	c g				b e f i				

11: V-f ist nicht vollständig.

12,8,9: Knoten mit minimalen Knotengrad ist b,also $\alpha:=b.$ $G'=(\{b,d,e,i\},\{\{b,e\},\{b,d\},\{b,i\},\{d,e\},\{e,i\}\})$

10: G' ist nicht vollständig.

8–9: Knoten mit minimalen Knotengrad ist doder i,also o.B.d.A? $\alpha:=d.$

$$G' = (\{b,d,e\},\{\{b,e\},\{b,d\},\{d,e\}\})$$

10,2-6: G' ist vollständig.

	a	b	С	d	е	f	g	h	i
maxC		4	2	3	4	4	2		4
maxC									
			\searrow	4	+	1	_	/	
	c		b		b				
	g		d		е				
			е		f				
					i				

11: G'-d ist vollständig. $(G'-d)=(\{b,e,i\},\{\{b,e\},\{b,i\},\{e,i\}\}).$

Linked List bleibt gleich.

11: V-b ist nicht vollständig.

12,8,9: Knoten mit minimalen Knotengrad ist i, also $\alpha:=i$. $G'=(\{a,e,i,h\},\{\{a,e\},\{a,i\},\{a,h\},\{e,i\},\{e,h\},\{i,h\}\})$

10,2-6: G' ist vollständig.

11: V - i ist vollständig.

V-i

	a	b	С	d	е	f	g	h	i
maxC	4	4	2	3	4	4	2	4	4
maxC									
				<u></u>		1		F	
	k	/		1	N.	>< I	*	ı	
	c		b		b		a		
	g		d		е		е		
			е		f		i		
				•	i		h		

Problem bei Codezeile 4:

if
$$(|V| - 1 > max C[v])$$

$$C[a] = 4$$
, $|V| - 1 = 4$, $4 > 4$

Die If Bedingung ist hier nicht erfüllt, somit würde der Algorithmus die Zeilen 4-5 überspringen. Der Autor fürt jedoch in diesem Beispiel diese Zeilen aus.

Annahme: Codezeile 4 müsste folgendermaßen geändert werden:

if
$$(|V| > max C[v])$$

Man erhält in beiden Fällen die größte Clique mit 5 Knoten. Die Liste bzw. verlinkte Liste ist jedoch eine andere. Diese ist nicht korrekt.

Ergebnis ohne Änderung:

Maximale Clique enthält 5 Knoten: $\{a, c, d, e, h\}$

Ergebnis mit Änderung:

Maximale Clique enthält 5 Knoten: $\{a, c, d, e, h\}$