COMPITO A

LT FISICA (Fioresi)

7 Gennaio, 2019

NOME:
COGNOME:
NUMERO DI MATRICOLA:
Non sono permesse calcolatrici, telefonini, libri o appunti.
Ci sono 6 esercizi per un totale di 300 punti. Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.
In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e 624040066 allora a=4, b=6.
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
$\frac{1}{3}$
4
5
6

Cerchiare **a penna** una ed una sola delle seguenti voci:

Totale

RECUPERO 1
RECUPERO 2
TOTALE

Esercizio 1 (50 punti)

a) Date in ${\bf R}^3$ le rette r,s di equazioni

$$\vec{r}: x - ay - 1 = 0, \ y - bz = 0$$

$$s: y - bz = a, x + 2z = 0$$

- i) Trovare (se esiste) un vettore v perpendicolare ai vettori direzione delle due rette.
- ii) Trovare l'equazione del piano π contenente r e parallelo a s.
- b) Si consideri l'insieme delle matrici $n \times n$ a coefficienti reali con traccia nulla.
- Si dimostri che e' un sottospazio vettoriale e si calcoli la sua dimensione.

Esercizio 2 (50 punti)

- a) Determinare, al variare di k, una base per il nucleo e una base per l'immagine dell'applicazione lineare $T: \mathbf{R}^4 \longrightarrow \mathbf{R}^2$, T(x,y,z,w) = (ax+by+z-w,ax+by+z-kw). Si determinino inoltre i valori di k (se esistono) per i quali T e' iniettiva, suriettiva, biettiva.
- b) Si determini per quale valore di k (se esiste):

$$kx - x^2 \in W = \text{span}\{1 + ax - x^2 + x^3, ax - x^2, b + bx^3\}$$

Si determini inoltre una base per W e la si completi ad una base di $\mathbf{R}_3[x]$.

Esercizio 3 (50 punti)

- a) Si risponda vero o falso motivando chiaramente la risposta con una dimostrazione oppure con un controesempio. Se si vuole utilizzare un risultato e' necessario enunciarlo chiaramente.
- I) Sia $f: V \longrightarrow W$ una applicazione lineare, con V e W spazi vettoriali arbitrari sullo stesso campo K (anche di dimensione non finita). Sia U un sottospazio vettoriale di V. Si definisca $f(U) := \{f(\mathbf{u}) \mid \mathbf{u} \in U\}$. f(U) e' sottospazio vettoriale di W?
- II) Se $f: V \longrightarrow W$ e' applicazione lineare iniettiva, v_1, \ldots, v_n base di V. $f(v_1), \ldots, f(v_n)$ e' base di Im(f)?
- b) Sia V uno spazio vettoriale finitamente generato su un campo K. Sia $\mathbf{v} \in V$ un vettore fissato, $\mathbf{v} \in \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Si dimostri che se $\mathbf{v}_1, \dots \mathbf{v}_n$ sono linearmente indipendenti allora \mathbf{v} si esprime in modo unico come loro combinazione lineare. E' vero anche il contrario?
- CREDITO EXTRA (15 punti). Siano A e B matrici reali $n \times n$, con B invertibile. Si dimostri che tr(AB) = tr(BA).

Esercizio 4 (50 punti)

a) Sia $A \in M_{n,n}(\mathbf{R})$ simmetrica definita positiva. Si dimostri che esiste P invertibile tale che $P^tAP = I$, ove I denota la matrice identita'. E' possibile scegliere tale P ortogonale? Si motivi la risposta.

[Nota: se si intende usare uno o piu' risultati e' necessario enunciarli chiaramente].

- b) Si risponda vero o falso alle seguenti domande motivando accuratamente la risposta.
- I) Sia A una matrice hermitiana $n \times n$ e $\lambda \neq \mu$ due autovalori. Allora se \mathbf{v} e' autovettore di λ e \mathbf{w} autovettore di μ , $\mathbf{v} \perp \mathbf{w}$ (rispetto al prodotto hermitiano in \mathbf{C}^n).
- II) Sia \langle , \rangle un prodotto hermitiano definito positivo in uno spazio vettoriale complesso V (non necessariamente di dimensione finita). Allora se v_1, \ldots, v_n sono ortogonali tra loro, v_1, \ldots, v_n sono linearmente indipendenti.
- III) Sia V uno spazio vettoriale arbitrario reale (non necessariamente di dimensione finita) e \langle , \rangle un prodotto scalare. Se esiste un vettore u tale che $\langle u, u \rangle = 0$ allora il prodotto scalare dato e' degenere.

CREDITO EXTRA (15 punti). Sia A una matrice invertibile $n \times n$ e $\mathbf{v}_0 \in \mathbf{R}^n$. Si dimostri che l'insieme delle funzioni $f: \mathbf{R}^n \longrightarrow \mathbf{R}^n$, $f(\mathbf{v}) = A\mathbf{v} + \mathbf{v}_0$ e' un gruppo.

Esercizio 5 (50 punti)

Data la matrice:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ a & a-1 & -1 \\ -a-1 & -a-1 & -1 \end{pmatrix}$$

Trovare la forma normale di Jordan di A, e una base di Jordan per la trasformazione lineare rappresentata da A.

Esercizio 6 (50 punti)

a) Data la conica di equazione:

$$x^2 + y^2 - 4axy + 2 - 4a = 0$$

trovarne la forma canonica e darne un disegno di massima.

- b) Sia $W = \text{span}\{(1, a, -1, 0), (0, a, -1, 0)\}$. Determinare una base ortonormale per W rispetto al prodotto hermitiano in \mathbb{C}^4 .
- c) Si determinino inoltre W^{\perp} rispetto al prodotto hermitiano e W^{\vee} .