ACKNOWLEDGEMENT

This project has been prepared under **Department of Computer Engineering**, **Khwopa Engineering College** (*Purbanchal University*). We are very grateful to our department for giving us an enthusiastic support.

It gives us pleasure to write down here the name of **Er. Ishwor Gautam** lecturer, Khwopa Engineering College as our Supervisor for this project. We would like to thank him a lot for guiding properly throughout our project and continuously motivating to tackle the problem faced during this project. He has been always very much supportive and always motivating us to do best than what we are currently and helping to decide correctly.

Besides we are very grateful and thankful to all the respected teachers of Department of Computer, Khwopa Engineering College, for granting us broad knowledge and inspirations within the time period of four years.

Special thanks go to Er. Amod Ulak, Mr. Jyoti Adhikari, Mr. Arjun Kumar Gaire, Mr. Phadendra Pd. Bhandari and all colleagues who directly and indirectly extended their hands in making this project work a success.

There may be some errors in our project, so any suggestion regarding the mistake of this project will be always welcomed.

AMAR DUWAL
RAJ KAJI SHRESTHA
SANJAY RANJIT
SHIVA KUMAR SHRESTHA

ABSTRACT

Voice Command Matching System (VCMS) is the system that matches the commands that the user speaks on the basis of information extracted from the speech waves. This system makes it possible to use the speaker's voice to access computer commands such as opening a notepad, closing notepad, opening facebook, shutting down computer, etc.

There are two main states in this system which are recording state and operating state. In recording state, voice is inputted from the user of the system. Five samples of voice are inputted in this process. Feature extraction is done from inputted voice then the features are saved. Next, in operating state, voice is inputted from user and in the same way feature extraction is done as in recording state. The features are then compared with the saved features. If the features are matched with threshold, respective decision taken meanwhile otherwise the system gives chance for retry.

The features or voiceprint is created by extracting its 13 **Mel Frequency Cepstral Coefficient** (MFCC) per frame. For matching purpose, **Euclidean Distance** (ED) & correlation method is used. ED calculates the distance between two vectors which are the command spoken and the stored voiceprints.

Keywords: VCMS, MFCC, Euclidian distance

LIST OF FIGURES

FIGURE No.	FIGURE NAME	PAGE
Figure 3.1	Different components of Voice Matching Process & their interactions	8
Figure 3.1.3.1	Waveform of recorded audio signal for command "Facebook Kholnuhos Mitra"	9
Figure 3.1.3.2	Waveform of trimmed audio signal for command "Facebook Kholnuhos Mitra"	9
Figure 3.1.4	Frame Overlapping	10
Figure 3.1.5	MFCC Block Diagram	11
Figure 3.1.5.1	Audio to spectrum conversion	12
Figure 3.5.1.3	Mel-Scale Filter Bank	13
Figure 3.1.6	Matching Process	14
Figure 3.1.7	Decision Making	15
Figure 4.2	Scrum, Agile development Process	18
Figure A1.1	Work Breakdown Structure	30
Figure A2.1	Use Case Diagram of VCMS	31
Figure A3.1	State Diagram of VCMS	32
Figure A4.1	VCMS Flowchart	33
Figure A5.1	VCMS Application UI	36
Figure A5.2	Menu	36
Figure A5.3	Training UI	37
Figure A5.4	Training UI for Specific Command	37
Figure A5.5	Waveform Layout	38
Figure A5.6	Audio Recorder	38
Figure A5.7	MFCC Calculation Panel	39
Figure A5.8	Generate Waveform	39
Figure A5.9	Trimming waveform	40
Figure A5.10	Memory boost by deleting temporary files	40

LIST OF TABLES

TABLE No.	TABLE NAME	PAGE
Table 5.2.1	Test Case - Audio Record	19
Table 5.2.2	Test Case - Silence Remove	20
Table 5.2.3	Test Case - Waveform Generation & Play Back	20
Table 5.2.4	Test Case - MFCC Computation	20
Table 5.2.5	Test Case - Euclidian Distance & Correlation Computation	21
Table 5.3.1	Matching result for command "Facebook KholnuhosMitra"	21
Table 5.3.2	Matching result for command "Open Notepad"	22
Table 5.3.3	Matching result for command "Shutdown"	22
Table 5.3.4	Matching result for command "Open Wordpad"	22
Table 5.3.5	Matching result for command "Close Notepad"	22
Table 5.3.6	Matching result for command "Light On"	23
Table 5.4.1	Summary of Matching Scenario	23
Table 5.5.1	Test Environment - Calm Place(Closed Room at Midnight)	23
Table 5.5.2	Test Environment - Normal Place(Closed Room at Morning)	24
Table 5.5.3	Test Environment - College Premises (At Midday)	24
Table 5.5.4	Test Environment - College's Noisy Environment (Operating Generator at Corner of College)	24
Table 5.5.5	Test Environment - Noisy Environment (College Expo)	24
Table 5.6.1	Test Voice - Male (User - Shiva K. Shrestha)	25
Table 5.6.2	Test Voice - Male (User - Raj Kaji Shrestha)	25
Table 5.6.3	Test Voice - Female (User - Shanta Shrestha)	25
Table 5.6.4	Test Voice - Adult Male (User - Sandesh Danekhu)	25
Table 5.6.5	Test Voice - Adult Female (User - Anita Duwal)	26
Table 5.7	Summary of Test Voice	26

LIST OF ABBREVATIONS

1-D One Dimension

ANN Artificial Neural Network
ASR Automatic Speech Recognition
AT & T American Telephone and Telegraph

Cmd Command

DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DTW Dynamic Time Warping
DWT Discrete Wavelet Transform

ED Euclidian Distance
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
GUI Graphical user interface

Hz Hertz

IBM International Business Machine

IDE Integrated Development Environment

KHz Kilo Hertz

LPC Linear Predictive Coding MFC Mel-frequency Cepstral

MFCC Mel-frequency Cepstral Coefficient

PC Personal Computer
PCM Pulse Code Modulation

STT Speech-to-Text
TTS Text-to-Speech
UI User Interface

VCMS Voice Command Matching System

TABLE OF CONTENTS

CPT	TITLES	PAGE
	BONAFIDE CERTIFICATE	I II IV V VI
	ACKNOWLEDGEMENT	
	ABSTRACT	
	LIST OF FIGURES	
	LIST OF TABLES	
	LIST OF ABBREVIATION	
1	INTRODUCTION	
	1.1 BACKGROUND	1
	1.1.1 VOICE RECOGNITION	1
	1.1.2 TEXT INDEPENDENT SYSTEM	2
	1.1.3 VOICE COMMAND SYSTEM	2
	1.2 MOTIVATION	2
	1.3 STATEMENT OF PROBLEMS	3
	1.4 OBJECTIVES	3
	1.5 APPLICATION	3
	1.6 SCOPE & LIMITATION	4
	1.7 REPORT STRUCTURE	4
2	LITERATURE REVIEW	5
3	METHODOLOGY	
	3.1 VOICE COMMAND MATCHING PROCESS	8
	3.1.1 INPUT VOICE	9
	3.1.2 ANALOG TO DIGITAL CONVERSION	9
	3.1.3 VOICE DETECT	9
	3.1.4 FRAMING AND OVERLAPPING	10
	3.1.5 FEATURE EXTRACTION	10
	3.1.5.1 INPUT AUDIO SPECTRUM	12
	3.1.5.2 DISCRETE FOURIER TRANSFORM 3.1.5.3 MEL FILTER BANK PROCESSING	12 12
	3.1.5.4 DISCRETE COSINE TRANSFORM	13
	3.1.5.5 OUTPUT 13 DCT COEFFICIENT	13
	3.1.6 MATCHING	14
	3.1.6.1 EUCLIDEAN DISTANCE	15
	3.1.6.2 CORRELATION	15
	3.1.7 TAKE DECISION	15
	3.2 TOOLS & PLATFORM	16
	3.3 SYSTEM REQUIREMENTS	16
4	PROJECT DEVELOPMENT LIFE CYCLE	
-	4.1 AGILE SOFTWARE DEVELOPMENT	17
	4.2 SCRUM AS AGILE DEVELOPMENT	17

5	TESTING AND RESULT ANALYSIS	
	5.1 OVERVIEW	19
	5.2 TEST CASES	19
	5.3 MATCHING SCENARIO	21
	5.4 SUMMARY OF MATCHING SCENARIO	23
	5.5 TEST ENVIRONMENT	23
	5.6 TEST VOICE	25
	5.7 SUMMARY OF TEST VOICE	26
	5.8 DISCUSSION AND RESULT ANALYSIS	26
8	CONLUSION	
	6.1 CONCLUSION	28
	6.2 FUTURE ENHANCEMENT	28
	REFERENCES	29
	APPENDIX 1: PROJECT MANAGEMENT	30
	APPENDIX 2: USE CASE DIAGRAM	31
	APPENDIX 3: STATE DIAGRAM	32
	APPENDIX 4: FLOWCHART	33
	APPENDIX 5: NAUDIO FRAMEWORK	34
	APPENDIX 6: SCREENSHOTS	36