Relatório Parcial para o TCC Resumo do artigo do Lloyd (1982) RASCUNHO

Arthur Gabriel de Santana

22 de Março de 2018

1 Introdução

Um dos algoritmos mais utilizados para o cálculo de Tesselações Centroidais de Voronoi é o algoritmo de Lloyd [2], proposto em 1957 em manuscrito interno da Bell Labs e publicado oficialmente em 1982 [1].

O algoritmo de Lloyd foi originalmente desenvolvido para a quantização de sinais analógicos, problema que definiremos abaixo.

2 Pulse-Code Modulation

O teorema da amostragem de Shannon-Nyquist [3] afirma que um sinal $s \colon \mathbb{R} \to \mathbb{R}$ que possua apenas componentes de frequência menor que W pode ser recuperado perfeitamente a partir de um conjunto de amostras $s(t_j)$, onde $t_j = \frac{1}{2W}$, $j \in \mathbb{Z}$, através da fórmula:

$$s(t) = \sum_{j} s(t_j)K(t - t_j)$$

com $K(t) = \frac{\sin 2\pi Wt}{2\pi Wt}$. Considere agora uma partição finita $\{Q_1, Q_2, \dots, Q_v\}$ de \mathbb{R} e um conjunto de representantes $\{q_1, q_2, \ldots, q_v\}$, com $q_i \in Q_i$, $i = 1, 2, \ldots, v$. Seja γ a função que associa cada $x \in \mathbb{R}$ ao índice i da partição $Q_i \ni x.$

Na modulação por código de pulsos (do inglês pulse-code modulation, ou PCM), recuperamos o sinal utilizando os representantes de cada classe, transmitindo apenas $\gamma(s(t_j)), j \in \mathbb{Z}$:

$$r(t) = \sum_{j} q_{\gamma(s(t_j))} K(t - t_j)$$

3 Função Objetivo

Definindo o sinal de ruído n(t)=s(n)-r(t), estamos interessados em minimizar a potência de n, dada por $N=E(n^2(t))$, onde a esperança é tomada em relação ao processo estocástico estacionário que gerou o sinal s(t). Lloyd prova no apêndice A de seu artigo que $N=\int_{-\infty}^{\infty}x^2\,\mathrm{d}F(x)$, onde $F(x)=P(s(t)\leq x)$ é a distribuição acumulada de s(t). Note que, como se espera de um processo estacionário, F não depende de t.

Fixando os $\{Q_i\}$, Lloyd afirma que é um resultado clássico que N é minimizada pelos centros de massa (onde a densidade corresponde à densidade de probabilidade) de cada região:

$$q_i = \frac{\int_{Q_i} x \, \mathrm{d}F(x)}{\int_{Q_i} \mathrm{d}F(x)}$$

Fixando os $\{q_i\}$, N é minimizada pelas regiões de Voronoi geradas pelos $\{q_i\}$.

4 Algoritmo

Isso sugere um algoritmo de ponto fixo, cuja iteração é dada por: (i) calcular novos $\{q_i\}$ iguais aos centros de massa dos $\{Q_i\}$ e (ii) calcular novos $\{Q_i\}$ iguais às regiões de Voronoi geradas pelos pontos $\{q_i\}$.

Referências

- [1] Lloyd, Stuart P. (1982), "Least squares quantization in PCM", IEEE Transactions on Information Theory, 28 (2): 129–137, doi:10.1109/TIT.1982.1056489.
- [2] Du, Qiang; Emelianenko, Maria; Ju, Lili (2006), "Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations", SIAM Journal on Numerical Analysis, 44: 102–119, doi:10.1137/040617364.
- [3] Shannon, Claude E. (January 1949). "Communication in the presence of noise". Proceedings of the Institute of Radio Engineers. 37 (1): 10–21. doi:10.1109/jrproc.1949.232969.