$$x = 1$$

$$let x = 1 in ...$$

x(1).

!x(1)

x.set(1)

Programming Paradigms and Formal Semantics

The Calculus of Communicating Systems

Ralf Lämmel

These slides were obtained by copy&paste&edit from W. Schreiner's concurrency lectures (Kepler University, Linz).

The Calculus of Communicating Systems (CCS)

- Description of process networks
 - Static communication topologies.
- History sketch
 - Robin Milner, 1980.
 - CCS: Calculus of Communicating Systems.
 - Various revisions and elaborations.
 - Later extended to *mobile* processes (π -calculus).
- Algebraic approach
 - Concurrent system modeled by term.
 - Theory of term manipulations.
 - Externally visible behavior preserved.
- Observation equivalence
 - External communications follow same pattern.
 - Internal behavior may differ.

Modeling of communication and concurrency.

A simple example

• Agent C

- Dynamic system is network of agents.
- Each agent has own identity persisting over time.
- Agent performs actions (external communications or internal actions).
- Behavior of a system is its (observable) capability of communication.

Agent has labeled ports.

- Input port in.
- Output port $\overline{\mathtt{out}}$.

A simple example

Behavior of C:

$$-C := in(x).C'(x)$$

$$-C'(x) := \overline{\mathsf{out}}(x).C$$

Process behaviors are described as (mutually recursive) equations.

Behavior descriptions -- summary

- Agent names can take parameters.
- Prefix in(x)
 - Handshake in which value is received at port in and becomes the value of variable x.
- Agent expression in(x).C'(x)
 - Perform handshake and proceed as described by C'.
- Agent expression $\overline{\mathtt{out}}(x).C$
 - Output the value of x at port $\overline{\mathtt{out}}$ and proceed according to the definition of C.
- Scope of local variables:
 - *Input* prefix introduces variable whose scope is the agent expression C.
 - Formal parameter of defining equation introduces variable whose scope is the equation.

Another example: bounded buffers

Bounded buffer Buff n(s)

- Buff $_n \langle \rangle := \operatorname{in}(x).$ Buff $_n \langle x \rangle$
- Buff $_n \langle v_1, \ldots, v_n \rangle := \overline{\operatorname{out}}(v_n).$ Buff $_n \langle v_1, \ldots, v_{n-1} \rangle$
- $\begin{array}{l} -\textit{Buff}_n \ \langle v_1, \ldots, v_k \rangle := \\ \overline{\text{in}}(x).\textit{Buff}_n \ \langle x, v_1, \ldots, v_k \rangle \\ + \overline{\text{out}}(v_k).\textit{Buff}_n \ \langle v_1, \ldots, v_{k-1} \rangle (0 < k < n) \end{array}$

Used language elements

- Basic combinator '+'
 - -P+Q behaves like P or like Q.
 - When one performs its first action, other is discarded.
 - If both alternatives are allowed, selection is nondeterministic.
- Combining forms
 - Summation P+Q of two agents.
 - Sequencing $\alpha.P$ of action α and agent P.

Process definitions may be parameterized.

Example: a vending machine

- Big chocolade costs 2p, small one costs 1p.
- -V := 2p.big.collect.V
 - + 1p.little.collect.V

Exercises:

Identify input vs. output. What behaviors make sense for users?

Example: a multiplier

- Twice := $in(x).\overline{out}(2*x).$ Twice.
- Output actions may take expressions.

Example: The JobShop

Example: The JobShop

- A simple production line:
 - Two people (the *jobbers*).
 - Two tools (hammer and mallet).
 - Jobs arrive sequentially on a belt to be processed.
- Ports may be linked to multiple ports.
 - Jobbers compete for use of hammer.
 - Jobbers compete for use of job.
 - Source of non-determinism.
- Ports of belt are omitted from system.
 - in and \overline{out} are external.
- Internal ports are not labelled:
 - Ports by which jobbers acquire and release tools.

The tools of the JobShop

• Behaviors:

- Hammer := geth.Busyhammer
 Busyhammer := puth.Hammer
- Mallet := getm.Busymallet
 Busymallet := putm.Mallet
- *Sort* = set of labels
 - -P:L ... agent P has sort L
 - Hammer: {geth, puth}
 Mallet: {getm, putm}
 Jobshop: {in, out}

The jobbers of the JobShop

• Different kinds of jobs:

- Easy jobs done with hands.
- Hard jobs done with hammer.
- Other jobs done with hammer or mallet.

Behavior:

- Jobber := in(job).Start(job)
- Start(job) := if easy(job) then Finish(job)
 else if hard(job) then Uhammer(job)
 else Usetool(job)
- Usetool(job) := Uhammer(job) + Umallet(job)
- $Uhammer(job) := \overline{geth}.\overline{puth}.Finish(job)$
- $-Umallet(job) := \overline{\text{getm.}}\overline{\text{putm.}}Finish(job)$
- Finish(job) := $\overline{\mathtt{out}}(done(job))$.Jobber

Composition of the agents

• Jobber-Hammer subsystem

- Jobber │ Hammer
- Composition operator
- Agents may proceed independently or interact through complementary ports.
- Join complementary ports.

• Two jobbers sharing hammer:

- Jobber | Hammer | Jobber
- Composition is commutative and associative.

Further composition

• Internalisation of ports:

- No further agents may be connected to ports:
- Restriction operator \setminus
- \L internalizes all ports L.
- (Jobber | Jobber | Hammer) \ {geth,puth}

• Complete system:

- Jobshop := (Jobber | Jobber | Hammer | Mallet) $\setminus L$
- $-L := \{geth, puth, getm, putm\}$

Reformulations

- Relabelling Operator
 - $-P[l'_1/l_1,\ldots,l'_n/l_n]$ - $f(\bar{l}) = \overline{f(l)}$

- Semaphore agent
 - -Sem := get.put.Sem
- Reformulation of tools
 - Hammer := Sem[geth/get, puth/put]
 - Mallet := Sem[getm/get, putm/put]

In need of equality of agents

- Strongjobber only needs hands:
 - Strongjobber :=
 in(job).out(done(job)).Strongjobber
- Claim:
 - Jobshop = Strongjobber | Strongjobber
 - Specification of system Jobshop
 - Proof of equality required.

In which sense are the processes equal?

The core calculus No value transmission: just synchronization

- Names and co-names
 - Set A of names (geth, ackin, ...)
 - Set \underline{A} of *co-names* ($\overline{\text{geth}}$, $\overline{\text{ackin}}$, ...)
 - Set of *labels* $L = A \cup \overline{A}$
- Actions
 - Completed (perfect) action τ .
 - $-Act = L \cup \{\tau\}$
- ullet Transition $P \stackrel{l}{\to} Q$ with action l
 - Hammer $\overset{\text{geth}}{\rightarrow}$ Busyhammer

Transition rules of the core calculus

- Act $\alpha.E \stackrel{\alpha}{\to} E$
- $\bullet \operatorname{Sum}_{j} \quad \xrightarrow{E_{j} \xrightarrow{\alpha} E'_{j}} \sum E_{i} \xrightarrow{\alpha} E'_{j}$
- $\bullet \ \mathsf{Com}_1 \quad \frac{E \overset{\alpha}{\to} E'}{E|F \overset{\alpha}{\to} E'|F}$
- $\bullet \ \mathsf{Com}_2 \quad \xrightarrow{F \xrightarrow{\alpha} F'} \frac{E|F \xrightarrow{\alpha} E|F'}$
- $\bullet \mathsf{Com}_3 \quad \frac{E \xrightarrow{l} E' \quad F \xrightarrow{l} F'}{E|F \xrightarrow{\mathcal{T}} E'|F'}$

This rule rules out transitions with hidden names.

$$ullet$$
 Res $\dfrac{E \xrightarrow{\alpha} E'}{E \backslash L \xrightarrow{\alpha} E' \backslash L}$ $(\alpha, \overline{\alpha} \text{ not in } L)$

• Rel
$$E \xrightarrow{\xrightarrow{E} E'} E[f] \xrightarrow{f(\alpha)} E'[f]$$

$$\bullet \text{ Con } \frac{P \xrightarrow{\alpha} P'}{A \xrightarrow{\alpha} P'} \quad (A := P)$$

This rule makes clear that no more than two agents participate in communication.

This is about the application of definitions for agents.

The value-passing calculus

Values passed between agents

- Can be reduced to basic calculus.
- -C := in(x).C'(x) $C'(x) := \overline{out}(x).C'(x)$
- $-C := \sum_{v} \operatorname{in}_{v}.C'_{v}$ $C'_{v} := \overline{\operatorname{out}}_{v}.C \ (v \in V)$
- Families of ports and agents.

The full language

- Prefixes a(x).E, $\overline{a}(e).E$, $\tau.E$
- − Conditional if b then E

Translation

- $-a(x).E \Rightarrow \Sigma_v.E\{v/x\}$
- $-\overline{a}(e).E \Rightarrow \overline{a}_e.E$
- $-\tau.E \Rightarrow \tau.E$
- if b then $E \Rightarrow (E, if b and 0, otherwise)$

Derivation trees (Exhaustive application of the transition relation)

• Derivation tree of E

Behavioral
equivalence: two
agent expressions are
behaviorally equivalent if
they yield the same total

derivation trees.

From infinite derivation trees ...

$$(A|B) \c \\ \downarrow a \\ (A'|B) \c \\ \downarrow \tau \\ (A|B') \c \\ \downarrow a \\ (A'|B) \c \\ \downarrow a \\ (A'|B) \c \\ (A'|B) \c \\ (A'|B) \c \\ \dots$$

... to finite transition graphs

$$-A := a.A', A' := \overline{c}.A$$

$$-B := c.B', B' := \overline{b}.B$$

- $-(A|B) \backslash c$ b-equivalent to $a.\tau.C$
- $-C := a.\overline{b}.\tau.C + \overline{b}.a.\tau.C$

Behavior can be defined by + and . only!

Internal versus external actions

• Action τ :

- Simultaneous action of both agents.
- Internal to composed agent.
- Internal actions should be ignored.
 - Only external actions are visible.
 - Two systems are *observationally equivalent* if they exhibit same pattern of external actions.
 - $-P \xrightarrow{\tau} P_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} P_n$ o-equivalent to $P \xrightarrow{\tau} P_n$
 - $-\alpha.\tau.P$ o-equivalent to $\alpha.P$

• Simpler variant of $(A|B) \ c$:

 $-\left(A|B\right)\backslash c$ o-equivalent to a.D

$$-D := a.\overline{b}.D + \overline{b}.a.D$$

$$D \qquad \overline{-A := a.A', A' := \overline{c}.A} \\ -B := c.B', B' := \overline{b}.B$$

Internal actions

take no "time".

$$-B := c.B', B' := \overline{b}.B'$$

In need of bisimulation

ullet Example agents A and B

$$-A = a.(b.0 + c.d.A)$$
$$-B = a.b.0 + a.c.d.B$$

- ullet "Language understood" by A and B
 - $-(a.c.d)^*.a.b.0$
 - -A and B seem equivalent.
- Ports *a*, *b*, *c*, *d*.
 - Initially only a is "unlocked".
 - Observer "presses button" a.
 - $-\ln A$, b and c are "unlocked".
 - $-\ln B$, sometimes b, sometimes c is "unlocked".
 - -A and B can be experimentally distinguished!

Think of repeatedly "replaying" the system from the state that was obtained by pressing a.

Bisimulation (very informally)

- Two agent expressions P, Q are bisimular:
 - If P can do an α action towards P',
 - then Q can do an α action towards Q',
 - such that P' and Q' are again bisimular,
 - and v.v.

Intuitively two systems are bisimilar if they match each other's moves. In this sense, each of the systems cannot be distinguished from the other by an observer. [Wikipedia]

Laws

These slides were obtained by copy&paste&edit from W. Schreiner's concurrency lectures (Kepler University, Linz).

Summation laws

$$-P + Q = Q + P$$

 $-P + (Q + R) = (P + Q) + R$
 $-P + P = P$
 $-P + 0 = P$

These slides were obtained by copy&paste&edit from W. Schreiner's concurrency lectures (Kepler University, Linz).

Composition laws

$$-P|Q = Q|P$$

$$-P|(Q|R) = (P|Q)|R$$

$$-P|0 = P$$

Restriction laws

$$-P \setminus L = P$$
, if $L(P) \cap (L \cup \overline{L}) = \emptyset$.
 $-P \setminus K \setminus L = P \setminus (K \cup L)$
 $-\dots$

Relabelling laws

$$-P[Id] = P$$

$$-P[f][f'] = P[f' \circ f]$$

$$-\dots$$

Non-laws

$$\bullet \tau.P = P$$

$$-A = a.A + \tau.b.A$$

$$-A' = a.A' + b.A'$$

- -A may switch to state in which only b is possible.
- -A' always allows a or b.

$$\bullet \alpha.(P+Q) = \alpha.P + \alpha.Q$$

$$-a.(b.P + c.Q) = a.b.P + a.c.Q$$

- -b.P is a-derivative of right side, not capable of c action.
- -a-derivative of left side is capable of c action!
- Action sequence a, c may yield deadlock for right side.

• Summary: CCS

- * An algebraic approach to system modeling.
- Approach amenable to formal analysis.
- ◆ Equivalence is based on communication behavior.
- Prepping: Read CCS tutorial [AcetoLI05]
- Lab: Model CCS in Prolog

Outlook:

- Ending of Prolog section
- Beginning of Haskell section
- Midterm