Kemeng (Coleman) Zhang

Department of Applied Mathematics & Statistics Johns Hopkins University

April 28, 2020

- We study the problem of ordinal classification response is from a set of finite, **discrete**, and **ordered** class labels
- The problem shares some similarities to multi-classification and regression
- In contrast to the former: the **order** between class labels **cannot be neglected**
- In contrast to the latter: the **scale** of the label is **not cardinal**

- We study the problem of ordinal classification response is from a set of finite, **discrete**, and **ordered** class labels
- The problem shares some similarities to multi-classification and regression
- In contrast to the former: the **order** between class labels **cannot be neglected**
- In contrast to the latter: the **scale** of the label is **not cardinal**

- We study the problem of ordinal classification response is from a set of finite, **discrete**, and **ordered** class labels
- The problem shares some similarities to multi-classification and regression
- In contrast to the former: the **order** between class labels **cannot be neglected**
- In contrast to the latter: the **scale** of the label is **not cardinal**

- We study the problem of ordinal classification response is from a set of finite, discrete, and ordered class labels
- The problem shares some similarities to multi-classification and regression
- In contrast to the former: the **order** between class labels **cannot be neglected**
- In contrast to the latter: the **scale** of the label is **not cardinal**

- An algorithm based on **gradient tree boosting** is introduced
- Experiment results show **statistically significant** improvement over existing modeling approaches such as multi-classification and regression

- An algorithm based on **gradient tree boosting** is introduced
- Experiment results show **statistically significant** improvement over existing modeling approaches such as multi-classification and regression

Applications

Ordinal classification problems are prevalent in realworld applications

- Collaborative Filtering & Recommendation

 Predict user ratings on a likert scale and recommend
 new items
- **Priority filtering** classify emails to ordered groups; prioritize patients in need of urgent care

Applications

Ordinal classification problems are prevalent in realworld applications

- Collaborative Filtering & Recommendation
 Predict user ratings on a likert scale and recommend new items
- **Priority filtering** classify emails to ordered groups; prioritize patients in need of urgent care

Plan for today...

- Ordinal Classification
- 2 Gradient Boosting
- 3 Experiments
- 4 Conclusion
- 6 Appendix

Ordinal Classification Existing Approaches

- The most popular approach to date is the Proportional odds model [McCullagh, 1980], often called the cumulative logits
- Shortcomings: likelihood objective is complex, and hard to
- Not clear how to incorporate non-linearity and ensure

- The most popular approach to date is the Proportional odds model [McCullagh, 1980], often called the cumulative logits
- Shortcomings: likelihood objective is complex, and hard to optimize, numerically unstable
- Not clear how to incorporate non-linearity and ensure

Ordinal Classification Existing Approaches

- The most popular approach to date is the Proportional odds model [McCullagh, 1980], often called the cumulative logits
- Shortcomings: likelihood objective is complex, and hard to optimize, numerically unstable
- Not clear how to incorporate non-linearity and ensure non-decreasing intercept terms

Supervised Learning

Ordinal Classification

00000000000000

- Consider random variables $(X, Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or risk $R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d from $F_{X,Y}$: $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- ullet Empirical risk minimization over hypothesis space ${\cal F}$

$$\hat{\eta}_n = \underset{\eta \in \mathcal{F}}{\operatorname{argmin}} \ \hat{R}_n(\eta)$$

00000000000000

Supervised Learning

- Consider random variables $(X,Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or
- We have access to a database of n observations drawn i.i.d.
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- Empirical risk minimization over hypothesis space \mathcal{F}

00000000000000

Supervised Learning

- Consider random variables $(X,Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or $risk \ R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d.
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- Empirical risk minimization over hypothesis space \mathcal{F}

Supervised Learning

- Consider random variables $(X, Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or risk $R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d from $F_{X,Y}$: $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- ullet Empirical risk minimization over hypothesis space ${\cal F}$

 $\hat{\eta}_n = \underset{\eta \in \mathcal{F}}{\operatorname{argmin}} \ \hat{R}_n(\eta)$

Supervised Learning

- Consider random variables $(X, Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or risk $R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d from $F_{X,Y}$: $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- ullet Empirical risk minimization over hypothesis space ${\cal F}$

 $\hat{\eta}_n = \underset{\eta \in \mathcal{F}}{\operatorname{argmin}} \ R_n(\eta)$

Ordinal Classification Supervised Learning

- Consider random variables $(X, Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or risk $R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d from $F_{X,Y}$: $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- ullet Empirical risk minimization over hypothesis space ${\cal F}$

$$\hat{\eta}_n = \underset{\eta \in \mathcal{F}}{\operatorname{argmin}} \ \hat{R}_n(\eta)$$

Supervised Learning

- Consider random variables $(X, Y) \sim F_{X,Y}, X \in \mathcal{X}$ input features, $Y \in \mathcal{Y}$ response
- Given loss function $\ell: \mathcal{A} \times \mathcal{Y} \to [0, \infty)$
- Find hypothesis $\eta: \mathcal{X} \to \mathcal{A}$ that minimizes expected loss, or risk $R(\eta) = \mathbb{E}_{X,Y} \ell(\eta(X), Y)$
- We have access to a database of n observations drawn i.i.d from $F_{X,Y}$: $\mathcal{D}_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Empirical risk function $\hat{R}_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(\eta(\mathbf{x}_i), y_i)$
- ullet Empirical risk minimization over hypothesis space ${\cal F}$

$$\hat{\eta}_n = \underset{\eta \in \mathcal{F}}{\operatorname{argmin}} \ \hat{R}_n(\eta)$$

Outcome Space

- $Y \in \{r_1, ..., r_K\}$ discrete class labels
- $r_1 \prec ... \prec r_{K-1} \prec r_K$, where \prec denotes the ordering
- Let us assume, WLOG, that $r_k = k 1$

Ordinal Classification Outcome Space

- $Y \in \{r_1, ..., r_K\}$ discrete class labels
- $r_1 \prec ... \prec r_{K-1} \prec r_K$, where \prec denotes the ordering relation between the labels
- Let us assume, WLOG, that $r_k = k 1$

Outcome Space

- $Y \in \{r_1, ..., r_K\}$ discrete class labels
- $r_1 \prec ... \prec r_{K-1} \prec r_K$, where \prec denotes the ordering relation between the labels
- Let us assume, WLOG, that $r_k = k 1$

Loss Function

Definition (Ordinal loss function)

A loss function ℓ is an ordinal loss function if it satisfy the following properties

•
$$(i, i) = \underset{j,k \in \{0,...,K-1\}}{\operatorname{argmin}} \ell(j, k) \ \forall i \in \{0,...,K-1\}$$

•
$$\ell(i,j) \le \ell(k,l)$$
 if $|i-j| \le |k-l|$

Comment: for example, it is worse to mistakenly classify a 1-star rating with a 10-star than a 4-star with a 5-star

Loss Function

Definition (Ordinal loss function)

A loss function ℓ is an ordinal loss function if it satisfy the following properties

- $(i, i) = \underset{j,k \in \{0,...,K-1\}}{\operatorname{argmin}} \ell(j, k) \ \forall i \in \{0,...,K-1\}$
- $\ell(i,j) \le \ell(k,l)$ if $|i-j| \le |k-l|$

Comment: for example, it is worse to mistakenly classify a 1-star rating with a 10-star than a 4-star with a 5-star

Loss Function Construction

- Consider binary classification where $Y \in \pm 1$
- $\tilde{y}_i = \hat{\eta}_n(\mathbf{x}_i)$
- plug-in Bayes decision

$$\hat{y}_i = \hat{g}_n(\mathbf{x}_i) = \begin{cases} 1 & \text{if } \tilde{y}_i > 0\\ -1 & \text{o.w.} \end{cases}$$
 (1)

Loss Function Construction

- Consider binary classification where $Y \in \pm 1$
- $\tilde{y}_i = \hat{\eta}_n(\mathbf{x}_i)$
- plug-in Bayes decision

$$\hat{y}_i = \hat{g}_n(\mathbf{x}_i) = \begin{cases} 1 & \text{if } \tilde{y}_i > 0\\ -1 & \text{o.w.} \end{cases}$$
 (1)

Loss Function Construction

- Consider binary classification where $Y \in \pm 1$
- $\tilde{y}_i = \hat{\eta}_n(\mathbf{x}_i)$
- plug-in Bayes decision

$$\hat{y}_i = \hat{g}_n(\mathbf{x}_i) = \begin{cases} 1 & \text{if } \tilde{y}_i > 0 \\ -1 & \text{o.w.} \end{cases}$$
 (1)

Ordinal Classification Loss Function Construction

Some examples of binary classification loss functions $l(\tilde{y}, y)$

- Zero-one loss: $\mathbb{1}_{\{\operatorname{sgn}(\tilde{y}y)\neq 1\}}$
- Hinge loss: $\max(0, 1 \tilde{y}y)$
- Logistic loss (Log loss): $\log(1 + \exp(-\tilde{y}y))$

Ordinal Classification Loss Function Construction

Some examples of binary classification loss functions $l(\tilde{y}, y)$

- Zero-one loss: $\mathbb{1}_{\{\operatorname{sgn}(\tilde{y}y)\neq 1\}}$
- Hinge loss: $\max(0, 1 \tilde{y}y)$
- Logistic loss (Log loss): $\log(1 + \exp(-\tilde{y}y))$

Loss Function Construction

Some examples of binary classification loss functions $l(\tilde{y}, y)$

- Zero-one loss: $\mathbb{1}_{\{\operatorname{sgn}(\tilde{y}y)\neq 1\}}$
- Hinge loss: $\max(0, 1 \tilde{y}y)$
- Logistic loss (Log loss): $\log(1 + \exp(-\tilde{y}y))$

Ordinal Classification Loss Function Construction

Dilemma:

- In the binary case, we use a single threshold, namely 0, to divide the real line into two distinct decision segments
- In the non-binary case, it is not clear, from $\hat{\eta}_n$, how to
- We would like to learn the threshold in a data-driven way

Loss Function Construction

Dilemma:

- In the binary case, we use a single threshold, namely 0, to divide the real line into two distinct decision segments
- In the non-binary case, it is not clear, from $\hat{\eta}_n$, how to derive a decision function \hat{g}_n and what the threshold might be
- We would like to learn the threshold in a data-driven way

Ordinal Classification Loss Function Construction

Dilemma:

- In the binary case, we use a single threshold, namely 0, to divide the real line into two distinct decision segments
- In the non-binary case, it is not clear, from $\hat{\eta}_n$, how to derive a decision function \hat{q}_n and what the threshold might be
- We would like to learn the threshold in a data-driven way

Loss Function Construction

Extending binary classification - Threshold-based construction

- Suppose we are given K-1 decision thresholds $\theta_0 < \theta_1 < ... < \theta_{K-2}$, denoted as $\boldsymbol{\theta} \in \mathbb{R}^{K-1}$
- Each of the K segment on the real line corresponds to one

$$\hat{y}_i = \hat{g}_n(\mathbf{x}_i) = \begin{cases} 0 & \text{if } \tilde{y}_i \in (-\infty, \theta_0) \\ k & \text{if } \tilde{y}_i \in [\theta_{k-1}, \theta_k) \\ K - 1 & \text{if } \tilde{y}_i \in [\theta_{K-2}, \infty) \end{cases}$$
 (2)

Loss Function Construction

Extending binary classification - Threshold-based construction

- Suppose we are given K-1 decision thresholds $\theta_0 < \theta_1 < ... < \theta_{K-2}$, denoted as $\boldsymbol{\theta} \in \mathbb{R}^{K-1}$
- Each of the K segment on the real line corresponds to one of the K labels

$$\hat{y}_i = \hat{g}_n(\mathbf{x}_i) = \begin{cases} 0 & \text{if } \tilde{y}_i \in (-\infty, \theta_0) \\ k & \text{if } \tilde{y}_i \in [\theta_{k-1}, \theta_k) \\ K - 1 & \text{if } \tilde{y}_i \in [\theta_{K-2}, \infty) \end{cases}$$
 (2)

Loss Function Construction

All-Threshold loss function [Rennie et al. 2005]

• Sum up all threshold violations

$$\ell_{ord}(\tilde{y}_i, y_i, \boldsymbol{\theta}) = \sum_{k=0}^{y_i - 1} \ell(\tilde{y}_i - \theta_k, 1) + \sum_{k=y_i}^{K-2} \ell(\tilde{y}_i - \theta_k, -1)$$
 (3)

Loss Function Construction

All-Threshold loss function [Rennie et al. 2005]

• Sum up all threshold violations

$$\ell_{ord}(\tilde{y}_i, y_i, \boldsymbol{\theta}) = \sum_{k=0}^{y_i - 1} \ell(\tilde{y}_i - \theta_k, 1) + \sum_{k=y_i}^{K-2} \ell(\tilde{y}_i - \theta_k, -1)$$
 (3)

Loss Function Construction

All-Threshold loss function [Rennie et al. 2005]

$$s(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases} \tag{4}$$

$$\ell_{ord}(\tilde{y}_i, y_i, \boldsymbol{\theta}) = \sum_{k=0}^{K-2} \ell(\tilde{y}_i - \theta_k, s(y_i - k))$$
 (5)

Ordinal Classification Loss Function Construction

All-Threshold loss function [Rennie et al. 2005]

Figure: Ordinal Classification Loss Functions when $y_i = 3$.

Loss Function Construction

Theorem (Ordered thresholds, Li et. al 2007)

If ℓ is convex, then

$$\exists \ \hat{\eta}_n, \boldsymbol{\theta}^* \in \underset{\eta \in \mathcal{F}, \boldsymbol{\theta}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \ell_{ord}(\eta(\mathbf{x}_i), y_i, \boldsymbol{\theta})$$

such that θ^* is ordered, i.e., $\theta_0 \leq \theta_1 \leq ... \leq \theta_{K-1}$.

Theorem (Fisher Consistency, Pedregosa et. al 2014)

If ℓ is convex, $\ell(\tilde{y},\cdot)$ is differentiable at 0, and $\frac{\partial}{\partial \tilde{v}}\ell(\tilde{y},\cdot)|_{\tilde{y}=0}<0$, then All-Threshold loss is Fisher consistent.

Ordinal Classification Loss Function Construction

Probabilistic interpretation of All-Threshold loss

• All-Threshold loss can be seen as the sum of negative log-likelihood with the logit link function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\psi(x) = \log(1 + e^{-x}) = -\log(\sigma(x))$$

$$\mathbb{P}(y_i \le k) = \sigma(s(y_i - k)(\tilde{y}_i - \theta_k)) = \sigma(\theta_k - \tilde{y}_i)$$

$$\tilde{y}_i = \sum_{i=1}^J w_i \mathbb{1}_{\{\mathbf{x}_i \in I_j\}}$$

$$\tilde{y}_i = \sum_{j=1}^J w_j \mathbb{1}_{\{\mathbf{x}_i \in I_j\}}$$

- Tree structure $q: \mathcal{X} \to \{1, 2, ..., J\}$
- Output/leaf weight $f(\mathbf{x}) = w_{q(\mathbf{x})}$

- Tree structure $q: \mathcal{X} \to \{1, 2, ..., J\}$
- Instance set $I_i = \{i; q(\mathbf{x}_i) = j\}$
- Output/leaf weight $f(\mathbf{x}) = w_{q(\mathbf{x})}$

- Tree structure $q: \mathcal{X} \to \{1, 2, ..., J\}$
- Instance set $I_j = \{i; q(\mathbf{x}_i) = j\}$
- Output/leaf weight $f(\mathbf{x}) = w_{q(\mathbf{x})}$

Gradient Boosting Regularized Learning Objective

 A tree ensemble model uses T additive functions to predict output

$$\tilde{y}_i = \sum_{t=1}^T f_t(\mathbf{x}_i), f_t \in \mathcal{F},$$

where $\mathcal{F} = \{f : f(\mathbf{x}) = w_{q(\mathbf{x})}\}$ is the space of regression trees (also known as CART).

• To learn the set of functions in the ensemble model, we minimize the following *regularized* objective:

$$\mathcal{L} = \sum_{i=1}^{n} \ell_{ord}(\tilde{y}_i, y_i, \boldsymbol{\theta}) + \sum_{t=1}^{T} \Omega(f_t)$$
where $\Omega(f) = \gamma J + \frac{1}{2} \lambda ||w||^2$
(6)

Gradient Boosting Regularized Learning Objective

 A tree ensemble model uses T additive functions to predict output

$$\tilde{y}_i = \sum_{t=1}^T f_t(\mathbf{x}_i), f_t \in \mathcal{F},$$

where $\mathcal{F} = \{f : f(\mathbf{x}) = w_{q(\mathbf{x})}\}$ is the space of regression trees (also known as CART).

• To learn the set of functions in the ensemble model, we minimize the following *regularized* objective:

$$\mathcal{L} = \sum_{i=1}^{n} \ell_{ord}(\tilde{y}_i, y_i, \boldsymbol{\theta}) + \sum_{t=1}^{T} \Omega(f_t)$$
where $\Omega(f) = \gamma J + \frac{1}{2} \lambda ||w||^2$
(6)

• Let $\tilde{y}_i^{(t)}$ be the prediction of the *i*-th example at the *t*-th iteration, we need to add f_t , and $\boldsymbol{\delta}^{(t)}$ to minimize the following objective:

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} \ell_{ord}(\tilde{y}_i^{(t-1)} + f_t(\mathbf{x}_i), y_i, \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\delta}^{(t)}) + \Omega(f_t)$$
 (7)

where $\tilde{y}_i^{(t-1)}$ is the combined output of the previous t-1 trees with the *i*-th data point as input.

Gradient Boosting Gradient Tree Boosting

We initialize at t = 0:

$$\tilde{y}^{(0)}, \boldsymbol{\theta}^{(0)} = \underset{\tilde{y}, \boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell_{ord}(y_i, \tilde{y}, \boldsymbol{\theta})$$

$$\tilde{y}_i^{(0)} = \tilde{y}^{(0)} \ \forall i = \{1, ..., n\}$$
(8)

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} \left[\ell_{ord}(y_i, \tilde{y}_i^{(t-1)}, \boldsymbol{\theta}^{(t-1)}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i) \right] +$$

$$(\sum_{i=1}^{n} \frac{\partial l_i}{\partial \boldsymbol{\theta}})^{\mathsf{T}} \boldsymbol{\delta}^{(t)} + \frac{1}{2} \boldsymbol{\delta}^{(t)\mathsf{T}} (\sum_{i=1}^{n} \frac{\partial^2 l_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathsf{T}}}) \boldsymbol{\delta}^{(t)} +$$

$$(\sum_{i=1}^{n} f_t(\mathbf{x}_i) \frac{\partial^2 l_i}{\partial \boldsymbol{\theta} \partial \tilde{y}})^{\mathsf{T}} \boldsymbol{\delta}^{(t)} + \Omega(f_t)$$

$$(9)$$

Gradient Tree Boosting

$$\tilde{\mathcal{L}}^{(t)} = \sum_{j=1}^{J} \left[\left(\sum_{i \in I_{j}} (g_{i} + \frac{\partial^{2} l_{i}}{\partial \boldsymbol{\theta} \partial \tilde{y}}^{\mathsf{T}} \boldsymbol{\delta}^{(t)}) \right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \left(\sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \boldsymbol{\theta}} \right)^{\mathsf{T}} \boldsymbol{\delta}^{(t)} + \frac{1}{2} \boldsymbol{\delta}^{(t)\mathsf{T}} \left(\sum_{i=1}^{n} \frac{\partial^{2} l_{i}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathsf{T}}} \right) \boldsymbol{\delta}^{(t)} + \gamma J \tag{10}$$

where

$$\begin{split} &l_i = \ell_{ord}(y_i, \tilde{y}, \boldsymbol{\theta})|_{\tilde{y} = \tilde{y}_i^{(t-1)}, \boldsymbol{\theta} = \boldsymbol{\theta}^{(t-1)}} \\ &g_i = \frac{\partial}{\partial \tilde{y}} \ell_{ord}(y_i, \tilde{y}, \boldsymbol{\theta})|_{\tilde{y} = \tilde{y}_i^{(t-1)}, \boldsymbol{\theta} = \boldsymbol{\theta}^{(t-1)}} \\ &h_i = \frac{\partial^2}{\partial \tilde{y}^2} \ell_{ord}(y_i, \tilde{y}, \boldsymbol{\theta})|_{\tilde{y} = \tilde{y}_i^{(t-1)}, \boldsymbol{\theta} = \boldsymbol{\theta}^{(t-1)}} \end{split}$$

- This looks scary, but this is just Newton-Raphson, and we can analyze it more easily in matrix form
- Trainable parameters (descent direction in a Newton-Raphson step):

$$\boldsymbol{\beta} = \begin{bmatrix} w_1 & \dots & w_J & \delta_0 & \dots & \delta_{K-2} \end{bmatrix}^\mathsf{T}$$

Full gradients:

$$\boldsymbol{g} = \begin{bmatrix} G_1 & \dots & G_J & \boldsymbol{u}^{\intercal} \end{bmatrix}^{\intercal}$$

Hessian matrix:

$$\boldsymbol{H} = \begin{bmatrix} H_1 + \lambda & & 0 & - & \boldsymbol{L}_1^{\mathsf{T}} & - \\ & \ddots & & & \vdots & \\ 0 & & H_J + \lambda & - & \boldsymbol{L}_J^{\mathsf{T}} & - \\ & & & & \\ \boldsymbol{L}_1 & \dots & \boldsymbol{L}_J & & \nabla \end{bmatrix}$$
(11)

where $\tilde{\mathcal{L}}^{(t)}$ can be re-expressed in matrix form as:

$$\tilde{\mathcal{L}}^{(t)} = \boldsymbol{g}^{\mathsf{T}}\boldsymbol{\beta} + \frac{1}{2}\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{\beta} + \gamma J \tag{12}$$

here

$$G_j = \sum_{i \in I_j} g_i$$
 $u = \sum_{i=1}^n \frac{\partial l_i}{\partial \boldsymbol{\theta}}$ $H_j = \sum_{i \in I_j} h_i$ $L_j = \sum_{i \in I_j} \frac{\partial^2 l_i}{\partial \boldsymbol{\theta} \partial \tilde{\boldsymbol{\theta}}}$ $V = \sum_{i=1}^n \frac{\partial^2 l_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathsf{T}}}$

$$\boldsymbol{\beta}^* = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ \tilde{\mathcal{L}}^{(t)} = -\boldsymbol{H}^{-1} \boldsymbol{g}$$
 (13)

The corresponding value for $\tilde{\mathcal{L}}^{(t)}$ is

$$\tilde{\mathcal{L}}^{(t)*} = -\frac{1}{2} \boldsymbol{g}^{\mathsf{T}} \boldsymbol{H}^{-1} \boldsymbol{g} + \gamma J \tag{14}$$

Gradient Boosting Optimization Speed Up Matri

Optimization - Speed Up Matrix Inverse

- But wait...
- Taking inverse H^{-1} is expensive!
- Time complexity $\mathcal{O}((J+K)^3)$
- Slows down algorithm when trees grow bigger!

inization speed of Matrix Inverse

- Observe the block structure of the Hessian matrix
- Block inverse formula readily available!

$$\boldsymbol{H}^{-1} = \begin{bmatrix} \boldsymbol{H}_{\lambda}^{-1} + \boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}} (\boldsymbol{V} - \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}})^{-1} \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} & -\boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}} (\boldsymbol{V} - \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}})^{-1} \\ -(\boldsymbol{V} - \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}})^{-1} \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} & (\boldsymbol{V} - \boldsymbol{L} \boldsymbol{H}_{\lambda}^{-1} \boldsymbol{L}^{\mathsf{T}})^{-1} \end{bmatrix}$$

$$\tag{15}$$

where

$$m{H}_{\lambda} = egin{bmatrix} H_1 + \lambda & & & 0 \ & & \ddots & \ & & & H_J + \lambda \end{bmatrix}$$

• Plug back in eqn. (13) we get:

$$\boldsymbol{\delta}^{(t)*} = -\left(\boldsymbol{V} - \boldsymbol{L}\boldsymbol{H}_{\lambda}^{-1}\boldsymbol{L}^{\mathsf{T}}\right)^{-1}\left(\boldsymbol{u} - \boldsymbol{L}\boldsymbol{H}_{\lambda}^{-1}\boldsymbol{g}\right)$$

$$= -\left(\boldsymbol{V} - \sum_{j=1}^{J} \frac{\boldsymbol{L}_{j}\boldsymbol{L}_{j}^{\mathsf{T}}}{H_{j} + \lambda}\right)^{-1}\left(\boldsymbol{u} - \sum_{j=1}^{J} \frac{G_{j}}{H_{j} + \lambda}\boldsymbol{L}_{j}\right) \quad (16)$$

$$\boldsymbol{w}_{j}^{*} = -\frac{G_{j} + \boldsymbol{L}_{j}^{\mathsf{T}}\boldsymbol{\delta}^{(t)*}}{H_{j} + \lambda}$$

- Even the quantity $(V LH_{\lambda}^{-1}L^{\dagger})^{-1}$ can be computed using rank 1 updates at each iteration (splitting one node in the decision tree).
- The key is the Sherman-Morrison-Woodbury formula

Before split (assuming the k^{th} node is our splitting candidate):

$$(\mathbf{V} - \mathbf{L}\mathbf{H}_{\lambda}\mathbf{L}^{\mathsf{T}})^{-1} = (\mathbf{V} - \sum_{j=1}^{J} \frac{\mathbf{L}_{j}\mathbf{L}_{j}^{\mathsf{T}}}{H_{j} + \lambda})^{-1}$$

$$= (\mathbf{V} - \sum_{j\neq k}^{J} \frac{\mathbf{L}_{j}\mathbf{L}_{j}^{\mathsf{T}}}{H_{j} + \lambda} - \frac{\mathbf{L}_{k}\mathbf{L}_{k}^{\mathsf{T}}}{H_{k} + \lambda})^{-1}$$

$$= (\mathbf{A} - \frac{\mathbf{L}_{k}\mathbf{L}_{k}^{\mathsf{T}}}{H_{k} + \lambda})^{-1}$$

$$= \mathbf{A}^{-1} + \frac{\mathbf{A}^{-1}\mathbf{L}_{k}\mathbf{L}_{k}^{\mathsf{T}}\mathbf{A}^{-1}}{H_{k} + \lambda - \mathbf{L}_{k}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{L}_{k}}$$

$$(17)$$

innization speed op mainx myerse

After split:

$$(\mathbf{V} - \mathbf{L}\mathbf{H}_{\lambda}\mathbf{L}^{\mathsf{T}})^{-1} = (\mathbf{V} - \sum_{j \neq k}^{J} \frac{\mathbf{L}_{j}\mathbf{L}_{j}^{\mathsf{T}}}{H_{j} + \lambda} - \frac{\mathbf{L}_{k_{1}}\mathbf{L}_{k_{1}}^{\mathsf{T}}}{H_{k_{1}} + \lambda} - \frac{\mathbf{L}_{k_{2}}\mathbf{L}_{k_{2}}^{\mathsf{T}}}{H_{k_{2}} + \lambda})^{-1}$$

$$= (\mathbf{A} - \frac{\mathbf{L}_{k_{1}}\mathbf{L}_{k_{1}}^{\mathsf{T}}}{H_{k_{1}} + \lambda} - \frac{\mathbf{L}_{k_{2}}\mathbf{L}_{k_{2}}^{\mathsf{T}}}{H_{k_{2}} + \lambda})^{-1}$$
(18)

(and apply Sherman-Morrison-Woodbury twice) where

$$\boldsymbol{L}_k = \boldsymbol{L}_{k_1} + \boldsymbol{L}_{k_2}$$
$$H_k = H_{k_1} + H_{k_2}$$

- At the root node, the matrix A above is just the diagonal matrix V, which is trivial to invert
- Hence we iteratively have access to the matrix inverse by invoking Sherman-Morrison each time.
- Now we are only paying the price of matrix multiplications!

Gradient Boosting Optimization - Majorization Minimization

- Observe \boldsymbol{H} is non-invertible when $\lambda = 0$: $\boldsymbol{H1} = 0$
- Our objective is hard to optimize
- Majorization Minimization (MM) to the rescue!

Gradient Boosting Optimization - Majorization Minimization

- Observe \boldsymbol{H} is non-invertible when $\lambda = 0$: $\boldsymbol{H}\boldsymbol{1} = 0$
- Our objective is hard to optimize
- Majorization Minimization (MM) to the rescue!

Gradient Boosting Optimization - Majorization Minimization

- Observe \boldsymbol{H} is non-invertible when $\lambda = 0$: $\boldsymbol{H} \boldsymbol{1} = 0$
- Our objective is hard to optimize
- Majorization Minimization (MM) to the rescue!

Gradient Boosting

Optimization - Majorization Minimization

Definition (Majorization)

Suppose \mathcal{L} and \mathcal{M} are twice differentiable at $\mathbf{x}^{(t)}$. If \mathcal{M} majorizes \mathcal{L} at $\mathbf{x}^{(t)}$ then

$$\bullet \ \mathcal{M}(\mathbf{x}^{(t)}) = \mathcal{L}(\mathbf{x}^{(t)}),$$

$$\bullet \ \frac{\partial \mathcal{M}}{\partial \mathbf{x}}|_{\mathbf{x} = \mathbf{x}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}}|_{\mathbf{x} = \mathbf{x}^{(t)}}$$

$$\bullet \frac{\partial^2 \mathcal{M}}{\partial \mathbf{x} \partial \mathbf{x}^{\mathsf{T}}}\big|_{\mathbf{x} = \mathbf{x}^{(t)}} \succ \frac{\partial^2 \mathcal{L}}{\partial \mathbf{x} \partial \mathbf{x}^{\mathsf{T}}}\big|_{\mathbf{x} = \mathbf{x}^{(t)}}$$

Theorem (Böhning & Lindsay 1988)

Let $\mathbf{x}^{(0)} \in \mathcal{X}$ and suppose that $(\mathbf{x}^{(t)})_{t \geq 1}$ is defined by the Majorization Minimization algorithm $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \tilde{\mathbf{H}}(\mathbf{x}^{(t)})^{-1} \mathbf{g}(\mathbf{x}^{(t)})$, where $\tilde{\mathbf{H}}(\mathbf{x}) \succeq \mathbf{H}(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{X}$. The sequence $(\mathbf{x}^{(t)})_{t \geq 1}$ has the following properties:

- Monotonicity: $\mathcal{L}(\mathbf{x}^{(t+1)}) \ge \mathcal{L}(\mathbf{x}^{(t)})$, with strict inequality if $\mathbf{x}^{(t+1)} \ne \mathbf{x}^{(t)}$.
- Guaranteed convergence: The sequence $(g(\mathbf{x}^{(t)}))_{t\geq 1}$ converges to 0 if \mathcal{L} is bounded below.
- Rate of convergence: The algorithm converges with rate $||\mathbb{I} \tilde{H}(\mathbf{x}^*)^{-1}H(\mathbf{x}^*)||_2$.

Gradient Boosting

Optimization - Majorization Minimization

Quadratic Majorization:

$$\mathcal{M}(\mathbf{x}) = \mathcal{L}(\mathbf{x}^{(t)}) + \boldsymbol{g}(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x} - \mathbf{x}^{(t)}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(t)})^{\mathsf{T}}\tilde{\boldsymbol{H}}(\mathbf{x}^{(t)})(\mathbf{x} - \mathbf{x}^{(t)})$$
where $\tilde{\boldsymbol{H}}(\mathbf{x}) \succ \boldsymbol{H}(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{X}$

Gradient Boosting

Optimization - Majorization Minimization

Majorized Hessian \tilde{H} by majorizing the diagonal elements of H

$$H_{j} + \lambda = \sum_{i \in I_{j}} \sum_{k=0}^{K-2} \sigma(s_{ik}d_{ik}) \left(1 - \sigma(s_{ik}d_{ik})\right) + \lambda$$

$$V_{kk} = \sum_{i=1}^{n} \sigma(s_{ik}d_{ik}) \left(1 - \sigma(s_{ik}d_{ik})\right)$$
(19)

is replaced by:

$$\tilde{H}_{j} + \lambda = \sum_{i \in I_{j}} \sum_{k=0}^{K-2} \frac{2\sigma(s_{ik}d_{ik}) - 1}{2s_{ik}d_{ik}} + \lambda$$

$$\tilde{V}_{kk} = \sum_{i=1}^{n} \frac{2\sigma(s_{ik}d_{ik}) - 1}{2s_{ik}d_{ik}}$$
(20)

where $s_{ik} = s(y_i - k), d_{ik} = \tilde{y}_i - \theta_k$

Experiments Artificial Data

Experiments Artificial Data

HistGBODT performance on synthetic datasets.

The prediction accuracy on the three datasets are: 99.73%, 94.41%, and 98.01%, respectively.

Experiments

We performed experiments on 16 benchmark datasets that were used by Chu and Keerthi ¹.

¹Datasets available for download at:

Experiments Benchmark Data

	Datasets	Attributes(Numeric, Nominal)	Training Instances	Instances for Test
	Diabetes	2(2,0)	30	13
Set I	Pyrimidines	27(27,0)	50	24
	Triazines	60(60,0)	100	86
	Wisconsin Breast Cancer	32(32,0)	130	64
	Machine CPU	6(6,0)	150	59
	Auto MPG	7(4,3)	200	192
	Boston Housing	13(12,1)	300	206
	Stocks Domain	9(9,0)	600	350
	Abalone	8(7,1)	3177	1000
Set II	Bank Domains(1)	8(8,0)	5461	2731
	Bank Domains(2)	32(32,0)	5461	2731
	Computer Activity(1)	12(12,0)	5461	2731
	Computer Activity(2)	21(21,0)	5461	2731
	California Housing	8(8,0)	10427	5213
	Census Domains(1)	8(8,0)	11189	5595
	Census Domains(2)	16(16,0)	11189	5595

Table: Datasets and their characteristics. "Attributes" state the number of numerical and nominal attributes. "Training Instances" and "Instances for Test" specify the size of training/test partitions.

Experiments Benchmark Data

	Mean zero-one error		Mean absolute Error			
Data	AT	MultiClass	MSE	AT	MultiClass	MSE
Diabetes	69.23%	69.23%	69.23%	1.154	1.154	1.154
Pyrimidines	70.83%	75.62%	77.92%	1.240	1.577	1.383
Triazines	67.85%	67.79%	71.05%	1.112	1.319	1.153
Wisconsin Breast Cancer	86.33%	85.78%	88.83%	2.123	2.805	2.438
Machine CPU	31.69%	41.10%	37.46%	0.4483	0.939	0.5161
Auto MPG	45.83%	50.86%	47.24%	0.5464	0.6331	0.5576
Boston Housing	43.91%	45.02%	44.22%	0.5204	0.5680	0.5235
Stocks Domain	22.06%	21.29%	21.84%	0.2261	0.2164	0.2257
Abalone	42.34%	48.40%	44.68%	0.5212	0.7552	0.5384
Bank Domains(1)	72.28%	69.17%	78.4%	1.456	1.788	1.530
Bank Domains(2)	38.81%	44.75%	39.47%	0.4094	0.5145	0.4171
Computer Activity(1)	51.45%	52.28%	57.66%	0.7039	0.8177	0.7929
Computer Activity(2)	41.60%	47.05%	45.18%	0.4687	0.5881	0.5134
California Housing	46.94%	50.68%	49.18%	0.5683	0.6928	0.6016
Census Domains(1)	60.58%	62.59%	66.83%	0.9296	1.410	0.998
Census Domains(2)	62.25%	60.25%	66.93%	0.9793	1.130	1.022

Table: Testing set results: the bold font indicates the cases in which the average value is the lowest in the results of minimizing the three loss functions.

Experiments Benchmark Data

		Mean zero-one error			Mean absolute error	
Null hypothesis	AT < MultiClass		AT < MSE	AT < MultiClass		AT < MSE
Test Statistic	20		1	1		1
P-value	0.01155		0.0004026	0.0004026		0.0004026

Table: Nonparametric Wilcoxon signed-rank test results

From the testing set results averaged over 20 trials, we could see a clear advantage of minimizing the All-Threshold loss over traditional methods such as multi-class cross entropy and mean-squared error. To determine statistical significance, we conduct Wilcoxon signed-rank tests. We observe that the performance gains are statistically significant for all comparisons.

Conclusion and future directions...

- Ordinal classification is an important supervised learning task but has not been widely implemented in popular machine learning frameworks
- We propose minimizing the All-Threshold loss function combined with the powerful gradient boosting technique
- We address the issue of non-invertibility of the Hessian matrix using **Majorization-Minimization** (MM) to optimize objective
- Experiments on benchmark datasets indicates the generalization performance is competitive and statistically significantly better than existing approaches

Conclusion and future directions...

- Ordinal classification is an important supervised learning task but has not been widely implemented in popular machine learning frameworks
- We propose minimizing the **All-Threshold** loss function combined with the powerful **gradient boosting** technique
- We address the issue of non-invertibility of the Hessian matrix using **Majorization-Minimization** (MM) to optimize objective
- Experiments on benchmark datasets indicates the generalization performance is competitive and statistically significantly better than existing approaches

Conclusion and future directions...

- Ordinal classification is an important supervised learning task but has not been widely implemented in popular machine learning frameworks
- We propose minimizing the **All-Threshold** loss function combined with the powerful **gradient boosting** technique
- We address the issue of non-invertibility of the Hessian matrix using **Majorization-Minimization** (MM) to optimize objective
- Experiments on benchmark datasets indicates the generalization performance is competitive and statistically significantly better than existing approaches

- Ordinal classification is an important supervised learning task but has not been widely implemented in popular machine learning frameworks
- We propose minimizing the **All-Threshold** loss function combined with the powerful gradient **boosting** technique
- We address the issue of non-invertibility of the Hessian matrix using Majorization-Minimization (MM) to optimize objective
- Experiments on benchmark datasets indicates the generalization performance is competitive and statistically significantly better than existing approaches

Conclusion and future directions...

- We implemented using scikit-learn, using Cython for native C speed performance and parallel computing. Would like to integrate with highly optimized gradient boosting package such as XGBoost and CatBoost

Conclusion and future directions...

- We implemented using scikit-learn, using Cython for native C speed performance and parallel computing. Would like to integrate with highly optimized gradient boosting package such as XGBoost and CatBoost
- Integration with ensemble of oblique decision trees

Ordinal Classification

Gradient Statistics Full Expressions

$$G_j = \sum_{i \in I_j} g_i = \sum_{i \in I_j} \sum_{k=0}^{K-2} -s_{ik} \sigma(-s_{ik} d_{ik})$$

$$H_j = \sum_{i \in I_j} h_i = \sum_{i \in I_j} \sum_{k=0}^{K-2} \frac{2\sigma(s_{ik}d_{ik}) - 1}{2s_{ik}d_{ik}}$$

Appendix

Ordinal Classification

Gradient Statistics Full Expressions

$$\boldsymbol{L}_{j} = \sum_{i \in I_{j}} \frac{\partial^{2} l_{i}}{\partial \boldsymbol{\theta} \partial \tilde{y}} = \begin{bmatrix} \dots & \sum_{i \in I_{j}} -\sigma(s_{ik}d_{ik}) \left(1 - \sigma(s_{ik}d_{ik})\right) & \dots \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{K-1}$$

$$u = \sum_{i=1}^{n} \frac{\partial l_i}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{n} \begin{bmatrix} \dots & s_{ik} \sigma(-s_{ik} d_{ik}) & \dots \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{K-1}$$

$$V = \sum_{i=1}^{n} \frac{\partial^{2} l_{i}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathsf{T}}} = \operatorname{diag}\left(\begin{bmatrix} \dots & \sum_{i=1}^{n} \frac{2\sigma(s_{ik}d_{ik}) - 1}{2s_{ik}d_{ik}} & \dots \end{bmatrix}\right) \in \mathbb{R}^{(K-1) \times (K-1)}$$

Appendix