AYANGA IMESHA KALUPAHANA

PERSONAL INFORMATION

UNIVERSITY: National University of Singapore

MAJOR: Computer Science

EMAIL: ayangaim@comp.nus.edu.sg

ADDRESS: Systems and Networking Lab, School of Computing, NUS

PERSONAL WEBPAGE: https://ayanga1991.github.io

LINKEDIN PAGE: https://www.linkedin.com/in/ayanga-kalupahana-7b131151/

RESEARCH INTERESTS

Wearable computing/sensing, application of privacy and security to wearable, wearable energy harvesting, wearable power and latency optimization

EDUCATION

2020-Feb 2025 Ph.D. Candidate in Computer Science

National University of Singapore Advisor : Prof. Peh Li-Shiuan

CAP: 4.08/5

2011-2016 BSc. Eng. (Hons) specialized in Electronics and Telecommunication Engineering

University of Moratuwa (UoM), Sri Lanka

FYP Advisor: Dr. Ajith Pasqual CGPA: 3.57/4.2 (34th of 101)

WORK EXPERIENCE

Jan 2023 Gra

Graduate Teaching Assistant -CS4222/CS5222 Wireless Networking

- May 2023 @ School of Computing, NUS

Module Instructor: Prof. Ambuj Varshney

- Conducted tutorials and provided consultation for Final-year undergraduate and postgraduate students
- Evaluated assignments and course projects of 150 enrolled students

Aug 2019

Research Intern @ LSP Group, NUS

- Dec 2019

Advisors: Prof. Peh Li-Shiuan and Prof. Xiaokui Xiao

Evaluated Rastogi et al.s' Distributed Differential Privacy algorithm's performance and limitations on off-the-shelf smartwatches

May 2016

Research Engineer @ Synergen Technology Labs LLC, USA

- July 2019

(Headquarters in Dallas, Texas, USA, Innovation center in Sri Lanka)

- Designed a 4-layer PCB (36mmx19mm) for a spine care wearable patch with inductive wireless charging circuit
- Developed a single IMU-based smoke detection mechanism
- Developed an algorithm for de-noising Ambulatory ECG by fusion with accelerometer data and activity detection for Synergen's now FDA-approved Scio-Cardio ambulatory ECG monitor
- Developed a respiration estimation algorithm for the PPG signal input taken from the infant's ankle-worn wearable in patented Synergen Baby monitor
- · Developed a cry detection algorithm

 Supervised six UoM undergraduate engineering students' internships related to wearable stress monitor, smoke detection, baby monitor and hydration monitor in 2016, 2018 and 2019

Nov 2014 - March 2015

Research & Development Engineering Intern

@ Integrated System Development (ISD) Ltd, UK

(Headquarters in London, UK, Research & Development center in Sri Lanka) Now ISD is operated as Verox Labs Ltd

Mentor: Mr. Harin De Silva, Managing/Technical Director

- Assisted in developing their next version of the "Heated Glass Stage Device", which is used to inject sperm into egg cells in-vitro fertilization process
- Researched, experimented, and developed algorithms to provide even heat signature to the living cell
- Designed a heated glass stage protection circuit

JOURNAL PUBLICATIONS

1. SeRaNDiP - Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation in Wearable Community Sensing Applications

Ayanga Kalupahana, Ananta Narayanan Balaji, Xiaokui Xiao and Li-Shiuan Peh Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2023 (IMWUT/Ubicomp)

Project webpage: SeRaNDiP: Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation in Wearable Community Sensing Applications

CONFERENCE PUBLICATIONS

1. FPAA and FPGA Based Universal Sensor Node Design

Ayanga Kalupahana, Nisal Hemadasa, Nipun Wijerathne, Anuranga Ranasinghe and Ajith Pasqual

Proceedings of the 11th International Conference on Sensing Technology (ICST 2017), Sydney, Australia

PHD THESIS

Advisor: Prof. Peh Li Shiuan, Dept. of Computer Science, NUS

Under my Ph.D. thesis, I am studying and solving problems, gaps, and bottlenecks in implementing privacy and security algorithms for wearable devices in both community sensing and remote monitoring.

First I have proposed SeRaNDiP which is a framework that leverages low-power wearable sensors' inherent noise for varying Differential Privacy noise requirements without hardware modification. As per our knowledge, this is the first inherent noise-based Differential Privacy-providing framework applicable to existing smartwatches and fitness trackers. It resulted in 1.4X-1.8X computation/communication speedup and 1.2X-1.5X energy savings against state-of-the-art DP implementation.

Secondly, I am exploring the potential of EEG sensor noise and external environmental noise to provide privacy for users wearing EEG headsets.

REVIEWER

2023	ACM Conference on Human Factors in Computing Systems(CHI)
2023	Moratuwa Engineering Research Conference (MERCon)
2022	ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies(IMWUT)

AWARDS AND SCHOLARSHIPS

2023	SOC Research Incentive Award worth SGD 2,500 (One-time award)
2023	Graduate Student Travel Grant worth SGD 4,000 (To attend Tier 1
	ACM Ubicomp 2023)
2020-2024	NUS Research Scholarship Award
2017	Presentation Award- 2nd Runner up (Student Category),
	11th International Conference on Sensing Technology, ICST 2017, Sydney, Australia
2011	18 plus Scholarship 2010 Award
	For the outstanding academic performance of G.C.E. Advanced Level 2010

PROGRAMMING SKILLS

Proficient: C/C++ (Embedded software development), Python, Java, Matlab, Bluetooth

Low Energy

Basic Knowledge: Differential Privacy, Verilog, Altium, Solid Works, Eagle, R language

Development Boards: Raspberry Pi, Beaglebone, Odroid, Pynq FPGA, ESP-32, Spartan 3E FPGA,

AN231E04 FPAA etc.

Sensors: PPG, ECG, Temperature, Accelerometer, Barometer sensors, GSR and micro-

phones

REFERENCES

1. Dr. Li-Shiuan Peh Provost's chair professor, School of Computing, National University of Singapore.

2. Dr. Ajith Pasqual
Senior Lecturer, Department of Electronic & Telecommunication Engineering,
University of Moratuwa, Sri Lanka