Normal Distribution

PDF for Normal Distribution

Probability density function (PDF):-

PDF for Normal Distribution

Probability density function (PDF):-

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

 μ here is Mean Value .

 σ^2 here is Variance.

Bell shaped or Gaussian Distribution

- Bell shaped or Gaussian Distribution
- Symmetric

- Bell shaped or Gaussian Distribution
- Symmetric
- Mean, Mode, Median all are equal

- Bell shaped or Gaussian Distribution
- Symmetric
- Mean, Mode, Median all are equal
- Area under the curve = 1

Empirical rule for Normal Distribution: **68–95–99.7** rule.

68.27% of data lies within one standard deviations of the mean.

68.27% of data lies within one standard deviations of the mean.

95.45% of data within two standard deviation of the mean.

68.27% of data lies within one standard deviations of the mean.

95.45% of data within two standard deviation of the mean.

99.73% of data within three standard deviation of the mean.

68.27% of data lies within one standard deviations of the mean.

95.45% of data within two standard deviation of the mean.

99.73% of data within three standard deviation of the mean.

$$Z = \frac{x - \mu}{\sigma}$$

65 Marks in Paleontology

65 Marks in Paleontology

Did Rachel Perform better than Ross?

Can't Say.

65 Marks in Paleontology

Paleontology marks:

 $\mu = 60 \& \sigma = 4$

Fashion Designing marks:

 $\mu = 79 \& \sigma = 2$

65 Marks in Paleontology

Paleontology marks:

$$\mu = 60 \& \sigma = 4$$

Fashion Designing marks:

$$\mu = 79 \& \sigma = 2$$

$$\frac{65-60}{4}$$
 = 1.25 $\frac{8}{4}$

80 Marks In Fashion Designing

Thank You!

