English Consonants & Vowels

- Phonetics: a study on speech

articulatory phonetics (from mouth) \rightarrow how to produce speech acoustic phonetics (through air) \rightarrow how to transmit speech auditory phonetics (to ear) \rightarrow how to hear speech

Articulation

- Vocal tract:

- 5 speech organs = constrictors = articulators

Phonation Process in Larynx

- larynx = voicebox: voiced → can feel vibration

ex. v, z, l, m, a, i voiceless \rightarrow can't feel vibration ex. f, s, k, p, h

Oro-nasal Process in Velum

- nasal: when velum lowered ex. m, n, ng

Articulatory Process

- lips / tongue tip / tongue body

Control of Constrictors(Articulators)

- Each constrictor needs to be more specific in geometry constriction location(CL) / constriction degree(CD)
- Constriction location: Lips → bilabial / labiodental

Tongue body → palatal / velar

Tongue tip \rightarrow dental / alveolar / retroflex / palate-alveolar

- Constriction degree: stops > fricatives > approximants > vowels

How to Produce English Consonants and Vowels

- constrictors(lips, tongue tip, tongue body) / CD / CL / velum / larynx
 - ex) /p/: lips / bilabial / stop / velum raised / larynx open
 - /b/: lips / bilabial / stop / velum raised / larynx closed
 - /d/: tongue tip / alveolar / stop / velum raised / larynx closed
 - /z/: tongue tip / alveolar / fricative / velum raised / larynx closed
 - /n/: tongue tip / alveolar / stop / velum lowered / larynx closed
- Phonemes: individual sounds that form words
 - a combination of speech organs' actions

Acoustics

- Praat: duration > select(click and drag on waveform or spectrogram) →
 - read a value (sec.) on the top \rightarrow zoom in (if not visible)
 - intensity \rightarrow show intensity \rightarrow click on green \rightarrow read a value (dB) on the right
 - pitch > show pitch → pitch setting pitch range (65-200Hz male / 145-276Hz female)
 - \rightarrow click on blue \rightarrow read a value (Hz) on the right
 - formant > show formants → place the cursor on one of the trajectories
 - \rightarrow read a value (Hz) on the left
- the number of occurrences of a repeating event per second (frequency, Hz)
 - repeating event = vibration of vocal folds / repeating > sine wave = pure wave
 - * sine wave: frequency + magnitude(amplitude) (x 축 시간 / y 축 value, voltage)
- 복잡한 신호는 단순한 sine wave 들의 합으로 표현된다. (synthesis)
 - simplex tone: 단순한 sine wave / complex tone: 복잡한 신호
 - spectrum: x 축 frequency / y 축 magnitude(amplitude)
 - spectrogram: spectrum 을 시간으로 visualize 한 것 (x 축 시간 / y 축 frequency)
 - sine wave→spectrum: spectral analysis
- pure tone→spectral analysis: frequency 가 같은 sine wave 한 개
 - complex tone→spectral analysis: 일정한 간격의 sine wave 여러 개 (간격=pitch)
 - (Praat: Spectrum > View Spectrum Slice)
- source: 성대에서 나는 소리
 - human voice source consists of harmonics
 - a complex tone = sum of pure tones at integer multiples of the lowest pure tone
 - the lowest pure tone = fundamental frequency(F0) = rate of vibration of the larynx
 - = the number of opening-closing cycles of the larynx per second
 - amplitude of pure tones gradually decreases
- filter: vocal tract 에 의해서 달라지는 소리
 - filter 의 spectrum → jigjagging with peaks and valleys (amplitude 의 패턴이 사라짐)
 - peaks/mountains: frequencies VT likes (formants)
 - valleys: frequencies VT does not like

- Synthesize Source: New > Sound > Create Sound as Pure Tone

> Tone frequency 100~1000Hz / Amplitude 1.0~0.55Pa

Combine > Combine to Stereo

Convert > Convert to Mono

반복 주기: frequency 100Hz / Amplitude 1.0Pa 와 일치

음: frequency 100Hz / Amplitude 1.0Pa 와 일치

Spectrum > View Spectral Slice: gradually decrease / 10 개 / 100Hz

- F1: 모음의 height / F2: 모음의 frontness(backness)

F1 and F2 are enough to disambiguate vowels.

(Praat: New > Sound > Create Sound as VowelEditor)

Coding

- 코딩: 자동화 > 똑같은 과정을 쉽게 반복할 수 있기 위해서
- 모든 language 는 공통적으로 단어와 문법으로 이루어짐 단어: 정보를 담는 그릇
- Computer Language 의 단어: 변수(variable)

Computer Language 의 문법: 1. variable assigning

2. 'if' conditioning

3. 'for' loop

함수: 어떤 입력을 넣어야 자신이 원하는 출력이 나오는지

ex. Praat 입력: 마우스로 구간 설정 / Praat 출력: 소리

- Anaconda Prompt > 'Jupyter Notebook' 입력

원하는 디렉토리 > New > Python 3

- cell 생성: cell 선택 후 b(아래쪽에 생성) / a(위에 생성) / x(삭제)
- =: 오른쪽에 있는 정보를 왼쪽에 있는 variable 로 assign 한다

ex. a=1 > 정보: 1 / variable: a

Print: 어떤 변수를 넣으면 그 값을 출력함

- In [1] : a = 1 입력 > Run > In [2] : print (a) 입력 > Run > 1
 - In [3]: a = 2 입력 > Run > In [1](a = 1) 함수가 사라짐 > In [4]: print (1) 입력 > Run > 2
 - In [1] 선택 > Run > In [4] 선택 > Run > 1
- In [1] b = 'love' 입력 > Run > In [2] print (b) 입력 > Run > love
 - In [3]: love = 2 입력 > Run > In [4]: b = love 입력 > Run > In [5]: print (b) > Run > 2
 - * 문자 입력의 경우,'' 가 없을 때는 변수
- In [1]: a = 1; b = 2; c = 3 > Run > In [2]: print (a); print (b); print (c) > Run > 1; 2; 3
- In [1]: a = [1, 2, 3, 5] > Run > In [2]: type (a) > Run > list
 - In [1] : a = 1 > Run > In [2] : type (a) > Run > int
 - ln [1] : a = 1.2 > Run > ln [2] : type (a) > Run > float
 - In [1] : a = 'love' > Run > In [2] : type (a) > Run > str
 - In [1] : a = [1, 2, 3, 5, 'love'] > Run > In [2] type (a) > Run > list

```
In [1]: a = [1, 'love', [1, 'bye']] > Run > In [2]: type (a) > Run > list
In [1]: a = (1, 'love', [1, 'bye']) > Run > In [2]: type (a) > Run > tuple
* list = tuple (list 보다 보안이 강함)
In [1]: a = {'a': 'apple', 'b': 'banana'} > Run > In [2] type (a) > Run > dict
* 표제어: 설명
```