Exam. Survival Analysis 2020-2021

January 18th, 2021

The exam consists of three exercises, Exercise 1, Exercise 2 and a Practical that is a continuation of Exercise 2. They weight 20%, 50% and 30%, respectively.

Exercise 1

Consider two one-dimensional covariates X and Z that are binary and independent. Given these we assume that a survival time T has hazard function $\alpha(t; X, Z)$. Further $P(X = 1) = \pi_x$ and $P(Z = 1) = \pi_z$ with $0 < \pi_x < 1$ and $0 < \pi_z < 1$.

(a) Given that the hazard function is on Cox form

$$\alpha(t; X, Z) = \alpha_0(t) \exp(X\beta + Z\gamma)$$

then find P(X = i, Z = j | T > t), the covariate distribution among survivors. Is it possible to choose β and γ to make X and Z conditionally independent given T > t?

(b) Given that the hazard function is

$$\alpha(t; X, Z) = \alpha_0(t) + X\beta + Z\gamma + XZ\rho$$

then find P(X=i,Z=j|T>t). Is it possible to choose β, γ and ρ to make X and Z conditionally independent given T>t?

Exercise 2

Let T be an exponentially distributed random variable with

$$P(T > t) = e^{-\theta t}$$

where $\theta > 0$ is an unknown parameter. Let U be a random variable independent of T with

$$P(U > t) = \exp\left(-\int_0^t \gamma(s) \, ds\right),\,$$

where $\gamma(t)$ is an unknown hazard function. We assume that U is always observed but for T we only know whether $T \in [0, U)$. Hence we observe the pair (U, δ) , where $\delta = I(T < U)$. Define the counting processes $N_j(t) = I(U \le t, \delta = j), j = 0, 1$.

(a) Show that

$$P(\delta = 1|U = t) = 1 - e^{-\theta t}$$

and use this to argue that the two counting process $N_j(t)$ has intensity $\lambda_j(t) = I(t \leq U)\alpha_j(t)$, j = 0, 1, where

$$\alpha_0(t) = \gamma(t)e^{-\theta t}$$

$$\alpha_1(t) = \gamma(t) \left\{ 1 - e^{-\theta t} \right\}.$$

Let (U_i, δ_i) be n iid random variables from the above generic setting and define $N_{ij}(t)$, for j = 0, 1, and $i = 1, \ldots, n$. Define also, for j = 0, 1,

$$N_{\cdot j}(t) = \sum_{i=1}^{n} N_{ij}(t)$$

and $N(t) = N_{.0}(t) + N_{.1}(t)$. Similarly, let $M_{ij}(t) = N_{ij}(t) - \int_0^t Y_i(t)\alpha_j(s) ds$ where $Y_i(t) = I(t \le U_i)$. Define also $M_{.j}(t) = \sum_{i=1}^n M_{ij}(t)$ and $M(t) = M_{.0}(t) + M_{.1}(t)$.

- (b) Argue that $M_{i0}(t)$ and M_{k1} for $1 \le i, k \le n$ are orthogonal (square-integrable) martingales and show that $M_{\cdot 0}(t)$ and $M_{\cdot 1}(t)$ are orthogonal.
- (c) Derive the compensator for N(t) and use that to argue that a natural estimator of $\Gamma(t) = \int_0^t \gamma(s) \, ds$ is

$$\hat{\Gamma}(t) = \int_0^t \frac{1}{Y(s)} dN(s),$$

where $Y(t) = \sum_{i=1}^{n} Y_i(t)$.

(d) Argue that, when we observe in [0,t], that the likelihood function is given by

$$L_{t} = \exp\left\{-\int_{0}^{t} Y(s)\gamma(s) ds\right\} \prod_{i=1}^{n} \left[\gamma(U_{i}) \left\{1 - e^{-\theta U_{i}}\right\}^{\delta_{i}} e^{-\theta U_{i}(1-\delta_{i})}\right]^{I(U_{i} \leq t)}$$

Let

$$U_t(\theta) = \frac{\partial}{\partial \theta} \log L_t$$

(e) Show that

$$U_{t}(\theta) = \int_{0}^{t} \frac{se^{-\theta s}}{1 - e^{-\theta s}} dN_{\cdot 1}(s) - \int_{0}^{t} sN_{\cdot 0}(s)$$

and find its compensator. Use this to argue that $U_t(\theta)$ must be a martingale.

Let $\Gamma^*(t) = \int_0^t \gamma(s) I(Y(s) > 0) ds$ and define $\tilde{M}(t) = \hat{\Gamma}(t) - \Gamma^*(t)$. We assume that we observe in the interval $[0, \tau]$ with $\tau < \infty$ and we let $\hat{\theta}$ denote the solution to $U_{\tau}(\theta) = 0$. All time points t considered in the following are assumed to be within $[0, \tau]$.

- (f) Show that $U_t(\theta)$ and $\tilde{M}(t)$ are orthogonal and calculate $\langle U_t(\theta) \rangle$.
- (g) Show, under appropriate assumptions, that $n^{1/2}\tilde{M}(t)$ converges in distribution towards a Gaussian martingale as $n \to \infty$, and show that the variance function of the limiting process is $\frac{P(U \le t)}{P(U > t)}$.
- (h) Show, under appropriate assumptions, that $n^{-1/2}U_t(\theta)$ converges in distribution towards a Gaussian martingale as $n \to \infty$, and derive the variance function of the limiting process.
- (i) Use the result in (h) to derive the asymptotic distribution of $n^{1/2}(\hat{\theta} \theta)$, show that the variance, $\sigma^2(\theta)$, of the limiting distribution is

$$\sigma^2(\theta) = \left(\int_0^\tau \frac{s^2 e^{-\theta s}}{1 - e^{-\theta s}} f_U(s) \, ds\right)^{-1}$$

where $f_U(s)$ denotes the density function of the distribution of U.

A natural estimator of $\sigma^2(\theta)$ is

$$\hat{\sigma}^{2}(\theta) = \left(\int_{0}^{\tau} \frac{s^{2} e^{-\hat{\theta}s}}{1 - e^{-\hat{\theta}s}} e^{-\hat{\Gamma}(s)} \frac{1}{Y(s)} dN(s) \right)^{-1}$$

(i) Argue that $\hat{\sigma}^2(\theta)$ is a consistent estimator of $\sigma^2(\theta)$.

Practical (Exercise 2 continued)

We shall now investigate how the above estimator and its corresponding standard error estimator performs in practice. We wish to simulate data from a situation where both T and U are exponentially distributed with mean 1, ie. we take $\theta = 1$. We let the observation interval be given by $\tau = 1$. We wish to study the performance of the two estimators where we take the sample size n equal to 400. You may use the following R-code to generate data

```
n=400
T=rexp(n,1)
U=rexp(n,1)
delta=as.numeric(T<U)
tau=1
## Data that we observe

U.obs=U*as.numeric(U<tau)+tau*as.numeric(U>=tau)
delta.obs=delta*as.numeric(U.obs<tau)+999*as.numeric(U>=tau) # value 999 corresponds to # the unobserved values of delta.
status=as.numeric(U.obs<tau)
## In the following you can only use the observed data.
## ie: (U.obs,delta.obs,status)</pre>
```

In the below questions (a) and (b) you only need one random sample generated as suggested above.

- (a) Calculate and plot $\hat{\Gamma}(t)$. In the same figure you should also plot the straight line with intercept 0 and slope 1. Comment on the plot. Help: consider whether you can use the aalen-function.
- (b) Calculate $\hat{\theta}$ and $\hat{\sigma}(\theta) = \sqrt{\hat{\sigma}^2(\theta)}$. Keep in mind that $\hat{\theta}$ is the zero-root of $U_{\tau}(\theta)$ and to find this you can for instance use the function nleqslv in the R-package nleqslv. To calculate $\hat{\sigma}(\theta)$ it may be helpful to use the aalen-function.

In the following, theta.tot and see.tot are supposed to contain the calculated values of $\hat{\theta}$ and $\hat{\sigma}(\theta)$ based on 2000 runs.

(c) Now you should report the following results:

```
mean(theta.tot)
sd(theta.tot)
mean(see.tot)
```

What can you conclude from this?