1

$\Pi \Lambda H 20 - TE \Sigma T 12$

ΣΩΣΤΑ / ΛΑΘΟΣ

- (1) Ο αριθμός των τρόπων διανομής n μη διακεκριμένων αντικειμένων σε m διακεκριμένες υποδοχές είναι:
 - 1. Όσες οι διατάξεις n+m-1αντικειμένων από τα οποία τα n αποτελούν μια ομάδα μη διακεκριμένων μεταξύ τους αντικειμένων και τα υπόλοιπα μια άλλη.
 - 2. Όσες οι δυαδικές συμβολοσειρές με m-1μηδενικά και n άσσους.
 - 3. Όσες οι ακέραιες και θετικές λύσεις της εξίσωσης $x_1 + x_2 + \cdots + x_m = n + m$
 - 4. Όσες οι επιλογές μιας διατεταγμένης n-άδας με δυνατότητα επανάληψης από m διακεκριμένα αντικείμενα.
- (2) Οι 6-ψηφιες συμβολοσειρές που κατασκευάζονται με τα 10 ψηφία {0,1,2,...,9} είναι:
 - 1. 6^{10} αν δεν υπάρχουν περιορισμοί στην επιλογή των ψηφίων.
 - 2. 5 αν μόνο τα άρτια ψηφία μπορούν να χρησιμοποιηθούν.
 - 3. 6!/(3!5!) αν τα μόνα επιτρεπόμενα ψηφία είναι το 3 και το 5
 - 4. Όσοι ο συντελεστής του x^6 στην $(1 + x + x^2 + + x^{10})^6$
- (3) Έχουμε 6 βόλους εκ των οποίων οι 3 είναι πράσινοι, οι 2 είναι κόκκινοι και ο 1 είναι μαύρος
 - 1. Οι τρόποι τοποθέτησης τους σε μια σειρά είναι 6!
 - 2. Οι τρόποι τοποθέτησης τους σε μια σειρά που ξεκινούν με πράσινο βόλο και τελειώνουν με μαύρο βόλο είναι 4!/4
 - 3. Οι τρόποι επιλογής 1 βόλου είναι $\binom{6}{1}$
 - 4. Οι τρόποι διανομής των πράσινων βόλων σε 3 υποδοχές είναι $\binom{5}{3}$

- (4) Στους παρακάτω τύπους p,q,r είναι προτασιακές μεταβλητές.
 - 1. Ο τύπος $p \lor q \rightarrow \neg q$ είναι ικανοποίησιμος
 - 2. Ο τύπος $q \land \neg r \rightarrow (r \rightarrow r)$ είναι ταυτολογία.
 - 3. Ο τύπος $\neg p \land (q \lor \neg q \rightarrow p)$ είναι ικανοποίησιμος.
 - 4. Ο τύπος $\neg(q \rightarrow q)$ είναι αντίφαση.

- (5) Έστω φ, ψ προτασιακοί τύποι. Ποιες από τις παρακάτω ταυτολογικές συνεπαγωγές αληθεύουν;
 - 1. $\varphi \lor \psi \models \varphi \to \psi$
 - 2. $\neg \psi \rightarrow \neg \phi \models \phi \rightarrow \psi$
 - 3. $\neg(\varphi \rightarrow (\psi \rightarrow \varphi)) \mid = \neg\varphi$
 - 4. $\varphi \rightarrow \neg \varphi \models \psi \rightarrow \neg \varphi$

Β'ΜΕΡΟΣ: ΕΡΩΤΗΜΑΤΑ ΑΝΑΠΤΥΞΗΣ

Άσκηση 1: ΣΥΝΔΥΑΣΤΙΚΗ

(1)	Σε	ένα	τουρνουά	ποδοσφαίρου	λαμβάνουν	μέρος 16	δ διακεκριμένες	ομάδες.	Мε	πόσους	τρόπους	μπορού	ν να
χωι	οιστο	ούν ο	ι ομάδες σ	ε 4 ομίλους τω	ν 4 ομάδων	ο καθένας	ς, αν δεν παίζει μ	ρόλο η σε	ιρά	τοποθέτη	σης των ο	μάδων σ	τους
ομίλους, και (α) οι 4 όμιλοι θεωρούνται διακεκριμένοι, και (β) οι 4 όμιλοι θεωρούνται μη διακεκριμένοι;													

- (2) Έχουν επιλεγεί 10 διακεκριμένοι διαιτητές για να διαιτητεύσουν τους 32 διακεκριμένους αγώνες. Να βρείτε ττους τρόπους με τους οποίους μπορεί να γίνει ο ορισμός των διαιτητών, αν ο 1^{ος} διαιτητής πρέπει να οριστεί σε ακριβώς δύο αγώνες.
- (3) Έχουμε απεριόριστους άσπρους, κόκκινους και μαύρους βόλους. Γράψτε την γεννήτρια συνάρτηση και υποδείξτε τον όρο του οποίου ο συντελεστής δίνει τους τρόπους να επιλέξουμε 8 από αυτούς, έτσι ώστε οι άσπροι βόλοι να είναι τουλάχιστον όσοι οι μαύροι βόλοι και οι μαύροι βόλοι να είναι περισσότεροι από τους κόκκινους βόλους

Άσκηση 2: ΛΟΓΙΚΗ

(Ερώτημα 1) Δείξτε ότι $\{\neg \varphi \to \neg \psi, \neg \varphi \to (\neg \psi \to \psi)\}$ $\vdash \neg \varphi \to \psi$ όταν δεν επιτρέπεται να χρησιμοποιήσετε κανένα από τα θεωρήματα του προτασιακού λογισμού.

(Ερώτημα 2)

Εκφράστε με τύπους της ΠΛ κάθε μια από τις παρακάτω δηλώσεις:

- Ο Γιάννης έχει αυτοκίνητο.
- Δεν είναι δυνατόν ο Γιάννης να είναι ανήλικος και να έχει δίπλωμα οδήγησης.
- Αν ο Γιάννης δεν έχει δίπλωμα οδήγησης, τότε δεν έχει αυτοκίνητο.

Στη συνέχεια εξετάστε κατά πόσο το συμπέρασμα:

• Ο Γιάννης είναι ενήλικος και έχει δίπλωμα οδήγησης. είναι ταυτολογική συνέπεια των τριών προηγούμενων δηλώσεων - υποθέσεων