§1. Рациональные алгебраические дроби. Основные понятия

В этом и следующем параграфах рассматриваются только вещественные многочлены, их коэффициенты — вещественные числа. Вещественный многочлен $P_n(x) = \sum_{k=0}^n p_k x^{n-k}$, $p_k \in \mathbf{R}$, при вещественных x принимает вещественные значения. В предыдущем параграфе показано, что такой многочлен может иметь попарно сопряжённые комплексные корни с ненулевыми мнимыми частями.

Определение 1.1. Отношение $\frac{Q_m(x)}{P_n(x)}$ алгебраических многочленов $Q_m(x)$ и $P_n(x)$ степени m и n соответственно называют pациональной функцией.

Если степень знаменателя $n \ge 1$, то рациональную функцию называют рациональной алгебраической дробью, или, короче, рациональной дробью. В противном случае, т.е. при n = 0, рациональная функция представляет собой многочлен (ибо $P_0(x) \equiv p_0$, где $p_0 \in \mathbf{R}$).

Далее рассматриваются рациональные дроби $\frac{Q_m(x)}{P_n(x)}$, $n \ge 1$. В качестве области определения X такой функции выступает вся числовая ось, за вычетом конечного множества точек — вещественных корней знаменателя $P_n(x)$.

Рациональную дробь $\frac{Q_m(x)}{P_n(x)}$ называют *правильной*, если m < n, и *неправильной* в противном случае, т. е. при $m \ge n$. Неправильную рациональную дробь $\frac{Q_m(x)}{P_n(x)}$, поделив "уголком" многочлен $Q_m(x)$ на многочлен $P_n(x)$ (в общем случае с остатком), можно представить в виде суммы алгебраического многочлена и правильной рациональной дроби:

$$\frac{Q_m(x)}{P_n(x)} = T_{m-n}(x) + \frac{S_l(x)}{P_n(x)}.$$

Здесь $T_{m-n}(x)$ и $S_l(x)$ — алгебраические многочлены, причем степень l многочлена $S_l(x)$ меньше n .

Элементарными (простейшими) рациональными дробями называют рациональные дроби следующих четырех видов:

$$\frac{A}{x-a}$$
, $\frac{A}{(x-a)^k}$, $\frac{Bx+C}{x^2+bx+c}$, $\frac{Bx+C}{(x^2+bx+c)^k}$,

где A, B, C, a, b, c – вещественные числа, причем $\frac{b^2}{4} - c < 0$, так что

трехчлен

 $x^{2} + bx + c$ имеет мнимые корни; k — натуральное число, $k \ge 2$.