Sheet 9

Solutions to be handed in before class on Wednesday June 5

Problem 42. Let R be a root system in a finite-dimensional \mathbb{R} -vector space V. Let π be a basis of the root system.

- 1. Prove that V^{reg} is non-empty, and that there exists a vector $\gamma \in V^{\text{reg}}$ such that $(\gamma, \alpha) > 0$ for all $\alpha \in \pi$. (3 points)
- 2. Illustrate this in the rank 2 root systems, using solutions to earlier exercises. (1 point)
- 3. Take $\gamma \in V^{\text{reg}}$. Define

$$R^{+}(\gamma) := \{ \alpha \in R \mid (\alpha, \gamma) > 0 \},$$

$$\pi(\gamma) := \{ \alpha \in R^{+}(\gamma) \mid \alpha \text{ is not a sum of roots in } R^{+}(\gamma) \}.$$
(39)

Show that $\pi(\gamma)$ is a basis of the root system. (2 points)

Problem 43. Let R^{\vee} be the (Langlands) dual root system of R, and set $\pi^{\vee} := \{\alpha^{\vee} \mid \alpha \in \pi\}$. Prove that π^{\vee} is a basis of R^{\vee} . (2 points)

Problem 44.

- 1. Prove that the Weyl group of $\mathfrak{sl}_n(\mathbb{C})$ is isomorphic to S_n . (3 points)
- 2. Choose basis π for the root system. Prove that there is a unique element w_0 in the Weyl group sending R^+ to R^- . (2 points)
- 3. Show that any element in the Weyl group has a reduced expression, i.e. it is written as the product of s_{α} for $\alpha \in \pi$. (1 point)
- 4. Prove that any reduced expression for w_0 must involve all s_α for $\alpha \in \pi$.

 (2 points)

Optional problem 2. The length of a Weyl group element is the length of a reduced expression. Determine how many elements of each length there are, in the Weyl groups of type A_2 , B_2 , A_3 and D_4 . (2 points)