

高知工科大学 経済・マネジメント学群

計量経済学応用

4. 回帰分析

大内 勇生

https://yukiyanai.github.io

RCTの問題点

- どんな処置でもランダム化していいのか?
 - ▶ 病院に行くかどうか、実験者がコイントスで決めていいのか?
 - ▶ どんな処置を与えてもいいのか?
- ランダム化できない問題もあるのでは?
 - ▶ RCT ができない問題は研究できない・すべきでないのか?
 - ▶ 実験外の観察からしか得られない情報(データ)もあるのでは?
- ランダム化されていない処置の効果を推定したい!

今日の目標

- 因果推論に回帰分析を利用する方法を身につけよう
 - ▶ 回帰係数は条件付き期待値の差
 - ▶ 重回帰でセレクションバイアスを除去する
 - ▶回帰分析の「誤用」によるバイアス
 - 脱落変数バイアス
 - 処置後変数バイアス
 - ▶ DAG とバックドア基準

回帰分析について、今回説明しないこと

- 回帰分析の基本的な説明は「計量経済学」で学習済み
 - ▶ 因果推論についても少し説明したが、その部分は後で詳しく復習する
- 以下の内容は(おおむね)理解していると仮定する
 - ▶ 回帰分析とは何か
 - 回帰係数の求め方、最小二乗法
 - ▶ 回帰分析における統計的検定
 - 回帰分析で検証する仮説
 - 仮説の検証方法:p 値とは?
 - ▶ Rで回帰分析を実行する方法
 - lm() で回帰式を推定する
 - summary() または broom::tidy() で結果を読む
 - ggplot2::ggplot() または coefplot::coefplot() で推定結果を可視化する

回帰分析

因果効果の推定のために

記号の設定

- 個体 i = 1, 2, ..., N
- 結果変数(応答変数) Y_i
- 処置変数(説明変数) D_i
- 処置変数以外の説明変数(コントロール変数) $X_{1i}, X_{2i}, ..., X_{ki}$

期待值 (expectation)*

 $oldsymbol{\cdot} Y_i$ が連続型確率変数で確率密度関数が f(y) で表されるとき、Y の期待値 $\mathbb{E}[Y_i]$ は

$$\mathbb{E}[Y_i] = \int y f(y) \ dy$$

 $oldsymbol{\cdot} Y$ が離散型確率変数のとき、Yの期待値 $\mathbb{E}[Y_i]$ は

$$\mathbb{E}[Y_i] = \sum_{y} y \Pr(Y_i = y)$$

条件付き期待値*

- $X_i = x$ に条件付けたY の期待値 $\mathbb{E}[Y_i \mid X_i = x]$ は
 - ▶ Y が連続型変数のとき:

$$\mathbb{E}[Y_i \mid X_i = x] = \int y f(y \mid X_i = x) \ dy$$

▶ *Y* が離散型変数のとき:

$$\mathbb{E}[Y_i \mid X_i = x] = \sum_{y} y \Pr(Y_i = y \mid X_i = x)$$

。 $\mathbb{E}[Y_i \mid X_i]$ はXの関数

繰り返し期待値の法則*

- $\bullet \mathbb{E}\left[\mathbb{E}[Y_i \mid X_i]\right] = \mathbb{E}[Y_i]$
 - ▶ 離散の場合の証明 (連続の場合も同様に証明できる)

$$\mathbb{E}\left[\mathbb{E}[Y_i \mid X_i]\right] = \mathbb{E}\left[\sum_{y} y \Pr(Y_i = y \mid X_i)\right]$$

$$= \sum_{x} \left[\sum_{y} y \Pr(Y_i = y \mid X_i = x)\right] \Pr(X_i = x)$$

$$= \sum_{x} \sum_{y} y \Pr(Y_i = y \mid X_i = x) \Pr(X_i = x)$$

$$= \sum_{y} y \left[\sum_{x} \Pr(Y_i = y, X_i = x)\right]$$

$$= \sum_{y} y \Pr(Y_i = y) = \mathbb{E}[Y_i].$$

9

回帰 (regression)

- 結果変数の確率 [密度] を説明変数の関数で表す

$$p(Y \mid D, X_1, X_2, ..., X_k) = f(D, X_1, X_2, ..., X_k)$$

- ・結果変数 Y を説明変数に回帰する
 - ▶ 回帰関数: $\mathbb{E}[Y \mid D, X_1, X_2, ..., X_k]$
 - 回帰関数は、説明変数(処置およびコントロール)で条件付けた Y の条件付き期待値
 - ▶ 回帰関数が線形関数だと**仮定**すると

$$\mathbb{E}[Y_i \mid D_i, X_1, X_2, ..., X_k] = \alpha + \beta D_i + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \cdots + \gamma_k X_{ki}$$

10

单回帰 (simple regression)

- YをDに回帰する
 - ▶ 回帰関数: $\mathbb{E}[Y \mid D]$
 - 回帰関数は、説明変数 D で条件付けた Y の条件付き期待値
 - ▶ 回帰関数が線形関数だと**仮定**すると

$$\mathbb{E}[Y_i \mid D_i] = \alpha + \beta D_i$$

観測値は回帰関数と残差で構成される

$$Y_i \mid D_i = \mathbb{E}[Y_i \mid D_i] + (Y_i \mid D_i - \mathbb{E}[Y_i \mid D_i])$$

$$\blacktriangleright$$
 残差: $e_i \mid D_i = Y_i \mid D_i - \mathbb{E}[Y_i \mid D_i]$

$$\mathbf{L}\left[e_i\right] = 0$$

$$-\operatorname{Cov}(D_i, e_i) = \mathbb{E}[D_i e_i] = 0$$

$$e_i = Y_i \mid D_i - \mathbb{E}[Y_i \mid D_i]$$

$$Y_i \mid D_i = \mathbb{E}[Y_i \mid D_i] + e_i = \alpha + \beta D_i + e_i$$

「傾き」は条件付き期待値の差(1)

$$Y_i \mid D_i = \alpha + \beta D_i + e_i$$

- 。処置が二値変数のとき: $D_i \in \{0,1\}$
 - $\mathbb{E}[Y_i \mid D_i = 0] = \mathbb{E}[\alpha + \beta \cdot 0 + e_i] = \alpha$
 - $\mathbb{E}[Y_i \mid D_i = 1] = \mathbb{E}[\alpha + \beta \cdot 1 + e_i] = \alpha + \beta$
- $\mathbb{E}[Y_i \mid D_i = 1] \mathbb{E}[Y_i \mid D_i = 0] = \beta$
 - lackbrace eta: 処置 D の値がOから1に変わったとき、結果変数 Y の期待値がどれだけ増えるかを表す

「傾き」は条件付き期待値の差 (2)

$$Y_i \mid D_i = \alpha + \beta D_i + e_i$$

- ・処置 D_i が二値変数ではないとき: $D_i \in \mathbb{R}$
 - $\mathbb{E}[Y_i \mid D_i = d] = \mathbb{E}[\alpha + \beta \cdot d + e_i] = \alpha + \beta d$
 - $\mathbb{E}[Y_i \mid D_i = d+1] = \mathbb{E}[\alpha + \beta \cdot (d+1) + e_i] = \alpha + \beta d + \beta$
- $\mathbb{E}[Y_i \mid D_i = d + 1] \mathbb{E}[Y_i \mid D_i = d] = \beta$

因果効果と回帰直線の「傾き」(1)

$$Y_i \mid D_i = \alpha + \beta D_i + e_i$$

。処置が二値変数のとき: $D_i \in \{0,1\}$

$$\beta = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$
$$= \mathbb{E}[Y_i(1) \mid D_i = 1] - \mathbb{E}[Y_i(0) \mid D_i = 0]$$

▶回帰直線の傾き:処置群と統制群の観測された平均値 の差

因果効果と回帰直線の「傾き」(2)

• 観測された平均値の差:

$$\beta = \mathbb{E}[Y_i(1) \mid D_i = 1] - \mathbb{E}[Y_i(0) \mid D_i = 0]$$

$$= \mathbb{E}[Y_i(1) \mid D_i = 1] - \mathbb{E}[Y_i(0) \mid D_i = 1]$$

$$+ \mathbb{E}[Y_i(0) \mid D_i = 1] - \mathbb{E}[Y_i(0) \mid D_i = 0]$$

$$= \text{ATT} + セレクションバイアス}$$

- ▶ 平均独立が成り立つなら:

$$\beta = \mathbb{E}[Y_i(1) \mid D_i = 1] - \mathbb{E}[Y_i(0) \mid D_i = 0]$$

$$= \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$$

$$= \mathsf{ATE}$$

ここで考えている関係

17

セルフセレクションがあったら?

重回帰 (multiple regression)

- セレクションを考慮に入れた回帰式を作る
 - ▶ Y は D と X の関数
 - 回帰関数:D と X で条件付けた Y の期待値

$$\mathbb{E}[Y_i \mid D_i, X_i] = \alpha + \beta D_i + \gamma X_i$$

$$Y_i | D_i, X_i = \mathbb{E}[Y_i | D_i, X_i] + e_i = \alpha + \beta D_i + \gamma X_i + e_i$$

「傾き」は条件付き期待値の差 (3)

$$Y_i \mid D_i, X_i = \alpha + \beta D_i + \gamma X_i + e_i$$

- ・処置が二値変数のとき: $D_i \in \{0,1\}$
 - $\mathbb{E}[Y_i \mid D_i = 0, \ X_i = x] = \mathbb{E}[\alpha + \beta \cdot 0 + \gamma x + e_i] = \alpha + \gamma x$
 - $\mathbb{E}[Y_i \mid D_i = 1, \ X_i = x] = \mathbb{E}[\alpha + \beta \cdot 1 + \gamma x + e_i] = \alpha + \beta + \gamma x$
- $\mathbb{E}[Y_i \mid D_i = 1, X_i = x] \mathbb{E}[Y_i \mid D_i = 0, X_i = x] = \beta$
 - $\beta: X = x$ のとき、処置 D の値が0から1に変わると結果変数 Y の期待値はどれだけ増えるかを表す

因果効果と重回帰における「傾き」

$$\beta = \mathbb{E}[Y_i \mid D_i = 1, \ X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, \ X_i = x]$$

$$= \mathbb{E}[Y_i(1) \mid D_i = 1, \ X_i = x] - \mathbb{E}[Y_i(0) \mid D_i = 0, \ X_i = x]$$
ここで

$$\begin{cases} \mathbb{E}[Y_i(1) \mid D_i = 1, \ X_i = x] = \mathbb{E}[Y_i(1) \mid D_i = 0, \ X_i = x] \\ \text{and} \\ \mathbb{E}[Y_i(0) \mid D_i = 1, \ X_i = x] = \mathbb{E}[Y_i(0) \mid D_i = 0, \ X_i = x] \end{cases}$$

21

が成り立つなら、

$$\beta = \mathbb{E}[Y_i(1) \mid X_i = x] - \mathbb{E}[Y_i(0) \mid X_i = x]$$
$$= \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = x]$$

ightharpoonup 回帰係数 ho :X で条件付けた ATE

条件付き平均独立

• 条件付き平均独立 (conditional mean independence; conditional mean exchangeability)

$$\mathbb{E}[Y_i(1) \mid D_i = 1, X] = \mathbb{E}[Y_i(1) \mid D_i = 0, X]$$
 かつ

$$\mathbb{E}[Y_i(0) \mid D_i = 1, X] = \mathbb{E}[Y_i(0) \mid D_i = 0, X]$$

• 条件付き平均独立が成り立つとき:

$$\mathbb{E}[Y_i \mid D_i = 1, X_i] - \mathbb{E}[Y_i \mid D_i = 0, X_i]$$

$$= \mathbb{E}[Y_i(1) \mid D_i = 1, X_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, X_i]$$

$$= \mathbb{E}[Y_i(1) \mid X_i] - \mathbb{E}[Y_i(0) \mid X_i]$$

$$\mathbb{E}\left(\mathbb{E}[Y_i(1) \mid X_i] - \mathbb{E}[Y_i(0) \mid X_i]\right) = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)] = ATE$$

22

条件付き独立・条件付き交換可能性

- セレクションバイアスの原因が X だけで、X の影響さえ取り除けば、D の値はランダムに決まると**仮定**すると:潜在的結果と処置は、
 - ▶ 条件付き独立: {*Y*(0), *Y*(1)} ▮ *D* | *X*
 - 》条件付き交換可能性: $p(Y(0), Y(1) \mid D = 1, X) = p((Y(0), Y(1) \mid D = 0, X) = p((Y(0), Y(1) \mid X))$
- 。セレクションバイアスの原因が $X_1, X_2, ..., X_k$ なら、
 - ▶ 条件付き独立: $\{Y(0), Y(1)\} \perp D \mid X_1, X_2, ..., X_k$
- 条件付き独立 ⇒ 条件付き平均独立
- 調査・観察研究の問題:セレクションバイアスの原因を全て特定し、 観察するのが難しい

23

無視可能性 (ignorability)*

・強い意味での無視可能性 (strong ignobility) の仮定:観測された共変量に条件付ければ、潜在的変数と処置の割付けは独立

$$p(D \mid Y(0), Y(1), X) = p(D \mid X)$$
 強い意味での無視可能性

$$\Leftrightarrow p(Y(0), Y(1) \mid D, X) = p(Y(0), Y(1) \mid X)$$
 条件付き交換可能性

$$\Rightarrow p(Y(D) \mid D, X) = (Y(D) \mid X)$$
 ($D = 0,1$) 弱い無視可能性

▶ 処置の割付けは観測された変数だけに依存する (selection on observables) という仮定

セレクションと重回帰

- ・セレクションバイアスがありそうな調査・観察データでも、 重回帰によってATEを推定できる
- ・そのためには、以下の2つが必要
 - ▶ セレクションを生み出す変数を観測する
 - ▶セレクションを生み出す変数を回帰式に含める
- これができれば、セレクションバイアスは除去できる
 - ▶完全にできない場合、セレクションバイアスをゼロにする ことはできないが、減らすことはできる
- ・セレクションバイアスを生み出す変数:交絡因子(共変量)

25

回帰分析のバイアス

脱落変数バイアス

セレクションバイアスがあったら?

セレクションバイアスがあったら?

28

回帰モデルの定式化

- セレクションは X によって生じると仮定する
 - ▶ 正しい定式化 (long regression)

$$Y_i = \alpha^l + \beta^l D_i + \gamma^l X_i + e_i \tag{1}$$

▶ セレクションを考慮しない定式化 (short regression)

$$Y_i = \alpha^s + \beta^s D_i + u_i \tag{2}$$

▶ *X* を *D* に回帰する

$$X_i = \alpha_0 + \lambda D_i + \nu_i \tag{3}$$

セレクションを無視する

- 正しい式から X を消去する
- (1) に (3) を代入する

$$Y_i = \alpha^l + \beta^l D_i + \gamma^l X_i + e_i$$

$$= \alpha^l + \beta^l D_i + \gamma^l (\alpha_0 + \lambda D_i + \nu_i) + e_i$$

$$= \alpha^l + \gamma^l \alpha_0 + (\beta^l + \gamma^l \lambda) D_i + e_i + \gamma^l \nu_i$$

30

(4)

脱落変数パイアス (OVB)

- 脱落 [欠落] 変数バイアス: omitted variable bias
- ・式(2) と (4) :式 (1) から X_i が脱落している
 - ▶ *Y* を *D* に回帰したときの *D* の係数:

$$-\beta^s = \beta^l + \gamma^l \lambda$$

- $_{-}$ 脱落変数バイアス: $\gamma^l \lambda$
 - $\star \gamma^l : X と Y の共変関係$
 - ◆ λ: X と D の共変関係

脱落変数パイアスと交絡

- ・脱落変数バイアス: $\gamma^l \lambda$
 - $\gamma^l = 0$ または $\lambda = 0$ ならば、このバイアスは生じない
 - $\gamma^l \neq 0$ かつ $\lambda \neq 0$ のとき、X を 交絡因子(共変量)と呼ぶ
- 交絡をコントロールしないと
 - ▶ 脱落変数バイアスが生じる
 - ▶ つまり、セレクションバイアスが除去されずに残る

脱落変数バイアスの例

- 身長とプロ野球の観戦時間の関係は?
 - ▶プロ野球の観戦時間は身長を伸ばす?
 - ▶理論的に考えると、おそらく No!
 - ▶しかし、回帰分析をすると…
 - Yes ???

(架空のデータ)

何が問題か?

- 性別が交絡になっている
- ・性別が野球の観戦時間 (X) と身長 (Y) の両者に影響を及 ぼす
 - ▶ 男性のほうが野球を観る
 - ▶ 男性のほうが身長が高い

男性型脱毛症と新型コロナウィルス

- 男性型脱毛症 [Androgenetic Alopecia] (あるいはその原因となるホルモン [androgen]) は、新型コロナウィルスの重症化リスクを高める! (???)
 - Wambier et al. 2020. "Androgenetic Alopecia Presents in the Majority of Hospitalized COVID-19 Patients," https://doi.org/10.1016/ j.jaad.2020.05.079
 - ▶ Goren et al. 2020. "A Preliminary Observation: Male Pattern in Hair Loss among Hospitalized COVID-19 Patients in Spain", https://doi.org/10.1111/jocd.13443
- 因果効果は疑わしい
 - ▶ 年齢がコントロールされていない!
 - 参考: https://www.forbes.com/sites/marlamilling/2020/06/06/bald-men-at-higher-risk-of-severe-coronavirus-symptoms/#2449f87729e4

37

回帰分析におけるコントロール

- コントロール変数
 - ▶ RCT におけるブロック変数の役割を果たす
- 重回帰がやっていること
 - ▶ コントロール変数によるブロッキング
 - ▶ ブロックごとに処置効果を計算
 - ▶ ブロックごとの処置効果の加重平均を計算
 - -X=xとなるブロックの重み
 - $ATE: Pr(X_i = x),$
 - \rightarrow ATT: $Pr(X_i = x \mid D_i = 1)$
 - ❖ 詳しくは、Angrist and Pischke (2008) 3.3.1 節を参照

コントロール変数による条件付け

- 交絡因子 X を統制 (コントロールする)
- 。交絡因子は複数あることも: $X_1, X_2, ..., X_k$
 - ▶ 私たちが比較したい個体が様々な面で異質なとき、複数の 交絡を統制する必要がある
- 複数の交絡を統制するためには、標本サイズはある程度大きくないといけない
 - ▶ 標本サイズが小さいと、各ブロックに属する個体数が少なくなる
 - ▶ 処置の値が異なる個体が存在しないブロックの重みはゼロ

39

回帰分析のバイアスⅡ

処置後変数バイアス

処置の影響を受けた変数を含む重回帰

• Y を D と X に回帰する

$$Y_i = \alpha + \beta D_i + \gamma X_i + e_i$$

- $\blacktriangleright D$ が Y に与える処置効果を知りたいわけではないなら、何も問題ない
 - XがYに与える影響を知りたいなら、正しい推定
- しかし、D が Y に与える処置効果を知りたいなら、この回帰式は問題

41

処置後変数

- X は D の処置後変数 (post-treatment variable)
 - $\triangleright D$ の処置効果の一部は、X を通じて Y に伝わる

$$X_i = \alpha_0 + \lambda D_i + u_i$$

- これを先程の式に代入し、Xを消去する

$$Y_i = \alpha + \beta D_i + \gamma X_i + e_i$$

$$= \alpha + \beta D_i + \gamma (\alpha_0 + \lambda D_i + u_i) + e_i$$

$$= (\alpha + \alpha_0) + (\beta + \gamma \lambda) D_i + (\gamma u_i + e_i)$$

処置後変数バイアス

- Yを Dと Xに回帰したときの推定値: β
- Y を D のみに回帰したときの推定値: $\beta + \gamma \lambda$
 - ▶ これが、D のY に対する処置効果
- . 処置後変数によって生じたバイアス: -γλ
 - ▶ γ と λ の符号が同じ:バイアスにより過小推定
 - \mathbf{r} と λ の符号が異なる:バイアスにより過大推定
 - - $-\lambda = 0$ ならX はD の処置後変数ではない

重回帰における コントロール変数の選び方

どの変数を統制する?

- 重回帰で因果推論を行うために使う変数は何?
 - ▶結果変数(理論における結果):絶対に必要
 - ▶ 処置変数(理論における原因):絶対に必要
 - ▶ 統制変数:必要かもしれない(ほとんどの場合必要)
 - どの変数を統制する?
 - いくつの変数を統制する?

バックドア基準

- どの変数を統制すべきか教えてくれる基準
- この用語は、因果推論におけるグラフィカルモデリング で使われる
 - ▶ DAG: directed acyclic graph、有向非巡回グラフ
 - ▶回帰分析でもこの考え方は便利
 - 詳しくは、以下を参照
 - ◆ 黒木学, 2017, 『構造的因果モデルの基礎』共立出版.
 - ◆ Pearl, J. et al. (落海 訳) 2019, 『入門 統計的因果推論』朝倉書店.

46

バックドア基準の基礎

- D: 処置変数 [treatment] (介入、刺激、暴露 [exposure]、独立変数)
- Y:結果変数 [outcome] (応答変数、目的変数、従属変数)
- X:統制変数 (コントロール、交絡 [confounder]、 共変量 [covariate])

交絡変数とバックドア経路 (1)

- DAG を描いて考える
- バックドア経路: ある変数がD とYの両者の原因となるような 経路
 - \rightarrow D \leftarrow X1 \rightarrow X2 \rightarrow Y
- 交絡変数 (confounding variables, confounders): DとYの両者の原因となる変数
 - ▶ X1

交絡変数とバックドア経路 (2)

- 右の図にバックドア経路は存 在しない
 - ▶ D ←X1 → X2 はバックドア 経路ではない!
- 交絡変数はない
 - ▶ X1 は交絡ではない

交絡変数とバックドア経路 (3)

- 右の図にバックドア経路は存 在しない
 - ▶ X1 → X2 → Y はバックド
 ア経路ではない
- 交絡変数はない

バックドアを閉じたい

- バックドア経路:
 - \rightarrow D \leftarrow X1 \rightarrow X2 \rightarrow Y
- バックドアを閉じたい
- どうすればいい?

©2020 Yuki Yanai

51

バックドアを閉じる

- バックドア経路にある変数を コントロールすれば良い!
- バックドア経路:
 - \rightarrow D \leftarrow X1 \rightarrow X2 \rightarrow Y
- ・この例では、閉じ方は3通り
 - ▶ X2 をコントロール
 - ▶ X1 をコントロール
 - ▶ X1とX2 をコントロール

変数 D, Y, X の関係

- •Yを結果、Dを原因とする
- 3つの可能性
 - 1. X は D と Y の交絡変数 (confounder) である
 - 2. X は D と Y の合流点 (collider) である
 - 3. X は D と Y の媒介変数(mediator, 中間因子) である

交絡変数X

合流点 X

媒介変数X

Xが交絡変数のとき

- ・バックドアが開いていると、Zの変化がXとYの変化を同時に引き起 こす
- Y を Xだけに回帰すると、バイアスが生じる

Xが交絡ではない場合(1)

• Xの変化は、Dの変化には影響しない

X が交絡ではない場合 (2)

• Xの変化は、Yの変化には影響しない

バイアスを取り除くには?

- Xの値を「固定」すればよい
 - ▶ Xをコントロールした重回帰分析

バックドアを閉じる

Xなしの回帰

Xを含む回帰

バックドアが開いている:

X が考慮されていないので、バックドア を通じたXの影響をDの影響だと見誤る

バックドアが閉じて(塞がれて)いる:

X が考慮されているので、バックドア経路はDの影響と見なされない

回帰分析における交絡変数の扱い方

- 交絡はコントロールせよ!
 - ▶ 交絡をコントロールすれば、セレクションバイアスは 除去できる
 - ▶ 交絡をコントロールし損ねると、<mark>脱落変数バイアス</mark> (omitted variable bias; OVB) が生じる

62

Xが合流点のとき

・Xを無視した単回帰で、DのYに対する因果効果を推定できる

63

合流点を統制すると何が起きる? (1)

例:アメリカ合衆国の大学入試

- 入試の合否は、数学の点数とボランティア経験の評価によって決まる (架空のデータ)
 - ▶ D から Y への因果効果はない

合流点を統制すると何が起きる? (2)

例:アメリカ合衆国の大学入試

・合流点Xを統制すると、重回帰で因果効果ではない効果を捉えて しまう

合流点とバックドア経路

Xを含む回帰

Zを含まない回帰

バックドアが「開いて」しまう:

DとYに関係はないのに、経路が繋 がってしまう バックドアは存在しない

回帰分析における合流点の扱い方

•理論的に考えて合流点だと思われる変数は、回 帰分析から外す

67

Zが媒介変数のとき

• Zを含まない単回帰モデルで、因果効果を推定できる

媒介変数を統制すると何が起きる? (1)

69

媒介変数を統制すると何が起きる? (2)

- 媒介変数 X を統制すると、DからYの経路の一部が塞がれてしまう
 - ▶ 因果効果が過小評価される:処置後変数バイアス

回帰分析における媒介変数の扱い方

•理論的に考えて媒介変数(中間因子)だと思われる変数は、回帰分析から外す

変数の数が多いとき

- 右の図のバックドア経路
 - \blacktriangleright D \leftarrow X1 \rightarrow X2 \rightarrow Y
 - ▶ D ← X3 → Y
- バックドア経路をすべて閉じればよい
 - ▶ X1とX3を統制する
 - ▶ X2とX3を統制する
 - ▶ X1とX2とX3 を統制する

その他の場合は?

- 交絡でもなく、合流点でもなく、媒介変数でもないZを 統制すると何が起きる?
- 推定の効率性が落ちる(標準誤差が大きくなる)が、推 定にバイアスは生じない

73

因果推論における回帰分析

- 回帰分析は、統計的因果推論における基本ツール
 - ▶ RCT でも使える
 - ▶ 重回帰分析でセレクションバイアスを除去できる(こともある)
 - 処置後変数バイアス(媒介変数、合流点の誤投入)に 注意
 - ▶ この授業でこれから学ぶ手法は、回帰分析の応用

因果推論における回帰分析の問題点

- 「コントロール」によってセレクションバイアスを取り 除けるとは限らない
 - ▶ 交絡因子を誤解している
 - 交絡を交絡ではないと判断:脱落変数バイアス
 - 処置後変数を交絡だと判断:処置後変数バイアス
 - ▶ 交絡が未観測・観測不能
 - どうすればいいの?

次回予告

Topic 5. 傾向スコア