图论及其应用(J.A.邦迪_U.S.R)

第一章 图,子图

1.图, 简单图

• 图 (graph) ,指一个三元组 ($V(G), E(G), \varphi_G$) 。

V(G) 是非空的<mark>顶点集</mark>;

E(G) 是<mark>不与 V(G)相交的</mark>边集;

 φ_G 是关联函数。

example: e是一条边, μ 和 ν 是顶点。

 $arphi_G(e)=\mu
u$,表示e连接顶点 μ 和u, μ 和u称为e的端点。

• 关联: 一条边的端点, 称为与这条边关联。反之亦然。

• 相邻:同一条边的两个顶点 or 同一顶点关联的两条边。

• 环:端点重合为一点的边。

• 连杆:端点不相同的边。

example: e_3 是环, 其余都是连杆。

• 有限图: 顶点集、边集都是有限的。

• 平凡图:只有一个顶点。

• 非平凡图:除了平凡图,就是非平凡图。

• 简单图: 1. 没有环。2.没有两条连杆连接同一对顶点。

2.图的同构

• 恒等:完全一样。标号都一样。

• 同构: 图形一样(或者看起来一样), 顶点和边的标号不一样

图G和H同构,记为 $G \cong H$ 。

通过一个映射对 (θ,ϕ) 来表示G和H同构。

 (θ,ϕ) : 两个一一映射

 $heta:V(G) o V(H), \phi:E(G) o E(H),$

使得 $\psi_G(e) = uv$ 当且仅当 $\psi_H(\phi(e)) = \theta(u)\theta(v)$

简单理解:边对边,点对点。

• 完全图:每一对不同的顶点都有一条边相连的<mark>简单图</mark>。

n个顶点的完全图<mark>只有一个</mark>,记为 K_n 。

一个 K_5 的图

• 空图:没有任何边。

偶图: 顶点集可以分成两个非空子集X和Y,使得每条边都有一个顶点在X中,另一个端点在Y中。这种分类(X,Y),称为二分类。

• 完全偶图: 具有二分类的简单偶图,且X中的每个顶点,与Y中的每个顶点相连。

3.关联矩阵、邻接矩阵

关联矩阵: $M(G) = [m_{ij}]$

 $v_1,v_2,\ldots,v_
u$ 和 $e_1,e_2,\ldots,e_\epsilon$ 分别表示G的顶点和边。 m_{ij} 是 v_i 和 e_j 相关联的次数 (0, 1 or 2)。

		e,							
0 ,	-1	1	0	0	1	0	1		
v,	1	1	1	0	0	0	0		
v,	0	0	1	1	0	0	l		
v.	0	0	0	1	1	2	0		
v ₁ 1 1 0 0 1 0 1 v ₂ 1 1 1 0 0 0 0 v ₃ 0 0 1 1 0 0 1 v ₄ 0 0 0 1 1 2 0 M(G)									

邻接矩阵: 是一个v*v的矩阵 $A(G)=[a_{ij}]$, 其中 a_{ij} 是连接 v_i 和 v_j 的边的数目。

	U,	v ₂	v,	U4				
υ, 	0	2	1	1				
υ ₂ υ,	2	0	1	0				
υ,	1	1	0	1				
0 4	1	0	1	ı				
A(G)								

4.子图

- 图H是G的<mark>子图</mark>: $H \subseteq G$ 。 $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, ψ_H 是 ψ_G 在E(H)上的限制。 (类似集合中子集的定义)
- H是G的真子图: $H\subset G$ 。 $H\subseteq G$ 但 $H\neq G$ 。 (类似集合中真子集的定义)
- H是G的子图, G是H的母图。

• 生成子图 (或生成母图) : 满足 $\overline{V(H)}=V(G)$ 的子图 (或母图) H。

• 导出子图: V'是V的一个<mark>非空子集</mark>,以V'为顶点集,两端点均在V'中的边的全体为边集所组成的子图。

记法: G[V']称为G的导出子图。

G(V/V'),记为G-V'。 (从G中删除V'中的顶点、还有跟这些边相关的边得到的子图)

• 边导出子图: E'是E的一个<mark>非空子集</mark>,以E'为边集,E'中边的端点全体为顶点集所组成的子图。

记法: G[E']称为G的边导出子图。

G-E': 从G中删除E'中的边所得到的子图。

G+E': 在G上添加边集E'。

• 不相交: $G_1, G_2 \in G$ 的子图, $G_1 \cap G_2 \cap G_2 \cap G$

• 边不重: $G_1 \cap G_2 \cap G_2$

5.顶点的度

图G的顶点 v 的度: $d_G(v)$, 指G中与v关联的边的<mark>数目</mark>。

环算作<mark>两条边</mark>。

顶点的最小度: $\delta(G)$; 最大度: $\Delta(G)$ 。

定理: $\sum_{v \in V} d(v) = 2\epsilon$ 。所有顶点的度数为边数的2倍。

推论:任何图中,奇点<mark>个数</mark>为偶数。(奇数度的点为奇点,偶数度的点为偶点)

k正则:图G中,若 $\forall v \in V$,都有d(v) = k。

正则图是对某个k而言的k正则图。

6.路和连通

G的一条途径(或通道):指一个<mark>有限非空</mark>序列 $W = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ 。其中 e_i 的端点是 v_{i-1} 和 $v_i(1 \le i \le k)$, v_0 、 v_k 分别为W的起点和终点, v_1,v_2,\ldots,v_{k-1} 为内部顶点。整数k 为W的长。

 $W = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ 逆转后,得到 $W^{-1} = v_k e_k v_{k-1} \dots e_1 v_0$ 。

 $W' = v_k e_{k+1} v_{k+1} \dots e_t v_t$,将W和W'连接起来,得到 $v_0 e_1 \dots e_t v_t$,记为WW'。

节: W的一段连续的子序列,也是一条途径,称为 (v_i, v_j) 节。

迹: 途径W的边 e_1, e_2, \ldots, e_k 互不相同。

路: 途径W的顶点 v_0, v_2, \ldots, v_k 互不相同。

途径: uavfyfvgyhwbo

迹: wcxdyhwbugy

路: xcwhyeuav

连通: G中存在(u, v)路。

分支: 将V分成非空子集 $V_1, V_2, \ldots, V_{\omega}$, 使得两个顶点u和v是连通的, 当且仅当他们<mark>属于同</mark> 一个子集 V_i 。

子图 $G[V_1], G[V_2], \ldots, G[V_{\omega}]$ 称为G的分支。

G<mark>只有一个</mark>分支时,G是连通的;

(a) 一个连通图;

(b) 一个有三个分支的不连通图

7. 圈

途径是闭的: 1、起点终点相同。2、长度是正的。

圈: 1、是一条闭迹。2、起点和内部顶点互不相同。

k圈:长度是k的圈。

奇圈: k是奇数。

偶圈: k是偶数。

闭迹:ucvhxgwfwdvbu

图: xaubvhx

定理:一个图是偶图,当且仅当它不包含奇圈。

8.最短路径问题

Dijkstra迪杰斯特拉算法

9.Sperner引理

该引理涉及到把一个单纯形(线段,三角形,四面体等)分解为较小的单纯形的问题。

二维的情况:设T是平面上的一个闭三角形。

单纯剖分: 把T分解成有限个较小的三角形的剖分,任意两个相交的三角形,有一个顶点or整个一条边是公共的。

(a) 三角形的一个单纯剖分

正常标号:一个"大"三角形 $V_1V_2V_3$,对其进行剖分。

将各个顶点按以下规定进行标号: 1.顶点 V_i 的标号为i, i = 1, 2, 3;

2.在 V_iV_j 边上的顶点只可以用i, j作为标号;

3.不在"大"三角形边上的顶点可以随意以1、2、3作为标号。

异标三角形: 剖分中的三角形, 其三个顶点具有不同的标号。

sperner引理:三角形的每个正常标号的单纯剖分中都有奇数个异标三角形(上图中阴影部分)