

MAT255I Análisis Funcional

Sebastián Guerra (sebastian.guerrap@uc.cl) Profesor: Nikola Kamburov (nikamburov@mat.uc.cl)

Apuntes aún no revisados, por favor no distribuir

Versión: 11 de septiembre de 2023

Índice general

1.	Intr	o al Análisis Funcional	3
	1.1.	¿Qué estudia el Análisis Funcional?	3
	1.2.	Motivación	4
	1.3.	Objeto central: espacio de Banach	4
	1.4.	Resultados que vamos a ver	5
2.	Esp	acios de Banach	7
	2.1.	Nociones básicas	7
		2.1.1. Espacios Normados	7
		2.1.2. Espacios de Banach	10
	2.2.	Operadores y funcionales	13
		2.2.1. Operadores Lineales	13
		2.2.2. Espacio Dual	17
		2.2.3. Espacio cociente	20
		2.2.4. Completación de espacios normados	22
	2.3.		22
			22
			26
			27
			30
3.	Esp	acios de Hilbert	32
	3.1.	Conceptos Básicos	32
			35
	3.3.	· · · · · · · · · · · · · · · · · · ·	39
	3.4.		40
	3.5.		47

Intro al Análisis Funcional

1.1. ¿Qué estudia el Análisis Funcional?

Estudia los espacios vectoriales de dimensión infinita y las transformaciones lineales entre ellos.

Definición 1.1.1. Un espacio vectorial V sobre \mathbb{K} campo de escalares tiene dimensión infinita si $\forall n \in \mathbb{N}$ hay n elementos de V que son linealmente independientes sobre \mathbb{K}

Ejemplo: $V = C([0,1], \mathbb{R}) = \text{funciones reales continuas en } [0,1].$ $\{1, x, \dots, x^{n-1}\} \subseteq V$ es linealmente independiente sobre \mathbb{R} .

Demostración.
$$\sum_{k=0}^{n-1} a_k x^k \equiv 0, \ a_k \in \mathbb{R}.$$

Reconocemos que existe la operación $\frac{d}{dx}$ definida en $C^{\infty}([0,1],\mathbb{R})$, funciones suaves, y la operación evaluar en x=0.

Evaluando en $x = 0 \rightarrow a_0 = 0$. Derivamos a los lados.

$$\sum_{k=1}^{n-1} a_k k x^{k-1} \equiv 0$$

y ahora evaluamos en x = 0:

$$a_1 = 0$$

...

Demostración alternativa. Reconocemos que hay un producto interno en $V = C([0,1],\mathbb{R})$

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

$${f_k = \sin(\pi kx)}_{k=1}^n \subseteq V$$

$$\langle \sin(\pi kx), \sin(\pi lx) \rangle = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = l \end{cases}$$

$$S = \sum_{k=1}^{n} a_k f_k \equiv 0$$

$$0 = \langle S, f_k \rangle = \left\langle \sum a_k f_k, f_l \right\rangle = a_l \langle f_0, f_l \rangle = \frac{1}{2} a_l$$

$$\implies a_l = 0, \forall l = 1, \dots, n$$

1.2. Motivación

Ejemplo (Ecuación de Poisson):

$$\begin{cases} \Delta u = f & \text{en } \Omega \subseteq \mathbb{R}^n \\ u = 0 & \text{en } \partial \Omega \end{cases}$$

Seba Aañdir dibujo

El problema se reformula así:

$$\begin{cases} D = \Delta : x \to Y \ni f \\ Du = f \end{cases}$$

tiene una solución $u \in X$ para ciertos espacios X, Y apropiados.

El Análaisis Funcional busca construir teoría más general que aplica para todos los problemas que comparten las mismas características topológicas/algebraicas/métricas.

1.3. Objeto central: espacio de Banach

Definición 1.3.1 (Espacio de Banach). $(V, ||\cdot||)$ es un espacio de Banach si es un espacio normado completo (clave para sacar límites).

 $\{\text{Espacios de Hilbert}, (V, \langle \cdot, \cdot \rangle) completos\} \subseteq \{\text{Espacios de Banach}, (V, ||\cdot||)\} \subseteq \{\text{Espacios métricos}, (V, d) control of the second of the secon$

Seba Arreglar

Lógica de inclusiones

1. $\langle \cdot, \cdot \rangle$ induce una norma $||\cdot||$

$$||v|| = \langle v, v \rangle^{1/2}$$

2. $||\cdot||$ induce una métrica $d(\cdot,\cdot)$

$$d(v, w) = ||v - w||$$

1.4. Resultados que vamos a ver

1. Resultados que se parecen a los teoremas que conocemos en la situación de dimensión finita.

Ejemplo: Cada funcional lineal en \mathbb{R} $(l : \mathbb{R}^n \to \mathbb{R})$ se puede representar como $l(v) = v \cdot w$ para algún vector (único) $w \in \mathbb{R}^n$.

En la situación de dimensión ∞ , se tiene el Teorema de Representación de Riesz:

Teorema 1.4.1 (Representación de Riesz). Sea (V, \langle, \rangle) un espacio de Hilbert $y \mid V \rightarrow \mathbb{R}$ un funcional lineal continuo . Entonces existe un único $w \in V$, tal que

$$l(v) = \langle v, w \rangle$$

2. Resultados son muy diferentes de la situación en dimensión finita. contraintuitivos .

Ejemplo: $\overline{B_1(0)} \subseteq \mathbb{R}^n$ es compacta (Heine-Borel). En dim $V = \infty$, este teorema es falso.

Proposición 1.4.2. Sea V un espacio de Banach y sea $B = \{v \in V : ||v|| \le 1\}$. B es compacto en $V \iff \dim V < \infty$

Ejemplo: En particular, la bola unitaria cerrada en

$$B \subseteq L^p([0,1]), \quad p \in (1,\infty)$$

no es compacta.

⇒ motiva la definición de topologías débiles.

Espacios de Banach

2.1. Nociones básicas

2.1.1. Espacios Normados

Definición 2.1.1 (Espacios métricos). Un espacio métrico (X, d) y $d: X \times X \to [0, \infty)$ la métrica que satisface:

- 1. $d(x,y) = 0 \iff x = y$
- 2. (simetría) d(x,y) = d(y,x)
- 3. (Designaldad triangular) $d(x,y) \le d(x,z) + d(z,y)$

Definición 2.1.2. Sea V un espacio vectorial (sobre \mathbb{R} o \mathbb{C}). Una norma en V es una función $||\cdot||:V\to [0,\infty)$ que satsiface:

- 1. $||v|| = 0 \iff v = 0$
- $2. ||\lambda v|| = |\lambda| \cdot ||v||$
- 3. (Desigualdad triangular) $||v+w|| \le ||v|| + ||w||$

Una función $||\cdot||:V\to [0,\infty)$ que satisface solo 2. y 3. se llama semi-norma .

Una espacio vectorial V con una norma se llama Espacio normado $(V, ||\cdot||)$.

 $\textbf{Proposición 2.1.1.} \ (V, ||\cdot||) \ \textit{define un espacio métrico con métrica} \ d(v, w) := ||v-w||.$

Ejemplo: $V = \mathbb{R}^n$, \mathbb{C}^n tiene la estructura de espacio normado:

$$|x|_2 := \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}, \quad x = (x_1, \dots, x_n)$$

■ En \mathbb{R}^2 , $|(x_1, x_2)| := |x_1|$ define una semi-norma:

$$|(x_1, x_2)| = 0 \iff x_1 = 0, x_2 \in \mathbb{R}$$

 $|x|_{\infty} = \max_{k=1,\dots,n} \{x_k\}$ es una norma.

$$|x|_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad p \in [1, \infty)$$

Seba Añadir dibujos de norma infinito y norma 1

Proposición 2.1.2. En \mathbb{R}^n y \mathbb{C}^n todas normas son equivalentes: si $||\cdot||_1$, $||\cdot||_2$ son 2 normas, existe c > 0 tal que

$$\frac{1}{c}||v||_2 \le ||v||_1 \le c||v||_2, \quad \forall v \in V$$

Definición 2.1.3. Sea X un espacio métrico. Definimos

$$C_{\infty}(X) := \{ f : X \to \mathbb{C} \text{ continuas y acotadas} \}$$

Ejemplo: $C_{\infty}([0,1]) = C([0,1])$ (funciones continuas)

Proposición 2.1.3. $||f||_{\infty} := \sup_{x \in X} |f(x)|$ define una norma en $C_{\infty}(X)$.

Demostración. 1. $||f||_{\infty} = 0 \iff f(x) = 0 \forall x \in X$.

2.

$$||\lambda f||_{\infty} = \sup_{x} |\lambda f(x)|$$
$$= \sup_{x} |\lambda| \cdot |f(x)|$$
$$= |\lambda| \cdot ||f||_{\infty}$$

3.

$$|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)|$$

 $\le ||f_1||_{\infty} + ||f_2||_{\infty}$

Convergencia en $||\cdot||_{\infty}$

$$f_n \to f$$
, en $C_\infty(X)$

si

$$||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0$$

$$\iff \forall \varepsilon > 0 \exists N \in \mathbb{N}$$
tal que

$$||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N$$

$$\iff |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in X$$

Ejemplo: $\mathbb{K} = \mathbb{R} \circ \mathbb{C}$.

$$\ell^p(\mathbb{K}) := \{ \{a_k\}_k \subseteq \mathbb{K} : ||a||_p < \infty \}$$

donde

$$||a||_p := \begin{cases} \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} & p \in [1, \infty) \\ \sup_{k \in \mathbb{N}} |a_k| & p = \infty \end{cases}$$

Sea (X, \mathcal{B}, σ) un espacio de medida.

$$L^p(x,\sigma) := \{ f : X \to \mathbb{K} \, \sigma \text{-medibles, tales que} ||f||_{L^p} < \infty \}$$

donde

$$||f||_{L^p} := \left(\int |f|^p \, d\sigma\right)^{1/p}$$

$$||f||_{L^{\infty}} := \operatorname{ess\,sup}_{x} |f|$$

Ejemplo: $X = [0, 1], \sigma = \text{medida de Lebesgue}$. En C([0, 1]) definimos

$$||f||_{\infty} = \sup |f(x)|$$

$$||f||_{L^1} = \int |f(x)| \, dx$$

Estas 2 normas no son equivalentes

2.1.2. Espacios de Banach

Definición 2.1.4. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si es completo con respecto a la métrica inducida.

Ejemplo: \mathbb{R}^n , \mathbb{C}^n son espacios de Banach (con respecto a cualquier norma) $L^p(X, \mathcal{B}, \sigma)$ es un espacio de Banach (cuando (X, \mathcal{B}, σ) es completo).

Proposición 2.1.4. $C_{\infty}(X)$ es un espacio de Banach.

Demostración. $\{f_n\} \subseteq V = C_{\infty}(X)$ de Cauchy.

- 1. Adivinar el límite f.
- 2. Probar la convergencia:

$$||f_n - f|| \to 0$$

3. f está en el espacio.

 $\forall \varepsilon > 0 \exists N = N(\varepsilon) \text{ tal que}$

$$||f_n - f_m||_{\infty} \le \varepsilon, \quad \forall n, m \ge N$$

Para todo $x \in X$ fijo, tenemos entonces

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \le \varepsilon$$

Esto es $\{f_n(x)\}_n$ es Cauchy en \mathbb{C} .

$$\implies f(x) := \lim_{n \to \infty} f_n(x)$$
 existe

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

 $\leq \varepsilon \quad \forall n \geq N(\varepsilon) \text{ independiente de } x \in X$

$$\implies ||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N(\varepsilon)$$

Esto es $f_n \to f$ uniformemente sobre X.

 $\implies f$ es continua sobre X.

¿Por qué f es acotada?

Considere $\varepsilon = 1$

$$\implies ||f_n - f_{\bar{N}}||_{\infty} \le 1$$

cuando $n \geq \bar{N} := N(1)$.

$$||f_n||_{\infty} \le ||f_{\bar{N}}||_{\infty} + ||f_n - f_{\bar{N}}||_{\infty}$$

 $\le ||f_{\bar{N}}||_{\infty} + 1$

$$\implies f(x) = \lim_{n \to \infty} f_n(x)$$
 es acotada

Definición 2.1.5. Sea $(V, ||\cdot||)$ un espacio normado. $v_n \in V, n \in \mathbb{N}$. $\sum_{n=1}^{\infty} v_n$ es sumable si

$$S_m = \sum_{n=1}^m v_n$$

converge

 $\sum_{n} v_n$ es absolutamente sumable si

$$\sum_{n=1}^{\infty} ||v_n||$$

converge.

Proposición 2.1.5. Si $\sum_{n=1}^{\infty} v_n$ es absolutamente sumable, entonces, $\{S_m\}$ es Cauchy

Teorema 2.1.6. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si y solo si toda serie absolutamente sumable es sumable.

$Demostración. \iff :$

- 1. Tome una sucesión $\{v_n\}$ de Cauchy. Es suficiente demostrar que una subsucesión converge. $v_{n_k} \to v$ en V. Fije $\varepsilon > 0$. $\Longrightarrow ||v_m v|| \le \underbrace{||v_m v_{n_k}||}_{\le \varepsilon/2} + \underbrace{||v_{n_k} v||}_{\le \varepsilon/2} \le \varepsilon$, tomando k, m suficientemente grandes.
- 2. Dos trucos: Podemos "acelerar" la convergencia. Existe una subsucesión $\{v_{n_k}\}$ tal que

$$||v_{n_{k+1}} - v_{n_k}|| \le 2^{-k} \tag{2.1}$$

$$||v_n - v_m|| < 2^{-k} \quad \forall n, m > N(2^{-k}) := N_k$$

$$n_k := N_1 + \ldots + N_k$$

Afirmamos que $\{v_{n_k}\}$ converge.

Truco de la suma telescopica.

$$\sum_{k=1}^{\infty} (v_{n_{k+1}} - v_{n_k})$$

es absolutamente sumable debido a (1.1) entonces es sumable:

$$\sum_{k=1}^{m} (v_{n_{k+1}} - v_{n_k}) \xrightarrow{m \to \infty} S \in V$$

Sumas parciales convergen

$$v_{n_{m+1}} - v_{n_1} \xrightarrow{m \to \infty} S \in V$$

$$\implies v_{n_{m+1}} \xrightarrow{m \to \infty} S + v_{n_1} \in V$$

2.2. Operadores y funcionales

2.2.1. Operadores Lineales

Nos interesan las aplicaciones lineales entre espacios normados.

Ejemplo:

$$T: C([0,1], \mathbb{C}) \to C([0,1], \mathbb{C})$$
$$f \to F(x) = \int_0^x f(y) \, dy$$

T es lineal.

$$F(x) = \int_0^1 \mathbb{1}_{\{y < x\}} f(y) \, dy$$

Definición 2.2.1. V, W son 2 espacios vectoriales.

 $T:V\to W$ es lineal si

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \quad \forall v_1, v_2 \in V \text{ y } \lambda_1, \lambda_2 \in \mathbb{K}$$

$$T:C([0,1])\to C([0,1])$$

$$f\to \int_0^1 \underbrace{K(x,y)}_{\text{Kernel}} f(y)\,dy:=Tf(x)$$

operador integral. Cuando $K \in C([0,1]^2), T$ está bien definida.

En dim ∞ vamos a exigir que los operadores lineales sean continuos.

Definición 2.2.2. $T:V\to W,V,W$ son espacios métricos. Decimos que T es continuo si

$$T^{-1}(O) \stackrel{ab}{\subseteq} V, \, \forall O \stackrel{ab}{\subseteq} V$$

$$\iff T^{-1}(C) \overset{cerr}{\subseteq} V \quad \forall C \overset{cerr}{\subseteq} W$$

 $\iff v_n \to v \text{ en } V \text{ entonces } Tv_n \to Tv \text{ en } W.$

Teorema 2.2.1. Sean V,W espacios normados. Entonces $T:V\to W$ operador lineal es continuo si y solo si

$$||Tv||_W \le C||v|| \quad \forall v \in V \tag{2.2}$$

para alguna constante C.

Definición 2.2.3. Operador lineal que satisface 1,2 se llama acotado .

Demostración. \Longrightarrow : Sea T continuo. $B:=\{||w||_W<1\}$ $0\in T^{-1}(B)=B_r^v$

$$T^{-1}(B) \supseteq B_r^v := \{ v \in V : ||v||_V < r \}$$

pues $T^{-1}(B)$ es abierto

$$\implies T^{-1}(B) \supseteq \{v \in V : ||v||_V = \frac{r}{2}\}$$

esfera de radio $\frac{r}{2}$.

$$||T\bar{v}||_W < 1$$

Todo $v \in V, v \neq 0$ se puede escribir como $v = \frac{\bar{v}}{r/2}||v||_V$ Para algún $\bar{v} \in S^v_{r/2}$

Por lo tanto

$$||Tv||_{W} = ||T(\frac{\bar{v}}{r/2}||v||_{V})||_{W}$$

$$= ||\frac{2}{r}||v||_{V}T(\bar{v})||_{W}$$

$$= \frac{2}{r}||v||_{V}||T\bar{v}||_{W} < 1$$

$$\leq \frac{2}{r}||v||_{V} \quad \forall v \neq 0$$

Ejemplo:

$$Tf(x) := \int_0^1 K(x, y) f(y) \, dy$$

es acotado en $(C([0,1]),||||_{\infty})$

$$|Tf(x)| \le \int_0^1 \underbrace{|K(x,y)|}_{\le M} |f(y)| \, dy$$

$$\le M \int_0^1 |f(y)| \, dy \le M ||f||_{\infty} \quad \forall x \implies ||Tf||_{\infty} \le M ||f||_{\infty}$$

Definición 2.2.4. Sean V, W espacios normados. Defina $\mathcal{B}(V, W)$ como el conjunto de operadores lineales continuos acotados de V a W. Obviamente $\mathcal{B}(V, W)$ es un espacio vectorial.

Norma operador $T: V \to W$:

$$||T|| := \sup_{||v||=1} ||Tv||$$

Obviamente, $T \in \mathcal{B}(V, W), ||T|| < \infty$

$$||Tv|| \le C \underbrace{||v||}_{1} = C$$

$$\implies ||T|| \le C$$

De hecho, para $T \in \mathcal{B}(V, W)$

$$\begin{aligned} ||T|| &= \sup_{v \neq 0} \frac{||Tv||}{||v||} = \sup_{||v|| \leq 1} ||Tv|| \\ &= \inf\{C > 0 : ||Tv|| \leq C||v|| \quad \forall v \in V\} \end{aligned}$$

Tenemos $||Tv|| \le ||T||||v||$

Teorema 2.2.2. $\mathcal{B}(V,W)$ es un espacio normado bajo la norma operador.

De mostraci'on.

1.
$$||T|| = 0 \implies ||Tv|| = 0 \forall v \in V$$

$$\implies Tv = 0 \implies T = 0.$$

- $2. ||\lambda T|| = |\lambda|||T||$
- 3. Sea $v \in V, ||v|| = 1. \ \forall T, S \in \mathcal{B}(V, W),$

$$||(T+S)v|| = ||Tv + Sv||$$

$$\leq ||Tv|| + ||Sv||$$

$$\leq ||T||||v|| + ||S||||v|| = (||T|| + ||S||)||v||$$

$$\implies ||(T+S)v|| \le ||T|| + ||S||$$
$$\implies ||T+S|| \le ||T|| + ||S||$$

¿Cuándo es $\mathcal{B}(V, W)$ completo?

Teorema 2.2.3. $\mathcal{B}(V, W)$ es Banach cuando W es Banach.

Demostración. $T_n \in \mathcal{B}(V, W)$ Cauchy. Queremos demostrar que converge en $||\cdot||_{\mathcal{B}(V,W)}$.

1. $\forall v \in V, \{T_n v\}$ es Cauchy en W pues

$$||T_n v - T_n v|| \le ||T_n - T_w|| \cdot ||v||$$

 $\implies \{T_n v\}$ converge. Definimos

$$Tv := \lim_{n \to \infty} T_n v$$

2. ¿Por qué $T \in \mathcal{B}(V, W)$? \rightarrow lineal:

$$T(\lambda v) = \lim_{n \to \infty} T_n(\lambda v) = \lambda \lim_{n \to \infty} T_n v = \lambda T(v)$$

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

 \rightarrow acotado:

 $\{T_n\}$ es Cauchy.

 $\{||T_n||\}$ es Cauchy en $[0,\infty)$

$$|||T_n|| - ||T_m||| \le ||T_n - T_w||$$

$$\implies ||T_n|| \le C \quad \forall n \in \mathbb{N}$$

Sea $v \in V, ||v|| = 1.$

$$||Tv|| = ||\lim_{n \to \infty} T_n v||$$

$$= \lim_{n \to \infty} \underbrace{||T_n v||}_{\leq C||v|| = C} \leq C$$

$$\implies ||T|| \le C$$

3. Convergencia: $T_n \to T$ en norma operador. Sea $v \in V, ||v|| = 1.$

$$||(T_n-T)v||$$

 $T_m v \to T v$

$$\begin{split} &= \lim_{m \to \infty} ||(T_n - T_m)v|| \\ &\leq \underbrace{||T_n - T_m||}_{\leq \varepsilon} \cdot ||v|| \quad \forall n, m \geq N(\varepsilon) \\ &\implies ||T_n - T|| \leq \varepsilon \quad \forall n \geq N(\varepsilon) \end{split}$$

2.2.2. Espacio Dual

Definición 2.2.5. Sea V un espacio normado sobre \mathbb{K} .

$$V^* = \mathcal{B}(V, \mathbb{K})$$

se llama el espacio dual de V.

Teorema 2.2.4. Cuando $\mathbb{K} = \mathbb{R}, \mathbb{C}$ (completos) V^* es un espacio de Banach

Elementos de V^* se llaman funcionales en V.

Ejemplo: $[\ell^p(\mathbb{C})]^* =?, p \in [1, \infty)$ Resulta que $? = l^q(\mathbb{C})$ donde $\frac{1}{p} + \frac{1}{q} = 1$. Si $v \in \ell^p, w \in \ell^q$ podemos definir un funcional en ℓ^p

$$\ell_w : \ell^p(\mathbb{C}) \to \mathbb{C}$$

$$v = \{v_k\} \to \sum_{k=1}^{\infty} v_k \bar{w}_k$$

$$|\ell_w| \le ||w||_{\ell^q} ||v||_{\ell^p}$$

Es la desigualdad de Hölder discreta.

$$(\ell^1)^* \simeq \ell^\infty \ (\ell^2)^* \simeq \ell^2$$

Nota: $(\ell^{\infty})^* \not\simeq \ell^1$

Cuando V=W espacio de Banach, entonces B(V,V) es un espacio de Banach. Es también álgebra .

$$T, S \in B(V, V) \implies TS \in B(V, V)$$

$$\begin{split} ||TS|| &= \sup_{||v||=1} ||T(Sv)|| \leq ||T|| \cdot ||Sv|| \\ &\leq ||T|| \cdot ||S|| \cdot ||v|| \leq ||T|| \cdot ||S|| \end{split}$$

Cómo resolver ecuaciones del tipo

$$(T - \lambda I)u = v$$

donde $v \in V \leftarrow$ un espacio de Banach, $T \in B(V, V), \lambda \neq 0$.

Queremos construir el operador inverso

$$S := (T - \lambda I)^{-1}$$

Cuando $|\lambda| > ||T||$, S se puede construir a través de la serie de Neumann

$$-\lambda (I - \underbrace{\frac{T}{\lambda}}_{||T/\lambda|| < 1}) u = v$$

Sabemos que

$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$

Definimos

$$S := -\frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n \tag{2.3}$$

2.3 define $S \in B(V, V)$ ya que

$$\sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n$$

es sumable pues es absolutamente sumable en el espacio de Banach B(V, V).

$$\rightarrow$$
 ¿por qué $(T-\lambda I)S=S(T-\lambda I)=I?$

Para verificar que $S(T - \lambda I) = I$,

$$S_N = \sum_{n=0}^{N} -\frac{1}{\lambda} \left(\frac{T}{\lambda}\right)^n$$

$$S_N(T - \lambda I) = S_N T - S_N \lambda = \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^{n+1} - \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^n$$
$$= \underbrace{-\left(\frac{T}{\lambda}\right)^{N+1}}_{\to 0 \text{ en } B(V,V)} + I$$

2.2.3. Espacio cociente

¿Cómo obtener espacios normados/Banach de otros espacios?

Definición 2.2.6 (Espacio cociente). Sea W un subespacio del espacio vectorial V.

$$V/W := \{[v], v \in V\}$$

 $[\cdot]$ se define a través $v_1 \sim v_2$ si $v_1 - v_2 \in W$.

Se nota también $V \mod W$ y se llama el espacio cociente.

Es útil denotar [v] = v + W

Una construcción de subespacio $W\subseteq V$ tal que V/W es normado es a través de una semi-norma definida en V.

Ejemplo: $V = C^1([0,1]) =$ espacio de funciones en [0,1] con derivadas continuas en [0,1].

$$||f|| := \max_{t \in [0,1]} |f'(t)|$$

$$||f|| = 0 \iff f = \text{const}$$

Teorema 2.2.5. Sea $(V, ||\cdot||)$ un espacio vectorial semi-normado. Entonces $Z := \{v \in V : ||v|| = 0\}$ es un subespacio de V y

$$||v + Z||_{V/Z} := ||v|| \tag{2.4}$$

define una norma en V/Z.

Demostración. 1. Z es un subespacio vectorial.

$$z_1, z_2 \in Z \implies z_1 + z_2 \in Z$$

$$||z_1 + z_2|| \le ||z_1|| + ||z_2|| = 0$$

$$z \in Z \implies \lambda z \in Z$$

Así, V/Z tiene la estructura de un espacio vectorial.

2. Tenemos que comprobar que 2.4 es una buena definición:

Si v_1, v_2 son 2 representantes de [v]:

$$v_1 = v_2 + z, \quad z \in Z$$

$$||v_1|| \le ||v_2|| + ||z|| \implies ||v_1|| \le ||v_2||$$

 $||v_2|| \le ||v_1|| \implies ||v_1|| = ||v_2||$

$$||v+z||_{V/Z} = 0$$

$$\implies v + Z = Z \implies v \in Z$$

Las otras 2 proposiciones se heredan de manera obvia

 $C^{1}([0,1])/const$ es un espacio normado con la norma inducida.

Otra construcción similar:

Proposición 2.2.6. Si $W \subseteq V$ subespacio cerrado de un espacio normado $(V, ||\cdot||)$, entonces V/W tiene una norma:

$$||[v]||_{V/W} := \inf_{w \in W} ||v - w||$$

2.2.4. Completación de espacios normados

Definición 2.2.7. Sea $(V, ||\cdot||)$ un espacio normado. La completación de V es un espacio de Banach $(\tilde{V}, ||\cdot||_{\tilde{V}})$ con una aplicación lineal

$$\mathcal{J}_{\tilde{V}}:V\to \tilde{V}$$

que satisface las siguientes propiedades:

- 1. $\mathcal{J}_{\tilde{V}}$ es uno a uno
- 2. $\mathcal{J}_{\tilde{V}}(V)$ es denso en \tilde{V}
- 3. $\mathcal{J}_{\tilde{V}}(V)$ es una isometría:

$$||\mathcal{J}_{\tilde{V}}(v)||_{\tilde{V}} = ||v||_{V} \quad \forall v \in V$$

Teorema 2.2.7. Todo espacio normado V tiene una completación. Esta es única en el siguiente sentido:

Seba hacer dibujo

 $\overline{\tilde{V}} = \{sucesiones \ de \ Cauchy \ en \ V \ que \ convergen\}$

 $\{v_n\} \sim \{w_n\} \ si \ ||v_n - w_n|| \to 0$

Sea $\tilde{v} \in \tilde{V}$

Seba ESTOY HASTA EL PICO

2.3. El teorema de Baire

2.3.1. Categorias de Baire

(X,d) espacio métrico.

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

$$\overline{B_r}(x) = \{ y \in X : d(x, y) \le r \}$$

 $O \subseteq X$ es abierto si $\forall x \in O, \exists B_r(x) \in O. \bigcup_{\alpha} O_{\alpha}$ es abierto.

 $F \subseteq X$ es cerrado si F^c es abierto. $\bigcap_{\alpha} F_{\alpha}$ es cerrado.

$$\overline{E} = \bigcap_{F \supseteq E} F$$

$$\mathring{E} = \bigcup_{O \subseteq E} O$$

$$E \stackrel{denso}{\subseteq} X$$
 si $\overline{E} = X$

Definición 2.3.1. $E \subseteq X$ es denso en ninguna parte si $\stackrel{\circ}{\overline{E}} = \varnothing$.

esencialmente, denso en ninguna parte E significa que E no contiene bolas abiertas.

Ejemplo: $E = \{x\}$ es denso en niguna parte.

Proposición 2.3.1. F es cerrado y denso en ninguna parte \iff F^c es abierto y denso.

La noción de categoria de Baire

Definición 2.3.2. $E \subseteq X$ cat I si $E = \bigcup_k E_k$ donde E_k es denso en ninguna parte.

Ejemplo: \mathbb{Q} es cat I.

Definición 2.3.3. Si G tiene G^c que es cat I, decimos que G es **genérico**.

Definición 2.3.4. E es de cat II si no es de primera categoría.

Observaciones

1. Si E es cat I, y $F \subseteq E$ es cat I

$$F \subseteq E \subseteq \bigcup_{k} E_{k}$$

$$\implies F = \bigcup_{k} E_{k} \cap F, \quad \overline{E_{k} \cap F} \subseteq \overline{E_{k}}$$

$$\implies E_{k} \cap F \text{ son densos en niguna parte.}$$

- 2. Si $\{E_k\}_{k\in\mathbb{N}}$ de cat I, $\bigcup_k E_k = \bigcup_k \bigcup_l \underbrace{E_{kl}}_{\text{denso en NP}}$ es una unión contable.
- 3. No hay conexión entre conjuntos de cat I y conjuntos despreciables del punto de vista de teoría de la medida.

Ejemplo: $G_j = \bigcup_n (q_n - 2^{-(n+j+1)}, q_n + 2^{-(n+j+1)})$ $\{q_j\}$ enumeración de \mathbb{Q} . G_j es abierto y denso en \mathbb{R} .

$$\implies E_j = G_j^c$$
 es cerrado y denso en NP
 $\implies E := \bigcup_j E_j$ es cat I

y de plena medida en \mathbb{R} . $\iff E^c$ es de medida 0 de Lebesgue.

$$|E^c| = |\bigcap E_j^c|$$

$$= |\bigcap G_j| \le |G_j|$$

$$|G_j| \le \sum_{n=1}^{\infty} 2 \cdot 2^{-(n+j+1)}$$

$$= 2^{-j} \xrightarrow{j \to \infty} 0$$

Teorema 2.3.2 (Teorema de Baire). Sea (X, d) completo. Entonces, X es de la cat II en sí mismo.

Demostración. Supongamos que X es de cat I en sí:

$$X = \bigcup_k \underbrace{E_k}_{\text{densos en NP}} = \bigcup_k \underbrace{\overline{E_k}}_{=F_k \text{ denso en NP y cerrado}}$$

Llegaremos a una contradicción si demostramos que hay un $x \notin F_k$, $\forall k$.

$$F_1 \neq X$$
. $\overline{B_{r_1}}(x_1) \subseteq F^c$, $\overline{B_{r_2}}(x_2) \subseteq F_2^c$.

De esta manera obtenemos bolas cerradas $\overline{B_{r_k}}(x_k)$ tales que

1.

$$\overline{B_{r_{k+1}}}(x_{k+1}) \subseteq \overline{B_{r_k}}(x_k)$$

2.

$$\overline{B_{r_k}}(x_k) \subseteq F_k^c$$

3.

$$r_{k+1} \le \frac{r_k}{2} \implies r_k \to 0$$

 $\{x_k\}$ es Cauchy pues:

$$\forall k, l \ge n, x_k, x_l \in \overline{B_{r_n}}(x_n)$$

$$\implies |x_k - x_l| \le 2r_n \xrightarrow{n \to \infty} 0$$

$$\implies x_k \to x \in X$$

Como $x_k \in \overline{B_{r_k}} \quad \forall k \ge n,$

$$\implies x = \lim x_k \in \overline{B_{r_n}}(x_n) \subseteq F_n^c$$

Por lo que $x \notin F_n \quad \forall n$.

Corolario 2.3.2.1. $G \subseteq X$ es genérico \implies denso en X, con X completo.

Demostración. Asumimos que G genérico no es denso, entonces hay una bola B

$$\implies \overline{B} \subseteq G^c = \bigcup_k E_k \subseteq \bigcup \overline{E_k}$$

$$\Longrightarrow \overline{B} = \bigcup_{\substack{k \text{ cerrados y densos en NP}}} \overline{E_k \cap \overline{B}}$$

Pero \overline{B} es un espacio métrico completo, contradicción con el teorema de Baire.

Corolario 2.3.2.2. X completo, $X = \bigcup_k F_k \leftarrow cerrado$. Entonces, por lo menos uno F_k contiene una bola.

2.3.2. Aplicación

Teorema 2.3.3. El conjunto de funciones continuas en [0,1] que no son derivables en nigún punto es **denso** en C([0,1])

Demostración. Sea $\mathcal{D} = \{ f \in C([0,1]) : f'(x_*) \text{ existe en un punto } x_* \in [0,1] \}$

Queremos demostrar que \mathcal{D} es cat I en C([0,1]).

Por 2.3.2.1, \mathcal{D}^c es genérico \implies denso en C([0,1]).

Si $f \in \mathcal{D} \implies f'(x_*)$ existe

$$\implies \lim_{x \to x_*} \frac{f(x) - f(x_*)}{x - x_*}$$

existe.

$$\implies |f(x) - f(x_*)| \le M|x - x_*| \quad \forall x \in [0, 1]$$

para algún M > 0.

$$\implies \mathcal{D} \subseteq \bigcup_{N=1}^{\infty} E_N$$

 $E_N := \{ f \in C([0,1]) : |f(x) - f(x_*)| \le N|x - x_*| \text{ para algún } x_* \in [0,1] \}$

Estaremos listos si probamos que:

- 1. E_N es cerrado en C([0,1])
- 2. E_N es denso en ninguna parte.
- 1. $f_n \in E_N \text{ y } f_n \to f, \text{ en } ||\cdot||_{\infty}.$

 $[0,1]\ni x_n^*\to x^*$ (podemos extraer una subsucesión que converge)

$$|f_n(x) - f_n(x_n^*)| \le N|x - x_n^*| \quad \forall x \in [0, 1]$$

Queremos demostrar que

$$|f(x) - f(x^*)| \le N|x - x^*|$$

$$|f(x) - f(x^*)| \le \underbrace{|f(x) - f_n(x)|}_{\le ||f - f_n||_{\infty} \le \varepsilon/2} + |f_n(x) - f_n(x^*)| + \underbrace{|f_n(x^*) - f(x^*)|}_{\le \varepsilon/3}$$

$$|f_n(x) - f_n(x^*)| \le |f_n(x) - f_n(x^*)| + |f_n(x_n^*) - f_n(x^*)|$$

$$\le N|x - x_n^*| + N|x_n^* - x^*|$$

$$\le N(|x - x^*| + |x^* - x_n^*|) + N|x_n^* - x^*|$$

$$\le N|x - x^*| + \underbrace{2N|x_n^* - x^*|}_{\varepsilon/3}$$

2. ¿Por qué E_N es denso en NP de X?

$$P_M = \{\text{funciones continuas en } [0,1] \text{ derivables a trozos, } |f'| = M\}$$

son funciones zig-zag. Cuando M > N, $P_M \cap E_N = \emptyset$. Además, P_M es denso en C([0,1]). Como consecuencia, E_N no puede tener interior no trivial ya que E_N no puede tener una bola abierta (hay funciones de P_M en E_N y P_M es denso).

Mostraremos que P_M es denso.

$$P = \{ \text{las funciones continuas lineales a tozos} \} \overset{denso}{\subseteq} C([0,1])$$

Podemos aproximar cada $f \in P$ con una función $g \in P_M$ arbitrariamente bien.

2.3.3. Teorema de la Aplicación Abierta

Sean $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ espacios de Banach.

$$T \in \mathcal{B}(X,Y) \implies T^{-1}(O) \overset{ab}{\subseteq} X \quad \forall O \overset{ab}{\subseteq} Y$$

Si T es biyectiva adicionalmente, entonces $S:=T^{-1}$ es lineal (no necesariamente acotada). Sin embargo, si S es continua, entonces $S^{-1}(U) \overset{ab}{\subseteq}, \forall U \overset{ab}{\subseteq} X$

$$\iff T(U) \stackrel{ab}{\subseteq} Y \quad \forall U \stackrel{ab}{\subseteq} X$$

Definición 2.3.5. Sea $T: X \to Y$ una aplicación. Decimos que T es abierta si

$$T(U) \stackrel{ab}{\subseteq} Y \quad \forall U \stackrel{ab}{\subseteq} X$$

Si $T:X\to Y$ es lineal, continua y biyectiva, entonces $T^{-1}:Y\to X$ es lineal. ¿Es T^{-1} continua?

Lo será cuando T es abierta.

Teorema 2.3.4 (Aplicación Abierta). Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ y sobreyectiva, entonces T es abierta.

Corolario 2.3.4.1. Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ es biyectiva, entonces $T^{-1} \in \mathcal{B}(Y, X)$. Existen c, C > 0 tales que

$$c||x||_X \le ||\underbrace{Tx}_y||_Y \le C||x||_X \quad \forall x \in X$$
$$c||T^{-1}y||_X \le ||y||_Y$$

Demostración del teorema 2.3.4. 1. Será suficiente demostrar que $T(B_2^X) \supseteq B_\delta^Y$. $(B_r^X = B_r^X(0))$

Por linealidad

$$\begin{split} T(B_r^X(x)) &= T(x + B_r^X) \\ &= Tx + T(B_r^X) = y + \frac{r}{2}T(B_2^X) \\ &\supseteq y + \frac{r}{2}B_\delta^Y = B_{\frac{\delta r}{2}}^Y(y) \end{split}$$

2. Vamos a demostrar que $\overline{T(B_1^X)} \supseteq B_\delta^X$ para algún $\delta > 0$ Por la sobreyectividad:

$$catII \to Y = \bigcup_{n=1}^{\infty} \overline{T(B_n^X)}$$

Entonces, $T(B_n^X)\supseteq B_r^Y(y)$ para algún $n\in\mathbb{N}, r>0, y\in Y$. Tomamos \tilde{y} tal que $|\tilde{y}-y|\leq \frac{r}{2}$ e $\tilde{y}=T\tilde{x}$ para algún $\tilde{x}\in B_n^X$.

$$T(B^x_{2n}(\tilde{x}))\supseteq \overline{T(B^X_n)}\supseteq B^Y_r(y)\supseteq B^Y_{\frac{r}{2}}(\tilde{y})$$

Restando $T\tilde{x}$

$$T(B_{2n}^X) \supseteq B_{\frac{r}{2}}^X$$

Reescalando

$$\overline{T(B_1^X)} \supseteq B_{\frac{r}{4n}}^Y \quad \delta = \frac{r}{4n}$$

3. Tenemos $\overline{T(B_1^X)}\supseteq B_\delta^Y.$ Reescalando

$$\overline{T(B_{2^{-k}}^X)} \supseteq B_{\delta 2^{-k}}^Y$$

¿Por qué $T(B_2^X) \supseteq B_\delta^Y$?

Fije $y_0 \in B^Y_\delta.$ Podemos encontrar $x_0 \in B^X_1$ tal que

$$||y_0 - Tx_0||_Y < \frac{\delta}{2}$$

$$\implies y_1 := y_0 - Tx_0 \in B_{\delta/2}^Y$$

 \implies existe $x_1 \in B_{\frac{1}{2}}^X$ tal que

$$||y_1 - Tx_1|| < \frac{\delta}{4}$$

De esta manera construimos sucesiones $\{x_n\}, \{y_n\}$, tales que

a)
$$x_n \in B_{2^{-n}}^X, y_n \in B_{\delta 2^{-n}}^Y$$

$$b) \ y_{n+1} = y_n - Tx_n$$

$$x := \sum_{n=0}^{\infty} x_n \in X$$
 porque X es Banach. Veremos que $Tx = y$ y $x \in B_2^X$.

x es convergente puesto que es absolutamente convergente.

$$||x|| = \sum_{k=1}^{\infty} ||x_k|| \le 2$$

Afirmamos que $Tx = y_0$ por construcción.

$$Tx = \lim_{N \to \infty} T\left(\sum_{n=0}^{N} x_k\right)$$
$$= \lim_{N \to \infty} \sum_{k=0}^{N} \underbrace{Tx_k}_{y_k - y_{k+1}}$$
$$= \lim_{N \to \infty} (y_0 - y_{N+1})$$
$$= y_0$$

ya que $y_{N+1} \to 0$.

2.3.4. Teorema del Grafo Cerrado

Definición 2.3.6. Sean X,Y espacios métricos. Decimos que $T:X\to Y$ es **cerrada** si su grafo en $X\times Y$

$$G_T = \{(x, Tx) \in X \times Y\}$$

es cerrado en $X \times Y$.

En otras palabras,

$$(x_n, Tx_n) \to (x, y) \in X \times Y \implies (x, y) \in G_T \iff y = Tx$$

Nota: $T: X \to Y$ es continua $\implies T$ es cerrada.

$$x_n \to x \implies Tx_n \to Tx \implies (x_n, Tx_n) \to (x, Tx)$$

Teorema 2.3.5. Sean X, Y Banach. Entonces, $T \in \mathcal{B}(X, Y) \iff T$ es lineal y cerrada.

 $Demostración. \Longleftarrow:$ Utilizaremos el hecho que si X,Y son Banach, entonces $X\times Y$ es Banach.

$$||(x,y)||_{X\times Y} := ||x||_X + ||y||_Y$$

$$G_T := \{(x, Tx)\} \subseteq X \times Y$$

- 1. G_T es un subespacio de $X \times Y$.
- $2. \ G_T \stackrel{cerr}{\subseteq} X \times Y$

Entonces G_T es un espacio de Banach en sí. Tenemos las proyecciones $\Pi_X:G_T\to X$ y $\Pi_Y:G_T\to Y$ continuas y lineales.

$$T = \Pi_Y \circ (\Pi_X)^{-1}$$

ya que Π_x es biyectiva, continua y lineal (en un espacio de Banach a otro Banach). Por el teorema 2,3,4,1, Π_X^{-1} es continua. Por lo que $T = \Pi_Y \circ \Pi_X^{-1}$ es continua.

Significado Si queremos demostrar que una aplicación lineal $T:X\to Y$ es continua, $x_n\to X\implies Tx_n\to T_x$

Podemos asumir adicionalmente que $TX_n \to Ty$, y demostrar que y = Tx

Capítulo 3 -

Espacios de Hilbert

3.1. Conceptos Básicos

Definición 3.1.1. Sea H un espacio vectorial sobre $\mathbb{K} = \mathbb{R}$ o \mathbb{C} . Un producto interno $\langle \cdot, \cdot \rangle$ es una función $H \times H \to \mathbb{K}$ que satisface

1. Linealidad en $\langle \cdot, y \rangle$, $\forall y \in H$:

$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

 $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$

2. (Hermiticidad)

$$\langle y, x \rangle = \overline{\langle x, y \rangle}$$

(En $\mathbb{K} = \mathbb{R}$, esto es simetría)

3. (Definidad) $\langle x, x \rangle \ge 0$ y $\langle x, x \rangle = \Longrightarrow x = 0$

Nota: 1. y 2., implican que $\langle x, \cdot \rangle$ es lineal conjugada en la segunda entrada.

$$\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle$$

Terminología Tal función se llama forma sesquilineal

Nota: $\mathbb{K}=\mathbb{R},\,\langle\cdot,\cdot\rangle$ es una forma simétrica definida positiva

Decimos que $(H, \langle \cdot, \cdot \rangle)$ es un **espacio pre-Hilbertiano**

De 1. y 2.,
$$(0, y) = 0$$
, $(x, 0) = 0$

Definimos $||x|| := \langle x, x \rangle^{1/2}$

Proposición 3.1.1 (Desigualdad de Cauchy-Schwarz). Sea H un espacio pre-Hilbertiano

$$|\left\langle x,y\right\rangle |\leq ||x||\cdot ||y||\quad \forall x,y\in H$$

Demostración. Si y=0, la desigualdad es verdadera. Podemos asumir que $y\neq 0$.

$$0 \le \langle x + \lambda y, x + \lambda y \rangle$$

$$= \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$= ||x||^2 + \underbrace{\lambda \overline{\langle x, y \rangle} + \overline{\lambda} \langle x, y \rangle}_{2\Re(\langle x, y \rangle \overline{\lambda})} + |\lambda|^2 |\cdot |y||^2$$

Evaluando en $\lambda = -\frac{\langle x, y \rangle}{||y||^2}$

$$0 \le ||x||^2 + 2\Re(\langle x, y \rangle \frac{-\overline{\langle x, y \rangle}}{||y||^2})$$

$$0 \le ||x||^2 - 2\frac{|\langle x, y \rangle|^2}{||y||^2} + \frac{|\langle x, y \rangle|^2}{||y||^2}$$

$$\implies ||x||^2 \ge \frac{|\langle x, y \rangle|^2}{||y||^2}$$

Proposición 3.1.2. $||\cdot||$ define una norma H.

Demostración. 1. Definidad ✓

2.
$$||\lambda x|| = \langle \lambda x, \lambda x \rangle^{1/2} = (\lambda \overline{\lambda} ||x||^2)^{1/2} = |\lambda| \cdot ||x||$$

3. (Desigualdad triangular)

$$||x+y||^2 = ||x||^2 + 2\Re(\langle x, y \rangle) + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$$
$$= (||x|| + ||y||)^2$$

Proposición 3.1.3. $\langle \cdot, \cdot \rangle$ es continuo en $H \times H$

Demostración. $x_n \to x$ en $||\cdot$ e $y_n \to y$ en $||\cdot||$

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle|$$

$$\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\leq ||x_n - x|| \cdot ||y_n|| + ||x|| \cdot ||y_n - y||$$

$$\xrightarrow[n \to \infty]{} 0$$

Definición 3.1.2. Decimos que $x \perp y$ en el espacio pre-Hilbertiano H si $\langle x, y \rangle = 0$. Si $E \subseteq H$ subconjunto, definimos el **espacio ortogonal**

$$E^{\perp} := \{ x \in H : x \perp y \quad \forall y \in E \}$$

 E^{\perp} es un **subespacio** de H y es cerrado:

 $x_n \in E^{\perp}$ y $x_n \to x$ en H entonces

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0 \quad \forall y \in E$$

Teorema 3.1.4 (Pitagoras). Si $x_1, \ldots, x_n \in H$ (pre-Hilbertiano) son mutuamente ortogonales, entonces

$$||x_1 + \dots + x_n||^2 = \sum_{k=1}^n ||x_k||^2$$

Proposición 3.1.5 (Ley del paralelogramo).

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Demostración.

$$||x \pm y||^2 = ||x||^2 \pm 2\Re \langle x, y \rangle + ||y||^2$$

Sumando los 2 términos (diagonales), estamos listos.

Definición 3.1.3. Decimos que un espacio $(H, \langle \cdot, \cdot \rangle)$ pre-Hilbertiano es un espacio de **Hilbert** si es **completo** respecto $||\cdot||$ inducida por $\langle \cdot, \cdot \rangle$

Ejemplo: $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$. $\langle x, y \rangle = \sum_{k=1}^n x_k \overline{y_k}$ es un espacio de Hilbert.

Ejemplo:
$$(\ell^2, \langle \cdot, \cdot \rangle)$$
. $\langle \{x_k\}, \{y_k\} \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$

 $\dot{\iota}\ell^p$ tiene una estructura de espacio de Hilbert? $\iff p=2$

Ejemplo: (X, \mathcal{M}, μ) es un espacio de medida, definimos

$$L^2(X, \mathcal{M}, \mu) = \{ f : X \to \mathbb{C} \text{ medibles} : \int_X |f|^2 d\mu < \infty \} /_{\sim}$$

 $f_1 \sim f_2$ si $\{f_1 \neq f_2\}$ es despreciable.

3.2. Teorema de la Proyección

Sea H un espacio de Hilbert. $C\subseteq R^n$ cerrado y convexo. Existe único $y\in C$ tal que y minimiza la distancia entre x y C.

Definición 3.2.1. Sea C un subconjunto de un espacio vectorial V. Decimos que C es **convexo** en V si

$$\forall x,y \in C \quad (1-t)x + ty \in C \quad \forall t \in [0,1]$$

Teorema 3.2.1. Sea $C \subseteq H$ un subconjunto cerado y convexo del espacio de Hilbert H. Entonces $\forall x \in H, \exists ! y = P_C x \in C$ que satisface:

$$||x - P_C x|| = d(x, C) = \inf_{c \in C} ||x - c||$$

Además, $y = P_C x \iff \Re \langle c - y, x - y \rangle \le 0, \quad \forall c \in C$

Demostración. Tome $\{y_n\} \subseteq C$, tal que

$$d_n := ||x - y_n|| \xrightarrow{n \to \infty} d := d(x_n, c)$$

 $\{y_n\}$ será convergente si es Cauchy, ya que $y_n \to y \in H$. Ya que C es cerrado, de hecho $y \in C$.

Por la ley del paralelogramo, con $v = x - y_n, w = x - y_m$

$$2d_n^2 + 2d_m^2 = ||v - w||^2 + ||v + w||^2$$

$$= ||y_n - y_m||^2 + ||2x - (y_n + y_m)||^2$$

$$= ||y_n - y_m||^2 + 4 \left\| x - \underbrace{\frac{y_n + y_m}{2}}_{\in C} \right\|^2$$

$$\geq ||y_n - y_m||^2 + 4d^2$$

Luego,

$$||y_n - y_m||^2 \le 2d_n^2 + d_m^2 - 4d^2$$

$$\xrightarrow{n,m \to \infty} 0$$

por lo que $\{y_n\}$ es Cauchy.

$$y = \lim_{n \to \infty} y_n,$$

$$||x - y|| = \lim_{n \to \infty} \underbrace{||x - y_n||}^{d_n} = d$$

Este minimizador es el único!. Si hubiera otro $z \neq y$, aplicamos el mismo argumento a $\{y, z, y, z, \ldots\}$ que no converge por construcción, pero es Cauchy, lo que es una contradicción.

 \implies : Sea $c \in C$ y considere (1-t)y+tc, $t \in [0,1]$.

$$||x - (1 - t)y - tc||^{2} = ||x - y - t(c - y)||^{2}$$

$$= ||x - y||^{2} - 2t\Re\langle x - y, c - y \rangle + t^{2}||c - y||^{2}$$

$$\geq ||x - y||^{2}$$

$$\implies 2t\Re \langle x - y, c - y \rangle \le t^2 ||c - y||^2$$
$$\implies 2\Re \langle x - y, c - y \rangle \le 0$$

 \iff : Evalúe $||x - (1-t)y + tc||^2$ en t = 1.

$$||x - c||^2 = ||x - y||^2 - 2\Re \langle x - y, c - y \rangle + ||c - y||^2$$

$$\implies ||x - c||^2 - ||x - y||^2 = ||c - y||^2 - 2\Re \langle x - y, c - y \rangle$$

$$\implies ||x - c||^2 \ge ||x - y||^2 \quad \forall c \in C$$

Tenemos igualdad $\iff c = y$.

Ejemplo: $W \subseteq H$ es un subespacio $\implies W$ es convexo.

Teorema 3.2.2. Sea $F \subseteq H$ un subespacio cerrado. Entonces $H = F \oplus F^{\perp}$, es decir, que todo $x \in H$ se puede escribir de manera única como x = y + z con $y \in F$ y $z \in F^{\perp}$. Además $y = P_F x, z = P_{F^{\perp}} x$. y

$$P_F: H \to H$$

es lineal, acotado y satisface:

- $||P_F|| \le 1 \ (= 1 \ cuando \ F = \{0\})$
- $P_F^2 = P_F$
- Im $P_F = F$, ker $P_F = F^{\perp}$

Definición 3.2.2. P_F se llama la proyección ortogonal

Demostración. Ya que $F\cap F^{\perp}=\{0\},$ la unicidad se cumple.

$$y + z = y' + z' \implies y - y' = z' - z = 0$$

Tome $x \in H$. Define $y = P_F x$. Queremos demostrar que $x : x - y \in F^{\perp}$. Del teorema ?? sabemos que

$$\Re\left\langle c-y,x-y\right\rangle \leq0\quad\forall c\in F$$

.

$$\implies \Re \langle v, z \rangle \le 0 \quad \forall v \in F$$

$$\implies \Re \langle \lambda v, z \rangle \le 0 \quad \forall \lambda \in \mathbb{K}$$

$$\implies \Re \lambda \langle v, z \rangle \le 0$$

Seba añadir align

tome $\lambda = \overline{\langle v, z \rangle}$

$$\implies \Re |\langle v, z \rangle|^2 \le 0$$
$$\implies |\langle v, z \rangle| = 0 \implies z \in F^{\perp}$$

Propiedades de P_F : $x_1 = y_1 + z$, $x_2 = y_2 + z_2$

$$\langle P_F x_1, x_2 \rangle = \langle y_1, x_2 \rangle$$

= $\langle y_1, y_2 + z_2 \rangle$

$$\langle x_1, P_F x_2 \rangle = \langle y_1 + z_1, y_2 \rangle$$

= $\langle y_1, y_2 \rangle$

Por lo que P_F es lineal

$$\langle P_F(x_1 + x_2), x_3 \rangle = \langle x_1 + x_2, P_F x_3 \rangle$$

$$= \langle x_1, P_F x_3 \rangle + \langle x_2, P_F x_3 \rangle$$

$$= \langle P_F x_1, x_3 \rangle + \langle P_F x_2, x_3 \rangle$$

$$= \langle (P_F x_1 + P_F x_2), x_3 \rangle$$

$$\iff P_F(x_1 + x_2) = P_F x_1 + P_F x_2$$

 $P_F(\lambda x) = \lambda P_F x$ de la misma manera.

$$P_F/_F = \operatorname{Id}/_F$$

$$\implies P_F^2 x = P_F(P_F x) = P_F x \quad \forall x \in H$$
$$\implies P_F^2 = P_F$$

 $||P_F x||^2 = ||y||^2 \le ||x||^2$ mientras

$$||x||^2 \le ||y||^2 + ||z||^2$$

 $\implies ||P_F|| \le 1$

3.3. Teorema de Representación de Riesz

Teorema 3.3.1. Sea H un espacio de Hilbert y sea $f \in H^*$ un funcional lineal acotado. Entonces existe único $u \in H$ tal que

$$f(x) = \langle x, u \rangle \quad \forall x \in H$$

Observaciones

- 1. $||f||_* = ||u||$ por Cauchy-Schwarz
- 2.

$$H^* \to H$$
 $f \to u_f$

es una isometría biyectiva, lineal-conjugada. Para todo $v \in H$ define $f_v(x) : \langle x, v \rangle$

3. $f_1 + f_2 \rightarrow u_{f_1 + f_2} = u_{f_1} + u_{f_2}$, ya que

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = \langle x, u_{f_1} \rangle + \langle x, u_{f_2} \rangle$$

= $\langle x, u_{f_1} + u_{f_2} \rangle \implies u_{f_1 + f_2} = u_{f_1} + u_{f_2}$

4. $i \lambda f \to u_{\lambda f} = \lambda u_f$?

$$[\lambda f](x) = \lambda(f(x)) = \lambda \langle x, u_f \rangle = \langle x, \overline{\lambda} u_f \rangle$$

Nota: Teorema falso. Cuando H es solo espacio pre-Hilbertiano, por ejemplo,

$$H = C([-1,1])$$

con producto interno usual.

$$f(x) = \int_0^1 x(t) dt \in H^*$$

Demostración. Si $f = 0 \implies u = 0$. Asumimos que $f \neq 0$ y consideramos $F := \ker f = \{x \in H : f(x) = 0\}$. F es un subespacio de H cerrado. Si $f \neq 0 \implies F \neq H$. Por el teorema de la proyección (3.2.2)

$$H=F\oplus F^\perp$$

Elije $z \in F^{\perp} \setminus \{0\}$. Afirmamos que $u = \overline{f(z)}z|z|^2 \neq 0$ satisface $f = \langle \cdot, u \rangle$. Ya que

$$f(z)x - f(x)z \in F$$

$$\implies f(z)x - f(x)z \perp z$$

$$\langle f(z)x, z \rangle - \langle f(x)z, z \rangle = 0$$

$$\implies \left\langle x, \overline{f(z)}z \right\rangle = f(x)||z||^2$$

$$\implies f(x) = \left\langle x, \frac{\overline{f(x)}z}{||z||^2} \right\rangle$$

Entonces $u \in H$ que satisface $f = \langle \cdot, u \rangle$. Es único: si tenemos $u, u' \in H$

$$f(x) = \langle x, u \rangle = \langle x, u' \rangle$$

$$\implies \langle x, u - u' \rangle = 0 \quad \forall x \in H$$

$$\implies u - u' \in H^{\perp} = \{0\}$$

3.4. Bases Ortonormales

Sea V un espacio vectorial sobre \mathbb{K} . Un subconjunto $\{v_{\alpha}\}_{{\alpha}\in A}$ es LI si $\forall I \stackrel{\text{finito}}{\subseteq} A$,

$$\sum_{i \in I} c_i v_i = 0 \implies c_i = 0 \quad \forall i \in I$$

$$Gen(\{u_{\alpha}\}_{\alpha \in A}) = \left\{ \sum_{i \in I} c_i u_i : I \stackrel{\text{finito}}{\subseteq} A, c_i \in \mathbb{K} \right\}$$

Definición 3.4.1. Sea H un espacio de Hilbert, $\{e_{\alpha}\}_{{\alpha}\in A}$ es ortonormal (o.n.) si

$$\langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha\beta} \quad \delta \text{ de Kronecker}$$

Suponga que $\{e_1, \ldots, e_n\}$ es o.n.

$$F := \operatorname{Gen}(\{e_i\}_i^n) \subseteq H$$

es un subespacio cerrado. Podemos definir P_F

$$P_F x = \underbrace{\sum_{i=1}^{n} \langle x, e_i \rangle e_i}_{y}$$

Es suficiente demostrar que $x-y\perp F.$

$$\left\langle x - \sum_{x, e_i} e_i, e_k \right\rangle = 0 \quad \forall k = 1, \dots, n$$

$$||P_F x||^2 \le ||x||^2$$

Por Pitagoras

$$= \sum_{i=1}^{n} ||\langle x, e_i \rangle e_i||^2 \le ||x||^2$$

$$\implies \sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$$

Proposición 3.4.1 (Designaldad de Bessel). Sea $S = \{e_{\alpha}\}_{\alpha}$ un conjunto o.n. Entonces,

$$\sum_{\alpha} |\langle x, e_{\alpha} \rangle|^2 \le ||x||^2$$

$$\sum_{\alpha} r_{\alpha} := \sup \left\{ \sum_{i \in I} r_i : I \subseteq A \right\}$$

Demostración. Utilizando $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$, y tomando supremo.

Consecuencias $\{\alpha: \langle x, e_{\alpha} \rangle \neq 0\} = \bigcup_{n=1}^{\infty} \{\alpha \in A: |\langle x, e_{\alpha} \rangle| \geq \frac{1}{n}\}$ es contable: Si es infinito: $|\langle x, e_{\alpha_k} \rangle|^2 > \frac{1}{n^2}, k = 1, \dots$ Sumando suficientes términos superaríamos $||x||^2$, que no es posible por Bessel.

Definición 3.4.2.

$$\hat{x}(\alpha) = \langle x, e_{\alpha} \rangle$$

coeficientes de Fourier respecto a $\{e_{\alpha}\}$

$$\sum_{\hat{x}} |\hat{x}(\alpha)|^2 \le ||x||^2$$

¿Cuando tenemos igualdad?

Teorema 3.4.2. Sea $\mathcal{B} = \{e_{\alpha}\}_{{\alpha} \in A}$ un subconjunto o.n. del espacio de Hilbert H. Los siguientes enunciados son equivalentes:

1.

$$\sum_{\alpha} |\hat{x}(\alpha)|^2 = ||x||^2$$

- 2. \mathcal{B} es maximal en el sentido de: Si $x \in H$, tal que $x \perp e_{\alpha}, \forall \alpha \in A \implies x = 0$
- $3. \ \forall x \in H,$

$$x = \sum_{\alpha} \langle x, e_{\alpha} \rangle e_{\alpha}$$

donde la suma en el lado derecho tiene solo un número contable de términos no ceros y la suma de estos converge a x en $||\cdot||$ independiente de su orden.

4. $Gen(\mathcal{B})$ es denso en H

Definición 3.4.3. Decimos que un conjunto $\{e_{\alpha}\}_{{\alpha}\in A}$ o.n. es una base ortonormal si satisface cualquiera de 1.-4.

Demostración. 2. \implies 3. Sea $e_{\alpha_1}, \ldots, e_{\alpha_n}, \ldots$ una enumeración de los $\{e_{\alpha}\}_{{\alpha} \in \mathcal{J}}$ para los cuales $\hat{x}({\alpha}) \neq 0$. Por Bessel:

$$\sum_{k=1}^{\infty} |\hat{x}(\alpha_k)|^2 \le ||x||^2 < \infty$$

$$\implies \sum_{k=n}^{m} |\hat{x}(\alpha_k)|^2 \xrightarrow{m,n \to \infty} 0$$

Por Pitagoras,

$$\left|\left|\sum_{k=n^m} \langle x, e_{\alpha_k} \rangle e_{\alpha_k}\right|\right| \xrightarrow{m, n \to \infty} 0$$

Sea $S_n = \sum_{k=1}^n \hat{x}(\alpha_k) e_{\alpha_k}$. $\{S_n\}$ es Cauchy en H

$$\implies S_n \xrightarrow{n \to \infty} S$$
 en H

Además

 $3. \implies 1.$: Por continuidad de la norma

$$||x||^{2} = ||\lim_{n \to \infty} S_{n}||^{2}$$

$$= \lim_{n \to \infty} ||S_{n}||^{2}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} |\hat{x}(\alpha_{k})|^{2}$$

$$= \sum_{\alpha} |\hat{x}(\alpha)|^{2}$$

1. ⇒ 2.: obvio

$$||x||^2 = \sum_{\alpha} |\langle x, e_{\alpha} \rangle|^2 = 0 \implies x = 0$$

 $3. \implies 4.: \text{Si } x \perp e_{\alpha}, \quad \forall \alpha,$

$$\implies x \perp \operatorname{Gen}(\{e_{\alpha}\})$$

$$\stackrel{\text{continuidad}}{\Longrightarrow} x \perp \overline{\operatorname{Gen}(\{e_{\alpha}\})} = H$$

$$\implies x = 0$$

Ejemplo:
$$\ell^2$$
, $e_k = \{(0, \dots, \underbrace{1}_k, 0, \dots)\}, k \in \mathbb{N}$. $||x||^2 = \sum |x_i|^2 = \sum |\langle x, e_i \rangle|^2$

Teorema 3.4.3. Todo espacio de Hilbert tiene una base ortonormal.

Demostración. Utiliza el Lema de Zorn

Definición 3.4.4. X espacio métrico es **separable** si existe un subconjunto $C \subseteq X$ contable y denso en X.

Ejemplo: $\ell^p, p \in [1, \infty)$ es separable.

 $L^2([0,1])$ es separable. Polinomios con coeficientes $\in \mathbb{K} \stackrel{\text{denso}}{\subseteq} C([0,1]) \stackrel{\text{denso}}{\subseteq} L^2([0,1])$ Seba Faltan los polinomios con coefs $\in \mathbb{O}$ cuando $\mathbb{K} = \mathbb{R}$ o \mathbb{C} .

Teorema 3.4.4. H es separable si y solo si existe una base ortonormal para H que es contable. En este caso, toda base o.n. es contable.

Demostración. \implies : $\{x_n\} \subseteq H$ es denso. x_1, \ldots, x_n, \ldots Descartando posiblemente términos, podemos asumir que x_1, \ldots, x_n son LI $\forall n \in \mathbb{N}$ y todos los descartados pertenecen a Gen $(\{x_k\})$. De esta manera, Gen $(\{x_k\})$ es denso en H.

Por Gram-Schmidt producimos una sucesión $\{y_k\}_{k=1}^{\infty}$ tal que, $\operatorname{Gen}(\{y_k\}_{k=1}^n) = \operatorname{Gen}(\{x_k\}_{k=1}^n) \forall n \in \mathbb{N} \text{ y } \mathcal{B} = \{y_k\} \text{ es un conjunto o.n.}$

 \mathcal{B} es o.n. y Gen(\mathcal{B}) = Gen($\{x_k\}$) es denso en H. Entonces \mathcal{B} es una base ortonormal contable. \iff : Sea $\{e_k\}_k$ una base o.n. contable.

$$G_n := \operatorname{Gen}(\{e_k\}_{k=1}^n) = \left\{ \sum_{k=1}^n \lambda_k e_k, \lambda_k \in \mathbb{K} \right\}$$

 \implies Gen $(\{e_k\}_k) = \bigcup_{n=1}^{\infty} G_n$ es denso en H.

$$\bigcup_{n=1}^{\infty} \hat{G}_n \stackrel{\text{denso}}{\subseteq} \bigcup_{n=1}^{\infty} G_n$$

donde $\hat{G}_n = \{ \sum_{i=1}^n \lambda_i e_i, \lambda_k \in \mathbb{Q} \text{ si } \mathbb{K} = \mathbb{R}, \lambda_k \in \mathbb{Q} + i \mathbb{Q} \text{ si } \mathbb{K} = \mathbb{C} \}$

Seba añadir cases en vola

Sea $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ otra base o.n.

$$A_n = \left\{ \alpha \in \mathcal{A} : \left\langle \overbrace{x}^{e_n}, u_{\alpha} \right\rangle \neq 0 \right\} \text{ es contable}$$

Además, para cada $\alpha \in \mathcal{A}$,

$$\langle u_\alpha, e_k \rangle \neq 0$$
 para algún k

por la maximalidad de la base $\{e_n\}_n$ (que es contable). Entonces, $\mathcal{A} = \bigcup_{k=1}^{\infty} A_k$ es contable.

Vamos a demostrar que todo espacio de Hilbert separable es $\ell^2 = \{\{x_k\} \in \mathbb{K}^n : \sum ||x_k|^2| < \infty\}$

Definición 3.4.5. Sean H_1, H_2 dos espacios de Hilbert. Un **isomorfismo** $T: H_1 \to H_2$ se llama **unitario** si

$$\langle Tx_1, Tx_2 \rangle_{H_2} = \langle x_1, x_2 \rangle_{H_1} \quad \forall x_1, x_2 \in H_1$$

Tunitario $\implies T$ es una **isometría**:

$$||Tx||_{H_2}^2 = \langle Tx, Tx \rangle_{H_2} = \langle x, x \rangle_{H_1} = ||x||_{H_1}^2$$

Teorema 3.4.5. Todo espacio de Hilbert separable es unitariamente isomorfo a ℓ^2 .

Demostración. Sea $\{e_n\}$ una base o.n. contable para H.

$$H \to \ell^2$$

$$x \to \hat{x} = (\hat{x}(1), \hat{x}(2), \ldots)$$

donde $\hat{x}(k) = \langle x, e_k \rangle$.

Por Parseval,

$$||\hat{x}||_{\ell^2}^2 = \sum_{k} |\hat{x}(k)|^2 = ||x||^2 < \infty$$

$$\implies \hat{x} \in \ell^2 \implies T$$
 es bien definido

es lineal, inyectivo (por maximalidad), sobreyectivo: si $c \in \ell^2, \sum_{k=1}^n c_k e_k \xrightarrow{H} x_c$, donde

$$\hat{x}_c(k) = \langle x_c, e_k \rangle = c_k \quad \forall k \in \mathbb{N}$$

Es una isometría: Identidad de Parseval.

$$||Tx||_{\ell^2}^2 = ||x||_H^2$$

Identidad de Polarización:

$$\mathbb{K} = \mathbb{R} : \langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

$$\mathbb{K} = \mathbb{C} : \langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + i||x + iy||^1 - i||x - iy||^2)$$

Por lo tanto, T preserva el producto interno:

$$\langle Tx_1, Tx_2 \rangle_{\ell^2} = \langle x_1, x_2 \rangle_H$$

3.5. Series de Fourier

 $f: \mathbb{R} \to \mathbb{C}$ periódica de período 2π .

 $F:\Pi\to\mathbb{C},\,\Pi$ es el círculo unitario.

$$F(e^{i\theta}) = f(\theta)$$

$$\hookrightarrow \tilde{f}: [-\pi,\pi] \to \mathbb{C}$$

con

$$\tilde{f}(-\pi) = \tilde{f}(\pi)$$

Vamos a asumir que $\langle f,g \rangle_{L^2} := \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx$

$$f \in L^2(\Pi) = \left\{ f : \mathbb{R} \to \mathbb{C} \text{ medibles, periódicas-} 2\pi \text{ t.q.} \int_{-\pi}^{\pi} |f(x)| \, dx < \infty \right\} = L^2([-\pi, \pi])$$

Definimos

$$e_n = \frac{1}{\sqrt{2\pi}}e^{inx}$$
 $n = 0, \pm 1, \pm 2, \dots$

Proposición 3.5.1. $\{e_n\}$ es un conjunto ortonormal de $L^2(\Pi)$.

Demostración.

$$\langle e_n, e_m \rangle = \int_{-\pi}^{\pi} e_n(x) \overline{e_m(x)} dx$$

$$= \int_{-\pi}^{\pi} \frac{2}{\pi} e^{inx} e^{-imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx$$

$$= \begin{cases} \frac{2\pi}{2\pi} = 1 & n = m \\ \frac{e^{i(n-m)x}}{i(n-m)} \Big|_{x=-\pi}^{x=\pi} & n \neq m \end{cases}$$

Definición 3.5.1. Sea $f \in L^2(\Pi)$. Defina

$$\hat{f}(n) = \langle f, e_n \rangle_{L^2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

coeficiente de Fourier.

$$f \to \sum_{n \in \mathbb{Z}} \hat{f}(n)e_n$$

serie de Fourier.

$$S_N f(x) = \sum_{|n| \le N} \hat{f}(n) \frac{1}{\sqrt{2\pi}} e^{inx}$$

suma de Fourier parcial.

Preguntas:

- 1. ¿Converge $S_n f$ a f en L^2 ?
- 2. ¿Converge $S_N f(x)$ a f(x) puntualmente? ¿Si falla para algún x, es este comportamiento raro o genérico?
- 3. ¿Converge $S_N f$ a f en otras normas (e.g. $L^p, p>1$)?