Comparison of hamiltonians and dissipation strength

Let a be the lowering operator of the harmonic oscillator and a^{\dagger} it's hermitian transpose. Let $H_0 = \hbar \omega (a^{\dagger} a + \frac{1}{2})$ be the harmonic oscillator, and let $\alpha = \frac{1}{\sqrt{2}} (a + a^{\dagger})$ be the position operator. Here we will compare the time evolution of systems with hamiltonians $H = H_0$, $H = H_0 + \lambda \alpha$, and $H = H_0 + \lambda \alpha^4$ and differing damping strengths, κ . The evolution of each system is governed by

$$i\hbar\dot{\rho} = [H,\rho] + i\frac{\kappa}{2}\{[a,\rho a^{\dagger}] + [a\rho,a]\}$$

and shown below for a couple of values of λ and κ . In all the plots the initial state of the system is the following (using a matrix representation in the basis of the harmonic oscillator):

$$\rho = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The following plots are in the order

1. Simple quantum harmonic oscillator, H_0

2.
$$H_0 + 0.5$$
x

3.
$$H_0 + 0.5x^4$$

4.
$$H_0 + x$$

5.
$$H_0 + \varkappa^4$$

