

UNIVERSITÀ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI FISICA E ASTRONOMIA "ETTORE MAJORANA"

CORSO DI LAUREA IN FISICA

Relazioni di Laboratorio di Fisica 3

LE QUATTRO COSE

Indice

Ir	Indice							
S	omm	ario	ii					
	1.1	sura di resistenze con un multimetro digitale Il multimetro						
\mathbf{B}	ibliog	grafia	4					

Sommario

In QUESTO documento sono raccolte le quattro relazioni brevi da svolgere durante il corso annuale di *Laboratorio di Fisica 3* del Corso di Laurea in *Fisica* presso l'Università degli Studi di Catania.

Le esperienze sono esposte nei quattro capitoli seguenti:

- 1. Implementazione numerica della formula di Bethe-Bloch. Attraverso un codice in C che implementa numericamente la formula di Bethe-Bloch ho simulato il passaggio di una particella α a 5 MeV attraverso un sottile foglio di alluminio, realizzando un grafico che rappresenta l'energia della particella e la quantità di energia ceduta in funzione della distanza percorsa dentro il materiale.
- 2. Misura di temperature con Arduino. Attraverso l'uso di un microcontrollore Arduino, un sensore di temperatura e un semplice codice ho misurato la variazione di temperatura di una stanza in seguito all'accensione del riscaldamento. Nella relazione analizzo qualitativamente i dati raccolti ed estrapolo una possibile funzione che ne modelli l'andamento.
- 3. Misura di resistenze con un multimetro digitale.
- 4. Accettanza geometrica di un rivelatore.

1 Misura di resistenze con un multimetro digitale

Tra le esperienze svolte con il multimetro digitale riporto la misura delle resistenze di alcuni materiali, tra cui anelli metallici, il corpo umano e alcuni resistori.

Ai resistori dedico una sezione più approfondita in quanto ho preso 50 misure su resistori distinti—ma teoricamente con resistenza uguale—per verificare la distribuzione delle misure di resistenza.

1.1 Il multimetro

Lo strumento utilizzato per l'interezza dell'esperienza è un multimetro digitale della serie DVM841 della $Velleman^{\textcircled{\tiny B}}$ [1]. Il multimetro è in grado di misurare tensione e corrente continua e alternata, resistenza, frequenza e temperatura. Avendo una risoluzione di 2000 punti, il display del multimetro può visualizzare un massimo di 1999 unità.

1.2 Resistori

Il kit presenta N=50 resistori distinti—come quelli in Fig. 1.1—il cui codice colore restituisce un valore¹ teorico di $820\,\Omega\pm5\,\%$, ovvero $820(40)\,\Omega$.

Ho effettuato le misure impostando il multimetro in modalità ohm, alla portata di $2\,\mathrm{k}\Omega$, poggiando i puntali sui terminali di ciascun resistore e aspettando di volta in volta che la lettura si stabilizzasse. I dati raccolti sono riportati in ordine crescente in Tab. 1.1.

1.2.1 Considerazioni preliminari

Notiamo subito che la resistenza media è $R_{\rm m}=808.6\,\Omega$ con una deviazione standard di $\sigma=2.3\,\Omega$, l'errore sul valor medio è quindi $\sigma_R=\sigma/\sqrt{N-1}=0.33\,\Omega$, che è confrontabile con la sensibilità dello strumento di $1\,\Omega$.

¹Lo si può dedurre da qualunque legenda fedele allo standard IEC 60062.

Figura 1.1: A sinistra alcuni dei 50 resistori da $820\,\Omega$. A destra un dettaglio dove è visibile il codice colore.

Resistenze (Ω)										
797	806	806	807	807	807	807	807	807	807	
807	808	808	808	808	808	808	808	808	808	
808	808	808	809	809	809	809	809	809	809	
809	809	809	809	809	809	810	810	810	810	
810	810	810	811	811	812	812	812	812	813	

Tabella 1.1: Misure di resistenza effettuate su 50 resistori distinti.

Questi valori rientrano completamete nell'intervallo fornito dal costruttore; tuttavia, il fatto che tutte le misure siano inferiori a 820 Ω suggerisce la presenza di un errore sistematico.²

Il dato di resistenza minima di 797 Ω può essere scartato secondo il cirerio di Chauvenet. Esso dista più di 4σ dal valor medio (ca. 4.17σ) e il numero di dati atteso³ su un campione di N=50 elementi a una distanza maggiore o uguale a 4σ è pari a $0.003 \ll 1/2$. Scartando questo dato la nuova media e la nuova deviazione standard sono:

1.2.2 Test del χ^2

Supponiamo che le misure seguano la distribuzione normale centrata in $R_{\rm m}$ e di ampiezza σ :

$$N(x; R_{\rm m}, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x - R_{\rm m}}{\sigma}\right)^2\right].$$

Costruiamo quindi un istogramma dei dati. Visto l'intervallo contenuto in cui le misure variano, ho scelto di raccogliere i dati in bin di ampiezza 1Ω , uno per

²Se si trattasse di errori casuali dovuti a imprecisioni di fabbricazione, mi aspetterei letture sia al di sopra che al di sotto del valore di riferimento; è poco probabile che tutte le resistenze devino dal valore teorico allo stesso modo a meno che non si sia verificato un evento che ha alterato tutte le resistenze—un lotto prodotto con lo stesso materiale meno resistente, seppur entro il margine del 5 %, o deterioramento nel tempo.

³Per il calcolo di questa probabilità ho fatto riferimento a [INSERIRE TAYLOR!!!]

	In	O_k	E_k			
		R	<	806.5	2	4.133
806.5	<	R	<	807.5	8	5.735
807.5	<	R	<	808.5	12	6.925
808.5	<	R	<	809.5	13	7.278
809.5	<	R	<	810.5	6	6.655
810.5	<	R	<	811.5	2	5.297
811.5	<	R	<	812.5	4	3.668
812.5	<	R			1	2.211

Tabella 1.2: Suddivisione dei dati per il test del χ^2 . Ometto le unità di misura per chiarezza espositiva e semplicità dei calcoli.

ciascun valore misurato; ciascun bin si estende da mezza unità prima del valore di interesse a mezza unità dopo. In Tab. 1.2 sono riportati i bin e le frequenze osservate O_k .

Da qui eseguo il test nell'usuale modo: converto gli esetremi dell'intervallo in variabili normali standardizzate sottraendo la media e dividendo per la deviazione standard, attraverso un foglio di calcolo trovo il valore dell'integrale della gaussiana per ciascun intervallo, moltiplico tale valore per la dimensione del campione N=49 per trovare i valori attesi E_k .

Bibliografia

[1] Velleman. DVM841 Digital Multimeter. Velleman. 2021. URL: https://www.velleman.eu/downloads/0/illustrated/illustrated_manual_dvm841.pdf.