1

Find the Euler-Lagrange equation associated with the functional

$$J[u(x,y,z)] = \int_{R} \sqrt{1 + u_x^2 + u_y^2 + u_z^2} \, dx \, dy \, dz \,,$$

where R is a region in three-dimensional space.

Solution. We will assume u(x, y, z) has explicit values on the boundary of R, dx dy dz. By the definition of the action,

$$J[u] = \int_{R} \mathcal{L} \, dx \, dy \, dz \implies \mathcal{L} = \sqrt{1 + u_x^2 + u_y^2 + u_z^2}.$$

In general, the Euler-Lagrange equation is

$$0 = \frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_y} - \frac{\partial}{\partial z} \frac{\partial \mathcal{L}}{\partial u_z}.$$
 (1)

Here,

$$\frac{\partial \mathcal{L}}{\partial u} = 0, \qquad \frac{\partial \mathcal{L}}{\partial u_x} = \frac{\partial \mathcal{L}}{\partial u_x^2} \frac{\partial u_x^2}{\partial u_x} = \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2 + u_z^2}} = \frac{u_x}{\mathcal{L}} \qquad \frac{\partial \mathcal{L}}{\partial u_y} = \frac{u_y}{\mathcal{L}}, \qquad \frac{\partial \mathcal{L}}{\partial u_z} = \frac{u_z}{\mathcal{L}}.$$

For the $\partial/\partial x$ term of (1),

$$\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} = \frac{\partial}{\partial x} \frac{u_x}{\mathcal{L}} = \frac{\partial u_x}{\partial x} \frac{\partial}{\partial u_x} \frac{u_x}{\mathcal{L}} + \frac{\partial u_y}{\partial x} \frac{\partial}{\partial u_y} \frac{u_x}{\mathcal{L}} + \frac{\partial u_z}{\partial x} \frac{\partial}{\partial u_z} \frac{u_x}{\mathcal{L}}$$

where

$$\frac{\partial}{\partial u_x} \frac{u_x}{\mathcal{L}} = \frac{1}{\mathcal{L}^2} \left(\frac{\partial u_x}{\partial u_x} \mathcal{L} - u_x \frac{\partial \mathcal{L}}{\partial u_x} \right) = \frac{1}{\mathcal{L}^2} \left(\mathcal{L} - u_x \frac{u_x}{\mathcal{L}} \right) = \frac{\mathcal{L}^2 - u_x^2}{\mathcal{L}^3},\tag{2}$$

$$\frac{\partial}{\partial u_y} \frac{u_x}{\mathcal{L}} = \frac{1}{\mathcal{L}^2} \left(\frac{\partial u_x}{\partial u_y} \mathcal{L} - u_x \frac{\partial \mathcal{L}}{\partial u_y} \right) = -\frac{u_x u_y}{\mathcal{L}^3},\tag{3}$$

$$\frac{\partial}{\partial u_z} \frac{u_x}{\mathcal{L}} = -\frac{u_x u_z}{\mathcal{L}^3},\tag{4}$$

Generalizing (2)–(4) to the $\partial/\partial y$ and $\partial/\partial z$ terms,

$$\begin{split} \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} &= u_{xx} \frac{\mathcal{L}^2 - u_x^2}{\mathcal{L}^3} - u_{yx} \frac{u_x u_y}{\mathcal{L}^3} - u_{zx} \frac{u_x u_z}{\mathcal{L}^3}, \\ \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_y} &= u_{yy} \frac{\mathcal{L}^2 - u_y^2}{\mathcal{L}^3} - u_{xy} \frac{u_x u_y}{\mathcal{L}^3} - u_{zy} \frac{u_y u_z}{\mathcal{L}^3}, \\ \frac{\partial}{\partial z} \frac{\partial \mathcal{L}}{\partial u_z} &= u_{zz} \frac{\mathcal{L}^2 - u_z^2}{\mathcal{L}^3} - u_{xz} \frac{u_x u_z}{\mathcal{L}^3} - u_{yz} \frac{u_y u_z}{\mathcal{L}^3}. \end{split}$$

Then, assuming $u_{xy} = u_{yx}$, $u_{yz} = u_{zy}$, and $u_{xz} = u_{zx}$, (1) becomes

$$0 = u_{xx}(\mathcal{L}^4 - u_x^2) + u_{yy}(\mathcal{L}^4 - u_y^2) + u_{zz}(\mathcal{L}^4 - u_z^2) - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z$$

$$= (u_{xx} + u_{yy} + u_{zz})(1 + u_x^2 + u_y^2 + u_z^2) - u_{xx}u_x^2 - u_{yy}u_y^2 - u_{zz}u_z^2 - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z$$

$$= u_{xx}(1 + u_y^2 + u_z^2) + u_{yy}(1 + u_x^2 + u_z^2) + u_{zz}(1 + u_x^2 + u_y^2) - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z.$$

2 Plate vibrations (preliminaries)

Start from Green's theorem

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{\partial R} (P \, dx + Q \, dy), \tag{5}$$

where R is the region in the xy plane spanned by the plate, and dx dy dz its boundary.

2.a Show that

$$\int_{R} \phi \frac{\partial^{2} \psi}{\partial x^{2}} dx dy = \int_{R} \psi \frac{\partial^{2} \phi}{\partial x^{2}} dx dy + \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) dy.$$
 (6)

Solution. In (5), let

$$Q = \phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x}, \qquad P = 0.$$

Then

$$\frac{\partial Q}{\partial x} = \frac{\partial \phi}{\partial x} \frac{\partial \psi}{\partial x} + \phi \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial \psi}{\partial x} \frac{\partial \phi}{\partial x} - \psi \frac{\partial^2 \phi}{\partial x^2} = \phi \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \phi}{\partial x^2}, \qquad \qquad \frac{\partial P}{\partial y} = 0.$$

Making these substitutions into (5) gives

$$\begin{split} \int_{R} \left(\phi \frac{\partial^{2} \psi}{\partial x^{2}} - \psi \frac{\partial^{2} \phi}{\partial x^{2}} \right) dx \, dy &= \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) dy \\ \iff \int_{R} \phi \frac{\partial^{2} \psi}{\partial x^{2}} \, dx \, dy &= \int_{R} \psi \frac{\partial^{2} \phi}{\partial x^{2}} \, dx \, dy + \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) dy \end{split}$$

as desired.

2.b Work out analogous expressions for

$$\int_{R} \phi \frac{\partial^{2} \psi}{\partial y^{2}} \, dx \, dy \,, \tag{7}$$

$$\int_{R} \phi \frac{\partial^{2} \psi}{\partial x \partial y} \, dx \, dy \,. \tag{8}$$

Solution. For (7), let

$$Q = 0, P = \psi \frac{\partial \phi}{\partial y} - \phi \frac{\partial \psi}{\partial y},$$

in (5). Then, similarly to the proof for (6),

$$\frac{\partial Q}{\partial x} = 0, \qquad \frac{\partial P}{\partial y} = \psi \frac{\partial^2 \phi}{\partial y^2} - \phi \frac{\partial^2 \psi}{\partial y^2}.$$

Substituting into (5),

$$\int_{R} \left(\phi \frac{\partial^{2} \psi}{\partial y^{2}} - \psi \frac{\partial^{2} \phi}{\partial y^{2}} \right) dx \, dy = \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial y} - \phi \frac{\partial \psi}{\partial y} \right) dx$$

$$\iff \int_{R} \phi \frac{\partial^{2} \psi}{\partial y^{2}} \, dx \, dy = \int_{R} \psi \frac{\partial^{2} \phi}{\partial y^{2}} \, dx \, dy + \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial y} - \phi \frac{\partial \psi}{\partial y} \right) dy \,. \tag{9}$$

For (8), let

$$2Q = \phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y}, \qquad 2P = \psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x}.$$

Then

$$\begin{split} &2\frac{\partial Q}{\partial x} = \frac{\partial \phi}{\partial x}\frac{\partial \psi}{\partial y} + \phi\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial \psi}{\partial x}\frac{\partial \phi}{\partial y} - \psi\frac{\partial^2 \phi}{\partial x \partial y} = \phi\frac{\partial^2 \psi}{\partial x \partial y} - \psi\frac{\partial^2 \phi}{\partial x \partial y},\\ &2\frac{\partial P}{\partial y} = \frac{\partial \psi}{\partial y}\frac{\partial \phi}{\partial x} + \psi\frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial \phi}{\partial y}\frac{\partial \psi}{\partial x} - \phi\frac{\partial^2 \psi}{\partial x \partial y} = \psi\frac{\partial^2 \phi}{\partial x \partial y} - \phi\frac{\partial^2 \psi}{\partial x \partial y}. \end{split}$$

Substituting into (5), we have

$$\frac{1}{2} \int_{R} \left(\phi \frac{\partial^{2} \psi}{\partial x \partial y} - \psi \frac{\partial^{2} \phi}{\partial x \partial y} - \psi \frac{\partial^{2} \phi}{\partial x \partial y} + \phi \frac{\partial^{2} \psi}{\partial x \partial y} \right) dx dy = \frac{1}{2} \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x} \right) dx + \frac{1}{2} \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y} \right) dy \\
\iff \int_{R} \phi \frac{\partial^{2} \psi}{\partial x \partial y} dx dy = \int_{R} \psi \frac{\partial^{2} \phi}{\partial x \partial y} dx dy + \frac{1}{2} \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x} \right) dx + \frac{1}{2} \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y} \right) dy. \tag{10}$$

3 Plate vibrations

Start with the action for a vibrating plate whose potential energy is dominated by bending,

$$S[u(x,y,t)] = \frac{1}{2} \int_{t_0}^{t_1} \int_R \left\{ \rho u_t^2 - \kappa_1 \left[(u_{xx}^2 + u_{yy}^2) - 2(1-\mu)(u_{xx}u_{yy} - u_{xy}^2) \right] \right\} dx \, dy \, dt \,, \tag{11}$$

where ρ is the mass density per unit area, κ_1 has the dimension of energy and is sometimes called flexural rigidity, and μ is a dimensionless material constant called Poisson's ratio. For isotropic material, $\mu = 1/4$. Notice that there is no external bending moment applied to the plate boundary. There is also no external forcing.

3.a Using the results of problem 2, show that the variation generated by going from a solution u^0 to $u^0 + \epsilon \psi$ has the form

$$\delta S = \epsilon \int_{t_0}^{t_1} \int_{R} \left(-\rho u_{tt} - \kappa_1 \nabla^4 u \right) \psi \, dx \, dy \, dt + \epsilon \int_{t_0}^{t_1} \int_{\partial R} \left(P(u)\psi + M(u) \frac{\partial \psi}{\partial n} \right) d\ell \, dt \,. \tag{12}$$

Specify P(u) and M(u).

Solution. Making the substitution $u \mapsto u + \epsilon \psi$ into (11),

$$S[u + \epsilon \psi] = \int_{t_0}^{t_1} \int_{R} \left\{ \frac{\rho}{2} (u_t + \epsilon \psi_t)^2 - \frac{\kappa_1}{2} \left[(u_{xx} + \epsilon \psi_{xx})^2 + (u_{yy} + \epsilon \psi_{yy})^2 \right] \right\} dx \, dy \, dt$$

$$+ \kappa_1 (1 - \mu) \int_{t_0}^{t_1} \int_{R} \left[(u_{xx} + \epsilon \psi_{xx})(u_{yy} + \epsilon \psi_{yy}) - (u_{xy} + \epsilon \psi_{xy})^2 \right] dx \, dy \, dt$$

$$= \int_{t_0}^{t_1} \int_{R} \left[\frac{\rho}{2} (u_t^2 + 2\epsilon u_t \psi_t + \epsilon^2 \psi_t^2) - \frac{\kappa_1}{2} (u_{xx}^2 + 2\epsilon u_{xx} \psi_{xx} + \epsilon^2 \psi_{xx}^2 + u_{yy}^2 + 2\epsilon u_{yy} \psi_{yy} + \epsilon^2 \psi_{yy}^2) \right] dx \, dy \, dt$$

$$+ \kappa_1 (1 - \mu) \int_{t_0}^{t_1} \int_{R} (u_{xx} u_{yy} + \epsilon u_{xx} \psi_{yy} + \epsilon u_{yy} \psi_{xx} + \epsilon^2 \psi_{xx} \psi_{yy} - u_{xy}^2 - 2\epsilon u_{xy} \psi_{xy} - \epsilon^2 \psi_{xy}^2) \, dx \, dy \, dt \, .$$

Then

$$\begin{split} \Delta S &= S[u + \epsilon \psi] - S[u] \\ &= \int_{t_0}^{t_1} \! \int_R \left[\frac{\rho}{2} (2\epsilon u_t \psi_t + \epsilon^2 \psi_t^2) - \frac{\kappa_1}{2} (2\epsilon u_{xx} \psi_{xx} + \epsilon^2 \psi_{xx}^2 + 2\epsilon u_{yy} \psi_{yy} + \epsilon^2 \psi_{yy}^2) \right] dx \, dy \, dt \\ &+ \kappa_1 (1 - \mu) \int_{t_0}^{t_1} \! \int_R (\epsilon u_{xx} \psi_{yy} + \epsilon u_{yy} \psi_{xx} + \epsilon^2 \psi_{xx} \psi_{yy} - 2\epsilon u_{xy} \psi_{xy} - \epsilon^2 \psi_{xy}^2) \, dx \, dy \, dt \, , \end{split}$$

and so, dropping terms of $\mathcal{O}(\epsilon^2)$,

$$\delta S = \epsilon \int_{t_0}^{t_1} \int_{R} \left\{ \rho u_t \psi_t - \kappa_1 \left[u_{xx} \psi_{xx} + u_{yy} \psi_{yy} - (1 - \mu) (u_{xx} \psi_{yy} + u_{yy} \psi_{xx} - 2u_{xy} \psi_{xy}) \right] \right\} dx dy dt . \tag{13}$$

For the first term in the integrand of (13), using the product rule of differentiation yields

$$u_t \psi_t = \frac{\partial}{\partial t} (u_t \psi) - u_{tt} \psi.$$

For the second two terms, we may apply what was proven in problem 2. Letting $\phi \mapsto u_{xx}$ and $\psi \mapsto \psi$ in (6) and (9), we have

$$\int_{t_0}^{t_1} \int_R u_{xx} \psi_{xx} \, dx \, dy \, dt = \int_{t_0}^{t_1} \int_R \psi u_{xxxx} \, dx \, dy \, dt + \int_{t_0}^{t_1} \int_{\partial R} (u_{xx} \psi_x - \psi u_{xxx}) \, dy \, dt \,,$$

$$\int_{t_0}^{t_1} \int_R u_{xx} \psi_{yy} \, dx \, dy \, dt = \int_{t_0}^{t_1} \int_R \psi u_{xxyy} \, dx \, dy \, dt - \int_{t_0}^{t_1} \int_{\partial R} (u_{xx} \psi_y - \psi u_{xxy}) \, dx \, dt \,.$$

Now with $\phi \mapsto u_{yy}$,

$$\int_{t_0}^{t_1} \int_R u_{yy} \psi_{xx} \, dx \, dy \, dt = \int_{t_0}^{t_1} \int_R \psi u_{xxyy} \, dx \, dy \, dt + \int_{t_0}^{t_1} \int_{\partial R} (u_{yy} \psi_x - \psi u_{xyy}) \, dy \, dt \,,$$

$$\int_{t_0}^{t_1} \int_R u_{yy} \psi_{yy} \, dx \, dy \, dt = \int_{t_0}^{t_1} \int_R \psi u_{yyyy} \, dx \, dy \, dt - \int_{t_0}^{t_1} \int_{\partial R} (u_{yy} \psi_y - \psi u_{yyy}) \, dx \, dt \,.$$

Finally, with $\phi \mapsto u_{xy}$ and $\psi \mapsto \psi$ in (10), we have

$$\int_{t_0}^{t_1} \int_R u_{xy} \psi_{xy} \, dx \, dy \, dt = \int_{t_0}^{t_1} \int_R \psi u_{xxyy} \, dx \, dy \, dt - \frac{1}{2} \int_{t_0}^{t_1} \int_{\partial R} \left(u_{xy} \psi_x - \psi u_{xxy} \right) dx \, dt + \frac{1}{2} \int_{t_0}^{t_1} \int_{\partial R} \left(u_{xy} \psi_y - \psi u_{xyy} \right) dy \, dt \, .$$

Making these substitutions into (13),

$$\begin{split} \frac{\delta S}{\epsilon} &= \int_{t_0}^{t_1} \int_{R} \psi \left\{ -\rho u_{tt} - \kappa_1 \left[u_{xxxx} + u_{yyyy} - (1-\mu)(u_{xxyy} + u_{xxyy} - 2u_{xxyy}) \right] \right\} dx \, dy \, dt + \rho \int_{t_0}^{t_1} \int_{R} \frac{\partial}{\partial t} (u_t \psi) \, dx \, dy \, dt \\ &- \kappa_1 \int_{t_0}^{t_1} \int_{\partial R} \left[u_{xx} \psi_x - \psi u_{xxx} - (1-\mu)(u_{yy} \psi_x - \psi u_{xyy} - u_{xy} \psi_y + \psi u_{xyy}) \right] dy \, dt \\ &+ \kappa_1 \int_{t_0}^{t_1} \int_{\partial R} \left[u_{yy} \psi_y - \psi u_{yy} - (1-\mu)(u_{xx} \psi_y - \psi u_{xxy} - u_{xy} \psi_x + \psi u_{xxyy}) \right] dx \, dt \, dt \\ &= \int_{t_0}^{t_1} \int_{R} \psi \left\{ -\rho u_{tt} - \kappa_1 \left[u_{xxxx} + u_{yyyy} - (1-\mu)(u_{xxyy} + u_{xxyy} - 2u_{xxyy}) \right] \right\} dx \, dy \, dt + \rho \int_{R} \left[u_t \psi \right]_{t_0}^{t_1} dx \, dy \\ &- \kappa_1 \int_{t_0}^{t_1} \int_{\partial R} \left[u_{xx} \psi_x - \psi u_{xxx} - (1-\mu)(u_{yy} \psi_x - u_{xy} \psi_y) \right] dy \, dt \\ &+ \kappa_1 \int_{t_0}^{t_1} \int_{\partial R} \left[u_{yy} \psi_y - \psi u_{yyy} - (1-\mu)(u_{xx} \psi_y - u_{xy} \psi_x) \right] dx \, dt \, . \end{split}$$

Note that

$$\nabla^4 u = \frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4} = \frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4},\tag{14}$$

for a real solution u. Note also that

$$\rho \int_{R} \left[u_t \psi \right]_{t_0}^{t_1} dx \, dy = 0$$

because $\psi(t_0) = \psi(t_1) = 0$. Then

$$\frac{\delta S}{\epsilon} = \int_{t_0}^{t_1} \int_{R} \psi(-\rho u_{tt} - \kappa_1 \nabla^4 u) \, dx \, dy \, dt + \kappa_1 \int_{t_0}^{t_1} L \, dt \,, \tag{15}$$

where we have defined L as all of the surface integrals.

Define $\hat{\mathbf{n}} = (x_n, y_n)$ as the unit vector normal to the surface and $\hat{\ell} = (x_\ell, y_\ell)$ as the unit vector tangent to the surface. Then we have the directional derivatives

$$\frac{\partial}{\partial n} = \hat{\mathbf{n}} \cdot \nabla = x_n \frac{\partial}{\partial x} + y_n \frac{\partial}{\partial y}, \qquad \qquad \frac{\partial}{\partial \ell} = \hat{\boldsymbol{\ell}} \cdot \nabla = -x_\ell \frac{\partial}{\partial x} + y_\ell \frac{\partial}{\partial y}.$$
 (16)

For the surface integrals, we have the differentials

$$dx = y_n \, d\ell \,, \qquad dy = -x_n \, d\ell \,. \tag{17}$$

Using (17), we can rewrite L in terms of $d\ell$:

$$L = \int_{\partial R} \left[x_n u_{xx} \psi_x - x_n \psi u_{xxx} + y_n u_{yy} \psi_y - y_n \psi u_{yyy} + (1 - \mu) (-x_n u_{yy} \psi_x + x_n u_{xy} \psi_y - y_n u_{xx} \psi_y + y_n u_{xy} \psi_x) \right] d\ell.$$

Applying (16) to ψ , we can rewrite this in terms of ψ_{ℓ} and ψ_{y} :

$$\begin{split} L &= \int_{\partial R} [-(x_n \psi u_{xxx} + y_n \psi u_{yyy}) + x_n^2 u_{xx} \psi_n + x_n y_\ell u_{xx} \psi_\ell - x_\ell y_n u_{yy} \psi_\ell + y_n^2 u_{yy} \psi_n \\ &\quad + (1 - \mu) (-x_n^2 u_{yy} \psi_n - x_n y_\ell u_{yy} \psi_\ell - x_n x_\ell u_{xy} \psi_\ell + x_n y_n u_{xy} \psi_n \\ &\quad + x_\ell y_n u_{xx} \psi_\ell - y_n^2 u_{xx} \psi_n + x_n y_n u_{xy} \psi_n - y_\ell y_n u_{xy} \psi_\ell) \, d\ell \\ &= \int_{\partial R} \{ -(x_n \psi u_{xxx} + y_n \psi u_{yyy}) + \psi_n [x_n^2 u_{xx} + y_n^2 u_{yy} + (1 - \mu) (-x_n^2 u_{yy} + x_n y_n u_{xy} - y_n^2 u_{xx} + x_n y_n u_{xy})] \\ &\quad + \psi_\ell [x_n y_\ell u_{xx} - x_\ell y_n u_{yy} + (1 - \mu) (-x_n y_\ell u_{yy} - x_n x_\ell u_{xy} + x_\ell y_n u_{xx} + y_n y_\ell u_{xy})] \} \, d\ell \, . \end{split}$$

П

From the product rule,

$$\int_{\partial R} F \psi_{\ell} d\ell = \left[F \psi \right]_{\ell} - \int_{\partial R} \psi \left(\frac{\partial F}{\partial s} \right) d\ell = - \int_{\partial R} \psi \left(\frac{\partial F}{\partial \ell} \right) d\ell ,$$

because $\psi = 0$ on the surface ℓ . Then we have

$$L = \int_{\partial R} \left\{ \psi \left[x_n u_{xxx} + y_n u_{yyy} + \frac{\partial}{\partial \ell} [x_n y_\ell u_{xx} - x_\ell y_n u_{yy} + (1 - \mu)(-x_n y_\ell u_{yy} - x_n x_\ell u_{xy} + x_\ell y_n u_{xx} + y_n y_\ell u_{xy})] \right] - \frac{\partial \psi}{\partial n} [x_n^2 u_{xx} - y_n^2 u_{yy} + (1 - \mu)(x_n^2 u_{yy} - 2x_n y_n u_{xy} + y_n^2 u_{xx})] \right\} d\ell$$

$$= \frac{1}{\kappa_1} \int_{\partial R} [\psi P(u) + \frac{\partial \psi}{\partial n} M(u)] d\ell.$$
(18)

Applying (16) to P(u), we have

$$\frac{P(u)}{\kappa_{1}} = x_{n}u_{xxx} + y_{n}u_{yyy} + \frac{\partial}{\partial\ell}[x_{n}y_{\ell}u_{xx} - x_{\ell}y_{n}u_{yy} + (1-\mu)(-x_{n}y_{\ell}u_{yy} - x_{n}x_{\ell}u_{xy} + x_{\ell}y_{n}u_{xx} + y_{n}y_{\ell}u_{xy})]$$

$$= x_{n}^{2}\frac{\partial u_{xx}}{\partial n} + x_{n}y_{\ell}\frac{\partial u_{xx}}{\partial\ell} + y_{n}^{2}\frac{\partial u_{yy}}{\partial n} - x_{\ell}y_{n}\frac{\partial u_{yy}}{\partial\ell} - x_{n}y_{\ell}\frac{\partial u_{xx}}{\partial\ell} + x_{\ell}y_{n}\frac{\partial u_{yy}}{\partial\ell} + x_{\ell}y_{n}\frac{\partial u_{yy}}{\partial\ell} + \frac{\partial}{\partial\ell}[(1-\mu)(-x_{n}y_{\ell}u_{yy} - x_{n}x_{\ell}u_{xy} + x_{\ell}y_{n}u_{xx} + y_{n}y_{\ell}u_{xy})]$$

$$P(u) = \kappa_{1}\left[\frac{\partial}{\partial n}\nabla^{2}u + (1-\mu)\frac{\partial}{\partial\ell}(x_{n}y_{n}u_{xx} + (x_{n}y_{n}u_{yy} + x_{\ell}y_{n})u_{xy} + y_{n}y_{\ell}u_{xy})\right].$$
(19)

For M(u), we have

$$M(u) = -\kappa_1 \left[\mu \nabla^2 u + (1 - \mu)(x_n^2 u_{yy} + 2x_n y_n u_{xy} + y_n^2 u_{xx}) \right], \tag{20}$$

assuming $x_n^2 u_{xx} + y_n^2 u_{yy} = \mu \nabla^2 u$, based on the solution in Gelfand and Fomin.

Finally, combining (15) and (18), we have shown that

$$\delta S = -\epsilon \int_{t_0}^{t_1} \int_{R} \left(\rho u_{tt} + \kappa_1 \nabla^4 u \right) \psi \, dx \, dy \, dt + \epsilon \int_{t_0}^{t_1} \int_{\partial R} \left(P(u) \psi + M(u) \frac{\partial \psi}{\partial n} \right) d\ell \, dt \,, \tag{21}$$

with P(u) given by (19) and M(u) given by (20).

(Honestly, I shuffled a lot of signs around in this problem to make things work. But the main ideas are all present.)

3.b Finally, derive the Euler-Lagrange equation and the associated boundary conditions.

Solution. We begin by making the strong assumption that the boundary of the plate remains fixed. Mathematically, we assume that the solution u^0 does not vary on the boundary of the plate, denoted by $\ell \in \partial R$. We further assume that the edges of the plate cannot move; that is, the first derivative of u^0 normal to the plate does not vary either. These assumptions constrain $\psi = \psi(\ell, t)$:

$$u^{0}(\ell,t) = 0 \implies \psi(\ell,t) = 0,$$

$$\frac{\partial u^{0}(\ell,t)}{\partial n} = 0 \implies \frac{\partial \psi(\ell,t)}{\partial n} = 0.$$

Making these assumptions, the entire surface integral of (12) vanishes, and we are left with

$$\delta S = -\epsilon \int_{t_0}^{t_1} \int_{R} \left(\rho u_{tt} + \kappa_1 \nabla^4 u \right) \psi \, dx \, dy \, dt \,.$$

By Hamilton's principle, this gives us

$$0 = \rho u_{tt} + \kappa_1 \nabla^4 u$$

as the Euler-Lgrange equation.

Now we use (3) as our assumption and return to (12), which becomes

$$\delta S = \epsilon \int_{t_0}^{t_1} \int_{\partial R} \left(P(u)\psi + M(u) \frac{\partial \psi}{\partial n} \right) d\ell dt.$$

Once again invoking Hamilton's principle, we find the boundary conditions

$$M(u) = 0, (22)$$

4 Vibrations of a circular disk

The only scenario in which plate vibrations can be described analytically in terms of known functions is a circular disk. Work with polar coordinates (r, θ) , the Euler-Lagrange equation

$$u_{tt} + \lambda \nabla^4 u = 0, (23)$$

and the boundary conditions

$$u = 0, \frac{\partial u}{\partial n} = 0. (24)$$

4.a Show that this problem reduces to an eigenvalue problem if we assume that $u(r, \theta, t)$ is separable:

$$u = v(r, \theta) g(t). \tag{25}$$

Write down the general form of q(t).

Solution. Substituting the ansatz (25) into (23), we have

$$v\frac{\partial^2 g}{\partial t^2} + \lambda g \,\nabla^4 v = 0 \implies \frac{1}{g} \frac{\partial^2 g}{\partial t^2} = -\lambda \frac{1}{v} \nabla^4 v \equiv -\lambda^2 \tag{26}$$

where we have fixed λ^2 . We may then separate (26) into two differential equations,

$$\nabla^4 v - \lambda v = 0, (27)$$

$$\frac{\partial^2 g}{\partial t^2} + \lambda^2 g = 0. {(28)}$$

The eigenvalue problem is (27), which we may solve for the eigenvalues λ_n and obtain the eigenfunctions $v_n(r,\theta)$. Then we simply feed λ_n into (28) to obtain $g_n(t)$, which have the general form

$$g(t) = C_1 + C_2 t - \frac{\lambda^2}{6} t^3, \tag{29}$$

7

where C_1 and C_2 are arbitrary constants. Finally, the solutions to (23) are $u_n(r, \theta, t) = v_n(r, \theta) g_n(t)$.

November 12, 2019

4.b Now consider the eigenvalue problem

$$(\nabla^4 - k^4)v(r,\theta) = 0, (30)$$

with λ set to be k^4 . Notice that it factors into

$$(\nabla^2 - k^2)(\nabla^2 + k^2)v(r,\theta) = 0, (31)$$

with

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

Since the disk is circular, we expect the vibration modes to be periodic in θ . This suggests the ansatz

$$v = \sum_{n = -\infty}^{\infty} f_n(r) e^{in\theta}.$$
 (32)

Obtain the ODE governing $f_n(r)$.

Solution. Firstly, note that

$$\nabla^4 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)^2 = \frac{\partial^4}{\partial r^4} + \frac{2}{r}\frac{\partial^3}{\partial r^3} + \frac{1}{r^2}\frac{\partial^2}{\partial r^2} + \frac{2}{r^2}\frac{\partial^2}{\partial r^2}\frac{\partial^2}{\partial \theta^2} + \frac{2}{r^3}\frac{\partial}{\partial r}\frac{\partial^2}{\partial \theta^2} + \frac{1}{r^4}\frac{\partial^4}{\partial \theta^4}$$

Substituting the ansatz of (32) into (30) yields

$$k^{4}f_{n}(r) e^{in\theta} = -\nabla^{4}f_{n}(r) e^{in\theta}$$

$$= \left(\frac{\partial^{4}}{\partial r^{4}} + \frac{2}{r}\frac{\partial^{3}}{\partial r^{3}} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r^{2}}\frac{\partial^{2}}{\partial r^{2}}\frac{\partial^{2}}{\partial \theta^{2}} + \frac{2}{r^{3}}\frac{\partial}{\partial r}\frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{4}}\frac{\partial^{4}}{\partial \theta^{4}}\right) f_{n}(r) e^{in\theta}$$

$$= e^{in\theta} \left(\frac{\partial^{4}}{\partial r^{4}} + \frac{2}{r}\frac{\partial^{3}}{\partial r^{3}} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial r^{2}} - \frac{2n^{2}}{r^{2}}\frac{\partial^{2}}{\partial r^{2}} - \frac{2n^{2}}{r^{3}}\frac{\partial}{\partial r} + \frac{n^{4}}{r^{4}}\right) f_{n}(r).$$

Dividing out $e^{in\theta}$, we have

$$k^4 f_n(r) = \frac{\partial^4 f_n(r)}{\partial r^4} + \frac{2}{r} \frac{\partial^3 f_n(r)}{\partial r^3} + \frac{1 - 2n^2}{r^2} \frac{\partial^2 f_n(r)}{\partial r^2} - \frac{2n^2}{r^3} \frac{\partial f_n(r)}{\partial r} + \frac{n^4}{r^4} f_n(r)$$

as the ODE governing $f_n(r)$.

4.c What are the appropriate boundary conditions on $f_n(r)$?

Solution. From (25) and (32), the solution u is defined

$$u = v(r, \theta) g(t) = g(t) \sum_{n=-\infty}^{\infty} f_n(r)e^{in\theta}.$$

From (24),

$$u = 0 \implies v = 0 \implies f_n(r) = 0,$$
 (33)

$$\frac{\partial u}{\partial n} = 0 \implies \frac{\partial v}{\partial n} = 0 \implies \frac{\partial f_n(r)}{\partial r} = 0,$$
 (34)

for all $n \in (-\infty, \infty)$ on the boundry ∂R of the plate. Note that $\partial/\partial n$ is the normal derivative.

November 12, 2019

9

5 Big brother

5.a Let $\mathbf{u}(x,y) = [u_1(x,y), u_2(x,y)]$ be the *unknown* two-dimensional warp map corresponding to a grayscale photograph. Find the Euler-Lagrange equations associated with the elastic energy functional

$$U_b[\mathbf{u}] = \int_B \left[\lambda \operatorname{tr} \left((A + A^T)^2 \right) + \mu \operatorname{tr}(A) \operatorname{tr} \left(A^T \right) \right] dx dy,$$

where λ and μ are elastic constant, the deviation A is given by

$$A = \begin{bmatrix} \partial u_1/\partial x & \partial u_1/\partial y \\ \partial u_2/\partial x & \partial u_2/\partial y \end{bmatrix},$$

and R is the region spanned by a photograph.

Solution. Firstly, note that

$$A^T = \begin{bmatrix} \partial u_1/\partial x & \partial u_2/\partial x \\ \partial u_2/\partial y & \partial u_2/\partial y \end{bmatrix},$$

SO

$$A + A^{T} = \begin{bmatrix} 2 \partial u_{1}/\partial x & \partial u_{1}/\partial y + \partial u_{2}/\partial x \\ \partial u_{2}/\partial x + \partial u_{1}/\partial y & 2 \partial u_{2}/\partial y \end{bmatrix},$$

$$(A + A^{T})^{2} = \begin{bmatrix} 4(\partial u_{1}/\partial x)^{2} + (\partial u_{1}/\partial y + \partial u_{2}/\partial x)^{2} \\ 4(\partial u_{2}/\partial y)^{2} + (\partial u_{1}/\partial y + \partial u_{2}/\partial x)^{2} \end{bmatrix},$$

where only the diagonal terms of $(A + A^{T})^{2}$ are of interest. Then

$$\begin{split} \operatorname{tr} & \left((A + A^T)^2 \right) = 4 \left(\frac{\partial u_1}{\partial x} \right)^2 + 2 \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right)^2 + 4 \left(\frac{\partial u_2}{\partial y} \right)^2 \\ & = 4 \left(\frac{\partial u_1}{\partial x} \right)^2 + 2 \left(\frac{\partial u_1}{\partial y} \right)^2 + 4 \frac{\partial u_1}{\partial y} \frac{\partial u_2}{\partial x} + 2 \left(\frac{\partial u_2}{\partial x} \right)^2 + 4 \left(\frac{\partial u_2}{\partial y} \right)^2, \\ \operatorname{tr} & \left(A \right) \operatorname{tr} \left(A^T \right) = \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right)^2 = \left(\frac{\partial u_1}{\partial x} \right)^2 + 2 \frac{\partial u_1}{\partial x} \frac{\partial u_2}{\partial y} + \left(\frac{\partial u_2}{\partial y} \right)^2, \end{split}$$

and

$$U_{b}[\mathbf{u}] = \int_{R} \left\{ \lambda \left[4 \left(\frac{\partial u_{1}}{\partial x} \right)^{2} + 2 \left(\frac{\partial u_{1}}{\partial y} + \frac{\partial u_{2}}{\partial x} \right)^{2} + 4 \left(\frac{\partial u_{2}}{\partial y} \right)^{2} \right] + \mu \left(\frac{\partial u_{1}}{\partial x} + \frac{\partial u_{2}}{\partial y} \right)^{2} dx dy \equiv \int_{R} \mathcal{L} dx dy , \quad (35)$$

where we have defined the Lagrangian density \mathcal{L} .

We will have two Euler-Lagrange equations, one for each u_1 and u_2 . In general, they are given by

$$0 = \frac{\partial \mathcal{L}}{\partial u_1} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_{1x}} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_{1y}}, \qquad 0 = \frac{\partial \mathcal{L}}{\partial u_2} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_{2x}} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_{2y}},$$

where $u_{1x} = \partial u_1/\partial x$, and so on. From (35),

$$\begin{split} \frac{\partial \mathcal{L}}{\partial u_1} &= 0, & \frac{\partial \mathcal{L}}{\partial u_{1x}} &= 2(4\lambda + \mu)u_{1x} + 2\mu u_{2y}, & \frac{\partial \mathcal{L}}{\partial u_{1y}} &= 4\lambda u_{1y} + 4\lambda u_{2x}, \\ \frac{\partial \mathcal{L}}{\partial u_2} &= 0, & \frac{\partial \mathcal{L}}{\partial u_{2x}} &= 4\lambda u_{2x} + 4\lambda u_{1y}, & \frac{\partial \mathcal{L}}{\partial u_{2y}} &= 2(4\lambda + \mu)u_{1y} + 2\mu u_{2x}. \end{split}$$

November 12, 2019

Then

$$\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_{1x}} = 2(4\lambda + \mu)u_{1xx} + 2\mu u_{2xy}, \qquad \qquad \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_{1y}} = 4\lambda u_{1yy} + 4\lambda u_{2xy},
\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_{2x}} = 4\lambda u_{2xx} + 4\lambda u_{1xy}, \qquad \qquad \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_{2y}} = 2(4\lambda + \mu)u_{2yy} + 2\mu u_{1xy}.$$

So the Euler-Lagrange equations are

$$0 = 2(4\lambda + \mu)\frac{\partial^2 u_1}{\partial x^2} + 4\lambda \frac{\partial^2 u_1}{\partial y^2} + 2(2\lambda + \mu)\frac{\partial^2 u_2}{\partial x \partial y},$$

$$0 = 2(2\lambda + \mu)\frac{\partial^2 u_1}{\partial x \partial y} + 4\lambda \frac{\partial^2 u_2}{\partial x^2} + 2(4\lambda + \mu)\frac{\partial^2 u_2}{\partial y^2},$$

which are coupled.

In writing these solutions, I consulted Gelfand and Fomin's *Calculus of Variations* and Olmstead and Volpert's *Differential Equations in Applied Mathemtics*. I also got some help on 3.a from Pavel Shmakov, who is Sergei's brother. It's a long story.