Name: Gurjit Singh Sid: N01634963

Naive Bayes Classifier with Loan Dataset

1. Data Loading

```
import pandas as pd
df = pd.read_csv('loan_data.csv')
df.head()
   credit.policy
                             purpose int.rate installment
log.annual.inc \
               1 debt consolidation
                                                      829.10
                                         0.1189
11.350407
                         credit_card
                                         0.1071
                                                      228.22
11.082143
               1
                  debt consolidation
                                         0.1357
                                                      366.86
10.373491
                  debt consolidation
               1
                                         0.1008
                                                      162.34
11.350407
               1
                         credit card
                                         0.1426
                                                      102.92
11.299732
     dti
          fico
                days.with.cr.line revol.bal revol.util
ing.last.6mths
   19.48
           737
                      5639.958333
                                        28854
                                                     52.1
1
  14.29
           707
                      2760.000000
                                                     76.7
                                        33623
2
  11.63
           682
                      4710.000000
                                         3511
                                                     25.6
1
3
  8.10
           712
                      2699.958333
                                        33667
                                                     73.2
1
                      4066.000000
4
  14.97
           667
                                         4740
                                                     39.5
0
                pub.rec
                         not.fully.paid
   deling.2yrs
0
             0
                      0
                      0
                                       0
1
             0
2
             0
                      0
                                       0
3
             0
                      0
                                       0
4
             1
```

1. Data Exploration

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
```

```
Data columns (total 14 columns):
                        Non-Null Count
#
     Column
                                        Dtype
- - -
     -----
0
     credit.policy
                        9578 non-null
                                        int64
1
     purpose
                        9578 non-null
                                        object
2
     int.rate
                        9578 non-null
                                        float64
 3
                                        float64
    installment
                        9578 non-null
4
     log.annual.inc
                        9578 non-null
                                        float64
5
                        9578 non-null
     dti
                                        float64
 6
    fico
                        9578 non-null
                                        int64
 7
     days.with.cr.line
                        9578 non-null
                                        float64
 8
     revol.bal
                        9578 non-null
                                        int64
 9
     revol.util
                        9578 non-null
                                        float64
 10 inq.last.6mths
                        9578 non-null
                                        int64
 11 deling.2yrs
                        9578 non-null
                                        int64
12
    pub.rec
                        9578 non-null
                                        int64
13 not.fully.paid
                        9578 non-null
                                        int64
dtypes: float64(6), int64(7), object(1)
memory usage: 1.0+ MB
import seaborn as sns
import matplotlib.pyplot as plt
# Convert the 'not.fully.paid' column to string (categorical)
df['not.fully.paid'] = df['not.fully.paid'].astype(str)
# Now plot
sns.countplot(data=df, x='purpose', hue='not.fully.paid')
plt.xticks(rotation=45, ha='right')
plt.show()
```


1. Data Processing

<pre>pre_df = pd.get_dummies(df,columns=['purpose'],drop_first=True) pre_df.head()</pre>										
<pre>credit.poli fico \</pre>	су	int.rate	installment	log.annual.inc	dti					
0	1	0.1189	829.10	11.350407	19.48	737				
1	1	0.1071	228.22	11.082143	14.29	707				
2	1	0.1357	366.86	10.373491	11.63	682				
3	1	0.1008	162.34	11.350407	8.10	712				
4	1	0.1426	102.92	11.299732	14.97	667				
<pre>days.with.cr.line revol.bal revol.util inq.last.6mths delinq.2yrs \</pre>										

0	5639.958333	28854	52.1	0					
0 1 0	2760.000000	33623	76.7	0					
2	4710.000000	3511	25.6	1					
3	2699.958333	33667	73.2	1					
4 1	4066.000000	4740	39.5	0					
<pre>pub.rec not.fully.paid purpose_credit_card purpose_debt_consolidation \</pre>									
0 True	0	0	False						
1	0	0	True						
False									
2	0	0	False						
True 3	0	0	False						
True	U	U	ratse						
4	0	0	True						
False									
nurn	oso odusational	nurnoso hor	ma improvement						
	ose_educational _major_purchase	pur pose_noi	me_improvement						
0 0	False	`	False						
False	. 4.50		. 4 . 5 .						
1	False		False						
False	- 1		- 1						
2 False	False		False						
3	False		False						
False	1 4 6 5 6		racse						
4	False		False						
False									
purpose_small_business									
0 False									
False False									
False False False False False									
4	Fals								

After that, we will define feature (X) and target (y) variables, and split the dataset into training and testing sets.

```
from sklearn.model_selection import train_test_split
```

```
X = pre_df.drop('not.fully.paid', axis=1)
y = pre_df['not.fully.paid']

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=125
)
```

1. Model Building and Training

```
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train, y_train);
```

1. Model Evaluation

```
from sklearn.metrics import (
    accuracy_score,
    confusion_matrix,
    ConfusionMatrixDisplay,
    f1_score,
    classification_report,
)

y_pred = model.predict(X_test)

accuray = accuracy_score(y_pred, y_test)
f1 = f1_score(y_pred, y_test, average="weighted")

print("Accuracy:", accuray)
print("F1 Score:", f1)

Accuracy: 0.8206263840556786
F1 Score: 0.8686606980013266
```

1. Due to the imbalanced nature of the data, we can see that the confusion matrix tells a different story. On a minority target: **not** fully paid, we have more mislabeled.

```
labels = ["Fully Paid", "Not fully Paid"]
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=labels)
disp.plot();
```

