Project on

Automotive Suspension System

Course code: EE650A
Basics of Modern Control Systems

Submitted by

Insha Rahman (241040612) Arvind Trivedi (241040603) Prakhar Bajpai (241040621) G Karthik (220412)

Submitted To,

Dr. Twinkle Tripathy
Assistant Professor
Department of Electrical Engineering
IIT Kanpur, India

Contents:

- Introduction
- Mathematical Model of Suspension System
- State Space Representation
- MATLAB Simulink model of Plant
- Controllability test and Observability test
- MATLAB Simulink Model of Closed Loop System
- Designing of State Feedback Controller
- Designing of Leunberger Observer
- Conclusion
- References

Introduction

- An Automotive Suspension system Allows the vehicle to absorb shocks and maintain contact with the road, even on rough surfaces.
- Consist of springs, shock absorbers, and various linkages that help to manage the movement of the wheels relative to the body of the vehicle.
- Springs absorb vertical energy from the wheels, when a vehicle goes over bumps,
 helping maintain a smooth ride.
- Shock Absorbers (Dampers) control the motion of the springs, preventing excessive bounce and keeping the vehicle stable.

Mathematical Model

Schematic diagram of an automotive suspension system

Transfer functions are calculated as:

$$G_1(s) = \frac{X_1(s) - X_2(s)}{U(s)} = \frac{(M_1 + M_2)s^2 + b_2s + K_2}{\Delta}$$

When, U is present, W= 0

$$G_2(s) = \frac{X_1(s) - X_2(s)}{W(s)} = \frac{-M_1b_2 s^3 - M_1K_2s^2}{\Delta}$$

When, W is present, U= 0

State Space Model of Automotive Suspension System

State Space Model

The state space representation of automotive suspension system:

Where,
$$X = \begin{bmatrix} X1 \\ X2 \\ \dot{X}1 \\ X2 \end{bmatrix}$$

System Matrix, input & output matrices are computed as:

[A]=
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K1/M1 & K1/M1 & -b1/M1 & b1/M1 \\ K1/M2 & -(K1+K2)/M2 & b1/M2 & -(b1+b2)/M2 \end{bmatrix}$$

$$[B] = \begin{bmatrix} 0 \\ 0 \\ 1/M1 \\ -1/M2 \end{bmatrix}$$

$$[C] = [1 - 1 \ 0 \ 0]$$

$$[D] = [0]$$

State Space Model

The state space representation of system:

$$\text{Matrix [A]=} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -26.7 & 26.7 & -0.1 & 0.1 \\ 200 & -1450 & 0.9 & -38.4 \end{bmatrix} \quad \begin{array}{l} \text{Spring constant: K2 = 500000 N/m;} \\ \text{Damper constant: b1 = 350 N-S/m;} \\ \text{Damper constant: b2 = 15020 N-S/m;} \\ \text{Damper const$$

Matrix [B]=
$$\begin{bmatrix} 0 \\ 0 \\ 0.0003 \\ -0.0025 \end{bmatrix}$$

Matrix [C]=
$$[1 - 1 \ 0 \ 0]$$

Matrix
$$[D] = [0]$$

Vehicle $\frac{1}{4}$ mass: M1 = 3000 Kg; Suspension mass: M2 = 350 Kg; Spring constant: K1 = 80000 N/m; Spring constant: K2 = 500000 N/m;

MATLAB Simulink Model of Plant

Suspension system model of Plant

Controllability & Observability Tests

Controllability Matrix:

 $C=[B:AB:A^2B:...:A^{n-1}B]$

For our system:

 $C=[B:AB:A^2B:A^3B]$

[C] is a 4x4 matrix

Rank of [C]=4

Hence, All states (X1, X2, X1, X2) are controllable.

We can design State feedback controller.

Observability Matrix:

For our system:

 $O = [C^T : A^T C^T : (A^T ^2) C^T : (A^T ^3) C^T]$

[O] is a 4x4 matrix

Rank of [O] = 4

Hence, All states (X1, X2, X1, X2) are observable.

We can design Leunberger observer.

MATLAB Simulink Model of Closed Loop System

State Feedback Controller

Design a feedback controller so that the output, Y= (X1-X2) has following requirements:

- Overshoot (OS)<10%
- Settling time <10 Sec.

The state space representation of system:

Desired Pole Placement:

$$S1$$
, $S2 = -24.05 \pm 35.50 j$

$$S3, S4 = -0.61 \pm 4.92 j$$

The desired characteristic equation:

$$(S-S1)(S-S2)(S-S3)(S-S4)=0$$

 $S^4+49S^3+1922S^2+3429S+45342=0$

The K matrix obtained using Pole Placement Method:

$$K = [28820 - 14950 \ 4610 - 3700]$$

Leunberger Observer

Design a Leunberger observer so that the output, Y= (X1-X2) has following

requirements:

- Overshoot (OS)<10%
- Settling time <10 Sec.

The state space representation of system:

Desired Observer Poles:

The desired characteristic equation:

$$(S-S1)(S-S2)(S-S3)(S-S4)=0$$

$$S^4 + 141S^3 + 7424S^2 + 172980S + 1504800 = 0$$

The L matrix obtained using Pole Placement Method:

$$L = \begin{bmatrix} 102.1 \\ -0.4 \\ 1165.2 \\ -828.8 \end{bmatrix}$$

Observer design

Simulation Results

Without State Feedback Controller

With State Feedback Controller

Assuming deep pothole, W=10 cm

Closed loop response:

Open loop response:

Controller Poles = [-0.1 + 0.5i, -0.1 - 0.5i, -0.05 + 0.2i, -0.05 - 0.2i] Observer Poles = [-300 + 50i, -300 - 50i, -400 + 30i, -400 - 30i]

Conclusions

- Design of Automotive suspension system carried out in MATLAB Simulink environment.
- All states are found to be controllable & observable.
- State feedback controller is used to get desired response within specifications.
- Design of state feedback controller, so that when the road disturbance (W) is simulated by a pulse input, the output Y=(X1-X2) has a settling time less than 10 seconds and an overshoot less than 10%.
- When the bus runs onto a 10 cm high step, the bus body will oscillate within a range of +/- 10 mm and will stop oscillating within 10 seconds.
- Leunberger observer has designed for estimation of systems unmeasurable states.
- System is also simulated with controller and observer.

References:

- Linear System Theory and Design by Chi-Tsong Chen.
- https://ctms.engin.umich.edu/CTMS/?example=Suspension§ion=Control State Space.

Thank you