MATH 644

Chapter 6

SECTION 6.1: CONFORMAL MAPS

Contents

Definition	2
Uniqueness Problem	3
Riemann's Mapping Theorem: Necessary condition	4

Created by: Pierre-Olivier Parisé Spring 2023

DEFINITION

Definition 1. A function $f:\Omega\to\mathbb{C}$ is conformal on Ω if

- (b) f is one-to-one in Ω . $\rightarrow f'(z_0) \neq 0 \Rightarrow f(z) = a_0 + a_1 z + \sigma(z^3)$

EXAMPLE 2. Find an conformal map f from the unit disk \mathbb{D} onto the unit disk \mathbb{D} , with $f(0) = \frac{1}{2}$.

Formula analytic automaphisms:

$$\varphi(z) = c \frac{z-a}{1-\overline{a}z}$$

Set $\alpha = \frac{1}{2}$, C = -1

$$\Rightarrow \varphi(z) = \frac{\frac{1}{2} - z}{1 - \frac{z}{2}} = \frac{1 - 2z}{2 - z}$$

we know 4 is injective (and analytic).

Uniqueness Problem

THEOREM 3. If there exists a conformal map of a region Ω onto \mathbb{D} , then, given any $z_0 \in \Omega$, there exists a unique conformal map f of Ω onto \mathbb{D} such that

$$f(z_0) = 0$$
 and $f'(z_0) > 0$.

Proof.
Let
$$z_0 \in D$$
 and $g: \mathcal{I} \to D$ be a confirmal map.
Set $a:=g(z_0) \in D$.
Set $\varphi(z)=c$ $\frac{z-a}{1-\bar{a}z}$, then
$$f(z):=\varphi(g(z_0)) \cdot d \cdot f(z_0)=0.$$
Also,
$$f'(z_0)=\varphi'(g(z_0)) \cdot g'(z_0)$$

$$=\frac{c}{1-|g(z_0)|^2} \cdot g'(z_0)$$
Set $c=\frac{|g'(z_0)|}{|g'(z_0)|} \cdot p'(z_0)=\frac{|g'(z_0)|}{|-|g(z_0)|^2} \cdot 0$

P.-O. Parisé MATH 644 Page 3

THEOREM 4. If φ is a conformal map of a region $\underline{\Omega}$ onto $\underline{\mathbb{D}}$, then Ω must be simply-connected.

Proof.

Let
$$y \subseteq \Omega$$
 be a closed curve and $\alpha \notin \Omega$.
Goal: Show $n(\gamma_1 a) = 0$.

Since $\varphi(x) = D$ of φ is injective on \mathbb{Z} , the inverse $\varphi^{-1} : D \to \mathbb{Z}$ exists \mathcal{L} is a conformal map from $D \to \mathbb{Z}$.

$$\psi^{-1}(\gamma_{D}) = \gamma$$
.

then,
$$n(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{3-\alpha} d3$$

$$= \frac{1}{2\pi i} \int_{\psi^{-1}(\gamma_{10})} \frac{1}{3-\alpha} d3$$

$$\frac{1}{3 = \varphi'(\gamma_0(1))} = \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{(\varphi^{-1})'(\gamma_0(1)) \gamma_0(1)}{(\varphi^{-1})'(\gamma_0(1)) \gamma_0(1)} dt$$

$$\frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{(\varphi^{-1})'(\gamma_0(1)) \gamma_0(1)}{(\varphi^{-1})'(\gamma_0(1)) \gamma_0(1)} dt$$

$$= \frac{1}{2\pi i} \int_{\gamma_{D}} \frac{(\varphi^{-1})'(3)}{\varphi^{-1}(3) - \alpha} d3$$

The map
$$Z \mapsto \frac{(\varphi^{-1})'(Z)}{(\varphi^{-1}(Z)-\alpha)}$$
 is analytic an D

Since $y_0 \sim 403$, from Cauchy's therem: $\frac{1}{2\pi i} \int_{\gamma_0} \frac{(\psi^{-1})'(3)}{\psi^{-1}(3) - a} d3 = 0.$

$$\Rightarrow$$
 $n(\gamma, \alpha) = 0$.

 \mathcal{D}