10 주차

모듈화 설계

- 1. 모듈화 설계 개요
- 2. 결합력의 이해
- 3. 응집력의 이해
- 4. 모듈화 응용 기술 (그닥?)

1. 모듈화 설계 개요

중요한 원칙 - 응집력은 높이고, 결합력을 줄이도록 설계한다.

소프트웨어 품질을 향상시키기 위해서 소프트웨어 공학 기법을 적용하는데 공학 원리 중 가장 근간이 되는 원리가 모듈화.

독립적인 기능이 있는 논리적 묶음에 해당하는 모듈로 소프트웨어 시스템을 구성할 수 있도록 개발한다는 의미

모듈화 장점

이해하기 쉽다. 팀 단위의 개발 작업이 쉬워진다. 변경에 의한 수정 사항 반영이 쉽다. 재 사용 가능성이 높아진다. 추적성이 높아진다.

좋은 설계를 수행한 소프트웨어의 특성들(알아둘 것)

설계가 계층적 구조를 나타낸다. 즉, 시스템은 서브 시스템으로 구성되고, 각 서브 시스템은 하위의 기능 영역으로, 각 기능 영역은 모듈들로 구성되는 계층적 구조를 나타낸다.

설계 결과가 모듈로 구성되어야 하고, 독립적인 특성이 있는 기능 단위로 구현할 수 있어야한다.

데이터와 처리 절차가 구분 다가능하고 분리된 표현으로 나타나야 한다.

2. 결합력

결합력은 모듈 간의 의존성 관계를 나타낸다. 결합력이 작을수록 모듈간의 의존성이 떨어지므로 좋은 설계이다. 모듈이 독립적인 기능을 갖도록 설계하고 불필요한 중복을 제거해야한다.

가능한 모듈 간 상호작용을 줄인다.

결합력을 최소화할 때 장점

시스템의 구성 요소 간에 결합이 느슨해진다.

변경에 의한 파동 효과를 막을 수 있다.

SW에 대한 이해도를 높인다.

모듈 인터페이스가 단순해진다.

결합력 유형

읽어볼 것 타이핑하기 힘듦, 결국엔 결합력을 줄이자가 목표임

메시지, 데이터, 스탬프, 제어, 외부, 공유, 내용 결합력

메시지 결합력

결합의 정도가 가장 느슨한 유형이다. 객체 간 상호작용은 최소화되며, 상호작용은 메시지 전달이라는 한가지 개념에 의해서만 이루어지는 경우에 해당한다.

데이터 결합력

2개의 모듈이 정수형, 문자형 등의 단순한 기본 데이터 타입을 갖는 변수들에 의해 상호작용 한다면 두 모듈은 데이터 결합력 관계에 있다고한다.

스탬프 결합력

두 모듈이 구조체와 같은 복합 데이터를 이용하여 상호작용 한다면 스탬프 결합력을 갖는다고 정의한다.

제어 결합력

한 모듈에서 다른 모듈로 ㅁ개변수를 전달할 때, 그 매개변수가 호출되는 함수의 내부 행위를 제어하는 역할을 한다면 이 두 모듈은 제어 결합 력 관계에 있다고 정의한다. 이 경우 대체로 변수 flag를 사용하여 함수의 내부 행위를 제어한다.

외부 결합력

2개의 모듈이 외부에 존재하는 다른 정보를 공유하고 있다면 이 모듈은 외부 결합 관계에 있다고 정의한다. ㅇ여기서 외부 정보는 파일, 디바이스 인터페이스, 프로토콜을 의미하며 한 모듈과 외부에서 제공하는 장치들 간 상호작용과 관련되어 있다.

공유 결합력

2개의 모듈이 광역 변수를 공유하고 있다면 이 모듈은 공유 결합력 관계에 있다고 할 수 있다. 이는 외부 결합력과 비슷하게 한 모듈의 공유 변수에 대한 수정이 다른 모듈에 영향을 줄 수 있음을 의미한다. 공유 변수를 사용시 메모리 사용량을 줄이고 프로그램을 간단히 작성할 수 있지만, 모듈 간의 의존성을 높이는 문제가 있다.

내용 결합력

한 모듈에서 다른 모듈의 내부를 직접 참조한다면 내용 결합 관계에 있다고한다. 내용 결합력은 거의 발생하지 않는다.

3. 응집력

모듈을 구성하는 내적 요소 간의 기능적 관련성 강도를 측정하는 척도이다. 모듈을 구성하는 내적 요소는 명령어, 변수 정의, 함수 호출 등이 있다.

3.1 응집력 유형

기능, 순차, 교환, 절차, 시간, 논리, 우연

기능 응집력

모듈을 구성하는 모든 요소가 단지 하나의 기능을 구현하기 위해 구성되었다면 기능 응집력이 있다고 정의한다.

순차 응집력

모듈을 구성하는 문장 관계에서, 한 문장의 실행 결과가 다음 문장의 입력으로 사용되는 경우에 순차 응집력에 해당한다. 순차 응집력은 매우좋은 설계에 해당하며, 유지 보수가 용이하다는 장점이 있다.

교환 응집력

모듈을 구성하는 모든 요소가 동일한 입력 또는 출력을 사용한다면 교환 응집력이 있다고 정의한다.

절차 응집력

모듈을 구성하는 문장들이 의미상 서로 관련 없지만 제어 흐름의 순서가 있는 경우에 해당한다. 절차 응집력이 있는 한 가지 기능을 수행하기 위한 목적보다는 실행 순서와 관련성이 있도록 구성한 경우이다.

시간 응집력

모듈을 구성하는 각 문장이 SW 실행의 특정 시간과 관련이 있는 것으로만 구성된 경우에 해당한다. 즉, 모든 요소가 처리되는 시간과 관련성이 있을 경우에 해당한다.

논리 응집력

모듈을 구성하는 모든 요소가 논리적으로 같은 유형의 외부 동작들로 구성되는 경우에 해당한다. 즉, 다수의 유사한 행위를 포함하고 있으며 이행위들은 flag 변수에 의해 실행 여부가 결정되는 일이 많다.

우연 응집력

가장 나쁜 형태의 응집력이며, 절대 작성되어서는 안되는 모듈 구성이다.

모듈을 구성하는 모든 요소가 아무런 관련성이 없는 것으로 묶인 경우에 해당한다.

모듈화와 기술 부채

모듈화의 척도 관점에서 좋은 아키텍처일수록 결합력 보다는 응집력에 더 집중해야 한다.

결합력의 경우 인터페이스 종속성보다 아키텍처 컴포넌트 간에 존재할 수 있는 기능 의존성 문제를 해결하는 데 집중해야 한다.