

大学物理·热学

主讲教师: 李华

第7章 统计物理学初步

- 7.1 热力学系统的理想模型与描述参量
- 7.2 平衡态下理想气体压强、温度的微观实质
- 7.3 自由度 能量按自由度均分定理
- 7.4 麦克斯韦气体分子速率分布律
- 7.5 玻尔兹曼分布
- 7.6 理想气体的平均自由程

→ 7.3 自由度;能量按自由度均分定理

7.3.1 引入

(1) 理想气体的压强
$$p=rac{2}{3}nar{arepsilon}_k$$

(2)气体分子的平均平动动能
$$\overline{\varepsilon}_k = \frac{1}{2} m \overrightarrow{v^2} = \frac{3}{2} kT$$

温度是分子平均平动动能的量度

$$\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2} = \frac{1}{3}\overline{v^2}$$

$$\frac{1}{2}m\overline{v_x^2} = \frac{1}{2}m\overline{v_y^2} = \frac{1}{2}m\overline{v_z^2} = \frac{1}{3}\left(\frac{1}{2}m\overline{v^2}\right) = \frac{1}{2}kT$$

(4) 气体的摩尔热容
$$1 \text{mol}$$
气体, $C = \frac{dQ}{dT}$ $R = 8.31 J/\text{mol} \cdot K$

$$R = 8.31 J/\text{mol} \cdot K$$

表3.1 气体的摩尔热容的实验结果

气体	$C_V(J/mol \cdot k)$	$C_V/0.5R$	气体	$C_V(J/mol \cdot k)$	$C_V/0.5R$
氦 He	12.61	3.03	氮 N ₂ (273K)	20.5	4.93
氩 Ar	12.53	3.02	氮 N ₂ (373K)	20.6	4.96
氢 H ₂	20.47	4.93	氮 N ₂ (473K)	21.6	5.20
氮 N ₂	20.56	4.95	氮 N ₂ (773K)	22.4	5.39
一氧化碳 CO	21.2	5.10	氮 N ₂ (1473K)	24.1	5.80
氧 O ₂	21.16	5.09	氮 N ₂ (2273K)	26.0	6.26
水蒸气 H ₂ O	27.8	6.69			
甲烷 CH ₄	28.2	6.79	氢 H ₂ (50K)	12.5	3.01
氯仿 CCl ₄	63.7	15.33	氢 H ₂ (500K)	21.0	5.05
乙醇 C ₂ H ₅ OH	79.1	19.03	氢 H ₂ (2500K)	29.3	7.05

- · 单原子, 双原子, 多原子对能量的影响;
- 温度对能量的影响;
- · 讨论能量问题的模型? 理想气体质点模型是否适用?
- ・除分子平均平动动能 $\overline{\varepsilon}_k = rac{3}{2}kT$,有没有其他能量?

7.3.2 气体分子的自由度

(1) 自由度 i: 物体运动的自由程度(确定一个物体在空间的位置所需的独立坐标数目)

$$i=t+r+s$$

(平动自由度t, 转动自由度r, 振动自由度s)

7.3.3 能量按自由度均分定理

理想气体处于平衡态时,其分子在每个自由度上的平均动能都相等,都为 $\frac{1}{2}kT$

$$i = t + r + s$$
 (平动自由度 t , 转动自由度 r , 振动自由度 s)

(1) 分子的平均总动能:

分子的平均平动动能:
$$\frac{t}{2}kT$$

$$\overline{\varepsilon}_k = \frac{i}{2}kT$$

分子的平均转动动能:
$$\frac{r}{2}kT$$

分子的平均振动动能:
$$\frac{s}{2}kT$$

(2) 分子的平均总能量
$$\overline{\varepsilon} = \frac{t+r+2s}{2}kT = \frac{i+s}{2}kT$$

(对每个振动自由度,分子不仅有 $\frac{1}{2}kT$ 的平均动能,还有 $\frac{1}{2}kT$ 的平均振动势能)

7.3.4 理想气体的内能

(1) 理想气体的内能

理想气体中全部分子的动能、振动势能、分子间相互作用势能之和

(2) 理想气体的内能公式

$$E = \frac{M}{\mu} N_A \varepsilon_k = \frac{M}{\mu} \cdot \frac{1}{2} (t + r + 2s) RT$$

例1. 1mol 理想气体的内能

单原子气体分子
$$E_{mol}=rac{3}{2}RT$$
 刚性双原子气体 $E_{mol}=rac{5}{2}RT$ 非刚性双原子气体 $E_{mol}=rac{6}{2}RT$

