

Banco de Dados

Prof. Dr. Alan Souza

alan.souza@unama.br

2020

Revisão

Nas aulas anteriores...

Revisão

Três tipos:

- a. Modelagem Conceitual
- b. Modelagem Lógica
- c. Modelagem Física
 - c.1 SQL (DDL, DML, DCL)
 - c.2 SQL Join

3

Revisão

a. Modelagem Conceitual: Modelo Entidade Relacionamento (MER)

Revisão

- c. Modelagem Física:
- · A SQL está dividida em:
 - DDL (Data Definition Language)
 - CREATE, ALTER, DROP.
 - DML (Data Manipulation Language)
 - SELECT, INSERT, UPDATE, DELETE.
 - DCL (Data Control Language)
 - GRANT, REVOKE.

7

Revisão

- c. Modelagem Física:
- SQL JOIN:
 - inner join
 - left join
 - right join

Fique agora com o conteúdo da aula de hoje...

9

4. Funções de Agregação

- Servem para realizar cálculos "dentro" do banco de dados
- A realização de cálculos no banco de dados é mais eficiente
- Utilizam-se funções do próprio banco de dados para isso
- · Quais cálculos podemos fazer?
 - Contagem de registros (COUNT)
 - Valor máximo (MAX)
 - Valor mínimo (MIN)
 - Média (AVG)
 - Soma (SUM)

4. Funções de Agregação

Exemplo: a seguir, encontra-se a entidade "Metereologia". Vamos converter este modelo conceitual para o modelo lógico:

Modelo Conceitual

Modelo Lógico

11

4. Funções de Agregação

Exemplo (cont.): a partir do modelo lógico, vamos gerar o modelo físico (SQL/DDL):

Modelo Lógico

```
CREATE TABLE IF NOT EXISTS metereologia (
  cod_medida INT NOT NULL AUTO_INCREMENT,
  temperatura DECIMAL(10,2) NOT NULL,
  umidade DECIMAL(10,2) NOT NULL,
  data_hora DATETIME NOT NULL,
  PRIMARY KEY (cod_medida)
);
```

Modelo Físico

4. Funções de Agregação

Exemplo (cont.): agora, vamos inserir dados na tabela "metereologia":

```
INSERT INTO metereologia
```

```
(temperatura, umidade, data_hora)
```

VALUES

```
(28.7, 92.1, '2019-07-01 8:00'),

(29.1, 91.8, '2019-07-01 9:00'),

(29.9, 89.9, '2019-07-01 10:00'),

(30.2, 88.5, '2019-07-01 11:00'),

(31.8, 87.2, '2019-07-01 12:00'),

(32.3, 86.4, '2019-07-01 13:00'),

(31.0, 87.2, '2019-07-01 14:00'),

(30.4, 89.7, '2019-07-01 15:00');
```

Não é preciso considerar a coluna "cod_medida", porque ela é incrementada (AUTO_INCREMENT) automaticamente: 1, 2, 3, ...

13

4. Funções de Agregação

Exemplo (cont.): dados na tabela "metereologia":

metereologia			
cod_medida	temperatura	umidade	data_hora
1	28.7	92.1	2019-07-01 8:00
2	29.1	91.8	2019-07-01 9:00
3	29.9	89.9	2019-07-01 10:00
4	30.2	88.5	2019-07-01 11:00
5	31.8	87.2	2019-07-01 12:00
6	32.3	86.4	2019-07-01 13:00
7	31.0	87.2	2019-07-01 14:00
8	30.4	89.7	2019-07-01 15:00

4. Funções de Agregação

Exemplo (cont.): feito isso e considerando todos os dados, vamos fazer consultas para saber:

- 1) A temperatura máxima;
- 2) A temperatura mínima;
- 3) A média da temperatura;
- 4) A umidade máxima;
- 5) A umidade mínima;
- 6) A média da umidade;
- 7) A quantidade de medidas feitas antes do dia 01/07/2020 ao meio dia;
- 8) A temperatura máxima e a data/hora que ocorreu;
- 9) A umidade mínima e a data/hora que ocorreu.