CUIComsats University Islamabad (Vehari Campus)

Academic Year 22-27
Department: CS

Topic of Assignment:

"Slicing Program"

Student Name:

Asadullah

(FA22-BSE-037)

Subject:

Software Re-Engineering

Batch: "19"

Teacher Name:

Dr.Manzoor Ahmad

Program #1

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	b=1		b	
2	c=2		С	{b}
3	d=3		d	{b}
4	a=d	d	a	{b, d}
5	if (a=3) then	а		{b, d}
6	d=b+d	b, d	d	{b, d}
7	c=b+d	b, d	С	{b, d}
8	else			{b, c}
9	b=b+1	b	b	{b, c}
10	d=b+1	b	d	{b, c}
11	Endif			{b, c}
12	a=b+c	b, c	a	{b, c}
13	print a	а		{a}

Program Slice on <13, a>:

{12, 9, 2, 1}

n	Statement
1	b=1
2	c=2
9	b=b+1
12	a=b+c

Program #1: Detailed Calculation of relevant(n) for Slice <13, a>

Initialization:

relevant(13) = {a} (from the slicing criterion <13, a>)

Step 1: Calculate relevant(12)

Statement 12: a = b + cDEF(12) = {a} REF(12) = {b, c}

```
relevant(12) = (relevant(13) - DEF(12)) \cup (REF(12) if relevant(13) \cap DEF(12) \neq \varnothing ) = ({a} - {a}) \cup ({b, c} if {a} \cap {a} \neq \varnothing ) = \varnothing \cup {b, c} = {b, c}
```

Step 2: Calculate relevant(11)

Step 3: Calculate relevant(10) (else branch)

```
Statement 10: d = b + 1

DEF(10) = \{d\}

REF(10) = \{b\}

relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) if relevant(11) \cap DEF(10) \neq \varnothing )

= \{b, c\} - \{d\}) \cup (\{b\} if \{b, c\} \cap \{d\} \neq \varnothing )

= \{b, c\}
```

Step 4: Calculate relevant(9) (else branch)

```
Statement 9: b = b + 1

DEF(9) = {b}

REF(9) = {b}

relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing )

= {{b}, c} - {b}) \cup ({b} if {b, c} \cap {b} \neq \varnothing )

= {c} \cup {b}

= {b, c}
```

Step 5: Calculate relevant(8)

```
Statement 8: else DEF(8) = \varnothing REF(8) = \varnothing relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \varnothing ) = ({b, c} - \varnothing ) \cup (\varnothing if {b, c} \cap \varnothing \neq \varnothing ) = {b, c}
```

Step 6: Calculate relevant(7) (then branch)

```
Statement 7: c = b + d
DEF(7) = \{c\}
REF(7) = \{b, d\}
relevant(7) = (relevant(11) - DEF(7)) \cup (REF(7) \text{ if } relevant(11) \cap DEF(7) \neq \varnothing )
= (\{b, c\} - \{c\}) \cup (\{b, d\} \text{ if } \{b, c\} \cap \{c\} \neq \varnothing )
= \{b\} \cup \{b, d\}
= \{b, d\}
```

Step 7: Calculate relevant(6) (then branch)

```
Statement 6: d = b + d 

DEF(6) = {d} 

REF(6) = {b, d} 

relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \varnothing ) 

= {{b, d} - {d}} \cup {{b, d} if {b, d} \cap {d} \neq \varnothing ) 

= {b, d}
```

Step 8: Calculate relevant(5)

Step 9: Calculate relevant(4)

```
Statement 4: a = d 

DEF(4) = {a} 

REF(4) = {d} 

relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \varnothing ) 

= {b, d} - {a}) \cup ({d} if {b, d} \cap {a} \neq \varnothing ) 

= {b, d}
```

Step 10: Calculate relevant(3)

```
Statement 3: d = 3 
 DEF(3) = {d} 
 REF(3) = \varnothing 
 relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \varnothing ) 
 = {{b}}
```

Step 11: Calculate relevant(2)

```
Statement 2: c = 2 
 DEF(2) = {c} 
 REF(2) = \varnothing 
 relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing ) 
 = {{b}} - {c}} \cup (\varnothing if {b} \cap {c} \neq \varnothing ) 
 = {b}
```

Step 12: Calculate relevant(1)

```
Statement 1: b = 1
DEF(1) = \{b\}
REF(1) = \varnothing
relevant(1) = (relevant(2) - DEF(1)) \cup (REF(1) \text{ if } relevant(2) \cap DEF(1) \neq \varnothing)
= (\{b\} - \{b\}) \cup (\varnothing \text{ if } \{b\} \cap \{b\} \neq \varnothing)
= \varnothing
```

Program #2

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	#include <stdio.h></stdio.h>			
2	#include <math.h></math.h>			
3				
4	int main(void)			
5	{			
6	Double a, b, c, d, x1, x2;			
7	// Read input data			
8	printf("Enter the variables for the quadratic")			{a, b, c}
9	scanf("%lf%lf%lf", &a, &b, &c);	a, b, c	a, b, c	{a, b, c}
10				$\{a, b, c\}$
11	//Perform calculation			{a, b, c}
12	d=sqrt(b * b - 4. * a * c);	a, b, c	d	{a, b, c}
13	x1=(-b+d) / (2.*c);	b, d, c	x1	{b,d, a}
14	x2=(-b - d) / (2. * a);	b, d, a	x2	{b, d, a}

15			{x2}
16	//Display output		{x2}
17	printf("\nx1=%12.3e x2=%12.3e\n", x1, x2);	x1, x2	{x2}
18	return 0;		
19	}		

Program Slice on <17, x2>:

{14, 12, 9}

n	Statement
9	scanf("%lf%lf%lf", &a, &b, &c);
12	d=sqrt(b * b - 4. * a * c);
14	x2=(-b - d) / (2. * a);

Program #2: Detailed Calculation of relevant(n) for Slice <17, x2>

Initialization:

relevant(17) = {x2} (from the slicing criterion <17, x2>)

Step 1: Calculate relevant(16)

```
Statement 16: //Display output DEF(16) = \varnothing REF(16) = \varnothing REF(16) = \varnothing relevant(16) = (relevant(17) - DEF(16)) \cup (REF(16) if relevant(17) \cap DEF(16) \neq \varnothing ) = {x2} \cup \varnothing | \varnothing
```

Step 2: Calculate relevant(15)

Statement 15: (empty line) DEF(15) = \emptyset REF(15) = \emptyset

```
relevant(15) = (relevant(16) - DEF(15)) U (REF(15) if relevant(16) \cap DEF(15) \neq \varnothing ) = {{x2}} \cap \varnothing | U (\varnothing if {x2} \cap \varnothing | \neq \varnothing ) = {x2}
```

Step 3: Calculate relevant(14)

```
Statement 14: x2 = (-b - d) / (2. * a) 

DEF(14) = {x2} 

REF(14) = {b, d, a} 

relevant(14) = (relevant(15) - DEF(14)) \cup (REF(14) if relevant(15) \cap DEF(14) \neq \varnothing ) 

= ({x2} - {x2}) \cup ({b, d, a} if {x2} \cap {x2} \neq \varnothing ) 

= \varnothing \cup {b, d, a} 

= {b, d, a}
```

Step 4: Calculate relevant(13)

```
Statement 13: x1 = (-b + d) / (2. * c) 

DEF(13) = {x1} 

REF(13) = {b, d, c} 

relevant(13) = (relevant(14) - DEF(13)) \cup (REF(13) if relevant(14) \cap DEF(13) \neq \varnothing ) 

= {b, d, a} - {x1}) \cup ({b, d, c} if {b, d, a} \cap {x1} \neq \varnothing ) 

= {b, d, a} \cup \varnothing = {b, d, a}
```

Step 5: Calculate relevant(12)

```
Statement 12: d = sqrt(b * b - 4. * a * c) 

DEF(12) = {d} 

REF(12) = {a, b, c} 

relevant(12) = (relevant(14) - DEF(12)) \cup (REF(12) if relevant(14) \cap DEF(12) \neq \varnothing ) 

= {b, a} \cup {a, b, c} = {b, c}
```

Step 6: Calculate relevant(11)

```
Statement 11: //Perform calculation DEF(11) = \varnothing REF(11) = \varnothing relevant(11) = (relevant(12) - DEF(11)) \cup (REF(11) if relevant(12) \cap DEF(11) \neq \varnothing ) = {(a, b, c} - \varnothing ) \cup (\varnothing if {a, b, c} \cap \varnothing \neq \varnothing ) = {a, b, c}
```

Step 7: Calculate relevant(10)

```
Statement 10: (empty line) DEF(10) = \varnothing REF(10) = \varnothing
```

```
relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) if relevant(11) \cap DEF(10) \neq \varnothing ) = ({a, b, c} - \varnothing ) \cup (\varnothing if {a, b, c} \cap \varnothing \neq \varnothing ) = {a, b, c}
```

Step 8: Calculate relevant(9)

```
Statement 9: scanf("%lf%lf%lf", &a, &b, &c) 
 DEF(9) = {a, b, c} 
 REF(9) = {a, b, c} 
 relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing ) 
 = ({a, b, c} - {a, b, c}) \cup ({a, b, c} if {a, b, c} \cap {a, b, c} \neq \varnothing ) 
 = \varnothing \cup {a, b, c} 
 = {a, b, c}
```

Step 9: Calculate relevant(8)

```
Statement 8: printf("Enter the variables...") 
 DEF(8) = \varnothing 
 REF(8) = \varnothing 
 relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \varnothing ) 
 = ({a, b, c} - \varnothing ) \cup (\varnothing if {a, b, c} \cap \varnothing \neq \varnothing ) 
 = {a, b, c}
```

Steps 7-1: Earlier statements (1-7)

These are declarations and comments that don't affect the relevant sets.

Complete relevant sets for Program #2:

n	relevant(n)
17	{x2}
16	{x2}
15	{x2}
14	{b, d, a}
13	{b, d, a}
12	{a, b, c}
11	{a, b, c}
10	{a, b, c}
9	{a, b, c}
8	{a, b, c}
1-7	Ø

Program #3

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	b=1		b	
2	c=2		С	b
3	d=5		d	b, c
4	a=3		a	b, c
5	While (a < 10)	a		b, c
6	b=b+c	b, c	b	b, c
7	c=c+1	С	С	b
8	a=b	b	a	b
9	EndWhile			a
10	print a	a		a

Program Slice on <10, a>:

{8, 7, 6, 2, 1}

n	Statement
1	b=1
2	c=2
6	b=b+c
7	c=c+1
8	a=b

Program #3: Detailed Calculation of relevant(n) for Slice <10, a>

Initialization:

relevant(10) = {a} (from the slicing criterion <10, a>)

Step 1: Calculate relevant(9)

```
Statement 9: EndWhile DEF(9) = \varnothing REF(9) = \varnothing relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing ) = {{a}}
```

Step 2: Calculate relevant(8)

```
Statement 8: a = b
DEF(8) = \{a\}
REF(8) = \{b\}
relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) \text{ if } relevant(9) \cap DEF(8) \neq \emptyset )
= (\{a\} - \{a\}) \cup (\{b\} \text{ if } \{a\} \cap \{a\} \neq \emptyset )
= \emptyset \cup \{b\}
= \{b\}
```

Step 3: Calculate relevant(7)

```
Statement 7: c = c + 1 

DEF(7) = {c} 

REF(7) = {c} 

relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \varnothing ) 

= ({b} - {c}) \cup ({c} if {b} \cap {c} \neq \varnothing ) 

= {b} \cup \varnothing 

= {b}
```

Step 4: Calculate relevant(6)

Step 5: Calculate relevant(5)

```
Statement 5: While (a < 10) 
 DEF(5) = \emptyset 
 REF(5) = \{a\} 
 relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) \text{ if } relevant(6) \cap DEF(5) \neq \emptyset ) 
 = \{\{b, c\} - \emptyset \} \cup (\{a\} \text{ if } \{b, c\} \cap \emptyset \neq \emptyset \} = \{b, c\}
```

Step 6: Calculate relevant(4)

```
Statement 4: a=3 DEF(4) = {a} REF(4) = \varnothing relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \varnothing ) = {b, c} - {a}) \cup (\varnothing if {b, c} \cap {a} \neq \varnothing ) = {b, c}
```

Step 7: Calculate relevant(3)

```
Statement 3: d = 5 
 DEF(3) = {d} 
 REF(3) = \varnothing 
 relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \varnothing ) 
 = {(b, c} - {d}) \cup (\varnothing if {b, c} \cap {d} \neq \varnothing ) 
 = {b, c}
```

Step 8: Calculate relevant(2)

```
Statement 2: c = 2 
 DEF(2) = {c} 
 REF(2) = \varnothing 
 relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing ) 
 = {{b}}
```

Step 9: Calculate relevant(1)

```
Statement 1: b = 1 
 DEF(1) = {b} 
 REF(1) = \varnothing 
 relevant(1) = (relevant(2) - DEF(1)) \cup (REF(1) if relevant(2) \cap DEF(1) \neq \varnothing ) 
 = (\{b\} - \{b\}) \cup (\varnothing \text{ if } \{b\} \cap \{b\} \neq \varnothing \text{ )} 
 = \varnothing
```

Program #4

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	read(text);	text		text
2	read(n);		n	text
3	lines=1;		lines	n, text
4	chars=1;		chars	n, text
5	subtext = ""		subtext	n, text
6	c= getChar(text);	text	С	Subtext ,n, text
7	while (c!= '\eof')	С		subtext ,c , n
8	If (c== '\n') then	С		subtext ,c , n
9	lines = lines + 1;	lines	lines	subtext ,c , n
10	chars = chars + 1;	chars	chars	subtext ,c , n
11	else chars=chars +1	chars	chars	subtext ,c , n
12	if(n!=0) then	n		subtext ,c , n
13	subtext = subtext ++ c	subtext, c	subtext	subtext ,c , n
14	n=n-1	n	n	subtext , n
15	c= getChar(text);	text	С	subtext
16	write(lines);	lines		subtext
17	write(chars);	chars		subtext
18	write(subtext);	subtext		subtext

Program Slice on <18, subtext>:

{13, 12, 14, 6, 2, 1, 5, 15}

n	Statement
1	read(text);
2	read(n);
5	subtext = ""
6	c= getChar(text);
12	if(n!=0) then
13	subtext = subtext ++ c
14	n=n-1
15	c= getChar(text);

Program #4: Detailed Calculation of relevant(n) for Slice <18, subtext>

Initialization:

• relevant(18) = {subtext} (from the slicing criterion <18, subtext>)

Step 1: Calculate relevant(17)

```
Statement 17: write(chars) DEF(17) = \varnothing REF(17) = {chars} relevant(17) = (relevant(18) - DEF(17)) \cup (REF(17) if relevant(18) \cap DEF(17) \neq \varnothing ) = {subtext} - \varnothing ) \cup (\varnothing if {subtext} \cap \varnothing \neq \varnothing ) = {subtext}
```

Step 2: Calculate relevant(16)

```
Statement 16: write(lines) 

DEF(16) = \varnothing

REF(16) = {lines}

relevant(16) = (relevant(17) - DEF(16)) \cup (REF(16) if relevant(17) \cap DEF(16) \neq \varnothing )

= {{subtext} - \varnothing ) \cup (\varnothing if {subtext} \cap \varnothing \neq \varnothing )

= {subtext}
```

Step 3: Calculate relevant(15)

```
Statement 15: c = getChar(text) 

DEF(15) = {c} 

REF(15) = {text} 

relevant(15) = (relevant(16) - DEF(15)) \cup (REF(15) if relevant(16) \cap DEF(15) \neq \varnothing ) 

= {subtext} - {c}) \cup ({text} if {subtext} \cap {c} \neq \varnothing ) 

= {subtext} \cup \varnothing = {subtext}
```

Step 4: Calculate relevant(14)

```
Statement 14: n = n - 1

DEF(14) = \{n\}

REF(14) = \{n\}

relevant(14) = (relevant(15) - DEF(14)) \cup (REF(14) if relevant(15) \cap DEF(14) \neq \varnothing )

= \{\text{subtext}\} - \{n\} \cup \{n\} if \{\text{subtext}\} \cap \{n\} \neq \varnothing )

= \{\text{subtext}\} \cup \{n\} (because subtext depends on n)

= \{\text{subtext}\}, \{n\}
```

Step 5: Calculate relevant(13)

```
Statement 13: subtext = subtext ++ c 

DEF(13) = {subtext} 

REF(13) = {subtext, c} 

relevant(13) = (relevant(14) - DEF(13)) \cup (REF(13) if relevant(14) \cap DEF(13) \neq \varnothing ) 

= ({subtext, n} - {subtext}) \cup ({subtext, c} if {subtext, n} \cap {subtext} \neq \varnothing ) 

= {n} \cup {subtext, c} 

= {subtext, c, n}
```

Step 6: Calculate relevant(12)

Step 7: Calculate relevant(11)

```
Statement 11: else chars = chars + 1 

DEF(11) = {chars} 

REF(11) = {chars} 

relevant(11) = (relevant(12) - DEF(11)) \cup (REF(11) if relevant(12) \cap DEF(11) \neq \varnothing ) 

= {subtext, c, n} - {chars}) \cup (\varnothing if {subtext, c, n} \cap {chars} \neq \varnothing ) 

= {subtext, c, n}
```

Step 8: Calculate relevant(10)

```
Statement 10: chars = chars + 1 

DEF(10) = {chars} 

REF(10) = {chars} 

relevant(10) = (relevant(11) - DEF(10)) \cup (REF(10) if relevant(11) \cap DEF(10) \neq \varnothing ) 

= {subtext, c, n} - {chars}) \cup (\varnothing if {subtext, c, n} \cap {chars} \neq \varnothing ) 

= {subtext, c, n}
```

Step 9: Calculate relevant(9)

```
Statement 9: lines = lines + 1 

DEF(9) = {lines} 

REF(9) = {lines} 

relevant(9) = (relevant(10) - DEF(9)) \cup (REF(9) if relevant(10) \cap DEF(9) \neq \varnothing ) 

= {{subtext, c, n} - {lines}) \cup (\varnothing if {subtext, c, n} \cap {lines} \neq \varnothing ) 

= {subtext, c, n}
```

Step 10: Calculate relevant(8)

Step 11: Calculate relevant(7)

```
Statement 7: while (c != '\eof') 
 DEF(7) = \varnothing 
 REF(7) = {c} 
 relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \varnothing ) 
 = ({subtext, c, n} - \varnothing ) \cup ({c} if {subtext, c, n} \cap \varnothing \neq \varnothing ) 
 = {subtext, c, n}
```

Step 12: Calculate relevant(6)

```
Statement 6: c = getChar(text) 

DEF(6) = {c} 

REF(6) = {text} 

relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \varnothing ) 

= ({subtext, c, n} - {c}) \cup ({text} if {subtext, c, n} \cap {c} \neq \varnothing ) 

= {subtext, n, text}
```

Step 13: Calculate relevant(5)

```
Statement 5: subtext = "" DEF(5) = {subtext} REF(5) = \varnothing relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \varnothing ) = ({subtext, n, text} - {subtext}) \cup (\varnothing if {subtext, n, text} \cap {subtext} \neq \varnothing ) = {n, text}
```

Step 14: Calculate relevant(4)

```
Statement 4: chars = 1 
 DEF(4) = {chars} 
 REF(4) = \varnothing 
 relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \varnothing ) 
 = {{n, text}} \cup (\varnothing if {n, text} \cap {chars} \neq \varnothing ) 
 = {n, text}
```

Step 15: Calculate relevant(3)

```
Statement 3: lines = 1 
 DEF(3) = {lines} 
 REF(3) = \varnothing 
 relevant(3) = (relevant(4) - DEF(3)) \cup (REF(3) if relevant(4) \cap DEF(3) \neq \varnothing ) 
 = {{n, text}} \cup {lines} \cup \cup if {n, text} \cup {lines} \cup \cup !
```

Step 16: Calculate relevant(2)

Step 17: Calculate relevant(1)

Program #5

Solution:

n	Statement	REFs(n)	DEFs(n)	relevant(n)
1	read(n);		n	
2	i=1;		i	
3	sum=0;		sum	i
4	product=1;		product	i
5	while (i < n) do	i, n		product , i
6	sum= sum +i;	sum, i	sum	Product , i
7	product= product *i	product, i	product	product , i
8	i=i +1;	i	i	Product
9	write(sum);	sum		product
10	write(product);	product		product

Program Slice on <10, product>:

{7, 5, 8, 4, 2, 1}

n	Statement
1	read(n);
2	i=1;
4	product=1;
5	while (i < n) do
7	product= product *i
8	i=i +1;

Program #5: Detailed Calculation of relevant(n) for Slice <10, product>

Initialization:

relevant(10) = {product} (from the slicing criterion <10, product>)

Step 1: Calculate relevant(9)

Step 2: Calculate relevant(8)

```
Statement 8: i=i+1 DEF(8) = {i} REF(8) = {i} relevant(8) = (relevant(9) - DEF(8)) \cup (REF(8) if relevant(9) \cap DEF(8) \neq \varnothing ) = ({product} - {i}) \cup ({i} if {product} \cap {i} \neq \varnothing ) = {product} \cup \varnothing = {product}
```

Step 3: Calculate relevant(7)

```
Statement 7: product = product * i 

DEF(7) = {product} 

REF(7) = {product, i} 

relevant(7) = (relevant(8) - DEF(7)) \cup (REF(7) if relevant(8) \cap DEF(7) \neq \varnothing ) 

= ({product} - {product}) \cup ({product, i} if {product} \cap {product} \neq \varnothing ) 

= \varnothing \cup {product, i} 

= {product, i}
```

Step 4: Calculate relevant(6)

```
Statement 6: sum = sum + i 

DEF(6) = {sum} 

REF(6) = {sum, i} 

relevant(6) = (relevant(7) - DEF(6)) \cup (REF(6) if relevant(7) \cap DEF(6) \neq \emptyset ) 

= ({product, i} - {sum}) \cup ({sum, i} if {product, i} \cap {sum} \neq \emptyset ) 

= {product, i} \cup \emptyset 

= {product, i}
```

Step 5: Calculate relevant(5)

```
Statement 5: while (i < n) do DEF(5) = \varnothing REF(5) = {i, n} relevant(5) = (relevant(6) - DEF(5)) \cup (REF(5) if relevant(6) \cap DEF(5) \neq \varnothing ) = ({product, i} - \varnothing ) \cup ({i, n} if {product, i} \cap \varnothing \neq \varnothing ) = {product, i} \cup \varnothing = \{ product, i}
```

Step 6: Calculate relevant(4)

```
Statement 4: product = 1 

DEF(4) = {product} 

REF(4) = \varnothing 

relevant(4) = (relevant(5) - DEF(4)) \cup (REF(4) if relevant(5) \cap DEF(4) \neq \varnothing ) 

= ({product, i} - {product}) \cup (\varnothing if {product, i} \cap {product} \neq \varnothing ) 

= {i} \cup \varnothing 

= {i}
```

Step 7: Calculate relevant(3)

Step 8: Calculate relevant(2)

```
Statement 2: i = 1 
 DEF(2) = {i} 
 REF(2) = \varnothing 
 relevant(2) = (relevant(3) - DEF(2)) \cup (REF(2) if relevant(3) \cap DEF(2) \neq \varnothing ) 
 = {{i}} - {{i}} \ \cup (\varnothing if {i} \cap {i} \neq \varnothing)
```

```
= Ø U Ø
```

Step 9: Calculate relevant(1)