

Comunicação de Dados

Prof. MSc. Estevão Simão

Sumário - Noções de Teoria da Informação

- Introdução
 - Conceitos de Sinais
 - Unidades de medidas
 - Taxa de erro de bits
 - Taxa de transmissão e taxa de sinalização
 - Banda de transmissão
 - Teorema de Nyquist
 - Taxa de transmissão Máxima de um canal
 - Lei de Shannon

Campus Fortaleza

Processos de Comunicação

- Comunicar-se é transmitir informação de um ponto para o outro, de acordo com o seguinte processo:
 - 1. O transmissor gera a informação.
 - 2. Para poder transmitir com precisão, o transmissor utiliza um conjunto de símbolos conhecidos pelo receptor.
 - 3. Esses símbolos são codificados para que possam ser transmitidos pelo meio físico disponível.
 - 4. Em seguida, ocorre a transmissão de símbolos codificados (o sinal) ao seu destino.
 - 5. Os símbolos são decodificados e reproduzidos.
 - 6. A última etapa é a recriação, pelo destinatário (receptor), da informação transmitida,
 mesmo com uma possível degradação da qualidade de sinal.

Sistema de Comunicação

Sistema de Comunicação

- Mensagem
 - Para passarmos uma informação a alguém do que iremos necessitar?
 - Em primeiro lugar, descrever a idéia através de símbolos, isto é, utilizando uma linguagem.
 - É importante que o destinatário fale ou conheça esses símbolos, caso contrário não vai haver comunicação.
 - Depois que a mensagem é transmitida através de um sinal que se propaga até o destinatário, ele reconhece os símbolos, decodifica o sentido e pode entender a idéia transmitida.

Sinal e Informação

- Sinal
 - A palavra SINAL tem vários sentidos.
 - Falamos de sinal de trânsito, sinal religioso, sinal de compreensão, etc
 - No caso de telecomunicações um sinal é uma onda que se propaga através de algum meio físico, seja ele o ar, um par de fios telefônicos, um cabo de fibra ótica, etc....
 - A intensidade de um feixe de luz, a cor de um feixe luminoso, a frequência de um som, o volume de um som, etc são sinais.
 - Portanto, o sinal pode ser visto como uma função do tempo, que dá, a cada instante, o valor da grandeza.

Sinal e Informação

- Informação
 - Uma informação está, em geral, associada a uma ou mais idéias ou aos dados manipulados pelos agentes que as criam, manipulam e processam.
 - Um sinal, por sua vez, corresponde à materialização específica de uma informação por meio de uma codificação utilizada no momento da transmissão.

Sinais

- Os sinais podem ser Analógicos ou Digitais
 - Sinais Analógicos
 - É aquele que varia continuamente, em qualquer grau, dentro de uma faixa definida pelos limites inferior e superior.
 - Sinais analógicos são ondas cuja amplitude pode variar continuamente ao longo do tempo, assumindo qualquer valor dentro de um intervalo que caracteriza sua amplitude máxima e mínima.

Sinais

- Os sinais podem ser Analógicos ou Digitais
 - Sinais Digitais
 - É aquele no qual as informações são representadas por estados discretos.
 - Os sinais digitais se caracterizam pela presença de uma sucessão de intervalos de tamanho fixo iguais a T segundos, chamados intervalos de sinalização.
 - Durante cada intervalo, o sinal transmitido não apresenta variação de amplitude, caracterizando um dos possíveis símbolos digitais transmitidos.

Sinais

- Os sinais podem ser Analógicos ou Digitais
 - Sinais Digitais
 - O bit é a unidade de informação e corresponde precisamente à amplitude (v1 ou v2) do sinal digital.

Codificação Digital

 O número de níveis utilizados em sinais digitais não precisa, necessariamente, se restringir a dois. Outras formas possíveis de codificação de sinais digitais podem ser obtidas através da atribuição de mais de um bit a cada nível de amplitude.

Uma codificação de 2 bits (dibit), utilizando 4 níveis de sinais

Codificação Digital

- Bauds
 - Devemos notar que a sinalização, em termos do número de intervalos de sinalização por segundo, pode ser diferente do número de bits por segundo (bps).
 - No caso "dibit", cada intervalo de sinalização por segundo corresponde a 2 bps.
 - O número de intervalos de sinalização por segundo de um sinal digital é o número de bauds deste sinal.

Codificação Digital

Campus Fortaleza

- Bauds
 - Bit-rate X Baud-rate
 - Taxa de transmissão (bit rate): número de bits transmitidos por segundo, expressa em bps (bits per second).
 - Taxa de sinalização (baud rate): número de intervalos de sinalização (mudanças de amplitude) por segundo do sinal, expressa em bauds.
 - Se usarmos uma amplitude para 0 e outra para 1, então baudrate = bitrate.
 - Se utilizarmos um nível de amplitude para 2 bits (dibits), então baudrate = bitrate/2.
 - Se usarmos um nível de amplitude para 3 bits (tribits), então baudrate = bitrate/3.

13

Para codificar n bits agrupados em um mesmo nível de amplitude, são necessários 2ⁿ receasários 2ⁿ ceará amplitudes.

- As grandezas e medidas servem para medir a capacidade de um sistema de comunicação, ou seja, quantificar o nº de bits que podemos transferir numa unidade de tempo, e a velocidade, está diretamente relacionada com os equipamentos e com o canal de transmissão de dados, ou seja, cada troço de rede terá as suas características específicas, associadas a esta matéria.
 - Decibel
 - Largura de banda
 - Throghtput
 - Bit rate

- Decibel
 - É uma medida, entre duas quantidades, sendo usada para uma grande variedade de medições em acústica, física e eletrônica, ou seja o decibel também é muito usado na medida da intensidade de sons.
 - Pode também descrever todos os sinais da rede, sejam ondas de voltagem em cobre, impulsos ópticos em fibra ou microondas (wireless).
 - O Decíbel também consegue medir a perda de atenuação ou o ganho de amplificação, de potência de uma onda.

- Largura de banda
 - É a medida da faixa de frequência, em hertz, de um sistema ou sinal, e é medida através de uma rede em bits.
 - A largura de banda é definida como a diferença entre a frequência mais alta e mais baixa que o canal pode transmitir.

- Throghtput
 - É a quantidade de dados processados em um determinado espaço de tempo, ou seja, refere-se à quantidade de dados transferidos em discos rígidos ou em uma rede.
 - O throughput também é útil para ser traduzido como a taxa de transferência efetiva de um sistema.
 - Exemplo: uma rede de Routers (Roteadores).

- Bit Rate (Taxa de Bit)
 - É medido em "bits por segundo" (bps), muitas vezes utilizado em conjunto com um prefixo, como kbps, Mbps, Gbps, etc..
 - A taxa de transmissão depende de dois fatores:
 - O meio de transmissão utilizado (tipo e comprimento do cabo)
 - E o **tráfego na rede** (quantos mais computadores estiverem, num determinado momento, em comunicação, mais lento será o transporte dos bits, logo, mais baixa será a taxa de transmissão.

BER (TAXA DE ERRO DE BITS)

- Conhecida por BER, do inglês Bit Error Rate, é um dos principais indicadores de qualidade de um canal de telecomunicações.
- Ela indica a proporção de bits recebidos errados pelo total de bits enviados durante determinado intervalo de tempo, ou seja:

BER = (n° de bits errados) / (n° de bits transmitidos)

BER (TAXA DE ERRO DE BITS)

- A BER é uma medida adimensional, isto é, não possui uma unidade física específica que a defina.
 - Pode ser expressa como um percentual ou como uma potência de 10, o que é mais adotado.
 - Ex.: Em redes locais Ethernet (LAN Local Área Network) em 10Mbit/s espera-se uma qualidade de transmissão com um valor melhor do que um bit errado em um bilhão de bits transmitidos, isto é, uma BER de 10-9.

BER (TAXA DE ERRO DE BITS)

- Para garantir o bom funcionamento dos canais de comunicação, evitando que os sinais sejam recebidos com muitos erros, todos os padrões de rede trazem especificações de BER.
 - Existe um nível de erros aceitável.
 - A ANATEL Agência Nacional de Telecomunicações, especifica e homologa, para cada tipo de sistema, a taxa máxima aceitável de bits errados, seguindo para tanto, normas internacionais.

Banda Base X Banda Larga

- Banda base (baseband):
 - Suporte de transmissão usado por um único canal, que ocupa todo o espectro de frequências
- Banda larga (broadband):
 - Suporte de comunicação dividido em múltiplos canais, com sinais modulados
 - Requer MODEM (modulador / demodulador) => caro
 - Alcança distâncias muito maiores
 - Única forma de se usar certos meios físicos para fins de transmissão de dados

Banda Passante

- Você já ouviu falar no termo "banda larga"?
 - Várias matérias de jornal, especialmente em cadernos de informática, têm falado disso quando abordam o tema da VELOCIDADE na rede.
- Esse assunto tem a ver com um conceito da maior importância no processo de comunicação: o de banda passante.
- Este conceito nos levará a entender como um sinal qualquer pode ser decomposto e analisado em componentes que permitirão o seu estudo mais aprofundado, bem como o entendimento da relação entre a velocidade de transmissão e a banda utilizada.
 - Decomposição de sinais.

Banda Passante

Campus Fortaleza

- Decomposição de sinais
 - A representação de um sinal através da série (ou transformada) de Fourier é o equivalente à apresentação dos seus vários harmônicos. E em outras palavras, pode-se representar um sinal g(t) sempre de duas formas:
 - (1) Através de uma representação no domínio do tempo, onde a função g(t) é definida como uma função do tempo t, e
 - (2) Através de uma representação no domínio da frequência, onde o sinal é definido em termos de suas INSTITUTO COMPONENTES ou, em outras palavras, o seu espectro.

0 1 1 0 0 0 1 0 Time — T

1 harmonic

Banda Passante

Decomposição de sinais (Resumo)

Banda Passante

- Decomposição de sinais (Resumo)
 - Todo e qualquer sinal pode ser decomposto através de uma soma(finita ou infinita) de ondas cosenoidais.
 - Representar um sinal no domínio do tempo é representar o valor da amplitude do sinal para cada instante do tempo.
 - Representar um sinal no domínio da frequência é representar a amplitude de cada onda cosenoidal que compõe o sinal, ou seja, representar o seu espectro de frequência.

Transmissão de Sinais Digitais em Meios Físicos

- Para obtermos a melhor compreensão dessa transmissão é importante definirmos os conceitos de banda passante e largura da banda.
 - A partir destes conceitos, é possível definir a capacidade máxima de um canal,
 - utilizando-se de um resultado obtido por H. Nyquist.
 - O resultado desta definição é a conclusão de que quanto maior a velocidade na qual desejamos transmitir, maior terá que ser a banda passante correspondente.

Banda Passante e Largura de Banda

- Os resultados obtidos por Fourier nos permitem, agora, definir os conceitos de banda passante e largura da banda.
- Denomina-se banda passante de um sinal o intervalo de frequências que compõem este sinal.
- A largura da banda desse sinal é o tamanho de sua banda passante, ou seja, a diferença entre a maior e a menor frequência que compõe o sinal.
 - Exemplo: Cabo Categoria 5 : LB de 100 Mhz
 - Voz : LB de 19.070 kHz
 - Telefonia: LB de 3.100 Hz

Banda Passante e Largura de Banda

• Relação entre as taxas de dados e os harmônicos

Bps	T(ms)	Primeiro harmônico (Hz)	Núm. De harmônicos enviados
300	26,67	37,5	80
600	13,33	75	40
1200	6,67	150	20
2400	3,33	300	10
4800	1,67	600	5
9600	0,83	1200	2
19200	0,42	2400	1
38400	0,21	4800	0

Banda Passante dos Meios Físicos

- Em geral, a curva de ganho em meios de transmissão corresponde à característica de
- filtros passa-faixa, nos quais uma determinada banda é praticamente preservada (isto é, ganho igual a aproximadamente "1" enquanto que sinais componentes de frequências exteriores a essa banda são praticamente eliminados durante a transmissão.
- Chamaremos banda passante do meio físico aquela faixa de frequências que permanece praticamente preservada pelo meio.

Banda Passante dos Meios Físicos

○ Ex.:

- Considere, a curva característica da linha de transmissão apresentada na figura.
- A banda passante dessa linha vai de, aproximadamente, 300 a 3300 Hz, o que representa uma largura de banda de aproximadamente 3 KHz.

Banda Passante Necessária

- Denomina-se banda passante necessária de um sinal à menor largura necessária na banda passante de um meio físico de forma a garantir uma qualidade mínima no recebimento deste sinal.
- No caso de transmissão de sinais digitais a banda passante necessária consiste na largura de banda mínima capaz de garantir que o receptor ainda recupere a informação digital originalmente transmitida.

Banda Passante Necessária Mínima

- A pergunta a se fazer é: qual a banda passante W necessária mínima para se transmitir um sinal digital de 1/T bps (onde T é o intervalo de sinalização)?
 - Ou, de forma inversa: quantos bits por segundo podemos transmitir em um meio físico cuja largura de banda é de W Hz?
 - Para responder a esta pergunta precisamos do resultado obtido por H. Nyquist.

Teorema de Nyquist

Teorema de Nyquist

- Em 1928, H. Nyquist formulou uma equação que define a taxa de transmissão máxima para um canal de banda passante limitada e imune a ruídos.
- Nyquist provou que, se um sinal arbitrário é transmitido através de um canal de largura de banda W Hz, o sinal resultante da filtragem pode ser completamente reconstruído pelo receptor através da amostragem do sinal transmitido, a uma frequência igual a no mínimo 2W vezes por segundo.

Capacidade Máxima de um Canal

- Como consequência do fenômeno demonstrado pelo Teorema de Nyquist, o máximo que se consegue transmitir através de um canal de largura de banda igual a W Hz é 2W bauds.
- Como um baud = log₂L bps (onde L é o número de níveis utilizado na codificação), a capacidade C do canal na ausência de ruídos é dada por:

C=2W log₂L bps (log de L na base 2)

Relação entre Velocidade e Banda Passante

- O teorema de Nyquist nos dá uma fórmula para a velocidade ou capacidade (em bps) de um canal na ausência de ruídos.
 - Observados essa fórmula

C=2W log₂L bps

- Percebe-se que quanto maior a velocidade de transmissão de um sinal, maior a banda passante necessária.
- É por isso que redes de alta velocidade, isto é, redes que permitem a transmissão a alta velocidade, são algumas vezes chamadas de redes em banda larga, pois exigem uma banda passante maior quanto for a taxa de

Lei de Shannon

Campus Fortaleza

- O teorema de Nyquist nos permite determinar a capacidade máxima C de um canal na ausência de ruídos. Shannon estendeu este resultado para levar em conta o efeito dos ruídos.
- O principal resultado de Shannon (conhecido como a Lei de Shannon) afirma que a capacidade máxima C de um canal (em bps) cuja largura de banda é W Hz, e cuja razão sinal-ruído é S/N, é dada por:

dB = 10 log ₁₀ (S/N) onde S/N é o valor numérico da relação da potência do sinal/potência do ruído. dB = 20 log ₁₀ (V1/V2) onde V1/V2 Fórmula da conversão de base logarítma:

Lei de Shannon

Um canal de 3.000 Hz com uma razão sinal-ruído de 30 dB (parâmetros típicos de uma linha telefônica) não poderá, em hipótese alguma, ser usado para uma transmissão a uma taxa maior que 30.000 bps, não importando quantos níveis de sinal se utilizem ou qual a frequência de sinalização.

Noções de Teoria da Informação

• Dúvidas?

Conceitos de Sinais Exemplos

• Exemplo 1:

O Um sinal de faixa estreita possui largura de faixa de 10 kHz centrado em uma frequência de portadora de 100 kHz. Propõe-se representar este sinal na forma discreta através da amostragem individual de suas componentes em fase e em quadratura. Qual é a mínima taxa de amostragem que pode ser utilizada para esta representação? Justifique sua resposta.

Conceitos de Sinais Exemplos

• Exemplo 1:

o Sol.:

Conceitos de Sinais Exemplos

Exemplo 2:

- Um sinal de voz é amostrado uniformemente. A operação de amostragem utiliza amostras de topo plano com 1 μs de duração. A maior componente de cada sinal de voz é 3,4 kHz.
- a)Assumindo uma taxa de amostragem de 8 kHz, calcular o capacidade máxima do canal espaçamento entre pulsos sucessivos do sinal multiplexado.

Comunicação de Dados

Próxima aula:

Modulação