

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#) [Generate Collection](#) [Print](#)

L11: Entry 1 of 2

File: JPAB

Jul 4, 2000

PUB-NO: JP02000187884A
DOCUMENT-IDENTIFIER: JP 2000187884 A
TITLE: OPTICAL RECORDING MEDIUM

PUBN-DATE: July 4, 2000

INVENTOR-INFORMATION:

NAME	COUNTRY
HARIGAI, MASATO	
KINOSHITA, MIKIO	
DEGUCHI, KOJI	

ASSIGNEE-INFORMATION:

NAME	COUNTRY
RICOH CO LTD	

APPL-NO: JP10362829
APPL-DATE: December 21, 1998

INT-CL (IPC): G11 B 7/24

ABSTRACT:

PROBLEM TO BE SOLVED: To improve an S/N and a jitter characteristic and to cope with a DVD-R and a blue laser or the like by executing recording by utilizing a phenomenon wherein density of an element composing a first recording layer is inverted with density of an element composing a second recording layer owing to irradiation by laser beams.

SOLUTION: An element of material of a first recording layer is expressed with A and an element of material of a second recording layer thereon is expressed with B. When both layers are not irradiated with recording laser beams, density of a base side element A is major and density of the element B being a second layer thereon is major. When a film thickness of the first recording layer and the same of the second recording layer are respectively limited to the range of 100-250 Å and 50-200 Å and both layers are irradiated with the laser beams, mutual diffusion rapidly progresses, density distribution is inverted, the upper layer is replaced by the lower layer in appearance, density of the base side element B becomes minor and density of the element A thereon becomes major, and recording becomes possible. When a valence of a recording material of the first and second recording layers is respectively expressed with X and Y, activation energy of the element is reduced by using an element of $1 \leq X - Y \leq 3$.

COPYRIGHT: (C) 2000, JPO

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

Record Display Form

[First Hit](#) [Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

End of Result Set

[Generate Collection](#) | [Print](#)

Jul 4, 2000

L11: Entry 2 of 2

File: DWPI

DERWENT-ACC-NO: 2000-494858

DERWENT-WEEK: 200044

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Optical recording medium has pair of recording layer on which recording is carried out, by irradiating laser light, with respect to density of element of recording layer

PATENT-ASSIGNEE:

ASSIGNEE	CODE
RICOH KK	RICO

PRIORITY-DATA: 1998JP-0362829 (December 21, 1998)

[Search Selected](#) | [Search All](#) | [Clear](#)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<input type="checkbox"/> <u>JP 2000187884 A</u>	July 4, 2000		007	G11B007/24

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP2000187884A	December 21, 1998	1998JP-0362829	

INT-CL (IPC): G11 B 7/24

ABSTRACTED-PUB-NO: JP2000187884A

BASIC-ABSTRACT:

NOVELTY - A pair of recording layers consisting specific elements provided on a substrate. Recording is carried out to the recording layers by irradiating laser light, with respect to density of element of the recording layers.

DETAILED DESCRIPTION - The first recording layer consists of element chosen among Sb, Ge, Bi, Te, Se and Si with valence Y. The second recording layer consists of element chosen among In, Al and Ge with valence X. The difference of valence (X-Y) lies between 1 and 3.

USE - Optical recording medium.

ADVANTAGE - Since the difference of reflecting rate in front and rear of recording layer is small, the S/N ratio is reduced, thus prevents jitter characteristics.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: OPTICAL RECORD MEDIUM PAIR RECORD LAYER RECORD CARRY IRRADIATE LASER
LIGHT RESPECT DENSITY ELEMENT RECORD LAYER

DERWENT-CLASS: T03

EPI-CODES: T03-B01B1;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N2000-367661

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-187884

(P2000-187884A)

(43)公開日 平成12年7月4日(2000.7.4)

(51)Int CL'

G 11 B 7/24

識別記号

5 2 2

F I

G 11 B 7/24

マーク(参考)

5 2 2 Z 5 D 0 2 9

5 2 2 A

5 2 2 D

審査請求 未請求 請求項の数7 OL (全7頁)

(21)出願番号

特願平10-362229

(22)出願日

平成10年12月21日(1998.12.21)

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 針谷 鮎人

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 木下 幹夫

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 100078994

弁理士 小松 秀岳 (外2名)

最終頁に続く

(54)【発明の名称】光記録媒体

(57)【要約】

【課題】記録前後における反射率の差が大きく、S/N比がよく、しかもジッター特性が良好であり、DVD-Rや青色レーザー等にも対応でき、記録マークの消去の可能性が全くなく、耐候性にも優れたライトワンス型光記録媒体を提供する。

【解決手段】第1、第2の記録層からなり、レーザ光の照射により第1の記録層を構成する元素の濃度と第2の記録層を構成する元素の濃度が逆転する現象を利用して記録を行うことを特徴とする。

【特許請求の範囲】

【請求項1】 ライトワンス型光記録媒体において、記録層が記録媒体の基板側に設けた第1の記録層とその上に設けた第2の記録層の2層からなり、レーザ光の照射により第1の記録層を構成する元素の濃度と第2の記録層を構成する元素の濃度が逆転する現象を利用して記録を行うことを特徴とする光記録媒体。

【請求項2】 第1の記録層の記録材料の元素の原子価をX、第2の記録層の記録材料の原子価をYとするとき、 $1 \leq X - Y \leq 3$ なる関係を有するものとし、元素の拡散の活性化エネルギーを低下させることを特徴とする請求項1記載の光記録媒体。

【請求項3】 第1の記録層の原子価Xの元素はSb、Ge、Bi、Te、Se、Siから選ばれた少なくとも1種類であり、第2の記録層の原子価Yの元素は、In、Al、Gaから選ばれた少なくとも1種類である請求項2記載の光記録媒体。

【請求項4】 第1の記録層の膜厚が $100\text{Å} \sim 250\text{Å}$ 、第2の記録層の膜厚が $50\text{Å} \sim 200\text{Å}$ である請求項2又は3に記載の光記録媒体。

【請求項5】 第1の記録層の原子価Xの元素に添加元素として、Nd、Gd、N、Ar、F、Cl、I、Na、Kの少なくとも1種類が含有される請求項2ないし4のいずれかに記載の光記録媒体。

【請求項6】 添加元素の添加量を原子価Xの元素に対して $x \text{ at \%}$ としたとき、 $0.3 \leq x \leq 3.0$ である請求項5記載の光記録媒体。

【請求項7】 基板上及び/又は第2の記録層上に誘電体層を設けてなる請求項1記載の光記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、ライトワンス型の光記録媒体に関する。

【0002】

【従来の技術】 ライトワンス型の記録媒体としては、レーザ照射により媒体にピット(穴)をあける方法や、相変化や合金化等による構造変化を生じさせて反射率を変化させて情報を記録させる方法が提案されている。例えばピット方式の場合はTe膜を用いた検討が進み、その中で耐環境性を改善するためにSeやCを添加した案やCS₂-Te膜の検討も進められた(以上、記録・記憶技術ハンドブック(P543~546)丸善)。一方、相変化方式としては、TeO_x及びこれらにGe、Sn、Pd等を添加した案も提案されている(記録・記憶技術ハンドブック(P546))。又、合金化による方法としては(Ge、Si、Sn)の元素群から選択された少なくとも一種類の元素と(Au、Ag、Al、Cu)の元素群から選択された少なくとも一種類の元素とを主成分とする合金を記録層として、これにレーザ光を照射して、合金の原子配列を変化させて、反射率の変化を利

用する方法や、これらの2つの元素群を各々積層したものを記録層としてレーザ照射することにより、照射部を合金化させる方法(特開平4-226784)が提案されている。又、2層による方法としては、Sb₂Se₃とBi₂Te₃を記録層とする方法もある(光記録技術と材料、P94、シーエムシー)。

【0003】 しかしながら、上の特開平4-226784に開示されている合金化による方法は、レーザ照射による反射率の変動が少なく、十分な記録特性を確保できない。又、Sb₂Se₃とBi₂Te₃を積層化してこれを記録層とする案はSb₂Se₃の結晶と非晶間の相転移を利用するものであり、時としてデータを消去してしまう危険性がある。

【0004】

【発明が解決しようとする課題】 前述に示されたライトワンス型記録媒体は、ピット方式、相変化方式、合金化方式等、それぞれの特徴を有するが、耐環境性、記録特性、記録マークの保存性等にそれぞれ問題を有する。この発明は、従来技術における問題点を解決するためになされたものであり、記録前後における反射率の差が大きくS/N比がよく、しかもジッター特性が良好であり、DVD-Rや青色レーザ等にも対応でき、記録マークの消去の可能性が全くなく、耐候性にも優れたライトワンス型光記録媒体を提供することを目的とするものである。

【0005】

【課題を解決するための手段】 前記課題を解決するため、本発明は下記の各項よりなる。

【0006】 (1) ライトワンス型光記録媒体において、記録層が記録媒体の基板側に設けた第1の記録層とその上に設けた第2の記録層の2層からなり、レーザ光の照射により第1の記録層を構成する元素の濃度と第2の記録層を構成する元素の濃度が逆転する現象を利用して記録を行うことを特徴とする光記録媒体。

【0007】 (2) 第1の記録層の記録材料の元素の原子価をX、第2の記録層の記録材料の原子価をYとするとき、 $1 \leq X - Y \leq 3$ なる関係を有するものとし、元素の拡散の活性化エネルギーを低下させることを特徴とする前記(1)記載の光記録媒体。

【0008】 (3) 第1の記録層の原子価Xの元素はSb、Ge、Bi、Te、Se、Siから選ばれた少なくとも1種類であり、第2の記録層の原子価Yの元素は、In、Al、Gaから選ばれた少なくとも1種類である前記(2)記載の光記録媒体。

【0009】 (4) 第1の記録層の膜厚が $100\text{Å} \sim 250\text{Å}$ 、第2の記録層の膜厚が $50\text{Å} \sim 200\text{Å}$ である前記(2)又は(3)に記載の光記録媒体。

【0010】 (5) 第1の記録層の原子価Xの元素に添加元素として、Nd、Gd、N、Ar、F、Cl、I、Na、Kの少なくとも1種類が含有される前記(2)な

いし(4)のいずれかに記載の光記録媒体。

【0011】(6) 添加元素の添加量を原子価Xの元素に対して $x\text{ at\%}$ としたとき、 $0.3 \leq x \leq 3.0$ である前記(5)記載の光記録媒体。

【0012】(7) 基板上及び/又は第2の記録層上に誘電体層を設けてなる前記(1)記載の光記録媒体。

【0013】以下に本発明を詳細に説明する。

【0014】上述のように本発明は、ライトワニス型の光記録媒体において、その記録層が2層から成り、レーザー光をその記録層に照射することにより、その各々の記録層を構成する元素が相互拡散する結果、その各元素の濃度分布が逆転する現象を利用することにある。即ち、基板側に設けられた第一層の記録層の記録材料の元素をA、そしてその上に設けられた第二層の記録層の記録材料の元素をBとすると、レーザー照射前は、基板側は元素Aの濃度が主であり、その上の第二層となると元素Bの濃度が主となっている。そして、この2層の各々の記録材料をある条件のものを選択し、かつその各々の記録層の膜厚を限定するとレーザー光を照射した後、相互拡散が急激に進行して、基板側に元素Bの濃度が、そしてその上側に元素Aの濃度が主となってその濃度分布が逆転する現象が生じる。このためにみかけ上、2層の記録層が入れかわった状態になる。従って、レーザー光の照射前後で大きな光学的な変化が得られるために記録が可能となる。但し、この現象は不可逆のため、誤って再度光を照射しても、もとにもどることはないと、記録マークが消去されることはないので安定したマークが得られる。そして、このような濃度の逆転現象を実現するためには、2層の記録層において、基板側に設けられた第一の記録層を構成する記録材料の元素の原子価をXとし、又、その第一の記録層の上に設けられる第二の記録層を構成する記録材料の元素の原子価をYとする時、その原子価の差 $X-Y$ が1から3の間にある元素、例えばXとしては、Sb、Ge、Bi、Te、Se、Siから選ばれた少なくとも1種の元素を、そしてYとしては、In、Al、Gaから選ばれた少なくとも1つの元素を選択して、各々の層の記録材料とすることと、その記録層の膜厚が第一の記録層の膜厚が $100\text{\AA} \sim 250\text{\AA}$ 、好ましくは $150\text{\AA} \sim 200\text{\AA}$ であり、第二の記録層の膜厚が $50\text{\AA} \sim 200\text{\AA}$ 、好ましくは 100\AA とする必要がある。この理由は今のところ明確ではないが、2層の各々の記録材料の原子価の差 $X-Y$ を1から3とすることにより、拡散の活性エネルギーを低下させることが可能となり、相互拡散が促進されるのではないかと思われる。又、膜厚をこの範囲にすることにより元素の拡散距離を小さくすることができるため、レーザ照射後、短時間で2層の記録材料の濃度分布が逆転するものと思われる。この膜厚より厚いと濃度の逆転現象は短時間では起こり得ない。但し、拡散は生じるためにある程度の光学的变化はレーザ照射により認められる

が、光記録媒体としての良好なデスク特性は得ることができない。又、第一の記録層の記録材料としてのSb、Ge、Bi、Te、Se、Siには添加物として、H、Ne、N、Na、K、Ca、Cl、Br、I等を添加して、拡散効率を向上させることができる。その原因は不明であるが、これらの元素は比較的原子半径が大きいため、これが起因している可能性がある。又、これらの添加物の量は 0.3 から 3.0 at\% の間であることが望ましい。又、この2層タイプの記録材料は、レーザを基板から照射して記録を行った場合、その反射率は低い方から高い方に変化するlow to highといわれるモードであり、通常のコンパクトデスクのhigh to lowとは反対のモードとなる。従って、同一のモードとするためには、誘電体層を別に設けることにより光干渉を利用する必要がある。このためには、基板上か、あるいは必要に応じて記録層上に誘電体層を設ければ良い。この誘電体は、酸化物、硫化物、窒化物、又はこれらを組み合わせたものが用いられる。

【0015】20 【発明の実施の形態】以下本発明の構成を図面を参照して具体的に説明する。図1はこの発明による光記録媒体の構成例を示すもので、案内溝を有する基板1の上に下部誘電体層2、記録層3、4、上部誘電体層5、が順次設けられている。

【0016】基板1の材料は通常、ガラス、セラミックス、あるいは樹脂が用いられ、樹脂基板が成形性の点で好ましい。代表例としてはポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂等が挙げられるが、加工性、光学特性などの点からポリカーボネート樹脂が好ましい。また、基板の形状はディスク状、カード状あるいはシート状であってもよい。

【0017】誘電体層2および5は、各種気相成長法、例えば真空蒸着法、スパッタリング法、電子ビーム法等により形成できる。また、その膜厚はその機能、即ち、耐熱層、多重干渉層としての機能によっても異なるが、下部の誘電体層は $500 \sim 3000\text{\AA}$ 、好ましくは $800 \sim 2000\text{\AA}$ とするのがよい。また、上部誘電体層は、 $100 \sim 1000\text{\AA}$ 、好ましくは $150 \sim 350\text{\AA}$ とするのがよい。

【0018】先の記録層は、Sb、Ge、Bi、Te、Se、Siから選ばれた少なくとも1種類の元素を上記誘電体層と同様各種気相成長法を利用することができます。この時の第一の記録層の膜厚は、 $100 \sim 250\text{\AA}$ 、好ましくは $150 \sim 200\text{\AA}$ がよい。又、その上に設けられる第二の記録層は、In、Ga、Alから選ばれた少なくとも一種の元素を、上記同様の気相成長法で設けることができ、その膜厚は $50 \sim 200\text{\AA}$ 、好ましくは $50 \sim 100\text{\AA}$ とする必要がある。従って、記録層

の厚みは第1と第2の記録層は合計すると200~450Å、好ましくは200~300Å程度となる。これ以上の膜厚になるとレーザ照射による第一の記録層を構成する元素濃度と第二の記録層を構成する元素濃度の逆転現象は困難となる。

【0019】実施例

ピッチ0.74μm、深さ400Åの溝付き、厚さ0.6mm、直径120mmのポリカーボネート基板上に表1に示す構成により、下部誘電体層、第一記録層1、第二記録層2、上部誘電体層を順次スパッタ法により積層した。

【0020】一方、ガラス基板上に異なった膜厚の記録層1、2を積層して、レーザ照射後の元素濃度の変化を評価するサンプルを作成した。又、デスクの評価は記録マークのジッター値、記録前後の反射率、モジスレーションによっている。ここで記録信号はEFMランダムパターン、記録線速は6m/sである。

【0021】実施例1~7は、下部及び上部誘電体層を設けていない。ここでは第一記録層にGe、Ge-Sb、Ge-Te、Ge-Biを用い、その膜厚は200~300Åに固定している。又、第二記録層は、In-Al合金*

*を用いその膜厚を30Å、50Å、100Å、300Åとしている。即ち、実施例1は第一記録層として200ÅのGe-Biを、第二記録層として50ÅのIn-Al合金膜を用いる。又、実施例2は、第一記録層として200ÅのGe-Biを、第二記録層として100ÅのIn-Al合金膜を用いる。又、実施例3は、第一記録層として200ÅのGeを、第二記録層として300ÅのIn-Al合金膜を用いる。又、実施例4は、第一記録層として200ÅのGe-Biを、第二記録層として300ÅのIn-Al合金膜を用いる。又、実施例5は、第一記録層として200ÅのGeを、第二記録層として100ÅのIn-Alを用いる。又、実施例6は、第一記録層として200ÅのGe-Sb膜を、第二記録層として100ÅのIn-Al合金膜を用いる。又、実施例7は、第一記録層として200ÅのGe-Te膜を、第二記録層として100ÅのIn-Al合金膜を用いる。以上の記録媒体は、基板上に第一及び第二記録層を設けたのみのものであり、極性をheight lowになるための誘電体層は設けていない。

【0022】

【表1】

1

実施例	層構成と 成膜法	下部誘電体層	第一記録層	第二記録層	上部誘電体層	成膜法
		膜厚(Å)				
実施例1	RF スパッタ	—	Ge-Bi膜	In-Al合金膜	—	RF
		—	200	50	—	スパッタ
実施例2	RF スパッタ 回上	—	Ge-Bi膜	In-Al合金膜	—	RF
		—	200	100	—	スパッタ 回上
実施例3	RF スパッタ	—	Ge-Bi膜	In-Al合金膜	—	RF
		—	200	300	—	スパッタ
実施例4	RF スパッタ	—	Ge-Bi膜	In-Al合金膜	—	RF
		—	200	30	—	スパッタ
実施例5	RF スパッタ	—	Ge膜	In-Al膜	—	RF
		—	200	100	—	スパッタ
実施例6	RF スパッタ	—	Ge-Sb膜	In-Al合金膜	—	RF
		—	200	100	—	スパッタ
実施例7	RF スパッタ	—	Ge-Te膜	In-Al合金膜	—	RF
		—	200	100	—	スパッタ
実施例8	ZnS-SiO ₂ 膜 Ge-Bi膜 In-Al合金膜	ZnS-SiO ₂ 膜	Ge-Bi膜	In-Al合金膜	—	RF
		1000	200	100	—	スパッタ
実施例9	ZnS-SiO ₂ 膜 Ge-Bi膜 In-Al合金膜 ZnS-SiO ₂ 膜	ZnS-SiO ₂ 膜	Ge-Bi膜	In-Al合金膜	ZnS-SiO ₂ 膜	RF
		1000	200	100	250	スパッタ
実施例10	ZnS-SiO ₂ 膜 Ge-Bi膜 In-Al合金膜 ZnS-SiO ₂ 膜	ZnS-SiO ₂ 膜	Ge-Bi膜 (Ra:0.5nm添加)	In-Al合金膜	ZnS-SiO ₂ 膜	RF
		1000	200	100	250	スパッタ
実施例11	ZnS-SiO ₂ 膜 Ge-Bi膜 In-Al合金膜 ZnS-SiO ₂ 膜	ZnS-SiO ₂ 膜	Ge-Bi膜 (Ra:0.5nm添加)	In-Al合金膜	ZnS-SiO ₂ 膜	RF
		1000	200	100	250	スパッタ
実施例12	ZnS-SiO ₂ 膜 Ge-Bi膜 In-Al合金膜 ZnS-SiO ₂ 膜	ZnS-SiO ₂ 膜	Ge-Bi膜 (Cl:0.5wt%添加)	In-Al合金膜	ZnS-SiO ₂ 膜	RF
		1000	200	100	250	スパッタ

【0023】

※※【表2】

表 2

デスク 特性 実施例	記録パワー (mw)	ジッター σ/T_w (%)	反射率 (%)	モジュレー ション (%)	モード
実施例 1	6	10. 1	31. 0	42	low to high
	7	9. 2	31. 5	43	〃
	8	10. 3	31. 5	43	〃
	9	10. 4	32. 0	42	〃
	10	10. 5	32. 0	43	〃
実施例 2	9	13. 5	18. 2	40. 0	low to high
	10	11. 8	22. 0	47. 0	〃
	11	10. 5	23. 3	47. 3	〃
	12	10. 3	24. 1	49. 3	〃
	13	9. 8	24. 2	50. 1	〃
実施例 3	10	23. 2	17. 2	50. 0	low to high
	11	21. 5	18. 3	52. 3	〃
	12	19. 2	20. 1	58. 1	〃
	13	16. 3	23. 8	60. 2	〃
	14	12. 4	24. 5	62. 1	〃
実施例 4	6	11. 1	12. 1	30. 2	low to high
	7	10. 8	13. 2	31. 1	〃
	8	10. 3	15. 3	33. 3	〃
	9	10. 5	17. 2	34. 2	〃
	10	10. 7	18. 1	35. 3	〃

【0024】

* * 【表3】
表 2 (つづき)

デスク 特性 実施例	記録パワー (mw)	ジッター σ/T_w (%)	反射率 (%)	モジュレー ション (%)	モード
実施例 5	10	12. 2	21. 1	43. 2	low to high
	11	11. 3	22. 3	48. 1	〃
	12	10. 8	23. 2	50. 3	〃
	13	10. 2	24. 1	51. 2	〃
	14	9. 4	24. 3	52. 1	〃
実施例 6	9	18. 1	17. 4	41. 0	low to high
	10	11. 2	21. 3	46. 3	〃
	11	10. 3	22. 9	49. 3	〃
	12	10. 1	23. 8	50. 3	〃
	13	9. 4	24. 1	51. 1	〃
実施例 7	9	12. 2	18. 3	48. 3	low to high
	10	11. 0	21. 7	51. 2	〃
	11	10. 3	23. 2	52. 3	〃
	12	9. 3	23. 4	53. 2	〃
	13	9. 0	23. 8	53. 8	〃
実施例 8	9	13. 1	31. 1	51. 3	high to low
	10	12. 0	32. 3	52. 1	〃
	11	11. 2	32. 8	52. 8	〃
	12	10. 8	33. 2	53. 3	〃
	13	10. 1	33. 6	53. 7	〃

【0025】

* * 【表4】

表 2 (つづき)

デスク 特性 実施例	記録パワー (mW)	ジッター ○/Tw (%)	反射率 (%)	モジュレー ション (%)	モード
実施例9	9	13.3	34.1	57.2	high to low
	10	12.3	34.7	59.9	〃
	11	11.6	35.0	60.8	〃
	12	11.0	35.3	61.0	〃
	13	10.2	35.6	61.3	〃
実施例10	9	12.8	33.8	56.2	high to low
	10	11.5	34.4	58.0	〃
	11	10.2	34.8	60.2	〃
	12	9.3	35.0	60.9	〃
	13	8.7	35.2	61.1	〃
実施例11	9	12.5	34.0	55.8	high to low
	10	11.0	34.6	58.1	〃
	11	9.9	35.0	59.7	〃
	12	9.1	35.3	60.2	〃
	13	8.5	35.5	60.8	〃
実施例12	9	12.1	33.0	55.3	high to low
	10	10.9	34.3	56.7	〃
	11	9.7	34.7	58.9	〃
	12	9.0	35.0	60.2	〃
	13	8.3	35.1	60.8	〃

【0026】次に実施例8は、下部誘電体層として、ZnS-SiO₂を設けてモードをhigh to low wにしたものである。これは誘電体層を設けてこの膜厚と記録層の膜厚を調整しその干渉を利用することにより、反射率をhigh to lowにするものである。

【0027】実施例9は、下部誘電体層と併せて、上部誘電体層を設けてより干渉効果を利用しやすくした例である。又、実施例10はGe-Bi膜にNaを、実施例11はGe-Bi膜にNdを、実施例12はGe-Bi膜にC1を添加したものである。

【0028】以上の実施例から、第二記録層の膜厚を厚くするほど、記録感度が低下し、300Åの厚みになると記録パワーが14mW以上ないと記録が困難となっている。又、逆に第二記録層の厚みが50Åになると反射率の急激に低下することがわかる。従って、第二記録層の厚みは50Åから200Åの間にあれば良好なデスク特性が得られる。又、第一記録層の厚みは200Åと固定しているが、100Åから250Åがよい。

【0029】又、誘電体を設けることにより、そのモードがlow to highからhigh to lowになることも確認された。さらに第一記録層のGe-Bi合金は、Na、Nd、C1等の元素を添加することによりジッター特性が向上することがわかった。

【0030】一方、ガラス基板上に第一記録層としてGe膜を、第二記録層としてA1膜をそれぞれ150Å設け、これにレーザを照射して元濃度が逆転することを示したもの図2、3に示す。図2はレーザ照射前、図3*50

*はレーザ照射後の膜をオージェ電子分光で解析したものである。

【0031】これよりレーザ照射前は自由表面でA1膜、ガラス基板側でGeの2層構成のものが、レーザ照射後は自由表面側でGeリッチ、ガラス基板側でA1リッチとなり、濃度が逆転していることがわかる。この現象は、第一記録層のGeが約250Å以下、第二記録層のA1が200Å以下でないと起こらない。又、自由表面側には、A1との酸化膜としてのAl₂O₃が形成されていることもわかる。即ち、レーザ照射後の最表面のA1はAl₂O₃である。これはレーザ照射して分解することがないので、A1とGeの濃度の逆転現象がレーザ照射した後に起こってもそのままの形で最表面に残っている。

【0032】

【発明の効果】以上のように本発明における2層の記録膜において、その記録膜を構成する基板側に設けられた第一の記録層の記録材料の元素の原子価をX、その上に設けられた第二の記録層の記録材料の原子価をYとする等、この原子価の差X-Yが1≤X-Y≤3である元素材料、例えばXとしてSb、Ge、Bi、Te、Se、Siから選ばれた少なくとも1種の元素、YとしてIn、Al、Gaから選ばれた少なくとも1種の元素を各々記録材料として用いて、第一の記録層の膜厚を100Åから250Å、第二の記録層の膜厚を50Åから200Åとすることにより、レーザ照射することにより、元素の濃度の逆転現象を生じさせて記録することができ

(7)

特開2000-187884

12

11

る。

フロントページの書き

(72)発明者 出口 浩司

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

Fターム(参考) 5D029 JB03 JB17 JB35 VA01

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the optical recording medium of a write-once mold.

[0002]

[Description of the Prior Art] The approach on which produce the structural change by an approach, a phase change, alloying, etc. which open a pit (hole) in a medium by laser radiation as a record medium of a write-once mold, change a reflection factor, and information is made to record is proposed. For example, in order in the case of a pit method for examination which used Te film to progress and to improve a resistance to environment in it, examination of the proposal which added Se and C, or the CS₂-Te film was also advanced (above, record / storage technical handbook (P543-546) Maruzen). On the other hand, as a phase change method, the proposal which added germanium, Sn, Pd, etc. to TeO_x and these is also proposed (record / storage technical handbook (P546)). Moreover, let the alloy which uses as a principal component at least one kind of element chosen from the element group of (germanium, Si, Sn) as an approach by alloying, and at least one kind of element chosen from the element group of (Au, Ag, aluminum, Cu) be a record layer, The approach of irradiating a laser beam at this, changing the atomic arrangement of an alloy, and using change of a reflection factor, and the method (JP,4-226784,A) of making the exposure section alloy, when it carries out laser radiation, using as a record layer what carried out the laminating of these two element groups respectively are proposed, and it is [obtain and]. Moreover, as an approach by two-layer, there is also the approach of using Sb₂Se₃ and Bi₂Te₃ as a record layer (an optical recording technique, an ingredient, P94, CMC).

[0003] However, the approach by the alloying currently indicated by the upper JP,4-226784,A has little fluctuation of the reflection factor by laser radiation, and sufficient recording characteristic cannot be secured. Moreover, the proposal which laminates Sb₂Se₃ and Bi₂Te₃, and makes this record film uses the crystal of Sb₂Se₃, and the phase transition of ******, and has the danger of sometimes eliminating data.

[0004]

[Problem(s) to be Solved by the Invention] The write-once mold record medium shown in the above-mentioned has a problem in a resistance to environment, a recording characteristic, the shelf life of a record mark, etc., respectively, although a pit method, a phase change method, an alloying method, etc. have each description. This invention is made in order to solve the trouble in the conventional technique, the difference of the reflection factor before and behind record is large, its S/N ratio is good, and moreover its jitter property is good, it can respond to DVD-R, blue laser, etc., does not have the possibility of elimination of a record mark, and aims at offering the write-once mold optical recording medium excellent also in weatherability.

[0005]

[Means for Solving the Problem] In order to solve said technical problem, this invention consists of each following item.

[0006] (1) The optical recording medium characterized by to record using the phenomenon which the

concentration of the element from which a record layer consists of two-layer [of the 1st record layer prepared in the substrate side of a record medium and the 2nd record layer prepared on it], and constitutes the 1st record layer by the exposure of a laser beam in a write-once mold optical recording medium, and the concentration of the element which constitutes the 2nd record layer reverse.

[0007] (2) the time of setting the valence of the record ingredient of X and the 2nd record layer to Y for the valence of the element of the record ingredient of the 1st record layer -- $1 \leq X-Y \leq 3$ -- the optical recording medium of the aforementioned (1) publication characterized by having relation and reducing the activation energy of diffusion of an element.

[0008] (3) the -- one -- record -- a layer -- a valence -- X -- an element -- Sb -- germanium -- Bi -- Te -- Se -- Si -- from -- choosing -- having had -- at least -- one -- a kind -- it is -- the -- two -- record -- a layer -- a valence -- Y -- an element -- In -- aluminum -- Ga -- from -- choosing -- having had -- at least -- one -- a kind -- it is -- the above -- (-- two --) -- a publication -- an optical recording medium .

[0009] (4) An optical recording medium the above (2) whose thickness of 100A - 250A and the 2nd record layer the thickness of the 1st record layer is 50A - 200A, or given in (3).

[0010] (5) An optical recording medium the above (2) which at least one kind of Nd, Gd, N, Ar, F, Cl, I, Na, and K contains as an alloying element in the element of the valence X of the 1st record layer thru/or given in either of (4).

[0011] (6) The optical recording medium of the aforementioned (5) publication which is $0.3 \leq x \leq 3.0$ when the addition of an alloying element is made into xat% to the element of a valence X.

[0012] (7) The optical recording medium of the aforementioned (1) publication which comes to prepare a dielectric layer on a substrate and/or the 2nd record layer.

[0013] This invention is explained below at a detail.

[0014] As mentioned above, in the optical recording medium of a write-once mold, this invention is to use the phenomenon which concentration distribution of each of that element reverses, as a result of the element which constitutes that each layer of record when the record layer consists of two-layer and irradiates laser light at the record layer carrying out counter diffusion. That is, if the element of the record ingredient of the layer [second] record layer in which the element of the record ingredient of the record layer of the first pass prepared in the substrate side was prepared A and on it is set to B, the concentration of Element A is main before laser radiation, and if a substrate side becomes the second layer on it, the concentration of Element B is main [side]. And if the thing of some conditions is chosen for each two-layer record ingredient of this and the thickness of that each layer of record is limited, after irradiating laser light, the phenomenon which becomes main [the concentration of Element A] by counter diffusion advancing rapidly with the concentration of Element B and its up side at a substrate side, and that concentration distribution reverses arises. For this reason, a two-layer record layer will be put in and changed on appearance. Therefore, it is before and after the exposure of laser light, and since an optical big change is obtained, it becomes recordable. However, since this phenomenon is irreversible, even if it irradiates light again accidentally, in order not to return to a basis, the mark stabilized since a record mark was not eliminated is obtained. and in order to realize the inversion phenomenon of such concentration The valence of the element of the record ingredient which constitutes the first record layer prepared in the substrate side in a two-layer record layer is set to X. moreover, as the element which has difference X-Y of the valence from 1 to 3, for example, X, when setting to Y the valence of the element of the record ingredient which constitutes the second record layer prepared on the first record layer As at least one sort of elements chosen from Sb, germanium, Bi, Te, Se, and Si, and Y At least one element chosen from In, aluminum, and Ga is chosen, and it considers as the record ingredient of each layer, The thickness of the record layer is [100A - 250A of thickness of the first record layer] 150A - 200A preferably, and the thickness of the second record layer needs to make 50A - 200A 100A preferably. Although this reason is not clear for the moment, by setting difference X-Y of the valence of each two-layer record ingredient to 1 to 3, it becomes possible to reduce the activation energy of diffusion, and it is thought that counter diffusion will be promoted. Moreover, since the diffusion length of an element can be made small by making thickness into this range, it is thought after laser radiation that concentration distribution of a record ingredient two-layer in a short time is reversed.

If thicker than this thickness, the inversion phenomenon of concentration cannot happen for a short time. However, although a certain amount of optical change is accepted by laser radiation since diffusion is produced, the good desk property as an optical recording medium cannot be acquired. Moreover, to Sb, germanium, Bi, Te, Se, and Si as a record ingredient of the first record layer, H, Ne, N, Na, K, calcium, Cl, Br, I, etc. can be added as an additive, and diffuser efficiency can be raised. Although the cause is unknown, since the atomic radius is comparatively large, as for these elements, this may originate.

Moreover, as for the amount of these additives, it is desirable that it is between 0.3 to 3.0at(s)%.

Moreover, this two-layer type of record ingredient is low which changes to the higher one from the one where that reflection factor is lower when it records by irradiating laser from a substrate. It is the mode called tohigh and is high of the usual compact disc. It becomes the mode opposite to tolow. Therefore, in order to consider as the same mode, it is necessary to use an optical interference by preparing a dielectric layer independently. What is necessary is for that just to prepare a dielectric layer on a record layer a substrate top or if needed. That with which this dielectric combined an oxide, a sulfide, a nitride, or these is used.

[0015]

[Embodiment of the Invention] The configuration of this invention is concretely explained with reference to a drawing below. Drawing 1 shows the example of a configuration of the optical recording medium by this invention, and the lower dielectric layer 2, the record layers 3 and 4, and up dielectric layer 5** are prepared one by one on the substrate 1 which has a guide rail.

[0016] Glass, the ceramics, or resin is used and the ingredient of a substrate 1 usually has a desirable resin substrate in respect of a moldability. Although polycarbonate resin, acrylic resin, an epoxy resin, polystyrene resin, polyethylene resin, polypropylene resin, silicone resin, fluorine system resin, ABS plastics, urethane resin, etc. are mentioned as an example of representation, points, such as workability and an optical property, to polycarbonate resin is desirable. Moreover, the configuration of a substrate may have the shape of the shape of a disk, the shape of a card, and a sheet.

[0017] Dielectric layers 2 and 5 can be formed by various vapor growth, for example, vacuum evaporation technique, the sputtering method, an electron beam method, etc. Moreover, although the thickness changes also with functions as the function, i.e., a heat-resistant layer, and a multiplex interference layer, a lower dielectric layer is preferably good to consider [500-3000A] as 800-2000A. Moreover, an up dielectric layer is preferably good to consider [100-1000A] as 150-350A.

[0018] A previous record layer can use various vapor growth for at least one kind of element chosen from Sb, germanium, Bi, Te, Se, and Si like the above-mentioned dielectric layer. The thickness of the first record layer at this time has 100-250A preferably good 150-200A. Moreover, the second record layer prepared on it can prepare at least a kind of element chosen from In, Ga, and aluminum by the same vapor growth as the above, and the thickness needs to make 50-200A 50-100A preferably.

Therefore, if the thickness of a record layer totals the 1st and 2nd record layer, it will become about 200-300A preferably 200-450A. If it becomes the thickness beyond this, the inversion phenomenon of the element concentration which constitutes the first record layer by laser radiation, and the element concentration which constitutes the second record layer will become difficult.

[0019] The laminating of a lower dielectric layer, the first record layer 1, the second record layer 2, and the up dielectric layer was carried out by the spatter one by one by the configuration shown in Table 1 on the polycarbonate substrate with 0.6mm [in an example pitch 0.74micrometer and a slot and thickness with a depth of 400A], and a diameter [phi] of 120mm.

[0020] On the other hand, the laminating of the record layers 1 and 2 of different thickness on a glass substrate was carried out, and the sample which evaluates change of the element concentration after laser radiation was created. Moreover, evaluation of a desk is required by the jitter value of a record mark, the reflection factor before and behind record, and MOJISURESHON. A record signal is an EFM random pattern and record linear velocity is 6m/s here.

[0021] Examples 1-7 have not prepared the lower part and an up dielectric layer. Here, germanium, germanium-Sb, germanium-Te, and germanium-Bi are used for the first record layer, and the thickness is fixed to 200A. Moreover, the second record layer makes the thickness 30A, 50A, 100A, and 300A

using the In-aluminum alloy. That is, an example 1 uses 200A germanium-Bi as the first record layer, and uses the 50A In-aluminum alloy film as the second record layer. Moreover, 200A germanium-Bi is used for an example 2 as the first record layer, and the 100A In-aluminum alloy film is used for it as the second record layer. Moreover, 200A germanium-Bi is used for an example 3 as the first record layer, and the 300A In-aluminum alloy film is used for it as the second record layer. Moreover, 200A germanium-Bi is used for an example 4 as the first record layer, and the 30A In-aluminum alloy film is used for it as the second record layer. Moreover, 200A germanium is used for an example 5 as the first record layer, and 100A In-aluminum is used for it as the second record layer. Moreover, the 200A germanium-Sb film is used for an example 6 as the first record layer, and the 100A In-aluminum alloy film is used for it as the second record layer. Moreover, the 200A germanium-Te film is used for an example 7 as the first record layer, and the 100A In-aluminum alloy film is used for it as the second record layer. The above record medium prepares the first and second record layer on a substrate, is the thing of a request, and is highto about a polarity. The dielectric layer for being set to low is not prepared.

[0022]

[Table 1]

表 1

構成と 成膜法	下部誘電体層	第一記録層	第二記録層	上部誘電体層	成膜法
膜厚(Å)					
実施例1	—	Ge-Bi膜	In-Al合金膜	—	RF
	—	200	50	—	スパッタ
実施例2	—	Ge-Bi膜	In-Al合金膜	—	同上
	—	200	100	—	
実施例3	—	Ge-Bi膜	In-Al合金膜	—	#
	—	200	300	—	
実施例4	—	Ge-Bi膜	In-Al合金膜	—	#
	—	200	30	—	
実施例5	—	Ge膜	In-Al膜	—	#
	—	200	100	—	
実施例6	—	Ge-Sb膜	In-Al合金膜	—	#
	—	200	100	—	
実施例7	—	Ge-Te膜	In-Al合金膜	—	#
	—	200	100	—	
実施例8	ZnS-SiO _x 膜	Ge-Bi膜	In-Al合金膜	—	#
	1000	200	100	—	
実施例9	ZnS-SiO _x 膜	Ge-Bi膜	In-Al合金膜	ZnS-SiO _x	#
	1000	200	100	250	
実施例10	ZnS-SiO _x 膜	Ge-Bi膜	In-Al合金膜 (Ra:0.5at%添加)	ZnS-SiO _x	#
	1000	200	100	250	
実施例11	ZnS-SiO _x 膜	Ge-Bi膜	In-Al合金膜 (Nd:0.5at%添加)	ZnS-SiO _x	#
	1000	200	100	250	
実施例12	ZnS-SiO _x 膜	Ge-Bi膜	In-Al合金膜 (Cl:0.5at%添加)	ZnS-SiO _x	#
	1000	200	100	250	

[0023]

[Table 2]

表 2

デスク 特性 実施例	記録パワー (mw)	ジッター σ/T_w (%)	反射率 (%)	モジュレー ション (%)	モード
実施例 1	6	10. 1	31. 0	42	low to high
	7	8. 2	31. 5	43	"
	8	10. 3	31. 5	43	"
	9	10. 4	32. 0	42	"
	10	10. 5	32. 0	43	"
実施例 2	9	13. 5	18. 2	40. 0	low to high
	10	11. 8	22. 0	47. 0	"
	11	10. 5	23. 3	47. 3	"
	12	10. 3	24. 1	49. 3	"
	13	8. 6	24. 2	50. 1	"
実施例 3	10	23. 2	17. 2	50. 0	low to high
	11	21. 5	18. 3	52. 3	"
	12	19. 2	20. 1	58. 1	"
	13	16. 3	23. 8	60. 2	"
	14	12. 4	24. 5	62. 1	"
実施例 4	6	11. 1	12. 1	30. 2	low to high
	7	10. 8	13. 2	31. 1	"
	8	10. 3	15. 3	33. 3	"
	9	10. 5	17. 2	34. 2	"
	10	10. 7	18. 1	35. 3	"

[0024]
[Table 3]

表 2 (つづき)

デスク 特性 実施例	記録パワー (mw)	ジッター σ / T_w (%)	反射率 (%)	モジュレー ション (%)	モード
実施例 5	10	12. 2	21. 1	43. 2	low to high
	11	11. 3	22. 3	48. 1	"
	12	10. 8	23. 2	50. 3	"
	13	10. 2	24. 1	51. 2	"
	14	9. 4	24. 3	52. 1	"
実施例 6	9	18. 1	17. 4	41. 0	low to high
	10	11. 2	21. 3	46. 3	"
	11	10. 3	22. 9	49. 3	"
	12	10. 1	23. 8	50. 3	"
	13	9. 4	24. 1	51. 1	"
実施例 7	9	12. 2	18. 3	48. 3	low to high
	10	11. 0	21. 7	51. 2	"
	11	10. 3	23. 2	52. 3	"
	12	9. 3	23. 4	53. 2	"
	13	9. 0	23. 8	53. 6	"
実施例 8	9	13. 1	31. 1	51. 3	high to low
	10	12. 0	32. 3	52. 1	"
	11	11. 2	32. 8	52. 8	"
	12	10. 8	33. 2	53. 3	"
	13	10. 1	33. 6	53. 7	"

[0025]
 [Table 4]

表 2 (つづき)

デスク 特性 実施例	記録パワー (mW)	ジッター σ/T_w (%)	反射率 (%)	モジュレー ション (%)	モード
実施例9	9	13.3	34.1	57.2	high to low
	10	12.3	34.7	59.9	"
	11	11.6	35.0	60.8	"
	12	11.0	35.3	61.0	"
	13	10.2	35.6	61.3	"
実施例10	9	12.8	33.8	56.2	high to low
	10	11.6	34.4	58.9	"
	11	10.2	34.8	60.2	"
	12	9.3	35.0	60.9	"
	13	8.7	35.2	61.1	"
実施例11	9	12.5	34.0	55.8	high to low
	10	11.0	34.6	58.1	"
	11	9.9	35.0	59.7	"
	12	8.1	35.3	60.2	"
	13	8.5	35.5	60.8	"
実施例12	9	12.1	33.0	55.3	high to low
	10	10.9	34.3	56.7	"
	11	9.7	34.7	58.9	"
	12	8.0	35.0	60.2	"
	13	8.3	35.1	60.8	"

[0026] Next, as a lower dielectric layer, an example 8 forms ZnS-SiO₂ and is high about the mode. to It is made low. By preparing a dielectric layer, adjusting this thickness and the thickness of a record layer, and using that interference, this is high about a reflection factor. It is made to low.

[0027] An example 9 is an example which made cross protection easier to combine with a lower dielectric layer, to prepare an up dielectric layer, and to use. moreover, the example 10 -- the germanium-Bi film -- Na -- in an example 11, Nd is added on the germanium-Bi film and an example 12 adds Cl on the germanium-Bi film.

[0028] Record is difficult, if record power does not have 14mW or more when record sensibility falls and it becomes the thickness which is 300Å from the above example so that thickness of the second record layer is thickened. Moreover, when the thickness of the second record layer becomes 50Å or less conversely, it turns out that it falls rapidly [a reflection factor]. Therefore, if the thickness of the second record layer is from 50 to 200Å, a good ** desk property will be acquired. Moreover, although the thickness of the first record layer is fixed with 200Å, 100 to 250Å is good.

[0029] Moreover, the mode is low by preparing a dielectric. to From high to high to Being set to low was also checked. Furthermore, it turned out that the jitter property of the germanium-Bi alloy of the first record layer improves by adding elements such as Na, Nd, and Cl.

[0030] What showed that prepare germanium film as the first record layer, 150Å of aluminum film was prepared as the second record layer on a glass substrate. respectively, laser was irradiated on the other hand at this, and former concentration was reversed is shown in drawing 2 and 3. In drawing 2, drawing 3 analyzes the film after laser radiation with Auger electron spectroscopy before laser radiation.

[0031] This shows that the thing of the two-layer configuration of germanium reverses after laser radiation by the free-surface side by the aluminum film and glass substrate side in the free surface, and aluminum rich next door and concentration are reversed by the germanium richness and glass substrate side before laser radiation. As for this phenomenon, germanium of the first record layer does not

happen, unless aluminum of about 250A or less and the second record layer is 200A or less. Moreover, a free-surface side also understands that aluminum 2O₃ as an oxide film with aluminum is formed. That is, aluminum on the front face of the maximum after laser radiation is aluminum 2O₃. Since laser radiation is carried out and it does not decompose, even if it happens after the inversion phenomenon of the concentration of aluminum and germanium carries out laser radiation of this, it remains in the maximum front face in the form as it is.

[0032]

[Effect of the Invention] In the two-layer record film in this invention, the valence of the element of the record ingredient of the first record layer prepared in the substrate side which constitutes the record film as mentioned above X, The valence of the record ingredient of the second record layer prepared on it is set to Y, As the element ingredient whose difference X-Y of this valence is $1 \leq X-Y \leq 3$, for example, X, Sb, At least one sort of elements chosen from germanium, Bi, Te, Se, and Si, The thickness of the first record layer by making thickness of 100A to 250A, and the second record layer into 50 to 200A, using respectively at least one sort of elements chosen from In, aluminum, and Ga as Y as a record ingredient By carrying out laser radiation, the inversion phenomenon of the concentration of an element is produced and it can record.

[Translation done.]