Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data

Wei-Ning Hsu, Yu Zhang, and James Glass Talk by Stefan Wezel

Seminar ML4S

January 11, 2021

Overview

- Introduction
- What are Disentangled Representations? (intuition)
- Why Disentangled Representations
- o Formal Description of Disentangled Representations
- o Disentanglement in the Context of the Paper
- o The Factorized Hierarchical VAE Model
- Results

Introduction

Setting - Speech data

- Propose Sequential Factorized Hierarchical VAE (FHVAE)
- o Focus on speech data
 - Sequence level (Speaker, ...) attributes
 - Segment level (content, noise, ...) attributes
- o Reflect different temporal scales in latent space

What is disentanglement?

Intuition

 Encode distinct generating factors in separate subsets of latent space dimensions

 Encode distinct generating factors in separate subsets of latent space dimensions

 Encode distinct generating factors in separate subsets of latent space dimensions

Why learn disentangled representations?

Motivation

- o Explainability/Interpretability
- Fairness
- Scientific modeling
- Speaker verification
- Denoising

A field-trip to group theory: important concepts

- Group
 - Operation and non-empty set $G=(\circ,G)$
 - set closed under operation, identity element, inverses elements, associativity
- Symmetry group
 - Set of transformations that leave object X invariant
 - Operation is composition of transformations
- o Group action
 - ullet Results of symmetry transformations on object X
 - i.e. set of changed order (permuation)
- Direct product
 - $G = G_1 \times ... \times G_n$

A field-trip to group theory: What is disentanglement in terms of group theory?

- Disentangled group actions
 - Result of subset of symmetries G_i that only change subset X_i of object, but leave other $X_{j \neq i}$ invariant
- $\circ \to \mathsf{lf}$ we observe disentangled group actions in the world, we want to model those
- \circ We can assume G can be decomposed into direct product of symmetry subgroups g_i

A field-trip to group theory: What is disentanglement in terms of group theory?

 \circ We want to find symmetry preserving mapping $f: X \mapsto Z$

$$\begin{array}{ccc} X & \xrightarrow{G} & X \\ f \downarrow & f \downarrow \\ Z & \xrightarrow{G} & Z \end{array}$$

- $\circ \to \mathsf{Equivariant} \ \mathsf{map} \ g \cdot f(x) = f(g \cdot x)$
- o Result is disentangled representation
 - Decomposition $Z = Z_1 \times ... \times Z_n$
 - where Z_i is only affected by transformations G_i on X
 - and Z_i invariant to all $G_{i\neq i}$ on X
 - \rightarrow each subspace Z_i can be transformed ONLY by the corresponding symmetry G_i on W (or on Z)

Back to the paper

id they achieve disentanglement?

- Disentangled with respect to what decomposition?
- Assume decomposition $G = G_{sequence} \times G_{segment}$
- Reflect decomposition in $Z = (z_1, z_2)$
- \circ z_1 : segment, z_2 : sequence
- Find equivariant map $f:W\mapsto Z$, so that z_2 is only affected by actions of $G_{sequence}$ and vice versa

Image source: Hsu et al., 2017

$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \sum_{n=1}^{N} \underbrace{\mathcal{L}(\theta,\phi;x^{(n)}|\tilde{\mu_{2}}) + \log p_{\theta}(\tilde{\mu_{2}}) + const.}_{\text{var. lower bound}} + \underbrace{\alpha \cdot \log \left(i|z_{2}^{(i,n)}\right)}_{\text{discrim.obj.}} \end{split}$$
 with
$$\mathcal{L}(\theta,\phi;x^{(n)}|\tilde{\mu_{2}}) &= \mathbb{E}_{q_{\phi}(z_{1}^{(n)},z_{2}^{(n)}|x^{(n)})} \left[\log p_{\theta}(x^{(n)}|z_{1}^{(n)},z_{2}^{(n)})\right] \\ &- \mathbb{E}_{q_{\phi}(z_{2}^{(n)}|x^{(n)})} \left[D_{KL}(q_{\phi}(z_{1}^{(n)}|x^{(n)},z_{2}^{(n)})||\underbrace{p_{\theta}(z_{1}^{(n)})}_{\text{sequ. ind.}})\right] \\ &- D_{KL}(q_{\phi}(z_{2}^{(n)}|x^{(n)})||\underbrace{p_{\theta}(z_{2}^{(n)}|\tilde{\mu_{2}})}_{\text{seq. dep. prior}}) \\ &\text{and } \log (i|z_{2}^{(i,n)}) = \log p(z_{2}^{(i,n)}|\tilde{\mu_{2}}^{(i)}) - \log(\sum_{i=1}^{M} p(z_{2}^{(i,n)}|\mu_{2}^{(j)})) \end{split}$$

FHVAE

S-vector μ_2

- \circ What is sequence dependent prior μ_2 (s-vector)?
 - imagine a word vector
 - s-vector for every sequence
 - similar sequence → in s-vectors close in euclidean space
 - $g(sequence\ id) = \mu_2$ as differentiable lookup table
 - ullet ightarrow embedding in pytorch, tensorflow

$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \underbrace{\log p(x|z_1,z_2)}_{\text{reconstruction}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_1},\sigma_{z_1})||\mathcal{N}(0,1))}_{\text{regularize }z_1 \text{ with global prior}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_2},\sigma_{z_2})||\mathcal{N}(\tilde{\mu_2},0.5))}_{\text{regularize }z_2 \text{ with seq. dep. prior }\mu_2} \\ &+ \underbrace{\log p(\tilde{\mu_2}) \cdot \frac{1}{seq.\ length}}_{\text{prob. of }\tilde{\mu_2} \text{ under standard Gaussian prior}} \end{split}$$

$$log \ p(sequence \ id|z_2) = CrossEntropy(\frac{-(\mu_{z_2} - \mu_2)^2}{\sigma_{z_2}^2}, \ sequence \ id)$$

 $\circ \; o$ Try to predict sequence id with z_2

Objective - Discriminative segment variational lower bound

$$\mathcal{L}^{dis}(\theta, \phi; x) = \mathcal{L}(\theta, \phi, X) + \alpha \cdot log \ p(sequence \ id|z_2)$$

- Joint objective
 - encourage factorization
- $\circ\,$ discriminative objective can be adjusted through $\alpha\,$ hyperparameter
 - ullet encourage μ_{z_2} to become more meaningful

FHVAF

Results - TIMIT Speaker Verification

- o Task: Speaker verification
 - Allows quantitative analysis of performance
 - Assess quality of disentanglement
 - Use s-vector μ_2 to predict speaker
- Compare i-vector baseline
 - i-vector used in SOTA speaker verification approaches
 - Low dimensional subspace of GMM universal background model
 - Contains speaker information (content-independent)

- Unsupervised speaker verification (Raw column)
- o Metric: equal error rate (lower is better)
- $\circ \ \mu_1$ based on z_1 as sanity check

Features	Dimension	α	Raw	LDA (12 dim)	LDA (24 dim)
i-vector	48	-	10.12%	6.25%	5.95%
	100	-	9.52%	6.10%	5.50%
	200	-	9.82%	6.54%	6.10%
$oldsymbol{\mu}_2$	16	0	5.06%	4.02%	-
	16	10^{-1}	4.91%	4.61%	-
	16	10^{0}	3.87%	3.86%	-
	16	10^{1}	2.38%	2.08%	-
	32	10^{1}	2.38%	2.08%	1.34%
μ_1	16	10^{0}	22.77%	15.62%	-
	16	10^{1}	27.68%	22.17%	-
	32	10^{1}	22.47%	16.82%	17.26%

FHVAE

Looking Back & Discussion

- Evidence towards disentangling with respect to sequence-segment decomposition
 - other decompositions may prove more challenging
- o Good performance on speaker verification and denoising task
- I had trouble disentangling simple examples
- Questions for you
 - Is learning disentangled representations worth the effort?
 - Have there been situations where you wished for an interpretable latent space?
 - Do you know any successful models where equivariant maps are used?

References

- Hsu, W.N., Zhang, Y. and Glass, J., 2017. Unsupervised learning of disentangled and interpretable representations from sequential data. In Advances in neural information processing systems (pp. 1878-1889).
- Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
 Rezende, D. and Lerchner, A., 2018. Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230.
- o Scott, W.R., 2012. Group theory. Courier Corporation.
- Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

A field-trip to group theory: Disentangle our example formally

- o Signal can get shifted or warped
- o the set of these transformations make up a symmetry group
- This can be decomposed into shifts and warps/subsets of original set (all shifted × all warped)
- o Either content is preserved, or speaker is preserved
- the resulting set of transformed signals are the actions of the symmetry group on the world state

A field-trip to group theory

- This symmetry group can be decomposed into symmetry subgroups
- One affects location
- o the other affects frequence

What are disentangled representations formally?

Disentangled Group Action

- \circ Group action $G \times X \mapsto X$
- o Group decomposes into direct product $G = G_{shifts} \times G_{warps}$
- \circ Is disentangled with respect to decomposition of G
 - if there is decomposition $X = X_{shifted} \times X_{warped}$
 - and actions $G_{shifts} \times X_{shifted} \mapsto X_{shifted}$
 - and actions $G_{warps} \times X_{warped} \mapsto X_{warped}$

What are disentangled representations formally?

Disentangled Representation

- Let W be the set of world states (all shifts and warps of signal)
- \circ Generative process $b:W\mapsto O$ (voice to audio processing unit)
- \circ Inference process $h: O \mapsto Z$ (observation to latent space)
- $\circ \ f: W \mapsto Z, f = h \circ b$
- \circ Now, we know, there is a symmetry group acting on W $(G \times W \mapsto W)$
- \circ We want to find corresponding $G\times Z\mapsto Z$ to reflect symmetry structure of W in Z
- \circ More formal: $g \cdot f(w) = f(g \cdot w)$
- This is whats called an equivariant map (famous example: convnet)

What are disentangled representations formally?

Disentangled Representation

- o Assume symmetry transformations G of W decompose into direct product $G = G_1 \times ... \times G_n$
- o Representation is disentangled if
 - equivariant map $f: W \mapsto Z, g \cdot f(w) = f(g \cdot w) \forall g \in G, w \in W$
 - ullet such a map would split Z into independent subspaces, thus satisfying:
 - Decomposition $Z = Z_{shifted} \times Z_{warped}$
 - ullet where $Z_{shifted}$ is only affected by shifts in $W\left(G_{shifts}
 ight)$
 - and Z_{warped} is only affected by warps in $W\left(G_{warps}\right)$
 - Thus each subspace can be transformed by the corresponding symmetry (like shift or warp independently)
- There may be more criteria (preserving group structure, isomorphisms, ...) but for the intuition this is sufficient

Did they achieve disentanglement

- o With respect to a decomposition into two
- o Setting: 10 sentences, 630 speakers
- How can we formulate this in group theory terms?

How did they do it?

Intuition

- With respect to a decomposition into two
- regularize z2 by sequence dependant prior (lookup table of s-vectors)
- o and z1 by sequence independant prior

How did they do it?

Methods

- o Sample batch at segment level (instead of sequence level)
- o Maximize segment variational lower bound
- o (Force z2 to be close to mu2)
- approximation of mu2 is closed form equation (concave function, set derivative to 0)

Challenges

- If we really think about it, it is hard for us to define what a disentangled representation should actually be
- Precise biases of what the latent space should be decomposited into can be helpful as well as biases towards the 'form' of these latent subspaces