Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2-3i)(2+3i) = 4-9i^2 =$	3 p
	=13	2p
2.	f(3) = 5	2p
	f(f(3)) = f(5) = 9	3 p
3.	$x^2 + 17 = 81 \Leftrightarrow x^2 = 64$	2p
	$x_1 = -8$ și $x_2 = 8$, care verifică ecuația	3 p
4.	Sunt 90 numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 18 numere naturale de două cifre, divizibile cu 5, deci sunt 18 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{18}{90} = \frac{1}{5}$	25
	nr. cazuri posibile 90 5	2 p
5.	$m_{AB} = \frac{2-a}{2} \text{si} m_{BC} = 1$	2p
	$m_{AB} = m_{BC} \Leftrightarrow a = 0$	3 p
6.	$E\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{6} + \cos\frac{\pi}{4} =$	2p
	$= \frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{1 + \sqrt{2}}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \ A(-1) = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$	3 p
	$A(1) + A(-1) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = 2A(0)$	2 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & 2a \\ 2a & 4 \end{vmatrix} = 4 - 4a^2$	3 p
	$4 - 4a^2 = 0 \Leftrightarrow a_1 = -1 \text{ si } a_2 = 1$	2 p
c)	$A(2) = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}, \det(A(2)) = -12 \neq 0 \Rightarrow (A(2))^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix}$	3 p
	$X = (A(2))^{-1} \cdot A(8) \Rightarrow X = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix} \begin{pmatrix} 1 & 16 \\ 16 & 4 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5 & -4 \\ -1 & 5 \end{pmatrix}$	2 p

Probă scrisă la matematică M_st-nat

Barem de evaluare și de notare

2.a)	$(-3) \circ 3 = 2 \cdot (-3) \cdot 3 - 6 \cdot (-3) - 6 \cdot 3 + 21 =$	3 p
	=-18+18-18+21=3	2p
b)	$x \circ y = 2xy - 6x - 6y + 18 + 3 =$	2p
	=2x(y-3)-6(y-3)+3=2(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ 3 = 3$ şi $3 \circ y = 3$, pentru x şi y numere reale	2p
	$1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{2015} = \left(1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{8}\right) \circ 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) =$ $= 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) = 3$	3р

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = 3e^x + 2x$ și $f'(0) = 3 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 3$	3 p
b)	f(0)=3, f'(0)=3	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0) \Rightarrow y = 3x + 3$	3 p
c)	$f''(x) = 3e^x + 2, \ x \in \mathbb{R}$	2p
	$f''(x) > 0$, pentru orice număr real x , deci f este convexă pe \mathbb{R}	3 p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{3} x dx = \frac{1}{2} x^{2} \Big _{1}^{3} =$	3p
	$=\frac{1}{2}(9-1)=4$	2p
b)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) e^{x} dx = \int_{1}^{2} x e^{x} dx = x e^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx =$	3p
	$=2e^2-e-e^x\begin{vmatrix} 2\\1 = e^2 \end{vmatrix}$	2 p
c)	$\mathcal{A} = \int_{1}^{a} f(x) dx = \int_{1}^{a} \left(x + \frac{1}{x} \right) dx = \left(\frac{x^{2}}{2} + \ln x \right) \Big _{1}^{a} = \frac{a^{2} - 1}{2} + \ln a$	3 p
	$\frac{a^2 - 1}{2} + \ln a = 4 + \ln a \Leftrightarrow a^2 = 9 \text{ si cum } a > 1, \text{ obținem } a = 3$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați (2-3i)(2+3i), unde $i^2 = -1$.
- **5p 2.** Calculați f(f(3)), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 + 17) = \log_3 81$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,a), B(3,2) și C(2,1). Determinați numărul real a pentru care punctele A, B și C sunt coliniare.
- **5p** 6. Se consideră $E(x) = \sin \frac{x}{3} + \cos \frac{x}{2}$, unde x este număr real. Arătați că $E\left(\frac{\pi}{2}\right) = \frac{1+\sqrt{2}}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & 2a \\ 2a & 4 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că A(1) + A(-1) = 2A(0).
- **5p b**) Determinați numerele reale a pentru care $\det(A(a)) = 0$.
- **5p** c) Rezolvați în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $A(2) \cdot X = A(8)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 2xy 6x 6y + 21$.
- **5p a**) Arătați că $(-3) \circ 3 = 3$.
- **5p b)** Arătați că $x \circ y = 2(x-3)(y-3) + 3$, pentru orice numere reale x și y.
- **5p** c) Calculați $1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{2015}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3e^x + x^2$.
- **5p** a) Arătați că $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 3$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** $| \mathbf{c} |$ Arătați ca funcția f este convexă pe \mathbb{R} .
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x + \frac{1}{x}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{1}{x} \right) dx = 4$.
- **5p b)** Arătați că $\int_{1}^{2} \left(f(x) \frac{1}{x} \right) e^{x} dx = e^{2}$.
- **5p** c) Determinați numărul real a, a > 1, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = a, are aria egală cu $4 + \ln a$.

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+i)^2 = 1 + 2i + i^2 = 2i$	3 p
	$z^2 - 2i = 2i - 2i = 0$	2 p
2.	f(3) = 0	2p
	$(g \circ f)(3) = g(f(3)) = g(0) = 2015$	3 p
3.	$x^2 - 5x = 3 - 3x \Leftrightarrow x^2 - 2x - 3 = 0$	3 p
	$x_1 = -1$ și $x_2 = 3$	2p
4.	$C_5^4 = \frac{5!}{4! \cdot 1!} =$	3 p
	=5	2 p
5.	Panta dreptei d este egală cu 2	2p
	Ecuația dreptei d este $y = 2x + 4$	3p
6.	$\mathcal{A}_{\Delta MNP} = \frac{12 \cdot 3 \cdot \sin 30^{\circ}}{2} = \frac{6 \cdot 3}{2} =$	3p
	= 9	2p

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-0\cdot 0=1$	3р
b)	$\det(A(a)) = \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} = 1 - a^2$	3 p
	$1 - a^2 = 0 \Leftrightarrow a_1 = -1 \text{i} a_2 = 1$	2p
c)	$A(a)A(b) = \begin{pmatrix} 1+ab & -b-a \\ -a-b & ab+1 \end{pmatrix}, \ A(a+b) = \begin{pmatrix} 1 & -a-b \\ -a-b & 1 \end{pmatrix}, \ abI_2 = \begin{pmatrix} ab & 0 \\ 0 & ab \end{pmatrix}$	3p
	$A(a+b)+abI_2 = \begin{pmatrix} 1+ab & -a-b \\ -a-b & 1+ab \end{pmatrix} = A(a)A(b)$, pentru orice numere reale a și b	2 p
2.a)	$f(0) = 0^3 - m \cdot 0 + 2 =$	3 p
	=0-0+2=2	2 p
b)	Restul este $(3-m)X$	3 p
	$3 - m = 0 \Leftrightarrow m = 3$	2p
c)	$x_1 + x_2 + x_3 = 0$	2p
	$x_1^3 + x_2^3 + x_3^3 = m(x_1 + x_2 + x_3) - 6 = m \cdot 0 - 6 = -6$	3 p

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = e^x - 1$ şi $f'(0) = 0 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0$	3p
b)	$e^x \le 1 \Leftrightarrow x \le 0$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe intervalul $(-\infty, 0]$	3 p
c)	$f'(0) = 0$ și $f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe intervalul $[0, +\infty)$	2p
	Cum f este descrescătoare pe intervalul $(-\infty,0]$, obținem $f(x) \ge f(0) \Rightarrow e^x \ge x+1$, pentru orice număr real x	3 p
2.a)	$\int_{0}^{1} (f(x) + 2x - 5) dx = \int_{0}^{1} (x^{2} - 2x + 5 + 2x - 5) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3p
b)	$\int_{0}^{2} \frac{f'(x)}{f(x)} dx = \ln\left(x^{2} - 2x + 5\right) \Big _{0}^{2} =$	3p
	$= \ln 5 - \ln 5 = 0$	2 p
c)	$f(x) = (x-1)^2 + 4 \ge 4$, pentru orice număr real x	2p
	$\int_{2014}^{2015} \frac{1}{f(x)} dx \le \int_{2014}^{2015} \frac{1}{4} dx = \frac{1}{4} x \left \frac{2015}{2014} \right = \frac{1}{4}$	3 p

Proba E. c) Matematică *M_st-nat*

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 1 + i. Arătați că $z^2 2i = 0$.
- **5p** 2. Calculați $(g \circ f)(3)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 3 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = x + 2015.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x^2-5x} = 5^{3-3x}$.
- **5p 4.** Determinați numărul submulțimilor cu patru elemente ale mulțimii {1, 2, 3, 4, 5}.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(0,4). Determinați ecuația dreptei d care trece prin punctul A și este paralelă cu dreapta de ecuație y = 2x + 7.
- **5p** | **6.** Determinați aria triunghiului MNP, știind că MN = 12, MP = 3 și $m(\not \sim M) = 30^\circ$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & -a \\ -a & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Determinați numerele reale a, pentru care $\det(A(a)) = 0$.
- **5p** c) Arătați că $A(a)A(b) = A(a+b) + abI_2$, pentru orice numere reale a și b, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 mX + 2$, unde m este număr real.
- **5p a)** Arătați că f(0) = 2.
- **5p b)** Determinați numărul real m, știind că restul împărțirii lui f la polinomul $g = X^2 + X 2$ este egal cu 0.
- **5p** c) Demonstrați că $x_1^3 + x_2^3 + x_3^3 = -6$, pentru orice număr real m, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x x 1$.
- **5p** a) Arătați că $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0$.
- **5p b**) Arătați că funcția f este descrescătoare pe intervalul $(-\infty,0]$.
- **5p** c) Demonstrați că $e^x \ge x+1$, pentru orice număr real x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + 5$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) + 2x 5) dx = \frac{1}{3}$.
- **5p b)** Calculați $\int_{0}^{2} \frac{f'(x)}{f(x)} dx$.
- **5p** c) Arătați că $\int_{2014}^{2015} \frac{1}{f(x)} dx \le \frac{1}{4}$.

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1		
1.	$z_1 z_2 = (3+i)(3-i) = 9-i^2 =$	3 p
	=10, care este număr real	2p
2.	$f(1) = 1 \Leftrightarrow 1 + a = 1$	3p
	a = 0	2p
3.	$x^3 + 2x - 4 = x^3 \Leftrightarrow 2x - 4 = 0$	3 p
	x = 2	2p
4.	Mulțimea A are 80 de elemente, deci sunt 80 de cazuri posibile	1p
	În mulțimea A sunt 11 numere divizibile cu 7, deci sunt 11 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{11}{12}$	2
	$\frac{p-1}{\text{nr. cazuri posibile}} = \frac{1}{80}$	2p
5.	$m_{OA} = 2$ și $m_{OB} = \frac{a}{2}$	2p
	$m_{OA} = m_{OB} \iff a = 4$	3 p
6.	$E\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{6} + \sin\frac{\pi}{3} =$	2p
	$= \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3p

1.a)	$A(0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 2 \cdot 2 - 0 \cdot 0 =$	3p
	=4-0=4	2 p
b)	$A(1) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \ A(3) = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}, \ A(2) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3 p
	$ \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} = a \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \Leftrightarrow a = 2 $	2 p
c)	$A(x)A(y) = \begin{pmatrix} 4+xy & 2x+2y \\ 2x+2y & 4+xy \end{pmatrix}$	2 p
	$2A(x+y) + xyI_2 = 2\begin{pmatrix} 2 & x+y \\ x+y & 2 \end{pmatrix} + \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} = \begin{pmatrix} 4+xy & 2(x+y) \\ 2(x+y) & 4+xy \end{pmatrix} = A(x)A(y), \text{ pentru}$	3p
	orice numere reale x și y	

2.a)	$2*(-2)=3\cdot 2\cdot (-2)+6\cdot 2+6\cdot (-2)+10=$	3p
	=-12+12-12+10=-2	2 p
b)	x * y = 3xy + 6x + 6y + 12 - 2 =	2p
	=3x(y+2)+6(y+2)-2=3(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
c)	$x*x*x = 9(x+2)^3 - 2$	2p
	$9(x+2)^3 - 2 = x \Leftrightarrow x_1 = -\frac{7}{3}, \ x_2 = -2, \ x_3 = -\frac{5}{3}$	3p

1.a)	$f'(x) = (x+1)' \cdot e^x + (x+1) \cdot (e^x)' =$	2p
	$=e^{x}+(x+1)e^{x}=(x+2)e^{x}, x \in \mathbb{R}$	3 p
b)	f(0)=1, f'(0)=2	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0) \Rightarrow y = 2x + 1$	3 p
c)	$f''(x) = (x+3)e^x, x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in [-3, +\infty)$, deci f este convexă pe intervalul $[-3, +\infty)$	3 p
2.a)	$\int_{-1}^{1} \left(x^2 + 1 \right) \cdot \frac{x^3 + 3x}{x^2 + 1} dx = \int_{-1}^{1} \left(x^3 + 3x \right) dx = \left(\frac{x^4}{4} + 3 \cdot \frac{x^2}{2} \right) \Big _{-1}^{1} =$	3p
	$= \left(\frac{1}{4} + \frac{3}{2}\right) - \left(\frac{1}{4} + \frac{3}{2}\right) = 0$	2p
b)	$\int_{0}^{1} \frac{x^{3} + 3x}{x^{2} + 1} dx = \int_{0}^{1} \left(x + \frac{2x}{x^{2} + 1} \right) dx =$	2p
	$= \left(\frac{x^2}{2} + \ln\left(x^2 + 1\right)\right) \Big _0^1 = \frac{1}{2} + \ln 2$	3р
c)	$\mathcal{A} = \int_{0}^{m} g(x) dx = \int_{0}^{m} \frac{2x}{x^2 + 1} dx = \ln(x^2 + 1) \Big _{0}^{m} = \ln(m^2 + 1)$	3p
	$\ln(m^2+1) = \ln 2 \Leftrightarrow m^2+1=2$ şi, cum $m > 0$, obţinem $m = 1$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numerele complexe $z_1 = 3 + i$ și $z_2 = 3 i$. Arătați că numărul $z_1 z_2$ este real.
- **5p 2.** Determinați numărul real a, știind că punctul A(1,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{x^3 + 2x 4} = x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 80\}$, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(1,2) și B(2,a). Determinați numărul real a, știind că punctele O, A și B sunt coliniare.
- **5p 6.** Se consideră $E(x) = \cos \frac{x}{2} + \sin x$, unde x este număr real. Arătați că $E\left(\frac{\pi}{3}\right) = \sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 2 & x \\ x & 2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = 4$.
- **5p b**) Determinați numărul real a, știind că A(1) + A(3) = a A(2).
- **5p** c) Arătați că $A(x)A(y) = 2A(x+y) + xyI_2$, pentru orice numere reale x și y, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 3xy + 6x + 6y + 10.
- **5p** | **a**) Arătați că 2*(-2) = -2.
- **5p** | **b**) Arătați că x * y = 3(x+2)(y+2)-2, pentru orice numere reale x și y.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația x * x * x = x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)e^x$.
- **5p** a) Arătați că $f'(x) = (x+2)e^x$, $x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** | **c**) Arătați că funcția f este convexă pe intervalul $[-3, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3 + 3x}{x^2 + 1}$.
- **5p** a) Arătați că $\int_{1}^{1} (x^2 + 1) f(x) dx = 0$.
- **5p b)** Arătați că $\int_{0}^{1} f(x) dx = \frac{1}{2} + \ln 2$.
- **5p** c) Determinați numărul real m, m > 0, știind că suprafața plană delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) x, axa Ox și dreptele de ecuații x = 0 și x = m, are aria egală cu ln 2.

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = a_1 + r = 1 + 2 =$	3 p
	= 3	2 p
2.	$f(m) = 0 \Leftrightarrow m+1 = 0$	3 p
	m = -1	2p
3.	$x^2 + 4 = 8 \Leftrightarrow x^2 = 4$	2p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	3 p
4.	Mulțimea M are 8 elemente, deci sunt 8 cazuri posibile În mulțimea M sunt 2 numere divizibile cu 3, deci sunt 2 cazuri favorabile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{8} = \frac{1}{4}$	1p 2p 2p
5.	$\frac{a+1}{1} = \frac{4}{2}$ $a=1$	3p 2p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\cos x = \frac{\sqrt{3}}{2}$ $\sin 2x = 2\sin x \cos x = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$	2p
	$\sin 2x = 2\sin x \cos x = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$	3 p

1.a)	$A(2014) = \begin{pmatrix} 2014 & 3 \\ 2013 & 2 \end{pmatrix}, \ A(2016) = \begin{pmatrix} 2016 & 3 \\ 2015 & 2 \end{pmatrix}, \ A(2015) = \begin{pmatrix} 2015 & 3 \\ 2014 & 2 \end{pmatrix}$	3 p
	$A(2014) + A(2016) = \begin{pmatrix} 4030 & 6 \\ 4028 & 4 \end{pmatrix} = 2 \begin{pmatrix} 2015 & 3 \\ 2014 & 2 \end{pmatrix} = 2A(2015)$	2p
b)	$\det(A(a)) = \begin{vmatrix} a & 3 \\ a-1 & 2 \end{vmatrix} = 3-a$	3 p
	$3-a=0 \Leftrightarrow a=3$	2p
c)	$A(2) + xA(3) = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} + x \begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2+3x & 3+3x \\ 1+2x & 2+2x \end{pmatrix} \Rightarrow \det(A(2) + xA(3)) = x+1$	3 p
	$x+1=0 \Leftrightarrow x=-1$	2p
2.a)	$(-1)*1 = -(-1)\cdot 1 - (-1) - 1 - 2 =$	3 p
	=1+1-1-2=-1	2p
b)	x * y = -xy - x - y - 1 - 1 =	2 p
	=-x(y+1)-(y+1)-1=-(x+1)(y+1)-1, pentru orice numere reale x şi y	3p

c)	(x+2)*(2x-3) = -(x+3)(2x-2)-1	2p
	$x^2 + 2x = 0 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 0$	3 p

1.a)	$f'(x) = 4x^3 - 16x =$	3 p
	$=4x(x^2-4)=4x(x-2)(x+2), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) - x^4}{x^2 + 1} = \lim_{x \to +\infty} \frac{-8x^2 + 16}{x^2 + 1} =$	2p
	=-8	3p
c)	$f'(x) = 0 \Leftrightarrow x(x-2)(x+2) = 0$	2p
	Coordonatele punctelor sunt $x_1 = -2$, $y_1 = 0$; $x_2 = 0$, $y_2 = 16$ și $x_3 = 2$, $y_3 = 0$	3 p
2.a)	$\int_{1}^{2} x f(x) dx = \int_{1}^{2} (x+2) dx = \left(\frac{x^{2}}{2} + 2x\right) \Big _{1}^{2} =$	3 p
	$=6-\frac{5}{2}=\frac{7}{2}$	2p
b)	$F'(x) = (x + 2\ln x + 2015)' = 1 + \frac{2}{x} =$	3 p
	$=\frac{x+2}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{e} g(x) dx = \int_{1}^{e} \frac{2}{x} \ln x dx = \ln^{2} x \Big _{1}^{e} =$	3 p
	$= \ln^2 e - \ln^2 1 = 1$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Determinați al doilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=1$ și rația r=2.
- **5p** 2. Determinați numărul real m, știind că punctul A(m,0) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2+4) = \log_2 8$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{1, 2, 3, 4, 5, 6, 7, 8\}$, acesta să fie divizibil cu 3.
- **5p** | **5.** Determinați numărul real a, știind că vectorii $\vec{u} = (a+1)\vec{i} + 4\vec{j}$ și $\vec{v} = \vec{i} + 2\vec{j}$ sunt coliniari.
- **5p 6.** Arătați că $\sin 2x = \frac{\sqrt{3}}{2}$, știind că $\sin x = \frac{1}{2}$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 3 \\ a-1 & 2 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că A(2014) + A(2016) = 2A(2015).
- **5p b**) Determinați numărul real a pentru care $\det(A(a)) = 0$.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $\det(A(2) + xA(3)) = 0$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = -xy x y 2.
- **5p a**) Arătați că (-1)*1=-1.
- **5p b)** Arătați că x * y = -(x+1)(y+1)-1, pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația (x+2)*(2x-3)=5.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 8x^2 + 16$.
- **5p** a) Arătați că $f'(x) = 4x(x-2)(x+2), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x) x^4}{x^2 + 1}$.
- **5p** c) Determinați coordonatele punctelor situate pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu axa Ox.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x}$.
- **5p** a) Arătați că $\int_{1}^{2} x f(x) dx = \frac{7}{2}$.
- **5p** b) Demonstrați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = x + 2\ln x + 2015$ este o primitivă a funcției f.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = (f(x)-1)\ln x$, axa Ox și dreptele de ecuații x=1 și x=e are aria egală cu 1.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M șt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 = 3 + (3 + 2) + (3 + 2 \cdot 2) =$	3 p
	=15	_
	-13	2 p
2.	$-\frac{b}{2a} = -1$	2p
	$-\frac{\Delta}{4a} = -\frac{12}{4} = -3$	3p
3.	$x^2 - 4x + 4 = 0$	3p
	x=2 care verifică ecuația	2p
4.	Numărul submulțimilor cu 3 elemente ale unei mulțimi cu 5 elemente este egal cu C_5^3 =	3 p
	=10	2p
5.	M(-2,3)	2p
	AM = 4	3р
6.	$\cos a = \frac{2\sqrt{2}}{3}$	3р
	$\operatorname{ctg} a = 2\sqrt{2}$	2p

1.a)	$\det(A(3)) = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 3 =$	3p
	= 3	2p
b)	$A(-2015) = \begin{pmatrix} 2 & -2015 \\ 1 & 3 \end{pmatrix}, \ A(2015) = \begin{pmatrix} 2 & 2015 \\ 1 & 3 \end{pmatrix}$	2p
	$A(-2015) + A(2015) = \begin{pmatrix} 4 & 0 \\ 2 & 6 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = 2A(0)$	3 p
c)	$\det(A(x)) = \begin{vmatrix} 2 & x \\ 1 & 3 \end{vmatrix} = 6 - x$	2p
	$x^2 + x - 6 = 0 \Leftrightarrow x_1 = -3 \text{ si } x_2 = 2$	3 p
2.a)	$f(\hat{0}) = \hat{0}^3 + a \cdot \hat{0} =$	2p
	$=\hat{0}$	3p
b)	$J(3)-2+\alpha$	2p
	$\hat{2} + a \cdot \hat{3} = \hat{3} \Rightarrow a = \hat{2}$	3p
c)	$\hat{1} + a = \hat{3} + a \cdot \hat{2} \Rightarrow a = \hat{3}$	2p
	$f(\hat{3}) = \hat{1}$ și $f(\hat{4}) = \hat{1} \Rightarrow f(\hat{3}) = f(\hat{4})$	3p

SUBII	SUBIECTUL al III-lea	
1.a)	$f'(x) = \frac{\left(x + \ln x\right)' \cdot x - \left(x + \ln x\right) \cdot x'}{x^2} =$	2p
	$= \frac{\left(1 + \frac{1}{x}\right) \cdot x - x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}, \ x \in (0, +\infty)$	3р
b)	y-f(1)=f'(1)(x-1)	2p
	f(1)=1, $f'(1)=1$, deci ecuația tangentei este $y=x$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = e$	1p
	$f'(x) \ge 0$ pentru orice $x \in (0,e] \Rightarrow f$ este crescătoare pe $(0,e]$	2 p
	$f'(x) \le 0$ pentru orice $x \in [e, +\infty) \Rightarrow f$ este descrescătoare pe $[e, +\infty)$	2 p
2.a)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+1} \right) dx = \int_{0}^{1} \left(x + \frac{1}{x+1} - \frac{1}{x+1} \right) dx = \int_{0}^{1} x dx =$	3р
	$=\frac{x^2}{2}\Big _0^1=\frac{1}{2}$	2 p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(x^{2} + \frac{x}{x+1}\right) dx = \int_{0}^{1} \left(x^{2} + 1 - \frac{1}{x+1}\right) dx =$	2 p
	$= \left(\frac{x^3}{3} + x - \ln(x+1)\right) \Big _0^1 = \frac{4}{3} - \ln 2$	3р
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(x + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} + \ln(x+1) \right) \Big _{0}^{1} = \frac{1}{2} + \ln 2$	3р
	$\frac{1}{2} + \ln 2 = \frac{1}{2} + \ln \left(n^2 + n \right) \Rightarrow n = -2 \text{ nu este număr natural și } n = 1$	2 p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_şt-nat*

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați suma primilor trei termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=3$ și rația r=2.
- **5p** 2. Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 2$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 4x + 5} = 1$.
- **5p 4.** Determinați numărul submulțimilor cu trei elemente ale mulțimii {1, 2, 3, 4, 5}.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,3), B(-2,1) și C(-2,5). Determinați lungimea vectorului \overrightarrow{AM} , știind că M este mijlocul segmentului BC.
- **5p 6.** Calculați $\operatorname{ctg} a$, știind că $\sin a = \frac{1}{3}$ și $a \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 2 & x \\ 1 & 3 \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați $\det(A(3))$.
- **5p b)** Arătați că A(-2015) + A(2015) = 2A(0).
- **5p** c) Determinați numerele reale x pentru care $\det(A(x)) = x^2$.
 - **2.** În $\mathbb{Z}_5[X]$ se consideră polinomul $f = X^3 + aX$, unde $\mathbb{Z}_5 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\}$ și $a \in \mathbb{Z}_5$.
- **5p** a) Calculați $f(\hat{0})$.
- **5p b)** Determinați $a \in \mathbb{Z}_5$, știind că $f(\hat{3}) = \hat{3}$.
- **5p** c) Arătați că, dacă $f(\hat{1}) = f(\hat{2})$, atunci $f(\hat{3}) = f(\hat{4})$.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x + \ln x}{x}$.
- **5p** a) Arătați că $f'(x) = \frac{1 \ln x}{x^2}, x \in (0, +\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **5p** c) Determinați intervalele de monotonie ale funcției f.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = x + \frac{1}{x+1}$.
- **5p** a) Calculați $\int_{0}^{1} \left(f(x) \frac{1}{x+1} \right) dx$.
- **5p b)** Arătați că $\int_{0}^{1} x f(x) dx = \frac{4}{3} \ln 2$.
- **5p** c) Determinați numărul natural nenul n, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0, x = 1, are aria egală cu $\frac{1}{2} + \ln(n^2 + n)$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_st-nat* Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

	0.075	1 _
1.	-2+0.75=	3 p
	=-1,25	2p
2.	Punctele de intersecție cu axele de coordonate sunt $A(3,0)$ și, respectiv, $B(0,4)$	2p
	Distanța AB este egală cu 5	3 p
3.	$(3^{-1})^{2x+10} = 3^4 \Leftrightarrow -2x-10 = 4$	3p
	x = -7	2p
4.	$C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = 2^n$	3p
	$2^n = 64 \Leftrightarrow n = 6$	2 p
5.	MN = 4	2p
	$NP = 4 \Rightarrow \Delta MNP$ este isoscel	3 p
6.	$A_{\Delta ABC} = 24$ p = 12, deci $r = 2$	2p
	p=12, deci $r=2$	3 p

1.a)	2 0 0	
	$\det(A(2,0)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} =$	3р
	$\begin{vmatrix} 0 & 0 & 2 \end{vmatrix}$	
	=8	2 p
b)	$A(x,a) + A(x,-a) = \begin{pmatrix} x & a & a \\ -a & x & a \\ -a & -a & x \end{pmatrix} + \begin{pmatrix} x & -a & -a \\ a & x & -a \\ a & a & x \end{pmatrix} = \begin{pmatrix} 2x & 0 & 0 \\ 0 & 2x & 0 \\ 0 & 0 & 2x \end{pmatrix} =$	2p
	$=2x \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 2xA(1,0), \text{ pentru orice numere reale } x \text{ §i } a$	3p
c)	$\det(A(x,-3)) = \begin{vmatrix} x & -3 & -3 \\ 3 & x & -3 \\ 3 & 3 & x \end{vmatrix} = x^3 + 27x$	3p
	$x(x^2 + 27) = 0 \Leftrightarrow x = 0$	2p
2.a)	$x \circ y = 3xy + 3x + 3y + 3 - 1 =$	2p
	=3x(y+1)+3(y+1)-1=3(x+1)(y+1)-1, pentru orice numere reale x şi y	3 p
b)	$a \circ b = 2 \Leftrightarrow (a+1)(b+1) = 1$	2p
	Cum a și b sunt numere întregi, obținem $a=-2$, $b=-2$ sau $a=0$, $b=0$	3 p

$\mathbf{c)} (-1) \circ x = -1, \mathbf{u}$	nde x este număr real	2p	
$(-1) \circ 0 \circ 1 \circ \dots \circ 1$	$2015 = (-1) \circ (0 \circ 1 \circ \dots \circ 2015) = -1$	3 p	

	$(-1) \circ 0 \circ 1 \circ \dots \circ 2015 = (-1) \circ (0 \circ 1 \circ \dots \circ 2015) = -1$	3 p
SUBII	ECTUL al III-lea (30 de pu	ıncte)
1.a)	$f'(x) = e^x + xe^x - e^x =$	3p
	$=xe^x, x \in \mathbb{R}$	2p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x}{e^{-x}} - e^x + 1 \right) = \lim_{x \to -\infty} \frac{x}{e^{-x}} + 1 = 1$	3p
	Dreapta $y = 1$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 0$	1p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe $(-\infty, 0]$	2p
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	2p
2.a)	$\int_{0}^{1} \left(4x^{3} + 3x^{2} + 2x + 1 \right) dx = \left(x^{4} + x^{3} + x^{2} + x \right) \Big _{0}^{1} =$	3p
	= 4	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^4 + x^3 + x^2 + x + c$, unde $c \in \mathbb{R}$	2p
	$F(-1) = 1 \Rightarrow c = 1$, deci $F(x) = x^4 + x^3 + x^2 + x + 1$	3 p
c)	$\int_{0}^{a} f(x)dx + \frac{1}{a} \int_{a}^{0} f(x)dx = \int_{0}^{a} (4x^{3} + 3x^{2} + 2x + 1)dx + \frac{1}{a} \int_{a}^{0} (4x^{3} + 3x^{2} + 2x + 1)dx =$	2p
	$=(a^4+a^3+a^2+a)-\frac{1}{a}(a^4+a^3+a^2+a)=a^4-1$, pentru orice număr real nenul <i>a</i>	3p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_st-nat* Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul real care are partea întreagă −2 și partea fracționară 0,75.
- **5p** 2. Calculați distanța dintre punctele de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -\frac{4}{3}x + 4$ cu axa Ox și, respectiv, cu axa Oy.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\left(\frac{1}{3}\right)^{2x+10} = 81$.
- **5p 4.** Determinați numărul natural n pentru care $C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = 64$.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(-1,1), N(3,1) și P(3,5). Arătați că triunghiul MNP este isoscel.
- **5p 6.** Calculați raza cercului înscris în triunghiul ABC, știind că AB = 6, AC = 8 și BC = 10.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x,a) = \begin{pmatrix} x & a & a \\ -a & x & a \\ -a & -a & x \end{pmatrix}$, unde x și a sunt numere reale.
- **5p** a) Calculați $\det(A(2,0))$.
- **5p b**) Arătați că A(x,a) + A(x,-a) = 2x A(1,0), pentru orice numere reale x și a.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $\det(A(x,-3)) = 0$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 3xy + 3x + 3y + 2$.
- **5p** a) Arătați că $x \circ y = 3(x+1)(y+1)-1$, pentru orice numere reale x și y.
- **5p b**) Determinați numerele întregi a și b, știind că $a \circ b = 2$.
- **5p c**) Calculați (−1) ∘ 0 ∘ 1 ∘ ... ∘ 2015.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x e^x + 1$.
- **5p** a) Calculați $f'(x), x \in \mathbb{R}$.
- **5p b)** Determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f.
- $\mathbf{5p} \mid \mathbf{c}$) Determinați intervalele de monotonie a funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 3x^2 + 2x + 1$.
- **5p** a) Calculați $\int_{0}^{1} f(x) dx$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(-1)=1.
- **5p** c) Arătați că pentru orice număr real nenul a are loc relația $\int_{0}^{a} f(x) dx + \frac{1}{a} \int_{a}^{0} f(x) dx = a^{4} 1$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_st-nat* Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_{2015} = 2015 + 2014 \cdot (-1) =$	3 p
	=1	2p
2.	$f(2) = -3 \Leftrightarrow -4m + 5 = -3$	3 p
	m=2	2 p
3.	$x+1-2\sqrt{x+1}\cdot\sqrt{x-1}+x-1=2 \Leftrightarrow x-1=\sqrt{x^2-1}$	3p
	x=1, care verifică ecuația	2 p
4.	Sunt 3 pătrate perfecte în mulțime, deci sunt $C_3^2 = 3$ cazuri favorabile	2p
	Sunt $C_9^2 = 36$ de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{36} = \frac{1}{12}$	2p
5.	Diagonalele paralelogramului <i>OABC</i> se înjumătățesc, deci $x_A + x_C = x_O + x_B \Rightarrow x_B = 6$	3p
	$y_A + y_C = y_O + y_B \Rightarrow y_B = 0$	2 p
6.	AD=3	2p
	$\mathcal{A}_{\Delta ABC} = \frac{3 \cdot 3\sqrt{3}}{2} = \frac{9\sqrt{3}}{2}$	3р

1.a)	1 1 4	
	$D(1) = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 0 & 6 \\ 1 & -2 & 1 \end{vmatrix} =$	2p
	$\begin{vmatrix} 1 & -2 & 1 \end{vmatrix}$	
	=0-16+6-0-2+12=0	3 p
b)	$D(x) = \begin{vmatrix} 1 & x & 4 \\ 0 & -1 - x & -1 - x \\ 0 & -2 - x & x^2 - 4 \end{vmatrix} = -(x+1)(x+2) \begin{vmatrix} 1 & x & 4 \\ 0 & 1 & 1 \\ 0 & -1 & x - 2 \end{vmatrix} =$	3р
	$=-(x+1)(x+2)\begin{vmatrix} 1 & 1 \\ -1 & x-2 \end{vmatrix} = -(x-1)(x+1)(x+2)$, pentru orice număr real x	2p
c)	$(2^x - 4)(2^x - 2)(2^x - 1) = 0$	2p
	$x_1 = 0$, $x_2 = 1$ și $x_3 = 2$	3 p
2.a)	$X\left(-1\right) = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}, \ X\left(1\right) = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}, \ X\left(0\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	3p
	$X(-1) + X(1) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2X(0)$	2 p

b)	$X(a) \cdot X(b) = \begin{pmatrix} 1+3a & -6a \\ a & 1-2a \end{pmatrix} \cdot \begin{pmatrix} 1+3b & -6b \\ b & 1-2b \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix} = \begin{pmatrix} 1+3a+3b+3ab & -6a-6b-6ab \\ a+b+ab & 1-2a-2b-2ab \end{pmatrix}$	3p
	$= \begin{pmatrix} 1+3(a+b+ab) & -6(a+b+ab) \\ a+b+ab & 1-2(a+b+ab) \end{pmatrix} = X(a+b+ab), \text{ pentru orice numere reale } a \text{ și } b$	2 p
c)	$\det\left(X\left(a\right)\right) = 1 + a$	2p
	$\det(X(a)) = 0 \Leftrightarrow a = -1$, deci matricea $X(a)$ este inversabilă pentru $a \in \mathbb{R} \setminus \{-1\}$	3 p

1.a)	$\lim_{x \to 1} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{x^2}{x - 1} =$	2p
	= $+\infty$, deci dreapta de ecuație $x=1$ este asimptotă verticală la graficul funcției f	3 p
b)	$\lim_{x \to 2} \frac{f(x) - 4}{x - 2} = \lim_{x \to 2} \frac{x^2 - 4x + 4}{(x - 1)(x - 2)} =$	2p
	$= \lim_{x \to 2} \frac{(x-2)^2}{(x-1)(x-2)} = \lim_{x \to 2} \frac{x-2}{x-1} = 0$	3p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$	2p
	$\lim_{x\to +\infty} (f(x)-x)=1$, deci dreapta de ecuație $y=x+1$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
2.a)	f este continuă în $x = -1 \Leftrightarrow \lim_{\substack{x \to -1 \ x < -1}} f(x) = \lim_{\substack{x \to -1 \ x > -1}} f(x) = f(-1)$	2p
	$-2 = -2 - a + 3 - 4 \Leftrightarrow a = -1$	3p
b)	$x \le -1 \Rightarrow x + 1 \le 0 \Rightarrow e^{x+1} \le e^0$	2p
	$e^{x+1} - 3 \le 1 - 3 \Rightarrow f(x) \le -2 \Rightarrow f(x) + 2 \le 0$, pentru orice $x \le -1$	3 p
c)	$f(x) = 2x^3 - 4x - 4$, $f(0) = -4$ și $f(2) = 4$	3p
	Cum f este continuă pe $[0,2]$ și $f(0) \cdot f(2) < 0$, ecuația $f(x) = 0$ are cel puțin o soluție în intervalul $[0,2]$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M st-nat*

Matematică *M_şt-nat* Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați a_{2015} , știind că $(a_n)_{n\geq 1}$ este progresie aritmetică cu $a_1=2015$ și r=-1.
- **5p** 2. Determinați numărul real m, știind că punctul A(2,-3) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 (2m+1)x + 3$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+1} \sqrt{x-1} = \sqrt{2}$.
- **5p 4.** Calculați probabilitatea ca, alegând una dintre submulțimile cu 2 elemente ale mulțimii {1, 2, 3,..., 9}, aceasta să fie formată doar din pătrate perfecte.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,-2) și C(1,2). Determinați coordonatele punctului B, știind că patrulaterul OABC este paralelogram.
- **5p 6.** Se consideră dreptunghiul ABCD cu $AB = 3\sqrt{3}$ și BD = 6. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $D(x) = \begin{vmatrix} 1 & x & 4 \\ 2 & x-1 & 7-x \\ 1 & -2 & x^2 \end{vmatrix}$, unde x este număr real.
- **5p** a) Calculați D(1).
- **5p b**) Arătați că D(x) = -(x-1)(x+1)(x+2), pentru orice număr real x.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $D(2^x 3) = 0$.
 - **2.** Se consideră matricea $X(a) = \begin{pmatrix} 1+3a & -6a \\ a & 1-2a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că X(-1) + X(1) = 2X(0).
- **5p b**) Arătați că $X(a) \cdot X(b) = X(a+b+ab)$, pentru orice numere reale a și b.
- **5p** c) Determinați valorile reale ale lui a pentru care matricea X(a) este inversabilă.

- **1.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\frac{x^2}{x-1}$.
- **5p** a) Arătați că dreapta de ecuație x=1 este asimptotă verticală la graficul funcției f.
- **5p b)** Calculați $\lim_{x\to 2} \frac{f(x)-4}{x-2}$.
- **5p** c) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} e^{x+1} 3, & x \le -1 \\ 2x^3 + (a-3)x 4, & x > -1 \end{cases}$, unde a este număr real.
- **5p** a) Determinați numărul real a pentru care funcția f este continuă în x = -1.
- **5p b**) Arătați că $f(x) + 2 \le 0$, pentru orice $x \le -1$.
- **5p** c) Pentru a = -1, arătați că ecuația f(x) = 0 are cel puțin o soluție în intervalul [0,2].

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_4 - a_3 = 8 - 6 =$	3 p
	= 2	2 p
2.	Valoarea minimă a funcției este $-\frac{\Delta}{4a}$ =	2 p
	$=-\frac{36}{4}=-9$	3 p
3.	$x^2 + 3 = (x+1)^2 \Leftrightarrow 3 = 2x+1$	3 p
	x=1, care verifică ecuația	2 p
4.	$C_7^2 = \frac{7!}{2! \cdot 5!} =$	3p
	= 21	2 p
5.	$\frac{y-1}{3-1} = \frac{x-2}{0-2}$	3p
		2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{8}{2 \cdot \frac{1}{2}} =$	3p
	=8	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2p
b)	$B(x) + I_2 = $ $\begin{pmatrix} x+1 & 2 \\ 3 & 7 \end{pmatrix} \Rightarrow \det(B(x) + I_2) = 7x + 1$	3р
	$7x+1=8 \Leftrightarrow x=1$	2 p
c)	$A \cdot B(x) = \begin{pmatrix} x+6 & 14 \\ 3x+12 & 30 \end{pmatrix}$	2p
	$B(x) \cdot A = \begin{pmatrix} x+6 & 2x+8 \\ 21 & 30 \end{pmatrix}$	2p
	$\begin{pmatrix} x+6 & 14 \\ 3x+12 & 30 \end{pmatrix} = \begin{pmatrix} x+6 & 2x+8 \\ 21 & 30 \end{pmatrix} \Leftrightarrow x=3$	1p
2.a)	$(-7)*7 = (-7)\cdot 7 - 7\cdot (-7) - 7\cdot 7 + 56 =$	3 p
	=-49+49-49+56=7	2p
b)	x * y = xy - 7x - 7y + 49 + 7 =	2p
	= x(y-7)-7(y-7)+7=(x-7)(y-7)+7, pentru orice numere reale x şi y	3 p

Probă scrisă la matematică *M_șt-nat*

Barem de evaluare și de notare

C	e) $x*7=7$ şi $7*y=7$, pentru x şi y numere reale	2p
	$1*2*3*\cdots*2015 = (1*2*\cdots*6)*7*(8*9*\cdots*2015) = 7*(8*9*\cdots*2015) = 7$	3р

(30 de puncte) **SUBIECTUL al III-lea**

	` · ·	,
1.a)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	2p
	$f'(x) = e^x - \frac{1}{x} + 1$ şi $f'(1) = e \Rightarrow \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = e$ f(1) = e + 1, $f'(1) = e$	3 p
b)	f(1) = e + 1, f'(1) = e	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = ex + 1$	3 p
c)	$f''(x) = e^x + \frac{1}{x^2}, \ x \in (0, +\infty)$	2p
	$f''(x) > 0$, pentru orice $x \in (0, +\infty)$, deci f este convexă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} \frac{1}{f(x)} dx = \int_{0}^{1} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{0}^{1} =$	3p
	$=\frac{1}{2}+1=\frac{3}{2}$	2p
b)	$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1} \frac{x^{2}}{x+1} dx = \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} - x + \ln(x+1) \right) \Big _{0}^{1} =$	3p
	$= \frac{1}{2} - 1 + \ln 2 = -\frac{1}{2} + \ln 2$	2p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} \frac{1}{(x+1)^{2}} dx = \pi \cdot \frac{-1}{x+1} \Big _{0}^{1} =$	3р
	$=\pi\left(-\frac{1}{2}+1\right)=\frac{\pi}{2}$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Calculați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_3=6$ și $a_4=8$.
- **5p** 2. Determinați valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 9$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 3} = x + 1$.
- **5p 4.** Determinați numărul submulțimilor cu două elemente ale mulțimii $\{1, 2, 3, 4, 5, 6, 7\}$.
- **5p** | **5.** În reperul cartezian xOy se consideră punctele A(2,1) și B(0,3). Determinați ecuația dreptei AB.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului *ABC* în care AB = 8 și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x & 2 \\ 3 & 6 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -2.
- **5p b)** Rezolvați în mulțimea numerelor reale ecuația $\det(B(x) + I_2) = 8$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați numărul real x pentru care $A \cdot B(x) = B(x) \cdot A$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy 7x 7y + 56.
- **5p a**) Arătați că (-7)*7=7.
- **5p b)** Arătați că x * y = (x-7)(y-7)+7, pentru orice numere reale x și y.
- **5p c**) Calculați $1*2*3*\cdots*2015$.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=e^x-\ln x+x$.
- **5p** a) Arătați că $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = e$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Arătați că funcția f este convexă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x+1}$.
- **5p** a) Arătați că $\int_{0}^{1} \frac{1}{f(x)} dx = \frac{3}{2}.$
- **5p b)** Arătați că $\int_{0}^{1} x^{2} f(x) dx = -\frac{1}{2} + \ln 2$.
- **5p c**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, g(x) = f(x).