6.006	Lecture 6	Sept. 27, 2011
TODAY: Balar	iced BSTs	
- The imp	portance of be	eing balanced
- AVL tr	ees finition & balan	ce
- ro	tations	
- other l	serl palanced trees	
- Data st	tructures in go	eneval
— Lower	bounds	
Recall: Binar	y Search Tree	s (BSTs)
- rooted k	y Search Tree sinary tree sde has	3 41
-key	Jue Mus	2 20 651
- left	pointer ø 11 pointer	1 29 50 ø
- pare	t pointer at pointer	Ø (26)
- BST pr	operty: x	
	<u>\</u>	CLRS B.5
- height	sf node = leng	9th (# edges) vard path to a leaf
70	xongesi downu	vara pain to a leat

AVL trees: [Adel'son-Vel'skir & Landis 1962] for every node, require heights of left & right children 11 to differ by at most ±1 - treat nil tree as height -1 each node stores its height (DATA STRUCTURE AUGMENTATION) (like subtree size) (alternatively, can just store difference in heights) Balance: worst when every node differs by 1 — let $N_h = (min.) \# nodes in height-h AVL tree$ $\Rightarrow N_h = N_{h-1} + N_{h-2} + 1$ $\Rightarrow N_h > 2N_{h-2}$ $\Rightarrow N_h > 2N_a$ $\Rightarrow h < 2lg N_h$ Alternatively: Nn > Fn (nth Fibonacci number) - in fact Nh = Fn+2-1 (simple induction) - $F_h = \frac{\varphi^h}{\sqrt{5'}}$ rounded to nearest integer where $\varphi = \frac{1+\sqrt{5'}}{a} \approx 1.618$ (golden vatio) \Rightarrow max. $h \approx \log \varphi \ n \approx 1.440 \lg n$

A	VL	5	<u>0</u>	<u>t:</u>															
	-	ins	ser	+	ca V	ch	it	em	Ì	nto	F	f VL	, †	rea	2	E)(n	lg i	~)
	-	în-	OV	de	V	tra	ave	45	al							-	<u> </u>		
																C)(n!	lg v	\
R	300	0.00		CO	0.00	1.	40	7006	• •	Ш	- 010		2.00			/	1		
<u>U</u>		NCC Δ1	11	<u>≫</u>	ree	in E	11	665) <i>,</i>	ΓΑ	nevi Hal		ne \	ole:	nai ii&	ly.	dic	190	ເລໄ
	_	B	-ti	ree	5 /	ر ا	-3-	4	tice	05	ICE)	30 US		M	cCre	ioht		727	CLRS
		BE	3 [x	7	tre	es		l	146	حى		Viel	16V	elt	cGre & R	eins	old	19	73]
	_	16	d-	-66	lac	K	tre	es			[CU	35	ch	. 13				
A	-	Sp	lay	y	tre	es						Sle	ator	r &	To	rja	n 1	986	آرَ
B	_	S	<îp		ist	5					L	Pug	h 1	980	1				
A		SC	apo	ego	sat	+	rce	5			<u></u>	Sal	er:	n &	× Ri	rest	19	93	
R		tr	eaf	5							L	Seic	lel	X,F	Arag	M	199	16]	
	R		110	7.	.00	0.				2010		<u></u>	100						
	W		Us Co	e +	Va	14.	om	n	uni	120	S	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	aki	e d	leci	5101	NS	
	Â	=	il On	201	41 2	24	110	ad	ATIC	3V () (טיטנ	CA	gte	+	717				
	O		50)	16V	al	d	56 U	atio	DnS	9 =	αρ } -	fas	L (\$14	all	o va	96		
			_																
	e.º		Spl	lay	ti	ree	5	are	2 (λ (cur	Ver	t v	res	ear ns uc	ch	to	pic	
	0		56	56	6	.8	54	(f	dva	anci	ed	Ala	ori	the	ทร)			•	
				L	6	. 8	51	(1	tdv	anc	ed	Do	ta	Stv	uč	un	25)		

Big	pictu	re:									
	Abst Date	ract	Data	Typ	e (f	tDT) ;	inter	face	Spe	ec.
VS	. Dat	à Str	ructu	re (DS)	: a	190	rithm	for	each	OP.
_	many	poss	sible	DS	s fo	r (me	AD			
	many e.	g. w	ruch	later	7	heo	ip"	prio	rity	que	eue
					_		•	1			1
Pr	iorit							hear		AUL:	
	- 0	= neu • inse	J-em	ty-q	nene	()		O(1)		$\Theta(1)$	/ ~
								Ollgr	_		en?
		=Q						O(1g,	\sim	/	gn)
	- X	= Q.	find	min (_)			0(1)	-	O (lg	(n)
	Λ		6		407	-		•		40	· •
tv	-5: -5:	essor/	Succ	essor	AU	,		heap		AVL	tree
	-5	= new	-emp	y()				O(1)		9(1	.)
	-5.	inser	T(x)					O(lg)	v)	0(1)	9 W)
	-5.	delet	6 (X)					(lg 1	^)	G(lg	m)
	- 95	I つ.り	redec	essor	(X)			O(n)		0(1)	3 h)
				t-sm		1		^/>		~ (1)	
	- y:	= 2.5	succe	ssor H-lar	(X)			$\Theta(n)$			9 n)
			- nex	T-lar	ger						

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.