

BIOLOGY Chapter 13

Evolución

EVOLUCIÓN

Es un proceso de cambio a lo largo del tiempo y es lo que conecta a la gran diversidad de seres vivos existentes

TEORIA QUIMIOSINTETICA

ALEXANDER OPARIN

Una síntesis abiótica, donde a partir de la combinación de moléculas como el metano, el amoníaco y el hidrógeno, se originaron compuestos orgánicos de alta masa molecular; gracias a la energía de la radiación solar, la actividad eléctrica de la atmósfera y fuentes de calor como los volcanes. Así es como habría de darse como resultado, que dichos compuestos disueltos en los océanos primitivos, dieran origen a su vez a las primeras formas de vida.

1. PALEONTOLÓGICAS

a. Preservados:

Fósiles cuya estructura no se ha modificado, sino que se conserva extraordinariamente bien.

b. Restos anatómicos:

Los fósiles de vertebrados más comunes son porciones del esqueleto.

Se encontraron también dientes de caballos, elefantes y antropoides que se conservaron por estar impregnados con arena y arcilla.

c. Moldes

Son impresiones que se forman cuando el cuerpo es atrapado por sedimentos. Estos sedimentos se endurecen formándose el molde del cuerpo del animal.

2. ANATOMÍA COMPARADA:

a. Estructuras Homólogas (evolución divergente)

Dos estructuras se llaman homólogas cuando presentan un mismo origen y pueden presentan función distinta.

b. Estructuras Análogas (evolución convergente)

Las estructuras se llaman análogas cuando cumplen idéntica función pero son de origen diferente.

C. Estructuras Rudimentarias u Órganos Vestigiales

En diferentes animales y vegetales actuales es factible encontrar estructuras que no realizan ninguna función. Se cree que fueron funcionales en algún organismo ancestral

3. EMBRIOLOGICAS

Una rama de la anatomía que estudia el desarrollo embrionario

El individuo repite en el transcurso rápido y breve de su desarrollo, los más importante cambios que experimentan sus antepasados en el curso lento y prolongado de su desarrollo evolutivo. El fenómeno es conocido también como recapitulación.

4. FISIOLÓGICAS Y QUÍMICAS

Se observa muchos fenómenos de índole fisiológico o bioquímico en los seres vivos, los cuales muestran de forma indeleble el paso de la evolución. Varios de ellos relacionan entre sí a los organismos vegetales y animales, como la presencia de vías comunes del metabolismo, la universalidad del ATP, fosforilación oxidativa, etc.

Juntamente con estos hechos, existen otros que se refieren exclusivamente en cada reino.

1. TEORÍA DE LAMARCK

La primera auténtica teoría de la evolución fue formulada por el naturalista francés Jean-Baptiste de Lamarck (1744-1829) y se basaba en dos principios:

- + El principio de uso y desuso de Lamarck
- + El principio de herencia de caracteres adquiridos

2. TEORIA DE LA SELECCIÓN NATURAL

En 1858, Charles Darwin y Alfred Russell Wallace presentaron ante la Sociedad Científica Linneana de Londres trabajos muy similares en los cuales plantearon un posible mecanismo por el cual se originan los diferentes organismos y sus características.

Sin embargo, no fue hasta el siguiente año (1859) que la teoría se difundió al publicarse el libro de Darwin: El origen de las especies por medio de la selección natural.

2. TEORIA DE LA SELECCIÓN NATURAL

- a. Evolución como tal. Los seres vivos están cambiando continuamente, no han sido creados recientemente ni están en un perpetuo ciclo.
- **b.** Origen común. Cada conjunto de organismos desciende de un antecesor común y el conjunto de todos los seres vivos (plantas, animales, hongos, microorganismos,...) se remonta al único origen de la vida en la tierra.
- c. Diversificación de las especies. La gran cantidad de especies existente se debe a que, de una misma especie, han surgido varias especies hijas por la formación de nuevas poblaciones aisladas geográficamente.

2. TEORIA DE LA SELECCIÓN NATURAL

Selección Natural

Los escarabajos de la hojarasca tiene colores similares a las hojas secas camuflándose mejor. La selección natural es la responsable.

Trancurren muchas generaciones de escarabajos

- d. Gradualismo. La evolución tiene lugar mediante pequeños cambios en las poblaciones y no de manera saltacional.
- e. Selección natural. Los seres vivos están adaptados a su entorno porque en un mundo donde los recursos son escasos, poseer un carácter que aumente la eficacia en su explotación da más oportunidades para dejar descendencia y, si este carácter es heredable, los hijos sobrevivirán mejor.

3. TEORIA DEL MUTACIONISMO (DE VRIES)

Las mutaciones son precisamente las alteraciones que aparecen bruscamente en uno o varios individuos de una misma especie, que afectan al genotipo y que no obedecen a las normas de las variaciones.

Y sostenía que las mutaciones que se producen son perjudiciales (que de hecho ocurre en la mayoría de los casos), los organismos menos aptos son eliminados por selección natural.

4. TEORIA SINTETICA DE LA EVOLUCION

Esta teoría moderna de la evolución, también llamada neodarwinismo, nació durante los años 1930-1950, gracias a la contribución de tres disciplinas científicas como son la genética, la sistemática y la paleontología y, además, consideraba el estudio de los seres vivos no de manera aislada, sino como miembros de poblaciones.

La fundación de esta teoría fue marcada por la aparición sucesiva de tres importantes libros y por un congreso.

El primero de estos libros es el del genetista norteamericano Theodosius Dobzhansky, aparecido en 1937 titulado *Genética y el origen de las especies*

1. Las aletas de peces y delfines se parecen debido al proceso conocido como Evolución convergente

_____.

- Mencione dos ejemplos de órganos homólogos.
 - Ala de murciélago y pata delantera de caballo
 - Brazo humano y aleta de ballena

Mencione dos ejemplos de órganos vestigiales.

Cóccix	
--------	--

Apéndice _____

- Mencione dos ejemplos de órganos análogos.
 - Ala de mariposa y aleta de murciélago
 - Branquias de un pez y tráqueas de insecto

HELICO | PRACTICE

- Mencione los postulados de Lamarck.
 - uso y desuso de órganos
 - > Herencia de caracteres adquiridos

Mivel III

6. ¿Qué es la mutación?

Son alteraciones que aparecen
bruscamente en uno o varios individuos
de una misma especie.

Mencione los postulados de Charles Darwin.

Supervivencia del más apto

Variabilidad de especies

Teniendo en cuenta el grafico, explique la teoría de los caracteres hereditarios según Lamarck.

uso y desuso de órganos