SRS Presentation

Attitude Check: An IMU-based Attitude Estimator

Adrian Sochaniwsky

Software Engineering MASc. Student McMaster University

January 26, 2024

Introduction

- Many robotics and aerospace applications require knowledge of their attitude (orientation)
- Inertial Measurement Units (IMUs) are popular measurement devices, but can add noise and bias to the signal
- Attitude estimation aims to find the orientation relative to a reference frame

Figure 1: NASA's James Webb Telescope.

Figure 2: Quadcopter with labelled Euler angles.

Reference Material

Table 1: Table of Units

symbol	unit	SI
m	length	metre
rad	angle	radian
S	time	second
Hz	frequency	hertz
T	magnetic field	tesla

Table 2: Table of Symbols

symbol	unit	description
V	m/s	linear velocity
a	m/s^2	linear acceleration
ω	rad/s	angular velocity
80	m/s^2	gravitational constant
b	T	earth's magnetic field

- Current state of the reference tables.
- Must be careful, in the literature, v, represents a vector of [x, y, z], and \mathbf{v} is the velocity vector.

Introduction - Scope and Reader

Scope of Requirements

- Dynamics models of this project will only consider a flat local earth, and the effect of the Earth's rotation will be ignored.
- MEMS sensor modelling, we will simplify the measurement error characteristics.
 Additionally, we will assume there are no local magnetometer disturbances.
- The IMU is assumed to be mounted to a rigid body, the IMU orientation will be the orientation of the object it is attached to.
- All measurements are assumed to be in the range of the sensors.

Characteristics of Intended Reader

The reader should have an understanding of university-level math including matrix and vector operations, numerical methods, and state estimation.

General System Description

System Context

Figure 3: System Context

- User Responsibilities:
 - Provide IMU measurements.
- Attitude Check Responsibilities:
 - Detect data type mismatch, such as a string of characters instead of a floating point number.
 - Return orientation value for each set of measurements.

General System Description

User and Constraints

User Characteristics

- High-school kinematics.
- Understand what attitude estimation is, and has an expectation of the inputs and outputs.
- Designed for users looking to process IMU data.

System Constraints

Attitude Check is often ported to microcontrollers or used in high performance applications. It should be implemented in C or C++ to be integrated into existing projects.

Specific System Description

Problem Description

Attitude Check is intended to estimate the attitude of an IMU sensor, given noisy measurements.

Figure 4: Physical System

Specific System Description

Physical System and Goals

Physical System Description

PS1: Problem Domain is \mathbb{R}^n , where $n = \{2,3\}$ (Sometimes Yaw angle can be ignored).

PS2a: Gravitational Acceleration.

PS2b: Earth's Magnetic Field/Force.

PS2c: Gyroscopic effect: Rigidity in space and Precession.

PS3: All rigid body transformations reside in the special Euclidean group, SE(3).

PS4: Initial conditions: Initial orientation value.

Goal Statements

GS1: Convert sequential IMU measurements into an orientation relative to the Earth.

```
TM1a: Attitude parameterization (quaternion): \mathbf{q} = w + xi + yj + zk.
```

TM1b: Attitude parameterization (Rotation Matrix):
$$\mathbf{R} \in \mathbb{R}^{3 \times 3}$$
.

TM2: World Magnetic Model: North East and Down (NED).

TM3a: Magnetometer measurement model:
$$\mathbf{m} = \mathbf{R}^T \mathbf{h} + \mathbf{B}_m + \mu_m \in \mathbb{R}^3$$
.

TM3b: Accelerometer measurement model:
$$\mathbf{a} = \mathbf{R}^T (\dot{\mathbf{v}} - g_0) + \mu_a \in \mathbb{R}^3$$
.

TM3c: Gyroscope measurement model:
$$\Omega_y = \Omega + b_g + \mu_g \in \mathbb{R}^3$$
.

TM4a: Kinematic Model (Rotation matrix):
$$\dot{\mathbf{R}} = \mathbf{R} \lfloor \Omega \rfloor_{\times}$$
.

TM4b: Kinematic Model (quaternion):
$$\dot{\mathbf{q}} = \frac{1}{2}\mathbf{q}\mathbf{p}(\Omega)$$
.

TM5: Non-linear filtering - Equations depends on the selected solution:

- Extended Kalman Filter (EKF)
- Nonlinear Complementary Filter (Mahony Filter)
- Madgwick Filter

The End

Questions?