· Consider
$$Y = \max_{x \in [A,B]} \{f(x)\}$$
variable

 $x \in [A,B] \{f(x)\}$
variable

 $x \in [A,B] \{f(x)\}$

- For general f, this is some complicated trandom variable

. Suppose f is concart. Let $x^* = a_n g_{max} f(x)$ Now Y is easy to define

 $\begin{cases}
(x) \\
\hline
(a_1 b_1 a_2 b_2 a_3 b_3 x
\end{cases}$

$$Y(A,B) = \begin{cases} B ; B < x^* \\ x^* ; A \le x^* \le B \\ A ; A > x^* \end{cases}$$

· Now consider process hk(y) = -Pky + Vk+(y) Then $V_R(s_R) = P_R s_R + \mathbb{E}\left[\max_{y \in \{(s_R-D_R)^+, ..., s_R\}} h_R(y)\right]$. Suppose $y_{above}^{h_k(\cdot)}$ is concave, $x_{k-1}^* = a_{1} y_{\epsilon} = a_{2} y_{\epsilon} = a_{3} y_{\epsilon} = a$ Then $y^* = \begin{cases} S_k ; & S_k < x_{k-1} \\ x_{k-1}^* ; & (S_k - D_k)^t \le x_{k-1}^* \le S_k \end{cases}$ $(S_k - D_k)^t ; (S_k - D_k)^t > x_{k-1}^*$. This is a protection level policy (with protection) level xk1) i.e, at each stage k, for all states Sk and demand Dk; we do the following i) If $S_k < \infty_{k-1}^*$ (i.e., already below protection level), then do not admit anyone 2) If $(S_R - D_R)^{\dagger} \le \chi_{k-1}^* \le S_R$ (i.e., excess demand), then admit up to protection level xx-1 3) If $(SR-DR)^{+} > DCR^{+}$ (i.e., excess supply), then admit all customers Dx up to capacity limits

Is hk (x) concave? $V_{1}(S_{1}|D_{1}) = \max_{(S_{1}-D_{1})^{+} \leq y \leq S_{1}} \left[P_{1}S_{2} - P_{1}(S_{1}-D_{1})^{+} \right]$ $V_{1}(S_{1}|D_{1})$ $V_{2}(S_{1}|D_{1})$ $V_{3}(S_{1}|D_{2})$ $V_{4}(S_{1}|D_{2})$ $V_{5}(S_{1}|D_{2})$ $V_{6}(S_{1}|D_{2})$ $V_{7}(S_{1}|D_{2})$ $V_{8}(S_{1}|D_{2})$ $V_{8}(S_{1}|D_{2})$ $V_{9}(S_{1}|D_{2})$ $V_{9}(S_{1}|D_{2})$ * Vy (sy) = [[Vy (sy | Dy)] is contave in Sy (linear combination of concarefus) Mosie are $h_2(y) = -P_2 y + V_1(y) \Rightarrow concave!$ linear concave

Now we prove $h_k(y)$ are concave by induction - Assume V_{k-1} (y) is concave in y - hk(y) = - Pky + Vk-1(y) => concave - $V_R(S|D_R) = \max_{(s-D_R)^t \le y \le S} \left[h_R(y)\right] + P_R S_R$ is this convex?

· Let $x_{k-1}^* = angmax \left[h_k(y) \right]$ $y \in [0, \infty)$ (Note: x = For (1-P2) - Littlewood's Rule!) (Check this by writing out h2(y), and comparing to first class) We know hk(y) is convex, so we can maximize it over $(s-D_R)^{\dagger} \leq y \leq S$ For a fixed value of Dk $y = \underset{y \in [(s-D_k)^+, s]}{\text{distance}} h_k(y)$ $= \begin{cases} S & ; S \leq \chi_{k-1}^{*} \\ \chi_{k-1}^{*} & ; S - D_{k} < \chi_{k-1}^{*} \leq S \\ S - D_{k} & ; S - D_{k} > \chi_{k-1}^{*} \end{cases}$ max [hely] -· Thus, max [hkly] is (S-Dk) teyes con_ cave in S =) $V_{k}(S|D_{k})$ is concave =) $V_{k}(S)$ is concave

Main I dea - Consider the linear interpolation of the discrete fins $V_k(s)$ - this is concave for $V_i(s|D_i)$ - the great of the argument is identical

- Diminishing networks to revenue from increasing Capacity

Finally, observe that the optimal policy given Dk is to accept as many customers as we can till the of hemaining seats = Xk-1 (Protection level for classer k-1, k-2,..., 1)

This can be implemented without knowing Dk!!