## NOTAS DE CLASE:

## Análisis de Regresión

## Felipe Osorio

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

# Índice general

| Prefacio |                                                           | V  |
|----------|-----------------------------------------------------------|----|
| Capítul  | o 1. Preliminares                                         | 1  |
| 1.1.     | Vectores Aleatorios                                       | 1  |
| 1.2.     | Operadores de esperanza y covarianza                      | 3  |
| 1.3.     | Independencia de vectores aleatorios                      | 8  |
| 1.4.     | Cambios de variable                                       | 9  |
| 1.5.     | Distribución normal multivariada                          | 9  |
| 1.6.     | Alternativas a la distribución normal multivariada        | 16 |
| 1.7.     | Algunas distribuciones no centrales                       | 21 |
| 1.8.     | Distribución de formas cuadráticas                        | 24 |
| Ejer     | cicios                                                    | 31 |
| Capítul  | o 2. Inferencia en el Modelo Lineal                       | 35 |
| 2.1.     | Definición de un modelo lineal                            | 35 |
| 2.2.     | Estimación de parámetros en el modelo de regresión lineal | 37 |
| 2.3.     | Aspectos numéricos de estimación LS en regresión lineal   | 41 |
| 2.4.     | Estimación bajo restricciones lineales                    | 49 |
| 2.5.     | Test de hipótesis lineales                                | 54 |
| Apéndi   | ce A. Elementos de Álgebra Matricial                      | 59 |
| A.1.     | Vectores y matrices                                       | 59 |
| A.2.     | Definiciones básicas y propiedades                        | 59 |
| A.3.     | Inversa generalizada y sistemas de ecuaciones lineales    | 70 |
| Apéndi   | ce B. Diferenciación matricial                            | 73 |
| B.1.     | Aproximación de primer orden                              | 73 |
| B.2.     | Funciones matriciales                                     | 74 |
| B.3.     | Matriz Hessiana                                           | 76 |
| B.4.     | Reglas fundamentales                                      | 77 |
| Bibliog  | rafía                                                     | 79 |

## Prefacio

Estas notas de clase están asociadas a los contenidos de la asignatura MAT-266: Análisis de Regresión, dictada en el programa de Ingeniería Civil Matemática de la Universidad Técnica Federico Santa María. Aunque el documento se encuentra en una etapa bastante preliminar, espero ir puliendo el mismo para que se pueda convertir en un apunte que sirva de apoyo para los estudiantes de la asignatura.

Las notas se encuentran divididas en tres partes, con preliminares conteniendo resultados de la distribución normal y su conexión con formas cuadráticas. Luego, se presenta la inferencia en el modelo de regresión lineal y posteriormente hay una serie de resultados que permiten la crítica del proceso de modelación así como procedimientos alternativos en caso de que algunos de los supuestos básicos no sean satisfechos. El objetivo de este texto es proveer de una introducción rigurosa al tópico de regresión presentando también aplicaciones prácticas así como destacar los elementos necesarios para la implementación computacional de tales técnicas.

Agradezco al profesor Manuel Galea por haberme introducido en este tópico así como por su constante apoyo durante toda mi carrera académica. Adicionalmente, debo destacar el apoyo de los estudiantes que han participado de alguna versión de este curso, pues producto de sus comentarios y sugerencias este documento se ha visto notablemente mejorado.

Felipe Osorio Valparaíso, Abril 2021.

### Capítulo 1

## **Preliminares**

### 1.1. Vectores Aleatorios

El propósito de esta sección es introducir algunas propiedades elementales de vectores aleatorios útiles a lo largo de este curso. Se asume que el lector es familiar con el concepto de variable aleatoria unidimensional.

Un vector aleatorio n-dimensional X es una función (medible) desde el espacio de probabilidad  $\Omega$  a  $\mathbb{R}^n$ , esto es

$$X:\Omega\to\mathbb{R}^n$$
.

Por convención asumiremos que el vector aleatorio  $\boldsymbol{X}=(X_1,\ldots,X_n)^{\top}$  es un vector columna.

DEFINICIÓN 1.1 (Función de distribución). Para X distribuído en  $\mathbb{R}^n$ , la función de distribución de X es una función  $F: \mathbb{R}^n \to [0,1]$ , tal que

$$F(\boldsymbol{x}) = P(\boldsymbol{X} \le \boldsymbol{x}), \quad \forall \boldsymbol{x} \in \mathbb{R}^n$$
 (1.1)

y denotamos  $X \sim F$  o  $X \sim F_X$ .

La función en (1.1) debe ser entendida como

$$F(x) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n),$$

que corresponde a la probabilidad del evento  $\bigcap_{k=1}^{n} \{X_k \leq x_k\}$ .

Propiedades:

- (a) F(x) es función monótona creciente y contínua a la derecha en cada uno de los componentes de X,
- (b)  $0 \le F(x) \le 1$ ,
- (c)  $F(-\infty, x_2, \dots, x_n) = \dots = F(x_1, \dots, x_{n-1}, -\infty) = 0,$
- (d)  $F(+\infty, \dots, +\infty) = 1$ .

Sea F la función de distribución del vector aleatorio  $\boldsymbol{X}$ . Entonces, existe una función no-negativa f tal que

$$F(\boldsymbol{x}) = \int_{-\infty}^{x} f(\boldsymbol{u}) \, \mathrm{d} \boldsymbol{u}, \qquad \boldsymbol{x} \in \mathbb{R}^{n},$$

en este caso decimos que X es un vector aleatorio contínuo con función de densidad f. Por el teorema fundamental del Cálculo, tenemos que

$$f(\mathbf{x}) = \frac{\partial^n F(\mathbf{x})}{\partial x_1 \cdots \partial x_n}.$$

Además, considere  $\bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ , para x, y vectores en  $\bar{\mathbb{R}}^n$ , entonces

$$x \le y$$
 esto es,  $x_i \le y_i$ , para  $i = 1, ..., n$ .

Esto permite definir un rectángulo n-dimensional en  $\mathbb{R}^n$  como

$$I = (a, b] = \{x \in \mathbb{R}^n : a < x \le b\}$$

para todo  $a, b \in \mathbb{R}^n$ . Entonces, también por el teorema fundamental del Cálculo, tenemos que si

$$f(\mathbf{x}) = \frac{\partial^n F(\mathbf{x})}{\partial x_1 \cdots \partial x_n}.$$

existe y es continua (casi en toda parte) sobre un rectángulo I, entonces

$$\mathsf{P}(\boldsymbol{x} \in A) = \int_A f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \quad \forall A \subset I.$$

Naturalmente la función de densidad debe satisfacer

$$\int_{\mathbb{R}^n} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 1.$$

Considere el vector aleatorio n-dimensional  $\boldsymbol{X}$  particionado como  $\boldsymbol{X} = (\boldsymbol{X}_1^\top, \boldsymbol{X}_2^\top)^\top$  donde  $\boldsymbol{X}_1$  y  $\boldsymbol{X}_2$  son vectores  $n_1 \times 1$  y  $n_2 \times 1$ , respectivamente, con  $n = n_1 + n_2$ . Tenemos que  $\boldsymbol{X}_i \sim F_i$ , i = 1, 2, de este modo  $\boldsymbol{X}$  se denomina la *conjunta* de  $\boldsymbol{X}_1, \boldsymbol{X}_2$  mientras que los  $\boldsymbol{X}_1$  y  $\boldsymbol{X}_2$  son llamados marginales de  $\boldsymbol{X}$ .

Note que, las funciones de distribución marginal pueden ser recuperadas desde la distribución conjunta mediante

$$F_1(s) = F(s, +\infty), \qquad F_2(t) = F(+\infty, t), \qquad \forall s \in \mathbb{R}^{n_1}, t \in \mathbb{R}^{n_2}.$$

Cuando X es absolutamente contínua con función de densidad  $f(x) = f(x_1, x_2)$ , entonces la función de densidad de  $X_i$  también es absolutamente contínua y puede ser obtenida como

$$f_1(oldsymbol{s}) = \int_{\mathbb{R}^{n_2}} f(oldsymbol{s}, oldsymbol{u}) \, \mathrm{d}oldsymbol{u}, \quad f_2(oldsymbol{t}) = \int_{\mathbb{R}^{n_1}} f(oldsymbol{u}, oldsymbol{t}) \, \mathrm{d}oldsymbol{u}, \quad orall oldsymbol{s} \in \mathbb{R}^{n_1}, oldsymbol{t} \in \mathbb{R}^{n_2},$$

el resultado anterior es análogo para el caso de distribuciones discretas. Si  $\boldsymbol{X}$  es absolutamente contínuo y  $f_1(\boldsymbol{x}_1)>0$ , entonces la densidad condicional de  $\boldsymbol{X}_2$  dado  $\boldsymbol{X}_1=\boldsymbol{x}_1$  es

$$f_{X_2|X_1=x_1}(u) = \frac{f_X(x_1, u)}{f_1(x_1)},$$

con función de distribución de  $\boldsymbol{X}_2$  condicional a  $\boldsymbol{X}_1 = \boldsymbol{x}_1$  dada por

$$F_{X_2|X_1=x_1}(u) = \int_{-\infty}^u f_{X_2|X_1=x_1}(t) dt,$$

tenemos además que

$$f_{X_2|X_1=x_1}(oldsymbol{u}) = rac{f_X(oldsymbol{x}_1,oldsymbol{u})}{\int_{\mathbb{D}^{n_2}}f_X(oldsymbol{x}_1,oldsymbol{t})\,\mathrm{d}oldsymbol{t}}.$$

## 1.2. Operadores de esperanza y covarianza

Considere  $\mathbf{X} = (X_1, \dots, X_n)^{\top}$  vector aleatorio *n*-dimensional con función de densidad f. Entonces la esperanza de cualquier función  $\mathbf{g}$  de  $\mathbf{X}$  está dada por

$$\mathsf{E}(oldsymbol{g}(oldsymbol{X})) = \int_{\mathbb{R}^n} oldsymbol{g}(oldsymbol{t}) f(oldsymbol{t}) \, \mathsf{d}oldsymbol{t},$$

siempre que la integral (n-dimensional) exista.

Más generalmente, sea  $\mathbf{Z} = (Z_{ij})$  una función matricial  $m \times n$ , entonces podemos definir el operador de esperanza de una matriz aleatoria como

$$\mathsf{E}(\boldsymbol{Z}(\boldsymbol{X})) = (\mathsf{E}(Z_{ij})), \qquad Z_{ij} = Z_{ij}(\boldsymbol{X}). \tag{1.2}$$

De la definición en (1.2) se desprenden una serie de resultados útiles con relación al operador de esperanza. Por ejemplo, sea  $\mathbf{A} = (a_{ij})$  una matriz de constantes, entonces

$$\mathsf{E}(\boldsymbol{A}) = \boldsymbol{A}.$$

RESULTADO 1.3. Sea  $A = (a_{ij})$ ,  $B = (b_{ij})$  y  $C = (c_{ij})$  matrices de constantes  $l \times m$ ,  $n \times p$  y  $l \times p$ , respectivamente. Entonces

$$\mathsf{E}(AZB+C)=A\,\mathsf{E}(Z)B+C.$$

Demostración. Sea Y = AZB + C, entonces

$$Y_{ij} = \sum_{r=1}^{m} \sum_{s=1}^{n} a_{ir} Z_{rs} b_{sj} + c_{ij},$$

de este modo

$$\begin{split} \mathsf{E}(\boldsymbol{A}\boldsymbol{Z}\boldsymbol{B}+\boldsymbol{C}) &= (\mathsf{E}(Y_{ij})) = \left(\sum_{r=1}^{m}\sum_{s=1}^{n}a_{ir}\,\mathsf{E}(Z_{rs})b_{sj} + c_{ij}\right) \\ &= \boldsymbol{A}\,\mathsf{E}(\boldsymbol{Z})\boldsymbol{B} + \boldsymbol{C}. \end{split}$$

Un caso particular importante corresponde a la esperanza de una transformación lineal. Considere el vector aleatorio n-dimensional,  $\boldsymbol{Y} = \boldsymbol{A}\boldsymbol{X}$ , donde  $\boldsymbol{X}$  es vector aleatorio  $m \times 1$ , entonces  $\mathsf{E}(\boldsymbol{A}\boldsymbol{X}) = \boldsymbol{A}\,\mathsf{E}(\boldsymbol{X})$ . Esta propiedad puede ser extendida para sumas de vectores aleatorios, como

$$\mathsf{E}\left(\sum_{i} oldsymbol{A}_{i} oldsymbol{X}_{i}
ight) = \sum_{i} oldsymbol{A}_{i} \, \mathsf{E}(oldsymbol{X}_{i}),$$

de manera similar tenemos que

$$\mathsf{E}\left(\sum_{i}\alpha_{i}\boldsymbol{Z}_{i}\right)=\sum_{i}\alpha_{i}\,\mathsf{E}(\boldsymbol{Z}_{i}),$$

donde  $\alpha_i$  son constantes y los  $\mathbf{Z}_i$  son matrices aleatorias.

DEFINICIÓN 1.4 (Matriz de covarianza). Sean  $\boldsymbol{X}$  e  $\boldsymbol{Y}$  vectores aleatorios m y n-dimensionales, respectivamente. Se define la matriz de covarianza entre  $\boldsymbol{X}$  e  $\boldsymbol{Y}$  como la matriz  $m \times n$ ,

$$Cov(X, Y) = (Cov(X_i, Y_i)).$$

Podemos apreciar, a partir de la definición de covarianza que

$$\mathsf{Cov}(\boldsymbol{X}, \boldsymbol{Y}) = \mathsf{E}\{(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))(\boldsymbol{Y} - \mathsf{E}(\boldsymbol{Y}))^{\top}\}.$$

En efecto, sean  $\mu = \mathsf{E}(X)$  y  $\eta = \mathsf{E}(Y)$ . Entonces,

$$\begin{aligned} \mathsf{Cov}(\boldsymbol{X}, \boldsymbol{Y}) &= (\mathsf{Cov}(X_i, Y_j)) = (\mathsf{E}(X_i - \mu_i)(Y_j - \eta_j)) \\ &= \mathsf{E}([(X_i - \mu_i)(Y_j - \eta_j)]) = \mathsf{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{Y} - \boldsymbol{\eta})^\top]. \end{aligned}$$

Tenemos ademas el siguiente resultado

$$\begin{aligned} \mathsf{Cov}(\boldsymbol{X}, \boldsymbol{Y}) &= \mathsf{E}\{(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))(\boldsymbol{Y} - \mathsf{E}(\boldsymbol{Y}))^{\top}\} \\ &= \mathsf{E}(\boldsymbol{X}\boldsymbol{Y}^{\top} - \mathsf{E}(\boldsymbol{X})\boldsymbol{Y}^{\top} - \boldsymbol{X}\,\mathsf{E}^{\top}(\boldsymbol{Y}) + \mathsf{E}(\boldsymbol{X})\,\mathsf{E}^{\top}(\boldsymbol{Y})) \\ &= \mathsf{E}(\boldsymbol{X}\boldsymbol{Y}^{\top}) - \mathsf{E}(\boldsymbol{X})\,\mathsf{E}^{\top}(\boldsymbol{Y}). \end{aligned}$$

Se define la matriz de dispersión (varianza), como  $\mathsf{Cov}(X) = \mathsf{Cov}(X, X)$ . De este modo, tenemos

$$\mathsf{Cov}(\boldsymbol{X}) = (\mathsf{Cov}(X_i, X_j)) = \mathsf{E}\{(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))^{\top}\},\$$

y, de la misma manera que para el caso de la matriz de covarianza,

$$\mathsf{Cov}(X) = \mathsf{E}(XX^\top) - \mathsf{E}(X)\,\mathsf{E}^\top(X).$$

Ejemplo 1.5. Sea  $\boldsymbol{a}$  vector de constantes  $n \times 1$ , entonces

$$\mathsf{Cov}(\boldsymbol{X} - \boldsymbol{a}) = \mathsf{Cov}(\boldsymbol{X}).$$

En efecto, note que

$$X - a - \mathsf{E}(X - a) = X - \mathsf{E}(X),$$

por tanto, tenemos

$$\mathsf{Cov}(X-a,X-a) = \mathsf{Cov}(X,X)$$

RESULTADO 1.6. Si X e Y son vectores aleatorios m y n-dimensionales, respectivamente y  $A \in \mathbb{R}^{l \times m}$ ,  $B \in \mathbb{R}^{p \times n}$ , entonces

$$\mathsf{Cov}(\boldsymbol{A}\boldsymbol{X},\boldsymbol{B}\boldsymbol{Y}) = \boldsymbol{A}\,\mathsf{Cov}(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{B}^{\top}.$$

Demostración. Sean U = AX y V = BY, entonces

$$\begin{aligned} \mathsf{Cov}(\boldsymbol{A}\boldsymbol{X}, \boldsymbol{B}\boldsymbol{Y}) &= \mathsf{Cov}(\boldsymbol{U}, \boldsymbol{V}) = \mathsf{E}\{(\boldsymbol{U} - \mathsf{E}(\boldsymbol{U}))(\boldsymbol{V} - \mathsf{E}(\boldsymbol{V}))^\top\} \\ &= \mathsf{E}\{(\boldsymbol{A}\boldsymbol{X} - \boldsymbol{A}\,\mathsf{E}(\boldsymbol{X}))(\boldsymbol{B}\boldsymbol{Y} - \boldsymbol{B}\,\mathsf{E}(\boldsymbol{Y}))^\top\} \\ &= \mathsf{E}\{\boldsymbol{A}(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))(\boldsymbol{Y} - \mathsf{E}(\boldsymbol{Y}))^\top\boldsymbol{B}^\top\} \\ &= \boldsymbol{A}\,\mathsf{E}\{(\boldsymbol{X} - \mathsf{E}(\boldsymbol{X}))(\boldsymbol{Y} - \mathsf{E}(\boldsymbol{Y}))^\top\}\boldsymbol{B}^\top \\ &= \boldsymbol{A}\,\mathsf{Cov}(\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{B}^\top. \end{aligned}$$

Tenemos el siguiente caso particular,

$$\mathsf{Cov}(AX) = \mathsf{Cov}(AX, AX) = A\,\mathsf{Cov}(X, X)A^{\top} = A\,\mathsf{Cov}(X)A^{\top}.$$

EJEMPLO 1.7. Considere X, Y, U y V vectores aleatorios n-dimensionales y A, B, C y D matrices de órdenes apropiados, entonces

$$\mathsf{Cov}(AX + BY, CU + DV) = A\,\mathsf{Cov}(X, U)C^{ op} + A\,\mathsf{Cov}(X, V)D^{ op} \ + B\,\mathsf{Cov}(Y, U)C^{ op} + B\,\mathsf{Cov}(Y, V)D^{ op}.$$

tomando U = X, V = Y, C = A y D = B, tenemos

$$egin{aligned} \mathsf{Cov}(AX+BY) &= \mathsf{Cov}(AX+BY,AX+BY) \ &= A\,\mathsf{Cov}(X)A^{ op} + A\,\mathsf{Cov}(X,Y)B^{ op} \ &+ B\,\mathsf{Cov}(Y,X)A^{ op} + B\,\mathsf{Cov}(Y)B^{ op}. \end{aligned}$$

Resultado 1.8. Toda matriz de dispersión es simétrica y semidefinida positiva

DEMOSTRACIÓN. La simetría de la matriz de dispersión es obvia. Para mostrar que Cov(X) es semidefinida positiva, sea Z = X - E(X), y considere la variable aleatoria  $Y = \boldsymbol{a}^{\top} Z$ , para  $\boldsymbol{a} \in \mathbb{R}^n$  un vector arbitrareo. Entonces,

$$\begin{split} \boldsymbol{a}^\top \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{a} &= \boldsymbol{a}^\top \operatorname{E}(\boldsymbol{X} - \operatorname{E}(\boldsymbol{X})) (\boldsymbol{X} - \operatorname{E}(\boldsymbol{X}))^\top \boldsymbol{a} \\ &= \operatorname{E}(\boldsymbol{a}^\top (\boldsymbol{X} - \operatorname{E}(\boldsymbol{X})) (\boldsymbol{X} - \operatorname{E}(\boldsymbol{X}))^\top \boldsymbol{a}) \\ &= \operatorname{E}(\boldsymbol{a}^\top \boldsymbol{Z} \boldsymbol{Z}^\top \boldsymbol{a}) = \operatorname{E}(Y^2) \geq 0 \end{split}$$

y por tanto, Cov(X) es semidefinida positiva.

Ahora, suponga que  $\mathsf{Cov}(X)$  es semidefinida positiva de rango r  $(r \leq n)$ . Luego  $\mathsf{Cov}(X) = BB^\top$  donde  $B \in \mathbb{R}^{n \times r}$  de rango r. Sea Y vector aleatorio r-dimensional con  $\mathsf{E}(Y) = \mathbf{0}$  y  $\mathsf{Cov}(Y) = I$ . Haciendo X = BY, sigue que  $\mathsf{E}(X) = \mathbf{0}$  y

$$\mathsf{Cov}(\boldsymbol{X}) = \mathsf{Cov}(\boldsymbol{B}\boldsymbol{Y}) = \boldsymbol{B}\,\mathsf{Cov}(\boldsymbol{Y})\boldsymbol{B}^\top = \boldsymbol{B}\boldsymbol{B}^\top.$$

Es decir, corresponde a una matriz de covarianza.

RESULTADO 1.9. Sea X vector aleatorio n-dimensional y considere la transformación lineal Y = AX + b, donde A es una matriz de constantes  $m \times n$  y b es vector de constantes  $m \times 1$ . Entonces

$$\mathsf{E}(\boldsymbol{Y}) = \boldsymbol{A}\,\mathsf{E}(\boldsymbol{X}) + \boldsymbol{b}, \qquad \mathsf{Cov}(\boldsymbol{Y}) = \boldsymbol{A}\,\mathsf{Cov}(\boldsymbol{X})\boldsymbol{A}^\top.$$

EJEMPLO 1.10. Sea X vector aleatorio n-dimensional con media  $\mathsf{E}(X) = \mu$  y matriz de dispersión  $\mathsf{Cov}(X) = \Sigma$ . Sea

$$\mathbf{\Sigma} = \boldsymbol{U} \mathbf{\Lambda} \boldsymbol{U}^{\top}$$

la descomposición espectral de  $\Sigma$ , donde U es matriz ortogonal y  $\Lambda=\mathrm{diag}(\lambda)$ , y considere la siguiente transformación

$$Z = \Lambda^{-1/2} U^{\top} (X - \mu)$$

de este modo, obtenemos que

$$\mathsf{E}(oldsymbol{Z}) = oldsymbol{0}$$
 y  $\mathsf{Cov}(oldsymbol{Z}) = oldsymbol{I}.$ 

En efecto, la transformación  $\pmb{Z} = \pmb{\Sigma}^{-1/2}(\pmb{X} - \pmb{\mu})$  también satisface que  $\mathsf{E}(\pmb{Z}) = \pmb{0}$  y  $\mathsf{Cov}(\pmb{Z}) = \pmb{I}$ .

Suponga que Z es una matriz aleatoria  $n \times p$  cuyas filas son vectores aleatorios independientes  $p \times 1$ , cada uno con la misma matriz de covarianza  $\Sigma$ . Considere la partición

$$\boldsymbol{Z}^{\top} = (\boldsymbol{Z}_1, \dots, \boldsymbol{Z}_n),$$

donde  $Cov(\mathbf{Z}_i) = \Sigma$ , para i = 1, ..., n. Tenemos que

$$\operatorname{vec}({m Z}^{ op}) = egin{pmatrix} {m Z}_1 \ dots \ {m Z}_n \end{pmatrix},$$

y dado que todos los  $\boldsymbol{Z}_i$  son independientes con la misma matriz de covarianza, podemos escribir

$$\mathsf{Cov}(\mathsf{vec}(\boldsymbol{Z}^\top)) = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \dots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{I}_n \otimes \boldsymbol{\Sigma}.$$

Ahora suponga que llevamos a cabo la transformación lineal Y = AZB, donde  $A \in \mathbb{R}^{r \times n}$ ,  $B \in \mathbb{R}^{p \times q}$  son matrices de constantes. Entonces  $\mathsf{E}(Y) = A\,\mathsf{E}(Z)B$ , mientras que

$$\operatorname{vec}(\boldsymbol{Y}^{\top}) = (\boldsymbol{A} \otimes \boldsymbol{B}^{\top}) \operatorname{vec}(\boldsymbol{Z}^{\top}),$$

de modo que

$$\mathsf{E}(\mathsf{vec}(\boldsymbol{Y}^\top)) = (\boldsymbol{A} \otimes \boldsymbol{B}^\top) \, \mathsf{E}(\mathsf{vec}(\boldsymbol{Z})^\top).$$

Lo que lleva a calcular fácilmente la matriz de covarianza

$$egin{aligned} \mathsf{Cov}(\mathrm{vec}(oldsymbol{Y}^ op)) &= (oldsymbol{A} \otimes oldsymbol{B}^ op) \, \mathsf{Cov}(\mathrm{vec}(oldsymbol{Z}^ op)) (oldsymbol{A} \otimes oldsymbol{B}^ op) \\ &= (oldsymbol{A} \otimes oldsymbol{B}^ op) (oldsymbol{I}_n \otimes oldsymbol{\Sigma}) (oldsymbol{A}^ op \otimes oldsymbol{B}) \\ &= oldsymbol{A} oldsymbol{A}^ op \otimes oldsymbol{B}^ op oldsymbol{\Sigma} oldsymbol{B}. \end{aligned}$$

DEFINICIÓN 1.11 (Matriz de correlación). Sea  $\boldsymbol{X} = (X_1, \dots, X_p)^{\top}$  vector aleatorio con media  $\boldsymbol{\mu}$  y matriz de covarianza  $\boldsymbol{\Sigma}$ . Se define la matriz de correlaciones como  $\boldsymbol{R} = (\rho_{ij})$ , donde

$$\rho_{ij} = \frac{\mathsf{Cov}(X_i, X_j)}{\{\mathsf{var}(X_i)\,\mathsf{var}(X_j)\}^{1/2}} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}, \qquad i,j = 1, \dots, p.$$

Note que, para  $\Sigma$  matriz de covarianza del vector aleatorio X y con  $D = \text{diag}(\sigma_{11}, \dots, \sigma_{pp})$  (= diag( $\Sigma$ )) podemos escribir

$$\mathbf{R} = \mathbf{D}^{-1/2} \mathbf{\Sigma} \mathbf{D}^{-1/2}.$$

Cada elemento de la diagonal de  $\boldsymbol{R}$  es igual a 1, mientras que sus elementos fuera de la diagonal están entre -1 y 1. Además se desprende desde la definición que  $\boldsymbol{R}$  es una matriz semidefinida positiva.

RESULTADO 1.12. Sea X vector aleatorio p-dimensional con  $\mathsf{E}(X) = \mu \ y \ \mathsf{Cov}(X) = \Sigma$ . Sea A una matriz  $p \times p$ . Entonces

$$\mathsf{E}(\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X}) = \mathrm{tr}(\boldsymbol{A} \boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}.$$

Demostración. Tenemos

$$\begin{split} \mathsf{E}(\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}) &= \mathsf{E}(\operatorname{tr}\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}) = \mathsf{E}(\operatorname{tr}\boldsymbol{A}\boldsymbol{X}\boldsymbol{X}^{\top}) \\ &= \operatorname{tr}\mathsf{E}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{X}^{\top}) = \operatorname{tr}\boldsymbol{A}\,\mathsf{E}(\boldsymbol{X}\boldsymbol{X}^{\top}) \\ &= \operatorname{tr}\boldsymbol{A}(\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\boldsymbol{A}\boldsymbol{\mu}. \end{split}$$

Considere el siguiente caso especial: sea Y = X - a, entonces Cov(Y) = Cov(X) y tenemos

$$\mathsf{E}[(\boldsymbol{X} - \boldsymbol{a})^{\top} \boldsymbol{A} (\boldsymbol{X} - \boldsymbol{a})] = \mathrm{tr}(\boldsymbol{A} \boldsymbol{\Sigma}) + (\boldsymbol{\mu} - \boldsymbol{a})^{\top} \boldsymbol{A} (\boldsymbol{\mu} - \boldsymbol{a}).$$

EJEMPLO 1.13. Sea  $\mathbf{1}_n = (1, \dots, 1)^{\top}$  vector n-dimensional cuyos componentes son todos 1. Note que,  $\mathbf{1}_n^{\top} \mathbf{1}_n = n$ . Considere el vector aleatorio  $\boldsymbol{X} = (X_1, \dots, X_n)^{\top}$ , entonces

$$\boldsymbol{X}^{\top} \boldsymbol{X} = \sum_{i=1}^{n} X_i^2, \qquad \boldsymbol{1}^{\top} \boldsymbol{X} = \sum_{i=1}^{n} X_i.$$

De este modo, tenemos

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n \overline{X}^2 = \boldsymbol{X}^{\top} \boldsymbol{X} - n \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{X}\right)^2$$

$$= \boldsymbol{X}^{\top} \boldsymbol{X} - n \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{X}\right) \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{X}\right) = \boldsymbol{X}^{\top} \boldsymbol{X} - \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{1} \boldsymbol{1}^{\top} \boldsymbol{X}$$

$$= \boldsymbol{X}^{\top} \left(\boldsymbol{I} - \frac{1}{n} \boldsymbol{J}_n\right) \boldsymbol{X}, \qquad \boldsymbol{J}_n = \boldsymbol{1}_n \boldsymbol{1}_n^{\top}$$

Llamaremos a  $C = I - \frac{1}{n}J_n$  la matriz de centrado. Suponga que  $X_1, \ldots, X_n$  son variables aleatorias independientes e idénticamente distribuídas con media  $\mu$  y varianza  $\sigma^2$ . Sigue que,

$$\mathsf{E}(\boldsymbol{X}) = \mu \mathbf{1}_n, \qquad \boldsymbol{\Sigma} = \sigma^2 \boldsymbol{I}_n,$$

pues  $Cov(X_i, X_j) = 0$   $(i \neq j)$ . Por tanto, podemos usar el Resultado (1.12) para calcular la esperanza de la variable aleatoria,

$$Q = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \boldsymbol{X}^{\top} \boldsymbol{C} \boldsymbol{X},$$

obteniendo

$$\mathsf{E}(Q) = \sigma^2 \operatorname{tr}(\boldsymbol{C}) + \mu^2 \mathbf{1}^\top \boldsymbol{C} \mathbf{1}.$$

Es fácil verificar que

$$\operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}\left(\boldsymbol{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right) = \operatorname{tr}(\boldsymbol{I}) - \frac{1}{n}\operatorname{tr}(\mathbf{1}\mathbf{1}^{\top}) = n - \frac{1}{n}\mathbf{1}^{\top}\mathbf{1} = n - 1,$$
$$\boldsymbol{C}\mathbf{1} = \left(\boldsymbol{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right)\mathbf{1} = \mathbf{1} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\mathbf{1} = \mathbf{1} - \mathbf{1} = \mathbf{0},$$

de donde sigue que  $\mathsf{E}(Q) = \sigma^2(n-1)$ .

RESULTADO 1.14. Si X es vector aleatorio  $n \times 1$ . Entonces su distribución está determinada por las distribuciones de las funciones lineales  $\mathbf{a}^{\top}X$ , para todo  $\mathbf{a} \in \mathbb{R}^n$ .

DEMOSTRACIÓN. La función característica de  $a^{\top}X$  es

$$\varphi_{a^{\top}X}(t) = \mathsf{E}\{\exp(it\boldsymbol{a}^{\top}\boldsymbol{X})\},\$$

de modo que

$$\varphi_{a^{\top}X}(1) = \mathsf{E}\{\exp(i\boldsymbol{a}^{\top}\boldsymbol{X})\} \quad (=\varphi_X(\boldsymbol{a})).$$

Es considerada como una función de a, esto es, la función característica (conjunta) de X. El resultado sigue notando que una distribución en  $\mathbb{R}^n$  está completamente determinada por su función característica.

La función característica permite un método bastante operativo para el cálculo del k-ésimo momento de un vector aleatorio X. En efecto,

$$\boldsymbol{\mu}_k(\boldsymbol{X}) = \begin{cases} \mathsf{E}(\boldsymbol{X} \otimes \boldsymbol{X}^\top \otimes \cdots \otimes \boldsymbol{X}^\top), & k \text{ par,} \\ \mathsf{E}(\boldsymbol{X} \otimes \boldsymbol{X}^\top \otimes \cdots \otimes \boldsymbol{X}^\top \otimes \boldsymbol{X}), & k \text{ impar,} \end{cases}$$
$$= \begin{cases} i^{-k} \frac{\partial^k \varphi(t)}{\partial t \partial t^\top \cdots \partial t^\top} \Big|_{t=0}, & k \text{ par,} \\ i^{-k} \frac{\partial^k \varphi(t)}{\partial t \partial t^\top \cdots \partial t^\top \partial t} \Big|_{t=0}, & k \text{ impar.} \end{cases}$$

#### 1.3. Independencia de vectores aleatorios

Sea  $\mathbf{Z} = (\mathbf{X}^{\top}, \mathbf{Y}^{\top})^{\top}$  con  $\mathbf{X}, \mathbf{Y}$  vectores aleatorios n y q-dimensionales, respectivamente. Se dicen independientes si y sólo si

$$F(\boldsymbol{x}, \boldsymbol{y}) = G(\boldsymbol{x})H(\boldsymbol{y}),$$

donde F(z), G(x) y H(y) son las funciones de distribución de Z, X e Y, respectivamente.

Si Z, X e Y tienen densidades f(z), g(x) y h(y), respectivamente. Entonces X e Y son independientes si

$$f(z) = q(x)h(y).$$

En cuyo caso, obtenemos como resultado

$$f(\boldsymbol{x}|\boldsymbol{y}) = g(\boldsymbol{x}).$$

Resultado 1.15. Sean X e Y dos vectores aleatorios independientes. Entonces para funciones cualquiera  $\kappa$  y  $\tau$ , tenemos

$$\mathsf{E}\{\kappa(\boldsymbol{X})\tau(\boldsymbol{Y})\} = \mathsf{E}\{\kappa(\boldsymbol{X})\}\,\mathsf{E}\{\tau(\boldsymbol{Y})\},$$

si las esperanzas existen.

DEMOSTRACIÓN. En efecto, es fácil notar que

$$\begin{split} \mathsf{E}\{\kappa(\boldsymbol{X})\tau(\boldsymbol{Y})\} &= \int \int \kappa(\boldsymbol{x})\tau(\boldsymbol{y})g(\boldsymbol{x})h(\boldsymbol{y})\,\mathrm{d}\boldsymbol{x}\,\mathrm{d}\boldsymbol{y} \\ &= \Big(\int \kappa(\boldsymbol{x})g(\boldsymbol{x})\,\mathrm{d}\boldsymbol{x}\Big)\Big(\int \tau(\boldsymbol{y})h(\boldsymbol{y})\,\mathrm{d}\boldsymbol{y}\Big) \\ &= \mathsf{E}\{\kappa(\boldsymbol{X})\}\,\mathsf{E}\{\tau(\boldsymbol{Y})\}. \end{split}$$

#### 1.4. Cambios de variable

Considere la función  $f: \mathbb{R}^n \to \mathbb{R}^n$ , el *Jacobiano* se define como el valor absoluto del determinante de  $\mathsf{D}f(x)$  y es denotado por

$$J(\mathbf{y} \to \mathbf{x}) = |\mathsf{D}\mathbf{f}(\mathbf{x})|_{+} = \mathrm{abs}(\det(\mathsf{D}\mathbf{f}(\mathbf{x}))),$$

donde y = f(x). Note que si z = f(y) y y = g(x), entonces tenemos

$$J(z \to x) = J(z \to y) \cdot J(y \to x)$$
  
 $J(y \to x) = \{J(x \to y)\}^{-1}$ 

El siguiente resultado presenta una de aplicación del Jacobiano de una transformación para obtener la función de densidad de una transformación de un vector aleatorio.

PROPOSICIÓN 1.16 (Transformación de vectores aleatorios continuos). Sea  $\mathbf{X}$  vector aleatorio n-dimensional con densidad  $f_X(\mathbf{x})$  y soporte  $S = \{\mathbf{x} : f_X(\mathbf{x}) > 0\}$ . Para  $\mathbf{g} : S \to \mathbb{R}^n$  diferenciable e invertible, sea  $\mathbf{y} = \mathbf{g}(\mathbf{x})$ . Entonces la densidad de  $\mathbf{Y}$  está dada por

$$f_Y(y) = |\mathsf{D}g^{-1}(y)|_+ f_X(g^{-1}(y))$$
  
=  $\{J(y \to x)\}^{-1} f_X(g^{-1}(y)).$ 

EJEMPLO 1.17. Sea Y = AXB,  $Y \in \mathbb{R}^{n \times q}$ ,  $X \in \mathbb{R}^{n \times q}$ ,  $A \in \mathbb{R}^{n \times n}$  y  $B \in \mathbb{R}^{q \times q}$ . Entonces

$$d\mathbf{Y} = \mathbf{A}(d\mathbf{X})\mathbf{B}$$

vectorizando obtenemos

$$\operatorname{vec} d \boldsymbol{Y} = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A}) \operatorname{vec} d \boldsymbol{X},$$

esto es,  $\mathsf{D}\boldsymbol{F}(\boldsymbol{X}) = \boldsymbol{B}^{\top} \otimes \boldsymbol{A}$ , por tanto

$$J(\boldsymbol{Y} \to \boldsymbol{X}) = |\boldsymbol{B}^{\top} \otimes \boldsymbol{A}|_{+} = |\boldsymbol{A}|_{+}^{q} |\boldsymbol{B}^{\top}|_{+}^{n} = |\boldsymbol{A}|_{+}^{q} |\boldsymbol{B}|_{+}^{n}$$

#### 1.5. Distribución normal multivariada

La distribución normal multivariada ocupa un rol central en inferencia multivariada así como en modelación estadística. En esta sección introducimos la distribución normal multivariada mediante tres definiciones equivalentes.

Una variable aleatoria (uni-dimensional) Z tiene una distribución normal con media cero y varianza uno si su función de densidad es de la forma

$$f(z) = (2\pi)^{-1/2} \exp\left(-\frac{1}{2}z^2\right), \quad z \in \mathbb{R},$$

en cuyo caso escribimos  $Z\sim \mathsf{N}(0,1).$  Más generalmente una variable aleatoria  $Y\in\mathbb{R}$  tiene distribución normal con media  $\mu\in\mathbb{R}$  y varianza  $\sigma^2\geq 0$  si

$$Y \stackrel{\mathsf{d}}{=} \mu + \sigma Z, \qquad Z \sim \mathsf{N}(0, 1),$$

en cuyo caso escribimos  $Y \sim \mathsf{N}(\mu, \sigma^2)$ . Cuando  $\sigma^2 = 0$ , la distribución  $\mathsf{N}(\mu, \sigma^2)$  se interpreta como una distribución degenerada en  $\mu$ . Si  $Y \sim \mathsf{N}(\mu, \sigma^2)$ , entonces su función característica adopta la forma

$$\varphi(t) = \exp\left(it\mu - \frac{1}{2}\sigma^2t^2\right), \quad t \in \mathbb{R}.$$

Sea  $Z_1, \ldots, Z_n$  variables aleatorias independientes cada una con distribución  $\mathsf{N}(0,1)$  y considere el vector aleatorio  $\mathbf{Z} = (Z_1, \ldots, Z_n)^\top$ . De este modo, la densidad conjunta de  $\mathbf{Z}$  es dada por

$$f(z) = \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(-\frac{1}{2}z_i^2\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2}\sum_{i=1}^{n} z_i^2\right)$$
$$= (2\pi)^{-n/2} \exp\left(-\frac{1}{2}\|z\|^2\right),$$

y anotamos  $Z \sim N_n(\mathbf{0}, \mathbf{I})$ .

DEFINICIÓN 1.18. Un vector aleatorio p-dimensional, X tiene distribución normal con vector de medias  $\mu \in \mathbb{R}^p$  y matriz de covarianza  $Cov(X) = \Sigma \geq 0$  sólo si, para todo vector t la variable aleatoria (uni-dimensional)  $t^{\top}X$  es normal univariada, en cuyo caso escribimos  $X \sim \mathbb{N}_p(\mu, \Sigma)$ .

Observación 1.19. Note que en la definición anterior no se ha hecho supuestos respecto de la independencia de los componentes de X.

RESULTADO 1.20. Suponga que  $X \sim \mathsf{N}_p(\mu, \Sigma)$  y considere la transformación lineal Y = AX + b donde  $A \in \mathbb{R}^{m \times p}$  con  $\mathrm{rg}(A) = m$ . Entonces  $Y \sim \mathsf{N}_m(A\mu + b, A\Sigma A^\top)$ .

Demostración. Sea Y = AX + b y simplemente note que

$$\boldsymbol{t}^{\top} \boldsymbol{Y} = \boldsymbol{t}^{\top} \boldsymbol{A} \boldsymbol{X} + \boldsymbol{t}^{\top} \boldsymbol{b} = (\boldsymbol{A}^{\top} \boldsymbol{t})^{\top} \boldsymbol{X} + \boldsymbol{t}^{\top} \boldsymbol{b} = \boldsymbol{h}^{\top} \boldsymbol{X} + c,$$

por la Definición 1.18 tenemos que  $h^{\top}X$  es normal y como c es una constante, sigue que  $t^{\top}Y$  tiene distribución normal multivariada.

A partir del resultado anterior sigue que todas las distribuciones marginales de  $\boldsymbol{X}$  también son normalmente distribuídas. En particular, también permite apreciar que la distribución normal satisface la siguiente propiedad relativa a la simetría multivariada:

$$oldsymbol{Z} \sim \mathsf{N}_p(oldsymbol{0}, \sigma^2 oldsymbol{I}_p) \Longrightarrow oldsymbol{Q} oldsymbol{Z} \stackrel{ ext{d}}{=} oldsymbol{Z}, \quad orall oldsymbol{Q} \in \mathcal{O}_p.$$

Resultado 1.21. Si  $X \sim \mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$ , entonces la función característica de X es dada por

$$\varphi_X(\boldsymbol{t}) = \exp(i\boldsymbol{t}^\top \boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^\top \boldsymbol{\Sigma} \boldsymbol{t}).$$

DEMOSTRACIÓN. Sabemos que la función característica de un vector aleatorio, satisface

$$\varphi_X(\boldsymbol{t}) = \mathsf{E}\{\exp(i\boldsymbol{t}^{\top}\boldsymbol{X})\} = \varphi_{t^{\top}X}(1),$$

donde la función característica de la variable aleatoria uni-dimensional  $Y = t^{\top}X$  es evaluada en 1. Como  $X \sim \mathsf{N}_n(\mu, \Sigma)$  sólo si  $t^{\top}X \sim \mathsf{N}_1(t^{\top}\mu, t^{\top}\Sigma t)$ , tenemos

$$\varphi_X(t) = \exp\left(it^{\top} \mu - \frac{1}{2} t^{\top} \Sigma t\right).$$

En efecto, sea  $\Sigma$  matriz de covarianza  $p \times p$  semidefinida positiva de rango r y sea  $Z_1, \ldots, Z_r$  variables aleatorias IID  $\mathsf{N}(0,1)$ . Entonces el vector  $\mathbf{Z} = (Z_1, \ldots, Z_r)^{\mathsf{T}}$  tiene función característica

$$\begin{split} \varphi_Z(\boldsymbol{t}) = & \mathsf{E}\{\exp(i\boldsymbol{t}^{\top}\boldsymbol{Z})\} = \prod_{j=1}^r \mathsf{E}\{\exp(it_jZ_j)\} \\ = & \prod_{j=1}^r \exp\big(-\frac{1}{2}t_j^2\big) = \exp\big(-\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{t}\big). \end{split}$$

Considere

$$X = \mu + BZ$$

donde  $\boldsymbol{B} \in \mathbb{R}^{p \times r}$  con  $\operatorname{rg}(\boldsymbol{B}) = r$ , tal que  $\boldsymbol{\Sigma} = \boldsymbol{B}\boldsymbol{B}^{\top}$  y  $\boldsymbol{\mu} \in \mathbb{R}^{p}$ . De este modo,  $\boldsymbol{X}$  tiene función característica

$$\begin{split} \varphi_X(\boldsymbol{t}) &= \mathsf{E}\{\exp(i\boldsymbol{t}^{\top}\boldsymbol{X})\} = \mathsf{E}\{\exp(i\boldsymbol{t}^{\top}(\boldsymbol{\mu} + \boldsymbol{B}\boldsymbol{Z}))\} \\ &= \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\,\mathsf{E}\{\exp(i\boldsymbol{t}^{\top}\boldsymbol{B}\boldsymbol{Z})\} = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\varphi_Z(\boldsymbol{h}), \quad \boldsymbol{h} = \boldsymbol{B}^{\top}\boldsymbol{t} \\ &= \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\exp(-\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{B}\boldsymbol{B}^{\top}\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}). \end{split}$$

Observación 1.22. El Resultado 1.20 puede ser demostrado de manera bastante simple usando la función característica (ver Ejercicio 1.3).

Resultado 1.23. Si  $Z \sim N_p(\mathbf{0}, \mathbf{I})$ . Entonces

$$\mathsf{E}({m Z}) = {m 0}, \qquad \mathsf{Cov}({m Z}) = {m I}.$$

DEMOSTRACIÓN. Para mostrar el resultado deseado, podemos calcular el primer y segundo diferencial de la función característica del vector aleatorio  $\boldsymbol{Z} \sim \mathsf{N}_p(\boldsymbol{0}, \boldsymbol{I})$ . Debemos calcular,

$$d\varphi_Z(\boldsymbol{t}) = -\varphi_Z(\boldsymbol{t})\boldsymbol{t}^\top d\boldsymbol{t},$$

У

$$\begin{split} \mathsf{d}^2\,\varphi_Z(t) &= -\,\mathsf{d}\varphi_Z(t)t^\top\,\mathsf{d}t - \varphi_Z(t)(\mathsf{d}t)^\top\,\mathsf{d}t \\ &= \varphi_Z(t)(\mathsf{d}t)^\top t t^\top\,\mathsf{d}t - \varphi_Z(t)(\mathsf{d}t)^\top\,\mathsf{d}t \\ &= \varphi_Z(t)(\mathsf{d}t)^\top (t t^\top - I)\,\mathsf{d}t, \end{split}$$

de ahí que

$$\frac{\partial \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t}} = -\varphi_Z(\boldsymbol{t})\boldsymbol{t}, \qquad \frac{\partial^2 \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t}\,\partial \boldsymbol{t}^\top} = \varphi_Z(\boldsymbol{t})(\boldsymbol{t}\boldsymbol{t}^\top - \boldsymbol{I}).$$

Ahora, el vector de medias y matriz de covarianzas están dadas por

$$\begin{split} \mathsf{E}(\boldsymbol{Z}) &= i^{-1} \frac{\partial \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t}} \Big|_{\boldsymbol{t}=0} = \boldsymbol{0}, \\ \mathsf{E}(\boldsymbol{Z}\boldsymbol{Z}^\top) &= i^{-2} \frac{\partial^2 \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t} \, \partial \boldsymbol{t}^\top} \Big|_{\boldsymbol{t}=0} = \boldsymbol{I} = \mathsf{Cov}(\boldsymbol{Z}). \end{split}$$

Observación 1.24. Considere

$$oldsymbol{X} = oldsymbol{\mu} + oldsymbol{B} oldsymbol{Z}, \qquad oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op,$$

con  $Z \sim N_p(0, I)$ . Usando los Resultados 1.20 y 1.23, sigue que

$$\mathsf{E}(\boldsymbol{X}) = \boldsymbol{\mu} + \boldsymbol{B}\,\mathsf{E}(\boldsymbol{Z}) = \boldsymbol{\mu}, \qquad \mathsf{Cov}(\boldsymbol{X}) = \boldsymbol{B}\,\mathsf{Cov}(\boldsymbol{Z})\boldsymbol{B}^\top = \boldsymbol{\Sigma}.$$

RESULTADO 1.25. Si  $X \sim N_p(\mu, \Sigma)$ , entonces la distribución marginal de cualquier subconjunto de k (< p) componentes de X es normal k-variada.

DEMOSTRACIÓN. Considere la siguiente partición:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$
 (1.3)

donde  $X_1$  y  $\mu_1$  son vectores  $k \times 1$  y  $\Sigma_{11}$  es  $k \times k$ . Aplicando el Resultado 1.20 con

$$A = (I_k, \mathbf{0}) \in \mathbb{R}^{k \times p}$$
 y  $b = \mathbf{0}$ ,

sigue inmediatamente que  $X_1 \sim N_k(\mu_1, \Sigma_{11})$ .

Una consecuencia de este resultado es que la distribución marginal de cada componente de X es normal univariada.

Observación 1.26. La inversa del Resultado 1.25 no es verdad en general. Es decir, que cada componente de un vector aleatorio tenga distribución normal no implica que todo el vector siga una distribución normal multivariada.

RESULTADO 1.27. Si  $X \sim \mathsf{N}_p(\mu, \Sigma)$  y X,  $\mu$  y  $\Sigma$  son particionadas como en la Ecuación (1.3). Entonces los vectores  $X_1$  y  $X_2$  son independientes si y sólo si  $\Sigma_{12} = \mathbf{0}$ .

DEMOSTRACIÓN. Note que  $\mathsf{Cov}(X_1, X_2) = \Sigma_{12}$ , así la independencia entre  $X_1$  y  $X_2$  implica que  $\Sigma_{12} = \mathbf{0}$ . Suponga ahora que  $\Sigma_{12} = \mathbf{0}$ . Entonces la función característica

$$\begin{split} \varphi_X(\boldsymbol{t}) &= \exp(i\boldsymbol{t}^\top \boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^\top \boldsymbol{\Sigma} \boldsymbol{t}) \\ &= \exp(i\boldsymbol{t}_1^\top \boldsymbol{\mu}_1 + i\boldsymbol{t}_2^\top \boldsymbol{\mu}_2 - \frac{1}{2}\boldsymbol{t}_1^\top \boldsymbol{\Sigma}_{11}\boldsymbol{t}_1 - \frac{1}{2}\boldsymbol{t}_2^\top \boldsymbol{\Sigma}_{22}\boldsymbol{t}_2) \\ &= \exp(i\boldsymbol{t}_1^\top \boldsymbol{\mu}_1 - \frac{1}{2}\boldsymbol{t}_1^\top \boldsymbol{\Sigma}_{11}\boldsymbol{t}_1) \exp(i\boldsymbol{t}_2^\top \boldsymbol{\mu}_2 - \frac{1}{2}\boldsymbol{t}_2^\top \boldsymbol{\Sigma}_{22}\boldsymbol{t}_2) \\ &= \varphi_{X_1}(\boldsymbol{t}_1)\varphi_{X_2}(\boldsymbol{t}_2), \end{split}$$

es decir,  $X_1 \sim \mathsf{N}_k(\mu_1, \Sigma_{11})$  es independiente de  $X_2 \sim \mathsf{N}_{p-k}(\mu_2, \Sigma_{22})$ .

DEFINICIÓN 1.28. Si  $X \sim \mathsf{N}_p(\mu, \Sigma)$  y  $\Sigma$  es definida positiva, entonces la densidad de X asume la forma

$$f_X(x) = |2\pi\Sigma|^{-1/2} \exp\{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\}, \qquad x \in \mathbb{R}^p.$$

DEMOSTRACIÓN. Sea  $Z_1, \ldots, Z_p$  variables aleatorias IID  $\mathsf{N}(0,1)$ . Tenemos que la densidad conjunta de  $\mathbf{Z} = (Z_1, \ldots, Z_p)^\top$  es

$$f_Z(z) = (2\pi)^{-p/2} \exp(-\frac{1}{2}||z||^2).$$

Considere  $X = \mu + BZ$  con  $\mu \in \mathbb{R}^p$  y  $\Sigma = BB^{\top}$ , con B matriz de rango completo. Entonces, tenemos la transformación inversa

$$Z = g^{-1}(X) = B^{-1}(X - \mu),$$

y d $\boldsymbol{Z}=\mathsf{d}\boldsymbol{g}^{-1}(\boldsymbol{X})=\boldsymbol{B}^{-1}\,\mathsf{d}\boldsymbol{X},$  con matriz jacobiana  $\mathsf{D}\boldsymbol{g}^{-1}(\boldsymbol{X})=\boldsymbol{B}^{-1},$  como

$$|\mathsf{D} \boldsymbol{g}^{-1}(\boldsymbol{X})|_{+} = |\boldsymbol{B}|^{-1} = |\boldsymbol{B} \boldsymbol{B}^{\top}|^{-1/2},$$

obtenemos

$$f_X(\mathbf{x}) = |\mathsf{D}\mathbf{g}^{-1}(\mathbf{x})|_+ f_Z(\mathbf{g}^{-1}(\mathbf{x}))$$
  
=  $(2\pi)^{-p/2} |\mathbf{B}\mathbf{B}^\top|^{-1/2} \exp\{\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{B}^{-\top} \mathbf{B}^{-1}(\mathbf{x} - \boldsymbol{\mu})\},$ 

notando que  $\Sigma^{-1} = B^{-\top}B^{-1}$  sigue el resultado deseado.

Ejemplo 1.29. Sea  $X \sim \mathsf{N}_2(\mathbf{0}, \Sigma)$  donde

$$\label{eq:sigma} \mathbf{\Sigma} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}, \qquad -1 < \rho < 1.$$

En cuyo caso, la función de densidad es dada por:

$$f(\boldsymbol{x}) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\Big\{-\frac{1}{2(1-\rho^2)}(x_1^2 + x_2^2 - 2\rho x_1 x_2)\Big\}.$$

A continuación se presenta la función de densidad para los casos  $\rho=0.0, 0.4 \ {\rm y}$  0.8.



FIGURA 1. Densidad de  $\boldsymbol{X} \sim \mathsf{N}_2(\boldsymbol{0}, \boldsymbol{\Sigma})$  para  $\rho = 0.0, 0.4$  y 0.8.

Es fácil apreciar que la función de densidad es constante sobre el elipsoide

$$(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = \lambda,$$

en  $\mathbb{R}^p$  para todo  $\lambda > 0$ . Este elipsoide tiene centro  $\mu$ , mientras que  $\Sigma$  determina su forma y orientación. Además, la variable aleatoria

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} = \sum_{i=1}^{p} Z_i^2,$$
 (1.4)

sigue una distribución chi-cuadrado con p grados de libertad y la cantidad  $D = \{(\boldsymbol{X} - \boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{X} - \boldsymbol{\mu})\}^{1/2}$  se conoce como distancia de Mahalanobis de  $\boldsymbol{X}$  a  $\boldsymbol{\mu}$ .

Observación 1.30. Para la existencia de densidad hemos asumido que  $\Sigma > 0$ . En el caso de que  $\Sigma \geq 0$  decimos que X sigue una distribución normal singular.

Para introducir una definición de la función de densidad asociada a una variable con distribución normal singular, note que  $X \sim N(\mu, \sigma^2)$  con  $\sigma^2 = 0 \Leftrightarrow x = \mu$  con probabilidad 1 (pues si  $\sigma^2 = 0$ ,  $P(X = \mu) = \lim_{n \to \infty} P(|X - \mu| < 1/n) = 0$ ,  $\forall n$ ).

Considere  $Y \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  con  $\mathrm{rg}(\boldsymbol{\Sigma}) = r < p$ . Entonces, podemos escribir

$$oldsymbol{\Sigma} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^ op = (oldsymbol{U}_1, oldsymbol{U}_2) egin{pmatrix} oldsymbol{\Lambda}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} egin{pmatrix} oldsymbol{U}_1^ op \ oldsymbol{U}_2^ op \end{pmatrix} = oldsymbol{U}_1 oldsymbol{\Lambda}_1 oldsymbol{U}_1^ op ,$$

donde  $\Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$ . De este modo, es claro que

$$oldsymbol{U}^{ op} oldsymbol{\Sigma} oldsymbol{U} \implies oldsymbol{U}_2^{ op} oldsymbol{\Sigma} oldsymbol{U}_2 = oldsymbol{0},$$

es decir, tenemos que  $\boldsymbol{U}_2^{\top}(\boldsymbol{Y}-\boldsymbol{\mu})=\mathbf{0}$  con probabilidad 1. Mientras que

$$oldsymbol{U}_1^ op(oldsymbol{Y}-oldsymbol{\mu}) \sim \mathsf{N}_r(oldsymbol{0}, oldsymbol{\Lambda}_1).$$

Además  $\Sigma^- = U_1 \Lambda_1^{-1} U_1^\top = U_1 (U_1^\top \Sigma U_1)^{-1} U_1^\top$ . Así, Y tiene la siguiente densidad normal (singular)

$$f_Y(\mathbf{y}) = |2\pi \mathbf{U}_1^{\top} \mathbf{\Sigma} \mathbf{U}_1|^{-1/2} \exp\{-\frac{1}{2} (\mathbf{U}_1^{\top} (\mathbf{y} - \boldsymbol{\mu}))^{\top} (\mathbf{U}_1^{\top} \mathbf{\Sigma} \mathbf{U}_1)^{-1} \mathbf{U}_1^{\top} (\mathbf{y} - \boldsymbol{\mu})\}$$
  
=  $(2\pi)^{-r/2} |\mathbf{\Lambda}_1|^{-1/2} \exp\{-\frac{1}{2} (\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{U}_1 \mathbf{\Lambda}_1^{-1} \mathbf{U}_1^{\top} (\mathbf{y} - \boldsymbol{\mu})\}.$ 

El siguiente resultado presenta la distribución condicional de un vector aleatorio con distribución normal multivariada.

Resultado 1.31. Sea  $X \sim \mathsf{N}_p(\mu, \Sigma)$  y particione X,  $\mu$  y  $\Sigma$  como:

$$oldsymbol{X} = egin{pmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{pmatrix}, \qquad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix},$$

donde  $X_1$  y  $\mu_1$  son vectores  $k \times 1$ , mientras que  $\Sigma_{11}$  es matriz  $k \times k$ . Sea  $\Sigma_{22}^-$  una inversa generalizada de  $\Sigma_{22}$ , esto es, una matriz que satisface

$$\mathbf{\Sigma}_{22}\mathbf{\Sigma}_{22}^{-}\mathbf{\Sigma}_{22}=\mathbf{\Sigma}_{22},$$

y sea  $\Sigma_{11\cdot 2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-}\Sigma_{21}$ . Entonces

- (a)  $X_1 \Sigma_{12}\Sigma_{22}^-X_2 \sim \mathsf{N}_k(\mu_1 \Sigma_{12}\Sigma_{22}^-\mu_2, \Sigma_{11\cdot 2})$  y es independiente de  $X_2$ .
- (b) La distribución condicional

$$(\boldsymbol{X}_1|\boldsymbol{X}_2 = \boldsymbol{x}_2) \sim \mathsf{N}_k(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^-(\boldsymbol{x}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11\cdot 2}).$$

DEMOSTRACIÓN. Considere la transformación lineal

$$oldsymbol{Y} = egin{pmatrix} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{pmatrix} = egin{pmatrix} oldsymbol{I}_k & -oldsymbol{B} \ oldsymbol{0} & oldsymbol{I}_{p-k} \end{pmatrix} egin{pmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{pmatrix} = oldsymbol{C} oldsymbol{X},$$

sigue que  $Y \sim \mathsf{N}_p(C\boldsymbol{\mu}, C\boldsymbol{\Sigma}C^{\top})$ , donde

$$egin{aligned} Coldsymbol{\mu} &= egin{pmatrix} oldsymbol{I}_k & -oldsymbol{B} \ oldsymbol{0} & oldsymbol{I}_{p-k} \end{pmatrix} egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix} = egin{pmatrix} oldsymbol{\mu}_1 - oldsymbol{B} oldsymbol{\mu}_2 \ oldsymbol{U}_{1} & oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix} egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \ -oldsymbol{B}^ op & oldsymbol{I}_{p-k} \end{pmatrix} \ &= egin{pmatrix} oldsymbol{\Sigma}_{11} - oldsymbol{B} oldsymbol{\Sigma}_{21} - oldsymbol{\Sigma}_{12} oldsymbol{B}^ op & oldsymbol{\Sigma}_{22} oldsymbol{B}^ op & oldsymbol{\Sigma}_{22} \ oldsymbol{\Sigma}_{21} - oldsymbol{\Sigma}_{22} oldsymbol{B}^ op & oldsymbol{\Sigma}_{22} \end{pmatrix}. \end{aligned}$$

De este modo, nuestro interés es escoger  $\Sigma_{12} - B\Sigma_{22} = 0$ . Es decir,  $\Sigma_{12} = B\Sigma_{22}$ . Por otro lado, notando que

$$oldsymbol{\Sigma}_{12}oldsymbol{\Sigma}_{22}^-oldsymbol{\Sigma}_{22} = oldsymbol{B}oldsymbol{\Sigma}_{22}oldsymbol{\Sigma}_{22}^-oldsymbol{\Sigma}_{22} = oldsymbol{B}oldsymbol{\Sigma}_{22} = oldsymbol{\Sigma}_{12},$$

sigue que  $\Sigma_{12}\boldsymbol{B}^{\top} = \boldsymbol{B}\boldsymbol{\Sigma}_{22}\boldsymbol{B}^{\top}$  (y análogamente  $\boldsymbol{B}\boldsymbol{\Sigma}_{21} = \boldsymbol{B}\boldsymbol{\Sigma}_{22}\boldsymbol{B}^{\top}$ ). Esto es, si  $\boldsymbol{B}$  es escogida como  $\boldsymbol{B} = \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-}$ , entonces  $\boldsymbol{Y}_1$  y  $\boldsymbol{Y}_2$  son independientes con distribución conjunta

$$\begin{pmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^- \boldsymbol{X}_2 \\ \boldsymbol{X}_2 \end{pmatrix} \sim \mathsf{N}_p \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^- \boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11 \cdot 2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}.$$

Esto muestra la parte (a). Para notar la parte (b), note que las densidades de  $\boldsymbol{Y}_1$  y  $\boldsymbol{Y}_2$  están dadas por

$$g(\boldsymbol{y}_1; \boldsymbol{\delta}_{1\cdot 2}, \boldsymbol{\Sigma}_{11\cdot 2}) = |2\pi\boldsymbol{\Sigma}_{11\cdot 2}|^{-1/2} \exp\{-\frac{1}{2}(\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2})^{\top} \boldsymbol{\Sigma}_{11\cdot 2}^{-1}(\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2})\}$$
$$f_2(\boldsymbol{y}_2; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22}) = |2\pi\boldsymbol{\Sigma}_{22}|^{-1/2} \exp\{-\frac{1}{2}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}_{22}^{-1}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2)\},$$

y la densidad conjunta para  $\boldsymbol{Y} = (\boldsymbol{Y}_1^\top, \boldsymbol{Y}_2^\top)^\top$  adopta la forma

$$f(y_1, y_2; \mu, \Sigma) = g(y_1; \delta_{1\cdot 2}, \Sigma_{11\cdot 2}) f_2(y_2; \mu_2, \Sigma_{22}).$$

Como

$$f(x_1, x_2; \mu, \Sigma) = f_{1|2}(x_1; \mu, \Sigma | x_2) f_2(x_2; \mu_2, \Sigma_{22}),$$

entonces, la densidad condicional de  $X_1$  dado  $X_2 = x_2$  debe ser  $g(y_1; \delta_{1\cdot 2}, \Sigma_{11\cdot 2})$ . Además, es fácil notar que la forma cuadrática

$$\begin{split} q(\boldsymbol{y}_1; \boldsymbol{\mu}_{1\cdot 2}, \boldsymbol{\Sigma}_{11\cdot 2}) &= (\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2})^{\top} \boldsymbol{\Sigma}_{11\cdot 2}^{-1} (\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2}) \\ &= (\boldsymbol{x}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-} \boldsymbol{x}_2 - \boldsymbol{\delta}_{1\cdot 2})^{\top} \boldsymbol{\Sigma}_{11\cdot 2}^{-1} (\boldsymbol{x}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-} \boldsymbol{x}_2 - \boldsymbol{\delta}_{1\cdot 2}) \\ &= (\boldsymbol{x}_1 - \boldsymbol{\mu}_{1\cdot 2})^{\top} \boldsymbol{\Sigma}_{11\cdot 2}^{-1} (\boldsymbol{x}_1 - \boldsymbol{\mu}_{1\cdot 2}), \end{split}$$

donde

$$m{\mu}_{1\cdot 2} = m{\mu}_1 + m{\Sigma}_{12}m{\Sigma}_{22}^-(m{x}_2 - m{\mu}_2),$$

lo que muestra el resultado.

OBSERVACIÓN 1.32. La esperanza de la distribución condicional de  $X_1$  dado  $X_2$ , es decir

$$\mathsf{E}(X_1|X_2=x_2)=\mu_1+\Sigma_{12}\Sigma_{22}^-(x_2-\mu_2),$$

se denomina función de regresión de  $X_1$  sobre  $X_2$  con coeficientes de regresión  $B = \Sigma_{12}\Sigma_{22}^-$ . Esta es una función lineal de  $X_2$  y la matriz de covarianza  $\Sigma_{11\cdot 2}$  no depende de  $X_2$ .

RESULTADO 1.33. Sea  $X \sim \mathsf{N}_p(\mu, \Sigma)$  y considere  $Y_1 = A_1 X$ ,  $Y_2 = A_2 X$  dos funciones lineales del vector aleatorio X. La covarianza entre  $Y_1$  y  $Y_2$  es dada por

$$\mathsf{Cov}(oldsymbol{Y}_1,oldsymbol{Y}_2) = oldsymbol{A}_1\,\mathsf{Cov}(oldsymbol{X},oldsymbol{X})oldsymbol{A}_2^ op = oldsymbol{A}_1oldsymbol{\Sigma}oldsymbol{A}_2^ op$$

Este resultado permite obtener una condición para la independencia entre dos formas lineales en variables aleatorias normales, estos es  $\boldsymbol{Y}_1$  y  $\boldsymbol{Y}_2$  serán independientes si y sólo si  $\boldsymbol{A}_1\boldsymbol{\Sigma}\boldsymbol{A}_2^{\top}=\boldsymbol{0}$ .

EJEMPLO 1.34. Considere  $X_1, \ldots, X_n$  una muestra aleatoria desde  $\mathsf{N}(\mu, \sigma^2)$  y sea  $\mathbf{Z} = (Z_1, \ldots, Z_n)^\top$  el vector de datos centrados con  $Z_i = X_i - \overline{X}, \ i = 1, \ldots, n,$  donde  $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ . Podemos escribir

$$\overline{X} = \frac{1}{n} \mathbf{1}^{\mathsf{T}} X, \qquad Z = CX,$$

con  $C = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$  la matriz de centrado. Tenemos que  $X \sim \mathsf{N}_n(\mu \mathbf{1}, \sigma^2 I_n)$  y  $\overline{X}$  con Z son independientes pues  $C\mathbf{1} = \mathbf{0}$ .

EJEMPLO 1.35. Sea  $X \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$  y considere las transformaciones  $\mathbf{Y}_1 = \mathbf{A}\mathbf{X}$  y  $\mathbf{Y}_2 = (\mathbf{I} - \mathbf{A}^+ \mathbf{A})^\top \mathbf{X}$ . De este modo

$$\mathsf{Cov}(\boldsymbol{Y}_1,\boldsymbol{Y}_2) = \mathsf{Cov}(\boldsymbol{A}\boldsymbol{X},(\boldsymbol{I}-\boldsymbol{A}^+\boldsymbol{A})^\top\boldsymbol{X}) = \sigma^2\boldsymbol{A}(\boldsymbol{I}-\boldsymbol{A}^+\boldsymbol{A}) = \boldsymbol{0},$$

pues  $AA^{+}A = A$  y  $Y_1$  con  $Y_2$  son independientes.

#### 1.6. Alternativas a la distribución normal multivariada

La distribución normal multivariada es de importancia fundamental en la teoría clásica de modelos lineales así como para análisis multivariado. A pesar de su uso amplio, es bien sabido que la inferencia estadística basada en la distribución normal es vulnerable a la presencia de datos atípicos, esto ha motivado considerar distribuciones alternativas que eviten este tipo de limitaciones. En esta dirección, varios autores han sugerido utilizar la clase de distribuciones elípticas (ver, por ejemplo, Fang et al., 1990; Arellano, 1994) particularmente debido al hecho de incluir distribuciones con colas más pesadas que la normal, tales como la t de Student, exponencial potencia y normal contaminada, entre otras. Una subclase importante de la familia de distribuciones elípticas es la clase de distribuciones de mezcla de escala normal (Andrews y Mallows, 1974) la que tiene propiedades similares a la distribución normal, es relativamente simple de trabajar y permite proponer procedimientos para estimación robusta. A continuación se presenta la definición y algunos ejemplos de distribuciones en la clase elíptica.

DEFINICIÓN 1.36. Sea  $\boldsymbol{U}$  vector aleatorio  $p \times 1$  con distribución uniforme sobre el conjunto

$$S_p = \{ \boldsymbol{x} \in \mathbb{R}^p : ||\boldsymbol{x}|| = 1 \}, \tag{1.5}$$

esto es  $S_p$  denota la superficie de la esfera unitaria en  $\mathbb{R}^p$ . En cuyo caso anotamos  $U \sim \mathsf{U}(S_p)$ .

PROPIEDAD 1.37. Si  $\mathbf{Z} \sim \mathsf{N}_p(\mathbf{0}, \mathbf{I})$ , entonces  $\mathbf{U} = (U_1, \dots, U_p)^\top \sim \mathsf{U}(\mathcal{S}_p)$ , donde

$$oldsymbol{U} = rac{oldsymbol{Z}}{\|oldsymbol{Z}\|}.$$

El resultado anterior es muy relevante pues permite definir la densidad de un vector aleatorio  $U \sim \mathsf{U}(\mathcal{S}_p)$  y ofrece un procedimiento muy simple para generar observaciones sobre la esfera unitaria. Considere el siguiente gráfico,



FIGURA 2. Esfera unitaria y datos generados sobre la superficie  $S_p$ .

DEFINICIÓN 1.38. Un vector aleatorio  $p \times 1$ , X se dice que tiene simetría esférica si para cualquier  $Q \in \mathcal{O}_p$ , sigue que

$$QX \stackrel{\mathsf{d}}{=} X$$
.

EJEMPLO 1.39. Sea  $U \sim \mathsf{U}(\mathcal{S}_p)$ , entonces es bastante obvio que  $\mathbf{Q}\mathbf{U} \stackrel{\mathsf{d}}{=} \mathbf{U}$ .

EJEMPLO 1.40. Suponga  $X \sim N_p(\mathbf{0}, \sigma^2 \mathbf{I})$ . Tenemos que

$$QX \sim \mathsf{N}_p(\mathbf{0}, \sigma^2 I),$$

para  $Q \in \mathcal{O}_p$ , es decir  $QX \stackrel{\mathsf{d}}{=} X$  tiene simetría esférica.

DEFINICIÓN 1.41. Un vector aleatorio p-dimensional tiene  $distribución\ esférica\ sólo$  si su función característica satisface

- (a)  $\varphi(\mathbf{Q}^{\top}\mathbf{t}) = \varphi(\mathbf{t})$ , para todo  $\mathbf{Q} \in \mathcal{O}_p$ .
- (b) Existe una función  $\psi(\cdot)$  de una variable escalar tal que  $\varphi(t) = \psi(t^{\top}t)$ .

En este caso escribimos  $X \sim S_p(\psi)$ .

EJEMPLO 1.42. Sea  $X \sim N_p(\mathbf{0}, \mathbf{I})$ , tenemos que

$$\varphi(\boldsymbol{t}) = \exp\{-\frac{1}{2}(t_1^2 + \dots + t_p^2)\} = \exp(-\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{t}).$$

RESULTADO 1.43. Sea  $\psi(\mathbf{t}^{\top}\mathbf{t})$  la función característica del vector aleatorio  $\mathbf{X}$ . Entonces  $\mathbf{X}$  tiene representación estocástica

$$X \stackrel{\mathsf{d}}{=} R U$$
,

donde  $U \sim U(S_p)$  y  $R \sim F(X)$  son independientes.

RESULTADO 1.44. Suponga que  $X \stackrel{d}{=} RU \sim S_p(\psi)$  (P(X = 0) = 0), entonces

$$\|\boldsymbol{X}\| \stackrel{\mathsf{d}}{=} R, \qquad \frac{\boldsymbol{X}}{\|\boldsymbol{X}\|} \stackrel{\mathsf{d}}{=} \boldsymbol{U}.$$

Además  $\|X\| \ y \ X/\|X\|$  son independientes.

RESULTADO 1.45. El vector de medias y la matriz de covarianza de  $U \sim \mathsf{U}(\mathcal{S}_p)$  son:

$$\mathsf{E}(\boldsymbol{U}) = \mathbf{0}, \qquad \mathsf{Cov}(\boldsymbol{U}) = rac{1}{p} \boldsymbol{I}_p,$$

respectivamente.

DEMOSTRACIÓN. Sea  $X \sim \mathsf{N}_p(\mathbf{0}, I)$ , tenemos que  $X \stackrel{\mathsf{d}}{=} \|X\|U$ , con  $\|X\|$  independiente de U. Sabemos que  $\|X\|^2 \sim \chi^2(p)$ . Dado que

$$\mathsf{E}(X) = \mathbf{0}, \; \mathsf{E}(\|X\|) > 0, \quad \mathsf{y} \quad \mathsf{E}(\|X\|^2) = p, \; \mathsf{Cov}(X) = I_p,$$

el resultado sigue.

RESULTADO 1.46. Si  $X \stackrel{d}{=} RU \sim S_p(g)$  y  $E(R^2) < \infty$ . Entonces,

$$\mathsf{E}(\boldsymbol{X}) = \mathbf{0}, \qquad \mathsf{Cov}(\boldsymbol{X}) = \frac{\mathsf{E}(R^2)}{p} \boldsymbol{I}_p,$$

respectivamente.

Demostración. En efecto, como R y U son independientes, sigue que

$$\mathsf{E}(X) = \mathsf{E}(R)\,\mathsf{E}(U) = \mathbf{0},$$

$$\mathsf{Cov}(\boldsymbol{X}) = \mathsf{E}(R^2)\,\mathsf{E}(\boldsymbol{U}\boldsymbol{U}^\top) = \mathsf{E}(R^2)\,\mathsf{Cov}(\boldsymbol{U}) = \frac{\mathsf{E}(R^2)}{p}\boldsymbol{I}_p,$$

siempre que  $E(R) < \infty$  y  $E(R^2) < \infty$ .

DEFINICIÓN 1.47. Un vector aleatorio  $p \times 1$ , X tiene distribución de contornos elípticos con parámetros  $\mu \in \mathbb{R}^p$  y  $\Sigma \geq 0$  si

$$m{X} \stackrel{\mathsf{d}}{=} m{\mu} + m{B}m{Y}, \qquad m{Y} \sim \mathsf{S}_k(\psi),$$

donde  $\boldsymbol{B} \in \mathbb{R}^{k \times p}$  es matriz de rango completo tal que,  $\boldsymbol{B}\boldsymbol{B}^{\top} = \boldsymbol{\Sigma}$  con  $\operatorname{rg}(\boldsymbol{\Sigma}) = k$  y escribimos  $\boldsymbol{X} \sim \mathsf{EC}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \psi)$ .

Observación 1.48. La función característica de  $X \sim \mathsf{EC}_p(\mu, \Sigma; \psi)$  es de la forma

$$\varphi(t) = \exp(it^{\top}\mu)\psi(t^{\top}\Sigma t).$$

Note además que la representación estocástica de  $\boldsymbol{X}$  es dada por

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{\mu} + R \, \boldsymbol{B} \boldsymbol{U},$$

donde  $R \geq 0$  es independiente de  $\boldsymbol{U}$  y  $\boldsymbol{B}\boldsymbol{B}^{\top} = \boldsymbol{\Sigma}$ .

Resultado 1.49. Suponga que  $X \sim \mathsf{EC}_p(\mu, \Sigma; \psi)$  y  $\mathsf{E}(R^2) < \infty$ . Entonces

$$\mathsf{E}(\boldsymbol{X}) = \boldsymbol{\mu}, \qquad \mathsf{Cov}(\boldsymbol{X}) = \frac{\mathsf{E}(R^2)}{p} \boldsymbol{\Sigma}.$$

DEFINICIÓN 1.50. Se dice que el vector  $\boldsymbol{X}$  tiene distribución de contornos elípticos si su función de densidad es de la forma

$$f(\boldsymbol{x}) = |\boldsymbol{\Sigma}|^{-1/2} g((\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})), \qquad \boldsymbol{x} \in \mathbb{R}^p,$$

donde  $g:\mathbb{R}\to [0,\infty)$  es función decreciente, llamada función generadora de densidad, tal que:

$$\int_0^\infty u^{p/2-1}g(u)\,\mathrm{d} u<\infty,$$

y escribimos  $X \sim \mathsf{EC}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; g)$ 

Observación 1.51. Asuma que  $X \sim \mathsf{EC}_p(\mu, \Sigma; \psi)$  con  $\mathrm{rg}(\Sigma) = k$ . Entonces,

$$U = (\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-} (\boldsymbol{X} - \boldsymbol{\mu}) \stackrel{\mathsf{d}}{=} R^{2},$$

donde  $\Sigma^-$  es una inversa generalizada de  $\Sigma$ .

EJEMPLO 1.52. En la siguiente figura se presenta la densidad asociadas a las siguientes funciones q:

- Normal:  $g(u) = c_1 \exp(-u/2)$ .

- Laplace:  $g(u) = c_2 \exp(-\sqrt{u/2})$ . Cauchy:  $g(u) = c_3 (1+u)^{-(p+1)/2}$ . Exponencial potencia (PE):  $g(u) = c_4 \exp(-u^{\lambda}/2)$ ,  $\lambda = 2$ .



FIGURA 3. Funciones de densidad del vector  $X \sim \mathsf{EC}_2(\mathbf{0}, \mathbf{I}; g)$ para las distribuciones normal, Laplace, Cauchy y exponencial potencia con  $\lambda = 2$ .

EJEMPLO 1.53 (Distribución t de Student). La función generadora de densidad de un vector aleatorio con distribución t de Student asume la forma

$$g(u) = \frac{\Gamma(\frac{\nu+p}{2})}{\Gamma(\frac{\nu}{2})(\pi\nu)^{p/2}} \left(1 + \frac{u}{\nu}\right)^{-(\nu+p)/2}, \qquad \nu > 0.$$

Para la distribución t de Student, tenemos que  $R^2/p \sim F_{p,\nu}$ . Además, la función característica de  $X \sim t_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)$  es dada por

$$\varphi(\boldsymbol{t}) = \frac{\|\sqrt{\nu}\boldsymbol{\Sigma}^{1/2}\boldsymbol{t}\|^{\nu/2}}{2^{\nu/2-1}\Gamma(\nu/2)} \exp\{i\boldsymbol{t}^{\top}\boldsymbol{\mu}\}K_{\nu/2}(\|\sqrt{\nu}\boldsymbol{\Sigma}^{1/2}\boldsymbol{t}\|), \qquad \boldsymbol{t} \in \mathbb{R}^p,$$

donde  $K_{\nu}(x)$  denota la función de Bessel modificada de segundo tipo. Un caso particular importante corresponde a la distribución Cauchy, cuando  $\nu = 1$ , mientras que la distribución normal corresponde al caso límite  $\nu \to \infty$ .

EJEMPLO 1.54 (Distribución Exponencial Potencia). Para la distribución Exponencial Potencia (Gómez et al., 1988), la función generadora de densidades es dada por

$$g(u) = \frac{p\Gamma(\frac{p}{2})\pi^{-p/2}}{\Gamma(1 + \frac{p}{2\lambda})2^{1 + \frac{p}{2\lambda}}} \exp(-u^{\lambda}/2), \qquad \lambda > 0.$$

y es usual utilizar la notación  $X \sim \mathsf{PE}_p(\mu, \Sigma, \lambda)$ . En este caso tenemos que la variable aleatoria positiva R tiene densidad

$$h(r) = \frac{p}{\Gamma(1 + \frac{p}{2\lambda})2^{\frac{p}{2\lambda}}} r^{p-1} \exp(-r^{2\lambda}/2), \qquad r > 0.$$

Note también que  $R^{2\lambda} \sim \mathsf{Gama}(\frac{1}{2},\frac{p}{2\lambda})$ . Debemos destacar que esta clase de distribuciones contiene la distribución normal como un caso particular cuando  $\lambda=1$ . Mientras que tiene colas más pesadas que la normal si  $\lambda<1$  y colas más livianas para el caso  $\lambda>1$ . Otro caso particular de interés es la distribución Laplace, que es recuperada cuando  $\lambda=1/2$ .

DEFINICIÓN 1.55. Sea  $\mu \in \mathbb{R}^p$ ,  $\Sigma$  matriz  $p \times p$  definida positiva y H función de distribución de la variable aleatoria positiva W. Entonces, se dice que el vector aleatorio X sigue una distribución de mezcla de escala normal si su función de densidad asume la forma

$$f(x) = |2\pi\Sigma|^{-1/2} \int_0^\infty w^{p/2} \exp(-wu/2) \, d\mathsf{H}(w),$$

donde  $u = (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$  y anotamos  $\boldsymbol{X} \sim \mathsf{SMN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathsf{H}).$ 

EJEMPLO 1.56 (Distribución Slash). Un vector aleatorio  $\boldsymbol{X}$  tiene distribución Slash si su función de densidad es de la forma:

$$f(\boldsymbol{x}) = \nu (2\pi)^{-p/2} |\boldsymbol{\Sigma}|^{-1/2} \int_0^1 w^{p/2+\nu-1} \exp(-wu/2) \, dw.$$

En este caso, tenemos que  $h(w) = \nu w^{\nu-1}$ , para  $w \in (0,1)$  y  $\nu > 0$ . Es decir  $W \sim \mathsf{Beta}(\nu,1)$ .

Observación 1.57. Un vector aleatorio  $\pmb{X} \sim \mathsf{SMN}_p(\pmb{\mu}, \pmb{\Sigma}; \mathsf{H})$  admite la representación

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{\mu} + W^{-1/2} \boldsymbol{Z},$$

donde  $Z \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$  y  $W \sim \mathsf{H}(\nu)$  son independientes. También podemos utilizar la siguiente estructura jerárquica:

$$X|W \sim N_n(\mu, \Sigma/W), \qquad W \sim H(\nu).$$

Esta representación permite, por ejemplo

$$\begin{split} \mathsf{E}(\boldsymbol{X}) &= \mathsf{E}(\mathsf{E}(\boldsymbol{X}|W)) = \boldsymbol{\mu} \\ \mathsf{Cov}(\boldsymbol{X}) &= \mathsf{E}(\mathsf{Cov}(\boldsymbol{X}|W)) + \mathsf{Cov}(\mathsf{E}(\boldsymbol{X}|W)) = \mathsf{E}(W^{-1})\boldsymbol{\Sigma}, \end{split}$$

siempre que  $\mathsf{E}(W^{-1}) < \infty$ .

EJEMPLO 1.58 (Distribución t de Student). Para  $\boldsymbol{X} \sim t_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)$ , con  $\nu > 0$ , podemos escribir

$$X|W \sim N_p(\mu, \Sigma/\omega), \qquad W \sim Gamma(\nu/2, \nu/2),$$

es decir, la función de densidad asociado a la variable de mezcla, es dada por

$$h(\omega;\nu) = \frac{(\nu/2)^{\nu/2} \omega^{\nu/2-1}}{\Gamma(\nu/2)} \exp(-\nu\omega/2).$$

EJEMPLO 1.59 (Distribución normal contaminada). Considere  $X \sim \mathsf{CN}_p(\mu, \Sigma, \epsilon, \gamma)$ Little (1988) donde  $0 \le \epsilon \le 1$  denota el porcentaje de contaminación y  $0 < \gamma < 1$  corresponde a un factor de inflación de escala. En este caso, la variable de mezcla tiene densidad

$$h(\omega; \boldsymbol{\delta}) = \begin{cases} \epsilon, & \omega = \gamma \\ 1 - \epsilon & \omega = 1 \end{cases},$$

con  $\boldsymbol{\delta} = (\epsilon, \gamma)^{\mathsf{T}}$ . Podemos notar que la función de densidad adopta la forma:

$$f(\mathbf{x}) = (1 - \epsilon)|2\pi \mathbf{\Sigma}|^{-1/2} \exp(-u/2) + \epsilon \gamma^{p/2} |2\pi \mathbf{\Sigma}|^{-1/2} \exp(-\lambda u/2).$$

### 1.7. Algunas distribuciones no centrales

Las distribuciones chi-cuadrado, F, t de Student no central son derivadas desde la distribución normal multivariada y son útiles para desarrollar la inferencia en modelo de regresión lineal.

RESULTADO 1.60. Sea  $\mathbf{Z} \sim \mathsf{N}_p(\mathbf{0}, \mathbf{I})$  y sea  $U = \mathbf{Z}^{\top} \mathbf{Z}$ . Entonces  $U \sim \chi^2(p)$ , con función de densidad

$$f(u) = \frac{1}{2^{p/2}\Gamma(p/2)} u^{p/2-1} \exp(-u/2), \qquad u > 0.$$

Demostración. Como U es una función de variables aleatorias normales, entonces su función característica asume la forma

$$\varphi_U(t) = \mathsf{E}\{\exp(itU)\} = \int_{\mathbb{R}^p} \exp(itu)(2\pi)^{-p/2} \exp(-\frac{1}{2}\boldsymbol{z}^{\top}\boldsymbol{z}) \, \mathsf{d}\boldsymbol{z}$$
$$= (2\pi)^{-p/2} \int_{\mathbb{R}^p} \exp(-\frac{1}{2}(1-2it)\boldsymbol{z}^{\top}\boldsymbol{z}) \, \mathsf{d}\boldsymbol{z} = (1-2it)^{-p/2},$$

que corresponde a la función característica de una variable aleatoria chi-cuadrado con p grados de libertad.  $\hfill\Box$ 

DEFINICIÓN 1.61 (Distribución chi-cuadrado no central). Si  $\boldsymbol{Y} \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{I})$ , entonces  $U = \boldsymbol{Y}^{\top} \boldsymbol{Y}$  tiene distribución chi-cuadrado no central con p grados de libertad y parámetro de no centralidad  $\lambda = \boldsymbol{\mu}^{\top} \boldsymbol{\mu}/2$ , en cuyo caso anotamos  $U \sim \chi^2(p; \lambda)$ .

RESULTADO 1.62. Sea  $\mathbf{Y} \sim \mathsf{N}_p(\boldsymbol{\mu}, \mathbf{I})$  donde  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_p) \neq \mathbf{0}$  y sea  $U = \mathbf{Y}^\top \mathbf{Y}$ . Entonces la función característica de U es dada por

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right),$$

 $con \ \lambda = \boldsymbol{\mu}^{\top} \boldsymbol{\mu} / 2.$ 

Demostración. Como  $Y_1, \ldots, Y_p$  son variables aleatorias independientes, tenemos

$$\varphi_U(t) = \mathsf{E}\left\{\exp\left(t\sum_{j=1}^n Y_j^2\right)\right\} = \mathsf{E}\left\{\prod_{j=1}^p \exp(tY_j^2)\right\} = \prod_{j=1}^p \mathsf{E}\{\exp(tY_j^2)\}$$
$$= \prod_{j=1}^p \varphi_{Y_j^2}(t).$$

Ahora, la función característica asociada a la variable aleatoria  $Y_j^2$  es dada por

$$\begin{split} \varphi_{Y_j^2}(t) &= \int_{-\infty}^{\infty} \exp(ity_j^2) (2\pi)^{-1/2} \exp\{-\frac{1}{2} (y_j - \mu_j)^2\} \, \mathrm{d}y_j \\ &= \exp\Big\{\frac{\mu_j^2}{2} \Big(\frac{1}{1 - 2it}\Big) - \frac{\mu_j^2}{2}\Big\} \int_{-\infty}^{\infty} (2\pi)^{-1/2} \exp\Big\{-\frac{(1 - 2it)}{2} \Big(y_j - \frac{\mu_j}{1 - 2it}\Big)^2\Big\} \, \mathrm{d}y_j, \end{split}$$

de este modo,

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left\{\frac{\mu_j^2}{2} \left(\frac{2it}{1 - 2it}\right)\right\},\,$$

y por tanto la función característica de la variable  $U = \sum_{j=1}^{p} Y_j^2$ , asume la forma

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right), \qquad \lambda = \boldsymbol{\mu}^{\top} \boldsymbol{\mu}/2.$$

Observación 1.63. Es interesante notar que la función característica de la variable  $U = \mathbf{Y}^{\top} \mathbf{Y}$ , puede ser escrita como

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{\lambda}{1 - 2it} - \lambda\right)$$

$$= (1 - 2it)^{-p/2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\{\lambda/(1 - 2it)\}^k}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} (1 - 2it)^{-(p+2k)/2}.$$

Es decir, la función característica de U es un promedio ponderado con pesos Poisson de funciones características de variables aleatorias chi-cuadrado con p+2k grados de libertad.

Usando la relación entre funciones características y sus correspondientes funciones de densidad, sigue que la chi-cuadrado no central tiene la siguiente representación de mezcla

$$U|Z \sim \chi^2(p+2z), \qquad Z \sim \mathsf{Poisson}(\lambda),$$
 (1.6)

con densidad

$$f(u) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} \frac{1}{2^{p/2+k} \Gamma(\frac{p}{2} + k)} u^{p/2+k-1} \exp(-u/2), \quad u > 0.$$

La representación en (1.6) es muy útil para obtener los momentos de una variable aleatoria con distribución chi-cuadrado no central. En efecto, el valor esperado de  $U \sim \chi^2(p;\lambda)$  es dado por

$$\mathsf{E}(U) = \mathsf{E}\{\mathsf{E}(U|Z)\} = \mathsf{E}\{p + 2Z\} = p + 2\,\mathsf{E}(Z) = p + 2\lambda,$$

mientras que la varianza de U puede ser calculada como

$$\begin{split} \operatorname{var}(U) &= E\{\operatorname{var}(U|Z)\} + \operatorname{var}\{E(U|Z)\} \\ &= \operatorname{E}\{2(p+2Z)\} + \operatorname{var}(p+2Z) \\ &= 2p+4\lambda + 4\lambda = 2p+8\lambda. \end{split}$$

RESULTADO 1.64. Si  $X \sim N_p(\mu, \Sigma)$  donde  $\Sigma$  es matriz no singular. Entonces

(a) 
$$(X - \mu)^{\top} \Sigma^{-1} (X - \mu) \sim \chi^{2}(p)$$
.

(a) 
$$(X - \mu)^{\top} \Sigma^{-1} (X - \mu) \sim \chi^{2}(p)$$
.  
(b)  $X^{\top} \Sigma^{-1} X \sim \chi^{2}(p; \lambda)$ , donde  $\lambda = \frac{1}{2} \mu^{\top} \Sigma^{-1} \mu$ .

DEMOSTRACIÓN. La idea de la demostración se basa en transformar los componentes de X en variables aleatorias normales independientes. Considere  $\Sigma = BB^{\top}$ con  $\boldsymbol{B}$  no singular. Para probar (a), tome

$$Z = B^{-1}(X - \mu),$$

luego  $Z \sim N_p(\mathbf{0}, I)$  y de este modo

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} \sim \chi^{2}(p; 0).$$

Para probar (b), sea  $Y = B^{-1}X$ , luego

$$m{Y} \sim \mathsf{N}_p(m{B}^{-1}m{\mu}, m{I}),$$

У

$$\boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{B}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{B} \boldsymbol{Y} = \boldsymbol{Y}^{\top} \boldsymbol{Y}.$$

que por definición tiene una distribución chi-cuadrado no central, con parámetro de no centralidad

$$\lambda = \frac{1}{2}(\boldsymbol{B}^{-1}\boldsymbol{\mu})^{\top}(\boldsymbol{B}^{-1}\boldsymbol{\mu}) = \frac{1}{2}\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}.$$

DEFINICIÓN 1.65 (Distribución F no central). Sea  $X_1 \sim \chi^2(\nu_1; \lambda)$  y  $X_2 \sim \chi^2(\nu_2)$ variables aleatorias independientes. Entonces,

$$F = \frac{X_1/\nu_1}{X_2/\nu_2} \sim \mathsf{F}(\nu_1, \nu_2, \lambda),$$

es decir F sigue una distribución F no central con  $\nu_1$  y  $\nu_2$  grados de libertad y parámetro de no centralidad  $\lambda$ .

DEFINICIÓN 1.66 (Distribución Beta no central). Considere  $U_1 \sim \chi^2(\nu_1, \lambda), U_2 \sim$  $\chi^2(\nu_2)$  tal que  $U_1$  y  $U_2$  son variables aleatorias independientes. Entonces,

$$G = \frac{U_1}{U_1 + U_2} \sim \mathsf{Beta}(\nu_1, \nu_2, \lambda),$$

esto es, G sigue una distribuci'on Beta no central con parámetros de forma y escala  $\nu_1$  y  $\nu_2$ , respectivamente y parámetro de no centralidad  $\lambda$ .

DEFINICIÓN 1.67 (Distribución t de Student no central). Si  $Y \sim \mathsf{N}(\mu, \sigma^2)$  y  $U/\sigma^2 \sim \chi^2(\nu)$  son independientes, entonces

$$T = \frac{Y}{\sqrt{U/\nu}} \sim t_{\nu}(\lambda), \quad \lambda = \mu/\sigma,$$

es llamada una variable aleatoria con distribución t de Student no central con  $\nu$  grados de libertad y parámetro de no centralidad  $\lambda$ .

Note también que si  $Z \sim \mathsf{N}(0,1), \, U \sim \chi^2(\nu), \, \delta$  es una constante, y Z es independiente de U, entonces

$$T = \frac{Z + \delta}{\sqrt{U/\nu}} \sim t_{\nu}(\delta).$$

Además el cuadrado de una variable aleatoria t no central se distribuye como una variable aleatoria F no central con parémetro de no centralidad  $\delta = \lambda^2/2$ . De este modo,

$$t_{\nu}^2(\lambda) \stackrel{\mathsf{d}}{=} \mathsf{F}(1,\nu,\lambda^2/2).$$

### 1.8. Distribución de formas cuadráticas

Para motivar ideas, sabemos que si  $\mathbf{Z} \sim \mathsf{N}_p(\mathbf{0}, \mathbf{I})$ , entonces  $U = \mathbf{Z}^\top \mathbf{Z} \sim \chi^2(p)$  pues corresponde a la suma de variables aleatorias IID  $\mathsf{N}(0,1)$ . El objetivo de esta sección es proveer condiciones bajo las cuales variables aleatorias de la forma  $U = \mathbf{X}^\top \mathbf{A} \mathbf{X}$  con  $\mathbf{X} \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  siguen una distribución chi-cuadrado no central así como establecer la independencia entre dos o más formas cuadráticas.

RESULTADO 1.68. Si  $X \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{I})$  y  $\boldsymbol{A} \in \mathbb{R}^{p \times p}$  es matriz simétrica. Entonces  $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi^2(k; \theta)$  si y sólo si  $\boldsymbol{A}$  es idempotente, en cuyo caso los grados de libertad y el parámetro de no centralidad están dados por

$$k = \operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}), \qquad y \qquad \theta = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu},$$

respectivamente.

Demostración. Suponga que  $\boldsymbol{A}$  es idempotente de rango k. Entonces existe una matriz ortogonal  $\boldsymbol{P}$  tal que

$$oldsymbol{P}^{ op} oldsymbol{A} oldsymbol{P} = egin{pmatrix} oldsymbol{I}_k & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Sea  $\boldsymbol{Y} = \boldsymbol{P}^{\top} \boldsymbol{X}$ , entonces  $\boldsymbol{Y} \sim N_p(\boldsymbol{P}^{\top} \boldsymbol{\mu}, \boldsymbol{I})$ , y

$$oldsymbol{X}^{ op} oldsymbol{A} oldsymbol{X} = oldsymbol{Y}^{ op} egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{0} \end{pmatrix} oldsymbol{Y} = \sum_{i=1}^k Y_i^2,$$

que sigue una distribución chi-cuadrado con k grados de libertad. Para el parámetro de no centralidad  $\theta,$  note que

$$\mathsf{E}\{\chi^2(k;\theta)\} = k + 2\theta = \mathsf{E}(\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}) = \mathrm{tr}(\mathsf{E}(\boldsymbol{X}\boldsymbol{X}^{\top})\boldsymbol{A})$$
$$= \mathrm{tr}((\boldsymbol{I} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top})\boldsymbol{A}) = k + \boldsymbol{\mu}^{\top}\boldsymbol{A}\boldsymbol{\mu},$$

y de ahí que  $\theta = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}$ .

Ahora, suponga que  $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi^2(k; \theta)$ . Si  $\boldsymbol{A}$  tiene rango r, entonces para  $\boldsymbol{P}$  matriz ortogonal  $p \times p$ ,

$$oldsymbol{P}^ op oldsymbol{A} oldsymbol{P} = egin{pmatrix} oldsymbol{\Lambda}_1 & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix},$$

con  $\Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$ , donde  $\lambda_1, \dots, \lambda_r$  son los valores propios no nulos de  $\boldsymbol{A}$ . Sea  $\boldsymbol{Y} = \boldsymbol{P}^{\top} \boldsymbol{X}$ , entonces

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{P}^{\top} \boldsymbol{A} \boldsymbol{P} \boldsymbol{Y} = \sum_{i=1}^{r} \lambda_{j} Y_{j}^{2} = U.$$

Tenemos que  $\boldsymbol{Y} \sim \mathsf{N}_p(\boldsymbol{\delta}, \boldsymbol{I})$  con  $\boldsymbol{\delta} = \boldsymbol{P}^{\top} \boldsymbol{\mu}$ , de modo que  $Y_j^2 \sim \chi^2(1; \delta_j^2/2)$  con función característica

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left(\frac{it\delta_j^2}{1 - 2it}\right),$$

por la independencia de  $Y_1, \ldots, Y_r$  sigue que

$$\varphi_U(t) = \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2} \exp\left(\frac{it\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right)$$
$$= \exp\left(it\sum_{j=1}^r \frac{\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right) \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2}.$$

Como  $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} \sim \chi_k^2(\theta)$  tiene función característica

$$\varphi_{X^{\top}AX}(t) = (1 - 2it)^{-k/2} \exp\left(\frac{2it\theta}{1 - 2it}\right),$$

entonces desde las dos expresiones anteriores debemos tener  $r=k,~\lambda_j=1,~\forall j$  y  $\theta=\sum_j \delta_j^2/2$ . Consecuentemente  $\boldsymbol{P}^{\top}\boldsymbol{A}\boldsymbol{P}$  tiene la forma

$$oldsymbol{P}^{ op}oldsymbol{A}oldsymbol{P} = egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix},$$

que es idempotente. Luego

$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = (\mathbf{P}^{\top} \mathbf{A} \mathbf{P}) (\mathbf{P}^{\top} \mathbf{A} \mathbf{P}) = \mathbf{P}^{\top} \mathbf{A}^{2} \mathbf{P} \implies \mathbf{A}^{2} = \mathbf{A}.$$

Resultado 1.69. Si  $X \sim \mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$  donde  $\pmb{\Sigma}$  es no singular y X,  $\pmb{\mu}$  y  $\pmb{\Sigma}$  son particionados como

$$oldsymbol{X} = egin{pmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{pmatrix}, \qquad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix},$$

donde  $X_1$ ,  $\mu_1$  son  $k \times 1$  y  $\Sigma_{11}$  es  $k \times k$ . Entonces

$$U = (X - \mu)^{\top} \Sigma^{-1} (X - \mu) - (X_1 - \mu_1)^{\top} \Sigma_{11}^{-1} (X_1 - \mu_1) \sim \chi^2 (p - k).$$

Demostración. Considere  $\boldsymbol{\Sigma} = \boldsymbol{B}\boldsymbol{B}^{\top}$ , donde  $\boldsymbol{B}$  es no singular y particione  $\boldsymbol{B}$  como

$$oldsymbol{B} = egin{pmatrix} oldsymbol{B}_1 \ oldsymbol{B}_2 \end{pmatrix}, \qquad oldsymbol{B}_1 \in \mathbb{R}^{k imes p}.$$

Luego,

$$oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op = egin{pmatrix} oldsymbol{B}_1 oldsymbol{B}_1^ op & oldsymbol{B}_1 oldsymbol{B}_2^ op \ oldsymbol{B}_2 oldsymbol{B}_1^ op & oldsymbol{B}_2 oldsymbol{B}_2^ op \end{pmatrix},$$

de donde sigue que  $\Sigma_{11} = \boldsymbol{B}_1 \boldsymbol{B}_1^{\top}$ . Ahora, sea  $\boldsymbol{Z} = \boldsymbol{B}^{-1}(\boldsymbol{X} - \boldsymbol{\mu}) \sim \mathsf{N}_p(\boldsymbol{0}, \boldsymbol{I})$ . De este modo,

$$egin{pmatrix} egin{pmatrix} egin{pmatrix} eta_1 \ eta_2 \end{pmatrix} oldsymbol{Z} = egin{pmatrix} oldsymbol{X}_1 - oldsymbol{\mu}_1 \ oldsymbol{X}_2 - oldsymbol{\mu}_2 \end{pmatrix}.$$

Entonces

$$U = \boldsymbol{Z}^{\top} \boldsymbol{Z} - \boldsymbol{Z}^{\top} \boldsymbol{B}_{1}^{\top} (\boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\top})^{-1} \boldsymbol{B}_{1} \boldsymbol{Z} = \boldsymbol{Z}^{\top} (\boldsymbol{I} - \boldsymbol{B}_{1}^{\top} (\boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\top})^{-1} \boldsymbol{B}_{1}) \boldsymbol{Z}$$
$$= \boldsymbol{Z}^{\top} (\boldsymbol{I} - \boldsymbol{H}_{1}) \boldsymbol{Z}, \qquad \text{con } \boldsymbol{H}_{1} = \boldsymbol{B}_{1}^{\top} (\boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\top})^{-1} \boldsymbol{B}_{1}.$$

Note que  $H_1$  es simétrica e idempotente y por tanto también lo es  $C = I - H_1$ . De donde sigue que  $U \sim \chi^2(\nu)$ , con  $\nu = \operatorname{rg}(C) = p - k$ .

El Resultado 1.68 se puede generalizar al caso que X tiene una matriz de covarianza arbitraria. Suponga que  $X \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$ . Una condición para que  $X^\top AX$  tenga una distribución chi-cuadrado es

$$\Sigma A \Sigma A = \Sigma A$$

en cuyo caso los grados de libertad son  $k = rg(\mathbf{A}\Sigma)$ . Si  $\Sigma$  es no singular, la condición resulta  $\mathbf{A}\Sigma\mathbf{A} = \mathbf{A}$ .

RESULTADO 1.70. Si  $X \sim N_p(\mathbf{0}, \Sigma)$  donde  $\Sigma$  tiene rango  $k \leq p$  y si A es una inversa generalizada de  $\Sigma$  ( $\Sigma A \Sigma = \Sigma$ ), entonces  $X^{\top} A X \sim \chi^2(k)$ .

Demostración. Considere  $\boldsymbol{Y} = \boldsymbol{B}\boldsymbol{X}$  donde  $\boldsymbol{B}$  es una matriz no singular  $p \times p$  tal que

$$oldsymbol{B}oldsymbol{\Sigma}oldsymbol{B}^{ op} = egin{pmatrix} oldsymbol{I}_k & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix}.$$

Particionando  $\boldsymbol{Y}=(\boldsymbol{Y}_1^\top,\boldsymbol{Y}_2^\top)^\top$  donde  $\boldsymbol{Y}_1$  es un vector  $k\times 1$  sigue que  $\boldsymbol{Y}_1\sim \mathsf{N}_k(\boldsymbol{0},\boldsymbol{I})$  y  $\boldsymbol{Y}_2=\boldsymbol{0}$  con probabilidad 1. Es decir, tenemos que

$$\boldsymbol{Y} = (\boldsymbol{Y}_1^{\top}, \boldsymbol{0})^{\top}, \quad \text{con probabilidad 1.}$$

Ahora, note que

$$\begin{pmatrix} \boldsymbol{I}_k & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} = \boldsymbol{B}\boldsymbol{\Sigma}\boldsymbol{B}^\top = \boldsymbol{B}\boldsymbol{\Sigma}\boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{B}^\top$$

pues  $\boldsymbol{A}$  es una inversa generalizada de  $\boldsymbol{\Sigma}$ . De este modo,

$$egin{pmatrix} egin{pmatrix} m{I}_k & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix} = m{B}m{\Sigma}m{B}^ op m{B}^{- op}m{A}m{B}^{-1}m{B}m{\Sigma}m{B}^ op \ &= egin{pmatrix} m{I}_k & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix} m{B}^{- op}m{A}m{B}^{-1} egin{pmatrix} m{I}_k & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Luego, con probabilidad uno.

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \boldsymbol{Y} = (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix}$$
$$= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix}$$
$$= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{Y}_{1}^{\top} \boldsymbol{Y}_{1} \sim \chi^{2}(k).$$

RESULTADO 1.71. Si  $X \sim \mathsf{N}_p(\mu, \Sigma)$ , donde  $\Sigma$  es no singular, y A es una matriz simétrica  $p \times p$ . Entonces  $X^\top A X \sim \chi^2(k; \lambda)$ , donde  $k = \mathsf{rg}(A)$ ,  $\lambda = \mu^\top A \mu/2$  si y sólo si  $A\Sigma$  es matriz idempotente.

DEMOSTRACIÓN. Considere Y = BX, donde B es una matriz no singular  $p \times p$  tal que  $B\Sigma B^{\top} = I_p$ . Entonces

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \boldsymbol{Y},$$

donde  $Y \sim \mathsf{N}_p(B\mu, I)$ . Desde el Resultado 1.68 sigue que  $X^\top AX$  tiene distribución chi-cuadrado sólo si  $B^{-\top}AB^{-1}$  es idempotente. Esto es equivalente a mostrar que  $A\Sigma$  es idempotente.

Si  $A\Sigma$  es idempotente, tenemos

$$A = A\Sigma A = AB^{-1}B^{-\top}A, \qquad (\Sigma = B^{-1}B^{-\top})$$

así, pre- y post-multiplicando por  $B^{-\top}$  y  $B^{-1}$ , obtenemos

$$B^{-\top}AB^{-1} = (B^{-\top}AB^{-1})(B^{-\top}AB^{-1}),$$

y por tanto es idempotente.

Por otro lado, si  $B^{-\top}AB^{-1}$  es idempotente, entonces

$$B^{-\top}AB^{-1} = (B^{-\top}AB^{-1})(B^{-\top}AB^{-1}) = B^{-\top}A\Sigma AB^{-1},$$

es decir  $\boldsymbol{A} = \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}$  y de ahí que  $\boldsymbol{A}\boldsymbol{\Sigma}$  es idempotente.

EJEMPLO 1.72. Sea  $X_1, \ldots, X_n$  variables aleatorias IID  $\mathsf{N}(\theta, \sigma^2)$ , en este caso podemos definir  $\boldsymbol{X} = (X_1, \ldots, X_n)^{\top}$  tal que  $\boldsymbol{X} \sim \mathsf{N}_n(\theta \mathbf{1}_n, \sigma^2 \boldsymbol{I})$ . Considere la forma cuadrática

$$Q = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{\sigma^2} X^\top C X = X^\top A X,$$

con  $C = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$  y  $A = C/\sigma^2$ . De esta manera

$$A\Sigma = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top},$$

que es idempotente. Además

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}\left(\boldsymbol{I}_n - \frac{1}{n}\mathbf{1}\mathbf{1}^\top\right) = n - 1,$$

У

$$\lambda = \frac{\theta^2}{2} \mathbf{1}^{\top} A \mathbf{1} = \frac{\theta^2}{2\sigma^2} \mathbf{1}^{\top} \left( I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right) \mathbf{1} = 0.$$

Finalmente,

$$Q = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n-1).$$

RESULTADO 1.73. Sea  $X \sim \mathsf{N}_p(\mu, \Sigma)$ ,  $Q_1 = X^\top A X \ y \ Q_2 = X^\top B X$ . Entonces  $Q_1 \ y \ Q_2$  son independientes si y sólo si  $A \Sigma B = \mathbf{0}$ .

DEMOSTRACIÓN. Tenemos  $\Sigma = TT^{\top}$ , y defina  $G_1 = T^{\top}AT$ ,  $G_2 = T^{\top}BT$ . Note que si  $A\Sigma B = 0$ , entonces

$$G_1G_2 = (T^{\top}AT)(T^{\top}BT) = T^{\top}A\Sigma BT = 0.$$

Debido a la simetría de  $G_1$  y  $G_2$ , sigue que

$$\mathbf{0} = (G_1 G_2)^{\top} = G_2^{\top} G_1^{\top} = G_2 G_1.$$

Como  $G_1G_2 = G_2G_1$  existe una matriz ortogonal P que simultáneamente diagonaliza  $G_1$  y  $G_2$ , esto es:

$$egin{aligned} oldsymbol{P}^{ op} oldsymbol{G}_1 oldsymbol{P} &= oldsymbol{P}^{ op} oldsymbol{T}^{ op} oldsymbol{A} oldsymbol{T} oldsymbol{T}^{ op} oldsymbol{T} oldsymbol{T} oldsymbol{B} oldsymbol{T} oldsymbol{P} oldsymbol{T} oldsymbol{T$$

De este modo,

$$\mathbf{0} = \boldsymbol{G}_1 \boldsymbol{G}_2 = \boldsymbol{P} \boldsymbol{D}_1 \boldsymbol{P}^\top \boldsymbol{P} \boldsymbol{D}_2 \boldsymbol{P}^\top = \boldsymbol{P} \boldsymbol{D}_1 \boldsymbol{D}_2 \boldsymbol{P}^\top$$

lo que es verdad si  $D_1D_2=0$ . Como  $D_1$  y  $D_2$  son diagonales, sus elementos diagonales deben ocurrir en posiciones diferentes. Es decir, podemos escribir

$$oldsymbol{D}_1 = egin{pmatrix} oldsymbol{M}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix}, \qquad oldsymbol{D}_2 = egin{pmatrix} oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{M}_2 \end{pmatrix}.$$

Sea  $\mathbf{Y} = \mathbf{P}^{\top} \mathbf{T}^{-1} \mathbf{X}$ , entonces

$$Q_1 = \boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{X}^{\top} \boldsymbol{T}^{-\top} \boldsymbol{P} \boldsymbol{P}^{\top} \boldsymbol{T}^{\top} \boldsymbol{A} \boldsymbol{T} \boldsymbol{P} \boldsymbol{P}^{\top} \boldsymbol{T}^{-1} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{D}_1 \boldsymbol{Y},$$

$$Q_2 = \boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{X}^{\top} \boldsymbol{T}^{-\top} \boldsymbol{P} \boldsymbol{P}^{\top} \boldsymbol{T}^{\top} \boldsymbol{B} \boldsymbol{T} \boldsymbol{P} \boldsymbol{P}^{\top} \boldsymbol{T}^{-1} \boldsymbol{X} = \boldsymbol{Y}^{\top} \boldsymbol{D}_2 \boldsymbol{Y}.$$

Además,

$$\mathsf{Cov}(\boldsymbol{Y}) = \mathsf{Cov}(\boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\boldsymbol{X}) = \boldsymbol{P}^{\top}\boldsymbol{T}^{-1}\,\mathsf{Cov}(\boldsymbol{X})\boldsymbol{T}^{-\top}\boldsymbol{P} = \boldsymbol{I}.$$

En efecto,  $\boldsymbol{Y} \sim \mathsf{N}_p(\boldsymbol{P}^\top \boldsymbol{T}^{-1} \boldsymbol{\mu}, \boldsymbol{I})$ . Ahora, particionando adecuadamente  $\boldsymbol{Y}$ , sigue que

$$\begin{split} \boldsymbol{Y}^{\top}\boldsymbol{D}_{1}\boldsymbol{Y} &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{Y}_{2}^{\top}) \begin{pmatrix} \boldsymbol{M}_{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \end{pmatrix} = \boldsymbol{Y}_{1}^{\top}\boldsymbol{M}_{1}\boldsymbol{Y}_{1}, \\ \boldsymbol{Y}^{\top}\boldsymbol{D}_{2}\boldsymbol{Y} &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{Y}_{2}^{\top}) \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_{2} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \end{pmatrix} = \boldsymbol{Y}_{2}^{\top}\boldsymbol{M}_{2}\boldsymbol{Y}_{2}, \end{split}$$

y la independencia entre  $Q_1$  y  $Q_2$  sigue desde la independencia entre  $\boldsymbol{Y}_1$  y  $\boldsymbol{Y}_2$ .  $\square$ 

RESULTADO 1.74. Sea  $X \sim \mathsf{N}_p(\mu, \Sigma)$ ,  $Q = X^\top A X y U = B X$ . Entonces Q y U son independientes si y sólo si  $B \Sigma A = 0$ .

EJEMPLO 1.75. Considere  $X_1, \ldots, X_n$  muestra aleatoria desde  $N(\theta, \sigma^2)$ , así

$$\boldsymbol{X} = (X_1, \dots, X_n)^{\top} \sim \mathsf{N}_n(\theta \mathbf{1}, \sigma^2 \boldsymbol{I}_n).$$

Tenemos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \mathbf{1}^{\top} \mathbf{X}, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \mathbf{X}^{\top} \mathbf{C} \mathbf{X}.$$

Como C1 = 0 sigue la independencia entre  $\overline{X}$  y  $S^2$ .

Considere los siguientes dos lemas, los que permitirán mostrar el resultado principal de esta sección.

LEMA 1.76. Sean  $A_1, \ldots, A_k$  matrices  $m \times m$  simétricas e idempotentes y suponga que

$$\boldsymbol{A}_1 + \boldsymbol{A}_2 + \cdots + \boldsymbol{A}_k = \boldsymbol{I}_m.$$

Entonces  $A_i A_j = 0$  para todo  $i \neq j$ .

DEMOSTRACIÓN. Considere cualquiera de esas matrices, digamos  $A_h$  y denote su rango por r. Como  $A_h$  es simétrica e idempotente, existe una matriz ortogonal P tal que

$$oldsymbol{P}^ op oldsymbol{A}_h oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Para  $j \neq h$ , defina  $\boldsymbol{B}_j = \boldsymbol{P}^{\top} \boldsymbol{A}_j \boldsymbol{P}$ , y note que

$$oldsymbol{I}_m = oldsymbol{P}^ op oldsymbol{P} = oldsymbol{P}^ op oldsymbol{Q}_{i=1} oldsymbol{A}_j oldsymbol{P} = \sum_{j=1}^k oldsymbol{P}^ op oldsymbol{A}_j oldsymbol{P} = egin{pmatrix} oldsymbol{I}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} + \sum_{i 
eq h} oldsymbol{B}_j.$$

O equivalentemente,

$$\sum_{j \neq h} \boldsymbol{B}_j = egin{pmatrix} oldsymbol{0} & oldsymbol{0} \ oldsymbol{I}_{m-r} \end{pmatrix}.$$

Claramente, dado que  $A_j$  es simétrica e idempotente, sigue que  $B_j$  también lo es. De modo que, sus elementos diagonales son no negativos. Además,  $(B_j)_{ll} = 0$ , para  $l = 1, \ldots, r$ . Así, sigue que  $B_j$  debe ser de la forma

$$m{B}_j = egin{pmatrix} m{0} & m{0} \ m{0} & m{C}_j \end{pmatrix},$$

donde  $C_j$  es matriz  $(m-r)\times (m-r)$ , simétrica e idempotente. Ahora, para cualquier  $j\neq h$ 

$$\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{A}_{j}\boldsymbol{P} = (\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{P})(\boldsymbol{P}^{\top}\boldsymbol{A}_{j}\boldsymbol{P}) = \begin{pmatrix} \boldsymbol{I}_{r} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{j} \end{pmatrix} = \boldsymbol{0},$$

lo que es verdad, sólo si  $A_hA_j=\mathbf{0}$ , pues P es no singular. Notando que h es arbitrareo, la prueba es completa.

LEMA 1.77. Sean  $A_1, \ldots, A_k$  matrices simétricas de orden  $m \times m$  y defina

$$\boldsymbol{A} = \boldsymbol{A}_1 + \boldsymbol{A}_2 + \cdots + \boldsymbol{A}_k.$$

 $Considere\ las\ siguientes\ afirmaciones,$ 

- (a)  $\mathbf{A}_i$  es idempotente, para  $i = 1, \dots, k$ .
- (b) A es idempotente.
- (c)  $\mathbf{A}_i \mathbf{A}_j = \mathbf{0}$ , para  $i \neq j$ .

Entonces, si dos condiciones son satisfechas, la tercera condición debe ser verdadera.

Demostración. Primero mostraremos que (a) y (b) implica (c). Como  $\boldsymbol{A}$  es simétrica e idempotente, existe una matriz ortogonal  $\boldsymbol{P}$  tal que

$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = \mathbf{P}^{\top} (\mathbf{A}_1 + \dots + \mathbf{A}_k) \mathbf{P} = \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \tag{1.7}$$

donde  $r = rg(\mathbf{A})$ .

Sea  $B_i = P^{\top} A_i P$ , para i = 1, ..., k, y note que  $B_i$  es simétrica e idempotente. Es decir,  $B_i$  debe ser de la forma

$$oldsymbol{B}_i = egin{pmatrix} oldsymbol{C}_i & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix},$$

donde la matriz  $r \times r$ ,  $C_i$  debe ser simétrica e idempotente. Por (1.7), tenemos

$$C_1 + \cdots + C_k = I_r$$
.

Por el Lema 1.76, sigue que  $C_iC_j=\mathbf{0}$  para  $i\neq j$ , de donde obtenemos  $B_iB_j=\mathbf{0}$ y de ahí que  $A_i A_j = 0$ , para  $i \neq j$ .

Que (a) y (c) implican (b), sigue de notar

$$egin{aligned} oldsymbol{A}^2 &= \left(\sum_{i=1}^k oldsymbol{A}_i
ight)^2 = \sum_{i=1}^k \sum_{j=1}^k oldsymbol{A}_i oldsymbol{A}_j = \sum_{i=1}^k oldsymbol{A}_i^2 + \sum_{i 
eq j} oldsymbol{A}_i oldsymbol{A}_j \ &= \sum_{i=1}^k oldsymbol{A}_i = oldsymbol{A}. \end{aligned}$$

Finalmente, para probar que (b) y (c) implican (a). Suponga que (c) es verdad, entonces  $A_iA_i = A_iA_i$  para todo  $i \neq j$  y las matrices  $A_1, \ldots, A_k$  pueden ser diagonalizadas simultáneamente. Esto es, existe una matriz ortogonal Q tal que

$$\mathbf{Q}^{\top} \mathbf{A}_i \mathbf{Q} = \mathbf{D}_i, \qquad i = 1, \dots, k,$$

donde cada una de las matrices  $D_1, \ldots, D_k$  es diagonal. Además,

$$\boldsymbol{D}_{i}\boldsymbol{D}_{j} = \boldsymbol{Q}^{\top}\boldsymbol{A}_{i}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{A}_{j}\boldsymbol{Q} = \boldsymbol{Q}^{\top}\boldsymbol{A}_{i}\boldsymbol{A}_{j}\boldsymbol{Q} = \boldsymbol{0}, \qquad i \neq j.$$
 (1.8)

Como A es simétrica e idempotente, también lo es la matriz diagonal

$$\boldsymbol{Q}^{\top} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{D}_1 + \cdots \boldsymbol{D}_k,$$

y cada elemento diagonal de  $Q^{\top}AQ$  debe ser 0 o 1, y por (1.8), lo mismo es válido para los elementos diagonales de  $D_1, \ldots, D_k$ .

De este modo,  $D_i$  es simétrica e idempotente y de ahí que también lo es

$$\boldsymbol{A}_i = \boldsymbol{Q} \boldsymbol{D}_i \boldsymbol{Q}^{\top}, \qquad i = 1, \dots, k,$$

lo que termina la prueba.

Observación 1.78. Suponga que las condiciones del Lema 1.77 son satisfechas. Entonces (a) implica que  $rg(\mathbf{A}_i) = tr(\mathbf{A}_i)$ , y desde (b), sigue que

$$\operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}\left(\sum_{i=1}^k \boldsymbol{A}_i\right) = \sum_{i=1}^k \operatorname{tr}(\boldsymbol{A}_i) = \sum_{i=1}^k \operatorname{rg}(\boldsymbol{A}_i).$$

RESULTADO 1.79 (Teorema de Cochran). Sea  $X \sim N_p(\mu, \Sigma)$ , con  $\Sigma > 0$ . Suponga que  $A_i$ , es una matriz simétrica de orden  $p \times p$  con rango  $r_i$ , para i = 1, ..., k, y

$$\boldsymbol{A} = \boldsymbol{A}_1 + \boldsymbol{A}_2 + \dots + \boldsymbol{A}_k,$$

es de rango r. Considere las condiciones:

- (a)  $\mathbf{A}_i \mathbf{\Sigma}$  es idempotente, para  $i = 1, \ldots, k$ .
- (b)  $A\Sigma$  es idempotente.
- (c)  $\mathbf{A}_i \mathbf{\Sigma} \mathbf{A}_j = \mathbf{0}$ , para  $i \neq j$ . (d)  $r = \sum_{i=1}^k r_i$ .

si dos de (a), (b) y (c) se satisfacen, o si (b) y (d) son satisfechas. Entonces,

- (i)  $\mathbf{X}^{\top} \mathbf{A}_i \mathbf{X} \sim \chi^2(r_i; \lambda_i)$ , con  $\lambda_i = \boldsymbol{\mu}^{\top} \mathbf{A} \boldsymbol{\mu}/2$ , para  $i = 1, \dots, k$ .
- (ii)  $\mathbf{X}^{\top} \mathbf{A} \mathbf{X} \sim \chi^{2}(r; \lambda)$ , con  $\lambda = \boldsymbol{\mu}^{\top} \mathbf{A} \boldsymbol{\mu}/2$ . (iii)  $\mathbf{X}^{\top} \mathbf{A}_{1} \mathbf{X}, \mathbf{X}^{\top} \mathbf{A}_{2} \mathbf{X}, \dots, \mathbf{X}^{\top} \mathbf{A}_{k} \mathbf{X}$  son mutuamente independientes.

EJERCICIOS 31

Demostración. Tenemos que  $\boldsymbol{\Sigma} = \boldsymbol{T}\boldsymbol{T}^{\top}$  y las condiciones (a)-(d), pueden ser expresadas como:

- (a)  $\mathbf{T}^{\top} \mathbf{A}_i \mathbf{T}$  es idempotente, para  $i = 1, \dots, k$ .
- (b)  $T^{\top}AT$  es idempotente.
- (c)  $(\mathbf{T}^{\top} \mathbf{A}_i \mathbf{T}) (\mathbf{T}^{\top} \mathbf{\Sigma} \mathbf{A}_j \mathbf{T}) = \mathbf{0}$ , para  $i \neq j$ . (d)  $\operatorname{rg}(\mathbf{T}^{\top} \mathbf{A} \mathbf{T}) = \sum_{i=1}^{k} \operatorname{rg}(\mathbf{T}^{\top} \mathbf{A}_i \mathbf{T})$ .

Como  $T^{\top}A_1T, T^{\top}A_2T, \dots, T^{\top}A_kT$  y  $T^{\top}AT$  satisfacen las condiciones del Lema 1.77 (y de la Observación 1.78). Entonces, las condiciones (a)-(d) se satisfacen.

Sabemos que (a) implica (i) y (b) implica (ii). Mientras que, Resultado 1.73 con (c), garantiza (iii), lo que completa la prueba.

#### **Ejercicios**

1.1 Sean  $X_1, \ldots, X_n$  vectores aleatorios independientes con  $X_i \sim \mathsf{N}_p(\mu, \Sigma)$ , para  $i = 1, \dots, n$ . Obtenga la distribución de

$$\sum_{i=1}^{n} \alpha_i \boldsymbol{X}_i,$$

con  $\alpha_1, \ldots, \alpha_n$  constantes fijas.

1.2 Si  $X_1, \ldots, X_n$  son independientes cada uno con  $X_i \sim \mathsf{N}_p(\mu, \Sigma)$ . Muestre que la distribución del vector de medias

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

es  $N_p(\boldsymbol{\mu}, \frac{1}{n}\boldsymbol{\Sigma})$ .

- 1.3 Demuestre el Resultado 1.20, usando la función característica de un vector aleatorio normal.
- 1.4 Sean  $X_1, \dots, X_n$  variables aleatorias independientes e idénticamente distribuídas  $N(\mu, \sigma^2)$  y defina

$$Q = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2,$$

¿Es Q un estimador insesgado de  $\sigma^2$ ?

1.5 Sea  $X \sim \mathsf{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  y defina

$$oldsymbol{Y} = oldsymbol{T}^ op oldsymbol{\Sigma}^{-1/2} (oldsymbol{X} - oldsymbol{\mu}), \qquad oldsymbol{u} = oldsymbol{T}^ op oldsymbol{\Sigma}^{1/2} oldsymbol{A} oldsymbol{\mu}.$$

con T ortogonal y  $A = A^{\top}$ . Obtenga la distribución de Y y calcule  $var(\boldsymbol{u}^{\top}\boldsymbol{Y}).$ 

1.6 Considere Z matriz aleatoria  $n \times p$  con función característica

$$\varphi_Z(\boldsymbol{T}) = \mathsf{E}\{\exp(i\operatorname{tr}(\boldsymbol{T}^{\top}\boldsymbol{Z}))\} = \exp\{-\frac{1}{2}\operatorname{tr}(\boldsymbol{T}^{\top}\boldsymbol{T})\}.$$

con  $T \in \mathbb{R}^{n \times p}$ . Obtenga la función característica de

$$Y = \mathbf{\Sigma}^{1/2} Z \mathbf{\Theta}^{1/2} + \boldsymbol{\mu},$$

donde  $\mu \in \mathbb{R}^{n \times p}$  y  $\Sigma$ ,  $\Theta$  son matrices semidefinidas positivas  $n \times n$  y  $p \times p$ , respectivamente.

1.7 Sea  $\mathbf{Z} = \mathbf{U}\mathbf{D}\alpha + \boldsymbol{\epsilon}$  con  $\mathbf{U} \in \mathbb{R}^{n \times p}$  tal que  $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$ ,  $\mathbf{D}$  es matriz diagonal  $p \times p$  y  $\boldsymbol{\epsilon} \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \mathbf{I})$ . Considere

$$\widehat{\boldsymbol{\alpha}} = (\boldsymbol{D}^2 + \lambda \boldsymbol{I})^{-1} \boldsymbol{D} \boldsymbol{U}^T \boldsymbol{Z}.$$

donde  $\lambda$  es un escalar positivo.

- (a) Obtenga la distribución de  $\widehat{\alpha}$ ,
- (b) Muestre que

$$\alpha - \mathsf{E}(\widehat{\alpha}) = \lambda (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \alpha.$$

- 1.8 Sea  $\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$  y considere  $\boldsymbol{b} = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{Y}, \ \boldsymbol{u} = (\boldsymbol{D}^{-1} + \boldsymbol{Z}^\top \boldsymbol{Z})^{-1} \boldsymbol{Z}^\top (\boldsymbol{Y} \boldsymbol{X}\boldsymbol{b}),$  donde  $\boldsymbol{X} \in \mathbb{R}^{n \times p}, \ \boldsymbol{Z} \in \mathbb{R}^{n \times q}$  y  $\boldsymbol{D}$  es matriz no singular  $q \times q$ .
  - (a) Halle la distribución de  $\boldsymbol{b}$  y  $\boldsymbol{u}$ ,
  - (b) Son b y u independientes?
- 1.9 Considere

$$egin{pmatrix} egin{pmatrix} Y \ b \end{pmatrix} \sim \mathsf{N}_{n+q} \left( egin{pmatrix} Xeta \ 0 \end{pmatrix}, egin{pmatrix} ZDZ^ op + R & ZD \ DZ^ op & D \end{pmatrix} 
ight),$$

donde  $X \in \mathbb{R}^{n \times p}$ ,  $Z \in \mathbb{R}^{n \times q}$  y R, D son matrices no singulares  $n \times n$  y  $q \times q$ , respectivamente. Determine la distribución de b|Y.

1.10 Sea  $U_i \sim \chi^2(n_i; \lambda_i)$ , i = 1, ..., K variables aleatorias independientes. Muestre que

$$U = \sum_{i=1}^{K} U_i \sim \chi^2(n; \lambda),$$

donde  $n = \sum_{i=1}^{K} n_i y \lambda = \sum_{i=1}^{K} \lambda_i$ .

1.11 Sea  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$ , donde  $\boldsymbol{X}$  es matriz  $n \times p$  con  $\operatorname{rg}(\boldsymbol{X}) = p$  y  $\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n)$ . Defina

$$Q = \frac{(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} [\boldsymbol{G}(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{G}^{\top}]^{-1} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})}{\sigma^2},$$

donde  $\pmb{G} \in \mathbb{R}^{m \times p}$  con  $\operatorname{rg}(\pmb{G}) = m$  y  $\pmb{g}$  es vector m-dimensional. Determine la distribución de Q.

1.12 Sea  $\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2\boldsymbol{I}_n)$  y considere las formas cuadráticas

$$Q_1 = \frac{\widehat{oldsymbol{eta}}^{ op} oldsymbol{X}^{ op} oldsymbol{X} \widehat{oldsymbol{eta}}}{\sigma^2}, \qquad Q_2 = \frac{(oldsymbol{Y} - oldsymbol{X} \widehat{oldsymbol{eta}})^{ op} (oldsymbol{Y} - oldsymbol{X} \widehat{oldsymbol{eta}})}{\sigma^2},$$

donde  $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}$  con  $\boldsymbol{X} \in \mathbb{R}^{n \times p}$  y  $\operatorname{rg}(\boldsymbol{X}) = p$ .

- (a) Halle la distribución de  $Q_i$ , i = 1, 2.
- (b) Sea  $Q = Q_1 + Q_2$ , mostrar la independencia conjunta de  $Q_1$  y  $Q_2$ .

EJERCICIOS

1.13 Considere  $\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2\boldsymbol{I})$  con  $\boldsymbol{X} \in \mathbb{R}^{n \times p}$  y  $\boldsymbol{\beta} \in \mathbb{R}^p$  y sea  $Q = Q_1 + Q_2$ ,

$$Q_1 = \frac{\boldsymbol{Y}^\top (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{Y}}{\sigma^2}, \qquad Q_2 = \frac{\boldsymbol{Y}^\top (\boldsymbol{H} - \frac{1}{n} \boldsymbol{J}) \boldsymbol{Y}}{\sigma^2},$$

con  $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}$ . Muestre que  $Q_1$  y  $Q_2$  tienen distribuciones chi-cuadrado independientes.

1.14 Considere

$$oldsymbol{Y} = (oldsymbol{I}_p \otimes oldsymbol{1}_n)oldsymbol{lpha} + oldsymbol{\epsilon},$$

donde  $\boldsymbol{Y} = (\boldsymbol{Y}_1^{\top}, \boldsymbol{Y}_2^{\top}, \dots, \boldsymbol{Y}_p^{\top})^{\top}$  con  $\boldsymbol{Y}_i$  vector n-dimensional, para  $i = 1, \dots, n, \ \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)^{\top} \ \text{y} \ \boldsymbol{\epsilon} \sim \mathsf{N}_{np}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_{np})$ . Sean

$$Q_1 = \frac{\boldsymbol{Y}^{\top}(\boldsymbol{I}_p \otimes \frac{1}{n}\boldsymbol{J}_n)\boldsymbol{Y}}{\sigma^2}, \quad \text{y} \quad Q_2 = \frac{\boldsymbol{Y}^{\top}(\boldsymbol{I}_p \otimes \boldsymbol{C})\boldsymbol{Y}}{\sigma^2},$$

donde  $\boldsymbol{J}_n = \mathbf{1}_n \mathbf{1}_n^{\top}$  y  $\boldsymbol{C} = \boldsymbol{I}_n - \frac{1}{n} \boldsymbol{J}_n$ . (a) Halle la distribución de  $Q_k, \ k = 1, 2$ .

- (b) ¿Son  $Q_1$  y  $Q_2$  independientes?

### Capítulo 2

## Inferencia en el Modelo Lineal

En este capítulo se describe la inferencia en modelos lineales. Primeramente introducimos algunas definiciones y supuestos en los que se basan los modelos de regresión.

#### 2.1. Definición de un modelo lineal

DEFINICIÓN 2.1. Considere la variable aleatoria Y, decimos que sigue un modelo lineal si

$$\mathsf{E}(Y) = \sum_{j=1}^{p} x_j \beta_j = \boldsymbol{x}^{\top} \boldsymbol{\beta},$$

donde  $\mathbf{x} = (x_1, \dots, x_p)^{\top}$  representa un vector de p variables regresoras, mientras que  $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$  denota un vector de parámetros desconocidos, conocidos como coeficientes de regresión.

Suponga que tenemos n observaciones recolectadas desde Y, entonces podemos considerar el modelo

$$\mathsf{E}(Y_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}, \qquad i = 1, \dots, n.$$

Es conveniente escribir lo anterior como:

$$\mathsf{E}(oldsymbol{Y}) = egin{pmatrix} oldsymbol{x}_1^ op oldsymbol{eta}_1 \ dots \ oldsymbol{x}_n^ op oldsymbol{eta} \end{pmatrix} = egin{pmatrix} oldsymbol{x}_1^ op \ dots \ oldsymbol{x}_n^ op \end{pmatrix} oldsymbol{eta} = oldsymbol{X}oldsymbol{eta},$$

donde  $X = (x_{ij}) \in \mathbb{R}^{n \times p}$  se denomina matriz de diseño.

Observación 2.2. Cuando

$$\mathsf{Cov}(oldsymbol{Y}) = \sum_{r=1}^K \phi_r oldsymbol{\Sigma}_r = oldsymbol{\Sigma}(oldsymbol{\phi}),$$

donde  $\phi = (\phi_1, \dots, \phi_K)^{\top}$  son parámetros desconocidos y  $\Sigma_1, \dots, \Sigma_K$  son matrices (simétricas) conocidas, decimos que Y sigue un modelo lineal general.

Típicamente, asumiremos que  $Y_1, \dots, Y_n$  son independientes con varianza constante, en cuyo caso

$$Cov(\boldsymbol{Y}) = \sigma^2 \boldsymbol{I},$$

y decimos que Y sigue un modelo lineal simple.

Definición 2.3. Se dice que el vector  $\boldsymbol{Y}$  sigue un  $modelo\ lineal\ si$ 

$$\mathsf{E}(oldsymbol{Y}) = oldsymbol{X}oldsymbol{eta}, \qquad \mathsf{Cov}(oldsymbol{Y}) = \sum_{r=1}^K \phi_r oldsymbol{\Sigma}_r.$$

Note que la definición anterior puede ser expresada de forma equivalente como:

$$Y = X\beta + \epsilon$$
.

con

$$\mathsf{E}(oldsymbol{\epsilon}) = oldsymbol{0}, \qquad \mathsf{Cov}(oldsymbol{\epsilon}) = \sum_{r=1}^K \phi_r oldsymbol{\Sigma}_r.$$

OBSERVACIÓN 2.4. Los supuestos de momentos dados en la Definición 2.3 suelen ser llamados *condiciones de Gauss-Markov*. Aunque es usual que sean expresados en términos del modelo lineal simple, como

$$Y = X\beta + \epsilon$$
.

con

$$\mathsf{E}(\boldsymbol{\epsilon}) = \mathbf{0}, \qquad \mathsf{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}_n.$$

DEFINICIÓN 2.5. Se dice que el vector  $\boldsymbol{Y}$  sigue un modelo lineal normal si

$$m{Y} \sim \mathsf{N}_n(m{X}m{eta}, m{\Sigma}(m{\phi})),$$

o bien

$$Y = X\beta + \epsilon, \qquad \epsilon \sim \mathsf{N}_n(\mathbf{0}, \mathbf{\Sigma}(\phi)).$$

Mientras que sigue un modelo normal simple, si

$$Y \sim N_n(X\beta, \sigma^2 I).$$
 (2.1)

Observación 2.6. Se debe destacar que el modelo en (2.1) puede ser escrito como

$$Y_i \stackrel{\text{ind}}{\sim} \mathsf{N}_1(\boldsymbol{x}_i^{\top} \boldsymbol{\beta}, \sigma^2), \qquad i = 1, \dots, n.$$
 (2.2)

En efecto, la inferencia estadística para los modelos definidos en Ecuaciones (2.1) y (2.2) son equivalentes.<sup>1</sup>

Supuesto 1. El modelo lineal descrito por la ecuación:

$$Y = X\beta + \epsilon$$
,

tiene los siguientes supuestos:

A1: X es una matriz no aleatoria  $n \times p$  con n > p.

A2: La matriz X tiene rango p, es decir, X es rango columna completo.

A3: El vector aleatorio n-dimensional Y tiene elementos que son observables.

A4: El vector aleatorio no observable  $\epsilon$  satisface

$$\mathsf{E}(\boldsymbol{\epsilon}) = \mathbf{0}, \qquad \mathsf{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}, \quad \sigma^2 > 0.$$

El Supuesto A4 puede ser re-establecido para incorporar la suposición de normalidad, esto es,

Supuesto 2. Considere:

 $\mathsf{A4}^{\star}$ : El vector aleatorio  $\epsilon$  satisface  $\epsilon \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ , o equivalentemente

$$\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n).$$

 $<sup>^{1}</sup>$ Es decir, **bajo normalidad** estos dos modelos son equivalentes. En efecto, esto **no** es verdad en general.

#### 2.2. Estimación de parámetros en el modelo de regresión lineal

Primeramente abordaremos la estimación máximo verosímil bajo normalidad, revisaremos propiedades de los estimadores y abordaremos la conexión con el método de mínimos cuadrados. En efecto, es fácil notar que la función de verosimilitud proveniente del modelo  $Y \sim N_n(X\beta, \sigma^2 I_n)$ , adopta la forma:

$$L(\boldsymbol{\theta}) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2\right),$$

con  $\boldsymbol{\theta} = (\boldsymbol{\beta}^\top, \sigma^2)^\top$ . De este modo, la función de log-verosimilitud es dada por

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2} \log 2\pi \sigma^2 - \frac{1}{2\sigma^2} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$$
$$= -\frac{n}{2} \log 2\pi \sigma^2 - \frac{1}{2\sigma^2} Q(\boldsymbol{\beta}),$$

donde

$$Q(\beta) = \|Y - X\beta\|^2 = \sum_{i=1}^{n} (Y_i - x_i^{\top} \beta)^2,$$

se denomina suma de cuadrados del error. Diferenciando con relación a  $\boldsymbol{\beta}$  y  $\sigma^2$ , obtenemos

$$\mathsf{d}_eta\,\ell(oldsymbol{ heta}) = -rac{1}{2\sigma^2}\,\mathsf{d}_eta\,\|oldsymbol{Y} - oldsymbol{X}oldsymbol{eta}\|^2 = rac{1}{\sigma^2}(oldsymbol{Y} - oldsymbol{X}oldsymbol{eta})^ op oldsymbol{X}\,\mathsf{d}oldsymbol{eta},$$

У

$$\mathsf{d}_{\sigma^2}\,\ell(\boldsymbol{\theta}) = -\frac{n}{2\sigma^2}\,\mathsf{d}\sigma^2 + \frac{1}{2\sigma^4}\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2\,\mathsf{d}\sigma^2.$$

Es decir.<sup>2</sup>

$$\begin{split} &\frac{\partial \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\beta}} = \frac{1}{\sigma^2} \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}), \\ &\frac{\partial \ell(\boldsymbol{\theta})}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \|\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}\|^2. \end{split}$$

Desde la condición de primer orden, tenemos las ecuaciones de verosimilitud:

$$\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}) = \boldsymbol{0}$$
$$n\widehat{\sigma}^2 - \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = 0.$$

Resolviendo con relación a  $\beta$  obtenemos las ecuaciones normales

$$\boldsymbol{X}^{\top} \boldsymbol{X} \widehat{\boldsymbol{\beta}} = \boldsymbol{X}^{\top} \boldsymbol{Y},$$

dado que  $\text{rg}(\pmb{X}) = \text{rg}(\pmb{X}^{\top}\pmb{X}) = p,$ entonces el sistema anterior admite solución única dada por:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y},$$

$$\widehat{\sigma}^{2} = \frac{1}{n} Q(\widehat{\boldsymbol{\beta}}) = \frac{1}{n} \|\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}\|^{2}.$$

Se define el vector de valores predichos como

$$\widehat{\boldsymbol{Y}} = \boldsymbol{X}\widehat{\boldsymbol{\beta}} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} = \boldsymbol{H}\boldsymbol{Y},$$

donde  $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}$ .

<sup>&</sup>lt;sup>2</sup>Usando el primer Teorema de identificación dado en Magnus y Neudecker (2007), pag. 98.

<sup>&</sup>lt;sup>3</sup>Note que  $\hat{\beta} = X^+ Y$  con  $X^+ = (X^\top X)^{-1} X^\top$  la inversa Moore-Penrose de X.

Es fácil notar que  $\boldsymbol{H}$  es simétrica e idempotente, en cuyo caso

$$\operatorname{rg}(\boldsymbol{H}) = \operatorname{tr}(\boldsymbol{H}) = \operatorname{tr}(\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) = \operatorname{tr}((\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}) = p.$$

El vector de diferencias entre Y y  $\hat{Y}$  se denomina el vector de residuos, es decir

$$e = Y - \widehat{Y} = (I - H)Y.$$

Además, tenemos que  $\boldsymbol{I}-\boldsymbol{H}$ también es simétrica e idempotente. Con esta notación podemos escribir

$$egin{aligned} Q(\widehat{oldsymbol{eta}}) &= \|oldsymbol{Y} - oldsymbol{X} \widehat{oldsymbol{eta}}\|^2 = oldsymbol{e}^ op oldsymbol{e} = oldsymbol{Y}^ op (oldsymbol{I} - oldsymbol{H}) oldsymbol{Y} \ &= \sum_{i=1}^n (Y_i - oldsymbol{x}_i^ op \widehat{oldsymbol{eta}})^2, \end{aligned}$$

que es conocido como suma de cuadrados residual.

Resultado 2.7. Considere el modelo:

$$\boldsymbol{Y} \sim \mathsf{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n),$$

con los supuestos A1 a A4\*. Entonces, tenemos que:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y} \sim \mathsf{N}_{p}(\boldsymbol{\beta}, \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}), \tag{2.3}$$

de donde sigue que  $\hat{\boldsymbol{\beta}}$  es insesgado y  $\mathsf{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}$ . Además, la variable aleatoria

$$\frac{Q(\widehat{\boldsymbol{\beta}})}{\sigma^2} = \frac{\boldsymbol{Y}^{\top}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y}}{\sigma^2} \sim \chi^2(n - p).$$

Finalmente  $\widehat{\beta}$  y  $s^2 = Q(\widehat{\beta})/(n-p)$  son independientes.

Demostración. Notando que  $\widehat{\pmb{\beta}}$  es una transformación lineal de un vector aleatorio normal y

$$\begin{split} \mathsf{E}(\widehat{\boldsymbol{\beta}}) &= (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\,\mathsf{E}(\boldsymbol{Y}) = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{\beta}, \\ \mathsf{Cov}(\widehat{\boldsymbol{\beta}}) &= (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\,\mathsf{Cov}(\boldsymbol{Y})\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}, \end{split}$$

y el resultado en Ecuación (2.3) sigue. Por otro lado,

$$\frac{Q(\widehat{\boldsymbol{\beta}})}{\sigma^2} = \frac{(n-p)s^2}{\sigma^2} = \frac{\boldsymbol{Y}^{\top}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y}}{\sigma^2},$$

sigue una distribución chi-cuadrado pues  $\boldsymbol{I}-\boldsymbol{H}$  es matriz idempotente con

$$rg(\mathbf{I} - \mathbf{H}) = tr(\mathbf{I} - \mathbf{H}) = tr(\mathbf{I}) - tr(\mathbf{H}) = n - p.$$

Además, el parámetro de no centralidad es dado por

$$\lambda = \frac{1}{2\sigma^2} \boldsymbol{\beta}^{\top} \boldsymbol{X}^{\top} (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{X} \boldsymbol{\beta} = 0.$$

En efecto,

$$HX = X(X^{\top}X)^{-1}X^{\top}X = X \quad \Rightarrow \quad (I - H)X = 0.$$

La independencia entre  $\hat{\beta}$  y  $s^2$  sigue desde (I - H)X = 0, lo que concluye la prueba.

Observación 2.8. Es fácil notar que

$$E\{Q(\widehat{\boldsymbol{\beta}})\} = E\{\boldsymbol{Y}^{\top}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y}\} = \sigma^{2}\operatorname{tr}(\boldsymbol{I} - \boldsymbol{H}) + \boldsymbol{\beta}^{\top}\boldsymbol{X}^{\top}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{X}\boldsymbol{\beta}$$
$$= \sigma^{2}(n - p),$$

es decir,

$$\mathsf{E}(\widehat{\sigma}^2) = \Big(\frac{n-p}{n}\Big)\sigma^2,$$

lo que permite sugerir el estimador insesgado:

$$s^2 = \frac{1}{n-p} \| \boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}} \|^2.$$

RESULTADO 2.9. El vector de valores predichos y el vector de residuos son independientemente distribuídos como

$$\hat{Y} \sim N_n(X\beta, \sigma^2 H), \qquad e \sim N_n(0, \sigma^2 (I - H)).$$

DEMOSTRACIÓN. Considere

$$\begin{pmatrix} \widehat{Y} \\ e \end{pmatrix} = \begin{pmatrix} H \\ I - H \end{pmatrix} Y,$$

luego,

$$\mathsf{E} \begin{pmatrix} \widehat{Y} \\ e \end{pmatrix} = \begin{pmatrix} H \\ I - H \end{pmatrix} X \beta = \begin{pmatrix} HX\beta \\ 0 \end{pmatrix} = \begin{pmatrix} X\beta \\ 0 \end{pmatrix}.$$

Además,

$$\begin{aligned} \mathsf{Cov} \begin{pmatrix} \hat{\boldsymbol{Y}} \\ \boldsymbol{e} \end{pmatrix} &= \sigma^2 \begin{pmatrix} \boldsymbol{H} \\ \boldsymbol{I} - \boldsymbol{H} \end{pmatrix} \begin{pmatrix} \boldsymbol{H}^\top, (\boldsymbol{I} - \boldsymbol{H})^\top \end{pmatrix} \\ &= \sigma^2 \begin{pmatrix} \boldsymbol{H} \boldsymbol{H}^\top & \boldsymbol{H} (\boldsymbol{I} - \boldsymbol{H})^\top \\ (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{H}^\top & (\boldsymbol{I} - \boldsymbol{H}) (\boldsymbol{I} - \boldsymbol{H})^\top \end{pmatrix} \\ &= \sigma^2 \begin{pmatrix} \boldsymbol{H}^2 & \mathbf{0} \\ \mathbf{0} & (\boldsymbol{I} - \boldsymbol{H})^2 \end{pmatrix} \\ &= \sigma^2 \begin{pmatrix} \boldsymbol{H} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I} - \boldsymbol{H} \end{pmatrix}, \end{aligned}$$

lo que permite establecer el resultado.

Observación 2.10. Debemos resaltar que H y I - H son matrices de rango incompleto y por tanto  $\hat{Y}$  y e siguen distribuciones normales singulares.

A continuación vamos a suponer que el vector de respuestas y la matriz de diseño dependen del tamaño muestral, n. Considere el siguiente problema

$$\min_{\beta} Q_n(\beta) = \min_{\beta} \|\boldsymbol{Y}_n - \boldsymbol{X}_n \boldsymbol{\beta}\|^2,$$

cuya solución,  $\widehat{\boldsymbol{\beta}}_n$  es llamado estimador mínimos cuadrados (LS), dado por:

$$\widehat{\boldsymbol{\beta}}_n = (\boldsymbol{X}_n^{\top} \boldsymbol{X}_n)^{-1} \boldsymbol{X}_n^{\top} \boldsymbol{Y}_n,$$

Es habitual asumir el modelo

$$Y_n = X_n \beta + \epsilon_n$$

con 
$$\mathsf{E}(\boldsymbol{\epsilon}_n) = \mathbf{0}$$
 y  $\mathsf{Cov}(\boldsymbol{\epsilon}_n) = \sigma^2 \boldsymbol{I}_n$ . Esto lleva a 
$$\mathsf{E}(\widehat{\boldsymbol{\beta}}_n) = (\boldsymbol{X}_n^\top \boldsymbol{X}_n)^{-1} \boldsymbol{X}_n^\top \mathsf{E}(\boldsymbol{X}_n \boldsymbol{\beta} + \boldsymbol{\epsilon}_n) = \boldsymbol{\beta}$$
 
$$\mathsf{Cov}(\widehat{\boldsymbol{\beta}}_n) = \mathsf{Cov}((\boldsymbol{X}_n^\top \boldsymbol{X}_n)^{-1} \boldsymbol{X}_n^\top (\boldsymbol{X}_n \boldsymbol{\beta} + \boldsymbol{\epsilon}_n)) = \sigma^2 (\boldsymbol{X}_n^\top \boldsymbol{X}_n)^{-1}.$$

Supuesto 3. Considere el modelo,

$$\boldsymbol{Y}_n = \boldsymbol{X}_n \boldsymbol{\beta} + \boldsymbol{\epsilon}_n, \tag{2.4}$$

y suponga las condiciones:

B1:  $\mathsf{E}(\epsilon_n) = \mathbf{0}$ ,  $\mathsf{Cov}(\epsilon_n) = \sigma^2 \mathbf{I}$ . B2:  $Sea\ h_{kk} = \boldsymbol{x}_{k,n}^\top (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{x}_{k,n}$  el k-ésimo elemento de la diagonal de  $\boldsymbol{H}_n$  y

$$\max_{1 \le k \le n} h_{kk} \to 0, \quad conforme \ n \to \infty.$$

B3:  $\lim_{n\to\infty} \frac{1}{n} \boldsymbol{X}_n^{\top} \boldsymbol{X}_n = \boldsymbol{K}$  es una matriz no singular (no estocástica).

Usando el supuesto B3, tenemos

$$\lim_{n\to\infty} \mathrm{Cov}(\widehat{\boldsymbol{\beta}}_n) = \sigma^2 \lim_{n\to\infty} \frac{1}{n} \Big(\frac{\boldsymbol{X}_n^\top \boldsymbol{X}_n}{n}\Big)^{-1} = \sigma^2 \lim_{n\to\infty} \frac{1}{n} \boldsymbol{K}^{-1} = \mathbf{0}.$$

Esto implica que  $\widehat{\beta}_n \xrightarrow{2nd} \beta$ . Es decir,  $\widehat{\beta}_n$  es un estimador consistente de  $\beta$ .

RESULTADO 2.11 (Distribución asintótica del estimador LS). Considere el modelo (2.4) bajo los supuestos B1 a B3. Entonces

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) \stackrel{\mathsf{D}}{\longrightarrow} \mathsf{N}_p(\boldsymbol{0}, \sigma^2 \boldsymbol{K}^{-1}).$$

DEMOSTRACIÓN. Ver Sen y Singer (1993), pág. 279.

Resultado 2.12 (Teorema de Gauss-Markov). Suponga  $Y = X\beta + \epsilon$  y sea  $\hat{\beta}$  =  $(X^{\top}X)^{-1}X^{\top}Y$  el estimador mínimos cuadrados. Asuma el supuesto B1. El esti $mador \ \hat{\gamma} = \mathbf{h}^{\top} \hat{\boldsymbol{\beta}} \ de \ \gamma = \mathbf{h}^{\top} \boldsymbol{\beta} \ es \ el \ mejor \ estimador \ lineal \ e \ insesgado \ (BLUE).$ 

Demostración. Sea  $c^{\top}Y$  cualquier otro estimador lineal e insesgado de  $\gamma = h^{\top}\beta$ . Dado que  $c^{\top}Y$  es insesgado, sigue que

$$\boldsymbol{h}^{\top}\boldsymbol{\beta} = \mathsf{E}(\boldsymbol{c}^{\top}\boldsymbol{Y}) = \boldsymbol{c}^{\top}\,\mathsf{E}(\boldsymbol{Y}) = \boldsymbol{c}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \qquad \forall\, \boldsymbol{\beta},$$

luego, tenemos

$$c^{\top}X = h^{\top}$$
.

Ahora,

$$\operatorname{var}(\boldsymbol{c}^{\top}\boldsymbol{Y}) = \boldsymbol{c}^{\top}\operatorname{Cov}(\boldsymbol{Y})\boldsymbol{c} = \sigma^{2}\boldsymbol{c}^{\top}\boldsymbol{c}, \tag{2.5}$$

mientras que

$$\operatorname{var}(\boldsymbol{h}^{\top}\widehat{\boldsymbol{\beta}}) = \boldsymbol{h}^{\top} \operatorname{Cov}(\widehat{\boldsymbol{\beta}}) \boldsymbol{h} = \sigma^{2} \boldsymbol{h}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{h} = \sigma^{2} \boldsymbol{c}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{c}, \quad (2.6)$$

desde (2.5) v (2.6), tenemos

$$\begin{aligned} \operatorname{var}(\boldsymbol{c}^{\top}\boldsymbol{Y}) - \operatorname{var}(\boldsymbol{h}^{\top}\widehat{\boldsymbol{\beta}}) &= \sigma^{2}(\boldsymbol{c}^{\top}\boldsymbol{c} - \boldsymbol{c}^{\top}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{c}) \\ \sigma^{2}\boldsymbol{c}^{\top}(\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X})\boldsymbol{c} &\geq 0, \end{aligned}$$

el resultado sigue pues I - H es semidefinida positiva.

#### 2.3. Aspectos numéricos de estimación LS en regresión lineal

El estimador mínimos cuadrados (o de máximo verosimilitud bajo normalidad) para el modelo en lineal con los Supuestos A1-A4, puede ser expresado como la solución del problema:

$$\min_{oldsymbol{eta} \in \mathbb{R}^p} Q(oldsymbol{eta}), \quad ext{con} \quad Q(oldsymbol{eta}) = \|oldsymbol{Y} - oldsymbol{X} oldsymbol{eta}\|_2^2,$$

lo que lleva a las ecuaciones de estimación  $\boldsymbol{X}^{\top}(\boldsymbol{Y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}})=\boldsymbol{0},$  o bien

$$\boldsymbol{X}^{\top} \boldsymbol{X} \widehat{\boldsymbol{\beta}} = \boldsymbol{X}^{\top} \boldsymbol{Y}. \tag{2.7}$$

Métodos habituales para obtener  $\widehat{\beta}$ , son:

- Métodos directos basados en la factorización Cholesky, el operador Sweep (Goodnight, 1979) y descomposiciones QR y SVD.
- Un poco menos común en regresión, es el uso del método gradientes conjugados (CG) (McIntosh, 1982).

Observación 2.13. Algunas características de los procedimientos descritos anteriormente son relevantes de ser destacadas, a saber:

• Cholesky y Sweep requieren formar las matrices:

$$m{X}^{ op}m{X}, m{X}^{ op}m{Y}, \qquad ext{y} \qquad egin{pmatrix} m{X}^{ op}m{X} & m{X}^{ op}m{Y} \ m{Y}^{ op}m{X} & m{Y}^{ op}m{Y} \end{pmatrix},$$

respectivamente.

- QR y SVD descomponen la matriz de diseño X y resuelven sistemas lineales (triangular y diagonal, respectivamente) mucho más pequeños  $(n \gg p)$ .
- Una implementación cuidadosa de CG sólo requiere productos matrizvector/operaciones entre vectores y tan sólo 4p posiciones para almacenamiento.
- Existe código confiable y con excelente desempeño para álgebra lineal numérica en las bibliotecas BLAS, LAPACK, rutinas que pueden ser invocadas desde (por ejemplo) R y Matlab.

A continuación introducimos algunas ideas sobre los procedimientos numéricos que serán aplicados al modelo de regresión lineal. Primeramente, considere el siguiente resultado

RESULTADO 2.14 (Factorización Cholesky). Sea  $\mathbf{A} \in \mathbb{R}^{p \times p}$  es matriz simétrica y definida positiva, entonces existe una única matriz triangular superior  $\mathbf{G} \in \mathbb{R}^{p \times p}$  con elementos diagonales positivos tal que

$$\boldsymbol{A} = \boldsymbol{G}^{ op} \boldsymbol{G}$$

Note que si usamos la factorización Cholesky para resolver el sistema Ax = b. Entonces debemos resolver los sistemas triangulares

$$oldsymbol{G}^ op oldsymbol{z} = oldsymbol{b}, \qquad oldsymbol{y} \qquad oldsymbol{G} oldsymbol{x} = oldsymbol{z}.$$

En efecto,

$$Ax = (G^{\top}G)x = G^{\top}(Gx) = G^{\top}z = b.$$

#### Algoritmo 1: Factorización Cholesky

```
Entrada: Matriz A \in \mathbb{R}^{p \times p}.
    Salida : Factor Cholesky G \in \mathbb{R}^{p \times p}.
 1 begin
          g_{11} = \sqrt{a_{11}}.
 \mathbf{2}
          for j = 2 to p do
 3
           g_{1j} = a_{1j}/g_{11}.
 4
 5
          for i = 2 to p do
 6
               g_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} g_{ki}^2},

for j = i + 1 to n do
                g_{ij} = (a_{ij} - \sum_{k=1}^{i-1} g_{ki} g_{kj})/g_{ii}
 9
10
          end
11
12 end
```

Sea  $RSS = Q(\widehat{\beta})$  la suma de cuadrados residuales y notando que

$$\mathsf{RSS} = \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = \boldsymbol{Y}^\top \boldsymbol{Y} - \boldsymbol{Y}^\top \boldsymbol{X}\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^\top \boldsymbol{X}^\top \boldsymbol{Y} + \widehat{\boldsymbol{\beta}}^\top \boldsymbol{X}^\top \boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Tenemos,

$$\boldsymbol{Y}^{\top}\boldsymbol{X}\widehat{\boldsymbol{\beta}} = \boldsymbol{Y}^{\top}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} = \boldsymbol{Y}^{\top}\boldsymbol{H}^{2}\boldsymbol{Y} = \widehat{\boldsymbol{\beta}}^{\top}\widehat{\boldsymbol{Y}} = \widehat{\boldsymbol{\beta}}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Es decir, podemos escribir:

$$\mathsf{RSS} = \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = \boldsymbol{Y}^{\top}\boldsymbol{Y} - \widehat{\boldsymbol{\beta}}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Podemos resolver (2.7) usando la descomposición Cholesky, de

$$X^{\top}X = U^{\top}U$$
,

con  $\boldsymbol{U}$  matrix triangular superior. De este modo, debemos resolver los sistemas triangulares:

$$U^{\top}z = X^{\top}Y, \quad \text{y} \quad U\widehat{\boldsymbol{\beta}} = z.$$

Mientras que para obtener  $s^2$ , consideramos:

$$RSS = \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = \boldsymbol{Y}^{\top}\boldsymbol{Y} - \boldsymbol{z}^{\top}\boldsymbol{z}.$$

Adicionalmente,

$$\boldsymbol{U}^{-1}\boldsymbol{U}^{-\top} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1},$$

es proporcional a la matriz de covarianza de  $\widehat{\beta}$ .

Observación 2.15. Invirtiendo  $\boldsymbol{U}$  in-place, esto es, haciendo

$$\boldsymbol{U} \leftarrow \boldsymbol{U}^{-1}$$
,

sigue que  $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \boldsymbol{U}\boldsymbol{U}^{\top}$  lo que permite ahorrar espacio de almacenamiento y puede ser eficientemente calculado usando rutinas desde BLAS.

DEFINICIÓN 2.16 (Operador Sweep). Sea  $\mathbf{A} = (a_{ij})$  matriz cuadrada  $p \times p$ , aplicando el operador Sweep sobre el k-ésimo elemento diagonal de  $\mathbf{A}$  ( $a_{kk} \neq 0$ ) permite obtener la matriz  $\mathbf{B}$ , definida como:

$$b_{kk} = \frac{1}{a_{kk}},$$

$$b_{ik} = -\frac{a_{ik}}{a_{kk}}, \qquad i \neq k,$$

$$b_{kj} = \frac{a_{kj}}{a_{kk}}, \qquad j \neq k,$$

$$b_{ij} = a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i, j \neq k,$$

y escribimos  $\boldsymbol{B} = \mathsf{Sweep}(k)\boldsymbol{A}$ .

Propiedad 2.17. El operador Sweep disfruta de las siguientes propiedades:

- (i)  $Sweep(k) Sweep(k) \mathbf{A} = \mathbf{A}$ .
- ${\rm (ii)} \ \ {\sf Sweep}(k) \ {\sf Sweep}(r) \\ {\pmb{A}} = {\sf Sweep}(r) \ {\sf Sweep}(k) \\ {\pmb{A}}.$

(iii) 
$$\boldsymbol{A}^{-1} = \prod_{i=1}^n \mathsf{Sweep}(i) \boldsymbol{A}.$$

Debemos destacar que, si A es matriz simétrica, el operador Sweep preserva la simetría de A. Existen varias definiciones ligeramente diferentes del operador Sweep y más importantemente, es conocido que problemas de inestabilidad pueden ocurrir cuando algún  $a_{kk}$  es cercano a cero.

Considere  $\mathbf{A} \in \mathbb{R}^{p \times p}$  matriz particionada como:

$$oldsymbol{A} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{pmatrix},$$

donde  $A_{11} \in \mathbb{R}^{r \times r}$  (r < p). Suponga que se aplica el operador Sweep sobre los elementos diagonales de  $A_{11}$ . De este modo,

$$m{B} = \prod_{i=1}^r \mathsf{Sweep}(i) m{A} = egin{pmatrix} m{B}_{11} & m{B}_{12} \ m{B}_{21} & m{B}_{22} \end{pmatrix},$$

con

$$egin{aligned} m{B}_{11} &= m{A}_{11}^{-1}, & m{B}_{12} &= m{A}_{11}^{-1} m{A}_{12}, \ m{B}_{21} &= -m{A}_{21} m{A}_{11}^{-1}, & m{B}_{22} &= m{A}_{22} - m{A}_{21} m{A}_{11}^{-1} m{A}_{12}. \end{aligned}$$

Este resultado nos permite utilizar el operador Sweep en problemas de regresión. Considere

$$Z = (X, Y) \in \mathbb{R}^{n \times (p+1)},$$

luego

$$\boldsymbol{Z}^{\top}\boldsymbol{Z} = \begin{pmatrix} \boldsymbol{X}^{\top}\boldsymbol{X} & \boldsymbol{X}^{\top}\boldsymbol{Y} \\ \boldsymbol{Y}^{\top}\boldsymbol{X} & \boldsymbol{Y}^{\top}\boldsymbol{Y} \end{pmatrix} \in \mathbb{R}^{(p+1)\times(p+1)}.$$

que corresponde a una matriz cuadrada de orden  $(p+1) \times (p+1)$ .

Aplicando el operador Sweep sobre los primeros p elementos diagonales de  $\mathbf{Z}^{\top}\mathbf{Z}$ , obtenemos:

$$\begin{split} \boldsymbol{B} &= \prod_{i=1}^p \mathsf{Sweep}(i) \boldsymbol{Z}^\top \boldsymbol{Z} \\ &= \begin{pmatrix} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} & (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{Y} \\ -\boldsymbol{Y}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} & \boldsymbol{Y}^\top \boldsymbol{Y} - \boldsymbol{Y}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{Y} \end{pmatrix} \\ &= \begin{pmatrix} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} & \widehat{\boldsymbol{\beta}} \\ -\widehat{\boldsymbol{\beta}}^\top & \mathsf{RSS} \end{pmatrix}. \end{split}$$

es decir, este procedimiento nos permite calcular todos los elementos necesarios para llevar a cabo la estimación en un modelo de regresión lineal.

En el contexto de regresión, es usual tener que  $n \gg p$  y uno de los procedimientos preferidos para llevar a cabo la estimación mínimos cuadrados esta basado en la descomposición ortogonal-triangular (QR) de la matriz de diseño  $\boldsymbol{X}$ . Considere la siguiente definición,

DEFINICIÓN 2.18 (Descomposición QR). Sea  $\mathbf{A} \in \mathbb{R}^{n \times p}$ , entonces existe  $\mathbf{Q} \in \mathcal{O}_n$  y  $\mathbf{R} \in \mathbb{R}^{n \times p}$ , tal que

$$oldsymbol{A} = oldsymbol{Q} oldsymbol{R}, \qquad oldsymbol{R} = egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix}$$

donde  $\mathbf{R}_1 \in \mathbb{R}^{p \times p}$  matriz triangular superior, aquí suponemos que  $n \geq p$ .

En efecto, es fácil notar que si A = QR, entonces

$$oldsymbol{A}^ op oldsymbol{A} = oldsymbol{R}^ op oldsymbol{Q}^ op oldsymbol{Q} oldsymbol{R} = oldsymbol{R}^ op oldsymbol{R} = oldsymbol{R}_1^ op oldsymbol{R}_1,$$

y  $\mathbf{R}_1$  corresponde al factor Cholesky de  $\mathbf{A}^{\top}\mathbf{A}$ . Este aspecto es relevante pues no es necesario formar la matriz de productos cruzados  $\mathbf{A}^{\top}\mathbf{A}$  para obtener el factor Cholesky  $\mathbf{R}_1$ . Antes de describir brevemente el algoritmo para obtener la descomposición QR recordamos algunas propiedades fundamentales de las matrices ortogonales:

- $\bullet \ QQ^{\top} = Q^{\top}Q = I.$
- $ullet \ \langle oldsymbol{Q} oldsymbol{x}, oldsymbol{Q} oldsymbol{y} 
  angle = oldsymbol{x}^ op oldsymbol{Q}^ op oldsymbol{Q} oldsymbol{y} = oldsymbol{x}^ op oldsymbol{y} = oldsymbol{x}^ op oldsymbol{Q} oldsymbol{y} = oldsymbol{x}^ op oldsymbol{y} = oldsymbol{x}^ op oldsymbol{Q} oldsymbol{y} = oldsymbol{x}^ op oldsymbol{Q} oldsymbol{y} = oldsymbol{x}^ op oldsymbol{Q} oldsymbol{y} = oldsymbol{y} oldsymbol{y} = oldsymbol{Q} oldsymbol{y} = oldsymbol{y} = oldsymbol{y} oldsymbol{y} = oldsymbol{y} oldsymbol{y} = oldsymbol{y} = oldsymbol{y} = oldsymbol{y} oldsymbol{y} = ol$
- ||Qx|| = ||x||.
- Si  $B = Q^{\top}AQ$ , entonces A y B tienen los mismos valores propios para Q matriz ortogonal.

Existen diversar variantes del algoritmo para implementar la descomposición QR. A continuación veremos una basada en transformaciones Householder. Primeramente, considere el siguiente problema

PROBLEMA 2.19. Para  $\boldsymbol{x} \in \mathbb{R}^p, \ \boldsymbol{x} \neq \boldsymbol{0}$ , hallar una matriz ortogonal  $\boldsymbol{M} \in \mathbb{R}^{n \times n}$  tal que

$$oldsymbol{M}^{ op}oldsymbol{x} = \|oldsymbol{x}\|\,oldsymbol{e}_1,$$

donde  $e_1 = (1, 0, \dots, 0)^{\top}$  denota el primer vector unidad.

DEFINICIÓN 2.20 (Reflexión). Sea  $\boldsymbol{u}$  y  $\boldsymbol{v}$  vectores ortonormales y  $\boldsymbol{x}$  vector generado por  $\boldsymbol{u}$  y  $\boldsymbol{v}$ . Entonces

$$\boldsymbol{x} = c_1 \boldsymbol{u} + c_2 \boldsymbol{v},$$

para escalares  $c_1$ ,  $c_2$ . El vector

$$\widetilde{\boldsymbol{x}} = -c_1 \boldsymbol{u} + c_2 \boldsymbol{v},$$

el llamado una reflexión de x a través de la línea definida por el vector v (o  $u^{\perp}$ ).

DEFINICIÓN 2.21 (Transformación Householder). Sea  $\mathbf{x} = c_1 \mathbf{u} + c_2 \mathbf{v}$ , con  $\mathbf{u}$  y  $\mathbf{v}$  vectores generadores de  $\mathbf{x}$  y considere la matriz

$$\boldsymbol{H} = \boldsymbol{I} - \lambda \boldsymbol{u} \boldsymbol{u}^{\top}, \qquad \lambda = 2/\boldsymbol{u}^{\top} \boldsymbol{u}.$$

Note que  $\mathbf{H}\mathbf{x} = \widetilde{\mathbf{x}}$ , es decir  $\mathbf{H}$  es un reflector.

El objetivo es determinar una matriz M basado en reflexiones Householder. Debemos destacar que la  $transformaci\'on\ Householder$  satisface las siguientes propiedades:

- Hu = -u.
- Hv = v para cualquier v ortogonal a u.
- $\bullet$   $H^{\top} = H$ .
- $H^{-1} = H^{\top}$ .

Observación 2.22. La operación  $\boldsymbol{H}\boldsymbol{x}$  puede ser obtenida usando una operación axpy. En efecto,

$$\boldsymbol{H}\boldsymbol{x} = (\boldsymbol{I} - \lambda \boldsymbol{u}\boldsymbol{u}^{\top})\boldsymbol{x} = \boldsymbol{x} - \alpha \boldsymbol{u}, \qquad \alpha = \lambda \boldsymbol{u}^{\top}\boldsymbol{x}.$$

### Algoritmo 2: Descomposición QR

Entrada: Matriz  $\mathbf{A} \in \mathbb{R}^{n \times p}$ .

Salida : Factores Q y R, matrices ortogonal y triangular superior, respectivamente.

#### 1 begin

```
Hacer Q = I_n y R = A
 \mathbf{2}
            for i = 1 to p do
 3
                   \boldsymbol{x} = (R_{1i}, \dots, R_{pi})^{\top}
                  oldsymbol{Q}_i = egin{pmatrix} oldsymbol{I}_{i-1} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{M}(oldsymbol{x}) \end{pmatrix}
 5
                   /* M(x) obtenido usando reflexiones Householder
                                                                                                                                                 */
                   Q = Q_i Q
  6
                  oldsymbol{R} = oldsymbol{Q}_i oldsymbol{R}
 7
            end
 8
            oldsymbol{Q} = oldsymbol{Q}^{	op}
            \mathbf{R} = (R_{ij}) \text{ para } i, j = 1, \dots, p.
10
11 end
```

<sup>&</sup>lt;sup>4</sup>Corresponde a una actualización del tipo:  $y \leftarrow \alpha x + y$ .

La descomposición QR de una matriz  $A \in \mathbb{R}^{n \times p}$  (n > p), puede ser construída a través de una secuencia de matrices  $Q_1, \dots, Q_p$  tales que

$$Q_p \cdots Q_1 A = \begin{pmatrix} R \\ 0 \end{pmatrix},$$

donde  $Q_1, \ldots, Q_p$  son todas ortogonales. De este modo,

$$oldsymbol{A} = oldsymbol{Q}_1^ op \cdots oldsymbol{Q}_p^ op egin{pmatrix} oldsymbol{R} \ oldsymbol{0} \end{pmatrix} = oldsymbol{Q} egin{pmatrix} oldsymbol{R} \ oldsymbol{0} \end{pmatrix}.$$

El Algoritmo 2 permite obtener la descomposición QR de  $A \in \mathbb{R}^{n \times p}$  usando transformaciones Householder. En este contexto, M(x) corresponde a la matriz ortogonal desde el Problema 2.19 basada en un vector x. Debemos destacar que una implementación eficiente del Algoritmo 2 solamente requiere almacenar la información mínima para formar las matrices  $Q_1, \ldots, Q_p$  y la propia matriz triangular  $R_1$  en la propia matriz A, lo que permite un ahorro desde el punto de vista de almacenamiento.

Para el problema de regresión, considere la descomposición QR de X, como:

$$oldsymbol{X} = oldsymbol{Q} oldsymbol{R}, \qquad oldsymbol{R} = egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix},$$

con  $\mathbf{R}_1 \in \mathbb{R}^{p \times p}$  matriz triangular superior (n > p). Si  $rg(\mathbf{X}) = p$ , entonces  $\mathbf{R}_1$  es no singular. Además, considere la transformación:

$$oldsymbol{Q}^ op oldsymbol{Y} = oldsymbol{c}, \qquad oldsymbol{c} = egin{pmatrix} oldsymbol{c}_1 \ oldsymbol{c}_2 \end{pmatrix}.$$

La descomposición QR de  $\boldsymbol{X}$  permite re-escribir la función objetivo asociada al problema mínimos cuadrados, como:

$$\| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 = \| \boldsymbol{Q}^{\top} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}) \|^2 = \| \boldsymbol{Q}^{\top} \boldsymbol{Y} - \boldsymbol{Q}^{\top} \boldsymbol{Q} \boldsymbol{R} \boldsymbol{\beta} \|^2$$
  
=  $\| \boldsymbol{c} - \boldsymbol{R} \boldsymbol{\beta} \|^2$ .

Es fácil notar que:

$$\|c - R\beta\|^2 = \|c_1 - R_1\beta\|^2 + \|c_2\|^2.$$

Esto lleva a escribir el estimador de mínimos cuadrados  $\widehat{\beta}$  como solución del sistema triangular:

$$\mathbf{R}_1 \hat{\boldsymbol{\beta}} = \mathbf{c}_1.$$

El mínimo de la función objetivo está dado por  $\|c_2\|^2$ , lo que permite calcular el estimador insesgado de  $\sigma^2$  como

$$s^2 = \frac{1}{n-p} \| \boldsymbol{c}_2 \|^2 = \frac{\mathsf{RSS}}{n-p},$$

Finalmente,

$$\boldsymbol{X}^{\top}\boldsymbol{X} = (\boldsymbol{R}_{1}^{\top}, \boldsymbol{0})\boldsymbol{Q}^{\top}\boldsymbol{Q}\begin{pmatrix}\boldsymbol{R}_{1}\\\boldsymbol{0}\end{pmatrix} = \boldsymbol{R}_{1}^{\top}\boldsymbol{R}_{1},$$

lo que ofrece un procedimiento eficiente para obtener la matriz de covarianza de  $\widehat{\beta}$ , dado por

$$\mathsf{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{R}_1^{\top} \boldsymbol{R}_1)^{-1} = \sigma^2 \boldsymbol{R}_1^{-1} \boldsymbol{R}_1^{-\top}.$$

 $<sup>^5{\</sup>rm Otro}$ método popular para obtener la descomposición QR es usando rotaciones Givens.

DEFINICIÓN 2.23 (Descomposición Valor Singular). Sea  $\mathbf{A} \in \mathbb{R}^{n \times p}$  con  $\operatorname{rg}(\mathbf{A}) = r$ , entonces existen matrices  $\mathbf{U} \in \mathcal{O}_n$ ,  $\mathbf{V} \in \mathcal{O}_p$ , tal que

$$oldsymbol{A} = oldsymbol{U} egin{pmatrix} oldsymbol{D}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} oldsymbol{V}^ op,$$

donde  $D_r = \text{diag}(\delta_1, \dots, \delta_r)$  con  $\delta_1 \geq \delta_2 \geq \dots \geq \delta_r > 0$ , que son llamados valores singulares de A.

La Descomposición Valor Singular (SVD) para  $\mathbf{A} \in \mathbb{R}^{n \times p}$  con  $\operatorname{rg}(\mathbf{A}) = r$  puede ser escrita como:

$$A = UDV^{\top}$$
.

con  $U \in \mathbb{R}^{n \times p}$  tal que  $U^{\top}U = I_p$ ,  $D = \text{diag}(\delta_1, \dots, \delta_r)$  y  $V \in \mathcal{O}_r$ . Para el contexto de regresión lineal, considere la SVD de X,

$$X = UDV^{\top}$$
.

donde  $U \in \mathbb{R}^{n \times p}$  tal que  $U^{\top}U = I_p$ ,  $D = \text{diag}(\delta_1, \dots, \delta_p)$  y  $V \in \mathcal{O}_p$ . De este modo, podemos escribir el modelo de regresión lineal como:

$$Y = X\beta + \epsilon = UD\alpha + \epsilon$$
,

con  $\boldsymbol{\alpha} = \boldsymbol{V}^{\top}\boldsymbol{\beta}$ . Haciendo  $\boldsymbol{Z} = \boldsymbol{U}^{\top}\boldsymbol{Y}$ , tenemos el modelo en forma canónica:

$$Z = D\alpha + \eta, \qquad \eta = U^{\top} \epsilon,$$

donde

$$\mathsf{E}(\boldsymbol{\eta}) = \mathbf{0}, \qquad \mathsf{Cov}(\boldsymbol{\eta}) = \sigma^2 \boldsymbol{U}^{\top} \boldsymbol{U} = \sigma^2 \boldsymbol{I}_p.$$

Es decir, podemos el modelo canónico satisface las condiciones A1 a A4. Esto lleva al estimador LS de  $\alpha$  en el modelo canónico,

$$\widehat{\boldsymbol{\alpha}} = \boldsymbol{D}^{-1} \boldsymbol{Z}, \qquad \Rightarrow \qquad \widehat{\boldsymbol{\beta}} = \boldsymbol{V} \widehat{\boldsymbol{\alpha}}.$$

Además,

$$\|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = \|\boldsymbol{Y} - \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{\top}\widehat{\boldsymbol{\beta}}\|^2 = \|\boldsymbol{Z} - \boldsymbol{D}\widehat{\boldsymbol{\alpha}}\|^2.$$

Finalmente,

$$\mathsf{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \sigma^2(\boldsymbol{V}\boldsymbol{D}^2\boldsymbol{V}^{\top})^{-1} = \sigma^2\boldsymbol{V}\boldsymbol{D}^{-2}\boldsymbol{V}^{\top}.$$

OBSERVACIÓN 2.24. Interesantemente, la SVD permite manipular problemas de rango deficiente. En efecto, cuando rg(X) < p podemos considerar

$$\hat{\alpha} = D^- Z$$
.

con  $D^-$  una inversa generalizada de D por ejemplo

$$\mathbf{D}^- = \operatorname{diag}(1/\delta_1, \dots, 1/\delta_r, 0, \dots, 0), \qquad r = \operatorname{rg}(\mathbf{X}),$$

y luego obtener  $\hat{\beta} = V \hat{\alpha}$ .

El último procedimiento de estimación que revisaremos en esta sección corresponde al método de Gradientes Conjugados (CG), el que permite optimizar la siguiente función objetivo:

$$\phi(\boldsymbol{\beta}) = \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 = \frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})^{\top} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}).$$

El algoritmo básico produce la secuencia de estimaciones.

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \lambda_k \boldsymbol{p}_k, \qquad k = 0, 1, \dots$$

con el siguiente 'largo de paso'

$$\lambda_k = \frac{\boldsymbol{p}_k^\top \boldsymbol{g}_k}{\boldsymbol{p}_k^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{p}_k}, \qquad \boldsymbol{g}_k = \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}^{(k)}).$$

y actualizamos la dirección de búsqueda como:

$$oldsymbol{p}_{k+1} = oldsymbol{g}_{k+1} + \delta_k oldsymbol{p}_k, \qquad \delta_k = -rac{oldsymbol{g}_{k+1}^ op oldsymbol{p}_k}{oldsymbol{p}_k^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{p}_k}.$$

Para el contexto de regresión se ha sugerido modificar la versión básica del algoritmo, considerando (ver McIntosh, 1982)

$$\lambda_k = rac{oldsymbol{p}_k^ op oldsymbol{X}^ op oldsymbol{Y}}{oldsymbol{p}_k^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X} oldsymbol{p}_k},$$

y actualizar la dirección de búsqueda,

$$oldsymbol{p}_{k+1} = oldsymbol{g}_{k+1} + \delta_{k+1} oldsymbol{p}_k, \qquad \delta_{k+1} = -rac{oldsymbol{p}_k^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X} oldsymbol{g}_k}{oldsymbol{p}_k^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X}^ op oldsymbol{X}_k.$$

Para hacer el proceso más simple es recomendable calcular el vector

$$\boldsymbol{h}_k = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{p}_k,$$

lo que lleva a una implementación que solo requiere operaciones matriz-vector. Además, debemos destacar que no hace falta formar la matriz  $\boldsymbol{X}^{\top}\boldsymbol{X}$ . Lo que permite notar que los requerimientos de almacenamiento del algoritmo sólo es de 4p ubicaciones de memoria.

Algoritmo 3: Gradientes conjugados para regresión lineal.

```
Entrada : Datos X y Y
         Parámetros: Tolerancia \tau.
   1 begin
                   Hacer \boldsymbol{\beta} = \mathbf{0}, \, \boldsymbol{p} = \boldsymbol{g} = -\boldsymbol{X}^{\top} \boldsymbol{Y}, \, \delta = 0 \, \, \text{y} \, \, \gamma = \|\boldsymbol{g}\|^2
   2
                    while \gamma > \tau do
   3
                            Calcular \boldsymbol{h} = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{p} \text{ y } \boldsymbol{u} = \boldsymbol{p}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{p} = \boldsymbol{p}^{\top} \boldsymbol{h}
   4
   5
                      \lambda = -v/u
\lambda = -v/u
\beta = \beta + \lambda p
g = g + \lambda h
\delta = g^{\top} g/v
p = g + \delta p
   6
 10
                   return \hat{\boldsymbol{\beta}} = \boldsymbol{\beta}
12
13 end
```

Los cinco procedimientos descritos en esta sección han sido implementados en la función ols en la biblioteca fastmatrix (Osorio y Ogueda, 2021) disponible para el ambiente de cálculo estadístico R (R Core Team, 2020).

#### 2.4. Estimación bajo restricciones lineales

El objetivo de esta sección es abordar la estimación de  $\beta$  y  $\sigma^2$  sujeto a restricciones lineales del tipo:

$$G\beta = q, \tag{2.8}$$

donde  $G \in \mathbb{R}^{q \times p}$  con rg(G) = q y  $g \in \mathbb{R}^q$ . Consideraremos dos procedimientos para obtener estimadores restrigidos, a saber:

- Método del modelo reducido.
- Método de multiplicadores de Lagrange.

Además, estudiaremos las propiedades estadísticas de los estimadores.

**2.4.1.** Método del modelo reducido. Para introducir este procedimiento, considere la siguiente partición  $G = (G_r, G_q)$  donde  $G_q \in \mathbb{R}^{q \times q}$  de rango q. De este modo, podemos escribir las restricciones en (2.8) como:

$$oldsymbol{G}oldsymbol{eta} = (oldsymbol{G}_r, oldsymbol{G}_q) egin{pmatrix} oldsymbol{eta}_r \ oldsymbol{eta}_q \end{pmatrix} = oldsymbol{G}_r oldsymbol{eta}_r + oldsymbol{G}_q oldsymbol{eta}_q = oldsymbol{g},$$

como  $\boldsymbol{G}_q$  es no singular, tenemos

$$\boldsymbol{\beta}_q = \boldsymbol{G}_q^{-1}(\boldsymbol{g} - \boldsymbol{G}_r \boldsymbol{\beta}_r).$$

Particionando X del mismo modo que  $\beta = (\beta_r^\top, \beta_q^\top)^\top$ , sigue que

$$egin{aligned} oldsymbol{X}oldsymbol{eta} &= (oldsymbol{X}_r, oldsymbol{X}_q) egin{aligned} oldsymbol{X}_roldsymbol{eta}_r &= oldsymbol{X}_roldsymbol{eta}_r + oldsymbol{X}_qoldsymbol{G}_q^{-1}(oldsymbol{g} - oldsymbol{G}_roldsymbol{eta}_r) \ &= (oldsymbol{X}_r - oldsymbol{X}_qoldsymbol{G}_q^{-1}oldsymbol{G}_r)oldsymbol{eta}_r + oldsymbol{X}_qoldsymbol{G}_q^{-1}oldsymbol{g} \end{aligned}$$

Es decir, podemos escribir el modelo lineal

$$Y = X\beta + \epsilon$$
.

como:

$$oldsymbol{Y} = (oldsymbol{X}_r - oldsymbol{X}_q oldsymbol{G}_q^{-1} oldsymbol{G}_r) oldsymbol{eta}_r + oldsymbol{X}_q oldsymbol{G}_q^{-1} oldsymbol{g} + oldsymbol{\epsilon},$$

esto lleva al modelo reducido, dado por

$$\boldsymbol{Y}_R = \boldsymbol{X}_R \boldsymbol{\beta}_r + \boldsymbol{\epsilon},\tag{2.9}$$

donde

$$\boldsymbol{Y}_R = \boldsymbol{Y} - \boldsymbol{X}_q \boldsymbol{G}_q^{-1} \boldsymbol{g}, \qquad \boldsymbol{X}_R = \boldsymbol{X}_r - \boldsymbol{X}_q \boldsymbol{G}_q^{-1} \boldsymbol{G}_r,$$

corresponde al vector de respuesta y la matriz de diseño en el modelo reducido. La principal ventaja de este procedimiento es que permite obtener estimadores en el modelo (2.9) de forma simple. En efecto,

$$\begin{split} \widetilde{oldsymbol{eta}}_r &= (oldsymbol{X}_R^{ op} oldsymbol{X}_R)^{-1} oldsymbol{X}_R^{ op} oldsymbol{Y}_R, \ s_r^2 &= rac{1}{n-r} Q_R(\widetilde{oldsymbol{eta}}_r), \end{split}$$

con

$$Q_R(\widetilde{\boldsymbol{\beta}}_r) = \boldsymbol{Y}_R^\top (\boldsymbol{I} - \boldsymbol{X}_R (\boldsymbol{X}_R^\top \boldsymbol{X}_R)^{-1} \boldsymbol{X}_R^\top) \boldsymbol{Y}_R$$

Por otro lado, el vector de coeficientes estimados bajo las restricciones lineales en (2.8)

$$\begin{split} \widetilde{\boldsymbol{\beta}} &= \begin{pmatrix} \widetilde{\boldsymbol{\beta}}_r \\ \widetilde{\boldsymbol{\beta}}_q \end{pmatrix} = \begin{pmatrix} \widetilde{\boldsymbol{\beta}}_r \\ \boldsymbol{G}_q^{-1} (\boldsymbol{g} - \boldsymbol{G}_r \widetilde{\boldsymbol{\beta}}_r) \end{pmatrix} \\ &= \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{G}_q^{-1} \boldsymbol{g} \end{pmatrix} + \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{G}_q^{-1} \boldsymbol{G}_r \end{pmatrix} \widetilde{\boldsymbol{\beta}}_r, \end{split}$$
(2.10)

Mientras que el vector de 'residuos' en el modelo reducido adopta la forma,

$$egin{aligned} oldsymbol{Y}_R - oldsymbol{X}_R \widetilde{oldsymbol{eta}}_r &= oldsymbol{Y} - oldsymbol{X}_q oldsymbol{G}_q^{-1} oldsymbol{g} - (oldsymbol{X}_r - oldsymbol{X}_q oldsymbol{G}_q^{-1} oldsymbol{g}) \widetilde{oldsymbol{eta}}_r \ &= oldsymbol{Y} - (oldsymbol{X}_r, oldsymbol{X}_q) \left( egin{align*} \widetilde{oldsymbol{eta}}_r \ \widetilde{oldsymbol{eta}}_r \end{array} 
ight) = oldsymbol{Y} - oldsymbol{X} \widetilde{oldsymbol{eta}}_r, \end{aligned}$$

de este modo

$$Q_R(\widetilde{\boldsymbol{\beta}}_r) = \|\boldsymbol{Y}_R - \boldsymbol{X}_R \widetilde{\boldsymbol{\beta}}_r\|^2 = \|\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}}\|^2 = Q(\widetilde{\boldsymbol{\beta}}). \tag{2.11}$$

Las expresiones anteriores permiten establecer el siguiente resultado.

RESULTADO 2.25. Para el modelo lineal  $Y = X\beta + \epsilon$  sujeto a las restricciones  $G\beta = g$  con  $\epsilon \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ . El MLE restringido de  $\beta$  es dado por (2.10) y tenemos que

$$\widetilde{\boldsymbol{\beta}} \sim \mathsf{N}_p(\boldsymbol{\beta}, \mathsf{Cov}(\widetilde{\boldsymbol{\beta}})),$$

donde

$$\mathrm{Cov}(\widetilde{\boldsymbol{\beta}}) = \sigma^2 \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{G}_a^{-1}\boldsymbol{G}_r \end{pmatrix} (\boldsymbol{X}_R^{\top}\boldsymbol{X}_R)^{-1} \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{G}_a^{-1}\boldsymbol{G}_r \end{pmatrix}^{\top}.$$

Mientras que

$$s_r^2 = \frac{1}{n-r}Q_R(\widetilde{\boldsymbol{\beta}}_r) = \frac{1}{n-r}Q(\widetilde{\boldsymbol{\beta}}),$$

donde

$$\frac{(n-r)s_r^2}{\sigma^2} \sim \chi^2(n-r),$$

 $y \widetilde{\beta}, Q(\widetilde{\beta})$  son independientes.

DEMOSTRACIÓN. Sabemos que

$$\begin{split} \widetilde{\boldsymbol{\beta}}_r &\sim \mathsf{N}_r(\boldsymbol{\beta}_r, \sigma^2(\boldsymbol{X}_R^\top \boldsymbol{X}_R)^{-1}), \\ \frac{(n-r)s_r^2}{\sigma^2} &= \frac{Q_R(\widetilde{\boldsymbol{\beta}}_r)}{\sigma^2} = \frac{\boldsymbol{Y}_R^\top (\boldsymbol{I} - \boldsymbol{H}_R) \boldsymbol{Y}_R}{\sigma^2} \sim \chi^2(n-r). \end{split}$$

Así, por (2.10), tenemos

$$\begin{split} \mathsf{E}(\widetilde{\boldsymbol{\beta}}) &= \begin{pmatrix} \mathbf{0} \\ \boldsymbol{G}_q^{-1} \boldsymbol{g} \end{pmatrix} + \begin{pmatrix} \boldsymbol{I}_r \\ -\boldsymbol{G}_q^{-1} \boldsymbol{G}_r \end{pmatrix} \mathsf{E}(\widetilde{\boldsymbol{\beta}}_r) \\ &= \begin{pmatrix} \boldsymbol{\beta}_r \\ \boldsymbol{G}_q^{-1} (\boldsymbol{g} - \boldsymbol{G}_r \boldsymbol{\beta}_r) \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta}_r \\ \boldsymbol{\beta}_q \end{pmatrix} = \boldsymbol{\beta} \end{split}$$

Además,

$$\begin{split} \mathsf{Cov}(\widetilde{\boldsymbol{\beta}}) &= \begin{pmatrix} \boldsymbol{I}_r \\ -\boldsymbol{G}_q^{-1}\boldsymbol{G}_r \end{pmatrix} \mathsf{Cov}(\widetilde{\boldsymbol{\beta}}_r) \begin{pmatrix} \boldsymbol{I}_r \\ -\boldsymbol{G}_q^{-1}\boldsymbol{G}_r \end{pmatrix}^\top \\ &= \sigma^2 \begin{pmatrix} \boldsymbol{I}_r \\ -\boldsymbol{G}_q^{-1}\boldsymbol{G}_r \end{pmatrix} (\boldsymbol{X}_R^\top \boldsymbol{X}_R)^{-1} \begin{pmatrix} \boldsymbol{I}_r \\ -\boldsymbol{G}_q^{-1}\boldsymbol{G}_r \end{pmatrix}^\top. \end{split}$$

como  $\widetilde{\boldsymbol{\beta}}$  es una función lineal de  $\widetilde{\boldsymbol{\beta}}$  la normalidad sigue. La independencia entre  $\widetilde{\boldsymbol{\beta}}$  y  $Q(\widetilde{\boldsymbol{\beta}})$  es consecuencia del Resultado 2.7.

#### 2.4.2. Método de multiplicadores de Lagrange. Considere

$$Y = X\beta + \epsilon, \qquad \epsilon \sim N_n(0, \sigma^2 I).$$

La función Langrangiana asociada a las restricciones lineales  $G\beta=g$  es dada por:

$$F(oldsymbol{ heta},oldsymbol{\lambda}) = \ell(oldsymbol{ heta}) + rac{1}{\sigma^2}oldsymbol{\lambda}^ op(oldsymbol{G}oldsymbol{eta} - oldsymbol{g}),$$

con  $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, \sigma^2)^{\top}$ . De este modo,

$$\begin{split} &\frac{\partial F(\boldsymbol{\theta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\beta}} = \frac{1}{\sigma^2} \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) + \frac{1}{\sigma^2} \boldsymbol{G}^\top \boldsymbol{\lambda} \\ &\frac{\partial F(\boldsymbol{\theta}, \boldsymbol{\lambda})}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \{Q(\boldsymbol{\beta}) - 2\boldsymbol{\lambda}^\top (\boldsymbol{G}\boldsymbol{\beta} - \boldsymbol{g})\} \\ &\frac{\partial F(\boldsymbol{\theta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}} = \boldsymbol{G}\boldsymbol{\beta} - \boldsymbol{g} \end{split}$$

Desde la condición de primer orden, obtenemos las ecuaciones de estimación,

$$X^{\top}(Y - X\beta) + G^{\top}\lambda = 0,$$
  

$$n\sigma^{2} - \{Q(\beta) - 2\lambda^{\top}(G\beta - g)\} = 0,$$
  

$$G\beta = g,$$

es decir,

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^{\top} \boldsymbol{Y} + \boldsymbol{G}^{\top} \boldsymbol{\lambda}, \tag{2.12}$$

$$\sigma^2 = \frac{1}{n} Q(\beta) \tag{2.13}$$

$$G\beta = q, \tag{2.14}$$

Resolviendo la Ecuación (2.12) con relación a  $\beta$  obtenemos

$$\widetilde{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{Y} + \boldsymbol{G}^{\top} \boldsymbol{\lambda})$$

Substituyendo este resultado en (2.14) y resolviendo para  $\lambda$ , sigue que

$$G\widetilde{\boldsymbol{\beta}} = G(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{Y} + G^{\top}\boldsymbol{\lambda}) = \boldsymbol{g},$$

es decir,

$$\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} + \boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}\boldsymbol{\lambda} = \boldsymbol{g},$$

por tanto,

$$\widetilde{\boldsymbol{\lambda}} = (\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1}(\boldsymbol{g} - \boldsymbol{G}\widehat{\boldsymbol{\beta}}).$$

Reemplazando este resultado en  $\widetilde{\boldsymbol{\beta}}$  resulta

$$egin{aligned} \widetilde{oldsymbol{eta}} &= (oldsymbol{X}^ op oldsymbol{X})^{-1} (oldsymbol{X}^ op oldsymbol{Y} + oldsymbol{G}^ op \widetilde{oldsymbol{\lambda}}) \ &= (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{Y} + (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{G}^ op (oldsymbol{G}(oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{G}^ op (oldsymbol{G}(oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{G}^ op)^{-1} (oldsymbol{g} - oldsymbol{G} \widehat{oldsymbol{eta}}). \end{aligned}$$

Que puede ser reorganizado como:

$$\widetilde{\boldsymbol{\beta}} = A\widehat{\boldsymbol{\beta}} + B\boldsymbol{g} = \widehat{\boldsymbol{\beta}} - B(G\widehat{\boldsymbol{\beta}} - \boldsymbol{g}),$$

donde  $\widehat{\beta}$  corresponde al MLE no restringido para  $\beta$ , con

$$B = (X^{\top}X)^{-1}G^{\top}(G(X^{\top}X)^{-1}G^{\top})^{-1}$$
(2.15)

$$\mathbf{A} = \mathbf{I} - \mathbf{B}\mathbf{G} \tag{2.16}$$

y el estimador insesgado para  $\sigma^2$ es dado por

$$s_r^2 = \frac{1}{n-r} Q(\widetilde{\boldsymbol{\beta}}).$$

Para estudiar las propiedades de este MLE restringido, considere primeramente el siguiente lema.

Lema 2.26. La matriz A definida en (2.16) tiene las siguientes propiedades:

- (i)  $\mathbf{A}$  es idempotente con  $rg(\mathbf{A}) = r$ .
- (ii)  $XA(X^{\top}X)^{-1}X^{\top}$  es idempotente y simétrica con rango r.
- (iii)  $A(X^{\top}X)^{-1} = (X^{\top}X)^{-1}A^{\top} = A(X^{\top}X)^{-1}A^{\top}$ .

Demostración. Para mostrar que  ${\pmb A}={\pmb I}-{\pmb B}{\pmb G}$  es idempotente, basta mostrar que  ${\pmb B}{\pmb G}$  es idempotente. En efecto,

$$GBG = G(X^{\top}X)^{-1}G^{\top}(G(X^{\top}X)^{-1}G^{\top})^{-1}G = G,$$

de ahí que BG es idempotente. Además,

$$rg(\mathbf{BG}) = tr(\mathbf{BG}) = tr(\mathbf{GB}) = q,$$

así rg(I - BG) = tr(A) = p - q = r, lo que muestra la parte (i).

Para notar la parte (ii), sea  $C = XA(X^{T}X)^{-1}X^{T}$ , luego

$$\boldsymbol{C}^2 = \boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top} = \boldsymbol{X}\boldsymbol{A}^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top},$$

como A es idempotente, sigue que  $C^2 = C$ . Esto permite escribir

$$\operatorname{rg}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}) = \operatorname{tr}(\boldsymbol{A}) = r.$$

Por otro lado,

$$\boldsymbol{C}^\top = (\boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^\top\boldsymbol{X})^{-1}\boldsymbol{X}^\top)^\top = \boldsymbol{X}(\boldsymbol{X}^\top\boldsymbol{X})^{-1}\boldsymbol{A}^\top\boldsymbol{X}^\top.$$

Tenemos que,

$$\boldsymbol{A}^{\top} = \boldsymbol{I} - \boldsymbol{G}^{\top} \boldsymbol{B}^{\top} = \boldsymbol{I} - \boldsymbol{G}^{\top} (\boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top})^{-1} \boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1},$$

luego premultiplicando por  $(X^{\top}X)^{-1}$  y factorizando lleva a,

$$(X^{\top}X)^{-1}A^{\top} = (X^{\top}X)^{-1} - (X^{\top}X)^{-1}G^{\top}(G(X^{\top}X)^{-1}G^{\top})^{-1}G(X^{\top}X)^{-1}$$
$$= (I - BG)(X^{\top}X)^{-1} = A(X^{\top}X)^{-1}, \qquad (2.17)$$

así

$$\boldsymbol{C}^{\top} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{A}^{\top}\boldsymbol{X} = \boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X} = \boldsymbol{C}.$$

Finalmente, Ecuación (2.17) permite notar la primera igualdad de la parte (iii). Ahora, por (2.17), sigue que

$$\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{A}^{\top} = \boldsymbol{A}^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1},$$

pues  $\boldsymbol{A}$  es idempotente y esto termina la prueba.

Esto nos habilita para establecer el siguiente resultado,

Resultado 2.27. Para el modelo lineal

$$Y = X\beta + \epsilon, \qquad \epsilon \sim N_n(0, \sigma^2 I).$$

El MLE de  $oldsymbol{eta}$  bajo las restricciones lineales  $oldsymbol{G}oldsymbol{eta}=oldsymbol{g},$  es dado por

$$\widetilde{\boldsymbol{\beta}} = A\widehat{\boldsymbol{\beta}} + B\boldsymbol{g},$$

con distribución

$$\widetilde{\boldsymbol{\beta}} \sim \mathsf{N}_p(\boldsymbol{\beta}, \boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{A}^{\top}).$$

Mientras que el estimador insesgado de  $\sigma^2$  es

$$s_r^2 = \frac{1}{n-r} Q(\widetilde{\boldsymbol{\beta}}),$$

donde

$$\frac{Q(\widetilde{\boldsymbol{\beta}})}{\sigma^2} \sim \chi^2(n-r),$$

 $y \widetilde{\beta}$  es independiente de  $Q(\widetilde{\beta})$ .

Demostración. La normalidad de  $\widetilde{\beta}$  sigue desde la linealidad con relación a  $\widehat{\beta}$ . Ahora.

$$\mathsf{E}(\widetilde{oldsymbol{eta}}) = A\,\mathsf{E}(\widehat{oldsymbol{eta}}) + Boldsymbol{g} = (oldsymbol{I} - Boldsymbol{G})oldsymbol{eta} + Boldsymbol{g} = oldsymbol{eta} - B(oldsymbol{G}oldsymbol{eta} - oldsymbol{g}) = oldsymbol{eta},$$

У

$$\mathrm{Cov}(\widetilde{\boldsymbol{\beta}}) = \boldsymbol{A}\,\mathrm{Cov}(\widehat{\boldsymbol{\beta}})\boldsymbol{A}^\top = \sigma^2\boldsymbol{A}(\boldsymbol{X}^\top\boldsymbol{X})^{-1}\boldsymbol{A}^\top.$$

Notando que

$$egin{aligned} \widetilde{eta} &= A\widehat{eta} + Bg = A(X^ op X)^{-1}X^ op Y + Bg \ &= A(X^ op X)^{-1}X^ op (Xeta + \epsilon) + Bg \ &= Aeta + A(X^ op X)^{-1}X^ op \epsilon + Bg \ &= eta + A(X^ op X)^{-1}X^ op \epsilon \end{aligned}$$

lo que permite escribir

$$egin{aligned} oldsymbol{Y} - oldsymbol{X} \widetilde{oldsymbol{eta}} &= oldsymbol{Y} - oldsymbol{X} oldsymbol{eta} - oldsymbol{X} oldsymbol{A} (oldsymbol{X}^{ op} oldsymbol{X})^{-1} oldsymbol{X}^{ op} oldsymbol{\epsilon} \ &= (oldsymbol{I} - oldsymbol{X} oldsymbol{A} (oldsymbol{X}^{ op} oldsymbol{X})^{-1} oldsymbol{X}^{ op}) oldsymbol{\epsilon}, \end{aligned}$$

por la parte (ii) del Lema 2.26, sigue que

$$\frac{Q(\widetilde{\boldsymbol{\beta}})}{\sigma^2} = \frac{\boldsymbol{\epsilon}^\top (\boldsymbol{I} - \boldsymbol{X} \boldsymbol{A} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top) \boldsymbol{\epsilon}}{\sigma^2} \sim \chi^2 (n-r).$$

Para notar la independencia entre  $\widetilde{\beta}$  y  $Q(\widetilde{\beta})$  debemos tener:<sup>6</sup>

$$\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{I} - \boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) = \boldsymbol{0}.$$

En efecto,

$$\begin{split} \boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{I} - \boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) \\ &= \boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} - \boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}. \end{split}$$

Notando que  $\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{A}^{\top},$  obtenemos

$$A(X^{\top}X)^{-1}X^{\top}XA(X^{\top}X)^{-1}X^{\top} = A(X^{\top}X)^{-1}X^{\top}X(X^{\top}X)^{-1}A^{\top}X^{\top}$$
$$= A(X^{\top}X)^{-1}A^{\top}X^{\top} = A^{2}(X^{\top}X)^{-1}X^{\top} = A(X^{\top}X)^{-1}X^{\top},$$

y esto concluye la demostración.

#### 2.5. Test de hipótesis lineales

El objetivo de esta sección recae en desarrollar el test de razón de verosimilitudes para probar hipótesis lineales de la forma:

$$H_0: G\beta = g, \quad \text{versus} \quad H_1: G\beta \neq g$$
 (2.18)

donde G es una matriz de contrastes de orden  $q \times p$  con  $\operatorname{rg}(G) = q \ y \ g \in \mathbb{R}^q$ .

Observación 2.28.  $H_0$  es expresada como un sistema de ecuaciones mientras que  $H_1$  indica que al menos una ecuación no se satisface.

Para abordar hipótesis lineales, usaremos el principio de verosimilitud. Es decir, consideraremos el estadístico

$$\Lambda = \frac{ \max\limits_{\substack{G\beta = g \\ \Theta}} L(\boldsymbol{\beta}, \sigma^2) }{ \max\limits_{\substack{\Theta}} L(\boldsymbol{\beta}, \sigma^2) } = \frac{L(\widetilde{\boldsymbol{\beta}}, \widetilde{\sigma}^2)}{L(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2)}.$$

Asumiendo  $Y \sim N_n(X\beta, \sigma^2 I)$ , tenemos la función de verosimilitud

$$L(\boldsymbol{\beta}, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\Big\{-\frac{1}{2\sigma^2}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})\Big\}.$$

Sabemos que

$$\begin{split} & \max_{\Theta} L(\boldsymbol{\beta}, \sigma^2) = L(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2) \\ & = (2\pi\widehat{\sigma}^2)^{-n/2} \exp\Big\{ - \frac{1}{2\widehat{\sigma}^2} \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 \Big\} \\ & = \{ 2\pi Q(\widehat{\boldsymbol{\beta}})/n \}^{-n/2} \exp\Big\{ - \frac{n}{2Q(\widehat{\boldsymbol{\beta}})} \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 \Big\} \\ & = \{ 2\pi Q(\widehat{\boldsymbol{\beta}})/n \}^{-n/2} \exp(-n/2). \end{split}$$

Mientras que bajo  $H_0: \mathbf{G}\boldsymbol{\beta} = \mathbf{g}$ , tenemos<sup>7</sup>

$$\begin{split} \max_{G\beta=g} L(\boldsymbol{\beta}, \sigma^2) &= L(\widetilde{\boldsymbol{\beta}}, \widetilde{\sigma}^2) = (2\pi\widetilde{\sigma}^2)^{-n/2} \exp\Big\{ -\frac{1}{2\widetilde{\sigma}^2} \|\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}}\|^2 \Big\} \\ &= \{ 2\pi Q(\widetilde{\boldsymbol{\beta}})/n \}^{-n/2} \exp(-n/2). \end{split}$$

<sup>&</sup>lt;sup>6</sup>Lo que es consecuencia de escribir  $\widetilde{\beta}$  y  $Q(\widetilde{\beta})$  en términos de  $\epsilon$ .

<sup>&</sup>lt;sup>7</sup>Con espacio paramétrico nulo,  $\Theta_0 = \{ \boldsymbol{\theta} = (\boldsymbol{\beta}^\top, \sigma^2)^\top : \boldsymbol{G}\boldsymbol{\beta} = \boldsymbol{g} \}.$ 

De este modo, el estadístico de razón de verosimilitudes

$$\begin{split} & \Lambda = \frac{L(\widetilde{\boldsymbol{\beta}}, \widetilde{\sigma}^2)}{L(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2)} = \frac{\{2\pi Q(\widetilde{\boldsymbol{\beta}})/n\}^{-n/2} \exp(-n/2)}{\{2\pi Q(\widehat{\boldsymbol{\beta}})/n\}^{-n/2} \exp(-n/2)} \\ & = \left\{\frac{Q(\widehat{\boldsymbol{\beta}})}{Q(\widetilde{\boldsymbol{\beta}})}\right\}^{n/2}, \end{split}$$

y de acuerdo con el principio de verosimilitud rechazamos  $H_0: \mathbf{G}\boldsymbol{\beta} = \boldsymbol{g}$  si  $\Lambda$  es pequeño.

Alternativamente, podemos considerar

$$\Lambda^{2/n} = \frac{Q(\widehat{\boldsymbol{\beta}})}{Q(\widetilde{\boldsymbol{\beta}})}.$$

Recuerde que  $\widetilde{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}} - \boldsymbol{B}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})$ , así

$$Y - X\widetilde{eta} = Y - X(\widehat{eta} - B(G\widehat{eta} - g)) = Y - X\widehat{eta} + XB(G\widehat{eta} - g).$$

Además,

$$\begin{split} Q(\widetilde{\boldsymbol{\beta}}) &= \|\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}}\|^2 = \|\boldsymbol{Y} - \widehat{\boldsymbol{\beta}} - \boldsymbol{B}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})\|^2 \\ &= \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 + \|\boldsymbol{X}\boldsymbol{B}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})\|^2 \\ &+ (\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}})^{\top} \boldsymbol{X}\boldsymbol{B}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}) + (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} \boldsymbol{B}^{\top} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}). \end{split}$$

Sin embargo,

$$\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}) = \boldsymbol{X}^{\top}(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y} = \boldsymbol{0}$$

lo que nos lleva a:

$$\begin{aligned} Q(\widehat{\boldsymbol{\beta}}) &= Q(\widehat{\boldsymbol{\beta}}) + (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} \boldsymbol{B}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \\ &\geq Q(\widehat{\boldsymbol{\beta}}) \end{aligned}$$

Observación 2.29. Es decir,

$$0 \le \frac{Q(\widehat{\boldsymbol{\beta}})}{Q(\widetilde{\boldsymbol{\beta}})} \le 1,$$

por tanto,  $\Lambda^{2/n} \in [0,1]$ .

Además, recordando que

$$\boldsymbol{B} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top} (\boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top})^{-1},$$

obtenemos

$$\boldsymbol{B}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{B} = (\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1}.$$

De este modo,

$$Q(\widehat{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} (\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}).$$

Así

$$\frac{Q(\widehat{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}})}{Q(\widehat{\boldsymbol{\beta}})} = \Lambda^{-2/n} - 1,$$

es decir, valores pequeños de  $\Lambda$  (en cuyo caso rechazamos  $H_0)$  implican valores grandes de la razón anterior.

Ahora considere

$$\begin{split} \mathsf{E}(G\widehat{\boldsymbol{\beta}}-\boldsymbol{g}) &= \boldsymbol{G}\,\mathsf{E}(\widehat{\boldsymbol{\beta}}) - \boldsymbol{g} = \boldsymbol{G}\boldsymbol{\beta} - \boldsymbol{g} \\ \mathsf{Cov}(G\widehat{\boldsymbol{\beta}}-\boldsymbol{g}) &= \boldsymbol{G}\,\mathsf{Cov}(\widehat{\boldsymbol{\beta}})\boldsymbol{G}^\top = \sigma^2\boldsymbol{G}(\boldsymbol{X}^\top\boldsymbol{X})^{-1}\boldsymbol{G}^\top. \end{split}$$

Note que

$$(\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1} = \left\{\frac{1}{\sigma^2}\operatorname{Cov}(\boldsymbol{G}\widehat{\boldsymbol{\beta}})\right\}^{-1}.$$

De esta forma

$$\frac{(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} (\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})}{\sigma^{2}} \sim \chi^{2}(q; \delta),$$

pues  $\sigma^{-2}(\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1}\operatorname{Cov}(\boldsymbol{G}\widehat{\boldsymbol{\beta}}) = \boldsymbol{I}$ , es matriz idempotente, y

$$\delta = \frac{1}{2\sigma^2} (\boldsymbol{G}\boldsymbol{\beta} - \boldsymbol{g})^\top (\boldsymbol{G}(\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{G}^\top)^{-1} (\boldsymbol{G}\boldsymbol{\beta} - \boldsymbol{g})$$

Por otro lado, sabemos que

$$\frac{Q(\widehat{\boldsymbol{\beta}})}{\sigma^2} \sim \chi^2(n-p;0)$$

Para notar la independencia, considere  $\beta^*$  cualquier vector que satisface la condición  $G\beta^* = g$ . Entonces,

$$\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y} = (\boldsymbol{I} - \boldsymbol{H})(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*),$$

pues (I - H)X = 0 y

$$\begin{split} G\widehat{\boldsymbol{\beta}} - \boldsymbol{g} &= \boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} - \boldsymbol{G}\boldsymbol{\beta}^* = \boldsymbol{G}\{(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} - \boldsymbol{\beta}^*\} \\ &= \boldsymbol{G}\{(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} - (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta}^*\} \\ &= \boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*). \end{split}$$

En nuestro caso,

$$Y - X\beta^* \sim \mathsf{N}_n(X\beta - X\beta^*, \sigma^2 I) \stackrel{\mathsf{d}}{=} \mathsf{N}_n(X(\beta - \beta^*), \sigma^2 I).$$

De este modo,

$$Q(\widehat{\boldsymbol{\beta}}) = \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*)^{\top}(\boldsymbol{I} - \boldsymbol{H})(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*),$$

mientras que

$$Q(\widetilde{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*)^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top} (\boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top})^{-1} \times \boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}^*).$$

Como

$$(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}(\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1}\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top} = \boldsymbol{0},$$

sigue la independencia y permite construir la estadística

$$F = \frac{\{Q(\boldsymbol{\beta}) - Q(\widehat{\boldsymbol{\beta}})\}/q}{Q(\widehat{\boldsymbol{\beta}})/(n-p)} \sim F(q, n-p; \delta).$$

Esto lleva al siguiente resultado.

Resultado 2.30. Para el modelo lineal  $Y = X\beta + \epsilon$  con los supuestos A1 a A4\*. Un test de tamaño  $\alpha$  para probar

$$H_0: \mathbf{G}\boldsymbol{\beta} = \mathbf{g}, \quad versus \quad H_1: \mathbf{G}\boldsymbol{\beta} \neq \mathbf{g},$$

es dado por, rechazar  $H_0$  cuando:

$$F = \frac{Q(\widehat{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}})}{qs^2} \ge F_{1-\alpha}(q, n-p; 0).$$

DEMOSTRACIÓN. Bajo  $H_0: \mathbf{G}\boldsymbol{\beta} = \mathbf{g}$ , tenemos  $\delta = 0$ , de ahí que  $F \sim F(q, n-p; 0)$ , lo que lleva al resultado deseado.

Observación 2.31. Note que podemos escribir el estadístico F de varias formas equivalentes, a saber:

$$F = \left(\frac{n-p}{q}\right) \frac{Q(\widehat{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}})}{Q(\widehat{\boldsymbol{\beta}})}$$

$$= \frac{Q(\widehat{\boldsymbol{\beta}}) - Q(\widehat{\boldsymbol{\beta}})}{qs^2}$$

$$= \frac{(G\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} (G(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}G^{\top})^{-1} (G\widehat{\boldsymbol{\beta}} - \boldsymbol{g})}{as^2} \sim F(q, n - p, \delta).$$

Hemos notado la relación que existe entre el test de razón de verosimilitudes con el estadístico F para probar hipótesis lineales en el modelo de regresión lineal

$$m{Y} = m{X}m{eta} + m{\epsilon}, \qquad m{\epsilon} \sim \mathsf{N}_n(m{0}, \sigma^2 m{I}).$$

A continuación exploramos la relación entre el estadístico F con los  $test\ de\ Wald,$   $score\ y\ gradiente$  para hipótesis lineales, del tipo

$$H_0: G\beta = g$$
, versus  $H_1: G\beta \neq g$ .

Primeramente, note que la matriz de información de Fisher para  $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, \sigma^2)^{\top}$ , adopta la forma:

$$\boldsymbol{\mathcal{F}}(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \begin{pmatrix} \boldsymbol{X}^{\top} \boldsymbol{X} & \boldsymbol{0} \\ \boldsymbol{0} & \frac{n}{2\sigma^2} \end{pmatrix}.$$

El estadístico de Wald para hipótesis lineales de la forma  $H_0: G\beta = g$ , es dado por

$$W = n(G\widehat{\beta} - g)^{\top} (G\{\mathcal{F}(\widehat{\beta})\}^{-1}G^{\top})^{-1} (G\widehat{\beta} - g)$$
$$= \frac{n(G\widehat{\beta} - g)^{\top} (G(X^{\top}X)^{-1}G^{\top})^{-1} (G\widehat{\beta} - g)}{\widehat{\sigma}^{2}}.$$

Mientras que el test score es dado por

$$R = \frac{1}{n} \mathbf{U}^{\top}(\widetilde{\boldsymbol{\beta}}) \{ \boldsymbol{\mathcal{F}}(\widetilde{\boldsymbol{\beta}}) \}^{-1} \mathbf{U}(\widetilde{\boldsymbol{\beta}})$$
$$= \frac{1}{n\widetilde{\sigma}^{2}} (\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}})^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}}).$$

Como,

$$\begin{split} \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \widetilde{\boldsymbol{\beta}}) &= \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}} + \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g})) \\ &= \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}) + \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \\ &= \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g}). \end{split}$$

Sigue que,

$$\begin{split} (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}})^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top (\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}) \\ &= (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g})^\top \boldsymbol{B}^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \\ &= (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g})^\top \boldsymbol{B}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \\ &= (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g})^\top (\boldsymbol{G} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{G}^\top)^{-1} (\boldsymbol{G} \widehat{\boldsymbol{\beta}} - \boldsymbol{g}). \end{split}$$

Finalmente,

$$R = \frac{(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} (\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})}{n\widetilde{\sigma}^{2}}$$

Por otro lado, el estadístico gradiente es dado por:

$$T = \boldsymbol{U}^{\top}(\widetilde{\boldsymbol{\beta}})(\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}) = (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top}\boldsymbol{B}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}(\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}})$$

Sabemos que  $\widetilde{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}} - \boldsymbol{B}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})$ , esto lleva a

$$\begin{split} T &= (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} \boldsymbol{B}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}} + \boldsymbol{B} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})) \\ &= (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} \boldsymbol{B}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{B} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \\ &= (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g})^{\top} (\boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top})^{-1} (\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}) \end{split}$$

Observación 2.32. Es decir, podemos escribir:

$$W = \frac{qn}{n-p}F$$
,  $R = \left\{1 + \left(\frac{n-p}{q}\right)F^{-1}\right\}^{-1}$ ,  $T = \frac{qs^2}{n-p}F$ .

Lo que permite notar que basta usar el estadístico  ${\cal F}$  para probar hipótesis lineales en el modelo de regresión lineal.

#### Apéndice A

# Elementos de Álgebra Matricial

En este Apéndice se introduce la notación, definiciones y resultados básicos de álgebra lineal y matricial, esenciales para el estudio de modelos estadísticos multivariados y de regresión lineal. El material presentado a continuación puede ser hallado en textos como Graybill (1983), Ravishanker y Dey (2002) y Magnus y Neudecker (2007).

### A.1. Vectores y matrices

Sea  $\mathbb{R}^n$  el espacio Euclidiano n-dimensional, de este modo  $\boldsymbol{x} \in \mathbb{R}^n$  representa la n-upla

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

de números reales. Note que  $\boldsymbol{x}$  está orientado como un vector "columna", y por tanto la transpuesta de  $\boldsymbol{x}$  es un vector fila,

$$\boldsymbol{x} = (x_1, \dots, x_n)^{\top}.$$

Una matriz  $\mathbf{A} \in \mathbb{R}^{m \times n}$  es un arreglo de números reales

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

y escribimos  $\mathbf{A} = (a_{ij})$ . Los números reales  $a_{ij}$  son llamados elementos de  $\mathbf{A}$ .

#### A.2. Definiciones básicas y propiedades

La suma de dos matrices del mismo orden es definida como

$$A + B = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij}),$$

el producto de una matriz por un escalar  $\lambda$  es

$$\lambda \mathbf{A} = \mathbf{A}\lambda = (\lambda a_{ij})$$

RESULTADO A.1 (Propiedades de la suma matricial). Sean A, B y C matrices del mismo orden  $y \lambda, \mu$  escalares. Entonces:

- (a) A + B = B + A,
- (b) (A + B) + C = A + (B + C),
- (c)  $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$ ,
- (d)  $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$ ,
- (e)  $\lambda \mu \mathbf{A} = (\lambda \mu) \mathbf{A}$ .

Una matriz cuyos elementos son todos cero se denomina matriz nula y se denota por **0**. Tenemos que

$$A + (-1)A = 0.$$

Si A y B son matrices  $m \times n y n \times p$ , respectivamente, se define el producto de Av B como

$$AB = C$$
, donde,  $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ ,

para  $i = 1, ..., m \ y \ j = 1, ..., p$ .

Resultado A.2 (Propiedades del producto de matrices). Sean A, B y C matrices de órdenes apropiados. Entonces:

- (a) (AB)C = A(BC),
- (b) A(B+C) = AB + AC,
- (c)  $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$ .

Note que la existencia de AB no implica la existencia de BA y cuando ambos productos existen, en general no son iguales.

La transpuesta de una matriz  $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{m \times n}$  es la matriz  $n \times m$ ,  $\mathbf{A}^{\top}$  cuyo elemento ij está dado por  $a_{ji}$ , esto es

$$\mathbf{A}^{\top} = (a_{ji}).$$

RESULTADO A.3 (Propiedades de la transpuesta). Tenemos

- (a)  $(\boldsymbol{A}^{\top})^{\top} = \boldsymbol{A}$ ,
- (b)  $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$ , (c)  $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$ .

Definimos el producto interno entre dos vectores  $x, y \in \mathbb{R}^n$  como

$$\langle oldsymbol{x}, oldsymbol{y} 
angle = oldsymbol{x}^ op oldsymbol{y} = \sum_{i=1}^n x_i y_i.$$

asociado al producto interno tenemos la norma Euclidiana (o largo) de un vector  $\boldsymbol{x}$  definida como

$$\|m{x}\| = \langle m{x}, m{x} 
angle^{1/2} = \Big(\sum_{i=1}^n x_i^2\Big)^{1/2},$$

finalmente, la distancia Euclidiana entre dos vectores  $\boldsymbol{a}$  y  $\boldsymbol{b}$  se define como

$$d(\boldsymbol{a}, \boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|.$$

RESULTADO A.4 (Propiedades del producto interno). Sean a, b y c vectores ndimensionales y  $\lambda$  un escalar, entonces

- (a)  $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{b}, \boldsymbol{a} \rangle$ ,
- (b)  $\langle \boldsymbol{a}, \boldsymbol{b} + \boldsymbol{c} \rangle = \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \langle \boldsymbol{a}, \boldsymbol{c} \rangle$ ,
- (c)  $\lambda \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \lambda \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \lambda \boldsymbol{b} \rangle$
- (d)  $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \geq 0$  con la igualdad sólo si  $\boldsymbol{a} = \boldsymbol{0}$ ,
- (e)  $\|\mathbf{a} \pm \mathbf{b}\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 \pm 2\langle \mathbf{a}, \mathbf{b} \rangle$ ,
- (f)  $\|a + b\| \le \|a\| + \|b\|$ .

Proposición A.5 (Designaldad de Cauchy-Schwarz).  $|\langle x,y\rangle| \leq ||x|| \, ||y||, \, \forall x,y \in$  $\mathbb{R}^n$  con la igualdad sólo si  $\mathbf{x} = \lambda \mathbf{y}$ , para algún  $\lambda \in \mathbb{R}$ .

Demostración. Si  $x = \lambda y$ , el resultado es inmediato. Sino, note que

$$0 < \|\boldsymbol{x} - \lambda \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \lambda^2 \|\boldsymbol{y}\|^2 - 2\lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad \forall \lambda \in \mathbb{R}$$

de este modo el discriminante del polinomio cuadrático debe satisfacer  $4\langle x, y \rangle^2 - 4\|x\|^2\|y\|^2 < 0.$ 

El ángulo  $\theta$  entre dos vectores no nulos  $\boldsymbol{x}, \boldsymbol{y}$  se define en términos de su producto interno como

$$\cos heta = rac{\langle x, y 
angle}{\|x\| \, \|y\|} = rac{x^ op y}{\sqrt{x^ op x} \sqrt{y^ op y}},$$

dos vectores se dicen *ortogonales* sólo si  $\mathbf{x}^{\top}\mathbf{y} = 0$ .

El producto externo entre dos vectores  $\boldsymbol{x} \in \mathbb{R}^m$  y  $\boldsymbol{y} \in \mathbb{R}^n$  es la matriz  $m \times n$ 

$$\boldsymbol{x} \wedge \boldsymbol{y} = \boldsymbol{x} \boldsymbol{y}^{\top} = (x_i y_j).$$

Una matriz se dice cuadrada si tiene el mismo número de filas que de columnas, una matriz cuadrada  $\mathbf{A}$  es triangular inferior (superior) si  $a_{ij} = 0$  para i < j (si  $a_{ij} = 0$  para i > j). Una matriz cuadrada  $\mathbf{A} = (a_{ij})$  se dice  $sim\acute{e}trica$  si  $\mathbf{A}^{\top} = \mathbf{A}$  y  $sesgo-sim\acute{e}trica$  si  $\mathbf{A}^{\top} = -\mathbf{A}$ . Para cualquier matriz cuadrada  $\mathbf{A} = (a_{ij})$  se define diag $(\mathbf{A})$  como

$$\operatorname{diag}(\mathbf{A}) = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}).$$

Si  $\mathbf{A} = \operatorname{diag}(\mathbf{A})$ , decimos que  $\mathbf{A}$  es matriz diagonal. Un tipo particular de matriz diagonal es la identidad

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = (\delta_{ij}),$$

donde  $\delta_{ij} = 1$  si i = j y  $\delta_{ij} = 0$  si  $i \neq j$  ( $\delta_{ij}$  se denomina delta de Kronecker). Tenemos que para  $\mathbf{A} \in \mathbb{R}^{m \times n}$ 

$$I_m A = AI_n = A$$
.

Una matriz cuadrada se dice ortogonal si

$$AA^{\top} = A^{\top}A = I$$

y sus columnas son ortonormales. Note que, si

$$A = (a_1, \ldots, a_n) \quad \text{con } a_i \in \mathbb{R}^n,$$

entonces A tiene columnas ortonormales si

$$\boldsymbol{a}_i^{\top} \boldsymbol{a}_j = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j, \end{cases}$$
  $i, j = 1, \dots, n.$ 

Una matriz rectangular  $\mathbf{A} \in \mathbb{R}^{m \times n}$  puede tener la propiedad  $\mathbf{A} \mathbf{A}^{\top} = \mathbf{I}_m$  ó  $\mathbf{A}^{\top} \mathbf{A} = \mathbf{I}_n$  pero no ambas, en cuyo caso tal matriz se denomina semi-ortogonal.

Una matriz  $A \in \mathbb{R}^{n \times n}$ , se dice idempotente si  $A^2 = A$ . Decimos que A es matriz de proyecci'on si es simétrica e idempotente, esto es,  $A^{\top} = A$  y  $A^2 = A$ . Considere el siguiente resultado

Resultado A.6. Suponga A matriz  $m \times m$ , simétrica e idempotente. Entonces,

- (a)  $a_{ii} \geq 0, i = 1, \dots, n$ .
- (b)  $a_{ii} \leq 1, i = 1, \dots, n.$
- (c)  $a_{ij} = a_{ji} = 0$ , para todo  $j \neq i$ , si  $a_{ii} = 0$  o  $a_{ii} = 1$ .

Demostración. Como A es simétrica e idempotente, tenemos

$$\boldsymbol{A} = \boldsymbol{A}^2 = \boldsymbol{A}^\top \boldsymbol{A}.$$

de ahí que

$$a_{ii} = \sum_{i=1}^{n} a_{ji}^2,$$

que claramente es no negativo. Además, podemos escribir

$$a_{ii} = a_{ii}^2 + \sum_{j \neq i} a_{ji}^2.$$

Por tanto,  $a_{ii} \ge a_{ii}^2$  y de este modo (b) es satisfecha. Si  $a_{ii} = 0$  o bien  $a_{ii} = 1$ , entonces  $a_{ii} = a_{ii}^2$  y debemos tener

$$\sum_{j \neq i} a_{ji}^2 = 0,$$

lo que junto con las simetría de A, establece (c).

Cualquier matriz  $\boldsymbol{B}$  satisfaciendo

$$B^2 = A$$

se dice raíz cuadrada de A y se denota como  $A^{1/2}$  tal matriz no necesita ser única.

**A.2.1.** Formas lineales y cuadráticas. Sea  $a \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{n \times n}$  y  $B \in \mathbb{R}^{n \times m}$ . La expresión  $a^{\top}x$  se dice una forma lineal en x y  $x^{\top}Ax$  una forma cuadrática, mientras que  $x^{\top}By$  es una forma bilineal.

Sin pérdida de generalidad se asumirá que la matriz asociada a la forma cuadrática  $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$  es simétrica. Note que siempre es posible

$$oldsymbol{x}^ op oldsymbol{B} oldsymbol{x} = rac{1}{2} oldsymbol{x}^ op (oldsymbol{A}^ op + oldsymbol{A}) oldsymbol{x},$$

en cuyo caso tenemos que B es matriz simétrica.

Decimos que una matriz simétrica  $\boldsymbol{A}$  es definida positiva (negativa) si  $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} > 0$  ( $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} < 0$ ) para todo  $\boldsymbol{x} \neq \boldsymbol{0}$ . Cuando  $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq 0$  ( $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \leq 0$ )  $\forall \boldsymbol{x}$  decimos que  $\boldsymbol{A}$  es semidefinida positiva (negativa).

Note que las matrices  $B^{\top}B$  y  $BB^{\top}$  son semidefinidas positivas y que A es (semi)definida negativa sólo si -A es (semi)definida positiva.

RESULTADO A.7. Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times p}$  y  $\mathbf{C} \in \mathbb{R}^{n \times p}$  y  $\mathbf{x}$  vector n-dimensional. Entonces

- (a)  $Ax = \mathbf{0} \Leftrightarrow A^{\top}Ax = \mathbf{0}$ ,
- (b)  $AB = \mathbf{0} \Leftrightarrow A^{\top}AB = \mathbf{0}$ ,
- (c)  $A^{\top}AB = A^{\top}AC \Leftrightarrow AB = AC$ .

DEMOSTRACIÓN. (a) Claramente  $Ax = \mathbf{0} \Rightarrow A^{\top}Ax = \mathbf{0}$ . Por otro lado, si  $A^{\top}Ax = \mathbf{0}$ , entonces  $x^{\top}A^{\top}Ax = (Ax)^{\top}Ax = 0$  y de ahí que  $Ax = \mathbf{0}$ . (b) sigue desde (a). Finalmente, (c) sigue desde (b) mediante substituir B - C por B en (c).

Resultado A.8. Sean  $\mathbf{A} \in \mathbb{R}^{m \times n}$  y  $\mathbf{B}$ ,  $\mathbf{C}$  matrices  $n \times n$  con  $\mathbf{B}$  simétrica. Entonces

- (a)  $\mathbf{A}\mathbf{x} = \mathbf{0}$ ,  $\forall \mathbf{x} \in \mathbb{R}^n \text{ solo si } \mathbf{A} = \mathbf{0}$ ,
- (b)  $\mathbf{x}^{\top} \mathbf{B} \mathbf{x} = 0$ ,  $\forall \mathbf{x} \in \mathbb{R}^n \text{ solo si } \mathbf{B} = \mathbf{0}$ ,
- (c)  $\boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x} = 0$ ,  $\forall \boldsymbol{x} \in \mathbb{R}^n$  sólo si  $\boldsymbol{C}^{\top} = -\boldsymbol{C}$ .

**A.2.2.** Rango de una matriz. Un conjunto de vectores  $x_1, \ldots, x_n$  se dice linealmente independiente si  $\sum_i \alpha_i x_i = \mathbf{0}$  implica que todos los  $\alpha_i = 0$ . Si  $x_1, \ldots, x_n$  no son linealmente independientes, ellos se dicen linealmente dependientes.

Sea  $A \in \mathbb{R}^{m \times n}$ , el rango columna (fila) de A es el número de columnas (filas) linealmente independientes. Denotamos el rango de A como

$$rg(\boldsymbol{A}),$$

note que

$$\operatorname{rg}(\boldsymbol{A}) \le \min(m, n).$$

Si  $rg(\mathbf{A}) = n$  decimos que  $\mathbf{A}$  tiene rango columna completo. Si  $rg(\mathbf{A}) = 0$ , entonces  $\mathbf{A}$  es la matriz nula. Por otro lado, si  $\mathbf{A} = \mathbf{0}$ , entonces  $rg(\mathbf{A}) = 0$ .

RESULTADO A.9 (Propiedades del rango). Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$  y  $\mathbf{B}$ ,  $\mathbf{C}$  matrices de órdenes apropiados, entonces

- (a)  $\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}^{\top}) = \operatorname{rg}(\boldsymbol{A}^{\top}\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}\boldsymbol{A}^{\top}),$
- (b)  $\operatorname{rg}(\boldsymbol{A}\boldsymbol{B}) \leq \min\{\operatorname{rg}(\boldsymbol{A}), \operatorname{rg}(\boldsymbol{B})\},$
- (c) rg(BAC) = rg(A) si B y C son matrices de rango completo,
- (d)  $\operatorname{rg}(\boldsymbol{A} + \boldsymbol{B}) \leq \operatorname{rg}(\boldsymbol{A}) + \operatorname{rg}(\boldsymbol{B}),$
- (e)  $si \mathbf{A} \in \mathbb{R}^{m \times n} \ y \mathbf{A} \mathbf{x} = \mathbf{0} \ para \ algún \ \mathbf{x} \neq \mathbf{0}, \ entonces \ \operatorname{rg}(\mathbf{A}) \leq n 1.$

El espacio columna de  $A \in \mathbb{R}^{m \times n}$ , denotado por  $\mathcal{M}(A)$ , es el conjunto de vectores

$$\mathcal{M}(A) = \{ y : y = Ax \text{ para algún } x \in \mathbb{R}^n \}.$$

De este modo,  $\mathcal{M}(A)$  es el espacio vectorial generado por las columnas de A. La dimensión de este espacio es  $\operatorname{rg}(A)$ . Se tiene que

$$\mathcal{M}(\boldsymbol{A}) = \mathcal{M}(\boldsymbol{A}\boldsymbol{A}^{\top})$$

para cualquier matriz A.

El espacio nulo,  $\mathcal{N}(\mathbf{A})$ , de una matriz  $\mathbf{A} \in \mathbb{R}^{m \times n}$  consiste de todos los vectores n-dimensionales  $\mathbf{x}$ , tal que  $\mathbf{A}\mathbf{x} = \mathbf{0}$ , esto es,

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \text{ tal que } \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

Note que, el espacio nulo es el conjunto de todas las soluciones del sistema lineal homogéneo  $\mathbf{A}\mathbf{x} = \mathbf{0}$ .  $\mathcal{N}(\mathbf{A})$  es un subespacio de  $\mathbb{R}^n$  y su dimensión se denomina nulidad de  $\mathbf{A}$ . Además  $\mathcal{N}(\mathbf{A}) = \{\mathcal{M}(\mathbf{A})\}^{\perp}$ . Finalmente, considere la siguiente proposición

RESULTADO A.10. Para cualquier matriz  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , entonces  $n = \dim(\mathcal{N}(\mathbf{A})) + \operatorname{rg}(\mathbf{A})$ .

**Matriz inversa.** Sea A una matriz cuadrada de orden  $n \times n$ . Decimos que  $\mathbf{A}$  es no singular si  $\operatorname{rg}(\mathbf{A}) = n$ , y que  $\mathbf{A}$  es singular si  $\operatorname{rg}(\mathbf{A}) < n$ . De este modo, si A es no singular, entonces existe una matriz no singular B tal que

$$AB = BA = I_n$$
.

La matriz B, denotada  $A^{-1}$  es única y se denomina inversa de A.

Resultado A.11 (Propiedades de la inversa). Siempre que todas las matrices inversas involucradas existan, tenemos que

- (a)  $(A^{-1})^{\top} = (A^{\top})^{-1}$ . (b)  $(AB)^{-1} = B^{-1}A^{-1}$ . (c)  $(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}$ . (d)  $P^{-1} = P^{\top}$ , si P es matriz ortogonal.
- (e)  $Si \mathbf{A} > 0$ , entonces  $\mathbf{A}^{-1} > 0$ .
- (f) (Teorema de Sherman-Morrison-Woodbury)

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

donde A, B, C y D son matrices  $m \times m$ ,  $m \times n$ ,  $n \times n$  y  $n \times m$ , respectivamente.

(g)  $Si \ 1 \pm \boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u} \neq 0$ , entonces

$$(A \pm uv^{\top})^{-1} = A^{-1} \mp \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u^{\top}}$$

es conocida como la fórmula de Sherman-Morrison. (h) 
$$(\boldsymbol{I} + \lambda \boldsymbol{A})^{-1} = \boldsymbol{I} + \sum_{i=1}^{\infty} (-1)^i \lambda^i \boldsymbol{A}^i$$
.

A.2.4. Determinante de una matriz. El determinante de una matriz corresponde a la función det:  $\mathbb{R}^{n \times n} \to \mathbb{R}$ , denotada comúnmente como  $|A| = \det(A)$ y definida como

$$|\mathbf{A}| = \sum_{i=1}^{n} (-1)^{\sigma(j_1, \dots, j_n)} \prod_{i=1}^{n} a_{ij_i}$$

donde la sumatoria es tomada sobre todas las permutaciones  $(j_1,\ldots,j_n)$  del conjunto de enteros  $(1,\ldots,n)$ , y  $\sigma(j_1,\ldots,j_n)$  es el número de transposiciones necesarias para cambiar  $(1, \ldots, n)$  en  $(j_1, \ldots, j_n)$  (una transposición consiste en intercambiar dos números).

Una submatriz de A es un arreglo rectangular obtenido mediante eliminar filas y columnas de A. Un menor es el determinante de una submatriz cuadrada de A. El menor asociado al elemento  $a_{ij}$  es el determinante de la submatriz de  $\boldsymbol{A}$  obtenida por eliminar su i-ésima fila y j-ésima columna. El cofactor de  $a_{ij}$ , digamos  $c_{ij}$  es  $(-1)^{i+j}$  veces el menor de  $a_{ij}$ . La matriz  $C = (c_{ij})$  se denomina matriz cofactor de A. La transpuesta de C es llamada adjunta de A y se denota  $A^{\#}$ . Tenemos que

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} c_{ij} = \sum_{j=1}^{n} a_{jk} c_{jk}, \text{ para } i, k = 1, \dots, n.$$

RESULTADO A.12 (Propiedades del determinante). Sea  $\mathbf{A} \in \mathbb{R}^{n \times n}$  y  $\lambda$  un escalar. Entonces

- (a)  $|\mathbf{A}| = |\mathbf{A}^{\top}|$ .
- (b) |AB| = |A||B|.

- (c)  $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$ .
- (d)  $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$ , si  $\mathbf{A}$  es no singular.
- (e) Si  $\mathbf{A}$  es matriz triangular, entonces  $|\mathbf{A}| = \prod_{i=1}^{n} a_{ii}$ .
- (f) El resultado en (e) también es válido para  $\mathbf{A} = \operatorname{diag}(\mathbf{A})$ . Además, es evidente que  $|\mathbf{I}_n| = 1$ .
- (g) Si  $\mathbf{A} \in \mathbb{R}^{m \times n}$   $y \mathbf{B} \in \mathbb{R}^{n \times m}$ , entonces  $|\mathbf{I}_m + \mathbf{A}\mathbf{B}| = |\mathbf{I}_n + \mathbf{B}\mathbf{A}|$ .

**A.2.5.** La traza de una matriz. La traza de una matriz cuadrada  $A \in \mathbb{R}^{n \times n}$ , denotada por tr(A), es la suma de sus elementos diagonales:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}.$$

RESULTADO A.13 (Propiedades de la traza). Siempre que las operaciones matriciales están definidas

- (a)  $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}),$
- (b)  $tr(\lambda \mathbf{A}) = \lambda tr(\mathbf{A}) si \lambda es un escalar,$
- (c)  $\operatorname{tr}(\boldsymbol{A}^{\top}) = \operatorname{tr}(\boldsymbol{A}),$
- (d) tr(AB) = tr(BA) (propiedad cíclica de la traza),
- (e) tr(A) = 0 si A = 0.

Note en (d) que aunque ambas  $\boldsymbol{AB}$  y  $\boldsymbol{BA}$  son cuadradas, no necesitan ser del mismo orden.

Además, es directo que la normal vectorial (Euclidiana), satisface

$$\|x\| = (x^{\top}x)^{1/2} = (\operatorname{tr} xx^{\top})^{1/2},$$

de este modo, podemos definir una normal matricial (Euclidiana) como

$$\|\boldsymbol{A}\| = (\operatorname{tr} \boldsymbol{A}^{\top} \boldsymbol{A})^{1/2}.$$

En efecto, se tiene que  $\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A}) \geq 0$  con la igualdad sólo si  $\mathbf{A} = \mathbf{0}$ .

**A.2.6.** Valores y vectores propios. Si A y B son matrices reales del mismo orden, una matriz compleja Z puede ser definida como

$$Z = A + iB$$
,

donde i denota la unidad imaginaria que satisface  $i^2 = -1$ . El conjugado complejo de  $\mathbf{Z}$ , denotado por  $\mathbf{Z}^H$ , se define como

$$\mathbf{Z}^H = \mathbf{A}^\top - i\mathbf{B}^\top.$$

Una matriz  $\boldsymbol{Z} \in \mathbb{C}^{n \times n}$  se dice Hermitiana si  $\boldsymbol{Z}^H = \boldsymbol{Z}$  (equivalente complejo de una matriz simétrica) y unitaria si  $\boldsymbol{Z}^H \boldsymbol{Z} = \boldsymbol{I}$  (equivalente complejo de una matriz ortogonal).

Sea  ${\pmb A}$  una matriz cuadrada  $n \times n$ . Los valores propios de  ${\pmb A}$  son definidos como las raíces de la ecuación característica

$$|\lambda \mathbf{I} - \mathbf{A}| = 0,$$

la ecuación anterior tiene n raíces, en general complejas y posiblemente con algunas repeticiones (multiplicidad). Sea  $\lambda$  un valor propio de A, entonces existe un vector  $v \neq 0 \in \mathbb{C}^n$  tal que  $(\lambda I - A)v = 0$ , esto es,

$$Av = \lambda v$$
.

el vector  $\boldsymbol{v}$  se denomina vector propio asociado al valor propio  $\lambda$ . Note que, si  $\boldsymbol{v}$  es un vector propio, también lo es  $\alpha \boldsymbol{v}$ ,  $\forall \alpha \in \mathbb{C}$ , y en particular  $\boldsymbol{v}/\|\boldsymbol{v}\|$  es un vector propio normalizado.

RESULTADO A.14. Si  $\mathbf{A} \in \mathbb{C}^{n \times n}$  es matriz Hermitiana, entonces todos sus valores propios son reales

RESULTADO A.15. Si  $\mathbf{A}$  es matriz cuadrada  $n \times n$  y  $\mathbf{G}$  es matriz no singular  $n \times n$ , entonces  $\mathbf{A}$  y  $\mathbf{G}^{-1}\mathbf{A}\mathbf{G}$  tienen el mismo conjunto de valores propios (con las mismas multiplicidades)

DEMOSTRACIÓN. Note que

$$|\lambda I - G^{-1}AG| = |\lambda G^{-1}G - G^{-1}AG| = |G^{-1}||\lambda I - A||G| = |\lambda I - A|$$

Resultado A.16. Una matriz singular tiene al menos un valor propio cero

Demostración. Si  $\boldsymbol{A}$  es matriz singular, entonces  $\boldsymbol{A}\boldsymbol{v}=\boldsymbol{0}$  para algún  $\boldsymbol{v}\neq\boldsymbol{0}$ , luego desde  $\boldsymbol{A}\boldsymbol{v}=\lambda\boldsymbol{v}$ , tenemos que  $\lambda=0$ .

RESULTADO A.17. Una matriz simétrica es definida positiva (semidefinida positiva) sólo si todos sus valores propios son positivos (no-negativos).

DEMOSTRACIÓN. Si  $\boldsymbol{A}$  es definida positiva y  $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v}$ , entonces  $\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{v}^{\top} \boldsymbol{v}$ . Ahora, como  $\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} > 0$  y  $\boldsymbol{v}^{\top} \boldsymbol{v} > 0$  implica  $\lambda > 0$ . La conversa no será probada aquí.

Resultado A.18. Una matriz idempotente sólo tiene valores propios 0 ó 1. Todos los valores propios de una matriz unitaria tienen modulo 1

Demostración. Sea  $\boldsymbol{A}$  matriz idempotente, esto es<br/>,  $\boldsymbol{A}^2 = \boldsymbol{A}$ . De este modo, si  $\boldsymbol{A}\boldsymbol{v} = \lambda\boldsymbol{v}$ , entonces

$$\lambda \mathbf{v} = \mathbf{A}\mathbf{v} = \mathbf{A}^2 \mathbf{v} = \lambda \mathbf{A}\mathbf{v} = \lambda^2 \mathbf{v}$$

y de ahí que  $\lambda = \lambda^2$ , esto implica que  $\lambda = 0$  ó  $\lambda = 1$ .

Por otro lado, si  $\boldsymbol{A}$  es unitaria, entonces  $\boldsymbol{a}^H\boldsymbol{A}=\boldsymbol{I}$ . De este modo, si  $\boldsymbol{A}\boldsymbol{v}=\lambda\boldsymbol{v},$  entonces

$$\boldsymbol{v}^H \boldsymbol{A}^H = \overline{\lambda} \boldsymbol{v}^H$$
,

luego

$$v^H v = v^H A^H A v = \overline{\lambda} \lambda v^H v.$$

Como  $\mathbf{v}^H \mathbf{v} \neq 0$ , obtenemos que  $\overline{\lambda} \lambda = 1$  y de ahí que  $|\lambda| = 1$ .

RESULTADO A.19 (Propiedades de la matrices idempotentes). Sea  ${m A}$  matriz  $n \times n$ , entonces

- (a)  $\mathbf{A}^{\top}$  y  $\mathbf{I} \mathbf{A}$  son idempotentes sólo si  $\mathbf{A}$  es idempotente,
- (b) si  $\mathbf{A}$  es idempotente, entonces  $\operatorname{rg}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}) = r$ . Si  $\operatorname{rg}(\mathbf{A}) = n$ , entonces  $\mathbf{A} = \mathbf{I}$ .

RESULTADO A.20. Si  $\mathbf{A} \in \mathbb{C}^{n \times n}$  es matriz Hermitiana y  $\mathbf{v}_1$ ,  $\mathbf{v}_2$  son vectores propios asociados a  $\lambda_1$  y  $\lambda_2$ , respectivamente, donde  $\lambda_1 \neq \lambda_2$ . Entonces  $\mathbf{v}_1 \perp \mathbf{v}_2$ .

El resultado anterior muestra que si todos los valores propios de una matriz Hermitiana A son distintos, entonces existe una base ortonormal de vectores propios tal que A es diagonalizable.

Proposición A.21 (Descomposición de Schur). Sea  $\mathbf{A} \in \mathbb{C}^{n \times n}$ . Entonces existe una matriz unitaria  $U \in \mathbb{C}^{n \times n}$  y una matriz triangular M cuyos elementos diagonales son los valores propios de A, tal que

$$U^H A U = M$$

Proposición A.22 (Descomposición espectral). Sea  $\mathbf{A} \in \mathbb{C}^{n \times n}$  matriz Hermitiana. Entonces existe una matriz unitaria  $U \in \mathbb{C}^{n \times n}$  tal que

$$U^H A U = \Lambda$$
.

donde  $\Lambda = \operatorname{diag}(\lambda)$  es matriz diagonal cuyos elementos diagonales son los valores propios de A.

Para aplicaciones en Estadística siempre haremos uso de la Proposición A.22 considerando  $\boldsymbol{A}$  matriz simétrica, en cuyo caso todos sus valores propios serán reales y U será una matriz ortogonal. Para  $Q \in \mathbb{R}^{n \times n}$  matriz ortogonal, denotamos el grupo de matrices ortogonales como

$$\mathcal{O}_n = \{ \boldsymbol{Q} \in \mathbb{R}^{n \times n} : \boldsymbol{Q}^{\top} \boldsymbol{Q} = \boldsymbol{I} \}$$

Note que si A es matriz simétrica y definida positiva, entonces

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} = (\boldsymbol{U}\boldsymbol{\Lambda}^{1/2})(\boldsymbol{U}\boldsymbol{\Lambda}^{1/2})^{\top} = (\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^{\top})^{2}$$

donde  $\Lambda = \operatorname{diag}(\lambda) \vee \Lambda^{1/2} = \operatorname{diag}(\lambda^{1/2})$ . Por tanto,

$$A = MM^{\top}$$
, con  $M = U\Lambda^{1/2}$ .

o bien,

$$A = B^2$$
. con  $B = U\Lambda^{1/2}U^{\top}$ .

esto es, B es una matriz raíz cuadrada de A.

RESULTADO A.23. Sea **A** matriz simétrica  $n \times n$ , con valores propios  $\lambda_1, \ldots, \lambda_n$ . Entonces

- (a)  $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_i$ , (b)  $|\boldsymbol{A}| = \prod_{i=1}^{n} \lambda_i$ .

Demostración. Usando que  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$ . Tenemos

$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top}) = \operatorname{tr}(\boldsymbol{\Lambda}\boldsymbol{U}^{\top}\boldsymbol{U}) = \operatorname{tr}(\boldsymbol{\Lambda}) = \sum_{i=1}^{n} \lambda_{i}$$

у

$$|oldsymbol{A}| = |oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^{ op}| = |oldsymbol{U}||oldsymbol{\Lambda}||oldsymbol{U}^{ op}| = |oldsymbol{\Lambda}| = \prod_{i=1}^n \lambda_i$$

RESULTADO A.24. Si A es una matriz simétrica con r valores propios distintos de cero, entonces  $rg(\mathbf{A}) = r$ .

DEMOSTRACIÓN. Tenemos que  $U^{\top}AU = \Lambda$  y de ahí que

$$rg(\mathbf{A}) = rg(\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}) = rg(\mathbf{\Lambda}) = r$$

### A.2.7. Matrices (semi)definidas positivas.

Proposición A.25. Sea  ${m A}$  matriz definida positiva y  ${m B}$  semidefinida positiva. Entonces

$$|A+B| \ge |A|,$$

con la igualdad sólo si  $\mathbf{B} = \mathbf{0}$ .

Demostración. Tenemos  $\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U}=\boldsymbol{\Lambda},$  con  $\boldsymbol{\Lambda}=\mathrm{diag}(\boldsymbol{\lambda})$  y  $\boldsymbol{U}^{\top}\boldsymbol{U}=\boldsymbol{U}\boldsymbol{U}^{\top}=\boldsymbol{I}.$  Luego,

$$A + B = U\Lambda U^{\top} + B = U\Lambda^{1/2}(I + \Lambda^{-1/2}U^{\top}BU\Lambda^{-1/2})\Lambda^{1/2}U^{\top},$$

de este modo

$$\begin{split} |\boldsymbol{A} + \boldsymbol{B}| &= |\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}||\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^{\top}| \\ &= |\boldsymbol{U}\boldsymbol{\Lambda}^{1/2}\boldsymbol{\Lambda}^{1/2}\boldsymbol{U}^{\top}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}| \\ &= |\boldsymbol{A}||\boldsymbol{I} + \boldsymbol{\Lambda}^{-1/2}\boldsymbol{U}^{\top}\boldsymbol{B}\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2}|. \end{split}$$

Si  $B = \mathbf{0}$ , tenemos |A + B| = |A|. Por otro lado, si  $B \neq \mathbf{0}$ . Entonces la matriz  $I + \mathbf{\Lambda}^{-1/2} \mathbf{U}^{\top} B \mathbf{U} \mathbf{\Lambda}^{-1/2}$  tendrá al menos un valor propio no nulo y por tanto,  $|I + \mathbf{\Lambda}^{-1/2} \mathbf{U}^{\top} B \mathbf{U} \mathbf{\Lambda}^{-1/2}| > 1$ , esto es |A + B| > |A|.

Para dos matrices simétricas A y B, escribimos  $A \ge B$  si A - B es semidefinida positiva. Análogamente, escribimos A > B si A - B es definida positiva.

RESULTADO A.26. Sean A, B matrices definidas positivas  $n \times n$ . Entonces A > B sólo si  $B^{-1} > A^{-1}$ .

PROPOSICIÓN A.27. Sean A y B matrices definidas positivas y  $A-B \ge 0$ . Entonces  $|A| \ge |B|$  con la iqualdad sólo si A = B.

DEMOSTRACIÓN. Sea C = A - B. Como B es definida positiva y C es semidefinida positiva, tenemos por la Proposición A.25 que  $|B + C| \ge |B|$ , con la igualdad sólo si C = 0.

#### A.2.8. Descomposiciones matriciales.

PROPOSICIÓN A.28 (Descomposición LDL). Si  $\mathbf{A} \in \mathbb{R}^{n \times n}$  es matriz simétrica y no singular, entonces existe  $\mathbf{L}$  matriz triangular inferior y  $\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_n)$ , tal que

$$A = LDL^{\top}$$
.

PROPOSICIÓN A.29 (Descomposición Cholesky). Si  $\mathbf{A} \in \mathbb{R}^{n \times n}$  es simétrica y definida positiva, entonces existe una única matriz triangular inferior  $\mathbf{G} \in \mathbb{R}^{n \times n}$  (factor Cholesky) con elementos diagonales positivos, tal que

$$A = GG^{\top}$$
.

PROPOSICIÓN A.30 (Descomposición ortogonal-triangular). Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , entonces existe  $\mathbf{Q} \in \mathcal{O}_m$  y  $\mathbf{R} \in \mathbb{R}^{m \times n}$ , tal que

$$A = QR$$

donde

$$oldsymbol{R} = egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix}$$

con  $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$  matriz triangular superior, aquí suponemos que  $m \geq n$ . Si  $\operatorname{rg}(\mathbf{A}) = r$ , entonces las primeras n columnas de  $\mathbf{Q}$  forman una base ortonormal para  $\mathcal{M}(\mathbf{A})$ .

Note que, si  $\mathbf{A} = \mathbf{Q}\mathbf{R}$  entonces

$$A^{\top}A = R^{\top}Q^{\top}QR = R^{\top}R = R_1^{\top}R_1,$$

y  $\mathbf{R}_1$  corresponde al factor Cholesky de  $\mathbf{A}^{\top} \mathbf{A}$ .

Proposición A.31 (Descomposición valor singular). Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$  con  $\operatorname{rg}(\mathbf{A}) =$ r, entonces existen matrices  $U \in \mathcal{O}_m$ ,  $V \in \mathcal{O}_n$ , tal que

$$oldsymbol{A} = oldsymbol{U} egin{pmatrix} oldsymbol{D}_r & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix} oldsymbol{V}^ op,$$

donde  $D_r = \operatorname{diag}(\delta_1, \ldots, \delta_r)$  con  $\delta_i > 0$  para  $i = 1, \ldots, r$ , llamados valores singulares de A.

**A.2.9.** Matrices particionadas. Sea A una matriz  $m \times n$ . Considere particionar A como sigue

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix},\tag{A.1}$$

 $\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{pmatrix}, \tag{A.1}$  donde  $\boldsymbol{A}_{11} \in \mathbb{R}^{m_1 \times n_1}, \, \boldsymbol{A}_{12} \in \mathbb{R}^{m_1 \times n_2}, \, \boldsymbol{A}_{21} \in \mathbb{R}^{m_2 \times n_1}, \, \boldsymbol{A}_{22} \in \mathbb{R}^{m_2 \times n_2}, \, \mathbf{y} \, m_1 + m_2 = 0$  $m, n_1 + n_2 = n.$ 

Sea  $B \in \mathbb{R}^{m \times n}$  particionada de manera análoga a A, entonces

$$m{A} + m{B} = egin{pmatrix} m{A}_{11} + m{B}_{11} & m{A}_{12} + m{B}_{12} \ m{A}_{21} + m{B}_{21} & m{A}_{22} + m{B}_{22} \end{pmatrix}.$$

Ahora, considere  $C \in \mathbb{R}^{n \times p}$  particionada en submatrices  $C_{ii}$ , para i, j = 1, 2 con dimensiones adecuadas, entonces

$$AC = egin{pmatrix} A_{11}C_{11} + A_{12}C_{21} & A_{11}C_{12} + A_{12}C_{22} \ A_{21}C_{11} + A_{22}C_{21} & A_{21}C_{12} + A_{22}C_{22} \end{pmatrix}.$$

La transpuesta de  $\boldsymbol{A}$  está dada por

$$oldsymbol{A}^ op = egin{pmatrix} oldsymbol{A}_{11}^ op & oldsymbol{A}_{21}^ op \ oldsymbol{A}_{12}^ op & oldsymbol{A}_{22}^ op \end{pmatrix}.$$

Si  $A_{12}$  y  $A_{21}$  son matrices nulas y si ambas  $A_{11}$  y  $A_{22}$  son matrices no singulares, entonces la inversa de  $\boldsymbol{A}$  es

$$m{A}^{-1} = egin{pmatrix} m{A}_{11}^{-1} & m{0} \\ m{0} & m{A}_{22}^{-1} \end{pmatrix}.$$

En general, si A es matriz no singular particionada como en (A.1) y  $D = A_{22}$  –  $A_{21}A_{11}^{-1}A_{12}$  también es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & -\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \\ -\boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & \boldsymbol{D}^{-1} \end{pmatrix}.$$

Por otro lado, si  ${\pmb A}$  es no singular y  ${\pmb E}={\pmb A}_{11}-{\pmb A}_{12}{\pmb A}_{22}^{-1}{\pmb A}_{21}$  es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{E}^{-1} & -\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \\ -\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1} & \boldsymbol{A}_{22}^{-1} + \boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \end{pmatrix}.$$

Considere el determinante

$$egin{aligned} egin{aligned} m{A}_{11} & m{A}_{12} \ m{0} & m{A}_{22} \end{aligned} = m{A}_{11} ||m{A}_{22}| = egin{aligned} m{A}_{11} & m{0} \ m{A}_{21} & m{A}_{22} \end{aligned},$$

si  $A_{11}$  y  $A_{22}$  son matrices cuadradas.

Ahora, para una matriz particionada como en (A.1) con  $m_1 = n_1$  y  $m_2 = n_2$ , tenemos

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}| = |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|,$$

si  $A_{11}$  y  $A_{22}$  son matrices no singulares.

#### A.3. Inversa generalizada y sistemas de ecuaciones lineales

En esta sección se generaliza el concepto de invertibilidad para matrices singulares así como para matrices rectangulares. En particular, introducimos la inversa Moore-Penrose (MP), generalización que permite resolver de forma explícita un sistema de ecuaciones lineales.

**A.3.1.** Inversa Moore-Penrose. Sea  $A \in \mathbb{R}^{m \times n}$ , la inversa Moore-Penrose,  $\boldsymbol{G} \in \mathbb{R}^{n \times m}$  debe satisfacer las siguientes condiciones

$$AGA = A, (A.2)$$

$$GAG = G, (A.3)$$

$$(\mathbf{A}\mathbf{G})^{\top} = \mathbf{A}\mathbf{G},\tag{A.4}$$

$$(\mathbf{G}\mathbf{A})^{\top} = \mathbf{G}\mathbf{A}.\tag{A.5}$$

La inversa MP de A se denota comunmente como  $A^+$ . Si G satisface sólo la condición en (A.2) entonces decimos que G es una inversa generalizada y la denotamos por  $A^-$ .

Proposición A.32 (Unicidad de la inversa MP). Para cada A, existe una única  $A^+$ .

RESULTADO A.33 (Propiedades de la inversa MP).

- (a)  $A^+ = A^{-1}$  para A matriz no singular,
- (b)  $(A^+)^+ = A$ .
- $(c) (\mathbf{A}^{\top})^+ = (\mathbf{A}^+)^{\top},$
- (d)  $A^+ = A \operatorname{si} A \operatorname{es} \operatorname{sim\acute{e}trica} \operatorname{e} \operatorname{idempotente},$
- (e)  $\mathbf{A}\mathbf{A}^+$  y  $\mathbf{A}^+\mathbf{A}$  son idempotentes,
- (f)  $\operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}^+\mathbf{A}),$
- (g)  $\mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{+} = \mathbf{A} = \mathbf{A}^{+} \mathbf{A} \mathbf{A}^{\top}$ ,
- (h)  $A^{\top}A^{+^{\top}}A^{+} = A^{+} = A^{+}A^{+^{\top}}A^{\top}$ , (i)  $A^{+} = (A^{\top}A)^{+}A^{\top} = A^{\top}(AA^{\top})^{+}$ ,
- (j)  $A^+ = (A_-^\top A)^{-1} A^\top$ , si A tiene rango columna completo,
- (k)  $\mathbf{A}^+ = \mathbf{A}^\top (\mathbf{A} \mathbf{A}^\top)^{-1}$ , si  $\mathbf{A}$  tiene rango fila completo.

A.3.2. Solución de sistemas de ecuaciones lineales. La solución general de un sistema de ecuaciones homegéneo Ax = 0 es

$$x = (I - A^+ A)q,$$

con q un vector arbitrário. La solución de Ax = 0 es única sólo si A tiene rango columna completo, esto es,  $A^{\top}A$  es no singular. El sistema homogéneo Ax=0siempre tiene al menos una solución, digamos x = 0.

El sistema no homogéneo

$$Ax = b$$

tendrá al menos una solución si es consistente.

Proposición A.34. Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$  y  $\mathbf{b}$  vector  $m \times 1$ . Entonces son equivalentes:

- (a) la ecuación  $\mathbf{A}\mathbf{x} = \mathbf{b}$  tiene una solución para  $\mathbf{x}$ ,
- (b)  $\boldsymbol{b} \in \mathcal{M}(\boldsymbol{A})$ ,
- (c)  $\operatorname{rg}(\boldsymbol{A}:\boldsymbol{b}) = \operatorname{rg}(\boldsymbol{A}),$
- (d)  $\mathbf{A}\mathbf{A}^{+}\mathbf{b} = \mathbf{b}$ .

Proposición A.35. Una condición necesaria y suficiente para que la ecuación  $\mathbf{A}\mathbf{x} = \mathbf{b}$  tenga una solución es que

$$AA^+b=b$$
,

en cuyo caso la solución general está dada por

$$x = A^+b + (I - A^+A)q,$$

 $donde \ {\boldsymbol q} \ es \ un \ vector \ arbitr\'ario.$ 

Si el sistema Ax = b es consistente, entonces tendrá solución única sólo si A es de rango completo, en cuyo caso la solución está dada por  $x = A^{-1}b$ .

Proposición A.36. Una condición necesaria y suficiente para que la ecuación matricial AXB = C tenga una solución es que

$$AA^+CB^+B=C,$$

en cuyo caso la solución general es

$$X = A^+ C B^+ + Q - A^+ A Q B B^+,$$

donde Q es una matriz arbitrária de órdenes apropiados.

### Apéndice B

## Diferenciación matricial

En esta sección haremos uso de la siguiente notación.  $\phi$ , f y F representan funciones escalar, vectorial y matricial, respectivamente mientras que  $\zeta$ , x y X argumentos escalar, vectorial y matricial, respectivamente.

A partir de esta convención es directo que podemos escribir los siguientes casos particulares:

$$egin{aligned} \phi(\zeta) &= \zeta^2, \quad \phi(oldsymbol{x}) = oldsymbol{a}^ op oldsymbol{x}, \quad \phi(oldsymbol{X}) = \operatorname{tr}(oldsymbol{X}^ op oldsymbol{X}), \ oldsymbol{f}(\zeta) &= (\zeta, \zeta^2)^ op, \quad oldsymbol{f}(oldsymbol{x}) = oldsymbol{A}oldsymbol{x}, \quad oldsymbol{f}(oldsymbol{X}) = oldsymbol{X}oldsymbol{a}, \ oldsymbol{F}(\zeta) &= \zeta^2 oldsymbol{I}_n, \quad oldsymbol{F}(oldsymbol{x}) = oldsymbol{x}oldsymbol{x}^ op, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{F}(oldsymbol{x}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{x}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{X}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{X} oldsymbol{X} = oldsymbol{X}oldsymbol{X}oldsymbol{X} = oldsymbol{X}oldsymbol{X}oldsymbol{X} = oldsymbol{X}oldsymbol{X} = oldsymbol{X} = oldsymbo$$

Existen varias definiciones para la derivada de una función matricial F(X) con relación a su argumento (matricial) X. En este apéndice nos enfocamos en el cálculo diferencial propuesto por Magnus y Neudecker (1985).

Considere  $\phi:S\to\mathbb{R}$  con  $S\subset\mathbb{R}^n,$  se define la derivada de  $\phi$  con relación a  $\boldsymbol{x}\in S$  como

$$\frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left(\frac{\partial \phi}{\partial x_1}, \dots, \frac{\partial \phi}{\partial x_n}\right)^{\top} = \left(\frac{\partial \phi}{\partial x_i}\right) \in \mathbb{R}^n$$

de este modo, introducimos la notación

$$\mathsf{D}\phi(\boldsymbol{x}) = \frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}^{\top}} \in \mathbb{R}^{1 \times n}.$$

Ahora, si  $\mathbf{f}: S \to \mathbb{R}^m$ ,  $S \subset \mathbb{R}^n$ . Entonces la matriz  $m \times n$ ,

$$\mathsf{D}m{f}(m{x}) = egin{pmatrix} \mathsf{D}f_1(m{x}) \ dots \ \mathsf{D}f_m(m{x}) \end{pmatrix} = rac{\partial m{f}(m{x})}{\partial m{x}^ op},$$

es la derivada o matriz Jacobiana de f. La transpuesta de la matriz Jacobiana  $\mathsf{D} f(x)$  se denomina gradiente de f(x).

#### B.1. Aproximación de primer orden

Considere la fórmula de Taylor de primer orden,

$$\phi(c+u) = \phi(c) + u\phi'(c) + r_c(u),$$

donde el resto

$$\lim_{u \to 0} \frac{r_c(u)}{u} = 0.$$

es de orden más pequeño que u conforme  $u \to 0.$  Note también que

$$\lim_{u \to 0} \frac{\phi(c+u) - \phi(c)}{u} = \phi'(c).$$

De este modo, se define

$$d \phi(c; u) = u \phi'(c),$$

como el (primer) diferencial de  $\phi$  en c con incremento u. Esto motiva la siguiente definición.

DEFINICIÓN B.1 (Diferencial de una función vectorial). Sea  $\mathbf{f}: S \to \mathbb{R}^m$ ,  $S \subset \mathbb{R}^n$ , si existe una matriz  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , tal que

$$f(c+u) = f(c) + A(c)u + r_c(u),$$

para todo  $\boldsymbol{u} \in \mathbb{R}^n$  con  $||\boldsymbol{u}|| < \delta$ , y

$$\lim_{u\to 0}\frac{\boldsymbol{r}_c(\boldsymbol{u})}{||\boldsymbol{u}||}=\boldsymbol{0},$$

entonces la función  $\boldsymbol{f}$  se dice diferenciable en  $\boldsymbol{c}$ . El vector  $m\times 1$ 

$$d f(c; u) = A(c)u$$

se denomina primer diferencial de f en c con incremento u.

Magnus y Neudecker (1985) mostraron la existencia y unicidad del diferencial d f(c; u) de una función  $f: S \to \mathbb{R}^m$ ,  $S \subset \mathbb{R}^n$   $(c \in S)$ , dado por

$$d f(c; u) = A(c)u$$

también mostraron la regla de la cadena e invarianza de Cauchy para el diferencial y enunciaron su primer teorema de identificación.

TEOREMA B.2 (Primer teorema de identificación). Sea  $\mathbf{f}: S \to \mathbb{R}^m$ ,  $S \subset \mathbb{R}^n$  función diferenciable,  $\mathbf{c} \in S$  y  $\mathbf{u}$  un vector n-dimensional. Entonces

$$d f(c; u) = (Df(c))u.$$

La matriz  $\mathsf{D} f(c) \in \mathbb{R}^{m \times n}$  se denomina matriz Jacobiana. Tenemos también que

$$\nabla f(c) = (\mathsf{D} f(c))^{\top}$$

es la matriz gradiente de f.

Sea  $\mathbf{f}: S \to \mathbb{R}^m$ ,  $S \subset \mathbb{R}^n$  y  $f_i: S \to \mathbb{R}$  el *i*-ésimo componente de  $\mathbf{f}$  (i = 1, ..., m). Sea  $\mathbf{e}_j$  un vector n-dimensional cuyo j-ésimo elemento es uno y los restantes son cero, y considere

$$\lim_{t\to 0} \frac{f_i(\boldsymbol{c}+t\boldsymbol{e}_j) - f_i(\boldsymbol{c})}{t}$$

si el límite existe, se denomina la j-ésima derivada parcial de  $f_i$  en c y es denotada por  $\mathsf{D}_j f_i(c)$ . Note que el elemento ij de  $\mathsf{D} f(c)$  es  $\mathsf{D}_j f_i(c)$ .

## **B.2.** Funciones matriciales

Considere algunos ejemplos de funciones matriciales

$$m{F}(\zeta) = egin{pmatrix} \cos(\zeta) & \sin(\zeta) \ -\sin(\zeta) & \cos(\zeta) \end{pmatrix}, \quad m{F}(m{x}) = m{x}m{x}^ op, \quad m{F}(m{X}) = m{X}^ op, \quad m{X} \in \mathbb{R}^{n imes q}.$$

Antes de considerar el diferencial de una función matricial  $\mathbf{F}: S \to \mathbb{R}^{m \times p}, \ S \subset \mathbb{R}^{n \times q}$  introducimos dos conceptos preliminares: la vectorización de una matriz y el producto Kronecker.

DEFINICIÓN B.3 (Operador de vectorización). Sea  $A \in \mathbb{R}^{n \times q}$  particionada como

$$A = (a_1, \ldots, a_q),$$

donde  $\boldsymbol{a}_k \in \mathbb{R}^n$  es la k-ésima columna de  $\boldsymbol{A}$ . Entonces

$$\operatorname{vec}(oldsymbol{A}) = egin{pmatrix} oldsymbol{a}_1 \ dots \ oldsymbol{a}_q \end{pmatrix}.$$

DEFINICIÓN B.4 (Producto Kronecker). Sea  $\mathbf{A} \in \mathbb{R}^{m \times n}$  y  $\mathbf{B} \in \mathbb{R}^{p \times q}$ , entonces el producto Kronecker entre  $\mathbf{A}$  y  $\mathbf{B}$  denotado por  $\mathbf{A} \otimes \mathbf{B}$  es la matriz  $mp \times nq$  definida como

$$m{A} \otimes m{B} = egin{pmatrix} a_{11} m{B} & \dots & a_{1n} m{B} \\ dots & & dots \\ a_{m1} m{B} & \dots & a_{mn} m{B} \end{pmatrix}$$

Resultado B.5. Sean A, B, C y D matrices de órdenes apropiados y  $\lambda$  escalar. Entonces

- (a)  $A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$ ,
- (b)  $(A+B)\otimes (C+D) = A\otimes C + B\otimes C + A\otimes D + B\otimes D$ ,
- (c)  $(A \otimes B)(C \otimes D) = AC \otimes BD$ ,
- (d)  $\lambda \otimes \mathbf{A} = \lambda \mathbf{A} = \mathbf{A} \otimes \lambda$ ,
- (e)  $(\boldsymbol{A} \otimes \boldsymbol{B})^{\top} = \boldsymbol{A}^{\top} \otimes \boldsymbol{B}^{\top}$
- (f)  $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- (g)  $(\mathbf{A} \otimes \mathbf{B})^- = \mathbf{A}^- \otimes \mathbf{B}^-$ .

Resultado B.6. Sean  $\mathbf{A} \in \mathbb{R}^{n \times n}$  y  $\mathbf{B} \in \mathbb{R}^{p \times p}$ . Entonces

- (a)  $\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) \operatorname{tr}(\boldsymbol{B}),$
- (b)  $|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^p |\mathbf{B}|^n$ ,
- (c)  $\operatorname{rg}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{rg}(\boldsymbol{A}) \operatorname{rg}(\boldsymbol{B})$ .

Observe que, si  $\boldsymbol{a} \in \mathbb{R}^n$  y  $\boldsymbol{b} \in \mathbb{R}^p$ , entonces

$$ab^{\top} = a \otimes b^{\top} = b^{\top} \otimes a.$$

por otro lado, tenemos que

$$\operatorname{vec}(\boldsymbol{a}\boldsymbol{b}^\top) = \operatorname{vec}(\boldsymbol{a}\otimes\boldsymbol{b}^\top) = \operatorname{vec}(\boldsymbol{b}^\top\otimes\boldsymbol{a}) = \boldsymbol{b}\otimes\boldsymbol{a}.$$

Estos resultados sugieren una conexión entre el operador de vectorización, el producto Kronecker y la traza. Considere el siguiente resultado

Resultado B.7.

(a) Si A y B son ámbas matrices de orden  $m \times n$ , entonces

$$\operatorname{tr} \mathbf{A}^{\top} \mathbf{B} = \operatorname{vec}^{\top} \mathbf{A} \operatorname{vec} \mathbf{B}.$$

(b) Si A, B y C son de órdenes adecuados, entonces

$$\operatorname{vec} \boldsymbol{A}\boldsymbol{B}\boldsymbol{C} = (\boldsymbol{C}^{\top} \otimes \boldsymbol{A}) \operatorname{vec} \boldsymbol{B},$$

 $donde \operatorname{vec}^{\top} \mathbf{A} = (\operatorname{vec} \mathbf{A})^{\top}.$ 

Finalmente, tenemos el siguiente resultado

RESULTADO B.8. Sean A, B, C y D matrices, tal que, el producto ABCD está definido y es cuadrado, entonces

$$\operatorname{tr} \boldsymbol{A} \boldsymbol{B} \boldsymbol{C} \boldsymbol{D} = \operatorname{vec}^{\top} \boldsymbol{D}^{\top} (\boldsymbol{C}^{\top} \otimes \boldsymbol{A}) \operatorname{vec} \boldsymbol{B} = \operatorname{vec}^{\top} \boldsymbol{D} (\boldsymbol{A} \otimes \boldsymbol{C}^{\top}) \operatorname{vec} \boldsymbol{B}^{\top}.$$

Sea  $F: S \to \mathbb{R}^{m \times p}$ ,  $S \subset \mathbb{R}^{n \times q}$  una función matricial, podemos notar que

$$\operatorname{vec} \boldsymbol{F}(\boldsymbol{X}) = \boldsymbol{f}(\operatorname{vec} \boldsymbol{X})$$

esto permite obtener el diferencial de una función matricial considerando la relación

$$\operatorname{vec} \operatorname{d} \boldsymbol{F}(\boldsymbol{C}; \boldsymbol{U}) = \operatorname{d} \boldsymbol{f}(\operatorname{vec} \boldsymbol{C}; \operatorname{vec} \boldsymbol{U})$$

en cuyo caso  $\boldsymbol{F}$  tiene matriz Jacobiana

$$\mathsf{D} F(C) = \mathsf{D} f(\operatorname{vec} C)$$

Las consideraciones anteriores motivan el primer teorema de indentificación para funciones matriciales (Magnus y Neudecker, 1985)

TEOREMA B.9 (Primer teorema de identificación para funciones matriciales). Sea  $\mathbf{F}: S \to \mathbb{R}^{m \times p}, \ S \subset \mathbb{R}^{n \times q}$  función diferenciable,  $\mathbf{C} \in S$  y  $\mathbf{U}$  matriz  $n \times q$ . Entonces

$$\operatorname{vec} d \mathbf{F}(\mathbf{C}; \mathbf{U}) = (\mathsf{D}\mathbf{F}(\mathbf{C})) \operatorname{vec} \mathbf{U}.$$

 $con (\mathsf{D} \boldsymbol{F}(\boldsymbol{C}))^{\top}$  la matriz gradiente de  $\boldsymbol{F}$ .

#### **B.3.** Matriz Hessiana

Considere  $\phi: S \to \mathbb{R}$  con  $S \subset \mathbb{R}^n$ , entonces se define la matriz Hessiana como la matriz de segundas derivadas, dada por

$$\mathsf{H}\phi(\boldsymbol{x}) = \frac{\partial^2 \phi(\boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^\top} = \frac{\partial}{\partial \boldsymbol{x}^\top} \Big( \frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}^\top} \Big)^\top = \mathsf{D}(\mathsf{D}\phi(\boldsymbol{x}))^\top.$$

Es posible definir el diferencial de funciones vectoriales y matriciales de manera análoga a la delineada anteriormente. Sin embargo, en este apéndice nos enfocaremos solamente en el cálculo de diferenciales de funciones escalares. El segundo diferencial de una función escalar está dado por

$$d^2 \phi = d(d \phi).$$

Magnus y Neudecker (1985) enunciaron el siguiente teorema de identificación para matrices Hessianas de funciones escalares

TEOREMA B.10 (Segundo teorema de identificación). Sea  $\phi: S \to \mathbb{R}$ ,  $S \subset \mathbb{R}^n$  dos veces diferenciable,  $\mathbf{c} \in S$  y  $\mathbf{u}$  vector n-dimensional. Entonces

$$\mathsf{d}^2\,\phi(\boldsymbol{c};\boldsymbol{u}) = \boldsymbol{u}^\top(\mathsf{H}\phi(\boldsymbol{c}))\boldsymbol{u}.$$

donde  $H\phi(c) \in \mathbb{R}^{n \times n}$  es la matriz Hessiana de  $\phi$ .

Algunas ventajas (prácticas) importantes del cálculo de diferenciales son:

• Sea f(x) función vectorial  $m \times 1$  con argumento x, vector n-dimensional, entonces

$$\mathsf{D} f(x) \in \mathbb{R}^{m \times n}$$
 sin embargo,  $\mathsf{d} f(x) \in \mathbb{R}^m$ 

• Para funciones matriciales, dF(X) tiene la misma dimensión que F sin importar la dimensión de X.

#### B.4. Reglas fundamentales

A continuación se presentan algunas reglas fundamentales para el cálculo de diferenciales

Considere u y v funciones escalares y  $\alpha$  una constante, entonces:

$$\begin{split} \operatorname{d}\alpha &= 0, \qquad \operatorname{d}(\alpha u) = \alpha \operatorname{d}u, \quad \operatorname{d}(u+v) = \operatorname{d}u + \operatorname{d}v, \\ \operatorname{d}(uv) &= (\operatorname{d}u)v + u(\operatorname{d}v) \qquad \operatorname{d}(u/v) = \frac{(\operatorname{d}u)v - u(\operatorname{d}v)}{v^2}, (v \neq 0), \\ \operatorname{d}u^\alpha &= \alpha u^{\alpha-1} \operatorname{d}u, \qquad \operatorname{d}e^u = e^u \operatorname{d}u, \\ \operatorname{d}\log u &= u^{-1} \operatorname{d}u, (u > 0) \qquad \operatorname{d}\alpha^u = \alpha^u \log \alpha \operatorname{d}u, (\alpha > 0), \end{split}$$

aquí por ejemplo,

$$\phi(x) = u(x) + v(x).$$

Análogamente para U, V funciones matriciales,  $\alpha$  un escalar (constante) y  $A \in \mathbb{R}^{m \times n}$  constante, tenemos

$$\begin{split} \operatorname{d} \boldsymbol{A} &= \boldsymbol{0}, & \operatorname{d} (\alpha \boldsymbol{U}) = \alpha \operatorname{d} \boldsymbol{U}, \\ \operatorname{d} (\boldsymbol{U} + \boldsymbol{V}) &= \operatorname{d} \boldsymbol{U} + \operatorname{d} \boldsymbol{V}, & \operatorname{d} (\boldsymbol{U} \boldsymbol{V}) = (\operatorname{d} \boldsymbol{U}) \boldsymbol{V} + \boldsymbol{U} \operatorname{d} \boldsymbol{V}, \\ \operatorname{d} (\boldsymbol{U} \otimes \boldsymbol{V}) &= \operatorname{d} \boldsymbol{U} \otimes \operatorname{d} \boldsymbol{V}, & \operatorname{d} (\boldsymbol{U} \odot \boldsymbol{V}) = \operatorname{d} \boldsymbol{U} \odot \operatorname{d} \boldsymbol{V}, \\ \operatorname{d} \boldsymbol{U}^\top &= (\operatorname{d} \boldsymbol{U})^\top, & \operatorname{d} \operatorname{vec} \boldsymbol{U} = \operatorname{vec} \operatorname{d} \boldsymbol{U}, & \operatorname{d} \operatorname{tr} \boldsymbol{U} = \operatorname{tr} \operatorname{d} \boldsymbol{U}. \end{split}$$

Otros diferenciales de uso frecuente en Estadística son:

$$\label{eq:def} \begin{split} \operatorname{d}|\pmb{F}| &= |\pmb{F}|\operatorname{tr}\pmb{F}^{-1}\operatorname{d}\pmb{F}, \qquad \operatorname{d}\log|\pmb{F}| = \operatorname{tr}\pmb{F}^{-1}\operatorname{d}\pmb{F}, \\ \operatorname{d}\pmb{F}^{-1} &= -\pmb{F}^{-1}(\operatorname{d}\pmb{F})\pmb{F}^{-1}. \end{split}$$

# Bibliografía

- Andrews, D.F., Mallows, C.L. (1974). Scale mixtures of normal distributions. *Journal of the Royal Statistical Society, Series B* **36**, 99-102.
- Arellano, R. (1994). Distribuições Elípticas: Propriedades, Inferência e Aplicações a Modelos de Regressão. (Unpublished doctoral dissertation). Department of Statistics, University of São Paulo, Brazil.
- Atkinson, A.C. (1985). Plots, Transformations and Regressions. Oxford University Press, Oxford.
- Barlow, J.L. (1993). Numerical aspects of solving linear least squares problems. En *Handbook of Statistics*, Vol. 9, C.R. Rao (Ed.). Elsevier, Amsterdam, pp. 303-376.
- Belsley, D.A., Kuh, E., Welsh, R.E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York.
- Björck, A. (1996). Numerical Methods for Least Squares Problems. Society for Insdustrial and Applied Mathematics, Philadelphia.
- Chatterjee, S., Hadi, A.S. (1988). Sensitivity Analysis in Linear Regression. Wiley, New York.
- Christensen, R. (2011). Plane Answers to Complex Questions: The Theory of Linear Models, 4th Ed. Springer, New York.
- Cook, R.D., Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall, New York.
- Díaz-García, J.A., Gutiérrez-Jáimez, R. (1999). Cálculo Diferencial Matricial y Momentos de Matrices Aleatorias Elípticas. Universidad de Granada.
- Dobson, A.J. (2002). An Introduction to Generalized Linear Models, 2nd Ed. Chapman & Hall, Boca Raton.
- Fahrmeir, L., Kneib, T., Lang, S., Marx, B. (2013). Regression: Models, Methods and Applications. Springer, Berlin.
- Fang, K.T., Kotz, S., Ng, K.W. (1990). Symmetric Multivariate and Related Distributions. Chapman & Hall, London.
- Galea, M. (1990). Técnicas de diagnóstico en regresión lineal. Revista de la Sociedad Chilena de Estadística 7, 23-44.
- Gentle, J.E. (2007). Matrix Algebra: Theory, Computation and Applications in Statistics. Springer, New York.
- Gómez, E., Gómez-Villegas, M.A., Marín, J.M. (1988). A multivariate generalization of the power exponential family of distributions. Communications in Statistics Theory and Methods 27, 589-600.
- Goodnight, J.H. (1979). A tutorial on the SWEEP operator. *The American Statistician* **33**, 149-158.
- Graybill, F.A. (1961). An Introduction to Linear Statistical Models. McGraw-Hill, New York.

- Graybill, F.A. (1976). Theory and Application of the Linear Model. Wadsworth & Brooks, Pacific Grove, CA.
- Graybill, F.A. (1983). Matrices with Applications in Statistics, 2nd Ed. Wadsworth, Belmont, CA.
- Groß, J. (2003). Linear Regression. Springer, Berlin.
- Gruber, M.H.J. (1998). *Improving Efficiency by Shrinkage*. Marcel Dekker, New York.
- Harville, D.A. (1997). Matrix Algebra from a Statistician's Perspective. Springer, New York.
- Hocking, R. (1996). Methods and Applications of Linear Models. Wiley, New York.
- Kariya, T., Kurata, H. (2004). Generalized Least Squares. Wiley, Chichester.
- Lange, K. (1999). Numerical Analysis for Statisticians. Springer, New York.
- Lange, K., Sinsheimer, J.S. (1993). Normal/independent distributions and their applications in robust regression. *Journal of Computational and Graphical Statistics* **2**, 175-198.
- Little, R.J.A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. *Applied Statistics* **37**, 23-38.
- Magnus, J.R., Neudecker, H. (1985). Matrix differential calculus with applications to simple, Hadamard and Kronecker products. *Journal of Mathematical Psychology* 29, 474-492.
- Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd Ed. Wiley, New York.
- Magnus, J.R. (2010). On the concept of matrix derivative. *Journal of Multivariate Analysis* **101**, 2200-2206.
- McIntosh, A. (1982). Fitting Linear Models: An Application of Conjugate Gradients Algorithms. Springer, New York.
- Osorio, F., Ogueda, A. (2021). fastmatrix: Fast computation of some matrices useful in statistics. R package version 0.3-819. URL: faosorios.github.io/fastmatrix
- Paula, G.A. (2013). Modelos de Regressão, com Apoio Computacional. Instituto de Matemática e Estatística, Univeridade de São Paulo, Brasil.
- R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: www.R-project.org
- Rao, C.R., Toutenburg, H., Shalabh, Heumann, C. (2008). Linear Models and Generalizations: Least Squares and Alternatives. Springer, New York.
- Ravishanker, N., Dey, D.K. (2002). A First Course in Linear Model Theory. Chapman & Hall, London.
- Ruppert, D., Wand, M.P., Carroll, R.J. (2003). Semiparametric Regression. Cambridge University Press, Cambridge.
- Searle, S.R. (1971). Linear Models. Wiley, New York.
- Searle, S.R. (1982). Matrix Algebra Useful for Statistics. Wiley, New York.
- Seber, G.A.F., Lee, A.J. (2003). *Linear Regression Analysis*, 2nd Ed. Wiley, New York.
- Sen, A., Srivastava, M. (1990). Regression Analysis: Theory, Methods and Applications. Springer, New York.
- Tong, Y.L. (1990). The Multivariate Normal Distribution. Springer, New York.
- Weisberg, S. (2005). Applied Linear Regression, 3rd Ed. Wiley, New York