New World of Opportunities: CPS, IOT, and Beyond

Calton Pu Georgia Institute of Techology

Slide credits: many universities and companies, talks by others

Ubiquitous Computing One of the few lasting successful predictions/vision in computer science - Mark Weiser (around 1988)

UbiComp's Secret: Technology Push

- Moore's law
 - Miniaturization and cost reduction of computers
 - Evolution of supercomputers and clusters
- Increasing bandwidth of wired networks
- Wireless networks
 - Sensors (self-reporting)

Evolution of UbiComp

- Pervasive computing
 - Systems community
- Ambient Intelligence
 - EU (Philips, since 1998)
 - Nano-tera.ch (Switzerland, since 2009)
- Internet of Things (IOT)
 - China (premier J. Wen, since 2009)
- Cyber Physical Systems (CPS)
 - USA (NSF program, since 2006)

Cyber Physical Systems Vision

- Cyber + Physical
 - Cyber = Big Data and models encompassing "all of knowledge"
 - Physical = real-time monitor and control of physical world phenomena
- What's new?
 - Bending space and time for social, economic, and human benefits

Evolution of Health Care

- Past: disease care and management
- Current: personalized health care
- Future: CPS for health care

Example: Chronic Heart Disease

- Chronic diseases are the most common and costly health problems:
 - Heart, cancer, diabetes, arthritis, stroke
- Current state of art in cardiac arrest
 - Automated external defibrillators (AED)

Smarter Health Care

- Startup company (Pred. Med. Tech.)
 - Large data set of arrhythmia data before heart attack (tens of thousands of patients)
 - Real-time monitoring of heartbeats in ICU
 - Prediction of cardiac arrest up to 24 hours before it happens (in ICU)

CPS Scenario (Healthcare)

- For you and me:
 - Huge data sets of arrhythmia data before heart attack (millions of patients)
 - Real-time monitoring by wearable sensors
 - Accurate alert of impending heart attack 30 minutes before the attack (time warp)

30% prob. heart attack in 30 min.

Evolution of Intelligent Transportation

- 1996: fixed sensors (Georgia-Navigator)
- 2010: 511-Live, Google maps
- Future: CPS for transportation

Expensive specialized sensors, highway only

Mainly mobile phones, highway and local roads

CPS Scenario (Transportation)

- Predictive navigation, automated driving
 - Huge data sets on traffic data and people's usual routes, travel times
 - Real-time monitoring of traffic and knowledge of planned routes
 - Automated driving along route with predictive time (e.g., reserved highways, space warp)

Evolution of Electrical Grids

- Past: centralized utility companies
- Current: automated fine-grain monitoring of household usage
- Future: CPS for smart grid

CPS Scenario (Smart Grid)

- Huge data sets on electricity consumption patterns by each building and household
- Real-time monitoring and control of electricity distribution (e.g., anti-synchro)
- Predictable, more efficient global usage at lower individual costs

Evolution of Smart Buildings

- Past: increasing amount of technology
- Current: sensors and controls for green buildings (energy management)
- Smart bridges: sensors for structural integrity, failure prediction, disaster recovery

CPS Scenario (Smart Buildings)

- Huge simulation data on building and bridge behavior under stress
- Many kinds of sensors
 - Thermometers for cooling/heating, thermometers for mapping fire
 - Environmental: CO₂, light, noise, etc
 - Accelerometers and GPS (vibration, building stability, structural integrity)
- Control internal environment and predict building stability/integrity

50% prob. building collapse in 30 min

Evolution of Food Safety

- Past: food problems known (E. Coli, salmonella), sources often unknown
- Current: after the fact detection from sufficiently widespread epidemic outbreaks
- Future: CPS for food safety

Salmonella Outbreak 2008

- Salmonella outbreak (USA, 2008-09)
 - 9 deaths and 691 people sick in 46 states
 - Traced to 2 peanut butter plants by epidemiological analysis and lab tests
 - Most extensive food recall in US history: by April 2009, it involved 361 companies and 3,913 different products
- Food safety an important problem and it should be preventive

CPS Scenario (Food Safety)

- Detection at source (producer)
 - Sampling for radiation, bacterial, other contaminations
- Processing/test (distributor)
 - Comprehensive testing at stores
- Food lifetime guarantee
 - Packaged biosensor + RFID (consumer)

Bending Space and Time

- Health care
 - Predict heart attacks before they happen
- Intelligent transportation
 - Get you home at guaranteed time
- Smart grid/buildings/bridges
 - Lower cost and better service
 - Self-monitoring for stability and integrity
- Food safety
 - Prevent contamination with biosensors

CPS: Vision vs. Program

 Some numbers from NSF award search (CPS, active = 2009+2010)

Summary of CPS awards in 2009 and 2010 (in dollars)					
Grant	Grants	Smallest	Largest	Average in	Total by
Category	Awarded	Award	Award	Category	Category
Large	5	1,283,688	2,400,000	1,810,349	9,051,746
Medium	59	100,000	1,515,525	772,389	45,570,937
Small Grand Tot 2010	52 al 2009-	94,848	600,000	404,036	21,009,888 75,632,571

Largest CPS Project

- Center for Autonomous Transportation Systems
 - PI: Raj Rajkumar (CMU, \$2.4M/4Y)
- Enable automobiles to be driven autonomously
 - Reliable, safe and timely operations inside the automobile
 - Physical conditions and uncertainties in the external environment
 - Real-time communications
 - Verification and validation technologies

Aviation and Automotive Systems

CPS: Medium: Autonomous Driving in Mixed-Traffic Urban Environments

Umit A Ozguner, Ashok K Krishnamurthy, Fusun Ozguner, Paolo A Sivilotti, Bruce W Weide (Ohio State U)

Figure: An intersection situation from the 2007 DARPA Urban Challenge (a) as originally described, and (b) simplified for consideration in the rules.

Health and Medicine (1)

CPS Small: Control of Surgical Robots: Network Layer to Tissue Contact

Blake Hannaford, Howard J Chizeck (U Washington)

Intelligent tele-surgery in which a surgeon, or a distributed team of surgeons, can work on tiny regions in the body with minimal access.

Deployment in a tent (top photos)in California (High Altitude Platform, Mobile Robotic Telesurgery (HAPs/MRT)), and deployment in an underwater habitat

Major IQT Initiatives

- IERC (EU Research Cluster on Internet of Things) www.internet-of-things.eu.
 - Many projects: IoT-i (Internet of Things Initiative), IoT-A, Auto-ID Labs
- Nano-tera.ch (Switzerland, 2009)
- Wisdom of Earth vision (Wen J., 2009)
 - Wuxi Institute of Internet of Things
 - China Mobile Wuxi IoT Institution
- Smarter Planet (IBM, Palmisano, 2008)

IERC Research

- Design and integration of objects
 - Energy management; packaging and integration; deployment and calibration; trust, security, robustness; reconfigurable objects
- Massive secure and flexible networking of
 - Communications protocols; quality of services; middleware; geo-location and privacy
- Service management
 - Local data fusion; distribution and heterogeneity; ambient intelligence

CPS/IOT Conferences

- CPS Week (April each year, US)
 - HSCC, ICCPS, IPSN, LCTES, and RTAS (hybrid/embedded systems, sensor networks, CPS, real-time)
- IoT Week 2011 (IERC)
 - June 6-9, 2011, Barcelona
- IoT China 2011
 - June 16-17, 2011, Shanghai
- IoT 2010 Conference (Nov 29-Dec 1, Tokyo)

CityOne Simulation Game

- Teaching and learning complex systems
 - For city planners and managers
 - Management of resources: electrical grids, water management, ...

Program Execution

- About CHF\$120M, 2009-2012
 - 19 RTD (large projects, up to CHF\$1M/Y)
 - 32 NTF (small projects, up to CHF\$500K)
 - ED (educational projects)
- To be announced: nano-tera Phase 2 and 3 (up to 2020)
 - Technology development and industry impact
 - Clear perception of success and enthusiasm

Funding Programs in Japan

- Information Grand Voyage Project (shared by several companies, 2007 – 2010) \$130M funded by METI
- Info-plosion Project (shared by hundreds of researchers, 2005 – 2011)
 \$30M by funded by MEXT
- FIRST (lead: U. Tokyo + several universities, 2010 – 2014) \$42M funded by JSPS
- Planned new CPS Japan program

Building CPS/IOT Systems

- Hardware: part of technology push
 - More powerful and economical
- Software: challenge and bottleneck
 - Current programming models and languages are mainly sequential and process-oriented
 - End-to-end quality of service difficult to add
 - Adaptation affects the entire system
 - Expensive verification and validation

New York-centric View of World

It's natural to see the world from our personal perspective

Same with CPS

Event View of CPS/IOT

- Clearly there are events of interest
 - Prediction of heart attack
 - Prediction of traffic congestion
 - Prediction of building failure
 - Prediction of electricity consumption
- But there is more....

System Composition Techniques

- Some limitations of current software due to process view
 - State explosion in verification & validation
- Events may offer alternative ideas
 - Data flow (example: Infopipes)
 - Distributed events (example: Continual Queries)
 - WED-flow (Workflows, Events, Data-flows)

Infopipes: Data-Centric Processing

Types of Infopipes

Serial Multiplex (n sinks)

Nultiplex (n sources)

Buffer Filter (storage)

Filter (transformation)

WED-flow Example

- Application example: exception handling
 - Process-oriented exception handling causes serious code bloat
- Simple book ordering application
 - WED-flow approach starts from "happy path" (no exceptions)

WED-flow Exception Handling

- Event and state-based (using CQ for control flow)
 - Reuse of recovery actions in backward recovery
 - Reuse of alternative paths in forward recovery

Big Research Challenges

- CPS/IOT will change our lives
- Guaranteed quality of service needed
 - Predictable performance (incl. real-time)
 - High availability (and reliability)
 - High confidence (verifiably correct execution)
 - System and application/data security
 - Privacy protection for personal information while facilitating new functionality

Events Will Be Very Useful

- Some CPS projects are extending classic approaches
 - Adaptive control techniques
 - Adaptive learning algorithms
 - However, they are still process-oriented (with problems such as state explosion)
- Let's try "new" ideas and potentially more scalable approaches
 - Examples: events, CQ, and data flow

Dynamic V&V Challenge

- Well known limitations of classic (process-oriented) V&V
 - State explosion (including composition)
 - Changes (evolution and adaptation) require re-verification from scratch
- Need "new" ideas and potentially more scalable approaches

Security and Privacy Challenges

- Security breaches a fact of life
 - Sony (PlayStation Network), Epsilon (world's largest email marketing service provider), and many more
 - Botnets (order of M nodes)
 - CPS/IOT apps are prime targets
- Privacy vs. functionality trade-offs
 - Example: location-based services, many CPS/ITO apps "need to know"

Quality of Information Challenge

- Qol = information analog of QoS
 - Information theory: all bits are equal
 - That's atomic theory (e.g., cannot explain electricity)
- We *know* that some bits are good and other bits are bad
 - Spam and deception (email, web, social networks, click fraud, all media, sensors)
- Some progress but not enough (Gates)

Performance Challenges

- Cloud: scalable, but unpredictable
 - MapReduce apps scale, but become less predictable (laggards problem)
 - N-Tier apps have both scalability and predictability problems
- Real-time performance for CPS/IOT
 - Initial proponents of CPS are from RT community, but classic RT techniques need not apply

Summary

- CPS/IOT offer visionary capabilities
 - Alert on heart attack before it happens
 - Bending space and time
- CPS/IOT will require new (software) technologies
 - Many dimensions of QoS: V&V of an evolving, adaptable system; security and privacy; predictable performance; and more....

Conclusion

- IT about to change the world (Again!)
- This vision has many names: CPS, IOT, Smarter Planet, and more
 - Significant technology push (low risk)
 - Great application pull (high return on investment)
- You can play a role in this revolution
 - Software is the bottleneck!
 - Events can be part of the solution....