Implement PCA and LDA. Compare the performance wrt to time and accuracy of MLP and K-means clustering before and after applying dimensionality reduction on any dataset of your choice from UCI repository.

PRNCIPAL COMPONENTS ANALYSIS (PCA)

#print(scaled_data)
#print(x_pca)

plt.figure(figsize=(8,6))

plt.xlabel('First principle component')
plt.ylabel('Second principle component')
Out[5]: Text(0, 0.5, 'Second principle component')

plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'])

```
In [2]: import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.neighbors import KNeighborsClassifier
         %matplotlib inline
        from sklearn.datasets import load_breast_cancer
In [3]: cancer=load_breast_cancer()
        X=cancer.data
        y=cancer.target
        df=pd.DataFrame(cancer['data'],columns=cancer['feature_names'])
        df.head()
Out[3]:
           worst worst area smoothness
                                                                                              ··· radius texture perimeter
                                                                           symmetry
                                                                                     dimension
                                                                                       0.07871 ...
         0 17.99 10.38
                         122.80 1001.0
                                          0.11840
                                                     0.27760
                                                              0.3001 0.14710
                                                                               0.2419
                                                                                                 25.38
                                                                                                       17.33
                                                                                                               184.60 2019.0
                                                                                                                                0.1622
                   17.77
                          132.90 1326.0
                                          0.08474
                                                     0.07864
                                                              0.0869 0.07017
                                                                                       0.05667 ...
                                                                                                 24.99 23.41
                                                                                                               158.80 1956.0
         2 19.69 21.25 130.00 1203.0 0.10960 0.15990
                                                              0.1974 0.12790
                                                                               0.2069
                                                                                       0.05999 ... 23.57 25.53 152.50 1709.0
                                                                                                                               0.1444
         3 11.42 20.38 77.58 386.1
                                                     0.28390
                                                                                       0.09744 \ \dots \ 14.91 \ 26.50 \ 98.87 \ 567.7
                                          0.14250
                                                              0.2414 0.10520
                                                                               0.2597
                                                                                                                                0.2098
         4 20.29 14.34 135.10 1297.0 0.10030 0.13280
                                                              0.1980 0.10430
                                                                                       0.05883 ... 22.54 16.67 152.20 1575.0
        5 rows × 30 columns
In [4]: from sklearn.preprocessing import StandardScaler
        scaler=StandardScaler()
        scaler.fit(df)
        scaled data=scaler.transform(df)
In [5]: from sklearn.decomposition import PCA
        pca=PCA(n_components=2)
        pca.fit(scaled_data)
        x_pca=pca.transform(scaled_data)
        #print(scaled_data.shape)
        #print(x_pca.shape)
```



```
In [5]:
X_train_new, X_test_new, y_train, y_test = train_test_split(x_pca, y, test_size = 0.3,random_state=20, stratify=y)
knn_pca = KNeighborsClassifier(7)
knn_pca.fit(X_train_new,y_train)
print("Train Accuracy ",knn_pca.score(X_train_new,y_train)*100,"%")
print("Test Accuracy ",knn_pca.score(X_test_new,y_test) *100,"%")
```

Train Accuracy 95.7286432160804 % Test Accuracy 92.98245614035088 %

[[59 5]

```
In [11]: from sklearn import metrics
   knn_pca_y_pred = knn_pca.predict(X_test_new)
   confusion = metrics.confusion_matrix(y_true = y_test, y_pred = knn_pca_y_pred)
   print(confusion)
   class_wise = metrics.classification_report(y_true=y_test, y_pred=knn_pca_y_pred)
   print(class_wise)
```

[7 100]]	precision	recall	f1-score	support
0	0.89	0.92	0.91	64
1	0.95	0.93	0.94	107
accuracy macro avg weighted avg	0.92	0.93 0.93	0.93 0.93 0.93	171 171 171

K means Clustering plot of Breast cancer dataset:

So we get a clearer picture of the data clusters after dimentionality reduction clearly as it reduces the number of features in consideration

LINEAR DISCRIMINANT ANALYSIS (LDA)

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    #Load dataset
    n_components = 2
    data = pd.read_csv('/content/bmd.csv')
    data = data[['age', 'weight_kg', 'height_cm', 'bmd', 'fracture']]
    data
```

Out[1]:

	age	weight_kg	height_cm	bmd	fracture
0	57.052768	64.0	155.5	0.8793	no fracture
1	75.741225	78.0	162.0	0.7946	no fracture
2	70.778900	73.0	170.5	0.9067	no fracture
3	78.247175	60.0	148.0	0.7112	no fracture
4	54.191877	55.0	161.0	0.7909	no fracture
164	77.982543	74.0	164.0	0.7941	fracture
165	50.285303	59.0	161.0	0.7971	fracture
166	46.359721	67.0	169.0	0.8037	fracture
167	54.788368	70.0	166.0	0.8072	fracture
168	69.994822	68.5	165.0	0.8664	fracture

```
In [2]: #Normalizing the attributes and encoding labels
        from sklearn.preprocessing import StandardScaler
        stdsc = StandardScaler()
        X_train_std = stdsc.fit_transform(data.iloc[:,range(0,4)].values)
        from sklearn.preprocessing import LabelEncoder
        class le = LabelEncoder()
        y = class_le.fit_transform(data['fracture'].values)
        #Between class variance
        S_W = np.zeros((4,4))
        for i in range(2):
            S_W += np.cov(X_train_std[y==i].T)
Out[2]: array([[ 1.9725685 , -0.04759746, -0.42736814, -0.30524193],
                [-0.04759746, 1.78794962, 0.71452081, 0.59460869],
               [-0.42736814, 0.71452081, 2.03028906, 0.56144434],
               [-0.30524193, 0.59460869, 0.56144434, 1.0964439]])
In [3]: #Distance between mean and sample of class
         N=np.bincount(y)
         [vecs.append(np.mean(X_train_std[y==i],axis=0)) for i in range(2)]
         mean_overall = np.mean(X_train_std, axis=0)
         S_B=np.zeros((4,4))
         for i in range(2):
              S_B += N[i]^*(((vecs[i]-mean\_overall).reshape(4,1)).dot(((vecs[i]-mean\_overall).reshape(1,4))))
         S_B #Display eigen values
Out[3]: array([[ 17.63488395, -19.24443281, -4.31743302, -34.05701777],
                 [-19.24443281, 21.00088638, 4.71148831, 37.16542689],
                  -4.31743302,
                                 4.71148831,
                                                1.05700882,
                                                               8.33795637],
                 [-34.05701777, 37.16542689,
                                                 8.33795637, 65.77193605]])
In [4]: eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))
         eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))]
         eigen pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True)
         print('Eigenvalues in decreasing order:\n')
         for eigen_val in eigen_pairs:
             print(eigen_val[0])
         Eigenvalues in decreasing order:
         69.77622956845525
         2.9078998724795312e-15
         2.9078998724795312e-15
         0.0
In [6]: #Visualizing the data after LDA
        import seaborn as sns
        markers = ['x','o']
sns.lmplot(x="LD1", y="LD2", data=data, markers=markers,fit_reg=False, hue='class',legend=False, palette='rainbow')
        plt.legend(loc='upper center')
       plt.show()
           2
           0
        LD2
          -1
          -2
```

```
In [5]: #Finding LD1 & LD2
tot = sum(eigen_vals.real)
discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
cum_discr = np.cumsum(discr)
W=np.hstack((eigen_pairs[0][1][:,].reshape(4,1),eigen_pairs[1][1][:,].reshape(4,1))).real
X_train_lda = X_train_std.dot(W)
#Adding LD1 & LD2 Value to dataframe
data=pd.DataFrame(X_train_lda)
data['class']=y
data.columns=["LD1","LD2","class"]
data.head()
```

Out[5]:

	LD1	LD2	class
0	-0.794078	0.361718	1
1	0.041572	-0.642138	1
2	-0.325557	-1.110186	1
3	0.233302	-0.170556	1
4	-0.061762	0.367884	1

```
In [9]: #KNN Classifier
X_train, X_test, y_train, y_test = train_test_split(data[['LD1','LD2']], data['class'],
    test_size=0.20)
    knn_lda= KNeighborsClassifier(n_neighbors=3)
    knn_lda.fit(X_train, y_train)
    y_pred = knn_lda.predict(X_test)
    print("Train accuracy ",knn_lda.score(X_train,y_train)*100,"%")
    print("Test accuracy ",knn_lda.score(X_test,y_test)*100,"%")
```

Train accuracy 90.37037037037037 % Test accuracy 91.17647058823529 %

```
In [11]: from sklearn import metrics
   knn_lda_y_pred = knn_lda.predict(X_test)
   confusion = metrics.confusion_matrix(y_true = y_test, y_pred = knn_lda_y_pred)
   print(confusion)
```

class_wise = metrics.classification_report(y_true=y_test, y_pred=knn_lda_y_pred)
print(class_wise)

[[11 2] [1 20]]

[1 20]]	precision	recall	f1-score	support
0	0.92	0.85	0.88	13
1	0.91	0.95	0.93	21
accuracy			0.91	34
macro avg	0.91	0.90	0.91	34
weighted avg	0.91	0.91	0.91	34