-1-

COMPRESSED IMAGE PRODUCTION, STORAGE, TRANSMISSION AND PROCESSING

BACKGROUND OF THE INVENTION

This invention relates to a method for producing an image of an object storing, transmitting and processing the same.

In this application, "object" means any entity that can be defined, in principle, by geometrical and/or mathematical data and/or geometrical or mathematical or empirical relationships, such as functions, correlations, regressions, lines and surfaces, etc. It is irrelevant whether the object is so complex that the number of data and/or relationships required to define it is so great that complete or exact definition is practically impossible. It is also irrelevant how many dimensions the object has. The object may be a physical one, such as a picture, a line, a surface, a solid, a tri-dimensional object or a landscape, etc., or an abstract one, such as a tensor, a form defined in a continuum having more than three dimensions, etc.; or it may be constituted by an array of data which have only a conceptual relationship with one another.

"Image" means any entity that represents an object exactly, or more or less approximately. The image may have the same nature as the object it represents, as when, e.g., it is the reproduction of a picture or an array of data representing another array of data; it may be an image in the common

meaning of the word, as when, e.g., it is a picture of a person or a landscape; or it may be quite different in nature from the object, as when, e.g., it consists of a plurality of numerical data representing a physical entity. "Intermediate image" means an image that is produced for the purpose of transforming it later into a different image of the same object, as when, e.g., a set of numbers temporarily represent a geometrical form and a geometrical image is to be developed from them. When such transformation occurs, the image finally produced will be called hereinafter "the final image". An image which is to be processed in any way elaborated to produce another image of the same nature - e.g. a first set of numbers from which another set of numbers is to be obtained, by any appropriate procedure, said other set of numbers being an intermediate or a final image, will be called a "temporary image", which, if the processing is a correction or adjustment, is an "unadjusted image".

In a great many technical processes, an image of an object must be produced, and quite often must be stored, transmitted or processed. For instance, it is a common occurrence that two-dimensional figures or pictures be represented by digital data which are stored, processed and transmitted, according to needs. This occurs in word processing by computers, message transmission by telefax, etc. Three-dimensional objects, including landscapes, may be represented by a process that is essentially the same. The representation of objects which have more than three dimensions involves in principle no conceptual departure from the said methods. Another common occurrence is the representation, storage and processing of data representing physical relationships, statistical

regressions or ways of experimental data. The use of mathematical models is also an instance of object representation by an image, which may be constituted by an array of digital data.

It is obviously desirable to reduce as much as possible the amount of data defining the image which represents a given object, without disorting the image to the extent that it might cease to represent the corresponding object with an acceptable degree of accuracy. Such a reduction of the required data, or "data compression" or "image compression", as it is sometimes called, serves to simplify, reduce and render more economical the equipment required for the storage of an image, its processing and transmission. For instance, it is well known that in modern technology, transmission lines, including frequency bands available for radio transmission, are increasingly overcrowded, and every effort is being made to exploit them as fully as possible, one of the means for so exploiting them being to reduce the amount of data that are sent through a given transmission line in order to convey a given amount of information.

It is a general purpose of this invention to provide a method for producing the image of an object of any kind, storing it, processing and transmitting it, while minimizing the amount of data that are required for carrying out the said operations.

More specific objects of the invention and specific applications thereof, will become apparent as the description proceeds.

BRIEF SUMMARY OF THE INVENTION

The following considerations are preliminary to an understanding of the process according to the invention. If the object is defined geometrically or analytically - whether by a graphic representation or a model, depending on the nature of the object, or by an array of numerical data which are assumed to define the object or in any suitable way - it may be broken uinto, viz., be considered as defined by, a plurality of components, such as lines or surfaces defined in a space which may have more than three dimensions, arrays of numerical values or functions or operators which can be represented by such lines or surfaces. For the sake of simplicity, the process according to the invention will be described firstly with a reference to an object which may be broken up into a number of plane lines, corresponding to functions of one variable. Description and definition of the process will be then expanded to those objects which must be broken up into surfaces in a three-dimensional space or in hyperspace, having more than three dimensions, corresponding to functions of two or more than two variables. Essentially the process, as described and defined, extends to compressed images of any objects that can be defined by an array of data, by software or hardware for the production and/or elaboration of digital values, such as a special purpose computer or a computer program, or by an analogical circuit or special purpose analogical computer or analogical computer program, or by digital or analogical sensors, or the like. In what follows, the term "object" will be construed as preferably meaning the physical entities and/or relationships by which the object is defined or into which the object has been translated, and which will have been stored or memorized, as in an electronic memory, e.g. in the form of digital values or instructions relative thereto or analogical representations of functions or relationships.

In one of its simplest forms, the object, an image of which is to be constructed, may be a plane line. The object line, as any other object, may be defined in many different ways, but, for the purposes of illustration only, it will be treated as defined by a graph or by a corresponding function, being evident that the information conveyed by a graph can be conveyed in other suitable way. In any case, in order to carry out the process according to the invention, the object line must be translated into digital values or into a computer program or subroutine or an analogical process or into the structure of a special purpose digital or analogical computer, which can be entered and memorized in an elaborator, and which define couples of values x, y for each point of the line. The object line may be considered in its entirety, or, more frequently, it will be divided into segments, to each of which the process of the invention will be separately applied. Therefore, if the line has been so divided, the expression "object line", when used hereinafter, must be construed as meaning the particular segment under consideration at the moment.

The process, then, comprises, in a restrictive definition, the following steps:

(1) Approximating a line by a model which includes at least one differentiable component.

- (2) Establishing the maximum allowable error ε and the degree k of the Taylor polynomials by which the differentiable component(s) of the model are to be approximated.
- (3) Establishing at least a pitch grid h and constructing a grid each region of which has one of said pitches h.
- (4) Computing the coefficients of the Taylor polynomials of the aforesaid differentiable component or components at selected points of said grid.

Two or more of the aforesaid steps may be carried out concurrently, in whole or in part, or divided into successive stages, which may be intercalated to a greater or a lesser extent.

Further operations, hereinafter described, may be carried out and are often desirable to minimize the effect of inaccuracies in the said coefficients, for rounding them off, for taking into account different scales which may be present in the data, and for obtaining, if desired, an image which has the same nature as the object. "Non-differentiable component" means herein a component comprising one or more points at which it is not differentiable, or, a component that is not differentiable at all its points.

The process according to the invention can be extended to objects that are more complex than plane lines by simple generalizations, as will be explained hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood from the following description of preferred embodiments, with reference to the appended drawings, where:

Figs. 1a 1nd 1b illustrate an example of an object line and its image, respectively;

Figs. 2a and 2b illustrate a temporary image line the segments of which do not match at meeting points, and a corresponding adjusted image line, respectively;

Figs. 3a, 3b, 3c, and 3d illustrate respectively an object line and the corresponding model line, final image and non-differentiable component of the model, with reference to Example 1;

Figs. 4a and 4b represent a picture and its image, respectively, with reference to Example 2;

Fig. 5 represents a processed image of the picture of Fig. 4a, with reference to Example 3; and

Figs. 6a and 6b represent the negative of the picture of Fig. 4a and its image, respectively, with reference to Example 4.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The process steps hereinbefore defined will now be more fully explained.

Step (1) - The object line, the data defining which have been physically stored e.g. in an electronic memory, is approximated by a model, preferably defined in the same way as the object line, which model preferably consists of at least a first component embodying the characteristics of the object, if any, which render it non-differentiable at some points or regions - it being of course possible to omit said first component if there are no significant characteristics of non-differentiability of the object - and at least a second component which embodies all the differentiable content of the object. Typical cases of models are the following:

Case a) The first component is a base line, which is a simple - desirably, the simplest - line having qualitatively the same discontinuities as the object line, and the second component is a curve which represents the deviations therefrom of the object line, and which will be differentiable and can be called interpolating function. The base line may be constructed in each individual instance, or, more conveniently, may be chosen, according to the actual discontinuities of the object line, from a number of normal forms, which are the simplest functions having the required discontinuities. The following standard form of model can be used in this case:

(1) $\Phi(x) = Hx_0, a, b, c, d(x) + \phi(x)$

wherein H is a normal form defined by $H(x) = a(x-x_0) + b$, if $x \ge x_0$ or $H(x) = c(x-x_0) + d$, if x is less than x_0 . The values of the parameters x_0 , a,b,c,d are determined, in a preferred embodiment of the invention, by minimizing a quantity representing an error, e.g. the quadratical error, as hereinafter set forth. The base line can be predetermined, or chosen, in general

according to predermined criteria, from a list prepared in advance, or it can be chosen in each case by the operator. This case is illustrated at Fig 1a, 1b showing respectively an object line and its model.

Case b) The model is a differentiable function of another function which embodies the non-differentiable characteristics, viz the discontinuities, of the object line. It can be epressed as:

(2) $\Phi(x) = \Phi'[\phi(x)],$

wherein ϕ is the first component, which will be called the base curve, and Φ' is the second component. $\phi(x)$ can be looked at as defining a change of coordinates: in the differentiable component Φ' , the ordinates are referred to abscissae which are not x, but $\phi(x)$.

Case c) This case will be mentioned here, though it is not applicable to a line, but only to surfaces in a space having three or more dimensions. In the case of three dimensions, a coordinate (say, the elevation) z of a surface, is a function z_1 in a certain region of the plane x-y of the two remaining coordinates and is another function z_2 in another region thereof, the two regions being separated by a border line defined e.g. by a relationship $y=\phi(x)$. Then the model $\Phi(z,y)$ consists of the function z_1 if y is greater than $\phi(x)$, and z_2 if y is smaller than $\phi(x)$, one or the other of the z_1 and z_2 applying when $y=\phi(x)$.

Case d) The object line is differentiable at all points, and the model consists only of a differentiable component.

In a form of the invention, all the parameters of the model the values of which have to be chosen, are determined by minimizing a quantity representing an error - e.g. the quadratical error, viz. $\Sigma[f(x_i) - \Phi(x_i)]^2$ - the

minimization being carried out by means of a predetermined subroutine with respect to all the parameters of the model Φ , for the function f(x) representing the object, the values of f(x) for each x being determined by known subroutines. Programs for this purpose are available, e.g. from the ILSM library.

- Step (2) a) The maximum allowable error ε , which is to be tolerated i approximating the object line, viz. which expresses the desired precision of the image, is established.
- b) The degree k of the Taylor polynomials, which will be used to approximate the differentiable component or interpolating curve, is established.
- Step (3) The grid need not be cartesian and its coordinate lines may be curved, although for simplicity's sake a cartesian grid will always be illustrated herein. The grid may be divided into different regions having different grid pitches or even different types of coordinate lines. The grid pitch h (viz., the distance between adjacent coordinate lines which define the grid cells) is selected according to the precision desired of the image, and may be different in different parts of the region, although a regular grid will often be preferred.

In an embodiment of the invention, h is calculated, by a suitable subroutine, from the formula

(3) $CMh^{k+1} \le \varepsilon$

wherein C = 1/(k+1)! and M is the maximum, at each grid point, of the absolute value of the (partial, in the case of an object which is a function of more than one variable) derivatives of degree k+1 of the differentiable component or components, in the segment or zone of the object under consideration, M being determined by using a known subroutine which computes the derivatives of order k+1, produced e.g. by a package such as MAXIMA OR MATHEMATICA.

Step (4) - The nodes of the grid are taken as base points, and a (known, e.g. a MAXIMA) subroutine is applied at each base point to compute the Taylor polynomials of degree k of the interpolating curve.

At this stage, the following data have been obtained:

- A) The coefficients of the Taylor polynomials of the differentiable component or components of the model;
- B) The number or other identification or analytical definition of the non-differentiable component(s), if any, of the model, such as the base line or the base curve;
- C) The values of the parameters of the said non-differentiable component(s), if any;

and these define an image, which will usually be an intermediate image, but could be a final one, according to cases. Hereinafter it will be assumed that it is an intermediate image, from which the final image, in the same form as the original object, is to be constructed; however this is done merely for the sake of simplicity and involves no limitation.

In many cases, as will be explained below, the image thus obtained may require further elaboration without changing its nature, viz. while remaining a set of data of the same kind, and it will be only a temporary, in particular an unadjusted image. Then some or all of the steps from (5) on will be carried out.

Step (5) - In the case of the presence of so-called noise or inaccuracies is said temporary image line, or if the numerical noise, viz. the inaccuracies of the computations, which are large in comparison with the accuracy required, the Taylor polynomials which make up the temporary image line or its differentiable component may disagree at their meeting points by more than allowed by the required accuracy, as represented, by way of example, in Fig. 2a.

In this case, an adjusted image line is constructed by applying to each differentiable component a subroutine, hereinafter "Whitney subroutine", which computes W, wherein W is a quantity representing the discrepancies of the Taylor polynomials. In particular, W can be given by formula:

(3) $W = \sum_{i,j} \| p_i - (p_j)_i \|^2$

Here the sum is taken over all the adjacent grid points i, j (possibly belonging to different segments of the image). p_i , p_j denote the Taylor polynomials, obtained in steps (1) - (4) at the grid points i, j, and $(p_j)_i$ denotes the polynomial p_j , expressed in coordinates, centered at the i-th grid point. $\|p-q\|^2$ denotes, for any two polynomials p and q of the same degree and number of variables, the sum of squares of the differences of corresponding coefficients.

For any values of the coefficients of p_i, W is computed by using known subroutines, produced e.g. by a package such as MATHEMATICA.

W is then minimized (e.g. by standard gradient methods), using, as starting values of the coefficient of the Taylor polynomials, those obtained by the previous steps, and under such constraints that the result of the minimization do not deviate from the initial data by more than the allowed error, e.g. under the condition that the zero degree coefficients of sai polynomials remain unchanged. An adjusted image line, corresponding to the unadjusted image line of Fig. 2a, is illustrated by way of example in Fig. 2b.

Step (6) - If the accuracy of the adjusted coefficients of the Taylor polynomials obtained from step (5) is excessive with respect to that desired in the final image, they are rounded off to a maximum allowable error ε by any suitable method (not necessarily the same for coefficients of different degrees). The data thus obtained represent the adjusted image line.

Step (7) - Sometimes the data of the object to be represented may require the use of different grid resolutions, or such use may be desirable. An example which clarifies this case is the following.

Let us assume that the object represents a periodic phenomenon, e.g. an oscillatory phenomenon such as an oscillating eleterical impulse or an electromagentic wave. Such a phenomenon can be analyzed and is usually represented by the combination of two or more superimposed components, specifically, a relatively low frequency carrier wave and a higher frequency modulating wave. The modulation can be sometimes considered as

resulting from a first, intermediate frequency modulation, and one or more high frequency modulation or modulations, and in this case the object will have three or more components. The image can be conveniently constructed from images of ther various components, e.g. of the carrier wave and of the modulating wave or waves, and obviously the lower frequencies will require lower resolutions and larger grid pitches will be suitable for them. Likewise, the frequency of an oscillatory phenomena may vary at different times or in different spatial regions and its components will not be superimposed, but separated in space. Similar situations may occur in various cases. Generally, many kinds of object may comprise superimposed or separated components which have details of different fineness, which require different degrees of resolution. Since oscillatory phenomena are a typical case of objects requiring different grid resolutions, the word "frequency" will be used to indicate the fineness of the required grid, but this is not to be taken as a limitation, since the same procedure can be applied to non-oscillatory phenomena. (

In such cases, the following procedure is preferably followed:

- a) Steps 1 to 6 (or such among them which are necessary in the specific case) are carried out and a first temporary image is obtained.
- b) A new maximum error ϵ_2 , bigger than ϵ (or ϵ ', as the case may be) is chosen.
- c) A grid which is sparser than the one used for carrying out the steps under a), and the pitch of which is determined by the resolution required by the lowest frequency of the components existing in the object (e.g. that of a carrier wave) is established.

- d) Steps 1 to 6 are repeated using ϵ_2 and the sparser grid and a second temporary image is obtained.
- e) The second temporary image thus obtained is substracted from the first and a first residual image is obtained, which contains only data relating to higher frequency components of the object.
- f) The same procedure steps b) to e) is repeated for successively higher frequencies of components, correspondingly obtaining successives residual images increasingly restricted to higher frequency components.

As a result, coefficients of Taylor polynomials are obtained on several grids having increasingly higher resolutions, viz. smaller pitches, separately corresponding to the object components requiring increasingly higher resolutions.

The data obtained after steps (1) to (4) and those among (5), (6), (7), which it has been found necessary to perform, constitute an intermediate image or someyimes a final one. Usually these are the compressed data which can be stored, transmitted and processed.

If a further compression is desirable, one of the standard methods of encoding coefficients (e.g. Hoffman coding) can be applied. If necessary, the resulting string of data can be further compressed by one of the standard methods of unstructured data compression (e.g. entropy compression). However, this last step reduces the possibility of a compressed data processing.

If a final image, which has the same nature as the object, is to be constructed, the following procedure is followed:

Step (8) - a) The Taylor polynomial coefficients obtained after completion of steps (1) to (4) and of those among steps (5) and (6) which it has been found necessary to perform, are treated as if they represented an unadjusted temporary image, which is affected by noise, and are subjected once more to step (5), using them as starting data.

- b) The domain in which the temporary image has been defined is divided into regions by means of a grid, each region being a portion of the grid around a grid node or base point. These regions may overlap.
- c) A curve or curves representing the Taylor polynomials of degree k in the above regions are constructed from the coefficients defining the temporary image e.g. obtained as in step (8) a) at each node of the grid or of that grid having the highest resolution (smallest pitch), if there are more than one grid (particularly if step (7) has been carried out), using a known subroutine.

Said curve or curves constitute the final image of the object line.

The aforementioned curves may diverge at the meeting points of the regions mentioned above under b) (or on their overlapping parts). If this disagreement does not exceed the allowable error ε , any of the overlapping curves curves can be used at the meeting points on the overlapping parts of the above regions.

If as the result of the noise of the data or the computational noise, the above discrepancies are large in comparison with the accuracy required, average values can be used on the overlapping parts. This is done by

averaging the values of the overlapping curves with the appropriate weights.

Actually, other polynomials or functions could be used for approximation purposes, such as Tchebicheff polynomials, trigonometric exponential functions, etc., without departing from the invention, but Taylor polynomials are preferred.

The above described process applies, with obvious generalization, to a wide range of objects. Some examples follow.

I - A surface in a three-dimensional space corresponds to a function of two variables. If the surface is defined in a space that has more than three, say, n+1 dimensions, the independent variables will be more than two, say, $n (x_1,x_2,...x_n)$, but the operations to be carried out will be essentially the same, and the necessary generalizations will be obvious to skilled persons. In any case, any surface can be translated, as well as a line, to digitar values, which can be entered and stored. The model will be constructed in the same way as for a line. Case c) of model construction, already described, applies to surfaces in any space. Analogously to case a), a model may consists of a simple base surface, which presents the discontinuities of the object surface, and by an differentiable or interpolating surface, which represents the deviations of the object from the base surface. One can also operate analogously to case b), by using functions of more than one variable. The minimization of the quadratical error is effected in the same way as in the case of an object line, using values of $\Phi_{ij...n}$ and $f(x_i,x_j,....,x_n)$

which depend on n variables. The remaining steps are likewise adapted to the existence of n variables. All derivatives, of course, will be partial derivatives. The construction of the final image from the temporary image step (8) - can likewise be carried out with obvious generalizations in the case of images defined in a space having any number of dimensions.

II - A surface can be considered as a family of lines, which are obtained by the intersection of the surface with a family of planes, e.g. vertical planes the orientation of which is taken as that of the x-axis, identified by a parameter, e.g. their y coordinate. A family of curves in a plane, depending on one parameter, as may result from the representation of any number of phenomena, is obviously equivalent to that of a surface and may be treated as such, or vice versa.

III - A particular case of an object which is a surface is, e.g., a terrain, wherein the surface is defined by the elevation as a function of two plane (cartesian or polar) coordinates.

IV - A building can be represented in the same way, if it is very simple. If its shape is complex, however, it must be broken up into a number of component parts. However, if it is desired to represent it as it is seen from the outside, say by an observer which can place himself at any vantage point within a certain distance from the building, the observer's position can be identified by three coodinates, x, y and z (or polar coordinates), or by two, if it assumed that the observer's eye is at a given level. From each position of the observer point it is possible, if the configuration of the terrain is

known, to determine the distance D on each line of sight from the observer's eye to the building surface, and this will determine how the building is seen. Each line of sight can be identified by two coordinates: e.g. its inclination (the angle thereof with the vertical in a vertical plane which contains it), and its azimuth (the angle of said vertical plane with a reference vertical plane, e.g. one that contains the geographic or magnetic north). The way in which the building appears to the observer, is therefore defined by a function D of five variables, viz. by a surface in a six-dimensional space.

V - A family of curves in a plane, depending on more than one parameter, is obviously equivalent to a surface in a space having more than three dimensions.

VI- If in example IV above the coordinates of the observer are known as a function of a single variable, say, when he approaches the building along a given line, in which case the variable is the distance covered from a starting point, or in motion, as in a vehicle, along a given line, in which case the variable is time. In this case the variables of the surface become three (e.g. distance or time and inclination and azimuth) and the space is only four-dimensional, but the four-dimensional surface is subject to the constraint represented by the definition of the observer's motion. In general, in many cases, the degree of the space in which the surface is defined may be reduced by the introduction of suitable constraints.

VII - The final image of a colour picture is another colour picture, that is not identical, but sufficiently similar to the object picture. The object picture can be scanned by known apparatus (scanners), by means of white light, and for each point the intensity of the three basic colours (magenta, cyan and yellow) may be measured and registered. The object is thus reduced to three partial or component objects, each consisting of the distribution of one basic colour over the picture and having a physical reality, as it i equivalent to the colour picture that would be contained by exposing the original through three filters, having colours complementary to the three basic colours, or, in practice, to an array of digital data representing such one-coloured picture. Each of said partial objects can be subjected to the process of the invention, to produce a reduced or compressed array of data, constituting a partial image, and the partial images can be transformed into a combined final image approximating the original object, by processes known to those skilled in the art. If the partial images must be stored and/or transmitted, the process of the invention will facilitate doing this and render it more economical. In the same way a dynamic coloured picture, such as a movie or a TV broadcast, can be reduced to a final dynamic image.

A particular advantage and a preferred aspect of the invention consists in the possibility of processing the compressed intermediate image obtained as set forth hereinbefore and producing from it a processed final image, which does not represent the object but represents what would have been the result of processing the object. The processed intermediate image can be stored and transmitted with the already mentioned savings and advantages inherent in the reduction of the number of data, but said reduction is even more advantageous in the processing, for it is obviously more convenient to process a reduced instead of a larger amount of data. Said processing in a compressed form, as it may be called, is made possible by the following property:

Let F be an operator which is analytic in nature, viz. can be defined by mathematical relationships. Let O be an object of any nature, but which can be represented by Taylor polynomials p_i . Then by applying operator F to the p_i 's, one obtains polynomials which represent the object that would be obtained by applying the operator F to the object O. If one uses the symbol \approx to indicate that an array of polynomials represents an object, one can write:

if $p_i \approx 0$, then $F(p_i) \approx F(0)$.

Elementary examples of analytic operators are algebraic operations, rotations of geometrical figures, changes of coordinates in general, etc. These operators are represented by mathematical operations. If F(O) is to be constructed, such operations must be carried out on all the data, e.g. digital data, which define the object. But if a compressed image has been obtained as set forth above, and an array of Taylor polynomial coefficients has been obtained, which are in a much smaller number than the said digital data, said mathematical operations can be carried out on said coefficients, and a processed intermediate image will be obtained, which represents F(O) and from which F(O) can be constructed as set forth in step (9) above.

The following examples illustrate a number of embodiments of the invention.

Example 1

An object line f in the plane (x, y) is given by an array $A = (y_0, y_1, ..., y_{100})$, where $y_i = f(x_i)$, $x_i = i/100$, i = 0, 1, ..., 100. In this specific example the array (array 1) is the following:

0.1152	0.1155	0.1191	0.1131	0.1174	0.1133	0.1108	0.1149	0.1105
0.1182	0.1167	0.1206	0.1238	0.1196	0.1264	0.1282	0.1313	0.1315
0.1299	0.1330	0.1366	0.1409	0.1402	0.1462	0.1569	0.1608	0.1631
0.1604	0.1693	0.1779	0.1797	0.1826	0.1826	0.1888	0.1963	0.2011
0.2034	0.2084	0.2170	0.2244	0.2265	0.2327	0.2429	0.2468	0.2472
0.2523	0.2661	0.2673	0.2702	0.2796	0.2811	0.2845	0.2949	0.3022
0.3078	0.3049	0.3121	0.3157	0.3256	0.3270	0.3346	0.3413	0.3405
0.3428	0.3503	0.3515	0.3530	0.3571	0.3675	0.3616	0.4648	0.4665
0.4659	0.4607	0.4600	0.4536	0.4473	0.4441	0.4427	0.4330	0.4329
0.4268	0.4243	0.4185	0.4135	0.4107	0.3961	0.3925	0.3877	0.3774
0.3698	0.3671	0.3583	0.3449	0.3397	0.3338	0.3271	0.3091	0.3031
0.2929								

An object line itself is shown in Fig. 3a. The required accuracy of representing this line is 0.035. The compressed image of this line is produced as follows.

Firstly it is subdivided into three segments lying over the segments [0.0, 0.6], [0.6, 0.8], [0.8, 1.0] in the x-axis. The following model is chosen on the segments [0.0, 0.6] and [0.8, 1.0]:

 $y = Q(x) = c_1 \sin(\omega_1 x + \phi_1) + c_2 \cos(\omega_2 x + \phi_2) + c_3 x^2 + c_4 x + c_5$ with c_1 , c_2 , ω_1 , ω_2 , ϕ_1 , ϕ_2 , c_3 , c_4 , c_5 - the parameters.

On the segment [0.6, 0.8] the following model is chosen:

 $y = Q(x) + Hx_0$, a, b, c, d (x), where Q(x) is as above, and the normal form H is defined by $H(x) = a(x - x_0) + b$, if $x \ge x_0$ or $H(x) = c(x - x_0) + d$, if x is less than x_0 . Said normal form is illustrated in Fig. 3d. Approximation on each segment is carried out by minimization, with respect to the corresponding parameters, of the quadratic error:

$$\Sigma (y_i - Q(x_i))^2 (\Sigma (y_i - Q(x_i) - H(x_i))^2$$
 on [0.6, 0.8]).

The values of the parameters found are given in the following array 2.

Q(x) = 2.0 + 0.1*x - 0.2*x*x - 0.15*cos(-0.4+4*x) - 0.2*sin(-0.3 + 0.5*x)

H(x) = 1.0/7.0 * (x-0.7) + 0.1 , x < 0.7

H(x) = -1.0/3.0 * (x-0.7) + 0.2 , x >= 0.7

The corresponding model curve is shown in Fig. 3b.

The error of the approximation of the object line by the model found turns out to be 0.005. Respectively, on the step 2, ϵ is chosen to be 0.03. k is chosen to be 2 on each segment.

M, equal to the maximal absolute value of the third derivative of the smooth component in the above model, as computed by the standard subroutine, 8. The maximal possible pitch h of the grid to be constructed, is defined by (1/6) M $(h/2)^3 = \varepsilon$, or $h \approx 0.24$. In order to provide a uniform grid, a smaller value h = 0.2 is chosen on each segment. The corresponding grid points are the following: 0.1, 0.3, 0.5 on [0.0, 0.6], the only grid point 0.7 on [0.6, 0.8] and the only grid point 0.9 on [0.8, 1.0]. Taylor polynomials at these points, as computed by the standard "MATHEMATICA" subroutine, are given in the following array 3.

Zi	a0	al	a2
0.1	0.121582031250	0.105957031250	0.993652343750
0.3	0.180175781250	0.454345703125	0.632080078125
0.5	0.285644531250	0.542724609375	-0.236083984375
0.9	0.381103515625	-0.727050781250	-1.394042968750
0.7	0.272460937500	0.125244140625	-1.083496093750
a= 0.14	2822265625 b= 0.	099853515625	

Now the coefficients of order 0 are rounded off up to 3 digits, the coefficients of order 1 are rounded off up to 2 digits and the coefficients of order 2 up to 1 digit. The parameters of the normal form H are rounded off up to three digits. These data, listed in the following array 4 represent the intermediate compressed image.

Zi	a0	al	a 2
0.1	0.121	0.10	€.9
0.3	0.180	0.45	0.6
0.5	0.285	0.54	-0.2
0.9	0.381	-0.72	-1.3
		0.10	
0.7	0.272	0.12	-1.0
a= 0.142	b=	0.100	
c = -0.333	d=	0.200	

The compression ratio is 4*100 digits/37 digits = 10.8.

The final image is obtained by computing the values of the Taylor polynomials (and the normal form H on [0.6, 0.8]) at the initial points x, i = 0, ..., 100. Each polynomial is used for x, belonging to the corresponding cell of the grid z_i . The result is shown in the following array 5.

0.1196	0.1190	0.1185	0.1183	0.1182	0.1183	0.1186	0.1190	0.1197
0.1205	0.1215	0.1227	0.1240	0.1256	0.1273	0.1292	0.1313	0.1335
0.1360	0.1386	0.1426	0.1460	0.1496	0.1532	0.1570	0.1609	0.1649
0.1691	0.1733	0.1777	0.1822	0.1868	0.1916	0.1964	0.2014	0.2065
0.2117	0.2171	0.2225	0.2281	0.2318	0.2376	0.2433	0.2490	0.2546
0.2602	0.2658	0.2713	0.2768	0.2822	0.2876	0.2930	0.2983	0.3036
0.3088	0.3140	0.3192	0.3243	0.3294	0.3344	0.3380	0.3424	0.3466
0.3506	0.3545	0.3581	0.3615	0.3648	0.3678	0:3706	0.4709	0.4685
0.4660	0.4633	0.4603	0.4572	0.4539	0.4503	0.4466	0.4427	0.4376
0.4328	0.4276	0.4223	0.4166	0.4107	0.4046	0.3981	0.3915	0.3845
0.3773	0.3699	0.3621	0.3542	0.3459	0.3374	0.3287	0.3196	0.3104
0.3008								٠.

The corresponding final curve is shown in Fig. 3c. The maximal error in representing the object curve by the final one is 0.033.

Example 2

The object (black and white, continuous tone) picture is the standard test picture, called "Lena" (see Fig. 4a). It is represented by a 512 x 512 array, each pixel containing 8 bits, representing one of the gray levels between J and 255. The file representing this picture is available in test collections in the field of imaging. A part of this array, representing the piece S, marked on Fig. 4a, is the following.

9.0	93	97 96 138	97 101 136	109	120	133	152	171	188	202	213	222	214	. 84 200	84 185	86 167
89	92	95	97 100 135	108	119	132	150	169	186	200	211	220	85 217 109	83 203	83 187	85 169
88	92	94	97 100 134	108	118	132	148	167	184	198	209	218	221	83 206	83 189	84 171
87	91	94	97 99 134	107	118	131	146	165	182	196	207	216	84 224 109	82 208	82 191	84 172
87	90	93	97 98 133	106	117	130	144	163	180	194	205	214	83 227 109	81 211	81 193	83 174
86	90	92	97 98 132	106	116	130	142	161	178	192	203	212	230	81 214	81 196	82 176
85	86	90	93 96 132	104	114	125	136	145	158	175	195	219	85 220 105	85 222	85 213	85 193
84		91	91 97 131		113	124	134	144	157	174	194	218		84 223	84 215	84 195
92 84 165	88	92	88 97 129	104	112	123	133	143	156	172	193	216	84 220 105	84 224		84 196
88 84 167	89	92		103	112	122	132	141	154	171	191	215	84 220 105			84 198
86	91	93		103	111	121	130	140	153	170	190	214	86 221 105			
88	92	94	81 97 119	103	110	119	129	139	152	168	189	212	88 221 105	88 226	88 219	88 201

8.3	9.1	9.1	93	97	105	115	128	143	157	172	187	102 201 103	223	97 229	94 223	89 205
90	72 89 129	79 88 118	90	9.5	102	112	128	143	158	172	187	107 202 102	219	103 226	99 220	95 202
94	86	85	87	92	99	109	127	141	156	171	185	108 200 102	214	105 221	102 216	98 198
95	83	83	85	89	97	107	123	138	153	167	182	107 197 102	207.	105 214	102 210	99 193
93	81	80	82	87	94	104	118	133	148	162	177	103 192 104	198	102 206	100 202	97 185
89	75 78 106	77	79	84	91	101	111	126	141	155	170	97 185 106	187	96 196	95 192	92 176
68	80	80	82	85	88	93	94	110	30 128 106	146	164	40 184 98	51 192 94	59 176		
61		72	74	93 76 115	80	84	86	102	119	137	156	44 176 .100	185	59 171	62 157	63 145
58		67	69	89 72 116	75	80	81	97	114	132	151	53 171 101	59 179 96	63 166	64 155	63 144
60	85 65 127	66	68	,87 70 116	74	78	80	96	113	131	150	66 170 101	173	71 162	70 152	67 143
	67	68	70	72	76	80	82	98	115	133	152	83 172 100	85 166 96	84 157	81 149	75 141
77	73	88 74 121	76	78	82	86	88	104	121	139	158	105 178 98	160	102 152	96 146	88 140

68	104 62 121	71	82	94 96 119	113	132	158	162	166	168	170	171	97 154 98	98 148	93 141	83 134
84	87	96	107	102 121 118	138	157	169	172	174	176	176	176	154	106 147	104 140	97 134
103	105	114	125	108 139 118	156	175	178	179	180	180	179	178	111 153 97	117 146	117 140	113 133
123	116	124	136	112 150 117	166	186	184	184	184	182	180	177	120 152 96	129 146	132 139	130 132
144	119	128	139	114 153 116	170	189	187	186	184	182	178	174	152	142 145	148 138	149 132
168	116	124	136	114 150 116	166	186	188	185	182	178	173	168	151	158 144	167 138	170 131
177	152	145	145	118 153 114	169	194	185	184	182	180	179	177	154	173 145	183 136	184 129
180	157	148	147	118 155 114	170	193	188	186	184	182	180	178				
183	161	151	150	118 156 114	171	193	190	188	185	183	180	178				
185	165	155	152	118 158 114	171	193	191	188	185	182	180	177				
188	169	158	155	118 159 114	172	193	191	188	185	181						
191	174	161	157	118 161 114	173	192	191	187	183							

		4 5 3	1 6 1	125 154 110	167	774	1 4 8	141	184	1.70	113	T 0 2	176 160 19	188 140	195 125	198 116	
202	375	160	166	123 168 109	174	185	200	194	189	192	102	TOO	184 161 18	195 140	202 125	204 115	
7.00	106	170	171	122 174 108	120	189	193	189	TRO	184	100	102	183 160 17	194 139	200 123	202 113	
107	3 0 0	101	176	122 175 108	179	187	179	1//	1/5	T/2	1/2	1,,	173 158 16	183 137	189 121	190 110	
166	7 Q Q	178	172	123 170 107	172	1/9	156	T20	_30	T20	TOO	100	154 156 15	164 134	169 117	170 106	
127	101	760	161	125 158 106	159	164	126	127	130	133	13/	147	126 153 14	136 130	140 113	141 101	
111	134	1 3 4	131	113 127 120	121	113	110	113	116	119	122	170	102 111 20	105 100	108 93	110 91	
100 100 82	98 117 91	116	113	96 108 120	102	94	81	85	89	93	97	101	91	82			
91	84 103 89	102	98			78		66	71	76	81	86	78	72			
75 83 82	93	91	87		74	65	68 50 52	56	62	68	73	79		68	81 68		
66 78 92	86	8 4	80		66	56	48	55	62	68	75	82	69 74	72			
60 74 110	83	80	76	56 69	61		55	63	70	78	85	93	83	83			

The compressed image is produced as follows: first, the picture is subdivided into square segments, c ontaining $6 \times 6 = 36$ pixels each one. See Fig. 4a and the array S above, where one of such segments is marked.

The step 1 consists in approximating the picture on each segment by the model, which is chosen to be the quadratic polynomial

$$z = a_0 + a_1 x + a_2 y + a_{11} x^2 + 2a_{12} xy + a_{22} y^2$$

where z represents the gray level, and x and y are the coordinates on t picture plane centered at the center of the corresponding segment.

The values of the coefficient "a" are found by the standard subroutine, minimizing the quadratic error of the approximation of the gray level on each segment by the model chosen.

The array of $8 \times 8 = 64$ polynomials, obtained on the segments, covering the piece S of the picture, is given in the following array 7.

```
-0.0055246
                                              0.001883
                                                          -0.007146
                                                                       0.010986
0.37500000
               -0.0058594
                                                                      0.009208
0.35937500
               -0.0104353
                              -0.0276228
                                              0.007010
                                                          0.013632
                              0.0078125
                                             0.010149
                                                         -0.001263
                                                                      0.033064
0.31640625
               -0.0081473
                                             0.003348
                                                         0.014263
                                                                     0.062360
               -0.0127790
                              0.0998326
0.39843750
                                             -0.015172
                                                          0.000459
                                                                      -0.049700
0.74218750
                -0.0247767
                              0.1643973
                                                          -0.027809
0.70703125
               0.0304130
                             -0.2262835
                                             -0.009312
                                                                        -0.038191
                                                           -0.003071
                                              -0.015067
                                                                        0.007847
0.50781250
               -0.0092076
                              -0.0348772
                                             0.007010
                                                         0.004908
                                                                      -0.004918
                             -0.0233817
0.43359375
               0.0021763
                                              0.003348
                                                          0.027637
                                                                      0.026263
                              -0.0031808
0.33593750
               -0.0344308
                             -0.0194196
                                                                      -0.022600
               0.0164063
                                             -0.005022
                                                          0.008954
0.37109375
                             -0.0077009
                                                                      -0.003871
                                             0.016532
                                                         -0.015383
0.32421875
               0.0092634
                                             0.006069
                                                         -0.026834
                                                                      0.035575
0.38671875
               -0.0045201
                              0.0807478
                              0.1973214
                                                                      0.066127
                                             0.009626
                                                         -0.011422
0.63671875
               -0.0199777
0.81250000
               0.0224331
                             -0.2329241
                                             0.003558
                                                         0.016875
                                                                     -0.205811
                                              -0.025321
                                                           0.024337
0.48828125
               -0.0261161
                              -0.0174107
                                                                       0.006069
                                                          -0.010188
0.43750000
               0.0035156
                             -0.0440290
                                             -0.002511
                                                                       -0.007533
                                                        0.006256
                                                                    0.002511
                                            0.006278
0.32031250
               0.0101563
                             0.0811384
                                                           -0.026260
                                                                        0.015172
0.40234375
               -0.0292969
                              -0.0090960
                                              -0.058594
0.40234375
               -0.0013951
                              -0.0376674
                                              -0.050642
                                                           0.022643
                                                                       -0.022391
                                                         -0.008265
                                                                      0.046980
0.33984375
               -0.0376116
                              0.0617188
                                             0.004290
                                                                      0.006173
                                                          0.004305
0.63281250
               -0.0425223
                              0.1786830
                                             -0.036516
                                                           0.029043
                                                                       -0.234375
                                              -0.040388
0.80468750
               -0.0712053
                              -0.2079241
                                                                       -0.011300
0.45703125
               -0.0006696
                              0.0003348
                                             -0.000314
                                                          -0.009184
0.41015625
                             -0.0319196
                                             0.020299
                                                         0.019056
                                                                     -0.000732
               0.0016741
               -0.0089286
                              0.0193080
0.33203125
                                             0.020194
                                                         -0.052519
                                                                      0.014544
                                             0.060059
                                                         0.156036
                                                                     0.077009
0.21093750
               0.1237165
                             -0.0967076
                                                                     -0.055455
0.25781250
               0.0914063
                             0.0062500
                                            0.087995
                                                        -0.093673
                                             0.074916
                                                         -0.002899
                                                                      0.018101
0.26562500
               -0.0221540
                              0.0343192
                                             0.078055
                                                         0.008839
                                                                     0.015904
               -0.0229911
                              0.2156250
0.47265625
0.57812500
               -0.0305245
                              -0.1201451
                                              -0.003557
                                                           0.072006
                                                                       0.021240
                                             0.014230 .
                                                         -0.028096
                                                                      0.001674
0.44531250
               0.0000558
                             -0.0220424
0.41015625
                                              -0.019148
                                                           0.008409
                                                                       -0.016950
               -0.0073103
                              -0.0318638
                                                          0.020663
                                                                      -0.000732
0.43750000
               0.0410714
                             -0.0239955
                                             -0.033378
0.36718750
               0.0566406
                             0.0056362
                                            0.014962
                                                        -0.005309
                                                                     0.016218
                                                                    -0.109236
0.48046875
               0.1614397
                             0.0278460
                                            0.038295
                                                        0.096687
                                                         0.012025
                                                                     0.054618
0.53906250
                                            -0.128697
               0.1313058
                             0.1659040
                             -0.0090960
                                                          -0.061617
0.71093750
               0.0371094
                                             -0.059326
                                                                       -0.031076
                                                                       0.015486
0.53125000
               -0.0079799
                              -0.0807478
                                              0.012347
                                                          -0.010418
0.44921875
                              -0.0317522
                                              -0.008789
                                                           0.007950
                                                                       0.000000
               -0.0116630
0.38671875
                              -0.0160714
                                              -0.011300
                                                           0.000402
                                                                       0.000000
               -0.0111607
                                                         0.007691
                                                                     -0.002302
0.45703125
               0.0071429
                             -0.0061384
                                             0.010568
0.46093750
               0.0342634
                             0.0351562
                                            0.001988
                                                        0.005568
                                                                    0.035261
                                                         -0.018109
0.73828125
               0.0527344
                             0.0965960
                                            -0.012660
                                                                      -0.150774
0.59765625
               0.0304687
                             0.0774553
                                            -0.012556
                                                         -0.041212
                                                                      0.146589
0.71375000
               0.0060268
                             -0.0338170
                                             -0.019880
                                                          -0.024452
                                                                       -0.011405
0.51171875
               -0.0079799
                              -0.0932478
                                              -0.001569
                                                           -0.002612
                                                                        0.015695
                                                          -0.004334
                                                                       -0.033064
0.43750000
                                              0.009312
               -0.0044085
                              -0.0244978
0.37500000
               -0.0677456
                              -0.1410714
                                              0.003557
                                                          -0.121397
                                                                       -0.143032
0.45703125
                                             0.024484
                                                         0.014522
                                                                     -0.005650
               -0.0024554
                              0.0328125
0.51171875
               -0.0028460
                              0.0307478
                                             -0.024170
                                                          -0.036993
                                                                       0.026681
0.75390625
               -0.1251674
                              0.0778460
                                             -0.168248
                                                          -0.019142
                                                                       -0.088518
0.58359375
               0.0162947
                             0.0053571
                                            -0.122001
                                                         -0.059694
                                                                      0.078265
0.70703125
               -0.1199218
                              -0.0175781
                                              -0.155797
                                                           0.070226
                                                                       0.024379
                                                           -0.027522
0.44921875
               -0.0365513
                              -0.1284040
                                              -0.030866
                                                                        0.101597
0.41796875
               -0.0125000
                                                         0.019687
                                                                     -0.008161
                                             0.000628
                              0.0001116
                                              0.006906
0.15234375
               -0.0695313
                             -0.1944197
                                                          0.062679
                                                                      0.108608
0.29296875
                                              0.060582
                                                          0.000373
                                                                      0.015695
               -0.1353237
                             -0.0140067
0.27734375
               -0.1326451
                             -0.0152344
                                              0.019357
                                                          0.018683
                                                                      0.025635
0.32031250
                                                         -0.000804
                                                                      -0.024902
               -0.0872768
                             0.0389509
                                             0.044155
                                                                       -0.042585
0.34765625
                              -0.0653460
                                              0.070103
                                                          -0.026145
               -0.1336496
                                             0.164062
                                                         0.038772
                                                                     -0.000419
0.26171875
               -0.1049665
                             0.0693639
0:26562500
                            0.0437500
                                            0.130371
                                                        0.086556
                                                                    0.090193
               0.0065848
                                              -0.031076
                                                           -0.157902
                                                                        -0.156948
0.43750000
               -0.0600446
                             -0.1228795
0.07421875
                                              0.015904
                                                          0.030048
                                                                      0.013079
               -0.0148995
                             -0.0127790
```

(The coefficients are given after rescaling the x and y variables to the square [-1, 1] [-1, 1], and the gray level z to [0, 1]).

Step 2 The required accuracy ε is chosen to be 5 gray levels, k is fixed to be 2, and the grid on each segment is chosen to contain the only point - the center of this segment. Thus the Taylor polynomials computed on this step are identical to the approximating polynomials found on the step 1.

The 6 digits accuracy with which the coefficients of these polynomials are given in the array P above is excessive, and the coefficients are rounded off up to 8 bits in degree 0, up to 7 bits in degree 1 and up to 6 bits in degree 2.

The corresponding binary array is the intermediate compressed image. It is approximately represented by the following digital array P' (corresponding to the same piece S of the picture, as the above array P).

```
0.000000
                                                                   0.000000
                                           0.000000
               0.000000
                            0.0000000
0.37500000
                                                                      0.000000
                                             0.000000
                                                         0.000000
                             -0.0234375
               -0.0078125
0.35937500
                                            0.00000
                                                        0.000000
                                                                    0.031250
                             0.0000000
               -0.0078125
0.31640625
                                            0.000000
                                                        0.000000
                                                                    0.046875
                             0.0937500
               -0.0078125
0.39843750
                                                                     -0.046875
                                                        0.000000
                             0.1640625
                                            0.000000
               -0.0234375
0.74218750
                                                                      -0.031250
                                                        -0.015625
                            -0.2187500
                                            0.000000
               0.0234375
0.70703125
                                                                      0.000000
                             -0.0312500
                                                         0.000000
                                             0.000000
0.50781250
               -0.0078125
                                                        0.000000
                                                                    0.000000
                                            0.000000
                            -0.0156250
               0.0000000
0.43359375
                                                                    0.015625
                                            0.000000
                                                        0.015625
                             0.0000000
0.33593750
               -0.0312500
                                                                    -0.015625
                                                        0.000000
                                            0.000000
                            -0.0156250
0.37109375
               0.0156250
                                                                   0.000000
                                                       0.000000
                                           0.015625
                            0.0000000
0.32421875
               0.0078125
                                                                    0.031250
                            0.0781250
                                           0.000000
                                                       -0.015625
               0.0000000
0.38671875
                                                                    0.062500
                             0.1953125
                                            0.000000
                                                        0.000000
               -0.0156250
0.63671875
                                                                     -0.203125
                                                        0.015625
                                            0.000000
0.81250000
               0.0156250
                            -0.2265625
                                                           0.015625
                                                                      0.000000
                                             -0.015625
                             -0.0156250
               -0.0234375
0.49218750
                                                                    0.000000
                                            0.000000
                                                        0.000000
                            -0.0390625
               0.000000
0.43750000
                                                       0.000000
                                                                   0.000000
                                           0.000000
0.32031250
               0.0078125
                            0.0781250
                                             -0.046875
                                                           -0.015625
                                                                        0.000000
                             -0.0078125
               -0.0234375
0.40234375
                                                          0.015625
                                                                      -0.015625
                                            -0.046875
                            -0.0312500
0.40234375
               0.0000000
                                                        0.000000
                                                                    0.046875
                             0.0546875
                                            0.000000
0.33984375
               -0.0312500
                                                                      0.000000
                                                         0.000000
                                            -0.031250
0.63281250
               -0.0390625
                             0.1718750
                                             -0.031250
                                                          0.015625
                                                                       -0.218750
0.80468750
               -0.0703125
                             -0.2031250
                                           0.000000
                                                       0.000000
                                                                   0.000000
               0.0000000
                            0.0000000
0.45703125
                                                        0.015625
                                                                     0.000000
                            -0.0312500
                                            0.015625
               0.0000000
0.41015625
                                                         -0.046875
                                                                      0.000000
                                            0.015625
                             0.0156250
0.33203125
               -0.0078125
                                                                     0.062500
                                            0.046875
                                                        0.140625
                            -0.0937500
0.21093750
               0.1171875
                                           0.078125
                                                       -0.078125
                                                                     -0.046875
                            0.0000000
               0.0859375
0.25781250
                                                                     0.015625
                             0.0312500
                                            0.062500
                                                        0.000000
               -0.0156250
0.26562500
                                                                     0.015625
                                                         0.000000
               -0.0156250
                             0.2109375
                                            0.062500
0.47656250
                                                                      0.015625
                                                          0.062500
                                              0.000000
               -0.0234375
                             -0.1171875
0.57812500
                                                                      0.000000
                                            0.000000
                                                         -0.015625
                            -0.0156250
0.44531250
               0.0000000
                                                          0.000000
                                                                      -0.015625
               0.000000
                                             -0.015625
                            -0.0312500
0.41015625
                                                          0.015625
                                                                      0.000000
                            -0.0234375
                                            -0.031250
0.43750000
               0.0390625
                                                                    0.015625
                                           0.000000
                                                       0.000000
0.36718750
               0.0546875
                            0.0000000
                            0.0234375
                                           0.031250
                                                        0.093750
                                                                    -0.093750
               0.1562500
0.48437500
                                                         0.000000
                                                                     0.046875
               0.1250000
0.53906250
                            0.1640625
                                            -0.125000
                                                          -0.046875
                                                                       -0.015625
                                             -0.046875
                            -0.0078125
0.71093750
               0.0312500
                                              0.000000
                                                                      0.000000
                                                          0.000000
0.53125000
               -0.0078125
                              -0.0781250
                                              0.000000
                                                                      0.000000
                                                          0.000000
                             -0.0312500
0.44921875
               -0.0078125
                                                                      0.000000
                                              0.000000
                                                          0.000000
0.38671875
               -0.0078125
                              -0.0156250
                                           0.000000
                                                       0.000000
                                                                    0.000000
                            0.0000000
0.45703125
               0.0000000
                                           0.000000
                                                       0.000000
                                                                    0.031250
                            0.0312500
0.46093750
               0.0312500
                                           0.000000
                            0.0937500
                                                        -0.015625
                                                                     -0.140625
0.73828125
               0.0468750
                                                        -0.031250
                                                                     0.140625
                            0.0703125
                                           0.000000
0.59765625
               0.0234375
                                             -0.015625
                                                                       0.000000
               0.000000
                                                          -0.015625
                            -0.0312500
0.71875000
                                                          0.000000
                                                                      0.015625
                                              0.000000
0.51171875
               -0.0078125
                              -0.0859375
                                                         0.000000
                                                                     -0.031250
0.43750000
               0.0000000
                            -0.0234375
                                            0.000000
                                              0.000000
                                                          -0.109375
                                                                       -0.140625
                             -0.1406250
0.37500000
               -0.0625000
                                                        0.000000
                                                                    0.000000
0.45703125
               0.000000
                            0.0312500
                                           0.015625
0.51171875
               0.0000000
                            0.0234375
                                            -0.015625
                                                         -0.031250
                                                                      0.015625
                                                          -0.015625
                                                                       -0.078125
                             0.0703125
                                            -0.156250
0.75390625
               -0.1250000
                                                                      0.078125
                                                         -0.046875
                            0.0000000
                                            -0.109375
0.68359375
               0.0156250
                                                           0.062500
                                                                       0.015625
                                             -0.140625
0.70703125
               -0.1171875
                             -0.0156250
                                                                        0.093750
                                              -0.015625
                                                           -0.015625
0.44921875
               -0.0312500
                             -0.1250000
0.41796875
                                            0.000000
                                                         0.015625
                                                                     0.000000
                             0.0000000
               -0.0078125
0.15234375
                             -0.1875000
                                              0.000000
                                                          0.062500
                                                                      0.093750
               -0.0625000
                                                          0.000000
                                                                      0.015625
0.29296875
               -0.1328125
                             -0.0078125
                                              0.046875
                                                          0.015625
                                                                      0.015625
                                              0.015625
0.27734375
               -0.1250000
                             -0.0078125
                                                         0.000000
                                                                     -0.015625
                                            0.031250
0.32031250
               -0.0859375
                             0.0312500
                                                                       -0.031250
                                              0.062500
                                                          -0.015625
                             -0.0625000
0.34765625
               -0.1328125
                                            0.156250
                                                                     0.000000
                                                         0.031250
0.25171875
               -0.1015625
                             0.0625000
                                           0.125000
                                                                    0.078125
                                                       0.078125
0.26562500
                            0.0390625
               0.0000000
                                              -0.015625
                                                                        -0.156250
                                                           -0.156250
0.43750000
               -0.0546875
                             -0.1171875
                                                          0.015625
                                                                      0.000000
                                              0.015625
0.07421875
               -0.0078125
                             -0.0078125
```

The compression ratio is 512*512*8 bits/86*86*(8 + 2*7 + 3*6) bits ≈ 6.7 .

The final image is obtained by computing the values of the Taylor polynomials, representing the intermediate image, at each pixel of the corresponding segment. The part S' of the obtained array, representing the final image (and corresponding to the piece S of the initial picture), is the following array 9.

143 154 145 142 135 133 118 120 127 110 98 82 86 74

ţ

63 76 78	65 75 78	63 73 73	61 72 75	55 80 73	67 80 75	72 78 79	66 77 79	73 75 89	69 75 77	73 76 81	74 78 86	73 78 90	73 75 86	70 78	78 78	80 79
78 96 98	89 104 95	89 98 105	92 96 101	98	92 100 101	95	92 106 102	91 108 97	102	97 103 105	92 100 104	100	96		100 104	
100	102 104 105	102	101	102	100	100	100	104	108	103	106 104 105	99	104	102 99	101	106 106
0.7	107	105	104	106	101	100	100	101	99	100 102 96	103 97 96	103 98 103	99		100 105	
	100				97 105 93		97 99 99		96	102	101 96 102	101	104	99 94		99 103
90 82 141	94 83 135	88	89 90 141	102	106	111	110	89 116 129	118	125	85 128 125	126	74 127 131	72 136		71 136
126	129	127	129	126	127	127	126	124	124	136	132 129 132	129	128	124 127	133 129	127 134
131 210 91	204	197	183	181 156 94	131	198 96 101	77	206 77 88	71	74	76	83	213 73 87	211 85	213 87	215 89
94 93 97	100	86	101 93 101			94 97 93	96	89 97 101		95	94	93 94 88	88 87 94		90 100	95 92
137	137	136	138	129	138	134	140	136	135	134	147 130 129	139	135	130 129	99 134	137 131
127 149 63	134 143 61	154	145	142	135	133	118	120	127	143 110 73	98	82	154 86 78	153 74	149 63	149 65
80 79 · 89	76 78 92	75 78 95	73 73 92	75	73	75	78 79 101	77 79 97	89	77	81	78 86 104	90	75 86		78 89

101 91 97	96 98 105	104 95 102	98 105 102	96 101 103	98	100 101 99	97	102	97	97	103 105 99	100 104 102	105	96 103		104 102	
106	100 101 110	105	105	105	101	109	106	104	102	105	103 104 99	105	99 102 100	104 104	99 112	105 102	
103	97 101 102	103	101	105	104	101 109 100	102	99	102	103	96	97 96 99		99 108		105 114	•
99 103 93	97 99 89	100 95 86	102 99 93		102	105 93 89	105 97 86		_	96 96 87	102 95 74	96 102 72	101 95 73	104 101	94 90	95 94	
71 136 129	141	83 135 131	88 142 130	141	1.31	130	121	122	129	122	125 130 127	125	123	127 131	136 125	136 131	
124	129	136	135	134	129	130	131	136	136	136	136 132 213	132	132	128 127	127 131	129 134	
89	210 91 101		90	183 90 94	156 94 90	93	96 101 92		77 88 88	71 88 93	74 92 88	76 96 91		73 87	85 94	87 93	
95 92 84	97	100 96 89	95	101	97 95 93	97		89	101	93 95 149	95 97 148	97		87 94	86 82	100 91	
131	138	139	127	132	129	134	131	133	130	125	134 130 154	129	127	135 131	129 127	134 134	
149 65 75	63	61	55	67	72	66	73	69	73	74		98 73 75	70	86 78	74 80	63 76	
78 89 104	89	92	95		90	73 92 106	91	101	97	89 92 100		·94	104	100			
104 102 104	91 97 103	105	102	102	103	103	99	103	96	106	102	105 99 104	102	101	103 106	95 100	

102	aa	110	105 104 106	101	100	102	102	98	100	103	103	99	105 98 103	102 100	104 101	112 97	
114	104	102	103 102 100	97	99	97	100	102	98	101	102	102	96 99 94	103	108 99	109 97	
	103 93 88	99 89 90	95 86 102	99 93 106	91	90	89	86	83	85	87	74	102 72 136		101 71	90 82	
131	129	126	135 131 126	130	128	128	135	133	129	132	129	127	125 124 127	123 133	131 127	125 126	
134	134	161	136 181 156	189	198	201	206	207	206	210	212	213	132 211 85	132 213	127 215	131 210	
87 93 100		91 101 93				90	89	92	93 94 95	88					87 95	_	
100 91 137	92 84 136	88	96 89 129	84	91	93	107	139	144	147	149	148	97 130 129	88 99	94 137		
134	128	135	139 133 142	144	135	142	143	142	143	150	148	154	129 153 74	127 149	131 149	127 149	
76	65 75 78	73	61 72 75	55 80 73	80	78		75	75	73 76 81	74 78 86	73 78 90	73 75 86	70 78	78 78	80 79	(
78 96 98	104	98	92 96 101	98	100	95	106	108	102	103	100	100	94 96 103	104 99	100 104		
100	104	103	105 101 105	102	100	100	100	104	108	103	104	99	99 104 104	102 99	101 105	106 106	
112 97 ·101	107	105	104	106	101	100	100	101	99	102	97	98	99 99 108	98 103	100 105	101 103	

The picture representing the final image is shown in Fig. 4b.

Example 3 (Rotation of a picture)

The object picture is the same as in the Example 2. The required operation is the rotation by 90° in the counterclockwise direction (Fig. 5a represents the result of a rotation of the object picture).

The array of the gray levels of the rotated piece S' of the object picture is the following array 10.

60 118 65	66 118 65	75 119 80	86 119 84	100 117 88	117 113 92	114 107 95	112 92 99	111 88 97	111 84 97	81	80	118 79 97	118 68 97	118 67	118 67	118 66
58 118 72	64 117 71	73 118 80	84 117 83	114	115 110 90	117 104 93	115 90 96	114 87 97	114 85 97	115 83 97	117 83 97	118 83 97	118 75 97	118 74	118 73	118 73
56 118 79	62 116 78	71 117 80	82 115 83	96 112 86	113 107 89		118 88 94	117 86 97	117 85 97	118 85 97	119 86 97	118 88 97	118 81 97	118	118 80	118 79
56 118 85	62 115 85	70 115 81	82 114 83	96 110 86	105	122 98 91	120 86 93	119 86 97	119 86 97	87	122 90 97	118 93 97	118 88 97	118 87	118 87	118 86
56 118 92	62 114 91	7.1 11.4 8.3	82 112 85			125 94 91	123 84 93		87	89	93	97	118 95 97	118 94	118 93	118
57 118 99	63 114 98	72 113 86	83 110 87	97 106 89	114 99 91	-	126 82 94	125 84 97	87	126 91 97	96	102	118 101 97	118 101	118 100	118 99
	109	71 105 100		95	91		131 94 93	89	86	86	89	94	122 95 100	119 101	117 105	114 106
	108		80 98 99	94	89		130 89 94	80	73	69	68	124 69 97	93	118 100	116 104	113 105
	57 107 100	102	78 97 99	93	88	128 83 95	88	74	64	56	126 50 94	48	92	119 99	117 103	114 105
114	57 107 101	67 102 99	77 97 97	88 93 96	88		130 90 92	132 72 90	132 58 91	132 46 92	36	30	125 90 94	122 97	119 102	117 104
	58 108 101	67 103 96	77 98 95	88 94 94			132 95 90	134 74 88		136 39 90	136 26 90	132 15 91	129 88 92	126 96	124 101	121 104
		68 105 93	100	88 95 91	91		134 104 87	138 79 86		36	19	4	135 86 90	133 95	130 100	127 104

61 131 107	125	70 114 88		87 99 84	97 94 84	91	140 105 85		168 66 87	168 53 87	160 44 88	157 40 89	152 97 89	147 103	141 107	136 108
65 156 105	69 144 100	75 131 88	82 120 86	111	102 103 84	97	154 105 85	173 85 82	183 70 83	184 59 84	176 53 84	180 51 85	175 97 86	170 103	166 106	161 107
69 173 103	73 158 97	78 142 88	85 129 86	95 117 84			102	183 84 81	194 71 81	195 63 82	188 59 83	195 59 83	190 96 84	186 102	182 105	178 105
71 183 99	75 167 94	81 148 88	88 132 86	117		93	96	81	200 70 81	202 64 82	195 62 83	201 .65 83	198 95 84	100	190 102	186 102
73 184 95	77 170 89	83 149 88	90 130 86		110 97 84	141 83 84	88	190 75 82	202 67 83	204 63 84	198 63 84	200 68 85	197 92 86	194 97	190 99	187 98
74 177 90	78 168 83	83 144 88	91 123 86		111 84 84	137 68 84	166 77 85	187 66 86	199 60 87	202 58 87	196 61 88	191 68 89	188 89 89	185 93	183 95	180 94
83 152 89	86 116 91				134 87 88	181 62 87	73	67	65	175 66 91	158 71 92	174 80 92	169 78 93	165 81	161 83	157 86
80 145 88	84 124 91								66	168 67 94	152 72 94	161 80 95	158 77 96	155 80	151 83	148 85
76 145 90	80 136 93	87 139 97	136	125	107	82	76	176 70 98	68	69	74	157 82 100	79	152 82	150 85	147 87
69 153 95	150	152	150	130	121	96	78	72	70	72	76	161 85 108	84	158 87	156 89	155 92
169	166	170	166	156	138	113	82	76	74	75	80	173 88 119	91	171 94	171 97	170 99
194	186	189	186	175	157	132	86	80	78	80	84	192 93 132	TOT	104	193 107	193 109

										200	100	101	101	101	100	100	
100	100	107	61 184 130	170	169	158	88	82	80	8.1	86	94	T + T	118	123	127	
304	105	106	66 184 140	170	172	162	104	98	96	9/	102	TIO	T 2 0	188 133	188 138	186 141	
102	102	194	71 184 153	180	174	166	121	115	113	114	119	128	141	185 148	185 153	184 156	
100	170	192	76 182 170	180	176	168	139	133	131	132	137	146	155	182 162	183 167	182 171	
170	177	178	81 180 190	179	176	170	158	152	150	151	156	164	170	180 177	180 182	180 185	•
177	168	174	86 177 214	178	176	171	178	172	170	171	176	184	185	177 192	178 197	178 200	
154	151	152	78 152 221	153	154	154	160	166	173	179	185	192	187	152 198	152 207	153 214	
145	144	145	72 146 225	146	147	148	152	157	162	166	171	176	196	143 206	143 214	144 221	
136	138	138	69 139 218	140	140	141	146	149	152	155	157	160	192	134 202	135 210	136 216	ţ
129	131	132	72 132 199	133	134	134	140	141	143	144	145	146	176	127 185	128 193	128 198	
123	124	125	78 126 169	126	127	128	136	135	134	134	133	132	147	121 156	121 163	122 168	
117	118	118	89 119 127	120	120	121	132	129	127	125	122	120	106	115 114	116 121	116 126	

772	121	122	122	123	124	124	121	120	119	118	11/	112 116 138	TTR	112 118	112 118	112 118	
111	1 1 Q	110	120	120	121	122	119	118	117	117	116	114 115 135	TIR	114 118	114 118	114 118	
714	116	116	117	118	118	119	116	116	116	116	115	114 115 132	118	114 118	114 118	114 118	
112	113	114	114	115	116	116	114	114	114	114	115	112 115 130	1.18	112 118	112 118	112 118	
208	70 110 118	1 1:1	112	112	113	114	111	112	113	113	114	108 115 127	118	108 118	108 118	108 118	·
18 102 118	108	108	109	110	110	111	109	110	111	112	113	102 114 124	118	102 118	102 118	102 118	
96	20 102 118	102	103	104	104	105	107	109	110	110	109	108 107 115	113	103 112	101 112	98 113	
108	100	101	102	102	103	104	106	108	109	109	108	104 106 114	111	106 110	106 110	107 110	
21 111 109	aa	100	100	101	102	102	104	106	107	107	106	93 104 113	TTO	100 108	104 107	108 108	i
21 107 105	9.8	9.8	99	100	100	101	102	104	104	104	104	73 102 111	108	106	93 105	100 105	
22 95 102	96	97	. 9.8	98	99	100	98	100	101	101	100	45 98 110	100	104	75 102	85 102	
22 75 99	95	96	96	97	9.8	98	94	96	96	96	96	9 94 109	105	102	49 100	62 99	

The above rotation acts on the Taylor polynomials, representing the intermediate image, obtained in the Example 2, as follows: let the 6 x 6 pixel square segments, into which the original picture has been subdivided, be indexed by two indices i and j, in such a way that the middle segment has indices 0, 0. Denote the Taylor polynomial corresponding to the segment i, j by pij. Then:

- a. The indices i, j of each p_{ij} are replaced by -j, i
- b. x is replaced by y, and y by -x.

Using the notations already used in discussing processing, $F(p_{ij}(x,y)) = p_{-j, i}(y, -x)$.

The result of the application of the corresponding subroutine to the Taylor polynomials in the intermediate range, obtained in the Example 2, is the intermediate range of the rotated picture. Its part P' corresponding to the rotated piece S', is the following array 11.

		- 52-			
0 00000075	-0.0078125	0.0078125	0.015625	-0.000000	0.015625
0.29296875	0.0312500	-0.0312500	0.000000	-0.000000	0.000000
0.45703125		-0.0000000	0.000000	-0.000000	0.000000
0.45703125	0.0000000		0.000000	-0.015625	0.000000
0.43750000	-0.0234375	0.0234375		0.046875	0.000000
0.33203125	0.0156250	-0.0156250	0.000000		
0.32031250	0.0781250	-0.0781250	0.000000	-0.000000	0.000000
0.33593750	0.0000000	-0.000000	0.015625	-0.015625	0.015625
0.37500000	0.0000000	-0.000000	0.00000	-0.000000	0.00000
0.27734375	-0.0078125	0.0078125	0.015625	-0.015625	0.015625
0.51171875	0.0234375	-0.0234375	0.015625	0.031250	0.015625
0.46093750	0.0312500	-0.0312500	0.031250	-0.000000	0.031250
0.36718750	0.0000000	-0.0000000	0.015625	-0.000000	0.015625
0.21093750	-0.0937500	0.0937500	0.062500	-0.140625	0.062500
		0.0078125	0.000000		0.000000
0.40234375	-0.0078125	0.0156250	-0.015625	-0.000000	-0.015625
0.37109375	-0.0156250		0.000000	-0.000000	0.000000
0.35937500	-0.0234375	0.0234375		-0.000000	-0.015625
0.32031250	0.0312500	-0.0312500	-0.015625		
0.75390625	0.0703125	-0.0703125	-0.078125	0.015625	-0.078125
0.73828125	0.0937500	-0.0937500	-0.140625	0.015625	-0.140625
0.48437500	0.0234375	-0.0234375	-0.093750	-0.093750	-0.093750
0.25781250	0.0000000	-0.000000	-0.046875	0.078125	-0.046875
0.40234375	-0.0312500	0.0312500	-0.015625	-0.015625	-0.015625
0.32421875	0.0000000	-0.000000	0.000000	-0.000000	0.000000
0.31640625	0.0000000	-0.0000000	0.031250	-0.000000	0.031250
0.34765625	-0.0625000	0.0625000	-0.031250	0.015625	-0.031250
0.68359375	0.0000000	-0.0000000	0.078125	0.046875	0.078125
0.59765625	0.0703125	-0.0703125	0.140625		0.140625
0.53906250	0.0703123	-0.1640625	0.046875	-0.000000	0.046875
		-0.0312500	0.015625	-0.000000	0.015625
0.26562500	0.0312500	-0.0546875	0.046875	-0.000000	0.046875
0.33984375	0.0546875		0.031250		0.031250
0.38671875	0.0781250	-0.0781250	0.046875	-0.000000	0.046875
0.39843750	0.0937500	-0.0937500	0.000000	-0.031250	0.000000
0.26171875	0.0625000	-0.0625000	0.015625	-0.062500	0.015625
0.70703125	-0.0156250	0.0156250	0.000000		0.000000
0.71875000	-0.0312500	0.0312500	-0.015625	0.046875	-0.015625
0.71093750	-0.0078125	0.0078125			0.015625
0.47656250	0.2109375	-0.2109375	0.015625	-0.000000	0.000000
0.63281250	0.1718750	-0.1718750	0.000000	-0.000000	
0.63671875	0.1953125	-0.1953125	0.062500	-0.000000	0.062500
0.74218750	0.1640625	-0.1640625	-0.046875	-0.000000	-0.046875
0.26562500	0.0390625	-0.0390625	0.078125	-0.078125	0.078125
0.44921875	-0.1250000	0.1250000	0.093750		0.093750
0.51171875	-0.0859375	0.0859375	0.015625	-0.000000	0.015625
0.53125000	-0.0781250	0.0781250	0.000000	-0.000000	0.00000
0.57812500	-0.1171875	0.1171875	0.015625	-0.062500	0.015625
0.80468750	-0.2031250	0.2031250	-0.218750	-0.015625	-0.218750
0.81250000	-0.2265625	0.2265625	-0.203125	-0.015625	-0.203125
0.70703125	-0.2187500	0.2187500	-0.031250	0.015625	-0.031250
0.43750000	-0.1171875	0.1171875	-0.156250	0.156250	-0.156250
0.41796875	0.0000000	-0.0000000	0.000000	-0.015625	0.00000
0.43750000	-0.0234375	0.0234375	-0.031250	-0.000000	-0.031250
0.44921875	-0.0312500	0.0312500	0.000000	-0.000000	0.000000
0.44531250	-0.0156250	0.0156250	0.000000	0.015625	0.00000
0.45703125	0.0000000	-0.0000000	0.000000	-0.000000	0.000000
0.49218750	-0.0156250	0.0156250	0.000000	-0.015625	0.00000
0.50781250	-0.0130230	0.0312500	0.000000	-0.000000	0.000000
0.07421875	-0.0078125	0.0312300	0.000000	-0.015625	0.00000
0.07421875	-0.1875000	0.0073123	0.093750	-0.062500	0.093750
		0.1406250	-0.140625	0.109375	-0.140625
0.37500000	-0.1406250	0.0156250	0.000000	-0.000000	0.00000
0.38671875	-0.0156250		-0.015625	-0.000000	-0.015625
0.41015625	-0.0312500	0.0312500	0.000000	-0.015625	0.000000
0:41015625	-0.0312500	0.0312500	0.000000	-0.013623	0.000000
0.43750000	-0.0390625	0.0390625	0.000000	-0.000000	0.000000
0.43359375	-0.0156250	0.0156250	0.00000	~0.00000	0.00000

₹.

The final image, produced from the data rotated in a compressed form, is shown in Fig. 5b.

Example 4 (Producing a negative picture)

The object picture is the same as in the Example 2. It is required to produce a negative of this picture. Under this operation each gray level value z must be replaced by z' = 255 - z.

The negative of the original picture is shown in Fig. 6a. The array S" of the gray levels, corresponding to the negative of the piece S, is the following.

172	184 164 125	164	162	158	150	140	127	112	98	83	68	54	32	158 26	161 32	166 50	
165	183 166 126	167	165	160	153	143	127	112	97	83	68	53	36	152 29	156 35	160 53	
161	182 169 129	170	168	163	156	146	128	114	99	84	70	55	41	150 34	153 39	157 57	
160	182 172 134	172	170	166	158	148	132	117	102	88	73	58	48	150 41	153 45	156 62	
162	181 174 141	175	173	168	161	151	137	122	107	93	78	63	57	153 49	155 53	158 70	
166	180 177 149	178	176	171	164	154	144	129	114	100	85	70	68	159 59	160 63	163 79	
187	172 175 135	175	173	170	167	162	161	145	127	109	91	71	63	196 79	190 95	187 109	
194	172 184 133	183	181	179	175	171	169	153	136	118	99	79	70	196 84	193 98	192 110	
197	172 189 130	188	186	183	180	175	174	158	141	123	104	84	76	192 89	191 100	192 111	4
195	170 190 128	189	187	185	181	177	175	159	142	124	105	85	82	184 93	185 103		
189	168 188 126	187	185	183	179	175	173	157	140	122	103	83	-89	171 98	174 106	180 114	
178	165 182 123	181	179	177	173	169	167	151	134	116	97	77	95	153 103	159 109	167 115	

187	193	184	173	159	142	123	97	93	89	87	169 85 154	84	101	157 107	162 114	172 121	
171	168	159	148	134	117	98	86	83	81	79	164 79 155	79	101	149 108	151 115	158 121	
152	150	141	130	116	99	80	77	76	75	75	160 76 155	77	102				
132	139	131	119	105	89	69	71	71	71	73	155 75 156	78	103	126 109	123 116	125 123	
111	136	127	116	102	85	66	68	69	71	73	150 77 157	81	103				
87	139	131	119	105	89	69	67	70	73	77	146 82 157	87	104	97 111	88 117	85 124	
78	103	110	110	102	86	61	70	71	73	75	130 76 148	78	101				
75	98	107	108	100	85	62	67	69	71	73	128 75 155	77	102	77 111	69 119	68 127	
72	94	104	105	99	84	62	65	67	70	72	125 75 162	77	103			65 127	ţ
70	90	100	103	97	84	62	64	67	70	73	122 75 168	78	103	69 112	61 121	61 128	
67	86	97	100	96	83	62	64	67	70	74	120 77 175	80	104				
64	81	94	98	94	82	63	64	68	72	76	117 79 182	83	105	60 114	54 122	55 129	

141 138 136 59 97 103 143 142 143	104 101 9	81 57	64 71	77 82	86 95	67 60 115 130	57 139
143 140 137 53 80 87 145 144 144	89 87 8	1 70 55	61 66	70 73	75 94	60 53 115 130	3 51 9 140
144 141 138 56 69 77 147 147 146	81 81 7	66 62	66 69	71 72	73 95	61 55 116 132	5 53 2 142
144 141 138 68 65 74 151 151 148	79 80 7	68 76	78 80	80 80	78 97	72 66 118 134	
143 140 137 89 66 77 155 156 150	83 85 8	3 76 99	99 99	97 95	92 99	91 86 121 138	85 149
141 138 136 118 74 86 160 161 151	94 97 9	5 91 129	128 125	122 118	113 102	119 115 125 142	5 114
138 140 142 144 121 121 162 155 164	124 128 13	1 142 145	142 139	136 133	130 144	150 147 155 162	145
155 157 159 155 138 139 173 164 155	142 147 15	3 161 174	170 166	162 158	154 164	160 158 173 177	3 156 7 177
169 171 173 164 152 153 177 166 148	157 162 16	177 194	189 184	179 174	169 177	170 167 183 186	165
180 182 184 172 162 164 173 160 142	168 173 18	190 205	199 193	187 182	176 182	177 174 187 187	172
189 191 193 177 169 171 163 147 136	175 181 189	199 207	200 193	187 180	173 181		
195 197 199 181 172 175 145 128 131	179 186 194	204 200	192 185	177 170	162 172	186 184 172 168	182 159

The above operation on Taylor polynomials is the following:

$$F(a_0 + a_1 x + a_2 y + a_{11} x^2 + 2a_{12} xy + a_{22} y^2) =$$

$$1 - a_{0^{-}} \, a_{1} \, \, x - a_{2} \, y - a_{11} \, \, x^{2} - 2 a_{12} \, \, xy - a_{22} \, y^{2}$$

(in the same rescaling as above).

The corresponding subroutine, applied to the Taylor polynomials of the intermediate image obtained in the Example 2, gives the intermediate image of the negative. The part of the polynomials array P", corresponding to the piece S" of the negative, is the following.

```
-0.0000000
                               -0.0000000
                                                            -0.000000
 0.62500000
                                               -0.000000
                                                                         -0.000000
 0.64062500
                0.0078125
                             0.0234375
                                             -0.000000
                                                          -0.000000
                                                                       -0.000000
 0.68359375
                0.0078125
                              -0.0000000
                                              -0.000000
                                                           -0.000000
                                                                        -0.031250
 0.60156250
                0.0078125
                              -0.0937500
                                              -0.000000
                                                           -0.000000
                                                                        -0.046875
 0.25781250
                0.0234375
                                                           -0.000000
                              -0.1640625
                                              -0.000000
                                                                        0.046875
 0.29296875
                -0.0234375
                               0.2187500
                                              -0.000000
                                                           0.015625
                                                                       0.031250
 0.49218750
                0.0078125
                             0.0312500
                                             -0.000000
                                                          -0.000000
                                                                       -0.000000
 0.56640625
                -0.0000000
                               0.0156250
                                              -0.000000
                                                           -0.000000
                                                                        -0.000000
 0.66406250
                0.0312500
                              -0.0000000
                                              -0.000000
                                                           -0.015625
                                                                        -0.015625
 0.62890625
                -0.0156250
                               0.0156250
                                              -0.000000
                                                           -0.000000
                                                                        0.015625
                               -0.0000000
 0.67578125
                                               -0.015625
                                                            -0.000000
                -0.0078125
                                                                         -0.000000
 0.61328125
                -0.0000000
                               -0.0781250
                                               -0.000000
                                                            0.015625
                                                                        -0.031250
 0.36328125
                0.0156250
                             -0.1953125
                                              -0.000000
                                                           -0.000000
                                                                        -0.062500
 0.18750000
                              0.2265625
                -0.0156250
                                              -0.000000
                                                           -0.015625
                                                                        0.203125
 0.50781250
                                                         -0.015625
                                                                      -0.000000
                0.0234375
                                             0.015625
                             0.0156250
 0.56250000
                                              -0.000000
                                                           -0.00000
                -0.0000000
                              0.0390625
                                                                        -0.000000
                                                            -0.00000
 0.67968750
                -0.0078125
                              -0.0781250
                                               -0.000000
                                                                         -0.000000
 0.59765625
                0.0234375
                             0.0078125
                                             0.046875
                                                        0.015625
                                                                     -0.000000
 0.59765625
                -0.0000000
                              0.0312500
                                              0.046875
                                                          -0.015625
                                                                       0.015625
 0.66015625
                0.0312500
                             -0.0546875
                                              -0.000000
                                                           -0.000000
                                                                        -0.046875
 0.36718750
                0.0390625
                             -0.1718750
                                             0.031250
                                                          -0.000000
                                                                       -0.000000
 0.19531250
                0.0703125
                             0.2031250
                                            0.031250
                                                         -0.015625
                                                                      0.218750
 0.54296875
                                               -0.000000
                -0.0000000
                              -0.0000000
                                                            -0.000000
                                                                         -0.000000
 0.58984375
                -0.0000000
                              0.0312500
                                             -0.015625
                                                           -0.015625
                                                                        -0.000000
 0.66796875
                0.0078125
                             -0.0156250
                                             -0.015625
                                                           0.046875
                                                                       -0.000000
 0.78906250
                                                           -0.140625
                -0.1171875
                              0.0937500
                                             -0.046875
                                                                        -0.062500
 0.74218750
                -0.0859375
                              -0.0000000
                                              -0.078125
                                                            0.078125
                                                                       0.046875
 0.73437500
                0.0156250
                             -0.0312500
                                             -0.062500
                                                                        -0.015625
                                                           -0.000000
 0.52343750
                0.0156250
                             -0.2109375
                                             -0.062500
                                                           -0.000000
                                                                        -0.015625
 0.42187500
                0.0234375
                             0.1171875
                                            -0.000000
                                                         -0.062500
                                                                      -0.015625
 0.55468750
                -0.0000000
                              0.0156250
                                             -0.000000
                                                          0.015625
                                                                      -0.000000
 0.58984375
                -0.0000000
                              0.0312500
                                             0.015625
                                                         -0.000000
                                                                      0.015625
 0.56250000
                -0.0390625
                              0.0234375
                                             0.031250
                                                         -0.015625
                                                                      -0.000000
 0.63281250
                -0.0546875
                              -0.0000000
                                              -0.000000
                                                           -0.000000
                                                                         -0.015625
 0.51562500
                -0.1562500
                              -0.0234375
                                              -0.031250
                                                           -0.093750
                                                                         0.093750
 0.46093750
                -0.1250000
                              -0.1640625
                                              0.125000
                                                          -0.000000
                                                                       -0.046875
0.28906250
                -0.0312500
                              0.0078125
                                             0.046875
                                                         0.046875
                                                                     0.015625
0.46875000
                                                         -0..000000
                0.0078125
                             0.0781250
                                            -0.000000
                                                                      -0.000000
0.55078125
                0.0078125
                             0.0312500
                                            -0.000000
                                                         -0.000000
                                                                      -0.000000
0.61328125
                0.0078125
                                                         -0.000000
                             0.0156250
                                            -0.000000
                                                                      -0.000000
0.54296875
                -0.0000000
                              -0.0000000
                                              -0.000000
                                                           -0.000000
                                                                         -0.000000
0.53906250
                -0.0312500
                              -0.0312500
                                              -0.000000
                                                           -0.000000
                                                                         -0.031250
0.26171875
                -0.0468750
                                                                                     Ł
                              -0.0937500
                                              -0.000000
                                                           0.015625
                                                                       0.140625
0.40234375
                -0.0234375
                              -0.0703125
                                              -0.000000
                                                           0.031250
                                                                       -0.140625
0.28125000
                -0.0000000
                              0.0312500
                                             0.015625
                                                         0.015625
                                                                     -0.000000
0.48828125
               0.0078125
                             0.0859375
                                                         -0.000000
                                            -0.000000
                                                                      -0.015625
0.56250000
                -0.0000000
                              0.0234375
                                             -0.000000
                                                          -0.000000
                                                                       0.031250
0.62500000
               0.0625000
                            0.1406250
                                            -0.000000
                                                         0.109375
                                                                     0.140625
0.54296875
               -0.0000000
                              -0.0312500
                                              -0.015625
                                                           -0.000000
                                                                        -0.000000
0.48828125
                -0.0000000
                              -0.0234375
                                              0.015625
                                                          0.031250
                                                                      -0.015625
0.24609375
               0.1250000
                            -0.0703125
                                             0.156250
                                                         0.015625
                                                                     0.078125
0.31640625
               -0.0156250
                              -0.0000000
                                              0.109375
                                                          0.046875
                                                                      -0.078125
0.29296875
               0.1171875
                            0.0156250
                                            0.140625
                                                        -0.062500
                                                                     -0.015625
0.55078125
               0.0312500
                            0.1250000
                                           0.015625
                                                                    -0.093750
                                                        0.015625
0.58203125
               0.0078125
                            -0.0000000
                                             -0.000000
                                                          -0.015625
                                                                       -0.000000
0.84765625
               0.0625000
                            0.1875000
                                            -0.000000
                                                         -0.062500
                                                                      -0.093750
0.70703125
               0.1328125
                            0.0078125
                                            -0.046875
                                                         -0.000000
                                                                      -0.015625
0.72265625
               0.1250000
                            0.0078125
                                            -0.015625
                                                         -0.015625
                                                                      -0.015625
0.679,68750
               0.0859375
                            -0.0312500
                                             -0.031250
                                                          -0.000000
                                                                       0.015625
0.65234375
               0.1328125
                            0.0625000
                                            -0.062500
                                                         0.015625
                                                                     0.031250
0.73828125
               0.1015625
                            -0.0625000
                                             -0.156250
                                                          -0.031250
                                                                       -0.000000
0:73437500
               -0.0000000
                             -0.0390625
                                             -0.125000
                                                           -0.078125
                                                                        -0.078125
0.56250000
               0.0546875
                            0.1171875
                                           0.015625
                                                        0.156250
                                                                    0.156250
0.92578125
               0.0078125
                            0.0078125
                                            -0.015625
                                                         -0.015625
                                                                      -0.000000
```

The final image produced from the intermediate negative image, obtained as above, is shown in Fig. 6b.

While a number of embodiments of the invention have been discussed and illustrated, it will be understood that the invention may be carried out in a number of ways and with many modifications, adaptations, and variations, by persons skilled in the art, without departing from its spirit and from the scope of the appended claims.

CLAIMS

- 1 Process for the production of images of objects, as hereinbefore defined, comprosing the steps of:
- (1) Approximating the object by a model comprising at least one differentiable component.
- (2) Establishing the maximum allowable error ε and the degree k of the polynomials by which the differentiable component(s) of the model are to be approximated.
- (3) Constructing a grid of a suitable pitch h.
- (4) Computing the coefficients of the Taylor polynomials of the aforesaid differentiable component(s) at selected points of said grid.
- 2 Process according to claim 1, wherein the object is defined in a space having more than three dimensions.
- 3 Process according to claim 1, wherein the object is a line.
- 4 Process according to claim 1, wherein the object is a surface.
- 5 Process according to claim 1, wherein the object is a solid.

- 6 Process according to claim 1, wherein the model further comprises at least one non-differentiable component.
- 7 Process according to claim 1, comprising carrying out the said steps at least in part concurrently.
- 8 Process according to claim 1, wherein the object is defined by data which are values and/or relationships embodied in physical entities.
- 9 Process according to claim 8, comprising the preliminary step of storing the data defining the object in an electronic memory.
- 10 Process according to claim 1, comprising determining the parameters of the components of the model by minimizing a quantity representing an error
- 11 Process according to claim 10, wherein the quantity representing and error is the quadratical error.
- 12 Process according to claim 1, wherein the non-differentiable component(s) of the model embody the same discontinuities as the object, and the differentiable component(s) represent the deviations of the object lfrom the non-differentiable component.
- '13 Process according to claim 12, wherein the model has the form:

- (1) $\Phi(x) = Hx_o, a, b, c, d(x) + \phi(x)$ wherein H is defined by $H(x) = a(x-x_o) + b$, if $x \ge x_o$ or $H(x) = c(x-x_o) + d$, if x is less than x_o .
- 13 Process according to claim 1, wherein the model is a differentiable function of another function which embodies the non-differentiable characteristics of the object.
- 14 Process according to claim 1, wherein each grid pitch is calculated from the formula
- (3) $CMh^{k+1} \le \varepsilon$

wherein C = 1/(k+1)! and M is the maximum, at each grid point, of the absolute value of the derivatives of degree k+1 of the differentiable component or components of the model.

- 15- Process according to claim 1, further comprising constructing an adjusted image line by applying to each differentiable component the Whitney subroutine, and minimizing the quntity W thus computed, under such constraints that the results of the minimization do not deviate from the initial data by more than the allowed error.
- 16 Process according to claim 1, further comprising rounding off the coefficients of the Taylor polynomials to a maximum allowable error greater than the original one.

- 18 Process according to claim 1, further comprising separating a temporary image into components of increasing fineness, constructing a grid which is sparser than the one used for obtaining said image and the pitch of which is determined by the resolution required by the lowest fineness of said components, obtaining thereforom a second temporary image, subtracting said second temporary image from the original one to obtain a first residual image, and repeating the same steps for successively finer components, correspondingly obtaining successive residual images, whereby to compute coefficients of Taylor polynomials on several grids having increasingly higher resolutions.
- 19 Process according to claim 1, further comprising applying to the coefficients of the Taylor polynomials any desired known encoding method.
- 20 Process according to claim 1, further comprising applying to any data obtained in carrying out the process any desired known encoding method.

 $(\cdot$

21 - Process according to claim 1, further comprising constructing a final image by a procedure comprising the steps of dividing the domain, in which the temporary image has been defined, into possibly overlapping regions by means of a grid, each region being a portion of the grid around a grid node, and constructing curves representing the Taylor polynomials of degree k from the coefficients defining the temporary image at each grid node.

22 - Process according to claim 1, further comprising processing the obtained data, representing an intermediate image, by applying thereto an operator, whereby to obtain an image representing an object which is the result of applying to the original object the said operator.

COMPRESSED IMAGE PRODUCTION, STORAGE, TRANSMISSION AND PROCESSING

ABSTRACT

Images of objects are produced by:

- (1) Approximating the object by a model comprising at least one differentiable component.
- (2) Establishing the maximum allowable error ϵ and the degree k of the polynomials by which the differentiable component(s) of the model are to be approximated.
- (3) Constructing a grid of a suitable pitch h.
- (4) Computing the coefficients of the Taylor polynomials of the aforesaid differentiable component(s) at selected points of said grid.

- 2 Process according to claim 1, wherein the object is defined in a space having more than three dimensions.
- 3 Process according to claim 1, wherein the object is a line.
- 4 Process according to claim 1, wherein the object is a surface.
- 5 Process according to claim 1, wherein the object is a solid.
- 6 Process according to claim 1, wherein the model further comprises at least one non-differentiable component.
- 7 Process according to claim 1, comprising carrying out the said steps at least in part concurrently.
- 8 Process according to claim 1, wherein the object is defined by data which are values and/or relationships embodied in physical entities.
- 9 Process according to claim 8, comprising the preliminary step of storing the data defining the object in an electronic memory.
- 10 Process for the production of images of objects, according to the claim 1, wherein said second component of the model is defined by minimizing, by a predetermined subroutine, a quantity representing the deviation from the object of a model consisting of the first and second components.
- 11 Process for the production of images of objects according to claim 1, wherein the data defining the object, the data defining ; the model, and the data defining the images, are digital data.
- 12 Process according to claim 1, wherein the model has the form:

- (1) $\Phi(x) = Hx_o, a, b, c, d(x) + \phi(x)$ wherein H is defined by $H(x) = a(x-x_o) + b$, if $x \ge x_o$ or $H(x) = c(x-x_o) + d$, if x is less than x_o .
- 13 Process according to claim 1, wherein the model is a differentiable function of another function which embodies the non-differentiable characteristics of the object.
- 14 Process according to claim 1, wherein each grid pitch is a calculated from the formula
- (3) $CMh^{k+1} \le \varepsilon$

wherein C = 1/(k+1)! and M is the maximum, at each grid point, of the absolute value of the derivatives of degree k+1 of the differentiable component or components of the model.

- 15- Process according to claim 1, further comprising constructing an adjusted image line by applying to each differentiable component the Whitney subroutine, and minimizing the quntity W thus computed, under such constraints that the results of the minimization do not deviate from the initial data by more than the allowed error.
- 16 Process according to claim 1, further comprising rounding off the coefficients of the Taylor polynomials to a maximum allowable error greater than the original one.

- 17 Process according to claim 1, further comprising separating a temporary image into components of increasing fineness, constructing a grid which is sparser than the one used for obtaining said image and the pitch of which is determined by the resolution required by the lowest fineness of said components, obtaining thereforom a second temporary image, subtracting said second temporary image from the original one to obtain a first residual image, and repeating the same steps for successively finer components, correspondingly obtaining successive residual images, whereby to compute coefficients of Taylor polynomials on several grids having increasingly higher resolutions.
- 18 Process according to claim 1, further comprising applying to the coefficients of the Taylor polynomials any desired known encoding method.
- 19 Process according to claim 1, further comprising applying to any data obtained in carrying out the process any desired known encoding method.
- 20 Process according to claim 1, further comprising constructing a final image by a procedure comprising the steps of dividing the domain, in which the temporary image has been defined, into possibly overlapping regions by means of a grid, each region being a portion of the grid around a grid node, and constructing curves representing the Taylor polynomials of degree k from the coefficients defining the temporary image at each grid node.

Fig. 42

Fig. 46

Fig. 5

.

Fig. 6a

tig. 66

Fig. 45

Fig. 42

Fig. 5

.

Fig. 6a

t Tig. 66