

——— Europe 2023 —

How to Leverage Volcano to Improve the Resource Utilization of AI Pharmaceuticals, Autonomous Driving, and Smart Buildings

William (LeiBo) Wang, Huawei Cloud Email: wang.platform@gmail.com

Contents

- Project Introduction
- Architecture
- New Challenges and Features
- Use Cases and community

Project Introduction

- The first cloud native batch computing platform
- Open sourced in June 2019, donated to CNCF in 2020, and is currently a CNCF incubation project
- **2.9K** stars, **500+** global contributors
- **50+** enterprise production landing
- Supports mainstream Al, big data, and HPC frameworks
- Provides rich advanced scheduling strategies and unified job management
- Optimized for large-scale resource pools and supports heterogeneous computing

Volcano Architecture

1. Volcano API

Core concepts such as Job, JobFlow, Queue, and PodGroup are provided to define batch workload.

2. Volcano scheduler

Rich scheduling policies: fair-share scheduling, topology-based scheduling, SLA-based scheduling, preemption, backfill, elastic scheduling.

Plug-in algorithm integration framework: allows users to customize algorithm policies by combining different actions and plugins to satisfy different scenarios.

3. Volcano controller

Core capabilities such as podgroup and job lifecycle management, job queue, queue resource reservation, queue capacity, and dynamic sharing of multi-tenant resources.

4. Node plugin

Cooperate with scheduler to provide large-scale colocation support, topology-based scheduling optimization, and heterogeneous hardware support, including x86, Arm, GPU, Ascend, Kunlun, etc.

How Volcano Scheduler Works

- Volcano support AI and Bigdata workload through job based scheduling and plugin mechanism.
- Cache is designed to reduce interaction with kube-apiserver for better performance and construct relationship between Job and task. And it is extendable to interact with other resource manager besides Kubernetes.
- In each scheduling cycle, scheduler schedules jobs based on snapshot of cache for consistency.
- Action is first-level plugin and multi-actions are executed in sequence.
- Plugin is second-level plugin and can be registered in OpenSession function.

Volcano Journey

Internet

Financial service

Biopharmaceutical

GPT

Autopilot

- Gang-scheduling
- Task-topology
- · Priority based scheduling
- Integrate with Kubeflow
- Integrate with Argo
-

- Integrate with Spark-operator
- Integrate with Flink-operator
- Make Volcano as Spark on K8s batch scheduler
- Resource reservation
- Avoid overcommit
- Performance tuning for throughput

- Enhance Job management
- Add Job dynamic scaling
- Add Job plugins for MPI and Tensorflow, Pytorch plugin in Volcano for better user experience
- Add the JobFlow for dependency management

- GPU sharing (ongoing)
- Global scheduling on multiple clusters (ongoing)
- Cost awareness (pipeline)
- Colocation for online and offline container (ongoing)

step1 step2 step3 step4

Accelerate AI on K8s

Accelerate Big data

Simplify Job management

Improve resource utilization

Challenge 1: Requirement for Computing Power is Growing

- Al technology has entered the stage of commercialization and requires more and more computing power.
- According to the analysis report released by OpenAI, since 2012, the computing power used in AI training has doubled every 3-4 months.
- Although advances in algorithm and architectures allow more learning to be done with less computing, the computing power demand remains high.
- Computing power is becoming the bottleneck of intelligent computing.

Challenge 2: Low Resource Utilization

Resource requirements: Obvious peaks and troughs

Twitter data center resource statistics:

Used resources < Reserved resources

According to Gartner statistics, the average CPU utilization rate of enterprises is less than **15%.** There are many reasons for the low cluster utilization rate. Typical scenarios include:

- Isolated resource pools cause severe resource fragmentation.
- Resources are applied for based on the peaks.
- Unreasonable resource allocation

Containerization cannot satisfy all scenarios, we still need to:

- Unify resource pool and ensure fair scheduling among multi-business teams.
- Ensure service quality while increasing application deployment density.
- Set some applications to bind cores and monopolize resources to ensure stability.
- Prepare sufficient resources.
- Transparent scaling

Unified Scheduling and Colocation Improve Resource Utilization

Break up isolated resource pools for unified resource scheduling

- Co-locate multiple type applications
 - Colocation for MPI, Bigdata, and Function
 - Colocation for online and offline services

Multi-cluster scheduling based on global resource view

Sure Mill

Stone	MPI	Weather forecast
Sand	Spark	Bigdata ETL
Water	Function	Monte Carlo

Improving resource allocation rate through offline service colocation

Improve utilization through online and offline colocation and resource oversold

Scenario 1: Resource Share Model in Volcano

Queue

- Queue resource reservation/queue capacity
- Resource sharing for queues based on weight

Min. (guarantee)

Queue 2 is empty. Queue 1 can borrow resources from Queue 2.

Queue 2 has workloads and will reclaim resources from Queue 1.

Scenario 1: Share Resource Fairly

- Sharing resource between jobs
- Sharing resource between namespaces
- Per-queue policy (FIFO, Priority, Fair share, ...)

Scenario 2: The First Batch Scheduler for Spark on Kubernetes

SPARK-36057: Support Customized Kubernetes Schedulers

Scenario 2: How to Use Volcano in Spark


```
FEATURES="org.apache.spark.deploy.k8s.features.VolcanoFeatureStep"
 bin/spark-submit \
    --master k8s://https://127.0.0.1:60250 \
    --deploy-mode cluster \
    --conf spark.executor.instances=1 \
   --conf spark.kubernetes.scheduler=volcano \

    Custom scheduler

    --conf spark.kubernetes.driver.pod.featureSteps=$FEATURES \
                                                                                                         2. Custom feature step
   --conf spark.kubernetes.executor.pod.featureSteps=$FEATURES \
   --conf spark.kubernetes.scheduler.volcano.podGroupTemplateFile=/path/to/podgroup-template.yaml \⊢
                                                                                                         3. Scheduler hints (podgroup template)
    --conf spark.kubernetes.namespace=spark \
    --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark-sa \
    --conf spark.kubernetes.container.image=spark:latest \
    --class org.apache.spark.examples.SparkPi \
    --name spark-pi \
    local:///opt/spark/examples/jars/spark-examples 2.12-3.3.0-SNAPSHOT.jar
```

Scenario 3: Colocation Improves Resource Utilization

Resource oversubscription model

- Define priority of online and offline pod
- Use allocated but unused resources to run lowpriority task

Unified scheduler for online and offline workloads

- ✓ Support QoS awareness scheduling for online and offline workload.
- ✓ Support rich scheduling policy for online and offline workloads, e.g. topology awareness, drf.

QoS management (enhanced OS & SLO agent):

- Oversubscription resource calculating, reporting, and interference checking etc.
- CPU/Memory/Cache/Network/Disk isolation in OS.

Scenario 4: Cross-Cluster, Global Scheduling of AI and Big Data

Volcano Global (sub-project)

- API server: Resource management portal
- **Scheduler:** Scheduling resources to proper cluster
- Controller Manager: Resource status management and distribution
- **Admission:** Verifying tasks

Features

- Managing batch workload scheduling across multiple clusters in a unified manner
- Construct global resource view and reducing fragments
- Support fair scheduling for multi-tenant
- Support the cost awareness scheduling

Use Case 1: ING Migrates Big Data Platform from Yarn to K8s

- Platform entry-point
- Project management
- Data science in a box (Advanced analytics toolbox)
- Data discovery
- Metadata engine
- SQL+BI toolset
- Dashboarding

About ING

ING (International Netherlands Groups) is a world-leading asset management company with services in more than **40** countries. Its core business is banking, insurance and asset management. ING introduces cloud native infrastructure to create a next-generation, self-service big data analysis platform.

Challenges

- Unified platform scheduling for interactive services, resident services, and offline analysis services
- Fair resource allocation to ensure business SLA and resource sharing for high utilization
- Fair multi-user resource allocation and quick response to high priority tasks

Solutions

- DRF algorithm for fair share resource allocation
- Job based preemption for quick response
- Queue dynamic resource sharing for high utilization
- Spark on Volcano optimization

Benefits

- Migrate workload from Yarn to Kubernetes smoothly
- Cloud native DAP platform serving 17 countries/regions, 1,100 users, with an annual growth rate of 8.1%
- The number of projects running on the DAP platform has increased to 450+

Information reference: https://volcano.sh/en/blog/ing_case-en/

Use Case 2: Unified Management of Distributed Cluster Resources

Abort Platform

An enterprise uses AI and molecular simulation algorithms to create a next-generation micro-scale industrial design and simulation platform for biomedicine, energy, materials, and information science and engineering research. The goal is to achieve high performance computing based on **multi-cloud** and **multi-supercomputing** cluster. The intelligent scheduling of tasks provides users with a "multiple, fast, and economical" computing experience.

Challenges

- The business is distributed in multiple independent clusters from different region and cloud provider, and the operation and maintenance management are complicated.
- Drug discovering workload requires massive computing power, and the single region resources cannot meet the demand.
- Cost sensitive, and requires cost awareness scheduling and fair share scheduling.

Solutions

- Provides a global scheduling based on Volcano to make multi-cluster management more easier.
- Support the scheduling policy such as cluster load balancing, binpacking, cluster affinity to make full use of resources.
- Use Volcano job to support Tensorflow, Pytorch, MPI workload uniformly

Volcano Community

Users

Data from https://volcano.devstats.cncf.io

Join us

Website: https://volcano.sh/en/

Github: https://github.com/volcano-sh/volcano

Slack Channel: https://volcano-sh.slack.com/

Please scan the QR Code above to leave feedback on this session

urope 2023