一. 填空题(本题共9小题,每小题4分,满分36分)

2. 设
$$z = y^2 + f(x^2 - y^2)$$
, 其中 $f(u)$ 可微, 则 $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = _____;$

3. 曲线
$$\begin{cases} x + y + z = 4 \\ z = x^2 + y^2 \end{cases}$$
 在点 (1,1,2) 处的法平面方程是_____;

3. 曲线
$$\left\{z = x^2 + y^2\right\}$$
 在点 $(1,1,2)$ 处的法平面万程是______;

4. 设 C 为曲线 $\left\{x^2 + y^2 + z^2 = 4z, \text{ 则曲线积分 } \oint_{c} x^2 + y^2 + z^2 ds = ______; \right\}$

5. 交换二次积分的次序 $\int_{0}^{2} dx \int_{-\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y) dy = _______;$

6. 三次积分 $\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} dy \int_{0}^{\sqrt{1-x^2-y^2}} (x^2 + y^2 + z^2) dz$ 的值是 _____;

6. 三次积分
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_0^{\sqrt{1-x^2-y^2}} (x^2+y^2+z^2) dz$$
 的值是 ______;

7. 散度 div
$$(x^3 \mathbf{i} + y \cos(y - 2z) \mathbf{j} + \mathbf{k})|_{(2,0,\pi)} = _____;$$

7. 散度
$$\operatorname{div}(x^3\mathbf{i} + y\cos(y - 2z)\mathbf{j} + \mathbf{k})|_{(2,0,\pi)} = _______;$$
8. 已知第二型曲线积分 $\int_A^B (x^4 + 4xy^n) dx + (6x^{n-1}y^2 - 5y^4) dy$ 与路径无关,则 $n = ______;$
9. 平面 $5x + 4y + 3z = 1$ 被椭圆柱面 $4x^2 + 9y^2 = 1$ 所截的有限部分的面积为______.

二. 计算下列各题 (本题共 4 小题,每小题 7 分,满分 28 分)

9. 平面
$$5x + 4y + 3z = 1$$
 被椭圆柱面 $4x^2 + 9y^2 = 1$ 所截的有限部分的面积为_____

10. 设
$$z = z(x, y)$$
 是由方程 $xy + yz + xz = 1$ 所确定的隐函数, $x + y \neq 0$,试求 $\frac{\partial^2 z}{\partial x \partial y}$.

沎

11. 计算二重积分
$$\iint_D (x+y)^2 dxdy$$
, 其中区域 $D = \{(x,y) | 2y \le x^2 + y^2 \le 4y \}$.

12. 设立体 Ω 由曲面 $x^2+y^2-z^2=1$ 及平面 $z=0,z=\sqrt{3}$ 围成,密度 $\rho=1$,求它对 z 轴 的转动惯量.

13. 计算曲面积分
$$\iint_{\Sigma} \frac{dS}{z}$$
, Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 上满足 $0 < h \le z \le R$ 的部分.

三 (14). (本题满分 8 分) 求函数 $f(x,y) = x - x^2 - y^2$ 在区域 $D = \{(x,y) | 2x^2 + y^2 \le 1\}$ 上的最大值和最小值.

四(15)。(本题满分 8 分) 计算 $\iint_S (z+1) dx \wedge dy - y dz \wedge dx$,其中 S 为圆柱面 $x^2 + y^2 = 4$ 被平面 x+z=2 和 z=0 所截出部分的外侧.

五(16). (本题满分 7 分) 计算 $I = \int_C \sqrt{x^2 + y^2} \, \mathrm{d}x + y \left(xy + \ln \left(x + \sqrt{x^2 + y^2} \right) \right) \mathrm{d}y,$ 其中 C 是由点 $B(1+\pi,0)$ 沿曲线 $y = \sin(x-1)$ 到点 A(1,0) 的一段弧.

六(17)(本題满分 7 分)设 $a_1=1, a_2=2$, 当 $n\geq 3$ 时,有 $a_n=a_{n-1}+a_{n-2}$,

- 证明不等式 $0 < \frac{3}{2}a_{n-1} < a_n < 2a_{n-1}, n \ge 4;$ (1)
- (2) 证明级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛,且满足不等式 $2 \le \sum_{n=1}^{\infty} \frac{1}{a_n} \le \frac{5}{2}$.

七(18)(本题满分 6 分)设C是圆周 $x^2 + y^2 = x + y$,取逆时针方向,连续函数f(u) > 0,

证明

$$\oint_C x f(y) dy - \frac{y}{f(x)} dx \ge \pi$$