A THEORY OF THE LEARNABLE (L.G. VALIANT)

Theory Lunch Presentation
Claire Le Goues
05/20/10

HOW DO YOU KNOW THAT?

HOW DO YOU KNOW THAT?

HOW DO YOU KNOW THAT?

HOW DID YOU LEARN THAT?

"A program for performing a task [like recognizing ducks – Ed.] has been acquired by learning if it has been acquired by any means other than explicit programming."

 Present a general framework for reasoning about what is learnable as allowed by algorithmic complexity.

- Present a general framework for reasoning about what is learnable as allowed by algorithmic complexity.
- Introduce the idea of Probably Approximately Learnable (PAL) problems, or problems that are learnable in polynomial time, with high correctness.

- Present a general framework for reasoning about what is learnable as allowed by algorithmic complexity.
- Introduce the idea of Probably Approximately Learnable (PAL) problems, or problems that are learnable in polynomial time, with high correctness.
- Prove 3 classes of programs to be PAL.

Outline

- 1. General framework for defining Learning Machines, or programs that can learn/write/produce other programs of a particular type.
 - A Learning Machine for animal recognition, for example, might learn to write a program that recognizes whether a given animal is a duck.
- 2. Definition of a particular learning protocol.
- 3. Definition of when a program class is reasonably-learnable.
- 4. Definition/proofs of reasonably-learnable program classes.

 Focus on learning skills that involve recognizing whether a concept (boolean predicate) is true for given (boolean) data.

 Focus on learning skills that involve recognizing whether a concept (boolean predicate) is true for given (boolean) data.

 Learn to answer the question: is this animal a duck?

 Focus on learning skills that involve recognizing whether a concept (boolean predicate) is true for given (boolean) data.

 Learn to answer the question: is this animal a duck?

```
walks like a duck = true
   purple = false
   fluffy = true
   yellow = true
   beak = true
   big = false
quacks like a duck=true
   angry = false
...
```

+ Given t boolean variables p₁,..., p_t:

- Given t boolean variables p₁,..., p_t:
- * A vector is an assignment to each of the t variables one of {0,1,*}.
 - * means "undetermined."

- Given t boolean variables p₁,..., p_t:
- * A vector is an assignment to each of the t variables one of {0,1,*}.
 - * means "undetermined."
- Function (concept) \(\mathcal{F} \) maps all vectors to \(\{0,1 \} \).
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

- Given t boolean variables p₁,..., p_t:
- * A vector is an assignment to each of the t variables one of {0,1,*}.
 - * means "undetermined."
- Function (concept) \(\mathcal{F} \) maps all vectors to \(\{0,1 \} \).
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

Low-

ions

+ Given t boo

o₁,...,p_t:

- + A vector is a each of the t variables one of {0,1,*}.
 - * means "undetermined."
- Function (concept) \(\mathcal{F} \) maps all vectors to \(\{0,1 \} \).
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

Low-lion

- + Given t boo
- + A vector is a each of the

0₁,..., p_t:

- Variables: {walks like a duck, beak, purple, ...}
- Vector v: {walks_like_a_duck=0, beak=1, purple=*, ...}
- $+ F(v) = is_a_duck(v) = false$
 - to {U, 1}.
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

- Given t boolean variables p₁,..., p_t:
- + A vector is an assignment to each of the
 - Variables: {purple, walks like a duck, beak, ...}
 - Vector v: {purple=*, walks_like_a_duck=0, beak=1 ...}

Variables determined in v: {walks_like_a_duck, beak}

```
to {0,1}.
```

- Learning machine is learning concepts.
- The variables used in \mathcal{F} are determined in \mathcal{F} .

- Given t boolean variables p₁,..., p_t:
- A vector is an assignment to each of the
 - Variables: {purple, walks like a duck, beak, ...}

Variables determined in is_a_duck: {walks_like_a_duck, quacks_like_a_duck}

- + Fu + F(v) = is_a_duck(v) = false

 to {U,1}.
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

- Given t boolean variables p₁,..., p_t:
 A vector is an assignment to each of the
 t boolean variables p₁,..., p_t
 Vectors assign variables to one of {0,1,*}.
 FI Concept F maps vectors to {0,1}.
 - Learning machine is learning concepts.
 - The variables used in \mathcal{F} are determined in \mathcal{F} .

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- + Concept \mathcal{F} maps vectors to $\{0,1\}$.

```
    t boolean variables p<sub>1</sub>,..., p<sub>t</sub>:
    Vectors assign variables to one of {0,1,*}.
    Concept $\mathcal{F}$ maps vectors to {0,1}.
```

* Assume \mathcal{D} , a probability distribution over all vectors \mathbf{v} which \mathcal{F} evaluates to 1.

```
    t boolean variables p<sub>1</sub>,..., p<sub>t</sub>:
    Vectors assign variables to one of {0,1,*}.
    Concept $\mathcal{F}$ maps vectors to {0,1}.
```

- * Assume \mathcal{D} , a probability distribution over all vectors \mathbf{v} which \mathcal{F} evaluates to 1.
- D is meant to describe the relative natural frequency of positive examples of whatever we're trying to learn.

```
    t boolean variables p<sub>1</sub>,..., p<sub>t</sub>:
    Vectors assign variables to one of {0,1,*}.
    Concept $\mathcal{F}$ maps vectors to {0,1}.
```

- * Assume \mathcal{D} , a probability distribution over all vectors \mathbf{v} which \mathcal{F} evaluates to 1.
- * D is meant to describe the relative natural frequency of positive examples of whatever we're trying to learn.
- * If we have a vector \mathbf{v} that describes a mallard, then $\mathcal{D}(\mathbf{v}) = \text{relative frequency of mallards in the duck population.}$

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- + Concept \mathcal{F} maps vectors to $\{0,1\}$.
 - * Assume \mathcal{D} , a probability distribution over all vectors \mathbf{v} which \mathcal{F} evaluates to 1.
 - * D is meant to describe the relative natural frequency of positive examples of whatever * Probability distribution D over all true vectors v.
 - * If we have a vector \mathbf{v} that describes a mallard, then $\mathcal{D}(\mathbf{v}) = \text{relative frequency of mallards in the universe.}$

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution \mathcal{D} over all true \mathbf{v} .

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution \mathcal{D} over all true \mathbf{v} .

High-level Definitions.

High-level Definitions.

+ A learning machine has two components:

High-level Definitions.

- A learning machine has two components:
 - A learning protocol, or the method by which information is gathered from the world.

High-level Definitions.

- A learning machine has two components:
 - A learning protocol, or the method by which information is gathered from the world.
 - A deduction procedure, or the mechanism for learning new concepts from gathered information.

VALIANT'S LEARNING PROTOCOL

- t boolean variables p₁,...,p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution \mathcal{D} over all true \mathbf{v} .

VALIANT'S LEARNING PROTOCOL

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution \mathcal{D} over all true \mathbf{v} .

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution \mathcal{D} over all true \mathbf{v} .
 - Learner has access to two routines (or teachers):

- t boolean variables p₁,...,p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution *D* over all true v.
 - Learner has access to two routines (or teachers):
 - 1.EXAMPLE: takes no input, returns a vector \mathbf{v} such that $\mathcal{F}(\mathbf{v}) = \mathbf{1}$.
 - * Probability that EXAMPLE returns any particular v is $\mathcal{D}(v)$.

- t boolean variables p₁,..., p_t:
- Vectors assign variables to one of {0,1,*}.
- Concept \mathcal{F} mapping vectors to $\{0,1\}$.
- Probability distribution *D* over all true v.
 - Learner has access to two routines (or teachers):
 - 1.**EXAMPLE**: takes no input, returns a vector \mathbf{v} such that $\mathcal{F}(\mathbf{v}) = 1$.
 - * Probability that EXAMPLE returns any particular v is $\mathcal{D}(v)$.
 - 2.ORACLE: takes as input a vector \mathbf{v} , returns $\mathcal{F}(\mathbf{v})$.

$$\mathcal{F}(v) = is_a duck(v)$$

$$\mathcal{F}(v) = is_a_duck(v)$$

$$\mathcal{F}(v) = is_a duck(v)$$

$$\mathcal{F}(\mathbf{v}) = is_a duck(\mathbf{v})$$

EXAMPLE()

ORACLE(

$$\mathcal{F}$$
 = (a1 V a2) \wedge (a4 V a1)

$$\mathcal{F} = (a1 \lor a2) \land (a4 \lor a1)$$

$$\mathcal{F} = (a1 \lor a2) \land (a4 \lor a1)$$

$$\mathcal{F}$$
 = (a1 V a2) \wedge (a4 V a1)

EXAMPLE()

{a1=1, a2=0, a3=*}

\mathcal{F} = (a1 V a2) \wedge (a4 V a1)			
EXAMPLE()	{a1=1, a2=0, a3=*}		
EXAMPLE()	{a1=0, a2=1, a3=*, a4=1}		

$$\mathcal{F} = (a1 \lor a2) \land (a4 \lor a1)$$

EXAMPLE()

{a1=1, a2=0, a3=*}

EXAMPLE()

{a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1})

\mathcal{F} = (a1 V a2) \wedge (a4 V a1)			
EXAMPLE()	{a1=1, a2=0, a3=*}		
EXAMPLE()	{a1=0, a2=1, a3=*, a4=1}		
ORACLE({a1=0,a2=0,a3=*,a4=1})		FALSE	

A class of problems is Probably Approximately
 Learnable if instances of the problem can be learned by a deduction algorithm that:

- A class of problems is Probably Approximately
 Learnable if instances of the problem can be learned by a deduction algorithm that:
 - Uses this protocol.

- A class of problems is Probably Approximately
 Learnable if instances of the problem can be learned by a deduction algorithm that:
 - Uses this protocol.
 - Runs in reasonable time: polynomial by adjustable parameter h, size of learned program, and number of variables determined in the learned formula.

- A class of problems is Probably Approximately
 Learnable if instances of the problem can be learned by a deduction algorithm that:
 - Uses this protocol.
 - Runs in reasonable time: polynomial by adjustable parameter h, size of learned program, and number of variables determined in the learned formula.
 - Produces a program that says something is false when it's true with probability no greater than (1-h-1); never says that something is true when it's false.

We are trying to make a program (learning machine)
that can learn, in polynomial time, another program
(the learned program) that recognizes whether a
boolean formula (concept) is true for any set of
boolean data.

- We are trying to make a program (learning machine)
 that can learn, in polynomial time, another program
 (the learned program) that recognizes whether a
 boolean formula (concept) is true for any set of
 boolean data.
- The learning program has access to a function that will give it a bunch of examples, as well as a function that will check its work.

- We are trying to make a program (learning machine)
 that can learn, in polynomial time, another program
 (the learned program) that recognizes whether a
 boolean formula (concept) is true for any set of
 boolean data.
- The learning program has access to a function that will give it a bunch of examples, as well as a function that will check its work.
- * The learning machine can learn a program that is sometimes wrong, so long as the probability that the learned program is ever wrong is adjustable.

- 1. General framework for defining Learning Machines, or programs that can learn/write/produce other programs of a particular type.
 - A Learning Machine for animal recognition, for example, might learn to write a program that recognizes whether a given animal is a duck.
- 2. Definition of a particular learning protocol.
- 3. Definition of when a program class is reasonably-learnable.
- 4. Definition/proofs of reasonably-learnable program classes.

- 1. General framework for defining Learning Machines, or programs that can learn/write/produce other programs of a particular type.
 - A Learning Machine for animal recognition, for example, might learn to write a program that recognizes whether a given animal is a duck.
- 2. Definition of a particular learning protocol.
- 3. Definition of when a program class is reasonably-learnable.
- 4. Definition/proofs of reasonably-learnable program classes.

1. General framework for defining Learning Machines, The paper proves three different program classes probably-approximately-learnable.

- 1. General framework for defining Learning Machines,
 - The paper proves three different program classes probably-approximately-learnable.
 - * I am not going to walk through the proofs; they are by construction of deduction algorithms that can learn the given programs and proofs of their bounds.
- 2
- 3.
- 4.

Outline

- 1. General framework for defining Learning Machines,
 - + The paper proves three different program classes probably-approximately-learnable.
 - * I am not going to walk through the proofs; they are by construction of deduction algorithms that can learn the given programs and proofs of their bounds.
- * I am going to give the upper bounds of the algorithms. This requires a definition of a function.
- 4.

Outline

- 1. General framework for defining Learning Machines,
 - + The paper proves three different program classes probably-approximately-learnable.
 - * I am not going to walk through the proofs; they are by construction of deduction algorithms that can learn the given programs and proofs of their bounds.
- I am going to give the upper bounds of the algorithms. This requires a definition of a function.
 - The proof of that function's upper bound is the major lemma in all three proofs, so I will outline it.
- 4.

Outline

- 1. General framework for defining Learning Machines,
 - + The paper proves three different program classes probably-approximately-learnable.
 - * I am not going to walk through the proofs; they are by construction of deduction algorithms that can learn the given programs and proofs of their bounds.
- 2. I am going to give the upper bounds of the algorithms. This requires a definition of a function.
 - The proof of that function's upper bound is the major lemma in all three proofs, so I will outline it.
- 4. This means the next 3 slides are mathy.

A Combinatorial Bound

A Combinatorial Bound

L(h,s) is a function defined for all real numbers h >
 1 and integers s > 1.

A Combinatorial Bound

- L(h,s) is a function defined for all real numbers h >
 1 and integers s > 1.
- + Returns smallest integer n such that in n independent Bernoulli trials, each with probability at least h^{-1} of success, P(< s successes) $< h^{-1}$
 - Bernoulli trial: an experiment whose outcomes are either "success" or "failure"; randomly distributed by some probability function.

$$L(h,S) \leq 2h(S + \log_e h)$$

$$L(h,S) \leq 2h(S + \log_e h)$$

Proof by algebraic substitution of well-known inequalities:

$$L(h,S) \leq 2h(S + \log_e h)$$

Proof by algebraic substitution of well-known inequalities:

$$1. \forall x > 0, (1 + x^{-1})^x < e$$

$$L(h,S) \leq 2h(S + \log_e h)$$

Proof by algebraic substitution of well-known inequalities:

$$1. \forall x > 0, (1 + x^{-1})^x < e$$

$$2. \forall x > 0, (1 - x^{-1})^{x} < e^{-1}$$

$$L(h,S) \leq 2h(S + \log_e h)$$

Proof by algebraic substitution of well-known inequalities:

$$1. \forall x > 0, (1 + x^{-1})^x < e$$

$$2. \forall x > 0, (1 - x^{-1})^x < e^{-1}$$

3. In m independent trials, each with success probability $\geq p$:

$$\mathbf{P}(\text{successes at most } \mathbf{k}) \leq \left(\frac{\mathbf{m} - \mathbf{mp}}{\mathbf{m} - \mathbf{k}}\right)^{\mathbf{m} - \mathbf{k}} \left(\frac{\mathbf{mp}}{\mathbf{k}}\right)^{\mathbf{k}}$$

+ L(h, s) is basically linear in both h and s.

- + L(h, S) is basically linear in both h and S.
- Applies to using EXAMPLEs and ORACLE to determine vectors.

- + L(h, S) is basically linear in both h and S.
- Applies to using EXAMPLEs and ORACLE to determine vectors.
- * An algorithm can approximate the set of determined variables in natural EXAMPLEs of \mathcal{F} in runtime independent of *total* number of variables in the world.

- + L(h, S) is basically linear in both h and S.
- Applies to using EXAMPLEs and ORACLE to determine vectors.
- * An algorithm can approximate the set of determined variables in natural EXAMPLEs of \mathcal{F} in runtime independent of *total* number of variables in the world.
 - Dependent only the number of variables that are determined in \mathcal{F} .

Remaining Question

Given that learning protocol, what classes of tasks are learnable in polynomial time?

1. *k*-CNF expressions

- 1. k-CNF expressions
- 2. Monotone DNF expressions

- 1. *k*-CNF expressions
- 2. Monotone DNF expressions
- 3. µ-expressions

k–CNF Expressions

k-CNF Expressions

Conjunctive Normal form (CNF):

$$(a_1 \ \lor \ a_2 \ \lor \ a_3) \ \land \ (a_4 \ \lor \ a_1) \ ...$$

k-CNF Expressions

Conjunctive Normal form (CNF):

$$(a_1 \lor a_2 \lor a_3) \land (a_4 \lor a_1) ...$$

 * k-CNF expression: a CNF expression where each internal clause is composed of ≤ k literals.

k-CNF Expressions

Conjunctive Normal form (CNF):

```
(a_1 \lor a_2 \lor a_3) \land (a_4 \lor a_1) \dots
```

- * k-CNF expression: a CNF expression where each internal clause is composed of ≤ k literals.
- * Learnable with an algorithm that does not call ORACLE, and calls EXAMPLE $\leq L(h, 2t^{k+1})$ times. (t is the number of variables)

Disjunctive Normal Form (DNF):

$$(a_1 \wedge a_2 \wedge a_3) \vee (a_1 \wedge a_4) \dots$$

Disjunctive Normal Form (DNF):

$$(a_1 \wedge a_2 \wedge a_3) \vee (a_1 \wedge a_4) \dots$$

 An expression is monotone if it contains no negated literals.

Disjunctive Normal Form (DNF):

```
(a_1 \wedge a_2 \wedge a_3) \vee (a_1 \wedge a_4) \dots
```

- An expression is monotone if it contains no negated literals.
- Learnable with an algorithm that calls
 EXAMPLES L = L(h,d) times and ORACLES
 d*t times, where d is the degree of the
 expression and t is the number of variables.

+ General expression over $\{p_1, ..., p_t\}$ defined recursively $(1 \le i \le t)$:

```
f := p_i \mid \sim p_i \mid f_1 \land f_2 \mid f_1 \lor f_2
```

General expression over {p₁,...,p_t} defined recursively (1 ≤ i ≤ t):

$$f := p_i \mid \sim p_i \mid f_1 \land f_2 \mid f_1 \lor f_2$$

A μ-expression is an expression in which each
 p appears at most once.

General expression over {p₁,...,p_t} defined recursively (1 ≤ i ≤ t):

```
f := p_i \mid \sim p_i \mid f_1 \land f_2 \mid f_1 \lor f_2
```

- A μ-expression is an expression in which each
 p appears at most once.
- Learnable with an exactly correct algorithm that calls two slightly more powerful ORACLE functions O(t³) times total.

 Learnability theory is concerned with what programs can be learned automatically.

- Learnability theory is concerned with what programs can be learned automatically.
- We should reason about what is programmatically learnable in the same way we reason about what is computable.

- Learnability theory is concerned with what programs can be learned automatically.
- We should reason about what is programmatically learnable in the same way we reason about what is computable.
- A class of programs is Probably Approximately Learnable when, using a particular type of teacher, a given algorithm can learn a program that can recognize instances of that class with a certain probability.

- Learnability theory is concerned with what programs can be learned automatically.
- We should reason about what is programmatically learnable in the same way we reason about what is computable.
- * A class of programs is Probably Approximately Learnable when, using a particular type of teacher, a given algorithm can learn a program that can recognize instances of that class with a certain probability.
- 3 examples of such learnable program types are k-CNF expressions, monotone DNF expressions, and μexpressions.

Interesting Concluding Questions

- What else is learnable by these definitions?
- Is the definition of "learnable" reasonable?
 - How powerful should the teachers be?
 - What about if we use negative in addition to positive examples?
- + How do humans learn?

* Assume we have urn that contains many marbles of s different types. We want to "learn" the different types of marbles by taking a small random sample x, of size sufficient that, with high probability, it contains at least 99% of s marble type representatives.

- * Assume we have urn that contains many marbles of s different types. We want to "learn" the different types of marbles by taking a small random sample x, of size sufficient that, with high probability, it contains at least 99% of s marble type representatives.
- Definition of L(h, S) implies:

```
|X| = L(100,S) \Rightarrow P(succeeded overall) > 99%
```

- * Assume we have urn that contains many marbles of s different types. We want to "learn" the different types of marbles by taking a small random sample x, of size sufficient that, with high probability, it contains at least 99% of s marble type representatives.
- Definition of L(h, S) implies:

```
|X| = L(100,S) \Rightarrow P(succeeded overall) > 99%
```

* "Success" for each trial is defined as picking a marble we haven't picked before. Success clearly depends on previous choices, but the probability of each success will always be at least 1%, independent of previous choices.