

Data Cleansing

Dr Pierre Le Bras

About Me

2011 Started to study Software Engineering

2013 Moved to Edinburgh to study Computer Science

2015 Started my PhD in Data Visualisation and Analytics

2018 Worked as a Research Associate

2021 Lecturer in Software Engineering and Data Science

Data Visualisation

Data Visualisation

Data Visualisation

Processing Data

Processing Data

Why do you want Clean Data?

Why Investing in Data?

Data is used by organisations or individuals seeking informed decision making

From Data to Decisions

From Data to Decisions

From Data to Decisions

Impacts of Dirty Data

- Bad data lead to inaccurate results and false insights
- ... which lead to the wrong decisions being taken
- ... which can have serious consequences

- For example:
 - Wrong census data and public funds:
 <u>clickondetroit.com/news/michigan/2021/10/15/census-analysis-shows-black-americans-may-have-been-significantly-undercounted/</u>

Human Error

- At an individual level
 - Incorrect or missed entry
 - Mistake when copying data
- At an organisational level
 - Poor data management policies
 - Poor communication between services
 - Poor documentation

System Failures

- Hardware and/or software malfunction
 - Data file corruption
 - Loss of data

Collection Methods

- Collecting and merging data from multiple sources
 - With likely different formats
- Unforeseen exceptions during automatic collections
 - E.g., web crawlers and weird HTML structures

What is Clean Data?

Dirty Data can be...

- Duplicated
- Out of date
- Inconsistent
- Incorrect
- Invalid

- Unformatted
- Non-uniform
- Inaccurate
- Missing
- Incomplete

5 Rules to Data Quality

- Validity
- Accuracy
- Completeness
- Consistency
- Uniformity

Validity

How much the data conforms to a set of rules

Plays at the individual entries and fields level

	Field 1	Field 2	Field 3	Field 4	
Entry 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Entry 2		\checkmark			
Entry 3		\checkmark		\checkmark	\checkmark
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Validity

- Each field has correct types (String, Number, Date, Boolean, ...)
- Numbers and dates must fall within the right ranges
- Discrete values must be consistent
 - E.g. a female gender value must be "Female" or "F" across all entries but not both
- Discrete values must be from a finite set
 - E.g. UK regions can only be "England", "Wales", "Scotland" and "Northern Ireland"

Validity

- Text values must have the right pattern
 - E.g. phone numbers must have a "XXXX-XXXX" pattern
- Each entry should be unique
 - A field or combination of fields must be defined as unique key
- Mandatory fields are not empty *
- Related fields are consistent *
 - E.g. a birth date and age fields should be coherent (age = current date birth date)

^{*} These requirements fit with other data quality principles

Accuracy

How well the data fits with the truth

- Difficult to achieve, requires an external "gold standard" dataset
- Accurate data can become inaccurate (out-of-date)

Completeness

How little required data is missing

 Difficult to fix, "Missing", "Unknown" or "NA" value might be needed → Missing data is still data

Consistency

How much the data values agree or are coherent

To fix: check which is most up-to-date, which source is most reliable, etc.

Uniformity

How units of measures are similar across fields

\$ m	ft			
	£	£	m	m
\$	\$ m	\$ m ft £	\$ m ft £ £	

Other Data Quality Aspects

- Comparability
- Relevance
- Credibility
- Currency (up-to-date)
- Confidentiality

http://www.dama-nl.org/data_quality/

How to Clean Data?

Step 1 - Inspection

- Exploring the data and detecting unexpected, incorrect and/or inconsistent entries or fields.
- Data Profiling:
 - Are values corresponding to their field's format and pattern specification?
 - Are there missing fields?
 - Are the mean, median, range, sum, etc. coherent?
 - Is the distribution of values coherent?
 - Are there outliers?
 - Is there duplicate entries?
- Visualisation

- Clear irrelevant data
- Handle duplicates
- Handle missing values
- Convert types
- Fix the content
- Fix the format
- Scale and/or normalise numbers

Drop irrelevant data: remove fields or entries which are not needed for our analysis

- Column-wise: fields which provide information outside of our task domain, e.g., phone numbers in an analysis of student grades
- Row-wise: entries with attributes outside of our task domain, e.g., postgraduate students in an analysis of undergraduate student grades
- Only delete data if you are sure about it!
 - You might need it later
 - It might make some interesting correlation analysis

Remove duplicates

- Column-wise: a field repeating another field
- Row-wise: duplicate entries
 - Identify a field or combination of fields as unique keys
 - Flag and remove duplicates based on the keys

Check and correct missing values

- Drop: if a field or entry is mostly empty, it might be worth removing
- Complete: some values can be filled, using another dataset, doing manual search, etc.
- Infer: some values may be inferred from other observation (e.g., with linear regression)
- Flag: missing data can be data!
 - Numerical data can be set to absurd values: -1 or 0
 - Categorical data can be set to a new category: "missing" or "NA"
 - "missing", "NA" or "unknown" have different meaning

Convert values to their correct types

- Dates should be date objects (Unix timestamp)
- Numerical data should be numbers
- Categorical data can be strings or numbers
- Text data should be strings
- Boolean values (true/false, yes/no) should be Booleans

Fix the content: Correct syntax, mistakes and conversion errors

- Strings: trim whitespaces, fix typos
 - Easy on categorical data
 - Difficult with free text data (tools can help)
- Numbers: fix errors (from your inspection)
 - Can use the same approaches as with missing data (drop / complete / infer / flag)

Fix the format: Standardize the values across your dataset

- Strings:
 - Patterns (e.g., XXXX-XXX-XXXX for phone numbers)
 - Format (e.g., lower case)
- Numbers:
 - Units (e.g., distances, weights, currencies)
 - Format (e.g., zero-padding, decimal digits)
- Date:
 - Format (e.g. YYYY-MM-DD or DD/MM/YY)
- Categories:
 - Values (e.g. "F" or "female", "Sat." or "saturday")

Scale and/or normalise number ranges

- Scaling
 - Making your numbers comparable, on the same scale
- Normalisation
 - Making your number distribution normally distributed (for later statistical analysis)

Step 3 - Verification

Re-inspect the data to make sure of its correct cleaning

Correct mistakes (manually) if needed

Step 4 - Report

Reporting your cleansing is important

It helps measure data quality, highlight issues and identify common problems

- It can inform future data practices
 - Collection (e.g., survey question often unanswered, web crawler cropping text, etc.)
 - Storage (e.g., mismatch between datasets)

Data Cleansing Tools

Programming

Software

Software

- Free
- Open Source
- Cross Platform
- Design for Cleansing
- Powerful

Next...

• Questions?

Break

Live demonstration