Information Security CS3002

Lecture 2 29th August 2023

Dr. Rana Asif Rehman

Email: r.asif@nu.edu.pk

Old Cryptography Methods

Some Basic Terminology

- Plaintext original message
- Ciphertext coded message
- Encryption algorithm algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext

Some Basic Terminology (cont.)

- Decryption algorithm algorithm for transforming ciphertext to plaintext
- DeCipher converting ciphertext to plaintext.
- Cryptography Study Of Encryption Principles/Methods
- Cryptanalysis (Codebreaking) Study Of Principles/ Methods Of Deciphering Ciphertext Without Knowing Key
- Cryptology Field Of Both Cryptography And Cryptanalysis

Classification of the Field of Cryptology

Adopted with thanks from: Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Symmetric Encryption

- Or conventional / private-key / single-key
- Sender and recipient share a common key
- All classical encryption algorithms are privatekey
- Was only type prior to invention of public-key in 1970's
- And by far most widely used

Simplified Model of Symmetric Encryption

Requirements

- Two requirements for secure use of symmetric encryption:
 - A strong encryption algorithm
 - The opponent should be unable to decrypt ciphertext or discover the key even if he or she is in possession of a number of ciphertexts together with the plaintext that produced each ciphertext.
 - A secret key known only to sender / receiver
 - Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the key secure.

Model of Symmetric Cryptosystem

Model of Symmetric Cryptosystem (cont.)

With the message X and the encryption key K as input, the encryption algorithm forms the ciphertext $Y = [Y_1, Y_2, \dots, Y_N]$. We can write this as

$$Y = E(K, X)$$

The intended receiver, in possession of the key, is able to invert the transformation:

$$X = D(K, Y)$$

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or both X and K.

Cryptography

- Characterize cryptographic system by:
 - Type of encryption operations used
 - Substitution / transposition / both (product systems)
 - Number of keys used
 - Single-key or private / two-key or public
 - Way in which plaintext is processed
 - Block / Stream

Turing's work during the Second World War was so crucial that Winston Churchill acknowledged his role, saying that Turing made the single biggest contribution to Allied victory.

http://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code

Classical Substitution Ciphers

- Where letters of plaintext are replaced by other letters or by numbers or symbols.
- Or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns.

Classical Symmetric Ciphers

- Classical Substitution Ciphers
 - Caesar Cipher
 - Monoalphabetic Cipher
 - Playfair Cipher
 - Hill Ciphers
 - Polyalphabetic Ciphers
 - Vigenere Cipher
 - Vernam Cipher
 - One-Time Pad

1. Caesar Cipher

- Earliest known substitution cipher.
- First attested use in military affairs.
- Replaces each letter by 3rd letter on
- Example:

```
meet me after the toga party phhw ph diwhu wkh wrjd sduwb
```

Caesar Cipher (cont.)

• Can define transformation as:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

• Then have caesar cipher as:

a	b	c	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	0	р	q	r	S	t	u	v	w	х	v	z

$$c = E(k, p) = (p + k) \mod (26)$$

$$p = D(k, c) = (c - k) \mod (26)$$

Caesar Cipher (cont.)

Cryptanalysis of Caesar Cipher

- Only have 25 possible Keys
 - A maps to B,C,..Z
- Could simply try each in turn
- A brute force search
 - 1. The encryption and decryption algorithms are known.
 - **2.** There are only 25 keys to try.
 - **3.** The language of the plaintext is known and easily recognizable.
 - e.g. Break ciphertext "GCUA VQ DTGCM"

All	
CONTROL C	PHHW PH DIWHU WKH WRJD SDUWB
KEY 1	oggy og chygt vjg vgic retva
2	nffu nf boufs uif uphb obsuz
3	meet me after the toga party
4	ldds ld zesdq sgd snfz ozqsx
5	kccr kc ydrcp rfc rmey nyprw
6	jbbq jb xcqbo qeb qldx mxoqv
:7	iaap ia wbpan pda pkcw lwnpu
8	hzzo hz vaozm ocz ojby kymot
9	gyyn gy uznyl nby niau julns
10	fxxm fx tymxk max mhzt itkmr
11	ewwl ew sxlwj lzw lgys hsjlq
12	dvvk dv rwkvi kyv kfxr grikp
13	cuuj cu qvjuh jxu jewą fąhjo
14	btti bt puitg iwt idvp epgin
15	assh as othsf hvs houo dofhm
16	zrrg zr nsgre gur gbtn cnegl
17	yqqf yq mrfqd ftq fasm bmdfk
18	xppe xp lqepc esp ezrl alcej
19	wood wo kpdob dro dyqk zkbdi
20	vnne vn jocna eqn cxpj yjach
21	ummb um inbmz bpm bwoi xizbg
22	tlla tl hmaly aol avnh whyaf
2.3	skkz sk glzkx znk zumg vgxze
24	rjjy rj fkyjw ymj ytlf ufwyd
25	qiix qi ejxiv xli xske tevxc

Brute Force Feasibility

- In most networking situations, we can assume that the algorithms are known.
- What generally makes brute-force cryptanalysis impractical is the use of an algorithm that employs a large number of keys.
 - For example, the triple DES algorithm makes use of a 168-bit key, giving a key space of 2^{168} or greater than 3.7 * 10^{50} possible keys.

2. Monoalphabetic Cipher

- With only 25 possible keys, the Caesar cipher is far from secure.
- Rather than just shifting the alphabet could shuffle (jumble) the letters arbitrarily [permutation]
- Each plaintext letter maps to a different random ciphertext letter
- Hence key is 26 letters long

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: IFWEWISHTOREPLACELETTERS

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- Now have a total of $26! = 4 \times 10^{26}$ keys
- With so many keys, might think is secure
- But would be !!!WRONG!!!
- Problem is language characteristics

Language Redundancy and Cryptanalysis

- Human languages are **redundant** e.g. "Th Ird s m shphrd shll nt wnt" letters are not equally commonly used.
- In English E is by far the most common letter
 - Followed by T,R,N,I,O,A,S
- Other letters like Z,J,K,Q,X are fairly rare
- Have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- Key concept monoalphabetic substitution ciphers do not change relative letter frequencies.
- Calculate letter frequencies for ciphertext.
- Compare counts/plots against known values.
- If caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- For monoalphabetic must identify each letter
 - tables of common double/triple letters help

Language Redundancy and Cryptanalysis

Cipher Text

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

P 13.33	H 5.83	F 3.33	B 1.67	C 0.00
Z 11.67	D 5.00	W 3.33	G 1.67	K 0.00
S 8.33	E 5.00	Q 2.50	Y 1.67	L 0.00
U 8.33	V 4.17	T 2.50	I 0.83	N 0.00
O 7.50	X 4.17	A 1.67	J 0.83	R 0.00
M 6.67				

Example Cryptanalysis

• given cipher text:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

e e e tat e the t

Example Cryptanalysis (cont.)

Proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Homophonic Substitution Ciphers

- Monoalphabetic ciphers are easy to break because they reflect the frequency data of the original alphabet.
- Smooth out frequency distribution by assigning multiple ciphertext codes (numbers) to each letter in the plaintext alphabet.
- If the number of symbols assigned to each letter is proportional to the relative frequency of that letter, then single-letter frequency information is completely obliterated.
 - Multiple letter patterns can still survive.
- To encrypt a character m, pick one of the codes at random

Homophonic Substitution Ciphers - Example

Map letters to codes 00, ..., 99

```
Letter Homophones

A 17 19 34 41 56 60 67 83

I 08 22 53 65 88 90

L 03 44 76

N 02 09 15 27 32 40 59

O 01 11 23 28 42 54 70 80

P 33 91

T 05 10 20 29 45 58 64 78 99

encipher P L A I N P I L O T
91 44 56 65 59 33 08 76 28 78
```