OEMA 2

2.1 Δύο σφαιρίδια $Σ_1$ και $Σ_2$ βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο σχήμα), είναι δεμένα με λεπτά μη εκτατά νήματα ίδιου μήκους R από ακλόνητα σημεία με αποτέλεσμα να εκτελούν ομαλή κυκλική κίνηση. Έστω ότι T_1 είναι η περίοδος της ομαλής κυκλικής κίνησης του σφαιριδίου $Σ_1$ και T_2 η περίοδος της ομαλής κυκλικής κίνησης του σφαιριδίου $Σ_2$, οι οποίες ικανοποιούν τη σχέση $T_1 = 2 \cdot T_2$.

2.1.Α. Να μεταφέρετε στο φύλλο απαντήσεων το σχήμα και να σχεδιάσετε τα διανύσματα της γραμμικής ταχύτητας και της κεντρομόλου επιτάχυνσης σε κάθε σφαιρίδιο.

Μονάδες 2

Αν α_1 είναι το μέτρο της κεντρομόλου επιτάχυνσης του σφαιριδίου Σ_1 και α_2 είναι το μέτρο της κεντρομόλου επιτάχυνσης του σφαιριδίου Σ_2 , η σχέση που τα συνδέει, είναι :

(a)
$$\alpha_2 = 2 \cdot \alpha_1$$
 , (b) $\alpha_2 = 4 \cdot \alpha_1$, (v) $\alpha_2 = \frac{1}{4} \cdot \alpha_1$

2.1.Β. Να επιλέξετε την ορθή πρόταση.

Μονάδες 3

2.1.Γ. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 7

2.2. Ένα μπαλάκι μάζας m προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου v_1 και αναπηδά κατακόρυφα με ταχύτητα μέτρου v_2 (Ισχύει $v_2 < v_1$). Η χρονική διάρκεια της πρόσκρουσης είναι Δt . Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι:

(a)
$$N = \frac{m(v_1 + v_2)}{\Delta t} + mg$$
 , (b) $N = \frac{m(v_1 - v_2)}{\Delta t} + mg$, (v) $N = \frac{m(v_1 + v_2)}{\Delta t} - mg$

2.2.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9