

СИСТЕМЫ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ

Лекция 4

ПЛАН ЛЕКЦИИ

- Функциональные зависимости
 - Декомпозиция без потерь
 - Вторая нормальная форма
 - Третья нормальная форма
 - Нормальная форма Бойса-Кодда
 - Четвертая нормальная форма
 - Пятая нормальная форма

ФУНКЦИОНАЛЬНЫЕ ЗАВИСИМОСТИ

ОБЩИЕ ОПРЕДЕЛЕНИЯ

Понятие функциональной зависимости лежит в основе базовых свойств реляционных баз данных и используется при проектировании на основе нормализации.

R – отношение,X, Y – подмножества заголовка R(составные атрибуты тоже могут входить).

В значении переменной отношения **R** *атрибут* **Y** *функционально зависит от атрибута* **X** в том и только в том случае, если каждому значению **X** соответствует в точности одно значение **Y**.

В этом случае говорят также, что атрибут X функционально определяет атрибут Y (X является детерминантом (определителем) для Y, а Y является зависимым от X). Будем обозначать это как $R.X \rightarrow R.Y.$

Функциональная зависимость (functional dependency FD) $X \rightarrow Y$

Детерминант

Для примера будем использовать отношение СЛУЖАЩИЕ_ПРОЕКТЫ {СЛУ_НОМ, СЛУ_ИМЯ, СЛУ_ЗАРП, ПРО_НОМ, ПРОЕКТ_РУК}. Очевидно, что если СЛУ_НОМ является первичным ключом отношения СЛУЖАЩИЕ, то для этого отношения справедлива функциональная зависимость (Functional Dependency — FD) СЛУ_НОМ \rightarrow СЛУ_ИМЯ.

ПРИМЕРЫ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ

CUA_HOW	СЛУ_ИМЯ	СЛУ_ЗАРП	HDO_HOM	HPOEKT_PYK
2934	Иванов	22400.00	1	Иванов
2935	Петров	29600.00	1	Иванов
2936	Сидоров	18000.00	1	Иванов
2937	Федоров	20000.00	1	Иванов
2938	Иванова	22000.00	1	Иванов
2939	Сидоренко	18400.00	2	Иваненко
2940	Федоренко	20400.00	2	Иваненко
2941	Иваненко	22600.00	2	Иваненко


```
СЛУ_НОМ\longrightarrowСЛУ_ИМЯ

СЛУ_НОМ\longrightarrowСЛУ_ЗАРП

СЛУ_НОМ\longrightarrowПРО_НОМ

СЛУ_НОМ\longrightarrowПРОЕКТ_РУК

{СЛУ_НОМ, СЛУ_ИМЯ}\longrightarrowСЛУ_ЗАРП

{СЛУ_НОМ, СЛУ_ИМЯ}\longrightarrowПРО_НОМ

{СЛУ_НОМ, СЛУ_ИМЯ}\longrightarrowПРО_НОМ

ПРО_НОМ\longrightarrowПРОЕКТ_РУК и т.д.
```

```
СЛУ_ИМЯ—→СЛУ_НОМ
СЛУ_ИМЯ—→СЛУ_ЗАРП
СЛУ_ИМЯ—→ПРО_НОМ и т.д.
```

Поскольку имена всех служащих различны

Функциональных зависимостей может быть много, и они трактуются как ограничения целостности, поэтому нужно свести к минимуму множество зависимостей отношения, из которых следуют остальные.

Дичь

FD A → В называется *тривиальной*, если В ⊆ A (т. е. множество атрибутов A включает множество В или совпадает с множеством В). Не являются ограничениями целостности.

ЗАМЫКАНИЕ МНОЖЕСТВА FD

Замыканием множества FD S является множество FD S⁺, включающее все FD, логически выводимые из FD множества S.

СЛУ_НОМ
$$\rightarrow$$
 {СЛУ_ЗАРП, ОТД_НОМ} СЛУ_НОМ \rightarrow СЛУ_ЗАРП СЛУ_НОМ \rightarrow ОТД_НОМ

Это пример вывода из FD других FD

FD A \rightarrow C называется *транзитивной*, если существует такой атрибут B, что имеются функциональные зависимости A \rightarrow B и B \rightarrow C и отсутствует функциональная зависимость C \rightarrow A.

В отношении СЛУЖАЩИЕ_ПРОЕКТЫ имеется также пара FD СЛУ_НОМ \rightarrow ОТД_НОМ и ОТД_НОМ \rightarrow ПРОЕКТ_РУК. Из них выводится FD СЛУ_НОМ \rightarrow ПРОЕКТ_РУК. Заметим, что FD вида СЛУ_НОМ \rightarrow ПРОЕКТ_РУК называются транзитивными, поскольку ПРОЕКТ_РУК зависит от СЛУ_НОМ «транзитивно», через ПРО_НОМ.

Подход к решению проблемы поиска замыкания S⁺ множества FD S впервые предложил **Вильям Армстронг**. Пусть A, B и C являются (в общем случае, составными) атрибутами отношения *R*. Множества A, B и C могут иметь непустое пересечение. Для краткости будем обозначать через AB A UNION B. Тогда:

Аксиомы Армстронга (не аксиомы, потому что выводятся).

- 1. если В⊆А, то А→В (рефлексивность);
- 2. если А→В, то АС→ВС (пополнение);
- 3. если $A \rightarrow B$ и $B \rightarrow C$, то $A \rightarrow C$ (транзитивность).

Истинность первой аксиомы Армстронга следует из того, что при В ⊆ А FD A → В является тривиальной.

5 ПРАВИЛ ДЕЙТА

Можно доказать, что система правил вывода Армстронга *полна* и *совершенна* (sound and complete) в том смысле, что для данного множества FD S любая FD, потенциально выводимая из S, может быть выведена на основе аксиом Армстронга, и применение этих аксиом не может привести к выводу лишней FD.

Дейт по практическим соображениям предложил расширение аксиом Армстронга 5ю правилами:

- А→А (самодетерминированность) прямо следует из правила (1);
- если А→ВС, то А→В и А→С (декомпозиция) из правила (1) следует, что ВС→В; по правилу (3) А→В; аналогично, из ВС→С и правила (3) следует А→С;
- 6. если А→В и А→С, то А→ВС (объединение) из правила (2) следует, что А→АВ и АВ→ВС; из правила (3) следует, что А→ВС;
- 7. если $A \rightarrow B$ и $C \rightarrow D$, то $AC \rightarrow BD$ (композиция) из правила (2) следует, что $AC \rightarrow BC$ и $BC \rightarrow BD$; из правила (3) следует, что $AC \rightarrow BD$;
- 8. если А→ВС и В→D, то А→ВСD (накопление) из правила (2) следует, что ВС→ВСD; из правила (3) следует, что А→ВСD.

ЗАМЫКАНИЕ АТРИБУТОВ НАД S (1/2)

Определение

Пусть заданы отношение R, множество Z атрибутов этого отношения (подмножество заголовка R, или составной атрибут R) и некоторое множество FD S, выполняемых для R. Тогда замыканием Z над S называется наибольшее множество Z^+ таких атрибутов Y отношения R, что FD $Z\longrightarrow Y$ входит в S^+ .

Алгоритм вычисления замыкания атрибутов над S

```
K := 0; Z[0] := Z;
DO
K := K+1;
Z[K] := Z[K-1];
FOR EACH FD A \rightarrow B IN S DO
IF A \subseteq Z[K] \text{ THEN } Z[K] := (Z[K] \text{ UNION } B) \text{ END DO};
UNTIL Z[K] = Z[K-1];
Z^* := Z[K];
```

ЗАМЫКАНИЕ АТРИБУТОВ НАД S (2/2)

Пример построения замыкания атрибутов над S

Пусть для примера имеется отношение с заголовком {A, B, C, D, E, F} и заданным множеством FD S = {A \rightarrow D, AB \rightarrow E, BF \rightarrow E, CD \rightarrow F, E \rightarrow C}. Пусть требуется найти {AE}+ над S. На первом проходе тела цикла DO Z[1] равно AE. В теле цикла FOR EACH будут найдены FD A \rightarrow D и E \rightarrow C, и в конце цикла Z[1] станет равным ACDE. На втором проходе тела цикла DO при Z[2], равном ACDE, в теле цикла FOR EACH будет найдена FD CD \rightarrow F, и в конце цикла Z[2] станет равным ACDEF. Следующий проход тела цикла DO не изменит Z[3], и Z+ ({AE}+) будет равно ACDEF.

Алгоритм построения замыкания множества атрибутов Z над заданным множеством FD S помогает легко установить, входит ли заданная FD Z → В в замыкание S⁺. Очевидно, что необходимым и достаточным условием для этого является В ⊆ Z⁺, т. е. вхождение составного атрибута В в замыкание Z

Суперключ

Суперключом отношения R называется любое подмножество K заголовка R, включающее, по меньшей мере, хотя бы один возможный ключ R.

Одно из следствий этого определения состоит в том, что подмножество к заголовка отношения R является суперключом тогда и только тогда, когда для любого атрибута A (возможно, составного) заголовка отношения R выполняется FD $K \longrightarrow A$. В терминах замыкания множества атрибутов K является суперключом тогда и только тогда, когда K^+ совпадает с заголовком R.

МИНИМАЛЬНОЕ ПОКРЫТИЕ МНОЖЕСТВА ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ

Определение

Множество FD S2 называется *покрытием множества FD* S1, если любая FD, выводимая из S1, выводится также из S2.

Легко заметить, что 52 является покрытием 51 тогда и только тогда, когда 51⁺⊆52⁺. Два множества FD 51 и 52 называются эквивалентными, если каждое из них является покрытием другого, т. е. 51⁺ = 52⁺.

Множество FD S называется минимальным в том

и только в том случае, когда удовлетворяет следующим свойствам:

- 1. правая часть любой FD из S является множеством из одного атрибута (простым атрибутом);
- 2. детерминант каждой FD из S обладает свойством минимальности; это означает, что удаление любого атрибута из детерминанта приводит к изменению замыкания S⁺, т. е. порождению множества FD, не эквивалентного S;
- 3. удаление любой FD из S приводит к изменению S⁺, т. е. порождению множества FD, не эквивалентного S.

СЛУ_НОМ	СЛУ_ИМЯ	СЛУ_ЗАРП	про_ном	проект_рук
2934	Иванов	22400.00	1	Иванов
2935	Петров	29600.00	1	Иванов
2936	Сидоров	18000.00	1	Иванов
2937	Федоров	20000.00	1	Иванов
2938	Иванова	22000.00	1	Иванов
2939	Сидоренко	18400.00	2	Иваненко
2940	Федоренко	20400.00	2	Иваненко
2941	Иваненко	22600.00	2	Иваненко

Если считать, что единственным возможным ключом этого отношения является атрибут СЛУ_НОМ, то множество FD {СЛУ_НОМ \rightarrow СЛУ_ИМЯ, СЛУ_НОМ \rightarrow СЛУ_ЗАРП, СЛУ_НОМ \rightarrow ПРО_НОМ, ПРО_НОМ \rightarrow ПРОЕКТ_РУК} будет минимальным.

ЭКВИВАЛЕНТНОЕ МИНИМАЛЬНОЕ MHOЖЕСТВО FD

Для любого множества FD S существует (и даже может быть построено) эквивалентное ему минимальное множество S⁻.

Приведем общую схему построения s^- по заданному множеству FD s. Во-первых, используя правило (5) (декомпозиции), мы можем привести множество s k эквивалентному множеству FD s1, правые части FD которого содержат только одноэлементные множества (простые атрибуты). Далее, для каждой FD из s1, детерминант D $\{D_1, D_2, ..., D_n\}$ которой содержит более одного атрибута, будем пытаться удалять атрибуты D_i , получая множество FD s2. Если после удаления атрибута D_i s2 эквивалентно s1, то этот атрибут удаляется, и пробуется следующий атрибут. Назовем s3 множество FD, полученное путем допустимого удаления атрибутов из всех детерминантов FD множества s1. Наконец, для каждой FD f из множества s3 будем проверять эквивалентность множеств s3 и s3 міnus $\{f\}$. Если эти множества эквивалентны, удалим f из множества s3, и в заключение получим множество s4, которое минимально и эквивалентно исходному множеству FD s.

Минимальным покрытием множества FD S называется любое минимальное множество FD S1, эквивалентное S.

Поскольку для каждого множества FD существует эквивалентное минимальное множество FD, у каждого множества FD имеется хотя бы одно минимальное покрытие, причем для его нахождения не обязательно находить замыкание исходного множества.

С целью минимизации ограничений целостности необходимо уметь выделять минимальный набор FD, для этого все вышеуказанное и затевалось.

ПРИМЕР НЕМИНИМАЛЬНОГО ПОКРЫТИЯ FD 🤲 /\<u>МФТИ</u>

- 1. $\{CЛУ HOM \rightarrow \{CЛУ MMЯ, CЛУ ЗАРП\}, CЛУ HOM \rightarrow ПРО HOM, CЛУ HOM <math>\rightarrow ПРОЕКТ РУК, ПРО HOM \rightarrow ПРОЕКТ РУК\},$
- 2. $\{\text{СЛУ}_\text{НОМ} \rightarrow \text{СЛУ}_\text{ИМЯ}, \{\text{СЛУ}_\text{НОМ}, \text{СЛУ}_\text{ИМЯ}\} \rightarrow \text{СЛУ}_\text{ЗАРП}, \text{СЛУ}_\text{НОМ} \rightarrow \text{ПРО}_\text{НОМ}, \text{СЛУ}_\text{НОМ} \rightarrow \text{ПРО}_\text{ЕКТ}_\text{РУК}, \text{ПРО}_\text{НОМ} \rightarrow \text{ПРО}_\text{НОМ}$ ПРОЕКТ РУК В И
- 3. $\{\text{СЛУ НОМ} \rightarrow \text{СЛУ НОМ}, \text{СЛУ НОМ} \rightarrow \text{СЛУ ИМЯ}, \text{СЛУ НОМ} \rightarrow \text{СЛУ НОМ} \rightarrow \text{ПРО НОМ}, \text{СЛУ НОМ} \rightarrow \text{ПРО ЕКТ РУК},$ ΠΡΟ HOM → ΠΡΟΕΚΤ <math>PYK}

не являются минимальными. Для множества (1) в правой части первой FD присутствует множество из двух элементов. Для множества (2) удаление атрибута слу_имя из детерминанта второй FD не меняет замыкание множества FD. Для множества (3) удаление первой FD не приводит к изменению замыкания. Эти примеры показывают, что для определения минимальности множества FD не всегда требуется явное построение замыкания данного множества.

ДЕКОМПОЗИЦИЯ БЕЗ ПОТЕРЬ

ДЕКОМПОЗИЦИЯ

Считаются правильными такие декомпозиции отношения, которые обратимы, т. е. имеется возможность собрать исходное отношение из декомпозированных отношений без потери информации. Такие декомпозиции называются декомпозициями без потерь.

СЛУЖАЩИЕ_ПРОВЕТЫ				
СЛУ_НОМЕР	СЛУ_ИМЯ	СЛУ_ЗАРП	ПРО_НОМ	проект_РУК
2934	Иванов	22000.00	1	Иванов
2941	Иваненко	22000.00	2	Иваненко
			1	

Декомпозиция	(1).	Отношения	СПАЖ	и СЛУ	_IIPO

СЛУ_НОМ	СЛУ_ИМЯ	СЛУ_ЗАРП
2934	Иванов	22000.00
2941	Иваненко	22000.00

СЛУ_НОМ	про_ном	HPOEKT_PYK
2934	1	Иванов
2941	2	Иваненко

Ничего не потеряли, обратно все отлично собирается естественным соединением

Декомпозиция (2). Отношения СЛУЖ и ЗАРП_ПРО

СЛУ_НОМ	СЛУ_ИМЯ	СЛУ_ЗАРП
2934	Иванов	22000.00
2941	Иваненко	22000.00

СЛУ_ЗАРП	про_ном	HPOEKT_PYK
22000.00	1	Иванов
22000.00	2	Иваненко

Потеряли, кто в каком проекте работает (а не только руководит), в итоге при обратном процессе – лишние кортежи

СЛУ_НОМ	СЛУ_ИМЯ	СЛУ_ЗАРП	TIPO_HOM	ПРОЕКТ_РУК
2934	Иванов	22000.00	1	Иванов
2941	Иваненко	22000.00	2	Иваненко
2934	Иванов	22000.00	2	Иваненко
2941	Иваненко	22000.00	1	Иванов

ТЕОРЕМА ХИТА

Корректность декомпозиции часто следует из теоремы Хита.

Теорема Хита

Пусть задано отношение r {A, B, C} (A, B и C, в общем случае, являются составными атрибутами) и выполняется FD A \rightarrow B. Тогда r = (r PROJECT {A, B}) NATURAL JOIN (r PROJECT {A, C}).

Доказательство. Прежде всего, докажем, что в теле результата естественного соединения (обозначим этот результат через r_1) содержатся все кортежи тела отношения r. Действительно, пусть кортеж $\{a, b, c\} \in r$. Тогда по определению операции взятия проекции $\{a, b\} \in (r \text{ PROJECT } \{A, B\})$ и $\{a, c\} \in (r \text{ PROJECT } \{A, C\})$. Следовательно, $\{a, b, c\} \in r_1$. Теперь докажем, что в теле результата естественного соединения нет лишних кортежей, т. е. что если кортеж $\{a, b, c\} \in r_1$, то $\{a, b, c\} \in r$. Если $\{a, b, c\} \in r_1$, то существуют $\{a, b\} \in (r \text{ PROJECT } \{A, B\})$ и $\{a, c\} \in (r \text{ PROJECT } \{A, C\})$. Последнее условие может выполняться в том и только в том случае, когда существует кортеж $\{a, b^*, c\} \in r$. Но поскольку выполняется FD $A \rightarrow B$, то $b = b^*$ и, следовательно, $\{a, b, c\} = \{a, b^*, c\}$. Конец доказательства.

иллюстрация применения теоремы хита 🙌 /\<u>мфти</u>,

СЛУЖАЩИВ_ОТДЕЛЫ_ПРОЕКТЫ

СЛУ_НОМ	СЛУ_ОТД	ПРО_НОМ
2934	630	1
2941	631	1
2934	630	2
2941	631	2

Декомпозиция. Отношения СЛУЖ ОТДВЛЫ и СЛУЖ ПРОЕКТЫ

СЛУ_НОМ	СЛУ_ОТД
2934	630
2941	631

СЛУ_НОМ	ПРО_НОМ
2934	1
2941	1
2934	2
2941	2

Каждый служащий работает только в одном отделе, т. е. имеется FD СЛУ НОМ \rightarrow СЛУ ОТД, но один служащий может участвовать в нескольких проектах.

В отношении СЛУЖАЩИЕ ОТДЕЛЫ ПРОЕКТЫ атрибут СЛУ НОМ не является возможным ключом, но наличия FD СЛУ_НОМ \rightarrow СЛУ_ОТД оказывается достаточно для декомпозиции этого отношения без потерь.

Атрибут В минимально зависит от атрибута А, если выполняется минимальная слева FD A \rightarrow B.

Пример

в отношении СЛУЖАЩИЕ_ПРОЕКТЫ выполняются FD СЛУ_НОМ ightarrowСЛУ ЗАРП и $\{$ СЛУ НОМ, СЛУ ИМЯ $\} \rightarrow$ СЛУ ЗАРП. Первая FD является минимальной слева, а вторая – нет.

ДИАГРАММЫ ФУНКЦИОНАЛЬНЫХЗАВИСИМОСТЕЙ

<u>Диаграмма минимального множества FD отношения СЛУЖАЩИЕ ПРОЕКТЫ.</u>

СПУЖАЩИЕ_ПРОВКТЫ				
СЛУ_НОМЕР	СЛУ_ИМЯ	СЛУ_ЗАРП	ПРО_НОМ	проект_рук
2934	Иванов	22000.00	1	Иванов
2941	Иваненко	22000.00	2	Иваненко

В левой части диаграммы все стрелки начинаются с атрибута СЛУ_НОМ, который является единственным возможным (и, следовательно, первичным) ключом отношения СЛУЖАЩИЕ_ПРОЕКТЫ. Обратите внимание на отсутствие стрелки от СЛУ_НОМ к ПРОЕКТ_РУК. Конечно, поскольку СЛУ_НОМ является возможным ключом, должна выполняться и FD СЛУ_НОМ—ПРОЕКТ_РУК. Но эта FD является транзитивной (через ПРО_НОМ) и поэтому не входит в минимальное множество FD. Заметим, что в процессе нормализации, к рассмотрению которого мы приступим в следующей лекции, из диаграмм множества FD удаляются стрелки, начинающиеся не от возможных ключей.

МИНИМАЛЬНЫЕ ФУНКЦИОНАЛЬНЫЕ ЗАВИСИСМОСТИ И ВТОРАЯ НОРМАЛЬНАЯ ФОРМА

ПРОБЛЕМЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Проблема логического проектирования

Каким образом отобразить объекты предметной области в абстрактные объекты модели данных, чтобы это отображение не противоречило семантике предметной области и было, по возможности, лучшим (эффективным, удобным и т. д.)?

Проблема физического проектирования

Как обеспечить эффективность выполнения запросов к базе данных, т. е. каким образом, имея в виду особенности конкретной СУБД, расположить данные во внешней памяти, создания каких дополнительных структур (например, индексов) потребовать и т. д.?

Классический подход к проектированию

Весь процесс проектирования базы данных осуществляется в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих «улучшенными» свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами, в некотором смысле, лучшими, чем предыдущая.

Задачи нормализации

Избежать избыточности хранения данных

Устранить аномалии обновления данных

ПЕРВАЯ НОРМАЛЬНАЯ ФОРМА

Пусть есть кортеж:

< КОНТАКТЫ, ТЕХТ, «111245, Гдетамск, Парковая, 5, (980)1234567»>

Хорошо, пока не надо вытащить номер телефона

Аттомарность значения трактуется в том смысле, что значение типизировано, и с этим значением можно работать только с помощью операций соответствующего типа данных.

Первая форма – все атрибуты атомарны: в одном значении данных кортежа не должно быть двух и более типов переменных. Структурные типы представлены несколькими атрибутами в отдельных отношениях структурных типов.

Это одно из основных требований реляционной модели данных, поэтому мы начинаем нормализацию со второй формы, считая, что отношения в реляционной модели данных по умолчанию находятся как минимум в первой нормальной форме.

НОРМАЛЬНЫЕ ФОРМЫ

Перечень нормальных форм

- Первая нормальная форма (1NF);
- Вторая нормальная форма (2NF);
- Третья нормальная форма (3NF);
- Нормальная форма Бойса-Кодда (BCNF);
- Четвертая нормальная форма (4NF);
- Пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).

Процесс R11 нормализации при R1 проектировании R1 Исходное отношение R R2 R2 R2

Свойства нормализации

- Каждая следующая нормальная форма в некотором смысле лучше предыдущей нормальной формы;
- При переходе к следующей нормальной форме свойства предыдущих нормальных форм сохраняются.

В основе проектирования - нормализация, т. е. декомпозиция отношения, находящегося в предыдущей нормальной форме, на два или более отношений, которые удовлетворяют требованиям следующей нормальной формы.

АНОМАЛИИ ОБНОВЛЕНИЯ (1/2)

Пример

СЛУ_НОМ	CNA A LOB	СЛУ_ЗАРП	про_ном	СЛУ_ЗАДАН
2934	2	22400.00	1	A
2935	3	29600.00	1	В
2936	1	20000.00	1	С
2937	1	20000.00	1	D
2934	2	22400.00	2	D
2935	3	29600.00	2	С
2936	1	20000.00	2	В
2937	1	20000.00	2	A

СЛУ_УРОВ и **СЛУ_ЗАДАН** содержат данные о разряде служащего и о задании, которое выполняет служащий в данном проекте. Будем считать, что разряд служащего определяет размер его заработной платы и что каждый служащий может участвовать в нескольких проектах, но в каждом проекте он выполняет только одно задание.

Во множество FD отношения СЛУЖАЩИЕ_ПРОЕКТЫ_ЗАДАНИЯ входит много FD, в которых детерминантом является не возможный ключ отношения (соответствующие стрелки в диаграмме начинаются не с {СЛУ_НОМ, ПРО_НОМ}, т. е. некоторые функциональные зависимости атрибутов от возможного ключа не являются минимальными). Это приводит к так называемым аномалиям обновления.

Возможный ключ

АНОМАЛИИ ОБНОВЛЕНИЯ (2/2)

Под аномалиями обновления понимаются трудности, с которыми приходится сталкиваться при выполнении операций добавления кортежей в отношение (INSERT), удаления кортежей (DELETE) и модификации кортежей (UPDATE).

- Добавление кортежей. Мы не можем дополнить отношение служащие_проекты_задания данными о служащем, который в данное время еще не участвует ни в одном проекте (про_ном является частью первичного ключа и не может содержать неопределенных значений). Между тем часто бывает, что сначала служащего принимают на работу, устанавливают его разряд и размер зарплаты, а лишь потом назначают для него проект.
- Удаление кортежей. Мы не можем сохранить в отношении служащие_проекты_задания данные о служащем, завершившем участие в своем последнем проекте (по той причине, что значение атрибута про_ном для этого служащего становится неопределенным). Между тем характерна ситуация, когда между проектами возникают перерывы, не приводящие к увольнению служащих.
- Модификация кортежей. Чтобы изменить разряд служащего, мы будем вынуждены модифицировать все кортежи с соответствующим значением атрибута слу_ном. В противном случае будет нарушена естественная FD слу_ном—слу_уров (у одного служащего имеется только один разряд).

возможная декомпозиция

- Добавление кортежей. Чтобы сохранить данные о принятом на работу служащем, который еще не участвует ни в каком проекте, достаточно добавить соответствующий кортеж в отношение СЛУЖ.
- Удаление кортежей. Если кто-то из служащих прекращает работу над проектом, достаточно удалить соответствующий кортеж из отношения СЛУЖ_ПРО_ЗАДАН. При увольнении служащего нужно удалить кортежи с соответствующим значением атрибута СЛУ_НОМ из отношений СЛУЖ и СЛУЖ_ПРО_ЗАДАН.
- *Модификация кортежей*. Если у служащего меняется разряд (и, следовательно, размер зарплаты), достаточно модифицировать один кортеж в отношении СЛУЖ.

Значение переменной отношения СЛУЖ

СЛУ_НОМ	СЛУ_УРОВ	СЛУ_ЗАРП
2934	2	22400.00
2935	3	29600.00
2936	1	20000.00
2937	1	20000.00

Значение переменной отношения СЛУЖ_ПРО_ЗАДАН

СЛУ_НОМ	MOH_OQI	СЛУ_ЗАДАН
2934	1	A
2935	1	В
2936	1	С
2937	1	D
2934	2	D
2935	2	С
2936	2	В
937	2	A

ВТОРАЯ НОРМАЛЬНАЯ ФОРМА

Определение

Переменная отношения находится во **второй нормальной форме** (2NF) тогда и только тогда, когда она находится в первой нормальной форме, и каждый неключевой атрибут минимально функционально зависит от первичного ключа.

Пояснения к примеру

- Переменные отношений СЛУЖ и СЛУЖ_ПРО_ЗАДАН находятся в 2NF (все неключевые атрибуты отношений минимально зависят от первичных ключей СЛУ_НОМ и {СЛУ_НОМ, ПРО_НОМ} соответственно).
- Переменная отношения СЛУЖАЩИЕ_ПРОЕКТЫ_ЗАДАНИЯ не находится в 2NF (например, FD {СЛУ_НОМ, ПРО_НОМ} → СЛУ_УРОВ не является минимальной).
- Любая переменная отношения, находящаяся в 1NF, но не находящаяся в 2NF, может быть приведена к набору переменных отношений, находящихся в 2NF. В результате декомпозиции мы получаем набор проекций исходной переменной отношения, естественное соединение значений которых воспроизводит значение исходной переменной отношения (т. е. это декомпозиция без потерь).

НЕТРАНЗИТИВНЫЕ ФУНКЦИОНАЛЬНЫЕ ЗАВИСИМОСТИ И ТРЕТЬЯ НОРМАЛЬНАЯ ФОРМА

НЕТРАНЗИТИВНЫЕ FD И АНОМАЛИИ ОБНОВЛЕНИЯ

Значение переменной отношения СЛУЖ

СЛУ_НОМ	СЛУ_УРОВ	СЛУ_ЗАРП
2934	2	22400.00
2935	3	29600.00
2936	1	20000.00
2937	1	20000.00

Транзитивная FD СЛУ_НОМ → СЛУ_ЗАРП (через FD СЛУ_НОМ → СЛУ_УРОВ и СЛУ_УРОВ → СЛУ_ЗАРП) приводит к необходимости следить за обновлением СЛУ_ЗАРП при обновлении СЛУ УРОВ.

Аномалии обновления

- Добавление кортежей. Невозможно сохранить данные о новом разряде (и соответствующем ему размере зарплаты), пока не появится служащий с новым разрядом. (Первичный ключ не может содержать неопределенные значения.)
- Удаление кортежей. При увольнении последнего служащего с данным разрядом мы утратим информацию о наличии такого разряда и соответствующем размере зарплаты.
- Модификация кортежей. При изменении размера зарплаты, соответствующей некоторому разряду, мы будем вынуждены изменить значение атрибута СЛУ_ЗАРП в кортежах всех служащих, которым назначен этот разряд (иначе не будет выполняться FD слу_уров→слу_зарп).

ВОЗМОЖНАЯ ДЕКОМПОЗИЦИЯ И ТРЕТЬЯ НОРМАЛЬНАЯ ФОРМА

Значение переменной отношения СЛУЖ1

СЛУ_НОМ	СЛУ_УРОВ
2934	2
2935	3
2936	1
2937	1

Значение переменной отношения УРОВ

СЛУ_УРОВ	СЛУ_ЗАРП
2	22400.00
3	29600.00
1	20000.00

Определение

Переменная отношения находится в *третьей* нормальной форме (3NF) в том и только в том случае, когда она находится во второй нормальной форме, и каждый неключевой атрибут нетранзитивно функционально зависит от первичного ключа.

- Добавление кортежей. Чтобы сохранить данные о новом разряде, достаточно добавить соответствующий кортеж к отношению уров.
- Удаление кортежей. При увольнении последнего служащего, обладающего данным разрядом, удаляется соответствующий кортеж из отношения СЛУЖ1, и данные о разряде сохраняются в отношении УРОВ.
- Модификация кортежей. При изменении размера зарплаты, соответствующей некоторому разряду, изменяется значение атрибута слу_зарп ровно в одном кортеже отношения уров.

НЕЗАВИСИМЫЕ ПРОЕКЦИИ ОТНОШЕНИЙ

Кроме декомпозиции на отношения СЛУЖ1 {СЛУ_НОМ, СЛУ_УРОВ} и УРОВ {СЛУ_УРОВ, СЛУ_ЗАРП}, возможна и декомпозиция на отношения СЛУЖ1 {СЛУ_НОМ, СЛУ_УРОВ} и СЛУЖ_ЗАРП {СЛУ_НОМ, СЛУ_ЗАРП}. Оба отношения, полученные путем второй декомпозиции, находятся в ЗNF, и эта декомпозиция также является декомпозицией без потерь.

Проекции СЛУЖ1 {СЛУ_НОМ, СЛУ_УРОВ} и СЛУЖ_ЗАРП {СЛУ_НОМ, СЛУ_ЗАРП} зависимы, так как их надо обновлять одновременно. Понятно, что хотелось бы добиваться независимых проекций при декомпозиции.

Необходимые и достаточные условия независимости проекций отношения обеспечивает теорема Риссанена.

Теорема Риссанена

Проекции r_1 и r_2 отношения r являются hesa Bucumы mu тогда и только тогда, когда:

- Каждая FD в отношении r логически следует (то есть выводится из аксиом Армстронга) из FD в r_1 и r_2 ;
- Общие атрибуты r_1 и r_2 образуют возможный ключ хотя бы для одного из этих отношений.

Атомарным отношением называется
отношение, которое
невозможно
декомпозировать на
независимые проекции.

ПЕРЕКРЫВАЮЩИЕСЯ ВОЗМОЖНЫЕ КЛЮЧИ И НОРМАЛЬНАЯ ФОРМА БОЙСА-КОДДА

ПРОБЛЕМА ПЕРЕКРЫВАЮЩИХСЯ КЛЮЧЕЙ

Пусть есть отношение СЛУЖ_ПО_ЗАДАН1. Если имена СЛУ_ИМЯ уникальны, то они взаимозаменяемы со СЛУ_НОМ в возможных ключах отношения. Возможные ключи перекрываются по атрибуту ПРО_НОМ.

СЛУ_НОМ	СЛУ_ИМЯ	ПРО_НОМ	СЛУ_ЗАДАН
2934	Иванов	1	A
2941	Иваненко	2	В
2934	Иванов	2	В
2941	Иваненко	1	A

Очевидно, что, хотя в отношении СЛУЖ_ПРО_ЗАДАН1 все FD неключевых атрибутов от возможных ключей являются минимальными и транзитивные FD отсутствуют, этому отношению свойственны аномалии обновления. Например, в случае изменения имени служащего требуется обновить атрибут СЛУ_ИМЯ во всех кортежах отношения СЛУЖ_ПРО_ЗАДАН1, соответствующих данному служащему. Иначе будет нарушена FD СЛУ_НОМ

СЛУ_ИМЯ, и база данных окажется в несогласованном состоянии.

НОРМАЛЬНАЯ ФОРМА БОЙСА-КОДДА

Переменная отношения находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, когда любая выполняемая для этой переменной отношения нетривиальная и минимальная FD имеет в качестве детерминанта некоторый возможный ключ данного отношения.

ПРОБЛЕМА С BCNF (1/2)

Предположим теперь, что в организации все проекты включают разные задания, и по-прежнему каждый служащий может участвовать в нескольких проектах, но может выполнять в каждом проекте только одно задание. Одно задание в каждом проекте могут выполнять несколько служащих.

В этом отношении существуют два возможных ключа: {СЛУ_НОМ, ПРО_НОМ} и {СЛУ_НОМ, СЛУ_ЗАДАН}. Отношение удовлетворяет требованиям 3NF: отсутствуют неминимальные FD неключевых атрибутов от возможных ключей (поскольку нет неключевых атрибутов) и отсутствуют транзитивные FD. Однако из-за наличия FD СЛУ ЗАДАН \rightarrow ПРО HOM это отношение не находится в BCNF. Поэтому отношению СЛУ ПРО ЗАДАН снова свойственны аномалии обновления. Например (поскольку СЛУ_НОМ является компонентом обоих возможных ключей), невозможно удалить данные о единственном служащем, выполняющем задание в некотором проекте, не утратив информацию об этом задании.

Дальнейшая декомпозиция приведет к зависимым отношениям, тогда будут опять аномалии обновления. То есть текущее отношение атомарно.

ПРОБЛЕМА С BCNF (2/2)

Предположим, что в организации проекты включают одни и те же задания, каждый служащий может участвовать в нескольких проектах, но может выполнять в каждом проекте только одно задание.

В этом варианте отношения СЛУЖ_НОМ_ЗАДАН имеются перекрывающиеся возможные ключи ({СЛУ_НОМ, ПРО_НОМ} и {ПРО_НОМ, СЛУ_ЗАДАН}), однако оно находится в ВСNF, поскольку эти ключи являются единственными детерминантами. Легко убедиться, что отношению СЛУЖ_НОМ_ЗАДАН аномалии обновления не свойственны.

В часто обновляемых базах данных обычно стараются обеспечить третью нормальную форму отношений. На нормальную форму Бойса-Кодда внимание обращают гораздо реже, поскольку на практике ситуации, в которых у отношения имеется несколько составных перекрывающихся возможных ключей, встречаются нечасто.

МНОГОЗНАЧНЫЕ ЗАВИСИМОСТИ И ЧЕТВЕРТАЯ НОРМАЛЬНАЯ ФОРМА

ДАЛЬНЕЙШАЯ НОРМАЛИЗАЦИЯ

Иногда в переменных отношений требуется поддержка более сложных ограничений целостности, для выражения которых понятие функции оказывается недостаточным. Класс зависимостей, опирающихся на понятие функционала — обобщение понятия функции, обнаружил в 1970-е гг. Рональд Фейджин. Он назвал такие зависимости многозначными, поскольку в них одному значению детерминанта соответствует множество значений зависимого атрибута.

Аномальные FD

(Фейджин) Многозначные FD

Зависимости проекции/соединения

Декомпозиция в две проекции (4NF)

Декомпозиция в три и более проекций (5NF)

МНОГОЗНАЧНЫЕ ЗАВИСИМОСТИ

Предположим, что каждый служащий может участвовать в нескольких проектах, но в каждом проекте, в котором он участвует, им должны выполняться одни и те же задания.

СЛУ_НОМ	ПРО_НОМ	СЛУ_ЗАДАН
2934	1	A
2934	1	В
2934	2	A
2934	2	В
2941	1	A
2941	1	D

Единственным возможным ключом является заголовок отношения {СЛУ_НОМ, ПРО_НОМ, СЛУ_ЗАДАН}.

- Добавление кортежа. Если уже участвующий в проектах служащий присоединяется к новому проекту, то к телу значения переменной отношения СЛУЖ_ПРО_ЗАДАН требуется добавить столько кортежей, сколько заданий выполняет этот служащий.
- Удаление кортежей. Если служащий прекращает участие в проектах, то отсутствует возможность сохранить данные о заданиях, которые он может выполнять.
- *Модификация кортежей.* При изменении одного из заданий служащего необходимо изменить значение атрибута СЛУ_ЗАДАН в стольких кортежах, в скольких проектах участвует служащий.

РЕШЕНИЕ ДЛЯ МНОГОЗНАЧНЫХ ЗАВИСИМОСТЕЙ

Значение пер	еменной	отношения	СЛУЖ_	про_	HOM
--------------	---------	-----------	-------	------	-----

СЛУ_НОМ	IIPO_HOM
2934	1
2934	2
2941	1

Значение переменной отношения СЛУЖ_ЗАДАНИЕ

СЛУ_НОМ	СЛУ_ЗАДАН
2934	A
2934	В
2941	A
2941	D

- Добавление кортежа. Если некоторый уже участвующий в проектах служащий присоединяется к новому проекту, то к телу значения переменной отношения СЛУЖ_ПРО_НОМ требуется добавить один кортеж, соответствующий новому проекту.
- Удаление кортежей. Если служащий прекращает участие в проектах, то данные о заданиях, которые он может выполнять, остаются в отношении СЛУЖ_ЗАДАНИЕ.
- *Модификация кортежей.* При изменении одного из заданий служащего необходимо изменить значение атрибута СЛУ_ЗАДАН в одном кортеже отношения СЛУЖ_ЗАДАНИЕ.

Этот вариант переменной отношения СЛУЖ_ПРО_ЗАДАН находится в BCNF, поскольку все атрибуты заголовка отношения входят в состав единственно возможного ключа. В этом отношении вообще отсутствуют нетривиальные FD. Поэтому ранее обсуждавшиеся принципы нормализации здесь неприменимы, но, тем не менее, мы получили полезную декомпозицию.

ОПРЕДЕЛЕНИЕ МНОГОЗНАЧНЫХ ЗАВИСИМОСТЕЙ

Фейджин назвал зависимости этого вида многозначными (multi-valued dependency – MVD). MVD является обобщением понятия FD.

Определение

В переменной отношения R с атрибутами A, B, C (в общем случае, составными) имеется многозначная зависимость B от A (A \rightarrow B) в том и только в том случае, когда множество значений атрибута B, соответствующее паре значений атрибутов A и C, зависит от значения A и не зависит от значения C.

Многозадачные зависимости обладают свойством двойственности.

Лемма Фейджина

В отношении R {A, B, C} выполняется MVD $A \longrightarrow B$ в том и только в том случае, когда выполняется MVD $A \longrightarrow C$.

Доказательство достаточности условия леммы. Пусть выполняется MVD $A \longrightarrow B$. Пусть имеется некоторое удовлетворяющее этой зависимости значение r переменной отношения R, а обозначает значение атрибута A в некотором кортеже тела B_r , а $\{b\}$ — множество значений атрибута B, взятых из всех кортежей B_r , в которых значением атрибута A является B. Предположим, что для этого значения A MVD $A \longrightarrow C$ не выполняется. Это означает, что существуют такое допустимое значение C атрибута C и такое значение C0, что кортеж C1, C2 выполняется и MVD C3. Следовательно, если выполняется MVD C4. Выполняется и MVD C5. Аналогично можно доказать необходимость условия леммы.

ТЕОРЕМА ФЕЙДЖИНА (1/2)

MVD A $\rightarrow \rightarrow$ B и A $\rightarrow \rightarrow$ C всегда составляют пару. Поэтому обычно их представляют вместе в форме A $\rightarrow \rightarrow$ B | C.

FD является частным случаем MVD, когда множество значений зависимого атрибута обязательно состоит из одного элемента. Таким образом, если выполняется FD A \rightarrow B, то выполняется и MVD A \rightarrow \rightarrow B.

Теорема Фейджина

Пусть имеется переменная отношения R с атрибутами A, B, C (в общем случае, составными). Отношение R декомпозируется без потерь на проекции $\{A, B\}$ и $\{A, C\}$ тогда и только тогда, когда для него выполняется MVD $A \rightarrow \rightarrow B \mid C$.

ТЕОРЕМА ФЕЙДЖИНА (2/2)

Для доказательства необходимости условия теоремы предположим, что декомпозиция переменной отношения R {A, B, C} на проекции R PROJECT {A, B} и R PROJECT {A, C} является декомпозицией без потерь для любого допустимого значения r переменной отношения R. Мы должны показать, что в теле B_r значения-отношения r поддерживается ограничение

```
IF (\{a, b_1, c_1\}; \in B_r \text{ AND } \{a, b_2, c_2\} \in B_r)
THEN (\{a, b_1, c_2\} \in B_r \text{ AND } \{a, b_2, c_1\} \in B_r)
```

Действительно, пусть в B_r входят кортежи {a, b₁, c₁} и {a, b₂, c₂}. Предположим, что {a, b₁, c₂} $\notin B_r$ ОR a, b₂, c₁ $\notin B_r$. Но в тело значения отношения r PROJECT {A, B} входят кортежи {a, b₁} и {a, b₂}, а в тело значения переменной отношения r PROJECT {A, C} — {a, c₁} и {a, c₂};. Очевидно, что в тело значения естественного соединения r PROJECT {A, B} NATURAL JOIN r PROJECT {A, C} войдут кортежи {a, b₁, c₂} и {a, b₂, c₁}, и наше предположение об отсутствии по крайней мере одного из этих кортежей в B_r противоречит исходному предположению о том, что декомпозиция r на проекции r PROJECT {A, B} и r PROJECT {A, C} является декомпозицией без потерь. Тем самым, теорема Фейджина полностью доказана. Конец доказательства.

ЧЕТВЕРТАЯ НОРМАЛЬНАЯ ФОРМА

Теорема Фейджина обеспечивает основу для декомпозиции отношений, удаляющей «аномальные» многозначные зависимости, с приведением отношений в четвертую нормальную форму.

Значение	переменной отношени	ия СЛУЖ	про ном

СЛУ_НОМ	IIPO_HOM
2934	1
2934	2
2941	1

Значение переменной отношения СЛУЖ_ЗАДАНИЕ

СЛУ_ЗАДАН
A
В
A
D

Определение

Переменная отношения r находится в четвертой нормальной форме (4NF) в том и только в том случае, когда она находится в BCNF, и все MVD r являются FD с детерминантами — возможными ключами отношения r.

Отношения СЛУЖ_ПРО_НОМ и СЛУЖ_ЗАДАНИЕ находятся в BCNF и не содержат MVD, отличных от FD с детерминантом — возможным ключом. Поэтому они находятся в 4NF.

ЗАВИСИМОСТИ ПРОЕКЦИИ/СОЕДИНЕНИЯ И ПЯТАЯ НОРМАЛЬНАЯ ФОРМА

АНОМАЛИЯ N-ДЕКОМПОЗИРУЕМЫХ ОТНОШЕНИЙ

В переменной отношения R с атрибутами (возможно, составными) А и В MVD А $\rightarrow \rightarrow$ В называется *тривиальной*, если либо А \subseteq В, либо A UNION В совпадает с заголовком отношения R.

СЛУ_НОМ	ПРО_НОМ	СЛУ_ЗАДАН
2934	1	A
2934	1	В
2934	2	A
2941	1	A

Для примера *n*-декомпозируемого отношения при *n* > 2 рассмотрим пятый вариант переменной отношения СЛУЖ_ПРО_ЗАДАН, в которой имеется единственно возможный ключ {СЛУ_НОМ, ПРО_НОМ, СЛУ_ЗАДАН} и отсутствуют нетривиальные MVD.

Если служащий с номером **сн** участвует в проекте **пн**, и в проекте **пн** выполняется задание **сз**, и служащий с номером **сн** выполняет задание **сз**, то служащий с номером **сн** выполняет задание **сз** в проекте **пн**.

ЗАВИСИМОСТИ ПРОЕКЦИИ/СОЕДИНЕНИЯ

Определение

Пусть задана переменная отношения R, и A, B, ..., Z являются произвольными подмножествами заголовка R (составными, перекрывающимися атрибутами). В переменной отношения R удовлетворяется зависимость проекции/соединения (Project-Join Dependency — PJD) *(A, B, ..., Z) тогда и только тогда, когда любое допустимое значение r переменной отношения R можно получить путем естественного соединения проекций этого значения на атрибуты A, B, ..., Z.

Аномалии обновления

Возможное значение переменной отношения СЛУЖ_ПРО_ЗАДАН (ТСПЗ1)

СЛУ_НОМ	MDO_HOM	СЛУ_ЗАДАН
2934	1	В
2934	2	A

Результат добавления к TCП31 кортежа <2941, 1, A> (TCП32)

СЛУ_НОМ	HPO_HOM	СЛУ_ЗАДАН
2934	1	В
2934	2	A
2941	1	A
2934	1	A

Добавление кортежей. Если к ТСПЗ1 добавляется кортеж <2941, 1, A>, то должен быть добавлен и кортеж <2934, 1, A>. Интересно, что добавление кортежа <2934, 1, A> не нарушает ограничение целостности и, тем самым, не требует добавления кортежа <2941, 1, A>.

Удаление кортежа. Если из ТСПЗ2 удаляется кортеж <2934, 1, A>, то должен быть удален и кортеж <2941, 1, A>, поскольку в соответствии с ограничением целостности наличие второго кортежа означает наличие первого. Интересно, что удаление кортежа <2941, 1, A> не нарушает ограничения целостности и не требует дополнительных удалений.

ПЯТАЯ НОРМАЛЬНАЯ ФОРМА

В переменной отношения R PJD *(A, B, ..., Z) называется *подразумеваемой возможными ключами* в том и только в том случае, когда каждый составной атрибут A, B, ..., Z является суперключом R, т. е. включает хотя бы один возможный ключ R.

В переменной отношения R зависимость проекции/соединения *(A, B, ..., Z) называется *тривиальной*, если хотя бы один из составных атрибутов A, B, ..., Z совпадает с заголовком R.

Переменная отношения *R* находится в *пятой нормальной форме*, или в *нормальной форме проекции/соединения* (5NF, или PJ/NF — Project-Join Normal Form) в том и только в том случае, когда каждая нетривиальная PJD в *R* подразумевается возможными ключами *R*.

Чтобы распознать, что данная переменная отношения *к* находится в 5NF, необходимо знать все возможные ключи *к* и все PJD этой переменной отношения. Обнаружение всех зависимостей соединения является нетривиальной задачей, и для ее решения нет общих методов.

5NF является «окончательной» нормальной формой, которой можно достичь в процессе нормализации на основе проекций. «Окончательность» понимается в том смысле, что у отношения, находящегося в 5NF, отсутствуют аномалии обновлений, которые можно было бы устранить путем его декомпозиции. Другими словами, такие отношения далее нормализовать бессмысленно.

СЕМИНАР

АНОМАЛИИ ОБНОВЛЕНИЯ

Пример

СЛУ_НОМ	Clià Tabob	СЛУ_ЗАРП	про_ном	СЛУ_ЗАДАН
2934	2	22400.00	1	A
2935	3	29600.00	1	В
2936	1	20000.00	1	С
2937	1	20000.00	1	D
2934	2	22400.00	2	D
2935	3	29600.00	2	С
2936	1	20000.00	2	В
2937	1	20000.00	2	A

СЛУ_УРОВ и **СЛУ_ЗАДАН** содержат данные о разряде служащего и о задании, которое выполняет служащий в данном проекте. Будем считать, что разряд служащего определяет размер его заработной платы и что каждый служащий может участвовать в нескольких проектах, но в каждом проекте он выполняет только одно задание.

Эти связи неминимальные, так как, если из связи {СЛУ_НОМ, ПРО_НОМ}→СЛУ_УРОВ убрать ПРО_НОМ, ничего не изменится.