

CSE215 Electronic Design Automation

Name:

Mohamed Ibrahim El Ghamry

ID:

15P6019

Email:

15P6019@eng.asu.edu.eg

mohamed.elghamry97@gmail.com

Project:

Vending Machine

https://github.com/Ghamry97/Vending-Machine

Junior

Computer Engineering and Software Systems

Introduction

Vending Machine is an automated machine that provides items like drink and juice. The logic of this machine is implemented behaviorally using VHDL code and ModelSim.

Vending Machine Features:

- Sells soft drink and juice.
- The price of the drink is **1.25LE**.
- The machine only accepts 1LE, 0.5LE and 0.25LE.
- The user first enters the money, then selects either a soft drink or juice.
- The machine returns the change if any.

Details

Input	(Encoding)
0.25 LE	000
0.5 LE	001
1.0 LE	010
Soft Drink	011
Juice	100

Output	(Encoding)			
Nothing	00			
Soft Drink	01			
Juice	10			

Change	(Encoding)			
No Change	00			
0.25 LE	01			
0.5 LE	10			
0.75 LE	11			

States

SO	Idle
S1	Got 0.25 LE
S2	Got 0.5 LE
S3	Got 0.75 LE
S4	Got 1.0 LE
S5	Got 1.25 LE
S6	Got 1.5 LE
S7	Got 1.75 LE
S8	Got 2.0 LE

FSM Type: Mealy

Transitions: Input/OutputChange

Ex: Input: 000 == 0.25 LE 000/0000 Output: 00 == Nothing

Change: 00 == No Change

Results and Snapshots

Finite state machine

Fig (1): Finite state machine

Test bench test strategy tables

Term input <= "000"; ASSERT change = "00" and output = "00"	Meaning Current state: S0 Input: 0.25 LE Output: Nothing Change: No Change Next state: S1
input <= "000"; ASSERT change = "00" and output = "00"	Current state: S1 Input: 0.25 LE Output: Nothing Change: No Change Next state: S2
input <= "000"; ASSERT change = "00" and output = "00"	Current state: S2 Input: 0.25 LE Output: Nothing Change: No Change Next state: S3
input <= "000"; ASSERT change = "00" and output = "00"	Current state: S3 Input: 0.25 LE Output: Nothing Change: No Change Next state: S4

input <= "000"; Current state: S4 ASSERT change = "00" and output = "00" Input: 0.25 LE **Output: Nothing** Change: No Change Next state: S5 input <= "011"; Current state: S5 ASSERT change = "00" and output = "01" Input: Soft Drink Output: Soft Drink Change: No Change Next state: SO input <= "001"; Current state: SO ASSERT change = "00" and output = "00" Input: 0.5 LE Output: Nothing Change: No Change Next state: S2 input <= "010"; Current state: S2 ASSERT change = "00" and output = "00" Input: 1.0 LE **Output: Nothing** Change: No Change Next state: S6 input <= "100"; Current state: S6 ASSERT change = "01" and output = "10" Input: Juice Output: Juice Change: 0.25 LE Next state: S0

ModelSim Simulation

Fig (2): Simulation wave output of the original behavioral vhdl code

XFSM Tool Output

Fig (3): Alliance xfsm tool output of the original behavioral vhdl code

Boolean Network Optimization [BOOM] Comparisons

- 1.	I	nitial cos	t	Optimization parameters	Final cost			Literals after
Encoding	Surface	Depth	Literals		Surface	Depth	Literals	factorization
a	355500	13	245	Algorithm: simulated	155500	8	137	108
j	358750	13	249	annealing	155500	8	159	90
m	362000	13	251	Keep aux: no Area: 50 %	200750	8	176	75
0	332500	9	223	Delay: 50 %	158500	5	155	68
r	364000	14	225	Level: 0	195250	8	175	50

Netlist Optimization [LOON] Comparisons

Encoding	Critical path delay	Area (with over-cell routing)	Best Delay	Best Area
а	2958 ps	129000 lamda²		✓
j	3234 ps	140000 lamda²		
m	2776 ps	144500 lamda²		
0	2412 ps	152250 lamda²	✓	
r	2775 ps	151500 lamda²		

I would prefer to go with the o encoding, as the machine need to be as fast as possible in corresponding to a user input.

XSCH Tool Output

Fig (5): Alliance xsch tool output of the best implementation (-o encoding)

ModelSim Simulation #2

Fig (4): Simulation wave output of the -o encoded (loon) vhdl code We can see in the last snapshot of the wave, that the output is delayed by 4 ns

Fig (5): Simulation wave output of the -o encoded (scapin) tool output

We can see in the last snapshot of the wave, that the output is delayed by 3 ns

Appendix

vendingmachine.vhd file

```
entity vendingMachine is
     port (
            vdd: in bit;
           vss: in bit;
           clk: in bit;
           input: in bit vector(2 downto 0);
            rst: in bit;
           output: out bit vector(1 downto 0);
           change: out bit vector(1 downto 0)
     );
end vendingMachine;
architecture beh of vendingMachine is
      type state type is (s0, s1, s2, s3, s4, s5, s6, s7, s8);
      signal current s, next s: state type;
      --Synthesis directives:
      --pragma current state current s
      --pragma next state next s
      --pragma clock clk
     begin
     process(clk, rst)
           begin
                  if (rising edge(clk) and rst = '1') then
                        current s <= s0;
                  elsif(rising edge(clk)) then
                        current s <= next s;</pre>
                  end if;
     end process;
     process (current s, input)
           begin
                  case current s is
                       when s\overline{0} =>
                              output <= "00";
```

```
change <= "00";
      if(input = "000") then
           next s <= s1;
      elsif(input = "001") then
           next_s <= s2;
      elsif(input = "010") then
            next s \le s4;
      end if;
when s1 =>
      output <= "00";
      change <= "00";
      if(input = "000") then
            next s \leq s2;
      elsif(input = "001") then
            next s \le s3;
      elsif(input = "010") then
            next s \le s5;
      end if;
when s2 \Rightarrow
      output <= "00";
      if(input = "000") then
            next s \le s3;
            change <= "00";
      elsif(input = "001") then
            next s \leq s4;
            change <= "00";
      elsif(input = "010") then
            next_s <= s6;
            change <= "01";
      end if;
when s3 =>
      output <= "00";
      if(input = "000") then
            next s \le s4;
            change <= "00";
      elsif(input = "001") then
            next_s <= s5;
            change <= "00";
      elsif(input = "010") then
            next s \leq s7;
            change <= "10";
      end if;
when s4 \Rightarrow
      output <= "00";
      if(input = "000") then
            next s \le s5;
            change <= "00";
      elsif(input = "001") then
            next s <= s6;
            change <= "01";
      elsif(input = "010") then
            next s <= s8;
            change <= "11";
      end if;
when s5 \Rightarrow
      change <= "00";
      if (input = "011") then
            next_s \le s0;
            output <= "01";
```

```
elsif(input = "100") then
                                    next s \le s0;
                                    output <= "10";
                              end if;
                        when s6 \Rightarrow
                              change <= "00";
                              if(input = "011") then
                                    next s \leq s0;
                                    output <= "01";
                              elsif(input = "100") then
                                    next s \le s0;
                                    output <= "10";
                              end if;
                        when s7 =>
                              change <= "00";
                              if(input = "011") then
                                    next s <= s0;
                                    output <= "01";
                              elsif(input = "100") then
                                    next_s <= s0;
                                    output <= "10";
                              end if;
                        when s8 =>
                              change <= "00";
                              if(input = "011") then
                                    next s \le s0;
                                    output <= "01";
                              elsif(input = "100") then
                                    next s \le s0;
                                    output <= "10";
                              end if;
                  end case;
      end process;
end beh;
```

testbench.vhd file

```
-- Entity declaration for your testbench. Don't declare any ports here
ENTITY vendingMachine testbench IS
END ENTITY vendingMachine testbench;
ARCHITECTURE testbench OF vendingMachine_testbench IS
-- Component Declaration for the Device Under Test (DUT)
COMPONENT vendingMachine IS
port (
           vdd: in bit;
           vss: in bit;
           clk: in bit;
           input: in bit_vector(2 downto 0);
           rst: in bit;
           output: out bit_vector(1 downto 0);
           change: out bit vector(1 downto 0)
END COMPONENT vendingMachine;
FOR dut: vendingMachine USE ENTITY WORK.vendingMachine (beh);
-- Inputs
SIGNAL clk
                : bit := '0';
SIGNAL rst : bit := '1';
```

```
SIGNAL vdd
                 : bit := '1';
                : bit := '0';
SIGNAL vss
                 : bit vector(2 Downto 0) := "101";
SIGNAL input
-- Outputs
SIGNAL change
                : bit_vector(1 Downto 0);
SIGNAL output
                : bit vector(1 Downto 0);
-- Constants and Clock period definitions
constant clk period : time := 1000 ns;
BEGIN
     dut: vendingMachine PORT MAP (vdd, vss, clk, input, rst, output, change);
     clk process :process
   begin
        clk <= '0';
        wait for clk period/2;
        clk <= '1';
        wait for clk_period/2;
   end process;
   stim proc: PROCESS IS
BEGIN
     WAIT FOR clk period; --For the output to be stable
     ASSERT change = "00" and output = "00"
     REPORT "Reset error"
     SEVERITY error;
     rst <= '0';
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
      input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
      ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
      SEVERITY error;
      input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "011";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "01"
      REPORT "Outputs error"
      SEVERITY error;
```

```
input <= "001";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
      SEVERITY error;
     input <= "010";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "100";
     WAIT FOR clk period;
     ASSERT change = "01" and output = "10"
     REPORT "Outputs error"
     SEVERITY error;
end process;
end;
```

vendingmachineo I.vhd file

```
LIBRARY sxlib ModelSim;
entity vendingmachineo l is
  port (
     vdd
            : in
                       bit;
           : in
      vss
                       bit;
            : in
      clk
                       bit;
      input : in
                      bit vector(2 downto 0);
            : in
                      bit;
      output : out
                      bit vector(1 downto 0);
      change : out
                      bit vector(1 downto 0)
);
end vendingmachineo 1;
architecture structural of vendingmachineo 1 is
Component a4 x2
  port (
      i0
         : in
                    bit;
      i1 : in
                    bit;
      i2
         : in
                    bit;
      i3
         : in
                    bit;
          : out
                    bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component inv x4
  port (
          : in
                    bit;
      i
     nq : out
                    bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component ao2o22 x2
  port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      i3 : in
                    bit;
          : out
                    bit;
      q
      vdd : in
                    bit;
```

```
vss : in
                    bit
);
end component;
Component noa22 x1
  port (
      i0 : in
                   bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      ng : out
                   bit;
      vdd : in
                   bit;
      vss : in
                   bit
);
end component;
Component oa2a2a23 x2
  port (
      i0
         : in
                   bit;
      i1 : in
                   bit;
      i2 : in
                   bit;
         : in
      i3
                    bit;
      i4
         : in
                    bit;
      i5 : in
                   bit;
         : out
                   bit;
      vdd : in
                   bit;
      vss : in
                   bit
);
end component;
Component oa2ao222_x2
   port (
      i0 : in
                   bit;
      i1 : in
                   bit;
      i2 : in
                   bit;
      i3 : in
                   bit;
      i4 : in
                   bit;
          : out
                   bit;
      vdd : in
                    bit;
      vss : in
                   bit
);
end component;
Component no4 x1
   port (
      i0 : in
                    bit;
      i1
         : in
                    bit;
      i2
         : in
                    bit;
      i3 : in
                    bit;
      nq : out
                    bit;
      vdd : in
                   bit;
      vss : in
                   bit
);
end component;
Component oa22 x2
  port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
         : out
                    bit;
      q
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
```

```
Component oa2a22_x2
  port (
     i0 : in
                   bit;
      i1 : in
                   bit;
         : in
      i2
                   bit;
      i3 : in
                   bit;
      q : out
                   bit;
     vdd : in
                   bit;
     vss : in
                  bit
);
end component;
Component na2_x1
  port (
     i0 : in
                   bit;
      i1 : in
                   bit;
     nq : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component a3 x2
  port (
      i0 : in
                   bit;
      i1 : in
                   bit;
      i2 : in
                   bit;
      q
         : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component na3_x1
  port (
      i0 : in
                   bit;
      i1 : in
                   bit;
      i2 : in
                   bit;
     nq : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component sff1 x4
  port (
      ck : in
                   bit;
      i : in
                   bit;
     q : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component o3 x2
  port (
     i0 : in
                   bit;
      i1 : in
                   bit;
      i2 : in
                   bit;
      q : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
```

```
end component;
Component o2 x2
  port (
     i0 : in
                  bit;
     i1 : in
                 bit;
     q : out
                 bit;
     vdd : in
                 bit;
     vss : in
                 bit
);
end component;
Component a2 x2
  port (
     i0 : in
                 bit;
     i1 : in
                  bit;
     q : out
                 bit;
     vdd : in
                 bit;
     vss : in
                  bit
);
end component;
Component nao22 x1
  port (
     i0 : in
                 bit;
     i1 : in
                  bit;
     i2 : in
                  bit;
     nq : out
                 bit;
     vdd : in
                 bit;
     vss : in
                  bit
);
end component;
Component no2_x1
  port (
     i0 : in
                  bit;
     i1 : in
                  bit;
     nq : out
                  bit;
     vdd : in
                  bit;
     vss : in
                  bit
);
end component;
Component ao22_x2
  port (
     i0 : in
                  bit;
     i1 : in
                  bit;
     i2 : in
                  bit;
     q : out
                 bit;
     vdd : in
                 bit;
     vss : in
                  bit
);
end component;
Component inv_x2
  port (
     i : in
                  bit;
     nq : out
                  bit;
     vdd : in
                  bit;
     vss : in
                  bit
);
end component;
Component no3_x1
```

```
port (
     i0 : in
                   bit:
      i1 : in
                   bit;
      i2 : in
                   bit;
      na
         : out
                    bit;
                   bit;
      vdd : in
      vss : in
                   bit
);
end component;
Component buf x2
   port (
      i
          : in
                   bit;
      q : out
                   bit;
                   bit;
      vdd : in
      vss : in
                   bit
);
end component;
signal mbk buf statmachine current s : bit vector( 4 downto 4);
                                  : bit_vector( 2 downto 0);
signal not input
signal not_statmachine current s
                                   : bit vector( 8 downto 0);
                                    : bit vector( 8 downto 0);
signal statmachine_current_s
signal oa2ao222 x2 sig
                                    : bit;
signal oa2a2a23 x2 sig
                                    : bit;
signal oa2a22 x2 sig
                                    : bit;
signal oa22 x2 sig
                                    : bit;
signal oa22 x2 9 sig
                                     : bit;
signal oa22 x2 8 sig
                                     : bit;
signal oa22_x2_7_sig
                                     : bit;
                                    : bit;
signal oa22 x2 6 sig
                                    : bit;
signal oa22 x2_5_sig
signal oa22 x2 4 sig
                                    : bit;
signal oa22 x2 3 sig
                                    : bit;
signal oa22 x2 2 sig
                                    : bit;
signal oa22 x2 10 sig
                                     : bit;
                                     : bit;
signal o3 x2 sig
signal o2_x2_sig
                                     : bit;
signal o2 x2 2 sig
                                     : bit;
signal not aux9
                                     : bit;
                                     : bit;
signal not aux8
signal not aux7
                                     : bit;
signal not aux6
                                     : bit;
signal not aux4
                                     : bit;
signal not aux15
                                     : bit;
signal not aux14
                                     : bit;
                                     : bit;
signal not_aux13
                                     : bit;
signal not_aux12
signal not aux11
                                     : bit;
signal not aux10
                                     : bit;
signal not aux1
                                     : bit;
signal not aux0
                                     : bit;
signal noa22 x1 sig
                                     : bit;
signal no4 x1 sig
                                     : bit;
signal no4_x1_2_sig
                                     : bit;
signal no3 x1 sig
                                     : bit;
                                    : bit;
signal no3 x1 4 sig
signal no3 x1 3 sig
                                    : bit;
signal no3 x1 2 sig
                                    : bit;
signal no2 x1 sig
                                    : bit;
signal no2_x1_5_sig
                                     : bit;
signal no2_x1_4_sig
                                     : bit;
signal no2_x1_3_sig
                                     : bit;
signal no2_x1_2_sig
                                     : bit;
```

```
signal nao22 x1 sig
                                      : bit;
signal nao22 x1 2 sig
                                      : bit;
signal na3 x\overline{1} sig
                                      : bit;
signal na3 x1 2 sig
                                      : bit;
signal na2_x1_sig
                                      : bit;
signal na2 x1 4 sig
                                      : bit;
signal na2 x1 3 sig
                                     : bit;
signal na2 x1 2 sig
                                     : bit;
signal mbk buf not aux7
                                     : bit;
signal inv x2 sig
                                     : bit;
signal inv x2 3 sig
                                      : bit:
signal inv x2_2_sig
                                      : bit;
signal aux5
                                      : bit;
signal aux16
                                      : bit;
signal aux14
                                      : bit;
                                     : bit;
signal aux13
signal aux1
                                     : bit;
signal ao22 x2 sig
                                     : bit;
                                      : bit;
signal ao22 x2 4 sig
signal ao22 x2 3 sig
                                      : bit;
signal ao22 x2 2 sig
                                      : bit;
signal a3 x2 sig
                                      : bit;
signal a3_x2_3_sig
                                      : bit;
signal a3 x2 2 sig
                                     : bit;
signal a2 x2 sig
                                     : bit;
signal a2 x2 8 sig
                                     : bit;
signal a2 x2 7 sig
                                     : bit:
signal a2 x2 6 sig
                                      : bit;
signal a2_x2_5_sig
                                      : bit;
signal a2_x2_4_sig
                                      : bit;
                                     : bit;
signal a2 x2 3 sig
                                     : bit;
signal a2 x2 2 sig
begin
not aux4 ins : a4 x2
   port map (
      i0 => not_statmachine_current_s(1),
      i1 => not statmachine current s(3),
      i2 => not_statmachine_current_s(2),
      i3 => not statmachine current s(0),
      q =  not aux4,
      vdd => vdd
      vss => vss
   );
not_aux15_ins : o2_x2
   port map (
      i0 =  not aux14,
      i1 \Rightarrow not input(1),
      q => not aux15,
      vdd => vdd
      vss => vss
   );
not aux12 ins : a2 x2
   port map (
      i0 \Rightarrow not input(2),
      i1 => not statmachine current s(8),
      q =  not aux12,
      vdd => vdd
      vss => vss
   );
```

```
not aux11 ins : a2 x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not statmachine current s(6),
      q => not_aux11,
      vdd => vdd,
      vss => vss
   );
not aux10 ins : a2 x2
   port map (
      i0 => not input(2),
      i1 => not_statmachine_current_s(7),
      q => not aux10,
      vdd => vdd,
      vss => vss
   );
not_aux9_ins : a2_x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not statmachine current s(5),
      q => not aux9,
      vdd => vdd,
      vss => vss
   );
not statmachine current s 8 ins : inv x2
   port map (
      i => statmachine current s(8),
      nq => not statmachine current s(8),
      vdd => vdd
      vss => vss
   );
not aux8 ins : a2 x2
   port map (
      i0 => not_input(2),
      i1 => not statmachine current s(6),
      q => not aux8,
      vdd => vdd,
      vss => vss
   );
not aux7 ins : a2 x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not_statmachine_current_s(4),
      q => not aux7,
      vdd => vdd
      vss => vss
   );
not statmachine current s 3 ins : inv x2
   port map (
      i => statmachine current s(3),
      nq => not statmachine current s(3),
      vdd => vdd,
      vss => vss
   );
not_statmachine_current_s_7_ins : inv_x2
   port map (
      i => statmachine_current_s(7),
```

```
nq => not statmachine current s(7),
      vdd => vdd
      vss => vss
   );
not statmachine current s 6 ins : inv x2
   port map (
      i => statmachine current s(6),
      nq => not statmachine current s(6),
      vdd => vdd
      vss => vss
not statmachine current s 2 ins : inv x2
   port map (
      i => statmachine current s(2),
      nq => not statmachine current s(2),
      vdd => vdd
      vss => vss
   );
not aux6 ins : o2 x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not statmachine current s(5),
      q => not aux6,
     vdd => vdd
      vss => vss
not statmachine current s 5 ins : inv x2
   port map (
      i => statmachine current s(5),
      nq => not statmachine current s(5),
      vdd => vdd
      vss => vss
   );
not statmachine current s 1 ins : inv x2
   port map (
      i => statmachine current s(1),
      nq => not statmachine current s(1),
      vdd => vdd
      vss => vss
   );
not_aux14_ins : inv_x2
   port map (
     i => aux14,
     nq => not aux14,
      vdd => vdd
      vss => vss
   );
not aux0 ins : o2 x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not statmachine current s(4),
      q => not aux0,
      vdd => vdd
      vss => vss
   );
not_statmachine_current_s_4_ins : inv_x4
```

```
port map (
     i => statmachine current s(4),
      nq => not statmachine_current_s(4),
      vdd => vdd
      vss => vss
   );
not aux13 ins : inv x2
   port map (
      i \Rightarrow aux13,
      nq => not aux13,
      vdd => vdd
      vss => vss
   );
not statmachine current s 0 ins : inv x2
   port map (
      i => statmachine current s(0),
      nq => not_statmachine_current_s(0),
      vdd => vdd
      vss => vss
   );
not aux1 ins : inv x2
   port map (
      i \Rightarrow aux1,
      nq => not aux1,
      vdd => vdd
      vss => vss
   );
not input 2 ins : inv x2
   port map (
      i \Rightarrow input(2),
      nq => not input(2),
      vdd => vdd
      vss => vss
   );
not_input_1_ins : inv_x2
   port map (
      i => input(1),
      nq => not input(1),
      vdd => vdd
      vss => vss
not_input_0_ins : inv_x2
   port map (
      i \Rightarrow input(0),
      nq => not input(0),
      vdd => vdd
      vss => vss
   );
aux16 ins : ao2o22 x2
   port map (
      i0 =  not aux13,
      i1 => not aux1,
      i2 =  not_aux14,
      i3 => aux5,
      q \Rightarrow aux16,
      vdd => vdd
      vss => vss
```

```
);
aux14 ins : no2 x1
   port map (
      i0 \Rightarrow input(0),
      i1 => rst,
      nq => aux14,
      vdd => vdd
      vss => vss
   );
aux13 ins : no2 x1
   port map (
      i0 => rst,
      i1 \Rightarrow not input(0),
      nq => aux13,
      vdd => vdd
      vss => vss
   );
aux5 ins : no2 x1
   port map (
      i0 => input(1),
      i1 \Rightarrow not input(2),
      nq => aux5,
      vdd => vdd
      vss => vss
   );
aux1 ins : na2 x1
   port map (
      i0 => input(1),
      i1 \Rightarrow not input(2),
      nq => aux1,
      vdd => vdd
      vss => vss
   );
oa22_x2_2_ins : oa22_x2
   port map (
      i0 => statmachine current s(0),
      i1 => not input(2),
      i2 =  input(1),
      q \Rightarrow oa22 x2 2 sig,
      vdd => vdd
      vss => vss
   );
na2 x1 ins : na2 x1
   port map (
      i0 => not aux0,
      i1 => not statmachine current s(0),
      nq => na2 x1 sig,
      vdd => vdd,
      vss => vss
   );
a3 x2 ins : a3 x2
   port map (
      i0 \Rightarrow aux14,
      i1 \Rightarrow na2_x1_sig,
      i2 \Rightarrow oa22_x2_2sig,
      q => a3_x2_sig,
      vdd => vdd,
```

```
vss => vss
   );
no2 x1 ins : no2 x1
   port map (
       i0 => not aux13,
       i1 => not aux1,
       nq => no2 x1 sig,
       vdd => vdd
       vss => vss
   );
oa22_x2_ins : oa22_x2
   port map (
       i0 => statmachine current s(0),
       i1 \Rightarrow no2 \times 1 \text{ sig},
       i2 \Rightarrow a3 \times 2 \operatorname{siq}
       q \Rightarrow oa22_x2_sig,
       vdd => vdd,
       vss => vss
   );
statmachine current s 0 ins : sff1 x4
   port map (
       ck => clk,
          => oa22_x2_sig,
       q => statmachine current s(0),
       vdd => vdd
       vss => vss
   );
oa22 x2 4 ins : oa22 x2
   port map (
       i0 => statmachine current_s(1),
       i1 => not_input(2),
       i2 => input(1),
       q \Rightarrow oa22 x2 4 sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 2 ins : na2 x1
   port map (
       i0 => not aux6,
       i1 => not_statmachine_current_s(1),
       nq \Rightarrow na2 x1 2 sig,
       vdd => vdd
       vss => vss
   );
a3 \times 2 2 \text{ ins} : a3 \times 2
   port map (
       i0 \Rightarrow aux14,
       i1 \Rightarrow na2 \times 1 2 sig,
       i2 \Rightarrow oa2\overline{2}_{x}\overline{2}_{4}sig
       q \Rightarrow a3 x2 2 sig,
       vdd => vdd
       vss => vss
   );
no2_x1_2_ins : no2_x1
   port map (
       i0 => not_aux13,
       i1 => not_aux1,
```

```
nq => no2 x1_2 sig,
       vdd => vdd
       vss => vss
   );
oa22_x2_3_ins : oa22_x2
   port map (
       i0 => statmachine current s(1),
       i1 \Rightarrow no2 \times 1 \times 2 siq
       i2 \Rightarrow a3 \times 2 \cdot 2 \cdot sig,
       q \Rightarrow oa22 \times 23 sig,
       vdd => vdd,
      vss => vss
   );
statmachine current s 1 ins : sff1 x4
   port map (
       ck => clk,
         => oa22 x2_3_sig,
          => statmachine_current_s(1),
       vdd => vdd
       vss => vss
   );
oa22 x2 5 ins : oa22 x2
   port map (
       i0 => statmachine current s(2),
       i1 => not_input(2),
       i2 \Rightarrow input(1),
       q \Rightarrow oa22_x2_5_sig
      vdd => vdd,
      vss => vss
oa22 x2 6 ins : oa22 x2
   port map (
       i0 => statmachine current s(6),
       i1 \Rightarrow not input(2),
       i2 => statmachine current s(2),
       q \Rightarrow oa22_x2_6_sig,
       vdd => vdd,
       vss => vss
   );
na3 x1 ins : na3 x1
   port map (
       i0 \Rightarrow oa22_x2_6_sig
       i1 \Rightarrow aux14,
       i2 \Rightarrow oa22 \times 25 \text{ sig,}
      nq => na3 x1 sig,
      vdd => vdd
       vss => vss
   );
o2_x2_ins : o2_x2
   port map (
      i0 \Rightarrow not aux13,
       i1 => not aux1,
       q \Rightarrow o2 x2 sig,
       vdd => vdd
       vss => vss
   );
a2_x2_ins : a2_x2
```

```
port map (
      i0 => not aux0,
      i1 => not statmachine_current_s(2),
      q \Rightarrow a2 \times 2 \operatorname{sig}
      vdd => vdd
      vss => vss
   );
nao22 x1 ins : nao22 x1
   port map (
      i0 => a2_x2_sig,
      i1 => o2_x2_sig
      i2 \Rightarrow na3_x1_sig
      nq => nao22 x1 sig,
      vdd => vdd,
      vss => vss
   );
statmachine_current_s_2 ins : sff1 x4
   port map (
      ck => clk,
          => nao22_x1_sig,
      i
      q => statmachine_current_s(2),
      vdd => vdd,
      vss => vss
   );
ao22 x2 ins : ao22 x2
   port map (
      i0 => not_aux6,
      i1 => not_input(0),
      i2 => not_statmachine_current_s(3),
      q \Rightarrow ao22 \times 2 siq
      vdd => vdd
      vss => vss
   );
a2_x2_2_ins : a2_x2
   port map (
      i0 \Rightarrow not input(1),
      i1 => mbk buf statmachine current s(4),
      q => a2 x2_2_sig,
      vdd => vd\overline{d}
      vss => vss
   );
no2_x1_3_ins : no2_x1
   port map (
      i0 \Rightarrow input(2),
      i1 \Rightarrow not input(1),
      nq => no2_x1_3_sig,
      vdd => vdd
      vss => vss
   );
a2 x2 3 ins : a2 x2
   port map (
      i0 \Rightarrow no2 \times 1 \otimes 3 \text{ sig},
      i1 => statmachine current s(7),
         => a2 x2 3 sig,
      vdd => vdd
      vss => vss
   );
```

```
nao22 x1 2 ins : nao22 x1
   port map (
       i0 \Rightarrow a2 \times 2 3 \text{ sig,}
       i1 \Rightarrow a2 \times 2 2 \text{ sig},
       i2 => not_input(0),
       nq \Rightarrow nao22 \times 1 2 sig,
       vdd => vdd,
       vss => vss
   );
noa22 x1 ins : noa22 x1
   port map (
       i0 \Rightarrow nao22_x1_2_sig,
       i1 \Rightarrow ao22 \times 2 sig,
       i2 \Rightarrow aux16,
       nq => noa22 x1 sig,
       vdd => vdd
       vss => vss
   );
statmachine current s 3 ins : sff1 x4
   port map (
       ck => clk,
       i \Rightarrow noa22 \times 1 \text{ sig},
       q \Rightarrow statmachine current s(3),
       vdd => vdd
       vss => vss
   );
no3_x1_ins : no3_x1
   port map (
       i0 => not_aux8,
       i1 => mbk buf not aux7,
       i2 \Rightarrow input(1),
       nq => no3 x1 sig,
       vdd => vdd
       vss => vss
   );
a2 x2 4_ins : a2_x2
   port map (
       i0 => input(1),
       i1 => mbk buf statmachine_current_s(4),
       q \Rightarrow a2 x2 4 siq
       vdd => vd\overline{d}
       vss => vss
   );
no2 x1 4 ins : no2 x1
   port map (
       i1 => not aux7,
       i0 => not_input(1),
       nq => no2 x1 4 sig,
       vdd => vdd
       vss => vss
   );
inv x2 ins : inv x2
   port map (
       i \Rightarrow not aux6,
       nq => inv_x2_sig,
       vdd => vdd,
       vss => vss
   ) ;
```

```
oa2a2a23 x2 ins : oa2a2a23 x2
   port map (
       i0 => inv_x2_sig,
       i1 => not_input(1),
       i2 \Rightarrow no2 \times 1 + 4 \text{ sig},
       i3 => statmachine current s(8),
       i4 => mbk buf statmachine current s(4),
       i5 \Rightarrow input(2),
       q \Rightarrow oa2a2a23 x2 sig,
       vdd => vdd,
       vss => vss
   );
oa2ao222 x2 ins : oa2ao222 x2
   port map (
       i0 \Rightarrow oa2a2a23 \times 2 sig,
       i1 \Rightarrow aux14,
       i2 \Rightarrow a2 \times 24 \text{ sig,}
       i3 = no3_x1_sig,
       i4 \Rightarrow aux\overline{1}3,
       q \Rightarrow oa2ao222 x2 sig,
       vdd => vdd,
       vss => vss
   );
statmachine_current_s_4_ins : sff1_x4
   port map (
       ck => clk,
           \Rightarrow oa2ao222_x2_sig,
       q => statmachine current s(4),
       vdd => vdd,
       vss => vss
   );
no4 x1 ins : no4 x1
   port map (
       i0 => not aux9,
       i1 => not_aux1,
       i2 => not_aux8,
       i3 =  not_aux14,
       nq => no4 x1 sig,
       vdd => vdd
       vss => vss
   );
no3_x1_2_ins : no3_x1
   port map (
       i0 => not aux9,
       i1 =  not aux10,
       i2 \Rightarrow input(1),
       nq \Rightarrow no3 \times 1 \cdot 2 \cdot sig,
       vdd => vdd,
       vss => vss
   );
oa22 x2 8 ins : oa22 x2
   port map (
       i0 => statmachine current s(5),
       i1 => input(1),
       i2 \Rightarrow no3_x1_2_sig,
           \Rightarrow oa2\overline{2}_x\overline{2}_\overline{8}_sig,
       q
       vdd => vdd
       vss => vss
```

```
);
oa22 x2 7 ins : oa22 x2
   port map (
       i0 \Rightarrow oa22_x2_8_sig
       i1 => aux1\overline{3},
       i2 \Rightarrow no4 \times 1 \text{ sig,}
       q \Rightarrow oa22 x2 7 sig,
       vdd => vdd
       vss => vss
   );
statmachine_current_s_5_ins : sff1_x4
   port map (
       ck => clk,
       i \Rightarrow oa22 \times 27 \text{ sig,}
       q => statmachine_current_s(5),
       vdd => vdd
       vss => vss
   );
no4 x1 2 ins : no4 x1
   port map (
       i0 =  not aux10,
       i1 => not aux1,
       i2 =  not aux11,
       i3 =  not aux14,
       nq => no4 x1 2 sig,
       vdd => vdd,
       vss => vss
   );
no3 x1 3 ins : no3 x1
   port map (
       i0 => not aux12,
       i1 => not aux11,
       i2 \Rightarrow input(1),
       nq => no3_x1_3_sig,
       vdd => vdd,
       vss => vss
   );
oa22 x2 10 ins : oa22 x2
   port map (
       i0 => statmachine current s(6),
       i1 => input(1),
       i2 \Rightarrow no3_x1_3_sig,
       q \Rightarrow oa22 \times 2 \cdot 10 \operatorname{sig}
       vdd => vdd,
       vss => vss
   );
oa22 x2 9 ins : oa22 x2
   port map (
       i0 \Rightarrow oa22_x2_10_sig
       i1 \Rightarrow aux13,
       i2 \Rightarrow no4 \times 1 \cdot 2 \operatorname{sig}
       q \Rightarrow oa22 x2 9 sig,
       vdd => vdd
       vss => vss
statmachine_current_s_6_ins : sff1_x4
   port map (
```

```
ck => clk,
       i \Rightarrow oa22 \times 2_9 \text{sig}
         => statmachine current_s(6),
       vdd => vdd
       vss => vss
   );
no3 x1 4 ins : no3 x1
   port map (
       i0 => not_aux1,
       i1 =  not aux12,
       i2 => not_aux14,
       nq => no3_x1_4_sig,
      vdd => vdd
      vss => vss
na2_x1_3_ins : na2_x1
   port map (
       i0 \Rightarrow input(2),
       i1 => not statmachine current s(7),
       nq => na2_x1_3_sig,
      vdd => vdd,
      vss => vss
   );
ao22 x2_2_ins : ao22_x2
   port map (
       i0 \Rightarrow input(2),
       i1 => input(1),
       i2 \Rightarrow aux13,
       q \Rightarrow ao22 x2 2 sig,
       vdd => vdd,
       vss => vss
   );
oa2a22 x2 ins : oa2a22 x2
   port map (
       i0 \Rightarrow ao22 \times 2 2 sig,
       i1 => statmachine_current_s(7),
       i2 \Rightarrow na2 \times 1 3 \text{ sig,}
       i3 \Rightarrow no3 \times 14 \text{ sig,}
       q \Rightarrow oa2a22 \times 2 sig
      vdd => vdd,
       vss => vss
statmachine_current_s_7_ins : sff1_x4
   port map (
       ck => clk,
          => oa2a22 x2 sig,
         => statmachine current s(7),
       vdd => vdd
       vss => vss
   );
inv x2 2 ins : inv x2
   port map (
       i => rst,
       nq => inv_x2_2_sig
      vdd => vdd
       vss => vss
   );
```

```
ao22 x2 4 ins : ao22 x2
   port map (
       i0 => not input(1),
       i1 => input(0),
       i2 \Rightarrow inv_x2_2_sig,
       q \Rightarrow ao22 x2 4 sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 4 ins : na2 x1
   port map (
       i0 \Rightarrow input(0),
       i1 \Rightarrow not input(1),
       nq => na2 x1 4 sig,
      vdd => vdd,
       vss => vss
   );
a3 \times 2 3 \text{ ins} : a3 \times 2
   port map (
       i0 \Rightarrow na2 \times 14 sig,
       i1 => not_statmachine_current_s(3),
       i2 => ao22 x2 4 sig,
       q \Rightarrow a3 \times 2 \cdot 3 \operatorname{siq}_{\bullet}
       vdd => vdd
       vss => vss
   );
a2_x2_5_ins : a2_x2
   port map (
       i0 => not statmachine_current_s(1),
       i1 => not statmachine current s(0),
       q \Rightarrow a2_x2_5_sig,
       vdd => vd\overline{d}
       vss => vss
   );
a2 x2 6 ins : a2 x2
   port map (
       i0 => not statmachine current s(8),
       i1 => not statmachine current s(2),
       q \Rightarrow a2 \times 26 \text{ sig}
       vdd => vdd
       vss => vss
na3_x1_2_ins : na3_x1
   port map (
       i0 => a2 x2 6 siq
       i1 \Rightarrow a2 \times 25 \text{ sig,}
       i2 => a3 x2 3 sig,
       nq => na3 x1 2 sig,
       vdd => vdd,
       vss => vss
   );
a2 x2 7 ins : a2 x2
   port map (
       i0 \Rightarrow input(2),
       i1 => statmachine_current_s(8),
       q
           => a2_x2_7_sig,
       vdd => vdd
       vss => vss
```

```
);
ao22 x2 3 ins : ao22 x2
   port map (
       i0 \Rightarrow a2_x2_7_sig
       i1 => aux16,
       i2 \Rightarrow na3 \times 1 \cdot 2 \operatorname{sig}
       q \Rightarrow ao22 x2 3 sig,
       vdd => vdd,
       vss => vss
   );
statmachine_current_s_8_ins : sff1_x4
   port map (
       ck => clk,
       i \Rightarrow ao22 \times 2 3 \text{ sig},
       q => statmachine_current_s(8),
       vdd => vdd
       vss => vss
   );
o3 x2 ins : o3 x2
   port map (
       i0 \Rightarrow not aux13,
       i1 \Rightarrow input(1),
       i2 => not aux0,
       q \Rightarrow o3 \times 2 \text{ sig}
       vdd => vd\overline{d},
       vss => vss
   );
o2 x2 2 ins : o2 x2
   port map (
       i0 \Rightarrow input(2),
       i1 => not_aux15,
       q \Rightarrow 02 \times 2 2 \text{ sig,}
       vdd => vdd,
       vss => vss
   );
a2 x2 8 ins : a2 x2
   port map (
       i0 => not statmachine current s(6),
       i1 => not statmachine current s(4),
       q \Rightarrow a2 \times 2 8 \text{ sig}
       vdd => vdd,
       vss => vss
   );
change 0 ins : nao22 x1
   port map (
       i0 \Rightarrow a2 \times 2  8  sig,
       i1 \Rightarrow o2 \times 2 2 \text{ sig,}
       i2 \Rightarrow o3 x2 sig,
       nq => change(0),
       vdd => vdd,
       vss => vss
   );
no2_x1_5_ins : no2_x1
   port map (
       i0 \Rightarrow input(2),
       i1 => not_aux15,
       nq => no2_x1_5_sig,
```

```
vdd => vdd,
      vss => vss
   );
change_1_ins : ao22_x2
   port map (
      i0 \Rightarrow mbk buf statmachine current s(4),
      i1 => statmachine current s(5),
      i2 \Rightarrow no2 \times 15 sig
      q \Rightarrow change(1),
      vdd => vdd,
      vss => vss
   );
output 0 ins : no3 x1
   port map (
      i0 \Rightarrow aux1,
      i1 => not aux4,
      i2 =  not aux13,
      nq => output(0),
      vdd => vdd
      vss => vss
   );
inv x2 3 ins : inv x2
   port map (
      i => aux5,
      nq => inv x2 3 sig,
      vdd => vdd,
      vss => vss
   );
output 1 ins : no3 x1
   port map (
      i0 \Rightarrow inv x2 3 sig,
      i1 => not \overline{aux14},
      i2 => not_aux4,
      nq => output(1),
      vdd => vdd,
      vss => vss
   );
mbk buf statmachine current s 4 : buf x2
   port map (
      i => statmachine current s(4),
         => mbk buf statmachine current s(4),
      vdd => vdd,
      vss => vss
   );
mbk_buf_not_auxx7 : buf_x2
   port map (
      i => not_aux7,
         => mbk buf_not_aux7,
      vdd => vdd
      vss => vss
   );
end structural;
```

testbenchl.vhd file

```
-- Entity declaration for your testbench. Don't declare any ports here
ENTITY vendingmachineox IS
END ENTITY vendingmachineox;
ARCHITECTURE testbench OF vendingmachineox IS
-- Component Declaration for the Device Under Test (DUT)
COMPONENT vendingmachineo 1 IS
port (
           : in : in
      vdd
                         bit;
      VSS
              : in
                         bit;
      clk
              : in
                        bit;
      clk : in bit;
input : in bit_vector(2 downto 0);
           : in
                        bit;
      output : out          bit_vector(1 downto 0);
change : out          bit_vector(1 downto 0);
 );
END COMPONENT vendingmachineo 1;
FOR dut: vendingmachineo 1 USE ENTITY WORK.vendingmachineo 1 (structural);
-- Inputs
SIGNAL clk
                 : bit := '0';
SIGNAL rst : bit := '1';
SIGNAL vdd : bit := '1';
                 : bit := '0';
SIGNAL vss
SIGNAL input
                 : bit vector(2 Downto 0) := "101";
-- Outputs
SIGNAL change : bit_vector(1 Downto 0);
SIGNAL output : bit_vector(1 Downto 0);
-- Constants and Clock period definitions
constant clk period : time := 1000 ns;
BEGIN
      dut: vendingmachineo l PORT MAP (vdd, vss, clk, input, rst, output,
change);
      clk process :process
   begin
        clk <= '0';
        wait for clk period/2;
        clk <= '1';
        wait for clk period/2;
   end process;
   stim_proc: PROCESS IS
BEGIN
     WAIT FOR clk period; --For the output to be stable
      ASSERT change = "00" and output = "00"
      REPORT "Reset error"
      SEVERITY error;
      rst <= '0';
      input <= "000";
      WAIT FOR clk period;
      ASSERT change = "00" and output = "00"
      REPORT "Outputs error"
      SEVERITY error;
      input <= "000";
      WAIT FOR clk period;
      ASSERT change = "00" and output = "00"
      REPORT "Outputs error"
```

```
SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "011";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "01"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "001";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "010";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "100";
     WAIT FOR clk period;
     ASSERT change = "01" and output = "10"
     REPORT "Outputs error"
     SEVERITY error;
end process;
end;
```

vendingmachineo s.vhd file

```
LIBRARY sxlib ModelSim;
entity vendingmachineo s is
  port (
                  bit;
     vdd
           : in
     VSS
                   bit;
           : in
     clk
           : in
                   bit;
     input : in
                   bit vector(2 downto 0);
           : in
                   bit;
     rst
     output : out
                   bit vector(1 downto 0);
                   bit_vector(1 downto 0);
     change : out
     scanin : in in
                    bit;
     test : in
                    bit;
     scanout : out
                    bit
);
```

```
end vendingmachineo s;
architecture structural of vendingmachineo s is
Component a2 x2
  port (
     i0 : in
                   bit;
     i1 : in
                   bit;
     q : out
                   bit;
     vdd : in
                  bit;
     vss : in
                  bit
);
end component;
Component inv x2
  port (
         : in
                   bit;
     i
     nq : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component noa2ao222 x1
  port (
     i0 : in
                   bit;
     i1 : in
                   bit;
     i2 : in
                   bit;
     i3 : in
                   bit;
     i4 : in
                   bit;
     nq : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component a4 x2
  port (
     i0 : in
                   bit;
     i1 : in
                   bit;
     i2 : in
                   bit;
     i3 : in
                   bit;
     q : out
                   bit;
     vdd : in
                   bit;
     vss : in
                  bit
);
end component;
Component noa2a22_x1
  port (
     i0 : in
                   bit;
     i1 : in
                   bit;
     i2 : in
                   bit;
     i3 : in
                   bit;
     nq
         : out
                   bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component ao2o22 x2
  port (
     i0 : in
                   bit;
     i1
         : in
                   bit;
     i2 : in
                   bit;
```

```
: in
                    bit;
      q : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component nao2o22_x1
  port (
      i0 : in
                    bit;
      i1 : in
                    bit;
         : in
      i2
                    bit;
      i3
         : in
                    bit;
      nq : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component oa22 x2
   port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      q : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component xr2_x1
  port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      q : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component na3 x1
   port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      nq : out
vdd : in
                    bit;
                    bit;
      vss : in
                    bit
);
end component;
Component no4 x1
   port (
      i0 : in
                    bit;
      i1 : in
                    bit;
         : in
      i2
                    bit;
      i3 : in
                    bit;
      nq : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component a3_x2
```

```
port (
     i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
          : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component o2 x2
  port (
      i0 : in
                    bit;
         : in
      i1
                    bit;
      q : out
                    bit;
      vdd : in
                   bit;
      vss : in
                   bit
);
end component;
Component noa22 x1
  port (
      i0 : in
                   bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      nq : out
                    bit;
      vdd : in
                    bit;
      vss : in
                   bit
);
end component;
Component na2 x1
   port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      nq : out
                    bit;
      vdd : in
                    bit;
      vss : in
                    bit
);
end component;
Component oa2a22_x2
  port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
      i3
         : in
                    bit;
         : out
                   bit;
      q
      vdd : in
                   bit;
      vss : in
                   bit
);
end component;
Component no2 x1
   port (
      i0 : in
                    bit;
      i1 : in
                    bit;
      nq : out
                    bit;
      vdd : in
                    bit;
      vss : in
                   bit
);
end component;
Component ao22_x2
```

```
port (
     i0 : in
                    bit;
      i1 : in
                    bit;
      i2 : in
                    bit;
          : out
                    bit;
     vdd : in
                    bit;
     vss : in
                    bit
);
end component;
Component no3 x1
  port (
         : in
     i0
                    bit;
      i1
         : in
                    bit;
      i2 : in
                   bit;
     nq : out
                   bit;
     vdd : in
                    bit;
     vss : in
                   bit
);
end component;
Component no4 x4
  port (
      i1 : in
                   bit;
      i0 : in
                    bit;
      i2 : in
                    bit;
      i3 : in
                    bit;
     nq : out
                    bit;
      vdd : in
                    bit;
     vss : in
                    bit
);
end component;
Component buf x4
  port (
         : in
                    bit;
      q : out
                    bit;
     vdd : in
                    bit;
     vss : in
                    bit
);
end component;
Component sff2 x4
  port (
      ck : in
                    bit;
      cmd : in
                    bit;
      i0 : in
                    bit;
      i1 : in
                    bit;
      q : out
                    bit;
     vdd : in
                   bit;
     vss : in
                   bit
);
end component;
Component buf x2
  port (
     i : in
                    bit;
                    bit;
      q : out
     vdd : in
                    bit;
     vss : in
                    bit
);
end component;
signal mbk_buf_not_statmachine_current_s : bit_vector( 2 downto 0);
```

```
signal not input
                                           : bit vector( 2 downto 0);
signal not statmachine current s
                                          : bit vector( 8 downto 0);
                                          : bit vector( 8 downto 0);
signal statmachine current s
signal xr2 x1 sig
                                          : bit;
signal oa2a22_x2_sig
                                           : bit;
                                          : bit;
signal oa2a22 x2 2 sig
signal oa22 x2 sig
                                          : bit;
signal oa22 x2 8 sig
                                          : bit;
signal oa22 x2 7 sig
                                          : bit;
signal oa22 x2 6 sig
                                          : bit;
signal oa22 x2 5 sig
                                          : bit;
signal oa22 x2 4 sig
                                          : bit;
signal oa22_x2_3_sig
                                           : bit;
signal oa22 x2 2 sig
                                          : bit;
signal o2 x2 sig
                                          : bit;
signal o2 x2 7 sig
                                          : bit;
signal o2 x2 6 sig
                                          : bit;
signal o2 x2 5 sig
                                          : bit;
signal o2 x2 4 sig
                                           : bit;
signal o2_x2_3_sig signal o2_x2_2_sig
                                           : bit;
                                           : bit;
signal not_rst
                                           : bit;
                                           : bit;
signal not aux9
signal not aux8
                                           : bit;
signal not aux7
                                          : bit;
signal not aux6
                                          : bit;
signal not aux5
                                          : bit;
signal not aux4
                                          : bit;
signal not aux2
                                           : bit;
signal not aux10
                                          : bit;
signal not aux1
                                          : bit;
signal not aux0
                                          : bit;
signal noa2ao222 x1 sig
                                          : bit;
signal noa2a22 x1 sig
                                          : bit;
signal noa22 x1 sig
                                          : bit;
signal no4_x1_sig
                                          : bit;
signal no3 x1 sig
                                           : bit;
                                           : bit;
signal no2_x1_sig
signal no2 x1 9 sig
                                          : bit;
signal no2_x1_8_sig
                                          : bit;
signal no2 x1 7 sig
                                          : bit;
signal no2 x1 6 sig
                                          : bit;
signal no2 x1 5 sig
                                          : bit;
signal no2 x1 4 sig
                                          : bit;
signal no2 x1 3 sig
                                          : bit;
signal no2_x1_3_signal no2_x1_2_sig
                                           : bit;
signal no2_x1_13_sig
                                          : bit;
signal no2_x1_12_sig
                                          : bit;
signal no2 x1 11 sig
                                          : bit;
signal no2 x1 10 sig
                                          : bit;
signal nao2o22 x1 sig
                                          : bit;
signal na3 x1 sig
                                          : bit;
signal na3 x1 7 sig
                                          : bit;
signal na3_x1_6_sig
                                           : bit;
signal na3_x1_5_sig
                                           : bit;
                                          : bit;
signal na3 x1 4 sig
signal na3 x1 3 sig
                                          : bit;
signal na3 x1 2 sig
                                          : bit;
signal na2 x1 sig
                                          : bit;
signal na2_x1_9_sig
                                          : bit;
signal na2_x1_8_sig
                                          : bit;
signal na2_x1_7_sig
                                          : bit;
signal na2_x1_6_sig
                                           : bit;
signal na2_x1_5_sig
                                          : bit;
```

```
signal na2 x1 4 sig
                                          : bit;
signal na2 x1 3 sig
                                          : bit;
signal na2 x1 2 sig
                                          : bit;
signal na2_x1_21_sig
                                          : bit;
signal na2_x1_20_sig
                                          : bit;
                                          : bit;
signal na2_x1_19_sig
signal na2 x1 18 sig
                                          : bit;
signal na2 x1 17 sig
                                          : bit;
signal na2 x1 16 sig
                                          : bit;
signal na2 x1 15 sig
                                          : bit;
                                          : bit;
signal na2 x1 14 sig
signal na2_x1_13_sig
                                          : bit;
signal na2_x1_12_sig
                                          : bit;
signal na2_x1_11_sig
                                          : bit;
signal na2 x1 10 sig
                                          : bit;
signal inv x2 sig
                                          : bit;
signal inv x2 2 sig
                                          : bit;
signal aux12
                                          : bit;
signal aux11
                                          : bit;
                                          : bit;
signal ao2o22 x2 sig
signal a4_x2_sig
                                          : bit;
signal a4_x2_3_sig
                                          : bit;
signal a4_x2_2_sig
                                          : bit;
signal a3 x2 sig
                                          : bit;
begin
inv x2 ins : inv x2
   port map (
      i => statmachine current s(1),
      nq => inv x2 sig,
      vdd => vdd
      vss => vss
   );
not aux4 ins : a3 x2
   port map (
      i0 \Rightarrow inv_x2_sig,
      i1 => not statmachine current s(3),
      i2 => not_aux2,
      q => not aux4,
      vdd => vdd
      vss => vss
   );
not aux2 ins : a2 x2
   port map (
      i0 => not_statmachine_current_s(0),
      i1 => not_statmachine_current_s(2),
      q => not aux2,
      vdd => vdd,
      vss => vss
   );
not_aux7_ins : o2_x2
   port map (
      i0 => rst,
      i1 => not statmachine current s(7),
      q => not aux7,
      vdd => vdd
      vss => vss
   );
not_aux9_ins : o2_x2
```

```
port map (
      i0 \Rightarrow input(0),
      i1 => input(2),
      q =  not aux9,
      vdd => vdd,
      vss => vss
   );
not statmachine current s 8 ins : inv x2
   port map (
      i => statmachine current s(8),
      ng => not statmachine current s(8),
      vdd => vdd
      vss => vss
   );
not aux8 ins : o2 x2
   port map (
      i0 \Rightarrow input(2),
      i1 => not input(0),
      q => not aux8,
      vdd => vdd
      vss => vss
   );
not\_statmachine\_current\_s\_7\_ins : inv x2
   port map (
      i => statmachine current s(7),
      nq => not statmachine current s(7),
      vdd => vdd,
      vss => vss
   );
not_statmachine_current_s_3_ins : inv_x2
   port map (
      i => statmachine current s(3),
      nq => not statmachine current s(3),
      vdd => vdd
      vss => vss
   );
not statmachine current s 6 ins : inv x2
   port map (
      i => statmachine current s(6),
      nq => not statmachine current s(6),
      vdd => vdd,
      vss => vss
   );
not aux1 ins : o2 x2
   port map (
      i0 \Rightarrow input(1),
      i1 => rst,
      q => not aux1,
      vdd => vdd
      vss => vss
   );
not statmachine current s 2 ins : inv x2
   port map (
      i => statmachine_current_s(2),
      nq => not_statmachine_current_s(2),
      vdd => vdd
      vss => vss
```

```
);
not aux6 ins : o2 x2
   port map (
      i0 \Rightarrow input(1),
      i1 => not_input(2),
      q => not aux6,
      vdd => vdd,
      vss => vss
   );
not statmachine current s 5 ins : inv x2
   port map (
      i => statmachine current s(5),
      nq => not statmachine current s(5),
      vdd => vdd,
      vss => vss
   );
not aux0 ins : o2 x2
   port map (
      i0 => rst,
      i1 \Rightarrow not input(1),
      q => not aux0,
      vdd => vdd
      vss => vss
   );
not statmachine current s 4 ins : inv x2
   port map (
      i => statmachine current s(4),
      nq => not statmachine current s(4),
      vdd => vdd
      vss => vss
   );
not aux10 ins : o2 x2
   port map (
      i0 => rst,
      i1 => not_input(0),
      q => not aux10,
      vdd => vdd
      vss => vss
   );
not statmachine current s 0 ins : inv x2
   port map (
      i => statmachine_current_s(0),
      nq => not statmachine current s(0),
      vdd => vdd
      vss => vss
   );
not aux5 ins : a2 x2
   port map (
      i0 => input(1),
      i1 \Rightarrow not input(2),
      q => not aux5,
      vdd => vdd
      vss => vss
   );
not_input_2_ins : inv_x2
   port map (
```

```
=> input(2),
      nq => not input(2),
      vdd => vdd
      vss => vss
   );
not input 1 ins : inv x2
   port map (
      i => input(1),
      nq => not input(1),
      vdd => vdd
      vss => vss
   );
not input 0 ins : inv x2
   port map (
      i \Rightarrow input(0),
      nq => not input(0),
      vdd => vdd,
      vss => vss
   );
not rst ins : inv x2
   port map (
      i => rst,
      nq => not rst,
      vdd => vdd
      vss => vss
   );
aux12 ins : no2 x1
  port map (
      i0 \Rightarrow rst,
      i1 => not aux8,
      nq => aux12,
      vdd => vdd
      vss => vss
   );
aux11_ins : no2_x1
   port map (
      i0 \Rightarrow input(0),
      i1 => rst,
      nq => aux11,
      vdd => vdd,
      vss => vss
   );
na2 x1 ins : na2 x1
   port map (
      i0 \Rightarrow mbk buf not statmachine current s(0),
      i1 => not statmachine_current_s(4),
      nq => na2 x1 sig,
      vdd => vdd,
      vss => vss
   );
na2 x1 2 ins : na2 x1
   port map (
      i0 \Rightarrow not input(1),
      i1 => mbk_buf_not_statmachine_current_s(0),
      nq => na2_x1_2_sig,
      vdd => vdd
      vss => vss
```

```
);
oa22 x2 2 ins : oa22_x2
   port map (
      i0 => statmachine current s(0),
       i1 => input(1),
      i2 \Rightarrow not input(2),
       q \Rightarrow oa22 x2 2 sig,
      vdd => vdd
      vss => vss
   );
a4 x2 ins : a4 x2
   port map (
      i0 \Rightarrow oa22 \times 2 \circ sig
      i1 \Rightarrow aux11,
       i2 \Rightarrow na2 \times 1 2 siq
      i3 \Rightarrow na2 \times 1 sig,
      q => a4 \underline{x2} \underline{sig}
      vdd => vd\overline{d},
      vss => vss
   );
no2 x1 ins : no2 x1
   port map (
      i0 => not aux10,
      i1 => not_aux5,
      nq => no2 x1 sig,
      vdd => vdd,
      vss => vss
   );
oa22 x2 ins : oa22 x2
   port map (
       i0 => statmachine current s(0),
       i1 => no2_x1_sig,
       i2 \Rightarrow a4_x2_sig,
      q \Rightarrow oa22 x2 sig,
      vdd => vdd,
      vss => vss
   );
inv x2 2 ins : inv x2
   port map (
       i => statmachine current s(1),
      nq \Rightarrow inv x2 2 sig,
      vdd => vdd,
      vss => vss
   );
o2 x2 ins : o2 x2
   port map (
      i0 => input(2),
       i1 => not aux0,
      q \Rightarrow o2_x2_sig,
      vdd => vdd,
      vss => vss
   );
o2 x2 2 ins : o2 x2
   port map (
      i0 => not_aux10,
       i1 => not_aux5,
       q \Rightarrow o2_x2_2_sig,
```

```
vdd => vdd,
       vss => vss
   );
na2_x1_3_ins : na2_x1
   port map (
       i0 => not aux6,
       i1 \Rightarrow aux11,
       nq => na2 x1 3 sig,
       vdd => vdd
       vss => vss
noa2ao222 x1 ins : noa2ao222 x1
   port map (
       i0 \Rightarrow na2 \times 1 \otimes 3 \operatorname{sig}_{\bullet}
       i1 => 02 \times 2 2 \text{ sig},
       i2 => not_statmachine_current_s(5),
       i3 \Rightarrow o2 \times 2 \text{ sig},
       i4 \Rightarrow inv x2 2 siq
       nq => noa2ao222 x1 sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 4 ins : na2 x1
   port map (
       i0 => mbk buf not statmachine current s(2),
       i1 => not statmachine current s(6),
       nq => na2_x1_4_sig,
       vdd => vdd,
       vss => vss
   );
na2_x1_5_ins : na2_x1
   port map (
       i0 \Rightarrow not input(1),
       i1 => mbk_buf_not_statmachine_current_s(2),
       nq => na2 x1 5 sig,
       vdd => vdd,
       vss => vss
   );
oa22 x2 4_ins : oa22_x2
   port map (
       i0 => statmachine current s(2),
       i1 => input(1),
       i2 => not_input(2),
       q \Rightarrow oa22 x2 4 sig,
       vdd => vdd
       vss => vss
   );
a4 x2 2 ins : a4 x2
   port map (
       i0 \Rightarrow oa22 \times 24 \text{ sig},
       i1 \Rightarrow aux11,
       i2 \Rightarrow na2 \times 15 sig
       i3 \Rightarrow na2 \times 14 \text{ sig},
       q \Rightarrow a4 x2 2 sig,
       vdd => vdd
       vss => vss
   );
```

```
no2 x1 2 ins : no2 x1
   port map (
      i0 => rst,
       i1 => not_input(2),
      nq => no2_x1_2_sig,
      vdd => vdd,
      vss => vss
   );
na2_x1_6 ins : na2_x1
   port map (
       i0 => mbk buf not statmachine current s(2),
       i1 => not_statmachine current s(4),
      nq \Rightarrow na2 x1 6 sig,
      vdd => vdd,
      vss => vss
no2_x1_3_ins : no2_x1
   port map (
      i0 \Rightarrow input(2),
       i1 => not aux1,
      nq => no2 x1 3 sig,
      vdd => vdd,
      vss => vss
   );
oa2a22 x2 ins : oa2a22 x2
   port map (
       i0 \Rightarrow no2_x1_3_sig,
       i1 \Rightarrow na2 x1 6 sig,
       i2 => statmachine current s(2),
      i3 \Rightarrow no2 \times 1 \cdot 2 \operatorname{sig}
      q \Rightarrow oa2a22 x2 sig,
      vdd => vdd
      vss => vss
   );
oa22_x2_3_ins : oa22_x2
   port map (
      i0 \Rightarrow oa2a22 \times 2 sig,
       i1 \Rightarrow input(0),
      i2 => a4 x2 2 sig,
       q \Rightarrow oa22 \times 2 3 sig
      vdd => vdd,
      vss => vss
   );
oa22 x2 6 ins : oa22 x2
   port map (
       i0 => statmachine current s(3),
       i1 => input(1),
       i2 => not input(2),
      q =  oa2\overline{2} x2 6 sig,
      vdd => vdd
      vss => vss
   );
na3 x1 ins : na3 x1
   port map (
       i0 => not_input(1),
       i1 => not_statmachine_current_s(3),
       i2 => not_statmachine_current_s(4),
      nq => na3_x1_sig,
```

```
vdd => vdd,
      vss => vss
o2_x2_3_ins : o2_x2
   port map (
      i0 => statmachine current s(7),
      i1 => statmachine current s(3),
      q \Rightarrow o2 \times 2 \times 3 \text{ sig,}
      vdd => vdd
      vss => vss
oa22_x2_7_ins : oa22_x2
   port map (
      i0 => statmachine current s(4),
      i1 \Rightarrow not input(1),
      i2 => 02 \times 2 3 \text{ sig,}
      vdd => vdd
      vss => vss
   );
a4 x2 3 ins : a4 x2
   port map (
      i0 \Rightarrow oa22_x2_7_sig
      i1 => aux11,
      i2 => na3_x1_sig,
      i3 \Rightarrow oa22 \times 26 \text{ sig,}
      q \Rightarrow a4_x2_3_sig
      vdd => vdd,
      vss => vss
no2 x1 4 ins : no2 x1
   port map (
      i0 => rst,
      i1 => not_input(2),
      nq => no2 x1 4 sig,
      vdd => vdd,
      vss => vss
   );
na2 x1 7 ins : na2 x1
   port map (
      i0 => not statmachine current s(5),
      i1 => not_statmachine_current_s(3),
      nq => na2_x1_7_sig,
      vdd => vdd,
      vss => vss
   );
no2 x1 5 ins : no2 x1
   port map (
      i0 \Rightarrow input(2),
      i1 => not_aux1,
      nq => no2 x1 5 sig,
      vdd => vdd,
      vss => vss
   );
oa2a22_x2_2_ins : oa2a22_x2
   port map (
      i0 \Rightarrow no2_x1_5_sig,
```

```
i1 \Rightarrow na2 \times 17 \text{ sig}
       i2 => statmachine current s(3),
       i3 \Rightarrow no2 \times 14 \text{ sig},
       q \Rightarrow oa2a22 x2 2 sig,
       vdd => vdd
       vss => vss
   );
oa22 x2 5 ins : oa22 x2
   port map (
       i0 \Rightarrow oa2a22 \times 2_2 sig
       i1 => input(0),
       i2 \Rightarrow a4_x2_3_sig,
       q \Rightarrow oa22 x2 5 sig,
       vdd => vdd,
       vss => vss
   );
na2_x1_8_ins : na2_x1
   port map (
       i0 \Rightarrow input(1),
       i1 => not statmachine current s(4),
       nq \Rightarrow na2 x1 8 sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 9 ins : na2 x1
   port map (
       i0 => not_aux0,
       i1 => not statmachine current s(6),
       nq \Rightarrow na2 \times 19 sig,
       vdd => vdd
       vss => vss
   );
na3 x1 3 ins : na3 x1
   port map (
       i0 \Rightarrow aux12,
       i1 \Rightarrow na2 x1 9 sig,
       i2 \Rightarrow na2 \times 1 \otimes sig,
       nq => na3 x1 3 sig,
       vdd => vdd
       vss => vss
   );
na2_x1_10_ins : na2_x1
   port map (
       i0 \Rightarrow not input(1),
       i1 => not_statmachine_current_s(5),
       nq => na2_x1_10_sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 11 ins : na2 x1
   port map (
       i0 => not aux1,
       i1 => not statmachine current s(8),
       nq \Rightarrow na2 \times 1 \cdot 11 \cdot sig,
       vdd => vdd
       vss => vss
   );
```

```
no2 x1 6 ins : no2 x1
   port map (
       i0 => rst,
       i1 => not_aux9,
       nq => no2_x1_6_sig,
       vdd => vdd,
       vss => vss
   );
na3 x1 4 ins : na3 x1
   port map (
       i0 \Rightarrow no2 \times 1 6 \text{ sig}
       i1 \Rightarrow na2_x1_11_sig,
       i2 \Rightarrow na2_x1_10_sig,
       nq => na3 x1 4 sig,
      vdd => vdd,
       vss => vss
   );
no2 x1 7 ins : no2 x1
   port map (
       i0 => rst,
       i1 \Rightarrow not input(2),
      nq => no2 x1 7 sig,
      vdd => vdd
       vss => vss
   );
na2 x1 12 ins : na2 x1
   port map (
       i0 \Rightarrow no2 \times 17 \text{ sig,}
       i1 => statmachine current s(4),
       nq => na2 x1 12 siq
       vdd => vdd
       vss => vss
   );
na3_x1_2_ins : na3_x1
   port map (
       i0 \Rightarrow na2_x1_12_sig,
       i1 \Rightarrow na3 x1 4 sig,
       i2 \Rightarrow na3 \times 1 3 sig,
      nq => na3 x1 2 sig,
      vdd => vdd
       vss => vss
na2_x1_14_ins : na2_x1
   port map (
       i0 \Rightarrow input(1),
       i1 => not statmachine current s(5),
       nq \Rightarrow na2 \times 1 \cdot 14 \cdot sig,
       vdd => vdd
       vss => vss
   );
na2 x1 15 ins : na2 x1
   port map (
       i0 => not aux0,
       i1 => not statmachine current s(7),
       nq \Rightarrow na2_x1_15_sig,
       vdd => vdd
       vss => vss
   ) ;
```

```
na3 x1 5 ins : na3 x1
   port map (
       i0 \Rightarrow aux12,
       i1 \Rightarrow na2_x1_15_sig
       i2 \Rightarrow na2_x1_14_sig,
       nq => na3 x1 5 sig,
       vdd => vdd,
       vss => vss
   );
no2 x1 8 ins : no2 x1
   port map (
       i0 => rst,
       i1 \Rightarrow not input(2),
       nq => no2 x1 8 sig,
       vdd => vdd
       vss => vss
   );
no2 x1 9 ins : no2 x1
   port map (
       i0 => not aux9,
       i1 => not aux1,
       nq => no2 x1 9 sig,
       vdd => vdd
       vss => vss
   );
noa2a22_x1_ins : noa2a22_x1
   port map (
       i0 => statmachine current s(6),
       i1 \Rightarrow no2 \times 19 \text{ sig,}
       i2 => statmachine current_s(5),
       i3 => no2 x1_8_sig,
       nq => noa \overline{2}a2\overline{2} \overline{x}1 sig,
       vdd => vdd
       vss => vss
   );
na2 x1 13 ins : na2 x1
   port map (
       i0 \Rightarrow noa2a22 \times 1 \text{ sig},
       i1 => na3 x1 \frac{1}{5} sig,
       nq => na2 \times 1 \cdot 13 \operatorname{sig}_{\prime}
       vdd => vdd
       vss => vss
   );
na2 x1 17 ins : na2 x1
   port map (
       i0 => input(1),
       i1 => not_statmachine_current_s(6),
       nq \Rightarrow na2 \times 1 \cdot 17 \cdot sig,
       vdd => vdd
       vss => vss
   );
na2 x1 18 ins : na2 x1
   port map (
       i0 => not_aux0,
       i1 => not_statmachine_current s(8),
       nq => na2_x1_18_sig,
       vdd => vdd,
```

```
vss => vss
   );
na3 x1 6 ins : na3 x1
   port map (
       i0 \Rightarrow aux12,
       i1 => na2_x1_18_sig,
       i2 \Rightarrow na2 \times 1 \cdot 17 \operatorname{sig}_{\bullet}
      nq => na3 x1 6 sig,
      vdd => vdd
       vss => vss
02_x2_4_ins : 02_x2
   port map (
       i0 => not aux9,
       i1 => not aux1,
       q => o2_x2_4_sig,
       vdd => vd\overline{d},
       vss => vss
   );
na2 x1 19 ins : na2 x1
   port map (
       i0 \Rightarrow input(2),
       i1 => not_rst,
       nq => na2 x1 19 sig,
       vdd => vdd
       vss => vss
   );
ao2o22 x2 ins : ao2o22 x2
   port map (
       i0 \Rightarrow na2 \times 1_19_sig,
       i1 => not statmachine current s(6),
       i2 => not statmachine_current_s(7),
       i3 \Rightarrow o2_x2_4_sig,
       q \Rightarrow ao2o22 x2 sig,
       vdd => vdd,
       vss => vss
   );
na2 x1 16 ins : na2 x1
   port map (
       i0 \Rightarrow ao2o22 \times 2 sig
       i1 => na3_x1_6_sig,
       nq => na2_x1_16_sig,
       vdd => vdd,
       vss => vss
   );
no2 x1 10 ins : no2 x1
   port map (
       i0 \Rightarrow input(1),
       i1 \Rightarrow input(2),
       nq => no2 x1 10 sig,
      vdd => vdd
       vss => vss
   );
no3_x1_ins : no3_x1
   port map (
       i0 \Rightarrow no2_x1_10_sig,
       i1 => not_aux7,
```

```
i2 \Rightarrow not input(0),
       nq => no3 x1 sig,
       vdd => vdd
       vss => vss
   );
o2 x2 5 ins : o2 x2
   port map (
       i0 \Rightarrow input(2),
       i1 \Rightarrow not aux1,
       q \Rightarrow 02 \times 25 \text{ sig,}
       vdd => vd\overline{d},
       vss => vss
   );
nao2o22 x1 ins : nao2o22 x1
   port map (
       i0 \Rightarrow o2_x2_5_sig,
       i1 => not statmachine_current_s(8),
       i2 => not_aux7,
       i3 =  not input(2),
       nq => nao2o22_x1_sig,
       vdd => vdd,
       vss => vss
   );
oa22 x2_8_ins : oa22_x2
   port map (
       i0 \Rightarrow nao2o22 \times 1 \text{ sig},
       i1 => not_input(0),
       i2 \Rightarrow no3 \times 1 \text{ sig,}
       q \Rightarrow oa22 \times 2 8 sig,
       vdd => vdd,
       vss => vss
   );
xr2 x1 ins : xr2 x1
   port map (
       i0 \Rightarrow input(0),
       i1 => input(2),
       q \Rightarrow xr2 x1 sig,
       vdd => vdd
       vss => vss
   );
na3_x1_7_ins : na3_x1
   port map (
       i0 => not rst,
       i1 => not aux2,
       i2 \Rightarrow xr2 x1 siq
       nq => na3_x1_7_sig,
       vdd => vdd,
       vss => vss
   );
no4 x1 ins : no4 x1
   port map (
       i0 => statmachine current s(8),
       i1 => statmachine current s(1),
       i2 \Rightarrow na3 \times 17 sig,
       i3 => statmachine_current_s(3),
       nq => no4 x1 sig,
       vdd => vdd
       vss => vss
```

```
);
o2 x2 6 ins : o2 x2
    port map (
       i0 \Rightarrow input(0),
        i1 => not_aux6,
        q => 02 x2 6 sig,
       vdd => vdd,
       vss => vss
    );
na2 x1 20 ins : na2 x1
    port map (
       i0 \Rightarrow input(0),
        i1 => not aux5,
       nq \Rightarrow na2 \times 1 \times 20 \text{ sig,}
       vdd => vdd
       vss => vss
    );
a3 x2 ins : a3 x2
    port map (
       i0 => not_rst,
        i1 \Rightarrow na2 \times 1 \times 20 \text{ sig},
       i2 => 02 \times 26 \text{ sig,}
       q \Rightarrow a3 \times 2 \overline{sig}
       vdd => vd\overline{d},
       vss => vss
o2 x2 7 ins : o2 x2
    port map (
       i0 \Rightarrow not input(2),
        i1 => not_statmachine_current_s(8),
        q => 02 x2 7 sig,
       vdd => vd\overline{d},
       vss => vss
    );
noa22_x1_ins : noa22_x1
    port map (
        i0 => 02 \times 2 \ 7 \text{ sig,}
        i1 => a3 \times 2 sig,
       i2 \Rightarrow no\overline{4} \times \overline{1} \operatorname{sig}
       nq => noa22 \times 1 siq
       vdd => vdd
       vss => vss
    );
no2 x1 11 ins : no2 x1
    port map (
        i0 => not aux8,
        i1 => not aux1,
       nq \Rightarrow no2 \times 1 \cdot 11 \cdot sig,
       vdd => vdd
       vss => vss
    );
na2 x1 21 ins : na2 x1
    port map (
        i0 => not_statmachine_current_s(6),
        i1 => not_statmachine_current_s(4),
        nq => na2_x1_21_sig,
        vdd => vdd,
```

```
vss => vss
   );
no2 x1 12 ins : no2 x1
   port map (
      i0 => not aux9,
      i1 => not aux0,
      nq \Rightarrow no2 \times 1 \cdot 12 \cdot sig,
      vdd => vdd
      vss => vss
   );
change_0_ins : oa2a22_x2
   port map (
      i0 \Rightarrow no2 \times 1 \cdot 12 \cdot sig,
      i1 \Rightarrow na2 x1 21 sig,
      i2 => statmachine current s(4),
      i3 = no2 x1_11_sig,
      vdd => vdd
      vss => vss
   );
no2 x1 13 ins : no2 x1
   port map (
      i0 => not_aux9,
      i1 => not aux0,
      nq => no2 x1 13 sig,
      vdd => vdd,
      vss => vss
   );
change 1 ins : ao22 x2
   port map (
      i0 => statmachine current s(4),
      i1 => statmachine current s(5),
      i2 \Rightarrow no2_x1_13_sig,
      q \Rightarrow change(1),
      vdd => vdd
      vss => vss
   );
output 0 ins : no3 x1
   port map (
      i0 => not_aux0,
      i1 =  not aux8,
      i2 =  not_aux4,
      nq => output(0),
      vdd => vdd,
      vss => vss
   );
output 1 ins : no4 x4
   port map (
      i1 => not_aux1,
      i0 => not_input(2),
      i2 =  not aux4,
      i3 \Rightarrow input(0),
      nq => output(1),
      vdd => vdd
      vss => vss
   );
dmbk_buf_not_statmachine_current_s_2 : buf_x4
```

```
port map (
      i => not_statmachine_current_s(2),
         => mbk buf not statmachine_current_s(2),
      vdd => vdd
      vss => vss
   );
mbk buf not statmachine current s 0 : buf x2
   port map (
      i
          => not statmachine current s(0),
         => mbk buf not statmachine current s(0),
      vdd => vdd
      vss => vss
   );
statmachine current s 0 ins scan 0 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow oa22 \times 2 siq
      i1 => scanin,
      q => statmachine current s(0),
      vdd => vdd,
      vss => vss
   );
statmachine current s 1 ins scan 1 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 =  noa2ao222 x1 sig,
      i1 => statmachine_current_s(0),
         => statmachine current s(1),
      vdd => vdd
      vss => vss
   );
statmachine current s 2 ins scan 2 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow oa22 \times 2 3 \text{ sig,}
      i1 => statmachine current s(1),
         => statmachine current s(2),
      vdd => vdd
      vss => vss
   );
statmachine current s 3 ins scan 3 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow oa22 \times 25 \text{ sig,}
      i1 => statmachine current s(2),
      q => statmachine current s(3),
      vdd => vdd,
      vss => vss
   );
statmachine current s 4 ins scan 4 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow na3_x1_2_sig,
```

```
i1 => statmachine current s(3),
      q => statmachine current s(4),
      vdd => vdd,
      vss => vss
   );
statmachine current s 5 ins scan 5 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow na2 \times 1 \cdot 13 \operatorname{sig}_{\bullet}
      i1 => statmachine current_s(4),
      q => statmachine current s(5),
      vdd => vdd,
      vss => vss
statmachine_current_s_6_ins_scan_6 : sff2_x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow na2 x1_16_sig
      i1 => statmachine current s(5),
      q => statmachine current s(6),
      vdd => vdd,
      vss => vss
   );
statmachine current s 7 ins scan 7 : sff2 x4
   port map (
      ck => clk,
      cmd => test,
      i0 =  oa22 x2 8 siq
      i1 => statmachine current s(6),
      q \Rightarrow statmachine current s(7),
      vdd => vdd,
      vss => vss
   );
statmachine_current_s_8_ins_scan_8 : sff2_x4
   port map (
      ck => clk,
      cmd => test,
      i0 \Rightarrow noa22 \times 1 \text{ sig},
      i1 => statmachine_current_s(7),
      q => statmachine current s(8),
      vdd => vdd
      vss => vss
   );
buf scan 9 : buf x2
   port map (
      i => statmachine_current_s(8),
         => scanout,
      q
      vdd => vdd
      vss => vss
   );
end structural;
```

testbenchs.vhd file

```
-- Entity declaration for your testbench. Don't declare any ports here
ENTITY vendingmachineos IS
END ENTITY vendingmachineos;
ARCHITECTURE testbench OF vendingmachineos IS
-- Component Declaration for the Device Under Test (DUT)
COMPONENT vendingmachineo s IS
port (
      vdd : in
                         bit;
      VSS
              : in
                        bit;
      clk
             : in
                        bit;
      input : in bit_vector(2 downto 0);
rst : in bit:
           : in
      rst
                       bit;
      output : out          bit_vector(1 downto 0);
change : out          bit_vector(1 downto 0);
      scanin : in
                       bit;
              : in
      test
                        bit;
      scanout : out
                        bit
 );
END COMPONENT vendingmachineo s;
FOR dut: vendingmachineo s USE ENTITY WORK.vendingmachineo s (structural);
-- Inputs
                 : bit := '0';
SIGNAL clk
SIGNAL rst : bit := '1';
                : bit := '1';
SIGNAL vdd
SIGNAL vss
                : bit := '0';
SIGNAL input : bit_vector(2 Downto 0) := "101";
SIGNAL scanin : bit := '0';
                : bit := '0';
SIGNAL test
SIGNAL scanout : bit := '0';
-- Outputs
               : bit_vector(1 Downto 0);
SIGNAL change
SIGNAL output : bit_vector(1 Downto 0);
-- Constants and Clock period definitions
constant clk period : time := 1000 ns;
constant sequence: bit_vector := "0011111011011100100111100";
BEGIN
      dut: vendingmachineo s PORT MAP (vdd, vss, clk, input, rst, output, change,
scanin, test, scanout);
     clk process :process
   begin
        clk <= '0';
        wait for clk period/2;
        clk <= '1';
        wait for clk_period/2;
   end process;
   stim proc: PROCESS IS
BEGIN
      test <= '1';
      for i In 0 to sequence'length-1 loop
      wait for clk period; -- Leave time for the output to stabilize
      if i>=4 then -- Assert condition
      Assert scanout=sequence(i-4)
      Report "scanout does not follow scan in"
      Severity error;
      end if;
      scanin <= sequence(i); -- scanin changes on the next wait</pre>
```

```
end loop;
     test <= '0';
     WAIT FOR clk period; --For the output to be stable
     ASSERT change = "00" and output = "00"
     REPORT "Reset error"
     SEVERITY error;
     rst <= '0';
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "000";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "011";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "01"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "001";
     WAIT FOR clk_period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "010";
     WAIT FOR clk period;
     ASSERT change = "00" and output = "00"
     REPORT "Outputs error"
     SEVERITY error;
     input <= "100";
     WAIT FOR clk_period;
     ASSERT change = "01" and output = "10"
     REPORT "Outputs error"
     SEVERITY error;
end process;
```

makefile

```
#To run this makefile please type the "make" command#
all: vendingmachinea.vbe \
     vendingmachinej.vbe \
     vendingmachinem.vbe \
     vendingmachineo.vbe \
     vendingmachiner.vbe \
     syf \
     vendingmachinea o.vbe \
     vendingmachinej o.vbe \
     vendingmachinem o.vbe \
     vendingmachiner o.vbe \
     vendingmachineo o.vbe \
     boom \
     vendingmachinea o.vst \
     vendingmachinej_o.vst \
     vendingmachinem o.vst \
     vendingmachiner o.vst \
     vendingmachineo o.vst \
     booq \
     vendingmachinea l.xsc \
     vendingmachinej l.xsc \
     vendingmachinem l.xsc \
     vendingmachiner_l.xsc \
     vendingmachineo l.xsc \
     loon \
     vendingmachinea labs.vbe \
     vendingmachinej labs.vbe \
     vendingmachinem labs.vbe \
     vendingmachiner labs.vbe \
     vendingmachineo labs.vbe \
     flatbeh \
     proof \
     clean \
     credits
     @echo "-- Done, All Good --"
#----#
vendingmachinea.vbe: vendingmachine.fsm
     @echo " Encoding Synthesis -> vendingmachinea.vbe"
     syf -CEV -a vendingmachine
vendingmachinej.vbe: vendingmachine.fsm
     @echo " Encoding Synthesis -> vendingmachinej.vbe"
     syf -CEV -j vendingmachine
vendingmachinem.vbe: vendingmachine.fsm
     @echo " Encoding Synthesis -> vendingmachinem.vbe"
     syf -CEV -m vendingmachine
vendingmachineo.vbe: vendingmachine.fsm
     @echo " Encoding Synthesis -> vendingmachineo.vbe"
     syf -CEV -o vendingmachine
vendingmachiner.vbe: vendingmachine.fsm
     @echo " Encoding Synthesis -> vendingmachiner.vbe"
     syf -CEV -r vendingmachine
```

```
syf:
     mkdir ./SYF
     cp *.vbe ./SYF
     cp *.enc ./SYF
#-----#
vendingmachinea o.vbe: vendingmachinea.vbe
     @echo "[BOOM] Boolean optimizing -a -> $@"
     boom -V -d 50 vendingmachinea.vbe vendingmachinea o.vbe >
vendingmachinea.out
vendingmachinej o.vbe: vendingmachinej.vbe
     @echo "[BOOM] Boolean optimizing -j -> $@"
     boom -V -d 50 vendingmachinej.vbe vendingmachinej o.vbe >
vendingmachinej.out
vendingmachinem_o.vbe: vendingmachinem.vbe
     @echo "[BOOM] Boolean optimizing -m -> $@"
     boom -V -d 50 vendingmachinem.vbe vendingmachinem o.vbe >
vendingmachinem.out
vendingmachineo o.vbe: vendingmachineo.vbe
     @echo "[BOOM] Boolean optimizing -o -> $@"
     boom -V -d 50 vendingmachineo.vbe vendingmachineo o.vbe >
vendingmachineo.out
vendingmachiner o.vbe: vendingmachiner.vbe
     @echo "[BOOM] Boolean optimizing -r -> $@"
     boom -V -d 50 vendingmachiner.vbe vendingmachiner o.vbe >
vendingmachiner.out
boom:
     mkdir ./BOOM
     cp * o.vbe ./BOOM
     mv *.out ./BOOM
  -----#
vendingmachinea o.vst : vendingmachinea o.vbe
     @echo "[BOOG] Library Mapping -a -> $@ "
     boog -l paramfile vendingmachinea o
vendingmachinej o.vst : vendingmachinej o.vbe
     @echo "[BOOG] Library Mapping -j -> $@ "
     boog -l paramfile vendingmachinej o
vendingmachinem o.vst : vendingmachinem o.vbe
     @echo "[BOOG] Library Mapping -m -> $@ "
     boog -l paramfile vendingmachinem o
vendingmachineo o.vst : vendingmachineo o.vbe
     @echo "[BOOG] Library Mapping -o -> $@ "
     boog -l paramfile vendingmachineo o
vendingmachiner o.vst : vendingmachiner o.vbe
     @echo "[BOOG] Library Mapping -r -> $@ "
     boog -l paramfile vendingmachiner o
boog:
     mkdir ./BOOG
     cp *.vst ./BOOG
     cp *.xsc ./BOOG
```

```
#----#
vendingmachinea l.xsc : vendingmachinea o.vst
     @echo "[LOON] Netlist optimizing -a -> $@ "
     loon vendingmachinea o vendingmachinea l paramfile > vendingmachinea l.out
vendingmachinej l.xsc : vendingmachinej o.vst
     @echo "[LOON] Netlist optimizing -j -> $@ "
     loon vendingmachinej o vendingmachinej l paramfile > vendingmachinej l.out
vendingmachinem l.xsc : vendingmachinem o.vst
     @echo "[LOON] Netlist optimizing -m -> $@ "
     loon vendingmachinem o vendingmachinem 1 paramfile > vendingmachinem 1.out
vendingmachineo l.xsc : vendingmachineo o.vst
     @echo "[LOON] Netlist optimizing -o -> $@ "
     loon vendingmachineo o vendingmachineo l paramfile > vendingmachineo l.out
vendingmachiner l.xsc : vendingmachiner o.vst
     @echo "[LOON] Netlist optimizing -r -> $@ "
     loon vendingmachiner o vendingmachiner 1 paramfile > vendingmachiner 1.out
loon:
     mkdir ./LOON
     cp * l.vst ./LOON
     cp * l.xsc ./LOON
     mv *.out ./LOON
#-----#
vendingmachinea labs.vbe : ./LOON/vendingmachinea l.vst
     @echo "[FLATBEH] Netlist checking -a -> $@ "
     flatbeh vendingmachinea l
vendingmachinej labs.vbe : ./LOON/vendingmachinej l.vst
     @echo "[FLATBEH] Netlist checking -j -> $@
     flatbeh vendingmachinej l
vendingmachinem labs.vbe : ./LOON/vendingmachinem l.vst
     @echo "[FLATBEH] Netlist checking -m -> $@ "
     flatbeh vendingmachinem l
vendingmachineo labs.vbe : ./LOON/vendingmachineo l.vst
     @echo "[FLATBEH] Netlist checking -o -> $@ "
     flatbeh vendingmachineo l
vendingmachiner labs.vbe : ./LOON/vendingmachiner l.vst
     @echo "[FLATBEH] Netlist checking -r -> $@ "
     flatbeh vendingmachiner l
flatbeh:
     mkdir ./FLATBEH
     cp * labs.vbe ./FLATBEH
#-----#
proof:
     @echo "[PROOF] Netlist checking -a -> $@ "
     proof -d ./SYF/vendingmachinea ./FLATBEH/vendingmachinea labs
     @echo "[PROOF] Netlist checking -j -> $@ "
     proof -d ./SYF/vendingmachinej ./FLATBEH/vendingmachinej labs
     @echo "[PROOF] Netlist checking -m -> $@ "
     proof -d ./SYF/vendingmachinem ./FLATBEH/vendingmachinem labs
     @echo "[PROOF] Netlist checking -o -> $@ "
```

```
proof -d ./SYF/vendingmachineo ./FLATBEH/vendingmachineo labs
     @echo "[PROOF] Netlist checking -r -> $@ "
     proof -d ./SYF/vendingmachiner ./FLATBEH/vendingmachiner labs
#----#
credits:
     @echo ""
     @echo "[CREDITS]"
     @echo "Mohamed El Ghamry"
     @echo "Faculty of Engineering Student"
     @echo "Ain Shams University"
     @echo "Computer Engineering and Software Systems Department"
     @echo ""
#-----#
clean :
     rm -f *.vbe *.enc *.vst *.xsc *~
     @echo "Erase all the unnecessary files generated by the makefile"
delete:
    rm -rf SYF
    rm -rf BOOM
    rm -rf BOOG
     rm -rf LOON
     rm -rf FLATBEH
     @echo "Erase all the folders generated by the makefile"
```

Please note that all source codes and output files are included in the project folder.