Multiple Choice Questions

Fourier series

Tourier seri	
Question 1	Fourier coefficient a_0 in the Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ of $f(x) = e^{-x}$; $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$ is
Option A	$\frac{1}{\pi} \Big(1 - e^{-2\pi} \Big)$
Option B	$\frac{1}{2\pi} \left(1 - e^{2\pi} \right)$
Option C	$\frac{2}{\pi}(e^{-2\pi}-1)$
Option D	$\frac{1}{\pi} \Big(1 + e^{2\pi} \Big)$
Option E	
Correct Answer	A
Question 2	Fourier coefficient a_0 in the Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ of $f(x) = x \sin x$; $0 \le x \le 2\pi$ and $f(x+2\pi) = f(x)$ is
Option A	+2
Option B	0
Option C	-2
Option D	-4
Option E	
Correct Answer	С
	$f(x) = x$, $-\pi \le x \le \pi$ and period is 2π . Fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then Fourier coefficient b_1 is

Option A	2
Option B	-1
Option C	0
Option D	$\frac{2}{\pi}$
Option E	
Correct Answer	A
Question 4	For Half range cosine series of $f(x) = \sin x$, $0 \le x \le \pi$ and period is 2π . Fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$, then Fourier coefficient a_0 is
Option A	4
Option B	2
Option C	$\frac{2}{\pi}$
Option D	$\frac{4}{\pi}$
Option E	
Correct Answer	D

Question 5 Fourier series representation of periodic function

_	
	$f(x) = \pi^2 - x^2$, $-\pi \le x \le \pi$ is $\pi^2 - x^2 = \frac{2\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$, then
	value of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots =$
Option A	$\frac{\pi^2}{3}$
Option B	$\frac{\pi^2}{4}$
Option C	$\frac{\pi^2}{4}$ $\frac{\pi^2}{6}$
Option D	$\frac{\pi^2}{12}$
Option E	
Correct Answer	D
Question 6	The value of a_n in the Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ of
Quio si2022 0	$f(x) = \begin{cases} Cos x: -\pi < x < 0 \\ -Cosx: 0 < x < \pi \end{cases} $ is
Option A	$((-1)^n) / n$
Option B	1/ n
Option C	$((-1)^n)/(n^2-1)$
Option D	0
Option E	
Correct Answe	r D
Question 7	The Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}; 0 \le x \le \pi \end{cases}$ Contains only
Option A	Sine term
Option B	Cosine term
Option C	Sine and cosine term

Option D	None of these
Option E	
Correct Answer	В
Question 8	The graph of odd function is symmetric about
Option A	Opposite quadrant
Option B	x-axis
Option C	y-axis
Option D	none of these
Option E	
Correct Answer	A
Question 9	If $f(x)=x\sin x$ in the interval $0 \le x \le 2\pi$ then the fourier coeffitient $a_{0/2}$ in $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is
Option A	-2
Option B	-1
Option C	0
Option D	π
Option E	
Correct Answer	В
Question 10	An example for a function which neither even nor odd
Option A	xsinx
Option B	e^{ax}
Option C	cosx
Option D	None of these

Option E	
Correct Answer	В
	If $f(x) = 2x - x^2$ in $0 < = x < = 3$ then fourier coeffitient a_0 in
Question 11	$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) $ is
Option A	1
Option B	0
Option C	π
Option D	3
Option E	
Correct Answer	В
Question 12	The fourier co-effitient a_n in $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ for $f(x) = x^2$ in the interval $-1 \le x \le 1$ is
Option A	$(-1)^n 4$
Option B	$ \frac{n^2\pi^2}{(-1)^{n+1}4} \\ \frac{n^2\pi^2}{4} $
Option C	$\begin{array}{c c} \frac{4}{n^2\pi^2} \\ 4 \end{array}$
Option D	$-\frac{4}{n^2\pi^2}$
Option E	
Correct Answer	A
Question13	If $f(x) = \sqrt{2} \sin \frac{x}{2}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } a_0 \text{ is}$
A	$\frac{2}{4\sqrt{2}}$
В	$\frac{\pi}{2\sqrt{2}}$
С	$\frac{\pi}{-\frac{4\sqrt{2}}{\pi}}$
	π

D	
ט	$\frac{4\sqrt{3}}{2}$
	$\frac{1}{\pi^2}$
E	π .
Correct Answer	A
Question 14	$f(x) = \begin{cases} -\pi & 0 < x < \pi \\ (x - \pi) & \pi < x < 2\pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented
	by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_0 is
A	$\frac{3\pi}{2}$
В	$\frac{\pi}{2}$
С	$-\frac{\pi}{2}$
D	au
E	
Correct Answer	С
Question 15	
	$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ e^{a\pi} & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_0 is
	by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_0 is
A	$\frac{e^{a\pi}-1}{a\pi}$
В	$\frac{1-e^{a\pi}}{a\pi}$
С	$\frac{e^{-a\pi}-1}{a\pi}$
D	$\frac{e^{a\pi} + 1}{a\pi}$
E	un
Correct Answer	A
Question 16	Λ
Question 10	$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \cos x & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } a_1 \text{ is}$
	$\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_1 is
A	$\frac{1}{2}$
В	-1

F	
С	$-\frac{1}{2}$
D	1
E	
Correct Answer	A
Question 17	$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \cos x & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by
	$\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } a_0 \text{ is}$
A	0
В	1
С	2
D	3
E	
Correct Answer	A
Question 18	
	$f(x) = \begin{cases} \sin x & -\pi < x < 0 \\ \cos x & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented
	by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_0 is
A	$\frac{\pi}{3}$
В	$\frac{\pi}{4}$
С	$-\frac{2}{\pi}$
D	$\frac{3}{\pi}$
Е	
Correct Answer	С
Question 19	$f(x) = \begin{cases} \pi + x & -\pi < x < 0 \\ \pi - x & 0 < x < \pi \end{cases}$ is an even and $f(x+2\pi) = f(x)$ then a_0 is
A	π
В	$\frac{\pi}{2}$
С	$\frac{\pi}{3}$
D	$\frac{\pi}{4}$
Е	
Correct Answer	A
Question 20	$f(x) = \begin{cases} \cos x & -\pi < x < 0 \\ -\cos x & 0 < x < \pi \end{cases}$ and $f(x+2\pi) = f(x)$ which is odd function then b_1
	· · · · · · · · · · · · · · · · · · ·

A	П
В	0
С	- π
D	1
Е	
Correct Answer	В
Question 21	$f(x) = \cosh ax - \pi < x < \pi$, & f(x+2 \pi) = f(x) then a ₀ is
A	$\frac{\sinh a\pi}{a\pi}$
В	$\frac{2\sinh a\pi}{a\pi}$
С	$\frac{\sinh a\pi}{a^2\pi^2}$
D	$\frac{2\sinh a\pi}{a^2\pi^2}$
Е	
Correct Answer	В
Question 22	$f(x) = \pi^2 - x^2$ $-\pi < x < \pi$, & and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is
	represented by $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then a_0 is
A	$\left \frac{4\pi^2}{3} \right $
В	$\frac{4\pi}{3}$
С	$-\frac{3\pi^2}{4}$
D	$\frac{3\pi}{4}$
Е	
Correct Answer	A
Question23	$f(x) = x - x^3$ $-\pi < x < \pi$ & and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented
	by $\frac{\mathbf{a}_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then \mathbf{a}_0 is
A	$\pi - \frac{\pi^3}{2}$
В	$\frac{\pi^3}{2} - \pi$
С	$-\pi + \frac{\pi^3}{2}$

π^3
$-\pi - \frac{\pi^3}{2}$
A
$f(x) = x^2$ $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by
$\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } a_0 \text{ is}$
$\frac{2\pi^2}{3}$
$\frac{2\pi^2}{3}$ $\frac{\pi^2}{3}$
$\frac{3\pi^2}{2}$
$\frac{3\pi^2}{2}$ $\frac{\pi^2}{2}$
A
$f(x) = x - \pi < x < \pi$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by
$f(x) = x - \pi < x < \pi$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by
$\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } b_1 \text{ is}$
1
-1
2
-2
С
$f(x) = \begin{cases} \pi x & 0 \le x \le 1\\ \pi (2 - x) & 1 \le x \le 2 \end{cases}$ and Fourier series of f(x) is represented by
$\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ then a_0 is
π
$-\pi$
π
$\frac{\pi}{2}$
2
$\frac{-}{\pi}$
<i>''</i>
Λ
A
$f(x) = 4 - x^2$ $0 < x < 2$, period 2 and Fourier series of $f(x)$ is represented by
$\frac{a_0}{2} + \sum \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}\right) \text{ then } a_0 \text{ is}$

A	$\frac{4}{}$
	$\left \frac{4}{3} \right $
В	16
	$\overline{3}$
С	
	$\left \begin{array}{c} 9\\4 \end{array} \right $
D	
	$\frac{3}{4}$
E	4
Correct Answer	В
Question 28	
	$f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}, period 10 \text{ and Fourier series of } f(x) \text{ is represented by}$ $\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}) \text{ then } a_0 \text{ is}$
	$\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}) \text{ then } a_0 \text{ is}$
A	1
B C	5 3
D	4
E	
Correct Answer	С
Question 30	[0 -5 < x < 0]
	$f(x) = \begin{cases} 3 & 0 < x < 5 \end{cases}$, period 10 and Fourier series of f(x) is represented by
	$f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}, period 10 \text{ and Fourier series of } f(x) \text{ is represented by}$ $\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}) \text{ then } a_n \text{ is}$
A	0
В	1
С	2
D E	3
Correct Answer	A
Question 31	$\begin{bmatrix} 0 & 5 < x < 0 \end{bmatrix}$
	$f(x) = \begin{cases} 0 & -3 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$, period 10 and Fourier series of f(x) is represented by
	$f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}, period 10 \text{ and Fourier series of } f(x) \text{ is represented by}$ $\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}) \text{ then } b_n \text{ is}$
A	$\frac{3(1-\cos n\pi)}{2}$
В	$n\pi$ $3(1+\cos n\pi)$
	$\frac{3(1+\cos n\pi)}{n\pi}$
С	$3(1-\sin n\pi)$
	$n\pi$
D	$3(1+\sin n\pi)$
	$n\pi$
E	

Correct Answer A Question 32 Fourier series expansion of $x^2 = \frac{l^2}{3} + \frac{4l^2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^2}{n^2} \cos \frac{n\pi x}{l} \text{ then } \frac{\pi^2}{12} =$	
=	
$x^2 = \frac{1}{3} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos \frac{n}{l} = \frac{1}{12}$	
$3 \mathcal{N} \qquad n \qquad i \qquad 12$	
A 1 1 1 1	
$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \dots$	
$1^2 \ 2^2 \ 3^2 \ 4^2$	
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C 1 1 1 1	
C $\frac{1}{2^2} \cdot \frac{1}{4^2} + \frac{1}{6^2} + \dots$ D $\frac{1}{1^2} \cdot \frac{1}{3^2} + \frac{1}{5^2} \cdot \frac{1}{7^2} + \dots$	
D 1 1 1 1	
$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$	
E	
Correct Answer A	
Question 33 Fourier series expansion of	
$x^{2} = \frac{l^{2}}{3} + \frac{4l^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{2}}{n^{2}} \cos \frac{n\pi x}{l} \text{ then } \frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}} - \frac{1}{4^{2}} + \dots =$	
$\left \begin{array}{c} A \\ \hline \end{array} \right $	
8	
$ \begin{array}{c c} A & \frac{\pi^2}{8} \\ B & \frac{\pi^2}{12} \end{array} $	
$\frac{1}{12}$	
$\frac{\pi}{2}$	
$ \begin{array}{ccc} C & & \frac{\pi^3}{3} \\ D & & \frac{\pi^2}{3} \end{array} $	
$\frac{1}{4}$	
E	
Correct Answer B	
Question 34	
$f(x) = \begin{cases} 1 & -1 < x < 0 \\ \cos \pi x & 0 < x < 1 \end{cases}$ period 2 and Fourier series of f(x) is represented to the following period 2 and Fourier series of f(x) is represented to the following period 2.	resented by
$(\cos n\lambda - 0 < \lambda < 1)$	
$\frac{a_0}{a_0} + \sum (a_n \cos \frac{n\pi x}{a_0} + b_n \sin \frac{n\pi x}{a_0})$ then a_0 is	
$\frac{a_0}{2} + \sum (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}) \text{ then } a_0 \text{ is}$	
Α 1	
B -1 C 2	
D -2	
E -2	
Correct Answer A	
Question 35	
$f(x) = \begin{cases} f(x) = \begin{cases} 1 & 0 < x < 2 \end{cases}$ period 4 and Fourier series of f(x) is repre	esented by
$f(x) = \begin{cases} 1 & -2 < x < 0 \\ -1 & 0 < x < 2 \end{cases} $ period 4 and Fourier series of f(x) is repre $\frac{a_0}{2} + \sum \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}\right) \text{ then } a_0 \text{ is}$	
l l l l	

A	1
В	0
С	2
D	-2
E	
Correct Answer	В
Question 36	
Question 30	$f(x) = \begin{cases} 1 & -1 < x < 0 \\ \cos \pi x & 0 < x < 1 \end{cases}$ period 2 & Fourier series of f(x) is represented by
	$\frac{a_0}{2} + \sum \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}\right) \text{ then b}_1 \text{ is}$
A	$-\frac{2}{\pi}$
В	$\frac{2}{\pi}$
С	$\frac{3}{\pi}$
D	$\frac{2\pi}{3}$
Е	
Correct Answer	A
Question 37	$\begin{array}{c} 1 & 2 < r < 0 \end{array}$
C	$f(x) = \begin{cases} 1 & -2 < x < 0 \\ -1 & 0 < x < 2 \end{cases}$ period 4 & Fourier series of f(x) is represented by
	$\frac{a_0}{2} + \sum \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}\right) \text{ then } a_0 \text{ is}$
A	1
В	-1
С	0
D	2
Е	
Correct Answer	С
Question 38	$f(x) = \sin x$ $0 \le x \le \pi$, and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented by
	$\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ then } a_0 \text{ is}$
A	$\left \begin{array}{c} \frac{4}{\pi} \end{array} \right $
В	π
	$\left \frac{\kappa}{4} \right $
С	$\frac{2}{2}$
	π
D	
	$\frac{\pi}{2}$
	2
E	
Correct Answer	A

Question 39	
	$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \cos x & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Fourier series of $f(x)$ is represented
	by $\frac{\mathbf{a}_0}{2} + \sum (a_n \cos nx + b_n \sin nx)$ then \mathbf{b}_1 is
A	0
В	1
С	2
D	3
Е	
Correct Answer	A

Question 40	For the Fourier Series $\frac{a_0}{2} + \sum (a_n \cos nx + b_n \sin nx) \text{ of the}$ $\text{function } f(t) = \begin{cases} 0 & \text{if } -2 < t < -1 \\ k & \text{if } -1 < t < 1 \\ 0 & \text{if } 1 < t < 2 \end{cases}$ the value of a_0 is
Option A	k
Option B	2k/3
Option C	k/4
Option D	k /2
Option E	
Correct Answer	D