Repaso Regresión

(lineal y logística)

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/python-linear-regression-4.png

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/python-linear-regression-4.png

Regresión lineal con una variable.

$$y = mx + n$$

Regresión lineal múltiple.

$$y = n + \sum_{x_i \in x} m_i x_i$$

https://sds-platform-private.s3-us-east-2.amazonaws.com/uploads/ 37_blog_image_1.png

Función logística (sigmoide)

https://cdn-images-1.medium.com/max/1600/1*RqXFpiNGwdiKBWyLJc_E7g.png

Árboles de decisión

(clasificación y regresión)

Clima	Temperatura	Humedad	Viento	Jugar?
soleado	alta	alta	F	No
soleado	alta	alta	V	No
nublado	alta	alta	F	Si
Iluvioso	Agradable	alta	F	Si
Iluvioso	frio	normal	F	Si
Iluvioso	frio	normal	V	No
nublado	frio	normal	V	Si
soleado	Agradable	alta	F	No
soleado	frio	normal	F	Si
lluvioso	Agradable	normal	F	Si
soleado	Agradable	normal	V	Si
nublado	Agradable	alta	V	Si
nublado	alta	normal	F	Si
Iluvioso	Agradable	alta	V	No

Clima	Temperatura	Humedad	Viento	Jugar?
soleado	alta	alta	F	No
soleado	alta	alta	V	No
nublado	alta	alta	F	Si
lluvioso	Agradable	alta	F	Si
lluvioso	frio	normal	F	Si
Iluvioso	frio	normal	V	No
nublado	frio	normal	V	Si
soleado	Agradable	alta	F	No
soleado	frio	normal	F	Si
Iluvioso	Agradable	normal	F	Si
soleado	Agradable	normal	V	Si
nublado	Agradable	alta	V	Si
nublado	alta	normal	F	Si
Iluvioso	Agradable	alta	V	No

¿Cómo elijo la variable para el "corte"?

Árboles para clasificación

Entropía

$$H(S) = -\sum_{clases} p_i log_2(p_i)$$

Ganancia de información

$$IG = H(S) - \sum \frac{|S_v|}{|S|} H(s_v)$$

 $GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$

 $SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$

Variables numéricas

https://www.researchgate.net/profile/Bart_Gajderowicz/publication/248703533/figure/fig8/AS:644673399975938@1530713524260/Decision-tree-classification-with-2-numeric-data-attributes-for-sub-classes-of-LC-A.png

Árboles para regresión

Regresión

https://scikit-learn.org/stable/_images/sphx_glr_plot_tree_regression_0011.png

Elegir variable split

https://scikit-learn.org/stable/_images/sphx_glr_plot_tree_regression_0011.png

Ejercicios

1.4.	Si un algoritmo alcanza un 100% de efectividad en el set de entrenamiento, entonces se garantiza que la hipótesis respectiva tendrá un alto grado de generalidad para clasificar nuevas instancias.

1.9. Si un modelo lineal y otro cuadrático modelan igualmente bien los datos, uno debería preferir	el cuadrático.

1.4.	El algoritmo visto en clases para explorar el espacio de hipótesis de un árbol de decisión garantiza encontrar el árbol que presenta el mejor rendimiento posible en el set de entrenamiento.

.11. Sin contar los nodos hoja, un árbol de decisión que es entrenado con un set de N atributos puede tener como máximo N nodos en el árbol resultante.	r

a)	¿Со	omo	se p	odría	ı reali	zar cl	asifica	ación	con u	ın árl	ool de	e deci	sión,	si falta	a el va	lor de	algun	a de l	as din	nension	es del
						pto.)															

e) ¿En qué situaciones es preferible utilizar el radio de ganancia por sobre la ganancia d	e información?

a)	Considere un problema de clasificación sobre variables categóricas. Extienda el algoritmo de construcción de los árboles de decisión basado en la ganancia de información, para que se puedan realizar tests sobre dos variables de manera simultánea (2 ptos.).

