C'est une leçon de type « large », c'est-à-dire une leçon de synthèse.

On se place dans le plan affine euclidien \mathcal{P} .

On note $\overrightarrow{u} \cdot \overrightarrow{v}$ le produit scalaire des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Si A, B sont deux points de \mathcal{P} , on notera d(A, B), AB ou $\|\overrightarrow{AB}\|$ la distance de A à B, [AB] le segment d'extrémités A et B et pour $A \neq B$, (AB) la droite passant par A et B.

Si A est un point de \mathcal{P} et \mathcal{D} une droite de \mathcal{P} , on note :

$$d(A, \mathcal{D}) = \inf_{M \in \mathcal{D}} AM$$

la distance de A à \mathcal{D} . En désignant par H la projection orthogonale de A sur \mathcal{D} , on a $d(A, \mathcal{D}) = AH$ (figure 3.1). On a $d(A, \mathcal{D}) = 0$ si, et seulement si, $A \in \mathcal{D}$.

Fig. 3.1 – Projection orthogonale

On rappelle que le barycentre d'une famille de points pondérés $\{(A_i, \alpha_i); 1 \le i \le n\}$, la somme $\sum_{i=1}^n \alpha_i$ étant non nulle, est le point défini par :

$$\sum_{i=1}^{n} \alpha_i \overrightarrow{GA_i} = \overrightarrow{0}$$

Ce point G est aussi défini par :

$$\forall M \in \mathcal{P}, \ \left(\sum_{i=1}^{n} \alpha_i\right) \overrightarrow{MG} = \sum_{i=1}^{n} \alpha_i \overrightarrow{MA_i}$$

3.1 Définition par directrice, foyer et excentricité

On se donne une droite \mathcal{D} , un point $F \notin \mathcal{D}$ et un réel e > 0.

À l'origine les sections coniques ont été définies dans l'espace comme intersection d'un plan avec un cône, d'où leur nom.

Nous donnons dans ce paragraphe une première définition métrique des coniques.

Définition 3.1 On appelle conique de directrice \mathcal{D} , de foyer F et d'excentricité e l'ensemble :

$$\Gamma = \{ M \in \mathcal{P} \mid d(M, F) = e \cdot d(M, \mathcal{D}) \}$$

- pour e < 1, on dit que Γ est une ellipse;
- pour e = 1, on dit que Γ est une parabole;
- pour e > 1, on dit que Γ est une hyperbole.

La distance $d(M, \mathcal{D})$ étant nulle si, et seulement si $M \in \mathcal{D}$, on aura $d(M, \mathcal{D}) > 0$ pour tout $M \in \Gamma$ puisque F n'est pas sur \mathcal{D} et on peut écrire que :

$$\Gamma = \left\{ M \in \mathcal{P} \setminus \mathcal{D} \mid \frac{d(M, F)}{d(M, \mathcal{D})} = e \right\}$$

ou encore, en désignant par H la projection orthogonale d'un point M du plan sur \mathcal{D} :

$$\Gamma = \left\{ M \in \mathcal{P} \setminus \mathcal{D} \mid \frac{MF}{MH} = e \right\}$$

On peut aussi dire que Γ est une ligne de niveau de la fonction $M \mapsto \frac{MF}{MH}$ définie sur $\mathcal{P} \setminus \mathcal{D}$.

On dit que la perpendiculaire Δ à \mathcal{D} passant par F est l'axe focal de la conique Γ (le mot focal signifie « qui est relatif au(x) foyers(s) »).

Le point K à l'intersection de \mathcal{D} et Δ est le projeté orthogonal de F sur \mathcal{D} .

La distance d = KF est non nulle et le réel p = ed est appelé paramètre de la conique.

Dans ce qui suit, on se donne une conique Γ de directrice \mathcal{D} , de foyer F et d'excentricité e et Δ est son axe focal.

Lemme 3.1 L'axe focal est un axe de symétrie de la conique.

Démonstration. En effet, on notant σ la symétrie orthogonale par rapport à Δ , on a $\sigma(F) = F$ et en remarquant que pour $M \in \mathcal{P}$, la projection orthogonale de $M' = \sigma(M)$ sur \mathcal{D} est $H' = \sigma(H)$ où H est la projection orthogonale sur \mathcal{D} de M, on a :

$$\frac{d\left(\sigma\left(M\right),F\right)}{d\left(\sigma\left(M\right),\mathcal{D}\right)} = \frac{\sigma\left(M\right)\sigma\left(F\right)}{\sigma\left(M\right)\sigma\left(H\right)} = \frac{MF}{MH}$$

et en conséquence M est sur Γ si, et seulement si, $\sigma(M)$ est sur Γ (figure 3.2).

Le résultat qui suit nous confirme qu'une conique n'est pas vide.

Fig. 3.2 – L'axe focal est une axe de symétrie

Théorème 3.1

- 1. L'intersection d'une parabole Γ avec son axe focal est réduite à un point qui est le milieu du segment [FK].
- 2. L'intersection d'une ellipse ou d'une hyperbole Γ avec son axe focal est réduite aux deux points A, A' où A est le barycentre du système de points pondérés $\{(F,1), (K,e)\}$ et A' le barycentre de $\{(F,1), (K,-e)\}$.

Démonstration.

- 1. On suppose que Γ est une parabole, c'est-à-dire que e=1. Dire $M \in \Delta \cap \Gamma$ équivaut à dire que $M \in \Delta$ et $MF = d(M, \mathcal{D})$, ce qui équivaut à $M \in \Delta$ et MF = MK (les points de Δ se projettent sur K), ce qui revient à dire que M est à l'intersection de la médiatrice de [KF] et de Δ , c'est donc le milieu de [KF].
- 2. On suppose que $e \neq 1$. Dire $M \in \Delta \cap \Gamma$ équivant à dire que $M \in \Delta$ et $MF^2 = e^2MH^2$, ce qui équivant à :

$$\left(\overrightarrow{MF} - e\overrightarrow{MK}\right) \cdot \left(\overrightarrow{MF} + e\overrightarrow{MK}\right)$$

les points M,K,F étant alignés (ils sont tous sur Δ), ce qui équivaut à $\overrightarrow{MF} + e\overrightarrow{MK} = \overrightarrow{0}$ ou $\overrightarrow{MF} - e\overrightarrow{MK} = \overrightarrow{0}$ (de manière générale, on a $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos(\overrightarrow{u},\overrightarrow{v})$ et ici $(\overrightarrow{u},\overrightarrow{v}) \equiv 0$ modulo π) encore équivalent à dire que M le barycentre de $\{(F,1),(K,e)\}$ (on a $1 + e \neq 0$) ou celui de $\{(F,1),(K,-e)\}$ (on $1 - e \neq 0$).

Le résultat suivant nous donne au autre définition de la parabole comme lieu géométrique. On rappelle que si \mathcal{C} est un cercle de centre O et de rayon R>0 et \mathcal{D} une droite, on a alors, en notant $d=d\left(O,\mathcal{D}\right)$:

$$C \cap D = \begin{cases} \emptyset \text{ si } d > R \\ \{H\} \text{ si } d = R \\ \{M_1, M_2\} \text{ si } d < R \end{cases}$$

où H est la projection orthogonale de O sur \mathcal{D} et $M_1 \neq M_2$ pour d < R. Le cas où cette intersection est réduite à un point est équivalent à dire que le cercle et la droite sont tangents, ce qui équivaut encore à dire que $O \notin \mathcal{D}$ et la droite \mathcal{D} est perpendiculaire à la droite (OH).

Lemme 3.2 La parabole Γ de directrice \mathcal{D} et foyer F est aussi le lieu des centres des cercles tangents à \mathcal{D} et passant par F (figure 3.3).

Fig. 3.3 – Parabole comme lieu des centres des cercles ...

Démonstration. Si $M \in \Gamma$, la condition MF = MH nous dit alors que le cercle \mathcal{C} de centre M et de rayon MF (donc passant par F) est tangent à la droite \mathcal{D} .

Réciproquement si $M \in \mathcal{P}$ est le centre d'un cercle \mathcal{C} tangent à \mathcal{D} et passant par F, on a alors R = MF = MH et $M \in \Gamma$.

3.2 Équation réduite d'une conique

Le lemme 3.1 nous incite à prendre l'axe focal Δ pour axe des abscisses (ou des ordonnées) puisque c'est un axe de symétrie.

Théorème 3.2 Il existe un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$ dans lequel la conique Γ a pour équation :

$$(1 - e^2) x^2 + y^2 - 2 (x_F - e^2 x_K) x = e^2 x_K^2 - x_F^2$$
(3.1)

Démonstration. On se donne un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où l'origine O est sur l'axe focal Δ et est à préciser et $\overrightarrow{\imath}$ est un vecteur directeur unitaire de $\overrightarrow{\Delta}$. On note (x, y) les

coordonnées d'un point $M \in \mathcal{P}$ dans ce repère. Les coordonnées du point F sont $(x_F, 0)$ et l'équation de la droite \mathcal{D} est $x = x_K$. On a alors les équivalences :

$$(M \in \Gamma) \Leftrightarrow (MF^2 = e^2 MH^2) \Leftrightarrow ((x - x_F)^2 + y^2 = e^2 (x - x_K)^2)$$

 $\Leftrightarrow ((1 - e^2) x^2 + y^2 - 2 (x_F - e^2 x_K) x = e^2 x_K^2 - x_F^2)$

Les points d'intersection de la conique Γ avec l'axe focal sont les points $M(x,y) \in \Gamma$ tels que y=0, ce qui donne :

$$(1 - e^2) x^2 - 2 (x_F - e^2 x_K) x = e^2 x_K^2 - x_F^2$$

Pour e = 1, on obtient :

$$2(x_F - x_K) x = x_K^2 - x_F^2$$

avec $x_F \neq x_K$ puisque $F \notin \mathcal{D}$, ce qui donne :

$$x = \frac{x_F + x_K}{2}$$

et on retrouve le milieu du segment [FK] comme unique point d'intersection.

Pour $e \neq 1$, on a une équation polynomiale de degré 2 de discriminant réduit :

$$\delta = (x_F - e^2 x_K)^2 + (1 - e^2) (e^2 x_K^2 - x_F^2)$$

= $e^2 (x_F^2 + x_K^2 - 2x_F x_K) = e^2 (x_K - x_F)^2 = (ed)^2 = p^2$

et on a les deux solutions:

$$x_1 = \frac{x_F - e^2 x_K - ed}{1 - e^2}$$
 et $x_2 = \frac{x_F - e^2 x_K + ed}{1 - e^2}$

ce qui s'écrit aussi, compte tenu de $d = |x_K - x_F|$:

$$x_1 = \frac{x_F - ex_K}{1 - e}$$
 et $x_2 = \frac{x_F + ex_K}{1 + e}$

ou:

$$x_1 = \frac{x_F + ex_K}{1 + e}$$
 et $x_2 = \frac{x_F - ex_K}{1 - e}$

et on retrouve les deux points d'intersection, A barycentre de $\{(F, 1), (K, e)\}$ et A' barycentre de $\{(F, 1), (K, -e)\}$.

De ce résultat on déduit une représentation polaire de Γ .

Théorème 3.3 Dans un repère orthonormé $(F, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $\overrightarrow{\imath} = \frac{1}{FK}\overrightarrow{FK}$, la conique Γ a pour équation polaire :

$$\rho = \frac{ed}{1 + e\cos\left(\theta\right)}$$

avec $\rho \in \mathbb{R}^*$ et $\theta \in \mathbb{R}$. (figure 3.4).

Démonstration. Prenant pour origine O=F et pour premier vecteur de base $\overrightarrow{\imath}=\frac{1}{FK}\overrightarrow{FK}$, on a $x_F=0, x_K=FK=d$ et une équation cartésienne de Γ est :

$$(1 - e^2) x^2 + y^2 + 2e^2 dx - e^2 d^2 = 0.$$

Fig. 3.4 – Conique en coordonnées polaires

En posant pour $M=(x,y)\in\mathcal{P}\setminus\{F\}$ (on a $M\neq F$ pour $M\in\Gamma$), $x=\rho\cos(\theta)$ et $y=\rho\sin(\theta)$ avec $\rho>0$ et $\theta\in\mathbb{R}$, on a :

$$\begin{cases} MF = \sqrt{x^2 + y^2} = \rho \\ MH = |x_H - x| = |x_K - x| = |d - x| = |d - \rho \cos(\theta)| \end{cases}$$

et l'égalité MF=eMH équivaut à $\rho=e\left|d-\rho\cos\left(\theta\right)\right|$, soit $\rho=e\left(d-\rho\cos\left(\theta\right)\right)$ ou $\rho=-e\left(d-\rho\cos\left(\theta\right)\right)$, c'est-à-dire :

$$\rho = \frac{ed}{1 + e\cos(\theta)}$$
 ou $\rho = -\frac{ed}{1 - e\cos(\theta)}$

Réciproquement l'équation $\rho = e \left| d - \rho \cos \left(\theta \right) \right|$ entraı̂ne MF = eMH.

En désignant par Γ_1 [resp. Γ_2] la courbe d'équation polaire $\rho = \rho_1(\theta) = \frac{ed}{1 + e\cos(\theta)}$ [resp.

$$\rho = \rho_2(\theta) = -\frac{ed}{1 - e\cos(\theta)}$$
], on a $\Gamma = \Gamma_1 \cup \Gamma_2$.

En remarquant que:

$$\forall \theta \in \mathbb{R}, \ \rho_2\left(\theta + \pi\right) = -\rho_1\left(\theta\right)$$

en en déduit, en notant γ_k une paramétrisation de Γ_k , que :

$$\gamma_2(\theta + \pi) = \rho_2(\theta + \pi)(\cos(\theta + \pi), \sin(\theta + \pi))$$
$$= \rho_1(\theta)(\cos(\theta), \sin(\theta)) = \gamma_1(\theta)$$

et $\Gamma_1 = \Gamma_2$, donc $\Gamma = \Gamma_1$.

Nous allons maintenant revenir à la représentation cartésienne (3.1) en distinguant les cas e = 1 et $e \neq 1$.

3.2.1 Les paraboles

Équation réduite d'une parabole

Si Γ est une parabole, on a alors e=1 et :

$$(M \in \Gamma) \Leftrightarrow (y^2 - 2(x_F - x_K)x = (x_F - x_K)(x_F + x_K))$$

ce qui nous conduit à choisir l'origine O de sorte que $x_F = -x_K$, c'est-à-dire que O est le milieu de [FK], soit l'unique point d'intersection de Γ avec son axe focal. En prenant $\overrightarrow{\imath} = \frac{1}{OF}\overrightarrow{OF}$, on a alors $x_F = OF = \frac{KF}{2} = \frac{p}{2}$, $x_K = -x_F$ et $x_F - x_K = p$, de sorte que dans ce repère une équation de la parabole est $y^2 = 2px$.

On dit que le point O, milieu de $\left[KF\right]$, est le sommet de la parabole.

Réciproquement si Γ est une courbe d'équation $y^2=2px$ dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$ avec p>0, en remontant les calculs précédents, on vérifie que Γ est une parabole de directrice \mathcal{D} d'équation $x=-\frac{p}{2}$ et de foyer $F\left(\frac{p}{2},0\right)$. En effet, en posant $x_F=\frac{p}{2}$ et $x_K=-x_F$, on a :

$$(y^2 = 2px) \Leftrightarrow ((x - x_F)^2 + y^2 = (x - x_K)^2) \Leftrightarrow (MF = MH).$$

Cette équation nous permet un tracé de la parabole Γ dans le repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$. Avec la parité de $y \mapsto \frac{1}{2p} y^2$, on étudie cette courbe pour $y \geq 0$, puis on complète le graphe obtenu par symétrie par rapport à l'axe $\Delta = Ox$. Cette fonction est strictement croissante de \mathbb{R}^+ sur \mathbb{R}^+ avec $\frac{x}{y} \xrightarrow[y \to +\infty]{} +\infty$, on a donc une branche parabolique de direction Ox (c'est la définition). En O on a une tangente verticale. Le tracé du graphe de Γ s'en suit.

Paramétrisation et tangentes à une parabole

De cette équation cartésienne de la parabole dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, on peut déduire la paramétrisation :

$$\gamma: t \in \mathbb{R} \mapsto \left(\frac{t^2}{2p}, t\right)$$

Le vecteur dérivé $\gamma'(t)=\left(\frac{t}{p},1\right)$ ne s'annulant jamais, on déduit que la parabole Γ admet une tangente en chacun de ces points $\gamma(t_0)=\left(\frac{t_0^2}{2p},t_0\right)$, cette tangente étant dirigée par $\gamma'(t_0)=\left(\frac{t_0}{p},1\right)$. Une représentation paramétrique de cette tangente est donc :

$$\begin{cases} x = \frac{t_0^2}{2p} + \lambda \frac{t_0}{p} \\ y = t_0 + \lambda \end{cases} \lambda \in \mathbb{R}$$

Une équation cartésienne est obtenue en écrivant que :

$$\begin{vmatrix} x - \frac{t_0^2}{2p} & \frac{t_0}{p} \\ (y - t_0) & 1 \end{vmatrix} = x - \frac{t_0^2}{2p} - \frac{t_0}{p} (y - t_0) = 0$$

ce qui donne :

$$p(x - x_0) - y_0(y - y_0) = 0.$$

Cette équation cartésienne peut aussi être obtenue à partir de l'équation implicite $f(x,y) = 2px - y^2 = 0$ de Γ . La différentielle de f ne s'annulant jamais, la tangente à Γ en $M_0(x_0, y_0)$ a pour équation :

$$\frac{\partial f}{\partial x}(M_0)(x - x_0) + \frac{\partial f}{\partial y}(M_0)(y - y_0) = 0$$

soit:

$$p(x - x_0) - y_0(y - y_0) = 0.$$

Ce qui peut aussi s'écrire, compte tenu de $y_0^2 = 2px_0$:

$$px - y_0y + px_0 = 0.$$

On peut remarquer que les tangentes à une parabole ne sont jamais parallèles à l'axe focal (l'axe des abscisses) puisque une telle droite serait d'équation ax + by + c = 0 avec a = 0 et le coefficient p est strictement positif.

Si une telle tangente est parallèle à la directrice \mathcal{D} , elle est alors perpendiculaire à l'axe focal donc d'équation $x = x_0$ et $y_0 = 0$ dans l'équation ci-dessus, ce qui donne $x_0 = 0$ ($y_0^2 = 2px_0$) et M_0 est le sommet O de la parabole.

Construction à la règle et au compas d'une parabole

Des considération géométriques élémentaires nous fournissent un procédé de construction de la parabole à la règle et au compas.

Pour $H \in \mathcal{D}$ on désigne par D_H la perpendiculaire à \mathcal{D} passant par H et par D'_H la médiatrice du segment [HF] (comme $F \notin \mathcal{D}$, on a $H \neq F$). On a alors :

$$(M \in D_H \cap \Gamma) \Leftrightarrow (M \in D_H \text{ et } MF = MH) \Leftrightarrow (M \in D_H \cap D'_H)$$

L'intersection $D_H \cap D'_H$ étant bien réduite à un point puisque D'_H n'est pas parallèle à D_H (sinon (HF) serait perpendiculaire à Δ et F serait sur \mathcal{D}).

Les points de la parabole sont donc les points d'intersection de la perpendiculaire D_H à \mathcal{D} passant par H avec la médiatrice D'_H du segment [HF].

Remarque 3.1 En notant $D_H \cap D'_H = \{M_H\}$, l'application $H \mapsto M_H$ nous donne une paramétrisation de la parabole dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, où O est le sommet de la parabole.

En notant $M_0(x_0, y_0) = M_H$ un point de la parabole ainsi construit, on a $H(-\frac{p}{2}, y_0)$, $F(\frac{p}{2}, 0)$, $\overrightarrow{HF} = (p, -y_0)$ et la médiatrice D'_H a pour équation :

$$\overrightarrow{HF} \cdot \overrightarrow{M_0M} = p(x - x_0) - y_0(y - y_0) = 0$$

c'est donc la tangente à Γ en M_0 . Cette tangente coupe [HF] en son milieu $I_H(p,0)$.

Théorème 3.4 Soient Γ une parabole, M un point de Γ et H le projeté orthogonal de M sur la directrice \mathcal{D} . La tangente à Γ en M est la médiatrice de [HF]. Si M n'est pas sur l'axe focal Δ , cette tangente est aussi la hauteur issue de M dans le triangle FMH et la bissectrice intérieure de l'angle en M (figure 3.5).

Fig. 3.5 – Tangente à une parabole

Démonstration. On vient de voir que la tangente à Γ en M est la médiatrice de [HF]. Considérant que le triangle MFH est isocèle en M (MF = MH), cette médiatrice est aussi la hauteur issue de M et la bissectrice intérieure de l'angle en M.

On peut aussi montrer ce résultat en utilisant une paramétrisation régulière :

$$\gamma:t\mapsto M\left(t\right)=\left(x\left(t\right),y\left(t\right)\right)$$

de Γ dans un repère orthonormé $(F, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $\overrightarrow{\imath} = \frac{1}{FK}\overrightarrow{FK}$.

En notant $H\left(t\right)$ la projection orthogonale de $M\left(t\right)$ sur \mathcal{D} et en dérivant l'égalité :

$$\left\|\overrightarrow{FM(t)}\right\|^{2} - \left\|\overrightarrow{M(t)H(t)}\right\|^{2} = 0,$$

on a:

$$\overrightarrow{FM\left(t\right)}\cdot\overrightarrow{FM'\left(t\right)}-\overrightarrow{M\left(t\right)}\overrightarrow{H\left(t\right)}\cdot\left(\overrightarrow{FH'\left(t\right)}-\overrightarrow{FM'\left(t\right)}\right)=0.$$

Comme $\overline{M(t)H(t)}$ est orthogonal à $\overline{\mathcal{D}}$ et les points F, H'(t) sont sur l'axe des y qui est parallèle à \mathcal{D} (on a $H(t) = (x_k, y(t))$ et H'(t) = (0, y'(t))), les vecteurs $\overline{M(t)H(t)}$ et $\overline{FH'(t)}$ sont orthogonaux, de sorte que :

$$\overrightarrow{FM(t)} \cdot \overrightarrow{FM'(t)} + \overrightarrow{M(t)H(t)} \cdot \overrightarrow{FM'(t)} = 0$$

soit:

$$\left(\overrightarrow{FM\left(t\right)} + \overrightarrow{M\left(t\right)}\overrightarrow{H\left(t\right)}\right) \cdot \overrightarrow{FM'\left(t\right)} = 0$$

c'est-à-dire:

$$\overrightarrow{FH(t)} \cdot \overrightarrow{FM'(t)} = 0$$

La tangente à Γ en M(t) qui est la droite passant par M(t) et dirigée par $\overline{FM'(t)}$ est donc perpendiculaire à [FH], ce qui signifie que c'est la hauteur issue de M=M(t) dans le triangle MFH. Le triangle étant isocèle en M, on a les autres résultats.

De ce théorème, on déduit que tout rayon lumineux parallèle à l'axe focal Δ se réfléchi en un rayon qui passe par le foyer. C'est le principe des miroirs paraboliques.

Exercice 3.1 Soit Γ une parabole. Pour tout $M \in \Gamma$ qui n'est pas sur l'axe focal, on désigne par T le point d'intersection de la normale à Γ en M avec Δ et par P la projection orthogonale de M sur Δ . Montrer que la longueur PT est constante. On dit que cette longueur est la sous-normale de la parabole.

Un exemple de parabole

Considérons par exemple, dans le plan euclidien \mathbb{R}^2 muni de sa base canonique $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$ la parabole ayant pour directrice la droite \mathcal{D} d'équation X+Y=0 et pour foyer le point F(2,2). La droite \mathcal{D} est dirigée par $\overrightarrow{v}=(-1,1)$ et pour $M(X,Y)\in\mathbb{R}^2$ la projection orthogonale $H(X_H,Y_H)$ de M sur \mathcal{D} est définie par :

$$\begin{cases} X_H + Y_H = 0 & (H \in \mathcal{D}) \\ -(X - X_H) + (Y - Y_H) = 0 & (\overrightarrow{HM} \cdot \overrightarrow{v} = 0) \end{cases}$$

ou encore:

$$\begin{cases} X_H + Y_H = 0 \\ X_H - Y_H = X - Y \end{cases}$$

ce qui donne $Y_H = -X_H = \frac{Y - X}{2}$.

En particulier, pour M = F, cette projection est $K(0,0) = \Omega$.

La condition MF = MH se traduit alors par :

$$(X-2)^{2} + (Y-2)^{2} = \frac{(X+Y)^{2}}{2}$$

ou encore:

$$X^{2} + Y^{2} - 2XY - 8(X + Y) + 16 = 0$$
(3.2)

(c'est l'équation de la parabole dans le repère $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$).

Sur la figure 3.6, on représente cette parabole avec la construction du point intersection de la perpendiculaire D_H à \mathcal{D} passant par H(-1,1) et de la médiatrice de [HF].

Le paramètre p de cette parabole est $p = KF = \|\overrightarrow{\Omega F}\| = 2\sqrt{2}$, le sommet est le milieu O(1,1) de [KF] (c'est aussi le point d'intersection de la parabole avec l'axe focal d'équation Y = X, ce qui donne $2X^2 - 2X^2 - 16X + 16 = 0$) et dans un repère adapté, une équation est $y^2 = 2px = 4\sqrt{2}x$. Ce repère est $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où O(1,1), $\overrightarrow{\imath} = \frac{1}{\sqrt{2}}(\overrightarrow{e_1} + \overrightarrow{e_2})$ et $\overrightarrow{\jmath} = \frac{1}{\sqrt{2}}(-\overrightarrow{e_1} + \overrightarrow{e_2})$.

Nous verrons plus loin comment trouver la directrice et le foyer d'une parabole définie par une équation du type 3.2.

Fig. 3.6 – Parabole : $X^2 + Y^2 - 2XY - 8(X + Y) + 16 = 0$

Intersection d'une parabole et d'une droite

Soit Γ une parabole et $y^2 = 2px$ une équation réduite dans un repère adapté.

Les points d'intersection de cette parabole avec une droite d'équation ax + by + c = 0 où $(a, b) \neq (0, 0)$ sont obtenus en résolvant le système de deux équations à deux inconnues suivant :

$$\begin{cases} ax + by + c = 0 \\ y^2 = 2px \end{cases}$$

Si la droite est parallèle à l'axe focal Δ (l'axe des abscisses), on a alors $a=0,\,b\neq0$ et le système d'équations précédent nous donne :

$$\begin{cases} y = -\frac{c}{b} \\ x = \frac{y^2}{2p} = \frac{c^2}{2pb^2} \end{cases}$$

ce qui donne un unique point d'intersection, à savoir $M=\left(\frac{c^2}{2pb^2},-\frac{c}{b}\right)$.

On peut remarquer qu'on a une infinité de telles droites coupant Γ en un seul point et aucune de ces droites n'est tangente à Γ .

Si cette droite n'est pas parallèle à l'axe focal, on a alors $a \neq 0$ et une équation de la droite est $x = \alpha y + \beta$ et du système :

$$\begin{cases} x = \alpha y + \beta \\ y^2 = 2px \end{cases}$$

on déduit que y est solution de l'équation de degré 2:

$$y^2 - 2p\alpha y - 2p\beta = 0$$

qui peut avoir 0,1 ou 2 solutions réelles.

On aura un unique solution si, et seulement si, $\delta = p^2\alpha^2 + 2p\beta = 0$, ce qui équivaut à $\beta = -\frac{p\alpha^2}{2}$ et l'équation de la droite est $x = \alpha y - \frac{p\alpha^2}{2}$, le point d'intersection étant $M_0 = (x_0, y_0) = \left(\frac{p\alpha^2}{2}, p\alpha\right)$. La droite a donc pour équation :

$$x = \frac{y_0}{p}y - x_0 = \frac{y_0}{p}(y - y_0) + \frac{y_0^2}{p} - x_0 = \frac{y_0}{p}(y - y_0) + 2x_0 - x_0$$

ou encore $p(x-x_0)-y_0(y-y_0)=0$ et cette droite est la tangente à Γ en M_0 .

Réciproquement, les tangentes à Γ sont les droites non parallèles à l'axe focal qui coupent Γ en un seul point.

3.2.2 Les coniques à centres, ellipses et hyperboles

On suppose pour ce paragraphe que $e \neq 1$, c'est-à-dire que Γ est une ellipse ou une hyperbole. Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ on a une équation :

$$(M \in \Gamma) \Leftrightarrow ((1 - e^2) x^2 + y^2 - 2(x_F - e^2 x_K) x = e^2 x_K^2 - x_F^2)$$
(3.3)

Équation réduite des coniques à centre

On choisit l'origine O sur l'axe focal Δ de sorte que $x_F - e^2 x_K = 0$, ce qui équivaut à $\overrightarrow{OF} - e^2 \overrightarrow{OK} = \overrightarrow{O}$ et revient à dire que O est le barycentre de $\{(F,1), (K, -e^2)\}$ (on a $1 - e^2 \neq 0$).

En désignant par A et A' les points d'intersection de la conique Γ avec son axe focal Δ , on a :

$$x_A = \frac{x_F + ex_K}{1 + e} = ex_K \text{ et } x_{A'} = \frac{x_F - ex_K}{1 - e} = -ex_K$$

c'est-à-dire que O est le milieu de [AA'].

En notant $a = x_A$ l'abscisse de A dans ce repère, on a $K\left(\frac{a}{e},0\right)$, $F\left(ea,0\right)$ et (3.3) devient :

$$(1 - e^2) x^2 + y^2 = a^2 - a^2 e^2$$

ou encore:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1.$$

Avec cette équation, on retrouve le fait que Δ est un axe de symétrie et on constate aussi que le point O, milieu de [AA'] est un centre de symétrie et l'axe des y, à savoir la perpendiculaire à Δ passant par O est un axe de symétrie.

Précisément, on déduit de cette équation le résultat suivant.

Théorème 3.5 Si Γ est une conique d'excentricité $e \neq 1$, alors :

1. Γ a un unique centre de symétrie qui est le milieu O de [AA'], où A est le barycentre de $\{(F,1),(K,e)\}$ et A' celui de $\{(F,1),(K,-e)\}$;

2. Γ est aussi la conique de directrice \mathcal{D}' , de foyer F' et d'excentricité e, où \mathcal{D}' [resp. F'] est le symétrique de \mathcal{D} [resp. F] par rapport à O.

On dit que le point O est le centre de la conique et que Γ est une conique à centre.

Exercice 3.2 Montrer que les paraboles n'ont pas de centre de symétrie.

Pour e > 1, Γ est une hyperbole et en posant $b^2 = a^2 (e^2 - 1)$, elle a pour équation réduite dans $(O, \overrightarrow{i}, \overrightarrow{j})$:

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$

On dit que a est le demi axe (ou que 2a est l'axe) de l'hyperbole.

On peut remarquer que l'axe des x (l'axe focal) coupe l'hyperbole en A(a,0) et A'(-a,0) et que l'axe des y ne coupe pas Γ .

On dit que les points A, A' sont les sommets de l'hyperbole.

L'excentricité est $e = \frac{\sqrt{a^2 + b^2}}{a}$, la directrice \mathcal{D} a pour équation $x = x_k = \frac{a}{e} = \frac{a^2}{\sqrt{a^2 + b^2}}$ et le foyer est $F(x_F, 0)$ avec $x_F = ea = \sqrt{a^2 + b^2}$.

Réciproquement une courbe Γ d'équation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ dans un repère orthonormé est une hyperbole d'excentricité, directrice et foyer définis ci-dessus (il suffit de remonter les calculs).

De $\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2} \ge 1$, on déduit que $x^2 \ge a^2$ et l'hyperbole est strictement contenu dans \mathcal{P} privé de la bande délimité par les droites \mathcal{D} (d'équation $x = x_K = \frac{a}{e}$) et \mathcal{D}' (d'équation $x = -\frac{a}{e}$).

On déduit de cette équation implicite que la tangente à l'hyperbole Γ en $M_0\left(x_0,y_0\right)$ a pour équation :

$$\frac{x_0}{a^2}(x - x_0) - \frac{y_0}{b^2}(y - y_0) = 0$$

ce qui peut encore s'écrire compte tenu de $\frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = 1$:

$$\frac{x_0}{a^2}x - \frac{y_0}{b^2}y = 1.$$

Pour e < 1, Γ est une ellipse et en posant $b^2 = a^2(1 - e^2)$, elle a pour équation dans $(O, \overrightarrow{i}, \overrightarrow{j})$:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

avec 0 < b < a.

L'excentricité est $e = \frac{\sqrt{a^2 - b^2}}{a}$, la directrice \mathcal{D} a pour équation $x = x_k = \frac{a}{e} = \frac{a^2}{\sqrt{a^2 - b^2}}$ et le foyer est $F(x_F, 0)$ avec $x_F = ea = \sqrt{a^2 - b^2}$.

Réciproquement une courbe Γ d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ avec 0 < b < a dans un repère orthonormé est une ellipse d'excentricité, directrice et foyer définis ci-dessus (il suffit de remonter les calculs).

Remarque 3.2 Pour a = b, l'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ définit un cercle qui n'est pas une ellipse définie par directrice foyer et excentricité (on verra qu'un cercle peut être vu comme une ellipse d'excentricité nulle et de directrice rejetée à l'infini).

On dit que a est le demi grand axe (ou que 2a est le grand axe) et que b est le demi petit axe (ou que 2b est le petit axe) de l'ellipse.

On peut remarquer que l'axe des x coupe l'ellipse en A(a,0) et A'(-a,0) et que l'axe des y la coupe en B(0,b) et B'(0,-b).

On dit que les points A, A', B, B' sont les sommets de l'ellipse.

Remarque 3.3 En utilisant le théorème de Pythagore, on a :

$$FB^2 = OB^2 + OF^2 = b^2 + e^2a^2 = a^2.$$

Il en résulte que :

$$FB = FB' = F'B = F'B' = a$$

De $\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2} \le 1$, on déduit que $x^2 \le a^2 < \frac{a^2}{e^2}$, soit $-\frac{a}{e} < x < \frac{a}{e}$ et l'ellipse est strictement contenu dans la bande délimité par les droites \mathcal{D} (d'équation $x = x_K = \frac{a}{e}$) et \mathcal{D}' (d'équation $x = -\frac{a}{e}$).

On déduit de cette équation implicite que la tangente à l'ellipse Γ en $M_0\left(x_0,y_0\right)$ a pour équation :

$$\frac{x_0}{a^2}(x-x_0) + \frac{y_0}{b^2}(y-y_0) = 0$$

ce qui peut encore s'écrire compte tenu de $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$:

$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y = 1.$$

Exercice 3.3 Soit Γ une ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, avec 0 < b < a.

Montrer que le produit des distances des foyers de Γ à une tangente quelconque est constant égal à b^2 (le carré du demi petit axe).

Solution 3.1 On a $F(x_F, 0)$ et $F'(-x_F, 0)$ avec $x_F = ea = \sqrt{a^2 - b^2}$ et la tangente T_0 à Γ en $M_0(x_0, y_0)$ a pour équation :

$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y = 1.$$

avec $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$.

La distance d'un point M à T_0 est donnée par :

$$d(M, T_0) = \frac{\left| \frac{x_0}{a^2} x + \frac{y_0}{b^2} y - 1 \right|}{\sqrt{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}}$$

et:

$$d(F, T_0) d(F', T_0) = \frac{\left|\frac{x_0}{a^2}x_F - 1\right|}{\sqrt{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}} \frac{\left|\frac{x_0}{a^2}x_F + 1\right|}{\sqrt{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}} = \frac{\left|\frac{x_0^2}{a^4}x_F^2 - 1\right|}{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}$$
$$= b^4 \frac{\left|x_0^2 x_F^2 - a^4\right|}{b^4 x_0^2 + a^4 y_0^2} = b^4 \frac{\left|x_0^2 (a^2 - b^2) - a^4\right|}{b^4 x_0^2 + a^4 y_0^2}$$

ce qui s'écrit, compte tenu de $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$:

$$d(F, T_0) d(F', T_0) = b^4 \frac{|x_0^2 (a^2 - b^2) - a^4|}{b^4 x_0^2 + a^4 b^2 \left(1 - \frac{x_0^2}{a^2}\right)}$$
$$= b^2 \frac{|x_0^2 (a^2 - b^2) - a^4|}{b^2 x_0^2 + a^4 - a^2 x_0^2} = b^2.$$

Paramétrisation des coniques à centre

Ces équations implicites de Γ permettent d'obtenir des paramétrisation.

Pour l'hyperbole, en posant $y = b \operatorname{sh}(t)$ avec $t \in \mathbb{R}$ (sh est bijective de \mathbb{R} sur \mathbb{R}), on a $\frac{x^2}{a^2} = 1 + \operatorname{sh}^2(t) = \operatorname{ch}^2(t)$ et $x = \pm a \operatorname{ch}(t)$ où \pm est le signe de x. Réciproquement tout point $(\pm a \operatorname{ch}(t), b \operatorname{sh}(t))$ est sur l'hyperbole. On a donc $\Gamma = \Gamma_1 \cup \Gamma_2$, où Γ_1 et Γ_2 sont les courbes d'équations paramétriques respectives :

$$t \in \mathbb{R} \mapsto \gamma_1(t) = (a \operatorname{ch}(t), b \operatorname{sh}(t))$$

et:

$$t \in \mathbb{R} \mapsto \gamma_2(t) = (-a \operatorname{ch}(t), b \operatorname{sh}(t))$$

 Γ_1 et Γ_2 sont les deux branches de l'hyperbole.

De $\gamma_2(-t) = -\gamma_1(t)$, on déduit que Γ_2 est l'image de Γ_1 par la symétrie de centre O.

Ces paramétrisations nous permettent un tracé de Γ . Pour ce faire, il suffit de tracer Γ_1 . L'etude de γ_1 se fait pour $t \geq 0$ puis on complète le graphe obtenu par symétrie par rapport à l'axe Ox. Les fonctions ch et sh sont strictement croissante, avec $\gamma_1'(0) = b\overrightarrow{\jmath}$, on déduit qu'on a une tangente verticale en A(a,0) et avec $\frac{y_1(t)}{x_1(t)} = \frac{b}{a} \frac{e^t - e^{-t}}{e^t + e^{-t}} \xrightarrow[t \to +\infty]{b}$, on déduit que la droite d'équation ay - bx = 0 est asymptote à l'infini.

De même avec $\frac{y_1(t)}{x_1(t)} \xrightarrow[t \to -\infty]{} -\frac{b}{a}$, on déduit que la droite d'équation ay + bx = 0 est asymptote à l'infini.

Les tracés de Γ_1 , Γ_2 et Γ s'en suivent.

Pour a=b, les diagonales d'équations y=x et y=-x sont asymptotes et on dit que Γ est une hyperbole équilatère (les asymptotes sont perpendiculaires). Dans ce cas, de $b^2=a^2\left(e^2-1\right)$, on déduit que $e=\sqrt{2}$.

Une hyperbole équilatère est donc une conique d'excentricité $\sqrt{2}$.

Une autre paramétrisation peut s'obtenir comme suit.

En posant $y = b \tan(t)$ avec $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ (tan est bijective de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ sur \mathbb{R}), on a $\frac{x^2}{a^2} = 1 + \tan^2(t) = \frac{1}{\cos^2(t)}$ et $x = \pm \frac{a}{\cos(t)}$. Réciproquement tout point $\left(\pm \frac{a}{\cos(t)}, b \tan(t)\right)$ est sur l'hyperbole. On a donc $\Gamma = \Gamma_1 \cup \Gamma_2$, où Γ_1 et Γ_2 sont les courbes d'équations paramétriques respectives :

$$t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\mapsto \gamma_1(t) = \left(\frac{a}{\cos(t)}, b\tan(t)\right)$$

et:

$$t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\mapsto \gamma_2(t) = \left(-\frac{a}{\cos(t)}, b \tan(t) \right)$$

En posant $u = \tan\left(\frac{t}{2}\right)$, on a $u \in]-1,1[$, $\cos\left(t\right) = \frac{1-u^2}{1+u^2}$, $\tan\left(t\right) = \frac{2u}{1-u^2}$ et les paramétrisations :

 $u \in]-1,1[\mapsto \left(\pm a \frac{1+u^2}{1-u^2}, b \frac{2u}{1-u^2}\right).$

Pour l'ellipse, le résultat qui suit nous conduit à une paramétrisation.

Théorème 3.6 Si x, y sont deux réels tels que $x^2 + y^2 = 1$, il existe alors un unique réel $t \in [-\pi, \pi[$ tel que $x = \cos(t)$ et $y = \sin(t)$.

Démonstration. Comme $x^2 + y^2 = 1$, x est dans [-1,1] et il existe un unique réel $\alpha \in [0,\pi]$ tel que $x = \cos(\alpha)$. Avec $y^2 = 1 - x^2 = \sin^2(\alpha)$, on déduit que $y = \pm \sin(\alpha)$, soit $y = \sin(\pm \alpha)$. Avec la parité de la fonction cos, on peut écrire que $x = \cos(\pm \alpha)$ et on aboutit à $(x,y) = (\cos(t),\sin(t))$ avec $t \in [-\pi,\pi[$ (pour $(x,y) = (\cos(\pi),\sin(\pi)) = (-1,0)$), on écrit $(x,y) = (\cos(-\pi),\sin(-\pi))$).

Si $t' \in [-\pi, \pi[$ est une autre solution, de $\cos(t) = \cos(t')$, on déduit que $t' = \pm t$. Si t' = t, c'est terminé, sinon t' = -t et de $\sin(t) = \sin(t') = -\sin(t)$, on déduit que t vaut 0 ou $-\pi$, 0 étant la seule solution puisque $t' = \pi \notin [-\pi, \pi[$. D'où l'unicité.

On en déduit la paramétrisation de l'ellipse :

$$t \in [-\pi, \pi[\mapsto \gamma(t) = (a\cos(t), b\sin(t))]$$

Là encore, cette paramétrisation permet un tracé de l'ellipse. L'étude se fait pour $t \in \left[0, \frac{\pi}{2}\right]$ puis on complète par symétrie par rapport aux axes. On a des tangentes verticales en A, A' et des tangentes horizontales en B, B'.

Un exemple d'hyperbole

Considérons dans le plan euclidien \mathbb{R}^2 muni de sa base canonique $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$ l'hyperbole ayant pour excentricité e=2, pour directrice la droite \mathcal{D} d'équation X+Y=0 et pour foyer le point F(2,2). La droite \mathcal{D} est dirigée par $\overrightarrow{v}=(-1,1)$ et pour $M(X,Y)\in\mathbb{R}^2$ on a déjà vu que la projection orthogonale $H(X_H,Y_H)$ de M sur \mathcal{D} est définie par $Y_H=-X_H=\frac{Y-X}{2}$.

En particulier, pour M = F, cette projection est $K(0,0) = \Omega$.

La condition MF = 2MH se traduit alors par :

$$(X-2)^2 + (Y-2)^2 = 2(X+Y)^2$$

ou encore :

$$X^{2} + Y^{2} + 4XY + 4(X+Y) - 8 = 0 (3.4)$$

(c'est l'équation de l'hyperbole dans le repère $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$).

Les sommets de cette hyperbole sont les points d'intersection avec l'axe focal d'équation Y=X, ce qui donne l'équation $3X^2+4X-4=0$ de racines -2 et $\frac{2}{3}$ et les sommets $A\left(\frac{2}{3},\frac{2}{3}\right)$ et $A'\left(-2,-2\right)$.

Le centre est le milieu de [AA'], soit $O\left(-\frac{2}{3}, -\frac{2}{3}\right)$.

Le demi axe est $a = OA = \frac{4\sqrt{2}}{3}$ et dans un repère adapté, une équation est $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ où $b = a\sqrt{e^2 - 1} = \frac{4\sqrt{2}}{\sqrt{3}}$. Ce repère est $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $O\left(-\frac{2}{3}, -\frac{2}{3}\right)$, $\overrightarrow{\imath} = \frac{3}{4\sqrt{2}}\overrightarrow{OA} = \frac{1}{\sqrt{2}}(\overrightarrow{e_1} + \overrightarrow{e_2})$,

$$\overrightarrow{\jmath} = \frac{1}{\sqrt{2}} \left(-\overrightarrow{e_1} + \overrightarrow{e_2} \right)$$
 et l'équation est :

$$9x^2 - 3y^2 = 32.$$

(figure 3.7).

Fig. 3.7 – Hyperbole : $X^2 + Y^2 + 4XY + 4(X + Y) - 8 = 0$

Un exemple d'ellipse

Considérons aussi, dans le plan euclidien \mathbb{R}^2 muni de sa base canonique $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$ l'ellipse ayant pour excentricité $e = \frac{1}{2}$, pour directrice la droite \mathcal{D} d'équation X + Y = 0 et pour foyer le point F(2,2). La droite \mathcal{D} est dirigée par $\overrightarrow{v} = (-1,1)$ et pour $M(X,Y) \in \mathbb{R}^2$ la projection orthogonale $H(X_H, Y_H)$ de M sur \mathcal{D} est définie par $Y_H = -X_H = \frac{Y - X}{2}$.

En particulier, pour M=F, cette projection est $K\left(0,0\right) =\Omega.$

La condition $MF = \frac{1}{2}MH$ se traduit alors par :

$$(X-2)^{2} + (Y-2)^{2} = \frac{(X+Y)^{2}}{8}$$

ou encore:

$$7X^{2} + 7Y^{2} - 2XY - 32(X+Y) + 64 = 0$$
(3.5)

(c'est l'équation de l'ellipse dans le repère $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$).

Les sommets de cette ellipse sont les points d'intersection de l'ellipse avec l'axe focal d'équation Y = X, ce qui donne l'équation $3X^2 - 16X + 16 = 0$ de racines $\frac{4}{3}$ et 4 et les sommets A(4,4) et $A'\left(\frac{4}{3},\frac{4}{3}\right)$.

Le centre est le milieu de [AA'], soit $O\left(\frac{8}{3}, \frac{8}{3}\right)$.

Le demi axe est $a = OA = \frac{4}{3}\sqrt{2}$ et dans un repère adapté, une équation est $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ où $b = a\sqrt{1 - e^2} = \frac{2\sqrt{2}}{\sqrt{3}}$. Ce repère est $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $O\left(\frac{8}{3}, \frac{8}{3}\right)$, $\overrightarrow{\imath} = \frac{1}{OA}\overrightarrow{OA} = \frac{1}{\sqrt{2}}\left(\overrightarrow{e_1} + \overrightarrow{e_2}\right)$, $\overrightarrow{\jmath} = \frac{1}{\sqrt{2}}\left(-\overrightarrow{e_1} + \overrightarrow{e_2}\right)$ et l'équation est :

$$9x^2 + 12y^2 = 32.$$

(figure 3.8).

Fig. $3.8 - 7X^2 + 7Y^2 - 2XY - 32(X + Y) + 64 = 0$

Intersection d'une ellipse et d'une droite

Soit Γ une ellipse. Dans un repère orthonormé adapté $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, cette ellipse a pour équation :

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

avec 0 < b < a.

On se donne une droite D d'équation :

$$ux + vy + w = 0$$

avec $(u, v) \neq (0, 0)$.

Un vecteur directeur de D est $\overrightarrow{V}=(-v,u)$ et désignant par $M_0\left(x_0,y_0\right)$ un point quelconque de D, une paramétrisation de cette droite est :

$$\begin{cases} x = x_0 - \lambda v \\ y = y_0 + \lambda u \end{cases}$$

L'intersection $D \cap \Gamma$ est non vide si, et seulement si, il existe un réel λ tel que :

$$\begin{cases} x = x_0 - \lambda v \\ y = y_0 + \lambda u \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \end{cases}$$

ce qui entraı̂ne que λ est solution de l'équation :

$$b^{2}(x_{0} - \lambda v)^{2} + a^{2}(y_{0} + \lambda u)^{2} = a^{2}b^{2}$$

qui est équivalente à :

$$(a^2u^2 + b^2v^2)\lambda^2 + 2(a^2uy_0 - b^2vx_0)\lambda + (a^2y_0^2 + b^2x_0^2 - a^2b^2) = 0.$$

Cette équation est de degré 2 puisque $a^2u^2+b^2v^2\neq 0$ du fait que $a>0,\,b>0$ et $(u,v)\neq (0,0)$. Elle a donc 0, 1 ou 2 solutions réelles.

Le discriminant de cette équation est :

$$\delta = (a^{2}uy_{0} - b^{2}vx_{0})^{2} - (a^{2}u^{2} + b^{2}v^{2}) (a^{2}y_{0}^{2} + b^{2}x_{0}^{2} - a^{2}b^{2})$$

$$= a^{2}b^{2} (a^{2}u^{2} + b^{2}v^{2} - u^{2}x_{0}^{2} - 2uvx_{0}y_{0} - v^{2}y_{0}^{2})$$

$$= a^{2}b^{2} (a^{2}u^{2} + b^{2}v^{2} - (ux_{0} + vy_{0})^{2})$$

soit en tenant compte de $ux_0 + vy_0 = -w \ (M_0 \in D)$:

$$\delta = a^2 b^2 \left(a^2 u^2 + b^2 v^2 - w^2 \right).$$

On en déduit alors que :

- si $a^2u^2 + b^2v^2 < w^2$, alors $\delta < 0$ et D ne coupe pas Γ ;
- si $a^2u^2+b^2v^2=w^2$, alors $\delta=0$ et D coupe Γ en un unique point. Prenant ce point comme origine M_0 de D, on a $M_0\in D\cap \Gamma$ et :

$$a^{2}y_{0}^{2} + b^{2}x_{0}^{2} - a^{2}b^{2} = a^{2}b^{2}\left(\frac{x_{0}^{2}}{a^{2}} + \frac{y_{0}^{2}}{b^{2}} - 1\right) = 0$$

de sorte que :

$$0 = \delta = \left(a^2 u y_0 - b^2 v x_0\right)^2$$

et:

$$a^{2}uy_{0} - b^{2}vx_{0} = a^{2}b^{2}\left(u\frac{y_{0}}{b^{2}} - v\frac{x_{0}}{a^{2}}\right)$$

ce qui signifie que $\overrightarrow{V} = (-v, u)$ est orthogonal au vecteur $\left(\frac{x_0}{a^2}, \frac{y_0}{b^2}\right)$ qui est orthogonal à la tangente à Γ en M_0 . La droite D est donc tangente à Γ .

- si $a^2u^2 + b^2v^2 > w^2$, alors $\delta > 0$ et D coupe Γ en deux points distincts. En prenant pour origine M_0 de D l'un de ces points de contact, on a $\delta = (a^2uy_0 - b^2vx_0)^2 > 0$, donc le produit scalaire de \overrightarrow{V} avec le vecteur $\left(\frac{x_0}{a^2}, \frac{y_0}{b^2}\right)$ qui est orthogonal à la tangente à Γ en M_0 n'est pas nul et D n'est pas tangente à Γ en M_0 .

On a donc montré le résultat suivant.

Théorème 3.7 Soit D une droite d'équation ux + vy + w = 0 avec $(u, v) \neq (0, 0)$.

- $si a^2u^2 + b^2v^2 < w^2$, alors D ne coupe pas Γ ;
- $si\ a^2u^2 + b^2v^2 = w^2$, alors D coupe Γ en un unique point M_0 et est tangente à Γ en ce point:
- $\sin a^2u^2 + b^2v^2 > w^2$, alors D coupe Γ en deux points distincts et n'est pas tangente à Γ .

Les droites tangentes à une ellipse sont donc celles qui coupent cette ellipse en un unique point (un point double). On peut remarquer que ce résultat est faux pour la parabole.

Les théorèmes d'Appolonius

Soit Γ une ellipse de paramétrisation :

$$t \mapsto \gamma(t) = (a\cos(t), b\sin(t))$$

dans un repère orthonormé adapté $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

Théorème 3.8 (premier théorème d'Appolonius) Soient $M \in \Gamma$ et $N \in \Gamma$ tel que la tangente à Γ en N soit parallèle à (OM). L'aire du triangle OMN est alors constante égale à $\frac{ab}{2}$ et $OM^2 + ON^2 = a^2 + b^2$.

Démonstration. En notant $M = \gamma(t)$, dire que la tangente à Γ en $N = \gamma(t')$ est parallèle à OM équivaut à dire que :

$$\det (\gamma(t), \gamma'(t')) = \begin{vmatrix} a\cos(t) & -a\sin(t') \\ b\sin(t) & b\cos(t') \end{vmatrix}$$
$$= ab(\cos(t)\cos(t') + \sin(t)\sin(t'))$$
$$= ab\cos(t - t') = 0$$

ce qui est encore équivalent à $t'=t\pm\frac{\pi}{2}$ modulo 2π et donne deux possibilités pour N. L'aire du triangle OMN est alors :

$$\mathcal{A} = \frac{1}{2} \left| \det \left(\gamma \left(t \right), \gamma \left(t' \right) \right) \right| = \frac{1}{2} \left| \det \left(\begin{array}{c} a \cos \left(t \right) & a \cos \left(t' \right) \\ b \sin \left(t \right) & b \sin \left(t' \right) \end{array} \right) \right|$$
$$= \frac{1}{2} a b \left| \cos \left(t \right) \sin \left(t' \right) - \sin \left(t \right) \cos \left(t' \right) \right|$$
$$= \frac{1}{2} a b \left| \sin \left(t' - t \right) \right| = \frac{1}{2} a b.$$

On a aussi:

$$OM^{2} + ON^{2} = a^{2} \left(\cos^{2}(\theta) + \cos^{2}(\theta')\right) + b^{2} \left(\sin^{2}(\theta) + \sin^{2}(\theta')\right)$$
$$= a^{2} \left(\cos^{2}(\theta) + \sin^{2}(\theta)\right) + b^{2} \left(\sin^{2}(\theta) + \cos^{2}(\theta)\right)$$
$$= a^{2} + b^{2}.$$

Théorème 3.9 (deuxième théorème d'Appolonius) En gardant les notations du théorème précédent, on désigne par I la projection de M sur l'axe focal (l'axe des abscisses) et par J celle de N. On a alors :

$$OI^2 + OJ^2 = a^2.$$

Démonstration. On a :

$$OI^{2} + OJ^{2} = a^{2} \left(\cos^{2} \left(\theta\right) + \cos^{2} \left(\theta'\right)\right)$$
$$= a^{2} \left(\cos^{2} \left(\theta\right) + \sin^{2} \left(\theta\right)\right) = a^{2}.$$

Projection orthogonale d'un cercle de l'espace sur un plan

Les ellipses peuvent aussi être vues comme les projections orthogonales d'un cercle de l'espace euclidien sur un plan.

Théorème 3.10 Soient \mathcal{P} et \mathcal{P}' deux plans non orthogonaux de l'espace et \mathcal{C} un cercle inclus dans \mathcal{P} . La projection orthogonale de \mathcal{C} sur \mathcal{P}' est une ellipse ou un cercle.

Si les plan \mathcal{P} et \mathcal{P}' sont orthogonaux, cette projection est alors un segment que l'on peut voir comme une ellipse écrasée.

3.2.3 Construction des tangentes à une conique

Un procédé de construction de la tangente à une conique en point M qui n'est pas sur l'axe focal est donné par le résultat suivant.

Théorème 3.11 Soient Γ une conique et M un point de Γ qui n'est pas sur l'axe focal Δ . La tangente à Γ en M coupe la directrice \mathcal{D} en un point T tel que le triangle MFT soit rectangle en F (fiqure 3.9).

Démonstration. Soit $\gamma: t \mapsto M(t)$ une paramétrisation régulière de Γ dans un repère orthonormé $(F, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $\overrightarrow{\imath} = \frac{1}{F \cancel{K}} \overrightarrow{FK}$.

En dérivant l'égalité $\|\overrightarrow{MF}\| = e \|\overrightarrow{MH}\|$, on a :

$$\frac{1}{\left\|\overrightarrow{MF}\right\|}\overrightarrow{MF}\cdot\frac{d}{dt}\overrightarrow{MF} = \frac{e}{\left\|\overrightarrow{MH}\right\|}\overrightarrow{MH}\cdot\frac{d}{dt}\overrightarrow{MH}.$$

avec $\frac{1}{\|\overrightarrow{MH}\|}\overrightarrow{MH} = \pm \overrightarrow{\imath}$ puisque ces deux vecteurs sont colinéaires et de norme 1 et en notant $\overrightarrow{u(t)} = \frac{1}{\|\overrightarrow{MF}\|}\overrightarrow{MF}$, on a :

$$\overrightarrow{u(t)} \cdot \frac{d}{dt} \overrightarrow{MF} = \pm e \overrightarrow{\imath} \cdot \frac{d}{dt} \overrightarrow{MH},$$

avec:

$$\overrightarrow{\imath} \cdot \frac{d}{dt}\overrightarrow{MH} = \overrightarrow{\imath} \cdot \frac{d}{dt}\overrightarrow{MF} + \overrightarrow{\imath} \cdot \frac{d}{dt}\overrightarrow{FH}$$

Fig. 3.9 - Tangente en un point d'une conique

et:

$$\overrightarrow{\imath} \cdot \frac{d}{dt}\overrightarrow{FH} = \frac{d}{dt}\left(\overrightarrow{\imath} \cdot \overrightarrow{FH}\right) = \frac{d}{dt}\left(\overrightarrow{\imath} \cdot \left(\overrightarrow{FK} + \overrightarrow{KH}\right)\right) = \frac{d}{dt}\left(\overrightarrow{\imath} \cdot \overrightarrow{FK}\right) = 0$$

du fait que \overrightarrow{KH} est orthogonal à $\overrightarrow{\imath}$ et $\overrightarrow{\imath} \cdot \overrightarrow{FK} = \left\| \overrightarrow{FK} \right\|$ ne dépend pas de t. On a donc :

$$\overrightarrow{u(t)} \cdot \frac{d}{dt}\overrightarrow{MF} = \pm e\overrightarrow{\imath} \cdot \frac{d}{dt}\overrightarrow{MF}.$$

Si T est le point d'intersection de la tangente à Γ en M avec la directrice \mathcal{D} , on a $\overrightarrow{MT} = \lambda \frac{d}{dt} \overrightarrow{MF}$ et :

$$\overrightarrow{u\left(t\right)}\cdot\overrightarrow{MT}=\lambda\overrightarrow{u\left(t\right)}\cdot\frac{d}{dt}\overrightarrow{MF}=\lambda e\left(\pm\overrightarrow{\imath}\right)\cdot\frac{d}{dt}\overrightarrow{MF}=e\left(\pm\overrightarrow{\imath}\right)\cdot\overrightarrow{MT}$$

ce qui entraîne :

$$\overrightarrow{FM} \cdot \overrightarrow{FT} = \overrightarrow{FM} \cdot \left(\overrightarrow{FM} + \overrightarrow{MT} \right) = \left\| \overrightarrow{MF} \right\|^2 - \left\| \overrightarrow{MF} \right\| \overrightarrow{u(t)} \cdot \overrightarrow{MT}$$
$$= \left\| \overrightarrow{MF} \right\| \left(\left\| \overrightarrow{MF} \right\| - e\left(\pm \overrightarrow{i} \right) \cdot \overrightarrow{MT} \right)$$

avec:

$$\overrightarrow{\imath}\cdot\overrightarrow{MT}=\overrightarrow{\imath}\cdot\overrightarrow{MH}+\overrightarrow{\imath}\cdot\overrightarrow{HT}=\overrightarrow{\imath}\cdot\overrightarrow{MH}=\pm\left\|\overrightarrow{MH}\right\|,$$

ce qui donne en définitive :

$$\overrightarrow{FM} \cdot \overrightarrow{FT} = \left\| \overrightarrow{MF} \right\| \left(\left\| \overrightarrow{MF} \right\| - e \left\| \overrightarrow{MH} \right\| \right) = 0,$$

c'est-à-dire que le triangle MFT est rectangle en F.

3.3 Définition bifocale des coniques à centre

On a vu qu'une conique à centre a deux foyers et deux directrices (théorème 3.5). De ce résultat nous allons déduire une autre caractérisation métrique des coniques à centre.

Théorème 3.12 Soit Γ une ellipse de directrice \mathcal{D} , de foyer F et d'excentricité e < 1. En désignant par F' le deuxième foyer de Γ (le symétrique de F par rapport au centre O de Γ) et par 2a le grand axe, on a:

$$\Gamma \subset \{M \in \mathcal{P} \mid MF + MF' = 2a\}$$

avec 2a > FF'.

Démonstration. On se place dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où O est le centre de Γ et $\overrightarrow{\imath} = \frac{1}{OA}\overrightarrow{OA}$. Dans ce repère, en notant a = OA, on a $K\left(\frac{a}{e}, 0\right)$, $F\left(ea, 0\right)$, $F'\left(-ea, 0\right)$ et pour tout point $M\left(x, y\right)$ de l'ellipse, on a :

$$MF^{2} = (x - ea)^{2} + y^{2} = e^{2}MH^{2} = e^{2}\left(x - \frac{a}{e}\right)^{2}$$

soit:

$$MF = e \left| x - \frac{a}{e} \right|$$

et:

$$(MF')^2 = (x + ea)^2 + y^2 = e^2 (MH')^2 = e^2 \left(x + \frac{a}{e}\right)^2$$

soit:

$$MF' = e \left| x + \frac{a}{e} \right|$$

Sachant que $x^2 \le a^2 < \frac{a^2}{e^2}$ (déduit de $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ et e < 1), on déduit que $-\frac{a}{e} < x < \frac{a}{e}$ et :

$$MF + MF' = e\left(\frac{a}{e} - x\right) + e\left(x + \frac{a}{e}\right) = 2a.$$

De plus FF' = 2ea < 2a puisque e < 1.

On peut aussi remarquer que l'encadrement $-\frac{a}{e} < x < \frac{a}{e}$ pour $M(x,y) \in \Gamma$ nous dit que l'ellipse Γ est strictement contenue dans la bande verticale limitée par les directrices \mathcal{D} et \mathcal{D}' (d'équations respectives $x = \frac{a}{e}$ et $x = -\frac{a}{e}$). Il en résulte que tout point M de l'ellipse est à l'intérieur du segment [HH'] et en conséquence :

$$MF + MF' = e(MH + MH') = eHH' = eKK' = 2a.$$

Réciproquement, on a le résultat suivant.

Théorème 3.13 Si F, F' sont deux points distincts de \mathcal{P} et a un réel tel que 2a > FF', alors l'ensemble :

$$\Gamma = \{ M \in \mathcal{P} \mid MF + MF' = 2a \}$$

est une ellipse de foyers F, F' et de grand axe 2a.

Démonstration. On note O le milieu de [FF'] et on se place dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où $\overrightarrow{\imath} = \frac{1}{OF}\overrightarrow{OF}$. Les calculs précédents nous conduisent à poser $x_F = OF = ea$, soit $e = \frac{OF}{a} = \frac{FF'}{2a} < 1$ et à définir la droite $\mathcal D$ d'équation $x = \frac{a}{e}$. De MF + MF' = 2a, on déduit que :

$$MF^{2} - (MF')^{2} = (MF + MF')(MF - MF') = 2a(MF - MF')$$

avec:

$$MF^2 = (x - ea)^2 + y^2$$
 et $(MF')^2 = (x + ea)^2 + y^2$

ce qui donne :

$$2a\left(MF - MF'\right) = -2eax$$

et de:

$$\left\{ \begin{array}{l} MF + MF' = 2a \\ MF - MF' = -2ex \end{array} \right.$$

on déduit que :

$$MF = a - ex > 0.$$

Le projeté orthogonal de $M \in \Gamma$ sur \mathcal{D} étant $H\left(\frac{a}{e}, y\right)$, on a :

$$MH = \left| \frac{a}{e} - x \right| = \frac{1}{e} \left(a - ex \right)$$

et MF = eMH. Donc Γ est contenu dans l'ellipse de foyers F, F' et de grand axe 2a.

La réciproque a été établie avec le théorème précédent.

On peut aussi travailler analytiquement toujours dans le même repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$. La condition MF + MF' = 2a équivaut à $MF^2 + MF'^2 + 2MF \cdot MF' = 4a^2$, soit à :

$$(x - ea)^{2} + y^{2} + (x + ea)^{2} + y^{2} + 2MF \cdot MF' = 4a^{2}$$

ou encore à :

$$x^2 + y^2 + e^2a^2 + MF \cdot MF' = 2a^2$$

ce qui peut aussi s'écrire :

$$MF \cdot MF' = 2a^2 - x^2 - y^2 - e^2a^2$$

On a donc:

$$(M \in \Gamma) \Rightarrow \left(MF^2 \cdot MF'^2 = \left(2a^2 - x^2 - y^2 - e^2 a^2 \right)^2 \right)$$
$$\Rightarrow \left(\left((x - ea)^2 + y^2 \right) \left((x + ea)^2 + y^2 \right) = \left(2a^2 - x^2 - y^2 - e^2 a^2 \right)^2 \right)$$
$$\Rightarrow \left(\left(1 - e^2 \right) x^2 + y^2 = a^2 \left(1 - e^2 \right) \right)$$

avec 0 < e < 1 et Γ est contenu dans l'ellipse de foyers F, F' et de grand axe 2a.

Réciproquement si M est un point de l'ellipse de foyers F, F' et de grand axe 2a, ses coordonnées vérifient l'équation $x^2 + \frac{y^2}{1 - e^2} = a^2$, ce qui équivaut à :

$$MF^2 \cdot MF'^2 = (2a^2 - x^2 - y^2 - e^2a^2)^2$$

et avec $x^2 \le a^2$, $\frac{y^2}{1-e^2} \le a^2$, on déduit que :

$$2a^{2} - x^{2} - y^{2} - e^{2}a^{2} = (a^{2} - x^{2}) + (1 - e^{2})\left(a^{2} - \frac{y^{2}}{1 - e^{2}}\right) \ge 0$$

et $MF \cdot MF' = 2a^2 - x^2 - y^2 - e^2a^2$, ce qui équivaut à MF + MF' = 2a.

Remarque 3.4 Dans le cas où les foyers F et F' sont confondus, on obtient le cercle d'équation MF = a que l'on peut voir comme une ellipse d'excentricité nulle et de directrice rejetée à l'infini.

Remarque 3.5 Si $M \in \mathcal{P}$ est tel que MF + MF' = 2a où a > 0 est donné, en utilisant l'inégalité triangulaire, on déduit que :

$$FF' \le FM + MF' = 2a$$

l'inégalité étant stricte si $M \notin [FF']$, en conséquence l'ensemble $\{M \in \mathcal{P} \mid MF + MF' = 2a\}$ est vide si 2a < FF' et pour 2a = FF' c'est le segment [FF'].

Pour ce qui est des hyperboles, ont on des résultats similaires.

Théorème 3.14 Soit Γ une hyperbole de directrice \mathcal{D} , de foyer F et d'excentricité e > 1. En désignant par F' le deuxième foyer de Γ (le symétrique de F par rapport au centre O de Γ) et par 2a le grand axe, on a:

$$\Gamma \subset \{M \in \mathcal{P} \mid |MF - MF'| = 2a\}$$

avec 2a < FF'.

Démonstration. On se place dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où O est le centre de Γ et $\overrightarrow{\imath} = \frac{1}{OA}\overrightarrow{OA}$. Dans ce repère, en notant a = OA, on a $K\left(\frac{a}{e}, 0\right)$, $F\left(ea, 0\right)$ et $F'\left(-ea, 0\right)$ et pour tout point $M\left(x, y\right)$ de l'hyperbole, on a :

$$MF^{2} = (x - ea)^{2} + y^{2} = e^{2}MH^{2} = e^{2}\left(x - \frac{a}{e}\right)^{2}$$

soit:

$$MF = e \left| x - \frac{a}{e} \right|$$

et:

$$(MF')^2 = (x + ea)^2 + y^2 = e^2 (MH')^2 = e^2 \left(x + \frac{a}{e}\right)^2$$

soit:

$$MF' = e \left| x + \frac{a}{e} \right|$$

Sachant que $x^2 \ge a^2 > \frac{a^2}{e^2}$ (déduit de $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ et e > 1), on déduit que $x < -\frac{a}{e}$ ou $x > \frac{a}{e}$ et :

$$MF - MF' = \begin{cases} e\left(\frac{a}{e} - x\right) + e\left(x + \frac{a}{e}\right) = 2a \\ \text{ou} \\ e\left(x - \frac{a}{e}\right) - e\left(x + \frac{a}{e}\right) = -2a \end{cases}.$$

soit |MF - MF'| = 2a

De plus FF' = 2ea > 2a puisque e > 1.

Théorème 3.15 Si F, F' sont deux points distincts de \mathcal{P} et a un réel tel que 0 < 2a < FF', alors l'ensemble :

$$\Gamma = \{ M \in \mathcal{P} \mid |MF - MF'| = 2a \}$$

est une hyperbole de foyers F, F' et de grand axe 2a.

Démonstration. Démonstration analogue à celle concernant l'ellipse.

Remarque 3.6 Si $M \in \mathcal{P}$ est tel que |MF - MF'| = 2a où a > 0 est donné, en utilisant l'inégalité triangulaire, on déduit que :

$$2a = |MF - MF'| \le FF'$$

l'inégalité étant stricte si $M \notin [FF']$, en conséquence l'ensemble $\{M \in \mathcal{P} \mid |MF - MF'| = 2a\}$ est vide si 2a > FF' et pour 2a = FF', on a:

$$|MF - MF'| = 2a = FF' \Leftrightarrow \begin{cases} MF - MF' = FF' \\ ou \\ MF' - MF = FF' \end{cases}$$

ce qui équivaut à dire que Γ est la doite (FF') privée du segment ouvert]FF'[.

En utilisant la définition bi-focale des coniques à centres, on a les résultats suivants sur les tangentes.

Théorème 3.16 Soient Γ une ellipse de foyers F, F' et M un point de Γ . La tangente à Γ en M est la bissectrice extérieure issue de M du triangle MFF'.

Démonstration. Soit $M: t \mapsto M(t)$ une paramétrisation régulière de Γ. En dérivant l'égalité $\|\overrightarrow{MF}\| + \|\overrightarrow{MF'}\| = 2a$, on a :

$$\frac{1}{\left\|\overrightarrow{MF}\right\|}\overrightarrow{MF}\cdot\frac{d}{dt}\overrightarrow{MF}+\frac{1}{\left\|\overrightarrow{MF'}\right\|}\overrightarrow{MF'}\cdot\frac{d}{dt}\overrightarrow{MF'}=0.$$

En remarquant que:

$$\frac{d}{dt}\overrightarrow{MF'} = \frac{d}{dt}\overrightarrow{MF} + \frac{d}{dt}\overrightarrow{FF'} = \frac{d}{dt}\overrightarrow{MF}$$

et en posant $\overrightarrow{u(t)} = \frac{1}{\|\overrightarrow{MF}\|} \overrightarrow{MF}$ et $\overrightarrow{v(t)} = \frac{1}{\|\overrightarrow{MF'}\|} \overrightarrow{MF'}$ on a :

$$\left(\overrightarrow{u(t)} + \overrightarrow{v(t)}\right) \cdot \frac{d}{dt}\overrightarrow{MF} = 0$$

ce qui signifie que le vecteur tangent $\frac{d}{dt}\overrightarrow{MF}$ est orthogonal au vecteur $\overrightarrow{u(t)} + \overrightarrow{v(t)}$ qui dirige la bissectrice intérieure issue de M du triangle MFF', encore équivalent à dire que la tangente à Γ en M est la bissectrice extérieure issue de M du triangle MFF'.

Une démonstration analogue donne le résultat suivant pour l'hyperbole.

Théorème 3.17 Soient Γ une hyperbole de foyers F, F' et M un point de Γ . La tangente à Γ en M est la bissectrice intérieure issue de M du triangle MFF'.

3.4 Lieu orthoptique d'une conique

Étant donnée une conique Γ , on s'intéresse au lieu des points M du plan euclidien \mathcal{P} d'où l'on peut mener deux tangentes à Γ qui sont orthogonales.

3.4.1 Lieu orthoptique d'une ellipse

Soit Γ une ellipse dans le plan euclidien \mathcal{P} d'équation :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{3.6}$$

dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, où 0 < b < a.

On rappelle que la tangente à Γ en $M_1(x_1, y_1)$ est la droite d'équation :

$$\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1.$$

De l'équation cartésienne (3.6), on déduit la paramétrisation :

$$\gamma: t \in \mathbb{R} \mapsto (a\cos(t), b\sin(t))$$

et la tangente à Γ en γ (t) est dirigée par γ' $(t) = (-a\sin(t),b\cos(t))$. Une équation de cette tangente est donc donnée par :

$$\begin{vmatrix} x - a\cos(t) & -a\sin(t) \\ y - b\sin(t) & b\cos(t) \end{vmatrix} = b\cos(t)(x - a\cos(t)) + a\sin(t)(y - b\sin(t))$$
$$= b\cos(t)x + a\sin(t)y - ab = 0$$

Lemme 3.3 *Soit* $M_0(x_0, y_0) \in \mathcal{P}$.

- 1. $Si \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$ (i. e. M_0 est extérieur à Γ), il ne passe alors aucune tangente à Γ par M_0 ;
- 2. $si \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$ (i. e. $M_0 sur \Gamma$), il passe alors une seule tangente à Γ par M_0 ;
- 3. $si \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$ (i. e. M_0 est intérieur à Γ), il passe alors exactement deux tangentes à Γ par M_0 .

Démonstration. Une droite D_0 passant par M_0 a une équation de la forme :

$$u(x - x_0) + v(y - y_0) = 0$$

où $(u,v) \neq (0,0)$ et elle est tangente à Γ si, et seulement si :

$$a^2u^2 + b^2v^2 = (ux_0 + vy_0)^2$$

ce qui est encore équivalent à :

$$(a^{2} - x_{0}^{2}) u^{2} - 2x_{0}y_{0}uv + (b^{2} - y_{0}^{2}) v^{2} = 0$$
(3.7)

qui signifie que (u, v) est dans le cône isotrope de la forme quadratique q définie par :

$$q(X,Y) = (a^2 - x_0^2) X^2 - 2x_0 y_0 XY + (b^2 - y_0^2) Y^2.$$

Le discriminant de cette forme quadratique est :

$$\delta = \begin{vmatrix} a^2 - x_0^2 & -x_0 y_0 \\ -x_0 y_0 & b^2 - y_0^2 \end{vmatrix} = (a^2 - x_0^2) (b^2 - y_0^2) - x_0^2 y_0^2$$
$$= -a^2 b^2 \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} - 1 \right) = -\delta'$$

 (δ') est le discriminant des équations de degré au plus égal à 2, $(a^2 - x_0^2)t^2 - 2x_0y_0t + (b^2 - y_0^2)$ et $(a^2 - x_0^2) - 2x_0y_0t + (b^2 - y_0^2)t^2$.

Pour $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$, on a $\delta > 0$, donc $(a^2 - x_0^2)(b^2 - y_0^2) \neq 0$ et les équations de degré 2 $(a^2 - x_0^2)t^2 - 2x_0y_0t + (b^2 - y_0^2)$ et $(a^2 - x_0^2) - 2x_0y_0t + (b^2 - y_0^2)t^2$ n'ont pas de racine réelle (puisque $\delta' < 0$), ce qui entraîne que le cône isotrope de q est réduit à $\{(0,0)\}$ et il ne passe pas de tangente à Γ par M_0 .

Pour $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$, on a $\delta = \delta' = 0$, donc $(a^2 - x_0^2)(b^2 - y_0^2) \neq 0$ et les équations de degré $2(a^2 - x_0^2)t^2 - 2x_0y_0t + (b^2 - y_0^2)$ et $(a^2 - x_0^2)t^2 - 2x_0y_0t + (b^2 - y_0^2)t^2$ ont une unique racine réelle, ce qui entraı̂ne que le cône isotrope de q est une droite vectorielle et il passe une seule tangente à Γ par M_0 .

Pour $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$, on a $\delta < 0$. Si $(x_0^2, y_0^2) = (a^2, b^2)$, l'équation (3.7) devient :

$$2x_0y_0uv = 0$$

et u=0 ou v=0, de sorte que D_0 est une droite passant par $(\pm a, \pm b)$ parallèle à l'un des axes. Cette droite et sa perpendiculaire en M_0 sont alors tangentes à Γ (par exemple pour $M_0=(a,b)$, la tangente à Γ en A(a,0) est la droite d'équation x=a et la tangente en B(0,b) est la droite y=b).

Si $(x_0^2, y_0^2) \neq (a^2, b^2)$, alors l'une des équations de degré $2 (a^2 - x_0^2) t^2 - 2x_0 y_0 t + (b^2 - y_0^2)$ ou $(a^2 - x_0^2) - 2x_0 y_0 t + (b^2 - y_0^2) t^2$ ($\delta' > 0$) a deux racines réelles distinctes et le cône isotrope de q est la réunion de deux droites vectorielles distinctes. Il passe donc exactement deux tangentes à Γ par M_0 .

Remarque 3.7 On peut aussi utiliser la signature de q dans la démonstration précédente.

- $Si \operatorname{sgn}(q) = (2,0)$ ou (0,2), son discriminant δ est strictement positif et la forme q est définie (positive ou négative), donc son cône isotrope est réduit à $\{(0,0)\}$.
- $Si \operatorname{sgn}(q) = (1,0)$ ou (0,1), son discriminant est nul, donc q se réduit à $q(X) = \ell_1^2(X)$ et son cône isotrope est la droite d'équation $\ell_1(X) = 0$.
- $Si \operatorname{sgn}(q) = (1,1)$, son discriminant est strictement négatif, donc q se réduit à $q(X) = \ell_1^2(X) \ell_2^2(X)$ et son cône isotrope est la réunion des deux droites distinctes d'équations respectives $\ell_1(X) \ell_2(X) = 0$ et $\ell_1(X) + \ell_2(X) = 0$.

Théorème 3.18 Le lieu des points M du plan euclidien \mathcal{P} d'où l'on peut mener deux tangentes à l'éllipse Γ qui sont orthogonales est le cercle d'équation :

$$x^2 + y^2 = a^2 + b^2.$$

(figure 3.10).

Fig. 3.10 – Cercle orthoptique à une éllipse

Démonstration. Notons Λ ce lieu orthoptique.

Si $M_0(x_0, y_0) \in \Lambda$, il passe alors par M_0 exactement deux tangentes à Γ . Ces tangentes T_1 et T_2 ont pour équation :

$$u_k(x-x_0) + v_k(y-y_0) = 0 \ (k=1,2)$$

où (u_1,v_1) et (u_2,v_2) sont deux solutions linéairement indépendantes de l'équation :

$$(a^2 - x_0^2) u^2 - 2x_0 y_0 uv + (b^2 - y_0^2) v^2 = 0$$

et dire qu'elles sont orthogonales signifie que :

$$u_1 u_2 + v_1 v_2 = 0 (3.8)$$

(le vecteur (u_k, v_k) est orthogonal à T_k pour k = 1, 2).

Supposons d'abord $a^2 \neq x_0^2$. Si $v_k = 0$, on a alors $(a^2 - x_0^2) u_k^2 = 0$ et $u_k = 0$, ce qui est impossible. Donc $v_k \neq 0$ pour k = 1, 2 et $m_k = \frac{u_k}{v_k}$ sont les deux solutions réelles de :

$$(a^2 - x_0^2) t^2 - 2x_0 y_0 t + (b^2 - y_0^2) = 0$$

et le produit de ces racines d'une équation de degré 2 est :

$$m_1 m_2 = \frac{b^2 - y_0^2}{a^2 - x_0^2},$$

mais en divisant (3.8) par v_1v_2 , on a:

$$m_1 m_2 = \frac{u_1}{v_1} \frac{u_2}{v_2} = -1$$

et $\frac{b^2 - y_0^2}{a^2 - x_0^2} = -1$, ce qui équivaut à $x_0^2 + y_0^2 = a^2 + b^2$.

Si $a^2 = x_0^2$ et $b^2 \neq y_0^2$, (u_1, v_1) et (u_2, v_2) sont deux solutions linéairement indépendantes de l'équation :

$$(-2x_0y_0u + (b^2 - y_0^2)v)v = 0$$

et $u_k \neq 0$ pour k = 1, 2. Avec $u_1u_2 + v_1v_2 = 0$, on déduit que $v_k \neq 0$ pour k = 1, 2 et (u_1, v_1) et (u_2, v_2) sont solutions de :

$$-2x_0y_0u + (b^2 - y_0^2)v = 0$$

donc sur une même droite, ce qui n'est pas possible. On a donc $b^2 = y_0^2$ pour $a^2 = x_0^2$ et encore $x_0^2 + y_0^2 = a^2 + b^2$.

On donc montré que Λ est contenu dans le cercle d'équation $x^2+y^2=a^2+b^2$.

Réciproquement soit $M_0(x_0, y_0)$ sur le cercle d'équation $x^2 + y^2 = a^2 + b^2$. On a alors :

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = \frac{a^2 + b^2 - y_0^2}{a^2} + \frac{y_0^2}{b^2} = \frac{a^2 + b^2}{a^2} + y_0^2 \left(\frac{1}{b^2} - \frac{1}{a^2}\right) > 1$$

et il passe par M_0 exactement deux tangentes T_1 et T_2 à Γ .

Si $x_0^2 = a^2$, on a alors $y_0 = b^2$, soit $M_0(\pm a, \pm b)$ (ce sont les sommets d'un rectangle) et ces deux tangentes sont l'une parallèle à l'axe Ox et l'autre parallèle à l'axe Oy, donc perpendiculaires. Par exemple pour $M_0(a,b)$, T_1 est la tangente à Γ en $M_1(0,b)$ d'équation $\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1$, soit y = b et T_2 est la tangente à Γ en $M_1(a,0)$ d'équation $\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1$, soit x = a.

Si $x_0^2 \neq a^2$, alors l'équation $(a^2 - x_0^2) t^2 - 2x_0 y_0 t + (b^2 - y_0^2)$ a deux racines réelles distinctes m_1 et m_2 qui sont les pentes de ces tangentes et la relation $m_1 m_2 = \frac{b^2 - y_0^2}{a^2 - x_0^2} = -1$ nous dit que ces tangentes sont orthogonales.

3.4.2 Lieu orthoptique d'une hyperbole

Soit Γ une hyperbole dans le plan euclidien \mathcal{P} d'équation :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\tag{3.9}$$

dans un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, où 0 < b < a.

Théorème 3.19 Le lieu des points M du plan euclidien \mathcal{P} d'où l'on peut mener deux tangentes à l'hyperbole Γ qui sont orthogonales est le cercle d'équation :

$$x^2 + y^2 = a^2 - b^2.$$

3.4.3 Lieu orthoptique d'une parabole

Soit Γ une parabole et $y^2=2px$ une équation réduite dans un repère adapté.

Théorème 3.20 Le lieu des points M du plan euclidien \mathcal{P} d'où l'on peut mener deux tangentes à la parabole Γ qui sont orthogonales est la directrice \mathcal{D} d'équation $x = -\frac{p}{2}$.

3.5 Cocyclicité de 4 points sur une conique

3.5.1 Cocyclicité de 4 points sur une parabole

Soit Γ une parabole et $y^2 = 2px$ une équation réduite dans un repère adapté.

Dire que les quatre points $M_k(x_k, y_k)$ de Γ sont cocycliques équivaut à dire qu'il existe un point $M_0(x_0, y_0)$ de \mathcal{P} et un réel R > 0 tels que :

$$\begin{cases} y_k^2 = 2px_k \\ (x_k - x_0)^2 + (y_k - y_0)^2 = R^2 \end{cases}$$

et les 4 réels y_k sont nécessairement racines du polynôme de degré 4 :

$$Q(t) = \left(\frac{1}{2p}t^2 - x_0\right)^2 + (t - y_0)^2 - R^2$$

soit de :

$$P(t) = t^4 + 4p(p - x_0)t^2 - 8p^2y_0t + 4p^2(x_0^2 + y_0^2 - R^2).$$

On a donc:

$$P(t) = t^{4} + 4p(p - x_{0})t^{2} - 8p^{2}y_{0}t + 4p^{2}(x_{0}^{2} + y_{0}^{2} - R^{2})$$
$$= \prod_{k=1}^{4} (t - y_{k}) = t^{4} - \sigma_{1}t^{3} + \sigma_{2}t^{2} - \sigma_{3}t + \sigma_{4}$$

avec:

$$\begin{cases}
\sigma_1 = \sum_{k=1}^{4} y_k = 0 \\
\sigma_2 = \sum_{1 \le i < j \le 4} y_i y_j = 4p (x_0 - p) \\
\sigma_3 = \sum_{1 \le i < j < k \le 4} y_i y_j y_k = -8p^2 y_0 \\
\sigma_4 = y_1 y_2 y_3 y_4 = 4p^2 (x_0^2 + y_0^2 - R^2)
\end{cases}$$

(fonctions symétriques élémentaires des racines).

Une condition nécessaire de cocyclicité est donc $\sigma_1 = \sum_{k=1}^4 y_k = 0$, les réels y_k étant deux à deux distincts

Réciproquement, étant donnés des réels y_1, y_2, y_3, y_4 deux à deux distincts tels que $\sigma_1 = \sum_{k=1}^4 y_k = 0$, on définit les réels x_0 et y_0 par :

$$\begin{cases} 4p(x_0 - p) = \sigma_2 = \sum_{1 \le i < j \le 4} y_i y_j \\ -8p^2 y_0 = \sigma_3 = \sum_{1 \le i < j < k \le 4} y_i y_j y_k \end{cases}$$

et le réel r par :

$$4p^{2}\left(x_{0}^{2}+y_{0}^{2}-r\right)=\sigma_{4}=y_{1}y_{2}y_{3}y_{4}.$$

Il s'agit alors de vérifier que r > 0. Les conditions imposées nous disent que les y_k sont racines de :

$$P(t) = t^4 - \sigma_1 t^3 + \sigma_2 t^2 - \sigma_3 t + \sigma_4$$

= $t^4 + 4p(p - x_0)t^2 - 8p^2 y_0 t + 4p^2(x_0^2 + y_0^2 - r)$

et en remarquant que $P(y_1) = 0$ équivaut à :

$$Q(y_1) = \left(\frac{1}{2p}y_1^2 - x_0\right)^2 + (y_1 - y_0)^2 - r = 0,$$

on déduit que :

$$r = \left(\frac{1}{2p}y_1^2 - x_0\right)^2 + (y_1 - y_0)^2 > 0$$

 $(r=0 \text{ donnerait } y_1=y_0 \text{ et } x_0=\frac{1}{2p}y_1^2=\frac{1}{2p}y_0^2$, soit $M_0 \in \Gamma$, ce qui n'est pas) et peut poser $r=R^2$ avec R>0. Les conditions $Q(y_k)=0$ pour $1 \le k \le 4$ nous disent alors que les points M_k sont cocycliques.

On a donc montré le résultat suivant.

Théorème 3.21 Les points deux à deux distincts $M_k(x_k, y_k)$, pour $1 \le k \le 4$, sont cocycliques sur la parabole Γ d'équation $y^2 = 2px$ si, et seulement si, $\sum_{k=1}^4 y_k = 0$.

3.5.2 Cocyclicité de 4 points sur une ellipse

Soit Γ une ellipse de paramétrisation :

$$\gamma: t \in \mathbb{R} \mapsto (a\cos(t), b\sin(t))$$

dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, où 0 < b < a.

Théorème 3.22 (Joachminstal) Les points deux à deux distincts $M_k(x_k, y_k)$, pour $1 \le k \le 4$, sont cocycliques sur l'ellipse Γ de paramétrisation $(x, y) = (a \cos(t), b \sin(t))$ si, et seulement si, $\sum_{k=1}^{4} y_k \equiv 0 \mod 2\pi$.

3.6 Équations des coniques dans un repère quelconque

On peut définir une conique dans un repère cartésien (non nécessairement orthonormé) par une équation implicite $\varphi(x,y)=0$ où $\varphi=q+h$ est la somme d'une forme quadratique non nulle et d'une fonction affine, soit :

$$q(x,y) = ax^{2} + 2bxy + cy^{2}$$
 et $h(x,y) = 2dx + 2ey + f$

avec $(a, b, c) \in \mathbb{R}^3 \setminus \{0\}$ et $(d, e, f) \in \mathbb{R}^3$.

Le réel $\delta = b^2 - ac$ est le discriminant (réduit) de la forme quadratique q.

On désigne par Γ une telle courbe d'équation $\varphi(x,y) = 0$.

Théorème 3.23

- 1. Si $\delta < 0$, alors Γ est soit vide, soit une ellipse, soit un cercle éventuellement réduit à un point.
- 2. Si $\delta = 0$, alors Γ est soit vide, soit une droite, soit la réunion de deux droites parallèles, soit une parabole.
- 3. Si $\delta > 0$, alors Γ est soit la réunion de deux droites sécantes, soit une hyperbole.

Dans le cas où $\delta \neq 0$ et Γ est une conique, les valeurs propres de la matrice A de q définissent les directions principales (ou les axes) de la conique. Cette conique est à centre et les coordonnées du centre s'obtiennent en résolvant le système :

$$\begin{cases} \frac{\partial \varphi}{\partial x} f(x, y) = 0\\ \frac{\partial \varphi}{\partial y} f(x, y) = 0 \end{cases}$$

soit:

$$\begin{cases} ax + by + d = 0 \\ bx + cy + e = 0 \end{cases}$$