Karnaugh Maps

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

Minimum Switching Functions

Find a minimum sum-of-products expression for

$$F(a, b, c) = \sum m (0, 1, 2, 5, 6, 7)$$

$$F = a'b'c' + a'b'c + a'bc' + ab'c + abc' + abc$$

$$= a'b' + b'c + bc' + ab$$

None of the terms in the above expression can be eliminated by consensus. However, combining terms in a different way leads directly to a minimum sum of products:

$$F = a'b'c' + a'b'c + a'bc' + ab'c + abc' + abc$$

$$= a'b' + bc' + ac$$

311_05

Karnaugh Map

ABC	F
000	0
0 0 1	0
0 1 0	1
0 1 1	1
100	1
101	0
1 1 0	1
1 1 1	0

$$F(A,B,C) = \Sigma m(2,3,4,6)$$

Four-Variable Karnaugh Map

Terminology

- Minterm
- Implicant
- Cover
- Prime Implicant
- Essential Prime Implicant
- Secondary Prime Implicant
- Minimal Sum

Methodology

- Minimal Sum
 - Essential Prime Implicants
 - Secondary Prime Implicants
 - Minimal Cover

Example

$$F(W,X,Y,Z) = \Sigma m(3,6,7,9,11,12,14,15)$$

Don't Cares

$$B = x2' + (x3'x4') + (x3x4)$$

$$B(x1,x2,x3,x4) = \Sigma m (0,1,2,3,4,7,8,9) + \Sigma d(10-15)$$

Summary

- Minimizing Switching Functions
- Karnaugh Maps
 - Three-Variable
 - Four-Variable
 - Don't Cares