

A cinemática é uma parte da mecânica que descreve o movimento a partir de medidas relacionadas ao comprimento e ao tempo. Sendo assim, é importante, antes, fazermos um estudo sobre a importância das medidas.

A Física é uma ciência experimental, e fazer medidas é uma prática comum e importante. Chama-se grandeza tudo aquilo que é mensurável, como: comprimento, tempo, massa, velocidade, força, pressão e corrente elétrica, etc.

Medir uma grandeza significa atribuir a ela um valor numérico baseando-se em uma comparação com uma unidade de medida, como: metro, segundo, quilograma, newton, pascal, ampere, etc. Sendo assim, toda grandeza deve possuir uma unidade de medida.

Temos sete unidades de medidas fundamentais, entre elas o comprimento, massa e tempo com as medidas em metro (m), quilograma (kg) e segundos (s) respectivamente. Clique nos botões e conheça as outras unidades de medidas fundamentais.

Temperatura

Kelvin (k)

Quantidade de matéria

Mol

Corrente elétrica

Ampere (A)

Intensidade luminosa

Candela (cd)

Grandezas escalares

Algumas grandezas são compreendidas apenas quando conhecemos seu valor numérico e sua unidade de medida, como a massa e o intervalo de tempo. São as chamadas **grandezas escalares**. Também podemos citar como exemplo a temperatura, o volume, o comprimento, a energia e a pressão.

Grandezas vetoriais

A Física lida com inúmeras grandezas e algumas delas necessitam de mais informações, além do valor numérico, como sua orientação. São as chamadas **grandezas vetoriais**, pois são tratadas por uma linguagem matemática dos vetores. Deslocamento, velocidade, aceleração, força, são exemplos de grandezas vetoriais.

Vetor é uma representação gráfica composto por um segmento de reta orientado (uma seta). Uma grandeza vetorial é aquela designada por um vetor, tendo assim que possuir valor numérico (também chamado de intensidade ou módulo), direção e sentido. Seu símbolo é composto pelo símbolo da grandeza com uma seta sobre ele, como por exemplo, vetor deslocamento \overrightarrow{v} , vetor velocidade \overrightarrow{v} e vetor força \overrightarrow{F} .

Clique na imagem para saber mais.

Representação dos vetores unitários e no plano cartesiano xy

Fonte: elaborada pelo autor.

Para realizar operações com vetores é preciso considerar também suas orientações, de forma que somar vetores não é simplesmente somar suas intensidades.

Vamos considerar três vetores que podem ser escritos da seguinte forma: $\Delta \overrightarrow{s}_1 = (100 \ m) \ \hat{i}$, $\Delta \overrightarrow{s}_2 = (100 \ m) \ \hat{j}$; $\Delta \overrightarrow{s}_3 = (200 \ m) \ \hat{i}$. Determinaremos o deslocamento total, dado pela soma vetorial a seguir:

$$ec{\Delta \, \overrightarrow{s}} = ec{\Delta \, \overrightarrow{s}}_1 + ec{\Delta \, \overrightarrow{s}}_2 + ec{\Delta \, \overrightarrow{s}}_3 = (100 \ m) \ \hat{i} + (100 \ m) \ \hat{j} + (200 \ m) \ \hat{i}$$

Portanto, temos dois deslocamentos na direção x e um na direção y. Sendo assim, podemos escrever:

Clique para ver a representação gráfica.

O sinal de adição diz que para encontrarmos a intensidade do deslocamento total, devemos fazer uma soma vetorial entre o vetor deslocamento de 300 m na direção x, sentido crescente

$$\left(\overrightarrow{\Delta s}_{x} \right)$$
 e o vetor deslocamento de 100 m na direção y, sentido crescente $\left(\overrightarrow{\Delta s}_{y} \right)$.

Decomposição de vetores

É um método vetorial em que se permite trabalhar um vetor a partir de suas componentes.

$$ext{sen}\, heta = rac{arDelta s_y}{arDelta s} = rac{100}{316,23} \cong 0 \; , 316$$

$$\cos heta = rac{arDelta s_x}{arDelta s} = rac{300}{316,23} \cong 0 \; , 949$$

$$ag heta = rac{arDelta s_y}{arDelta s_x} = rac{100}{300} = rac{1}{3}$$

$$egin{align} arc \operatorname{sen}\left(0\ ,316
ight) &\cong 18\ ,4\ ^{\circ} \ arc \operatorname{cos}\left(0,949
ight) &\cong 18,4\ ^{\circ} \ arc \operatorname{tg}\left(rac{1}{3}
ight) &\cong 18,4\ ^{\circ} \ \end{matrix}$$

É uma grandeza vetorial que localiza um corpo em relação a um referencial, designada pelo símbolo \overrightarrow{s} . Sua unidade de medida é o metro.

No caso de se ter dois instantes diferentes significa ocupar posições diferentes s e s_0 (símbolo de sua posição inicial). Assim, dizemos que há um movimento calculável por seu deslocamento:

$$\Delta s = s - s_0$$

Explore a galeria e veja as outras grandezas vetoriais.

Velocidade média

Esta grandeza apresenta a taxa de variação da média das posições a cada unidade de tempo. Considerando o intervalo de tempo de um deslocamento, podemos definir a velocidade média como:

$$v_m=rac{arDelta s}{arDelta t}=rac{s-s_0}{t-t_0}$$

Entendemos que, com o estudo da cinemática, podemos lidar com os diversos tipos de movimentos em nosso cotidiano, seja o movimento das engrenagens de um relógio, o movimento da máquina de lavar ou o movimento da água em um encanamento.

Você já conhece o Saber?

Aqui você tem na palma da sua mão a biblioteca digital para sua formação profissional.

Estude no celular, tablet ou PC em qualquer hora e lugar sem pagar mais nada por isso.

Mais de 450 livros com interatividade, vídeos, animações e jogos para você.

Android:

https://goo.gl/yAL2Mv

iPhone e iPad - IOS: https://goo.gl/OFWqcq

