Visión por Computador II

CEAI, FIUBA

Profesor: Javier Kreiner, javkrei@gmail.com

Segunda clase:

- Repasos de la clase pasada (y de algunas fórmulas)
- Experimento: Con Pooling vs. Sin Pooling
- Ejercicio:
 - o Primer intento de solución de un problema de Kaggle con redes convolucionales
- Kahoot n

 ^o 1
- Data Augmentation
- Ejercicio:
 - Segundo intento de solución del problema utilizando data augmentation
- Algunas arquitecturas clásicas:
 - LeNet-5
 - AlexNet
- Kahoot n

 ^o 2

Método para entregar los ejercicios

- Subir en su github las soluciones, y pasarme el github
- El github puede contener también links a colabs, si eso es más cómodo
- Separar las clases en carpetas, o sea, todos los ejercicios de una clase en una carpeta, una carpeta para cada clase

Repaso

- 3 tipos de capas principales: CONV, POOL (AVG o MAX), DENSE/FC
- Parámetros de POOL: stride(s) y pool size(f)
- Parámetros de CONV: stride(s), filter size(f), padding(p), n_c (# de filtros)
- 'same' padding: s tal que la salida mide lo mismo que la entrada
- 'valid' padding: p=0
- tamaño de salida después de CONV:
 - o $floor[(n + 2p f)/s + 1] \times floor[(n + 2p f)/s + 1] \times n_c$
- # de parámetros de CONV: $f^{[l]} x f^{[l]} x n_c^{[l-1]} x n_c^{[l]} + n_c^{[l]}$
- tamaño de salida después de POOL:
 - o $floor[(n + 2p f)/s + 1] \times floor[(n + 2p f)/s + 1] \times n_s^{[l-1]}$
 - no tiene parámetros
- # de parámetros de DENSE/FC:
 - \circ $n^{[l-1]} x n^{[l]} + n^{[l]}$

Experimento - Con Pool vs Sin Pooling

colab: https://colab.research.google.com/drive/10fNVCqHkst5EYPFG2tCFV4-oVFJiUTc3?usp=sharing

Ejercicio: entrenar una red para distinguir perros de gatos

(https://www.kaggle.com/c/dogs-vs-cats)

hay que entrenar un clasificador que distinga entre perros y gatos

vamos a usar un subconjunto de este dataset (4000 en vez de 25000 imágenes)

vamos a entrenar varias redes y usando diversas técnicas

Organización del dataset:

- Tenemos train, validation y test datasets
- Las imágenes están en directorios con los nombres respectivos
- En cada directorio (train,test,validation) hay un subdirectorio por clase (cat,dog)
- Las imágenes son importadas con valores de 0 a 255 (y tres canales, RGB)
- Usamos ImageDataGenerator para reescalarlas entre a valores en [0,1]
- Las imágenes tienen diferentes tamaños y por eso hay que preprocesarlas llevándolas todas a 150x150
- Para generar datasets usamos ImageDataGenerator.flow_from_directory con los parámetros correspondientes
- https://keras.io/api/preprocessing/image/

Ejercicio: entrenar una red para distinguir perros de gatos

(https://www.kaggle.com/c/dogs-vs-cats)

Estructura a diseñar:

- Capa convolucional de 32 filtros de 3x3, activación ReLU
- Max Pooling 2x2
- Capa convolucional de 64 filtros de 3x3, activación ReLU
- Max Pooling 2x2
- Capa convolucional de 128 filtros de 3x3, activación ReLU
- Max Pooling 2x2
- Capa convolucional de 128 filtros de 3x3, activación ReLU
- Max Pooling 2x2
- Capa Flatten
- Capa FC de 512 elementos, activación ReLU
- Capa FC de salida (1 elemento), activación sigmoidea
- Loss function: Binary Cross-entropy
- Optimizador; RMSprop (Ir = 1e-4)

link al colab:

https://colab.research.google.com/drive/1x2iV92KUCL2rr70p3Jwb9LMeMdnsmj7e?usp=sharing

Kahoot de redes convolucionales 1

Data Augmentation

- Consiste en 'aumentar' la cantidad de datos que tenemos
- Se consigue con la generación de ejemplos modificando ejemplos ya existentes
- Las transformaciones dependen de la aplicación específica y las características de los datos
- En el caso de imagenes podemos:
 - o rotar
 - escalar
 - distorsionar
 - invertir
 - o agregar ruido
 - o crop
 - o zoom
 - o deformaciones de luz, color, locales
 - o etc.
- Si estas transformaciones son lógicas dados los tipos de datos, la red va a tener una conjunto de entrenamiento mayor

Transformaciones básicas

Transformaciones de color

Más Transformaciones

Original Image	Besic	Light deformation	Extreme deformation	Color deformation	Image overlapping	Background swapping
				The second second		
					200	85%

Ejercicio: Usar data augmentation para mejorar la performance

- link al dataset:
 - https://drive.google.com/file/d/1WgbH Xt421hNhD4gcfwsvtVsFheJKefm/view?usp=sharing
- link al colab:
 - https://colab.research.google.com/drive/1x2iV92KUCL2rr70p3Jwb9LMeMdnsmj7e?usp=sharing

Algunas arquitecturas clásicas: LeNet-5

- A fines de 1989 Yann LeCunn experimentaba con redes convolucionales
- Una muy conocida es LeNet-5
- Una aplicación importante fue al reconocimiento de dígitos
- Su estructura es representativa de la organización actual
- Paper original: http://vision.stanford.edu/cs598 spring07/papers/Lecun98.pdf

Diagrama

Tabla con la arquitectura

	Layer	Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	5 4 5	-	-
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	-	84	848	-	tanh
Output	FC	_	10	121	127	softmax

Ejercicio: implementar LeNet-5 para reconocer dígitos

Algunas arquitecturas clásicas: AlexNet

- En 2012 causó un gran impacto por obtener un puntaje significativamente mayor que el segundo puesto en ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), partir de ese momento todos los ganadores comenzaron a ser redes convolucionales profundas
- En gran parte desató el furor por este tipo de redes en el campo de visión por computador
- Paper original: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Características de AlexNet

- Rectified Linear Units (relus)
- Uso de múltiples GPUs para implementar el modelo
- Dropout
- Local Response Normalization, no tan usado hoy en día
- Capas Pool con ventanas superpuestas
- Data Augmentation

Dropout

- En cada etapa de entrenamiento, nodos individuales son 'dropped' o 'caídos' o ignorados con probabilidad 1-p y retenidos con una probabilidad p
- De esa manera queda una red con menos nodos/conexiones entre nodos
- Ayuda a evitar overfitting
- En la etapa de testing todos los pesos se ajustan por el factor p

Estructura en el paper original

Estructura:

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	227x227x3	_	-	-
1	Convolution	96	55 x 55 x 96	11x11	4	relu
	Max Pooling	96	27 x 27 x 96	3x3	2	relu
2	Convolution	256	27 x 27 x 256	5x5	1	relu
	Max Pooling	256	13 x 13 x 256	3x3	2	relu
3	Convolution	384	13 x 13 x 384	3x3	1	relu
4	Convolution	384	13 x 13 x 384	3x3	1	relu
5	Convolution	256	13 x 13 x 256	3x3	1	relu
	Max Pooling	256	6 x 6 x 256	3x3	2	relu
6	FC		9216	-	-	relu
7	FC	-	4096	-		relu
8	FC	-	4096	-	-	relu
Output	FC		1000	-	-2	Softmax

Esquema

Kahoot de redes convolucionales 2

Tarea

- En pool vs no pool agregar uno o dos bloques más con y sin pool para ver si hay diferencia.
- Entrenar la red para perros y gatos y ver qué accuracy pueden obtener
- Implementar LeNet-5 y utilizarla en MNIST

Bonus

- Leer el capítulo de redes convolucionales del libro de Goodfellow et al.
 https://www.deeplearningbook.org/contents/convnets.html
- otro machete:
 https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks.pdf