Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

Práctica N° 4: BASES Y CAMBIO DE BASE

1) Se
a ${\cal V}$ un espacio vectorial de dimensión n. En cada caso, elegir la opción correcta.

a) Un conjunto linealmente independiente en V	siempre tien
() a lo sumo n elementos.	
() exactamente n elementos.	
() como mínimo n elementos.	
b) Un conjunto generador de V siempre tiene:	
() a lo sumo n elementos.	
() exactamente n elementos.	
() como mínimo n elementos.	

- c) Una base de ${\cal V}$ siempre tiene:
 - () a lo sumo n elementos.
 - () exactamente n elementos.
 - () como mínimo n elementos.

2) Determinar si el conjunto de vectores B dado en cada ítem es i) un conjunto generador, ii) un conjunto LI, iii) una base, del espacio vectorial indicado.

a)
$$B = (1, -1), (1, 2)$$
 en R^2 .

b)
$$B = (1, -3), (-2, 6)$$
 en \mathbb{R}^2 .

c)
$$B = (1, -1), (3, -3)$$
 en $H = \{(x, y) \in \mathbb{R}^2 / x + y = 0\}.$

d)
$$B = (1,4), (0,1)$$
 en $H = \{(x,y) \in \mathbb{R}^2 / x + y = 0\}.$

e)
$$B = (-2, 4)$$
 en $H = \{(x, y) \in \mathbb{R}^2 / 2x + y = 0\}.$

$$f) B = \{-3x, 1+x^2, x^2-5\}$$
en P_2 .

g)
$$B = \{x^3, x^2 + 1, x + 6\}$$
 en P_3 .

$$h) \ B = \left\{ \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -5 & 1 \\ 0 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -7 \end{bmatrix} \right\} \text{ en } M_{2x2}.$$

$$i) \ B = \left\{ \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}, \begin{bmatrix} -6 & 1 \\ 5 & 8 \end{bmatrix}, \begin{bmatrix} 7 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 6 \\ 0 & 0 \end{bmatrix} \right\} \text{ en } M_{2x2}.$$

- 3) Determinar si el conjunto $C = \{(1,2,1), (1,0,2), (1,1,0)\}$ es base o no de \mathbb{R}^3 :
- 4) Escribir la base canónica de los espacios: R^4 , P_2 , M_{2x2} y S_{3x3} (conjunto de matrices simétricas de orden 3).
- 5) Hallar una base de los espacios propuestos, decir cuál es su dimensión y escribir dos vectores de cada espacio:

a)
$$H = \{(x, y, z) \in \mathbb{R}^3 / 3x - 2y + 6z = 0\}.$$

- b) El conjunto de los vectores (x,y,z) de \mathbb{R}^3 tales que $x=3t,\,y=-2t,\,z=t,$ para algún número real t.
- c) El conjunto D_3 , formado por todas las matrices diagonales de M_{3x3} .

d)
$$H = \{p(x) \in P^2 / p(0) = 0\}.$$

6) Encontrar los valores que puede tomar el número real a para que los vectores (a, 1, 0), (1, 0, a) y (1 + a, 1, a) formen una base de \mathbb{R}^3 .

1

- 7) Sea $\{v_1, v_2, v_3\}$ una base de un espacio vectorial V. Sean $u_1 = v_1$, $u_2 = v_1 + v_2$, $u_3 = v_1 + v_2 + v_3$. Demostrar que $\{u_1, u_2, u_3\}$ es una base de V.
- 8) Encontrar el vector de coordenadas de:
 - a) x = (1, -2, 7) con respecto a la base $B = \{(1, 0, 3), (1, 1, 1), (2, -1, 4)\}$ de R^3 .
 - b) $p(x) = 2x^2 6x 16$ con respecto a la base $B = \{-3x, x^2 + 1, x^2 5\}$ de P_2 .
 - $c) \ A = \left[\begin{array}{cc} 2 & -1 \\ 4 & 6 \end{array} \right] \ \text{con respecto a la base} \ B = \left\{ \left[\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array} \right], \left[\begin{array}{cc} 2 & 0 \\ 3 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & -2 \\ 0 & 4 \end{array} \right] \right\}.$
- 9) Resuelve los siguientes ítems:
- a) Se sabe que $[v]_{B_1}=(4,-1)$, donde $B_1=\{(0,-1),(1,1)\}$. Encontrar las coordenadas del vector $v\in R^2$ respecto a la base $B_2=\{(0,1),(-3,0)\}$.
- b) En P_1 se sabe que $[p(x)]_{B_1}=(2,1),$ donde $B_1=\{1-x,x\}.$ Escribir p(x) en términos de $B_2=\{x+1,x-1\}.$
- 10) Dadas las bases $B_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ y $B_2 = \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -3 \\ -4 \end{pmatrix} \right\}$:
 - a) Determinar la matriz de transición de la base B_1 a B_2 .
 - b) Determinar la matriz de transición de la base B_2 a B_1 .
 - c) Chequear que ambas matrices de transición son inversas.
- 11) Considerar las bases de P_1 : $B = \{6 + 3x, 10 + 2x\}$ y $B' = \{2, 3 + 2x\}$.
 - a) Hallar la matriz de transición de B a B'.
 - b) Encontrar la matriz de transición de B' a B.
 - c) Calcular $[p(x)]_{B'}$ para $p = -4 + x \sin$ usar una matriz de transición.
 - d) Calcular $[p(x)]_{B'}$ para p = -4 + x usando la matriz de transición de B a B'.
- 12) Sean B_1 y B_2 dos bases del espacio P_2 . Encontrar los elementos de la base B_1 sabiendo que:

$$B_2 = \{3 - x, x^2 - 1, x^2 - x\}$$

$$A_{B_1 \to B_2} = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 0 \\ -1 & 2 & 0 \end{bmatrix}$$

Ejercitación adicional para seguir practicando:

- 13) Determinar si $\{(1,2,3),(4,5,6),(7,8,9)\}$ forma una base de \mathbb{R}^3 .
- 14) Sea $B = \{(0, -1), (1, 2)\}$ una base de R^2 , y $v = (-3, -8) \in R^2$, hallar $[v]_B$.
- 15) Dadas las bases $B = \{(1,0), (0,1)\}$ y $B' = \{(0,-1), (1,2)\}$, hallar:
 - a) La matriz de cambio de base de B' a B.
 - b) La matriz de cambio de base de B a B'.
- 16) ¿Pueden estas matrices ser una matriz de cambio de base en algún espacio vectorial? Razoná la respuesta.

2

$$a) \ A = \left[\begin{array}{ccc} 1 & 3 & 3 \\ 0 & 1 & 0 \end{array} \right]$$

b)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

c) $A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$

17) Sea v=(1,2) en R^2 . Como es sabido, sus coordenadas en la base canónica $\{(1,0),(0,1)\}$ son (1,2). Si es posible, ejemplifica otra base B de modo que las coordenadas de v sean:

- a) (2,1)
- b) (-1, -2)
- c) (0,0)