Introduction to Computation (CS2201) Lecture 3

Kripabandhu Ghosh

CDS, IISER Kolkata

INTERPOLATION

Interpolation

Premise

- The analytical form of a function f(x) is unknown
- The values of f(x) at some points $x_0, x_1, ..., x_n$ are known to be $f(x_0), f(x_1), ..., f(x_n)$

Assumption

f is continuously differentiable sufficient number of times

Problem

Calculate $f(x_i)$ where x_i is distinct from the above tabulated points $(x_0, x_1, ..., x_n)$ but is in the vicinity of these points

Solution using Interpolation

Since the formula for f(x) is not known, the approximate value of the same can be determined by approximating f by another function $\phi(x)$

Interpolation function

Features

- $\phi(x)$ coincides with f(x) at the tabular points $(x_0, x_1, ..., x_n)$
- That is, $f(x) \simeq$ such that

$$\phi(x_i)=f(x_i)$$

$$i = 1, 2, ..., n$$

Interpolation function (contd.)

Choice

- Linear interpolation: $\phi(x)$ is a linear function
- Polynomial interpolation: $\phi(x)$ is a polynomial function

Vote for Polynomial

- Weierstrass's polynomial approximation theorem states that if f(x) is continuous in [a, b] then given $\epsilon > 0$, we can find a polynomial $P_{\epsilon}(x)$ such that $|f(x) P_{\epsilon}(x)| < \epsilon$ for every $x \in [a, b]$
- ullet That is, a polynomial is supposed to be capable of approximating any f(x)

Newton's Forward Interpolation

Formula

$$f(x) = y = y_0 + \binom{u}{1} \Delta y_0 + \binom{u}{2} \Delta^2 y_0 + \dots + \binom{u}{n} \Delta^n y_0$$

- $x_i = x_0 + i * h$ (equispaced points)
- $u = \frac{x-x_0}{b}$
- $\Delta^k y_i = \Delta^{k-1} y_{i+1} \Delta^{k-1} y_i$, i = 0, 1, ...; k = 2, 3, ...

Application

Useful for computing f(x) for values of x at the beginning of the table

Xi	Уi	Δy_i	$\Delta^2 y_i$	 $\Delta^n y_i$
<i>x</i> ₀	y 0	Δy_0	$\Delta^2 y_0$	 $\Delta^n y_0$
x_1	<i>y</i> ₁	Δy_1	$\Delta^2 y_1$	
X2	y 2	Δy_2		
Xn	y _n			

Newton's Forward Interpolation (example)

Actual function

$$f(x) = Sin(x)$$

Xi	Уi	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
45	0.7071	0.0589	-0.0057	-0.0007
50	0.766	0.0532	-0.0064	
55	0.8192	0.0468		
60	0.866			

Result

- Interpolated value at x = 46 is 0.719302
- f(46) = 0.719340

Newton's Backward Interpolation

Formula

$$f(x) = y = y_n + {u \choose 1} \Delta y_{n-1} + {u \choose 2} \Delta^2 y_{n-2} + \dots + {u+n-1 \choose n} \Delta^n y_0$$

- $x_i = x_0 + i * h$ (equispaced points)
- $u = \frac{x x_n}{h}$

Application

Useful for computing f(x) for values of x at the **end** of the table

Xi	Уi	Δy_i	$\Delta^2 y_i$	 $\Delta^n y_i$
<i>x</i> ₀	<i>y</i> ₀			
x_1	<i>y</i> ₁	Δy_0		
x_{n-1}	y_{n-1}	Δy_{n-2}		
X_n	y _n	Δy_{n-1}	$\Delta^2 y_{n-2}$	 $\Delta^n y_0$

Newton's Backward Interpolation (example)

Actual function

$$f(x) = Sin(x)$$

Xi	Уi	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
45	0.7071			
50	0.766	0.0		
55	0.8192	0.0532	0	
60	0.866	0.0468	-0.0064	0

Result

- Interpolated value at x = 56 is 0.823952
- f(56) = 0.829038

Lagrange Interpolation

Formula

$$f(x) = y = \frac{(x-x_1)(x-x_2)...(x-x_n)}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)} y_0 + \frac{(x-x_0)(x-x_2)...(x-x_n)}{(x_1-x_0)(x_1-x_2)...(x_1-x_n)} y_1 + ... + \frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)...(x_n-x_{n-1})} y_n$$

Application

Useful for computing f(x) for values of x which are not equispaced.

Lagrange Interpolation (example)

Actual function

$$f(x) = Sin(x)$$

Xi	45	50	56	63
Уi	0.7071	0.7660	0.8290	0.89100

Result

- Interpolated value at x = 52 is 0.788009
- f(52) = 0.788011

Disadvantage

For every new point, the whole calculation needs to be repeated.

scipy interpolate function

Format

scipy.interpolate.interp1d(x, y, kind='linear', ...)

Features

- x: A 1-D array of real values.
- y: A N-D array of real values. The length of y along the interpolation axis must be equal to the length of x
- kind: Specifies the kind of interpolation as a string or as an integer specifying the order of the *spline interpolator* to use.
 - The string has to be one of linear, nearest, nearest-up, zero, slinear, quadratic, cubic, previous, or next
 - zero, slinear, quadratic, cubic refer to a spline interpolation of zeroth, first, second or third order
 - previous, or next simply return the previous or next value of the point;
 - Default is linear.

Spline Interpolation

Description

- Interpolant is a special type of piecewise polynomial called a spline
- Instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values.
 For example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-ten polynomial to all of them

THANK YOU!!!