

TECH LEAD 2025.1 Projeto Final

Disciplina: Data Science e IA

Aluno1: Sttiwe Washington F Sousa

E-mail1: swfs@cesar.school

Aluno2: Pedro William Bernardino **E-mail2:** pwbcf@cesar.school

Student Performance: https://www.kaggle.com/datasets/nikhil7280/student-

performance-multiple-linear-regression

Inicialmente após ler o arquivo .csv com o CSV Reader podemos obter algumas informações sobre os dados. O arquivo contém um conjunto de dados de com 10 mil entradas, com as seguintes variáveis:

- Hours Studied: O número total de horas dedicadas aos estudos por cada aluno.
- *Previous Score*: As notas obtidas pelos alunos em provas anteriores.
- Extracurricular Activities: Se o aluno participa de atividades extracurriculares (Sim ou Não).
- Sleep Hours: O número médio de horas de sono que o aluno teve por dia.
- Sample Question Papers Praticed: O número de provas de exemplo que o aluno praticou.
- Performance Index: Média de desempenho de cada aluno.

Essa última variável será o nosso valor de referência para análise.

Iniciamos com algumas visualizações. Incluí uma View Bar Chat para analisar e compara e visualizar graficamente a relação do desempenho com as outras variáveis.

Posteriormente incluímos uma Linear Correlation para visualizar a correlação das variáveis com o valor de performance:

First column name String	~	Second column name	~	Correlation value ↓ Number (Float)
Previous Scores		Performance Index		0.915
Hours Studied		Performance Index		0.374
Sleep Hours		Performance Index		0.048
Sample Question Papers Practiced		Performance Index		0.043

Com a primeira análise podemos observar que os alunos com bom desempenho possuem uma quantidade razoável de horas de sono. O histórico de notas do aluno que possui um bom desempenho, possui uma correlação muito alta no desempenho atual, apresentando assim uma regularidade na sua média.

Tentamos realizar a análise dos dados utilizando os exemplos visto em aula utilizando o a Regressão Linear Multivariável. Normalizamos os dados e incluímos o particionamento da tabela configurada em 75%, assim, utilizamos o Linear Regression Learner e o Regression Predictor, denomalizei os dados e incluí o Numeric Scorer. Não tivemos uma boa compreensão do por que o resultado ficou negativo em R^2 = -8.023.

Assim, segue imagem da utilização da regressão linear multivariável.

Realizamos algumas pesquisas no fórum <u>kaggle</u> e umas das soluções recomenda a utilização da Simple Regression Tree Learner. A solução utilizando a arvore de decisão para o problema de regressão linear nos trouxe melhores resultados. Assim, ficou a estrutura no Knime:

Obtivemos um resultado positivo tendo um índice de 97,5% da variação de saída.

- **R^2** = 0.975
- Mean ansolute error = 2.37

RowID	Prediction (Performance Index) Number (Float)
R^2	0.975
mean absolute error	2.37
mean squared error	9.264
root mean squared error	3.044
mean signed difference	-0.103
mean absolute percentage error	0.05
adjusted R^2	0.975

Assim ficou toda solução:

