



## DEEP LEARNING BASICS

2020 Prof. Jae Young Choi

## DEEP LEARNING BASICS

### DEEP MACHINE LEARNING

- Algorithms able to automatically construct expert knowledge
  - typically by applying artificial neural networks (NNs) to huge amounts of data



Self-learning, black-box systems

- Alternative to manual construction of expert knowledge
  - time consuming and thus expensive

### POPULARITY OF DEEP LEARNING



Geoff Hinton



Andrew Ng



Yann LeCun



Yoshua Bengio

**\$400** million to buy deeplearning startup Nervana Systems (Aug 2016)

**Apple** Acquires Machine Learning Startup Turi For **\$200 Million** (Aug 2016)

Google Acquires Artificial
Intelligence Startup DeepMind
For More Than \$500M
(Dec 2014)

Deep Learning Enterprise Software Spending to Surpass \$40 Billion Worldwide by 2024 (May 2016) **Twitter** pays up to \$150M for Magic Pony Technology, which uses neural networks to improve images (Jun 2016)

### WHY DEEP LEARNING?

### Availability of cheap and massive computational power

- GPU computing
- cloud computing

### Availability of large data sets

- social media applications
- sensor output (Internet of Things / Internet of Services)

### New algorithmic techniques

- dropout
- rectified linear units (ReLU)
- Layer-wise training

### SCALE DRIVING DEEP LEARNING PROGRESS



### THE RISE OF END-TO-END LEARNING

### Learning with integer or real-valued outputs:

| Problem                  | X                       | Υ                  |
|--------------------------|-------------------------|--------------------|
| Spam classification      | Email                   | Spam/Not spam(0/1) |
| Image recognition        | Image                   | Integer label      |
| Housing price prediction | Features of house       | Price in dollars   |
| Product recommendation   | Product & user features | Chance of purchase |

### Learning with complex (e.g., string valued) outputs:

| Problem                | X                    | Υ             | Example                   |
|------------------------|----------------------|---------------|---------------------------|
| Image captioning       | Image                | Text          | Mao et al., 2014          |
| Machine translation    | English text         | French text   | Suskever et al., 2014     |
| Question answering     | (Text,Question) pair | Answer text   | Bordes et al., 2015       |
| Speech recognition     | Audio                | Transcription | Hannun et al., 2015       |
| TTS(Texture-To-Speech) | Text features        | Audio         | van der Oord et al., 2016 |

# THE RISE OF END-TO-END LEARNING EXAMPLE APPLICATIONS: LOCALIZATION



(Fast) Region based Convolutional Networks (R-CNN) Ross Girshick, Microsoft Research

https://github.com/rbgirshick/fast-rcnn

### **END-TO-END LEARNING: AUTONOMOUS DRIVING**



Given the safety-critical requirement of autonomous driving and thus the need for extremely high levels of accuracy, a pure end-to-end approach is still challenging to get to work

End-to-end works only when you have enough (x,y) data to learn function of needed level of complexity

### **END-TO-END LEARNING: AUTONOMOUS DRIVING**



### Neuroscience inspired early works on Machine Learning & Al

◆ The perceptron (Frank Rosenblatt at Cornell University, 1957)







- ◆ The traditional model of pattern recognition (since the late 50's)
  - > Fixed/engineered features (or fixed kernel) + trainable classifier



### **Deep Learning = The entire Machine is Trainable**

◆ Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor



Mainstream Modern Pattern Recognition: Unsupervised mid-level feature



Deep Learning: Representations are hierarchical and trained



### Multi-Layer Neural Nets

ReLU(x) = max(x, 0) Multiple Layers of simple units Each units computes a weighted sum of its inputs Weighted sum is passed through a non-linear function The learning algorithm changes the weights Ceci est une voiture Weight matrix Hidden Layer

Slide credit: Y. LeCun

## Deep Learning = Learning Hierarchical Representations

◆It's deep if it has more than one stage of non-linear feature transformation



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

### **Trainable Feature Hierarchy**

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
  - Pixel → edge → texton → motif → part → object
- Text
  - Character → word → word group → clause → sentence → story
- Speech
  - Sample → spectral band → sound → phoneme → word



Slide credit: Y. LeCun

## Milestone Paper for Deep Learning



**Article in Nature** 



Inside a convolutional network

### Milestone Paper for Deep Learning

### **Article** in Nature





