

Midway Presentation

Anna Binoy Sumegha M T

# INTRODUCTION

- Radiative Transfer Models (RTMs) are used to study how energy from the sun is absorbed, reflected, and scattered by the Earth's atmosphere.
- RTE+RRTMGP is a RTM used to simulate this energy transfer.
- RRTMGP uses precomputed lookup tables (LUTs) to speed up calculations. However, LUTs have limitations, especially in terms of speed and accuracy.
- The main goal of the experiment is to emulate the RRTMGP look-up tables using neural networks and investigate the advantages of this utilization.

2023 Midway Presentation



### MOTIVATION

- LUTs have some setbacks
- LUTs require large storage space to store pre-calculated radiative transfer solutions for different atmospheric conditions.
- They are computationally expensive when a wide range of atmospheric conditions and input parameters are required.
- Accurate only within the pre-calculated range of atmosphere.
- Literature review suggests that neural networks can speed up calculations and improve data interpolation for a range of atmospheric conditions.

### **GOALS**

- Using neural networks to emulate the RRTMGP look-up tables.
- Verify its advantages over LUTs.
- Discuss the potential impact of using neural networks for atmospheric modeling and climate research.
- Explore ML-based optimization possibilities.

### MIDWAY PERFORMANCE

- Reviewed related papers and looked up the required codes.
- Studied tensorflow, docker, build automation.
- Generated 3600 atmospheric profiles which have some degree of realism.
- Developed a feed-forward neural network to emulate the look-up tables and trained it using 3600 atmospheric profiles.
- Verified that the feedforward neural network code that was developed is functioning properly.
- The layer temperature was used to predict the water vapor concentration.
- The temperature was the parameter, while the number of epochs and learning rate were the hyperparameters.
- The number of hidden layers and nodes in each layer in the FNN were varied and MSE v/s epoch was plotted.











#### **FUTURE PLANS**

#### LABELLING

The datasets will be labelled and trained, validated, and tested on feed forward neural networks

# PROFILE GENERATION

More atmospheric profiles will be generated from different datasets like CAM5,

#### RNN

Training, validating, and testing on Recurrent Neural Networks (RNNs).

#### COMPARISON

The performance of the RNN model will be compared to that of the previous model.