

## Faculté des arts et des sciences

Département de sciences économiques

## EXAMEN INTRA

Lundi 7 mars 2022, de 8h30 à 11h15

## ECN 6578A

## ÉCONOMÉTRIE DES MARCHÉS FINANCIERS

**HIVER 2022** 

Professeur: William MCCAUSLAND

Directives pédagogiques : Documentation non permise, calculatrice non programmable permise.

Pondération: Cet examen compte pour 35% de la note finale.

- 1. (15 points) Le 1er mars 1995, un investisseur construit un portefeuille à partir de deux fonds communs de placement : un fonds d'actions et un fonds d'obligations. L'investisseur place 2000\$ dans le fonds d'actions et 1000\$ dans le fonds d'obligations. L'investisseur tient le portefeuille jusqu'au 1er mars 2022. Les log rendements pour la période (de 1995 à 2022) sont  $r_a = 1.9$  pour le fonds d'actions et  $r_o = 0.4$  pour le fonds d'obligations. Quel est le log-rendement annualisé du portefeuille?
- 2. (20 points) Considérez le processus suivant :

$$r_t = \frac{1}{5} + \frac{1}{2}r_{t-1} + a_t + \frac{1}{3}a_{t-1},$$

où  $a_t$  est un bruit blanc faible avec variance unitaire.

- (a) Identifiez le modèle.
- (b) Quelle est la moyenne conditionnelle  $E[r_t|F_{t-1}]$ ?
- (c) Quelle est la moyenne inconditionnelle  $E[r_t]$ ?
- (d) Trouvez  $\mu$ ,  $\psi_0$  et  $\psi_1$  de l'expansion moyenne-mobile  $r_t = \mu + (\sum_{i=0}^{\infty} \psi_i B^i) a_t$  du processus.
- 3. (10 points) Supposez que les rendements journaliers d'un actif sont stationnaires et suivent un modèle GARCH(1,1) gaussien avec  $\alpha_0 = 4.2 \times 10^{-6}$ ,  $\alpha_1 = 0.12$  et  $\beta = 0.85$ . Selon les donnés observées,  $\sigma_t = 0.012$  et  $r_t = -0.0070$ .
  - (a) Quelle est la variance conditionnelle  $Var[r_{t+1}|F_t]$ ? Montrez vos calculs.
  - (b) Quelle est la variance inconditionnelle  $Var[r_t]$ ? Montrez vos calculs.
- 4. (20 points) Dans le context du modèle CAPM, nous avons vu qu'il existe des vecteurs g et h tels que pour chaque  $\mu_p \in \mathbb{R}$ ,  $\omega^* = g + \mu_p h$  est la solution unique du problème

$$\min_{\omega} \frac{1}{2} \omega^{\top} \Omega \omega \text{ tel que } \omega^{\top} \mu = \mu_p, \ \omega^{\top} \iota = 1,$$

où  $\Omega$  est défini positif.

- (a) Soit q (avec vecteur de poids  $\omega_q$ ) et q' (avec vecteur de poids  $\omega_{q'}$ ) deux portefeuilles distincts sur la frontière minimum variance (FMV). Démontrez que le portefeuille avec poids  $\omega_r \equiv \lambda \omega_q + (1 \lambda)\omega_{q'}$  est sur la FMV, où  $\lambda \in \mathbb{R}$ . Identifiez clairement où vous utilisez l'unicité de la solution  $\omega^* = g + \mu_p h$  du problème ci-haut.
- (b) Trouvez la moyenne et la variance du rendement de ce portefeuille, en termes de  $\lambda$ ,  $\omega_q$ ,  $\omega_{q'}$ ,  $\mu$  et  $\Omega$ .
- (c) Expliquez l'importance du résultat en (a) pour le modèle CAPM.

5. (20 points) Considérez un modèle où la durée  $d_i$ , en secondes, entre deux transactions consécutives suit une loi exponentielle avec paramètre  $\lambda$  et que les durées sont indépendantes. La densité et la moyenne de  $d_i$  sont

$$f(d_i|\lambda) = \lambda e^{-\lambda d_i}, \qquad E[d_i|\lambda] = 1/\lambda.$$

Pendant une heure on observe l'heure de n+1 transactions et on calcule les durées  $d_1, d_2, \ldots, d_n$  entre elles.

- (a) Trouvez l'estimateur maximum de vraisemblance de  $\lambda$ .
- (b) Supposez que vous avez choisi une loi a priori Gamma, avec paramètres  $\alpha$  et  $\beta$ , pour le paramètre inconnu  $\lambda$ . La densité et la moyenne de  $\lambda$  sont

$$f(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}, \qquad E[\lambda] = \alpha/\beta.$$

Trouvez la moyenne a posteriori de  $\lambda$ .

- 6. (15 points) Supposez que vous avez un échantillon  $r_1, \ldots, r_T$  de rendements journaliers observés dans un marché financier. A quelles caractéristiques qualitatives vous attendez-vous pour
  - (a) la fonction d'autocorrélation de  $r_t$ ?
  - (b) la fonction d'autocorrélation de  $r_t^2$ ?
  - (c) l'applatissement de l'échantillon?