

Measurement of CP -Violating Asymmetries in $B^0 \rightarrow D^{(*)\pm} D^\mp$

- B. Aubert,¹ M. Bona,¹ D. Boutigny,¹ Y. Karyotakis,¹ J. P. Lees,¹ V. Poireau,¹ X. Prudent,¹ V. Tisserand,¹ A. Zghiche,¹ J. Garra Tico,² E. Grauges,² L. Lopez,³ A. Palano,³ G. Eigen,⁴ B. Stugu,⁴ L. Sun,⁴ G. S. Abrams,⁵ M. Battaglia,⁵ D. N. Brown,⁵ J. Button-Shafer,⁵ R. N. Cahn,⁵ Y. Groysman,⁵ R. G. Jacobsen,⁵ J. A. Kadyk,⁵ L. T. Kerth,⁵ Yu. G. Kolomensky,⁵ G. Kukartsev,⁵ D. Lopes Pegna,⁵ G. Lynch,⁵ L. M. Mir,⁵ T. J. Orimoto,⁵ M. T. Ronan,^{5,*} K. Tackmann,⁵ W. A. Wenzel,⁵ P. del Amo Sanchez,⁶ C. M. Hawkes,⁶ A. T. Watson,⁶ T. Held,⁷ H. Koch,⁷ B. Lewandowski,⁷ M. Pelizaeus,⁷ T. Schroeder,⁷ M. Steinke,⁷ D. Walker,⁸ D. J. Asgeirsson,⁹ T. Cuhadar-Donszelmann,⁹ B. G. Fulsom,⁹ C. Hearty,⁹ T. S. Mattison,⁹ J. A. McKenna,⁹ A. Khan,¹⁰ M. Saleem,¹⁰ L. Teodorescu,¹⁰ V. E. Blinov,¹¹ A. D. Bukin,¹¹ V. P. Druzhinin,¹¹ V. B. Golubev,¹¹ A. P. Onuchin,¹¹ S. I. Serednyakov,¹¹ Yu. I. Skovpen,¹¹ E. P. Solodov,¹¹ K. Yu. Todyshev,¹¹ M. Bondioli,¹² S. Curry,¹² I. Eschrich,¹² D. Kirkby,¹² A. J. Lankford,¹² P. Lund,¹² M. Mandelkern,¹² E. C. Martin,¹² D. P. Stoker,¹² S. Abachi,¹³ C. Buchanan,¹³ S. D. Foulkes,¹⁴ J. W. Gary,¹⁴ F. Liu,¹⁴ O. Long,¹⁴ B. C. Shen,¹⁴ L. Zhang,¹⁴ H. P. Paar,¹⁵ S. Rahatlou,¹⁵ V. Sharma,¹⁵ J. W. Berryhill,¹⁶ C. Campagnari,¹⁶ A. Cunha,¹⁶ B. Dahmes,¹⁶ T. M. Hong,¹⁶ D. Kovalskyi,¹⁶ J. D. Richman,¹⁶ T. W. Beck,¹⁷ A. M. Eisner,¹⁷ C. J. Flacco,¹⁷ C. A. Heusch,¹⁷ J. Kroeseberg,¹⁷ W. S. Lockman,¹⁷ T. Schalk,¹⁷ B. A. Schumm,¹⁷ A. Seiden,¹⁷ D. C. Williams,¹⁷ M. G. Wilson,¹⁷ L. O. Winstrom,¹⁷ E. Chen,¹⁸ C. H. Cheng,¹⁸ F. Fang,¹⁸ D. G. Hitlin,¹⁸ I. Narsky,¹⁸ T. Piatenko,¹⁸ F. C. Porter,¹⁸ R. Andreassen,¹⁹ G. Mancinelli,¹⁹ B. T. Meadows,¹⁹ K. Mishra,¹⁹ M. D. Sokoloff,¹⁹ F. Blanc,²⁰ P. C. Bloom,²⁰ S. Chen,²⁰ W. T. Ford,²⁰ J. F. Hirschauer,²⁰ A. Kreisel,²⁰ M. Nagel,²⁰ U. Nauenberg,²⁰ A. Olivas,²⁰ J. G. Smith,²⁰ K. A. Ulmer,²⁰ S. R. Wagner,²⁰ J. Zhang,²⁰ A. M. Gabareen,²¹ A. Soffer,²¹ W. H. Toki,²¹ R. J. Wilson,²¹ F. Winklmeier,²¹ Q. Zeng,²¹ D. D. Altenburg,²² E. Feltresi,²² A. Hauke,²² H. Jasper,²² J. Merkel,²² A. Petzold,²² B. Spaan,²² K. Wacker,²² T. Brandt,²³ V. Klose,²³ M. J. Kobel,²³ H. M. Lacker,²³ W. F. Mader,²³ R. Nogowski,²³ J. Schubert,²³ K. R. Schubert,²³ R. Schwierz,²³ J. E. Sundermann,²³ A. Volk,²³ D. Bernard,²⁴ G. R. Bonneau,²⁴ E. Latour,²⁴ V. Lombardo,²⁴ Ch. Thiebaut,²⁴ M. Verderi,²⁴ P. J. Clark,²⁵ W. Gradl,²⁵ F. Muheim,²⁵ S. Playfer,²⁵ A. I. Robertson,²⁵ Y. Xie,²⁵ M. Andreotti,²⁶ D. Bettoni,²⁶ C. Bozzi,²⁶ R. Calabrese,²⁶ A. Cecchi,²⁶ G. Cibinetto,²⁶ P. Franchini,²⁶ E. Luppi,²⁶ M. Negrini,²⁶ A. Petrella,²⁶ L. Piemontese,²⁶ E. Prencipe,²⁶ V. Santoro,²⁶ F. Anulli,²⁷ R. Baldini-Ferroli,²⁷ A. Calcaterra,²⁷ R. de Sangro,²⁷ G. Finocchiaro,²⁷ S. Pacetti,²⁷ P. Patteri,²⁷ I. M. Peruzzi,^{27,†} M. Piccolo,²⁷ M. Rama,²⁷ A. Zallo,²⁸ A. Buzzo,²⁸ R. Contri,²⁸ M. Lo Vetere,²⁸ M. M. Macri,²⁸ M. R. Monge,²⁸ S. Passaggio,²⁸ C. Patrignani,²⁸ E. Robutti,²⁸ A. Santroni,²⁸ S. Tosi,²⁸ K. S. Chaisanguanthum,²⁹ M. Morii,²⁹ J. Wu,²⁹ R. S. Dubitzky,³⁰ J. Marks,³⁰ S. Schenk,³⁰ U. Uwer,³⁰ D. J. Bard,³¹ P. D. Dauncey,³¹ R. L. Flack,³¹ J. A. Nash,³¹ M. B. Nikolich,³¹ W. Panduro Vazquez,³¹ M. Tibbetts,³¹ P. K. Behera,³² X. Chai,³² M. J. Charles,³² U. Mallik,³² N. T. Meyer,³² V. Ziegler,³² J. Cochran,³³ H. B. Crawley,³³ L. Dong,³³ V. Egyes,³³ W. T. Meyer,³³ S. Prell,³³ E. I. Rosenberg,³³ A. E. Rubin,³³ A. V. Gritsan,³⁴ Z. J. Guo,³⁴ C. K. Lae,³⁴ A. G. Denig,³⁵ M. Fritsch,³⁵ G. Schott,³⁵ N. Arnaud,³⁶ J. Béquilleux,³⁶ M. Davier,³⁶ G. Grosdidier,³⁶ A. Höcker,³⁶ V. Lepeltier,³⁶ F. Le Diberder,³⁶ A. M. Lutz,³⁶ S. Pruvot,³⁶ S. Rodier,³⁶ P. Roudeau,³⁶ M. H. Schune,³⁶ J. Serrano,³⁶ V. Sordini,³⁶ A. Stocchi,³⁶ W. F. Wang,³⁶ G. Wormser,³⁶ D. J. Lange,³⁷ D. M. Wright,³⁷ I. Bingham,³⁸ C. A. Chavez,³⁸ I. J. Forster,³⁸ J. R. Fry,³⁸ E. Gabathuler,³⁸ R. Gamet,³⁸ D. E. Hutchcroft,³⁸ D. J. Payne,³⁸ K. C. Schofield,³⁸ C. Touramanis,³⁸ A. J. Bevan,³⁹ K. A. George,³⁹ F. Di Lodovico,³⁹ W. Menges,³⁹ R. Sacco,³⁹ G. Cowan,⁴⁰ H. U. Flaecher,⁴⁰ D. A. Hopkins,⁴⁰ S. Paramesvaran,⁴⁰ F. Salvatore,⁴⁰ A. C. Wren,⁴⁰ D. N. Brown,⁴¹ C. L. Davis,⁴¹ J. Allison,⁴² N. R. Barlow,⁴² R. J. Barlow,⁴² Y. M. Chia,⁴² C. L. Edgar,⁴² G. D. Lafferty,⁴² T. J. West,⁴² J. I. Yi,⁴² J. Anderson,⁴³ C. Chen,⁴³ A. Jawahery,⁴³ D. A. Roberts,⁴³ G. Simi,⁴³ J. M. Tuggle,⁴³ G. Blaylock,⁴⁴ C. Dallapiccola,⁴⁴ S. S. Hertzbach,⁴⁴ X. Li,⁴⁴ T. B. Moore,⁴⁴ E. Salvati,⁴⁴ S. Saremi,⁴⁴ R. Cowan,⁴⁵ D. Dujmic,⁴⁵ P. H. Fisher,⁴⁵ K. Koeneke,⁴⁵ G. Sciolla,⁴⁵ S. J. Sekula,⁴⁵ M. Spitznagel,⁴⁵ F. Taylor,⁴⁵ R. K. Yamamoto,⁴⁵ M. Zhao,⁴⁵ Y. Zheng,⁴⁵ S. E. McLachlin,⁴⁶ P. M. Patel,⁴⁶ S. H. Robertson,⁴⁶ A. Lazzaro,⁴⁷ F. Palombo,⁴⁷ J. M. Bauer,⁴⁸ L. Cremaldi,⁴⁸ V. Eschenburg,⁴⁸ R. Godang,⁴⁸ R. Kroeger,⁴⁸ D. A. Sanders,⁴⁸ D. J. Summers,⁴⁸ H. W. Zhao,⁴⁸ S. Brunet,⁴⁹ D. Côté,⁴⁹ M. Simard,⁴⁹ P. Taras,⁴⁹ F. B. Viaud,⁴⁹ H. Nicholson,⁵⁰ G. De Nardo,⁵¹ F. Fabozzi,^{51,‡} L. Lista,⁵¹ D. Monorchio,⁵¹ C. Sciacca,⁵¹ M. A. Baak,⁵² G. Raven,⁵² H. L. Snoek,⁵² C. P. Jessop,⁵³ J. M. LoSecco,⁵³ G. Benelli,⁵⁴ L. A. Corwin,⁵⁴

K. Honscheid,⁵⁴ H. Kagan,⁵⁴ R. Kass,⁵⁴ J. P. Morris,⁵⁴ A. M. Rahimi,⁵⁴ J. J. Regensburger,⁵⁴ Q. K. Wong,⁵⁴
 N. L. Blount,⁵⁵ J. Brau,⁵⁵ R. Frey,⁵⁵ O. Igonkina,⁵⁵ J. A. Kolb,⁵⁵ M. Lu,⁵⁵ R. Rahmat,⁵⁵ N. B. Sinev,⁵⁵
 D. Strom,⁵⁵ J. Strube,⁵⁵ E. Torrence,⁵⁵ N. Gagliardi,⁵⁶ A. Gaz,⁵⁶ M. Margoni,⁵⁶ M. Morandin,⁵⁶ A. Pompili,⁵⁶
 M. Posocco,⁵⁶ M. Rotondo,⁵⁶ F. Simonetto,⁵⁶ R. Stroili,⁵⁶ C. Voci,⁵⁶ E. Ben-Haim,⁵⁷ H. Briand,⁵⁷ G. Calderini,⁵⁷
 J. Chauveau,⁵⁷ P. David,⁵⁷ L. Del Buono,⁵⁷ Ch. de la Vaissière,⁵⁷ O. Hamon,⁵⁷ Ph. Leruste,⁵⁷ J. Malclès,⁵⁷
 J. Ocariz,⁵⁷ A. Perez,⁵⁷ L. Gladney,⁵⁸ M. Biasini,⁵⁹ R. Covarelli,⁵⁹ E. Manoni,⁵⁹ C. Angelini,⁶⁰ G. Batignani,⁶⁰
 S. Bettarini,⁶⁰ M. Carpinelli,⁶⁰ R. Cenci,⁶⁰ A. Cervelli,⁶⁰ F. Forti,⁶⁰ M. A. Giorgi,⁶⁰ A. Lusiani,⁶⁰ G. Marchiori,⁶⁰
 M. A. Mazur,⁶⁰ M. Morganti,⁶⁰ N. Neri,⁶⁰ E. Paoloni,⁶⁰ G. Rizzo,⁶⁰ J. J. Walsh,⁶⁰ M. Haire,⁶¹ J. Biesiada,⁶²
 P. Elmer,⁶² Y. P. Lau,⁶² C. Lu,⁶² J. Olsen,⁶² A. J. S. Smith,⁶² A. V. Telnov,⁶² E. Baracchini,⁶³ F. Bellini,⁶³
 G. Cavoto,⁶³ A. D'Orazio,⁶³ D. del Re,⁶³ E. Di Marco,⁶³ R. Faccini,⁶³ F. Ferrarotto,⁶³ F. Ferroni,⁶³ M. Gaspero,⁶³
 P. D. Jackson,⁶³ L. Li Gioi,⁶³ M. A. Mazzoni,⁶³ S. Morganti,⁶³ G. Piredda,⁶³ F. Polci,⁶³ F. Renga,⁶³ C. Voena,⁶³
 M. Ebert,⁶⁴ T. Hartmann,⁶⁴ H. Schröder,⁶⁴ R. Waldi,⁶⁴ T. Adye,⁶⁵ G. Castelli,⁶⁵ B. Franek,⁶⁵ E. O. Olaiya,⁶⁵
 S. Ricciardi,⁶⁵ W. Roethel,⁶⁵ F. F. Wilson,⁶⁵ R. Aleksan,⁶⁶ S. Emery,⁶⁶ M. Escalier,⁶⁶ A. Gaidot,⁶⁶ S. F. Ganzhur,⁶⁶
 G. Hamel de Monchenault,⁶⁶ W. Kozanecki,⁶⁶ G. Vasseur,⁶⁶ Ch. Yèche,⁶⁶ M. Zito,⁶⁶ X. R. Chen,⁶⁷ H. Liu,⁶⁷
 W. Park,⁶⁷ M. V. Purohit,⁶⁷ J. R. Wilson,⁶⁷ M. T. Allen,⁶⁸ D. Aston,⁶⁸ R. Bartoldus,⁶⁸ P. Bechtle,⁶⁸ N. Berger,⁶⁸
 R. Claus,⁶⁸ J. P. Coleman,⁶⁸ M. R. Convery,⁶⁸ J. C. Dingfelder,⁶⁸ J. Dorfan,⁶⁸ G. P. Dubois-Felsmann,⁶⁸
 W. Dunwoodie,⁶⁸ R. C. Field,⁶⁸ T. Glanzman,⁶⁸ S. J. Gowdy,⁶⁸ M. T. Graham,⁶⁸ P. Grenier,⁶⁸ C. Hast,⁶⁸
 T. Hrynn'ova,⁶⁸ W. R. Innes,⁶⁸ J. Kaminski,⁶⁸ M. H. Kelsey,⁶⁸ H. Kim,⁶⁸ P. Kim,⁶⁸ M. L. Kocian,⁶⁸
 D. W. G. S. Leith,⁶⁸ S. Li,⁶⁸ S. Luitz,⁶⁸ V. Luth,⁶⁸ H. L. Lynch,⁶⁸ D. B. MacFarlane,⁶⁸ H. Marsiske,⁶⁸ R. Messner,⁶⁸
 D. R. Muller,⁶⁸ C. P. O'Grady,⁶⁸ I. Ofte,⁶⁸ A. Perazzo,⁶⁸ M. Perl,⁶⁸ T. Pulliam,⁶⁸ B. N. Ratcliff,⁶⁸ A. Roodman,⁶⁸
 A. A. Salnikov,⁶⁸ R. H. Schindler,⁶⁸ J. Schwiening,⁶⁸ A. Snyder,⁶⁸ J. Stelzer,⁶⁸ D. Su,⁶⁸ M. K. Sullivan,⁶⁸
 K. Suzuki,⁶⁸ S. K. Swain,⁶⁸ J. M. Thompson,⁶⁸ J. Va'vra,⁶⁸ N. van Bakel,⁶⁸ A. P. Wagner,⁶⁸ M. Weaver,⁶⁸
 W. J. Wisniewski,⁶⁸ M. Wittgen,⁶⁸ D. H. Wright,⁶⁸ A. K. Yarritu,⁶⁸ K. Yi,⁶⁸ C. C. Young,⁶⁸ P. R. Burchat,⁶⁹
 A. J. Edwards,⁶⁹ S. A. Majewski,⁶⁹ B. A. Petersen,⁶⁹ L. Wilden,⁶⁹ S. Ahmed,⁷⁰ M. S. Alam,⁷⁰ R. Bula,⁷⁰
 J. A. Ernst,⁷⁰ V. Jain,⁷⁰ B. Pan,⁷⁰ M. A. Saeed,⁷⁰ F. R. Wappeler,⁷⁰ S. B. Zain,⁷⁰ W. Bugg,⁷¹ M. Krishnamurthy,⁷¹
 S. M. Spanier,⁷¹ R. Eckmann,⁷² J. L. Ritchie,⁷² A. M. Ruland,⁷² C. J. Schilling,⁷² R. F. Schwitters,⁷² J. M. Izen,⁷³
 X. C. Lou,⁷³ S. Ye,⁷³ F. Bianchi,⁷⁴ F. Gallo,⁷⁴ D. Gamba,⁷⁴ M. Pelliccioni,⁷⁴ M. Bomben,⁷⁵ L. Bosisio,⁷⁵
 C. Cartaro,⁷⁵ F. Cossutti,⁷⁵ G. Della Ricca,⁷⁵ L. Lanceri,⁷⁵ L. Vitale,⁷⁵ V. Azzolini,⁷⁶ N. Lopez-March,⁷⁶
 F. Martinez-Vidal,⁷⁶, § D. A. Milanes,⁷⁶ A. Oyanguren,⁷⁶ J. Albert,⁷⁷ Sw. Banerjee,⁷⁷ B. Bhuyan,⁷⁷
 K. Hamano,⁷⁷ R. Kowalewski,⁷⁷ I. M. Nugent,⁷⁷ J. M. Roney,⁷⁷ R. J. Sobie,⁷⁷ J. J. Back,⁷⁸ P. F. Harrison,⁷⁸
 J. Illic,⁷⁸ T. E. Latham,⁷⁸ G. B. Mohanty,⁷⁸ M. Pappagallo,⁷⁸, ¶ H. R. Band,⁷⁹ X. Chen,⁷⁹ S. Dasu,⁷⁹
 K. T. Flood,⁷⁹ J. J. Hollar,⁷⁹ P. E. Kutter,⁷⁹ Y. Pan,⁷⁹ M. Pierini,⁷⁹ R. Prepost,⁷⁹ S. L. Wu,⁷⁹ and H. Neal⁸⁰

(The BABAR Collaboration)

¹Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France

²Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

³Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

⁴University of Bergen, Institute of Physics, N-5007 Bergen, Norway

⁵Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

⁶University of Birmingham, Birmingham, B15 2TT, United Kingdom

⁷Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

⁸University of Bristol, Bristol BS8 1TL, United Kingdom

⁹University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

¹⁰Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

¹¹Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

¹²University of California at Irvine, Irvine, California 92697, USA

¹³University of California at Los Angeles, Los Angeles, California 90024, USA

¹⁴University of California at Riverside, Riverside, California 92521, USA

¹⁵University of California at San Diego, La Jolla, California 92093, USA

¹⁶University of California at Santa Barbara, Santa Barbara, California 93106, USA

¹⁷University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

¹⁸California Institute of Technology, Pasadena, California 91125, USA

¹⁹University of Cincinnati, Cincinnati, Ohio 45221, USA

²⁰University of Colorado, Boulder, Colorado 80309, USA

²¹Colorado State University, Fort Collins, Colorado 80523, USA

²²Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany

- ²³Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
²⁴Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
²⁵University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
²⁶Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
²⁷Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
²⁸Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
²⁹Harvard University, Cambridge, Massachusetts 02138, USA
³⁰Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
³¹Imperial College London, London, SW7 2AZ, United Kingdom
³²University of Iowa, Iowa City, Iowa 52242, USA
³³Iowa State University, Ames, Iowa 50011-3160, USA
³⁴Johns Hopkins University, Baltimore, Maryland 21218, USA
³⁵Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
³⁶Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
³⁷Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³⁸University of Liverpool, Liverpool L69 7ZE, United Kingdom
³⁹Queen Mary, University of London, E1 4NS, United Kingdom
⁴⁰University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
⁴¹University of Louisville, Louisville, Kentucky 40292, USA
⁴²University of Manchester, Manchester M13 9PL, United Kingdom
⁴³University of Maryland, College Park, Maryland 20742, USA
⁴⁴University of Massachusetts, Amherst, Massachusetts 01003, USA
⁴⁵Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
⁴⁶McGill University, Montréal, Québec, Canada H3A 2T8
⁴⁷Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
⁴⁸University of Mississippi, University, Mississippi 38677, USA
⁴⁹Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
⁵⁰Mount Holyoke College, South Hadley, Massachusetts 01075, USA
⁵¹Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
⁵²NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
⁵³University of Notre Dame, Notre Dame, Indiana 46556, USA
⁵⁴Ohio State University, Columbus, Ohio 43210, USA
⁵⁵University of Oregon, Eugene, Oregon 97403, USA
⁵⁶Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
⁵⁷Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
⁵⁸University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
⁵⁹Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
⁶⁰Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
⁶¹Prairie View A&M University, Prairie View, Texas 77446, USA
⁶²Princeton University, Princeton, New Jersey 08544, USA
⁶³Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
⁶⁴Universität Rostock, D-18051 Rostock, Germany
⁶⁵Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
⁶⁶DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
⁶⁷University of South Carolina, Columbia, South Carolina 29208, USA
⁶⁸Stanford Linear Accelerator Center, Stanford, California 94309, USA
⁶⁹Stanford University, Stanford, California 94305-4060, USA
⁷⁰State University of New York, Albany, New York 12222, USA
⁷¹University of Tennessee, Knoxville, Tennessee 37996, USA
⁷²University of Texas at Austin, Austin, Texas 78712, USA
⁷³University of Texas at Dallas, Richardson, Texas 75083, USA
⁷⁴Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
⁷⁵Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
⁷⁶IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
⁷⁷University of Victoria, Victoria, British Columbia, Canada V8W 3P6
⁷⁸Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
⁷⁹University of Wisconsin, Madison, Wisconsin 53706, USA
⁸⁰Yale University, New Haven, Connecticut 06511, USA

We present updated measurements of CP -violating asymmetries in the decays $B^0 \rightarrow D^{*\pm} D^\mp$ and $B^0 \rightarrow D^+ D^-$ using $(383 \pm 4) \times 10^6 B\bar{B}$ pairs collected by the BABAR detector at the PEP-II B factory.

We determine the time-integrated CP asymmetry $\mathcal{A}_{D^{*\pm}D^\mp} = 0.12 \pm 0.06 \pm 0.02$, and the time-dependent asymmetry parameters to be $C_{D^{*+}D^-} = 0.18 \pm 0.15 \pm 0.04$, $S_{D^{*+}D^-} = -0.79 \pm 0.21 \pm 0.06$, $C_{D^{*-}D^+} = 0.23 \pm 0.15 \pm 0.04$, $S_{D^{*-}D^+} = -0.44 \pm 0.22 \pm 0.06$, $C_{D^+D^-} = 0.11 \pm 0.22 \pm 0.07$, and $S_{D^+D^-} = -0.54 \pm 0.34 \pm 0.06$, where the first uncertainty is statistical and the second is systematic.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

In the Standard Model (SM), CP violation arises from a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix, V [1]. Measurements of CP asymmetries in $B^0 \rightarrow (c\bar{c})K^{(*)0}$ decays [2] by the *BABAR* [3] and *Belle* [4] collaborations have firmly established this effect and precisely determined the parameter $\sin 2\beta$, where β is $\arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$. Another way to measure $\sin 2\beta$ is to use decays whose amplitudes are dominated by a tree-level, color-allowed $b \rightarrow c\bar{c}d$ transition, such as $B^0 \rightarrow D^{(*)\pm}D^\mp$. Within the framework of the SM, the time-dependent CP -asymmetries of $B^0 \rightarrow D^{(*)\pm}D^\mp$ are directly related to $\sin 2\beta$ when corrections due to penguin diagram contributions are neglected. The penguin-induced corrections have been estimated in models based on the factorization approximation and heavy quark symmetry and are predicted to be a few percent [5, 6]. However, contributions from non-SM processes may lead to a large shift [7]. A significant deviation in the $\sin 2\beta$ measurement from that of the $B^0 \rightarrow (c\bar{c})K^{(*)0}$ decays would be evidence involving new physics beyond the SM.

Studies of the CP violation in $b \rightarrow c\bar{c}d$ transitions have been carried out by both the *BABAR* and *Belle* collaborations. Most recently, the *Belle* collaboration reported evidence of large direct CP violation in $B^0 \rightarrow D^+D^-$ where $C_{D^+D^-} = -0.91 \pm 0.23 \pm 0.06$ [8], in contradiction to the SM expectation. However, such a large direct CP violation has not been observed in previous measurements with $B^0 \rightarrow D^{(*)\pm}D^{(*)\mp}$ decays, involving the same quark-level weak decay [9, 10, 11, 12].

In this Letter, we present an updated measurement of CP -violating asymmetries in the decays $B^0 \rightarrow D^{*+}D^-$, $B^0 \rightarrow D^{*-}D^+$ and $B^0 \rightarrow D^+D^-$. The data used in this analysis comprise $(383 \pm 4) \times 10^6$ $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected by the *BABAR* detector at the PEP-II storage rings. The *BABAR* detector is described in detail elsewhere [13]. Monte Carlo (MC) simulation based on GEANT4 [14] is used to validate the analysis procedure and to study the relevant backgrounds.

The decay rate $f_+(f_-)$ for a neutral B meson decay to a common final state accompanied by a $B^0(\bar{B}^0)$ tag is given by

$$f_\pm(\Delta t) = e^{-|\Delta t|/\tau_{B^0}} / 4\tau_{B^0} \left\{ (1 \mp \Delta w) \pm (1 - 2w) \times [S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t)] \right\}, \quad (1)$$

where $\Delta t \equiv t_{\text{rec}} - t_{\text{tag}}$ is the difference between the proper decay time of the reconstructed B meson (B_{rec}) and that of the tagging B meson (B_{tag}), τ_{B^0} is the B^0 lifetime, and Δm_d is the difference between the heavy and light mass

eigenstates determined from the $B^0 - \bar{B}^0$ oscillation frequency [15]. The average mistag probability w describes the effect of incorrect tags, and Δw is the difference between the mistag probabilities for B^0 and \bar{B}^0 . Since $D^{*+}D^-$ and $D^{*-}D^+$ are not CP -eigenstates, we can define a time-integrated asymmetry $\mathcal{A}_{D^{*\pm}D^\mp}$ between the rate of $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$, calculated as:

$$\mathcal{A}_{D^{*\pm}D^\mp} = \frac{N_{D^{*+}D^-} - N_{D^{*-}D^+}}{N_{D^{*+}D^-} + N_{D^{*-}D^+}}, \quad (2)$$

where N is the signal event yield.

For $B^0 \rightarrow D^{*\pm}D^\mp$, the general relations are $S_{D^{*\pm}D^\mp} = -\sqrt{1 - C_{D^{*\pm}D^\mp}^2} \sin(2\beta_{\text{eff}} \pm \delta)$, where δ is the strong phase difference between $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$ [16]. Under the assumption of negligible penguin contribution, $\beta_{\text{eff}} = \beta$, $\mathcal{A}_{D^{*\pm}D^\mp} = 0$ and $C_{D^{*+}D^-} = -C_{D^{*-}D^+}$. For $B^0 \rightarrow D^+D^-$ and in the case of negligible penguin contribution, $C_{D^+D^-}$ measures direct CP violation and is zero, while $S_{D^+D^-}$ is $-\sin 2\beta$.

The selections of $B^0 \rightarrow D^{*\pm}D^\mp$ and $B^0 \rightarrow D^+D^-$ candidates are similar to those of our previous analysis [10]. We reconstruct D^{*+} in its decay to $D^0\pi^+$. We reconstruct candidates for D^0 and D^+ mesons in the modes $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$, $K_s^0\pi^+\pi^-$ and $D^+ \rightarrow K^-\pi^+\pi^+$, $K_s^0\pi^+$. We reconstruct $B^0 \rightarrow D^+D^-$ candidates only through the decay $D^\pm \rightarrow K^\mp\pi^\pm\pi^\pm$. We require the reconstructed masses of the D^0 and D^+ candidates to be within $20 \text{ MeV}/c^2$ of their respective nominal masses [15], except for the $D^0 \rightarrow K^-\pi^+\pi^0$ candidate, where we use a looser requirement of $40 \text{ MeV}/c^2$. We apply a mass-constrained fit to the selected D^0 and D^+ candidates and combine D^0 candidates with a π^+ track, with momentum below $450 \text{ MeV}/c$ in the $\Upsilon(4S)$ frame, to form D^{*+} candidates.

We reconstruct the K_s^0 candidates from two oppositely charged tracks with an invariant mass within $20 \text{ MeV}/c^2$ of the nominal K_s^0 mass [15]. The χ^2 probability of the track vertex fit must be greater than 0.1 %. We require charged kaon candidates to be identified as such using a likelihood technique based on the Cherenkov angle measured by the Cherenkov detector and the ionization energy loss measured by the charged-particle tracking systems [13]. We form neutral pion candidates from two photons detected in the electromagnetic calorimeter [13], each with energy above 30 MeV. The invariant mass of the pair must be within $30 \text{ MeV}/c^2$ of the nominal π^0 mass [15], and we require their summed energy to be greater than 200 MeV. In addition, we further apply a mass-constrained fit to the π^0 candidates.

To suppress the $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s$, and c) continuum background, we exploit the contrast between the spherical shape of $B\bar{B}$ events and the more jet-like nature of continuum events. We require the ratio of the second to the zeroth order Fox-Wolfram moments [17] to be less than 0.6. We also use a Fisher discriminant, constructed as an optimized linear combination of 11 event shape variables [18]: the momentum flow in nine concentric cones around the thrust axis of the reconstructed B^0 candidate, the angle between that thrust axis and the beam axis, and the angle between the line-of-flight of the B^0 candidate and the beam axis. In addition, we employ a combined D flight-length significance variable, derived from the sum of flight lengths of the two D candidates [19], to reduce background.

For each $B^0 \rightarrow D^{(*)\pm}D^\mp$ candidate, we construct a likelihood function $\mathcal{L}_{\text{mass}}$ from the masses and mass uncertainties of the D and D^* candidates [19]. The D mass resolution is modeled by a Gaussian whose variance is determined on a candidate-by-candidate basis from its mass uncertainty before the mass-constrained fit. The D^*-D mass difference resolution is modeled by the sum of two Gaussian distributions whose parameters are determined from simulated events. The values of $\mathcal{L}_{\text{mass}}$ and $\Delta E \equiv E_B^* - E_{\text{Beam}}$, the difference between the B^0 candidate energy E_B^* and the beam energy E_{Beam} in the $\Upsilon(4S)$ frame, are used to reduce the combinatoric background. From the simulated events, we optimize the maximum allowed values of $-\ln \mathcal{L}_{\text{mass}}$ and $|\Delta E|$ for each individual final state to obtain the highest expected signal significance.

We extract the signal yield from the events satisfying the selection criteria using the energy-substituted mass, $m_{\text{ES}} \equiv \sqrt{E_{\text{Beam}}^2 - p_B^{*\perp 2}}$, where p_B^* is the B^0 candidate momentum in the $\Upsilon(4S)$ frame. We select the B^0 candidates that have $m_{\text{ES}} \geq 5.23 \text{ GeV}/c^2$. On average, we have 1.5 and 1.1 B^0 candidates per event for $B^0 \rightarrow D^{*\pm}D^\mp$ and $B^0 \rightarrow D^+D^-$ respectively. If more than one candidate is reconstructed in an event, we select the candidate with the smallest value of $-\ln \mathcal{L}_{\text{mass}}$. Studies using MC samples show that this procedure results in the selection of the correct B^0 candidate more than 95 % of the time.

We perform an unbinned maximum likelihood fit to the m_{ES} and Δt distributions to extract the CP asymmetries. We fit the events from $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$ decays simultaneously. The probability density function (PDF) of the m_{ES} distribution consists of a Gaussian for the signal and a threshold function [20] for the combinatorial background. We expect some background events to peak in the m_{ES} signal region due to cross feed from other decay modes. We estimate the fraction of events in the signal Gaussian due to this peaking background to be $(8.8 \pm 4.4)\%$ for $B^0 \rightarrow D^{*\pm}D^\mp$ and $(4.8 \pm 7.4)\%$ for $B^0 \rightarrow D^+D^-$ using detailed MC simulations of inclusive B decays.

The technique used to fit the Δt distribution is anal-

ogous to that used in previous *BABAR* measurements described in Ref. [21, 22]. We use information from the other B meson in the event to tag the flavor of the fully reconstructed $B^0 \rightarrow D^{(*)\pm}D^\mp$ candidate [21]. The signal Δt PDF in Eq. 1 is convolved with an empirical Δt resolution function [21]. The Δt is calculated from the measured separation Δz between the decay vertices of B_{rec} and B_{tag} along the collision (z) axis [21]. The B_{tag} decay vertex is determined by fitting charged tracks not belonging to the B_{rec} candidate to a common vertex, employing constraints from the beam spot location and the B_{rec} momentum [21]. Only events with a Δt uncertainty less than 2.5 ps and a measured $|\Delta t|$ less than 20 ps are accepted for the fit to the Δt distribution. Both the signal mistag probability and the Δt resolution function are determined from a large sample of neutral B decays to flavor eigenstates, B_{flav} . The combinatoric background Δt distributions are parameterized with an empirical description that includes zero and non-zero lifetime components [21]. The non-zero lifetime background is allowed to have effective CP asymmetries, and these float in the likelihood fit. By default, we assume that the peaking backgrounds have the same Δt PDF as the signal but zero CP asymmetries.

The fits to the data yield 280 ± 19 signal events for $B^0 \rightarrow D^{*+}D^-$, 219 ± 18 signal events for $B^0 \rightarrow D^{*-}D^+$, and 131 ± 14 signal events for $B^0 \rightarrow D^+D^-$, where the quoted uncertainties are statistical only. In the region of $m_{\text{ES}} > 5.27 \text{ GeV}/c^2$, the signal purity is approximately 41 % for $B^0 \rightarrow D^{*+}D^-$, 34 % for $B^0 \rightarrow D^{*-}D^+$, and 46 % for $B^0 \rightarrow D^+D^-$. The fitted CP violating parameters are

$$\begin{aligned} A_{D^{*\pm}D^\mp} &= 0.12 \pm 0.06 \pm 0.02 \\ C_{D^{*+}D^-} &= 0.18 \pm 0.15 \pm 0.04 \\ S_{D^{*+}D^-} &= -0.79 \pm 0.21 \pm 0.06 \\ C_{D^{*-}D^+} &= 0.23 \pm 0.15 \pm 0.04 \\ S_{D^{*-}D^+} &= -0.44 \pm 0.22 \pm 0.06 \\ C_{D^+D^-} &= 0.11 \pm 0.22 \pm 0.07 \\ S_{D^+D^-} &= -0.54 \pm 0.34 \pm 0.06, \end{aligned} \quad (3)$$

where the first uncertainty is statistical and the second is systematic.

Projections of the fits onto m_{ES} for the three different samples are shown in Figure 1. Figure 2 shows the Δt distributions and asymmetries in yields between events with B^0 and \bar{B}^0 tags, overlaid with the projection of the likelihood fit result. As a cross check, we repeat the fit by allowing the B^0 lifetime to float. The obtained lifetime is in good agreement with its world average [15].

The systematic uncertainty of the time-integrated CP -asymmetry $A_{D^{*\pm}D^\mp}$ is dominated by the potential differences in the reconstruction efficiencies of the positively and negatively charged tracks (0.014). Other sources that contribute to the systematic error include the es-

FIG. 1: Measured distribution of m_{ES} for (a) $B^0 \rightarrow D^{*+}D^-$, (b) $B^0 \rightarrow D^{*-}D^+$ and (c) $B^0 \rightarrow D^+D^-$ candidates. The solid line is the projection of the fit result and the dotted line represents the background components.

timate of the peaking background fraction (< 0.001), the uncertainty in the m_{ES} resolution for the $B^0 \rightarrow D^{*\pm}D^\mp$ signal events (0.005), and a possible fit bias (0.004).

The systematic uncertainties on C and S are evaluated separately for each of the decay modes. Their sources and estimates are summarized in Table I. The systematic uncertainties arise from the amount of possible background that tends to peak under the signal and its CP asymmetry, the assumed parameterization of the Δt resolution function, the possible differences between the B_{flav} and signal mistag fractions, the knowledge of the event-by-event beam-spot position, the uncertainties from the finite MC sample used, the possible interference between the suppressed $\bar{b} \rightarrow \bar{u}c\bar{d}$ and the favored $b \rightarrow c\bar{u}\bar{d}$ amplitudes in some tag-side decays [23], and the uncertainty in the m_{ES} resolution for the signal events. All of the systematic uncertainties are found to be much smaller than the statistical uncertainties.

Since $D^{*+}D^-$ and $D^{*-}D^+$ are not CP -eigenstates, it is also illustrative to express the measured CP -violating parameters C and S in a slightly different parametrization [24]: $C_{D^*D} = (C_{D^{*+}D^-} + C_{D^{*-}D^+})/2$, $\Delta C_{D^*D} = (C_{D^{*+}D^-} - C_{D^{*-}D^+})/2$, $S_{D^*D} = (S_{D^{*+}D^-} + S_{D^{*-}D^+})/2$ and $\Delta S_{D^*D} = (S_{D^{*+}D^-} - S_{D^{*-}D^+})/2$. The quantities C_{D^*D} and S_{D^*D} parametrize flavor-dependent direct CP violation, and mixing-induced CP violation related to the angle β , respectively. The parameters ΔC_{D^*D} and ΔS_{D^*D} are insensitive to CP violation. ΔC_{D^*D} describes the asymmetry between the rates $\Gamma(B^0 \rightarrow D^{*+}D^-) + \Gamma(\bar{B}^0 \rightarrow D^{*-}D^+)$ and $\Gamma(B^0 \rightarrow D^{*-}D^+) + \Gamma(\bar{B}^0 \rightarrow D^{*+}D^-)$, while ΔS_{D^*D} is related to the strong phase difference, δ . We find

$$\begin{aligned} C_{D^*D} &= 0.21 \pm 0.11 \pm 0.03 \\ S_{D^*D} &= -0.62 \pm 0.15 \pm 0.04 \\ \Delta C_{D^*D} &= -0.02 \pm 0.11 \pm 0.03 \\ \Delta S_{D^*D} &= -0.17 \pm 0.15 \pm 0.04, \end{aligned} \quad (4)$$

where the first uncertainty is statistical and the second is systematic.

In summary, this letter reports updated measurements of the CP violating asymmetries for the decays $B^0 \rightarrow D^{*\pm}D^\mp$ and $B^0 \rightarrow D^+D^-$. These measurements supersede the previous *BABAR* results [10], with a more than 50 % reduction in the statistical uncertainties. The time-dependent asymmetries are consistent with the SM predictions within their statistical uncertainties. We do not see evidence of large direct CP violation in the decay $B^0 \rightarrow D^+D^-$ as reported by the *Belle* Collaboration [8].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support *BABAR*. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased

[†] Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy

[‡] Also with Università della Basilicata, Potenza, Italy

[§] Also with Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

[¶] Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom

[1] N. Cabibbo, Phys. Rev. Lett. **10**, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).

[2] We imply charge conjugate modes throughout the paper.

[3] *BABAR* Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **89**, 201802 (2002).

[4] *Belle* Collaboration, K. Abe *et al.*, Phys. Rev. D **66**, 071102 (2002).

[5] Z. Z. Xing, Phys. Lett. B **443**, 365 (1998).

[6] Z. Z. Xing, Phys. Rev. D **61**, 014010 (2000).

FIG. 2: The distributions of Δt and fit projections for $B^0 \rightarrow D^{*\pm} D^\mp$ (left), $B^0 \rightarrow D^{*-} D^+$ (middle) and $B^0 \rightarrow D^+ D^-$ (right) candidates in the signal region $m_{ES} > 5.27 \text{ GeV}/c^2$ with a B^0 or \bar{B}^0 tag (a)-(c). The raw time-dependent asymmetries $(N_{B^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$ as functions of Δt are also shown (d)-(e).

Source	$C_{D^{*\pm} D^\mp}$	$S_{D^{*\pm} D^\mp}$	$C_{D^{*-} D^+}$	$S_{D^{*-} D^+}$	$C_{D^+ D^-}$	$S_{D^+ D^-}$
Peaking backgrounds	0.026	0.041	0.027	0.031	0.044	0.042
Δt resolution parameterization	0.011	0.021	0.013	0.012	0.015	0.020
Mistag fraction differences	0.014	0.011	0.016	0.012	0.023	0.013
Beam-spot position	0.004	0.006	0.007	0.036	0.005	0.002
$\Delta m_d, \tau_B$	0.002	0.003	0.003	0.004	0.001	0.004
MC statistics	0.011	0.015	0.011	0.015	0.036	0.023
Tag-side interference and others	0.016	0.025	0.017	0.020	0.020	0.013
Total	0.037	0.056	0.040	0.056	0.066	0.055

TABLE I: Sources of systematic error on time-dependent CP asymmetry parameters for the decays $B^0 \rightarrow D^{*\pm} D^\mp$ and $B^0 \rightarrow D^+ D^-$.

- [7] Y. Grossman and M. P. Worah, Phys. Lett. B **395**, 241 (1997).
- [8] Belle Collaboration, S. Fratina *et al.*, Phys. Rev. Lett. **98**, 221802 (2007).
- [9] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **95**, 151804 (2005).
- [10] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **95**, 131802 (2005).
- [11] Belle Collaboration, T. Aushev *et al.*, Phys. Rev. Lett. **93**, 201802 (2004).
- [12] Belle Collaboration, H. Miyake *et al.*, Phys. Lett. B **618**, 34 (2005).
- [13] BABAR Collaboration, B. Aubert *et al.*, Nucl. Instr. Meth. Phys. Res., Sect. A **479**, 1 (2002).
- [14] GEANT4 Collaboration, S. Agostinelli *et al.*, Nucl. Instr. Meth. Phys. Res., Sect. A **506**, 250 (2003).
- [15] W. M. Yao *et al.* (Particle Data Group), J. Phys. G **33** (2006) 1.
- [16] R. Aleksan, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Lett. B **317**, 173 (1993).
- [17] G. C. Fox and S. Wolfram, Phys. Rev. Lett. **41**, 1581 (1978).
- [18] CLEO Collaboration, D. M. Asner *et al.*, Phys. Rev. D **53**, 1039 (1996).
- [19] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. D **73**, 112004 (2006).
- [20] ARGUS Collaboration, H. Albrecht *et al.*, Z. Phys. C **48**, 543 (1990).
- [21] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. D **66**, 032003 (2002).
- [22] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **94**, 161803 (2005).
- [23] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D **68**, 034010 (2003).
- [24] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **91**, 201802 (2003).