

ASimplifiedCFDApproachfor ModelingUrbanDispersion

S.Chan,T.Humphreys,andR.Lee LawrenceLivermoreNationalLaboratory Livermore,CA

SymposiumonPlanning, Nowcasting,andForecasting intheUrbanZone
2004AMSAnnualMeeting
Seattle,WA
January11 -15,2004

ObjectiveandApproach

- Todevelopafast,simplifiedCFDmodelsuitablefor emergencyresponseapplications
- Modeltargetedbuildingsexplicitlywithfinegrid resolutionandothersasdragelements(orvirtual buildings)withcoarsergridresolution
- Someadvantages
 - > Greatlyreducedcomputertimeandstorage
 - > Lesseffortneededingridgeneration
 - > Abilitytocomputeonmuchlargerdomainsto provideimprovedparameterization, such as form drag, for use in larger scale models

GoverningEquations

$$\frac{\partial}{\partial t} u_i + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} (-\overline{u_i' u_j'}) - C_d |u| u_i$$

$$\frac{\partial}{\partial x_j} u_j = 0$$

$$\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_j} = \frac{\partial}{\partial x_j} (-\overline{u_j' c'})$$

Plusappropriateturbulencemodel,suchasSmagorinsky SGSturbulencemodel(1963)withwalldampingfunction by Piomelli,etal.(1987)

DispersionSimulationaroundaCube: Solidvs.VirtualBuildingApproach

AtmosphericandSourceConditions:

Meanvelocity:0.6m/satz=H

Frictionvelocity: 0.0356m/s

Neutralstability

Continuoussourceat2Hinfrontofthecube

GridandBoundaryConditions:

Domainsize(H):8x6x2(gradedmesh)

No.ofGridpoints:43x33x15=21,285

Boundary conditions:

Noslipongroundsurface&nopenetrationontopboundary

Logarithmicprofileontheleftinletplane

ComparisonofPredictedVelocityandPressure onTwoPlanesofaCubicalBuilding

Goodagreementisseenregardingthemainfeaturesoftheflowf thestagnationzone,flowseparations,andthelargewakeregion fieldsalsocomparereasonablywell.

ield,including .Pressure

ComparisonofPredictedVelocity&Concentration PatternsonTwoPlanesofaCubicalBuilding

(b)Virtualbuilding

The virtual building approach reproduces essentially the same hop lume horizontally and very similar plumes hape in the vertical amount of tracerseeping through the virtual building near the g

rseshoe-shape exceptasmall roundsurface

DispersionSimulationsofaHypotheticalTracer GasReleaseinDowntownSaltLakeCity

S

AtmosphericandSourceConditions:

Meanvelocity:3m/satz=10m

Frictionvelocity: 0.232m/s

Source:1kg/s(oftracerreleasedongroundf or10min)

Neutralstability

Simulations:SolidBuildingsVirtualBuilding

Domainsize(m):943x945x2101000x1 000x100

Gridpoints:229x227x35(~1.82M)101x101x2 0(~204K)

Boundary conditions:

Noslipongroundsurface&nopenetrationontopboundary

Logarithmicvelocityprofileonsouthinletplan

Comparisonof Velocity/Concentration Patterns from Two Different Treatments of Buildings

(a)Solidbuildings

(b)Solid&virtualbuildings

Non-targetedbuildingsaremodeledasdragelements(orvirtualbuil withoutseriouslycompromisingtheoverallsolutionaccuracy

dings)

Comparisonof Velocity/Concentration Patterns from Solidand Virtual Building Approaches

(a)Solidbuildings

(b) Virtual buildings

Modelingthebuildingsasdragelements(orvirtualbuildings)l order-of-magnitudesavingsincomputerstorageandcost

eadstoan

ComparisonofPredictedConcentrationsalong CenterlineintheDownwindDirection

Despiteaslightunder -predictionofcertainpeakvalues,theallvirtual -buildingapproachhasyieldedresultssimilartothosefromthe more rigorousapproachatsignificantlyreducedcost.

LightandVariableWindsObservedDuring IOP7ofUrban2000Experiment

Abovedatawereusedtoconstructsteadyandtime -dependentboundary conditions, with logarithmic variations in the vertical direction, in the LES simulations

ObservedDatavs.PredictedConcentration Patterns(fort=50 -55min)UsingVarious BCs

LESSimulationsofIOP7Release1

Winds: lightandhighly variable

Source:SF ₆ releasedneargroundata rateof1g/sfor1hour

Domain:943x945x210m(gradedmesh)

Gridpoints:229x227x35(~1.82M)

ComparisonofTime -averagedConcentrations (fort=50 -55min)atSF ₆ SamplerLocations

Instrumentationinthesourcevicinityof the Urban 2000 experimentin Salt Lake City. Yellowboxes indicate SF 6 sampler locations

Comparisonofpredicted concentrations (withvariousboundary conditions)vs. observed dataat SF $_6$ sampler locations for time=50 -55min

Conclusions

- AsimplifiedCFDapproachformodelingurbandispersion hasbeenpresentedandearlytestresultsindicatethe approachishighlycost -effective.
- OursimulationforanighttimeSF 6 releaseintheSalt LakeCitydowntownareademonstratesclearlythe importantroletime -dependentforcingplaysinsuch dispersionscenarios.
- Foraccuratedispersionpredictionsunderlightand variablewinds,bothtemporalandspatialdatato adequatelydescribethetime -dependentforcingare needed.