A super quick introduction to molecular biology and genomics

Héctor Corrada Bravo
Dept. of Computer Science
Center for Bioinformatics and Computational Biology
University of Maryland

University of Maryland, Fall 2015

Key terms

- Genotype/Phenotype
- Cell
- Proteins
- Evolution: inheritance, selection, variation
- DNA/RNA
- Chromosome
- Gene
- Genome
- Replication
- Transcription
- Exon/Intron
- Translation
- Codon
- Central Dogma
- Gene Expression
- Regulation
- Epigenetics

Why am I such a pig?

Phenotype, cells, metabolism, protein

Proteins

- phenotype: characteristics (traits) of an organism
- characteristics due to cellular structures and activities
 - mostly carried out by proteins

• Examples:

alpha-keratin	component of hair
insulin	regulates blood glucose level
actin & myosin	muscle contraction
hemoglobin	oxygen transport
DNA polymerase	synthesis of DNA
DNA glycosylases	DNA repair
matrix metalloproteinase	extra-cellular matrix degradation

Genetics

- gene: in classical genetics it was an abstract concept
 - a unit of inheritance passed from parent to offspring
 - specify proteins
- genome refers to the complete set of genes
- genotype: genetic characteristics of an individual

What is Genomics?

- Study the molecular basis of variation in development and disease
- Using high-throughput experimental methods
 - algorithms
 - ML
 - data management
 - modeling

U.S. DEPARTMENT OF ENERGY

What is Genomics?

- Each cell contains a complete copy of an organism's genome, or blueprint for all cellular structures and activities.
- The genome is distributed along chromosomes, which are made of compressed and entwined DNA.
- Cells are of many different types (e.g. blood, skin, nerve cells), but all can be traced back to a single cell, the fertilized egg.

Chromosomes

These are actually human. And for a down syndrome patient

DNA

DNAs (Deoxyribonucleic acids) are molecules to store genetic information of a living organism.

DNA consists of two polymers made from four types of nucleotides: adenine (A) guanine (G), cytosine (C) and thymine (T).

Purines: A, G; Pyrimidines: C, T

Two polymers are complementary to each other and from a double-helix structure

Measurement

- For a small enough piece, we can measure the sequence of bases, referred to as *sequencing*
- Human Genome Project

D. melanogaster, Science, 2000

H. sapiens, Nature, 2000 and Science, 2000

M. musculus, Nature, 2002

Genome

AGGTCCAGGCGGGGGATGCACAGCAACAGTCACCGAAGCAGAAGCCGTCACAGTGGTGATGGGCTGGCAGTAGCTGGCCACAGAGCTGCCCAT GGCGGTGGACGTTGGGGTTCCGAGGGTTGTGAGAACGGGCCCCACGGGGCCCTGAGCGGTCCCTATTGCTAGGGCCAGAATGCCCTTCAGTAGA GGACAAGGAGCCAGAGTCCAGGTGGGGCTGTTGCCGAGGGGTCAAGGGAGGCTGATGTCTGGAGTCCGGATGGACCACCTGCAGAGGAGAGAC ${\tt TCAAAACTGCCAAGGCCTGGATAGCCAAGAGCCTGGGTGTCTTGGAAATATGCAACCATAAATAGTAGCTTTTTAGAAGTATAAGGCTCCTGTT$ TCTGGGTCATATTAGTGTTTTTCACCTGTCCCCAGCCCTAAGCCAGGTGTGGCCAGAAGCAAATGTACTGTAAGAGCAGAGCAAAACTTC $\tt CACACAGATAGTTCTGTTAGGCAATACATCTCTGCCTGACTATTAGGAATCTGGTTTCTGGGTCCTCTGTACAAAGCTCGGAGCAACACAGTG$ ${\tt GCCACATCAATCAAAAGGACCGTGACCAACTTCAAAGTCGGTGAGCTTGTACCTATTTTTAGGCTCCTGCTGAACAGAACCAGATTCACACTA$ ${\tt ACAATTCACTGGCCAGCCCTTCTCTCTCTCAAGGAAGGCTGCTCTAGCCTGGGACTGGAATACACATTTCCTGTAAACATGGTGGGGGCCTCA}$ TCCTCCCTACAAGACAGAAAAGGAATAAGCCACGAAGACAATAACGATTTTTGTATCAAGCGTCCTCTCCCATTTCAGCTTACCTGACAATGA ${\tt TAGCCCTGTGGTTCTTGTCCCCAATGGCTGTCAGAAAGGCCTGAACAAAGGAGAAAATTGACACGGTCACATTCTGGGTGTGGTAAAGTGCTC$ AGCTGTGTCTATACTTGGGTTTTGTAT...

Total amount of DNA in human genome: 3 * 10⁹ base pairs (bp)

Replication

_		
T	CCCGTAA	Α
T	G T	Α
С	ATTTG	G
G		C
Α	TTGGGTAAT	G C T
Т	G C	A
Т		A
T C G A T T A C G A	ATGG GTCAA	lτ
С		G
G	TTA	G C T
Α		T
	TTT A G T A G	

AAT GT C

nucleotides available in cells

Т	Α
Т	Α
С	G
G	С
Α	Т
Т	Α
Т	Α
Α	Т
С	G
G	С
Α	Т

Т	Α
Т	Α
С	G
G	С
Α	Т
Т	Α
Т	Α
Α	Т
С	G
G	С
Α	Т

Genes

Central Dogma

Genes encode proteins which are transcribed into mRNA and translated into proteins.

Transcription

Translation

The genetic code

gene regulation

gene regulation

What makes them different?

Much human variation is due to difference in \sim 6 million base pairs (0.1 % of genome) referred to as SNPs

Single Nucleotide Polymorphism (SNP)

Genomic DNA:

Three genotypes

AA

Mother

TACATAGCCATCGGTAAGTACTCAATGATGATA

ATGTATCGGTAGCCATTCATGAGTTACTACTAT

Father

TACATAGCCATCGGTAAGTACTCAATGATGATA
ATGTATCGGTAGCCATTCATGAGTTACTACTAT

AG

Mother

TACATAGCCATCGGTAAGTACTCAATGATGATA
ATGTATCGGTAGCCATTCATGAGTTACTACTAT

Father

TACATAGCCATCGGTAGGTACTCAATGATGATA
ATGTATCGGTAGCCATCCATGAGTTACTACTAT

GG

Mother

TACATAGCCATCGGTAGGTACTCAATGATGATA
ATGTATCGGTAGCCATCCATGAGTTACTACTAT

Father

TACATAGCCATCGGTAGGTACTCAATGATGATA ATGTATCGGTAGCCATCCATGAGTTACTACTAT

DNA Sequence Variation in a Gene Can Change the Protein Produced by the Genetic Code

Protein Products GCA AGA GAT AAT TGT ... Gene A from Person 1 Ala Arg Asp Asn Cys . . . Gene A from GCG AGA GAT AAT TGT ... Person 2 Codon change made no Ala Arg Asp Asn Cys . . . difference in amino acid sequence GCA AAA GAT AAT TGT ... Gene A from Person 3 OR Codon change resulted in Ala Lys Asp Asn Cys . . . a different amino acid at

position 2

Health or Disease?

DNA Sequence

Person 1

AAATTT

Normal protein

Person 2

AATTTT

Some DNA variations have no negative effects

Low or nonfunctioning protein

Person 3

AACTTT

Other variations lead to disease (e.g., sickle cell) or increased susceptibility to disease (e.g., lung cancer)