CPSC 468 Midterm Review

Chapter 1

- **0.1** (Turing Machine). A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) . Assume $k \geq 2$, with 1 read-only input tape and k-1 work tapes. The last work tape is assumed to be the output tape.
 - Γ the finite alphabet of symbols that M may have on its tapes. Assume that Γ contains at least $\{0,1,\Box,\triangleright\}$.
 - Q a finite set of possible states M's state register may be in. Assume that Q contains a q_{start} and q_{halt}.
 - $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$ a transition function for M that takes in the current state and each head's read, and outputs the next state, with k-1 writes on all the work tapes, and movement direction for all k tapes.
- **0.2** (Computing a Function). Let $f: \{0,1\}^* \to \{0,1\}^*$ and $T: \mathbb{N} \to \mathbb{N}$, with M a TM. We say that M computes f if for every $x \in \{0,1\}^*$, if M is initialized to the start configuration on input x, then it halts with f(x) on the output tape. We say M computes f in T(n)-time if its computation on every x requires at most T(|x|) steps.
- **0.3** (Time Constructible). A function $T: \mathbb{N} \to \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM M that computes the function $x \mapsto \lfloor T(|x|) \rfloor$ in time T(n). $T(n) \geq n$ is to allow the algorithm to read its input. Some time constructible functions are n, $n \log n$, n^2 and 2^n .
- **0.4.** For every $f: \{0,1\}^* \to \{0,1\}$ and time constructible $T: \mathbb{N} \to \mathbb{N}$, if f is computable in time T(n) by some TM M using alphabet Γ , then it is able to compute the same function using $\{0,1,\square,\triangleright\}$ in $(c \log_2 |\Gamma|) \cdot T(n)$. This is because we may express each symbol of Γ using $\log |\Gamma|$ binary bits, with some constant c overhead.
- **0.5.** A k-tape TM can have its k-1 work tapes simulated by a single tape by interleaving the k tapes together.
- **0.6** (Oblivious Turing Machine). An oblivious TM's head movement depends on the length of the input, not the contents of the input. Every TM can be simulated by an oblivious TM.
- **0.7** (Turing Machine Representation). Every binary string $x \in \{0,1\}^*$ represents some TM, and every TM is represented by infinite such strings (think: comments in a language). The machine represented by x is denoted M_x .
- **0.8** (Universal Turing Machine). There exists a TM \mathcal{U} such that for every $x, \alpha \in \{0,1\}^*$, $\mathcal{U}(x,a) = M_{\alpha}(x)$, where M_{α} denotes the TM represented by α . Moreover, if M_{α} halts on input x within T steps, then $\mathcal{U}_{\alpha}(x)$ halts within $CT \log T$ steps, where C is a number independent of |x|, and depends only on M_{α} 's alphabet size, number of tapes, and number of states. The cost of simulating any machine M_{α} has a logarithmic overhead, due to the alphabet size difference between M_{α} and \mathcal{U} . As \mathcal{U} has a single tape, we do the trick over interleaving M_{α} 's work tapes together.
- **0.9** (Uncomputable Function). Define U as follows: for every $\alpha \in \{0,1\}^*$, if the machine defined by α accepts itself, such that $M_{\alpha}(\alpha) = 1$, then $U(\alpha) = 0$. In other words $U(\alpha) = 1 M_{\alpha}(\alpha)$. There is no such TM that can compute U, because U will always negate it.
- **0.10** (Halting Problem). A TM H such that $H(\alpha, x) = 1$ if $M_{\alpha}(x)$ halts, and yields 0 otherwise, does not exist. We can construct a wrapper TM W that invokes H on itself, and performs the opposite. Diagonalization motherfuckers!
- **0.11** (DTIME). Let $T : \mathbb{N} \to \mathbb{N}$ be some function. A language L is in DTIME(T(n)) iff there is a deterministic TM that runs in time $c \cdot T(n)$ for some constant c > 0 and decides L. This class contains **decision** problems.
- **0.12** (The Class P). $P = \bigcup_{c>1} DTIME(n^c)$
- **0.13** (Church-Turing Thesis). Every physically realizable computation device can be simulated by a TM.
- **0.14** (Bounds). The asymptoptic operators $\{o, O, \Theta, \Omega, \omega\}$ can be thought of as $\{<, \leq, =, \geq, >\}$.

Chapter 2

0.15 (The Class NP). A language $L \subseteq \{0,1\}^*$ is in NP if there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ and a polynomial time $TM\ M$ (called the **verifier** for L) s.t. for every $x \in \{0,1\}^*$, we have $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x,u) = 1. If $x \in L$ and $u \in \{0,1\}^{p(|x|)}$ satisfy M(x,u) = 1, we call $u \in \{0,1\}^{p(|x|)}$ satisfy M(x,u) = 1. NP is the class of languages for which we can tell if u is a solution to the problem $x \in L$ in polynomial time.

0.16 (EXP). EXP = $\bigcup_{c>1} \text{DTIME} (2^{n^c})$.

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Examples