

#### Lab 2

利用 GISTools 建立繪製地圖的函數 <u>Pollution\_Map (arg1)</u> 引數arg1 是可自行設定的超越機率 (e.g. 0.3)

- 1. 該函數會顯示/回傳該超越機率所對應的PSI值。
- 2. 以此數值為臨界值,繪製空氣汙染地圖,超過該數值的測站,表示紅色,其餘為藍色。
- 3. 針對超過該數值的測站,按照測站類別(SiteType), 針對「一般測站、工業測站、交通測站」,以box plot呈現PSI分布。 general, industrial, traffic



工業測站

交通測站

#### Lab 1

#### 繪圖:堆疊直方圖

```
xdata=xtabs(~TOWN+STORE,data=FastFood)
xdata=data.frame(xdata)

ggplot(xdata,aes(x=TOWN,y=Freq,fill=STORE))+
    geom_bar(stat='identity',position = "stack") +
    scale_fill_manual("速食店",values=c("KFC"="lightblue","MIC"="lightgreen"),labels = c("KFC"="肯德基","MIC"="麥當勞"))+    theme_minimal()+
    labs(title ="台北市各行政區的麥當勞與肯德基家數", x = "行政區", y = "店家數量")+
    theme(plot.title = element_text(size=16,hjust = 0.5))+
    theme(text=element_text(family="JH"))
```

#### 台北市各行政區的麥當勞與肯德基家數



## Lab 1 **簡答**

```
data=read.csv('.....')
ggplot(data,aes(x=TOWN,fill=STORE)) + geom_bar()
```

# barplot 寬度問題

```
ggplot(data,aes(x=TOWN, fill=STORE)) +
  geom_bar(position="dodge")
```

## 原因



# 解決方法

```
xdata=xtabs(~TOWN+STORE,data=data)
xdata=data.frame(xdata)
```

```
ggplot(xdata,aes(x=TOWN, y=Freq, fill=STORE))+
  geom_bar(stat='identity', position ="dodge")
```





#### xtabs

- xdata = xtabs(~TOWN+STORE,data=FastFood)
- data.frame(xdata)

|      | STORE |     |  |
|------|-------|-----|--|
| TOWN | KFC   | MIC |  |
| 士林區  | 2     | 8   |  |
| 大同區  | 1     | 3   |  |
| 大安區  | 2     | 11  |  |
| 中山區  | 4     | 9   |  |
| 中正區  | 2     | 8   |  |

|    | TOWN | STORE | Freq |
|----|------|-------|------|
| 1  | 士林區  | KFC   | 2    |
| 2  | 大同區  | KFC   | 1    |
| 3  | 大安區  | KFC   | 2    |
| 4  | 中山區  | KFC   | 4    |
| 5  | 中正區  | KFC   | 2    |
| 6  | 內湖區  | KFC   | 2    |
| 7  | 三山文  | KFC   | 1    |
| 8  | 北投區  | KFC   | 1    |
| 9  | 松山區  | KFC   | 2    |
| 10 | 信蓋區  | KEC   | 1    |
| 11 | 南港區  | KFC   | 0    |
| 12 | 黄华區  | KFC   | 2    |
| 13 | 士林區  | MIC   | 8    |
| 14 | 大同區  | MIC   | 3    |

### aggregate

aggregate(FastFood\$STORE, by=FastFood[c('TOWN','STORE')], FUN=length)

等同於

 aggregate(TYPE\_90~TOWN+STORE, data=FastFood, FUN=length)

|    | TOWN | STORE | Х |
|----|------|-------|---|
| 1  | 士林區  | KFC   | 2 |
| 2  | 大同區  | KFC   | 1 |
| 3  | 大安區  | KFC   | 2 |
| 4  | 副山中  | KFC   | 4 |
| 5  | 中正區  | KFC   | 2 |
| 6  | 內湖區  | KFC   | 2 |
| 7  | 型山文  | KFC   | 1 |
| 8  | 北投區  | KFC   | 1 |
| 9  | 松山區  | KFC   | 2 |
| 10 | 信義區  | KFC   | 1 |
| 11 | 萬華區  | KFC   | 2 |
| 12 | 士林區  | MIC   | 8 |
| 13 | 大同區  | MIC   | 3 |

|    | TOWN | STORE | TYPE_90 |
|----|------|-------|---------|
| 1  | 士林區  | KFC   | 2       |
| 2  | 大同區  | KFC   | 1       |
| 3  | 大安區  | KFC   | 2       |
| 4  | 型山中  | KFC   | 4       |
| 5  | 中正區  | KFC   | 2       |
| 6  | 内湖區  | KFC   | 2       |
| 7  | 副山文  | KFC   | 1       |
| 8  | 北投區  | KFC   | 1       |
| 9  | 松山區  | KFC   | 2       |
| 10 | 信義區  | KFC   | 1       |
| 11 | 萬華區  | KFC   | 2       |
| 12 | 士林區  | MIC   | 8       |
| 13 | 大同區  | MIC   | 3       |

# 順序: factor排序

## xdata\$STORE=ordered(xdata\$STORE,levels=c("MIC","KFC"))

- > xdata\$STORE
- > xdata\$STORE=ordered(xdata\$STORE,levels=c("MIC","KFC"))
- > xdata\$STORE



#### xtabs整理後的資料

Lab 1





```
R 處理
GIS資料
```

#### readOGR()

向量資料使用readOGR讀取,在R中的格式為Spatial\*DataFrame,簡稱sp

```
setwd("D:/1082SA/Data") #設定路徑

TPE=readOGR(dsn = ".", layer = "Vill", encoding="utf8", use_iconv=T ,verbose=F)

"./" 當前資料夾

"../" 當前資料夾的上層

TPE=readOGR(dsn = "Data", layer = "Vill")

或

TPE=readOGR("Vill.shp", encoding="utf8", verbose=F)

TPE=readOGR(dsn = "Vill.shp")
```

# R 處理 GIS資料

TPE@data 屬性工作表(格式data.frame) 可用\$呼叫欄位:TPE@data\$ID(直接 TPE\$ID 也可以)

• TPE@proj4string or proj4string(TPE)

```
CRS arguments: 
+proj=tmerc +lat_0=0 +lon_0=121 +k=0.9999 +x_0=250000 +y_0=0+ellps=GRS80 +units=m +no_defs
```

- FastFood@coords or coordinates(FastFood)
   點資料的x,y座標
- poly.areas(TPE)面資料的面積
- spTransform(圖資,座標參考系統) 投影座標轉換
  - e.g. spTransform(FastFood, TPE@proj4string)
    - → 把FastFood換成TPE的投影座標格式

```
CRS:座標參考系統格式

• proj4字串

spTransform(TPE,
    CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"))

• EPSG代碼

spTransform(TPE,
    CRS("+init=epsg:4326"))

常用座標系統

■ TWD97/TM2_121 → epsg:3826

■ WGS 84 → epsg:4326
```

epsg.io/3826

# 用ggplot畫 GIS多邊形

#### 面量圖

- 問距 auto.shading(value, n=5, cols=brewer.pal(n,"Reds"), cutter=<u>quantileCuts</u>)
- 繪製面量圖 choropleth( polygon, value, shading )
- 地圖要素:
  定位座標 locator()
  圖名 title()
  圖例 choro.legend()
  比例尺 map.scale()
  指北針 north.arrow()

# 補充: leaflet

# library(leaflet)

```
leaflet()%>%addTiles()%>%setView(lng = 121.54, lat = 25.02, zoom = 14)
```



library(rgdal)
setwd("D:/1082SA/Data")
station=readOGR("EPA\_STN1.shp",encoding = "utf8")
station=spTransform(station,CRS("+init=epsg:4326"))

leaflet()%>%addTiles()%>%addMarkers(data=station,popup =~SiteName)

