Single-Source Shortest Paths

Single-Source Shortest Path (SSSP) — Exam Notes

1. What is the Shortest Path Problem?

- **Definition:** A path's length = sum of its edge weights.
- A **shortest path** from uuu to vvv is any path with minimum total weight.
- SSSP (Single-Source Shortest Path): Given graph GGG and source sss, find shortest paths from sss to every vertex in GGG.lecture14_sssp

2. Dijkstra's Algorithm

Procedure

- 1. Initialize: dist[source]=0, all others ∞.
- 2. Put (0, source) in a priority queue.
- 3. While queue not empty:
 - Extract node u with smallest tentative distance.
 - If already settled, skip.
 - Settle u: its distance is now final.
 - Relax all edges (u,v,w): if dist[u]+w < dist[v], update dist[v] and push (dist[v],v) in queue.lecture14_sssp

Usage

- Solves SSSP in graphs with non-negative edge weights.
- Returns dist[] (shortest distances) and optionally pred[] (to reconstruct paths).

Why it works

- Once a node u is popped from the PQ, it has the smallest tentative distance.
- With **non-negative weights**, no alternative later path can make it smaller.
- Therefore dist[u] is final at that moment.

Complexity

- Each edge is pushed/popped at most once.
- With a binary heap PQ:
 - Push/pop = $O(\log |V|)O(\log |V|)O(\log |V|)$.
 - At most | E | | E | | E | operations.
 - Total: O(|E| log |V|).lecture14_sssp
- With a Fibonacci heap: improve to O(| E | + | V | log | V |)O(| E | + | V | log | V |)O(| E | + | V | log | V |), but less practical.
- Space: store dist[], pred[], and PQ → O(| V | + | E |)O(| V | + | E |)O(| V | + | E |).

Limitations: negatives

- If graph has **negative edges**, Dijkstra fails:
 - Assumes once a vertex is settled, its distance is final.
 - A later negative edge can lower it, breaking correctness.
- Negative cycles: shortest path not defined (can reduce cost infinitely).lecture14_sssp

3. Bellman-Ford Algorithm

Procedure

- 1. Initialize: dist[source]=0, others ∞.
- 2. Repeat |V|-1 times:
 - Relax every edge (u,v,w).
 - If dist[u]+w < dist[v], update dist[v] and set pred[v]=u.

- 3. After these rounds, check all edges once more:
 - If any edge can still be relaxed, a **negative cycle** exists.lecture14_sssp

Usage

- Solves SSSP even with negative edges.
- Detects if there is a **negative cycle** reachable from the source.

Why it works

- Optimal substructure: a shortest path of length kkk edges is built from shortest paths of length k-1k-1.
- Relaxing all edges once finds all shortest paths with ≤1 edge, then ≤2 edges,
 ...
- No shortest path needs more than |V|-1|V|-1|V|-1 edges (since paths with cycles can't be shorter unless it's a negative cycle).
- After |V|-1|V|-1|V|-1 rounds, all shortest paths are guaranteed found.lecture14_sssp

Complexity

- Inner loop relaxes all edges = O(| E |)O(|E|)O(| E |).
- Repeated |V|-1|V|-1|V|-1 times.
- Total: O(|V||E|).lecture14_sssp
- Space: store dist[], pred[] = O(|V|)O(|V|)O(|V|).

4. Differences — Dijkstra vs Bellman-Ford

Feature	Dijkstra	Bellman-Ford
Handles negative weights?	X No (only non-negative)	✓ Yes
Detects negative cycles?	×No	✓ Yes
Time complexity	(0(Е

Single-Source Shortest Paths

Feature	Dijkstra	Bellman-Ford
Space complexity	(0(V
Why it works	Greedy: once settled, distance is final (non-negative edges)	DP-like: relax edges repeatedly until convergence

5. Intuition Summary

- **Dijkstra = Greedy:** Expands frontier by always choosing the next closest vertex. Works only if edge weights ≥ 0.
- **Bellman–Ford = Dynamic Programming:** Gradually improves estimates by relaxing all edges. Works even with negative edges, detects negative cycles, but slower because it doesn't assume anything about edge signs.
- With this, you now have:
 - Clear procedure for both algorithms.
 - When/why to use each.
 - Complexity with reasoning tied to their implementation.
 - Why negatives break Dijkstra and why Bellman-Ford still works.

Single-Source Shortest Paths 4