CMSC 451: Matroids, When Greed Works

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Matroid Introduction

- There's a general argument that can be used to show why many greedy algorithms work.
- We'll describe a very general framework.

If you can write your problem in that framework,

 and prove one simple property about your specific problem, then the greedy algorithm works.

Hereditary Subset System Examples

Definition

A hereditary subset system is a pair S = (E, I), where E is a finite set and I is a collection of subsets of E closed under inclusion.

"Closed under inclusion" means that if $A \in I$ then all of the subsets of A are also in I.

Example 1: If G = (V, E) is a graph and I is the collection of acyclic subgraphs of G, then (E, I) is a hereditary subset system.

Example 2: Let E be a set of intervals and I be all subsets of compatible intervals. Then (E, I) is a hereditary subset system.

Maximum Weight Problem

Maximum Weight Problem

Given a hereditary subset system (E, I) and a weight w(e) for every $e \in E$, find the subset $A \in I$ so that $\sum_{e \in A} w(e)$ is maximized.

Example 1: Maximum Spanning Tree: Let E be edges of a graph G, let I be the collection of acyclic subgraphs of G, and w(e) = a weight on each edge.

Example 2: *Interval Scheduling*: Let E be intervals, I be all subsets of compatible intervals, and w(e) = 1.

Greedy Algorithm

```
Greedy(E, I, w): S = \emptyset A = E While |A| > 0: Let e \in A be the element of largest weight w(e) A = A - e If S \cup e \in I then S = S \cup e Return S
```

Similar idea as TreeGrowing:

- S is the current set,
- A is the remaining elements to consider, and
- I determines which sets are allowed.

Augmentation Property

Augmentation Property: If $A, B \in I$ and |A| < |B|, then there is an element $e \in B - A$ such that $A \cup \{e\} \in I$.

Given any two sets in I, one smaller than the other, there is some element in the larger one that we can add to the smaller one to form a set that is also in I.

Definition (Matriod)

A hereditary subset system (E, I) is a matroid if it satisfies the augmentation property.

Why Matroids Are Interesting

Theorem

Greedy will solve every instance of a maximum weight problem associated with (E,I) if and only if (E,I) is a matroid.

Minimum Weight Problem

There is a minimization version of this as well:

Minimum Weight Problem

Given a hereditary subset system (E, I) and a weight w(e) for $e \in E$, find the maximal subset $S \subseteq E$ that minimizes $\sum_{e \in S} w(e)$.

- We change Greedy to choose the element of A that has the smallest weight.
- This version of Greedy solves the Minimum Weight Problem if and only if it is applied to a matroid.