幾何学 1 演義 2025 年 10 月 17 日

3 多様体上の微分形式(1)

多様体 M の接ベクトルの(一つの)定義は次のように与えられる(松本幸夫『多様体の基礎』でいうところの「方向微分」). 点 $p \in M$ における接ベクトル v とは,p の開近傍で定義された C^∞ 級関数 f に対して $v(f) \in \mathbb{R}$ を定めるような対応であって,

$$v(f+g) = v(f) + v(g), \qquad v(cf) = cv(f) \quad (c \in \mathbb{R}), \qquad v(fg) = g(p)v(f) + f(p)v(g)$$

をみたすようなもののことである.

ところで、上記の条件の初めの2式をさして「v は線型写像である」と言いたいが、そうは言いがたい、「p の開近傍で定義された C^∞ 級関数」の全体は、そのままではベクトル空間とはみなせないからである.この問題を解決するための定義を紹介しておきたい.

13. 多様体 M の点 p に対し,p の開近傍 U と C^∞ 級関数 $f \in C^\infty(U)$ の組 (U,f) すべて からなる集合を S_p とする. S_p に次のような関係 \sim を導入する:

 $(U,f) \sim (U',f')$ $\stackrel{\text{def}}{\iff}$ 点 p のある開近傍 $V \subset U \cap U'$ が存在して $f|_V = f'|_V$.

- (1) ~が同値関係であることを示せ.
- (2) 商集合 $C_p^\infty = S_p/\sim$ を考える(C_p^∞ の元を C^∞ 級関数の点 p における**芽**という). C_p^∞ は自然にベクトル空間とみなすことができる.加法およびスカラー倍を定義し,それらが well-defined であることを説明せよ.
- (3) 接ベクトル $v \in T_pM$ を、 C_p^∞ を定義域とする線型写像 $C_p^\infty \to \mathbb{R}$ とみなすことができる. 具体的には、与えられた $s \in C_p^\infty$ について、s の代表元 (U,f) を任意に選び v(s) = v(f) と定めると、写像 $v: C_p^\infty \to \mathbb{R}$ は well-defined で、さらに線型である.そのことを確かめよ.
- 14. V を n 次元実ベクトル空間とし、 V^* をその双対空間とする.
 - (1) v_1 , v_2 , ……, v_n を V の基底とし, α^1 , α^2 , ……, α^n を双対基底とする. α^1 , α^2 , ……, α^n の定義を説明し, これらが実際に V^* の基底を与えることを示せ.
 - (2) v_1, v_2, \dots, v_n とは別の基底 $\tilde{v_1}, \tilde{v_2}, \dots, \tilde{v_n}$ が与えられたとして、基底の取りかえの行列を $P=(p_{ij})$ とする。すなわち

$$\tilde{v}_j = \sum_{i=1}^n p_{ij} v_i.$$

そのとき、 $\tilde{v_1}$ 、 $\tilde{v_2}$ 、……、 $\tilde{v_n}$ の双対基底 $\tilde{\alpha}^1$ 、 $\tilde{\alpha}^2$ 、……、 $\tilde{\alpha}^n$ は α^1 、 α^2 、……、 α^n を用いてどのようにあらわすことができるか説明せよ.

15. 多様体 M で定義された(C^{∞} 級の)関数 f に対し

$$(df)_p(v) = v(f)$$
 $(v \in T_pM)$

によって $(df)_p \in T_p^*M$ を定め、 $df = \{(df)_p\}_{p \in M}$ とおく(問題 4 で定義した df の一般化.本問の df も f の微分ないし全微分という).M のチャート $(U; x^1, ..., x^n)$ における局所座標表示が

$$(df)|_{U} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}$$

で与えられることを示せ(この局所座標表示から、とくに df が C^∞ 級の微分 1 形式であることもわかる).

16. 多様体 M 上の微分 1 形式 ω に対し、曲線 $\gamma: [a,b] \to M$ に沿った ω の線積分を

$$\int_{\gamma} \omega = \int_{a}^{b} \omega_{\gamma(t)} \left(\frac{d\gamma}{dt} \right) dt$$

で定義する $(\frac{d\gamma}{dt}$ は γ の時刻 t における速度ベクトルで, $T_{\gamma(t)}M$ に属する). $\omega=df$ のときは

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a))$$

であることを示せ(問題4の一般化).

17. \mathbb{R}^3 の単位球面 $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ を考える. f(x,y,z) = z と おく (\mathbb{R}^3 上の関数とも思えるが,ここでは S^2 上の関数とみなす). $\omega = df$ によって S^2 上の微分 1 形式 ω を定義する.

 S^2 において、 $U = S^2 \setminus \{(0,0,1)\}$ とし、

$$u = \frac{x}{1 - z}, \qquad v = \frac{y}{1 - z}$$

とおく(北極 (0,0,1) に関する立体射影)ことによってチャート (U;u,v) を定める.このチャートを用いて $\omega|_{tt}$ すなわち $(df)|_{tt}$ を局所座標表示せよ.

18. 前問に引き続き \mathbb{R}^3 の単位球面 S^2 を考える. 前問のチャート (U; u, v) において

$$\eta = \frac{-v \, du + u \, dv}{(1 + u^2 + v^2)^2}$$

で与えられる(U 上の)微分 1 形式 η を考える. S^2 で定義された微分 1 形式 ω であって $\omega|_U=\eta$ となるようなものが存在するかどうか判定せよ.