***** SEARCH RESULTS ***** (EXACT COMPOSITION)

=> d his 167

(FILE 'HCAPLUS' ENTERED AT 11:47:47 ON 08 AUG 2008) 1 S L64-L66

SAVE TEMP L67 WEI291HCAP1/A

=> d que 167

L30 172743 SEA FILE=HCAPLUS ABB=ON PLU=ON CATALYSTS+OLD.UF/CT 91748 SEA FILE=HCAPLUS ABB=ON PLU=ON "FUEL CELLS"+OLD, UF/CT L31 8766 SEA FILE=REGISTRY ABB=ON PLU=ON 5-60 PT/MAC L57 1.58 9317 SEA FILE=REGISTRY ABB=ON PLU=ON 5-50 IN/MAC L59 6809 SEA FILE=REGISTRY ABB=ON PLU=ON 20-70 W/MAC L60 132961 SEA FILE=REGISTRY ABB=ON PLU=ON 20-70 FE/MAC 1.61 15018 SEA FILE=REGISTRY ABB=ON PLU=ON 20-70 MN/MAC 215 SEA FILE=HCAPLUS ABB=ON PLU=ON L57 AND L58 L62 41 SEA FILE=HCAPLUS ABB=ON PLU=ON L62 AND ((L59 OR L60 OR L61)) L63 L64 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L63 AND FUEL CELL# L65 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L63 AND L30

1 SEA FILE=HCAPLUS ABB=ON PLU=ON L63 AND L31 L66

L67 1 SEA FILE=HCAPLUS ABB=ON PLU=ON (L64 OR L65 OR L66)

=> d 167 ibib ab

L67 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:140770 HCAPLUS Full-text

DOCUMENT NUMBER: 142:243595 TITLE: Platinum-indium-iron/tungsten/manganese fuel

cell electrocatalyst

INVENTOR(S): Devenney, Martin; Gorer, Alexander; Strasser, Peter;

He, Ting; Oyanagi, Hiroyuki; Giaguinta, Daniel M.;

Fan, Qun; Chondroudis, Konstantinos

PATENT ASSIGNEE(S): Symyx Technologies, Inc., USA; Honda Giken Kogyo

Kabushiki Kaisha; MEMC Electronic Materials, Inc.

U.S. Pat. Appl. Publ., 24 pp.

SOURCE:

CODEN: USXXCO DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE ----US 20050037920 A1 20050217 US 2004-849291 20040519 US 20060019825 A2 20060126 US 2003-473565P P 20030527 PRIORITY APPLN. INFO.:

AB A fuel cell electrocatalyst contains platinum, indium, and at least one of tungsten, iron, and manganese. The catalyst consists essentially of Pt, In, and ≥ 1 of W, Fe, and Mn. The catalyst is an alloy comprising Pt, In, and ≥ 1 W. Fe, and Mn.

***** SEARCH RESULTS ***** (BROAD SEARCH)

⇒ d his 140

```
(FILE 'HCAPLUS' ENTERED AT 10:29:33 ON 08 AUG 2008)
L40
            29 S L39 OR L33
 ⇒ d que 140
             1 SEA FILE=REGISTRY ABB=ON PLU=ON PLATINUM/CN
             1 SEA FILE=REGISTRY ABB=ON PLU=ON 7440-06-4/RN
L3
L4
             1 SEA FILE=REGISTRY ABB=ON PLU=ON L2 OR L3
L5
            1 SEA FILE=REGISTRY ABB=ON PLU=ON INDIUM/CN
            1 SEA FILE=REGISTRY ABB=ON PLU=ON 7440-74-6/RN
L6
L7
            1 SEA FILE=REGISTRY ABB=ON PLU=ON L5 OR L6
L8
            1 SEA FILE=REGISTRY ABB=ON PLU=ON TUNGSTEN/CN
            1 SEA FILE=REGISTRY ABB=ON PLU=ON 7440-33-7/RN
1 SEA FILE=REGISTRY ABB=ON PLU=ON L8 OR L9
L9
L10
L11
            1 SEA FILE=REGISTRY ABB=ON PLU=ON IRON/CN
L12
            1 SEA FILE=REGISTRY ABB=ON PLU=ON 7439-89-6/RN
L13
            1 SEA FILE-REGISTRY ABB-ON PLU-ON L11 OR L12
L14
            1 SEA FILE=REGISTRY ABB=ON PLU=ON MANGANESE/CN
L15
             1 SEA FILE=REGISTRY ABB=ON PLU=ON 7439-96-5 /RN
            1 SEA FILE=REGISTRY ABB=ON PLU=ON L14 OR L15
L16
L18
       246603 SEA FILE=HCAPLUS ABB=ON PLU=ON (PLATINUM OR L4)
228709 SEA FILE=HCAPLUS ABB=ON PLU=ON INDIUM OR L7
L19
L20
        216469 SEA FILE=HCAPLUS ABB=ON PLU=ON TUNGSTEN OR L10
L21
      1126517 SEA FILE=HCAPLUS ABB=ON PLU=ON IRON OR L13
L22
       440019 SEA FILE=HCAPLUS ABB=ON PLU=ON MANGANESE OR L16
1.27
         9950 SEA FILE=HCAPLUS ABB=ON PLU=ON L18 AND L19
L28
          5174 SEA FILE=HCAPLUS ABB=ON PLU=ON L27 AND (L20 OR L21 OR L22)
       172743 SEA FILE=HCAPLUS ABB=ON PLU=ON CATALYSTS+OLD,UF/CT
L30
L31
        91748 SEA FILE=HCAPLUS ABB=ON PLU=ON "FUEL CELLS"+OLD, UF/CT
          192 SEA FILE=HCAPLUS ABB=ON PLU=ON L28 AND L30
L32
L33
           29 SEA FILE=HCAPLUS ABB=ON PLU=ON L32 AND L31
L38
         9035 SEA FILE=HCAPLUS ABB=ON PLU=ON ELECTROCATALYST?
1.39
           20 SEA FILE=HCAPLUS ABB=ON PLU=ON L38 AND L33
L40
            29 SEA FILE=HCAPLUS ABB=ON PLU=ON L39 OR L33
  (FILE 'COMPENDEX, INSPEC, ENERGY, SCISEARCH' ENTERED AT 11:07:07 ON 08
    AUG 2008)
L51
             2 S L50 AND (FUEL CELL#)

⇒ d que 151

L.3
             1 SEA FILE=REGISTRY ABB=ON PLU=ON 7440-06-4/RN
             1 SEA FILE=REGISTRY ABB=ON PLU=ON 7440-74-6/RN
L6
L41
       194007 SEA PLATINUM OR L3
L42
        243968 SEA INDIUM OR L6
L43
         2545 SEA L41 AND L42
L44 1193749 SEA TUNGSTEN OR IRON OR MANGANESE
1.45
          374 SEA L43 AND L44
L50
           31 SEA L45 AND CATALYST?
```

1.51

2 SEA L50 AND (FUEL CELL#)

[⇒] dup rem 140 151

FILE 'HCAPLUS' ENTERED AT 11:14:59 ON 08 AUG 2008

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT @ 2008 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'ENERGY' ENTERED AT 11:14:59 ON 08 AUG 2008 COPYRIGHT @ 2008 USDOE for the IEA-Energy Technology Data Exchange (ETDE)

FILE 'SCISEARCH' ENTERED AT 11:14:59 ON 08 AUG 2008

Copyright @ 2008 The Thomson Corporation

PROCESSING COMPLETED FOR L40

PROCESSING COMPLETED FOR L51

31 DUP REM L40 L51 (0 DUPLICATES REMOVED) L56

ANSWERS '1-29' FROM FILE HCAPLUS ANSWER '30' FROM FILE ENERGY

ANSWER '31' FROM FILE SCISEARCH

⇒ d 156 1-29 ibib abs hitind; d 156 30-31 ibib ab ind

L56 ANSWER 1 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2008:508637 HCAPLUS Full-text

DOCUMENT NUMBER: 148:475982

TITLE: Electrocatalyst compositions for fuel cells INVENTOR(S): Jang, Bor Z.; Zhamu, Aruna; Guo, Jiusheng

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 25pp.

CODEN: USXXCO DOCUMENT TYPE: Patent LANGUAGE:

English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	API	PLICATION NO.	DATE
US 20080096093	A1	20080424	US	2006-582912	20061019
PRIORITY APPLN. INFO.:			US	2006-582912	20061019
				C	

A precursor electro-catalyst composition for producing a fuel cell electrode AB is disclosed. The precursor composition comprises (a) a mol. Metal precursor dissolved or dispersed in a liquid medium and (b) a polymer dissolved or dispersed in the liquid medium, wherein the polymer is both ion-conductive and electron-conductive with an electronic conductivity no less than 10-4 S/cm (preferably greater than 10-2 S/cm) and ionic conductivity no less than 10-5 S/cm (preferably greater than 10-3 S/cm). Also disclosed is an electrocatalyst composition derived from this precursor composition, wherein the mol. Metal precursor is converted by heat and/or energy beam to form nanometerscaled catalyst particles and the polymer forms a matrix that is in phys. Contact with the catalyst particles, coated on the catalyst particles, and/or surrounding the catalyst particles as a dispersing matrix with the catalyst particles dispersed therein when the liquid is removed. The fuel cell comprising such a composition in an electrode exhibits a superior power output.

INCL -429; -429; -502

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 67

fuel cell electrocatalyst compn

ΙT Nanotubes

(carbon; electrocatalyst compns. For fuel cells)

Polymers, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(cyclic, bicyclic, sulfonated; electrocatalyst compns. For fuel cells)

```
Conducting polymers
Membrane electrodes
Pore
Porogens
   (electrocatalyst compns. For fuel cells)
Carbon black, uses
Carbon fibers, uses
Rare earth metals, uses
Transition metal allovs
Transition metal carbides
Transition metal nitrides
Transition metal oxides
Transition metals, uses
RL: CAT (Catalyst use); USES (Uses)
   (electrocatalyst compns. For fuel cells)
Fluoropolymers, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
   (electrocatalyst compns. For fuel cells)
Halides
RL: RCT (Reactant); RACT (Reactant or reagent)
   (*lectrocatalyst compns. For fuel cells)
Metal alkoxides
RL: RCT (Reactant); RACT (Reactant or reagent)
   (electrocatalyst compns. For fuel cells)
Organometallic compounds
RL: RCT (Reactant); RACT (Reactant or reagent)
   (electrocatalyst compns. For fuel cells)
Polybenzimidazoles
RL: RCT (Reactant); RACT (Reactant or reagent)
   (electrocatalyst compns. For fuel cells)
Catalysts
   (electrocatalysts; electrocatalyst compns. For fuel
   cells)
Carbon fibers, uses
RL: CAT (Catalyst use); USES (Uses)
   (graphite, nanofibers; electrocatalyst compns. For fuel
   cells)
Nitrates, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
    (metal; electrocatalyst compns. For fuel cells)
Sulfonic acids, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
   (perfluorosulfonic acid polymers; electrocatalyst compns. For
   fuel cells)
Platinum-group metal compounds
RL: CAT (Catalyst use); RCT (Reactant); RACT (Reactant or reagent); USES
   (platinates, ammonium; electrocatalyst compns. For fuel
   cells)
Polyketones
RL: RCT (Reactant); RACT (Reactant or reagent)
   (polyether-, sulfonated; electrocatalyst compns. For fuel
   cells)
Polysulfones, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
   (polyether-polyketone-, sulfonated; electrocatalyst compns.
   For fuel cells)
Polyketones
RL: RCT (Reactant); RACT (Reactant or reagent)
   (polyether-polysulfone-, sulfonated; electrocatalyst compns.
```

For fuel cells)

Polyethers, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(polyketone-, sulfonated; electrocatalyst compns. For fuel cells)

IT Polyethers, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(polyketone-polysulfone-, sulfonated; electrocatalyst compns.
For fuel cells)

IT Fuel cells

(proton exchange membrane; electrocatalyst compns. For fuel cells)

IT Carboxylic acids, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(salts, metal; electrocatalyst compns. For fuel cells)

Fluoropolymers, reactions

RL: RCT (Reactant); RACT (Reactant or reagent) (sulfo-containing, perfluoro; electrocatalyst compns. For fuel cells)

IT Polyanilines

Polyimides, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(sulfonated; electrocatalyst compns. For fuel cells)

17 7429-90-5, Aluminum, uses 7439-89-5, Iridium, uses 7439-89-6, 1ron, uses 7439-91-0, Lanthanum, uses 7439-93-7, Molybdenum, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses 7440-18-8, Ruthenium, uses 7440-12-3, Silicon, uses 7440-22-4, Silver, uses 7440-18-7, Tantalum, uses 7440-13-5, Tin, uses 7440-13-2-6, Titanium, uses 7440-13-7, Tantalum, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-59-8, Copper, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses 7440-56-6, Rafnium, uses 7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-740, Indium, uses 7440-68-6, Graphite, uses 12779-05-4
RL: CAT (Catalyst use); USES (Uses)

(electrocatalyst compns. For fuel cells)

IT 7439-88-5D, Iridium, complex compds. 7439-88-5D, Iridium, salts 7440-05-3D, Palladium, complex compds. 7440-05-3D, Palladium, salts 7440-06-4D, Platinum, complex compds. 7440-06-4D , Platinum, salts 7440-18-8D, Ruthenium, complex compds.

7440-18-8D, Ruthenium, salts

RL: CAT (Catalyst use); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)

(electrocatalyst compns. For fuel cells)

IT 9002-83-9D, Polychlorotrifluoroethylene, sulfonated 9002-84-0D, Ptfe, sulfonated 9002-84-0D, Ptfe, sulfonated perfluoroalkoxy_erives.
9003-53-6D, Polystyrene, sulfonated 9003-55-8D, Butadiene-styrene copolymer, sulfonated 24937-79-9D, PVDF, sulfonated 25038-71-5D, Ethylene-tetrafluoroethylene copolymer, sulfonated 25038-71-5D, Perfluoroethylene-propylene copolymer, sulfonated 25101-45-5D, Ethylene-chlorotrifluoroethylene copolymer, sulfonated 25101-45-5D, Hexafluoropropene-tetrafluoroethylene-vinylidene fluoride copolymer, sulfonated 25233-30-1D, Polymiline, sulfonated 25233-34-5D, Polythiophene, sulfonated 30604-81-0D, Polypyrrole, sulfonated 31694-16-3D, sulfonated RE: RCT (Reactant); RACT (RACTANT); RACT (RACTANT); RACT (RACTANT); RACT (RACTANT); RACTANT (RACTANT); RACTANT

RL: RCT (Reactant); RACT (Reactant or reagent)
(electrocatalyst compns. For fuel cells)

T 25233-34-5DP, Polythiophene, alkyl derivative

RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(electrocatalyst compns. For fuel cells)

7440-44-0, Carbon, uses

RL: CAT (Catalyst use); USES (Uses)

(nanotubes; electrocatalyst compns. For fuel cells)

L56 ANSWER 2 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2008:349105 HCAPLUS Full-text

DOCUMENT NUMBER: 148:359053

TITLE: Process for producing fuel cell electrode,

catalyst-coated membrane and membrane-electrode

assembly INVENTOR(S):

Jang, Bor Z.; Zhamu, Aruna; Guo, Jiusheng

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 24pp.

CODEN: USXXCO DOCUMENT TYPE: Patent.

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20080070777 PRIORITY APPLN. INFO.:	A1	20080320	US 2006-522580 US 2006-522580	20060919 20060919

AB Disclosed are processes for producing a fuel cell electrode and a membrane electrode assembly. In one preferred embodiment, the process comprises (a) preparing a suspension of catalyst particles dispersed in a liquid medium containing a polymer dissolved or dispersed therein; (b) dispensing the suspension onto a primary surface of a substrate selected from an electronically conductive catalyst-backing layer (gas diffuser plate) or a solid electrolyte membrane; and (c) removing the liquid medium to form the electrode that is connected to or integral with the substrate, wherein the polymer is both ion-conductive and electron-conductive with an electronic conductivity no less than 10-4 S/cm and ionic conductivity no less than 10-5 S/cm and the polymer forms a coating in phys. Contact with the catalyst particles or coated on the catalyst particles.

INCL -502; -429; -429

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 67

Catalysts IT

(electrocatalysts; process for producing fuel cell electrode, catalyst-coated membrane and membrane-electrode assembly)

Platinum-group metal compounds

RL: RCT (Reactant); RACT (Reactant or reagent)

(platinates, ammonium; process for producing fuel cell electrode,

catalyst-coated membrane and membrane-electrode assembly)

Conducting polymers

Fuel cells

Membrane electrodes

Nanoparticles

(process for producing fuel cell electrode, catalyst-coated membrane and membrane-electrode assembly)

7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6,

From, uses 7439-91-0, Lanthanum, uses 7439-98-7, Molybdenum,

uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses Osmium, uses 7440-05-3, Palladium, uses 7440-06-4,

Platinum, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium,

uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-44-0, Carbon, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-74-6, Indiam, uses 12623-52-8 RL: CAT (Catalyst use); USES (Uses) (process for producing fuel cell electrode, catalyst-coated membrane and membrane-electrode assembly) 7439-88-5D, Iridium, complex compds. 7439-88-5D, Iridium, salts 7440-05-3D, Palladium, complex compds. 7440-05-3D, Palladium, salts 7440-06-4D, Platinum, complex compds. 7440-06-4D , Flatinum, salts 7440-18-8D, Ruthenium, complex compds. 7440-18-8D, Ruthenium, salts RL: RCT (Reactant); RACT (Reactant or reagent) (process for producing fuel cell electrode, catalyst-coated membrane and membrane-electrode assembly)

L56 ANSWER 3 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2008:125928 HCAPLUS Full-text

DOCUMENT NUMBER: 148:218532

TITLE: Method of fabrication of electrode for fuel cell and

membrane electrode composite
INVENTOR(S): Tamura, Jun; Nakano, Yoshihiko; Mei, Wu; Mikoshiba,

INVENTOR(S): Tamura, Satoshi

PATENT ASSIGNEE(S): Kabushiki Kaisha Toshiba, Japan

SOURCE: U.S. Pat. Appl. Publ., 23pp.

CODEN: USXXCO DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20080026282	A1	20080131	US 2007-778937	20070717
JP 2008034300	A	20080214	JP 2006-208241	20060731
PRIORITY APPLN. INFO.:			JP 2006-208241 A	20060731

A fuel cell, which can supply stable output even at elevated temps. And can maintain its power generation performance over a long period of time, can be realized by an electrode for a fuel cell comprising a catalyst layer formed of a catalyst composite and a binder, the catalyst composite comprising a proton-conductive inorg. Oxide and an exidation-reduction catalyst phase supported on the proton-conductive inorg. Oxide, the proton-conductive inorg. Oxide comprising a catalyst carrier selected from tin-doped In2O3, fluorine-doped SnO2, and antimony-doped SnO2 and an oxide particle phase chemical bonded to the surface of the catalyst carrier. The catalyst composite is manufactured by dispersing a catalyst carrier in a solution containing a material as a starting material for an oxide particle phase, heat treating the dispersion to form a proton-conductive inorg. Oxide, further dispersing the proton-conductive inorg. Oxide in a catalyst procursor-containing solution, and subjecting the dispersion to heat treatment or Ph adjustment to deposit a catalyst phase.

INCL -429; -429; -429; -502

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 67

IT Catalysts

(electrocatelysts; method of fabrication of electrode for

fuel cell and membrane electrode composite)

Catalyst supports

Fuel cell electrodes

Fuel cells

Membrane electrodes

(method of fabrication of electrode for fuel cell and membrane electrode composite)

1312-43-2P, Indium oxide (In203)

RL: CAT (Catalyst use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(Sn-doped; method of fabrication of electrode for fuel cell and membrane electrode composite)

7439-88-5, Iridium, uses 7439-89-6, 1ron, uses

7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses

7440-02-0, Nickel, uses 7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium,

uses 7440-22-4, Silver, uses 7440-33-7, Tungsten,

7440-42-8, Boron, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-57-5, Gold, uses 7440-62-2, Vanadium, uses

12779-05-4 50926-11-9, Ito

12673-86-8, Antimony tin oxide

98743-33-0, Tin fluoride oxide RL: CAT (Catalyst use); USES (Uses)

(method of fabrication of electrode for fuel cell and membrane electrode composite)

L56 ANSWER 4 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN 2007:1114218 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 147:430233

TITLE: Preparation of nanostructured metals and metal

compounds and their uses

INVENTOR(S): Hu, Yong-Sheng; Guo, Yu-Guo; Balaya, Palani; Maier,

Joachim: Hore, Sarmimala

PATENT ASSIGNEE(S): Max-Planck-Gesellschaft zur Foerderung der

Wissenschaften, Germany SOURCE: PCT Int. Appl., 44pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent English

LANGUAGE: FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	ENT				DATE		i	APPL			. OV			ATE			
WO	2007	1102	46		A2		2007	1004	1	WO 2						0070	
	W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,									
							CZ,										
							LC,										
							SG,										
	RW.				,		VC,	,				FT.	FR.	GB.	GR.	нп.	TE.
		IS,	IT,	LT,	LU,	LV,	MC,	MT,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,
							GA, MZ,										
								, AP, EA, EP, OA									
RITY	APP	LN.	INFO	. :					1	EP 2	006-	6529		- 1	A 2	0060.	329

PRI A method for the preparation of materials comprises the steps of: (a) taking a AB first material comprising a compound of a first metal or of a first metal

alloy, (b) inserting the first material into an electrochem. Cell as a first electrode, the electrochem. Cell including a second metal different from a metal incorporated in the first material and an electrolyte adapted to transport the second metal to the first electrode and insert it into the first material by a current flowing in an external circuit resulting in the formation of a compound of the second metal in the first electrode material, the method being characterized by the step of treating the first electrode material after formation of the compound of the second metal to chemical remove at least some of the compound of the second metal to leave a material with a nanoporous Structure.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 49, 56, 72

T Fuel cells

(direct methanol; preparation of nanostructured metals and metal compds.

And

IT Catalysts

(electrocatalysts; preparation of nanostructured metals and metal compds. And their uses)

IT 1314-15-4P, Platinum oxide (PtO2) 12036-10-1P, Ruthenium oxide (RuO2) 12057-24-8P, Lithium oxide (Li2O), preparation

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of nanostructured metals and metal compds. And their uses)

IT 7429-90-5P, Aluminum, uses 7439-88-5P, Iridium, uses 7439-89-6P, Iron, uses 7439-92-P, Lithium, uses 7439-95-4P, Magnesium, uses 7439-96-5P, Manganese , uses 7439-98-7P, Molybdenum, uses 7440-02-0P, Nickel, uses 7440-03-1P, Niobium, uses 7440-04-2P, Osmium, uses 7440-05-3P,

Palladium, uses 7440-06-4P, Platinum, uses 7440-99-7P, Potassium, uses 7440-16-6P, Rhodium, uses 7440-18-6P, Rhodium, uses 7440-18-8P, Ruthenium, uses 7440-22-4P, Silver, uses

7440-23-5P, Sodium, uses 7440-25-7P, Tantalum, uses 7440-28-0P, Thallium, uses 7440-31-5P, Tin, uses 7440-32-6P, Titanium, uses 7440-31-5P, Tungsten, uses 7440-36-0P, Antimony, uses 7440-43-9P, Cadmium, uses 7440-46-2P, Cesium, uses 7440-47-3P, Chronium, uses 7440-48-4P, Cobalt, uses 7440-50-6P, Copper, uses

Chromium, uses 7440-48-4P, Cobalt, uses 7440-50-8P, Copper, uses 7440-55-P, Gold, uses 7440-55-6P, Hafnium, uses 7440-62-2P, Vanadium, uses 7440-66-6P, Zinc, uses 7440-67-7P, Zirconium, uses 7440-69-9P, Bismuth, uses 7440-70-2P, Calcium, uses 7440-74-6P, Indium, uses

RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(preparation of nanostructured metals and metal compds. And their uses)

L56 ANSWER 5 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:941892 HCAPLUS Full-text

DOCUMENT NUMBER: 147:270794

TITLE: Carbon-encased metal nanoparticles and sponges,

methods of synthesis, and methods of use

INVENTOR(S): Lian, Kun; Wu, Qinglin

PATENT ASSIGNEE(S): Board of Supervisors of Louisiana State University and

Agricultural and Mechanical College, USA

SOURCE: PCT Int. Appl., 61pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
WO 2007095454
                   A2
                          20070823
                                     WO 2007-US61862
                                                            20070208
                         20080207
WO 2007095454
                   A3
   W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
       CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
       GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN,
       KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK,
       MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
       RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT,
       TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
   RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
       IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,
       CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,
       GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
       KG, KZ, MD, RU, TJ, TM, AP, EA, EP, OA
```

PRIORITY APPLN. INFO.: US 2006-772325P P 20060210

The authors disclose novel metallic nanoparticles coated with a thin protective carbon shell and three-dimensional nano-metallic sponges; methods of preparation of the nanoparticles; and uses for these novel materials, including wood preservation, strengthening of polymer and fiber/polymer building materials, and catalysis. Wood may be impregnating with carbon-shell nanoparticles with a metallic core selected from aluminum, magnesium, copper, zinc, and chromium in an amount sufficient to inhibit fungal decay or destruction of the wood by insects. Alternatively, the nanoparticles may be applied to a living woody plant in an amount sufficient to cause the plant to take up the nanoparticles and to incorporate enough nanoparticles in the woody tissues to inhibit the growth of mold in wood produced from the plant or to inhibit destruction of the wood by termites and other insects. Thus, cotton fiber was soaked in a copper sulfate solution After the cotton was saturated, extra solvent was removed. Carbonization was carried out at .apprx.350° under nitrogen for .apprx.2 h to obtain copper-carbon core-shell nanoparticles. Treating wood samples with a 1% aqueous suspension of such nanoparticles by using a standard vacuum and pressure treatment greatly inhibited termite attacks on the samples when they were subsequently challenged with Formosan subterranean termites (Coptotermes formosanus Shiraki).

IC ICM C09K

CC 5-4 (Agrochemical Bioregulators)

Section cross-reference(s): 37, 43, 52, 56, 57, 59

ΙT Catalvats

Fuel celis

(metallic nanosponges for catalytically generating energy in fuel cell) 7429-90-5, Aluminum, biological studies 7429-91-6, Dysprosium,

biological studies 7439-88-5, Iridium, biological studies

7439-89-6, 1ron, biological studies 7439-91-0,

Lanthanum, biological studies 7439-92-1, Lead, biological studies 7439-94-3, Lutetium, biological studies 7439-95-4, Magnesium, biological

studies 7439-96-5. Manganese, biological studies 7439-97-6, Mercury, biological studies 7439-98-7, Molybdenum, biological 7439-99-8, Neptunium, biological studies 7440-00-8, Neodymium, biological studies 7440-02-0, Nickel, biological studies 7440-03-1, Niobium, biological studies 7440-04-2, Osmium, biological studies

7440-05-3, Palladium, biological studies 7440-06-4,

Platinum, biological studies 7440-07-5, Plutonium, biological studies 7440-08-6, Polonium, biological studies 7440-10-0,

Praseodymium, biological studies 7440-12-2, Promethium, biological

studies 7440-13-3, Protactinium, biological studies 7440-14-4, Radium, biological studies 7440-15-5, Rhenium, biological studies 7440-16-6, Rhodium, biological studies 7440-18-8, Ruthenium, biological studies 7440-19-9, Samarium, biological studies 7440-20-2, Scandium, biological studies 7440-21-3, Silicon, biological studies 7440-22-4, Silver,

biological studies 7440-24-6, Strontium, biological studies 7440-25-7, Tantalum, biological studies 7440-26-8, Technetium, biological studies 7440-27-9, Terbium, biological studies 7440-28-0, Thallium, biological studies 7440-29-1, Thorium, biological studies 7440-30-4, Thulium, biological studies 7440-31-5, Tin, biological studies 7440-32-6, Titanium, biological studies 7440-33-7, Tungsten, biological studies 7440-34-8, Actinium, biological studies 7440-35-9, Americium, biological studies 7440-36-0, Antimony, biological studies 7440-38-2, Arsenic, biological studies 7440-39-3, Barium, biological 7440-41-7, Bervllium, biological studies 7440-42-8, Boron, biological studies 7440-43-9, Cadmium, biological studies Cerium, biological studies 7440-47-3, Chromium, biological studies 7440-48-4, Cobalt, biological studies 7440-50-8, Copper, biological 7440-52-0, Erbium, biological studies 7440-53-1, Europium, biological studies 7440-54-2, Gadolinium, biological studies 7440-55-3, Gallium, biological studies 7440-56-4, Germanium, biological studies 7440-57-5, Gold, biological studies 7440-58-6, Hafnium, biological studies 7440-60-0, Holmium, biological studies 7440-61-1, Uranium, biological studies 7440-62-2, Vanadium, biological studies 7440-64-4, Ytterbium, biological studies 7440-65-5, Yttrium, biological studies 7440-66-6, Zinc, biological studies 7440-67-7, Zirconium, biological studies 7440-69-9, Bismuth, biological studies 7440-70-2, Calcium, biological studies 7440-74-6, Indium, biological studies 13494-80-9, Tellurium, biological studies RL: BUU (Biological use, unclassified); CAT (Catalyst use); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material

use); BIOL (Biological study); PROC (Process); USES (Uses) (metal nanoparticles in carbon shell and nanosponges and their preparation and use in wood protection, strengthening of polymer and fiber/polymer building materials, and catalysis)

L56 ANSWER 6 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:488628 HCAPLUS Full-text

DOCUMENT NUMBER: 146:465323

TITLE: Process for producing catalyst layer for polymer

electrolyte fuel cell

INVENTOR(S): Okumura, Yoshinobu; Yamada, Kazuhiro; Miyazaki,

Kazuya; Shibata, Masaaki

PATENT ASSIGNEE(S): Canon Kabushiki Kaisha, Japan SOURCE: U.S. Pat. Appl. Publ., 16pp.

CODEN: USXXCO

Patent

DOCUMENT TYPE: LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	APPLICATION NO.	DATE	
US 20070099066	A1	20070503	US 2006-552867	20061025
JP 2007123043	A	20070517	JP 2005-313400	20051027
PRIORITY APPLN. INFO.:			JP 2005-313400 A	20051027

An electrode catalyst layer, capable of having high catalytic activity in a AB small thickness, for use in a polymer electrolyte fuel cell has an entangled structure (cobweb-like structure). The electrode catalyst layer is produced through a process including a step of forming a thin film with a film-forming material containing a combination of platinum, oxygen, and nitrogen, a combination of platinum, oxygen, and boron, or a combination of platinum, oxygen, nitrogen, and boron, and a step of forming a catalyst material which has the entangled structure and principally contains platinum as a main component by reducing the film-forming material.

INCL 429040000; 429044000; 502101000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 67

IT Catalysts

(electrocatalysts; process for producing catalyst layer for polymer electrolyte fuel cell)

IT Fuel cells

(polymer electrolyte; process for producing catalyst layer for polymer electrolyte fuel cell)

IT Platinum allov, base

RL: CAT (Catalyst use); USES (Uses)

(process for producing catalyst layer for polymer electrolyte fuel cell)

III 1303-86-2, Boron oxide, uses 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-39-6, Iron, uses 7439-91-0,

Lanthanum, uses 7439-96-5, Manganese, uses

7439-98-7, Molybdenum, uses 7440-00-8, Neodymium, uses 7440-02-0, Nickel, uses 7440-03-1, Nickel, uses 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses 7440-06-4, Flatinum, uses

7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses 7440-18-8,

Ruthenium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-32-6, Titanium,

uses 7440-33-7, Tungsten, uses 7440-44-0, Carbon, uses 7440-45-1, Cerium, uses 7440-47-3, Chromium, uses 7440-48-4,

uses 7440-40-1, Cerlum, uses 7440-47-3, Chromium, uses 7440-40-4, Cobalt, uses 7440-50-8, Copper, uses 7440-56-6, Germanium, uses 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-74-6, Indium, uses

173958-72-0, Nitrogen platinum oxide 475644-48-5, Hispec 4000 935546-47-7

RL: CAT (Catalyst use); USES (Uses)

(process for producing catalyst layer for polymer electrolyte fuel cell)

L56 ANSWER 7 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:618606 HCAPLUS Full-text

DOCUMENT NUMBER: 147:12976

TITLE: Stable electrodes having metal-doped nonstoichiometric titania intermediate layers between

electrocatalyst layers and nanostructured

supports and polymer electrolyte fuel cells equipped therewith

INVENTOR(S): Miyazaki, Kazuya

PATENT ASSIGNEE(S): Canon Inc., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 10pp.

DOCUMENT TYPE: Patent
LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

AB The electrodes comprise catalysts, nanostructured supports, and nonstoichiometric titanium oxide intermediate layers doped with Pt, Al, Si, V, Cr, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, Ta, W, Os, Ir, Au, La, Ce, and/or Nd. Thus, Magneli-phase titanium oxide layer and Pt-Pd (Pd 60 atomic%) catalyst layer were successively formed on graphite nanofiber layer (grown on quartz substrate) and treated under 10 kPa H at 60% for 10

- min, in order to accelerate Pt-Pd alloying, size reduction, and dissoln. Into the titanium oxide layer, to give electrode film.
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 67, 72
- ST PEFC electrode metal doped nonstoichiometric titania intermediate layer; platinum electrocatalyst dissolved nonstoichiometric titania intermediate layer PEFC electrode; nanostructured support PEFC electrocatalyst nonstoichiometric titania intermediate layer;

polymer electrolyte fuel cell anode cathode platinum electrocatalyst

IT Catalysts

(electrocatalysts; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

IT Carbon fibers, uses

RL: TEM (Technical or engineered material use); USES (Uses)
(graphite, nanofibers, supports; stable PEFC electrodes having
metal-doped nonstoichiometric titania intermediate layers between
electrocatalyst layers and nanostructured supports)

Fuel cells

(polymer electrolyte; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

IT Fuel cell anodes

Fuel cell cathodes

Fuel cell electrodes

(stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

IT Nanofibers

Nanostructures

(supports; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

T 937720-89-3, Titanium oxide (Ti3-805-15)

RL: TEM (Technical or engineered material use); USES (Uses) (Magneli phase, intermediate layers; stable PBFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

T 12720-14-8, Palladium 60, platinum 40 (atomic) 39305-53-8,

Cobalt 50, platinum 50 (atomic)

RL: CAT (Catalyst use); USES (Uses)

(electrocatelysts; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatelyst layers and nanostructured supports)

13463-67-7D, Titanium oxide, nonstoichiometric

RL: TEM (Technical or engineered material use); USES (Uses) (intermediate layers; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

IT 7782-42-5P, Graphite, uses

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(nanofibers, supports; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

IT 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6, iroq, uses 7439-91-0, Lanthanum, uses 7439-88-7, Molybdenum, uses 7440-00-8, Neodymium, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses

7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-33-7 , Tungsten, uses 7440-45-1, Cerium, uses 7440-47-3,

Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-56-4, Germanium, uses 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-67-7,

Zirconium, uses 7440-74-6, Indium, uses

RL: CAT (Catalyst use); MOA (Modifier or additive use); USES (Uses) (titanium oxide intermediate lavers doped with; stable PEFC electrodes having metal-doped nonstoichiometric titania intermediate layers between electrocatalyst layers and nanostructured supports)

L56 ANSWER 8 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:405517 HCAPLUS Full-text DOCUMENT NUMBER: 146:405159

Patent

TITLE: Fuel-cell electrodes, membrane-electrode assemblies,

and fuel cells

INVENTOR(S): Tamura, Atsushi; Nakano, Yoshihiko; Ume, Takeshi

PATENT ASSIGNEE(S): Toshiba Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 35pp.

CODEN: JKXXAF

DOCUMENT TYPE:

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2007095585	A	20070412	JP 2005-285594	20050929
CN 1941466	A	20070404	CN 2006-10139603	20060925
US 20070082257	A1	20070412	US 2006-537219	20060929
PRIORITY APPLN. INFO.:			JP 2005-285594	A 20050929
AB The title electrode	s are	equipped with	catalyst layers h	naving proton-

conducting inorg. Oxide super strong acid films containing X chosen from Ti, Zr, Si, Sn, Hf, Ge, Ga, In, Ce, Nb, and Al and Y chosen from W, Mo, Cr, B and V and redox metal catalysts or their supported catalysts partially covered with the films. Alternatively, the redox metal catalysts or their supported catalysts are bonded by binders containing the proton-conducting inorg. Oxide super strong acids. The title fuel cells, equipped with membrane-electrode assemblies (MEA) containing the above electrodes, provide stable power output at temperature from room temperature to ≈150°.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 67

ΙT Catalysts

(electrocatalysts; electrode catalysts containing

proton-conducting inorg. Oxide super strong acids for MEA and fuel cells)

Fuel cells

(polymer electrolyte; electrode catalysts containing proton-conducting inorg. Oxide super strong acids for MEA and fuel cells)

Fuel calls

(solid electrolyte; electrode catalysts containing proton-conducting inorg. Oxide super strong acids for MEA and fuel cells)

7440-06-4, Platinum, uses 12779-05-4

RL: CAT (Catalyst use); TEM (Technical or engineered material use); USES (Uses)

(catalysts; electrode catalysts containing proton-conducting inorg. Oxide super strong acids for MEA and fuel cells)

TT 11075-35-7, Titanium vanadium oxide 11113-92-1, Tin vanadium oxide

11126-28-6, Titanium tungsten oxide 12651-22-8, Tin tungsten oxide 12673-48-9, Chromium silicon oxide 12673-88-0, Molybdenum tin oxide 12738-80-8-8, Molybdenum titanium oxide 39290-95-4, Tungsten zirconium oxide 39467-15-7, Silicon tungsten oxide 51683-41-1, Vanadium zirconium oxide 53801-91-5, Chromium titanium oxide 53809-64-6, Chromium tin oxide 57348-12-6, Molybdenum zirconium oxide 108658-64-6, Chromium zirconium oxide 163332-35-2, Boron hafnium oxide 174179-90-9, Silicon vanadium oxide 183863-24-3, Molybdenum silicon oxide 264130-17-8, Boron neodymium oxide 933044-65-6, Boron indium oxide 933044-66-7, Boron germanium oxide 933044-67-8, Boron gallium oxide 933044-68-9, Boron cerium oxide RI: CAT (Catalyst use); TEM (Technical or engineered material use); USES (Uses)

(coatings or binders; electrode catalysts containing proton-conducting inorg. Oxide super strong acids for MEA and fuel cells)

L56 ANSWER 9 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:1448375 HCAPLUS Full-text

DOCUMENT NUMBER:

148:56506
Preparation of carbon nanofibers containing catalyst

TITLE: Preparation of nanoparticles

INVENTOR(S): Birkan, Burak; Menceloglu, Yusuf Ziya; Guelguen,

Mehmet Ali

PATENT ASSIGNEE(S): Sabanci Ueniversitesi, Turk.; Tuebitak Tuerkiye

Bilimsel ve Teknolojik Arastirma Kurumu

SOURCE: Eur. Pat. Appl., 26pp.
CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA:	TENT	NO.			KIN	D	DATE		1	APPL	ICAT:	ION	NO.		D	ATE	
						_											
EP	EP 1867762				A1		20071219			EP 2	006-	4040	02		2	0060	513
	R:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,
		IS,	IT,	LI,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	AL,
		BA,	HR,	MK,	YU												

PRIORITY APPLN. INFO.: EP 20

EP 2006-404002 20060613

The invention relates a method for synthesizing carbon nanofibers containing catalytic material particles characterized in that it comprises: (a) electrospinning a polymer solution and a catalytic material precursor for obtaining polymer fibers containing catalytic material precursor particles, (b) reducing the product obtained in (a) with a reducing agent to form polymer fibers containing catalytic material particles, (c) heat treating the product obtained in (b) for converting the polymer fibers containing catalytic material particles into carbon fibers containing catalytic material particles. The invention also relates to the intermediate products and products obtained by this method and use of these in various applications.

CC 40-2 (Textiles and Fibers)

IT Canalysts

Electrodes

Fuel cell electrodes

Fuel cells Heat treatment

Membranes, nonbiological

Photodiodes Primary batteries

Reduction

```
Secondary batteries
```

(preparation of carbon nanofibers containing catalyst nanoparticles) 7439-88-5D, Iridium, compds. 7439-89-6D, Iron, compds.

7439-91-0D, Lanthanum, compds. 7439-92-1D, Lead, compds. 7439-96-5D, Manganese, compds. 7439-98-7D, Molybdenum,

compds. 7440-02-0D, Nickel, compds. 7440-03-1D, Niobium, compds.

7440-04-2D, Osmium, compds. 7440-05-3D, Palladium, compds.

7440-06-4D, Platinum, compds. 7440-15-5D, Rhenium,

compds. 7440-16-6D, Rhodium, compds. 7440-18-8D, Ruthenium, compds. 7440-20-2D, Scandium, compds. 7440-22-4D, Silver, compds. 7440-25-7D,

Tantalum, compds. 7440-26-8D, Technetium, compds. 7440-31-5D, Tin, compds. 7440-32-6D, Titanium, compds. 7440-33-7D,

Tungsten, compds. 7440-36-0D, Antimony, compds. 7440-43-9D, Cadmium, compds. 7440-47-3D, Chromium, compds. 7440-48-4D, Cobalt, compds. 7440-50-8D, Copper, compds. 7440-55-3D, Gallium, compds. 7440-57-5D, Gold, compds. 7440-58-6D, Hafnium, compds. 7440-62-2D, Vanadium, compds. 7440-65-5D, Yttrium, compds. 7440-67-7D, Zirconium,

compds. 7440-69-9D, Bismuth, compds. 7440-74-6D, Indium, compds.

RL: CAT (Catalyst use); USES (Uses)

(particles; preparation of carbon nanofibers containing catalyst

nanoparticles) REFERENCE COUNT:

3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L56 ANSWER 10 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1225233 HCAPLUS Full-text

DOCUMENT NUMBER: 145:508544

TITLE: Electrode and catalytic materials

INVENTOR(S): Ying, Jackie Y.; Weiss, Steven E. Massachusetts Institute of Technology, USA PATENT ASSIGNEE(S):

PCT Int. Appl., 83pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.						KIND DATE				ICAT			ATE			
	2006				A2						006-					0060	
WO	2006	1251	77		A3		2007	0607									
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KM,	KN,	KP,	KR,
	KZ, LC, LK			LK,	LR,	LS,	LT,	LU,	LV,	LY,	MA,	MD,	MG,	MK,	MN,	MW,	MX,
	MZ, NA, NG,		NI,	NO.	NZ.	OM,	PG,	PH.	PL,	PT.	RO,	RU,	SC.	SD,	SE.		
	SG, SK, SL		SL.	SM,	SY,	TJ.	TM.	TN.	TR.	TT.	TZ,	UA,	UG,	US,	UZ,	VC,	
		VN.	YU,	ZA.	ZM,	ZW											
	RW:	AT.	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,
											RO,						
											MR,						
		GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
		KG,	KZ,	MD,	RU,	TJ,	TM,	AP,	EA,	EP.	OA						
US									US 2006-438079						2	0060	519
PRIORIT	RIORITY APPLN. INFO.:						20061214			US 2005-682737P						0050	519

AB The invention relates to materials used as electrodes and/or catalysts, as well as methods associated with the same. The materials may comprise an alloy or intermetallic compound of a transition metal (e.g., Ni) and a metal additive (e.g., Sn). The transition metal and additive are selected to

provide improved electrode and/or catalytic performance. For example, the materials of the invention may have a high catalytic activity, while being less susceptible to coking than certain conventional electrode/catalytic materials. These performance advantages can simplify the equipment used in certain applications, as well as reducing energy and capital requirements. Furthermore, the materials may be manufactured using traditional ceramic processing methods, without the need for complex, unconventional fabrication techniques. The materials are particularly suitable for use in fuel cells (e.g., SOFC electrodes) and in reactions that use or produce synthesis gas.

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56, 67, 72

IT Catalysts

(electrocatalysts; electrode and catalytic materials)

ΤТ Fuel cells

(solid oxide; electrode and catalytic materials)

ΙT Cobalt allov, base Iron alloy, base

Nickel alloy, base

RL: CAT (Catalyst use); USES (Uses)

(electrode and catalytic materials)

1344-28-1, Alumina, uses 7439-92-1, Lead, uses 7440-28-0, Thallium, uses 7440-31-5, Tin, uses 7440-36-0, Antimony, uses 7440-38-2, Arsenic, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses 7440-69-9, Bismuth, uses 7440-74-6, Indium, uses

RL: CAT (Catalyst use); MOA (Modifier or additive use); USES (Uses) (electrode and catalytic materials)

12059-23-3 12059-24-4 55072-50-9, Lanthanum strontium titanium oxide 55575-06-9, Cerium samarium oxide 64417-98-7, Yttrium zirconium oxide 103938-52-9, Cerium terbium oxide 112721-99-0 117698-61-0, Cerium praseodymium oxide 133878-25-8, Lanthanum manganese strontium oxide (La0.78MnSr0.203) 182374-60-3, Calcium lanthanum titanium oxide ((Ca,La)TiO3) 233280-43-8, Cerium samarium oxide ((Ce,Sm)O2) 915026-44-7, Calcium lanthanum titanium oxide (Ca0.8La0.2Ti03.1)

RL: DEV (Device component use) (electrode and catalytic materials)

7440-06-4, Engelhard A 3788A, uses RL: DEV (Device component use)

(paste, Engelhard A 3788A; electrode and catalytic materials)

L56 ANSWER 11 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:31978 HCAPLUS Full-text

DOCUMENT NUMBER: 144:111298

TITLE: Method of fabrication of catalyst layer for solid

polymer electrolyte fuel cell INVENTOR(S): Mivazaki, Kazuva; Yamada, Kazuhiro; Okumura, Yoshinobu

PATENT ASSIGNEE(S): Canon Kabushiki Kaisha, Japan

SOURCE: PCT Int. Appl., 76 pp.

CODEN: PIXXD2 DOCUMENT TYPE: Patent.

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIN	D	DATE			APPL	ICAT	ION :	NO.		D	ATE		
						_												
WO	2006	0040	23		A1	20060112				WO 2	005-	JP12	163		2	0050	624	
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	KE,	KG,	KM,	KP,	KR,	ΚZ,	LC,	
		LK.	LR.	LS.	LT.	LU.	LV.	MA.	MD.	MG.	MK.	MN.	MW.	MX.	MZ.	NA.	NG.	

```
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
            SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
            ZM. ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
            IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF,
            CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM,
            KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG,
            KZ, MD, RU, TJ, TM
    JP 2006049278
                        A
                             20060216 JP 2005-158097
                                                                20050530
    CA 2570317
                             20060112 CA 2005-2570317
                        A1
                                                               20050624
                            20070404 EP 2005-755869
    EP 1769550
                        A1
                                                               20050624
        R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
            IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR
                       A 20070606 CN 2005-80021605
    CN 1977410
                                                                20050624
    BR 2005012710
                       A
                             20080401 BR 2005-12710
                                                               20050624
    US 20070212591
                       A1 20070913 US 2006-570011
                                                               20061204
    KR 2007024653
                       A
                             20070302 KR 2006-727353
                                                               20061227
                       B1 20071128
A 20070824
    KR 778628
IN 2007CN00424 A
PRIORITY APPLN. INFO.:
                                         IN 2007-CN424
                                                                20070131
                                          JP 2004-194791 A 20040630
JP 2005-158097 A 20050530
                                          WO 2005-JP12163 W 20050624
```

- AB There is provided a dendritic catalyst layer for a solid polymer electrolyte fuel cell including: a solid polymer electrolyte membrane; electrodes; and catalyst layers each provided between the solid polymer electrolyte membrane and the resp. electrode, the catalyst layer for a solid polymer electrolyte fuel cell includes a catalyst with a dendritic structure. The catalyst with a dendritic structure is formed through vacuum evaporation such as reactive sputtering, reactive electron beam evaporation, or ion plating. The catalyst layer for a solid polymer electrolyte fuel cell can improve catalytic activity, catalyst utilization, and substance transport performance in the catalyst layer.
- IC ICM H01M004-86
- ICS H01M004-88; H01M004-90; H01M004-92; H01M008-02; H01M008-10
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 67
- IT Catalysts

(electrocatalysts; method of fabrication of catalyst layer for solid polymer electrolyte fuel cell)

- IT Fuel cells
 - (polymer electrolyte; method of fabrication of catalyst layer for solid polymer electrolyte fuel cell)
- IT Platinum alloy, base
 - RL: CAT (Catalyst use); USES (Uses)
 - (method of fabrication of catalyst layer for solid polymer electrolyte fuel cell)
- IT 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6, lron, uses 7439-91-0, Lanthanum, uses 7439-98-7, Molybdenum, uses 7440-00-8, Neodymium, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses 7440-66-4, Piattoum, uses 7440-6-6, Rhodium, uses 7440-21-8, Ruthenium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-45-1, Cerium, uses 7440-57-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-56-6, Hafnium, uses 7440-57-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-67-16.
 - Indium, uses 11107-69-0 11107-71-4 11129-89-8,
 - Planinum oxide 11134-15-9 12623-53-9 12779-05-4 12782-98-8

39339-47-4 50942-39-7 51402-57-4 58049-12-0 74092-28-7

RL: CAT (Catalyst use); USES (Uses)

(method of fabrication of catalyst layer for solid polymer electrolyte fuel cell)

REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L56 ANSWER 12 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:841791 HCAPLUS Full-text

DOCUMENT NUMBER: 145:252378

TITLE: Oxidation resistant electrode for fuel cell

INVENTOR(S): Mance, Andrew M.; Cai, Mei; Carriquiry, Cecilia;

Ruthkosky, Martin S. PATENT ASSIGNEE(S): USA

SOURCE:

U.S. Pat. Appl. Publ., 11pp.

CODEN: USXXCO DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIND DATE				APPLICATION NO.							ATE	
						-									-		
US	2006	0188	775		A1		2006	0824		US 2	006-	3542	13		2	0060	214
WO	2006	0914	43		A2		2006	0831		WO 2	006-	US52	62		2	0060	214
WO	2006	0914	43		A3		2007	0907									
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
		GE,	GH,	GH, GM, HR, HU, ID, IL,			IN,	IS,	JP,	KE,	KG,	KM,	KN,	KP,	KR,		
		KZ,	LC,	LK,	, LR, LS, LT, LU,			LV,	LY,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	
		MZ,	NA,	NG,	ΝI,	II, NO, NZ, OM, E			PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,
		SG,	SK,	SL,	SM,	SM, SY, TJ, TM,		TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	
		VN,	YU,	ZA,	ZM,	ZW											
	RW:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
		IS,	IT,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ΒJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG,	BW,	GH,
		GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,
		KG,	ΚZ,	MD,	RU,	ТJ,	TM,	ΑP,	EA,	EP,	OA						
DI	DE 112006000396 T5				2008	0228		DE 2	006-	1120	0600	0396	2	0060	214		
KI	KR 2007108405 A				A		2007	1109		KR 2	007-	7213	75		2	0070	918
Cl	1 1011	5626	5		A		2008	0402		CN 2	006-	8001	1244		2	0071	800
PRIORI	PRIORITY APPLN. INFO.:			. :						US 2	005-	6543	07P	1	P 2	0050	218
										WO 2	006-	US52	62	1	ii 2	0060	214

AB An oxygen reducing electrode for a fuel cell comprises carbon particles as support for catalyst particles. The carbon particles are coated with smaller particles of a metal oxide and/or metal phosphate (for example, TiO2 particles) to impede destructive oxidation (corrosion) of the carbon particles while permitting suitable elec. Conductivity between the carbon particles. The catalyst is carried on the smaller particle-coated carbon particles. Titanium dioxide particles can be dispersed on carbon particles suspended in a liquid medium by ultrasonic decomposition of a suitable titanium precursor compound

INCL 429044000; 429030000; 502101000

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

TT

(electrocatalysts; oxidation resistant electrode for fuel cell)

IT Coating materials Fuel cell cathodes

Fuel cell electrodes

Fuel cells

(oxidation resistant electrode for fuel cell) 7440-06-4, Platinum, uses RL: CAT (Catalyst use); USES (Uses) (oxidation resistant electrode for fuel cell) 1312-43-2, Indium oxide 1313-99-1, Nickel oxide, uses 1314-23-4, Zirconium oxide, uses 1314-35-8, Tungstep oxide, uses 1317-80-2, Rutile 1332-29-2, Tin oxide 1332-37-2, Iron oxide, uses 1344-70-3, Copper oxide 7440-44-0, Carbon, uses 11098-99-0, Molybdenum oxide 11099-11-9, Vanadium oxide 11104-61-3, Cobalt oxide 11118-57-3, Chromium oxide 13463-67-7, Titania, uses RL: CAT (Catalyst use); TEM (Technical or engineered material use); USES (Uses) (oxidation resistant electrode for fuel cell) L56 ANSWER 13 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:493370 HCAPLUS Full-text DOCUMENT NUMBER: 144:471498 TITLE: Sputtered catalyst structure and membrane-electrode assembly using it for polymer electrolyte fuel cell INVENTOR(S): Yoshikawa, Masato; Sugi, Shinichiro; Ono, Shingo; Iwabuchi, Yoshinori; Shiino, Osamu; Toyosawa, Shinichi PATENT ASSIGNEE(S): Bridgestone Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp. CODEN: JKXXAF DOCUMENT TYPE: Patent LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. ----JP 2006134603 A 20060525 JP 2004-319552 20041102 JP 2004-319552 PRIORITY APPLN. INFO.: 20041102 The title structure has a catalyst coating formed by reactive sputtering on a support. The membrane-electrode assembly equipped with the above structure provides high catalytic activity. CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 67 IT Catalysts (electrocatalysts; sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell) Fuel cells (polymer electrolyte; sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell) 409-21-2, Silicon carbide, uses 1299-86-1, Aluminum carbide 1312-81-8, Lanthanum oxide 1313-96-8, Niobium oxide 1313-99-1, Nickel oxide, uses 1314-13-2, Zinc oxide, uses 1314-35-8, Tungsten oxide, uses 1314-61-0, Tantalum oxide 1332-37-2, Iron oxide, uses 1335-25-7, Lead oxide 1344-28-1, Alumina, uses 1344-70-3, Copper oxide 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6, Iron, uses 7439-91-0, Lanthanum, uses 7439-92-1, Lead, uses 7439-95-4, Magnesium, uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses 7440-00-8, Neodymium, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-06-4, Platinum, uses 7440-09-7, Potassium, uses 7440-10-0, Praseodymium, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses 7440-17-7, Rubidium, uses 7440-18-8, Ruthenium, uses 7440-19-9, Samarium, uses 7440-20-2, Scandium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-23-5, Sodium, uses

7440-24-6, Strontium, uses 7440-25-7, Tantalum, uses 7440-28-0,

Thallium, uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-36-0, Antimony, uses 7440-39-3, Barium, uses 7440-43-9, Cadmium, uses 7440-45-1, Cerium, uses 7440-46-2, Cesium, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-53-1, Europium, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-69-9, Bismuth, uses 7440-70-2, Calcium, uses 7440-74-6. Indium, uses 7631-86-9, Silica, uses 11098-99-0, Molybdenum oxide 11104-61-3, Cobalt oxide 11105-01-4, Silicon nitride oxide $12033-62-4, \; \text{Tantalum nitride} \qquad 12033-89-5, \; \text{Silicon nitride, uses} \\ 12069-94-2, \; \text{Niobium carbide} \qquad 12070-06-3, \; \text{Tantalum carbide} \qquad 12070-08-5, \\$ Titanium carbide 12070-12-1, Tungsten carbide (WC) 12627-57-5, Molybdenum carbide 12633-97-5, Aluminum nitride oxide 12640-64-1, Iron carbide 12648-34-9, Niobium nitride 12710-36-0, Nickel carbide 12738-11-3, Nickel nitride 13463-67-7, Titania, uses 24304-00-5, Aluminum nitride 25583-20-4, Titanium nitride 37245-77-5, Iron nitride 37245-81-1, Molybdenum nitride 37271-26-4, Titanium nitride oxide 37359-53-8. Tungsten nitride 39300-69-1, Lead carbide 50816-03-0, Tungsten nitride oxide 51177-04-9, Cobalt carbide 51680-36-5, Copper carbide 52036-89-2, Lead nitride 52036-92-7, Tantalum nitride oxide 55326-68-6, Cobalt nitride 56127-37-8, Niobium nitride oxide 56591-82-3, Lanthanum carbide 74499-90-4, Zinc carbide 96777-69-4, Copper nitride 107827-12-3, Iron nitride oxide 128579-03-3, Zinc nitride 141325-59-9, Molybdenum nitride oxide 147230-92-0, Nickel nitride oxide 156202-32-3, Cobalt nitride oxide 156202-33-4, Copper nitride oxide 161929-21-1, Nitrogen zinc oxide 175295-28-0, Lanthanum nitride 395075-29-3, Lanthanum nitrogen oxide 439933-05-8, Lead nitrogen oxide RL: CAT (Catalyst use); DEV (Device component use); RCT (Reactant); RACT (Reactant or reagent); USES (Uses) (sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell)

L56 ANSWER 14 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:493347 HCAPLUS Full-text DOCUMENT NUMBER: 144:471494

TITLE: Sputtered catalyst structure and membrane electrode assembly using it for polymer electrolyte fuel cells

> Yoshikawa, Masato; Sugi, Shinichiro; Ono, Shingo; Sato, Kenji; Tovosawa, Shinichi

PATENT ASSIGNEE(S): Bridgestone Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp. CODEN: JKXXAF

DOCUMENT TYPE: Patent Japanese

LANGUAGE: FAMILY ACC. NUM. COUNT: 1

INVENTOR(S):

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2006134602 PRIORITY APPLN. INFO.:	A	20060525	JP 2004-319548 JP 2004-319548	20041102

AR The title structure has a catalyst coating formed by gas-flow sputtering on a support. The membrane-electrode assembly equipped with the above structure provides high catalytic activity.

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 67

```
TT
    Catalysts
```

(electrocatalysts; sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell)

Fuel cells (polymer electrolyte; sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell) 409-21-2, Silicon carbide, uses 1299-86-1, Aluminum carbide 1312-81-8, Lanthanum oxide 1313-96-8, Niobium oxide 1313-99-1, Nickel oxide, uses 1314-13-2, Zinc oxide, uses 1314-35-8, Tungsten oxide, uses 1314-61-0, Tantalum oxide 1332-37-2, Iron oxide, uses 1335-25-7, Lead oxide 1344-28-1, Alumina, uses 1344-70-3, Copper oxide 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6, Ixon, uses 7439-91-0, Lanthanum, uses 7439-92-1, Lead, uses 7439-95-4, Magnesium, uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses 7440-00-8, Neodymium, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-06-4, Plaginum, uses 7440-09-7, Potassium, uses 7440-10-0, Praseodymium, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses 7440-17-7, Rubidium, uses 7440-18-8, Ruthenium, uses 7440-19-9, Samarium, uses 7440-20-2, Scandium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-23-5, Sodium, uses 7440-24-6, Strontium, uses 7440-25-7, Tantalum, uses 7440-28-0, Thallium, uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-36-0, Antimony, uses 7440-39-3, Barium, uses 7440-43-9, Cadmium, uses 7440-45-1, Cerium, uses 7440-46-2, Cesium, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-53-1, Europium, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses 7440-57-5, Gold, 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-69-9, Bismuth, uses 7440-70-2, Calcium, uses 7440-74-6, Indium, uses 7631-86-9, Silica, uses 11098-99-0, Molybdenum oxide 11104-61-3, Cobalt oxide 11105-01-4, Silicon nitride oxide 12033-62-4, Tantalum nitride 12033-89-5, Silicon nitride, uses 12069-94-2, Niobium carbide 12070-06-3, Tantalum carbide 12070-08-5, Titanium carbide 12070-12-1, Tungsten carbide (WC) 12627-57-5, Molvbdenum carbide 12633-97-5, Aluminum nitride oxide 12640-64-1, Iron carbide 12648-34-9, Niobium nitride 12710-36-0, Nickel carbide 12738-11-3, Nickel nitride 13463-67-7, Titania, uses 24304-00-5, Aluminum nitride 25583-20-4, Titanium nitride 37245-77-5, Iron nitride 37245-81-1, Molybdenum nitride 37271-26-4, Titanium nitride oxide 37359-53-8, Innosted nitride 39300-69-1, Lead carbide 50816-03-0, Tungsten nitride oxide 51177-04-9, Cobalt carbide 51680-36-5, Copper carbide 52036-89-2, Lead nitride 52036-92-7, Tantalum nitride oxide 55326-68-6, Cobalt nitride 56127-37-8, Niobium nitride oxide 56591-82-3, Lanthanum carbide 74499-90-4, Zinc carbide 96777-69-4, Copper nitride 107827-12-3, Iron nitride oxide 128579-03-3, Zinc nitride 141325-59-9, Molybdenum nitride oxide 147230-92-0, Nickel nitride oxide 156202-32-3, Cobalt nitride oxide 156202-33-4, Copper nitride oxide 161929-21-1, Nitrogen zinc oxide 175295-28-0, Lanthanum nitride 395075-29-3, Lanthanum nitrogen oxide 439933-05-8, Lead nitrogen oxide RL: CAT (Catalyst use); DEV (Device component use); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)

(sputtered catalyst structure for membrane-electrode assembly in polymer electrolyte fuel cell)

L56 ANSWER 15 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN 2006:729977 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 145:178428

TITLE: Carbon-metal composite material and process of

preparing the same

INVENTOR(S): Im, Dong-Min; Ham, Yong-Nam; Kim, Han-Su; Lee, Jeona-Hee

PATENT ASSIGNEE(S): Samsung Sdi Co., Ltd., S. Korea

Eur. Pat. Appl., 28 pp. SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE: Pat.ent. LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

	PA:	TENT :	NO.			KIND DATE				APPLICATION NO.							D.	ATE	
	EP	1683	759			A1		2006	0726		ΕP	200	6-2	5031	17		2	0060	120
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GF	, I	Τ,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	ΑL	, т	R,	BG,	CZ,	EE,	HU,	PL,	SK,
	BA, HR, I					YU													
	KR	2006	0851	63		A		2006	0726		KR	200	5-9	8664	1		2	0051	019
	KR	8464	77			B1		2008	0717										
	JP	2006	2027	59		A		2006	0803		JΡ	200	6-1	2609)		2	0060	120
	US	2006	01659	995		A1		2006	0727		US	200	6-3	3810)6		2	0060	123
	CN	1817	894			A		2006	0816		CN	200	6-1	.0006	5003		2	0060	123
PRIOR	RIT	APP	LN.	INFO	. :						KR	200	5-5	808		- 1	A 2	0050	121
											KR	200	5-9	8664	1		A 2	0051	019

OTHER SOURCE(S):

MARPAT 145:178428 There are provided a C-metal composite material which has improved

conductivity, sp. Surface area and regularity and a shape which is easily controlled, and a process of preparing the same. The C-metal composite material includes C and metal, has a sheet resistance of 8 m Ω /sq. or less under a pressure of 100 kgf/cm2 and a sp. Surface area of 30 m2/g or greater, shows an x-ray pattern having at least one peak at d-spacings of 6 nm or greater.

76-2 (Electric Phenomena)

Section cross-reference(s): 52, 56, 57, 66, 67

ΙT Catalysts

Electric conductors

Luminescent substances

Magnetic materials

Nonlinear optical materials

(carbon-metal composite material and process of preparing)

Ceramic composites

Fuel cells Heat treatment

Powders

(carbon-metal composite material and process of preparing for conductors and fuel-cell catalysts)

Catalysts

(carbon-metal composite; carbon-metal composite material and process of preparing for conductors and fuel-cell catalysts)

100-21-0D, Terephthalic acid, coordination polymer 290-37-9D, Pyrazine, coordination polymer 553-26-4D, 4,4'-Bipyridine, coordination polymer 554-95-0D, Trimesic acid, coordination polymer 1141-38-4D,

2,6-Naphthalenedicarboxylic acid, coordination polymer 7439-89-6 , Iron, processes 7439-91-0, Lanthanum, processes 7439-92-1.

Lead, processes 7439-96-5, Manganese, processes

7439-98-7, Molybdenum, processes 7440-03-1, Niobium, processes

7440-04-2, Osmium, processes 7440-05-3, Palladium, processes 7440-06-4, Platinum, processes 7440-18-8, Ruthenium,

processes 7440-31-5, Tin, processes 7440-32-6, Titanium, processes 7440-43-9, Cadmium, processes 7440-47-3, Chromium, processes 7440-48-4, Cobalt, processes 7440-50-8, Copper, processes 7440-57-5, Gold, processes 7440-62-2, Vanadium, processes 7440-67-7, Zirconium, processes 7440-69-9, Bismuth, processes 7440-74-6, Indiam, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES

(carbon-metal composite material and process of preparing)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L56 ANSWER 16 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:1049960 HCAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 143:349945

TITLE: Production and use of modified carbon products in fuel

cell components and similar devices
INVENTOR(S): Hampden-Smith, Mark J.; Atanassova, Paolina;

Napolitano, Paul; Bhatia, Rimple; Rice, Gordon L.; Caruso, James; Brewster, James; Gurau, Bogdan

PATENT ASSIGNEE(S): Cabot Corporation, USA SOURCE: PCT Int. Appl., 177 pp.

CODEN: PIXXD2
DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

	PATENT NO.						KIND DATE				APPL									
	WO	2005	0914	16		A2 20050929 A3 20060928								20050315						
			CN, GE, LK, NO, SY, BW, AZ,	CO, GH, LR, NZ, TJ, GH, BY,	CR, GM, LS, OM, TM, GM, KG,	CU, HR, LT, PG, TN, KE, KZ,	CZ, HU, LU, PH, TR, LS,	DE, ID, LV, PL, TT, MW, RU,	AZ, DK, IL, MA, PT, TZ, MZ, TJ, HU,	DM, IN, MD, RO, UA, NA, TM,	DZ, IS, MG, RU, UG, SD, AT,	EC, JP, MK, SC, US, SL, BE,	EE, KE, MN, SD, UZ, SZ, BG,	EG, KG, MW, SE, VC, TZ, CH,	ES, KP, MX, SG, VN, UG, CY,	FI, KR, MZ, SK, YU, ZM, CZ,	GB, KZ, NA, SL, ZA, ZW, DE,	GD, LC, NI, SM, ZM, AM, DK,	ZW	
			RO,	SE,	SI,	SK,	TR,		BJ,											
	C 2	MR, NE, SN, 2560069						2005	0929		2 2	005-	2560	nea		2	0.050	315		
						A1 20051006														
										US 2005-81765										
											US 2	005-	8175	2	20050315					
	US	2005	0233	203		A1					US 2005-81768					20050315				
		1726						2006	1129		EP 2	005-	7256	83	20050315					
		R:	ΑT,	ΒE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,		
					LI, MK,		LU,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	AL,	BA,		
	JΡ	2007	5357	87		T		2007	1206		JP 2	007-	5040	47		2	0050	315		
PRIOR	IT	APP	LN.	INFO	. :						US 2									
										US 2										
									US 2004-553612P											
											US 2									
											WO 2	005-	US86	65	1	N 2	0050	315		

```
Fuel cell components incorporating modified carbon products are disclosed. The
AB
     modified carbon products advantageously enhance the properties of the
     components leading to more efficiency within the fuel cell.
IC
    ICM H01M008-10
    ICS H01M004-90; H01B001-12; C08J005-22; H01M004-88; H01M008-02;
         H01M004-86
    52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ΙT
    Catalysts
        (electrocatalysts; production and use of modified carbon products
       in fuel cell components and similar devices)
    Fuel cells
        (proton exchange membrane; production and use of modified carbon products
       in fuel cell components and similar devices)
    1313-99-1, Nickel oxide, uses 1314-23-4, Zirconium oxide, uses
    1314-35-8, Tungsten oxide, uses 1332-37-2, Iron
    oxide, uses 1344-28-1, Aluminum oxide, uses
                                                  7429-90-5, Aluminum, uses
    7439-88-5, Iridium, uses 7439-89-6, Iron, uses
    7439-91-0, Lanthanum, uses 7439-98-7, Molybdenum, uses 7440-02-0,
    Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses
    7440-05-3, Palladium, uses 7440-06-4, Platinum, uses
    7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses
                                                          7440-21-3,
    Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses
    7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7,
    Tungsten, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt,
           7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-56-4,
    Germanium, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses
    7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses
                                                     7440-67-7, Zirconium,
    uses 7440-74-6, Indiam, uses 11098-99-0, Molybdenum
    oxide 11099-11-9, Vanadium oxide 11104-61-3, Cobalt oxide
    11113-77-2, Palladium oxide 11113-84-1, Ruthenium oxide 11118-57-3,
    Chromium oxide 11129-60-5, Manganese oxide 11129-89-8,
    Platinum oxide 11134-15-9 12055-23-1, Hafnium oxide
    20667-12-3, Silver oxide 37186-93-9 39403-39-9, Gold oxide
    50942-39-7 59763-75-6, Tantalum oxide 60596-33-0 77088-24-5
    91033-96-4
    RL: CAT (Catalyst use); USES (Uses)
        (production and use of modified carbon products in fuel cell components and
       similar devices)
    7440-06-4D, Platinum, compound
    RL: CPS (Chemical process); PEP (Physical, engineering or chemical
    process); PROC (Process)
        (production and use of modified carbon products in fuel cell components and
       similar devices)
L56 ANSWER 17 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2005:472490 HCAPLUS Full-text
DOCUMENT NUMBER:
                       143:10586
TITLE:
                       Hydrogen/hydrogen peroxide fuel cell
INVENTOR(S):
                      Luo, Nie; Miley, George
PATENT ASSIGNEE(S):
                     NPL Associates, Inc., USA
SOURCE:
                       PCT Int. Appl., 39 pp.
                       CODEN: PIXXD2
DOCUMENT TYPE:
                       Patent
LANGUAGE:
                       English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
```

KIND DATE

APPLICATION NO.

DATE

PATENT NO.

```
WO 2005050758
                       A2 20050602
                                         WO 2004-US38714
                                                                20041118
    WO 2005050758
                        A3 20060309
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
            CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
            GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
            LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
            NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
            TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
            AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
            EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO,
            SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
            NE, SN, TD, TG
    US 20050136310
                              20050623 US 2004-990695
                                                                 20041117
                        A1
    US 7241521
                        B2
                              20070710
    CA 2544882
                        A1
                              20050602 CA 2004-2544882
                                                                 20041118
    EP 1685614
                        A2 20060802 EP 2004-811429
                                                                 20041118
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK,
            HR, IS, YU
    US 20080014477
                             20080117
                                          US 2007-825143
                                                                 20070703
                        A1
PRIORITY APPLN. INFO.:
                                          US 2003-520899P
                                                            P 20031118
                                          US 2004-990695
                                                             A 20041117
                                          WO 2004-US38714
                                                            W 20041118
     One embodiment of the present invention includes a technique of performing a
AB
     catalytic oxidation reaction at an anode to provide hydrogen ions from mol.
     Hydrogen and a catalytic reduction reaction at a cathode to provide hydroxyl
     ions from liquid hydrogen peroxide. Passage the mol. Hydrogen to a reaction
     region is impeded with a proton exchange membrane and passage of the hydrogen
     peroxide to the reaction region is impeded with an ion-selective arrangement.
     Elec. Potential is generated between the anode and the cathode to provide
     elec. Power from a reaction of the hydrogen ions and the hydroxyl ions in the
     reaction region. In one variation, a regeneration technique is also provided.
IC
    ICM H01M
CC
    52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ΙT
    Catalysts
    Dispersing agents
    Space vehicles
        (hydrogen/hydrogen peroxide fuel cell)
IΤ
    Fuel cells
        (proton exchange membrane; hydrogen/hydrogen peroxide fuel cell)
    7439-89-6, Iron, uses 7440-05-3, Palladium, uses
    7440-06-4, Platinum, uses 7440-74-6,
    Indium, uses 11107-69-0 39398-71-5
    RL: CAT (Catalyst use); USES (Uses)
       (hydrogen/hydrogen peroxide fuel cell)
L56 ANSWER 18 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER:
                       2005:76441 HCAPLUS Full-text
DOCUMENT NUMBER:
                        142:159556
TITLE:
                       Fabrication and use of electrodes and other fuel cell
                        components having ultra low catalyst loadings coated
                        thereon
INVENTOR(S):
                       Figueroa, Juan C.
PATENT ASSIGNEE(S):
                      E.I. Dupont de Nemours and Company, USA
SOURCE:
                       PCT Int. Appl., 24 pp.
                       CODEN: PIXXD2
```

Patent

English

DOCUMENT TYPE:

LANGUAGE:

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT ASSIGNEE(S):

PATENT INFORMATION:														
PATENT NO.		APPLICATION NO.												
WO 2005008814 WO 2005008814		A3 20051215												
CN, CO, CR, GE, GH, GM, LK, LR, LS, NO, NZ, OM, TJ, TM, TN, RW: BW, GH, GM,	AM, AT, AU, AZ, BA CU, CZ, DE, DK, DM HR, HU, ID, IL, IN LT, LU, LV, MA, MD PG, PH, PL, PT, RO TR, TT, TZ, UA, UG KE, LS, MW, MZ, NA KZ, MD, RU, TJ, TM	, DZ, EC, EE, EG, E , IS, JP, KE, KG, E , MG, MK, MN, MW, M , RU, SC, SD, SE, S , US, UZ, VC, VN, S , SD, SL, SZ, TZ, U	ZS, FI, GB, GD, KP, KR, KZ, LC, MX, MZ, NA, NI, SG, SK, SL, SY, TU, ZA, ZM, ZW JG, ZM, ZW, AM,											
EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,														
SN, TD, TG														
PRIORITY APPLN. INFO.: US 2003-486108P P 20030710 AB The present invention relates to fuel cells and various fuel cell componen														
AB The present invention relates to fuel cells and various fuel cell componen comprising electrocatalysts comprising composite materials that deliver hi														
mass specific current densities through the use of activated precursor														
electrocatalysts.														
IC ICM H01M004-90	1.T037_02+ B01.T023_5	6												
ICS H01M004-86; B01J037-02; B01J023-56 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)														
Section cross-reference(s): 67														
IT Catalysts														
	(electrocatalysts; fabrication and use of electrodes and other fuel cell components having ultra low catalyst loadings coated													
thereon)		-	-											
IT Fuel cell electrode Fuel cells														
(fabrication and use of electrodes and other fuel cell components having ultra low catalyst loadings coated thereon) 17 429-90-5, Aluminum, uses 7439-92-1, Lead, uses 7439-93-2, Lithium, uses 7439-95-4, Magnesium, uses 7439-97-6, Mercury, uses 7439-98-7, Molybdenum, uses 7440-03-1, Niobium, uses 7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses 7440-31-5, Tin, uses 7440-32-7, Tungsten, uses 7440-41-7, Beryllium, uses 7440-43-9, Cadmium, uses 7440-48-4, Cobalt, uses 7440-55-3, Gallium, uses 7440-66-4, Germanium, uses 7440-58-6, Hafnium, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-69-9, Bismuth, uses 7440-74-6, Indium, uses RL CAT (Catalyst use); USES (Uses) (fabrication and use of electrodes and other fuel cell components having ultra low catalyst loadings coated thereon)														
L56 ANSWER 19 OF 31 HC ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:	APLUS COPYRIGHT 20: 2005:140770 HCAPL 142:243595 Platinum-indium-ir tungsten/manganese electrocatalyst	US <u>Full-text</u>												
INVENTOR(S):	Devenney, Martin; (He, Ting; Oyanagi,	Hiroyuki; Giaquint												
DATENT ACCIONER/C).	Fan, Qun; Chondrou	dis, Konstantinos	Cibon Vacus											

Symyx Technologies, Inc., USA; Honda Giken Kogyo

Kabushiki Kaisha; MEMC Electronic Materials, Inc.

U.S. Pat. Appl. Publ., 24 pp.

CODEN: USXXCO DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

SOURCE:

0519
30527

A fuel cell electrocatalyst contains platinum, indium, and at least one of tungsten, iron, and manganese. The catalyst consists essentially of Pt, In, and ≥1 of W, Fe, and Mn. The catalyst is an alloy comprising Pt, In, and ≥1 W, Fe, and Mn.

ICM H01M008-00

ICS H01M008-04; H01M008-10; H01M004-86; H01M004-90; H01M004-96 INCL 502313000; 429040000; 429044000; 429030000; 429013000; 429017000; 502324000

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 56, 67

fuel cell electrocatalyst platinum indium iron tungsten manganese

TΤ Catalysts

> (electrocatalysts; platinum-indiumiron/tungsten/manganese fuel cell electrocatalyst)

ΤТ Fuels

> (fossil; platinum-indiam-iron/ tungsten/manganese fuel cell electrocatalyst

Municipal refuse

(off-gas; platinum-indium-iron/ tongsten/manganese fuel cell electrocatalyst)

Hydrocarbons, uses

RL: TEM (Technical or engineered material use); USES (Uses) (oxy; platinum-indium-iron/

tungsten/manganese fuel cell electrocatalyst

Fuel cell anodes

Fuel cell cathodes

Photolithography

(platinum-indium-iron/tungsten/

manganese fuel cell electrocatalyst)

Hydrocarbons, uses

RL: TEM (Technical or engineered material use); USES (Uses) (platinum-indium-iron/tungsten/

mangagese fuel cell electrocatalyst)

Fuel calls

(proton exchange membrane; platinum-indium-

iron/tungsten/manganess fuel cell electrocatalyst)

Magnetron sputtering

(radio-frequency; platinum-indium-iron/

tungsten/manganese fuel cell electrocatalyst

7439-89-6, Iron, uses 7439-96-5,

```
Manganese, uses 7440-06-4, Platinum, uses
    7440-33-7, Tungsten, uses 7440-74-6,
     Indium, uses 56319-92-7, Manganese 50,
     platinum 50 atomic 844839-26-5 844839-27-6 844839-28-7
     844839-29-8 844839-30-1 844839-31-2 844839-32-3 844839-33-4
     844839-34-5 844839-35-6 844839-36-7 844839-37-8 844839-38-9
     844839-39-0 844839-40-3 844839-41-4 844839-42-5 844839-43-6
     844839-44-7 844839-45-8 844839-46-9 844839-47-0 844839-48-1
     844839-49-2 844839-50-5 844839-51-6 844839-52-7 844839-53-8
     844839-54-9 844839-55-0 844839-56-1 844839-57-2 844839-58-3
     844839-59-4 844839-60-7 844839-61-8 844839-62-9 844839-63-0

    844839-64-1
    844839-65-2
    844839-66-3
    844839-67-4
    844839-68-5

    844839-69-6
    844839-70-9
    844839-71-0
    844839-72-1
    844839-73-2

     844839-74-3 844839-75-4 844839-76-5 844839-77-6 844839-78-7
    844839-79-8 844839-80-1 844839-81-2 844839-82-3 844839-83-4
     844839-84-5 844839-85-6 844839-86-7 844839-88-9 844839-95-8
     844839-97-0 844839-98-1 844839-99-2 844840-00-2 844840-02-4
     844840-04-6 844840-06-8 844840-09-1 844840-11-5 844840-13-7
     844840-15-9 844840-18-2 844840-20-6 844840-22-8 844840-24-0
     844840-26-2 844840-27-3 844840-28-4 844840-29-5 844840-31-9
     844840-33-1 844840-35-3 844840-36-4 844840-38-6 844840-40-0
     RL: CAT (Catalyst use); USES (Uses)
       (platinum-indium-iron/tungsten/
       manganese fuel cell electrocatalyst)
     7782-44-7, Oxygen, processes
     RL: CPS (Chemical process); PEP (Physical, engineering or chemical
     process); PROC (Process)
       (platinum-indium-iron/tungsten/
       manganese fuel cell electrocatalyst)
IT 67-56-1, Methanol, uses 1333-74-0, Hydrogen, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
       (platinum-indium-iron/tungsten/
       manganese fuel cell electrocatalyst)
L56 ANSWER 20 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2004:270261 HCAPLUS Full-text
DOCUMENT NUMBER:
                       140:273630
TITLE:
                        Electrochemical generation, storage and reaction of
                       hydrogen and oxygen
INVENTOR(S): Sanders, Nicholas
PATENT ASSIGNEE(S): Diffusion Science, Inc., USA
SOURCE:
                        PCT Int. Appl., 92 pp.
                        CODEN: PIXXD2
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
    PATENT NO. KIND DATE APPLICATION NO. DATE
                                                                 -----
    WO 2004027901 A2 20040401 WO 2003-US29802
WO 2004027901 A3 20050324
                                                                20030917
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
            GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
             LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ,
             OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
             TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW
```

FI, FR, GB,	GR,	HU, IE	, IT,	LU, M	C, NL,	PT, R	O, SE	, SI,	SK,	TR,
BF, BJ, CF,	CG,	CI, CM	, GA,	GN, G	Q, GW,	ML, M	IR, NE	, SN,	TD,	TG
AU 2003275103	A1	200	40408	AU	2003-	275103		2	0030	917
US 20040101740	A1	200	40527	US	2003-	664408		2	20030	917
US 7198867	B2	200	70403							
PRIORITY APPLN. INFO.:				US	2002-	411443	P	P 2	20020	917
				US	2003-	455215	P	P 2	0030	317
				WO	2003-	US2980	2	W 2	0030	917

- AB The invention concerns an electrolytic apparatus for using catalyst-coated hollow microspheres to produce gases, store them, and to make them available for later use. The apparatus uses catalyst-coated hollow microspheres in reversible electrochem. Processes and reactions, such as those used in conjunction with water dissociation, fuel cells, and rechargeable batteries. The apparatus can be used to manufacture and store hydrogen and or oxygen and to make them available for subsequent use as raw materials for use in electrochem. And chemical reactions or as a fuel and or oxidizer for a combustion engine. The apparatus can be used as a hydrogen-oxygen hermetically sealed secondary battery. The apparatus can be used as a hydrogen storage portion of certain types of secondary batteries. Hydrogen and oxygen can be stored within hollow microspheres at moderate temperature and pressure, eliminating the need for expensive storage and handling equipment, and increasing the mobility of hydrogen-powered vehicles. Storage of hydrogen and or oxygen within the microspheres significantly reduces flammability and explosion concerns and resolves many fuel cell scalability issues
- ICM H01M004-00
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- Section cross-reference(s): 57, 72 IT Catalvats
 - Ceramics Composites Electrodeposition Electrodes Electrolytic cells Fuel cells Glass ceramics Microspheres Secondary batteries Sintering Sol-gel processing Sputtering Welding
- (electrochem, Generation, storage and reaction of hydrogen and oxygen) 7429-90-5, Aluminum, uses 7439-89-6, Iron, uses
- 7439-98-7, Molybdenum, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium,

7440-17-7, Rubidium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-41-7, Beryllium, uses

7440-43-9, Cadmium, uses 7440-44-0, Carbon, uses 7440-47-3, Chromium,

7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-55-3, uses Gallium, uses 7440-57-5, Gold, uses 7440-62-2, Vanadium, uses 7440-67-7, Zirconium, uses 7440-74-6, Indium, uses RL: CAT (Catalyst use); USES (Uses)

(electrochem. Generation, storage and reaction of hydrogen and oxygen)

L56 ANSWER 21 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:433703 HCAPLUS Full-text DOCUMENT NUMBER: 141:9611

TITLE . Enzyme immobilization for use in biofuel cells and

Minteer, Shelley D.; Akers, Niki L.; Moore, Christine INVENTOR(S):

PATENT ASSIGNEE(S): St. Louis University, USA

SOURCE: U.S. Pat. Appl. Publ., 33 pp., which

CODEN: USXXCO DOCUMENT TYPE: Patent.

LANGUAGE:

English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND DATE APPLICATION NO. DATE PATENT NO. _____ _____ ----_____ US 20040101741 A1 20040527 US 2003-617452 20030711 CA 2507455 A1 20040617 CA 2003-2507455 20031121 WO 2004051774 A2 20040617 WO 2003-US37336 20031121 A3 20041125 WO 2004051774 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG A1 20040623 AU 2003-297552 20031121 AU 2003297552 EP 1565957 A2 20050824 EP 2003-812443 20031121 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK T 20060309 JP 2006508519 JP 2004-570766 20031121 US 2002-429829P P 20021127 US 2003-486076P P 20030710 US 2003-617452 A 20030711 WO 2003-US37336 W 20031121 PRIORITY APPLN. INFO.:

OTHER SOURCE(S):

MARPAT 141:9611

AB Disclosed are bioanodes comprising a quaternary ammonium treated Nafion polymer membrane and a dehydrogenase incorporated within the treated Nafion polymer. The dehydrogenase catalyzes the oxidation of an organic fuel and reduces an adenine dinucleotide. The ion conducting polymer membrane lies juxtaposed to a polymethylene green redox polymer membrane, which serves to electro-oxidize the reduced adenine dinucleotide. The bioanode is used in a fuel cell to produce high power densities.

ICM H01M004-90 TC:

ICS H01M004-96; H01M008-10; C12N011-08

INCL 429043000; 429044000; 429042000; 429030000; 429013000; 435180000

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 7, 38 Fuel cells

(biochem. Fuel cells; enzyme immobilization for use in biofuel cells and sensors)

Catalysts

(electrocatalysts; enzyme immobilization for use in biofuel cells and sensors)

7440-36-0, Antimony, uses 7440-38-2, Arsenic, uses 7440-42-8, Boron, uses 7440-55-3, Gallium, uses 7440-74-6, Indium, uses 7723-14-0, Phosphorus, uses

RL: MOA (Modifier or additive use); USES (Uses)

10/849291 (dopant; enzyme immobilization for use in biofuel cells and sensors)

7439-89-6, Iron, uses 7439-97-6, Mercury, uses

IΤ

```
7440-02-0, Nickel, uses 7440-06-4, Platinum, uses
    7440-22-4, Silver, uses 7440-33-7, Tungsten, uses
    7440-50-8, Copper, uses 7440-57-5, Gold, uses 7782-42-5, Graphite,
    uses 11129-18-3, Cerium oxide 12597-68-1, Stainless steel, uses
    12612-50-9, Molybdenum sulfide
    RL: MOA (Modifier or additive use); USES (Uses)
       (electron conductor; enzyme immobilization for use in biofuel cells and
       sensors)
    1910-42-5, Methylviologen 3546-21-2, Ethidium 7440-21-3, Silicon, uses
IT
    7440-56-4, Germanium, uses 7773-52-6, Hexadecylpyridinium 12678-01-2D,
    Phenanthroline, metal complex 13096-46-3, Benzyl viologen
                                                                14708-99-7.
    Tris(1,10-phenanthroline)iron(2+) 14798-03-9, Ammonium, uses
    15158-62-0, Tris(2,2'-bipyridine)ruthenium(2+) 16749-13-6, Phosphonium
    16969-45-2, Pyridinium 17009-90-4, Imidazolium 37275-48-2D, Bipyridyl,
    metal complex 48236-06-2, Bis(triphenylphosphine)iminium
    RL: MOA (Modifier or additive use); USES (Uses)
        (enzyme immobilization for use in biofuel cells and sensors)
    15025-74-8, Tris(2,2'-bipyridine)iron(2+) 23648-06-8,
    Tris(2,2'-bipyridine)osmium(2+) 80498-15-3, Laccase
    RL: RCT (Reactant); RACT (Reactant or reagent)
        (enzyme immobilization for use in biofuel cells and sensors)
L56 ANSWER 22 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2004:876368 HCAPLUS Full-text
DOCUMENT NUMBER: 141:352211
TITLE:
                      method to produce metal oxide fine particle
INVENTOR(S):
                       Sato, Kazunori; Nagao, Katsuo; Michihata, Hideo
PATENT ASSIGNEE(S):
                      Tokvo Electric Power Co., Inc., Japan
SOURCE:
                       Jpn. Kokai Tokkyo Koho, 13 pp.
                       CODEN: JKXXAF
DOCUMENT TYPE:
                       Patent
LANGUAGE:
                        Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
                      KIND DATE APPLICATION NO. DATE
    PATENT NO.
    JP 2004292188
                       A 20041021 JP 2003-83499 20030325
JP 2003-83499 20030325
PRIORITY APPLN. INFO.:
    The metal oxide is given as ABO2, where A is selected from Pd, Pt, Cu, and Ag;
     B is selected from Co. Fe. Ni. Cr. Rh. Al. Ga. Sc. In. and Tl; and has an
     average particle size of ≤100 nm. The method includes irradiating ≥0.25 W
     excimer or ArF excimer laser on a ethanol or phenol solution containing A-
     containing complex and B-containing complex for ≥5 min. The complexes are
     selected from 2,4-pentane dionato and alkoxide. The product is used for
     catalyst to improve electrode activity for solid oxide fuel cells.
    ICM C01B013-18
    ICS C01B013-32; C01G049-00; C01G055-00; H01M004-86; H01M008-12;
         H01M004-88
    49-3 (Industrial Inorganic Chemicals)
    Section cross-reference(s): 52, 67
    Catalysts
    Electrodes
    Excimer lasers
       (method to produce metal oxide fine particle)
    Fuel cells
       (solid oxide; method to produce metal oxide fine particle)
    12018-75-6P, Copper iron oxide (CuFeO2) 12506-88-6P, Cobalt
```

palladium oxide (CoPdO2) 116306-08-2P, Nickel palladium oxide (NiPdO2) 776331-43-2P, Iron palladium oxide (FePdO2)

RL: CAT (Catalyst use); PUR (Purification or recovery); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(method to produce metal oxide fine particle) 7429-90-5, Aluminum, uses 7439-89-6, Iron, uses

7440-02-0, Nickel, uses 7440-05-3, Palladium, uses 7440-06-4, Flatinum, uses 7440-16-6, Rhodium, uses 7440-20-2, Scandium,

uses 7440-22-4, Silver, uses 7440-28-0, Thallium, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-74-6, Indiom, uses

RL: CAT (Catalyst use); TEM (Technical or engineered material use); USES (Uses)

(method to produce metal oxide fine particle)

L56 ANSWER 23 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:680227 HCAPLUS Full-text

DOCUMENT NUMBER: 141:209573

TITLE: Apparatus for generating hydrogen gas by

dehydrogenation of hydrocarbon fuel INVENTOR(S): Hayashi, Takahiro; Sugiyama, Masahiko; Suzuki,

Hiroshi; Shinagawa, Tomohiro PATENT ASSIGNEE(S): Toyota Motor Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp. CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004231469	A	20040819	JP 2003-22064	20030130
PRIORITY APPLN. INFO.:			JP 2003-22064	20030130

- AB The title apparatus includes a storage tank for storing a hydrocarbon fuel (e.g., decalin), a catalyst metal-carried end-less belt at least partially immersed in the hydrocarbon fuel, a driving device for conveying the end-less belt in longitudinal direction, and a heater for heating the end-less belt; it is used for dehydrogenation of above stated hydrocarbon fuel on the heated end-less belt. The apparatus can be used for supplying hydrogen to vehicleborne fuel cells or hydrogen engine.
 - ICM C01B003-26
- CC 49-1 (Industrial Inorganic Chemicals)
- Section cross-reference(s): 52
- IT Catalysts
 - Heaters

(apparatus for generating hydrogen gas by dehydrogenation of hydrocarbon fuel)

Fuel cells

(apparatus for generating hydrogen gas by dehydrogenation of hydrocarbon fuel for)

7439-89-6, Iron, uses 7440-02-0, Nickel, uses

7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses

7440-48-4, Cobalt, uses 7440-74-6, Indium, uses

RL: CAT (Catalyst use); USES (Uses)

(apparatus for generating hydrogen gas by dehydrogenation of hydrocarbon fuel for)

L56 ANSWER 24 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:507756 HCAPLUS Full-text

DOCUMENT NUMBER: 141:56595

TITLE: Apparatus for generating hydrogen gas by

dehydrogenation of hydrocarbon fuel.

INVENTOR(S): Hayashi, Takahiro; Sugiyama, Masahiko; Suzuki, Hiroshi

Toyota Motor Corp., Japan PATENT ASSIGNEE(S):

SOURCE: Jpn. Kokai Tokkyo Koho, 24 pp. CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE:

Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE ----_____ _____ -----JP 2004175629 20040624 JP 2002-345685 20021128 JP 2002-345685 20021128

PRIORITY APPLN. INFO.:

The title apparatus includes plural cylindrical dehydrogenation reactors having carbon nanotube catalyst arranged on inner walls and a hydrocarbon fuel (e.g., decalin) supply device having supply holes for supplying hydrocarbon fuel to the carbon nanotube catalyst, and a separation means for separating dehydrogenation of hydrocarbon fuel generated H2 gas. The carbon nanotube catalyst is grown from a metal catalyst. The apparatus can be used for supplying H2 to vehicle-borne fuel cells, etc.

TC: ICM C01B003-26

ICS B01J021-18; B01J032-00; H01M008-06

49-1 (Industrial Inorganic Chemicals) Section cross-reference(s): 45, 52

Catalysts

TΤ

(apparatus for generating hydrogen gas by dehydrogenation of hydrocarbon fuel)

Fuel cells

(vehicle-borne; apparatus for generating hydrogen gas by dehydrogenation of hydrocarbon fuel for)

7439-89-6, Iron, uses 7440-02-0, Nickel, uses

7440-05-3, Palladium, uses 7440-06-4, Platinum, uses

7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses 7440-48-4, Cobalt,

uses 7440-74-6, Indiom, uses

RL: CAT (Catalyst use); USES (Uses)

(catalyst containing; apparatus for generating hydrogen gas by dehydrogenation

of hydrocarbon fuel for)

L56 ANSWER 25 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:913459 HCAPLUS Full-text

DOCUMENT NUMBER: 139:367608

TITLE: Electrode catalyst for hydrogen sulfide fuel cell INVENTOR(S): Chuang, Karl T.; Luo, Jingli; Wei, Guolin; Sanger,

Alan R.

PATENT ASSIGNEE(S): Governors of the University of Alberta, Can.

SOURCE: PCT Int. Appl., 34 pp.

CODEN: PIXXD2 DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 2003096452 A2 20031120 WO 2003-CA681 20030513 WO 2003096452 A3 20041118

```
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM,
            PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT,
            TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
            KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
            FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR,
            BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                       A1 20031120 US 2002-143944
    US 20030215696
                                                               20020514
    US 20030215697
                       A1
                             20031120
                                       US 2002-290429
                                                               20021108
    US 7014941
                       B2 20060321
    AU 2003223804
                      A1 20031111 AU 2003-223804
                                                               20030513
    CA 2486672
                      A1 20031120 CA 2003-2486672
                                                               20030513
PRIORITY APPLN, INFO.:
                                         US 2002-143944
                                                           A1 20020514
                                         US 2002-290429
                                                           A1 20021108
                                         WO 2003-CA681
                                                           W 20030513
AB
     The present invention relates to an anode catalyst for use in the electrochem.
```

- AB The present invention relates to an anode catalyst for use in the electrochem. Oxidation of H2S to elemental sulfur and water, specifically in a fuel cell having an ion-conducting membrane. The catalyst comprises a material prepared from two or more metal sulfides of the formula MSx, wherein M is selected from the group consisting of Co, Ni, Fe, Mo, Cu, Cr, W and Mn, and x is between about 1.0 and about 2.5; a conductive material suitable for fuel cell operation; and a porous material. The invention further provides methods of preparing the catalyst, fuel cells comprising the catalyst and methods of electrochem. Oxidizing H2S using the catalyst.
 - C ICM H01M004-88
- ICS H01M004-90; H01M008-22
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 67, 72
- IT Catalysts

(electrocatalysts; electrode catalyst for hydrogen sulfide fuel cell)

IT Fuel cells

TITLE:

- (solid electrolyte; electrode catalyst for hydrogen sulfide fuel cell)
- IT 1317-33-5, Molybdenum sulfide mos2, uses 11113-75-0, Nickel sulfide 11115-78-9, Copper sulfide 11126-12-8, Iron sulfide
 - 12612-50-9, Molybdenum sulfide 12623-97-1, Chromium sulfide
 - 12627-71-3, Tungsten sulfide 12653-56-4, Cobalt sulfide
 - 12687-82-0, Manganese sulfide 16812-54-7, Nickel sulfide Nis
 - 12007-02-0, manganese Sullide 10012-34-7, Nickel Sullide Nis
 - 50926-11-9, Ito 55575-04-7, Cerium lanthanum oxide 142164-90-7,
 - Indium praseodymium oxide 403861-24-5, Bismuth silver oxide RL: CAT (Catalyst use); USES (Uses)
 - (electrode catalyst for hydrogen sulfide fuel cell)
 - 7439-89-6, Iron, uses 7439-96-5,
- Manganese, uses 7440-02-0, Nickel, uses 7440-05-3, Palladium,
- uses 7440-06-4, Platinum, uses 7440-16-6, Rhodium,
 - uses 7440-18-8, Ruthenium, uses 7440-22-4, Silver, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses
 - 7440-57-5, Gold, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses
 - 7440-69-9, Bismuth, uses
 - RL: MOA (Modifier or additive use); USES (Uses)

(electrode catalyst for hydrogen sulfide fuel cell)

L56 ANSWER 26 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:912680 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 139:367598

Electrode catalyst for hydrogen sulfide fuel cells for cogeneration of sulfur and power

Chuang, Karl T.; Luo, Jingli; Wei, Guolin; Sanger, INVENTOR(S):

PATENT ASSIGNEE(S):

The Governors of the University of Alberta, Can. SOURCE: U.S. Pat. Appl. Publ., 18 pp., Cont.-in-part of U.S.

Ser. No. 143,944. CODEN: USXXCO

DOCUMENT TYPE: Patent. LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

PA:	KIN	D				APPLICATION NO.						DATE								
US	2003	0215	697		A1		2003	1120		US 2002-290429					20021108					
US	7014	941			B2		2006	0321												
US	2003	0215	696		A1		2003	1120		US 2002-143944							20020514			
AU	2003	2238	04		A1		2003	1111	AU 2003-223804							20030513				
CA	2486	672			A1		2003	1120		CA 2003-2486672							20030513			
WO	2003	0964	52		A2		2003	1120		WO 2	003-	CA68	1		20030513					
WO	2003	0964	52		A3	A3 2004			1118											
	W:	AE.	AG.	AL.	AM.	AT.	AU,	AZ.	BA.	BB.	BG.	BR.	BY.	BZ.	CA.	CH.	CN.			
							DK,													
							IN,													
							MD,													
							SC,													
													10,	111,	114,	II.,	11,			
						. ,	VC,													
	RW:	GH,	GM,	KE,	LS,	MW,	ΜZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,			
		KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,			
		FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,			
		BF,	BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG			
TTTG	Z APP																			

PRIORITY APPLN. INFO.:

US 2002-290429 A 20021108 WO 2003-CA681 W 20030513

AB The present invention relates to an anode catalyst for use in the electrochem. Oxidation of H2S to elemental sulfur and water, specifically in a fuel cell having an ion-conducting membrane. The catalyst comprises a material prepared from two or more metal sulfides of the formula MSx, wherein M is selected from the group consisting of Co, Ni, Fe, Mo, Cu, Cr, W and Mn, and x is between about 1.0 and about 2.5; a conductive material suitable for fuel cell operation; and a porous material. The invention further provides methods of preparing the catalyst, fuel cells comprising the catalyst and methods of electrochem. Oxidizing H2S using the catalyst.

IC ICM H01M004-90

ICS H01M004-88

INCL 429040000; 429044000; 429013000; 502101000

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 67, 72

Catalysts

(electrocatalysts; electrode catalyst for hydrogen sulfide

fuel cells for cogeneration of sulfur and power)

Fuel cells

(solid electrolyte; electrode catalyst for hydrogen sulfide fuel cells for cogeneration of sulfur and power)

1304-76-3, Bismuth oxide, uses 1313-99-1, Nickel oxide, uses

1314-13-2, Zinc oxide, uses 1317-33-5, Molybdenum sulfide mos2, uses 1332-37-2, Iron oxide, uses 1344-70-3, Copper oxide

7439-89-6, Iron, uses 7439-96-5,

Manganese, uses 7439-98-7, Molybdenum, uses 7440-02-0, Nickel,

uses 7440-05-3, Palladium, uses 7440-06-4, Platinum,

uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses 7440-22-4,

```
10/849291
     Silver, uses 7440-33-7, Tungsten, uses 7440-47-3,
     Chromium, uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses
     7440-57-5, Gold, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses
     7440-69-9, Bismuth, uses 11099-11-9, Vanadium oxide 11104-61-3, Cobalt
     oxide 11113-75-0, Nickel sulfide 11113-77-2, Palladium oxide
     11113-84-1, Ruthenium oxide 11115-78-9, Copper sulfide 11118-57-3, Chromium oxide 11126-12-8, Iron sulfide 11129-60-5,
     Manganese oxide 11129-89-8, Platinum oxide
     12612-50-9, Molybdenum sulfide 12623-97-1, Chromium sulfide
     12627-71-3, Tungsten sulfide 12653-56-4, Cobalt sulfide
     12680-36-3, Rhodium oxide 12687-82-0, Manganese sulfide
     16812-54-7, Nickel sulfide nis 20667-12-3, Silver oxide
                                                                    39403-39-9,
     Gold oxide 50926-11-9, Ito 55575-04-7, Cerium lanthanum oxide 142164-90-7, Indium praseodymium oxide 403861-24-5, Bismuth
     silver oxide
     RL: CAT (Catalyst use); USES (Uses)
        (electrode catalyst for hydrogen sulfide fuel cells for cogeneration of
        sulfur and power)
REFERENCE COUNT:
                          17
                                 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS
                                 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L56 ANSWER 27 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:334468 HCAPLUS Full-text DOCUMENT NUMBER: 138:324130

TITLE:

Fabrication of new membranes for use in fuel cells Klitsner, Tom; Sylwester, Alan P.; Ryba, Gail N.; INVENTOR(S): Zipperian, Thomas E.; Kravitz, Stanley H.; Hecht, Andrew

PATENT ASSIGNEE(S):

Sandia Corporation, USA SOURCE:

U.S. Pat. Appl. Publ., 32 pp., Cont.-in-part of U.S. Ser. No. 17,140.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20030082431	A1	20030501	US 2002-56736	20020124
US 6890677	B2	20050510		
US 20020122972	A1	20020905	US 2001-17140	20011030
US 6841290	B2	20050111		
PRIORITY APPLN. INFO.:			US 2001-17140 F	2 20011030
			US 1999-132909P F	19990506
			WO 2000-US12510 F	1 20000505

A fuel cell comprises: a dielec. Substrate material having upper and lower surfaces, a porous film disposed on the upper surface of the dielec. Substrate material, the porous film comprising ≥1 electrode, and channels extending through the dielec. Material from the upper surface to the lower surface. The fuel cell addnl. Comprises a fuel source disposed in relation to apertures of channels on the lower surface of the dielec. Material. The fuel source

comprises ≥1 of H, alcs., O, and other compds. Containing redox pairs. IC ICM H01M008-02

ICS H01M008-10; H01M008-12; H01M004-92; H01M004-88

INCL 429038000; 429030000; 429033000; 429044000; 502101000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 47, 72

IT Catalysts

(electrocatalysts; fabrication of new membranes for use in

fuel cells)

IT Fuel cells

(solid electrolyte; fabrication of new membranes for use in fuel cells)

T 1306-38-3, Ceria, uses 7439-89-8, Iron, uses

7440-02-0, Nickel, uses 7440-05-3, Palladium, uses 7440-06-4, Platinom, uses 7440-18-8, Ruthenium, uses 7440-22-4, Silver,

uses 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 12036-05-4, Praseodymium oxide pro2 12735-99-8 12779-05-4 407578-48-7,

Indiam oxide ino3

RL: CAT (Catalyst use); USES (Uses)

(fabrication of new membranes for use in fuel cells)

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L56 ANSWER 28 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2001:380960 HCAPLUS Full-text

DOCUMENT NUMBER: 134:369453

TITLE: High differential pressure electrochemical cell

INVENTOR(S): Skoczylas, Thomas; Christopher, Matthew; Shiepe, Jason

K.; Dristy, Mark E.; Molter, Trent M.
PATENT ASSIGNEE(S): Proton Energy Systems, Inc., USA

SOURCE: PCT Int. Appl., 28 pp.

CODEN: PIXXD2
DOCUMENT TYPE: Patent

LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	TENT	NO.			KIND DATE					APPL	ICAT		DATE						
						-													
WO	2001	0373	59		A2 20010525			WO 2000-US42223							20001117				
WO	2001	0373	59		A3		2002	0704											
	W:	ΑE,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	ВG,	BR,	BY,	CA,	CH,	CN,	CR,	CU,		
		CZ,	DE,	DK,	DM,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	HU,	ID,	IL,		
											LK,								
		MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,		
		SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	UZ,	VN,	YU,	ZA,	ZW				
	RW:	GH,	GM,	KE.	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE,	CH,	CY,		
		DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	BF,		
		BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG				
AU	AU 2001037933						2001	0530		AU 2	001-	3793	3		2	0001	117		
EP	1240680			A2		2002	0918		EP 2	000-	9920	47		2	0001	117			
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,		
		IE,	SI,	LT,	LV,	LV, FI, RO, MK,				AL,	TR								
JP	2003	5152	37		T		2003	0422	JP 2001-537813						20001117				
US	6666	961			B1		2003	1223	US 2000-714933										
IN	2002	DNOO	480		A		2004	0228	IN 2002-DN480						2	0020	507		
US	2004	0105	773		A1		2004	0603		US 2	003-	6048	90		20030825				
US	6916	443			B2		2005	0712											
US	2005	0142	402		A1		2005	0630		US 2	005-	5918	3		2	0050	216		
PRIORIT	PRIORITY APPLN. INFO.:									US 1	999-	1661	35P	1	? 1	9991	118		
										US 2	000-	7149	33	1	A3 2	0001	117		
										WO 2	000-	JS42:	223	1	v 2	0001	117		
								US 2	003-	6048	90	I	A3 2	0030	825				

AB An electrochem. Cell is capable of operating in pressure differentials exceeding about 2000 psi, using a porous electrode. The porous electrode comprises a catalyst adsorbed on or in a porous support that is disposed in intimate contact and fluid communication with the electrolyte membrane.

IC ICM H01M004-00

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

```
10/849291
    Section cross-reference(s): 72
IT Catalysts
       (electrocatalysts; high differential pressure electrochem.
       Cell)
    Automobiles
    Electrolytic cells
      Fuel dells
    Internal combustion engines
    Solar cells
    Turbines
       (high differential pressure electrochem. Cell)
    Fuel cells
       (regenerative fuel cells; high differential pressure electrochem. Cell)
    7439-88-5, Iridium, uses 7439-96-5, Manganese, uses
    7440-04-2, Osmium, uses 7440-05-3, Palladium, uses 7440-06-4,
    Platinum, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium,
    uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-57-5, Gold,
    uses 7440-74-6, Indiam, uses 7782-42-5, Graphite,
    uses 11149-52-3
    RL: CAT (Catalyst use); USES (Uses)
      (high differential pressure electrochem. Cell)
    7439-89-6, Iron, uses 7440-02-0, Nickel, uses
    7440-03-1, Niobium, uses 7440-32-6, Titanium, uses 7440-33-7,
    Tungsten, uses 7440-44-0, Carbon, uses 7440-48-4, Cobalt, uses
    7440-58-6, Hafnium, uses 7440-67-7, Zirconium, uses
    RL: TEM (Technical or engineered material use); USES (Uses)
        (porous support; high differential pressure electrochem. Cell)
L56 ANSWER 29 OF 31 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 1996:73328 HCAPLUS Full-text
DOCUMENT NUMBER:
                      124:99048
ORIGINAL REFERENCE NO.: 124:18297a,18300a
TITLE:
                       Inorganic-containing composites
INVENTOR(S):
                       Gallagher, Michael Kenrick; Manziek, Larry;
                       Langenmayr, Eric Jon
PATENT ASSIGNEE(S):
                      Rohm and Haas Co., USA
SOURCE:
                      Eur. Pat. Appl., 16 pp.
                       CODEN: EPXXDW
DOCUMENT TYPE:
                       Patent
LANGUAGE:
                       English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
    PATENT NO.
                   KIND DATE APPLICATION NO. DATE
    -----
                      ----
                                                              -----
    EP 689871
                       A2 19960103 EP 1995-303309
                                                              19950517
                       A3 19960724
    EP 689871
```

	EP	6898	71			B1	20	000621								
		R:	BE,	DE,	DK,	ES, F	R, G	B, IT,	NL							
	US	5540	981			A	19	960730		US	1994-2515	35		1994	0531	
	ES	2147	262			Т3	20	000901		ES	1995-3033	09		1995	0517	
	CA	2150	078			A1	19	951201		CA	1995-2150	078		1995	0524	
	BR	9502	592			A	19	960423		BR	1995-2592			1995	0529	
	FΙ	9502	626			A	19	951201		FΙ	1995-2626			1995	0530	
	JΡ	0800	2928			A	19	960109		JΡ	1995-1555	67		1995	0531	
PRIOR	RITY	APP	LN.	INFO.	:					US	1994-2515	35	A	1994	0531	
AB	Co	mpos:	ites,	and	a ı	nethod	for	prepar	ing	co	mposites,	are	provio	ied.	The	

composites comprise a plurality of domains on the surface(s) of a support material, and the domains contain one or more inorg. Compds. The method

```
10/849291
 comprises contacting a support material with one or more metal-loaded polymers
 and removing the polymer(s).
ICM B01J037-00
67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction Mechanisms)
Section cross-reference(s): 38, 57, 59
Borides
Carbides
Carbonaceous materials
  Catalysts and Catalysis
Ceramic materials and wares
Composites
  Fuel cells
Glass, oxide
Nitrides
Optical materials
Oxides, uses
Plastics
Polymers, uses
Silicides
Superconductors
Transition metals, uses
Zeolites, uses
RL: CAT (Catalyst use); PEP (Physical, engineering or chemical process);
TEM (Technical or engineered material use); PROC (Process); USES (Uses)
   (inorg.-containing composites)
409-21-2, Silicon carbide (SiC), uses 1302-88-1, Cordierite 1302-93-8,
Mullite 1309-48-4, Magnesia, uses 1314-23-4, Zirconium oxide, uses 1344-28-1, Alumina, uses 7429-90-5, Aluminum, uses 7439-89-6,
Iron, uses 7439-91-0, Lanthanum, uses 7439-98-7, Molybdenum,
uses 7440-02-0, Nickel, uses 7440-04-2, Osmium, uses 7440-05-3,
Palladium, uses 7440-06-4, Platinum, uses 7440-15-5,
Rhenium, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses
7440-21-3, Silicon, uses 7440-22-4, Silver, uses
                                                     7440-31-5, Tin, uses
7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses
7440-44-0, Carbon, uses 7440-45-1, Cerium, uses 7440-48-4, Cobalt,
      7440-50-8, Copper, uses 7440-57-5, Gold, uses 7440-62-2,
Vanadium, uses 7440-65-5, Yttrium, uses 7440-67-7, Zirconium, uses
7440-69-9, Bismuth, uses 7440-74-6, Indium, uses
7631-86-9, Silicon oxide, uses 7782-42-5, Graphite, uses 9003-70-7,
Divinylbenzene-styrene copolymer 9017-49-6,
Dimethylaminoethylmethacrylate-divinylbenzene-styrene copolymer
10049-07-7, Rhodium trichloride 10049-08-8, Ruthenium trichloride
11129-18-3, Cerium oxide 11130-73-7, Tungsten carbide
11132-40-4, Molybdate (Mo60192-) 12033-89-5, Silicon nitride (Si3N4),
uses 12597-69-2, Steel, uses 12619-90-8, Nickel boride 13463-67-7,
Titanium oxide, uses 14259-85-9 14349-67-8 16455-68-8 16871-54-8,
Hexachloroplatinate 18943-33-4 26316-50-7,
```

51222-96-9 55088-65-8, Allylmethacrylate-ethylacrylate-methacrylic acid RL: CAT (Catalyst use); PEP (Physical, engineering or chemical process); (inorg.-containing composites)

Dimethylaminoethylmethacrylate-ethylacrylate-methylmethacrylate copolymer

TEM (Technical or engineered material use); PROC (Process); USES (Uses)

L56 ANSWER 30 OF 31 ENERGY COPYRIGHT 2008 USDOE/IEA-ETDE on STN ACCESSION NUMBER: 2002(12):41785 ENERGY Full-text TITLE: The rare metals age.

copolymer

IC

CC

AUTHOR: Pearse, G.H.K. (Equapolar Resource Consultants Inc.,

Ottawa, ON (Canada))

SOURCE: Proceedings of the Prospectors and Developers
Association of Canada (PDAC) International Convention

and Trade Show.

Prospectors and Developers Association of Canada,

Toronto, ON (Canada)

Toronto, ON: Prospectors and Developers Association of Canada. 2002. p. 1-14 of [100 p.]. Available from the Prospectors and Developers Association of Canada.

PDAC, 34 King Street East, Suite 900, Toronto,

Ontario, M5C 2X8 or from the Internet at

http://www.pdac.ca/pdac/pub/papers/2002/index.html.

Conference: Prospectors and Developers Association of Canada (PDAC) International Convention and Trade Show, Toronto, ON (Canada), 10 - 13 Mar 2002

Miscellaneous; Conference; Availability Note

COUNTRY: Canada

DOCUMENT TYPE:

LANGUAGE: English
FIELD AVAILABILITY: AB

This paper examines the potential for rare metals in the new age. While human development has progressed through the Stone Age, Copper Age, Bronze Age and Iron Age, the last 20 years (the modern age) has been marked by the expansion in use of rare metals whose chemical and physical properties have created a range of designer materials with nearly endless application possibilities. Rare elements have high crustal abundances and some of the commonplace metals have low crustal abundances. The elements were plotted using US Bureau of Mines estimates of world resources divided by crustal abundance against electrochemical potential. This plot was done to test if the most reactive elements would have reacted with common crustal elements and been fixed in place. High technology developments have made the most use of rare metals. Platinum group metals (PGM) are used for automobile pollution control and fuel cell catalysts. Electronic components make use of tantalum, niobium, palladium and ruthenium. Power storage and electrical regeneration technology makes use of vanadium. Lithium chemicals are used in aluminum production electrolytes, in neoprene rubber, lubricants, and sanitation chemicals. Rubidium and cesium, the heaviest of alkali metals are used in biomedical and chemical research. The paper also described the unique properties of rare earth metals such as antimony, beryllium, bismuth, tungsten, strontium and by-product rare metals such as cadmium, indium, germanium and gallium. 4 figs

CC *S29 Energy planning, policy and economy
CT RESOURCE MANAGEMENT; MINERAL RESOURCES; RARE EARTHS; PLATINUM METAL

ALLOYS; VANADIUM; TECHNOLOGY UTILIZATION

CTDE RESSOURCENMANAGEMENT; BODENSCHAETZE; SELTENE ERDEN; PLATINMETALL-LEGIERUNGEN; VANADIUM; TECHNOLOGIEANWENDUNG

BT ALLOYS; ELEMENTS; MANAGEMENT; METALS; RESOURCES; TRANSITION ELEMENT ALLOYS; TRANSITION ELEMENTS

L56 ANSWER 31 OF 31 SCISEARCH COPYRIGHT \circledast 2008 The Thomson Corporation on STN

ACCESSION NUMBER: 2007:456874 SCISEARCH Full-text

THE GENUINE ARTICLE: 152UA
TITLE: Electrocher

E: Electrochemically controlled reconstitution of immobilized ferritins for bioelectronic applications

AUTHOR: Kim, Jae-Woo (Reprint); Choi, Sang H.; Lillehei, Peter T.;

Chu, Sang-Hyon; King, Glen C.; Watt, Gerald D.

CORPORATE SOURCE: Natl Inst Aerosp, Hampton, VA 23666 USA (Reprint); NASA, Langlev Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA; Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA

ODA

fn.j.kim@larc.nasa.gov

COUNTRY OF AUTHOR: USA

SOURCE: JOURNAL OF ELECTROANALYTICAL CHEMISTRY, (15 MAR 2007) Vol.

601, No. 1-2, pp. 8-16.

ISSN: 0022-0728.

PUBLISHER: ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE,

SWITZERLAND.

DOCUMENT TYPE: Article; Journal

LANGUAGE: English

REFERENCE COUNT:

ENTRY DATE:

Entered STN: 10 May 2007

Last Updated on STN: 10 May 2007

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS AR Site-specific reconstituted nanoparticles were fabricated via

electrochemically controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices. @ 2006 Elsevier B.V. All

rights reserved. CC CHEMISTRY, ANALYTICAL; ELECTROCHEMISTRY

ST Author Keywords: ferritin; immobilization; reconstitution; QCM; electrocatalyst

STP KeyWords Plus @: 2-IMINOTHIOLANE METHYL 4-MERCAPTOBUTYRIMIDATE; INDIOM OXIDE ELECTRODES: PROTEIN CAGE: BIOMIMETIC SYNTHESIS: CROSS-LINKING; 180N STORAGE; HORSE SPLEEN; APOFERRITIN; COBALT; MAGNETOFERRITIN

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

***** SEARCH HISTORY *****

=> d his nofile

L28

L29

L30

(FILE 'HOME' ENTERED AT 10:23:02 ON 08 AUG 2008)

FILE 'REGISTRY' ENTERED AT 10:24:37 ON 08 AUG 2008

FILE 'HCAPLUS' ENTERED AT 10:23:44 ON 08 AUG 2008 L1 1 SEA ABB=ON PLU=ON US20060019825/PN D IBIB AB IT

```
1 SEA ABB=ON PLU=ON PLATINUM/CN
L2
               D RN
T. 3
             1 SEA ABB=ON PLU=ON 7440-06-4/RN
L4
             1 SEA ABB=ON PLU=ON L2 OR L3
L5
             1 SEA ABB=ON PLU=ON INDIUM/CN
              D RN
L6
             1 SEA ABB=ON PLU=ON 7440-74-6/RN
L7
             1 SEA ABB=ON PLU=ON L5 OR L6
L8
             1 SEA ABB=ON PLU=ON TUNGSTEN/CN
              D RN
L9
             1 SEA ABB=ON PLU=ON 7440-33-7/RN
L10
             1 SEA ABB=ON PLU=ON L8 OR L9
L11
             1 SEA ABB=ON PLU=ON IRON/CN
              D RN
L12
             1 SEA ABB=ON PLU=ON 7439-89-6/RN
L13
             1 SEA ABB=ON PLU=ON L11 OR L12
L14
             1 SEA ABB=ON PLU=ON MANGANESE/CN
              D RN
1.15
             1 SEA ABB=ON PLU=ON 7439-96-5 /RN
L16
             1 SEA ABB=ON PLU=ON L14 OR L15
L17
             1 SEA ABB=ON PLU=ON 844839-26-5/RN
               D CN
    FILE 'HOME' ENTERED AT 10:29:28 ON 08 AUG 2008
     FILE 'HCAPLUS' ENTERED AT 10:29:33 ON 08 AUG 2008
               SEL RN L1
L18
        246603 SEA ABB=ON PLU=ON (PLATINUM OR L4)
        228709 SEA ABB=ON PLU=ON INDIUM OR L7
L19
        216469 SEA ABB=ON PLU=ON TUNGSTEN OR L10
L20
L21
      1126517 SEA ABB=ON PLU=ON IRON OR L13
L22
        440019 SEA ABB=ON PLU=ON MANGANESE OR L16
L23
          2050 SEA ABB=ON PLU=ON ATOMIC (W) (PERCENT? OR PT OR .%.)
L24
         22736 SEA ABB=ON PLU=ON (5(W)60 OR 5(W)65)
L25
          1818 SEA ABB=ON PLU=ON 23 AND L24
L26
             6 SEA ABB=ON PLU=ON L25 AND L18
              D TI KWIC 1
L27
          9950 SEA ABB-ON PLU-ON L18 AND L19
```

E E3+ALL
L31 91748 SEA ABB=ON PLU=ON "FUEL CELLS"+OLD,UF/CT
L32 192 SEA ABB=ON PLU=ON L28 AND L30

7 SEA ABB=ON PLU=ON L28 AND L23

172743 SEA ABB=ON PLU=ON CATALYSTS+OLD,UF/CT

E FUEL CELLS/CT

D TI KWIC 1-4 E CATALYSTS/CT E E3+ALL

5174 SEA ABB=ON PLU=ON L27 AND (L20 OR L21 OR L22)

```
10/849291
1.34
            1 SEA ABB=ON PLU=ON L33 AND L1
L35
            0 SEA ABB=ON PLU=ON L33 AND L23
L36
            0 SEA ABB=ON PLU=ON L32 AND L23
L37
            0 SEA ABB=ON PLU=ON L33 AND L24
               SAVE TEMP L33 WEI291HCAP/A
L38
          9035 SEA ABB=ON PLU=ON ELECTROCATALYST?
            20 SEA ABB=ON PLU=ON L38 AND L33
L39
L40
            29 SEA ABB=ON PLU=ON L39 OR L33
               SAVE TEMP L40 WEI291HCAP/A
     FILE 'COMPENDEX, INSPEC, ENERGY, SCISEARCH' ENTERED AT 10:47:29 ON 08 AUG
     2008
        194007 SEA ABB=ON PLU=ON PLATINUM OR L3
T.41
1.42
        243968 SEA ABB=ON PLU=ON INDIUM OR L6
L43
          2545 SEA ABB=ON PLU=ON L41 AND L42
L44
      1193749 SEA ABB=ON PLU=ON TUNGSTEN OR IRON OR MANGANESE
L45
          374 SEA ABB=ON PLU=ON L43 AND L44
L46
             3 SEA ABB=ON PLU=ON L45 AND L38
             3 SEA ABB=ON PLU=ON L45 AND FUEL CELL#
L47
L48
             5 SEA ABB=ON PLU=ON L46 OR L47
L49
             0 SEA ABB=ON PLU=ON L45 AND L23
               D L48 IBIB AB 1-3
               D L47 1-3
     FILE 'STNGUIDE' ENTERED AT 10:54:19 ON 08 AUG 2008
     FILE 'COMPENDEX, INSPEC, ENERGY, SCISEARCH' ENTERED AT 11:07:07 ON 08 AUG
     2008
1.50
            31 SEA ABB=ON PLU=ON L45 AND CATALYST?
L51
             2 SEA ABB=ON PLU=ON L50 AND (FUEL CELL#)
               D IBIB 1-2
               D AB 1-2
             0 SEA ABB=ON PLU=ON L50 AND L23
L52
L53
          5855 SEA ABB=ON PLU=ON CONCENTRAT? (2A) (PERCENT? OR PT)
L54
             0 SEA ABB=ON PLU=ON L50 AND L53
L55
             0 SEA ABB=ON PLU=ON L45 AND L53
               SAVE TEMP L51 WEI291MULTI/A
     FILE 'STNGUIDE' ENTERED AT 11:13:00 ON 08 AUG 2008
               D OUE L40
               D QUE L51
    FILE 'HCAPLUS, ENERGY, SCISEARCH' ENTERED AT 11:14:59 ON 08 AUG 2008
            31 DUP REM L40 L51 (0 DUPLICATES REMOVED)
                    ANSWERS '1-29' FROM FILE HCAPLUS
                    ANSWER '30' FROM FILE ENERGY
                    ANSWER '31' FROM FILE SCISEARCH
               D L56 1-29 IBIB ABS HITIND
               D L56 30-31 IBIB AB IND
```