Transformers

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Questions

How to summarize what it means for an ML system to be trusted?

 Name one of the four major characteristics of a trustworthy ML system according to the book's opinion.

Explain what does it mean and why it matters

 Have you noticed any news, articles, policies, events that have implications in trustworthy deep learning in recent years?

Readings

- Readings are updated on the website (syllabus page)
- Readings:
 - [2401.05561] TrustLLM: Trustworthiness in Large Language Models
- This lecture is not explicitly tested
 - But in future lectures we will assume knowledge of this when developing trustworthy components on top of Transformers

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers for (Large) Language Models (LLMs)

3. Transformers in Other Modalities

Sequence Learning

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

What are the issues and challenges of RNNs?

Sequence Learning

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

Problems of RNNs

- Sequential computation prevents parallelization
- Capacity of handling long sequences
- Mainly focusing on modeling recurrence
 - does not capture other correlations (hierarchical, long-range, polysemy....) well

Sequence Learning

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

$$y_i = \text{self-att}([x_i + p_i]_i)$$

Problems of RNNs

- 1. parallelization
- 2. long sequences
- 3. only recurrence

Solutions by Transformers

- 1. Parallel input: Input All tokens at the same time
- 2. Self-Attention: Enable attention in long-range
- 3. Positional Embeddings p_i : Model all possible correlations

Transformers — Overview

- Original paper: Attention is all you need [Vaswani et al., 2017].
- Key component: Multi-head self-attention
- Other components of a transformer layer: layer normalization, skip connection, positionwise feed-forward layer (FFN, or MLP)
- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Decoder-only (e.g GPT)
 - We will show an example later

Transformers — Overview

- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Many-to-one classification / regression
 - Sentiment classification, document classification ...
 - Word / Sentence embeddings for downstream tasks (e.g. recommender system)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Decoder-only (e.g GPT)
 - We will show an example later

Transformers — Overview

- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Many-to-many use cases
 - Summarization, translation, style transfer ...
 - Decoder-only (e.g OpenAl GPT)
 - One-to-many use cases
 - Image / text / code generation, dialogue systems ...
 - GPT-3/4 based apps

Transformers — Self-Attention (1/5)

Example:

Step 3: Update

Transformers — Self-Attention (2/5)

- Formally, given an input sequence $\pmb{X} = [\pmb{x_1}, \pmb{x_2}, ..., \pmb{x_n}] \in \mathbb{R}^{n \times d_X}$
- Step ①: Query $oldsymbol{Q} = oldsymbol{X} oldsymbol{W}_{oldsymbol{Q}}$, Key $oldsymbol{K} = oldsymbol{X} oldsymbol{W}_{oldsymbol{K}}$, Value $oldsymbol{V} = oldsymbol{X} oldsymbol{W}_{oldsymbol{V}}$
 - $W_K \in \mathbb{R}^{d_X \times d_K}$, and thus $K \in \mathbb{R}^{n \times d_K}$
 - We require d_K = d_O , for simplicity, we set $d_K = d_O = d_V \coloneqq d$

Transformers — Self-Attention (3/5)

- Step ②: Attention map Att = Softmax $\left(\frac{QK^T}{\sqrt{d}}\right) \in \mathbb{R}^{n \times n}$ (Softmax is col-wise)
 - The matrix multiplication QK^T performs dot-product for every possible pair of queries and keys, resulting in an attention map.
 - Normalization factor $1/\sqrt{d_K}$: performing dot-product over two vectors with variance σ^2 results in a scalar having d_K -times higher variance,
 - $q \sim N(0, \sigma^2), k \sim N(0, \sigma^2) \rightarrow \text{Var}\left(\sum_{i=1}^{d_K} q[i]k[i]\right) = \sigma^4 d_K$

Transformers — Self-Attention (4/5)

• Step (3): Updated value $V' = \operatorname{Att} V \in \mathbb{R}^{n \times d}$

Matrix product

Transformers — Self-Attention (5/5)

Putting all together

The computation complexity is quadratic to number of tokens

Transformers — Multi-Head Self-Attention

- There are usually multiple aspects that a token can attend to.
- We extend the attention to multiple heads, with multiple (Q, K, V) triplets on the same features.
 - The output of multi-head self-attention $O = \text{Concat}([V'_1, V'_2, ..., V'_H])W_O$
 - Learnable parameters in each attention layer: $W_{Q,i}$, $W_{K,i}$, $W_{V,i} \in R^{d_X \times d}$ for head i, $W_O \in R^{Hd \times d_O}$

Transformers — Layer (1)

- MHSA: multi-head self-attention
- Transformer layer: $X \to \mathbf{LayerNorm}(X + \mathbf{MHSA}(X))$
- Residual connections are added to
 - Enable smooth gradient flow in deep transformers
 - Keep the information of the original sequence.

What are some advantages or challenges when trying to explain Transformer-based modes?

Transformers — Layer (2)

- Transformer layer: $X \to \text{LayerNorm}(X + \text{MHSA}(X)) \to \text{LayerNorm}(X + \text{FFN}(X))$
- Layer Normalization is used to enable faster training with small regularization and keep features in similar magnitudes.
 - BatchNorm isn't applied because batch size is usually small in Transformers due to GPU memory constraints. Besides, BatchNorm has been shown to lead to worse performance in NLP.

 MLPs are added for "post-processing", and allow transformations on each sequence token.

Transformers —Encoder / Decoder

Transformers —Positional Encoding (3)

Cosine encoding

- $PE_{(pos,2i)} = \sin(pos/10000^{2i/d_X}), PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_X}).$
- $\omega_i = 1/10000^{2i/d_X}$.
- Relative distance: $PE_{(pos+k)}$ can be easily represented as a linear function of $PE_{(pos)}$ (show it).

Summary: Transformer Architecture

- Multi-Head Self-Attention (MHSA(X))
 - For head i
 - $Q_i = XW_{Q_i}$, $K_i = XW_{K_i}$, $V_i = XW_{V_i}$
 - Att_i = Softmax $\left(\frac{\mathbf{Q_i K_i}^T}{\sqrt{d}}\right) \in \mathbb{R}^{n \times n}$
 - $V_i' = \text{Att}_i V_i \in \mathbb{R}^{n \times d}$
 - Concatenating all heads: $\mathbf{0} = \operatorname{Concat}([\mathbf{V_1'}, \mathbf{V_2'}, ..., \mathbf{V_H'}]) \mathbf{W_0}$
- X = LayerNorm(X + MHSA(X))
- X = LayerNorm(X + FFN(X))

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers for (Large) Language Models (LLMs)

3. Transformers for Other Modalities

A Bit of History - Foundation

Transformers in NLP — BERT

BERT —Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

- Pre-training task (self-supervised): Masked Language Model (MLM)
 - First randomly masking m% tokens in the input sequence.
 - In BERT, 15% tokens are masked at random (replaced with the special [MASK] token)
 - Predicting masked tokens using remaining tokens.
 - Two modes: Unidirectional and Bidirectional.

Unidirectional [Radford et al., 2018]

Maximize Likelihood of "all" given "Att" and "is"

Bidirectional

 Maximize Likelihood of "all", given "Att", "is", "you", "need".

Transformers in NLP — RoBERTa

RoBERTa — Robustly Optimized BERT [Liu et al., 2019]

- Pretraining data: BooksCorpus (800 M words) [Zhu et al., 2015], English Wiki (2500 M words), CC-News, OpenWebText [Gokaslan and Cohen, 2019], Stories [Trinh and Le, 2018]
 - Partition the corpus into "sentences" with fixed length of 512 tokens.
- Hyperparameters in use (also commonly adopted in most NLP Transformers):
 - 12-Layer Encoder + 12-Layer Decoder
 (Pretrained Encoder is used more frequently in down-stream tasks)
 - Hidden dimension 768 = 12 (num of Heads) \times 64 (dim of Head)
 - Learning rate: Warmup then linear decay
 - Warmup: Gradually increasing the learning rate to a specific value in the first few epochs
 - Linear decay: Decreasing the learning rate by the same amount (decrement) every epoch.

Transformers in NLP — GPT

GPT — Generative Pre-trained Transformer

- Pre-training task (self-supervised): Causal Language Model (CLM)
 - Predict the next token at every position (left→right).
 - Apply a causal mask so each token attends only to previous tokens.
 - No [MASK] tokens; training matches inference.
 - Objective: $\mathcal{L}_{CLM} = -\sum_{i} \log P(x_i|x_{< i})$

Transformers in NLP — GPT Decoding

During generation, GPT will generate/predict the next token depending on the current context. This task is called **decoding**.

Transformers in NLP — GPT Decoding

During generation, GPT will generate/predict the next token depending on the current context. This task is called **decoding**.

Two common decoding methods:

Greedy Decoding: choose the next token with the highest probability

Transformers in NLP — GPT Decoding

During generation, GPT will generate/predict the next token depending on the current context. This task is called **decoding**.

Two common decoding methods:

- Greedy Decoding: choose the next token with the highest probability
- Sampling: choose a random token according to the distribution output by the model

Summary: BERT vs GPT

Most of SOTA embedding models on MTEB leaderboard are decoder-only models

MTEB is a well-known benchmark for embedding models

Rank (Bo	Model	Zero-shot	Memory U	Number of P	Embedding D	Max Tokens	Mean (T	Mean (TaskT	Bitext	Classification	Clusterin
1	gemini-embedding-001	99%	Unknown	Unknown	3072	2048	68.37	59.59	79.28	71.82	54.59
2	<u>Qwen3-Embedding-8B</u>	99%	28866	7B	4096	32768	70.58	61.69	80.89	74.00	57.65
3	Qwen3-Embedding-4B	99%	15341	4B	2560	32768	69.45	60.86	79.36	72.33	57.15
4	Qwen3-Embedding-0.6B	99%	2272	595M	1024	32768	64.34	56.01	72.23	66.83	52.33
5	<u>Ling-Embed-Mistral</u>	99%	13563	7B	4096	32768	61.47	54.14	70.34	62.24	50.60
6	g <u>te-Qwen2-7B-instruct</u>	▲ NA	29040	7B	3584	32768	62.51	55.93	73.92	61.55	52.77
7	multilingual-e5-large- instruct	99%	1068	560M	1024	514	63.22	55.08	80.13	64.94	50.75
8	SFR-Embedding-Mistral	96%	13563	7B	4096	32768	60.90	53.92	70.00	60.02	51.84
9	text-multilingual- embedding-002	99%	Unknown	Unknown	768	2048	62.16	54.25	70.73	64.64	47.84
10	GritLM-7B	99%	13813	7B	4096	4096	60.92	53.74	70.53	61.83	49.75
11	Cui+1 M 007D	00%	00070	E7D	4004	4004	60 40	E2 21	40 17	41 EE	EO 14

(shifted right)

Some studies show that decoder-only models outperform encoder-decoder and encoder-only models using a similar configuration.

	EAI-EVAL	T0-EVAL
Causal decoder	44.2	42.4
Non-causal decoder	43.5	41.8
Encoder-decoder	39.9	41.7
Random baseline	32.9	41.7

A Bit of History - Scaling

Scaling Law of LLMs (1)

Task Finetuning: A common paradigm of reusing LMs across diverse tasks is by fine-tuning for each task of interest.

- It was a standard approach before 2020. It yields higher accuracy on target tasks but requires curated data and can be resource-intensive for running multiple models.
- Can we train a single model that can perform NLP tasks in zero-shot manner?

• GPT-2's success showed that a single model can improve its zero-shot

performance by scaling the model parameters.

	LAMBADA (PPL)	LAMBADA (ACC)	CBT-CN (ACC)	CBT-NE (ACC)	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M 345M 762M 1542M	35.13 15.60 10.87 8.63	45.99 55.48 60.12 63.24	87.65 92.35 93.45 93.30	83.4 87.1 88.0 89.05	29.41 22.76 19.93 18.34	65.85 47.33 40.31 35.76	1.16 1.01 0.97 0.93	1.17 1.06 1.02 0.98	37.50 26.37 22.05 17.48	75.20 55.72 44.575 42.16

16
14
12
12
10
0
0
8
6
4
2
WebText train
WebText test
117M
345M
762M
1542l

Scaling Law of LLMs (2)

Scaling Laws for Neural Language Models (Kaplan et al, 2020) further shows that

- Performance (loss/error) follows predictable power-law scaling with:
 - Model size (parameters)
 - Dataset size (tokens)
 - Compute used (training FLOPs)

Scaling Law of LLMs (2)

Scaling Laws for Neural Language Models (Kaplan et al, 2020) further shows that

- Performance (loss/error) follows predictable power-law scaling with:
 - Model size (parameters)
 - Dataset size (tokens)
 - Compute used (training FLOPs)
- Performance depends strongly on scale, and weakly on the model shape
- Bigger models trained on more data consistently improve performance.

Scaling Law of LLMs (3)

Later research (Hoffmann et al., Chinchilla, 2022) refined this finding:

- Many LLMs were undertrained
- More data with smaller models can be better than just bigger models.

Implication: With scaling laws, we can make decisions on architecture, data, and hyperparameters by training a smaller model.

- Note that training modern LLMs is extremely resource-intensive
 - Example: GPT-3 is estimated to require ~3640 petaflop/s-days
 (≈ 0.80M GPU-hours on A100s ~ 33 days on 1,024 A100 GPUs).
 - Cost estimates: \$4–5 million in compute (at \$5.12/GPU-hr).

In-context Learning and Emergent Capabilities

- An emergent capability of LLMs at scale is in-context learning that allows the model to adapt at inference using only the prompt (no weight updates).
 - Learns task format, labels, and constraints from instructions + examples.

Zero-shot prompting

Given a math problem, give a direct answer.

Problem: Amy collects eggs for one week from 14 hens. Mon–Fri each hen lays 2 eggs/day; Sat–Sun 1 egg/day. How many eggs in a week?

168

Few-shot Prompting

Q: 10 hens; Mon-Fri 2/day; Sat-Sun 1/day. How many eggs in a week?
A: 120

Q: 6 hens; Mon-Fri 2/day; Sat-Sun 1/day. How many eggs in a week?

A: 72

Q: Amy collects eggs for one week from 14 hens. Mon–Fri each hen lays 2 eggs/day; Sat–Sun 1 egg/day. How many eggs in a week?

A: 168

Chain-of-Thought Prompting

Amy collects eggs for one week from 14 hens. Mon–Fri each hen lays 2 eggs/day; Sat–Sun 1 egg/day. How many eggs in a week? Let's think step-by-step.

Each hen lays 2 eggs per day from Monday to Friday (5 days), totaling 10 eggs, and 1 egg per day over the weekend (2 days), adding 2 more. That's 12 eggs per hen each week. With 14 hens, the total is 14 × 12 = 168 eggs per week.

In-context Learning and Emergent Capabilities

- An emergent capability of LLMs at scale is **in-context learning** that allows the model to **adapt at inference** using only the prompt (no weight updates).
 - Learns task format, labels, and constraints from instructions + examples.

Few-shot prompting on large models can even outperform a dedicated finetuned BERT on a specific task

Brown et al, Language Models are Few-Shot Learners, 2020

In-context Learning and Emergent Capabilities

- An emergent capability of LLMs at scale is **in-context learning** that allows the model to **adapt at inference** using only the prompt (no weight updates).
 - Learns task format, labels, and constraints from instructions + examples.

The few-shot learning ability of LLMs is usually emerges after the model scale crosses a threshold

What is the trustworthy implication of ICL?

Wei et al., Emergent Abilities of Large Language Models (2022)

In-context Learning and Emergent Capabilities

There are also many other abilities that are emergent in large models but not in

small models.

- Many abilities appear **abruptly** once scale (params \times data \times compute) crosses a threshold.
- Scale ≠ everything: on subsets of BIG-bench, model family/training can trump size—e.g., a PaLM-62B variant outperforms larger LaMDA-137B and GPT-3-175B on some tasks.
- Outlook: skills missing today may emerge in future models as data, objectives, and architectures improve.

Wei et al., Emergent Abilities of Large Language Models (2022)

Training Process of an LLM

Pretrained LLMs are

- Chaotic, aggregating many styles and value systems—modeling "a giant mass of people"
 - Toxic comments on X, Reddit
 - Disinformation on fraud websites
 - Bad outputs of old ML systems (e.g., old machine translation) → ML feedback loop reinforces the errors

→ Standard pretraining treats all outputs the same--match the golden output or not

- Some mistakes cause more damage than others. E.g.,
 - "Transfer \$500 to Alice today." correct
 - "Transfer \$500 today." missing recipient → minor/blocking
 - "Transfer \$5,000 to Alice today." wrong amount → costly
 - "Transfer \$500 to Alex today." wrong recipient → severe

→The model is not exposed to mistakes during training

Training Process of an LLM

Pre-training:

 Pretraining the model on massive unlabeled corpus

• Instruction Tuning:

- Train on instructions + ideal responses
- Makes models more reliable at following prompts
- Reinforcement Learning from Human Feedback (RLHF):
 - Second stage alignment with human preferences
 - Reduces harmful/irrelevant outputs, improves safety

Reinforcement Learning From Human Feedback

- Goal: Retain capability and breadth while reducing low-value or unsafe behaviors to meet product and societal norms.
 - Problem: What is preferred, and how do we measure how 'good' it is, given a model output?
 - What is funny? How funny is it?
 - What is harmful? How harmful is it?
 - What is safe? How safe is it?

Train a reward model to produce a score

Reinforcement Learning From Human Feedback

- Goal: Retain capability and breadth while reducing low-value or unsafe behaviors to meet product and societal norms.
- We use human feedback to train the reward model, which can be in form of

Prompt: "I'm feeling like hurting myself."

Direct assessment

way. You're not alone. If you're in immediate danger, call your local emergency number. I can share resources and stay with you here—would you like to talk about what's going on?" → 9/10

Model output B: "That's not my problem. Cheer up." → 2/10

Model output A: "I'm really sorry you're feeling this

Preference Rating

Model output A: "I'm really sorry you're feeling this way. You're not alone. If you're in immediate danger, call your local emergency number. I can share resources and stay with you here—would you like to talk about what's going on?"

Model output B: "That's not my problem. Cheer up."

A ➤ B: Why? A is supportive, de-escalatory, and provides crisis options; B is dismissive and increases risk.

Training Pipeline with RLHF

- Step 1: Train a reward model
 - **Data**: For each prompt x, collect model candidates $\{y_i\}$ and human **pairwise/ranked** preferences (e.g., $y^+ > y^-$)
 - **Model**: Scalar scorer $r_{\theta}(x, y)$ where θ is the trainable parameters of the reward model (using similar model famility but smaller size compared to target LLM)
 - Loss: pairwise Bradley-Terry / logistic ranking

$$\mathcal{L}_{RM}(\theta) = -\mathbb{E}_{\left(x,y^+,y^-\right)}\left[\log \frac{\sigma\left(r_{\theta}(x,y^+) - r_{\theta}(x,y^-)\right)\right] + \lambda \|\theta\|^2$$

Increase the reward gap

Training Pipeline with RLHF

- Step 2: Train an LLM to maximize the reward of by the reward model
 - Initialize policy π_{ϕ} from pretrained model π_0 .
 - **Objective** with KL control (keep outputs close to π_0):

reward model using reinforcement learning A new prompt is Write a sport news sampled from the about NBA dataset The LLM generates an output LLM Once upon a time The reward model calculates a reward for the output The reward is used to update the LLM

using PPO

(b) Step 2: Optimize a LLM against the

Training Pipeline with RLHF

- Step 2: Train an LLM to maximize the reward of by the reward model
 - Initialize policy π_{ϕ} from pretrained model π_0 .
 - **Objective** with KL control (keep outputs close to π_0):

$$J(\phi) = \mathbb{E}_{x,y \sim \pi_{\phi}(\cdot|x)} r_{\theta}(x,y) - \beta \mathbb{D}_{\mathrm{KL}} \left(\pi_{\phi}(\cdot \mid x) \| \pi_{0}(\cdot \mid x) \right)$$
$$= \mathbb{E}_{x,y \sim \pi_{\phi}(\cdot \mid x)} \sum_{t}^{T} \left[r_{\theta}(x,y_{t}) - \beta \log \frac{\pi_{\phi}(y_{t} \mid x)}{\pi_{0}(y_{t} \mid x)} \right]$$

shaped reward $ilde{r}_t$ -- no backprop through reward model

Apply Policy gradient/REINFORCE algorithm we can compute the gradient

(b) Step 2: Optimize a LLM against the reward model using reinforcement learning A new prompt is Write a sport news sampled from the about NBA dataset The LLM generates an output LLM Once upon a time The reward model calculates a reward for the output The reward is used to update the LLM

using PPO

What role does RLHF play in shaping the trustworthiness of LLMs?
Think about different aspects such as Alignment / Robustness / Interpretability / Bias

A Bit of History – Modern Era

Trustworthiness of LLMs

- Reliability (Accuracy and Consistency): Can we trust the LLM's output to be correct and consistent?
- Safety (Harmlessness): Does the LLM avoid harmful content and behaviors?
- Fairness and Bias: Does the LLM treat different groups and inputs equitably, without harmful prejudice?
- Robustness: Is the LLM robust to perturbations and adversarial inputs?
- Explainability and Transparency: Can we understand or explain what the LLM is doing and why it produces a given output?
- Adherence to Social Norms and Ethics: Does the LLM behave in line with human values and social norms?
- Resistance to Misuse: Is the LLM resistant to being used for malicious purposes?
- Privacy and Data Protection: Does the LLM protect sensitive information and avoid leaking private data?

The LLM Era: What Changed

Key shift: Transformers enable **generalist models** that capture broad knowledge beyond task-specific pipelines.

BEFORE LLMs	AFTER LLMs
Hand-crafted features	Pre-train on web-scale data; fine-tune for tasks
Per-task model selection	Zero-/few-shot performance on unseen tasks
Transfer learning for scarce labels	Prompting as natural-language programming
Balance overfitting vs. generalization	Greater focus on interpretability & explainability

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers for (Large) Language Models (LLMs)

3. Transformers for Other Modalities

Transformers in CV — ViT [Dosovitskiy et al., ICLR 2021]

• An image patch is treated as a word in this context, and an image is partitioned to 16×16 tokens.

Transformers in CV — MAE [He et al., 2021]

- Can we use self-supervised pretraining for vision Transformers?
 - Masked autoencoder (MAE) with self-supervised tasks achieve SOTA performance on ImageNet

Transformers — in the Language of Graphs

Networks (also known as Natural Graphs):

- Social networks:
 - Society is a collection of 7+ billion individuals
- Communication and transactions:
 - Electronic devices, phone calls, financial transactions
- Biomedicine:
 - Interactions between genes/proteins regulate life
- Brain connections:
 - Our thoughts are hidden in the connections between billions of neurons

Many Types of Data are Graphs (1)

Event Graphs

Image credit: Wikipedia

Food Webs

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: <u>visitlondon.com</u>

Underground Networks

Many Types of Data are Graph (2)

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Image credit: The Conversation

Internet

Networks of Neurons

Transformers — in the Language of Graphs (1)

Step 1 Mapping: Each node feature x_i is projected to q_i , k_i , v_i .

Attention computation: calculate the importance of neighbors

$$\alpha_{vu} = att\left(\mathbf{h}_v^{(l-1)}, \mathbf{h}_u^{(l-1)}\right)$$

Transformers — in the Language of Graphs (2)

Transformers

Step 2 Attention: Calculate the edge weights using q_i , k_j of the two endpoints node i and j as $e_{ij} = q_i^T k_j / \sqrt{d}$, then normalizing it by the neighbors of node i $\alpha_{ij} = \operatorname{softmax}_i(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in N_i} \exp(e_{ik})}$

Message computing: transform information of neighbor node to a message

$$\mathbf{m}_u^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$$
 , $u \in N_v$

Transformers — in the Language of Graphs (3)

Transformers

Step 3 Update: Update each node feature according to its neighbors as

$$x_{i}' = \sum_{k \in N_{i}} \alpha_{ij} x_{j}$$

Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N_{v}} \mathbf{m}_{u}^{(l)} \right)$$

Transformers — in the Language of Graphs (4)

Summary: Comparison of Self-attention (SA) and Graph Attention Networks (GAT)

- Step 1 Mapping
 - SA: different weights for q, k, v. $q = w_q x$, $k = w_k x$, $v = w_v x$.
 - GAT: shared weights for q, k, v. q = wx, k = wx, v = wx.
- Step 2 Attention: SA uses dot-product attention, while (the original) GAT uses concatenation with MLP
 - Dot-product: $e_{ij} = q_i^T k_j / \sqrt{d}$
 - Concat: $e_{ij} = \operatorname{act}(W \ [q_i||k_j])$, where c is a weight vector and act is the activation function like LeakyReLU

Graph Attention — in the Language of Transformer

- The above computations do not require the assumption of the complete graph.
 - We assume full connectivity, mostly because we do not want to miss any potential token correlations.
- Self-attention can be easily adapted to graph-structured input data where the token correlations are given by the adjacency matrix, by replacing the complete graph with the input graph.
 - Self-Att(X) = Softmax $\left(\frac{(\mathbf{W}_k X) (\mathbf{W}_q X)^T}{\sqrt{d}} \odot A_G \odot \mathbf{W}_E E\right) V$.
 - A_G is the adjacency matrix of the graph and E is the edge weights of the graph if any.
- The complexity is no longer $O(n^2d)$ but is linear to the edge number O(E)

Transformers for Multiple Modalities

 Transformers succeed across domains, enabling general-purpose Al systems where one general model can handle multiple input modalities (text, images, audio, etc.)

• E.g., CLIP, DALL-E, Stable Diffusion, GPT-4V, Gemini, Flamingo

Why is Transformer a Popular Choice

- Resolves various challenges of RNN-based architectures
- Attention makes the architecture expressive and flexible for different application scenarios
- It is very amenable to self-supervised objectives
 - We can leverage the vast number of unsupervised examples to learn a general model
 - Can be fine-tuned for many downstream tasks
 - Can out-perform models that are only trained for a specific downstream task

