August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering
Turkish (TUR)

T - Kapsama

Eğer daha önce Tetris oynadıysanız oradaki şekillerden biri olan aşağıdakini görmüş olmalısınız:

Biz bu şekli *T-tetromino* (birbiriyle bağlı 4 adet hücreden oluşan geometrik şekil için eğlenceli bir kelime) olarak adlandıracağız. × ile işaretli hücre *merkez hücre* olarak adlandırılacak.

Manca m satır ve n kolondan oluşan dikdörtgen bir tablo çizip her bir hücrenin içerisine bir sayı yazıyor. Oluşturulan tablonun satırları 0 ile m-1 arasında ve kolonları 0 ile n-1 arasında numaralandırılıyor. Bunun yanında bazı hücreleri de, örneğin kırmızıyla işaretleyerek, özel hücre olarak belirliyor. Daha sonra, arkadaşı Nika'dan T-tetromino'ları bu alan içerisine aşağıdaki kurallar çerçevesinde yerleştirmesini istiyor:

- Yerleştirilen T-tetromino sayısı özel hücre sayısı kadar olmak zorundadır. Her bir T-tetromino'nun merkez hücresi bir tane özel hücrenin üzerinde olmalıdır.
- Herhangi iki T-tetromino çakışamaz.
- Tüm T-tetrominolar tamamen alanın içerisinde yerleştirilmiş olmalıdır.

T-tetromino için 4 farklı olası yön durumu olacağını unutmayınız (\top , \bot , \vdash , and \dashv).

Eğer şartları sağlayan bir durum yoksa Nika'nın cevabı *No* olmalıdır. Eğer şartları sağlayan bir çözüm varsa; Nika'nın bulduğu çözümde T-tetrominoların üzerinde bulunduğu hücrelerde yer alan sayıların toplamı olası çözümler arasından maksimum olan olmalıdır. Böyle bir durumda Nika, Manca'ya maksimum toplamı söylemelidir.

Sizden Manca'ya yardımcı olacak programı yazmanız istenmektedir.

Girdi

Girdideki her satır, bir boşluk ile ayrılmış tam sayılar içeren bir seri olacaktır.

Girdinin ilk satırı m ve n tam sayı değerlerini içerecektir. Takip eden m satır [0,1000] aralığında n tane tam sayı değer içerecektir. i-nci sıradaki j-inci tamsayı değeri , tablo üzerine yazılan i-nci satır j-inci hücrede yer alan değeri vermektedir. Sonraki girdi satırı $k \in \{1,\ldots,mn\}$ tamsayı değerini içermektedir. Bu satırı takip eden k tane satırın her biri i-nci özel hücrenin pozisyonunu gösteren, sırasıyla satır ve kolon adresleri $r_i \in \{0,\ldots,m-1\}$ ve $c_i \in \{0,\ldots,n-1\}$ değerlerini

içerecektir. Özel hücre listesinde herhangi bir tekrar olmayacaktır.

Çıktı

Yerleştirilen T-tetrominonun kapladığı alandaki hücrelerin toplamının olası maksimum değerini yazdırın, eğer herhangi bir şekilde yerleştirme yapmak mümkün değilse № yazdırın.

Kısıtlar

• $1 < mn < 10^6$.

Altgörevler

- 5 puan: $k \leq 1000$; bütün özel hücre ikilileri i ve j için, elimizde $|r_i-r_j|>2$ veya $|c_i-c_j|>2$ olacak.
- 10 puan: $k \leq 1000$; bütün özel hücre ikilileri i ve j için, eğer $|r_i-r_j| \leq 2$ ve $|c_i-c_j| \leq 2$ doğruysa, bu durumda (r_i,c_i) ve (r_j,c_j) yan yana komşu olacaktır, veya daha matematiksel olarak açıklayacak olursak $(|r_i-r_j|=1$ ve $|c_i-c_j|=0)$ veya $(|r_i-r_j|=0)$ ve $|c_i-c_j|=1)$ olacaktır.
- 10 puan: $k \leq 1000$; bütün özel hücre ikilileri i ve j için, eğer $|r_i-r_j| \leq 2$ ve $|c_i-c_j| \leq 2$ doğruysa, bu durumda $|r_i-r_j| \leq 1$ ve $|c_i-c_j| \leq 1$ olacak.
- ullet 10 puan: $k \leq 1000$; bütün özel hücreler aynı satırda yer alacak
- 15 puan: $k \le 10$.
- 20 puan: k < 1000.
- 30 puan: başka ek kısıt yok.

Örnek 1

Girdi

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Çıktı

Açıklama

Maksimum toplamı bulabilmek için Nika tetrominoları gösterilen şekilde yerleştirebilir:

```
    hücre (1, 1) üzerine ⊢;
```

- hücre (2, 2) üzerine ⊢;
- hücre (3, 4) üzerine \perp .

Örnek 2

Girdi

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Çıktı

```
No
```