Research Outline

Ryan Greenup & James Guerra

August 24, 2020

Contents

§ 1 Give a brief Sketch of the project	1
\P 1.1 Topic $/$ Context $\dots \dots \dots \dots \dots$	1
\P 1.2 Motivation $\dots\dots\dots\dots$	1
\P 1.3 Basic Ideas	1
\P 1.4 Where are the Mathematics	1
\P 1.5 Don't Forget we need a talk $\dots \dots \dots$	1
1.5.1 Slides In Org Mode	1
§ 2 What we're looking for	1
§ 3 Download RevealJS	2
§ 4 GNU Plot	2
code /home/ryan/Dropbox/Studies/QuantP	ı

Here's what I gatthered from the week 3 slides

§ 1 Give a brief Sketch of the project

¶ 1.1 Topic / Context

disown

We are interested in the theory of problem solving, but in particular the different approaches that can be taken to attacking a problem.

Essentially this boils down to looking at how a computer scientist and mathematician attack a problem, although originally I thought there was no difference, after seeing the odd way Roozbeh attacks problems I see there is a big difference.

¶ 1.2 Motivation

¶ 1.3 Basic Ideas

- Look at FOSS CAS Systems
 - Python (Sympy)

- Julia
 - * Sympy integration
 - * symEngine
 - * Reduce.jl
 - * Symata.jl
- Maybe look at interactive sessions:
 - Like Jupyter
 - Hydrogen
 - TeXmacs
 - org-mode?

After getting an overview of SymPy let's look at problems that are interesting (chaos, morphogenesis and order from disarray etc.)

¶ 1.4 Where are the Mathematics

- Trying to look at the algorithms underlying functions in Python/Sympy and other Computer algebra tools such as Maxima, Maple, Mathematica, Sage, GAP and Xcas/-Giac, Yacas, Symata.jl, Reduce.jl, SymEngine.jl
 - For Example Recursive Relations
- Look at solving some problems related to chaos theory maybe
 - Mandelbrot and Julia Sets
- Look at solving some problems related to Fourier Transforms maybe

AVOID DETAILS, JUST SKETCH THE PROJECT OUT.

¶ 1.5 Don't Forget we need a talk

1.5.1 Slides In Org Mode

- Without Beamer
- With Beamer

§ 2 What we're looking for

- Would a reader know what the project is about?
- Would a reader become interested in the upcoming report?
- Is it brief but well prepared?
- Are the major parts or phases sketched out

§ 3 Download RevealJS

So first do M-x package-install ox-reveal then do M-x load-library and then look for ox-reveal

Download Reveal.js and put it in the directory as ./reveal.js, you can do that with something like this:

Then just do C-c e e R R to export with RevealJS as opposed to PHP you won't need a fancy server, just open it in the browser.

§ 4 GNU Plot

limit of recursion is 250

reference for image

,#+begin_{src} gnuplot

