ST5215 Advanced Statistical Theory, Lecture 4

HUANG Dongming

National University of Singapore

20 Aug 2020

Review

Last time

- Jensen's inequality, Cauchy-Schwarz inequality, Minkowski's inequality
- Characteristic function and moment generating function
- Independence
- Conditional expectation

Today

- Properties of conditional expectation
- Conditional distribution
- Statistical models

Recap: Dominated convergence theorem

Example (1.8, Interchange of differentiation and integration)

Let $(\Omega, \mathcal{F}, \nu)$ be a measure space and, for any fixed $\theta \in \mathcal{R}$, let $f(\omega, \theta)$ be a Borel function on Ω . Suppose that $\partial f(\omega, \theta)/\partial \theta$ exists a.e. for $\theta \in (a,b) \subset \mathcal{R}$ and that $|\partial f(\omega,\theta)/\partial \theta| \leq g(\omega)$ a.e., where g is an integrable function on Ω . Then for each $\theta \in (a,b), \partial f(\omega,\theta)/\partial \theta$ is integrable and, by Dominated convergence theorem,

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \int f(\omega, \theta) \, \mathrm{d}\nu = \int \frac{\partial f(\omega, \theta)}{\partial \theta} \, \mathrm{d}\nu$$

- LHS means: for any sequence of small numbers $\delta_n \to 0$, $\frac{1}{\delta_n} \left(\int f(\omega, \theta + \delta_n) \, d\nu \int f(\omega, \theta) \, d\nu \right)$ converges to the same limit
- For given $\{\delta_n\}$, define $\varphi_n(\omega) = \frac{1}{\delta_n} (f(\omega, \theta + \delta_n) f(\omega, \theta))$. By mean value theorem and the condition, $|\varphi_n| \leq g(\omega)$ a.e.
- By DCT, $\lim \int \varphi_n \ d\nu = \int \lim \varphi_n \ d\nu$

Recap: Conditional expectation

Definition

- Let X be an integrable random variable on (Ω, \mathcal{F}, P) .
- Let \mathcal{A} be a sub- σ -field of \mathcal{F} .

The *conditional expectation* of X given A, denoted by $\mathbb{E}(X \mid A)$, is a random variable satisfying the following two conditions:

- **①** $\mathbb{E}(X \mid \mathcal{A})$ is measurable from (Ω, \mathcal{A}) to $(\mathcal{R}, \mathcal{B})$

Such $\mathbb{E}(X \mid A)$ exists and is unique.

Proof

- W.L.O.G., assume $X \ge 0$; otherwise look at X_+ and X_- separately.
- Define $\lambda(C) = \int_C X dP$ for any $C \in A$.
- λ is a measure on (Ω, \mathcal{A}) and $\lambda \ll P|_{\mathcal{A}}$
 - ▶ $P|_{\mathcal{A}}$ is the *restriction of the measure* P *on* \mathcal{A} , meaning that it has the same image of P but is now only define on \mathcal{A} rather than Ω
- Then by Radon-Nikodym theorem, $\frac{\mathrm{d}\lambda}{\mathrm{d}P|_{\mathcal{A}}}$ exists and is unique, and it satisfies the definition of $\mathbb{E}(X\mid\mathcal{A})$.
- For general X, define $\mathbb{E}(X \mid \mathcal{A}) = \mathbb{E}(X_+ \mid \mathcal{A}) \mathbb{E}(X_- \mid \mathcal{A})$.

Example

Let X be an integrable random variable on (Ω, \mathcal{F}, P) . Let A_1, A_2, \ldots be disjoint events such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \ldots be distinct real numbers. Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. Then we have

$$\mathbb{E}(X \mid Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i}$$

- $\sigma(Y) = \sigma(\{A_1, A_2, \ldots\})$
- RHS is measurable on $(\Omega, \sigma(Y))$
- For any $B \in \mathcal{B}, Y^{-1}(B) = \bigcup_{i:a_i \in B} A_i$.

$$\begin{split} \int_{Y^{-1}(B)} X \; \mathrm{d}P &= \sum_{i:a_i \in B} \int_{A_i} X \; \mathrm{d}P \\ &= \sum_{i=1}^{\infty} \frac{\int_{A_i} X \; \mathrm{d}P}{P\left(A_i\right)} \int \mathbf{1}_{A_i \cap Y^{-1}(B)} \; \mathrm{d}P = \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} X \; \mathrm{d}P}{P\left(A_i\right)} I_{A_i} \right] \; \mathrm{d}P \end{split}$$

Example (Cont.)

Let X be an integrable random variable on (Ω, \mathcal{F}, P) . Let A_1, A_2, \ldots be disjoint events such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \ldots be distinct real numbers. Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. Then we have

$$\mathbb{E}(X \mid Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} X \, dP}{P(A_i)} I_{A_i}$$

- Define $h: \{a_i\} \mapsto \mathcal{R}$ by $h(a_i) = \frac{\int_{A_i} X \, dP}{P(A_i)}$.
- $\mathbb{E}(X \mid Y)(\omega) = h(Y(\omega))$
- If $X = I_A$ where $A \in \mathcal{F}$, then $\mathbb{E}(X \mid Y) = \sum_{i=1}^{\infty} \frac{P(A_i \cap A)}{P(A_i)} I_{A_i}$, i.e., $\mathbb{E}(X \mid Y)(\omega) = P(A \mid A_i)$ if $\omega \in A_i$ (i.e., $Y(\omega) = a_i$)

Properties of conditional expectation

All r.v.s. are on the probability space (Ω, \mathcal{F}, P) , and \mathcal{G} is a sub- σ -field of \mathcal{F} .

- Linearity: $\mathbb{E}(aX + bY \mid \mathcal{G}) = a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(X \mid \mathcal{G})$ a.s.
- If X = c a.s. for a constant c, then $\mathbb{E}(X \mid \mathcal{G}) = c$ a.s.
- Monotonicity: if $X \leq Y$, then $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$ a.s.
- If $\mathbb{E}X^2 < \infty$, then $\{\mathbb{E}(X \mid \mathcal{G})\}^2 \leq \mathbb{E}(X^2 \mid \mathcal{G})$ a.s.
- (Fatou's lemma). If $X_n \ge 0$ for any n, then $\mathbb{E}\left(\liminf_n X_n \mid \mathcal{G}\right) \le \liminf_n \mathbb{E}\left(X_n \mid \mathcal{G}\right)$ a.s.
- (Dominated convergence theorem). If $|X_n| \leq Y$ for any n and $X_n \to_{\mathsf{a.s.}} X$, then $\mathbb{E}(X_n \mid \mathcal{G}) \to_{\mathsf{a.s.}} \mathbb{E}(X \mid \mathcal{G})$
- all the integral-inequalities we saw before have conditional versions

- If $\mathcal{G} = \{\emptyset, \Omega\}$ (a trivial σ -field), then $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X)$
- Tower property: if $\mathcal{H} \subset \mathcal{G}$ is a σ -field, (so that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$), then

$$\mathbb{E}(X \mid \mathcal{H}) = \mathbb{E}\{\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}\} \text{a.s.}$$
 (1)

- ▶ Let \mathcal{H} be $\{\emptyset, \Omega\}$, then $\mathbb{E}(X) = \mathbb{E}\{\mathbb{E}(X \mid \mathcal{G})\}$.
- If $\sigma(Y) \subset \mathcal{G}$ (i.e., Y is \mathcal{G} -measurable) and $\mathbb{E}|XY| < \infty$, then $\mathbb{E}(XY \mid \mathcal{G}) = Y\mathbb{E}(X \mid \mathcal{G})$ a.s.
 - ▶ since $\sigma(Y) \subset \mathcal{G}$, information about Y is contained in \mathcal{G} , and thus, Y is kind of "known" given the information \mathcal{G} .
- If X and Y are independent and $\mathbb{E}|g(X,Y)| < \infty$ for a Borel function g, then $\mathbb{E}[g(X,Y) \mid Y = y] = \mathbb{E}[g(X,y)]$ a.s. P_Y
- If X and Y are independent, $\mathbb{E}(X \mid Y) = \mathbb{E}X$ a.s. P

Recap: Independence

Proposition (1.11 in JS)

Let X be a r.v. with $\mathbb{E}|X| < \infty$ and let Y_i be random k_i -vectors, i = 1, 2. Suppose that (X, Y_1) and Y_2 are independent. Then

- **1** $\mathbb{E}[X \mid (Y_1, Y_2)] = \mathbb{E}(X \mid Y_1)$ a.s.
- **2** $P(A \mid Y_1, Y_2) = P(A \mid Y_1)$ a.s. for any $A \in \sigma(X)$
 - Suppose Y_1 is nonconstant. Given Y_1 , X and Y_2 are conditionally independent iff (2) holds.
 - Write " $(X, Y_1) \perp Y_2 \Rightarrow X \perp Y_2 \mid Y_1$ "
 - ullet Find an example where Y_2 is independent of X and (1) fails to hold
 - ▶ Let $X \sim Unif\{-1,1\}$, and $Y_1 \perp X$ and has the same distribution.
 - ▶ Let $Y_2 = XY_1$. Then $Y_2 \perp X$ but not independent of (X, Y_1)
 - ▶ $\mathbb{E}[X \mid (Y_1, Y_2)] = Y_1 Y_2$, but $\mathbb{E}[X \mid Y_1] = 0$

Existence of conditional distributions

Theorem

Suppose

- ullet X is a random n-vector on a probability space (Ω,\mathcal{F},P) , and
- Y is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .

Then there exists a function $P_{X|Y}(B \mid y)$ on $\mathcal{B}^n \times \Lambda$ such that

- **1** $P_{X|Y}(\cdot \mid y)$ is a probability measure on $(\mathcal{R}^n, \mathcal{B}^n)$ for any fixed $y \in \Lambda$,

Furthermore, if $E|g(X,Y)| < \infty$ with a Borel function g, then

$$E[g(X,Y) \mid Y=y] = E[g(X,y) \mid Y=y]$$
 (2)

$$= \int_{\mathcal{R}^n} g(x, y) P_{X|Y}(dx | y) a.s. P_Y$$
 (3)

For a fixed y, $P_{X|Y}(\cdot \mid y)$ is called the conditional distribution of X given Y = y, which is also denoted as $P_{X|Y=y}$.

Conditional p.d.f.

Theorem

Suppose

- X is a random n-vector, Y is a random m-vector
- (X,Y) has a p.d.f. f(x,y) w.r.t. $\nu \times \lambda$ (ν on \mathcal{B}^n , λ on \mathcal{B}^m , both σ -finite).

Let $f_Y(y) = \int f(x,y)d\nu(x)$ be the marginal p.d.f. of Y w.r.t. λ , and $A = \{y \in \mathbb{R}^m : f_Y(y) > 0\}.$

Then for any fixed $y \in A$, the p.d.f. of $P_{X|Y=y}$ w.r.t. ν is given by

$$f_{X|Y}(x \mid y) = \frac{f(x, y)}{f_Y(y)}.$$
 (4)

Furthermore, if g(x,y) is a Borel function on \mathbb{R}^{n+m} and $\mathbb{E}|g(X,Y)|<\infty$, then

$$\mathbb{E}[g(X,Y)\mid Y] = \int g(x,Y)f_{X\mid Y}(x\mid Y) \,\mathrm{d}\nu(x), a.s. \tag{5}$$

ST5215 (NUS) Lecture 4 20 Aug 2020 12 / 31

- Let $h(y) = \frac{\int g(x,y)f(x,y) d\nu(x)}{f_Y(y)}$. By Fubini's theorem, h(y) is Borel.
- For any $B \in \mathcal{B}^m$, (W.L.O.G. $B \subset A$)

$$\int_{Y^{-1}(B)} h(Y) \, \mathrm{d}P = \int_{B} h(y) \, \mathrm{d}P_{Y}$$

$$(\mathsf{Def. of } h) = \int_{B} \frac{\int g(x,y) f(x,y) \, \mathrm{d}\nu(x)}{f_{Y}(y)} \, \mathrm{d}P_{Y}$$

$$(\mathsf{p.d.f. of } Y \; \mathsf{w.r.t.} \; \lambda) = \int_{B} \frac{\int g(x,y) f(x,y) \, \mathrm{d}\nu(x)}{f_{Y}(y)} f_{Y}(y) \, \mathrm{d}\lambda(y)$$

$$= \int_{B} \left(\int g(x,y) f(x,y) \, \mathrm{d}\nu(x) \right) \, \mathrm{d}\lambda(y)$$

$$(\mathsf{Fubini's theorem}) = \int_{\mathcal{R}^{n} \times B} g(x,y) f(x,y) \, \mathrm{d}(\nu \times \lambda)(x,y)$$

$$(\mathsf{p.d.f. of } (X,Y) \; \mathsf{w.r.t.} \; \nu \times \lambda) = \int_{\mathcal{R}^{n} \times B} g(x,y) \, \mathrm{d}P_{(X,Y)}$$

$$(\mathsf{Change of variable}) = \int_{Y^{-1}(B)} g(X,Y) \, \mathrm{d}P$$

ST5215 (NUS) Lecture 4 20 Aug 2020

13 / 31

Building joint distributions

Theorem

Let $(\Lambda, \mathcal{G}, P_0)$ be a probability space. Suppose that Q is a function from $\mathcal{B}^n \times \Lambda$ to \mathcal{R} and satisfies

- **1** $Q(\cdot,y)$ is a probability measure on $(\mathcal{R}^n,\mathcal{B}^n)$ for any $y\in\Lambda$,
- $② \ \ Q(B,\cdot) \ \textit{is} \ \mathcal{G}\textit{-measurable for any} \ B \in \mathcal{B}^n$

Then there is a unique probability measure P on $(\mathcal{R}^n \times \Lambda, \sigma(\mathcal{B}^n \times \mathcal{G}))$ such that, for $B \in \mathcal{B}^n$ and $C \in \mathcal{G}$

$$P(B \times C) = \int_C Q(B, y) dP_0(y)$$

We can construct a joint distribution in the product space, if given

- $oldsymbol{0}$ a marginal distribution of Y on a space,
- 2 a collection of (regular) conditional distributions on another space.

This provides a way of generating dependent random variables.

Statistical problems

- A typical statistical problem
 - One or a series of random experiments is performed
 - ▶ Some data are generated and collected from the experiments
 - Extract information from the data
 - Interpret results and draw conclusions

Example (Measurement problems)

Suppose we want to measure an unknown quantity θ , e.g., weight of some object.

- n measurements x_1, \ldots, x_n are taken in an experiment of measuring θ .
- data are (x_1, \ldots, x_n)
- ullet information to extract: some estimator for heta
- ullet draw conclusion: what is the possible range of heta (confidence interval)?

Setup

- We do not consider the problems of planning experiments and collecting data.
- A **population** is a probability space (Ω, \mathcal{F}, P) . For simplicity, we refer to P as the population
- A **sample** is a random element defined on the probability space. The data set is a realization of the sample.
- The size of the data set is called the sample size.
- A population P is *known* iff P(A) is a known value for every event $A \in \mathcal{F}$.
- P is at least partially unknown and we want to deduce some properties of P based on the data.

Example (Measurement problems)

Suppose we want to measure an unknown quantity θ , e.g., weight of some object.

- n measurements x_1, \ldots, x_n are taken in an experiment of measuring θ .
- if no measurement error, then $x_1 = \cdots = x_n = \theta$
- \bullet otherwise, x_i are not the same due to measurement errors
- the data set (x_1, \ldots, x_n) is viewed as an outcome of the experiment
- sample size is n
- the sample space is $\Omega = \mathbb{R}^n$, $\mathcal{F} = \mathcal{B}^n$, and P is a probability measure on \mathbb{R}^n
- the random element $X=(X_1,\ldots,X_n)$ is a random *n*-vector defined on \mathbb{R}^n , i.e., $X:\mathbb{R}^n\to\mathbb{R}^n$

In applications, it is often reasonable to assume that distributions come from a suitable class of distributions.

- In physics, one requires a mathematical model to describe what are observed
 - ightharpoonup F = ma, for example
- Models are simplifications or approximation of reality
- Good models approximate the reality well
 - Newton's physics is good for low-speed motion
 - For high-speed motion, we needs special relativity or even general relativity
- In statistics, we use models to approximate the mechanism that generates the observed data
 - ▶ "all models are wrong, but some are useful." George Box.

Statistical models

A statistical model is a set of assumptions on the population P.
 Mathematically, a statistical model is often expressed as

$$P \in \mathcal{P} = \{Q : Q \text{ satisfies some conditions}\}$$
 (6)

Definition (Parametric family and Parametric models)

- A set of probability measures P_{θ} on (Ω, \mathcal{F}) indexed by a parameter $\theta \in \Theta$ is said to be a parametric family iff $\Theta \subset \mathcal{R}^d$ for some fixed positive integer d and each P_{θ} is a known probability measure when θ is known.
- ullet The set Θ is called the *parameter space* and d is called its *dimension*.
- A parametric model refers to the assumption that the population P is in a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$

A family of probability measures is said to be *nonparametric* if it is not parametric. A *nonparametric model* refers to the assumption that the population P is in a given nonparametric family.

Example (Measurement problems)

A statistical model here is a set of *joint* distribution of X_1, \ldots, X_n

- We begin with assuming X_1, \ldots, X_n independent and identically distributed (i.i.d., or IID), then $P = P_0^n$, where P_0 is a probability on $(\mathcal{R}, \mathcal{B})$
 - In this case, the product probability measure is determined by P_0 , the marginal distribution of X_i .
 - With IID assumption, we usually states the model in terms of P_0 .
- We further assume $X_i \sim N(\theta, \sigma^2)$, so $P_0 = N(\theta, \sigma^2)$ with IID assumption.
 - \triangleright P_0 is partially unknown, since θ and σ^2 are unknown.
 - We want to deduce the values of θ and σ^2 based on the available sample.
 - A statistical model: $P_0 \in \mathcal{P}_1 = \left\{ N\left(\theta, \sigma^2\right) : \theta \in \mathcal{R}, \sigma^2 > 0 \right\}$
- Since we know the weight of an object is positive, it makes more sense to require $\theta > 0$. We can consider a smaller model like $P_0 \in \mathcal{P}_2 = \{N(\theta, \sigma^2) : \theta > 0, \sigma^2 > 0\}$

Some terms

- A parametric family $\{P_{\theta}: \theta \in \Theta\}$ is said to be *identifiable* if and only if $\theta_1 \neq \theta_2$ and $\theta_1, \theta_2 \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$
- Let $\mathcal P$ be a family of populations and ν a σ -finite measure on $(\Omega, \mathcal F)$. If $P \ll \nu$ for all $P \in \mathcal P$, then we say $\mathcal P$ is dominated by ν ,
 - ▶ \mathcal{P} can be identified by the family of densities $\{\frac{dP}{d\nu}: P \in \mathcal{P}\}$;
 - In statistics, ν is often the Lebesgue measure (for continuous random variables) or the counting measure (for discrete random variables)
- In a given problem, a parametric model is not useful if the dimension of Θ is very large compared with the sample size.

Tutorial

• (Generalization of Hölder's inequality). For 0 and <math>q = -p/(1-p)

$$E|XY| \geqslant (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

(Generalization of Minkowski's inequality).

$$\left(E \left(\sum_{j=1}^{n} |X_j| \right)^r \right)^{1/r} > \sum_{j=1}^{n} \left(E |X_j|^r \right)^{1/r} \quad \text{ for } 0 < r < 1$$

- **1** Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$
- **1** Let ϕ_X be a ch.f. of X. Show that $|\phi_X| \leq 1$, and uniformly continuous.
- **5** Find the ch.f. and m.g.f. for the Cauchy distribution (i.e., P_X has p.d.f. $f(x) = (\pi(1+x^2))^{-1}$
- **1** If X_i has the Cauchy distribution C(0,1), $i=1,\ldots,k$, then Y/k has the same distribution as X_1 .

(Generalization of Hölder's inequality). For 0 and <math>q = -p/(1-p)

$$E|XY| \geqslant (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

Proof: WLOG, assume $E|Y|^q > 0$.

- Put $\tilde{X} = |XY|^p$, $\tilde{Y} = |Y|^{-p}$.
- Let p' = 1/p, q' = 1/(1-p). Then 1/p' + 1/q' = 1.
- Apply the Hölder inequality to $(\tilde{X}, \tilde{Y}, p', q')$,

$$E|X|^{p} = E\tilde{X}\tilde{Y} \leqslant \left(E\tilde{X}^{p'}\right)^{1/p'} \left(E\tilde{Y}^{q'}\right)^{1/q'}$$

$$= \left(E\tilde{X}^{1/p}\right)^{p} \left(E\tilde{Y}^{1/(1-p)}\right)^{1-p}$$

$$= (E|XY|)^{p} (E|Y|^{q})^{1-p}.$$

(Generalization of Minkowski's inequality).

$$\left(E \left(\sum_{j=1}^{n} |X_j| \right)^r \right)^{1/r} > \sum_{j=1}^{n} \left(E |X_j|^r \right)^{1/r} \quad \text{ for } 0 < r < 1$$

Proof: Suppose n = 2 and we write $X = X_1, Y = X_2$. WLOG, assume $E(|X| + |Y|)^r] > 0$.

- $E(|X| + |Y|)^r = E(|X| + |Y|)^{r-1}(|X| + |Y|) = E[(|X| + |Y|)^{r-1}|X|] + E[(|X| + |Y|)^{r-1}|Y|]$
- Apply Ex 1 to $(|X|, (|X| + |Y|)^{r-1}, r, r/(r-1))$, we have

$$E[(|X|+|Y|)^{r-1}|X|] \ge (E|X|^r)^{1/r}[E(|X|+|Y|)^r]^{(r-1)/r}$$

- So $E(|X|+|Y|)^r \ge \left[(E|X|^r)^{1/r} + (E|Y|^r)^{1/r} \right] \left[E(|X|+|Y|)^r \right]^{(r-1)/r}$
- Divide both side by $[E(|X|+|Y|)^r]^{(r-1)/r}$, we have

$$[E(|X|+|Y|)^r]^{1/r} \ge (E|X|^r)^{1/r} + (E|Y|^r)^{1/r} \tag{7}$$

For general n, use induction and the last inequality to $\sum_{i=1}^{n-1} |X_i|$ and $|X_n|$

ST5215 (NUS) Lecture 4 20 Aug 2020 24 / 31

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathbb{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$ Proof: First, suppose Z is a simple function on $(\Omega, \sigma(Y))$, i.e.,

- $Z = \sum_{i=1}^{n} z_i I_{A_i}$, where c_i 's are real numbers, and A_i 's are disjoint and in $Y^{-1}G$
 - We can assume $A_i = Y^{-1}C_i$ where $C_i \in \mathcal{G}$. Note that C_i 's are not necessarily disjoint (if $\emptyset \neq C_i \cap C_i \subset Y(\Omega)^c$)
 - Let $B_1 = C_1$ and $B_i = C_i \setminus (\bigcup_{k=1}^{i-1} C_k)$, $i \ge 2$. Then B_i 's are disjoint and in \mathcal{G}
 - We can check that $A_i = Y^{-1}B_i$.
 - Define $h = \sum_{i=1}^{n} z_i I_{B_i}$. It is a simple function on (Λ, \mathcal{G}) and for any $\omega \in \Omega$.

$$Z(\omega) = \sum_{i=1}^{n} z_{i} I_{A_{i}}(\omega) = \sum_{i=1}^{n} z_{i} I_{Y^{-1}B_{i}}(\omega) = \sum_{i=1}^{n} z_{i} I_{B_{i}}(Y(\omega))$$
(8)
= $h(Y(\omega))$ (9)

(9)

ST5215 (NUS) Lecture 4 20 Aug 2020 25 / 31

Ex 3 (Cont.)

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$

Proof: Second, suppose Z is a general Borel function on $(\Omega, \sigma(Y))$.

- We can find a sequence of simple functions ϕ_n on $(\Omega, \sigma(Y))$ such that $\lim \phi_n = Z$.
- The first part shows that we can find a sequence of simple functions h_n from (Λ, \mathcal{G}) such that $\phi_n = h_n \circ Y$.
- Let $A = \{y \in \Lambda : \lim h_n(y) \text{ exists } \}.$
- Define $h(y) = \lim h_n(y)$ for $y \in A$ and h(y) = 0 for $y \notin A$. By Proposition 1.4 in JS, h is \mathcal{G} -measurable.
- For any $\omega \in \Omega$, we have $Z(\omega) = \lim \phi_n(\omega) = \lim h_n(Y(\omega))$, which implies that $Y(\omega) \in A$ and RHS = $h(Y(\omega))$.

Let ϕ_X be a ch.f. of X. Show that $|\phi_X| \leq 1$, and uniformly continuous. Proof: Part 1: By Cauchy-Schwartz inequality, $(E\cos(t^\top X))^2 \leq E\cos^2(t^\top X)$ and $(E\sin(t^\top X))^2 \leq E\sin^2(t^\top X)$, so $|\phi_X(t)|^2 = (E\cos(t^\top X))^2 + (E\sin(t^\top X))^2 \\ \leq E\cos^2(t^\top X) + E\sin^2(t^\top X) = 1$

Ex 4 (Cont.)

Let ϕ_X be a ch.f. of X. Show that $|\phi_X| \leq 1$, and uniformly continuous. Proof: Part 2:

- We need a result: for any $x \in \mathcal{R}$, $|e^{ix} 1| \le \min(|x|, 2)$
- For any $\epsilon > 0$, choose M > 0 s.t. $P(||X|| > M) < \epsilon/4$.
- For any $t,s\in \mathcal{R}^d$, s.t. $\|t-s\|\leq \epsilon/(2M)$, we have

$$\begin{aligned} |\phi_{X}(t) - \phi_{X}(s)| &= |E[e^{is^{\top}X} \left(e^{i(t-s)^{\top}X} - 1 \right)]| \\ &\leq E \left| e^{i(t-s)^{\top}X} - 1 \right| \\ &\leq 2P(|X| > M) + E \left(I_{\{||X|| \leq M\}} \left| e^{i(t-s)^{\top}X} - 1 \right| \right) \\ &< \epsilon/2 + E \left(I_{\{||X|| \leq M\}} ||t - s|| ||X|| \right) \\ &< \epsilon. \end{aligned}$$

Find the ch.f. and m.g.f. for the Cauchy distribution (i.e., P_X has p.d.f. $f(x) = (\pi(1+x^2))^{-1}$

 $T(x) = (\pi(1+x^{-}))^{-1}$

Proof: We need a theorem

Theorem

Let $(\Omega, \mathcal{F}, \nu)$ be a measure space. Let A_k be an increasing sequence of measurable sets, whose limit is A. Let f be a Borel function. If for each k, $f|_{A_k}$ is integrable, and $\lim \int_{A_k} |f| \ \mathrm{d} \nu < \infty$, then $f|_A$ is integrable and

$$\lim \int_{A_k} f \, d\nu = \int_A f \, d\nu. \tag{10}$$

This result, together with the connection of Riemann integral and Lebesgue integral, allows us to compute the Lebesgue integral as we did in undergraduate calculus.

Ex 5 (Cont.)

Find the ch.f. and m.g.f. for the Cauchy distribution (i.e., P_X has p.d.f. $f(x) = (\pi(1+x^2))^{-1}$ Proof:

• For any $t \in \mathcal{R}$, $sin(tx)/(1+x^2)$ is an odd function of x, so for X being a Cauchy r.v.,

$$\varphi_X(t) = \int_{\mathcal{R}} \frac{\cos(tx)}{\pi(1+x^2)} \, \mathrm{d}m$$

• By the theorem and the fact that the Riemann integral $\int_{-n}^{n} \frac{|\cos(tx)|}{\pi(1+x^2)} dx$ converges, we have

$$\int_{\mathcal{R}} \frac{\cos(tx)}{\pi(1+x^2)} dm = \int_{-\infty}^{\infty} \frac{\cos(tx)}{\pi(1+x^2)} dx = e^{-|t|}.$$
 (11)

ST5215 (NUS) Lecture 4 20 Aug 2020 30 / 31

If X_i has the Cauchy distribution C(0,1), $i=1,\ldots,k$, then Y/k has the same distribution as X_1 .

Proof: We need to find the ch.f. for Y: For any $t \in \mathcal{R}$,

$$E[\exp(itY)] = E[\exp(it\frac{\sum_{j=1}^{k} X_j}{k})]$$
 (12)

$$= E[\exp(\sum_{j=1}^{k} i \frac{t}{k} X_j)]$$
 (13)

$$= E\left[\prod_{j=1}^{k} \exp\left(i\frac{t}{k}X_{j}\right)\right] \tag{14}$$

$$= \prod_{j=1}^{k} E[\exp(i\frac{t}{k}X_j)]$$
 (15)

$$= \prod_{i=1}^{k} \exp(-|\frac{t}{k}|) = \exp(-|t|).$$
 (16)

ST5215 (NUS) Lecture 4 20 Aug 2020 31 / 31