

Task History

June 22, 2011 10:29 PM

Saved answer set '10581274' opened

Answer set 7 created with 2 reference answers from CAPLUS

Detailed display from Answer set 7 of Highly Potent, Orally Available Anti-inflammatory Broad-Spectrum Chemokine Inhibitors

Highly Potent, Orally Available Anti-inflammatory Broad-Spectrum Chemokine Inhibitors

By: Fox, David J.; Reckless, Jill; Lingard, Hannah; Warren, Stuart; Grainger, David J.

A series of 3-acylaminocaprolactams are inhibitors of chemokine-induced chemotaxis. Branching of the side chain α -carbon provides highly potent inhibitors of a range of CC and CXC chemokines. The most potent compd. has an ED₅₀ of 40 pM. Selected compds. were tested in an in vivo inflammatory assay, and the best compd. reduces TNF- α levels with an ED₅₀ of 0.1 μ g/kg when administered by either s.c. injection or oral delivery.

Indexing

Pharmacology (Section 1-3)

Concepts

Anti-inflammatory agents
Cell migration
Chemotaxis
Human
Inflammation
Neutrophil
Structure-activity relationship
oral antiinflammatory broad-spectrum chemokine inhibitors

CC chemokines
CXC chemokines
Chemokines
Interleukin 8
Macrophage inflammatory protein 1 α
Monocyte chemoattractant protein-1
RANTES(chemokine)
Tumor necrosis factors
oral antiinflammatory broad-spectrum chemokine inhibitors
Biological study, unclassified; Biological study

Source

Journal of Medicinal Chemistry
Volume 52
Issue 11
Pages 3591-3595
Journal
2009
CODEN: JMCMAR
ISSN: 0022-2623
DOI:
[10.1021/jm900133w](https://doi.org/10.1021/jm900133w)

Company/Organization

Department of Chemistry
University of Cambridge
Cambridge, UK CB2 1EW

Accession Number

2009:565761
CAN 151:23962
CAPLUS

Publisher

American Chemical Society

Language

English

Substances

853905-44-9P
oral antiinflammatory broad-spectrum chemokine inhibitors
Drug mechanism of action; Pharmacological activity; Reactant; Synthetic preparation; Therapeutic use;
Biological study; Preparation; Uses; Reactant or reagent

726187-67-3P
853905-34-7P
853905-39-2P
853905-40-5P
853905-41-6P
853905-42-7P
853905-45-0P
853905-59-6P
853905-60-9P
853905-61-0P
853905-62-1P
853905-68-7P
853905-72-3P
876063-97-7P
876063-98-8P
876063-99-9P
876064-01-6P
876064-02-7P
876064-03-8P
1160115-32-1P
1160115-34-3P

oral antiinflammatory broad-spectrum chemokine inhibitors

Drug mechanism of action; Pharmacological activity; Synthetic preparation; Therapeutic use; Biological study; Preparation; Uses

108-18-9 Diisopropylamine
112-31-2 Decanal
547-63-7 Methyl isobutyrate
671-42-1
870-63-3
924-50-5 Methyl 3,3-dimethylacrylate
2094-72-6 1-Adamantanecarbonyl chloride
2719-27-9 Cyclohexanecarbonyl chloride
2890-61-1 1-Methylcyclohexanecarbonyl chloride
3282-30-2 2,2-Dimethylpropionyl chloride
4301-04-6
5856-77-9 2,2-Dimethylbutyryl chloride
15721-22-9 2,2-Dimethylpentanoyl chloride
19835-38-2
21568-87-6
26081-07-2
28957-33-7
36278-22-5 1-Cyclohexenecarbonyl chloride
39482-46-7 2,2-Dimethyl-4-pentenoyl chloride
39691-62-8 Nonylmagnesium bromide
50321-59-0
60631-34-7 2,2-Dimethyldodecanoyl chloride
67589-90-6
73152-73-6
oral antiinflammatory broad-spectrum chemokine inhibitors
Reactant; Reactant or reagent

2198-82-5P 2,2,5-Trimethyl-4-hexenoic acid
53663-29-9P (E)-2-Methyldodec-2-enoic acid
66478-19-1P
102944-03-6P 3,3-Dimethyldodecanoic acid
476690-74-3P (E)-Ethyl 2-methyldodec-2-enoate
853905-71-2P
1017249-22-7P
1017249-74-3P

oral antiinflammatory broad-spectrum chemokine inhibitors

Reactant; Synthetic preparation; Preparation; Reactant or reagent

Supplementary Terms

oral antiinflammatory chemokine inhibitor structure

Citations

- 1a) Gerard, C; Nat Immunol 2001, 2, 108
- 1b) Horuk, R; Cytokine Growth Factor Rev 2001, 12, 313
- 1c) Rollins, B; Blood 1997, 90, 909
- 1d) Luster, A; N Engl J Med 1998, 338, 436
- 1e) Thelen, M; Nat Immunol 2001, 2, 129
- 2) Viola, A; Annu Rev Pharmacol Toxicol 2006, 46, 171
- 3a) Ribeiro, S; Pharmacol Ther 2005, 107, 44
- 3b) Carter, P; Curr Opin Chem Biol 2002, 6, 510
- 3c) Allen, S; Annu Rev Immunol 2007, 26, 787
- 4a) Vaidehi, N; J Biol Chem 2006, 281, 27613
- 4b) Pasternak, A; Bioorg Med Chem Lett 2008, 18, 1374
- 4c) Santella, L; Bioorg Med Chem Lett 2008, 18, 576
- 4d) Thoma, G; Bioorg Med Chem Lett 2008, 18, 2000
- 5a) Vandercappellen, J; Cancer Lett 2008, 267, 226
- 5b) Biju, P; Bioorg Med Chem Lett 2008, 18, 228
- 6a) Reckless, J; Biochem J 1999, 340, 803
- 6b) Reckless, J; Immunology 2001, 103, 244
- 7a) Fox, D; J Med Chem 2002, 45, 360
- 7b) Fox, D; J Med Chem 2005, 48, 867
- 8a) Grainger, D; Biochem Pharmacol 2003, 65, 1027
- 8b) Naidu, B; Ann Thorac Surg 2003, 75, 1118
- 8c) Wilbert, S; Anal Biochem 2000, 278, 14
- 9) Schroff, R; Mini-Rev Med Chem 2005, 5, 849
- 10) Frow, E; Med Res Rev 2004, 24, 276
- 1) Boyle, W; J Am Chem Soc 1979, 44, 4841
- 2) Rezler, E; J Med Chem 1997, 40, 3508
- 3) Reckless, J; Biochem J 1999, 340, 803
- 4) Fox, D; J Med Chem 2002, 45, 360
- 5) Fox, D; J Med Chem 2005, 48, 867
- 6) Frow, E; Med Res Rev 2004, 24, 267

Tags

0 Tags

Comments

0 Comments

Copyright © 2011 American Chemical Society (ACS). All Rights Reserved.