Linux System Administration

Network Administration : 네트워크 관리

: 네트워크의 이해

"유/무선으로 연결되어 있는 Device들의 집합"

- ▶ 유/무선으로 연결
 - ▶ Bluetooth, Wi-Fi, RFID, 적외선 통신(IrDA) 등 근거리 무선 통신
 - ▶ WCDMA, LTE 등 이동통신 기술
 - ▶ Ethernet, Serial 통신 등 유선통신
 - ▶ GPS
- Device
 - ▶ 네트워크에 연결된 컴퓨터
 - ▶ 컴퓨터가 아닌 다른 장치들
 예) 프린터, 모바일 장치, 가전제품, 웨어러블 등 다양한 임베디드 제품들
 - ▶ 포괄적 개념으로 네트워크에 연결되어 있는 것들을 충칭하는 용어

: 네트워킹의 이해

"네트워크에 연결된 디바이스들 간에 미리 약속된 프로토콜을 사용하여 데이터를 교환하는 것 "

: 네트워킹의 이해

- ▶ Protocol (프로토콜)
 - ▶ 약속, 규약
 - ▶ 디바이스 상호간 데이터 통신을 위해 필요한 규약
 - ▶ 통신 규약
- ▶ 데이터 통신 방법
 - ▶ 두 개의 상이한 디바이스가 물리적으로 떨어져 있는 경우, 유/무선을 통해 네트워크 에 연결되어야 한다
 - ▶ 연결된 두 디바이스는 전류, 전파, 빛 등의 방식으로 데이터 통신을 한다
 - ▶ 이 데이터는 0/1 또는 on/off의 bit의 조합으로 표현된다
 - ▶ 주소(address)
 - ▶ 두 디바이스가 데이터 통신을 하기 위해서는 서로의 위치를 알아야 한다
 - ▶ 이 위치를 네트워크에서는 node라 부른다
 - ▶ 각 node마다 고유의 주소를 가지고 있어야 한다
 - ▶ 데이터 통신을 할 때는 데이터 외에 어디로 보내야 하는가 또는 누가 보내는가 등의 정보를 담고 있어야 한다

: 데이터 통신 방법

- ▶ Packet(패킷)
 - ▶ 실제 네트워크를 통한 데이터 통신을 할 때에는 패킷을 사용한다

Header: 송신자/수신자의 주소, 체크섬(Checksum), 기타 제어 정보

Body: 전송할 데이터 (주로) byte 단위로 포함

: 인터넷의 이해

- ▶ 인터넷 != WWW(World Wide Web)
- ▶ 인터넷 기반 서비스

이름	프로토콜	포트	기능
WWW	HTTP	80	웹서비스
Email	SMTP/POP3/IMAP	25/110/114	이메일 서비스
FTP	FTP	21	파일 전송 서비스
DNS	DNS	23	네임서비스
NEWS	NNTP	119	데 남시라는 인터넷 뉴스 서비스

- ▶ 인터넷 (Internet)
 - ► TCP/IP 기반의 네트워크가 전 세계적으로 확대되어 하나로 연결된 네트워크들의 네트워크 (네트워크의 결합체)

: 인터넷의 이해

- ▶ 인터넷의 역사
 - ▶ 미국방성의 연구 목적 네트워크 ARPANET(1969년)이 시초
 - ▶ 미 과학재단 네트워크인 NSFNET이 연결(1986년)
 - ▶ 1990년 이후 일반 산업 목적의 네트워크들이 연결

- : 인터넷의 이해
- ▶ OSI 7계층과 TCP/IP 4계층
 - ▶ 하드웨어, 운영체제, 접속 매체와 관계 없이 동작할 수 있는 개방형 구조
 - ▶ OSI 7 계층을 4계층으로 단순화

OSI 7계층	TCP/IP 4계층	
응용 계층 표현 계층	응용 계층	네트워크를 사용하는 WWW, FTP, 텥넷, SMTP 등의 응용 프로그램으로 구성.
세션 계층		
전송 계층	전송 계층	도착지까지 데이터를 전송 각각의 시스템을 연결 TCP 프로토콜을 이용하여 데이터를 전송
네트워크 계층	인터넷 계층	데이타를 정의 및 경로 지정 정확한 라우팅을 위해 IP 프로토콜을 사용 IP 주소가 위치하는 계층
데이터 링크 계층 물리 계층	링크 계층	물리적 계층 즉 이더넷 카드와 같은 하드웨어

: 인터넷의 이해 - 계층과 프로토콜

- ▶ Link 계층 (Link Layer)
 - ▶ Host(호스트)간의 네트워크 데이터 통신을 위한 물리적 연결 (유/무선)에 대한 표준
 - ▶ LAN, WAN, MAN과 같은 네트워크 구성을 정의
 - ▶ 상위 계층인 Internet 계층에서 형성된 패킷을 전기신호 또는 광신호로 바꾸어 전달하는 역할 담당
 - ▶ 응용프로그램 개발자가 직접 접근할 수 있는 계층이 아니고 보통 네트워크 장비나 드라이버 개발자 들이 관심을 갖는 계 층

TCP/IP 프로토콜 구조

애플리케이션 계층

전송 계층

인터넷 계층

링크 계층

: 인터넷의 이해 - 계층과 프로토콜

- ▶ Internet 계층
 - ▶ Link 계층을 통해 물리적으로 연결된 각 Host간의 Packet 전달 경로 를 결정
 - ▶ IP (Internet Protocol)이 이 계층에 위치
 - ▶ IP 프로토콜은 IP 주소(Address)를 부여하는 방법과 체계를 정의
 - ▶ IP 프로토콜은 IP 주소를 기반으로 경로를 라우팅(Routing) 하는 방법을 정의
 - ▶ 전송 계층(Transport Layer)과 함께 인터넷에서 중요한 계층
 - ▶ 데이터가 상대방에게 안전하게 전송되는 것을 보장하지는 않음
 - 전송 계층이 데이터 전달에 대한 신뢰성을 책임진다는 가정 하에 목적지로 패킷을 어떤 경로로 전송할 것인가에 대한 문제만 해결하는 계층

TCP/IP 프로토콜 구조

애플리케이션 계층

전송 계층

인터넷 계층

링크 계층

: 인터넷의 이해 - 계층과 프로토콜

- ▶ IP 주소 (IP Address)의 종류
 - ▶ IPv4 (Internet Protocol Version 4): 4바이트 주소 체계
 - ▶ IPv6 (Internet Protocol Version 6): 16바이트 주소 체계
- ▶ IPv4 주소는 Network 주소와 Host 주소로 구분됨

: 인터넷의 이해 - 계층과 프로토콜

- ▶ 전송 계층(Transport Layer)
 - ▶ 하위 인터넷 계층의 IP가 해결한 목적지까지의 네트워크 경로에서 실제 데이터를 전송하는 역할을 담당
 - ▶ TCP와 UDP라는 데이터의 전달을 책임지는 프로토콜이 존재
 - ▶ IP는 하나의 패킷이 전달되는 과정에만 중심을 두고 설계되었기 때문에 여러 패킷으로 나눠져 전달되는 데이터의 순서와 전송 자체는 신뢰할 수 없다
 - ▶ 데이터의 순서와 신뢰할 수 있는 데이터 전송을 보장하는 역할을 전 송 계층의 프로토콜이 담당

TCP/IP 프로토콜 구조

애플리케이션 계층

전송 계층

인터넷 계층

링크 계층

: 인터넷의 이해 - 계층과 프로토콜

- ► TCP(Transmission Control Protocol)
 - ▶ 연결지향 프로토콜: 데이터 전송/수신 이전에 소켓을 통해 양쪽 연결이 성립
 - ▶ 연결이 성립되면 TCP는 데이터의 손실이나 중복 없이 목적지에 확실하게 전달
 - 전송 도중 데이터의 일부가 유실되었다면 수신자는 발신자에게 해당 데이터의 재 전송을 요청
 - ▶ UDP에 비해 프로토콜이 더 복잡하고 속도도 느리다
 - ▶ 흔히, 전화 통화에 비유
 - ▶ UDP에 비해 신뢰성 있는 데이터 전송이 가능하다는 장점 때문에 HTTP, FTP, TELNET 등 대부분 응용 계층 프로토콜은 전송 계층으로 TCP를 이용

: 인터넷의 이해 - 계층과 프로토콜

- ► UDP (User Datagram Protocol)
 - ▶ UDP는 비연결지향 프로토콜
 - ▶ 전송한 데이터가 잘 전달되었는지 확인하지 않고 단지 데이터를 보내는 것으로 자신의 임무를 다한 것으로 간주
 - ▶ TCP에 비해 신뢰성이 떨어지는 프로토콜
 - ▶ 흔히, 편지를 보내는 것에 비유
 - ▶ 음악이나 동영상의 Streaming 서비스 등에 적당한 프로토콜

: 인터넷의 이해 - 계층과 프로토콜

- ▶ 응용 계층(Application Layer)
 - ▶ 하위 계층이 목적지가 되는 호스트에 데이터를 안전하게 전달한다 는 신뢰를 바탕으로 응용프로그램(프로세스)들이 통신을 하게 된다
 - ▶ 응용 계층의 응용 프로그램(프로세스)들의 데이터 통신은 매우 다양
 - ▶ 예) 메일 보내기(SMTP), 파일 전송(FTP), 웹사이트 접속(HTTP)
 - ▶ 목적에 맞는 데이터 통신을 위한 응용 프로토콜이 미리 정의되어 있기도 하고 개발자가 직접 설계하여 인터넷 기반의 서비스를 개발할 수도 있다
 - ▶ 소켓(Socket)은 응용 계층에서 개발되는 응용 프로그램에서 하위 계층의 TCP/IP의 역할을 감추어 준다 (투명성)
 - ▶ 소켓(Socket)이라는 도구를 사용하면 응용 프로그램간의 성격에 따라 미리 설계된 응용 프로토콜을 이용한 프로그램을 개발하거나 직접 프로토콜을 설계하고 구현만 하면 됨
 - ▶ 대부분의 네트워크 프로그래밍은 소켓(Socket)을 사용하여 위와 같은 작업을 하는 것이라 할 수 있다

TCP/IP 프로토콜 구조

애플리케이션 계층

전송 계층

인터넷 계층

링크 계층

: HTTP

- ► HTTP (Hyper Text Transfer Protocol)
 - ▶ WWW(World Wide Web)의 기반이 되는 프로토콜

- ▶ HTTP 프토토콜의 작동 방식
 - ▶ 브라우저는 웹 서버에게 요청 정보를 보낸다
 - ▶ 웹 서버는 요청 정보를 분석하여 응답 정보를 브라우저에게 보낸다
 - ▶ 비연결 지향의 프로토콜

: HTTP

: TCP/IP 프로토콜 스택(Stack)

- ▶ TCP/IP 프로토콜 스택은 총 4개의 부분으로 구분
- ▶ 네트워크 데이터 통신 과정을 **4**개의 영역으로 계층화한 것
- ▶ 데이터 통신 과정을 하나의 덩치 큰 프로토콜로 해결하지 않고 작게 나눠서 계층 화 하려는 노력의 결과

- ▶ 왜 OSI 7 계층을 모두 이용하지 않는가?
 - ▶ OSI 7 계층은 이론적인 면과 하드웨어 장비 표준을 위해 제정한 것
 - ▶ 실무에서 네트워크 프로그래밍은 **90**% 이상 위 프로토콜 스택을 기반으로 작업이 진행

: 프로토콜 계층간의 데이터 캡슐화

브라우저

뭰서버

: 소켓의 이해

- ▶ TCP/IP 프로토콜의 프로그래머 인터페이스
- ▶ 네트워크 프로그래밍에서 개발자에게 네트워크에 접근할 수 있는 인터페이스 제공
- ▶ 1986년 BSD Unix 4.3 개정된 소켓 사용
- ▶ 프로세스 간의 통신 방식(클라이언트-서버 모델)
- ▶ 3가지 과정으로 사용
 - ▶ 소켓 생성(소켓 열기)
 - ▶ 소켓을 통한 송/수신
 - ▶ 소켓 소멸(소켓 닫기)

: 소켓의 이해 - 소켓 생성

int socket(int domain, int type, int protocol)

```
#include <sys/socket.h>
int sockfd = socket( PF_INET, SOCK_STREAM, IPPROTO_TCP );
```

- ▶ domain : 소켓이 사용할 프로토콜 체계(Protocol Family)
 - ▶ PF_INET : IPv4 인터넷 프로토콜 체계
 - ▶ PF_INET6: IPv6 인터넷 프로토콜 체계
 - ▶ PF_LOCAL : 로컬 통신을 위한 UNIX 프로토콜 체계
 - ▶ PF_PACKET : Low Level 소켓을 위한 프로토콜 체계
 - ▶ PF_IPX : IPX 노벨 프로토콜 체계

: 소켓의 이해 - 소켓 생성

▶ int socket(int domain, int type, int protocol)

```
#include <sys/socket.h>
int sockfd = socket( PF_INET, SOCK_STREAM, IPPROTO_TCP );
```

▶ type: 소켓의 유형

SOCK_STREAM	SOCK_DATAGRAM	
TCP 통신 소켓	UDP 통신 소켓	
Stream 방식의 연결지향 소켓 생성	Datagram 방식 비연결성 소켓 생성	
양방향 통신	일방적 송신	
가변길이 Byte Stream	고정 길이 메시지 사용	
신뢰도 높음(3 Way Handshake)	신뢰도 낮음	
전달된 순서대로 수신	전달된 순서대로 수신되지 않음	

: 소켓의 이해 - 소켓 생성

▶ int socket(int domain, int type, int protocol)

```
#include <sys/socket.h>
int sockfd = socket( PF_INET, SOCK_STREAM, IPPROTO_TCP );
```

- ▶ protocol : 프로토콜 선택
 - ▶ 지정하지 않아도 충분히 원하는 소켓을 선택할 수 있음
 - ▶ 하나의 프로토콜 체계에서 데이터 전송방식이 동일한 프로토콜이 2개 이상 존재하기 때문에 마지막 파라미터를 통해 원하는 프로토콜 정보를 조금 더 구체화
 - ▶ IPv4 인터넷 프로토콜 체계에서 연결지향형 데이터 송수신 소켓 선택
 - ▶ IPPROTO_TCP
 - ▶ IPv6 인터넷 프로토콜 체계에서 비 연결 지향 데이터 송수신 소켓 선택
 - ▶ IPPROTO UDP

: 소켓의 이해 - 포트번호

▶ OS 구조와 TCP/IP 그리고 socket의 위치

: 소켓의 이해 - 포트번호

- ▶ 포트의 필요성
 - ▶ 실제적인 데이터 통신은 연결된 두 Host(컴퓨터)의 Process(프로그램) 사이에서 이루어짐
 - ▶ 여러 계층을 통해 애플리케이션 계층으로 들어온 데이터를 해당 **Process**에만 정확히 전달해 야 할 필요가 있음
 - ▶ 하나의 Host(컴퓨터)에는 여러 개의 Process(프로그램)가 각각의 소켓을 사용하여 데이터 통신을 하고 있기 때문에 TCP에서는 각 소켓을 구분해야 할 필요가 있음
 - ▶ 이때 각각의 소켓을 구분할 때 사용하는 것이 포트
 - ▶ 쉬운 예시:

"아파트(Host)에 사는 사람(Process)에게 편지(Data)를 보낼 때, 동(IP Address)과 호(Port)를 봉투(Packet)에 기입해야 한다."

: 포트 번호

- ▶ 포트 번호는 16비트 정수를 사용 (0 ~ 65535)
- ▶ 포트의 종류
 - ▶ 1 ~ 255 : 잘 알려진 인터넷 서비스 포트 (Well-Known Port)
 - ▶ 256 ~ 1023 : 그 밖의 인터넷 서비스
 - ▶ 1024~4999 : 시스템 예약
 - ▶ 5000 ~ 65535 : 사용자 사용
- ▶ 포트의 중복은 불가능하다
- ▶ 하지만, 같은 UDP 포트와 TCP 포트는 중복하여 사용할 수 있다

: 원격 시스템 네트워크 동작 확인 - ping

- ▶ ping : 원격 시스템의 네트워크가 현재 동작 중인지 확인하는 명령
 - ▶ 사용법
 - ▶ ping [옵션] 호스트주소
 - ▶ 옵션
 - ▶ -s:패킷 사이즈를 지정
 - ▶ -q: 종합 결과만 보여줌
 - ▶ -i: 지연 시간을 설정
 - ▶ -c: 보낼 패킷 수를 지정

: 원격 시스템 네트워크 동작 확인 - ping

▶ [실습] www.google.com 에 ping으로 네트워크를 확인해 봅니다

```
[root@localhost ~]# ping www.google.com
PING www.google.com (59.18.45.34) 56(84) bytes of data.
64 bytes from cache.google.com (59.18.45.34): icmp_seq=1 ttl=57 time=74.7 ms
64 bytes from cache.google.com (59.18.45.34): icmp_seq=2 ttl=57 time=151 ms
64 bytes from cache.google.com (59.18.45.34): icmp_seq=3 ttl=57 time=187 ms
64 bytes from cache.google.com (59.18.45.34): icmp_seq=4 ttl=57 time=200 ms
64 bytes from cache.google.com (59.18.45.34): icmp_seq=5 ttl=57 time=121 ms
...
...
...
89 packets transmitted, 85 received, 4% packet loss, time 105734ms
rtt min/avg/max/mdev = 2.892/173.967/340.652/79.367 ms
```

▶ 기본적으로 옵션 없이 사용하면 지속적으로 패킷을 보냄: Ctrl + C로 중지

: 원격 시스템 네트워크 동작 확인 - ping

▶ [실습] www.google.com 에 패킷 횟수를 5로 지정하여 ping을 전송해 봅니다

```
[root@localhost ~]# ping -c 5 www.google.com
PING www.google.com (59.18.45.54) 56(84) bytes of data.
64 bytes from cache.google.com (59.18.45.54): icmp_seq=1 ttl=57 time=228 ms
64 bytes from cache.google.com (59.18.45.54): icmp_seq=2 ttl=57 time=186 ms
64 bytes from cache.google.com (59.18.45.54): icmp_seq=3 ttl=57 time=222 ms

--- www.google.com ping statistics ---
5 packets transmitted, 3 received, 40% packet loss, time 4001ms
rtt min/avg/max/mdev = 186.741/212.701/228.387/18.497 ms
```

▶ [실습] 패킷의 크기를 지정하여 ping을 전송해 봅니다

```
[root@localhost ~]# ping -s 1000 -c 5 www.google.com
PING www.google.com (59.18.45.35) 1000(1028) bytes of data.
1008 bytes from cache.google.com (59.18.45.35): icmp_seq=1 ttl=57 time=165 ms
1008 bytes from cache.google.com (59.18.45.35): icmp_seq=2 ttl=57 time=157 ms
1008 bytes from cache.google.com (59.18.45.35): icmp_seq=4 ttl=57 time=230 ms
1008 bytes from 59.18.45.35: icmp_seq=5 ttl=57 time=187 ms

--- www.google.com ping statistics ---
5 packets transmitted, 4 received, 20% packet loss, time 8396ms
rtt min/avg/max/mdev = 157.476/185.342/230.987/28.545 ms
```

- : 원격 시스템 네트워크 동작 확인 ping
- ▶ ping 명령은 상대 호스트 또는 자신이 정상적으로 네트워크 작동을 하는지 확인 하는데 유용하지만, 과도한 사용은 서버에 부담을 줄 수 있음
- ▶ 외부의 과도한 ping을 막기 위해 ICMP(Internet Control Message Protocol) echo 를 ignore 시킬 수 있음
- ▶ [실습] ping 응답 설정 여부를 확인해 봅니다

```
[root@localhost ~]# cat /proc/sys/net/ipv4/icmp_echo_ignore_all
0
[root@localhost ~]#
```

▶ [실습] ping 응답을 막기 위해 /etc/sysctl.conf를 열고 다음을 추가해 봅니다

```
# For more information, see sysctl.conf(5) and sysctl.d(5).
```

net.ipv4.icmp_echo_ignore_all=1

```
[root@localhost ~]# sysctl -p
net.ipv4.icmp_echo_ignore_all = 1
[root@localhost ~]#
```

▶ 설정을 완료하고 외부에서 ping을 시도해서 테스트 해 봅시다

: 도메인 네임서버 질의 - nslookup

- ▶ nslookup : 도메인 네임서버에 질의를 할 수 있는 명령. 도메인 이름의 호스트 IP 를 검색할 수 있고 네임서버가 올바르게 작동하는지 확인 가능
 - ▶ 사용법
 - ▶ nslookup [도메인]
 - ▶ 도메인을 입력하지 않으면 대화영으로 프로그램이 작동
- ▶ [실습] 한 개의 도메인을 검색

[root@localhost ~]# nslookup www.naver.com

Server: 168.126.63.1 Address: 168.126.63.1#53

Non-authoritative answer:

www.naver.com canonical name = www.naver.com.nheos.com.

Name: www.naver.com.nheos.com

Address: 125.209.222.142

Name: www.naver.com.nheos.com

Address: 202.179.177.21

[root@localhost ~]#

: 도메인 네임서버 질의 - nslookup

▶ [실습] 대화형 방식으로 여러 도메인을 질의해 봅니다

[root@localhost ~]# nslookup

> www.naver.com

Server: 168.126.63.1 Address: 168.126.63.1#53

Non-authoritative answer:

www.naver.com canonical name = www.naver.com.nheos.com.

Name: www.naver.com.nheos.com

Address: 125.209.222.142

Name: www.naver.com.nheos.com

Address: 202.179.177.21 > www.bitacademy.co.kr

Server: 168.126.63.1 Address: 168.126.63.1#53

Non-authoritative answer:

Name: www.bitacademy.co.kr

Address: 218.145.65.233 > www.facebook.com

Server: 168.126.63.1 Address: 168.126.63.1#53

> exit

- : 호스트 네임 확인 hostname
- ▶ hostname : 호스트네임을 화면에 출력하는 명령
 - ▶ 사용법
 - hostname
- ▶ [실습] 현재 호스트 명을 확인해 봅시다

[root@localhost etc]# hostname
localhost.localdomain
[root@localhost etc]#

- ▶ [실습] 호스트명을 변경해 봅시다
 - ▶ /etc/hostname 파일을 vi 에디터로 열고 다음과 같이 수정

lx.mydomain.com

▶ 저장하고 반영하기 위해 재부팅

[bituser@lx ~]\$ clear [bituser@lx ~]\$ hostname lx.mydomain.com [bituser@lx ~]\$

: 네트워크 상태 확인 - netstat

- ▶ netstat : 네트워크 연결, 라우팅 테이블, 네트워크 장치의 통계 정보 등 네트워크 관련 여러 정보들을 확인하는 명령
 - ▶ 사용법
 - ▶ netstat [옵션]
 - ▶ 옵션
 - ▶ -a: 연결된 모든 소켓을 출력
 - ▶ -n: 호스트, 포트 등의 정보를 이름 대신 숫자로 표시
 - ▶ -p: 소켓을 열고 있는 프로세스의 아이디(PID)를 출력
 - ▶ -r: 라우팅 테이블을 출력
 - ▶ -t: TCP 연결에 대한 소켓을 출력
 - ▶ -u: UDP 연결에 대한 소켓을 출력

: 네트워크 상태 확인 - netstat

▶ [실습] 현재 시스템의 라우팅 테이블을 확인해 봅니다

```
[root@lx ~]# netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
default 192.168.0.1 0.0.0.0 UG 0 0 enp0s3
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 enp0s3
[root@lx ~]#
```

▶ [실습] 현재 열려 있는 TCP 포트 정보를 출력해 봅니다

```
[root@lx ~]# netstat -ant | grep LISTEN
          0 0.0.0.0:22
                          0.0.0.0:*
                                       LISTEN
tcp
      0 0 127.0.0.1:25 0.0.0.0:*
tcp
                                        LISTEN
tcp6 0 0 :::22
                          ***
                                      LISTEN
tcp6
     0 0::1:25
                          ***
                                      LISTEN
[root@lx ~]#
```

: 네트워크 상태 확인 - netstat

▶ [실습] 현재 열려 있는 TCP 포트의 프로세스까지 함께 출력해 봅시다

```
[root@lx ~]# netstat -anpt | grep LISTEN
     0 0 0.0.0.0:22 0.0.0.0:*
                                   LISTEN
                                            701/sshd
tcp
tcp
     0 0 127.0.0.1:25 0.0.0.0:*
                                LISTEN
                                            780/master
tcp6 0 0:::22
                  ***
                                           701/sshd
                                  LISTEN
     0 0 ::1:25 :::*
tcp6
                                  LISTEN
                                           780/master
[root@lx ~]#
```

▶ 출력된 PID를 이용, 어떤 프로세스가 이 포트를 사용하고 있는지 확인해 봅시다

: 네트워크 인터페이스 설정 - ifconfig

- ▶ ifconfig: 네트워크 인터페이스를 설정하고, 현재 네트워크 인터페이스의 정보를 알아보는 명령. 대부분 네트워크 설정을 확인하는 명령어로 많이 이용
 - ▶ 사용법
 - ▶ ifconfig [옵션]
- ▶ [실습] 전체 네트워크 인터페이스의 설정을 확인해 봅니다 (-a 옵션)

```
[root@lx ~]# ifconfig -a
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.0.3 netmask 255.255.255.0 broadcast 192.168.0.255
    inet6 fe80::a00:27ff:fe88:f242 prefixlen 64 scopeid 0x20<link>
    ether 08:00:27:88:f2:42 txqueuelen 1000 (Ethernet)
    RX packets 1841 bytes 162376 (158.5 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 1297 bytes 250857 (244.9 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    inet6 ::1 prefixlen 128 scopeid 0x10<host>
    loop txqueuelen 0 (Local Loopback)
    RX packets 2 bytes 106 (106.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 2 bytes 106 (106.0 B)
```

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

: 네트워크 인터페이스 설정 - ifconfig

▶ [실습] 특정 네트워크 인터페이스에 대한 정보만 출력해 봅니다

```
[root@lx ~]# ifconfig enp0s3
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.3 netmask 255.255.255.0 broadcast 192.168.0.255
inet6 fe80::a00:27ff:fe88:f242 prefixlen 64 scopeid 0x20<link>
ether 08:00:27:88:f2:42 txqueuelen 1000 (Ethernet)
RX packets 1952 bytes 171942 (167.9 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1365 bytes 259601 (253.5 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

- ▶ 인터페이스(interface)는 NIC(Network Interface Card)를 의미하며 보통 랜카드(이더 넷 카드)라고 부릅니다
- ▶ [실습] 네트워크를 중지해 봅니다
 - ▶ ifconfig {인터페이스명} down

: 네트워크 인터페이스 설정 - ifconfig

▶ [실습] 네트워크 인터페이스에 IP address 를 변경하고 다시 시작해 봅니다

: 고정 IP 설정 연습

- ▶ ifconfig에서 설정된 IP 주소는 시스템이 재시작되면 반영이 되지 않음
- ▶ 시스템의 네트워크를 설정하여 영구적으로 반영되도록 해야 한다
- ▶ 설정 전 확인 사항
 - ► IP Address
 - Subnet Mask
 - Gateway IP Address
 - ▶ DNS Server IP Address

: 고정 IP 설정 연습

▶ [실습] 네트워크 설정은 /etc/sysconfig/network-scripts/ifcfg-인터페이스명 파일에서 합니다. 현재 설정 내용을 확인해 봅시다

```
[bituser@lx ~]$ cat /etc/sysconfig/network-scripts/ifcfg-enp0s3
TYPE="Ethernet"
BOOTPROTO="dhcp"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6 AUTOCONF="yes"
IPV6 DEFROUTE="yes"
IPV6 FAILURE FATAL="no"
NAME="enp0s3"
UUID="c6755cb5-a27b-4260-a305-aa260b00c275"
DEVICE="enp0s3"
ONBOOT="yes"
PEERDNS="yes"
PEERROUTES="yes"
IPV6_PEERDNS="yes"
IPV6_PEERROUTES="yes"
IPV6 PRIVACY="no"
[bituser@lx ~]$
```

- : 고정 IP 설정 연습
- ▶ 현재는 BOOTPROTO가 dhcp, 즉 동적 할당으로 되어 있음
- ▶ 고정 IP로 설정하기 위해 다음과 같이 설정

```
TYPE="Ethernet"

BOOTPROTO= "static"

DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6_NUTCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
...

IPADDR=192.168.1.101
NETMASK=255.555.255.0
GATEWAY=192.168.1.1
DNS1=168.126.63.1
```

▶ 수정 후 네트워크 재시작

[root@lx ~]# systemctl restart network.service