Psychology of Language

11 Computational models I

Fall 2023 Tues/Thur 5:00-6:15pm

Emma Wing
Drop-in hours:
Wednesdays 3-4pm
& by appointment
Webex link

Road map

- Review from 10 Discourse processing
- Unit 2: The Mature System
 11 Computational models I

Review from 10 Discourse processing

- ✓Information flow during language comprehension
- ✓ Examples of discourse
- ✓ The role of real-world knowledge and inference
- ✓ The role of prediction
- ✓ Anaphoric reference
- ✓ Discourse focus
- ✓ Types of discourse representation across time
- ✓ Mental models

Learning objectives

- Discuss why we are even looking at computational models of language
- Define semantic space and 1+ ways to create a semantic space
- Describe how Latent Semantic Analysis (LSA) models similarities between words
- Describe how Word2Vec models similarities between words

Why computational models?

Why computational models?

"All models are wrong, but some are useful."

-George Box

Why computational models?

- They help establish the principles by which the brain *might* "compute" meaning
 - Some parts of the model might constitute a theory about how, or what, the brain computes
 - Others may just be there to "make it work"
- Contemporary "neural networks" are based on a combination of principles drawn from brain function and models of animal learning

What is meaning?

- What is meaning?
- How might a computer understand what words mean?
- It's hard for words to mean anything on their own.
 - We might have to place them in comparison with other words
- Rephrase: What behavior might we hope a computer would show?
 - Some representation of similarity between words
 - Some understanding of semantic relationships
 - Example: dog is to animal as apple is to fruit

How would you organize these words on a whiteboard?

Cat Table

Blouse Candy

Window Dog

Treat Apple

 We might want a representation that captures where these words are in relation to one another – a semantic space!

An example placement

)

Doing this by hand would take forever. We can automate it with a computer!

Model 1: Latent Semantic Analysis (LSA)

"You shall know a word by the company it keeps."

- John Rupert Firth

 Words that co-occur in bodies of text are often more similar to one another than words that do not.

Text 1: "The <u>brain</u> is an <u>organ</u> that serves as the center of the <u>nervous system</u> in all <u>vertebrate</u> and most <u>invertebrate</u> animals."

Text 2: "In some systems the <u>drain</u> is for <u>discharge</u> of <u>waste fluids</u>, such as the drain in a <u>sink</u> in which the water is drained when it is no longer needed

- Take a bunch of documents (scientific articles, op-eds, etc.)
- Create a table where each <u>word</u> is a <u>row</u> and each <u>column</u> is a <u>document</u>
- For each document, if it contains the corresponding word, put a

 ✓ in that cell

Context (Document)					
CAT					
DOPAMINE					
DOG					
REWARD					

- Take a bunch of documents (scientific articles, op-eds, etc.)
- Create a table where each <u>word</u> is a <u>row</u> and each <u>column</u> is a <u>document</u>
- For each document, if it contains the corresponding word, put a

 ✓ in that cell

		Context (Document)
	#1	
CAT	V	
DOPAMINE		
DOG	V	
REWARD		

- Take a bunch of documents (scientific articles, op-eds, etc.)
- Create a table where each <u>word</u> is a <u>row</u> and each <u>column</u> is a <u>document</u>
- For each document, if it contains the corresponding word, put a

 ✓ in that cell

Context (Document)			
	#1	#2	
CAT	V		
DOPAMINE			
DOG	√	V	
REWARD		V	

- Take a bunch of documents (scientific articles, op-eds, etc.)
- Create a table where each <u>word</u> is a <u>row</u> and each <u>column</u> is a <u>document</u>
- For each document, if it contains the corresponding word, put a

 ✓ in that cell

Context (Document)				
	#1	#2	#3	•
CAT	V			
DOPAMINE			√	
DOG	√	V		
REWARD		V	√	

- Take a bunch of documents (scientific articles, op-eds, etc.)
- Create a table where each <u>word</u> is a <u>row</u> and each <u>column</u> is a <u>document</u>
- For each document, if it contains the corresponding word, put a

 ✓ in that cell

	Context (Document)					
	#1	#2	#3	#4		
CAT	V					
DOPAMINE			V	V		
DOG	V	V				
REWARD		V	V	V		

 CAT and DOG are more similar to each other than they are to DOPAMINE or REWARD.

Context (Document)						
	#1	#2	#3	#4	#5	
CAT	V				V	
DOPAMINE			V	V		
DOG	V	V			V	
REWARD		V	V	√		

 DOPAMINE and REWARD are more similar to each other than they are to CAT or DOG.

Context (Document)						
	#1	#2	#3	#4	#5	
CAT	V				√	
DOPAMINE			V	V		
DOG	V	√			√	
REWARD		V	V	V		

DOG and REWARD are similar to each other.

Context (Document)							
	#1		#2		#3	#4	#5
CAT	V						√
DOPAMINE					V	V	
DOG	V		√				√
REWARD			√		V	V	

 Reduce to 3 columns for the sake of the example

Context (Document)				
	#1	#2	#3	
CAT	√			
DOPAMINE			√	
DOG	√	V		
REWARD		V	√	

 Change each check to a 1 and nothing to a 0

Context (Document)						
#1 #2 #3 coordinate						
CAT	1	0	0	1, 0, 0		
DOPAMINE	0	0	1	0, 0, 1		
DOG	1	1	0	1, 1, 0		
REWARD	0	1	1	0, 1, 1		

- ...to create a coordinate.
- How many dimensions are there?

Context (Document)						
#1 #2 #3 coordinate						
CAT	1	0	0	1, 0, 0		
DOPAMINE	0	0	1	0, 0, 1		
DOG	1	1	0	1, 1, 0		
REWARD	0	1	1	0, 1, 1		

- ...to create a coordinate.
- How many dimensions are there?

Context (Document)						
#1 #2 #3 coordinate						
CAT	1	0	0	1, 0, 0		
DOPAMINE	0	0	1	0, 0, 1		
DOG	1	1	0	1, 1, 0		
REWARD	0	1	1	0, 1, 1		

The coordinates (or strings of numbers) are called **vectors**

 Now, if we treat these words as coordinates in semantic space...

Context (Document)							
	#1	#2	#3	coordinate			
CAT	1	0	0	1, 0, 0			
DOPAMINE	0	0	1	0, 0, 1			
DOG	1	1	0	1, 1, 0			
REWARD	0	1	1	0, 1, 1			

 Now, if we treat these words as coordinates in semantic space...

Context (Document)							
	#1	#2	#3	coordinate			
CAT	1	0	0	1, 0, 0			
DOPAMINE	0	0	1	0, 0, 1			
DOG	1	1	0	1, 1, 0			
REWARD	0	1	1	0, 1, 1			

 Now, if we treat these words as coordinates in semantic space...

Context (Document)							
	#1	#2	#3	coordinate			
CAT	1	0	0	1, 0, 0			
DOPAMINE	0	0	1	0, 0, 1			
DOG	1	1	0	1, 1, 0			
REWARD	0	1	1	0, 1, 1			

A way to capture relationships between words.

How does LSA think of meaning?

A way to capture relationships between words.

- How does LSA think of meaning?
- 'Distance' in semantic space = distance between points on a graph
- Distance correlates with priming and other measures of semantic overlap

A way to capture relationships between words.

Model 2: Word2Vec

"Never ask for the meaning of a word in isolation, but only in the context of a sentence."

- Gottlob Frege

Word2Vec

- A slightly different approach to LSA, but same assumption
 - Words with similar meanings can be used in similar local contexts
 - What words could go into these contexts?

- I almost got run over by a _____ yesterday.
 Mary just had _____ for dinner.

Word2Vec

- With the model Word2Vec, you train it to predict...
 - a word given its context

Saw a stray ____ wandering around the...

a neighboring word given a word

____ cat ____ cat

Activity: make a sentence as a class.

Word2Vec

- Preparation before the model
 - Take all the words you want (could be all the words in the English language)
 - Line them up in a list
 - Give them each a different (random) string of 0s and 1s
 - Example:

```
Cat
Dog
Dopamine
Treat
Apple
10000...
01000...
00100...
00010...
```

•

No need to know the details! Just know that although the model isn't *explicitly* trained to do this, it can develop representations of words.

During the training phase, we train the model

Note: we will discuss more about how the model works in the next lecture

No need to know the details! Just know that although the model isn't *explicitly* trained to do this, it can develop representations of words.

Training phase

No need to know the details! Just know that although the model isn't *explicitly* trained to do this, it can develop representations of words.

Training phase

Input the string for "treat"

Training phase

Hidden layer of nodes
It's a black box
(meaning we don't know
what it does!)

Input word goes here (e.g. TREAT)

Training phase

Prediction comes out here

Input word goes here (e.g. TREAT)

Training phase

Output: the model makes a prediction about a word's neighbor

Hidden layer (black box)

Input word goes here (e.g. TREAT)

Training phase

Test phase: after training, you test by seeing what it predicts without telling it what the output is supposed to be.

Test phase Hidden layer (black box) 10,000 nodes Input word goes here (e.g. TREAT)

Test phase

300-dimension representation of a word is created (a word vector, just like the small ones we made in the LSA example)

Hidden layer (black box)

10,000 nodes

Input word goes here (e.g. CAT)

CAT =

[0.26 0.84 0.29 0.54 0.06 0.78 0.32 ...]

Test phase

Are these vectors useful?

How is Word2Vec defining meaning?

Are these vectors useful?

What does this kind of modeling have to do with the brain?

Are these vectors useful?

Its behavior might match some human behavior when we test meaning.

Example: vector manipulation (adding, subtracting, etc.)

$$a + b = c$$

 $c - b = a$

What would a Human say?

What would a Human say?

paris - france + italy = rome

What does a model say?

It picks out a point in the semantic space that is close to "Rome"

paris - france + italy ≈ rome

What does a model say?

king - man + woman = ?

What does a model say?

It picks out a point in the semantic space that is close to "queen"

king - man + woman ≈ queen

 They even appear to categorize words based on dimensions they do not have access to, like size

- They even appear to categorize words based on dimensions they do not have access to, like size
- ...but at a finegrained level it's not perfect.

Are word vectors good models?

- Are word vectors good models of how we learn language?
 - No.
 - babies get a lot more limited linguistic input
 - they aren't trained over and over

But word vectors might be good models of how we organize semantic features.

Key concepts

- ✓ Models are wrong but useful
- ✓ Meaning can be represented as a semantic space
 - ✓ Semantic spaces can be created using word vectors
- ✓ Context and co-occurrence matters for these models
- ✓ LSA uses global context
- ✓ Word2Vec uses local context
- ✓ Similarities and differences between computational models for word meanings and what humans do
 - ✓ Acquisition
 - ✓ Organization
 - ✓ Use for prediction