EECS 545: Machine Learning

Lecture 8. Kernel methods

Honglak Lee 2/5/2025

Outline

- Kernel methods: Motivation
- Kernel functions
- Kernel trick
 - Converting a ML model (objective function, prediction) function, etc.) expressed with feature vectors to kernel
 - Kernel trick for linear regression
- Constructing (valid) kernels
- · Kernel regression
 - Simple application of kernel method

Feature mappings

• Replace $x \to (1, x)$

• Replace $x \rightarrow (1, x, x^2, x^3)$

Linear regression

- Example: 1D regression one input x, one output h(x)
- Linear model $h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ can only produce straight lines through origin
- · Not very flexible/powerful
- · How do we deal with this?

Linear regression with (nonlinear) features

· Linear regression model

$$h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\top} \phi(\mathbf{x}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x})$$

· Least-squares with L2 regression

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N} (\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

• Closed form solution: \mathcal{N}^{*M}

$$\mathbf{w} = (\underline{\Phi}^{\top} \underline{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

This is nice, but...

- · What features to use?
- Computational complexity
 - ⊕: N*M matrix
 - N: the number of examples
 - M: the number of features
 - Need to invert $\Phi^{\top}\Phi(M^*M)$ matrix
 - Computational complexity scales with O(M3)

Linear classifiers

- · No linear separating plane
- · Linear classifiers not very flexible/powerful
- · Can we do better?

Linear classifiers with nonlinear features

- Add distance to origin $(x_1^2 + x_2^2)^{1/2}$ as a third feature
- · Data now lives on a parabolic surface in 3D.
- Linear separation in 3D feature space.
- In original feature space, decision boundary is an ellipse

Linear classifiers with nonlinear features

• Another way: Replace $x_1 \to x_1^2, \quad x_2 \to x_2^2$

- Different expansions make the problem solvable with linear methods.

Linear classifiers with nonlinear features

- Data has been mapped to a new, higher dimensional space
- Alternative way to think about this: data still lives in original space, but the definition of distance or inner product has been changed

Classifiers with nonlinear features

- We have been mapping each data point x through a fixed non-linear mapping to get a feature vector $\phi(\mathbf{x})$
 - The feature vector extracts important properties from **x**.
 - E.g., polynomial combinations of the original features, up to some order
 - It may make many regression/classification problems easier.
- Unfortunately, the feature vector may be high-dimensional, even infinite-dimensional.
 - Problems: computational complexity

Kernels to the rescue (kernel trick)

- Embed data in a high dimensional space, and use simple models (linear relations) in this space.
- Use algorithms that do not need the coordinates of the embedded points, but only pairwise inner products
- Compute these inner products efficiently using a kernel

14

10

Kernel functions

- A kernel function $k(\mathbf{x},\mathbf{x}')$ is intended to represent the similarity between x and x'.
- · A popular way to express similarity is as the inner product of feature vectors: $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$
- We define a kernel function $k(\mathbf{x},\mathbf{x'})$ as one that can be expressed as an inner product, but we may not need to compute it that way.
- · This definition immediately leads to symmetricity of kernels: $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$

Example: 2D input data

Inner product between two vectors (x₁, x₂) and (z₁, z₂)

$$k(\mathbf{x},\mathbf{z}) = \mathbf{x}^{\top}\mathbf{z} = x_1z_1 + x_2z_2 \qquad \begin{cases} \mathbf{x}_1^{\mathbf{z}} \\ \mathbf{x}_1^{\mathbf{z}} \end{cases} \cdot \begin{bmatrix} \mathbf{z}^{\mathbf{z}} \\ \mathbf{x}_2^{\mathbf{z}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{z}^{\mathbf{z}} \\ \mathbf{x}_2$$

$$k(\mathbf{x},\mathbf{z})=(\mathbf{x}^{\top}\mathbf{z})^2=x_1^2z_1^2+x_2^2z_2^2+2x_1x_2z_1z_2$$
 • This is the same as inner product between

$$(x_1^2, \sqrt{2}x_1x_2, x_2^2)$$
 and $(z_1^2, \sqrt{2}z_1z_2, z_2^2)$

Or between

$$(x_1^2, x_1x_2, x_1x_2, x_2^2)$$
 and $(z_1^2, z_1z_2, z_1z_2, z_2^2)$

Example: 2D input data

- Note: solution is not unique.

Example: 2D input data

• Consider higher-order polynomial of degree p:

$$k(\mathbf{x},\mathbf{z}) = (\mathbf{x}^{\top}\mathbf{z})^p = \left(\sum_{j=1}^M x_j z_j\right)^p \qquad \text{ary order of the timer product}$$

$$= \sum_{(j_1,j_2,\cdots,j_M):\sum_k j_k = p} \binom{p}{j_1,j_2,\cdots,j_M} (x_1z_1)^j (x_2z_2)^{j_2},\cdots,(x_Mz_M)^{j_M}$$
 Feature mapping:

Feature mapping:

 $\phi(\mathbf{x}) = \left[\cdots, \sqrt{\binom{p}{j_1, j_2, \cdots, j_M}} x_1^{j_1} x_2^{j_2}, \cdots, x_M^{j_M}\right]$

– All monomials of degree p

• Inhomogeneous polynomial up to degree p:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z} + c)^p = \left(\sum_{j=1}^{M} x_j z_j + c\right)^p, \quad c > 0$$

· Feature mapping:

– All monomials of degree <= p</p>

def polynomial kernel

Example: handwritten digits images

• Take the pixel values and compute

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z} + 1)^p$$

- Here **x** is 28*28 = 784 dimensional

- You need to compute the inner product in the space of all monomials up to degree p.
- For dim(x)=784 and p=4 a 16-billion dimensional space!

Kernel trick

- · Kernels allow you to achieve a high-dimensional feature space which is desirable for better separability for classes, i.e., classification performance.
- · Crucially, we don't have to compute the high-dimensional feature explicitly, the inner product of the features are computed directly via the kernel function.
- · Many algorithms can be expressed completely in terms of kernels k(x,x'), rather than other operations on x.
- In this case, you can replace one kernel with another, and get a new algorithm that works over a different domain.

$$k(\mathbf{x}, \mathbf{z}) = (\underbrace{\mathbf{x}^{\top} \mathbf{z}}_{784 \text{ dim}} + 1)^4 = \underbrace{\phi(\mathbf{x})^{\top} \phi(\mathbf{z})}_{16 \text{ billion dim}}$$

Kernel trick

- The kernel trick represents the problem formulation and its solutions entirely in terms of kernels (this is called "dual representation"). reas $\psi \Leftrightarrow k$, 7
- The elements of the Gram matrix $K = \Phi \Phi^{\top}$

$$K_{nm} = \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(m)}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})$$

- These represent the pairwise similarities among all the observed feature vectors.
 - Assumption: we may be able to compute the kernels more efficiently than the feature vectors.

Kernel substitution

- To use the kernel trick, we must formulate (training and test) algorithms purely in terms of inner products between data points
- We cannot access the coordinates of points in the high-dimensional feature space
- This seems a huge limitation, but it turns out that quite a lot can be done

18

Example: distance

 Distance between samples can be expressed in inner products: ccalculate distance using lernel function)

$$\|\phi(\mathbf{x} - \mathbf{z})\|^2 = \langle \phi(\mathbf{x}) - \phi(\mathbf{z}), \phi(\mathbf{x}) - \phi(\mathbf{z}) \rangle$$

$$= \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle + \langle \phi(\mathbf{z}), \phi(\mathbf{z}) \rangle - 2\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

$$= \kappa(\mathbf{x}, \mathbf{x}) + \kappa(\mathbf{z}, \mathbf{z}) - 2\kappa(\mathbf{x}, \mathbf{z})$$

• So nothing stops you from doing k-nearest neighbor searches in high dimensional spaces

Example: mean

- Can you determine the mean of data in the mapped feature space through kernel operations only?
 - A: No, you cannot compute any point explicitly

$$\phi_s = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}^{(i)})$$

23

Example: distance to the mean

- Mean of data points given by: $\phi_s = \frac{1}{N} \sum_{i=1}^N \phi(\mathbf{x}^{(i)})$
 - cannot be computed with kernel functions only
- Distance to mean:
 - → can be computed with kernel functions only

$$\underbrace{\|\phi(\mathbf{x}) - \phi_s\|^2}_{= \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle + \langle \phi_s, \phi_s \rangle - 2\langle \phi(\mathbf{x}), \phi_s \rangle}_{= \kappa(\mathbf{x}, \mathbf{x}) + \frac{1}{N^2} \sum_{i,j=1}^{N} \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) - \frac{2}{N} \sum_{i=1}^{N} \kappa(\mathbf{x}, \mathbf{x}^{(i)})$$

Kernel trick for linear regression

· Recall regression problems with error function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\top} \phi \left(x^{(n)} \right) - y^{(n)} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

• J(w) is minimized at

$$\mathbf{w}_{\mathrm{ML}} = \left(\lambda \mathbf{I} + \Phi^{\mathsf{T}} \Phi\right)^{-1} \Phi^{\mathsf{T}} \mathbf{y}$$

- Recall the N x M design matrix that is central to this solution.
- We can approach the solution a different way

Recap: the design matrix

- The design matrix is an N x M matrix, applying
 - the M basis functions (M: number of columns)
 - to N data points (N: number of rows)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \cdots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \cdots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \cdots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

The gram matrix

• For regression, a key term is the M x M matrix

$$\Phi^{\top}\Phi$$
 "covariance"

Here, we will use the N x N Gram matrix

(
$$\mathbf{K} = \Phi\Phi^ op$$
 "pairwise similarity"

- Note that $K_{nm} = \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(m)}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})$
 - o the pairwise similarities of all the data points in the training set
- Note that kernel methods use only K, not Φ

Kernel trick for linear regression

- Objective: $J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\top} \phi \left(x^{(n)} \right) y^{(n)} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$
- Another way to minimize $J(\mathbf{w})$ is to set $\nabla_{\mathbf{w}}J(\mathbf{w})=0$

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{n=1}^{N} \{\mathbf{w}^{\top} \phi(x^{(n)}) - y^{(n)}\} \phi(x^{(n)}) + \lambda \mathbf{w} = 0$$

$$\Rightarrow \mathbf{w} = \underbrace{-\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\top} \phi\left(\mathbf{x}^{(n)}\right) - y^{(n)} \right\} \phi(\mathbf{x}^{(n)})}_{-\text{ where }} a_n = -\frac{1}{\lambda} \left\{ \mathbf{w}^{\top} \phi\left(\mathbf{x}^{(n)}\right) - y^{(n)} \right\}$$

- Let a be the dual parameter, instead of w.
- Transform J(w) to J(a) by substituting

$$\mathbf{w} = \Phi^{ op} \mathbf{a} \left[\phi_{\mathcal{K}}^{\mathsf{u}} \mathcal{Y} ... \phi_{(\mathsf{x}^{\mathsf{u}^{\mathsf{v}}})} \right] \left[\mathbf{a}^{\mathsf{u}} \right]$$

Kernel trick for linear regression

- $\begin{array}{l} \bullet \ \, \text{Objective function} \ \, J(\mathbf{w}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\top} \phi \left(x^{(n)} \right) y^{(n)} \right\}^{2}}_{\frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi^{\top} \mathbf{w} \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}} \\ \bullet \ \, \text{Substitute} \ \, \mathbf{w} = \Phi^{\top} \mathbf{a} \end{array}$

Substitute
$$\mathbf{w} = \Phi^{\top} \mathbf{a}$$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\top} \Phi \Phi^{\top} \Phi \Phi^{\top} \mathbf{a} - \mathbf{a}^{\top} \Phi \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\top} \Phi \Phi^{\top} \mathbf{a}$$

$$= \frac{1}{2} \mathbf{a}^{\top} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^{\top} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\top} \mathbf{K} \mathbf{a}$$

$$\mathbf{K} = \Phi \Phi^{\top}$$

• Setting the gradient w.r.t. a to zero:

$$\nabla_{\mathbf{a}}J(\mathbf{a}) = \mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{K}\mathbf{y} + \lambda\mathbf{K}\mathbf{a} = 0 \qquad \text{simplify (K is invertible)}$$

$$(\mathbf{K} + \lambda\mathbf{I})\mathbf{a} = \mathbf{K}\mathbf{y} \qquad \text{otherwise}$$

• Solution (closed form):

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$

Kernel trick for linear regression

- Objective function $J(\mathbf{w}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\top} \phi \left(x^{(n)} \right) y^{(n)} \right\}^{2}}_{\frac{1}{2} \mathbf{w}^{\top} \Phi \mathbf{w} \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}} + \underbrace{\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}}_{\frac{1}{2} \mathbf{w}^{\top} \Phi \mathbf{w} \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}}_{\frac{1}{2} \mathbf{w}^{\top} \Phi \mathbf{w} \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}}$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\top} \Phi \Phi^{\top} \Phi \Phi^{\top} \mathbf{a} - \mathbf{a}^{\top} \Phi \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\top} \Phi \Phi^{\top} \mathbf{a}$$
$$= \frac{1}{2} \mathbf{a}^{\top} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^{\top} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\top} \mathbf{K} \mathbf{a}$$
$$\mathbf{K} = \Phi \Phi^{\top}$$

• Solution (closed form):
$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$
• Prediction for any arbitrary input \mathbf{x} :
$$h(\mathbf{x}) = \mathbf{w}^\top \phi(\mathbf{x}) = \phi(\mathbf{x})^\top \mathbf{w} = \phi(\mathbf{x})^\top \Phi^\top \mathbf{a} = (\Phi \phi(\mathbf{x}))^\top \mathbf{a} = \sum_{n=1}^N a_n k(\mathbf{x}^{(n)}, \mathbf{x})$$

$$= k(\mathbf{x})^\top (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$
definition:
$$k(\mathbf{x}) = \left[k(\mathbf{x}^{(1)}, \mathbf{x}), \cdots, k(\mathbf{x}^{(N)}, \mathbf{x}) \right]^\top$$
31

Kernel trick for linear regression

- Transform J(w) to J(a) by using $\ \mathbf{w} = \boldsymbol{\Phi}^{\top} \mathbf{a}$ and the *Gram* matrix $\mathbf{K} = \Phi \Phi^{\top}$
- Find **a** to minimize $J(\mathbf{a})$: $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$
- For predictions (for query point/test example x):

$$\begin{split} h(\mathbf{x}) &= \phi(\mathbf{x})^{\top} \mathbf{w} = \phi(\mathbf{x})^{\top} \Phi^{\top} \mathbf{a} = k(\mathbf{x})^{\top} \left(\mathbf{K} + \lambda \mathbf{I}_{N} \right)^{-1} \mathbf{y} \\ &- \text{ where } k(\mathbf{x}) = \left[k(\mathbf{x}^{(1)}, \mathbf{x}), \cdots, k(\mathbf{x}^{(N)}, \mathbf{x}) \right]^{\top} \end{split}$$

This method is called Kernel Ridge Regression.

Primal versus Dual

- Primal: $\mathbf{w} = (\Phi^{\top}\Phi + \lambda \mathbf{I}_M)^{-1} \Phi^{\top} \mathbf{y}$
- Dual: $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$
- Primal: invert M by M matrix (M = dim feature space), w vector of length M
 - cheaper because usually N > M, but you need to explicitly construct features.
- Dual: invert N by N matrix (N = number of data points)
 - can use the kernel trick (embed into very high dimensional feature space)
 - Use kernels k(x,x') to represent similarity.
 - Kernels can be defined over vectors, images, sequences, graphs, text, etc.

Constructing valid kernels

- One can do kernel engineering to create kernels for particular purposes, expressing different kinds of similarity.
- How do we verify that a kernel is valid?
- Three methods (for verification):
 - 1. Direct construction with feature vectors
 - 2. Mercer Theorem &
 - 3. Composition of kernels with pre-defined rules

Constructing valid kernels: Method 1 Explicit Construction by defining feature vectors

• Method 1: One way is to define the feature space mapping $\phi(\mathbf{x})$ and show that the kernel function represents the inner product of feature vectors:

$$\underbrace{k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')}_{i=1} = \sum_{i=1}^{M} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

Constructing valid kernels: Method 1 Explicit Construction by defining feature vectors

• Suppose we define a kernel function directly, such as

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$$

• In 2D, we can explicitly identify the feature map

$$\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

- such that

$$k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{z})$$

Explicit feature mappings can be very complex.

– Kernels help us avoid that complexity.

35

39

Constructing valid kernels: Method 2 Mercer Theorem

- A simpler way to test without having to construct $\phi(x)$
- Use the necessary and sufficient condition (Mercer Theorem) that for a function k(x,x') to be a inner product (valid) kernel:)
 - the Gram matrix **K**, whose elements are given by $k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})$, should be <u>positive</u> semidefinite for all possible choices of the data set {x⁽ⁿ⁾}

- I.e. K is positive semidefinite:

$$\mathbf{a}^{\top} \mathbf{K} \mathbf{a} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i K_{i,j} a_j \ge 0 \quad \forall \mathbf{a} \in \mathbb{R}^N$$

Constructing valid kernels: Method 3 **Using Pre-Defined Rules**

• There are a number of axioms that help us construct new, more complex kernels, from simpler known kernels.

· For example,

example,
$$k(\mathbf{x}, \mathbf{x}') = \underbrace{f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')}_{k(\mathbf{x}, \mathbf{x}')}$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

 $k(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2)$

- Prove that these are valid kernels (homework)

Constructing valid kernels: Method 3 **Using Pre-Defined Rules**

Given valid kernels $k_1(\mathbf{x},\mathbf{x}')$ and $k_2(\mathbf{x},\mathbf{x}')$, the following new kernels will also be valid:

		לו יאלו .	pene	110
$k(\mathbf{x}, \mathbf{x}')$	=	$ck_1(\mathbf{x}, \mathbf{x}')$		(6.13)
$k(\mathbf{x}, \mathbf{x}')$	-	$f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$		(6.14)
$k(\mathbf{x}, \mathbf{x}')$	=	$q(k_1(\mathbf{x}, \mathbf{x}'))$		(6.15)
$k(\mathbf{x}, \mathbf{x}')$	=	$\exp\left(k_1(\mathbf{x}, \mathbf{x}')\right)$		(6.16)
$k(\mathbf{x}, \mathbf{x}')$	=	$k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$		(6.17)
$k(\mathbf{x}, \mathbf{x}')$	=	$k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$		(6.18)
$k(\mathbf{x}, \mathbf{x}')$	=	$k_3\left(\boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{x}')\right)$		(6.19)
$k(\mathbf{x}, \mathbf{x}')$	=	$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}'$		(6.20)
$k(\mathbf{x}, \mathbf{x}')$	=	$k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$		(6.21)
b(v v')	_	k (v v')k (v v')		(6.22)

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot,\cdot)$ is a valid kernel in \mathbb{R}^M , A is a symmetric positive semidefinite matrix. necessarily disjoint) with $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces

Most popular kernels

• Simple Polynomial Kernel (terms of degree 2)

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$$

• Generalized Polynomial kernel - degree M

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z} + c)^{M}, \quad c > 0$$

Gaussian Kernels

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

Gaussian kernel

- Not related to Gaussian pdf
- Translation invariant (depends only on distance between points)
- Corresponds to an infinitely dimensional space! (PRML ex6.11)

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

Kernel regression

Kernel regression

• Recall k-nearest neighbor regression:

$$k(\mathbf{x}) = \frac{1}{k} \sum_{(\mathbf{x}', y') \in KNN(\mathbf{x})} y'$$

· Kernel regression:

$$h(\mathbf{x}) = \frac{\sum_{i} k(\mathbf{x}, \mathbf{x}^{(i)}) y^{(i)}}{\sum_{j} k(\mathbf{x}, \mathbf{x}^{(j)})} = \frac{1}{Z} \sum_{i} k(\mathbf{x}, \mathbf{x}^{(i)}) y^{(i)}$$
where $Z = \sum_{i} k(\mathbf{x}, \mathbf{x}^{(j)})$

 Weighted average of training responses where weight is proportional to the similarity with the corresponding feature.

Kernel regression

- Can use different kinds of kernels as they capture similarity between features differently.
 - Popular: Gaussian kernel with width τ:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\tau^2}\right)$$

Examples

43

45

Kernels for classification

- We can just as easily use kernels for classification as well.
- Assume $y_i \in \{-1, +1\}$, return output as weighted majority:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} k(\mathbf{x}, \mathbf{x}^{(i)}) y^{(i)}\right)$$

· Compare it to k-nearest neighbor classification:

$$h(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{k} \sum_{(\mathbf{x}', y') \in \operatorname{KNN}(\mathbf{x})} y'\right)$$

Locally-weighted Linear Regression vs. Kernel regression

- Suppose we want to predict y given a query x.
- Locally-weighted linear regression

- 1. Fit **w** to minimize $\sum_{i} (y^{(i)}(y^{(i)} - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}^{(i)}))^2 - \mathbf{w} = (\Phi^{\mathsf{T}}R\Phi)^{-1}\Phi^{\mathsf{T}}R\mathbf{y}$

- 1. Fit **w** to minimize i - 2. Output $\mathbf{w}^{\top}\phi(\mathbf{x}^{(i)})$ - Standard choice: $r^{(i)} = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}\|^2}{2\tau^2}\right)$

au: "kernel width"

Kernel regression (Using Gaussian kernel)

- output: $\frac{\sum_{i} \kappa(\mathbf{x}, \mathbf{x}^{(i)}) y^{(i)}}{\sum_{i} \kappa(\mathbf{x}, \mathbf{x}^{(i)})}$ where $\kappa(\mathbf{x}, \mathbf{x}^{(i)}) = \exp(\frac{\|\mathbf{x}^{(i)} - \mathbf{x}\|^{2}}{2\tau})$

More generally, any distance metric (other than L2 or Euclidean distance) can be used Also, more general types of kernel function can be used.