Data Analytics Portfolio

Professional Background

I am currently pursuing my B.Tech Degree(final year) of Computer Science and Engineering in Tontadarya College of engineering, Gadag.I have secured 8.1 CGPA(till 6th sem).

I have attained several skills like Data Analysis, Python, Java and I have worked with different projects by considering above skills.

As a fresher I am willing to experience real world challenges in the cooperate world and as a fresher I am very flexible and adaptive to the culture. I am ready to learn new things which are suitable for the company. I am waiting for the opportunities to work where I can showcase my skills and give my full efforts to the company.

Table Of Contents

Professional Background	01
Table Of Contents	02
Project: Instagram User Analytics	03
Findings	04-08
Insights and Result	- 09
Project: Operation and Metric Analysis	10
Findings	- 11-15
Insights and Result	
Project: IMDB Movie Analysis	17
Findings	18-23
Insights and Result	- 24
Project : Bank Loan Case Study	
Findings	26-30
Insights and Result	31
Project: Impact Of Car Features	32
Findings	33-41
Insights and Result	42
Project : ABC Call Volume Trend	43
Findings	44-49
Insights and Result	50

Project: Instagram User Analytics

Project Description

The project involves analyzing user interactions and engagement with the Instagram app to provide valuable insights that can help the business grow. User analysis involves tracking how users engage with a digital product, such as a software application or a mobile app. The goal of this project is to use your SQL skills to extract meaningful insights from the data.

Findings

A) Marketing Analysis:

1.Loyal User Reward: The marketing team wants to reward the most loyal users, i.e., those who have been using the platform for the longest time.

Task: Identify the five oldest users on Instagram from the provided database.

Query:

```
use ig_clone;

SELECT username, created_at

FROM users

ORDER BY created_at ASC

LIMIT 5;
```


2. Inactive User Engagement: The team wants to encourage inactive users to start posting by sending them promotional emails.

Task: Identify users who have never posted a single photo on Instagram.

Query:

3. Contest Winner Declaration: The team has organized a contest where the user with the most likes on a single photo wins.

Task: Determine the winner of the contest and provide their details to the team.

Query:

```
Limit to 1000 rows

| Select p.user_id, p.image_url, COUNT(l.user_id) AS like_count
| FROM photos p
| JOIN likes 1 ON p.id = l.photo_id
| GROUP BY p.id
| ORDER BY like_count DESC
| LIMIT 1;
```


B) Investor Metrics:

1.User Engagement: Investors want to know if users are still active and posting on Instagram or if they are making fewer posts.

Task: Calculate the average number of posts per user on Instagram. Also, provide the total number of photos on Instagram divided by the total number of users.

Query:

```
SQL File 1* comments ×

use ig_clone;

SELECT AVG(post_count)

FROM (

SELECT COUNT(p.id) AS post_count

FROM users u

LEFT JOIN photos p ON u.id = p.user_id

GROUP BY u.id

AS post_counts;

SELECT COUNT(*) FROM photos) / (SELECT COUNT(*) FROM users) AS avg_photos_per_user;
```


2. Bots & Fake Accounts: Investors want to know if the platform is crowded with fake and dummy accounts.

Task: Identify users (potential bots) who have liked every single photo on the site, as this is not typically possible for a normal user.

Query:

Insights:

When all the data was synthesized, there were several significant findings that stood out:

- Users with the highest age have been located and most loyal users are also described using queries.
- A good proportion of the users never posted a photo; thus there is a possibility for engagement campaigns.
- The contest winner who got the highest number of likes thereby showing whom the audience liked most was located and five of the most frequently used tags were identified, a great asset for marketing purposes.

Results:

Through this project we are able make decisions and think in a way that would lead to describe a particular outcomes and Can easily find out solution to the problems by writing efficient queries.

Project: Operation Analytics and Investigating Metric Spike

Description:

One of the key aspects of Operational Analytics is investigating metric spikes. This involves understanding and explaining sudden changes in key metrics, such as a dip in daily user engagement or a drop in sales. The goal is to use your advanced SQL skills to analyze the data and provide valuable insights that can help improve the company's operations and understand sudden changes in key metrics.

Findings

Case Study 1: Job Data Analysis

A.Jobs Reviewed Over Time:

Objective: Calculate the number of jobs reviewed per hour for each day in November 2020.

Task: Write an SQL query to calculate the number of jobs reviewed per hour for each day in November 2020.

Query:

```
SQL File 1° ×
          job_data
           ₩ 👰 🕛 😘 💿 🔞 Limit to 1000 rows 💌 🎉 💜 🔍 ¶ 🖘
 15
           DATE(ds) AS date,
           HOUR(ds) AS hour,
 16
           COUNT(job_id) AS jobs_reviewed
17
       FROM job_data
 18
        WHERE ds BETWEEN '2020-11-01' AND '2020-11-30'
 19
       GROUP BY DATE(ds), HOUR(ds)
 20
       ORDER BY date, hour;
 21
```


B. Throughput Analysis:

Objective: Calculate the 7-day rolling average of throughput (number of events per second). Your Task: Write an SQL query to calculate the 7-day rolling average of throughput. Additionally, explain whether you prefer using the daily metric or the 7-day rolling average for throughput, and why.

Query:

C. Language Share Analysis:

Objective: Calculate the percentage share of each language in the last 30 days.

Your Task: Write an SQL query to calculate the percentage share of each language over the last 30 days.

Query:

```
SELECT
48
           language,
           COUNT(*) AS language_count,
49
           ROUND((COUNT(*) * 100.0 / (SELECT COUNT(*) FROM job_data WHERE ds >= DATE_SUB('2020-11-30', INTERVAL 30 DAY))), 2) AS percentage_share
50
51
       FROM
           job_data
52
53
       WHERE
           ds >= DATE_SUB('2020-11-30', INTERVAL 30 DAY)
54
55
       GROUP BY
56
           language
57
       ORDER BY
           percentage_share DESC;
58
```


Case Study 2: Investigating Metric Spike

A.Weekly User Engagement:

- A. Objective: Measure the activeness of users on a weekly basis.
- B. Your Task: Write an SQL query to calculate the weekly user engagement.

Query:

```
1 • use metric;
2 • SELECT
3          DATE_FORMAT(occured_at, '%Y-%u') AS week, -- year and week respectively
4          COUNT(DISTINCT user_id) AS active_users,
5          COUNT(event_name) AS total_events
6          FROM events
7          GROUP BY week
8          ORDER BY week;
```

R	esult Grid	Filter	Rows:	Export:
П	week	active_users	total_events	
•	2014-18	701	8790	
	2014-19	1054	17692	
	2014-20	1094	17233	
	2014-21	1147	18067	
	2014-22	1113	17379	
	2014-23	1173	18805	
	2014-24	1219	18431	
	2014-25	1263	19198	
	2014-26	1249	19069	
	2014-27	1271	19158	
	2014-28	1355	20188	
	2014-29	1345	20938	
	2014-30	1363	20360	
	2014-31	1443	21706	
	2014-32	1266	18530	
	2014-33	1215	16862	
	2014-34	1203	16417	
	2014-35	1194	16432	

B. User Growth Analysis:

- A. Objective: Analyze the growth of users over time for a product.
- B. Your Task: Write an SQL query to calculate the user growth for the product.

Query:

```
DATE_FORMAT(created_at, '%Y-%m') AS month,

COUNT(use_id) AS new_users

FROM users

GROUP BY month

ORDER BY month;
```

	month	new_users
•	2013-01	160
	2013-02	160
	2013-03	150
	2013-04	181
	2013-05	214
	2013-06	213
	2013-07	284
	2013-08	316
	2013-09	330
	2013-10	390
	2013-11	399
	2013-12	486
	2014-01	552
	2014-02	525
	2014-03	615
	2014-04	726
	2014-05	779
	2014-06	873
	2014-07	997
	2014-08	1031

Insights:

- The project generally focuses on **Operational Analytics** and **Investigating Metric Spikes**, using user data to analyze trends in engagement and marketing metrics. Key activities included **job data analysis**, detecting throughput trends, and language usage.
- Tasks involves initially database creation, import the CSV files, and building efficient SQL queries to solve problem statements. Analysis were performed for metrics like weekly user engagement, retention, and device preferences.
- Finding highlighted trends such as peak job review times, throughput averages, language usage patterns, and user engagement by device. These insights help in optimizing resources, understanding growth trends, and improving retention strategies.

Result:

The project analyzed job data and user engagement to uncover trends like peak activity times, language preferences, and user retention. Efficient SQL queries enabled problem identification and actionable insights for resource optimization. Using MySQL Workbench, the results improved decision-making and enhanced strategic planning.

Project: IMDB Movie Analysis

Description:

The dataset provided is related to IMDB Movies. A potential problem to investigate could be: "What factors influence the success of a movie on IMDB?" Here, success can be defined by high IMDB ratings. Consider the correlation between movie ratings and other factors like genre, director, budget, etc. You might also want to consider the year of release, the actors involved, and other relevant factors.

Excel sheet analysis: Click Here

Findings

A. **Movie Genre Analysis:** Analyze the distribution of movie genres and their impact on the IMDB score. •**Task:** Determine the most common genres of movies in the dataset. Then, for each genre, calculate

descriptive statistics (mean, median, mode, range, variance, standard deviation) of the IMDB scores.

genres						
Action	Adventure	Fantasy	Sci-Fi			
Action	Adventure	Fantasy				
Action	Adventure	Thriller				
Action	Thriller					
Documentary						
Action	Adventure	Sci-Fi				
Action	Adventure	Romance				
Adventure	Animation	Comedy	Family	Fantasy	Musical	Romance
Action	Adventure	Sci-Fi				
Adventure	Family	Fantasy	Mystery			
Action	Adventure	Sci-Fi				
Action	Adventure	Sci-Fi				
Action	Adventure					
Action	Adventure	Fantasy				
Action	Adventure	Western				
Action	Adventure	Fantasy	Sci-Fi			
Action	Adventure	Family	Fantasy			
Action	Adventure	Sci-Fi				
Action	Adventure	Fantasy				
Action	Adventure	Comedy	Family	Fantasy	Sci-Fi	
Adventure	Fantasy					
Action	Adventure	Fantasy				
Action	Adventure	Drama	History			
Adventure	Fantasy					
Adventure	Family	Fantasy				
Action	Adventure	Drama	Romance			

Separation of genres by using Text to Columns > Delimited .

Genre 💌	Total 💌			
Action	1154			
Adventure	924			
Documentary	122			
Drama	2595			
Animation	243			
Comedy	1873	max		
Mystery	501	Drama	2595	
Fantasy	609			
Crime	890	min		
Biography	294	Game-Show	2	
Sci-Fi	614			
Horror	566			
Romance	1105			
Thriller	1407			
Game-Show	2			
Family	545			
Music	215			
Western	97			
Musical	132			
Film-Noir	7			
History	208			
War	214			

Finding Total number of movies for each genre. Top Genres are:

• Drama • Comedy • Thriller • Action • Romance

		Genre Me	an 💌	Genre V	lediar 🕶	Genre Va	riance 💌	Genre St	:d_Dev
		Action	6.2	Action	6.3	Action	1.3	Action	1.1
		Adventure	6.5	Adventure	6.6	Adventure	1.3	Adventure	1.1
		Document	7.2	Document	7.4	Documentary	1.1	Documentary	1.1
		Drama	6.8	Drama	6.9	Drama	0.9	Drama	1.0
		Animation	6.6	Animation	6.7	Animation	1.3	Animation	1.1
		Comedy	6.2	Comedy	6.3	Comedy	1.2	Comedy	1.1
Min	1.6	Mystery	6.6	Mystery	6.6	Mystery	1.2	Mystery	1.1
max	9.5	Fantasy	6.4	Fantasy	6.4	Fantasy	1.3	Fantasy	1.2
Range	7.9	Crime	6.9	Crime	6.6	Crime	1.1	Crime	1.0
Mode	6.7	Biography	7.2	Biography	7.2	Biography	0.5	Biography	0.7
		Sci-Fi	6.0	Sci-Fi	6.4	Sci-Fi	1.5	Sci-Fi	1.2
		Horror	5.7	Horror	5.9	Horror	1.3	Horror	1.1
		Romance	5.9	Romance	6.5	Romance	1.0	Romance	1.0
		Thriller	5.6	Thriller	6.4	Thriller	1.1	Thriller	1.1
		Game-Sho	2.9	Game-Sho	2.9	Game-Show	0.0	Game-Show	0.0
		Family	5.7	Family	6.4	Family	1.4	Family	1.2
		Music	7.2	Music	6.6	Music	1.4	Music	1.2
		Western	6.6	Western	6.8	Western	1.1	Western	1.0
		Musical	6.0	Musical	6.7	Musical	1.5	Musical	1.2
		Film-Noir	7.6	Film-Noir	7.65	Film-Noir	0.2	Film-Noir	0.4
		History	7.5	History	7.2	History	0.8	History	0.9
		War	7.1	War	7.1	War	0.8	War	0.9
		Sport	6.7	Sport	6.8	Sport	1.2	Sport	1.1
		Reality-TV	4.7	Reality-TV	4.75	Reality-TV	1.5	Reality-TV	1.9
		Short	6.7	Short	6.8	Short	0.4	Short	0.7
		News	7.3.	News	7.4	News	0.2	News	0.4

Calculation of Discrete Statistics based on genres to IMDB Scores. Min, Max, Range, Mode based on Average IMDB Scores.

Here you can see IMDB Scores of specific genre with discrete statistics like: Mean, Median, Variance and Standard Deviation.

B. Movie Duration Analysis: Analyze the distribution of movie durations and its impact on the IMDB score.

•Task: Analyze the distribution of movie durations and identify the relationship between movie duration and IMDB score.

100 300	1 .		
uration 🔽	imdb_score 💌		
178	7.9		
169	7.1		
148	6.8		
164	8.5		
	7.1	Duration	
132	6.6		
156	6.2	Mean	107.20
100	7.8		
141	7.5	Median	103.00
153	7.5		
183	6.9	Std_dev	25.19
169	6.1		
106	6.7		
151	7.3		
150	6.5		
143	7.2		
150	6.6		
173	8.1		
136	6.7		
106	6.8		
164	7.5		
153	7		
156	6.7		
186	7.9		
113	6.1		
201	7.2		

Calculation of Discrete Statistics based on Duration to IMDB Scores. Mean, Median, Standard Deviation based on IMDB Scores.

D. Director Analysis: Influence of directors on movie ratings.

•Task: Identify the top directors based on their average IMDB score and analyze their contribution to the success of movies using percentile calculations.

Total number of languages are determined by using COUNTIF function in Excel. For Insight the data is visualized by a chart.

Calculation of Discrete Statistics based on Languages to IMDB Scores. Mean, Median, Standard Deviation based on IMDB Scores.

Insights:

Drama, Comedy, Thriller, Action, and Romance emerged as the most popular genres, with significant impacts on IMDB scores observed through statistical analysis. Movie durations showed a noticeable correlation with ratings, as longer films often exhibited more varied scores, visualized using scatter plots. Language analysis highlighted English as the leading language, with statistical insights revealing its dominance and global audience appeal. Directors played a critical role in influencing IMDB scores, with top-performing directors identified through percentile-based analysis. Budget analysis demonstrated that higher budgets often lead to greater profitability, supported by correlation findings and maximum profit evaluations.

Results:

- •Key patterns were identified for genres, durations, languages, directors, budgets, and their corresponding IMDB scores.
- •The analysis provided actionable insights to make decisions and solve problems, demonstrating the efficacy of Excel functions for statistical analysis and visualization.

Project: Bank Loan Case Study

Description:

A finance company that specializes in lending various types of loans to urban customers. Company faces a challenge some customers who don't have a sufficient credit history take advantage of this and default on their loans. The main aim of this project is to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The task is to use Exploratory Data Analysis (EDA) to analyze patterns in the data and ensure that capable applicants are not rejected.

Excel sheet analysis: Click Here

Findings

A. **Identify Missing Data and Deal with it Appropriately:** As a data analyst, you come across missing data in the loan application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis. **Task:** Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

The columns with more than 30% of missing values are dropped and rest of the columns and rest of the columns having minimal missing values are flagged and are filled with average of their values. Non-numerical values the blanks are replaced with "UNKOWN" as we cannot determine accurate values.

Data Visualization for Total Blank Cells

- **B. Identify Outliers in the Dataset:** Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset.
- •Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

ARGET	AMT_INCOME_TOTAL		
	1 202500		
(270000	Quartile 1	AMT_INCOME_TOTAL
(67500	112500	_
(135000		Mean 170767.5905
(121500	Quartile 3	Standard Error 2378.391083
(99000	202500	Median 145800
(171000		Mode 135000
(360000	Inter Quartile Range	Standard Deviation 531819.095
(112500	90000	Sample Variance 282831549942
(135000		Kurtosis 46582.52582
(112500	Lower Bound	Skewness 212.0777967
(38419.155	-22500	Range 116974350
(67500		Minimum 25650
(225000	Higher Bound	Maximum 117000000
(189000	337500	Sum 8538208758
(157500		Count 49999
(108000		
(81000		
(112500		
(90000		
(135000		
(202500		
(450000		
(83250		

Using the formula =QUARTILE(range, 1) to calculate Quartile 1 i.e. 25%

Using the formula =QUARTILE(range, 3) to calculate Quartile 3 i.e. 75%

Using the formula =Quartile 3 – Quartile1 to calculate Inter Quartile Range

Using the formula =Q1 - 1.5 * IQR to calculate Lower Bound

Using the formula = Q3 + 1.5 * IQR to calculate Higher Bound

And determine the Outliers using the above formulas

C. Analyze Data Imbalance: Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

As we can see in the above data and visualization the data is highly imbalance in the column **Target** it consists of 0 and 1 with the total distribution of **92%** of **'0'** and only **8%** of **'1'**.

D. **Identify Top Correlations for Different Scenarios:** Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default.

Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

CNT_CHILDREN	1	0.047814076	0.012515001	-0.041432553	-0.3089464	-0.19234024	0.024858612	
AMT_INCOME_TOTAL	0.0478	1	0.311647717	0.167456106	-0.06590741	-0.13591006	-0.028033091	
AMT_CREDIT	0.0125	0.311647717	1	0.078662392	0.057261399	-0.05584685	0.033809914	
REGION_POPULATION_REL	-0.0414	0.167456106	0.078662392	1	0.05286445	0.084191905	0.007818243	
DAYS_BIRTH(years)	-0.3089	-0.065907409	0.057261399	0.05286445	1	0.526179326	0.231576821	
DAYS_EMPLOYED(in Years)	-0.1923	-0.135910056	-0.05584685	0.084191905	0.526179326	1	0.216880243	
DAYS_ID_PUBLISH(Years)	0.0249	-0.028033091	0.033809914	0.007818243	0.231576821	0.216880243	1	
	CNT_CHILDREN	AMT_INCOME_	AMT_CREDIT	REGION_POPULA	DAYS_BIRTH(y	DAYS_EMPLO	DAYS_ID_PUBLISH	(Years)

Univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the **Target '0'** variable using Excel functions and features. Function =CORREL(r1,r2)

CNT_CHIL	1	0.072375	0.070364457	0.06279989	-0.264072	-0.2133799	0.0355442
AMT_INCO	0.0724	1	0.2100	0.0914	-0.0179	-0.1000	-0.0254
AMT_CRE	0.0704	0.2100	1	0.1614	0.0938	-0.0074	0.0638
REGION_P	0.0628	0.0914	0.1614	1	-0.1142	-0.0588	-0.0252
DAYS_BIRT	-0.2641	-0.0179	0.0938	-0.1142	1	0.5928	0.1658
DAYS_EM	-0.2134	-0.1000	-0.0074	-0.0588	0.5928	1	0.1429
DAYS_ID_I	0.0355	-0.0254	0.0638	-0.0252	0.1658	0.1429	1
	CNT_CHIL	AMT_INCO	AMT_CREDIT	REGION_POP	DAYS_BIRTH	DAYS_EMPLO	DAYS_ID_PL

Univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the **Target '1'** variable using Excel functions and features. Function = CORREL(r1,r2)

Insights:

- 1. Missing data was handled by dropping highly null columns and imputing averages or "UNKNOWN" for remaining gaps.
- 2.Data imbalance revealed that 92% of applicants were non-defaulters, highlighting a skewed target distribution.
- 3. Statistical analysis and visualizations showed correlations between income, loan amounts, and default risks.

Results:

- Identified factors influencing defaults, enabling better loan approval strategies.
- Enhanced decision-making through risk-based recommendations like adjusting loan terms or interest rates.
- Improved data integrity by addressing missing values, outliers, and imbalances systematically.

Analyzing the Impact of Car Features on Price and Profitability

Description:

The automotive industry has been rapidly evolving over the past few decades, with a growing focus on fuel efficiency, environmental sustainability, and technological innovation. This problem could be approached by analyzing the relationship between a car's features, market category, and pricing, and identifying which features and categories are most popular among consumers and most profitable for the manufacturer. By using data analysis techniques such as regression analysis and market segmentation, the manufacturer could develop a pricing strategy that balances consumer demand with profitability, and identify which product features to focus on in future product development efforts.

Excel sheet analysis: Click Here

Findings

Insight Required: How does the popularity of a car model vary across different market categories?Task 1.A: Create a pivot table that shows the number of car models in each market category and their corresponding popularity scores.

Market category		m of Popularity	Luxury,Performance,Hybrid	11	25665
N/A	3739	6273477	Exotic, Factory Tuner, High-Performance	21	21974
Flex Fuel	872	1933488	Hatchback, Factory Tuner, High-Performance	13	15667
Crossover	1110	1715242	Crossover, Luxury, Hybrid	24	15142
Luxury	855	942772	Exotic,Performance	10	13910
Luxury, Performance	673	869930	Crossover, Factory Tuner, Luxury, Performance	5	13037
Hatchback	641	845393	Hatchback, Diesel	14	12222
Performance	601	810673	Crossover, Hatchback, Factory Tuner, Performance	6	12054
Luxury, High-Performance	334	557118	Crossover, Hatchback, Performance	6	12054
Factory Tuner, Luxury, High-Performance	215	458674	Crossover, Flex Fuel, Luxury	10	11732
Crossover,Luxury	410	362665	Crossover, Flex Fuel, Luxury, Performance	6	9744
High-Performance	199	362468	Crossover, Luxury, High-Performance	9	9335
Exotic, High-Performance	261	331818	Hatchback,Factory Tuner,Luxury,Performance	9	7982
Hatchback, Performance	252	261991	Crossover, Luxury, Performance, Hybrid	2	7832
Hybrid	123	258985	Exotic,Luxury,Performance	36	7813
Factory Tuner, High-Performance	106	205790	Luxury, High-Performance, Hybrid	12	6826
Crossover, Performance	69	178431	Exotic,Flex Fuel,Factory Tuner,Luxury,High-Performance	13	6760
Factory Tuner, Performance	92	156004	Crossover, Diesel	7	6111
Hatchback, Hybrid	72	152730	Exotic,Flex Fuel,Luxury,High-Performance	11	5720
Crossover, Luxury, Performance	113	151968	Exotic,Factory Tuner,Luxury,Performance	3	1560
Flex Fuel, Performance	87	146201	Crossover, Hatchback, Luxury	7	1428
Diesel	84	145396	Hatchback, Luxury, Hybrid	3	1362
Crossover,Flex Fuel	64	132720	Exotic, Luxury	12	1352
Crossover, Hatchback	72	120650	Factory Tuner, Luxury	2	1234
Diesel, Luxury	51	116025	Crossover, Factory Tuner, Performance	4	840
Crossover, Hybrid	42	107662	Flex Fuel, Performance, Hybrid	2	310
Flex Fuel, Diesel	16	90512	Flex Fuel, Hybrid	2	310
Crossover,Luxury,Diesel	34	73080	Flex Fuel, Factory Tuner, Luxury, High-Performance	1	258
Hatchback, Luxury	46	63457	Crossover, Exotic, Luxury, Performance	1	238
Hatchback, Luxury, Performance	38	59513	Crossover, Exotic, Luxury, High-Performance	1	238
Hatchback,Factory Tuner,Performance	22	47499	Exotic, Luxury, High-Performance, Hybrid	1	204
Crossover, Factory Tuner, Luxury, High-Performance	26	47410	Performance,Hybrid	1	155
Factory Tuner, Luxury, Performance	31	43816	Grand Total	11911	18523769

The popularity of a car model with respect to different market categories is represented through pivot table.

Task 1.B: Create a combo chart that visualizes the relationship between market category and popularity.

Insight Required: What is the relationship between a car's engine power and its price? **Task 2:** Create a scatter chart that plots engine power on the x-axis and price on the y-axis. Add a trendline to the chart to visualize the relationship between these variables.

The graph shows a increasing trendline slope, which tells there is a direct correlation between a car's engine power and its price. This implies that vehicles with more powerful engines tend have higher price tags.

Insight Required: Which car features are most important in determining a car's price? **Task 3:** Use regression analysis to identify the variables that have the strongest relationship with a car's price. Then create a bar chart that shows the coefficient values for each variable to visualize their relative importance.

Engine HP	Engine Cylii N	umber	highway M city	mpg F	opularity N	ISRP	SUMMARY	OUTPUT							
335	6	2	26	19	3916	46135									
300	6	2	28	19	3916	40650	Regression	Statistics							
300	6	2	28	20	3916	36350	Multiple R	0.681366							
230	6	2	28	18	3916	29450	R Square	0.464259							
230	6	2	28	18	3916	34500	Adjusted R	0.463989							
230	6	2	28	18	3916	31200	Standard E	44012.33							
300	6	2	26	17	3916	44100	Observatio	11911							
300	6	2	28	20	3916	39300									
230	6	2	28	18	3916	36900	ANOVA								
230	6	2	27	18	3916	37200		df	SS	MS	F	Significance F			
300	6	2	28	20	3916	39600	Regression	6	2E+13	3.33E+12	1719.283269	0			
230	6	2	28	19	3916	31500	Residual	11904	2.31E+13	1.94E+09					
300	6	2	28	19	3916	44400	Total	11910	4.3E+13						
230	6	2	28	19	3916	37200									
230	6	2	28	19	3916	31500	(Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Ipper 95.0%
320	6	2	25	18	3916	48250	Intercept	-80842.7	3361.769	-24.0477	8.1475E-125	-87432.35	-74253.1178	-87432.4	-74253.1
320	6	2	28	20	3916	43550	Engine HP	320.3035	5.892399	54.35876	0	308.75348	331.853612	308.7535	331.8536
172	6	4	24	17	3105	2000	Engine Cyli	6076.942	422.0685	14.398	1.31112E-46	5249.6187	6904.26527	5249.619	6904.265
172	6	4	24	17	3105	2000	Number of	-4449.94	463.2595	-9.60571	9.07064E-22	-5358.0007	-3541.87232	-5358	-3541.87
172	6	4	20	16	3105	2000	highway M	747.2494	102.9674	7.257143	4.19913E-13	545.41639	949.08236	545.4164	949.0824
172	6	4	24	17	3105	2000	city mpg	396.0968	97.60013	4.058364	4.97335E-05	204.78463	587.40902	204.7846	587.409
172	6	4	21	16	3105	2000	Popularity	-3.24346	0.280394	-11.5675	8.79203E-31	-3.7930785	-2.69384321	-3.79308	-2.69384
172	6	4	24	17	3105	2000									

On the basis of regression analysis, the variables of Engine horsepower, Engine cylinders, City MPG, Highway MPG, and MSRP shows the strongest relationship with a car's price.

From the chart we can say that the strongest relationship with price is of Engine Cylinders and the negative relationship is with Number of Doors, which means it is inversely related to the car's price.

Building the Dashboard:

Task 1: How does the distribution of car prices vary by brand and body style?

Sum of MSRP	Column Labels 🔻																
Row Labels ▼	2dr Hatchback	2dr SUV	4dr Hatchback	4dr SUV	Cargo Minivan (Cargo Van	Convertible (Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand Total
Acura	480917		357440	2663505					793748						4294702	201360	8791672
Alfa Romeo							129800		178200								308000
Aston Martin							7321655		9635275						1448735		18405665
Audi	4000			2674900			3291405		3556290						7158348	847350	17532293
Bentley							6012870		6356760						5920900		18290530
BMW	80097		1144950	3160950			4502671		3419051						7989300	259600	20556619
Bugatti									5271671								5271671
Buick				2141770			179325		18534			330065	5		2850590	8212	5528496
Cadillac				7182555			985607		2953574	599150					9418847	1184100	22323833
Chevrolet	8000	213310	1287260	6569568	420150	78688	2953245	106300	3504525	5927617	3117951	1178515	607670	2260032	3303977	300675	31837483
Chrysler	98805			250545			630105		114510			922295	5		2479859	501075	4997194
Dodge	48000	44000	18000	2572405	60520	338497	12000		3264627	2235775	864172	557425	70708	719408	2417585	793055	14016177
Ferrari							4723811		11713289								16437100
FIAT	420715			369305			327965									287570	1405555
Ford	36000	479873	567615	4482771	702400	566351	730007		1398144	3812353	2285584	1411605	2431898	1299240	2299348	1635565	24138754
Genesis															139850		139850
GMC		144319)	6641919	142750	468085				4062482	2183866	150630	603670	1306328	3		15704049
Honda	413200		2088520	3953209			252135		1588705	787720		553185	5		2340105		11976779
HUMMER				377490						242405							619895
Hyundai	1038050		528880	2128890					724070			133075	5		2899937		7452902
Infiniti				4340200			980050		2175750						6494090		13990090
Kia			406960	2049645					142630			494650)		1980360	772405	5846650
Lamborghini							7064450		10177050								17241500
Land Rover		476394	1	9076595				145731									9698720
Lexus			94700	3152974			472065		1016472						4837596	31105	9604912
Lincoln				3422570					25342	453260					2854855	269705	7025732
Lotus							413260		1593200								2006460
Maserati				155000			2342963		1972284						2153800		6624047
Maybach							2762750								5976800		8739550
Mazda	22000	24000	853180	3222525			870505		543879		580033	443130)	265486	1618571	33350	8476659
McLaren							280225		918800								1199025
Mercedes-Benz			122800	4974610	28950		5753964		6473107			32500)		7080243	764935	25231109
Mitsubishi	394868		407835	2066505	2000		209893			240210	134360	2000)	8000	1058563		4524234

This analysis gives valuable insights into the variations in car prices based on brand and body style. Such insights can help for manufacturers in optimizing their pricing strategies and enhancing profitability. With addition to the utilization of slicers enables a deeper exploration of the data, allowing for a more detailed examination of specific details and patterns.

Task 2: Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?

Average of MSF	verage of MSRP Column Labels ▼																
Row Labels	2dr Hatchback	2dr SUV	4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Convertible SUV Coupe	C	rew Cab Pickup E	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand Total
Acura	17175.60714		51062.85714	42959.75806				3	39687.4						33292.26357	33560	34887.5873
Alfa Romeo							64900		59400								61600
Aston Martin							203379.3056	19	92705.5						206962.1429		197910.3763
Audi	2000			48634.54545			70029.89362	93586	6.57895						44461.78882	33894	53452.1128
Bentley							250536.25	25	54270.4						236836		247169.3243
BMW	26699		54521.42857	58536.11111			63417.90141	51803	3.80303						70701.76991	43266.66667	61546.76347
Bugatti								17572	223.667								1757223.667
Buick				33996.34921			25617.85714	2059.	.333333			30005.90909			27946.96078	2053	28206.61224
Cadillac				72551.06061			70400.5	4	45439.6	66572.22222					50912.68649	47364	56231.31738
Chevrolet	2000	8887.916667	18930.29412	32046.67317	20007.14286	7153.454545	62835	17716.66667 38939	9.16667	39255.74172	24170.16279	24552.39583	24306.8	19824.84211	20521.59627	15825	28350.38557
Chrysler	32935			35792.14286			24234.80769		19085			29751.45161			26103.77895	26372.36842	26722.96257
Dodge	2000	2000	2000	30992.83133	20173.33333	12536.92593	2000	45980	0.66197	31052.43056	13938.25806	25337.5	14141.6	9342.961039	21780.04505	24782.96875	22390.05911
Ferrari							214718.6818	24921	18.9149								238218.8406
FIAT	21035.75			24620.33333			23426.07143									22120.76923	22670.24194
Ford	2000	13710.65714	19572.93103	41507.13889	21284.84848	17698.46875	34762.2381	34101	1.07317	41438.61957	23808.16667	23526.75	32425.30667	17797.80822	21290.25926	27259.41667	27399.26674
Genesis															46616.66667		46616.66667
GMC		5550.730769		36695.68508	23791.66667	18723.4				39062.32692	26632.5122	25105	26246.52174	21069.80645			30493.29903
Honda	17216.66667		26106.5	28855.54015			36019.28571	21763	3.08219	34248.69565		36879			26001.16667		26674.34076
HUMMER				37749						34629.28571							36464.41176
Hyundai	18536.60714		17629.33333	30412.71429				20687	7.71429			26615			27102.21495		24597.0363
Infiniti				45686.31579			46669.04762	40291	1.66667						40588.0625		42394.21212
Kia			19379.04762	31533				20375	5.71429			32976.66667			23298.35294	20326.44737	
Lamborghini							336402.381	32829	91.9355								331567.3077
Land Rover		39699.5		70910.89844				48577									67823.21678
Lexus			31566.66667	45042.48571			52451.66667	5	50823.6						48864.60606	31105	47549.06931
Lincoln				50331.91176				2111.	.833333	41205.45455					42609.77612	44950.83333	42839.82927
Lotus							51657.5	75866	6.66667								69188.27586
Maserati				77500			130164.6111	11601	16.7059						102561.9048		114207.7069
Maybach							1381375								426914.2857		546221.875
Mazda	2000	2000	20809.26829	27080.04202			28080.80645	20143	3.66667		11600.66	23322.63158		9154.689655	19738.67073	16675	20039.38298
McLaren							280225		229700								239805
Mercedes-Benz			40933.33333	68145.34247	28950		104617.5273	1097	713.678			32500			49168.35417	44996.17647	71476.22946
Mitsubishi	13162.26667		13155.96774	26158.29114	2000		29984.71429			26690	19194.28571	2000		2000	24058.25		21240.53521

During the analysis, it was observed that certain brands exhibit significantly higher or lower average Manufacturer's Suggested Retail Price (MSRP) compared to others. Luxury brands such as Bugatti, Maybach, and Rolls Royce generally have higher average MSRP values compared to brands like BMW, Toyota, and Audi. Additionally, specific vehicle styles, including Sedan, 4Dr SUV, and Coupe, tend to have higher average MSRP values compared to other styles. This underscores the price variations based on brand and vehicle style, highlighting the diverse pricing landscape within the automotive market. Furthermore, the results of this analysis illustrate the progression of fuel efficiency over time across different body styles.

Insights:

- 1.Engine power correlates positively with car price, vehicles with higher horsepower generally have higher prices.
- 2. Market categories, such as luxury and performance, influence a car's popularity and pricing significantly.
- 3. Fuel efficiency is inversely related to engine cylinders; more cylinders result in lower highway MPG, emphasizing a trade-off between performance and efficiency.

Results:

- •Identified key factors like engine specifications and fuel efficiency affecting car pricing and demand.
- •Established manufacturer-wise and body style-based price variations, aiding pricing strategy optimization.
- •Highlighted market trends, such as growing emphasis on fuel-efficient body styles and their impact on profitability.

ABC Call Volume Trend Analysis

Description:

In this project, you'll be diving into the world of Customer Experience (CX) analytics, specifically focusing on the inbound calling team of a company. You'll be provided with a dataset that spans 23 days and includes various details such as the agent's name and ID, the queue time (how long a customer had to wait before connecting with an agent), the time of the call, the duration of the call, and the call status (whether it was abandoned, answered, or transferred). Inbound customer support, which is the focus of this project, involves handling incoming calls from existing or prospective customers. The goal is to attract, engage, and delight customers, turning them into loyal advocates for the business.

Findings

1.Average Call Duration: Determine the average duration of all incoming calls received by agents. This should be calculated for each time bucket.

Task: What is the average duration of calls for each time bucket?

Call_Status	answered
Row Labels 🔻	Average of Call_Seconds (s)
10_11	203.3310302
11_12	199.2550234
12_13	192.8887829
13_14	194.7401744
14_15	193.6770755
15_16	198.8889175
16_17	200.8681864
17_18	200.2487831
18_19	202.5509677
19_20	203.4060725
20_21	202.845993
9_10	199.0691057
Grand Total	198.6227745

The average of Call seconds which are answered is of 198.6 seconds in total.

 The analysis tells us that the average call time duration for incoming calls received by agents is highest between 10 am to 11 am and from 7 pm to 8 pm. **2.Call Volume Analysis:** Visualize the total number of calls received. This should be represented as a graph or chart showing the number of calls against time. Time should be represented in buckets (e.g., 1-2, 2-3, etc.).

Task: Can you create a chart or graph that shows the number of calls received in each time bucket?

- Considering the analysis, it was observed that customers make the maximum number of calls between 11 am to 12 noon.
- The analysis also suggests that customers make the minimum number of calls between 8 pm to 9 pm.
- This analysis suggests the user to know at what time range the customers will more likely to answer the call.

3.Manpower Planning: The current rate of abandoned calls is approximately 30%. Propose a plan for manpower allocation during each time bucket (from 9 am to 9 pm) to reduce the abandon rate to 10%. In other words, you need to calculate the minimum number of agents required in each time bucket to ensure that at least 90 out of 100 calls are answered.

Task: What is the minimum number of agents required in each time bucket to reduce the abandon rate to 10%?

Count of Duration(hh:mm:ss)	Column Labels			
Row Labels	▼ abandon	answered	transfer	Grand Total
⊕ 01-Jan	684	3883	77	4644
⊕ 02-Jan	356	2935	60	3351
⊕ 03-Jan	599	4079	111	4789
⊕ 04-Jan	595	4404	114	5113
⊕ 05-Jan	536	4140	114	4790
⊕ 06-Jan	991	3875	85	4951
⊕ 07-Jan	1319	3587	42	4948
⊕ 08-Jan	1103	3519	50	4672
⊕ 09-Jan	962	2628	62	3652
⊞ 10-Jan	1212	3699	72	4983
⊞ 11-Jan	856	3695	86	4637
⊞ 12-Jan	1299	3297	47	4643
⊞ 13-Jan	738	3326	59	4123
⊞ 14-Jan	291	2832	32	3155
⊞ 15-Jan	304	2730	24	3058
⊞ 16-Jan	1191	3910	41	5142
⊞ 17-Jan	16636	5706	5	22347
⊞ 18-Jan	1738	4024	12	5774
⊞ 19-Jan	974	3717	12	4703
⊞ 20-Jan	833	3485	4	4322
⊞ 21-Jan	566	3104	5	3675
⊞ 22-Jan	239	3045	7	3291
⊞ 23-Jan	381	2832	12	3225
Grand Total	34403	82452	1133	117988

-	abandon	answered	transfer	Total
Average no. of call status	1495.8	3584.9	49.3	5129.9
call status in %	29.2%	69.9%	1.0%	_
Agent's working hour	4.5			
Average of call duration in sec	198.6228			
Hours needed for 90%	254.7294			
Total no. of agents required	57			

By assuming that a person works 7.5 hrs a day, 6 days in a week with 60% in engaging to answered calls.

By using the formula =(60/100)*7.5, with this we can determine the worker being in call i.e. 4.5 hrs a day

We have already calculated average Call Duration in sec in Task 1.

We can calculate Hours needed for 90%, (5129.9*198.6*0.9)/3600.

We can calculate Total no. of agents required, (254.7/4.5).

This analysis helps to know the total man power required/used and to distribute the work among the employees.

4.Night Shift Manpower Planning: Customers also call ABC Insurance Company at night but don't get an answer because there are no agents available. This creates a poor customer experience. Assume that for every 100 calls that customers make between 9 am and 9 pm, they also make 30 calls at night between 9 pm and 9 am. The distribution of these 30 calls is as follows:

Task: Propose a manpower plan for each time bucket throughout the day, keeping the maximum abandon rate

at 10%.

	Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot)										
9pm- 10pm	9pm- 10pm 10pm - 11pm 11pm- 12am 12am- 1am 1am - 2am 2am - 3am 3am - 4am 4am - 5am 5am - 6am 6am - 7am 7am - 8am 8am - 9am										
3	3 3 2 2 1 1 1 1 3 4 4 5										

Count of Duration(h	nh:mm:ss) Column Labels 🔻			
Row Labels	▼ abandon	answered	transfer	Grand Total
⊕ 01-Jan	684	3883	77	4644
⊕ 02-Jan	356	2935	60	3351
⊕ 03-Jan	599	4079	111	4789
⊕ 04-Jan	595	4404	114	5113
⊞ 05-Jan	536	4140	114	4790
⊕ 06-Jan	991	3875	85	4951
⊞ 07-Jan	1319	3587	42	4948
⊞ 08-Jan	1103	3519	50	4672
⊕ 09-Jan	962	2628	62	3652
⊕ 10-Jan	1212	3699	72	4983
⊞ 11-Jan	856	3695	86	4637
⊞ 12-Jan	1299	3297	47	4643
⊕ 13-Jan	738	3326	59	4123
⊞ 14-Jan	291	2832	32	3155
⊕ 15-Jan	304	2730	24	3058
⊕ 16-Jan	1191	3910	41	5142
⊞ 17-Jan	16636	5706	5	22347
⊞ 18-Jan	1738	4024	12	5774
⊞ 19-Jan	974	3717	12	4703
⊞ 20-Jan	833	3485	4	4322
⊞ 21-Jan	566	3104	5	3675
⊞ 22-Jan	239	3045	7	3291
⊞ 23-Jan	381	2832	12	3225
Grand Total	34403	82452	1133	117988

-	abandon	answered	transfer	Total
Average no. of call status	1495.8	3584.9	49.3	5129.9
call status in %	29.2%	69.9%	1.0%	
Agent's working hour	4.5			
Average of call duration in sec	198.623			
Average no. of calls at night	1538.97			
Hours needed for 90%	76.4188			
Total no. of agents required	17			

By assuming that a person works 7.5 hrs a day, 6 days in a week with 60% in engaging to answered calls.

By using the formula =(60/100)*7.5, with this we can determine the worker being in call i.e. 4.5 hrs a day

We have already calculated average Call Duration in sec in Task 1.

To calculate average no. of calls at night, using formula =(0.3*5129.9)

We can calculate Hours needed for 90%, (198.6*1538.9*0.9)/3600.

We can calculate Total no. of agents required, (76.4/4.5).

Insights:

- 1.Peak call volumes occur between 11 a.m. and 12 p.m., while the least activity is observed from 8 p.m. to 9 p.m.
- 2. Average call duration is highest between 10 a.m. and 11 a.m. and from 7 p.m. to 8 p.m., with the lowest durations recorded between 12 p.m. and 1 p.m.
- 3.A significant 30% of calls are abandoned during the day due to insufficient manpower, necessitating optimized staffing plans.

Results:

- 1.Identified optimal time slots for scheduling agents to reduce abandoned calls and improve service quality.
- 2.Proposed manpower allocation strategies to achieve a 90% call-answer rate during both day and night shifts.
- 3.Enhanced understanding of call patterns, enabling better customer experience and resource management.