PRACTICE EXAM ONLY

Student ID:			Seat Nun		
Subject code:	MAT4MDS		Paur number:	1 (of 1)	
Reading time:	15		inutes		
Writing time:	120		ninutes		
Number of pages:	13 (including 4	4 page Fact Sheet)	cluding cover sh	neet)	
Campus:					
☐ Albury-Wodonga	☐ Bendigo	⊠ Bundoora □ Ci	ity 🗆 Mildura	\square Shepparton	
Allowable materia					
Number:	escription:				
Instructions to cand	lo .				
1. This exam pa	per consists of 5	55 marks.			
Write your an space, continue you	· ·	ces provided using blu extra space' page.	ue or black pen. If yo	u need extra	
3. Attempt all qu	3. Attempt all questions. Show all of your working unless instructed otherwise.				
4. If you cannot do part of a question, you should still attempt later parts; information given in the question may enable you to answer them correctly.					

NOTE: No working pages have been provided in this sample exam – in the actual exam, there are extra blank working pages included.

Calculators may NOT be used in the exam.

5.

Question 1. Total: 7 marks

Consider the matrix

$$M = \begin{bmatrix} 8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10 \end{bmatrix}$$

Find the eigenvalues of M.

Question 2. Total: 12 marks

- (a) Which of the following statements are true, and which are false:
 - Any matrix which is self-transpose is invertible.
 - Any matrix with non-zero trace is invertible.
 - Any matrix with non-zero determinant is invertible.
 - Any positive semi-definite matrix is invertible.
 - Any full-rank matrix is invertible.
 - If none of the eigenvalues of a matrix is zero, it is invertible.
 - The all-ones square matrix is invertible.
 - The identity matrix is self-transpose.
 - The trace of a square matrix of any size is equal to the sum of its eigenvalues.
 - The determinant of a square matrix of any size is equal to the product of its eigenvalues.

5 marks

(b) Find the least squares line $y = \alpha x + \beta$ for the following data, with x as the independent variable and y as the dependent variable:

	y	-1	0	1	2	3
ſ	\boldsymbol{x}	3	2	1	1	0.5

6 marks

Question 3. Total: 15 marks

$$h: \mathbb{R} \to \mathbb{R}, \ h(x) = \log_e(x^2 + 3)$$

(a) Locate the stationary point of h(x).

2 marks

(b) Using the second derivative test, classify the point found in (a).

 $3\ marks$

(c) Find any points of inflection of h(x).

2 marks

(d) State the range of h (that is, the output values of the function).

1 mark

- (e) Sketch the graph of h, marking the points found in (a) and (c).
- 3 marks

(f) Find the inverse of the function

$$f: \mathbb{R}^- \to \mathbb{R}, \ f(x) = \log_e(x^2 + 3)$$

Question 4. Total: 7 marks

(a) Show that

$$\frac{B(x+1,y)}{B(y+1,x)} = \frac{x}{y}$$

2 marks

(b) By an appropriate method, find

$$\int_0^{\sqrt{3}} \log_e(x^2 + 3) \ dx$$

You may use the fact, which is being given to you, that $\int_0^1 \frac{1}{1+u^2} \ du = \frac{\pi}{4}$

Question 6. Total: 12 marks

Consider the function of two variables

$$f(x,y) = e^{-x^2 - y^2}.$$

(a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

 $2\ marks$

(b) Find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial y \partial x}$

3 marks

(c) Hence find the second order Taylor polynomial for f(x,y) near (1,-1).

4 marks

(d) Let $g(x,y) = x^4 e^{-x^2 - y^{\alpha}}$

Find an expression (in terms of y) for

$$\int_0^\infty g(x,y)dx.$$

3 marks

(e) In the function g(x,y) is α a shape parameter or a scale parameter? Why? $\qquad 2 \ marks$

**** End of Questions ****

Matrices

- For each order $(m \times n)$, the matrix of ones $J_{m \times n}$ is the matrix in which every entry is 1. The square $(n \times n)$ matrix of ones is usually written as J_n .
- The centering matrix $C_n := I_n \frac{1}{n}J_n$
- When it exists, the inverse of an $n \times n$ matrix A is the unique matrix, denoted by A^{-1} , with the property

$$AA^{-1} = I_n,$$

where I_n is the $n \times n$ identity matrix.

- Multiplicative Property of Determinants: det(AB) = det(A) det(B).
- Associated with each eigenvalue λ of a square matrix A, there is an eigenvector X, which is a non-zero column vector such that $AX = \lambda X$.
- For a 2×2 matrix A, the characteristic equation of A is

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A) = 0.$$

where trace(A) is the sum of the diagonal entries of A.

• The least squares solution to the system AX = b is given by the solution to $A^TAX = A^Tb$.

Calculus

function	f(x)	x^r	constant	e^x	$\log_e(x)$
		$(r \neq 0)$			
derivative	f'(x)	rx^{r-1}	0	e^x	$\frac{1}{x}$

• The constant rule

If
$$y = cu = cg(x)$$
 where $c \in \mathbb{R}$ then $\frac{dy}{dx} = c\frac{du}{dx} = cg'(x)$.

• The sum rule

If
$$y = u + v = g(x) + h(x)$$
 then
$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} = g'(x) + h'(x).$$

• The product rule

If
$$y = u \cdot v = g(x) \cdot h(x)$$
 then
$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx} = g'(x)h(x) + g(x)h'(x)$$

• The extended product rule

If
$$y = f(x) \cdot g(x) \cdot h(x)$$
 then
$$\frac{dy}{dx} = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

• The chain rule

If
$$y = f(u) = f(g(x))$$
 and $u = g(x)$ then
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = f'(g(x)) g'(x).$$

• The quotient rule

If
$$y = \frac{u}{v} = \frac{g(x)}{h(x)}$$
 where $h(x) \neq 0$ then $\frac{dy}{dx} = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2} = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}$.

- The Second Derivative test Suppose that $f'(x_0) = 0$.
 - If $f''(x_0) > 0$, then x_0 is a local minimum point.
 - If $f''(x_0) < 0$, then x_0 is a local maximum point.
 - If $f''(x_0) = 0$, the test is inconclusive. (This point may be a local maximum, a local minimum or a point of inflection.)

• The *n*th **Taylor polynomial** to f about a is the function $T_n f : \mathbb{R} \to \mathbb{R}$ where

$$(T_n f)(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

where $f^{(n)}(x) = \frac{d^n}{dx^n}(f(x))$ is the n^{th} derivative of f. T_1f is a linear approximation to f.

• Taylor's Theorem. Let f be a function which has an $(n+1)^{th}$ derivative defined on an interval I containing 0. If there is a positive number M such that $-M \leq f^{(n+1)}(x) \leq M$ for all $x \in I$ then

$$\left| (E_n f)(x) \right| \leqslant \frac{M|x|^{n+1}}{(n+1)!} \quad \text{for } x \in I.$$

Here $(E_n f)(x) = f(x) - (T_n f)(x)$ is the error which arises when $T_n f$ is used as an approximation to f.

11

Table of Common Antiderivatives.

f(x)	Anti-derivative $F(x)$	Comments
x^k	$\frac{1}{k+1}x^{k+1}$	$k \neq -1, x > 0.$
e^{ax}	$\frac{1}{a}e^{ax}$	
$\frac{1}{x}$	$\log_e(x)$	x > 0
$\log_e(x)$	$x \log_e(x) - x$	x > 0

- Sum/difference property: $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$
- Constant multiple property: $\alpha f(x) dx = \alpha \int f(x) dx$ for all $\alpha \in \mathbb{R}$.
- For all $a, b \in \mathbb{R}$ with $a \neq 0$: If $\int f(x) \ dx = F(x)$ then $\int f(ax + b) \ dx = \frac{1}{a}F(ax + b)$
- Substitution rule: For suitable functions f and g we have

$$\int_{a}^{b} f(u) \frac{du}{dx} dx = \int_{a(a)}^{g(b)} f(u) du$$

where u = g(x).

• Integration by Parts

$$\int_{a}^{b} u \frac{dv}{dx} \ dx = uv|_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} \ dx$$

• The cumulative distribution function F is an anti-derivative of the probability density function f for continuous data. That is:

$$P(X \leqslant x) = F(x) = \int_{-\infty}^{x} f(t)dt$$

The **mean** value is given by

$$\int_{-\infty}^{\infty} x f(x) dx$$

• The trapezoidal rule: The integral on [a, b] of the function f can be approximated by

$$\frac{(b-a)}{2n} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n) \right]$$

where $x_k = a + k \frac{(b-a)}{n}, \quad k = 0, 1, ... n$

Special functions and functions of two variables:

• The Gamma Function:

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$

It has the properties:

$$\Gamma(x+1) = x\Gamma(x)$$
 $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$

Special values:

$$\Gamma(1) = 1$$
 $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

• The Beta Function

$$B(p,q) = \int_0^1 y^{p-1} (1-y)^{q-1} dy = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

• The second order Taylor polynomial of a function of two variables f(x, y) about (a, b):

$$\begin{split} T_{(a,b)}^2 f(x,y) = & f(a,b) + (x-a) \frac{\partial f}{\partial x}(a,b) + (y-b) \frac{\partial f}{\partial y}(a,b) \\ & + \frac{1}{2} \left\{ (x-a)^2 \frac{\partial^2 f}{\partial x^2}(a,b) + 2(x-a)(y-b) \frac{\partial^2 f}{\partial x \partial y}(a,b) + (y-b)^2 \frac{\partial^2 f}{\partial y^2}(a,b) \right\}. \end{split}$$