END TERM EXAMINATION

THIRD SEMESTER [BCA] NOVEMBER-DECEMBER 2017

Paper Code: BCA-201

Subject: Mathematics-III

(Batch 2011 Onwards)

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q.no.1 which is compulsory. Select one question from each unit.

(a) Find the lower and upper quartiles for the following distribution.

2	140-144	145 140	150-154	155-159	160-164	165-169	170-174	175-179	180-184
Scores	140-144	140-149	100-10-1	200 203	100 10	-	10	0	5
Frequency:	1	3	2	4	4	D	10	0	5

Scores	185-189	190-194	195-199
Frequency:	4	2	1

(b) Mean and S.d of a sample of 100 observations were calculated as 40 and 5.1 respectively. But by mistake one observation 40 was read as 50. Calculate the correct mean and S.d.

Given r = 0.8, $\sum xy = 60$, $\sigma_y = 2.5$ and $\sum x^2 = 90$. Find the number of items (x and y are deviation from their arithmetic average).

(d) Differentiate PERT and CPM.

Explain Vogel's Approximation method.

(5x5=25)

Unit-I

(a) The first quartile of the following data is 21.5.

Class:	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50
Frequency:	The state of the s		90	122	5	56	20	23

Find the missing frequency and hence the values of mode. Given the total frequency is 460. (6)

(b) Find mean deviation about the mean for the following data:

Xi:	2	5	6	8	10	12
f:	2	8	10	7	8	5

Calculate the mean and standard deviation for the following distribution: (12.5)

0 - 20 40	10 E0	FOCO	60 70		
30-40	40-50	50-00	60-70	70-80	80-90
6	13	15	14	- 5	4
	6	6 13	6 13 15	6 13 15 14	30 30-40 40-50 50-60 60-70 70-80 6 13 15 14 5

Unit-II

Calculate the coefficient of correlation by Karl Pearsons method from the following data relating to overhead expenses and cost of production: (12.5)

Overheads:	80	90	100	110	120	130	140	150	160
Coet:	15	15	16	19	17	18	16	18	19

P.T.O.

Q5

(6.5)

Y:	×
	6
11	2
Cī	10
00	4
7	00

- (b) For a bivariate data, the $\overline{X}=20$, $\overline{Y}=45$. The regression coefficient of $\overline{Y}=45$. on X is 4 and that of X on Y is $\frac{1}{9}$. Find:
- (i) The coefficient co-rrelation.
- (ii) The standard deviation of X if the standard deviation of Y is 12.

Unit-III

(a) Find the maximum value of 4x+5y subject to the constraints by Graphical method. (6.5) Graphical method.

 $\begin{aligned}
x + 2y &\le 35 \\
x - 3y &\le 12
\end{aligned}$ x ≥ 0 $x + y \le 20$

(b) Write the dual of following LPP. Max $Z = x_1 - x_2 + x_3$ y ≥ 0

6

 $2x_1 + 5x_2 - x_3 \le 2$ Also solve the dual LPP. Sub: $x_1 - x_2 - x_3 = 5$

27 (a) Use simplex method to solve the L.P.P. Subject to Constraints Maximize $Z = 3x_1 + 4x_2 + x_3$

(6.5)

where $x_1, x_2 \& x_3 \ge 0$ $3x_1 + x_2 + 2x_3 \le 80$ $x_1 + 2x_2 + 3x_3 \le 90$ $2x_1 + x_2 + x_3 \le 60$

(b) Solve: Min $Z = 2x_1 + 3x_2 + x_3$. Sub: $x_1 + x_2 - 2x_3 \ge 1$, $x_1, x_2, x_3 \ge 0.$ $x_1 - x_3 = 5$,

6

Unit-IV

89 from data giving the plant to market shifting costs, quantities available at each plant and quantities required at each market. (12.5) markets M1, M2, M3. Determine the optimal transportation problem plan A company has four plants P1, P2, P3, P4 from which it supplies to three

Availability	M3	M ₂	M ₁	Plants → Market ↓
6	30	15	19	P ₁
10	25	16	14	P ₂
12	16	12	23	P ₃
15	39	21	11	P4
43	19	13	11	Required

is given below. What are the job assignment which will minimize the assigned to one and only one job. The cost of each operator on each Job A company has 5 jobs on which to do 6 operators. Each operator can be (12.5)

9

P.T.O.

<u>-3</u>