УДК 517.51

А.-Р. К. Рамазанов

Оценка полиномиальных приближений ограниченных функций с весом

Решена открытая задача о структурной характеристике ограниченных функций для оценки их наилучших полиномиальных приближений в метрике произвольного ограниченного знакочувствительного веса.

Библиография: 4 названия.

The open problem about the structural characteristic of bounded functions is solved for estimate of their best polynomial approximations in the metric of bounded sign-sensitive weight.

Bibliography: 4 items.

Ключевые слова: знакочувствительный вес, полиномиальные приближения, ограниченные функции.

Keywords: signsensitive weight, polynomial approximations, bounded functions.

Введение

С использованием метода малого параметра построена новая структурная характеристика (аналог модуля непрерывности) ограниченных на отрезке функций для оценки их наилучших полиномиальных приближений в несимметричной метрике относительно пары ограниченных на этом отрезке весовых функций. В этой метрике через построенную характеристику получена точная по порядку оценка наилучших полиномиальных приближений ограниченных на отрезке функций.

Следуя Е.П. Долженко, знакочувствительным весом на множестве $E \subset (-\infty, +\infty)$ называется упорядоченная пара $p(x) = (p_-(x), p_+(x))$ определенных и неотрицательных на E функций $p_-(x)$ и $p_+(x)$.

Будем считать множество E некоторым отрезком $\Delta = [a,b]$, а компоненты веса $p_-(x)$ и $p_+(x)$ ограниченными на Δ функциями. Тогда p-нормой ограниченной на отрезке Δ функции f(x) называется следующая величина:

$$|f|_p = |f|_{p,\Delta} = \sup\{f^+(x)p_+(x) + f^-(x)p_-(x) : x \in \Delta\};$$

здесь, как обычно, $f^+(x) = \max\{f(x), 0\}$ и $f^-(x) = (-f(x))^+$ — срезки функции f(x).

Очевидно, для ограниченных на Δ функций f(x), g(x) и веса $p(x)=(p_{-}(x),p_{+}(x))$ имеем:

- 1) $|f|_p \geqslant 0$;
- 2) $|tf|_p = t|f|_p$ при $t \geqslant 0$;
- 3) $|f + g|_p \le |f|_p + |g|_p$.

Следовательно, p—норма является сублинейным функционалом на множестве ограниченных на данном отрезке функций. Если вес $p(x)=(p_-(x),p_+(x))$ таков, что $|f|_p=0$ лишь при $f(x)\equiv 0$, то p—норма является масштабной функцией или функционалом Минковского.

Функционалы Минковского в качестве несимметричных норм рассматривали М.Г. Крейн и А.А. Нудельман. Такие нормы соответствуют случаю p-нормы, когда компоненты веса $p_-(x)$ и $p_+(x)$ непрерывны и строго положительны на Δ . Однако в этом случае изучение вопросов приближения функций в p-норме принципиально мало чем отличается от их изучения в обычной равномерной норме

$$||f|| = ||f||_{\Delta} = \sup\{|f(x)|: x \in \Delta\},\$$

которая совпадает с p-нормой $|f|_{p,\Delta}$ при p(x)=(1,1).

В общем же случае, когда допускаются разрывы или обращение в нуль компонент веса, многие вопросы теории приближения имеют нестандартные ответы и требуют другой методики исследований.

Систематическому изучению вопросов приближения функций в p-норме относительно произвольного знакочувствительного веса начало положили работы $E.\Pi$. Долженко и E.A. Севастьянова.

Полученные ими в этом направлении основные результаты изложены в двух работах ([1] и [2]).

В частности, ими изучены вопросы существования, единственности и устойчивости элемента наилучшего приближения, введены и исследованы важные характеристики: свобода и жесткость системы «Вес — Аппарат приближения», которые играют существенную роль и в обратных теоремах теории приближения в p-норме.

Следующая задача о прямых теоремах теории приближения в p-норме также поставлена Е.П. Долженко.

Найти структурную характеристику (аналог модуля непрерывности) ограниченных функций f(x) ($x \in \Delta$) для оценки их наилучших полиномиальных приближений в p-норме относительно ограниченного на Δ веса $p(x) = (p_-(x), p_+(x))$, т.е. величины

$$E_n(f, p, \Delta) = \inf\{|Q - f|_{p, \Delta} : Q \in \mathcal{P}_n\} \quad (n = 0, 1, \dots).$$

1. Оценки полиномиальных приближений непрерывных функций со знакочувствительным весом

Пусть сначала функция f(x) и вес $p(x) = (p_-(x), p_+(x))$ непрерывны на отрезке $\Delta = [a, b]$.

Определим аналог модуля непрерывности f(x) относительно знакочувствительного веса как обычно, взяв p-норму приращения функции, т.е. равенством

$$\omega(\delta, f, p) = \sup_{|h| \le \delta} |f_h - f|_{p, \Delta} \quad (f_h(x) = f(x+h); \delta \geqslant 0).$$

40 A.-P.K. PAMA3AHOB

Будем придерживаться также обозначений

$$\omega(\delta, f) = \sup_{|h| \le \delta} \|f_h - f\|_{\Delta}, \quad \omega(\delta, p) = \max\{\omega(\delta, p_-), \omega(\delta, p_+)\}.$$

Тогда имеет место

ТЕОРЕМА 1. При n = 1, 2, ... имеет место неравенство

$$E_n(f, p, \Delta) \le 6\omega \left(\frac{b-a}{n}, f, p\right) + 8\omega \left(\frac{b-a}{n}, f\right)\omega \left(\frac{b-a}{n}, p\right).$$
 (1.1)

Доказательство теоремы 1 дано в работе [3]. Приведем некоторые замечания относительно оценки (1.1).

Замечание 1. По порядку малости (при $n \to \infty$) слагаемые в правой части неравенства (1.1) могут вести себя по-разному для различных функций f(x) и весов p(x). Например, для функции $f(x) = \sqrt{x} \ (x \in [0,1])$ и веса p(x) = (1,1) имеем:

$$\omega(\delta, f, p) = \sqrt{\delta} \quad (\delta \geqslant 0), \quad \omega(\delta, p) \equiv 0.$$

Для функции $f(x)=x^{\alpha}$ $(x\in[0,1],\ 0<\alpha<1)$ и веса $p(x)=(p_{-}(x),p_{+}(x))$ с $p_{-}(x)=p_{+}(x)=0$ при $0\leqslant x\leqslant\frac{1}{2}$ и $p_{-}(x)=p_{+}(x)=(x-0,5)^{\beta}$ при $\frac{1}{2}< x\leqslant 1$ $(0<\beta<1)$ в случае $\alpha+\beta\leqslant 1$ имеем: $\omega(\delta,f,p)\leqslant 2^{1-\alpha-\beta}\delta,\ \omega(\delta,f)=\delta^{\alpha},$ $\omega(\delta,p)=\delta^{\beta}.$

Замечание 2. Оценка (1.1) является точной на классах непрерывных функций и весов с заданными модулями непрерывности, согласованными соотношениями вида

$$\begin{split} \omega(2\delta,f,p) \leqslant 2 \left(\omega(\delta,f,p) + \omega(\delta,f) \omega(\delta,p) \right), \\ \omega(\delta,f,p) &= \underline{O}(\omega(\delta,f)) \quad (\delta \to 0). \end{split}$$

ЗАМЕЧАНИЕ 3. Для разрывных функций и весов оценка типа (1.1) является грубой. Так, существуют разрывные функции f(x) и веса p(x), для которых $\omega(\delta,f,p)\not\to 0$ при $\delta\to 0$ (для них, очевидно, $\omega(\delta,f)\not\to 0$ и $\omega(\delta,p)\not\to 0$ при $\delta\to 0$) и при этом $E_n(f,p,\Delta)\to 0$ при $n\to\infty$. В качестве примера можно взять $f(x)=\operatorname{sign} x\ (x\in[-1,1]),\ p_-(x)=1$ при $x\in[-1,0]$ и $p_-(x)=0$ при $x\in(0,1],\ p_+(x)=0$ при $x\in[-1,0]$ и $p_+(x)=1$ при $x\in[0,1]$.

Значит, в случае разрывных функций f(x) и весов p(x) условие для аналога модуля непрерывности $\omega(\delta, f, p) \to 0$ ($\delta \to 0$) не является даже критерием полиномиальной аппроксимируемости функций в p-норме.

Другими словами, для адекватных оценок полиномиальных приближений ограниченных функций в p-норме структурную характеристку функций следует определить по-другому. Ниже предлагается решение этой задачи с использованием малого параметра [4].

2. Оценки полиномиальных приближений ограниченных функций со знакочувствительным весом

Пусть функция f(x) и вес $p(x) = (p_{-}(x), p_{+}(x))$ ограничены на некотором отрезке $\Delta = [a, b]$.

При $\varepsilon > 0$ положим

$$\Delta(p_{\pm} \geqslant \varepsilon) = \{x \in \Delta | p_{\pm}(x) \geqslant \varepsilon\}.$$

Если $\Delta(p_{\pm} \geqslant \varepsilon) \neq \emptyset$, то обозначим также

$$d = \inf\{|x - y| : x \in \Delta(p_- \geqslant \varepsilon), y \in \Delta(p_+ \geqslant \varepsilon)\}.$$

Промодуль непрерывности функции f(x) относительно веса p(x) определим сначала для $\varepsilon > 0$ с $\Delta(p_{\pm} \geqslant \varepsilon) \neq \varnothing$ при заданном $\delta \geqslant 0$ равенством

$$\overline{\Omega}_{\varepsilon}(f, p, \delta) = \sup[f(x) - f(y)]^+,$$

где супремум берется по всем $x\in\Delta(p_-\geqslant\varepsilon)$ и $y\in\Delta(p_+\geqslant\varepsilon)$, для которых $|x-y|\leqslant\delta$.

Заметим, что если $p_-(x)\equiv p_+(x)\equiv 1$, то при всех $0<\varepsilon\leqslant 1$ имеем $\Delta(p_-\geqslant\varepsilon)=\Delta(p_+\geqslant\varepsilon)=\Delta$. Поэтому для веса p(x)=(1,1) промодуль непрерывности $\overline{\Omega}_\varepsilon(f,p,\delta)$ превращается в обычный модуль непрерывности $\omega(f,\delta)$ функции f(x) на отрезке Δ .

Если при заданном $\varepsilon > 0$ хотя бы одно из множеств

 $\Delta(p_{\pm} \geqslant \varepsilon)$ пусто, то при всех $\delta \geqslant 0$ считаем $\overline{\Omega}_{\varepsilon}(f, p, \delta) = 0$.

Если между множествами $\Delta(p_-\geqslant\varepsilon)$ и $\Delta(p_+\geqslant\varepsilon)$ расстояние d>0, то при $0\leqslant\delta< d$ (и для этого ε) считаем также $\overline{\Omega}_\varepsilon(f,p,\delta)=0$.

Модуль непрерывности функции f(x) относительно веса p(x) определим при $\varepsilon>0$ и $\delta\geqslant 0$ равенством

$$\Omega_{\varepsilon}(f, p, \delta) = \overline{\lim_{h \to \delta}} \ \overline{\Omega}_{\varepsilon}(f, p, h).$$

При фиксированном $\varepsilon>0$ функция $\Omega_{\varepsilon}(f,p,\delta)$ относительно $\delta\geqslant0$ является неотрицательной, неубывающей и полунепрерывной сверху (может быть разрывной, а также может быть $\Omega_{\varepsilon}(f,p,0)>0$); при фиксированном $\delta\geqslant0$ функция $\Omega_{\varepsilon}(f,p,\delta)$ относительно $\varepsilon>0$ является невозрастающей.

При этом можно доказать, что для ограниченных на некотором отрезке $\Delta = [a, b]$ функций f(x) и весов $p(x) = (p_{-}(x), p_{+}(x))$ следующие два утверждения эквивалентны между собой:

- 1) $E_n(f, p, \Delta) \to 0$ при $n \to \infty$;
- 2) $\Omega_{\varepsilon}(f, p, 0) = 0$ при всех достаточно малых $\varepsilon > 0$.

Более того, имеет место

ТЕОРЕМА 2. При n = 1, 2, ... выполняется неравенство

$$E_n(f, p, \Delta) \leq 2 \inf_{\varepsilon > 0} \left\{ \Omega(f, \Delta) \cdot \varepsilon + \|p\|_{\Delta} \Omega_{\varepsilon} \left(f, p, \frac{b - a}{n} \right) \right\},$$
 (2.1)

где

$$\Omega(f, \Delta) = \sup\{f(x) - f(y) : x, y \in \Delta\},$$
$$\|p\|_{\Delta} = \max\{\|p_{-}\|_{\Delta}, \|p_{+}\|_{\Delta}\}.$$

Доказательство. Пусть функция f(x) и вес $p(x)=(p_{-}(x),p_{+}(x))$ ограничены на отрезке $\Delta=[a,b]$ и выполнено условие $\Omega_{\varepsilon}(f,p,0)=0$ при всех д.м. $\varepsilon>0$ (для существования последовательности полиномов $Q_{n}(x)$ с $|Q_{n}-f|_{\Delta}\to 0$ $(n\to\infty)$).

Пусть сначала $\varepsilon>0$ — любое фиксированное число с $\Delta(p_\pm\geqslant\varepsilon)\neq\varnothing$.

Для краткости обозначим $\Omega(\delta) = \Omega_{\varepsilon}(f, p, \delta)$ ($\delta \geqslant 0$) и построим кусочно—линейную и непрерывную функцию g(t) такую, что:

1) $g(t) = \Omega(t)$ при t = 0 и t = b - a;

2)
$$g\left(\frac{b-a}{n}\right)=\sup\left\{\Omega(t)\left|t\in\left(\frac{b-a}{n},\frac{b-a}{n-1}\right)\right\}$$
 при $n=2,3,\ldots;$

3) g(t) линейна на отрезках $\left[\frac{b-a}{n},\frac{b-a}{n-1}\right]$ $(n=2,3,\dots).$

Тогда при $n=2,3,\ldots$ и $\frac{b-a}{n+1}\leqslant t\leqslant \frac{b-a}{n}$ выполняются неравенства

$$\Omega(t) \leqslant g(t) \leqslant \Omega\left(\frac{b-a}{n-1}\right).$$

При $x \in \overline{\Delta(p_- \geqslant \varepsilon)}$ определим полунепрерывную сверху функцию

$$M_{-}(x,\varepsilon) = \lim_{\delta \to +0} \sup \{ f(t) : t \in [x-\delta, x+\delta] \cap \Delta(p_{-} \geqslant \varepsilon) \}.$$

Тогда функция

$$\varphi(x) = \sup\{M_{-}(t,\varepsilon) - g(|x-t|) \mid t \in \overline{\Delta(p_{-} \geqslant \varepsilon)}\}\$$

будет непрерывной на отрезке $\Delta = [a, b]$, причем при всех $x, y \in \Delta$ выполняется неравенство

$$|\varphi(x) - \varphi(y)| \le g(|x - y|).$$

Из результата Н.П. Корнейчука об оценке наилучших приближений непрерывных 2π —периодических функций тригонометрическими полиномами с помощью замены переменной

 $x=rac{b-a}{2}\cos t+rac{b-a}{2}$ легко следует, что существует алгебраический полином $Q_n(x)$ степени не выше $n\ (n=1,2,\dots)$ такой, что

$$||Q_n - \varphi||_{\Delta} \le \omega \left(\varphi, \frac{b-a}{2} \cdot \frac{\pi}{n+1}\right) \le 2\omega \left(\varphi, \frac{b-a}{n+1}\right).$$

Значит, с учетом свойств построенных функций $\varphi(x)$ и g(t) при $n=1,2,\ldots$ получим

 $||Q_n - \varphi||_{\Delta} \le 2g\left(\frac{b-a}{n+1}\right) \le 2\Omega\left(\frac{b-a}{n}\right).$

Если через $\Omega(f,\Delta)$ обозначить полное колебание (ограниченной) функции f(x) на отрезке Δ , то можно доказать, что при рассматриваемом $\varepsilon>0$ выполняется неравенство

$$|\varphi - f|_{\Delta} \leq 2 \Omega(f, \Delta) \varepsilon$$
.

С использованием последних двух оценок получим

$$|Q_n - f|_{\Delta} \leq |\varphi - f|_{\Delta} + |Q_n - \varphi|_{\Delta} \leq$$

$$\leq 2\Omega(f, \Delta)\varepsilon + ||p||_{\Delta} \cdot ||Q_n - \varphi||_{\Delta} \leq$$

$$\leq 2\Omega(f, \Delta)\varepsilon + 2||p||_{\Delta}\Omega\left(\frac{b - a}{n}\right).$$

Следовательно, при любом $\varepsilon > 0$ с $\Delta(p_{\pm} \geqslant \varepsilon) \neq \varnothing$ и $n=1,2,\ldots$ имеем

$$|Q_n - f|_{\Delta} \leq 2 \Omega(f, \Delta) \varepsilon + 2 ||p||_{\Delta} \Omega_{\varepsilon} \left(f, p, \frac{b - a}{n}\right).$$

Пусть теперь при заданном $\varepsilon > 0$ хотя бы одно из множеств $\Delta(p_{\pm} \geqslant \varepsilon)$ пусто, а значит, $\Omega_{\varepsilon}(f, p, \delta) = 0$ при всех $\delta \geqslant 0$. Пусть, например, $\Delta(p_{+} \geqslant \varepsilon) = \emptyset$, т.е. $p_{+}(x) < \varepsilon$ при всех $x \in \Delta$. Возьмем для всех $n = 1, 2, \ldots$ в качестве полинома $Q_{n}(x)$ степени не выше n постоянную

$$Q_n(x) = \sup\{f(x)|x \in \Delta\}.$$

Тогда, очевидно, при всех $x \in \Delta$ имеем

$$[Q_n(x) - f(x)]^+ \le \Omega(f, \Delta), \quad [Q_n(x) - f(x)]^- = 0,$$

а поэтому

$$|Q_n - f|_{\Delta} = \sup_{x \in \Delta} \left([Q_n(x) - f(x)]^+ p_+(x) + [Q_n(x) - f(x)]^- p_-(x) \right) \le$$

$$\le \Omega(f, \Delta)\varepsilon.$$

Итак, при любом $\varepsilon > 0$ существует полином $Q_n(x)$ степени не выше n ($n = 1, 2, \ldots$), для которого выполняется неравенство

$$|Q_n - f|_{\Delta} \le 2 \Omega(f, \Delta) \varepsilon + 2 ||p||_{\Delta} \Omega_{\varepsilon} \left(f, p, \frac{b - a}{n}\right),$$

а значит, при всех $\varepsilon > 0$ и $n = 1, 2, \dots$ выполняется неравенство

$$E_n(f, p, \Delta) \leqslant 2 \Omega(f, \Delta) \varepsilon + 2 \|p\|_{\Delta} \Omega_{\varepsilon} \left(f, p, \frac{b-a}{n}\right).$$

Чтобы получить неравенство (2.1), остается перейти в правой части к инфимуму по всем $\varepsilon > 0$.

Список литературы

[1] Долженко Е.П., Севастьянов Е.А. Аппроксимации со знакочувствительным весом (теоремы существования и единственности) // Изв. РАН. Сер. матем. 1998. Т. 62. № 6. С. 59–102.

44 A.-P.K. PAMA3AHOB

[2] Долженко Е.П., Севастьянов Е.А. Аппроксимации со знакочувствительным весом (устойчивость, приложения к теории ужей и хаусдорфовым аппроксимациям) // Изв. РАН. Сер. матем. 1999. Т.63. № 3. С. 77–118.

- [3] Рамазанов А.-Р.К. О прямых и обратных теоремах теории аппроксимации в метрике знакочувствительного веса // Analysis Mathematica. 1995. Т.21. № 4. С. 191–212.
- [4] Рамазанов А.-Р.К. Метод малого параметра для знакочувствительных аппроксимаций // Analysis Mathematica. 2002. Т.28. С. 205–230.

А.-Р. К. Рамазанов (А.-R. К. Ramazanov)

Поступила в редакцию 18.11.2014

Дагестанский научный центр РАН E-mail: ar-ramazanov@rambler.ru