Folha 8

Universidade do Minho

Escola de Ciências

Departamento de Matemática e Aplicações

Exercício 8.1 Calcule:

1)
$$\int (3x^2 - 2x^5) dx$$
; 13) $\int x \sin x^2 dx$; 24) $\int \frac{x}{\sqrt{x^2 - 1}} dx$;

13)
$$\int x \, \sin x^2 \, dx$$

24)
$$\int \frac{x}{\sqrt{x^2-1}} dx$$

$$2) \quad \int (\sqrt{x} + 2)^2 \, dx$$

2)
$$\int (\sqrt{x} + 2)^2 dx$$
; 14) $\int \frac{1}{x(\ln^2 x + 1)} dx$; 25) $\int \frac{1}{x} \operatorname{sen}(\ln x) dx$;

$$25) \quad \int \frac{1}{x} \, \operatorname{sen}(\ln x) \, dx$$

3)
$$\int (2x+10)^{20} dx$$
;

15)
$$\int \left(\frac{2}{x} - 3\right)^2 \frac{1}{x^2} dx;$$
 26) $\int \frac{-3}{x (\ln x)^3} dx;$

$$26) \quad \int \frac{-3}{x \left(\ln x\right)^3} \, dx$$

$$4) \quad \int x^2 e^{x^3} \, dx;$$

$$16) \quad \int \operatorname{sen}(\pi - 2x) \, dx;$$

$$27) \quad \int \frac{e^x}{1 + e^{2x}} \, dx;$$

5)
$$\int x^4(x^5+10)^9 dx$$
;

17)
$$\int \operatorname{th} x \, dx$$
;

$$28) \quad \int \frac{e^x}{1 - 2e^x} \, dx;$$

6)
$$\int \frac{2x+1}{x^2+x+3} \, dx;$$

18)
$$\int \sin x \, \cos x \, dx;$$

$$29) \quad \int \frac{1}{\cos^2\left(7x\right)} \, dx;$$

$$7) \quad \int \sqrt{2x+1} \, dx;$$

19)
$$\int \operatorname{sen}(2x) \cos x \, dx;$$

30)
$$\int (\sqrt{2x-1} - \sqrt{1+3x}) dx;$$

$$8) \quad \int \frac{x}{3-x^2} \, dx;$$

9) $\int \frac{1}{4-3x} dx;$

$$20) \quad \int \sin^2 x \, dx;$$

31)
$$\int \frac{1}{x} (1 + \ln^2 x) dx;$$

$$10) \quad \int \frac{1}{e^{3x}} \, dx;$$

21)
$$\int \sin^2 \frac{x}{2} \cos^2 \frac{x}{2} dx$$
;

32)
$$\int \frac{2 + \sqrt{\arctan(2x)}}{1 + 4x^2} dx;$$

11)
$$\int \frac{-7}{\sqrt{1-5x}} dx;$$

22)
$$\int \cos^3 x \, dx;$$

33)
$$\int \frac{e^{\arctan x}}{1+x^2} dx;$$

$$12) \quad \int \frac{\sqrt{1+3 \ln x}}{x} \, dx;$$

$$23) \quad \int \frac{x}{x^2 - 1} \, dx;$$

34)
$$\int \frac{\sin x}{\sqrt{1+\cos x}} dx.$$

Exercício 8.2 Calcule:

a)
$$\int \ln x \, dx$$
;

e)
$$\int \ln(1-x) dx$$
; i) $\int \ln^2 x dx$;

i)
$$\int \ln^2 x \, dx$$

b)
$$\int x \operatorname{sen}(2x) dx$$
;

f)
$$\int x \ln x \, dx$$

f)
$$\int x \ln x \, dx$$
; j) $\int e^x \cos x \, dx$;

c)
$$\int \arctan x \, dx$$
;

g)
$$\int x^2 \sin x \, dx$$
;

g)
$$\int x^2 \sin x \, dx$$
; k) $\int \arcsin x \, dx$;

d)
$$\int x \cos x \, dx$$
;

h)
$$\int x \, \sin x \, \cos x \, dx$$

h)
$$\int x \sin x \cos x \, dx$$
; l) $\int e^{\sin x} \sin x \cos x \, dx$;

m) $\int \frac{\arcsin\sqrt{x}}{\sqrt{x}} dx$; o) $\int x^2 \ln x dx$; q) $\int \cosh x \sin(3x) dx$;

n) $\int x \arctan x \, dx$; p) $\int \operatorname{sen}(\ln x) \, dx$; r) $\int x^3 e^{x^2} \, dx$.

Exercício 8.3 Usando o método de substituição, calcule:

a) $\int x (x+3)^{1/3} dx$; d) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$; g) $\int \frac{\sqrt{x}}{x-\sqrt[3]{x}} dx$;

b) $\int \frac{1}{\sin x} dx$;

e) $\int \frac{e^{2x}}{3+e^x} dx$; h) $\int \sqrt{1+x^2} dx$.

c) $\int \frac{x}{\sqrt{2-3x}} dx$; f) $\int \frac{x^2}{\sqrt{1-x^2}} dx$;

Exercício 8.4 Calcule:

a) $\int \frac{2x^2 + x + 1}{(x-1)(x+1)^2} dx$;

g) $\int \frac{27}{x^4 - 3x^3} \, dx$;

b) $\int \frac{3x^2 - 4x - 1}{(x^2 - 1)(x - 2)} dx$;

h) $\int \frac{x^4 - 8}{x^3 - 2x^2} dx$;

c) $\int \frac{2x^2 - x - 2}{x^2(x - 2)} dx$;

i) $\int \frac{x+3}{(x-2)(x^2-2x+5)} dx$;

d) $\int \frac{2x^3 + 5x^2 + 6x + 2}{x(x+1)^3} dx$;

j) $\int \frac{x+1}{x(x^2+1)^2} dx$;

e) $\int \frac{x^2 - x + 2}{x(x^2 - 1)} dx$;

k) $\int \frac{x+2}{2x(x-1)^2(x^2+1)} dx$;

f) $\int \frac{4x^2 + x + 1}{x^3 - x} dx$;

1) $\int \frac{3x^3 + x^2 - x - 1}{x^2(x^2 - 1)} dx$.

Exercício 8.5

a) $\int \frac{1}{(2+\sqrt{x})^7 \sqrt{x}} dx$;

e) $\int \frac{1}{\cos^2 x \sin^2 x} dx;$

b) $\int tg^2 x dx$;

f) $\int \cos^2 x \, \sin^2 x \, dx$;

c) $\int \frac{x + (\arcsin(3x))^2}{\sqrt{1 - 9x^2}} dx;$

g) $\int \frac{1}{1+e^x} dx$;

d) $\int \frac{x e^{\sqrt{1-x^2}}}{\sqrt{1-x^2}} dx$;

h) $\int \frac{1}{x^2 \sqrt{4-x^2}} dx$.

Exercício 8.6 Sendo $f:\mathbb{R}\longrightarrow\mathbb{R}$ definida por $f(x)=x^2\sin x$, calcule a primitiva de fcujo gráfico passa pelo ponto $(\frac{\pi}{2}, \pi)$.

Exercício 8.7 Em cada alínea, determine a única função $f:\mathbb{R}\longrightarrow\mathbb{R}$, duas vezes derivável, tal que:

a)
$$f''(x) = 4x - 1$$
, $x \in \mathbb{R}$, $f(1) = 3$ e $f'(2) = -2$;

b)
$$f''(x) = \sin x \cos x$$
, $x \in \mathbb{R}$, $f(0) = 0$ e $f'(0) = 1$.

Exercício 8.8 Calcule os seguintes integrais:

a)
$$\int_{0}^{1} e^{\pi x} dx$$
; i) $\int_{0}^{2} x^{3} e^{x^{2}} dx$;
b) $\int_{-\pi/2}^{\pi/2} |\sin x| dx$; j) $\int_{0}^{\pi} x \sin x dx$;
c) $\int_{-3}^{5} |x-1| dx$; k) $\int_{0}^{\sqrt{2}/2} \arcsin x dx$;
d) $\int_{0}^{2} |(x-1)(3x-2)| dx$; l) $\int_{-3}^{2} \sqrt{|x|} dx$;
e) $\int_{0}^{3} \sqrt{9-x^{2}} dx$; m) $\int_{0}^{2} f(x) dx$, com

e)
$$\int_0^0 \sqrt{9 - x^2} \, dx$$
; m) $\int_0^2 f(x) \, dx$, com
f) $\int_{-5}^0 2x \sqrt{4 - x} \, dx$; $f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1, \\ 2 - x & \text{se } 1 < x \le 2; \end{cases}$

Exercício 8.9 Dado $a\in\mathbb{R}^+$, seja $f:[-a,a]\longrightarrow\mathbb{R}$ uma função integrável. Mostre que:

a) se
$$f$$
 é par então $\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx;$

b) se
$$f$$
 é ímpar então $\int_{-a}^{a} f(x) dx = 0$.

Exercício 8.10 Dados $a < b \in \mathbb{R}$, mostre que se $f:[a,b] \longrightarrow \mathbb{R}$ é uma função contínua e $\int_a^b f(x) \, dx = 0$, então existe $c \in]a,b[$ tal que f(c) = 0.

Exercício 8.11 Em cada uma das alíneas, calcule a função derivada de F, sendo F definida por:

3

a)
$$F(x) = \int_0^x (1+t^2)^{-3} dt$$
, $x \in \mathbb{R}$;

b)
$$F(x) = \int_0^{x^2} (1+t^2)^{-3} dt$$
, $x \in \mathbb{R}$;

c)
$$F(x) = \int_{x^3}^{x^2} \frac{t^6}{1+t^4} dt, \ x \in \mathbb{R}.$$

Exercício 8.12 Sabendo que $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ é uma função contínua e satisfaz a igualdade abaixo para $x \geq 0$, calcule f em cada um dos seguintes casos:

a)
$$\int_0^x f(t) dt = x^2 (1+x);$$

b)
$$\int_0^{x^2} f(t) dt = x^3 e^x - x^4$$
.

Exercício 8.13 Considere $F:\left[0,\sqrt{5}\,\right] \longrightarrow \mathbb{R}$ definida por $F(x)=\int_0^{x^2}f(t)\,dt$, onde a função $f:\left[0,5\right]\longrightarrow\mathbb{R}$ é aquela cujo gráfico está representado na figura. Determine $F\left(\sqrt{3}\right)$ e $F'\left(\sqrt{3}\right)$.

Exercício 8.14 Dê exemplo de, ou mostre porque não existe:

- a) uma função $f:[0,1]\longrightarrow \mathbb{R}$ não integrável;
- b) uma função $f:[0,1]\longrightarrow \mathbb{R}$ derivável mas não integrável;
- c) uma função $f:[0,1] \longrightarrow \mathbb{R}$ derivável mas não primitivável;
- d) uma função $f:[0,1]\longrightarrow \mathbb{R}$ primitivável mas não derivável;
- e) uma função $f:[0,1] \longrightarrow \mathbb{R}$ integrável mas não primitivável;
- f) uma função $f:[0,1]\longrightarrow \mathbb{R}$ não integrável tal que |f| seja integrável.

Exercício 8.15 Em cada alínea calcule a área da região limitada pelas curvas de equações:

a)
$$x = 1$$
, $x = 4$, $y = \sqrt{x}$, $y = 0$;

b)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$;

c)
$$x = 0$$
, $x = 2$, $x^2 + (y-2)^2 = 4$, $x^2 + (y+2)^2 = 4$;

d)
$$x = 0$$
, $x = \pi/2$, $y = \sin x$, $y = \cos x$;

e)
$$x = -1$$
, $y = |x|$, $y = 2x$, $x = 1$;

f)
$$y = -x^3$$
, $y = -(4x^2 - 4x)$;

g)
$$y = -x^2 + \frac{7}{2}$$
, $y = x^2 - 1$;

h)
$$y = 0$$
, $x = -\ln 2$, $x = \ln 2$, $y = \sinh x$.

Exercício 8.16 Escreva uma expressão integral que permita calcular a área de cada uma das seguintes regiões:

a)
$$\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2 \land -x \le y \le x^2 \};$$

b)
$$\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4 \land 0 \le y \le x\};$$

c)
$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\};$$

d)
$$\{(x,y) \in \mathbb{R}^2 : x^2 - 1 \le y \le x + 1\};$$

e)
$$\{(x,y) \in \mathbb{R}^2 : -1 \le x \le 2 \land 0 \le y \le e^x \land 0 \le y \le e^{-x} \};$$

f)
$$\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2 \land 0 \le y \le x^2 \land 0 \le y \le 2 - x\};$$

g)
$$\{(x,y) \in \mathbb{R}^2 : y \ge 0 \land y \ge x^2 - 2x \land y \le 4\};$$

h)
$$\{(x,y) \in \mathbb{R}^2 : x \le 3 \land y \ge x^2 - 4x + 3 \land y \le -x^2 + 5x - 4\}.$$