Advanced Techniques for Combinatorial Algorithms: Approximation Algorithms

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

May 14, 2020

NPO

Optimization problem

- ullet Infinite set ${\mathcal I}$ of instances. The set ${\mathcal I}$ is recognizable in polynomial time
- For each instance $I \in \mathcal{I}$, the set F(I) of feasible solutions. Each set F(I) is recognizable in polynomial time. The set of all feasible solutions is \mathcal{F}
- An objective function $w: \mathcal{I} \times \mathcal{F} \mapsto \mathbb{Q}^+$. w is a partial function w(i, x) can be undefined if $x \notin F(i)$. w is computable in polynomial time
- Goal: to minimize or to maximize

Approximation factor

$$\frac{APX}{OPT}$$

APX: value of (approximate) feasible solution, OPT: value of best feasible solution

Min Vertex Cover

Instance

Undirected graph $G = \langle V, E \rangle$

Feasible solutions

A set $C \subset V$ such that for each edge $e \in E$ at least one endpoint of e belongs to C

Objective function

|C|

Max Clique

Instance

Undirected graph $G = \langle V, E \rangle$

Feasible solution

Find a set $C \subset V$ such that all pairs of vertices in C are connected by an edge

Objective function

|C|

Max Independent Set

Instance

Undirected graph $G = \langle V, E \rangle$

Feasible solution

Find a set $I \subset V$ such that no two vertices in K are connected by an edge

Objective function

|K|

Max Cut

Instance

A weighted undirected graph $G = \langle V, E \rangle$, $w : E \mapsto \mathbb{Q}^+$

Feasible solution

a bipartition (V_1, V_2) of V

Objective function

 $\sum_{v_1 \in V_1, v_2 \in V_2} w(v_1, v_2)$

Min Traveling Salesperson (TSP)

Instance

A weighted undirected graph $G = \langle V, E \rangle$, $w : E \mapsto \mathbb{Q}^+$

Feasible solution

Find a cycle C that visits each vertex $v \in V$ exactly once.

Objective function

 $\sum_{e \in C} w(e)$

Approximation Goal

Complexity classes

- NPO: Optimization problems in NP
- FPTAS: Fully polynomial-time approximation scheme. Guaranteed error ratio $(1+\epsilon)$ or $(1-\epsilon)$, for any $\epsilon>0$. Time complexity polynomial in n and $\frac{1}{\epsilon}$
- PTAS: Polynomial-time approximation scheme. Guaranteed error ratio $(1+\epsilon)$ or $(1-\epsilon)$, for any $\epsilon>0$. Time complexity polynomial in n— can be exponential in $\frac{1}{\epsilon}$, e.g. $O(n^{1/\epsilon})$
- \bullet APX: O(1) approximation ratio, polytime
- MAX SNP: Definition based on logic and L-reduction. MAX SNP is included in APX

Min Set Cover

Instance

Universe set U, collection

$$\mathcal{S} = \{S_1, \dots, S_n\}$$
 of subsets of U . Weight $w: \mathcal{S} \mapsto \mathbb{O}^+$

Feasible solutions

A cover, that is a subcollection $\mathcal C$ of $\mathcal S$ that covers all elements of $\mathcal U$

Objective function

$$\sum_{C \in \mathcal{C}} w(C)$$

Min Set Cover

Algorithm 1: greedy-set-cover

- 1 $C, D \leftarrow \emptyset$;
- 2 while $C \neq U$ do
- 3 $X \leftarrow \text{the set in } S \text{ minimizing } w(X)/|X \setminus C|$;
- 4 $\alpha = \frac{w(X)}{|X \setminus C|}$;
- 5 Add *X* to *D*;
- 6 For each $e \in C \setminus X$, $p(e) \leftarrow \alpha$;
- $7 \mid C \leftarrow C \cup A$
- 8 Output D

Lemma

$$p(e_k) \leq \frac{OPT}{n-k+1}$$

Corollary

Approximation factor is

$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\leq O(\log n)$$

Min Metric Steiner Tree

Instance

A weighted undirected graph $G = \langle V, E \rangle$, $w : E \mapsto \mathbb{Q}^+$, w with triangle inequality. V partition into R (required) and S (steiner)

Feasible solution

A subtree T of G that includes all required vertices.

Objective function

 $\sum_{e\in\mathcal{T}}w(e)$

Approximation

Spanning tree T of G

2-approximation

Euler tour of optimal solution T^*

Min Metric Traveling Salesperson (TSP)

Instance

A weighted undirected graph $G = \langle V, E \rangle$, $w : E \mapsto \mathbb{Q}^+$, w with triangle inequality.

Feasible solution

Find a cycle C that visits each vertex $v \in V$ exactly once.

Objective function

 $\sum_{e\in C}w(e)$

2-approximation

Euler tour

 $\frac{3}{2}$ -approximation

Matching on odd-degree vertices of a spanning tree \mathcal{T}

Shortest Superstring

Instance

 s_1, \ldots, s_m : strings of length n.

Feasible solution

A superstring T, that is each s_i is a substring of T

Objective function

|T|

Shortest Superstring

Prefix graph

Arc s_i, s_j with weight $pref(s_i, s_j)$

Length of superstring

Cycle of prefix graph + overlap last and first string

Assignment problem = cycle cover

From $G = \langle V, E \rangle$ to G_2 with two copies U, W of V. For each edge $(v_i, v_j) \in E$, add two edges (u_i, w_i) , (w_i, u_i) to G_2

Algorithm

- Concatenate all cycle covers
- 4-approximation

Knapsack

Instance

Universe set U, size $s:U\mapsto\mathbb{Z}^+$, profit $p:U\mapsto\mathbb{Z}^+$, capacity $B\in\mathbb{Z}^+$

Feasible solutions

A subset $K \subseteq U$, such that $\sum_{k \in K} s(k) \leq B$

Objective function

 $\sum_{k \in K} p(k)$, to maximize

Knapsack

Algorithm

- Dynamic programming
- MP-hard
- K(i, b): uses only $\{u_1, \ldots, u_i\}$, total size b
- pseudo-polynomial time
- Transform it into an approximation algorithm
- Scale down profits $p_1(u) = \lfloor p(u) \frac{n}{\epsilon \max\{p(u)\}} \rfloor$, move to dual problem
- Approximation factor 1ϵ , $\forall \epsilon > 0$
- Time polynomial in n and
- FPTAS

Linear Programming

Basic facts

- The primal has finite optimum iff the dual has finite optimum
- Let x, y be two feasible solution of the primal and dual. Then x are y re both optimal if:

Min Vertex Cover

Integral version

$$\min \sum x_{v}$$
 subject to $x_{v} + x_{w} \geq 1 \quad \forall (v, w) \in E$ $x_{v} \in \{0, 1\} \quad \forall v \in V$ (1)

Fractional version

$$\min \sum x_{v}$$
 subject to $x_{v}+x_{w}\geq 1$ $orall (v,w)\in E$ $0\leq x_{v}\leq 1$ $orall v\in V$

(2)

Integrality ratio

$$sup_{I} \frac{OPT(I)}{OPT_{f}(I)} \tag{3}$$

over all instances I, where OPT is the integral optimum, OPT_{ℓ} is the fractional optimum

Lemma

An LP-based approach cannot outperform the integrality ratio

Half Integrality of Vertex Cover

Fractional version

min
$$\sum x_{v}$$
 subject to
$$x_{v} + x_{w} \quad \forall (v, w) \in E$$

$$x_{v} \geq 0 \quad \forall v \in V$$

$$(4)$$

Lemma

There exists an optimal solution with $x_{\nu} \in \{0, 1, \frac{1}{2}\}$

Half Integrality of Vertex Cover

Lemma

There exists an optimal solution with $x_v \in \{0, 1, \frac{1}{2}\}$

$$y_{\nu} = x_{\nu} + \epsilon, \frac{1}{2} < x_{\nu} < 1$$
 $x_{\nu} - \epsilon, 0 < x_{\nu} < \frac{1}{2}$
(5)
 $z_{\nu} = x_{\nu} - \epsilon, \frac{1}{2} < x_{\nu} < 1$
 $x_{\nu} + \epsilon, 0 < x_{\nu} < \frac{1}{2}$
(6)

Proof

 $x=\frac{1}{2}(y+z)$. Choose ϵ sufficiently small, then y and z are both feasible

Dual Fitting for Greedy Set Cover

```
1 C, D \leftarrow \emptyset;

2 while C \neq U do

3 X \leftarrow \text{set in } S \text{ with min } w(X)/|X \setminus C|;

4 \alpha = \frac{w(X)}{|X \setminus C|};

5 Add X to D;

6 For each e \in C \setminus X, p(e) \leftarrow \alpha;

7 C \leftarrow C \cup X

8 Output D
```

```
ILP \min \sum_{S \in \mathcal{S}} w(S) subject to \sum_{S: e \in \mathcal{S}} x_S \geq 1 \quad \forall e \in U \quad (7) x_S \in \{0,1\} \quad \forall S \in \mathcal{S}
```

Dual Fitting for Greedy Set Cover

Primal

$$\min \sum_{S \in \mathcal{S}} w(S)$$
 subject to $\sum_{S: e \in S} x_S \geq 1 \quad orall e \in U$ (8) $x_S \geq 0 \quad orall S \in \mathcal{S}$

Dual

$$\max \sum_{e \in U} y_e$$
 subject to $\sum_{e:e \in S} y_e \leq c(S) \quad orall S \in \mathcal{S}$ (9) $y_e \geq 0 \quad orall S \in \mathcal{S}$

Algorithm — ILP

$$p(e) = y_e$$

Not dual feasible

Dual Fitting for Greedy Set Cover

Fitting

$$y_e = rac{p(e)}{H_n}$$
, $H_n = \sum_{i=1}^n rac{1}{i}$

Lemma

x. v are both feasible

Proof

Let $S \in \mathcal{S}$, |S| = k. Let $e_1, \ldots, e_k \in S$, same order as the algorithm. When inserting e_i , there are least k-i+1 uncovered elements of S. By choice of S. $p(e_i) \le c(S)/(k-i+1)$, hence $y_e = \frac{p(e_i)}{H} \le \frac{c(S)/(k-i+1)}{H}$. Checking the constraint:

$$\textstyle \sum_{i=1}^k y_{e_i} \leq \frac{c(S)}{H_n} \textstyle \sum_{i=1}^k \frac{1}{i} = c(S)$$

Max Cut

Integral version

$$\max rac{1}{2} \sum_{i,j} w_{i,j} d_{i,j}$$
 subject to $d_{i,j} \leq x_i + x_j \quad orall (v_i, v_j) \in E$ $d_{i,j} \leq 2 - (x_i + x_j) \quad orall (v_i, v_j) \in E$ $x_{v}, d_{i,j} \in \{0, 1\}$

Gianluca Della Vedova

Max Cut

Second version

Fractional version

$$\max rac{1}{2} \sum_{i,j} w_{i,j} (1-x_i x_j)$$
 subject to $x_v^2 = 1 \quad orall v \in V \ -1 \leq x_v \leq 1 \quad orall v \in V \$ (12

Semidefinite programming

Vector version

$$\max rac{1}{2} \sum_{i,j} w_{i,j} (1-x_i \cdot x_j)$$
 subject to $x_v \cdot x_v = 1 \quad orall v \in V$

How to solve?

Can be solved approximately (additive error ϵ) via interior point

Problem

From vector (fractional) solution to bipartition

(13)

Semidefinite programming

Solution

- Random hyperplane
- Contribution of vertices x_i , x_j is $\frac{w_{i,j}}{2}(1-\cos\theta_{i,j})$, where $\theta_{i,j}$ is the angle between the two vectors x_i , x_j
- Probability of separation: $\frac{\theta_i}{\pi}$

Approximation Factor

$$\alpha = \frac{2}{\pi} \min_{\theta} \frac{\theta}{1 - \cos\theta} > 0.878 \tag{14}$$

Gianluca Della Vedova Advanced Algorithms May 14, 202

Max Sat

Instance

A set of boolean clauses $C = \{c_1, \dots, c_m\}$ made of disjunctions over variables $X = \langle x_1, \dots, x_n \rangle$ A weight

 $w: C \mapsto \mathbb{Q}^+$ of each clause.

Feasible solution

A truth assignment Y to the variables in X

Objective function

 $\sum_{c \in D} w(c)$, where D is the set of clauses of C that are made true by Y

Example

 $c_1 = x_1 \vee x_3 \vee \neg x_5$

 $c_2 = \neg x_1 \lor \neg x_2$

 $c_3 = x_2$

Probabilistic Approach for Max Sat

Random assignment

- Each variable x_i is true is probability 1/2
- $E[w(c)] = w(c) \cdot Pr[c \text{ is satisfied}]$
- Depends on $size(c) = k_c$
- $E[w(c)] = w(c) (1 2^{-k_c}) = \alpha_k w_c$, for $\alpha_k = (1 2^{-k_c})$
- Since $\alpha_k \geq \frac{1}{2}$, then $\frac{1}{2}$ approximation (expected)

Conditional expectation

Derandomize

- $E[Y] = \sum_{c \in C} \alpha_k w_c$
- $E[Y] = \frac{1}{2} (E[Y|x_1 = T] + E[Y|x_1 = F])$
- ③ Pick the best between $E[Y|x_1 = T]$ and $E[Y|x_1 = F]$

LP Approach for Max Sat

ILP for Max Sat

$$\max_{c \in \mathcal{C}} w_c z_c \quad \text{subject to}$$

$$\sum_{i \in S_c^+} y_i + \sum_{i \in S_c^-} (1 - y_i) \ge z_c \quad \forall c \in \mathcal{C}$$

$$y_i \in \{0, 1\} \quad \forall i$$

$$z_c \in \{0, 1\} \quad \forall c \in \mathcal{C}$$

$$(15)$$

 $Z_c \in \{0,1\} \quad \forall c \in C$

 S_c^+ : boolean variables non-negated in c_i , S_c^- : boolean variables negated in c_i

Gianluca Della Vedova Advanced Algorithms

LP Approach for Max Sat

ILP relaxation

$$\max_{c \in C} w_c z_c$$
 subject to

$$\sum_{i \in S_c^+} y_i + \sum_{i \in S_c^-} (1 - y_i) \ge z_c \quad \forall c \in C$$

$$0 \le z_c \le 1 \quad \forall c \in C$$

(16)

 v^*, z^* : fractional optimum

Algorithm

 $x_i \leftarrow T$ with probability y_i^*

Lemma

$$E[W] \geq eta_k w_c z_c^*$$
, with $eta_k = 1 - \left(1 - rac{1}{k}\right)^k$

Proof

- $egin{aligned} & E[W_c] = 1 \prod_{i=1}^k (1 y_i) \geq \ & 1 \left(rac{\sum_{i=1}^k (1 y_i)}{k}
 ight)^k \geq 1 \left(1 rac{z_c^*}{k}
 ight) \end{aligned}$
- $0 \quad 1 \left(1 rac{z_c^*}{k}
 ight)^{\kappa} \geq eta_k ext{ for } 0 \leq z_c^* \leq 1$

LP Approach for Max Sat

Approximation

$$eta_k = 1 - \left(1 - rac{1}{k}
ight)^k \geq 1 - rac{1}{k}$$

Notice

 β_k monotone increasing

Better approximation for Max Sat

Algorithm

Pick the better of the solutions of the two algorithms

Approximation Factor

- $E[W_c] = \alpha_k w_c + \beta_k w_c z_c^*$
- $z_c^* \leq 1$, hence $E[W_c] = \alpha_k w_c z_c^* + \beta_k w_c z_c^* = (\alpha_k + \beta_k) w_c z_c^*$
- Prove $\alpha_k + \beta_k \ge \frac{1}{2}$
- $\frac{3}{4}$ -approximation

Max multicommodity flow

Instance

Undirected graph $G = \langle V, E \rangle$. Capacity c_e for each edge E. A set $\{(s_1, t_1), \ldots, (s_k, t_k)\}$ of source-sink pairs (commodity)

Feasible solution

A flow that respects the maximum capacity and satisfies flow conservation.

Objective function

 $\sum_{(s_i,t_i)}$ flow from s_1 to t_i

Max multicommodity flow

Primal

Dual

$$\min \sum_{e \in E} c_e d_e$$
 subject to $\sum_{e \in p} d_e \geq 1 \quad orall p \in P$ $d_e \geq 0 \quad orall e \in E$

 d_e

distance between vertices.

- Flow-cut duality
- Pick a multicut D

Growing regions

Goal

- No region contains a source-sink pair
- region centered on a source
- $c(R) \le \epsilon wt(R)$, where c(R) is the capacity of the cut

Lemma

Radius $\leq \frac{1}{2}$, the ball has no source-sink pair

Growing regions

Weight distribution

- $wt(s) = \frac{F}{k}$, with s source, F fractional optimum
- q_e : fraction of edge e in the region
- $q_e = \frac{r dist(s, u)}{dist(s, v) dist(s, u)}$ for each edge e = (u, v) in the cut
- $wt(R) = wt(s) + \sum_{e \in X} c_e d_e q_e$, with X the set of edges with at least an endpoint in R
- Larger region R, easier $c(R) \leq \epsilon wt(R)$
- $\epsilon \leftarrow 2 \ln(k+1) \Rightarrow \text{radius} \leq \frac{1}{2}$
- $ullet rac{dwt(s(r))}{dr} \geq \sum_e c_e d_e rac{dq_e}{dr} \geq c(S(r))$

Gianluca Della Vedova Advanced Algorithms

Smooth polynomial programming

Program

$$\max p(x_1,\ldots,x_n)$$
 subject to
$$\sum l_i \leq p(x_1,\ldots,x_n) \leq g_i \qquad (19)$$
 $x_i \in \{0,1\} \quad \forall x_i$

Smoothness

For each degree-d polynomial, each coefficient of each degree i monomial is $\leq cn^{d-i}$

Compute a (random) solution with

- Additive error ϵn^d
- ullet degree-f constraints satisfied with additive error ϵn^f
- linear constraints satisfied with additive error $O(\epsilon \sqrt{n \log n})$
- time complexity $O\left(\left(dKn^d\right)^t\right)$, with $t=4\frac{c^2e^2d^2}{\epsilon^2}$ and K the number of constraints

Max Cut

Instance

A weighted undirected graph $G = \langle V, E \rangle$,

Feasible solution

a bipartition (V_1, V_2) of V

Objective function

$$\sum_{v_1 \in V_1, v_2 \in V_2} w(v_1, v_2)$$

Program

$$\max_{(i,j)\in E} \frac{1}{2} w(i,j) (x_i(1-x_j)) + (x_i(1-x_j))$$
(20)

Dense-*k*-subgraph

Instance

An undirected graph $G = \langle V, E \rangle$

Feasible solution

A subset S of k vertices of G

Objective function

 $|E \cap S \times S|$

Denseness

Average degree δ

Random algorithm

Has $\alpha^2 \delta^2 n^2/2$ edges.

Dense-*k*-subgraph

Instance

An undirected graph $G = \langle V, E \rangle$

Feasible solution

A subset S of k vertices of G

Objective function

 $|E \cap S \times S|$

Program

$$\max_{(i,j)\in \mathcal{E}} x_i x_j$$
 subject to $\sum_{(i,j)\in \mathcal{E}} x_i = k$ (21) $x_i \in \{0,1\}$ $orall x_i$

Linear constraint

Move $O(\sqrt{n \log n})$ vertices in/out the set S, at most $O(n\sqrt{n \log n}) = o(n^2)$ edges affected

Attribution

- Vertex Cover figure: By Miym Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739
- Clique figure: Public Domain, https://commons.wikimedia.org/w/index.php?curid=1072101
- Max Cut figure: By Miym Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6002348
- Set Cover figure: Public Domain, https://commons.wikimedia.org/w/index.php?curid=647030