Regleroptimierung durch fortgeschrittene Methoder	1

1.2 Regelstrecke

Es soll eine fiktive gegebene Strecke geregelt werden, deren Parameter Sie aus Ihrer gruppenspezifischen Aufgabenstellung entnehmen. Allgemein gilt für die Strecke folgende Übertragungsfunktion:

$$G_S = \frac{K_S \cdot e^{(-T_T \cdot s)}}{(1 + T_1 \cdot s)(1 + T_2 \cdot s)} = \frac{1,3 \text{ e}^{-2s}}{(1+10,3s)(1+0,7s)}$$
(1.1)

1.3 Durchführung

1.3.1 Modellbildung in BORIS

Bauen Sie die Regelstrecke in BORIS auf und simulieren Sie die Sprungantwort.

Testen Sie die in BORIS integrierte Modellbildung eines PT_1T_T -Modells und die Reglerparameterberechnung für einen PI-Regler, die Sie über die in Bild: 1.1 des ZEITVERLAUF Fensters erreichen.

Bild 1.1: PID-Entwurf

Notieren Sie die gefunden Übertragungsfunktion des Models 1 G_{SM1} und des Reglers G_RM1 .

$$G_{SM1} = \frac{K_S \cdot e^{(-T_e \cdot s)}}{(1+T_g \cdot s)} = \frac{1.27 \text{ e}^{-2.38s}}{1+12.4s}$$
 (1.2)

$$G_{RM1} = \frac{K_P \cdot (1 + T_N \cdot s)}{T_N s)} = \frac{2.55 (1 + 13.96s)}{13.96s}$$
 (1.3)

1.3.2 Modellbildung durch Summenzeitkonstante

Um schnell und ohne aufwändige Modellbildung durch die Analyse der Sprungantwort zu einem PT_1T_T -Modell zu kommen, soll nun die Ausgleichszeit T_g entsprechend der Summenzeitkonstante $T_\Sigma=T_1+T_2$ und die Verzugszeit T_e gleich der Totzeit T_T gesetzt werden.

$$G_{SM2} = \frac{K_S \cdot e^{(-T_e \cdot s)}}{(1+T_g \cdot s)} = \frac{1,3 e^{-2s}}{1+11s}$$
 (1.4)

$$G_{RM2} = \frac{K_P \cdot (1 + T_N \cdot s)}{T_N s)} = \frac{1.48 (1 + 13.2s)}{13.2s}$$
 (1.5)

1.3.3 Modellvergleich und Vergleich der Regelergebnisse

Fertigen Sie je einen Screenshot zum Vergleich der beiden gefundenen Modelle (Bild 1.2) und zum Vergleich der Regelergebnisse (Bild 1.3) an.

Screenshot Modellvergleich

Screenshot Vergleich der Regelergebnisse:

1.3.4 Smith-Regler

1.3.4.1 Frequenzkennlinienverfahren

Hier soll die Reglerauslegung mit dem Bode-Diagramm (Frequenzkennlinienverfahren) geübt werden. Dabei sollen PI-Regler so konfiguriert werden, dass mit deren Nachstellzeit der langsamste Streckenpol kompensiert wird. Den verbleibenden Parameter K_P soll jeder Teilnehmer eigenständig bestimmen. Tabelle 1.1 zeigt welche grundsätzliche Wirkung von der gewählten Phasenreserve zu erwarten ist.

Tabelle 1.1: Bedeutung der Phasenreserve im Zeitbereich

Phasenreserve	hasenreserve Verhalten bei Führungssprung	
30°- 45°	Stärkeres Überschwingen	Störverhalten
60°	ca. 10% Überschwingen	Führungsverhalten
80°	Aperiodisch	Führungsverhalten

Screenshot Bodediagramm 80°-Phasenreserve

Screenshot Bodediagramm 60°-Phasenreserve

Screenshot Bodediagramm 45° -Phasenreserve

Tabelle 1.2: Auswertung FKL-Regler im Bode-Diagramm

	Phasenreserve	Phase	Betrag [dB]	Betrag	K_P [dB]	K_P
Teilnehmer 1	80°	-100	3.787	1.5	0.27	0.666
Teilnehmer 2	60°	-120	1.987	0.795	0.5	1.257
Teilnehmer 3	45°	-135	4.912	0.5681	0.203	1.760

Screenshot Zeitverhalten Regelung (80°/60°/45°-Phasenreserve)

Screenshot Zeitverhalten Stellgröße (80°/60°/45°-Phasenreserve)

	Phasenreserve	Überschw.	AnrZ.	AusrZ.	max. Stellgr.
Teilnehmer 1		icht vorhanden	70.12	nicht vorhan	den 0.96
Teilnehmer 2	60° n	icht vorhanden	24.45	nicht vorhan	den _{0.96}
Teilnehmer 3	45° n	icht vorhanden	17.09	nicht vorhan	den 0.96

 $T_N = 10.3$

1.3.4.2 Polvorgabe

Vorgehensweise:

$$G_W(s) = \frac{1}{(1 + T_W s)^2} \tag{1.10}$$

Diese muss dann in Gl. 1.9 eingesetzt werden. Doch zunächst wird der erste Term der Gleichung, für diesen Sonderfall vereinfacht.

Nebenrechnung:

$$\frac{G_W(s)}{1 - G_W(s)} = \frac{\frac{1}{(1 + T_W s)^2}}{1 - \frac{1}{(1 + T_W s)^2}}$$

$$= \frac{1}{(1 + T_W s)^2 - 1}$$

$$= \frac{1}{1 + 2 \cdot T_W s + T_W^2 s^2 - 1}$$

$$= \frac{1}{2 \cdot T_W s + T_W^2 s^2}$$
(1.11)

Gl. 1.12 eingesetzt in Gl. 1.9 ergibt:

$$G_R(s) = \frac{1}{2 \cdot T_W s + T_W^2 s^2} \cdot \frac{1}{G_S(s)}$$

$$= \frac{(1 + T_1 s)(1 + T_2 s)}{K_S(2 \cdot T_W s + T_W^2 s^2)}$$
(1.12)

Hinweis: Passen Sie bei der Simulation, wenn nötig, die Simulationsdauer und Schrittweite an. Die vorgegebene Zeitkonstante T_W prägt fortan das Zeitverhalten.

Tabelle 1.5: Simulationsergebnisse Polvorgabe

	T_W	$G_R(s)$	Überschw.	AnrZ.	AusrZ.	max. Stellgr.
Teilnehmer 1	5.5	(1+10.3s)(1+0.7s) 1.3(2*5.5s+5.5²s²)	nicht vorhanden	32.4	nicht vorhanden	1
Teilnehmer 2	12.36	(1+10.3s)(1+0.7s) 1.3(2*12.36s+12.36²s²)	nicht vorhanden	71.02	nicht vorhanden	1
Teilnehmer 3	0.56	(1+10.3s)(1+0.7s) 1.3(2*0.56s+0.56²s²)	nicht vorhanden	4.9	nicht vorhanden	1

Screenshot Zeitverhalten Regelung

Screenshot Zeitverhalten Stellgröße

Screenshot WOK Polvorgabe alle Teilnehmer (Übertragungsfunktionen)

Teilnehmer 1

Teilnehmer 2

Teilnehmer 3

