

Prova especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA MECÂNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA 2019

Duração da prova: 120 minutos

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico-científico.
- Indique em todas as folhas o número de candidatura e o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- Grupo 3 Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- Grupo 5 Seis questões de resposta múltipla enquadradas nos conteúdos do curso.
- Grupo 6 Questão para desenvolvimento de assunto de cultura científica na área do curso

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

- 1. Considere as funções $f(x) = e^x$, g(x) = |x| e $h(x) = \sqrt[3]{x}$. Quais destas funções são contínuas em \mathbb{R} ?
 - \square (A) f
 - \square (B) $f \in g$
 - \square (C) $f \in h$
 - \square (D) $g \in h$
 - ☐ (E) todas
- **2.** Uma capicua é um número que se lê da mesma forma da direita para a esquerda e da esquerda para a direita, por exemplo 12321. Quantos números com 5 algarismos são capicuas?
 - \Box (A) 1000
 - □ (B) 900
 - □ (C) 9000
 - □ (D) 10000
 - □ (E) 5000
- 3. Em \mathbb{R}^3 , considere o plano π , de equação 2x+y-z=-3. Uma equação da reta r, que passa no ponto A(1,2,3) e é perpendicular a π é:

 - \square (B) $x + 1 = \frac{y+2}{2} = \frac{z+3}{3}$
 - \square (C) $(x, y, z) = (2,1,-1) + k(1,2,3), k \in \mathbb{R}$
 - \square (D) $\frac{x-1}{2} = y 2 = 3 z$
 - \square (E) $(x, y, z) = (1,2,3) + k(1,0,2), k \in \mathbb{R}$

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valor por alínea.)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função definida por $f(x) = \frac{\ln(1-2x)}{x+1}$ (**In** designa o logaritmo natural, de base *e*).

Usando métodos exclusivamente analíticos, sem recorrer à calculadora, responda às questões que se seguem:

- a) Determine o domínio de f.
- b) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.

Car	لمنام	~ 4	ro n	0	
L action	ш	аш			

C.C. / B.I. / Passaporte N.º .

t (s)

 $v (m \cdot s^{-1})$

50

Grupo 3

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Indique <u>a resposta correta</u> do seguinte modo ⊠.

1. O gráfico velocidade-tempo seguinte mostra como varia o valor da velocidade de um comboio, ao longo do tempo, num percurso retilíneo.

Diga qual das afirmações é verdadeira:

2. Um recipiente contém 0,5 litros de água a uma temperatura Ti = 25 °C (massa volúmica $\rho = 1 \text{ kg/l}$). Sabe-se que a capacidade térmica mássica da água essa temperatura é 4186 J/(kg.K). Se fornecermos 10465 J de calor a essa quantidade de água, qual será a temperatura final T_F obtida?

$$\Box$$
 (A) T_F = 35° C

$$\Box$$
 (B) T_F = 30° C

$$\Box$$
 (C) T_F = 32,5° C

$$\Box$$
 (D) T_F = 25° C

$$\Box$$
 (E) T_F = 22,5° C

- **3.** Uma máquina térmica recebe uma energia térmica por unidade de tempo igual a 1200 W. Sabendo que o rendimento da máquina é igual a 0,45 qual a potência útil fornecida pela máquina?
 - \Box (A) 500 W
 - □ (B) 600 W
 - \Box (C) 1740 W
 - \Box (D) 540 W
 - \Box (E) 5400 W

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 4

(Cotação total: 2,0 valores; cotação parcial: 0,5 valor por alínea)

Considere o sistema de dois blocos de massas $m_1 = 30$ kg e $m_2 = 20$ kg, ligados por um fio inextensível e de massa desprezável. Sabe-se que os blocos se movem, e que o coeficiente de atrito cinético é $\mu_{cin} = 0.5$.

Desprezando a massa da roldana e tomando a aceleração da gravidade $g = 9.8 \,\mathrm{m\cdot s^{-2}}$, determine:

- a) A força de atrito cinético que actua sobre o bloco 1;
- b) A aceleração dos blocos;
- c) A tensão no fio;
- d) O trabalho realizado pela força de atrito enquanto o bloco percorre 0,1 m.


~~~	ما: ماد	aturs	(	

C.C. / B.I. / Passaporte N.º .



Can			

### C.C. / B.I. / Passaporte N.º

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1.		m contentor metálico encontra-se suspenso acima do solo, através de um cabo em aço. Nesta uação, a tensão a que se encontra sujeito este cabo em aço pode exprimir-se em:
		$(A) N/m^3$
		(B) $N/m^2$
		(C) N/m
		(D) N/m.s ⁻²
2.	En	n qual das situações a seguir indicadas a transferência de energia não é feita através de calor:
		(A) Aquecer as mãos com um aquecedor.
		(B) Movimentação das pás de um aerogerador (turbina eólica).
		(C) Exposição ao sol de uma chapa metálica.
		(D) Execução de um cordão de soldadura numa chapa metálica.
3.	Nu	um sistema de unidades,10 N/m² é igual a:
		(A) 10 Pa
		(B) 20 J
		(C) 10 W
		(D) $100 \text{ J/m}^2$
4.	No	
		os quartos das habitações, normalmente, os pavimentos são em madeira, devido à sensação da adeira ser mais quente do que o granito, o que se deve ao fato de:
	ma	adeira ser mais quente do que o granito, o que se deve ao fato de:
	ma	ndeira ser mais quente do que o granito, o que se deve ao fato de:  (A) A condutividade térmica do granito ser superior à da madeira.



# Candidatura n.º

### C.C. / B.I. / Passaporte N.º .....

5.	des	n regiões onde as temperaturas máximas do ar atingem valores extremos no Verão (como no serto, acima dos 50° C), é normal os habitantes usarem roupas brancas e em lã. Este ocedimento deve-se ao fato de a lã:
		(A) Ser um material muito quente e a cor branca absorver rapidamente a radiação solar.
		(B) Ser um isolante térmico e a cor branca absorver a radiação solar, impedindo que esta chegue ao corpo do indivíduo.
		(C) Ter uma condutividade térmica elevada e a cor branca absorver a radiação, impedindo que esta chegue ao corpo do indivíduo.
		(D) Ter uma condutividade térmica muito baixa e a cor branca refletir muito bem a radiação solar.
6.	po	n componente cerâmico foi tratado termicamente num forno de micro-ondas, com uma tência nominal de 900 W, durante 30 minutos. Nestas condições, a transferência de energia ra o componente foi feita através de:
		(A) Convecção e condução
		(B) Condução e trabalho
		(C) Radiação
		(D) Trabalho



ີan	. نام	. عماد	 -	n

C.C. / B.I. / Passaporte N.º

**Grupo 6** (Cotação: 4,0 valores)

(Responda ou desenvolva o tema proposto. Escreva entre 15 a 25 linhas)

Assuma que pertence ao departamento de inovação de uma empresa de produção de equipamento a apoio a idosos em situação de dependência. Pretende-se conceber uma nova cadeira de repous segura, confortável e leve, mas cuja comercialização seja competitiva no mercado. Neste context que fatores consideraria importantes na seleção de materiais e no desenvolvimento do projeto des equipamento. Aborde, também, os processos de fabrico a que poderia recorrer para a sua produção de seguipamento.				