## • Problem 1

Order the functions by growth rate:

$$37 < \sqrt{N} < {\rm N}/2 < {\rm N} < {\rm NloglogN} < {\rm NlogN} < Nlog(N^2) < Nlog^2N < N^{1.5} < N^2 < N^2 logN < N^3 < 2^{N/2} < 2^N$$

Functions that grow at the same rate:

1. N/2 and N grow at the same rate.

Because the big-O notation of N/2 is O(N). And the big-O notation of N is also O(N). Therefore, N/2 and N have the same growth rate.

2.. NlogN and  $Nlog(N^2)$  grow at the same rate.

Because  $Nlog(N^2) = N(2logN) = 2NlogN$ , so the big-O notation of  $Nlog(N^2)$  is O(NlogN). And the big-O notation of NlogN is also O(NlogN). Therefore, NlogN and  $Nlog(N^2)$  have the same growth rate O(NlogN).

## Problem 2

 $N^{1+\varepsilon/\sqrt{log N}}$  grows faster than NlogN.

To show  $N^{1+\varepsilon/\sqrt{logN}}$  grows faster than NlogN, we need to show  $\lim_{N\to\infty}\frac{NlogN}{N^{1+\frac{\varepsilon}{\sqrt{logN}}}}=0$ . Then,

$$\begin{split} \lim_{N \to \infty} \frac{NlogN}{1 + \frac{\varepsilon}{\sqrt{logN}}} &= \lim_{N \to \infty} \frac{NlogN}{N \cdot N^{\sqrt{logN}}} \\ &= \lim_{N \to \infty} \frac{logN}{N^{\frac{\varepsilon}{\sqrt{logN}}}} \\ &= \lim_{N \to \infty} \frac{\alpha^{\log(logN)}}{\alpha^{\log(N^{\varepsilon/\sqrt{logN}})}}, \alpha \text{ is the base number of log, and } \alpha > 1 \\ &= \lim_{N \to \infty} \frac{\alpha^{\log(logN)}}{\alpha^{\frac{\varepsilon}{\sqrt{logN}}logN}} \\ &= \lim_{N \to \infty} \frac{\alpha^{\log(logN)}}{\alpha^{\frac{\varepsilon}{\sqrt{logN}}}(\sqrt{logN})^2} \\ &= \lim_{N \to \infty} \frac{\alpha^{\log(logN)}}{\alpha^{\frac{\varepsilon}{\sqrt{logN}}}(\sqrt{logN})^2} \end{split}$$

$$= \lim_{N \to \infty} \frac{\alpha^{\log(\log N)}}{\alpha^{\varepsilon \sqrt{\log N}}}$$

Let  $x = \sqrt{log N}$ , and  $\lim_{N \to \infty} \sqrt{log N} = \infty$ , then,

$$\lim_{N \to \infty} \frac{N \log N}{N^{1 + \frac{\varepsilon}{\sqrt{\log N}}}} = \lim_{N \to \infty} \frac{\alpha^{\log (\log N)}}{\alpha^{\varepsilon \sqrt{\log N}}}$$

$$= \lim_{x \to \infty} \frac{\alpha^{\log x^2}}{\alpha^{\varepsilon x}}$$

$$= \lim_{x \to \infty} \frac{\alpha^{2\log x}}{\alpha^{\varepsilon x}}$$

And 2logx = O(logx),  $\varepsilon x = O(x)$ .

Because log x grows slower than x and  $\varepsilon > 0$ , so  $\alpha^{2\log x}$  grows slower than  $\alpha^{\varepsilon x}$ , so

$$\lim_{x \to \infty} \frac{\alpha^{2\log x}}{\alpha^{\varepsilon x}} = 0.$$

Thus  $\lim_{N\to\infty}\frac{NlogN}{N^{1+\frac{\varepsilon}{\sqrt{logN}}}}=0$ . As was to be shown,  $N^{1+\varepsilon/\sqrt{logN}}$  grows faster than NlogN.

## • Problem 3

- (1) The loop runs n times. So, the Big-Oh is O(n).
- (2) The outer loop runs n times; the inner loop runs n times for every fixed i. Thus the total running time is  $n \cdot n = n^2$ . So, the Big-Oh is  $O(n^2)$ .
- (3) The outer loop runs n times; the inner loop runs  $n^2$  times for every fixed i. Thus the total running time is  $n \cdot n^2 = n^3$ . So, the Big-Oh is  $O(n^3)$ .
- (4) The outer loop runs n times totally;

the inner loop runs  $1+2+3+\cdots+n=\frac{n(1+n)}{2}=\frac{1}{2}n^2+\frac{1}{2}n$  times totally.

Thus the total running time is  $n + \frac{1}{2}n^2 + \frac{1}{2}n = \frac{1}{2}n^2 + \frac{3}{2}n$ , so the Big-Oh is  $O(n^2)$ .

(5) The total running time is

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i^2-1} \sum_{k=0}^{j-1} 1$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{i^2-1} j$$

$$= \sum_{i=0}^{n-1} 0 + 1 + 2 + 3 + \dots + i^2 - 1$$

$$= \sum_{i=0}^{n-1} \frac{i^2(i^2 - 1)}{2}$$

$$= \frac{1}{2} [(0 + 1^4 + 2^4 + 3^4 + \dots + (n-1)^4) + (0 + 1^2 + 2^2 + 3^2 + \dots + (n-1)^2)]$$

$$= \frac{1}{2} [\left(\frac{(n-1)^3}{3} + \frac{(n-1)^2}{2} + \frac{n-1}{6}\right) + \left(\frac{(n-1)^5}{5} + \frac{(n-1)^4}{2} + \frac{(n-1)^3}{3} - \frac{n-1}{30}\right)]$$
Ignore all low-order terms and leading constants, so the Rig-Oh is  $O(n^5)$ 

Ignore all low-order terms and leading constants, so the Big-Oh is  $O(n^5)$ .

(6) The innermost loop runs only when j=i, so it runs i times for every fixed i. The total running time is

$$\sum_{i=0}^{n-1} \sum_{i=0}^{i^2-1} i = \sum_{i=0}^{n-1} i^3 = \frac{(n-1)^2 n^2}{4} = \frac{n^4 - 2n^3 + n^2}{4}$$

Ignore all low-order terms and leading constants, so the Big-Oh is  $O(n^4)$ .

## Problem 5

(b)

|         |                                                                     |                                                                   | (D)                                                                  |
|---------|---------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|
| Time(s) |                                                                     |                                                                   | Size                                                                 |
|         | Merge Sort                                                          | Insertion Sort                                                    |                                                                      |
|         | 0                                                                   | 0                                                                 | 0                                                                    |
|         | 0.002                                                               | 0.052                                                             | 5000                                                                 |
|         | 0.006                                                               | 0.166                                                             | 10000                                                                |
|         | 0.01                                                                | 0.294                                                             | 15000                                                                |
|         | 0.012                                                               | 0.438                                                             | 20000                                                                |
|         | 0.014                                                               | 0.68                                                              | 25000                                                                |
|         | 0.018                                                               | 0.994                                                             | 30000                                                                |
|         | 0.022                                                               | 1.336                                                             | 35000                                                                |
|         | 0.024                                                               | 1.75                                                              | 40000                                                                |
|         | 0.028                                                               | 2.21                                                              | 45000                                                                |
|         | 0.03                                                                | 2.724                                                             | 50000                                                                |
|         | 0.006<br>0.01<br>0.012<br>0.014<br>0.018<br>0.022<br>0.024<br>0.028 | 0.166<br>0.294<br>0.438<br>0.68<br>0.994<br>1.336<br>1.75<br>2.21 | 10000<br>15000<br>20000<br>25000<br>30000<br>35000<br>40000<br>45000 |





(d)



(e)

The experimental running times of insertion sort and merge sort can be described by the equations we concluded in part (*c*). The theoretical running times of the two algorithms can be described by their Big O.

For insertion sort, the experimental running time equation is  $y = 10^{-9}x^2 + 2 \cdot 10^{-6}x = O(x^2)$ . And the theoretical Big O of insertion sort is also  $O(n^2)$ . So, our experimental result is very close to the theoretical running times, almost same.

For merge sort, the experimental running time equation is  $y = 6 \cdot 10^{-7} x = O(x)$ . And the theoretical Big O of merge sort is O(nlogn). It seems that our experimental result is different from the theoretical running times. But in my opinion, the curve of nlogn is very similar to a linear graph and the excel cannot generate a trendline of nlogn, so in fact our experimental result is similar to the theoretical running times.