جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau: 7D Durée:4H Proposé le 30 avril 2017 de 8h à 12h

Exercice 1 (3 points)

Pour chaque question ci-après ; une seule réponse est exacte

	1 our chaque question ci-apres, the sense reportse est exacte									
N°	Question	Réponse A	Réponse B	Réponse C						
1	$\left(\mathbf{e}\right)^{n}$	décroissante	croissante	convergente						
	La suite de terme général $\left(\frac{e}{2}\right)^n$ est :	ami	mati	2.7						
2	$\left(\begin{array}{c} \mathbf{V}_{\mathrm{n}} \right)$ est une suite Arithmétique de raison r	géométrique	arithmétique	ni géométrique ni, arithmétique						
	et de valeurs positives alors la suite $U_n = e^{V_n}$			-						
W	est. amimath.	mr								
3	Si $S = 1 + 2 + 2^2 + + 2^{2017}$ alors:	$1-2^{2018}$	$2^{2018}-1$	$2^{2016} + 1$						
4	$\left(\mathrm{U_{n}} \right)$ est une suite arithmétique telle que	$\int \mathbf{n} = 40$	$\int \mathbf{n} = 60$	$\int \mathbf{n} = 60$						
	$U_0 = 13$ et de raison r	ctrni.	Pr=2ut	$\mathbf{r} = -2$						
	$U_0 + U_1 + + U_n = -2867$. Alors:									
5	Toute suite strictement décroissante est	convergente	majorée	minorée						
6	Si (W_n) est une suite définie sur N^{\wedge} telle que ; $\ln\left(e - \frac{1}{n}\right) \le W_n \le 1 + \frac{e}{n} \text{ alors} :$	$\lim_{n\to+\infty} w_n = 0$	$\lim_{n\to+\infty}\mathbf{w}_{n}=1$	$\lim_{n\to +\infty} \mathbf{w}_{\mathbf{n}} = +\infty$						
	(II) II									

Recopier sur la feuille de réponse et compléter le tableau ci-dessous en choisissant la bonne réponse

N°	1	2	3	4	5 V	6 -
Question						
Réponses						

Exercice 2 (5 points) mimath. mr

Pour tout nombre complexe z on note : $P(z) = z^3 - z^2 + 2$.

1.a) Calculer P(-1).

- b) Déterminer les réels a et b tels que : $P(z)=(z+1)(z^2+az+b)$
- c) Résoudre dans l'ensemble des nombres complexes l'équation P(z) = 0.

On note z; z' et z'' les solutions avec $\text{Im}(z'') \leq \text{Im}(z)$. Ecrire les nombres z, z', z'' sous forme trigonométrique

2) Le plan complexe est rapporté a un repère orthonormé direct $(0; \vec{u}; \vec{v})$.

Soient les points A ;B ;C et D d'affixes respectives :

$$z_A = z' + 2 + i; z_B = -z''; z_C = -z' \text{ et } z_D = 3.$$

- a) Placer les points A ;B ;C et D dans le repère
- b) Comparer l'affixe de \overrightarrow{AB} a celle de \overrightarrow{DC} . En déduire la nature du quadrilatère ABCD.

4heures

- c) Déterminer l'ensemble des points M d'affixe z tels que : |z-3| = |z+1-i|
- 3) Pour tout entier naturel n on note $z_n = (z_A + 1 + i)^n$ et soit M_n le point d'affixe z_n
 - a) Déterminer l'ensemble des entiers n pour les quels z_n est réel
 - b) Déterminer l'ensemble des entiers n pour les que ls on a : $OM_n \ge 2017$.

Exercice 3 (6 points)

Soit f la fonction définie par : $f(x) = e^{-x} + 2x + 1$.

- (C) la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.(l'unité 2cm)
 - 1) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} (f(x) (2x+1))$ interpréter graphiquement
 - b) Montrer que : $\lim_{x \to \infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$ interpréter graphique ment
 - 2) a) Calculer f'(x) et étudier son signe.
 - b) Dresser le tableau de variation de f.
 - 3) a) Représenter la courbe (c) de f,
 -) a) Representer la courbe (c) de f, b) Calculer en cm^2 l'aire de la partie du plan limitée par (C) ,son asymptote oblique et les deux droites d'é quation x=0 et x=1.
 - 4) Soit g la fonction définie par :g(x) = lnf(x)
 - a) Déterminer le domaine de définition de g
 - b) Dresser le table au de variation de g. 5) On définie les suites (U_n) et (V_n) pour tout entier naturel n par : $U_n = e^{-2n}$ et $V_n = 4n + 1$.
 - a) Montre ${\bf r}$ que la suite (U_n) est géométrique décroissante.
 - b) Montrer que la suite (V_n) est arithmétique croissante.
 - c) Les suites (U_n) et (V_n) sont-elles adjacentes. Justifier votre réponse 6) Pour tout entier naturel n on pose : $S_n = f(0) + f(2) + f(4) + ... + f(2n)$.
 - a) Calculer S_n en fonction de n
 - b) Calculer $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n^2}$.

Exercice 4 (6 points)

Soit f la fonction définie $\sup[0;+\infty[$ par : $\int f(x) = 2x \ln x - x - 1; x > 0$ f(0) = -1

- (C) la courbe représentative de f dans un repère orthonormé $(0; \vec{t}; \vec{j})$.
- 1) a) Etudier la continuité de f à droite de 0.
- b) Étudier la dérivabilité de f à droite de 0 .interpréter graphiquement.
- 2) a) Calculer f'(x) pour tout x > 0.
- b) Montrer que la courbe (C) de fadmet au point d'abscisse $\frac{1}{\sqrt{\rho}}$ une tangente horizontale.
- c) Dresser le tableau de variation de f.
- 3)a) Montrer que l'équation f(x)=0 admet dans $[0; +\infty[$ une unique solution \propto et que $2<\propto<2.1.$
- b) Tracer la courbe (C).
- 4) On considère la fonction g définie par $g(x) = x^2 lnx$.
- a) Vérifier que pour tout x > 0, g'(x) = f(x) + 2x + 1.
- b) En déduire la primitive F de fsur]0; $+\infty[$ telle que F(1)=0.
- 5) Pour tout $n \ge 1$. On pose: $U_n = \int_1^{\frac{1}{n}} f(x) dx$.
- a) Interpréter U_n graphiquement.
- b) Démontrer que la suite (U_n) est croissante.
- c) Exprimer U_n en fonction de n et calculer $\lim_{n \to \infty} \mathbf{U}_n$.

Fin.

4heures