Analysis 2

David Zollikofer

1. Einführung

Wichtige Ungleichungen

Bernoulli Ungleichung Wenn $x \in \mathbb{R}$ mit x > -1 sowie $n \in \mathbb{Z}$ mit n > 0, dann gilt:

$$(1+x)^n \ge 1 + nx$$

Beweis: per Induktion

Cauchy Schwarz $\forall x, y \in \mathbb{R}^n \text{ gilt } |\langle x, y \rangle| \leq ||x|| \cdot ||y||.$

Komplexe Zahlen $\varphi = \arg(z)$

$$z = x + iy$$
 $z = r(\cos(\varphi) + i\sin(\varphi))$ $z = re^{i\varphi}$

$$x = r \cos \varphi$$
 $y = r \sin \varphi$ $r = \sqrt{x^2 + y^2}$ $\varphi = \arctan\left(\frac{y}{x}\right)$

DIVISION: Es gilt $z^{-1} = \frac{\bar{z}}{||z||^2}$ wenn $z \neq 0$

POLARFORM Wenn

$$z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$$

$$z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$$

dann gilt:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$$

Zudem folgt durch Induktion:

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Komplexe Nullstellen: Die *n*-te Wurzel von *x* berechnen wir (es gibt *n* davon):

$$\sqrt[n]{z} = \sqrt[n]{r}e^{i\left(\frac{\varphi_0}{n} + \frac{2k\pi}{n}\right)}$$

$$= \sqrt[n]{r}\left(\cos\left(\frac{\varphi_0}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\varphi_0}{n} + \frac{2k\pi}{n}\right)\right)$$

Grenzwerte & Folgen

Wir sagen dass f an der Stelle a den Grenzwert $L \in \mathbb{R}$ hat, geschrieben $\lim_{x\to a} f(x) = L$ falls $\forall \epsilon > 0 \; \exists \delta > 0$ sodass für alle $|x - a| < \delta \text{ gilt } |f(x) - L| < \epsilon$

Wurzeltrick

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \cdot \frac{-\sqrt{x^2 + x} - x}{-\sqrt{x^2 + x} - x}$$

Fundamentallimes Oft kann man einen dieser Limits verwenden:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{a^n}{n^n} = 0 \qquad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \qquad \lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$$

Definition Konvergenz Folge a_n is konvergent, falls $\exists l \in \mathbb{R}$ so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N}^+ : a_n \notin (l - \epsilon, l + \epsilon)\}$ endlich ist.

Äquivalent: $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \text{so dass} \; \forall n \geq N \; \text{gilt} \; |a_n - l| < \epsilon$.

Stetigkeit

Definition (Stetigkeit)

- Sei $D \subseteq \mathbb{R}$, $x_0 \in D$. Die Funktion $f: D \to \mathbb{R}$ ist in x_0 stetig, falls $\forall \epsilon > 0 \; \exists \delta > 0$, so dass für alle x die Implikation $|x-x_0|<\delta \implies |f(x)-f(x_0)|<\epsilon$
- ullet Daraus leitet sich ab: Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$, fist genau dann in x_0 stetig, falls für **jede** Folge $(a_n)_{n>1}$ in Ddie Implikation gilt:

$$\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = f(x_0)$$

Zwischenwertsatz (Bolzano) Sei $I \in \mathbb{R}$ ein Intervall, f: $I \to \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Dann gilt: Für alle c zwischen f(a) und f(b) exisitert ein z zwischen a und b so $\mathrm{dass}\, f(z) = c.$

Wir nennen ein Intervall $I \subseteq R$ kompakt, Kompaktheit wenn es die Form $[a, b], a \leq b$ hat.

Exponentialfunktion & Sinus & Kosinus

Wurzeltrick
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \cdot \frac{-\sqrt{x^2 + x} - x}{-\sqrt{x^2 + x} - x}$$

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \cdot \frac{-\sqrt{x^2 + x} - x}{-\sqrt{x^2 + x} - x}$$

$$\text{sin}(x) := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

$$\text{sin}(x) := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

$$\cos(x) := \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\exp(iz) = \cos(z) + i\sin(z)$$

$$\cos(z)^2 + \sin(z)^2 = 1$$

$$\cos(z) = \cos(-z)$$

$$\sin(-z) = -\sin(z)$$

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin(z + w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$

$$\cos(z + w) = \cos(z)\cos(w) - \sin(z)\sin(w)$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x - y}{2}\right)\cos\left(\frac{x + y}{2}\right)$$

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x - y}{2}\right)\sin\left(\frac{x + y}{2}\right)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = 1 - 2\sin^2(x)$$

Zudem: $sin(arccos(t)) = \sqrt{1-t^2}$ sowie cos(arcsin(t)) = $\sqrt{1-t^2}$

Einige Trigonometrische Ungleichungen

Zeige $\sin(x)$ **monton auf** $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Es gilt bekanntlich $\sin(x)$ – $\sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \ge 0 \text{ wenn } -\frac{\pi}{2} \le y < x \le \frac{\pi}{2}$ womit auch $\frac{x-y}{2} \in (0, \frac{\pi}{2}]$ und $\frac{x+y}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2})$

Zeige sin(x) < x für $x \ge 0$ Wenn x = 0 dann folgt sofort $\sin(0) = 0$. Für $x \ge 1$ folgt auch $\sin(x) \le 1 \le x$. Es bleibt $x \in (0,1)$. Per Mittelwertsatz gibt es nun ein $c \in (0,x)$ für welches $\cos(c) = \frac{\sin(x) - \sin(0)}{x - 0}$. Daraus folgt $\frac{\sin(x)}{x} \le 1$ was $sin(x) \le x$ impliziert.

Wertetabelle

Value φ	$\sin(\varphi)$	$\cos(\varphi)$	$tan(\varphi)$
0	0	1	0
$\frac{\pi}{12}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$2-\sqrt{3}$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$rac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{5\pi}{12}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$2+\sqrt{3}$
$\frac{\pi}{2}$	1	0	∞
$\frac{\pi}{2}$ $\frac{7\pi}{12}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$-\frac{\sqrt{3-1}}{2\sqrt{2}}$	$-2-\sqrt{3}$
$\frac{2\pi}{3}$ 3π	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
$\frac{3\pi}{4}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	-1
$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$
$\frac{11\pi}{12}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$-\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\sqrt{3}-2$
π	0	-1	0
$\frac{13\pi}{12}$	$-\frac{\sqrt{3}-1}{2\sqrt{2}}$	$-\frac{1+\sqrt{3}}{2\sqrt{2}}$	$2-\sqrt{3}$
$\frac{7\pi}{6}$ $\frac{5\pi}{4}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{5\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	1
$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$
$\frac{4\pi}{3}$ $\frac{17\pi}{12}$	$-\frac{1+\sqrt{3}}{2\sqrt{2}}$	$-\frac{\sqrt{3}-1}{2\sqrt{2}}$	$2+\sqrt{3}$
$\frac{3\pi}{2}$	-1	0	∞
$\frac{19\pi}{12}$	$-\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$-2-\sqrt{3}$
$\frac{5\pi}{3}$	$ \begin{array}{r} 2\sqrt{2} \\ -\frac{\sqrt{3}}{2} \end{array} $	$\frac{1}{2}$	$-\sqrt{3}$
$\frac{7\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	-1
$ \frac{\frac{5\pi}{3}}{\frac{7\pi}{4}} $ $ \frac{11\pi}{6} $ $ \frac{23\pi}{12} $ $ 2\pi $	$-\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{\sqrt{3}}$
$\frac{23\pi}{12}$	$-\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\sqrt{3}-2$
2π	0	1	0

Hyperbolische Funktionen

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Dies gibt die folgenden Zusammenhänge:

$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$

$$\cosh(x) + \sinh(x) = e^{x}$$

$$\cosh(x) - \sinh(x) = e^{-x}$$

Sowie die Reihendarstellungen:

$$\sinh(z) = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cosh(z) = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

Zudem gilt für $x \in (-1,1)$: $\operatorname{arctanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

2. Ableitung

Ableitung Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D. f ist in x_0 differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Alternativ nutzt man auch $x = x_0 + h$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Weierstrass (Äquivalente Definitionen) Sei $f: D \to \mathbb{R}$, x_0 ein Häufungspunkt von D, dann sind folgende Aussagen äquivalent:

- 1. f ist in x_0 differenzierbar.
- 2. Es gibt ein $c \in \mathbb{R}$ und $r : D \cup \{x_0\} \to \mathbb{R}$ mit:
- (a) $f(x) = f(x_0) + c(x x_0) + r(x)(x x_0)$
- (b) $r(x_0) = 0$ mit r stetig in x_0

Falls dies zutrifft ist $c = f'(x_0)$ eindeutig bestimmt.

(Beispiel) Per Definition Ableiten

•
$$f(x) = x^2$$
:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{(x \to x_0)} x + x_0 = 2x_0$$

Satz von Rolle Sei $f:[a,b] \to \mathbb{R}$ stetig auf (a,b) differenzierbar. Falls f(a) = f(b), dann gibt es $\xi \in [a,b]$ mit $f'(\xi) = 0$

Beweis (Satz von Rolle) Aus dem Min-Max Satz folgt $\exists u, v \in [a, b]$ mit $f(u) \le f(x) \le f(v) \ \forall x \in [a, b]$. Falls einer der beiden in (a, b) liegt nennen wir es ξ . Sonst gilt f(a) = f(b) und dann $\xi = a$.

Satz von Lagrange / Mittelwertsatz Sei $f:[a,b] \to \mathbb{R}$ stetig mit (a,b) differenzierbar. Dann gibt es $\xi \in (a,b)$ mit $f(b)-f(a)=f'(\xi)(b-a)$

Dieser Satz ist auch bekannt als Mittelwertsatz. Die Aussage ist äquivalent zu:

$$\exists x \in (a,b): \quad f'(x) = \frac{f(b) - f(a)}{b - a}$$

Beispiele (Lagrange)

- $Zeige | \sin(a) \sin(b)| \le |b a|$: Es folgt direkt dass $\exists c$: $\frac{\sin(b) \sin(a)}{b a} = \cos(c)$. Es folgt: $\cos(c)(b a) = \sin(b) \sin(a)$. Da aber $\cos(c) \le 1$ folgt: $|b a| \ge |\sin(b) \sin(a)|$.
- Beweise: falls $f'(x) = 0 \ \forall x$, dann ist f(x) auf [a,b] konstant: Aus Lagrange folgt dass für $x_1, x_2 \in (a,b)$ beliebig: $0 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ dies impliziert $f(x_1) = f(x_2) \ \forall x_1, x_2 \in (a,b)$.

Konvexität

Konvex $f: I \to \mathbb{R}$ ist konvex (auf I) falls für alle $x \le y$ $x, y \in I$ und $\lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Zudem gilt für $x_0 < x < x_1$ in I:

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

Man beweist dies indem man $x = (1 - \lambda)x_0 + \lambda x_1$ wählt und somit $\lambda = \frac{x - x_0}{x_1 - x_0}$

Taylorapproximation

Taylorapproximation Sei $f \in C^m([a,b])$ auf (a,b) m+1 mal differenzierbar. Dann exisitert $\xi \in (a,b)$ mit

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{1}{m!} f^{(m)}(a)(x - a)^{m} + \frac{1}{(m+1)!} f^{(m+1)}(\xi)(x - a)^{m+1}$$

Beziehungsweise:

Sei $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) (n+1) mal differenzierbar. Für jedes $a < x \le b$ gibt es $\xi \in (a,x)$ mit

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

Oder Alternativ
$$|R_N f(x;a)| \le \sup_{a < \xi < x} |f^{(n+1)}(\xi)| \frac{(x-a)^{n+1}}{(n+1)!}$$

Wichtige Taylorapproximationen um
$$x = 0$$

• $\frac{1}{1-x}$ Für alle $x \in (1,0)$ gilt:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$$

$$= \sum_{n=0}^{\infty} x^n$$

• e^x Für alle $x \in \mathbb{R}$ gilt:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}$$

$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

• $|\cos(x)|$ Für alle $x \in R$ gilt:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

• $|\sin(x)|$ Für alle $x \in R$ gilt:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{(2n-1)!}$$

• $\ln(1+x)$ Für alle $x \in (-1,1]$ gilt:

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$

$$= \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{x^n}{n}$$

• $|\arctan(x)|$ Für alle $x \in [-1, 1]$ gilt:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

• $|(1+x)^{\alpha}|$ Für alle $x \in \mathbb{R}$ gilt:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots$$
$$= \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

• $|\sinh(x)|$ Für alle $x \in \mathbb{R}$ gilt:

$$\sinh(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^7)$$
$$= \sum_{k=0}^{\infty} \frac{x^{1+2k}}{(1+2k)!}$$

• $|\cosh(x)|$ Für alle $x \in \mathbb{R}$ gilt:

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \mathcal{O}(x^7)$$

$$= \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

Fundamentalsatz

Stammfunktion Die Funktion $F(x) = \int_a^x f(t)dt$ ist in [a,b]stetig und differenzierbar mit F' = f wenn a < b und $f:[a,b]\to R$ stetig ist.

Beweis: Aus additivität folgt: $\int_a^{x_0} f(t)dt + \int_{x_0}^{x} f(t)dt =$ $\int_a^x f(t)dt$. Also $F(x) - F(x_0) = \int_{x_0}^x f(t)dt$. Per Mittelwertsatz sehen wir nun, dass es ein $\xi \in [x, x_0]$ gibt mit $\int_{x_0}^x f(t)dt = 0$ $f(\xi)(x-x_0)$. Für $x \neq x_0$ folgt somit $\frac{F(x)-F(x_0)}{x-x_0} = f(\xi)$. Wegen der Stetigkeit von f folgt: $\lim_{(x \to x_0)} \frac{F(x) - \tilde{F}(x_0)}{x - x_0} = f(x_0)$.

Fundamentalsatz der Differentialrechnung Sei $f : [a, b] \rightarrow$ \mathbb{R} stetig. Dann gibt es eine Stammfunktion F von f, die bis auf eine additive Konstante eindeutig bestimmt ist und es gilt:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Beweis: Existenz folgt aus Stammfunktionssatz. Seien F_1, F_2 Stammfkt., dann gilt $F'_1 - F'_2 = 0$. Somit ist $F_1 - F_2 = C$ mit $F(x) = C + \int_a^x f(t)dt$. Es folgt auch $F(a) = \int_a^a f(t)dt + C$ und somit F(a) = C. Es folgt daraus $F(b) - F(a) = \int_a^b f(t) dt$

Ableitung des Integrals

Mit der Kettenregel folgt aus dem Fundamentalsatz:

$$\frac{d}{dx}\left(\int_{u(x)}^{v(x)} f(t)dt\right) = f(v)\frac{dv}{dx} - f(u)\frac{du}{dx}$$

Integrale Ausrechnen

Integrationskonstante C nicht vergessen!

Direkte Integrale

Diese sind vom Typ $\int f(g(x))g'(x)dx = F(g(x))$.

Partielle Integration

Partielle Integration

$$\int f' \cdot g \, dx = f \cdot g - \int f \cdot g' \, dx$$

Integrale rationaler Funktionen

Partielle Integration

$$\int \frac{p(x)}{q(x)} dx$$

Wenn nun $deg(p) \ge deg(q)$ dann machen wir eine Polynomdivision p:q, sonst mache eine Parzialbruchzerlegung

Substitutionsregel

Substitutionsregel Ist *f* stetig und *g* erfüllt:

$$y = g(x) \iff x = g^{-1}(y)$$

Dann gilt:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Als Merksatz gilt dy = g'(x)dx respektive $dx = \frac{1}{t}dt$

Integrale der Form $\int F(e^x, \sinh(x), \cosh(x)) dx$

Substituiere mit $e^x = t$, $(dx = \frac{1}{t}dt)$

Beispiel:

$$\int \frac{e^{2x}}{e^x + 1} dx = \int \frac{t^2}{t + 1} \frac{1}{t} dt = \int \frac{t + 1 - 1}{t + 1} dt$$

$$\int \frac{1}{\cosh(x)} dx = \int \frac{1}{\frac{1}{2}(e^x + e^{-x})} dx = \int \frac{2}{t + \frac{1}{t}} \frac{1}{t} dt = \frac{2}{t^2 + 1} dt$$

Integrale der Form $\int F(\log(x))dx$

Substituiere mit $\log(x) = t$, $(dx = e^t dt)$

Beispiel:

$$\int (\log(x))^2 dx = \int t^2 e^t dt = t^2 e^t - \int 2t e^t dt$$
$$= x(\log(x))^2 - 2x \log(x) + 2x + C$$

Integrale der Form $\int F(\sqrt[\alpha]{Ax+B})dx$

Substituiere mit $t = \sqrt[\alpha]{Ax + B}$

Beispiel:

$$\int \frac{1}{\sqrt{x}\sqrt{1-x}} = \int \frac{1}{t\sqrt{1-t^2}} 2tdt = \int \frac{2}{\sqrt{1-t^2}}$$

Integrale die sin, cos, tan in geraden Potenzen enthalten

Substituiere mit tan(x) = t, $(dx = \frac{1}{1+t^2}dt)$. Es gilt zudem:

$$\sin^2(x) = \frac{t^2}{1+t^2} \qquad \qquad \cos^2(x) = \frac{1}{1+t^2}$$

Integrale die sin, cos, tan in ungeraden Potenzen enthalten

Substituiere mit $\tan(\frac{x}{2}) = t$, $(dx = \frac{2}{1+t^2}dt)$. Es gilt zudem:

$$\sin(x) = \frac{2t}{1+t^2} \qquad \cos(x) = \frac{1-t^2}{1+t^2}$$

Integrale mit $\sqrt{Ax^2 + Bx + C}$ im Nenner

Mithilfe quadratischer Ergänzung auf einen der folgenden Fälle zurückführen:

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \operatorname{arcsin}(x) + C$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arcsinh}(x) + C$$

Integrale mit $\sqrt{Ax^2 + Bx + C}$ im Zähler

Mithilfe quadratischer Ergänzung auf einen der folgenden Fälle zurückführen, dann substituieren

$$\int \sqrt{1 - x^2} dx \quad \text{substitution: } x = \sin(t) \Leftarrow dx = \cos(t) dt$$

$$\int \sqrt{x^2 - 1} dx \quad \text{substitution: } x = \cosh(t) \Leftarrow dx = \sinh(t) dt$$

$$\int \sqrt{1 + x^2} dx \quad \text{substitution: } x = \sinh(t) \Leftarrow dx = \cosh(t) dt$$

Rationale Funktionen (Partialbruchzerlegung)

Wenn wir $\frac{P(x)}{Q(x)}$ integrieren wollen und $\deg(P(x)) \ge \deg(Q(x))$, dann führen wir eine Polynomdivision durch:

$$(x^{3} - 2x^{2} - 5x + 6) : (x - 1) = x^{2} - x - 6$$

$$-(x^{3} - x^{2})$$

$$-x^{2} - 5x$$

$$-(-x^{2} + x)$$

$$-6x + 6$$

$$-(-6x + 6)$$

Andernfalls machen wir eine Partialbruchzerlegung:

$$\frac{t+2}{t^2(t^2+2)} = \frac{A}{t^2} + \frac{B}{t} + \frac{Ct+D}{t^2+2}$$

$$\frac{t}{t^3+t^2-t-1} = \frac{A}{(t+1)} + \frac{B}{(t+1)^2} + \frac{C}{t-1} \quad \text{first polyDiv}$$

$$\frac{t^4+1}{(t^2+1)^2} = 1 + \frac{-2t}{(t^2+1)^2} = 1 + \dots + \frac{At+B}{t^2+1} + \frac{Ct+D}{(t^2+1)^2}$$

Funktion	Ableitung	Bemerkung / Regel
\overline{x}	1	
χ^2	2x	
x^n	$n \cdot x^{n-1}$	$n \in \mathbb{R}$
$\frac{1}{x} = x^{-1}$ $\sqrt{x} = x^{\frac{1}{2}}$	$-\frac{1}{x^2}$	
	$\frac{1}{2\sqrt{x}}$	
$\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{1}{2\sqrt{x}}$ $\frac{x^{\frac{1}{n}-1}}{n}$	$\int x^{1/n} dx = \frac{nx^{1/n+1}}{n+1} + C$
e^{χ}	e^{x}	
a^{x}	$\ln(a) \cdot a^{x}$	
$x^x = e^{x \log(x)}$	$x^{x} \cdot (\log(x) + 1)$	Kettenregel $e^{x \log(x)}$
ln(x)	$\frac{1}{x}$	
$\frac{x \ln(x) - x}{}$	ln(x)	
sin(x)	$\cos(x)$	
$\cos(x)$	$-\sin(x)$	
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	
$\cot(x) = \frac{\cos(x)}{\sin(x)}$	$-\frac{1}{\sin^2(x)}$	
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$arccos: [-1,1] \rightarrow [0,\pi]$
arctan(x)	$\frac{1}{1+x^2}$	$\arctan : (-\infty, \infty) \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$	$\operatorname{arccot}: (-\infty, \infty) \to (0, \pi)$
cosh(x)	sinh(x)	
sinh(x)	cosh(x)	
tanh(x)	$\frac{1}{\cosh^2(x)}$	
arsinh(x)	$\frac{1}{\sqrt{1+x^2}}$	$\forall x \in R$
$\operatorname{arcosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$	$\forall x \in (1, \infty)$
artanh(x)	$\frac{1}{1-x^2}$	$\forall x \in (-1,1)$
$g(x) \cdot h(x)$	$g(x) \cdot h'(x) + g'(x) \cdot h(x)$	Produktregel
$(g(x))^n$	$n \cdot (g(x))^{n-1} \cdot g'(x)$	Potenzregel
$\frac{g(x)}{h(x)}$	$\frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{(h(x))^2}$	Quotientenregel
h(g(x))	$h'(g(x)) \cdot g'(x)$	Kettenregel

Differentialgleichungen

Differenzialgleichungen erster Ordnung

Trennung der Variablen Wenn wir eine ODE der Form y' = h(x)g(y) + b(x) haben so lösen wir das homogene Problem y' = h(x)g(y) mittels Trennung der Variablen.

Sei nun somit $y' = \frac{dy}{dx} = h(x) \cdot g(y)$ so schreiben wir es als

$$\frac{dy}{g(y)} = h(x)dx$$

$$\int \frac{dy}{g(y)} = \int h(x)dx$$

um, was wir dann nach y auflösen können.

Variation der Konstanten (1te Ord.) Wenn wir eine ODE der Form y' = h(x)y + b(x) haben, so gilt dass $y(x) = y_{hom} + y_{part}$

- Schritt 1: Löse homogenes Problem mittels Trennung der Variablen
- **Schritt 2:** Die Integrationskonstante C aus Schritt 1 fassen wir als eine von x abhängige Funktion C(x) auf.
- **Schritt 3:** Die enstandene Funktion $y_p(x)$, die homogene Lösung mit C(x) anstatt C setzte als Ansatz in die Differentialgleichung ein und löse nach C(x) ein. Dies gibt die partikuläre Lösung.
- Schritt 4: Setzte $y(x) = y_h(x) + y_p(x)$.

Beispiel $(\sin(x))y' = (\cos(x))y = e^x$. Zuerst homogen: $(\sin(x))y' = (\cos(x))y \Rightarrow \frac{dy}{dx} = -\frac{\cos(x)}{\sin(x)}y$. check nicht f = 0 $\frac{dy}{y} = \frac{\cos(x)}{\sin(x)}dx \Rightarrow \log|y| = -\log|\sin(x)| + C$ $y_{hom} = \frac{C}{\sin(x)}$

Nun partikul. $y_p = \frac{C(x)}{\sin(x)}$ $\sin(x) \left(\frac{C'}{\sin(x)} - \frac{C\cos(x)}{\sin^2(x)} \right) + \cos(x) \frac{C}{\sin(x)} = e^x$ $C' = e^x \Rightarrow C(x) = e^x \Rightarrow y_p = \frac{e^x}{\sin(x)}$

Dies gibt
$$y(x) = \frac{C}{\sin(x)} + \frac{e^x}{\sin(x)}$$

Variation der Konstanten (2te Ord.) Wir haben eine ODE der Form $y'' + a_1y' + a_0y = g(x)$:

- Schritt 1: Löse homogenes Problem mittels Euleransatz
- **Schritt 2:** Suche nun eine Lösung der Form $y_p(x) = C_1(x)y_1(x) + c_2(x)y_2(x)$ wobei y_1 und y_2 aus dem Euler Ansatz kommen und das System $\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0 \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = g(x) \end{cases}$ erfüllt sein muss. Dafür darf Determinante des Systems nicht verschwinden. Sonst keine eindeutige Lösung.
- Schritt 3: Nun finden wir C_1 und C_2 durch $\binom{C_1'(x)}{C_2'(x)} = \frac{1}{y_1(x)y_2'(x) y_2(x)y_1'(x)} \binom{-y_2(x)g(x)}{y_1(x)g(x)}$
- Schritt 4: Finde $C_1 = \int C_1' dx$ sowie C_2 . Dann baue $y_p(x) = C_1(x)y_1(x) + C_2(x)y_2(x)$.
- Schritt 5: Setzte $y(x) = y_h(x) + y_p(x)$.

Lineare DGL *n*-ter Ordnung

Wir lösen das homogene Problem vor dem inhomogenen!

Homogene Lineare DGL *n*-ter Ordnung

Wenn wir eine Gleichung der Form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$$

dann nehmen wir den Euler-Ansatz $y(x) = e^{\lambda x}$ und finden λ mit

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + a_0 = 0$$

Nun finden wir die Nullstellen λ des charakteristischen Polynoms. Wir bauen uns nun eine Basis aus $e^{\lambda_i x}$ Wenn eine Nullstelle m mal Vorkommt nehmen wir

$$e^{\lambda x}, e^{\lambda x}, \dots, x^{m-1}e^{\lambda x}$$

Das gibt uns ein Fundamentalsystem. Die Allgemeine Lösung ist eine Linearkombination der Basis (basierend auf den Anfangswerten).

Wenn die NS $\lambda = \beta + i\gamma$ nicht reell ist, so ist (bei rellen DGL) auch $\beta - i\gamma$ auch eine NS. Wir konnen dann $e^{x(\beta+i\gamma)}$, $e^{x(\beta-i\gamma)}$ auswechseln durch $f_1 = e^{x\beta}\cos(\gamma x)$ sowie $f_2 = e^{x\beta}\sin(\gamma x)$ austauschen. Erinnere dass $e^{\lambda}x$

Beispiel $y'' - 4y' + 13y = xe^x$ Mit dem Euler Ansatz kriegen wir $\lambda^2 - 4\lambda + 13 = 0$. Dies gibt $y_{hom} = Ae^{(2+3i)x} + Ae^{(2-3i)x}$ wir nutzen aber $y_{hom} = e^{2x}(C\sin(3x) + D\cos(3x))$. Nun wollen wir $e^x(ax + b)$ als Ansatz für y_p nehmen. Dann setzte ein und finde Konstanten a, b mit Koeff.vergleich. Dann setzte $y = y_{hom} + y_p$. Also $y = e^{2x}(C\sin(3x) + D\cos(3x)) + \left(\frac{x}{10} + \frac{1}{50}\right)$.

Direkter Ansatz nichthomogene DLG *n***-ter Ordnung** Für DLGs der Form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$$

mit dem Euler Ansatz lösen wir das homogene Problem. Die partikuläre Lösung finden wir mit der Idee, dass $y_p(x)$ die slebe Form wie b(x) hat.

Dabei gilt:

- Verschiedene Ansätze können kombiniert werden. So wählt man für $b(x) = 5x + \sin(x)2^{3x}$ als Ansatz $Ax + B + (C + \sin(x) + D\cos(x))e^{3x}$
- Wenn ein Teil der zu wählenden Funktion für $y_p(x)$ bereits in $y_h(x)$ drin ist, so Multipliziere den Ansatz mit x. So wählt man für $y_h(x) = Ax + B$ anstelle des Ansatzes $y_p(x) = Ax + B$ den Ansatz $y_p(x) = x(Ax + b)$

Variabelwechsel

Nutze eine Substitution und brauche dann die Methode des direkten Ansatzes:

- $y' = h\left(\frac{y}{x}\right)$, setzte $z(x) = \frac{y(x)}{x}$ respektive y(x) = xz(x), dann wird y' = z + xz'.
- y' = h(ax + by + c), setzte z(x) = ax + by(x) + c, respektive $y = \frac{z ax c}{b}$, dann wird $y' = \frac{z' a}{b}$.
- $y' = h\left(\frac{ax + by + c}{dx + ey + f}\right)$, Wir wollen x, y(x) ersetzten, dafür lösen wir das Gleichungssystem $\begin{cases} ax + by + c = 0 \\ dx + ey + f \end{cases}$, wir wollen eine Eindeutige Lösung (x_0, y_0) , desshalb fordern wir det $\begin{pmatrix} a & b \\ d & e \end{pmatrix} \neq 0$, dann setzten wir $z = y y_0$ sowie $t = x x_0$, damit wird: $y' = \frac{dy}{dx} = \frac{d(z+y_0)}{d(t+x_0)} = \frac{dz}{dt} = z'$.
- $y' = \frac{y}{x}h(xy)$, setzte z(x) = xy(x), respektive $y = \frac{z(x)}{x}$ dann wird $y' = \frac{xz'-z}{x^2}$.

Continuity in \mathbb{R}^n

Convergence of sequence in \mathbb{R}^n Let $(x_n)_n$ be a sequence in \mathbb{R}^n . We say that a sequence converges to y if for all $\epsilon > 0$, there exists $N \ge 1$ such that for all $n \ge N$ we have $||x_n - y|| \le \epsilon$

Continuity in \mathbb{R}^n

- Let $x_0 \in X$, we say that f is continuous at x_0 if for all $\epsilon > 0$, there exists $\delta > 0$ such that if $x \in X$ satisfies $||x x_0|| < \delta$ then $||f(x) f(x_0)|| < \epsilon$.
- The function $f: X \to \mathbb{R}^m$ is continuous at x_0 if and only if, for every sequence $(x_n)_n$ in X such that $x_k \to x_0$ as $k \to \infty$ the sequence $(f(x_k))_k$ converges to $f(x_0)$

Topology of \mathbb{R}^n

Bounded, Closed & Compact

- A subset $X \subseteq \mathbb{R}^n$ is bounded if the set is contained in a ball of finite radius. (Altern. if \exists lower and upper bounds not in set).
- A subset $X \subseteq \in \mathbb{R}^n$ is closed if for every sequence $(x_k)_k$ in X that converges to some $y \in \mathbb{R}^n$, we have $y \in X$.
- A subset $X \subseteq \mathbb{R}^n$ is compact if it is bounded and closed.

Examples:

- $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 2019\}$ is bounded but not closed since boundary not included.
- $\{(a, b, c) \in \mathbb{Z}^3 | a^2 + b^2 + c^2 < 2019\}$ is compact since finite.
- $\{(x, f(x)) \in \mathbb{R}^2 | x \in (0, 1], f(x) = \sin \frac{1}{x} \}$ not closed since (0, 0) not contained but $(\frac{1}{2k\pi}, 0)$ is $\forall k$.
- $\{(\cos \varphi, \sin \varphi) \in \mathbb{R}^2 | \varphi \in \mathbb{Q}\}$ is not closed since (1,1) can be approximated but never reached.
- $\{(x,y,z) \in \mathbb{R}^3 | x^2 + y^+ z^2 \le 2\}$ closed and bounded, hence compact.

Differentiability in \mathbb{R}^n

It turns out that the existence of partial derivatives is not enough to show differentiability of a function. An example is

the function
$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & \text{else} \end{cases}$$
. Using the polar

coordinate trick one can see that the function is not continuous, however both partial derivatives give $\partial_x f(0,0) = \partial_y f(0,0) = 0$, nevertheless, there exists no differential of f at (0,0) since it is not continuous there.

Differentiable in \mathbb{R}^n

• Let $X \subseteq \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^n$ be a function. Let u be a linear map $\mathbb{R}^n \to \mathbb{R}^m$ and $x_0 \in X$. We say f is differentiable at x_0 with differential u if

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{1}{\|x - x_0\|} (f(x) - f(x_0) - u(x - x_0)) = 0$$

$$\lim_{\substack{\|h\| \to 0}} \frac{\|f(x + h) - f(x) - A(x)h\|}{\|h\|} = 0.$$

where the limit is in \mathbb{R}^n . We then denote $df(x_0) = u$ If f is differentiable at every $x_0 \in X$, then we say that f is differentiable on X.

- Let $X \subseteq \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$ a function on X: If:
- -f has all partial derivatives on X
- and if all the partial derivatives are continuous on X then f is differentiable on X, then the Jabobi matrix of f at

then f is differentiable on X, then the Jabobi matrix of f at x_0 is $df(x_0)$ with respect to the canonical basis of \mathbb{R}^n

Examples

Example (Total Differentiability) Let f(0,0) = 0 and $f(x,y) = \frac{x^2y^2}{x^2+y^2}$ for $(x,y) \neq (0,0)$. Show that $f \in C^1$. We first show that f is continuous at (0,0), for this we use the polar coordinates trick:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = \lim_{r\to 0} \frac{r^4\sin^2(\varphi)\cos^2(\varphi)}{\sin^2(\varphi) + \cos^2(\varphi)} = 0$$

As a second step we show differentiability at (0,0): We will use two methods:

Via partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{2xy^2}{x^2 + y^2} - \frac{2x^3y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y} = \frac{2x^2y}{x^2 + y^2} - \frac{2x^2y^3}{(x^2 + y^2)^2}$$

We now calculate $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}$ and $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial y}$ using the polar coordinates trick and get the same result as below.

Direct Method: We calculate the Jacobi Matrix at (0,0) and plug

it into the definition of differentability:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0h^2}{h^2 + 0} - 0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^20}{h^2 + 0} - 0}{h} = 0$$

Hence we have $J_f(0,0) = [0,0]$. Now we calculate:

$$\lim_{(x,y)\to(0,0)} \frac{\left(f\left(\binom{x}{y}\right) - f\left(\binom{0}{0}\right) - J_f(0,0) \binom{x-0}{y-0}\right)}{\left\|\binom{x-0}{y-0}\right\|}$$

$$= \lim_{(x,y)\to(0,0)} \frac{\frac{x^2y^2}{x^2+y^2} - 0 - [0,0] \binom{x-0}{y-0}}{\sqrt{x^2+y^2}}$$

$$= \lim_{(x,y)\to(0,0)} \frac{\frac{x^2y^2}{x^2+y^2}}{\sqrt{x^2+y^2}}$$

$$= \lim_{x\to0} \frac{r^4 \sin^2(\varphi) \cos^2(\varphi)}{r^3} = 0$$

Since this fulfills the definition f is differentiable in all of \mathbb{R}^2 .

Rules for differentiation in \mathbb{R}^n

Directional Derivative Let $f: X \subseteq \mathbb{R}^n$, the directional derivative w in direction v at x_0 is defined by the derivative of $g(t) = f(x_0 + t \cdot v)$ at t = 0.

We have

$$D_u f(a) = \frac{d}{dt} (f(a+tu))_{|t=0}$$

$$D_u f(a) = df(a) \cdot u$$

Ideally ||u|| = 1

Examples: We would like to find $D_u f((0,1))$ in direction $\frac{1}{\sqrt{17}}(-1,4)$ of the function $f(x,y) = e^{-x}\log(y)$:

- USING THE DEFINITION: We find $f(a + tu) = e^{\frac{t}{\sqrt{17}}} \log \left(1 + \frac{4t}{\sqrt{17}}\right)$ By diff: $D_u f(a) = \lim_{t \to 0} \frac{e^{\frac{t}{\sqrt{17}}}}{\sqrt{17}} \log \left(1 + \frac{4t}{\sqrt{17}}\right) + \frac{4e^{\frac{t}{\sqrt{17}}}}{\sqrt{17}(1 + \frac{4t}{\sqrt{17}})} = \frac{\log(1) + 4}{\sqrt{17}} = \frac{4}{\sqrt{17}}$
- USING THE TOTAL DERIVATIVE: We known $D_u f(a) = df(a) \cdot u$, we get $df(x,y) = (-e^{-x} \log(y), \frac{e^{-x}}{y})$ hence df(0,1) = (0,1). By multiplication we get $\frac{1}{\sqrt{17}}(-1,4) \cdot (0,1) = \frac{4}{\sqrt{17}}$.

Gradient Vector If $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ then we define $\nabla f(x_0)$: $\nabla f(x_0) = \begin{pmatrix} \partial_{x_1} f(x_1) \\ \dots \\ \partial_{x_n} f(x_0) \end{pmatrix}$

Jacobi Matrix If
$$f(x) = (f_1(x), \dots f_m(x))$$
 then we define
$$J_f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \dots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}$$

Chain Rule We have

$$d(g \circ f)(x) = d(g(f(x))) = dg(f(x)) \cdot df(x)$$
$$J_{g \circ f}(x) = J_{g}(f(x)) \cdot J_{f}(x)$$

The order of the matrices is IMPORTANT.

Example

- Let $f(x,y,z) \mapsto (xy,y+z)$ and $g(x,y) \mapsto (e^x,xy)$. We have $dg(x,y) = \begin{pmatrix} e^x & 0 \\ y & x \end{pmatrix}$ as well as $df(x) = \begin{pmatrix} y & x & 0 \\ 0 & 1 & 1 \end{pmatrix}$. From dg we can find $dg(f) = \begin{pmatrix} e^{xy} & 0 \\ y+z & xy \end{pmatrix}$ This gives us for $d(g(f(x))) = dg(f(x)) \cdot df(x)$: $\begin{pmatrix} e^{xy} & 0 \\ y+z & xy \end{pmatrix} \cdot \begin{pmatrix} y & x & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} ye^{xy} & xe^{xy} & 0 \\ y^2+yz & 2xy+zx & xy \end{pmatrix}$
- Let $f(x,y) \mapsto (e^x + \sin(xy), x + y^2x)$ and $g = f \circ f \circ f$. Find dg(0,0): We have first notice that: $f(0,0) = (e^0 + \sin(0 \cdot 0) \ 0 + 0^2 \cdot 0) = (1 \ 0)$ $f(f(0,0)) = f(1,0) = (e^1 + \sin(1 \cdot 0) \ 1 + 0^2 \cdot 1) = (e \ 1)$

Now we can use these results:

$$df(x,y) = \begin{pmatrix} e^{x} + y\cos(xy) & x\cos(xy) \\ 1 + y^{2} & 2xy \end{pmatrix}$$

$$df(0,0) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$df(f(0,0)) = df(1,0) = \begin{pmatrix} e & 1 \\ 1 & 0 \end{pmatrix}$$

$$df(f(f(0,0))) = df(e,1) = \begin{pmatrix} e^{e} + \cos(e) & e\cos(e) \\ 2 & 2e \end{pmatrix}$$

We can now insert these results: (calculating matrix product omitted)

Tangential Plane via Definition Wir wollen die Tangentialebene am Punkt (x_0, y_0) der Fläche f(x, y) finden.

• Definiere F(x,y) = (x,y,f(x,y)) und berechne

$$dF(x_0, y_0) = \begin{pmatrix} \frac{\partial F_1}{\partial x}(x_0, y_0) & \frac{\partial F_1}{\partial y}(x_0, y_0) \\ \frac{\partial F_2}{\partial x}(x_0, y_0) & \frac{\partial F_2}{\partial y}(x_0, y_0) \\ \frac{\partial F_3}{\partial x}(x_0, y_0) & \frac{\partial F_3}{\partial y}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix}$$

ullet Nun berechnen wir den Normalenvektor $n=u\times v$

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Nun berechnen wir d mit $p = (x_0, y_0, f(x_0, y_0))$ mit $d = p \cdot n$

• Zum Schluss fassen wir die Gleichung zu ax + by + cz = d zusammen.

Tangential Plane via Taylor Approximation Wir approximieren f im Punkt (x_0, y_0) durch ein Taylorpolynom ersten Grades:

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

Example: Determine a constant $c \in \mathbb{R}$ such that the vector $(c,0,1)^T$ is perpendicular to the surface of $\mathcal{G}(f)$ at the point $(\frac{\pi}{2},0,1) \in \mathcal{G}(f)$ with $f(x,y) = \sin(x) - y^3 + y^2$. We see that

$$dF(x_0, y_0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix}$$

with v and u basis vectors of the tangential plane. Since we are looking for perpend. to surface we get $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. hence c = 0.

Hessian For the twice differentiable function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$, the Hessian is defined as:

$$\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x)
\end{pmatrix}$$

Satz von Schwarz Ist f zweimal stetig partiell Ableitbar so gilt $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

Minimum / Maxinmum finden:

- Schritt 1: Berechne Gradient und setzte null. $\nabla \cdot f = df = 0$, diese Punkte nennen wir critical points.
- **Schritt 2:** Berechne $Hess(x_0)$:
 - $-\operatorname{Hess}(x_0)$ pos. def. dann x_0 lokales Minimum
- $-\operatorname{Hess}(x_0)$ neg. def. dann x_0 lokales Maximum
- $-\operatorname{Hess}(x_0)$ indef. dann x_0 Sattelpunkt

Definitheit Dabei sind A_1, \ldots, A_n die Hauptminoren der Matrix.

- **Positiv Definit** Alle Eigenwerte strikt grösser als $0, A_1 > 0, A_2 > 0, A_3 > 0, \dots$
- Negativ Definit Alle Eigenwerte strikt kleiner als $0, A_1 < 0, A_2 > 0, A_3 < 0, \dots$

Dabei ist

$$A_1 = \det(a_{11})$$
 $A_2 = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

Change of Variable

Assume we have $h(u,v) \mapsto (u+v,u-v)$ and g(u,v) = f(u+v,u-v). We would like to find $\partial_{v^2}g$. First we find ∂_v . We note that $Dg = Df(h(u,v)) \cdot Dh(u,v)$ by the chain rule. Hence we get $\partial_v = \frac{\partial h_1}{\partial v} \frac{\partial}{\partial x} + \frac{\partial h_2}{\partial v} \frac{\partial}{\partial y}$.

This gives us $\partial_v g = \partial_x f - \partial_y f$ (f & g are same func. in diff var)

Now we apply $\partial_{v^2} = \partial_v(\partial_v g) = \partial_v(\partial x f - \partial_y f) \partial_x(\partial x f - \partial_y f) - \partial_y(\partial x f - \partial_y f) = \partial_{x^2} f + \partial_{y^2} - 2\partial_{xy} f$

Taylor Approximation in \mathbb{R}^n

Taylor Approximation in \mathbb{R}^n Let $k \in \mathbb{N}_{\geq 1}$ and $f: X \to \mathbb{R} \in C^k$ on X, and fix $x_0 \in X$. The k-th order Taylor polynomial in n variables of degree $\leq k$ is given by

$$T_{k}f(y;x_{0}) = f(x_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x_{0})y_{i} + \dots$$

$$+ \sum_{m_{1}+\dots+m_{n}=k} \frac{1}{m_{1}! \cdots m_{n}!} \frac{\partial^{k} f}{\partial x_{1}^{m_{1}} \cdots \partial x_{n}^{m_{n}}}(x_{0})y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}$$

This simplifies to

$$T_k f(y; x_0) = \sum_{|m| \le k} \frac{1}{m!} \partial_x^m f(x_0) y^m$$

Where we have used multi index notation with $|m| = m_1 + \dots + m_n$ and $y^m = y_1^{m_1} \cdots y_n^{m_n}$

Alternatively also directly:

$$T_2 f(\vec{x}, \vec{a}) = f(\vec{a}) + Df(\vec{a})(\vec{x} - \vec{a}) + \frac{1}{2}(\vec{x} - \vec{a})^T Hf(\vec{a})(\vec{x} - \vec{a})$$

We have: (using the convention $\Delta x = x - x_0$ and $\Delta y = y - y_0$)

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$

$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial^2 x} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial^2 y} (\Delta y)^2 \right)$$

$$+ \frac{1}{3!} \left(\frac{\partial^3 f}{\partial^3 x} (\Delta x)^3 + 3 \frac{\partial^3 f}{\partial^2 x \partial y} (\Delta x)^2 \Delta y + 3 \frac{\partial^3 f}{\partial x \partial^2 y} \Delta x (\Delta y)^2 + \frac{\partial^3 f}{\partial^3 y} (\Delta y)^3 \right)$$

If possible use 1-dimensional Taylor series as starting point!

Gerechnetes Beispiel $f(x, y, z) = e^{x,y,z}$. Wir wollen zweite Ordnung in (0,0,0)

$$T_{2}f(x,(0,0,0)) = f(0,0,0) + x\frac{\partial f}{\partial x}(0,0,0) + y\frac{\partial f}{\partial y}(0,0,0) + z\frac{\partial f}{\partial z}(0,0,0) + z\frac{\partial f}{\partial z$$

Use 1-Dimensional Taylor Approximation

• Find the fourth order Taylor approximation of $f(x,y) = \cos(x) \cdot \frac{1}{1-y^2}$ at (0,0): Recall that

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots$$
$$\frac{1}{1 - y^2} = 1 - y^2 + y^4 + \dots$$

Hence we have:

$$f(x,y) = \cos(x) \cdot \frac{1}{1 - y^2} = \left(1 - \frac{x^2}{2} + \frac{x^4}{4!}\right) \cdot \left(1 - y^2 + y^4\right)$$
$$= 1 - \frac{x^2}{2} - y^2 + \frac{x^2y^2}{2} + \frac{x^4}{4!} + y^4 + \dots$$

• Find the Taylor series of $f(x,y) = \cos(xy)$ at (0,0): Recall that:

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

We now replace
$$x$$
 by xy and get
$$f(xy) = \cos(xy) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} y^{2n}}{(2n)!}$$

Wegintegrale

Wegintegral Sei $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ ein stetig differenzierbares Vektorfeld und $\gamma:[a,b]\to\mathbb{R}^n$ eine stückweise stetig differenzierbare Kurve. Der Ausdruck

$$\int_{\gamma} f \cdot ds := \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$$

heistt das Wegintegral von f entlang γ . Da dies alles Vektoren sind ist die Multiplikation das Skalarprodukt. Es gilt $\gamma \in C_{pw}^1$ wobei pw = piece wise.

Parametrisieren von Wegen / Kurven

- Parabel $y = x^2$, ganz einfach als $\gamma(t) \mapsto (t, t^2)$
- Ellipse mit $(x 3)^2 + 4y^2 = 4$, schreibe als $a^2 + b^2 = r^2$ mit $a = r\cos(t)$ und $b = r\sin(t)$. In unserem Fall ist a = x - 3, b=2y sowie r=2. Dies gibt die Parametrisierung $\gamma(t)\mapsto$ $(3+2\cos(t),\sin(t))$

Länge einer Kurve Sei γ eine reguläre Kurve $\gamma:[a,b]\to\mathbb{R}^n$ mit $t\mapsto \gamma(t)$, dann ist die Länge von γ gegeben durch $L(\gamma) = \int_a^b |\gamma'(t)| dt$. Der Betrag ist dabei die euklidische Norm.

Rezept für Wegintegrale Gegeben ein Vektorfeld $f \in C^1$ und eine Kurve $\gamma \in C^1_{pw}$, gesucht $\int_{\gamma} f \cdot ds$.

- Schritt 1: Parametrisiere γ , d.h. finde Abbildung $\gamma(t)$: $[a,b] \to \mathbb{R}^n, t \mapsto \gamma(t)$
- Schritt 2: Berechne $\gamma'(t) = \frac{d}{dt}\gamma(t)$, jede Komponente einzeln ableiten.
- Schritt 3: Berechne Wegintegral durch $\int_{\gamma} f \cdot ds :=$ $\int_a^b f(\gamma(t)) \cdot \gamma'(t) dt$

Potenzialfeld Ein Vektorfeld $v:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$ heisst Potenzialfeld, falls eine stetig differenzierbare Abbildung $\varphi:\Omega\subset$ $\mathbb{R}^n \to \mathbb{R}$ existiert so dass $v = \nabla \varphi$. Wir nennen φ das Potential von v. Dabei ist wichtig:

- Das Potential ist nicht eindeutig: $\varphi = \overline{\varphi} + C$
- Sehr viele Vektorfelder lassen sich nicht als Gradienten eines skalaren Feldes schreiben.

Existenz eines Potentialfeldes Ist $v:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$ ein Potentialfeld (d.h. $\exists \varphi : \nabla \varphi = v$), so gelten die Integrabilitätsbedingungen $\frac{\partial v_i}{\partial x_i} = \frac{\partial v_j}{\partial x_i}$ für $i \neq j$, $i, j \in \{1, \dots, n\}$. Wenn Ω sternförmig (star shaped) ist, so gilt auch die Umkehrung. d.h. wenn die Integrabilitätsbedinungen erfüllt sind so gibt es ein Potential.

Folgende Aussagen sind äquivalent:

- *v* ist konservativ
- v ist ein Potentialfeld (d.h. $\exists \varphi : \nabla \varphi = v$)
- ullet Für alle geschlossenen Kurven γ gilt $\int_{\gamma} v \cdot ds = 0$
- Das Integral $\int_{\gamma} v \cdot ds$ ist unabhängig vom Weg.
- v erfüllt die Integrabilitätsbedingungen $\nabla \times v = 0$ in \mathbb{R}^3

Mehrdimensionale Integrale

Negligible subset A subset $B \subset \mathbb{R}^n$ is called negligible if $\exists k \in \mathbb{N}$ and paremeterized m_i sets $f_i: X_i \to \mathbb{R}^n$ such that $X \subset f_1(x_1) \cup \ldots \cup f_k(X_k)$. A parameterized *m*-set in $\mathbb{R}^n \approx$ m-dimensional subset of \mathbb{R}^n .

Examples:

- $\{(i,j,k) \in \mathbb{R}^3 | i,j,k \in \mathbb{Z}, i^2 + j^2 + k^2 < 2019\}$ is negligible since we can just build finitely many constant maps from [0, 1] to these finitely many distinct points.
- $\{(x, y, z) \in \mathbb{R}^3 | x + y + z = 1, x, y \in [0, 1] \}$ is also negligible since we just need the map $(x,y) \rightarrow (x,y,1-x-y)$ from $[0,1] \rightarrow \mathbb{R}^3$

Satz von Fubini Sei $Q = [a_1, b_1] \times ... \times [a_n, b_n]$ ein Quader und $f: Q \to \mathbb{R}$ mit $f \in C^0(Q)$ gegeben, so gilt:

$$\int_{Q} f(x) d\mu(x) = \int_{a_{1}}^{b_{1}} dx_{1} \dots \int_{a_{n}}^{b_{n}} dx_{n} f(x_{1}, \dots x_{n})$$

wobei wir die Integrationsreihenfolge Vertauschen dürfen.

Normalenbereich Die beschränkte Teilmenge $\Omega \subset \mathbb{R}^n$ heisst y Normalenbereich, falls sich Ω wie folgt darstellen lässt:

$$\Omega = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

wobei f, g stetig sind.

Selbstverständlich können wir über den Normalenbereich integriere und es gilt:

$$\int_{\Omega} F d\mu = \int_{a}^{b} dx \int_{f(x)}^{g(x)} dy F(x, y)$$

dabei werte immer das innere Integral zuerst aus.

Beispiele

- $\bullet \{(x,y) \in \mathbb{R}^2 | y \ge 0, x-y+1 \ge 0, x+2y-4 \le 0\}$ Wir bemerken dass $x \le 4 - 2y$ und $x \ge y - 1$, wir suchen eine obere Schranke für y, dafür muss 4 - 2y = y - 1 gelten. Demnach integrieren wir $\int_0^{\frac{3}{3}} \int_{y-1}^{4-2y} dxdy$
- Wir definieren A_1 und A_2 . Die Schnittpunkte sind bei $(\frac{1}{\sqrt{h}}, \sqrt{b})$ sowie $(\frac{1}{\sqrt{a}}, \sqrt{a})$. Demnach ist $\int_A d\mu =$ $\int_0^{\sqrt{a}} \int_{\frac{y}{a}}^{\frac{y}{a}} dx dy + \int_{\sqrt{a}}^{\sqrt{b}} \int_{\frac{y}{a}}^{\frac{1}{y}} dx dy$

Substitution

Substitutionsregel

• 1-dimensional: Sei f Riemann-integrierbar, so gilt für die

Substitution
$$x = g(u)$$
 mit $dx = g'(u)du$ dass
$$\int_{a}^{b} f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(u))g'(u)du$$

• *n*-dimensional: Sei f Riemann-integrierbar auf $\Omega \subset \mathbb{R}^n$ und die Substitution $(x_1, \ldots, x_n) = \varphi(u_1, \ldots, u_n)$ oder in

Komponenten
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \varphi(u) = \begin{pmatrix} g_1(u_1, \dots, u_n) \\ \vdots \\ g_n(u_1, \dots, u_n) \end{pmatrix}$$
 wobei

 φ ein C^1 Diffeomorphismus ist. Dann gilt

$$\int_{\Omega} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{\overline{\Omega}} f(g_1(x_1), \dots, g_n(x_n)) |\det(d\varphi)| du_1 \dots du_n$$

$$\operatorname{mit} \overline{\Omega} = \varphi^{-1}(\Omega)$$

Koordinatentransformationen

Polarkoordinaten \mathbb{R}^2

$$x = r \cos \varphi$$
 $0 \le r < \infty$ $dxdy = rdrd\varphi$
 $y = r \sin \varphi$ $0 \le \varphi < 2\pi$

Elliptische Koordinaten \mathbb{R}^2

$$x = ar \cos \varphi$$
 $0 \le r < \infty$ $dxdy = abrdrd\varphi$
 $y = br \sin \varphi$ $0 \le \varphi < 2\pi$

Zylinderkoordinaten \mathbb{R}^3

$$x = r \cos \varphi$$
 $0 \le r < \infty$ $dxdydz = rdrd\varphi dz$
 $y = r \sin \varphi$ $0 \le \varphi < 2\pi$
 $z = z$ $-\infty < z < \infty$

Kugelkoordinaten \mathbb{R}^3

$$x = r \sin \theta \cos \varphi$$
 $0 \le r < \infty$ $dxdydz = r^2 \sin \theta dr d\theta d\varphi$
 $y = r \sin \theta \sin \varphi$ $0 \le \theta < \pi$
 $z = r \cos \theta$ $0 \le \varphi < 2\pi$

Masse, Schwerpunkt Sei Ω ein 2-dimensionales Gebiet mit Massendichte $\rho(x,y)$, welche die Massenverteilung auf Ω beschreibt.

- Masse: $M(\Omega) = \int_{\Omega} \rho(x, y) dx dy$
- Schwerpunkt:

$$x_{s} = \frac{1}{M} \int_{\Omega} x \rho(x, y) dx dy$$
$$y_{s} = \frac{1}{M} \int_{\Omega} y \rho(x, y) dx dy$$

Die Masse von Ω ist dann

Das Konzept geht analog für n Dimensionen.

Oberfläche

- 1-dim: $\int_a^b \sqrt{a + f'(x)^2} dx$
- 2-dim: $\int_a^b \int_c^d \sqrt{1 + (\partial_x f(x,y))^2 + (\partial_y f(x,y))^2} dxdy$

Rotationskörper Sei $R = \{(x,y,z) \in \mathbb{R}^3 | a \le z \le b, x^2 + y^2 \le f^2(z)\}$, dann ist $\operatorname{Vol}(R) = \pi \int_a^b dz f^2(z)$

Integralsätze

Satz von Green $\vec{v} = (v_1, v_2)$ ein stetiges Vektorfeld auf $\Omega \subset \mathbb{R}^2$ und $C \subset \mathbb{R}^2$ ein beschränkter Bereich mit Rand $\gamma = \partial C$ in C^1_{pw} der sich nicht selbst schneidet (also called simple closed parameterized curve mit $\gamma(t) \neq \gamma(s)$ für $s \neq t$). Dann gilt:

$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) dx dy$$

Flächen mit dem Satz von Green berechnen Gegeben ein Gebiet $C \subset \mathbb{R}^2$ beschränkt mit C_{pw}^1 Rand ∂C , gesucht Fläche F(C)

- **Schritt 1:** Parametrisiere den Rand von C mit einer Kurve $\gamma:[a,b]\to\mathbb{R}^2, t\mapsto \gamma(t)$. Die Parametrisierung muss in positiver Richtung sein, d.h. das Gebiet links der Kurve sein.
- Schritt 2: Berechne γ'
- Schritt 1: Wähle ein geeignetes Vektorfeld wie z.B: $\vec{v} = (0, x)$ oder $\vec{v} = (-y/2, x/2)$ oder $\vec{v} = (-y, 0)$ und wende dafür den Satz von Green an: $F(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$

Satz von Gauss-Ostrogradski Sei V ein beschränkter räumlicher Bereich mit Rand $\partial V \in C^1_{pw}$ gegeben. Sei das Vektorfeld \vec{v} auf ganz V definiert und stetig differenzierbar. Dann gilt:

$$\int_{\partial V} \vec{v} \cdot \vec{n} \, d\sigma = \int_{V} \vec{\nabla} \cdot \vec{v} \, d\mu = \int_{V} \operatorname{div}(f) dx dy dz$$

wobei \vec{n} der Normalenvektor entlang ∂V ist, do das zweidimensionale Integrationselement über die Fläche und $d\mu$ das dreidimensionale Integrationselement über das Volumen.

Intuitive Erklärung: Ändert sich das Vektorfeld im Innern, so muss sich dies beim Einfluss und Ausfluss bemerkbar machen.

Oberflächenintegral

Parametrisierung einer Fläche *F* ist ein Diffeomorphismus

$$\varphi: b \to \mathbb{R}^3, (u, v) \to \varphi(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}$$

sodass $\varphi(B) = F$ gilt. Wir definieren $\varphi_u = \frac{\partial \varphi}{\partial u}$ sowie $\varphi_v = \frac{\partial \varphi}{\partial v}$ und definieren den Normalenvektor \vec{n} :

$$\vec{n} = \pm \frac{\varphi_u \times \varphi_v}{|\varphi_u \times \varphi_v|}$$

Oberflächenmass Das Flächenelement bezüglich der Parametrisierung φ ist

$$d\sigma = |\varphi_u \times \varphi_v| dudv = |\det(d\varphi)| dudv$$

Um die Oberfläche zu kriegen berechne $\int d\sigma$

Sonstiges

Binomialsatz
$$\forall x, y \in \mathbb{C}, n \ge 1$$
 gilt:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

ABC / Mitternachtsformel

Gegeben:
$$ax^{2} + bx + c = 0$$

Lösung: $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Logarithmus Regeln

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y)$$
$$\log_b(M^k) = k \cdot \log_b(M)$$

Summenformeln

rmeln
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} (2k-1) = n^{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Gerade & Ungerade Funktion Eine Funktion heisst:

- Gerade wenn f(-x) = f(x)
- Ungerade wenn f(-x) = -f(x)

Dabei sind f(x) = 1, f(x) = |x|, $f(x) = x^2$, $f(x) = \cos(x)$ alles gerade Funktionen.

Im Gegenzug sind f(x) = sgn(x), f(x) = x, f(x) = tan(x), f(x) = sin(x) ungerade Funktionen.

Injektiv

$$\forall x_1, x_2 \in M : f(x_1) = f(x_2) \implies x_1 = x_2$$

or $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

Surjektiv

$$\forall y \in N \exists x \in M : y = f(x)$$

Umkehrsatz - Beispiel Zeige dass $x + e^x$ bijektiv von \mathbb{R} auf \mathbb{R} abbildet. Es gilt $f'(x) = 1 + e^x > 0$, somit ist f streng monoton wachsend in \mathbb{R} und Umkehrbar. Weil $\lim_{x \to -\infty} f(x) = -\infty$ und $\lim_{x \to \infty} f(x) = \infty$ ist f bijektiv von \mathbb{R} nach \mathbb{R}

Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Wichtige Integrale

•
$$\int \sin^2 ax \, dx = \frac{1}{2} - \frac{1}{4a} \sin 2ax + C = \frac{1}{2} - \frac{1}{2a} \sin ax \cos ax + C$$
•
$$\int \sin^n ax \, dx = -\frac{\sin^{n-1} ax \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax \, dx$$
(for
$$\int \sqrt{x} \, dx = \frac{2}{3} \sqrt{x^3}$$
•
$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{1 - x^2} + \frac{1}{\sin(x)} \right)$$

$$\int (\sin^n ax)(\cos^m ax) \, dx = -\frac{(\sin^{n-1} ax)(\cos^{m+1} ax)}{a(n+m)}$$

$$+ \frac{n-1}{n+m} \int (\sin^{n-2} ax)(\cos^m ax) \, dx$$

$$+ \frac{n-1}{n+m} \int (\sin^{n-2} ax)(\cos^m ax) \, dx$$
(for $m \ne n \ne \infty$ (for $m \ne n \ne \infty$) (ax) $\cos(ax) \, dx = -\frac{\cos^2(ax)}{2a}$

$$\int \sin^2(x) \cos^2(x) dx = \frac{1}{4} \int \sin^2(2x) dx = \frac{1}{4} \int \frac{1 - \cos(4x)}{2} dx = \frac{x}{8} - \frac{1}{8} \frac{\sin(4x)}{4} + C$$

Typische Integrale

$$\bullet \int \frac{1}{x} dx = \ln|x|$$

$$\bullet \int \frac{1}{x^2} dx = -\frac{1}{x}$$

$$\bullet \int \frac{1}{x+a} \, dx = \ln|x+a|$$

$$\bullet \int \ln(x) \, dx = x(\ln(x) - 1)$$

$$\bullet \int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$

$$\bullet \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$$

$$\bullet \int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b|$$

•
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a}, (n \neq -1)$$

$$\bullet \int \frac{ax+b}{px+q} dx = \frac{ax}{p} + \frac{bp-aq}{p^2} \ln|pq+q|$$

•
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a})$$

$$\bullet \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

$$\bullet \int \sqrt{x} \, dx = \frac{2}{3} \sqrt{x^3}$$

$$m > 0$$
 $\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{1 - x^2} + \frac{1}{\sin(x)} \right)$

$$\bullet \int a^{xb+c} dx = \frac{a^{bx+c}}{b \log(a)}$$

Trionometrische Funktionen

$$> 0 in (ax) dx = -\frac{1}{a} \cos(ax)$$

$$\int \sin(ax)^2 dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$

$$\bullet \int \frac{1}{\sin^2 x} dx = -\cot x$$

$$\bullet \int \frac{1}{\cos^2(x)} \, dx = \tan x$$

for
$$m = n \sin(ax) \cos(ax) dx = -\frac{\cos^2(ax)}{2a}$$

•
$$\int \tan(ax) \, dx = -\frac{1}{a} \ln|\cos(ax)|$$

Exponentialfunktion

•
$$\int x \ln(x) dx = \frac{1}{2}x^2(\ln(x) - \frac{1}{2})$$

$$\bullet \int_{-\infty}^{\infty} e^{-\frac{1}{a}x^2} dx = \sqrt{a\pi}$$

Vektoranalysis

$$\Delta f = \operatorname{div} (\operatorname{grad} f),$$

$$\Delta f = \nabla \cdot (\nabla f) = (\nabla \cdot \nabla) f = \nabla^2 f.$$

$$\frac{\partial}{\partial x}$$

$$\nabla f = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \cdot f$$