Hacet	tepe	Univ.	MAT 1	24-02-05	Midte	rm Exam	26.0	04.2019	
Surname	:			Instruc	ctor			Signature	!
Name	:			Time					
ID	:			Duration	on	$90 \ min.$			
4 questions, 2 pages					100 points				
1 2	3	4							

Q1(20 p.) Find a formula to find the area of the region that lies inside both of the circles $r = 2(\sin \theta + \cos \theta)$ and $r = 2\sin \theta$.

Q2 (a)(10 p.) Using the Implicit Function Theorem show that the equations $F(x, y, z) = \cos(xz) - \sin(y + z) + 1 = 0$ and $G(x, y, z) = x + y + z - 1 - \pi/2 = 0$ can be simultaneously solved for y and z as functions of x near $P = (1, 0, \pi/2)$.

(b)(10 p.) Evaluate the partial derivatives $\frac{\partial y}{\partial x}\Big|_{P}$ and $\frac{\partial z}{\partial x}\Big|_{P}$ of the functions y and z of the item (a) above, where $P = (1, 0, \pi/2)$.

(c) (20 p.) Find the tangent line to the curve that is the intersection of the surfaces F(x, y, z) = 0 and G(x, y, z) = 0, where F and G are as in (a), at the point $P = (1, 0, \pi/2)$.

Ω 3	(20)	n.)	Find	the	critical	point	of t	he fi	unctic	r
ω		$p \cdot j$	1 mu	ULIC	CITUICAI	pomi	OI U		uncon	JI.

$$f(x,y) = xy + 2x - \ln x^2 y$$

in the open first quadrant $(x>0,\,y>0)$ and show that f takes on a minimum value there.

Q4(20 p.) Find absolute maximum and minimum values of the function $f(x,y) = (4x - x^2)\cos y$ on the rectangular plate $0 \le x \le 5, -\pi/2 \le y \le \pi$.