阵化

课程名称	工程矩阵理论工科研究生		考试字期	12-13-2		待	分		
适用专业			一考试形式	闭	卷	考试时	间长度	150 分钟	
题号		-	=	四		Б.	六	七	
得分									
]							

一、(20%)记 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $C^{2\times 2}$ 上的变换 f 定义如下:对任意 $X \in C^{2\times 2}$,

$$f(X) = AX .$$

- 1. 证明: $f \in C^{2\times 2}$ 上的线性变换;
- 2. 分别求f在基 E_{11} , E_{12} , E_{21} , E_{22} 和基 E_{11} , E_{21} , E_{12} , E_{22} 下的矩阵A,B;

- 3. 给出一个可逆矩阵 P 使得 $P^{-1}AP = B$;
- 4. 给出 $C^{2\times 2}$ 的两个2维不变子空间 V_1,V_2 使得 $C^{2\times 2}=V_1\oplus V_2$ 。

꺄

- 二、(12%)假设V 是数域F 上n 维线性空间,f,g 是V 上的线性变换,且 $fg=0,g^2=g~o.~K(f),K(g)$ 分别表示f,g 的核空间,R(f),R(g) 分别表示f,g 的值域。
 - 1. 证明: V = K(f) + K(g)。
 - 2. 证明: $V = K(f) \oplus K(g)$ 当且仅当 $\dim R(f) + \dim R(g) = n$.

三、(10%)假设V 是n 维欧氏空间, $\eta \in V$ 且 $\|\eta\| = \sqrt{2}$,k 是实数。V 上的线性变换 f 定义如下:对任意 $x \in V$, $f(x) = x - k < x, \eta > \eta$ 。问:当k 取什么值时 f 是V 上的正交变换?

四、 (15%) 假设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} a & 1 & 3 \\ 0 & 1 & b \\ 0 & 0 & 2 \end{pmatrix}$.

1. 求 A 的 Jordan 标准形。

2. 若A与B相似,问参数a,b应满足什么条件?

3. 假设复数域 C 上线性空间 $C^{3\times3}$ 的子空间 $V=\left\{p(A)\mid \forall p(x)\in C[x]\right\}$ (即 V 是关于 A 的复系数多项式全体所构成的 $C^{3\times3}$ 的子空间)。求 V 的一组基及维数。

L

五、(10%)已知矩阵
$$A = \begin{pmatrix} 3 & 3 & -2 \\ 0 & -1 & 0 \\ 8 & 6 & -5 \end{pmatrix}$$
。 试将矩阵 e^{At} 表示成关于 A 的多项式,并求

行列式 $\det e^{At}$ 的值。

六、 (10%) 假设
$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
。求 A 的广义逆矩阵 A^{+} 。

- 七、(23%)证明下列命题:
 - 1. (5%) 设A是正规矩阵,证明: $||A||_2 = \rho(A)$ 。

2. (5%)假设 $A \in S \times n$ 矩阵, $A^+ \in A$ 的广义逆矩阵。证明: $R(I - AA^+) = K(A^+)$ 。

3. (5%) 假设 A 是 $n \times n$ 矩阵。若 A 不与任何对角阵相似,证明:存在多项式 f(x) 及正整数 k,使得 $f(A) \neq O$ 但 $(f(A))^k = O$ 。

4. (8%) 假设 Hermite 矩阵 A 是正定的,m 是正整数。证明:存在唯一正定矩阵 B 使得 $A=B^m$ 。