√ivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.16 <CS> <04.04.2025>

CONTINUOUS INTERNAL EVALUATION - 1

Dept: 2 CD/	Sem / Div: 4 th A	Sub: Microcontrollers	S Code: BCS402
Date: 15.04.2025		Max Marks: 50	Elective: N
Datc. 15.04.2028		- 44	" - from each part

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
<1	PART A		,	
1 a	Differentiate: (i) Microprocessor vs Microcontroller (ii) CISC vs RISC.	8	L2	CO1
b	With neat diagram characterize the hardware components of embedded systems.	8	L2	CO1
C	Explain the different basic data types in C. Provide examples of how each data type can be used in a C program.	9	L2	CO3
	OR			
2 a With neat diagram, explain ARM core dataflow model.			L2	CO1
2	b What is pipeline in <i>ARM</i> ? Illustrate with an example the pipeline stage of <i>ARM</i> 9 and <i>ARM</i> 10.	e 8	L2	
	c Develop an assembly level program (i) for data transfer, arithmetic and logical operations (ii) to find the sum of first two integer numbers.	9	L2	2 CO3
	PART B			
3	a Explain different logical instructions in ARM processes with example.	or 8	L	2 CO2
	b Explain single register load store addressing mod syntax, table, index mode with an example.			.2 CO
	Sylliax, table, mack mout	P	age: 1	/ 2

c How compiler handles a "for loop" with variable number of interations N and loop controlling with an example.	9	L2					
of interations N and loop control OR							
		L2	CO2				
4 a Explain stack operations. b Write a note on – (i) Software interrupt instruction (ii) Program status register instruction (iii) Coprocessor instructions.	8		CO2				
c Discuss the concept of register allocation in compiler optimization. Illustrate its significance with an example.	9	L2	CO3				

Prepared by: Dr. Mahesh Prasanna K

onda

HOD