Formale Sprachen und Automaten TINF20B1

Markus Eble

Kellerautomaten und Typ-2-Grammatiken

- erster Ansatz:Top-Down-Syntaxanalyse
 - modifizierte Kellerautomaten
- alternativer Ansatz: Bottom-Up-Syntaxanalyse

Syntaxanalyse mit Kellerautomaten

- Endliche Automaten sind äquivalent zu regulären Grammatiken Endliche Automaten sind das Maschinenmodell das reguläre Grammatiken akzeptiert
- Nichtdeterministische Kellerautomaten sind äquivalent zu kontextfreien Grammatiken
 Nichtdeterministische Kellerautomaten sind das Maschinenmodell das kontextfreie Grammatiken akzeptiert

Satz 4.11

Für jede formale Sprache L sind beiden folgenden Aussagen äquivalent:

- L kann von einem nichtdeterministischen Kellerautomaten erkannt werden.
- L kann von einer kontextfreien Grammatik erzeugt werden.

Wir beschränken uns auf die folgende Richtung:

- Gegeben: kontextfreie Grammatik $G = (N, T, X_0, P)$
- Gesucht: Kellerautomat K mit L(K) = L(G).

O.B.d.A. sei $* \notin N \cup T$.

Wähle

▶ Eingabealphabet: *T*

Variable: $Z = \{z_0, z, z_+\}$

 \triangleright Startzustand: z_0

Akzeptierende Zustände: $F = \{z_+\}$

▶ Kelleralphabet: $Y = \{*\} \cup T \cup N$

Kelleranfangssymbol: *

Die Arbeitsweise von K wird durch die folgenden Aktionen beschrieben:

- Am Anfang: $f(z_0,*,\varepsilon) = \{(z,X_0)\}$
- wenn oben auf dem Keller ein Nichtterminalsymbol $X \in N$: "Produktionsschritt" für Produktion $X \to w$:
 - $(z; w) \in f(z, X, \varepsilon)$
 - kein Eingabesymbol gelesen
- wenn oben auf dem Keller ein Terminalsymbol $x \in T$: "Leseschritt" für $x \in T$:
 - $(z,\varepsilon) \in f(z,x,x)$
 - Für $x \neq x'$ gibt es aber keine Aktion: $f(z, x, x') = \emptyset$.
- Am Ende: $f(z,*,\varepsilon) = \{(z_+,*)\}$

- Die Entscheidung, ob ein Produktionsschritt oder ein Leseschritt stattfinden soll ist deterministisch.
 - Falls Nichtterminal auf Keller: Produktionsschritt
 - Falls Terminal auf Keller: Leseschritt
- Die Entscheidung, welcher Leseschritt stattfinden soll ist deterministisch.
 - Lese genau das Terminalzeichen, das auf dem Keller liegt
- Die Entscheidung, welcher Produktionsschritt stattfinden soll ist nichtdeterministisch.
 - Für das Nichtterminal auf dem Keller können mehrere Produktionen in der Grammatik existieren.

Es gilt:

- Wenn es für ein Wort w eine Linksableitung in G gibt, dann gibt es eine Berechnung von K, nach der w akzeptiert wird.
- \blacktriangleright Kann umgekehrt K ein Wort W akzeptieren, dann muss es eine Linksableitung dafür in G geben.

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow ()\})$, Eingabe ().

gelesene Eingabe	neuer Zustand	neuer Kellerinhalt	verwendete Produktion
	z_0	*	
	Z	S*	
	Z	()*	$S \rightarrow ()$
(Z) *	
()	Z	*	
()	Z_{+}	*	

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S)\})$, Eingabe (()).

gelesene Eingabe	neuer Zustand	neuer Kellerinhalt	verwendete Produktion
	z_0	*	
	Z	<i>S</i> *	
	Z	(S) *	$S \to (S)$
(Z	<i>S</i>) *	
(Z	(S)) *	$S \to (S)$
((Z	<i>S</i>)) *	
((Z)) *	$S o \varepsilon$
(()	Z) *	
(())	Z	*	
(())	Z_{+}	*	

Satz 4.12

Bei der Top-down-Syntaxanalyse "erzeugt" der Kellerautomat eine Linksableitung.

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().

gelesene Eingabe	neuer Zustand	neuer Kellerinhalt	verwendete Produktion
	z_0	*	
	Z	<i>S</i> *	
	Z	<i>SS</i> *	$S \to SS$
	Z	(S)S*	$S \to (S)$
(Z	<i>S</i>) <i>S</i> *	
(Z	(S))S*	$S \to (S)$
((Z	S))S *	
((Z)) <i>S</i> *	$S \to \varepsilon$
(()	Z) <i>S</i> *	
(())	Z	<i>S</i> *	

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().

gelesene Eingabe	neuer Zustand	neuer Kellerinhalt	verwendete Produktion
(())	Z	<i>S</i> *	
(())	Z	(S) *	$S \to (S)$
(())(Z	<i>S</i>) *	
(())(\boldsymbol{z})*	$S \to \varepsilon$
(())()	Z	*	
(())()	Z_{+}	*	

Beispiel – alternativer Weg?

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().

gelesene Eingabe	neuer Zustand	neuer Kellerinhalt	verwendete Produktion
	z_0	*	
	Z	S*	
	Z	<i>SS</i> *	$S \to SS$
	Z	(S)S*	$S \to (S)$
(Z	<i>S</i>) <i>S</i> *	
(Z	(S))S*	$S \to (S)$
((Z	S))S *	
((Z	(S)))S *	$S \to (S)$

An dieser Stelle ist der Kellerautomat in einer Sackgasse, weil das nächste Eingabesymbol) ist, aber auf dem Keller (liegt!

Beobachtung

- ▶ Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().
- ▶ Verwendete Produktionen in der Reihenfolge der Tabelle: $S \to SS, S \to (S), S \to (S), S \to \varepsilon, S \to (S), S \to \varepsilon$
- Es wird immer das linkste Nichtterminal im Keller ersetzt.
- ▶ Der Kellerautomat erzeugt eine Linksableitung: $S \Rightarrow \underline{S}S \Rightarrow (\underline{S})S \Rightarrow ((\underline{S}))S \Rightarrow (())\underline{S} \Rightarrow (())(\underline{S}) \Rightarrow (())()$

Top-Down-Syntaxanalyse

- Kellerautomat "konstruiert" Ableitungsbaum von oben nach unten.
- $ightharpoonup \alpha$: bereits gelesener Teil der Eingabe
- $m{\omega}$: noch ausstehender Teil der Eingabe
- κ: Kellerinhalt
- Situation unmittelbar vor Produktionsschritt:

schon klar:
$$S \stackrel{l}{\Rightarrow} * \alpha \kappa$$

noch zu prüfen: $\kappa \stackrel{l}{\Rightarrow} * \omega$?

Satz 4.12

Bei der Top-down-Syntaxanalyse "erzeugt" der Kellerautomat eine Linksableitung.

Beobachtung

Nichtdeterministische Kellerautomaten sind unpraktisch.

Mögliche Auswege:

- simuliere den Kellerautomaten deterministisch
 - systematische Suche nach einer akzeptierenden Berechnung
 - Vorsicht: unendlichen Rekursion droht.
 - Außerdem: Zeitaufwand evtl. zu groß
 - Backtracking erschwert Aktualisierung von Datenstrukturen
 - Besser nicht ...
- schränke Kellerautomaten ein
 - Extremfall: nur deterministische Variante
 - Günstiger: erlaube Vorausschau im Eingabestrom
- vergiss Kellerautomaten und mache die Syntaxanalyse anders
 - auch erzwungen, wenn die Syntax nicht kontextfrei

Bottom-Up Syntaxanalyse

 Die Bottom-Up Syntaxanalyse ist ein alternativer Ansatz der ebenfalls mit 2 Schritten arbeitet

Leseschritt:

Das nächste Eingabesymbol wird gekellert.

▶ Reduktionsschritt:

Oberste Kellersymbole bilden die rechte Seite einer Produktion, die durch zugehörige linke Seite ersetzt wird.

Modifizierte Kellerautomaten

- Kellerautomat kann in einem Schritt mehrere oberste Kellersymbole lesen.
- → Mit "normalem" Kellerautomaten simulierbar, erleichtert aber die Beschreibung wesentlich.
- Wir benutzen diese Erweiterung um die ganze rechte Seite einer Produktion zu lesen
- Beim "Auslesen" eines Wortes, dessen Symbole oben auf dem Keller liegen, ist das oberste Kellersymbol das letzte Wortsymbol, das zweitoberste Kellersymbol das vorletzte Wortsymbol, usw.

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \to ()\})$, Eingabe ().

neuer Kellerinhalt	neuer Zustand	noch nicht gelesen	verwendete Produktion
*	z_0	0	
* (Z)	
* ()	Z		
* <i>S</i>	Z		$S \rightarrow ()$
* <i>S</i>	Z_{+}		

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S)\})$, Eingabe (()).

neuer Kellerinhalt	neuer Zustand	noch nicht gelesen	verwendete Produktion
*	z_0	(())	
* (Z	())	
* ((Z))	
* ((S	Z))	$S \to \varepsilon$
* ((S)	Z)	
* (S	Z)	$S \to (S)$
* (S)	Z		
* S	Z		$S \to (S)$
* S	Z_{+}		

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().

neuer Kellerinhalt	neuer Zustand	noch nicht gelesen	verwendete Produktion
*	z_0	(())()	
* (Z	())()	
* ((Z))()	
* ((S	Z))()	$S \to \varepsilon$
* ((S)	Z)()	
* (S	Z)()	$S \to (S)$
* (S)	Z	O	
* <i>S</i>	Z	O	$S \to (S)$

Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().

neuer Kellerinhalt	neuer Zustand	noch nicht gelesen	verwendete Produktion
* <i>S</i>	Z	0	$S \to (S)$
* S(Z)	
* S(S	Z)	$S \to \varepsilon$
* <i>S</i> (<i>S</i>)	Z		
* <i>SS</i>	Z		$S \to (S)$
* <i>S</i>	Z		$S \to SS$
* <i>S</i>	Z_{+}		

Beobachtung

- ▶ Grammatik $G = (\{S\}, \{(,)\}, S, \{S \rightarrow \varepsilon | (S) | SS\})$, Eingabe (())().
- ▶ Verwendete Produktionen in der Reihenfolge der Tabelle: $S \to \varepsilon, S \to (S), S \to (S), S \to \varepsilon, S \to (S), S \to SS$
- Es wird immer das rechteste Nichtterminal im Keller ersetzt.
- ▶ Der Kellerautomat erzeugt rückwärts eine Rechtsableitung: $S \Rightarrow S\underline{S} \Rightarrow S(\underline{S}) \Rightarrow \underline{S}() \Rightarrow \underline{S}() \Rightarrow (\underline{S})() \Rightarrow ((\underline{S}))() \Rightarrow (())()$

Bottom-up-Syntaxanalyse

- Der Kellerautomat versucht, rückwärts eine Rechtsableitung des Eingabewortes gemäß der zu Grunde gelegten Grammatik zu finden.
- Situation unmittelbar vor Reduktionsschritt:

schon klar: $\kappa \stackrel{r}{\Rightarrow} * \alpha$

noch zu prüfen: $S \stackrel{r}{\Rightarrow} * \kappa \omega$?

Bottom-up-Syntaxanalyse

Leseschritt:

Das nächste Eingabesymbol wird gelesen und gekellert.

Das erhält die Eigenschaft $\kappa \Rightarrow * \alpha$

▶ Reduktionsschritt:

Kellerautomat ersetzt rechte Seite einer Produktion oben auf dem Keller durch linke Seite.

Ist $\kappa = \kappa' \gamma$ und $X \to \gamma$ benutzte Produktion, gilt:

$$\kappa'X \Rightarrow \kappa'\gamma = \kappa \Rightarrow *\alpha.$$

Ziel:

- $\kappa = S$ und
- die gesamte Eingabe w gelesen, also $\omega = \varepsilon$.

Satz 4.13

Der Kellerautomat findet bei Bottom-up-Syntaxanalyse die Produktionen einer Rechtsableitung "von hinten nach vorne".

Beobachtung

- Nichtdeterministische Entscheidungen bei der Bottom-up-Syntaxanalyse:
 - Es kann sowohl ein Lese- als auch ein Reduktionsschritt möglich sein.
 - Bei einem Reduktionsschritt können unterschiedlich lange Kellerenden reduziert werden.
 - Bei einem Reduktionsschritt kann unter mehreren Produktionen mit gleicher rechter Seite ausgewählt werden.

Beobachtung

- Will man eine Grammatik so gestalten, dass die Syntaxanalyse deterministisch ist,
 - muss man bei der Bottom-Up-Syntaxanalyse auf die rechten Seiten der Produktionen achten und
 - muss man bei der Top-Down-Syntaxanalyse auf die linken Seiten der Produktionen achten.
- Die rechten Seiten einer Typ-2-Grammatik sind variantenreicher ...

Zusammenfassung

- Nichtdeterministische Kellerautomaten und kontextfreie Grammatiken sind äquivalente Beschreibungsmittel.
- Bei Top-Down-Syntaxanalyse wird eine Linksableitung von vorne nach hinten konstruiert.
- Bei Bottom-Up-Syntaxanalyse wird eine Rechtsableitung von hinten nach vorne konstruiert.

Ausblick

Wie kommt man von den nichtdeterministischen Kellerautomaten weg?

Grammatikkonstrukte die Probleme machen:

- Linksrekursion bei der Top-Down Analyse
- **ε** -Produktionen
- Lookahead in der Eingabe

Ausblick

- ▶ Top-Down und Bottom-Up Analyse sind die Basis für Compiler
- Das einfachste Rezept:Der rekursiv absteigende Parser

Rekursiver Abstieg – Wikipedia

Recursive descent parser – Wikipedia

ist eine Umsetzung der Top-Down Syntax-Analyse