

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Apuntes $05~{\rm de~agosto~de~2025}$

$\acute{\mathbf{I}}\mathbf{ndice}$

M	ivación	3
1.	Iomología	5
	.1. Complejos de Cadenas	. 5
	.2. Complejos Simpliciales	δ
	.3. Homología Simplicial	12
	4. Resultados de Homología	. 17
	5. Homología Singular	. 18
	.6. Homología Relativa	19
	7. Superficies	20
2.	Cohomología	22
	.1. Cohomología Singular	. 22
	.2. Producto Cup	
	3. Anillo de Cohomología	
	4. Dualidad de Poincaré y Fórmula de Künneth	
3.	Frupo Fundamental	26
	1 Drimon Chung Fundamental	26

Motivación

Dados dos espacios topológicos X e Y ¿Cuando son homeomorfos?. Decimos que dos espacios son **homeomorfos** si existe $f: X \to Y$ continua, biyectiva y con inversa constinua. La topología algebraica ataca esta pregunta de la siguiente forma:

- (1) Asigna a cada espacio topológico X un objeto algebraico G(X).
- (2) Aigna a cada función continua $f: X \to Y$ un homomorfismo $G(f): G(X) \to G(Y)$ tal que
 - (a) $G(f \circ g) = G(f) \circ G(g)$
 - (b) $G(id_X) = id_{G(X)}$

Observación: Ambas condiciones implican que si $f: X \to Y$ es homeomorfismo, entonces $G(f): G(X) \to G(Y)$ es isomorfismo. A veces los G que se construyen satisfacen la propiedad extra que si X se puede "deformar continuamente" en Y entonces $G(X) \cong G(Y)$.

Decimos que G es un **invariante homotópico**.

Ejemplos:

(1) Tenemos los espacios

Mas adelante veremos que la homología le asigna a la esfera el grupo $\{e\}$ y al toro \mathbb{Z}^2 . En general, una superficie de genero q tendrá el grupo \mathbb{Z}^{2g} .

- (2) ¿Cuando \mathbb{R}^n y \mathbb{R}^m son homeomorfos? Si $n \neq$, el grupo de homología de \mathbb{R}^n será $\{e\}$ y por el contrario, para \mathbb{R}^m va a ser \mathbb{Z} y por lo tanto \mathbb{R}^n y \mathbb{R}^m son homeomorfos si y solo si n = m.
- (3) Un ejemplo particular, para el circulo se tiene que $\pi_1(\mathbb{S}^1) = \mathbb{Z}$ pero $\pi_1(\mathbb{S}^2) = \{e\}$ y por lo tanto los espacios no son homeomorfos.

Definición: Una homotopía entre dos funciones continuas $f, g: X \to Y$ es una función continua $H: X \times [0,1] \to Y$ tal que H(x,0) = f(x) y H(x,1) = g(x) para todo $x \in X$.

Notación: La función $H_t: X \to Y$ esta dada por $H_t(x) := H(x,t)$. Una homotopía de f a g se denota por $f \sim g$.

Proposición 0.1: Ser homotópico es una relación de equivalencia en C(X,Y).

Demostración. Debemos probar tres cosas

(1) La relación es reflexiva. Sea $f: X \to Y$, consideramos la homotopía constante, esto es H(x,t) := f(x) es continua ya que

$$X \times [0,1] \xrightarrow{\pi_X} X \xrightarrow{f} Y$$

(2) Simetría. Supongamos que $f \sim g$, consideramos H'(x,t) = H(x,1-t) y es continua por que

$$X \times [0,1] \xrightarrow{id \times (1-t)} X \times [0,1] \xrightarrow{H} Y$$

(3) Por último, la transitividad. Sean $f \sim g \ y \ g \sim h$, Definimos $H * G : X \times [0,1] \to Y$ dada por

$$H * G(x,t) := \begin{cases} H(x,2t) & \text{si } 0 \le t \le \frac{1}{2} \\ G(x,2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

que resulta continua por el lema del pegado.

Definición: Decimos que $f: X \to Y$ es una equivalencia homotópica, si existe $g: Y \to X$ tal que $g \circ f \sim id_X$ y $f \circ g \sim id_Y$ En tal caso, X e Y se dicen homotópicamente equivalentes o que tienen el mismo tipo de homotopía y se denota por $X \sim Y$.

Ejemplo:

- (1) Sea $f: X \to Y$ un homeomorfismo, en particular, tomando $g = f^{-1}$, se sigue que es equivalencia homotópica.
- (2) Se tiene que $\{0\} \sim \mathbb{R}^n$, consideremos la inclusión $i : \to \{0\} \to \mathbb{R}^n$, afirmamos que es i es equivalencia homotópica. En efecto, se verifica que $\pi : \mathbb{R}^n \to \{0\}$ es una inversa homotópica. Por un lado $\pi \circ i = id_{\{0\}}$ y por otro $i \circ \pi = 0$. Notamos que H(x,t) = tx con $t \in [0,1]$ es una homotopía entre 0 y $id_{\mathbb{R}^n}$.
- (3) Veamos que $\mathbb{R}^n \setminus \{0\} \sim \mathbb{S}^{n-1}$. Probaremos que la función $i: \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$ es equivalencia homotópica. En efecto,

$$\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$
$$x \to \frac{x}{|x|}$$

es inversa homotópica. Es claro que $\pi \circ i = id_{s^{n-1}}$. Definimos

$$H(x,t) := t \frac{x}{|x|} + (1-t)x$$

Notamos que H(x,0)=x y $H(x,1)=\frac{x}{|x|}$, es decir, H es una homotopia entre $i\circ\pi$ e $id_{\mathbb{R}^n\setminus\{0\}}$. Además, se verifica que $im(H)\subseteq\mathbb{R}^n\setminus\{0\}$.

1. Homología

Queremos asignarle a un espacio topológico X arbitrario, grupos abelianos $H_0(X), H_1(X), \cdots$ tal que si $X \sim Y$, entonces $H_i(X) \cong H_i(Y)$ para todo i. Ituitivamente, $H_k(X)$ estará generado por ciertos subespacios de X de dimensión k.

Habrá una relación de equ
valencia, $A, B \subseteq X$ de dimensión k serán equivalentes si hay un subespacio de X de dimensión k+1
cuyo borde es $A \cup B$.

Hay que restringir la clase de espacios a una con nociones de dimensión, borde, etc. Estos serán los complejos simpliciales. Necesitamos, adicionalmente, un objeto algebraico que capture esas nociones, esto corresponde a los complejos de cadenas.

1.1. Complejos de Cadenas

Definición: Un complejo de cadenas es una sucesión de grupos abelianos y homomorfismos

$$\cdots \longrightarrow C_3 \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$$

tal que $\partial_i \circ \partial_{i+1} = 0$ para todo i. Se denota por $(C_{\bullet}, \partial_{\bullet})$.

Observación: Notemos que $im \partial_{i+1} \subseteq ker \partial_i \subseteq C_i$. Dado que los grupos son abelianos, esta observación permite definir el siguiente objeto.

Definición: El **i-ésimo grupo de homología** de $(C_{\bullet}, \partial_{\bullet})$ se define por

$$H_i(C_i) := \frac{\ker \partial_i}{im \ \partial_{i+1}}$$

Ejemplos:

• Si A un grupo abeliano, entonces

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow A \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0$$

es un complejo de cadenas donde $C_i = A$. Entonces

$$H_j(C_{\bullet}) = \begin{cases} 0 & \text{si } j \neq i \\ A & \text{si } j = i \end{cases}$$

■ Consideremos la cadena exacta

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \longrightarrow 0$$

entonces $H_i(C_{\bullet}) = 0$ para todo i.

Veamos que

$$\cdots \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \longrightarrow 0$$

es un complejo de cadenas. La homología asociadas son $H_0(C_{\bullet}) = \mathbb{Z}$, $H_1(C_{\bullet}) = \mathbb{Z}_2$ y $H_k(C_{\bullet}) = 0$.

Definición: Sean $(C_{\bullet}, \partial_{\bullet})$ y $(D_{\bullet}, \partial_{\bullet})$ dos complejos de cadenas. Un **mapeo de cadenas** es una colección de homomorfismos $f_n : C_n \to D_n$ tal que $\partial_n f_n = f_{n-1}\partial_n$ para todo n, es decir, el siguiente diagrama conmuta

$$\begin{array}{ccc} C_n & \xrightarrow{\partial_n} & C_{n-1} \\ & & & \downarrow^{f_{n-1}} \\ D_n & \xrightarrow{\partial_n} & D_{n-1} \end{array}$$

y se denota por $f_{\bullet}: C_{\bullet} \to D_{\bullet}$.

Lema 1.1: Si $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ es un mapeo de cadenas, entonces la asignación $f_{*}: H_{n}(C_{\bullet}) \to H_{n}(D_{\bullet})$ dada por

$$f_*([x]) = [f_n(x)]$$

esta bien definida y es un homomorfismo de grupos.

Demostración. Sea $x \in ker\partial_n$ entonces $\partial_n f_n(x) = f_{n-1}\partial_n(x) = f_{n-1}(0) = 0$. Así, $f_n(x) \in ker \partial_n$ y por tanto la expresión tiene sentido. Si [x] = [y] entonces $x - y = \partial_n(z)$ para $z \in C_{n+1}$, se sigue que $f_n(x) - f_n(y) = f_n\partial_{n+1}(z) = \partial_{n+1}f_{n+1}(z)$. Concluimos que $[f_n(x)] = [f_n(y)]$.

Ejemplo: Consideremos la siguiente situación

Entonces $f_*: H_2(C_{\bullet}) = 0 \to H_2(D_{\bullet}) = \mathbb{Z}$ es el morfismo trivial. Mientras que $\pi_*: H_1(C_{\bullet}) = \mathbb{Z}_3 \to H_1(D_{\bullet}) = \mathbb{Z}_3$ es la identidad.

Observación: Sea $g_{\bullet}: D_{\bullet} \to G_{\bullet}$ un mapeo de cadenas, entonces $(g \circ f)_{\bullet}: C_{\bullet} \to G_{\bullet}$ es un mapeo de cadenas y el siguiente diagrama conmuta

Notemos que $\partial_n g_n f_n = g_{n-1} \partial_n f_n = g_{n-1} f_{n-1} \partial_n$. Por otro lado, tenemos que $(g \circ f)_*([x]) = [(g \circ f)(x)] = g_*([f(x)]) = (g_* \circ f_*)([x])$, lo que prueba la afirmación.

Definición: Sean $i_{\bullet}: A_{\bullet} \to B_{\bullet}$ y $j_{\bullet}: B_{\bullet} \to C_{\bullet}$ dos mapeos de cadenas. Decimos que forman una sucesión exacta corta si la secuencia

$$0 \longrightarrow A_n \xrightarrow{i_n} B_n \xrightarrow{j_n} C_n \longrightarrow 0$$

es exacta y corta de grupos abelianos libres para todo $n \in \mathbb{N}$. Lo denotamos como $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$.

Teorema 1.2 (Lema de la serpiente): Sea $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ una secuencia de complejos de cadenas, entonces existen morfismos

$$\delta_n: H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$$

tal que

$$\xrightarrow{\delta_{n+1}} H_n(A_{\bullet}) \xrightarrow{i_*} H_n(B_{\bullet}) \xrightarrow{j_*} H_n(C_{\bullet})$$

$$\xrightarrow{\delta_n}$$

$$\to H_{n-1}(A_{\bullet}) \xrightarrow{i_*} H_{n-1}(B_{\bullet}) \xrightarrow{j_*} H_{n-1}(C_{\bullet}) \longrightarrow \cdots$$

$$\cdots \longrightarrow H_0(B_{\bullet}) \longrightarrow H_0(C_{\bullet}) \longrightarrow 0$$

Demostración. Vamos a hacer un cacería de diagramas (:D). Consideremos el diagrama

Primero debemos definir $\delta_n: H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$. Sea $[c] \in H_n(C_{\bullet})$ entonces $c \in \ker \partial \subseteq C_n$. Como j es sobre, existe $b \in B_n$ tal que j(b) = c. Consideramos ∂b y notamos que

$$j\partial(b) = \partial j(b) = \partial c = 0$$

entonces existe un único $a \in A_{n-1}$ tal que $i(a) = \partial b$. Verificamos que $i\partial(a) = \partial i(a) = \partial^2 b = 0$ y como i es inyectiva vemos que $\partial a = 0$. Afirmamos que $\delta_n : H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ por

$$\delta_n([c]) = [a]$$

cumple lo buscado. Debemos demostrar lo siguiente

(1) No depende de la elección de b. Sea b' tal que j(b') = c entonces j(b'-b) = c - c = 0, existe único a_0 tal que $i(a_0) = b' - b$. Por otro lado, existe a' tal que

$$i(a') = \partial b' = \partial b + \partial i(a_0) = \partial b + i\partial(a_0)$$

entonces $i(a' - \partial a_0) = \partial b = i(a)$, por invectividad, $a' - \partial a_0 = a$, lo que implica que [a] = [a'].

- (2) No depende de la elección del representante de [c]. Sea $c' = c + \partial c'' = j(b) + \partial j(b'') = j(b) + j\partial(b'')$, diremos $b' = b + \partial b''$, notemos que $\partial b' = \partial b + \partial^2 b'' = \partial b$. El mismo $a \in A_{n-1}$ satisface $i(a) = \partial b'$. Entonces $\delta_n[c] = [a] = \delta_n[c']$.
- (3) La función δ_n es morfismo, es decir

$$\delta_n([c] + [c']) = \delta_n[c] + \delta_n[c']$$

Notar que si j(b) = c y j(b') = c' entonces j(b + b') = c + c', existen únicos $a, a' \in A_{n-1}$ tales que $i(a + a') = \partial(b + b'')$ y así

$$\partial_n([c+c']) = [a+a'] = [a] + [a']$$

(4) Exactitud en $H_n(C_{\bullet})$ y $H_n(A_{\bullet})$. Veamos que $im \ j_* \subseteq ker \ \delta_n$. Sea $j_*[b]$ con $\partial b = 0$. Entonces

$$\delta_n j_*[b] = \delta_n[j(b)]$$

Existe único $a \in A_{n-1}$ tal que $i(a) = \partial b = 0$, entonces a = 0 y por lo tanto $\delta_n j_*[b] = [a] = 0$. Queda ver que $\ker \delta_n \subseteq \operatorname{im} j_*$. Sea $[c] \in \ker \delta_n$ con $\partial c = 0$. Por definición de δ_n , para cada b tal que j(b) = c hay un único $a \in A_{n-1}$ tal que $i(a) = \partial b$.

Como $\delta_n[c] = [a] = 0$ se sigue que $a = \partial a'$ y entonces $\partial b = i(a) = i\partial(a') = \partial i(a')$, así $b - i(a') \in \ker \partial$, es decir b - i(a') representa una clase de homología.

Ahora j(b-i(a'))=j(b)=c, por ende, $j_*[b-i(a')]=[c]$. Para $H_n(A_{\bullet})$ la demostración es similar.

(5) Exactitud en $H_n(B_{\bullet})$. Sea $[a] \in im \ i_* \text{ con } \partial a = 0$, entonces

$$j_*i_*[a] = [j_ni_n(a)] = 0$$

y por lo tanto $im\ i_* \subseteq ker\ j_*$. Sea $[b] \in ker\ j_*$ con $\partial b = 0$, entonces $j_*[b] = [j(b)] = 0$, lo que implica que $j(b) = \partial c' = \partial j(b') = j\partial(b')$, existe único $a \in A_{n-1}$ tal que $b - \partial b' = i(a)$, además

$$i\partial(a) = \partial i(a) = \partial b + \partial^2 b' = 0$$

entonces $\partial a = 0$. Luego $i_*[a] = [b]$. Concluimos que $imi_* = ker j_*$.

Lo que concluye el teorema.

Definición: Sean $f_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}$ mapeos de cadenas. Una homotopía de cadenas es una colección de morfismos

$$h_n: C_n \to C_{n+1}$$
 tal que
 $f_n - g_n = \partial h_n + h_{n-1} \partial$

Lo denotamos como $f_{\bullet} \sim g_{\bullet}$.

Proposición 1.3: Sea $f_{\bullet} \sim g_{\bullet}$ entonces $f_* = g_*$.

Demostración. Sea $[x] \in H_n(C_{\bullet})$, por definición, sabemos que $\partial x = 0$, luego

$$(f_* - g_*)([x]) = [(f - g)(x)] = [(\partial h + h\partial)(x)] = [\partial hx] = 0$$

lo que prueba la afirmación.

Proposición 1.4 (Lema del 5): Considerar el siguiente diagrama commutativo

donde las filas son secuencias exactas y cada cuadrado conmuta. Si f_1, f_2, f_4 y f_5 son isomorfismos, entonces f_3 es isomorfismo.

Demostración. Por simplicidad del argumento, denotaremos los morfismos $A_i \to A_{i+1}$ y $B_i \to B_{i+1}$ como ∂ . Debido a que ambas secuencias son exactas, resulta que $\partial^2 a = \partial \circ \partial(a) = 0$. Veamos que $\ker f_3 = 0$. Sea $a \in \ker f_3$, notemos que

$$0 = \partial f_3(a) = f_4 \partial(a)$$
 entonces $\partial a = 0$

Como $a \in \ker \partial$, existe $a' \in A_2$ tal que $\partial a' = a$, luego $\partial f_2(a') = f_3\partial(a') = f_3(a) = 0$. Por exactitud, existe $b' \in B_1$ tal que $\partial b' = f_2(a')$, puesto que f_1 es isomorfismo, existe $a'' \in A_1$ tal que $b' = f_1(a'')$, usando que los diagramas conmutan vemos que

$$a'' = f_1^{-1}(b')$$
 entonces $\partial a'' = \partial f_1^{-1}(b') = f_2^{-1}\partial(b')$

recordemos que $\partial b' = f_2(a')$, es decir, $\partial a'' = a'$, luego $0 = \partial^2 a'' = \partial a' = a$.

Sea $b \in B_3$, consideramos $\partial b \in B_4$, entonces $f_4^{-1}(\partial b) \in A_4$, por commutatividad del diagrama, se sigue que $\partial f_4^{-1}(\partial b) = f_5^{-1}(\partial^2 b) = 0$, luego, por exactitud, existe $a \in A_3$ tal que $\partial a = f_4^{-1}(\partial b)$. Observemos que,

$$\partial (f_3(a) - b) = \partial f_3(a) - \partial b = f_4 \partial (a) - \partial b = 0$$

Así, existe $b' \in B_2$ tal que $\partial b' = f_3(a) - b$, definimos $a' = f_2^{-1}(b') \in A_2$, de este modo,

$$f_3(a) - b = \partial b' = \partial f_2(a') = f_3(\partial a')$$

En resumen, $f_3(a - \partial a') = b$. Concluimos que f_3 es isomorfismo.

Nuestro objetivo será asociar un complejo de cadenas a un espacio topológico X arbitrario, lo que nos dara un grupo de homología para cada dimensión, además dada $f: X \to Y$ una función continua, nos gustaría obtener un mapeo de cadenas y por tanto un homomorfismo entre los grupos de homología de cada espacio.

1.2. Complejos Simpliciales

Definición: Dados n+1 puntos $\{v_0, \dots, v_n\} \in \mathbb{R}^{\omega}$ son **afínmente independientes**, si generan un n-plano afín, es decir, $\{v_1 - v_0, \dots, v_n - v_0\}$ es un conjunto linealmente independiente, esto es

$$\sum_{i=0}^{n} t_i v_i = 0 \quad y \quad \sum_{i=0}^{n} t_i = 0 \quad entonces \quad t_i = 0 \quad para \ todo \ i$$

Ejemplo: Dos puntos son afínmente independientes. Tres puntos son afínmente independientes si y solo si no son colineales.

Definición: Si $\{v_0, \dots, v_n\}$ son afinmente independientes, ellos definen el n-simplejo

$$\sigma = \langle v_0, \cdots, v_n \rangle = \left\{ x = \sum_{i=0}^n t_i v_i, \sum_{i=0}^n t_i = 1 \quad y \quad t_i \ge 0 \right\}$$

Decimos que σ es el n-simplejo generado por v_0, \dots, v_n . Los puntos v_i se llaman **vértices** de σ . Una **cara** de un simplejo σ es un simplejo τ generado por un subconjunto de $\{v_0, \dots, v_n\}$ y lo denotamos por $\tau \leq \sigma$. Si el subconjunto es propio, se dice que τ es una **cara propia**.

La frontera de un n-simplejo σ es la unión de todas sus caras propias, se denota por $\partial \sigma$, el interior de σ es $int(\sigma) := \sigma \setminus \partial \sigma$.

Definición: Un complejo simplicial (geométrico) K es un conjunto de simplejos tales que

- (1) $Si \ \sigma \in K \ y \ \tau \leq \sigma \ entonces \ \tau \in K$.
- (2) Si $\sigma, \tau \in K$ entonces $\sigma \cap \tau = \emptyset$ ó $\sigma \cap \tau$ es una cara de σ y de τ .

El **poliedro** asociado a un complejo simplicial K es $|K| := \bigcup_{\sigma \in K} \sigma$. Un espacio topológico X se llama un poliedro si existe un complejo simplicial K y un homeomorfismo $f : |K| \to X$. Al par (K, f) se le llama una **triangulación** de X. Denotamos por V_K al conjunto de vértices de los simplices.

Observación: Si X es triangulable, entonces es Hausdorff por que |K| lo es.

La figura (1) corresponde a un complejo simplicial, mientras que la figura (2) no es un complejo simplicial ya que los simplices que la componen no se pegan bien.

Ejemplo: Consideremos el complejo simplicial K formado por los simplices $\sigma = \langle \pm e_1, \pm e_2, \pm e_3 \rangle$ y sus respectivas caras. Consideremos $f: |K| \to \mathbb{S}^2$ por f(x) := x/|x|, entonces (K, f) es una triangulación de la 2-esfera.

Definición: Sean K y L complejos simpliciales. Un **mapeo simplicial** de K a L es una función $f: V_K \to V_L$ tal que si $\sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle$ es un simplejo en K entonces

$$\{f(v_{\alpha_0}), \cdots, f(v_{\alpha_n})\}$$

genera un simplice en L, al cual llamamos $f(\sigma)$. Notación $f: K \to L$.

Ejemplo: Sea $\triangle^n = \langle e_1, \dots, e_{n+1} \rangle \subseteq \mathbb{R}^{n+1} \subseteq \mathbb{R}^{\infty}$. Entonces las funciones $f : \triangle^1 \to \triangle^2$ y $g : \triangle^2 \to \triangle^1$ dadas por $f(e_i) = e_i$ y $g(e_1) = g(e_3) = e_1$, $g(e_2) = e_2$ son mapeos simpliciales.

Lema 1.5: Sea $f: K \to L$ un mapeo simplicial. Entonces induce una función continua $|f|: |K| \to |L|$.

Demostración. Sea $\sigma \in K$, digamos que $\sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle$ y Definimos

$$f_{\sigma}: \sigma \to |L|$$

$$\sum_{i=0}^{k} t_{i} v_{i} \to \sum_{i=0}^{k} t_{i} f(v_{i})$$

que es continua por que es lineal en los t_i . Se observa que si $\tau \leq \sigma$ entonces $f_{\tau} = f_{\sigma}|_{\tau}$. Ahora tomamos σ y σ' , entonces

$$f_{\sigma}\big|_{\sigma\cap\sigma'}=f_{\sigma\cap\sigma'}=f_{\sigma'}\big|_{\sigma\cap\sigma'}$$

entonces $|f| := \bigcup_{\sigma \in K} f_{\sigma}$ es una función continua de |K| en |L|.

Sea $g: L \to J$ un mapeo simplicial, entonces $g \circ f$ es mapeo simplicial, ya que f mapea vértices de un simplice a vértices de un simplice y del mismo modo lo hace g, además se tiene lo siguiente

$$|g \circ f|(x) = |g \circ f|\left(\sum t_i v_{\alpha_i}\right) = \sum t_i (g \circ f)(v_{\alpha_i}) = \sum t_i g(f(v_{\alpha_i})) = (|g| \circ |f|)(x)$$

es decir, $|g \circ f| = |g| \circ |f|$. Un mapeo simplicial puede ser definido también como una función continua $f : |K| \to |L|$ que manda vértices en vértices y es lineal en sus caras.

Definición: Sea $x \in |K|$. El **portador** de x es el simplejo de K mas pequeño (en términos de inclusión) que contiene a x. Se denota por carr(x).

Definición: Sea $w \in V_K$. El conjunto $St_K(w) := \{x \in |K| : w \in carr(x)\}$ le decimos la **estrella de** w.

Ejemplo: Veamos el siguiente complejo

Entonces $carr(y) = \langle 1, 3 \rangle$, $carr(x) = \langle 1, 2, 3 \rangle$ y $carr(3) = \langle 3 \rangle$.

Observación: Notemos que $y \in carr(x)$ si y solo si $carr(y) \subseteq carr(x)$. Sea $\sigma \in K$, entonces $\sigma = carr(x)$ si y solo si $x \in int(\sigma)$, esto es una caracterización útil del portador.

En efecto, si $\sigma = carr(x)$, supongamos, por contradicción, que $x \in \partial \sigma$, entonces $x \in \tau < \sigma$, como K es complejo, $\tau \in K$. Por otro lado, si $x \in int(\sigma)$, sea $\tau \in K$ tal que $x \in \tau$, luego $\tau \cap \sigma$ es una cara de σ , pero $x \in \tau \cap \sigma$ lo que implica que $\sigma = \tau \cap \sigma \subseteq \tau$, es decir, $\sigma = carr(x)$.

Por otro lado, usando lo anterior vemos que $St_K(w) = \bigcup_{w \in \sigma \in K} int(\sigma)$, entonces la estrella de un vértice es un abierto en |K|.

Proposición 1.6: Sea $g: K \to L$ un mapeo simplicial, entonces g(carr(x)) = carr(g(x)).

Demostración. Por la observación anterior, basta probar que $g(x) \in int(g(carr(x)))$, sean $v_i \in V_K$ tales que $\langle v_1, \dots, v_n \rangle = carr(x)$, luego

$$x = \sum_{i=1}^{n} t_i v_i$$
 donde $t_i > 0$ para todo i , entonces $g(x) = \sum_{i=0}^{n} t_i g(v_i) \in g(carr(x))$

como $t_i > 0$ vemos que $q(x) \in int(q(carr(x)))$.

Definición: Sea $f:|K| \to |L|$ una función continua. Una aproximación simplicial a f es un mapeo simplicial $g:K \to L$ tal que

$$g(x) \in carr(f(x))$$
 para todo $x \in |K|$

Ejemplo: Se definen los siguientes complejos simpliciales,

El poliedro asociado a cada complejo es \mathbb{S}^1 , consideramos la función continua $f(z) = z^2$, una aproximación simplicial es $g(v_i) = g(v_{i+4}) = w_i$ para $0 \le i \le 3$.

Definición: Sea K un complejo simplicial. La primera subdivisión baricéntrica K' de K es el complejo simplicial K' cuyos

- Vértices son los baricentros $\hat{\sigma}$ de los simpleces σ de K.
- Un n-simplice de K' es $\langle \hat{\sigma_0}, \hat{\sigma_1}, \cdots, \hat{\sigma_n} \rangle$ si $\sigma_0 < \sigma_1 < \cdots < \sigma_n$ (Son caras propias).

Una $r-\acute{e}$ sima división baricéntrica se define recursivamente $K^{(r)}:=(K^{(r-1)})'$. Recordemos que si $\sigma=\langle v_0,\cdots,v_n\rangle$ entonces $\hat{\sigma}=\frac{1}{n+1}\sum v_i$.

Proposición 1.7: Sea K un complejo simplicial entonces |K'| = |K|.

Ejemplo: Algunos ejemplos de división baricéntrica de dos simplices.

donde el punto central del segundo ejemplo es $\langle v_0, v_1, v_2 \rangle$.

1.3. Homología Simplicial

Dado K un complejo simplicial finito, esto es, que tiene un número finito de vértices. Elegimos un orden total en el conjunto de vértices, digamos $v_0 < v_1 < \cdots < v_n$.

Definición: (Complejo de cadenas simplicial) Consideremos los grupos abelianos

$$C_n(K) := \left\{ \sum n_{\sigma}\sigma : \sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle \ \ tal \ que \ \ v_{\alpha_0} < \cdots < v_{\alpha_n} \ \ y \ \ n_{\sigma} \in \mathbb{Z} \ \ nulo \ salvo \ finitos \ casos \right\}$$

y los diferenciales $\partial_n: C_n(K) \to C_{n-1}(K)$ se define en la base por

$$\partial_n \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle = \sum_{i=0}^n (-1)^i \langle v_{\alpha_0}, \cdots, \widehat{v_{\alpha_i}}, \cdots, v_{\alpha_n} \rangle$$

 $donde\ \langle v_{\alpha_0}, \cdots, \widehat{v_{\alpha_i}}, \cdots, v_{\alpha_n} \rangle := \langle v_{\alpha_0}, \cdots, v_{\alpha_{i-1}}, v_{\alpha_{i+1}}, \cdots, v_{\alpha_n} \rangle. \ Se\ extiende\ linealmente\ al\ resto\ del\ grupo.$

Teorema 1.8: La tupla $(C_{\bullet}(K), \partial_{\bullet})$ es un complejo de cadenas, además, la homología del complejo no depende del orden en el conjunto de vértices.

Definición: Sea K un complejo simplicial finito. El i-ésimo grupo de homología simplicial de K es

$$H_i(K) := H_i(C_{\bullet}(K)) = \frac{\ker \partial_i}{im \ \partial_{i+1}}$$

Ejemplos:

(1) Sea $K = \{\langle v_0, v_1 \rangle, \{v_0\}, \{v_1\}\}\$ y consideramos el orden $v_0 < v_1$. El complejo corresponde a un segmento de recta, notemos que $3v_0 - 5v_1 \in C_0(K)$, con la identificación $v_0 = (1,0)$ y $v_1 = (0,1)$ vemos que $C_0(K) \cong \mathbb{Z} \oplus \mathbb{Z}$, esta identificación no es canónica, es decir, depende de la base que escojamos y sus imagenes correspondientes.

Por otro lado, $C_1(K) \cong \mathbb{Z}$ con la identificación $\langle v_0, v_1 \rangle = 1$. Adicionalmente, se tiene que $C_i(K) = 0$ para i > 1. Luego,

$$0 \longrightarrow C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{0} 0$$

donde $\partial_1 \langle v_0, v_1 \rangle = v_1 - v_2 \in C_0(K)$. Con las identificaciones que hicimos resulta que $\partial_1(1) = (-1, 1)$. De este modo queda la cadena

$$0 \longrightarrow \mathbb{Z} \stackrel{\partial_1}{\longrightarrow} \mathbb{Z} \oplus \mathbb{Z} \stackrel{0}{\longrightarrow} 0$$

Así $H_0(K) \cong \mathbb{Z}$, $H_1(K) = 0$, $H_i(K) = 0$ para i > 0.

(2) Sean v_0, v_1, v_2 puntos no colineales. Consideramos $\sigma = \langle v_0, v_1, v_2 \rangle$ y $K := \{\tau \leq \sigma\}$ definimos el orden $v_0 < v_1 < v_2$. Notemos que

$$C_0(K) = \mathbb{Z}\{v_0, v_1, v_2\}$$

$$C_1(K) = \mathbb{Z}\{\langle v_0, v_1 \rangle, \langle v_1, v_2 \rangle, \langle v_0, v_2 \rangle\}$$

$$C_2(K) = \mathbb{Z}\{\langle v_0, v_1, v_2 \rangle\}$$

Entonces $\partial_0 = 0$,

$$\partial_{1} = \begin{cases} \partial \langle v_{0}, v_{1} \rangle = v_{1} - v_{0} \\ \partial \langle v_{1}, v_{2} \rangle = v_{2} - v_{1} \\ \partial \langle v_{0}, v_{3} \rangle = v_{3} - v_{0} \end{cases} \quad \text{y} \quad \partial_{2} \langle v_{0}, v_{1}, v_{2} \rangle = \langle v_{1}, v_{2} \rangle - \langle v_{0}, v_{2} \rangle + \langle v_{0}, v_{1} \rangle$$

Realizando las identificaciones $v_i = e_{i+1}$ para $i = 0, 1, 2, \langle v_0, v_1, v_2 \rangle = 1, \langle v_0, v_1 \rangle = e_1, \langle v_1, v_2 \rangle = e_2$ y $\langle v_0, v_2 \rangle = e_3$ resulta que $C_0(K) \cong \mathbb{Z}^3, C_1(K) \cong \mathbb{Z}^3$ y $C_2(K) \cong \mathbb{Z}$. Tenemos

$$\cdots \longrightarrow 0 \longrightarrow C_2(K) \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \longrightarrow 0$$

donde

$$\partial_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \mathbf{y} \quad \partial_1 = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Claramente $H_i(K) = 0$ para i > 2. Además, $ker \partial_2$, entonces $H_2(K) = 0$. Notemos que $im \partial_2 \cong \mathbb{Z}$ y $ker \partial_1 \cong \mathbb{Z}$, luego $H_1(K) = 0$. Por otro lado, $im \partial_1 \cong \mathbb{Z}^2$. Por ende $H_0(K) \cong \mathbb{Z}$.

Comentario: Se invita a calcular la homología de un n-simplejo. Hasta ahora hemos definido todo respecto a \mathbb{Z} , pero se puede definir homología simplicial de manera análoga para cualquier anillo R.

Lema 1.9: Sea $f: K \to L$ un mapeo simplicial, definimos los morfismos

$$f_n: C_n(K) \to C_n(L)$$

$$\langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle \to \begin{cases} sign(\varphi) \left\langle f(v_{\varphi(\alpha_0)}), \cdots, f(v_{\varphi(\alpha_n)}) \right\rangle & \text{si son distintos} \\ 0 & \text{si no lo son} \end{cases}$$

donde φ es una permutación tal que $f(v_{\varphi(\alpha_0)}) < \cdots < f(v_{\varphi(\alpha_n)})$. Entonces, la colección, es un mapeo de cadena. Por lo tanto, f induce un morfismo entre los grupos de homología de los complejos simpliciales

Ejemplo: Definimos los siguientes complejos simpliciales

Para cada complejo se da el orden que sigue $v_0 < v_1 < \cdots < v_7$ y $w_0 < w_1 < w_2 < w_3$ y definimos $f: K \to L$ por $f(v_i) = f(v_{i+4}) = w_i$ para i = 0, 1, 2, 3. Veamos quien es $f_*: H_1(K) \to H_1(L)$. En primer lugar, sabemos que

$$H_1(K) = ker(C_1(K) \to C_0(K)) = ker \begin{pmatrix} -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \right\rangle \cong \mathbb{Z}$$

Similarmente $H_1(K) \cong \mathbb{Z}$. Entonces

$$f_*(\langle v_0, v_1 \rangle + \dots + \langle v_6, v_7 \rangle - \langle v_0, v_7 \rangle) = 2(\langle w_0, w_1 \rangle + \langle w_1, w_2 \rangle + \langle w_2, w_3 \rangle - \langle w_0, w_3 \rangle)$$

luego $f_*: H_1(K) \xrightarrow{\cdot 2} H_1(L)$. Por otro lado, notemos que $H_0(K) \cong H_0(L) \cong \mathbb{Z}$, ya que todo par de vértices en el complejo esta conectado por una secuencia de aristas, luego $f_*([v_0]) = [w_0]$, entonces $f_*: H_0(K) \to H_0(L)$ es isomorfismo.

Teorema 1.10 (Mayer-Vietoris): Sea K un complejo simplicial y M, N subcomplejos de K que cubren a K, es decir, $M \cup N = K$. Se tienen los mapeos

$$\begin{array}{ccc} M \cap N & \xrightarrow{i_N} N \\ & \downarrow i_M & & \downarrow j_N \\ M & \xrightarrow{j_M} & K \end{array}$$

Existen morfismos $\delta_n: H_n(K) \to H_{n-1}(K)$ tales que la secuencia

$$\xrightarrow{\delta_{n+1}} H_n(M \cap N) \xrightarrow{i_{M*} \oplus i_{N*}} H_n(M) \oplus H_n(N) \xrightarrow{j_{M*} - j_{N*}} H_n(K)$$

$$\xrightarrow{\delta_n} H_{n-1}(M \cap N) \xrightarrow{i_{M*} \oplus i_{N*}} H_{n-1}(M) \oplus H_{n-1}(N) \xrightarrow{j_{M*} - j_{N*}} H_{n-1}(K) \longrightarrow \cdots$$

$$H_0(M) \oplus H_0(N) \xrightarrow{j_{M*}-j_{N*}} H_0(K) \longrightarrow 0$$

es exacta.

Demostración. Verificaremos que

$$0 \longrightarrow C_n(M \cap N) \xrightarrow{i_M \oplus i_N} C_n(M) \oplus C_n(N) \xrightarrow{j_M - j_N} C_n(K) \longrightarrow 0$$

es una secuencia exacta corta de grupos abelianos para todo $n \in \mathbb{N}$. En efecto, como C_n es libremente generado por los n-simplices e i es inyectiva, entonces $i_{M*} \oplus i_{N*}$ es inyectiva. Además, $j_{M*} - j_{N*}$ es sobreyectiva por hipotesis y es directo

que $im\ i_{M*} \oplus i_{N*} \subseteq ker\ j_{M*} - j_{N*}$. Resta ver que

$$ker j_{M*} - j_{N*} \subseteq im i_{M*} \oplus i_{N*}$$

Sea $(x,y) \in \ker j_{M*} - j_{N*}$ entonces $j_{M*}(x) = j_{N*}(y)$, es decir, $x \in y$ se escriben como suma de simplices en $N \in M$ respectivamente, entonces $(x,y) \in \operatorname{im} i_{M*} \oplus i_{N*}$. Así, usando el lema de la serpiente, concluimos.

Ejemplo: Consideremos la siguiente situación

Notemos que $H_1(M) \cong \mathbb{Z}$ y $H_1(N) \cong \mathbb{Z}$, además $M \cap N = \{u_0\}$, entonces usando mayer vietoris nos queda que

$$0 \longrightarrow 0 \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow H_1(K)$$

$$\longrightarrow \mathbb{Z} \xrightarrow{\varphi} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\phi} H_0(K) \longrightarrow 0$$

Para i > 2 notamos que $H_i(K) = 0$, por otro lado el morfismo $\varphi(1) = (1,1)$ ya que manda generador en generador, esto por que todo par de puntos en M y N estan relacionados por un camino de aristas. De este modo,

$$H_0(K) \cong \frac{\mathbb{Z} \oplus \mathbb{Z}}{\ker \phi} = \frac{\mathbb{Z} \oplus \mathbb{Z}}{im \ \varphi} \cong \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z}} \cong \mathbb{Z} \quad \text{y} \quad H_1(K) \cong \mathbb{Z} \oplus \mathbb{Z}$$

donde el último isomorfismo se da por que φ es inyectiva, es decir, el morfismo $H_1(K) \to \mathbb{Z}$ es trivial.

Teorema 1.11: Sea $f: |K| \to |L|$ una función continua. Entonces f induce un homomorfismo

$$f_*: H_*(K) \to H_*(L)$$

 $tal\ que\ (g\circ f)_*=g_*\circ f_*\ e\ id_*=id_{H_*(K)},\ donde\ g:|L|\to |M|\ es\ continua.$

Observación: Con esto se tendría que $H_*(K)$ es invariante topológico. Se probara en dos pasos. Veremos que toda función f continua se puede "aproximar" a una función g simplicial, también hay que comprobar que $f_* := g_*$ es independiente de la función simplicial escogida.

Teorema 1.12 (Aproximación Simplicial): Sean K, L complejos simpliciales finitos $y \ f : |K| \to |L|$ una función continua. Entonces existe $r \in \mathbb{N}$ y una aproximación simplicial a f

$$g:K^{(r)}\to L$$

A partir de esta aproximación simplicial, se cumplen dos propiedades importantes, que son

(1) f es homotópica a g. Notemos que $g(x), f(x) \in carr(f(x))$, entonces el segmento entre g(x) y f(x) está en carr(f(x)) porque es un conjunto convexo. Definimos

$$|K| \times [0,1] \rightarrow |L|$$

 $(x,t) \rightarrow tg(x) + (1-t)f(x)$

(2) Sean $f_1: |K| \to |L|$, $f_2: |L| \to |M|$ continuas y $g_1: K \to L$, $g_2: L \to M$ aproximaciones simpliciales de f_i , entonces $g_2 \circ g_1$ es aproximación simplicial de $f_2 \circ f_1$.

Se tiene que

$$g_2g_1(x) \in g_2(carr(f_1(x))) = carr(g_2f_1(x)) \subseteq carr(f_2f_1(x))$$

Proposición 1.13: Sea $id: |K'| \to |K|$, la función $a: V_{K'} \to V_K$ dada por $a(\hat{\sigma}) = v \in V_{\sigma}$ cumple que

- (1) Define una aproximación simplicial de la identidad.
- (2) Toda aproximación simplicial $q: K' \to K$ de la identidad es de esta forma.

Demostración. Veamos que a es un mapeo simplicial. Sea $\sigma = \langle \hat{\sigma_0}, \cdots, \hat{\sigma_n} \rangle \in K'$, entonces $a(\hat{\sigma_i}) = v_i \in V_{\sigma_i}$. Sabemos que $\sigma_i < \sigma_{i+1}$ para $0 \le i \le n-1$, lo que implica que $V_{\sigma_i} \subset V_{\sigma_{i+1}}$, en particular, $V = \{v_0, \cdots, v_n\} \subseteq V_{\sigma_n}$, luego, V genera una cara de σ_n , es decir, un simplice en |K|.

Sea $x \in |K'|$, sean $\hat{\sigma_i} \in K'$ tales que $\langle \hat{\sigma_1}, \dots, \hat{\sigma_n} \rangle = carr(x)$, luego,

$$x = \sum_{i=1}^{n} t_i \hat{\sigma_i}$$
 donde $t_i > 0$ para todo i

en particular, $t_n > 0$, como $\hat{\sigma_n} = \frac{1}{n+1} \sum v_i$ donde $\langle v_1, \dots, v_n \rangle = \sigma_n$, entonces x se escribe como combinación convexa de los v_i donde cada poderación es positiva, luego $x \in int(\sigma_n)$, en otras palabras, $carr(id(x)) = \sigma_n$.

Lo anterior prueba que a es una aproximación de la identidad. Por otro lado, si g es una aproximación simplicial de la identidad, entonces

$$g(\hat{\sigma}) \in carr(id(\hat{\sigma})) = \sigma$$

entonces $g(\hat{\sigma}) \in V_{\sigma}$, por que g es mapeo simplicial.

Lema 1.14 (Lema del número de Lebesgue): Sea X un espacio métrico compacto y \mathcal{U} un cubrimiento abierto de X. Entonces existe $\delta > 0$ tal que para todo $x \in X$ se tiene que $B_{\delta}(x) \subseteq U$ para algún $U \in \mathcal{U}$.

Lema 1.15: Si $f,g:K\to L$ son aproximaciones simpliciales de alguna función continua $|K|\to |L|$ entonces $g_*=f_*$.

Demostración. Sea $h_n: C_n(K) \to C_{n+1}(L)$ dada por $h_n(\langle v_0, \cdots, v_n \rangle) = \sum_{i=0}^n (-1)^i \sigma_i$ donde

$$\sigma_i = \begin{cases} sign(\varphi_i) \left\langle f(v_{\varphi_i(0)}), \cdots, f(v_{\varphi_i(i)}), g(v_{\varphi_i(i)}), \cdots, g(v_{\varphi_i(n)}) \right\rangle & \text{si son distintos} \\ 0 & \text{si no lo son} \end{cases}$$

y φ_i es una permutación tal que $f(v_{\varphi_i(0)}) < \cdots < f(v_{\varphi_i(i)}) < g(v_{\varphi_i(i)}) < \cdots < g(v_{\varphi_i(n)})$. Así, la colección de morfismos $(h_n)_n$ define una homotopía de cadenas entre f y g.

Lema 1.16: Sea $a: K' \to K$ una aproximación simplicial de $id: |K'| \to |K|$. Entonces $a_*: H_i(K') \to H_i(K)$ es un isomorfismo para todo $n \in \mathbb{N}$.

Demostración. Procederemos por doble inducción en

 $m = \dim K$ y n = #de simplices de K de dim maximal

Supongamos que m=0, es directo que a_* es isomorfismo. Por otro lado, si n=1, entonces K es un simplice

Si iteramos, $a_r: K^{(r)} \to K$ entonces $a_{r*}: H_n(K^{(r)}) \to H_n(K)$ es isomorfismo para todo $n \in \mathbb{N}$.

Teorema 1.17: Sea $f: |K| \to |L|$ una función continua, entonces el homomorfismo

$$f_* := s_* \circ a_{r*}^{-1} : H_n(K) \to H_n(L)$$

donde s es aproximación simplicial de f. Cumple que

- (1) No depende de s ni de r.
- (2) Si $g: |L| \to |M|$ es continua, entonces $(f \circ g)_* = f_* \circ g_*$.

Demostración. (Pendiente)

Lema 1.18: Sea K un complejo simplicial finito. Entonces, existe $\varepsilon > 0$ tal que si $f, g : |K| \to |L|$ son funciones continuas que satisfacen

$$\sup_{x \in |K|} \|f(x) - g(x)\| < \varepsilon$$

entonces $f_* = g_*$.

Demostración. Sea $\{St_L(w)\}_{w\in V_K}$, que es un cubrimiento abierto de |L|. Por el lema de Lebesgue, existe $\varepsilon>0$ tal que

$$B_{2\varepsilon}(y) \subseteq St_L(w)$$
 para todo $w \in V_L$

Sean f, g continuas como en el enunciado. Consideramos $\{f^{-1}(B_{\varepsilon}(y))\}$, que es un cubrimiento abierto de |K|, entonces, existe

 $\delta > 0$ tal que

$$f(B_{\delta}(x)) \subseteq B_{\varepsilon}(y) \subseteq St_L(w)$$
 y $g(B_{\delta}(x)) \subseteq B_{2\varepsilon}(y) \subseteq St_L(w)$

Subdividimos K de modo que

$$\max\{|v_i-v_j|:v_i,v_j\in V_{K^{(r)}}\}<\frac{\delta}{2}$$

entonces

$$f(St_{K(r)}(v)) \subseteq B_{\varepsilon}(y) \subseteq St_L(w)$$
 y $g(St_{K(r)}(v)) \subseteq B_{2\varepsilon}(y) \subseteq St_L(w)$

Sea $s: V_{K(r)} \to V_L$ dada por s(v) = w, luego, define una aproximación simplicial de f y de g.

Teorema 1.19 (Invarianza Homotópica): Sean $f, g: |K| \to |L|$ funciones continuas homotópicas, entonces $f_* = g_*$.

Demostración. Sea $H|K| \times [0,1] \to |L|$ una homotopía de f a g. Entonces H es uniformemente continua. Sea $\varepsilon > 0$ como en el lema, existe $\delta > 0$ tal que

si
$$|t-s| < \delta$$
 entonces $||H(x,t) - H(x,s)|| < \varepsilon$

Sea $0 = t_0 < t_1 < \dots < t_r = 1$ tal que $|t_i - t_{i-1}| < \delta$. Definimos $h_i(x) := H(x, t_i)$ entonces como $||h_i(x) - h_{i-1}(x)|| < \varepsilon$ por el lema $(h_i)_* = (h_{i-1})_*$.

Corolario: Sea $f: |K| \to |L|$ una equivalencia homotópica, entonces $f_*: H_i(K) \to H_i(Y)$ es isomorfismo para todo i.

Definición: Sea X un espacio topológico. Una **triangulación homotópica** es un par (K,h) donde K es un complejo simplicial finito $y h : |K| \to X$ es una equivalencia homotópica.

Definición: Sea X un espacio con triangulación homotópica, definimos $H_i(X) := H_i(K)$.

Lema 1.20: Esta definición no depende de la triangulación homotópica.

Ejemplo: Tenemos que

$$H_i(\mathbb{R}^n) = H_i(\{pt\}) = \begin{cases} \mathbb{Z} & \text{si } i = 0\\ 0 & \text{si } i > 0 \end{cases}$$

1.4. Resultados de Homología

Teorema 1.21 (Invarianza del Dominio): \mathbb{R}^n es homeomorfo a \mathbb{R}^m si y solo si n=m.

Demostración. El resultado es conocido y sencillo de probar para n=1. Supongamos que n>1. Entonces

$$H_i(\mathbb{R}^n \setminus \{0\}) \cong H_i(\mathbb{S}^{n-1}) = \begin{cases} \mathbb{Z} & \text{si } i = 0, n-1 \\ 0 & \text{si } i \neq 0, 2 \end{cases}$$

lo que prueba el resultado.

Teorema 1.22 (Teorema Fundamental del Álgebra): Sea $p \in \mathbb{C}[x]$ no constante. Entonces existe una raíz en \mathbb{C} .

Demostración. Supongamos, por contradicción, que p no posee raices. Sea r > 0, definimos

$$p: S_r^1 = \{z \in \mathbb{C} : |z| = r\} \to \mathbb{C} \setminus \{0\}$$

 $z \to p(z)$

Sea $H: S_r^1 \times [0,1] \to \mathbb{C} \setminus \{0\}$ dada por H(z,t) = p(tz), resulta ser una homotopía de p(z) a la función constante $cta_0(z) = a_0$, entonces

$$p_* = 0: H_1(\mathbb{S}^1) \to H_1(\mathbb{C} \setminus \{0\})$$

Buscamos que la función $S_{r_0}^1 \times [0,1] \to \mathbb{C} \setminus \{0\}$ tal que

$$G(z,t) = z^{n} + t(a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0})$$

este bien definida para algún r_0 y $t \in [0,1]$. Notemos que si

$$z^{n} + t(a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}) = 0$$
 entonces $t = \frac{|z|^{n}}{|a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}|}$

luego, si $r_0 > \max\{1, \sum |a_i|\}$, entonces

$$t = \frac{|z|^n}{|a_{n-1}z^{n-1} + \dots + a_1z + a_0|} \ge \frac{r_0^n}{r_0^{n-1}(\sum |a_i|)} = \frac{r_0}{\sum |a_i|} > 1$$

que es lo que queriamos. Así, G define una homotopía entre p(z) a $q(z)=z^n$. Luego, $q:S^1_{r_0}\to\mathbb{C}\setminus\{0\}\sim S^1_{r_0}$ induce multiplicación por n en H_1 , entonces $p_*=0$ y $p_*=q_*=n$, entonces n=0.

Teorema 1.23 (Teorema del Punto Fijo de Brower): Sea $f: D^n \to D^n$ una función continua, entonces tiene un punto fijo.

Demostración. (Pendiente)

Demostración. (Pendiente)

Teorema 1.24 (Borsuk-Ulam): Sea $f: \mathbb{S}^n \to \mathbb{R}^n$ una función continua, entonces existe $x \in \mathbb{S}^n$ tal que f(x) = f(-x).

Corolario: Sea $n \in \mathbb{N}$, entonces \mathbb{S}^n no se puede encajar en \mathbb{R}^n .

1.5.	Homología Singular

L	
ı	

1.7. Superficies

Definición: Una 2-variedad se dice superficie.

Ejemplos:

 \blacksquare \mathbb{S}^2 es una superficie triangulable, donde $K=\partial\Delta^3$ da una triangulación.

ullet T^2 es una superficie triangulable, donde

es una triangulación.

 \blacksquare \mathbb{RP}^2 es una superficie triangulable, con

una triangulación.

A partir de estas superficies podemos construir otras superficies, las sumas conexas. Sean X_1 y X_2 superficies triangulables. Sean K_1, K_2 complejos simpliciales tales que $|K_i| \cong X_i$. Consideramos $\varphi_i : \Delta^2 \to |K_i|$ encajes simpliciales, es decir, φ_i es un mapeo simplicial tal que $\varphi_i(\Delta^2)$ es homeomorfo a un 2-simplice de K_i . Consideramos la triangulación de $\partial \Delta^2 \times \Delta^1$ como sigue

 $=: \tau$

Definimos $X_1 \# X_2$, la suma conexa, como el espacio homeomorfo a $|K_1 \# K_2|$ donde

$$K_1 \# K_2 := (K_1 \setminus \varphi_1(\Delta^2)) \sqcup \tau \sqcup (K_2 \setminus \varphi(\Delta^2)) / \sim$$

y ~ es tal que $\varphi_1(x)$ ~ (x,0) y $\varphi_2(x)$ ~ (x,1) para $x \in \partial \Delta^2$.

Proposición 1.25: $K_1 \# K_2$ es un complejo simplicial. Mas aún, su realización geométrica, $X_1 \# X_2$ es una superficie.

Definición: Sea $S_1 := T^2$ y $S_g := S_{g-1} \# T^2$ para g > 1. Del mismo modo, $N_0 := \mathbb{RP}^2$ y $N_g := N_{g-1} \# \mathbb{RP}^2$. Luego, usando Mayer-Vietoris es fácil verificar que

$$H_i(S_g) = \begin{cases} \mathbb{Z} & \text{si } i = 0, 2\\ \mathbb{Z}^{2g} & \text{si } i = 1\\ 0 & \text{si } i > 2 \end{cases} \qquad H_i(S_g) = \begin{cases} \mathbb{Z} & \text{si } i = 0\\ \mathbb{Z}_2 \oplus \mathbb{Z}^g & \text{si } i = 1\\ 0 & \text{si } i > 1 \end{cases}$$

20

Teorema 1.26 (Teorema de Clasificación de Superficies): Sean X, Y superficies triangulables compactas. Entonces X es homeomorfa a Y si y solo si $H_i(X) \cong H_i(Y)$ para todo i.

Definición: Sea X una superficie compacta. Es **orientable** si $H_2(X) \cong \mathbb{Z}$ y es **no orientable** si $H_2(X) \cong 0$. El **género** de una superficie es

 $\begin{cases} \frac{rango(H_1)}{2} & si \ es \ orientable \\ rango(H_2) & si \ no \ es \ orientable \end{cases}$

Corolario: Sean X, Y superficies orientables. Entonces $X \cong Y$ si y solo si $\chi(X) = \chi(Y)$.

A partir de lo anterior, Poincaré se pregunto si sucedia lo mismo para variedades de dimensión 3, en otras palabras $X \cong Y$ si y solo si $H_i(X) \cong H_i(Y)$ para todo i. La respuesta es no, el mismo dio un ejemplo. Existe una 3-variedad Σ compacta tal que $H_i(\Sigma) \cong H_i(\mathbb{S}^3)$ que no es homeomorfa a \mathbb{S}^3 .

Para distinguir Σ de \mathbb{S}^3 se invento el grupo fundamental.

2. Cohomología

2.1. Cohomología Singular

Definición: Un complejo de cocadenas es una secuencia de grupos de abelianos y homomorfismos

$$0 \longrightarrow C^0 \xrightarrow{\partial^0} C^1 \xrightarrow{\partial^1} C^2 \xrightarrow{\partial^2} C^3 \xrightarrow{\partial^3} \cdots$$

tales que $\partial^{i+1} \circ \partial^i = 0$. Se denota por $(C^{\bullet}, \partial^{\bullet})$.

Observación: Al igual que en complejos de cadenas, los morfismos ∂^i se llaman **diferenciales**, los elementos en $im \ \partial^i$ se dicen **cofronteras** y en ker ∂^i se dicen **cociclos**. Además, es claro que $im \ \partial^i \subseteq ker \ \partial^{i+1}$.

Definición: El i-ésimo grupo de cohomología de $(C^{\bullet}, \partial^{\bullet})$ se define por

$$H^i(C^{\bullet}) := \frac{\ker \partial^i}{im \ \partial^{i-1}}$$

Un elemento en $H^i(C^{\bullet})$ se conoce como clase de cohomología.

Ejemplo: Recordemos el complejo de cadenas

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \longrightarrow 0$$

Donde $H_0(C_{\scriptscriptstyle\bullet})=\mathbb{Z},\ H_1(C_{\scriptscriptstyle\bullet})=\mathbb{Z}_2$ y $H_k(C_{\scriptscriptstyle\bullet})=0$. Definimos $C^i:=Hom(C_i,\mathbb{Z})$ y los diferenciales $\partial^i(\varphi):=\varphi\circ\partial_{i+1}$, notemos que $\partial^{i+1}\circ\partial^i(\varphi)=\varphi\circ\partial_{i+1}\circ\partial_{i+2}=0$. Así, tenemos el complejo de cocadenas

$$0 \longrightarrow C^0 \xrightarrow{\cdot 0} C^1 \xrightarrow{\cdot 2} C^2 \xrightarrow{\cdot 0} 0 \longrightarrow \cdots$$

Como $C^i \cong \mathbb{Z}$ para i = 0, 1, 2, entonces $H^0(C^{\bullet}) = \mathbb{Z}$, $H^1(C^{\bullet}) = 0$ y $H^2(C^{\bullet}) = \mathbb{Z}_2$.

Definición: Sean $(C^{\bullet}, \partial^{\bullet})$ y $(D^{\bullet}, \partial^{\bullet})$ complejos de cocadenas, un **mapeo de cocadenas**, es una colección $(f^n)_n$ de morfismos $f_n: C_n \to D_n$ tales que $\partial^n \circ f^n = f^{n+1} \circ \partial^n$. En otras palabras, el diagrama

$$C^{n} \xrightarrow{f^{n}} D^{n}$$

$$\downarrow^{\partial^{n}} \qquad \downarrow^{\partial^{n}}$$

$$C^{n+1} \xrightarrow{f^{n+1}} D^{n+1}$$

conmuta.

Lema 2.1: Sea $(f^n)_n$ un mapeo de cocadenas, entonces $f^*: H^n(C^{\bullet}) \to H^n(D^{\bullet})$ dado por $[x] \to [f^n(x)]$ es un morfismo que está bien definido.

La demostración de este lema es análoga al caso de complejo de cadenas. Previamente, definimos el complejo de cadenas singular y los respectivos diferenciales. Usando la idea vista en el ejemplo vamos a definir la cohomología singular.

Definición: Sea X un espacio topológico. Definimos los grupos $C^i(X) := Hom(C_i(X), \mathbb{Z})$ y los diferenciales $\partial^i : C^i(X) \to C^{i+1}(X)$ dados por $\partial^i(\varphi) := \varphi \circ \partial_{i+1}$. El complejo de cocadenas singular es

$$0 \longrightarrow C^{0}(X) \xrightarrow{\partial^{0}} C^{1}(X) \xrightarrow{\partial^{1}} C^{2}(X) \xrightarrow{\partial^{2}} C^{3}(X) \xrightarrow{\partial^{3}} \cdots$$

El i-ésimo grupo de cohomología esta dado por

$$H^i(X) := H^i(C^{\bullet}(X))$$

Observación: No es cierto en general que $H^i(X) = Hom(H_i(X), \mathbb{Z})$, basta regresar al ejemplo y notar que $H_1(C_{\bullet}) = \mathbb{Z}_2 \neq 0 = H^1(C^{\bullet})$.

2.2. Froducto Cup	2.2.	Producto	Cup
-------------------	------	----------	-----

2.3.	Anillo de	Cohomología
------	-----------	-------------

25

Dualidad de Poincaré y Fórmula de Künneth

3. Grupo Fundamental

3.1. Primer Grupo Fundamental

Sea I = [0, 1] y X un espacio topológico.

Definición: Un camino entre x_0 y x_1 en X es una función continua $\alpha: I \to X$ tal que $\alpha(0) = x_0$ y $\alpha(1) = x_1$. Si $\alpha(0) = \alpha(1) = x_0$ se dice **lazo basado** en x_0 .

Denotamos por ctx_0 al lazo constante basado en x_0 . Los caminos se pueden **concatenar**, si α y β son caminos, entonces

$$(\alpha * \beta)(t) := \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

es un camino entre $\alpha(0)$ y $\beta(1)$.

Definición: Una homotopía relativa a $\{0,1\}$ entre caminos $\alpha, \beta: I \to X$ de x_0 a x_1 es una homotopía $H: I \times [0,1] \to X$ entre α y β tal que $H(0,t) = x_0$ y $H(1,t) = x_1$ para todo $t \in [0,1]$.

Definición: Sea X un espacio topológico y $x_0 \in X$. Sea $\pi_1(X, x_0)$ el conjunto de clases de homotopía relativa a $\{0, 1\}$ de lazos en X basados en x_0 .

Teorema 3.1: Sea X un espacio topológico y $x_0 \in X$. La operación

$$*: \pi_1(X, x_0) \times \pi_1(X, x_0) \to \pi_1(X, x_0)$$
$$[\alpha] * [\beta] \to [\alpha * \beta]$$

está bien definida y junto con el elemento $e := [ctx_0]$ dan estructura de grupo a $\pi_1(X, x_0)$.

Demostración. Debemos probar cuatro puntos

■ La operación esta bien definida. Sean $\alpha \sim \alpha'$ y $\beta \sim \beta'$ lazos basados en x_0 , entonces $\alpha * \beta \sim \alpha' * \beta'$. Definimos $F: I \times [0,1] \to X$

$$F(s,t) := \begin{cases} H(2s,t) & \text{si} \quad 0 \le s \le \frac{1}{2} \\ G(2s-1,t) & \text{si} \quad \frac{1}{2} \le s \le 1 \end{cases}$$

donde H y G son homotopías relativas entre α, α' y β, β' respectivamente. Luego, $F(s, 0) = (\alpha * \beta)(s)$ y $F(s, 1) = (\alpha' * \beta')(s)$, es decir, F es una homología relativa entre $\alpha * \beta$ y $\alpha' * \beta'$.

 \blacksquare El elemento e es neutro. Sea α un lazo basado en x_0 . Definimos

$$H(s,t) := \begin{cases} \alpha\left(\frac{2s}{t+1}\right) & \text{si } 0 \le s \le \frac{1}{2} \\ x_0 & \text{si } \frac{1}{2} \le s \le 1 \end{cases}$$

Es directo que H es una homotopía relativa entre $\alpha * ctx_0 y \alpha$.

Existencia de inverso. Definimos $\alpha^{-1}(s) = \alpha(1-s)$, por demostrar que $[\alpha] * [\alpha^{-1}] = e$, esto es, $\alpha * \alpha^{-1} \sim ctx_0$. Definimos

$$H(s,t) := \begin{cases} \alpha(2s) & \text{si } 0 \le s \le \frac{1-t}{2} \\ \alpha(1-t) & \text{si } \frac{1-t}{2} \le s \le \frac{1+t}{2} \\ \alpha^{-1}(2s-1) & \text{si } \frac{1+t}{2} \le s \le 1 \end{cases}$$

Se verifica que H es una homotopía relativa entre ambos lazos.

• Sean α, β, γ lazos basos en x_0 , entonces la función

$$H(s,t) := \begin{cases} \alpha \left(\frac{4s}{1+t} \right) & \text{si } 0 \le s \le \frac{1+t}{4} \\ \beta \left(4s - 1 - t \right) & \text{si } \frac{1+t}{4} \le s \le \frac{2+t}{4} \\ \gamma \left(1 - 4\frac{1-s}{2-t} \right) & \text{si } \frac{2+t}{4} \le s \le 1 \end{cases}$$

es una homotopía relativa entre $(\alpha * \beta) * \gamma y \alpha * (\beta * \gamma)$.

Definición: El grupo fundamental de X en x_0 es $\pi_1(X, x_0)$.

Definición: Un espacio punteado es una tupla (X, x_0) donde $x_0 \in X$. Un morfismo entre espacios punteados (X, x_0) y (Y, y_0) es una función continua

$$f: X \to Y$$
 tal que $f(x_0) = y_0$

Una homotopía punteada es una homotopía H entre X e Y tal que $H(x_0,t)=y_0$ para todo $t \in [0,1]$.

Observación: Sea f un morfismo, entonces induce un homomorfismo

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

 $[\alpha] \to [f \circ \alpha]$

Además, $(f\circ g)_*=f_*\circ g_*$ y $id_*=id_{\pi_1(X,x_0)},$ entonces π_1 es invariante topológico.