Федеральное государственное автономное образовательное учреждение высшего образования «Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина»

На правах рукописи

Мухтаров Амир Амангельдыевич

Разработка моделей и методов оптимизации проектирования коммуникационных сетей нефтяных месторождений

Специальность 05.13.06—
«Автоматизация и управление технологическими процессами и производствами»

Диссертация на соискание учёной степени кандидата технических наук

> Научный руководитель: доктор технических наук, проффессор Першин Олег Юрьевич

Оглавление

		Стр.
Введе	ние	4
Глава	1. Оформление различных элементов	8
1.1	Форматирование текста	8
1.2	Ссылки	8
1.3	Формулы	8
	1.3.1 Ненумерованные одиночные формулы	9
	1.3.2 Ненумерованные многострочные формулы	9
	1.3.3 Нумерованные формулы	11
	1.3.4 Форматирование чисел и размерностей величин	12
	1.3.5 Заголовки с формулами: $a^2 + b^2 = c^2$, $ \mathrm{Im}\Sigma\left(\varepsilon\right) \approx const$,	
	$\sigma_{xx}^{(1)}$	15
1.4	Рецензирование текста	16
1.5	Работа со списком сокращений и условных обозначений	16
Глава	2. Длинное название главы, в которой мы смотрим	
	на примеры того, как будут верстаться изображения	
	и списки	18
2.1	Одиночное изображение	18
2.2	Длинное название параграфа, в котором мы узнаём как сделать	
	две картинки с общим номером и названием	18
2.3	Пример вёрстки списков	20
2.4	Традиции русского набора	21
	2.4.1 Пробелы	22
	2.4.2 Математические знаки и символы	22
	2.4.3 Кавычки	22
	2.4.4 Тире	23
	2.4.5 Дефисы и переносы слов	24
2.5	Текст из панграмм и формул	24
Глава	3. Вёрстка таблиц	28
3.1	Таблица обыкновенная	28
3.2	Таблица с многострочными ячейками и примечанием	29

		Стр
3.3	Таблицы с форматированными числами	29
3.4	Параграф — два	30
3.5	Параграф с подпараграфами	
	3.5.1 Подпараграф — один	
	3.5.2 Подпараграф — два	
Заклю	чение	34
Списо	к сокращений и условных обозначений	35
Словај	рь терминов	37
Списо	к литературы	38
Списо	к рисунков	43
Списо	к таблиц	44
Прило	жение А. Примеры вставки листингов программного кода	45
Прило	жение Б. Очень длинное название второго приложения,	
	в котором продемонстрирована работа	
	с длинными таблицами	51
Б.1	Подраздел приложения	51
Б.2	Ещё один подраздел приложения	53
Б.3	Использование длинных таблиц с окружением $longtabu$	57
Б.4	Форматирование внутри таблиц	60
Б.5	Стандартные префиксы ссылок	62
Б.6	Очередной подраздел приложения	63
Б.7	И ещё один подраздел приложения	63
Прило	жение В. Чертёж детали	64

Введение

В настоящее время тенденция бурного развития информационных технологий во всех сферах деятельности человека оказывает весомое на развитие нефтегазовый сектора страны. Современные компании, представляющие собой сложную многоуровневую производственно-технологической систему в силу своего устойчивого развития требуют постоянного движения в направлении развития технологий. Нефтегазовая отрасль России является ключевым сектором топливно-энергетическим комплекса страны. Особенностью данной отрасли является масштабы объектов управления, наличие больших объемов информации, высокие требования к безопасности и надежности. Сегодня наблюдается этапом бурного развития «цифровизации». Лидеры крупнейших международных нефтегазовых компаний имеют подразделения, задачами которых является разработка и реализация в дальнейшем принципов интеллектуального месторождения: «Умные месторождения» («Smart Fields») в компании Shell, «Месторождение будущего» («Field of the Future») в компании BP и «iFields» в компании Chevron и др. Данное развитие нефтегазового комплекса предусматривает переход к малолюдным системам управления добычи, транспортировки и переработки сырья. Основными информационными технологиями являются: большие данные (англ. Big Data), искусственные нейронные сети (англ. Artificial Neural Network – ANN), системы распределенного реестра (англ. Blockchain), промышленные интернет вещей (англ. Industrial internet of things – IIoT), технологии виртуальной и дополненной реальности (англ. Virtual Reality – VR), мониторинг распределенных объектов беспилотными летательными аппаратами БПЛА (англ. Unmanned Aerial Vehicle – UAV). Большой объем передачи информации привел к еще одной из наиболее интересных тенденций цифрового развития – внедрения беспроводных технологий. Современные месторождения сегодня, помимо данных первичного сбора и обработки информации технологических параметров основных производственных объектов содержат также колоссальный объем информации мультимедийного трафика. Сюда входят данные БПЛА по обнаружению утечек и разрушения трубопроводов; камер видеонаблюдений; а также большой поток данных цифровых двойников, аналитики и т.д. В совокупности со всеми вышеизложенными

перспективными направлениями беспроводные технологии являются неотъемлемой частью «цифровизации» месторождения.

Отсюда возникает научно - техническая проблема организации распределенной сети связи, соответствующая реальным требованием современного производства.

Степень разработанности темы. Степень разработанности.

Объектом исследования в данной работе являются беспроводные широкополосные сети.

Предметом исследования является синтез топологической структуры беспроводной широкополосной сети.

Цель диссертационного исследования состоит в разработке моделей и методов задачи оптимального размещения базовых станций беспроводной широкополосной сети.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. анализ состояния, основных проблем и перспектив развития современных инфраструктур систем коммуникаций по беспроводным каналам на месторождениях;
- 2. разработка моделей задач размещения базовых станций в рамках комплексного проектирования сетей коммуникаций мониторинга объектов нефтегазовых месторождений;
- 3. разработка моделей оценки характеристик производительности сетей связи;

Научная новизна результатов исследования заключается в следующем:

- 1. разработаны модели задачи размещения базовых станций на плоскости и для частного случая с линейной топологией;
- 2. разработаны модели имитационного моделирования для оценки характеристик производительности сети;
- 3. разработаны модели прогнозирования оценок характеристик производительности с помощью методов машинного обучения.

Практическая значимость ...

Методология и методы исследования. ...

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение

- 3. Третье положение
- 4. Четвертое положение

В папке Documents можно ознакомиться с решением совета из Томского ГУ (в файле Def_positions.pdf), где обоснованно даются рекомендации по формулировкам защищаемых положений.

Достоверность полученных результатов обеспечивается . . . Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные положения и результаты исследования представлены и обсуждены на научных конференциях «Губкинский университет в решении вопросов нефтегазовой отрасли России» (Москва, 17-21 сентября 2018); «13-е Всероссийское совещание по проблемам управления» (Москва, 17-20 июня 2019); «International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications» (Москва, 22-27 сентября 2019), «Губкинский университет в решении вопросов нефтегазовой отрасли России» (Москва, 24-26 сентября 2019); «Управление развитием крупномасштабных систем» (Москва, 1-3 октября 2019); «Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems» (Москва, 13-17 апреля 2020); «Computer-aided technologies in applied mathematics» (Томск, сентябрь 2020); «International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications» (Москва, 14-18 сентября 2020); «Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems» (Москва, 19-23 апреля 2021);

Личный вклад. Все основные научные положения диссертационного исследования разработаны автором лично.

Публикации. Основные результаты по теме диссертации изложены в 12 печатных изданиях, 1 из которых изданы в журналах, рекомендованных ВАК, 2-в периодических научных журналах, индексируемых Web of Science и Scopus, 9-в сборниках трудов конференции.

При использовании пакета biblatex будут подсчитаны все работы, добавленные в файл biblio/author.bib. Для правильного подсчёта работ в различных системах цитирования требуется использовать поля:

- authorvak если публикация индексирована ВАК,
- authorscopus если публикация индексирована Scopus,
- authorwos если публикация индексирована Web of Science,
- authorconf для докладов конференций,

- authorpatent для патентов,
- authorprogram для зарегистрированных программ для ЭВМ,
- authorother для других публикаций.

Для подсчёта используются счётчики:

- citeauthorvak для работ, индексируемых BAK,
- citeauthorscopus для работ, индексируемых Scopus,
- citeauthorwos для работ, индексируемых Web of Science,
- citeauthorvakscopuswos для работ, индексируемых одной из трёх баз,
- citeauthorscopuswos для работ, индексируемых Scopus или Web of Science,
- citeauthorconf для докладов на конференциях,
- citeauthorother для остальных работ,
- citeauthorpatent для патентов,
- citeauthorprogram для зарегистрированных программ для ЭВМ,
- citeauthor для суммарного количества работ.

Для добавления в список публикаций автора работ, которые не были процитированы в автореферате, требуется их перечислить с использованием команды \nocite в Synopsis/content.tex.

Объем и структура работы. Диссертация состоит из введения, 3 глав, заключения и 3 приложений. Полный объём диссертации составляет 64 страницы, включая 4 рисунка и 18 таблиц. Список литературы содержит 45 наименований.

Глава 1. Оформление различных элементов

1.1 Форматирование текста

Мы можем сделать жирный текст и курсив.

1.2 Ссылки

Сошлёмся на библиографию. Одна ссылка: [0, с. 54][0, с. 36]. Две ссылки: [0]. Ссылка на собственные работы: [vakbib1; confbib2]. Много ссылок: [0][0]. И ещё немного ссылок: [0] [0][0].

Несколько источников (мультицитата): [0, c. vii—x, 5, 7; 0, v—x, 25, 526; 0, c. vii—x, 5, 7], работает только в biblatex реализации библиографии.

Ссылки на собственные работы: [vakbib1; confbib1].

Сошлёмся на приложения: Приложение А, Приложение Б.2.

Сошлёмся на формулу: формула (1.2).

Сошлёмся на изображение: рисунок 2.2.

Стандартной практикой является добавление к ссылкам префикса, характеризующего тип элемента. Это не является строгим требованием, но позволяет лучше ориентироваться в документах большого размера. Например, для ссылок на рисунки используется префикс fiq, для ссылки на таблицу — tab.

В таблице 18 приложения Б.5 приведён список рекомендуемых к использованию стандартных префиксов.

1.3 Формулы

Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.3.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованная отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

Формула с неопределенным интегралом:

$$\int f(\alpha + x) = \sum \beta$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικχλμνξπωροσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

αβγδεεζηθθικκλμνξπωροσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

Для добавления формул можно использовать пары \dots \$ и \$\$...\$, но они считаются устаревшими. Лучше использовать их функциональные аналоги (\dots) и $[\dots]$.

1.3.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки «равно» были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд (в исходном \LaTeX описании формулы) означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \u делает большой горизонтальный пробел.

Ещё вариант:

$$|x| = \begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Кроме того, для нумерованных формул alignedat делает вертикальное выравнивание номера формулы по центру формулы. Например, выравнивание компонент вектора:

$$\mathbf{N}_{o1n}^{(j)} = \sin\varphi \, n(n+1) \sin\theta \, \pi_n(\cos\theta) \, \frac{z_n^{(j)}(\rho)}{\rho} \, \hat{\mathbf{e}}_r + \\ + \sin\varphi \, \tau_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\theta + \\ + \cos\varphi \, \pi_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\varphi \,.$$

$$(1.1)$$

Ещё об отступах. Иногда для лучшей «читаемости» формул полезно немного исправить стандартные интервалы LATEX с учётом логической структуры самой формулы. Например в формуле (1.1) добавлен небольшой отступ \, между основными сомножителями, ниже результат применения всех вариан-

тов отступа:

\!
$$f(x) = x^2 + 3x + 2$$
по-умолчанию $f(x) = x^2 + 3x + 2$
\\, $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right)$$

1.3.3 Нумерованные формулы

А вот так пишется нумерованная формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.2}$$

Нумерованных формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.3}$$

Впоследствии на формулы (1.2) и (1.3) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(1.4)

Уравнения (1.5) и (1.6) демонстрируют возможности окружения $\$ subequations.

$$y = x^2 + 1 (1.5a)$$

$$y = 2x^2 - x + 1 (1.56)$$

Ссылки на отдельные уравнения (1.5a), (1.56) и (1.6a).

$$y = x^3 + x^2 + x + 1 \tag{1.6a}$$

$$y = x^2 \tag{1.66}$$

1.3.4 Форматирование чисел и размерностей величин

Числа форматируются при помощи команды \num: 5,3; $2,3 \cdot 10^8$; $12\,345,678\,90$; $2,6 \cdot 10^4$; $1\pm 2\mathrm{i}$; $0,3 \cdot 10^{45}$; $5 \cdot 2^{64}$; $5 \cdot 2^{64}$; $1,654 \times 2,34 \times 3,430$ $12 \times 3/4$. Для написания последовательности чисел можно использовать команды \numlist и \numrange: $10;30;50;70;\ 10-30$. Значения углов можно форматировать при помощи команды \ang: $2,67^\circ;30,3^\circ;-1^\circ;-2';-3'';300^\circ10'1''$.

Обратите внимание, что ГОСТ запрещает использование знака «-» для обозначения отрицательных чисел за исключением формул, таблиц и рисунков. Вместо него следует использовать слово «минус».

Таблица 1 — Основные величины СИ

Название	Команда	Символ
Ампер	\ampere	A
Кандела	\candela	КД
Кельвин	\kelvin	K
Килограмм	\kilogram	ΚΓ
Метр	\metre	M
Моль	\mole	МОЛЬ
Секунда	\second	c

Таблица 2 — Производные единицы СИ

Название	Команда	Символ	Название	Команда	Символ
Беккерель	\becquerel	Бк	Ньютон	\newton	Н
Градус Цельсия	\degreeCelsius	$^{\circ}\mathrm{C}$	Ом	\ohm	Ом
Кулон	\coulomb	Кл	Паскаль	\pascal	Па
Фарад	\farad	Φ	Радиан	\radian	рад
Грей	\gray	Γp	Сименс	\siemens	См
Герц	\hertz	Гц	Зиверт	\sievert	Зв
Генри	\henry	$\Gamma_{\rm H}$	Стерадиан	\steradian	cp
Джоуль	\joule	Дж	Тесла	\tesla	Тл
Катал	\katal	кат	Вольт	\volt	В
Люмен	\lumen	ЛМ	Ватт	\watt	Вт
Люкс	\lux	ЛК	Вебер	\weber	Вб

Размерности можно записывать при помощи команд \si и \SI: $\Phi^2 \cdot$ лм · кд; Дж · моль $^{-1} \cdot$ К $^{-1}$; Дж/(моль · К); м · с $^{-2}$; (0,10 ± 0,05) Нп; (1,2 -3i) · 10^5 Дж · моль $^{-1} \cdot$ К $^{-1}$; 1; 2; 3; 4 Тл; 50-100 В. Список единиц измерений приведён в таблицах 1-5. Приставки единиц приведены в таблице 6.

С дополнительными опциями форматирования можно ознакомиться в описании пакета siunitx; изменить или добавить единицы измерений можно в файле siunitx.cfg.

Таблица 3 — Внесистемные единицы

Название	Команда	Символ
День	\day	сут
Градус	\degree	0
Гектар	\hectare	га
Час	\hour	Ч
Литр	\litre	Л
Угловая минута	\arcminute	/
Угловая секунда	\arcsecond	"
Минута	\minute	МИН
Тонна	\tonne	Т

Таблица 4 — Внесистемные единицы, получаемые из эксперимента

Название	Команда	Символ
Астрономическая единица	\astronomicalunit	a.e.
Атомная единица массы	\atomicmassunit	а.е.м.
Боровский радиус	\bohr	a_0
Скорость света	\clight	c
Дальтон	\dalton	а.е.м.
Масса электрона	\electronmass	$m_{ m e}$
Электрон Вольт	\electronvolt	эВ
Элементарный заряд	\elementarycharge	e
Энергия Хартри	\hartree	$E_{ m h}$
Постоянная Планка	\planckbar	\hbar

Таблица 5 — Другие внесистемные единицы

Название	Команда	Символ
Ангстрем	\angstrom	Å
Бар	\bar	бар
Барн	\barn	б
Бел	\bel	Б
Децибел	\decibel	дБ
Узел	\knot	уз
Миллиметр ртутного столба	\mmHg	мм рт.ст.
Морская миля	\nauticalmile	МИЛЯ
Непер	\neper	Нп

Таблица 6 — Приставки СИ

Приставка	Команда	Символ	Степень	Приставка	Команда	Символ	Степень
Иокто	\yocto	И	-24	Дека	\deca	да	1
Зепто	\zepto	3	-21	Гекто	\hecto	Γ	2
Атто	\atto	a	-18	Кило	\kilo	K	3
Фемто	\femto	ф	-15	Мега	\mega	M	6
Пико	\pico	П	-12	Гига	\giga	Γ	9
Нано	\nano	Н	-9	Teppa	\tera	${ m T}$	12
Микро	\micro	MK	-6	Пета	\peta	Π	15
Милли	\milli	\mathbf{M}	-3	Екса	\exa	Э	18
Санти	\centi	\mathbf{c}	-2	Зетта	\zetta	3	21
Деци	\deci	Д	-1	Иотта	\yotta	И	24

1.3.5 Заголовки с формулами: $a^2 + b^2 = c^2$, $|\text{Im}\Sigma (\varepsilon)| \approx const$, $\sigma_{xx}^{(1)}$

Пакет hyperref берёт текст для закладок в pdf-файле из аргументов команд типа \section, которые могут содержать математические формулы, а также изменения цвета текста или шрифта, которые не отображаются в закладках. Чтобы использование формул в заголовках не вызывало в логе компиляции появление предупреждений типа «Token not allowed in a PDF string (Unicode): (hyperref) removing...», следует использовать конструк-

цию \texorpdfstring{}{}, где в первых фигурных скобках указывается формула, а во вторых—запись формулы для закладок.

1.4 Рецензирование текста

В шаблоне для диссертации и автореферата заданы команды рецензирования. Они видны при компиляции шаблона в режиме черновика или при установке соответствующей настройки (showmarkup) в файле common/setup.tex.

Команда \todo отмечает текст красным цветом.

Команда \note позволяет выбрать цвет текста.

Окружение commentbox также позволяет выбрать цвет.

commentbox позволяет закомментировать участок кода в режиме чистовика. Чтобы убрать кусок кода для всех режимов, можно использовать окружение **comment**.

1.5 Работа со списком сокращений и условных обозначений

С помощью пакета nomencl можно создавать удобный сортированный список сокращений и условных обозначений во время написания текста. Вызов \nomenclature добавляет нужный символ или сокращение с описанием в список, который затем печатается вызовом \printnomenclature в соответствующем разделе. Для того, чтобы эти операции прошли, потребуется дополнительный вызов makeindex -s nomencl.ist -o %.nls %.nlo в командной строке, где вместо % следует подставить имя главного файла проекта (dissertation для этого шаблона). Затем потребуется один или два дополнительных вызова компилятора проекта.

$$\omega = ck, \tag{1.7}$$

где ω — частота света, c — скорость света, k — модуль волнового вектора. Использование

\nomenclature{\(\omega\))}{\uparata} cbeta\nomrefeq}

\nomenclature{\(c\)){скорость света\nomrefpage}
\nomenclature{\(k\)){модуль волнового вектора\nomrefeqpage}

после уравнения добавит в список условных обозначений три записи. Ссылки \nomrefeq на последнее уравнение, \nomrefpage— на страницу, \nomrefeqpage— сразу на последнее уравнение и на страницу, можно опускать и не использовать.

Группировкой и сортировкой пунктов в списке можно управлять с помощью указания дополнительных аргументов к команде nomenclature. Например, при вызове

\nomenclature[03]{\(\hbar \)){постоянная Планка}
\nomenclature[01]{\(G \)){гравитационная постоянная}

G будет стоять в списке выше, чем \hbar . Для корректных вертикальных отступов между строками в описании лучше не использовать многострочные формулы в списке обозначений.

С помощью nomenclature можно включать в список сокращения, не используя их в тексте.

Глава 2. Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

2.1 Одиночное изображение

Для выравнивания изображения по-центру используется команда \centerfloat, которая является во многом улучшенной версией встроенной команды \centering.

2.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

Рисунок 2.2 — Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

Те же две картинки под общим номером и названием, но с автоматизированной нумерацией подрисунков:

а) Первый подрисунок

б)

в) Третий подрисунок, подпись к которому не помещается на одной строке

Подрисуночный текст, описывающий обозначения, например. Согласно ГОСТ 2.105, пункт 4.3.1, располагается перед наименованием рисунка.

Рисунок 2.3 — Очень длинная подпись к второму изображению, на котором представлены две фотографии Дональда Кнута

На рисунке 2.3a показан Дональд Кнут без головного убора. На рисунке 2.3б показан Дональд Кнут в головном уборе.

Возможно вставлять векторные картинки, рассчитываемые IATEX «на лету» с их предварительной компиляцией. Надписи в таких рисунках будут выполнены тем же шрифтом, который указан для документа в целом. На рисунке 2.4 на странице 20 представлен пример схемы, рассчитываемой пакетом tikz «на лету». Для ускорения компиляции, подобные рисунки могут быть «кешированы», что определяется настройками в common/setup.tex. Причём имя предкомпилированного файла и папка расположения таких файлов могут быть отдельно заданы, что удобно, если не для подготовки диссертации, то для подготовки научных публикаций.

Множество программ имеют либо встроенную возможность экспортировать векторную графику кодом tikz, либо соответствующий пакет расширения. Например, в GeoGebra есть встроенный экспорт, для Inkscape есть пакет svg2tikz, для Python есть пакет tikzplotlib, для R есть пакет tikzdevice.

Рисунок 2.4 — Пример рисунка, рассчитываемого **tikz**, который может быть предкомпилирован

2.3 Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Нумерованные вложенные списки:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Вообще, по ГОСТ 2.105 первый уровень нумерации (при необходимости ссылки в тексте документа на одно из перечислений) идёт буквами русского или латинского алфавитов, а второй— цифрами со скобками. Здесь отходим от ГОСТ.
 - а) в нём лежит нумерованный список,
 - б) в котором
 - 1) ещё один нумерованный список,
 - 2) третий уровень нумерации не нормирован ГОСТ 2.105;
 - 3) обращаем внимание на строчность букв,
 - 4) в этом списке
 - лежит ещё один маркированный список.
- 4. Четвёртый пункт.

2.4 Традиции русского набора

Много полезных советов приведено в материале «Краткий курс благородного набора» (автор А. В. Костырка). Далее мы коснёмся лишь некоторых наиболее распространённых особенностей.

2.4.1 Пробелы

В русском наборе принято:

- единицы измерения, знак процента отделять пробелами от числа: $10~\mathrm{kBt},~15~\%$ (согласно ГОСТ $8.417,~\mathrm{paз}$ дел 8);
- tg 20°, но: 20 °C (согласно ГОСТ 8.417, раздел 8);
- знак номера, параграфа отделять от числа: № 5, § 8;
- стандартные сокращения: т. е., и т. д., и т. п.;
- неразрывные пробелы в предложениях.

2.4.2 Математические знаки и символы

Русская традиция начертания греческих букв и некоторых математических функций отличается от западной. Это исправляется серией \renewcommand.

До: $\epsilon \geq \phi$, $\phi \leq \epsilon$, $\kappa \in \emptyset$, tan, cot, csc.

После: $\varepsilon \geqslant \phi$, $\phi \leqslant \varepsilon$, $\kappa \in \emptyset$, tg, ctg, cosec.

Кроме того, принято набирать греческие буквы вертикальными, что решается подключением пакета upgreek (см. закомментированный блок в userpackages.tex) и аналогичным переопределением в преамбуле (см. закомментированный блок в userstyles.tex). В этом шаблоне такие переопределения уже включены.

Знаки математических операций принято переносить. Пример переноса в формуле (1.4).

2.4.3 Кавычки

В английском языке приняты одинарные и двойные кавычки в виде '...' и "...". В России приняты французские («...») и немецкие ("...") кавычки (они на-

зываются «ёлочки» и «лапки», соответственно). "Лапки" обычно используются внутри «ёлочек», например, «... наш гордый "Варяг"...».

Французкие левые и правые кавычки набираются как лигатуры << и >>, а немецкие левые и правые кавычки набираются как лигатуры ,, и " (' ').

Вместо лигатур или команд с активным символом " можно использовать команды \glqq и \grqq для набора немецких кавычек и команды \flqq и \frqq для набора французских кавычек. Они определены в пакете babel.

2.4.4 Тире

Команда "--- используется для печати тире в тексте. Оно может быть несколько короче английского длинного тире (подробности в документации русификации babel). Кроме того, команда задаёт небольшую жёсткую отбивку от слова, стоящего перед тире. При этом, само тире не отрывается от слова. После тире следует такая же отбивка от текста, как и перед тире. При наборе текста между словом и командой, за которым она следует, должен стоять пробел.

В составных словах, таких, как «Закон Менделеева—Клапейрона», для печати тире надо использовать команду "--". Она ставит более короткое, по сравнению с английским, тире и позволяет делать переносы во втором слове. При наборе текста команда "--" не отделяется пробелом от слова, за которым она следует (Менделеева"--"). Следующее за командой слово может быть отделено от неё пробелом или перенесено на другую строку.

Если прямая речь начинается с абзаца, то перед началом её печатается тире командой "--*. Она печатает русское тире и жёсткую отбивку нужной величины перед текстом.

2.4.5 Дефисы и переносы слов

Для печати дефиса в составных словах введены две команды. Команда "~ печатает дефис и запрещает делать переносы в самих словах, а команда "= печатает дефис, оставляя ТЕХ'у право делать переносы в самих словах.

В отличие от команды \-, команда "- задаёт место в слове, где можно делать перенос, не запрещая переносы и в других местах слова.

Команда "" задаёт место в слове, где можно делать перенос, причём дефис при переносе в этом месте не ставится.

Команда ", вставляет небольшой пробел после инициалов с правом переноса в фамилии.

2.5 Текст из панграмм и формул

Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных

съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг!Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен

Ку кхоро адолэжкэнс волуптариа хаж, вим граэко ыкчпэтында ты. Граэкы жэмпэр льюкяльиюч квуй ку, аэквюы продыжщэт хаж нэ. Вим ку магна пырикульа, но квюандо пожйдонёюм про. Квуй ат рыквюы ёнэрмйщ. Выро аккузата вим нэ.

$$\Pr(F(\tau)) \propto \sum_{i=4}^{12} \left(\prod_{j=1}^{i} \left(\int_{0}^{5} F(\tau) e^{-F(\tau)t_{j}} dt_{j} \right) \prod_{k=i+1}^{12} \left(\int_{5}^{\infty} F(\tau) e^{-F(\tau)t_{k}} dt_{k} \right) C_{12}^{i} \right) \propto \\ \propto \sum_{i=4}^{12} \left(-e^{-1/2} + 1 \right)^{i} \left(e^{-1/2} \right)^{12-i} C_{12}^{i} \approx 0.7605, \quad \forall \tau \neq \overline{\tau}$$

Квуй ыёюз омниюм йн. Экз алёквюам кончюлату квуй, ты альяквюам ёнвидюнт пэр. Зыд нэ коммодо пробатуж. Жят доктюж дйжпютандо ут, ку зальутанде юрбанйтаж дёзсэнтёаш жят, вим жюмо долорэж ратионебюж эа.

Ад ентэгры корпора жплэндидэ хаж. Эжт ат факэтэ дычэрунт пэржыкоти. Нэ нам доминг пэрчёус. Ку квюо ёужто эррэм зючкёпит. Про хабэо

альбюкиюс нэ.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}$$

$$\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{vmatrix}$$

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{vmatrix}$$

Про эа граэки квюаыквуэ дйжпютандо. Ыт вэл тебиквюэ дэфянятйоныс, нам жолюм квюандо мандамюч эа. Эож пауло лаудым инкедыринт нэ, пэрпэтюа форынчйбюж пэр эю. Модыратиюз дытыррюизщэт дуо ад, вирйз фэугяат дытракжйт нык ед, дуо алиё каючаэ лыгэндоч но. Эа мольлиз юрбанйтаж зигнёфэрумквюы эжт.

Про мандамюч кончэтытюр ед. Трётанё прёнкипыз зигнёфэрумквюы вяш ан. Ат хёз эквюедым щуавятатэ. Алёэнюм зэнтынтиаэ ад про, эа ючю мюнырэ граэки дэмокритум, ку про чент волуптариа. Ыльит дыкоры аляквюид еюж ыт. Ку рыбюм мюндй ютенам дуо.

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ $3/2 = 1,5$

$$2 \times 2 = 4$$
 $6 \times 8 = 48$
 $3 \times 3 = 9$ $a + b = c$ (2.1)
 $10 \times 65464 = 654640$ $3/2 = 1,5$

Пэр йн тальэ пожтэа, мыа ед попюльо дэбетиз жкрибэнтур. Йн квуй аппэтырэ мэнандря, зыд аляквюид хабымуч корпора йн. Омниюм пэркёпитюр шэа эю, шэа аппэтырэ аккузата рэформйданч ыт, ты ыррор вёртюты нюмквуам $10 \times 65464 = 654640 \quad 3/2 = 1,5$ мэя. Ипзум эуежмод a+b=c мальюизчыт ад дуо. Ад фэюгаят пытынтёюм адвыржаряюм вяш. Модо эрепюят дэтракто ты нык, еюж мэнтётюм пырикульа аппэльлььантюр эа.

Мэль ты дэлььынётё такематыш. Зэнтынтиаэ конклььюжионэмквуэ ан мэя. Вёжи лебыр квюаыквуэ квуй нэ, дуо зймюл дэлььиката ку. Ыам ку алиё путынт.

$$2 \times x = 4 \\
 3 \times y = 9 \\
 10 \times 65464 = z$$

Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт. Вэрйтюж аккюжамюз ты шэа, дэбетиз форынчйбюж жкряпшэрит ыт прё. Ан еюж тымпор рыфэррэнтур, ючю дольор котёдиэквюэ йн. Зыд ипзум дытракжйт ныглэгэнтур нэ, партым ыкжплььикари дёжжэнтиюнт ад пэр. Мэль ты кытэрож молыжтйаы, нам но ыррор жкрипта аппарэат.

$$\frac{m_t^2}{L_t^2} = \frac{m_x^2}{L_x^2} + \frac{m_y^2}{L_y^2} + \frac{m_z^2}{L_z^2}$$

Вэре льаборэж тебиквюэ хаж ут. Ан пауло торквюатоз хаж, нэ пробо фэугиат такематыш шэа. Мэльёуз пэртинакёа юлламкорпэр прё ад, но мыа рыквюы конкыптам. Хёз квюот пэртинакёа эи, ельлюд трактатоз пэр ад. Зыд ед анёмал льаборэж номинави, жят ад конгуы льабятюр. Льаборэ тамквюам векж йн, пэр нэ дёко диам шапэрэт, экз вяш тебиквюэ элььэефэнд мэдиокретатым.

Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ, доминг лаборамюз эи ыам. Чэнзэрет мныжаркхюм экз эож, ыльит тамквюам факильизиж нык эи. Квуй ан элыктрам тинкидюнт ентырпрытаряш. Йн янвыняры трактатоз зэнтынтиаэ зыд. Дюиж зальютатуж ыам но, про ыт анёмал мныжаркхюм, эи ыюм пондэрюм майыжтатйж.

Глава 3. Вёрстка таблиц

3.1 Таблица обыкновенная

Так размещается таблица:

Таблица 7 — Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min}), K$
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

Таблица 8

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

Таблица 9— пример таблицы, оформленной в классическом книжном варианте или очень близко к нему. ГОСТу по сути не противоречит. Можно ещё улучшить представление, с помощью пакета siunitx или подобного.

Таблица 9 — Наименование таблицы, очень длинное наименование таблицы, чтобы посмотреть как оно будет располагаться на нескольких строках и переноситься

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

3.2 Таблица с многострочными ячейками и примечанием

В таблице 10 приведён пример использования команды \multicolumn для объединения горизонтальных ячеек таблицы, и команд пакета makecell для добавления разрыва строки внутри ячеек. При форматировании таблицы 10 использован стиль подписей split. Глобально этот стиль может быть включён в файле Dissertation/setup.tex для диссертации и в файле Synopsis/setup.tex для автореферата. Однако такое оформление не соответствует ГОСТ.

Таблица 10 Пример использования функций пакета makecell

Колонка 1	Колонка 2	Название колонки 3, не помещающееся в одну строку	Колонка 4			
	Выравнивание по центру					
Выравни	вание	Выравнивание к левому краю				
к правому	краю	рыравнивание к левому кр	Jaio			
В этой ячейке	8.72	8.55	8.44			
много информации	0.12	0.00	0.44			
А в этой мало	8.22	5				

Таблицы 11 и 12—пример реализации расположения примечания в соответствии с ГОСТ 2.105. Каждый вариант со своими достоинствами и недостатками. Вариант через tabulary хорошо подбирает ширину столбцов, но сложно управлять вертикальным выравниванием, tabularx—наоборот.

Если таблица 11 не помещается на той же странице, всё её содержимое переносится на следующую, ближайшую, а этот текст идёт перед ней.

3.3 Таблицы с форматированными числами

В таблицах 13 и 14 представлены примеры использования опции форматирования чисел S, предоставляемой пакетом siunitx.

Таблица 11 — Нэ про натюм фюйзчыт квюальизквюэ

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдиокре- татым	Чэнзэ- рет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	\approx	\approx	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы,— вздохнёт мэр,— кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

3.4 Параграф — два

Некоторый текст.

3.5 Параграф с подпараграфами

3.5.1 Подпараграф — один

Некоторый текст.

3.5.2 Подпараграф — два

Некоторый текст.

Таблица 12 - Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдио- крета- тым	Чэнзэрет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	pprox	pprox	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	pprox	_	_	_
Любя, съешь щипцы,— вздохнёт мэр,— кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Таблица 13 — Выравнивание столбцов

Выравнивание по разделителю	Обычное выравнивание
12,345	12,345
6,78	6,78
-88.8 ± 0.9	$-88,8 \pm 0,9$
$4.5\cdot 10^3$	$4.5\cdot 10^3$

Таблица 14 — Выравнивание с использованием опции S

Колонка 1	Колонка 2	Колонка 3	Колонка 4
2,3456	2,3456	2,3456	2,3456
34,2345	34,2345	34,2345	34,2345
56,7835	56,7835	56,7835	56,7835
90,473	$90,\!473$	90,473	90,473

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Последний параграф может включать благодарности. В заключение автор выражает благодарность и большую признательность научному руководителю Иванову И.И. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит Сидорова А.А. и Петрова Б.Б. за помощь в работе с образцами, Рабиновича В.В. за предоставленные образцы и обсуждение результатов, Занудятину Г.Г. и авторов шаблона *Russian-Phd-LaTeX-Dissertation-Template* за помощь в оформлении диссертации. Автор также благодарит много разных людей и всех, кто сделал настоящую работу автора возможной.

Список сокращений и условных обозначений

$\begin{pmatrix} a_n \\ b_n \end{pmatrix}$	и снова коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям.
	Добавлено много текста, так что описание группы условных
a)	обозначений значительно превысило высоту этой группы
$\left\{\begin{array}{c} a_n \\ a_n \end{array}\right\}$	коэффициенты разложения Ми в дальнем поле соответствую-
b_n)	щие электрическим и магнитным мультиполям
$egin{array}{ccc} \mathbf{N}_{e1n}^{(j)} & \mathbf{N}_{o1n}^{(j)} \ \mathbf{M}_{o1n}^{(j)} & \mathbf{M}_{e1n}^{(j)} \ \end{array} egin{array}{ccc}$	сферические векторные гармоники
λ	длина волны электромагнитного излучения в вакууме
μ	магнитная проницаемость в вакууме
ω	частота падающей волны
ê	единичный вектор
E_0	амплитуда падающего поля
j	тип функции Бесселя
k	волновой вектор падающей волны
L	общее число слоёв
l	номер слоя внутри стратифицированной сферы
n	порядок мультиполя
r, θ, ϕ	полярные координаты
ω	частота света, см. (1.7)
c	скорость света, стр. 16
k	модуль волнового вектора, см. (1.7), стр. 16
BEM	boundary element method, метод граничных элементов
CST MWS	Computer Simulation Technology Microwave Studio программа
	для компьютерного моделирования уравнен Максвелла
DDA	discrete dipole approximation, приближение дискретиных дипо-

FDFD finite difference frequency domain, метод конечных разностей

в частотной области

лей

FDTD finite difference time domain, метод конечных разностей во вре-

менной области

FEM finite element method, метод конечных элементов

FIT finite integration technique, метод конечных интегралов

FMM fast multipole method, быстрый метод многополюсника

FVTD finite volume time-domain, метод конечных объёмов во времен-

ной области

MLFMA multilevel fast multipole algorithm, многоуровневый быстрый ал-

горитм многополюсника

MoM method of moments, метод моментов

MSTM multiple sphere T-Matrix, метод Т-матриц для множества сфер

PSTD pseudospectral time domain method, псевдоспектральный метод

во временной области

TLM transmission line matrix method, метод матриц линий передач

Словарь терминов

 ${f TeX}$: Система компьютерной вёрстки, разработанная американским профессором информатики Дональдом Кнутом

панграмма : Короткий текст, использующий все или почти все буквы алфавита

Список литературы

- 0. *Соколов*, *А. Н.* Гражданское общество: проблемы формирования и развития (философский и юридический аспекты) : монография [текст] / А. Н. Соколов, К. С. Сердобинцев ; под ред. В. М. Бочарова. Астрахань : Калиниградский ЮИ МВД России, 2009. 218 с.
- 0. Γ айдаенко, T. A. Маркетинговое управление: принципы управленческих решений и российская практика [текст] / T. A. Гайдаенко. 3-е изд, перераб. и доп. M. : Эксмо: МИРБИС, 2008. 508 с.
- 0. *Лермонтов*, *М. Ю.* Собрание сочинений: в 4 т. [текст] / М. Ю. Лермонтов. М. : Терра-Кн. клуб, 2009. 4 т.
- 0. Управление бизнесом : сборник статей [текст]. Нижний новгород : Изд-во Нижегородского университета, 2009. 243 с.
- 0. Bорозда, И. B. Лечение сочетанных повреждений таза [текст] / И. B. Борозда, H. U. Воронин, A. B. Бушманов. Владивосток : Дальнаука, 2009. 195 с.
- 0. Маркетинговые исследования в строительстве : учебное пособие для студентов специальности «Менеджмент организаций» [текст] / О. В. Михненков [и др.]. М. : Государственный университет управления, 2005. 59 с.
- 0. Конституция Российской Федерации : офиц. текст. [текст]. М. : Маркетинг, 2001. 39 с.
- 0. Семейный кодекс Российской Федерации : [федер. закон: принят Гос. Думой 8 дек. 1995 г. : по состоянию на 3 янв. 2001 г.] [текст]. СПб. : Стаун-кантри, 2001.-94 с.
- 0. ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому делу. Издания. Международный стандартный книжный номер. Использование и издательское оформление. [текст]. М. : Стандартинформ, 2007. 5 с.
- 0. Pазумовский, B. A. Управление маркетинговыми исследованиями в регионе [текст] / В. А. Разумовский, Д. А. Андреев. М., 2002. 210 с. Деп. в ИНИОН Рос. акад. наук 15.02.02, № 139876.
- 0. *Лагкуева*, *И. В.* Особенности регулирования труда творческих работников театров : дис. ... канд. юрид. наук : 12.00.05 [текст] / И. В. Лагкуева. М., 2009.-168 с.

- 0. Покровский, А. В. Устранимые особенности решений эллиптических уравнений : дис. ... д-ра физ.-мат. наук : 01.01.01 [текст] / А. В. Покровский. М., 2008.-178 с.
- 0. Загорюев, А. Л. Методология и методы изучения военно-профессиональной направленности подростков : отчёт о НИР [текст] / А. Л. Загорюев. Екатеринбург, 2008.-102 с.
- 0. $Берестова, Т. Ф. Поисковые инструменты библиотеки [текст] / Т. Ф. Берестова // Библиография. 2006. <math>\mathbb{N}$ 4. с. 19.
- 0. *Кригер, И.* Бумага терпит [текст] / И. Кригер // Новая газета. 2009. 1 июля.
- 0. Cupomko, B. B. Медико-социальные аспекты городского травматизма в современных условиях [текст] : автореф. дис. . . . канд. мед. наук : 14.00.33 / Сиротко Владимир Викторович. M., 2006. 26 с.
- 0. Лукина, B. A. Творческая история «Записок охотника» И. С. Тургенева [текст] : автореф. дис. . . . канд. филол. наук : 10.01.01 / Лукина Валентина Александровна. СПб., 2006. 26 с.
- 0. Художественная энциклопедия зарубежного классического искусства [электронный ресурс]. М.: Большая Рос. энкцикл., 1996. 1 электрон. опт. диск (CD-ROM).
- 0. *Насырова*, Γ . *А*. Модели государственного регулирования страховой деятельности [электронный ресурс] / Γ . А. Насырова // Вестник Финансовой академии. 2003. \mathbb{N}^{2} 4. Режим доступа: http://vestnik.fa.ru/4(28)2003/4.html.
- 0. Adams, P. The title of the work [текст] / P. Adams // The name of the journal. 1993. July. Vol. 4, no. 2. P. 201—213. An optional note.
- 0. Babington, P. The title of the work [Tekct]. Vol. 4 / P. Babington. 3rd ed. The address: The name of the publisher, 07/1993. (10). An optional note.
- 0. Caxton, P. The title of the work [Tekct] / P. Caxton. The address of the publisher, 07/1993. An optional note. How it was published.
- 0. Draper, P. The title of the work [текст] / P. Draper // The title of the book. Vol. 4 / ed. by T. editor. The organization. The address of the publisher: The publisher, 07/1993. P. 213. (5). An optional note.

- 0. Eston, P. The title of the work [текст] / P. Eston // Book title. Vol. 4. 3rd ed. The address of the publisher: The name of the publisher, 07/1993. Chap. 8. P. 201—213. (5). An optional note.
- 0. Farindon, P. The title of the work [текст] / P. Farindon // The title of the book. Vol. 4 / ed. by T. editor. 3rd ed. The address of the publisher: The name of the publisher, 07/1993. Chap. 8. P. 201—213. (5). An optional note.
- 0. Gainsford, P. The title of the work [текст] / P. Gainsford; The organization. 3rd ed. The address of the publisher, 07/1993. An optional note.
- 0. Harwood, P. The title of the work [текст]: Master's thesis / Harwood Peter. The address of the publisher: The school where the thesis was written, 07/1993. An optional note.
- 0. Isley, P. The title of the work [Tekct] / P. Isley. 07/1993. An optional note. How it was published.
- 0. Joslin, P. The title of the work [текст]: PhD thesis / Joslin Peter. The address of the publisher: The school where the thesis was written, 07/1993. An optional note.
- 0. The title of the work [Tekct]. Vol. 4 / ed. by P. Kidwelly. The organization. The address of the publisher: The name of the publisher, 07/1993. (5). An optional note.
- 0. Lambert, P. The title of the work [текст] : tech. rep. / P. Lambert ; The institution that published. The address of the publisher, 07/1993. No. 2. An optional note.
- 0. Marcheford, P. The title of the work [текст] / P. Marcheford. 07/1993. An optional note.
- 0. $Me \partial se \partial es$, A. M. Электронные компоненты и монтажные подложки [электронный ресурс] / A. M. Медведев. 2006. URL: http://www.kit-e.ru/articles/elcomp/2006%5C_12%5C_124.php (дата обр. 19.01.2015).
- 0. Deiters, U. K. A Modular Program System for the Calculation of Thermodynamic Properties of Fluids [Tekct] / U. K. Deiters // Chemical Engineering & Technology. 2000. Vol. 23, no. 7. P. 581—584.

- 0. Deformation of Colloidal Crystals for Photonic Band Gap Tuning [текст] / Y.-S. Cho [et al.] // Journal of Dispersion Science and Technology. 2011. Vol. 32, no. 10. P. 1408—1415.
- 0. Wafer bonding for microsystems technologies [текст] / U. Gösele [и др.] // Sensors and Actuators A: Physical. 1999. т. 74, № 1—3. с. 161—168.
- 0. Li, L. Stress Analysis for Processed Silicon Wafers and Packaged Micro-devices [текст] / L. Li, Y. Guo, D. Zheng // Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging / ed. by E. Suhir, Y. C. Lee, C. P. Wong. Springer US, 2007. B677—B709.
- 0. Shoji, S. Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic [текст] / S. Shoji, H. Kikuchi, H. Torigoe // Sensors and Actuators A: Physical. 1998. т. 64, № 1. с. 95—100. Tenth IEEE International Workshop on Micro Electro Mechanical Systems.
- 0. Iterative denoising using Jensen-Renyi divergences with an application to unsupervised document categorization [текст] / D. Karakos [и др.] // Proceedings of ICASSP. 2007. URL: http://cs.jhu.edu/~jason/papers/%5C#icassp07.
- 0. Iterative denoising using Jensen-Renyi divergences with an application to unsupervised document categorization [текст] / D. Karakos [и др.] // Proc. of ICASSP. 2007. URL: http://cs.jhu.edu/~jason/papers/%5C#icassp07.
- 0. Pomerantz, D. I. Anodic bonding : patent no. 3397278 US [текст] / D. I. Pomerantz. 1968.
- 0. Иофис, Н. А. Способ пайки керамики с керамикой и стекла с металлом :
 a. с. 126728 СССР [текст] / Н. А. Иофис. 1960. Бюл. № 5. 1.
- 0. Заявка 1095735 Рос. федерация, МПК В 64 G 1/00. Одноразовая ракетаноситель [текст] / Э. В. Тернер (США) ; заявитель Спейс Системз/Лорал, инк. ; патент. поверенный Егорова Г. Б. № 2000108705/28 ; заявл. 07.04.2000 ; опубл. 10.03.2001, Бюл. № 7 (I ч.) ; приоритет 09.04.1999, 09/289, 037 (США). 5 с. : ил.
- 0. *А. с. 1007970 СССР, МКИ*³ *В 25.1 15/00*. Устройство для захвата неориентированных деталей типа валов [текст] / В. С. Ваулин, В. Г. Кемайкин (СССР). № 3360585/25-08 ; заявл. 23.11.1981 ; опубл. 30.03.1983, Бюл. № 12.-2 с. : ил.

0. Одноразовая ракета-носитель [текст] : заявка 1095735 Рос. Федерация : МПК⁷ В 64 С 1/00 / Э. В. Тернер (США) ; заявитель Спейс Системз/-Лорал, инк. ; патент. поверенный Егорова Г. Б. — № 2000108705/28 ; заявл. 07.04.2000 ; опубл. 10.03.2001, Бюл. № 7 (І ч.) ; приоритет 09.04.1999, 09/289, 037 (США). — 5 с. : ил.

Список рисунков

2.1	TeX	18
2.2	Очень длинная подпись к изображению, на котором представлены	
	две фотографии Дональда Кнута	18
2.3	Этот текст попадает в названия рисунков в списке рисунков	19
2.4	Пример tikz схемы	20

Список таблиц

1	Основные величины СИ	13
2	Производные единицы СИ	13
3	Внесистемные единицы	14
4	Внесистемные единицы, получаемые из эксперимента	14
5	Другие внесистемные единицы	15
6	Приставки СИ	15
7	Название таблицы	28
8		28
9	Наименование таблицы, очень длинное наименование таблицы,	
	чтобы посмотреть как оно будет располагаться на нескольких	
	строках и переноситься	28
10	Пример использования функций пакета $makecell$	29
11	Нэ про натюм фюйзчыт квюальизквюэ	30
12	Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч	32
13	Выравнивание столбцов	33
14	Выравнивание с использованием опции S	33
15	Наименование таблицы средней длины	53
16	Тестовые функции для оптимизации, D —размерность. Для всех	
	функций значение в точке глобального минимума равно нулю	58
17	Длинная таблица с примером чересстрочного форматирования	61
18	Стандартные префиксы ссылок	63

Приложение А

Примеры вставки листингов программного кода

Для крупных листингов есть два способа. Первый красивый, но в нём могут быть проблемы с поддержкой кириллицы (у вас может встречаться в комментариях и печатаемых сообщениях), он представлен на листинге A.1. Второй

Листинг А.1: Программа "Hello, world" на С++

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях при xelatex и lualatex и меет проблемы с пробелами
{
    cout << "Hello, world" << endl; //latin letters in commentaries
    system("pause");
    return 0;
}
```

не такой красивый, но без ограничений (см. листинг А.2).

Листинг А.2: Программа "Hello, world" без подсветки

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях
{
    cout << "Привет, мир" << endl;
}</pre>
```

Можно использовать первый для вставки небольших фрагментов внутри текста, а второй для вставки полного кода в приложении, если таковое имеется.

Если нужно вставить совсем короткий пример кода (одна или две строки), то выделение линейками и нумерация может смотреться чересчур громоздко.

В таких случаях можно использовать окружения lstlisting или Verb без ListingEnv. Приведём такой пример с указанием языка программирования, отличного от заданного по умолчанию:

```
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Такое решение— со вставкой нумерованных листингов покрупнее и вставок без выделения для маленьких фрагментов— выбрано, например, в книге Эндрю Таненбаума и Тодда Остина по архитектуре компьютера.

Наконец, для оформления идентификаторов внутри строк (функция main и тому подобное) используется lstinline или, самое простое, моноширинный текст (\texttt).

Пример A.3, иллюстрирующий подключение переопределённого языка. Может быть полезным, если подсветка кода работает криво. Без дополнительного окружения, с подписью и ссылкой, реализованной встроенным средством.

Листинг А.3: Пример листинга с подписью собственными средствами

```
## Caching the Inverse of a Matrix
  ## Matrix inversion is usually a costly computation and there
     may be some
  ## benefit to caching the inverse of a matrix rather than
     compute it repeatedly
5 ## This is a pair of functions that cache the inverse of a
     matrix.
  ## makeCacheMatrix creates a special "matrix" object that can
     cache its inverse
  makeCacheMatrix <- function(x = matrix()) {#кириллица в коммента
     риях при xelatex и lualatex имеет проблемы с пробелами
10
      i <- NULL
      set <- function(y) {</pre>
          x <<- y
          i <<- NULL
      }
15
      get <- function() x</pre>
      setSolved <- function(solve) i <<- solve</pre>
      getSolved <- function() i</pre>
      list(set = set, get = get,
      setSolved = setSolved,
20
      getSolved = getSolved)
```

```
}
25 ## cacheSolve computes the inverse of the special "matrix"
     returned by
  ## makeCacheMatrix above. If the inverse has already been
     calculated (and the
  ## matrix has not changed), then the cachesolve should retrieve
     the inverse from
  ## the cache.
30 cacheSolve <- function(x, ...) {
       ## Return a matrix that is the inverse of 'x'
      i <- x$getSolved()</pre>
      if(!is.null(i)) {
           message("getting cached data")
35
           return(i)
      }
      data <- x$get()</pre>
      i <- solve(data, ...)</pre>
      x$setSolved(i)
      i
40
  }
```

Листинг A.4 подгружается из внешнего файла. Приходится загружать без окружения дополнительного. Иначе по страницам не переносится.

Листинг А.4: Листинг из внешнего файла

```
# Analysis of data on Course Project at Getting and Cleaning
   data course of Data Science track at Coursera.

# Part 1. Merges the training and the test sets to create one
   data set.

# 3. Uses descriptive activity names to name the activities in
   the data set

# 4. Appropriately labels the data set with descriptive variable
   names.

if (!file.exists("UCI HAR Dataset")) {
    stop("You need 'UCI HAR Dataset' folder full of data")
}
```

```
library(plyr) # for mapualues
15 #getting common data
  features <- read.csv("UCI HAR Dataset/features.txt",sep=" ",</pre>
     header = FALSE,
                         colClasses = c("numeric", "character"))
  activity_labels <- read.csv("UCI HAR Dataset/activity_labels.txt
     ",sep="",
                                header = FALSE, colClasses = c("
     numeric", "character"))
20
  #getting train set data
  subject_train <- read.csv("UCI HAR Dataset/train/subject_train.</pre>
     txt",
                              header = FALSE, colClasses = "numeric",
     col.names="Subject")
  y_train <- read.csv("UCI HAR Dataset/train/y_train.txt", header</pre>
     = FALSE,
25
                        colClasses = "numeric")
  x_train <- read.csv("UCI HAR Dataset/train/X_train.txt",sep="",</pre>
     header = FALSE,
                        colClasses = "numeric",col.names=features$V2
     , check.names = FALSE)
  activity_train <- as.data.frame(mapvalues(y_train$V1, from =
     activity_labels$V1,
30
                                               to = activity_labels$
     V2))
  names(activity_train) <- "Activity"</pre>
35 #getting test set data
  subject_test <- read.csv("UCI HAR Dataset/test/subject_test.txt"</pre>
                             header = FALSE, colClasses = "numeric",
     col.names="Subject")
  y_test <- read.csv("UCI HAR Dataset/test/y_test.txt", header =</pre>
     FALSE,
                      colClasses = "numeric")
40 x_test <- read.csv("UCI HAR Dataset/test/X_test.txt",sep="",
     header = FALSE,
```

```
colClasses = "numeric", col.names=features$V2,
     check.names = FALSE)
  activity_test <- as.data.frame(mapvalues(y_test$V1, from =</pre>
     activity_labels$V1,
                                             to = activity_labels$V2
     ))
45 names (activity_test) <- "Activity"
  # Forming full dataframe
  data_train <- cbind(x_train, subject_train, activity_train)</pre>
50 data_test <- cbind(x_test, subject_test, activity_test)
  data <- rbind(data_train, data_test)</pre>
  # Cleaning memory
  rm(features, activity_labels, subject_train, y_train, x_train,
     activity_train,
     subject_test, y_test, x_test, activity_test, data_train, data
     _test)
  # Part 2. Extracts only the measurements on the mean and
     standard deviation for each measurement.
60 cols2match <- grep("(mean|std)",names(data))
  \# Excluded gravityMean, tBodyAccMean, tBodyAccJerkMean,
     tBodyGyroMean,
  # tBodyGyroJerkMean, as these represent derivations of angle
  # opposed to the original feature vector.
  # Subsetting data frame, also moving last columns to be first
  Subsetted_data_frame <- data[ ,c(562, 563, cols2match)]</pre>
  # Part 5. From the data set in step 4, creates a second,
     independent tidy data set
70| # with the average of each variable for each activity and each
     subject.
  library(dplyr) # for %>% and summarise_each
```

Приложение Б

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

Б.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума 2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			продолжение следует

П	37	m	(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	. ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	$_{ m int}$	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
111011	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	$_{ m int}$	1: инициализация модели для планеты Марс
kick	1	$_{ m int}$	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			2: генерация оелого шума симметрично относительно экватора
mars	0	int	зкватора 1: инициализация модели для планеты Марс
&SURFPAI		1110	1. инициализация модели для плансты марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
KICK	1	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	_		экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			продолжение следует

	(продолжение)			
Параметр	Умолч.	Тип	Описание	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума $(p_s = const)$	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума $(p_s = const)$	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума $(p_s = const)$	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума $(p_s = const)$	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	$_{ m int}$	1: инициализация модели для планеты Марс	

Б.2 Ещё один подраздел приложения

Нужно больше подразделов приложения! Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт.

Пример длинной таблицы с записью продолжения по ГОСТ 2.105:

Таблица 15 — Наименование таблицы средней длины

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора

Продолжение таблицы 15

Параметр	Умолч.	Тип	Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	\mid int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно

Продолжение таблицы 15

г		таолицы		
	Параметр	Умолч.	Тип	Описание
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0: инициализация без шума $(p_s = const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0: инициализация без шума $(p_s = const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0: инициализация без шума $(p_s = const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0 : инициализация без шума $(p_s=const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	- 1: инициализация модели для планеты Марс
	kick	1	int	0 : инициализация без шума $(p_s=const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
-	&SURFPAI	R		
	kick	1	int	0 : инициализация без шума $(p_s=const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0 : инициализация без шума $(p_s=const)$
				1: генерация белого шума
				2: генерация белого шума симметрично относительно
				экватора
	mars	0	int	1: инициализация модели для планеты Марс
	kick	1	int	0 : инициализация без шума $(p_s=const)$

Продолжение таблицы 15

Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

Б.3 Использование длинных таблиц с окружением longtabu

В таблице 16 более книжный вариант длинной таблицы, используя окружение longtabu и разнообразные toprule midrule bottomrule из пакета booktabs. Чтобы визуально таблица смотрелась лучше, можно использовать следующие параметры: в самом начале задаётся расстояние между строчками с помощью arraystretch. Таблица задаётся на всю ширину, longtabu позволяет делить ширину колонок пропорционально — тут три колонки в пропорции 1.1:1:4 — для каждой колонки первый параметр в описании X[]. Кроме того, в таблице убраны отступы слева и справа с помощью @{} в преамбуле таблицы. К первому и второму столбцу применяется модификатор

>{\setlength{\baselineskip}{0.7\baselineskip}},

который уменьшает межстрочный интервал в для текста таблиц (иначе заголовок второго столбца значительно шире, а двухстрочное имя сливается с окружающими). Для первой и второй колонки текст в ячейках выравниваются по центру как по вертикали, так и по горизонтали—задаётся буквами m и c в описании столбца X[].

Так как формулы большие — используется окружение alignedat, чтобы отступ был одинаковый у всех формул — он сделан для всех, хотя для большей части можно было и не использовать. Чтобы формулы занимали поменьше места в каждом столбце формулы (где надо) используется \textstyle — он делает дроби меньше, у знаков суммы и произведения — индексы сбоку. Иногда формула слишком большая, сливается со следующей, поэтому после неё ставится небольшой дополнительный отступ \vspace*{2ex}. Для штрафных функций — размер фигурных скобок задан вручную \Big\{, т. к. не умеет alignedat работать с \left и \right через несколько строк/колонок.

В примечании к таблице наоборот, окружение cases даёт слишком большие промежутки между вариантами, чтобы их уменьшить, в конце каждой строчки окружения использовался отрицательный дополнительный отступ \\[-0.5em].

Таблица 16 — Тестовые функции для оптимизации, D — размерность. Для всех функций значение в точке глобального минимума равно нулю.

Рем	Стартовый диапазон параметров	Функция
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10, 10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i\{ x_i \}$
Rosenbrock	$[-30,30]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	$[-1.28, 1.28]^D$	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10 \cos(2\pi x_i) + 10]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$

(продолжение)

Имя	Стартовый диапазон параметров	Функция
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10, 10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i \{ x_i \}$
Rosenbrock	$[-30,30]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	$[-1.28, 1.28]^D$	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10 \cos(2\pi x_i) + 10]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$

(окончание)

Имя	Стартовый диапазон параметров	Функция
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$

Примечание — Для функций
$$f_{12}$$
 и f_{13} используется $y_i=1+\frac{1}{4}(x_i+1)$ и $u(x_i,a,k,m)=\begin{cases} k(x_i-a)^m, & x_i>a\\ 0, & -a\leqslant x_i\leqslant a\\ k(-x_i-a)^m, & x_i<-a \end{cases}$

Б.4 Форматирование внутри таблиц

В таблице 17 пример с чересстрочным форматированием. В файле userstyles.tex задаётся счётчик \newcounter{rowcnt} который увеличивается на 1 после каждой строчки (как указано в преамбуле таблицы). Кроме того, задаётся условный макрос \altshape который выдаёт одно из двух типов форматирования в зависимости от чётности счётчика.

В таблице 17 каждая чётная строчка—синяя, нечётная—с наклоном и слегка поднята вверх. Визуально это приводит к тому, что среднее значение и среднеквадратичное изменение группируются и хорошо выделяются взглядом в таблице. Сохраняется возможность отдельные значения в таблице выделить цветом или шрифтом. К первому и второму столбцу форматирование не применяется по сути таблицы, к шестому общее форматирование не применяется для наглядности.

Так как заголовок таблицы тоже считается за строчку, то перед ним (для первого, промежуточного и финального варианта) счётчик обнуляется, а в **\altshape** для нулевого значения счётчика форматирования не применяется.

Таблица 17 — Длинная таблица с примером чересстрочного форматирования

		, ,	•			1 1	1
	Итера- ции	JADE++	JADE	jDE	SaDE	$\frac{\mathrm{DE/rand}}{/1/\mathrm{bin}}$	PSO
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	$4.2 ext{E-}01 \ (1.1E+00)$	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	1.3E+01 (1.4E+01)	2.1E+01 (7.8E+00)	$2.1E+00 \ (1.5E+00)$	2.5E+01 (3.2E+01)
f6	100	$\frac{2.9E+00}{(1.2E+00)}$	$5.6E+00 \ (1.6E+00)$	$1.0E+03 \ (2.2E+02)$	$9.3E+02 \ (1.8E+02)$	$4.7E+03 \ (1.1E+03)$	4.5E+01 (2.4E+01)
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	7.1E+00 (2.8E+01)	7.9E-11 (1.3E-10)	$\substack{4.7E+00\\ (3.3E+01)}$	$5.9E+03 \ (1.1E+03)$	$\frac{2.4\mathrm{E}{+03}}{(6.7E{+02})}$
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	$1.8E+02 \ (1.3E+01)$	$5.2E+01 \ (1.6E+01)$
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)

(окончание)

	Итера- ции	JADE++	JADE	jDE	SaDE	$\frac{\mathrm{DE/rand}}{/1/\mathrm{bin}}$	PSO
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	4.2E-01 (1.1E+00)	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	$1.3E+01 \ (1.4E+01)$	2.1E+01 (7.8E+00)	$2.1\mathrm{E}{+00}\ (1.5E{+00})$	2.5E+01 (3.2E+01)
f6	100	$\frac{2.9\mathrm{E}+00}{(1.2E+00)}$	$5.6\mathrm{E}{+00}\ (1.6E{+00})$	$^{1.0\mathrm{E}+03}_{(2.2E+02)}$	9.3E+02 (1.8E+02)	$4.7E+03 \ (1.1E+03)$	4.5E+01 (2.4E+01)
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	$7.1E+00 \ (2.8E+01)$	7.9E-11 (1.3E-10)	4.7E+00 (3.3E+01)	$5.9E+03 \ (1.1E+03)$	$\frac{2.4E+03}{(6.7E+02)}$
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	$1.8E+02 \ (1.3E+01)$	$5.2E+01 \ (1.6E+01)$
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)

Б.5 Стандартные префиксы ссылок

Общепринятым является следующий формат ссылок: <prefix>:<label>. Например, \label{fig:knuth}; \ref{tab:test1}; label={lst:external1}. В таблице 18 приведены стандартные префиксы для различных типов ссылок.

Таблица 18 — Стандартные префиксы ссылок

Префикс	Описание		
ch:	Глава		
sec:	Секция		
subsec:	Подсекция		
fig:	Рисунок		
tab:	Таблица		
eq:	Уравнение		
lst:	Листинг программы		
itm:	Элемент списка		
alg:	Алгоритм		
app:	Секция приложения		

Для упорядочивания ссылок можно использовать разделительные символы. Haпример, \label{fig:scheemes/my_scheeme} или \label{lst:dts/linked_list}.

Б.6 Очередной подраздел приложения

Нужно больше подразделов приложения!

Б.7 И ещё один подраздел приложения

Нужно больше подразделов приложения!

Копировал

Формат А4