

Statistics and Stochastic processes

ROBERTO ALEJANDRO CÁRDENAS OVANDO

Outline

- Data
- Probability
- Statistics
- Inference
- Modeling
- Stochastic models
- Stochastic processes

Data

- ❖ Variables are random in some way
 - It represents an incompletely, measured variable
 - Sample drawn using random mechanisms
- ❖ Data into knowledge:
 - Probability
 - The study of random variables
 - Statistics
 - The discipline of using data samples to support claims about populations.
 - Based on probability
 - Computation
 - A tool well suited to quantitative analyses

Reproducible Research

- Replication
 - Validate findings
 - Some studies cannot be replicated (money/condition)
- ❖ Data -> Analytic data -> Reproducible research
- Existing database can be merged into new "mega databases"
- For every field there is a computational field of it

Types of Data Analysis Questions

- Descriptive: First kind of approach, describe a set of data
- Exploratory: Find relationships you didn't know about. No generalizing
- Inferential: Small sample of data to say something about a bigger population
- Predictive: Use data from one object to predict another. No causality
- Causal: To find what happens to one variable when you change another
- Mechanistic: Understand the variables that lead to exact changes for an individual observation

Sources of data

- Census
 - Interested in people
 - Descriptive
- Convenience
 - Depends in how data are sampled
 - Descriptive, Inference and Prediction
 - Highly biased
 - Anecdotal
 - Small number of observations
 - Inaccurate
 - "I heard that vaccines cause autism"

Sources of data

- Observational
 - Measure a group without replacement
 - Inference
- Randomized trial
 - Find a variable that changes other variables
 - Many subgroups without replacement
 - Each group has different conditions
 - Causal analysis
- Prediction study
 - Two data sets: training and test
 - Predictive

Sources of data - Study over time

- Longitudinal
 - It follows along time
 - Inferential and predictive
- Retrospective
 - First and last observation
 - Inferential
 - E.g. Outcome and exposure
- Cross-sectional
 - Taking samples from different types
 - Inferential
 - E.g. Wildtype vs condition

Probability

- ❖All the important results are called Events (E)
- ❖In a success or failure trial:
 - $\circ P(E)$ is the probability of success
 - $\circ P(\neg E)$ is the probability of failure
- Two approaches:
 - Frequentist Depends on observations amount
 - Bayesian Depends on degree of knowledge

Descriptive statistics

- *A small set of parameters can summarize a large amount of data
- Three summary statistics
 - Median
 - Mean
 - Variance

Median

- The value at the center of a sorted dataset
- ❖ Value such that the set of values less than itself has a probability of 0.5

Sample mean

Good description of a set of values

mean≠average

- Average: statistics to describe typical values
- Arithmetic mean is one type of average

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

❖ At least 1 DOF to compute

Sample variance

- It describes the spread of data
- ❖It is the squared deviation from the mean
 - Biased estimator

$$s_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

Unbiased estimator

$$s_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \mu)^2$$

❖At least 2 DOF to compute

Probability density function (pdf)

- Also known as probability distribution
- It describes how often a value appears [Frequency]

$$P(a < X \le b) = \int_{a}^{b} f(x)dx$$

- Histogram
 - Frequency of each value
- Probability mass function (pmf)
 - It describes a discrete random variable

$$P(X = a)$$

Probability density function (pdf)

Example: loaded die

Cumulative distribution function

The CDF is the function that maps values to their percentile rank in a distribution

$$P(X \le x)$$

The CDF is a function of X, where X is any value that might appear in the distribution

$$\lim_{X \to -\infty} cdf(X) = 0$$
$$\lim_{X \to \infty} cdf(X) = 1$$

- Cumulative mass function (cmf)
 - It describes a discrete random variable

Cumulative distribution function

Example: loaded die

Example - Normal distribution

Example - Multinomial distribution

Law of large numbers

- The law of large numbers describes the result of performing the same experiment a large number of times
- Strong law of large numbers states that the sample average converges almost surely to the expected value

$$Average(X_{1:n}) \to \mu$$
 when $n \to \infty$

Central Limit Theorem

- This explains the prevalence of normal distribution in the real world
- The characteristics we measure are the sum of a huge number of small effects
 - Therefore, the distribution tends to be normal

Example

❖ Bernoulli Trial -> Binomial distribution -> Normal distribution

Hypothesis testing

The fundamental question we want to address is whether the effects are real or due to randomness

- ❖Two steps:
 - Effect is significant, didn't happen by chance
 - Interpret the result as an answer to the original question

Example

- ❖ Testing a difference in Means
 - Null hypothesis the distribution for the two groups are the same.
 Difference are due to chance

$$\begin{cases} H_o & \mu_X = \mu_{null} \\ H_A & \mu_X \neq \mu_{null} \end{cases}$$

Example – Height in different cities

Statistical significance

- Null hypothesis: Assumption that the apparent effect was actually due to chance (H_0)
- ❖ Alternative Hypothesis: The experiment that we are measuring

Statistical significance

- P-value: Probability of the apparent effect under the null hypothesis
 - If the p-value is low enough, the null hypothesis unlikely true

- Interpretation: Based on the p-value, we conclude if the effect is real or not
 - i.e. The effect is false until there is a contradiction. If there is a contradiction, then the effect is true

Statistical significance

- ❖What is significant and what am I measuring?
- **❖** Example: p-value 0.05

- Hypothesis testing error
 - False positive accept hypothesis when it is false
 - False negatives reject hypothesis when it is true

		Real values	
	Total population	Condition positive	Condition negative
Prediction	Predicted positive	True positive (Power)	False positive Type I error
	Predicted negative	False negative Type II error	True negative

		Real values	
	Total population	Condition positive	Condition negative
Prediction	Predicted positive	True positive (Power)	False positive Type I error
	Predicted negative	False negative Type II error	True negative

- ❖ Statistical Power It is the probability that the test will be positive if the null hypothesis is false
- ❖ False Discovery Rate (FDR) Rate of false positives and number of true values predicted
- Precision Rate of true positives and number of true values predicted
- Sensitivity Rate of true positive and real true values

- **\Leftrightarrow** Choose an α threshold for p-values and to accept as significant when p-value $< \alpha$
- **♦** Common choice: $\alpha \leq 5\%$
- **The probability of a false positive is** α
- ❖ If lower alpha then it is lower the chance of false positive
 - However, it may reject a valid hypothesis
- Trade-off between false positives and false negatives

One-tailed Test Vs Two-tailed Test

♦ Hypothesis testing relational operator: <, >, ≠

Interpreting the result

- Classical
 - \circ If p-value $< \alpha$, then it is statistically significant
- Practical
 - The lower the p-value, the higher the confidence the effect is real

Statistic test/Contrast test

- They are used to verify or reject a hypothesis from data
- They must have:
 - Data
 - Null hypothesis
 - Alternative hypothesis
 - Contrast statistic p-value
- **❖**Type of contrasts:
 - Parametric
 - Non-parametric

T-test (Univariate)

- Parametric test
- It contrasts the mean of a population
- The population follows a Normal distribution
 - But the variance is unknown
- Hypothesis

$$\begin{cases} H_o: \mu_1 = \mu_0 \\ H_A: \mu_1 \neq \mu_0 \end{cases}$$

Mann-Whitney U Test

- ❖ Non-Parametric test
 - ∘ N < 25
- It contrasts the centrality of a population (median)
- Symmetric distribution
- Hypothesis

$$\begin{cases} H_o: Median(X) = Median_0 \\ H_A: Median(X) \neq Median_0 \end{cases}$$

T-test (2 Samples)

- Parametric test
 - N<25
- It contrasts the mean of two populations
 - Independent variables
- ❖ Both populations follow a Normal distribution
 - But the variance is unknown in both
- Hypothesis

$$\begin{cases} H_o: \mu_1 = \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{cases}$$

Wilcoxon Test

- ❖ Non-Parametric test
 - Small sample
 - Paired data
- It contrasts the centrality of a population (median)
- Symmetric distribution
- Hypothesis

$$\begin{cases} H_o: Median(X) = Median_0 \\ H_A: Median(X) \neq Median_0 \end{cases}$$

Z-test

- Parametric test
 - N >= 25
- It contrasts the mean of two populations
 - Independent variables
- **❖** Both populations follow a Normal distribution
- Hypothesis

$$\begin{cases} H_o: \mu_1 = \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{cases}$$

Correlation test

- Contrast to test for independence between two variables
- ❖ If data follows a normal distribution
- Hypothesis

$$\begin{cases} H_o: \rho = 0 \\ H_A: \rho \neq 0 \end{cases}$$

❖ If data does not follows a normal distribution a Kendall's Tau correlation coefficient is used

χ^2 -test/ Categoric data test

- Contrast to test for homogeneity and/or independence
- Two-way tables
- ❖ For each factor the events are summed and are compared to the expected value
- Hypothesis

$$\begin{cases} H_o: Homogeneous \\ H_A: Non-homogeneous \end{cases}$$

Example

In the dataset "Popular Kids," students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them.

	Origi	nal Tak Grade	ole	Expected Values Grade			
Goals	4	5	6	Total	Goals 4 5 6		
Grades Popular Sports	24	50 36 22	69 38 28	168 98 69	Grades 46.1 54.2 67.7 Popular 26.9 31.6 39.5 Sports 18.9 22.2 27.8		
Total	92	108	135	335			

❖DOF: 4 and $\chi^2 = 1.51$ ∴ p - value = 0.8244

Example

❖ Dataset from "Popular kids", now associated by type of school

School Area										
Goals		Rural	Suburban	Urban	Total					
Grades		57	87	24	168					
Popular		50	42	6	98					
Sports		42	22	5	69					
Total		149	151	35	335					

*****DOF: 4, $\chi^2 = 18.564 : p - value = 0.001$

- ❖Which test do I need?
 - Number of samples

- ❖Which test do I need?
 - Paired data

- ❖ Which test do I need?
 - Depth of the contrast one or two parameters to compare

- ❖Which test do I need?
 - Correlation bewtween two variables

- ❖Which test do I need?
 - Correlation bewtween two variables

- ❖Which test do I need?
 - Do I have count data or continuous data

Bootstraping

- As the population is unknown, the true error in a sample statistic against its population value is unknown.
- In bootstrap we resample the sample, assuming the sample is the total population
- ❖ A great advantage of bootstrap is its simplicity
- We use it to avoid bias

Bootstraping

Example

Modeling

- **❖** Model
 - A system's representation
 - It incorporates the knowledge of the system
- Constraints:
 - Are the system variables quantifiable?
- *Requirements:
 - Representation
 - Learning
 - Inference

Stochastic models

- Stochastic models are used to model the relationships between random variables
- To model relationships they use independence and probability distributions
- Stochastic modeling is needed when the studied system can be only measured partially

Stochastic processes

- A stochastic or random process refers to a collection of random variables that are associated or are indexed by another variable
 - i.e. A variable depend on a position or time
- Most of the sciences use stochastic processes
 - Physics
 - Biology
 - Engineering
- Stochastic Process Realization vs Random Variable
 - Example: Random walks or Brownian motion

Random walk

HW

- **❖**R code: (50%)
 - With the Dataset.csv, filtered by "Drug use disorders" and "Deaths per 100 000 population (standardized rates)" apply a statistical test to see if the deaths in 2014 are significantly different than in 2003.
 - Use all the data for this test
 - Use a bootstrapping strategy with 100 resamples of 75% of the data per resample
 - Justify your answer and also justify the use of the statistical test

HW

- **❖**R code: (50%)
 - Investigate the Mann-Whitney U Test and code it
 - Everything must be in a R-Markdown
 - Test versus t-test and also test versus wilcox.test with the parameter paired=F
 - Example data: From the faraway library the pima data.
 - https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#Calculations

Pima data