Árboles de decisión y ensambladores

Classification trees

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to use

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Aplicando el modelo a los datos de evaluación

Impurity Criterion

Gini Index

$$I_G = 1 - \sum_{j=1}^{c} p_j^2$$

p_j: proportion of the samples that belongs to class c for a particular node

Entropy

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

p_j: proportion of the samples that belongs to class c for a particular node.

*This is the the definition of entropy for all non-empty classes ($p \neq 0$). The entropy is 0 if all samples at a node belong to the same class.

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf		
Yes	No	
9	5	

Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

Bagging y boosting

Boosting

Sequential

Bagging

Random Forest

Boosting

Random Forest vs Gradient Boosting

Random Forest	Gradient Boosting
Easier to tune Harder to overfit Show very low variance Easier to parallelize	Better accuracy with less trees if the data is noisy exhibits higher variance

Ensembling summary

