Лабораторная работа №6

Цель лабораторной работы: изучение основных методов анализа и прогнозирование временных рядов.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

Импорт библиотек

```
import numpy as np
import pandas as pd
from matplotlib import pyplot
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from statsmodels.tsa.arima_model import ARIMA
from sklearn.model_selection import GridSearchCV
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

Загрузка данных

Монтирование Google Drive для получения доступа к данным, лежащим на нем:

```
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
```

Загрузка данных:

```
filename = '/content/drive/MyDrive/POP.csv'

data = pd.read_csv(filename, sep=',')

data = data.drop(['realtime_start','realtime_end'],axis=1)
"""Преобразование столбца даты в объект datetime и установка его в качестве индекса"""
data['date'] = pd.to_datetime(data['date'])
data.set_index('date',inplace=True)
data.head()
```

	value
date	
1952-01-01	156309.0
1952-02-01	156527.0
1952-03-01	156731.0
1952-04-01	156943.0
1952-05-01	157140.0

data.describe()

	value	1
count	816.000000	
mean	243847.767826	
std	50519.140567	
min	156309.000000	
25%	201725.250000	
50%	239557.500000	
75%	289364.250000	
max	330309.946000	

В качестве датасета будем использовать набор данных, содержащий данные для прогнозирования цен на акции компании Netflix.

https://www.kaggle.com/datasets/ranugadisansagamage/netflix-stocks

Датасет содержит следующие атрибуты:

- 1. Date The day Дата
- 2. Open The open Price of the Stock цена в день открытия акции

- 3. High The highest price of the stock самая высокая цена акции
- 4. Low The lowest price of the stock самая низкая цена акции
- 5. Close The closing price of the stock цена акции в день закрытия
- 6. Adj Close amends a stock's closing price to reflect that stock's value after accounting for any corporate actions изменяет цену закрытия акции, чтобы отразить стоимость этой акции после учета любых корпоративных действий
- 7. Value объем продаж

Визуализация временного ряда

```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Временной ряд в виде графика') data.plot(ax=ax, legend=False) pyplot.show()
```

Временной ряд в виде графика


```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Автокорреляционная диаграмма') pd.plotting.autocorrelation_plot(data, ax=ax) pyplot.show()
```

Автокорреляционная диаграмма

Частичная автокорреляционная функция

```
plot_pacf(data, lags=30)
plt.tight_layout()
```


Разделение временного ряда на обучающую и тестовую выборку

```
data2 = data.copy()

# Целочисленная метка шкалы времени
xnum = list(range(data2.shape[0]))
# Разделение выборки на обучающую и тестовую
Y = data2['value'].values
train_size = int(len(Y) * 0.7)
xnum_train, xnum_test = xnum[0:train_size], xnum[train_size:]
train, test = Y[0:train_size], Y[train_size:]
history_arima = [x for x in train]
history_es = [x for x in train]
```

Прогнозирование временного ряда авторегрессионным методом (ARIMA)

```
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.metrics import mean_squared_error
# Параметры модели (p,d,q)
arima_order = (2,1,0)
# Формирование предсказаний
predictions_arima = list()
for t in range(len(test)):
    model_arima = ARIMA(history_arima, order=arima_order)
    model_arima_fit = model_arima.fit()
    yhat_arima = model_arima_fit.forecast()[0]
    predictions_arima.append(yhat_arima)
    history_arima.append(test[t])
# Вычисление метрики RMSE
error_arima = mean_squared_error(test, predictions_arima, squared=False)
# Ошибка прогноза
np.mean(Y), error_arima
     (243847.7678259804, 7372.900036604332)
# Формирование предсказаний
predictions es = list()
for t in range(len(test)):
    model es = ExponentialSmoothing(history es)
    model es fit = model es.fit()
    yhat_es = model_es_fit.forecast()[0]
    predictions_es.append(yhat_es)
    history_es.append(test[t])
# Вычисление метрики RMSE
error_es = mean_squared_error(test, predictions_es, squared=False)
# Записываем предсказания в DataFrame
data2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima)
data2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_es)
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Предсказания временного ряда')
data2.plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда

fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Предсказания временного ряда (тестовая выборка)') data2[train_size:].plot(ax=ax, legend=True) pyplot.show()

Предсказания временного ряда (тестовая выборка)

Прогнозирование временного ряда методом символьной регресии

pip install gplearn

Looking in indexes: https://us-python.pkg.dev/colab-wheels/p

```
Collecting gplearn
```

```
Downloading gplearn-0.4.2-py3-none-any.whl (25 kB)
```

Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: joblib>=1.0.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: numpy>=1.14.6 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-Installing collected packages: gplearn Successfully installed gplearn-0.4.2

from gplearn.genetic import SymbolicRegressor

SR.fit(np.array(xnum_train).reshape(-1, 1), train.reshape(-1, 1))

	Popula	tion Average		Best Individual	ا	
Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Le
0	263.65	2.43463e+63	23	7.14077e+09	N/A	2.9
1	130.98	5.77055e+16	43	6.06688e+09	N/A	1.2
2	53.10	4.58992e+15	34	3.54847e+09	N/A	44.30
3	34.28	1.99853e+19	13	1.42699e+09	N/A	34.84
4	35.05	2.10424e+16	38	1.04052e+09	N/A	35.3
5	30.47	2.56729e+16	36	4.29436e+08	N/A	32.7
6	31.30	3.00498e+16	50	6.39791e+07	N/A	32.0
7	38.37	8.59782e+15	35	1.51165e+07	N/A	33.3
8	43.37	5.29474e+15	47	4.76034e+06	N/A	33.0
9	37.70	8.42452e+15	35	4.14545e+06	N/A	31.2
10	40.68	5.69103e+15	32	3.65059e+06	N/A	32.4
11	45.38	5.71108e+15	29	3.65015e+06	N/A	33.6
12	41.36	5.72894e+15	29	3.65015e+06	N/A	30.9
13	35.07	3.58233e+15	29	3.65015e+06	N/A	28.0
14	33.33	8.46569e+15	35	3.53261e+06	N/A	27.30
15	31.43	3.14997e+19	35	3.53261e+06	N/A	26.1
16	30.19	1.42657e+16	35	3.53261e+06	N/A	24.79
17	30.81	2.81228e+15	35	3.53261e+06	N/A	26.79
18	33.31	5.72757e+15	35	3.53261e+06	N/A	25.70
19	33.71	1.26632e+16	35	3.50395e+06	N/A	24.4
20	34.95	1.70198e+16	35	3.50395e+06	N/A	25.5
21	42.21	6.70957e+15	35	3.50395e+06	N/A	24.69
22	54.68	6.78469e+15	35	3.50395e+06	N/A	26.1
23	50.99	6.47928e+18	102	3.50387e+06	N/A	25.80
24	42.69	8.57551e+15	71	3.50376e+06	N/A	23.80
25	59.07	6.73374e+21	85	3.49756e+06	N/A	24.7
26	89.07	1.51918e+25	85	3.49756e+06	N/A	29.6
27	100.70	2.98833e+18	91	3.48956e+06	N/A	29.39
28	120.58	7.92131e+23	91	3.48956e+06	N/A	30.8
29	142.26	1.91023e+18	127	3.48498e+06	N/A	35.2
30	116.37	6.9315e+21	54	3.46676e+06	N/A	29.7

```
2.33782e+22
                                   54
    103.96
                                            3.46676e+06
                                                                     N/A
                                                                             32.00
31
32
    107.16
                 2.82439e+18
                                   54
                                            3.46676e+06
                                                                     N/A
                                                                             26.54
33
     110.56
                 4.95099e+26
                                  112
                                            3.45858e+06
                                                                             26.2
                                                                     N/A
34
     94.20
                 1.96986e+18
                                  114
                                            3.45249e+06
                                                                             24.4
                                                                     N/A
35
     77.71
                 6.0703e+15
                                  133
                                            3.43034e+06
                                                                     N/A
                                                                             20.8
                 5.62717e+15
                                   79
                                            3.42948e+06
                                                                             23.2
36
    111.25
                                                                     N/A
37
    142.44
                  1.4552e+18
                                  246
                                           3.41658e+06
                                                                     N/A
                                                                             26.8
38
    171.28
                 3.11029e+19
                                  187
                                            3.36822e+06
                                                                     N/A
                                                                             28.6
39
     197.58
                  2.8446e+16
                                  187
                                            3.36419e+06
                                                                     N/A
                                                                             30.50
40
    213.08
                 1.12226e+16
                                  212
                                            3.35931e+06
                                                                     N/A
                                                                             29.8
41
    193.33
                 7.07447e+17
                                  181
                                            3.35563e+06
                                                                     N/A
                                                                             27.04
42
     200.58
                 9.48793e+19
                                  308
                                            3.25166e+06
                                                                     N/A
                                                                             26.3
43
                                                                             25.4
    203.16
                  6.9535e+17
                                  308
                                           3.24914e+06
                                                                     N/A
    271.65
                 2.48275e+15
                                  434
                                           3.17665e+06
                                                                     N/A
                                                                             29.0
45
    340.95
                 1.45248e+18
                                  434
                                           3.17665e+06
                                                                     N/A
                                                                             31.6
46
    407.23
                  2.9286e+14
                                  874
                                            3.13466e+06
                                                                     N/A
                                                                             36.1
47
    475.59
                 8.20919e+13
                                  857
                                           3.13086e+06
                                                                     N/A
                                                                             38.70
                                            3.1245e+06
48
    698.39
                                 1124
                                                                             49.5
                 6.58531e+17
                                                                     N/A
49
    871.75
                 5.67064e+14
                                 1140
                                            3.1232e+06
                                                                     N/A
                                                                             56.9
50 1008.67
                 1.44739e+18
                                 1126
                                           3.11533e+06
                                                                     N/A
                                                                              1.0
51 1040.20
                                                                             59.6
                 8.00984e+13
                                 1337
                                            3.1087e+06
                                                                     N/A
52 1087.90
                 4.8939e+10
                                 1352
                                           3.10262e+06
                                                                     N/A
                                                                             59.0
53 1212.74
                 6.88053e+18
                                 1338
                                            3.09244e+06
                                                                     N/A
                                                                              1.0 -
```

Качество прогноза моделей

```
def print_metrics(y_test, y_pred):
    print(f"R^2: {r2_score(y_test, y_pred)}")
    print(f"MSE: {mean_squared_error(y_test, y_pred, squared=False)}")
    print(f"MAE: {mean absolute error(y test, y pred)}")
print("ARIMA")
print_metrics(test, predictions_arima)
print("\nGPLEARN")
print_metrics(test, y_sr)
     ARIMA
     R^2: 0.7495397912366841
     MSE: 7372.900036604332
     MAE: 751.3845663510563
     GPLEARN
     R^2: 0.8047153645391025
     MSE: 6510.330169456957
     MAE: 6443.710113418146
```

✓ 0 сек. выполнено в 14:05

×