

### Proyecto de Análisis Aplicado Gradiente Conjugado Precondicionado Dr. Zeferino Parada

## 1 Introducción

Sean  $A \in \mathbb{R}^{nx}$ ,  $b \in \mathbb{R}^n$  tales que A es simétrica y positiva definida. Se resolverá el sistema lineal

$$Ax = b. (1)$$

Supongamos que A es mal condicionada, es decir

$$cond(A) = ||A||||A^{-1}||,$$

es muy grande, donde ||...|| es una norma matricial consistente.

Sea  $C \in \mathbb{R}^{nxn}$  no singular, el sistema lineal (1) es equivalente a

$$C^{-T}Ax = C^{-T}b, (2)$$

para recobrar un sistema lineal con la matriz simétrica positiva definida se realiza el cambio de variable

$$x = C^{-1}\hat{x}.$$

El sistema lineal (2) se convierte en

$$(C^{-T}AC^{-1})\hat{x} = C^{-T}b. (3)$$

Resolver el sistema lineal (3) es equivalente a resolver el problema de minimización cuadrático

$$\operatorname{Min} \ \frac{1}{2}\hat{x}^T \hat{A}\hat{x} - \hat{b}^T \hat{x} (\equiv \hat{\phi}(\hat{x})). \tag{4}$$

con

$$\hat{A} = C^{-T}AC^{-1}, \ \hat{b} = C^{-T}b.$$

La matriz C se escoge de tal manera que  $cond(\hat{A})$  no sea tan grande. Este esquema se denomina **precondicionamiento de la matriz** A. Por lo tanto la matriz C depende de A.

## 2 Precondicionadores

- 1. Precondicionador de Jacobi. Sea  $C = \sqrt{diag(A)}$
- 2. Cholesky incompleto. Sean

$$A^* = A(1:m,1:m), \quad y \quad D^* = diag(\sqrt{A(m+1, m+1)}, \dots, \sqrt{A(n, n)})$$

para alguna valor 2 < m < n.

Definimos

$$C = \left[ \begin{array}{cc} L^* & 0 \\ 0 & D^* \end{array} \right].$$

donde  $L^*$  es el factor de Cholesky de  $A^*$ . Cholesky incompleto.

# 3 Gradiente Conjugado Precondicionado

No es necesario usar gradiente conjugado para el problema (4) se puede probar que el método resultante es el siguiente: Sea  $M = C^T C$ . La matriz M se le llama el precondicionador.

- 1. Sea  $x_0 \in \mathbb{R}^n$ ,  $r_0 = Ax_0 b$ .
- 2. Resolver el sistema  $My_0 = r_0$  para  $y_0$ .
- $3. \ p_0 \leftarrow -y_0, \ k \leftarrow 0.$
- 4. Mientras  $r_k \neq 0$  hacer

(a) 
$$\alpha_k \leftarrow \frac{r_k^T y_k}{p_k^T A p_k}.$$

 $(b) x_{k+1} \leftarrow x_k + \alpha_k p_k.$ 

(c)  $r_{k+1} \leftarrow r_k + \alpha_k A p_k.$ 

(d) Resolver el sistema lineal para  $y_{k+1}$ 

$$My_{k+1} \leftarrow r_{k+1}$$
.

(e) 
$$\beta_k \leftarrow \frac{r_{k+1}^T y_{k+1}}{r_k^T y_k}.$$

$$(f) p_{k+1} \leftarrow -y_{k+1} + \beta_k p_k.$$

(g) 
$$k \leftarrow k + 1$$
.

El caso  $C=I_n$  recobra el algoritmo de gradiente conjugado clásico.

**Problema** #1. Demuestre, algebráicamente, que las relaciones (a)-(g) son los pasos de gradiente conjugado aplicado al sistema lineal (3).

# 4 Proyecto

Crear una función en Matlab del algoritmo de gradiente conjugado precondicionado de la sección anterior.

```
function [x] = GCPre(A, C, b)
```

% Se resuelve el sistema lineal, A \* x = b por medio de gradiente conjugado.

% usando el precondicionador  $M = C^T C$ .

Use su función GCPre.m con los siguientes script files:

- 1. Script **preubapoisson.m** con q = 10, 20, 30, recuerde que en este caso  $n = q^2$ .
- 2. Script **pruebapascal.m** con matrices de Pascal de orden n = 10, 15, 20 usando dos precondicionadores, Jacobi y Cholesky incompleto( considere m = floor(n/3).
- 3. Script **pruebaminij.m** con matrices **minij** de orden n = 100, 150, 200.

En ambos casos use los precondicionadores, Jacobi y Cholesky incompleto (considere m = floor(n/3)). El lado derecho siempre es el vector b = ones(n, 1).

Las salidas deben dar los siguientes valores

Matriz 
$$n$$
 iter  $||x_{GCPre} - x_{GC}||_2$ 

El valor **iter** es el número de iteraciones en que el método se detiene. El vector  $x_{GCPre}$  es el vector solución por gradiente conjugado precondicionado. A su vez  $x_{GC}$  es la solución con gradiente conjugado.

#### Qué entregar.

1. En papel la solución completa del problema # 1.

- 2. Función GCPre.m y los script files pruebapoisson.m, pruebapascal.m y pruebaminij.m.
- 3. Los programas computacionales se empaquetan y se envían al correo electrónico: zeferino@itam.mx.
  Se acepta el primer correo con sus funciones empaquetadas, no habrá correciones ni a los programas ni al envío de los mismos.
- 4. Fecha y hora final de entrega: Miércoles 28 de octubre a las 16 horas.