PETE 310

Lecture # 15
Properties of Black Oils
Definitions
(pages 224-240)

PETROLEUM ENGINEERING 310

Please adhere strictly to the rules indicated in this test

- Disable your cell phone (no text messages either)
- Use <u>your own</u> calculator pencil, ruler, and eraser.
- You cannot use a laptop
- Write all your work on the test paper and in the space provided for the answer, do no write on the back.
- Grading will be based on approach and answers.

PETROLEUM ENGINEERING 310

Please adhere strictly to the rules indicated in this test

- Do not fold or un-staple this examination booklet.
- This examination is open book, notes, HW, and SPE papers you <u>cannot talk</u> to anybody but me or the TA's.
- Raise your hand if you have a question and we'll go to your desk.
- Do not even look into your neighbor's paper.
- Show all your work!!!! Answers with no evidence of calculations where they are required will not be graded.
- Time allotted for the test is 120 minutes.

Recall.... Black Oil Phase Diagram

A Reservoir Engineer Questions

- How much oil is in the reservoir?
- How can I get it out?
- How fast?

Oil Properties Used in Reservoir Engineering...

- Formation Volume Factor of oil B_o
- Total Formation Volume Factor of oil B_t
- Solution Gas oil Ratio R_s
- Coefficient of Isothermal Compressibility
 Co

Oil Properties Used in ...Production, EOR, Transportation...

- Thermal Expansion Coefficient (EOR Steam flooding) β_0
- Interfacial Tension (EOR)
- Oil Viscosity μ_o (EOR, transportation, production)
- NOTE: Density is related to B_o

Learning Goals

- Understand the behavior of those PVT properties (Bo,Rs,...) vs P and type of fluid (now)
- Evaluate PVT properties from (later)
 - Field data
 - Laboratory studies
 - Correlations

Definitions

Specific gravity of a liquid

$$\gamma_o = \frac{\rho_o(P_1, T_1)}{\rho_w(P_1, T_1)}$$

API gravity

$$^{\circ}API = \frac{141.5}{\gamma_{o}} - 131.5$$

Definitions

Definitions

$$Bo = \frac{\text{Volume of Oil} + \text{DissolvedGas at Reservoir P \& T}}{\text{Volume of Oil Entering Stock Tank at Tsc,Psc}}$$

Units [=]

Reservoir barrels (bbl) /Stock tank barrels (STB)

General Features of Bo

Solution Gas Oil Ratio (Rs)

- How much gas is dissolved in the oil volume per volume basis
- Rs depends upon pressure, temperature and oil type

Units [=]

SCF gas /STB oil

General Features of Rs

Total Formation Volume Factor Bt

Definition of Bt

Also called Two-phase formation volume factor

$$B_{t} = B_{o} + B_{g} \left(R_{sb} - R_{s} \right)$$

Units...

bbl/stb + bbl/scf * (scf/stb)

General Shape of Bt

Bo, Bt

Reservoir Pressure

Definition of Oil & Gas PVT Properties

The Coefficient of Isothermal Compressibility of Oil

Provides Instantaneous change of volume with P at constant T

$$C_{o}(P_{A},T_{A}) = -\frac{1}{V} \left[\frac{\partial V}{\partial P} \right]_{T_{A}}$$

alternatively using molar volume and specific volume

Coefficient of Thermal Expansion

(Use in Steam Injection Processes)

Oil Viscosity

- Viscosity is a measure of the resistance to flow exerted by a fluid
- This is called dynamic viscosity and has units of centipoise = g mass / 100 sec cm
- Kinematic viscosity is viscosity / density, units are in

centistokes = centipoise /g/cc

Needs of Crude Oil Viscosity

- Calculation of two-phase flow
- Gas-lift and pipeline design
- Calculate oil recovery either from natural depletion or from recovery techniques such as waterflooding and gas-injection processes

Variation of Oil Viscosity

Oil Viscosity