Assignment 2

- 1. Consider a 2 dimensional PLCP Φ_S which is defined on a PLP ϕ_L . The intensity of the generating process for the PLP is λ_R and that of the one dimensional PPP is λ_S .
 - (a) What is the intensity measure of the unit ball, $\mathcal{B}(0,1)$? [1 point]
 - (b) Derive the void probabily of the unit ball. [1 point]
 - (c) Consider now the ball $\mathcal{B}(0,R)$. What is the expected value of the sum of distances of all points $\{x: x \in \phi_S \cap \mathcal{B}(0,R)\}$? [3 points]
- 2. Let us consider a two tier network consisting of MBSs and SBSs. The location of the MBSs are modeled as a homogeneous PPP ϕ_M with intensity λ_M . The locations of the SBSs are modeled according to a PLCP with parameters λ_S and λ_R . The typical user is at the origin. The transmit powers of the two tiers are P_M and P_S respectively. The path-loss coefficient is K and the path-loss exponents are α_M and α_S , respectively.
 - (a) Derive the association probabilities for the two tiers. [2 points]
 - (b) Plot the association probabilities with varying λ_S for $P_M = 40$ dBm, $P_S = 10$ dBm, $\lambda_R = 0.1 \text{ m}^{-1}$, $\alpha_M = \alpha_S = 2$, $\lambda_M = 1e 5 \text{ m}^{-2}$. The propagation parameters are same as Assignment 1. [3 points]
- 3. Let us consider a SBS tier, with the BS locations modeled as a PLCP. The SBSs are capable of transmitting in both sub-6GHz and mm-wave bands. Let us consider that the users are also located along the roads. A BS is considered to be in LOS with respect to a user if and only if it is located in the same street as that of the user. That is, for a user, all the BS in the same street as that user are in LOS. All other BSs are in NLOS. The transmit power is P_S . The propagation parameters are as before. The path-loss exponents are α_L and α_N for LOS and NLOS, respectively for mm-wave, and α_μ for sub-6GHz. The antenna gain in mm-wave is G.
 - (a) Evaluate the association probabilities with the LOS and the NLOS tier when the association takes place in the sub-6GHz band. Assume max-power association. [2.5 points]
 - (b) Once the association occurs, the user has to select the band. Suppose that the user selects and LOS BS, what is the probability that it selects the mm-wave band? Assume max-power selection as was discussed in class previously. [2.5 points]