2020 SUMMER ESC

7조 곽현지 김채형 박상재 오태환 이승준

CONTENTS

 01
 02
 03
 04

 Review
 EDA
 Prediction
 Conclusion

01 Review

"팀 기록을 이용해서 예측"

VS

"선수 개개인 성적의 합으로 예측"

"팀 기록을 이용해서 예측"

VS

"선수 개개인 성적의 합으로 예측"

데이터 분석 흐름도

EDA

새로운 변수 생성

투수

PA, BK, R, AVG, OBP, SLG, OPS, KBB, H2_rate, H3_rate, HR_rate, BABIP

타자

PA, AVG, OBP, SLG, OPS, XR, SB_rate, H2_rate, H3_rate, BB_rate, HR_rate, BABIP

"ERR"

"WLS_S"

"VS_T_ID_NC" "VS_T_ID_OB"

"WLS_ND"

새로운 변수 생성

```
# 출루율
 df['OBP'] = (df['HIT'] + df['BB'] + df['HP']) / (df['AB'] + df['BB'] + df['HP'] + df['SF'])
 df[['HIT', 'BB', 'HP', 'AB', 'SF', 'OBP']]
# 日월
df['AVG'] = df['HIT'] / df['AB']
df[['AB', 'HIT', 'AVG']]
 pitcher_all <- read.csv('C:/Users/seungjun/Desktop/baseball/Baseball_ChilliShrimp/data/pitcher_all.csv',header=T)
 names(pitcher_all)
               "year"
                         "month"
                                    "T_ID"
                                               "P_ID"
                                                          "START_CK"
                                                                     "RELIEF_CK" "CG_CK"
                                                                                          "HOLD"
                                               "HIT"
[10] "INN2"
                                    "AB"
                         "PA"
                                                                     "н3"
   "cs"
                         "SF"
                                    "BB"
                                                          "HP"
                                                                     "KK"
```

"VS_T_ID_HH" "VS_T_ID_HT"

"TB_SC_B"

"SLG"

"TB_SC_T"

"OPS"

"VS_T_ID_KT" "VS_T_ID_LG" "VS_T_ID_LT"

"WLS_L"

"BABIP"

"WLS_D"

"квв"

"ER"

"AVG"

"VS_T_ID_SS" "VS_T_ID_WO"

"VS_T_ID_SK"

"WLS_W"

```
# & \( \begin{aligned}
# & \begin{aligned}
# & \( \begin{aligned}
# & \begin{aligned}
# & \( \begin{aligned}
# & \
```

df[['AB', 'HIT', 'AVG']]

	AB	ніт	AVG
0	12	2	0.166667
1	9	3	0.333333
2	0	0	NaN
3	0	0	NaN
4	31	6	0.193548

	PA	AVG
2	0	NaN
3	1	NaN
14	0	NaN
17	0	NaN
18	0	NaN
6882	0	NaN
6885	0	NaN
6907	0	NaN
6920	0	NaN
6928	0	NaN

709 rows × 2 columns

df2[['PA']].max()

PA 3 dtype: int64

타자의 변수 선택

파생변수를 만드는데 사용 된 변수 제거

각 변수에 대한 상관관계 고려해서 변수 선택

최종 변수로는 타석수, 볼넷율, 2루타율, 3 루타율, 홈런율, AVG, OBP, SLG, OPS, XR, 도루율, BABIP, 그 외 더미변수

투수의 변수 선택

파생변수를 만드는데 사용 된 변수 제거

각 변수에 대한 상관관계 고려해서 변수 선택

최종 변수로는 BF, PA, BK, R, AVG, OBP, SLG, OPS, BABIP, 2루타율, 3루타율, 홈런율, 그 외 더 미변수들

03 Prediction

이름	2008 타율	2008 BAbip	통산 BAbip	2009 타율
최정	0,328	0.358	0.299	0.265
조성환	0.327	0.369	0,307	0.294
박재홍	0.318	0.341	0.307	0.27
이용규	0.312	0.342	0.317	0.266
안치용	0.295	0.348	0.171	0.237
브름바	0.293	0.341	0,328	0.245
박기혁	0.291	0.33	0,283	0.217

(타율 20위 이내 선수 중)

$$TOTAL\ BABIP = \frac{Inplay\ hit(\sim 20.07.19) + x}{Inplay\ (\sim 20.07.19) + Predicted\ inplay)}$$

시계열 분석을 통해 2020년 7월 17일 이후 선수 별 잔여 타석을 구하자!

예측한 타석에 해당 선수의 평균 인플레이 타구 비율을 곱해 2020년 7월 19일 이후 predicted inplay를 구하자!

위의 방정식을 풀어 미지수를 구하자!

PROPHET 을 이용한 잔여 타석 예측

PROPHET

$$y(t) = g(t) + s(t) + h(t) + \epsilon_i$$

g(t): 'Trend' 주기적이지 않는 변화

s(t): 'Seasonality' 주기적으로 나타나는 패턴

h(t): 'Holiday' 휴일과 같이 불규칙한 이벤트

e: 정규분포를 따르는 잔차

통산 BABIP를 이용해 구한 인플레이 안타수(피안타수)

Out[26]: P_ID year month 50054 2020 7 7 2 8 27 6 9 32 7
50054 2020 7 7 2 8 27 6
8 27 6
9 32 7
• 02
10 29 7
50066 2020 7 0 0
8 0 0
9 0 0
10 0 0
50150 2020 7 8 3
8 13 4
CLTL

Out[33]:					PA	inplay_H	
	P_ID	T_ID	year	month			
	50030	KT	2020	7	40	9	
				8	64	1 5	
				9	60	14	
				10	53	12	
	50036	KT	2020	7	4	0	
				8	16	3	
				9	18	3	
				10	10 16	3	
	50040	KT	2020	7	82	18	
				8	160	36	

타자

투수

타자 예측 테이블

<u> </u>	PA	BB_rate	HR_rate	AVG	OBP	SLG	OPS	SB_rate	BABIP	H2_rate		
0	7	0.113208	0.000000	0.322188	0.398922	0.402736	0.801657	0.037736	0.315789	0.250000		
1	27	0.113208	0.000000	0.250591	0.335430	0.313239	0.648669	0.037736	0.315789	0.250000		
2	32	0.113208	0.000000	0.246676	0.331958	0.308344	0.640302	0.037736	0.315789	0.250000		
3	29	0.113208	0.000000	0.272194	0.354587	0.340242	0.694829	0.037736	0.315789	0.250000		
4	0	0.074074	0.166667	0.000000	0.000000	0.000000	0.000000	0.000000	0.277778	0.333333		
5	0	0.074074	0.166667	0.000000	0.000000	0.000000	0.000000	0.000000	0.277778	0.333333		
6	0	0.074074	0.166667	0.000000	0.000000	0.000000	0.000000	0.000000	0.277778	0.333333		
7	0	0.074074	0.166667	0.000000	0.000000	0.000000	0.000000	0.000000	0.277778	0.333333		
8	8	0.000000	0.000000	0.375000	0.375000	0.482143	0.857143	0.142857	0.411765	0.285714		
9	13	0.000000	0.000000	0.307692	0.307692	0.395604	0.703297	0.142857	0.411765	0.285714		
10	10 rows × 28 columns											

투수 예측 테이블

	BF	PA	BK	AVG	OBP	SLG	OPS	BABIP	H2_rate	H3_rate	
0	148.992248	40	0.0	0.266774	0.323613	0.387652	0.711265	0.316832	0.214286	0.000000	
1	238.387597	64	0.0	0.277889	0.333867	0.403805	0.737672	0.316832	0.214286	0.000000	
2	223.488372	60	0.0	0.276654	0.332728	0.402010	0.734738	0.316832	0.214286	0.000000	
3	197.414729	53	0.0	0.268452	0.325161	0.390090	0.715251	0.316832	0.214286	0.000000	
4	13.212121	4	0.0	0.000000	0.242424	0.000000	0.242424	0.400000	0.111111	0.111111	
5	52.848485	16	0.0	0.278438	0.453362	0.414342	0.867703	0.400000	0.111111	0.111111	
6	59.454545	18	0.0	0.247500	0.429924	0.368304	0.798228	0.400000	0.111111	0.111111	
7	52.848485	16	0.0	0.278438	0.453362	0.414342	0.867703	0.400000	0.111111	0.111111	
8	320.279898	82	0.0	0.259224	0.312002	0.373553	0.685556	0.329787	0.176471	0.009804	
9	624.936387	160	0.0	0.265705	0.318021	0.382892	0.700913	0.329787	0.176471	0.009804	
10	10 rows × 28 columns										

LGBM 모델링

```
    1-1) LGBM Modeling

  [14] 1 from sklearn.model_selection import train_test_split
        3 X = batter.drop(["Unnamed: 0","XR"], axis = 1)
        4 Y = batter['XR']
  [15] 1 X['T_ID'] = X['T_ID'].astype('category')
        2 X['P_ID'] = X['P_ID'].astype('category')
         3 X['BAT_ORDER'] = X['BAT_ORDER'].astype('category')
  [16] | 1 x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 99)
  [17] 1 lgbm = LGBMRegressor(n_estimators=200, random_state=99)
  [18] 1 from sklearn.model_selection import GridSearchCV
         2 from sklearn.metrics import mean_squared_error
  [19] 1 params = {'max_depth': [10, 15, 20, 25, 30],
                     'min_child_samples': [20, 40, 60, 80, 100],
                     'subsample': [0.8, 1]}
         5 grid = GridSearchCV(lgbm, param_grid=params)
         6 grid.fit(x_train, y_train, early_stopping_rounds=100, eval_metric='MSE',
                   eval_set=[(x_train, y_train), (x_test, y_test)])
```

Feature Importance

승률 예측

```
[93] 1 r_by_t = pitcher[['T_ID', 'R']]
      2 r_by_t = r_by_t.groupby(['T_ID']).sum()
      3 r_by_t.sort_values(by = 'R', ascending=False)
      4 r_by_t = r_by_t * medxr / ((3367 + 3261)/2)
[96] 1 \text{ rn} = r_by_t ** 1.83
[97] 1 \times rn = xr_by_t ** 1.83
[105] 1 \text{ rn}['WIN'] = \text{rn}['R']
      2 \times rn['WIN'] = \times rn['XB']
      4 rn = rn[['WIN']]
      5 xrn = xrn[['WIN']]
₽
                  WIN
      T_ID
       HH 0.549349
       HT 0.464127
       KT 0.347003
       LG 0.534306
       LT 0.436549
       NC 0.573297
       OB 0.481133
       SK 0.569646
       SS 0.283805
       WO 0.550113
```

피타고리안 승률(PE)을 통한 승률 계산

$$P=rac{W^n}{W^n+L^n}$$

W는 득점, L은 실점

n에는 보통 2를 넣어주나 정확도를 높이기 위해 1.83을 대입하기도 한다.

득점과 실점을 기준으로 만들어진 지표이므로 득실점이 많이 나고 경기 수가 많을수록 신뢰도가 좋다.

04 Conclusion

향후 계획 - 추가

- 팀 간 선수 트레이드 반영 추가
- 상대 팀에 따른 성적 변동 반영 추가
- 다양한 모델링을 통한 최적의 모델 선택
- 시계열 예측에 RNN을 적용 할 수 있는 방안 모색

향후 계획 - 보완

- 투수의 경우 MSE가 높아서 변수 수정 필요
- ROI 크게 나오는 부분을 보완할 필요가 있다
 - XR과 팀 득점 간의 차이가 커서 타자 예측 변수 수정필요
- 투수의 R 과대평가 된 것 조정 필요

Thank you