# The boolean Pythagorean Triples problem

Tobias John, Aldo Kurmeta, Patrick Wienhöft International Center for Computational Logic Technische Universität Dresden Germany

- Introduction
- History of the problem
- The framework
- Encoding
- Transformation
- Heuristic solving



### Introduction

 The boolean Pythagorean Triples problem has been a longstanding open problem in Ramsey Theory

#### Introduction

- The boolean Pythagorean Triples problem has been a longstanding open problem in Ramsey Theory
- ► Can the set  $\mathbb{N} = \{1, 2, 3, \dots\}$  be divided in two parts such that no part contains a triple (a, b, c) with  $a^2 + b^2 = c^2$

# **Example**

▶ Set of Integers: {1, . . . , 15}

# **Example**

- ▶ Set of Integers: {1,...,15}
- ► Triples:

$$3^2 + 4^2 = 5^2$$

$$6^2 + 8^2 = 10^2$$

$$9^2 + 12^2 = 15^2$$

$$5^2 + 12^2 = 13^2$$

# **Example**

- ▶ Set of Integers: {1, . . . , 15}
- ► Triples:

$$3^2 + 4^2 = 5^2$$

$$6^2 + 8^2 = 10^2$$

$$9^2 + 12^2 = 15^2$$

$$5^2 + 12^2 = 13^2$$

▶ Partition: {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14}, {5, 10, 13, 15}



► The set {1,...,7824} can be partitioned into two parts, while this is impossible for {1,...,7825}



- ► The set {1,...,7824} can be partitioned into two parts, while this is impossible for {1,...,7825}
- We prove this theorem by considering two SAT problems:

- ► The set {1,...,7824} can be partitioned into two parts, while this is impossible for {1,...,7825}
- ▶ We prove this theorem by considering two SAT problems:
  - 1. showing that  $\{1, \ldots, 7824\}$  can be partitioned in two different parts.

- ► The set {1,...,7824} can be partitioned into two parts, while this is impossible for {1,...,7825}
- ▶ We prove this theorem by considering two SAT problems:
  - 1. showing that  $\{1, \dots, 7824\}$  can be partitioned in two different parts.
  - 2. showing that any partition of  $\{1, \ldots, 7825\}$  contains a Pythagorean triple.

### **Framework**





# **Encoding - Intuition**

### Idea:

one variable for each number

# **Encoding - Intuition**

#### Idea:

- one variable for each number
- interpretation gives partition

# **Encoding - Intuition**

#### Idea:

- one variable for each number
- interpretation gives partition
- one constraint clause for each Pythagorean triple

Binary Pythagorean triple problem with n numbers

Binary Pythagorean triple problem with *n* numbers

8

Set of variables  $V = \{p_k \mid 1 \le k \le n\}$ 

Binary Pythagorean triple problem with *n* numbers

Set of variables  $V = \{p_k \mid 1 \le k \le n\}$ 

Constraint for non-equality: *NotEqual* $(x, y, z) = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$ 

Binary Pythagorean triple problem with *n* numbers

Set of variables  $V = \{p_k \mid 1 \le k \le n\}$ 

Constraint for non-equality: *NotEqual*(x, y, z) = ( $x \lor y \lor z$ )  $\land$  ( $\neg x \lor \neg y \lor \neg z$ )

Constraint for all Pythagorean triples:  $F = \bigwedge_{x^2+y^2=z^2} NotEqual(p_x, p_y, p_z)$ 

Binary Pythagorean triple problem with *n* numbers

Set of variables  $V = \{p_k \mid 1 \le k \le n\}$ 

Constraint for non-equality: *NotEqual* $(x, y, z) = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$ 

Constraint for all Pythagorean triples:  $F = \bigwedge_{x^2+y^2=z^2} NotEqual(p_x, p_y, p_z)$ 

For an interpretation  $I \subseteq V$  with  $I \models F$ , the resulting partition is:

- $P_1 = \{x \mid p_x \in I\}$
- $P_2 = \{x \mid p_x \notin I\}$

As in beginning example, n = 15

As in beginning example, n = 15

$$V = \{p_1, p_2, \dots, p_{15}\}$$

As in beginning example, n = 15

$$V = \{p_1, p_2, \dots, p_{15}\}$$

$$F = (p_3 \lor p_4 \lor p_5) \land (\neg p_3 \lor \neg p_4 \lor \neg p_5)$$

$$\land (p_6 \lor p_8 \lor p_{10}) \land (\neg p_6 \lor \neg p_8 \lor \neg p_{10})$$

$$\land (p_9 \lor p_{12} \lor p_{15}) \land (\neg p_9 \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_5 \lor p_{12} \lor p_{13}) \land (\neg p_5 \lor \neg p_{12} \lor \neg p_{13})$$

As in beginning example, n = 15

$$V = \{p_1, p_2, \ldots, p_{15}\}$$

$$F = (p_{3} \lor p_{4} \lor p_{5}) \land (\neg p_{3} \lor \neg p_{4} \lor \neg p_{5})$$

$$\land (p_{6} \lor p_{8} \lor p_{10}) \land (\neg p_{6} \lor \neg p_{8} \lor \neg p_{10})$$

$$\land (p_{9} \lor p_{12} \lor p_{15}) \land (\neg p_{9} \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_{5} \lor p_{12} \lor p_{13}) \land (\neg p_{5} \lor \neg p_{12} \lor \neg p_{13})$$

Possible interpretation:  $I = \{p_5, p_{10}, p_{13}, p_{15}\}$ 

As in beginning example, n = 15

$$V = \{p_1, p_2, \ldots, p_{15}\}$$

$$F = (p_{3} \lor p_{4} \lor p_{5}) \land (\neg p_{3} \lor \neg p_{4} \lor \neg p_{5})$$

$$\land (p_{6} \lor p_{8} \lor p_{10}) \land (\neg p_{6} \lor \neg p_{8} \lor \neg p_{10})$$

$$\land (p_{9} \lor p_{12} \lor p_{15}) \land (\neg p_{9} \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_{5} \lor p_{12} \lor p_{13}) \land (\neg p_{5} \lor \neg p_{12} \lor \neg p_{13})$$

Possible interpretation:  $I = \{p_5, p_{10}, p_{13}, p_{15}\}$ 

Resulting partition:

$$P_1 = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14\}$$

$$P_2 = \{5, 10, 13, 15\}$$



Goal: from F, find formula F' which

▶ is easier to solve

Goal: from F, find formula F' which

- ▶ is easier to solve
- preserves satisfiability

Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

## Approaches:

eliminate some particular clauses

#### Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

#### Approaches:

- eliminate some particular clauses
- break partition symmetry

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual( $p_6, p_9, p_{12}$ )
  - $\land$  NotEqual( $p_9, p_{12}, p_{15}$ )
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual $(p_6, p_9, p_{12})$
  - $\land$  NotEqual( $p_9, p_{12}, p_{15}$ )
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

Note  $p_3$  only occurs in **NotEqual** $(p_3, p_4, p_5)$  and thus does not affect any other clauses

• if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual( $p_6, p_9, p_{12}$ )
  - $\land$  NotEqual( $p_9, p_{12}, p_{15}$ )
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual $(p_6, p_9, p_{12})$
  - $\land$  NotEqual $(p_9, p_{12}, p_{15})$
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \top \textbf{ then } p_3^I = \bot$
- $if p_4^I = p_5^I = \bot \text{ then } p_3^I = \top$

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual( $p_6, p_9, p_{12}$ )
  - $\land$  NotEqual $(p_9, p_{12}, p_{15})$
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \top \textbf{ then } p_3^I = \bot$
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \bot \textbf{ then } p_3^I = \top$
- $\rightarrow$  clause **NotEqual**( $p_3, p_4, p_5$ ) will not cause conflict

#### Clause elimination

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual( $p_6, p_9, p_{12}$ )
  - $\land$  NotEqual $(p_9, p_{12}, p_{15})$
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

Note  $p_3$  only occurs in **NotEqual** $(p_3, p_4, p_5)$  and thus does not affect any other clauses

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \top \textbf{ then } p_3^I = \bot$
- $\blacktriangleright \text{ if } p_4^I = p_5^I = \bot \text{ then } p_3^I = \top$
- $\rightarrow$  clause **NotEqual**( $p_3, p_4, p_5$ ) will not cause conflict
  - remove NotEqual $(p_3, p_4, p_5)$  from F to obtain F'

#### Clause elimination

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual( $p_6, p_9, p_{12}$ )
  - $\land$  NotEqual $(p_9, p_{12}, p_{15})$
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

Note  $p_3$  only occurs in **NotEqual** $(p_3, p_4, p_5)$  and thus does not affect any other clauses

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \top \textbf{ then } p_3^I = \bot$
- $\blacktriangleright \text{ if } p_4^I = p_5^I = \bot \text{ then } p_3^I = \top$
- $\rightarrow$  clause **NotEqual**( $p_3, p_4, p_5$ ) will not cause conflict
  - ▶ remove NotEqual(p<sub>3</sub>, p<sub>4</sub>, p<sub>5</sub>) from F to obtain F'
  - interpretation of p<sub>3</sub> is important but not represented in F'

#### Clause elimination

- $F = NotEqual(p_3, p_4, p_5)$ 
  - $\land$  NotEqual $(p_6, p_9, p_{12})$
  - $\land$  NotEqual( $p_9, p_{12}, p_{15}$ )
  - $\land$  NotEqual $(p_5, p_{12}, p_{13})$

Note  $p_3$  only occurs in **NotEqual** $(p_3, p_4, p_5)$  and thus does not affect any other clauses

- if  $p_4^l \neq p_5^l$  then  $NotEqual(p_3, p_4, p_5)$  is satisfied
- $\qquad \qquad \textbf{if } p_4^I = p_5^I = \top \textbf{ then } p_3^I = \bot$
- $\blacktriangleright \text{ if } p_4^I = p_5^I = \bot \text{ then } p_3^I = \top$
- $\rightarrow$  clause **NotEqual**( $p_3, p_4, p_5$ ) will not cause conflict
  - remove NotEqual(p<sub>3</sub>, p<sub>4</sub>, p<sub>5</sub>) from F to obtain F'
  - interpretation of p<sub>3</sub> is important but not represented in F'
  - ightharpoonup remember deleted clauses and modify interpretation of F' accordingly

$$F' = NotEqual(p_6, p_9, p_{12})$$

$$\land NotEqual(p_9, p_{12}, p_{15})$$

$$\land NotEqual(p_5, p_{12}, p_{13})$$

```
F' = NotEqual(p_6, p_9, p_{12})
\land NotEqual(p_9, p_{12}, p_{15})
\land NotEqual(p_5, p_{12}, p_{13})
```

Possible Interpretation  $I = \{p_6, p_{12}\}$ 

```
F' = NotEqual(p_6, p_9, p_{12})
\land NotEqual(p_9, p_{12}, p_{15})
\land NotEqual(p_5, p_{12}, p_{13})

Possible Interpretation I = \{p_6, p_{12}\}
I \models F' but I \not\models F
\rightarrow account for deleted constraint NotEqual(p_3, p_4, p_5)
```

$$F' = NotEqual(p_6, p_9, p_{12})$$
 $\land NotEqual(p_9, p_{12}, p_{15})$ 
 $\land NotEqual(p_5, p_{12}, p_{13})$ 

Possible Interpretation  $I = \{p_6, p_{12}\}$ 
 $I \models F'$  but  $I \not\models F$ 
 $\rightarrow$  account for deleted constraint  $NotEqual(p_3, p_4, p_5)$ 
As  $p_4^I = p_5^I = \bot$  we modify  $p_3^I = \top$ 

$$F' = NotEqual(p_6, p_9, p_{12})$$
 $\land NotEqual(p_9, p_{12}, p_{15})$ 
 $\land NotEqual(p_5, p_{12}, p_{13})$ 

Possible Interpretation  $I = \{p_6, p_{12}\}$ 
 $I \models F'$  but  $I \not\models F$ 
 $\rightarrow$  account for deleted constraint  $NotEqual(p_3, p_4, p_5)$ 

As  $p_4^I = p_5^I = \bot$  we modify  $p_3^I = \top$ 
 $I' = \{p_3, p_6, p_{12}\}$ 
 $I' \models F$ 

▶ formulas F and F' are symmetric

- ▶ formulas F and F' are symmetric
- ▶ if  $I \models F'$  then  $V \setminus I \models F'$

- formulas F and F' are symmetric
- ▶ if  $I \models F'$  then  $V \setminus I \models F'$
- ightharpoonup introduce unit clause for variable  $p_x$  occurring in F'
- $F'' = F' \wedge p_X$

- formulas F and F' are symmetric
- ▶ if  $I \models F'$  then  $V \setminus I \models F'$
- ightharpoonup introduce unit clause for variable  $p_x$  occurring in F'
- $F'' = F' \wedge p_X$

Note that every model for  ${m F''}$  is a model for  ${m F'}$  and the transformation is satisfiability preserving

# **Splitting**



▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow

- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ▶ Solution:
  - ▶ use different heuristics ⇒ cube-and-conquer solver

- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- Solution:
  - ▶ use different heuristics ⇒ cube-and-conquer solver



- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- Solution:
  - ▶ use different heuristics ⇒ cube-and-conquer solver



- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- Solution:
  - ▶ use different heuristics ⇒ cube-and-conquer solver



- Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ► Solution:
  - ▶ use different heuristics ⇒ cube-and-conquer solver
  - ▶ use parallelization (800 cores)



# **Solving**





#### Runtime

Splitting: 22000 CPU hours
 Solving: 13000 CPU hours
 Validation: 16000 CPU hours
 sums up to ≈ 5.8 CPU years



#### **Runtime**

Splitting: 22000 CPU hours
 Solving: 13000 CPU hours
 Validation: 16000 CPU hours
 sums up to ≈ 5.8 CPU years



### **Solution**

