Búsqueda y selección de métodos QPP

Evaluación comparativa de métodos de Query Performance Prediction (QPP) para búsquedas Ad-hoc utilizando métricas de correlación

• Keywords:

Primary	Non-AI Methods	AI Methods
Query Performance Prediction	Statistical QPP	AI-based QPP
QPP methods	Heuristic QPP	Machine learning
Methods for Query Performance Prediction	Non-machine learning QPP	Deep learning
	Traditional QPP	Neural network
	Non-AI retrieval models	Learning-to-rank QPP
	Classical IR models	Supervised learning QPP
		AI-driven retrieval models

Search Strings:

 "Query Performance Prediction" OR "QPP methods" OR "methods for Query Performance Prediction") AND ("Statistical QPP" OR "Heuristic QPP" OR "Non-machine learning QPP" OR "Traditional QPP" OR "Non-Al retrieval models" OR "Classical IR models" OR "Al-based QPP" OR "Machine learning" OR "Deep learning" OR "Neural network" OR "Learning-to-rank QPP" OR "Supervised learning QPP" OR "Al-driven retrieval models"

• Studies Inclusion and Exclusion Criteria Definition:

Inclusion:

- Artículos publicados en revistas científicas o conferencias y otros medios académicos o de investigación.
- Artículos relacionados a métodos QPP.

Exclusion:

- Artículos o estudios que no describan o evalúen métodos QPP en detalle.
- Artículos o estudios que escapen completamente al área de métodos QPP.

Búsqueda y selección de métodos QPP

Métodos encontrados y sus características

• Sin inteligencia artificial (10)

Método	Clasificación	Fuente principal	Año	¿Es relevante?
Normalized Query Commitment (NQC), predictor en sí mismo [1]	Post-retrieval, se basa en la desviación estándar de las puntuaciones de relevancia de los documentos recuperados.	Predicting query performance by query-drift estimation, 165 citaciones	2012	Sí. Es utilizado y ha servido como base para métodos más complejos.
Clarity, predictor en sí mismo [2]	Post-retrieval, mide la divergencia entre el modelo de lenguaje de los documentos mejor clasificados y el del corpus	Predicting query performance, 901 citaciones	2002	Sí, es un predictor influyente, pero depende del tipo de consulta.
Utility Estimation Framework (UEF), incorpora distintos predictores, por ej NQC [3]	Post-retrieval, utiliza listas de referencia pseudo-efectivas inducidas por modelos de lenguaje basados en probabilidades de términos	Using statistical decision theory and relevance models for	2010	Sí, aunque utiliza predictores, ha servido como base para el estudio sobre la estimación de rendimiento de consultas.
Query Feedback (QF), técnica que utiliza en conjunto con predictores [4]	Post-retrieval, se refiere a la superposición de documentos devueltos con aquellos obtenidos tras aplicar retroalimentación de pseudo-relevancia	Query performance prediction in web search environments 314 citaciones	2007	Sí, es una técnica utilizada en diversos estudios para mejorar la precisión de predictores combinados.
Weighted Information Gain (WIG), predictor en sí mismo [4]	Post-retrieval, utiliza la ganancia de información ponderada entre la consulta y los documentos recuperados	Query performance prediction in web search environments 314 citaciones	2007	Sí, es ampliamente referenciado en la investigación de métodos QPP.
First Rank Change (FRC), predictor en sí mismo [4]	Post-retrieval, se basa en la técnica de robustez del ranking enfocándose en el primer documento clasificado entre iteraciones	Query performance prediction in web search environments 314 citaciones	2007	Sí, aunque es menos utilizado, es aplicado en consultas con un solo documento relevante.

Inverse Document	Pre-retrieval, mide la	[PDF] Effective Pre-	2008	Sí. El IDF se menciona
Frequency, predictor	rareza de los términos en	retrieval Query		como una de las
en sí mismo (IDF) [5]	el corpus	Performance		estadísticas de
	-	Prediction Using		colección más
		Similarity and		utilizadas en los
		Variability Evidence		modelos de
		Semantic Scholar		recuperación.
		180 citaciones		
Robust Standard	Post-retrieval, es una	Robust Standard	2017	Parte de los enfoques
Deviation (RSD) [6]	variante del NQC y otros	<u>Deviation Estimation</u>		actuales, mejora el
	predictores basados en	<u>for Query</u>		rendimiento de
	desviación estándar de	<u>Performance</u>		predicción enfocados
	puntuaciones de	Prediction Semantic		en la robustez del
	relevancia en documentos	<u>Scholar</u>		ranking.
	recuperados	33 citaciones		
Score Magnitude	Post-retrieval, mide la	Query Performance	2014	Parte de los enfoques
Variance (SMV) [7]	variabilidad de las	<u>Prediction By</u>		"actuales", similar a
	magnitudes de las	<u>Considering Score</u>		NQC.
	puntuaciones de los	Magnitude and		
	resultados de la consulta	Variance Together		
		Semantic Scholar		
		49 citaciones		
Weighted Product	Post-retrieval, combina	Enhanced Mean	2017	Parte de los enfoques
Model (WPM) [8]	múltiples características	Retrieval Score		actuales, mejorando el
	de calibración derivadas	Estimation for Query		rendimiento de
	de métodos anteriores.	<u>Performance</u>		predicción.
		Prediction Semantic		
		<u>Scholar</u>		
		29 citaciones		

• Con inteligencia artificial (5)

Método	Clasificación	Fuente principal	Año	¿Es relevante?
Memory-based	IA, diseñado para	<u>Towards Query</u>	2023	Método IA que utiliza
(MEM) [9]	sistemas de Neural	<u>Performance</u>		métodos clásicos como
	Information Retrieval	<u>Prediction for Neural</u>		base.
	(NIR), basado en las	<u>Information</u>		
	características de	Retrieval: Challenges		
	memorización de las	and Opportunities		
	redes neuronales	Semantic Scholar		
		6 citaciones		
Neural QPP [10]	IA, basado en redes	[PDF] Neural Query	2019	Método IA que utiliza
	neuronales	<u>Performance</u>		métodos clásicos como
		Prediction using		base, prácticamente un
		Weak Supervision		estado del arte en QPP
		<u>from Multiple Signals</u>		con IA.
		Semantic Scholar		
		91 citaciones		

Weighted Relative Information Gain (WRIG) [11]	Basado en la distribución de valores de estado de recuperación de una consulta y sus variantes	[PDF] A Relative Information Gain- based Query Performance Prediction Framework with Generated Query Variants Semantic Scholar 20 citaciones	2022	Método IA que utiliza métodos clásicos como base, considerado innovador.
Deep-QPP [12]	Basado en interacciones semánticas entre los términos de la consulta y documentos recuperados, redes neuronales	Deep-QPP: A Pairwise Interaction- based Deep Learning Model for Supervised Query Performance Prediction 18 citaciones	2022	Método IA que no utiliza predictores QPP previos, es enfoque end-to-end, se considera una evolución importante.
BERT-QPP [13]	Se basa en el modelo BERT para predecir consultas con un enfoque supervisado	BERT-QPP: Contextualized Pre- trained transformers for Query Performance Prediction 29 citaciones	2021	Método IA, muestra mejoras significativas en comparación a otros métodos QPP de última generación, útil en el uso práctico.

• Tabla de uso en métodos propuestos y métodos hallados en repositorio (sin IA)

Métodos seleccionados

Métodos no seleccionados

	Métodos identificados (pre-selección y repositorio)								
Artículos relevantes	NQC	IDF	Clarity	WIG	UEF	QF	SCQ	VAR	SMV
Predicting query performance by									
query-drift estimation,									
165 citaciones [1]	X								
Predicting query performance, 901 citaciones [2]			X						
Using statistical decision theory and relevance models for 82 citaciones [3]					X				
Query performance prediction in web search environments 314 citaciones [4]						X			
Query performance prediction in web search environments 314 citaciones [4]				X					
Query performance prediction in web search environments									
314 citaciones [4] [PDF] Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence 180 citaciones [5]		X							
Robust Standard Deviation Estimation for Query Performance Prediction 33 citaciones [6]									
Query Performance Prediction By Considering Score Magnitude and Variance Together 49 citaciones [7]									X
Enhanced Mean Retrieval Score Estimation for Query Performance Prediction 29 citaciones [8]									
An enhanced evaluation framework for query performance prediction 45 citaciones [14]	x	X	X	X	X		X	X	X

QPPTK@ TIREx: Simplified Query Performance Prediction for Ad-Hoc Retrieval Experiments. 3 citaciones [15]	х	X	X	x		x	x	X
sMARE: a new paradigm to evaluate and understand query performance prediction methods 17 citaciones [16]	x	X	X	X	X	X	X	X
Unsupervised query performance prediction for neural models with pairwise rank preferences 6 citaciones [17]	х				X			
Query performance prediction: From ad-hoc to conversational search 20 citaciones [18]	х		X	X				Х
Unsupervised question clarity prediction through retrieved item coherency 12 citaciones [19]	х			X				X

Finalmente, se decide utilizar los métodos QPP: NQC, IDF, Clarity, WIG y UEF.

Bibliografía

- [1] A. a. K. O. a. C. D. a. R. F. a. M. G. Shtok, «Predicting query performance by query-drift estimation,» *ACM Transactions on Information Systems (TOIS)*, vol. 30, no 2, pp. 1--35, 2012.
- [2] S. a. Z. Y. a. C. W. B. Cronen-Townsend, «Predicting query performance,» *Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval*, pp. 299--306, 2002.
- [3] A. S. a. O. K. a. D. Carmel, «Using statistical decision theory and relevance models for query-performance prediction,» *Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval*, 2010.
- [4] Y. a. C. W. B. Zhou, "Query performance prediction in web search environments," Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 543--550, 2007.
- [5] Y. Z. a. F. S. a. Y. Tsegay, «Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence,» *European Conference on Information Retrieval*, 2008.
- [6] H. R. a. S. E. a. B. Weiner, «Robust Standard Deviation Estimation for Query Performance Prediction,» *Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval*, 2017.
- [7] Y. T. a. S. Wu, "Query Performance Prediction By Considering Score Magnitude and Variance Together," Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, 2014.
- [8] H. R. a. S. E. a. O. S. S. a. B. Weiner, «Enhanced Mean Retrieval Score Estimation for Query Performance Prediction,» *Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval*, 2017.
- [9] G. F. a. T. F. a. S. L. a. S. M. a. S. C. a. N. F. a. B. Piwowarski, «Towards Query Performance Prediction for Neural Information Retrieval: Challenges and Opportunities,» Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval, 2023.
- [10] H. Z. a. W. B. C. a. J. S. Culpepper, «Neural Query Performance Prediction using Weak Supervision from Multiple Signals,» *The 41st International ACM SIGIR Conference on Research* \& Development in Information Retrieval, 2018.

- [11] S. D. a. D. G. a. M. M. a. D. Greene, «A Relative Information Gain-based Query Performance Prediction Framework with Generated Query Variants,» *ACM Transactions on Information Systems*, vol. 41, pp. 1-31, 2022.
- [12] S. D. a. D. G. a. D. G. a. M. Mitra, «Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Query Performance Prediction,» *Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining*, 2022.
- [13] N. A. a. M. K. a. E. Bagheri, «BERT-QPP: Contextualized Pre-trained transformers for Query Performance Prediction,» *Proceedings of the 30th ACM International Conference on Information* \& Knowledge Management, 2021.
- [14] G. a. Z. O. a. C. J. S. a. F. N. a. S. F. Faggioli, «An enhanced evaluation framework for query performance prediction,» *European Conference on Information Retrieval*, pp. 115-129, 2021.
- [15] O. a. F. M. a. F. G. Zendel, «QPPTK@ TIREx: Simplified Query Performance Prediction for Ad-Hoc Retrieval Experiments.,» WOWS@ ECIR, pp. 50--62, 2024.
- [16] G. a. Z. O. a. C. J. S. a. F. N. a. S. F. Faggioli, «sMARE: a new paradigm to evaluate and understand query performance prediction methods,» *Information Retrieval Journal*, vol. 25, no 2, pp. 94--122, 2022.
- [17] A. a. G. D. a. D. S. a. M. C. Singh, «Unsupervised query performance prediction for neural models with pairwise rank preferences,» Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2486--2490, 2023.
- [18] C. a. A. N. a. A. M. a. d. R. M. Meng, «Query performance prediction: From ad-hoc to conversational search,» *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2583--2593, 2023.
- [19] N. a. S. M. a. C. C. L. Arabzadeh, «Unsupervised question clarity prediction through retrieved item coherency,» *Proceedings of the 31st ACM International Conference on Information* \& Knowledge Management, pp. 3811--3816, 2022.