

TMSCA HIGH SCHOOL MATHEMATICS

TEST # 2 ©
OCTOBER 28, 2017

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $24 \times 15 4! 27 \div (18 6) \times 4 + 28$.
 - A. 363.4
- B. 375
- C. 356.6
- D. 403
- E. 355
- 2. Caroline had a rope that was 30 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 2:3:12 with 20 inches of string left over. How long was the shortest piece?
 - A. 4 ft. 10 in.
- B. 3 ft.
- C. 2 ft. 6 in.
- D. 3 ft. 8 in.
- E. 3 ft. 4 in.
- 3. The data set 9,a,b,c,24,35 is shown least to greatest and has a mean of 20, mode of 24 and median of 20. Calculate the value of a+c.
 - A. 39
- B. 48
- C. 40
- D. 36
- E. 35

- 4. What is the sum of the first four abundant numbers?
- B. 28
- C. 84
- D. 74
- E. 86
- 5. Which of the following is the standard form of the equation of the perpendicular bisector of the line shown?
 - A. x + y = 3
- B. x + y = -3
- C. x + y = 1

E.
$$x - y = -3$$

B.
$$x^4 + 5$$

$$x^4$$

C.
$$x^4 - 5x^2 + 4$$
 D. $x^6 + 4x^2$

E.
$$x^4 - 5x^2 + 5$$

- 7. If $\theta = 5\lambda$ and $\alpha + \theta = \varphi$, then $\alpha + 5\lambda = \varphi$. This is an example of the _____ property.
 - A. Substitution
- **B.** Transitive
- C. Commutative D. Associative
- E. Reflexive
- 8. Two consecutive angles in a pentagon are supplementary. The other three angles are congruent. What is the measure of one of the three congruent angles?
 - A. 60°
- B. 120°
- C. 150°
- D. 90°
- E. 135°
- 9. What is the area of the region entirely bounded by the two functions $f(x) = x^2 4x + 3$ and g(x) = 5x - 11?
- B. 21
- C. $\frac{32}{3}$ D. $\frac{125}{3}$
- 10. The angles at each point on the star shown are congruent. What is $m\angle ABC$?
 - A. 120°
- B. 108°
- C. 96°
- D. 72°
- E. 144°

11. If x + y = -3, and xy = -8, then $x^3 + y^3 =$

- A. 45
- B. -75
- C. -51
- -99 D.
- E. -45

12. The four brothers Lester, Morris, Nigel and Porter wanted to go on a road trip, but Lester had no money. Morris, Nigel and Porter each gave Lester one-fourth, one-fifth and one-sixth of his money respectively. If each gave Lester the same amount, what fraction of the money did Lester possess after the exchange?

- C. $\frac{1}{5}$ D. $\frac{37}{60}$

13. Find the value of the arithmetic mean for terms a, b and c in the geometric sequence: 6561,4374,a,b,c...

- A. 1944
- B. 0
- C. 2052
- D. 2916
- E. 1458

14. $\tan\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) \div \cot\left(\frac{5\pi}{3}\right)\csc\left(\frac{\pi}{6}\right) \div \cos\left(\frac{5\pi}{3}\right)\csc\left(\frac{5\pi}{3}\right) =$

- A. 8

- D. $\frac{2\sqrt{3}}{3}$

15. The intersection of the medians of a triangle is called the _____

- A. Centroid
- B. Incenter
- C. Median
- D. Circumcenter E. Orthocenter

16. How many integral values of *n* exist such that n > 3, and $\frac{n!}{(n-3)!} \le 1000$?

- A. 0
- B. 5
- C. 9
- D. 8
- E. 10

17. There are two values of k for which $\det \begin{bmatrix} k+1 & 3 \\ 5 & 2k \end{bmatrix} = 129$. The sum of those two values is

- A. 1
- B. 17
- C. 3
- D. -2
- -1 Ε.

18. The radius of each circle is 3.5 cm. Find the perimeter of the trapezoid. (nearest tenth centimeter)

- A. 90.4 cm B. 64.6 cm C. 123.3 cm D. 95.3 cm E. 82.4 cm

19. The number 458 in base 9 is equivalent to the number k in base 3. Find the sum of the digits in k.

- B. 19
- C. 9
- D. 7
- E. 10

20. Find the mean value of $f(x) = 4x^3 - 6x^2 + 2x - 1$ for [-1,4].

- A. 27
- B. 19
- C. 9
- D. 33.75
- E. 7

21. In the rectangle shown right, what is x in terms of a and b?

- A. 90-a-b
- B. 90-a+b
- C. a+b
- D. a+b-90 E. 180+a-b

Copyright © 2017 TMSCA

- 22. How many distinct arrangements can be formed using all of the letters in the word "TRIGONOMETRY"?
 - A. 79,833,600
- B. 479,001,600 C. 4,838,400
- D. 59,875,200
- E. 29.937.600

- 23. If g(x) = x 2 and $f(x) = x^4$, find g(f(x+1)).
 - A. $x^4 + 3x^3 + 3x^2 + x$
- B. $x^4 1$

C. $x^4 + 4x^3 + 6x^2 + 4x - 1$

- **D.** $x^4 + 4x^3 + 6x^2 + 4x$
- E. $x^4 2$
- 24. A chemistry student needs to mix a 100-fluid ounce solution containing 54% glucose. The pharmacist has 30% and 90% solutions on hand. How much of the 30% solution should she use?
 - A. 60 ounces
- B. 54 ounces
- C. 40 ounces
- D. 46 ounces
- E. 50 ounces
- 25. Which of the following quadrants does not contain a solution to $4x + 3y \ge 11$?
 - A. OIII
- B. QI & QII
- C. OIV
- D. OI & OIV
- E. OI
- 26. A triangle with side lengths 12 cm, 12 cm and 22 cm is a(n)_____ triangle.
- A. isosceles acute B. scalene acute C. isosceles obtuse D. scalene obtuse
- E. scalene right
- 27. Which of the following is an equation of the tangent line of $f(x) = 2x^2 x + \frac{32}{x}$ for x = 4?
 - A. y = 13x + 88 B. y = 13x 52
- C. y = 13x 36 D. y = 13x 16 E. y = 13x + 36

- 28. If $\log 4 = P$, and $\log 5 = Q$, then $\log(0.64) = ?$

- A. $P^2 Q^2$ B. 2P + 2Q C. $\frac{P Q}{2}$ D. 2P 2Q E. $\frac{P + Q}{2}$
- 29. If $U = \{a,b,c,d,e,f,g,h\}$, $A = \{a,c,e,g\}$, and $B = \{b,c,d,e\}$, find $A' \cap B$.

- A. $\{b,d\}$ B. $\{a,b,c,d,e,g\}$ C. $\{b,d,f,h\}$ D. $\{b,c,d,e,f,h\}$ E. $\{f,h\}$
- 30. If P, Q and R are real numbers such that P+Q+R=10, $R^2=P^2+Q^2$ and PQ=8, then R=?
 - A. 2.1
- B. -4.2
- C_{*} -2.5
- D. 4.2
- E. 3.6
- 31. There are 7 girls and 9 boys in Ms. Angle's homeroom class. She must select a group of 2 girls and 2 boys to represent her class in a Veterans Day ceremony. How many distinct groups does she have to choose from?
 - A. 1512
- B. 1820
- C. 910
- D. 240
- E. 756
- 32. Which of the following equations in rectangular form can be written as $r 8\sin\theta = 0$ in polar form?
 - A. $x^2 + y^2 = 16$

B. $x^2 + y^2 = 4$

C. $x^2 + y^2 = 2\sqrt{3}$

- D. $x^2 8x + v^2 = 0$
- E. $x^2 + y^2 8y = 0$
- 33. Find the area of △DEF. (nearest tenth)
 - A. 5.2 in^2
- B. 20.8 in^2
- C. 6.9 in^2
- D. 15.6 in^2
- E. 11.7 in^2

- 34. Find the remainder when $f(x) = 6x^3 x^2 7x + 5$ is divided by x 5.
 - A. 715
- B. 695
- C. -705
- D. -735
- Ε. 710
- 35. A sales clerk is packaging blue, red and black pens for a back-to-school sale. How many distinct packages of 5 pens can he make?
 - A. 56
- B. 126

- E. 21
- 36. Two roots of $f(x) = x^3 + bx^2 + cx + d$ are 4 and 3+i. Find b+c+d.
 - A. 54
- B. -26
- C. -16

- 37. If $g(x) \le f(x) \le h(x)$ for all x, k in [a,b], where $x \ne k$, and $\lim_{x \to k} g(x) = L$ and $\lim_{x \to k} h(x) = L$ then $\lim_{x \to \infty} f(x) = L$. This theorem is known as:
 - A. Sandwich Theorem
- B. Rolle's Theorem
- C. **Fundamental Theorem of Calculus**

- D. Intermediate Value Theorem
- **Fundamental Theorem of Algebra** Ε.
- 38. Calculate the total surface area of the triangular prism shown.

- A. 728 cm² B. 644 cm² C. 840 cm² D. 924 cm² E.

- 560 cm^2
- 39. Find the sum of all the three-digit numbers whose digits have a sum of ten and whose digits can all be used to form a perfect cube.
 - A. 343
- B. 1998
- C. 1386
- D. 1110
- Ε. 776
- 40. The ratio of length to width of a rectangle is 13:3 and the perimeter is 3072 in. What is the area of the rectangle?
 - A. $359,424 \text{ ft}^2$
- B. $4,992 \text{ ft}^2$
- C. $718,848 \text{ ft}^2$
- D. 2.496 ft^2
- E. 9.984 ft^2
- 41. The function $f(x) = \frac{2x^3}{x^2 3}$ is increasing at which of the following values of x?
- **B.** 0
- C. -1
- Ε. 2
- 42. How many distinct solutions exist for $2\sin^2 x = 2\cos x$, where $0 \le x < \pi$?
- B. 1
- C. 2
- Ε.
- 43. Meredith set out to row on a lake. She rowed 600 m on a bearing of 75°, then 200 m on a bearing of 25°, then 350 m on a bearing of 52°. How far is she from her original starting point? (nearest meter)
 - A. 1090 m
- B. 615 m
- C. 775 m
- D. 526 m
- E. 994 m
- 44. Circle O has perpendicular diameters and a chord, find AE if CF = 9 inches and EF = 7 inches. (nearest tenth)
 - A. 4.5 in
- B. 3.7 in
- C. 6.2 in
- D. 5.7 in
- E. 4.7 in

45.	What is the harmonic mean of the roots of the function	f ((x)	$=10x^2-1$	1x-6	6?
TJ.	What is the narmome mean of the roots of the function	./ \	1	$I - IU\lambda - I$	1 <i>1</i> – (•

	11
Α.	12

B.
$$\frac{12}{11}$$

C.
$$\frac{11}{20}$$

B.
$$\frac{12}{11}$$
 C. $\frac{11}{20}$ D. $-\frac{12}{11}$ E.

E.
$$-\frac{11}{20}$$

46. Find
$$f(x)$$
 given that $f''(x) = 18x - 14$ and that $f(1) = -2$ and $f(-1) = -14$.

A.
$$3x^3 - 7x^2 + 3x - 1$$

A.
$$3x^3 - 7x^2 + 3x - 1$$
 B. $3x^3 - 7x^2 + 5x - 1$ C. $3x^3 - 7x^2 + 4x - 1$

C.
$$3x^3 - 7x^2 + 4x - 1$$

D.
$$3x^3 - 7x^2 - 4x - 1$$
 E. $3x^3 - 7x^2$

E.
$$3r^3 - 7r^2$$

47. What is the constant term in the binomial expansion of
$$\left(3x^2 - \frac{2}{x}\right)^6$$
?

48. A contestant on a game show rolls a single, fair, standard die. The player loses \$200 if an odd number is rolled. If he rolls an even prime, he gets a \$500 payout. If he rolls a perfect number, he gets \$1000 payout. Otherwise, nothing happens. What are his expected winnings?

49. The point (6,-2) lies on a circle whose center is (1,10). Where does the point (8,13) lie in reference to the circle?

A. Inside

B. Outside

C. On the Circle D. Q II

E. Unknowable

50. How many solutions are there for the equation 2x + 5y = 175, where both x and y are non-negative integers?

51. Forty-eight percent of homes in a town have pets. If four homes are chosen at random for a survey, find the probability that at least three have pets. (nearest percent)

52. If
$$\frac{10x+38}{x^2+4x-5} = \frac{A}{x+5} + \frac{B}{x-1}$$
, then $AB =$

$$C_{*}$$
 -10

53. Given that the set of natural numbers continue in the triangular pattern shown below, find the median of the numbers in row 12.

54. The square root of 1013₆ is:

55. If $y^2 = -16 - 30i$ and $y^3 = -198 - 10i$ where y = a + bi then a + b = -10i

- B. -5
- C. 5
- D. -2
- E. 3

56. $4^3 + 5^3 + 6^3 + ... + 12^3 + 13^3 + 14^3 =$

- A. 11,025
- B. 11017
- C. 10,989
- D. 11025
- E. 2744

57. What is the area of a regular hexagon in terms of the length, a, of the apothem?

- $A. \quad \frac{3a^2\sqrt{3}}{4}$
- B. $\frac{4a^2\sqrt{3}}{3}$ C. $2a^2\sqrt{3}$
- D. $\frac{3a^2\sqrt{3}}{2}$
- E. $3a^2\sqrt{3}$

58. Find the units digit of 17^{2017} .

- A. 3
- **B.** 1
- $\mathbf{C}.$ 0
- D. 7
- E. 9

59. Simplify to the nearest ten-thousandth place: $1+(1.3)+\frac{(1.3)^2}{2!}+\frac{(1.3)^3}{3!}+\frac{(1.3)^4}{4!}+...$

- A. 0.2624
- B. 0.2675
- C. 3.6693
- D. 3.6302
- E. 0.9636

60. The function f is such that $\int_{-1}^{8} f(x) dx = 12$. What is the value of $\int_{-1}^{8} (2f(x) + 3) dx$?

- A. 51
- B. 39
- C. 27
- D. 32
- E. 57

2017-2018 TMSCA Mathematics Test Two Answers

1. E	21. D	41. D
2. E	22. D	42. B
3. D	23. C	43. A
4. D	24. A	44. D
5. E	25. A	45. D
6. C	26. C	46. A
7. A	27. D	47. C
8. B	28. D	48. D
9. A	29. A	49. A
10. B	30. D	50. E
11. D	31. E	51. C
12. C	32. E	52. D
13. C	33. B	53. E
14. B	34. B	54. B
15. A	35. E	55. D
16. D	36. C	56. C
17. E	37. A	57. C
18. D	38. A	58. D
19. C	39. D	59. C
20. A	40. A	60. A

2017 - 2018 TMSCA Mathematics Test Two Select Solutions

10. Think of the same pentagon inscribed in a circle. The desired angle is formed by two intersecting chords with intercepted arcs of 144° and 72°, so $m\angle ABC = \frac{144 + 72}{2} = 108$

11.
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2) = (x+y)[(x+y)^2 - 3xy] =$$

-3[(-3)^2 -3(-8)] = -99

17. (k+1)(2k)-15=129, so $2k^2+2k-144=0$ and the sum of the roots will be $-\frac{b}{a}=-\frac{2}{2}=-1$

$$P = 18r + 4\left(\frac{r}{\sqrt{3}}\right) + 4\left(r\sqrt{3}\right) \approx 95.3$$

22.
$$\frac{12!}{(2!)(2!)(2!)} = 59,875,200$$

24. Solve: 0.3x + 0.9(100 - x) = 0.54(100) for 60 oz.

28.
$$\log(0.64) = \log\left(\frac{4^2}{5^2}\right) = 2\log 4 - 2\log 5 = 2P - 2Q$$

30. Arrange to $(P+Q)^2 = (10-R)^2$ for $P^2 + 2PQ + Q^2 = 100 - 20R + R^2$ then 2(8) = 100 - 20R and R = 4.2

31.
$$({}_{7}C_{2})({}_{9}C_{2}) = 756$$

33. Each side of triangle DEF is also a long leg of a 30-60-90 triangle, so they all have lengths of $4\sqrt{3}$ for an area of $\frac{s^2\sqrt{3}}{4}\approx 20.8$

35. There are 3 colors of pens, so $_{(3+5-1)}C_5 = 21$

36. Multiply:
$$(x-4)[(x-3)^2+1] = x^3-10x^2+34x-40$$
, so $b+c+d=-16$

39. The only perfect cube with a sum of digits equal to 10 is 343, so 343+334+433=1110

43. Let $x = 600\cos 75 + 200\cos 25 + 350\cos 52$ and $y = 600\sin 75 + 200\sin 25 + 350\sin 52$, then the distance from the start will be $\sqrt{x^2 + y^2} \approx 1090$

44.
$$r^2 + \left(OF\right)^2 = 81$$
 and $r^2 - \left(OF\right)^2 = 63$ solve for $r = 6\sqrt{2}$, then $AE = \sqrt{\left(12\sqrt{2}\right)^2 - 16^2} \approx 5.7$

46. $f(x) = 3x^3 - 7x^2 + Ax + B$ then use the two function values to find A = 3 and B = -1

51.
$$p(at least 3) = p(3) + p(4) = 4(0.48)^3(0.52) + (0.48)^4 \approx 28\%$$

52.
$$A(x-1)+B(x+5)=10x+38$$
 so that $A+B=10$
 $-A+5B=38$ for $B=8$, $A=2$ and $AB=16$

59. This is the McClaurin series for $f(x) = e^x$, so $f(1.3) \approx 3.6693$

60.
$$2(12) + 3(8+1) = 51$$