MATH 10 - Linear Algebra

Fall 2019

Eigentheory

In-class Assignment #9

 $\S6.1-6.3$

Dr. Jorge Basilio

11_27_2019

gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let $A \in \mathbb{M}_{n \times n}$.

- (a) eigenvalue, eigenvector, and eigenspace for a matrix A.
- (b) characteristic polynomial and the characteristic equation for A.
- (c) A is diagonalizable.
- (d) algebraic multiplicity and geometric multiplicity.

Activity 2: Computation

Let

$$A = \begin{bmatrix} 7 & 0 & 0 & 0 \\ 15 & -3 & 0 & 0 \\ 6 & -4 & 7 & 0 \\ 21 & -14 & 35 & -3 \end{bmatrix}$$

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the **eigenvalues**.
- (c) Find a basis for each **eigenspace**.
- (d) What is the **dimension** of each eigenspace?
- (e) Determine whether or not the algebraic multiplicity equals the geometric multiplicity for each eigenspace.
- (f) Find C and D so that $A = C^{-1}DC$, if possible. Arrange D so that the eigenvalues are increasing.
- (g) Compute: A^{10} without using technology (sci calc is ok, just no SAGEMath). Show work!

Activity 3: Computation

- (a) Show that $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.
- (b) Which of the following matrices are diagonalizable, and why?

A.
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ D. $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

B.
$$\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$

C.
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

D.
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

1

Activity 4: Proofs

Let $A \in \mathbb{M}_{n \times n}$. Let $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation associated to A, i.e. $T_A(\vec{v}) = A\vec{v}$ and $[T_A] = A$.

(a) **Prove:** A and A^{\top} have exactly the same eigenvalues.

Hint: you may wish to prove first that they have the same characteristic polynomials.

(b) **Prove:** Suppose that A is invertible. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of the inverse A^{-1} .

Hint: As part of your proof, explain why the expression λ^{-1} makes sense (hint: use that A is invertible).

(c) **Prove:** Eigenspaces are **invariant** under T. That is, show that if λ is an eigenvalue of A, then

$$T_A(\text{Eig}(A,\lambda)) \subseteq \text{Eig}(A,\lambda).$$

Hint: this is really short.