Elementárna teória čísel

1. apríla 2015

Obsah

1	1 Deliteľnosť v obore celých čísel		
	1.1	Základné pojmy a ich vlastnosti	3
	1.2	Prvočísla	9
	1.3	Číselné sústavy	12
	1.4	Kongruencie	14
		1.4.1 Pojem kongruentnosti $mod\ n,$ základné vlastnosti	14
		1.4.2 Použitie kongruencií pri kritériách deliteľnosti prirodzených čísel	16
	1.5	Eulerova funkcia a Eulerova veta	18
		1.5.1 Použitie Eulerovej vety v kryptografii (šifrovaní)	21
	1.6	Lineárne kongruencie s jednou neznámou	22
	1.7 Aritmetické funkcie φ , τ , σ		24
	1.8	Doplnky. Lagrangeova a Wilsonova veta	26
2	g -a c	lické rozvoje reálnych čísel. Kritéria iracionálnosti.	29
	2.1	g-adický rozvoj	29
	2.2	Kritériá racionálnosti	31

Úvod

Verzia: 1. apríla 2015

Obsah predmetu

- I. Deliteľnosť v obore celých čísel
 - Základné pojmy, najväčší spoločný deliteľ, Euklidov algoritmus, najmenší spoločný násobok.
 - 2. Prvočísla a ich vlastnosti, základná veta aritmetiky, prvočíselná veta.
 - 3. Číselné sústavy, vyjadriteľnosť prirodzeného čísla v g-adickej sústave.
 - 4. Kongruencie, základné vlastnosti relácie kongruentnosti modulo n, použitie kongruencií pri kritériách deliteľnosti prirodzených čísel, Eulerova funkcia, Eulerova veta a jej využitie, lineárne kongruencie s jednou neznámou.
 - 5. Aritmetické funkcie φ , τ , σ a ich vlastnosti.
- II. g-adické rozvoje reálnych čísel, kritériá iracionálnosti reálnych čísel
 - 1. Pojem racionálneho a iracionálneho čísla, vyjadriteľnosť reálneho čísla pomocou g-adického rozvoja.
 - 2. Periodické g-adické rozvoje, kritérium racionálnosti reálneho čísla vyjadreného v g-adickom rozvoji. Ďalšie kritériá racionálnosti ($\sqrt[n]{k}$, $n, k \in \mathbb{N}$, $n \geq 2$; $\log r$, $r \in \mathbb{Q}^+$).

Kapitola 1

Deliteľnosť v obore celých čísel

1.1 Základné pojmy a ich vlastnosti

Označenia:

 $\mathbb{Z} = \text{množina všetkých celých čísel}$

 $\mathbb{N} = \text{množina všetkých prirodzených čísel}$

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

V celej kapitole číslo znamená celé číslo.

Definícia 1.1.1. Nech $a,b\in\mathbb{Z}$. Hovoríme, že a deli b, ak existuje $c\in\mathbb{Z}$ tak, že b=c.a. Označenie: $a\mid b$ $(a\nmid b$ je negácia $a\mid b).$

Priklad. $-2 \mid 6, 2 \mid -2, 0 \mid 0, 2 \nmid 3$

Veta 1.1.2. Pre l'ubovolné $a, b, c \in \mathbb{Z}$ platí:

- (1) $a \mid a$
- (2) $Ak \ a \mid b \ a \ b \mid c$, $tak \ a \mid c$.
- (3) $1 \mid a$
- (4) a | 0
- (5) $b \mid a \Leftrightarrow -b \mid a \Leftrightarrow b \mid -a \Leftrightarrow -b \mid -a$
- (6) $b \mid a \Leftrightarrow |b| \mid |a| \Leftrightarrow b \mid |a| \Leftrightarrow |b| \mid a$
- (7) $Ak \ a \mid b$, $tak \ a.c \mid b.c$.
- (8) $Ak \ a.c \mid b.c \ a \ c \neq 0$, $tak \ a \mid b$.
- (9) $Ak \ a \mid b, \ a \mid c, \ tak \ pre \ každ\'e \ d, d' \in Z \ a \mid d.b \pm d'.c.$
- (10) $Ak \ a \mid b \ a \ b \neq 0, \ tak \ |a| \leq |b|.$

 $D\hat{o}kaz$. (5) Ak $b \mid a$, tak existuje $c \in \mathbb{Z}$, pre ktoré a = c.b. Potom a = (-c).(-b), $-c \in \mathbb{Z}$, a preto $-b \mid a$. Ak $-b \mid a$, tak $-(-b) \mid a$, a teda $b \mid a$. Ostatné ekvivalencie sa dokážu podobne.

- (9) Ak $a \mid b$ a $a \mid c$, tak existujú $b', c' \in \mathbb{Z}$ pre ktoré b = b'a a c = c'a. Potom db + d'c = db'a + d'c'a = (db' + d'c')a, a teda $a \mid db + d'c$.
- (10) Ak $a \mid b$, tak existuje $c \in \mathbb{Z}$, pre ktoré b = ca. Ak $b \neq 0$, tak aj $c \neq 0$ aj $a \neq 0$, a preto |c| > 0 aj |a| > 0. Pretože |c| > 0, máme $1 \leq |c|$. Potom ale $|a| \leq |c| |a| = |ca| = |b|$. \square

Veta 1.1.3 (o delení so zvyškom). Pre každé $z \in \mathbb{Z}$ a každé $n \in \mathbb{N}$ existuje práve jedna dvojica $(k,q) \in \mathbb{Z} \times \mathbb{Z}$ taká, že z = kn + q a $0 \le q < n$.

 $D\hat{o}kaz.$ Existencia. Najprv dokážeme, že veta platí pre každé $z\in\mathbb{N}_0$ a $n\in N$ indukciou vzhľadom na z.

```
Pre z = 0 (k, q) = (0, 0). 0 = 0n + 0, 0 \le 0 < n.
```

Nech tvrdenie platí pre $z \ge 0$, dokážeme, že potom platí aj pre z + 1.

Teda platí $z=kn+q,\ 0\leq q< n.$ Potom z+1=kn+q+1. Pretože $0\leq q< n,$ platí $0< q+1\leq n.$ Ak q+1=n, tak máme z+1=(k+1)n+0. Ak q+1< n, tak máme $z+1=kn+(q+1),\ 0\leq q+1< n.$ Teda existencia je dokázaná pre každé $z\geq 0.$

Nech teraz z < 0. Potom -z > 0 a teda existuje $(k,q) \in \mathbb{Z} \times \mathbb{Z}$ tak, že -z = kn + q, $0 \le q < n$. Ak q = 0, tak z = -kn + 0, $0 \le 0 < n$. Ak q > 0, tak q = n - (n - q) a 0 < n - q < n. Potom z = -kn - q = (-k)n - n + (n - q) = (-k - 1)n + (n - q), $0 \le n - q < n$.

Jednoznačnosť. Nech $z=kn+q=k'n+q', \ 0 \le q < n, \ 0 \le q' < n$. Nech napríklad $q' \le q$ (prípad $q \le q'$ je podobný). Potom q-q'=(k'-k)n a teda $n \mid q-q'$. Ak q-q'>0, tak potom $n \le q-q' \le q < n$ - spor. Teda q-q'=0, a preto q=q'. Potom (k-k')n=0, a preto aj k=k'.

 ${\bf V}$ problematike deliteľnosti v obore celých čísel hrá dôležitú úlohu pojem najväčší spoločný deliteľ.

Definícia 1.1.4. a) Číslo $c \in \mathbb{Z}$ sa nazýva *spoločný deliteľ* čísel $a,b \in \mathbb{Z}$, ak $c \mid a$ a súčasne $c \mid b$.

- b) Najväčší prvok množiny všetkých spoločných deliteľov čísel a, b sa nazýva najväčší spoločný deliteľ (n.s.d.) čísel a, b. Označenie: d = (a, b).
 - c) Čísla $a, b \in \mathbb{Z}$ sa nazývajú nesúdeliteľné (súdeliteľné), ak (a, b) = 1 $((a, b) \neq 1)$.

Príklad. a) 1 je spoločný deliteľ pre ľubovoľné $a,b\in\mathbb{Z}$ a teda $(a,b)\geq 1.$

- b) (-4, -6) = 2 a teda -4, -6 sú súdeliteľné.
- c) (2, -3) = 1 a teda 2, -3 sú nesúdeliteľné.
- d) Pre každé $a, b \in \mathbb{Z}$ (a, b) = (-a, b) = (a, -b) = (-a, -b) = (|a|, |b|).
- e) Ak $a \neq 0$, tak (0, a) = |a|.
- f) Ak $a | b | a | a \neq 0$, tak (a, b) = |a|.
- g) (a, b) = (b, a)
- h) (0,0) neexistuje.

Veta 1.1.5. Pre každé $a, b \in \mathbb{Z}$, pre ktoré $a \neq 0$ alebo $b \neq 0$, existuje práve jeden najväčší spoločný deliteľ d.

 $D\hat{o}kaz$. Nech $N_{a,b} = \{n \in \mathbb{N}; n \mid a \text{ a súčasne } n \mid b\}$. $1 \in N_{a,b}$ a teda $N_{a,b} \neq \emptyset$. Nech napríklad $a \neq 0$. Pretože každé $n \in N_{a,b}$ delí a, platí $n \leq |a|$. Teda $N_{a,b}$ je zhora ohraničená číslom a. Potom ale $N_{a,b}$ má najväčší prvok d, t.j. d = (a,b). Ak (a,b) = d a (a,b) = d', tak $d \leq d'$ a súčasne $d' \leq d$. Teda d' = d.

V nasledujúcom ukážeme, že existuje metóda pre výpočet najväčšieho spoločného deliteľa pre ľubovoľné $a,b\in\mathbb{Z},\ a\neq 0$ alebo $b\neq 0$. Najprv dokážeme jedno pomocné tvrdenie:

Lema 1.1.6. Nech $a, b, c, c' \in \mathbb{Z}, b \neq 0$ a = c'b + c. Potom (a, b) = (b, c).

Dôkaz. Nech d=(a,b), d'=(b,c). Pretože $d\mid a,b$ a c=a+(-c')b, platí tiež $d\mid c$. Pretože $d\mid b,c$, dostávame, že $d\leq d'$. Podobne, pretože $d'\mid b,c$ a a=c'b+c, platí $d'\mid a$. Pretože $d'\mid a,b$, dostávame $d'\leq d$. Teda d=d'.

Veta 1.1.7 (výpočet najväčšieho spoločného deliteľa). Nech $a,b\in Z,\ a\neq 0$ alebo $b\neq 0$. Potom platí:

- (1) (a) $Ak \ a \mid b$, $tak \ (a,b) = |a|$, $ak \ b \mid a$, $tak \ (a,b) = |b|$.
 - (b) $Ak \ a \nmid b \ a \ b \nmid a$, $tak \ (a,b)$ vypočítame pomocou Euklidovho algoritmu.
- (2) Ak d = (a, b), $tak existujú r, s \in \mathbb{Z} také, že$

$$d = ra + sb$$
.

 $D\hat{o}kaz$. (1a) Ak $a \mid b$ a $a \neq 0$ alebo $b \neq 0$, tak $a \neq 0$. Potom zrejme (a, b) = |a|. ($|a| \mid a, b$; ak $d \mid a, b$, tak $d \leq |a|$.)

- (2a) Ak (a,b) = |a|, tak |a| = 1a + 0b, ak a > 0, resp. |a| = (-1)a + 0b, ak a < 0. Podobne pre $b \mid a$.
- (1b) Nech $a \nmid b$ a súčasne $b \nmid a$. Potom $a \neq 0$ aj $b \neq 0$ a platí (a,b) = (|a|,|b|). Nech $a_0 = |a|$, $a_1 = |b|$. Potom $a_0, a_1 \in \mathbb{N}$ a podľa vety 1.1.3 existujú $b_1, a_2 \in \mathbb{Z}$ tak, že $a_0 = b_1 a_1 + a_2$, $0 < a_2 < a_1$; platí tiež (lema 1.1.6)

$$(a_0, a_1) = (a_1, a_2).$$

Ďalej existujú $b_2, a_3 \in \mathbb{Z}$ tak, že

$$a_1 = b_2 a_2 + a_3, \qquad 0 \le a_3 < a_2, \qquad (a_1, a_2) = (a_2, a_3).$$

Ak $a_3=0$, tak $(a_2,a_3)=a_2=(a_1,a_2)=(a_0,a_1)$. Ak $a_3>0$, tak pokračujeme ďalej. Platí $a_1>a_2>a_3>0$. Ak v k-tom kroku dostaneme

$$a_{k-1} = b_k a_k + a_{k+1}, \qquad 0 \le a_{k+1} < a_k \text{ a } a_k > 0,$$

tak existujú b_{k+1} , a_{k+2} tak, že

$$a_k = b_{k+1}a_{k+1} + a_{k+2}, \qquad 0 \le a_{k+2} < a_{k+1}.$$

Týmto dostaneme klesajúcu postupnosť $a_1 > a_2 > \ldots > a_k > a_{k+1} > \ldots$ celých nezáporných čísel, ktorá nemôže byť nekonečná. Preto existuje $l \in \mathbb{N}$ tak, že $a_l > 0$ a $a_{l+1} = 0$.

$$a_{l-2} = b_{l-1}a_{l-1} + a_l$$

 $a_{l-1} = b_la_l + 0.$

Potom $a_l = (a_{l-1}, a_l) = (a_{l-2}, a_{l-1}) = \dots = (a_2, a_1) = (a_1, a_0) = (a, b).$

Uvedený postup sa nazýva Euklidov algoritmus a posledný nenulový zvyšok v tomto postupe je n.s.d. a, b.

(2) Využijeme Euklidov algoritmus, kde $a_l = (a_0, a_1)$. $a_l = a_{l-2} + (-b_{l-1})a_{l-1} = a_{l-2} + (-b_{l-1})(a_{l-3} + (-b_{l-2})a_{l-2}) = (-b_{l-1})a_{l-3} + (1 + b_{l-1}b_{l-2})a_{l-2} = \dots = ua_0 + va_1, u, v \in \mathbb{Z},$ teda $a_l = u|a| + v|b|$.

Ak $a > 0, b > 0, \text{ tak } a_l = ua + vb.$

Ak a < 0, b > 0, tak $a_l = (-u)a + vb$.

Ak a > 0, b < 0, tak $a_l = ua + (-v)b$.

Ak a < 0, b < 0, tak $a_l = (-u)a + (-v)b$.

Príklad. a) Určte d = (-819, 792) a nájdite u, v také, že d = u(-819) + v792. |-819| = 819, |792| = 792

$$819:792=1$$
 $819=1.792+27$ 27 $792:27=29$ $792=29.27+9$ 252 9 $27:9=3$ $(-819,792)=9$ 0

9 = 792 + (-29).27 = 792 + (-29)(810 + (-1)792) = (-29)819 + (1 + 29)792 = 29(-819) + 30.792

- b) Vyjadrite číslo $\frac{819}{792}$ v základnom tvare, t.j. v tvare $r=\frac{a}{b},$ kde (a,b)=1 a $b\neq 0.$ $(819,792)=9,819:9=91,792:9=88,(91,88)=1,\underline{r=\frac{91}{88}}$
- c) Nájdite aspoň jedno celočíselné riešenie rovnice 819x + 792y = 27.

$$819.(-29) + 792.30 = 9 \qquad /.3$$

819.(-87) + 792.90 = 27

Jedno riešenie je (-87,90). Popíšeme ako vyzerajú všetky riešenia tejto rovnice. Pre ľubovoľné riešenie platí 819(x+87)+792(y-90)=0. Označme v=x+87 a u=y-90, máme potom 819u+792v=0. Predelením 9 dostaneme 88u+91v=0, čiže $v=-\frac{88}{91}u$. Keďže 88 a 91 sú nesúdeliteľné, musí platiť 91 | u, u=91k. Z toho dostaneme v=-88k. Teda ľubovoľné riešenie má tvar (-87-88k,90+91k). Množina všetkých riešení je $\{(-87-88k,90+91k); k\in\mathbb{Z}\}$.

Veta 1.1.8. *Nech* $a, b, c \in \mathbb{Z}$. *Potom platí:*

- (1) $Ak(a,b) = 1 \ a \ a \ | bc, \ tak \ a \ | c.$
- (2) Ak(a,b) = 1, $a \mid c$, $b \mid c$, $tak \ ab \mid c$.
- (3) Ak(a,b) = 1, (a,c) = 1, tak(a,bc) = 1.
- (4) $Ak(a,b) = 1, m, n \in \mathbb{N}, tak(a^m, b^n) = 1.$
- (5) Ak(a,b) = d, a = a'd, b = b'd, tak(a',b') = 1.

 $D\hat{o}kaz$. (1) Existujú $u, v \in \mathbb{Z}$, pre ktoré 1 = ua + vb a $b' \in \mathbb{Z}$, pre ktoré bc = b'a. Potom $c = c(ua + vb) = cua + cvb = cua + vb'a = \underbrace{(cu + vb')}_{}a$. Teda $a \mid c$.

- (2) Existujú $u, v, a', b' \in \mathbb{Z}$ tak, že platí 1 = ua + vb, c = a'a, c = b'b. Potom c = c1 = c(ua + vb) = uac + vbc = uab'b + vba'a = (ub' + va')ab. Teda $ab \mid c$.
- (3) Existujú $u, v, u', v' \in \mathbb{Z}$ tak, že 1 = ua + vb, 1 = u'a + v'c. Potom 1 = 1.1 = (ua + vb)(u'a + v'c) = (uu'a + vbu' + uv'c)a + vv'bc, uu'a + vbu' + uv'c, $vv' \in \mathbb{Z}$. Pre každé $d \in \mathbb{Z}$ platí: ak $d \mid a$ a $d \mid bc$, tak $d \mid 1$ (veta 1.1.2(9)), a preto $d \leq |d| \leq 1$. Teda 1 = (a, bc).
- (4) Vyplýva z (3), dokáže sa matematickou indukciou. Najprv sa dokáže, že ak (a,b)=1, tak pre všetky $n \in \mathbb{N}$ $(a,b^n)=1$.
- (5) Existujú $u, v \in \mathbb{Z}$ d = ua + vb. Potom d = ua'd + vb'd = (ua' + vb')d. Pretože $d \neq 0$, máme 1 = ua' + vb'. Pre každé $d \in \mathbb{Z}$, ak $d \mid a', d \mid b'$, tak $d \mid 1$, a preto $d \leq |d| \leq 1$. Teda (a', b') = 1.

Definícia 1.1.9. Nech $a, b \in \mathbb{Z}$. Číslo $c \in \mathbb{Z}$ sa nazýva spoločný násobok čísel a, b, ak $a \mid c$ aj $b \mid c$. Najmenšie prirodzené číslo n, ktoré je spoločným násobkom a, b sa nazýva najmenší spoločný násobok (n.s.n.) čísel a, b. Označenie: [a, b].

Priklad. [4,6]=[-4,-6]=12

Pre ľubovoľné $a, b \in \mathbb{Z}, a \neq 0, b \neq 0$ platí [a, b] = [|a|, |b|].

Veta 1.1.10.

- (1) Nech $a, b \in \mathbb{Z}$, $a \neq 0$, $b \neq 0$. Potom existuje práve jedno $k \in \mathbb{N}$ také, že k = [a, b].
- (2) $Ak \ a, b \in \mathbb{Z}, \ a \neq 0, \ b \neq 0, \ tak \ (a, b)[a, b] = |a||b|.$
- $D\hat{o}kaz$. (1) Nech $K_{a,b} = \{n \in \mathbb{N}; a \mid n \text{ a súčasne } b \mid n\}$. Pretože $|a||b| \in K_{a,b}$, platí $K_{a,b} \neq \emptyset$. Potom ale existuje najmenší prvok k množiny $K_{a,b}$. Zrejme k = [a,b]. Ak [a,b] = k, [a,b] = k', tak $k \leq k'$ a súčasne $k' \leq k$ a teda k = k'.
- (2) Označme $d=(a,b),\ k=[a,b].$ Existujú $a',b'\in\mathbb{Z}\ a=da',\ b=db'.$ Potom (veta 1.1.8(5)) (a',b')=1. Ďalej $|a|=d|a'|,\ |b|=d|b'|,\ (|a'|,|b'|)=1.$

$$|a||b| = d|a'|d|b'| = dd|a'||b'|$$

Stačí teraz overiť, že d|a'||b'| = k.

 $d|a'||b'| = |a||b'| \Rightarrow |a| |d|a'||b'| \Rightarrow a |d|a'||b'|$. Podobne pre b.

Nech teraz $m \in \mathbb{N}$ a $a \mid m$ aj $b \mid m$. Potom (pretože $d \mid a$) $d \mid m$ a teda existuje $m' \in \mathbb{N}$ také, že m = dm'.

Pretože $a \mid m$, máme $|a| = d|a'| \mid m = dm'$. Pretože $d \neq 0$, máme $|a'| \mid m'$.

Podobne sa ukáže, že $|b'| \mid m'$. Pretože (|a'|, |b'|) = 1, platí tiež $|a'||b'| \mid m$. Potom ale $d|a'||b'| \mid dm' = m$. Teda d|a'||b'| = [a, b] = k.

Príklad. Určte c = [-819, 792].

Vieme, že (-819, 792) = 9. Potom $c = \frac{819.792}{9} = 792.91 = 72072$. Teda [-819, 792] = 72072

Cvičenia

- 1. Zistite, či pre každé $a, b, c \in \mathbb{Z}$ platí:
 - a) Ak $a \mid b + c$, tak $a \mid b$ alebo $a \mid c$.
 - b) Ak $a \mid b + c$ a $a \mid b$, tak $a \mid c$.
 - c) Ak $a \mid b.c$, tak $a \mid b$ alebo $a \mid c$.
 - d) Ak $a \mid b$, tak $a \mid b.c$.
- 2. Nech $a, b \in \mathbb{Z}$ a existujú $u, v \in \mathbb{Z}$ také, že 1 = ua + vb. Dokážte, že (a, b) = 1.
- 3. Vypočítajte (a, b) aj [a, b], ak
 - a) a = 6320, b = 3780
 - b) a = 10111, b = 7365
 - c) a = 632, b = 642
 - d) a = 819, b = 792
 - e) a = 3366, b = 2508
 - [d) 9, 72072; e) 66,127908]
- 4. Nájdite všetky prirodzené čísla, ktoré sa škrtnutím poslednej cifry zmenšia štvornásobne (12-násobne).

- 5. Dokážte, že ak pre každé $i=1,\ldots,n,$ $j=1,\ldots,m,$ $(a_i,b_j)=1,$ tak $(a_1\ldots a_n,b_1\ldots b_m)=1$
- 6. Nájdite, ak existuje, aspoň jedno celočíselné riešenie rovnice: a) 193x + 18y = 2, b) 196x + 105y = 84, c) 17x + 21y = 1, d) 196x + 105y = 8
- 7. Nech $a,b,c\in\mathbb{Z},\ a\neq 0$ alebo $b\neq 0$. Dokážte, že rovnica ax+by=c má aspoň jedno celočíselné riešenie $\Leftrightarrow (a,b)\mid c$. Ako vyzerá množina všetkých celočíselných riešení takejto rovnice?
- 8. K dispozícii je 30-litrová nádoba plná vody a 13l a 17l prázdne nádoby. Je možné odmerať 15l?
- 9. Je daný uhol 19°. Je možné len pomocou pravítka a kružidla rozdeliť tento uhol na 19 rovnakých častí?
- 10. Určte počet všetkých prirodzených čísel menších ako 10^6 , ktoré sú nesúdeliteľné s číslom a) 6, b) 30.
- 11. a) Dokážte, že ak (a,b) = d, $c \mid a$ a $c \mid b$, tak $c \mid d$.
 - b) Nech (a,b)=d, 0 < c, a=a'c, b=b'c. Potom d=d'c a platí (a',b')=d'. Dokážte!
 - c) Nech $(a,b)=d, k\in\mathbb{N}$. Potom (ak,bk)=dk. Dokážte!
- 12. Definujte n.s.d. pre tri celé čísla a, b, c (resp. pre a_1, \ldots, a_n). Dokážte, že ak (a, b, c) označuje n.s.d. a, b, c, tak (a, b, c) = ((a, b), c) = (a, (b, c)).
- 13. Ak $a,b\in\mathbb{Z},\,a>0,\,b>0$ a $\frac{1}{a}+\frac{1}{b}\in\mathbb{Z},$ taka=ba a=1aleboa=2. Dokážte!
- 14. Dokážte, že pre ľubovoľné $c, a, b \in \mathbb{Z}, a \neq 0$ alebo $b \neq 0$ platí:
 - a) Ak $b \mid c$, tak (a + c, b) = (a, b).
 - b) Ak (a, b) = 1, tak (a + b, a b) = 1 alebo 2.
- 15. Dokážte, že pre každé $a \in \mathbb{Z}$ je jedno z čísel a, a+1, a+2 (a, a+2, a+4) deliteľné číslom 3.
- 16. Ak $a, b, c \in \mathbb{Z}$ a $a^2 + b^2 = c^2$, tak a, b nemôžu byť súčasne nepárne.
- 17. Dokážte: Druhú mocninu každého prirodzeného čísla možno zapísať buď v tvare 4k+1, alebo v tvare 4k.
- 18. Je pravdivé tvrdenie: Ak $ab \mid c^2$, tak aspoň jedno z čísel a a b je deliteľom čísla c?
- 19. Nájdite najväčšieho spoločného deliteľa čísel: a) 2n+1 a 2n-1 b) n^2-1 a n^2+n , c) n^3-1 a n^2-1 , d) n^3+2 a n+1.
- 20. Dokážte, že súčin štyroch po sebe idúcich prirodzených čísel je deliteľný 24.

1.2 Prvočísla

(Pytagoras 6.stor.p.n.l, Euklides 365-300 p.n.l., Eratostenes 276-194 p.n.l.)

Definícia 1.2.1. Prirodzené číslo p>1 sa nazýva prvočíslo, ak má práve dva rôzne kladné delitele a to 1 a p (hovoríme im aj triviálne delitele). Číslo m>1 sa nazýva zložené číslo, ak m nie je prvočíslo, t.j. existuje $k\in\mathbb{N},\ 1< k< m$ tak, že $k\mid m$ (ekvivalentne, existujú $k,l\in\mathbb{N},\ 1< k,l< m$ také, že m=kl).

Príklad. a) 1 nie je ani prvočíslo ani zložené číslo.

b) 2, 3, 5, 7, 11, 13, 17, 19,..., 1 000 000 009 649, 1 000 000 009 651,... sú prvočísla. $2^{216\,091}-1=$ v r. 1985 najväčšie známe prvočíslo, má 65 050 cifier v desiatkovej sústave.

c) 4, 6, 21, každé párne číslo n > 2 sú zložené čísla.

Veta 1.2.2 (Vlastnosti prvočísel). Nech p, q sú prvočísla. Potom platí:

- (1) Pre každé $a \in \mathbb{Z}$, (a, p) = 1 alebo (a, p) = p.
- (2) Pre ľubovoľné $a, b \in \mathbb{Z}$ ak $p \mid ab$, tak $p \mid a$ alebo $p \mid b$.
- (3) $Ak \ p \neq q, \ tak \ (p,q) = 1.$
- (4) Ak $p \neq q$, tak pre každé $m, n \in \mathbb{N}$ $(p^m, q^n) = 1$.

 $D\hat{o}kaz$. (1) $(a, p) = d \in \mathbb{N}$, $d \mid p$, a preto d = 1 alebo d = p.

- (2) Nepriamo. Nech $p \nmid a$ a súčasne $p \nmid b$. Potom (a,p)=1 aj (b,p)=1. Potom ale (ab,p)=1, a preto $p \nmid ab$.
 - (3) Vyplýva z (1).
 - (4) Vyplýva z vety 1.1.8(4).

Veta 1.2.3 (Základná veta aritmetiky). Pre každé $n \geq 2$ existuje $k \in \mathbb{N}$ a prvočísla p_1, \ldots, p_k tak, že $n = p_1 \ldots p_k$. Toto vyjadrenie je jednoznačné, až na poradie činiteľov.

Dôkaz. Existencia. Matematickou indukciou 2. typu.

n=2. Tu $k=1,\,p_1=2$ t.j. 2=2 je žiadané vyjadrenie.

Nech n>2 a výrok platí pre všetky $m,\,2\leq m< n.$ Ak n je prvočíslo, potom $k=1,\,p_1=n,\,$ t.j. n=n je žiadané vyjadrenie. Ak n je zložené číslo, tak existujú $m,l\in\mathbb{N},\,1< m,l< n$ také, že n=ml. Pretože $2\leq m,l< n$, podľa indukčného predpokladu existujú $r,s\in\mathbb{N}$ a prvočísla $p_1,\ldots,p_r,\,p_{r+1},\ldots,p_{r+s}$ tak, že $m=p_1\ldots p_r,\,l=p_{r+1}\ldots p_{r+s}.$ Potom $m=p_1\ldots p_r\ldots p_{r+s},\,r+s\in\mathbb{N},$ je požadované vyjadrenie (rozklad), p_1,\ldots,p_{r+s} sú prvočísla. Jednoznačnosť. Opäť indukciou 2. typu.

n=2. $2=p_1\dots p_k,\ k\in\mathbb{N}$ p_1,\dots,p_k sú prvočísla. $p_1\mid 2,\ p_1\neq 1,$ a preto $p_1=2$. Ak k>1, tak dostaneme $1=p_2\dots p_k$. Potom $p_2\mid 1,$ a preto $p_2\leq 1,$ čo je spor. Teda k=1. Dostali sme 2=2.

Nech n > 2 a výrok platí pre všetky $m \in \mathbb{N}$, $2 \le m < n$. Nech $n = p_1 \dots p_k = q_1 \dots q_l$, $k, l \in \mathbb{N}, p_1, \dots, p_k, q_1, \dots, q_k$ sú prvočísla. $p_1 \mid q_1, \dots, q_l$, a preto existuje $i \in \{1, \dots, l\}$ $p_1 \mid q_i$. Potom $p_1 = q_i$. $p_1 \mid n$ a teda existuje $m \in \mathbb{N}$ $n = p_1 m$.

Nech m=1. Potom $n=p_1=q_1\ldots q_i\ldots q_l,\ p_1=q_i$. Ak l>1 tak dostaneme $1=q_1\ldots q_{i-1}q_{i+1}\ldots q_l>1$, čo je spor. Teda $l=1,\ q_i=q_1=p_1$. Dostali sme $n=p_1=q_1$.

Nech $m \geq 2$. Potom $m = p_2 \dots p_k = q_1 \dots q_{i-1} \dots q_{i+1} \dots q_l$. Podľa indukčného predpokladu je vyjadrenie m jednoznačné, až na poradie činiteľov, t.j. existuje bijektívne zobrazenie $\sigma' \colon \{2,\dots,k\} \to \{1,\dots,i-1,i+1,\dots,l\}$ také, že $\forall j \in \{2,\dots,k\}$ $q_{\sigma'(j)} = p_j$ (zrejme k-1=l-1). Potom ale zobrazenie $\sigma \colon \{1,\dots,k\} \to \{1,\dots,l\}; \ \sigma(1)=i \ \text{a} \ \sigma(j)=\sigma'(j)$ pre každé $j \geq 2$ je bijektívne (a teda k=l) a pre každé $j \in \{1,\dots,n\}$ $q_{\sigma(j)} = p_j$. Teda vyjadrenie čísla n je jednoznačné, až na poradie činiteľov.

Dôsledok 1.2.4. Pre každé $n \in \mathbb{N}$, n > 1 existuje prvočíslo p také, že $p \mid n$.

Príklad. a) 600 = 2.2.2.3.5.5 = $2^3.3^1.5^2$, $2 \neq 3, 5, 3 \neq 5$ b) $n \geq 2$ $n = p_1, \ldots, p_k = q_1^{k_1} \ldots q_m^{l_m}, q_1, \ldots, q_m$ sú navzájom rôzne prvočísla, $l_1, \ldots, l_m \in \mathbb{N}$ je kanonický rozklad čísla n na prvočísla.

Veta 1.2.5. Množina všetkých prvočísel je nekonečná.

 $D\hat{o}kaz$ (Euklides). Nepriamo. Nech $p_1,\ldots,p_k,\ k\in\mathbb{N},\ \text{sú}$ všetky prvočísla. Utvorme číslo $n=p_1\dots p_k+1$. Zrejme $n>p_1\dots p_k>1$, a preto n>2. Potom existuje prvočíslo p také, že $p\mid n$. Pretože p_1,\ldots,p_k sú všetky prvočísla, existuje $i,\,1\leq i\leq k$ také, že $p=p_i$. Teda $p_i \mid p_1 \dots p_k, p_i \mid n$, a preto $p_i \mid n - p_1 \dots p_k = 1$. Potom $p_i \leq 1$, čo je spor.

Veta 1.2.6. Nech $n=p_1^{l_1}\dots p_k^{l_k}$ je kanonický rozklad čísla n>1 a $d\in\mathbb{N}$. Potom $d\mid n\Leftrightarrow d=p_1^{t_1}\dots p_k^{t_k}$, kde pre každé $i=1,\dots,k$ je $0\leq t_i\leq l_i$.

 $D\hat{o}kaz. \implies \text{Nech } d \mid n. \text{ Potom existuje } c \in \mathbb{N} \text{ také, že } n = c.d. \text{ Pretože } c.d = p_1^{l_1} \dots p_k^{l_k} \text{ a tento}$

rozklad je až na poradie činiteľov jednoznačný, musí platiť $c=p_1^{s_1}\dots p_k^{s_k}$, $d=p_1^{t_1}\dots p_k^{t_k}$, kde pre každé i je $0\leq s_i,\,0\leq t_i$ a $s_i+t_i=l_i$. Teda pre každé i je $0\leq t_i\leq l_i$. \Longrightarrow Nech $d=p_1^{t_1}\dots p_k^{t_k}$ a pre každé $i=\{1,\dots,k\}$ platí $l_i-t_i\geq 0$. Potom $c=p_1^{l_1-t_1}\dots p_k^{l_k-t_k}\in\mathbb{N}$ a $c.d=p_1^{l_1-t_1}\dots p_k^{l_k-t_k}.p_1^{t_1}\dots p_k^{t_k}=p_1^{l_1}\dots p_k^{l_k}=n$.

Dôsledok 1.2.7. Nech $m, n \in \mathbb{N}$ a $p_1 \dots p_k$ sú všetky (navzájom rôzne) prvočísla, ktoré sa vyskytujú v kanonickom rozklade m a n. Potom $m = p_1^{l_1} \dots p_k^{l_k}, l_1 \dots l_k \in \mathbb{N}_0, n = p_1^{t_1} \dots p_k^{t_k},$ $t_1 \dots t_k \in \mathbb{N}_0$ a platí

$$(m,n) = p_1^{s_1} \dots p_k^{s_k},$$
 $kde \ s_i = \min\{l_i, t_i\} \ pre \ i = 1, \dots, k,$
 $[m,n] = p_1^{r_1} \dots p_k^{r_k},$ $kde \ r_i = \max\{l_i, t_i\} \ pre \ i = 1, \dots, k.$

Dôkaz. Cvičenie.

Príklad. Určte (5445,2625) aj [5445,2625]

Riešenie:

 $5445 = 3^2.5.11^2 = 3^2.5.7^0.11^2$

 $2625 = 3.5^{3}.7 = 3.5^{3}.7.11^{0}$

 $(5445, 2625) = 3.5.7^{\circ}.11^{\circ} = 15$

 $[5445, 2625] = 3^2.5^3.7.11^2 = 952875$

Veta 1.2.5 hovorí, že prvočísel je nekonečne veľa ale nehovorí o tom, ako sú v množine N rozložené. Pre ľubovoľné $x \in \mathbb{R}$ nech $\pi(x)$ je počet všetkých prvočísel, ktoré sú menšie alebo rovné ako x. Potom zrejme $\pi(-1) = \pi(0) = \pi(1) = 0$, $\pi(2) = 1$, $\pi(3) = 2$, $\pi(8) = 4$ atď. Funkcia $\pi(x)$ je jednou z možností vyjadrenia rozloženia prvočísel, neexistuje však žiaden vzorec, ktorý by vyjadroval hodnotu $\pi(n)$ pre každé $n \in \mathbb{N}$. Preto bola snaha aproximovať hodnoty funkcie $\pi(x)$ nejakými elementárnymi funkciami. Jedna z takých funkcií, ktorú navrhol Gauss (18. storočie), je funkcia $f(x) = \frac{x}{\ln x}$. Gauss vyslovil hypotézu, že táto funkcia dobre aproximuje funkciu $\pi(x)$, t.j. že platí $\lim_{x\to\infty}\frac{\pi(x)}{\frac{1}{\ln x}}=1$. Až koncom 19. storočia (1896) sa tento výsledok podarilo dokázať a nazýva sa prvočíselná veta

Veta 1.2.8 (prvočíselná veta). Nech pre každé $x \in \mathbb{R}$ $\pi(x)$ označuje počet všetkých prvočísel menších alebo rovných ako x. Potom

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln x}} = 1.$$

Poznámka. V teórii čísel existuje rad dodnes nevyriešených problémov, známych už viacero storočí. Napríklad je to problém, či prvočíselných dvojčiat je nekonečne veľa alebo len konečný počet (ak p aj p+2 sú prvočísla, tak dvojica $p,\,p+2$ sa nazýva prvočíselné dvojčatá; napr. 3.5; 5.7; 11.13; ..., p = 10000000000649, p+2.)

Je známe, že pre každé n>1 existuje prvočíslo p tak, že n< p<2n. Ďalej je známe, že existuje $n_0\in\mathbb{N}$ tak, že pre každé $n\geq n_0$ existuje prvočíslo p tak, že $n^3< p<(n+1)^3$. Nie je však známe, či podobné tvrdenie platí pre n^2 a $(n+1)^2$. Takisto nie je známe, či v postupnosti $\{n^2+1\}_{n=1}^{\infty}$ je konečne alebo nekonečne veľa prvočísel.

Porovnanie hodnôt funkcií $\pi(x)$ a $\frac{x}{\ln x}$ pre niektoré hodnoty x:

x	$\pi(x)$	$\frac{x}{\ln x}$
1 000	168	145
10 000	1229	1086
100 000	9592	8 686
1 000 000	78498	72382
10 000 000	664579	620419

Cvičenia

- 1. Dokážte, že ak $n \geq 2$ je zložené číslo a p je najmenšie prvočíslo, ktoré delí n, tak $p \leq \sqrt{n}$.
- 2. Zistite, či 283 (397) je prvočíslo.
- 3. Eratostenovo sito.
- 4. Nech m>1. Dokážte, že najmenšie $k\in\mathbb{N},\,k>1$, ktoré delí m je prvočíslo.
- 5. Dokážte, že ak 2^n-1 je prvočíslo $(n \in \mathbb{N})$, tak n je prvočíslo. Ukážte, že obrátené tvrdenie neplatí. $(M_n=2^n-1$ Mersenovo číslo¹) $[M_{11}=2^{11}-1=2047$ nie je prvočíslo, $23 \mid M_{11}$.]
- 6. Dokážte, že ak 2^n+1 $(n \in \mathbb{N})$ je prvočíslo, tak existuje $m \in \mathbb{N}_0$ tak, že $n=2^m$. Ukážte na príklade, že obrátený výrok neplatí. $(F_n=2^{2^n}+1$ Fermatove čísla) $[F_5=2^{32}+1$ nie je prvočíslo, $[F_5=2^{32}+1]$
- 7. Dokážte, že pre každé $k \in \mathbb{N}$ existuje k po sebe nasledujúcich prirodzených čísel, ktoré sú všetky zložené čísla.
- 8. Dokážte, že pre každé $n \in \mathbb{N}, n > 2$ existuje prvočíslo p také, že n
- 9. a) Dokážte, že ak p>3 je prvočíslo, tak existuje $k\in\mathbb{N}_0$, pre ktoré p=6k+1 alebo p=6k+5.
 - b) Nájdite všetky prvočísla p také, že p+2 aj p+10 sú tiež prvočísla.
- 10. Nech $a,b\in\mathbb{N}, a>0, b>0$ a $a.b=p_1^{l_1}\dots p_k^{l_k}$ je kanonický rozklad. Potom $a=p_1^{t_1}\dots p_k^{t_k},$ $b=p_1^{s_1}\dots p_k^{s_k},$ kde pre každé i $0\leq t_i,s_i\leq l_i.$ Dokážte, že $(a,b)=p_1^{u_1}\dots p_k^{u_k},$ kde $u_i=\min\{t_i,s_i\}$ pre všetky $i=1,\dots,k$ a $[a,b]=p_1^{v_1}\dots p_k^{v_k},$ kde $v_i=\max\{t_i,s_i\}$ pre všetky $i=1,\dots,k$.
- 11. Nájdite kanonické rozklady čísel 4725, 3718, 3234 a určte (4725,3718), [4725,3718], (3718,3234), [3718,3234].
- 12. Nájdite všetky delitele čísel: a) 72, b) $11^5.17^2$.
- 13. Nájdite prirodzené číslo, ktoré je deliteľné číslom 2 a číslom 9 a má práve 14 deliteľov v \mathbb{N} .

 $^{^{1}}$ mních Mersenne 1644

 $^{^2}$ Euler 1930

- 14. Dokážte, že $n^4 + 4$ nie je prvočíslo pre $n \ge 2$.
- 15. Zistite, ktoré z uvedených čísel je rovné druhej mocnine nejakého prirodzeného čísla: a) $2^2 \cdot 3^{12} \cdot 7^5$, b) $23^{12} \cdot 12^{13}$, c) 1234321, d) 157996443.
- 16. Zistite, koľkými nulami končí číslo a) 100!, b) 1000!
- 17. Aspoň dvojciferné číslo, ktorého všetky cifry sú rovnaké nie je druhou mocninou žiadneho prirodzeného čísla. Dokážte!
- 18*. Nájdite všetky prvočísla tvaru $\frac{n(n+1)}{2}-1,$ kde $n\in\mathbb{N}.$
- 19. Dokážte, že existuje nekonečne veľa prvočísel tvaru 6k-1 $(k \in \mathbb{N})$.
- 20. Ak p a p+2 sú prvočíselné dvojčatá a p>3, tak 6 | p+1. Dokážte!
- 21. Vypočítajte počet deliteľov čísla 324000.
- 22^* . Koľko čísel menších ako 3^n5^m je s číslom 3^n5^m nesúdeliteľných?
- 23*. V rovnosti LIK × LIK = BUBLIK nahraďte každé písmeno cifrou tak, aby vznikla identita. (Rôznym písmenám zodpovedajú rôzne cifry.) Riešte tú istú úlohu pre rovnosť SUK × SUK = BARSUK. (Návod: všimnite si, že 1000 | LIK × (LIK 1) a čísla LIK a LIK 1 sú nesúdeliteľné.)
- 24*. Dokážte, že ak p je prvočíslo a 0 < n < p, tak $p \mid \binom{p}{n} = \frac{p(p-1)\dots(p-n+1)}{n!}$.

1.3 Číselné sústavy

$$\begin{array}{l} 203 = 2.10^2 + 0.10 + 3.10^0 & 0 \leq 2, 0, 3 < 10 \\ 203 = 4.7^2 + 1.7 + 0.7^0 = (410)_7 & 0 \leq 4, 1, 0 < 7 \\ 13 = 1.2^3 + 1.2^2 + 1.2^0 = (1101)_2 \end{array}$$

Veta 1.3.1. Nech $g \in \mathbb{N}$, $g \geq 2$. Potom pre každé $n \in \mathbb{N}$ existuje $k \in \mathbb{N}_0$ a $c_0, \ldots, c_k \in \mathbb{N}_0$ tak, že pre všetky $i \in \{0, \ldots, k\}$ $c_i \leq g-1$, $c_k \neq 0$ a $n = c_k g^k + \ldots + c_1 g + c_0$. Toto vyjadrenie je jednoznačné.

 $D\hat{o}kaz$. Existencia. Matematickou indukciou. Pre $n=1, k=0, c_0=1$ - platí.

Nech n>1 a pre všetky $m\in\mathbb{N},\,m< n$ výrok platí. Dokážeme, že potom platí aj pre n. Podľa vety 1.1.3 existujú $l,c_0\in\mathbb{Z}$ tak, že

$$n = l.g + c_0, \ 0 \le c_0 < g.$$

Zrejme $l \ge 0$, pretože ak l < 0, tak $l \le -1$, a preto $l.q \le -g$ a potom $n = l.g + c_0 \le -g + c_0 < 0$. . . spor.

Ak l=0, máme $n=c_0$, t.j. k=0, $c_0 \leq g-1$, $c_0 \in \mathbb{N}_0$, $c_0 \neq 0$, t.j. výrok platí.

Nech $l \geq 1$. Pretože 1 < g, platí $l < l.g \leq l.g + c_0 = n$. Teda $1 \leq l < n$ a podľa indukčného predpokladu existuje $k \in \mathbb{N}_0$, $b_0, \ldots, b_k \in \mathbb{N}_0$ tak, že pre všetky i $b_i \leq g-1$, $b_k \neq 0$ a $l = b_k g^k + \ldots + b_1 g + b_0$. Potom

$$n = l.g + c_0 = b_k g^{k+1} + \ldots + b_0 g + c_0.$$

Ak položíme $b_0=c_1,\ldots,b_k=c_{k+1}$, tak dostaneme $n=c_{k+1}g^{k+1}+\ldots+c_1g+c_0, \ (\forall i)c_i\leq g-1,$ $c_{k+1}\neq 0,\ k+1\in\mathbb{N}_0$. Teda výrok platí pre n.

Jednoznačnosť. Nech $n=c_kg^k+\ldots+c_1g+c_0=d_mg^m+\ldots+d_1g+d_0,\ k,m\in\mathbb{N}_0$, a pre všetky $i\ 0\leq c_i\leq g-1,\ c_k\neq 0$, pre všetky $j\ 0\leq d_j\leq g-1,\ d_m\neq 0$. Najprv dokážeme, že k=m. Nepriamo. Nech $k\neq m$. Potom k< m alebo k>m. Nech k< m. Potom $k+1\leq m$

$$n = c_k g^k + \dots + c_0 \le (g-1)g^k + \dots + (g-1) =$$

$$= (g-1)(g^k + \dots + 1) = g^{k+1} - 1 < g^{k+1} \le g^m \le d_m g^m + \dots + d_0 = n$$

Teda n < n . . . spor. Podobne pre m < k.

Preto k = m.

Nech existuje i také, že $c_i \neq d_i$ a j je najväčšie číslo, pre ktoré $c_j \neq d_j$. Nech napríklad $c_j < d_j$. Potom

$$0 = n - n = (d_j - c_j)g^j + \ldots + (d_1 - c_1)g + (d_0 - c_0) \ge$$

$$\ge (d_j - c_j)g^j - (g - 1)g^{j-1} - \ldots - (g - 1) \ge g^j - (g^j - 1) = 1 > 0.$$

Teda 0 > 0 ... spor. Podobne pre $d_i < c_i$.

Preto pre
$$i = 0, \ldots, k \ c_i = d_i$$
.

Vyjadrenie $n = c_k g^k + \ldots + c_1 g + c_0$, $k \in \mathbb{N}_0$, $c_0, \ldots, c_k \in \mathbb{N}_0$, $\forall i \ c_i \leq g - 1$, $c_k \neq 0$, ktoré zapisujeme tiež $n = (c_k \ldots c_0)_q$, sa nazýva vyjadrenie čísla $n \ v \ g$ -adickej sústave.

Príklad. Vyjadrite číslo 356 v sedmičkovej sústave.

$$356: 7 = 50$$
 $356 = 50.7 + 6$
 6
 $50: 7 = 7$ $50 = 7.7 + 1$
 1 $356 = (7.7 + 1).7 + 6 = 7^3 + 1.7 + 6$
 $7: 7 = 1 < 7$ $= 1.7^3 + 0.7^2 + 1.7 + 6 = (1016)_7$

Vyjadrite 356 v päťkovej sústave.

$$356:5=71$$
 $71:5=14$ $14:5=2<5$

 $356 = (2411)_5$

Cvičenia

- 1. Vyjadrite čísla 217, 1513, 2120 v a) 3-kovej, b) 5-kovej, c) 9-kovej sústave.
- 2. Vyjadrite číslo 12892 v 5-kovej a 6-kovej sústave a číslo $(10321)_4$ v desiatkovej sústave. $[12892=(403032)_5=(135404)_6]$
- 3. Vyjadrite čísla $(257)_8$, $(301)_4$ v dvojkovej sústave a čísla $(111100101)_2$, $(1100101)_2$ v štvorkovej a osmičkovej sústave.
- 4. Vyjadrite v dvojkovej sústave prvých 6 prvočísel.
- 5. Určte číslo n, pre ktoré platí $n=(a_1a_0)_9=(a_0a_1)_{10}$.
- 6. Určte číslo n, pre ktoré platí $n = (a_1 a_0)_{10} = (a_1 a_0 2)_3$.

1.4 Kongruencie

1.4.1 Pojem kongruentnosti mod n, základné vlastnosti

Vo vzťahu k deliteľnosti číslom 5 možno množinu $\mathbb Z$ rozdeliť na čísla deliteľné 5 a nedeliteľné 5. Čísla nedeliteľné 5 možno ešte rozdeliť podľa toho, aký zvyšok dávajú po delení číslom 5. Čísla, ktoré dávajú rovnaký zvyšok po delení 5 majú, čo sa týka deliteľnosti číslom 5 rovnaké vlastnosti, budeme hovoriť, že sú kongruentné mod 5.

Definícia 1.4.1. Nech $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$. Hovoríme, že a je kongruentné s b modulo n, ak $n \mid a - b$. Zápis: $a \equiv b \pmod{n}$.

Príklad. $4 \equiv 1 \pmod{3}, -2 \equiv 3 \pmod{5}, \forall a, b \in \mathbb{Z} \ a \equiv b \pmod{1}$

Veta 1.4.2. *Nech* $a, b, c, d \in \mathbb{Z}$ $a \ n \in \mathbb{N}$. *Potom plati:*

- (1) $a \equiv a \pmod{n}$
- (2) $Ak \ a \equiv b \ (mod \ n), \ tak \ b \equiv a \ (mod \ n).$
- (3) $Ak \ a \equiv b \pmod{n}, \ b \equiv c \pmod{n}, \ tak \ a \equiv c \pmod{n}.$
- (4) $Ak \ a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$, $tak \ a \pm c \equiv b \pm d \pmod{n}$ $a \ a.c \equiv b.d \pmod{n}$.
- (5) Al $a.c \equiv b.c \pmod{n}$, (c, n) = 1, $tak \ a \equiv b \pmod{n}$.
- (6) $Ak \ f(x) = a_k x^k + \ldots + a_1 x + a_0, \ a_i \in \mathbb{Z} \ a \ c \equiv d \ (mod \ n), \ tak \ f(c) \equiv f(d) \ (mod \ n).$
- (7) Pre každé $a \in \mathbb{Z}$ existuje práve jedno $l \in \{0, 1, \dots, n-1\}$ také, že $a \equiv l \pmod{n}$.
- (8) $Ak \ a = a'n + k, \ b = b'n + l \ a \ 0 \le k, l < n, \ tak \ a \equiv b \pmod{n} \Leftrightarrow k = l.$
- (9) $Ak \ a \equiv b \ (mod \ n), \ tak \ (a, n) = (b, n).$

 $D\hat{o}kaz$. (1) $n \mid a - a = 0$

- (2) Ak $n \mid a b$, tak $n \mid -(a b) = b a$.
- (3) Ak $n \mid a b, n \mid b c, \text{ tak } n \mid (a b) + (b c) = a c$
- (4) Ak $n \mid a b$, $n \mid c d$, tak $n \mid (a b) \pm (c d) = (a \pm c) (b \pm d)$. ac bd = ac ad + ad bd = a(c d) + d(a b). Ak $n \mid a b$, $n \mid c d$, tak $n \mid d(a b) + a(c d) = ac bd$.
 - (5) Ak $n \mid ac bc = (a b).c$, (n, c) = 1, tak $n \mid a b$.
- (6) Ak $c \equiv d \pmod{n}$, tak pre každé $i \in \{1, \ldots, k\}$ $c^i \equiv d^i \pmod{n}$. Potom $\forall i \ a_i c^i \equiv a_i d^i \pmod{n}$, $a_0 \equiv a_0 \pmod{n}$, a preto $a_k c^k + \ldots + a_1 c + a_0 \equiv a_k d^k + \ldots + a_1 d + a_0 \pmod{n}$.
- (7) Existujú $k, l \in \mathbb{Z}$ tak, že a = k.n + l a $0 \le l < n$, t.j. $l \in \{0, 1, ..., n-1\}$. Potom a l = k.n, t.j. $n \mid a l$. Preto $a \equiv l \pmod{n}$. Nech $l' \in \{0, 1, ..., n-1\}$ a $a \equiv l' \pmod{n}$. Potom $l \equiv l' \pmod{n}$ a teda $n \mid l' l$. Preto $n \mid |l' l|$. Súčasne $0 \le |l' l| < n$. Preto |l l'| = 0, t.j. l = l'.
- (8) \implies Ak $a \equiv b \pmod{n}$, tak $k \equiv l \pmod{n}$, lebo platí $a \equiv k \pmod{n}$ a $b \equiv l \pmod{n}$. Pretože $k, l \in \{0, 1, ..., n-1\}$, máme k = l.
 - $\leftarrow a \equiv k \pmod{n}, b \equiv l \pmod{n}. \text{ Ak } k = l, \text{ tak } a \equiv b \pmod{n}.$
 - $\overline{(9)} n \mid a b, (a, n) = d, (b, n) = d'$
- $d \mid a, n$, preto $d \mid a, a b$ a potom $d \mid a (a b) = b$.

Teda $d \mid n, b$, a preto $d \leq d'$. Podobne sa ukáže, že $d' \leq d$.

П

Uvažujme o kongruentnosti mod 5. Je to relácia ekvivalencie na \mathbb{Z} . Podľa predchádzajúcej vety, časť (8) platí, že $a \equiv b \pmod{5}$ práve vtedy, keď zvyšok po delení čísla a a zvyšok po delení čísla b číslom 5 sú rovnaké. Množina $[1]_5 = \{5z+1; z \in \mathbb{Z}\}$ obsahuje všetky celé čísla, ktorých zvyšok po delení číslom 5 je 1 a teda pre ľubovoľné $a, b \in [1]_5$ platí $a \equiv b \pmod{5}$. Ak $c \notin [1]_5$ a $a \in [1]_5$, tak $c \not\equiv a \pmod{5}$.

Analogicky, množiny $[0]_5 = \{5z; z \in \mathbb{Z}\}$, $[2]_5 = \{5z + 2; z \in \mathbb{Z}\}$, $[3]_5 = \{5z + 3; z \in \mathbb{Z}\}$, $[4]_5 = \{5z + 4; z \in \mathbb{Z}\}$ sú množiny navzájom kongruentných prvkov mod 5, ktoré sa nazývajú zvyškové triedy mod 5. Ak prvky c, resp. d patria do rôznych zvyškových tried, tak $c \not\equiv d \pmod{5}$. Je zrejmé, že $Z = [0]_5 \cup [1]_5 \cup [2]_5 \cup [3]_5 \cup [4]_5$ a tieto zvyškové triedy sú navzájom disjunktné. Analogická situácia nastáva pre ľubovoľné $n \in \mathbb{N}$.

Definícia 1.4.3. Nech $n \in \mathbb{N}$ a $a \in \mathbb{Z}$. Množina $[a]_n = \{c \in \mathbb{Z}; c \equiv a \pmod{n}\}$ sa nazýva zvyšková trieda modulo n.

```
\begin{array}{l} \mathbf{Priklad.} \ \ a) \ [1]_5 = \{1+5z; z \in \mathbb{Z}\}, \ \text{lebo} \ a \equiv 1 \ (mod \ 5) \Leftrightarrow a-1 = 5z \Leftrightarrow a = 1+5z \\ b) \ [6]_5 = \{6+5z; z \in \mathbb{Z}\} = \{1+5(z+1); z \in \mathbb{Z}\} = [1]_5 \\ c) \ a \in [a]_n, \ \text{lebo} \ a \equiv a \ (mod \ n). \\ d) \ [0]_n = \{n.z; z \in \mathbb{Z}\} \text{ - všetky čísla deliteľn\'e} \ n \\ [1]_n = \{1+n.z; z \in \mathbb{Z}\} \text{ - všetky čísla, ktorých zvyšok po delen\'e} \ n \ \text{je } 1 \\ [2]_n = \{2+n.z; z \in \mathbb{Z}\} \\ \vdots \\ [n-1]_n = \{(n-1)+n.z; z \in \mathbb{Z}\} \\ [n]_n = [0]_n, \ [n+1]_n = [1]_n, \dots [-1]_n = [n-1]_n, \dots \\ \text{Zrejme plat\'e} \ [0]_n \cup [1]_n \cup \dots \cup [n-1]_n = \mathbb{Z}. \end{array}
```

Veta 1.4.4. Nech $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$. Potom platí:

```
(1) a \equiv b \pmod{n} \Leftrightarrow [a]_n = [b]_n
```

(2)
$$a \not\equiv b \pmod{n} \Leftrightarrow [a]_n \cap [b]_n = \emptyset$$

- (3) Pre každé $a \in \mathbb{Z}$ existuje $k \in \{0, \dots, n-1\}$ tak, že $[a]_n = [k]_n$.
- $D\hat{o}kaz$. (1) \Longrightarrow Nech $c \in [a]_n$. Potom $c \equiv a \pmod{n}$. Pretože $a \equiv b \pmod{n}$ dostávame $c \equiv b \pmod{n}$ a teda $c \in [b]_n$. Dokázali sme, že $[a]_n \subseteq [b]_n$. Podobne sa ukáže, že $[b]_n \subseteq [a]_n$. $f \in [a]_n = [b]_n \Rightarrow b \in [a]_n \Rightarrow a \equiv b \pmod{n}$.
- (2) \implies Nech $[a]_n \cap [b]_n \neq \emptyset$. Potom existuje $c \in [a]_n \cap [b]_n$ a teda $c \equiv a \pmod{n}$, $c \equiv b \pmod{n}$. Potom $a \equiv b \pmod{n}$, čo je spor. Teda $[a]_n \cap [b]_n = \emptyset$.
 - \leftarrow Ak $a \equiv b \pmod{n}$, tak $[a]_n = [b]_n$ a teda $[a]_n \cap [b]_n \neq \emptyset$ (lebo $a \in [a]_n \cap [b]_n$).
- $\overline{(3)}$ Pre každé $a \in \mathbb{Z}$ existuje $k \in \{0, \dots, n-1\}$ tak, že $a \equiv k \pmod{n}$ (pozri vetu 1.4.2(7)). Teda $[a]_n = [k]_n$.

Označme $\mathbb{Z}/mod\ n=\{[a]_n:a\in\mathbb{Z}\}$. Potom $\mathbb{Z}/mod\ n=\{[0]_n,[1]_n,\ldots,[n-1]_n\}$. Na tejto množine možno definovať operácie \oplus , \odot nasledovne:

$$[a]_m \oplus [b]_n = [a+b]_n, \quad [a]_m \odot [b]_n = [a.b]_n.$$

Z vlastnosti 1.4.2(4) vyplýva, že operácie sú definované korektne, t.j. výsledok nezávisí na výbere reprezentantov zvyškových tried. Ľahko sa overí, že platí:

Veta 1.4.5. (a) Pre každé $n \in \mathbb{N}$ je $(\mathbb{Z}/mod\ n, \oplus)$ komutatívna grupa.

(b) Pre každé prvočíslo p je $(\mathbb{Z}/mod\ p, \oplus, \odot)$ pole.

Príklad. $(\mathbb{Z}/mod\ 3, \oplus, \odot)$ je pole.

$$[1]_3 + [2]_3 = [3]_3 = [0]_3$$

$$[2]_3.[2]_3 = [4]_3 = [1]_3$$

Vidíme, že toto pole je " v podstate" totožné s polom $(Z_3, +, \cdot)$.

Cvičenia

- 1. Nájdite poslednú cífru čísla a) $213^{174} + 25^{17}$, b) $99^{99} + (7^{17})^{17}$, c) $127^{37} + 45^{131} + 109^{18}$.
- 2. Nájdite všetky prirodzené čísla n, pre ktoré a) $7 \mid 2^n 1$, b) $7 \mid 2^n + 1$.
- 3. Nech $a,b\in\mathbb{Z}$. Dokážte, že 19 | $10a+b \Leftrightarrow 19 \mid a+2b$.
- 4. Overte, či 19 | 539828 s využitím predchádzajúcej úlohy.
- 5. Nech $f(x)=ax^2+bx+c,\,a,b,c\in\mathbb{Z}$. Dokážte, že ak f(4) aj f(5) je nepárne číslo, tak rovnica $ax^2+bx+c=0$ nemá celočíselné korene.
- 6. Dokážte, že pre každé $n \in \mathbb{N}$ platí: Ak $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, $k \in \mathbb{N}$ a pre každé $i = 1, \ldots, n$ $a_i \equiv b_i \pmod{k}$, tak $a_1 + \ldots + a_n \equiv b_1 + \ldots + b_n \pmod{k}$ a $a_1 \ldots a_n \equiv b_1 \ldots b_n \pmod{k}$.
- 7. Určte poslednú cifru čísla $n=22.51+698^5$ pri jeho vyjadrení v päťkovej a v sedmičkovej sústave.
- 8. Ak $a, b \in \mathbb{Z}$, $m, n \in \mathbb{N}$, $m \mid n$ a $a \equiv b \pmod{n}$, tak $a \equiv b \pmod{m}$. Dokážte!
- 9. Aký je zvyšok 167^{452} po delení 11?

1.4.2 Použitie kongruencií pri kritériách deliteľnosti prirodzených čísel

Veta 1.4.6. Prirodzené číslo $n = c_k 10^k + \ldots + c_1 10 + c_0 (= c_k \ldots c_1 c_0)$ je deliteľné číslom 9, resp. $3 \Leftrightarrow \check{c}$ íslo $c_k + \ldots + c_1 + c_0$ je deliteľné číslom 9, resp. 3.

Dôkaz.

$$c_k + \ldots + c_1 + c_0 = c_k 1^k + \ldots + c_1 1 + c_0$$

Zoberme polynóm $f(x) = c_k x^k + \ldots + c_1 x + c_0$. Zrejme $c_i \in \mathbb{N}_0 \subseteq \mathbb{Z}$. Potom n = f(10), $c_k + \ldots + c_1 + c_0 = f(1)$. Platí $10 \equiv 1 \pmod{9}$. Potom podľa 1.4.2(6)

$$n = f(10) \equiv f(1) = c_k + \ldots + c_1 + c_0 \pmod{9}$$
.

Potom 9 | $n \Leftrightarrow 9 \mid c_k + \ldots + c_1 + c_0$, lebo čísla kongruentné modulo 9 dávajú pri delení číslom 9 rovnaké zvyšky.

Platí tiež $10 \equiv 1 \pmod{3}$, a preto $n = f(10) \equiv f(1) = c_k + \ldots + c_1 + c_0 \pmod{3}$. Teda

$$3 \mid n \iff 3 \mid c_k + \ldots + c_1 + c_0.$$

Príklad. $3 \mid 149688 \Leftrightarrow 3 \mid 36 \Leftrightarrow 3 \mid 9$

Veta 1.4.7. Číslo $n = c_k 10^k + \ldots + c_1 10 + c_0 (= c_k \ldots c_1 c_0)$ je deliteľné číslom 11 práve vtedy, keď 11 | $c_0 - c_1 + c_2 - \ldots + (-1)^k c_k$

 $D\hat{o}kaz$. Využijeme polynóm $f(x) = c_k x^k + \ldots + c_1 x + c_0 \ (c_i \in \mathbb{Z})$. Zrejme f(10) = n a $f(-1) = c_0 - c_1 + c_2 - \ldots + (-1)^k c_k$. Platí $10 \equiv -1 \pmod{11}$, a preto

$$n = f(10) \equiv f(-1) = c_0 - c_1 + c_2 - \dots + (-1)^k c_k \pmod{11}$$

Preto

$$11 \mid n \iff 11 \mid c_0 - c_1 + c_2 - \ldots + (-1)^k c_k.$$

Príklad. 11 | $25916 \Leftrightarrow 11 | 6 - 1 + 9 - 5 + 2 = 11$. Teda 11 | 25916.

Veta 1.4.8. Číslo $n = c_k 10^k + \ldots + c_1 10 + c_0 (= c_k \ldots c_1 c_0)$ je deliteľné číslom 7, resp. 11 resp. 13 \Leftrightarrow číslo 7, resp. 11, resp. 13 delí číslo $q = c_0 + c_1 10 + c_2 10^2 - (c_3 + c_4 10 + c_5 10^2) + (c_6 + c_7 10 + c_8 10^2) - \ldots = c_2 c_1 c_0 - c_5 c_4 c_3 + c_8 c_7 c_6 - \ldots$

Príklad. Pre $n = 38\,431\,252\,145$ je q = 145-252+421-38 = 286. 286: 13 = 22, t.j. $13 \mid 286 \Rightarrow 13 \mid n$.

 $D\hat{o}kaz$. Utvorme polynóm $f(x) = (c_0 + c_1 10 + c_2 10^2) + (c_3 + c_4 10 + c_5 10^2)x + (c_6 + c_7 10 + c_8 10^2)x^2 + \dots$

$$f(10^3) = n, f(-1) = q.$$

$$10^3 \equiv -1 \, (mod \, 7),$$

lebo $10^3 - (-1) = 1001 = 143.7 = 7.11.13$. $n = f(10^3) \equiv f(-1) = q \pmod{7}$. Preto

$$7 \mid n \Leftrightarrow 7 \mid q$$
.

$$10^{3} \equiv -1 \pmod{11}$$
$$n = f(10^{3}) \equiv f(-1) = q \pmod{11}$$

Teda 11 | $m \Leftrightarrow 11 | q$.

Podobne pre 13, pretože $10^3 \equiv -1 \pmod{13}$.

Príklad. $7 \mid 10192896 \Leftrightarrow 7 \mid 896 - 192 + 10 = 714$ $7 \mid 10192896$

Veta 1.4.9. Nech $g \ge 2$ a $n = c_k g^k + \ldots + c_1 g + c_0 (= (c_k \ldots c_1 c_0)_g)$ je prirodzené číslo vyjadrené v g-adickej sústave. Potom platí:

$$g-1 \mid n \Leftrightarrow g-1 \mid c_k + \ldots + c_0$$

$$g+1 \mid n \Leftrightarrow g+1 \mid c_0 - c_1 + \ldots + (-1)^k c_k$$

Dôkaz. Využijeme polynóm $f(x) = c_k x^k + \ldots + c_1 x + c_0$, n = f(g), $c_k + \ldots + c_0 = f(1)$, $c_0 - c_1 + \ldots + (-1)^k c_k = f(-1)$ a to, že $g \equiv 1 \pmod{g-1}$ a $g \equiv -1 \pmod{g+1}$.

Cvičenia

- 1. Dokážte, že číslo $n = c_k 10^k + \ldots + c_1 10 + c_0$ je deliteľné číslom 27, resp. 37 \Leftrightarrow 27 resp. 37 delí číslo $(c_0 + c_1 10 + c_2 10^2) + (c_3 + c_4 10 + c_5 10^2) + \ldots = c_2 c_1 c_0 + c_5 c_4 c_3 + \ldots$
- 2. Zistite, či čísla 149688, 301587, 10291698 sú deliteľné
 - a) číslom 3, resp. 9,
 - b) číslom 7, 11, resp. 13,
 - c) číslom 27, resp. 37.
- 3. Dokážte, že číslo $n=c_k10^k+\ldots+c_110+c_0$ je deliteľné číslom 101 \Leftrightarrow číslo 101 delí číslo $(c_0+c_110)-(c_2+c_310)+(c_4+c_510)-\ldots=c_1c_0-c_3c_2+c_5c_4-\ldots$

m cifier

- 4. Nech $p=10^{m-1}+10^{m-2}+\ldots+10+1=\overbrace{11\ldots 1}$ je prvočíslo. Potom aj m je prvočíslo. Ukážte, že obrátené tvrdenie neplatí.
- 5. Dokážte, že číslo $n=c_k10^k+\ldots+c_110+c_0$ je deliteľné číslom $5\Leftrightarrow c_0=5$ alebo $c_0=0.$
- 6. Nech $n=c_k10^k+\ldots+c_110+c_0$. Dokážte, že platí:
 - a) $4 \mid n \Leftrightarrow 4 \mid 10c_1 + c_0 \ (=c_1c_0)$
 - b) $8 \mid n \Leftrightarrow 8 \mid 10^2c_2 + 10c_1 + c_0 \ (=c_2c_1c_0)$
- 7. Zistite, či je číslo (7812) $_9$ deliteľné ôsmimi a desiatimi.
- 8. Zistite, či je číslo (1202)₆ deliteľné dvomi a tromi.

1.5 Eulerova funkcia a Eulerova veta

Definícia 1.5.1 (Eulerova³ **funkcia).** Zobrazenie $\varphi \colon \mathbb{N} \to \mathbb{R}$, ktoré každému n priradí počet prvkov množiny $\{k \in \mathbb{N}; k \leq n \text{ a } (k,n) = 1\}$ sa nazýva *Eulerova funkcia* (teda $\varphi(n)$ je počet všetkých prirodzených čísel menších alebo rovných ako n, ktoré sú nesúdeliteľné s n.)

Priklad. a) $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(8) = 4$

- b) Ak n > 1, tak $\varphi(n)$ je počet všetkých prirodzených čísel menších ako n a nesúdeliteľných s n (lebo (n,n) = n > 1).
- c) Pre každé prvočíslo p platí $\varphi(p) = p 1$.

Veta 1.5.2 (Eulerova). Nech $n \in \mathbb{N}$. Potom pre každé $a \in \mathbb{Z}$, pre ktoré (a, n) = 1, platí

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

 $D\hat{o}kaz$. Nech r_1, \ldots, r_k sú všetky navzájom rôzne prirodzené čísla také, že pre každé $i = 1, \ldots, k$ $1 \le r_i \le n$ a $(r_i, n) = 1$. Potom zrejme $k = \varphi(n)$.

Nech $a \in \mathbb{Z}$, (a, n) = 1. Potom pre i = 1, ..., k $(a.r_i, n) = 1$. Pretože $a.r_i \in \mathbb{Z}$ existuje práve jedno $l_i \in \{r_1, ..., r_k\}$ také, že $a.r_i \equiv l_i \pmod{n}$. Podľa vety 1.4.2(9) $(l_i, n) = (a.r_i, n) = 1$. Preto $l_i \in \{r_1, ..., r_k\}$ a $\{l_1, ..., l_k\} \subseteq \{r_1, ..., r_k\}$.

Nech $i,i'\in\{1,\ldots,k\}$ a $l_i=l_{i'}$. Potom $ar_i\equiv ar_{i'}\ (mod\ n)$ a pretože (a,n)=1, dostávame $r_i\equiv r_{i'}\ (mod\ n)$. Pretože $1\leq r_i,r_{i'}\leq n,\ |r_i-r_{i'}|\leq n-1$, a preto $r_i=r_{i'}$ a teda i=i'. Teda ak $i\neq i'$, tak $l_i\neq l_{i'}$ t.j. $\{l_1,\ldots,l_k\}$ má k prvkov, a preto $\{l_1,\ldots,l_k\}=\{r_1,\ldots,r_k\}$. Potom $l_1.l_2\ldots l_k=r_1.r_2\ldots r_k$.

 $^{^{3}}$ Euler 1707-1783

Pretože pre každé $i=1,\ldots,k$ $ar_i\equiv l_i \ (mod\ n),$ podľa vety 1.4.2(4)

$$ar_1.ar_2...ar_k \equiv l_1.l_2...l_k \pmod{n}$$
,

a teda

$$a^k r_1.r_2...r_k \equiv r_1.r_2...r_k \pmod{n}$$
.

Ak pre všetky i $(r_i, n) = 1$, tak $(r_1 r_2 \dots r_k, n) = 1$, a preto podľa vety 1.4.2(5) $a^k \equiv 1 \pmod{n}$. \square

Dôsledok 1.5.3. Ak p je prvočíslo, tak pre každé $a \in \mathbb{Z}$ také, že $p \nmid a$ $a^{p-1} \equiv 1 \pmod{p}$.

$$D\hat{o}kaz$$
. Ak p je prvočíslo, tak $\varphi(p) = p - 1$ a $(a, p) = 1 \Leftrightarrow p \nmid a$.

Dôsledok 1.5.4 (Malá veta Fermatova). $Ak p je prvočíslo, tak pre každé <math>a \in \mathbb{Z}$ platí

$$a^p \equiv a \pmod{p}$$
.

 $D\hat{o}kaz$. Pre každé $a \in \mathbb{Z}$ platí $p \mid a$ alebo $p \nmid a$. Ak $p \mid a$, tak $a \equiv 0 \pmod{p}$ a potom $a^p \equiv 0^p = 0 \pmod{p}$. Teda $a^p \equiv a \pmod{p}$.

Ak
$$p \nmid a$$
, tak $a^{p-1} \equiv 1 \pmod{p}$, $a \equiv a \pmod{p}$ a teda $a^p \equiv a \pmod{p}$.

Príklad.

- 1. Dokážte, že pre každé $n \in \mathbb{N}$ platí, že 15 | $n^5 n$. Riešenie: $n^5 \equiv n \pmod{5}$, a preto 5 | $n^5 - n$. $n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = (n^3 - n)(n^2 + 1)$. $n^3 \equiv n \pmod{3}$, a preto 3 | $n^3 - n$ a potom 3 | $(n^3 - n)(n^2 + 1) = n^5 - n$. Teda 5 | $n^5 - n$, 3 | $n^5 - n$ a (3, 5) = 1, a preto 15 = 3.5 | $n^5 - n$.
- 2. Dokážte, že ak p je prvočíslo a $a \in \mathbb{Z}$ také, že $p \nmid a$ (t.j. $a \not\equiv 0 \pmod{p}$), tak existuje $b \in \mathbb{Z}$ také, že $a.b \equiv 1 \pmod{p}$. Riešenie: $a^{p-1} \equiv 1 \pmod{p}, \ p-1 \geq 1$. Stačí zobrať $b = a^{p-2}$. Potom $a.b = a.a^{p-2} = a^{p-1} \equiv 1 \pmod{p}$.
- 3. Dokážte, že ak $n \in \mathbb{N}$, tak n^{12} je buď deliteľné číslom 13 alebo zvyšok po delení n^{12} číslom 13 je 1. Riešenie: Pretože 13 je prvočíslo, tak 13 | n alebo (n,13)=1. Ak $13 \mid n$, tak $13 \mid n^{12}$. Ak (n,13)=1, tak podľa Eulerovej vety $n^{\varphi(13)}\equiv 1 \pmod{13}$, t.j. $n^{12}\equiv 1 \pmod{13}$. Teda existuje $k\in\mathbb{Z}$ tak, že $n^{12}=13k+1$.

Veta 1.5.5. $Ak \ n > 1 \ a \ n = p_1^{l_1} \dots p_k^{l_k}$ je kanonický rozklad čísla n na prvočísla, tak

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\dots\left(1 - \frac{1}{p_k}\right)$$

 $D\hat{o}kaz$. Nech n>2, $n=p_1^{l_1}\dots p_k^{l_k}$. Je zrejmé, že ak $m\in\mathbb{N}$, tak $(m,n)=1\Leftrightarrow \operatorname{pre}$ všetky $i=1,\dots,k$ $p_i\nmid m_i$. Teda $\varphi(n)$ je počet všetkých $m\in\mathbb{N}$, ktoré nie sú deliteľné prvočíslami p_1,\dots,p_k a pre ktoré $m\leq n$. Pre každé $j\in\{1,\dots,k\}$ označme $\varphi_{p_1,\dots,p_j}(n)$ počet všetkých tých čísel $m\in\mathbb{N}$, pre ktoré $m\leq n$ a m nie je deliteľné číslami p_1,\dots,p_j . Zrejme $\varphi_{p_1,\dots,p_k}(n)=\varphi(n)$.

Teraz dokážeme tento výrok: Pre každé $n \in \mathbb{N}, n \geq 2$, platí: Ak $n = p_1^{l_1} \dots p_k^{l_k}, p_1, \dots, p_k$ sú navzájom rôzne prvočísla, tak pre každé $j \in \{1, \dots, k\}$ $\varphi_{p_1, \dots, p_j}(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_j}\right)$.

Nepriamo. Nech existuje $n \in \mathbb{N}$, $n \geq 2$, pre ktoré uvedený výrok neplatí. Potom existuje najmenšie prirodzené číslo s touto vlastnosťou. Označme ho n_0 .

Nech $n_0 = p_1^{l_1} \dots p_k^{l_k}$, p_1, \dots, p_k sú navzájom rôzne prvočísla, $k \ge 1$. Keďže pre n_0 uvedený výrok neplatí, existuje $j \in \{1, \dots, k\}$ také, že $\varphi_{p_1, \dots, p_j}(n_0) \ne n_0 \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_j}\right)$. Nech j_0 je najmenšie také číslo.

Uvažujme teraz o $\varphi_{p_1}(n_0)$. $\varphi_{p_1}(n_0)$ je počet prirodzených čísel $m \in \mathbb{N}, m \leq n$, pre ktoré $p_1 \nmid m$. Čísla $p_1, 2p_1, \ldots, \frac{n_0}{p_1}p_1$ sú všetky kladné násobky p_1 menšie alebo rovné ako n_0 , t.j. všetky prirodzené čísla menšie alebo rovné ako n_0 , ktoré sú deliteľné číslom p_1 . Ich počet je $\frac{n_0}{p_1}$. Preto

$$\varphi_{p_1}(n_0) = n_0 - \frac{n_0}{p_1} = n_0 \left(1 - \frac{1}{p_1}\right).$$

Pre n_0 a j=1 výrok platí, a preto $j_0\geq 2$ a $j_0-1\geq 1$. Z našej voľby j_0 vyplýva, že

$$\varphi_{p_1...p_{j_0-1}}(n_0) = n_0 \left(1 - \frac{1}{p_1}\right) ... \left(1 - \frac{1}{p_{j_0-1}}\right)$$

a

$$\varphi_{p_1...p_{j_0}}(n_0) \neq n_0 \left(1 - \frac{1}{p_1}\right) ... \left(1 - \frac{1}{p_{j_0}}\right)$$

 $\varphi_{p_1...p_{j_0-1}}(n_0)$ je počet všetkých tých $m \in \mathbb{N}, m \leq n_0$, ktoré nie sú deliteľné p_1,\ldots,p_{j_0-1} . $\varphi_{p_1...p_{j_0}}(n_0)$ dostaneme tak, že do $\varphi_{p_1...p_{j_0-1}}(n_0)$ odrátame počet všetkých kladných násobkov čísla p_{j_0} , ktoré sú menšie alebo rovné ako n_0 a ktoré nie sú násobkami čísel p_1,\ldots,p_{j_0-1} .

Všetky kladné násobky čísla p_{j_0} , menšie alebo rovné ako n_0 , sú $1.p_{j_0}, 2.p_{j_0}, \ldots, l.p_{j_0}, \ldots, \frac{n}{p_{j_0}}.p_{j_0}$, ich počet je $\frac{n_0}{p_{j_0}}$. Ak $i \in \{1, \ldots, j_0 - 1\}$, tak $p_i \mid l.p_{j_0} \Leftrightarrow p_i \mid l$, ekvivalentne $p_i \nmid l.p_{j_0} \Leftrightarrow p_i \nmid l$. Pritom $1 \leq l \leq \frac{n_0}{p_{j_0}}$.

Teda $\varphi_{p_1,\ldots,p_{j_0-1}}\left(\frac{n_0}{p_{j_0}}\right)$ je počet tých $l,\,1\leq l\leq \frac{n_0}{p_{j_0}}$, ktoré nie sú deliteľné žiadnym z čísel p_1,\ldots,p_{j_0-1} , ktorý je totožný s počtom všetkých kladných násobkov čísla p_{j_0} , ktoré sú $\leq n_0$ a nie sú deliteľné žiadnym z čísel p_1,\ldots,p_{j_0-1} .

a nie sú deliteľné žiadnym z čísel p_1,\ldots,p_{j_0-1} . Číslo $\frac{n_0}{p_{j_0}} < n_0$ a pretože $j_0 \geq 2,\, \frac{n_0}{p_{j_0}} \geq p_1 \geq 2$. Preto platí

$$\varphi_{p_1,\dots,p_{j_0-1}}\left(\frac{n_0}{p_{j_0}}\right) = \frac{n_0}{p_{j_0}}\left(1 - \frac{1}{p_1}\right)\dots\left(1 - \frac{1}{p_{j_0-1}}\right).$$

Potom

$$\varphi_{p_1,\dots,p_{j_0}}(n_0) = \varphi_{p_1,\dots,p_{j_0-1}}(n_0) - \varphi_{p_1,\dots,p_{j_0-1}}(\frac{n_0}{p_{j_0}}) =$$

$$= n_0 \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_{j_0-1}}\right) - \frac{n_0}{p_{j_0}} \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_{j_0-1}}\right) =$$

$$= n_0 \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_{j_0-1}}\right) \left(1 - \frac{1}{p_{j_0}}\right).$$

Tým sme dokázali, že pre každé $n \geq 2$ ak $n = p_1^{l_1} \dots p_k^{l_j}$, tak pre každé $j \in \{1, \dots, k\}$ $\varphi_{p_1, \dots, p_j}(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_j}\right)$. Špeciálne,

$$\varphi(n) = \varphi_{p_1,\dots,p_k}(n) = n\left(1 - \frac{1}{p_1}\right)\dots\left(1 - \frac{1}{p_j}\right).$$

Cvičenia

- 1. Dokážte, že platí:

 - a) 42 | n^7-n pre každé $n\in\mathbb{Z}$, b) 7 | $n^{6k}-1$ pre každé $k\in\mathbb{N}$ a $n\in\mathbb{Z}$ také, že (n,7)=1,
 - c) $n^{13} n$, $n \in \mathbb{Z}$ je deliteľné každým z čísel 2,3,5,7,13.
- 2. Ak p, q sú prvočísla, $p \neq q$, tak pre každé celé číslo a platí: $p.q \mid a^{p.q} a^p a^q + a$.
- 3. Nájdite všetky riešenia rovnice $2^m-3^n=1$ v obore prirodzených čísel.
- 4. Dokážte, že ak $n \in \mathbb{N}$ a (10, n) = 1, tak existuje $k \in \mathbb{N}$ tak, že k.n = 99...9 má všetky cifry rovné 9.
- 5. Dokážte, že pre každé $n \in \mathbb{N}$ platí:
 - a) $n^{10} = 11k$ alebo $n^{10} = 11k + 1$
 - b) $n^{12} = 13k$ alebo $n^{12} = 13k + 1$
 - c) $n^{20} = 25k$ alebo 25k + 1
- 6. Nech $a \in \mathbb{Z}$, $n \in \mathbb{N}$, (a, n) = 1. Nech k je najmenšie prirodzené číslo, pre ktoré $a^k \equiv$ $1 \pmod{n}$. Potom pre každé $l \in \mathbb{N}$ také, že $a^l \equiv 1 \pmod{n}$ platí, že $k \mid l$. Špeciálne, $k \mid \varphi(n)$. Dokážte!
- 7. Nájdite najmenšie prirodzené číslo n tak, aby
 - a) $253^n \equiv 1 \pmod{257}$
 - b) $2^n \equiv 1 \pmod{257}$.
- 8. Dokážte, že ak p, q sú prvočísla a $p \neq q$, tak $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$ a $p^q + q^p \equiv$ $p + q \pmod{pq}$.
- 9. Na príklade ukážte, že ak (a, n) > 1, tak nemusí platiť $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- 10. Nájdite najmenšie prirodzené číslo, pre ktoré platí $6x \equiv 1 \pmod{35}$.
- 11*. Nájdite najväčší spoločný deliteľ množiny čísel $\{n^{13} n, n \in \mathbb{Z}\}.$

1.5.1Použitie Eulerovej vety v kryptografii (šifrovaní)

Jedna z metód šifrovania, ktorá sa v súčasnosti používa a je odolná voči odhaleniu je exponenciálna šifra, ktorej podstata je založená na poznatkoch z teórie čísel, vrátane Eulerovej vety.

Nech p je prvočíslo, p > 2 a k je prirodzené číslo, pre ktoré (k, p - 1) = 1. Potom existuje q tak, že $k.q \equiv 1 \pmod{(p-1)}, q \in \{1, \dots, p-2\}$, ktoré možno vypočítať pomocou Euklidovho algoritmu a vety o delení so zvyškom. Existujú $q', z \in \mathbb{Z}$ tak, že 1 = q'k + z(p-1)a existuje $q \in \{0, \dots, p-2\}$, že $q' \equiv q \pmod{p-1}$. Zrejme $k.q' \equiv 1 \pmod{p-1}$ a potom aj $k \cdot q \equiv 1 \pmod{p-1}$. Pretože q'k = qk + z''(p-1) pre nejaké $z'' \in \mathbb{Z}$, platí 1 = qk + z'(p-1), kde z' = z'' + z.

 $\text{Ak } a \in \mathbb{Z}, \, 0 < a < p \text{ a } a^k \equiv b \, (mod \, p), \, \text{tak } b^q \equiv (a^k)^q = a^{k.q} = a^{1+z'(p-1)} = a. (a^{p-1})^{z'} \equiv a = a^{2(p-1)} = a. (a^{p-1})^{2(p-1)} = a.$ $a \pmod{p}$, lebo $a^{p-1} \equiv 1 \pmod{p}$, pretože $p \nmid a$.

Ak teda je dané prvočíslo p>2 a prirodzené číslo k, (k,p-1)=1, (k sa nazýva kľúč šifry), $a \in \{1, \dots, p-2\}$ a poznáme číslo b, pre ktoré $b \equiv a^k \pmod{p}$, tak pomocou k a p vieme určiť q a aj $a \equiv b^q \pmod{p}$, pričom ak 0 < a < p - 2, tak je toto číslo určené jednoznačne.

Príklad. Zašifrujeme (a odšifrujeme) slovo FIRE pomocou prvočísla p=5801, kľúča k=61 tak, že text rozdelíme na bloky po 2 písmená, t.j. po 4 cifry. Najprv nahradíme písmená číslami: $A\to 00,\ B\to 01,\ C\to 02,\ D\to 03,\ E\to 04,\ F\to 05,\ G\to 06,\ H\to 07,\ I\to 08,\ J\to 09,\ K\to 10,\ L\to 11,\ M\to 12,\ N\to 13,\ O\to 14,\ P\to 15,\ Q\to 16,\ R\to 17,\ \ldots,\ Z\to 25.$ Teda FIRE prepíšeme na 05081704 a rozdelíme na 2 bloky po 4 cifry (=2 písmená). 0508 1704

Teraz máme

$$508^{61} \equiv 2713 \pmod{5801}, \qquad 508 < 5801,$$

 $1704^{61} \equiv 3726 \pmod{5801}, \qquad 1704 < 5801.$

Zašifrovaný text je teda 2713 3726.

Pre odšifrovanie určíme qtaké, že $61q\equiv 1\,(mod~5800),$ je to číslo q=1141. Potom určíme, že

$$2713^{1141} \equiv 508 \pmod{5801}$$

 $3726^{1141} \equiv 1704 \pmod{5801}$

a dostaneme pôvodný text 0508 1704, po prepísaní do písmen FIRE.

Táto metóda je značne odolná voči rozlúšteniu šifry pomocou kryptoanalýzy. Aj v prípade, že kryptoanalytik pozná používané prvočíslo p, určenie k pomocou najrýchlejších známych algoritmov vyžaduje pre veľké p veľa času. Napríklad pre 100-ciferné číslo to pre najvýkonnejší počítač (v 80-tych rokoch) vyžadovalo 75 rokov, pre 200-ciferné prvočíslo dokonca 4.10^9 rokov.

1.6 Lineárne kongruencie s jednou neznámou

 $Line \acute{a}rna~kongruencia$ modulo ns jednou neznámou má tvar

$$a.x \equiv b \pmod{n}$$
,

kde $a, b \in \mathbb{Z}$, $a \neq 0$, $n \in \mathbb{N}$ a x je neznáma.

Definícia 1.6.1. Zvyšková trieda $[c]_n$ modulo n sa nazýva riešením lineárnej kongruencie $a.x \equiv b \pmod{n}$ ak $a.c \equiv b \pmod{n}$.

Uvedená definícia je korektná, ak nezávisí od výberu reprezentanta zvyškovej triedy $[c]_n$. Nech $[c]_n = [d]_n$. Potom $c \equiv d \pmod n$, a preto aj $a.c \equiv a.d \pmod n$. Teda $a.c \equiv b \pmod n$ $\Leftrightarrow a.d \equiv b \pmod n$. Ináč povedané, $[c]_n$ je riešenie kongruencie $a.x \equiv b \pmod n$ \Leftrightarrow pre každé $d \in [c]_n$ platí $a.d \equiv b \pmod n$.

Veta 1.6.2. Nech $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$, $a \neq 0$ a (a, n) = d. Potom platí:

- (1) Kongruencia $a.x \equiv b \pmod{n}$ má riešenie $\Leftrightarrow d \mid b$
- (2) $Ak \ d \mid b$, $tak \ lineárna \ kongruencia \ a.x \equiv b \ (mod \ n) \ má \ práve \ d \ riešení.$

 $D\hat{o}kaz$. (1) \implies Nech $[c]_n$ je riešenie danej kongruencie. Potom $a.c \equiv b \pmod{n}$, a preto $n \mid a.c - b$. Pretože $d \mid n$, platí aj $d \mid a.c - b$ a pretože $d \mid a$, platí aj $d \mid a.c$. Potom $d \mid a.c - (a.c - b) = b$.

 \Leftarrow Existujú $u,v\in\mathbb{Z}$ tak, že d=u.a+v.n. $d\mid b$, preto existuje $b'\in\mathbb{Z}$ tak, že b=b'd. Potom b=b'd=b'ua+b'vn. Teda a(b'u)-b=(-b'v)n, t.j. $n\mid a(b'u)-b$. Potom $a.(b'u)\equiv b\ (mod\ n)$ a $[b'u]_n$ je riešenie danej kongruencie.

(2) Pretože $d \mid b$, existuje riešenie $[c_0]_n$ danej kongruencie. $d \mid n$ a preto existuje $l \in \mathbb{N}$ také, že n = l.d. Položme $c_1 = c_0 + l, c_2 = c_0 + 2l, \ldots c_{d-1} = c_0 + (d-1).l$. Dokážeme, že $[c_0]_n, [c_1]_n, \ldots, [c_{d-1}]_n$ sú navzájom rôzne riešenia danej kongruencie a že sú to všetky riešenia. $d \mid a$ a teda existuje $a' \in \mathbb{Z}$ tak, že a = a'.d. Pre každé $i = 0, \ldots, d-1$ $a.c_i = ac_0 + a'.l = ac_0 + a'.l = ac_0 + a'.l = ac_0 \pmod{n}$, a preto $a.c_i \equiv b \pmod{n}$.

Teda pre každé $i = 0, \ldots, d-1$ $[c_i]_n$ je riešenie $a.x \equiv b \pmod{n}$. Nech $0 \le i < j \le d-1$. Potom $0 < c_j - c_i = (j-i)l \le jl < dl = n$, a preto $n \nmid c_j - c_i$. Teda $c_i \not\equiv c_j \pmod{n}$, t.j. $[c_i]_n \neq [c_j]_n$.

Nech $[c]_n$ je riešenie danej kongruencie. Potom $a.c \equiv b \pmod{n}$ a preto $a.c \equiv a.c_0 \pmod{n}$. Potom $n = l.d \mid a.c - a.c_0 = a'.d(c - c_0)$. Potom $l \mid a'(c - c_0)$. Ale (a', l) = 1, a preto $l \mid c - c_0$. Potom existuje $z \in \mathbb{Z}$ $c = c_0 + zl$. Podľa vety o delení so zvyškom existujú $s, j \in \mathbb{Z}$ tak, že z = d.s + j a $0 \le j \le d - 1$. Potom $c = c_0 + jl + sdl = c_0 + jl + sn \equiv c_0 + jl = c_j \pmod{n}$. Teda existuje $j \in \{0, \ldots, d-1\}$ tak, že $[c_i]_n = [c_j]_n$.

Príklad. 1. Vyriešte lineárnu kongruenciu $20x \equiv 28 \pmod{12}$. Riešenie. $(20,12)=4, 4 \mid 28$ a teda existujú práve 4 riešenia.

$$4 = (-1).20 + 2.12 /.7$$
$$20(-7) + 14.12 = 28$$
$$20(-7) \equiv 28 \pmod{12}$$

$$c_0 = -7$$
, $c_1 = -7 + 3 = -4$, $c_2 = -7 + 2.3 = -1$, $c_3 = -7 + 3.3 = 2$
Riešenia sú $[-7] = [5]$, $[-4] = [8]$, $[-1] = [11]$, $[2]$.

Pretože $20x \equiv 8x \pmod{12}$ a $28 \equiv 4 \pmod{12}$, je daná kongruencia ekvivalentná s kongruenciou $8x \equiv 4 \pmod{12}$.

2. Vyriešte kongruenciu $15x \equiv -66 \pmod{18}$. $(15,18)=3, 3 \mid -66 \pmod{18}$ kongruencia má 3 riešenia.

$$-66 \equiv 6 \pmod{18}$$
$$15x \equiv 6 \pmod{18}$$
$$3 = (-1).15 + 1.18$$
$$15.(-2) + 2.18 = 6$$
$$15.(-2) \equiv 6 \pmod{18}$$

[-2]=[16] je riešenie. 18 : 3 = 6, ďalšie riešenia sú [4] a [10].

Cvičenia

- 1. Vyriešte lineárne kongruencie s jednou neznámou:
 - a) $10x \equiv 14 \pmod{12}$
 - b) $7x \equiv 46 \, (mod \, 21)$
 - c) $15x \equiv -72 \pmod{18}$
 - d) $14x \equiv -63 \pmod{35}$
- 2. Zistite, ktoré z nasledujúcich kongruencií sú riešiteľné: a) $6x \equiv 1 \pmod{9}$, b) $9x \equiv 3 \pmod{6}$, c) $14x \equiv 21 \pmod{70}$.
- 3. Riešte kongruencie: a) $20x \equiv 4 \pmod{30}$, b) $20x \equiv 30 \pmod{4}$, c) $353x \equiv 254 \pmod{400}$.

- 4. Do kongruencie $10x \equiv 15 \pmod{n}$ doplňte za n také číslo, aby:
 - a) kongruencia nemala riešenie,
 - b) kongruencia mala práve 2 riešenia.

1.7 Aritmetické funkcie φ , τ , σ

Definícia 1.7.1. (1) Ľubovoľné zobrazenie $f: \mathbb{N} \to \mathbb{R}$ sa nazýva aritmetická funkcia.

- (2) Aritmetická funkcia $f: \mathbb{N} \to \mathbb{R}$ sa nazýva multiplikatívna, ak platí:
 - (a) Existuje $n \in \mathbb{N}$ tak, že $f(n) \neq 0$.
 - (b) Ak $m, n \in \mathbb{N}$ a (m, n) = 1, tak f(m.n) = f(m).f(n),

Príklad. Eulerova funkcia φ je aritmetická funkcia a ukážeme, že je multiplikatívna.

Funkcia $\pi: \mathbb{N} \to \mathbb{R}$, $\pi(n)$ je počet všetkých prvočísel menších alebo rovných ako n je aritmetická funkcia, nie je multiplikatívna. $\pi(2)=1, \pi(3)=2, \pi(6)=3, (2,3)=1, 6=2.3, 3=\pi(6)\neq\pi(2).\pi(3)=2$

Lema 1.7.2. Ak f je multiplikatívna aritmetická funkcia, tak f(1) = 1.

$$D\hat{o}kaz$$
. Existuje $n \in \mathbb{N}$, $f(n) \neq 0$. $(1,n) = 1$. $1.f(n) = f(1.n) = f(1).f(n)$. Preto $f(1) = 1$.

Definícia 1.7.3. Pre každé $n \in \mathbb{N}$ $\tau(n)$ označuje počet všetkých kladných deliteľov čísla n a $\sigma(n)$ súčet všetkých kladných deliteľov čísla n.

Príklad.
$$\tau(1)=1, \ \tau(2)=2, \ \tau(8)=4,$$
 pre každé prvočíslo $p \ \tau(p)=2.$ $\sigma(1)=1, \ \sigma(2)=3, \ \sigma(8)=15,$ pre každé prvočíslo $p \ \sigma(p)=p+1.$

 $\tau, \sigma \colon \mathbb{N} \to \mathbb{R}$ sú aritmetické funkcie.

Veta 1.7.4. Nech $n \in \mathbb{N}$, n > 1 a $n = p_1^{l_1} \dots p_k^{l_k}$ je kanonický rozklad čísla n na prvočísla. Potom platí:

(1)
$$\tau(n) = (l_1 + 1) \dots (l_k + 1)$$

(2)
$$\sigma(n) = \frac{p_1^{l_1+1}-1}{p_1-1} \cdot \dots \cdot \frac{p_k^{l_k+1}-1}{p_k-1} = (p_1^{l_1}+p_1^{l_1-1}+\dots p_1+1) \dots (p_k^{l_k}+p_k^{l_k-1}+\dots p_k+1)$$

 $D\hat{o}kaz$. (1) $d \mid n \Leftrightarrow d = p_1^{t_1} \dots p_k^{t_k}$, kde $0 \leq t_i \leq l_i$ pre $i = 1, \dots, k$. Teda $\tau(n) = (t_1 + 1) \dots (t_k + 1)$.

1)...
$$(t_k + 1)$$
.
(2) $(p_1^{l_1} + p_1^{l_1-1} + \dots p_1 + 1)(p_2^{l_2} + p_2^{l_2-1} + \dots p_2 + 1)\dots(p_k^{l_k} + p_k^{l_k-1} + \dots p_k + 1) = \sum_{0 \le t_i \le l_i} p_1^{t_1} \dots p_k^{t_k} = \sum_{d \mid n} d = \sigma(n)$

Veta 1.7.5. Funkcie φ , τ , σ sú multiplikatívne.

 $D\hat{o}kaz$. $\varphi(1) = \tau(1) = \sigma(1) = 1$, t.j. pre $1 \in \mathbb{N}$ je $\varphi(1) \neq 0$, $\tau(1) \neq 0$ $\sigma(1) \neq 0$. Nech $m, n \in \mathbb{N}$, (m, n) = 1. Ak m = 1, tak pre každé $f \in \{\varphi, \tau, \sigma\}$ platí:

$$f(1.n) = f(n) = 1.f(n) = f(1).f(n).$$

Podobne pre n=1.

Nech m>1 aj n>1. Potom $m=p_1^{l_1}\dots p_k^{l_k},\ n=q_1^{r_1}\dots q_s^{r_s},\ p_1,\dots,p_k$ aj q_1,\dots,q_s sú navzájom rôzne prvočísla. Pretože $(m,n)=1,\ \{p_1,\dots,p_k\}\cap\{q_1,\dots,q_s\}=\emptyset$ a teda

 $p_1,\ldots,p_k,q_1,\ldots,q_s$ sú navzájom rôzne prvočísla a $m.n=p_1^{l_1}\ldots p_k^{l_k}q_1^{r_1}\ldots q_s^{r_s}$ je kanonický rozklad čísla m.n na prvočísla.

Podľa vety 1.5.5

$$\varphi(m.n) = m.n \left(1 - \frac{1}{p_1} \right) \dots \left(1 - \frac{1}{p_k} \right) \left(1 - \frac{1}{q_1} \right) \dots \left(1 - \frac{1}{q_s} \right) =$$

$$= m \left(1 - \frac{1}{p_1} \right) \dots \left(1 - \frac{1}{p_k} \right) \dots \left(1 - \frac{1}{q_1} \right) \dots \left(1 - \frac{1}{q_s} \right) = \varphi(m) \cdot \varphi(n)$$

Podla vety 1.7.4
$$\tau(m.n) = (l_1 + 1) \dots (l_k + 1)(r_1 + 1) \dots (r_s + 1) = \tau(m) \cdot \tau(n)$$

$$\sigma(m.n) = (p_1^{l_1} + p_1^{l_1 - 1} + \dots + p_1 + 1) \dots (p_k^{l_k} + p_k^{l_k - 1} + \dots + p_k + 1)(q_1^{r_1} + q_1^{r_1 - 1} + \dots + q_1 + 1) \dots (q_s^{r_s} + q_s^{r_s - 1} + \dots + q_s + 1) = \sigma(m) \cdot \sigma(n)$$

Veta 1.7.6. Pre Eulerovu funkciu φ platí:

$$\sum_{d|n} \varphi(d) = n.$$

 $D\hat{o}kaz$. n=1. $\sum_{d|1} \varphi(d) = \varphi(1) = 1$.

Nech $n>1,\; n=p_1^{l_1}\dots p_k^{l_k}$ je kanonický rozklad $n.\;d\mid n\Leftrightarrow d=p_1^{t_1}\dots p_k^{t_k},\; 0\leq t_i\leq l_i.$ Pretože ak $i\neq j,$ tak $(p_i^{t_i},p_j^{t_j})=1,$

$$\varphi(d) = \varphi(p_1^{t_1}) \dots \varphi(p_k^{t_k}).$$

Potom

$$\begin{split} \sum_{d|n} \varphi(d) &= \sum_{0 \leq t_i \leq l_i} \varphi(p_1^{t_1} \dots p_k^{t_k}) = \sum_{0 \leq t_i \leq l_i} \varphi(p_1^{t_1}) \dots \varphi(p_k^{t_k}) = \\ &= (1 + \varphi(p_1) + \dots + \varphi(p_1^{l_1}))(1 + \varphi(p_2) + \dots + \varphi(p_2^{l_2})) \dots (1 + \varphi(p_k) + \dots + \varphi(p_k^{l_k})). \end{split}$$

Pre každé prvočíslo p a $l\in\mathbb{N}$ $\varphi(p^l)=p^l-p^{l-1}$, lebo $p,2p,\ldots,p^{l-1}p$ sú všetky čísla deliteľné p, ktoré sú menšie alebo rovné p^l a ich počet je p^{l-1} . Potom

$$\sum_{d|n} \varphi(d) = (1 + (p_1 - 1) + (p_1^2 - p_1) + \dots + (p_1^{l_1} - p_1^{l_1 - 1})).$$

$$(1 + (p_2 - 1) + (p_2^2 - p_2) + \dots + (p_2^{l_2} - p_2^{l_2 - 1})) \dots$$

$$\dots (1 + (p_k - 1) + (p_k^2 - p_k) + \dots + (p_k^{l_k} - p_k^{l_k - 1})) = p_1^{l_1} \dots p_k^{l_k} = n.$$

Číslo $n \in \mathbb{N}$ sa nazýva perfektné, ak $\sigma(n) = 2n$, t.j. súčet vlastných deliteľov čísla n je rovný n. Perfektné čísla sú napríklad 6=1+2+3 ($\sigma(6)=12$), 28 ($\sigma(28)=56$), 496, 8128. Prvá časť nasledujúcej vety bola známa už Euklidovi.

Veta 1.7.7. Ak $2^n - 1$ je prvočíslo, tak $a = 2^{n-1}(2^n - 1)$ je perfektné a každé párne perfektné číslo má tento tvar.

 $D\hat{o}kaz$. Ak $2^n - 1$ je prvočíslo a $a = 2^{n-1}(2^n - 1)$. Potom

$$\sigma(a) = \sigma(2^{n-1}(2^n - 1)) = \frac{2^n - 1}{2 - 1}(2^n - 1 + 1) = 2^n(2^n - 1) = 2a.$$

Nech teraz a je párne perfektné číslo. Potom $a=m.2^{n-1},\ n\geq 2,\ m>0,\ m$ je nepárne. Pretože a je perfektné, platí

$$m.2^n = 2a = \sigma(a) = \sigma(m.2^{n-1}) = \sigma(m)\sigma(2^{n-1}) = \sigma(m)(2^n - 1).$$

Preto $\sigma(m)=\frac{m.2^n}{2^n-1}$ - je to prirodzené číslo, $(2^n,2^n-1)=1$, a preto $2^n-1\mid m$. A preto aj $\frac{m}{2^n-1}\mid m$. Naviac

$$\sigma(m) = \frac{m \cdot 2^n}{2^n - 1} = \frac{m(2^n - 1) + m}{2^n - 1} = m + \frac{m}{2^n - 1}.$$

Teda m má len 2 kladných deliteľov, a preto m je prvočíslo. Potom $\frac{m}{2^n-1}=1$, a teda $m=2^n-1$ je prvočíslo a $a=2^{n-1}(2^n-1)$.

Pretože nie je známe, či Mersennových prvočísel je nekonečne veľa, nie je známe ani to, či párnych perfektných čísel je nekonečne veľa. V súčasnosti nie je známe ani jedno nepárne perfektné číslo. Je dokázané, že ak existuje, tak má aspoň 8 prvočíselných deliteľov a musí byť väčšie ako 10^{80} (Cohen). V r. 1977 bol avizovaný výsledok, že také číslo musí byť väčšie ako 10^{200} ale dôkaz nebol publikovaný. Naznačuje to však skutočnosť, že asi neexistuje nepárne perfektné číslo.

Cvičenia

- 1. Vypočítajte $\varphi(144)$, $\varphi(1000)$.
- 2. Vypočítajte $\sigma(144)$, $\sigma(1000)$.
- 3. Určte $\tau(2p^3)$ a $\sigma(2p^3)$, ak p je nepárne prvočíslo.

1.8 Doplnky. Lagrangeova a Wilsonova veta.

Nech p je prvočíslo a $a.x \equiv b \pmod{p}$ je lineárna kongruencia. Ak (a,p)=1, tak daná kongruencia má práve jedno riešenie. Ak teda $a.x \equiv b \pmod{p}$ má viac ako jedno riešenie, tak $(a,p) \neq 1$ a teda (a,p)=p. Potom, keďže má riešenie, platí $p \mid b$ a pretože (a,p)=p, platí tiež $p \mid a$. Okrem lineárnych kongruencií s jednou neznámou možno uvažovať o kongruenciách vyššieho stupňa,

$$f(x) \equiv 0 \pmod{n}$$
, kde $f(x) = a_n x^n + ... + a_1 x + a_0$

a $a_0, a_1 \dots a_n \in \mathbb{Z}$ s neznámou x. Pre takéto kongruencie podľa prvočíselného modulu platí analógia horeuvedeného výsledku pre lineárne kongruencie.

Veta 1.8.1 (Lagrangeova). Nech $f(x) = a_n x^n + ... + a_1 x + a_0$ je polynóm s celočíselnými koeficientami, $a_n \neq 0$ a p je prvočíslo. Potom ak kongruencia

$$f(x) \equiv 0 \, (mod \, p)$$

m'a viac ako n rie'sen'i, tak pre ka'zd'e $i=1,\ldots,n$

$$p \mid a_i$$
.

 $D\hat{o}kaz$. Pripomeňme, že riešením kongruencie $f(x) \equiv 0 \pmod{p}$ je zvyšková trieda $[c]_p$, pre ktorú platí, že $f(c) \equiv 0 \pmod{p}$. Vetu dokážeme indukciou vzhľadom na stupeň n polynómu f(x).

Pre n=1 máme kongruenciu

$$a_1x + a_0 \equiv 0 \pmod{p}$$
.

Nech $[c_0]_p$, $[c_1]_p$ sú dve rôzne riešenia tejto kongruencie. Potom $c_0 \not\equiv c_1 \pmod{p}$ a $a_1c_0 + a_0 \equiv 0 \pmod{p}$, $a_1c_1 + a_0 \equiv 0 \pmod{p}$. Potom $a_1c_0 + a_0 \equiv a_1c_1 + a_0 \pmod{p}$, a preto

$$a_1c_0 \equiv a_1c_1 \pmod{p}$$
.

Ak by platilo $(a_1,p)=1$, tak dostaneme $c_0\equiv c_1\ (mod\ p)$, čo je v spore s predpokladom. Preto platí $(a_1,p)\neq 1$ a teda $p\mid a_1$. Potom ale $a_1\equiv 0\ (mod\ p)$, a preto $a_1c_0\equiv 0\ (mod\ p)$. Potom $a_1c_0+a_0\equiv a_0\ (mod\ p)$ a súčasne $a_1c_0+a_0\equiv 0\ (mod\ p)$. Teda $a_0\equiv 0\ (mod\ p)$, t.j. $p\mid a_0$.

Nech teraz tvrdenie platí pre $n \ge 1$. Dokážeme, že potom platí aj pre n + 1. Nech

$$f(x) = a_{n+1}x^{n+1} + \dots + a_1x + a_0$$

a kongruencia

$$a_{n+1}x^{n+1} + \ldots + a_1x + a_0 \equiv 0 \pmod{p}$$

má n+2 rôznych riešení $[c_0]_p, [c_1]_p, \ldots, [c_{n+1}]_p$. Teda pre každé $i=0,\ldots,n+1$

$$f(c_i) \equiv 0 \pmod{p}$$
.

Vydelíme polynóm f(x) polynómom $x-c_0$ (so zvyškom) a dostaneme $f(x)=(x-c_0).g(x)+r$, kde $g(x)=b_nx^n+\ldots+b_0,\ r\in\mathbb{Z}$. Zrejme platí $b_n=a_{n+1}\neq 0$ a $r=f(c_0)$. $(f(c_0)=(c_0-c_0)g(c_0)+r=0g(c_0)+r=r)$ Teda g(x) je polynóm n-tého stupňa.

Nech i je ľubovoľné číslo $1 \le i \le n+1$. Potom $f(c_i) = (c_i - c_0)g(c_i) + f(c_0) \equiv 0 \pmod{p}$. Pretože $f(c_0) \equiv 0 \pmod{p}$, dostávame $(c_i - c_0)g(c_i) \equiv 0 \pmod{p}$ a teda $p \mid (c_i - c_0)g(c_i)$. Pretože $[c_i]_p \ne [c_0]_p$ platí $c_i \ne c_0 \pmod{p}$ a teda $p \nmid c_i - c_0$. Pretože p je prvočíslo, dostávame $p \mid g(c_i)$ a teda

$$q(c_i) \equiv 0 \pmod{p}$$
.

Teda kongruencia $b_n x^n + \ldots + b_0 \equiv 0 \pmod{p}$ má n+1 rôznych riešení $[c_1]_p, \ldots, [c_{n+1}]_p$ a podľa indukčného predpokladu potom $p \mid b_i$ pre $i = 0, 1, \ldots, n$.

Z platnosti

$$a_{n+1}x^{n+1} + a_nx^n + \ldots + a_1x + a_0 = (x - c_0)(b_nx^n + b_{n-1}x^{n-1} + \ldots + b_1x + b_0) + f(c_0),$$

porovnaním koeficientov polynómov, dostávame: $a_{n+1} = b_n$, $a_n = b_{n-1} - b_n c_0$, $a_{n-1} = b_{n-2} - b_{n-1} c_0$, ..., $a_2 = b_1 - b_2 c_0$, $a_1 = b_0 - b_1 c_0$, $a_0 = f(c_0) - b_0 c_0$. Pretože $p \mid b_n, b_{n-1}, \ldots, b_0, f(c_0)$, je zrejmé, že potom $b \mid a_{n+1}, a_n \ldots a_1, a_0$.

Ako dôsledok Lagrangeovej vety dostávame vetu Wilsonovu, ⁴ ktorú však ako prvý dokázal Lagrange.

Veta 1.8.2 (Wilsonova). Číslo p > 1 je prvočíslo vtedy a len vtedy, keď

$$(p-1)! \equiv -1 \pmod{p}$$
.

 $[\]overline{^{4}\mathrm{V}\left[1
ight]}$ možno nájsť dôkaz Wilsonovej vety použitím Vandermondovho determinantu.

 $D\hat{o}kaz$. \Rightarrow Pre p=2 máme $1!=1\equiv -1\ (mod\ 2)$ a teda výrok platí. Nech p>2. Polynóm

$$f(x) = (x-1)(x-2)\dots(x-(p-1)) - (x^{p-1}-1)$$

má celočíselné koeficienty a stupeň f(x) je aspoň jedna a je menší alebo rovný ako p-2. Pre každé $k\in\{1,\dots,p-1\}$ platí

$$f(k) = (k-1)\dots(k-k)\dots(k-(p-1)) - (k^{p-1}-1) = -k^{p-1}+1.$$

Pretože $p \nmid k$, platí (k, p) = 1 a podľa Eulerovej vety $k^{p-1} \equiv 1 \pmod{p}$. Potom ale

$$f(k) = -k^{p-1} + 1 \equiv 0 \pmod{p}.$$

Teda zvyškové triedy $[1]_p, [2]_p, \ldots, [p-1]_p$ sú navzájom rôzne riešenia kongruencie $f(x) \equiv 0 \pmod p$, a preto p delí všetky koeficienty f(x). Absolútny koeficient f(x) je číslo (p-1)!+1, a preto $p \mid (p-1)!+1$. Teda

$$(p-1)! \equiv -1 \pmod{p}.$$

 \Leftarrow Nech by p bolo zložené. Potom $p=m.n,\,1< m,\,n< p$. Teda $p\mid m.n\mid (p-1)!,\,$ pretože m aj n sa vyskytnú medzi činiteľmi vystupujúcimi v(p-1)!. Dostali sme $(p-1)!\equiv 0\ (mod\ p)$ a súčasne $(p-1)!\equiv -1\ (mod\ p),\,$ čo je spor.

Kapitola 2

g-adické rozvoje reálnych čísel. Kritéria iracionálnosti.

V tejto kapitole sa budeme zaoberať reálnymi číslami. Najprv pripomeňme pojem reálneho čísla a pojem celá časť reálneho čísla.

Reálne číslo a sa nazýva racionálne, ak existuje $z \in \mathbb{Z}$ a $n \in \mathbb{N}$ tak, že $a = \frac{z}{n}$ (ekvivalentne: existuje $n \in \mathbb{N}$ tak, že $a.n \in \mathbb{Z}$).

Celé číslo z sa nazýva celá časť reálneho čísla a, ak platí: $z \le a < z+1$. Označenie: [a]. Teda $[a] \in \mathbb{Z}$ a $[a] \le a < [a]+1$.

Je zrejmé, že ak $a \geq 0$, tak $[a] \in \mathbb{N}_0$.

Pripomeňme, že \mathbb{R} označuje množinu všetkých reálnych čísel, $\mathbb{R}^+ = \{a \in \mathbb{R} : a > 0\}$ a $\mathbb{R}^+_0 = \mathbb{R}^+ \cup \{0\}$. \mathbb{Q} označuje množinu všetkých racionálnych čísel, $\mathbb{Q}^+ = \{r \in \mathbb{Q}; r > 0\}$, $\mathbb{Q}^+_0 = \mathbb{Q}^+ \cup \{0\}$.

2.1 g-adický rozvoj

Veta 2.1.1. Nech $g \in \mathbb{N}$, $g \geq 2$. Potom každé reálne číslo $r \in \mathbb{R}_0^+$ možno jednoznačne vyjadriť v tvare $r = c_0 + \frac{c_1}{g} + \frac{c_2}{g^2} + \ldots + \frac{c_k}{g^k} + \ldots = c_0 + \sum_{k=1}^{\infty} \frac{c_k}{g^k}$, $kde \ c_0 \in \mathbb{N}_0$, $pre \ každé \ k \in \mathbb{N}$ $c_k \in \{0, 1, \ldots, g-1\}$ a $pre \ nekonečne \ veľa \ k \in \mathbb{N}$ $plati \ c_k < g-1$.

Dôkaz. Existencia. Položme $c_0=[r],\ r_1=r-c_0.$ Zrejme $0\leq r_1<1$ a $r=c_0+r_1.$ Ďalej, $c_1=[g.r_1],\ r_2=g.r_1-c_1.$ Platí $0\leq r_2<1,\ gr_1=c_1+r_2.$ Z $0\leq gr_1< g$ vyplýva $0\leq [gr_1]< g,$ t.j. $0\leq c_1< g.$

 $c_2 = [g.r_2], r_3 = gr_2 - c_2$. Platí $0 \le r_3 < 1, gr_2 = c_2 + r_3, 0 \le [gr_2] \le gr_2 < g$, t.j. $0 \le c_2 < g$. Takto možno pokračovať matematickou indukciou, t.j. predpokladajme, že máme definované $c_n, 0 \le c_n < g, r_{n+1}, 0 \le r_{n+1} < 1$. Potom definujeme

$$c_{n+1} = [g.r_{n+1}], r_{n+2} = gr_{n+1} - c_{n+1},$$

pričom platí $0 \le r_{n+2} < 1$, $g.r_{n+1} = c_{n+1} + r_{n+2}$ a $0 \le [gr_{n+1}] \le gr_{n+1} < g$, t.j. $0 \le c_{n+1} < g$. Tým je pre každé $k \in \mathbb{N}$ definované $c_k \in \{0, 1, \dots, g-1\}$ a $r_k \in [0, 1)$, pričom platí

 $gr_{k+1} = c_{k+1} + r_{k+2}$ a $r = c_0 + r_1$. Teda

$$r = c_0 + r_1 = c_0 + \frac{gr_1}{g} = c_0 + \frac{c_1 + r_2}{g} = c_0 + \frac{c_1}{g} + \frac{r_2}{g} =$$

$$= c_0 + \frac{c_1}{g} + \frac{gr_2}{g^2} = c_0 + \frac{c_1}{g} + \frac{c_2}{g^2} + \frac{r_3}{g^2} = \dots = c_0 + \frac{c_1}{g} + \frac{c_2}{g^2} + \dots + \frac{c_n}{g^n} + \frac{r_{n+1}}{g^n}$$

Označme $s_n=c_0+\frac{c_1}{g}+\frac{c_2}{g^2}+\ldots+\frac{c_n}{g^n}$. Potom $0\leq r-s_n=\frac{r_{n+1}}{g^n}<\frac{1}{g^n}$. Pretože $\lim_{n\to\infty}\frac{1}{g^n}=0$. Platí $\lim_{n\to\infty}s_n=r$. Pritom $\lim_{n\to\infty}s_n=c_0+\sum_{k=1}^\infty\frac{c_k}{g^k}$ a teda

$$r = c_0 + \frac{c_1}{g} + \frac{c_2}{g^2} + \ldots + \frac{c_n}{g^n} + \ldots = c_0 + \sum_{k=1}^{\infty} \frac{c_k}{g^k}.$$

Nech $K=\{k\in\mathbb{N};c_k< g-1\}$ je konečná. Potom K má najväčší prvok k_0 . Teda pre každé $n\geq k_0+1$ je $c_n=g-1$. Z toho potom dostávame:

$$0 \le \frac{r_{k_0+1}}{g^{k_0}} = r - \left(c_0 + \frac{c_1}{g} + \dots + \frac{c_{k_0}}{g^{k_0}}\right) = \sum_{n=k_0+1}^{\infty} \frac{c_n}{g^n} =$$

$$= \sum_{n=k_0+1}^{\infty} \frac{g-1}{g^n} = \frac{g-1}{g^{k_0+1}} + \frac{g-1}{g^{k_0+2}} + \dots + \frac{g-1}{g^{k_0+m}} + \dots = \frac{g-1}{g^{k_0}} \left(\frac{1}{g} + \frac{1}{g^2} + \dots + \frac{1}{g^m} + \dots\right) =$$

$$= \frac{g-1}{g^{k_0}} \frac{\frac{1}{g}}{1 - \frac{1}{g}} = \frac{g-1}{g^{k_0}} = \frac{g-1}{g^{k_0}} \cdot \frac{1}{g-1} = \frac{1}{g^{k_0}}$$

Teda $\frac{r_{k_0+1}}{g^{k_0}} = \frac{1}{g^{k_0}}$, a preto $r_{k_0+1} = 1$, čo je spor (pre každé $n \in \mathbb{N}$ je totiž $r_n < 1$). Teda K je nekonečná množina.

Nech $l \in K$. Potom $c_l < g - 1$ a

$$\frac{c_1}{g} + \ldots + \frac{c_l}{g^l} < \frac{g-1}{g} + \ldots + \frac{g-1}{g^l}$$

Platí tiež

$$\sum_{k=l+1}^{\infty} \frac{c_k}{g^k} \le \sum_{k=l+1}^{\infty} \frac{g-1}{g^k},$$

lebo pre každé $k > l \ c_k \le g - 1$.

Potom ale

$$0 \le \sum_{k=1}^{\infty} \frac{c_k}{g^k} < \sum_{k=1}^{\infty} \frac{g-1}{g^k} = \frac{g-1}{g} + \dots + \frac{g-1}{g^n} + \dots =$$

$$= (g-1)\left(\frac{1}{g} + \dots + \frac{1}{g^n} + \dots\right) = (g-1)\frac{1}{g-1} = 1.$$

Teda $c_0 \le c_0 + \sum_{k=1}^{\infty} \frac{c_k}{g^k} < c_0 + 1$ a preto $c_0 = [r]$. Podobne sa ukáže, že $c_0' = [r]$ a teda $c_0 = c_0'$.

Nech $\{k \in \mathbb{N}; c_k \neq c_k'\} \neq \emptyset$ a m je najmenší prvok tejto množiny, t.j. ak l < m, tak $c_l = c_l'$. Potom $c_0 + \frac{c_1}{g} + \ldots + \frac{c_l}{g^l} = c_0' + \frac{c_1'}{g} + \ldots + \frac{c_l'}{g^l}$ a preto aj

$$\sum_{k=m}^{\infty} \frac{c_k}{g^k} = \sum_{k=m}^{\infty} \frac{c'_k}{g^k} / \frac{1}{g^m}$$

$$s = c_m + \sum_{k=m+1}^{\infty} \frac{c_k}{g^{k-m}} = c'_m + \sum_{k=m+1}^{\infty} \frac{c'_k}{g^{k-m}}.$$

Pretože množiny K, K' sú nekonečné, existujú $l, l' \ge m+1$ tak, že $c_l < g-1$, resp. $c'_l < g-1$. Potom, podobne ako v predošlej časti dôkazu, ukážeme, že

$$\sum_{k=m+1}^{\infty} \frac{c_k}{g^{k-m}} = \frac{c_{m+1}}{g} + \frac{c_{m+1}}{g^2} + \dots < \frac{g-1}{g} + \frac{g-1}{g^2} + \dots = 1$$

a teda $c_m = [s]$.

Podobne,
$$\sum_{k=m+1}^{\infty} \frac{c'_k}{g^{k-m}} < 1$$
 a preto $c'_m = [s]$. Teda $c_m = c'_m$... spor. Preto $\{k \in \mathbb{N}, c_k \neq c'_k\} = \emptyset$, t.j. pre každé $k \in \mathbb{N}$ $c_k = c'_k$.

Nech $r \in \mathbb{R}_0^+$, $g \in \mathbb{N}$, $g \geq 2$. Vyjadrenie $r = c_0 + \sum_{k=1}^{\infty} \frac{c_k}{g^k}$ z predošlej vety sa nazýva g-adický rozvoj čísla r a zapisuje sa aj v tvare $r = (c_0, c_1 c_2 \dots c_n \dots)_g$.

Príklad. Nájdite g-adický rozvoj čísla $\frac{19}{3}$ pre g=5.

$$\frac{19}{3} = 6 + \frac{1}{3},$$

$$c_0 = 6,$$

$$r_1 = \frac{1}{3}$$

$$5r_1 = \frac{5}{3},$$

$$c_1 = \left[\frac{5}{3}\right] = 1,$$

$$r_2 = 5r_1 - c_1 = \frac{2}{3}$$

$$5r_2 = \frac{10}{3},$$

$$c_2 = \left[\frac{10}{3}\right] = 3,$$

$$r_3 = 5r_2 - c_2 = \frac{1}{3}$$

$$5r_3 = \frac{5}{3},$$

$$c_3 = \left[\frac{5}{3}\right] = 1,$$

$$r_4 = 5r_3 - c_3 = \frac{2}{3}$$

$$5r_4 = \frac{10}{3},$$

$$c_4 = \left[\frac{10}{3}\right] = 3,$$
...

$$\tfrac{19}{3} = 6 + \tfrac{1}{5} + \tfrac{3}{5^2} + \tfrac{1}{5^3} + \tfrac{3}{5^4} + \ldots = (6, 1313\overline{13}\ldots)_5.$$

Poznámka. Ak r < 0, tak -r > 0 a existuje g-adický rozvoj $-r = (c_0, c_1 c_2 \dots c_n \dots)_g$. Potom vyjadrenie pre r je $r = -(c_0, c_1 c_2 \dots c_n \dots)_g$.

2.2 Kritériá racionálnosti

Definícia 2.2.1. Nech $r \in \mathbb{R}_0^+$, $g \in \mathbb{N}$, $g \geq 2$. g-adický rozvoj $r = (c_0, c_1 \dots c_n \dots)_g$ čísla r nazývame periodický, ak existuje $m \in \mathbb{N}_0$ a $k \in \mathbb{N}$ tak, že pre každé $l \in \mathbb{N}$, l > m platí $c_{k+l} = c_l$. Nech m, k sú najmenšie také čísla. Potom $r = (c_0, c_1 \dots c_m d_1 \dots d_k d_1 \dots d_k \dots)_g$, pričom postupnosť c_1, \dots, c_m sa nazýva predperióda a postupnosť d_1, \dots, d_k (základná) perióda g-adického rozvoja čísla r.

$$r=2,\underbrace{123}_{ ext{predperióda}}4545\underbrace{\overline{45}}_{ ext{základná perióda}}\dots$$

Veta 2.2.2. Nech $g \in \mathbb{N}$, $g \geq 2$. Číslo $r \in \mathbb{R}_0^+$ je racionálne vtedy a len vtedy, ak g-adický rozvoj $r = (c_0, c_1 \dots c_n \dots)_g$ čísla r je periodický.

 $D\hat{o}kaz$. Ak $r=(c_0,c_1\dots c_nc_{n+1}\dots)_g$ je g-adický rozvoj r, tak $g^n.r=g_0g^n+c_1g^{n-1}+\dots+c_n+\frac{c_{n+1}}{g}+\frac{c_{n+2}}{g^2}+\dots$ a $[g^nr]=c_0g^n+\dots+c_n$. Teda $g^nr-[g^nr]=\frac{c_{n+1}}{g}+\frac{c_{n+2}}{g^2}+\dots=(0,c_{n+1}c_{n+2}\dots)_g$.

Nech teraz $r = (c_0, c_1, \ldots, c_m d_1, \ldots, d_k d_1, \ldots, d_k \ldots)_g$ má periodický g-adický rozvoj s predperiódou c_1, \ldots, c_m a periódou d_1, \ldots, d_k .

Potom
$$g^m.r - [g^m.r] = 0, d_1 \dots d_k d_1 \dots d_k \dots$$

a $g^{m+k}.r - [g^{m+k}.r] = 0, d_1 \dots d_k d_1 \dots d_k \dots$
Teda $g^mr - [g^mr] = g^{m+k}r - [g^{m+k}r]$. Potom $(g^{m+k} - g^m)r = [g^{m+k}r] - [g^mr]$ a teda $r = \frac{[g^{m+k}r] - [g^mr]}{g^{m+k} - g^m} \in \mathbb{Q}$.

Teda $v_n.b \in \{0,1,\ldots,b-1\}$ a potom $v_n \in \{0,\frac{1}{b},\ldots,\frac{b-1}{b}\}$ - konečná množina. Teda postupnosť $\{v_n\}_{n=1}^{\infty}$ má len konečný počet hodnôt a preto existujú $m,n \in \mathbb{N}, m < n$ také, že $v_m = v_n$. Označme k = n - m. Potom $k \in \mathbb{N}$ a $v_n = v_{m+k}$. Pritom

$$v_m = (0, c_{m+1}c_{m+2} \dots c_{m+k}c_{m+k+1} \dots c_{m+2k}c_{m+2k+1} \dots c_{m+3k} \dots)_g$$
$$v_{m+k} = (0, c_{m+k+1} \dots c_{m+2k}c_{m+2k+1} \dots c_{m+3k} \dots)_g$$

Pretože $v_m = v_{m+k}$ a g-adický rozvoj je daný jednoznačne, dostávame: $c_{m+1} = c_{m+k+1}, c_{m+2} = c_{m+k+2}, \ldots c_{m+k} = c_{m+2k}, c_{m+k+1} = c_{m+2k+1}, \ldots$ Teda pre každé l > m platí $c_l = c_{l+k}$ a preto g-adický rozvoj čísla $\frac{a}{b}$ je periodický.

Príklad. Vyjadrite číslo r = 2, 21123123123... v tvare $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$. m = 2 (dĺžka predperiódy) k = 3 (dĺžka periódy)

$$m = 2 \text{ (dĺžka predperiódy) } k = 3 \text{ (dĺžka periódy)}$$

$$r = \frac{[10^{m+k}r] - [10^m r]}{10^m (10^k - 1)}$$

$$r = \frac{[10^5r] - [10^2r]}{10^2 (10^3 - 1)} = \frac{221123 - 221}{100.999} = \frac{220902}{99900} = \frac{36817}{16650}$$

Ďalšie kritériá pre racionálnosť (alebo aj iracionálnosť) niektorých reálnych čísel sú

Veta 2.2.3. Nech $n, m \in \mathbb{N}$ a $n \geq 2$. Potom $\sqrt[n]{m}$ je racionálne číslo vtedy a len vtedy, ak existuje $k \in \mathbb{N}$, pre ktoré $k^n = m$.

 $D\hat{o}kaz$. \Longrightarrow Nech $\sqrt[n]{m}$ je racionálne číslo. Pretože $\sqrt[n]{m} > 0$, existujú $a,b \in \mathbb{N}$ tak, že $\sqrt[n]{m} = \frac{a}{b}$ a (a,b)=1. Potom platí $b^n.m=a^n$. Pretože (a,b)=1, platí aj $(a^n,b^n)=1$. Číslo a^n delí $b^n.m, (a^n,b^n)=1$ a preto $a^n\mid m$. Potom $m=l.a^n$. Teda platí $b^n.l.a^n=a^n$, z čoho dostaneme $b^n.l=1$. Potom ale $b\mid 1$ a preto b=1. Teda máme $m=a^n, a\in \mathbb{N}$.

$$\leftarrow$$
 Zrejmé. $\sqrt[n]{m} = \sqrt[n]{k^n} = k \in \mathbb{N} \subseteq Q$

Nech log označuje logaritmus pri základe 10. Potom platí

Veta 2.2.4. Pre každé $r \in \mathbb{Q}^+$, $\log r \in \mathbb{Q}$ vtedy a len vtedy, keď existuje $z \in \mathbb{Z}$ také, že $r = 10^{z}$.

 \hat{Dokaz} . \implies Nech $r>1, \ r=\frac{a}{b}, \ a,b \in \mathbb{N}, \ a>b, \ (a,b)=1$ a nech $\log \frac{a}{b} \in \mathbb{Q}$. Potom $10^{\frac{c}{d}}=\frac{a}{b}$ a teda $10^c=\left(\frac{a}{b}\right)^d$. Po úprave, $10^c.b^d=a^d$. Pretože (a,b)=1, platí aj $(b,a^d)=1$. Pretože $b\mid a^d$, máme $(b,a^d)=b=1$. Teda máme $10^c=a^d$. $10^c=2^c5^c=a^d$, t.j. $a^d=2^c5^c$ je kanonický rozklad a^d . Z jednoznačnosti kanonického rozkladu vyplýva, že v kanonickom rozklade čísla a sú práve čísla 2 a 5, t.j. $a=2^u.5^v$ je kanonický rozklad $a,\,u,v\in\mathbb{N}.$ Potom $a^d = 2^{ud}.5^{vd} = 2^c.5^c$, z čoho dostávame, že ud = c = vd. Pretože (c,d) = 1 a $d \mid c$, platí (c,d) = d = 1. Teda $10^u = a = \frac{a}{b} = r$.

Nech teraz r < 1. Potom $\frac{1}{r} > 1$ a platí $\log r = -\log \frac{1}{r}$. Ak $\log r \in \mathbb{Q}$, tak aj $\log \frac{1}{r} \in \mathbb{Q}$ a preto existuje $n \in \mathbb{N}$ tak, že $\frac{1}{r} = 10^n$. Potom $r = 10^{-n}$ a $-n \in \mathbb{Z}$.

Pre
$$r = 1$$
 platí $r = 10^0$.

$$\sqsubseteq$$
 Zrejmé. $\log 10^z = z \in \mathbb{Q}$

Cvičenia

- 1. Dokážte, že nasledujúce číslo sú iracionálne: a) $\sqrt{3} + \sqrt{5}$, b) $\sqrt{3}(\sqrt{6} 3)$, c) $\frac{4\sqrt{3} 3}{6}$, $(d)\sqrt{3} - \sqrt{2}$, e) $\sqrt[3]{3} + \sqrt{2}$, f) $\log 2 + \log 3$, g) $10^{\frac{9}{7}}$, h) $\sqrt{2} + \sqrt{3} + \sqrt{5}$.
- 2. Nech $r = \frac{c}{d}$, (c, d) = 1, $d, c \in \mathbb{Z}$, je racionálny koreň rovnice $a_k x^k + a_{k-1} x^{k-1} + \dots + a_0 = 0$, pričom $a_0,\ldots,a_k\in\mathbb{Z},\ a_k\neq 0$. Dokážte, že potom $c\mid a_0$ a $d\mid a_k$. Z toho dostaneme, že pre rovnicu $x^k+a_{k-1}x^{k-1}+\ldots+a_1x+a_0=0,\ a_i\in\mathbb{Z}$ platí: Každý racionálny koreň tejto rovnice je celé číslo.
- 3. Nájdite 5-adický rozvoj nasledujúcich čísel: $\frac{35}{11}$, $\frac{13}{9}$, $\frac{1}{24}$.
- 4. Nájdite celé čísla a, b tak, aby a) $\frac{a}{b} = 0, 123$, b) $\frac{a}{b} = 2, 1\overline{25}$, a) $\frac{a}{b} = 3, \overline{9157}$.
- 5. Nájdite $a, b \in \mathbb{Z}$ tak, aby

a)
$$\frac{a}{b} = 2 + \frac{1}{5} + \frac{3}{5^2} + \frac{1}{5^3} + \frac{3}{5^4} + \frac{1}{5^5} + \frac{3}{5^6} + \dots = (2, 131313\dots)_5$$

b) $\frac{p}{2} = 3 + \frac{2}{7} + \frac{3}{7^2} + \frac{3}{7^3} + \frac{3}{7^4} + \dots = (3, 23333\dots)_7.$

b)
$$\frac{p}{q} = 3 + \frac{3}{7} + \frac{3}{7^2} + \frac{3}{7^3} + \frac{3}{7^4} + \dots = (3, 233333...)_7$$

Literatúra

- [1] Š. Znám: Teória čísel, Alfa, Bratislava, 1986.
- [2] M. Kolibiar a kol.: Algebra a príbuzné disciplíny, Alfa, Bratislava, 1992.
- [3] T. Šalát a kol.: Algebra a teoretická aritmetika 2, Alfa, Bratislava, 1986.
- [4] C. T. Long: *Elementary introduction to number theory*, 3rd ed., Englewood Cliffs, NJ: Prentice-Hall, 1987.
- [5] M. Kolibiar a kol.: Vybrané partie z matematiky (skriptum), UK, Bratislava, 1979.
- [6] T. Šalát: Vybrané kapitoly z elementárnej teórie čísel (skriptum), UK, Bratislava, 1979.
- [7] T. Hecht, Z. Sklenáriková: Metódy rieše, SPN, Bratislava, 1992.
- [8] J. B. Dynkin a kol.: Matematické hlavolamy, Alfa, Bratislava.