Algebraic Geometry.

Alec Zabel-Mena

November 6, 2022

Contents

1	1 Varieties.	5
	1.1 Affine Varieties	5

4 CONTENTS

Chapter 1

Varieties.

1.1 Affine Varieties.

Definition. Let K be an algebraically closed set. We define **affine** n-space, $\mathbb{A}^n(K)$ over K to be the set of all n-tuples of elements of K. We call elements $P = (a_1, \ldots, a_n) \in \mathbb{A}^n(K)$ **points** and we call each of the a_i **coordinates** of P. When context is clear, we simply write $\mathbb{A}^n(K)$ as \mathbb{A}^n .

Definition. Let $\mathbb{A}^n(K)$ be the affine space over an algebraically closed field K. Let $f \in K[x_1, \ldots, x_n]$ and define $f(P) = f(a_1, \ldots, a_n)$. We define the set of **zeros** of f to be:

$$Z(f)=\{P\in\mathbb{A}^n(K):f(P)=0\}$$

For any $T \subseteq K[x_1, \ldots, x_n]$, the **zero** set of T is defined to be

$$Z(T) = \{ P \in \mathbb{A}^n(K) : f(P) = 0, \text{ for all } f \in T \}$$

If T = (a) the ideal of $K[x_1, \ldots, x_n]$ generated by T, then we simply write Z(T) = Z(a).

Definition. We call a subset $Y \subseteq \mathbb{A}^n(K)$, of the affine space over K algebraic (or an algebraic set), if Y = Z(T) for some $T \subseteq K[x_1, \dots, x_n]$.

Lemma 1.1.1. The collection of all algebraic sets of an affine space \mathbb{A}^n forms a topology under closed sets.

Proof. Let $\mathbb{A}^n = Z(0)$ and $\emptyset = Z(1)$. Then \mathbb{A}^n and \emptyset are both algebraic. Now, let X and Y be algebraic, then there are S, T such that X = Z(S) and Y = Z(T). Now, let $P \in X \cup Y$, then P is a zero of any polynomial $f \in ST$, conversly, suppose that $P \in Z(ST)$ where $P \notin Y$. There exists a polynomial $f \in S$ with $f(P) \neq 0$. Now, for any $g \in T$, we have that if fg(P) = 0, then g(P) = 0, so that $P \in S$. Therefore we have $X \cup Y = Z(ST)$, making $X \cup Y$ algebraic. So that the collection of algebraic sets is closed under finite intersection.

Lastly, consider a collection $\{Y_{\alpha}\}$ of algebraic sets, where $Y_{\alpha} = Z(T_{\alpha})$ for some T_{α} . Let

$$Y = \bigcap Y_{\alpha}$$
 and $T = \bigcup T_{\alpha}$

and let $P \in Y$. Then P is in every Y_{α} making it a root of some $f_{\alpha} \in T_{\alpha}$, thus $P \in Z(T)$. Similarly, if $P \in Z(T)$, then $P \in Y$, making Y = Z(T), and making the collection of algebraic sets closed under arbitrary intersections.

Definition. We define the **Zariski topology** on \mathbb{A}^n to be the topology taking as open sets complements of algebraic sets.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.