Wiener filtering illustrations

6.011, Spring 2018

Lec 21

Unconstrained Wiener filter structure

Unconstrained Wiener filter solution

E.g.: Wiener "deconvolution" of a noisy blurred signal

E.g.: Wiener deconvolution of a noisy blurred image**

Two-dimensional convolution + noise:

$$x[k,l] = \sum_{i} \sum_{j} g[i,j]y[k-i,l-j] + v[k,l]$$

Wiener deconvolution of a noisy blurred image

Mathworks blog posts by:

Prof. Stan Reeves, ECE Dept., Auburn University

Reeves, Stan. "<u>Digital image processing using MATLAB: reading image files</u>". *MathWorks*. Sept. 27, 2011.

Reeves, Stan. "Image deblurring – Wiener filter." MathWorks. Nov. 2, 2007.

MIT OpenCourseWare https://ocw.mit.edu

6.011 Signals, Systems and Inference Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.