

Contents

Project Overview

Business Understanding

What is the problem and why is it important? How are we addressing it?

Dataset Description

What is the target? What are the features? Where was the data taken from?

Proposed Model

Model description and validation.

Model evaluation metrics and
results.

Next Steps

How to improve. What can be accomplished next?

Business UnderstandingProblem and Solution Proposal

Problem and Solution | Particle collision products identification

Particle identification is a fundamental task in high energy physics, where scientists study the properties and behavior of subatomic particles.

Challenge:

- Datasets are very large and complex
- They contain noise, background events, and multiple particle interactions
- Current statistical methods are slow and inaccurate

Approach:

Automate the process using AI

The DatasetFeatures and Target

Dataset | Electron-Proton scattering simulation detector response

Fig 1. Scattering event 3D reconstruction inside Atlas detector at LHC CERN laboratory.

- Nuclear reactions rom a highly energetic collision between an electron and a proton produce numerous particles
- Particle products depend on the energy
- Physical properties of product particles are obtained through detectors (such as "Atlas")

About the Dataset

GEANT simulation for detector measurements (position, direction, energy, etc) in a highly energetic electron-proton collision.

Total records: 5,000,000

Dataset | Electron-Proton scattering simulation detector response

Features

Fig 2. Particle detector arrangement diagram

Dataset | Electron-Proton scattering simulation detector response

Target

Product particle (proton, kaon, pion, positron)

High class Imbalance can bias the model

What can we do?

Undersampling or Oversampling (SMOTE)

Event Distribution

- Pion 56.14%
- Proton 38.92%
- Kaon 4.65%
- Positron 0.30%

The Model Design, results and evaluation

Model | Simple sequential Neural Network

WHY?

- Neural networks are computer programs inspired by the human brain.
- They solve complex problems that traditional algorithms can't. In this case, particle identification
- Neurons are interconnected nodes that learn from input data during training.
- Once trained, the network can make predictions or classify new data.

Model Evaluation | Evaluation metrics per class

What is next? Conclusion and next steps

Conclusion | Model insights and next steps

- Precise particle classification can revolutionize particle physics research, potentially leading to the discovery of new particles and phenomena.
- Practical applications include medical imaging, where accurate particle classification is essential for diagnosis and treatment.
- The technology can have a profound impact on our understanding of the universe's fundamental building blocks and can lead to advances in various fields.
- This technology can be further developed to

Q&A

Thank you!