Formulario di Fisica Generale

Università di Pisa — Ingegneria Informatica Alessio Avallone

Data: 13 luglio 2025

Indice

1	MECCANICA	3
	Moto Traslazionale	3
	Principali momenti d'inerzia	3
	Equazioni cardinali della dinamica	5
	Moto Rotazionale e Moto di Puro Rotolamento	5
	Moto Armonico	7
	Pendolo Semplice	7
	Pendolo Fisico	7
	Piccole Oscillazioni	8
	Molle	8
	Regole di Conservazione	9
	Moto in più dimensioni	11
	Problemi con più corpi	11
	Vettore posizione del centro di massa	12
	Trigonometria e Calcolo	14
2	ELETTROMAGNETISMO	15
4	Legge di Gauss	
	Carica interna e densità: tutti i casi	
	Aree e Volumi delle Principali Figure Geometriche	
	Dipolo elettrico: formule principali	
	Carica Puntiforme Formule, Potenziale, Energia: formule fondamentali	
	Energia e potenziale: cariche puntiformi	
	Energia potenziale elettrica e differenza di potenziale	
	Formule fondamentali circuiti elettrici e leggi di Kirchoff	
	Condensatori: formule e comportamento con generatore di tensione	
	Magnetismo: formule principali e utilizzi	
	Magnetismo: formule, casi particolari e scelta della superficie	
	Legge di Faraday e Ampère-Maxwell: formule, superfici e Iconcatenata	
	Induttanza, circuiti RL/LC, alternata e trasformatore	
		4

Capitolo 1

MECCANICA

Moto Traslazionale

Concetti principali:

Il moto traslazionale descrive il movimento di un corpo lungo una linea retta, caratterizzato da velocità, accelerazione e lavoro.

Formule principali:

Accelerazione	$a = \dot{v} = \ddot{x} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$
Posizione	$x = \frac{1}{2}at^2 + vt + x_0$
Lavoro	$W = \int_{x_i}^{x_f} F dx$
Quantità di moto	P = mv
Relazione con energia	Lavoro = Energia dispersa $= W$

Formule aggiuntive:

Moto accelerato uniformemente	$v = v_0 + at, x = x_0 + v_0 t + \frac{1}{2}at^2$
Moto a velocità costante	$v = \text{costante}, \ x = x_0 + vt$

Corpo rigido	Asse di rotazione	Momento d'inerzia I
Asta sottile (m, l)	Estremità	$I = \frac{1}{3}ml^2$
Asta sottile (m, l)	Centro	$I = \frac{1}{3}ml^2$ $I = \frac{1}{12}ml^2$ $I = \frac{1}{2}mR^2$
Disco pieno (m, R)	Centro, perpendicolare	$I = \frac{1}{2}mR^2$
Disco pieno (m, R)	Asse lungo R	$I = \frac{1}{4}mR^2$
Anello (m, R)	Centro, perpendicolare	$I = mR^2$
Cilindro pieno (m, R)	Asse centrale	$I = \frac{1}{2}mR^2$
Cilindro cava (m, R)	Asse centrale	$I = \frac{1}{2}m(R_1^2 + R_2^2)$
Cilindro pieno (m, R)	Asse lungo R	$I = \frac{1}{12}m(3R^2 + h^2)$
Sfera piena (m, R)	Centro	$I = \frac{2}{5}mR^2$
Sfera cava (m, R)	Centro	$I = \frac{2}{3}mR^2$
Parallelepipedo (m, a, b, c)	Asse lungo a	$I = \frac{2}{5}mR^2$ $I = \frac{2}{3}mR^2$ $I = \frac{1}{12}m(b^2 + c^2)$
Cubo (m, a)	Asse lungo a	$I = \frac{1}{6}ma^2$
Cubo (m, a)	Asse lungo una diagonale	$I = \frac{1}{6}ma^2$ $I = \frac{1}{3}ma^2$
Lamina Triangolare equilatera (m, a)	Asse perpendicolare al pia- no	$I = \frac{1}{12}ma^2$ $I = \frac{1}{3}ma^2$
Lamina Triangolare equilatera (m, a)	Asse parallelo a un lato	$I = \frac{1}{3}ma^2$

${\bf Teorema\ di\ Steiner\ +\ Tabella\ Momenti\ d'inerzia}$

Il teorema di Steiner permette di calcolare il momento d'inerzia di un corpo rigido rispetto a un asse parallelo a quello passante per il centro di massa. La formula è:

$$I = I_{\rm CM} + md^2$$

Equazioni cardinali della dinamica

Concetti teorici e quando si usano:

Le equazioni cardinali della dinamica sono le leggi fondamentali che descrivono il moto dei sistemi di punti materiali e dei corpi rigidi. Si applicano in qualsiasi situazione meccanica, sia per il centro di massa che per il moto rotatorio attorno a un asse.

Quando usarle:

- I equazione (Quantità di moto): quando vuoi studiare il moto traslatorio del centro di massa di un sistema o corpo rigido sotto l'azione di forze esterne.
- II equazione (Momento angolare): quando vuoi analizzare la rotazione di un corpo attorno a un punto o un asse, considerando i momenti delle forze esterne.
- III equazione (Potenza): quando vuoi collegare la potenza delle forze esterne con la variazione di energia cinetica (sia traslazionale che rotazionale).

N°	Equazione	Spiegazione
I	$\frac{d\vec{P}}{dt} = \vec{F}_{\text{ext}} = M\vec{a}_G$	La variazione della quantità di moto totale di un siste- ma è uguale alla somma del- le forze esterne. Descrive il moto traslatorio del centro di massa.
II	$\frac{d\vec{L}_O}{dt} = \vec{\tau}_O - \vec{V}_O \times \vec{P}$ $con \ \vec{L} = \vec{r} \times \vec{P} + I\vec{\omega}, \frac{d\vec{L}}{dt} = I\dot{\vec{\omega}}$ Nota Bene: $\sum \vec{\tau} = I\vec{\alpha}$ $\vec{\tau} = \vec{r} \times \vec{F}$	La variazione del momento angolare totale rispetto a un punto O è uguale alla somma dei momenti delle forze esterne rispetto a O meno il termine di trasporto dovuto al moto dell'origine. Si usa per studiare la rotazione di sistemi e corpi rigidi.
III	$\frac{dW}{dt} = \vec{P}_{\text{ext}} \cdot \vec{V}_G + \vec{\Gamma}_{\text{ext}} \cdot \vec{\omega}_O$	La potenza totale delle for- ze esterne è uguale alla va- riazione dell'energia cine- tica totale (traslazionale e rotazionale).

Moto Rotazionale e Moto di Puro Rotolamento

Moto Rotazionale:

• Momento angolare: $\vec{L} = \vec{r} \times \vec{P} + I\vec{\omega}$

• Momento torcente: $\vec{\tau} = \vec{r} \times \vec{F}$

• Accelerazione tangenziale: $a_{\rm tang} = \alpha R$

• Accelerazione centripeta: $a_{\mathrm{centr}} = \omega^2 R$

• Lavoro: $W = \int \vec{\tau} \cdot d\vec{\theta}$

Moto di Puro Rotolamento:

• Energia cinetica totale: $K = \frac{1}{2}I_{\rm CM}\omega^2 + \frac{1}{2}Mv_{\rm CM}^2$

 \bullet Teorema di Steiner: $I=I_{\rm CM}+md^2$ (vedi Tabella dei Momenti d'Inerzia)

• Condizione di puro rotolamento: $v_{\rm CM}=R\omega,\,a_{\rm CM}=R\alpha$

N°	Equazione	Spiegazione
I	$ec{L} = ec{r} imes ec{P} + I ec{\omega}$	Il momento angolare totale è dato dalla somma del mo- mento angolare traslaziona- le e rotazionale.
II	$ec{ au}=ec{r} imesec{F}$	Il momento torcente è dato dal prodotto vettoriale tra il raggio e la forza applicata.
III	$K = \frac{1}{2}I_{\rm CM}\omega^2 + \frac{1}{2}Mv_{\rm CM}^2$	L'energia cinetica totale è la somma dell'energia cinetica rotazionale e traslazionale.
IV	$v_{\rm tan} = R\omega$	La velocità tangenziale di un punto su un corpo rotante è data dal prodotto del raggio e della velocità angolare.
V	$a_{\rm tang} = \alpha R$	accelerazione tangenziale
VI	$a_{\rm centr} = \omega^2 R$	accelerazione centripeta
VII	$a_{\text{tot}} = a_{\text{tang}} + a_{\text{centr}}$	accelerazione totale
VIII	$W = \int \vec{\tau} \cdot d\vec{\theta} = \int_{\theta_1}^{\theta_2} \vec{\tau} \cdot d\vec{\theta} = \int_{\omega_1}^{\omega_2} I\alpha d\omega = \int_{\theta_1}^{\theta_2} r \cdot F \sin(\theta) d\theta$	Il lavoro è dato dall'inte- grale del momento torcente rispetto all'angolo.

Moto Armonico

Concetti teorici:

Il moto armonico è un tipo di moto oscillatorio in cui la posizione, la velocità e l'accelerazione variano sinusoidalmente nel tempo. È caratterizzato da una forza restauratrice proporzionale allo spostamento dalla posizione di equilibrio.

Quando usarlo:

- Quando si studiano oscillazioni meccaniche, come quelle di un pendolo o di una molla.
- Per analizzare fenomeni periodici in fisica, come le onde sonore o le vibrazioni.
- Per risolvere problemi di dinamica che coinvolgono forze restauratrici, come nel caso di un oscillatore armonico semplice.

N°	Equazione	Spiegazione
I	$x(t) = A\cos(\omega t + \phi_0)$	La posizione varia sinusoi- dalmente con ampiezza A , pulsazione ω e fase iniziale ϕ_0 .
II	$v(t) = -A\omega\sin(\omega t + \phi_0)$	La velocità è la derivata della posizione rispetto al tempo.
III	$a(t) = -A\omega^2 \cos(\omega t + \phi_0)$	L'accelerazione è la deriva- ta della velocità rispetto al tempo.

Pendolo Semplice

Descrizione	Un sistema ideale composto da una massa puntiforme so- spesa a un filo inestensibile e senza massa. Oscilla sotto l'azione della forza di gravità.
Equazione	$T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}$

Pendolo Fisico		
Descrizione	Un corpo rigido che oscilla attorno a un punto di sospensione. La distribuzione della massa e il momento d'inerzia influenzano il suo moto.	
Equazione	$T = 2\pi \sqrt{\frac{I}{mgd}}$	
Pulsazione	$\omega = \sqrt{rac{mgd}{I}}$	

Piccole Oscillazioni

Concetti teorici:

Le piccole oscillazioni si verificano attorno a un punto di equilibrio stabile. Sono caratterizzate da una forza restauratrice proporzionale allo spostamento.

Passaggi per risolvere:

- 1. Tramite l'equazione delle oscillazioni:
 - Scrivere l'equazione delle oscillazioni: $\sum \tau = I\ddot{\theta} = \frac{dL}{dt}$. $\left[\vec{L} = \vec{r} \times \vec{P} + I\vec{\omega}\right]$.
 - Utilizzare la forma semplificata: $\ddot{\theta} + \omega^2 \theta = 0$, a cui posso arrivare da $\sum \tau = I\ddot{\theta}$. dove $\omega = \sqrt{\frac{k}{m}}$ per una molla o $\omega = \sqrt{\frac{mgd}{I}}$ per un pendolo fisico.

2. Tramite l'energia:

• Scrivere l'equazione dell'energia del sistema perturbato:

$$E = K + U = \text{costante}$$

dove
$$\frac{d\vec{E}}{d\theta} = \frac{d\vec{E}}{dt} = 0$$
.

• Derivare il periodo: $T = \frac{2\pi}{\omega}$.

Funzione	Approssimazione per $\theta \ll 1$
$\sin \theta$	$\sin \theta \approx \theta$
$\cos \theta$	$\sin \theta \approx \theta$ $\cos \theta \approx 1 - \frac{1}{2}\theta^2$ $\tan \theta \approx \theta$
$\tan \theta$	$\tan \theta pprox \theta$
$1-\cos\theta$	$\tan \theta \approx \theta$ $1 - \cos \theta \approx \frac{1}{2}\theta^2$ $\arcsin \theta \approx \theta$
$\arcsin \theta$	$\arcsin \theta \approx \theta$
$\arctan \theta$	$\arctan \theta \approx \theta$

Molle

Concetti principali: Le molle seguono la legge di Hooke e sono caratterizzate da una forza restauratrice proporzionale allo spostamento.

Formule principali:

- oror Principality	
Forza restauratrice	$F = -k\Delta x$
Energia potenziale elastica	$U = \frac{1}{2}k\Delta x^2$
Pulsazione	$\omega = \sqrt{\frac{k}{m}}$
Ampiezza	$A = \sqrt{x_{\rm eq}^2 + \left(\frac{v_0}{\omega}\right)^2}$

Regole di Conservazione

• Conservazione dell'Energia

L'energia totale di un sistema isolato si conserva se il lavoro delle forze esterne è nullo.

Formula:

$$E_i = E_q + L$$

dove E = K + U è costante se L = 0.

- Quando si conserva: Sistemi isolati senza attrito o resistenza, come pendoli ideali, molle senza dissipazione, collisioni elastiche.
- Quando non si conserva: Sistemi con attrito significativo, resistenza dell'aria, o forze esterne che compiono lavoro non conservativo. nel caso di un urto anelastico, energia cinetica non si conserva, ma l'energia totale del sistema (inclusa l'energia interna) rimane costante.
- Conservazione della Quantità di Moto La quantità di moto totale di un sistema isolato si conserva se la somma delle forze esterne è nulla. Formula:

$$\vec{P}_{\mathrm{tot}} = \sum \vec{P}_i = \mathrm{costante}$$

Esempi:

- Quando si può usare: Collisioni elastiche e anelastiche, moto di sistemi isolati.
- Quando non si può usare: Sistemi con forze esterne significative, come attrito o resistenza dell'aria.
- Conservazione del Momento Angolare Il momento angolare totale di un sistema isolato si conserva se la somma dei momenti delle forze esterne è nulla. Formula:

$$\vec{L}_{\mathrm{tot}} = \sum \vec{L}_i = \mathrm{costante}$$

Esempi:

- Quando si può usare: Rotazione di corpi rigidi senza forze esterne, moto orbitale.
- Quando non si può usare: Sistemi con momenti torcenti esterni, come motori o freni.

Quando usarla:

- Per studiare la rotazione di corpi rigidi o sistemi di particelle.
- Per analizzare il moto orbitale e il comportamento di sistemi con simmetria rotazionale.

Moto in più dimensioni

Concetti principali:

- Il moto in più dimensioni richiede l'uso di vettori per descrivere posizione, velocità e accelerazione.
- Le coordinate cartesiane e polari sono i sistemi più comuni per rappresentare il moto.
- Le equazioni del moto possono essere scritte in forma vettoriale o scalare a seconda del sistema di coordinate utilizzato.
- La velocità e l'accelerazione possono essere scomposte in componenti lungo gli assi cartesiani o in direzioni radiali e tangenziali nelle coordinate polari.

Coordinate cartesiane:

• Posizione: $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

• Velocità: $\vec{v} = \frac{d\vec{r}}{dt} = \dot{x}\hat{i} + \dot{y}\hat{j} + \dot{z}\hat{k}$

• Accelerazione: $\vec{a} = \frac{d\vec{v}}{dt} = \ddot{x}\hat{i} + \ddot{y}\hat{j} + \ddot{z}\hat{k}$

Coordinate polari:

• Posizione: $\vec{r} = r\hat{r}$

• Velocità: $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$

• Accelerazione: $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$

Formule principali:

Velocità in più dimensioni	$\vec{v} = \frac{d\vec{r}}{dt}$
Accelerazione in più dimensioni	$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$
Lavoro in più dimensioni	$W = \int_{\vec{r_i}}^{\vec{r_f}} \vec{F} \cdot d\vec{r}$
Quantità di moto in più dimensioni	$\vec{P} = m\vec{v} = m(\dot{x}\hat{i} + \dot{y}\hat{j} + \dot{z}\hat{k})$
Energia cinetica in più dimensioni	$K = \frac{1}{2}mv^2 = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$
Conservazione della quantità di moto	$ec{P}_{ m tot} = \sum ec{P}_i = \sum m_i ec{v}_i$
Conservazione dell'energia	$E_{\text{tot}} = K + U = \frac{1}{2}mv^2 + U(\vec{r})$

Approfondimenti:

- La velocità angolare ω è definita come $\omega = \dot{\theta}$.
- La velocità tangenziale è data da $v_{\rm tan}=r\omega$.
- L'accelerazione centripeta è $a_{\rm centr} = r\omega^2$.

Problemi con più corpi

Concetti principali:

- Analisi del centro di massa di un sistema di più corpi.
- Conservazione della quantità di moto e dell'energia (se applicabile).
- Calcolo delle velocità finali dopo urti elastici e anelastici.
- Applicazione delle leggi di Newton per ogni corpo.

Formule principali:

- Centro di massa: $\vec{R}_{\text{CM}} = \frac{\sum m_i \vec{r_i}}{\sum m_i}$
- Quantità di moto totale: $\vec{P}_{\mathrm{tot}} = \sum \vec{P}_i$
- Energia cinetica totale: $K_{\rm tot} = \sum \frac{1}{2} m_i v_i^2$
- Velocità finale dopo urto anelastico: $v_f = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Esempi pratici:

- Urto anelastico: Due corpi di massa m_1 e m_2 si muovono con velocità v_1 e v_2 . Dopo l'urto, si muovono insieme con velocità v_f . Utilizzare la conservazione della quantità di moto per calcolare v_f .
- Urto elastico: Due corpi si urtano elasticamente. Applicare la conservazione della quantità di moto e dell'energia cinetica per determinare le velocità finali.
- Centro di massa: Calcolare la posizione del centro di massa di un sistema composto da più corpi distribuiti nello spazio.

Procedimento generale:

- 1. Identificare le forze esterne e verificare se il sistema è isolato.
- 2. Applicare la conservazione della quantità di moto per il sistema.
- 3. Utilizzare la conservazione dell'energia, se applicabile.
- 4. Calcolare il centro di massa e analizzare il moto relativo dei corpi.

Vettore posizione del centro di massa

Per un'asta sottile di lunghezza l incernierata in B, il centro di massa si trova sempre a distanza l/2 da B lungo la direzione dell'asta.

Se l'asta forma un angolo θ con l'orizzontale (misurato in senso antiorario a partire dall'orizzontale), il vettore posizione del centro di massa rispetto a B si scrive usando le componenti lungo $\hat{\imath}$ (orizzontale) e $\hat{\jmath}$ (verticale):

$$\vec{r}_{\rm CM} = \frac{l}{2} \left(\cos \alpha \,\hat{\imath} + \sin \alpha \,\hat{\jmath} \right)$$

Nel tuo caso, però, il vettore è scritto con segni negativi:

$$\vec{r}_{\rm CM} = \frac{l}{2} \left(-\cos\theta \,\hat{\imath} - \sin\theta \,\hat{\jmath} \right)$$

Questo significa che l'origine degli assi è posta in B e l'asta si trova inizialmente sull'asse x negativo (cioè verso sinistra), e ruota verso il basso (cioè verso -y).

Perché i segni sono negativi?

- Il termine $-\cos\theta$ indica che il centro di massa si trova a sinistra di B lungo l'asse x (quindi negativo).
- Il termine $-\sin\theta$ indica che il centro di massa si trova sotto B lungo l'asse y (quindi negativo).

Esempio alternativo: Se l'asta fosse incernierata all'origine e si trovasse nel primo quadrante, il vettore posizione sarebbe:

$$\vec{r}_{\rm CM} = \frac{l}{2} \left(\cos \theta \, \hat{\imath} + \sin \theta \, \hat{\jmath} \right)$$

dove entrambi i termini sono positivi.

Cerchio goniometrico e segni di sin e cos

Nel disegno, il vettore posizione punta nel terzo quadrante, dove sia $\cos\theta$ che $\sin\theta$ sono negativi.

Riassumendo:

- Il vettore posizione del centro di massa è negativo in entrambi gli assi perché l'asta parte da una posizione orizzontale verso sinistra e ruota verso il basso.
- I segni di $\cos \theta$ e $\sin \theta$ dipendono dal quadrante in cui si trova il centro di massa rispetto al punto di incernieramento.

Trigonometria e Calcolo

Trigonometria Applicata ai Triangoli:

• Teorema di Pitagora: $a^2 + b^2 = c^2$ (per triangoli rettangoli).

• Seno: $\sin \theta = \frac{a}{c}$.

• Coseno: $\cos \theta = \frac{b}{c}$.

• Tangente: $\tan \theta = \frac{a}{b}$.

• Legge dei seni: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

• Legge dei coseni: $c^2 = a^2 + b^2 - 2ab \cos C$.

Figura 1.1: Triangolo rettangolo con lati a, b e ipotenusa c.

Formule Trigonometriche Generali:

• Somma degli angoli: $\sin(a+b) = \sin a \cos b + \cos a \sin b$, $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

• Doppio angolo: $\sin(2a) = 2\sin a \cos a$, $\cos(2a) = \cos^2 a - \sin^2 a$.

• Tangente: $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$.

• Identità fondamentale: $\sin^2 \theta + \cos^2 \theta = 1$.

Formule Principali per Integrali e Derivate:

• Derivata di una potenza: $\frac{d}{dx}x^n = nx^{n-1}$.

• Derivata del seno: $\frac{d}{dx}\sin x = \cos x$.

• Derivata del coseno: $\frac{d}{dx}\cos x = -\sin x$.

• Derivata della tangente: $\frac{d}{dx} \tan x = \sec^2 x$.

• Integrale di una potenza: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$.

• Integrale del seno: $\int \sin x dx = -\cos x + C$.

• Integrale del coseno: $\int \cos x dx = \sin x + C$.

• Integrale della tangente: $\int \tan x dx = \ln |\sec x| + C$.

Capitolo 2

ELETTROMAGNETISMO

Legge di Gauss

Concetto:

La legge di Gauss collega il flusso del campo elettrico attraverso una superficie chiusa alla carica totale racchiusa dalla superficie stessa. È fondamentale per calcolare i campi elettrici generati da distribuzioni di carica con simmetria.

Formula generale:

$$\oint_{\mathcal{S}} \vec{E} \cdot d\vec{A} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

dove Q_{int} è la carica interna alla superficie \mathcal{S} .

Quando si usa:

- Calcolo del campo elettrico in presenza di simmetria (sfera, cilindro, piano).
- Analisi qualitativa del comportamento del campo elettrico vicino a conduttori o isolanti.

Carica interna e densità: tutti i casi

Densità di carica:

Tipo	Definizione
Densità lineare	$\lambda = \frac{dQ}{dl}$
Densità superficiale	$\sigma = \frac{dQ}{dS}$
Densità volumetrica	$ ho = rac{dQ}{dV}$

Calcolo della carica interna (Q_{int}) :

• Conduttore:

- La carica si distribuisce sulla superficie (non esiste carica libera all'interno di un conduttore in equilibrio elettrostatico).
- $-Q_{\rm int}$ è la somma delle cariche superficiali eventualmente racchiuse dalla superficie gaussiana.

• Isolante:

- La carica può essere distribuita nel volume (o su una superficie).
- La carica interna si trova integrando la densità di carica:

$$Q_{\rm int} = \int_{V_{\rm int}} \rho(\vec{r}) \, dV$$

- Se la carica è distribuita solo su una superficie:

$$Q_{\rm int} = \int_{S_{\rm int}} \sigma(\vec{r}) \, dS$$

- Se la carica è distribuita lungo una linea:

$$Q_{\rm int} = \int_{l_{\rm int}} \lambda(\vec{r}) \, dl$$

Figura	Area	Volume
Quadrato (lato a)	$A = a^2$	_
Rettangolo (a, b)	$A = a \cdot b$	_
Cerchio (raggio R)	$A = \pi R^2$	_
Triangolo (b, h)	$A = \frac{1}{2}bh$	_
Parallelogramma (b, h)	A = b h	_
Trapezio (B, b, h)	$A = \frac{(B+b)h}{2}$	_
Ellisse (a, b)	$A = \pi a b$	_
Cubo (lato a)	$A = 6a^2$	$V = a^3$
Parallelepipedo (a, b, c)	A = 2(ab + ac + bc)	V = abc
Sfera (raggio R)	$A = 4\pi R^2$	$V = \frac{4}{3}\pi R^3$
Cilindro (raggio R , altezza h)	$A = 2\pi R(R+h)$	$V = \pi R^2 h$
Cilindro cavo (R_1, R_2, h)	$A = 2\pi (R_2 + R_1)h + 2\pi (R_2^2 - R_1^2)$	$V = \pi (R_2^2 - R_1^2)h$
Cono (raggio R , altezza h)	$A = \pi R(R + \sqrt{R^2 + h^2})$	$V = \frac{1}{3}\pi R^2 h$
Piramide regolare (A_b, P_b, h)	$A = A_b + \frac{P_b}{2}a$	$V = \frac{1}{3}A_b h$
Guscio sferico (raggio esterno R_2 , raggio interno R_1)	$A = 4\pi (R_2^2 - R_1^2)$	$V = \frac{4}{3}\pi (R_2^3 - R_1^3)$
Toro (raggio grande R , raggio piccolo r ; $r < R$)	$A = 4\pi^2 Rr$	$V = 2\pi^2 R r^2$

Dipolo elettrico: formule principali	
Formula	Breve spiegazione
$ec{P}=Qec{d}$	Momento di dipolo elettrico: prodotto tra la carica Q e il vettore distanza \vec{d} che separa le cariche.
$E = \frac{2k}{z^3}P$	Campo elettrico sull'asse di un dipolo, a distanza z dal centro: $k = \frac{1}{4\pi\varepsilon_0}$
$ec{ au} = ec{P} imes ec{E}$	Momento torcente su un dipolo immerso in campo elettrico esterno.

Formula	Breve spiegazione
Densità di energia = $\frac{1}{2}\varepsilon_0 E^2$	Energia immagazzinata per unità di volume nel campo elettrico.
$\vec{F}_E = q\vec{E}$	Forza esercitata su una carica q dal campo elettrico \vec{E} .
$L = q_0 \int_{x_i}^{x_f} \vec{E} \cdot d\vec{s}$	Lavoro fatto per spostare una carica q_0 nel campo elettrico.
$\Delta V = \int_{x_i}^{x_f} \vec{E} \cdot d\vec{s}$	Differenza di potenziale elettrico tra due punti.
$\Delta U = \Delta V q_0$	Variazione di energia potenziale di una carica q_0 .
$L = k \frac{q_0 q}{r}$	Energia potenziale elettrica tra due cariche puntiformi poste a distanza r .
$\Delta V = -\frac{kq}{r}$	Potenziale elettrico generato da una carica puntiforme a distanza r .

Energia e potenziale: cariche puntiformi	
Formula	Breve spiegazione
$V_q = k \frac{q}{r}$	Potenziale elettrico generato da una carica q a distanza r .
$V_{q_0} = k \frac{q_0}{r}$	Potenziale elettrico generato da una carica q_0 a distanza r .
$U = V_q q_0 = V_{q_0} q = k \frac{qq_0}{r}$	Energia potenziale elettrica di interazione tra due cariche puntiformi.

Energia potenziale elettrica e differenza di potenziale

Energia potenziale:

$$U = \frac{1}{2} \int \rho(\vec{r}) V(\vec{r}) dV$$

dove ρ è la densità di carica e V il potenziale elettrico.

Differenza di potenziale (formule generali):

$$\Delta V = V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{s}$$

dove \vec{E} è il campo elettrico, a e b sono i punti tra cui si calcola la differenza di potenziale.

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'$$

Potenziale generato da una distribuzione di carica.

Conduttori vs Dielettrici:

- Conduttori: La carica libera si distribuisce sulla superficie, il potenziale è costante all'interno ($V=\cos t$). L'energia potenziale si concentra sulle superfici.
- **Dielettrici:** La carica non è libera ma legata alle molecole; si possono formare cariche di polarizzazione volumetriche e superficiali. L'energia potenziale è distribuita nel volume e dipende dalla polarizzazione del materiale.

Formule fondamentali circuiti elettrici e leggi di Kirchoff	
Formula	Breve spiegazione
$I = \frac{dq}{dt} = \int_A \vec{J} \cdot d\vec{A}$	Corrente elettrica come flusso di carica o integrale della densità di corrente.
$J = nqv_d$	Densità di corrente: prodotto tra cariche, densità e velocità di deriva.
$J = \frac{I}{A}$	Densità di corrente come rapporto tra corrente e area.
$R = \rho \frac{L}{A}$	Resistenza: dipende dalle proprietà del materiale, lunghezza e area della sezione.
$\rho = \frac{E}{J}$	Resistività: rapporto tra campo elettri- co e densità di corrente.
$\Delta V = RI$	Legge di Ohm: relazione tra tensione, resistenza e corrente.
$P = RI^2$	Potenza dissipata da una resistenza.
$\Delta U = \Delta V \int_0^t I dt = Q \Delta V$	Energia fornita dal generatore o accumulata.
$P = \frac{dU}{dt} = \frac{dQ}{dt}\Delta V = I\Delta V$	Potenza elettrica fornita o assorbita.

Leggi di Kirchoff:

- Prima legge (correnti): La somma delle correnti entranti in un nodo è uguale alla somma delle correnti uscenti ($\sum I_{\text{in}} = \sum I_{\text{out}}$).
- Seconda legge (tensioni): La somma algebrica delle differenze di potenziale in un circuito chiuso è zero ($\sum \Delta V = 0$).

Seconda legge: $\sum \Delta V = 0 \text{ (circuito chiuso)}$

Condensatori: formule e comportamento con generatore di tensione

Formule fondamentali:

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Capacità di un condensatore piano (con dielettrico): A = area delle armature, d = distanza, $\varepsilon_r =$ costante dielettrica relativa.

$$Q = CV$$

Carica accumulata: C = capacita, V = tensione applicata.

$$U = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$$

Energia immagazzinata nel condensatore.

Comportamento con generatore di tensione:

- Collegando un condensatore ideale a un generatore, la carica sulle armature cresce fino a raggiungere Q = CV.
- In presenza di un dielettrico, la capacità aumenta e il condensatore può immagazzinare più energia.
- Durante la **carica**, la corrente decresce esponenzialmente (in presenza di una resistenza R si ha: $Q(t) = CV(1 e^{-t/RC})$).
- Durante la scarica attraverso una resistenza R, la carica sul condensatore diminuisce esponenzialmente secondo la legge $Q(t) = Q_0 e^{-t/(RC)}$, dove Q_0 è la carica iniziale.
- Il condensatore si oppone alle variazioni rapide di tensione: in regime stazionario, si comporta come un circuito aperto per le correnti continue.
- Quando il condensatore è **completamente carico**, la corrente che passa attraverso di esso è pari a zero, perché agisce come un **ramo aperto**.
- Quando il **condensatore è completamente scarico**, all'avvio della carica si comporta come un **ramo chiuso** e lascia passare la massima corrente possibile nel circuito.

Magnetismo: formule principali e utilizzi		
Formule principali:		
Forza di Lorentz:	$ec{F} = q ec{v} imes ec{B} \qquad (q = \text{carica}, \ ec{v} = \text{velocità}, \ ec{B} = \text{campo magnetico})$	
Forza su un filo percorso da corrente:	$ec{F} = I ec{l} imes ec{B}$ ($I = \text{corrente}, \ ec{l} = \text{vettore lunghezza}$)	
Momento torcente su una spira:	$ec{ au} = ec{\mu} imes ec{B} \qquad (ec{\mu} = ext{momento di dipolo} \ ext{magnetico})$	
Momento di dipolo magneti- co:	$ec{\mu} = NI \vec{A} \hspace{0.5cm} (N = { m spire}, \hspace{0.5cm} I = { m corrente}, \hspace{0.5cm} ec{A} = { m area})$	
Campo magnetico (Biot-Savart) generato da un filo:	$B = \frac{\mu_0 I}{2\pi r}$	
Campo magnetico di un filo piegato ad arco:	$B = \frac{\mu_0 I \theta}{4\pi r}$	

Utilizzi:

- Calcolo della forza su cariche e correnti in presenza di campo magnetico (motori, relè, acceleratori).
- Analisi del comportamento di spire e solenoidi (elettromagneti, strumenti di misura).
- Determinazione del campo magnetico generato da fili e bobine (trasformatori, induttori).

Regola della mano destra (visuale):

Magnetismo: formule

Legge di Gauss per il magnetismo:

$$\Phi_B = \oint_S \vec{B} \cdot d\vec{s} = 0 \qquad [Wb]$$

Il flusso magnetico totale attraverso una superficie chiusa è sempre zero.

Flusso magnetico attraverso una superficie:

$$\Phi_B = \int_S \vec{B} \cdot d\vec{s} = BS \cos \theta$$

La superficie S deve essere scelta in base al problema:

- \bullet Se il campo è uniforme e la superficie è piana, basta prendere S come area geometrica.
- Se la superficie è curva o il campo non è uniforme, si integra su tutta la superficie.
- θ è l'angolo tra il vettore campo \vec{B} e la normale alla superficie.

Casi particolari: spira e bobina

- Spira piana: $\Phi_B = BA \cos \theta$, dove A è l'area della spira.
- Bobina con N spire: $\Phi_B = NBA\cos\theta$

Disegno esplicativo:

Superficie S

Nota: La superficie da scegliere è quella attraversata dalle linee di campo magnetico di interesse. In una bobina, si usa l'area interna alle spire; per superfici chiuse, il flusso totale è sempre zero (come stabilito dalla legge di Gauss per il magnetismo).

Legge di Faraday e Ampère-Maxwell: formule

Legge di Faraday:

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

La forza elettromotrice indotta in un circuito chiuso è uguale all'opposto della variazione del flusso magnetico nel tempo.

$$\Phi_B = \int_S \vec{B} \cdot d\vec{s} = BA\cos(\alpha)$$

Il flusso magnetico è il prodotto tra campo magnetico \vec{B} e area A proiettata nella direzione di \vec{B} .

Nelle bobine:

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

Per una bobina con N spire, la forza elettromotrice indotta è moltiplicata per N.

Legge di Ampère-Maxwell:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{conc}} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

Il circuito integrale del campo magnetico è uguale alla somma della corrente concatenata e della corrente di spostamento.

Iconcatenata (corrente concatenata):

$$I_{\rm conc} = \sum_{\rm conduttori} I_k$$

La corrente concatenata è la somma algebrica delle correnti che attraversano la superficie racchiusa dal percorso di integrazione.

Scelta della superficie:

- Nella legge di Faraday, la superficie S è quella delimitata dal circuito su cui calcoli la \mathcal{E} . L'area da usare è quella effettivamente racchiusa dalla spira o bobina, e l'orientazione della normale determina il segno del flusso.
- Nella legge di Ampère-Maxwell, la superficie è quella "aperta" racchiusa dal percorso di integrazione (anello di Ampère): devi considerare tutte le correnti che attraversano questa superficie per calcolare $I_{\rm conc}$.
- In generale, la superficie da considerare è quella attraversata dalle linee di campo (magnetico o elettrico) che contribuiscono al flusso e alle correnti concatenate.

Induttanza

Induttori & Induttanza

$$L = N \frac{\Phi_B}{i} \qquad [H]$$

$$\mathcal{E}_L = -N \frac{d\Phi_B}{dt} = -L \frac{di}{dt} \qquad [V]$$

L'induttanza L è capacità di opporsi alle variazioni tramite autoinduzione.

Autoinduzione magnetica

$$\mathcal{E}_L = -L \frac{di}{dt}$$

La tensione ai capi dell'induttore è proporzionale alla velocità di variazione della corrente.

Circuiti RL

- Equazione differenziale: $\mathcal{E}_a = Ri + L\frac{di}{dt}$
- Carica induttore: $i(t) = \frac{\mathcal{E}_a}{R} (1 e^{-tR/L})$
- Scarica induttore: $i(t) = i_0 e^{-tR/L}$

All'accensione la corrente aumenta gradualmente, allo spegnimento diminuisce esponenzialmente.

Energia nell'induttore

$$U = \frac{1}{2}Li^2$$

L'energia si accumula nel campo magnetico generato dall'induttore.

Densità di energia magnetica

$$u = \frac{1}{2}\mu_0 H^2 = \frac{B^2}{2\mu_0}$$

Energia per unità di volume nel campo magnetico.

Circuiti LC

$$\omega = \frac{1}{\sqrt{LC}} [Hz]$$

$$V_{\text{tot}} = \frac{1}{2}q^2/C + \frac{1}{2}Li^2$$

$$q(t) = Q\cos(\omega t + \theta)$$

Oscillazioni tra energia elettrica (condensatore) e magnetica (induttore).

Generatore di corrente alternata

$$\Phi_B(t) = BA\cos(\omega t)$$

Il flusso magnetico in una spira varia periodicamente generando tensione alternata.

Trasformatore

$$\frac{\Delta V_1}{N_1} = \frac{\Delta V_2}{N_2}$$

Integrale	Risultato	Strategia
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C (n \neq -1)$	Immediato
$\int \frac{1}{x} dx$	$\ln x + C$	Immediato
$\int e^{ax} dx$	$\frac{e^{ax}}{a} + C$	Immediato/Sostituzione
$\int \sin(ax)dx$	$-\frac{1}{a}\cos(ax) + C$	Sostituzione
$\int \cos(ax)dx$	$\frac{1}{a}\sin(ax) + C$	Sostituzione
$\int \frac{1}{1+x^2} dx$	$\arctan(x) + C$	Immediato
$\int \frac{1}{\sqrt{1-x^2}} dx$	$\arcsin(x) + C$	Immediato
$\int f'(x)e^{f(x)}dx$	$e^{f(x)} + C$	Sostituzione
$\int u dv$	$uv - \int v du$	Per Parti
$\int \ln x dx$	$x \ln x - x + C$	Per Parti
$\int xe^{ax}dx$	$\frac{e^{ax}}{a^2}(ax-1) + C$	Per Parti
$\int \frac{dx}{ax+b}$	$\frac{1}{a}\ln ax+b + C$	Sostituzione
$\int \frac{dx}{\sqrt{ax+b}}$	$\frac{2}{a}\sqrt{ax+b} + C$	Sostituzione

Tabella 2.1: Integrali principali e strategie di calcolo