CS & IT ENGINEERING

Theory of Computation Finite Automata

Lecture No. 17

TOPICS TO BE COVERED

01 Regular Grammar

02 Pumping Lemma

03

04

$$S \rightarrow B$$

$$A \rightarrow B$$

$$B \rightarrow Sa$$

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$P = \{S \rightarrow AaB, S \rightarrow a, S \rightarrow a, B \rightarrow Sa\}$$

Regulat Grammar (RG):

L> It is Left Linear Grammar OR Right Linear Grammar (LLG)

(RLG)

LLG

 $V \longrightarrow V T^*$ T^*

Example:

S-> Sab Elab

RLG

 $V \rightarrow T^* \vee | T^*$

Example: S > E a ab aabS Identi

 $(\hat{1})$ 6

> -ILG/ RGV

٦

3

> LLG~ RLGU RGV

4

Weilker 116 nor RLG

Hynot RLG Lynot RG

l

HLGX PRGX

6 S abS a TLLGX

> not RG

$$S \longrightarrow AaB \qquad 6$$

Find Regular Language from the following RGs

$$\bigcirc S \longrightarrow \varepsilon$$

$$(2)$$
 $S \rightarrow a$

(2)
$$S \rightarrow a$$
 bb E $L = \{ \epsilon, a, bb \}$ $= E + a + bb$

$$S \rightarrow \epsilon$$

$$S \rightarrow Aa$$

$$L = \{ \} = \phi$$

$$\begin{array}{ccc} G & S \rightarrow A^{\alpha} \\ & A \rightarrow \varepsilon \end{array}$$

$$S \rightarrow Aa$$

$$A \rightarrow a|b|\epsilon$$

$$L = (\varepsilon + \alpha + b).\alpha$$

$$= \alpha + \alpha \alpha + b \alpha$$

$$\begin{array}{c} (8) \\ S \rightarrow Aa \\ A \rightarrow a \\ B \rightarrow a \end{array}$$

$$\alpha \epsilon = \alpha$$

$$\Theta \rightarrow \varepsilon$$

$$A = a + \varepsilon$$

$$B = b + \varepsilon$$

$$= (a + \varepsilon)a + (b + \varepsilon)b$$

$$\begin{array}{c|c}
\hline
\end{array} San San E$$

$$\begin{array}{c|c}
\hline
 & S & S & S & E
\end{array}$$

$$\frac{13}{500} = \frac{500}{500} = \frac{1000}{500} = \frac{1000}$$

$$S \rightarrow S_{0}$$

$$COSSAL=\alpha C=\alpha C=0$$

$$L = \alpha\alpha = \alpha\alpha = \alpha^{*}$$

$$\frac{18}{18} S \rightarrow \frac{60}{3} \frac{5}{3} \frac{1}{3} L = (00) \alpha = 0 (00)$$

$$L = (aa)^*a = a(aa)^*$$

$$(9)$$
 S \rightarrow ab $S \mid \epsilon$

 $S \rightarrow Sa$

Sysay Sysay will onling

$$\begin{array}{c|c} (21) & S \longrightarrow S(3) & b & c \\ \hline \end{array}$$

$$= Sa^* - ba^* + ca^* - ba^* + ca^*$$

(29)
$$S \rightarrow (ab)S$$
 | c | de | fgh | $L = (ab)$ (c+de+fgh)

$$\begin{array}{c|c} (24) & S \longrightarrow S \otimes \\ & &$$

$$X \longrightarrow X(\alpha_1) \times (\alpha_2) \times (\alpha_3) \times \beta_1 \times \beta_2$$

$$X \longrightarrow X(\alpha_1) \times (\alpha_2) \times (\alpha_3) \times \beta_1 \times \beta_2$$

$$X \longrightarrow X(\alpha_1) \times (\alpha_2) \times (\alpha_3) \times \beta_1 \times \beta_2$$

$$(2) S \rightarrow (0.5) E L = (0+b) E = (0+b$$

$$L = (a+b)^*b$$

$$\begin{array}{c} (30) & S \rightarrow Aa \\ \hline A \rightarrow Aa |Ab| & \end{array}$$

$$L = S = A G$$

$$= (a+b)^* G$$

a)
$$a(a+b)^{*}$$

b) $(a+b)^{*}$
c) $(ab)^{*}$
d) $(b^{*}a)^{*}$

$$\frac{aba}{ba} = \frac{aba}{ba}$$

(31) $S \rightarrow aA$ $A \rightarrow aA|_{bA}|_{\epsilon}$ $A \rightarrow aA|_{bA}|_{\epsilon}$

(32)
$$S \rightarrow Sa |Sb|a$$
 1: $a(axb)$

$$(33) S \rightarrow aS |bS|a$$

$$(axb)a$$

Home Work:

$$\begin{array}{c|c}
\hline
(34) & S \rightarrow Sa & |Sb| & A \\
\hline
A \rightarrow aa & |ba|
\end{array}$$

(36)
$$S \rightarrow aS|bS|cS|E$$

$$\begin{array}{c} (35) \\ S \rightarrow Aa \mid Ab \\ A \rightarrow Ba \\ B \rightarrow Ba \mid Bb \mid \varepsilon \end{array}$$

$$S \rightarrow Aa|Ab|\epsilon$$

$$A \rightarrow a|b|\epsilon$$

$$\begin{array}{c} (39) & S \longrightarrow aS |bS| A \\ A \longrightarrow abB \\ B \longrightarrow aB |bB| & \varepsilon \end{array}$$

Summary

-> Regular Grammers

Next: pumping lemm.

