

May 13, 2021 The Normal Equationi The normal equation is a method to solve for the θ that minimizes $J(\theta)$ in one step, as apposed to the numerous steps of g.d. eig, J(0) = a02+60+c, DEh $\frac{d}{d\theta}J(\theta)=0$ > find non But if DERntl; $J(\theta_0, \theta_1, \dots \theta_n) = \lim_{n \to \infty} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$ $\frac{\partial}{\partial \theta_i} J(\theta) = 0$ for $j = 0, 1 \dots n$ Then solve for Go, O, ... On $e_{i}q_{i}$ \times_{o} \times_{i} \times_{1} \times_{2} \times_{4} \times_{4} \times_{2} \times_{4} \times_{4} \times_{5} \times_{1} \times_{1} \times_{1} \times_{2} \times_{4} \times_{4} \times_{5} \times_{1} \times_{1} X= 12104 5 1 457 1 1416 3 2 40 1 1534 3 2 30 852 Z mx (atl)

 $\theta = (X^T X)^{-1} X^T Y$ & Solving system of linear equations formula As If you're using the normal equation, you don't need to use feature scaling. Benefits of Normal Equation? -don't need to choose & - don't need to iterate Drawbacksi -doesn't work well for large # of features Is runtime is O(n3), very slow

What if XTX is non-invertible?

Theasons:

In hedundant features (lin dep cols)

Leig. X, = size in ft? & Invertible iff full rank

X1 = size in m? A Invertible Matrix Theorem

2. Too many features (m < n) for too little data

- delete some features or use regularization