

DNA Alignment

Arpad Danos, Felicia Gomez, Obi Griffith, Malachi Griffith, My Hoang, Mariam Khanfar, Chris Miller, Kartik Singhal

Slide courtesy of Andrew Farrell (University of Utah)

Learning Objectives

- Understand the process of obtaining and indexing raw DNA sequence data for alignment
- Perform a quality assessment using the aligned data and understand clean-up steps
- Prepare and visualize alignment results using genome viewers

Based on: https://pmbio.org/module-03-align/0003/02/01/Alignment/

For our exercise:

https://gist.github.com/MariamKhanfar/8eae80dfc5bd9011d2ccbab27458ca04

Main QC steps in DNA alignment

Overview of main steps

- Create directories
- Download the data
- Download the reference
- Index Reference with BWA
- Align the data to the reference

 Result in SAM
- Convert SAM to BAM
- Sort by query name
- Mark duplicates
- Sort by coordinates
- Index the final BAM
- Generate a flagstat report for the BAM

Overview of main steps

- Create directories
- Download the data
- Download the reference
- Index Reference with BWA
- Align the data to the reference

 Result in SAM
- Convert SAM to BAM
- Sort by query name
- Mark duplicates
- Sort by coordinates
- Index the final BAM
- Generate a flagstat report for the BAM

Prepare directories for analysis and obtain data

- Create the main directory "dna_alignment_lab"
- Create subdirectories within "dna_alignment_lab" for organizing data
 - /workspace/dna_alignment_lab/alignment_results
 - /workspace/dna_alignment_lab/fastq_files
 - /workspace/dna_alignment_lab/reference_sequences

Index reference genome + DNA alignment

 Indexing is like creating a map of the reference genome, allowing the aligner to quickly locate where a sequence might fit; finds information without reading the entire text

https://www.frontiersin.org/articles/10.3389/fpls.2021.657240/ful

DNA alignment with BWA

https://rbatorsky.github.io/intro-to-ngs-bioinformatics/lessons/03 Alignment.html

Convert SAM to BAM

- SAM files are human-readable alignments, but they're large and unwieldy.
- BAM files are the binary version of SAM, much smaller and faster for computers to process.

Main QC steps in DNA alignment

https://hbctraining.github.io/variant_analysis/lessons/06_alignment_file_processing.html

Main QC steps in DNA alignment

Can be done on: SAM, BAM, CRAM

https://hbctraining.github.io/variant_analysis/lessons/06_aliqnment_file_processing.html

Sort by query name

- Grouping together reads that came from the same DNA fragment (i.e. identifier given to each read during sequencing)
- This is important for the following step; Marking duplicates, as it is
 essential to account for biases in sequencing where some fragments
 are overrepresented.

 Query-sorted

QNAME	FLAG	RNAME	POS	•••
Α	100	chr21	342427	
BA	40	chr4	4653	
BBA	-	chr15	26171	
C	100	chr1	2719101	
D	2766	chr15	1748549	
E	200	chr4	2368992	
			https://hbctraining	github io/variant a

https://hbctraining.github.io/variant_analysis/lessons/06_a gnment_file_processing.html

Mark Duplicates

- To assure proper pair alignment, must be used on a name sorted BAM (i.e. mark secondary alignments)
- Locate and tag duplicate reads (both PCR and optical/sequencing-driven), duplicate reads are defined as originating from the same original fragment of DNA.
- Produces a metrics file indicating the numbers of duplicates for both single- and paired-end reads.

Mark Duplicates

Sort by position

- Position sorting is performed to organize the reads by their location on the genome
- This is essential for downstream analysis, which require reads to be in order based on their <u>chromosomal coordinates</u>.
- Ensure that the subsequent analysis (like variant calling) do not mistakenly count extra copies of the same fragment, which could distort the results.
- Position sorting facilitates the identification of regions with genuine high coverage due to biological reasons rather than technical artifacts.

Sort by query name vs position

Query-sorted

QNAME	FLAG	RNAME	POS	
А	100	chr21	342427	100
BA	40	chr4	4653	
BBA	900	chr15	26171	
C	130	chr1	2719101	
D	2766	chr15	1748549	
Е	200	chr4	2368992	

Coordinate-sorted

QNAME	FLAG	RNAME	POS	
С	100	chr1	2719101	100
BA		chr4	4653	40
E		chr4	2368992	90
BBA		chr15	26171	130
D		chr15	1748549	2766
Α		chr21	342427	200

Index your final BAM

 In order to efficiently load and search a bam file, downstream applications typically require an index

SAM Flagstat

 Extract and count the number of reads that are: aligned, primary, not duplicate, and properly paired ...etc, based on FLAG field.

https://samtools.github.io/hts-specs/SAMv1.pdf

https://broadinstitute.github.io/picard/explain-flags.html

Indel Realign or BQSR?

