ECE 2300 Recitation Class 1

Renxiang guan

Pre-class

- 3 exams (25% each for mid, 30% for final)
- 6 in-class quizzes (20% in total)
- Homework not graded, recommended to finish
- RC class format: slides? Written notes?

1.1 Review on terminologies

Vector:

Scalar:

1.1 Review on terminologies

Del:

Gradient:

1.1 Review on terminologies

Divergence:

Curl:

https://www.bilibili.com/video/BV19s41157Z4/?spm_id_from=333. 999.0.0&vd_source=f0a8eb85590d4c542e941ee727d8d28c

Dot Products:

Cross Products:

Volume:

■ BAC-CAB rule (Vector Triple Product):

1.3 Coordinates

Basis:

1.3 Coordinates

Differential length, area, volume:

1.3.1 Cartesian Coordinates

■ Figure:

Right hand rule:

1.3.1 Cartesian Coordinates

Dot/Cross product:

1.3.1 Cartesian Coordinates

Differential length:

Differential area:

Differential volume:

Ex1. Vector

1.3.2 Cylindrical Coordinates

Figure:

Right hand rule:

1.3.2 Cylindrical Coordinates

Differential length:

Differential area:

Differential volume:

1.3.2 Cylindrical Coordinates

Transformation vector:

1.3.3 Spherical Coordinates

Figure:

Right hand rule:

1.3.3 Spherical Coordinates

Differential length:

Differential area:

Differential volume:

1.3.3 Spherical Coordinates

Transformation vector:

1.4 Integrals

■ Line Integral:

1.4 Integrals

Surface Integral:

1.4 Integrals

Volume Integral:

Gradient:

Divergence:

Curl:

Curl:

Divergence Theorem:

Stokes' s Theorem:

Null identities:

 Helmholtz Theorem (Fundamental theorem of vector calculus):

Ex2. Theorems application

- (HW1-8) Given a vector function $\mathbf{F} = \mathbf{a}_{\mathbf{x}}(x + c_1 z) + \mathbf{a}_{\mathbf{y}}(c_2 x 3z) + \mathbf{a}_{\mathbf{z}}(x + c_3 y + c_4 z)$.
 - a) Determine the constants c_1 , c_2 , and c_3 if **F** is irrotational.
 - b) Determine the constant c_4 if **F** is also solenoidal.
 - c) Determine the scalar potential function V whose negative gradient equals \mathbf{F} .

Ex2. Theorems application

Thank You

Credit to Deng Naihao for this slides & information