There are 2 ways of representing dataset:

First:

In this we represent each column as a feature(f1, f2,, fd) and each row as datapoint,

So we can say each row is x_i^T that means transponse of x_i , where $x_i = [SL, SW, PI, PW]$ for iris, and since we represent it as column vector and to convert it into row vector we take transponse of it.

Y is a column vector of dimension n*1, where each y or y_i is the class label or result of x_i^T . Example for iris for any x_i , y_i is one of the { Setossa, versicolor, virginica}.

Second: In this we specify each row as feature and each column as datapoint, that means we arrange each x_i in n columns (since x_i is column vector), for example for iris we have rows as SL,SW,Pl,PW and there will be 150 columns. It's found in most of the research papers.

