Intuitionistic modal logic

Philippe Balbiani and Çiğdem Gencer

Logic, Interaction, Language and Computation Toulouse Institute of Computer Science Research CNRS-INPT-UT3, Toulouse, France

Institut de Recherche en Informatique de Toulouse

Intuitionistic modal logics Outline

- Intermediate logics
- Modal logics
- Combining logics
- ► Two peculiar intuitionistic modal logics
- A minimal setting

Intermediate logics Outline

- Classical Propositional Logic
- ► Intuitionistic Propositional Logic
- ► Examples of intermediate logics

Syntax and semantics

- ► AF: countable set of atomic formulas
- ► Fma(AF): set of all formulas generated from AF

- ▶ Atomic formulas: $p \in AF$
- ▶ Formulas: $\phi \in Fma(AF)$

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \to \phi_2)$$

Possible readings

- ▶ ⊥: "false"
- ► T: "true"
- $\blacktriangleright \phi_1 \lor \phi_2$: " ϕ_1 or ϕ_2 "
- $\blacktriangleright \phi_1 \land \phi_2$: " ϕ_1 and ϕ_2 "
- $ightharpoonup \phi_1
 ightarrow \phi_2$: "if ϕ_1 then ϕ_2 "

Other connectives

```
Negation: \neg \phi ::= (\phi \to \bot)
Equivalence: (\phi_1 \leftrightarrow \phi_2) ::= ((\phi_1 \to \phi_2) \land (\phi_2 \to \phi_1))
```

Length of formulas

For all formulas ϕ $\|\phi\|$ denotes the number of symbols in ϕ

Examples of formulas

$$(((p \to \bot) \lor q) \to ((q \land r) \land s))$$

$$ightharpoonup
eg p \lor q \rightarrow q \land r \land s$$

$$SF(\phi)$$
: set of all subformulas of $\phi \in Fma(AF)$
 $SF(p) = \{p\}$
 $SF(\bot) = \{\bot\}$
 $SF(\top) = \{\top\}$
 $SF(\phi \lor \psi) = \{\phi \lor \psi\} \cup SF(\phi) \cup SF(\psi)$
 $SF(\phi \land \psi) = \{\phi \land \psi\} \cup SF(\phi) \cup SF(\psi)$
 $SF(\phi \to \psi) = \{\phi \to \psi\} \cup SF(\phi) \cup SF(\psi)$

Lemma

$$\operatorname{Card}(SF(\phi)) = \mathcal{O}(\|\phi\|)$$

Intermediate logics: Classical Propositional Logic Semantic assumptions

- ▶ each atomic formula is either true (T) or false (F)
- ▶ ⊥ is always false (F)
- ► T is always true (T)
- ▶ the truth values of $\phi_1 \lor \phi_2$, $\phi_1 \land \phi_2$ and $\phi_1 \to \phi_2$ are uniquely determined by the truth values of ϕ_1 and ϕ_2

ϕ_1	ϕ_2	$\phi_1 \lor \phi_2$	$\phi_1 \wedge \phi_2$	$\phi_1 \rightarrow \phi_2$
F	F	F	F	Т
F	Т	Т	F	T
Т	F	Т	F	F
Т	Т	T	Т	T

Truth values of the other connectives

As a result

▶ the truth values of $\neg \phi$ and $\phi_1 \leftrightarrow \phi_2$ are uniquely determined by the truth values of ϕ , ϕ_1 and ϕ_2

ϕ	$\neg \phi$
F	T
Т	F

ϕ_1	ϕ_2	$\phi_1 \leftrightarrow \phi_2$
F	F	T
F	T	F
T	F	F
T	T	Т

Exercise

Show that $(\phi_1 \leftrightarrow \phi_2) \leftrightarrow \phi_3$, $(\phi_2 \leftrightarrow \phi_3) \leftrightarrow \phi_1$ and $(\phi_3 \leftrightarrow \phi_1) \leftrightarrow \phi_2$ have the same truth values.

Show that $\neg(\phi_1 \leftrightarrow \phi_2)$, $\neg\phi_1 \leftrightarrow \phi_2$ and $\phi_1 \leftrightarrow \neg\phi_2$ have the same truth values.

A model is a function $\mathcal{M} = V$ where

 $ightharpoonup V: AF
ightharpoonup \{F,T\}$

 $\mathcal{M} \models \phi$: relation " ϕ is true in model \mathcal{M} "

- $ightharpoonup \mathcal{M} \models p \text{ iff } V(p) = T$
- M ⊭ ⊥
- M ⊨ T
- $\blacktriangleright \mathcal{M} \models \phi \lor \psi \text{ iff } \mathcal{M} \models \phi \text{ or } \mathcal{M} \models \psi$
- $\blacktriangleright \mathcal{M} \models \phi \land \psi \text{ iff } \mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi$
- $\blacktriangleright \mathcal{M} \models \phi \rightarrow \psi \text{ iff } \mathcal{M} \not\models \phi \text{ or } \mathcal{M} \models \psi$

Let $\mathcal{M} = V$ be a model where $V: AF \to \{F, T\}$ Show that $\mathcal{M} \models \neg \phi$ iff $\mathcal{M} \not\models \phi$. Work out the corresponding truth condition for $\phi \leftrightarrow \psi$.

Validities

A formula is valid if it is true in all models

- ▶ $p \lor (p \to \bot)$ is valid
- $(p \land q \rightarrow \bot) \rightarrow (p \rightarrow \bot)$ is not valid

Let **CPL** be the set of all ϕ such that ϕ is valid

р	1	p o ot	$p \lor (p ightarrow ot)$
F	F	T	T
T	F	F	Т

р	q	1	$p o \bot$	$p \wedge q$	$p \wedge q ightarrow \bot$	$(p \land q \to \bot) \to (p \to \bot)$
F	F	F	Т	F	Т	T
F	Т	F	Т	F	Т	T
T	F	F	F	F	T	F
Т	Т	F	F	Т	F	T

Frames and models

A frame is a set $\mathcal{F} = S$ where

▶ S is a nonempty set of "worlds"

A model on a frame is a pair $\mathcal{M} = (S, V)$ where

 \triangleright $V: AF \rightarrow 2^S$

V(p): set of worlds where p is "true", for every atomic formula p

 $\mathcal{M} \models_s \phi$: relation " ϕ is true at world s in model \mathcal{M} "

- $ightharpoonup \mathcal{M} \models_s p \text{ iff } s \in V(p)$
- $\triangleright \mathcal{M} \not\models_s \bot$
- $ightharpoonup \mathcal{M} \models_s \top$
- $\blacktriangleright \mathcal{M} \models_{s} \phi \lor \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi$
- $\blacktriangleright \mathcal{M} \models_{s} \phi \land \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ and } \mathcal{M} \models_{s} \psi$
- $\blacktriangleright \mathcal{M} \models_{s} \phi \rightarrow \psi \text{ iff } \mathcal{M} \not\models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi$

Let $\mathcal{F}=S$ be a frame where S is a nonempty set of "worlds" and $\mathcal{M}=(S,V)$ be a model on \mathcal{F} where $V:AF\to 2^S$

Show that for all $s \in S$, $\mathcal{M} \models_s \neg \phi$ iff $\mathcal{M} \not\models_s \phi$. Work out the corresponding truth condition for $\phi \leftrightarrow \psi$.

Let ϕ be a formula

Show that the following conditions are equivalent:

- $\blacktriangleright \phi$ is valid,
- lacktriangledown ϕ is true at all worlds in all models.

Tableaux

Determining whether a given formula is valid

Our wish: design a systematic procedure

Semantic tableaux

A semantic tableau is a pair $t = (\Gamma, \Delta)$ with $\Gamma, \Delta \subseteq Fma(AF)$

Disjoint tableaux

The tableau $t = (\Gamma, \Delta)$ is disjoint if

$$ightharpoonup \Gamma \cap \Delta = \emptyset$$

Saturated tableaux

The tableau $t = (\Gamma, \Delta)$ is saturated if for all formulas ϕ, ψ

- \bot \bot \in Δ
- ightharpoons op op op op
- ▶ if $\phi \lor \psi$ is in Γ then $\psi \in \Gamma$ or $\phi \in \Gamma$
- ▶ if $\phi \lor \psi$ is in Δ then $\psi \in \Delta$ and $\phi \in \Delta$
- ▶ if $\phi \land \psi$ is in Γ then $\psi \in \Gamma$ and $\phi \in \Gamma$
- if $\phi \wedge \psi$ is in Δ then $\psi \in \Delta$ or $\phi \in \Delta$
- ▶ if $\phi \to \psi$ is in Γ then $\psi \in \Gamma$ or $\phi \in \Delta$
- if $\phi \to \psi$ is in Δ then $\psi \in \Delta$ and $\phi \in \Gamma$

Tableaux

Extensions of tableaux

The tableau $t'=(\Gamma',\Delta')$ is an extension of the tableau $t=(\Gamma,\Delta)$ if

- Γ ⊆ Γ'
- $ightharpoonup \Delta \subseteq \Delta'$

Realizable tableaux

The tableau $t=(\Gamma,\Delta)$ is realizable in model $\mathcal{M}=(S,V)$ where S is a nonempty set of "worlds" and $V:AF\to 2^S$ if for all formulas ϕ,ψ ,

- ▶ if $\phi \in \Gamma$ then $\mathcal{M} \models \phi$
- if $\psi \in \Delta$ then $\mathcal{M} \not\models \psi$

Proposition

A tableau is realizable if and only if it can be extended to a disjoint saturated tableau.

Proposition

A finite tableau t is realizable if and only if there exists a finite sequence t_1, \ldots, t_n of tableaux such that

- ▶ $t_1 = t$,
- ▶ for all $1 \le i < n$, t_{i+1} is obtained from t_i by applying to it one of the saturation rules,
- ▶ t_n is a disjoint saturated tableau.

Exercise

idempotency
$$p \lor p \leftrightarrow p$$
idempotency $p \land p \leftrightarrow p$
commutativity $p \lor q \leftrightarrow q \lor p$
commutativity $p \land q \leftrightarrow q \land p$

$$p \lor \bot \leftrightarrow p$$

$$p \land \bot \leftrightarrow \bot$$

$$p \lor \top \leftrightarrow \top$$

$$p \land \top \leftrightarrow p$$

$$\bot \rightarrow p$$

$$p \rightarrow \top$$

$$q \rightarrow p \vee \neg p$$

$$p \wedge \neg p \rightarrow q$$
associativity
$$p \vee (q \vee r) \leftrightarrow (p \vee q) \vee r$$
associativity
$$p \wedge (q \wedge r) \leftrightarrow (p \wedge q) \wedge r$$
absorption
$$(p \wedge q) \vee q \leftrightarrow q$$
absorption
$$(p \vee q) \wedge q \leftrightarrow q$$
distributivity
$$(p \wedge q) \vee r \leftrightarrow (p \vee r) \wedge (q \vee r)$$
distributivity
$$(p \vee q) \wedge r \leftrightarrow (p \wedge r) \vee (q \wedge r)$$

simplification
$$p o (q o p)$$

syllogism $(p o q) o ((q o r) o (p o r))$
Frege's law $(p o (q o r)) o ((p o q) o (p o r))$
 $p o p \vee q$
 $q o p \vee q$
 $p \wedge q o p$
 $p \wedge q o q$
De Morgan's law $\neg (p \vee q) \leftrightarrow \neg p \wedge \neg q$

$$(p \rightarrow q) \leftrightarrow \neg p \lor q$$

$$(p \rightarrow q) \leftrightarrow \neg (p \land \neg q)$$

$$(p \lor q) \land (p \lor \neg q) \leftrightarrow p$$

$$(p \land q) \lor (p \land \neg q) \leftrightarrow p$$
Pierce's law $((p \rightarrow q) \rightarrow p) \rightarrow p$
excluded middle $p \lor \neg p$
contraposition $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
double negation $p \leftrightarrow \neg \neg p$

Prove that the following inference rules preserve validity: modus ponens $\frac{\phi \ \phi \to \psi}{\psi}$ substitution $\frac{\phi}{\sigma(\phi)}$, where σ is a substitution

Calculus

The calculus of **CPL** contains the following axioms and inference rules

Axioms

$$ightharpoonup p
ightharpoonup (q
ightarrow p)$$

$$\blacktriangleright (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

$$ightharpoonup p
ightharpoonup q$$
 and $q
ightharpoonup p
ightharpoonup q$

$$\blacktriangleright (p \to r) \to ((q \to r) \to ((p \lor q) \to r))$$

▶
$$p \land q \rightarrow p$$
 and $p \land q \rightarrow q$

$$ightharpoonup \perp \rightarrow p \text{ and } p \rightarrow \top$$

$$\triangleright p \lor (p \rightarrow \bot)$$

Inference rules

modus ponens
$$\frac{\phi \ \phi \rightarrow \psi}{\psi}$$

substitution $\frac{\phi}{\sigma(\phi)}$, where σ is a substitution

Owing to the importance of modus ponens and substitution A logic is a set of formulas which is closed under the inference rules of modus ponens and substitution

Let ϕ be a formula

A derivation of ϕ is a sequence ϕ_1, \ldots, ϕ_n of formulas such that

- ▶ for all $1 \le i \le n$, ϕ_i is an axiom or is obtained from some of the preceding formulas in the sequence by one of the inference rules,
- $\rightarrow \phi_n = \phi$.

If ϕ is derivable then we write $\vdash_{\mathbf{CPL}} \phi$

CPL

The set of all derivable formulas

Lemma

CPL is a logic.

Let ϕ be a formula

Derivation of $\phi \rightarrow \phi$

1.
$$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

2.
$$(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$$

3.
$$p \rightarrow (q \rightarrow p)$$

4.
$$\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$$

5.
$$(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)$$

6.
$$\phi \rightarrow (\phi \rightarrow \phi)$$

7.
$$\phi \rightarrow \phi$$

Derivations from assumptions

Let ϕ be a formula and Γ be a set of formulas

A derivation of ϕ from the set Γ of assumptions is a sequence ϕ_1, \ldots, ϕ_n of formulas such that

- ▶ for all $1 \le i \le n$, ϕ_i is an axiom or an assumption in Γ or is obtained from some of the preceding formulas in the sequence by one of the inference rules, the inference rule of substitution being applied only to axioms,
- $\rightarrow \phi_n = \phi.$

If ϕ is derivable from the set Γ of assumptions then we write $\Gamma \vdash_{\mathbf{CPL}} \phi$

Derivations from assumptions

Proposition

If $\Gamma \vdash_{\mathbf{CPL}} \phi$ and $\Gamma \subseteq \Delta$ then $\Delta \vdash_{\mathbf{CPL}} \phi$.

Proposition

If $\Gamma \vdash_{\mathsf{CPL}} \phi \to \psi$ and $\Delta \vdash_{\mathsf{CPL}} \phi$ then $\Gamma, \Delta \vdash_{\mathsf{CPL}} \psi$.

Theorem (Deduction Theorem)

If $\Gamma, \phi \vdash_{\mathsf{CPL}} \psi$ then $\Gamma \vdash_{\mathsf{CPL}} \phi \to \psi$.

Let ϕ,ψ,χ be formulas and Γ be a set of formulas

By using the Deduction Theorem, prove that

$$ightharpoonup$$
 $\vdash_{\mathsf{CPL}} (\phi \to \psi) \to ((\psi \to \chi) \to (\phi \to \chi)),$

- ▶ if $\Gamma \vdash_{\mathsf{CPL}} \phi \lor \psi$ and $\Gamma, \phi \vdash_{\mathsf{CPL}} \psi$ then $\Gamma \vdash_{\mathsf{CPL}} \psi$,
- ightharpoonup $\vdash_{\mathsf{CPL}} \phi \lor (\phi \to \psi).$

Intermediate logics: Classical Propositional Logic Soundness and Completeness of CPL

Theorem

For all formulas ϕ , the following conditions are equivalent:

- ightharpoonup \vdash CPL ϕ ,
- $\blacktriangleright \phi$ is valid.

Intermediate logics: Classical Propositional Logic Basic properties of CPL

A logic **L** is consistent if $\phi \notin \mathbf{L}$ for some formula ϕ

Theorem

CPL is consistent.

A logic is Post-complete if it is consistent and it has no proper consistent extension

Theorem

CPL is Post-complete.

A logic **L** is 0-reducible if for all formulas ϕ , if $\phi \notin \mathbf{L}$ then there exists a variable-free instance ϕ' of ϕ such that $\phi' \notin \mathbf{L}$

Theorem

CPL is 0-reducible.

A logic ${\bf L}$ is independently axiomatizable by a set Γ of formulas if the closure of Γ under modus ponens and substitution is ${\bf L}$ but no proper subset of Γ possesses this property

Theorem

CPL is independently axiomatizable.

A rule of inference $\frac{\phi_1,\dots,\phi_n}{\psi}$ is derivable in a logic **L** if there is a derivation of ϕ in **L** from the assumptions ϕ_1,\dots,ϕ_n

A rule of inference $\frac{\phi_1,\ldots,\phi_n}{\psi}$ is admissible in a logic $\mathbf L$ if for all substitutions σ , if $\sigma(\phi_1),\ldots,\sigma(\phi_n)\in \mathbf L$ then $\sigma(\psi)\in \mathbf L$

Lemma

Every CPL-derivable inference rule is CPL-admissible.

A logic **L** is structurally complete if every **L**-admissible inference rule is **L**-derivable

Theorem

CPL is structurally complete.

Corollary

The admissibility problem for inference rules in **CPL** is decidable.

A logic **L** has the Craig interpolation property if for all formulas ϕ, ψ , if $\phi \to \psi \in \mathbf{L}$ then there exists a formula χ whose variables occur both in ϕ and ψ and such that $\phi \to \chi \in \mathbf{L}$ and $\chi \to \psi \in \mathbf{L}$

Theorem

CPL has the Craig interpolation property.

A logic **L** is locally tabular if for all $n \ge 0$, **L** contains only a finite number of pairwise nonequivalent formulas built from variables p_1, \ldots, p_n

Theorem

CPL is locally tabular.

A logic **L** is Halldén-complete if for all formulas ϕ, ψ containing no common variables, $\phi \lor \psi \in \mathbf{L}$ if and only if $\phi \in \mathbf{L}$ or $\psi \in \mathbf{L}$

Theorem

CPL is Halldén-complete.

A logic **L** possesses the disjunction property if for all formulas ϕ, ψ , $\phi \lor \psi \in \mathbf{L}$ if and only if $\phi \in \mathbf{L}$ or $\psi \in \mathbf{L}$

Theorem

CPL does not possess the disjunction property.

Intermediate logics: Classical Propositional Logic

A formula ϕ is in disjunctive (respectively conjunctive) normal form if there exists $n \geq 1$ and there exists formulas ψ_1, \ldots, ψ_n such that $\phi = \psi_1 \vee \ldots \vee \psi_n$ (respectively $\phi = \psi_1 \wedge \ldots \wedge \psi_n$) and each ψ_i is a conjunction (respectively disjunction) of atoms and negations of atoms. Show that every formula is equivalent to a formula in disjunctive (respectively conjunctive) normal form.

Show that each of the sets $\{\neg, \lor\}$, $\{\neg, \land\}$, $\{\bot, \to\}$ and $\{\neg, \to\}$ of connectives is truth-functionally complete in the sense that for all $n \ge 1$, every Boolean function from $\{F, T\}^n$ to $\{F, T\}$ can be represented by a formula containing only connectives in that set.

The law of excluded middle

It allows proof of disjunctions $\phi \vee \psi$ such that neither $\phi,$ nor ψ is provable

$$ightharpoonup p \lor (p \to \bot)$$

Proofs of that sort are known as non-constructive

Brouwer-Heyting-Kolmogorov reading

The intended meaning of the intuitionistic connectives is given in terms of proofs and constructions

- ▶ A proof of $\phi \lor \psi$ is given by presenting either a proof of ϕ , or a proof of ψ
- ▶ A proof of $\phi \wedge \psi$ consists of a proof of ϕ and a proof of ψ
- ▶ A proof of $\phi \rightarrow \psi$ is a construction which, given a proof of ϕ , produces a proof of ψ

Classical Propositional Logic

- each atomic formula is either true (T) or false (F)
- ▶ the truth values of $\phi_1 \lor \phi_2$, $\phi_1 \land \phi_2$ and $\phi_1 \to \phi_2$ are uniquely determined by the truth values of ϕ_1 and ϕ_2

Intuitionistic Propositional Logic

- it is natural to regard an atomic formula established at a world s to be true at s and to remain true at all further possible worlds
- an atomic formula which is not true at a world s cannot be in general regarded as false for it may become true at one of the subsequent worlds

Classical Propositional Logic

- $\blacktriangleright \phi \lor \psi$ is true when either ϕ or ψ is true
- \blacktriangleright $\phi \land \psi$ is true when both ϕ and ψ are true
- $ightharpoonup \phi
 ightarrow \psi$ is true when ϕ is true only if ψ is true

Intuitionistic Propositional Logic

- $\blacktriangleright \phi \lor \psi$ is true at world s when either ϕ or ψ is true at s
- $\phi \wedge \psi$ is true at world s when both ϕ and ψ are true at s
- ▶ $\phi \rightarrow \psi$ is true at world s when for every subsequent possible world t, in particular s itself, ϕ is true at t only if ψ is true at t

Syntax and semantics

- ► AF: countable set of atomic formulas
- ► Fma(AF): set of all formulas generated from AF

- ▶ Atomic formulas: $p \in AF$
- ▶ Formulas: $\phi \in Fma(AF)$

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \to \phi_2)$$

Frames and models

Frames

A frame is a pair $\mathcal{F} = (S, \leq)$ where

- ► *S* is a nonempty set of "worlds"
- $ightharpoonup \leq$ is a partial order on S, i.e.
 - ▶ \leq is reflexive: $\forall s \in S, s \leq s$
 - \blacktriangleright \leq is transitive: $\forall s, t, u \in S, s \leq t \& t \leq u \Rightarrow s \leq u$
 - \leq is antisymmetric: $\forall s, t \in S, s \leq t \& t \leq s \Rightarrow s = t$

Models

A model on a frame is a triple $\mathcal{M} = (S, \leq, V)$ where

- ▶ $V: AF \rightarrow 2^S$
- V(p) is \leq -upward closed, for every atomic formula p
 - $\forall s, t \in S, s \in V(p) \& s \le t \Rightarrow t \in V(p)$

Frames and models

Given a model $\mathcal{M} = (S, \leq, V)$ and $s \in S$

 $\mathcal{M} \models_{s} \phi$: relation " ϕ is true at world s in model \mathcal{M} "

- ▶ $\mathcal{M} \models_s p \text{ iff } s \in V(p)$
- $\triangleright \mathcal{M} \not\models_s \bot$
- $\triangleright \mathcal{M} \models_{s} \top$
- $\blacktriangleright \mathcal{M} \models_{s} \phi \lor \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi$
- $\blacktriangleright \mathcal{M} \models_{s} \phi \land \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ and } \mathcal{M} \models_{s} \psi$
- ▶ $\mathcal{M} \models_s \phi \to \psi$ iff for all $t \in S$, if $s \leq t$ and $\mathcal{M} \models_t \phi$ then $\mathcal{M} \models_t \psi$

Let $\mathcal{M}=(S,\leq,V)$ be a model and $s\in S$ Show that $\mathcal{M}\models_s\neg\phi$ iff for all $t\in S$, if $s\leq t$ then $\mathcal{M}\not\models_t\phi$. Work out the corresponding truth condition for $\phi\leftrightarrow\psi$.

Let
$$\mathcal{M} = (S, \leq, V)$$
 be a model and $s, t \in S$
Show that if $s \leq t$ and $\mathcal{M} \models_s \phi$ then $\mathcal{M} \models_t \phi$.

Intermediate logics: Intuitionistic Propositional Logic Truth and validity

$$\mathcal{M} \models \phi$$
: relation " ϕ is true in model $\mathcal{M} = (S, \leq, V)$ " $\mathcal{M} \models \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in S$

$$\mathcal{F} \models \phi$$
: relation " ϕ is valid in frame $\mathcal{F} = (S, \leq)$ " $\mathcal{F} \models \phi$ iff $\mathcal{M} \models \phi$ for all models $\mathcal{M} = (S, \leq, V)$

$$\mathcal{C} \models \phi$$
: relation " ϕ is valid in class \mathcal{C} of frames" $\mathcal{C} \models \phi$ iff $\mathcal{F} \models \phi$ for all frames \mathcal{F} in \mathcal{C}

Show that the following formulas are valid in the class of all frames:

- $\phi \to (\psi \to \phi),$
- $(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)),$
- $ightharpoonup \phi
 ightarrow \psi$ and $\psi
 ightarrow \phi \lor \psi$,
- $(\phi \to \chi) \to ((\psi \to \chi) \to ((\phi \lor \psi) \to \chi)),$
- $lackbox{}\phi \wedge \psi
 ightarrow \phi$ and $\phi \wedge \psi
 ightarrow \psi$,
- \blacktriangleright $\bot \to \phi$ and $\phi \to \top$.

Show that $\phi \to \neg \neg \phi$ is valid in the class of all frames.

Find a frame in which $p \lor (p \to \bot)$ is not valid.

Find a frame in which $\neg \neg p \rightarrow p$ is not valid.

Find a frame in which $((p \rightarrow q) \rightarrow p) \rightarrow p$ is not valid.

Let ${\bf IPL}$ be the set of all ϕ such that ϕ is valid in the class of all frames

Lemma

IPL is a logic.

Proposition

 $IPL \subset CPL$.

Proposition

Since $p \lor (p \to \bot)$ is in **CPL** and $p \lor (p \to \bot)$ is not in **IPL**, then the above inclusion is strict.

Generated submodels

$$\mathcal{M}^t = (S^t, \leq^t, V^t)$$
: submodel of $\mathcal{M} = (S, \leq, V)$ generated by $t \in S$

- $ightharpoonup \leq^t = \leq \cap (S^t \times S^t)$
- $V^t(p) = V(p) \cap S^t$

$$\mathcal{F}^t = (S^t, \leq^t)$$
: subframe of $\mathcal{F} = (S, \leq)$ generated by $t \in S$

Rooted frame

A frame $\mathcal{F}=(S,\leq)$ is rooted if there exists $t\in S$ such that $\mathcal{F}^t=\mathcal{F}$

Show that S^t is the smallest subset of S that contains t and is closed under \leq .

Generated submodels

Submodel Lemma: For any $u \in S^t$

$$\blacktriangleright \mathcal{M}^t \models_u \phi \text{ iff } \mathcal{M} \models_u \phi$$

Corollary:

- 1. $\mathcal{M} \models \phi$ implies $\mathcal{M}^t \models \phi$
- 2. $\mathcal{M} \models \phi$ iff ϕ is true in all generated submodels of \mathcal{M}
- 3. $\mathcal{F} \models \phi$ iff ϕ is valid in all generated subframes of \mathcal{F}

Bounded morphisms

A function $f: S_1 \to S_2$ is called a bounded morphism from $\mathcal{M}_1 = (S_1, \leq_1, V_1)$ to $\mathcal{M}_2 = (S_2, \leq_2, V_2)$ iff

- ▶ $s_1 \leq_1 t_1$ implies $f(s_1) \leq_2 f(t_1)$
- ▶ $f(s_1) \leq_2 t_2$ implies there exists $t_1 \in S_1$ such that $s_1 \leq_1 t_1$ and $f(t_1) = t_2$
- $s_1 \in V_1(p)$ iff $f(s_1) \in V_2(p)$

Bounded Morphism Lemma: For any $s_1 \in S_1$

 $\blacktriangleright \mathcal{M}_1 \models_{s_1} \phi \text{ iff } \mathcal{M}_2 \models_{f(s_1)} \phi$

Bounded morphisms

A function $f: S_1 \to S_2$ is called a bounded morphism from $\mathcal{F}_1 = (S_1, \leq_1)$ to $\mathcal{F}_2 = (S_2, \leq_2)$ iff

- $s_1 \leq_1 t_1$ implies $f(s_1) \leq_2 f(t_1)$
- ▶ $f(s_1) \leq_2 t_2$ implies there exists $t_1 \in S_1$ such that $s_1 \leq_1 t_1$ and $f(t_1) = t_2$

If there is a bounded morphism $f: \mathcal{F}_1 \to \mathcal{F}_2$ that is surjective then \mathcal{F}_2 is called a bounded morphic image of \mathcal{F}_1

Bounded Morphism Lemma: If \mathcal{F}_2 is a bounded morphic image of \mathcal{F}_1 then for any formula ϕ

 $ightharpoonup \mathcal{F}_1 \models \phi \text{ implies } \mathcal{F}_2 \models \phi$

Bounded morphisms

Theorem

Every rooted frame \mathcal{F} is a bounded morphic image of some tree, which is finite if \mathcal{F} is finite.

Corollary

IPL is the set of all ϕ such that ϕ is valid in the class of all trees.

About trees

For all $n \ge 2$, let \mathcal{T}_n be the full n-ary tree

Theorem

Let $n \geq 2$. Every finite tree is a bounded morphic image of \mathcal{T}_n .

Corollary

Let $n \ge 2$. Every finite rooted frame is a bounded morphic image of \mathcal{T}_n .

Proposition

For all variable-free formulas ϕ , either $\phi \leftrightarrow \bot$ is in **IPL**, or $\phi \leftrightarrow \top$ is in **IPL**.

Corollary

For all variable-free formulas ϕ , ϕ is in **IPL** if and only if ϕ is in **CPL**.

Corollary

IPL is not 0-reducible.

Determining whether a given formula is valid in the class of all frames

Our wish: design a systematic procedure

Semantic tableaux

A semantic tableau is a pair $t = (\Gamma, \Delta)$ with $\Gamma, \Delta \subseteq Fma(AF)$

Disjoint tableaux

The tableau $t = (\Gamma, \Delta)$ is disjoint if

$$\Gamma \cap \Delta = \emptyset$$

Saturated tableaux

The tableau $t = (\Gamma, \Delta)$ is saturated if for all formulas ϕ, ψ

- \bot \bot \in Δ
- ightharpoonup op op op op
- ▶ if $\phi \lor \psi$ is in Γ then $\psi \in \Gamma$ or $\phi \in \Gamma$
- if $\phi \lor \psi$ is in Δ then $\psi \in \Delta$ and $\phi \in \Delta$
- ▶ if $\phi \land \psi$ is in Γ then $\psi \in \Gamma$ and $\phi \in \Gamma$
- if $\phi \wedge \psi$ is in Δ then $\psi \in \Delta$ or $\phi \in \Delta$
- ▶ if $\phi \to \psi$ is in Γ then $\psi \in \Gamma$ or $\phi \in \Delta$

Hintikka systems

A Hintikka system is a pair (S, \leq) where

- S is a nonempty set of disjoint saturated tableaux
- $ightharpoonset \leq$ is a partial order on S such that
 - if $t = (\Gamma, \Delta)$ and $t' = (\Gamma', \Delta')$ are in S and $t \leq t'$ then $\Gamma \subseteq \Gamma'$
 - if $t = (\Gamma, \Delta)$ is in S and $\phi \to \psi$ is in Δ then there exists $t' = (\Gamma', \Delta')$ in S such that $t \le t'$, $\psi \in \Delta'$ and $\phi \in \Gamma'$

Hintikka systems for tableaux

A Hintikka system (S, \leq) is a Hintikka system for the tableau t if there exists t' in S such that t < t'

Realizable tableaux

The tableau (Γ, Δ) is realizable in model $\mathcal{M} = (S, \leq, V)$ if there exists s in S such that for all formulas ϕ, ψ ,

- ▶ if $\phi \in \Gamma$ then $\mathcal{M} \models_s \phi$
- ▶ if $\psi \in \Delta$ then $\mathcal{M} \not\models_{s} \psi$

Proposition

A tableau t is realizable in some model if and only if there exists a Hintikka system for t.

Theorem

A tableau t is realizable in some model if and only if there exists a Hintikka system (S, \leq) for t such that $||S|| \leq 2^{\operatorname{Card}(SF(\phi))}$

By using Hintikka systems, show that

$$ightharpoonup \neg \neg \neg p
ightharpoonup \neg \neg p$$

is in IPL.

By using Hintikka systems, show that Dummett formula $(p \to q) \lor (q \to p)$, Weak excluded middle $\neg p \lor \neg \neg p$, Pierce formula $((p \to q) \to p) \to p$, Scott formula $((\neg \neg p \to p) \to p \lor \neg p) \to \neg p \lor \neg \neg p$, are not in **IPL**.

Conditions on <

The following is a list of properties of a partial order \leq that are defined by first-order sentences

- 1. Strongly connected: $\forall s \forall t \forall u (s \leq t \land s \leq u \rightarrow t \leq u \lor u \leq t)$
- 2. Strongly directed:

$$\forall s \forall t \forall u (s \leq t \land s \leq u \rightarrow \exists v (t \leq v \& u \leq v))$$

- 3. *n*-bounded depth: $\forall s_0 \dots \forall s_n (\bigwedge \{ s_i \leq s_{i+1} : 0 \leq i < n \} \rightarrow \bigvee \{ s_i = s_j : 0 \leq i < j \leq n \})$ where $n \geq 1$
- 4. *n*-bounded width: $\forall s \forall t_0 \dots \forall t_n (\bigwedge \{ s \leq t_i : 0 \leq i \leq n \}) \rightarrow \bigvee \{ t_i = t_j : 0 \leq i < j \leq n \})$ where $n \geq 1$

Conditions on <

Corresponding to this list is a list of formulas

$$\begin{array}{l} \mathbf{da} \ (p \rightarrow q) \lor (q \rightarrow p) \\ \mathbf{wem} \ \neg p \lor \neg \neg p \\ \mathbf{bd}_1 \ p_1 \lor (p_1 \rightarrow \bot) \\ \mathbf{bd}_{n+1} \ p_{n+1} \lor (p_{n+1} \rightarrow \mathbf{bd}_n) \\ \mathbf{bw}_n \ \bigvee \{p_i \rightarrow \bigvee \{p_i: \ 0 \leq j \leq n \ \& \ i \neq j\}: \ 0 \leq i \leq n\} \end{array}$$

Conditions on <

Theorem: Let $\mathcal{F} = (S, \leq)$ be a frame.

- $ightharpoonup \leq$ is strongly connected if and only if $\mathcal{F} \models \mathbf{da}$,
- $ightharpoonup \leq$ is strongly directed if and only if $\mathcal{F} \models \mathbf{wem}$,
- ▶ \leq has *n*-bounded depth if and only if $\mathcal{F} \models \mathbf{bd}_n$, where $n \geq 1$,
- ▶ \leq has *n*-bounded width if and only if $\mathcal{F} \models \mathbf{bw}_n$, where $n \geq 1$.

Calculus

The calculus of **IPL** contains the following axioms and inference rules

Axioms

$$p \to (q \to p)$$

$$\blacktriangleright (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

▶
$$p \rightarrow p \lor q$$
 and $q \rightarrow p \lor q$

$$\blacktriangleright (p \to r) \to ((q \to r) \to ((p \lor q) \to r))$$

$$ightharpoonup p \wedge q
ightarrow p$$
 and $p \wedge q
ightarrow q$

$$\blacktriangleright p \to (q \to p \land q)$$

▶
$$\bot \to p$$
 and $p \to \top$

Inference rules

modus ponens
$$\frac{\phi \hspace{0.1cm} \phi \hspace{0.1cm} \hspace{0.1cm} \psi}{\psi}$$

substitution $\frac{\phi}{\sigma(\phi)}$, where σ is a substitution

Let ϕ be a formula

A derivation of ϕ is a sequence ϕ_1, \ldots, ϕ_n of formulas such that

- ▶ for all $1 \le i \le n$, ϕ_i is an axiom or is obtained from some of the preceding formulas in the sequence by one of the inference rules,
- $\rightarrow \phi_n = \phi.$

If ϕ is derivable then we write $\vdash_{\mathsf{IPL}} \phi$

IPL

The set of all derivable formulas

Lemma

IPL is a logic.

Derivations from assumptions

Let ϕ be a formula and Γ be a set of formulas A derivation of ϕ from the set Γ of assumptions is a sequence ϕ_1, \ldots, ϕ_n of formulas such that

- ▶ for all $1 \le i \le n$, ϕ_i is an axiom or an assumption in Γ or is obtained from some of the preceding formulas in the sequence by one of the inference rules, the inference rule of substitution being applied only to axioms,
- $\rightarrow \phi_n = \phi.$

If ϕ is derivable from the set Γ of assumptions then we write $\Gamma \vdash_{\mathbf{IPL}} \phi$

Derivations from assumptions

Proposition

If $\Gamma \vdash_{\mathsf{IPL}} \phi$ and $\Gamma \subseteq \Delta$ then $\Delta \vdash_{\mathsf{IPL}} \phi$.

Proposition

If $\Gamma \vdash_{\mathsf{IPL}} \phi \to \psi$ and $\Delta \vdash_{\mathsf{IPL}} \phi$ then $\Gamma, \Delta \vdash_{\mathsf{IPL}} \psi$.

Theorem (Deduction Theorem)

If $\Gamma, \phi \vdash_{\mathsf{IPL}} \psi$ then $\Gamma \vdash_{\mathsf{IPL}} \phi \to \psi$.

Soundness and Completeness of IPL

Theorem

For all formulas ϕ , the following conditions are equivalent:

- \vdash | \vdash |
- $\blacktriangleright \phi$ is valid.

Intermediate logics: Intuitionistic Propositional Logic Embedding of CPL into IPL

Theorem (Glivenko Theorem)

For all formulas ϕ , ϕ is in **CPL** if and only if $\neg\neg\phi$ is in **IPL**.

Corollary

For all formulas ϕ , $\neg \phi$ is in **CPL** if and only if $\neg \phi$ is in **IPL**.

Corollary

For all formulas $\phi, \psi, \phi \to \neg \psi$ is in **CPL** if and only if $\phi \to \neg \psi$ is in **IPL**.

Corollary

For all formulas ϕ based on \wedge and \neg , ϕ is in **CPL** if and only if ϕ is in **IPL**.

Theorem

IPL is consistent.

Theorem

IPL is decidable.

A logic **L** is tabular if there exists a finite frame $\mathcal{F}=(S,\leq)$ such that $\mathbf{L}=\{\phi:\ \mathcal{F}\models\phi\}$

Theorem

IPL is not tabular.

A logic **L** is finitely approximable if there exists a class \mathcal{C} of finite frames such that $\mathbf{L} = \{\phi : \mathcal{C} \models \phi\}$

Theorem

IPL is finitely approximable.

Theorem

CPL is the only Post-complete extension of IPL.

Theorem

IPL is independently axiomatizable.

Theorem

IPL is not locally tabular.

Theorem

IPL is Halldén-complete.

Theorem

IPL possesses the disjunction property.

Lemma

Every IPL-derivable inference rule is IPL-admissible.

Proposition

The following rules are **IPL**-admissible but not **IPL**-derivable:

Harrop rule
$$\frac{\neg p \rightarrow q \lor r}{(\neg p \rightarrow q) \lor (\neg p \rightarrow r)},$$
 Mints rule
$$\frac{(p \rightarrow q) \rightarrow p \lor r}{((p \rightarrow q) \rightarrow p) \lor ((p \rightarrow q) \rightarrow r)},$$
 Scott rule
$$\frac{(\neg \neg p \rightarrow p) \rightarrow p \lor \neg p}{\neg p \lor \neg p}.$$

Lemma

Every IPL-admissible inference rule is CPL-derivable.

Intermediate logics: examples of intermediate logics

Intermediate logics: examples of intermediate logics

Examples of intermediate logics

► SmL ::= IPL +
$$(\neg q \rightarrow p) \rightarrow (((p \rightarrow q) \rightarrow p) \rightarrow p)$$

► KC ::= IPL + $\neg p \lor \neg \neg p$
► LC ::= IPL + $(p \rightarrow q) \lor (q \rightarrow p)$
► HT ::= IPL + $(p \rightarrow q) \lor \neg q$
► SL ::= IPL + $((\neg \neg p \rightarrow p) \rightarrow p \lor \neg p) \rightarrow \neg p \lor \neg \neg p$
► KP ::= IPL + $(\neg p \rightarrow q \lor r) \rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$
► WKP ::= IPL + $(\neg p \rightarrow \neg q \lor \neg r) \rightarrow (\neg p \rightarrow \neg q) \lor (\neg p \rightarrow \neg r)$
► CPL ::= IPL + $(p \rightarrow \neg q \lor \neg r) \rightarrow (p \rightarrow \neg q) \lor (p \rightarrow \neg r)$

References:

- Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford (1997).
- Van Dalen, D.: Logic and Structure. Springer (1994).
- Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer (2002).
- Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier (1997).

Contact

- philippe.balbiani@irit.fr
- cigdem.gencer@irit.fr