KODLAMA SİSTEMLERİ

- 1. Onluk sistemler (Decimal systems (0,1,2,3,....,9): İnsanlar için
- 2. Binary/ikili sistemler (0 ve 1): Mkineler/Bilgisayarlar
- 3. Sekizli sistemler/Octal systems (0,1,2,3,...,7)
- 4. Onaltılık/Hexadecimal sistemler (0,1,2,3,....,15 veya 0,1,2,3,....,9 A B C D E F)
- 5. BCD (Binary Coded Decimal Systems)
- 6. EBCDIC systems (Extended Binary Coded Decimal Interchange Code)
- 7. ASC II systems (American Standard Code for Information Interchange)
- 8. Gray systems (Frank Gray, The reflected binary code)

Fig.15 Computer Communications

İKİLİ (BYNAKY) SİSTEMLER

İkili sayı sistemi 0 ve 1 den ol ış r

 $0 \rightarrow bit$

 $1 \rightarrow bit$

1 Nibble → 4 bits (half byte)

1 byte	\Rightarrow 8 oits \rightarrow 2 ³ b	oits
K kilo	2^{10} bit = 1024^1	byte
Nr. 12ga	2^{20} bit = 1024^2	byte
G giga	2^{30} bit = 1024^3	byte
T tera	2^{40} bit= 1024^4	byte
P peta	2^{50} bit = 1024^5	byte
E exa	2^{60} bit = 1024^6	byte

Name	Standart <u>SI</u>	Bit	Ad (Sembol)
kilobit (Kbit)	10^{3}	2^{10}	kibibit (Kibit)
megabit (Mbit)	10^{6}	2^{20}	mebibit (Mibit)
gigabit (Gbit)	10^{9}	2^{30}	gibibit (Gibit)
terabit (Tbit)	10^{12}	2^{40}	tebibit (Tibit)
petabit (Pbit)	10^{15}	2^{50}	pebibit (Pibit)
eksabit (Ebit)	10^{18}	2^{60}	eksbibit (Eibit)
zettabit (Zbit)	10^{21}	2^{70}	zebibit (Zibit)
yottabit (Ybit)	10^{24}	2^{80}	yobibit (Yibit)

BINARY SİSTEM - DIJITAL SİNYALLER

Şekil.16. Analog sinyal – Dijital sinyal dönüşümü : Pulse Code Modulation (PCM)

Şekil. 17. Analog – Dijital Dönüşüm

Sayı Si temlerinin Dönüşümü

Örnekler

1. Onluk/Desimal sistem leki (278-) sayısını hesaplayın.

(2784) ₁₀	2×10^3	7×10^2	8×10^1	4×10^0	Sonuç
	2000	700	80	4	2784

$$(2784)_{10} = \mathbf{2} \times \mathbf{1}^{3} + \mathbf{7} \times 10^{2} + \mathbf{8} \times 10^{1} + \mathbf{4} \times 10^{0}$$

= $\mathbf{2} \times 1000 + \mathbf{7} \times 100 + \mathbf{8} \times 10 + \mathbf{4} \times 1 = 2000 + 700 + 80 + 4 = 2784$

(325.67) ₁₀	3×10^2	2×10^1	5×10^0	•	6×10^{-1}	7×10^{-2}	Sonuç
	300	20	5		0.6	0.07	325.67

$$(325.67)_{10} = 3 \times 10^{2} + 2 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$$
$$= 3 \times 100 + 2 \times 10 + 5 \times 1 + 6 \times \frac{1}{10} + 7 \times \frac{1}{100} = 300 + 20 + 5 + 0.6 + 0.07 = 325.67$$

3. $(1010)_2$ Sayısını onlu sisteme çevirin.

(1010) ₂	1×2^3	0×2^2	1×2^1	0×2^0	Sonuç
	8	0	2	0	$(10)_{10} = 10$

$$(1010)_2 = \mathbf{1} \times 2^3 + \mathbf{0} \times 2^2 + \mathbf{1} \times 2^1 + \mathbf{0} \times 2^0$$

= 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 = 8 + 0 + 2 + 0 = 10
$$(1010)_2 = (10)_{10}$$

4. (11001)₂ Sayısını onlu sisteme çevirin.

$(11001)_2$	1×2^4	1×2^3	0×2^2	0×2^1	1×2^0	Sonuç
	16	8	0	0	1	$(25)_{i_{1}}=25$

$$(11001)_2 = \mathbf{1} \times 2^4 + \mathbf{1} \times 2^3 + \mathbf{0} \times 2^2 + \mathbf{0} \times 2^1 + \mathbf{1} \times 2^0$$

= 1×16+1×8+0×4+0×2+1×1=16+8+0+0+1=25
(11001)₂ = (25)₁₀

5. $(111.101)_2$ Sayısını onlu sisteme çevirin.

$(111.101)_2$	1×2^2	1×2^1	1×2^0	•	1×2^{-1}	0×2^{-2}	1×2^{-3}	Sonuç
	4	2	1	•	0.5	0	0.125	$(7.625)_{10} = 7.625$

$$(111.101)_{2} = \mathbf{1} \times 2^{2} + \mathbf{1} \times 2^{1} + \mathbf{1} \times 2^{0} + \mathbf{1} \times 2^{1} + \mathbf{0} \times 2^{-2} + \mathbf{1} \times 2^{-3}$$

$$= 1 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} \quad 0 \times \frac{1}{2^{2}} + 1 \times \frac{1}{2^{3}} = 4 + 2 + 1 + 0.5 + 0 + 0.125 = 7.625$$

$$(111.101)_{2} = (7.625)_{10}$$

6. $(33)_{10}$ Sayısını ıkili († inary) sisteme çevirin.

Böln.	Bölüm	Kalan
33 = 2	16	1 LSB ♠
16 ÷ ?	8	0
8 ÷ 2	4	0
1 ÷ 2	2	0
2 ÷ 2	1	0
1 ÷ 2	0	1 MSB
SONUÇ		(100001) ₂

$$(100001)_2 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
İspat :
$$= 1 \times 32 + 0 \times 16 + 0 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 = 32 + 0 + 0 + 0 + 0 + 1 = 33$$

$$(100001)_2 = (33)_{10}$$