

Warm-Up!

- You may have to use R interpreter from the terminal.
 Type "R" at the terminal and copy and paste in your code from your editor.
- General Question: What correlations exist in the BFI data concerning the factors of one's personality?
- Use with() and corPlot() to study correlations in the BFI dataset. Now Find:
 - The top thee most positively-correlated columns
 - The top three most negatively-correlated columns
 - The top three least-correlated columns.

Ideas? See File: warmUp correlations.r

Warm-Up!

- Returning to the codebook, working with your group, can you offer a suggestions to explain the typess of correlations that you found?
- Use GGplot to graph some of your correlations. Can you tell from the graph what the correlation is?

Ideas? See File: warmUp_correlations.r

Data Analytics CS301 Modeling: Formal Basics

Fall 2018
Oliver Bonham-Carter

Modeling Basics

- What are models?
 - Data does not provide much insight unless something can be learned from it.
 - The ability to use data to extract meaning and extra value (the learning)
- Let's talk about...
 - How to extract some meaning from your data
 - How to make predictions using your data as training

Modeling Basics

- Topics include
 - Modeling
 - -Linear regression
 - -Multivariate regression
 - -Interaction terms

Types of Models (i)

Support Vector Machines

 Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

Generalized Linear Models

 Flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution

Generalized additive models

 Generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions

Types of Models (ii)

Linear Regression

- Linear approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X
- (we have begun this study)

LOESS Regression

 Combining much of the simplicity of linear least squares regression, but building with the flexibility of nonlinear regression.

Logistic Regression

 Models where the dependent variable is categorical (i.e., 0's or 1's as factors)

Let's Begin Our Discussion...

- Working with models begins with a basic question to answer from the analysis of data.
- We will walk through each of these with a formal discussion

Q1: Do taller people make more money?

Q2: Do hotter places have more crime?

How Do we Answer The Question?

- Modeling: We employ a computational framework which we used data to build (for training).
- Play with the model to see what happens when we change a part of the data ...

 A function is a mathematical description of a relationship.

• If one variable completely determines another, every (x, y) data point will fall on the **function** line.

 This is what real data looks like on a good day!

Relationships Between Variables

- If the actual relationship is affected by other variables, data points may not fall directly on the function line.
- Noise: The greater the effect of other variables, the weaker the relationship. This is normally the situation with real data.

So, A Model, Then?

- Noise is what we get in data when not every point does what it is supposed to do.
- Modeling attempts to more-correctly identify relationships in noisy data.

ALLEGHENY COLLEGE

Let's Talk Linear Models

- Linear regression, formally is:
- The linear regression algorithm constrains f(x) to have the form:
- $f(x) = \alpha + \beta x + \epsilon$
 - Line formula alpha: intercept.
 - Beta: slope
 - Epsilon: account for the error
- Note: f(x) will be a straight line in x

Let's Talk Linear Models

Another Linear Model

How To Best Draw a Line Through The Data?

• A *residual* of an observed value is the difference between the observed value and the estimated value of the quantity of interest

How To Best Draw a Line Through The Data?

ALLEGHENY COLLEGE

- Residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE)
- The sum of the squares of residuals (deviations predicted from actual empirical values of data).

Types of Questions to Address With Data

Do you think that hotter places have more crime?

File: crime.csv

Do you think that taller people make more money?

File: wages.csv

Crime Data Set

• Is there a relationship between crime and temperature? State statistics from 2009.

```
# open the crime dataset from the data.
c <- file.choose() # set the filename
crime <- read.csv(c) # load and read the data.</pre>
```


Crime Data Set

View(crime) #or
tbl_df(crime)

	state	abbr	low	murder	tc2009
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	Alabama	AL	-27	7.1	4337.5
2	Alaska	AK	-80	3.2	3567.1
3	Arizona	AZ	-40	5.5	3725.2
4	Arkansas	AR	-29	6.3	4415.4
5	California	CA	- 45	5.4	3201.6
6	Colorado	CO	-61	3.2	3024.5
7	Connecticut	СТ	-32	3.0	2646.3
8	Delaware	DE	-17	4.6	3996.8
9	Florida	FL	-2	5.5	4453.7
10	Georgia	GA	-17	6.0	4180.6
		· ·			-

. . .

Let's Hit the Code

- How much low (indep) influence tc2009 (dep)
- Linear model syntax

Im Model formula:
response ~ predictor(s) data

mod <- Im(tc2009 ~ low, data = crime)

Formulas

R formulas are expressions built with ~ (tilda)

```
tc2009 ~ low
```

gives: tc2009 ~ low

class(tc2009 ~ low)

gives: [1] "formula"

ALLEGHENY COLLEGE

Formulas

 Formulas only need to include the response and predictor variables

$$y = f(x) = \alpha + \beta x + \epsilon$$

#Syntax to Build the linear model:

Formulas

response ~ explanatory

dependent ~ independent

outcome ~ predictors

Make a model called, *mod* mod <- lm(tc2009 ~ low, data = crime)

Results: summary(mod)

mod

```
Call:
lm(formula = tc2009 ~ low, data = crime)
```

```
Coefficients:
(Intercept) low
4256.86 21.65
```


Results: summary(mod)

summary(mod)

```
Call:
lm(formula = tc2009 \sim low, data = crime)
Residuals:
              1Q Median
    Min
                              3Q
                                      Max
-1134.36 -647.13 98.03 533.62 1344.30
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4256.86 233.44 18.236 < 2e-16 ***
              21.65 5.33 4.061 0.000188 ***
low
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 649.9 on 46 degrees of freedom
Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479
F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188
```


Extracting Info

- Create model object
- Run functions on model object to get details
 Try these commands

```
summary(mod)
predict(mod) # predictions at original vals
resid(mod) # residuals
```


Consider This!

- Fit a linear model to the crime data set.
- Predict tc2009 (dep) with low (ind).
 What are the model's A and B variables? Hint: use lm()

$$Y = \underline{A} + \underline{B} * x + \epsilon$$

Let's Hit the Code

We run the code

 Next time, we interpret these results.