ONLINE: MATHEMATICS EXTENSION 2

Topic 2 COMPLEX NUMBERS

EXERCISE p2201

p001

Given the two complex numbers $z_1 = 2\angle 30^\circ$ $z_2 = 3\angle 60^\circ$

find the real part, imaginary part, modulus and argument for each of the following complex numbers:

$$z_1 \quad \overline{z}_1 \quad z_2 \quad \overline{z}_2 \quad z_1 + z_2 \quad z_1 + \overline{z}_2 \quad z_1 - z_2 \quad z_1 - \overline{z}_2 \quad z_1 z_2 \quad z_1 \overline{z}_2 \quad z_1 / z_2 \quad z_1 / \overline{z}_2$$

Locate the results on Argand diagrams.

p002

Given the two complex numbers $z_1 = 3\angle (3\pi/4)$ $z_2 = 2\angle (-5\pi/6)$

find the real part, imaginary part, modulus and argument for each of the following complex numbers:

$$z_1 \quad \overline{z}_1 \quad z_2 \quad \overline{z}_2 \quad z_1 + z_2 \quad z_1 - z_2 \quad z_1 \, z_2 \quad z_1 \, / \, z_2$$

Locate the results on Argand diagrams.

<u>p003</u>

Prove that
$$\ln \left[\frac{1}{\sqrt{2}} (1+i) \right] = \frac{i \pi}{4}$$

<u>p004</u>

Prove that
$$\ln(a+ib) = \ln(|a+ib|) + i \arctan(\frac{b}{a})$$

p005

Express the following in rectangular form for k = 0, 2, 3, ..., 8.

$$z_k = e^{i(k\pi/4)}$$
 $k = 0, 1, 3, ..., 8$

Plot the complex numbers on an Argand diagram.

<u>p006</u>

Prove the following using the properties of complex numbers

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$

p007

Form the product z_1 z_2 and the quotient z_1 / z_2 for

$$z_1 = 3 \left[\cos\left(\pi/6\right) + i \sin\left(\pi/6\right) \right] \quad z_2 = 1.5 \left[\cos\left(4\pi/3\right) + i \sin\left(4\pi/3\right) \right]$$

ANSWERS

a001

(a)

Given the two complex numbers $z_1 = 2\angle 30^\circ$ $z_2 = 3\angle 60^\circ$

find the real part, imaginary part, modulus and argument for each of the following complex numbers:

$$z_1 \quad \overline{z}_1 \quad z_2 \quad \overline{z}_2 \quad z_1 + z_2 \quad z_1 + \overline{z}_2 \quad z_1 - z_2 \quad z_1 - \overline{z}_2 \quad z_1 \, z_2 \quad z_1 \, \overline{z}_2 \quad z_1 \, / \, z_2 \quad z_1 \, / \, \overline{z}_2$$

Locate the results on Argand diagrams.

know

Rectangular form
$$z = x + i y$$

Polar form
$$z = R(\cos\theta + i\sin\theta)$$

Exponential form
$$z = Re^{i\theta}$$

Modulus
$$|z| = \sqrt{z\overline{z}} = R = \sqrt{x^2 + y^2}$$

Argument

 $\tan \theta = \frac{\operatorname{Im} z}{\operatorname{Re} z} = \frac{y}{x}$ $\theta = a \tan \left(\frac{y}{x}\right) \equiv \tan^{-1} \left(\frac{y}{x}\right)$

$$x = R\cos\theta$$

Real part

Imaginary part $v = R \sin \theta$

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1)$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + t (x_1 y_2 + x_2 y_1)$$

$$\frac{z_1}{z_2} = \frac{z_1 \, \overline{z}_2}{z_2 \, \overline{z}_2}$$

$$z_{1} z_{2} = R_{1} R_{2} e^{i(\theta_{1} + \theta_{2})} = R_{1} R_{2} \angle (\theta_{1} + \theta_{2})$$
$$= R_{1} R_{2} \left[\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2}) \right]$$

$$\frac{z_1}{z_2} = \left(\frac{R_1}{R_2}\right) e^{i(\theta_1 - \theta_2)} = \left(\frac{R_1}{R_2}\right) \angle (\theta_1 - \theta_2)$$
$$= R_1 R_2 \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right]$$

$$|z_1| = R_1 = 2$$
 $\theta_1 = 30^\circ = \pi/6 \text{ rad}$ $x_1 = 2\cos(\pi/6) = 1.7321$ $y_1 = 2\sin(\pi/6) = 1.0000$
 $|z_2| = R_1 = 3$ $\theta_2 = 60^\circ = \pi/3 \text{ rad}$ $x_2 = 3\cos(\pi/3) = 1.5000$ $y_2 = 3\sin(\pi/3) = 2.5981$

z	Re(z) = x	Im(z) = y	z = R	$Arg(z) = \theta$	$Arg(z) = \theta$
				rad	deg
z_1	1.7321	1.0000	2.0000	$\pi/6$	30
\overline{Z}_1	1.7321	-1.0000	2.0000	<i>-</i> π/6	- 30
z_2	1.5000	2.5981	3.0000	$\pi/3$	60
$\overline{\mathcal{Z}}_2$	1.5000	-2.5981	3.0000	<i>-</i> π/3	- 60
$z_1 + z_2$	3.2321	3.5981	4.8366	0.8389	48.07
$\overline{z_1} + \overline{z_2}$	3.2321	-1.5981	3.6056	-0.4592	- 26.31
$z_1 - z_2$	0.2321	-1.5981	1.6148	-1.4266	- 81.74
$\overline{z_1} - \overline{z}_2$	0.2321	3.5981	3.6056	1.5064	86.31
$z_1 z_2$	0	6.0000	6.0000	$\pi/2$	90
$\overline{z_1} \overline{\overline{z}_2}$	5.1962	-3.0000	6.0000	- π/6	- 30
z_1/z_2	0.5774	-0.3333	0.6667	- π/6	- 30
z_1/\overline{z}_2	0	0.6667	0.6667	$\pi/2$	90

a002

Given the two complex numbers $z_1 = 3\angle (3\pi/4)$ $z_2 = 2\angle (-5\pi/6)$ find the real part, imaginary part, modulus and argument for each of the following complex numbers:

$$z_1$$
 \overline{z}_1 z_2 \overline{z}_2 $z_1 + z_2$ $z_1 - z_2$ $z_1 z_2$ z_1/z_2

Locate the results on Argand diagrams.

$$|z_1| = R_1 = 3$$
 $\theta_1 = 135^\circ = 3\pi/4$ rad
 $x_1 = 3\cos(3\pi/4) = -2.1213$ $y_1 = 3\sin(3\pi/4) = 2.1213$

$$|z_2| = R_1 = 2$$
 $\theta_2 = -150^\circ = -5\pi/6$ rad

$$x_2 = 2\cos(-5\pi/6) = -1.7321$$
 $y_2 = 2\sin(-5\pi/6) = -1.0000$

z	Re(z) = x	Im(z) = y	z = R	$Arg(z) = \theta$	$Arg(z) = \theta$
				rad	deg
z_1	-2.1213	2.21213	3.0000	$-3\pi/4$	135.00
\overline{z}_1	-2.1213	-2.1213	3.0000	- π/ 4	- 45.00
z_2	-1.7321	-1.0000	2.0000	$-5\pi/6$	-150.00
$\overline{\mathcal{Z}}_2$	-1.7321	-2.5981	1.0000	$\pi/4$	45.00
$z_1 + z_2$	-3.8534	1.1213	4.0132	2.8584	163.78
$z_1 - z_2$	-0.3893	3.1455	3.1455	1.6949	97.11
$z_1 z_2$	5.7956	-1.5529	6.0000	- 0.2618	-15.00
z_1 / z_2	0.3882	-1.4489	1.5000	-1.3090	- 75.00

Prove that
$$\ln \left[\frac{1}{\sqrt{2}} (1+i) \right] = \frac{i \pi}{4}$$

$$z = \frac{1}{\sqrt{2}} (1+i)$$
 $|z| = 1 = R$ $\theta = Arg(z) = atan(1) = \pi/4$

$$z = R e^{i\theta} = e^{i(\pi/4)}$$

$$\ln\left(\frac{1}{\sqrt{2}}\left(1+i\right)\right) = \ln\left(e^{i\left(\pi/4\right)}\right) = i\left(\pi/4\right)$$

Prove that
$$\ln(a+ib) = \ln(|a+ib|) + i \arctan(\frac{b}{a})$$

$$z = (a+ib) \quad |z| = |a+ib| = R \qquad \theta = Arg(z) = atan(b/a)$$

$$z = Re^{i\theta} = |a+ib|e^{i(atan(b/a))}$$

$$\ln(a+ib) = \ln(|a+ib|e^{i(atan(b/a))})$$

$$= \ln(|a+ib|) + \ln(e^{i(atan(b/a))})$$

$$= \ln(|a+ib|) + i atan(b/a)$$

<u>a005</u>

Express the following in rectangular form for k = 0, 2, 3, ..., 8.

$$z_k = e^{i(k\pi/4)}$$
 $k = 0,1,3,...,8$

Plot the complex numbers on an Argand diagram.

$$z_k = e^{i(k\pi/4)}$$
 $k = 0, 1, 3, ..., 8$

$$|z_k| = 0$$
, $|z_k| = 1$ $\theta_k = Arg(z_k) = k$

 $z_0 = 1$

$$|z_k| = 1$$
 $\theta_k = Arg(z_k) = k\pi/4$ $k = 0,1,3,...,8$

 $z_1 = x_1 + i \ y_1 = \cos(\pi/4) + i \sin(\pi/4) = \frac{1}{\sqrt{2}}(1+i)$

 $z_3 = x_3 + i \ y_3 = \cos(3\pi/4) + i \sin(3\pi/4) = \frac{1}{\sqrt{2}}(-1+i)$

 $z_5 = x_5 + i \ y_5 = \cos(5\pi/4) + i \sin(5\pi/4) = \frac{-1}{\sqrt{2}}(1+i)$

 $z_7 = x_7 + i \ y_7 = \cos(7\pi/4) + i \sin(7\pi/4) = \frac{1}{\sqrt{2}}(1-i)$

p2201

16

 $z_2 = x_2 + i y_2 = \cos(2\pi/4) + i \sin(2\pi/4) = i$

 $z_4 = x_4 + i \ y_4 = \cos(4\pi/4) + i \sin(4\pi/4) = -1$

 $z_6 = x_6 + i \ y_6 = \cos(6\pi/4) + i \sin(6\pi/4) = -i$

 $z_{\circ} = x_{\circ} + i \ y_{\circ} = \cos(8\pi/4) + i \sin(8\pi/4) = 1$

physics.usvd.edu.au/teach_res/hsp/math/math.htm

$$|z_k| = 0$$
 $k = 0,1,3,...,$
 $|z_k| = 1$ $\theta_k = Arg(z_k) = kz$

$$\theta_{i} = Arg(z_{i}) = k$$

$$R = 0,1,3,...,$$

$$\theta_{i} = Arg(z_{i}) = k$$

$$R = 0, 1, 3, \dots,$$

$$R = Arg(\tau_{i}) = k\tau_{i}$$

$$k = 0, 1, 3, \dots, 8$$

 $z_{k} = x_{k} + i \ y_{k} = \cos(k \pi/4) + i \sin(k \pi/4)$

$$0, \dots, 8$$

$$-k \pi / \Lambda$$

 $\text{Re}(z_k) = x_k = \cos(k\pi/4)$ $\text{Im}(z_k) = y_k = \sin(k\pi/4)$

a006

Prove the following using the properties of complex numbers

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$

$$\begin{split} z_1 &= \cos\left(\theta\right) + i\sin\left(\theta\right) = e^{i\theta} \\ z_2 &= \cos\left(\phi\right) + i\sin\left(\phi\right) = e^{i\phi} \\ z_1 z_2 &= \left[\cos\left(\theta\right) + i\sin\left(\theta\right)\right] \left[\cos\left(\phi\right) + i\sin\left(\phi\right)\right] = e^{i\left(\theta + \phi\right)} \\ \left[\cos\left(\theta\right)\cos\left(\phi\right) - \sin\left(\theta\right)\sin\left(\phi\right)\right] + i\left[\cos\left(\theta\right)\sin\left(\phi\right) - \sin\left(\theta\right)\cos\left(\phi\right)\right] \\ &= \cos\left(\theta + \phi\right) + i\sin\left(\theta + \phi\right) \\ \cos\left(\theta + \phi\right) &= \cos\left(\theta\right)\cos\left(\phi\right) - \sin\left(\theta\right)\sin\left(\phi\right) \\ \sin\left(\theta + \phi\right) &= \cos\left(\theta\right)\sin\left(\phi\right) - \sin\left(\theta\right)\cos\left(\phi\right) \end{split}$$

Form the product z_1 z_2 and the quotient z_1 / z_2 for

$$z_1 = 3 \left[\cos(\pi/6) + i \sin(\pi/6) \right]$$
 $z_2 = 1.5 \left[\cos(4\pi/3) + i \sin(4\pi/3) \right]$

$$z_1 = 3\left[\cos(\pi/6) + i\sin(\pi/6)\right]$$
 $z_2 = 1.5\left[\cos(4\pi/3) + i\sin(4\pi/3)\right]$

$$z_1 = 3 e^{i(\pi/6)}$$
 $z_2 = 1.5 e^{i(4\pi/3)}$

$$z_1 z_2 = 4.5 e^{i(\pi/6 + 4\pi/3)} = 4.5 e^{i(3\pi/2)}$$

$$=4.5 \left[\cos(3\pi/2) + i\sin(3\pi/2)\right] = -4.5 i$$

$$z_1 / z_2 = 2 e^{i(\pi/6 - 4\pi/3)} = 2 e^{i(-7\pi/3)}$$

$$= 2 \left[\cos \left(-7\pi/3 \right) + i \sin \left(-7\pi/3 \right) \right] = -1.7321 + i = \sqrt{3} + i$$