TeCS: A Dataset and Benchmark for Tense Consistency of Machine Translation

Yiming Ai, Zhiwei He, Kai Yu, Rui Wang

Shanghai Jiao Tong University {aiyiming, zwhe.cs, kai.yu, wangrui12}@sjtu.edu.cn

1. Summary

- Background
 - There are several tense consistency errors in the common corpora, for instance, Europarl.
 - Lack of metrics on measuring the model's mastery of tense information.
- Contributions
 - Presentation of the construction of the
 tense test set, including its tense labels
 - Proposal of a feasible and reproducible
 benchmark for measuring the tense consistency performance of NMT systems
 - Various experiments for different baselines with the above test set and corresponding benchmark.

2. Annotation Rules

- Macro-temporal interval (present, past and future tenses) * State of the action (general, progressive and perfect aspects)
- As there is **no progressive tense** in French, we do not distinguish the progressive tense in English but rather merge the progressive tense into its corresponding base tense.
- Considering the moods, we add another category **statements containing** *modal* **verbs** that correspond to the French *subjointif* and *conditionnel* tenses.

French Tenses	English Tense	Format	Example
Imparfait, Passé composé, Passé	Past simple / progressive	Past	That was the third point.
simple, Passé récent			
Présent, Future proche	Present simple / progressive	Present	The world is changing.
Future simple, Future proche	Future simple / progressive	Future	I will communicate it to the Council.
Plus-que-parfait	Past perfect	PasPerfect	His participation had been notified.
Passé composé	Present perfect	Preperfect	This phenomenon has become a major
			threat.
Future antérieur	Future perfect	Futperfect	We will have finished it at that time.
Subjonctif, Conditionnel	including Modal verbs	Modal	We should be less rigid.

3. Corpus Design

- Tense-rich Europarl, namely EuroparlPV, stems from Loaciaga et al.'s article.
- After data cleaning, we obtain the EuroparlTR.
- We randomly divided EuroparlTR into a training set, a validation set and a test set in the ratio of 8:1:1, and trained a transformer baseline based on this using fairseq with a BLEU value of 33.41.
- With automatic tense annotation, we filtered 6,779 parallel French-English sentence triples with different tense labels for English originals and predictions.
- We manually screened out the representative error-prone French-English sentence triples.
- Human check: two other reviewers at CEFR C1 level, reviewed the tense test set for semantic and tense correspondence, and the tense labels marked by the automatic annotation code.

4. Corpus Characteristics

- Tense distribution. The corpus consists of 780 tense structures in 552 sentences, and the distribution of tense classifications is shown in the following table.
- Elimination of gender effect. We controlled for the gender variable of French by defaulting all pronouns, which do not indicate explicitly their genders, as masculine.

5. Benchmark

To measure the tense consistency performance of different systems, we introduce a benchmark called **tense** (**prediction**) **accuracy**, as shown below:

$$Accuracy = \frac{N_c}{N_t} \tag{1}$$

where N_c is the number of predicted utterances with the same tense as its reference and N_t is the total number of utterances in the tense set.

6. Experiments

Evaluation Summarization based on 3 test sets Tense set WMT15 testset **Tense Europarl testset** System Accuracy **COMET COMET BLEU COMET BLEU** BLEU 66.30%47.71 0.631 27.38 0.269 14.17 -0.429 Transformer (tense-rich) Transformer (tense-poor) 43.24 27.28 0.264 14.68 -0.444 58.33%0.588 67.75%LSTM (tense-rich) 44.21 0.558 25.53 0.126 12.04 -0.590 58.70%LSTM (tense-poor) 41.92 0.483 26.17 0.14712.27 -0.598 CNN (tense-rich) 47.10 26.83 15.30 68.48%0.567 0.147-0.512 57.97%43.23 0.502 26.95 0.144 14.96 -0.525 CNN (tense-poor) Bi-Transformer (tense-rich) 0.632 28.17 14.72 64.13%47.10 0.295 -0.392 55.25%Bi-Transformer (tense-poor) 43.87 0.578 28.30 0.298 14.39 -0.428 Bing Translator 61.72 0.895 77.36%0.904 79.02%DeepL Translator 59.50 Google Translator 0.87881.70%57.00

Training Process and Results

We separately extract 100,000 parallel utterances from EuroparlTR and Europarl as tense-rich and tense-poor train sets. We then trained four pairs of French-English systems with different architectures, differing only in the train set. Results are as follows:

- By relying solely on the difference in BLEU scores on traditional test sets, we are **unable to measure the tense prediction ability** of the systems.
- Our tense set can capture the tense consistency performance.
- To measure the tense consistency performance across different architectures, we should focus more on tense accuracy.