DM nº10

Majoration du rayon spectral de la matrice de Hilbert

Soit n un entier ≥ 1 . L'espace vectoriel \mathbb{R}^n est muni de sa structure euclidienne canonique. La norme euclidienne associée est notée $\|\cdot\|$. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels, et on identifiera \mathbb{R}^n à l'ensemble $\mathcal{M}_{n,1}(\mathbb{R})$ des matrices colonnes à coefficients réels. On note $tX = (x_0, x_1 \cdots x_{n-1}) \in \mathcal{M}_{1,n}(\mathbb{R})$ la matrice ligne transposée de la matrice colonne

$$X = \begin{pmatrix} x_0 \\ x_1 \\ x_{n-1} \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}) .$$

Enfin, on note \widetilde{X} la fonction polynomiale définie sur \mathbb{R} par la formule

$$\widetilde{X}(t) = \sum_{k=0}^{n-1} x_k t^k$$

L'objet du problème est l'étude de quelques propriétés de la matrice de Hilbert $H_n=(h_{j,k}^{(n)})_{0\leq j,k\leq n-1}\in\mathcal{M}_{n,n}(\mathbb{R})$ définie par

$$H_{n} = \begin{pmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ & & \ddots & \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{pmatrix}.$$

On a donc $h_{j,k}^{(n)} = \frac{1}{j+k+1}$ pour tous $j, k \in \{0, 1, \dots, n-1\}$.

A. Une propriété de Perron-Frobenius

1) Montrer que la matrice H_n est symétrique réelle et définie positive. On pourra s'aider du calcul de l'intégrale $\int_0^1 (\widetilde{X}(t))^2 dt$.
On note $\mathcal V$ le sous-espace propre de H_n associé à la plus grande valeur

On note \mathcal{V} le sous-espace propre de H_n associé à la plus grande valeur propre ρ_n de H_n .

2) Montrer que $X \in \mathcal{V}$ si et seulement si ${}^tXH_nX = \rho_n ||X||^2$

Soit
$$X_0 = \begin{pmatrix} x_0 \\ x_1 \\ x_{n-1} \end{pmatrix}$$
 un vecteur non nul de $\mathcal V$. On note $|X_0| = \begin{pmatrix} |x_0| \\ |x_1| \\ |x_{n-1}| \end{pmatrix}$.

- 3) Établir l'inégalité ${}^tX_{0H_nX_0} \le {}^t|X_0|H_n|X_0|$ et en déduire que $|X_0| \in \mathcal{V}$
- 4) Montrer que $H_n|X_0|$, puis que X_0 , n'a aucune coordonnée nulle.
- **5)** En déduire la dimension du sous-espace propre \mathcal{V} .

B. Inégalité de Hilbert

Soit
$$X = \begin{pmatrix} x_0 \\ x_1 \\ x_{n-1} \end{pmatrix}$$
 un vecteur de \mathbb{R}^n et P un polynôme à coefficients réels.

- **6)** En s'aidant du calcul de l'intégrale $\int_0^{\pi} P(e^{i\theta})e^{i\theta}d\theta$, montrer l'inégalité $\left|\int_{-1}^1 P(t)dt\right| \leq \int_0^{\pi} |P(e^{i\theta})|d\theta$, puis l'inégalité ${}^tXH_nX \leq \int_0^{\pi} |\widetilde{X}(e^{i\theta})|^2d\theta$.
- 7) En déduire que ${}^tXH_nX \le \pi \|X\|^2$
- **8)** Montrer que la suite $(\rho_n)_{n\geq 1}$ est croissante et convergente.

C. Un opérateur intégral

Dans la suite du problème, pour tout entier n > 0 et tout réel x, on pose

$$K_n(x) = \sum_{k=0}^{n-1} x^k$$

Soit E l'espace vectoriel des fonctions à valeurs réelles, continues et intégrables sur [0,1[et $T_n: E \longrightarrow E$ l'application définie par

$$T_n(f)(x) = \int_0^1 K_n(tx) f(t) dt.$$

- 9) Montrer que T_n est un endomorphisme de E, dont 0 est valeur propre. (On rappelle que $\lambda \in \mathbb{C}$ est valeur propre de T_n s'il existe $f \in E$ non nulle telle que $T_n(f) = \lambda f$.)
- **10)** Pour tout $X \in \mathbb{R}^n$, calculer $T_n(\widetilde{X})$. En déduire que T_n et H_n ont les mêmes valeurs propres non nulles.

On note \mathscr{A} l'ensemble des fonctions $\varphi \in E$ à valeurs strictement positives sur]0,1[telles que $\frac{1}{\varphi}$ admette un prolongement continu sur [0,1]. On rappelle que ρ_n est la plus grande valeur propre de H_n .

11) En utilisant un vecteur propre associé à ρ_n , montrer que

$$\rho_n \le \inf_{\varphi \in \mathcal{A}} \sup_{x \in [0,1]} \frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) dt$$

En utilisant la partie A, montrer que l'on a égalité dans l'inégalité précédente.

D. Une maioration explicite des rayons spectraux

Soit $\varphi \in \mathcal{A}$ et $n \in \mathbb{N}$. Dans la suite du problème, on pose, pour tout $x \in]0,1[$:

$$r_n(x) = \frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) dt,$$

$$J_n(x) = \int_0^1 \frac{t^n \varphi(t)}{1 - tx} dt,$$

$$\Phi_n(x) = \frac{x^n J_n(x)}{\varphi(x)}.$$

La fonction Gamma d'Euler est définie sur \mathbb{R}_+^* par la formule

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

On admet, et on pourra utiliser sans démonstration, les formules suivantes :

$$\Gamma(x+1) = x\Gamma(x)$$
 pour tout $x > 0$.

$$\Gamma(n) = (n-1)!$$
 pour tout entier $n > 0$.

$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$$
 pour tous réels $\alpha > 0, \beta > 0$.

12) Montrer que J_n est dérivable sur]0,1[et que l'on a l'égalité

$$xJ'_n(x) = \int_0^1 \frac{t^n \varphi(t)}{(1 - tx)^2} dt - J_n(x) .$$

On suppose dorénavant que $\varphi \in \mathcal{A}$ est de classe \mathscr{C}^1 sur [0,1[et que $(1-t)\varphi(t) \to 0$ lorsque $t \to 1^-$.

13) Montrer que

$$nJ_n(x) = c + nJ_{n-1}(x) + (x-1)\int_0^1 \frac{t^n \varphi(t)}{(1-tx)^2} dt + \int_0^1 \frac{t^n (1-t)\varphi'(t)}{1-tx} dt$$

où c est un coefficient à determiner et où φ' désigne la dérivée de φ . (On pourra traiter à part le cas n=0, où l'on considère que $nJ_{n-1}(x)=0$ et où l'on montrera que $c=\varphi(0)$.)

14) Déduire des deux questions précédentes que

$$x(1-x)J'_n(x) = c + (n+1)(x-1)J_n(x) + n\int_0^1 t^{n-1}\varphi(t)dt + \int_0^1 \frac{t^n(1-t)\varphi'(t)}{1-tx}dt.$$

15) Soit $\gamma \in \mathbb{R}$. Résoudre l'équation différentielle $(1-t)y' = -\gamma y$ sur l'intervalle [0,1[. À quelles conditions une solution y(t) de cette équation différentielle vérifie-t-elle les hypothèses faites sur φ ?

On suppose désormais ces conditions réalisées et que la fonction φ est la solution de cette équation différentielle telle que $\varphi(0) = 1$.

16) Montrer que la fonction Φ_n est dérivable sur]0,1[et que l'on a :

$$\Phi'_n(x) = -(\gamma + 1)\frac{\Phi_n(x)}{x} + c_n \frac{x^{n-1}}{(1-x)^{1+\gamma}}$$

où l'on donnera 1'expression de la constante c_n en fonction de n et de γ .

17) En déduire que pour tout $x \in]0,1[$,

$$\Phi_n(x) = \frac{c_n}{x^{1+\gamma}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} \mathrm{d}t.$$

18) En déduire que pour $n \ge 1$,

$$\rho_n \le \inf_{\alpha \in]0,1[} \sup_{x \in]0,1[} \frac{1}{x^{1-\alpha}} \int_0^x \frac{1 - \theta_n t^n}{t^{\alpha} (1-t)^{1-\alpha}} \mathrm{d}t$$

où l'on a posé
$$\theta_n = \frac{n!}{(1-\alpha)(2-\alpha)\dots(n-\alpha)}$$
.

Un calcul montre, et on l'admet, que l'inégalité précédente implique l'inégalité :

$$\rho_n \leq \inf_{\alpha \in]0,1[} \theta_n^{(1-\alpha)/n} \int_0^{\theta_n^{-1/n}} \frac{\mathrm{d}t}{t^{\alpha} (1-t)^{1-\alpha}}.$$

- **19)** En déduire que $\rho_n \le 2\omega_n \arcsin(\frac{1}{\omega_n})$, où l'on a posé $\omega_n = 2\left(\frac{(n!)^2}{(2n)!}\right)^{1/2n}$
- **20)** Donner un équivalent de $\omega_n 1$, puis un équivalent de $\pi 2\omega_n \arcsin \frac{1}{\omega_n}$ lorsque $n \to +\infty$.

FIN DU PROBLÈME

A. Une propriété de Perron-Frobenius

1) H_n est symétrique réelle.

$$\int_0^1 (\widetilde{X}(t))^2 dt = \int_0^1 \sum_{0 \le j, k \le (n-1)} x_j x_k t^{j+k} dt = \sum_{0 \le j, k \le (n-1)} \frac{x_j x_k}{j+k+1} = ^T X H_n X.$$
On a
$$\int_0^1 (\widetilde{X}(t))^2 dt \ge 0$$
, donc $^T X H_n X \ge 0$, alors H_n est positive.
et si $^T X H_n X = 0$, alors
$$\int_0^1 (\widetilde{X}(t))^2 dt = 0$$
, donc $\forall t \in [0,1]$; $\widetilde{X}(t) = 0$, donc $x_0 = \dots = x_{n-1} = 0$, alors $X = 0$, donc H_n est définie. Conséquence H_n est définie positive.

- 2) Si $X \in \mathcal{V}$, alors $H_n X = \rho_n X$, donc ${}^T X H_n X = \rho_n^T X X = \rho_n \|X\|^2$. H_n est orthogonalement diagonalisable, car symétrique réelle, donc si $\lambda_1 < \lambda_2 < ... < \lambda_r = \rho_n$ sont les valeurs propres de H_n , soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que ${}^T X H_n X = \rho_n^T X X = \rho_n \|X\|^2$, alors $\exists (X_1, ..., X_r) \in E_{\lambda_1}(H_n) \times ... \times E_{\lambda_r}(H_n)$ tels que $X = \sum_{i=1}^r X_i$, alors ${}^T X H_n X = {}^T X \sum_{i=1}^r \lambda_i X_i = \sum_{i=1}^r \lambda_i^T X_i X_i$, car la somme des espaces propres est ortogonale, alors la condition; ${}^T X H_n X = \rho_n^T X X$ donne $\rho_n \sum_{i=1}^r \|X_i\|^2 = \sum_{i=1}^r \lambda_i^T X_i X_i = \sum_{i=1}^r \lambda_i \|X_i\|$, alors $\sum_{i=1}^r (\rho_n \lambda_i) \|X_i\|^2 = 0$, donc pour $i \neq r$, $X_i = 0$, donc $X = X_r \in E_{\lambda_r}(H_n) = E_{\rho_n}(H_n) = \mathcal{V}$. D'où l'équivalence.
- **3**) On a

$${TX_0 H_n X_0} = |{^T X_0 H_n X_0}| \operatorname{car} H_n \text{ est positive}$$

$$= \left| \sum_{0 \le j, k \le (n-1)} \frac{x_j x_k}{j+k+1} \right|$$

$$\leq \sum_{0 \le j, k \le (n-1)} \frac{|x_j| |x_k|}{j+k+1}$$

$$\leq {^T |X_0| H_n |X_0|}$$

Or $X_0 \in \mathcal{V}$, donc ${}^TX_0H_nX_0 = \rho_n \|X_0\|^2$, donc $\rho_n \|X_0\|^2 \leq^T |X_0|H_n|X_0|$, avec le même calcul fait en question 2, en écrivant $|X_0| = \sum_{i=1}^r X_i$ aboutit à ${}^T|X_0|H_n|X_0| = \sum_{i=1}^r \lambda_i^T X_i X_i$, alors ${}^T|X_0|H_n|X_0| \leq \rho_n \sum_{i=1}^r {}^TX_i X_i \leq \rho_n \|X_0\|^2$, en rassemblant on obtient $\rho_n \|X_0\|^2 \leq^T |X_0|H_n|X_0| \leq \rho_n \|X_0\|^2$, et X_0 et $|X_0|$ ont même norme, donc ${}^T|X_0|H_n|X_0| = \rho_n \||X_0|\|^2$, par la question 2) on aura $|X_0| \in \mathcal{V}$.

- 4) X_0 est non nul, alors toutes les composantes de $H_n|X_0|$ sont strictement positives, car les coefficients de H_n sont strictement positifs, et l'égalité $H_n|X_0|=\lambda|X_0|$, où λ est une valeur propre de H_n qui est définie positive, donc $\lambda>0$, alors toutes les composantes de $|X_0|$ sont strictement positives.
- 5) Supposons que dim $\mathcal{V} \geq 2$, et soit (X_1, X_1') une famille libre de \mathcal{V} , et soit x_1, x_1' les premières composantes de X_1 et X_1' respectivement, alors la première composante de $x_1'X_1 x_1X_1'$ est nulle, comme ce vecteur est dans \mathcal{V} par la question précédente, $x_1'X_1 x_1X_1' = 0$, alors $X_1 = \frac{x_1}{x_1'}X_1'$, donc (X_1, X_1') est liée, absurde, alors dim $\mathcal{V} = 1$.

B. Inégalité de Hilbert

6) Supposons que $P = \sum_{j=0}^{n} a_j X^j$, alors

$$\begin{split} \int_0^\pi P(e^{i\theta})e^{i\theta}d\theta &= \int_0^\pi \sum_{j=0}^N a_j e^{i(j+1)\theta}d\theta \\ &= \sum_{j=0}^N \frac{a_j}{(j+1)i} [e^{i\pi(j+1)} - 1] \\ &= -i \sum_{j=0}^N \frac{a_j}{(j+1)} [(-1)^{j+1} - 1] \end{split}$$

D'autre part:

$$\left| \int_{-1}^{1} P(t)dt \right| = \left| \sum_{j=0}^{N} \frac{a_j}{(j+1)} [1 - (-1)^{j+1}] \right|$$
$$= \left| \int_{0}^{\pi} P(e^{i\theta}) e^{i\theta} d\theta \right|$$
$$\leq \int_{0}^{\pi} |P(e^{i\theta})| d\theta$$

Donc
$${}^{T}XH_{n}X = \int_{0}^{1} |\widetilde{X}(t)|^{2} dt \le \int_{-1}^{1} |\widetilde{X}(t)|^{2} dt \le \int_{0}^{\pi} |\widetilde{X}(e^{i\theta})|^{2} d\theta$$

7) Or

$$\begin{split} \int_0^\pi |\widetilde{X}(e^{i\theta})|^2 d\theta &= \int_0^\pi \sum_{0 \le j, k \le (n-1)} x_j x_k e^{i(j-k)\theta} d\theta \\ &= \sum_{0 \le j \ne k \le (n-1)} x_j x_k \frac{1}{(j-k)} ((-1)^{j-k} - 1) + \sum_{j=0}^{n-1} x_j^2 \pi \end{split}$$

$$\begin{split} &\text{et } \sum_{0 \leq j \neq k \leq (n-1)} x_j x_k \frac{1}{(j-k)} ((-1)^{j-k} - 1) = \sum_{0 \leq j < k \leq (n-1)} x_j x_k \frac{1}{(j-k)} ((-1)^{j-k} - 1) \\ &1) + \sum_{0 \leq k < j \leq (n-1)} x_j x_k \frac{1}{(j-k)} ((-1)^{j-k} - 1) = 0 \text{ car en \'echangeant les roles des } \\ &\text{derniers indices, la parenth\`ese } ((-1)^{j-k} - 1) \text{ ne change mais } \frac{1}{(j-k)} \text{ devient } -\frac{1}{(j-k)}, \text{ donc } \int_0^\pi |\widetilde{X}(e^{i\theta})| d\theta \leq \pi \, \|X\|^2, \text{ alors :} \end{split}$$

$$^{T}XH_{n}X \leq \pi \left\| X \right\|^{2}$$

8) Si $X \in \mathcal{V}$ non nul, alors ${}^TXH_nX = \rho_n \|X\|^2 \le \pi \|X\|^2$, donc $\rho_n \le \pi$, la suite est donc majorée.

Soit
$$X_n \in \mathcal{V}$$
 tel que $X_n \neq 0$, et soit $X = \binom{X_n}{0} \in \mathcal{M}_{n+1,1}$, alors
$$\rho_n \|X_n\|^2 = {}^T X_n H_n X_n = {}^T X H_{n+1} X \leq \rho_{n+1} \|X\|^2 = \rho_{n+1} \|X_n\|^2$$
 Alors $\rho_n \leq \rho_{n+1}$, la suite $(\rho_n)_{n \in \mathbb{N}^*}$ est croissante, comme elle est majorée donc converge.

C. Un opérateur intégral

9) K_n est une fonction polynômiale donc bornée sur [0,1], si $f \in E$, alors $K_n f$ est continue et intégrable sur [0,1[, T_n est donc une application de plus, $T_n(f)(x) = \int_0^1 K_n(tx) f(t) dt = \sum_{k=0}^{n-1} \left(\int_0^1 t^k f(t) dt \right) x^k$, donc $T_n(f) \in \mathbb{R}_{n-1}[x]$, donc $T_n(f) \in E$, T_n est linéaire c'est simple.

On remarque $T_n(E) \subset \mathbb{R}_{n-1}[x]$, or E est de dimension infinie, et $\mathbb{R}_{n-1}[x]$ est de dimension finie, donc l'application T_n n'est pas injective, donc $\exists f \in E$ non nulle telle que $T_n(f) = 0$, donc 0 est une valeur propre de T_n .

Autre méthode: posons $f(t) = [(t(t-1))^n]^{(n)}$ convient aussi car elle vérifie $\forall k \in \{0, 1, ..., (n-1)\}, \int_0^1 t^k f(t) dt = 0.$

$$10) \quad T_{n}(\widetilde{X})(x) = \int_{0}^{1} (\sum_{k=0}^{n-1} x^{k} t^{k}) (\sum_{k=0}^{n-1} x_{k} t^{k}) dt = \sum_{0 \leq i, j \leq (n-1)} x^{i} x_{j} \int_{0}^{1} t^{i+j} dt = \sum_{0 \leq i, j \leq (n-1)} \frac{x^{i} x_{j}}{i+j+1}$$

$$\text{Donc } T_{n}(\widetilde{X})(x) = (x_{0}, ..., x_{n-1}) H_{n} \begin{pmatrix} 1 \\ x \\ \vdots \\ x^{n-1} \end{pmatrix} = (1, ..., x^{n-1}) H_{n} \begin{pmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n-1} \end{pmatrix}$$

 H_n est définie positive, donc 0 n'est pas une valeur propre de H_n , par contre 0 est une valeur propre de T_n .

Soit
$$\lambda$$
 une valeur propre de H_n , donc $\exists X = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} \neq 0$ tel que $H_nX = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$

 λX , dans l'égalité précédente, on remplace et $T_n(\widetilde{X})(x) = \lambda(1,...,x^{n-1})X = \lambda \sum_{j=0}^{n-1} x_j x^j = \lambda \widetilde{X}(x)$, donc :

$$T_n(\widetilde{X}) = \lambda \widetilde{X}$$

Alors λ est une valeur propre de T_n car $\widetilde{X} \neq 0$.

Maintenant si $\lambda \neq 0$ est valeur propre de T_n , donc $\exists f \in E$ non nul tel que $T_n(f) = \lambda f$, comme $\lambda \neq 0$, alors $f = \frac{1}{\lambda} T_n(f) \in \mathbb{R}_{n-1}[x]$, donc f est une fonction polynômiale, posons $f(x) = \sum_{n=1}^{\infty} x_n x^n = \widetilde{X}(x)$, alors $T_n(\widetilde{X})(x) = \sum_{n=1}^{\infty} x_n x^n = \widetilde{X}(x)$

fonction polynômiale, posons $f(x) = \sum_{j=0}^{n-1} x_j x^j = \widetilde{X}(x)$, alors $T_n(\widetilde{X})(x) = 1$

 $\lambda\widetilde{X}(x) = \langle (1,x,...,x^{n-1}) | \lambda X \rangle, \text{ or } T_n(\widetilde{X})(x) = \langle (1,x,...,x^{n-1}) | H_n X \rangle, \text{ donc}: \\ H_n X - \lambda X \in [\text{Vect}(1,x,...,x^{n-1})]^{\perp} \text{ pour tout } x \in \mathbb{R}$

Posons $F_x = (1, x, ..., x^{n-1})$, et soient $a_1, a_2, ... a_n$ des réels distincts deux à deux, alors :

 $H_nX - \lambda X \in [\text{Vect}(F_{a_1}, ..., F_{a_n})]^{\perp}$ dans \mathbb{R}^n , or la famille $(F_{a_1}, ..., F_{a_n})$ est une base de \mathbb{R}^n par Vandermonde, donc $H_nX - \lambda X = 0$, alors λ est une valeur propre de H_n .

Remarque Soit $\lambda \in \mathbb{R}^*$, alors X est un vecteur propre de H_n associé à λ si et seulement si \widetilde{X} est un vecteur propre de T_n associé à λ .

11) Soit $f \in E$ non nul tel que $T_n(f) = \rho_n f$, on a déjà montrer que f est une fonction polynômiale car $\rho_n \neq 0$, posons $f(x) = \sum_{k=0}^{n-1} x_k x^k$ alors $H_n X = \rho_n X$ où $X \in \mathbb{R}^n$ de composantes $x_0, ... x_{n-1}$, on a par la question 3), $H_n |X| = \rho_n |X|$, posons $\psi(x) = \sum_{k=0}^{n-1} |x_k| x^k$; on a bien ψ est strictement positive sur

]0,1[et les x_k sont tous non nuls par la question 4), donc $\frac{1}{\psi}$ est prolongeable par continuité sur [0,1], donc $\psi \in \mathcal{A}$ et $T_n(\psi) = \rho_n \psi$, donc

 $\forall x \in [0,1], \rho_n = \frac{1}{\psi(x)} \int_0^1 K_n(xt) \psi(t) dt, \text{ alors } \rho_n = \sup_{x \in]0,1[} \frac{1}{\psi(x)} \int_0^1 K_n(xt) \psi(t) dt, \text{ donc inf est atteint et il y'a donc égalité dans l'inégalité suivante :}$

$$\rho_n \le \inf_{\varphi \in \mathcal{A}} \sup_{x \in [0,1]} \frac{1}{\varphi(x)} \int_0^1 K_n(xt) \varphi(t) dt$$

L'inégalité est laissé au lecteur.

Une majoration explicite des rayons spectraux

12) $\forall x \in]0,1[$, l'application $t \mapsto \frac{t^n \varphi(t)}{(1-tx)}$ est continue sur [0,1] (φ se comporte comme une fonction continue sur [0,1]).

 $\forall t \in [0, 1], \text{ l'application } x \longmapsto \frac{t^n \varphi(t)}{(1 - tx)} \text{ est de classe } \mathscr{C}^1 \text{ sur }]0, 1[.$

$$\frac{\partial}{\partial x} \frac{t^n \varphi(t)}{(1 - tx)} = \frac{t^{n+1} \varphi(t)}{(1 - tx)^2}.$$

 $\forall x \in]0,1[$ l'application $t \mapsto \frac{t^{n+1}\varphi(t)}{(1-tx)^2}$ est continue sur [0,1].

Donc J_n est de classe \mathscr{C}^1 sur]0, 1[. et

$$\forall x \in]0,1[,J'_n(x)] = \int_0^1 \frac{t^{n+1}\varphi(t)}{(1-tx)^2} dt.$$

Alors:
$$\int_0^1 \frac{t^n \varphi(t)}{(1-tx)^2} dt - J_n(x) = \int_0^1 \frac{t^n \varphi(t)}{(1-tx)^2} - \frac{t^n (1-tx)\varphi(t)}{(1-tx)^2} dt = xJ_n(x).$$

13) En effectuant une intégration par parties, on obtient :

$$\int_0^1 \frac{1-t}{1-tx} \varphi'(t) dt = \left[\frac{1-t}{1-tx} \varphi(t) \right]_0^1 - (x-1) \int_0^1 \frac{\varphi(t)}{(1-tx)^2} dt$$
$$= -\varphi(0) + (x-1) \int_0^1 \frac{\varphi(t)}{(1-tx)^2} dt$$

Alors
$$0 = \varphi(0) + (x - 1) \int_0^1 \frac{\varphi(t)}{(1 - tx)^2} dt + \int_0^1 \frac{1 - t}{1 - tx} \varphi'(t) dt$$

Ici $c = \varphi(0)$.

Toujours une intégration par parties donne dans le cas de $n \ge 1$:

$$\int_{0}^{1} \frac{t^{n}(1-t)}{1-tx} \varphi'(t)dt = -\int_{0}^{1} \frac{nt^{n-1}(1-xt)-nt^{n}(1-xt)+(x-1)t^{n}}{(1-xt)^{2}} \varphi(t)dt, \text{ Donc}$$

$$\int_{0}^{1} \frac{t^{n}(1-t)}{1-tx} \varphi'(t)dt + (x-1)\int_{0}^{1} \frac{t^{n}\varphi(t)}{(1-tx)^{2}} dt + nJ_{n-1} - nJ_{n} = 0$$
Alors $c = 0$

- **14)** En remplaçant $\int_0^1 \frac{t^n \varphi(t)}{(1-tx)^2} dt$ par $xJ'_n(x) + J_n(x)$ dans la question 13) et en remarquant que $nJ_{n-1}(x) = n\int_0^1 t^{n-1}\varphi(t)dt + nxJ_n(x)$, on obtient le résultat.
- **15)** Sur [0,1[, l'équation différentielle donnée est équivalente à $y' = \frac{-\gamma}{1-t}y$ dont l'ensemble des solutions est l'ensemble des applications $y \longmapsto \lambda(1-t)^{\gamma}$. Pour qu'une solution vérifie les conditions sur φ il faut et il suffit que $\lambda > 0$ et $\gamma < 0$ et $\gamma + 1 > 0$.

La condition voulue est donc $-1 < \gamma \le 0$ et $\lambda > 0$.

16) Alors $\varphi(t) = (1 - t)^{\gamma}$.

 φ et J_n sont dérivables sur]0,1[, donc φ_n aussi, et

$$\phi'_{n}(x) = \frac{1}{\varphi(x)} (nx^{n-1} J_{n}(x) + x^{n} J'_{n}(x)) - x^{n} J_{n}(x) \frac{\varphi'(x)}{\varphi^{2}(x)} = n \frac{\phi_{n}(x)}{x} + \frac{x^{n} J'_{n}(x)}{\varphi(x)} + \frac{\gamma}{(1-x)^{\gamma+1}} x^{n} J_{n}(x),$$

Alors
$$\phi'_n(x) = (\frac{n}{x} + \frac{\gamma}{1-x})\phi_n(x) + \frac{x^{n-1}}{(1-x)^{\gamma+1}}[x(1-x)J'_n(x)]$$

Et puisque (1-t)) $\varphi'(t) = -\gamma \varphi(t)$, et par application de la question 14, alors

$$\phi'_n(x) = (\frac{n}{x} + \frac{\gamma}{1-x})\phi_n(x) + \frac{x^{n-1}}{(1-x)^{\gamma+1}} \left[c + (n+1)(x-1)J_n(x) + n \int_0^1 t^{n-1} \varphi(t) dt - \gamma J_n(x) \right].$$

Donc
$$\phi'_n(x) = (\frac{n}{x} + \frac{\gamma}{1-x})\phi_n(x) - \frac{(n+1)}{x}\phi_n(x) - \frac{\gamma}{x(1-x)}\phi_n(x) + \frac{x^{n-1}}{(1-x)^{\gamma+1}} \left[c + n \int_0^1 t^{n-1}\varphi(t) dt \right].$$

Et puisque $\frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x}$, alors :

$$\phi'_n(x) = -(\gamma + 1)\frac{\phi_n(x)}{x} + c_n \frac{x^{n-1}}{(1-x)^{\gamma+1}}$$

où
$$c_n = c + n \int_0^1 t^{n-1} \varphi(t) dt = c + n \int_0^1 t^{n-1} (1-t)^{(\gamma+1)-1} dt = c + n \frac{\Gamma(n)\Gamma(\gamma+1)}{\Gamma(n+\gamma+1)}.$$

Or
$$\Gamma(n+\gamma+1) = (n+\gamma)((n+\gamma-1)...(\gamma+1)\Gamma(\gamma+1))$$
, donc pour $n \in \mathbb{N}^*$:
 $c_n = c + n \frac{(n-1)!}{(n+\gamma)((n+\gamma-1)...(\gamma+1))} = c + \frac{n!}{(n+\gamma)((n+\gamma-1)...(\gamma+1))}$ et $c_0 = c = \varphi(0) = 1$.

17) Toutes les solutions de l'équation différentielle $y' = -(\gamma+1)y + c_n \frac{x^{n-1}}{(1-x)^{\gamma+1}}$

sont de la forme $x \longmapsto \frac{c_n}{x^{1+\gamma}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} dt + \frac{\lambda}{x^{1+\gamma}}$ avec $\lambda \in \mathbb{R}$, et puisque

$$\phi_n(0) = 0$$
, alors $\lambda = 0$ et $\phi_n(x) = \frac{c_n}{x^{1+\gamma}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} dt$.

18) On a:

$$r_{n}(x) = \frac{1}{(1-x)^{\gamma}} \int_{0}^{1} K_{n}(xt)(1-t)^{\gamma} dt$$

$$= \frac{1}{(1-x)^{\gamma}} \int_{0}^{1} \frac{1-(xt)^{n}}{1-xt} (1-t)^{\gamma} dt$$

$$= \frac{1}{(1-x)^{\gamma}} \int_{0}^{1} \frac{1}{1-xt} (1-t)^{\gamma} dt - \frac{x^{n}}{(1-x)^{\gamma}} \int_{0}^{1} \frac{t^{n}}{1-xt} (1-t)^{\gamma} dt$$

$$= \phi_{0}(x) - \phi_{n}(x)$$

Or $\varphi(0) = 1 = c_0$, alors :

$$r_n(x) = \frac{1}{x^{1+\gamma}} \int_0^x \frac{t^{\gamma}}{(1-t)^{1+\gamma}} dt - \frac{c_n}{x^{1+\gamma}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} dt$$
$$= \frac{1}{x^{1+\gamma}} \int_0^x \frac{1-c_n t^n}{t^{-\gamma} (1-t)^{1+\gamma}} dt$$

On prend $\alpha = -\gamma$ et $\theta_n = c_n$, par la question 11) $\rho_n(x) \leq \sup_{x \in]0,1[} \frac{1}{\varphi(x)} \int_0^1 K_n(xt) \varphi(t) dt$ pour tout $\varphi \in \mathcal{A}$, en particulier pour $\varphi(t) = (1-t)^{\gamma}$. On a $\rho_n \leq \sup_{x \in]0,1[} \frac{1}{x^{1-\alpha}} \int_0^x \frac{1-c_n t^n}{t^{\alpha} (1-t)^{1-\alpha}} dt \text{ et l'inégalité est vrai pour tout } \alpha \in]0,1[$, alors $\rho_n(x) \leq \inf_{\alpha \in]0,1[} \sup_{x \in]0,1[} \frac{1}{x^{1-\alpha}} \int_0^x \frac{1-c_n t^n}{t^{\alpha} (1-t)^{1-\alpha}} dt$

19) Pour $\alpha = \frac{1}{2}$ dans l'égalité admise et puisque dans ce cas :

$$\theta_{n} = \frac{n!}{(1 - \frac{1}{2})(2 - \frac{1}{2})....(n - \frac{1}{2})} = \frac{n!}{\frac{(2n)!}{2^{2n}n!}} = \frac{(n!)^{2}2^{2n}}{(2n)!}, \text{ donc } \theta^{\frac{1}{2n}} = 2\left(\frac{n!^{2}}{(2n)!}\right)^{\frac{1}{2n}} = \omega_{n}$$
et puisque $\frac{1}{\sqrt{t(1 - t)}} = \frac{2}{\sqrt{4t - 4t^{2}}} = \frac{2}{\sqrt{1 - (2t - 1)^{2}}}, \text{ alors};$

$$t \mapsto \arcsin(2t - 1) = 2\arcsin(\sqrt{t}) - \pi \text{ est une primitive de } t \mapsto \frac{1}{\sqrt{t(1 - t)}}, \text{ alors}:$$

$$\rho_n \le 2\omega_n \arcsin\left(\frac{1}{\omega_n}\right)$$

20) Par stirling

$$\omega_n^{2n} \quad \underset{n \to +\infty}{\sim} \quad 2^{2n} \frac{2\pi n (\frac{n}{e})^{2n}}{\sqrt{4\pi n} (\frac{2n}{e})^{2n}}$$

$$\underset{n \to +\infty}{\sim} \quad \sqrt{\pi n}$$

Donc $\omega_n = (\sqrt{\pi n} + o(\sqrt{n}))^{\frac{1}{2n}} = e^{\frac{1}{2n}\ln(\sqrt{\pi n} + o(\sqrt{n}))} = 1 + \frac{\ln(n\pi)}{4n} + o(\frac{\ln(n\pi)}{4n})$ Donc un équivalent de $\omega_n - 1$ quand $n \to +\infty$ est $\frac{\ln(n\pi)}{4n}$ ou $\frac{\ln(n)}{4n}$.
Donc $\pi - 2\omega_n \arcsin\left(\frac{1}{\omega_n}\right) \underset{n \to +\infty}{\longrightarrow} 0$.

Pour les remarques

sadikoulmeki@yahoo.fr Omar SADIK CPGE My Driss Fès.