Virtual Memory

HPPS

Troels Henriksen

Based on slides by:

Randal E. Bryant and David R. O'Hallaron

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

A System Using Physical Addressing

 Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

- Virtual address space: Set of $N = 2^n$ virtual addresses $\{0, 1, 2, 3, ..., N-1\}$
- Physical address space: Set of M = 2^m physical addresses {0, 1, 2, 3, ..., M-1}

Why Virtual Memory (VM)?

- Uses main memory efficiently
 - Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management
 - Each process gets the same uniform linear address space
- Isolates address spaces
 - One process can't interfere with another's memory
 - User program cannot access privileged kernel information and code

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk (from a caching perspective!)
- The contents of the array on disk are cached in physical memory (DRAM cache)
 - These cache blocks are called pages (size is P = 2^p bytes)

DRAM Cache Organization

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM (CPU cache)
 - Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Enabling Data Structure: Page Table

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM Address Translation

- Virtual Address Space
 - *V* = {0, 1, ..., N-1}
- Physical Address Space
 - *P* = {0, 1, ..., M−1}
- Address Translation

MAP:
$$V \rightarrow P \cup \{\neg\}$$

- For virtual address a:
 - MAP(a) = a' if data at virtual address a is at physical address a' in P
 - $MAP(a) = \neg$ if data at virtual address a is not in physical memory
 - Either invalid or stored on disk

Summary of Address Translation Symbols

Basic Parameters

- $\mathbb{N} = 2^n$: Number of addresses in virtual address space
- **M** = 2^m : Number of addresses in physical address space
- **P** = **2**^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- **TLBT**: TLB tag
- VPO: Virtual page offset
- **VPN**: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number

Address Translation With a Page Table

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

Integrating VM and Cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Speeding up Translation with a TLB

- Page table entries (PTEs) are cached in L1 like any other memory word
 - PTEs may be evicted by other data references
 - PTE hit still requires a small L1 delay
- Solution: Translation Lookaside Buffer (TLB)
 - Small set-associative hardware cache in MMU
 - Maps virtual page numbers to physical page numbers
 - Contains complete page table entries for small number of pages

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB Hit

A TLB hit eliminates a memory access

TLB Miss

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why?

Multi-Level Page Tables

- Suppose:
 - 4KB (2¹²) page size, 48-bit address space, 8-byte PTE
- Problem:
 - Would need a 512 GB page table!
 - $2^{48} * 2^{-12} * 2^3 = 2^{39}$ bytes
- Common solution: Multi-level page table
- Example: 2-level page table
 - Level 1 table: each PTE points to a page table (always memory resident)
 - Level 2 table: each PTE points to a page (paged in and out like any other data)

A Two-Level Page Table Hierarchy

Translating with a k-level Page Table

Summary

Programmer's view of virtual memory

- Each process has its own private linear address space
- Cannot be corrupted by other processes

System view of virtual memory

- Uses memory efficiently by caching virtual memory pages
 - Efficient only because of locality
- Simplifies memory management and programming
- Simplifies protection by providing a convenient interpositioning point to check permissions