Pregunta 1

Sea un conjunto U tal que $100 < \operatorname{card}(\mathcal{P}(U)) < 500$, donde $\mathcal{P}(U)$ es el conjunto de las partes de U. Se considera el conjunto $P_3 = \{X \subset \mathcal{P}(U) | \operatorname{card}(X) = 3\}$. Si k representa el número elementos de P_3 tales que dos cualesquiera X e Y cumplen que $\operatorname{card}(X \cap Y) = 1$, entonces:

- A) k < 10. Correcta
- **B)** 10 < k < 20.
- C) Ninguna de las otras respuestas.

Pregunta 2

Se considera la relación R en \mathbb{N}^2 definida por $(x,y)R(z,t) \iff x^2+y^2=z^2+t^2$. Entonces

- A) R es una relación de equivalencia y todas las clases, menos [(0,0)], tienen 2 elementos.
- B) R es una relación de equivalencia y existen algunas clases que tiene cuatro elementos. Correcta
- C) Ninguna de las otras respuestas.

Pregunta 3

Se considera el conjunto $(\mathbb{Z}_{-})^2$ con la relación $(x,y)S(,z,t) \iff |x|+|y| \leqslant |z|+|t|$, o si |x|+|y|=|z|+|t|, entonces $|y|\leqslant |t|$.

- A) S es una relación de orden sin la propiedad de ser un buen orden.
- B) S es una relación de orden y existe un isomorfismo de orden entre (\mathbb{N}, \leq) y $((\mathbb{Z}_{-})^2, S)$. Correcta
- C) Ninguna de las otras respuestas.

Pregunta 4

Se considera la relación de \mathbb{Z} a \mathbb{Z} definida por $F = \{(x, x^4 - x) \in \mathbb{Z}^2\}$

- \mathbf{A}) F es una aplicación inyectiva.
- ${f B})$ F es una aplicación sobreyectiva.
- C) Ninguna de las otras respuestas. Correcta

Pregunta 5

En el conjunto de las partes de un conjunto, $\mathcal{P}(U)$, se considera una operación de subconjuntos de U definida de la forma $A*B=A\cup B\setminus (A\cap B)$.

- **A)** * cumple la propiedad del elemento simétrico. Además, dado A el simétrico de A es A' cumple que $A \cap A' = \emptyset$
- **B)** card(E) > 1, donde E es el elemento neutro.
- C) Ninguna de las otras respuestas. Correcta

Pregunta 6

Sean z_1 y z_2 las dos raíces de la ecuación $z^2 - 3iz - 3 - i = 0$.

- **A)** $|\text{Re } z_1| = |\text{Re } z_2|$. Correcta
- **B)** $|\text{Im } z_1| = |\text{Im } z_2|.$
- C) Ninguna de las otras respuestas.

Pregunta 7

Sea $C(z) = az^2 + bz + c$ el cociente de dividir el polinomio $z^3 - 3iz^2 - 3z + 1 - i = 0$ entre el polinomio z - 1 + 2i.

- A) c es un número imaginario puro.
- **B)** (Im c)(Re c) < 0.
- C) Ninguna de las otras respuestas. Correcta

Pregunta 8

Sea $p \in \mathbb{N}$ un número primo. Se considera el subconjunto $A \subset \mathbb{N}^* \times \mathbb{N}^*$ tal que $(x, y) \in A \iff x^2 = y^2 + p^2$.

- **A)** Existe algún p para el cual card A > 1.
- $\mathbf{B)} \ A = \emptyset.$
- C) Ninguna de las otras respuestas. Correcta

Pregunta 9

Sea f la aplicación entre el conjunto $A \subset \mathbb{C}$ formado por las raíces de $z^9-1=0$ y el conjunto $\mathbb{Z}/9$ definida por $f(z)=\frac{9\mathrm{arg}\ z}{2\pi}$.

- A) f es un homomorfismo entre grupos; (A, \cdot) y $(\mathbb{Z}/9, +)$. Correcta
- **B)** f es un homomorfismo entre grupos; (A, \cdot) y $(\mathbb{Z}/9, \cdot)$.
- C) Ninguna de las otras respuestas.

Pregunta 10

Sea un conjunto U y $A, B, C \in \mathcal{P}(U)$) no vacíos. Se consideran las expresiones:

- 1. $A \setminus (B \setminus C) \subset (A \setminus B) \cup (A \cap C)$.
- 2. $A \triangle (A \cap B) \subset A \setminus B$.
- 3. $A \triangle (B \triangle C) \subset (A \triangle B) \triangle C$.
- A) Sólo dos de las expresiones son verdaderas.
- B) Una única expresión es verdadera.
- C) Ninguna de las otras respuestas. Correcta