PSC 400 SYRACUSE UNIVERSITY

DATA ANALYTICS FOR POLITICAL SCIENCE

QUANTIFYING UNCERTAINTY

ASSIGNMENTS

- Problem Set 3 posted
 - Q3: "which model fits the data better?" = R^2
- Review exercise posted

SAMPLE VS POPULATION

- What we are interested in: population parameter
 - Approval of J. Biden in American population
- What we can study: sample parameter
 - Approval of J. Biden in survey sample

RANDOM SAMPLING

- A random sample of the population avoids systematic sampling error
- If we use random sampling, we can use our sample's characteristics to estimate the population's characteristics
 - e.g. can use 1000 randomly selected survey respondents to infer approval rating of J. Biden in American population

- But: random sampling introduces random sampling error
 - It is unlikely that our random sample looks exactly like the American population
 - e.g. by chance, we might draw more people that approve of Biden than is the case in the population
 - Or we might draw more people that disapprove of his performance than in the population

How popular is Joe Biden?

An updating calculation of the president's approval rating, accounting for each poll's quality, recency, sample size and partisan lean. How this works »

• https://projects.fivethirtyeight.com/biden-approval-rating

- Random sampling introduces random sampling error
 - Example: Flipping a coin
 - For a fair coin, we know that Heads=50%, Tails=50%
 - We flip a coin 10 times:
 - We may get HHTHTTHTHT (5H, 5T)
 - We might also get HHHHHHHHHHH (8H, 2T)
 - Or TTTHTTTTHT (2H, 8T)

THE PROBLEM

 Population parameter = Sample statistic + random sampling error

GOOD NEWS

We can figure out how large the random sampling error is

CI SAMPLE MEAN

95% CONFIDENCE INTERVAL FOR THE SAMPLE MEAN

$$\overline{Y} - 1.96 \times \sqrt{\frac{var(Y)}{n}}, \quad \overline{Y} + 1.96 \times \sqrt{\frac{var(Y)}{n}}$$

CI DIFFERENCE IN MEANS

95% CONFIDENCE INTERVAL FOR THE DIFFERENCE-IN-MEANS ESTIMATOR

LOWER LIMIT:

$$\overline{Y}_{\text{treatment group}} - \overline{Y}_{\text{group}}^{\text{control}} - 1.96 \times \sqrt{\frac{var(Y_{\text{treatment}})}{n_{\text{treatment group}}}} + \frac{var(Y_{\text{control}})}{n_{\text{control group}}}$$

UPPER LIMIT:

$$\overline{Y}_{\text{treatment group}} - \overline{Y}_{\text{group}} + 1.96 \times \sqrt{\frac{var(Y_{\text{treatment}})}{n_{\text{treatment group}}}} + \frac{var(Y_{\text{control}})}{n_{\text{control group}}}$$