

TD 2

TD 2A / PILOTAGE D'UNE SOURCE À DIODES TD 2B / CONVERSION NUMÉRIQUE-ANALOGIQUE

Mission 1 - Miroir de courant

LEnsE / Institut d'Optique Graduate School

Mission 2 - Redressement à diodes

Mission 2 - Redressement à diodes

The CMV50000 is a high speed CMOS image sensor with 7920 x 6004 effective pixels (47.5Mp) developed for machine vision and

video applications. The image array consists of 4.6µm pipelined 8T global shutter pixels which allow exposure during read out, while performing true CDS (Correlated Double Sampling) operation. The image sensor has 22 12bit sub-LVDS data outputs. The image sensor also integrates a programmable analog gain amplifier and offset regulation. Each output channel runs up to 830 Mbps maximum which results in 30 fps frame rate at full resolution in 12 bit. Higher frame rates can be achieved in row-windowing mode or rowsubsampling mode. These modes are all programmable using the SPI interface. All internal exposure and read out timings are generated by a programmable on-board sequencer. External triggering and exposure programming is also possible. Extended optical dynamic range can be achieved by a dual exposure HDR mode.

SPECIFICATIONS

Part status	Sampling
Resolution	48MP - 7920 (H) x 6004 (V)
Pixel size	4.6 x 4.6
Optical format	35 mm (36.43 x 27.62 mm2)
Shutter type	Global shutter
Frame rate	30 fps
Output interface	22 LVDS @ 830 Mbps
Sensitivity	3.5 x10e7 DN/(W.s/m2) (@ 550 nm)
Conversion gain	0.272 DN/e
Full well charge	14500 e- (with binning 58000 e-)
Dark noise	8.8 e-
Dynamic range	64dB (binning: 68dB)
SNR max	41.6dB (binning: 47.6dB)
Parasitic light sensitivity	1/18000
Extended dynamic range	Yes, odd/even read out
Dark current	0.24e/s @ 20°C; 66.2e/s @60°C
Fixed pattern noise	6.6 DN rms
Chroma	Mono and RGB
Supply voltage	3.3/2.7/1.8/1.2V
Power	3W
Operating temperature range	-30°C to 70°C
RoHS compliance	Yes (TBC)
Package	141 pins PGA ceramic package
Socket	Andon Electronics (http://www.andonelectronics.com) 575-20-19A-141-01M-R27-L14 (thru-hole) 575-20-19A-141-93M-R27-L14 (surface mount)

12-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter

AD9230

FEATURES

SNR = 64.9 dBFS @ f_{iN} up to 70 MHz @ 250 MSPS ENOB of 10.4 @ f_{iN} up to 70 MHz @ 250 MSPS (-1.0 dBFS)

SFDR = -79 dBc @ f_{IN} up to 70 MHz @ 250 MSPS (-1.0 dBFS)

Excellent linearity

DNL = ±0.3 LSB typical

INL = ± 0.5 LSB typical

LVDS at 250 MSPS (ANSI-644 levels)
700 MHz full power analog bandwidth

On-chip reference, no external decoupling required

Integrated input buffer and track-and-hold

Low power dissipation

434 mW @ 250 MSPS—LVDS SDR mode

400 mW @ 250 MSPS—LVDS DDR mode

Programmable input voltage range

1.0 V to 1.5 V, 1.25 V nominal

1.8 V analog and digital supply operation

Selectable output data format (offset binary, twos

complement, Gray code)

Clock duty cycle stabilizer

Integrated data capture clock

APPLICATIONS

Wireless and wired broadband communications
Cable reverse path
Communications test equipment
Radar and satellite subsystems
Power amplifier linearization

GENERAL DESCRIPTION

The AD9230 is a 12-bit monolithic sampling analog-to-digital converter optimized for high performance, low power, and ease of use. The product operates at up to a 250 MSPS conversion rate and is optimized for outstanding dynamic performance in wideband carrier and broadband systems. All necessary functions, including a track-and-hold (T/H) and voltage reference, are included on the chip to provide a complete signal conversion solution.

The ADC requires a 1.8 V analog voltage supply and a differential clock for full performance operation. The digital outputs are LVDS (ANSI-644) compatible and support either twos complement, offset binary format, or Gray code. A data clock output is available for proper output data timing.

Fabricated on an advanced CMOS process, the AD9230 is available in a 56-lead LFCSP, specified over the industrial temperature range (-40° C to $+85^{\circ}$ C).

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

- 1. High Performance—Maintains 64.9 dBFS SNR @ 250 MSPS with a 70 MHz input.
- Low Power—Consumes only 434 mW @ 250 MSPS.
- 3. Ease of Use—LVDS output data and output clock signal allow interface to current FPGA technology. The on-chip reference and sample and hold provide flexibility in system design. Use of a single 1.8 V supply simplifies system power supply design.
- 4. Serial Port Control—Standard serial port interface supports various product functions, such as data formatting, disabling the clock duty cycle stabilizer, power-down, gain adjust, and output test pattern generation.
- Pin-Compatible Family—10-bit pin-compatible family offered as AD9211.

Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.

TLC548C, TLC548I, TLC549C, TLC549I 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL

SLAS067C - NOVEMBER 1983 - REVISED SEPTEMBER 1996

- Microprocessor Peripheral or Standalone Operation
- 8-Bit Resolution A/D Converter
- Differential Reference Input Voltages
- Conversion Time . . . 17 μs Max
- Total Access and Conversion Cycles Per Second
 - TLC548 . . . up to 45 500
 - TLC549 . . . up to 40 000
- On-Chip Software-Controllable Sample-and-Hold Function
- Total Unadjusted Error . . . ±0.5 LSB Max
- 4-MHz Typical Internal System Clock
- Wide Supply Range . . . 3 V to 6 V
- Low Power Consumption . . . 15 mW Max
- Ideal for Cost-Effective, High-Performance Applications including Battery-Operated Portable Instrumentation
- Pinout and Control Signals Compatible With the TLC540 and TLC545 8-Bit A/D Converters and with the TLC1540 10-Bit A/D Converter
- CMOS Technology

D OR P PACKAGE (TOP VIEW) REF+ 1 8 V_{CC} ANALOG IN 2 7 I/O CLOCK REF- 3 6 DATA OUT GND 4 5 CS

description

The TLC548 and TLC549 are CMOS analog-to-digital converter (ADC) integrated circuits built around an 8-bit switched-capacitor successive-approximation ADC. These devices are designed for serial interface with a microprocessor or peripheral through a 3-state data output and an analog input. The TLC548 and TLC549 use only the input/output clock (I/O CLOCK) input along with the chip select ($\overline{\text{CS}}$) input for data control. The maximum I/O CLOCK input frequency of the TLC548 is 2.048 MHz, and the I/O CLOCK input frequency of the TLC549 is specified up to 1.1 MHz.

AVAILABLE OPTIONS

	PACKAGE		
TA	SMALL OUTLINE (D)	PLASTIC DIP (P)	
0°C to 70°C	TLC548CD TLC549CD	TLC548CP TLC549CP	
-40°C to 85°C	TLC548ID TLC549ID	TLC548IP TLC549IP	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLC548C, TLC548I, TLC549C, TLC549I 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL

SLAS067C - NOVEMBER 1983 - REVISED SEPTEMBER 1996

description (continued)

Operation of the TLC548 and the TLC549 is very similar to that of the more complex TLC540 and TLC541 devices; however, the TLC548 and TLC549 provide an on-chip system clock that operates typically at 4 MHz and requires no external components. The on-chip system clock allows internal device operation to proceed independently of serial input/output data timing and permits manipulation of the TLC548 and TLC549 as desired for a wide range of software and hardware requirements. The I/O CLOCK together with the internal system clock allow high-speed data transfer and conversion rates of 45 500 conversions per second for the TLC548, and 40 000 conversions per second for the TLC549.

Additional TLC548 and TLC549 features include versatile control logic, an on-chip sample-and-hold circuit that can operate automatically or under microprocessor control, and a high-speed converter with differential high-impedance reference voltage inputs that ease ratiometric conversion, scaling, and circuit isolation from logic and supply noises. Design of the totally switched-capacitor successive-approximation converter circuit allows conversion with a maximum total error of ± 0.5 least significant bit (LSB) in less than 17 μ s.

The TLC548C and TLC549C are characterized for operation from 0° C to 70° C. The TLC548I and TLC549I are characterized for operation from -40° C to 85° C.

functional block diagram

typical equivalent inputs

TLC548C, TLC548I, TLC549C, TLC549I 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL

SLAS067C - NOVEMBER 1983 - REVISED SEPTEMBER 1996

operating sequence

- NOTES: A. The conversion cycle, which requires 36 internal system clock periods (17 μ s maximum), is initiated with the eighth I/O clock pulse trailing edge after \overline{CS} goes low for the channel whose address exists in memory at the time.
 - B. The most significant bit (A7) is automatically placed on the DATA OUT bus after CS is brought low. The remaining seven bits (A6–A0) are clocked out on the first seven I/O clock falling edges. B7–B0 follows in the same manner.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage range at any input –	$-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$
Output voltage range –	$-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$
Peak input current range (any input)	±10 mA
Peak total input current range (all inputs)	±30 mA
Operating free-air temperature range, T _A (see Note 2): TLC548C, TLC549C	0°C to 70°C
TLC548I, TLC549I	−40°C to 85°C
Storage temperature range, T _{stq}	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

- NOTES: 1. All voltage values are with respect to the network ground terminal with the REF– and GND terminals connected together, unless otherwise noted.
 - 2. The D package is not recommended below -40° C.

