CIS 833 – Information Retrieval and Text Mining Lecture 13

Probabilistic Models

October 6, 2015

Credits for slides: Hofmann, Mihalcea, Mobasher, Mooney, Schutze.

Assignments

- PA1 due October 16th (extended)
- Exam 1 October 13th
- Exam review October 7th

Classes of Retrieval Models

- Boolean models (set theoretic)
 - Extended Boolean
- Vector space models (algebraic)
 - Generalized VS
 - Latent Semantic Indexing
- Probabilistic models
 - Inference Networks
 - Belief Networks

Exact match

Ranking - "Best" match

Required Reading

Probabilistic Retrieval Models

■ Chapter 11: 11.2-11.4 - Probabilistic retrieval models

- Traditionally used in conjunction with PRP
- "Binary" = Boolean: documents are represented as binary incidence vectors of terms:

 - $\vec{x} = (x_1, ..., x_n)$ $\vec{x}_i = 1 \quad \text{iff} \quad \text{term } i \text{ is present in document } d \text{ having}$
- "Independence": terms occur in documents independently
 - Different documents can be modeled as same vector
- Bernoulli Naive Bayes model (cf. text categorization!)

Binary Independence Model

Given query q:

$$O(R \mid q, \vec{x}) = \frac{p(R \mid q, \vec{x})}{p(NR \mid q, \vec{x})} = \frac{p(R \mid q)}{p(NR \mid q)} \cdot \frac{p(\vec{x} \mid R, q)}{p(\vec{x} \mid NR, q)}$$
Constant for a given query

Needs estimation

Using **Independence** Assumption:

$$\frac{p(\vec{x} \mid R, q)}{p(\vec{x} \mid NR, q)} = \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)}$$
So: $O(R \mid q, \vec{x}) = O(R \mid q) \cdot \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)}$

$$O(R \mid q, \vec{x}) = O(R \mid q) \cdot \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)}$$

• Since x_i is either 0 or 1:

$$O(R \mid q, \vec{x}) = O(R \mid q) \cdot \prod_{x_i = 1} \frac{p(x_i = 1 \mid R, q)}{p(x_i = 1 \mid NR, q)} \cdot \prod_{x_i = 0} \frac{p(x_i = 0 \mid R, q)}{p(x_i = 0 \mid NR, q)}$$

- Let $p_i = p(x_i = 1 | R, q)$; $r_i = p(x_i = 1 | NR, q)$;
- Assume, for all terms not occurring in the query (q_i =0) $p_i = r_i$

Then...

Binary Independence Model

$$O(R \mid q, \vec{x}) = O(R \mid q) \cdot \prod_{\substack{x_i = q_i = 1 \\ q_i = 1}} \frac{p_i}{r_i} \cdot \prod_{\substack{x_i = 0 \\ q_i = 1}} \frac{1 - p_i}{1 - r_i}$$

$$= O(R \mid q) \cdot \prod_{\substack{x_i = q_i = 1 \\ r_i = 1 \\ All \text{ query terms}}$$
All query terms

• Retrieval Status Value:

$$RSV = \log \prod_{x_i = q_i = 1} \frac{p_i (1 - r_i)}{r_i (1 - p_i)} = \sum_{x_i = q_i = 1} \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

Binary Independence Model

• All boils down to computing RSV.

$$RSV = \log \prod_{x_i = q_i = 1} \frac{p_i (1 - r_i)}{r_i (1 - p_i)} = \sum_{x_i = q_i = 1} \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

$$RSV = \sum_{x_i = q_i = 1} c_i; \quad c_i = \log \frac{p_i (1 - r_i)}{r_i (1 - p_i)}$$

So, how do we compute c_i 's from our data?

Remember: $p_i = p(x_i = 1 | R, q); r_i = p(x_i = 1 | NR, q);$

- Estimating RSV coefficients.
- For each term *i* look at this table of document counts:

Documens	Relevant	Non-Relevant	Total
$x_i=1$	S	n-s	n
$x_i=0$	S-s	N- n - S + s	N-n
Total	S	N-S	N

• Estimates:
$$p_i \approx \frac{s}{S}$$
 $r_i \approx \frac{(n-s)}{(N-S)}$ $c_i \approx K(N,n,S,s) = \log \frac{s/(S-s)}{(n-s)/(N-n-S+s)}$

For now, assume no zero terms.

	T1	T2	Т3	T4	T5	Т6	Relevance
D1	1	0	1	1	0	0	R
D2	0	1	0	1	0	1	R
D3	1	0	1	1	1	0	NR
D4	0	1	1	0	1	1	NR
D5	1	1	0	1	0	0	NR
D6	1	1	0	1	1	1	NR
D7	0	0	0	0	0	1	R
D8	0	0	1	1	1	0	NR
D9	1	1	1	0	1	1	R
D10	1	0	. 0	1	1	0	NR

Suppose the relevance judgments specified above represent some past user judgments on the relevance of these documents wrt a given query. Using the basic probabilistic retrieval model, compute the discriminant (i.e., P(R|D) vs P(NR|D)) for each of the two new documents

with respect to the query Q = (1,1,0,1,0,1). Based on this discriminant, should these documents be retrieved? Explain your answer.

Estimation – Key Challenge

- If non-relevant documents are approximated by the whole collection, then r_i (prob. of occurrence in nonrelevant documents for query) is n/N (where n=df_i) and log (1-r_i)/r_i = log (N-n)/n ≈ log N/n = IDF
- p_i (probability of occurrence in relevant documents) can be estimated in various ways:
 - from relevant documents, if we know some
 - Relevance weighting can be used in feedback loop
 - constant (Croft and Harper combination match) each term has even odds of appearing in a relevant document
 then just get idf weighting of terms
 - proportional to prob. of occurrence in collection
 - more accurately, to log of this (Greiff, SIGIR 1998)

Iteratively Estimating p_i

- 1. Assume that p_i constant over all x_i in query
 - $p_i = 0.5$ (even odds) for any given doc
- 2. Determine guess of relevant document set:
 - V is fixed size set of highest ranked documents on this model
- 3. We need to improve our guesses for p_i and r_i , so
 - Use distribution of x_i in docs in V. Let V_i be set of documents containing x_i
 - $p_i = |V_i| / |V|$
 - Assume if not retrieved, then not relevant
 - $r_i = (n_i |V_i|) / (N |V|)$
- 4. Go to 2. until converges, then return ranking

Probabilistic Relevance Feedback

- 1. Guess a preliminary probabilistic description of *R* and use it to retrieve a first set of documents V, as above.
- 2. Interact with the user to refine the description: learn some definite members of R and NR
- 3. Re-estimate p_i and r_i on the basis of these
 - Or can combine new information with original guess (use Bayesian prior):

$$p_i^{(2)} = \frac{|V_i| + \kappa p_i^{(1)}}{|V| + \kappa}$$

4. Repeat, thus generating a succession of approximations to *R*.

 κ is prior weight

PRP and BIR

- Getting reasonable approximations of probabilities is possible.
- Requires restrictive assumptions:
 - term independence
 - terms not in the query don't affect the outcome
 - Boolean representation of documents/queries/relevance
 - document relevance values are independent
- Some of these assumptions can be removed
- Problem: either require partial relevance information or only can derive somewhat inferior term weights

Removing Term Independence

- In general, index terms aren't independent
- Dependencies can be complex
- van Rijsbergen (1979) proposed model of simple tree dependencies
 - Exactly Friedman and Goldszmidt's Tree Augmented Naive Bayes (AAAI 13, 1996)
- Each term dependent on one other
- In 1970s, estimation problems held back success of this model

Good and Bad News

- Standard Vector Space Model
 - Empirical for the most part; success measured by results
 - Few properties provable
- Probabilistic Model
 - Advantages
 - Based on a firm theoretical foundation
 - Theoretically justified optimal ranking scheme
 - Disadvantages
 - Making the initial guess to get V
 - Binary word-in-doc weights (not using term frequencies)
 - Independence of terms (can be alleviated)
 - Amount of computation
 - Has never worked convincingly better in practice, but still an active research area