NETWORK SECURITY VISUALIZATION RESEARCH

KULSOOM ABDULLAH PHD

KULSOOM ABDULLAH'S LINKEDIN PROFILE

HTTPS://WWW.LINKEDIN.COM/IN/KULSOOMABDULLAH

OUTLINE

- + PHD THESIS WORK
- + POST-PHD WORK

WHY INFORMATION VISUALIZATION & NETWORK SECURITY

- NETWORK TRAFFIC CAPACITY IS GREATER THAN SYSTEMS CAN PROCESS
- NETWORK ATTACKS HAVE NOT DECREASED,
 CURRENT SECURITY TOOLS ARE INSUFFICIENT
- INFORMATION VISUALIZATION TECHNIQUES USED IN NETWORK SECURITY RESEARCH HAVE INITIAL SUCCESS AND FUTURE PROMISE
- * TEXT LOGS AND MACHINE LEARNING

 ALGORITHMS ARE COMPLEMENTED AND

 INFORMATION IS REPRESENTED MORE DENSELY.

NETWORK DATA & GRAPH SCALING ISSUES

- + GRAPH OCCLUSION
 - + AVOID OVERLAP AND OCCLUSION IN THE VISUALIZATIONS
- + SCALING DATA PARAMETERS RANGES
 - + FOR NETWORKING, PORT NUMBERS & IP ADDRESSES NEED SCALING
 - + 65535 TCP AND UDP PORTS
 - + 4 BILLION POSSIBLE IP ADDRESSES
- * TIME SCALING
 - Needs to be either small or large depending on activity
 - * SMALL FOR QUICK ACTIVITIES: FAST NETWORK SCANS, DOS, FAST PROPAGATING WORMS
 - + LARGE FOR SLOW NETWORK SCANS, OVERALL TRENDS
 IN A NETWORK

 4

IDS RAINSTORM

MAIN VIEW

- * THIS DESIGN SCALES ALL OF THE GT IP ADDRESSES
- + 2.5 CLASS B ADDRESSES

 PLOTTED ALONG 8 VERTICAL

 AXIS
- 20 IPs REPRESENTED ON EACH LINE
- COLOR REPRESENTSSEVERITY
- TIME: 24 HOURS OF
 STEALTHWATCH IDS ALARMS
 SHOWN
 - Most logs are archived
 into 24 hours
- FILTERING ON ALARM TYPE & PRIORITY

ZOOM VIEW

EXAMPLES

RESULTS-USER STUDY

- * ALL STATED THAT TIME WAS SAVED COMPARED TO USING TRADITIONAL IDS LOGS, IT WAS SIMPLE AND INTUITIVE TO USE & FUNCTIONED WELL
- * SEEING PATTERNS AND SEQUENCE & CONNECTIONS BETWEEN HOST
- * SOME DID NOT RETURN TO THE ALARM TEXT LOG & SOME DID RETURN TO THE LOG FOR MORE DETAIL
- + NOT ALL ALARM PARAMETERS ARE VISUALLY ENCODED
 - + AVOID OVERLAP AND OCCLUSION IN THE VISUALIZATIONS
 - TIME SCALING NEEDS TO BE EITHER SMALL OR LARGE DEPENDING ON ACTIVITY
 - * SMALL FOR QUICK ACTIVITIES: FAST NETWORK SCANS, DOS, FAST PROPAGATING WORMS
 - + LARGE FOR SLOW NETWORK SCANS, OVERALL TRENDS IN

 A NETWORK 10

PUBLICATIONS

- + K. ABDULLAH, G. CONTI AND R. BEYAH. "A VISUALIZATION FRAMEWORK FOR SELF-MONITORING OF WEB-BASED INFORMATION DISCLOSURE" IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), MAY 2008. (POST PHD) HTTP://BIT.LY/1WFUBU1
- + K. Abdullah, G. Conti and E. Sobiesk. "Self-monitoring of Web-based Information Disclosure" Workshop on Privacy in the Electronic Society (WPES); October 2007. http://bit.ly/1WfUB3L
 CITED IN: G. CONTI; Googling Security [http://amzn.to/1NcestF], Addison Wesley; November 2008. (Post PhD)
- * K. Abdullah, J. A. Copeland. "High alarm count issues in IDS RainStorm" ACM Conference on Computer and Communications Security's Workshop on Visualization and Data Mining for Computer Security (VizSEC); November 2006. http://bit.ly/1KioKbz
- K. Abdullah, C. Lee, G. Conti and J. Copeland. "Processing Data to Construct Practical
 Visualizations for Network Security" Information Assurance Newsletter, Information
 Assurance Technology Analysis Center, United States Department of Defense, Summer 2006.
 http://bit.ly/1Snimrt
- + G. CONTI, K. ABDULLAH, J. GRIZZARD, J. STASKO, J. COPELAND, M. AHAMAD, H. OWEN AND C. LEE, "Countering Security Analyst and Network Administrator Overload Through Alert and Packet Visualization" IEEE Computer Graphics and Applications (CG&A), March 2006. http:// BIT.LY/1ZQPGED
- * K. ABDULLAH, C. LEE, G. CONTI, J. COPELAND AND J. STASKO, "IDS RAINSTORM: VISUALIZING IDS ALARMS" IEEE SYMPOSIUM ON INFORMATION VISUALIZATION'S WORKSHOP ON VISUALIZATION FOR COMPUTER SECURITY (VIZSEC); OCTOBER 2005. http://bit.ly/1n1Heb8 Cited in: G. Conti; Security Data Visualization, No Starch Press; September 2007 http://amzn.to/1UVZPJY
- + K. ABDULLAH, C. LEE, G. CONTI AND J. COPELAND, "VISUALIZING NETWORK DATA FOR INTRUSION DETECTION" IEEE INFORMATION ASSURANCE WORKSHOP (IAW); JUNE 2005. http://bit.ly/1lg5m8P
- + G. CONTI AND K. ABDULLAH, "Passive Visual Fingerprinting of Network Attack Tools" ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY'S WORKSHOP ON VISUALIZATION AND DATA MINING FOR COMPUTER SECURITY (VIZSEC); OCTOBER 2004. http://bit.ly/1PwRaR1

POST PHD NETWORK VISUALIZATION RESEARCH

3D NETWORK SECURITY VISUALIZATION

3D NETWORK SECURITY VISUALIZATION

TROY NUNNALLY, CAP & CSC AT GATECH

- + 3D SHOWS MORE INFORMATION VS 2D
- * 3D CAN BE DIFFICULT TO FOR NOVICES TO NAVIGATE

T. Nunnally, P. Chi, K. Abdullah, A. S. Uluagac, and R. A. Beyah, "P3D: A Parallel 3D Coordinate System for Advanced Network Scans", IEEE International Conference on Communications (ICC), Budapest, Hungary, September 2013

COLLABORATIVE FILTERING & GLOBAL RESTRICTION

Compute the active user's and expert users' frequency of interactions

$$c_{if} = \sum_{k=0} n_{ij}$$

 c_{if} is the frequency of each interaction c_i in a sessions.

sessioms for user ui

2 Store each interaction frequency into a vector Vi for active user

Total number of interactions (zoom, pan, etc.) = number of dimensions in Vi

3 Create a Similarity Matrix M

$$M_{ik} = cos(V_i, V_k) = \frac{V_i \cdot V_k}{||V_i|| * ||V_k||}$$

V_i - Active users

Vk - Expert users

M – similarity matrix

Mik - each pair of interactions i and k

4 Compute the user's expected interaction as list L

Maximum values denotes interactions with highest similarity between V_i and V_k .

T. Nunnally, K. Abdullah, A. S. Uluagac, and R. A. Beyah, "NAVSEC: A Recommender System for 3D Network Security Visualizations", IEEE Symposium on Information Visualization's Workshop on Visualization for Computer Security (), Atlanta, GA, USA, October 2013.

P3D MULTIPLE CONCURRENT FTP SCAN

P3D MULTIPLE CONCURRENT FTP SCAN

STEALTHY PORT SCANNING USE-CASE

FUTURE P3D WORK

- * IMPLEMENTATION AND EVALUATION OF MORE ADVANCE USE-CASE SCENARIOS (I.E., INTRODUCE BENIGN TRAFFIC)
- + T. Nunnally, K. Abdullah, A. S. Uluagac, J. A. Copeland & R. A. Beyah,
 "InterSec: An Interaction System for Network Security Applications",
 IEEE Symposium on Information Visualization's Workshop on Visualization for
 Computer Security (VizSEC) 2014. http://bit.ly/1P58Hpd
- + USER TESTING
 - + 3D, STEREOSCOPIC VIEW, NAVIGATION ASSISTANCE
- + NATURAL USER INTERFACE
 - + KINECT, WII