Simplifying expressions

- Simplifying expressions by collecting like terms
- **Expanding expressions involving brackets**
- Writing expressions using index notation
- The order of operations for expressions involving indices

Keywords

You should know

explanation 1a

explanation 1b

explanation 1c

1 Look at the terms in the box.

Write down all the terms in the box that are like each term below.

- **a** 2*x*
- **b** -3xy **c** $2x^2$
- $\mathbf{d} 8$
- **e** *v*
- $\mathbf{f} \quad v^2$
- **2** Simplify these expressions where possible. Collect like terms.
 - **a** 4h + t 3h + 5t

- **b** a + 8b + 10 + 5a 3
- c 5m-3n+8-m+n+1+n d 3a+8-p+3-6a-11+2p
- e m + 6n m + n 5 + 6n + 3m f $x 7y + y^2 3 2x^2 + 6z$
- a a + 7b ab + 4ab b + 1
- **h** 2m-3n+2-m+n+1+2n
- **3** Write three different expressions that simplify to 3x + 7y 6.
- **4** Eric has three rectangular cards. One of them has a hole cut out.
 - Write down an expression for the area of each card.
 - **b** What is the total area of the three cards? Simplify your answer.

10b

- **5** Copy and complete the expressions.
 - **a** $5a + b + 4 \square + 6b + \square = 3a + \square + 5$
 - **b** $4t u + t v \square = \square 9u v$
 - **c** $p + 7q 7 q + \square \square = 12p + \square 8$
 - **d** $a + 3b 2 + 4a \square + 1 = \square 3b \square$
 - $e v 3 + 2w + 1 + \square \square = 3v + \square 6$
 - **f** $2x + y 3 + 5x \square + \square = 7x + 6$
- 6 Simplify these expressions.
 - **a** $5x^2 + y^2 2x + y x^2 8y^2 + x + 4y$
 - **b** $x^2 + 5y^2 5 + x + 3 4x^2 + 5x 10$
 - 4x 8y + 2xy x + 5y 7x 8yx + 3x
 - **d** $5x + y^2 2x + y x^2 8y^2 + x + 4y$
 - e 6a + b 4ab + 2a + 7ba 10b + 2

- **7** Write three different expressions that simplify to $2x^2 3x + 9$.
- **8** Write an expression for the perimeter of each shape as simply as possible.

a

h

C

d

explanation 2a

explanation 2b

- **9** Expand the brackets.

- **a** 3(2a+b) **b** 5(m-6n) **c** 2(x-3y) **d** 12(4a+3b)

- **e** a(3a+4) **f** x(10-x) **g** p(q-7p-1) **h** y(1-4y-3x)

- i 4t(2-5t) j 8u(3u-10) k 9v(u-2v+4) l $3x(2+6x-7x^2)$
- **10** Expand the brackets and simplify where possible.
 - **a** 5(x-2y) + 3xy

- **b** 4(a+2b)-3a
- 8(3a-b)+2(4a+3b)
- **d** 6(a+2b)+4(a-5b)

e 9(2-b) + (7-b)

 \mathbf{f} x(x-y)+y(x-y)

explanation 3

11 Expand the brackets.

a
$$-2(3-5t)$$

b
$$-4(3+5t)$$

a
$$-2(3-5t)$$
 b $-4(3+5t)$ **c** $-y(3y-10)$ **d** $-p(2q-5p)$ $= -3 \times 1 + (-3) \times (-2x)$ **e** $-x(1-x)$ **f** $-a(2a-b+3)$ $= -3+6x$

c
$$-y(3y-10)$$

d
$$-p(2q - 5p)$$

$$= -3 + 6x$$

e
$$-x(1-x)$$

$$f -a(2a-b+3)$$

$$g -8n(2-m+3n)$$

$$g -8n(2-m+3n)$$
 h $-5m(2+7m-m^2)$

12 Expand the brackets and simplify.

a
$$2(3x+1) - 5(x+1)$$

b
$$10a - 3(2a + 5b)$$

c
$$2a - (4a - 3b)$$

d
$$6 - (2t - 1)$$

$$e 2(3m-n)-(4m+3n)$$

f
$$4a(2a+1) - 3a(a-2)$$

$$\mathbf{g} \quad 2(4x+y) + 3(2x-9y)$$

h
$$5a(a-3) - a(2a+7)$$

- **13** Aled has 13 CDs. Beth has 3y fewer CDs than Aled. Ciaran has 7xy CDs.
 - **a** How many CDs do Aled and Beth have altogether?
 - **b** For each CD that Aled and Beth have, Ciaran gives them another 2x CDs.
 - i How many CDs does Ciaran give them?
 - ii How many CDs does Ciaran have left? Simplify your expression.

- **14** Copy and complete.
 - a (3-2t)=15-
 - e^{-8} = 8x + 24v
 - $(x-6) = 2x^2 \Box$
 - **g** (2x-7) = -8x +
 - (m+6n) = -6mn

- **b** $4(7 + \Box) = \Box + 12b$
- **d** (2-5t)=6t-
- $(n-2m) = n^2$
- h (4x-3) = +15x
- $(x-3y) = \Box + 6y$
- **15** The area of a rectangle is $(2x^2 + 4x)$ cm² Find its length and width for each of these perimeters.
 - **a** (6x + 8) cm
- **b** (6x + 4) cm

explanation 4a

explanation 4b

16 Write these expressions as simply as possible using index notation.

$$\mathbf{a} \quad y \times y \times y$$

b
$$r \times r \times r \times r$$

b
$$r \times r \times r \times r$$
 c $p \times p \times p \times p \times p$

d
$$t \times t \times u \times u \times u$$

e
$$y \times y \times y \times z$$

d
$$t \times t \times u \times u \times u$$
 e $y \times y \times y \times z$ **f** $a \times a \times b \times b \times c \times c$

g
$$m \times n \times n \times p \times p \times p$$
 h $t \times u \times t \times u \times t$ **i** $m \times p \times n \times m \times p$

h
$$t \times u \times t \times u \times t$$

i
$$m \times p \times n \times m \times p$$

17 Write these in full. The first one has been done for you.

a
$$t^2 = t \times t$$

b
$$f^2g$$

$$b^3d^2$$

d
$$v^4z^3$$

$$a^2b^2c^3$$

f
$$mn^3p^2$$

18 a Write these in full.

i
$$v^2 \times v^3$$

ii
$$a \times a^5$$

iii
$$p^3 \times p \times p^2$$

- **b** Write the expressions in part **a** as simply as possible using index notation.
- **c** Copy and complete these expressions. Use your answers to part **b** to help.

$$\mathbf{i} \quad \mathbf{x}^n \times \mathbf{x}^m = \mathbf{x}^{\square}$$

$$z \times z^k = z^{\square}$$

iii
$$q^a \times q^b \times q = q^{\square}$$

19 Simplify.

a
$$2 \times a \times 3 \times a \times 4 \times a$$

b
$$7 \times a \times 2 \times a \times a \times a$$

c
$$2 \times n \times n \times m \times n \times m$$

d
$$5 \times n \times m \times n \times m \times m \times 3$$

e
$$6 \times y^3 \times 2 \times y$$

- **f** $2 \times m \times m \times 6 \times n \times m^2 \times 4 \times m$
- **20** Complete these expressions so that they all simplify to $30t^2u^3v$.

explanation 5a

explanation 5b

explanation 5c

21 m = 4 and v = 5. Work out the value of each expression. Which expressions have the same value?

$$30-2v$$
 $(3m)^2$ $2m^2-12$ $(v-m)(v+m)$ $2vm^2$ $4+3mv$ v^2-m^2 $3(30-mv)$ $8(v^2-5)$

22 Which values of n make each algebraic expression equal to 18? In each case, n is a positive whole number less than 10.

23 Look at this statement.

$$(p+q)^2 = p^2 + q^2$$

Is the statement always true, never true or sometimes true? Use different values of p and q to explain your answer.