Foundations of Data Science

Probability & Statistics

PG-Level ACP AI&MLOPS Cohort 2

Deepak Subramani
Assistant Professor
Dept. of Computational and Data Science
Indian Institute of Science Bengaluru

Probability: The Mathematics of Uncertainty

• 80% chance of rain today

• Expected time of arrival is 6 minutes

• Average score of a batsman is 35.3

Sensor noise is 0.3 units

• Ruling party will win 300 ± 30 seats

Example

- King K is an upcoming batter rising through the U-19 league
- King K has the following scores in 10 matches
 - 24, 43, 124, 22, 156, 98, 76, 51, 102, 89
- King K has the following strike rate in 10 matches
 - 93.2, 52.1, 201.5, 110.2, 90, 124.1, 99.1, 157.2, 165, 178
- Categorical and Numerical Data

Score	S/R	C or NC	Cat. Var.
24	93.2		
43	52.1		
124	201.5		
22	110.2		
156	90		
98	124.1		
76	99.1		
51	157.2		
102	165		
89	178		

Probability: Intuitive Frequentist

 When we are not sure of a particular outcome, i.e., we are uncertain, we need a mathematical way to quantify our uncertainty

What is the chance for King K to score a century?

•
$$P(A) = \frac{number\ of\ samples\ with\ scores \ge 100}{total\ number\ of\ samples}$$

 We call the above number as the probability of King K to score a century.

Probability

- **Experiment** An underlying process of interest
 - A cricket match where King K batted
- It will produce exactly one out of several possible elementary outcomes.
 - End of the game King K will have scored runs
- Set of all possible elementary outcomes is called a Sample Space
- **Event** of interest A combination of elementary outcomes
- Probability A number that quantifies the chance of some event happening

Throw of a fair dice

 What is the probability of landing a six on throwing a six-sided fair dice?

Probability: A Fundamental Property

- The uncertain outcome of every experiment has a fundamental property associated with it
- This fundamental property is the Probability
- Sample Space Formal Definition
 - Set of mutually exclusive and collectively exhaustive elementary outcomes
- Probability is defined for events in the sample space and is governed by 3 axioms
 - Non-negativity
 - Normalization
 - Additivity

Poll 1

- King K has the following S/R in 10 matches 93.2, 52.1, 201.5, 110.2, 90, 124.1, 99.1, 157.2, 165, 178
- 1. What is the probability of scoring a S/R >100?
 - a. 0.4
 - b. 0.6
 - c. 0.3
 - d. Can't be estimated
- 2. What is a sample space?
 - a. Collection of mutually exclusive elementary outcomes
 - b. Collection collectively exhaustive elementary outcomes
 - c. Both of the first two options together
 - d. Either of first two options

Random Variables

- Variable defining an uncertain quantity of interest Random Variable
- Random variable X Denoted by capital letter
- Random variable assigns a number to an event Mathematically it is a real valued function from the sample space to the number line
- X = Strike Rate
 - Straightforward
 - The mapping is the numerical value itself
- X = Century
 - How to convert to a number?
 - 1 if yes, 0 if no Label Encoding
 - Label, One Hot, Weight of Evidence Encoding, Binary etc

Price of a Pen – A non-cricket Example

- Let us think of Random Variables as variables denoting "items of interest" whose values are not certain
- Let us say the price of a pen is Rs 20. This is a fixed price. If we use X as the variable for the price of this pen, then it is a deterministic variable.
- Now, let us say we don't know exactly what the price of a pen at the shop is. It can take different values. If we use X as the variable for the price of this pen, then it is a random variable.
- If the price of a pen can be any number from the set 18, 20 or 22.3
 - X is a discrete random variable with three elements in the sample space.
- If the price of a pen can be any number between 18 and 22 including decimals
 - X is a continuous random variable.

Poll 2

- 1. X = 24 is a
 - a. Discrete RV
 - b. Continuous RV
 - c. Deterministic Variable
 - d. None of the above
- 2. $X = \{12,35.5,78.1\}$ is a
 - a. Discrete RV
 - b. Continuous RV
 - c. Deterministic Variable
 - d. None of the above
- 3. The length of left side obtained by breaking a stick is a
 - a. Discrete RV
 - b. Continuous RV
 - c. Deterministic Variable
 - d. None of the above

Frequency Counter: Histogram

Let us count King K's century scores

- Let us form bins of King K's strike rate and count their frequency
 - 0-50, 51-100, 101-150, 151-200, 201+
 - Data: 93.2, 52.1, 201.5, 110.2, 90, 124.1, 99.1, 157.2, 165, 178

Probability Mass Function

$$\bullet \ p_X(x) = P(\{X = x\})$$

- Probability of the Random Variable X, if X were to take the value x
- $p_X(x) \ge 0$; $\Sigma_{x \in \Omega} p_X(x) = 1$
- Frequency plot of century or not Example of PMF

- Frequency plot of binned strike rate Example of PMF
 - But wait, didn't we say that strike rate is a continuous variable?
 - Yes, note that we "discretized" the continuous variable by binning it

Functions

- Mapping from a domain to a range
- It is a relationship that can be parametrized and learnt

Increase Bins: What Happens?

- Sum of heights of each bin is 1
 - Probability axiom
- We will need uncountably infinite bins
- Each bin's height will go to zero!
- Not useful!!!
- What do we do? Move to Continuous Random Variable

PDF- PMF per unit length

Figure 3.2: Interpretation of the PDF $f_X(x)$ as "probability mass per unit length" around x. If δ is very small, the probability that X takes value in the interval $[x, x + \delta]$ is the shaded area in the figure, which is approximately equal to $f_X(x) \cdot \delta$.

The Mean

- The PMF (and PDF) contains the full information
- But we want one (or two numbers)
- Measures of central tendency The Mean helps us
- The Arithmetic Mean of numerical values is a which can be used to replace all samples, but still have the same number as the sum

$$\mu = \frac{1}{m} \sum_{j=1}^{m} x_j$$

Let us look at this sum from the frequency plot viewpoint

Expectation

- Consider a RV X with 5 data samples (1,1,4,4,4)
- What is the mean?

•
$$\mu = \frac{1}{5}(1+1+4+4+4)$$

•
$$\mu = \frac{1}{5}(2 \times 1 + 3 \times 4)$$

•
$$\mu = \frac{2}{5} \times 1 + \frac{3}{5} \times 4$$

• What is this?

•
$$\mu = p_X(X = 1) \times 1 + p_X(X = 4) \times 4$$

•
$$\mu = \sum_{x \in \Omega} x p_X(X = x)$$

Expectation of a RV (Mean)

•
$$E[X] = \sum_{x=X} x p_X(x)$$

•
$$E[X] = \int_{x \in X} x f_X(x) dx$$

- Interpretation
 - Center of gravity of the PMF/PDF
 - Average in large number of repetitions of the experiment
- This is one number that we can "expect" on an average for the variable.
- The actual realization of the RV can be different. But in large number of experiments, this is the average.

Mean, Median, Mode, Quartiles

- Mean is the "average" of a set of numbers
 - Usually we use arithmetic mean
- Median is the middle value of a set of numbers (50%ile)
- Mode is the value that occurs most often in a set of numbers
- Quartiles (25%ile, 50%ile, 75%ile)

Poll 3

- 1. Mean and Expectation are different quantities
 - True, False
- 2. Expectation is a random variable
 - True, False
- 3. Expectation is a probability
 - True, False
- 4. PMF is PDF per unit length
 - True, False

Function of a Random Variable

- If X is a random variable and g(.) is any general nonlinear function
- Y = g(X) is also a Random Variable
- The PMF of Y can be evaluated from the PMF of X
- $E[g(X)] = \sum_{x} g(x) p_X(x)$

Problem

- Find the PMF of $Y = (X E[X])^2$, mean and variance when
 - $p_X(x) = \frac{1}{9}$ if x is an integer in [-4,4]

Variance/Std. Dev

•
$$var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$Y = (X - E[X])^2$$

- The square root of variance is standard deviation
- Standard deviation has the same units as the random variable
- Standard deviation is easier to interpret

Reasoning about one RV when another related RV is known

- What is the likelihood that a person adds "Fried Rice" to their cart in Swiggy?
- A person adds "Gobi Manchurian" to their cart in Swiggy, what is the likelihood that they add "Fried Rice" next?
- How likely is a person Covid+?
- How likely is a person Covid+ if RAT returns –ve?
- How likely are you going to be shouted at by your boss?
- Your boss is in the office shaking his head. How likely are you going to be shouted at?

The Prediction Problem in Data Science

What is King K's strike rate when he plays against Sri Lanka?

King K's strike rate is uncertain and unknown

- We have historical information about X = King K's strike rate
- We also know Y = opposition team
- Now we are asked what is the distribution of X given Y = "Sri Lanka"
 - Actually Y = LabelEncoder("Sri Lanka")

Condition one RV on another

- Let X and Y be two RV from the same experiment
- The knowledge that Y = y happened may affect our belief about X

$$\bullet \ p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

- $\bullet \sum_{x} p_{X|Y}(x|y) = 1$
- Often easy to calculate
 - $p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$

Figure 2.13: Visualization of the conditional PMF $p_{X|Y}(x|y)$. For each y, we view the joint PMF along the slice Y = y and renormalize so that

$$\sum_{x} p_{X|Y}(x \mid y) = 1.$$

Joint of 2 RV

- Prob. Models may have several variables of interest
- All variables may be defined on the same sample space
- Their mutual interaction is interesting and useful
- $p_{X,Y}(x,y) = P(X = x, Y = y)$

Independence

- Consider two RVs X and Y
- $p_{X|Y}(x|y)$ tells us the improvement in $p_X(x)$ arising out of knowledge of Y=y
- What if Y does not give us any knowledge about X?
- $\bullet \ p_{X|Y}(x|y) = p_X(x)$
- By definition of conditional probability
- $\bullet \ p_{X,Y}(x,y) = p_X(x)p_Y(y)$
- This relation is the **<u>DEFINITION</u>** of independence

Understanding Independence

- If two events are governed by distinct and noninteracting physical processes, such events are usually independent
 - Event A: Prof. Deepak wearing a yellow shirt
 - Event B: ITC Stock trading in upper circuit
- A confusing common thought
 - Two disjoint events are independent
 - Fact: Disjoint events are NEVER independent.
 - The occurrence of one says complete information about the other
 - $P(A \cap B) = 0$ for disjoint, and never equal to P(A)P(B)

Covariance and Correlation

We want to see how changes in X are related to changes in Y

•
$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

• Here the expectation is over the joint $p_{X,Y}(x,y)$ $f_{X,Y}(x,y)$

•
$$cov(X,Y) = E[XY] - E[X]E[Y]$$

• cor(X,Y) = cov(X,Y)/std(X)std(Y)

Independent and Identically Distributed

- X_1, X_2 are called I.I.D if both of them have
 - identical distributions (e.g., both are normal with the same μ, σ)
 - Are independent
- Arises in several situations
 - To be seen next week: Binomial is a sum of IID Bernoulli

Entropy

- Entropy quantifies the randomness in a signal
- Take an example of weather forecast with 4 labels (sunny, sun+cloud, rain, rain+thunder)
- We can encode the above using 2 bits as $2^2 = 4$
 - 00 Sunny; 01 Sun+Cloud; 10 Rainy; 11 Rain+Thunder
- Now, let us say that with 90% probability, the forecast is sunny, then a more
 efficient encoding scheme is to reserve one bit for sunny, and then two
 more bits for the above encoding.
- 90% of the time, only 1 bit needs to be sent, and only 10% needs 3 bits.
- We send on average 0.9*1+0.1*3=1.2 bits, which is lower than 2 bits needed early
- This happened because we have an assumption about the distribution of the information.
- Defined as $H[X] = -\sum_{i=1}^{n} p_X(x_i) \log_2 p_X(x_i) \ x_i \ are \ a \ partition$

Common Distributions

Deepak Subramani
Assistant Professor
Dept. of Computational and Data Science
Indian Institute of Science Bengaluru

Bernoulli Random Variable

- Each trial has only two possible outcomes (we call success or failure)
- The probability of success is the same in each trial
- Each trial is independent of the previous trials
- X = Outcome is 1 (success, +ve class, H etc)

•
$$p_X(x) = \begin{cases} p, if \ x = 1 \\ 1 - p, otherwise \end{cases}$$

• What is mean and variance?

Binomial Random Variable

- X = Number of success in n trials of a Bernoulli RV
- How many times will I pass n quizzes?
- Example: X = Number of Heads in 4 trials
- What is $p_X(2)$?

•
$$p_X(X = k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k}, & \text{if } k = 0,1,2,... \\ 0, & \text{otherwise} \end{cases}$$

Normal Random Variable

 A Continuous RV is Normal (or Gaussian) if it has the PDF of the form

•
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{(x-\mu)^2}{2\sigma^2}\right]$$
, if $-\infty < x < \infty$

- Most used PDF
- Arises in many contexts
 - Score of students in a large class
 - Height of people in a country
- Many default assumptions

Example

- Weight distribution of college students is normally distributed with mean = 50 kg and standard deviation = 10 kg
- What is the probability of finding a student with weight between 55 to 65?
- The z-transform: $z = \frac{x-\mu}{\sigma}$

$$z_1 = \frac{55 - 50}{10} = 0.5$$

$$z_2 = \frac{65 - 50}{10} = 1.5$$

$$P(55 \le x \le 65) = P(z_1 \le z \le z_2)$$

$$= F(z_2) - F(z_1) = 0.933 - 0.691 = 0.242$$

z	-2.5	-2.4	-2.3	-2.2	-2.1	-2.0	-1.9	-1.8	-1.7	-1.6
F(z)	0.006	0.008	0.011	0.014	0.018	0.023	0.029	0.036	0.045	0.055
Z	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0	-0.9	-0.8	-0.7	-0.6
F(z)	0.067	0.081	0.097	0.115	0.136	0.159	0.184	0.212	0.242	0.274
Z	-0.5	-0.4	-0.3	-0.2	- 0.1	0.0	0.1	0.2	0.3	0.4
F(z)	0.309	0.345	0.382	0.421	0.460	0.500	0.540	0.579	0.618	0.655
Z	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
F(z)	0.691	0.726	0.758	0.788	0.816	0.841	0.864	0.885	0.903	0.919
Z	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4
F(z)	0.933	0.945	0.955	0.964	0.971	0.977	0.982	0.986	0.989	0.992
Z	2.5									
F(z)	0.994									

Intuition for 300 ± 30

- Let us say Deepika Kumari hits the 10 cm radius bull's eye 95% of the time
- Now let us sit behind the target board
 - Bulls eye is not centered on the board
- If the arrow hit at green dot
- Then we can draw a circle of radius 10 cm around it
- This circle will contain the bull's eye 95% of the time
- In other words:
 - draw a 10 cm circle for every shot of Deepika
 - 95% of those will contain the bull's eye!

Green – Different shots Orange – Bulls Eye