```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        import warnings
        warnings.filterwarnings("ignore")
In [3]: df=pd.read_csv("Heart Disease data.csv")
In [4]: | df.head()
Out[4]:
           age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                     0
                                212
                                                   168
                                                           0
                                                                  1.0
                                                                         2
                                                                            2
                                                                                 3
                                                                                       0
         0
            52
                  1
                            125
                                      0
                                203
                                              0
                                                                            0
                                                                                 3
         1
             53
                  1
                     0
                            140
                                      1
                                                   155
                                                           1
                                                                  3.1
                                                                         0
                                                                                       0
             70
                  1
                     0
                           145
                                174
                                      0
                                              1
                                                   125
                                                           1
                                                                  2.6
                                                                         0
                                                                           0
                                                                                 3
                                                                                       0
             61
                           148
                                203
                                      0
                                              1
                                                   161
                                                           0
                                                                  0.0
                                                                         2
                                                                           1
                                                                                 3
                                                                                       0
             62
                           138
                                294
                                                   106
                                                                  1.9
                                                                         1 3
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1025 entries, 0 to 1024
        Data columns (total 14 columns):
                        Non-Null Count Dtype
             Column
         0
                        1025 non-null
                                        int64
             age
         1
             sex
                        1025 non-null
                                        int64
         2
                        1025 non-null
                                        int64
             ср
         3
             trestbps 1025 non-null
                                        int64
         4
             chol
                        1025 non-null
                                        int64
         5
             fbs
                        1025 non-null
                                        int64
         6
             restecg
                       1025 non-null
                                        int64
         7
             thalach
                       1025 non-null
                                        int64
         8
                        1025 non-null
                                        int64
             exang
```

1025 non-null

1025 non-null

1025 non-null

1025 non-null

1025 non-null

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

9

oldpeak

10 slope

13 target

11 ca12 thal

float64

int64

int64

int64

int64

```
In [6]: df.isnull().sum()
Out[6]: age
                   0
       sex
                   0
       ср
       trestbps
                   0
       chol
                   0
       fbs
                   0
       restecg
                   0
       thalach
                   0
       exang
                   0
       oldpeak
                   0
       slope
       ca
       thal
       target
                   0
       dtype: int64
```

In [7]: df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max	
age	1025.0	54.434146	9.072290	29.0	48.0	56.0	61.0	77.0	
sex	1025.0	0.695610	0.460373	0.0	0.0	1.0	1.0	1.0	
ср	1025.0	0.942439	1.029641	0.0	0.0	1.0	2.0	3.0	
trestbps	1025.0	131.611707	17.516718	94.0	120.0	130.0	140.0	200.0	
chol	1025.0	246.000000	51.592510	126.0	211.0	240.0	275.0	564.0	
fbs	1025.0	0.149268	0.356527	0.0	0.0	0.0	0.0	1.0	
restecg	1025.0	0.529756	0.527878	0.0	0.0	1.0	1.0	2.0	
thalach	1025.0	149.114146	23.005724	71.0	132.0	152.0	166.0	202.0	
exang	1025.0	0.336585	0.472772	0.0	0.0	0.0	1.0	1.0	
oldpeak	1025.0	1.071512	1.175053	0.0	0.0	0.8	1.8	6.2	
slope	1025.0	1.385366	0.617755	0.0	1.0	1.0	2.0	2.0	
ca	1025.0	0.754146	1.030798	0.0	0.0	0.0	1.0	4.0	
thal	1025.0	2.323902	0.620660	0.0	2.0	2.0	3.0	3.0	
target	1025.0	0.513171	0.500070	0.0	0.0	1.0	1.0	1.0	

```
In [8]: df.columns
```

```
dtype='object')
```

In [9]: sns.pairplot(df,hue='target')

Out[9]: <seaborn.axisgrid.PairGrid at 0x1e62053f290>


```
In [10]: sns.countplot(x='target', data = df)
```

Out[10]: <Axes: xlabel='target', ylabel='count'>


```
In [11]: df['sex'].value_counts().plot.pie(autopct='%.2f')
```

Out[11]: <Axes: ylabel='count'>

In [12]: sns.barplot(y='age',x='cp',data=df,hue='target')

Out[12]: <Axes: xlabel='cp', ylabel='age'>

In [13]: sns.distplot(df['age'], kde=True)

Out[13]: <Axes: xlabel='age', ylabel='Density'>


```
In [14]: corr=df.corr()
   plt.figure(figsize= (15,15))
   sns.heatmap(corr, linewidth=1,annot=True,linecolor='white')
```

Out[14]: <Axes: >


```
In [15]: X = df.drop('target', axis=1)
y = df['target']
```

```
In [16]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

```
In [17]: | from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X train = scaler.fit transform(X train)
         X test = scaler.fit transform(X test)
In [18]: | from sklearn.linear_model import LogisticRegression
In [22]: lr=LogisticRegression()
         model_lr=lr.fit(X_train, y_train)
         pred_lr = model_lr.predict(X_test)
In [26]: from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
         cm_lr=confusion_matrix(y_test,pred_lr)
         print("Confusion Matrix :", cm_lr)
         accuracy_lr = accuracy_score(y_test, pred_lr)
         print("Accuracy :", accuracy_lr)
         precision_lr = precision_score(y_test, pred_lr)
         print("Precision :", precision_lr)
         recall_lr = recall_score(y_test, pred_lr)
         print("Recall :", recall_lr)
         F1_score_lr = f1_score(y_test, pred_lr)
         print("F1-score :", F1_score_lr)
         Confusion Matrix : [[112 47]
          [ 16 133]]
         Accuracy : 0.7954545454545454
         Precision: 0.7388888888888889
                : 0.8926174496644296
         F1-score : 0.8085106382978723
In [27]: from sklearn.ensemble import RandomForestClassifier
In [29]: rf = RandomForestClassifier(n_estimators=300, random_state=42, max_depth=5)
         rf.fit(X_train, y_train)
         pred rf = rf.predict(X test)
In [33]: cm_rf=confusion_matrix(y_test,pred_rf)
         print("Confusion Matrix :", cm_rf)
         accuracy_rf = accuracy_score(y_test, pred_rf)
         print("Accuracy
                          :", accuracy_rf)
         precision rf = precision score(y test, pred rf)
         print("Precision :", precision_rf)
         recall rf = recall score(y test, pred rf)
                        :", recall rf)
         print("Recall
         F1 score rf = f1 score(y test, pred rf)
         print("F1-score :", F1_score_rf)
         Confusion Matrix : [[128 31]
          [ 8 141]]
         Accuracy : 0.8733766233766234
         Precision: 0.8197674418604651
                  : 0.9463087248322147
         F1-score : 0.8785046728971962
In [34]: from sklearn.svm import SVC
In [36]: svc = SVC(C=2)
         svc.fit(X_train, y_train)
         pred svm = svc.predict(X test)
```

```
In [38]: | cm_svm=confusion_matrix(y_test,pred_svm)
         print("Confusion Matrix :", cm_svm)
         accuracy svm = accuracy score(y test, pred svm)
         print("Accuracy :", accuracy_svm)
         precision svm = precision score(y test, pred svm)
         print("Precision :", precision_svm)
         recall_svm = recall_score(y_test, pred_svm)
         print("Recall :", recall_svm)
         F1_score_svm = f1_score(y_test, pred_svm)
         print("F1-score :", F1_score_svm)
         Confusion Matrix : [[142 17]
          [ 7 142]]
         Accuracy : 0.922077922077922
         Precision: 0.8930817610062893
                  : 0.9530201342281879
         Recall
         F1-score : 0.922077922077922
In [39]: from sklearn.neighbors import KNeighborsClassifier
In [41]: knn = KNeighborsClassifier(n neighbors=5)
         knn.fit(X train, y train)
         pred knn = knn.predict(X test)
In [43]: | cm_knn=confusion_matrix(y_test,pred_knn)
         print("Confusion Matrix :", cm_knn)
         accuracy_knn = accuracy_score(y_test, pred_knn)
         print("Accuracy :", accuracy_knn)
         precision_knn = precision_score(y_test, pred_knn)
         print("Precision :", precision_knn)
         recall_knn = recall_score(y_test, pred_knn)
         print("Recall :", recall_knn)
         F1_score_knn= f1_score(y_test, pred_knn)
         print("F1-score :", F1_score_knn)
         Confusion Matrix : [[131 28]
         [ 14 135]]
         Accuracy : 0.8636363636363636
         Precision: 0.8282208588957055
         Recall : 0.9060402684563759
         F1-score : 0.8653846153846153
In [ ]:
In [ ]:
In [ ]:
```