BỘ GIÁO DỤC VÀ ĐÀO TẠO -----ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỀN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2005

Môn: **TOÁN**, **Khối A**

(Đáp án – thang điểm gồm 4 trang)

Câu	Ý	Nội dung	Điểm
I			2,0
	I.1	$m = \frac{1}{4} \Rightarrow y = \frac{1}{4}x + \frac{1}{x}.$ a) TXD: $\mathbb{R}\setminus\{0\}$. b) Sự biến thiên: $y' = \frac{1}{4} - \frac{1}{x^2} = \frac{x^2 - 4}{4x^2}$, $y' = 0 \Leftrightarrow x = -2, x = 2$.	0,25
		$y_{\text{CD}} = y\left(-2\right) = -1, y_{\text{CT}} = y\left(2\right) = 1.$ Đường thẳng $x = 0$ là tiệm cận đứng. Đường thẳng $y = \frac{1}{4}x$ là tiệm cận xiên.	0,25
		c) Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
		d) Đồ thị	0,25

	I.2		1,0
		$y' = m - \frac{1}{x^2}$, $y' = 0$ có nghiệm khi và chỉ khi $m > 0$.	0,25
		Nếu m > 0 thì y' = 0 \Leftrightarrow $x_1 = -\frac{1}{\sqrt{m}}$, $x_2 = \frac{1}{\sqrt{m}}$.	
		Xét dấu y'	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25
		y' + 0 - \parallel - 0 + Hàm số luôn có cực trị với mọi m > 0.	
		Điểm cực tiểu của (C_m) là $M\left(\frac{1}{\sqrt{m}}; 2\sqrt{m}\right)$.	
		Tiệm cận xiên (d): $y = mx \Leftrightarrow mx - y = 0$.	0,25
		$d(M,d) = \frac{\left \sqrt{m} - 2\sqrt{m} \right }{\sqrt{m^2 + 1}} = \frac{\sqrt{m}}{\sqrt{m^2 + 1}}.$	
		$d(M;d) = \frac{1}{\sqrt{2}} \Leftrightarrow \frac{\sqrt{m}}{\sqrt{m^2 + 1}} = \frac{1}{\sqrt{2}} \Leftrightarrow m^2 - 2m + 1 = 0 \Leftrightarrow m = 1.$	0,25
		Kết luận: $m = 1$.	
II.			2,0
	II.1		1,0
		Bất phương trình: $\sqrt{5x-1} - \sqrt{x-1} > \sqrt{2x-4}$. ĐK: $\begin{cases} 5x-1 \ge 0 \\ x-1 \ge 0 \end{cases} \iff x \ge 2.$ $2x-4 \ge 0$	0,25
		Khi đó bất phương trình đã cho tương đương với	
		$\sqrt{5x-1} > \sqrt{2x-4} + \sqrt{x-1} \Leftrightarrow 5x-1 > 2x-4+x-1+2\sqrt{(2x-4)(x-1)}$	0,25
		$\Leftrightarrow x + 2 > \sqrt{(2x - 4)(x - 1)} \Leftrightarrow x^2 + 4x + 4 > 2x^2 - 6x + 4$	0,25
		$\Leftrightarrow x^2 - 10x < 0 \Leftrightarrow 0 < x < 10.$ Kết hợp với điều kiện ta có : $2 \le x < 10$ là nghiệm của bất phương trình đã cho.	0,25
	II.2	Ret hγρ voi theu κίψη τα co : 2 ± Λ × 10 τα nghiệm của bắt phương tinh tá cho.	1,0
		Phương trình đã cho tương đương với $ (1 + \cos 6x) \cos 2x - (1 + \cos 2x) = 0 $ $ \Leftrightarrow \cos 6x \cos 2x - 1 = 0 $	0,25
		$\Leftrightarrow \cos \delta x \cos 2x - 1 = 0$ $\Leftrightarrow \cos 8x + \cos 4x - 2 = 0$	
		$\Leftrightarrow 2\cos^2 4x + \cos 4x - 3 = 0$	0,25
		$\Leftrightarrow \begin{bmatrix} \cos 4x = 1 \\ \cos 4x = -\frac{3}{2} \text{ (loại)}. \end{bmatrix}$ $\text{Vậy } \cos 4x = 1 \Leftrightarrow x = k\frac{\pi}{2} \text{ (k \in \mathbb{Z})}.$	0,5

III.			3,0
	III.1		1,0
		$Vi A \in d_1 \Rightarrow A(t;t).$	
		Vì A và C đối xứng nhau qua BD và $B,D \in Ox$ nên $C(t;-t)$.	0,25
		Vì $C \in d_2$ nên $2t-t-1=0 \Leftrightarrow t=1$. Vậy $A(1;1)$, $C(1;-1)$.	0,25
		Trung điểm của AC là $I(1;0)$. Vì I là tâm của hình vuông nên	0,25
		$\begin{cases} IB = IA = 1 \\ ID = IA = 1 \end{cases}$	-, -
		$\bigcup ID = IA = 1$	
		$\begin{cases} B \in Ox \\ D \in Ox \end{cases} \Leftrightarrow \begin{cases} B(b;0) \\ D(d;0) \end{cases} \Rightarrow \begin{cases} b-1 =1 \\ d-1 =1 \end{cases} \Leftrightarrow \begin{cases} b=0, b=2 \\ d=0, d=2 \end{cases}$	
		Suy ra, $B(0;0)$ và $D(2;0)$ hoặc $B(2;0)$ và $D(0;0)$.	0.25
		Vậy bốn đỉnh của hình vuông là	0,25
		A(1;1), B(0;0), C(1;-1), D(2;0),	
		hoặc $A(1;1), B(2;0), C(1;-1), D(0;0).$	
	III.2a		1,0
	111.24		1,0
		Phương trình của tham số của d: $\begin{cases} x = 1 - t \\ y = -3 + 2t \end{cases}$	0,25
		(Z-J) t.	
		$I \in d \Rightarrow I(1-t; -3+2t; 3+t), \ d(I,(P)) = \frac{ -2t+2 }{3}.$	0,25
		$d(I,(P)) = 2 \Leftrightarrow 1-t = 3 \Leftrightarrow \begin{bmatrix} t = 4 \\ t = -2. \end{bmatrix}$	0,25
		Vậy có hai điểm $I_1(-3;5;7)$, $I_2(3;-7;1)$.	0,25
	III.2b		1,0
		$\begin{array}{l} \text{Vi } A \in d \text{ n\normalfon} \ A \left(1-t; -3+2t; 3+t\right). \\ \text{Ta c\normalfon} \ A \in \left(P\right) \Leftrightarrow \ 2 \left(1-t\right) + \left(-3+2t\right) - 2 \left(3+t\right) + 9 = 0 \Leftrightarrow t = 1 . \\ \text{V\normalfon} \ A \left(0; -1; 4\right). \end{array}$	0,25
		Mặt phẳng (P) có vectơ pháp tuyến $\vec{n} = (2;1;-2)$.	
		Đường thẳng d có vectơ chỉ phương $\vec{u} = (-1, 2, 1)$.	0,5
		Vì $\Delta \subset (P)$ và $\Delta \perp d$ nên Δ có vecto chỉ phương $\overrightarrow{u}_{\Delta} = [\overrightarrow{n}, \overrightarrow{u}] = (5;0;5)$.	
		Phương trình tham số của Δ : $\begin{cases} x = t \\ y = -1 \\ z = 4 + t. \end{cases}$	0,25

IV			2,0
	IV.1		1,0
		$I = \int_{0}^{\frac{\pi}{2}} \frac{(2\cos x + 1)\sin x}{\sqrt{1 + 3\cos x}} dx.$	0,25
			0,25
		$x = 0 \Rightarrow t = 2, \ x = \frac{\pi}{2} \Rightarrow t = 1.$	
		$I = \int_{2}^{1} \left(2 \frac{t^{2} - 1}{3} + 1 \right) \left(-\frac{2}{3} \right) dt = \frac{2}{9} \int_{1}^{2} \left(2t^{2} + 1 \right) dt.$	0,25
		$\left = \frac{2}{9} \left(\frac{2t^3}{3} + t \right) \right ^2 = \frac{2}{9} \left[\left(\frac{16}{3} + 2 \right) - \left(\frac{2}{3} + 1 \right) \right] = \frac{34}{27}.$	0,25
	IV.2	711 - 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1,0
		$\text{Ta có } \left(1+x\right)^{2n+1} = C_{2n+1}^0 + C_{2n+1}^1 x + C_{2n+1}^2 x^2 + C_{2n+1}^3 x^3 + \ldots + C_{2n+1}^{2n+1} x^{2n+1} \ \forall x \in \mathbb{R}.$	1,0 0,25
		$\begin{array}{l} \text{ \mathbb{D}, and hair v \acute{e} ta c \'o} \\ \big(2n+1\big)\big(1+x\big)^{2n} = C_{2n+1}^1 + 2C_{2n+1}^2x + 3C_{2n+1}^3x^2 + + \big(2n+1\big)C_{2n+1}^{2n+1}x^{2n} \forall x \in \mathbb{R}. \end{array}$	0,25
		Thay $x = -2$ ta có: $C_{2n+1}^1 - 2.2C_{2n+1}^2 + 3.2^2C_{2n+1}^3 - 4.2^3C_{2n+1}^4 + + (2n+1).2^{2n}C_{2n+1}^{2n+1} = 2n+1.$	0,25
		Theo giả thiết ta có $2n + 1 = 2005 \Rightarrow n = 1002$.	0,25
*7			1.0
V		1 1 1 1 1 1	1,0
		Với $a, b > 0$ ta có : $4ab \le (a+b)^2 \Leftrightarrow \frac{1}{a+b} \le \frac{a+b}{4ab} \Leftrightarrow \frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b}\right)$.	0,25
		$\begin{split} & \text{Dấu "=" xảy ra khi và chỉ khi a = b .} \\ & \text{Åp dụng kết quả trên ta có:} \\ & \frac{1}{2x+y+z} \leq \frac{1}{4} \left(\frac{1}{2x} + \frac{1}{y+z} \right) \leq \frac{1}{4} \left[\frac{1}{2x} + \frac{1}{4} \left(\frac{1}{y} + \frac{1}{z} \right) \right] = \frac{1}{8} \left(\frac{1}{x} + \frac{1}{2y} + \frac{1}{2z} \right) \text{(1).} \\ & \text{Turong tự} \\ & \frac{1}{x+2y+z} \leq \frac{1}{4} \left(\frac{1}{2y} + \frac{1}{x+z} \right) \leq \frac{1}{4} \left[\frac{1}{2y} + \frac{1}{4} \left(\frac{1}{x} + \frac{1}{z} \right) \right] = \frac{1}{8} \left(\frac{1}{y} + \frac{1}{2z} + \frac{1}{2x} \right) \text{(2).} \\ & \frac{1}{x+y+2z} \leq \frac{1}{4} \left(\frac{1}{2z} + \frac{1}{x+y} \right) \leq \frac{1}{4} \left[\frac{1}{2z} + \frac{1}{4} \left(\frac{1}{x} + \frac{1}{y} \right) \right] = \frac{1}{8} \left(\frac{1}{z} + \frac{1}{2x} + \frac{1}{2y} \right) \text{(3).} \end{split}$	0,5
		Vậy $\frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le \frac{1}{4} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 1.$ Ta thấy trong các bất đẳng thức (1), (2), (3) thì dấu "=" xảy ra khi và chỉ khi $x = y = z$. Vậy đẳng thức xảy ra khi và chỉ khi $x = y = z = \frac{3}{4}$.	0,25

------Hết------H