

Outline

- Image-to-image translation
- Other types of translation

Available from: https://twitter.com/citnaj/status/1124904251128406016

Available from: https://github.com/NVIDIA/pix2pixHD

Available from: https://youtu.be/3RYNThid23g

Paired Image-to-Image Translation

Labels to facade

Black-and-white to color

Paired Image-to-Image Translation

Day to night

Edges to photo

Paired Image-to-Image Translation

Clothes and pose to pose with clothes

Available from: https://arxiv.org/abs/1705.09368

Other Translations

"This bird is red with white and has a very short beak"

Other Translations

Summary

- Image-to-image translation transforms images into different styles
- GANs' realistic generation abilities are well-suited to image-to-image translation tasks
- Other types of translation include text-to-image or image-to-video

deeplearning.ai

Pix2Pix Overview

Outline

- Overview of Pix2Pix
- Comparison with conditional GAN
- Upgraded generator and discriminator architectures

Pix2Pix for Paired Image-to-Image Translation

Image-to-Image ----> Pix-to-Pix ----> Pix2Pix

Pix2Pix Generator

Pix2Pix Generator

Pix2Pix Generator

Pix2Pix Discriminator

Pix2Pix Upgrades

Based on: https://arxiv.org/abs/1611.07004

Pix2Pix Upgrades

(Left) Based on: https://arxiv.org/abs/1611.07004 (Right) Based on: https://arxiv.org/abs/1803.07422

Pix2Pix Upgrades

(Left) Based on: https://arxiv.org/abs/1611.07004 (Right) Based on: https://arxiv.org/abs/1803.07422

Goal is still to produce realistic outputs!

Summary

- Inputs and outputs of Pix2Pix are similar to a conditional GAN
 - Take in the original image, instead of the class vector
 - No explicit noise as input
- Generator and discriminator models are upgraded

deeplearning.ai

Pix2Pix: PatchGAN

Outline

- PatchGAN discriminator architecture
- Matrix output vs. single output

Summary

- PatchGAN discriminator outputs a matrix of values, each between 0 and 1
- Label matrices:
 - 0's = fake
 - o 1's = real

deeplearning.ai

Pix2Pix: U-Net

Outline

- Net framework
 - Encoder-Decoder
- U-Skip connections
- Pix2Pix generator

Image Segmentation

Image Segmentation

Available from: https://developer.nvidia.com/blog/image-segmentation-using-digits-5/

Available from: https://developer.nvidia.com/blog/image-segmentation-using-digits-5/

U-Net Framework: Encoder-Decoder

U-Net Framework: Skip Connections

U-Net Framework: Skip Connections

Forward pass

Skip connections allow information flow to the decoder

U-Net Framework: Skip Connections

Backward pass

Skip connections improve gradient flow to encoder

Pix2Pix Decoder

Pix2Pix Decoder

Pix2Pix U-Net

Pix2Pix U-Net

Pix2Pix U-Net Skip connections concatenate encoder to decoder blocks at the same resolutions **Block Block** Block **Block Block** Block Block Block **Block** Block Block Block **Block** Block Block Block

Summary

- Pix2Pix's generator is a U-Net
- U-Net is an encoder-decoder, with same-size inputs and outputs
- U-Net uses skip connections
 - Skip connections help the decoder learn details from the encoder directly
 - Skip connections the encoder learn from more gradients flowing from decoder

deeplearning.ai

Pix2Pix: Pixel Distance Loss Term

Outline

- Regularization and additional loss term
- Encourage pixel distance between generated and real outputs
- Additional loss term for Pix2Pix generator

Additional Loss Term

$$\min_{q} \max_{c}$$
 Adversarial Loss + λ * Other loss term

Additional Loss Term

$$\min_{q} \max_{c}$$
 Adversarial Loss + λ * Pixel loss term

Pixel Distance Loss Term

Pix2Pix Generator Loss

BCE Loss +
$$\lambda \sum_{i=1}^{n}$$
 $i=1$

Pix2Pix Generator Loss

BCE Loss +
$$\lambda \sum_{i=1}^{n}$$
 | generated_output - real_output

Summary

- Pix2Pix adds a Pixel Distance Loss term to the generator loss function
- This loss term calculates the difference between the fake and the real target outputs
- Softly encourages the generator with this additional supervision
 - The target output labels are the supervision
 - Generator essentially "sees" these labels

deeplearning.ai

Pix2Pix: Putting It All Together

Outline

- Put the Pix2Pix architecture together!
 - U-Net generator
 - Pixel Distance Loss term
 - PatchGAN discriminator

Real input

Pix2Pix: Discriminator Loss

Pix2Pix: Discriminator Loss

Pix2Pix: Generator Loss

Summary

- U-Net generator: image \rightarrow image
- PatchGAN discriminator
 - Inputs input image and paired output (either real target or fake)
 - Outputs classification matrix
- Generator loss has a regularization term

Pix2Pix Advancements

Outline

- Improvements and extensions of Pix2Pix for paired image-to-image translation
 - Higher resolution images
 - Image editing

Pix2PixHD

Available from: https://github.com/NVIDIA/pix2pixHD

GauGAN

Available from: https://blogs.nvidia.com/blog/2019/03/18/gaugan-photorealistic-landscapes-nvidia-research/

Summary

- Pix2PixHD and GauGAN are successors of Pix2Pix
- They are designed for higher resolution images
- They highlight opportunities for image editing using paired image-to-image translation
 - Pix2Pix can do this too, of course!

