MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

SECONDAIRE

$1^{\grave{e}re}C$ MATHEMATIQUES

CÔTE D'IVOIRE - ÉCOLE NUMÉRIOUE

Durée: 12 heures

Code:

Compétence 3 Traiter une situation relative à la géométrie du plan,

à la géométrie de l'espace et aux transformations du

plan

Thème 1 Géométrie du plan

Leçon 8 : COMPOSEES DE TRANSFORMATIONS

A. SITUATION D'APPRENTISSAGE

Des élèves de 1^{ère}C d'un lycée revenus d'un jeu de cracks sur les mathématiques proposent à leurs camarades l'exercice suivant qu'ils n'ont pu résoudre:

Sur la figure ci- contre, (D) et (D') sont deux droites sécantes en O.

Il existe une l'homothétie h_A de centre A qui transforme O en B et il existe une l'homothétie h_O de centre O qui transforme F en E.

Les points A, O, B, E et F sont tels que : $\frac{AB}{AO} \neq \frac{OF}{OE}$

Donne un programme de construction du centre de l'homothétie $h_A \circ h_O$.

Ensemble les élèves de la classe veulent relever le défi. Pour cela ils décident de faire des recherches sur les composées d'homothéties.

B. Contenu du cours

I- COMPOSEE DE DEUX TRANSLATIONS

1) Propriété caractéristique de la translation

Propriété

Soit f une application du plan dans le plan.

f est une translation si et seulement si, pour tous points M et N d'images respectives M' et N', on a :

$$\overrightarrow{MN} = \overrightarrow{M'N'}$$

Exercice de fixation

ABCD est un parallélogramme et f est une application du plan dans lui-même.

Dans chacun des cas suivants, dis si f est une translation

1)
$$f(A) = C$$
 et $f(D) = B$

2)
$$f(A) = B$$
 et $f(D) = C$

3)
$$f(C) = B$$
 et $f(D) = A$

Corrigé

Comme ABCD est un parallélogramme alors :

1) On a $\overrightarrow{AD} \neq \overrightarrow{CB}$ donc f n'est pas une translation

2) On a $\overrightarrow{AD} = \overrightarrow{BC}$ donc f est une translation

3) On a $\overrightarrow{CD} = \overrightarrow{BA}$ donc f est une translation

2) Composée de deux translations

Propriété

Soit \vec{u} et \vec{v} deux vecteurs.

La composée $t_{\vec{u}} \circ t_{\vec{v}}$ des translations de vecteurs respectifs \vec{u} et \vec{v} est la translation de vecteur $\vec{u} + \vec{v}$.

On a :
$$t_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}$$

Exercice de fixation

Le plan est muni d'un repère orthonormé. On considère les vecteurs $\vec{u}(-5;2)$ et $\vec{v}(2;1)$. Détermine la nature et les éléments caractéristiques de la composée $t_{\vec{u}} \circ t_{\vec{v}}$

Corrigé

$$t_{\vec{u}} \circ t_{\vec{v}}$$
 est une translation de vecteur $\vec{u} + \vec{v} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$

Remarques

- 1) On a : $t_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{v}} \circ t_{\vec{u}}$
- 2) Toute translation est une transformation (une bijection) du plan ; La transformation réciproque de la translation $t_{\vec{u}}$ est la translation $t_{-\vec{u}}$

3) Expression analytique d'une translation

Propriété

Le plan est muni d'un repère (O, \vec{i}, \vec{j}) .

Soit $t_{\vec{u}}$ la translation de vecteur $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$, M(x; y) et M'(x'; y') deux points du plan. On a :

$$t_{\vec{u}}(M) = M' \Leftrightarrow \begin{cases} x' = x + a \\ y' = y + b \end{cases}$$

On dit que l'expression analytique de la translation de vecteur $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ est : $\begin{cases} x' = x + a \\ y' = y + b \end{cases}$

Exercice de fixation

Soit A(-1;4) un point du plan et $\overrightarrow{u}\begin{pmatrix} 2\\ 3 \end{pmatrix}$ un vecteur.

Détermine les coordonnées du point A', image de A par la translation de vecteur \vec{u} .

Corrigé

L'expression analytique de la translation de vecteur $\overrightarrow{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ est $\begin{cases} x' = x + 2 \\ y' = y + 3 \end{cases}$ donc :

$$t_{\overline{u}}(A) = A' \Leftrightarrow \begin{cases} x_{A'} = x_A + 2 \\ y_{A'} = y_A + 3 \end{cases}.$$

On en déduit que : A'(1;7)

II- COMPOSEE DE DEUX ROTATIONS

1) Composée de deux rotations de même centre

Propriété

Soient $r(0, \alpha)$ et $r'(0, \theta)$ deux rotations de même centre O et d'angles respectifs α et θ . La composée $r(0, \alpha) \circ r'(0, \theta)$ est la rotation $R(0, \alpha + \theta)$.

Exercice de fixation

I est un point du plan, r est la rotation de centre I et d'angle $\frac{\pi}{2}$; r' est la rotation de centre I et d'angle $-\frac{\pi}{4}$.

Détermine la nature et les éléments caractéristiques de la composée : $r \circ r'$.

Corrigé

ror' est la rotation de centre I et d'angle $\frac{\pi}{2} + \left(-\frac{\pi}{4}\right) = \frac{\pi}{4}$.

Remarques

- 1) Etant donné deux rotations r et r' de même centre, on a : $r \circ r' = r' \circ r$.
- 2) Toute rotation est une transformation (une bijection) du plan. La transformation réciproque de la rotation $r(0, \alpha)$ est la rotation $r(0, -\alpha)$.

2) Composée de deux rotations de centres différents.

Propriété

Soient r et r' deux rotations de centres distincts et d'angles respectifs α et θ .

Si $\hat{\alpha} + \hat{\theta} = \hat{0}$ alors la composée $r \circ r'$ est une translation.

Si $\hat{\alpha} + \hat{\theta} \neq \hat{0}$ alors la composée $r \circ r'$ est **une rotation** d'angle orienté $\alpha + \theta$.

Exercice de fixation

A et B sont deux points distincts du plan. r est la rotation de centre A et d'angle α , r' est la rotation de centre B et d'angle θ

Détermine la nature de $r \circ r'$ dans les cas suivants :

a)
$$\alpha = \frac{2\pi}{3}$$
 et $\theta = \frac{4\pi}{3}$ b) $\alpha = \frac{\pi}{3}$ et $\theta = -\frac{\pi}{2}$

b)
$$\alpha = \frac{\pi}{3}$$
 et $\theta = -\frac{\pi}{2}$

Corrigé

a) On a
$$(\frac{2\pi}{3}) + \frac{4\pi}{3} = 2\pi = 0$$
: donc $r \circ r'$ est une translation

b) On a
$$(\frac{\hat{\pi}}{3}) + \frac{\widehat{-\pi}}{2} = -\frac{\widehat{\pi}}{6} \neq \hat{0}$$
: or donc $r \circ r'$ est une rotation.

Remarques

1) Si $r(A, \alpha) \circ r(B, \theta)$ est une translation alors son vecteur est $\overrightarrow{BB'}$ où B' est l'image de B par la rotation $r(A, \alpha)$.

2) Si $r(A, \alpha) \circ r(B, \theta)$ est une rotation alors :

- on construit le point B' image du point B par la rotation $r(A, \alpha)$

- on marque un point E et on construit son image E' par $r(A, \alpha) \circ r(B, \theta)$

- Si les segments [BB'] et [EE'] n'ont pas la même médiatrice alors le point d'intersection de leurs médiatrices est le centre de $r(A, \alpha) \circ r(B, \theta)$ sinon le centre est le point d'intersection des droites (EB) et (E'B').

Exercice de fixation

ABCD est un carré de sens direct. On considère les rotations suivantes :

$$r_A = r(A, \frac{\pi}{2}), \quad r_B = r(B, -\frac{\pi}{2}) \quad et \quad r_D = r(D, \pi)$$

Détermine la nature et les éléments caractéristiques de :

a)
$$r_B \circ r_A$$

b)
$$r_D \circ r_A$$

a) On a
$$(\frac{\hat{\pi}}{2}) + \frac{\hat{\pi}}{2} = \hat{0}$$
 donc $r_B \circ r_A$ est une translation

$$r_{A}(A)=A$$
 et $r_{B}(A)=C$ donc $r_{B}\circ r_{A}(A)=C$ d'où $r_{B}\circ r_{A}=t_{\overrightarrow{AC}}$

b) On a:
$$\left(\frac{\hat{\pi}}{2}\right) + \hat{\pi} = \frac{3\hat{\pi}}{2} = -\frac{\hat{\pi}}{2} \text{ or } -\frac{\hat{\pi}}{2} \neq \hat{0} \text{ donc } r_D \circ r_A \text{ est une rotation d'angle } -\frac{\pi}{2}$$
.

On a : $r_D \circ r_A(A) = A'$ telle que D est le milieu de [AA'] (voir figure) et $r_D \circ r_A(B) = D$.

La médiatrice du segment [AA'] est la droite (CD) et la médiatrice du segment [BD] est la droite (AC). $(CD) \cap (AC) = \{C\}$ donc $r_D \circ r_A = r(C, -\frac{\pi}{2}).$

Remarques

- En général, la composée de deux rotations de centres distincts n'est pas commutative $(r(A, \alpha) \circ r(B, \theta) \neq r(B, \alpha) \circ r(A, \theta))$.
 - Toute rotation d'angle π est une symétrie centrale

III- COMPOSEE DE DEUX HOMOTHETIES

1- Composée de deux homothéties de même centre

Propriété

Soient h et h'deux homothéties de centre O et de rapports respectifs k et k'.

La composée $h \circ h'$ est l'homothétie de centre O et de rapport kk'.

Remarques.

On a : $h \circ h' = h' \circ h$

On dit que la composée de deux homothéties de même centre est une homothétie de même centre et de rapport le produit des rapports.

Exercices de fixation

Exercice 1

Parmi les affirmations ci-dessous, indique celle qui est correcte.

A est un point du plan. La composée de l'homothétie de centre A et de rapport $\frac{1}{3}$ et de l'homothétie de centre A et de rapport $\sqrt{2}$ est :

- a) Une rotation de centre A
- b) L'homothétie de centre A et de rapport $\left(\frac{1}{3} + \sqrt{2}\right)$
- c) L'homothétie de centre A et de rapport $\frac{\sqrt{2}}{3}$
- d) L'homothétie de centre A et de rapport $\frac{1}{3}$

solution

L'affirmation correcte est c)

Exercice 2

I est un point du plan

Détermine la nature et les éléments caractéristiques de la composée : $h\left(I,\frac{1}{2}\right) \circ h(I,-\frac{2}{3})$.

Solution

 $h\left(I,\frac{1}{2}\right) \circ h(I,-\frac{2}{3})$ est l'homothétie de centre I et de rapport $-\frac{1}{3}$

2 <u>Composée de deux homotheties de centres differents</u>

Propriété

Soient h(A, k) et h'(B, k') deux homothéties de centres différents A et B.

- Si kk' = 1 alors la composée $h(A, k) \circ h'(B, k')$ est une translation.
- Si $kk' \neq 1$ alors la composée $h(A, k) \circ h'(B, k')$ est une homothétie de rapport kk'.

On dit que la composée de deux homothéties de centres différents est soit une homothétie, soit une translation.

Remarques

On peut déterminer le vecteur de la translation ou le centre de l'homothétie de la manière suivante :

- 1) Si $h(A, k) \circ h(B, k')$ est une translation, son vecteur est $\overrightarrow{BB'}$ où B' est l'image de B par h(A, k).
- 2) Si $h(A, k) \circ h(B, k')$ est une homothétie, soit O son centre.

Soit E un point quelconque n'appartenant pas à la droite (AB) et E' son image par $h(A, k) \circ h(B, k')$. La droite (AB) des centres A et B est globalement invariante par $h(A, k) \circ h(B, k')$ donc elle contient le point O. Donc O est le point d'intersection des droites (AB) et (EE').

Exercice de fixation

Exercice 1

Pour chacune des affirmations suivantes, trois réponses sont proposées

Ecris le numéro de l'affirmation suivi de la lettre correspondant à la bonne réponse.

N°	Affirmation	Réponses
1	O et O' sont deux points distincts du plan. La	a) une translation
	composée de l'homothétie de centre O et	b) une homothétie de rapport -8
	rapport -2 et de l'homothétie de centre O' et	c) une rotation
	de rapport 4 est :	
2	A et B sont deux points distincts du plan.	a) une homothétie
	La composée $h(A,3) \circ h(B,\frac{1}{3})$ est :	b) une rotation
	1 () () () ()	c) une translation

Corrigé

1-b); 2-c)

Exercice 2

ABC est un triangle.

Soit h et h' les homothéties de centres respectifs B et C, de rapports respectifs 2 et $\frac{3}{5}$ Justifie que $h \circ h'$ est une homothétie et précise son rapport

Corrigé

 $h \circ h'$ est la composée de deux homothéties de centres distincts B et C et de rapports respectifs 2 et $\frac{3}{5}$ On a : $2 \times \frac{3}{5} = \frac{6}{5} \neq 1$ donc $h \circ h'$ est une homothétie de rapport $\frac{6}{5}$

Remarques

- De manière générale, $h(A, k) \circ h(B, k') \neq h(B, k') \circ h(A, k)$
- On peut déterminer le vecteur de la translation ou le centre de l'homothétie de la manière suivante :
- \triangleright Si $h(A,k) \circ h(B,k')$ est une translation, son vecteur est $\overrightarrow{MM'}$ où M' est l'image d'un point quelconque M par $h(A,k) \circ h(B,k')$.
- > $Si\ h(A,k) \circ h(B,k')$ est une homothétie, soit O son centre.

Soit E un point quelconque n'appartenant pas à la droite (AB) et E' son image par $h(A,k) \circ h(B,k')$. La droite (AB) est invariante par $h(A,k) \circ h(B,k')$ donc elle contient le point O. Donc O est le point O d'intersection des droites O est le point O est le

IV- COMPOSEE DE DEUX SYMETRIES ORTHOGONALES

1-composée de deux symetries orthogonales d'axes paralleles

Propriété

Soit (D) et (D') deux droites parallèles, $S_{(D)}$ et $S_{(D')}$ des symétries orthogonales d'axes respectives (D) et (D')

La composée $S_{(D')} \circ S_{(D)}$ est la translation de vecteur $2\overrightarrow{00'}$ où O est un point de O le projeté orthogonal de O sur O.

Remarque

La composée $S_{(D)} \circ S_{(D')}$ est la translation de vecteur $2\overrightarrow{0'0}$

On dit que la composée de deux symétries orthogonales d'axes parallèles est une translation.

Exercice de fixation

ABCD est un rectangle

Donne la nature et l'élément caractéristique de chacune des composées suivantes :

- a) $S_{(AB)} \circ S_{(CD)}$
- b) $S_{(CD)} \circ S_{(AB)}$
- c) $S_{(AD)} \circ S_{(BC)}$

Corrigé

- a) $S_{(AB)} \circ S_{(CD)}$ est la translation de vecteur $2\overrightarrow{\mathsf{CB}}$
- b) $S_{(CD)} \circ S_{(AB)}$ est la translation de vecteur $2\overrightarrow{BC}$
- c) $S_{(AD)} \circ S_{(BC)}$ est la translation de vecteur $2\overrightarrow{BA}$

2-composée de deux symetries orthogonales d'axes sécants

<u>Propriété</u>

Soit (D) et (D') deux droites sécantes en un point O, de vecteurs directeurs respectifs \vec{u} et \vec{v}

La composée $S_{(D')} \circ S_{(D)}$ des symétries orthogonales d'axes respectifs (D) et (D') est la rotation de centre O et d'angle $2(\widehat{\vec{u},\vec{v}})$.

On dit que la composée de deux symétries orthogonales d'axes sécants est une rotation

Cas particulier : lorsque les axes (D) et (D') sont perpendiculaires en O, la composée $S_{(D')} \circ S_{(D)}$ est la symétrie centrale de centre O. On a $S_{(D')} \circ S_{(D)} = S_{(D)} \circ S_{(D')} = S_0$

Exercice de fixation

ABC est un triangle équilatéral de sens direct et de centre O.

On note A', B' et C' les milieux respectifs de [BC], [AC] et [AB].

Donne la nature et les éléments caractéristiques de chacune des composées suivantes :

b)
$$s_{(AA')} \circ s_{(BB')}$$

c)
$$S_{(CC')} \circ S_{(AB)}$$

<u>Corrigé</u>

a) (AA') et (AB) sont sécantes en A donc : $s_{(AA')} \circ s_{(AB)}$ est la rotation de centre A et d'angle $2(\widehat{AB}, \widehat{AA'})$

Une mesure de $2(\widehat{AB}, \widehat{AA'})$ est $\frac{\pi}{3}$

 $s_{(AA')} \circ s_{(AB)}$ est la rotation de centre A et d'angle $\frac{\pi}{3}$

b) (AA') et (BB') sont sécantes en O donc : $s_{(AA')} \circ s_{(BB')}$ est la rotation de centre O et d'angle $2(\widehat{OB'}, \widehat{OA})$. Une mesure de $2(\widehat{OB'}, \widehat{OA})$ est $\frac{2\pi}{3}$. $s_{(AA')} \circ s_{(BB')}$ est la rotation de centre O et d'angle $\frac{2\pi}{3}$

c) (CC') et (AB) sont sécantes en C' donc : $s_{(CC')} \circ s_{(AB)}$ est la rotation de centre C' et d'angle $2(\overrightarrow{C'B}, \overrightarrow{C'C})$. Une mesure de $2(\overrightarrow{C'B}, \overrightarrow{C'C})$ est π . $s_{(CC')} \circ s_{(AB)}$ est la rotation de centre C et d'angle π

SITUATION COMPLEXE

Des élèves de 1^{ère}C d'un lycée revenus d'un jeu de cracks, organisé par le conseil municipal, sur les mathématiques proposent à leurs camarades l'exercice suivant qu'ils n'ont pu résoudre:

« Sur la figure ci-dessous, (D) et (D') sont deux droites sécantes en O. Il existe une l'homothétie h_A de centre A qui transforme O en B et il existe une l'homothétie h_O de centre O qui transforme F en E.

Les points A, O, B, E et F sont tels que : $\frac{AB}{AO} \neq \frac{OF}{OE}$

Donne un programme de construction du centre de l'homothétie $h_A \circ h_O$. » Tu fais partie des trois élèves du groupe compétiteur et tu veux relever le défi.

Donne la solution l'exercice proposé au jeu.

Corrigé

Pour résoudre ce problème, nous allons utiliser la composée de deux homothéties.

Pour cela, je vais:

- Noter Ω le centre de l'homothétie $h = h_A \circ h_O$
- Construire l'image F' de F par h
- Le point Ω est alors l'intersection des droites (FF') et (OB) car h(O) = B
- Justifions que h(0) = B

 $h_0(0) = 0$ et $h_A(0) = B \implies h(0) = B$. Le point Ω appartient à la droite (OB).

• Construction de F'

On a :
$$F' = h_A \circ h_O(F) = h_A(h_O(F)) = h_A(E)$$
. Donc $F' \in (EA)$

h(OF) = (BF'), donc F' à la droite (Δ) parallèle à (OF) passant par B.

F' est le point d'intersection de (AE) et (Δ)

• Programme de construction de Ω

- Je trace la droite (Δ) parallèle à (EO) passant par B.
- Je trace la droite (AE).
- Je note F' le point d'intersection de (Δ) et (AE)
- Je trace la droite (FF') ; elle coupe la droite (OA) en un point qui est le centre Ω de $h_A \circ h_O$

EXERCICES

Exercice de fixation

Exercice 1

Soit ABCD un parallélogramme de centre O.

- 1. Justifie que $h(A, 2) \circ h\left(D, \frac{1}{2}\right)$ est une translation.
- 2. a) Déterminer $h(A, 2) \circ h\left(D, \frac{1}{2}\right)(B)$
 - b) Détermine le vecteur de la translation $h(A, 2) \circ h\left(D, \frac{1}{2}\right)$.

Corrigé

1) $h(A, 2) \circ h\left(D, \frac{1}{2}\right)$ est la composée de deux homothéties de centres distincts et de rapports respectifs 2 et $\frac{1}{2}$. On a : $2 \times \frac{1}{2} = 1$ donc $h(A, 2) \circ h\left(D, \frac{1}{2}\right)$ est une translation.

2) a) On a:
$$h\left(D, \frac{1}{2}\right)(B) = 0$$
 car $\overrightarrow{DO} = \frac{1}{2}\overrightarrow{DB}$ et $h(A, 2)(O) = C$ car $\overrightarrow{AC} = 2\overrightarrow{AO}$; donc

$$h(A,2) \circ h\left(D,\frac{1}{2}\right)(B) = C$$

b) On a: $h(A,2) \circ h\left(D,\frac{1}{2}\right)(B) = C$. Donc le vecteur de la translation est \overrightarrow{BC} .

Exercice 2

Soit ABCD un carré de sens direct, de centre O. On note I, J, K et L les milieux respectifs des côtés [AB]; [BC]; [CD] et [DA].

- 1. Justifie que $S_{(LJ)} \circ S_{(DC)}$ est une translation et précise son vecteur.
- 2. Démontre que $S_{(AC)} \circ S_{(AB)}$ est une rotation et détermine son angle orienté.

Corrigé

1) Les droites (LJ) et (DC) sont parallèles et J est le projeté orthogonal de C sur la droite (LJ) ; donc $S_{(LJ)} \circ S_{(DC)}$ est la translation de vecteur \overrightarrow{CB} . $(car \ \overrightarrow{CB} = 2 \ \overrightarrow{CJ})$

2) Les droites (AC) et (AB) sont sécantes en A; donc $S_{(AC)} \circ S_{(AB)}$ est une rotation de centre A.

L'angle orienté de cette rotation est $2(\overrightarrow{AB}, \overrightarrow{AC})$ dont une mesure π

Exercices de renforcement

Exercice 3

ABCD est un carré de centre O et de sens direct. On considère les rotations suivantes :

$$r_1 = r(B, \frac{\pi}{2}), \quad r_2 = r(A, \frac{\pi}{2}) \quad et \quad r_3 = r(O, -\frac{\pi}{2})$$

- 1) a) Détermine l'image du point C par $r_2 \circ r_1$.
 - b) Détermine la nature et les éléments caractéristiques de $r_2 \circ r_1$
- 2) Détermine l'image de la droite (BD) par $t_{\overrightarrow{AB}} \circ t_{\overrightarrow{CB}}$

Corrigé

1) a) ABCD est un carré de sens direct donc $r_1(C) = A$. Or $r_2(A) = A$ donc $r_2 \circ r_1(C) = A$.

b) On a : $\left(\frac{\widehat{\pi}}{2}\right) + \left(\frac{\widehat{\pi}}{2}\right) = \widehat{\pi}$ or $\widehat{\pi} \neq \widehat{0}$ donc $r_2 \circ r_1$ est une rotation d'angle π c'est - à - dire une symétrie centrale. Comme $r_2 \circ r_1(\mathcal{C}) = A$ alors $r_2 \circ r_1$ est la symétrie centrale de centre le milieu O du segment [AC].

2) On a :
$$t_{\overrightarrow{AB}} \circ t_{\overrightarrow{CB}} = t_{\overrightarrow{AB} + \overrightarrow{CB}}$$
.

Or
$$\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB}$$
 donc $t_{\overrightarrow{AB}} \circ t_{\overrightarrow{CB}} = t_{\overrightarrow{DB}}$

Exercice 4

Le plan est muni d'un repère quelconque (O, I, J).

On considère la translation t de vecteur $\overrightarrow{u}(-2;3)$.

- 1) Détermine l'expression analytique la translation t.
- 2) Soit le point E(4, -5). Détermine les coordonnées du point E' image de E par la translation t.
- 3) Soit (D) la droite d'équation : -x + 3y + 2 = 0

Détermine une équation de la droite (D') image de (D) par la translation t.

Corrigé

- 1) L'expression analytique de la translation t est : $\begin{cases} x' = x 2 \\ y' = y + 3 \end{cases}$
- 2) On a: $x_{E'} = x_E 2 = 4 2 = 2$ et $y_{E'} = y_E + 3 = -5 + 3 = -2$ donc E'(2; -2).
- 3) Soit M(x; y) un point du plan et M'(x'; y') son image par t. On a alors : $\begin{cases} x'+2=x \\ y'-3=y \end{cases}$

 $M \in (D) \Leftrightarrow -x+3y+2=0$. On en déduit que : -(x'+2)+3(y'-3)+2=0 donc -x+3y-9=0 est une équation de la droite (D').

Exercice 5

Sur la figure ci-contre

- ABC est un triangle de sens direct ;
- ABED et ACGF sont les carrés construits extérieurement à ABC sur les côtés [AB] et [AC].
- H est le projeté orthogonal de A sur la droite (BC).
- K est le milieu du segment [FD]
- I et J sont les centres respectifs des carrés ABED et ACGF .

- a) Détermine $r \circ r'(F)$ et $r'^{-1} \circ r^{-1}(D)$
- b) Démontre que $r \circ r' = r'^{-1} \circ r^{-1} = S_K$ où S_K est la symétrie centrale de centre K.
- 2. a) Justifie que l'image de la droite (AH) par $r'^{-1} \circ r^{-1}$ est la droite (AH).
 - b) Déduis-en que les points K, H et A sont alignés.
- 3. Soit A' l'image de A par S_K .
 - a) Démontre que ' = $r(C) = r'^{-1}(B)$.
 - b) Détermine l'image de E par r et l'image de G par r'^{-1} .
 - c) Justifie que $(EC) \perp (A'B)$ et $(BG) \perp (A'C)$.
- 4. Déduis des questions 2-b et 3-c) que les droites (EC), (BG) et (AH) sont concourantes..

Corrigé

- 1) a) $r \circ r'(F) = r[r'(G)] = r(A) = D$ $r'^{-1} \circ r^{-1}(D) = r'^{-1}[r^{-1}(D)] = r'^{-1}(A) = F$
 - $r \circ r'$ est la composée de deux rotations de centres distincts et de même angle $\frac{\pi}{2}$. Donc $r \circ r'$ est une rotation. Une mesure de l'angle orienté de $r \circ r'$ est : $\frac{\pi}{2} + \frac{\pi}{2} = \pi$

 $r \circ r'$ est une rotation d'angle π donc une symétrie centrale. Comme $r \circ r'(F) = D$ alors le centre de cette symétrie est le point K, milieu du segment [FD]

 $r'^{-1} \circ r^{-1}$ est la composée de deux rotations de centres distincts et de même angle $-\frac{\pi}{2}$. Donc $r'^{-1} \circ r^{-1}$ est une rotation. Une mesure de l'angle orienté de $r'^{-1} \circ r^{-1}$ est : $-\frac{\pi}{2} - \frac{\pi}{2} = -\pi$ $r'^{-1} \circ r^{-1}$ est une rotation d'angle π donc une symétrie centrale. Comme $r'^{-1} \circ r^{-1}(D) = F$ alors le centre de cette symétrie est le point K, milieu du segment [FD]

On déduit de ce qui précède que : $r \circ r' = r'^{-1} \circ r^{-1} = S_K$

2) a) $r'^{-1} \circ r^{-1}[(AH)] = r'^{-1}(r^{-1}[(AH)])$. On a $r^{-1}(A) = B$ donc l'image de (AH) par r^{-1} est la droite passant par B et perpendiculaire à (AH); c'est-à-dire la droite (BC)

On a donc : $r'^{-1} \circ r^{-1}[(AH)] = r'^{-1}[(BC)]$. Or $r'^{-1}[(BC)] = (AH)$ Car $r'^{-1}(C) = A$ et $(AH) \perp (BC)$.

Par suite l'image de (AH) par $r'^{-1} \circ r^{-1}$ est (AH)

b) L'image de (AH) par S_K est (AH); donc : $K\epsilon$ (AH)

Les points A, H et K sont donc alignés.

3) a) On a :
$$A' = S_K(A) = r \circ r'(A) = r(r'(A)) = r(C)$$
 et
$$A' = S_K(A) = r'^{-1} \circ r^{-1}(A) = r'^{-1}(r^{-1}(A)) = r'^{-1}(B)$$

b)
$$r(E) = B$$
 ; $r'^{-1}(G) = C$

c) On a : r(E) = B et r(C) = A'; donc l'image de la droite (EC) par r est la droite (A'B). On en déduit que : $(EC) \perp (A'B)$ car l'angle de r est $\frac{\pi}{2}$

De même on : $r'^{-1}(G) = C$ et $r'^{-1}(B) = A'$; donc l'image de la droite (BG) par r'^{-1} est la droite (A'C). On en déduit que : $(BG) \perp (A'C)$ car l'angle de r'^{-1} est $-\frac{\pi}{2}$

3) Considérons le triangle A'BC.

- \triangleright La droite (BG) est une hauteur de A'BC car $(BG) \perp (A'C)$
- \triangleright La droite (EC) est une hauteur de A'BC car (EC) \perp (A'B)
- ➤ La droite (A'H) est une hauteur de A'BC car $(A'H) \perp (BC)$. En effet (A'H) = (AH) car les points A', A, H et K sont alignés.

Les trois hauteurs d'un triangle sont concourantes. D'où le résultat.