Data visualization

Lecture 1

The Seven Stages of Visualizing Data

17.01.2022

Phuc Loi Luu, PhD p.luu@garvan.org.au luu.p.loi@googlemail.com

Roadmap of today lecture

- Why Data Display Requires Planning?
- Process of 7 stages in visualizing data
- Example of Methylation Risk Score (Example 1): from stage 1 to 6
- Example of MethPanel (Example 2): focus on stage 7 (interact)

Why Data Display Requires Planning?

- Too Much Information
- Data Collection
- Thinking About Data
- Data Never Stays the Same
- What is the Question?
- A Combination of Many Disciplines

Too Much Information: breast cancer (1)

Breast Cancer Data Set

Download: Data Folder, Data Set Description

Abstract: Breast Cancer Data (Restricted Access)

Data Set Characteristics:	Multivariate	Number of Instances: 28		Area:	Life	
Attribute Characteristics:	Categorical	Number of Attributes:	9	Date Donated	1988-07-11	
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	604005	

Attribute Information:

- 1. Class: no-recurrence-events, recurrence-events
- 2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
- 3. menopause: It40, ge40, premeno.
- 4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
- 5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
- 6. node-caps: yes, no.
- 7. deg-malig: 1, 2, 3.
- 8. breast: left, right.
- 9. breast-quad: left-up, left-low, right-up, right-low, central.
- 10. irradiat: yes, no.

Breast Cancer Coimbra Data Set

Download: Data Folder, Data Set Description

Abstract: Clinical features were observed or measured for 64 patients with breast cancer and 52 healthy controls.

Data Set Characteristics:	Multivariate	Number of Instances:	116	Area:	Life
Attribute Characteristics:	Integer	Number of Attributes:	10	Date Donated	2018-03-06
Associated Tasks:	Classification	Missing Values?	N/A	Number of Web Hits:	129855

Attribute Information:

- 1) ID number
- 2) Outcome (R = recur, N = nonrecur)
- 3) Time (recurrence time if field 2 = R, disease-free time if field 2 = N)
- 4-33) Ten real-valued features are computed for each cell nucleus:
- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Too Much Information: breast cancer (2)

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	butes: 32 Date Donated		1995-11-01
Associated Tasks:	Classification Missing Values? No Number of Web Hit		Number of Web Hits:	1650333	

Attribute Information:

- 1) ID number
- 2) Diagnosis (M = malignant, B = benign)

3-32)

Ten real-valued features are computed for each cell nucleus:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Breast Cancer Wisconsin (Prognostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Prognostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	198	Area:	Life
Attribute Characteristics: Real		Number of Attributes:	34 Date Donated		1995-12-01
Associated Tasks:	Classification, Regression	Missing Values?	Yes	Number of Web Hits:	249085

Attribute Information:

- 1) ID number
- 2) Outcome (R = recur, N = nonrecur)
- 3) Time (recurrence time if field 2 = R, disease-free time if field 2 = N)
- 4-33) Ten real-valued features are computed for each cell nucleus:
- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Data Collection: NCBI (1)

- A lot of public data out there on internet
- Where to get the data?
- How to get them?
- Ethics!

Data Collection: TCGA (2)

- A lot of public data out there on internet
- Where to get the data?
- How to get them?
- Connect or set up a database
- Ethics!

Data Collection: TCGA (3)

- A lot of public data out there on internet
- Where to get the data?
- How to get them?
- Connect or set up a database
- Ethics!

Thinking About Data

- Personal/private data
- Accessed illegally
- For example credit card
- Law!

Data Never Stays the Same

- Dataset is moving target.
- What happens when things start moving?
- How do we interact with "live" data?
- How do we unravel data as it changes over time?
- We might use animation to play back the evolution of a data set, or interaction to control what time span we're looking at.
- How can we write code for these situations?

What is the Question?

UCSC liftOver conversion of WGBS data.

- (A) Steps of analysis to determine if CpG sites are mapped to the correct location.
- (B) Distribution of delta values by subtracting distance between initial CpGs and gene coordinates on hg19 (d1) by distance between lifted CpGs and gene coordinates on hg38 (d2).

A Combination of Many Disciplines

- Given the complexity of data, using it to provide a meaningful solution requires insights from diverse fields:
 - statistics
 - data mining
 - graphic design
 - information visualization

A Combination of Many Disciplines, example

Process of 7 stages in visualizing data

The process of understanding data begins with a set of numbers and a question. The following steps form a path to the answer:

- 1 Acquire
 - Obtain the data, whether from a file on a disk or a source over a network.
- 2 Parse
 - Provide some structure for the data's meaning, and order it into categories.
- 3 Filter
 - Remove all but the data of interest.
- 4 Mine
 - Apply methods from statistics or data mining as a way to discern patterns or place the data in mathematical context.
- 5 Represent
 - Choose a basic visual model, such as a bar graph, list, or tree.
- 6 Refine
 - Improve the basic representation to make it clearer and more visually engaging.
- Interact
 Add methods for manipulating the data or controlling what features are visible.

Interactions between 7 stages

What is the question?

Developing Methylation Risk Score for stratification of COVID-19 serverity

Adapted from Expert Taskforce for the COVID-19 Cruise Ship Outbreak. Proportion of fatal, severe, mild, and asymptomatic COVID-19 cases among 544 passengers and 143 crew.

What is the question?

COVID-19 serverity = ICU + Dead COVID-19 Mild = non-ICU + non-Dead

1. Acquire: 850K/EPIC array + clinical record

2. Parse: pre-processing for the right format

3. Filter: remove portions (samples/probes) not relevant to the questions.

DNA methylation of probe at CDC42BPB

CpG sites associated with gene functions

SigGenesInSet	P.DE	Description
DDO	0.001576367	D-Amino acid metabolism
DDO	0.011302778	Alanine, aspartate and glutamate metabolism
CXCR2	0.0120096	Viral protein interaction with cytokine and cytokine receptor
SGMS1	0.014132182	Sphingolipid metabolism
DDO	0.020980386	Peroxisome
CXCR2	0.021004332	Epithelial cell signaling in Helicobacter pylori infection
SGMS1	0.041698417	Sphingolipid signaling pathway
CXCR2	0.045847039	Cytokine-cytokine receptor interaction
CXCR2	0.052644258	Chemokine signaling pathway
CXCR2	0.055835584	Phospholipase D signaling pathway
SGMS1,DDO	0.056711504	Metabolic pathways
VIM	0.059180432	Epstein-Barr virus infection
VIM	0.061226741	MicroRNAs in cancer
CXCR2	0.069345635	Human cytomegalovirus infection
CXCR2	0.084765607	Endocytosis

4. Mine: maths, statistics, and data mining

Methylation Index

$$MRS = \frac{1}{n} \sum_{c}^{n} W_{c} \frac{\beta_{cs} - \mu_{c}}{\sigma_{c}}$$

R script

- 5. Represent: Basic form that a set of data will take.
- Some data sets are shown as lists, others are structured like trees, and so forth.
- Summary statistics

1	sample_ID	MRS	class	sex	age	race	study
2	COVID_72	-0.792014279446939	non-ICUd	Female	50	Н	study1
3	COVID_84	-0.57576023419961	non-ICUd	Female	75	W	study1
4	COVID_96	-0.687881386476828	non-ICUd	Male	51	W	study1
5	COVID_83	-0.530784739208204	ICUd	Female	85	W	study1
6	COVID_95	-0.705899758878854	non-ICUd	Male	49	0	study1
7	COVID_82	-0.655856292308603	non-ICUd	Male	67	W	study1
8	COVID_94	-0.880279408934101	non-ICUd	Female	24	W	study1

5. Represent: Summary statistics

```
p <- '/home/phuluu/Documents/Lecture/Data visualization/My Lectures/lecture01/data/Visualization Cont Noncount Data /ICUd.tsv
 dt <- read.table(p, header=T)</pre>
head(dt)
 sample ID
                 MRS
                        class
                                 sex age race study
 COVID 72 -0.7920143 non-ICUd Female 50
                                            H study1
 COVID 84 -0.5757602 non-ICUd Female 75
                                            W study1
 COVID 96 -0.6878814 non-ICUd Male 51
                                            W study1
 COVID 83 -0.5307847
                         ICUd Female 85
                                            W study1
 COVID 95 -0.7058998 non-ICUd
                                            0 study1
                               Male 49
 COVID 82 -0.6558563 non-ICUd
                               Male 67
                                            W study1
 summary(dt)
 sample ID
                       MRS
                                        class
                                                           sex
Length: 277
                  Min. :-0.96706
                                     Length: 277
                                                       Length: 277
Class :character 1st Ou.:-0.74829
                                     Class :character
                                                       Class :character
Mode :character
                 Median :-0.64055
                                     Mode :character
                                                        Mode :character
                  Mean :-0.61011
                  3rd Ou.:-0.47905
                  Max. :-0.07605
                                     study
     age
                   гасе
Min. :18.00
               Length: 277
                                  Length: 277
1st Qu.:43.00
               Class :character Class :character
Median :55.00
               Mode :character Mode :character
Mean :55.25
3rd Qu.:70.00
Max. :94.00
```

5. Represent: Basic plot

boxplot(MRS ~ class, data=dt) and ttest (Giang)?

boxplot(MRS ~ class, data=dt) and ttest (Giang)?

- **6. Refine**: Graphic design methods are used to further clarify the representation by
- calling more attention to particular data (establishing hierarchy)
- changing attributes (such as color) that contribute to readability

6. Refine: Graphic design methods are used to further clarify the representation

ggplot(data=dt, aes(x=class, y=MRS)) +
geom_boxplot(aes(color=class)) +
theme(text = element_text(size=25))
ggsave("MRS_ICUd.pdf")

R script

6. Refine: Graphic design methods are used to further clarify the

representation

6. Refine: Graphic design methods are used to further clarify the representation

How to plot like this graph, but content same as boxplot? (Thong Nho)

https://www.datanovia.com/en/blog/ggplot-histogram-with-density-curve-in-r-using-secondary-y-axis/

Class tasks:

- 1. MRS vs age: plot and regression (Thien)
- 2. MRS vs sex: plot and ttest (Hoang)
- 3. MRS vs race: plot and ANOVA (Nhuong)
- 4. MRS vs study: plot and ANOVA (Minh)
- 5. MRS vs age, race, sex and study: plot and regression (Giang)

MRS vs age: plot and regression (Thien)

MRS vs sex: plot and ttest (Hoang)

MRS vs study: plot and ANOVA (Minh)


```
study count mean sd

<fct> <int> <dbl> <dbl> <dbl> 1

study1 100 -0.571 0.181

study2 15 -0.518 0.226

study3 162 -0.643 0.180
```

MRS vs race: plot and ANOVA (Nhuong)

7. Interact: adds interaction, letting the user control or explore the data. Interaction might cover things like selecting a subset of the data or changing the viewpoint.

Example 2: MethPanel

http://129.94.136.70/shiny/sample-apps/MethPanel/

Luu, P. L., Ong, P. T., Loc, T. T. H., Lam, D., Pidsley, R., Stirzaker, C., & Clark, S. J. (2021). MethPanel: a parallel pipeline and interactive analysis tool for multiplex bisulphite PCR sequencing to assess DNA methylation biomarker panels for disease detection. Bioinformatics, 37(15), 2198-2200.

Homework: Methylation Risk Score (MRS)

What is the question?

Developing Methylation Risk Score for stratification of COVID-19 serverity

Mild/Severe

COVID-19 serverity = COVID-GRAM percentage >= 50%

COVID-19 Mild = COVID-GRAM percentage < 50%

What is COVID-19 GRAM Percentage?

Including 10 clinical factors:

- 1. Chest radiography abnormality
- 2. Age
- 3. Hemoptysis
- 4. Dyspnea
- Unconsciousness
- Number of comorbidities
- 7. Cancer history
- 8. Neutrophil-to-lymphocyte ratio
- 9. Lactate dehydrogenase
- 10. Direct bilirubin

Homework: Methylation Risk Score (MRS)

What is the question?

Developing Methylation Risk Score for stratification of COVID-19 serverity

COVID-19 serverity = COVID-GRAM percentage >= 50%

COVID-19 Mild = COVID-GRAM percentage < 50%

1	sample_ID	gram	MRS	sex	age	race	study
2	COVID_96	Mild	0.342063866786641	Male	51	W	study1
3	COVID_95	Mild	0.535144608277981	Male	49	0	study1
4	COVID_82	Mild	0.386215415209122	Male	67	W	study1
5	COVID_94	Mild	0.080487319595148	Female	24	W	study1
6	COVID_73	Severe	0.193577864244823	Male	82	W	study1
7	COVID_85	Severe	0.71445633374692	Male	62	Н	study1
8	COVID_97	Severe	0.684757326085255	Male	76	W	study1

Thank you The Team for the data generation!

Group members:

- Nhat-Thong Le
- Ba-Thien Tran
- My-Phung Duong, M.S
- Kim-Sang To, M.D.
- Hung P. Le, M.D

- · Phuc-Thinh Ong, M.D
- Thi-Tai-Nguyen Cao, Ph.D
- Thi-Thanh-Khuong Tran, Ph.D
- Phuc-Loi Luu, Ph.D

Clinical advice:

- Luong Thi My Hanh, M.D.
- Members of VnPathoinformatics group

All patients for their consent to donate blood samples and all researcher in the studies.