Machine Learning Assignment 2: Data Classification Report

Alexandria National University – Faculty of Computer and Data Science **Due Date**: April 25, 2025

1. Objective

This assignment explores four classification models — Decision Tree, Naïve Bayes, Random Forest, and AdaBoost — applied to the MAGIC Gamma Telescope dataset. The goal is to:

- Balance the dataset.
- Train and tune classifiers.
- Evaluate models using various metrics.
- Compare the performances and draw insights.

2. Dataset Description

Source: <u>UCI MAGIC Gamma Telescope Dataset</u>

• Instances: 19,020 total (12,332 gamma, 6,688 hadron)

• **Features**: 10 numerical features, 1 binary class (gamma g, hadron h)

Due to class imbalance, we undersampled the gamma class to match the hadron class, resulting in a balanced dataset of 13,376 samples (6,688 each).

3. Methodology

Preprocessing

- Balanced the classes by random undersampling.
- Randomly split the dataset: 70% training and 30% testing.

Model Training

The following models were implemented using scikit-learn:

Model	Tuned Parameters
Decision Tree	None
Naïve Bayes	None
Random Forest	n_estimators
AdaBoost	n_estimators

GridSearchCV was used with 5-fold cross-validation to tune the ensemble models.

4. Evaluation Metrics

Each model was evaluated using the testing dataset based on:

- Accuracy
- Precision
- Recall
- F1-Score
- Confusion Matrix

5. Results

Model	Accuracy	Precision	Recall	F1-Score
Decision Tree	0.826	0.87	0.87	0.87
Naïve Bayes	0.724	0.73	0.91	0.81
Random Forest	0.880	0.88	0.94	0.91
AdaBoost	0.845	0.86	0.92	0.88

Best performing model: Random Forest (Accuracy: 88%, F1: 0.91)

6. Confusion Matrices

(Visualizations included in notebook via seaborn heatmaps)

- Decision Tree: Misclassifies some hadrons.
- Naïve Bayes: Generally weaker on complex, non-linear decision boundaries.
- Random Forest: Best balance between precision and recall.
- AdaBoost: Performs closely to Random Forest; slightly better recall.

7. Analysis & Comments

- Random Forest achieved the best overall performance in terms of accuracy and F1-score, thanks to its ensemble nature and robustness to overfitting.
- AdaBoost was a close second, with slightly better recall, making it strong for detecting true positives (gamma rays).
- Naive Bayes performed the worst, likely due to its assumption of feature independence, which may not hold in this dataset.
- **Decision Tree** gave reasonable performance but is more prone to overfitting without pruning or ensemble techniques.
- Using cross-validation for tuning n_estimators significantly improved the performance of both Random Forest and AdaBoost.

8. Conclusion

All models were implemented successfully, with parameter tuning and thorough evaluation. The ensemble methods (**Random Forest and AdaBoost**) clearly outperform simpler models on this dataset. Balancing the data before training ensured fair model comparisons and more reliable metrics.