Analysis of Algorithms

V. Adamchik

CSCI 570

Lecture 8

University of Southern California

Fall 2023

Network Flow

Reading: chapter 7.1 - 7.4

The Network Flow Problem

Our fourth major algorithm design technique (greedy, divide-and-conquer, and dynamic programming).

Plan:

The Ford-Fulkerson algorithm

Max-Flow Min-Cut Theorem

The Flow Problem

The Max-Flow Problem

we define a *flow* as a function $f: E \rightarrow \mathbb{R}^+$ that assigns nonnegative real values to the edges of G and satisfies two axioms:

- 1. Capacity constraint:
- 2. Conservation constraint:

The MAX Flow Problem

The max-flow here is ___.

How can you see that the flow is really max?

Greedy Approach: push the max

Canceling Flow

Push 20 via s-u-v-t

Residual Graph G_f Residual Capacity c_f

Example: residual graph

Push 2 along s-d-b-t and draw the residual graph

Augmenting Path = Path in G_f

Let P be an s-t path in the residual graph G_f . Let bottleneck(P) be the smallest capacity in G_f on any edge of P.

If bottleneck(P) > 0 then we can increase the flow by sending bottleneck(P) units of flow along the path P.

```
\begin{array}{l} \textit{augment}(f,P):\\ \textit{b} = \textit{bottleneck}(P)\\ \textit{for each } \textit{e} = (\textit{u},\textit{v}) \in P:\\ \textit{if e is a forward edge:}\\ \textit{decrease } \textit{c}_{f}(\textit{e}) \textit{ by b //add some flow}\\ \textit{else:}\\ \textit{increase capacity by b //erase some flow} \end{array}
```

The Ford-Fulkerson Algorithm

```
Algorithm. Given (G, s, t, c \in \mathbb{N}^+)
start with f(u, v) = 0 and G_f = G.
while exists an augmenting path in G_f
find bottleneck
augment the flow along this path
update the residual graph G_f
```

Example

Path s-a-c-d-t

Example

Path s-c-a-b-t

In graph G edges are with flow/cap notation

The Ford-Fulkerson Algorithm Runtime Complexity

```
Algorithm. Given (G, s, t, c \in \mathbb{N}^+) start with f(u,v)=0 and G_f=G.

while exists an augmenting path in G_f find bottleneck augment the flow along this path update the residual graph
```

The worst-case

$$c=10^9$$

Proof of Correctness

How do we know the algorithm terminate How do we know the flow is maximum?

Cuts and Cut Capacity

Cuts and Flows

Consider a graph with some flow and cut

The flow-out of A is ____

The flow-in to A is ____

The flow across (A,B) is ____

What is a flow value |f| in this graph?

Lemma 1

For any flow f and any (A,B) cut

$$|f| = \sum_{v} f(s, v) = \sum_{u \in A, v \in B} f(u, v) - \sum_{u \in A, v \in B} f(v, u)$$

Proof.

Lemma 2

For any flow f and any (A,B) cut $|f| \le cap(A,B)$.

Proof.

Max-flow Theorem

Theorem. The Ford-Fulkerson algorithm outputs the maximum flow.

$$\max_{f} |f| = \min_{(A,B)} cap(A,B)$$

Where is a min-cut?

Run the Ford-Fulkerson algorithm on the following network:

How do you find a min-cut?

Is a min-cut unique?

You have successfully computed a maximum s-t flow for a network G = (V, E) with positive integer edge capacities. Your boss now gives you another network G' that is identical to G except that the capacity of exactly one edge is decreased by one. You are also explicitly given the edge whose capacity was changed. Describe how you can compute a maximum flow for G' in linear time.

If we add the same positive number to the capacity of every directed edge, then the minimum cut (but not its value) remains unchanged. If it is true, prove it, otherwise provide a counterexample.

In a daring burglary, someone attempted to steal all the candy bars from the CS department. Luckily, he was quickly detected, and now, the course staff and students will have to keep him from escaping from campus. In order to do so, they can be deployed to monitor strategic routes. Compute the minimum number of students/staff needed and show the monitored routes.

Reduction

Formally, to reduce a problem Y to a problem X (we write $Y \leq_p X$) we want a function f that maps Y to X such that:

- f is a <u>polynomial</u> time computable
- \forall instance $y \in Y$ is solvable if and only if $f(y) \in X$ is solvable.

Solving by reduction to NF

- 1. Describe how to construct a flow network
- 2. Make a claim. Something like "this problem has a feasible solution if and only if the max flow is ..."
- 3. Prove the above claim in both directions

Bipartite Graph

A graph is bipartite if the vertices can be partitioned into two disjoint (also called independent) sets X and Y such that all edges go only between X and Y (no edges go from X to X or from Y to Y). Often we write G = (X, Y, E).

Bipartite Matching

<u>Definition</u>. A subset of edges is a matching if no two edges have a common vertex (mutually disjoint).

<u>Definition</u>. A maximum matching is a matching with the largest possible number of edges

Goal. Find a maximum matching in G.

Solving by Reduction

Given an instance of bipartite matching.

Create an instance of network flow.

The solution to that network flow problem can easily be used to find the solution to the bipartite matching problem.

Reducing Bipartite Matching to Network Flow

Given bipartite G = (X, Y, E). Let |X| = |Y| = V.

Max matching = Max flow

Max matching = Max flow

Runtime Complexity

Given bipartite G = (X, Y, E)., |X| = |Y| = V.

How to improve the efficiency of the Ford-Fulkerson Algorithm?

O(|f| (E+V))

Edmonds-Karp algorithm

Algorithm. Given (G, s, t, c)

- 1) Start with |f|=0, so f(e)=0
- 2) Find a shortest augmenting path in G_f
- 3) Augment flow along this path
- 4) Repeat until there is no an s-t path in G_f

Theorem.

The runtime complexity of the algorithm is $O(V E^2)$.

(without proof)

Runtime history

n = V, m = E, U = |f|

year	discoverer(s)	bound
1951	Dantzig [11]	$O(n^2mU)$
1956	Ford & Fulkerson [17]	O(m U)
1970	Dinitz [13] Edmonds & Karp [15]	O(n m²) shortest path
1970	Dinitz [13]	$O(n^2m)$
1972	Edmonds & Karp [15]	$O(m^2 \log U)$
	Dinitz [14]	$\left \begin{array}{c} O(m \log O) \end{array} ight.$ capacity scaling $\left \begin{array}{c} O(m \log O) \end{array} ight.$
1973	Dinitz [14]	$O(nm \log U)$
	Gabow [19]	
1974	Karzanov [36]	$O(n^3)$ preflow-push
1977	Cherkassky [9]	$O(n^2m^{1/2})$
1980	Galil & Naamad [20]	$O(nm\log^2 n)$
1983	Sleator & Tarjan [46]	$O(nm\log n)$ splay tree
1986	Goldberg & Tarjan [26]	$O(nm\log(n^2/m))$ preflow-push
1987	Ahuja & Orlin [2]	$O(nm + n^2 \log U)$
1987	Ahuja et al. [3]	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup [7]	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al. [8]	$O(n^3/\log n)$
1990	Alon [4]	$O(nm + n^{8/3}\log n)$
1992	King et al. [37]	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook [44]	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al. [38]	$O(nm \log_{m/(n \log n)} n)$ $O(\min(n^{2/3}, m^{1/2}) m \log(n^2/m) \log U)$
1997	Goldberg & Rao [24]	$O(\min(n^{2/3}, m^{1/2}) m \log(n^2/m) \log U)$

2013 Orlin O(m n)

At a dinner party, there are n families a_1 , a_2 , ..., a_n and m tables b_1 , b_2 , ..., b_m . The i-th family a_i has g_i members and the j-th table b_j has h_j seats. Everyone is interested in making new friends and the dinner party planner wants to seat people such that no two members of the same family are seated at the same table. Design an algorithm that decides if there exists a seating assignment such that everyone is seated and no two members of the same family are seated at the same table. What would be a seating arrangement?