

01-Introduction

Practical Machine Learning (with R)

UC Berkeley Fall 2015

Topics

- Introductions (Me, You & This Class)
- Data Science Outlook 2015 and Opportunities
- ⇒Why R?
- Elite Coding
- Tools and Environment

INTRODUCTIONS

Me (Personally)

My Skills

- R Programmer (>15 years)
- Machine Learning (>15 years)
- DevOps
- Researcher and Writer: Clinical, Chemisty

Education

- UC Berkeley → (UT Austin) → UC Santa Barbara → UC Berkeley
- Post-graduate: UC Berkeley, Stanford

Professional Experience

- Lawrence Berkeley National Lab, Allianz, Open Data
- Sept. 2010 Founded Decision Patterns

Professional Interests

- Machine Learning / Statistics
- High Performance Computing

- Applied Statistics and Visualization
- Management of Data Organizations

(Decision Patterns)

Decision Patterns

- Founded 2010
- Bring together complementary skills for managing data:

Acquisition * Organization* Storage Access * Utilization

- Our Model
 - Service Consulting
 - Not a start-up -- no VC funding
 - Use consulting margins from to build niche products

- Our Customers
 - Financial Services, Retail, Entertainment, Food, Communications, Defense, Environmental.

What do I like most about what I do?

THINGS

We get to work on a

- variety of problems,
- with a variety of technologies
- in a variety of fields

What do I like least about what I do?

THINGS

We have to work on a

- variety of problems,
- with a variety of technologies
- in a variety of fields

You?

DISCUSSION OF INDIVIDUAL GOALS?

Class / Objectives

Theory

- Distinguish fundamental aspects of machine learning algorithms
- Build (train) machine learning models
- Evaluate (score) machine learning models
- Advanced Topics

Practice

- Frame problems to make the suitable for solution via machine learning
- Collaborate in a group using tools for collaborative/social programming
- Generate high quality, graphical and textual results
- Deploy machine learning models to operations

- Introduction to R, setting up the ML developers environment
 - Installing R
 - Installing R Studio
 - Installing packages from CRAN,
 Bioconductor and Github
 - Exercises

- Fundamentals of Machine Learning
 - Machine learning overview
 - Regression and classification
 - Supervised, unsupervised, and semisupervised
 - Algorithm types and requirements
 - Exercises

- Linear Regression (2 sessions)
 - OLS Regression
 - Data partitioning
 - Model evaluation and tuning
 - Exercises

- Logistic Regression
 - Logistic Regression
 - Exercises

- Advanced Techniques: Partitioning Methods
 - CART/Regression Trees
 - Clustering
 - K Nearest Neighbors
 - Exercises

- Advanced Techniques: Partitioning Methods
 - CART/Regression Trees
 - Clustering
 - K Nearest Neighbors
 - Exercises

- Advanced Techniques
 - Bagging
 - Bagged Trees / Random Forests
 - Exercises

- Advanced Techniques: Boosting
 - Boosting
 - Neural Networks
 - Support Vector Machines
 - Exercises

- Deployment
 - Diving into the data lake
 - Optimization
 - Delivery and Production

- Final Lecture
 - Exercises
 - Exam

GRADING

PROJECT (50%)

- Identify one machine learning problem you want to tackle. It could be from existing UCI data sets, your work, interest, Kaggle ... or I can give you one.
- Frame the problem
- Build Features
- Review linear model and cart
- Build Model
- Deploy

TODAY 2015-09-14

- Data Scientist / Machine Learning Outlook
- R Language
- Effective Programming

DATA SCIENTIST OUTLOOK 2015

Data Science Venn Diagram

Ref. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

THE WORLD NEEDS DATA SCIENTISTS

IF YOU ARE A MATH- OR DATA-DRIVEN INDIVIDUAL LOOKING FOR THE PERFECT CAREER FIT,

look no further than data science. Due to the ongoing explosion of big data, companies have more information at their fingertips than ever—and not enough people who can make sense of it all. This reality has created a big market for quantitative analysts and individuals who can put massive amounts of data into perspective. Take a look.

Source: http://venturebeat.com/2013/11/11/data-scientists-needed/

CAREERS IN DEMAND

Currently the job market seeks

140,000-190,000

DATA SCIENTISTS TO FILL OPEN POSITIONS.

1.5 million

data literate managers will need to be retrained or hired to meet needs.

FOR DATA SCIENTISTS

These scientists don't just happen to be getting far more job offers without reason. Today's modern business needs to manage far more data than ever before, and few have the talent on staff for the job.

Projections indicate that the market will experience meteoric growth in the next several years.

The Big Data Market Forecast

Conclusion: With so much activity going on in the big data space and new data touch points being measured every day, there will be an increasing need for data-driven individuals within organizations to make sense of it all. Is that data-savvy person you?

Machine Intelligence LANDSCAPE

CORE TECHNOLOGIES

ARTIFICIAL INTELLIGENCE

DEEP LEARNING

MACHINE LEARNING

NLP **PLATFORMS**

PREDICTIVE APIS

IMAGE RECOGNITION

clarifai MADBITS DNNresearch | DEXTRO V I S E N Z E I lookflow SPEECH RECOGNITION

popup archive NUANCE

RETHINKING ENTERPRISE

SALES

SECURITY / **AUTHENTICATION**

FRAUD

HR/ RECRUITING

MARKETING

PERSONAL **ASSISTANT**

INTELLIGENCE TOOLS

RETHINKING INDUSTRIES

PHILANTHROPIES

DataKind thorn

ADTECH

AGRICULTURE

MEDIA / CONTENT

Outbrain newste ARRIA

SAILTHRU WOVII Owlin

NarrativeScience / 3)/5000 Summiy

EDUCATION

GUARD Lendup

FINANCE

LEGAL

MANUFACTURING

MEDICAL

RETAIL

DATA

OIL AND GAS

CONSUMER

FINANCE

⊿ffirm

finance

BINATIX

DiligenceEngine

AUTOMOTIVE

DIAGNOSTICS

DATA PREP

RETHINKING HUMANS / HCI

AUGMENTED REALITY

GESTURAL COMPUTING

G GestureTek

△ Prismatic a

@nod

EMOTIONAL RECOGNITION

DATA

SUPPORTING TECHNOLOGIES

HARDWARE

rigetti

COMPETITION

Much of work will not be done in traditional worker

Google Prediction API

INNOVATION

Spoils go to those who make products from repeatable processes

The price for analytics is falling ...

WHY R?
WHY NOT PYTHON? ... JULIA? ...
SCALA? ...MATLAB?

Popularity 2015-06-04

Packages	PyPI 60,806 Packages 35+ updates / day	CRAN 6,727package 20+ updates/day
Popularity (Tiobe)	6 th Rank, +0.67%	12 th Rank, +1.06%
stackoverflow	430,604	93,943
github social coding	549,014	87,306

Ref. http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Learning Curve	Easier esp. if coming from OO background	Steeper. More, dedicated	
Code Maintainability	Better package system, fewer name clashes	Better documentation Generally less code req'd	
Performance	Higher, extensible through Cython, C, C++	Rcpp	
Code expressiveness	Hack to extend operators Lazy evaluation	Domain Specific %x% syntax used widely Non-standard evaluation	
Dedicated Web Frameworks	Translucent(?)	Shiny	
Domain Feature completeness		Rmarkdown, Reproducible Research, ProjectTempate	
Vendor Entrenchment		Windows Azure, Oracle, MicroStratety, Birst, Tableau, Oracle	

BREAKDOWN OF CODE TASKS

R ADVANTAGES

- Functional / Vectorized
- Dedicated IDE: **Rstudio** (REPL/Interactive Programming)
- CRAN and BioConductor
- Shiny
- Domain Specific Abstractions
 - data.frame / data.table / dplyr
 - model formula
 - purr

R Limitations

- Slow
- ∍In-memory
- ⇒ Not-scalable

What about ...

Sas

ELITE CODING

ELITE CODING / 1

Follow Established Design Patterns

CREATIVITY IS GENERALLY A BAD THING

Goal	Description	R Packages
Ad hoc analysis	Create a process	ProjectTemplate, Rmarkdown, knitr
Package Development	Create a package	Rstudio, Roxygen2, devtools
Application : Interactive	Web application	Shiny, OpenCPU Javascript
Application : Automated	Code to be scheduled or called as an event	Rscript (R –e), optigrab, crontab

ELITE CODING / 2

- - Hadley Wickham's Advanced R sytle guide http://adv-r.had.co.nz/Style.html
 - Decision Patterns Style Guide
 - Do not follow Google's coding convention
 - Cf. Python's Standards
 - PEP-8 Namina and Formatina
 - PEP-257 Documentation
 - PEP-20 Readability
- Use version control:

- Github, Bitbucket, Gitlab
- Best GUI: Atlassian Sourcetree
- Use Agile Methods
 - Track issues: JIRA, Github, Gitlab

Commit early and often.

Good PM is worth every penny.

R Resources

ONLINE

- (META)CRAN
 - Packages
 - Task Views
- Stackoverflow.com
- r-bloggers.com
- Advanced R Programming
- Github

Offline

The Art of R Programming

Norm Matloff

ISBN-13: 858-2592222227

ISBN-10: 1593273843

R in Action: Data Analysis and Graphics with R

Robert Kabacoff

ISBN-13: 978-1617291388

ISBN-10: 1617291382

Pre **Modeling** Stage

Data **Analysis**

Useful Libraries

- 1.) Continuous Regression car, randomforest
- 2. Ordinal Regression RMiner, CoreLearn
- 3. Classification Caret, BigRF
- 4. Clustering **CBA**, RankCluster
- 5. Time Series forecast, LTSA
- 6. Survival survival, Basta

1. General Model Validation LSMeans, Comparison 2. Regression Validation RegTest, ACD 3. Classification Validation BinomTools, DAIM 4. Clustering Validation ClustEval, SigClust 5. ROC Analysis PROC, TimeROC

Other Libraries						
A. Improve performance	Rcpp,parallel	B. Work with web	XML, jasonlite, httr	C. Report results	shiny, RMarkdown	
D. Text Mining	tm, twitteR	E. Database	sqldf, RODBC, RMongo	F. Miscellaneous	swirl, reshape2, qcc	

Analytics Vidhya
Learn Everything About Analytics

R'S NOBELS

For Machine Learning

CARET (CLASSIFICATION AND REGRESSION TRAINING)

Code readability, interactive programming

MAGRITTR PIPER BACKPIPE

Munging and data management

DATA.TABLES DPLYR

https://github.com/Rdatatable/data.table/wiki/Benchmarks-%3A-Grouping

Simple Scaling-out

FOREACH ITERTOOLS

Increasing Performance

RCPP GMATRIX

Visualization

GGVIS GGPLOT2

APPENDIX

Given a vector of numbers (x), write a function (f) that returns a vector of numbers containing the product of every other number excluding the current index.

Example:

```
> x <- c(1, 5, 2, 8)
> f(x)
[1] 80 16 40 10
# 5*2*8, 1*2*8, 1*5*8, 1*2*5
```

Solution

Given a vector of numbers (x) write a function (f) that returns a vector of numbers containing the product of every other integer excluding the current index.

Example:

```
> x <- c(1, 5, 2, 8)
> f(x)
[1] 80 16 40 10
# 5*2*8, 1*2*8, 1*5*8, 1*2*5
```

Solution:

f <- function(x) prod(x) / x

Write a function f(x) to accept an integer vector, and returns a vector with those numbers ... except for:

```
multiples of 3 = "Fizz"
multiples of 5 = "Buzz".
multiples of 3 and 5 = "FizzBuzz"
```

Example:

```
> x <- 1:20

> f(1:20)

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11

Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz
```

Solution:

```
f <- function(x)
  ifelse( x %% 15 == 0, "FizzBuzz",
  ifelse( x %% 3 == 0, "Fizz",
  ifelse( x %% 5 == 0, "Buzz", x ) ) )</pre>
```

You

- How many of you are students? Professionals?
- How many have
 - > 1 year using R?
 - > 3 years?
 - > 5 years?
- How many use R as your principal data.science tool?

- How many use
 - Python
 - Julia
 - SAS or SPSS
 - Spark/Scala
 - Java
- Ever spend too much time debating which technology fits?