STA 721 HW 6

1. If $\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$, show that the likelihood function for $\boldsymbol{\beta}, \phi$ where $\phi = 1/\sigma^2$ can be written as

$$\mathcal{L}(\beta, \phi) \propto \phi^{n/2} e^{-\phi \frac{\mathsf{SSE}}{2}} e^{-\frac{\phi}{2} (\beta - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\beta - \hat{\boldsymbol{\beta}})}.$$

Do you need to consider a Jacobian term for a change of variables? (explain)

- 2. Consider the prior data dependent prior $\beta \mid \phi \sim N(\hat{\beta}, \sigma^2 n(\mathbf{X}^T \mathbf{X})^{-1})$ and $\phi \sim G((n+2)/(2n), SSE/(2n)$ where $\hat{\beta}$ is the MLE of β , \mathbf{X} is $n \times p$ and rank p and SSE is the residual sum of squares.
 - (a) Find the prior mean of σ and σ^2 . (For those who like abstraction, find $\mathsf{E}(\sigma^j)$ when will this exist?) Please do not use the inverse gamma distribution, but use the distribution of ϕ .
 - (b) Using the likelihood above, find the conditional posterior distribution of β given ϕ and the marginal posterior distribution for ϕ , simplifying as much as possible. What is the posterior mean for β and σ^2 ?
 - (c) Find the marginal posterior distribution of β_i .
 - (d) Suppose that $\beta_j \mid \mathbf{Y}, \phi$ are independent (and uncorrelated). What does that imply about \mathbf{X} ? Will the β_j be independent after marginalizing over ϕ ? Are they uncorrelated? (show your work)