Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Estatística

ME 607 SERIES TEMPORAIS Prova 2

Professor: Mauricio Zevallos

Segundo Semestre 2009

Para cada uma das seguintes perguntas escolha a alternativa correta. Não precissa justificar, simplesmente marque a resposta

- 1. (0,6 pts) Seja $X_1,...,X_T$ uma sequência de variáveis aleatórias independentes e idénticamente distribuidas (IID) com média 0 e variância σ². Define-se o processo $Y_t = X_t X_{t-1}$. Então,
 - a) O processo Y_t não é estacionario
 - b) O processo Yt é não-correlacionado
 - c) N.A.
- 2. $(0,6 \ pts)$ Seja o processo $\{Y_t\}$ definido como $Y_t = \beta_0 + \beta_1 t + \varepsilon_t$, onde $\varepsilon_t \sim RB(0,\sigma^2)$ onde β_i são constantes para i=0,1,2 e t=1,2,..., então
 - a) {Yt} é estacionário
 - b) {Y_t} é estritamente estacionário
 - c) $\{Y_t\}$ é estacionário mas não estritamente estacionário
 - d) $\{Y_t\}$ é estritamente estacionário mas não estacionário
- 3. (0,6 pts) Seja Y₁,..., Y_T uma sequência de variáveis aleatórias que provem de um processo estocástico estacionário com média μ e covariancias $\gamma(k)$ com $\gamma(0) = \sigma^2$. Além disso, seja $\bar{\mu} = T^{-1} \sum_{i=1}^{T} Y_i$. Então
 - a) $Var(\bar{\mu})$ pode ser maior, menor ou igual que $\frac{\sigma^2}{T}$
 - b) $Var(\bar{\mu})$ é sempre maior que $\frac{\sigma^2}{T}$
 - c) $Var(\bar{\mu}) = \frac{\sigma^2}{T}$

- 4. (0,6 pts) Seja o processo $Y_t = \delta + Y_{t-1} + \varepsilon_t$ onde $\varepsilon_t \sim RB(0,\sigma^2)$. Interessa estimar δ. Isto é,
 - a) Razoável
 - b) Não é razoável
 - 5. (0,6 pts) O processo {Y_t} definido como,

$$Y_t = 0.5Y_{t-1} + \varepsilon_t - 0.25\varepsilon_{t-2}, \quad \varepsilon_t \sim RB(0, \sigma^2)$$

é

- a) ARMA(1,2)
- b) ARMA(1,1)
- c) N.A.
- 6. (0,6 pts) Na tabela são apresentadas as primeiras 10 autocorrelações de uma série com 400 observações.

400 observ	açoco.				-	7	8	9	10
400 observed to 1 -0.85	2	3	0.35	-0.24	0.15	-0.12	0.06	-0.04	0.05
Tk -0.8	5 0.57	-0.40	0.00				(1) Te	toé	

- O estatístico acha que pode ser ajustado um modelo AR(1). Isto é
 - a) Razoável
- 7. (0,4 pts) Com relação a pergunta 6 um pesquisador diz que a série corresponde a um ruido branco. Isto é,
 - a) Razoável
 - b) Não é razoável

- 8. (0, 8 pts) São geradas n = 144 observações do modelo AR(1) $y_t = \phi y_{t-1} + \varepsilon_t$, onde $\varepsilon_t \sim RB(0, \sigma^2)$. Se $y_1 = -1.748002$, $y_{144} = -2.10059$, $\sum_{t=2}^{n} y_t y_{t-1} = -128.5856$ e $\sum_{t=1}^{n} y_t^2 = 246.3718$, é possível estimar ϕ ? Se a resposta é afirmativa encontre a estimativa. Em caso contrario, justifique.
- 9. (1 pto) São geradas 200 observações do modelo $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$, onde $\varepsilon_t \sim$ $RB(0, \sigma^2)$. As primeiras tres autocorrelações amostrais são $\tau_1 = 0.6217, \tau_2 = 0.0748$ e $r_3 = -0.2490$. É possível estimar ϕ_1 e ϕ_2 ? Se a resposta é afirmativa encontre as estimativas. Em caso contrario, justifique.
- 10. Define-se o processo {Y_i} como:

$$Y_{t} = 0,7Y_{t-1} - 0,1Y_{t-2} + \varepsilon_{t} + 0,5\varepsilon_{t-1}$$

$$\varepsilon_{t} \sim RB(0,\sigma^{2}).$$

- a) (0, 2 pts) $\{Y_t\}$ é causal?
- b) (0,2 pts) {Y_t} é estacionário?
- c) (0, 2 pts) $\{Y_t\}$ é inversível? d) (0,8~pts) Se possível, encontre a representação $MA(\infty)$
- e) (0,8~pts) Se possível, encontre a representação $AR(\infty)$
- f) (1,4 pts) Calcule a primeira autocorrelação
- g) (0,6 pts) Calcule a primeira antocorrelação parcial