8 时序逻辑电路

- 8.1 时序电路的结构、分类和描述方式
- 8.2 基于触发器时序电路的分析和设计
- 8.3 集成计数器
- 8.4 寄存器

8.1 时序电路的结构、分类和描述方式

1. 逻辑电路的分类

(1) 组合逻辑电路: 任一时刻的输出仅与该时刻电路的输入信号有关,而与该时刻以前的输入状态无关。

(2) 时序逻辑电路: 任一时刻的输出不仅与该时刻电路的输入信号有关,而且还与电路过去的状态有关。

2. 时序电路的结构框图

表示信号间的逻辑关系的三 个向量方程:

a. 输出方程

$$Z(t_n) = F[X(t_n),Q(t_n)]$$

电路输出变量逻辑式

b. 驱动方程

$$W(t_n) = H[X(t_n), Q(t_n)]$$

各触发器输入端的逻辑式

c. 状态方程

$$Q(t_{n+1}) = G[W(t_n), Q(t_n)]$$

3. 时序电路的分类

(1) 根据存贮电路中<mark>触发器状态变化的特点</mark>,时序电路分为两大类: 同步时序电路和异步时序电路。

a. 同步时序电路

各触发器时钟受同一个时钟脉 冲控制,即所有FF的CP接在一起。

b. 异步时序电路

没有统一的时钟脉冲,触发器 状态变化由各自的时钟脉冲信号或 由输入信号决定。

(2) 时序电路按输出信号的特点又可以分为米里 (Mealy)型和摩尔(Moore)型时序电路两种。

a. Moore型电路 输出信号仅取决于存贮电路的状态。

$$Z(t_n) = F[Q(t_n)]$$

b. Mealy型电路

输出不仅取决于存贮电路的状态,还取 决于输入变量的状态。

$$Z(t_n) = F[X(t_n), Q(t_n)]$$

8.2 基于触发器时序电路的分析和设计

时序逻辑电路中的基本单元是触发器。

分析方法

1. 时序电路分析流程图

同步时序电路的分析

[例1] 分析如图所示时序电路的逻辑功能。

[解] 这个电路的组合电路部分是两个与门。

存贮电路部分是三个T触发器;

Z为外部输出;

三个触发器由同一时钟CP控制,所以是同步时序电路。

上页下页返回

(1) 写三个状态方程

a. 驱动方程
$$T_0=1$$
 ; $T_1=Q_0^{\rm n}$; $T_2=Q_1^{\rm n}Q_0^{\rm n}$

b. 输出方程
$$Z = Q_2^n Q_1^n Q_0^n$$

c. 求状态方程

T触发器特性方程为 $Q^{n+1} = T \oplus Q^n$

将驱动方程 $T_0 = 1$; $T_1 = Q_0^n$; $T_2 = Q_1^n Q_0^n$ 代入触发器的特性方程,得状态方程为

$$Q_0^{n+1} = T_0 \oplus Q_0^n = \overline{Q_0^n}$$

$$Q_1^{n+1} \ = \ T_1 \ \oplus \ Q_1^n \ = \ Q_0^n \ \oplus \ Q_1^n \ = \ Q_1^n \overline{Q_0^n} \ + \ \overline{Q_1^n} Q_0^n$$

$$Q_2^{n+1} = T_2 \oplus Q_2^n = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n \overline{Q_0^n} + Q_2^n \overline{Q_1^n}$$

(2) 列状态转换表画出状态转换图

a. 状态转换真值表

$$Q_0^{\,n+1} \; = \; Q_0^{\,n}$$

$$Q_1^{n+1} = Q_0^n \oplus Q_1^n$$

$$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n \overline{Q_0^n} + Q_2^n \overline{Q_1^n}$$

$$Z = Q_2^n Q_1^n Q_0^n$$

CP	$Q_2^\mathrm{n}Q_1^\mathrm{n}Q_0^\mathrm{n}$			$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$		
1	0	0	0	0	0	1
2	0	0	1	0	1	0
3	0	1	0	0	1	1
4	0	1	1	1	0	0
5	1	0	0	1	0	1
6	1	0	1	1	1	0
7	1	1	0	1	1	1
8	1	1	1	0	0	0 7

b. 次态卡诺图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	0	0	1

$$Q_0^{n+1} = \overline{Q_0^n} \qquad Q_1^{n+1} = \overline{Q_1^n} Q_0^n + Q_1^n \overline{Q_0^n}$$

$$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n \overline{Q_0^n} + Q_2^n \overline{Q_1^n}$$

$$Z = Q_2^n Q_1^n Q_0^n$$

Q_0^{n+1}	e; e	Ö		
Q_2^n	<u>\00</u>	01	11	_10
0	1	0	0_	1
1	1	0	0	1
Q_1^{n+1}	0; Q		•	
Q_2^*	00	01	11	_10_
0	0	1	0	1
1	0	1	0	1
Q_{2}^{n+1}) e; e	n 0		
\mathcal{Q}_{i}^{n}	00	01	11	10
0	0	0	1	0
1	1	1	0	1
(Z)	2ï Qï			
Q_1^n	_00_	01	11	10
0	0	0	0	0
1	0	0	1	0

c. 状态转换图

状态转换表的图形表示方式

箭头上注明的是在现态*S*ⁿ以及当前输入变量 *X*作用下输出变量*Z*的 值。

注:三个触发器共有八个状态000,001,…,111。由于本例中没有外部输入,所以X/Z斜线上方没有注字。

d. 时序图

(3) 说明电路逻辑功能

随着时钟信号的作用,状态转换的次序为二进制数递增规律,当输入八个时钟脉冲时,恢复到初态000,循环周期为8。该电路为同步八进制加法计数器。Z可以作为进位信号。当计数到7时,Z为1。

态序表:

态序表也是一种形式的状态转换真值表。 在态序表中,以时钟脉冲作为状态转换顺序。

首先根据某一现态 S_0 ,得到相应的次态 S_1

再以 S_1 为现态,得到新的次态 S_2 。

依次排列下去,直至进入到循环状态。

态序表

态序	触发器状态				
CP	Q_2	Q_1	Q_0		
→ 0	0	0	0		
1	0	0	1		
2	0	1	0		
3.	0	1	1		
5	1	0	0		
5	1	0	1		
6	1	1	0 -		
└ -7	1	1	1		

在每一行不再单独列出触发器的现态和次态。

异步时序电路的分析

至少有一个触发器时钟与其它触发器不同

时钟方程

逻辑电路图

驱动方程 输出方程 状态方程

状态转换表 状态转换图 时序图

逻辑功能

特别注意: 应写出每一级的时钟方程。

[例] 分析如图所示时序电路的逻辑功能。

[解] (1) 写方程

a. 驱动方程

$$J_0 = \overline{Q_2^n}$$
 ; $K_0 = 1$; $CP_0 = CP$
 $J_1 = K_1 = 1$; $CP_1 = Q_0$
 $J_2 = Q_1^n Q_0^n$; $K_2 = 1$; $CP_2 = CP$

上页 下页 返回

a. 驱动方程:

$$J_0 = Q_2^n$$
 ; $K_0 = 1$; $CP_0 = CP$

$$J_1 = K_1 = 1$$
 ; $CP_1 = Q_0$

$$J_2 = Q_1^n Q_0^n$$
; $K_2 = 1$; $CP_2 = CP$

b. 状态方程

将驱动方程代入JKFF的特性方程得状态方程

$$Q_0^{n+1} = Q_2^n Q_0^n$$

$$(CP_0)$$

$$Q_1^{n+1} = Q_1^n$$

$$(CP_1)$$

$$Q_2^{n+1} = Q_2^n Q_1^n Q_0^n$$

$$(CP_2)$$

(2) 根据状态方程列出状态转换真值表

$$Q_0^{n+1} = Q_2^n Q_0^n \qquad (CP_0 = CP)$$

$$Q_1^{n+1} = \overline{Q_1^n} \qquad (CP_1 = Q_0)$$

$$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n \qquad (CP_2 = CP)$$

$Q_2^{\mathbf{r}}$	Q_1	n Qo ⁿ	Q_2^{n+}	¹ Q1 ⁿ⁺	·1Q0n+1	CP ₂ CP ₁ CP ₀
0	0	0	0	0	1	↓ ↓
0	0	1	0	1	0	↓ ↓ ↓
0	1	0	0	1	1	↓ ↓
0	1	1	1	0	0	\downarrow \downarrow \downarrow
1	0	0	0	0	0	↓ ↓
1	0	1	0	1	0	\downarrow \downarrow \downarrow
1	1	0	0	1	0	↓ ↓
1	1	1	0	0	0	↓ ↓ ↓

异步8进制加法计数器。

基于触发器时序电路的设计

同步时序电路的设计

同步时序电路中, 时钟脉冲同时加到各触发器的时钟端, 不需设计时钟电路。

[例1] 用下降沿触发的*JK*触发器设计同步8421BCD码的十进制加法计数器。

[解] (1) 根据设计要求,作出状态转换图。

(2) 选择触发器的类型、个数并列出状态转换真值表

选择JK触发器。因为状态数N=10,所以触发器个数n=4。

列出状态转换真值表

状态转换真值表

СР	Q ₃ ⁿ C	$Q_2^nQ_1^n$	Q_0^n	Q_3^{n-1}	$^{+1}Q_2^{n+1}$	Q_1^{n+1}	Q_0^{n+1}	
1	0 0	0	0	0	0	0	1	
2	0 0	0	1	0	0	1	0	
3	0 0	1	0	0	0	1	1	
4	0 0	1	1	0	1	0	0	
5	0 1	0	0	0	1	0	1	
6	0 1	0	1	0	1	1	0	
7	0 1	1	0	0	1	1	1	
8	0 1	1	1	1	0	0	0	
9	1 0	0	0	1	0	0	1	
10	1 0	0	1	0	0	0	0	

(3) 求三个向量方程(状态、输出、驱动)

a. 画次态卡诺图

$$Q_3^{n+1} = Q_3^n \overline{Q_0^n} + \overline{Q_3^n} Q_2^n Q_1^n Q_0^n$$

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

CP	(Q ₃ Q	$_{2}^{n}Q_{1}^{n}$	Q_0^n	T	Q_3^{n+}	$-1Q_2^{n+1}$	Q_1^{n+1}	Q_0^{n+1}
1	0	0	0	0	T	0	0	0	1
2	0	0	0	1		0	0	1	0
3	0	0	1	0		0	0	1	1
4	0	0	1	1		0	1	0	0
5	0	1	0	0		0	1	0	1
6	0	1	0	1		0	1	1	0
7	0	1	1	0		0	1	1	1
8	0	1	1	1		1	0	0	0
9	1	0	0	0		1	0	0	1
10	1	0	0	1		0	0	0	0

$$J_3 = Q_2 Q_1 Q_0$$
, $K_3 = Q_0$

$$K_3=Q_0$$

数字电子技术基础

$$Q^{n+1} = JQ^{n} + \overline{K}Q^{n}$$

$$Q_{2}^{n+1} = Q_{2}^{n} \overline{Q}_{0}^{n} + Q_{2}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{2}^{n} Q_{1}^{n} Q_{0}^{n}$$

$$= Q_{2}^{n} (\overline{Q}_{1}^{n} + \overline{Q}_{0}^{n}) + \overline{Q}_{2}^{n} Q_{1}^{n} Q_{0}^{n}$$

$$J_2 = Q_1 Q_0 = K_2$$

$$Q_1^{n+1} = Q_1^n \overline{Q_0^n} + \overline{Q_3^n} \overline{Q_1^n} Q_0^n$$

$$J_1 = \overline{Q}_3 Q_0$$
, $K_1 = Q_0$

$$oldsymbol{Q}_0^{n+1}=\overline{oldsymbol{Q}_0^n}$$
 $oldsymbol{Q}^{n+1}=J\overline{oldsymbol{Q}^n}+\overline{K}oldsymbol{Q}^n$ $oldsymbol{J_0=1}$, $oldsymbol{K_0=1}$

 $J_0=1$

(4) 由驱动方程画出逻辑电路图

$$J_{0} = K_{0} = 1$$

$$J_{1} = \overline{Q_{3}}Q_{0} ; K_{1} = Q_{0}$$

$$J_{2} = Q_{1}Q_{0} ; K_{2} = Q_{1}Q_{0}$$

$$J_{3} = Q_{2}Q_{1}Q_{0} ; K_{3} = Q_{0}$$

(5) 检查电路的自起启能力。

由次态卡诺图可以得到电路状态为1010~1111时的次态

分别为:

 $1010 \rightarrow 1011 \rightarrow 0100;$

1100→1101→0100;

 $1110 \rightarrow 1111 \rightarrow 0000$

该电路能够自启动。

$Q_0^{n+1}Q$	$_{1}^{\mathrm{n}}\mathcal{Q}_{0}^{\mathrm{n}}$			
$Q_3^{\mathrm{n}}Q_2^{\mathrm{n}}$	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

(6) 状态转换图

 $1010 \rightarrow 1011 \rightarrow 0100;$

1100→1101→0100;

 $1110 \rightarrow 1111 \rightarrow 0000$

设计步骤总结

作业

自练题:

8.1

8.5

作业题:

8.3

8.6

8.3 集成计数器

计数器的功能: 计数(累计输入脉冲个数)、分频、定时等;

按时钟脉冲的输入方式分类

同步计数器

异步计数器

加法计数器

减法计数器

可逆计数器

计数器的分类

按计数器输出码的规律分类

按计数容量 M分类

模**2**ⁿ计数器,如**16** <u>非模**2**ⁿ计数器,如**10**</u>

进位模数就是计数器所经历的独立状态总数,即进位制的数。

2. 几种中规模集成计数器

CIP 脉冲 引入方式	型 号	计数模式	清零方式	预置数方式	
异 步	74293	二-八-十六进制加	异步 (高电平)	无	
	74290	二-五-十进制加	异步(高电平)	无	
	74160	十进制加法	异步(低电平)	同步(低有效)	
	74161	4 位二进制加法	异步(低电平)	同步 (低有效)	
同步	74HC161	4 位二进制加法	异步(低电平)	同步 (低有效)	
	74162	十进制加法	同步(低电平)	同步 (低有效)	
	74163	4 位二进制加法	同步 (低电平)	同步 (低有效)	
	74192	十进制可逆	异步 (高电平)	异步(低有效)	
	74193	4 位二进制可逆	异步 (高电平)	异步(低有效)	

异步集成计数器

1. 计数器74293: 二-八-十六进制异步二进制加法计数器

- ① 当CP仅送入 CP_0 ,由 Q_0 输出,电路为二进制计数器;
- ② 当CP仅送入 CP_1 , 由 $Q_3Q_2Q_1$ 输出, 电路为八进制计数器;
- ③ 当CP送入 CP_0 ,而 CP_1 与 Q_0 相连时,电路为十六进制计数器。

74293设有两个复位端 R_{01} 和 R_{02} ,当其全为1时,计数器异步清零。

74293的功能表

CP_0	CP_1	R_{01}	R_{02}	工作状态
×	X	1	1	置 0
\downarrow	0	X	0	FF ₀ 计数
\downarrow	0	0	X	FF ₀ 计数
0	\downarrow	X	0	FF ₁ ~FF ₃ 计数
0	\downarrow	0	X	FF ₁ ~FF ₃ 计数

2. 异步2-5-10进制计数器74290

	输 入		输 出	rd. Ak
R_{01} R_{02}	S_{91} S_{92}	CP_0 CP_1	Q_3 Q_2 Q_1 Q_0	功能
1 1 1 1	0 × × × 0	× × × ×	0 0 0 0	异步清 0
××	1 1	××	1 0 0 1	异步置 9
$R_{01}R_{02}=0$	$S_{91}S_{92} = 0$	$egin{array}{cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ &$	二进制 五进制 8421BCD 码 5421BCD 码	计数

同步集成计数器

1. 同步二进制计数器74161

74161是模2⁴(四位二进制)同步计数器,具有计数、保持、 预置、清0功能。

(1) 74161符号图

CP为计数脉冲输入端,上升沿有效。

 $D_0D_1D_2D_3$ 是数据输入端。

 Q_3 、 Q_2 、 Q_1 、 Q_0 是计数输出端。

CO是进位输出信号;

EP、ET是使能控制端。

CR是异步清零端。

LD同步置数端。

(2) 74161功能

a. 异步清零

当 CR= 0时,可以使 计数器立即清零。

b. 同步预置

当 $\overline{CR}=1$,数据输入 $D_0D_1D_2D_3=ABCD$, $\overline{LD}=0$,在时钟信号CP的上升沿到来时,完成置数操作,使 $Q_3Q_2Q_1Q_0=DCBA$ 。

使能控制信号EP、ET的状态不影响置数操作。

c. 保持

当 \overline{CR} = \overline{LD} =1,使能控制信号 $EP \cdot ET$ =0时,计数器各Q端的状态 保持不变。

d. 计数

当 \overline{CR} = \overline{LD} = 1, EP= ET=1时,在时钟脉冲CP的上升沿到来时,计数器进行计数。Q端的状态按自然态序变化。

进位输出信号 $CO = Q_3Q_2Q_1Q_0ET$, 当 $Q_3 \sim Q_0$ 及ET均为1时,CO = 1,产生正进位脉冲。

计数器74160, 各输入、输出端子功能、功能表及符号与74161相同。

与74161不同的是74160为十进制计数器,它的进位输出方程为 $CO = Q_3Q_0ET$

同步二进制计数器74163

74163是全同步式四位二进制加法计数器。

СР	CR	LD	ET	EP	工作状态
\uparrow	0	×	×	×	清0
\uparrow	1	0	×	×	预置数
×	1	1	0	×	保持
X	1	1	X	0	保持
\uparrow	1	1	1	1	计数

CR为同步清零端。

其余端子功能与74161完全相同。

- •The LOW level pulse on the CLR input causes all the outputs to go LOW.
- Next, the LOW on the LOAD synchronously enters the data into the counter and 1100 appear on the Q outputs at the positive-going clock edge.
- The count advance through states 13, 14, and 15. And then recycles to 0, 1 during high *ENT* and *ENP*.
- When ENP goes LOW, the counter is inhibited and remains in the binary 2 state.

全同步式集成计数器74162

74162与74163唯一不同之处是74162为十进制加法计数器。其功能表、符号图与74163完全相同。

上页 下页 返回

3. 同步可逆集成计数器74193

74193是双时钟输入四位二进制同步可逆计数器。

CP」是加法计数时钟信号;

CP_D是减法计数时钟信号;

CR是置零信号;

LD是送数控制信号;

CO是加法进位信号;

BO为减法借位信号。

74193主要功能

a. 当CR=0, $CP_D=1$ 时,时钟信号引入 CP_U , 计数器作加法计数。

加法计数进位输出:

$$\overline{CO} = \overline{Q_3 Q_2 Q_1 Q_0 \overline{CP_U}}$$

当计数器输出1111状态,且 CP_U 为低电平时,输出一个负脉冲;

b. 当CR = 0, $CP_U = 1$ 时,时钟信号应引入 CP_D , 74193作减法计数。

CR LD D₀ D₁ D₂ D₃ CP_U 74193 CO Q₀ Q₁ Q₂ Q₃

减法计数借位输出:

$$\overline{BO} = \overline{\overline{Q}_3} \overline{\overline{Q}_2} \overline{\overline{Q}_1} \overline{\overline{Q}_0} \overline{\overline{CP}_D}$$

当计数器输出0000状态,且 CP_{D} 为低电平时,输出一个负脉冲信号。

c. 异步送数

当 $\overline{LD}=0$ 时,将 $D_3D_2D_1D_0$ 立即 置入计数器中,使

 $Q_3\overline{Q_2}Q_1\overline{Q_0}=\overline{D_3}\overline{D_2}\overline{D_1}\overline{D_0}$ 送数与CP无关。

74193功能表

d.异步清零 当*CR*=1时,计数器 立即清零,与其它输入 端的状态无关。

CP_{U}	CP _D	CR	LD	工作状态
×	X	1	X	清0
X	X	0	0	预置数
1	1	0	1	加法计数
1	\uparrow	0	1	减法计数

 $\overline{CO} = Q_3 Q_2 Q_1 Q_0 \overline{CP_U} \overline{BO} = \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{Q_0} \overline{CP_D}$

多片集成计数器的级联

同步级联

- •将各片的CP端相连。
- 计数器1的进位输出端与计数器2的计数 使能端相接。

当计数器1计数到最后一个数,即1001时,在进位输出端产生高电平,**使片II的计数使能端为1,这样,** 片II**在下一个***CP*到来时"加1"计数1次。

总计数模数=每片计数模数的乘积。

74LS161的同步级联方法

将各片的CP端相连,并将低位片的CO端与高位片的ET和EP端相连。片I在 CP作用下进行正常计数,当它计到1111时,片I的CO变到1,使片II的ET和EP端为1,这样,片II在下一个CP到来时才能进行"111"计数。

总计数模数=16×16=256

74LS161的异步级联方法

片I在CP作用下进行正常计数,当它计到1111时,片I的CO变到1,其下降沿经反相器为片IICP提供了一个上升沿,使其进行"加1"计数。

任意进制计数器构成

目前市售集成计数器只做成应用较广的十进制、十六进制、7位二进制、12位二进制、14位二进制等几种产品。

需要的模数<MSI提供的最大模数: 只需一片

需要的模数>MSI提供的最大模数:多片级联

如何实现任意进制?

利用清零端截断序列:

利用置数端控制初始态:

返回

1. 控制端异步操作

把控制端异步作用(如异步清零、异步置数立即作用,与 CP无关)称为异步操作。

(1) 反馈清0法

对于具有<mark>异步清零输入</mark>的计数器,只要在清零输入端加入清零信号,计数器的输出立即变为0态。

清零信号一般由计数器输出Q3Q2Q1Q0译码得到。

N进制计数器的有效状态 $S_0 \sim S_{n-1}$,所以必须用 S_{n-1} 的下一个状态,即 S_n (无效状态)译码产生清零信号。该无效状态作为一个瞬态而出现,稳态的计数模仍为N。

用反馈清零法设计N进制的具体步骤如下:

① 写出N进制计数器S_n状态的编码

对满足 2^i 进制的集成计数器, S_n 状态应取二进制编码,对十进制集成计数器, S_n 状态应取8421 BCD码。

② 求反馈逻辑

$$F = \left\{ egin{array}{ll} \Pi Q^1 & 控制端高有效 \ \hline \Pi Q^1 & 控制端低有效 \end{array}
ight.$$

 ΠQ^1 ——是指 S_n 状态编码中值为1的各Q之"与"。

③ 画逻辑图

[例1] 用74LS293构成十进制计数器。

[解] 74LS293是一个2-8-16异步计数器。异步高电平清零。

- (1) 令 CP_0 =CP, CP_1 = Q_0 , 把计数器接成M=16。 由于M>N(=10),所以用一片74LS293,再加反馈逻辑即可构成。
 - (2) 写出N进制计数器S_n状态的二进制编码

$$N=10$$
, $S_{\rm n}=1010$

(3) 求反馈逻辑

$$F = R_{01}R_{02} = Q_3Q_1$$

(4) 画逻辑图

(5) 波形图

1010是瞬态,其持续时间仅为一级与非门和一级触发器的延迟,非常短暂,故不将其作为计数循环的有效状态,列计数态序表,画状态图和工作波形图时,不将其列入。

上页 下页 返回

[例2] 用74LS290设计六进制计数器, 画出状态循环图。

[解] 74LS290为二-五-十进制计数器,异步高电平清零。

- (1) 将74LS290转为10进制($CP_0 = CP$, $CP_1 = Q_0$)。
- (2) N=6, $S_n=0110$
- (3) $F = R_{01}R_{02} = Q_2Q_1$
- (4) 画逻辑图和状态图。

(a) 逻辑图 (b) 状态图

[例4] 用74LS290构成60分频电路。

[解] 分频电路与计数电路的区别:

计数电路将所有Q状态作为一组代码输出;

分频电路一般仅有一个输出端(由某一Q端输出或若干Q端的组合),作为与CP成某种特定关系的脉冲序列。

Q₀: 二分频

Q₁:四分频

 Q_1Q_0

4进制 计数器

[例4] 用74LS290构成60分频电路。

本例可按六十进制计数器设计,而仅由最高位Q端输出。

74LS290所能实现的最大计数模数M=10, 2片级联先构成 100进制计数器;

利用反馈清零再构成60进制。

注意: S_n 状态只能用8421BCD码,而不能用二进制码。

- **1** N=60, $S_n=01100000$;
- ② $F = R_{O1}R_{O2} = \Pi Q^1 = Q_6Q_5$

③ 画逻辑图

练习: 用74160组成48进制计数器。

СР	CR	<u>ID</u>	EP	EP	工作状态
X	0	X	×	×	清0
1	1	0	X	X	预置数
×	1	1	0	X	保持
×	1	1	X	0	保持
1	1	1	1	1	计数

74160为模10计数器

练习: 用74160组成48进制计数器。

解:因为N=48,而74160为模10计数器,所以要用两片 74160构成此计数器。

先将两芯片采用同步级联方式连接成100进制计数器, 然后再用**异步清零**法组成48进制计数器。

N=48, $S_n=01001000$ (S_n 状态只能用8421BCD码)

(2) 反馈置数法

对于异步置数,只要在其置数输入端加入置数控制信号,计数器立即将由数据输入 $(D_3D_2D_1D_0)$ 决定的状态 $(记为S_0)$ 置于计数器中,置数控制信号随之消失,计数器由 S_0 开始重新计数。

已知初态 S_0 ,对于N进制计数器,末态则为 S_0 +(N-1) $_B$,因此,置数控制信号应来自于 S_0 +(N) $_B$ 。

[例5] 试用74LS193设计十进制加法计数器, 计数器的起始状态为0011。

[M] ① 写出置数控制状态 S_n 的二进制编码

$$S_{\rm n} = S_0 + (N)_{\rm B} = 0011 + 1010 = 1101$$

③ 画逻辑图

② 求反馈逻辑

$$\overline{LD} = \overline{Q_3 Q_2 Q_0}$$

上页 下页 返回

2. 控制端同步操作

在控制端加入有效的清零或置数控制信号后,必须等 待*CP*有效沿到来时,计数器才清零或置数——同步操作。

同步清零或置数没有过渡状态。

计数器在 $S_0 \sim S_{N-1}$ 共N个状态中工作,当计数器进入 S_{N-1} 状态详码产生清零或置数信号并反馈到同步清零或置数端,要等下一拍时钟来到时,才完成清零或置数动作,使计数器返回 S_0 。

[例6] 用74LS161和74163分别设计一个十进制加法计数器,要求初始状态为0000。

[解] 74LS161 置数为同步; 74LS163清零和置数均为同步。

① 写出N进制计数器 $S_{n,1}$ 状态的二进制编码

$$S_{n-1} = S_0 + (N-1)_B = 0000 + 1001 = 1001$$

② 求反馈逻辑

$$\overline{LD} = \overline{Q_3}\overline{Q_0}$$

③ 画逻辑图

同步操作和异步操作的比较:

在异步操作条件下,无论是异步清零法,还是异步置数法,均用 S_n 状态反馈,且 S_n 状态为瞬态;

在同步操作条件下,无论是同步清零法还是同步置数法,均用 S_{n-1} 状态反馈,**无瞬态**, S_{n-1} 为有效计数状态。

练习: 分析以下电路是几进制计数器。

R_{01} R_{02}	输 入 S ₉₁ S ₉₂	CP_1 CP_2	輸出 QDQCQBQA	功能
1 1 1 1	0 X X 0	X X X X	0 0 0 0	异步清 ()
ХХ	1 1	ХХ	1 0 0 1	异步置 9
$R_{01}R_{02}=0$	$S_{91}S_{92} = 0$	$\begin{array}{ccc} \downarrow & \times \\ \times & \downarrow \\ \downarrow & Q_A \\ Q_D & \downarrow \end{array}$	二进制 五进制 8421BCD 码 5421BCD 码	计数

上页 下页 返回

(1) $CP \rightarrow CP_2$,仅 $Q_3Q_2Q_1$ 作输出,反馈连线 $S_n = 011$,故为3进制计数器。

(2) $CP \rightarrow CP_1$, $Q_0 \rightarrow CP_2$, 为8421BCD码的十进制计数器。

 $Q_3Q_2Q_1Q_0$ 输出均有效, $S_n=1001$,故为9进制计数器。

利用进位输出信号CO实现反馈置数

当计数器由 $S_0=0$ 开始计数,CO端有进位信号输出时,集成计数器一定实现了自身的M进制,其末态 $S_{n,1}=M-1$ 。

可用CO提供同步置数信号。求初态?

对同步置数

已知
$$S_{n-1} = S_0 + (N-1)_B \rightarrow S_0 = M-N$$

[例7] 试用74160 (同步置数十进制) 的*CO*端反馈,实现6进制 计数器。

[解] ① 求预置数 $S_0 = [10-6]_{BCD} = 0100$

② 画逻辑图

由于预置数0100是计数循环中的最小数,这种设计方法也称为置最小

模M的计数器设计成任意N进制计数器总结

- M>N: 单片即可,有效状态S₀~S_{N-1} 反馈清零、反馈置数、利用进位信号实现反馈置数
 - 同步操作取 S_{N-1} 状态构成反馈方程
 - 异步操作取 S_N 状态构成反馈方程
 - 对2ⁱ进制的集成计数器,反馈状态应取二进制编码, 对十进制集成计数器,反馈状态应取8421 BCD码。
- M<N: 先级联, 再得到N进制

作业

自练题:

8.10

8.11

作业题:

8.7

8.12