Reporte de operaciones con S.E.L

Universidad Centroamericana "José Simeón Cañas" Análisis numérico

Método iterativo de Jacobi

Resolución del sistema de ecuaciones lineales A

$$10a_0 - a_1 + 2a_2 = 6$$

$$-a_0 + 11a_1 - a_2 + 3a_3 = 25$$

$$2a_0 - a_1 + 10a_2 - a_3 = -11$$

$$+ 3a_1 - a_2 + 8a_3 = 15$$

$$\mathbf{A} = \begin{bmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix}$$

Fórmula del proceso iterativo:

$$\mathbf{X}^{(k)} = \mathbf{T}\mathbf{X}^{(k-1)} + \mathbf{C} \quad \forall \ k \ge 1$$

Condiciones iniciales de proceso:

$$\mathbf{T} = \begin{bmatrix} 0 & 0.1 & -0.2 & -0 \\ 0.0909091 & 0 & 0.0909091 & -0.272727 \\ -0.2 & 0.1 & 0 & 0.1 \\ -0 & -0.375 & 0.125 & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 0.6 \\ 2.27273 \\ -1.1 \\ 1.875 \end{bmatrix} \quad \mathbf{X}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Resultados de apoximaciones del la solución $\mathbf{X} \approx \mathbf{X}^{(k)}$

k	1	2	3	4	5	6	7
$a_0^{(k)}$	0	0.6	1.04727	0.932636	1.0152	0.988991	1.0032
$a_1^{(k)}$	0	2.27273	1.71591	2.05331	1.9537	2.01141	1.99224
$a_2^{(k)}$	0	-1.1	-0.805227	-1.04934	-0.968109	-1.01029	-0.994522
$a_3^{(k)}$	0	1.875	0.885227	1.13088	0.973843	1.02135	0.994434

k	8	9	10	11	12	13	14
$a_0^{(k)}$	0.998128	1.00063	0.999674	1.00012	0.999942	1.00002	0.99999
$a_1^{(k)}$	2.00231	1.99867	2.00045	1.99977	2.00008	1.99996	2.00002
$a_2^{(k)}$	-1.00197	-0.999036	-1.00037	-0.999828	-1.00007	-0.999969	-1.00001
$a_3^{(k)}$	1.00359	0.998888	1.00062	0.999786	1.00011	0.99996	1.00002

1