

EE 521/ECE 582 – Analysis of Power systems

Class #13 - October 6, 2022

Dr. Noel N. Schulz

Edmund O. Schweitzer III Chair in

Power Apparatus and Systems

Chief Scientist Joint Appointment, PNNL

Co-Director, PNNL/WSU Advanced Grid Institute (AGI)

Washington State University Pullman

Noel.Schulz@wsu.edu EME 35

509-335-0980 (o) and 509-336-5522 (c)

Reminders

- Student Hours This Week & Next
 - Friday 1:30-2:30 pm Zoom or EME 35 Pullman
 - Tuesday 4:30-5:30 pm (after class) Zoom or EME
 35 Pullman
 - Wednesday 4-5 pm Zoom or EME 35 Pullman
 - Friday 1:30-2:30 pm Zoom or EME 35 Pullman Additional Office Hours next week will be posted
- Remember the Discussion Set Assignment
 - 10/11 Discussions
- Final Paper Think about Topic Oct 14
- NAPS or WPRC Next week?

Program #2 - Sparse Matrices Program

- Full Newton Raphson -- Take the Jacobian Matrix from Program #1 (with taps) and solve the problem using Sparse Matrix Techniques
- Fast Decoupled Power Flow Use Sparse Matrix Techniques for B' and B'' and solve. Use Scheme 0 to solve Fast Decoupled Power Flow
- Extra Credit -- Fast Decoupled Power Flow Use Sparse Matrix Techniques for B' and B''
 and solve. Use Scheme 0 to solve Fast
 Decoupled Power Flow

**** Do not use the SEARCH function as that is not an acceptable method ****

Example of Adding a New Term/Fill

\overline{i}	NROW	NCOL	NIR	NIC	Value
1	8	8	0	0	-28
2	7	2	35	17	5
3	10	5	41	0	7
4	5	10	0	41	7
5	5	7	4	25	3
6	6	6	25	42	-33
7	6	5	6	30	10
8	1	8	0	18	8
9	5	5	28	7	-44
10	1	4	8	13	19
11	4	3	27	40	6
12	8	3	44	14	1
13	3	4	29	27	6
14	10	3	3	0	9
15	2	1	36	20	2
16	9	7	43	0	13
17	10	2	14	0	10
18	3	8	19	26	1
19	3	10	0	4	9
20	4	1	11	22	19
21	7	7	26	44	-68
22	8	1	12	0	8
23	2	10	0	19	10
24	3	3	13	11	-40
25	6	7	0	21	19
26	7	8	38	1	15
27	4	4	39	31	-38
28		6	5	6	10 11
29	3 7	5	33	39	3
30		5	$\frac{42}{9}$	0	9
31		4	10	36	2
32		2 7	18	5	9
33		7	23	33	5
34 35	7	3	30	12	9
36		2	34	2	-21
37	$\frac{2}{1}$	1	32	15	-33
38		9	0	43	13
39		5	0	9	9
40	5	3	31	35	11
41		10	0	0	-30
-11	10	10	J	~	

 $\begin{array}{c} 21 \\ 0 \end{array}$

44

45

46

2

2

-17

15

Χ

i	FIR	FIC
1	37	37
2	15	32
3	24	24
4	20	10
5	40	29
6	7	28
7	2	34
8	22	8
9	16	38
10	17	23

Example of Adding a New Term/Fill

\overline{i}	NROW	NCOL	NIR	NIC	Value
1	8	8	0	0	-28
2	7	2	35	17	5
3	10	5	41	$\begin{array}{c} 0 \\ 41 \end{array}$	7 7
$\frac{4}{5}$	5 5	10 7	4	25	3
6	6	6	25	42	-33
7	6	5	6	30	10
8	1	8	0	18	46 8
9	5	5	28	7	-44 4 5 10
10	1	4	8	40	45 19 6
11	4 8	3	27 44	14	1
12 13	3	4	29	27	6
14	10	3	3	0	9
15	2	1	36	20	2
16	9	7	43	0	13
17	10	2	14	0	10 1
18	3	8	19	26	
19	3	10	0	4	9
20 21	$\frac{4}{7}$	$\frac{1}{7}$	11 26	22 44	$^{19}_{-68}$
22	8	1	12	0	8
23	2	10	0	19	10
24	3	3	13	11	-40
25	6	7	0	21	19
26	7	8	38	1	15
27 28	4 5	4 6	39 5	31 6	$-38 \\ 10$
29	3	5	33	39	11
30	7	5	42	3	3
31	5	4	9	0	9
32	1	2	10	36	2 9
33 34	3 2	7 7	18 23/	5 46 33	5
35	7	3	30	12	9
36	2	2	84	15 2	-21
37	. 1	1	32	15	-33
38	7	9	0	43	13
39 40	$\frac{4}{5}$	5 3	$0 \\ 31$	9 35	9 11
41	10	10	0	0	-30
42	7	6	21	0	19
43	9	9	0	0	-17
44	8	7	1	16	15
45	5 2	2 4	4 3	34 1	3 X
46	5 2	2 8	3 2	23 18	8 X
47	,	4 7	7		X
48	3 4	4 8	3		X
49) 4	4 ′	10		X

i	FIR	FIC
1	37	37
2	15	32
3	24	24
4	20	10
5	40	29
6	7	28
7	2	34
8	22	8
9	16	38
10	17	23

The Solution of Linear Systems

FIGURE 2.1

Order of calculating columns and rows of Q

known as Crout 's algorithm for finding the LU factors [8]. Let the matrix Q be defined as

$$Q \stackrel{\triangle}{=} L + U - I = \begin{bmatrix} l_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ l_{21} & l_{22} & u_{23} & \cdots & u_{2n} \\ l_{31} & l_{32} & l_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{bmatrix}$$
(2.24)

11

Crout's algorithm computes the elements of Q first by column and then row, as shown in Figure 2.1. Each element q_{ij} of Q depends only on the a_{ij} entry of A and previously computed values of Q.

Crout's Algorithm for Computing LU from A

- 1. Initialize Q to the zero matrix. Let j = 1.
- 2. Complete the jth column of Q (jth column of L) as

$$q_{kj} = a_{kj} - \sum_{i=1}^{j-1} q_{ki} q_{ij} \text{ for } k = j, \dots, n$$
 (2.25)

- 3. If j = n, then stop.
- 4. Assuming that $q_{jj} \neq 0$, complete the jth row of Q (jth row of U) as

$$q_{jk} = \frac{1}{q_{jj}} \left(a_{jk} - \sum_{i=1}^{j-1} q_{ji} q_{ik} \right) \text{ for } k = j+1,\dots,n$$
 (2.26)

5. Set j = j + 1. Go to step 2.

The Solution of Linear Systems

FIGURE 2.1

Order of calculating columns and rows of Q

known as $\mathit{Crout's}$ algorithm for finding the LU factors [8]. Let the matrix Q be defined as

$$Q \stackrel{\triangle}{=} L + U - I = \begin{bmatrix} l_{11} \ u_{12} \ u_{13} \cdots u_{1n} \\ l_{21} \ l_{22} \ u_{23} \cdots u_{2n} \\ l_{31} \ l_{32} \ l_{33} \cdots u_{3n} \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ l_{n1} \ l_{n2} \ l_{n3} \cdots l_{nn} \end{bmatrix}$$
(2.24)

11

Crout's algorithm computes the elements of Q first by column and then row, as shown in Figure 2.1. Each element q_{ij} of Q depends only on the a_{ij} entry of A and previously computed values of Q.

Crout's Algorithm for Computing LU from A

- 1. Initialize Q to the zero matrix. Let j = 1.
- 2. Complete the jth column of Q (jth column of L) as

$$q_{kj} = a_{kj} - \sum_{i=1}^{j-1} q_{ki} q_{ij} \text{ for } k = j, \dots, n$$
 (2.25)

- 3. If j = n, then stop.
- 4. Assuming that $q_{jj} \neq 0$, complete the jth row of Q (jth row of U) as

$$q_{jk} = \frac{1}{q_{jj}} \left(a_{jk} - \sum_{i=1}^{j-1} q_{ji} q_{ik} \right) \text{ for } k = j+1,\dots,n$$
 (2.26)

5. Set j = j + 1. Go to step 2.

Announcements

- Finish Chapter 4
- Review Sections 3.5.5 & 3.5.6
- Papers for Discussion Set #1 –Questions Today and Responses by 10/11
- Work on Program #1
- Set up Time for Program #1 Discussions