Clustering and t-test

T-test for change in Clinical Outcome with p values

```
\% \ change \ in \ outcome = \frac{first \ read - second \ read}{first \ read}
```

```
data <- read_excel("finaldata.xlsx", sheet = NULL, col_types = c(rep("guess", 6),</pre>
                                                                  "date", rep("guess", 2),
                                                                  rep("numeric", 10)))
status <- factor(c("low", rep("intermediate", 4),</pre>
                    "low", "intermediate", "intermediate",
                    rep("low", 2), rep("intermediate", 3),
                    "low", rep("intermediate", 2), rep("low", 2)))
status <- forcats::fct relevel(status, c("low"))</pre>
#smoking <- as.factor(c("low", "high", "low", "high", "high", "low",
                         rep("high", 3), rep("low", 3), "high", "NA", "high", "low"))
\#smoking <- smoking[-c(8, 13, 18:20)]
smoking <-</pre>
patient <- 1:18
first_read <- data[seq(1, 54, 3), ]
second_read <- data[seq(2, 54, 3), ]</pre>
pval <- NULL
for(i in 10:19){
  change <- 1 - as.numeric(unlist(second_read[, i] / first_read[, i]))</pre>
  cat(names(second_read[, i]), "with p-value of", t.test(change ~ status)$p.value, "\n")
  pval <- c(pval, t.test(change ~ status)$p.value)</pre>
}
## Tumor Volume (mL) with p-value of 0.651912
## Largest Node Volume (mL) with p-value of 0.06978384
## SULmax Tumor with p-value of 0.2943616
## SULmedian with p-value of 0.3630501
## SULpeak with p-value of 0.3854198
## SULmax Largest Node with p-value of 0.0148899
## SULmedian node with p-value of 0.6197499
## SULpeak node with p-value of 0.03951802
## Diffusion Mean Tumor with p-value of 0.1825276
## Diffusion mean ADC Largest Node with p-value of 0.7309697
```

```
change_matrix <- array(NA, c(18, 10))

for(i in 1:10){
   change_matrix[, i] <- 1 - as.numeric(unlist(second_read[1:18, i + 9] / first_read[1:18, i + 9]))
}

change_matrix[is.na(change_matrix)] <- 0

pca <- PCA(change_matrix)</pre>
```

PCA graph of individuals

PCA graph of variables

knitr::kable(cbind(names(data)[10:19], as.numeric(round(pca\$var\$coord[, 1], 3))))

Tumor Volume (mL)	0.101
Largest Node Volume (mL)	0.301
SULmax Tumor	0.763
SULmedian	0.694
SULpeak	0.805
SULmax Largest Node	0.779
SULmedian node	0.709
SULpeak node	0.844
Diffusion Mean Tumor	0.002
Diffusion mean ADC Largest Node	0.225

```
18
                                                                   11
                               9
                               10
                                                                   13
                               17
     0.5 -
Mean change in 10 outcomes
                                                                   12
                                                                   45
                                                                   2
                                                                   16
             factor(cluster)
                                                                   3
     0.0 -
                                                                   5
    -0.5 -
                                                             intermediate
                              low
                                          Risk Groups
# Patient with in cluster 1
```

```
dat$patient[dat$cluster == 1]
## [1] 1 2 4 6 8 9 10 11 12 13 14 15 16 17 18
# Patient in cluster 2
dat$patient[dat$cluster == 2]
## [1] 3 5 7
pdf("clusterplot.pdf")
ggplot(dat, aes(risk, change, label = patient)) +
  geom_point(aes(colour = cluster)) +
  geom_text(aes(label = patient),hjust=0, vjust=0) +
  labs(x = "Risk Groups", y = "Mean change in 10 outcomes") +
  theme(legend.position=c(0.15, 0.4),
        strip.background = element_blank())
dev.off()
## pdf
##
knitr::kable(data.frame(Patient = dat$patient, Cluster = dat$cluster, value = round(change_matrix[, 6],
```

Patient	Cluster	value
1	1	0.427
2	1	0.289
3	2	0.029
4	1	0.363
5	2	-0.456
6	1	0.431
7	2	-0.232
8	1	0.287
9	1	0.605
10	1	0.548
11	1	0.636
12	1	0.422
13	1	0.529
14	1	0.413
15	1	0.376
16	1	0.228
17	1	0.500
18	1	0.789

Cross validation

Removing Tumor Volume (mL)

Removing Largest Node Volume (mL)

Removing SULmax Tumor

Removing SULmedian

Removing SULpeak

Removing SULmax Largest Node

Removing SULmedian node

Removing SULpeak node

Removing Diffusion Mean Tumor

Removing Diffusion mean ADC Largest Node

Clustering table after removing each column

colnames(grouping) <- names(second_read[10:19])
knitr::kable(grouping)</pre>

Tumor				(SULmax			Diffusion	Diffusion mean
Volume	Largest Node	SULmax			Largest	SULmedia	nSULpeak	Mean	ADC Largest
(mL)	Volume (mL)	Tumor	SULmed	d S hiLpeak	Node	node	node	Tumor	Node
1	2	1	2	1	1	2	2	2	2
1	2	1	2	1	1	2	2	2	2
1	2	1	1	2	1	2	2	2	2
1	2	1	2	1	1	2	2	2	2
1	2	1	2	1	1	2	2	2	2
1	2	1	1	2	1	2	2	2	2
1	2	1	2	1	1	2	2	2	2
2	1	2	1	2	2	1	1	1	1
2	1	2	1	2	2	1	1	1	1
2	1	2	1	2	2	1	1	1	1
2	1	2	1	2	2	1	1	1	1
2	1	2	1	2	2	1	1	1	1
2	1	2	1	2	2	1	1	1	1
1	2	1	2	1	1	2	2	2	2
1	2	1	1	2	1	2	2	2	2
2	1	1	1	2	2	1	1	1	2
2	1	2	1	2	2	1	1	1	1

Tumor					SULmax			Diffusion	Diffusion mean
Volume	Largest Node	SULmax	ζ		Largest	SULmedia	nSULpeak	Mean	ADC Largest
(mL)	Volume (mL)	Tumor	SULme	d S ddLpeak	Node	node	node	Tumor	Node
2	1	2	1	2	2	1	1	1	1