## MMC HW4

## continued from HW2

At that instance, all joint velocities are  $0.1 \ rad$  / sec with the robot configuration of prob. 1 of HW2

If possible, Write the Matlab Program to do next problems as

- 1. Find the linear and angular velocities of the tool through velocity propagation
- 2. Find the Jacobian at that instant.
- 3. With the inverse of Jacobian and the obtained results, do velocity inverse kinematics to find the joint velocities.

<HW1> Using MatLab,

1. Program Forward Kinematics for Puma 560 Robots using Matlab



choose [a2, a3, d3, d4] as [ 1 0.3 0.5 1] and  $^6P_T$  =  $[0\,0\,0.3]^T$ 

a) When  $\theta_1=30^\circ$ ,  $\theta_2=30^\circ$ ,  $\theta_3=45^\circ$ ,  $\theta_4=90^\circ$ ,  $\theta_5=30^\circ$ ,  $\theta_6=30^\circ$ , find  $^0_TT$ .