DM3: Conception et utilisation d'un SAT-solver

TODO

19 mai 2025

1 Conception du SAT-solver

Q10.

Soit n le nombre d'opérateurs.

Dans la configuration $(...((a_0|a_1)|a_2)|...)|a_n$, il y a bien n opérateurs.

De plus, la complexité de l'algorithme dans cette configuration est

$$C_n = C_{n-1} + C_0 + \Theta(n)$$

$$\geq C_{n-1} + nA$$

$$\geq C_0 + \sum_{i=0}^{n-1} (n-i)A$$

$$C_n = \left[\Omega(n^2)\right]$$

Donc dans le pire cas, la complexité est au moins de l'ordre de $\Omega(n^2)$.

Pour améliorer la fonction, il faut passer par une variable intermédiaire puis trier la liste.

Q11. (Bonus)

Dans la nouvelle fonction, on a

$$C_n = \Theta(n) + \Theta(n\log(n))$$
$$C_n = \Theta(n\log(n))$$

Q19.

La complexité de l'algorithme dans la configuration $\sim (...(\sim T)...)$ est

$$C_n = C_{n-2} + \Theta(n)$$
$$C_n = \Theta(n^2)$$

Q20. (Bonus)

Dans la nouvelle fonction, on simplifie les enfants avant le nœud.

La complexité est

$$C_n = C_i + C_{n-1-i} + \Theta(1), \quad i \in [0, n-1]$$

$$C_n = \Theta(n)$$

Q25.

Nous avons tenté de choisir la variable en fonction de la fréquence d'apparition : celle qui apparaît le plus est choisie en premier et est mise à \top . Nous l'avons implémenté de cette manière :

```
(* Renvoie la variable dont la fréquence d'apparition dans f est la plus élevée. *)
     let find_var (f: formule) : string =
  let rec find_var_aux (f: formule) (dico: (string, int) dico) (m: string*int): (string*int) * (string, int)
 3
             dico =
          match f with
          | Top | Bot -> m, dico
 6
7
          | Var(q) ->
              {\tt begin}
 8
              match get dico q with
              None when snd m < 1 \rightarrow (q, 1), set dico q 1
                None -> m, set dico q 1
10
                Some v when snd m \leftarrow v \rightarrow (q, v+1), set dico q (v + 1)
11
              | Some v -> m, set dico q (v + 1)
12
13
              end
          | Not(f') -> find_var_aux f' dico m
14
           And (f1, f2) | Or(f1, f2) -> let m', d' = find_var_aux f2 dico m in find_var_aux f1 d' m'
15
16
17
       in fst(fst(find_var_aux f None ("", 0)))
18
     (* quine en utilisant find_var (lent) *)
19
     let rec quine2 (f: formule) : sat_result =
   if f = Top then Some []
20
21
         else if f = Bot then None
          else match find_var f with
23
24
               -> quine (simpl f)
           x -> let f' = simpl (subst f x Top) in match quine f' with
25
26
              Some v -> Some ((x, true)::v)
              None -> let f''
                                 = simpl (subst f x Bot) in
              match quine f'' with
29
                None -> None
Some v' -> Some ((x, false)::v')
30
```

Cette méthode est particulièrement longue et inefficace. Pour voir comment est implémentée la structure de dictionnaire, le fichier est disponible via ce lien.

Q26. (Bonus)

Le satsolver spécialisé en FNC a été implémenté dans fnc_solver.ml. De plus, la propagation unitaire a été rajoutée.

En termes d'efficacité, le satsolver en FNC est meilleur que le simple. En effet, dans la résolution du problème à n dames (cf. seconde partie), le satsolver en FNC permet de résoudre plus de dames et en moins de temps.

2 Résolution de problèmes

Q31.

La formule
$$\bigwedge_{1 \le i < j \le n} (\neg a_i \lor \neg a_j)$$
 est sous FNC.

Pour n variables différentes, la formule contient n(n-1) variables.

Calculs de mémoire (Q29 - Q38)

On note T(n) la taille des formules en nombre de caractères. et $p = 2(\lfloor \log_{10}(n) \rfloor + 1) + 3$ la taille maximale d'une variable $X_{i,j}$.

au_moins_une:

La formule est de la forme : $(X_0_0 \ | \ \dots \ | \ X_n_n)$.

$$T(n) \le n(p+3)$$

au_plus_une:

La formule est de la forme : (($^{X}_{00}$ 0 | $^{X}_{01}$ 0 & ... & ($^{X}_{nn}$ 1 | $^{X}_{nn}$ (n-1)))

Il y a $\frac{n(n-1)}{2}$ clauses, chaque clause est de taille 2p+7 et entre chaque clause il y a 3 caractères.

$$T(n) \le \frac{n(n-1)}{2}(2p+10) = n(n-1)(p+5)$$

Contrainte sur une ligne :

La formule est de la forme : (au_moins_une & au_plus_une)

$$T(n) \le 5 + n(n-1)(p+5) + n(p+3)$$

Contrainte sur toutes les lignes :

La formule est de la forme : (contrainte_une_ligne & ... & contrainte_une_ligne)

$$T(n) \le n(3+5+n(p+3)+n(n-1)(p+5))$$

Contrainte sur toutes les colonnes :

La formule est de la forme : (au_plus_une & ... & au_plus_une)

$$T(n) \le n(3+5+n(n-1)(p+5))$$

Contrainte sur toutes les diagonales :

La formule est de la forme : (au_plus_une & ... & au_plus_une) avec 2(n-1)(n-2) au_plus_une.

$$T(n) \le 2n(n-1)^2(n-2)(p+5)$$

Q38.

La taille de la formule de gen_formule_n_dames est

$$\begin{split} C_n &= C_{ligne}(n) + C_{col}(n) + C_{diag}(n) + \Theta(1) \\ &= nE_x(n) + nE_p(n) + 2\sum_{i=-n+2}^{n-2} E_p(|n-i|) + \Theta(n) \end{split}$$

Avec E_x la fonction exactement_une et E_p au_plus_une.

Or
$$nE_x(n) = \Theta(n^3)$$
, $nE_p(n) = \Theta(n^3)$ et $2\sum_{i=-n+2}^{n-2} E_p(|n-i|) \le 4nE_p(n) = O(n^3)$, donc

$$C_n = \Theta(n^3) + \Theta(n^3) + O(n^3) + \Theta(n)$$
$$C_n = \boxed{O(n^3)}$$

Q40.

Pour le problème à 5 dames, on obtient

```
fred@mp2:~/DM3$ problemes/n_dames 5
Fichier '5_dames.txt' généré.
Taille du fichier : 3471 octets.
fred@mp2:~/DM3$ satsolver/fnc_solver '5_dames.txt'

La formule est sous FNC.
La formule est satisfiable en assignant 1 aux variables suivantes et 0 aux autres :
X_0_4
X_1_2
X_2_0
X_2_0
X_3_3
X_4_1
Temps d'exécution : 0.001377 s
```

Soit encore

	0	1	2	3	4
0			X		
1					X
2		X			
3				X	
4	X				

Pour le problème à 8 dames, on obtient

```
fred@mp2:~/DM3$ satsolver/fnc_solver '8_dames.txt'

La formule est sous FNC.

La formule est satisfiable en assignant 1 aux variables suivantes et 0 aux autres :

X_0_7

X_1_3

X_2_0

X_3_2

X_6_6

X_5_1

X_4_5

X_7_4

Temps d'exécution : 0.005287 s
```

Soit encore

	0	1	2	3	4	5	6	7
0			X					
1						X		
2				X				
3		X						
4								X
5					X			
6							X	
7	X							

Et pour le problème à 3 dames, on obtient

```
fred@mp2:~/DM3$ satsolver/fnc_solver '3_dames.txt'
La formule est sous FNC.
La formule est insatisfiable.
Temps d'exécution : 0.000985 s
```

3 Problème des cinq maisons

3.1 Description

Le problème des cinq maisons a les contraintes suivantes :

- 1. φ_1 : Chaque caractéristique (« anglais », « poisson rouge », ...) se retrouve dans exactement une des cinq maisons
- 2. φ_2 : Chaque maison doit avoir exactement une caractéristique de chaque catégorie (nationalité, boisson, couleur, ...). Par exemple, la maison 1 doit avoir exactement une couleur.
- 3. φ_3 : Contraintes de l'énoncé

3.2 Nomenclature

Les variables utilisées dans les formules sont de la forme numéro caractéristique. Par exemple :

- 1_anglais représente « l'anglais habite dans la maison 1 »
- 5_poisson_rouge représente « la personne habitant la maison 5 a pour animal de compagnie un poisson rouge »
- 3_yop représente « la personne habitant la maison 3 boit du yop »
- etc.

Dans la suite de cette section, notons C l'ensemble des caractéristiques ($C = \{\text{anglais}, \text{lait}, \text{escalade}, \dots \}$), $\mathscr C$ l'ensemble des catéogries de caractéristiques (nationalité, couleur, ...) (donc $C = \bigsqcup_{\mathcal{C} \in \mathscr C} \mathcal C$) et utilisons des indices de maison dans $\llbracket 1, 5 \rrbracket$.

3.3 Modélisation de la contrainte 1

Pour modéliser la contrainte « Chaque caractéristique se retrouve dans exactement une des cinq maisons », on peut d'abord modéliser la contrainte « La caractéristique c se retrouve dans exactement une maison », en utilisant la formule suivante :

$$\bigvee_{j=1}^{5} \left(j_c \land \bigwedge_{\substack{i=1\\i\neq j}}^{5} \neg i_c \right)$$

(i.e. « Soit cette caractéristique est dans la maison 1 et aucune autre, soit dans la 2 et aucune autre, etc. »)
Ainsi, on peut modéliser la contrainte sur toutes les caractéristiques en faisant un « et » logique :

$$arphi_1 \equiv igwedge_{c \in C} igvee_{j=1}^5 \left(\mathtt{j_c} \land igwedge_{i=1}^5 \lnot \mathtt{i_c}
ight)$$

3.4 Modélisation de la contrainte 2

Pour modéliser la contrainte « Chaque maison doit avoir exactement une caractéristique de chaque catégorie », on peut d'abord modéliser la contrainte « La maison i a exactement une caractéristique de la catégorie $\mathcal{C} \in \mathscr{C}$ », en utilisant la formule suivante :

$$\bigvee_{c' \in \mathcal{C}} \left(\mathbf{i}_{-\mathbf{c}}, \wedge \bigwedge_{\substack{c \in \mathcal{C} \\ c \neq c'}} \neg \mathbf{i}_{-\mathbf{c}} \right)$$

On peut alors modéliser la contrainte sur toutes les catégories de caractéristiques avec un « et » logique :

$$\bigwedge_{\mathcal{C} \in \mathscr{C}} \bigvee_{c' \in \mathcal{C}} \left(\mathtt{i_c'} \land \bigwedge_{\substack{c \in \mathcal{C} \\ c \neq c'}} \neg \mathtt{i_c} \right)$$

Et de même, on modélise la contrainte sur toutes les maisons ainsi :

$$arphi_2 \equiv igwedge_{i=1}^5 igwedge_{\mathcal{C} \in \mathscr{C}} igvee_{c' \in \mathcal{C}} \left(egin{matrix} \mathtt{i_c'} & igwedge_{c \in \mathcal{C}} \ c
eq c' \end{matrix}
ight)$$

3.5 Modélisation de la contrainte 3

Les contraintes de l'énoncé se modélisent assez facilement. Par exemple, « L'Anglais vit dans une maison rouge » se modélise ainsi :

$$\bigvee_{i=1}^{5} \mathtt{i_anglais} \wedge \mathtt{i_rouge}$$

« La personne qui fait de l'escalade vit à côté de celle qui a des chats » se modélise avec cette formule :

$$\left(\bigvee_{i=1}^{4} \texttt{i_escalade} \land (\texttt{i+1)_chats}\right) \lor \left(\bigvee_{i=1}^{4} \texttt{i_chats} \land (\texttt{i+1)_escalade}\right)$$

Encore plus simple, « La personne qui vit dans la maison du centre boit du lait » se modélise avec la formule suivante :

Il suffit ensuite de faire un « et » logique sur toutes les formules données par les contraintes pour obtenir φ_3 .

3.6 Solution

Le satsolver résoud le problème en 0.4 secondes. À noter que l'ordre des contraintes est important : écrire dans le fichier $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$ prend au moins 10 minutes (peut-être beaucoup plus, on l'a arrêté avant), tandis que $\varphi_3 \wedge \varphi_2 \wedge \varphi_1$ est beaucoup plus rapide.

La solution est la suivante :

Maison	1	2	3	4	5
Couleur	Jaune	Bleu	Rouge	Vert	Blanc
Nationalité	Norvégien	Danois	Anglais	Allemand	Suédois
Animal	Chats	Cheval	Oiseaux	Poisson rouge	Chiens
Boisson	Eau	Thé	Lait	Café	Yop
Sport	Danse	Escalade	Vélo	Karaté	Basket

Ainsi, le poisson rouge est l'animal de compagnie de l'Allemand.

4 Problème du calendrier

4.1 Description

Pour la résolution du problème du calendrier, il faut respecter ces deux règles :

- 1. Chaque case a une pièce (voire 0 pour certaines cases).
- 2. Chaque pièce n'est utilisée qu'une seule fois.

Pour représenter le problème, chaque case aura 10 variables, indiquant si la pièce correspondante est dessus.

Elle seront de la forme X_0_0 avec X le nom de la pièce, (0,0) les coordonnées de la case. Exemples : 1_4_5 , 1_2_7 . (Les noms des pièces sont I, L, S, b, C, l, s, Z, T et V)

Pour optimiser, les cases qui doivent avoir 0 pièce ne seront ni créées ni utilisées.

4.2 Définition des ensembles

On définit $C \subset [0,7]^2$ l'ensemble des cases qui doivent être remplies, implémentés avec date et le tableau calendrier.

On définit \mathbb{P} l'ensemble des pièces, implémenté dans pieces.c et pieces.h (\mathbb{P} est ordonné).

On définit \mathbb{V}_p l'ensemble des positions valides de la pièce $p \in \mathbb{P}$, implémenté avec piece_valide.

Pour $p \in \mathbb{P}$ et $v \in \mathbb{V}_p$, on définit N_v par

$$\forall (i,j) \in C, \quad N_v(p_{i,j}) = \begin{cases} p_{i,j} & \text{si } p \text{ dans la position } v \text{ est sur la case } (i,j) \\ \neg p_{i,j} & \text{sinon} \end{cases}$$

Exemple pour la pièce T de position $v = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

On a
$$N_v(T_{1,2}) = T_{1,2}$$
 et $N_v(T_{3,1}) = \neg T_{3,1}$

4.3 Modélisation de la contrainte sur une case avec qu'une pièce

Pour $p_{i,j}$ les variables « p est en (i,j) », la contrainte sur la case $(i,j) \in C$ est

$$\varphi_{i,j} = \left(\bigvee_{p \in \mathbb{P}} p_{i,j}\right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j}\right)$$

Cette formule est sous FNC.

Elle est implémentée dans contrainte_une_case.

4.4 Modélisation de la contrainte sur toutes les cases avec qu'une pièce

La contrainte sur toutes les cases est

$$\varphi = \bigwedge_{(i,j) \in C} \varphi_{i,j}$$

$$= \bigwedge_{(i,j) \in C} \left(\left(\bigvee_{p \in \mathbb{P}} p_{i,j} \right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j} \right) \right)$$

Cette formule est sous FNC.

Elle est implémenter dans contrainte_toutes_cases.

4.5 Modélisation de la contrainte sur une pièce

La contrainte sur la pièce $p \in \mathbb{P}$ est

$$\varphi_p' = \bigvee_{v \in \mathbb{V}_p} \left(\bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right)$$

Mais cette formule n'est pas sous FNC, on doit passer par des variables intermédiaires que l'on nomme $Z_{p,v}$.

$$\begin{aligned} \varphi_p' &= \bigvee_{v \in \mathbb{V}_p} \left(\bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right) \\ &= \left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v} \right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(Z_{p,v} \leftrightarrow \bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right) \\ &= \left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v} \right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(Z_{p,v} \to \bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(\neg Z_{p,v} \to \neg \bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right) \end{aligned}$$

Que l'on peut simplifier en

$$\varphi_p' = \left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v}\right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(Z_{p,v} \to \bigwedge_{(i,j) \in C} N_v(p_{i,j})\right)$$

$$= \left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v}\right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(\neg Z_{p,v} \lor \bigwedge_{(i,j) \in C} N_v(p_{i,j})\right)$$

$$= \left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v}\right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_-}} (\neg Z_{p,v} \lor N_v(p_{i,j}))$$

qui est sous FNC.

Elle est implémentée en 2 parties dans contrainte_piece_pos et dans contrainte_une_piece.

4.6 Modélisation de la contrainte sur toutes les pièces

La contrainte sur toutes les pièces est

$$\varphi' = \bigwedge_{p \in \mathbb{P}} \varphi'_p$$

$$= \bigwedge_{p \in \mathbb{P}} \left(\left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v} \right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_p}} (\neg Z_{p,v} \vee N_v(p_{i,j})) \right)$$

Cette formule est sous FNC.

Elle est implémentée dans contrainte_toutes_pieces.

4.7 Formule générale

La formule générale est donc

$$\Phi = \varphi \wedge \varphi'$$

$$= \bigwedge_{(i,j) \in C} \left(\left(\bigvee_{p \in \mathbb{P}} p_{i,j} \right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j} \right) \right) \wedge \bigwedge_{p \in \mathbb{P}} \left(\left(\bigvee_{v \in \mathbb{V}_p} Z_{p,v} \right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_p}} (\neg Z_{p,v} \vee N_v(p_{i,j})) \right)$$

4.8 Solution

Malheureusement, la complexité de cette formule est trop élevée pour les 10 pièces. Donc, en plus d'avoir implémenté le problème dans calendrier.c, une version simplifiée est implémentée dans calendrier_n_pieces.c.

Ce programme représente le Jeudi 7 Juin avec, en entrée, le nombre de pièces à prendre entre 2 et 10.

L'une des solution attendue pour 10 pièces est

Pour le problème avec 6 pièces, on obtient

```
fred@mp2:~/DM3$ problemes/calendrier_n_pieces 6
1
2
    Fichier 'calendrier_6_pieces.txt' généré.
    Taille du fichier : 182857 octets.
3
4
    fred@mp2:-/DM3$ satsolver/fnc_solver calendrier_6_pieces.txt | problemes/print_tab 8
    La formule est sous FNC.
    La formule est satisfiable en assignant 1 aux variables suivantes et 0 aux autres :
7
8
9
    alias_C28
    C_4_5
10
    C 5 5
11
13
14
15
16
    I 4 3
17
    alias L23
19
20
21
^{25}
26
    V_0_2
```

```
V_0_3
^{29}
    V_0_4
    V_1_4
30
31
    V_{2}_{4}
32
    b 0 0
33
    b_0_1
34
    alias_b43
35
    b_1_0
36
    b_1_1
37
    b_1_2
38
    T 3 5
39
    T 3 6
40
    alias_I26
41
    alias_T31
42
    Temps d'exécution : 4.159915 s
43
44
45
46
                  1
                      1
47
48
49
50
51
52
53
54
55
56
                             Τ
57
58
```

Et pour le problème avec 7 et 8 pièces, on obtient

```
fred@mp2:-/DM3$ satsolver/fnc_solver calendrier_7_pieces.txt | problemes/print_tab 8
    La formule est sous FNC.
3
    La formule est satisfiable en assignant 1 aux variables suivantes et 0 aux autres :
4
    C_4_4
5
6
    alias T48
    Temps d'exécution : 45.569438 s
9
10
11
             - 1
                - 1
                    -
                       - 1
12
13
15
16
17
18
19
20
21
22
23
24
25
    fred@mp2:~/DM3$ satsolver/fnc_solver calendrier_8_pieces.txt | problemes/print_tab 8
26
    La formule est sous FNC.
27
    La formule est satisfiable en assignant 1 aux variables suivantes et 0 aux autres :
^{28}
    C_4_4
29
30
    alias_T58
31
    Temps d'exécution : 675.462875 s
32
33
34
35
                 -
                    -
                       -
36
37
38
39
40
41
42
43
44
45
46
47
48
```

Mais il n'est pas possible de résoudre avec 9 pièces en un temps convenable.