MOS Memories

■ MB8416A-12, MB8416A-12L, MB8416A-15L

CMOS 16,384-Bit Static Random Access Memory

Description

The Fujitsu MB8416A is a 2048-word by 8-bit static random access memory fabricated with CMOS silicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. Alt pins are TTL compatible, and a single 5 volt power supply is required.

The MB8416A is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost, and high performance.

Features

- Organization: 2048 words x 8-bits
- Fast Access Time:
 120 ns max. (MB8416A-12/12L)
 150 ns max. (MB8416A-15/15L)
- Completely static operation: No clocks required
- TTL compatible inputs/outputs
- Three-state output
- Common data input/output
- Single +5V power supply Low power standby:
- 5.5 mW max. (MB8416A-12/15) 275µW max. (MB8416A-12L/15L) Data retention: 2.0V mln.
- Jedec Standard 24-pin DIP (Ceramic Cerdip/Plastic Mold)
- Pin compatible with HM6116, TC5517 and μPD446
- Output Enable (G) pin for precise data bus control

MB8416A Block Diagram and Pin Assignment

Truth Table

Ē	ã	w	Mode	Supply Current	I/O Pin
н	Х	Х	Not Selected	I _{SB}	High-Z
L	Н	Н	D _{OUT} Disable	Icc	High-Z
L	L	Н	Read	Icc	D _{OUT}
L	X	L	Write	Icc	D _{IN}

Absolute Maximum Ratings (See Note)

Rating	Symbol	Value	Unit
Storage Temperature Cerdip Plastic	T _{stg}	-65 to +150 -45 to +125	°C
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Supply Voltage	V _{CC}	-0.5 to +7.0	٧
Input Voltage	V _{IN}	-0.5 to V _{CC} + 0.5	٧
Input/Output Voltage	V _{I/O}	-0.5 to V _{CC} + 0.5	V

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM PATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.

Capacitance

Parameter	Symbol	Min	Тур	Max	Unit
I/O Capacitance (V _{I/O} = 0V)	C _{I/O}	_	_	10	pF
Input Capacitance (V _{IN} = 0V)	C _{IN}	_	_	7	pF

Recommended Operating Conditions

(Referenced to V_{SS})

Parameter	Symbol	Min	Тур	Mex	Unit	
Supply Voltage	V _{cc}	4.5	5.0	5.5	٧	
Input Low Voltage	V _{IL}	-0.3		0.8	٧	
Input High Voltage	V _{IH}	2.2	_	V _{CC} +0.3	٧	
Ambient Temperature	TA	0		70	°C	

DC Characteristics

(Recommended operating conditions unless otherwise noted.)

			MB8416A- 12/15		MB8416A- 12L/15L			
Parameter	Condition	Symbol	Min	Max	Min	Max	Unit	
Standby Supply Current 1	$\overline{E} = V_{CC} - 0.2 \text{ to } V_{CC} + 0.2V,$ $V_{IN} = -0.2V \text{ to } V_{CC} + 0.2V$	I _{SB1}	-	1	_	0.05	mA	
Standby Supply Current 2	$\vec{E} = V_{IH},$ $V_{IN} = -0.2V \text{ to } V_{CC} + 0.2V$	I _{SB2}	_	2	_	1	mA	
Active Supply Current	$\overline{E} = V_{IL}$ $V_{IN} = V_{IL}$ or V_{IH} ; $I_{OUT} = 0$	I _{CC1}	_	60	_	60	mA	
Operating Supply Current	Cycle = Min, Duty = 100% I _{OUT} = 0	I _{CC2}	_	60	_	60	mA	
Input Leakage Current	V _{IN} = 0V to V _{CC}	ILI	-1.0	1.0	1.0	1.0	μΑ	
Output Leakage Current	$V_{I/O} = 0V$ to V_{CC} $E = V_{IH}$ or $G = V_{IH}$	I _{LO}	-1.0	1.0	1.0	1.0	μΑ	
Output High Voltage	I _{OUT} = -1.0 mA	V _{OH}	2.4	_	2.4	_	٧	
Output Low Voltage	I _{OUT} = 4.0 mA	VoL	_	0.4	_	0.4	٧	

Note: All voltages are referenced to GND.

AC Test Conditions

Input Pulse Levels: Input Pulse Rise and Fall Times: 5ns

Timing Reference Levels:

Output Load:

0.6V to 2.4V

(Transient Time between 0.8V and 2.2V)

Input: $V_{IL} = 0.8V$, $V_{IH} = 2.2V$ Output: $V_{OL} = 0.8V$, $V_{OH} = 2.2V$ $C_L = 5_{PF}$ for TEHQZ, TGHQZ and TWHQZ

 $C_L = 100 \ pF$ for all others.

AC Characteristics

(Recommended operating conditions unless otherwise noted.)

		MB8416A- 12/12L		MB8416A- 15/15L		1.	
Parameter	Symbol	Min	Max	Min	Max	Unit	
Read Cycle Time	TAVAX	120	_	150	_	ns	
Write Cycle Time	TAVAX	120	_	150	_	ns	
Address Access Time	TAVQV	_	120	_	150	ns	
Chip Enable Access Time	TELQV	_	120	_	150	ns	
Output Hold from Address Change	TAXQX	15	_	15	_	ns	
Output Low Z from E	TELQX	15	_	15	_	ns	
Output High Z from E	TEHQZ 🗻		40	_	50	ns	
Output Low Z from G	TGLQX	10		10	_	ns	
Output High Z from G	TGHQZ	_	40	_	50	ns	
Output Low Z from W	TWHQX	15	_	15		ns	
Output High Z from W	TWLQZ	_	40	_	50	ns	
Output Enable to Output Valid	TGLQV	_	50		60	ns	
Address Set Up Time	TAVEL, TAVWL	0	_	0	_	ns	
Read Set Up Time	TWHEL, TWHAV	0		0	_	ns	
Read Hold Time	TAXWL, TEHWL	0		0	_	ns	
Write Set Up Time	TWLEL	0		0	_	ns	
Write Hold Time	TEHWH	0	_	0	_	ns	
Address Valid to End of Write	TAVWH	100	_	120	_	ns	
Chip Enabled to End of Write	TELEH	100	_	120		ns	
Write Pulse Width	TWLWH 👩	70	_	90	_	ns	
Write Recovery Time	TWHAX, TEHAX	5	_	5	_	ns	
Data Set Up Time	TDVEH, TDVWH	35	_	40	_	ns	
Data Hold Time	TWHDX, TEHDX	0	_	0		ns	

Mode 1 — W Controlled (E = Low, G = Low)

Write Cycle Timing Diagram

Mode 2 — \overline{E} Controlled $(\overline{G} = Low)$

Read Cycle Timing Diagram

Write Cycle Timing Diagram

Mode 3 — $\overline{\mathbf{Q}}$ Controlled ($\overline{\mathbf{E}} = \text{Low}$, $\overline{\mathbf{W}} = \text{High}$, Address Valid)

Data Retention Characteristics

(Recommended operating conditions unless otherwise noted.)

		MB8416A- 12/15		MB8416A- 12L/15L				
Parameter	Symbol	Min	Max	Min	Max	Unit	Test Condition	
Data Retention Supply Voltage	V _{DR}	2.0	5.5	2.0	5.5	٧	Note 1	
Data Retention Supply Current	I _{DR}	_	0.5	-	0.03	mA	Note 2	
Data Retention Set Up Time	TEHVL	0	_	0		ns	Note 3	
Becovery Time	TVHFI	40		40	_	ns	Note 3	

Note 1. \overline{E} = 2.2V to VDR + 0.3V when VDR = 2.5V to 5.5V , \overline{E} = VDR \pm 0.3V when VDR = 2.0 to 2.5V.

Note 2. $V_{CC} = V_{DR} = 3.0V$, $\overline{E} = V_{DR} - 0.2V$ to $V_{DR} + 0.2V$, $V_{IN} = -0.2V$ to $V_{DR} + 0.2V$.

Note 3. $V_L = 4.5V$ on the falling transition, $V_H = 4.5V$ on the rising transition.

Data Retention Timing Diagram

Typical Characteristics Curves

Package Dimensions Dimensions in inches (millimeters)

24-Lead Ceramic (Cerdip) Duai in-Line Package DIP-24C-CO3

24-Lead Plastic Dual In-Line Package DIP-24P-M02

24-Lead Plastic Dual in-Line Package DIP-24P-M03

