《微积分A1》第十五讲

教师 杨利军

清华大学数学科学系

2020年11月04日

1. 极限 $\lim_{x\to +\infty} \left(\cos\frac{1}{x}\right)^x =$ _____.

<u>分析</u>: 这是 1^{∞} 型极限. 令 $y = \frac{1}{x}$, 则

$$\left(cos\frac{1}{x}\right)^x=\left[1+(cos\,y-1)\right]^{\frac{1}{y}}=(1+u)^{\frac{1}{u}\frac{u}{y}},$$

其中 $u = u(y) = \cos y - 1$. 由于

$$\frac{u}{y} = \frac{\cos y - 1}{y} \to 0, \quad y \to 0.$$

因此 $(1+u)^{\frac{1}{u}\frac{u}{y}} o e^0=1$. 故原极限 $\lim_{x o +\infty}\left(cosrac{1}{x}
ight)^x=1$.

2. 设 f(x) 在 x = a > 0 处可导,则极限

$$\lim_{x\to a}\frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}}=\underline{\hspace{1cm}}.$$

<u>分析</u>:

$$\begin{split} &\frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}} = \frac{f(x)-f(a)}{x-a} \frac{x-a}{\sqrt{x}-\sqrt{a}} \\ &= \frac{f(x)-f(a)}{x-a} \Big(\sqrt{x}+\sqrt{a}\Big) \to f'(a) \cdot 2\sqrt{a}. \end{split}$$

故所求极限为 $2\sqrt{a}f'(a)$.

3. 极限 $\lim_{x\to 0^+} (1-\cos x)^{\frac{1}{\ln x}} =$ _____.

 $\underline{\gamma}$ 好: 这是 0^0 型极限. 处理这类极限的常用方法是取对数. 令 $y=(1-\cos x)^{\frac{1}{\ln x}}$,则 $\ln y=\frac{\ln(1-\cos x)}{\ln x}$. 这是 $\frac{\infty}{\infty}$ 型极限. 可考虑使用 L'Hospital 法则

$$\begin{split} &\frac{[\ln(1-\cos x)]'}{[\ln x]'} = \frac{\frac{1}{1-\cos x} \cdot \sin x}{\frac{1}{x}} \\ &= \frac{x \sin x}{1-\cos x} = \frac{x \sin x}{x^2} \cdot \frac{1}{\frac{1-\cos x}{x^2}} \to 2, \quad x \to 0^+ \end{split}$$

因此 $\lim_{x\to 0^+} \ln y = 2$. 从而原极限为

$$y = e^{\ln y} \rightarrow e^2, \quad x \rightarrow 0^+.$$

4. 当
$$x \rightarrow 0$$
 时, $\sqrt{1 + \tan x} - \sqrt{1 - \sin x}$ 的无穷小的阶为

分析:

$$\sqrt{1+\tan x} - \sqrt{1-\sin x} = \frac{1+\tan x - (1-\sin x)}{\sqrt{1+\tan x} + \sqrt{1-\sin x}}$$

$$= \frac{\tan x + \sin x}{\sqrt{1 + \tan x} + \sqrt{1 - \sin x}}$$
$$= \sin x \cdot \frac{\frac{1}{\cos x} + 1}{\sqrt{1 + \tan x} + \sqrt{1 - \sin x}}.$$

由此可见函数 $\sqrt{1 + \tan x} - \sqrt{1 - \sin x}$ 的无穷小的阶为 1.

5. 定义函数

$$f(x) = \begin{cases} \frac{|x^2 - 1|}{x - 1}, & x \neq 1, \\ 2, & x = 1, \end{cases}$$

则函数 f(x) 在点 x=1 处的间断点类型为 _____.

 $\underline{\mathcal{H}}$: 考虑 f(x) 在点 x = 1 处的左右极限. 当 x > 1 时,

$$f(x) = \frac{|x^2 - 1|}{x - 1} = \frac{x^2 - 1}{x - 1} = x + 1 \to 2, \quad x \to 1^+$$

这表明 f(x) 在点 x=1 处的右极限存在, 且等于 2.

填空题5,续

当x < 1时,

$$f(x) = \frac{|x^2 - 1|}{x - 1} = \frac{1 - x^2}{x - 1} = -(x + 1) \to -2, \quad x \to 1^-.$$

这表明 f(x) 在点 x = 1 处的左极限为 -2. 由此可见 f(x) 在点 x = 1 处的间断点类型为跳跃间断, 即第一类间断.

6. 定义函数

$$f(x) = \left\{ \begin{array}{ll} \frac{1-e^x}{x}, & x \neq 0, \\ -1, & x = 0, \end{array} \right.$$

则 $f'(0) = _____.$

分析:

$$\begin{split} \frac{f(h)-f(0)}{h} &= \frac{\frac{1-e^h}{h}+1}{h} = \frac{1+h-e^h}{h^2} \\ &= -\frac{\frac{1}{2}h^2+o(h^2)}{h^2} \to -\frac{1}{2}, \quad h \to 0. \end{split}$$

因此
$$f'(0) = -\frac{1}{2}$$
.

7. 设函数 f(u) 可导, 且函数 $y = f(\sin x)$ 存在可导的反函数 x = x(y), 则反函数的导数 $\frac{dx}{dy} =$ ______.

分析: 对等式 $y = f(\sin x)$ 两边关于 y 求导, 视 x = x(y), 即得

$$1=f'(u)(\cos x)\frac{dx}{dy},$$

其中 u = sin x. 于是所求导数为

$$\frac{dx}{dy} = \frac{1}{f'(u)\cos x} = \frac{1}{f'(\sin x)\cos x}.$$

填空题8,9

8. 函数 $y = e^{\sin(2x+1)}$ 的微分为 $dy = ____.$

分析: 所求微分为 $dy = 2e^{\sin(2x+1)}\cos(2x+1)dx$.

9. 设函数 y = y(x) 由参数方程 x = t + sint, y = t - cost 确定, 则函数 v(x) 的微分为 dy =

分析: 由求导公式得

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{1 + \sin t}{1 + \cos t}.$$

因此 $dy = \frac{1+\sin t}{1+\cos t} dx$.

填空题 10, 11

10. 设 f(x) = x(x+1)(x+2)···(x+100), 则 f'(0) = _____. 分析: f'(0) = 100!.

11. 设 f(x) = x(x-1)(x-2)(x-3), 则 f'(x) 在开区间 (0,2) 上有且仅有 _____ 个零点.

分析: 有且仅有 2 个零点. 理由如下: 显然 f(x) 为四次多项式,有四个零点 x=0,1,2,3. 根据 Rolle 定理知其导数 f'(x) 至少有三个零点 $\xi_1 \in (0,1)$, $\xi_2 \in (1,2)$, $\xi_3 \in (2,3)$. 由于 f'(x) 是三次多项式,故 f'(x) 有且仅有这三个零点. 因此 f'(x) 在开区间 (0,2) 上有且仅有 2 个零点.

12. 设
$$f(x)$$
 可导. 若 $\frac{d}{dx}[f(2x)] = x^2$, 则 $f'(x) =$ _____.

解答与分析:
$$f'(x) = \frac{1}{8}x^2$$
. 理由如下: 记 $y = 2x$, 则

$$\frac{y^2}{4} = x^2 = \frac{d}{dx}[f(2x)] = \frac{d}{dy}f(y)\frac{dy}{dx} = f'(y)2.$$

因此
$$f'(y) = \frac{y^2}{8}$$
. 即 $f'(x) = \frac{x^2}{8}$.

13.

$$\lim_{\substack{x \to +\infty}} \frac{2x^2 + 1}{4x - 3} \sin \frac{1}{x + 1} = \underline{\hspace{1cm}}.$$

分析:

$$\begin{split} &\frac{2x^2+1}{4x-3}sin\frac{1}{x+1} = \frac{2x^2+1}{4x-3} \cdot \frac{1}{x+1} \cdot \frac{sin\frac{1}{x+1}}{\frac{1}{x+1}} \\ &= \frac{2+\frac{1}{x^2}}{4-\frac{3}{x}} \cdot \frac{1}{1+\frac{1}{x}} \cdot \frac{sin\frac{1}{x+1}}{\frac{1}{x+1}} \to \frac{1}{2}, \quad x \to +\infty. \end{split}$$

故所求极限为 $\frac{1}{2}$.

14.

$$\lim_{n\to+\infty}\left(\sqrt{n+4\sqrt{n}}-\sqrt{n-2\sqrt{n}}\right)=\underline{\hspace{1cm}}$$

分析:

$$\sqrt{n+4\sqrt{n}} - \sqrt{n-2\sqrt{n}} = \frac{n+4\sqrt{n} - (n-2\sqrt{n})}{\sqrt{n+4\sqrt{n}} + \sqrt{n-2\sqrt{n}}}$$

$$= \frac{6\sqrt{n}}{\sqrt{n+4\sqrt{n}} + \sqrt{n-2\sqrt{n}}} = \frac{6}{\sqrt{1+4\sqrt{\frac{1}{n}}} + \sqrt{1-2\sqrt{\frac{1}{n}}}}$$

$$\rightarrow \frac{6}{2} = 3, \quad n \rightarrow +\infty.$$

故所求极限为3.

15.

$$\lim_{x \to 0^+} \frac{1 - \cos(2\sqrt{x}) - 2x}{x^2} = \underline{\hspace{1cm}}.$$

分析: 将 $\cos(2\sqrt{x})$ 展开得

$$\cos(2\sqrt{x}) = 1 - \frac{1}{2!}(2\sqrt{x})^2 + \frac{1}{4!}(2\sqrt{x})^4 + o(x^2)$$
$$= 1 - 2x + \frac{16}{24}x^2 + o(x^2).$$

$$\Rightarrow \frac{1 - \cos(2\sqrt{x}) - 2x}{x^2} = \frac{1 - [1 - 2x + \frac{2}{3}x^2] - 2x + o(x^2)}{x^2}$$
$$= -\frac{2}{3} \cdot \frac{x^2 + o(x^2)}{x^2} \to -\frac{2}{3}, \quad x \to 0^+.$$

故所求极限为 $-\frac{2}{3}$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 900

16.

$$\lim_{x \to 0} (1 + x^2 e^x)^{\frac{1}{1 - \cos x}} = \underline{\hspace{1cm}}.$$

<u>分析</u>:

$$\begin{split} (1+\mathsf{x}^2\mathsf{e}^\mathsf{x})^{\frac{1}{1-\mathsf{cos}\,\mathsf{x}}} &= (1+\mathsf{x}^2\mathsf{e}^\mathsf{x})^{\frac{1}{\mathsf{x}^2\mathsf{e}^\mathsf{x}} \cdot \frac{\mathsf{x}^2\mathsf{e}^\mathsf{x}}{1-\mathsf{cos}\,\mathsf{x}}} \\ & \to \mathsf{e}^2, \quad \mathsf{x} \to \mathsf{0}. \end{split}$$

故所求极限为 e2.

<u>分析</u>: 由假设 $\lim_{x\to 0} \frac{\ln\left(1+\frac{f(x)}{\sin x}\right)}{e^x-1}=1$ 可知 $\lim_{x\to 0} \frac{f(x)}{\sin x}=0$. 由于

$$\frac{\ln\left(1+\frac{f(x)}{\sin x}\right)}{e^x-1} = \frac{\ln\left(1+\frac{f(x)}{\sin x}\right)}{\frac{f(x)}{\sin x}} \cdot \frac{f(x)}{(\sin x)(e^x-1)} \to 1,$$

故
$$\frac{f(x)}{(e^x-1)\sin x} \to 1.$$

因此
$$\frac{f(x)}{x^2} = \frac{f(x)}{(e^x - 1)\sin x} \cdot \frac{e^x - 1}{x} \cdot \frac{\sin x}{x} \to 1 \cdot 1 \cdot 1 = 1.$$

故所求极限为1.

18.

$$\lim_{n\to+\infty}\left(\frac{1+3^{\frac{1}{n}}}{2}\right)^n=\underline{\hspace{1cm}}$$

分析: 令
$$u_n = \frac{3^{\frac{1}{n}}-1}{2}$$
, 则 $u_n \to 0$, $n \to +\infty$, 且

$$\left(\frac{1+3^{\frac{1}{n}}}{2}\right)^n = (1+u_n)^{\frac{1}{u_n}\cdot nu_n}$$

$$\text{fin} \quad nu_n = n \frac{3^{\frac{1}{n}} - 1}{2} = \frac{1}{2} \cdot \frac{3^{\frac{1}{n}} - 1}{\frac{1}{n}} \to \frac{1}{2} \ln 3.$$

因此
$$\left(\frac{1+3^{\frac{1}{n}}}{2}\right)^n = (1+u_n)^{\frac{1}{u_n}\cdot nu_n} \to e^{\frac{1}{2}\ln 3} = \sqrt{3}.$$

注记

一般结论:

1. 设a > 0, b > 0, 则

$$\lim_{n\to+\infty}\left(\frac{a^{\frac{1}{n}}+b^{\frac{1}{n}}}{2}\right)^n=\sqrt{ab}.$$

2. 设 $a_k > 0$, $k = 1, 2, \dots, m$, 则

$$\lim_{n\to +\infty} \left(\frac{a_1^{\frac{1}{n}}+a_2^{\frac{1}{n}}+\cdots+a_m^{\frac{1}{n}}}{m}\right)^n = \sqrt[m]{a_1a_2\cdots a_m}.$$

19. 若函数

$$f(\textbf{x}) = \left\{ \begin{array}{ll} \frac{1-cos\sqrt{\textbf{x}}}{a\textbf{x}}, & \textbf{x} > \textbf{0}, \\ & 1, & \textbf{x} \leq \textbf{0}, \end{array} \right.$$

在点x=0处连续,则a=____.

分析: 先求 f(x) 在点 x=0 的左右极限. 对 x>0,

$$f(x) = \frac{1-cos\sqrt{x}}{ax} \rightarrow \frac{1}{2a}, \quad x \rightarrow 0^+,$$

即右极限为 $f(0^+) = \frac{1}{2a}$. 对 x < 0, f(x) = 1. 故 $f(0^-) = 1$. 由 假设 f 在点 x = 0 处连续, 故 $\frac{1}{2a} = 1$, 即 $a = \frac{1}{2}$.

21. 设 y =
$$e^{-3x} \sin(2x)$$
, 则 dy = ____.

分析:
$$dy = [e^{-3x} \sin(2x)]'dx$$

$$= [-3e^{-3x} \sin(2x) + 2e^{-3x} \cos(2x)]dx$$

$$= e^{-3x}[2\cos(2x) - 3\sin(2x)]dx.$$

22. 函数
$$f(x) = \frac{1+x}{1-x}$$
 在点 $x = 0$ 处带有 Peano 余项的 n 阶

Taylor 展式为 _____.

<u>分析</u>:

$$\frac{1+x}{1-x} = (1+x)[1+x+x^2+\cdots+x^n+o(x^n)]$$
$$= 1+2x+2x^2+\cdots+2x^n+o(x^n).$$

23. 设
$$f(x) = x^2 e^x$$
, 则 $f^{(10)}(x) =$ _____.

解答:根据 Leibniz 求导公式得

$$\begin{split} f^{(10)}(\textbf{x}) &= C_{10}^{0}\textbf{x}^{2}[\textbf{e}^{\textbf{x}}]^{(10)} + C_{10}^{1}[\textbf{x}^{2}]'[\textbf{e}^{\textbf{x}}]^{(9)} + C_{10}^{2}[\textbf{x}^{2}]''[\textbf{e}^{\textbf{x}}]^{(8)} \\ &= \textbf{x}^{2}\textbf{e}^{\textbf{x}} + 20\textbf{x}\textbf{e}^{\textbf{x}} + 90\textbf{e}^{\textbf{x}}. \end{split}$$

24. 设
$$f(x) = x^6|x|$$
 在 $x = 0$ 处存在最高阶导数的阶数为

解答: 阶数为6.

25. 设 f(x) 在 x_0 的一个邻域上有定义. 若极限

$$\lim_{\delta \to 0} \frac{f(x_0 - \delta) - f(x_0)}{\sin \delta} \quad (*)$$

存在, 那么函数 f(x) 在 x₀ 处可导, _____ (填是或否).

解答: 是. 理由如下. 依定义函数 f(x) 在 x0 处可导, 即极限

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}\quad (**)$$

存在. 由于

$$\frac{f(\textbf{x}_0 + \textbf{h}) - f(\textbf{x}_0)}{\textbf{h}} = \frac{f(\textbf{x}_0 - \delta) - f(\textbf{x}_0)}{\sin \delta} \cdot \frac{\sin \delta}{\delta} \cdot (-1),$$

其中 $\delta = -h$. 由此可见, 极限(*) 存在, 当且仅当极限(**) 存在, 并且这两个极限仅相差一个符号.

计算题1

1. 设二阶可导函数 y = y(x) 由方程 $\sin(x + y) = x - y$ 确定, 求二阶导数 $\frac{d^2y}{dx^2}$.

 \underline{M} : 对方程 $\sin(x+y) = x-y$ 两边关于 x 求导, 并视 y 为 x 的 函数, 即 y = y(x), 即得

$$\cos(x + y) \cdot (1 + y') = 1 - y'.$$
 (*)

由上式可解得

$$y' = \frac{1 - \cos(x + y)}{1 + \cos(x + y)}.$$

对等式(*)再求一次导数得

计算题1,续

$$-\sin(x + y) \cdot (1 + y')^{2} + \cos(x + y) \cdot y'' = -y''.$$

$$\Rightarrow y'' = \frac{\sin(x + y) \cdot (1 + y')^{2}}{1 + \cos(x + y)}$$

将

$$y' = \frac{1 - \cos(x + y)}{1 + \cos(x + y)}$$

代入得y"的表达式并加以整理得

$$y'' = \frac{4\sin(x + y)}{[1 + \cos(x + y)]^3}.$$

解答完毕.

计算题2

2. 设数列 $\{a_n\}$ 满足 $\lim_{n\to+\infty}a_{2n}=a$, $\lim_{n\to+\infty}a_{2n+1}=b$,

求极限

$$\lim_{n\to+\infty}\frac{a_1+a_2+\cdots+a_n}{n}.$$

 $\underline{\pmb{\mathsf{M}}}$: 由条件 $\mathsf{lim}_{\mathsf{n} o +\infty}\,\mathsf{a}_{\mathsf{2n}} = \mathsf{a}$, $\mathsf{lim}_{\mathsf{n} o +\infty}\,\mathsf{a}_{\mathsf{2n}+1} = \mathsf{b}$, 可知

$$\lim_{\substack{n\to +\infty}}\frac{a_2+a_4+\cdots+a_{2n}}{n}=a,$$

$$\lim_{\substack{n \to +\infty}} \frac{a_1 + a_3 + \dots + a_{2n-1}}{n} = b.$$

于是

$$\frac{a_1 + a_2 + a_3 + a_4 + \dots + a_{2n-1} + a_{2n}}{2n}$$

计算题2,续

$$= \frac{a_1 + a_3 + \dots + a_{2n-1}}{2n} + \frac{a_2 + a_4 + \dots + a_{2n}}{2n}$$

$$\to \frac{a + b}{2}, \quad n \to +\infty.$$

$$= \frac{a_1 + a_2 + a_3 + a_4 + \dots + a_{2n-1} + a_{2n} + a_{2n+1}}{2n + 1}$$

$$= \frac{a_1 + a_2 + a_3 + a_4 + \dots + a_{2n-1} + a_{2n}}{2n} \cdot \frac{2n}{2n + 1} + \frac{a_{2n+1}}{2n + 1}$$

$$\to \frac{a + b}{2}, \quad n \to +\infty.$$

故所求极限等于 a+b. 解答完毕.

计算题3

3. 求极限

$$\lim_{x\to 0^+}\frac{1-\left(\frac{\sin x}{x}\right)^x}{x^3}.$$

解:对于x > 0,

$$\begin{split} \frac{1-\left(\frac{\sin x}{x}\right)^x}{x^3} &= \frac{1-e^{x\ln\frac{\sin x}{x}}}{x^3} = -\frac{e^{x\ln\frac{\sin x}{x}}-1}{x\ln\frac{\sin x}{x}} \cdot \frac{x\ln\frac{\sin x}{x}}{x^3} \\ \frac{x\ln\frac{\sin x}{x}}{x^3} &= \frac{\ln\left(1+\frac{\sin x-x}{x}\right)}{x^2} = \frac{\ln\left(1+\frac{\sin x-x}{x}\right)}{\frac{\sin x-x}{x}} \cdot \frac{\frac{\sin x-x}{x}}{x^2} \end{split}$$

计算题3,续

$$\begin{split} \frac{\frac{\sin x - x}{x}}{x^2} &= \frac{\sin x - x}{x^3} = \frac{x - \frac{1}{3!}x^3 - x + o(x^3)}{x^3} \\ &= -\frac{1}{3!} + \frac{o(x^3)}{x^3} \to -\frac{1}{6}, \quad x \to 0^+. \end{split}$$

因此原极限

$$\lim_{\mathsf{x}\to 0^+}\frac{1-\left(\frac{\sin\mathsf{x}}{\mathsf{x}}\right)^\mathsf{x}}{\mathsf{x}^3}=\frac{1}{6}.$$

解答完毕.

计算题4

4. 设 $y = 2x + \sin x$, 求其反函数 x = x(y) 的二阶导数 $\frac{d^2x}{dy^2}$. 解: 在方程 $y = 2x + \sin x$ 两边关于 y 求导, 视 x 为 y 的函数, 即 x = x(y), 可得

$$1 = (2 + \cos x) \frac{dx}{dy} \quad \text{if} \quad \frac{dx}{dy} = \frac{1}{2 + \cos x}.$$

$$\Rightarrow \quad \frac{d^2x}{dy^2} = \frac{d}{dy} \left(\frac{1}{2 + \cos x} \right) = \frac{d}{dx} \left(\frac{1}{2 + \cos x} \right) \frac{dx}{dy}$$

$$= \frac{\sin x}{(2 + \cos x)^2} \frac{1}{2 + \cos x} = \frac{\sin x}{(2 + \cos x)^3}.$$

解答完毕.

计算题5

5. 设

$$f(x)=\lim_{t\rightarrow +\infty}\frac{xe^{(1-x)t}+x^{2t}}{e^{(1-x)t}+x^{2t+1}},\quad x\in [0,+\infty),$$

求函数 f(x) 的表达式, 讨论 f(x) 的连续性和可微性, 并在可微点处计算其导函数.

 $\underline{\mathbf{\textit{m}}}$: 当 $\mathbf{x} \in [0,1)$ 时, $\mathbf{e}^{(1-\mathbf{x})\mathbf{t}} \to +\infty$, $\mathbf{t} \to +\infty$. 故此时

$$\begin{split} f(x) &= \lim_{t \to +\infty} \frac{x e^{(1-x)t} + x^{2t}}{e^{(1-x)t} + x^{2t+1}} \\ &= \lim_{t \to +\infty} \frac{x + x^{2t} e^{-(1-x)t}}{1 + x^{2t+1} e^{-(1-x)t}} = x. \end{split}$$

计算题5,续一

当 x = 1 时,

$$f(1) = \lim_{t \to +\infty} \frac{1+1}{1+1} = 1.$$

当x > 1 时,

$$\begin{split} f(x) &= \lim_{t \to +\infty} \frac{x e^{(1-x)t} + x^{2t}}{e^{(1-x)t} + x^{2t+1}} = \lim_{t \to +\infty} \frac{x^{1-2t} e^{(1-x)t} + 1}{x^{-2t} e^{(1-x)t} + x} \\ &= \frac{\lim_{t \to +\infty} [x^{1-2t} e^{(1-x)t} + 1]}{\lim_{t \to +\infty} [x^{-2t} e^{(1-x)t} + x]} = \frac{1}{x}. \end{split}$$

综上可得

$$f(x) = \left\{ \begin{array}{ll} x, & 0 \leq x \leq 1, \\ \frac{1}{x}, & x > 1 \end{array} \right.$$

计算题5,续二

显然函数 f(x) 在区间 $[0,+\infty)$ 上处处连续. 显然函数 f(x) 在 f(x) 在 f(x) 点 f(x) 是 f(x) 是 f(x) 。 f(x) 是 f(x) — f(x) —

$$\frac{\frac{1}{x} - 1}{x - 1} = \frac{1 - x}{x(x - 1)} = -\frac{1}{x} \to -1, \quad x \to 0^{-}.$$

除 x=1 点外, 在开区间 $(0,+\infty)$ 上, 处处可导, 且

$$f'(x) = \left\{ \begin{array}{ll} 1, & 0 < x < 1, \\ -\frac{1}{x^2}, & x > 1. \end{array} \right.$$

解答完毕.

计算题6

6. 设函数 y = f(x) 为三次可导,并且 $f'(x) \neq 0$,其反函数记作 x = g(y). 试用函数 f(x) 的前三阶导数,来表示反函数 g(y) 的前三阶导数. (课本第89页第三章总复习题题15)

解:由反函数定理知

$$g'(y) = \frac{1}{f'(x)}, \quad x = g(y).$$

进一步关于y 求导得

$$g''(y) = \frac{d}{dy} \left[\frac{1}{f'(x)} \right] = \frac{d}{dx} \left[\frac{1}{f'(x)} \right] \frac{dx}{dy} = -\frac{f''(x)}{[f'(x)]^3},$$

其中x = g(y). 于上式再次关于y 求导得

计算题6,续

$$g'''(y) = \frac{d}{dy} \left[-\frac{f''(x)}{[f'(x)]^3} \right] = \frac{d}{dx} \left[-\frac{f''(x)}{[f'(x)]^3} \right] \frac{dx}{dy}$$

$$= \left(-\frac{f'''(x)}{[f'(x)]^3} + \frac{3[f''(x)]^2}{[f'(x)]^4}\right) \frac{1}{f'(x)} = \frac{3[f''(x)]^2}{[f'(x)]^5} - \frac{f'''(x)}{[f'(x)]^4},$$

其中x = g(y). 解答完毕.

1. 中间点的极限位置(课本第125 页第4 章总复习题题10). 设 f(x) 在 (-1,1) 内二阶可导且 $f''(x) \neq 0$, $\forall x \in (-1,1)$. 证明 (1) 对 $\forall x \in (-1,1)$, 存在唯一的 $\theta(x) \in (0,1)$, 使得

$$f(x) = f(0) + f'(\theta(x)x)x;$$

(2) $\lim_{x\to 0} \theta(x) = \frac{1}{2}$.

 $\underline{\text{推广}}$: 设 f(x) 在 (-1,1) 内 n+1 阶可导, 且 $f^{(n+1)}(x) \neq 0$, $\forall x \in (-1,1)$,

则(1)对 $\forall x \in (-1,1)$,存在唯一 $\theta(x) \in (0,1)$,使得 f(x) = f(0) + f'(0)x + f'(0)

$$\label{eq:formula} \tfrac{1}{2}f''(0)x^2+\dots+\tfrac{1}{(n-1)!}f^{(n-1)}(0)+\tfrac{1}{n!}f^n(\theta(x)x)x^n. \ \ \textbf{(2)} \ \ \text{lim}_{x\to 0} \ \theta(x)=\tfrac{1}{n+1}.$$

证明题1,续一

证明: (1) 由 Lagrange 中值定理可知, 对 $\forall x \in (-1,1)$, 存在 $\theta(x) \in (0,1)$, 使得 $f(x) = f(0) + f'(\theta(x)x)x$. 由于 f(x) 的二阶 导数 $f''(x) \neq 0$, $\forall x \in (-1,1)$. 故 f''(x) 在 (-1,1) 内不变号. 这表明 f'(x) 严格单调. 因此在 $\theta(x) \in (-1,1)$ 内存在唯一, 可看作去心邻域 $(-1,1)\setminus\{0\}$ 上的函数. 一般而言中间点 θ 的位置并不唯一确定.

(2) 由等式
$$f(x) = f(0) + f'(\theta(x)x)x$$
 得
$$\frac{f'(\theta(x)x) - f'(0)}{x} = \frac{f(x) - f(0) - f'(0)x}{x^2}.$$

<ロ > ← □ > ← □ > ← □ > ← □ = − のへの

证明题1,续二

将该式写作

$$\theta(x)\frac{[f'(\theta(x)x)-f'(0)]}{\theta(x)x}=\frac{f(x)-f(0)-f'(0)x}{x^2}.$$

考虑左边当 $x \to 0$ 时的极限. 由 L'Hospital 法则得

$$\lim_{x\to 0}\frac{f(x)-f(0)-f'(0)x}{x^2}=\lim_{x\to 0}\frac{f'(x)-f'(0)}{2x}=\frac{f''(0)}{2}.$$

因此右边极限等于 $\frac{f''(0)}{2}$. 注意到

$$\lim_{x\to 0}\frac{f'(\theta(x)x)-f'(0)}{\theta(x)x}=f''(0).$$

由此可见 $\lim_{x\to 0} \theta(x) = \frac{1}{2}$. 证毕.

2. 设 f(x) 于闭区间 [0,1] 上连续, 在开区间 (0,1) 上可导,

$$f(0)=0$$
, $f(1)=1$, 且 $f(x)$ 不恒等于 x . 证明存在 $\xi\in(0,1)$,

使得 $f'(\xi) > 1$.

<u>证明</u>:因 f(x) 不恒等于 x, 故存在 $x_0 \in (0,1)$, 使得 $f(x_0) \neq x_0$.

若 $f(x_0) > x_0$,则

$$1 < \frac{f(x_0)}{x_0} = \frac{f(x_0) - f(0)}{x_0 - 0} = f'(\xi), \quad \xi \in (0, x_0).$$

结论成立. 若 $f(x_0) < x_0$, 则

$$1 = \frac{1-\mathsf{x}_0}{1-\mathsf{x}_0} < \frac{f(1)-f(\mathsf{x}_0)}{1-\mathsf{x}_0} = f'(\xi), \quad \xi \in (\mathsf{x}_0,1).$$

结论成立.

证明题 2, 续

另证: 令 g(x) = f(x) - x, 则 g(0) = 0 = g(1). 由于 f(x) 不恒为 x, 故 g(x) 不恒为 0. 因此存在 $x_0 \in (0,1)$, 使得 $g(x_0) \neq 0$. 若 $g(x_0) > 0$, 则由 Lagrange 中值定理知

$$\frac{g(x_0)}{x_0} = \frac{g(x_0) - g(0)}{x_0 - 0} = g'(\xi) > 0,$$

此即 $f'(\xi) > 1$, 其中 $\xi \in (0, x_0)$. 若 $g(x_0) < 0$, 则

$$\frac{g(x_0)}{x_0-1} = \frac{g(x_0)-g(1)}{x_0-1} = g'(\eta) > 0,$$

此即 $f'(\eta) > 1$, 其中 $\eta \in (x_0, 1)$. 证毕.

3. 设 $a_1=0$, $a_{n+1}=\frac{1+2a_n}{1+a_n}$, $\forall n\geq 1$. 证明极限 $\lim_{n\to +\infty}a_n$ 存在, 并求出极限值.

证明:证明序列极限的存在性,首选工具,也是最常用的工具,就是单调有界原理. 先观察前几项.

$$a_1 = 0$$

$$a_2=1,\\$$

$$a_3=\frac{3}{2},$$

$$a_4=\frac{8}{5}.$$

可猜测序列 $\{a_n\}$ 单调增加. 假设序列 $\{a_n\}$ 收敛, 设 $a_n
ightarrow a_*$,

证明题3,续一

则在关系式
$$a_{n+1}=\frac{1+2a_n}{1+a_n}$$
 中,令 $n\to +\infty$ 即得 $a_*=\frac{1+2a_*}{1+a_*}$,即 $a_*^2-a_*-1=0$.解之得 $a_*=\frac{1}{2}(1\pm\sqrt{5})$.由于 $a_n>0$,故 $a_*\geq 0$.因此 $a_*=\frac{1}{2}(1+\sqrt{5})$.以下要证 (i) $\{a_n\}$ 单调增; (ii) $a_n\leq a_*$, $\forall n\geq 1$.假设 $a_1< a_2< \cdots < a_n< a_*$,那么
$$a_{n+1}-a_n=\frac{1+2a_n}{1+a_n}-a_n=\frac{1+a_n-a_n^2}{1+a_n}.$$

由于 $a_n \in (0, a_*)$, 故 $1 + a_n - a_n^2 > 0$, 从而 $a_{n+1} - a_n > 0$.

◆ロ > ◆団 > ◆ 差 > ◆ 差 > り へ 色

证明题3,续二

还需证明 $a_{n+1} < a_*$.

$$a_{n+1} = \frac{1+2a_n}{1+a_n} = 1 + \frac{a_n}{1+a_n}.$$

由于 $\frac{x}{1+x} = 1 - \frac{1}{1+x}$, 故 $\frac{x}{1+x}$ 关于 x > 0 严格单调增. 因此

$$a_{n+1} = 1 + \frac{a_n}{1+a_n} < 1 + \frac{a_*}{1+a_*} = a_*.$$

最后一个等式成立是因为

$$1 + \frac{a_*}{1 + a_*} = a_* \iff \frac{1 + 2a_*}{1 + a_*} = a_*.$$

证毕. (实际上也可用归纳法证 $a_n < 2$, $\forall n \geq 1$).

4. 设函数 f(x) 在区间 [0,1] 上二阶可导,且 f(1)>0,极限 $\lim_{x\to 0^+} \frac{f(x)}{x}$ 存在且小于零. 求证方程 $f(x)f''(x)+[f'(x)]^2=0$ 在区间 (0,1) 内至少存在两个不同实根.

证明: 注意到 $f(x)f''(x) + [f'(x)]^2 = [f(x)f'(x)]'$, 因此要证方程 $f(x)f''(x) + [f'(x)]^2 = 0$ 在区间 (0,1) 内至少存在两个不同实根,等价于证明函数 $F(x) \stackrel{\triangle}{=} f(x)f'(x)$ 在开区间 (0,1) 上至少有两个临界点. 往下考虑函数 f(x)f'(x) 在 [0,1] 上的零点.

一. 由假设极限 $\lim_{x\to 0^+} \frac{f(x)}{x}$ 存在可知 f(0)=0.

证明题4,续

二. 由假设极限 $\lim_{x\to 0^+} \frac{f(x)}{x} = \lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0}$ 存在,说明函数 f(x) 在点 x=0 处的右导数 $f'_+(0)$ 存在.由假设 $f'_+(0)<0$ 知,存在 $\delta>0$,使得 f(x)<0, $\forall x\in (0,\delta)$.由假设 f(1)=1,以及由介值定理可知存在 $x_1\in (0,1)$,使得 $f(x_1)=0$.再根据 Rolle 定理知存在 $x_2\in (0,x_1)$, $f'(x_2)=0$.

三. 综上得, 函数 F(x) = f(x)f'(x) 在闭区间 [0,1] 上有三个零点 $0, x_1, x_2$. 两次利用 Rolle 定理可知, F(x) 在开区间 (0,1) 上至少有两个临界点, 证毕.

5. 设函数 f(x) 在闭区间 [0,1] 上二阶可导, 且 f(0) = 0 = f(1). 进一步假设 $\min\{f(x), x \in [0,1]\} = -1$. 证明存在 $\xi \in (0,1)$, 使得 $f''(\xi) > 8$. (课本第125 页第4 章总复习题题11) 证明: 设 f(x) 在点 $x_0 \in (0,1)$ 处取得最小值,则 $f(x_0) = -1$, $f'(x_0) = 0$, 并在点 x_0 处作 Taylor 一阶展开, 带 Lagrange 余项 $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$

 $= -1 + \frac{1}{2} f''(\xi) (x - x_0)^2,$

其中 ξ 介于 x_0 和x之间.将x=0和x=1代入得

证明题5,续一

$$\begin{split} 0 &= \mathsf{f}(0) = \mathsf{f}(\mathsf{x}_0) + \mathsf{f}'(\mathsf{x}_0)(0-\mathsf{x}_0) + \frac{1}{2}\mathsf{f}''(\eta_1)(0-\mathsf{x}_0)^2, \\ 0 &= \mathsf{f}(1) = \mathsf{f}(\mathsf{x}_0) + \mathsf{f}'(\mathsf{x}_0)(1-\mathsf{x}_0) + \frac{1}{2}\mathsf{f}''(\eta_2)(1-\mathsf{x}_0)^2, \\ \sharp \, \psi \, \eta_1 \in (0,\mathsf{x}_0), \, \eta_2 \in (\mathsf{x}_0,1). \, \, \, \text{由此得} \\ &\qquad \qquad \frac{1}{2}\mathsf{f}''(\eta_1)(0-\mathsf{x}_0)^2 = 1, \quad \frac{1}{2}\mathsf{f}''(\eta_2)(1-\mathsf{x}_0)^2 = 1. \end{split}$$

由此进一步得

$$\frac{1}{2}[f''(\eta_1) + f''(\eta_2)] = \frac{1}{x_0^2} + \frac{1}{(1 - x_0)^2}.$$

上式左边是平均值 $\frac{1}{2}[f''(\eta_1) + f''(\eta_2)]$ 介于两个值 $f''(\eta_1)$ 和 $f''(\eta_2)$ 之间.

证明题5,续二

根据 Darboux 定理(导数介值定理) 可知, 存在一点 ξ 介于 η_1 和 η_2 之间, 使得 $f'(\xi) = \frac{1}{2}[f''(\eta_1) + f''(\eta_2)]$. 于是

$$f''(\xi) = \frac{1}{x_0^2} + \frac{1}{(1-x_0)^2}.$$

上式右边可作如下估计

$$\frac{1}{\mathsf{x}_0^2} + \frac{1}{(1-\mathsf{x}_0)^2} \geq \min\left\{\frac{1}{\lambda^2} + \frac{1}{(1-\lambda)^2}, \lambda \in (0,1)\right\}.$$

不难证明上式右边的最小值为8,且在 $\lambda = \frac{1}{2}$ 时取得.即

$$f''(\xi) = \frac{1}{x_0^2} + \frac{1}{(1-x_0)^2} \ge 8.$$

命题得证. 证毕.

注记

注: 可根据以下等式(*)直接得到结论.

$$\frac{1}{2}f''(\eta_1)(0-\mathsf{x}_0)^2=1,\quad \frac{1}{2}f''(\eta_2)(1-\mathsf{x}_0)^2=1.\quad (*)$$

当 $0 < x_0 \le \frac{1}{2}$ 时, 则 $0 < x_0^2 \le \frac{1}{4}$. 由式(*)中的第一个等式得

$$f''(\eta_1) = \frac{2}{x_0^2} \ge 2 \times 4 = 8.$$

当 $\frac{1}{2}$ < $x_0 \le 1$ 时,则 $(1-x_0)^2 < \frac{1}{4}$.由式(*)中的第二个等式得

$$f''(\eta_2) = \frac{2}{(1-x_0)^2} > 2 \times 4 = 8.$$

命题得证.

朱锦涛同学的证明

证: 记
$$g(x) = f(x) - 4x^2$$
, 则 $g(0) = 0$, $g(1) = -4$. 设 $f(x_0) = \min\{f(x), 0 \le x \le 1\} = -1$, 其中 $x_0 \in (0,1)$, 则 $g(x_0) = -1 - 4x_0^2$. 关于 $g(x)$ 分别在 $[0,x_0]$ 和 $[x_0,1]$ 上应用 Lagrange 中值定理得

$$g'(\eta_1) = \frac{g(x_0) - g(0)}{x_0 - 0} = \frac{-4x_0^2 - 1}{x_0},$$

$$g'(\eta_2) = \frac{g(1) - g(x_0)}{1 - x_0} = \frac{4x_0^2 - 3}{1 - x_0},$$

其中 $\eta_1 \in (0, \mathsf{x}_0)$, $\eta_2 \in (\mathsf{x}_0, 1)$.

证明,续

简单计算得

$$\mathbf{g}'(\eta_2) - \mathbf{g}'(\eta_1) = \frac{4\mathsf{x}_0^2 - 3}{1 - \mathsf{x}_0} - \frac{-4\mathsf{x}_0^2 - 1}{\mathsf{x}_0} = \frac{(2\mathsf{x}_0 - 1)^2}{\mathsf{x}_0(1 - \mathsf{x}_0)} > 0.$$

对导数 $\mathbf{g}'(\mathbf{x})$ 在区间 $[\eta_1,\eta_2]$ 上再次应用 Lagrange 中值定理得

$$g''(\xi) = \frac{g'(\eta_2) - g'(\eta_1)}{\eta_2 - \eta_1} > 0,$$

其中 $\xi \in (\eta_1, \eta_2)$. 由于g''(x) = f''(x) - 8, 故 $f''(\xi) \ge 8$. 命题得证.

作业

课本习题4.4 (pp.114-115): 4(2)(4)(6)(8), 5(2)(4)(6)(8), 7, 8, 11.