Assign Final Project	

Final Project

- □ Requirements:
 - Your final project must be at least as complex as any of the other projects
 - You must demonstrate your project on the Nexys A7 board but you can use additional SBC's, sensors, mobile devices, etc.
 - Your project must be an SoC w/ embedded CPU and custom hardware and software
 - Your project must make use of the embedded CPU in a significant way
 - $\hfill \square$ Your project does not need to use MIPSfpga as the embedded CPU
- Your results must be visible and should be interesting to class
- □ Will be done in teams of 3 or 4 (4 preferred)
 - Final project teams are self-assigning like we did for the other projects. Use the final project teams group in D2L
 - Final project teams will make use of GitHub

Portland State

Final Project Timetable

- □ Proposal submitted to D2L by 10:00 PM on Wednesday 27-Feb-2019... earlier would be better to get a faster turnaround
- Project progress reports in class Tue, 12-Mar and Thu 14-Mar (if needed) in class
 - ~12 minutes per team. Be prepared to discuss your progress and challenges
 - Powerpoint presentation is encouraged but not required
- □ Demos on Thursday 21-Mar-2019 from Noon 2:30 PM
 - Location is TBD. Will be in CH 71 unless notified
 - If you have a conflict w another final exam or presentation I will adjust the demo schedule
- Deliverables pushed to GitHub and uploaded to D2L by 10:00 PM on Friday 22-Mar-2019
 - We will use GitHub and GitHub classroom for the final project
 - We are asking you to submit a .zip file of your GitHub repository to D2L

FCF 540

Final Project

- ☐ You may use:
 - The switches, buttons, display, LEDs on the Nexys A7
 - Other Nexys A7 peripherals (accelerometer, temp sensor, XADC, mic...)
 - Digilent (https://store.digilentinc.com/pmod-modules-connectors//)
 and Maxim Semiconductor have a variety of Peripheral modules
 (Pmod) for additional functionality
 - Additional peripherals connected to the board (ex: VGA monitor, wheels, motors, sensors, radios, SBC's etc.)
 - Proto-strip or proto solder boards for external components
- PROCURE ANY ADDITIONAL HW YOU NEED IMMEDIATELY!!!
 - EPL store (EB basement past the elevators)
 - Online distributors <u>Digikey</u>, <u>Mouser</u>, etc.
 - Surplus Gizmos (<u>surplusgizmos.com</u>)
 - sparkfun.com, adafruit.com, seeed studio and other hobbyist sites (see Circuit Cellar)

Portland State

Project Proposal

The project proposal form is posted on D2L:

- Project name and team members
- Project Description
 - What are you going to build?
 - ☐ What component(s) will you use?
 - ☐ Block diagram of your design as you envision it
- Design Approach
 - □ How are you going to build it?
 - ☐ How will you demonstrate success?
 - What are your options if you start running out of time?
 - It helps to structure your proposal as committed functionality and "stretch" functionality
- Milestones
 - $\hfill\Box$ Target dates to demonstrate that you're making acceptable progress towards completion

Proposal Form: ..\misc\ECE 540 Blank project proposal form.docx

ECE 540

Final Project Grading

- □ Grading will be as follows:
 - Project progress and demo presentation 15%
 - Correctly implements desired function 50%
 - Quality of design report 15%
 - Quality of code (comments, clarity, etc.) 15%
 - Degree of difficulty 5%
- □ Extra credit (up to 8 pts.) is possible if you go above and beyond your accepted proposal...and if the design report is good, your code is well commented, your demo works, etc.
- ☐ You are encouraged to submit, by email or in a 1-on-1 conversation w/ me, confidential reviews of your team members' performance (good and bad the earlier the better)
- □ The Final Project is 25% of your final grade

Deliverable Expectations

□ Design Report:

- Overview of your project including an English description of the circuit's function
- Block diagram of your circuit
- Design details, including a theory of operation, state transition diagrams or equivalent, etc.
- Results (good and bad)
- Contributions of individual team members
- No more than 12 pages please

The purpose of your design report is to provide insight into your implementation. A design report with an appropriate level of detail and nicely organized and commented code are a pleasure to grade (and you want us to be happy when you're grading your project...don't you). Use the pages wisely. We don't need pages and pages of full-size figures or long blocks of code. Be concise and provide descriptions and/or explanations for the code snippets, figures, etc.

ECE 540

Deliverable Expectations (cont'd)

■ Source Code:

- Listings of all of <u>your</u> (System)Verilog files (you do not need to include test benches)
- Listings of <u>your</u> program source code for the embedded CPU(s) in your design
- Your code should be liberally commented and use descriptive signal and/or variables names
- .ppt or .pdf, etc. of your final project progress report and demo presentation
- □ .bit and .elf files We may try running your project
 - Include instructions if they are needed to run the project

Portland State

Project Ideas

- □ Add keyboard and/or mouse input and do something interesting (ex: a card game or slot machine)
 - There are several open source mouse and keyboard interfaces in VHDL and Verilog. If you use them acknowledge the source
- ☐ Creative video graphics/games
 - Arcade-style games (Pong, Space Invaders, Snake, Pacman, ...
- ☐ Enhance the RojoBot (add additional sensors, weapons, etc.)
 - BotSim RojoBot simulator source code is available on request to Roy
- ☐ Build something "physical" (ex: robot platform)
- ☐ Implement a link between two Nexys A7 boards or a Nexys A7 and a single-board computer (ex: Arduino, Galileo, RPI) as part of a "visually interesting" application
 - ex: Two player Battleship game
- Make use of a network connection (Ethernet, BLE, WiFi, wireless radio) to enhance your perhaps with a mobile app
 - ex: wireless irrigation system

ECE 540

Project Ideas (cont'd)

- Use a different soft core CPU (ex: MIPSfpga or ARM DesignStart or FPGArduino) and interface it to peripherals
- Do something involving lighting
 - Addressable LED Strip: https://www.sparkfun.com/search/results?term=addressable+ led+strip
 - Addressable LED Panel:

https://www.sparkfun.com/search/results?term=led+panel

- Electroluminescent Panels:
 - □ CAUTION: requires high-voltage circuitry
 - □ https://www.sparkfun.com/search/results?term=EL+panel
- Check Circuit Cellar and Elektor for project ideas

FPGA Project Resources

- □ <u>www.opencores.org</u> Open source HDL IP cores
 - Wide variety of functions not necessarily optimized for FPGA
- □ www.fpga4fun.com Lots of fun FPGA projects
- MIPSfpga Lab Projects
 - ..\misc\MIPSfpga Labs Overview.pdf
 - See me for access to the workshop material
- □ www.xilinx.com

ECE 540

Other Resources - a Small Sampling

- □ https://learn.digilentinc.com/ Project ideas, contest winners, etc.
- □ http://www.elektor-labs.com/ Project ideas, kits, etc.
- □ http://www.clubjameco.com/index.php/contents More project ideas, kits, etc.
- ☐ Circuit Cellar and Elektor magazines...each magazine has 5-6 projects/issue...a few are FPGA-based
 - Last few issues of each magazine are posted on D2L

Winter 2019 "Wall of Fame" Winner

This space is available for you

Portland State