Grundbegriffe der Informatik Einheit 9: Speicher

Prof. Dr. Tanja Schultz

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2011/2012

Speicher

Bit und Byte Speicher als Tabellen und Abbildungen Binäre und dezimale Größenpräfixe

Speicher

Bit und Byte

Speicher als Tabellen und Abbildungen

Binäre und dezimale Größenpräfixe

Speicher 3/20

Speicher

Bit und Byte

Speicher als Tabellen und Abbildungen Binäre und dezimale Größenpräfixe

Bit und Byte

- ▶ Das Wort "Bit" hat verschiedene Bedeutungen.
 - ► Bezeichnung für eine Binärziffer (binary digit): Ein Bit ist ein Zeichen des Alphabetes {0, 1}.
 - Maßeinheit für die Datenmenge bei digitaler Speicherung oder Übertragung von Daten
 - Maßeinheit für den Informationsgehalt (Shannon)
 (siehe Vorlesung "Theoretische Grundlagen" im 3. Semester)
- Byte: ein Wort aus acht Bits genauer Oktett Octet
- Historisch Byte = Anzahl Bits zur Kodierung eines einzigen Schriftzeichens in einem Computer, bzw. kleinste addressierbare Datenmenge eines technischen Systems (ASCII - 7 bit; IBM-PC - 8 bit; Nixdorf 820 - 12 bit ...)
- Abkürzungen
 - ▶ für Bit: möglichst "bit", denn "b" ist Flächeneinheit "barn"
 - ▶ für Byte: meist "B", aber "B" auch "Bel", "deziBel" dB
 - ▶ für Octet: "o"

Speicher Bit und Byte 5/20

Speicher

Bit und Byte

Speicher als Tabellen und Abbildungen

Binäre und dezimale Größenpräfixe

im folgenden

- Formalisierung von
 - Speicher
 - Lesen aus dem Speicher
 - ► Schreiben in den Speicher
- Diskussion, wozu diese Formalisierungen

Gesamtzustand eines Speichers

- aktueller Gesamtzustand eines Speichers:
 - ▶ für jede Adresse, zu der etwas gespeichert ist:
 - welcher Wert ist unter dieser Adresse abgelegt
- ▶ Vorstellung: Tabelle mit zwei Spalten:
 - ▶ links alle Adresser
 - rechts die zugehörigen Werte

allgen	nein	Halbl	Halbleiterspeicher		
Adresse 1	Wert 1		10110101		
Adresse 2	Wert 2	001	10101101		
Adresse 3	Wert 3	010	10011101		
Adresse 4	Wert 4	011	01110110		
		100	00111110		
		101	10101101		
		110	00101011		
Adresse n	Wert n	111	10101001		

Gesamtzustand eines Speichers

- aktueller Gesamtzustand eines Speichers:
 - ▶ für jede Adresse, zu der etwas gespeichert ist:
 - welcher Wert ist unter dieser Adresse abgelegt
- Vorstellung: Tabelle mit zwei Spalten:
 - ▶ links alle Adressen
 - rechts die zugehörigen Werte

allgen		Halbleiterspeicher		
Adresse 1	Wert 1		000	10110101
Adresse 2	Wert 2		001	10101101
Adresse 3	Wert 3		010	10011101
Adresse 4	Adresse 4 Wert 4		011	01110110
			100	00111110
:	:	:		10101101
			110	00101011
Adresse n	Wert n		111	10101001

Formalisierung von Speicher

Tabelle: Abbildung von Adressen auf Werte, also
 Definitionsbereich: Menge aller Adressen, Wertebereich:
 Menge aller speicherbaren Werte

$$m: \mathrm{Adr} \to \mathrm{Val}$$

Z. B. Halbleiterspeicher in einem PC mit "4 Gigabyte":

$$m: \{0,1\}^{32} \to \{0,1\}^8$$

- Speicher im Zustand m hat an Adresse $a \in Adr$ $(2^{32} = 4294967296)$ den Wert $m(a) \in Val$ $(2^8 = 256)$ gespeichert.
- bei Hauptspeicher:
 - Menge der Adressen ist fest
 - Adresse bezeichnet einen physikalischen Ort auf dem Chip
 - entspricht einer Angabe auf einem Brief, etwa wie "Adenauerring 4, 76131 Karlsruhe"

Formalisierung von Lesen aus dem Speicher

- ► Formalisierung als Abbildung memread
 - Argumente:
 - der gesamte Speicherinhalt m des Speichers und
 - ▶ die Adresse a aus der ausgelesen wird
 - ▶ Resultat: der in *m* an Adresse *a* gespeicherte Wert, d.h.

memread : Mem
$$\times$$
 Adr \rightarrow Val
$$(m, a) \mapsto m(a)$$

- ▶ Dabei sei Mem die Menge aller möglichen Speicherzustände, also die Menge aller Abbildungen von Adr nach Val.
- ▶ auf das "Warum überhaupt so eine Formalisierung?" kommen wir noch zu sprechen

Bemerkungen zu $\operatorname{memread}$

- nicht verwirren lassen:
 - ► Funktion memread bekommt als Argument eine (andere) Funktion $m : Adr \rightarrow Val$
 - ▶ Beispiel zeigt: kein Problem; man denke an Tabellen
- ▶ die Menge aller Abbildungen der Form $f: A \rightarrow B$
 - so etwas kommt noch öfter vor
 - ► Notation: *B*^{*A*}
 - ▶ beachte Reihenfolge
 - für endliche Mengen A und B gilt: $|B^A| = |B|^{|A|}$.
- hätten also auch schreiben können:
 - $ightharpoonup \operatorname{Mem} = \operatorname{Val}^{\operatorname{Adr}} \operatorname{\mathsf{und}}$
 - $\begin{array}{c} {\color{red} \blacktriangleright} \ \ \, \mathrm{memread} : \mathrm{Val}^{\mathrm{Adr}} \times \mathrm{Adr} \to \mathrm{Val} \\ (m,a) \mapsto m(a) \end{array}$

Formalisierung von Schreiben in den Speicher

Das Speichern eines neuen Wertes ν an eine Adresse a in einem Speicher m kann man auch als Funktion notieren, sieht ein wenig komplizierter aus als beim Lesen aus dem Speicher:

► memwrite : $Val^{Adr} \times Adr \times Val \rightarrow Val^{Adr}$ $(m, a, v) \mapsto m'$

> wobei m' festgelegt durch die Forderung, dass für alle a' ∈ Adr gilt:

$$m'(a') = egin{cases} v & ext{falls } a' = a \ m(a') & ext{falls } a'
eq a \end{cases}$$

- ightharpoonup d.h. Speicher m' enthält an Addresse a den Wert v
- Das klingt plausibel . . .
 - ▶ für Hauptspeicher ist es das auch,
 - ▶ aber es gibt auch Speicher die anders arbeiten, z. B. sogenannte Cache-Speicher (siehe VL Technische Informatik)

Eigenschaften von Speicher

- Was ist "das wesentliche" an Speicher?
- ▶ Der allerwichtigste Aspekt überhaupt: Für alle $m \in \text{Mem}$, $a, a' \in \text{Adr}$ mit $a' \neq a$ und $v' \in \text{Val}$ gilt:

$$memread(memwrite(m, a, v), a) = v$$

- ▶ d.h. wenn man Wert *v* an Adresse *a* in einen Speicher *m* schreibt und danach diesen Speicher liest, dann ist der Wert *v*.
- ▶ Reicht das als Spezifikation für Speicher aus? Nicht für alle Speicher (z.B. Cache)
- Für die oben definierten Funktionen gilt nämlich auch: Für alle $m \in \text{Mem}$, $a, a' \in \text{Adr}$ mit $a' \neq a$ und $v' \in \text{Val}$:

$$memread(m, a) = memread(memwrite(m, a', v'), a)$$

 d.h. das Ergebnis des Lesens einer Speicherstelle hängt nicht davon ab, was vorher an einer anderen Adresse gespeichert wurde.

Wozu diese Formalisierungen?

- Die Gleichungen sagen etwas darüber aus, wie "sich der Speicher verhalten" soll
- d.h. sie liefern eine Möglichkeit für den Spezifizierer von Speicher, auszudrücken
 - "wie sich Speicher verhalten soll"
 - algebraische Spezifikation (in späteren VLs lernen Sie noch komplexere Formen der algebraischen Spezifikation von Datentypen kennen)
- auch eine Möglichkeit für den Impementierer, sich über Testfälle klar zu werden
 - Erstellen von Testfällen, Testdurchführung
 - ▶ Testen kann nicht Korrektheit einer Implementierung beweisen,
 - ▶ aber immerhin, dass sie falsch ist.

Was ist wichtig

Das sollten Sie mitnehmen:

- es gibt nicht nur Hauptspeicher
- Adressen sind manchmal etwas anderes als "physikalische Koordinaten"
- Abbildungen kann man sich manchmal am besten als Tabelle vorstellen

Das sollten Sie üben:

 Gewöhnung an Abbildungen, die Abbildungen auf Abbildungen abbilden

Speicher

Bit und Byte Speicher als Tabellen und Abbildungen

Binäre und dezimale Größenpräfixe

Klein und groß

▶ früher: Speicher klein, z. B. ein paar Hundert Bits

Bildquelle: http://de.wikipedia.org/w/index.php?title=Bild:Kernspeicher1.jpg

- heute: groß, z. B.
 - ► Hauptspeicher: 2³² = 4 294 967 296 Bytes
 - ► Festplatten: so was wie 1 000 000 000 000 Bytes
- Zahlen nur noch schlecht zu lesen
- Benutzung von Präfixen für kompaktere Notation: Kilometer, Mikrosekunde, Megawatt, usw.

Dezimale Größenpräfixe

-10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}	10^{-18}
1000^{-1}	1000^{-2}	1000^{-3}	1000^{-4}	1000^{-5}	1000^{-6}
milli	mikro	nano	pico	femto	atto
m	μ	n	p	f	а
10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
1000^{1}	1000^{2}	1000^{3}	1000^{4}	1000^{5}	1000^{6}
kilo	mega	giga	tera	peta	exa
k	М	G	Т	Р	Е

Binäre Größenpräfixe

- ▶ In Rechnern häufig Größen, die Potenzen von 2 oder 2¹⁰ sind, und *nicht* Potenzen von 10 bzw. 1000.
- ▶ Die International Electrotechnical Commission hat 1999 Präfixe eingeführt, die für Potenzen von 2¹⁰ = 1024 stehen.
- ▶ motiviert durch Kunstworte "kilobinary", "megabinary", usw.
- ▶ Präfixe *kibi*, *mebi*, *gibi*, usw.
- ▶ abgekürzt Ki, Mi, Gi, usw.

2 ¹⁰	2 ²⁰	2 ³⁰	2 ⁴⁰	2 ⁵⁰	2 ⁶⁰
1024^{1}	1024^{2}	1024^{3}	1024 ⁴	1024^{5}	1024^{6}
kibi	mebi	gibi	tebi	pebi	exbi
Ki	Mi	Gi	Ti	Pi	Ei

Wir halten fest

Das sollten Sie mitnehmen:

- Bit und Byte / Oktett,Octet
- binäre Größenpräfixe

Das sollten Sie üben:

Rechnen mit binären Größenpräfixen

Grundbegriffe der Informatik Einheit 10: Codierungen

Prof. Dr. Tanja Schultz

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2011/2012

Codierungen

Von Wörtern zu Zahlen und zurück

Dezimaldarstellung von Zahlen

Andere Zahldarstellungen

Von Zahlen zu ihren Darstellungen

Von einem Alphabet zum anderen

Ein Beispiel: Übersetzung von Zahldarstellungen

Homomorphismen

Beispiel Unicode: UTF-8

Huffman-Codierung

Algorithmus zur Berechnung von Huffman-Codes

Weiteres zu Huffman-Codes

Codierungen 2/53

Codierungen

Von Wörtern zu Zahlen und zurück Dezimaldarstellung von Zahlen Andere Zahldarstellungen Von Zahlen zu ihren Darstellungen

Von einem Alphabet zum anderer

Ein Beispiel: Übersetzung von Zahldarstellungen

Homomorphismen

Beispiel Unicode: UTF-8

Huffman-Codierung

Algorithmus zur Berechnung von Huffman-Codes

Weiteres zu Huffman-Codes

Dezimaldarstellung von Zahlen

- aus Indien
- ▶ Ziffern des Alphabetes $Z_{10} = \{0, ..., 9\}$.
- ▶ Bedeutung $num_{10}(x)$ einer einzelnen Ziffer x als Zahl:

X	0	1	2		8	9
$\operatorname{num}_{10}(x)$	null	eins	zwei	• • •	acht	neun

Dezimaldarstellung von Zahlen

- aus Indien
- ▶ Ziffern des Alphabetes $Z_{10} = \{0, ..., 9\}$.
- ▶ Bedeutung $num_{10}(x)$ einer einzelnen Ziffer x als Zahl:

▶ Bedeutung eines Wortes $x_{k-1} \cdots x_0 \in Z_{10}^*$ von Ziffern

$$\operatorname{Num}_{10}: Z_{10}^* \to \mathbb{N}_0$$

Dezimaldarstellung von Zahlen

- aus Indien
- ▶ Ziffern des Alphabetes $Z_{10} = \{0, ..., 9\}$.
- ▶ Bedeutung $num_{10}(x)$ einer einzelnen Ziffer x als Zahl:

▶ Bedeutung eines Wortes $x_{k-1} \cdots x_0 \in Z_{10}^*$ von Ziffern

$$\operatorname{Num}_{10}: Z_{10}^* \to \mathbb{N}_0$$

- ▶ Beispiel aus der Schule: $164 = 10^2 \cdot 1 + 10^1 \cdot 6 + 10^0 \cdot 4, k = 3$ $10^{k-1} \cdot \text{num}_{10}(x_{k-1}) + \dots + 10^1 \cdot \text{num}_{10}(x_1) + 10^0 \cdot \text{num}_{10}(x_0)$
- Pünktchenvermeidung:

$$\operatorname{Num}_{10}(\varepsilon) = 0$$

$$\forall w \in Z_{10}^* \ \forall x \in Z_{10} : \operatorname{Num}_{10}(wx) = 10 \cdot \operatorname{Num}_{10}(w) + \operatorname{num}_{10}(x)$$

Gottfried Wilhelm Leibniz

- geboren 1. Juli 1646 in Leipzig gestorben am 14. November 1716 in Hannover
- baute erste Maschine, die zwei Zahlen multiplizieren konnte
- ▶ in einem Brief vom 2. Januar 1697 an den Herzog von Braunschweig-Wolfenbüttel:
 - auch wenn man nur zwei Ziffern 0 und 1 hat, kann man nichtnegative Zahlen darstellen und vernünftig rechnen

Bildquelle http://commons.wikimedia.org/wiki/Image:Leibniz_binary_system_1703.png

Binärdarstellung von Zahlen

- ightharpoonup Ziffernmenge $Z_2 = \{0, 1\}$
- definiere: $num_2(0) = 0$ und $num_2(1) = 1$ und

$$\operatorname{Num}_{2}(\varepsilon) = 0$$

$$\forall w \in Z_{2}^{*} \ \forall x \in Z_{2} : \operatorname{Num}_{2}(wx) = 2 \cdot \operatorname{Num}_{2}(w) + \operatorname{num}_{2}(x)$$

► Z. B.:

$$\begin{split} \mathrm{Num}_2 \big(1101 \big) &= 2 \cdot \mathrm{Num}_2 \big(110 \big) + 1 \\ &= 2 \cdot \big(2 \cdot \mathrm{Num}_2 \big(11 \big) + 0 \big) + 1 \\ &= 2 \cdot \big(2 \cdot \big(2 \cdot \mathrm{Num}_2 \big(1 \big) + 1 \big) + 0 \big) + 1 \\ &= 2 \cdot \big(2 \cdot \big(2 \cdot \big(2 \cdot \mathrm{Num}_2 \big(\varepsilon \big) + 1 \big) + 1 \big) + 0 \big) + 1 \\ &= 2 \cdot \big(2 \cdot \big(2 \cdot \big(2 \cdot 0 + 1 \big) + 1 \big) + 0 \big) + 1 \\ &= 2^3 \cdot 1 + 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 \\ &= 13 \end{split}$$

Hexadezimaldarstellung

- ▶ Ziffern $Z_{16} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}.$
- Ziffernwerte:

$x = num_{16}(x)$	_	_	2 2	_	_	5 5	6 6	7 7
$x = num_{16}(x)$	•	9 9			C 12			

Zuordnung von Wörtern zu Zahlen gegeben durch

$$\operatorname{Num}_{16}(\varepsilon) = 0$$

$$\forall w \in Z_{16}^* \ \forall x \in Z_{16} : \mathrm{Num}_{16}(wx) = 16 \cdot \mathrm{Num}_{16}(w) + \mathrm{num}_{16}(x)$$

ein kleines Problem

- die Alphabete Z_2 , Z_3 , usw. sind nicht disjunkt
- ► Darstellungen mehrdeutig; Beispiel 111:

```
m Num_2(111) die Zahl sieben, 
m Num_8(111) die Zahl dreiundsiebzig, 
m Num_{10}(111) die Zahl einhundertelf und 
m Num_{16}(111) die Zahl zweihundertdreiundsiebzig.
```

- in manchen Programmiersprachen
 - ▶ Präfix 0b für Darstellungen zur Basis 2
 - Präfix 0o für Darstellungen zur Basis 8
 - Präfix 0x für Darstellungen zur Basis 16

Von Zahl zu ihrer Darstellung

- ▶ Man kann zu $w \in Z_k^*$ die repräsentierte Zahl $\operatorname{Num}_k(w)$ berechnen.
- ▶ Umgekehrt geht es auch: man kann zu $n \in \mathbb{N}_0$ die sogenannte k-äre Darstellung (also Wort $w \in \mathcal{Z}_k^*$) berechnen
- ▶ Alphabet Z_k mit k Ziffern
 - ▶ Bedeutung: die Zahlen in \mathbb{G}_k
 - ▶ für $i \in \mathbb{G}_k$ sei $\operatorname{repr}_k(i)$ das entsprechende Zeichen
 - ightharpoonup repr $_k$ ist also gerade die Umkehrfunktion zu num_k
- ▶ Gesucht: eine Repräsentation von $n \in \mathbb{N}_0$ als Wort $w \in Z_k^*$ mit der Eigenschaft $\operatorname{Num}_k(w) = n$
 - ▶ für die naheliegende Definition von Num_k
- ▶ gibt es immer unendlich viele passende w: wenn $\operatorname{Num}_k(w) = n$, dann auch $\operatorname{Num}_k(0w) = n$ (Beweis durch Induktion!)

Algorithmus für Berechnung der k-ären Darstellung einer Zahl

```
/\!\!/ Eingabe: n \in \mathbb{N}_0
y \leftarrow n
 w \leftarrow \varepsilon
m \leftarrow egin{cases} 1 + \lfloor \log_k(n) \rfloor & \text{falls } n > 0 \\ 1 & \text{falls } n = 0 \end{cases}
for i \leftarrow 0 to m-1 do
          r \leftarrow y \mod k
          w \leftarrow \operatorname{repr}_k(r) \cdot w // Konkatenation
          y \leftarrow y \operatorname{div} k
od
 // am Ende: n = \operatorname{Num}_k(w)
```

Beispielberechnung

- Nehme k = 10 und n = 4711, dann ist m = 4
- Für jedes $i \in \mathbb{G}_5$ haben die Variablen r, w und y nach i Schleifendurchläufen die folgenden Werte

i	4	3	2	1	0
r	4	7	1	1	
W	4711	711	11	1	ε
У	0	4	47	471	4711

- ▶ ($r \leftarrow y \mod k$, $w \leftarrow \operatorname{repr}_k(r) \cdot w$ und $y \leftarrow y \operatorname{div} k$)
- ▶ Schleifeninvariante $y \cdot 10^i + \text{Num}_k(w) = n$ drängt sich auf
- ▶ Wenn man weiß, dass am Ende y = 0 ist, ist man fertig.

Bemerkung

- ▶ Algorithmus liefert kürzestes Wort $w \in Z_k^*$ mit $\operatorname{Num}_k(w) = n$.
- Wir schreiben dafür $\operatorname{Repr}_k(n)$.
- Es gilt stets

$$\operatorname{Num}_k(\operatorname{Repr}_k(n)) = n$$
.

- ▶ Beachte:
 - ▶ Die Umkehrung gilt im allgemeinen nicht

$$\operatorname{Repr}_k(\operatorname{Num}_k(w)) \neq w$$

• weil "überflüssige" führende Nullen wegfallen, bspw. für w = 004711 gilt $\operatorname{Num}_k(004711) = \operatorname{Num}_k(4711)$

noch ein Beispiel (1)

- ▶ Ziffernmenge $Z = \{t, 0, 1\}$
- definiere

$$num(T) = -1$$

$$num(0) = 0$$

$$num(1) = 1$$

▶ definiere Num : $Z^* \to \mathbb{Z}$

$$\operatorname{Num}(\varepsilon) = 0$$
$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

Z. B.: Num(τ 01) = $-3^2 + 0 + 3^0 = -8$ und Num(τ 01) = $+3^3 - 3^2 + 0 + 3^0 = 19$

▶ num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$

$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- ▶ definere inv : $Z^* \rightarrow Z^*$
 - inv(1) = I, inv(I) = 1 und inv(0) = 0.
 - $inv(\varepsilon) = \varepsilon \text{ und } \forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$

also z. B. inv(1 IO1) = IIOI

- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- (1+1=3-1=11; -1-1=-3+1=11; 0+1=1)

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$

$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- ▶ definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

$$(1+1=3-1=11; -1-1=-3+1=11; 0+1=1)$$

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$
$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$
$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$

$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$

$$\operatorname{Num}(\omega) = 3 \text{ Num}(\omega)$$

$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

ightharpoonup num(t) = -1, num(0) = 0 und num(1) = 1 und

$$\operatorname{Num}(\varepsilon) = 0$$

$$\forall w \in Z^* \ \forall x \in Z : \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$$

- definere inv : $Z^* \rightarrow Z^*$
 - $ightharpoonup \operatorname{inv}(1) = \mathfrak{I}, \operatorname{inv}(\mathfrak{I}) = 1 \text{ und } \operatorname{inv}(0) = 0.$
 - \blacktriangleright inv(ε) = ε und $\forall w \in Z^* : \forall x \in Z : inv(wx) = inv(w)inv(x)$ also z. B. inv(1 I 01) = I 10 I
- ▶ dann gilt für alle $w \in Z^*$: Num(inv(w)) = -Num(w).
- "Addition" wie "in der Schule":

Das ist wichtig

Das sollten Sie mitnehmen:

- Umwandlungen zwischen Zahlen und Wörtern
- Mal wieder Schleifen
 - ▶ in passenden Beispielen ist Schleifeninvariante gut zu sehen
- schon Leibniz kannte die Binärdarstellung

Das sollten Sie üben:

- Zahlen verschieden repräsentieren
- Algorithmen auch in Randfällen ausprobieren

Überblick

Codierungen

Von Wörtern zu Zahlen und zurück

Dezimaldarstellung von Zahlen Andere Zahldarstellungen Von Zahlen zu ihren Darstellungen

Von einem Alphabet zum anderen

Ein Beispiel: Übersetzung von Zahldarstellungen

Homomorphismen

Beispiel Unicode: UTF-8

Huffman-Codierung

Algorithmus zur Berechnung von Huffman-Codes

Weiteres zu Huffman-Codes

Von Hexadezimal- zu Binärdarstellung

- ▶ Betrachte die Funktion $Trans_{2,16} = Repr_2 \circ Num_{16}$
- ▶ Trans_{2,16} : $Z_{16}^* \to Z_2^*$
- ► Z. B.

$$\operatorname{Trans}_{2,16}(A3) = \operatorname{Repr}_2(\operatorname{Num}_{16}(A3))$$

= $\operatorname{Repr}_2(163) = 10100011$

- wesentlicher Punkt:
 - ▶ A3 und 10100011 haben die gleiche Bedeutung
 - nämlich die Zahl einhundertdreiundsechzig
- So etwas wollen wir eine Übersetzung nennen.

Übersetzungen

- ▶ Allgemein: Man schreibt Wörter aus einer formalen Sprache $L_A \subseteq A^*$ und meint aber etwas anderes, ihre Bedeutung.
- Menge der Bedeutungen je nach Anwendungsfall sehr unterschiedlich
 - einfach: Zahlen,
 - kompliziert: Ausführung von Java-Programmen
 - im Folgenden schreiben wir einfach Sem für die Menge der "Bedeutungen"
- ► Gegeben:
 - ▶ zwei Alphabete A und B
 - $\blacktriangleright L_A \subseteq A^*$ und $L_B \subseteq B^*$
 - ightharpoonup zwei Abbildungen $\operatorname{sem}_A:L_A \to \operatorname{Sem}$ und $\operatorname{sem}_B:L_B \to \operatorname{Sem}$
- ▶ Eine Abbildung $f: L_A \to L_B$ heiße eine Übersetzung bezüglich sem_A und sem_B , wenn f die Bedeutung erhält, d. h.

$$\forall w \in L_A : \operatorname{sem}_A(w) = \operatorname{sem}_B(f(w))$$

Übersetzungen

- ▶ Allgemein: Man schreibt Wörter aus einer formalen Sprache $L_A \subseteq A^*$ und meint aber etwas anderes, ihre Bedeutung.
- Menge der Bedeutungen je nach Anwendungsfall sehr unterschiedlich
 - einfach: Zahlen,
 - kompliziert: Ausführung von Java-Programmen
 - \blacktriangleright im Folgenden schreiben wir einfach Sem für die Menge der "Bedeutungen"
- ▶ Gegeben:
 - ▶ zwei Alphabete A und B
 - ▶ $L_A \subseteq A^*$ und $L_B \subseteq B^*$
 - ightharpoonup zwei Abbildungen $\operatorname{sem}_A: L_A \to \operatorname{Sem}$ und $\operatorname{sem}_B: L_B \to \operatorname{Sem}$
- ▶ Eine Abbildung $f: L_A \to L_B$ heiße eine Übersetzung bezüglich sem_A und sem_B , wenn f die Bedeutung erhält, d. h.

$$\forall w \in L_A : \operatorname{sem}_A(w) = \operatorname{sem}_B(f(w))$$

Beispiel Trans_{2,16}

- $Trans_{2,16} = Repr_2 \circ Num_{16}.$
- einfacher Fall: $L_A = A^* = Z_2^*$ und $L_B = B^* = Z_{16}^*$.
- ▶ Bedeutungsfunktionen: $sem_A = Num_{16}$ und $sem_B = Num_2$
- ▶ Nachrechnen, dass Trans_{2,16} eine Übersetzung ist:

$$\operatorname{sem}_{B}(f(w)) = \operatorname{Num}_{2}(\operatorname{Trans}_{2,16}(w))$$

$$= \operatorname{Num}_{2}(\operatorname{Repr}_{2}(\operatorname{Num}_{16}(w))) *$$

$$= \operatorname{Num}_{16}(w)$$

$$= \operatorname{sem}_{A}(w)$$

• * weil wie bereits erwähnt: $\operatorname{Num}_k(\operatorname{Repr}_k(n)) = n$

Komplizierte Menge Sem

- ▶ Im allgemeinen kann die Menge der Bedeutungen Sem kompliziert sein
- Zum Beispiel bei der Übersetzung von Programmen
- ▶ Was ist Sem, wenn man ein Java-Programm in eine Folge von Bytecodes übersetzt?
 - ▶ siehe Vorlesungen zu "Semantik von Programmiersprachen".

Wozu braucht man Übersetzungen?

- ► Legalität: Manchmal ist ein bestimmter Zeichensatz vorgeschrieben (z. B. ASCII in Emails)
- ► Lesbarkeit: Übersetzungen evtl. kürzer und besser lesbar: vergleiche A3 oder 163 mit 10100011
- Verschlüsselung: gerade das Umgekehrte, d.h. Erschweren der Lesbarkeit
 - ▶ am liebsten gar keine Lesbarkeit, jedenfalls für Außenstehende
 - siehe Vorlesungen über Kryptographie
- Kompression: Übersetzungen können kürzer sein
 - ▶ und zwar ohne größeres Alphabet
 - ▶ das sehen wir gleich: Huffman-Codes
- Fehlererkennung und Fehlerkorrektur:
 - mache Texte werden durch die Übersetzung länger,
 - so dass, falls ein korrekter Funktionswert f(w) zufällig "kaputt" geht (Übertragungsfehler),
 - u. U. Fehlererkennung oder gar Fehlerkorrektur möglich
 - siehe Vorlesungen über Codierungstheorie

Codierungen bzw. Codes

- ▶ In Spezialfällen ist die Forderung $sem_A(w) = sem_B(f(w))$ kein Problem:
- z. B. bei Verschlüsselung und manchen Anwendungen von Kompression:
 - ▶ man will vom Übersetzten f(x) eindeutig zum ursprünglichen x zurückkommen
 - f ist injektiv (linkseindeutig: wenn $x_1 \neq x_2$ dann $f(x_1) \neq f(x_2)$).
- ▶ Dann kann man die Bedeutung sem_B im wesentlichen definieren durch die Festlegung sem_B $(f(x)) = \text{sem}_A(x)$.
 - ▶ Beachte: Dafür ist Injektivität von *f* wichtig!
- ▶ Wenn f injektiv ist, heiße eine Übersetzung auch Codierung.
- ▶ Die f(w) heißen Codewörter.
- ▶ Die Menge $\{f(w) \mid w \in L_A\}$ heißt dann auch ein Code.

Wie spezifiziert man eine Übersetzung?

- ▶ Wenn *L_A* unendlich ist, kann man nicht alle Möglichkeiten aufzählen . . .
- Auswege:
 - Homomorphismen
 (aus dem Griechischen, homos für "gleich" und morphe für "Form"), sind strukturerhaltende Abbildungen
 - Block-Codierungen

Homomorphismen

- Gegeben:
 - zwei Alphabete A und B und
 - eine Abbildung $h: A \rightarrow B^*$.
- ▶ Zu h definiert man Funktion $h^{**}: A^* \rightarrow B^*$ vermöge

$$h^{**}(\varepsilon) = \varepsilon$$
$$\forall w \in A^* : \forall x \in A : h^{**}(wx) = h^{**}(w)h(x)$$

- Beispiel:
 - ► h(a) = 10 und h(b) = 001
 - ► $h^{**}(bab) = h(b) \cdot h(a) \cdot h(b) = 001 \cdot 10 \cdot 001 = 00110001$
- ► Eine solche Abbildung *h*** nennt man einen Homomorphismus.
- ▶ Homomorphismus heißt ε -frei, wenn $\forall x \in A : h(x) \neq \varepsilon$.

Präfixfreie Codes

- ▶ Gegeben: Abbildung $h: A \rightarrow B^*$
- ► Frage: ist Abbildung $h^{**}: A^* \to B^*$ eine Codierung, also injektiv?
- im allgemeinen nicht ganz einfach zu sehen.
- einfacher Spezialfall: h ist präfixfrei
- ▶ Das bedeutet: für *keine zwei verschiedenen* Symbole $x_1, x_2 \in A$ gilt: $h(x_1)$ ist ein Präfix von $h(x_2)$.

Erläuterung und Beispiel

- Ein Code ist präfixfrei, wenn kein gültiges Codewort der Beginn eines anderen gültigen Codewortes ist.
- ► Für einen nicht präfixfreien Code müsste man die Symbole mit Hilfe von Trennzeichen markieren.
- Beispiel: Text ohne Trennsymbole "Urinstinkt" könnte man dekodieren in "Urin stinkt" - das Trennsymbol sorgt für Eindeutigkeit der Dekodierung
- Das zusätzliche Trennzeichen macht den Code allerdings weniger effizient.
- Durch die Bedingung der Präfixfreiheit definiert man den Code so, dass zwei beliebige Codeworte ohne Trennsymbol hintereinander geschrieben werden können, ohne die eindeutige Dekodierbarkeit zu gefährden
- ▶ In unserem Beispiel könnte man also statt Einführung der Trennzeichen die Präfixfreiheit fordern, d.h. es dürfte im Code keine Wörter "U, Ur, Uri, Urin, Urins, Urinst, Urinstin, …" geben

Präfixfreie Codes: Decodierung

- ▶ allgemeines Problem: nicht alle Wörter aus B* sind Codewort,
 d. h. h** ist im allgemeinen nicht surjektiv
- damit Decodierung trotzdem totale Abbildung u sein kann, definiere u : B* → (A ∪ {⊥})*.
 - ▶ wenn ein $w \in B^*$ gar nicht decodiert werden kann, dann soll in u(w) das Symbol \bot vorkommen

Beispiel

- ► Homomorphismus $h: \{a, b, c\}^* \to \{0, 1\}^*$ mit h(a) = 1, h(b) = 01, h(c) = 001.
 - Dieser Homomorphismus ist präfixfrei.
- ▶ dann $u: \{0,1\}^* \to \{a,b,c,\bot\}^*$
- z. B. soll gelten
 - $u(\varepsilon) = \varepsilon$
 - u(001) = c
 - u(0101) = bb
 - $u(0) = \bot$ o. ä.

Präfixfreie Codes: Decodierung (2)

wir schreiben mal hin (und diskutieren das anschließend):

$$u(w) = \begin{cases} \varepsilon & \text{falls } w = \varepsilon \\ au(w') & \text{falls } w = 1w' \\ bu(w') & \text{falls } w = 01w' \\ cu(w') & \text{falls } w = 001w' \\ \bot & \text{sonst} \end{cases}$$

• sei w = 100101 = h(acb); wir rechnen:

$$u(100101) = au(00101)$$

= $acu(01)$
= $acbu(\varepsilon)$
= acb

Präfixfreie Codes: Decodierung (3)

$$\mathbf{v}(w) = \begin{cases} \varepsilon & \text{falls } w = \varepsilon \\ \mathrm{a}u(w') & \text{falls } w = 1w' \\ \mathrm{b}u(w') & \text{falls } w = 01w' \\ \mathrm{c}u(w') & \text{falls } w = 001w' \\ \bot & \text{sonst} \end{cases}$$

- $u(100101) = au(00101) = acu(01) = acbu(\varepsilon) = acb$
- Warum hat das geklappt?
- ▶ In jedem Schritt war klar, welche Zeile der Definition von *u* anzuwenden war.
- ▶ denn . . .

Präfixfreie Codes: Decodierung (4)

- Man spricht hier von Wohldefiniertheit
- immer ein Problem, wenn Funktionswert potenziell "auf mehreren Wegen" festgelegt; dann klar machen:
 - entweder nur ein Weg "gangbar"
 - oder auf allen Wegen gleicher Funktionswert
- einen *präfixfreien* Code kann man also so decodieren:

$$u(w) = \begin{cases} \varepsilon & \text{falls } w = \varepsilon \\ x u(w') & \text{falls } w = h(x)w' \text{ für ein } x \in A \\ \bot & \text{sonst} \end{cases}$$

► Beachte: das heißt nur, dass man präfixfreie Codes "so einfach" decodieren kann.

Beispiele von Homomorphismen

- ASCII-Code:
 - ▶ alle Zeichen werden durch Wörter gleicher Länge codiert
 - Längere Texte werden übersetzt, indem man zeichenweise decodiert.
- Unicode: könnte man analog zu ASCII machen, ABER: weil Unicode-Zeichensatz soviele Zeichen enthält, bräuchte man 4 Bytes pro Zeichen
- ▶ Idee: Platzsparende Codierung verwenden, sofern ein (deutscher) Text nur sehr wenige Zeichen verwendet \rightarrow UTF-8
- ▶ UTF-8 ist präfixfrei

Auszug aus RFC 3629

Char. number range (hexadecimal) UTF-8 octet sequence (binary) 0000 0000 - 0000 007F 0xxxxxxx 0000 0080 - 0000 07FF 110xxxxx 10xxxxxx 0000 0800 - 0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx 10xxxxxx				
0000 0080 - 0000 07FF	9			
	0000 0080 - 0000 07FF 0000 0800 - 0000 FFFF	110xxxxx 10xxxxxx 1110xxxx 10xxxxxx 10xxxxxx 11110xxx 10xxxxxx		

- Determine the number of octets required . . .
- Prepare the high-order bits of the octets . . .
- ▶ Fill in the bits marked x . . .
 - Start by putting the lowest-order bit of the character number in the lowest-order position of the last octet of the sequence,
 - ▶ then put the next higher-order bit of the character number in the next higher-order position of that octet, . . .
 - ► When the x bits of the last octet are filled in, move on to the next to last octet, then to the preceding one, etc. . . .

UTF-8: ein Beispiel

- Integralzeichen ∫ hat Unicode Codepoint 0x222B
- ▶ 0x222B in Bits 0010 0010 0010 1011
- benutze also die Zeile

Char. number range (hexadecimal)	UTF-8 octet sequence (binary)		
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx		

- ▶ also 0010 0010 0010 1011 = 0010 001000 101011
- ▶ also UTF-8 Codierung 11100010 10001000 10101011
- ▶ Man überlege sich
 - ▶ UTF-8 ist präfixfrei
 - ▶ UTF-8 ist eine platzsparendere Codierung als Unicode

Das ist wichtig

Das sollten Sie mitnehmen:

- ▶ Übersetzungen sind in verschiedenen Situationen nützlich
- ► Homomorphismen
- Codes
- ▶ UTF-8

Das sollten Sie üben:

- ► Homomorphismen anwenden
- Zeichen in UTF-8 codieren

Überblick

Codierungen

Von Wörtern zu Zahlen und zurück

Dezimaldarstellung von Zahlen Andere Zahldarstellungen Von Zahlen zu ihren Darstellungen

Von einem Alphabet zum anderen

Ein Beispiel: Übersetzung von Zahldarstellungen

Homomorphismen

Beispiel Unicode: UTF-8

Huffman-Codierung

Algorithmus zur Berechnung von Huffman-Codes

Weiteres zu Huffman-Codes

Huffman-Codierung

- ▶ Gegeben: ein Alphabet A und ein Wort $w \in A^*$
- ► Eine sogenannte Huffman-Codierung von w ist
 - eine Abbildung $h: A^* \to Z_2^*$,
 - die ein ε -freier Homomorphismus ist.
 - ▶ h also eindeutig festgelegt durch die h(x) für alle $x \in A$.
- Verwendung z. B. in Kompressionsverfahren wie gzip oder bzip2
- denn bei Huffman-Codierungen
 - häufigere Symbole durch kürzere Wörter codiert und
 - seltenere Symbole durch längere

Voraussetzungen

- Gegeben
 - ▶ ein $w \in A^*$ und
 - ▶ die Anzahlen $N_x(w)$ aller Symbole $x \in A$ in w
 - o. B. d. A. alle $N_x(w) > 0$ (den Rest muss man nicht codieren)
- Algorithmus zur Bestimmung eines Huffman-Codes arbeitet in zwei Phasen:
 - 1. es wird ein Baum konstruiert
 - ▶ dessen Blätter den $x \in A$ entsprechen und
 - dessen Kanten mit 0 und 1 beschriftet sind
 - 2. Ablesen der Codes aus dem Baum (Pfadbeschriftungen)

Algorithmus für Huffman-Codes

- ▶ Beispiel: w = afebfecaffdeddccefbeff
- ▶ Baum am Ende:

► Homomorphismus (präfixfrei!)

×	a	b	С	d	е	f
h(x)	000	001	100	101	01	11

Konstruktion des Huffman-Baumes (1)

- Zu jedem Zeitpunkt hat man
 - eine Menge M_i von "noch zu betrachtenden Symbolmengen mit ihren Häufigkeiten"
 - und eine ebenso große Menge von schon konstruierten Teilbäumen
- ► Initialisierung:
 - ▶ M_0 ist die Menge aller $\{(N_x(w), \{x\})\}$ für $x \in A$,
 - Als Anfang für die Konstruktion des Baumes zeichnet man für jedes Symbol einen Knoten mit Markierung $(N_x(w), \{x\})$.
- Beispiel

$$\textit{M}_{0} = \{\; (2,\{a\})\;,\; (2,\{b\})\;,\; (3,\{c\})\;,\; (3,\{d\})\;,\; (5,\{e\})\;,\; (7,\{f\})\;\}$$

Konstruktion des Huffman-Baumes (2)

Anfang im Beispiel:

 $\mathbf{5},\mathbf{e}$

 $7, \mathtt{f}$

 $2, a \qquad 2, b$

3, c 3, d

Codierungen

Huffman-Codierung

Konstruktion des Huffman-Baumes (3)

Iterationsschritt des Algorithmus:

- Solange Menge M_i noch mindestens zwei Paare enthält, Bestimme Menge M_{i+1} wie folgt:
 - ▶ Wähle zwei Paare (k_1, X_1) und (k_2, X_2) , deren Häufigkeiten zu den kleinsten noch vorkommenden gehören.
 - ▶ Entferne diese Paare aus M_i und fügt statt dessen das eine Paar $(k_1 + k_2, X_1 \cup X_2)$ hinzu. Das ergibt M_{i+1} .
- ▶ im Graphen
 - Füge einen weiteren Knoten hinzu,
 - ▶ markiert mit der Häufigkeit $k_1 + k_2$ und Kanten zu den Knoten, die für (k_1, X_1) und (k_2, X_2) eingefügt worden waren.

Konstruktion des Huffman-Baumes (4)

Beispiel:

$$\textit{M}_{0} = \{\; (2,\{a\}) \;,\; (2,\{b\}) \;,\; (3,\{c\}) \;,\; (3,\{d\}) \;,\; (5,\{e\}) \;,\; (7,\{f\}) \;\}$$

 $5, \mathbf{e}$

7, f

2, a 2, b

3, **c**

3, d

Konstruktion des Huffman-Baumes (4)

Beispiel:

$$M_1 = \{ (4, \{a, b\}), (3, \{c\}), (3, \{d\}), (5, \{e\}), (7, \{f\}) \}$$

Codierungen Huffman-Codierung

Konstruktion des Huffman-Baumes (5)

Beispiel:

$$M_2 = \{ (4, \{a, b\}), (6, \{c, d\}), (5, \{e\}), (7, \{f\}) \}$$

Codierungen

Konstruktion des Huffman-Baumes (6)

Beispiel

$$M_3 = \{ (9, \{a, b, e\}), (6, \{c, d\}), (7, \{f\}) \}$$

Codierungen

Konstruktion des Huffman-Baumes (7)

Beispiel

$$\textit{M}_{4} = \{\; \big(9, \{\mathtt{a}, \mathtt{b}, \mathtt{e}\}\big) \;,\; \big(13, \{\mathtt{c}, \mathtt{d}, \mathtt{f}\}\big) \;\}$$

Konstruktion des Huffman-Baumes (8)

Beispiel

Codierungen

Beschriftung der Kanten

- ▶ nach links führende Kanten werden mit 0 beschriftet
- ▶ nach rechts führende Kanten werden mit 1 beschriftet

Beschriftung der Kanten

- ▶ nach links führende Kanten werden mit 0 beschriftet
- ▶ nach rechts führende Kanten werden mit 1 beschriftet

Ablesen der Codierungen

- gehe auf kürzestem Weg von der Wurzel des Baumes zu dem Blatt, das x entspricht,
- konkateniere der Reihe nach alle Symbole, mit denen die Kanten auf diesem Weg beschriftet sind.

Algorithmus für Huffman-Codes

- ▶ Beispiel: w = afebfecaffdeddccefbeff
- ▶ Baum am Ende:

Homomorphismus (präfixfrei!)

X	a	b	С	d	е	f
h(x)	000	001	100	101	01	11

Eigenschaften von Huffman-Codes

- ► Huffman-Code nicht eindeutig
 - im allgemeinen mehrere Möglichkeiten, welche zwei Knoten zu einem neuen vereinigt werden
 - ▶ im Baum links und rechts vertauschbar
- aber alle sind "gleich gut":
 - Unter allen präfixfreien Codes führen Huffman-Codes zu kürzesten Codierungen des Wortes, für das die Huffman-Codierung konstruiert wurde.

Block-Codierungen

- Verallgemeinerung des obigen Verfahrens:
 - ▶ Betrachte nicht Häufigkeiten einzelner Symbole,
 - sondern für Teilwörter einer festen Länge b > 1.
 - einziger Unterschied: an den Blättern des Huffman-Baumes stehen Wörter der Länge b.
- So etwas nennt man eine Block-Codierung.
 - ▶ Statt h(x) für $x \in A$ festzulegen,
 - ▶ legt man h(w) für alle Blöcke $w \in A^b$ fest, und
 - erweitert dies zu einer Funktion $h: (A^b)^* \to B^*$.

Das ist wichtig

Das sollten Sie mitnehmen:

- ▶ Huffman-Codierung liefert kürzest mögliche präfixfreie Codes
- "Algorithmus" zur Bestimmung des Huffman-Baumes
- warum die Anführungszeichen?

Das sollten Sie üben:

► Huffman-Codes berechnen