

EXERCÍCIOS DE ÁLGEBRA LINEAR

FICHA 1 - Método de Eliminação de Gauss

1 Sistemas de equações lineares

Uma equação linear nas variáveis (ou incógnitas) $x_1, ..., x_n$, é uma equação do tipo

$$a_1 x_1 + \dots + a_n x_n = d, (1.1)$$

onde $a_1, ..., a_n$ e d são números (reais ou complexos); $a_1, ..., a_n$, dizem-se os **coeficientes da equação** e d o seu **segundo membro**.

Um sistema de p equações lineares (SEL) nas n variáveis (ou incógnitas) $x_1, ..., x_n$, é um conjunto de p de equações do tipo da equação (1.1):

Uma sequência numérica $(s_1, ..., s_n)$ diz-se uma **solução do sistema** (1.2) se for solução de cada uma das equações que compõem (1.2).

Dois sistemas de p equações lineares a n incógnitas são **equivalentes** se tiverem o mesmo conjunto de soluções

Tornando implícitas as variáveis de um SEL, ele acha-se plenamente caracterizado pela ${\bf matriz}$

$$\mathbf{A}|\mathbf{d} = \left[egin{array}{ccc|c} a_{11} & \dots & a_{1n} & d_1 \ a_{21} & \dots & a_{2n} & d_2 \ \dots & \dots & \dots & \dots \ a_{p1} & \dots & a_{pn} & d_p \end{array}
ight].$$

que toma o nome de matriz aumentada do sistema (MAS). A matriz com p linhas e n colunas (matriz $p \times n$) sem os segundos membros das equações do sistema,

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{p1} & \dots & a_{pn} \end{bmatrix},$$

toma o nome de matriz dos coeficientes do sistema, ou matriz do sistema.

¹Coligidos por: João Ferreira Alves, Ricardo Coutinho e José M. Ferreira.

1.1 Classificação dos sistemas de equações lineares

 $\operatorname{Um} SEL$ pode ser:

- Impossível se não tiver soluções.
- Possível e determinado se possuir uma só solução.
- Possível e indeterminado se tiver infinitas soluções.

1.2 Operações elementares sobre as linhas de uma matriz

Sobre as linhas de uma matriz iremos considerar as seguintes operações:

- 1. Trocar linhas.
- 2. Multiplicar uma linha por um número diferente de zero, obtendo-se um múltiplo dessa linha.
- 3. Substituir uma linha pela sua soma com o múltiplo de outra linha.

Estas operações podem ser resumidamente indicadas através da seguinte notação:

 $L_i \longleftrightarrow L_j$ significa a operação de trocar a linha i com a linha j.

 αL_i diz-nos que estamos a multiplicar a linha L_i pelo número $\alpha \neq 0$.

 $L_i + \alpha L_j$ indica que estamos a substituir a linha L_i pela sua soma com o múltiplo αL_j da linha L_j

1.3 Matriz em escada de linhas

Uma matriz diz-se em **escada de linhas** se tiver as seguintes características:

- 1. Não tem linhas nulas seguidas de linhas não nulas.
- 2. Chamando pivô de uma linha à primeira entrada não nula dessa linha, caso exista, cada pivô de uma linha encontra-se numa coluna à direita da coluna a que pertence o pivô da linha imediatamente anterior.

Por exemplo,

$$\left[\begin{array}{cccccccccc}
1 & 5 & 0 & 3 & -6 & 0 \\
0 & 0 & 0 & -3 & 0 & 9 \\
0 & 0 & 0 & 0 & 2 & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right].$$

1.4 Forma reduzida de uma matriz em escada de linhas

Uma matriz em escada de linhas diz-se na forma reduzida se possuir as seguintes características adicionais:

- Todos os pivôs são iguais a 1.
- Cada pivô é a única entrada não nula da coluna respectiva.

Por exemplo,

1.5 Variáveis dependentes e variáveis livres

Se a MAS, $\mathbf{A}|\mathbf{d}$, estiver em escada de linhas, dizemos que, com $1 \leq i \leq n$, x_i é uma variável dependente se na coluna i de $\mathbf{A}|\mathbf{d}$ existir um pivô. Caso contrário diremos que x_i é variável livre. Nestas condições podem ainda tirar-se as seguintes conclusões:

- 1. O sistema é impossível se e só se existir um pivô na última coluna de $\mathbf{A}|\mathbf{d}$.
- 2. O sistema é possível e determinado se e só se não existir um pivô na última coluna de $\mathbf{A}|\mathbf{d}$ e não existirem variáveis livres.
- 3. O sistema é possível e indeterminado se e só se não existe um pivô na última coluna de $\mathbf{A}|\mathbf{d}$ e existirem incógnitas livres.

1.6 Método de eliminação de Gauss²

PASSO 1: Ordenar as variáveis e escrever a matriz aumentada do sistema A|d.

PASSO 2: Por meio de operações elementares de linhas obter uma matriz em escada de linhas.

PASSO 3: Verificar se o sistema é possível. Neste caso identificar as variáveis livres e as dependentes e:

PASSO 4: Por meio de operações elementares de linhas obter uma matriz na forma reduzida e ler a solução.

² Johann Carl Friederich Gauss, n. 30 de Abril de 1777 em Brunswick, m. em 23 de Fevereiro de 1855 em Gottingen.

1.7 Exercícios

Exercício 1 Quais dos seguintes pares (x, y):

$$(0,0), (-1,1), (1,-1) e (1,1),$$

são soluções do sistema

$$\begin{cases} x+y=0\\ -x-2y=1 ?\\ 2x+2y=0 \end{cases}$$

Exercício 2 Quais dos seguintes ternos (x, y, z):

$$(0,0,0)$$
, $(-1,1,0)$, $(1,-1,0)$, $(0,-1,1)$, $(-2,0,1)$ e $(0,-1,0)$

são soluções do sistema

$$\begin{cases} x+y+2z=0\\ -x-2y-z=1 \end{cases}$$
?

Exercício 3 Resolva os seguintes sistemas de equações lineares a duas incógnitas e interprete geometricamente as suas eventuais soluções :

a)
$$\begin{cases} x + 2y = 1 \\ x + 3y = 0 \end{cases}$$
 b) $\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$ c) $\begin{cases} 4x + 5y = 1 \\ 12x + 15y = 0 \end{cases}$.

$$d) \left\{ \begin{array}{l} x+y=1 \\ 3x-y=2 \\ x-y=0 \end{array} \right. \quad e) \ \left\{ x+y=1 \right. \qquad \qquad f) \ \left\{ \begin{array}{l} 2x-y=4 \\ x-y=1 \\ x+y=5 \end{array} \right. .$$

Exercício 4 Resolva os seguintes sistemas de equações lineares a três incógnitas e proceda à interpretação geométrica das suas eventuais soluções:

a)
$$\begin{cases} 2x + 2y + 3z = 1 \\ x + 2y + z = 0 \\ x - y + z = 0 \end{cases}$$
 b)
$$\begin{cases} x + 2y + 3z = 1 \\ 4x + 7y + 7z = 3 \\ 2x + 3y + z = 0 \end{cases}$$

c)
$$\begin{cases} x + 2y + z = 0 \\ 4x + 10y + 10z = 0 \\ x + 3y + 4z = 0 \end{cases}$$
 d)
$$\begin{cases} 2x + 3y + z = 0 \\ x + y + z = 0 \end{cases}$$
.

Exercício 5 Resolva os sequintes sistemas de equações lineares

a)
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1 \\ 2x_1 + x_2 - x_3 + x_4 = 3 \end{cases}$$
 b)
$$\begin{cases} 2x + 2y + 2z + 3w = 3 \\ x + y + z + w = 1 \\ 3x + 3y + 3z + 2w = 2 \end{cases}$$
.

c)
$$\begin{cases} x+z+2w=0\\ 2x+3z+3w=0\\ y+2w=2\\ x+2z+w=0 \end{cases}$$
 d)
$$\begin{cases} y_1+y_3+2y_4=0\\ y_1+2y_2+y_3+y_4=1\\ y_2+2y_4=8\\ y_1+2y_3+y_4=0 \end{cases}$$
.

Exercício 6 Determine o conjunto das soluções dos seguintes sistemas:

a)
$$\begin{cases} y+z=0\\ 2x+3w=2\\ 6x+3y+3z+4w=6\\ 3x+2w=3\\ 5x+y+z+5w=5 \end{cases}$$
 b)
$$\begin{cases} 3y-2z=0\\ 2x+2y-2z=0\\ x+4y-3z=0\\ x-y+z=2 \end{cases}$$

Exercício 7 Em função dos parâmetros α e β , discuta os seguintes sistemas de equações lineares:

a)
$$\begin{cases} x + 4y + 3z = 10 \\ 2x + 7y - 2z = 10 \\ x + 5y + \alpha z = \beta \end{cases}$$
 b)
$$\begin{cases} 2x + y + z = -6\beta \\ \alpha x + 3y + 2z = 2\beta \\ 2x + y + (\alpha + 1)z = 4 \end{cases}$$
.

Exercício 8 Caracterize os vectores $(b_1, b_2, b_3) \in \mathbb{R}^3$ que tornam possível o seguinte sistema de equações lineares nas incógnitas $x, y \in \mathbb{R}^3$

$$\begin{cases} x + y + 3z = b_1 \\ 2x + 2y - z = b_2 \\ 4x + 4y + 5z = b_3 \end{cases}.$$

Exercício 9 Considere o sistema de equações lineares com parâmetros α e β , e incógnitas x, y e z:

$$\begin{cases} 2x + 7y = 9 \\ 2x + \alpha y + \beta z = 1 \\ 2x + 7y + z = 7 \end{cases}.$$

Determine os únicos valores de α e β para os quais o sistema é indeterminado.

Exercício 10 Obtenha uma equação linear cujo conjunto de soluções seja:

- a) $S = \{(1+t, 1-t) : t \in \mathbb{R}\}$.
- b) $S = \{(1 t, 2s, t) : s, t \in \mathbb{R}\}$.
- c) $S = \{(3t + 2s, t s + 1, 2t s + 2) : s, t \in \mathbb{R}\}$.

Exercício 11 Indique um sistema de equações lineares que tenha como conjunto de soluções:

- a) $S = \{(3s 2t + 1, s, 5t 1, t) : s, t \in \mathbb{R}\}$.
- b) $S = \{(3t, 2t, t) : t \in \mathbb{R}\}$.

Exercício 12 Determine um polinómio $p(t) = a_0 + a_1t + a_2t^2$ cujo gráfico passe pelos pontos

$$(1,12)$$
, $(2,15)$ e $(3,16)$.

Exercício 13 Um mealheiro contém moedas de 1, 5 e 10 cêntimos num total de 13 moedas e de 83 cêntimos. Quantas moedas de cada tipo contém o mealheiro?

Exercício 14 Quatro números inteiros são dados. Seleccionando três deles, fazendo a respectiva média e adicionando ao quarto obtiveram-se os seguintes valores: 29, 23, 21 e 17. Determine aqueles números.

Exercício 15 Um filamento de espessura negligenciável está representado na Figura 1, onde são também indicadas as temperaturas em três nós do filamento (30°, 40° e 60°). Determinar as temperaturas dos restantes três nós, sabendo que cada uma delas é igual às médias das temperaturas dos três nós mais próximos.

Figura 1

Exercício 16 Sejam $v_1, ..., v_p$, pontos de \mathbb{R}^3 e suponha-se que para cada j=1,...,p, se encontra um objecto em v_j de massa m_j . Em Física tais objectos são chamados de pontos de massa. A massa total do sistema é

$$m = m_1 + ... + m_p$$

e o ponto

$$\overline{\mathbf{v}} = \frac{1}{m} \left(m_1 \mathbf{v}_1 + \dots + m_p \mathbf{v}_p \right)$$

é chamado de centro de gravidade (ou centro de massa) do sistema.

a) Calcule o centro de gravidade de um sistema composto pelos pontos de massa indicados na seguinte tabela:

Pontos	Massas
(5, -4, 3)	2g
(4,3,-2)	5g
(-4, -3, -1)	2g
(-9, 8, 6)	1g

- b) Uma placa de espessura negligenciável com 3g de massa tem a forma de um triângulo de vértices (0,1,0), (8,1,0) e (2,4,0). Supondo que a densidade da placa é uniforme, determine o seu centro de massa. (Este ponto coincide com o centro de massa de um sistema composto por 1g de massa colocado em cada vértice do triângulo).
- c) Como distribuiria uma massa adicional de 6g pelos três vértices da placa de modo a deslocar o centro de gravidade da placa para o ponto (2, 2, 0)?

2 Operações com matrizes

Uma matriz $m \times n$ é um quadro de números reais ou complexos com m filas horizontais e n filas verticais

$$\mathbf{A} = \left[egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ \dots & \dots & \dots & \dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight].$$

Chamaremos linhas às filas horizontais de \mathbf{A} e **colunas** às suas filas verticais. O coeficiente (ou entrada) de uma matriz \mathbf{A} relativo à linha i e coluna j representa-se por a_{ij} ou $[\mathbf{A}]_{ij}$.

O conjunto das matrizes $m \times n$ com coeficientes reais (resp. complexos) representa-se por $\mathbb{M}_{m \times n}(\mathbb{R})$ (resp. $\mathbb{M}_{m \times n}(\mathbb{C})$).

2.1 Soma de matrizes e produto de uma matriz por um escalar

Dadas duas matrizes $p \times n$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{p1} & b_{p2} & \dots & b_{pn} \end{bmatrix}$$

pela soma de A com B entendemos a matriz, também $p \times n$,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{p1} + b_{p1} & a_{p2} + b_{p2} & \dots & a_{pn} + b_{pn} \end{bmatrix}.$$

O produto do escalar $\alpha \in \mathbb{R}$ pela matriz A consiste na matriz

$$\alpha \mathbf{A} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha a_{p1} & \alpha a_{p2} & \dots & \alpha a_{pn} \end{bmatrix}.$$

- Decorrentes de propriedades bem conhecidas dos números reais, facilmente se observa a validade das propriedades seguintes onde \mathbf{A} , \mathbf{B} e \mathbf{C} são matrizes $n \times p$ e α , $\beta \in \mathbb{R}$:
- i) A + B = B + A (comutatividade).
- ii) $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$ (associatividade).
- iii) $\alpha (\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$ (distributividade).
- iv) $(\alpha + \beta) \mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$ (distributividade).
- v) $(\alpha\beta) \mathbf{A} = \alpha (\beta \mathbf{A})$ (associatividade).

2.2 Produto de matrizes

Consideremos duas matrizes A e B, a primeira $m \times n$ e a segunda $n \times p$:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 e
$$\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{bmatrix}$$

(note que o número de colunas de \mathbf{A} é igual ao número de linhas de \mathbf{b}). À matriz \mathbf{AB} com m linhas, p colunas e entradas $[\mathbf{AB}]_{ij}$ definidas por

$$[\mathbf{AB}]_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

chamamos matriz produto de A por B.

Observemos que, como consequência da definição de produto, a coluna j da matriz \mathbf{AB} é dada pela expressão

$$\mathbf{A} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \dots \\ b_{nj} \end{bmatrix} = b_{1j} \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix} + b_{2j} \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{bmatrix} + \dots + b_{nj} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{bmatrix}.$$

Analogamente, a linha i da matriz AB é dada por

$$[a_{i1} \ a_{i2} \ \dots \ a_{in}] \mathbf{B} = a_{i1} [b_{11} \ b_{12} \ \dots \ b_{1p}] + a_{i2} [b_{21} \ b_{22} \ \dots \ b_{2p}] + \cdots$$

$$\cdots + a_{in} [b_{n1} \ b_{n2} \ \dots \ b_{np}].$$

O produto de matrizes goza das propriedades a seguir indicadas.

- Seja A uma matriz $m \times n$, B, C matrizes de tamanhos adequados e $\alpha \in \mathbb{R}$. Então:
- i) A(BC) = A(BC) (associatividade).
- ii) A(B+C) = AB + AC (distributividade).
- iii) $(\mathbf{A} + \mathbf{B}) \mathbf{C} = \mathbf{AC} + \mathbf{BC}$ (distributividade).
- iv) $\alpha(\mathbf{AB}) = (\alpha \mathbf{A}) \mathbf{B} = \mathbf{A} (\alpha \mathbf{B})$ (associatividade).
- v) $\mathbf{I}_m \mathbf{A} = \mathbf{A} = \mathbf{A} \mathbf{I}_n$ onde

$$\mathbf{I}_m \\ \text{(matriz } m \times m) = \left[\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right] \quad \text{e} \quad \mathbf{I}_n \\ \text{(matriz } n \times n) = \left[\begin{array}{ccccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right]$$

são chamadas de matrizes identidade (existência de elementos neutros).

Notemos que em geral o produto de matrizes não é comutativo.

2.3 Descrição matricial de um SEL

O produto de matrizes permite ainda uma descrição matricial do SEL

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = d_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = d_2 \\ \dots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn}x_n = d_p \end{cases},$$

através da relação

$$Ax = d$$
.

onde

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \quad \mathbf{e} \quad \mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \dots \\ d_p \end{bmatrix}.$$

2.4 Transposta de uma matriz

Seja **A** uma matriz $p \times n$. A matriz **transposta** de **A** é a matriz \mathbf{A}^T que se obtém a partir de **A**, transformando a primeira linha de **A** na primeira coluna de \mathbf{A}^T , a segunda linha de **A** na segunda coluna de \mathbf{A}^T , etc. \mathbf{A}^T é uma matriz $n \times p$.

Esta operação de transposição de uma matriz satisfaz as propriedades a seguir estabelecidas.

- Seja A uma matriz $p \times n$, B uma matriz $n \times k$ e $\alpha \in \mathbb{R}$. Então (ver ex. 26 b):
- i) $(\mathbf{A}^T)^T = \mathbf{A}$.
- ii) $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$.
- iii) $(\alpha \mathbf{A})^T = \alpha \mathbf{A}^T$.
- iv) $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$.

2.5 Exercícios

Exercício 17 Sempre que possível efectue as seguintes operações de matrizes. Justifique os casos de impossibilidade.

a)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
. b) $\begin{bmatrix} 2 \\ 8 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ -5 \end{bmatrix}$. c) $2 \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} + 3 \begin{bmatrix} 0 & 2 \\ 6 & 1 \end{bmatrix}$.

d)
$$\frac{1}{2} \begin{bmatrix} 4 \\ -2 \\ 8 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 9 \\ -3 \\ 6 \end{bmatrix}$$
. e) $\frac{2}{3} \begin{bmatrix} 6 & -6 \\ 9 & 3 \\ -3 & 12 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -6 & 4 \\ -4 & 8 \\ 2 & -2 \end{bmatrix}$.

f)
$$\begin{bmatrix} 0 & 8 & -7 & -6 \\ 3 & 1 & 5 & 4 \\ -4 & 6 & -2 & -1 \end{bmatrix} - \begin{bmatrix} 1 & -9 & 10 \\ -4 & 2 & -8 \\ 6 & 7 & -3 \end{bmatrix}.$$

Exercício 18 Efectue os seguintes produtos de matrizes. Caso algum deles não seja possível, explique porquê.

a)
$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
. b) $\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$. c) $\begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.
d) $\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. e) $\begin{bmatrix} 1 & -5 & 3 \\ -3 & -1 & 4 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. f) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

Exercício 19 Nos seguintes produtos, preencha os espaços em branco.

a)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ \Box \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$$
. b) $\begin{bmatrix} \begin{bmatrix} 1 & -8 & 4 \\ -2 & -7 & 3 & -5 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ \Box \\ -2 \end{bmatrix} = \begin{bmatrix} -8 \\ 16 \end{bmatrix}$. c) $\begin{bmatrix} 7 & -3 \\ 9 & \Box \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} -9 \\ 12 \\ \Box \end{bmatrix}$. d) $\begin{bmatrix} 1 & 0 & 2 \\ \Box & 6 & 1 \\ -7 & 2 & 9 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \Box \\ 2 \\ \Box \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$

Exercício 20 Efectue os seguintes produtos de matrizes:

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. b) $\begin{bmatrix} -3 & 4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -2 \end{bmatrix}$. c) $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$. d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. e) $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. f) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$. g) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$. h) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$. i) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$.

Exercício 21 Preencha os espaços em branco nos seguintes produtos de matrizes:

a)
$$\begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -6 & 1 \\ -4 & -4 \end{bmatrix}.$$
b)
$$\begin{bmatrix} -1 & 0 \\ -2 & 0 \\ 0 & \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ 2 & \end{bmatrix}.$$
c)
$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ -3 & -1 & \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 3 & \end{bmatrix}.$$

Exercício 22 Resolva o $SEL \mathbf{A} \mathbf{x} = \mathbf{b}$ para:.

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -8 \end{bmatrix}$$
 $e \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$; b) $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}$ $e \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Exercício 23 Com $a \in \mathbb{R}$ qualquer, seja

$$\mathbf{A} = \left[\begin{array}{cc} 0 & a \\ a & 0 \end{array} \right].$$

- a) Calcule $A^2 \in A^3$.
- b) Mostre as seguintes relações:

$$\mathbf{A}^{2k} = \begin{bmatrix} a^{2k} & 0 \\ 0 & a^{2k} \end{bmatrix} \quad \text{e} \quad \mathbf{A}^{2k+1} = \begin{bmatrix} 0 & a^{2k+1} \\ a^{2k+1} & 0 \end{bmatrix} \quad (k = 0, 1, 2, \dots).$$

Exercício 24 Dê um exemplo de duas matrizes A e B para as quais:

i)
$$(A - B)(A + B) \neq A^2 - B^2$$
. ii) $(A + B)^2 \neq A^2 + 2AB + B^2$.

Exercício 25 O traço de uma matriz quadrada $\mathbf{A} = [a_{ij}]_{i,j=1}^n$ consiste na soma das entradas de A que se encontram na diagonal principal. Isto \acute{e} :

$$\operatorname{tr} \mathbf{A} = \sum_{j=1}^{n} a_{jj}.$$

- a) Justifique que $tr(\mathbf{A} + \mathbf{B}) = tr\mathbf{A} + tr\mathbf{B}$.
- b) É uma relação do mesmo tipo verificada para a multiplicação de uma matriz por um escalar? E para o produto de matrizes?
- c) Verifique para matrizes 2×2 que $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$.

Exercício 26 A transposta de uma matriz \mathbf{A} $(m \times n)$ é uma outra matriz designada por \mathbf{A}^T $(n \times m)$ em que a primeira linha de \mathbf{A}^T é a primeira coluna de \mathbf{A} , a segunda linha de \mathbf{A}^T é a segunda coluna de \mathbf{A} , etc.

a) Indique as transpostas das seguintes matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -1 & -3 \\ 0 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & -2 \\ -3 & 4 & 5 \\ 0 & -1 & 1 \end{bmatrix}.$$

b) Justifique que: i) $(\mathbf{A}^T)^T = \mathbf{A}$. ii) $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$. iii) $(\alpha \mathbf{A})^T = \alpha \mathbf{A}^T$. iv) $(\mathbf{A} \mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$.

Exercício 27 Uma matriz \mathbf{A} $(n \times n)$ diz-se simétrica sempre que $\mathbf{A}^T = \mathbf{A}$.

- a) $D\hat{e}$ exemplo de uma matriz, 3×3 , simétrica sem entradas nulas.
- b) $\mathbf{A} + \mathbf{A}^T$ é sempre uma matriz simétrica? E $\mathbf{A}\mathbf{A}^T$?

Exercício 28 Uma matriz quadrada, M, é dita de Markov se cada entrada da matriz estiver entre zero e um e a soma dos elementos de cada coluna for igual a 1.

a) Diga se as seguintes matrizes são de Markov:

$$\mathbf{A} = \begin{bmatrix} 1/2 & 1/3 \\ 1/2 & 2/3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0, 2 & 0 & 0, 24 \\ 0, 25 & 0 & 0, 37 \\ 0, 55 & 1 & 0, 5 \end{bmatrix}.$$

- b) Analise para matrizes 2 × 2, se as seguintes afirmações são verdadeiras ou falsas:
 - i) A soma de matrizes de Markov é uma matriz de Markov.
 - ii) O produto de matrizes de Markov é uma matriz de Markov.

3 Inversão de matrizes

Uma matriz \mathbf{A} , $n \times n$, diz-se **invertível** se existir uma matriz \mathbf{C} , também $n \times n$, tal que

$$AC = CA = I_n$$

onde \mathbf{I}_n é a matriz identidade $n \times n$ (elemento neutro para a multiplicação de matrizes). Nestas circunstâncias a matriz \mathbf{C} diz-se **matriz inversa de A** e será representada por \mathbf{A}^{-1} .

- Quando existe, a inversa de uma matriz é única (ver ex. 31).
- Para o caso n=2, se

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é uma matriz tal que $ad - bc \neq 0$, então A é invertível e a sua inversa é

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Uma matriz que não admite inversa é chamada de matriz singular.

3.1 Propriedades das matrizes invertíveis

Sejam \mathbf{A} e \mathbf{B} matrizes $n \times n$ invertíveis. Então:

- i) \mathbf{A}^{-1} é invertível e $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ (ver exercício 32 a)).
- ii) \mathbf{A}^T é invertível e $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
- iii) Se $\alpha \in \mathbb{R} \setminus \{0\}$, $(\alpha \mathbf{A})$ é invertível e $(\alpha \mathbf{A})^{-1} = \frac{1}{\alpha} \mathbf{A}^{-1}$ (ver exercício 32 c)).
- iv) (AB) é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.

3.2 Teorema da matriz inversa

Seja A uma matriz $n \times n$. Então são equivalentes as seguintes afirmações:

- (1) A é invertível.
- (2) A forma reduzida de $\mathbf{A} \in \mathbf{I}_n$.
- (3) A forma reduzida de A tem n pivôs.
- (4) Para qualquer $\mathbf{d} \in \mathbb{R}^n$, o sistema $\mathbf{A}\mathbf{x} = \mathbf{d}$ é possível e determinado.
- (5) O sistema homogéneo Ax = 0 só tem a solução nula.
- (6) Existe uma matriz $C(n \times n)$ tal que $CA = I_n$.
- (7) Existe uma matriz \mathbf{D} $(n \times n)$ tal que $\mathbf{AD} = \mathbf{I}_n$.

3.3 Matrizes elementares

Uma matriz elementar $(n \times n)$ é uma matriz que se obtém a partir da matriz identidade \mathbf{I}_n por meio de uma única operação elementar sobre as linhas de \mathbf{I}_n .

Estas matrizes possuem as seguintes propriedades:

- Uma matriz elementar é invertível e a sua inversa é também uma matriz elementar.
- Se **A** é uma matriz qualquer e **E** uma matriz elementar, ambas $n \times n$, **EA** é a matriz que se obtém a partir de **A** por execução da mesma operação elementar que permitiu obter **E** a partir da matriz identidade \mathbf{I}_n .
- A forma reduzida da matriz A pode ser obtida por sucessivas multiplicações de matrizes elementares.
- A forma reduzida da matriz **A** será \mathbf{I}_n se e só se existirem matrizes elementares $\mathbf{E}_1, ..., \mathbf{E}_k$, tais que

$$\mathbf{E}_k...\mathbf{E}_1\mathbf{A} = \mathbf{I}_n.$$

Nestas circunstâncias ${\bf A}$ é invertível e

$$\mathbf{A}^{-1} = \mathbf{E}_k ... \mathbf{E}_1 \mathbf{I}_n.$$

Estas relações resumem o algoritmo de Gauss-Jordan³ para a inversão de uma matriz: todas as operações elementares que transformem a matriz A na matriz identidade I_n , igualmente repetidas pela mesma ordem sobre I_n originam a matriz A^{-1} .

³Wilhelm Jordan, n. em 1842 em Ellwangen, m. 1899 em Hannover.

3.4 Exercícios

Exercício 29 Sempre que possível, calcule a inversa de cada uma das seguintes matrizes:

a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. c) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. d) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.
e) $\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. f) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$. g) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. h) $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix}$.

Exercício 30 Escreva os seguintes sistemas de equações lineares na forma matricial $\mathbf{A} \mathbf{x} = \mathbf{b}$ e utilize, respectivamente, as alíneas e) e h) do exercício anterior para os resolver.

a)
$$\begin{cases} x - y = 0 \\ x + y - z = 1 \\ y + z = -1 \end{cases}$$
 b)
$$\begin{cases} x + z = 1 \\ y + w = 1 \\ x + 2z + w = -1 \\ x - y + z = 1 \end{cases}$$

Exercício 31 Mostre que a inversa de uma matriz quadrada A, quando existe, é única.

Exercício 32 Sejam A e B matrizes $n \times n$, invertíveis.

- a) Será A^{-1} invertível?
- b) $Ter-se-\acute{a} (\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k, (k = 1, 2, ...)?$
- c) Se $\alpha \in \mathbb{R}$, caso exista, qual é a inversa de $\alpha \mathbf{A}$? E a de $\mathbf{A} + \mathbf{B}$? Será $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1}$?

Exercício 33 Considere as matrizes;

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}.$$

Calcule a matriz ABCD e a sua inversa $(ABCD)^{-1}$.

Exercício 34 Considere as matrizes A e B, definidas pelas igualdades

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -3 \\ -2 & 0 & 4 \\ -2 & 1 & 2 \end{bmatrix} \quad e \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

- a) Determine a matriz A^{-1} .
- b) Calcule a única matriz X que satisfaz a igualdade

$$\mathbf{B}^2 \mathbf{X} \mathbf{A}^{-1} = \mathbf{B}.$$

14

Exercício 35 Considere as matrizes A e B, definidas pelas igualdades

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad e \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Determine uma matriz X tal que:

- a) $A^{-1}X = B + 3A^{-1}$.
- b) BX = A.

Exercício 36 ${}^4Com \ \alpha \in \mathbb{R}$ seja \mathbf{R}_{α} a matriz dada pela relação

$$\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

Verifique que $\mathbf{R}_{\alpha}\mathbf{R}_{\beta} = \mathbf{R}_{\alpha+\beta}$ e com base nesta igualdade determine a inversa de \mathbf{R}_{α} . Indique ainda se a relação

$$\mathbf{R}_{\alpha}^{-1} = \mathbf{R}_{\alpha}^{T}$$

é verdadeira ou falsa.

Exercício 37 Uma matriz quadrada diz-se de permutação se cada coluna e cada linha tiver uma entrada igual a 1 e as restantes entradas iguais a zero. Por exemplo, a matriz identidade é uma matriz de permutação.

- a) Dê exemplo de uma matriz A de permutação, 3×3, que seja diferente da matriz identidade.
- b) Verifique que dada uma matriz qualquer \mathbf{B} (3 × 3), a matriz $\mathbf{A}\mathbf{B}$ procede a uma permutação das linhas de \mathbf{B} e a matriz $\mathbf{B}\mathbf{A}$ resulta de \mathbf{B} por uma permutação das suas colunas.
- c) Verifique que A é invertível, tendo como inversa a sua transposta.

Exercício 38 Seja **A** uma matriz quadrada tal que $A^3 = 0$. Por exemplo

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Verifique que a matriz $\mathbf{I} - \mathbf{A}$ é invertível com inversa dada por $(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2$.

Exercício 39 Uma matriz diagonal é uma matriz quadrada cujos elementos fora da diagonal principal são todos nulos:

$$\mathbf{A} = \left[\begin{array}{ccccc} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{array} \right].$$

Por exemplo, a identidade é uma matriz diagonal.

⁴Tenha em conta que $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ e $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$

a) Use o método de indução para mostrar que

$$\mathbf{A}^k = \left[egin{array}{cccc} a_{11}^k & 0 & \dots & 0 \\ 0 & a_{22}^k & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn}^k \end{array}
ight].$$

b) Mostre que se nenhum dos elementos da diagonal principal de **A** é zero então **A** é invertível e indique a respectiva inversa.

4 Soluções

- 1) Apenas (1,-1). 2) Somente (1,-1,0) e (-2,0,1)
- 3) a) Sistema possível e determinado: $S = \{(3, -1)\}$; as duas rectas intersectam-se no ponto (3, -1).
- b) Sistema indeterminado com uma incógnita livre: $S = \{(1/2 3y/2, y) : y \in \mathbb{R}\}$; as duas rectas são coincidentes.
 - c) Sistema impossível: $S = \emptyset$; as duas rectas são paralelas.
 - d) Sistema impossível: $S = \emptyset$; as três rectas não são concorrentes num ponto.
- e) Sistema indeterminado com uma incógnita livre: $S = \{(1-y,y): y \in \mathbb{R}\}$; equação de uma recta.
- f) Sistema possível e determinado: $S = \{(3,2)\}$; as três rectas são concorrentes no ponto (3,2).
- 4) a) Sistema possível e determinado: $S = \{(-1,0,1)\}$; os três planos intersectam-se no ponto (-1,0,1).
 - b) Sistema impossível: $S = \emptyset$; os três planos não se intersectam num ponto.
- c) Sistema indeterminado com uma incógnita livre: $S = \{z(5, -3, 1) : z \in \mathbb{R}\}$; os três planos intersectam-se segundo uma recta.
- d) Sistema indeterminado com uma incógnita livre: $S = \{z(-2,1,1) : z \in \mathbb{R}\}$; os dois planos intersectam-se segundo uma recta.
- 5) a) Sistema indeterminado com duas incógnitas livres:

$$S = \left\{ \left(1 - \frac{1}{2}x_2 - \frac{1}{2}x_4, x_2, -1, x_4 \right) : x_2, x_4 \in \mathbb{R} \right\}.$$

b) Sistema indeterminado com duas incógnitas livres:

$$S = \{(-y - z, y, z, 1) : y, z \in \mathbb{R}\}.$$

c) Sistema indeterminado com uma incógnita livre:

$$S = \{(-3w, 2 - 2w, w, w) : w \in \mathbb{R}\}.$$

16

d) Sistema possível e determinado $S = \{(-9, 2, 3, 3)\}.$

- 6) a) $\{(1, -z, z, 0) : z \in \mathbb{R}\}$. b) $\{(1, 2, 3)\}$.
- 7) a) Se $\alpha \neq 11$ o sistema é possível e determinado; se $\alpha = 11$ e $\beta = 20$ o sistema é indeterminado; se $\alpha = 11$ e $\beta \neq 20$ o sistema é impossível.
- b) Se $\alpha \neq 0$ e $\alpha \neq 6$ o sistema é possível e determinado; se $\alpha = 0$ e $\beta = -2/3$ o sistema é indeterminado; se $\alpha = 0$ e $\beta \neq -2/3$ o sistema é impossível; se $\alpha = 6$ e $\beta = -2/63$ o sistema é indeterminado; se $\alpha = 6$ e $\beta \neq -2/63$ o sistema é impossível.
- 8) O sistema é possível se e só se $2b_1 + b_2 b_3 = 0$.
- 9) $\alpha = 7 \text{ e } \beta = 4.$
- 10) a) $x_1 + x_2 = 2$. b) $x_1 + 0x_2 + x_3 = 1$. c) $x_1 + 7x_2 5x_3 = -3$.

11) a)
$$\begin{cases} x_1 - 3x_2 + 2x_4 = 1 \\ x_3 - 5x_4 = -1 \end{cases}$$
 b)
$$\begin{cases} x_1 - 3x_3 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$$

- 12) $p(t) = 7 + 6t t^2$.
- 13) 3, 4 e 6, respectivamente.
- 14) 3, 9, 12 e 21.
- 15) Nó 1: 42,5°; nó 2: 47,5°; nó 3: 40°.
- 16) a) $\left(\frac{13}{10}, \frac{9}{10}, 0\right)$. b) $\left(\frac{10}{3}, 2, 0\right)$. b) 3,5g pelo vértice (0, 1, 0), 0,5g pelo vértice (8, 1, 0) e 2g pelo vértice (2, 4, 0).
- 17) a) Não é possível. Uma matriz é 1×2 e a outra 2×1 .

b)
$$\begin{bmatrix} 8 \\ -2 \end{bmatrix}$$
. c) $\begin{bmatrix} 2 & 6 \\ 22 & 5 \end{bmatrix}$. d) $\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$. e) $\begin{bmatrix} -5 & 2 \\ 0 & 14 \\ 1 & 5 \end{bmatrix}$.

- f) Não é possível. Uma matriz é 3×4 e a outra 3×3 .
- 18) a) [4]. b) Não é possível. A primeira matriz é 3×2 e a segunda 3×1 .
 - c) Não é possível. A primeira matriz é 3×1 e a segunda 2×1 .

d)
$$\begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
. e) $\begin{bmatrix} -6 \\ -1 \\ 4 \end{bmatrix}$.

f) Não é possível. A primeira matriz é 2×2 e a segunda 3×1 .

19)

a)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = [3]$$
. b) $\begin{bmatrix} 5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -8 \\ 16 \end{bmatrix}$.

c)
$$\begin{bmatrix} 7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix} = \begin{bmatrix} \boxed{1} \\ -9 \\ 12 \\ -4 \end{bmatrix}$$
 d) $\begin{bmatrix} 1 & 0 & 2 \\ -4 & 6 & 1 \\ -7 & 2 & 9 \end{bmatrix} \begin{bmatrix} \boxed{1} \\ 2 \\ \boxed{1} \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$.

20)

a)
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
. b) $\begin{bmatrix} 4 & -3 & -14 \\ 3 & -1 & -8 \end{bmatrix}$. c) $\begin{bmatrix} 5 & 2 & 1 \\ 5 & 1 & 3 \\ 6 & 3 & 0 \end{bmatrix}$. d) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. e) $\begin{bmatrix} 1 & 2 & 1 \\ 4 & 1 & 4 \end{bmatrix}$.

f)
$$\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$$
. g) $\begin{bmatrix} 2 & 20 \\ 2 & 10 \\ 30 & 4 \end{bmatrix}$. h) $\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 6 & 60 \end{bmatrix}$. i) $\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 62 & 28 \end{bmatrix}$.

21)

a)
$$\begin{bmatrix} 4 & \boxed{-2} \\ \boxed{-3} & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -6 & \boxed{6} \\ \boxed{4} & -4 \end{bmatrix}$$
.

b)
$$\begin{bmatrix} 3 & -1 \\ -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ 2 & 0 \\ 1 & 2 \end{bmatrix}.$$

c)
$$\begin{bmatrix} 1 & \boxed{-1} \\ 2 & 1 \\ \boxed{0} & 3 \end{bmatrix} \begin{bmatrix} 0 & \boxed{2} & 1 \\ -3 & -1 & \boxed{4} \end{bmatrix} = \begin{bmatrix} 3 & \boxed{3} & \boxed{-3} \\ \boxed{-3} & 3 & \boxed{6} \\ \boxed{-9} & -3 & 12 \end{bmatrix}$$
.

22) a) Sistema impossível. b) Sistema possível e determinado
$$\mathbf{x} = \begin{bmatrix} 3/5 \\ -4/5 \\ 1 \end{bmatrix}$$
.

23) a)
$$\mathbf{A}^2 = \begin{bmatrix} a^2 & 0 \\ 0 & a^2 \end{bmatrix}$$
, $\mathbf{A}^3 = \begin{bmatrix} 0 & a^3 \\ a^3 & 0 \end{bmatrix}$.

24) As relações não são verificadas se for $AB \neq BA$.

25) b) Para qualquer $\alpha \in \mathbb{R}$ é tr $(\alpha \mathbf{A}) = \alpha(\text{tr}\mathbf{A})$. A relação tr $(\mathbf{AB}) = (\text{tr}\mathbf{A})(\text{tr}\mathbf{B})$ não é válida como se pode comprovar através do exemplo

$$\mathbf{A} = \mathbf{B} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right].$$

26) a)
$$\mathbf{A}^T = \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ -1 & 4 \\ -3 & -2 \end{bmatrix}$$
, $\mathbf{B}^T = \begin{bmatrix} 2 & 1 & -3 & 0 \\ 0 & 3 & 4 & -1 \\ -1 & -2 & 5 & 1 \end{bmatrix}$.

27) a)
$$\mathbf{A} = \begin{bmatrix} a & 1 & 2 \\ 1 & b & 3 \\ 2 & 3 & c \end{bmatrix}$$
. b) Sim, em ambos os casos.

28) a) **A** é de Markov, **B** não.

b) i) Falsa. Por exemplo
$$\begin{bmatrix} 0,3 & 0,1 \\ 0,7 & 0,9 \end{bmatrix} + \begin{bmatrix} 0,8 & 0,3 \\ 0,2 & 0,7 \end{bmatrix} = \begin{bmatrix} 1,1 & 0,4 \\ 0,9 & 1,6 \end{bmatrix}.$$

- ii) Verdadeira.
- 29 a) A matriz não é invertível.

b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. c) $\begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix}$. d) $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. e) $\begin{bmatrix} 2/3 & 1/3 & 1/3 \\ -1/3 & 1/3 & 1/3 \\ 1/3 & -1/3 & 2/3 \end{bmatrix}$.

$$f) \ A \ \text{matriz n\~ao\'e invert\'evel. g}) \left[\begin{array}{cccc} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{array} \right] . \ h) \left[\begin{array}{ccccc} 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & -1 \\ -1 & 1 & 0 & 1 \end{array} \right] .$$

- 30) a) $\{(0,0,-1)\}$; b) $\{(4,0,-3,1)\}$.
- 32) a) Sim e a sua inversa é A. b) Sim. Pode usar o método de indução para o mostrar.
- c) Se $\alpha \neq 0$, $(\alpha \mathbf{A})^{-1} = \frac{1}{\alpha} \mathbf{A}^{-1}$. Para $\alpha = 0$ não há invertibilidade. O mesmo pode acontecer quando se somam duas matrizes invertíveis. Por exemplo, $\mathbf{I} = -\mathbf{I}$ são invertíveis (elas próprias constituem as suas inversas). Mas $\mathbf{I} + (-\mathbf{I}) = \mathbf{0}$ não é invertível.

33)
$$\mathbf{ABCD} = \begin{bmatrix} 0 & -13 & -3 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$
, $(\mathbf{ABCD})^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 3/2 \\ -5/2 & 0 & -13/2 \end{bmatrix}$.

34) a)
$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & 3/2 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
; b) $\mathbf{X} = \begin{bmatrix} -2 & 1 & 2 \\ -2 & 0 & 4 \\ 2 & 0 & -3 \end{bmatrix}$

35) a)
$$\mathbf{X} = \begin{bmatrix} 6 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
; b) $\mathbf{X} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

36)
$$\mathbf{R}_{\alpha}^{-1} = \mathbf{R}_{-\alpha} = \mathbf{R}_{\alpha}^{T} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
.

37) a)
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
.

39) b)
$$\mathbf{A}^{-1} = \begin{bmatrix} a_{11}^{-1} & 0 & \dots & 0 \\ 0 & a_{22}^{-1} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn}^{-1} \end{bmatrix}$$
.