(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-187599

(43)公開日 平成11年(1999)7月9日

(51) Int.CI.6

識別記号

H02K 3/12

FI H02K 3/12

審査請求 未請求 請求項の数4 FD (全 8 頁)

(21)出願番号

特願平10-126884

(22)出顧日

平成10年(1998) 4月20日

(31)優先権主張番号

特願平10-536470

(32) 優先日

平9 (1997) 5月26日

(33)優先権主張国

日本 (JP)

(31)優先権主張番号

特願平9-297882

(32) 優先日

平9 (1997)10月14日

(33)優先権主張国

日本 (JP)

(71)出願人 000004260

株式会社デンソー

愛知県刈谷市昭和町1丁目1番地

(72)発明者 梅田 敦司

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(72)発明者 志賀 孜

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(72)発明者 草瀬 新

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(74)代理人 弁理士 碓氷 裕彦

(54) 【発明の名称】 車両用交流発電機

(57)【要約】

【課題】 外部からの被水による固定子スロット内での電気短絡から発電停止に至ることを防止し、コスト性に優れ、温度上昇などの新たな問題も生じない車両用交流発電機を提供すること。

【解決手段】 車両用交流発電機の固定子は、固定子鉄心32と固定子コイルをなす電気導体33、鉄心と電気導体間を電気絶縁するインシュレータ34を有し、フレームで支えられる。固定子鉄心32は、その内周側に開口部35を持つ多数のスロットが形成され、スロット間の歯先部には磁束収集用突起部36が形成される。磁束収集用突起部36よりも外周側のスロット断面積37に対し、断面形状がスロット内外でほぼ同一である電気導体33や、インシュレータ32を除いた空間隙間38の合計面積の面積比率が25%以下になるよう設定してある。

【特許請求の範囲】

【請求項1】 軸方向両端部の少なくとも片側にファン を持つ回転子と、前記回転子の外周に対向配置した固定 子と、前記回転子と固定子とを支持するフレームとを有 する車両用交流発電機において、

前記固定子は複数のスロットを有する積層鉄心と前記ス ロットに収納された固定子コイルをなす複数の電気導体 と電気絶縁体であるインシュレータを有し、

前記電気導体は、前記スロットの内外でほぼ同一の断面 形状を有し、

前記スロットの径方向断面において前記電気導体および インシュレータを除いた隙間があり、前記スロットの断 面積に対する前記隙間の面積比を25%以下とすること を特徴とする車両用交流発電機。

【請求項2】 請求項1において、

前記スロットの内周側開口部の幅が、前記スロット内の 前記電気導体の最小幅より狭く、前記電気導体と前記開 口部の近傍にあるスロット内壁との間は前記インシュレ 一夕のみが配置されることを特徴とする車両用交流発電 機。

【請求項3】 請求項1又は2において、

前記電気導体は、スロット形状に沿った略矩形状の断面 をもつことを特徴とする車両用交流発電機。

【請求項4】 請求項1から3のいずれかにおいて、 同一のスロットに配置される前記電気導体は、前記スロ ットの外側において、互いに離間していることを特徴と する車両用交流発電機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は乗用車、トラック等 30 に搭載される車両用交流発電機に関する。

[0002]

【従来の技術】近年、車両走行抵抗の低減や視界向上の ためのスラントノーズ化によってエンジンおよび電装品 全体が路面に近づき、走行時のタイヤからの跳ね上げ水 による被水条件が厳しくなってきた。また、寒冷地域に おいては、冬季の道路凍結防止を目的として塩類が多量 に散布されるため、走行時に塩または塩を含む水を巻き 込むこととなり、エンジンルーム内は、更に厳しい腐食 環境条件となっている。よって、車両用発電機は上記の 40 環境にさらされているので、被水や塩による腐食によ り、発電停止となる恐れがある。

【0003】この場合の発電停止の主な原因は、固定子 鉄心のスロット内壁部への水の侵入によってここに錆が 発生し、この錆の成長によってスロット断面積が減少す るという経時変化のため、スロット内に挿入されている 固定子コイルをなす電気導体が圧迫され、この電気導体 相互間の電気短絡を生じ、局部的な発熱焼損により最終 的に固定子コイル断線を生ずることによるものである。 また、スロット内と電気導体間の絶縁のための絶縁紙な 50

どを設けてあっても、錆の成長とスロット内の圧力上昇 によって絶縁紙が破られ、電気導体と固定子間で電気短 絡を生ずることもある。更に、スロット内の電気導体間 への水の侵入が繰り返されることにより、電気導体皮膜 が加水分解などの腐食劣化を起こし、電気導体相互間の 電気短絡により、局部的な発熱焼損や銅の溶出が起こ り、最終的にコイル断線に至る。なお、特にコイルをな す複数の電気導体の密集したスロット内においてこの傾 向が顕著となるのは、電気導体を固定子鉄心のスロット に挿入したり、挿入後に成形するなどの工程途中におい て、電気導体表面の絶縁皮膜が擦れ合うことにより傷つ いたり局所的に薄くなることによるものである。

【0004】また、固定子コイルをなす電気導体を装着 した後、これらがスロットの内周側の開口部から内側に 飛び出すことを防止するために、一般的に絶縁部材より なるウェッジが電気導体とスロット開口部の間に挿入さ れる。しかしながら、ウェッジの挿入工程において、電 気導体表面の絶縁皮膜を傷つけたり局所的に薄くしてし まうといった問題点がある。このように、耐環境性能を 20 向上するためには、固定子の製作工程において、いかに して電気導体表面の絶縁皮膜に悪影響を与えないかとい うことも重要である。

【0005】さらに、コイルエンド部の絶縁固定のため に熱硬化樹脂による含浸が一般に行われるが、加熱硬化 の時間内に塗布した部位から流れ出ないよう粘度を持た せてあるので、スロット内への樹脂の浸入はほとんどな く、よってスロット内奥での電気短絡防止効果はさほど 期待できない。これに対して、特開平1-278242 号公報に記載のように、電着塗装などの手段によって固 定子鉄心のスロット内を絶縁樹脂で被覆し、更にスロッ ト内と固定子コイルをなす電気導体間の絶縁のための絶 縁紙を設けるものがある。また、特開平3-23564 4号公報に記載のように、防滴カバーを発電機の冷却風 取り込み側に取り付け、外部からの直接的な被水進入路 を遮断しようとするものがある。

[0006]

【発明が解決しようとする課題】上記の特開平1-27 8242号公報の構成では、スロット内の電気導体皮膜 の腐食劣化による電気導体相互間の電気短絡に対しては 何ら解決とならない。また、スロット内は樹脂皮膜と絶 縁紙の厚さぶんだけ狭くなり、それだけ電気導体を挿入 するスペースは減ってしまうので、電気導体の皮膜を厚 くして耐腐食性を向上させることもできない。さらに、 塗装工程が必要なので、材料費を含め生産コストが増加 するという問題がある。

【0007】また、上記の特開平3-235644号公 報の構成では、図10に示すように、回転子7の側面に ファン11を有し、回転によって内部に冷却風を取り込 んだ後、フレームの径方向に設けた窓41を通じて吐出 される吐出風を利用して固定子コイル31を冷却する。

すなわち、固定子コイル31はフレームの径方向に設け た通風用の窓41近くに位置しているので、発電機の径 方向外部からの水や塩水が容易に固定子鉄心32周辺に 到達する可能性がある。これを防止するために、フレー ムの径方向に設けた窓41の外側にも防滴カバーを取り 付けることも考えられるが、この場合、通風抵抗が増え て冷却風量が減ると共に、熱風の逃がしが阻害されるの で、発電機全体の温度が大幅に上昇するという問題が生 ずる。また、防滴力バー追加のためには、前述の塗装工 程追加と同様に、生産コストの増加となる。

【0008】さらに、特開昭63-194543号公報 では、図11に示すように、スロットの断面形状を略四 角形とし、固定子コイルをなす電気導体のスロット内部 の断面形状を略四角形とし、スロット外部の断面形状を 円形としている。これにより、インシュレータを除くス ロット内の電気導体の占積率を80%以上、すなわち隙 間の面積比率を20%以下に設定している。しかしなが ら、この構造では、積み重ねた数本の丸線導体の一部分 のみを略四角形に成形加工するために、導体間のこすれ や、導体毎の変形量の差により絶縁皮膜に傷つきや局所 20 的な薄膜化を生じる恐れがある。

【0009】本発明は、上記の従来の問題点を解決する ものであり、外部からの被水による固定子スロット内で の電気短絡から発電停止に至ることを防止し、コスト性 に優れ、温度上昇や固定子コイルをなす電気導体の絶縁 皮膜の損傷などの新たな問題も生じない車両用交流発電 機を提供することを目的とする。

[0010]

【課題を解決するための手段】請求項1に記載の発明に 回転子と、前記回転子の外周に対向配置した固定子と、 前記回転子と固定子とを支持するフレームとを有する車 両用交流発電機において、前記固定子は複数のスロット を有する積層鉄心と前記スロットに収納された固定子コ イルをなす複数の電気導体と電気絶縁体であるインシュ レータを有し、前記電気導体は、前記スロットの内外で ほぼ同一の断面形状を有し、前記スロットの径方向断面 において前記電気導体およびインシュレータを除いた隙 間があり、前記スロットの断面積に対する前記隙間の面 積比を25%以下とすることを特徴としている。

【0011】これにより、塩などを含んだ水滴が固定子 鉄心のスロット入り口近辺に到達しても、スロット内に 侵入するための空間隙間が狭く、水滴は固定子鉄心の外 部側面で留まったまま、スロット内の空間隙間に流れ込 まない。よって、固定子鉄心のスロット内壁部の発錆や スロット内電気導体皮膜の腐食劣化を防止できるので、 固定子コイルをなす複数の電気導体と固定子鉄心間、お よび電気導体相互間の電気短絡を防止できる。また、ス ロット内塗装や防滴カバーが不要であるので、従来例に 比べて低コスト化が実現可能である。さらに、電気導体 50

の皮膜やインシュレータにポリアミド樹脂やポリエステ ル樹脂を使うと、これらの樹脂は疎水性を有するので、 スロット内の空間隙間への水滴の浸入を防止できる。ま た、上記電気導体はスロット内外でほぼ同一の断面形状 を有しているため、絶縁皮膜の傷つきや局所的な薄膜化 といった不具合が生じることを防止できる。

【0012】請求項2に記載の発明によれば、請求項1 に記載の車両用交流発電機において、前記スロットの内 周側開口部の幅が、前記スロット内の前記電気導体の最 10 小幅より狭く、前記電気導体と前記開口部の近傍にある スロット内壁との間は前記インシュレータのみが配置さ れていることを特徴としている。これにより、スロット 内の最内周にある電気導体は、同じスロット内の他の電 気導体が内周側の開口部から内側に飛び出すことを防止 するウェッジの役割を担うので、ウェッジを無くすこと ができる。よって、ウェッジの挿入工程の時に電気導体 の表面の絶縁皮膜を傷つけたり局所的に薄くすることが ないので、被水による電気導体相互間の電気短絡や電気 導体と固定子鉄心との電気短絡を防止できる。また、ウ エッジを無用とできるので、部品コストと挿入組み付け コストが不要になり、低コスト化を図ることができる。 【0013】請求項3に記載の発明によれば、請求項1 又は2において、前記電気導体は、スロット形状に沿っ た略矩形状の断面であることを特徴としている。これに より、スロットに沿って電気導体を挿入することがで き、スロット内の空間隙間の面積比を25%以下にする ことが更に容易になる。請求項4に記載の発明によれ ば、請求項1から3のいずれかにおいて、同一のスロッ トに配置される前記電気導体は、前記スロットの外側に よれば、軸方向両端部の少なくとも片側にファンを持つ 30 おいて、互いに離間していることを特徴としている。こ れにより、隣り合う電気導体間に溝が形成されないの で、外部から冷却風とともに取り込まれた塩水などの電 解液がこの溝を伝ってスロット内へ流れ込むといった不 具合を防止できる。

【0014】以上のように本発明によれば、固定子コイ ルをなす複数の電気導体をスロット内外で同一断面形状 とし、スロット内の空間隙間を一定値以下とすることに より、外部からの被水による発電停止を防止し、コスト 性にも優れた車両交流用発電機を提供することができ 40 る。

[0015]

【発明の実施の形態】以下、この発明の車両用交流発電 機を図に示す各実施形態に基づいて説明する。図1、図 2はこの発明の第一の実施形態を示したもので、図1は 本実施形態の固定子の部分的な断面図を示し、図2は車 両用交流発電機の主要部を示している。

【0016】車両用交流発電機1は、界磁として働く回 転子2と電機子として働く固定子3と、前記回転子と固 定子を支持するフレーム 4を有す。回転子2は、シャフ ト6と一体になって回転するもので、2組のランデル型

5

ポールコア7、冷却ファン11、フィールドコイル8、スリップリング9、10等によって構成されている。シャフト6は、プーリ12に連結され、自動車に搭載された走行用のエンジン(図示せず)により回転駆動される。

【0017】前記フレーム4には、固定子のコイルエン ド31に対向した部分に風の吐出孔、及び軸方向端面に 吸入孔41が設けられている。図1(a)に示すよう に、固定子3は、固定子鉄心32と固定子コイルをなす 電気導体33とを有する。なお、この電気導体33は連 10 続線であって断面丸状の丸線である。さらに、上記固定 子鉄心32と電気導体33間を電気絶縁するインシュレ ータ34を有する。そして、固定子3はフレーム4によ り支えられている。固定子鉄心32は、薄い鋼板を重ね 合わせたもので、その内周側に開口部35を持つ多数の スロットが形成されている。スロット内には固定子コイ ルをなす電気導体33がほぼ均等に分散して収容されて おり、スロット内にほぼ均等に分散して空間隙間38が 形成されている。インシュレータ34は、スロットの内 周側開口部35に向けて開いている。隣接するスロット 20 間の歯先部には、周方向に磁束収集用突起部36が形成 される。

【0018】そして、この磁束収集用突起部36よりも外周側のスロット断面積37(図1(b)参照)に対し、固定子コイルをなす電気導体33やインシュレータ32を除いた空間隙間38の合計面積の比率が25%以下になるように設定してある。なお、固定子コイルの断面積は皮膜厚も含めた最大仕上がり面積値を用いている。

いて、空間隙間の面積比率を変化させて、腐食環境の厳 しい寒冷地を想定した塩水噴霧パターン試験の結果を示 している。試験は、JIS-Ζ-2371に準じた塩水 噴霧条件下で一定回転で一定時間だけ発電させた後、噴 霧を中止して一定時間発電させ、さらに回転停止して一 定時間放置し、以上を1サイクルとして発電異常に至る まで繰り返した。その結果、空間隙間の面積比率が25 %を越えると、空間隙間38内へ塩水が侵入し、スロッ ト内壁部の発錆が顕著に見られ、スロット内の固定子コ イルをなす電気導体相互間の電気短絡や、この電気導体 とスロット内壁との電気短絡が起こり、これにより、サ イクル数は急激に短くなった。空間隙間の面積比率は、 より好ましくは、スロット内での短絡に至らなかった2 0%以下がよい。さらには、15%以下とすれば、塩害 の厳しい寒冷地域での実用にも供しうる。なお、当然な がら、サイクル寿命が伸びるに従い、第1故障箇所であ るスロット内ではなく、第2故障箇所であるスロット外 での固定子コイルをなす電気導体間の短絡が顕在化して いる。

【0020】〔その他の実施形態〕第一の実施形態で

は、固定子コイルを形成する電気導体33を丸線としたが、図4に示すようにスロット断面形状に沿った略矩形状の断面を持つようにすれば、スロット内の空間隙間の面積を小さくすることがより容易になる。スロット内壁面に沿った多面体断面としても同様の効果が得られる。

【0021】図4では、スロットの内周側開口部35が電気導体33の単一の面のみでふさがれている。しかも、インシュレータ34の縁が磁束収集用突起部36と電気導体33との間に挟まれているため、インシュレータ34の縁がスロットの内周側開口部35の縁からずれてインシュレータ34が開口部35からはみ出すことが防止される。このようにして、スロットの内周側開口部35が電気導体33とインシュレータ34とでふさがれるため、スロットの内周側からの水の浸入を防止することができ、スロット内の空間隙間38は、専らスロットの軸方向端面でのみ外気と通じているので、浸入抑制効果を高めることができる。

【0022】また、スロットの内周側開口部35の幅が、スロット内の固定子コイルをなす電気導体33の幅より狭いので、この開口部35をふさぐ電気導体33によって、確実にスロット内の他の電気導体33がスロット内周側へ飛び出すことを防止できる。よって、ウェッジが不要となり、ウェッジ挿入によって固定子コイルをなす電気導体表面の絶縁皮膜を傷つけたり局所的に薄くしてしまうことがない。従って、被水による電気導体相互間の電気短絡や電気導体と固定子鉄心との電気短絡を防止できるとともに、部品コストを挿入組み付けコストを削減できる。

【0019】図3は、同一体格の車両用交流発電機について、空間隙間の面積比率を変化させて、腐食環境の厳いい寒冷地を想定した塩水噴霧パターン試験の結果を示している。試験は、JIS-Z-2371に準じた塩水賃霧条件下で一定回転で一定時間だけ発電させた後、噴霧を中止して一定時間発電させ、さらに回転停止して一定時間放置し、以上を1サイクルとして発電異常に至るをで繰り返した。その結果、空間隙間の面積比率が25 に多りでは、25 にのは、図5に示すようにできる。かかる導体セグメントを増数の導体セグメントの直線部33aをスロット内で径方向に1列に並ぶようにそろえて、固定子鉄心の軸方向から差し込んだ後、ターン部33cと反対側のスロットの外側に飛び出した直線部33aを折り曲げて端部33bを結線し、全体で固定子コイルを為すようにできる。

【0024】上記各導体セグメントの端部33bの結線は電気的導通を得るための、超音波溶着、アーク溶接、ろう付け等、あるいはかしめなどの機械加工手段を採用できる。またこの時、各導体セグメントはスロットの奥側に位置する外層と内周側開口側に位置する内層とに二分されたものが一対以上配設され、異なるスロットの前記内、外層の導体が直列に接続されるようにすれば、図6に示す通り、コイルエンド部での異相間の干渉が回避できる。以上により、容易にスロット奥まで導体セグメントを配設できるので、スロット内の空間隙間の面積を小さくすることが更に容易になる。なお、図6は、1スロットあたりの導体数が4ターン、即ち外層、内層が2

対の場合を示しており、対数が変わっても異相間の干渉 が回避できることは同様である。また、複数に分割され た導体セグメントを使用することにより、導体断面を矩 形化することが容易である。

【0025】なお、複数の導体セグメントを接合して固 定子コイルを形成する比較例を以下に説明する。なお、 この比較例は、WO92/06527に開示されてい る。この比較例では、図12のように、複数の導体セグ メントを使用して、周方向に整列したコイルエンドが形 成されている。ひとつのスロット内には、図13に示す 10 ように、径方向内側に2本の導体331a、331b、 奥側に2本の導体331c、331dが配置され、コイ ルエンドにおいて導体331a、331bは同じ斜行方 向に曲げられ、導体331c、331dは導体331 a、331bとは逆の斜行方向に曲げられる。よって、 隣り合う導体331a、331b、および導体331 c、331dの間には、雨樋のような働きをする溝が形 成される。このため、コイルエンドから上記溝を経由し て塩水などの電解液がスロットの軸方向開口部へと導か れやすく、腐食進行により電気短絡を引き起こす恐れが 20 ある。

【0026】これに対して、本実施形態の複数の導体セ グメントは、スロット内において電気導体が径方向へ1 列に並ぶように配置され、しかも、コイルエンド部にお いて、隣接する電気導体がスロット外に出るなり異なる 角度をもって飛び出しており、隣接する電気導体が離間 するようになっている。特に、本実施形態では、図6に 示すように、隣接する電気導体のスロット外に引き出さ れる方向が周方向で逆になるようにされている。これに より、コイルエンドにおいて、塩水などの電解液をスロ 30 ット内へ導く溝が形成されることはなく、よってスロッ ト内の腐食防止を図ることができる。

【0027】さらに、コイルエンドにおいて、隣接する 電気導体が離間しているので、コイルエンド内に隙間が 形成され、ここを通過する冷却風とともに塩水などの電 解液も発電機外部へ飛散され易くなるという効果も得ら れる。また、複数の電気導体がスロット内で、径方向に のみ1列に並べて配置されるため、径方向の内側から見 て電気導体の間にスロット間隔に相当する隙間を確実に 設けることができる。また、中心から外径方向への電気 40 導体の投影面積は、図13で示したようなスロット内に 周方向に電気導体を2本並べたものに比べて、小さくな る。従って、コイルエンドにおいて、回転中心付近から 外径方向へ吹く冷却風が効率よく流れることができるた め、冷却性能を向上することができる。

【0028】次に、上述の略U状の導体セグメントに変 えて、図7に示すように、略 J 字状の導体セグメントを 固定子鉄心の軸方向から直線部33hをそろえて差込ん だ後、結線を固定子鉄心の略両側面にて行い、固定子コー

の空間隙間の面積を小さくすることが容易になることは もちろん、導体セグメントの形状が略し状よりも単純化 されるので、セグメント自体の製作工程が容易になり、 安価な設備で対応できる。

【0029】固定子鉄心は図8に示されるように歯先先 端部32aをU字状またはJ字状とし、導体セグメント を内周側から挿入した後、径方向から加工治具を押し当 てるなど塑性変形により磁束収集用突起部を形成するよ うにしてもよい。これによれば、導体を挿入した後、径 方向から圧縮して導体をスロット形状に合わせて変形さ せることができるので、よりスロット内の空間隙間の面 積を小さくすることができる。また、予め導体セグメン トの加工を行うことができ、組付け工程が容易となる効 果もある。

【0030】また、固定子コイルをなす電気導体が短辺 と長辺とを持つ略四角形断面を持つ場合、図9に示すよ うに、ひとつのスロット内に隣接する電気導体の当接面 を短辺側とすることが望ましい。この構成によると、同 じ電気導体断面積の条件の下で、電気導体相互の当接面 積が減少する。ここで、電気導体相互の当接面には、微 視的には隙間が存在し、当接面積が大きいほど相対的に この隙間が多くなる。従って、上述のように導体相互の 当接面積を減らすことで当接面間に存在する隙間をでき るだけ少なくでき、結果的にスロット内の空間隙間の面 積比を小さくすることができる。

【0031】上述した実施形態のように、スロット内の 空間隙間の面積比が25%以下とされることにより、固 定子コイルをなす電気導体のスロット内での保持固定を 確実にできる。従って、電気導体固着のための樹脂含浸 処理をせずともスロット内部への水の浸入を十分阻止で きるとともに、発電機が発する高周波振動を受けて電気 導体がスロット内を振動することはない。

【0032】なお、固定子鉄心に固定子コイルをなす電 気導体を装着した後、電気導体固着のための樹脂含浸処 理を実施してもよい。この場合、空間隙間が少ないの で、含浸樹脂はスロットの軸方向の開口部周辺で上記空 間隙間をふさぐ膜を張りやすくなり、スロット内部への 水の侵入を防止する効果をさらに高めることができる。

【図面の簡単な説明】

【図1】(a)は本発明の第一実施形態における固定子 の部分的な断面図、(b)はスロットの断面積範囲を示 す図である。

【図2】本発明の車両用交流発電機の主要部断面図であ る。

【図3】スロット内の空間隙間面積の比率を変えた場合 の、塩水噴霧を含むパターン試験での発電異常に至るサ イクル数の結果を示す図である。

【図4】固定子コイルをなす電気導体のスロット内に位 置する部分がスロット形状に沿った略矩形状とした場合 イルを為すようにしてもよい。この場合も、スロット内 50 の固定子の部分的な断面図である。

【図5】導体セグメントの斜視図である。

【図 6】 導体セグメントを組み込んだ場合のコイルエンドの斜視図である。

【図7】他の導体セグメントの斜視図である。

【図8】塑性変形による磁束収集用突起部の形成を行う場合の、塑性変形加工前の固定子の部分的な断面図である。

【図9】固定子コイルをなす電気導体のスロット内に位置する部分がスロット形状に沿った略矩形状とした場合の他の固定子の部分的な断面図である。

【図10】従来の防滴カバーを有する自動車用交流発電機の構造を示す図である。

【図11】従来の略四角形の断面と有する固定子コイル をなす電気導体の斜視図である。

【図12】従来の導体セグメントを使った固定子の部分的正面図である。

【図13】従来の導体セグメントを使った固定子の1スロットの部分的拡大図である。

【符号の説明】

- 1 車両用交流発電機
- 2 回転子
- 3 固定子
- 4 フレーム
- 11 冷却ファン
- 31 コイルエンド
- 10 32 固定子鉄心
 - 33 電気導体
 - 34 インシュレータ
 - 35 開口部
 - 36 磁束収集突起部
 - 37 スロット断面積範囲
 - 38 空間隙間

[図11]

[図13]

②特願昭 46-428/0 ①特開昭 48-9201 ④ 公開昭48.(1973) 2.5 (全4頁) 審查請求

19 日本国特許庁

庁内整理番号

6728 5/

公開特許公報

52日本分類

55 AOQ

発 明 者

特許出願人

(郵便番号 100)

東京都千代田区丸の内三丁目2番3号 [電話東京(211)2321大代表]

4230

脚板関機鉄心の製造方法

枠許請求の報題

打抜いた後、積層して平板状の鉄心とし、機線を 巻装した後にマウンドレルに巻付けて円筒状にし、 質燥部を整合するようにしたことを特徴とする図 転電機鉄心の製造方法。

発明の詳細な説明

本発明は回転気機化かける固定子かよび回転子 等の鉄心を製造する方法に関する。

従来の回転電機鉄心は、円環状に成形した磁性 板にスロットを打抜きとれる積層しており、材料 ロスが多く打技機械も大形のものを必要とする。 また帯状磁性板にメロットを打抜きこれを報方向 化學曲させてエッジワイズ発言に巻回積層する方 法があるが、政性板をエッジワイズ巻きする際に 放状の弦を生じ易く、押圧装置や修正作業の必要

がある。さらに固定子の場合は終心の内径質にメ ロットが開口するので唇線作業が面側で工数が多 く巻鯨の自動化も複雑因難である。

本発明は上記欠点を除去するために走された。 ので、脊状磁性板化予めスロット、かしめ孔を打 抜いておき、しかる茯に折曲げあるいは切断等に より平板状化積圧し、コイルを挿入した後、円筒 形に曲行政形するととにより材料条備りが良く製 作工程の簡単な回転電機の製造方法を提供しよう とするものである。

以下添付図面を参照して本発明の実施例を説明 する。

オ/図及びオュ図において、/技術部、コは普 無薄、3は韓部/相互間の関隔を保つ始合部、4 はかしめピン取付用の穴、よは帯状鉄性板を固定 するために両側に設けられる単さ約2~2.3m程 鹿の負板、るは帯状磁性観により形成された帯状 鉄心を心会に着付けると言鉄心の変形を防止する ための落板であり透磁率、延び率の大きな材料が 望ましい。7は巻線簿2により帯状磁性板を固定

(/)

3

子等の鉄心積厚毎に積層し固定するための固定用 カシメビンである。

オ3回にかける8は回転電機の普線、9は固定 子内径に応じた直径を有するマンドレル、10は基 根3と帯状鉄心をマンドレル9に告付けたときの 結合部である。

オ × 図は積層されてなる帯状鉄心の増譲講形状 を示してかり、 同図(a)は固定子増譲挿入前の状態 であるので増譲溝 1 A は矩形断面をしてかり、 同 図(b)は固定子増譲挿入後に固定子を形成した状態 であり増譲帯 2 B は野形断面である。

本発明により鉄心を製作するには、分/図に示すようにまず帯状磁性板にプレスによつて巻線溝 2に相当する部分、およびかしめビン取付用火料を打抜く。次いで、この磁性板を参線溝 2が重なり合うように連続的に折曲げ(または切断)積層する。折曲げ長は固定子鉄心の外周長に適合するように選ぶ。帯状磁性板よりは対向するような一対の板を打抜けばより効率的である。

脊髄した後、分2個に示すよりに固定子鉄心の

(3)

単化される計

また。希蘇德製作業社番額滞面積の広い状態で行うことができるので、巻額の挿入、差額、結額、 整形が容易である。しかも、磐蘇着装装の整形作業により番額が滞内で押圧されるので着級保止用 ウエブジが不要であり、共に倉動化、省力化指進が有利となる。

図面の簡単な説明

才/図は本発明に係る回転間機鉄心の積層形成 状態を示す説明図、オ2図は何鉄心の積層形成袋 に行う超立作業の説明図、オ3図(a)、(d)、(d)は着 無巻築状態、鉄心成形状態、および鉄心完成時状 態を示す説明図、オ4図(a)、(d)は帯状時および乾 形徒の巻線課形状を示す説明図である。

!…曹戩、』…巻無壽、』…結合部、《…かしめ ピン取付用穴、』…偶板、』…羞板、』…巻線。 特別 昭48-9281 (2) 種厚だけ抜取り、積層された帯状鉄心の両側に側 板よをあて、かしめピン取付用孔々にかしめピン 7を挿入し、側板よと共に帯状鉄心を両側より押 圧してかしめ作業を行い帯状鉄心を形成する。と の後、必要に応じて帯状鉄心の結合部よの背面に 極層剤等により蒸板るを止着し、巻線作業時に帯 状鉄心が変成するのを防止する。

次に告謝等に絶縁を施した固定子巻線を挿入する(オ3図(4))。このとき、巻級の相間絶縁、結線、整形等の優処理を行えば巻線作業が簡単化され、作業時間が大巾に短縮される。巻線作業が終了すると巻線が巻装された帯状鉄心の歯部/上にマンドレルタを置き、ローラ等によりマンドレルタを置き、ローラ等によりマンドレルタに密着するように巻付ける(オ3図(b))。次いで、鉄心翼端結合部/0を搭蓋等によつて固定し、固定子鉄心が完成する(オ3図(c))。

本発明は上述のように、磁転電視の積層鉄心を 形成するのに、従来のように平磁性板を打抜くの ではなく、帯状磁性板の連続打抜きによるので、 鉄心材料が大巾に前値できると共に打抜き型が簡

(4)

特朗 昭48— 9201(4)

& 稍正の内容

- / 明細書 4 頁下から / 行「巻線 2 」とあるを 「かしめピン取付用の欠 4 」に訂正する。
- △ 阿」頁下から」行乃至 2 行「帯状磁性板……である。」とあるを「帯状磁性板より一対の板を一方の歯部 / 相互間に他方の歯部が形成されるように対向させて打抜くこととすればより効果的に材料歩留りを向上させることができる。」に訂正する。
- 3. 同半頁下からま行の次に「たか、帯状磁性 板を精層する場合に適当な厚さ毎に積層位置 をすらせて結合部10が設進いにたるようにし てもよい。」を挿入する。

(2)