Rozwiązywanie równań i układów równań nieliniowych

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 20 maja 2022

1 Problem 1

1.1 Opis problemu

Dany jest układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$. Elementy macierzy \mathbf{A} o wymiarze $n \times n$ są określone wzorem:

$$\begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} \ dla \ i \neq j \end{cases} \quad i, j = 1, ..., n$$

Za wektor \mathbf{x} przyjęta zostanie dowolna n-elementowa permutacja ze zbioru $\{1,-1\}$ i obliczony zostanie wektor \mathbf{b} . Następnie metodą eliminacji Gaussa rozwiązany zostanie układ równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$ (przyjmując jako niewiadomą wektor \mathbf{x}). Przyjęte zostaną różne precyjze dla znanych wartości macierzy \mathbf{A} i wektora \mathbf{b} . Sprawdzone zostanie to, jak błędy zaokrągleń zaburzają rozwiązanie dla różnych rozmiarów układu (porównany \mathbf{x} obliczony z \mathbf{x} zadanym). Eksperyment przeprowadzony zostanie dla różnych rozmiarów układu.

1.2 Opracowanie problemu

Program użyty do rozwiązania układu został napisany w języku Python z użyciem pakiety numpy.

Zakres użytego n wynosi 3-100, natomiast, w celu uzyskania różnych precyzji, zostaną użyte typy float128, float64 oraz float32 (128 bitów, 64 bity oraz 32 bitów, typy zmiennoprzecinkowe). Przyjęty wektor \mathbf{x} składa się naprzemiennie z 1 oraz -1, czyli $\mathbf{x} = [1, -1, 1, -1, \ldots]$.

Poniżej wyniki dla wartości 3-18 z użyciem float
64 n:

n	Wynik (float64)
3	[11.1.]
4	[11.11.]
5	[11.11.1]
6	[11.11.11.]
7	[11.10.99999999 0.99999999 -0.99999999 1.]
8	[11. 1.00000001 -1.00000003 1.00000007 -1.00000008 1.00000005 -
	1.00000001]
9	[11. 1.00000002 -1.00000008 1.00000022 -1.00000034 1.00000031 -
	1.00000015 1.00000003]
10	$[\ 1.\ -0.99999992\ 0.99999887\ -0.9999992\ 0.99996863\ -0.99992652\ 0.99989471$
	-0.99990954 0.9999572 -0.99999143]
11	$ \left[0.99999997 \hbox{-} 0.99999848 0.99997297 \hbox{-} 0.99976817 0.99887436 \hbox{-} 0.99664975 \right] $
	0.99366282 -0.99235204 0.99429537 -0.99760317 0.99956614]
12	$ \left[0.99999941 \hbox{-} 0.99996221 0.99919827 \hbox{-} 0.99172934 0.95111984 \hbox{-} 0.81988143 \right] $
	0.56753005 -0.31190968 0.28013607 -0.52390499 0.81951835 -0.97011435]
13	[0.99999778 -0.99983381 0.99588177 -0.95002628 0.6492147 0.55558381
	-3.57758546 8.16116812 -11.53222833 10.53875693 -5.83889397
	1.35691714 0.6410476]
14	[0.99999839 -0.99987809 0.99693457 -0.96208463 0.72726558 0.24775735
	-2.82147498 7.05683998 -10.81750725 10.99258477 -7.21472848
	2.59779619 0.10075086 -0.90425428]
15	[1.00000032 -1.00002608 1.00068109 -1.0084821 1.05859506 -1.23642266
	1.52425818 -1.31770342 -0.63773969 4.60311654 -8.06911186 7.84695378
1.0	-4.30073459 0.80508738 0.73152805]
16	[1.00000035 -1.00002873 1.00077369 -1.0099144 1.07044155 -1.2924074
	1.66629056 -1.39635283 -1.36182391 7.41476733 -13.5730076 14.63721333
17	-9.78616429 3.63410525 -0.11663269 -0.88726018] [0.99999998 -1.00000181 1.00012819 -1.00256848 1.02437038 -1.12426363
17	1.32037494 -1.09632243 -1.12225943 6.55223303 -12.60591686 13.4139281
	-7.23211203 -0.09782497 2.92766818 -2.18587769 1.22844453
18	-7.23211203 -0.09782497 2.92700818 -2.18587709 1.22844453] [1.00000009 -1.00000875 1.00027248 -1.00388918 1.029806 -1.12729424
10	1.25609572 -0.81278282 -1.66686582 6.95901598 -12.29735709
	12.50041866 -6.48195112 -0.38410709 3.12164386 -2.45497509 1.40118285
	-1.03920443]
	-1.00020770

Tabela 1: Wyniki dla wartości 3-18 \boldsymbol{n}

Już dla n=12 widać istotne błędy, które wraz ze wzrastającym b będą stawały się coraz bardziej poważne. Poniżej tabele błędów dla wszystkich badanych wartości i precyzji (błąd - norma euklidesowa wektora prawdziwych wyników i tego uzyskanego za pomocą eliminacji Gaussa):

n	float128	float64	float32	n	float128	float64	float32
3	0.00000e+00	0.00000e+00	0.00000e+00	52	1.16113e-07	1.61072e + 04	9.53346e+02
4	6.64652e-15	3.01871e-13	0.00000e+00	53	8.12417e-08	2.58046e+02	1.80353e+01
5	7.28264e-13	9.22938e-12	4.06851e-12	54	1.35778e-07	5.96323e+02	1.99145e+01
6	5.44100e-11	3.63798e-10	1.08591e-11	55	9.55140e-08	5.90284e+02	1.11223e+01
7	3.69517e-09	1.36093e-08	1.80863e-09	56	1.02527e-07	1.24163e + 02	1.10942e+02
8	6.74760e-09	1.20335e-07	6.03675e-09	57	1.31040e-07	1.01673e + 02	1.37209e+01
9	4.03806e-08	5.40051e-07	1.62591e-06	58	1.07265e-07	1.20849e + 03	5.19018e+01
10	6.73052e-09	1.66203e-04	2.23585e-05	59	3.79130e-08	9.46613e+02	4.18553e+01
11	8.55678e-09	1.22341e-02	1.51898e-03	60	3.90234e-08	2.75634e + 02	2.14181e+01
12	1.10052e-08	1.21398e+00	5.23169e-02	61	9.38645e-08	2.68919e+02	6.71575e + 01
13	2.39652e-08	2.12151e+01	5.62548e-01	62	1.34922e-07	1.09973e+03	8.14264e+01
14	1.81406e-08	2.11156e+01	3.72763e-01	63	8.84059e-07	4.24254e + 03	3.31771e+02
15	2.39101e-08	1.50485e+01	6.50496e-01	64	6.89870e-08	3.73795e+02	2.33192e+02
16	3.24268e-08	2.59432e+01	1.17698e + 00	65	6.60796e-08	3.79244e+02	8.67555e+01
17	7.13559e-08	2.29849e+01	2.33258e+00	66	7.23018e-08	6.00618e + 02	1.01882e+02
18	2.67034e-08	2.21990e+01	1.50270e+00	67	1.03184e-07	6.39984e+02	5.68154e+01
19	3.79751e-08	8.53660e+01	2.24009e+01	68	7.58521e-08	5.05802e+02	5.60500e+01
20	1.77932e-08	8.71401e+02	8.78090e+00	69	7.60955e-08	1.28675e + 03	1.43560e+02
21	2.25166e-08	5.86659e + 01	8.24051e+00	70	8.48296e-08	9.68115e+02	6.86839e+01
22	1.56222 e-08	5.29518e + 01	4.86432e+00	71	7.66839e-08	2.09254e+02	3.09189e+01
23	4.74004e-08	4.70098e+01	4.75505e+00	72	2.93301e-07	4.05753e + 02	4.63669e+01
24	1.85685 e - 07	1.23774e + 02	9.36016e+00	73	8.10593e-08	4.11489e+02	3.42964e+01
25	1.83021e-07	2.69255e+02	1.50937e+01	74	8.26313e-08	2.38284e+02	8.09815e+01
26	1.24864 e - 07	1.11393e+02	1.35080e+01	75	8.04852e-08	7.10297e + 02	1.62780e + 02
27	1.23479e-07	1.24288e + 02	3.16106e+01	76	9.18682e-08	4.12513e+02	2.99406e+01
28	1.80821e-06	1.57776e + 03	7.67399e+01	77	1.08387e-07	1.87440e + 02	2.79378e+01
29	9.48392e-08	4.02865e+02	2.22652e+01	78	1.03110e-07	2.03857e + 02	2.57488e+01
30	1.57316e-08	1.89246e + 02	6.82841e+00	79	1.37492e-07	6.78755e + 02	3.58451e+01
31	1.17393e-08	2.24508e + 02	3.83671e+00	80	9.16911e-08	5.08628e + 02	3.48783e+01
32	1.48993e-08	6.72210e+01	6.23303e+00	81	5.00448e-07	6.06770e + 02	4.10914e+01
33	4.08596e-08	7.39117e+01	1.14283e+01	82	2.15135e-07	7.73650e + 02	5.92223e+01
34	5.13099e-08	5.53441e+02	4.80933e+01	83	8.16408e-07	1.17550e+03	1.05222e+02
35	2.78104e-08	5.19503e+02	4.10183e+01	84	8.50474e-08	1.16940e+04	3.85955e+02
36	4.51019e-08	3.53450e+02	3.31293e+01	85	1.25238e-06	1.03478e + 04	1.20177e + 02
37	2.31974e-08	3.91273e+02	1.13820e+01	86	2.46212e-07	1.24309e+04	2.93697e+02
38	5.33618e-07	3.77185e+02	2.47144e+01	87	1.34919e-07	1.50364e+04	1.45779e + 02
39	4.03595e-08	1.87523e + 02	1.70904e+01	88	1.77220e-07	6.09119e+04	7.15888e+01
40	1.00401e-07	2.70230e+02	1.74852e+01	89	2.10088e-07	1.41214e+03	1.00808e+02
41	6.78265 e - 08	5.55432e+02	3.25176e+01	90	1.11207e-07	1.76003e+03	6.43347e+01
42	3.89531e-08	3.19532e+02	1.45562e+01	91	1.40491e-07	9.43939e+02	4.96421e+01
43	7.07625e-08	3.53136e+02	1.21748e + 01	92	3.61188e-07	1.68947e + 03	5.39511e+01
44	4.28090e-08	3.75632e+02	1.37852e+01	93	7.47588e-07	1.23000e+03	3.33221e+01
45	4.61908e-08	4.01859e + 02	9.50281e+00	94	8.67451e-07	1.16441e+03	4.16179e+01
46	4.47556e-08	1.08220e+03	2.68951e+01	95	1.40393e-06	1.11327e+03	4.31873e+01
47	1.06853e-07	4.67922e + 03	4.85818e+01	96	1.02786e-06	1.93032e+04	5.98646e+02
48	1.01608e-07	1.75233e+03	9.09009e+00	97	1.94037e-07	9.62075e+02	3.08990e+01
49	5.73074e-07	5.92046e+03	1.69193e+02	98	2.01763e-07	1.33434e+03	6.69423e+01
50	1.47107e-07	2.46086e+02	7.41959e+00	99	9.39441e-06	1.52907e+03	9.06394e+01
51	9.47365e-08	8.57508e + 02	3.73456e+01	100	2.77768e-06	3.77706e+03	1.63594e+02

Błędy powiększają się wraz ze wzrastającym rozmiarem układu jak rownież z malejącą prezycją użytego typu, przy czym należy zauważyć, że błąd wynikający z precyzji jest znacznie wiekszy dla typów float32 oraz float 64 niż dla float128. Następnym krokiem będzie porównanie wyników w problemie drugim z tymi uzyskanymi tutaj.

2 Problem 2

2.1 Opis problemu

Eksperyment analogiczny do problemu 1 zostanie przeprowadzony dla macierzy zadanej wzorem:

$$\begin{cases} a_{1j} = \frac{2i}{j} \ dla \ j \geqslant i \\ a_{ij} = a_{ij} \ dla \ j \leqslant i \end{cases} \quad i, j = 1, ..., n$$

Wyniki zostaną porównane z tymi w problemie 1. Zostanie sprawdzone uwarunkowanie obu układów.

2.2 Opracowanie problemu

Zakres badanych n, precyzji oraz uzyty wektor ${\bf x}$ są identyczne jak w problemie 1.

$\overline{}$	
$\mid n \mid$	Wynik (float64)
3	[11. 1.]
4	[11. 11.]
5	[11. 11. 1.]
6	[11. 11. 11.]
7	[11. 11. 11. 1.]
8	[11. 11. 11. 11.]
9	[11. 11. 11. 11. 1.]
10	[11. 11. 11. 11.]
11	[11. 11. 11. 11. 1.]
12	[11. 11. 11. 11. 11.]
13	[11. 11. 11. 11. 11. 1.]
14	[11. 11. 11. 11. 11. 11.]
15	[11. 11. 11. 11. 11. 11. 11. 1.]
16	[11. 11. 11. 11. 11. 11. 11. 11.]
17	[11. 11. 11. 11. 11. 11. 11. 11. 1.]
18	[11. 11. 11. 11. 11. 11. 11. 11. 11.

Tabela 3: Wyniki dla wartości 3-18 n

Wszystkie uzyskane wyniki w tym zakresie są na tyle dobre (tzn. mają na tyle dużo zer po przecinku), że numpy nie pokazuje ich rozwinięcia dziesiętnego, w odróżneiniu od problemu 1, gdzie widać było ewidentne niedokładności.

4 0 5 2	0.00000e+00	3.14018e-16	3.14018e-16
5 2	00000 . 00	00-0	3.14016e-10
	0.00000e+00	2.48253e- 16	5.66105e-16
	2.48253e-16	4.15407e-16	4.96507e-16
6 3	3.14018e-16	9.74217e-16	6.47366e-16
7 2	2.48253e-16	1.69468e-15	7.77156e-16
8 6	6.08094e-16	4.67218e-15	2.29416e-15
9 1	.48122e-15	3.31025e-15	1.42611e-15
10 2	2.99143e-15	3.08274e-15	5.30473e-15
11 2	2.98318e-15	4.42142e-15	6.66689e-15
12 3	3.63842e-15	1.98040e-14	1.08353e-14
13 4	1.76491e-15	2.20079e-14	9.17665e-15
14 4	1.02599e-15	2.27677e-14	1.17500e-14
15 3	3.61292e-15	2.83611e-14	1.40438e-14
16 3	3.52485e-15	3.80102e-14	1.42723e-14
I I	.00449e-14	3.71618e-14	1.41234e-14
18 1	1.00792e-14	3.65198e-14	1.23634e-14
19 1	1.52780e-14	3.88935e-14	1.32065e-14
20 1	1.97189e-14	3.80900e-14	1.55973e-14
21 2	2.00517e-14	3.65030e-14	1.69886e-14
22 2	2.61846e-14	4.75961e-14	1.57937e-14
23 2	2.92058e-14	4.25638e-14	1.89406e-14
24 3	3.11027e-14	3.68189e-14	2.35490e-14
25 4	1.01138e-14	3.90851e-14	2.60590e-14
26 4	1.78317e-14	3.97499e-14	3.78837e-14
27 4	1.94930e-14	4.30520e-14	4.32887e-14
28 5	5.64670e-14	1.01729e-13	4.83767e-14
29 6	5.79743e-14	1.22073e-13	6.59737e-14
30 7	7.74665e-14	9.93568e-14	6.37943e-14
31 7	7.20535e-14	1.23333e-13	8.47986e-14
$32 \mid 7$	7.49745e-14	1.22503e- 13	1.03770e-13
33 8	3.34764e-14	1.20980e-13	1.00354e-13
34 9	0.65992e-14	1.27744e-13	8.96049e-14
35 1	.03406e-13	1.25167e-13	8.98755e-14
36 1	.05284e-13	1.81115e-13	9.92374e-14
$37 \mid 9$	0.74833e-14	1.78416e-13	8.58149e-14
	3.99382e-14	1.91015e-13	8.43823e-14
	0.39602e-14	1.75834e-13	8.63363e-14
40 1	1.06354e-13	2.56295 e-13	9.07217e-14
41 9	0.88085e-14	2.55501e-13	8.50089e-14
	1.18753e-13	2.56017e-13	9.76102e-14
	1.23169e-13	2.59007e-13	9.94367e-14
44 1	1.65062e-13	2.20919e-13	1.02333e-13
	.80798e-13	2.21368e-13	1.19101e-13
	1.42598e-13	2.43778e-13	1.46323e-13
47 1	1.37076e-13	3.02347e-13	1.48848e-13
I I	.49469e-13	3.16843e-13	1.58636e-13
49 1	.38619e-13	3.23690e-13	1.72794e-13
50 1	1.36274e-13	3.46057e-13	1.67102e-13
51 1	1.43897e-13	3.58384e-13	1.85238e-13

	float128	float64	float32
n F2		3.67188e-13	2.47585e-13
52	1.39772e-13 1.65545e-13		
53		3.71622e-13	2.44301e-13
54	1.83550e-13	3.95670e-13	2.80490e-13
55	1.50536e-13	4.47478e-13	3.02780e-13
56	1.47575e-13	5.07994e-13	3.29484e-13
57	1.63723e-13	5.18223e-13	3.51037e-13
58	1.77244e-13	5.38007e-13	3.61192e-13
59	1.88617e-13	5.32264e-13	3.53027e-13
60	2.01146e-13	8.55487e-13	3.90212e-13
61	1.81530e-13	8.64971e-13	3.94910e-13
62	1.87015e-13	8.52088e-13	4.01676e-13
63	1.92385e-13	8.53760e-13	4.09343e-13
64	2.34847e-13	1.02174e-12	3.75456e-13
65	2.29063e-13	1.08640e-12	5.19077e-13
66	2.41997e-13	1.20444e-12	5.83299e-13
67	2.62325e-13	1.27659e-12	6.21968e-13
68	2.83034e-13	8.29059e-13	6.88447e-13
69	2.75237e-13	8.79906e-13	7.48081e-13
70	3.04656e-13	9.25090e-13	8.04045e-13
71	3.06542e-13	9.76631e-13	8.66095e-13
72	3.02185e-13	1.20634e-12	8.94100e-13
73	3.29546e-13	1.20252e-12	9.29830e-13
74	3.27333e-13	1.20104e-12	9.24748e-13
75	3.19322e-13	1.20343e-12	9.47747e-13
76 77	3.34962e-13 3.73973e-13	1.89808e-12 1.88248e-12	9.03211e-13 8.68586e-13
78	4.06460e-13	1.96682e-12	8.98199e-13
79	4.00400e-13 4.22540e-13	1.96082e-12 1.96288e-12	9.04314e-13
80	4.22540e-13 4.27885e-13	1.50200e-12 1.57121e-12	8.69675e-13
81	5.00671e-13	1.66451e-12	9.31137e-13
82	5.15757e-13	1.97529e-12	9.47249e-13
83	5.69078e-13	2.05867e-12	9.47249e-13 9.50470e-13
84	6.33495e-13	2.30233e-12	9.70425e-13
85	6.50080e-13	2.30233e-12 2.28787e-12	1.01391e-12
86	6.48275e-13	2.28022e-12	1.01331e-12 1.00284e-12
87	7.06903e-13	2.29377e-12	1.00264e-12 1.09560e-12
88	7.49646e-13	2.23577e-12 2.21554e-12	1.14357e-12
89	8.26162e-13	2.24017e-12	1.14557e-12 1.16569e-12
90	8.57090e-13	2.39984e-12	1.10309e-12 1.19415e-12
91	8.54227e-13	2.69002e-12	1.19415e-12 1.24766e-12
92	8.90434e-13	2.09002e-12 2.24959e-12	1.24700e-12 1.23540e-12
93	9.01505e-13	2.24939e-12 2.26938e-12	1.23940e-12 1.27993e-12
94	9.70675e-13	2.20938e-12 2.29189e-12	1.32937e-12
95	9.36551e-13	2.29169e-12 2.27211e-12	1.32937e-12 1.41987e-12
96	9.30331e-13 9.29838e-13	2.46800e-12	1.419876-12 1.39482e-12
97	9.29030e-13 9.26189e-13	2.46843e-12	1.42324e-12
98	9.20189e-13 9.77432e-13	2.40043e-12 2.51404e-12	1.42324e-12 1.48752e-12
99	1.16504e-12	2.51404e-12 2.54730e-12	1.48732e-12 1.53327e-12
100	1.21042e-12	2.34730e-12 2.28769e-12	1.55604e-12
100	1.210425-12	2.201090-12	1.000040-12

Nawet dla największej badanej wartości n, niezależnie od precyzji użytego typu, pojawiający się błąd jest rzędu 10^{-12} . Precyzja uzyskanych wyników w problemie 2 w takich samych warunkach jest znacznie lepsza niż w problemie 1.

Tutaj należałoby się zastanowić nad powodem powyższej różnicy wyników pomiędzy macierzami w problemie pierwszym i drugim. Poniżej części macierzy ${\bf A}$ dla n=100 dla obu problemów:

$$A_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 & 1 \\ 0.5 & 0.3333333 & 0.25 & \dots & 0.01010101 & .01 & 0.00990099 \\ 0.33333333 & 0.25 & 0.2 & \dots & 0.01 & 0.00990099 & 0.00980392 \\ \vdots & & & \ddots & & & \vdots \\ 0.01020408 & 0.01010101 & 0.01 & \dots & 0.00512821 & 0.00510204 & 0.00507614 \\ 0.01010101 & 0.01 & 0.00990099 & \dots & 0.00510204 & 0.00507614 & 0.00505051 \\ 0.01 & 0.00990099 & 0.00980392 & \dots & 0.00507614 & 0.00505051 & 0.00502513 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 2 & 1 & 0.666666667 & \dots & 0.02040816 & 0.02020202 & 0.027 \\ 1. & 2. & 1.33333333 & \dots & 0.04081633 & 0.04040404 & 0.04 \\ 0.666666667 & 1.333333333 & 2 & \dots & 0.06122449 & 0.06060606 & 0.06 \\ \vdots & & & \ddots & & \vdots \\ 0.02040816 & 0.04081633 & 0.06122449 & \dots & 2. & 1.97979798 & 1.96 \\ 0.02020202 & 0.040404040 & 0.060606066 & \dots & 1.97979798 & 2. & 1.98 \\ 0.02 & 0.04 & 0.06 & \dots & 1.96 & 1.98 & 2. \end{bmatrix}$$

Jedną z przyczyn, dla których układ równań z problemu pierwszego daje tak złe wyniki jest metoda wybierania elementu wiodącego (pivotu). W tej implementacji algorytmu eliminacja Gaussa jako pivot wybierane są zawsze kolejne elementy na przekątnej macierzy. W przypadku macierzy z problemu drugiego jest to zawsze 2, w przypadku macierzy z problemu pierwszego elementy na przekątnej maleją, tak że najmniejsze wartości są rzędu 10^{-3} . Może to stanowić problem, ponieważ poszczególne wiersze w metodzie eliminacji Gaussa są dzielone przez pivot, to znaczy mnożone przez jego odwrotność. Jeżeli pivot jest mały (< 1), wówczas wiersze mnożone są przez dużą wartość, więc błędy zaokrągleń stają się duże w stosunku do współczynników oryginalnej macierzy.

Oprócz tego można również obliczyć wskaźnik uwarunkowania macierzy κ . Wartość ta jest miarą tego, jak bardzo zmieni się rozwiązanie \mathbf{x} układu równań w stosunku do zmiany \mathbf{b} . Jeżeli wskaźnik uwarunkowania macierzy jest duży, nawet mały błąd w \mathbf{b} może powodować duże błędy w \mathbf{x} .

$$\kappa = ||A^{-1}|| ||A||$$

Można zastosować dowolną normę zawartą, tutaj zostanie użyta norma "nieskończoność", tj. $\|A\|_{\infty}=\max_i\sum|a_{ij}|$.

Poniżej tabela z wybranymi wskaźnikami uwarunkowania macierzy dla różnych n:

n	κ_1 (problem 1)	κ_2 (problem 2)
3	8.64000e+02	8.66667e+00
6	5.63447e + 07	3.96667e+01
9	2.84317e + 12	9.23810e+01
12	1.36454e + 17	1.66822e+02
15	1.04335e+19	2.63294e+02
18	2.21394e+21	3.81736e+02
21	1.89813e + 19	5.21917e+02
24	1.51520e + 19	6.83833e+02
27	2.25108e + 20	8.67483e + 02
30	5.08850e + 19	1.07287e + 03
33	6.34109e+19	1.30055e+03
36	3.60448e + 20	1.54997e + 03
39	2.50037e + 20	1.82111e+03
42	6.68682e + 19	2.11399e+03
45	3.72911e+21	2.42860e + 03
48	3.75331e+20	2.76521e+03
51	1.67838e + 21	3.12386e+03
54	4.26339e+20	3.50424e+03
57	6.19806e + 20	3.90635e+03
60	9.06089e + 20	4.33019e+03
63	2.47455e + 20	4.77576e + 03
66	2.37977e + 20	5.24360e + 03
69	1.79781e + 21	5.73321e+03
72	7.20453e + 20	6.24455e + 03
75	5.53474e + 21	6.77762e + 03
78	1.18038e + 21	7.33242e+03
81	8.58646e + 21	7.90918e + 03
84	4.81463e + 20	8.50802e+03
87	1.01666e + 21	9.12860e + 03
90	9.19833e+20	9.77090e+03
93	5.60807e + 20	1.04349e+04
96	1.08158e + 21	1.11207e+04
99	2.33922e+21	1.18287e + 04

Tabela 5: wskaźniki uwarunkowania macierzy

Wskaźniki uwarunkowania dla macierzy z problemu 1 są znacznie więsze niż dla problemu 2. Oznacza to, że niewielki błąd (wynikający np. z przybliżeń) znacznie wpływa na wynik.

3 Problem 3

Ekspetyment z dwóch poprzednich problemów zostanie powtórzony dla macierzy zadanej wzorem:

$$\begin{cases} a_{ii} = k \\ a_{i,i+1} = \frac{1}{i+m} \\ a_{i,i-1} = \frac{k}{i+m+1} & dla \ i > j \\ a_{i,j} = 0 & dla \ j < i-1 \ oraz \ j > i+1 \end{cases}$$
 $i, j = 1, ..., n$

Gdzie k = 6 oraz m = 5.

Następnie układ rozwiązany zostanie metodą przeznaczoną do rozwiązywania układów z macierzą trójdiagonalną. Te dwie metody zostaną porównane (czas, dokładność obliczeń i zajętość pamięci) dla różnych rozmiarów układu (z pominięciem czasu tworzenia układu). Opisane zostanie to, jak w metodzie dla ukłądów z macierzą trójdiagonalną przechowywano i wykorzystano macierz **A**.

3.1 Opracowanie problemu

3.2 Wnioski