53-39 53 042/42

Habitats and Surface Construction Technology and Development Roadmap

Marc Cohen NASA Ames Research Center Moffett Field, CA

and

Kriss J. Kennedy Johnson Space Flight Center Houston, TX

<u>Habitats & Surface Construction</u> Technology & Development Roadmap

Presented to the
AIAA Structures Technical Committee
Hampton, VA

September 4, 1997

Marc Cohen / NASA ARC
mcohen@mail.ARC.nasa.gov

Kriss J. Kennedy / NASA JSC
kriss.j.kennedy1@jsc.nasa.gov

H&SC Team 09/02/9

HEDS Technology Planning

Habitats & Surface Construction

Top Level Strategy for Habitats & Surface Construction

- GOAL: Sustain human presence on Mars.
- <u>TARGET</u>: Provide habitation and surface infrastructure to support humans on Mars on a long term basis.
- PLAN: Provide the capability to produce and construct habitats and surface facilities using indigenous resources.
- <u>RATIONALE</u>: Open Mars to long-term planetary exploration by humans with the eventual settlement of humans on Mars.
- INITIAL PRODUCTS: Initial human mission using relevant habitation technologies. ISRU resource demonstrations, i.e. material extraction and benefaction for processing.

Executive Summary

Vision

Provide the capability for automated delivery and emplacement of habitats and surface facilities.

Benefits

- Composites and Inflatables: 30 50% (goal) lighter than Al Hard Structures
- Capability for Increased Habitable Volume, Launch Efficiency
- Long Term Growth Potential
- Supports initiation of commercial and industrial expansion.

Key H&SC Technology Issues

- Habitat Shell Structural Materials
- Seals and Mechanisms
- Construction and Assembly: Automated Pre-Deploy Construction Systems
- ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs
- Radiation Protection (Health and Human Performance Tech.)
- Life Support System (Regenerative Life Support System Tech.)
- Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.)
- Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.)

What is Being Done?

- Use of composite materials for X-38 CRV, RLV, etc.
- TransHAB inflatable habitat design/development
- Japanese corporations working on ISRU-derived construction processes.

What Needs to be Done for 2004 Go Decision

- Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.
- Determine Credibility of Inflatable Structures for Human Habitation

Determine Seal Technology for Mechanisms and Hatches, Life Cycle, Durability

WBS 2.0 Integrated Habitation Technology Development Typical Products

- · Pressure Shell
 - Rigid Pressure Shell Components
 - Flexible/Inflatable Pressure Shell Components
 - ISRU Product Pressure Shell Components
- Habitat Structures
 - Deployable Trusses
 - Deployable Columns
 - Quick Connect Bracing
 - Quick Release Structural Connectors
 - Mechanical Fastening Materials and Devices
- Interior Structures and Mechanisms
 - Bulkheads
 - Rack Support Structure and Components
 - Subsystem Equipment Support Structure and Components
 - Floor Support Structure
 - Foldable Decking
 - Deployable Stairs, Ramps and Elevators
- Radiation Protection
 - Loose Regolith/Soil Shielding
 - Pressure Shell Integrated Shielding
 - Sintered/Cast Basalt Shielding
- Prefabricated Shielding
- Micrometeoroid Protection
 - Loose Regolith/Soil Shielding - Pressure Shell Integrated Shielding
 - Sintered/Cast Basalt Shielding
 - Prefabricated Shielding

Ejecta Protection

- Loose Regolith/Soil Shielding
 Constructed Blast Shields
- Sintered/Cast Basalt Shielding - Prelabricated Shielding
- Thermal Control
 - Internal Thermal Insulation
 - Reflective Coverings and Coatings
 - Integral Shielding
- Lighting
 - Natural Lighting Techniques and Equipment
 Artificial Lighting
- Vibration Control
 - Vibration Isolation Techniques and Components
 - Vibration Dampening/Reduction Techniques and Components
 - Noise Prevention Techniques and Components
 - Noise Reduction Techniques and Components

HEDS Technology Planning

Habitats & Surface Construction

Robotic Construction Technology (WBS 2.5)

- Survey existing approaches to robots and their capabilities automobile assembly, housing, etc.
- · Evaluate potential for adapting construction components for robotic assembly.
- Use CAD/VR to experiment with simulated robotic construction.
- Determine appropriate levels of modularity, assembly and component packaging.
- Develop virtual user interface for directing robotic/teleoperated construction.
- Build experimental construction system with components.
- Conduct integrated robotic construction ops tests.

Robotic Construction Technology Products (WBS 2.5)

- System studies of approaches to robotic/teleop construction techniques.
- Evaluation of potential for robotic methods to assemble a Lunar/ Mars base.
- Develop requirements for capabilities, software, expert systems, user interface, training, hardware, end effectors, and construction components such as grapple fixtures, hard points, joints, connectors, etc.
- Design experimental prototype robotic construction system.
- Adapt hardware and software for robotic construction field testing.

Criticality of Technology			
Technology	Criticality	Justifica tion/ Va lue	
Inflatable Structures	Unproven Technology for Habitat Space Structures Requires longer lead time and funding to meet 2003 Go Time to answer critical technology issues about materials and shell integration	Save \$ • Can reduce the number of ETO Launch Vehicles by 2-3 Launches: • \$150 - 300 M vhealtht • Provides the Habitability Volume Required for Long Duration Spaceflight: Crew Psychological Health Save \$ • Does Not Require New HLLV/Shuttle C to meet Volume Capability Save \$ • Lower IMLEO (mass) thus Mission Cost • Impact to Mission Architecture Design and Operations	
Seals	Critical Link of Providing Contamination Control Crew Health System Life-Cycle, Failures	VSystem† • Pressure Integrity of Connections vSystem† • Ensures Life Cycle of Pressure Connections, Hatcher & Mechanisms vSystem† • Protection of Lubricants and Mechanisms vHealth† • Protect Humans from Dust	
Advanced Composites	Unproven Technology for Habitat Space Structures Requires time and funding to meet 2003 Go Time to answer critical technology issues about materials and shell integration	Save \$ • Can reduce the mass of a HAB by = 30%, thus IMLEO Save \$ • Lower IMLEO (mass) thus Mission and Transportation Cost	
Soil Moving Machinery	Requires High Power and Energy Efficient Equipment Required for Site Preparation and Clearing, Habitat Emplacement, and Radiation/ Blast Ejecta Berming	 Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility Mission Failure Due to Inability to Land or Link Surface Facilities due to surface conditions Support Long-Term Objectives of Sustained Human Presence 	
Mass Handling Equipment	Requires High Power and Energy Efficient Equipment Required for Loading and Unloading of Payloads, and Moving/Connecting Elements	Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility Mission Failure Due to Inability to Land or Link Surface Facilities due to surface conditions Support Long-Term Objectives of Sustained Human Presence	

HEDS Technology Planning		Habitats & Surface Constru			
Enabling H&SC Technology					
Technology	Enables	Rationale			
Inflatable Structures	Larger HAB Volume Inflatable Aerobrake Inflatable Airlock	S maller ETO Launch Vehicles No LEO Assembly Ops Save HAB Vol and Packaging Vol			
Seals	 Integrity of Connections Long Life Connections, Hatches, and Mechanisms Contamination Control 	Pressure Integrity of Connections Ensures Life Cycle of Pressure Connections, Hatches and Mechanisms Protection of Lubricants and Mechanisms Protect Humans from Dust			
Shell Materials	Tolerant of Environment	 Tolerant of Long Duration Exposure to Space and Mars Environment 			
Advanced Composites	Lightweight Strong Structures	• Lower Initial Mass in LEO			
Soil Moving Machinery	Site Preparation and Clearing Habitat Emplacement Radiation/Blast Ejecta Berming	Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility			
Mass Handling Equipment	Loading and Unloading of Payloads Moving Connecting Elements	Required for Base Assembly			
Self-Deploying and Automated Systems	External Shelters/Facilities	Limit EVACrew Time for Construction/ Assembly Operations			

Tachnology	Enables	
Technology		Rationale
A.I. Smart Structure	Integrated and Self Diagnostics Self Repair	Alleviate Crew Maintenance and Repair Time Automation and Several Yrs Unmanned
SRU-LSS Living Shell	Process CO2 Through Shell to Produce O2 for Interior Use Integration of Nano Life Support System into Skin	Self Sufficiency, Lower Weight Applicable to Hostile Terrestrial Environments
Bio-Structure	Bio-Technology Integration with Shell Skin Enables Self-Healing Capability	Alleviate Crew Servicing and Maintenance
Funneling/ Mining Mole	Enables Underground Habitation Facilities Analogous to Oil Industry Siberia (Hostile Environment) Facilities	Create Underground Facilities for Mars Evolution/Civilization Constant Thermal Environment Radiation Protection
SRU- Derived Structure	Use of In-Situ Materials to Process, Manufacture and Assemble Structures	Supports Long-Term Plan for Human Expansion into Solar System Breaks Dependency of Earth Supplies

HEDS Technology Planning

Habitats & Surface Construction

Key Structural Issues

- Metal Alloy Structures
 - Environmental Degradation, Manufacturability, \$ to Manuf., Achieve tbd% weight savings, robustness, maintainability and repair.
- Composite Structures
 - Environmental Degradation, Manufacturability, \$ to Manuf., Achieve 30% weight savings, robustness, maintainability and repair.
- Inflatable Structures
 - Environmental Degradation, Manufacturability, \$ to Manuf., Achieve weight savings, robustness, reliability, deployability: automated/robotic assisted surface deployment, maintainability and repair.
- ISRU-Derived Structures
 - Environmental Degradation, Manufacturability, \$ to Manufacture HAB units, Complexity of mining, benefaction and processing ISRU material to make structures, robustness, reliability, automated/robotic assisted manufacturing, maintainability and repair.

Habitats and Surface Construction Man-Rated Pressure Structure

- Technology: Advanced Structures
- Application: In-Space and Planetary Pressurized Structures for Human Exploration
- Benefits:
 - 30-50% (goal) lighter than Al Hard Structures
 - Capability for Increased Habitable Volume, Launch Efficiency
 - Long Term Growth Potential
 - Compatible with Technology Developments for Current Space Craft.
- Current Technology Status:

Composites: TRL 6-7

- Used for pressure tanks: DC-X
- Incorporated into X-33
 Demonstration
- Incorporated into X-38 CRV
- Planned for Space Craft Upgrades

H&SC Team 09/02/97

Inflatables: TRL 4-5

- Concepts Developed
- Impediment Defined
- EMU Suit Materials
- Materials Selection for HAB
- Full-Scaled Prototype Planned FY98-99
- '96 Space Demo of IAE

ISRU Derived: TRL 1-2

- Resources Identified
- Extraction Techniques
 Defined
- Material Processing and Manufacturing Defined
- Structural Concepts

HEDS Technology Planning

Habitats & Surface Construction

Material Requirements for Habitats

- Large Volumes, i.e. 300-500 m³
- High Strength Materials
 - Internal Operating Pressure 8.3 psia
- Durability
 - 10-15 Years
- Reliability
 - Fail Op/Fail Safe
- Low Cost
 - Orders of Magnitude Less (\$M NOT \$B)
- Low Mass
 - Orders of Magnitude Less (100s kg NOT 10s Mt)
- · Autonomous Deployment
- Low Vibration
- · Withstand Radiation: GCR and SPE
- No Off-gassing to Internal HAB

- Withstand Debris/Micrometeoroid Hits
 - 1/4" d @ 7 km/s, Self-repair?
- Low Risk
 - Deployment
 - Pressure Integrity
 - Puncture/Tear Resistant
 - No Off-gassing
- Pre-integrated Support Systems
 - Life Support, Communications
 - Deployable Floors and Walls
 - Smart Structures: self diagnostic
- Human Support
 - Radiation Shelters
 - Medical Treatment
 - EVA Support
 - Living and Working Facilities
 - Autonomous Operations

45C Teem 09/02/97

Interaction Between H&SC and Other Technologies

ISRU: - Development of ISRU processes - ISRU processing technologies - Mining technologies - Development of ISRU structural materials	ISRU and H&SC: - Dust control technologies - Regolith movement technologies	H&SC: - Construction technologies - Excavation technologies - Maintenance technologies - Assembly of ISRU structural materials
Planetary Rover: - Rover technologies - Sample collection technologies - Navigation technologies	Planetary Royer and H&SC: - Vehicle chassis utilization	H&SC: - Robotic construction technologies - Robotic maintenance technologies - Robotic surveying technologies
RLSS: - Life support technologies - Plant growth technologies	RLSS and H&SC. - Artificial lighting technologies - Radiation filtering materials	H&SC: - Greenhouse construction technologie - Natural lighting technologies

H&SC Team 09/02/97

Habitats & Surface Construction

Summary

- Need Advanced Structures Research
- SBIR/STTR Innovative Technology Opportunities
- Technology Development Strategy
- · Return-on-Investment Potential is Enormous
- Paradigm Shift from "Traditional" Habitat Concepts
- Need to Move Technology from Earth Applications to Space Applications
- Need Continued Material Testing for <u>Human</u> Spaceflight Use

HEDS Technology Planning

Habitats & Surface Construction

Class 1: Preintegrated Habs

Vision

 A <u>composite structure</u> that can be autonomously predeployed and operated on the Moon and Mars surface. Fully integrated. The capability for A.I. smart hab for failure detection, analysis and self repair.

Benefits

- Low mass.
- · High reliability and easy to repair.
- Near-current technology.
- Add larger modules to ISSA and Lunar Orbit.

Current Status

- Technology demonstrated to TRL 6-7.
- Manufacturing techniques being perfected by aircraft and launch vehicle industry.
- · Incorporated into CRV skin.

Class 2: Prefabricated Habs

Vision

 An <u>inflatable structure</u> that can be autonomously predeployed and operated on the Moon and Mars surfaces. Partially integrated and flexible. The capability for A.I. smart hab for failure detection, analysis and self repair.

Benefits

- · Larger usable habitable volume
- Lower mass
- Higher crew productivity
- Higher crew moral and quality of life (lower stress)
- High reliability and easy to repair
- Taking the steps toward building new civilizations

Current Status

- Technology demonstrated to TRL 4-5 by NASA-LaRC and DoD/U.S. Army.
- · Industry established "smart" houses and integrated systems.
- · Workshops on Space Inflatable Structures are planned (2 in '96).
- Shannon Lucid's experience of 6 months in space (Zero G).
- Long term habitability studies completed by ARC & JSC.
- · Early Human Testbed preparing for 90 day test.

H&SC Team 09/02/97

HEDS Technology Planning

Habitats & Surface Construction

Impediments of Inflatable Structures

- Technical
- High Strength Material
- · Seaming/Stress Points
- Connection Points
 - Hard Points for Internal/External Connections
- Reliable and Autonomous Deployment
- Material Degradation
 - Radiation, Dust, Thermal, Atomic O2, Micrometeoroid
- · Hatches and Interconnects
- Off-gassing
- Durability/Life Span
- Flexibility/Packaging
- Human Rating

H&SC Team 09/02/97

Social

- In-Space/Surface <u>Flight Experience</u>
- "Unknown" Factor
- Lack of Skilled Work Force at NASA with Inflatable Structures
 - Understanding not Building
- Balloon (Pop) Theory
- Cost is so low compared to hard space structures, no one believes it.
- Credibility
- Confidence
 - Comes from in-space demonstrated experience
- Complexity Factor

Habitats & Surface Construction

Class 3: ISRU-Derived Habs

Vision

 An <u>ISRU-derived structure</u> that is manufactured using indigenous resources and constructed autonomously. It is autonomously operated and maintained utilizing A.I. and V.R. The capability for A.I. for failure detection, analysis and self-repair.

Benefits

- Larger usable habitable volumes.
- Can build colony infrastructure to support sustained human presence and evolution.
- Self sufficiency from Earth.
- · Higher level of society.
- Ability to manufacture, service and repair.

Current_ Status

 Technology demonstrated to TRL 2-3 for Lunar-crete. Other technologies possible.

485C Team 09/02/97

Concepts & Development

