

Theoretische Informatik Sommersemester 2021

Übung 7

A1. Sei $G = (\{S, A, B, C\}, \{a, b\}, P, S)$ eine Grammatik mit folgender Produktionsmenge gegeben:

$$P = \{S \rightarrow AB \mid BC,$$

$$A \rightarrow BA \mid a,$$

$$B \rightarrow CC \mid b,$$

$$C \rightarrow AB \mid a\}$$

Konstruieren Sie einen Kellerautomaten M mit L(G) = L(M).

$L\ddot{O}SUNG$

Der Kellerautomat ist gegeben durch

$$M = (\{z_0\}, \{a, b\}, \{a, b, A, B, C, S\}, \delta, z_0, S)$$

mit folgenden Übergängen:

$$\begin{split} &\delta(z_0,\varepsilon,S) = \{(z_0,AB)\} \\ &\delta(z_0,\varepsilon,S) = \{(z_0,BC)\} \\ &\delta(z_0,\varepsilon,A) = \{(z_0,BA),(z_0,a)\} \\ &\delta(z_0,\varepsilon,B) = \{(z_0,CC),(z_0,b)\} \\ &\delta(z_0,\varepsilon,C) = \{(z_0,AB),(z_0,a)\} \\ &\delta(z_0,a,a) = \{(z_0,\varepsilon)\} \\ &\delta(z_0,b,b) = \{(z_0,\varepsilon)\} \end{split}$$

A2. Konstruieren Sie einen Kellerautomaten für

$$\{0^n 1^n \mid n \ge 1\}$$

und zeigen Sie, dass der Automat das Wort 0011 akzeptiert.

$L\ddot{O}SUNG$

Der Kellerautomat ist gegeben durch

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{\#, A\}, \delta, q_0, \#, \{q_2\})$$

mit folgender Übergangsfunktion:

$$\delta(q_0, 0, \#) = \{(q_0, A\#)\}$$

$$\delta(q_0, 0, A) = \{(q_0, AA)\}$$

$$\delta(q_0, 1, A) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, 1, A) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, \varepsilon, \#) = \{(q_2, \varepsilon)\}$$

Die Konfigurationsübergangsfolge für das Wort 0011 ergibt:

$$(q_0, 0011, \#) \vdash (q_0, 011, A\#) \vdash (q_0, 11, AA\#)$$

 $\vdash (q_1, 1, A\#) \vdash (q_1, \varepsilon, \#) \vdash (q_2, \varepsilon, \#)$

A 3	Konstruieren	Sie	einen	Kellerautomaten	fiir
Дυ.	TOHOU METER	DIC	CHICH	11cherautomaten	Tui

 $\{(001)^n \mid n \ge 1\}.$

$L\ddot{O}SUNG$
Die geforderte Sprache $\{(001)^n \mid n \geq 1\}$ kann als deterministischer endlicher Automat realisiert werden. Ein deterministischer endlicher Automat als Kellerautomat formuliert, verändert nur die Zustände analog der Übergänge des deterministischer endlicher Automat. Der Keller spielt dabei keine Rolle. Man kann bei jedem Übergang das unterste Kellersymbol konstant im Keller lassen (d.h. herausnehmen und wieder in den Keller schreiben).