QIP1 Quantum Information

Processing:Concept

professor : Jonathan Home author : walkerchi

Quantum State

• unitary : $S^\dagger S = S S^\dagger = I$

• Hermitian : $S^\dagger = S$

ullet projector : SS=S

⊗: tensor product

Bloch Sphere

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle & \|\alpha\|^2 + \|\beta\|^2 = 1 \\ &= \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle \\ &= \cos(\theta/2) |0\rangle + (\cos\phi + i\sin\phi) \sin(\theta/2) |1\rangle \end{aligned}$$

•
$$z$$
 axis : $|0
angle = egin{bmatrix} 1 \\ 0 \end{bmatrix}$ $|1
angle = egin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\bullet \quad x \text{ axis : } |+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\bullet \quad y \text{ axis : } |+\rangle_y = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix} \quad |-\rangle_y = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

pauli matrices :
$$\hat{\sigma}_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $\hat{\sigma}_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\hat{\sigma}_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

No-cloning theorem

$$ot \exists \hat{U} \ orall \psi, \phi \quad U(|\psi
angle \otimes |0
angle) = |\psi
angle \otimes |\psi
angle \quad U(|\phi
angle \otimes |0
angle) = |\phi
angle \otimes |\phi
angle$$

Entanglement

$$|\Psi\rangle_{AB} \neq |\alpha\rangle_A \otimes |\beta\rangle_B$$

• Bell states: maximally entangled states for two qubits

$$egin{aligned} |\Phi^+
angle &= rac{1}{\sqrt{2}}(|00
angle + |11
angle) & |\Psi^+
angle &= rac{1}{\sqrt{2}}(|01
angle + |10
angle) \ |\Phi^-
angle &= rac{1}{\sqrt{2}}(|00
angle - |11
angle) & |\Psi^-
angle &= rac{1}{\sqrt{2}}(|01
angle - |10
angle) \end{aligned}$$

- **identify entanglement** : more than 1 non-zero eigen values $\exists \lambda_1, \lambda_2 \neq 0$
- product state : $|\Psi\rangle_{AB}=|\alpha\rangle_{A}\otimes|\beta\rangle_{B}$ no entanglement
- Schmidt decomposition :

$$\ket{\Psi} \in \mathcal{H}_1 \otimes \mathcal{H}_2
ightarrow \ket{\Psi} = \sum_{i=1}^m \lambda_i \ket{u_i} \otimes \ket{v_i} \quad \ket{u_i} \in \mathcal{H}_1, \ket{v_i} \in \mathcal{H}_2$$

- \circ Schmidt rank: m
 - lacksquare independent from the choice of basis of \mathcal{H}_A and \mathcal{H}_B
- \circ Schmidt coefficient : α_i

$$\Psi=rac{\ket{00
angle+\ket{11}+2\ket{++}}}{\sqrt{10}}=rac{3\ket{00}+2\ket{01}+2\ket{10}+3\ket{11}}{\sqrt{10}}$$

schmidt coefficient : $\frac{1}{\sqrt{10}}[3,2,2,3]$

Bell Inequality

	location \boldsymbol{A}	location ${\cal B}$	
CHSH inequatlity	$Q=\pm 1$ $R=\pm 1$	$S=\pm 1$ $T=\pm 1$	$\langle QS angle + \langle RT angle + \langle RS angle - \langle QT angle \leq 2$
Quantum Violation	$\hat{Q}=\hat{\sigma}_z\otimes I \ \hat{R}=\hat{\sigma}_x\otimes I$	$\hat{S} = rac{-1}{\sqrt{2}}\hat{I}\otimes(\hat{\sigma}_z+\hat{\sigma}_x) \ \hat{T} = rac{1}{\sqrt{2}}\hat{I}\otimes(\hat{\sigma}_z-\hat{\sigma}_x)$	$\langle QS angle + \langle RT angle + \langle RS angle - \langle QT angle = 2\sqrt{2} > 2$

Quantum Gate

Rotation

$$\begin{array}{l} \bullet \ \ R_x(\theta) = e^{-i\theta X/2} = \cos(\theta/2)I - i \ sin(\theta/2)X = \begin{bmatrix} \cos(\theta/2) & -i \sin(\theta/2) \\ -i \sin(\theta/2) & \cos(\theta/2) \end{bmatrix} \\ \bullet \ \ R_y(\theta) \ \ = e^{-i\theta Y/2} = \cos(\theta/2)I - i \ sin(\theta/2)Y = \begin{bmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{bmatrix} \end{array}$$

$$ullet R_y(heta) = e^{-i heta Y/2} = \cos(heta/2)I - i \ sin(heta/2)Y = egin{bmatrix} \cos(heta/2) & -\sin(heta/2) \ \sin(heta/2) & \cos(heta/2) \end{bmatrix}$$

$$ullet \;\;\; R_z(heta) \;\;\; = e^{-i heta Z/2} = \cos(heta/2)I - i\; sin(heta/2)Z = egin{bmatrix} e^{-i heta/2} & 0 \ 0 & e^{i heta/2} \end{bmatrix}$$

Pauli Gates

 $\sigma_{\{x,y,z\}}$ rotate around $\{x,y,z\}$ axis by π in Bloch sphere

Hadamard Gate

H rotation about axis $rac{1}{\sqrt{2}}(\hat{x}+\hat{z})$ by π

- $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle$
- $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle) = |-\rangle$
- $H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^x |1\rangle)$
- $ullet \ H^{\otimes n}\ket{x}=rac{1}{\sqrt{2^n}}\sum_{y\in\{0,1\}^n}(-1)^{x\cdot y}\ket{y}$

Two qubits Gate

• CNOT = $|0\rangle_c \langle 0|_c \otimes \hat{I}_t + |1\rangle_c \langle 1|_c \otimes \hat{X}_t$

• CPAHSE = $|0\rangle_c \langle 0|_c \otimes \hat{I}_t + |1\rangle_c \langle 1|_c \otimes \hat{Z}_t$

Matrix Table

Operator	Matrix	Operator	Matrix	Operator	Matrix
Pauli-x (σ_x)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	Pauli-Y (σ_y)	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	Pauli-Z (σ_z)	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	Identity ($ar{I}$)	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
Phase (S , P)	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$rac{\pi}{8}$ (T , not Clifford gate)	$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$		
Controlled Not ($CNOT$, CX)	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	Controlled Z (CZ , $CSIGN$, $CPHASE$)	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$	SWAP	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Universal quantum gates

- Rotation gates $R_x(\theta), R_y(\theta), R_z(\theta)$, phase gate $P(\phi)$, CNOT
- $\{CNOT, H, T\}$
- $\{CNOT\} \cup \mathcal{U}(2)$

• $\{Toffoli(CCNOT), H\}$

Clifford group : $\mathcal{C}_n = \left\{U \in \mathcal{U}(2^n): \forall P \in \mathcal{P}_n: UPU^\dagger \in \mathcal{P}_n \right\}$ where \mathcal{U} means unitary

Algorithms

Complexity

complexity class	problem	polynomial in time/space	classical / quantum
P	decision problem	time	classical
ВРР	probabilistic algorithm failure at most $\frac{1}{3}$	time	classical
NP	proof the answer is yes	time	classical
PSPACE	decision problem	space	classical
ВQР	decision problem failure at most $\frac{1}{3}$	time	quantum

- $\bullet \ \ BPP \subset BQP$: quantum simulation of classical circuits
- $P \subset BPP$
- $P \subset NP \subset PSAPCE$

Oracle

ullet Phase oracle : $U_f\ket{x}=(-1)^{f(x)}\ket{x}$

$$egin{aligned} O_f \ket{y}\ket{x} &= \ket{y \oplus f(x)}\ket{x} \ O_f \ket{-}\ket{x} &= O_f rac{1}{\sqrt{2}}(\ket{0}-\ket{1})\ket{x} \ &= rac{1}{\sqrt{2}}(\ket{f(x)}-\ket{1 \oplus f(x)})\ket{x} \ &= (-1)^{f(x)}\ket{-}\ket{x} \end{aligned}$$

ullet Bit oracle : $O_f \ket{y}\ket{x} = \ket{y \oplus f(x)}\ket{x}$

Deutsch-Josza

Distinguish f(x) whether is **constant** function or **balanced** function. $\mathcal{O}(N) o \mathcal{O}(1)$

- constant: evaluates to the same value regardless of input
- ullet balanced: the number of inputs which output 1 equals the number of inputs which output 0

$$\begin{split} \langle 0|^{\otimes n} H^{\otimes n} U_f H^{\otimes n} |0\rangle^{\otimes n} &= \langle 0|^{\otimes n} H^{\otimes n} \overline{U}_f \underbrace{\left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle\right)}_{H^{\otimes n} |0\rangle^{\otimes n}} \\ &= \langle 0|^{\otimes n} H^{\otimes n} \left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle\right) \\ &= \langle 0|^{\otimes n} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \left(\frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle\right) \\ &= \frac{1}{2^n} \sum_{x,y \in \{0,1\}^n} (-1)^{f(x)} (-1)^{x \cdot y} \langle 0^{\otimes n} |y\rangle \\ &= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \\ &= \begin{cases} 0 & f(x) \text{ is balanced} \\ \pm 1 & f(x) \text{ is constant} \end{cases} \end{split}$$

Notation:

1. n: length of bit string

2. N : total number of quantum state $N=2^n$

3. H: Hadamard gate

Grover

find the unique x_0 that $f(x_0)=1$ $f:\{1,\cdots,N\} o\{0,1\}$, $O(N) o O(\sqrt{N})$

- ullet oracle operator : $U_f=I-2\ket{x_0}ra{x_0}$ $U_0=I-2\ket{0}^{\otimes n}ra{0}^{\otimes n}$
- ullet grover diffusion : $U_s=H^{\otimes n}(-U_0)H^{\otimes n}=2\ket{+^n}ra{+^n}-I$

Reflection

- $\bullet \ \ \text{Reflection about} \ |\psi_{\perp}\rangle : R_{\psi_{\perp}} \left|\phi\right\rangle = \left(I 2\left|\psi\right\rangle\left\langle\psi\right|\right) \left(\alpha\left|\psi\right\rangle + \beta\left|\psi_{\perp}\right\rangle\right) = -\alpha\left|\psi\right\rangle + \beta\left|\psi_{\perp}\right\rangle$
 - $\circ~~U_f=R_{x_0^\perp}~$ reflect about $\left|x_0^\perp
 ight>$
- Reflection about $\ket{\psi}:R_{\psi}\ket{\phi}=\left(2\ket{\psi}\bra{\psi}-I\right)\left(\alpha\ket{\psi}+\beta\ket{\psi_{\perp}}\right)=\alpha\ket{\psi}-\beta\ket{\psi_{\perp}}$
 - $\circ \;\; U_s = R_+$: reflection about $|+^n
 angle$

$$\langle x_0|U_sU_f|\phi
angle = \cos\left(rccos(\langle x_0|\phi
angle) - 2rcsin(\langle x_0|+
angle)
ight) \ \langle x_0|(U_sU_f)^r|+^n
angle = \cos(rccos(\langle x_0|+
angle) - 2rrcsin(\langle x_0|+
angle))$$

$$ightarrow r = rac{rccos(rac{1}{\sqrt{N}})}{2rcsin(rac{1}{\sqrt{N}})} pprox rac{\pi\sqrt{N}}{4}$$

Algorithm

1.
$$|\Psi
angle \leftarrow H^{\otimes n} |0
angle^{\otimes n}$$
 : after this step $|\Psi
angle = |+^n
angle$

2. for
$$r$$
 times, $r=rac{rccos(rac{1}{\sqrt{N}})}{2rccsin(rac{1}{\sqrt{N}})}$

1.
$$|\Psi
angle \leftarrow U_s U_f \ket{\Psi}$$

3. measure $|\Psi
angle$, the greatest probability will be x_0

Notation

- n: length of bit string
- ullet N : total number of quantum state $N=2^n$

$$ullet \ |+^n
angle = rac{1}{\sqrt{2^n}} \sum_{x=\{0,1\}^n} |x
angle = rac{1}{\sqrt{N}} \sum_{x=\{0,1\}^n} |x
angle$$

[QFT] Quantum Fourier transform

$$Q_N\ket{x} = rac{1}{\sqrt{N}}\sum_{y=0}^{N-1}e^{2\pi ixy/N}\ket{y}:\mathcal{O}(N{\log}N) o\mathcal{O}(n^2)$$

$$egin{align*} Q_{N} \ket{x} &= rac{1}{\sqrt{N}} \sum_{y \in \{0,1\}^{n}} e^{2\pi i x y/N} \ket{y} \ &= rac{1}{\sqrt{N}} \sum_{y \in \{0,1\}^{n}} e^{2\pi i x \sum_{k}^{n} 2^{k} y_{k}/N} \ket{y_{n-1}} \cdots \ket{y_{0}} \ &= rac{1}{\sqrt{N}} \otimes_{j=1}^{n} \left(\sum_{y_{n-j} \in \{0,1\}} e^{2\pi i x y_{n-j}/2^{j}} \ket{y_{n-j}}
ight) \ &= rac{1}{\sqrt{N}} (\ket{0_{n-1}} + e^{\cdot x_{0}2\pi i} \ket{1_{n-1}}) \otimes (\ket{0_{n-2}} + e^{\cdot x_{1}x_{0}2\pi i} \ket{1_{n-2}}) \cdots (\ket{0_{0}} + e^{\cdot x_{n-1} \cdots x_{0}2\pi i} \ket{1_{0}}) \ &= rac{1}{\sqrt{N}} (H\ket{x_{0}}) \otimes (R_{1}H\ket{x_{1}}) \dots (R_{n-1} \dots R_{1}H\ket{x_{n-1}}) \ \end{split}$$

Number of gates in QFT of n bit string

- ullet CR_j (Controled- R_j): $rac{n(n-1)}{2}$
- ullet SWAP : $rac{n}{2}$ used to reverse the qubit, $|y_0y_1y_2y_3
 angle
 ightarrow |y_3y_2y_1y_0
 angle$
- *H*:*n*

Notation

- n: length of bit string
- ullet N : total number of quantum state $N=2^n$
- ullet R_d : rotation matrix : $R_d = egin{bmatrix} 1 & 0 \ 0 & e^{\pi i/2^d} \end{bmatrix}$
- ullet H : Hadamard gate : $H=rac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}H\ket{x_k}=rac{1}{\sqrt{2}}(\ket{0}+e^{.x_k2\pi i}\ket{1})$
- $e^{x_1x_0} \cdot e^{\frac{1}{2}x_1 + \frac{1}{4}x_0}$

Example

$$Q_2 = rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} = H \quad Q_3 = rac{1}{\sqrt{3}}egin{bmatrix} 1 & 1 & 1 \ 1 & e^{2\pi i/3} & e^{-2\pi i/3} \ 1 & e^{-2\pi i/3} & e^{2\pi i/3} \end{bmatrix} \quad Q_4 = rac{1}{2}egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & i & -1 & -i \ 1 & -1 & 1 & -1 \ 1 & -i & -1 & i \end{bmatrix}$$

Shor factoring

given a non-prime integer N represented as a bit string, find a non-trivial factor $a^x \bmod N$, $a^r \bmod N = 1 \to (a^{r/2}+1)(a^{r/2}-1) \bmod N = 0$

$$egin{aligned} \ket{\Phi} &= O_f(\operatorname{id}^{\otimes n} \otimes H^{\otimes n}) \ket{0}^{\otimes n} \ket{0}^{\otimes n} \ &= O_f rac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} \ket{0}^{\otimes n} \ket{x} \ &= rac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} \ket{f(x)} \ket{x} \ &\ket{\Psi_z} &= \sqrt{rac{r}{N}} \sum_{t=0}^{N/r-1} \ket{x_0 + rt} \propto \sum_{x:f(x)=z} \ket{x} \ &\ket{\tilde{\Psi}_z} &= Q_N^{\dagger} \ket{\Psi_z} \ &= \sqrt{rac{r}{N^2}} \sum_{t=0}^{N/r-1} \sum_{y=0}^{N-1} e^{-2\pi i (x_0 + rt)y/N} \ket{y} \ &= \sqrt{rac{r}{N^2}} \sum_{y=0,ry \mathrm{mod}=0}^{N-1} e^{-2\pi i x_0 y/N} rac{N}{r} \ket{y} \ &= rac{1}{\sqrt{r}} \sum_{y=0,ry \mathrm{mod}=0}^{N-1} e^{-2\pi i x_0 y/N} \ket{y} \end{aligned}$$

Algorithm

1. find the order r that $a^x \mod N = a^{x+r} \mod N$ using **period finding** in $\mathcal{O}(\operatorname{poly}(n))$

1.
$$|\Psi
angle = I^{\otimes n} \otimes H^{\otimes n} |0
angle^{\otimes n} \otimes |0
angle^{\otimes n} = |0
angle^{\otimes n} \otimes \left(rac{1}{\sqrt{N}} \sum_{x \in \{0,1\}} |x
angle
ight)$$

2.
$$\ket{\Phi} = O_f \ket{\Psi} = rac{1}{\sqrt{N}} \sum_{x \in \{0,1\}} \ket{f(x)} \ket{x}$$

3. measure
$$f(x)=z$$
 then $|\Psi_z
angle=\sqrt{rac{r}{N}}\sum_{t=0}^{N/r-1}|x_0+rt
angle \quad \propto \sum_{x:f(x)=z}|x
angle$

4.
$$|\tilde{\Phi}\rangle = Q_N^{\dagger} |\Psi\rangle_z = \sqrt{\frac{r}{N^2}} \sum_{t=0}^{N/r-1} \sum_{y=0}^{N-1} e^{-2\pi i (x_0 + rt)y/N} |y\rangle = \frac{1}{\sqrt{r}} \sum_{y=0,ry \bmod N=0}^{N-1} e^{-2\pi i x_0 y/N} |y\rangle$$

```
5. measure |\tilde{\Phi}\rangle multiple times s_1,\cdots,s_i, the results are multiples of r, use euclid algorithm to compute the r=N/\gcd(s_1,\cdots,s_i) 2. if r \bmod 2 = 0 and a^{r/2} \pm 1 \bmod N \neq 0 1. candidate factor \tilde{p}=\gcd(a^{r/2}-1,N) using euclid algorithm 3. else go to 1
```

```
1 @classical
    def euclid_gcd(a, b):
 2
 3
        # O(logn)
 4
        return b if a==0 else euclid_gcd(b%a, a)
 5
    @quantum
 6
    def period_finding(a, n, N):
 7
        # a^r \mod N = 1, O(N)
 8
        Of = lambda x: a**x \% N
9
        s0, s1 = None, None
10
        while True:
            x0, x1 = zeros(n), zeros(n)
11
12
            x0, x1 = I(x0), H(x1)
13
            x0, x1 = Of(x0, x1)
14
            if not measure(x0).all_equals(): \# O(2^n/n) = O(N/n) fail
                 continue
15
16
            x1 = IQFT(x1)
17
            if s0 is None: # fail O(1)
                 s0 = measure(x1)
18
                 continue
19
20
            s1 = measure(x1)
            N_r= euclid_gcd(s0, s1) # N/r if k coprime k'
21
22
            s0, s1 = None, None
23
            r = N / N_r
24
            break
25
26
        return r
27
    def shor_factoring(N):
28
29
        # find a factor of N
        n = ceil(log2(N))
30
31
32
        while True:
33
            a = random(N)
34
            K = euclid\_gcd(a, N):
35
            if K != 1:
                 return K
36
37
            r = period_finding(a, n, N)
38
39
            if is_odd(r): continue
            g = eulid\_gcd(N, a**(r//2 + 1))
40
41
            if g != 1:
42
                 return g
```

Error Correction

Quantum operations

- Density operator : $\hat{
 ho} = \sum\limits_{i,j}
 ho_{i,j} \ket{i} ra{j}$
 - o diagonal gives the probability of the state
- Partial trace : $\mathrm{Tr}_B(\ket{a_1}ra{a_2}\otimes\ket{b_1}ra{b_2})=\ket{a_1}ra{a_2}\mathrm{Tr}(\ket{b_1}ra{b_2})$
- Purification : $ho^A = {
 m Tr}_R(\ket{AR}ra{AR})$
- Evolution : $ho_t = U
 ho_0 U^\dagger$
- Trace Preserving CP map : $ho(t) = au_A(
 ho_A(0))$
 - \circ trace preserving : $\mathrm{Tr}(
 ho)=1$
 - \circ positive : $\lambda_{
 ho} \geq 0$
 - o complete positivity
- Kraus Operator : $ho' = \sum_i \hat{E}_i
 ho_0 \hat{E}_i^\dagger \quad \hat{E}_i = \langle e_i | \hat{U} \, | e_0
 angle$

Damping channel

• Amplitude Dampling : $\hat{E}_1=egin{bmatrix}0&\sqrt{\gamma}\\0&0\end{bmatrix}$ $\hat{E}_0=egin{bmatrix}1&0\\0&\sqrt{1-\gamma}\end{bmatrix}$

- $\circ \;\;$ excited state $|1\rangle$ damping to $|0\rangle$ due to loss of energy
- $\bullet \ \ \text{Phase Damping} : \hat{E}_1 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{r} \end{bmatrix} \quad \hat{E}_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-r} \end{bmatrix}$

lossing phase information, energy conserved

Error Channels

- Bit Flip : $\hat{E}_1 = \sqrt{p}X$ $E_0 = \sqrt{1-p}I$
- Phase Flip : $\hat{E}_1 = \sqrt{p}Z$ $E_0 = \sqrt{1-p}I$
- ullet Phase+Bit Flip : $\hat{E}_1 = \sqrt{p} Y \quad \hat{E}_0 = \sqrt{1-p} I$

• Depolarizing(Bit/Phase/Bit+Phase Flip):

$$\hat{E}_1 = rac{p}{4}X$$
 $\hat{E}_2 = rac{p}{4}Y$ $\hat{E}_3 = rac{p}{4}Z$ $\hat{E}_0 = \left(1 - rac{3p}{4}\right)I$

ullet if code can correct Pauli $\, X \,$ and Pauli $\, Z \,$ errors then it can correct all the Pauli operator errors

Tomography

- **Process tomography** : determine the effect of a quantum operation $\mathcal{E}(\hat{
 ho}) = \sum_{i,j}
 ho_{i,j} \mathcal{E}(\ket{i}ra{j})$
 - \circ the map ${\mathcal E}$ is linear
 - $\circ \ \ 4 \ \text{inputs (} |1\rangle \ \langle 1|, |0\rangle \ \langle 0|, |+_x\rangle \ \langle +_x|, |+_y\rangle \ \langle +_y| \text{) for } 1 \ \text{qubit, measure output} \ \ \rho \ \text{for each input}$
- State tomography : determine the state of a quantum system $ho=rac{I+ec{r}\cdotec{\sigma}}{2}$
 - \circ 3 measurement for 1 qubit
 - $\circ d^2 1$ ($4^n 1$?) measure for n-qubit state

Classical Error Correction

classical coding theory:

- ullet number of physical bits : n
- number of logical bits : k
- ullet minimal bit flip to change the code : d
- ullet number of errors can be corrected : $t=rac{d-1}{2}$

Quantum Error Correction

Fidelity: distance between quantum states

- two pure states : $F(|\psi\rangle,|\phi\rangle) = |\langle\psi|\phi\rangle|^2$
- two mixed state : $F(\rho,\sigma)=\sqrt{\sigma}\rho\sqrt{\sigma}$
- one pure state one mixed state : $F(\rho, |\psi\rangle) = \langle \psi | \rho | \psi \rangle$

3-qubit bit-flip code : $(\alpha \ket{0} + \beta \ket{1}) \otimes \ket{0} \otimes \ket{0} \rightarrow \alpha \ket{000} + \beta \ket{111}$

syndrome extraction

• no error

$$(\alpha \ket{000} + \beta \ket{111}) \ket{00}
ightarrow (\alpha \ket{000} + \beta \ket{111}) \ket{00}$$

one error

$$\begin{array}{l} \left(\alpha \left|001\right\rangle + \beta \left|110\right\rangle\right) \left|00\right\rangle \rightarrow \left(\alpha \left|001\right\rangle\beta \left|110\right\rangle\right) \left|01\right\rangle \\ \left(\alpha \left|010\right\rangle + \beta \left|101\right\rangle\right) \left|00\right\rangle \rightarrow \left(\alpha \left|010\right\rangle\beta \left|101\right\rangle\right) \left|11\right\rangle \\ \left(\alpha \left|100\right\rangle + \beta \left|011\right\rangle\right) \left|00\right\rangle \rightarrow \left(\alpha \left|100\right\rangle\beta \left|011\right\rangle\right) \left|10\right\rangle \end{array}$$

error	state	probability	syndrome	correction
III	$lpha\ket{000}+eta\ket{111}$	$(1-p)^3$	0,0	III
XII	$lpha\ket{100}+eta\ket{011}$	$p(1-p)^2$	1,0	XII
IXI	$lpha\ket{010}+eta\ket{101}$	$p(1-p)^2$	1,1	IXI
IIX	$lpha\ket{001}+eta\ket{110}$	$p(1-p)^2$	0,1	IIX

3-qubit phase-flip code : $(\alpha\ket{0}+\beta\ket{1})\otimes\ket{0}\otimes\ket{0} \to \alpha\ket{+++}+\beta\ket{---}$

syndrome extraction

$$\begin{aligned} |+\rangle \, |+\rangle &\stackrel{\mathrm{CNOT}}{\to} \, |+\rangle \, |+\rangle \\ |+\rangle \, |-\rangle &\stackrel{\mathrm{CNOT}}{\to} \, |-\rangle \, |-\rangle \end{aligned}$$

• no error

$$|+++\rangle|++\rangle \rightarrow |+++\rangle|++\rangle$$

 $|---\rangle|++\rangle \rightarrow |---\rangle|++\rangle$

• one error

$$|++-\rangle |++\rangle \rightarrow |++-\rangle |+-\rangle$$

$$|+-+\rangle |++\rangle \rightarrow |+-+\rangle |--\rangle$$

$$|-++\rangle |++\rangle \rightarrow |-++\rangle |-+\rangle$$

error	state	probability	syndrome	correction
III	$\alpha \left + + + \right\rangle + \beta \left \right\rangle$	$(1-p)^3$	0,0	III
ZII	$\alpha \left -++ ight angle + eta \left + ight angle$	$p(1-p)^2$	1,0	ZII
IZI	$\alpha \left +-+ ight angle +eta \left -+- ight angle$	$p(1-p)^2$	1,1	IZI
IIZ	$lpha \left + + - ight angle + eta \left + ight angle$	$p(1-p)^2$	0,1	IIZ

Shor 9-qubit concatenated code:

$$lpha |0
angle_L + eta |1
angle_L = lpha (|111
angle + |000
angle)^{\otimes 3} + eta (|111
angle - |000
angle)^{\otimes 3}$$

syndrome

• Bit errors : $Z_1Z_2, Z_2Z_3, \ Z_4Z_5, Z_5Z_6, \ Z_7Z_8, Z_8Z_9$

• Phase errors : $X_1X_2X_3X_4X_5X_6, X_4X_5X_6X_7X_8X_9$

• shor code can correct any single-qubit error that can be expressed as a linear combination of Pauli matrices

Knill-Laflamme condition

different errors lead to orthogonal states, $E_{\{a,b\}}$ are error operators

$$\langle \Phi_i | E_a^\dagger E_b \, | \Phi_j
angle = C_{ab} \delta_{ij}$$

error operators are linearly independent

if
$$E_a^{\dagger}E_b=I$$
 then $C_{ab}=\sigma_{ab}$

Notation

- δ_{ij} : $\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$
 - C_{ab} : constant independent of i, j

Stabilizer

applying any of the stabilizer operators to a codeword returns the same codeword

$$S\ket{\phi}=\ket{\phi}$$

Example: Bell state $|\Phi^+\rangle$ stabilized by two operators

- $\bullet \ \ ZZ\left|\Phi^{+}\right\rangle =\left|\Phi^{+}\right\rangle$
- $XX|\Phi^+\rangle = |\Phi^+\rangle$

Notation

- \mathcal{P} : pauli group : $\mathcal{P} = \{\pm I, \pm iI, \pm \sigma_x, \pm i\sigma_x, \pm \sigma_y, \pm i\sigma_y, \pm \sigma_z, \pm i\sigma_z\}$
 - \circ $\mathcal{P}_n = \mathcal{P}^{\otimes n}$
 - $\circ \ \mathcal{P}_n \mathcal{P}'_n = \bigotimes (\mathcal{P}_{n,i} \cdot \mathcal{P}'_{n,i})$
 - $A \cdot A = I \quad A \in \{X, Y, Z\}$
 - $A \cdot B = \epsilon_{ABC}iC$ $A, B, C \in \{X, Y, Z\}$

Example
$$XZZXI \cdot IXZZX = X(iY)I(-iY)X$$

 $\circ \ [\mathcal{P}_n, \mathcal{P}'_n] = 0 \Leftrightarrow \forall i \ [\mathcal{P}_{n,i}, \mathcal{P}'_{n,i}] = 0$

commute if all element commute

 $\circ [\mathcal{P}_n, \mathcal{P}'_n] = 0 \Leftrightarrow \sum_i \mathbb{1}_{\{\mathcal{P}_{n,i}, \mathcal{P}'_{n,i}\} = 0} \mod 2 = 0$

commute if even number of elements anti commute

 $\circ \ \{\mathcal{P}_n, \mathcal{P}'_n\} = 0 \Leftrightarrow \sum_i \mathbb{1}_{\{\mathcal{P}_{n,i}, \mathcal{P}'_{n,i}\} = 0} \bmod 2 = 1$

anti commute if odd number of elements anti commute

- $\sigma_x, \sigma_y, \sigma_z$: pauli matrices, $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - $\circ [\sigma_i, \sigma_i] = 2i\epsilon_{ijk}\sigma_k$, e.g. $[\sigma_i, \sigma_i] = 0 [\sigma_i, I] = 0$
 - $\circ \ \ \{\sigma_i,\sigma_j\} = 2\delta_{ij} \text{, e.g.} \{\sigma_i,\sigma_j\} = 0 \quad i \neq j$
- $[\cdot, \cdot]$: commute [A, B] = AB BA

 $\circ A, B \text{ commute} \Leftrightarrow [A, B] = 0$

• $\{\cdot,\cdot\}$: anti commute $\{A,B\}=AB+BA$

• A, B anti-commute $\Leftrightarrow \{A, B\} = 0$

ullet ϵ_{ijk} : Levi-Civita symbol

• even permutation : $\epsilon_{\{123,231,312\}} = 1$

 $\circ \ \ {\rm odd\ permutation} : \epsilon_{\{213,132,321\}} = -1$

 $\circ \;\;$ two of i,j,k equal $:\epsilon_{ijk}=0$

• *k* : number of element in stabilizer generator

• n: number of element in the pauli group

Stabilizer group:

• all elements commute with each other

ullet does not contain $I^{\otimes n}$

Stabilizer generator: minimal set of operators generate all members by multiplication $\langle S_1, \cdots, S_k
angle
ightarrow \{S_1^{a_1} \cdots S_k^{a_k}\} \quad a_i \in \{0,1,2\}$

$$\underbrace{\langle ZZI, IZZ \rangle}_{ ext{stabilizer generator}}
ightarrow \underbrace{\{III, ZZI, ZIZ, IZZ\}}_{ ext{stabilizer group}} \quad egin{aligned} k=2 \ n=3 \end{aligned}$$

Example:

$$ullet$$
 3-qubit phase-flip code : $egin{array}{c|cccc} S_1 & X & X & I \\ \hline S_2 & I & X & X \\ \hline Z_L & X & X & X \\ \hline X_L & Z & Z & Z \\ \hline \end{array}$

• stean code :
$$S_{1} \mid I \quad I \quad I \quad Z \quad Z \quad Z \quad Z \quad Z \\ S_{2} \mid I \quad Z \quad Z \quad I \quad I \quad Z \quad Z \\ S_{3} \mid Z \quad I \quad Z \quad I \quad Z \quad I \quad Z \\ S_{4} \mid I \quad I \quad I \quad X \quad X \quad X \quad X \quad X \\ S_{5} \mid I \quad X \quad X \quad I \quad I \quad X \quad X \quad X \\ S_{6} \mid X \quad I \quad X \quad I \quad X \quad I \quad X \\ \hline Z_{L} \mid Z \quad Z \\ X_{L} \mid X \quad X \\ \hline S_{1} \mid X \quad Z \quad Z \quad X \quad I \quad X \\ \hline S_{2} \mid I \quad X \quad Z \quad Z \quad X \quad I \\ \hline S_{2} \mid I \quad X \quad Z \quad Z \quad X \quad X \\ \hline S_{3} \mid X \quad I \quad X \quad Z \quad Z \quad X \\ \hline Z_{L} \mid Z \quad Z \quad Z \quad Z \quad Z \quad Z \\ \hline Z_{L} \mid Z \quad Z \quad Z \quad Z \quad Z \quad Z \\ \hline Z_{L} \mid X \quad X \quad X \quad X \quad X \quad X \quad X \\ \hline Z_{L} \mid X \quad X \quad X \quad X \quad X \quad X \quad X \\ \hline$$

Stabilizer subspace dimension : 2^{n-k}

- ullet code subspace e.g. $|0
 angle_L$
- ullet orthogonal projector in subspace $:P_S|0
 angle_L=|0
 angle_L$ $P_S|1
 angle_L=|1
 angle_L$ $P_S|\psi
 angle=0$

Stabilizer group element : 2^k

$$\textbf{Error-Syndrome}: \frac{[E,S_i]=0 \Leftrightarrow \text{error not detected (1)}}{\{E,S_i\}=0 \Leftrightarrow \text{error detected (-1)}}$$

Example : bit flip error (X error) at position 1

$$S = \{XZZXI, IXZZX, XIXZZ, ZXIXZ, ZZXIX\}$$
 $E = XIIIII$

result : $\{1, 1, 1, -1, -1\}$

stabilizer + EC : for
$$[E_{b}^{\dagger}E_{a},S_{k}]=0$$
 $\langle j|E_{b}^{\dagger}E_{a}S_{k}\ket{i}=\lambda$

 $\textit{projector into subspace}: \ P_j = \frac{I^{\otimes n} + S_j}{2} \ \text{, the eigen value of projected state will only contains } \{0,1\}$ $\textit{complexity}: O(n) \ \text{stabilizer operators with } O(n) \ \text{Paulis -} \ O(n^2) \ \text{updates per gate}$

Gottesman-Knill theorem: A quantum circuit performing

- 1. Clifford gates (exception: T-gate, Toffoli gate)
- 2. measurement of the Pauli group operators
- 3. conditional Clifford group operations

can be simulated efficiently on a classical computer

surface code

syndrome

Hamiltonian Simulation

k-local Hamiltonian : $H = \sum_{i=1}^m H_i \quad H_i$ acting on no more than k qubits

 $\mathsf{Example} \colon X - Y \, \mathsf{model}$

$$H = \sum_{i=1}^{n} (J_x X_i X_{i+1} + J_y Y_i Y_{i+1} + J_z Z_i Z_{i+1} + h Z_i)$$

2-local hamiltonian

Solovay-Kitaev theorem: unitary operator $U\in\mathcal{U}(2^n)$ which acts non-trivially on k qubits, a universal set of gates $\mathcal S$ and $\varepsilon>0$, $\exists \tilde U\in\mathcal{U}(2^n)$ composed of $\mathcal O(\log^c(1/\varepsilon))$ gates from $\mathcal S$ such that $\|\tilde U-U\|<\varepsilon$ with c<4

ullet if all H_i commute, $e^{-i\sum H_i t} = \prod_{i=1}^m e^{-iH_i t}$

Suzuki-Trotter decomposition : $e^{iHt}=(e^{iH_1t/K}e^{iH_2t/K}\cdots e^{iH_mt/K})^K+\mathcal{O}(m^2h^2rac{t^2}{K})$

ullet total error : $\epsilon_T = m \epsilon_L K + \mathcal{O}\left(rac{m^2 h^2 t^2}{K}
ight)$

- **Lie-Trotter** decomposition : $e^{(A+B)x}=e^Ae^B-\frac{1}{2}x^2[A,B]+\mathcal{O}(x^3)$, if [A,B]=0 then $\|e^{x(A+B)}-e^Ae^B\|\leq \epsilon$
- ullet number of local terms in a $\,k$ -local n-qubit Hamiltonian : n^k

Notation

- ullet m : number of terms for Hamiltonian decomposition $H=\sum_{i=1}^m H_i$
- ullet h : maximal norm of Hamiltonian term : $\|H_i\| \leq h$
- ullet K : Trotter step, $\Delta t = rac{t}{K}$
- ullet ϵ_T,ϵ_L : total error, local error for Trotter step