Lab #2 (Boolean Arithmetic)

Name: 9646

1 Civen the following Truth Table	a) Muita tha function in its conomical
Given the following Truth Table	a) Write the function in its canonical form
A B C F O O O O O O 1 1 O 1 O O	F ABCHABCHABC b) Draw the K-Map of the function
0 1 1 1	b) braw the k imap of the function
1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1	BCBCBCBC A O TO TO A D TO TO
	c) Write the function in its simplified form
	Ç=c+AB
	d) What is the difference in the number of gates used between canonical and simplified forms?

2. Given the following Truth Table	a) Write the function in its canonical form
A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1	Y = ABCD+ABCD ABCD+ABCD b) Draw the K-Map of the function ABCD O O O O O O O O O O O O O O O O O O O
	c) Write the function in its simplified form
	d) What is the difference in the number of gates used between canonical and simplified forms?

3. Given the following Truth Table	a) Write the function in its canonical form
a b c d z 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1	Z=ABCD+ABCD ABCD+ABCD ABCD+ABCD b) Draw the K-Map of the function
	c) Write the function in its simplified form
	d) What is the difference in the number of
	gates used between canonical and simplified forms?

Converting between Binary and Decimal Numbers

4. Convert **1110001**₂ to decimal (base 10)
Use sum of expansion of products (don't skip steps!)

5. Convert **11011'100**₂ to decimal (base 10)
Use sum of expansion of products (don't skip steps!)

Converting between Decimal and Binary Numbers

6. Convert **35**₁₀ to binary (base 2)
Use the Double-Dabble method of successive division (don't skip steps!)

$$36-3-17+2-8-3-4+3-2+3-1+3-0$$

7. Convert **111**₁₀ to binary (base 2)
Use the Double-Dabble method of successive divsion (don't skip steps!)

$$\frac{1}{11/2} = \frac{1}{55/3} = \frac{1}{27/2} = \frac{1}{13/2} = \frac{1$$

Adding Unsigned Binary Numbers

8. Add 7 + 5 in binary.
First convert to binary, then compute the sum.

$$7 = \frac{1}{34} = \frac{1}{14} = \frac{1}{$$

Adding Signed Binary Numbers (with Negatives)

9. Add 7 + (-5) in binary. Same as subtraction.

First convert to binary, then compute the sum.

Multiplexor (Mux) Design

Write the Boolean function for the output (out). Use K-maps if needed.
 Then write the HDL code.

out(a,b,sel) =

 a
 b
 sel
 out

 0
 0
 0
 0
 a

 0
 1
 0
 0
 1
 b

 1
 0
 0
 1
 a
 b

 1
 1
 0
 1
 a
 Mux
 out

 0
 1
 1
 1
 b
 out
 out

 1
 1
 1
 1
 out
 sel

CHIP Mux {
IN a, b, sel;
OUT out;

PARTS:

}

Demultiplexor (DMux) Design

