Applied Linear Algebra MAT3004

Due Date: 22/10/2022

- 1. Let $V = P_3(\mathbb{R})$ be a vector space of all polynomials of degree at most 3. If W_1 and W_2 are the subspaces of P_3 with corresponding bases $\alpha = \{1 + t, 2t + t^2, 2 + t^3\}$ and $\beta = \{t 2t^2, t + t^3\}$, then find the basis for
 - (a) $W_1 + W_2$
 - (b) $W_1 \cap W_2$.
- 2. (a) Let $T: M_{2\times 2} \to \mathbb{R}^2$, where $M_{2\times 2}$ is the real vector space of all 2×2 matrices and

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left(\begin{array}{cc}\max(a,b)\\\min(a,b)\end{array}\right).$$

Verify, if T is a linear transform or not.

- (b) Let $T: P_2(\mathbb{R}) \to \mathbb{R}^3$, such that $T(a_0 + a_1t + a_2t^2) = (a_0 + 2a_1, a_2 a_0, a_1 + 3a_2), \ \forall (x, y) \in \mathbb{R}^2$.
 - (i) Verify that if T is a linear transformation or not.
 - (ii) Find the inverse map of T, if T is invertible.
 - (iii) Find the kernel of T.
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transform, such that

$$T(x, y, z) = (2x + y, y - z, 3x + y - z), \ \forall (x, y, z) \in \mathbb{R}^3.$$

- (a) Then find the matrix of transformation of $[T]_{\alpha}$, where alpha is the standard basis of \mathbb{R}^3 .
- (b) Find $[T]_{\beta}$, by using similarity transformation, where $\beta = \{(-1, 1, 2), (0, 2, 1), (1, 1, 4)\}.$
- 4. (a) Let $(\mathbb{R}^3, \langle \rangle)$ be a inner product space such that

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + 3x_2y_2 + 5x_3y_3.$$

- (i) Then find the matrix representation of this inner product w.r.t. standard basis of \mathbb{R}^3 .
- (ii) $v_1 = (1, 3, 2), v_2 = (-2, 2, 2),$ find norm of v_1, v_2 and angle between v_1, v_2 .
- (b) Let $(P_3(\mathbb{R}), \langle \rangle)$ is an inner product space of all real polynomials of degree at most 3 with inner product as

$$\langle p(t),q(t)\rangle = \int_0^1 p(t).q(t)dt, \ \forall p(t),q(t) \in P_3.$$

1

Then find the ortho-normal basis of P_3 corresponding to basis $\{1-t, t+2t^2, 3t^2, 4t-t^3\}$.

5. Find QR decomposition of the matrix $\begin{bmatrix} 2 & 1 & -1 & 4 \\ 1 & 2 & 2 & -3 \\ 2 & 1 & -1 & 0 \\ -3 & 0 & 0 & 1 \\ 4 & -1 & 1 & 2 \end{bmatrix}.$