E.P.E.S. Nro 51 "J. G. A."

Estudiante:

Matemática

Curso y División: 2do año, IV-VI

Profesor: Ferreira, Juan David

 $\underline{\mathbf{T.P.N}^{\circ}}$ 7 Potenciación-Radicación.

Fecha de Entrega:____

 ${f Secci\'on}$ 1. Leemos el material de consulta y realizamos las actividades propuestas

1. Colocar "<" , ">" ó "=" según corresponda en cada caso:

- a) $(-2)^4 = (-2)^5$.
- b) $(-3)^2 = (-2)^3$.
- c) $(-2)^4 = (-4)^2$.
- $d) (-9)^0 \underline{\hspace{1cm}} 9^0.$
- $e) \sqrt{144}$ ___ $(-4)^2$.
- $f) \sqrt[3]{-64}$ ___ $(-4)^1$.
- $g) (-3)^2 _ (-4)^2.$
- $h) (-7)^0 = (-1)^7.$
- i) $\sqrt[3]{-27}$ ___ $\sqrt[3]{-8}$

2. Completa las siguientes potencias y respeta la regla de los signos en la multiplicación con enteros:

- a) La potencia menos diez al <u>cuadrado</u> es $(-10)^2 = \underline{100}$.
- b) La potencia menos dos a la _____ es $(-2)^5 =$ ___.
- c) La potencia tres a la _____ es $(3)^5 =$ ___.
- d) La potencia menos cuatro al ____ es $(-4)^3 =$ ___.
- e) La potencia menos cinco a la _____ es $(-5)^4 =$ ___.
- f) La potencia menos dos a la _____ es $(-2)^6 =$ __.

Potenciación y Radicación en El Conjunto de los Números Enteros $\mathbb Z$

Material de consulta

Definición 1.1 (Potenciación). La potenciación es una operación que abrevia una multiplicación de factores iguales

 $2^1=2, \ \text{dende se lee "dos a la uno"},$ $2^2=2\cdot 2=4, \ \text{donde se lee "dos al cuadrado"} \ ,$ $2^3=2\cdot 2\cdot 2=8, \ \text{donde se lee "dos al cubo"} \ ,$ $2^4=2\cdot 2\cdot 2\cdot 2=16, \ \text{donde se lee "dos a la cuarta"},$ $2^5=2\cdot 2\cdot 2\cdot 2\cdot 2=32, \ \text{donde se lee "dos a la quinta"},$ \vdots

Además cualquier número (distinto de cero) elevado a la cero es 1 y 1 elevado a cualquier exponente es 1.

Si tomamos el último ejemplo, podemos describir los elementos de la potenciación, que son los siguientes:

El **exponente** es el número que indica la cantidad de veces que debe multiplicarse la **base** por sí misma, y el resultado se llama **Potencia**.

Ejemplo 1.2. Siguiendo el concepto de Potencia en el conjunto de los Números Enteros, se tiene que: "Si el exponente es par, la potencia lleva signo positivo. Si el exponente es impar, la potencia lleva el signo de la base"

$$2^{3} = 2 \cdot 2 \cdot 2 = 8$$

$$y \quad (-2)^{4} = (-2) \cdot (-2) \cdot (-2) \cdot (-2) = 16$$

$$(-5)^{3} = (-5) \cdot (-5) \cdot (-5) = -125 \quad y \quad (-10)^{2} = (-10) \cdot (-10) = 100$$

$$(-3)^{3} = (-3) \cdot (-3) \cdot (-3) = -27 \quad y \quad (-12)^{2} = (-12) \cdot (-12) = 144$$

Intentamos completar cuando sea posible

 $\Box^2 = 49$

 $\Box^2 = 25$

 $\Box^3 = 81$

 $\Box^6 = 64$

Material de consulta

Definición 1.3 (Radicación). La Radicación es una operación que relaciona de manera inversa a la Potenciación.

indice
$$\sqrt[6]{64} = 2 \leftrightarrow 2^6 = 64$$
símbolo de raíz radicando

 $\sqrt[2]{9} = 3$, porque $3^2 = 9$ dende se lee "raíz cuadrada de 9 es igaul a 3",

 $\sqrt[2]{9} = \sqrt{9} = 3$, porque cuando el índice es 2 (dos) se puede omitir escribirlo.,

 $\sqrt[3]{125} = 5$, porque $5^3 = 125$, donde se lee "raíz cúbica de 125 es igual a 5",

 $\sqrt[4]{81} = 3$, porque $3^4 = 81$ donde se lee "raíz cuart de 81 es igual a 3",

: :

Ejemplo 1.4. Siguiendo el concepto de Radicación en el conjunto de los Números Enteros, se tiene que: "Si el **índice** es **impar**, la raíz lleva signo del **radicando**. Si el **índice** es **par** la raíz tiene solución si el radicando es **positivo**"

A modo de ejemplo, calculamos si es posible (sin usar la calculadora), las siguientes raíces:

$$\sqrt[3]{121} = \dots, \qquad \sqrt[4]{-16} = \dots, \qquad \sqrt{100} = \dots, \qquad \sqrt[3]{-8} = \dots$$

Respuestas Trabajo Práctico N° 7

Sección 1. Leemos el material de consulta y realizamos las actividades propuestas

- 1. Colocar "<" , ">" ó "=" según corresponda en cada caso:
 - $a) (-2)^4 \ge (-2)^5.$
 - b) $(-3)^2 \ge (-2)^3$.
 - $c) (-2)^4 = (-4)^2.$
 - $d) (-9)^0 \ge 9^0.$
 - $e) \sqrt{144} \le (-4)^2$.
 - $f) \sqrt[3]{-64} = (-4)^1.$
 - $g) (-3)^2 \leq (-4)^2.$
 - $h) (-7)^0 \ge (-1)^7.$
 - i) $\sqrt[3]{-27} < \sqrt[3]{-8}$
- 2. Completa las siguientes potencias y respeta la regla de los signos en la multiplicación con enteros:
 - a) La potencia menos diez al <u>cuadrado</u> es $(-10)^2 = \underline{100}$.
 - b) La potencia menos dos a la quinta es $(-2)^5 = \underline{-32}$.
 - c) La potencia tres a la quinta es $(3)^5 = 243$.
 - d) La potencia menos cuatro al <u>cubo</u> es $(-4)^3 = \underline{-64}$.
 - e) La potencia menos cinco a la <u>cuarta</u> es $(-5)^4 = \underline{625}$.
 - f) La potencia menos dos a la sexta es $(-2)^6 = \underline{64}$.

Potenciación y Radicación en El Conjunto de los Números Enteros $\mathbb Z$

Material de consulta

Definición 1.5 (Potenciación). La potenciación es una operación que abrevia una multiplicación de factores iguales

 $2^1=2$, dende se lee "dos a la uno", $2^2=2\cdot 2=4$, donde se lee "dos al cuadrado", $2^3=2\cdot 2\cdot 2=8$, donde se lee "dos al cubo", $2^4=2\cdot 2\cdot 2\cdot 2=16$, donde se lee "dos a la cuarta", $2^5=2\cdot 2\cdot 2\cdot 2\cdot 2=32$, donde se lee "dos a la quinta", \vdots

Además cualquier número (distinto de cero) elevado a la cero es 1 y 1 elevado a cualquier exponente es 1.

Si tomamos el último ejemplo, podemos describir los elementos de la potenciación, que son los siguientes:

El **exponente** es el número que indica la cantidad de veces que debe multiplicarse la **base** por sí misma, y el resultado se llama **Potencia**.

Ejemplo 1.6. Siguiendo el concepto de Potencia en el conjunto de los Números Enteros, se tiene que: "Si el exponente es par, la potencia lleva signo positivo. Si el exponente es impar, la potencia lleva el signo de la base"

$$2^{3} = 2 \cdot 2 \cdot 2 = 8$$

$$y \quad (-2)^{4} = (-2) \cdot (-2) \cdot (-2) \cdot (-2) = 16$$

$$(-5)^{3} = (-5) \cdot (-5) \cdot (-5) = -125 \quad y \quad (-10)^{2} = (-10) \cdot (-10) = 100$$

$$(-3)^{3} = (-3) \cdot (-3) \cdot (-3) = -27 \quad y \quad (-12)^{2} = (-12) \cdot (-12) = 144$$

Intentamos completar cuando sea posible

 $\Box^2 = 49$

 $\Box^2 = 25$

 $\Box^3 = 81$

 $\Box^6 = 64$

Material de consulta

Definición 1.7 (Radicación). La Radicación es una operación que relaciona de manera inversa a la Potenciación.

indice raíz
$$\sqrt[6]{64} = 2 \longleftrightarrow 2^6 = 64$$
símbolo radicando

 $\sqrt[2]{9} = 3$, porque $3^2 = 9$ dende se lee "raíz cuadrada de 9 es igaul a 3",

 $\sqrt[2]{9} = \sqrt{9} = 3$, porque cuando el índice es 2 (dos) se puede omitir escribirlo.

 $\sqrt[3]{125} = 5$, porque $5^3 = 125$, donde se lee "raíz cúbica de 125 es igual a 5",

 $\sqrt[4]{81} = 3$, porque $3^4 = 81$ donde se lee "raíz cuart de 81 es igual a 3",

: :

Ejemplo 1.8. Siguiendo el concepto de Radicación en el conjunto de los Números Enteros, se tiene que: "Si el índice es impar, la raíz lleva signo del radicando. Si el índice es par la raíz tiene solución si el radicando es positivo"

A modo de ejemplo, calculamos si es posible (sin usar la calculadora), las siguientes raíces:

$$\sqrt[3]{121} = \dots, \qquad \sqrt[4]{-16} = \dots, \qquad \sqrt{100} = \dots, \qquad \sqrt[3]{-8} = \dots$$