CSC 535: Assignment #6

Due on Wednesday, October 31, 2018

Kobus Barnard

Ariyan, Manujinda, Marina

Probability table

(a) Produce the 9×9 table $p(measured_angle \mid angle)$

		Measured Angle								
		1	2	3	4	5	6	7	8	9
Model (True) angle	1	0.7	0.2	0.1	0	0	0	0	0	0
	2	0.3	0.4	0.2	0.1	0	0	0	0	0
	3	0.1	0.2	0.4	0.2	0.1	0	0	0	0
	4	0	0.1	0.2	0.4	0.2	0.1	0	0	0
	5	0	0	0.1	0.2	0.4	0.2	0.1	0	0
	6	0	0	0	0.1	0.2	0.4	0.2	0.1	0
	7	0	0	0	0	0.1	0.2	0.4	0.2	0.1
ž	8	0	0	0	0	0	0.1	0.2	0.4	0.3
	9	0	0	0	0	0	0	0.1	0.2	0.7

(b) Variance of the measurements

Graphical Model

Figure 1: Bayes net for the gender and limb angles of MQLs

Legend:

G = Gender

 $\hat{S} = \text{Observed shape}$

RIA =Right inner arm angle

RIL =Right inner leg angle

ROA =Right outer arm angle

ROL =Right outer leg angle

LIA =Left inner arm angle

LIL = Left inner leg angle

LOA = Left outer arm angle

LOL = Left outer leg angle

 $\widehat{XYZ} = \text{Observed } XYZ \quad X \in \{R, L\}, Y \in \{I, O\}, Z \in \{A, L\}$

Question 3

Formula for the joint distribution

```
\begin{split} p(G, \hat{S}, RIA, RIL, ROA, ROL, \\ LIA, LIL, LOA, LOL, \\ \widehat{RIA}, \widehat{RIL}, \widehat{ROA}, \widehat{ROL}, \\ \widehat{LIA}, \widehat{LIL}, \widehat{LOA}, \widehat{LOL}) &= p(G)p(\hat{S} \mid G)p(RIA \mid G)p(RIL \mid G) \\ p(LIA \mid RIA)p(ROA \mid RIA)p(LOA \mid LIA) \\ p(LIL \mid RIL)p(ROL \mid RIL)p(LOL \mid LIL) \\ \widehat{p(RIA} \mid RIA)p(\widehat{ROA} \mid ROA)p(\widehat{RIL} \mid RIL)p(\widehat{ROL} \mid ROL) \\ \widehat{p(LIA} \mid LIA)p(\widehat{LOA} \mid LOA)p(\widehat{LIL} \mid LIL)p(\widehat{LOL} \mid LOL) \end{split}
```

Generated samples

Figure 2: Generated samples 1 - 3 for idealized individuals and observed appearance.

Figure 3: Generated samples 4 - 7 for idealized individuals and observed appearance.

Figure 4: Generated samples 8 - 10 for idealized individuals and observed appearance.

Deciding gender of MQLs from images

(a) From image of idealized individuals

(b) From image of observed appearance

Generating synthetic data to experiment with inference

(a) xxx